Exception Handling in Haskell

William S. Fisher

August 10, 2016

Abstract

Implementing exception handling in Haskell. Unlike other libraries, use named exception handlers. Use the $\lambda^{\rm try}$ -calculus to formalize and explore a series of translations between multiple calculi to arrive at a translation into Haskell. Explore properties of this translation including soundness and completeness. Publish useable Haskell library.

Acknowledgements

Thanks me

Contents

1	Intr	roduction	3
2	Background		
	2.1	λ -Calculus	4
	2.2	Haskell	4
	2.3	Logic, Types, and their Computation Interpretation	4
		2.3.1 Continuations	4
		2.3.2 Delimited-Continuations	4
	2.4	$\lambda\mu$ -Calculus	4
	2.5	λ^{try} -Calculus	4
	2.6	Delimited-Continuation Calculus	4
3	DCC Interpreter 5		
	3.1	-	5
4	Tra	nslations	6
	4.1	λ^{try} -to- $\lambda\mu$	6
	4.2	$\lambda \mu$ -to-DCC	6
	4.3	$\lambda^{ ext{try}}$ -to-DCC	6
5	Cor	nclusion	7
	5.1	Evaluation	7
	5.2	Conclusion	7
	5.3	Future Work	7

Introduction

Hel

Background

- 2.1 λ -Calculus
- 2.2 Haskell
- 2.3 Logic, Types, and their Computation Interpretation
- 2.3.1 Continuations
- 2.3.2 Delimited-Continuations
- 2.4 $\lambda\mu$ -Calculus
- 2.5 λ^{try} -Calculus
- 2.6 Delimited-Continuation Calculus

DCC Interpreter

3.1 Interpreter

Translations

- 4.1 λ^{try} -to- $\lambda\mu$
- 4.2 $\lambda\mu$ -to-DCC
- 4.3 λ^{try} -to-DCC

Conclusion

- 5.1 Evaluation
- 5.2 Conclusion
- 5.3 Future Work

Bibliography

[1] R. Kent Dybvig, Simon L. Peyton Jones, and Amr Sabry. A monadic framework for delimited continuations. *J. Funct. Program.*, 17(6):687–730, 2007.