Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 9701/32

Paper 3 Advanced Practical Skills 2

May/June 2020

2 hours

You must answer on the question paper.

You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working, use appropriate units and use an appropriate number of significant figures.
- Give details of the practical session and laboratory, where appropriate, in the boxes provided.

INFORMATION

- The total mark for this paper is 40.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Notes for use in qualitative analysis are provided in the question paper.

Session	
Laboratory	

For Examiner's Use			
1			
2			
3			
Total			

This document has 12 pages. Blank pages are indicated.

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

In this experiment you will determine the formula of the ion, IO_x^- . To do this you will first react IO_x^- ions with an excess of iodide ions, I^- , to form iodine, I_2 .

The equation for this reaction is:

$$IO_{x}^{-} + yI^{-} + zH^{+} \rightarrow \left(\frac{1+y}{2}\right)I_{2} + \frac{z}{2}H_{2}O$$

where x, y and z are all integers.

The amount of iodine produced will then be determined by titration with thiosulfate ions, S₂O₃²⁻.

$$\rm I_2$$
 + $\rm 2S_2O_3^{2-} \rightarrow 2I^-$ + $\rm S_4O_6^{2-}$

FB 1 is a solution containing $0.0150\,\text{mol\,dm}^{-3}\,\text{IO}_{\text{\tiny v}}^{-}\,\text{ions}$.

FB 2 is dilute sulfuric acid, H₂SO₄.

FB 3 is 0.500 mol dm⁻³ potassium iodide, KI.

FB 4 is $0.100\,\mathrm{mol\,dm^{-3}}$ sodium thiosulfate, $\mathrm{Na_2S_2O_3}$. starch indicator

(a) Method

- Pipette 25.0 cm³ of **FB 1** into a conical flask.
- Use the measuring cylinder to add 25 cm³ of **FB 2** to the conical flask.
- Use the measuring cylinder to add 10 cm³ of **FB 3** to the conical flask. The solution will turn brown as iodine is produced.
- Fill the burette with **FB 4**.
- Add **FB 4** from the burette until the solution in the conical flask turns yellow.
- Add 10–15 drops of starch indicator to the conical flask. The solution will turn blue-black.
- Continue to add more **FB 4** from the burette until the blue-black colour just disappears. This is the end-point of the titration.
- Carry out a rough titration and record your burette readings in the space below.

The rough titre is cm³.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure that your recorded results show the precision of your practical work.
- Record in a suitable form in the space below all of your burette readings and the volume of FB 4 added in each accurate titration.

Keep FB 3 and FB 4 for use in Question 3.

I	
II	
III	
IV	
V	
VI	
VII	

[7]

(b) From your accurate titration results, obtain a value for the volume of **FB 4** to be used in your calculations. Show clearly how you obtained this value.

25.0 cm³ of **FB 1** required cm³ of **FB 4**. [1]

(c) Calculations

- (i) Give your answers to (c)(ii), (c)(iii) and (c)(iv) to the appropriate number of significant figures. [1]
- (ii) Use your answer to (b) and the relevant equation on page 2 to calculate the number of moles of iodine that form when 25.0 cm³ of FB 1 react with 10 cm³ of FB 3.

moles of I_2 = mol [1]

(iii)	Calculate the number of moles of IO_x^- ions in 25.0 cm ³ of FB 1 .
	moles of IO_x^- ions = mol [1]
(iv)	Use the ratio of your answers to (c)(ii) and (c)(iii) along with the relevant equation given on page 2 to calculate the value of y. (Note that y is an odd integer such as 1, 3, 5, 7 etc.) Show your working.
	y = [2]
(v)	Use your value of y to determine the formula of the IO_{x}^{-} ion.
	formula = [1]
(d) (i)	The maximum error in the volume dispensed by the pipette is ±0.06 cm ³ .
	Calculate the maximum percentage error in the volume of FB 1 used.
	maximum percentage error =% [1]
(ii)	A student suggested that a more accurate value of x could be obtained if a 10 cm³ pipette is used to measure FB 3 rather than the measuring cylinder.
	State whether you agree with the student. Explain your answer.
	[1]
	[Total: 16]

2	In this e	experiment	you wil	l determin	e the	enthalpy	change	of	solution,	$\Delta H_{\rm sol}$,	for	hydrated
	sodium th	niosulfate,	Na ₂ S ₂ O ₃	5H ₂ O. To	do thi	s you will	measure	the	e tempera	ture ch	ange	e when a
	known ma	ass of hydr	ated soc	ium thiosu	Ifate is	dissolve	d in a kno	wn	volume of	f water.		

FB 5 is hydrated sodium thiosulfate, Na₂S₂O₃•5H₂O.

(a) Method

- Support the cup in the 250 cm³ beaker.
- Use the 25 cm³ measuring cylinder to transfer 20.0 cm³ of distilled water into the cup.
- Weigh the stoppered container of FB 5 and record the mass.
- Measure and record the initial temperature of the water in the cup.
- Add all the **FB 5** to the water in the cup.
- Stir the mixture and record the minimum temperature that is reached.
- Reweigh the stoppered container. Record the mass.
- Calculate and record the mass of **FB 5** added to the water and the change in temperature.

I	
II	
III	
IV	
[4]	

(b) Calculations

(i) Calculate the energy change of the reaction.

(Assume that 4.2J of heat energy changes the temperature of 1.0 cm³ of solution by 1.0 °C.)

Show your working.

energy change = J [1]

(ii) Calculate the enthalpy change of solution, ΔH_{sol} , for hydrated sodium thiosulfate.

 ΔH_{sol} for Na₂S₂O₃•5H₂O = kJ mol⁻¹ sign value [2]

(iii)	Assume that under the same conditions, the enthalpy change of solution, ΔH_{sol} , for
	anhydrous sodium thiosulfate, Na ₂ S ₂ O ₃ , is –7.7 kJ mol ⁻¹ .
	Construct a Hess's cycle and determine the enthalpy change for the following reaction.
	(If you were unable to calculate an answer to (b)(ii), assume a value of +32.2 kJ mol ⁻¹ .
	Note this is not the correct value.)

$$Na_2S_2O_3(s) + 5H_2O(l) \rightarrow Na_2S_2O_3 -5H_2O(s)$$

$$\Delta H = \dots$$
 kJ mol⁻¹ sign value [2]

(c)	How would your temperature change in (a) be affected if your sample of FB 5 contained small amount of anhydrous sodium thiosulfate? Explain your answer.	sk
		•••
		[1

[Total: 10]

Qualitative Analysis

Where reagents are selected for use in a test, the **name** or **correct formula** of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen
- the formation of any precipitate and its solubility in an excess of the reagent added
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.

If any solution is warmed, a **boiling tube** must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

- **3 (a) FB 6** is an aqueous solution containing one cation and one anion, both of which are listed in the Qualitative Analysis Notes.
 - (i) Carry out tests to identify the cation in **FB 6**. Record your tests and observations in the space below.

[2]

(ii) Carry out the following tests and record your observations.

test	observations
Test 1 To a 2 cm depth of FB 6 in a test-tube, add a few drops of nitric acid, followed by a few drops of aqueous silver nitrate.	
Pour approximately half the contents of the	ne test-tube into a clean test-tube.
Test 2 To one of the test-tubes add aqueous ammonia.	
Test 3 To the other test-tube add FB 4, $Na_2S_2O_3(aq)$.	
	[2]

(iii)	Deduce the formula of FB 6 .	
		[1]

- (b) FB 7 is acidified aqueous iron(III) chloride, $FeCl_3$.
 - (i) Carry out the following tests and record your observations.

test	observations
Test 1 To a 1 cm depth of FB 7 in a test-tube, add a 1 cm depth of FB 3, KI(aq), then	
add starch indicator.	

[1]

(ii) Carry out the following tests and record your observations.

test	observations
Test 1 To a 1 cm depth of FB 7 in a test-tube, add a 1 cm depth of FB 4 , $Na_2S_2O_3(aq)$. Leave to stand until there is no further change, then	
add aqueous sodium hydroxide.	

(iii)	Explain your observation in (b)(ii) when aqueous sodium hydroxide is added.	
	[2]

(c) FB 8 is acidified aqueous iron(II) sulfate, FeSO₄.

(i) Carry out the following tests and record your observations and conclusions.

test	observations	conclusions
Test 1 To a 1 cm depth of FB 8 in a boiling tube, add a 1 cm depth of hydrogen peroxide, then		
add aqueous sodium hydroxide.		

г	2	٦
ı	~	. 1
	u	

[2]

(ii) Write an ionic equation for the reaction that occurs on addition of sodium hydroxide in (c)(i).

______[

[Total: 14]

Qualitative Analysis Notes

1 Reactions of aqueous cations

	react	tion with
ion	NaOH(aq)	NH ₃ (aq)
aluminium, Al³+(aq)	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on heating	_
barium, Ba ²⁺ (aq)	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.
chromium(III), Cr³+(aq)	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), Fe³+(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, Mg²+(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), Mn²+(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq))
iodide, I-(aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))
nitrate, NO ₃ -(aq)	NH₃ liberated on heating with OH⁻(aq) and A <i>l</i> foil
nitrite, NO ₂ -(aq)	NH₃ liberated on heating with OH⁻(aq) and A <i>l</i> foil
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

The Periodic Table of Elements

													_										\neg
	18	2	He	helium 4.0	10	Se	neon	18	Ā	argon 39.9	36	궃	krypton 83.8	54	Xe	xenon 131.3	98	R	radon				
	17				6	ш	fluorine	17	Cl	chlorine 35.5	35	Ā	bromine 79.9	53	н	iodine 126.9	85	Αţ	astatine -				
	16				8	0	oxygen 16.0	16	S	sulfur 32.1	34	Se	selenium 79.0	52	<u>e</u>	tellurium 127.6	84	Ро	molouium -	116	^	livermorium	ı
	15				7	z	nitrogen 14.0	5 5	Ф	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	Ξ	bismuth 209.0				
	14				9	ပ	carbon	14	S	silicon 28.1	32	Ge	germanium 72.6	20	Sn	tin 118.7	82	Ър	lead 207.2	114	LΙ	flerovium	ı
	13				2	В	boron 10.8	13	Αl	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	81	<i>1</i> L	thallium 204.4				
										12	30	Zu	zinc 65.4	48	8	cadmium 112.4	80	Нg	mercury 200.6	112	ပ်	copernicium	1
										7	29	Cn	copper 63.5	47	Ag	silver 107.9	62	Au	gold 197.0	111	Rg	roentgenium	1
dn										10	28	Z	nickel 58.7	46	Pd	palladium 106.4	78	귙	platinum 195.1	110	Ds	darmstadtium	1
Group										6	27	ဝိ	cobalt 58.9	45	돈	rhodium 102.9	11	'n	iridium 192.2	109	Μ̈́	meitnerium	1
		- :	I	hydrogen 1.0						œ	26	Pe	iron 55.8	44	Ru	ruthenium 101.1	92	SO	osmium 190.2	108	Hs	hassium	1
										7	25	M	manganese 54.9	43	ပ	technetium -	75	Re	rhenium 186.2	107	В	pohrium	1
						loc	ú	8		9	24	ပ်	chromium 52.0	42	Mo	molybdenum 95.9	74	>	tungsten 183.8	106	Sg	seaborgium	1
				Key	atomic number	atomic symbo	name relative atomic mass			2	23	>	vanadium 50.9	41	q	niobium 92.9	73	<u>a</u>	tantalum 180.9	105	Op	dubnium	ı
					æ	ato	9			4	22	j	titanium 47.9	40	Zr	zirconium 91.2	72	Ξ	hafnium 178.5	104	꿏	rutherfordium	1
										က	21	Sc	scandium 45.0	39	>	yttrium 88.9	57-71	lanthanoids		89–103	actinoids		
	2				4	Be	beryllium	12 3.5	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	Š	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium	-
	_				3	:=	lithium	1 53	Na	sodium 23.0	19	×	potassium 39.1	37	&	rubidium 85.5	55	Cs	caesium 132.9	87	ь́.	francium	1

71 Lu	lutetium 175.0	103	ځ	lawrencium	
°02 Yb					
69 Tm	thulium 168.9	101	Md	mendelevium -	
.88 Fr	erbium 167.3	100	Fm	fermium -	
67 Ho	holmium 164.9	66	Es	einsteinium	
°° Dy	dysprosium 162.5	86	Ç	californium -	
e5 Tb	terbium 158.9	26	益	berkelium	
² Gd	gadolinium 157.3	96	Cu	curium	
e3 Eu	europium 152.0	96	Am	americium	
62 Sm	samarium 150.4	94	Pn	plutonium	
Pm	promethium -	93	ď	neptunium -	
⁹ N	neodymium 144.4	92	\supset	uranium 238.0	
59 Pr	praseodymium 140.9	91	Ра	protactinium 231.0	
Se Ce	cerium 140.1	06	Т	thorium 232.0	
57 La	lanthanum 138.9	89	Ac	actinium	

lanthanoids

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.