Contents

1	Logarithm	2
2	Geometry	5
3	Miscellaneous	11
4	Factorization	18
5	Construction	19
6	Indices	20
7	Trigonometry	2 1
8	Functional Equations	23
9	System of Equations	23
10	Coordinate Geometry	24
11	Mensuration	24

1 Logarithm

1. Solve for x : $\log_x 3 \cdot \log_{\frac{x}{81}} 3 = \log_{\frac{x}{729}} 3$.

$$\frac{1}{2}$$
. যদি $y=10^{\frac{1}{1-\log_{10}x}}$, $z=10^{\frac{1}{1-\log_{10}y}}$ হয়, তবে প্রমাণ কর যে, $x=10^{\frac{1}{1-\log_{10}z}}$.

$$3.$$
 যদি $x=rac{e^y-e^{-y}}{e^y+e^{-y}}$ হয়, তবে দেখাও যে, $y=rac{1}{2}\log_erac{1+x}{1-x}.$

$$4$$
. মান নির্ণয় কর :- $\log_6 \sqrt{6\sqrt{6\sqrt{6\cdots\infty}}}$

5. প্রমাণ কর যে, $\log_{10} 2 > 0.3$.

$$6.$$
 যদি $\dfrac{\log x}{ry-qz}=\dfrac{\log y}{pz-rx}=\dfrac{\log z}{qx-py}$ হয়, তবে প্রমাণ কর যে $x^py^qz^r=1.$

$$7. \, \log_p x = a, \, \log_q x = b$$
 হলে দেখাও যে, $\log_{\frac{p}{q}} x = \frac{ab}{b-a}.$

$$8.$$
 যদি $\log_a b = 10$ ও $\log_{6a} 32b = 5$ হয় তবে a ও b এর মান কত?

$$9. \ x = \log_a bc, \ y = \log_b ca, \ z = \log_c ab$$
 হলে দেখাও যে

(i)
$$\frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} = 1$$
.

(ii)
$$x + y + z = xyz - 2x$$

10. If
$$\log(x^2y^3) = a$$
 and $\log\left(\frac{x}{y}\right) = b$, find $\log x$ and $\log y$ in terms of a and b .

11. Solve :-
$$\log_4(x-1) = \log_2(x-3)$$
.

12. Solve:
$$\log_{(2x+3)} (6x^2 + 23x + 21) + \log_{(3x+7)} (4x^2 + 12x + 9) = 4$$
.

13. If
$$\log_{10} 2 = 0.30103$$
, $\log_{10} 3 = 0.47712$, and $\log_{10} 7 = 0.84510$, find the values of

- (i) $\log_{10} 45$
- (ii) $\log_{10} 105$

14. Prove that,
$$\log_2 10 - \log_8 125 = 1$$
.

15. Show that,
$$a^{\log_{a^2} x} \cdot b^{\log_{b^2} y} \cdot c^{\log_{c^2} z} = \sqrt{xyz}$$

16. If
$$\log_2 x + \log_4 x + \log_{16} x = \frac{21}{4}$$
, find the value of x.

17. Prove that,
$$(yz)^{\log \frac{y}{z}} \cdot (zx)^{\log \frac{z}{x}} \cdot (xy)^{\log \frac{x}{y}} = 1$$
.

18. Show that,
$$\frac{1}{\log_a bc + 1} + \frac{1}{\log_b ca + 1} + \frac{1}{\log_c ab + 1} = 1$$
.

19. Solve:
$$\log_5(5^{\frac{1}{x}} + 125) = \log_5 6 + 1 + \frac{1}{2x}$$
.

20. If
$$a > 0$$
; $c > 0$; $b = \sqrt{ac}$; a, c and $ac \neq 1$; $N > 0$; prove that,

$$\frac{\log_a N}{\log_c N} = \frac{\log_a N - \log_b N}{\log_b N - \log_c N}$$

- 21. If $\frac{r}{r_1} + \log_e \frac{r_2}{r_1} = 1$ and $r_2 = er$, then show that, $\frac{r_1}{r} \log_e \frac{r_1}{r} = 1$.
- 22. If $\frac{\log a}{y+z} = \frac{\log b}{z+x} = \frac{\log c}{x+y}$, then show that, $\left(\frac{b}{c}\right)^x \cdot \left(\frac{c}{a}\right)^y \cdot \left(\frac{a}{b}\right)^z = 1$.
- 23. Solve: $x^{\log_{10} x} = 100x$.
- 24. Solve: $2\log_2\log_2 x + \log_{\frac{1}{2}}\log_2(2\sqrt{2}x) = 1$.
- 25. Solve: $4^{\log_9 3} + 9^{\log_2 4} = 10^{\log_x 83}$.
- 26. If $(\log_b a \cdot \log_c a \log_a a) + (\log_c b \cdot \log_a b \log_b b) + (\log_a c \cdot \log_b c \log_c c) = 0$, then show that,
 - (i) a = b = c.
 - (ii) abc = 1.
- 27. If $x=1+\log_a(bc)$, $y=1+\log_b(ca)$, $z=1+\log_c(ab)$, prove that, xy+yz+zx=xyz.
- 28. Show that, $\frac{\log_a x}{\log_{ab} x} = 1 + \log_a b$.
- 29. If the logarithm of a^2 to the base b^3 and the logarithm of b^8 to the base a^{12} be equal, find the value of each logarithm.
- 30. Solve: $\frac{1}{\log_x 10} + 2 = \frac{2}{\log_{0.5} 10}$.
- 31. Find the value of $\log_3 2^{\log_4 3^{\log_5 4^{\log_6 5 \cdots \log_{1024} 1023}}$
- 32. Find the value of $\log_2 1^{\log_3 2^{\log_4 3 \cdots \infty}}$.
- 33. Solve :- $x^{\log_2 x} + a^{\log_2 x} = 2a^2(a > 1)$.
- 34. Prove that, $a^{\log b} = b^{\log a}$.
- 35. If $\frac{pq\log(pq)}{p+q} = \frac{qr\log(qr)}{q+r} = \frac{rp\log(rp)}{r+p}$, then prove that, $p^p = q^q = r^r$.
- 36. If $\log_{12} 27 = a$ then find the value of $\log_6 16$ in the terms of a.
- 37. If x = 10!, find the value of $\frac{1}{\log_2 x} + \frac{1}{\log_3 x} + \frac{1}{\log_4 x} + \dots + \frac{1}{\log_{10} x}$.
- 38. Find the value of $(25)^{\frac{1}{2} + \log_{\frac{1}{5}} 27 + \log_{25} 81}$.
- $39. \ 2\log_{10}x \log_x(0.01) \ [x>1]$ রাশিটির ক্ষুদ্রতম মান কত?
- 40. If $2\log_8 N = P$, $\log_2 2N = q$ and q p = 4, find the value of N.
- 41. If $a = \log_3 5 \& b = \log_{17} 25$, show that a > b.
- 42. If $x^2 + y^2 = z^2$, prove that, $\frac{1}{\log_{z-y} x} + \frac{1}{\log_{z+y} x} = (2 + \sqrt{2})(2 \sqrt{2})$.
- $43. \ 5^{(2-\log_5 2)}$ এর মান কত?
- 44. Prove that, $\log_a x \cdot \log_b y \cdot \log_c z = \log_b x \cdot \log_c y \cdot \log_a z$.

- 45. Prove that, $\log(1^{\frac{1}{5}} + 32^{\frac{1}{5}} + 243^{\frac{1}{5}}) = \frac{1}{5} (\log 1 + \log 32 + \log 243).$
- 46. Prove that, $\log_a x + \log_{a^2} x^2 + \log_{a^3} x^3 + \log_{a^4} x^4 + \dots + \log_{a^n} x^n = \log_a x^n$.
- $47. \log_3 \sqrt{6} + \log_3 \sqrt{\frac{2}{3}} \log_3 \log_3 9$ এর মান কত?
- 48. If x + y = z, prove that, $\frac{1}{\log_{\sqrt{z} \sqrt{y}} x} + \frac{1}{\log_{\sqrt{z} + \sqrt{y}} x} = 1$.
- 49. Find the value of $\log_2 \sqrt[4]{64\sqrt[3]{4^{(-1)}8^{-\frac{4}{3}}}}$.
- 50. If $x = \log_b a + \log_a b$, $y = \log_c b + \log_b c$, $z = \log_a c + \log_c a$; prove that, $x^2 + y^2 + z^2 4 = xyz$.
- 51. If $\frac{a(b+c-a)}{\log a} = \frac{b(c+a-b)}{\log b} = \frac{c(a+b-c)}{\log c}$, prove that, $a^b \cdot b^a = b^c \cdot c^b = a^c \cdot c^a$.
- 52. If $\log_{12} m = a$, $\log_{18} m = b$, prove that, $\log_3 2 = \frac{a 2b}{b 2a}$.
- 53. Solve:- $\frac{\log_2(x+4)+1}{\log_{\sqrt{2}}(\sqrt{x+3}-\sqrt{x-3})} = 1.$
- 54. Prove that, the value of $\log_{10} 3$ lies between $\frac{1}{2}$ and $\frac{2}{5}$.
- 55. Prove that, $\frac{1}{\log_2 \pi} + \frac{1}{\log_6 \pi} > 2$.
- 56. Solve: $\log_7 \log_5(\sqrt{x+5} + \sqrt{x}) = 0$.
- 57. Solve:- $x + \log_{10}(1 + 2x) = x \log_{10} 5 + \log_{10} 6$.
- 58. If $\log_{40} 4 = a$, $\log_{40} 5 = b$, show that $\log_{40} 16 = 4(1 a b)$.

\mathbf{OR}

If $\log_{40} 4 = a$, $\log_{40} 5 = b$, find the value of $\log_{40} 16$ in terms of a & b.

59. If $\log(a+b+c) = \log a + \log b + \log c$, then prove that,

$$\log\left(\frac{2a}{1-a^2} + \frac{2b}{1-b^2} + \frac{2c}{1-c^2}\right) = \log\frac{2a}{1-a^2} + \log\frac{2b}{1-b^2} + \log\frac{2c}{1-c^2}.$$

60. If $b = \frac{c+a}{2}$ and $y^2 = zx$, then prove that,

$$a^{(b-c)}\log_a x \cdot b^{(c-a)}\log_b y \cdot c^{(a-b)}\log_c z = 1$$

- 61. If $2\log_m x = \log_l x + \log_n x$, show that $\log n^2 = \log(\ln n) \cdot \log_l m$.
- 62. If b a = c b and $\frac{y}{x} = \frac{z}{y}$, prove that $(b c) \log x + (c a) \log y + (a b) \log z = 0$.
- 63. If x, y, z are in G.P., prove that $\log_a x + \log_a z = \frac{2}{\log_y a}$ where x, y, z, a > 0.
- 64. If $\log_6 15 = a$, $\log_{12} 18 = b$, $\log_{25} 24 = c$, show that $c = \frac{5 b}{2(ab + a 2b + 1)}$.

- 65. If $\log_{12} 18 = x$, $\log_{24} 54 = y$ show that, xy + 5(x y) = 1.
- 66. If $2\log_{10} 2 = (2-a)$, show that, $\log_{10} 5 = \frac{a}{2}$.
- 67. If $(ax)^{\log a} = (bx)^{\log b}$, show that $x = \frac{1}{ab}$.
- 68. If $\log_{10} 2 = x$, $\log_{10} 3 = y$, show that $\log_{10} 45 = 2y x + 1$.
- 69. If $\log_{10} 2 = x$, show that $\log_8 25 = \frac{2}{3} \left(\frac{1}{x} 1 \right)$.
- 70. If $a^2 + b^2 = c^2$, show that $\log_{(c-b)} a + \log_{(c+b)} a = 2 \cdot \log_{(c+b)} a \cdot \log_{(c-b)} a$.

2 Geometry

1. ABC ও BDC দুটি ত্রিভুজ একই ভূমি BC -র একই পাশে অবস্থিত। AB, AC, CD, BD বাহুগুলির মধ্যবিন্দু যথাক্রমে P,Q,R,S. প্রমাণ কর যে,

$$\mathrm{PQRS}$$
 সামান্তরিকের ক্ষেত্রফল = $\frac{1}{2}\left(\triangle BDC \sim \triangle ABC\right)$.

- 2. ABCD, CDEF ও EFGH হল তিনটি বর্গক্ষেত্র । AF ও BH পরস্পরকে O বিন্দুতে ছেদ করেছে। প্রমাণ কর যে, $\angle HOF = 45^{\circ}$.
- $3.~{
 m ABCD}$ একটি বর্গক্ষেত্র। এর মধ্যে ${
 m P}$ এমন একটি বিন্দু যেন ${
 m PB}={
 m PC}$ হয়। $\angle PAD=15^{\circ}$. প্রমাণ কর যে, ${
 m PB}={
 m BC}={
 m PC}.$
- 4. ABCD আয়তক্ষেত্রের C বিন্দুগামী একটি বৃত্ত AB ও AD কে যথাক্রমে M ও N বিন্দুতে ছেদ করে। MN জ্যা এর উপরে C বিন্দু থেকে CP লম্ব। প্রমাণ করতে হবে, ABCD আয়তক্ষেত্রের ক্ষেত্রফল $= (CP)^2$.
- 5. \triangle ABC একটি সূক্ষাকোণী ত্রিভুজ। $\angle BAC=30^\circ$. H লম্বন্দু ; M, BC বাহুর মধ্যবিন্দু। H, M যোগ করে T বিন্দু পর্যন্ত এমনভাবে বাড়ানো হল যাতে ${
 m HM}={
 m MT}$ হয়। প্রমাণ করতে হবে, ${
 m AT}=2{
 m BC}$. [INMO 1995]
- 6. Fermat's Point
- 7. △ ABC এর AD, BE ও CF তিনটি মধ্যমা পরস্পরকে G বিন্দুতে ছেদ করেছে। প্রমাণ কর যে,
 - (i) $8(BE)^2 + 8(CF)^2 4(AD)^2 = 9(BC)^2$
 - (ii) $8(BE)^2 + 8(AD)^2 4(CF)^2 = 9(AB)^2$
 - (iii) $8(CF)^2 + 8(AD)^2 4(BE)^2 = 9(AC)^2$
- 8. Apollonius' Theorem
- 9. ABC একটি সমদ্বিবাহু ত্রিভুজ। A বিন্দুগামী BC এর সমান্তরাল সরলরেখার ওপর D একটি বিন্দু। BCD অপর একটি ত্রিভুজ। প্রমাণ কর যে, BD + CD > AB + AC.
- $10.\ \triangle\ \mathrm{ABC}$ এর AD মধ্যমা। $\angle ADB=45^\circ$ ও $\angle ACB=30^\circ.\ \angle BAD=$ কত? $[\mathrm{RMO}\ 2005]$
- $11.~{
 m ABC}$ একটি সমকোণী ত্রিভুজ যার $\angle ABC=90^{\circ}.~{
 m BCRS,~ACXY,~AQPB}$ হল তিনটি বর্গক্ষেত্র যাদের প্রতিটি বাহু যথাক্রমে a,c,b. প্রমাণ করতে হবে, $(XR)^2+(QY)^2=5(PS)^2.$
- $12.\ \triangle\ ABC$ এর S পরিকেন্দ্র, O লম্ববিন্দু , R পরিব্যাসার্ধ হলে প্রমাণ কর যে, $(AB)^2+(BC)^2+(AC)^2=12R^2-[(OA)^2+(OB)^2+(OC)^2].$

 $13. \triangle ABC$ এর $\angle A, \angle B, \angle C$ কোণের বিপরীত বাহু যথাক্রমে a,b,c হলে ও C বিন্দুগামী উচ্চতার দৈর্ঘ্য h হলে প্রমাণ কর যে,

$$h = \frac{\sqrt{(a+b+c)(a+b-c)(b+c-a)(c+a-b)}}{2c}.$$

 $14. \triangle ABC$ এর $\angle A, \angle B, \angle C$ কোণের বিপরীত বাহু যথাক্রমে a,b,c হলে ও C বিন্দুগামী মধ্যমার দৈর্ঘ্য x হলে প্রমাণ কর যে,

$$x = \frac{\sqrt{2a^2 + 2b^2 - c^2}}{2}.$$

- $15. \triangle ABC$ এর $\angle B = 2\angle C$ হলে নিচের কোনটি সঠিক?
 - (i) AC < 2AB.
 - (ii) AC = 2AB.
 - (iii) AC > 2AB.
- 16. ব্রহ্মগুপ্তের সূত্র ত্রিজুজের পরিব্যাসার্ধ নির্ণয়
- 17.~ABCD সামান্তরিক, $BQ \perp AD$ হলে প্রমাণ কর যে, $(AC)^2 (BD)^2 = 4(AQ)(AD)$.
- $18. \ \triangle ABC$ এর $\angle BAC$ এর সমিদ্বখণ্ডক $AE, AD \perp AE$. Prove that, AB + AC < BD + DC.
- $19.\ \triangle ABC$ এর $AB=3AC, \angle BAC$ এর সমিদ্বখণ্ডক AD,BC কে D বিন্দুতে ছেদ করেছে। বর্ধিত AD এর ওপর BE লম্ব ।প্রমাণ কর যে, AD=DE.
- 20. \triangle ABC এর $\angle A,$ $\angle B,$ $\angle C$ কোণের বিপরীত বাহু যথাক্রমে a,b,c হলে ও C বিন্দুগামী কোণসমিদ্বখণ্ডকের দৈর্ঘ্য x হলে প্রমাণ কর যে,

$$x = \frac{\sqrt{ab(a+b+c)(a+b-c)}}{a+b}.$$

- 21. কোনো বৃত্তের ব্যাস AB. $CD \parallel AB,CD$ জ্যা। P,AB এর ওপর যেকোনো বিন্দু। প্রমাণ কর যে, $(PA)^2+(PB)^2=(PC)^2+(PD)^2.$
- 22. একটি সমকোণী ত্রিভুজের অতিভুজের বর্গ অন্য দুই বাহুর গুণফলের দ্বিগুণের সমান। ত্রিভুজটির সূক্ষ্মকোণদ্বয়ের মান কত?
- 23. Ceva's Theorem
- $24.\ \triangle ABC$ এর AD মধ্যমা। AB ও AC বাহুর উপর দুটি বর্গক্ষেত্র যথাক্রমে SABR ও QACP. প্রমাণ কর যে, QS=2AD.
- $25.\ \triangle ABC$ এর AD,BE,CF তিনটি মধ্যমা । AB,BC ও AC বাহুর উপর তিনটি বর্গক্ষেত্র যথাক্রমে PABQ,RBCS,MACN. প্রমাণ কর যে,

$$(PM)^2 + (QR)^2 + (SN)^2 = 4\Big[(AD)^2 + (BE)^2 + (CF)^2\Big].$$

 $26.\ \triangle ABC$ এর $AD,\,BE,\,CF$ তিনটি মধ্যমা। $AB,\,BC$ ও AC বাহুর উপর তিনটি বর্গক্ষেত্র যথাক্রমে $PABQ,\,RBCS,\,MACN.$ যাদের প্রতিটি বাহু যথাক্রমে $a,\,b,\,c.$ প্রমাণ কর যে,

$$(PM)^2 + (QR)^2 + (SN)^2 = 3(a^2 + b^2 + c^2).$$

27. Stewart Law

- $28.\ \triangle ABC$ এর $\angle B=\angle C=2\angle A.$ প্রমাণ কর যে, $\dfrac{BC}{AB}=\dfrac{\sqrt{5}-1}{2}.$
- $29. \ \triangle ABC$ সমকোণী ত্রিভুজের BC অতিভুজ ও $AD \perp BC$. প্রমাণ কর যে, BC + AD > AB + AC.
- $30. \ \triangle ABC$ এর O লম্ববিন্দু, S পরিকেন্দ্র ও $SD \perp BC$ হলে প্রমাণ কর যে AO = 2SD.
- 31. Euler Line.
- 32.~ABCD সামান্তরিকের BC ও CD বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে Eও F. প্রমাণ কর যে, $\triangle AEF=rac{3}{8}\Box ABCD.$
- 33. Let ABC be an acute-angled triangle and CD be the altitude through C If AB=8 and CD=6 find the distance between the midpoints of AD and BC. [RMO 1993]
- 34. প্রমাণ কর যে, সমদ্বিবাহু ত্রিভুজের ভূমি সংলগ্ন কোণ দুটির অন্তর্দ্বিখণ্ডক ও ভূমির লম্ব সমদ্বিখণ্ডকটি সমবিন্দু হয়। (ভূমিটি অসমান বাহু)
- 35. প্রমাণ কর যে, কোনো ত্রিভুজের ভূমি সংলগ্ন কোণ দুটির অন্তর্দ্বিখণ্ডক ও ভূমির লম্ব সমদ্বিখণ্ডকটি সমবিন্দু হলে ত্রিভুজটি সমদ্বিবাহু হয়।
- 36. প্রমাণ কর যে, একটি ট্রাপিজিয়ামের সমান্তরাল বাহুদ্বয়ের মধ্যবিন্দু দুটির সংযোজক সরলরেখা কর্ণদ্বয়ের ছেদবিন্দু-গামী।
- 37. $\triangle ABC$ এর $\angle BAC$ এর সমদ্বিখণ্ডক AO. D,BC -এর মধ্যবিন্দু । $BE \perp AO,$ $CF \perp AO$ হলে প্রমাণ কর যে, DE = DF.
- $38.\ \triangle ABC$ এর $AB=AC,\ \angle BAC=20^\circ,\ BC=AD,\ D$ বিন্দু AB এর ওপর অবস্থিত হলে $\angle ADC$ এর মান নির্ণয় কর।
- $39.\ \triangle ABC$ এর $\angle BAC$ -এর বহিঃসমদ্বিখণ্ডকের ওপর P যেকোনো একটি বিন্দু । BCP একটি ত্রিভুজ । প্রমাণ কর যে, PB+PC>AB+AC.
- 40. $\triangle ABC$ এর $BC,\ CA$ ও AB বাহুকে যথাক্রমে X,Y,Z পর্যন্ত এরূপে বর্ধিত করা হল যাতে BC=CX, $CA=AY,\ AB=BZ$ হয়। $\triangle ABC:\triangle XYZ=$ কত?
- $41. \ \triangle ABC$ এর AD, BE ও CF তিনটি মধ্যমা, G ভরকেন্দ্র। প্রমাণ কর যে,

$$(AB)^2 + (BC)^2 + (AC)^2 = 3[(AG)^2 + (BG)^2 + (CG)^2].$$

- $42. \ \triangle ABC$ এর O লম্ববিন্দু, H পরিকেন্দ্র । AO=AH হলে প্রমাণ কর যে, $\angle BAC=60^{\circ}$.
- 43. ত্রিভুজের অন্তর্ব্যাসার্ধ নির্ণয় ।
- 44. $\triangle ABC$ এর $\angle B$ ও $\angle C$ এর অন্তর্দ্বিখণ্ডকদ্বয় পরস্পরকে I বিন্দুতে ছেদ করে। I থেকে $BC,\ CA$ ও AB বাহুর ওপর অঙ্কিত লম্ব তিনটি যথাক্রমে $ID,\ IE,\ IF.$ প্রমাণ কর যে, ID=IE=IF.
- $45.\ \triangle ABC$ এর $\angle A$ সমকোণ। AB এর উপর অঙ্কিত বর্গন্ধেত্র ABPQ ও BC এর উপর অঙ্কিত বর্গন্ধেত্র BCRS যারা $\triangle ABC$ এর বাইরের দিকে অবস্থিত। AM,BC এর উপর লম্ব। বর্ধিত AM,SR কে N বিন্দুতে ছেদ করে। প্রমাণ কর যে, ABPQ এর ন্ধেত্রফল =BMNS এর ক্ষেত্রফল।
- 46. Pappu's Extensiion on Pythagora's Theorem.
- 47. Let ABC be a triangle with AB = AC and $\angle BAC = 30^{\circ}$. Let A' be the reflection of A in the line BC; B' be the reflection of B in the line CA; C' be the reflection of C in the line AB. Show that, A', B', C' form the vertices of an equilateral triangle. [RMO 1998]

- 48.~ABC স্থূলকোণী ত্রিভুজের $\angle ABC=100^\circ,\ \angle ACB=65^\circ.~M$ ও N হল যথাক্রমে AC ও AB বাহুর ওপর অবস্থিত এমন দটি বিন্দু যাতে $\angle ABM=20^\circ$ ও $\angle ACN=10^\circ$ হয়। $\angle MNC$ এর মান কত?
- 49. Nine Point Circle (নববিন্দু বৃত্ত) .
- 50. কোনো বৃত্তে 2a ও 2b দৈর্ঘ্য বিশিষ্ট দুটি জ্যা পরস্পরকে লম্বভাবে ছেদ করে। যদি কেন্দ্র থেকে ছেদবিন্দুর দূরত্ব c হয়, তাহলে প্রমাণ কর যে, বৃত্তের ব্যাসার্ধ $r=\sqrt{rac{a^2+b^2+c^2}{2}}$.
- 51. কোনো একটি বৃত্তকে দুটি এককেন্দ্রিক বৃত্তের সাহায্যে সমান 3 টি ভাগে বিভক্ত করা হল। ভিতর থেকে বাইরের দিকে তাদের ব্যাসার্ধ যথাক্রমে $r_1,\ r_2,\ r_3$ হলে প্রমাণ কর যে, $\frac{r_1}{\sqrt{1}}=\frac{r_2}{\sqrt{2}}=\frac{r_3}{\sqrt{3}}.$
- 52. একটি সমকোণী ত্রিভুজের সমকোণ সংলগ্ন বাহুদ্বয়ের দৈর্ঘ্য a একক ও b একক, সমকৌণিক বিন্দু থেকে অতিভুজের ওপর লম্বের দৈর্ঘ্য c একক হলে প্রমাণ কর যে, $\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{c^2}.$
- $53. \triangle ABC$ এর $\angle A = 90^{\circ}, AD \perp BC, AB : AC = 12 : 5$ হলে $BD : CD = \overline{\bullet \bullet}$?
- $54.\ A,\ B$ ও C কেন্দ্র বিশিষ্ট তিনটি ভিন্ন ব্যাসার্ধের বৃত্ত পরস্পরকে বহিঃস্পর্শ করেছে। প্রথম ও দ্বিতীয় বৃত্তের ব্যাসার্ধের যোগফল $5\ c.m.$, দ্বিতীয় ও তৃতীয় বৃত্তের $6\ c.m.$ এবং তৃতীয় ও প্রথম বৃত্তের $7\ c.m.$ প্রতিটি বৃত্তের ব্যাসার্ধের দৈর্ঘ্য কত 2
- 55.~ABC সূক্ষকোণী ত্রিভুজে $\angle B=50^\circ,$ $\angle C$ এর অন্তর্দ্বিখণ্ডক AB বাহুকে D বিন্দুতে ছেদ করে। CD এর ওপর E এমন একটি বিন্দু নেওয়া হল যাতে AD=AE হয়। $\angle CAE=$ কত ?
- 56.~ABCD বর্গন্ধেত্রের ভেতরে P এমন একটি বিন্দু যাতে PA=1 unit, PB=2 units ও PC=3 units হয়। Q হল ABCD বর্গন্ধেত্রের বাইরে অবস্থিত একটি বিন্দু। $\triangle BQC$ বর্গন্ধেত্রের বাইরে অবস্থিত এমন একটি ত্রিভুজ যার BQ=2 units ও CQ=1 unit.
 - (i) PQ = ?
 - (ii) $\angle PQB = ?$
 - (iii) $\angle PQC = ?$
 - (iv) $\angle APB = ?$

MTRP 2014

57.~ABC সমবাহু ত্রিভুজের প্রতিটি বাহু $2~\mathrm{c.m.}~BC$ কে ব্যাস করে একটি বৃত্ত আঁকা হল। চিহ্নিত অংশের ক্ষেত্রফল কত ?

MTRP 2017

- 58. প্রমাণ কর যে, একটি বৃত্তের কোন একটি বহিস্থ বিন্দুগামী ওই বৃত্তের দুটি স্পর্শক বৃত্তে যে স্পর্শ জ্যা উৎপন্ন করে, সেই স্পর্শ জ্যাটিকে ওই বৃত্তের কেন্দ্র ও সেই বহিস্থ বিন্দুগামী সরলরেখাংশ লম্বভাবে সমদ্বিখণ্ডিত করে।
- $59.\ O$ কেন্দ্রীয় বৃত্তের AB একটি জ্যা। A ও B বিন্দুতে অঙ্কিত স্পর্শকদ্বয় পরস্পরকে P বিন্দুতে ছেদ করে। P বিন্দুগোমী একটি বৃত্ত AB জ্যাকে A বিন্দুতে স্পর্শ করে। বর্ধিত OA দ্বিতীয় বৃত্তকে D বিন্দুতে ছেদ করে। প্রমাণ কর যে, OA=AD.
- $60.\ ABC$ ও DEF দুটি সদৃশকোণী ত্রিভুজ। প্রমাণ কর যে,

$$\frac{\triangle ABC}{\triangle DEF} = \frac{BC^2}{EF^2} = \frac{AB^2}{DE^2} = \frac{AC^2}{DF^2}.$$

61. Given x : y : z = 3 : 4 : 5. Find x, y, z.

- 62. কোনো বৃত্তস্থ চতুর্ভুজের বিপরীত বাহুগুলি বর্ধিত করার ফলে যে দুটি কোণ উৎপন্ন হয় তাদের অন্তঃসমদ্বিখণ্ডকদ্বয়ের মধ্যবর্তী কোণের মান কত ?
- 63. প্রমাণ কর যে, কোনো ট্রাপিজিয়ামের সমান্তরাল বাহুদ্বয়ের সঙ্গে সমান্তরালভাবে অঙ্কিত একটি সরলরেখা তির্যক বাহুদ্বয়কে বা তাদের বর্ধিত অংশকে সমানুপাতে বিভক্ত করে।
- 64. দুটি বৃত্ত পরস্পরকে ছেদ করে একটি সাধারণ জ্যা উৎপন্ন করেছে। সাধারণ জ্যায়ের যেকোনো একটি প্রান্তবিন্দুতে অঙ্কিত দুটি সরলরেখার প্রত্যেকটি বৃত্তবয়কে যথাক্রমে $A,\ B$ ও $C,\ D$ বিন্দুতে ছেদ করেছে। AB ও CD সরলরেখাংশদ্বয় সাধারণ জ্যাটির সঙ্গে সমান কোণে নত। প্রমাণ কর যে, AB=CD.
- 65. প্রমাণ কর যে, দুটি পরস্পরছেদী বৃত্তের ছেদবিন্দুদ্বয়ের যেকোনো একটি বিন্দুগামী সকল সরলরেখাগুলির মধ্যে যে সরলরেখাটি বৃত্তদ্বয়ের কেন্দ্রের সংযোজক সরলরেখাংশের সমান্তরাল সেটিই ক্ষুদ্রতম সরলরেখা।
- 66. Two circles of radius a and b touch each other externally and they also touch a line. A circle of radius c is inscribed in the region in between the circles and the line to touch the both of the circles. Show that, $\frac{1}{\sqrt{c}} = \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}}$.
- 67. Two circles C_1 and C_2 of radii a and b touch each other externally and they both touch a unit circle C internally. A circle C_3 of radius r is inscribed to touch the circles C_1 , C_2 externally and C_3 internally. Show that, $r = \frac{ab}{1-ab}$.
- 68. দুটি বৃত্ত পরস্পরকে P বিন্দুতে অন্তঃস্পর্শ করে। ABCD সরলরেখাংশ বহিঃস্থ বৃত্তকে $A,\ D$ ও অন্তঃস্থ বৃত্তকে C ও B বিস্তুতে ছেদ করে। $\angle APB=20^\circ$ হলে $\angle CPD=$ কত ?
- $69.\ ABCD$ রম্বসের C বিন্দুগামী একটি সরলরেখা AB ও বর্ধিত DA কে যথাক্রমে P ও Q বিন্দুতে ছেদ করে। প্রমাণ কর যে.
 - (i) $\triangle APQ,$ $\triangle BPC,$ $\triangle DCQ$ প্রত্যেকে পরস্পরের সঙ্গে সদৃশকোণী।

- (ii) $PB : DQ = AP^2 : AQ^2$.
- $70.\ O$ কেন্দ্রীয় একটি বৃত্তে ত্রিভুজ ABC অন্তর্লিখিত। বৃত্তের ওপর অবস্থিত $\ X$ বিন্দু থেকে AB বাহুর ওপর XP লম্ব এবং AC বাহুর ওপর XQ লম্ব । BK বৃত্তিটির একটি ব্যাস হলে প্রমাণ কর যে, PQ:BC=AX:2R ,যেখানে বৃত্তিটির ব্যাসার্ধ = R.
- 71. In an acute triangle ABC; points D, E, F are located on the sides BC, CA, AB respectively such that

$$\frac{CD}{CE} = \frac{CA}{CB}, \frac{AE}{AF} = \frac{AB}{AC}, \frac{BF}{BD} = \frac{BC}{BA}.$$

Prove that, AD, BE, CF are altitudes of ABC. [RMO 2002]

- 72. Let ABC be a triangle in which AB = AC and $\angle CAB = 90^{\circ}$. Suppose M and N are points on the hypotenuse BC such that $BM^2 + CN^2 = MN^2$. Prove that $\angle MAN = 45^{\circ}$. [RMO 2003]
- 73. Let ABC be a triangle in which AB = AC and let I be its in-centre. Suppose BC = AB + AI. Find $\angle BAC$. [RMO 2009]
- 74. Let AB be a triangle and let BB_1 , CC_1 be respectively the bisectors of $\angle B$, $\angle C$ with B_1 on AC and C_1 on AB. Let E, F be the feet of perpendiculars drawn from A onto BB_1 , CC_1 respectively. Suppose D is the point at which the incircle of ABC touches AB. Prove that, AD = EF.
- 75. Consider in the plane a circle Γ with center O and a line l not intersecting circle Γ . Prove that there is a unique point Q on the perpendicular drawn from O to the line l, such that for any point P on the line l, PQ represents the length of the tangent from P to the circle Γ . [RMO 2004]
- 76. Euler's Theorem : কোনো ত্রিভুজের পরিব্যাসারধ R, অন্তঃব্যাসার্ধ r, পরিকেন্দ্র S ও অন্তঃকেন্দ্র I হলে প্রমাণ কর যে, $SI^2=R^2-2Rr$.
- 77. Euler's Theorem : কোনো ত্রিভুজের পরিব্যাসারধ R, বহিঃব্যাসার্ধ r_1 , পরিকেন্দ্র S ও বহিঃকেন্দ্র I_1 হলে প্রমাণ কর যে, $SI_1{}^2=R^2+2Rr_1$.
- $78. \ \triangle ABC$ এর S পরিকেন্দ্র, I অন্তঃকেন্দ্র, O লম্ববিন্দু হলে প্রমাণ কর যে, $\angle SAI = \angle IAO$.
- $79.~ \triangle ABC$ এর $\angle BAC=90^\circ,~AD\perp BC.~ \angle ABC$ ও $\angle CAD$ কোণের অন্তঃসমদ্বিখণ্ডকদ্বয় যথাক্রমে BE ও AF.~BE,~AD কে E বিন্দুতে ও AF,~CD কে F বিন্দুতে ছেদ করে। প্রমাণ কর যে, $EF\parallel AC.$
- $80. \ \triangle ABC$ সমদ্বিবাহু যার $AC=BC. \ BP\perp AC, \ PN\perp BC.$ প্রমাণ কর যে, $AB^2=AN^2+PN^2.$
- $81.\ O$ কেন্দ্রীয় বৃত্তের AB একটি ব্যাস। AB ব্যাসের একই পাশে P ও Q দুটি এমন বিন্দু যে $Q,\ AP$ চাপের মধ্যে ও $P,\ BQ$ চাপের মধ্যে অবস্থিত। বর্ধিত AQ ও বর্ধিত BP পরস্পরকে Y বিন্দুতে এবং AP ও BQ পরস্পরকে X বিন্দুতে ছেদ করে। প্রমাণ কর যে, P ও Q বিন্দুতে অঙ্কিত স্পর্শকদ্বয় XY এর মধ্যবিন্দুগামী।
- 82. প্রমাণ কর যে, কোনো ত্রিভুজের পরিব্যাসার্ধ তার বাহুগুলির মধ্যবিন্দু গুলির সংযোজক সরলরেখাংশগুলি দ্বারা গঠিত ত্রিভুজের পরিব্যাসার্ধের দ্বিগুণ।
- 83.~AB সরলরেখাংশের A ও B বিন্দুতে যথাক্রমে RA ও QB লম্ব । AQ ও BR পরস্পারকে O বিন্দুতে ছেদ করে । $OT \perp AB$. প্রমাণ কর যে, $OT, \angle OTR$ কে সমদ্বিখণ্ডিত করে ।
- 84.~ABCD ট্রাপিজিয়ামের $AD\parallel BC.~$ কর্ণদ্বয় AC ও BD এর ছেদবিন্দু F.~F বিন্দুগামী AD এর সমান্তরাল সরলরেখা AB ও CD কে যথাক্রমে E ও G বিন্দুতে ছেদ করেছে। প্রমাণ কর যে, EF=FG.
- $85.\ ABCD$ একটি সামান্তরিক। প্রমাণ কর যে, $AB^2+BC^2+CA^2+AD^2=AC^2+BD^2.$

- $86.\ ABCD$ বর্গক্ষেত্রের $AB,\ BC,\ CD$ ও DA বাহুগুলির মধ্যবিন্দুগুলি হল যথাক্রমে $E,\ F,\ G$ ও $H.\ AF,\ CE$ পরস্পরকে P এবং AG ও CH পরস্পরকে Q বিন্দুতে ছেদ করলে প্রমাণ কর যে, APCQ একটি রম্বস।
- 87. **Morley's Theorem**: The points of intersection of the adjacent trisectors of the angles of any triangle form the vertices of an equilateral triangle.
- 88. একটি বৃত্তে AB ও CD হল দুটি পরস্পার লম্বভাবে অবস্থিত ব্যাস। বৃত্তের ওপার অবস্থিত P একটি যেকোনো বিন্দু। প্রমাণ কর যে, $4 \triangle PCD = PA^2 \sim PB^2$.
- 89.~ABCD চতুর্ভুজের AC ও BD কর্ণদ্বয় পরস্পরকে O বিন্দুতে ছেদ করে। একই সমতলে অবস্থিত একটি $\triangle PQR$ এর PQ ও PR বাহুদ্বয় যথাক্রমে BD ও AC এর সঙ্গে সমান ও সমান্তরাল। প্রমাণ কর যে, ABCD চতুর্ভুজের ক্ষেত্রফল $= \triangle PQR$ এর ক্ষেত্রফল।
- 90.~ABCD চতুর্ভুজের AB ও CD বাহুর ওপর যথাক্রমে অবস্থিত E,F এবং G,H বিন্দুগুলি বাহুদ্বয়কে সমত্রিখণ্ডিত করে। প্রমাণ কর যে, EFGH চতুর্ভুজের ক্ষেত্রফল $=\frac{1}{2}~\left(AEHD~$ চতুর্ভুজের ক্ষেত্রফল +~BCGF~ চতুর্ভুজের ক্ষেত্রফল $\right).$
- 91. P & Q are two points on BC of $\triangle ABC$ such that BP = QC. If the bisector of $\angle B$ meets AP, AQ & AC respectively at X, Y and Z, show that, $\frac{PX}{AX} + \frac{QY}{AY} = \frac{CZ}{AZ}$.
- $92.\ M$ ও N কেন্দ্রীয় দুটি বৃত্ত পরস্পরকে A ও B বিন্দুতে ছেদ করেছে। PQ ও RS হল বৃত্তদ্বয়ের সরল সাধারণ স্পর্শকদ্বয়। বর্ধিত $BA,\,PQ$ কে D বিন্দুতে ছেদ করে। প্রমাণ কর যে, $PQ^2+AB^2=CD^2.$
- 93. Let Γ be a circle with center O and P be any point on its plane. Then show that, the power of P w.r.t. Γ is $OP^2 R^2$ where R is the radius of Γ .
- 94.~O কেন্দ্রীয় একটি বৃত্তে AB ও BC দুটি জ্যা। AB এর ওপর অবস্থিত D এমন একটি বিন্দু যাতে $\angle DCB = 40^\circ$ হয়। OC ব্যাসার্ধটি $\angle DBC$ কোণের সমদ্বিখণ্ডক। $\angle ABC = 30^\circ$. $\angle CDO =$ কত ?
- 95. ABCD সামান্তরিকের AB বাহুর সমান্তরাল একটি সরলরেখা $QP.\ AP,\ BQ$ পরস্পরকে R এবং $CQ,\ DP$ পরস্পরকে S বিন্দৃতে ছেদ করেছে। প্রমাণ কর যে, $RS\parallel AD.$
- 96.~ABCD একটি বৃত্তস্থ চতুর্ভুজ যার AB>CD,~AD>BC.~P এবং Q হল যথাক্রমে AB ও AD এর ওপর অবস্থিত এমন দুটি বিন্দু যে BP=CD ও DQ=BC হয়। M,~PQ এর মধ্যবিন্দু। প্রমাণ কর যে, $\angle BMD=90^{\circ}.$
- 97. জ্যামিতিক উপায়ে প্রমাণ কর যে, $3 < \pi < 4$.
- 98. ABC is an isosceles triangle where $\angle A = 20^{\circ}$, AB = AC. D & E are points on AB & AC respectively such that $\angle BCD = 60^{\circ} \& \angle CBE = 70^{\circ}$. Find $\angle BED$.

3 Miscellaneous

- 1. যদি $ab^2+bc^2+ca^2=0$ হয় যখন $a,b,c\neq 0,$ তবে $\left(\frac{a}{b}+\frac{b}{c}\right)+\left(\frac{b}{c}+\frac{c}{a}\right)+\left(\frac{c}{a}+\frac{a}{b}\right)+1$ এর মান কত?
- $2. \ 0 < a < 1$ অর্থাৎ a সংখ্যাটি 0 ও 1 এর মধ্যে অবস্থিত হলে কোনটি সঠিক?
 - A. $a^2 < a$
 - B. $a^2 = -a$
 - C. $a^2 > a$
 - D. $a^2 \ge 1$
- 3. শ্রীধর আচার্যের সূত্র

4. If
$$xyz = 1$$
, show that, $\left(x + \frac{1}{x}\right)^2 + \left(y + \frac{1}{y}\right)^2 + \left(z + \frac{1}{z}\right)^2 = 4 + \left(x + \frac{1}{x}\right)\left(y + \frac{1}{y}\right)\left(z + \frac{1}{z}\right)$.

$$5. \ \frac{a}{b-c} + \frac{b}{c-a} + \frac{c}{a-b} = 0$$
 হলে $\frac{a}{(b-c)^2} + \frac{b}{(c-a)^2} + \frac{c}{(a-b)^2}$ এর মান নির্ণয় কর।

$$6. \ a+b+c=0$$
 হলে $\left(rac{a}{b-c}+rac{b}{c-a}+rac{c}{a-b}
ight)\left(rac{a-b}{c}+rac{b-c}{a}+rac{c-a}{b}
ight)$ এর মান নির্ণয় কর।

7.
$$p(x+y)^2=5,\ q(x-y)^2=3$$
 হলে $p^2(x+y)^2+4pqxy-q^2(x-y)^2$ এর মান p ও q এর মাধ্যমে নির্ণয় কর।

8. If
$$x + y + z = 6$$
, $xy + yz + zx = 9$, show that, $\frac{1}{1-x} + \frac{1}{1-y} + \frac{1}{1-z} = 0$.

9.
$$\frac{x}{a-x} + \frac{y}{b-y} + \frac{z}{c-z} = 0$$
 হলে $\frac{a}{a-x} + \frac{b}{b-y} + \frac{c}{c-z}$ এর মান নির্ণয় কর।

$$10. \ k+l+m=1, \ 3(kl+lm+mk)=1$$
 হলে $k+l-2m$ এর মান কত?

11.
$$x^2 + y^2 + z^2 = 6x - 8y - 25$$
 হলে $x + y + z$ এর মান কত?

$$12. \ \frac{x}{x-1} + \frac{y}{y-1} + \frac{z}{z-1} = 0$$
 হলে $\frac{1}{1-x} + \frac{1}{1-y} + \frac{1}{1-z}$ এর মান কত?

13.
$$a+b+c=1=3(ab+bc+ca)$$
 এবং $abc=\frac{1}{27}$ হলে

(i) a, b, c এর মান কত?

(ii)
$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}$$
 এর মান কত?

$$14$$
. দেখাও যে, $\left(rac{2}{x}-rac{x}{2}
ight)$ এর উৎপাদকগুলির সমষ্টি $\left(rac{x}{2}+rac{2}{x}
ight)$.

15. If
$$x + \frac{1}{x} = -1$$
, find the value of $x^{2017} + \frac{1}{x^{2017}}$.

16.
$$p + q + r = 9$$
, $p^2 + q^2 + r^2 = 27$, $p^3 + q^3 + r^3 = 81$, $pqr = \overline{\P}$?

17. If
$$x + y + z = 0$$
, show that, $\left(\frac{yz}{2x^2 + yz} + \frac{zx}{2y^2 + zx} + \frac{xy}{2z^2 + xy}\right) = 1$.

18. If
$$x^3 + \frac{3}{x} = 4(a^3 + b^3)$$
 and $3x + \frac{1}{x^3} = 4(a^3 - b^3)$, show that $a^2 - b^2 = 1$.

19. If
$$a + b + c = 0$$
, prove that, $a^7 + b^7 + c^7 = 7abc(ab + bc + ca)^2$.

20. Find the value of
$$\left(\sqrt{a-2\sqrt{a-1}}-\sqrt{a+2\sqrt{a-1}}\right)$$
 where $1 \le a \le 2$.

$$21. \ \ -1 \leq rac{3*x-4}{7} \leq 5$$
 হলে x এর ক্ষুদ্রতম ও বৃহত্তম মান কত ?

22.
$$\left(x+\frac{1}{x}\right)^2=3$$
 হলে $x^{36}+x^{30}+x^{26}+x^{20}+x^{18}+x^{12}+x^6+1=$ কত ?

23.
$$\left(x - \frac{1}{x}\right) = 1$$
 হলে $\frac{x^4 - \frac{1}{x^2}}{3x^2 + 5x - 3} =$ কত ?

24. একটি বর্গক্ষেত্রের ভেতরে স্তম্ভ ও সারি বরাবর সমান তিনভাগ করা হল। তাদের প্রত্যেকটিতে 1 থেকে 9 পর্যন্ত পূর্ণসংখ্যার একটিকে এমনভাবে রাখা হল যাতে প্রত্যেক স্তম্ভ বরাবর, সারি বরাবর ও দুটি কর্ণ বরাবর সকল যোগফল সমান হয়। তবে প্রমাণ কর যে, একদম মাঝখানে রাখা সংখ্যাটি অবশ্যই 5 হবে।

MTRP 2014

$$25.~a$$
 ও b দুটি ধনাত্মক বাস্তব সংখ্যা। $a\sqrt{a}+b\sqrt{b}=183$ ও $a\sqrt{b}+b\sqrt{a}=182.~rac{9}{5}\left(a+b
ight)$ এর মান কত ?

PRMO 2017

$$26. \ x, y, z$$
 বাস্তব ধনাত্মক সংখ্যা। $x^2 + 4y^2 + 16z^2 = 48$ ও $xy + 4yz + 2zx = 24$ হলে $x^2 + y^2 + z^2 =$ কত?

PRMO 2017

- $27. \ \sqrt[3]{3} \sqrt[3]{2}$ এর করণী নিরসক উৎপাদক কী?
- $28. \sqrt[3]{3} \sqrt{2}$ এর করণী নিরসক উৎপাদক কী?
- 29. α , β are the two roots of the equation $x^2 6x 2 = 0$. If $a_n = \alpha^n \beta^n$, show that, $\frac{a_{10} 2a_8}{2a_9} = 3$.
- 30. A root of the equation $4x^2 + 2x 1 = 0$ is α . $f(x) = 4x^3 3x + 1$. Find $2[f(\alpha) + \alpha]$.
- 31. 20 টি চলকের মধ্যক (গড়) 85. দুটি চলককে ভুল করে 57 ও 60 এর স্থানে 75 ও 70 নেওয়া হয়েছে। সঠিক মধ্যক কত ?
- $32.\ 120$ জন ছাত্রছাত্রীর গড় ওজন $56\ \mathrm{kg}$. ছাত্রদের গড় ওজন $60\ \mathrm{kg}$. ছাত্রীদের গড় ওজন $50\ \mathrm{kg}$. ছাত্র ও ছাত্রীদের সংখ্যা কী কী ?
- $33.\,\,3.2,\,5.8,\,7.9\,$ ও $4.5\,$ চলকের পরিসংখ্যা যথাক্রমে $x,x+2,x-3,x+6.\,$ গড় $4.876\,$ হলে x= কত ?

34. If
$$x = \frac{\sqrt{a+2b} + \sqrt{a-2b}}{\sqrt{a+2b} - \sqrt{a-2b}}$$
, show that, $bx^2 - ax + b = 0$.

35. Find the value of
$$\frac{x + \sqrt{20}}{x - \sqrt{20}} + \frac{x + \sqrt{12}}{x - \sqrt{12}}$$
, given that, $x = \frac{4\sqrt{15}}{\sqrt{5} + \sqrt{3}}$.

36. সংখ্যাগুরুমান (mode) নির্ণয়ের সূত্র।

37. If
$$x+y+z=4xyz$$
, show that, $\frac{x^2}{1-4x^2}+\frac{y^2}{1-4y^2}+\frac{z^2}{1-4z^2}=\frac{16x^2y^2z^2}{(1-4x^2)(1-4y^2)(1-4z^2)}$.

- 38. হীরকের দাম তার ওজনের বর্গের সঙ্গে সরলভেদে থাকে। সোনার ওপর হীরক বসিয়ে তৈরি তিনটি সমান ওজনের আংটির দাম যথাক্রমে x টাকা, y টাকা এবং z টাকা এবং আংটি তিনটিতে হীরকের ওজন যথাক্রমে $3,\ 4$ ও 5 ক্যারেট। দেখাও যে, এক ক্যারেট হীরকের দাম $\left(\frac{x+z}{2}-y\right)$ টাকা। (প্রতিটি আংটি তৈরির পারিশ্রমিক সমান)
- 39. হীরকের মূল্য তার ওজনের বর্গের সঙ্গে সমানুপাতিক। 8000 টাকা মূল্যের একটি হীরকখণ্ড ভেঙে 3 টি খণ্ডে বিভক্ত করা হল। খণ্ড 3 টির ওজনের অনুপাত 8:7:5. ভাঙার ফলে কত ক্ষতি হল তা নির্ণয় কর।
- 40. রিজার্ভ ব্যাংকের চলমান সিঁড়ি বেয়ে দুই ব্যাক্তি ওপরে উঠছিলেন। তাঁদের গতিবেগের অনুপাত 1:2. তাঁরা যথাক্রমে 18 টি ও 27 টি ধাপ অতিক্রম করে উপরে উঠলেন। চলমান সিঁড়িতে মত ধাপের সংখ্যা কত ?
- 41. If (a+b+c)x = (b+c-a)y = (c+a-b)z = (a+b-c)w, then prove that, x(yz+zw+yw) = yzw.

- 42. If $x^2 2x + 4 = 0$, find out x^6 and x.
- 43. If $x^3 + \frac{1}{x^3} = 2$, find the value of $\left(x + \frac{1}{x}\right)$.
- 44. Show that, $\frac{5+\sqrt{5}}{\sqrt{5+3\sqrt{5}}} = \sqrt[4]{20}$.
- 45. বর্গ বা বর্গমূল না করে প্রমাণ কর যে, $\sqrt{5} + \sqrt{3} > \sqrt{6} + \sqrt{2}$.
- $46.\,\,10\%$ হার সুদে 8100 টাকা ধার করে এক বছরের মধ্যে দুটি সমান কিস্তিতে শোধ করলে প্রতিটি কিস্তির পরিমাণ ক্বত ?
- 47. একটি সন্দেশের বাক্সের দৈর্ঘ্য $12\ c.m.$, প্রস্থ $10\ c.m.$ ও উচ্চতা $7\ c.m.$ ওই বাক্সের মধ্যে $2\ c.m.$ বাহুবিশিষ্ট ঘনকাকার কতগুলি সন্দেশ রাখা যাবে ?
- 48. একটি আয়তঘনাকার বাক্সের দৈর্ঘ্য $6\ c.m.$, প্রস্থ $6\ c.m.$ ও উচ্চতা $5\ c.m.$ ওই বাক্সের মধ্যে $3\ c.m.$ ব্যাসের কতগুলি গোলক রাখা যাবে ?
- $49.~\left(x+\sqrt{x^2-bc}\right)\left(y+\sqrt{y^2-ca}\right)\left(z+\sqrt{z^2-ab}\right)=\left(x-\sqrt{x^2-bc}\right)\left(y-\sqrt{y^2-ca}\right)\left(z-\sqrt{z^2-ab}\right)$ হলে দেখাও যে প্রত্যেক পক্ষের মান $\pm abc$ এর সমান।
- $50. \ \ x + rac{1}{y} = y + rac{1}{z} = z + rac{1}{x}$ হলে দেখাও যে $xyz = \pm 1.$
- 51. যদি $a(b-c)x^2+b(c-a)xy+c(a-b)y^2=0$ সমীকরণের বামপক্ষ একটি পূর্ণবর্গ রাশিমালা হয়, তবে প্রমাণ কর যে, $\frac{1}{a}+\frac{1}{c}=\frac{2}{b}$.
- $52. \ a^2+b^2+c^2=x^2+y^2+z^2=ax+by+cz$ হলে প্রমাণ কর যে, $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}$.
- $53. \ a\left(x-y
 ight) + a^2 = b\left(y-z
 ight) + b^2 = c\left(z-x
 ight) + c^2$ হলে প্রমাণ কর যে, প্রত্যেকটির মান $= rac{a+b+c}{rac{1}{a}+rac{1}{b}+rac{1}{a}}$
- 54. If $2x = \sqrt{a} + \frac{1}{\sqrt{a}}$, show that, $\frac{\sqrt{x^2 1}}{x \sqrt{x^2 1}} = \frac{1}{2}(a 1)$.
- 55. If $\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} = 1$, prove that, $\frac{a^2}{b+c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} = 0$.
- 56. If $\frac{a^2}{b+c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} = 0$, prove that, $\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} = 1$, provided $(a+b+c) \neq 0$.
- 57. If a+b+c=1, $ab+bc+ca=\frac{1}{3}$, $abc=\frac{1}{27}$, prove that, $\frac{1}{a+bc}+\frac{1}{b+ca}+\frac{1}{c+ab}=\frac{27}{4}$.
- 58. If $\frac{by + cz}{b^2 + c^2} = \frac{cz + ax}{c^2 + a^2} = \frac{ax + by}{a^2 + b^2}$, prove that, $\frac{x}{a} = \frac{y}{b} = \frac{z}{c}$.
- 59. If $\frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1$ and $\frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0$, prove that, $\frac{p^2}{a^2} + \frac{q^2}{b^2} + \frac{r^2}{c^2} = 1$.
- 60. If x(b-c) + y(c-a) + z(a-b) = 0, show that, $\frac{bz cy}{b-c} = \frac{cx az}{c-a} = \frac{ay bx}{a-b}$.
- 61. If xy + yz + zx = 1, show that, $(1 + x^2)(1 + y^2)(1 + z^2) = \{(x + y)(y + z)(z + x)\}^2$.
- 62. If x + y + z = 1, show that, $\frac{x + yz}{(x + y)(z + x)} + \frac{y + zx}{(y + z)(x + y)} + \frac{z + xy}{(z + x)(y + z)} = 3$.

63. If
$$a^2 - b^2 = b^2 - c^2 = c^2 - a^2$$
, prove that, $\frac{ab - c^2}{a - b} + \frac{bc - a^2}{b - c} + \frac{ca - b^2}{c - a} = 0$.

64. If
$$a+b+c=0$$
, prove that, $\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}=1$.

65. If
$$a+b+c=0$$
, prove that, $\frac{a^2+b^2+c^2}{a^3+b^3+c^3}+\frac{2}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0$.

66. If
$$x = by + cz$$
, $y = cz + ax$, $z = ax + by$, prove that, $\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} = 2$.

67. If
$$ab + bc + ca = 0$$
, prove that, $\frac{1}{a^2 - bc} + \frac{1}{b^2 - ca} + \frac{1}{c^2 - ab} = 0$.

68. If
$$a^2 = by + cz$$
, $b^2 = cz + ax$, $c^2 = ax + by$, prove that, $\frac{x}{x+a} + \frac{y}{y+b} + \frac{z}{z+c} = 1$.

69. If
$$a+b+c=5$$
, $ab+bc+ca=8$, $abc=-7$, find the value of $\left(\frac{a^2}{b}+\frac{b^2}{a}\right)+\left(\frac{b^2}{c}+\frac{c^2}{b}\right)+\left(\frac{c^2}{a}+\frac{a^2}{c}\right)$.

70. If
$$\frac{a-b}{c} + \frac{b-c}{a} + \frac{c+a}{b} = 1$$
 and $a-b+c \neq 0$, show that, $\frac{1}{a} = \frac{1}{b} + \frac{1}{c}$.

71. If
$$\frac{b+c}{a} = \frac{c+a}{b} = \frac{a+b}{c}$$
, show that, $a+b+c=0$ or $a=b=c$.

72. If
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{a+b+c}$$
, prove that, $\frac{1}{a^5} + \frac{1}{b^5} + \frac{1}{c^5} = \frac{1}{a^5 + b^5 + c^5} = \frac{1}{(a+b+c)^5}$.

73. If
$$a + b + c = 0$$
, show that, $(a^2 + b^2 + c^2)^2 = 2(a^4 + b^4 + c^4)$

74. If
$$x = a(b - c)$$
, $y = b(c - a)$, $z = c(a - b)$, show that, $\left(\frac{x}{a}\right)^3 + \left(\frac{y}{b}\right)^3 + \left(\frac{z}{c}\right)^3 = \frac{3xyz}{abc}$.

75. If
$$x = a^2 - bc$$
, $y = b^2 - ca$ and $z = c^2 - ab$, prove that, $x^3 + y^3 + z^3 - 3xyz = (a^3 + b^3 + c^3 - 3abc)^2$.

76. If
$$a+c=2b$$
, prove that, $a^2(b+c)+b^2(c+a)+c^2(a+b)=\frac{2}{9}(a+b+c)^3$.

77. If
$$x = b + c - a$$
, $y = c + a - b$, $z = a + b - c$, prove that, $x^3 + y^3 + z^3 - 3xyz = 4(a^3 + b^3 + c^3 - 3abc)$.

78. If
$$(a^2 + b^2 + c^2)(x^2 + y^2 + z^2) = (ax + by + cz)^2$$
, prove that, $\frac{x}{a} = \frac{y}{b} = \frac{z}{c}$.

79. একটি শূন্যগর্ভ জাহাজের ওজন এবং উহার অন্তর্গত মালপত্রের ওজন যথাক্রমে জাহাজের দৈর্ঘ্যের বর্গ ও ঘনের সাথে সরলভেদে আছে। যদি l_1 দৈর্ঘ্যবিশিষ্ট জাহাজের মালপত্রসহ ওজন w_1 এবং l_2 ও l_3 দৈর্ঘ্যবিশিষ্ট জাহাজের মালপত্রসহ ওজন w_2 ও w_3 হয় তবে প্রমাণ কর যে,

$$\frac{w_1}{l_1^2}(l_2 - l_3) + \frac{w_2}{l_2^2}(l_3 - l_1) + \frac{w_3}{l_3^2}(l_1 - l_1) = 0$$

80. If $a^{\frac{1}{3}} + b^{\frac{1}{3}} + c^{\frac{1}{3}} = 0$, prove that, $(a+b+c)^3 = 27abc$.

81. কোনো এক লীগের প্রতিযোগিতায় একটি দিনে যতগুলি খেলা হয় তা যুগ্মভাবে ওই দিন এবং বাকি দিনগুলির সঙ্গে ওই দিনের যোগফলের সহিত সমানুপাতে থাকে। যদি পরপর তিনদিন 6,5 এবং 3 টি খেলা হয়ে থাকে তবে কোন কোন দিন ওই খেলাগুলি হয়েছিল এবং প্রতিযোগিতাটি কত দিনের ছিল ?

- 82. If $\frac{ay-bx}{c} = \frac{cx-az}{b} = \frac{bz-cy}{a}$, prove that, $\frac{x}{a} = \frac{y}{b} = \frac{z}{c}$.
- 83. If a+b+c=0, prove that, $a^5+b^5+c^5=\frac{5}{6}(a^2+b^2+c^2)(a^3+b^3+c^3)$.
- 84. If ax + by + cz = p, bx + cy + az = q, cx + ay + bz = r, prove that, $p^3 + q^3 + r^3 3pqr = (a^3 + b^3 + c^3 3abc)(x^3 + y^3 + z^3 3xyz)$.
- 85. $x,\,y,\,z$ এমন তিনটি চলরাশি যে (y+z-x) এর মান ধ্রুবক এবং $(z+x-y)(x+y-z) \propto yz$. প্রমাণ কর যে, $(x+y+z) \propto yz$.
- $86.~(x+y) \propto z$ যখন y ধ্রুবক এবং $(z+x) \propto y$ যখন z ধ্রুবক। প্রমাণ কর যে, $(x+y+z) \propto yz$ যখন y,z উভয়েই চল।
- 87.~x ও y দুটি ভিন্ন বাস্তব রাশি এবং $x \propto y(x+y)$ ও $y \propto x(x-y)$. প্রমাণ কর যে, (x^2-y^2) এর মান x ও y এর ওপর নির্ভর করে না ।
- $88.~~rac{x}{y} \propto x-y$ ও $rac{y}{x} \propto x^2+xy+y^2$ হলে প্রমাণ কর যে, $x^3-y^3=$ ধ্রুবক।
- 89. If $u^2 + v^2 \propto x^2 + y^2$ and $uv \propto xy$, prove that, $u + v \propto x + y$ when $\frac{u}{v} + \frac{v}{y} = \frac{x}{y} + \frac{y}{x}$.
- 90. If $x \propto y$ and $y \propto z$ and x = a when y = b, z = c and x = a' when y = b', z = c', prove that, $\frac{a^2 + b^2 + c^2}{aa' + bb' + cc'} = \frac{aa' + bb' + cc'}{(a')^2 + (b')^2 + (c')^2}$.
- 91. If $x \propto y + z$, $y \propto z + x$, $z \propto x + y$, and a, b, c are three constants, prove that, $\frac{a}{a+1} + \frac{b}{b+1} + \frac{c}{c+1} = 1$, when $x + y + z \neq 0$.
- 92. If $ax^2 + 2hxy + by^2 \propto u^2$ and $lx + my \propto u$, prove that, $x \propto y$.
- 93. If $(x+y+z)(y+z-x)(z+x-y)(x+y-z) \propto x^2y^2$, prove that, $x^2+y^2=z^2$ or $x^2+y^2-z^2 \propto xy$.
- 94. x, y, z are three variables such that (x+y+z) is constant. $(x+z-y)(x+y-z) \propto yz$. Prove that, $(y+z-x) \propto yz$.
- 95. If a+b+c=0, prove that, $\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}=0$.
- 96. If $(y+z) \propto x$ and $(z+x) \propto y$, prove that, $(x+y) \propto z$.
- 97. Find the area of the shaded part in the following figure where PQRS is a square and the length of each of the sides of the square is x. P, Q, R, S respectively are the centers of \widehat{SQ} , \widehat{PR} , \widehat{SQ} , \widehat{PR} .

98. If $x + y : \sqrt{xy} = 4 : 1$, find x : y.

99. If
$$a:b=b:c$$
, show that, $a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=a^3+b^3+c^3$.

100. If
$$a : b = b : c$$
, prove that, $\frac{abc(a+b+c)^3}{(ab+bc+ca)^3} = 1$.

101. If
$$3x - 4y \propto \sqrt{xy}$$
, prove that, $x^2 + y^2 \propto xy$.

102. If
$$\frac{x^2 - yz}{a} = \frac{y^2 - zx}{b} = \frac{z^2 - xy}{c}$$
, prove that, $x = y = z$.

- 103. কোনো ব্যক্তির পেনশনের পরিমাণ তার চাকুরী জীবনের বর্গমূলের সাথে সমানুপাতে থাকে। দুজন ব্যক্তির মধ্যে প্রথম ব্যক্তি দ্বিতীয় ব্যক্তি অপেক্ষা 9 বছর বেশি চাকরি করেন এবং 500 টাকা বেশি পেনশন পান। যদি প্রথম ব্যক্তি দ্বিতীয় ব্যক্তি অপেক্ষা $4\frac{1}{4}$ বছর বেশি চাকরি করতেন তাহলে তাদের পেনশনের অনুপাত হত 9:8. তারা কত বছর চাকরি করেছেন? প্রত্যেকে কত টাকা পেনশন পেয়েছিলেন?
- 104. If a + b + c = 6 and ab + bc + ca = 9, prove that, $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 0$.

105. If
$$x^2 + y^2 + z^2 = xy + yz + zx$$
, prove that, $\frac{x^2}{yz} + \frac{y^2}{zx} + \frac{z^2}{xy} = 3$.

106. If
$$2s = a + b + c$$
, prove that, $(s - a)^3 + (s - b)^3 + 3(s - a)(s - b)c = c^3$.

107. If
$$2s = a + b + c$$
, prove that, $\frac{1}{s-a} + \frac{1}{s-b} + \frac{1}{s-c} - \frac{1}{s} = \frac{abc}{s(s-a)(s-b)(s-c)}$.

108. If
$$(a+b)^{\frac{1}{3}} + (b+c)^{\frac{1}{3}} + (c+a)^{\frac{1}{3}} = 0$$
, show that, $(a+b+c)^3 = 9(a^3+b^3+c^3)$.

109. If
$$\frac{1}{y} - \frac{1}{x} \propto \frac{1}{x - y}$$
, show that, $3x + y \propto \sqrt{xy}$.

110. If
$$2x^2 + 3y^2 \propto xy$$
, prove that, $9x^4 + 4y^4 \propto x^2y^2$.

111. If
$$2x + 3y \propto \sqrt{xy}$$
, prove that, $x \propto y$.

112. If
$$\frac{1}{x} + \frac{1}{y} \propto \frac{1}{x+y}$$
, prove that, $(x^2 + y^2) \propto xy$.

- 113. If $\frac{1}{x} \frac{1}{y} \propto \frac{1}{x y}$, prove that, $(x^2 + y^2) \propto xy$ and $x \propto y$.
- 114. If $\left(x^3 \frac{1}{y^3}\right) \propto \left(x^3 + \frac{1}{y^3}\right)$, prove that, $x \propto \frac{1}{y}$.
- $115.~x \propto (y+z)~,~y \propto (z+x),~z \propto (x+y)$ এবং a,~b,~c যথাক্রমে তিনটি ভেদের ধ্রুবক হলে দেখাও যে, ab+bc+ca+2abc=1.
- 116. If $(a+b+c) \propto (a+b-c)$ and $(a^2+b^2+c^2) \propto (a^2+b^2-c^2)$, prove that, $a \propto b$ and $b \propto c$.
- 117. যদি $r_1,\ r_2,\ r_3$ ব্যাসার্ধবিশিষ্ট বৃত্তগুলির কেন্দ্রে যথাক্রমে $l_1,\ l_2,\ l_3$ দৈর্ঘ্যের বৃত্তচাপগুলির দ্বারা উৎপন্ন কোণগুলির বৃত্তীয় মানগুলি $a_1,\ a_2,\ a_3$ হয়, তবে প্রমাণ কর যে, $\frac{1}{n}\left(a_1r_1+a_2r_2+a_3r_3\right)$ ব্যাসার্ধবিশিষ্ট কোনো বৃত্তের কেন্দ্রে $(l_1+l_2+l_3)$ দৈর্ঘ্যবিশিষ্ট কোনো বৃত্তচাপ যে কোণ উৎপন্ন করে তার বৃত্তীয় পরিমাপ হবে n রেডিয়ান।
- 118. যদি $r_1,\ r_2,\ r_3$ ব্যাসার্ধবিশিষ্ট বৃত্তগুলির কেন্দ্রে যথাক্রমে $l_1,\ l_2,\ l_3$ দৈর্ঘ্যের বৃত্তচাপগুলির দ্বারা উৎপন্ন কোণগুলির বৃত্তীয় মানগুলি $\theta_1,\ \theta_2,\ \theta_3$ হয়, তবে প্রমাণ কর যে, $(r_1+r_2+r_3)$ ব্যাসার্ধবিশিষ্ট কোনো বৃত্তের কেন্দ্রে $(l_1+l_2+l_3)$ দৈর্ঘ্যবিশিষ্ট কোনো বৃত্তচাপ যে কোণ উৎপন্ন করে তার বৃত্তীয় পরিমাপ হবে $\left(\frac{r_1\theta_1+r_2\theta_2+r_3\theta_3}{r_1+r_2+r_3}\right)$ রেডিয়ান ।
- 119. কোনো দ্বিঘাত সমীকরণ $ax^2+bx+c=0$ $[a\neq 0]$ -এ $b^2=9ac$ হলে সমীরণটির বীজদ্বয়ের মধ্যে সম্পর্ক কী?

4 Factorization

- $1. \ x^2 + 4x + 1. \ ($ মধ্যপদ বিশ্লেষণের মাধ্যমে)
- 2. $(a^2 b^2)(x^2 + y^2) + 2(a^2 + b^2)xy$.
- 3. $x^4 3x 2$.
- 4. $x^4 21x + 8$.
- 5. $(x-3)(x-4) \frac{34}{33^2}$.
- 6. $(a+b+c)^3 a^3 b^3 c^3$.
- 7. $a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)+3abc$.
- 8. $a^4(b-c) + b^4(c-a) + c^4(a-b)$.
- 9. $a(b+c)^2 + b(c+a)^2 + c(a+b)^2 4abc$.
- 10. $a(b^3 c^3) + b(c^3 a^3) + c(a^3 b^3)$.
- 11. $x(1+y^2)(1+z^2) + y(1+z^2)(1+x^2) + z(1+x^2)(1+y^2) + 4xyz$.
- 12. $x^4 + 5x^3 + 11x^2 + 13x + 6$.
- 13. $x^4 + 4x^3 2x^2 12x + 9$.
- 14. $2a^3 + 11a^2 26a 35$.
- 15. $a^4 6a^3 + 7a^2 + 6a 8$.
- 16. $4a^4 12a^3 7a^2 + 32a 16$.

17.
$$x^6 - 8x^3 + 27$$
.

18.
$$x^6 + 14x^3 - 1$$
.

19.
$$x^4 - 4x^3 - 11x^2 + 12x + 9$$
.

20.
$$a^2(b+c) + b^2(c+a) + c^2(a+b) + 2abc$$
.

21.
$$a^2(b+c) + b^2(c+a) + c^2(a+b) + 3abc$$
.

22.
$$ab(a-b) + bc(b-c) + ca(c-a)$$
.

23.
$$(a+b+c)(ab+bc+ca) - abc$$
.

24.
$$(x-a)^3(b-c)^3 + (x-b)^3(c-a)^3 + (x-c)^3(a-b)^3$$
.

25.
$$(x+1)(x+3)(x-4)(x-12) - 24x^2$$
.

26.
$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} + \frac{a}{c} + \frac{c}{b} + \frac{b}{a} + 3$$
.

27.
$$a(a+1)x^2 + (a+b)xy - b(b-1)y^2$$
.

28.
$$x^4 - 5x^3y + 6x^2y^2 - 5xy^3 + y^4$$
.

29.
$$x^4 + x^3 - 2x^2 - x + 1$$
.

30.
$$n^4 + 6n^3 + 11n^2 + 6n + 1$$
.

31.
$$x^8 + 98x^4 + 1$$
.

$$32. \ x^4 + 3x + 20.$$

5 Construction

- 1. একটি ত্রিভুজের পরিসীমা 14~c.m., ভূমি সংলগ্ন কোণদ্বয় 80° ও 70° . এই ত্রিভুজের সমান ক্ষেত্রফল বিশিষ্ট একটি সামান্তরিক অঙ্কন কর যার একটি কোণ 60° .
- 2. একটি নির্দিষ্ট বৃত্তকে একটি নির্দিষ্ট ত্রিভুজের সদৃশকোণী ত্রিভুজে অন্তর্লিখিত কর।

অথবা

একটি নির্দিষ্ট বৃত্তে একটি নির্দিষ্ট ত্রিভুজের সদৃশকোণী করে একটি ত্রিভুজ পরিলিখিত কর।

- 3. একটি ত্রিভুজ অঙ্কন কর যার ভূমি $5\ c.m.$, অন্য দুটি বাহুর সমষ্টি $8\ c.m.$ ও $5\ c.m.$ বাহু সংলগ্ন কোণ দুটির অন্তর $30^{\circ}.$
- 4. একটি ত্রিভুজের সদৃশ ও ওপর একটি ত্রিভুজের ক্ষেত্রফলের সমান করে একটি ত্রিভুজ অঙ্কন কর।
- 5. একটি ত্রিভুজ ABC এর মধ্যে ভূমি BC এর সঙ্গে সমান্তরাল এমন একটি সরলরেখা নির্ণয় কর যেটি ত্রিভুজটিকে সমান ক্ষেত্রফল বিশিষ্ট দুটি অংশে বিভক্ত করে।
- 6. একটি ত্রিভুজ ABC এর ভূমি BC -এর সঙ্গে লম্ব এমন একটি সরলরেখা নির্ণয় কর যেটি ত্রিভুজটিকে সমান ক্ষেত্রফল বিশিষ্ট দুটি অংশে বিভক্ত করবে।
- 7. O কেন্দ্রীয় একটি বৃত্তের বহিঃস্থ বিন্দু P থেকে বৃত্তের ওপর একটি স্পর্শক অঙ্কন কর, কেন্দ্র O কে ব্যবহার না করে।
- $8. \ R$ ও r (R>r) ব্যাসার্ধবিশিষ্ট দুটি বৃত্তের সরল সাধারণ স্পর্শক অঙ্কন কর।

- $9. \ R$ ও $r \ (R>r)$ ব্যাসার্ধবিশিষ্ট দুটি বৃত্তের তির্যক সাধারণ স্পর্শক অঙ্কন কর।
- $10.\ AB$ একটি নির্দিষ্ট সরলরেখার ওপর C একটি যেকোনো নির্দিষ্ট বিন্দু। C বিন্দুগামী একটি যেকোনো সরলরেখা CD -এর ওপর অবস্থিত P এমন একটি বিন্দু যে, $\dfrac{AP}{PB}=\dfrac{AC}{BC}.$ P বিন্দুটি নির্ণয় কর।
- 11. একটি ত্রিভুজ এবং অপর একটি ত্রিভুজের উচ্চতা প্রদত্ত রয়েছে। প্রথম ত্রিভুটির ক্ষেত্রফলের সমান করে দ্বিতীয় ত্রিভুজটি অঙ্কন কর। এখানে প্রথম ত্রিভুজের উচ্চতা > দ্বিতীয় ত্রিভুজের উচ্চতা।
- 12. একটি ত্রিভুজ ABC এর সমান ক্ষেত্রফল বিশিষ্ট অপর একটি ত্রিভুজ অঙ্কন কর যেখানে দ্বিতীয় ত্রিভুজটির উচ্চতা প্রদন্ত। এখানে $\triangle ABC$ এর BC ভূমি সাপেক্ষে উচ্চতা < দ্বিতীয় ত্রিভুজটির উচ্চতা, দ্বিতীয় ত্রিভুজটির ভূমি ও BC বাহু একই সরলরেখায় অবস্থিত।
- 13. একটি ত্রিভুজ আঁক যার পাদত্রিভুজের শীর্ষবিন্দুগুলি দেওয়া আছে।
- 14. একটি নির্দিষ্ট বিন্দুগামী বৃত্ত আঁক যাহা একটি নির্দিষ্ট প্রদত্ত রেখা ও একটি নির্দিষ্ট প্রদত্ত বৃত্তকে স্পর্শ করে।
- 15. ABCD সামান্তরিকের কর্ণদ্বয় AC ও BD পরস্পরকে O বিন্দুতে ছেদ করেছে। সামান্তরিকের মধ্যে একটি বিন্দু $P.\ P$ বিন্দুগামী একটি সরলরেখা নির্ণয় কর যা সামান্তরিকটিকে সমান ক্ষেত্রফলবিশিষ্ট দুটি অংশে বিভক্ত করে।
- $16.\ \triangle ABC$ এর সমান ক্ষেত্রফলবিশিষ্ট একটি সামান্তরিক আঁক যার একটি কোণ নির্দিষ্ট এবং সন্নিহিত বাহুর অনুপাত 3:2.
- 17. একটি বৃত্ত অঙ্কন কর যাহা দুটি ছেদী সরলরেখাকে স্পর্শ করেছে এবং একটি নির্দিষ্ট বিন্দুগামী।
- 18. তিনটি সমান্তরাল সরলরেখা প্রদত্ত রয়েছে। এমন একটি সমবাহু ত্রিভুজ অঙ্কন করতে হবে যার শীর্ষবিন্দুগুলি প্রদত্ত তিনটি সমান্তরাল সরলরেখার ওপর অবস্থিত হবে।
- 19. যেকোনো একটি ত্রিভুজের সমান ক্ষেত্রফলবিশিষ্ট অপর একটি সমবাহু ত্রিভুজ অঙ্কন কর।
- 20. একটি বর্গক্ষেত্রের সমান ক্ষেত্রফলবিশিষ্ট একটি সমবাহু ত্রিভুজ অঙ্কন কর।
- 21. একটি ত্রিভুজ আঁক যার ভূমি, পরিকেন্দ্র ও অপর বাহুদ্বয়ের সমষ্টি প্রদত্ত রয়েছে।
- 22. মাধ্যমিক ছেদ / Medial Section : AB একটি রেখাংশ। AB কে X বিন্দুতে এমনভাবে বিভক্ত কর যেন $AB \cdot BX = AX^2$ হয়।
- 23. একটি সমদ্বিবাহু ত্রিভুজ অঙ্কন কর যাহার ভূমিসংলগ্ন কোণদ্বয়ের প্রত্যেকে শীর্ষকোণের দ্বিগুণ।
- 24. চতুর্ভুজের কোনো কৌণিক বিন্দু থেকে সরলরেখা টেনে চতুর্ভুজটিকে সমদ্বিখণ্ডিত কর।
- 25. কোনো ত্রিভুজের শীর্ষকোণ 60° , শীর্ষকোণ সংলগ্ন বাহুদ্বয়ের অনুপাত 3:2 এবং ভূমির দৈর্ঘ্য 5c.m. হলে ত্রিভুজিটি অঙ্কন কর।

6 Indices

- 1. সমাধান কর :- $a^{2x^2} + a^{2x+12} = 2 \cdot a^{x^2+x+6}$.
- 2. If $ax^{10} = by^{10} = cz^{10}$ and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$, then prove that,

$$\left(ax^9 + by^9 + cz^9\right)^{\frac{1}{10}} = a^{\frac{1}{10}} + b^{\frac{1}{10}} + c^{\frac{1}{10}}.$$

- 3. Find the value of $x: (\sqrt{3} + \sqrt{2})^x + (\sqrt{3} \sqrt{2})^x = 10$.
- 4. If a + b + c = 0, show that $\sqrt[bc]{\frac{x^{a^2}}{x^{bc}}} \cdot \sqrt[ac]{\frac{x^{b^2}}{x^{ac}}} \cdot \sqrt[ab]{\frac{x^{c^2}}{x^{ab}}} = 1$.

- 5. Solve :- $6(4^x + 9^x) = 13 \cdot 6^x$.
- 6. Solve: $\frac{2^x + 2^{-x}}{2^x 2^{-x}} = \frac{16^{\frac{1}{x}} + 16^{-\frac{1}{x}}}{16^{\frac{1}{x}} 16^{-\frac{1}{x}}}.$
- 7. Find the simplest value of $\left[1 \{1 (1 x^3)^{-1}\}^{-1}\right]^{-\frac{1}{3}}$ when x = 0.1.
- 8. Solve: $5^{13-2x} + 2^{x-2} = 2^{x+2} + 5^{11-2x}$.
- 9. If $2^x + 2^{x+2} = 5$, find the value of (x + 1).
- $10. \ \left(3^{3^n}-2^{3^n}\right) \div \left(3^{3^{n-1}}-2^{3^{n-1}}\right)$ এর মান কত?
- 11. Solve :- $6^{3-4x} \cdot 4^{x+5} = 8$ when $\log 2 = 0.3010$ and $\log 3 = 0.4771$.
- 12. If $\sqrt{x^2 + \sqrt[3]{x^4y^2}} + \sqrt{y^2 + \sqrt[3]{x^2y^4}} = a$, show that $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.
- 13. If $x = 2 + 2^{\frac{1}{3}} + 2^{\frac{2}{3}}$, show that $x^3 6x^2 + 6x 2 = 0$.

7 Trigonometry

- 1. Prove that, $1 + \sin^2 \alpha + \sin^2 \beta > \sin \alpha + \sin \beta + \sin \alpha \sin \beta$ [By using algebra].
- $2. \tan 2\theta + \cot 2\theta = 2$ হলে θ -এর বৃত্তীয় মান কত ?
- $3. \tan^2 \theta \sin^2 \theta = p$ হলে $\tan^2 \theta \cdot \sin^2 \theta = \Phi$ ত ?
- 4. If $\tan^2 \theta = 1 a^2$, prove that $\sec \theta + \tan^3 \theta \cdot \csc \theta = (2 a^2)^{\frac{3}{2}}$.
- 5. If $\sin \theta + \sin^2 \theta + \sin^3 \theta = 1$, prove that $\cos^6 \theta 4\cos^4 \theta + 8\cos^2 \theta = 4$.
- 6. Find the value of

$$\frac{\sin^2 20^\circ + \sin^2 70^\circ}{\cos^2 20^\circ + \cos^2 70^\circ} + \frac{\sin(90^\circ - \theta)\sin\theta}{\tan\theta} + \frac{\cos(90^\circ - \theta)\cos\theta}{\cot\theta}.$$

- 7. If $\theta + \phi = 60^{\circ}$, show that $\cos \theta = \sin(30^{\circ} + \phi)$.
- 8. In a triangle ABC, prove that

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R.$$

- 9. If $\tan n\theta = n \tan \theta$, prove that $\left(\frac{\sin n\theta}{\sin \theta}\right)^2 = \frac{n^2}{1 + (n^2 1)\sin^2 \theta}$.
- 10. একই সমতলে অবস্থিত R ও r (R>r) ব্যাসার্ধবিশিষ্ট দুইটি চাকা 2s দৈর্ঘ্যবিশিষ্ট একটি মেখলার (belt) দ্বারা সরলভাবে টান-টান করিয়া সংযুক্ত রহিয়াছে। মেখলাটির সরলরৈখিক অংশ কেন্দ্রদ্বয়ের সংযোজক রেখার সহিত যে কোণ উৎপন্ন করে তাহার পূরক কোণের বৃত্তীয় মান θ হলে প্রমাণ কর যে,

$$s = \pi R + (R - r)(\tan \theta - \theta).$$

- 11. If $\sec \alpha = \sec \beta \sec \gamma + \tan \beta \tan \gamma$, prove that, $\sec \beta = \sec \alpha \sec \gamma \pm \tan \gamma \tan \alpha$.
- 12. If $\frac{\cos^4 A}{\cos^2 B} + \frac{\sin^4 A}{\sin^2 B} = 1$, prove that, $\frac{\cos^4 B}{\cos^2 A} + \frac{\sin^4 B}{\sin^2 A} = 1$.

13. If
$$\frac{\sin^4 \theta}{a} + \frac{\cos^4 \theta}{b} = \frac{1}{a+b}$$
, show that, $\frac{\sin^8 \theta}{a^3} + \frac{\cos^8 \theta}{b^3} = \frac{1}{(a+b)^3}$.

14. If
$$a\cos\theta - b\sin\theta = c$$
, prove that, $a\sin\theta + b\cos\theta = \pm\sqrt{a^2 + b^2 - c^2}$.

15. Prove that,
$$\frac{(1-\tan x)^2}{(1-\cot x)^2} = \frac{1+\tan^2 x}{1+\cot^2 x}$$
.

16. Prove that,
$$\frac{(\csc\theta\tan\phi)^2 + 1}{(\csc\psi\tan\phi)^2 + 1} = \frac{1 + (\cot\theta\sin\phi)^2}{1 + (\cot\psi\sin\phi)^2}.$$

17. Find the value of $\cot \theta$ where it is given that

$$(l^2 - m^2)\sin\theta + 2lm\cos\theta - (l^2 + m^2) = 0.$$

18. If
$$\sin \theta = \frac{\sin \alpha + \sin \beta}{1 + \sin \alpha \sin \beta}$$
, prove that, $\cos \theta = \pm \frac{\cos \alpha \cos \beta}{1 + \sin \alpha \sin \beta}$.

19. Find the value of
$$\theta$$
 where $\frac{3\cos\theta - 4\sin^2\theta\cos\theta}{4\sin\theta\cos^2\theta - \sin\theta} = \tan 60^\circ$.

20. If $\sin 2A = 2 \sin A \cos A$, prove that,

$$\sin x = 2^x \cos \frac{x}{2} \cos \frac{x}{x^2} \cos \frac{x}{2^3} \cdots \cos \frac{x}{2^n} \sin \frac{x}{2^n}$$

and if $x = \frac{\pi}{2(2^n + 1)}$, again show that,

$$2^n \sin x \cos 2x \cos 2^2 x \cdots \cos 2^{n-1} x = 1.$$

21. If $\sin A + \cos B = c$ and $\sin B + \cos A = d$, show that,

$$c \sin A + d \cos A = c \cos B + d \sin B = \frac{1}{2}(c^2 + d^2).$$

22. If
$$x \sin \alpha = y \cos \alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$$
, prove that, $(x^2 - y^2)^2 = 4(x^2 + y^2)$.

23. If
$$(a^2 - b^2)\sin\theta + 2ab\cos\theta = a^2 + b^2$$
, show that, $\tan\theta = \pm \left(\frac{a^2 - b^2}{2ab}\right)$.

24. If
$$\csc \alpha - \sin \alpha = m^3$$
 and $\sec \alpha - \cos \alpha = n^3$, show that, $m^2 n^2 (m^2 + n^2) = 1$.

25. Show, if
$$\sin \theta = \frac{(x+y)^2}{4xy}$$
 possible or not, where $x \neq y$ and x, y are two real numbers.

26. If
$$\csc \theta - \sin \theta = m$$
 and $\sec \theta - \cos \theta = n$, find the value of $(m^2 n)^{\frac{2}{3}} + (mn^2)^{\frac{2}{3}}$.

27. If
$$\cos^2 \alpha - \sin^2 \alpha = \tan^2 \beta$$
, show that, $\cos^2 \beta - \sin^2 \beta = \tan^2 \alpha$.

28. If
$$p_n = \sin^n \theta + \cos^n \theta$$
 and $p_6 - p_4 = kp_2$, find the value of k .

29. If
$$\sin^2 \theta = \cos^3 \theta$$
, show that, $\cot^6 \theta - \cot^2 \theta = 1$.

30. If
$$\cos \theta + \sin \theta = \sqrt{2} \cos \theta$$
, show that, $\cos \theta - \sin \theta = \sqrt{2} \sin \theta$.

31. If
$$a(\tan \theta + \cot \theta) = 1$$
 and $\sin \theta + \cos \theta = b$, show that, $2a = b^2 - 1$.

32. If
$$\tan \theta + \sin \theta = m$$
 and $\tan \theta - \sin \theta = n$, show that, $m^2 - n^2 = 4\sqrt{mn}$.

33. If

$$m^{2} + m_{1}^{2} + 2mm_{1}\cos\theta = 1,$$

$$n^{2} + n_{1}^{2} + 2nn_{1}\cos\theta = 1,$$

$$mn + m_{1}n_{1} + (m_{1}n + mn_{1})\cos\theta = 0;$$

show that,

$$m^2 + n^2 = m_1^2 + n_1^2 = \csc^2 \theta.$$

- 34. সকাল 8 টার সময় একটি স্তম্ভের ছায়ার দৈর্ঘ্য $16\ c.m.$ দুপুর 2 টোর সময় ওই স্তম্ভের ছায়ার দৈর্ঘ্য $9\ m.$ স্তম্ভটির উচ্চতা নির্ণয় কর।
- 35. প্রমাণ কর যে, $\sin heta = x + rac{1}{x}$ সমাধানযোগ্য নয়।
- 36. একটি r ব্যাসার্ধবিশিষ্ট গোলকাকার বেলুন একজন পর্যবেক্ষকের চোখে lpha কোণ উৎপন্ন করে। যদি বেলুনটির কেন্দ্রের উন্ধৃতি কোণ eta হয়, তবে প্রমাণ কর যে, বেলুনটির কেন্দ্রের উচ্চতা $=r \csc rac{lpha}{2} \sin eta$.
- 37. একজন লোক কোনো পাহাড়কে 45° উন্নতি কোণে দেখল। পাহাড়ের ঢাল 30° কোণে নত। সেই ঢাল বেয়ে 1~km. যাওয়ার পর সেই ব্যক্তি পাহাডকে 60° উন্নতি কোণে দেখল। পাহাডিটর উচ্চতা কত?
- 38. From teh top of a mountain the angles of depression of three consecutive milestones on a straight road are observed to be α , β , γ respectively. Find the height of the mountain.
- 39. If $a \sin^2 \theta + b \cos^2 \theta = c$, $b \sin^2 \phi + a \cos^2 \phi = d$ and $a \tan \theta = b \tan \phi$, show that, $\frac{1}{a} + \frac{1}{b} = \frac{1}{c} + \frac{1}{d}$.
- 40. If $a \sin \theta + b \cos \theta = a \csc \theta + b \sec \theta$, show that, L.H.S. = R.H.S. = $\left(a^{\frac{2}{3}} b^{\frac{2}{3}}\right) \sqrt{a^{\frac{2}{3}} + b^{\frac{2}{3}}}$.

8 Functional Equations

- 1. $f(x+2) = 2x^2 + 5x + 7$ হলে f(1) কত?
- 2. 4f(x) + 3f(-x) = 7 3x হলে $f(-1) = \overline{\Phi}$ ত?

9 System of Equations

- 1. Solve :- $2^x + 2^y = 12$; x + y = 5.
- 2. Solve :- $x^y = y^x$, $x^a = y^b$.
- 3. Solve :- $x^y = y^x$, x = 2y.
- 4. Solve: 999x + 888y = 1332, 888x + 999y = 555.
- 5. Reduce θ from the following relations:-

$$x \cos \theta - y \sin \theta = 0$$
$$x \cos^3 \theta + y \sin^3 \theta = \sin \theta \cos \theta.$$

6. Solve :-
$$(x-9)(x-12) = \frac{81}{64}$$
.

7. Solve :-
$$\frac{\sqrt[9]{24+x}}{x} + \frac{\sqrt[9]{24+x}}{24} = \frac{128}{3}\sqrt[9]{x}$$
.

10 Coordinate Geometry

- 1. Find out the circumcentre of the triangle formed by the points (-3,1), (1,3), (3,0).
- 2. Show that the points (2,2); (-2,-2); $(-2\sqrt{3},2\sqrt{3})$ are the vertices of an equilateral triangle.
- 3. Find the ratio in which the point (1,2) divides the line segment joining the points (-3,8) & (7,-7).
- $4. \ (7,-10)$ ও (2,5) বিন্দু দুটির সংযোজক রেখাংশকে 3x+2y=7 সমীকরণের সরলরেখা কী অনুপাতে বিভক্ত করে ? বিভক্তকারী বিন্দুটির স্থানাংক নির্ণয় কর ।
- 5.~AB রেখাংশকে C ও D বিন্দু দুটি সমান তিনভাগে বিভক্ত করে। A ও B বিন্দু দুটির স্থানাংক যথাক্রমে (-2,6) ও (7,-15) হলে C ও D বিন্দুর স্থানাংক নির্ণয় কর।

11 Mensuration

1. একটি বর্গাকার কাগজকে অর একটি কৌণিক বিন্দু থেকে বিপরীত বাহু পর্যন্ত একটি রেখাংশ বরাবর দুটি ভাগে ভাগ করা হল। এই খন্ডদুটির ক্ষেত্রফলের অনুপাত 3:1 হলে ছোট খণ্ডটি এবং মূল কাগজটির পরিসীমার অনুপাত কী হবে?