Sistemas de ficheros

Administración de Sistemas

Unai Lopez Novoa unai.lopez@ehu.eus

Contenido

- 1. Introducción
- 2. Administración
- 3. LVM y RAID
- 4. Copias de seguridad

• Los sistemas de ficheros son parte esencial de cualquier sistema informático actual.

 Todo sysadmin es responsable de asegurar la integridad de los datos que gestiona.

• Hard Disk Drive (HDD) vs Solid State Drive (SSD)

• Disco: dispositivo físico de almacenamiento

Sistema de ficheros local

- Partición: Unidad lógica de almacenamiento
 - Ejemplo: organizar disco en 1 partición

local

- Partición: Unidad lógica de almacenamiento
 - Ejemplo: organizar disco en 2 particiones

- Tabla de particiones: Esquema que indica cómo se organizan las particiones.
 - Se crea antes de definir las particiones.

Nuevo disco de 500 GB

• Sistema de ficheros: Estructura que gestiona el almacenamiento y recuperación de datos.

Nuevo disco de 500 GB

- Montaje: Enlace de un sistema de ficheros con otro.
 - Ejemplo: la 1^a partición del nuevo disco está disponible en /media
 - La carpeta /media sería el punto de montaje.

Tabla de particiones

- Se crea antes de definir las particiones.
- Generalmente es MBR o GPT
- Master Boot Record (MBR)
 - A veces mostrado como DOS (por MS-DOS)
 - Introducido en 1983
 - Permite dividir 1 disco en 4 particiones primarias
 - Para crear más particiones:
 - · Convertir 1 partición primaria en lógica
 - Crear particiones extendidas dentro la lógica
 - Límite: 23 particiones extendidas
 - Almacena la meta información al comienzo del disco
 - Límite: 2 TB por disco

10

Tabla de particiones

- Se crea antes de definir las particiones.
- Generalmente es MBR o GPT
- GUID Partition Table (GPT)
 - Introducido entre 1990~2000
 - Permite realizar hasta 128 particiones en 1 disco.
 - Almacena la meta-información distribuida por el disco.
 - Límite: 9.7 zetabytes por disco
 - No es tan compatible como MBR
 - Para poder usar un disco GPT para arranque, el sistema debe ser BIOS UEFI.

- Fichero del dispositivo
 - Fichero del sistema que posibilita que las aplicaciones accedan a un dispositivo (a través del kernel)
 - Se encuentran en /dev:

```
Dispositivos SATA: /dev/sdX (donde X es a, b, ...)

1er disco SATA: /dev/sda
```

2º disco SATA: /dev/sdb

•••

Dispositivos RAID: /dev/mdX

Especiales, p.e. /dev/null (nulo)

/dev/urandom (números aleatorios)

- Particiones:
 - Están en /dev, con un número adjunto al nombre del disco.
 - Ejemplo: El 2º disco SATA con 2 particiones sería:

/dev/sdb Disco
/dev/sdb1 Partición 1 del disco
/dev/sdb2 Partición 2 del disco

- Con Kernels recientes, el sistema crea un alias para cada partición:
 - Se puede usar cada vez que sea necesario.
 - Evita tener que comprobar nombres después de cada reinicio.
 - P.e.: /dev/disk/by-uuid/{UUID}
 enlaza al /dev/sdXX correspondiente
 - Listar UUID de cada partición: comando blkid

Manipular particiones:

- Comando fdisk
 - Sintaxis: fdisk (fichero-de-dispositivo)
 - P.e. fdisk /dev/sda
 - Algunas opciones: p Ver tabla de particiones de disco
 - n Nueva partición
 - w Escribir nueva tabla de particiones
 - q Salir
- Comando cfdisk
 - Variante visual de fdisk
 - Más fácil de utilizar
 - No tiene todas las funciones de fdisk.

- Formatear una partición:
 - Crear un sistema de ficheros en una partición
 - Comando **mkfs**: crea un sistema de ficheros en una partición
 - Sintaxis: mkfs.<tipo-de-sistema><partición>
 - P.e. mkfs.ext4/dev/sda3
 - Una forma alternativa es: mkfs [-V -t tipo-de-sistema] <partición>
 - P.e. mkfs –t ext4 /dev/sda3
 - Se desaconseja el uso de esta forma.

- Montar una partición
 - Por defecto, comando mount
 - Sintaxis: mount (opciones) [fichero-disp] [punto-montaje]
 - Algunas opciones: -t Tipo de sistema -r Montar en sólo lectura
 - Ejemplo: mount -t ext4 /dev/sdc1 /home/unai/miDisco
- Desmontar una partición
 - Por defecto, comando umount
 - Sintaxis: umount [punto-montaje]
 - Requiere que ningún proceso esté usando la partición

- Montar una partición
 - Generalmente, tras montar un sistema de ficheros con **mount**, el punto de montaje pertenece a "root".
 - Para hacer que pertenezca a nuestro usuario, se puede utilizar la herramienta bindfs¹.
 - Instalar bindfs: sudo apt install bindfs
 - 2) Montar con el parámetro user: sudo mount -o user -t (tipo) (partición) (puntoMontaje)
 - 3) Utilizar bindfs para remontar con permisos de usuario: sudo bindfs -u \$(id -u) -g \$(id -g) \puntoMontaje> \puntoMontaje>
 - Para desmontar, requiere utilizar umount 2 veces

Obtener información:

- Comando Isblk
 - Muestra discos y particiones
 - Parámetro "-e7" para ocultar particiones Snap en Ubuntu

Comando df

- Muestra particiones y puntos de montajes
- Parámetro "-h" para mostrar tamaños en formato "humano"
- Parámetro "-t" para mostrar los tipos de sistemas de ficheros

Comando mount

- Muestra las particiones montadas
- Parámetro "-l" para listar
- Parámetro "-t" para indicar tipo de sistema, p.e. "-t ext4"

Discos en GCP

- Añadir un disco a una instancia
 - Editar la configuración de la MV
 - En la sección "Discos adicionales"
 - Seleccionar "Agregar nuevo disco"
 - Configurar el nuevo disco, entre otras:
 - Nombre y tamaño en GB
 - Origen: "blank disk" para un disco en blanco
 - Tipo: ver siguiente diapositiva
 - Crear disco y guardar cambios en la instancia
- Administrar discos
 - Apartado "Discos" en la sección "Almacenamiento" de Compute Engine.

Discos en GCP

- Tipos de discos¹:
 - El coste mensual depende de la región²
 - Precios para la región europe-north2 a fecha 10/09/2025

Tipo	Descripción	Coste (\$/mes)
pd-standard	Discos HDD	0.04 / GB
pd-balanced	Discos SSD configurados para ser competitivos en coste	0.10 / GB
pd-ssd	Discos SSD	0.17 / GB
pd-extreme	Discos SSD configurados para máximo rendimiento	0.12 / GB

• Ejemplo: un pd-balanced de 100GB en europe-north2 cuesta 10\$/mes

Ejercicio 1

- Añadir un nuevo disco tipo SSD de 10 GB a la instancia.
- Crear 1 partición de 5 GB y otra de 4 GB. Formatear ambas como Ext4.
- Montar la partición de 5GB en /tmp/discoEj1
- En ese directorio, crear un fichero "miDNI.txt" que contenga vuestro nº de DNI.
- Desmontar la partición, volver a montarla en el mismo lugar y verificar que el fichero se mantiene.

El sistema de ficheros

- Parte del Sistema Operativo que administra la memoria de los dispositivos y unidades
- Características principales:
 - Ficheros identificados por un nombre
 - Meta-información para cada fichero
 - Fecha de creación, permisos ...
 - · Organización como una jerarquía tipo árbol
- Implementación:
 - Internamente los ficheros se almacenan en bloques secuenciales
 - La jerarquía no se tiene en cuenta a nivel interno

Sistema EXT

- Su nombre viene de Extended File System
 - Creado en 1992, el primer sistema de ficheros para Linux
 - Versión actual: Ext4 (en uso estable desde 2008)
 - Compatibilidad hacia delante y hacia atrás
 - Un sistema ext3 puede ser montado como ext4 sin cambios
- Organiza los datos en base a i-nodos
 - Ejemplo:

BtrFS

- Creado en 2009, parte de Linux desde 2013
- Características relevantes integradas
 - Gestor de volúmenes integrado, Gestor de snapshots, ...
- Recomendado para grandes tamaños de datos¹
 - El mismo BtrFS puede expandirse a varios discos
- Posible sucesor de Ext4
 - No parece que vaya a haber Ext5²

BtrFS

- Algunas características integradas:
- Compresión de ficheros
 - Comprime automáticamente cada fichero incluido
 - +info: https://btrfs.readthedocs.io/en/latest/Compression.html
- Sistema integrado de cuotas.
 - Permite establecer límites de uso a los usuarios.
 - +info: https://man7.org/linux/man-pages/man8/btrfs-qgroup.8.html
- Balanceado automático.
 - Reparte datos entre diferentes discos para evitar que se llenen.
 - +info: https://btrfs.readthedocs.io/en/latest/Balance.html

ZFS

- Creado en 2001 por Sun Microsystems, ahora Oracle
- Es un sistema de ficheros y gestor de volúmenes
- Muy estable
- Licencia privativa
 - Linus Torvalds ha creado polémica al respecto¹
- Variante libre: OpenZFS
 - Creado en 2013
 - Utilizado en entornos Linux

Sistema FAT

- Creado en 1977 y utilizado por MS-DOS
- File Allocation Table Tabla de reserva de ficheros
 - Actualmente en desuso en sistemas de escritorio
- Variantes en uso a día de hoy:
 - exFAT:
 - Orientado a tarjetas flash (p.e. SDXC) y memorias USB
 - FATX:
 - Utilizado en las videoconsolas Xbox
 - VFAT:
 - Utilizado en el arranque de algunos SSOO

Sistema NTFS

- Creado en 1993 y utilizado en Microsoft Windows
- New Technology File System
 - Introduce journaling: sistema de diario.
- Versión actual: v3.1¹
 - No es tan compatible como FAT
- En proceso de ser sustituido por ReFS²
 - Disponible en Windows Server desde 2012
 - Windows 11 puede leer discos ReFS pero no crearlos

Sistema de ficheros virtual

- Es una interfaz de Linux que:
 - Expone una API POSIX a los procesos
 - Envía las peticiones concretas al Driver que corresponda
- Aunque el SSOO monte particiones de diferentes tipos, su uso es transparente a los procesos

- Montaje automático
 - El fichero /etc/fstab define los dispositivos a montar automáticamente en el arranque del sistema
 - Columnas:

∢file sys>	Dispositivo
<mount point=""></mount>	Punto de montaje (directorio)
<type></type>	Tipo de partición: ext3, ext4, swap,
<dump></dump>	Frecuencia de backup, no se usa en la actualidad
<pass></pass>	Flag: ejecutar fsck al siguiente arranque

• Ejemplo:

- Monitorizar el uso de ficheros
 - Comando fuser
 - Muestra qué ficheros están en abiertos y por qué proceso
 - Usar: fuser -mv (directorio)
 - La columna Acceso muestra el modo:
 - f: abierto para lectura, F: abierto para escritura, c: directorio de trabajo, ...
 - Comando Isof
 - Listado de todos los ficheros abiertos
 - Ante el error "Target is busy" al desmontar una partición, utilizarlos para identificar ficheros en uso.

Comprobar el sistema de ficheros

- Comando fsck
 - Detección y corrección (no siempre) de problemas de corrupción en el sistema de ficheros
 - Compara la lista de bloques libres con las direcciones en los i-nodos
 - Verifica la lista de i-nodos libres con los i-nodos de los directorios
- Comando badblocks
 - Detecta y excluye sectores inválidos del disco
- Funciones SMART de un disco duro
 - Self Monitoring Analysis and Reporting Technology
 - Herramientas para acceder a la información de estado del disco
 - Software y funcionalidades dependen del fabricante

- Redimensionar el sistema de ficheros
 - Comando resize2fs
 - Requiere una versión del kernel >= 2.6
 - Tiene que haber espacio suficiente para poder redimensionar

- Es conveniente hacer una copia de seguridad de la tabla de particiones:
 - Utilizando dd: dd if=/dev/sdc of=part.bkp count=1 bs=1.
- Comando parted
 - Sintaxis: parted /dev/sdX
 - Permite copiar, mover, cambiar sistemas de ficheros

Ejercicio 2

- Añadir un disco duro pd-balanced de 12 GB a la instancia.
- Crear 2 particiones de 6 GB, formatear una como ext4 y la otra como btrfs.
- Montar la partición btrfs en /mnt/ejBtrfs.
- Copiar el contenido de /var/log/apt.
 - Verificar que el contenido se ha copiado correctamente.
- Desde /mnt/ejBtrfs, abrir el fichero history.log con vim (u otro editor de texto).
- En una nueva sesión SSH, utilizar *fuser* y verificar que el fichero aparece abierto con el editor de texto.

LVM

 ¿Qué pasa si mi sistema de ficheros ocupa 800 GB pero sólo tengo discos de 200 GB ?

- Logical Volume Manager (LVM) crea una capa de abstracción sobre el almacenamiento físico
- Permite crear volúmenes lógicos que "escondan" el hardware real

- Jerarquía de LVM:
 - Volúmenes físicos
 - Partición completa
 - Contiene el VGDA
 - Volume Group Descriptor Area
 - Contiene los datos físicos
 - Grupos de volúmenes
 - Equivalente a "super-discos"
 - Volúmenes lógicos
 - Equivalente a "super-particiones"
 - Albergan los sistemas de ficheros

Administración de LVM

- Comando pvcreate
 - Crear un volumen físico
 - Sintaxis: pvcreate [partición]
 - Es necesario crear antes la partición (p.e. con cfdisk)
- Comando vgcreate
 - Crear un grupo de volúmenes con varios volúmenes físicos
 - Sintaxis: vgcreate [nombre-grupo] [vols-físicos]
 - Ejemplo: vgcreate grupovol /dev/sdb1 /dev/sdc1
- Comando Ivcreate
 - · Creación de un volumen lógico
 - Sintaxis: lvcreate [nombre-grupo] I [tamaño] n [nombre-volum-log]
 - Ejemplo: lvcreate grupovol -l 100%FREE -n miVolumen

Crea el volumen en /dev/grupovol/miVolumen

- Administración de LVM
 - Comando vgextend
 - Añadir un nuevo volumen físico al grupo de volúmenes
 - Comando Ivextend
 - Extender un volumen lógico a un grupo de volúmenes más grande
 - Se puede redimensionar el sistema de ficheros
 - Utilizar resize2fs
 - Para reducir el tamaño de los volúmenes
 - Comandos vgreduce (grupo de volúmenes) y lvreduce (volumen lógico)
 - Mostrar el estado del volumen con Ivdisplay

- Ventajas de LVM
 - Gestión flexible del almacenamiento en disco
 - Elimina los límites del espacio físico
 - Almacenamiento redimensionable
 - Los volúmenes se pueden agrandar/reducir de forma simple
 - Algunas operaciones no requieren desmontar el sistema de ficheros
 - Traslado de datos en caliente
 - Los datos se pueden mover entre discos aunque estén en uso
 - Se puede reemplazar un disco sin interrumpir el servicio
 - Captura de instantáneas
 - Simplifica las copias de seguridad

- Desventajas de LVM
 - · La recuperación de datos ante fallos no es trivial
 - Recomendable combinarlo con otras técnicas
 - No es soportado por todos los SSOO
 - Requiere combinar con un sistema de ficheros compatible
 - Habitualmente con Ext4
- Hay sistemas de ficheros con gestor de volúmenes integrados
 - BtrFS, ZFS, ...
 - Eliminan la necesidad de utilizar LVM de forma adicional

Ejercicio 3

- Utilizar el disco virtual creado en el ejercicio 1.
- Borrar las particiones existentes y crear 3 particiones de 2 GB.
- Juntar las 3 particiones cómo un único volumen LVM llamado volumenEj3.
- Formatear volumenEj3 como Ext4 y montarlo en /mivol
 - Verificar el tamaño del volumen resultante

- Redundant Array of Independent Disks
 - Técnica parar distribuir o replicar datos entre varios discos
 - Es transparente para el usuario y para el SSOO
- Diferentes opciones de configuración (niveles)
 - · Según necesidades de fiabilidad, rendimiento y capacidad
- Se puede implementar a nivel HW o SW
 - Hardware: más eficiente pero más caro
 - Imagen: controladora PCI para RAID 0, 1, 5 y 10
 - Software: apropiado para RAID 0 y 1

- RAID 0: Striping (Volumen dividido)
 - Los datos se dividen en segmentos y se distribuyen entre los discos
 - Rendimiento: Bueno, acceso paralelo a los discos
 - · Cuantos más discos, más velocidad
 - Fiabilidad: No hay tolerancia a fallos
 - Capacidad: 100% de uso (0 redundancia)

- RAID 1: Espejo
 - Utilizar un disco secundario para copiar todos los datos
 - Rendimiento: Bajo, debido al exceso de escrituras
 - Fiabilidad: Alta por la alta redundancia
 - Capacidad: 50% de la disponible

- RAID 4: Striping + paridad
 - Un disco almacena información de paridad sobre el resto
 - Rendimiento: Bueno en lectura, malo en escritura
 - Fiabilidad: Tolerancia al fallo de 1 disco
 - Capacidad: 1 disco dedicado exclusivamente a redundancia

Nuevos datos:

PA = A0 xor A1 xor A2

Fallo del disco 2:

A2 = A0 xor A1 xor PA

- RAID 4: Striping + paridad
 - El mayor problema en RAID 4 son las escrituras serializadas en el mismo disco
 - Ejemplo: actualizar las posiciones 0, 5 y 7
 - 1) Leer bloques 0, 5 y 7 y PA, PB y PC
 - 2) Calcular el nuevo valor de PA, PB y PC
 - 3) Escribir los nuevos bloques de datos
 - 4) Escribir los nuevos bloques de paridad
 - · Este último paso implica escrituras serializadas
 - Bajo rendimiento

- RAID 5: Striping + paridad distribuida
 - La información de paridad se distribuye por todos los discos
 - Rendimiento: Mejor que RAID 4, elimina la escritura serializada
 - Fiabilidad: Tolerancia al fallo de 1 disco
 - Capacidad: Se dedica el equivalente a 1 disco a redundancia

Otros niveles RAID:

- RAID 2, RAID 3
 - Paridad a nivel de bit (RAID2) o byte (RAID3), en lugar de bloque.
 - No es muy utilizado
- RAID 6: Striping + Doble paridad
 - RAID 4 pero usando el doble de espacio para paridad
 - Tolerante al fallo de 2 discos
- RAID anidados: jerarquías en árbol
 - P.e, RAID 0+1, RAID 1+0 (10), ...

Combinando RAID y LVM

• LVM se debe implementar sobre RAID

- Administración RAID, se utiliza el comando mdadm:
 - Creación de un dispositivo RAID
 - Para crear un dispositivo llamado md0 en /dev/md0:
 - mdadm --create /dev/md0 --verbose --level=0 --raid-devices=2 /dev/sdb /dev/sdc2
 - Los discos tienen que haber sido previamente particionados (p.e. con cfdisk)
 - El proceso de creación se puede monitorizar:
 - cat/proc/mdstat
 - Monitorizar el sistema RAID
 - mdadm --monitor [opciones] /dev/md0
 - Eliminar (desactivar) RAID:
 - Parar el dispositivo: mdadm --stop /dev/md0
 - Limpiar información: mdadm --zero-superblock /dev/sdX
 - Limpia la información existente de un dispositivo RAID parado

- En caso de fallo de 1 disco
 - Asumiendo un sistema RAID 5
 - El disco roto se puede recuperar automáticamente:
 - Eliminar el disco roto del RAID:
 - mdadm /dev/md0 -r /dev/sdc1
 - Reemplazar el disco físico por otro (debe ser idéntico)
 - Crear particiones como en el original:
 - fdisk /dev/sdc.
 - Añadir al dispositivo RAID:
 - mdadm /dev/md0 -a /dev/sdc1
 - Monitorizar el proceso de reconstrucción:
 - cat/proc/mdstat
 - Se puede simular el fallo de un disco:
 - Utilizar: mdadm/dev/md0 -f/dev/sdc1
 - Toda la información en: /var/log/syslog

Ejercicio 4

- Utilizar el disco virtual creado en el ejercicio 1.
- Borrar las particiones existentes y crear 2 particiones de 4 GB.
 - Si existe volumen LVM, recomendable desactivarlo antes
 - Comandos vgreduce, vgremove, pvremove
- Crear un RAID 0 con ambas particiones llamado md4
- Formatear el dispositivo RAID como Ext4 y montarlo en el directorio /raidEj4
 - Verificar que su tamaño es correcto.

- RAID no es suficiente para tener una disponibilidad del 100%
- Tener copias de seguridad es <u>esencial</u>
 - Solución para eventos inesperados, tanto HW como SW
 - Evita potenciales problemas de los usuarios
- Implica dedicar recursos exclusivos
 - Recursos físicos
 - Discos dedicados exclusivamente a copias, Servidores SAN, ...
 - Cintas: LTO (LinearTape-Open), SAIT, AIT
 - Almacenamiento en la nube

- La política de copias debe ir acorde a nuestros requisitos
 - ¿Qué es necesario guardar?
 - Datos de usuarios / aplicaciones / sistema
 - · Las partes críticas del sistema
 - ¿Cuándo queremos hacer las copias?
 - No recargar el sistema en momentos críticos
 - Dependerá del nivel de uso y la parte del sistema de ficheros
 - Automatizar las copias (usando p.e. cron)
 - ¿Dónde queremos hacer las copias?
 - Balance entre copias locales y en ubicaciones remotas

- Estrategias para el almacenamiento de Backups
 - Ejemplos:

Estrategia 3-2-1

Estrategia 4-3-2

- Los discos pueden fallar/romperse/...
- Los siguientes datos son de BackBlaze:
 - Consultora dedicada al almacenamiento en la nube
 - Cada trimestre publica un informe detallando:
 - Ratio de fallos en sus discos duros
 - Comparativas de rendimiento
 - Datos históricos
 - Último informe: Abril Junio 2025
 - https://www.backblaze.com/blog/backblaze-drive-stats-for-q2-2025/

Drive reliability: annualized failure rate (AFR)

Period	Drive days	Drives failed	AFR	
Quarterly: Q2 2025	28,402,627	1,061	1.36%	
Annual: 2024	101,906,290	4,372	1.57%	
Lifetime	498,078,717	17,707	1.30%	

Backblaze Hard Drive Failure Rates for Q2 2025

Reporting period April 1, 2025–June 30, 2025 inclusive Drive models with drive count > 100 as of June 30, 2025 and drive days > 10,000 in Q2 2025

MFG	Model	Size (TB)	Drive Count	Avg. Age (Months)	Drive Days	Failures	AFR
HGST	HMS5C4O4OBLE64 O	4	188	97.2	16,893	1	2.16%
HGST	HUH728080ALE600	8	1,081	84.4	97,243	2	0.75%
HGST	HUH721212ALE600	12	2,608	66.7	237,117	2	0.31%
HGST	HUH721212ALE604	12	13,468	47.8	1,207,348	115	3.48%
HGST	HUH721212ALN604	12	10,070	71.9	903,548	84	3.39%
Seagate	ST8000DM002	8	9,027	103.9	819,550	40	1.78%
Seagate	ST8000NM000A	8	247	29	22,433	0	0%
Seagate	ST8000NM0055	8	13,424	92.5	1,215,170	73	2.19%
Seagate	ST10000NM0086	10	1,026	89.7	92,392	12	4.74%
Spagato	ST12000NM00007	12	1014	66.9	91.8∩1	a	3.58%

- Comando rsync
 - Herramienta GNU para backups
 - Web oficial: https://rsync.samba.org/
 - Documentación, FAQ, Novedades
 - Forma de uso más simple:
 - rsync [opciones] (origen) (destino)
 - Opciones: -v Modo verboso
 - -a Mantiene usuarios,
 - -z Comprime antes de copiar
 - -h Mostrar tasas de transferencia y tamaños en formato legible (MB/s en vez de bytes/s)
 - Ejemplo: rsync -vazh /home /dev/sdc
 - Se suele utilizar para copias remotas por red

- Comando rsnapshot
 - Herramienta basada en rsync para realizar copias incrementales, gestionando un histórico de las mismas con rotación
 - Web: https://rsnapshot.org/
 - Documentación: https://wiki.archlinux.org/title/Rsnapshot
 - No viene instalada en Ubuntu Server por defecto
 - Instalar con "apt install rsnapshot"
 - Configuración: /etc/rsnapshot.conf
 - Uso:
 - rsnapshot configtest Verifica que un fichero de configuración es correcto
 - rsnapshot (TAG)
 Realiza una copia del tipo (TAG), p.e. "daily"
 - rsnapshot-diff Compara 2 copias hechas en instantes diferentes

- Alternativas más rudimentarias:
 - Comando tar
 - Combinándolo con herramientas de compresión (bzip, zip)
 - Comando dd
 - dd if=/dev/sda2 of=/dev/tape
 - Comando cp -a
 - Para replicar contenido de disco a nivel de fichero
- Alternativas comerciales:
 - Dell Backup and Recovery
 - IBM Storage Protect
 - ...

Bibliografía

- Pablo Abad Fidalgo, José Ángel Herrero Velasco. "Advanced Linux System Administration", OCW UNICAN, 2018¹:
 - Topic 6: File systems fundamentals
 - · Topic 7: File systems, advanced management
 - Publicado bajo licencia Creative Commons BY-NC-SA 4.0
 - https://ocw.unican.es/course/view.php?id=241
- Alberto González, "¿Que es Logical Volume Manager o LVM?", Octubre 2015¹:
 - https://nebul4ck.wordpress.com/2015/10/06/que-es-logical-volume-manager-o-lvm/
- GitLab Docs, "File system performance benchmarking"²:
 - https://docs.gitlab.com/ee/administration/operations/filesystem_benchmarking.html
- Consultados en julio 2020¹ y septiembre 2021²

