Review (1)

COMP90007 Internet Technologies

Lecturer: Ling Luo

Semester 2, 2020

Network Protocol Hierarchies

Layers, protocols and interfaces

Consider the network as a stack of **layers**

Each layer offers
services to layers above
it through interface

Protocol is an agreement between the communicating parties on how communication is to proceed

Network Protocol Hierarchies (2)

Information flow supporting virtual communication in layer 5

OSI Reference Model

TCP/IP: Protocols

Hybrid Model

The hybrid reference model used in this semester

5	Application layer	
4	Transport layer	
3	Network layer	
2	Data link layer	
1	Physical layer	

Physical Layer

- The physical layer is concerned with the electrical, timing and mechanical interfaces of the network
 - Mechanical: material, cable length ...
 - Electrical: voltage levels, signal strength ...
 - □ **Timing**: data rate, latency

Compare Transmission Media (1)

Wired: twisted pairs, coaxial cable, fibre optics ...

Wireless: radio, microwave, infrared, satellite ...

Compare the properties of wires and fibre:

Property	Wires	Fibre
Distance	Short (100s of m)	Long (tens of km)
Bandwidth	Moderate	Very High
Security	Easy to tap	Hard to tap
Cost	Inexpensive	More Expensive
Convenience	Easy to use	Harder to use

Compare Transmission Media (2)

Wireless Electromagnetic Spectrum

Radio: wide-area broadcast

Microwave: LANs and 3G/4G

Infrared/Light: line-of-sight

Data Communication using Signals (1)

 Information is transmitted by varying a physical property e.g. voltage, current

For a sinewave :

function: $c * \sin(a * t + b)$

c: amplitude, $a/(2\pi)$:frequency and b:phase can change the behaviour of the function.

Data Communication using Signals (2)

Maximum Data Rate of a Channel

 Nyquist's theorem relates the data rate to the bandwidth (B) and number of signal levels (V) (channel without noise):

Max. data rate = 2B log₂V bits/sec

Shannon's theorem relates the data rate to the bandwidth (B) and signal strength (S) relative to the noise (N):

Max. data rate = $B log_2(1 + S/N)$ bits/sec

Message Latency

Transmission delay

- T-delay = Message in bits / Rate of transmission= M/R seconds
- Propagation delay
 - P-delay= length of the channel/ speed of signals
 Length / Speed of signal (2/3 of speed of light for wire)
- Latency = L = T-delay + P-delay

Data Link Layer

- Functions of the data link layer:
 - Provide a well-defined service interface to network layer
 - 2. Handling transmission errors
 - 3. Data flow regulation
- Primary process:
 - Take <u>packets</u> from network layer, and encapsulate them into <u>frames</u> (containing a header, a payload, a trailer)

Framing

- Methods:
 - Character (Byte) count
 - Flag bytes with byte stuffing
 - Start and end flags with bit stuffing
- Most data link protocols use a combination of character count and one other method

Error Control

- Adding check bits to ensure that a garbled message by the physical layer is not considered as the original message by the receiver
- Error Control deals with
 - Detecting the error
 - Parity
 - Checksum
 - Cyclical Redundancy Check (CRC)
 - Correcting the error
 - Hamming Code

Error Bounds – Hamming distance

- Code turns data of n bits into codewords of n+k bits
- Hamming distance is the minimum bit flips to turn one valid codeword into any other valid one.
 - Example with 4 codewords of 10 bits (n=2, k=8):
 - 0000000000

Hamming distance is 5

- 0000011111
- **11111100000**
- 11111111111
- Bounds for a code with distance:
 - 2d+1 can correct d errors (e.g., 2 errors above)
 - d+1 can detect d errors (e.g., 4 errors above)

Flow Control

- The <u>fast senders</u> vs <u>slow receivers</u>
 problem requires a solution
- Principles to control when sender can send next frame

Feedback based flow control: ack

- Stop and wait
- Sliding window: go-back-N, selective repeat

Stop and Wait Protocol

- ARQ (Automatic Repeat reQuest)
 - Ack and Timeout

Link Utilisation in Stop and Wait Protocols

Link Utilisation (U) measures efficiency in communication.

 T_f = Transmission delay, time needed to transmit a frame of length L;

 T_p = Propagation delay;

 T_a = Time for transmitting an Ack, and we can assume T_a = 0.

$$T_t = T_f + 2T_p$$

 $U = (Time of transmitting a frame)/(Total time for the transfer) = <math>T_f / T_t$

Given bit rate B and $T_f = L/B$, we have

$$U = T_f / (T_f + 2T_p) = (L/B) / (L/B + 2T_p) = L/ (L+ 2T_p B).$$

20

Go-Back-N vs. Selective Repeat

 Trade-off between efficient use of bandwidth and data link layer buffer space

Medium Access Control

- MAC sub-layer is used to assist in resolving transmission conflicts
- Static channel allocation
 - Time division multiplexing
 - Frequency division multiplexing

Medium Access Control

- Contention
 - ALOHA, Slotted ALOHA
 - Carrier Sense Multiple Access: 1-persistent, nonpersistent, p-persistent, with collision detection
- Collision Free: bit map, binary countdown
- Limited Contention: adaptive tree walk
- Wireless LANs: MACA/MACAW

Network Layer

- Internet is a collection of many networks that is interconnected by the IP protocol
- Provides a <u>best-effort</u> service to <u>route datagrams</u> from source host to destination host

Connecting Different Networks (1)

Tunneling IPv6 Packets through IPv4

Connecting Different Networks (2)

- Large packets need to be routed through a network whose maximum packet size is too small.
- Solution: Fragmentation and Reassembly.

a) Transparent – packets fragmented / reassembled in each network.

b) Non-transparent – fragments are reassembled at destination.
 Each packet requires packet number, byte offset, end of packet flag.

Connecting Different Networks (3)

- Path MTU Discovery: alternative to Fragmentation
- Advantage: the source knows what length packet to send
- If the routes and path MTU change, new error packets will be triggered and the source will adapt to the new path

IP Addresses

- network portion + host portion
- Prefix: determined by the network portion, all hosts on a single network has the same network portion. prefix is written as: lowest address/bit-length 18.2.31.0/24, 18.2.0.0/16
- Subnet mask: all 1s in the network portion
- Extract prefix: ANDed the IP address with the subnet mask

Subnets

- Subnetting allows networks to be split into several parts for internal uses whilst acting like a single network for external use
- Looks like a single prefix outside the network

Network is divides into subnets internally

Network Address Translation (NAT)

- NAT box maps one external IP address to many internal IP addresses
 - Uses TCP/UDP port to distinguish connections
 - Violates layering; popular tool in conserving global address space

Routing within a Datagram Subnet

- Connectionless post office model: packets are routed individually based on destination addresses in them
- Packets can take different paths
- E.g., P1 sends a long message to P2

Routing table (can be fixed or change over time)

Routing algorithm – manages the routing table

Virtual-Circuit vs. Datagram Subnets

Issue	Datagram network	Virtual-circuit network
Circuit setup	Not needed	Required
Addressing	Each packet contains the full source and destination address	Each packet contains a short VC number
State information	Routers do not hold state information about connections	Each VC requires router table space per connection
Routing	Each packet is routed independently	Route chosen when VC is set up; all packets follow it
Effect of router failures	None, except for packets lost during the crash	All VCs that passed through the failed router are terminated
Quality of service	Difficult	Easy if enough resources can be allocated in advance for each VC
Congestion control	Difficult	Easy if enough resources can be allocated in advance for each VC

Routing Algorithms

- Non-adaptive
 - Shortest path routing
 - Flooding
- Adaptive
 - Distance vector routing
 - Link state routing
- Hierarchical routing
- Broadcasting routing
- Multicasting routing

Shortest Path Routing

- To choose a path between 2 routers, the algorithm finds the shortest path between them on the graph
- Metrics: number of hops, distance, delay etc.

Distance Vector Routing

- Each router maintains a table which includes the best known distance to each destination and which line to use to get there.
- Global information shared locally.

Link State Routing

- An alternative to distance vector: too long to converge after the network topology changed
- Widely used in the Internet
- More computation but simpler dynamics
- Local information shared globally using flooding

Network

LSP for each node

Broadcast Routing

- Broadcast routing allows hosts to send messages to all other hosts.
 - Single distinct packet to each destination
 - Multi-destination routing
 - Flooding
 - Reverse path forwarding