4 Tile example and more

Purpose:

- Understand EM_aligner, MATLAB code base for assembling and solving EM-connectomics fine alignment problems.
- Understand the linear algebra going into these solutions.
- Develop plan for scaling the solver for large chunks of mm² sections.

Source of Data

EM Phase1 Fine | RoughAlign 2266 3483 | z=2316

4 Tiles and Point Matches

Filtering

- EM_aligner includes filtering to limit the number of included point matches.
- In this example, the filtering reduced the # from 200 points per tile pair to ~50.

Affine Transformation

The point match coordinates in each tile will be transformed according to an affine transformation:

$${}^{1}u_{1} = a_{1}{}^{1}x_{1} + b_{1}{}^{1}y_{1} + c_{1}$$

 ${}^{1}v_{1} = d_{1}{}^{1}x_{1} + e_{1}{}^{1}y_{1} + f_{1}$

The goal of alignment between two tiles is to meet the criteria:

$${}^{1}U_{1} = {}^{2}U_{1}$$
 ${}^{1}V_{1} = {}^{2}V_{1}$
 ${}^{1}U_{2} = {}^{2}U_{2}$
 ${}^{1}V_{2} = {}^{2}V_{2}$

...

Explicitly:

$$a_1^{1}x_1 + b_1^{1}y_1 + c_1 = a_2^{2}x_1 + b_2^{2}y_1 + c_2$$
$$d_1^{1}x_1 + e_1^{1}y_1 + f_1 = d_2^{2}x_1 + e_2^{2}y_1 + f_2$$

Matrix Assembly

$$a_1^{1}x_1 + b_1^{1}y_1 + c_1 = a_2^{2}x_1 + b_2^{2}y_1 + c_2$$
$$d_1^{1}x_1 + e_1^{1}y_1 + f_1 = d_2^{2}x_1 + e_2^{2}y_1 + f_2$$

which is the same as:

And for multiple pairs of points:

$$\begin{bmatrix}
a_1 \\
b_1 \\
c_1 \\
a_2 \\
b_2 \\
c_2 \\
d_1 \\
e_1 \\
f_1 \\
d_2 \\
e_2 \\
f_2
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\dots \end{bmatrix}$$

Reorder to keep all tile 1

Dan Kapner

Matrix Assembly

Block-wise shorthand:

$$\begin{bmatrix} 1,2P & -1,2Q \\ T_2 \end{bmatrix} \times \begin{bmatrix} T_1 \\ T_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

2 tiles:

$$\begin{bmatrix} 1,2P & -1,2Q \end{bmatrix} \times \begin{bmatrix} T_1 \\ T_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

3 tiles:

$$\begin{bmatrix} ^{1,2}P & -^{1,2}Q & 0 \\ ^{1,3}P & 0 & -^{1,3}Q \end{bmatrix} \times \begin{bmatrix} T_1 \\ T_2 \\ T_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

4 tiles:

Z tiles: 3 tiles: 4 tiles:
$$\begin{bmatrix} 1,2P & -1,2Q \end{bmatrix} \times \begin{bmatrix} T_1 \\ T_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1,2P & -1,2Q & 0 \\ 1,3P & 0 & -1,3Q \end{bmatrix} \times \begin{bmatrix} T_1 \\ T_2 \\ T_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1,2P & -1,2Q & 0 & 0 \\ 0 & 0 & -1,3Q & 0 \\ 0 & 0 & 0 & -2,4Q \\ 0 & 0 & 0 & -3,4Q \end{bmatrix} \times \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Matrix Assembly (from data)

Force filtering to limit to 10 point matches per tile, for easy visualization:

The ordering is a little different than the example, but, it's just block-wise row permutations:

$$\begin{bmatrix} ^{1,3}P & 0 & -^{1,3}Q & 0 \\ 0 & 0 & ^{3,4}P & -^{3,4}Q \\ ^{1,2}P & -^{1,2}Q & 0 & 0 \\ 0 & ^{2,4}P & 0 & -^{2,4}Q \end{bmatrix} \times \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$(Ax = b)$$

We know these values. They are the coordinates of the point matches.

We want to know these transform values, and apply them to the image data.

Least Squares

For this simple problem, there are:

Use linear least-squares to determine the best possible set of transformations.

For this simple problem, there are:
• 80 equations (4 tile matches x 10 points x 2 DOF)
• 24 unknowns (4 tiles x (2 affine +1 translation) x 2 DOF)
The system is overdetermined.
Use linear least-squares to determine the best possible set of transformations.
$$\begin{bmatrix} 1,3P & 0 & -1,3Q & 0 \\ 0 & 0 & 3,4P & -3,4Q \\ 1,2P & -1,2Q & 0 & 0 \\ 0 & 2,4P & 0 & -2,4Q \end{bmatrix} \times \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Per row (i) residual:
$$r_i = b_i - \sum_{j=1}^n A_{ij} x_j$$

We want norm² to be as small as possible:
$$S = \sum_{i=1}^m r_i^2$$

$$S = \sum_{i=1}^{m} r_i^2$$

Least Squares

Per row (i) residual:
$$r_i = b_i - \sum_{j=1}^n A_{ij} x_j$$

We want norm² to be as small as possible:

$$S = \sum_{i=1}^{m} r_i^2$$

Find the minimum by seeking where the gradient relative to the parameters =0

$$\frac{\partial S}{\partial x_j} = 2\sum_{i=1}^{m} r_i \frac{\partial r_i}{x_j}$$

$$\frac{\partial r_i}{x_j} = -A_{ij}$$

gradient, expanded

$$\frac{\partial S}{\partial x_j} = 2\sum_{i=1}^{m} \left(b_i - \sum_{k=1}^{n} A_{ik} x_k\right) (-A_{ij}) = 0$$

rearranged

$$\sum_{i=1}^{m} \sum_{k=1}^{n} A_{ij} A_{ik} x_k = \sum_{i=1}^{m} A_{ij} b_i$$

Matrix notation

$$\underline{A^T A} x = A^T b$$

This product is a square matrix (24x24, in our example).

Now there are 24 equations and 24 unknowns.

Weighting and Regularization

Our new matrix equation:

$$A^T A x = A^T b$$

We can weight each row of A differently

$$A^T W A x = A^T W b$$

Example: within-section point matches should be weighted more than cross-section point matches

We can regularize

$$A^T W A x + \lambda = A^T W b + \lambda d$$

Derivation to-be-added, but, it's much like on the last page, with an additional term in S that increases S if the solution strays far from a first guess/approximation fo x

Renaming things:

$$Kx = L_m$$

Properties of K and L_m

K is symmetric

The graph of K shows two separate submatrices.

Which we can see easily from reordering rows and columns:

This type of structure will be important for partitioning large matrices for distributed solving. I know about 2 partitioning packages for this:

- Scotch: used by the Pastix solver. (Also, PT-Scotch for parallel partitioning.)
- METIS. Also, (ParMetis)

13

Size estimate for 1mm³

- Estimate for K
 - Ntiles = 2.5e8 = (1e4 tiles/section)x(2.5e4 sections)
 - K m x n = 1.5e9 x 1.5e9 (6DOF per tile)
 - Guess that each tile has point matches to 10 other tiles.
 - nnz = 5e10 (each row has 3*(10+1) nz entries)
- Similar (?), smaller matrix: Janna/Queen_4147 (SuiteSparse...):
 - m x n = 4.1e6 x 4.1e6
 - nnz = 3.2e8

First pastix with Janna/Queen_4147

```
root@15884987838d:/app/pastix_5.2.3/src/example/bin# ./simple -MM /app/matrices/Queen_4147.mtx
MPI Init thread level = MPI THREAD MULTIPLE
driver: MatrixMarket file: /app/matrices/Queen_4147.mtx
open RHS file : /app/matrices/Queen_4147.mtx.rhs
cannot load /app/matrices/Queen_4147.mtx.rhs
Setting right-hand-side member such as X[i] = i
Check: Numbering
Check : Sort CSC
Check: Duplicates OK
     PaStiX : Parallel Sparse matriX package
+-----
 Matrix size
                                        4147110 x 4147110
 Number of nonzeros in A
   Options
      Version
      SMP SOPALIN
                                        Defined
      VERSION MPI
                                        Defined
      PASTIX_DYNSCHED :
                                        Not defined
      STATS_SOPALIN :
                                        Not defined
      NAPA SOPALIN
                                        Defined
      TEST IRECV
                                        Not defined
      TEST ISEND
                                        Defined
                                        Exact Thread
      FORCE CONSO :
                                        Not defined
      RECV_FANIN_OR_BLOCK :
                                        Not defined
      OUT OF CORE :
                                        Not defined
      DISTRIBUTED
                                        Defined
      METIS
                                        Not defined
                                        Defined
      WITH_SCOTCH
      INTEGER TYPE
                                        int
      PASTIX FLOAT TYPE :
                                         double
  Time to compute ordering
                                        46.2 s
  Time to analyze
                                       5.09 s
  Number of nonzeros in factorized matrix -2147483648
  Fill-in
                                       -12.8728
  Number of operations (LLt) 2.69604e+14
  Prediction Time to factorize (AMD 6180 MKL) 3.61e+04 s
  --- Sopalin : Threads are binded
```

First, try simple.c (single-threaded...)

- 1.7e8 nnz before factorization
- -2.1e9 nnz after factorization (note minus sign, I thought I compiled with 64bit integers, but, now I need to go check)
- At start of factorization, RAM usage went up to 115GB. (from ~5GB)
- 10 hours predicted time to factorize...
- This is a terrible example for single-thread, but, good for parallel

A and K from a whole section (282 tiles)

Do these plots make sense?

