| Universidad Simón Bolívar   |  |  |  |  |  |  |
|-----------------------------|--|--|--|--|--|--|
| Departamento de Matemáticas |  |  |  |  |  |  |
| Puras y Aplicadas           |  |  |  |  |  |  |
| Enero - Marzo 2007          |  |  |  |  |  |  |

| Nom | bre: _ |  |   |  |
|-----|--------|--|---|--|
|     |        |  |   |  |
| _   |        |  | _ |  |

Carnet: \_\_\_\_\_ Sección: \_\_\_\_

# MA-1112— Primer parcial Tipo A1—

1. Dados los puntos  $A(-1,0),\ B(0,1)\ C1,-1,$  considere la figura plana limitada por: el arco de extremos  $A,\ B$  de la parábola de ecuación  $y=(x+1)^2,$  los segmentos  $AC,\ BC.$ 

## Solución



- a) bosqueje la figura,
- b) exprese el área de la figura por medio de convenientes integrales, ecuación de la recta por  $A, C: y = -\frac{1}{2}x \frac{1}{2};$  ecuación de la recta por B, C: y = 2x + 1;

$$\text{Area} = \int_{-1}^{0} \left[ (x+1)^2 - \left( -\frac{1}{2} \right) \right] dx + \int_{0}^{1} \left[ (-2x+1) - \left( -\frac{1}{2}x - \frac{1}{2} \right) \right] dx =$$

$$\textbf{\textit{c})} \ = \left[ \frac{(x+1)^3}{3} + \frac{x^2}{4} + \frac{x}{2} \right]_{-1}^{0} + \left[ -x^2 + x + \frac{x^2}{4} + \frac{x}{2} \right]_{0}^{1} = \left( \frac{1}{3} \right) - \left( \frac{1}{4} - \frac{1}{2} \right) + \left( -1 + 1 + \frac{1}{4} + \frac{1}{2} \right) - 0 = \frac{4}{3}.$$

MA-1112

2. Calcule las siguientes integrales

a)

$$\int (x+1)\sec^2(2x^2+4x)\tan^3(2x^2+4x)\,dx.$$

Solución

Sea I la integral que queremos calcular. Usamos la sustitución  $u=2x^2+4x$ ,  $du=(4x+4)\,dx$ , entonces

$$I = \frac{1}{4} \int \sec^2(u) \tan^3(u) du = \frac{\tan^4(u)}{4} + C,$$

donde la integral anterior fue resuelta usando la regla generalizada de la potencia, recordando que  $\frac{d}{du}(\tan{(u)}) = \sec^2(u)$ .

b)

$$\int \text{sen}(z) \cos(z) \left( 2 \cos^2 z - 3 \right)^{\frac{1}{3}} dz.$$

### Solución

Sea I la integral que queremos calcular. Usamos la sustitución  $u=\cos(z)$ ,  $du=-\sin(z)dz$ 

$$I = -\int u \left(2u^2 - 3\right)^{\frac{1}{3}} du.$$

Ahora usamos la sustitución  $t=2u^2-3$ , dt=4udu

$$I = -\frac{1}{4} \int t^{\frac{1}{3}} dt = -\frac{3}{16} t^{\frac{4}{3}} + C = -\frac{3}{16} (2u^2 - 3)^{\frac{4}{3}} + C$$
$$= -\frac{3}{16} (2\cos(z)^2 - 3)^{\frac{4}{3}} + C.$$

## **DPTO. DE MATEMATICAS**

MA-1112

3. Sea  $F(x)=\int_{\sin x-2}^{4x^2+1}t^4dt$ . Calcule F'(0) usando explícitamente el Primer Teorema Fundamental del Cálculo.

#### Solución

Como la función  $f(t) = t^4$  es continua en toda la recta real, podemos utilizar el Primer Teorema Fundamental del Cálculo, junto con la regla de la cadena y la propiedad aditiva sobre intervalos de la integral para calcular F'(x):

$$F'(x) = \left(\int_{\sin(x)-2}^{4x^2+1} t^4 dt\right)' = \left(\int_{\sin(x)-2}^0 t^4 dt + \int_0^{4x^2+1} t^4 dt\right)'$$
$$= \left(-\int_0^{\sin(x)-2} t^4 dt + \int_0^{4x^2+1} t^4 dt\right)'$$
$$= -\left(\sin(x) - 2\right)^4 \cos(x) + \left(4x^2 + 1\right)^4 8x.$$

**Entonces** 

$$F'(0) = -\left(\operatorname{sen}(0) - 2\right)^{4} \cos(0) + \left(4\left(0\right)^{2} + 1\right)^{4} 8\left(0\right) = -2^{4} = -16.$$

4. Sean f(x) y g(x) dos funciones continuas en todo el conjunto de los números reales. Se conoce que

$$\int_{a}^{b} (f(x) + 3g(x)) dx = A, \ \mathbf{y} \int_{a}^{b} (2f(x) + 5g(x)) dx = B.$$

Halle el valor de las dos integrales:  $\int_a^b f(x)dx$ ,  $\int_a^b g(x)dx$ , indicando cual o cuales propiedades de la integral definida se usan.

### Solución

Sea  $\int_a^b f(x)dx = H$ ,  $\int_a^b g(x)dx = K$ ; por la propiedad de linealidad se tiene entonces:

$$A = \int_{a}^{b} (f(x) + 3g(x)) dx = \int_{a}^{b} f(x)dx + 3 \int_{a}^{b} g(x)dx = H + 3K$$

$$B = \int_{a}^{b} (2f(x) + 5g(x)) dx = 2 \int_{a}^{b} f(x) dx + 5 \int_{a}^{b} g(x) dx = 2H + 5K$$

Resolviendo el sistema de ecuaciones:

$$H + 3K = A$$

$$2H + 5K = B$$

se obtiene entonces

$$H = \int_{a}^{b} f(x)dx = 2A - B$$

$$K = \int_a^b g(x)dx = 3B - 5A.$$