Adversarial Attacks

```
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
import numpy as np
from IPython.display import clear_output
from PIL import Image
import json
np.set_printoptions(precision=3,suppress=True)

model = keras.applications.VGG16(weights='imagenet',include_top=True)
classes = json.loads(open('imagenet_classes.json','r').read())
```

Optimization for result

Optimization for result

• To visualize the ideal cat, we start with a random noise image, and try to use gradient descent to adjust the image to make a network recognize it as a cat.

We start from a random noise image:

```
In [7]: x = tf.Variable(tf.random.normal((1,224,224,3)))
def normalize(img):
    return (img-tf.reduce_min(img))/(tf.reduce_max(img)-tf.reduce_min(img))
plt.imshow(normalize(x[0]))
```

Out[7]: <matplotlib.image.AxesImage at 0x208dc7d4a90>

We normalize to bring our values into 0-1 range.

If we call our VGG network on this image, we will get more or less random distribution of probabilities:

```
In [8]: def plot_result(x):
    res = model(x)[0]
    cls = tf.argmax(res)
    print(f"Predicted class: {cls} ({classes[cls]})")
    print(f"Probability of predicted class = {res[cls]}")
    fig,ax = plt.subplots(1,2,figsize=(15,2.5),gridspec_kw = { "width_ratios" : [1, ax[0].imshow(normalize(x[0]))
    ax[0].axis('off')
    ax[1].bar(range(1000),res,width=3)
    plt.show()
    plot_result(x)
```

Predicted class: 669 (mosquito net)
Probability of predicted class = 0.05126131698489189

- Let's choose one target category (e.g., siamese cat), and start adjusting the image using gradient descent.
- If x is the input image, and V is the VGG network, we calculate the loss function $\mathcal{L} = \mathcal{L}(c,V(x))$ (where c is the target category).
- We adjust x using the following formula:

$$x^{(i+1)} = x^{(i)} - \eta rac{\partial \mathcal{L}}{\partial x}$$

• We will use cross-entropy loss because we are comparing two probability distributions in a classification problem.

We use sparese categorical cross-entropy because the class is represented by a number (and not by one-hot encoded vector).

```
In [9]: target = [284] # Siamese cat
        def cross_entropy_loss(target,res):
            return tf.reduce_mean(keras.metrics.sparse_categorical_crossentropy(target,res)
        def optimize(x,target,epochs=1000,show_every=None,loss_fn=cross_entropy_loss, eta=1
            if show_every is None:
                show_every = epochs // 10
            for i in range(epochs):
                with tf.GradientTape() as t:
                    res = model(x)
                    loss = loss_fn(target,res)
                    grads = t.gradient(loss,x)
                    x.assign_sub(eta*grads)
                    if i%show_every == 0:
                         clear_output(wait=True)
                         print(f"Epoch: {i}, loss: {loss}")
                         plt.imshow(normalize(x[0]))
                         plt.show()
        optimize(x,target)
```

Epoch: 900, loss: 0.5362939238548279


```
In [10]: plot_result(x)
```

Predicted class: 284 (Siamese cat, Siamese)
Probability of predicted class = 0.6406771540641785

- We have obtained an image that looks like a cat for a neural network, even though it looks like a noise for us.
- If we continue to optimize, we would get the image of **ideal noisy cat**, which has probability close to 1.

Making Sense of Noise

Making Sense of Noise

- There are many ways to optimize input for the ideal result, the optimization algorithm is not motivated to find patterns that are visually comprehensible.
- To make this look less like a noise, we can introduce an additional term to the loss function **variation loss**. It measures how similar neighboring pixels of the image are.
- If we add this term to our loss function, it will force the optimizer to find solutions with less noise, and thus having more recognizable details.

Making Sense of Noise

- In practice, we need to balance between cross-entropy loss and variation loss to obtain good results.
- We use some coefficients to balance between the losses.

Epoch: 900, loss: [27.241]

Making Sense of Noise

```
In [13]: plot_result(x)
```

Predicted class: 284 (Siamese cat, Siamese)
Probability of predicted class = 0.9129793643951416

• We can observe some familiar features (e.g., eyes and ears). There are many of them, which makes neural network even more certain that this is a cat.

We can try another target class.

```
In [14]: x = tf.Variable(tf.random.normal((1,224,224,3)))
    optimize(x,[340],loss_fn=total_loss) # zebra
```

Epoch: 900, loss: [29.632]

Adversarial Attacks

Adversarial Attacks

- We can see that a very noisy image can be classified as a cat.
- Maybe we can tweak any image in a little way so that it changes its class.

```
In [15]: img = Image.open('images/dog-from-unsplash.jpg')
   img = img.crop((200,20,600,420)).resize((224,224))
   img = np.array(img)
   plt.imshow(img)
```

Out[15]: <matplotlib.image.AxesImage at 0x208de975be0>


```
In [16]: plot_result(np.expand_dims(img,axis=0))
```

Predicted class: 171 (Italian greyhound)
Probability of predicted class = 0.9281905293464661

Now, we use this image as a starting point, and try to optimize it to become a cat.

In [17]: x = tf.Variable(np.expand_dims(img,axis=0).astype(np.float32)/255.0)
 optimize(x,target,epochs=100)

Epoch: 90, loss: 0.15756455063819885

In [18]: plot_result(x)

Predicted class: 284 (Siamese cat, Siamese)
Probability of predicted class = 0.8650807738304138

The image above is a perfect cat, from the point of view of VGG network!

Experimenting with ResNet

Let's see how this image is classified by ResNet:

```
In [19]: model = keras.applications.ResNet50(weights='imagenet',include_top=True)
```

In [20]: plot_result(x)

Predicted class: 111 (nematode, nematode worm, roundworm)
Probability of predicted class = 0.1309644728899002

- The result is different.
- Because when optimizing for a cat we took into account the nature of VGG network, it's low-level filters, etc. Since ResNet has different filters, it gives different results.

Example: Ideal zerbra for ResNet

In [25]: x = tf.Variable(tf.random.normal((1,224,224,3)))
 optimize(x,target=[340],epochs=500,loss_fn=total_loss)

Epoch: 450, loss: [43.233]

In [22]: plot_result(x)

Predicted class: 340 (zebra)
Probability of predicted class = 0.8924325704574585

• The picture is different from the case of VGG network. The architecture of a neural network plays quite an important role in the way it recognizes objects.

Using different optimizers

We can try different built-in optimizers from Keras

```
In [23]:
         def optimize(x,target,epochs=1000,show_every=None,loss_fn=cross_entropy_loss,optimi
             if show_every is None:
                  show_every = epochs // 10
             for i in range(epochs):
                 with tf.GradientTape() as t:
                     res = model(x)
                     loss = loss_fn(target,res)
                     grads = t.gradient(loss,x)
                     optimizer.apply_gradients([(grads,x)])
                     if i%show_every == 0:
                          clear_output(wait=True)
                          print(f"Epoch: {i}, loss: {loss}")
                          plt.imshow(normalize(x[0]))
                          plt.show()
         x = tf.Variable(tf.random.normal((1,224,224,3)))
         optimize(x,[898],loss_fn=total_loss) # water bottle
```

Epoch: 900, loss: [40.634]

Summary

• We are able to visualize the ideal image of a cat (as well as any other objects) within pre-trained CNN, using gradient descent to adjust the input image instead of weights

To get images that make some sense, we use variation loss as an additional loss function, enforcing the images to look smoother.