

Student's Name: ISHAAN GUPTA Mobile No: 9179242114

Roll Number: B20292 Branch:M.E.

#### 1 a.



Figure 1 No. of COVID-19 cases vs. days

#### Inferences:

- 1. The time series data consists of 2 distinct peaks.
- 2. August-2020 consisted of first wave.
- 3. May-2021 consisted of second wave
- **b.** The value of the Pearson's correlation coefficient is 0.999.

#### Inferences:

- 1. Both series have high positive correlation.
- 2. This is because higher the pearson coefficient, higher will be the similarity.



c.



Figure 2 Scatter plot one day lagged sequence vs. given time sequence

### Inferences:

- 1. Both series have high positive correlation.
- 2. It obeys the pearson coefficient as the scatter plot deviates very little from a straight line with slope 1.



d.



Figure 3 Correlation coefficient vs. lags in given sequence

### Inferences:

- 1. Correlation decreases with increase in lags.
- 2. The number of new cases in 2 consecutive days have little changes .



e.



Figure 4 Correlation coefficient vs. lags in given sequence generated using 'plot\_acf' function

#### Inferences:

- 1. Correlation decreases with increase in lags.
- 2. As the new cases depend upon existing cases, therefore correlation is more with lesser lagged data.

2

**a.** Coefficients obtained from the AR model : [ 5.99548333e+01 1.03675933e+00 2.61712336e-01 2.75612628e-02 -1.75391955e-01 -1.52461366e-01]

b. i.





Figure 5 Scatter plot actual vs. predicted values

### Inferences:

- 1. Both series have high positive correlation.
- 2. It obeys the pearson coefficient as the scatter plot deviates very little .

ii.





Figure 6 Predicted test data time sequence vs. original test data sequence

#### Inferences:

1. As they majorly overlap they they are reliable.

iii.

MAPE between actual and predicted test data 1.575 %.

RMSE between actual and predicted test data 1.825 %.

#### Inferences:

1. Both RMSE and MAPE are small and under 2%.



3

Table 1 RMSE (%) and MAPE between predicted and original data values wrt lags in time sequence

| Lag value | RMSE (%) | MAPE(%) |
|-----------|----------|---------|
| 1         | 5.373    | 3.447   |
| 5         | 1.825    | 1.575   |
| 10        | 1.686    | 1.519   |
| 15        | 1.612    | 1.496   |
| 25        | 1.703    | 1.535   |

# Barchart of RMSE



Figure 7 RMSE(%) vs. time lag

### Inferences:

RMSE decreases upto lag = 15, after which the RMSE starts increasing.





Figure 8 MAPE vs. time lag

### Inferences:

MAPE decreases up to lag = 15, after which the RMSE starts increasing.

#### 4

The heuristic value for the optimal number of lags is 77.

RMSE: 1.759 %

MAPE: 2.026 %

### Inferences:

Both RMSE and MAPE value for heuristic 77 are more than lag=15, but lesser than lag =1, this tells that the optimal solution from heuristic can be used for prediction.

