CLASE 4: CLOCK CONTROL

MICROCONTROLADORES ARM

SYSTEM CONTROL

El control del sistema configura el funcionamiento general del dispositivo y proporciona información sobre el dispositivo. Las características configurables incluyen control de reinicio, operación NMI, control de energía, control de reloj y modos de bajo consumo.

Pin Name	Pin Number	Pin Mux / Pin Assignment	Pin Type	Buffer Type ^a	Description
NMI	10 28	PD7 (8) PF0 (8)	I	TTL	Non-maskable interrupt.
OSC0	40	fixed	I	_	Main oscillator crystal input or an external clock reference input.
OSC1	41	fixed	0	Analog	Main oscillator crystal output. Leave unconnected when using a single-ended clock source.
RST	38	fixed	I	TTL	System reset input.

Proporciona las siguientes capacidades:

- Device Identification
- Reset Control
- Power Control
- Clock Control

CLOCK CONTROL

FUENTES DE RELOJ FUNDAMENTALES

- ✓ 16MHz ± 1%
- ✓ Reduce el costo.
- ✓ Fuente de reloj para el ADC, UART y SSI.
- Main Oscillator (MOSC)
 - \checkmark 5MHz a 25MHz (con PLL).
 - \checkmark 4MHz a 25MHz (sin PLL).
 - ✓ Fuente de reloj para el USB PLL
- Low-Frequency Internal Oscillator (LFIOSC)
 - ✓ Usando en los Modos de ahorro de energía de sueño profundo.
- Hibernation Module Clock Source
 - ✓ 32.768-kHz

Clock Source	Drive PLL?		Used as SysClk?	
Precision Internal Oscillator	Yes	BYPASS = 0, OSCSRC = 0x1	Yes	BYPASS = 1, OSCSRC = 0x1
Precision Internal Oscillator divide by 4 (4 MHz ± 1%)	No	-	Yes	BYPASS = 1, OSCSRC = 0x2
Main Oscillator	Yes	BYPASS = 0, OSCSRC = 0x0	Yes	BYPASS = 1, OSCSRC = 0x0
Low-Frequency Internal Oscillator (LFIOSC)	No	-	Yes	BYPASS = 1, OSCSRC = 0x3
Hibernation Module 32.768-kHz Oscillator	No	-	Yes	BYPASS = 1, OSCSRC2 = 0x7

CONFIGURACION DEL RELOJ

- Fuente de relojes en los modos de sueño y sueño profundo.
- Reloj del sistema derivado de PLL u otra fuente de reloj.
- Habilitación / deshabilitación de osciladores y PLL.
- Divisores de reloj.

Escriba el registro RCC antes de escribir el registro RCC2.

CLOCK CONTROL

Uso de los campos SYSDIV y SYSDIV2

SYSDIV

SYSDIV	Divisor	Frequency (BYPASS=0)	Frequency (BYPASS=1)	TivaWare [™] Parameter ^a
0x0	/1	reserved	Clock source frequency/1	SYSCTL_SYSDIV_1
0x1	/2	reserved	Clock source frequency/2	SYSCTL_SYSDIV_2
0x2	/3	66.67 MHz	Clock source frequency/3	SYSCTL_SYSDIV_3
0x3	/4	50 MHz	Clock source frequency/4	SYSCTL_SYSDIV_4
0x4	/5	40 MHz	Clock source frequency/5	SYSCTL_SYSDIV_5
0x5	/6	33.33 MHz	Clock source frequency/6	SYSCTL_SYSDIV_6
0x6	/7	28.57 MHz	Clock source frequency/7	SYSCTL_SYSDIV_7
0x7	/8	25 MHz	Clock source frequency/8	SYSCTL_SYSDIV_8
0x8	/9	22.22 MHz	Clock source frequency/9	SYSCTL_SYSDIV_9
0x9	/10	20 MHz	Clock source frequency/10	SYSCTL_SYSDIV_10
0xA	/11	18.18 MHz	Clock source frequency/11	SYSCTL_SYSDIV_11
0xB	/12	16.67 MHz	Clock source frequency/12	SYSCTL_SYSDIV_12
0xC	/13	15.38 MHz	Clock source frequency/13	SYSCTL_SYSDIV_13
0xD	/14	14.29 MHz	Clock source frequency/14	SYSCTL_SYSDIV_14
0xE	/15	13.33 MHz	Clock source frequency/15	SYSCTL_SYSDIV_15
0xF	/16	12.5 MHz (default)	Clock source frequency/16	SYSCTL_SYSDIV_16

Uso de los campos SYSDIV y SYSDIV2

SYSDIV2

SYSDIV2	Divisor	Frequency (BYPASS2=0)	Frequency (BYPASS2=1)	TivaWare Parameter ^a
0x00	/1	reserved	Clock source frequency/1	SYSCTL_SYSDIV_1
0x01	/2	reserved	Clock source frequency/2	SYSCTL_SYSDIV_2
0x02	/3	66.67 MHz	Clock source frequency/3	SYSCTL_SYSDIV_3
0x03	/4	50 MHz	Clock source frequency/4	SYSCTL_SYSDIV_4
0x04	/5	40 MHz	Clock source frequency/5	SYSCTL_SYSDIV_5
		•••		•••
0x09	/10	20 MHz	Clock source frequency/10	SYSCTL_SYSDIV_10
0x3F	/64	3.125 MHz	Clock source frequency/64	SYSCTL_SYSDIV_64

Uso de los campos SYSDIV y SYSDIV2

SYSDIV2LSB: Cuando el bit DIV400 = 1 (SYSDIV2 | SYSDIV2LSB)

SYSDIV2	SYSDIV2LSB	Divisor	Frequency (BYPASS2=0) ^a	TivaWare Parameter ^b
0x00	reserved	/2	reserved	-
0x01	0	/3	reserved	-
	1	/4	reserved	-
0x02	0	/5	80 MHz	SYSCTL_SYSDIV_2_5
	1	/6	66.67 MHz	SYSCTL_SYSDIV_3
0x03	0	/7	reserved	-
	1	/8	50 MHz	SYSCTL_SYSDIV_4
0x04	0	/9	44.44 MHz	SYSCTL_SYSDIV_4_5
	1	/10	40 MHz	SYSCTL_SYSDIV_5
•••	***	***	***	•••
0x3F	0	/127	3.15 MHz	SYSCTL_SYSDIV_63_5
	1	/128	3.125 MHz	SYSCTL_SYSDIV_64

MAIN PLL

CONFIGURACION DEL PLL PRINCIPAL

Se habilita por software si es necesario. El software especifica el divisor de salida para configurar la frecuencia del reloj del sistema y permite que el PLL principal controle la salida. El PLL opera a 400 MHz, pero se divide por dos antes de la aplicación del divisor de salida, a menos que se establezca el bit DIV400 en el registro RCC2.

CONFIGURACION DEL PLL PRINCIPAL

El PLL se configura mediante escrituras de registro directo en el registro RCC/RCC2. Si se utiliza el registro RCC2, se debe establecer el bit USERCC2 y se utiliza el bit/campo RCC2 apropiado.


```
□ void PLL Config(uint32 t freq) {
/*0. configure the system to use RCC2 for advanced features*/
SYSCTL->RCC2 |= SYSCTL RCC2 USERCC2;
/*1. set BYPASS (bit 11) */
SYSCTL->RCC2 |= SYSCTL RCC2 BYPASS2;
/*2. specify the crystal frequency, the OSCSRC2 bist are cleared to select
      the main oscillator as the oscillator clock source*/
SYSCTL->RCC &=~ (SYSCTL RCC XTAL M);
SYSCTL->RCC |= SYSCTL RCC XTAL 16MHZ;
SYSCTL->RCC2 &=~ SYSCTL RCC2 OSCSRC2 M;
/*3. clear PWWDN2 (active PLL) */
SYSCTL->RCC2 &=~ SYSCTL RCC2 PWRDN2;
/*4. set the desired system divider and the system divider least significant bit*/
SYSCTL->RCC2 |= SYSCTL RCC2 DIV400;
SYSCTL->RCC2 &=~ (SYSCTL RCC2 SYSDIV2LSB | SYSCTL RCC2 SYSDIV2 M);
SYSCTL->RCC2 |= freq << 22;
/*5. wait for PLL to stabilize by waiting for PLLRIS (bit5) -> SYSCTL RIS R*/
while(!(SYSCTL->RIS & SYSCTL RIS PLLLRIS));
/*6. enable use of PLL by clearing BYPASS*/
SYSCTL->RCC2 &=~ SYSCTL RCC2 BYPASS2;
/*update SystemCoreClock variable*/
SystemCoreClock = SysCtlClockGet();
return;
```


UVAKER CENTRO DE CAPACITACIÓN DE DESARROLLO TECNOLÓGICO