Домашнее задание 12. Кодирование Π_{σ} , представимость функций.

23 ноября $\rightarrow 30$ ноября

Последнее в разделе "Выводимость и (не)разрешимость"

Будем говорить, что функция $f(x_1,\ldots,x_n)$ представима в минимальной арифметике, если существует формула $\psi(\overline{x},y)$ такая, что для всех $x_1,\ldots,x_n\in\mathbb{N}$

MA
$$\vdash \forall y \ \psi(\widehat{x_1}, \dots, \widehat{x_n}, y) \leftrightarrow y = \widehat{f(x_1, \dots, x_n)}.$$

- 1) Докажите, что следующие функции рекурсивны:
 - (a) y! (факториал); x^y (возведение в степень);
 - (б) функция, перечисляющая без повторения простые числа в порядке возрастания;
 - (в) последовательность Фибоначчи;
 - (Γ) количество простых чисел, не превосходящих y.
- 2) Докажите, что следующие множества рекурсивны:
- (a) множество всех кодов термов сигнатуры $\sigma = \{<, +, \cdot, 0, 1\};$
- (б) множество кодов имен \hat{n} натуральных чисел;
- (в) множество всех кодов формул сигнатуры σ ;
- (г) множество всех кодов логических следствий минимальной арифметики.
- 3) Докажите рекурсивность функции f:

(a) \int код терма t

$$f(a,b) = \begin{cases} \text{код терма } t+s, & a,b-\text{коды термов } t,s,\\ 0, & \text{иначе.} \end{cases}$$

 $f(a) = \begin{cases} \text{код формулы } t+0 = t, & a - \text{код терма } t, \\ 0, & \text{иначе.} \end{cases}$

$$f(a) = \begin{cases} \text{код формулы } \neg \varphi, & a - \text{код формулы } \varphi, \\ 0, & \text{иначе.} \end{cases}$$

 $f(a,b,c) = \begin{cases} \text{код формулы } (\varphi \wedge \psi) \to \psi, & a,b,c - \text{коды формул } \varphi,\psi,\theta,\\ 0, & \text{иначе.} \end{cases}$

- 4) Докажите, что функции $+, \cdot, I_k^n$ (проекция), ℓ (характеристическая функция предиката <) представимы в минимальной арифметике.
- 5) Докажите, что суперпозиция представимых функций представима, и что минимизация представимой функции представима.