TD 1 Mathématiques Terminale D

PrepaReussite

Exercice 1:

- 1. a. Déterminer le nombre complexe a tel que : a(1+i) = 1+3i, puis calcule ia^2 .
- b. Montrer que l'équation $Z^2 (1+3i)Z 4 + 3i = 0$, $Z \in \mathbb{C}$ a pour solutions a et ia.
- 2. Dans le plan complexe rapporter au repère orthonormal direct $(0; \vec{u}, \vec{v})$ d'unité graphique 2 cm, on considère les points A et B d'affixes respectives
- a = 2+i et b = -1+2i.
- a. Placer A et B dans le repère.
- b. Vérifier que b = ia et en déduire la nature exacte du triangle OAB.
- 3. Soit C le point d'affixe $c = 1 + \frac{1}{2}i$.
- a. Déterminer l'affixe d du point D tel que le triangle OCD soit isocèle et tel que

Mes
$$(\overrightarrow{OC} \cdot \overrightarrow{OD}) = \pi/2$$

b. On note J, K, L et M les milieux respectifs de [AB], [DA], [CD] et [BC].

Déterminer la nature exacte du quadrilatère JKLM et Justifier la réponse.

Exercice 2:

Le plan complexe est muni d'un repère orthonormé direct $(0; \vec{u}, \vec{v})$

Partie A

1. Soient z et z' deux nombres complexes. Compléter les propriétés sur les modules et arguments suivantes:

a.
$$|z^n| = ...$$
;

b. Si z' non nul, alors
$$\left|\frac{z}{z'}\right| = \dots$$
;

c. arg
$$(z^n)$$
 = ..., n un entier naturel;

c. arg
$$(z^n) = ...$$
, n un entier naturel; d. Si z' non nul, alors arg $(\frac{z}{z'}) = ...$;

2. Soient A, B, C et D des points du plan deux `a deux distincts, d'affixes respectives z_a , z_b , z_c et z_d . Donner l'interprétation géométrique de :

a.
$$|z_b - z_a|$$
;

b. arg
$$(\frac{z_d - z_c}{z_b - z_c})$$
.

3. Rappeler la formule de Moivre.

Partie B

Soit s une transformation du plan qui a tout point M d'affixe z associe le point M' d'affixe z' tel que z' = a^3 z + a^2 , où a $\in \mathbb{C}$.

1. On donne a = $\frac{1}{2}$ + $i\frac{\sqrt{3}}{2}$. Déterminer la nature et les éléments caractéristiques de s.

PrepaReussite

- 2. Déterminer les nombres complexes a pour lesquels :
- a. s est une translation.
- b. s est une rotation d'angle $3\pi/2$.
- c. s est une homothétie de rapport -8.

EXERCICE 3:

Partie A:

Pour tout complexe z on note $f(z) = z^5 + 2z^4 + 2z^3 - z^2 - 2z - 2$.

- 1) Déterminer le polynôme Q tel que, quel que soit $z \in \mathbb{C}$, $f(z) = (z^3 1)Q(z)$.
- 2) Résoudre alors dans \mathbb{C} l'équation (E) : f(z) = 0.
- 3) Ecrire les solutions de (E) sous forme trigonométrique puis les représenter dans le plan complexe P muni d'un repère orthonormé $(0; \vec{u}, \vec{v})$.

Partie B:

Considérons les points A, B, C et D du plan P tels que : $A = (-\frac{1}{2} + i\frac{\sqrt{3}}{2})$, B(-1+i), C(-1-i) et $D(-\frac{1}{2}-i\frac{\sqrt{3}}{2})$.

- 1) Quelle est la nature du quadrilatère ABCD
- 2) Soit r la rotation de centre le point Ω d'affixe 1 qui transforme A en D. Déterminer l'écriture complexe de r.
- 3) Quelle est la nature du triangle ΩAD ?
- 4) Déterminer l'affixe du centre du cercle circonscrit au triangle ΩAD .
- 5) On pose $un = z_a{}^n$, $n \in \mathbb{N}*$ où z_a est l'affixe du point A. Déterminer la valeur minimale de n pour laquelle un est un réel.
- 6) Donner la forme algébrique de u2019.