Graph Practice Problems

Q1

Run the DFS-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first.

Q2

For each node u in an undirected graph, let twodegree [u] be the sum of the degrees of u's neighbors. Show how to compute the entire array of twodegree $[\cdot]$ values in linear time, given a graph in adjacency list format.

Q3

Design a linear-time algorithm which, given an undirected graph G and a particular edge e in it, determines whether G has a cycle containing e.

Q4

Give an efficient algorithm which takes as input a directed graph G=(V,E), and determines whether or not there is a vertex $s \in V$ from which all other vertices are reachable.

Q5

You are given a directed graph in which each node $u \in V$ has an associated *price* p_u which is a positive integer. Define the array cost as follows: for each $u \in V$,

cost[u] = price of the cheapest node reachable from u (including u itself).

For instance, in the graph below (with prices shown for each vertex), the cost values of the nodes A, B, C, D, E, F are 2, 1, 4, 1, 4, 5, respectively.

Your goal is to design an algorithm that fills in the entire cost array (i.e., for all vertices).

Q6

Often there are multiple shortest paths between two nodes of a graph. Give a linear-time algorithm for the following task.

Input: Undirected graph G = (V, E) with unit edge lengths; nodes $u, v \in V$.

Output: The number of distinct shortest paths from u to v.

A bipartite graph is a graph G=(V,E) whose vertices can be partitioned into two sets $(V=V_1\cup V_2$ and $V_1\cap V_2=\emptyset)$ such that there are no edges between vertices in the same set (for instance, if $u,v\in V_1$, then there is no edge between u and v).

Give a linear-time algorithm to determine whether an undirected graph is bipartite.