June 2012

CW for Microcontrollers v10.2 and MQX 3.8

Contents

- Import MQX Libraries
- Build MQX libraries
- Import and Debug MXQ Hello World Project
- New MQX project
- Debugging with Jlink
- Eclipse Working Set
- ► CW10.2, MQX 3.8 and Processor Expert
- CW10.2, MQX 3.8 and PE : New LDD driver

Import MQX Libraries

Importing MQX Library projects

- Navigate to C:\Freescale\Freescale MQX
 3.8\config\<board_name> and drag <board>.wsd to the
 CodeWarrior
 - D 0 C/C++ - CodeWarrior Development Studio - C/\tmp\wsp_mqx File Edit Source Refactor Navigate Search Project Run MQX Tools PEMicro Processor Expert Window Help 響 ∮・Ⅲ・■・卅 ◎・日・G・ 《・◎・ @·\$·0·Q· @ @ @ #· 副图 例·罰·如 @· \$ Out 18 @ Mak CodeWarrior Projects An outline is not available. 間は中中日日 File Name File Name Size Type • + Search cw20 (* twrmcf51... * cw10 File Edit View Tools Help New folder Organize - Open m52259demo Date m52259evb twrmcf51mm.wsd 09.12 m53015evb mpc8308rdb twrk53n512 twek70f120en twrmcf5lag humef51co twrmcf51mm.wsd Date modified: 09.12.2011 18:49 WSD File Size: 5.89 KB 1 item selected Computer Computer (a) A (0)

All BSP libraries will be loaded to your environment automatically

Importing MQX Library projects

▶ Beside of the projects, it has imported as well the Working Set:

Building MQX Libraries

Use MQX toolbar to select desired configuration to build

and push hammer icon to build all MQX libraries for selected working set

Note:

Debug configuration of MQX libraries (workingset) have compiler optimization set to lowest level for all imported projects, while Release configuration uses the highes possible compiler optimizaton setting

Import and Debug MQX Hello World Project

Import 'Hello World' MQX example

- ▶ Right-Click on Project Explorer and Import
- Select Existing Projects into Workspace and Browse

Import 'Hello World' MQX example

► Select <install mqx folder>\mqx\examples\hello\CW10\hello_twrk60n512

Build 'Hello World' MQX example

▶ Right-Click on Project Explorer hello_twrk60n512 and Build Project

Prepare your hardware (example for K60 TWR Kit)

▶ Prepare your Tower System:

Connect TWR-SER and TWR-K60N512 to TWR-ELEV (Primary and

Secondary)

Prepare your hardware

► Connect USB Cable to TWR-K60N512 (J13) and laptop

Install OSJTAG Drivers

Windows will detect the new USB device. Follow the installation wizards for BDM and virtual Serial port drivers.

Install OSJTAG Drivers

➤ You can see in Device Manager the two new USB devices installed

Debug MQX 'Hello World' example

- Select hello_twrk60n512 project and Click 'Debug icon'
- Select hello_twrk60n512_Int_Ram_Debug_PEOSJTAG Connection

Change Connection Settings

Click OK

Change Connection Settings

► Select TWRK60N512 OSBDM/OSJTAG Remote System

Update OSJTAG firmware

You are ready to Run and Debug the project

Run MQX 'Hello World' example

Execute the code 'Resume' icon and 'Pause' execution

Run MQX 'Hello World' example

➤ You can explore the Debugging Eclipse perspective

Run MQX 'Hello World' example

- Terminate the Debugging session and change Eclipse perspective
- You have Run and Debug your first MQX CW10 project

- File -> New -> MQX 3.8 Project
- Give a name and click Next

Select TWRK60n512 Board

Select Basic application

- Select P&E Open Source JTAG
- Project is created

Build New MQX Project

► Right-Click on Project Explorer New_MQX_Project and Build Project

Debug New MQX Project

- Select New_MQX_Project : twrk60n512_Int_RAM
- Select New_MQX_Project_twrk60n512_Int_Ram_PnE OSJTAG

Run New MQX Project

Execute the code 'Run' icon

Run New MQX Project

Pause execution

TAD: Task Summary

MQX -> Task Summary

TAD: Task Summary

Observe Tasks in your Application

Run New MQX Project

Terminate execution

Debugging with JLink

Debugging with JLINK - Change Connection Type

Edit Connection Settings of the project

Change Connection Type

▶ Edit Remote System

Select J-Link\J-Trace for ARM

Confirm changes

Click OK

Debug with JLink

- ► Connect J-Link target cable to TWR-K60N512 (J11)
- Connect USB J-Link cable to laptop
- ► Connect USB Cable to TWR-K60N512 (J13) and laptop

- Select New_MQX_Project : twrk60n512_Int_RAM
- Click Debug

Run New MQX Project

Execute the code 'Resume' icon

Run New MQX Project

Pause execution

CW10.2, MQX 3.8 and Processor Expert

MQX and **Processor** Expert

► All Kinetis BSP projects are Processor Expert Ready and Processor Expert drivers are enabled in MQX RTOS environment

- Expand bsp_twrk60n512 project view
- Show Processor Expert View
- Generate code

Import MQX PE Demo

- ▶ Right-Click on Project Explorer and Import
- Select Existing Projects into Workspace and Browse

Import MQX PE Demo

► Select <install mqx folder>\mqx\pe_demo\pe_demo_twrk60n512

Expand bsp_twrk60n512 project view

Click on PE components to watch the properties

- Processor Expert gives you a easy way to add device drivers to MQX BSP.
- In BSP example two Timers GPIO are included
- Properties of component can be changed easily, for example GPIO pin

- GPIO1 component in BSP is driving LED's in Tower board
- TRG Timer will generate a 64KHz interrupt

▶ PWM configures Channel 0 in Flex Timer 0 a PWM of 4096 timer-ticks

Build PE BSP

▶ Right-Click on Project Explorer bsp_twrk60n512 and Build Project

Build PE Demo

Right-Click on Project Explorer pe_demo_twrk60n512 and Build Project or click on icon

Debug Connection MQX PE Demo

- Right-Click on Project Explorer pe_demo_twrk60n512 and Build Project
- ► Edit pe_demo_twrk60n512_Int_Ram_Debug_PEOSJTAG

Run MQX PE Demo

Check PWM output on A67

CW10.2, MQX 3.8 and PE: New LDD driver

- Expand bsp_twrk60n512 project view
- Show Processor Expert View
- Select PE Projects Working Set

- Expand Processor Expert Project View
- Search ADC_LDD in Components Library window

- Right click on the component
- Select Add to project

- Double click on ADC_LDD
- Select ADC1
- Enable Interrupt service

- Select ADC1_DM1 Channel
- Enable Static sample groups
- Open Conversion Time Window

► Select 19.23 us

ADC LLD Driver is configured

- Click Methods Tab
- Click to generate code for methods

Set 'generate code' for the next Methods:

You can configure more parameters of the components selecting Expert View

Build BSP project

▶ Right-Click on Project Explorer bsp_twrk60n512 and Build Project

New LDD driver

- Expand pe_demo_twrk60n512 project view
- Hide Processor Expert View

Double click in main.c to view code


```
© main.c ☎ 🕟 TRG.c
 /* Task enumerations and prototypes */
     DAC TASK = 1,
     PWM TASK,
     LED TASK,
     EWM TASK
 } etask type;
 void dac_task(uint_32);
 void pwm task(uint 32);
 void led task(uint 32);
 void ewm task(uint 32);
 /* Task template list */
 const TASK TEMPLATE STRUCT MQX template list[] =
    /* Task Index,
                    Function,
                                Stack, Priority,
                                                     Name,
                                                                  Attributes,
                                                                                      Param,
                                                                                               Time Slice
     { DAC TASK,
                     dac task,
                                                     "DAC Task",
                                                                 MQX AUTO START TASK,
                                                                                                   0 ),
     { PWM TASK,
                     pwm task,
                                                     "PWM Task", MQX AUTO START TASK,
                                                                                       Ο,
                                                                                                   0 ),
                                 300, 10,
200, 11,
     { EWM TASK,
                     ewm task,
                                                     "EWM Task", MQX AUTO START TASK, O,
                                                                                                   0 ),
     ( LED TASK,
                    led task,
                                                     "LED Task", MQX AUTO START TASK, O,
                                                                                                   0 ),
     { 0 }
 /* Function prototypes */
 uint 16 ptr GEN CreateTable (int 16 ptr table ptr, uint 16 table size, int 16 peak peak, int 16 offset);
  mqx uint GEN DestroyTable (uint 16 ptr table ptr);
```

Add new task : ADC

```
/* Task enumerations and prototypes */
enum {
    DAC TASK = 1,
    PWM TASK
    LED TASK
    EWM TASI
    ADC TASK
} etask type;
void dac task (uint 32);
void pwm task(uint 32);
void led task(uint 32);
void ewm task(uint 32)
void adc task(uint 32);
/* Task template list */
const TASK TEMPLATE STRUCT MQX template list[] =
   /* Task Index,
                     Function,
                                  Stack, Priority,
                                                       Name,
                                                                     Attributes,
                                                                                           Param,
                                                                                                     Time Slice
                     dac task,
    { DAC TASK,
                                   400,
                                               8,
                                                       "DAC Task", MQX AUTO START TASK,
                                                                                                         0 },
                                                       "PWM Task",
                     pwm_task,
                                   400,
                                                                     MQX AUTO START TASK,
      PWM TASK,
                                                                                                         0 },
      EWM TASK,
                                   300,
                                                    <mark>6</mark>_"EWM Task",
                                                                    MQX AUTO START TASK,
                                                                                             Ο,
                                                                                                         0 ),
                     ewm task,
                                                       "LED Task". MOX AUTO START TASK.
      LED TASK.
                     led task.
                                   200.
                                                                                                         0 },
      ADC TASK,
                                                       "ADC Task", MQX AUTO START TASK,
                                                                                                         0 ),
                     adc task,
                                   200,
                                               12,
    { 0 }
```

Add Task function and code

```
#define SAMPLE GROUP SIZE 1U
volatile AD1 TResultData MeasuredValues[SAMPLE GROUP SIZE];
LDD TDeviceData *MyADCPtr;
LDD TError;
void adc task
    uint 32 initial data
   Error = AD1 Enable(MyADCPtr);
   while (1)
   /* Suspend task for 100ms */
      if (MeasuredValues[0]>2000) GPIO1 ToggleFieldBits(LED DeviceData, LED4, 1);
      time delay(200);
```

Add ADC1 Event function code

```
void AD1_OnMeasurementComplete(LDD_TUserData *UserDataPtr)
{
   Error = AD1_GetMeasuredValues(MyADCPtr, (LDD_TData *)&MeasuredValues); /* Read measured values */
   }
   /* EOF */
```

ADC1 channel is connected to TWR-K60N512 Potentiometer

▶ When ADC value is greater than 20000, LED4 (Blue) toggles

```
while(1)
{
  /* Suspend task for 100ms */
    if(MeasuredValues[0]>2000)GPIO1_ToggleFieldBits(LED_DeviceData, LED4, 1);
    _time_delay(200);
}
```

► Moving potentiometer R52 can start/stop LED4 toggle

Build PE Demo

Right-Click on Project Explorer pe_demo_twrk60n512 and Build Project or click on icon

Test the new functionality in the application and the new LDD driver

