Evolutionary Algorithms (2)

1 WORK DURING THE LAB

- 1. Implement an **evolutionary algorithm** to find the optimum of the *Sphere function*.
 - a. Population initialization for real codification
 - b. Crossover operator
 - c. Mutation operator
 - d. Fitness function
- 2. Test the algorithm for different parameter settings.

Points for the work during the lab: 25p

2 ASSIGNMENT A6

- 1. Implement and test an **evolutionary algorithm** for the *Sphere* function and *one other function* from the list below.
- 2. Compare at least 2 different selection strategies for parent selection.
- 3. Compare at least 2 different crossover operators.
- 4. Compare at least 2 different mutation operators.

Deadline to submit A6: Lab 7

Points for A6: 25p

3 REQUIREMENTS

- 1. Source code (notebook) needs to be documented.
- 2. Algorithms have to be tested for several parameter values (sufficient to clearly determine performance).
- 3. Experiments must be performed for all available problem instances and results compared for different parameter settings.
- 4. Results of the experiments need to be saved in output files, indicating solution quality, parameter values used, number of runs.
- 5. A report should capture the following: problem definition, algorithm used (name, steps/pseudocode), parameter setting, comparative results of experiments, discussion of results.

4 LIST OF FUNCTIONS

f	Name	Plot	Formula	Global optimum	Characteristics
I	Sphere Function (aka De Jong's function 1)	DE JONGe funcion 1 200 150 150 100 100 100 100 10	$f_1(x) = \sum_{i=1}^{n} x_i^2$ $-5.12 \le x_i \le 5.12$	f(x)=0, x(i)=0, i=1:n.	It is continuos, convex and unimodal. Number of local minima: no local minimum except the global one.
2	Weighted Sphere Model (Axis parallel hyper-ellipsoid)	Asse parallel hyper-disposed to	$f_{lx}(x) = \sum_{i=1}^{n} i \cdot x_i^2$ $-5.12 \le x_i \le 5.12$	f(x)=0; x(i)=0, i=1:n.	It is continuos, convex and unimodal.
3	Schwefel 1 (Rotated hyper-ellipsoid function)	Redated Pryser-elicocid 16 15000 15000 10	$f_{1b}(x) = \sum_{i=1}^{n} \left(\sum_{j=1}^{i} x_j \right)^2$ $-65.536 \le x_i \le 65.536$	f(x)=0; x(i)=0, i=1:n.	It is continuos, convex and unimodal.

4	Moved axis parallel hyper-ellipsoid function	Moved once parallel hypor-dilipodel to x 10* 2 1.5 3 1.5 40 20 0 50 waristle 4 .50 Westelle 1	$f_{k}(x) = \sum_{i=1}^{n} 5i \cdot x_{i}^{2}$ $-5.12 \le x_{i} \le 5.12$	f(x)=0; x(i)=5*i, i=1:n.	Derivata din axis parallel hyper- ellipsoid (1a) – cu alt minim
5	Rosenbrock's valley (aka Banana function) (aka De Jong's function 2)	2000 e - 1000 e - 100	$f_2(x) = \sum_{i=1}^{n-1} 100 \cdot (x_{i+1} - x_i^2)^2 + (1 - x_i)^2$ $-2.048 \le x_i \le 2.048$	f(x)=0; x(i)=1, i=1:n.	The global optimum is inside a long, narrow, parabolic shaped flat valley.
6	Rastrigin Function		$f_6(x) = 10 \cdot n + \sum_{i=1}^{n} (x_i^2 - 10 \cdot \cos(2 \cdot \pi \cdot x_i))$ $-5.12 \le x_i \le 5.12$	f(x)=0; x(i)=0, i=1:n.	Based on function 1 with the addition of cosine modulation to produce many local minima. Thus, the test function is highly multimodal. However, the location of the minima are regularly distributed.

7	Schwefel Function	SCHAFFELs function 7 1000 10	$f_7(x) = \sum_{i=1}^n -x_i \cdot \sin\left(\sqrt{ x_i }\right)$ $-500 \le x_i \le 500$	f(x)=- n·418.9829; x(i)=420.968 7, i=1:n.	Deceptive function in that the global minimum is geometrically distant, over the parameter space, from the next best local minima.
8	Griewank Function	GRIEVANOKA function 8	$f(\mathbf{x}) = \sum_{i=1}^{d} \frac{x_i^2}{4000} - \prod_{i=1}^{d} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1$ $\mathbf{x}_i \in [-600, 600], i = 1,, d.$	f(x)=0; x(i)=0, i=1:d.	Similar to Rastrigin's function. It has many widespread local minima. However, the location of the minima are regularly distributed.
9	Sum of different powers function	Sun of different power function S age 15 age 20 variable 2 1 1 variable 2 1 variable 1	$f(\mathbf{x}) = \sum_{i=1}^{d} x_i ^{i+1}$ $x_i \in [-1, 1], i = 1,, d.$	f(x)=0; x(i)=0, i=1:d.	Unimodal test function.

10	Ackley Function	Adder/Function 25 20 215 20 215	$f(\mathbf{x}) = -a \exp\left(-b\sqrt{rac{1}{d}\sum_{i=1}^d x_i^2} ight)$	f(x)=0; x(i)=0, i=1:d.	Multimodal test function.
		E 10 40 20 40 40 X1	$-\exp\left(rac{1}{d}\sum_{i=1}^{d}\cos(cx_i) ight)$		
			$+a+\exp(1)$		
			a = 20, b = 0.2, c = 2π		
			x _i ∈ [-32.768, 32.768], i = 1,, d		
11	Styblinski-Tang Function	Systems Fang Faration 200 200 100 200 0	$f(\mathbf{x}) = rac{1}{2} \sum_{i=1}^{d} (x_i^4 - 16x_i^2 + 5x_i)$	$f(\mathbf{x}^*) = -39.16599d,$ $\mathbf{x}^* = (-2.903534,$,	
		100 100 100 100 100 100 100 100 100 100	$x_i \in [-5, 5], i = 1,, d.$	-2.903534)	
12	Michalewicz Function	Mehdeske fundin	$f(\mathbf{x}) = -\sum_{i=1}^{d} \sin(x_i) \sin^{2m} \left(\frac{ix_i^2}{\pi}\right)$	f(x) = -4.687 (d=5); x(i) = ????, i=1:d.	Multimodal test function (n! local optima). The parameter m defi
		14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m=10 $x_i \in [0, π], i = 1,, d.$	f(x)=-9.66 (d=10); x(i)=???, i=1:n.	nes the "steepness" of the valleys or edges.

13	Easom Function	Comm Fraction 1	$f(\mathbf{x}) = -\cos(x_1)\cos(x_2)$ $\exp\left(-(x_1 - \pi)^2 - (x_2 - \pi)^2\right)$ $x_i \in [-100, 100], i = 1, 2.$	f(x_1, x_2) = -1; (x_1, x_2) = (pi, pi).	Larger <i>m</i> leads to more difficult search. Unimodal test function, where the global minimum has a small area relative to the search space.
14	Goldstein-Price Function	Gudden-hee Fundin	$f(\mathbf{x}) = [1 + (x_1 + x_2 + 1)^2 $ $(19 - 14x_1 + 3x_1^2 - 14x_2 + 6x_1x_2 + 3x_2^2)] $ $\times [30 + (2x_1 - 3x_2)^2 $ $(18 - 32x_1 + 12x_1^2 + 48x_2 - 36x_1x_2 + 27x_2^2)] $ $x_i \in [-2, 2], i = 1, 2.$	f $(x_1, x_2) = 3;$ $(x_1, x_2) =$ (0, -1)	Global optimization test function
15	Six-hump camel back Function	Sz-hung canchack function	$f(\mathbf{x}) = \left(4 - 2.1x_1^2 + \frac{x_1^4}{3}\right)x_1^2 + $ $x_1x_2 + (-4 + 4x_2^2)x_2^2$	f $(x_1, x_2) = -1.0316;$ $(x_1, x_2) = (-0.0898, 0.7126),$ (0.0898, -0.7126).	Global optimization test function. Within the bounded region are six local minima, two of them are global minima.

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm

http://www.geatbx.com/ver 3 3/fcnindex.html