Асимптоты графика функции и методы их отыскания.

Определение. Прямая называется асимптотой кривой, если расстояние δ от переменной точки M кривой до этой прямой при удалении точки M в бесконечность стремится к нулю.

Различают три вида асимптот: вертикальные, горизонтальные и наклонные.

Вертикальные асимптоты. Прямая x = a является вертикальной асимптотой графика функции f(x), если выполняется хотя бы одно из условий: $\lim_{x \to a \to 0} f(x) = \pm \infty$ или $\lim_{x \to a \to 0} f(x) = \pm \infty$ (при этом функция f(x) может быть вообще не определена соответственно при $x \ge a$ или $x \le a$).

Из сказанного следует, что вертикальные асимптоты кривой нужно искать в точках разрыва и на границах области определения. График функции, непрерывной на всей числовой прямой, вертикальных асимптот не имеет.

Например, график функции $y = \ln x$ имеет вертикальную асимптоту x = 0 на границе области определения, так как $\lim_{n \to \infty} \ln x = -\infty$

Горизонтальные асимптоты. Если $\lim_{x \to \pm \infty} f(x) = b$, то y = b – горизонтальная асимптота кривой y = f(x) (правая при $x \to +\infty$, левая при $x \to -\infty$ и двусторонняя, если пределы при $x \to \pm \infty$ равны).

Например, график функции $y=a^x$ при a>1 имеет левую горизонтальную асимптоту y=0, так как $\lim_{x\to -\infty}a^x=0$. Правой горизонтальной асимптоты у кривой нет, поскольку $\lim_{x\to \infty}a^x=\infty$

Наклонные асимптоты. Прямая y = kx + b называется наклонной асимптотой графика функции y = f(x), если $\lim_{x \to -\infty} (f(x) - kx - b) = 0$ (левая наклонная асимптота) или $\lim_{x \to +\infty} (f(x) - kx - b) = 0$ (правая наклонная асимптота).

Существование наклонной асимптоты определяется следующей теоремой.

Теорема . Для того чтобы кривая y = f(x) имела асимптоту y = kx + b, необходимо и достаточно, чтобы существовали конечные пределы

$$k = \lim_{x \to +\infty} \frac{f(x)}{x};$$
 $b = \lim_{x \to +\infty} [f(x) - kx]$

или

$$k = \lim_{x \to -\infty} \frac{f(x)}{x};$$
 $b = \lim_{x \to -\infty} [f(x) - kx]$

В первом случае получается правая наклонная асимптота, во втором – левая.

При совпадении пределов при $x \to +\infty$ и $x \to -\infty$ прямая y = kx + b является двусторонней асимптотой кривой.

Доказательство. Из определения асимптоты следует $f(x)-(kx+b)=\alpha(x)$, где $\alpha(x)-$ бесконечно малая при $x\to\infty$, то есть $\lim_{x\to\infty}\alpha(x)=0$. Остается определить параметры уравнения асимптоты. Для этого вычислим

 $\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \left[k + \frac{b}{x} + \frac{\alpha(x)}{x} \right] = k \;, \quad \lim_{x \to \infty} \left[f(x) - kx \right] = \lim_{x \to \infty} \left[b + \alpha(x) \right] = b \;.$ Итак, если оба предела существуют и конечны, параметры прямой k и b определены, причем точки этой прямой бесконечно сближаются с точками кривой при $x \to \infty$.

Если хотя бы один из пределов, определяющих асимптоту y = kx + b, не существует, то график функции не имеет наклонной асимптоты (но может иметь вертикальную).

Нетрудно видеть, что горизонтальная асимптота y = b является частным случаем наклонной y = kx + b при k = 0. Поэтому если в каком—либо направлении кривая имеет горизонтальную асимптоту, то в этом направлении нет наклонной, и наоборот.

Пример. Найдем асимптоты графика функции $y = \frac{2x^2 - 1}{x}$ и построим эскиз графика.

Решение. Функции определена на всей числовой прямой, кроме x = 0, т.е.

$$D(f) = (-\infty,0) \cup (0,+\infty),$$

Поэтому в точке разрыва x = 0 кривая может иметь вертикальную асимптоту. Действительно,

$$\lim_{x \to 0-0} f(x) = \lim_{x \to 0-0} \frac{2x^2 - 1}{x} = \lim_{x \to 0-0} \left(2x - \frac{1}{x}\right) = 0 - (-\infty) = +\infty.$$

Аналогично,

$$\lim_{x \to 0+0} f(x) = \lim_{x \to 0+0} \left(2x - \frac{1}{x}\right) = 0 - \infty = -\infty$$

Следовательно, x=0 – вертикальная асимптота; при $x\to 0$ слева $f(x)\to +\infty$, при $x\to 0$ справа $f(x)\to -\infty$.

Горизонтальной асимптоты кривая не имеет, так как

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \left(2x - \frac{1}{x}\right) = \pm \infty$$

Выясним наличие наклонной асимптоты:

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{2x^2 - 1}{x^2} = \lim_{x \to \pm \infty} \left(2 - \frac{1}{x^2}\right) = 2;$$

$$b = \lim_{x \to \pm \infty} [f(x) - kx] = \lim_{x \to \pm \infty} \left(2x - \frac{1}{x} - 2x\right) = 0.$$

Прямая y = 2x является двусторонней наклонной асимптотой заданной кривой .

