Problem 1

In the figure below, let $\varepsilon = 12$ V, r = 2 Ω , R = 6 Ω , and C = 4.5 μF . The capacitor is uncharged initially. The switch is connected at t = 0. (a) At $t = 0^+$ find the initial current through each resistor and the charge on the capacitor. (b) Find the current through each resistor and the charge on the capacitor a long time after the battery is connected to the circuit.

Problem 2

Ch. 26, #44

Problem 3

Ch. 26, #46

Problem 4

Ch. 26, #49

Problem 5

At t < 0, the circuit shown in the Figure below is at steady sate. The switch is changed as shown at t = 0.

 $V_{S1} = 35 \ V, \ V_{S2} = 130 \ V, \ C = 11 \ \mu F, \ R_1 = 17 \ k\Omega, \ R_2 = 7 \ k\Omega, \ and \ R_3 = 23 \ k\Omega.$

Determine at $t = 0^+$ the initial current through R_3 just after the switch is changed.

Problem 6

Steady-state conditions exist in the circuit shown below at t < 0. The switch is closed at t = 0. $V_1 = 12$ V, $R_1 = 0.68$ k Ω , $R_2 = 2.2$ k Ω , $R_3 = 1.8$ k Ω , C = 0.47 μ F. Determine the current through the capacitor at $t = 0^+$, just after the switch is closed.

Problem 7 Ch. 26, #89

Problem 8

Determine the voltage across the inductor just before and just after the switch is changed in the figure below. Assume steady-state conditions exist for $t \le 0$.

$$V_S=12~V,~R_S=0.7~\Omega,~R_1=22~k\Omega,~and~L=100~mH.$$

Problem 9

The circuit in the figure below is a simple model of an automotive ignition system. The switch models the "points" that switch electric power to the cylinder when the fuel-air mixture is compressed. And R is the resistance between the electrodes (i.e., the "gap") of the spark plug. $V_G = 12 \text{ V}$, $R_G = 0.37 \Omega$, and $R = 1.7 \text{ k}\Omega$.

Determine the value of L and R_1 so that the voltage across the spark plug gap just after the switch is changed is 23 kV and so that this voltage will change exponentially with a time constant $\tau = 13$ ms.

