- 1. Цель работы. Изучение приемов проектирования и анализа комбинационных логических схем.
- 2. Результаты выполнения индивидуального задания. Вариант 18.

2.1 Построение таблицы истинности для заданной функции.

2.1 Hoo poomie raomign norminooni gui sagamien q'imami.					
No	A	В	С	D	F
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	1	0	0
4	0	0	1	1	1
5	0	1	0	0	1
6	0	1	0	1	0
7	0	1	1	0	0
8	0	1	1	1	0
9	1	0	0	0	1
10	1	0	0	1	1
11	1	0	1	0	0
12	1	0	1	1	1
13	1	1	0	0	1
14	1	1	0	1	0
15	1	1	1	0	0
16	1	1	1	1	1

Таблица 1 - Таблица истинности

2.2 Логическое выражение для булевой функции, следующее из таблицы истинности в совершенной дизъюнктивной нормальной форме (СНДФ). $F = \overline{ABCD} \ V \ \overline{ABCD} \ V$

2.3 Минимизация логического уравнения, полученного из таблицы истинности, с помощью карт Карно.

Рисунок 1 – Карта Карно

2.4 Минимизированное логическое уравнение, полученное из таблицы истинности, с помощью карт Карно:

$$F = \overline{B}D V B \overline{CD} V ACD V A\overline{BC}$$

2.5 Построение принципиальной схемы устройства без ограничений на используемый базис логических элементов.

Рисунок 2. Принципиальная схема устройства.

Рисунок 3. Временная диаграмма работы устройства.

По временной диаграмме видно, что схема работает в соответствии с таблицей истинности.

2.7 Преобразование минимизированного выражения, полученного в пункте 2.4 в соответствии с заданным базисом (ИЛИ-НЕ):

$$F = \overline{B + \overline{D} + \overline{B} + C + D} + \overline{\overline{A + C + D}} + \overline{\overline{A + B + C}}$$

2.8 Построение принципиальной схемы по выражению из пункта 2.7.

Рисунок 4. Принципиальная схема устройства.

Рисунок 5. Временная диаграмма работы устройства.

По временной диаграмме видно, что схема работает в соответствии с таблицей истинности.

2.10 Сравнение результатов моделирования, полученные в пунктах 2.6 и 2.9.

По рисункам 3 и 5 видно, что временные диаграммы двух устройств совпадают. Следовательно, принципиальные схемы первого и второго устройств построены верно, так как их результаты совпадают со значениями в таблице истинности.

3. Вывод.

В результате выполнения работы были изучены приемы проектирования и анализа комбинационных логических схем.

Были построены принципиальные схемы без ограничений на используемый базис

логических элементов и в базисе ИЛИ-НЕ.

Временные диаграммы устройств, построенных в различных базисах, совпадают, а их результаты соответствуют таблице истинности, из чего следует, что принципиальные схемы устройств построены верно.