Where We Are

Logistics

- Exam date:
 - Final Exam date (tentative): Friday, March 22, 8 11 am, PT
 - TAs and I are still debating between classroom or canvas
 - Will update you by this Wed (3/13)
 - All Multiple choice questions
- Course Evaluation
 - It is important for both me, yourself, and TAs
 - Please participate to get your extra credits ©

ML System history

 ML Systems evolve as more and more ML components (models/optimization algorithms) are unified

Ad-hoc: diverse model family, optimization algos, and data

Opt algo: iterative-convergent

Model family: neural nets

Model: CNNs/transformers/GNNs

LLMs: transformer decoders

Today: NN, data flow graph, and data parallelism

Recap: Parameter Server

- Pros?
 - General: Abstract iterative-convergent algo
 - Relax Consistency: stale synchronous
 - Nice interface like map-reduce
- Cons?
 - Extension to GPUs?
 - Strong assumption on communication bottleneck

The Second Unification: Neural Networks

Imagenet classification with deep convolutional neural networks

[PDF] neurips.cc

A Krizhevsky, I Sutskever... - Advances in neural ..., 2012 - proceedings.neurips.cc

We trained a large, deep convolutional neural network to classify the 1.3 million high-resolution images in the LSVRC-2010 ImageNet training set into the 1000 different classes. On the ...

☆ Save 夘 Cite Cited by 126745 Related articles All 102 versions ১৯

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Figure from AlexNet [Krizhevsky et al., NeurlPS 2012], [Krizhevsky et al., preprint, 2014]

Why DL Emerged and Succeeded(but failed before)?

- It beats the previous state-of-the-art method by 10 points
 - Every year we see 1 point improvement in the past 10 years
- It scales with the size of data
 - Train with the entire ImageNet data
- It is simple: optimized by 1st-order method SGD
- Its computation pattern aligns with hardware (GPU/accelerators)

Deep learning Characteristics

- Iterative-convergent?
 - Yes: SGD
- Model still diverse?
 - No: much less diverse than the entire spectrum of ML
 - Yes: Still many flavors of NNs and needs sufficiently expressive lib to program various architectures
- Compute very intensive?
 - Yes: GPU becomes a must
- Model very large?
 - No: It starts with a relatively small model (2012)
 - Yes: It becomes large when people discover the transformer architecture
- Existing data systems to program NNs?
 - Map-reduce: not for iterative-convergence
 - Spark: op lib is very corase grained and not for neural network ops
 - P: programming model offers too many flexibility which renders it not so helpful

Outline

- Deep Learning as Dataflow Graphs
- Auto-differentiation Libraries
 - Symbolic vs. Imperative
 - Static vs. Dynamic
- DL Parallelism

Background: DL Computation

$$heta^{(t+1)} = f(heta^{(t)}, \,
abla_L(heta^{(t)}, \, D^{(t)}))$$
 weight update model (Sgd, adam, etc.) (CNN, GPT, etc.)

A Computational Layer in DL: forward

- A layer in a neural network is composed of a few finer computational operations
 - Consider: $z = f_1(x)$: y = Wx + b, z = ReLU(y)

A Computational Layer in DL: backward

- ullet Denote the backward pass through a layer l as b_l
 - b_l derives the gradients of the input x(dx), given the gradient of z as dz, as well as the gradients of the parameters W, b
 - dx will be the backward input of its previous layer l-1
 - Backward pass can be thought as a backward dataflow where the gradient

flow through the layer

A Layer as a Dataflow Graph

- Give the forward computation flow, gradients can be computed by auto differentiation
 - Automatically derive the backward gradient flow graph from the forward dataflow graph

Combining Weight Update

Gradients can be computed by auto differentiation

Automatically derive the gradient flow graph from the forward

dataflow graph

Photo from TensorFlow website

Practice

$$egin{aligned} heta^{(t+1)} &= fig(heta^{(t)},\,
abla_Lig(heta^{(t)},\, D^{(t)}ig)ig) \ L &= ext{MSE}(w_2 \cdot ext{ReLU}(w_1x),\, y) \;\;\; heta = \{w_1,w_2\},\, D = \{(x,y)\} \ f(heta,
abla_L) &= heta -
abla_L \end{aligned}$$

Forward Backward Weight update $L(\cdot)$ $\nabla_L(\cdot)$ $f(\cdot)$

Practice

$$egin{aligned} heta^{(t+1)} &= fig(heta^{(t)},\,
abla_Lig(heta^{(t)},\, D^{(t)}ig)ig) \ L &= ext{MSE}(w_2 \cdot ext{ReLU}(w_1x),\, y) \;\;\; heta = \{w_1,w_2\},\, D = \{(x,y)\} \ f(heta,
abla_L) &= heta -
abla_L \end{aligned}$$

Operator / its output tensor — Data

Data flowing direction

Dataflow Graph Programming Model Today

- Define a neural network
 - Define operations and layers: fully-connected? Convolution?
 Recurrent?
 - Define the data I/O: read what data from where?
 - Define a loss function/optimization objective: L2 loss? Softmax?
 Ranking Loss?
 - Define an optimization algorithm: SGD? Momentum SGD? etc.
- Auto-differential Libraries will then take over
 - Connect operations, data I/O, loss functions and trainer.
 - Build forward dataflow graph and backward gradient flow graphs.
 - Perform training and apply updates

Discussion:

Compare this vs. Spark, parameter server, MapReduce?

Outline

- Deep Learning as Dataflow Graphs
- Auto-differentiable Libraries
 - Symbolic vs. Imperative
 - Static vs. Dynamic
- DL Parallelism

Auto-differential Libraries

- Auto-differential Library automatically derives the gradients following the backpropagation rule.
- A lot of auto-differentiation libraries have been developed:

Deep Learning Toolkits

They are roughly adopted by different domains

Symbolic vs. Imperative

- They are also designed differently
 - Symbolic v.s. imperative programming

Symbolic vs. Imperative

- Symbolic vs. imperative programming
 - Symbolic: write symbols to assemble the networks first, evaluate later
 - Imperative: immediate evaluation

```
A = Variable('A')
B = Variable('B')
C = B * A
D = C + Constant(1)
# compiles the function
f = compile(D)
d = f(A=np.ones(10), B=np.ones(10)*2)
```

```
import numpy as np
a = np.ones(10)
b = np.ones(10) * 2
c = b * a
d = c + 1
```

Symbolic

Imperative

Symbolic vs. Imperative

- Symbolic
 - Good
 - easy to optimize (e.g. distributed, batching, parallelization) for developers
 - More efficient
 - Bad
 - The way of programming might be counter-intuitive
 - Hard to debug for user programs
 - Less flexible: you need to write symbols before actually doing anything
- Imperative:
 - Good
 - More flexible: write one line, evaluate one line (that's why we all like Python)
 - Easy to program and easy to debug: because it matches the way we use C++ or python
 - Bad
 - Less efficient
 - More difficult to optimize

Are All Models expressive in Dataflow Graph?

Static Models vs. Dynamic Models

John hit the ball

John

ball

coin

picked the

The

coin

girl

the

Static vs. Dynamic Dataflow Graphs

- Static Dataflow graphs
 - Define once, execute many times
 - For example: convolutional neural networks
 - Execution: Once defined, all following computation will follow the defined computation
 - Advantages
 - No extra effort for batching optimization, because it can be by nature batched
 - It is always easy to handle a static computational dataflow graphs in all aspects, because of its fixed structure
 - Node placement, distributed runtime, memory management, etc.
 - Benefit the developers

Static vs. Dynamic Dataflow Graphs

- Dynamic Dataflow graphs
 - When do we need?
 - In all cases that static dataflow graphs do not work well
 - Variably sized inputs
 - Variably structured inputs
 - Nontrivial inference algorithms
 - Variably structured outputs
 - Etc.

Static vs. Dynamic Dataflow Graphs

- Can we handle dynamic dataflow graphs? Using static methods (or declaration) will have a lot of problems
 - Difficulty in expressing complex flow-control logic
 - Complexity of the computation graph implementation
 - Difficulty in debugging

Questions

- Is CNN training static or dynamic graph?
- Is CNN inference static or dynamic graph?
- Is GPT-3 (transformers decoder) training static graph or dynamic?
- Is GPT-3 inference with batch size = 1 static or dynamic graph
- Is GPT-3 serving static or dynamic graph

How to Handle Dynamic Dataflow Graph?

- In general two ways:
 - Imperative: do not requiring contracting the entire graph before execution
 - Use other representation: vertex-centric representation

Advanced Topic: DL Dataflow Graph Optimization

(a) Associativity of matrix multiplication.

(b) Fusing two matrix multiplications using concatenation and split.

Advanced Topic: DL Graph Compilation

High-level IR Optimizations and Transformations

Tensor Operator Level Optimization

Direct code generation

Dataflow Graph Summary

- Dataflow graphs seems to be a dominant choice for representing deep learning models
 - What's good for dataflow graphs
 - Good for **static** workflows: define once, run for arbitrary batches/data
 - Programming convenience: easy to program once you get used to it.
 - Easy to parallelize/batching for a fixed graph
 - Easy to optimize: a lot of off-the-shelf optimization techniques for graph
 - What's bad for dataflow graphs
 - Not good for dynamic workflows: need to define a graph for every training sample -> overheads
 - Hard to program dynamic neural networks: how can you define dynamic graphs using a language for static graphs? (e.g. LSTM, tree-LSTM).
 - Not easy for debugging.
 - Difficult to parallelize/batching across multiple graphs: every graph is different, no natural batching.

Where We Are

- Deep Learning as Dataflow Graphs
- Auto-differentiation Libraries
 - Symbolic vs. Imperative
 - Static vs. Dynamic
- DL Parallelism

Recap: DL Computation

$$heta^{(t+1)} = f(heta^{(t)}, \,
abla_L(heta^{(t)}, \, D^{(t)}))$$
 $ext{weight update (sgd, adam, etc.)}$ $ext{model (CNN, GPT, etc.)}$ data

DL Parallelization: 3 Core Problems

Computing

Communication

Memory

$$f(\cdot)$$
 GPU GPU

 θ

 $heta^{(t+1)} = f(heta^{(t)}, \,
abla_L(heta^{(t)}, \, D^{(t)}))$ weight update model relates

parameter

(sgd, adam, etc.)

model (CNN, GPT, etc.)

data

Two Views of ML Parallelisms

Classic view

Data parallelism

Model parallelism

New view

Inter-op parallelism

Intra-op parallelism

Data and Model Parallelism

Data parallelism

Model parallelism

$$heta^{(t+1)} = f(heta^{(t)}, \,
abla_L(heta^{(t)}, \, D^{(t)}))$$
 $ext{weight update (sgd, adam, etc.)}$ $ext{model (CNN, GPT, etc.)}$ data

38

PS Implements Data Parallelism

Representee Systems: Poseidon, GeePS, BytePS, etc.

AllReduce Can Also Handle Data Parallelism Comm

Representee Systems: Horovod, Torch.DDP

Big Models Become Prominent

Democratizing access to large-scale language models with OPT-175B

Big Model: The Core Computational Challenge

How to train and serve big models?

Model Parallelism

Two Views of ML Parallelisms

Data and model parallelism

- . Two pillars: data and model.
- "Data parallelism" is general and precise.
- . ? "Model parallelism" is vague.
- The view creates ambiguity for methods that neither partitions data nor the model computation.

New: Inter-op and Intra-op parallelism.

- Two pillars: **computational graph** and **device cluster**
- This view is based on their computing characteristics.
- This view facilitates the development of new parallelism methods.

Device Cluster

Nvidia DGX with V100

Figure from NMDIA

A typical GPU cluster topology

Fast connections

Slow connections

Partitioning Computation Graph on Device Cluster

How to partition the computational graph on the device cluster?

Partitioning Computation Graph

Strategy 1

Strategy 2

Partitioning Computation Graph

Strategy 1: Inter-operator Parallelism

Strategy 2: Intra-operator Parallelism

More Parallelisms...

Multiple intra-op strategies for a single node

More strategies

Summary: Inter-op and Intra-op Parallelisms

Inter-op parallelism: Assign different operators to different devices.

Intra-op parallelism: Assign different regions of a single operator to different devices.

Inside Intra- and Inter-op Parallelism

$$Y = X \cdot W_1 \cdot W_2 = X \cdot egin{bmatrix} W_1^{d1} & W_1^{d2} \end{bmatrix} \cdot egin{bmatrix} W_2^{d1} \ W_2^{d2} \end{bmatrix}$$

Inter-op and Intra-op Parallelism: Characteristics

Inter-op parallelism:

Requires point-to-point communication but results in device idle

Intra-op parallelism:

Devices are busy but requires collective communication

Inter-op and Intra-op Parallelism: Characteristics

Inter-op parallelism

Trade-off

	Inter-operator Parallelism	Intra-operator Parallelism
Communication	Less	More
Device Idle Time	More	Less

Intra-op parallelism

ML Parallelization under New View

