$\underline{\text{Example}}$. If we do not require T_1 to be uniformly continuous the above spectral decomposition need not be unique:

Consider a decomposition $E=E_1\oplus E_2$ and add a direct summand E_3 with a strongly continuous semigroup T_3 whose generator A_3 has empty spectrum (e.g. A-I,Example 2.6). Then still $\sigma(A)=\sigma_1\cup\sigma_2$ but $E_1\oplus (E_2\oplus E_3)$ and $(E_1\oplus E_3)\oplus E_2$ are two different spectral decompositions corresponding to σ_1 , σ_2 .

The importance of the above theorem stems from the fact that τ_1 has a bounded generator and therefore is easy to deal with. In particular the asymptotic behavior of τ_1 can be deduced from the location of σ_1 .

Corollary 3.4. Assume that $\sigma(A)$ splits into non-empty closed sets σ_1 , σ_2 where σ_1 is compact and consider the corresponding spectral decomposition $E=E_1\oplus E_2$ for which T_1 is uniformly continuous. For all constants v, v $\in \mathbb{R}$ satisfying

 $v < inf \ \{ Re \ \lambda \ : \ \lambda \ \in \ \sigma_1 \} \quad and \quad sup \ \{ Re \ \lambda \ : \ \lambda \ \in \ \sigma_1 \} \ < \ w$ there exist m , M ≥ 1 such that

$$\mathbf{m} \cdot \mathbf{e}^{\mathbf{V}t} \| \mathbf{f} \| \le \| \mathbf{T}_1(t) \mathbf{f} \| \le \mathbf{M} \cdot \mathbf{e}^{\mathbf{W}t} \| \mathbf{f} \|$$

for every $f \in E_1$, $t \ge 0$.

<u>Proof.</u> Since the generator A_1 of T_1 is bounded we have $T_1(t) = \exp(tA_1)$ and $\sigma(T_1(t)) = \exp(t\sigma(A_1))$. Therefore by the remark following Prop.1.1 the spectral bound $s(A_1)$ coincides with the growth bound $\omega(T_1)$ and we have the upper estimate. The lower estimate is obtained by applying the same reasoning to $-A_1$ which generates the semigroup $(T_1(t)^{-1})_{t>0}$ on E_1 .

It is clear from Examples 1.3, 1.4 that no norm estimates for $(T_2(t))_{t\geq 0}$ can be obtained from the location of σ_2 . Only by adding appropriate hypotheses we will achieve spectral decompositions admitting norm estimates on both components (see A-III,6.6).

Another way of obtaining such norm estimates is by constructing spectral decompositions starting from a semigroup operator $T(t_0)$ (instead of A resp. $R(\lambda,A)$, as in Thm.3.3).

Corollary 3.5. If $\sigma(T(t_0)) = \tau_1 \cup \tau_2$ for two non-empty, closed, disjoint sets τ_1 , τ_2 and if P is the spectral projection correspon-