IP CORE MANUAL

AXI-Lite to 16-Bit Parallel NOR Flash Interface IP

px_axil2flash

Pentek, Inc.
One Park Way
Upper Saddle River, NJ 07458
(201) 818-5900
http://www.pentek.com/

Copyright © 2016

Manual Part Number: 807.48307 Rev: 1.0 - December 09, 2016

Manual Revision History

Date	Version		Comments
12/09/16	1.0	Initial Release	

Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Pentek products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Pentek hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Pentek shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in conjunction with, the Materials (including your use of Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage and loss was reasonably foreseeable or Pentek had been advised of the possibility of the same. Pentek assumes no obligation to correct any error contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the materials without prior written consent. Certain products are subject to the terms and conditions of Pentek's limited warranty, please refer to Pentek's Ordering and Warranty information which can be viewed at http://www.pentek.com/contact/customerinfo.cfm; IP cores may be subject to warranty and support terms contained in a license issued to you by Pentek. Pentek products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for the use of Pentek products in such critical applications.

Copyright

Copyright © 2016, Pentek, Inc. All Rights Reserved. Contents of this publication may not be reproduced in any form without written permission.

Trademarks

Pentek, Jade, and Navigator are trademarks or registered trademarks of Pentek, Inc.

ARM and AMBA are registered trademarks of ARM Limited. Micron is a registered trademark of Micron Technology, Inc. PCI, PCI Express, PCIe, and PCI-SIG are trademarks or registered trademarks of PCI-SIG. Xilinx, Kintex UltraScale, Vivado, and Platform Cable USB are registered trademarks of Xilinx Inc., of San Jose, CA.

Table of Contents

		Page
	IP Facts	
Descrip	otion	5
Feature	PS	5
Table 1	1-1: IP Facts Table	5
	Chapter 1: Overview	
Function	onal Description	7
	1-1: AXI4-Lite to 16-bit Parallel NOR Flash Interface Core Block Diagram	
Applica	ations	8
System	Requirements	8
Licensi	ng and Ordering Information	8
Contac	ting Technical Support	8
	entation	
	Chapter 2: General Product Specifications	
Standa	Chapter 2: General Product Specifications	9
	rds	
	rdsnance	9
Perform 2.2.1	rds	9 9
Perform 2.2.1 Resour	rdsnance	9 9 9
Perform 2.2.1 Resour Table 2	rdsnance	9 9 9
Perform 2.2.1 Resour Table 2 Limitat	rds nance Maximum Frequencies ce Utilization 2-1: Resource Usage and Availability	9999
Perform 2.2.1 Resour Table 2 Limitat Generic	rds	99999
Perform 2.2.1 Resour Table 2 Limitat Generic	rds nance Maximum Frequencies ce Utilization 2-1: Resource Usage and Availability tions and Unsupported Features c Parameters	99999
Perform 2.2.1 Resour Table 2 Limitat Generic Table 2	rds nance Maximum Frequencies ce Utilization 2-1: Resource Usage and Availability cions and Unsupported Features ce Parameters 2-2: Generic Parameters	999999910
Perform 2.2.1 Resour Table 2 Limitat Generic Table 2	rds nance	999991010
Perform 2.2.1 Resour Table 2 Limitat Generic Table 2	rds	99991010
Perform 2.2.1 Resour Table 2 Limitat Generic Table 2 AXI4-1 3.1.1	rds nance	9999101111

Table of Contents

		Page
	Chapter 4: Register Space	
	Table 4-1: Register Space Memory Map	
4.1	Flash Address Register	
	Figure 4-1: Flash Address Register	
	Table 4-2: Flash Address Register (Base Address + 0x00)	
4.2	Flash Data Register	
	Figure 4-2: Flash Data Register	
	Table 4-3: Flash Data Register (Base Address + 0x04)	16
	Chapter 5: Designing with the Core	
5.1	General Design Guidelines	17
5.2	Clocking	
5.3	Resets	
5.4	Interface Operation.	
5.5	Programming Sequence	
5.6	Timing Diagrams	
	Chapter 6: Design Flow Steps	
	Figure 6-1: AXI4-Lite to 16-bit Parallel NOR Flash Interface Core in Pentek IP Catalo	_
	Figure 6-2: AXI4-Lite to 16-bit Parallel NOR Flash Interface Core IP Symbol	20
6.2	User Parameters	20
6.3	Generating Output	20
6.4	Constraining the Core	
6.5	Simulation	
	Figure 6-3: AXI4-Lite to 16-bit Parallel NOR Flash Interface Core Test Bench Simulation	Output 22
6.6	Synthesis and Implementation	22

IP Facts

Description

Pentek's NavigatorTM AXI4-Lite to 16-bit Parallel NOR Flash Interface Core provides a read/ write interface to the Micron[®] PC28F00AG18 Parallel NOR Flash memory.

This core complies with the ARM® AMBA® AXI4 Specification. This user manual defines the hardware interface, software interface, and parameterization options for the AXI4-Lite to 16-bit Parallel NOR Flash Interface Core.

Features

- Register access through AXI4-Lite interface
- Software programmable width of the Flash address

Table 1-1: IP Facts Table							
Core Specifics							
Supported Design Family ^a	Kintex [®] Ultrascale						
Supported User Interfaces	AXI4-Lite						
Resources	See Table 2-1						
Provided with the Core							
Design Files	VHDL						
Example Design	Not Provided						
Test Bench	VHDL						
Constraints File	Not Provided ^b						
Simulation Model	VHDL						
Supported S/W Driver	HAL Software Support						
Tested Design Flows							
Design Entry	Vivado [®] Design Suite 2016.3 or later						
Simulation	Vivado VSim						
Synthesis	Vivado Synthesis						
Support							
Provided by Pentek fpgasupport@pentek.com							

a.For a complete list of supported devices, see the *Vivado Design Suite Release Notes*.

b.Clock constraints can be applied at the top-level module of the user design.

AXI-Lite to	16 D:+	D a u a 11 a 1	$M \cap D$	$E1 \approx 1$	Intouface	ID
AXI-LILE TO	10-BII	Parallel	NOK	riasn	interiace	IΡ

Page 6

This page is intentionally blank

Chapter 1: Overview

1.1 Functional Description

The AXI4-Lite to NOR Flash Interface Core provides a transaction interface to the Parallel NOR Flash through an AXI4-Lite Interface in the user design. This core accepts Flash read/write requests across the AXI4-Lite interface and converts them into signals compatible with the Flash memory. The core performs asynchronous read/write operations in the Flash Memory. The width of the Flash address bus can be defined by the user using the generic parameter flash_addr_bits (see Table 2-2).

The **AXI4-Lite Interface** acts as a slave and is connected to the **Register Space** as shown in Figure 1-1. The **Register Space** is connected to a **State Machine** that generates the desired outputs to the **Flash**. This core is expected to be externally connected to a tri-state buffer to implement open collector drivers for the flash data I/O signal.

Figure 1-1 is a top-level block diagram of the AXI4-Lite to NOR Flash Interface Core. The modules within the block diagram are explained in other sections of this manual.

Figure 1-1: AXI4-Lite to 16-bit Parallel NOR Flash Interface Core Block

- □ **AXI4-Lite Interface:** This module implements a 32-bit AXI4-Lite slave interface to access the register space. For more details about the AXI4-Lite Interface, refer to Section 3.1 AXI4-Lite Core Interfaces.
- Register Space: This module contains control and status registers within the core, which are accessed through the AXI4-Lite interface.
- **State Machine:** This state machine is used to control and generate the necessary outputs to the Flash memory.

1.2 Applications

This core can be used for interfacing any Kintex Ultrascale FPGA to the 16-bit Parallel NOR Flash Memory across an AXI4-Lite Interface.

1.3 System Requirements

For a list of system requirements, see the Vivado Design Suite Release Notes.

1.4 Licensing and Ordering Information

This core is included with all Pentek Navigator FPGA Design Kits for Pentek Jade series board products. Contact Pentek for Licensing and Ordering Information (www.pentek.com).

1.5 Contacting Technical Support

Technical Support for Pentek's Navigator FPGA Design Kits is available via e-mail (fpgasupport@pentek.com) or by phone (201-818-5900 ext. 238, 9 am to 5 pm EST).

1.6 **Documentation**

This user manual is the main document for this IP core. The following documents provide supplemental material:

- 1) Vivado Design Suite User Guide: Designing with IP
- 2) Vivado Design Suite User Guide: Programming and Debugging
- 3) ARM AMBA AXI4 Protocol Version 2.0 Specification http://www.arm.com/products/system-ip/amba-specifications.php
- 4) Micron 16-Bit Parallel NOR Flash Datasheet

Chapter 2: General Product Specifications

2.1 Standards

The AXI4-Lite to NOR Flash Interface Core has a bus interface that complies with the *ARM AMBA AXI4-Lite Protocol Specification*.

2.2 Performance

The performance of the AXI4-Lite to NOR Flash Interface Core is limited only by the FPGA logic speed. The values presented in this section should be used as an estimation guideline. Actual performance can vary.

2.2.1 Maximum Frequencies

The AXI4-Lite to NOR Flash Interface Core is designed to meet a target frequency of 250 MHz on a Kintex Ultrascale -2 speed grade FPGA. 250 MHz is typically the PCI Express[®] (PCIe[®]) AXI Bus clock frequency.

2.3 Resource Utilization

The resource utilization of the AXI4-Lite to NOR Flash Interface Core is shown in Table 2-1. Resources have been estimated for the Kintex Ultrascale XCKU060 -2 speed grade device. These values were generated using the Vivado Design Suite.

Table 2-1: Resource Usage and Availability						
Resource # Used						
LUTs	111					
Flip-Flops	192					

NOTE: Actual utilization may vary based on the user design in which the AXI4-Lite to NOR Flash Interface Core is incorporated.

2.4 Limitations and Unsupported Features

This section is not applicable to this IP core.

2.5 Generic Parameters

The generic parameters of the AXI4-Lite to NOR Flash Interface Core are described in Table 2-2. These parameters can be set as required by the user application while customizing the core.

Table 2-2: Generic Parameters					
Port/Signal Name Type Description					
flash_addr_bits	Integer	Flash Address Bits: This generic parameter defines the width of the address bus of the Flash memory. It can range from 16 to 32 bits.			

Chapter 3: Port Descriptions

This chapter provides port descriptions for the following interface types:

- AXI4-Lite Core Interfaces
- I/O Signals

3.1 **AXI4-Lite Core Interfaces**

The AXI4-Lite to NOR Flash Interface Core uses the Control/Status Register (CSR) interface to control, and receive status from, the user design.

3.1.1 Control/Status Register (CSR) Interface

The CSR interface is an AXI4-Lite Slave Interface that can be used to access the control registers in the AXI4-Lite to NOR Flash Interface Core. Table 3-1 defines the ports in the CSR interface. See Chapter 4 for a Control/Status Register memory map and bit definitions. See the *AMBA AXI4-Lite Specification* for more details on operation of the AXI4-Lite interfaces.

Table 3-1: Control/Status Register (CSR) Interface Port Descriptions						
Port	Direction	Width	Description			
s_axi_aclk	Input	1	Clock			
s_axi_aresetn	Input	1	Reset: Active low. This will reset the state machines within the core and reset the control registers to their initial states.			
s_axi_awaddr	Input	4	Write Address: Address used for write operations. It must be valid when s_axi_awvalid is asserted and must be held until s_axi_awready is asserted by the Flash Interface core.			
s_axi_awprot	Input	3	Protection: The Flash Interface core ignores these bits.			
s_axi_awvalid	Input	1	Write Address Valid: This input must be asserted to indicate that a valid write address is available on s_axi_awaddr. The Flash Interface core asserts s_axi_awready when it is ready to accept the address. The s_axi_awvalid must remain asserted until the rising clock edge after the assertion of s_axi_awready.			
s_axi_awready	Output	1	Write Address Ready: This output is asserted by the Flash Interface core when it is ready to accept the write address. The address is latched when s_axi_awvalid and s_axi_awready are high on the same cycle.			

Table 3-1: Control/Status Register (CSR) Interface Port Descriptions (Continued)						
Port	Direction	Width	Description			
s_axi_wdata	Input	32	Write Data: This data will be written to the address specified by s_axi_awaddr when s_axi_wvalid and s_axi_wready are both asserted. The value must be valid when s_axi_wvalid is asserted and held until s_axi_wready is also asserted.			
s_axi_wstrb	Input	4	Write Strobes: This signal when asserted indicates the number of bytes of valid data on s_axi_wdata signal. Each of these bits, when asserted, indicate that the corresponding byte of s_axi_wdata contains valid data. Bit 0 corresponds to the least significant byte, and bit 3 to the most significant.			
s_axi_wvalid	Input	1	Write Valid: This signal must be asserted to indicate that the write data is valid for a write operation. The value on s_axi_wdata is written into the register at address s_axi_awaddr when s_axi_wready and s_axi_wvalid are High on the same cycle.			
s_axi_wready	Output	1	Write Ready: This signal is asserted by the Flash Interface core when it is ready to accept data. The value on s_axi_wdata is written into the register at address s_axi_awaddr when s_axi_wready and s_axi_wvalid are high on the same cycle, assuming that the address has already or simultaneously been submitted.			
s_axi_bresp	Output	2	Write Response: The Flash Interface core indicates success or failure of a write transaction through this signal, which is valid when s_axi_bvalid is asserted; 00 = Success of normal access 01 = Success of exclusive access 10 = Slave error 11 = Decode error Note: For more details about this signal refer to the AMBA AXI Specification.			
s_axi_bvalid	Output	1	Write Response Valid: This signal is asserted by the core when the write operation is complete and the Write Response is valid. It is held until s_axi_bready is asserted by the user logic.			
s_axi_bready	Input	1	Write Response Ready: This signal must be asserted by the user logic when it is ready to accept the Write Response.			
s_axi_araddr	Input	4	Read Address: Address used for read operations. It must be valid when s_axi_arvalid is asserted and must be held until s_axi_arready is asserted by the Flash Interface core.			
s_axi_arprot	Input	3	Protection: These bits are ignored by the Flash Interface core			
s_axi_arvalid	Input	1	Read Address Valid: This input must be asserted to indicate that a valid read address is available on the s_axi_araddr. The Flash Interface core asserts s_axi_arready when it ready to accept the Read Address. This input must remain asserted until the rising clock edge after the assertion s_axi_csr_arready.			
s_axi_arready	Output	1	Read Address Ready: This output is asserted by the Flash Interface core when it is ready to accept the read address. The address is latched when s_axi_arvalid and s_axi_arready are high on the same cycle.			

Table 3-1: Control/Status Register (CSR) Interface Port Descriptions (Continued)						
Port	Direction	ion Width Description				
s_axi_rdata	Output	32	Read Data: This value is the data read from the address specified by the s_axi_araddr when s_axi_arvalid and s_axi_arready are high on the same cycle.			
s_axi_rresp	Output	2	Read Response: The Flash Interface core indicates success or failure of a read transaction through this signal, which is valid when s_axi_rvalid is asserted; 00 = Success of normal access 01 = Success of exclusive access 10 = Slave error 11 = Decode error Note: For more details about this signal refer to the AMBA AXI Specification.			
s_axi_rvalid	Output	1	Read Data Valid: This signal is asserted by the core when the read is complete and the read data is available on s_axi _rdata. It is held unti s_axi_rready is asserted by the user logic.			
s_axi_rready	Input	1	Read Data Ready: This signal is asserted by the user logic when it is ready to accept the Read Data.			

3.2 I/O Signals

The I/O port/signal descriptions of the top-level module of the AXI4-Lite to NOR Flash Interface Core are described in Table 3-2.

Table 3-2: I/O Signals						
Port/Signal Name	Туре	Direction	Description			
flash_d_i [15:0]		Input	Flash Input Data: This is the incoming data from the Flash Memory through a tri-state buffer.			
flash_d_o[15:0]	std_logic_ vector	-4-1 1:-		Flash Output Data: This is the outgoing data from the Flash Interface Core to the tri-state buffer.		
flash_d_t [15:0]			Flash Output Data Enable: This is the flash output data enable signal to the tri-state buffer.			
flash_a [flash_addr_bits-1 : 0]			Flash Address Output: This is the flash address output where the read/ write operations are to be performed. The width of this bus is defined by the generic parameter flash_addr_bits.			
flash_adv_b	std_logic	Output	Flash Address Valid: Active Low. This bit is used to enable the address output to the Flash memory.			
flash_fwe_b			Flash Write Enable: Active Low. When set to Low, this bit enables a write operation in the Flash memory.			
flash_fcs_b			Flash Chip Enable: Active Low. When Low, this bit selects the die. When High, it deselects the die and places it in standby.			
flash_foe_b			Flash Output Enable: Active Low. This bit is set to Low for Reads, and High for Writes.			

Chapter 4: Register Space

This chapter provides the memory map and register descriptions for the register space of the AXI4-Lite to NOR Flash Interface Core. The memory map is provided in Table 4-1.

Table 4-1: Register Space Memory Map								
Register Name Address Access Description (Base Address +)								
Flash Address	0x00 R/W		Controls the flash address					
Flash Data	0x04	10,00	Control the Flash data					

4.1 Flash Address Register

This register is used to control the Flash address where a read/ write operation is to be performed. This register is illustrated in Figure 4-1 and described in Table 4-2.

Figure 4-1: Flash Address Register

.

Table 4-2: Flash Address Register (Base Address + 0x00)							
Bits	Field Name	Default Value	Access Type	Description			
31:0	flash_addr	0x00000 000	R/W	Flash Address			

4.2 Flash Data Register

When accessed during a write operation, this register holds the data to be written to the Flash memory, and during a read operation holds data read from the Flash memory. This register is illustrated in Figure 4-2 and described in Table 4-3.

Figure 4-2: Flash Data Register

.

Table 4-3: Flash Data Register (Base Address + 0x04)							
Bits	Field Name	Default Value	Access Type	Description			
31:0	Reseved	N/A	N/A	Reserved			
15:0	data	0x00000000	R/W	Read/ Write Flash Data			

Chapter 5: Designing with the Core

This chapter includes guidelines and additional information to facilitate designing with the AXI4-Lite to NOR Flash Interface Core.

5.1 General Design Guidelines

The AXI4-Lite to NOR Flash Interface Core is used as an interface to the 16-bit Parallel NOR Flash Memory PC28F00AG18 from Micron. The data I/O of the core is to be connected externally to a tri-state buffer whose output connects to the Flash memory data I/O. It performs only asynchronous read/ write operations in the Flash memory.

5.2 Clocking

Main Clock: s_axi_aclk

This clock is used to clock all the ports on the core, including the control/status (CSR) interface.

5.3 Resets

Reset: s axi aresetn

This is active low synchronous reset associated with the **s_axi_aclk**. When asserted, this will reset all the control registers back to their initial default states.

NOTE: A new interrupt will only be generated by another rising edge on an interrupt source.

5.4 Interface Operation

CSR Interface: This is the control/status register interface. It is associated with the **s_axi_aclk**. It is a standard AXI4-Lite type interface. See Chapter 4 for the control register memory map and more details on the registers that can be accessed through this interface.

5.5 Programming Sequence

This section briefly describes the programming sequence of registers to initiate and complete a transaction on the AXI4-Lite to NOR Flash Interface Core.

- 1) Set the desired Flash address[31:0].
- 2) Write/ read data to/ from the Flash memory.

5.6 Timing Diagrams

The timing diagram for the AXI4-Lite to NOR Flash Interface Core shown in Figure 6-3, is obtained by running the simulation of the test bench of the core in Vivado VSim environment. For more details about the test bench, refer to Chapter 6.5.

Chapter 6: Design Flow Steps

6.1 Pentek IP Catalog

This chapter describes customization and generation of the Pentek AXI4-Lite to NOR Flash Interface Core. It also includes simulation, synthesis, and implementation steps that are specific to this IP core. This core can be generated from the Vivado IP Catalog when the Pentek IP Repository has been installed. It will appear in the IP Catalog list as **px_axil2flash_v1_0** as shown in Figure 6-1.

IP Catalog Search: Q-Interfaces Cores A1 + AXI4 Name Status License VLNV □ User Repository (c:/Xilinx/Vivado/2015.4/data/ip/partners/pentek) PentekIP p_axil_csr32_v1_0 AXI4 Pre-Production Included pentek.com AXI4, AXI4-Stream Pre-Production Included px_ads5485intrfc_v1_0 pentek.com px_axil2cdc_v1_0 Pre-Production Included pentek.com AXI4 px_axil2ddr_rq_v1_0 AXI4, AXI4-Stream Pre-Production Included pentek.com px_axil2flash_v1_0 AXI4 Pre-Production Included pentek.com px_axil2pciecfgmgmt_v1_0 Pre-Production Included pentek.com AXI4 px_axil_addr_sub_v1_0 AXI4 Pre-Production Included pentek.com px_axil_bram_ctlr_v1_0 Pre-Production Included pentek.com AXI4 0 px_axil_byteswap_v1_0 Pre-Production Included pentek.com AXI4 Pre-Production Included px_axil_csr_v1_0 AXI4 pentek.com px axil decompose v1 0 AXI4 Pre-Production Included pentek.com V 2 < Details Name: px_axil2flash_v1_0 Version: 1.0 (Rev. 3) Interfaces: AXI4 Description: AXI-LITE to 16-bit Parallel NOR Flash (Asynchronous Access) Status: Pre-Production Induded License: Vendor: Pentek, Inc.

Figure 6-1: AXI4-Lite to 16-bit Parallel NOR Flash Interface Core in

6.1 Pentek IP Catalog (continued)

When you select the **px_axil2flash_v1_0** core, a screen appears that shows the core's symbol and the core's parameters (see Figure 6-2). The core's symbol is the box on the left side.

Figure 6-2: AXI4-Lite to 16-bit Parallel NOR Flash Interface Core

6.2 User Parameters

For a detailed explanation of the user parameters, refer to Section 2.5.

6.3 Generating Output

For more details about generating and using IP in the Vivado Design Suite, refer to the *Vivado Design Suite User Guide - Designing with IP*.

6.4 Constraining the Core

This section contains information about constraining the core in Vivado Design Suite environment.

Required Constraints

The XDC constraints for this core are not included in the Package IP. Clock constraints can be applied at the top level of the user design which includes this IP core.

Device, Package, and Speed Grade Selections

This IP works for the Kintex Ultrascale and Virtex-7 FPGAs.

Clock Frequencies

The clock frequency (s axi aclk) for this IP core is 250 MHz.

Clock Management

This section is not applicable for this IP core.

Clock Placement

This section is not applicable for this IP core.

Banking and Placement

This section is not applicable for this IP core.

Transceiver Placement

This section is not applicable for this IP core.

I/O Standard and Placement

This section is not applicable for this IP core.

6.5 Simulation

The AXI4-Lite to NOR Flash Interface Core has a test bench which generates the output waveforms using the Vivado VSim environment. The test bench is designed to run at 250 MHz clock frequency.

The test bench sets the Flash Address bus width to 24 bits. It writes 32 DWords to the Flash memory and reads the same from it. Since the AXI4-Lite to NOR Flash Interface Core has auto increment mode, the Flash address is set once in the Flash Address Register and incrementing data (0 to 31) is written into 32 contiguous address locations. The data written is stored in a test memory array and fed as data for Flash read responses.

The programming procedure is the same as described in Section 5.5. When run, the simulation produces the results shown in Figure 6-3.

Figure 6-3: AXI4-Lite to 16-bit Parallel NOR Flash Interface Core Test Bench Simulation

6.6 Synthesis and Implementation

For details about synthesis and implementation see the *Vivado Design Suite User Guide - Designing with IP*.