Fundamentals of Database Systems

Assignment: 7

Due Date: 15th September, 2017

Instructions

This question paper contains 10 questions in 3 pages.

- **Q1:** Choose the correct option about the following schedule.
 - S: $R_2(A)$; $W_3(A)$; (commit T_3); $W_1(A)$; (commit T_1); $W_2(B)$; $R_2(C)$; (commit T_2); $R_4(A)$; $R_4(B)$; (commit T_4)
 - A. S is both recoverable and conflict serializable
 - B. S is neither recoverable nor conflict serializable
 - C. S is recoverable but not conflict serializable
 - D. S is not recoverable but conflict serializable

Explanation: A is correct. Only committed data is being read in whole schedule by all transactions

- **Q2:** Which of the following statement is correct?
 - A. 2 phase locking protocol does not suffer with problem of cascading rollback
 - B. Strict 2 phase protocol never results in deadlock
 - C. In strict 2 phase protocol, restriction of releasing *exclusive* locks until commit ensures no cascading rollbacks
 - D. Time-stamp ordering protocol can generate non-recoverable schedules

Explanation: Directly from text.

- **Q3:** Which of the following transaction(s) follow 2-phase locking protocol?
 - $1. \ lock_1(a) read_1(a) lock_2(b) write_2(b) lock_1(c) unlock_2(b) unclock_1(c) lock_2(c) unlock_1(a) \\$
 - 2. $lock_1(a)lock_1(b)unlock_1(a)lock_2(a)write_2(a)unlock_2(a)unlock_1(b)$
 - $3. \ lock_1(a)lock_2(b)lock_3(d)unlock_2(b)lock_3(b)unlock_1(a)unlock_3(d)unlock_1(c)lock_3(c)\\$
 - A. Only 1
 - B. Only 2
 - C. Only 1 and 3
 - D. None of them

Explanation: violations

1: $unlock_2(b) \rightarrow lock_2(c)$ 3: $unlock_3(d) \rightarrow lock_3(c)$

Q4: Which of the following statement(s) is/are correct?

- 1. Strict 2 phase locking protocol is deadlock free
- 2. A schedule that follows rigorous 2 phase protocol can be serialized by the commit order of transactions
- 3. All strict 2 phase schedules are recoverable
- 4. Every rigorous 2 phase schedule is strict 2 phase schedule
 - A. Only 1
 - B. Only 3 and 4
 - C. 2, 3 and 4
 - D. All of them

Explanation: From text

- Q5: Two-phase locking ensures view serialization.
 - A. True
 - B. False

Explanation: 2 phase ensures conflict serialization which in turn is view serialize; strict 2 phase schedules are cascade-less

- **Q6:** All strict schedules are _____ and all cascadeless schedules are _____.
 - A. Cascadeless, Recoverable
 - B. Serial, Recoverable
 - C. Recoverable, Conflict serializable
 - D. None of the choices

Explanation: A is correct. All strict schedules are Cascadeless and all cascadeless schedules are recoverable

- **Q7:** Consider the following statements:
 - (I) All recoverable schedules are conflict-serializable
 - (II) Any view serializable schedule is conflict serializable.
 - (III) Every cascadeless schedule is strict.
 - (IV) All cascadeless schedules are recoverable.

Which statement(s) is/are correct?

- A. I and IV only
- B. I, III and IV only
- C. IV only
- D. I, II and III only

Explanation: Only statement IV is correct as per the definitions.

- **Q8:** Which of the following prevent(s) deadlock?
 - A. Rigorous 2-phase locking protocol
 - B. Conservative 2-phase locking protocol
 - C. Both rigorous and conservative 2-phase locking protocols
 - D. None of rigorous and conservative 2-phase locking protocols

Explanation: Deadlock can only be prevented by Conservative 2-Phase Locking Protocol

- **Q9:** In wait-die scheme, transactions T_1 and T_2 have timestamps 10 and 15 respectively. If T_2 requests a data item held by T_1 then
 - A. T_2 will be rolled back
 - B. T_2 will wait
 - C. T_1 will be rolled back
 - D. T_1 will wait

Explanation: In wait-die scheme, when transaction T_i requests a data item currently held by T_j and time stamp of T_j is smaller than that of T_i , then T_i is rolled back. Thus when T_2 requests a data item held by T_1 , then T_2 will be rolled back.

- **Q10:** In a wound-wait scheme, transactions T_1 and T_2 have time stamp 2 and 5 respectively. If T_1 requests a data item held by T_2 , then T_1 will be rolled back.
 - A. True
 - B. False

Explanation: In wound-wait scheme, when transaction T_i requests a data item currently held by T_j and time stamp of T_j is greater than that of T_i , then T_j is rolled back. Thus when T_1 requests a data item held by T_2 , then T_2 will be rolled back.