1 Trigonometrie

$$\begin{split} \sin(0) &= 0, \ \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}, \ \sin(\frac{\pi}{2}) = 1, \ \sin(\pi) = 0, \ \sin(\frac{3\pi}{4}) = \frac{\sqrt{2}}{2} \\ \cos(0) &= 1, \ \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}, \ \cos(\frac{\pi}{2}) = 0, \ \cos(\pi) = -1, \ \cos(\frac{3\pi}{4}) = -\frac{\sqrt{2}}{2} \\ \tan(x) &= \frac{\sin(x)}{\cos(x)} \\ \sin(2x) &= 2\sin(x)\cos(x) \\ \sin(2x) &= 2\sin(x)\cos(x) \\ \sin(\alpha + \beta) &= \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \\ \cos(\alpha + \beta) &= \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta) \\ \cos^2(x) &= \frac{1 + \cos(2x)}{2} \\ \sin^2(x) + \cos^2(x) &= 1 \end{split}$$

2 Mengen

2.1 Definitionen

Obere/Untere Schranke: $\exists b \in \mathbb{R} \ \forall a \in A: \ a \leq b, \ \exists c \in \mathbb{R} \ \forall a \in A: \ a \geq c$

Supremum: kleinste obere Schranke sup A grösste untere Schranke inf A

Maximum/Minimum: $\sup A \in A$, $\inf A \in A$

2.2 Identitten

$$A+B:=\{a+b|a\in A,b\in B\}$$

$$\sup(A+B)=\sup A+\sup B,\ \inf(A+B)=\inf A+\inf B$$

$$\sup(A\cup B)=\max\{\sup A,\sup B\},\ \inf(A\cup B)=\min\{\inf A,\inf B\}$$

3 Komplexe Zahlen

3.1 Polarform

3.2 Identitäten

$$\overline{z} = x - iy$$

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$

$$(a,b) \cdot (c,d) = (ac - bd, ad + bc)$$

$$i = \sqrt{-1}$$

$$i^2 = -1$$

$$|z|^2 = z\overline{z}$$

$$|zw|^2 = (zw) \cdot \overline{(zw)} = |z|^2 |w|^2$$

4 Grenzwert

4.1 Dominanz

Für
$$x \to +\infty$$
: ... $< \log(\log(x)) < \log(x) < x^{\alpha} < \alpha^{x} < x! < x^{x}$
Für $x \to 0$: ... $< \log(\log(x)) < \log(x) < (\frac{1}{x})^{\alpha}$

4.2 Tipps

$$\lim_{x \to a} \frac{\sin \odot}{\odot} = 1 \text{ mit } \odot \xrightarrow{x \to a} 0$$

$$\lim_{x \to a} (1 + \frac{1}{\odot})^{\odot} = e \text{ mit } \odot \xrightarrow{x \to a} \infty$$

$$\lim_{x \to a} (1 + \odot)^{\frac{1}{\odot}} = e \text{ mit } \odot \xrightarrow{x \to a} 0$$

4.3 Wurzeltrick

$$\lim_{x \to \infty} \sqrt{\alpha} + \beta = \lim_{x \to \infty} (\sqrt{\alpha} + \beta) \frac{\sqrt{\alpha} - \beta}{\sqrt{\alpha} - \beta}$$

4.4 $e^{\log(x)}$ -Trick

Anforderung: Term der Form $f(x)^{g(x)}$ mit Grenzwert "0", " ∞^0 " oder "1 ∞ " für $x \to 0$

Grundsatz:
$$\lim_{x\to a} f(x)^{g(x)} = \lim_{x\to a} e^{g(x)\cdot\log(f(x))}$$

4.5 Satz von Bernoulli-de l'Hôpital

Anforderung: Term der Form $\frac{f(x)}{g(x)}$ mit Grenzwert entweder " $\frac{0}{0}$ " oder " $\frac{\infty}{\infty}$ " mit $g'(x) \neq 0$. Falls die Grenzwerte $0 \neq \infty$ verschieden sind, kann man umformen: $\frac{f(x)}{\frac{1}{g(x)}}$.

Grundsatz:
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g(x)}$$

Zwei Polizisten zu benutzen mit sin, cos, tan oder -1^n ... sonst induktion: $a_{n+1} \ge a_n \Rightarrow a_{n+2} \ge a_{n+1}$ oder direct. Mit eine recursive folge, um Grenzwert zu finden, setzen a_n mit a und a finden. Oder direct mit $a_{n+1} - a_n \ge 0$.

2

5 Reihen

Konvergenzkriterien 5.1

	Eignung	Bemerkung	
Limes des allgemeinen		zeigt nur Divergenz	
Glieds			
Majoranten- und Mino-		ersten Glieder spielen keine	
rantenkriterium		Rolle	
Quotientenkriterium	a_n mit Faktoren wie $n!$,	gleiche Folgerung wie	
	a^n , oder Polynome	Wurzelkriterium	
Wurzelkriterium	$a_n = (b_n)^n$	gleiche Folgerung wie Quo-	
		tientenkriterium	
Leibnitz-Kriterium	alternierende Reihe		
Absolute Konvergenz	sin, cos		

Limes des allgemeinen Glieds

Bemerkung: Mit dieser Methode lsst sich nur die Divergenz beweisen, nicht jedoch die Konvergenz.

- 1. $\sum_{n} a_n$ gegeben
- 2. Grenzwert $\lim_{n\to\infty} a_n$ berechnen
 - falls Grenzwert $\neq 0 \Rightarrow$ divergent
 - falls Grenzwert = $0 \Rightarrow$ keine Aussage

Majoranten- und Minorantenkriterium

Es seien $a_n, b_n > 0$ mit $a_n \ge b_n \ \forall n$ ab einem gewissen n_0 . Dann gilt:

$$\sum_{n} a_{n} \text{ konvergent} \Rightarrow \sum_{n} b_{n} \text{ konvergent} \quad \text{(Majorantenkriterium)}$$

$$\sum_{n} b_{n} \text{ divergent} \Rightarrow \sum_{n} a_{n} \text{ divergent} \quad \text{(Minorantenkriterium)}$$

Vergleichskriterium

- 1. $\sum_{n} a_n$ und $\sum_{n} b_n$ gegeben mit $a_n, b_n > 0$
- 2. Grenzwert $\lim_{n\to\infty} \frac{a_n}{b_n}$ berechnen
 - falls Grenzwert = 0:
 - $-\sum_n a_n$ divergent $\Rightarrow \sum_n b_n$ divergent $-\sum_n b_n$ konvergent $\Rightarrow \sum_n a_n$ konvergent
 - falls Grenzwert = ∞ :
 - $\sum_n a_n$ konvergent $\Rightarrow \sum_n b_n$ konvergent $\sum_n b_n$ divergent $\Rightarrow \sum_n a_n$ divergent

Quotientenkriterium

- 1. $\sum_{n} a_n$ mit $a_n \neq 0$ gegeben
- 2. Grenzwert $\lim_{n \mapsto \infty} |\frac{a_{n+1}}{a_n}|$ berechnen
 - falls Grenzwert $> 1 \Rightarrow$ divergent
 - falls Grenzwert $< 1 \Rightarrow$ konvergent
 - falls Grenzwert = $1 \Rightarrow$ keine Aussage

Wurzelkriterium

- 1. $\sum_{n} a_n \text{ mit } a_n \neq 0 \text{ gegeben}$
- 2. Grenzwert $\lim_{n\to\infty} \sqrt[n]{|a_n|}$ berechnen
 - falls Grenzwert $> 1 \Rightarrow$ divergent
 - falls Grenzwert $< 1 \Rightarrow$ konvergent
 - falls Grenzwert = $1 \Rightarrow$ keine Aussage

Leibniz-Kriterium

- 1. $\sum_{n} (-1)^n a_n$ gegeben
- 2. konvergent, falls:
 - (a) $a_n \ge 0$
 - (b) $\lim_{n\to\infty} a_n = 0$
 - (c) a_n monoton fallend

Absolute Konvergenz

- 1. $\sum_{n} (-1)^n a_n$ gegeben
- 2. **konvergent**, falls $\sum_{n} |a_n|$ konvergent

5.2 Geometrische Reihe

$$S_N = \sum_{k=0}^{n} a * r^k \tag{1}$$

$$S_N = \frac{a - a * r^{n+1}}{1 - r} \tag{2}$$

falls 0 < |r| < 1 dann

$$\sum_{k=0}^{\infty} a * r^k = \frac{a}{1-r} \tag{3}$$

4

5.3 Potenzreihen

Potenzreihen haben der Form $\sum_{0}^{\infty} a_n x^n$.

Der konvergenz radius

$$\rho = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \tag{4}$$

$$\rho = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}} \tag{5}$$

wenn $|x| < \rho$ dann konvergiert die Reihe. In diesem gebiet darf man die Reihe ableiten und Integrieren.

5.3.1 Tips

$$\cos(x) = \sum_{0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \tag{6}$$

$$sin(x) = \sum_{0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
 (7)

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \tag{8}$$

6 Stetigkeit

Kriterien fur stetigkeit:

- 1. f ist auf Ω definiert
- 2. $\lim_{x\to a} f(x) = f(a)$ und existiert (ist nicht gleich ∞ und gleich von beide seite von a).

Weierstrass-kriterium fur alle $\epsilon > 0$ gibt es ein $\delta(\epsilon, a) > 0$ sodass fur alle $|x - a| < \delta$ gilt:

$$|f(x) - f(a)| < \epsilon \tag{9}$$

6.1 Gleichmassigstetigkeit

fur alle $\epsilon > 0$ gibt es ein $\delta(\epsilon) > 0$ sodass fur alle $|x - y| < \delta$ gilt:

$$|f(x) - f(y)| < \epsilon \tag{10}$$

 δ hangt nur von ϵ ab nicht wie weierstrass-kriterium. Falls f ist stetig und kompakt, dann ist er gleichmassig stetig.

6.2 Lipschitz-stetigkeit

Muss ein $L\epsilon\mathbb{R}$ sodass:

$$|f(x) - f(y)| < L|f(x) - f(y)|, \forall x, y \in \Omega$$
(11)

Eine funktion ist lipschitz stetig wenn sein erste ableitung ist auf Ω beschrankt.

6.3 Punktweise Konvergenz

 $f_n(x)$ konvergiert Punktweise falls:

$$\forall x \epsilon \Omega, \lim_{n \to \infty} f_n(x) = f(x) \tag{12}$$

6.4 Gleichmassig konvergenz

 $f_n(x)$ konvergiert gleichmassig falls:

$$\lim_{n \to \infty} \sup |f_n(x) - f(x)| = 0 \tag{13}$$

Beide diese Funktionen mussen stetig sein. Diese bedigung ist starker als Punktweise konvergenz.

7 Differenzialrechnung

Eine stetige Funktion ist differenzierbar, falls der Grenzwert $f'(x_0)$ existiert:

$$f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

7.1 Umkehrsatz

$$(f^{-1})'(y) = \frac{1}{f'(x)}$$

7.2 Mittelwertsatz

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

7.3 Taylorpolynom

Das Taylorpolynom m-ter Ordnung von f(x) an der Stelle x = a

$$P_m^a(x) := f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2 + \dots + \frac{1}{m!}f^{(m)}(a)(x - a)^m$$

mit dem Fehlerterm $R_m^a(x)$, wobei ξ zwischen a und b liegt:

$$R_m^a(x) = \frac{f^{(m+1)}(\xi)}{(m+1)!}(x+a)^{m+1}$$
, wobei $f(x) = P_m^a(x) + R_m^a(x)$

7.4 Hauptsatz von calculus

$$f(x) = \int_{t}^{m(x)} g(t)dt \tag{14}$$

$$f'(x) = g(m(x)) * \frac{d}{dx}m(x)$$
(15)

wo m(x) hat der Form ax^b und $l \in \mathbb{R}$

8 Integration

8.1 Elementare Integrale

f(x)	F(x)
x^{α}	$\frac{x^{\alpha+1}}{\alpha+1} + C$
$\frac{1}{x}$	$\log(x) + C$
$\frac{1}{x^2}$	$\frac{1}{x} + C$
$\sin(x)$	$-\cos(x) + C$
$\cos(x)$	$\sin(x) + C$

8.2 Regeln

$$\begin{array}{ll} \textbf{Direkter Integral} & \int f(g(x))g'(x) \; dx = F(g(x)) \\ \textbf{Partielle Integration} & \int f' \cdot g \; dx = f \cdot g - \int f \cdot g' \; dx \\ \textbf{mit Polynomen} & \int \frac{p(x)}{q(x)} \; dx \Rightarrow \; \text{Partialbruchzerlegung} \\ \textbf{Substitution} & \int_a^b f(\varphi(t))\varphi'(t) \; dt = \int_{\varphi(a)}^{\varphi(b)} f(x) \; dx \; \text{mit } x = \varphi(t) \\ \end{array}$$

8.3 Tipps

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\log|\cos(x)|$$

$$\int \frac{1}{x - \alpha} = \log(x - \alpha)$$

$$\int \frac{1}{1 + x^2} = \arctan(x) \tag{16}$$

$$\int \sinh(x) = \cosh(x) + C \tag{17}$$

$$\int \cosh(c) = \sinh(s) + C \tag{18}$$

9 Differentialgleichungen

9.1 Grundbegriffe

Ordnung: höchste vorkommende Ableitung

linear: alle y-abhängigen Terme kommen linear vor (keine Terme wie zum Beispiel

 y^2 , $(y'')^3$, $\sin(y)$, $e^{y'}$)

homogen: Gleichung ohne Störfunktionen

Störfunktion: Term, der rein von der Funktionsvariablen x abhängt

9.2 Methoden

	Problem	Anforderungen
Trennung der Variablen	$y' = \frac{dy}{dx} = h(x) \cdot g(y)$	1. Ordnung
Variation der Konstanten	$y' = \frac{dy}{dx} = h(x)y + b(x)$	1. Ordnung
		inhomogen
Euler-Ansatz	$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = 0$	n. Ordnung
		linear
		homogen
Direkter Ansatz	$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = b(x)$	n. Ordnung
		linear
		inhomogen

9.2.1 Trennung der Variable

$$y' + x \tan y = 0, \ y(0) = \frac{\pi}{2}$$
 umformen
$$\frac{dy}{dx} = -x \tan y$$

konstante Lösungen $y(x) \equiv 0$ erfüllt jedoch $y(0) \equiv \frac{\pi}{2}$ nicht

Trennung
$$\frac{dy}{\tan y} = -xdx$$

integrieren
$$\int \frac{\cos y}{\sin y} dy = -\int x dx \Rightarrow \log|\sin y| = -\frac{x^2}{2} + C$$
$$\Rightarrow |\sin y| = e^C e^{\frac{-x^2}{2}} \Rightarrow \sin y = \pm e^C e^{\frac{-x^2}{2}} = Ce^{\frac{-x^2}{2}}$$

Anfangsbedingung gebrauchen $\sin(y(0)) = \sin(\frac{\pi}{2}) = 1 \Rightarrow C = 1$

Lösung
$$y(x) = \arcsin(e^{\frac{-x^2}{2}})$$

9.2.2 Variation der Konstanten

Grundsatz: $y(x) = y_{\text{homo}}(x) + y_p(x)$

$$y' - y = 1, \ y(0) = 0$$

homogener Ansatz y' = y

konstante Lösungen $y(x) \equiv 0$

Trennung
$$\frac{dy}{y} = dx \Rightarrow \int \frac{dy}{y} = \int dx \Rightarrow \log|y| = x$$

homogene Lösung
$$y_{\text{homo}}(x) = Ae^x, \ A = e^C \in \mathbb{R}$$

partikulärer Ansatz
$$y_p(x) = A(x)e^x$$

einsetzen
$$A'e^x + Ae^x - Ae^x = 1 \Rightarrow A' = e^{-x} \Rightarrow A(x) = \int e^{-x} dx = -e^{-x}$$

partikuläre Lösung $y_p(x) = -1$

Lösung
$$y(x) = Ae^x - 1$$
 mit Anfangsbedingung $A = 1$
 $\Rightarrow y(x) = e^x - 1$

9.2.3 Euler-Ansatz

$$y'' - 2y' - 8y = 0, \ y(1) = 1, y'(1) = 0$$

Euler-Ansatz
$$y(x) = e^{\lambda x}$$

einsetzen
$$\lambda^2 e^{\lambda x} - 2\lambda e^{\lambda x} - 8e^{\lambda x} = 0$$

charakt. Polynom
$$\lambda^2 - 2\lambda - 8 = (\lambda - 4)(\lambda + 2) = 0$$

Nullstellen 4, -2

allgemeine Lösung
$$y(x) = Ae^{4x} + Be^{-2x}$$

Anfangsbedingung gebrauchen $y(1) = Ae^4 + Be^{-2} = 1$, $y'(1) = 4Ae^4 - 2Be^{-2} = 0$

$$\Rightarrow A = \frac{1}{3}e^{-4}, B = \frac{2}{3}e^{2}$$

Lösung
$$y(x) = \frac{1}{3}e^{4x-4} + \frac{2}{3}e^{2-2x}$$

Bemerkung: Zu einer m-fachen Nullstelle λ gehören die m linear unabhängigen Lösungen $e^{\lambda x}$, $x \cdot e^{\lambda x}$, ..., $x^{m-1} \cdot e^{\lambda x}$. Zur m-fachen Nullstelle $\lambda = 0$ gehören die Lösungen $1, x, \ldots, x^{m-1}$.

9.2.4 Direkter Ansatz

Grundsatz: $y(x) = y_{\text{homo}}(x) + y_p(x)$

Inhomogener Term $b(x)$	Ansatz für $y_p(x)$	zu bestimmen
Polynom	$Ax^2 + Bx + C$	A, B, C
ce^{kx}	Ae^{kx}	A
$c\sin(kx)$ oder $c\cos(kx)$	$A\sin(kx) + B\cos(kx)$	A, B

$$y'' - y' + \frac{1}{4}y = \cos(x)$$
 homogener
$$y'' + y' + \frac{1}{4}y = 0$$
 Euler-Ansatz anwenden
$$\lambda^2 + \lambda + \frac{1}{4} = (\lambda + \frac{1}{2})^2 = 0$$
 homogene Lösung
$$\Rightarrow y_{\text{homo}}(x) = Ae^{-\frac{x}{2}} + Bx \cdot e^{-\frac{x}{2}}$$
 Ansatz wählen
$$y_p(x) = a\cos(x) + b\sin(x)$$

$$\Rightarrow y_p'(x) = -a\sin(x) + b\cos(x), \ y_p''(x) = -a\cos(x) - b\sin(x)$$
 Einsetzen
$$(-a + b + \frac{a}{4})\cos(x) + (-b - a + \frac{1}{4}b)\sin(x) = \cos(x)$$
 Koeffizientenvergleich
$$-\frac{3}{4}a + b = 1, \ -a - \frac{3}{4}b = 0$$
 partikuläre Lösung
$$y_p(x) = -\frac{12}{25}\cos(x) + \frac{16}{25}\sin(x)$$
 Lösung
$$y(x) = Ae^{-\frac{x}{2}} + Bx \cdot e^{-\frac{x}{2}} - \frac{12}{25}\cos(x) + \frac{16}{25}\sin(x)$$

9.3 Komplexe zahlen

Falls der charakteristische Polynom ist komplex und hat der form $a + i\sqrt{b}$, dann hat die homogene Losung die form:

$$y(x) = e^{ax}(c_1 \cos(\sqrt{b}x) + C_2 \sin(\sqrt{b}x))$$
(19)

Wo a ist die komplexe losung von charakteristische polynom.

10 Vektorfelder

10.1 Gradient

$$graf(f) = \nabla = \begin{bmatrix} \frac{\vartheta}{\vartheta x_1} \\ \dots \\ \frac{\vartheta}{x_n} \end{bmatrix}$$
 (20)

Der gradient zeigt in die richtung der maximalen zuwachsrate von f und seine lange ist gleich der maximalen anderung von f.

10.2 Rotation

Fur ein vektorfeld mit komponenten: v_1, v_2, v_3 .

$$rot(v) = \nabla \times v = \begin{bmatrix} \frac{\partial v_3}{\partial y} - \frac{\partial v_2}{\partial z} \\ \frac{\partial v_1}{\partial z} - \frac{\partial v_3}{\partial x} \\ \frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} \end{bmatrix}$$
(21)

Falls die rot(v)=0 dann ist v Konservativ.

10.3 Integrabilitatsbedigungen

$$\frac{\vartheta v_i}{\vartheta x_j} = \frac{\vartheta v_j}{\vartheta x_i}, \forall i \neq j \tag{22}$$

Falls diese ist erfullt dann ist der Feld ein Potenzialfeld und konservativ.

10.4 Potenzialfeld

Ein potenzialfled ist konservativ. Der potenzial Φ eines Potenzialfeld:

$$\nabla \Phi \doteq v \tag{23}$$

10.5 Divergenz

$$div(v) = \frac{\vartheta v_1}{\vartheta x} + \frac{\vartheta v_2}{\vartheta y} + \dots$$
 (24)

11 Wegintegral

11.1 Standard Methode

Grundsatz:
$$\int_{\gamma} \vec{v} \cdot d\vec{s} := \int_{a}^{b} \vec{v}(\vec{\gamma}(t)) \cdot \dot{\vec{\gamma}}(t) dt$$

$$\vec{v} = \begin{pmatrix} y \\ 0 \end{pmatrix}, \ \gamma : [0, 2\pi] \mapsto \mathbb{R}^2, \ t \mapsto \begin{pmatrix} t - \sin(t) \\ 1 - \cos(t) \end{pmatrix}$$

parametrisieren hier bereits gegeben

$$\gamma \text{ ableiten} \quad \dot{\gamma} = \begin{pmatrix} 1 - \cos(t) \\ \sin(t) \end{pmatrix}$$
 in Formel einsetzen
$$\int_{\gamma} \vec{v} \cdot d\vec{s} = \int_{0}^{2\pi} \begin{pmatrix} 1 - \cos(t) \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 - \cos(t) \\ \sin(t) \end{pmatrix} dt$$

$$= \int_{0}^{2\pi} (1 - \cos(t))^{2} dt = \int_{0}^{2\pi} (1 - 2\cos(t) + \cos^{2}(t)) dt$$
 Lösung
$$2\pi - 0 + \pi = 3\pi$$

11.2 In Potenzialfeldern

Anforderung: Das Vektorfeld \vec{v} ist **konservativ**(=potenzialfeld, der weg ist egal). Es existiert ein Potenzial.

Grundsatz:
$$\int_{\gamma} \vec{v} \cdot d\vec{s} = \Phi(\text{Ende}) - \Phi(\text{Anfang})$$

$$\vec{v} = \begin{pmatrix} e^{xy}(1+xy) \\ e^{xy}x^2 \end{pmatrix}, \text{ Kreisbogen von } (1,0) \text{ nach } (-1,0)$$
 gleichsetzen:
$$\vec{v} = \begin{pmatrix} e^{xy}(1+xy) \\ e^{xy}x^2 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} = \nabla \Phi$$

$$\frac{\partial \Phi}{\partial y} = e^{xy}x^2 \Rightarrow \Phi = \int e^{xy}x^2 \ dy = xe^{xy} + C(x)$$
 ableiten:
$$\frac{\partial \Phi}{\partial x} = e^{xy} + xye^{xy} + C' \stackrel{!}{=} e^{xy} + xye^{xy}$$

$$\Rightarrow C' = 0 \Rightarrow C = \text{const.}$$
 Potenzial:
$$\Phi = xe^{xy} + \text{const.}$$
 Lösung:
$$\int_{\gamma} \vec{v} \cdot d\vec{s} = \Phi(-1,0) - \Phi(1,0) = -1 + C - 1 - C = 2$$

11.3 Satz von Green

Anforderung: Der Rand muss im positiven mathematischen Sinn umlaufen werden (d.h. im Gegenuhrzeigersinn)

$$\begin{aligned} \textbf{Grundsatz:} \quad & \int_{\gamma=\partial C} \vec{v} \cdot d\vec{s} = \int_C (\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y}) \ dxdy \\ & \vec{v} = \binom{x+y}{y}, \ \text{Kreisbogen mit Radius 1 um } (0,0) \\ \text{Rotation berechnen:} \quad & rot(\vec{v}) = \frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} = 0 - 1 = -1 \\ \text{Normalbereich:} \quad & E = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \leq 1\} \\ \text{in Formel einsetzen:} \quad & \int_{\gamma} \vec{v} \cdot d\vec{s} = \int_E -1 \ dxdy = -\mu(E) = -\pi \end{aligned}$$

11.4 Tips

parametrisierung eines kreises: $x=r^*\cos(t)$ y= $r^*\sin(t)$ dxdy= rdrdt dxdy= $|rs \times rt|$

12 Flussintegrale oberflacheintegrale

12.1 1 methode

- 1. Die flache parametrisieren nach u und v: $\Phi_1(u, v), \Phi_2(u, v), \Phi_3(u, v)$.
- 2. berechnen $\Phi_u = \frac{\vartheta \Phi}{\vartheta u}$ und $\Phi_v = \frac{\vartheta \Phi}{\vartheta v}$. Und krossprodukt berechnen $\Phi_u \times \Phi_v$
- 3. benutzen die Formel:

$$\int_{S} v * n do = \pm \int_{a}^{b} \int_{c}^{d} v(\Phi(u, v)) * (\Phi_{u} \times \Phi_{v}) du dv$$
 (25)

12.2 Gauss

$$\int_{\partial V} v * n do = \int_{V} div(v) d\mu \tag{26}$$

13 Flächenintegral

13.1 Normalbereich

Grundsatz:
$$\Omega = \{(x,y) \in \mathbb{R}^2 | a \le x \le b, f(x) \le y \le g(x) \}$$

$$\int_{\Omega} F \ d\mu = \int_a^b dx \int_{f(x)}^{g(x)} dy \ F(x,y)$$

$$\int_{\Omega} xy \ d\mu, \ \Omega = \{(x, y) \in \mathbb{R}^2 | y \ge x^2, x \ge y^2 \}$$

als Normalbereich schreiben: $\Omega = \{(x,y) \in \mathbb{R}^2 | 0 \le x \le 1, x^2 \le y \le \sqrt{x} \}$

in Formel einsetzen:
$$\int_{\Omega} xy \ d\mu = \int_0^1 dx \int_{x^2}^{\sqrt{x}} dy xy = \int_0^1 dx \ x \Big[\frac{y^2}{2}\Big]_{x^2}^{\sqrt{x}}$$
$$= \int_0^1 \Big(\frac{x^2}{2} - \frac{x^5}{2}\Big) dx = \frac{1}{12}$$

13.2 Satz von Green

Grundsatz:
$$\mu(C) = \int_{\gamma = \partial C} \vec{v} \cdot d\vec{s}$$
, falls $rot(\vec{v}) = 1$

Flächeninhalt der Ellipse E, berandet durch $x = a\cos(\theta), y = b\sin(\theta)$

Rand parametrisieren:
$$\gamma: [0, 2\pi] \mapsto \mathbb{R}^2, \ \theta \mapsto \begin{pmatrix} a\cos(\theta) \\ b\sin(\theta) \end{pmatrix}$$

Vektorfeld auswählen:
$$\vec{v}_1 = \begin{pmatrix} 0 \\ x \end{pmatrix}$$
 oder $\vec{v}_2 = \begin{pmatrix} -y \\ 0 \end{pmatrix}$

Wegintegral ausrechnen $\mu(E) = \pi ab$

14 Kurvendiskussion

14.1 Extrema/Minima

Kritischer Punkt: $p_0 \in \Omega$ für welchen $df(p_0)$ nicht den maximalen Rang besitzt, also falls $Rang(df(p_0)) < \min n, m$. Falls $df(p_0) = 0$

14.2 Hesse matrix

$$Hess(f) = \begin{bmatrix} \frac{\vartheta^2 f}{\vartheta^2 x_1^2} & \dots & \frac{\vartheta^2 f}{\vartheta^2 x_1 \vartheta x_n} \\ \dots & \dots & \dots \\ \frac{\vartheta^2 f}{\vartheta^2 x_n \vartheta x_1} & \dots & \frac{\vartheta^2 f}{\vartheta x_n^2} \end{bmatrix}$$
(27)

Falls a hat in x0 nur positive eigenwerte dann ist es eine maximalstelle, falls sie hat nur negative eingewerte dann ist es eine minimalstelle, falls sie hat beide dann ist es ein sattelpunkt.

12

14.3 Ohne nebenbedigungen

- 1. finden df(x)=0
- 2. hesse matrix finden ob est max min oder sattelpunkt ist.

14.4 Mit nebenbedingungen

Lagrange multiplikator g ist die bedingung und f die hauptfunktiom, falls x_0 ein max oder min ist dann gilt:

$$L = f - \lambda g \tag{28}$$

$$dL(x_0) = 0 (29)$$

- 1. finden die Kandidaten im inneren von Gebiet wie vorher
- 2. schreibe den Rand in: $\vartheta\Omega = g^{-1}\{0\}$
- 3. Stelle die funktion $L = f \lambda g$
- 4. die Kritische punkte der lagrange funktion sind kandidaten wo the ableitung muss gleich 0 sein und g muss gleich null sein.
- 5. Eckepunkte sind auch noch kandidate

Mann kann auch aussert lagrange einfach die gerade die um den Gebiet gehen und sie ableiten und gleich 0 stellen.

Um die tangential zu der ebene von eine extramastelle von diese ebene zu finden, die ebene z=f(extremestelle)(die ebene ist constant weil es eine extrema stelle ist).