Iterative methods

Marco Barbone

Summary

- 1. Jacobi method
- 2. Blocks methods
- 3. Asynchronous methods
- 4. Overlapping methods
- 5. Experimental results
- 6. Conclusions

Jacobi point method

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

$$A = D + R \quad \text{where} \quad D = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \text{ and } R = \begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ a_{21} & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & 0 \end{bmatrix}.$$

$$\mathbf{x}^{(k+1)} = D^{-1}(\mathbf{b} - R\mathbf{x}^{(k)}),$$

$$m{x_i^{(k+1)}} = rac{1}{a_{ii}} \left(b_i - \sum_{i \neq i} a_{ij} m{x_j^{(k)}}
ight), \quad i = 1, 2, \ldots, n.$$
 One row at the time!

Jacobi Method

```
1: function JACOBI(A, b, \epsilon, K)
          x^{(0)} \leftarrow \text{initial guess}
          k \leftarrow 0
          repeat
               error \leftarrow 0
 5:
               for i=0 to M do
 6:
                     \beta \leftarrow 0
                    for j=0 to M do
 8:
                          if i \neq j then
                               \beta \leftarrow \beta + a_{ij} x_i^{(k)}
10:
11:
               error \leftarrow \frac{\|x^{(k+1)} - x^{(k)}\|_1}{N}
12:
               k \leftarrow k + 1
13:
          until error > \epsilon and k < K
14:
          return x^{(k)}
15:
```

Input:

A linear system in matrix form Ax=b of size MxM $\boldsymbol{\epsilon}$ the maximum accepted error \boldsymbol{K} the maximum number of iterations

Output:

 $x^{(k)}$ the solution vector

Block method

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \\ a_{41} & a_{42} & a_{43} & a_{2a_{44}} & a_{45} & a_{46} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{65} & a_{66} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \end{bmatrix}$$

$$x_j^{i+1} = A_{jj}^{-1}(b_j - \sum_{\substack{S=1\\S \neq j}}^n A_{jS} x_S^{(i)}) j = 0 \dots n$$

Overlapping Methods

Overlapping method

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \\ a_{41} & a_{42} & a_{43} & a_{2a_{44}} & a_{45} & a_{46} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} & a_{56} \\ a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & a_{66} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \end{bmatrix}$$

$$x_j^{i+1} = E_J[A_{jj}^{-1} \left(b_j - \sum_{\substack{S=1\\S \neq j}}^n A_{jS} x_S^{(i)}\right)] = 0 \dots n$$

What is E?

Splitting matrix:

Asynchronous Methods

Jacobi Method

```
Input:
 1: function JACOBI(A, b, \epsilon, K)
                                                                       A linear system in matrix form Ax=b of size MxM
         x^{(0)} \leftarrow \text{initial guess}
                                                                       oldsymbol{\epsilon} the maximum accepted error
                                                                       K the maximum number of iterations
         k \leftarrow 0
                                                                   Output:
         repeat
                                                                       x^{(k)} the solution vector
              error \leftarrow 0
 5:
             for i=0 to M do
 6:
                  \beta \leftarrow 0
                  for j=0 to M do
 8:
                       if i \neq j then
                           \beta \leftarrow \beta + a_{ij} x_i^{(k)}
10:
11:
             error \leftarrow \frac{\|x^{(k+1)} - x^{(k)}\|_1}{N} Local error checking
12:
              k \leftarrow k + 1
13:
                                                         Remove the synchronization point
         until error > \epsilon and k < K
14:
         return x^{(k)}
15:
```

Minor optimization

- > LDLT Cholesky factorizations in order to avoid the inverse
- > Vectorization

Methods

- > Parallel
- > Parallel Async
- > Blocks
- > Blocks Async
- > Block Optimized
- > Overlapping
- > Overlapping Async
- > Overlapping optimized

Datasets

- > Random matrices of size 4096, 16384, 32768, 65536
- > Equilibrium distribution of a Markov chain transition matrix of size 910596

Metrics

- > Scalability
- > Wall clock time
- > Benchmark

Parameters

- > Max number of iterations 100
- > Number of physical cores 24
- > Error tolerated 10⁻¹⁰

Convergence

Random sparse matrix

Size	65536
Block Size	256
Workers	24

Random sparse matrix

Size	16384
Block Size	128
Workers	24

Blocks too big! Slow convergence!

Markov transition matrix

Size	910596
Block Size	512
Workers	24

Scalability

Parallel

Parallel

Parallel Async

Parallel Async

Blocks

Blocks

Blocks Async

4096

Blocks Async

128

Blocks Async

Blocks Optimized

Blocks Optimized

Overlapping

Overlapping

Overlapping Async

Overlapping Async

Overlapping Optimized

Overlapping Optimized

Time

Parameters

- > Max number of iterations 100
- > Number of physical cores 24
- > Error tolerated 10⁻¹⁰
- > Block size 256

Transition matrix 910596

Transition matrix 910596

Benchmark

Transition matrix 910596

Transition matrix 910596

Conclusions