MATHEMATICS

Pure mathematics is, in its way, the poetry of logical ideas.

ΣΗΜΕΊΑ ΤΟΜΉΣ ΓΡΑΦΙΚΉΣ ΠΑΡΆΣΤΑΣΗΣ ΜΕ ΤΟΥΣ ΆΞΟΝΕΣ

Στην παρούσα εργασία θα θυμηθούμε πώς υπολογίζουμε τα σημεία τομής της γραφικής παράστασης μιας συνάρτησης f με τους άξονες x'x και y'y. Εφεξής, τη γραφική παράσταση της συνάρτησης f θα τη συμβολίζουμε με C_f .

Γνωρίζουμε ότι ένα σημείο A με συντεταγμένες (x,y) είναι σημείο της C_f αν και μόνο αν y=f(x), δηλαδή οι συντεταγμένες του A έχουν τη μορφή:

$$(x, f(x)) \tag{1}$$

Σημείο τομής με τον y'y

Έστω (x,y) σημείο τομής της C_f με τον άξονα y'y. Για να προσδιορίσουμε το σημείο (x,y), θα πρέπει να προσδιορίσουμε τους δύο αγνώστους x και y, επομένως χρειαζόμαστε δύο πληροφορίες (όσοι είναι και οι άγνωστοι). Η πρώτη πληροφορία που θα χρησιμοποιήσουμε είναι ότι το σημείο (x,y) είναι σημείο της C_f , άρα από την (1) έχουμε (x,f(x)). Επιπλέον, γνωρίζουμε ότι το σημείο (x,f(x)) είναι και σημείο του άξονα y'y, άρα θα πρέπει x=0, επομένως το σημείο τομής είναι το

$$(0, f(0)) \tag{2}$$

Είναι φανερό ότι το σημείο αυτό υπάρχει αν και μόνο αν το 0 είναι στο πεδίο ορισμού της συνάρτησης.

Σημεία τομής με τον $\mathbf{x}'\mathbf{x}$

Έστω (x,y) σημείο τομής της C_f με τον άξονα x'x. Όπως και στην περίπτωση με τον άξονα y'y, έτσι και εδώ θα πρέπει να προσδιορίσουμε τους δύο αγνώστους x και y. Πάλι από την (1) έχουμε ότι y=f(x), άρα το σημείο τομής έχει τη μορφή (x,f(x)). Επιπλέον, γνωρίζουμε ότι y=0, άρα πρέπει:

$$f\left(x\right) =0$$

Η έκφραση (3) αποτελεί μια εξίσωση με άγνωστο το x, η επίλυση της οποίας θα μας προσδιορίσει τα σημεία τομής με τον άξονα x'x. Επομένως, αν x_i είναι οι λύσεις της εξίσωσης (3), τότε τα σημεία τομής της C_f με τον άξονα x'x είναι τα:

$$(x_i,0) (4)$$

Είναι φανερό ότι το πλήθος των σημείων τομής είναι ίσο με το πλήθος των λύσεων της εξίσωσης.

Άσκηση 1

Δίνεται η συνάρτηση

$$f(x) = 2x + 6$$

Να βρεθούν τα σημεία τομής της C_f με τους άξονες x'x και y'y.

Λύση

Σημείο τομής με τον y'y

Από την (2) γνωρίζουμε ότι το σημείο τομής της C_f με τον άξονα y'y είναι το (0,f(0)), αρκεί λοιπόν να υπολογίσουμε το f(0). Θα έχουμε:

$$f\left(0\right) = 2 \cdot 0 + 6 \Rightarrow f\left(0\right) = 6$$

άρα το σημείο τομής της C_f με τον άξονα $y^\prime y$ είναι το $\boxed{(0,6)}$

Σημείο τομής με τον x'x

Από την (3) γνωρίζουμε ότι τα σημεία τομής της C_f με τον άξονα x'x έχουν τη μορφή $(x_i,0)$, όπου x_i οι λύσεις της εξίσωσης f(x)=0. Επομένως θα έχουμε:

$$f(x) = 0 \Rightarrow 2x + 6 = 0 \Rightarrow x = -\frac{6}{2} = -3$$

άρα υπάρχει ένα σημείο τομής της C_f με τον άξονα $x^\prime x$ το οποίο είναι (-3,0)

-Τέλος Λύσης-

Επαλήθευση αποτελεσμάτων με geogebra

άρα το σημείο τομής της C_f με τον άξονα $y^\prime y$ είναι το $\boxed{(0,6)}$

Σημείο τομής με τον x'x

Από την (3) γνωρίζουμε ότι τα σημεία τομής της C_f με τον άξονα x'x έχουν τη μορφή $(x_i,0)$, όπου x_i οι λύσεις της εξίσωσης f(x)=0. Επομένως θα πρέπει να λύσουμε την εξίσωση:

$$f(x) = 0 \Rightarrow x^3 - 2x^2 - 5x + 6 = 0$$

η οποία είναι 3ου βαθμού. Γνωρίζουμε ότι οι πιθανές ακέραιες ρίζες της εξίσωσης είναι οι διαιρέτες του σταθερού όρου $\alpha_0=6$, οι οποίοι είναι οι: $\pm 1,\ \pm 2,\ \pm 3,\ \pm 6$. Με το σχήμα Horner εξετάζουμε αν κάποιος από αυτούς μηδενίζει το πολυώνυμο $x^3-2x^2-5x+6=0$, πράγματι για $\rho=1$ έχουμε:

Επομένως το x-1 είναι παράγοντας του πολυωνύμου, δηλαδή:

$$x^{3} - 2x^{2} - 5x + 6 = (x - 1)(x^{2} - x - 6)$$

Η εξίσωση παίρνει τη μορφή

$$(x-1)(x^2-x-6) = 0 \Rightarrow x = 1 \eta' x^2 - x - 6 = 0$$

Η 2ου βαθμού εξίσωση λύνεται με διακρίνουσα και έχει 2 λύσεις, τις x=-2 και x=3. Άρα τα σημεία τομής της C_f με τον x'x είναι τα (-2,0), (1,0) και (3,0).

-Τέλος Λύσης-

Επαλήθευση αποτελεσμάτων με geogebra

Παρακάτω, βλέπουμε τη γραφική παράσταση της συνάρτησης f κατασκευασμένη σε geogabra. Παρατηρούμε ότι η C_f τέμνει τους άξονες ακριβώς στα σημεία που υπολογίσαμε.

Παρακάτω, βλέπουμε τη γραφική παράσταση της συνάρτησης f κατασκευασμένη σε geogabra. Παρατηρούμε ότι η C_f τέμνει τους άξονες ακριβώς στα σημεία που υπολογίσαμε.

Άσκηση 2

Δίνεται η συνάρτηση

$$f(x) = x^3 - 2x^2 - 5x + 6$$

Να βρεθούν τα σημεία τομής της C_f με τους άξονες x'x και y'y.

Λύση

Σημείο τομής με τον y'y

Από την (2) γνωρίζουμε ότι το σημείο τομής της C_f με τον άξονα y'y είναι το (0,f(0)), αρκεί λοιπόν να υπολογίσουμε το f(0). Θα έχουμε:

$$f(0) = 0^3 - 2 \cdot 0^2 - 5 \cdot 0 + 6 \Rightarrow f(0) = 6$$

Προσπαθήστε μόνοι σας

Άσκηση 3

Να βρείτε τα σημεία τομής των παρακάτω συναρτήσεων με τους άξονες x'x και y'y:

1.
$$f(x) = -3x + 9$$

$$2. f(x) = 2x^2 + 7x - 15$$

$$3. f(x) = x^2 + x + 2$$

4.
$$f(x) = x^2 - x - 3$$

5.
$$f(x) = \frac{1-x}{x}$$

5.
$$f(x) = \frac{1-x}{x}$$

6. $f(x) = 2x^3 + x^2 - 11x - 10$

Στείλε την προσπάθειά σου