CONTENTS

CHA	PTER 1 STATIONARY ELECTRIC FIELDS	1
1.1	Introduction	1
	BASIC LAWS AND CONCEPTS OF ELECTROSTATICS	2
1.2	Force Between Electric Charges: The Concept of Electric Field	2
1.3	The Concept of Electric Flux and Flux Density: Gauss's Law	6
1.4	Examples of the Use of Gauss's Law	8
1.5	Surface and Volume Integrals: Gauss's Law in Vector Form	12
1.6	Tubes of Flux: Plotting of Field Lines	14
1.7	Energy Considerations: Conservative Property of	
	Electrostatic Fields	16
1.8	Electrostatic Potential: Equipotentials	19
1.9	Capacitance	25
	DIFFERENTIAL FORMS OF ELECTROSTATIC LAWS	27
1.10	Gradient	27
1.11	The Divergence of an Electrostatic Field	29
1.12	Laplace's and Poisson's Equations	33
1.13	Static Fields Arising from Steady Currents	35
1.14	Boundary Conditions in Electrostatics	36
1.15	Direct Integration of Laplace's Equation: Field Between Coaxial Cylinders with Two Dielectrics	40
1.16	Direct Integration of Poisson's Equation: The pn Semiconductor Junction	42
1.17	Uniqueness of Solutions	45
	SPECIAL TECHNIQUES FOR ELECTROSTATIC PROBLEMS	46
1.18	The Use of Images	46
1.19	Properties of Two-Dimensional Fields: Graphical Field Mapping	50
1.20	Numerical Solution of the Laplace and Poisson Equations	52
1.21	Examples of Information Obtained from Field Maps	57
	ENERGY IN FIELDS	59
1.22	Energy of an Electrostatic System	59

x	Contents

CHA	APTER 2 STATIONARY MAGNETIC FIELDS	70
2.1	Introduction	70
	STATIC MAGNETIC FIELD LAWS AND CONCEPTS	72
2.2	Concept of a Magnetic Field	72
2.3	Ampère's Law	73
2.4	The Line Integral of Magnetic Field	77
2.5	Inductance from Flux Linkages: External Inductance	81
	DIFFERENTIAL FORMS FOR MAGNETOSTATICS AND THE USE OF POTENTIAL	84
2.6	The Curl of a Vector Field	84
2.7	Curl of Magnetic Field	88
2.8	Relation Between Differential and Integral Forms of the Field Equations	90
2.9	Vector Magnetic Potential	93
2.10	Distant Field of Current Loop: Magnetic Dipole	96
2.11	Divergence of Magnetic Flux Density	98
2.12	Differential Equation for Vector Magnetic Potential	98
2.13	Scalar Magnetic Potential for Current-Free Regions	99
2.14	Boundary Conditions for Static Magnetic Fields	101
2.15	Materials with Permanent Magnetization	102
	MAGNETIC FIELD ENERGY	106
2.16	Energy of a Static Magnetic Field	106
2.17	Inductance from Energy Storage; Internal Inductance	108
CHA	APTER 3 MAXWELL'S EQUATIONS	114
7 1	Introduction	
3.1	Introduction	114
	LARGE-SCALE AND DIFFERENTIAL FORMS OF MAXWELL'S EQUATIONS	116
3.2	Voltages Induced by Changing Magnetic Fields	116
3.3	Faraday's Law for a Moving System	119
3.4	Conservation of Charge and the Concept	115
	of Displacement Current	121
3.5	Physical Pictures of Displacement Current	123
3.6	Maxwell's Equations in Differential Equation Form	126
3.7	Maxwell's Equations in Large-Scale Form	128

	Contents	хi
	axwell's Equations for the Time-Periodic Case	129
	ZXAMPLES OF USE OF MAXWELL'S EQUATIONS	132
٥.	Maxwell's Equations and Plane Waves	132
3.10	Uniform Plane Waves with Steady-State Sinusoids	135
	The Wave Equation in Three Dimensions	138
	Power Flow in Electromagnetic Fields: Poynting's Theorem	139
	Poynting's Theorem for Phasors	143
3.14	Continuity Conditions for ac Fields at a Boundary:	
	Uniqueness of Solutions	145
3.15	Boundary Conditions at a Perfect Conductor for ac Fields	148
	Penetration of Electromagnetic Fields into a Good Conductor	149
3.17	Internal Impedance of a Plane Conductor	153
3.18	Power Loss in a Plane Conductor	156
	POTENTIALS FOR TIME-VARYING FIELDS	158
	A Possible Set of Potentials for Time-Varying Fields	158
	The Retarded Potentials as Integrals over Charges and Currents	160
3.21	The Retarded Potentials for the Time-Periodic Case	162
CHA	APTER 4 THE ELECTROMAGNETICS	
	of circuits	171
4.1	Introduction	171
	THE IDEALIZATIONS IN CLASSICAL CIRCUIT THEORY	172
4.2	Kirchhoffs Voltage Law	172
4.3	Kirchhoff's Current Law and Multimesh Circuits	177
	SKIN EFFECT IN PRACTICAL CONDUCTORS	180
4.4	Distribution of Time-Varying Currents in Conductors of Circular Cross Section	180
15	Impedance of Round Wires	182
4.5	CALCULATION OF CIRCUIT ELEMENTS	186
4.6	Self-Inductance Calculations	186
4.7	Mutual Inductance	189
4.7	Inductance of Practical Coils	193
4.9	Self and Mutual Capacitance	196
4.9	CIRCUITS WHICH ARE NOT SMALL COMPARED	190
	WITH WAVELENGTH	198
4.10	Distributed Effects and Retardation	198

XII Conter

4.11	Circuit Formulation Through the Retarded Potentials	200
4.12	Circuits with Radiation	205
	İ	
CHA	APTER 5 TRANSMISSION LINES	213
5.1	Introduction	213
	TIME AND SPACE DEPENDENCE OF SIGNALS ON IDEAL TRANSMISSION LINES	214
5.2	Voltage and Current Variations Along an Ideal Transmission Line	214
5.3	Relation of Field and Circuit Analysis for Transmission Lines	218
5.4	Reflection and Transmission at a Resistive Discontinuity	219
5.5	Pulse Excitation on Transmission Lines	221
5.6	Pulse Forming Line	227
	SINUSOIDAL WAVES ON IDEAL TRANSMISSION LINES	229
5.7	Reflection and Transmission Coefficients and Impedance and Admittance Transformations for Sinusoidal Voltages	229
5.8	Standing Wave Ratio	233
5.9	The Smith Transmission-Line Chart	236
5.10	Some Uses of the Smith Chart	238
	NONIDEAL TRANSMISSION LINES	245
5.11	Transmission Lines with General Forms of Distributed Impedances: Lossy Lines	. 245
5.12	Filter-Type Distributed Circuits: the ω-β Diagram	252
	RESONANT TRANSMISSION LINES	254
5.13	Purely Standing Wave on an Ideal Line	254
	Input Impedance and Quality Factor for Resonant	
	Transmission Lines	256
	SPECIAL TOPICS	260
5.15	Group and Energy Velocities	260
5.16	Backward Waves	263
5.17	Nonuniform Transmission Lines	264
СНА	PTER 6 PLANE-WAVE PROPAGATION	
·	AND REFLECTION	274
6.1	Introduction	274
	PLANE-WAVE PROPAGATION	275

٠,

j	/	
. /	Contents	xiii
3.2	Uniform Plane Waves in a Perfect Dielectric	275
6.3	Polarization of Plane Waves	280
6.4	Waves in Imperfect Dielectrics and Conductors	283
	PLANE WAVES NORMALLY INCIDENT ON DISCONTINUITIES	287
6.5	Reflection of Normally Incident Plane Waves from Perfect Conductors	287
6.6	Transmission-Line Analogy of Wave Propagation: The Impedance Concept	289
6.7	Normal Incidence on a Dielectric	292
6.8	Reflection Problems with Several Dielectrics	295
	PLANE WAVES OBLIQUELY INCIDENT ON DISCONTINUITIES	300
6.9	Incidence at Any Angle on Perfect Conductors	300
6.10	Phase Velocity and Impedance for Waves at Oblique Incidence	303
6.11	Incidence at Any Angle on Dielectrics	306
6.12	Total Reflection	310
6.13	Polarizing or Brewster Angle	312
6.14	Multiple Dielectric Boundaries with Oblique Incidence	313
СНА	APTER 7 TWO- AND THREE-DIMENSIONAL BOUNDARY VALUE PROBLEMS	321
7.1	Introduction	321
	THE BASIC DIFFERENTIAL EQUATIONS	
	AND NUMERICAL METHODS	322
7.2	Roles of Helmholtz, Laplace, and Poisson Equations	322
7.3	Numerical Methods: Method of Moments	324
	METHOD OF CONFORMAL TRANSFORMATION	331
7.4	Method of Conformal Transformation and Introduction to Complex-Function Theory	331
7.5	Properties of Analytic Functions of Complex Variables	333
7.6	Conformal Mapping for Laplace's Equation	336
7.7	The Schwarz Transformation for General Polygons	345
7.8	Conformal Mapping for Wave Problems	348
	SEPARATION OF VARIABLES METHOD	351
7.9	Laplace's Equation in Rectangular Coordinates	351
	Static Field Described by a Single Rectangular Harmonic	353
7 1 1	Fourier Series and Integral	355

ΧİV	Contents

7.12	Series of Rectangular Harmonics for Two- and Three-Dimensional Static Fields	360
7.13	Cylindrical Harmonics for Static Fields	365
7.14	Bessel Functions	368
7.15	Bessel Function Zeros and Formulas	373
7.16	Expansion of a Function as a Series of Bessel Functions	375
7.17	Fields Described by Cylindrical Harmonics	377
7.18	Spherical Harmonics	379
7.19	Product Solutions for the Helmholtz Equation in Rectangular Coordinates	385
7.20	Product Solutions for the Helmholtz Equation in Cylindrical Coordinates	386
CHA	APTER 8 WAVEGUIDES WITH CYLINDRICAL CONDUCTING BOUNDARIES	395
8.1	Introduction	395
	GENERAL FORMULATION FOR GUIDED WAVES	396
8.2	Basic Equations and Wave Types for Uniform Systems	396
	CYLINDRICAL WAVEGUIDES OF VARIOUS CROSS SECTIONS	398
8.3	Waves Guided by Perfectly Conducting Parallel Plates	398
8.4	Guided Waves Between Parallel Planes as Superposition	
	of Plane Waves	405
8.5	Parallel-Plane Guiding System with Losses	407
8.6	Planar Transmission Lines	410
8.7	Rectangular Waveguides	417
8.8	The TE ₁₀ Wave in a Rectangular Guide	423
8.9	Circular Waveguides	428
	Higher Order Modes on Coaxial Lines	433
8.11	Excitation and Reception of Waves in Guides	435
	GENERAL PROPERTIES OF GUIDED WAVES	438
	General Properties of TEM Waves on Multiconductor Lines	440
8.13	General Properties of TM Waves in Cylindrical Conducting Guides of Arbitrary Cross Section	442
	General Properties of TE Waves in Cylindrical Conducting Guides	447

	Contents	χv
	aves Below and Near Cutoff	449
	ispersion of Signals Along Transmission Lines and Waveguides	451
СНА	PTER 9 SPECIAL WAVEGUIDE TYPES	462
9.1	Introduction	462
9.2	Dielectric Waveguides	462
9.3	Parallel-Plane Radial Transmission Lines	464
9.4	Circumferential Modes in Radial Lines: Sectoral Horns	468
9.5	Duality: Propagation Between Inclined Planes	470
9.6	Waves Guided by Conical Systems	472
9.7	Ridge Waveguide	474
9.8	The Idealized Helix and Other Slow-Wave Structures	476
9.9	Surface Guiding	479
9.10	Periodic Structures and Spatial Harmonics	482
CHA	PTER 10 RESONANT CAVITIES	490
10.1	Introduction	490
	RESONATORS OF SIMPLE SHAPE	491
10.2	Fields of Simple Rectangular Resonator	491
10.3	Energy Storage, Losses, and Q of a Rectangular Resonator	493
10.4	Other Modes in the Rectangular Resonator	494
10.5	Circular Cylindrical Resonator	496
10.6	Strip Resonators	500
10.7	Wave Solutions in Spherical Coordinates	504
10.8	Spherical Resonators	508
	SMALL-GAP CAVITIES AND COUPLING	510
10.9	Small-Gap Cavities	510
10.10	Coupling to Cavities	510
10.11	Measurement of Resonator Q	515
10.12	Resonator Perturbations	518
10.13	Dielectric Resonators	521

XVI Contents

CHA	APTER 11 MICROWAVE NETWORKS	530
11.1	Introduction	530
11.2	The Network Formulation	532
11.3	Conditions for Reciprocity	535
	TWO-PORT WAVEGUIDE JUNCTIONS	536
11.4	Equivalent Circuits for a Two Port	536
11.5	Scattering and Transmission Coefficients	539
11.6	Measurement of Network Parameters	541
11.7	Cascaded Two Ports	545
11.8	Examples of Microwave and Optical Filters	548
	N-PORT WAVEGUIDE JUNCTIONS	554
11.9	Circuit and S-Parameter Representation of N Ports	554
11.10	Directional Couplers and Hybrid Networks	557
	FREQUENCY CHARACTERISTICS OF WAVEGUIDE NETWORKS	561
11.11	Properties of a One-Port Impedance	561
11.12	Equivalent Circuits Showing Frequency Characteristics of One Ports	564
11.13	Examples of Cavity Equivalent Circuits	569
	Circuits Giving Frequency Characteristics of N Ports	571
	JUNCTION PARAMETERS BY ANALYSIS	573
11.15	Quasistatic and Other Methods of Junction Analysis	573
CHA	APTER 12 RADIATION	584
12.1	Introduction	584
12.2	Some Types of Practical Radiating Systems	586
	FIELD AND POWER CALCULATIONS WITH CURRENTS ASSUMED ON THE ANTENNA	589
12.3	Electric and Magnetic Dipole Radiators	589
12.4	Systemization of Calculation of Radiating Fields and Power from	005
12.17	Currents on an Antenna	593
12.5	Long Straight Wire Antenna: Half-Wave Dipole	596
12.6	Radiation Patterns and Antenna Gain	599
12.7	Radiation Resistance	602
12.8	Antennas Above Earth or Conducting Plane	603

	Contents	iivx
12.9	Traveling Wave on a Straight Wire	606
12.10	∇ and Rhombic Antennas	607
12.11	Methods of Feeding Wire Antennas	611
	RADIATION FROM FIELDS OVER AN APERTURE	614
12.12	Fields as Sources of Radiation	614
12.13	Plane Wave Sources	617
12.14	Examples of Radiating Apertures Excited by Plane Waves	619
12.15	Electromagnetic Horns	624
12.16	Resonant Slot Antenna	625
12.17	Lenses for Directing Radiation	628
	ARRAYS OF ELEMENTS	630
12.18	Radiation Intensity with Superposition of Effects	630
12.19	Linear Arrays	634
12.20	Radiation from Diffraction Gratings	637
12.21	Polynomial Formulation of Arrays and Limitations on Directivity	638
12.22	Yagi–Uda Arrays	641
12.23	Frequency-Independent Antennas: Logarithmically Periodic Arrays	643
12.24	Integrated Antennas	646
	FIELD ANALYSIS OF ANTENNAS	651
12.25	The Antenna as a Boundary Value Problem	651
12.26	Direct Calculation of Input Impedance for Wire Antennas	655
12.27	Mutual Impedance Between Thin Dipoles	659
12.28	Numerical Methods: The Method of Moments	660
	RECEIVING ANTENNAS AND RECIPROCITY	663
12.29	A Transmitting-Receiving System	663
12.30	Reciprocity Relations	666
12.31	Equivalent Circuit of the Receiving Antenna	668
CH/	APTER 13 ELECTROMAGNETIC PROPERTIES	
	OF MATERIALS	677
13.1	Introduction	677
	LINEAR ISOTROPIC MEDIA	678
13.2	Characteristics of Dielectrics	678

15.5	imperiect Conductors and Semiconductors	682
13.4	Perfect Conductors and Superconductors	687
13.5	Diamagnetic and Paramagnetic Responses	689
	NONLINEAR ISOTROPIC MEDIA	691
13.6	Materials with Residual Magnetization	691
13.7	Nonlinear Dielectrics: Application in Optics	695
	ANISOTROPIC MEDIA	699
13.8	Representation of Anisotropic Dielectric Crystals	699
13.9	Plane-Wave Propagation in Anisotropic Crystals	
13.10	Plane-Wave Propagation in Uniaxial Crystals	705
13.11	Electro-Optic Effects	707
13.12	Permeability Matrix for Ferrites	713
13.13	TEM Wave Propagation in Ferrites	716
13.14	Faraday Rotation	721
13.15	Ferrite Devices	723
13.16	Permittivity of a Stationary Plasma in a Magnetic Field	728
13.17	Space-Charge Waves on a Moving Plasma	77.0
17 10	with Infinite Magnetic Field	730
15.10	TEM Waves on a Stationary Plasma in a Finite Magnetic Field	733
CHA	APTER 14 OPTICS	742
14.1	Introduction	742
	RAY OR GEOMETRICAL OPTICS	743
14.2	Geometrical Optics Through Applications of Laws of Reflection	
	and Refraction	743
14.3	Geometrical Optics as Limiting Case of Wave Optics	749
14.4	Rays in Inhomogeneous Media	752
14.5	Ray Matrices for Paraxial Ray Optics	756
14.6	Guiding of Rays by a Periodic Lens System or in Spherical Mirror Resonators	760
	DIELECTRIC OPTICAL WAVEGUIDES	763
14.7	Dielectric Guides of Planar Form	763
14.8	Dielectric Guides of Rectangular Form	767
14.9	Dielectric Guides of Circular Cross Section	771
	Propagation of Gaussian Beams in Graded-Index Fibers	775
1 1.10	1 opaganon of Oddosidin Dodins in Ordaca-index 1 10615	113

	Contents	xix
14.11 Intermode Delay and Group Velocity Dispersion		
14.12 Nonlinear Effects in Fibers: Solitons		780
GAUSSIAN B	EAMS IN SPACE AND IN OPTICAL RESONATORS	783
14.13 Propagation	of Gaussian Beams in a Homogeneous Medium	783
14.14 Transformati	ion of Gaussian Beams by Ray Matrix	786
14.15 Gaussian Mo	odes in Optical Resonators	789
14.16 Stability and	Resonant Frequencies of Optical-Resonator Modes	793
BASIS FOR (OPTICAL INFORMATION PROCESSING	795
14.17 Fourier Tran	sforming Properties of Lenses	795
14.18 Spatial Filtering		798
14.19 The Principle	e of Holography	801
	SYSTEMS OF UNITS	813
APPENDIX 2	COORDINATE SYSTEMS AND VECTOR RELATIONS	815
APPENDIX 3	SKETCH OF THE DERIVATION OF MAGNETIC FIELD LAWS	821
APPENDIX 4	COMPLEX PHASORS AS USED IN ELECTRICAL CIRCUITS	824
APPENDIX 5	SOLUTION FOR RETARDED POTENTIALS; GREEN'S FUNCTIONS	828
INDEX		831