BT 2020 — Numerical Methods for Biology Jan–May 2018 Quiz Questions

April 27, 2018

- 1. **Justify** (as briefly as possible) whether each of the following statements is true or false. If the justification is incorrect, no credit will be awarded. **Answer sub-questions in the correct order.**
 - (a) The float 0xfff1234561234567 is normalised
 - (b) For a linear system given by Ax = b, if our measurements of the values of b_i are 99.0% accurate, then our estimates of x will have a relative error of at most 1%
 - (c) The matrix $A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ is in echelon form
 - (d) The conditioning of a problem depends on the algorithm used to solve it
 - (e) The ∞ -norm of $[3 \ 9 \ -2 \ -11]$ is 9.0
 - (f) The single-precision floats 0x00000000 and 0x80000000 represent the same number
 - (g) Consider a program that uses a Monte Carlo method to estimate π . For this program, the estimate of π from 10,000 iterations is guaranteed to be closer to the real value of π than after 9,000 iterations.
 - (h) The vector $\begin{bmatrix} -1 & 0 & 1/\sqrt{2} \end{bmatrix}^T$ is not an eigenvector of the matrix $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix}$
 - (i) If ${\bf A}={\bf Q}{\bf R}$ gives the QR decomposition of ${\bf A}$, then the eigenvalues of ${\bf Q}{\bf R}$ and ${\bf R}{\bf Q}$ are the same
 - (j) The product of three orthogonal matrices is not always orthogonal
- 2. Why is pivoting important in Gaussian elimination?
- 3. Given an example of a biological problem, where echelon forms are relevant.
- 4. What is the floating-point double (hex) representation of the number 2.025?
- 5. IEEE also has a 128-bit notation where |e|=15. What is the value of the smallest normalised floating point number that can be represented in 128 bits?
- 6. On June 4, 1996 an unmanned Ariane 5 rocket launched by the European Space Agency exploded just forty seconds after its lift-off from Kourou, French Guiana. The rocket was on its first voyage, after a decade of development costing \$7 billion. The destroyed rocket and its cargo were valued at \$500 million. A board of inquiry investigated the causes of the explosion and in two weeks

issued a report. It turned out that the cause of the failure was a software error in the inertial reference system. What was nature of the floating-point error that led to this failure?

7. Perform a Cholesky decomposition of the matrix

$$A = \left[\begin{array}{rrrr} 4 & 2 & 0 & 0 \\ 2 & 5 & 2 & 0 \\ 0 & 2 & 5 & 2 \\ 0 & 0 & 2 & 5 \end{array} \right]$$

8. Perform Gauss elimination on the following system and solve for x:

$$A = \begin{bmatrix} -1 & -2 & 1 & 1 \\ 1 & 2 & 4 & -3 \\ 3 & 3 & -8 & 2 \\ -1 & 1 & 6 & -3 \end{bmatrix} b = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 7 \end{bmatrix}$$

- 9. Indicate the correct **answer(s)** for the following questions with multiple choices and **explain your answer**. Partial credit will not be awarded.
 - (a) Which of the following are possible sequences of random bits from a uniform random generator?

i.
$$[0,0,0,0,0,0,0,0]$$

ii.
$$[0, 1, 1, 1, 1, 0, 1, 0]$$

iii.
$$[1, 1, 1, 1, 0, 0, 0, 0]$$

iv.
$$[0, 1, 1, 0, 0, 1, 0, 1]$$

v.
$$[0, 1, 0, 1, 0, 1, 0, 1]$$

- (b) Which of the following are hyperparameters for genetic algorithms?
 - i. Cooling schedule
 - ii. Population size
 - iii. Number of generations
 - iv. Initial temperature
- (c) A 7×7 matrix with all real entries can have __ complex eigenvalues
 - i. 6
 - ii. 1
 - iii. 3
 - iv. 0
- 10. State the Metropolis criterion in simulated annealing. Why is it important?
- 11. Write the Maclaurin series expansion of ln(1+x) until the 5^{th} term. Write down a generic expression as a function of n and x, where n is the number of terms and ranges from 1 to infinity. Give the range of x in which the expansion is valid.
- 12. Compute the eigenvalues of the matrix: $J = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
- 13. Outline the steps to fit a curve $y = ax^2 + bx 5$ to the points (2,1), (6,49), (18,481).

- 14. Illustrate how you will use the power iteration method to find an eigenvalue of the matrix $\begin{bmatrix} 5 & 1 \\ 1 & 5 \end{bmatrix}^T$, starting with the vector $u_0 = \begin{bmatrix} 2 & 1 \end{bmatrix}^T$.
- 15. Find a matrix H such that it will reflect the vector $\begin{bmatrix} 1 & 1 & 4 & 8 \end{bmatrix}^T$, such that the last *two* elements of the vector are zeroed out.
- 16. Which of the following expressions evaluate to **zero** in MATLAB (on a 64-bit computer)? **Explain your reasoning for each case.**
 - (a) sqrt(3)-(3/sqrt(3))
 - (b) (1+eps(1)/2)-1
 - (c) 10⁴⁰⁰-10⁴⁰⁰
 - (d) 0.125 + 0.375 0.5
- 17. What is the floating-point double (hex) representation of the number 2^{52} ?
- 18. What is the floating-point double (hex) representation of the number 1.025?
- 19. For single precision, what is the value of the smallest normalised float that can represented (|s|=1, |e|=8, |f|=23)
- 20. How will you represent NaN in single precision?
- 21. What is a Householder reflection?
- 22. Explain how you will use computer simulations to determine the probability of rolling a 10 with three fair dice (write a small piece of code).
- 23. Compute the eigenvalues and eigenvectors of the matrix $\begin{bmatrix} 5 & 2 \\ 1 & 6 \end{bmatrix}$
- **24.** Compute $\begin{bmatrix} 5 & 2 \\ 1 & 6 \end{bmatrix}^{25}$