This file was provided by: Muath Alghamdi

الثلاثاء 9 أبريل 2019.

السؤال الأول: أوجدي كل الثلاثيات
$$(a,b,c)$$
 من الأعداد الحقيقية التي تحقق $ab+bc+ca=1$ و كذلك $a^2b+c=b^2c+a=c^2a+b$

السؤال الثاني: لتكن n عدد صحيح موجب. وضعنا قطع دومينو على لوح $2n \times 2n$ بطريقة ما بحيث كل خلية في اللوح تجاور خلية واحدة فقط مغطاة بقطعة دومينو. لكل عدد n أوجدي أكبر عدد ممكن من قطع الدومينو يمكن وضعها بحيث تحقق الطريقة الموضحة. (قطعة الدومينو هي بلاطة من النوع 1×2 أو 2×1 . يتم وضعها على اللوح بحيث تغطي خليتين متجاورتين ولا يوجد أي قطعتين فوق بعضهما (لا يوجد تقاطع) ، نقول عن خليتين أنحما متجاوتان إذا كانا يشتركان في ضلع واحد فقط).

السؤال الثالث:

في المثلث ABC لدينا $ABC > \angle ABC$. النقطة I هي مركز الدائرة الداخلية للمثلث ABC النقطة D النقطة D النقطة D النقطة D النقطة D النقطة D الدائرة D ألستقيمة D عند D عند D عند D عند D الدائرة D ألستقيمة D ألستقيمة D والدائرة المحيطة للمثلث D ألستقيم أن منصفي الزاويتين D و D و D و D ويتقاطعان في نقطة واحدة تقع على المستقيم D.

اللغة: العربية

الوقت: 4 ساعات و نصف لكل سؤال 7 درجات

Tuesday, April 9, 2019

Problem 1. Find all triples (a, b, c) of real numbers such that ab + bc + ca = 1 and

$$a^2b + c = b^2c + a = c^2a + b.$$

Problem 2. Let n be a positive integer. Dominoes are placed on a $2n \times 2n$ board in such a way that every cell of the board is adjacent to exactly one cell covered by a domino. For each n, determine the largest number of dominoes that can be placed in this way.

(A domino is a tile of size 2×1 or 1×2 . Dominoes are placed on the board in such a way that each domino covers exactly two cells of the board, and dominoes do not overlap. Two cells are said to be *adjacent* if they are different and share a common side.)

Problem 3. Let ABC be a triangle such that $\angle CAB > \angle ABC$, and let I be its incentre. Let D be the point on segment BC such that $\angle CAD = \angle ABC$. Let ω be the circle tangent to AC at A and passing through I. Let X be the second point of intersection of ω and the circumcircle of ABC. Prove that the angle bisectors of $\angle DAB$ and $\angle CXB$ intersect at a point on line BC.

Language: English

Time: 4 hours and 30 minutes Each problem is worth 7 points