Manuale - Analisi 1 Ingegneria Informatica

29 settembre 2025

Indice

I	Concetti di base	2
1	Derivate	2
	1.1 Derivate fondamentali	 . 2
	1.2 Regole di derivazione	 . 2
2	2 Integrali	2
	2.1 Indefiniti	
	Pils	
		 . 0
II	I Studio di Funzione	4
3	3 Studio di Funzione	4
	3.1 Dominio, simmetrie e segno	 . 4
	Dominio	
	Simmetrie	
	3.2 Punti di accumulazione, limiti e asintoti	
	3.3 Studio della continuità e derivabilità, monotònia	
	Continuità	
	Derivabilità	
	3.4 Derivata seconda e convessità	
	3.5 Grafico qualitativo di $f(x)$	
	f(x) = x	
	$f(x) = x^2$. 6
	$f(x) = x^3$	
	$f(x) = x \dots \dots$	
	$f(x) = \ln x$	
	$f(x) = \frac{1}{\ln x }$	
	$f(x) = \sqrt{x} \dots \dots$	
	$f(x) = \sin x$	
	$f(x) = \cos x$	
	$f(x) = tan x \dots $	
	$f(x) = \arcsin x$	
	$f(x) = \arccos x$	
	$f(x) = \arctan x$	
	, (a)	
тт	III Studio della convergenza	9
	3.6 Serie geometrica	
	3.7 Condizione necessaria di convergenza	
	3.8 Criteri con condizioni sufficienti per la convergenza	
	3.9 Serie di Mengoli (Serie telescopica)	
	3.10 Criteri di convergenza	
	Criterio della radice (CAUCHY)	

Criterio del confronto	10
Criterio del confronto asintotico	1.

Parte I

Concetti di base

1 Derivate

1.1 Derivate fondamentali

- $1. \ D[x^n] = nx^{n-1}$
- 2. D[x] = 1
- 3. $D\left[\frac{1}{x}\right] = -\frac{1}{x^2}$
- 4. $D[\sqrt{x}] = \frac{1}{2\sqrt{x}}$
- $5. D[a^x] = a^x * ln|a|$
- 6. $D[e^x] = e^x$
- 7. $D[log_a x] = \frac{1}{x*ln a}$
- 8. $D[\ln x] = \frac{1}{x}$
- 9. $D[\sin x] = \cos x$
- 10. $D[\cos x] = -\sin x$
- 11. $D[\tan x] = \frac{1}{\cos^2 x}$
- 12. $D[\cot x] = -\frac{1}{\sin^2 x}$
- 13. $D[arcsin x] = \frac{1}{\sqrt{1-x^2}}$
- 14. $D[\arccos x] = -\frac{1}{\sqrt{1-x^2}}$
- 15. $D[\arctan x] = \frac{1}{1+x^2}$

1.2 Regole di derivazione

- 1. D[f(x) + g(x)] = f'(x) + g'(x)
- 2. D[k * f(x)] = k * f'(x)
- 3. D[f(x) * g(x)] = f'(x) * g(x) + f(x) * g'(x)
- 4. $D\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)*g(x)-f(x)*g'(x)}{g(x)^2}$

2 Integrali

2.1 Indefiniti

- $1. \int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c$
- $2. \int \frac{1}{x} dx = \ln|x| + c$
- $3. \int e^x dx = e^x + c$
- $4. \int a^x dx = \frac{a^x}{\ln a} + c$
- 5. $\int \sin x \, dx = -\cos x + c$
- 6. $\int \cos x \, dx = \sin x + c$

7.
$$\int \frac{1}{\sin^2 x} dx = -\cot x + c$$

8.
$$\int \frac{1}{\cos^2 x} dx = \tan x + c$$

9.
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$$

10.
$$\int \frac{1}{\sqrt{1+x^2}} dx = \arctan x + c$$

11.
$$\int f(x)^{\alpha} * f'(x) dx = \frac{f(x)^{\alpha+1}}{\alpha+1} + c$$

12.
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

13.
$$\int e^{f(x)} * f'(x) dx = e^{f(x)} + c$$

14.
$$\int a^{f(x)} * f'(x) dx = \frac{a^{f(x)}}{\ln a} + c$$

15.
$$\int \sin f(x) * f'(x) dx = -\cos f(x) + c$$

16.
$$\int \cos f(x) * f'(x) dx = \sin f(x) + c$$

17.
$$\int \frac{f'(x)}{\cos^2 f(x)} dx = \tan f(x) + c$$

18.
$$\int \frac{f'(x)}{\sin^2 f(x)} dx = -\cot f(x) + c$$

19.
$$\int \frac{f'(x)}{\sqrt{1-f(x)^2}} dx = \arcsin f(x) + c$$

20.
$$\int \frac{f'(x)}{1+f(x)^2} dx = \arctan f(x) + c$$

21.
$$\int f(x) * g'(x) dx = f(x) * g(x) - \int f'(x) * g(x) dx$$

22.
$$\int \frac{f'(x)}{k^2 + f(x)^2} dx = \frac{1}{k} arctan(\frac{f(x)}{k}) + c$$

Pils

Durante lo svolgimento potrei trovarmi i seguenti casi che sono più complessi, riassunti in 3 macro-casi possono essere risolti in modo più semplice.

Caso:

• Grado D < Grado N: Uso la divisione.

• Denominatore: 1° Grado: $\frac{f'(x)}{f(x)}$

• Denominatore 2° Grado: Dopo aver calcolato il Δ ho i tre seguenti casi:

$$-\Delta = 0$$
:

*
$$\int f'(x) * f(x)^{\alpha} dx = \frac{f(x)^{\alpha+1}}{\alpha+1} + c$$

* Divisione A/B

$$-\Delta < 0$$
:

$$\begin{array}{l} A < 0: \\ * \int \frac{f'(x)}{k^2 + f(x)^2} dx = \frac{1}{k} arctan(\frac{f(x)}{k}) + c \\ * \int \frac{\text{numeratore} + a - a}{\text{denominatore}} dx \end{array}$$

$$-\Delta > 0$$
:

* Divisione A/B

*
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

Parte II

Studio di Funzione

3 Studio di Funzione

3.1 Dominio, simmetrie e segno

Dominio

Per dominio si intende l'insieme dei valori di x per cui la funzione è definita. Casi tipici:

- Frazioni \rightarrow denominatore $\neq 0$.
- Radici pari \rightarrow argomento ≥ 0 .
- Logaritmi \rightarrow argomento > 0.
- Funzioni goniometriche con $Df(x) \neq \mathbb{R}$ (Esclusi frazioni con seni e coseni ad es. tangente):

$$-f(x) = \arcsin x \rightarrow Df(x) = [-1, 1]$$

$$-f(x) = \arccos x \rightarrow Df(x) = [-1, 1]$$

Esempio:
$$f(x) = \frac{x-3}{x+1} \Rightarrow \begin{cases} f(x) = 0 & \text{se } x = 3 \\ f(x) > 0 & \text{se } x < -10 \text{ } x > 3 \\ f(x) < 0 & \text{se } -1 < x < 3 \end{cases}$$

Simmetrie

- Parità:
 - $-f(-x) = f(x) \rightarrow \text{Funzione pari (simmetria rispetto all'asse } y)$
 - $-f(-x) = -f(x) \rightarrow$ Funzione dispari (simmetria rispetto all'origine)

Esempio: $f(x) = x^2 \Rightarrow f(-x) = (-x)^2 = x^2 \Rightarrow f$ pari.

3.2 Punti di accumulazione, limiti e asintoti

Principalmente lo studio dei limiti è finalizzato alla determinazione dell'esistenza degli asintoti, questi possono essere:

- Asintoti Verticali \rightarrow Quando il limite in un punto va a $\pm \infty$
- Asintoti Orizzontali \rightarrow Quando $\lim_{x\to\pm\infty} f(x) = L \in \mathbb{R}$
- Asintoti Obliqui

Per gli asintoti obliqui il procedimento è leggermente più lungo, innanzitutto *la presenza di asintoti orizzontali preclude la presenza di asintoti obliqui* quindi se sono presenti as. orizzontali ci si può fermare, in caso non siano presenti fare testo a quanto segue:

Un as. obliquo è una retta (Quindi forma y = mx + q), per trovarlo calcolo la pendenza "m" con: $m = \lim_{x \to \pm \infty} \frac{f(x)}{x}$ se questo limite esiste ed è finito allora possiamo calcolare "q" con: $q = \lim_{x \to \pm \infty} (f(x) - mx)$ se anche questo limite esiste ed è finito allora l'asintoto obliquo esiste ed è proprio: y = mx + q.

NB. se m=0 l'asintoto non è olbiquo ma orizzontale, se il grado del numeratore è maggiore di 1 grado rispetto al numeratore (ad es. $\frac{x^2}{x}$) è comune avere un as. obliquo, se invece il numeratore ha grado maggiore di 2 o più rispetto al numeratore probabilmente avremo un as. verticale.

3.3 Studio della continuità e derivabilità, monotònia

Continuità

Per definizione una funzione è continua in un dato punto x_0 se $\lim_{x\to x_0} f(x) = f(x_0)$ Verifico punti critici del dominio di f e controllo se sono presenti discontinuità, queste possono essere:

- Eliminabile: limite esiste finito ma $f(x_0)$ non è definito o è diverso.
- Di salto: i due limiti laterali esistono ma sono diversi.
- Infinita: almeno un limite laterale tende a $\pm \infty$.

Esempio: $f(x) = \frac{x^2 - 1}{x - 1} \Rightarrow D[f(x)] = \mathbb{R} \setminus \{1\}$ In $x = 1 \to \text{discontinuità eliminabile.}$

Derivabilità

Per definizione una funzione è derivabile in un dato punto x_0 se $f(x_0) = \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ Se f è derivabile allora è continua, ma non sempre vale il contrario.

Strategia operativa:

- 1. Controllo dove la funzione è sospetta (valori assoluti, radici, punti angolosi)
- 2. Verifico che il limite destro e sinistro su quel punto coincidano

Nel caso non dovessero coincidere vuol dire che ci troviamo di fronte ad un punto di non derivabilità, casi più comuni:

- Angolo: ad es. f(x) = |x| funzione continua ma non derivabile, c'è un'improvviso cambio di pendenza, in $x_0 = 0^ f'(x_0) = -1$, in $x = 0^+$ $f'(x_0) = +1$.
- Cuspide: ad es. $f(x) = \sqrt[3]{x}$ funzione continua ma non derivabile, in $x_0 = 0^ f'(x_0) = -\infty$, in $x_0 = 0^+$ $f'(x_0) = +\infty$.
- Tangente verticale: ad es. $f(x) = \sqrt{x}$ non è richiesto che la funzione sia derivabile sia da destra che da sinistra, basta 1 delle due, basta che la funzione sia continua e che la derivata da destra o sinistra vada a $\pm \infty$.

Se una funzione non è continua, automaticamente non è derivabile, ad esempio $f(x) = \frac{1}{x}$ in x = 0 non è derivabile per discontinuità.

Strategia operativa:

- 1. Controllo la continuità. Se non è continua \rightarrow già classificata.
- 2. Se è continua:
 - (a) Calcolo la derivata a destra e sinistra.
 - (b) Confronto i valori:
 - i. Diversi e finiti \rightarrow angolo.
 - ii. Entrambi infiniti con segni opposti \rightarrow cuspide.
 - iii. Entrambi con stesso segno \rightarrow tangente verticale.

3.4 Derivata seconda e convessità

In questa fase andiamo a controllare se ci sono cambi di convessità e se sono presenti punti di flesso. Strategia operativa:

- 1. Calcolo la derivata seconda (f''(x))
- 2. Trovo i punti candidati ad essere punti di flesso con f''(x) = 0
- 3. Verifico se in questi punti c'è un cambio di concavità (f passa da f''(x) > 0 a f''(x) < 0 o viceversa), se questo si verifica allora c'è un punto di flesso, altrimenti no.
- 4. Riassumo i vari risultati in uno studio del segno per completezza.

Esempio: $f(x) = x^3$, $f'(x) = 3x^2$, f''(x) = 6x, risolvendo f''(x) = 0 si ottiene x = 0. Per x < 0 si ha $f''(x) < 0 \to \text{concava}$, per $f''(x) > 0 \to \text{convessa}$. Dato che c'è stato un cambio di concavità in x = 0 allora in questo punto c'è un flesso. Esempio: $f(x) = x^4$, $f'(x) = 4x^3$, $f''(x) = 12x^2$, risolvendo f''(x) = 0 si ottiene x = 0. Però f''(x) è sempre ≥ 0 quindi la curva è sempre convessa verso l'alto e quindi non essendoci nessun cambio di concavità in quel punto non c'è un flesso.

3.5 Grafico qualitativo di f(x)

Alla fine dei calcoli svolti fino ad ora dovrebbe esser possibile tracciare un grafico qualitativo della funzione, di seguito si trovano le funzioni fondamentali.

f(x) = x

 $f(x) = x^2$

 $f(x) = x^3$

f(x) = |x|

 $f(x) = \ln x$

 $f(x) = \frac{1}{\ln|x|}$

 $f(x) = \sqrt{x}$

 $f(x) = \sin x$

 $f(x) = \cos x$

 $f(x) = \tan x$

 $f(x) = \arcsin x$

 $f(x) = \arccos x$

 $f(x) = \arctan x$

Parte III

Studio della convergenza

Serie geometrica

$$\sum_{n=0}^{\infty}\,q^n$$
 con $q\in\mathbb{R}$ è detta serie geometrica.

$$s_n = 1 + q + q^2 + \dots + q^n = \begin{cases} \frac{1 - q^{n+1}}{1 - q} & \text{se } q \neq 1\\ n + 1 & \text{se } q = 1 \end{cases}$$

$$\lim_{n \to +\infty} s_n = \begin{cases} \frac{1}{1 - q} & \text{se } |q| < 1\\ +\infty & \text{se } q \geq 1\\ \text{non esiste se } 1 \leq -1 \end{cases}$$

$$\sum_{n=0}^{\infty} q^n = \begin{cases} \text{convergente (con somma} \frac{1}{1 - q}) & \text{se } |q| < 1\\ \text{divergente indeterminata} & \text{se } q \geq 1\\ \text{se } q \leq -1 \end{cases}$$

$$\lim_{n \to +\infty} s_n = \begin{cases} 1-q & \text{se } |q| < 1 \\ +\infty & \text{se } q \ge 1 \\ \text{non esiste} & \text{se } 1 \le -1 \end{cases}$$

$$\sum_{n=0}^{\infty} q^n = \begin{cases} \text{convergente (con somma} \frac{1}{1-q}) & \text{se } |q| < 1\\ \text{divergente} & \text{se } q \ge 1\\ \text{indeterminata} & \text{se } q < -1 \end{cases}$$

L'indeterminata se $q \le -1$ ESEMPIO: $\sum_{n=0}^{\infty} (\frac{1}{2})^n$ converge (essendo $\frac{1}{2} < 1$ dove $\frac{1}{2} = q$) e la somma è: $\frac{1}{1-\frac{1}{2}} = 2$

Siano $\sum\limits_{n=0}^{\infty}a_n \mathrm{e}\,\sum\limits_{n=0}^{\infty}b_n$ due serie numeriche convergenti e sia $k\in\mathbb{R}.$ Allora:

1.
$$\sum_{n=0}^{\infty} (a_n + b_n) = \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n$$

$$2. \sum_{n=0}^{\infty} Ka_n = K \sum_{n=0}^{\infty} a_n$$

NB. Se $\sum_{n=0}^{\infty} a_n$ converge, anche $\sum_{n=0}^{\infty} Ka_n$ converge (stessa cosa per la divergenza)

Condizione necessaria di convergenza

Affinche una serie converga è necessario che il termine generale a_n sia infinitesimo (Ovvero $a_n \to 0$ per $n \to +\infty$)

3.8 Criteri con condizioni sufficienti per la convergenza

Serie a termini non negativi $\begin{cases} \text{criterio del rapporto} \\ \text{criterio della radice} \\ \text{criterio del confronto} \\ \text{criterio del criterio del criterio} \\ \text{criterio del criterio} \\ \text{criterio} \\$

Serie a termini di segno variabile $\begin{cases} \text{Criterio dell'assoluta convergenza} \\ \text{criterio di Leibniz} \end{cases}$

3.9 Serie di Mengoli (Serie telescopica)

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
è detta serie di Mengoli

$$\begin{split} s_n &= 1 \underbrace{\frac{1}{2}}_{n} \underbrace{\frac{1}{2}}_{n} \underbrace{\frac{1}{2}}_{n} \underbrace{\frac{1}{2}}_{n} \underbrace{\frac{1}{2}}_{n} + \dots + \underbrace{\frac{1}{n-1}}_{n} \underbrace{\frac{1}{n}}_{n} \underbrace{\frac{1}{n}}_{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1} \\ \lim_{n \to +\infty} s_n &= \lim_{n \to +\infty} [1 - \frac{1}{n+1}] = 1 \Rightarrow \text{La serie } \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \text{ converge e la somma è 1.} \end{split}$$

NB. Trovare negli esercizi la serie telescopica è piuttosto raro.

Criteri di convergenza 3.10

Criterio del rapporto

Sia $a_n > 0$ definitivamente e supponiamo che $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = l$ (Essendo $a_n > 0$ allora $l \in [0, +\infty)$ oppure $l = +\infty$)

- Se l < 1 allora $\sum a_n$ converge
- Se l > 1 allora $\sum a_n$ diverge
- se l=1 tutto è possibile (bisogna cambiare criterio)

Esempio: Studio il carattere della serie $\sum_{n=0}^{\infty} \frac{n^{2015}}{3^n}$

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \lim_{n \to +\infty} \frac{\frac{(n+1)^{2015}}{3^{n+1}}}{\frac{n^{2015}}{3^{n}}} = \lim_{n \to +\infty} \frac{(n+1)^{2015}}{3^{n+1}} * \frac{\frac{1}{3^{n}}}{n^{2015}} = \lim_{n \to +\infty} \frac{1}{3} * \frac{(n+1)^{2015}}{n^{2015}} = \frac{1}{3} < 1 \text{ quindi la serie converge.}$$

Criterio della radice (CAUCHY)

Siano $a_n \geq 0$ definitivamente e supponiamo che $\lim_{n \to +\infty} \sqrt[n]{a_n} = l$

- Se l < 1 allora $\sum a_n$ converge
- Se l > 1 allora $\sum a_n$ diverge
- se l=1 tutto è possibile (bisogna cambiare criterio)

Esempio: $\sum_{n=2}^{\infty} \frac{1}{(\log n)^{\frac{n}{2}}} = \lim_{n \to +\infty} \sqrt[n]{\frac{1}{(\log n)^{\frac{n}{2}}}} = \lim_{n \to +\infty} [(\log n)^{-\frac{n}{2}}]^{\frac{1}{n}} = \lim_{n \to +\infty} (\log n)^{-\frac{1}{2}} = \lim_{n \to +\infty} \frac{1}{\sqrt{\log n}} = 0 < 1 \Rightarrow \text{La series}$

Criterio del confronto

Supponiamo che $0 \le a_n \le b_n$ definitivamente. Allora valgono le seguenti implicazioni:

- $\sum b_n$ converge $\Rightarrow \sum a_n$ converge.
- $\sum a_n$ diverge a $+\infty \Rightarrow \sum b_n$ diverge a $+\infty$.

NB. Le implicazioni inverse in generale non valgono.

Serie armoniche generalizzate:

•
$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \begin{cases} \text{converge} & \text{se } \alpha > 1 \\ \text{diverge} & \text{se } \alpha \leq 1 \end{cases}$$

•
$$\sum_{n=2}^{\infty} \frac{1}{n^{\alpha} (\log n)^{\beta}} \begin{cases} \text{converge} & \text{se } \alpha > 1 \text{ oppure } \alpha = 1 \text{ e } \beta > 1 \\ \text{diverge} & \text{se } \alpha < 1 \text{ oppure } \alpha = 1 \text{ e } \beta \leq 1 \end{cases}$$

Esempio: $\sum_{n=1}^{\infty} \left(\frac{\cos n}{n}\right)^2 \Rightarrow 0 \leq \left(\frac{\cos n}{n}\right)^2 \leq \frac{1}{n^2} \ \forall n \geq 1, \sum_{n=1}^{\infty} \frac{1}{n^2}$ converge, dunque il criterio del confronto ci assicura che

10

$$\sum_{n=1}^{\infty} \left(\frac{\cos n}{n}\right)^2 \text{ converge.}$$

Criterio del confronto asintotico

Date 2 successioni a_n e b_n a termini definitivamente positivi se $a_n \sim b_n$ (ovvero se $\lim_{n \to +\infty} \frac{a_n}{b_n} = 1$), allora le corrispondenti serie $\sum a_n$ e $\sum b_n$ hanno lo stesso carattere.

serie $\sum a_n$ e $\sum b_n$ hanno lo stesso carattere. Esempio: $\sum_{n=1}^{\infty} \frac{n+\cos n}{n^3-3n} \sim \frac{1}{n^2} \to \text{converge a 0.}$