> #Lab 2 Done by Bahdanau Aliaksandr 153502

- > #Var 5
- > #Task 1

>
$$f := x \rightarrow piecewise \left(-\text{Pi} \le x < 0, \frac{\text{Pi}}{4} + \frac{x}{2}, 0 \le x < \text{Pi}, -\frac{\text{Pi}}{4} \right)$$

 $f := x \rightarrow piecewise \left(-\pi \le x \text{ and } x < 0, \frac{1}{4}\pi + \frac{1}{2}x, 0 \le x \text{ and } x < \pi, -\frac{1}{4}\pi \right)$ (1)

> plot(f(x), x = -Pi...Pi, discont = true)

> # Solving

> $a0 := simplify \left(\frac{1}{Pi} \cdot int(f(x), x = -Pi..Pi) \right)$ assuming n :: posint; $a0 := -\frac{1}{4} \pi$ (2)

>
$$an := simplify \left(\frac{1}{Pi} \cdot int(f(x) \cdot \cos(n \cdot x), x = -Pi..Pi) \right)$$
 assuming $n :: posint;$

$$an := \frac{1}{2} \frac{(-1)^{1+n} + 1}{\pi n^2}$$
(3)

```
> bn := simplify \left( \frac{1}{Pi} \cdot int(f(x) \cdot sin(n \cdot x), x = -Pi..Pi) \right) assuming n :: posint;
                                                                                              (4)
 > # Creating proc to get sum
> FurieSum := proc(f, k)
       local a0, an, bn, n;
       description "return Furie Sum for -Pi .. Pi";
       a0 := simplify(int(f(x), x = -\pi..\pi) / \pi);
       assume(n::posint);
       an := simplify(int(f(x) * cos(n*x), x = -\pi..\pi) / \pi);
       bn := simplify(int(f(x) * sin(n*x), x = -\pi..\pi) / \pi);
       return 1/2*a0 + sum(an*cos(n*x) + bn*sin(n*x), n = 1..k)
   end proc
 FurieSum := \mathbf{proc}(f, k)
                                                                                              (5)
    local a0, an, bn, n;
    description "return Furie Sum for -Pi .. Pi";
    a0 := simplify(int(f(x), x = -\pi..\pi) / \pi);
    assume(n::posint);
    an := simplify(int(f(x) * cos(n*x), x = -\pi..\pi) / \pi);
    bn := simplify(int(f(x) * sin(n*x), x = -\pi..\pi) / \pi);
    return 1/2*a0 + sum(an*cos(n*x) + bn*sin(n*x), n = 1..k)
 end proc
\gt{S1} = FurieSum(f, 1):
> S3 = FurieSum(f, 3):
> S7 = FurieSum(f, 7):
> S = FurieSum(f, infinity):
> plot([FurieSum(f, 1), FurieSum(f, 3), FurieSum(f, 7), FurieSum(f, 1000)], x = -3\pi
       ...3 \pi, legend = ["s1", "s3", "s7", "s"], discont = true)
```


> $plot(FurieSum(f, infinity), x = -3 \pi ... 3 \pi, legend = ["s"], discont = true)$

| Animation | ****** |

> #Task 2

>
$$f := x \rightarrow piecewise \left(0 < x < 3, -\frac{1}{2} \cdot x - 2, 3 \le x \le 5, 3 \right);$$

 $f := x \rightarrow piecewise \left(0 < x \text{ and } x < 3, -\frac{1}{2} x - 2, 3 \le x \text{ and } x \le 5, 3 \right)$ (6)

 $\rightarrow f(x)$

$$\begin{cases} -\frac{1}{2} x - 2 & 0 < x \text{ and } x < 3 \\ 3 & 3 \le x \text{ and } x \le 5 \end{cases}$$
 (7)

> plot(f(x), x = 0..5, discont = true)

>
$$l \coloneqq \frac{5}{2}$$
:#half of a period

>
$$a0 := simplify \left(\frac{1}{l} \cdot int(f(x), x = 0...2 \cdot l) \right);$$

$$a0 := -\frac{9}{10} \tag{8}$$

>
$$an := simplify \left(\frac{1}{l} \cdot int \left(f(x) \cdot \cos \left(\frac{\pi \cdot n \cdot x}{l} \right), x = 0...2 \cdot l \right) \right)$$
 assuming $n :: posint$

$$an := -\frac{1}{4} \frac{26 \pi n \sin\left(\frac{6}{5} \pi n\right) + 5 \cos\left(\frac{6}{5} \pi n\right) - 5}{\pi^2 n^2}$$
 (9)

$$bn := simplify \left(\frac{1}{l} \cdot int \left(f(x) \cdot \sin \left(\frac{\pi \cdot n \cdot x}{l} \right), x = 0..2 \cdot l \right) \right) \text{ assuming } n :: posint$$

$$bn := \frac{1}{4} \frac{26 \pi n \cos\left(\frac{6}{5} \pi n\right) - 20 \pi n - 5 \sin\left(\frac{6}{5} \pi n\right)}{\pi^2 n^2}$$
 (10)

```
> #New proc
 > FurieSumNew := \mathbf{proc}(f, k, x1, x2)
                    local a0, an, bn, n, l;
                    l := 1 / 2 * x2 - 1 / 2 * x1;
                    a0 := simplify(int(f(x), x = 0..2 * l) / l);
                    assume(n::posint);
                    an:= simplify(int(f(x) * cos(\pi * n * x / l), x = 0...2 * l) / l);
                    bn := simplify(int(f(x) * sin(\pi * n * x / l), x = 0...2 * l) / l);
                    return 1/2*a0 + sum(an*cos(\pi*n*x/l) + bn*sin(\pi*n*x/l), n = 1..k)
         end proc
  FurieSumNew:= \mathbf{proc}(f, k, x1, x2)
                                                                                                                                                                                                                                                                     (11)
            local a0, an, bn, n, l;
             l := 1 / 2 * x^2 - 1 / 2 * x^1;
             a0 := simplify(int(f(x), x = 0..2 * l) / l);
             assume(n::posint);
             an := simplify(int(f(x) * cos(n*\pi*x/l), x = 0..2*l)/l);
             bn := simplify(int(f(x) * sin(n*\pi*x/l), x = 0..2*l)/l);
            return 1/2*a0 + sum(an*cos(n*\pi*x/l) + bn*sin(n*\pi*x/l), n = 1..k)
  end proc
 > fur := plot([FurieSumNew(f, 1, 0, 5), FurieSumNew(f, 3, 0, 5), FurieSumNew(f, 7, 5),
                    (0, 5), FurieSumNew(f, 1000, 0, 5)], x = -3.Pi..3.Pi, discont = true, color = [red,
                      green, blue, purple]):
\rightarrow func := plot(f(x), x = -10..10, discont = true, color = black, thickness = 5):
 > plots[display](fur, func)
```


> #Animation

plots[animate](plot, [FurieSumNew(f, k, 0, 5), x = -Pi..Pi], k = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

> #Task 3

>
$$f := x \rightarrow piecewise \left(0 \le x \le 2, \frac{5}{2} \cdot (x-1)^2, 2 < x < 4, \frac{5}{4} \cdot (4-x) \right);$$

 $f := x \rightarrow piecewise \left(0 \le x \text{ and } x \le 2, \frac{5}{2} \cdot (x-1)^2, 2 < x \text{ and } x < 4, 5 - \frac{5}{4} \cdot x \right)$ (12)

> plot(f(x), x = 0..4, scaling = constrained)

$$=$$
 $> 1 := 2$ (13)

$$a0 := simplify \left(\frac{1}{l} \cdot int(f(x), x = 0..2 \cdot l) \right);$$

$$a0 := \frac{25}{12}$$

$$(14)$$

>
$$an := simplify \left(\frac{1}{l} \cdot int \left(f(x) \cdot \cos \left(\frac{\pi \cdot n \cdot x}{l} \right), x = 0..2 \cdot l \right) \right)$$
 assuming $n :: posint$

$$an := \frac{5}{2} \frac{3 + 5 (-1)^n}{\pi^2 n^2}$$
 (15)

>
$$bn := simplify \left(\frac{1}{l} \cdot int \left(f(x) \cdot sin \left(\frac{\pi \cdot n \cdot x}{l} \right), x = 0..2 \cdot l \right) \right)$$
 assuming $n :: posint$

$$bn := \frac{5}{2} \frac{\pi^2 n^2 + 8 (-1)^n - 8}{\pi^3 n^3}$$
 (16)

$$S := k \to \frac{1}{2} \ a0 + \sum_{n=1}^{k} \left(an \cos\left(\frac{\pi n x}{l}\right) + bn \sin\left(\frac{\pi n x}{l}\right) \right)$$
 (17)

> plot(S(10000), x = -12...12, y = 0...2.5, discont = true)

 $\rightarrow f(x)$

$$\begin{cases} \frac{5}{2} (x-1)^2 & 0 \le x \text{ and } x \le 2\\ 5 - \frac{5}{4} x & 2 < x \text{ and } x < 4 \end{cases}$$
 (18)

> $fchetn := x \rightarrow piecewise \left(-4 < x < -2, \frac{5}{4} \cdot (4+x), -2 \le x \le 0, \frac{5}{2} \cdot (-x-1)^2, 0 \le x \le 2, \frac{5}{2} \cdot (x-1)^2, 2 < x < 4, \frac{5}{4} \cdot (4-x) \right);$

#chetn func

fchetn:=
$$x \rightarrow piecewise \left(-4 < x \text{ and } x < -2, 5 + \frac{5}{4} x, -2 \le x \text{ and } x \le 0, \frac{5}{2} \right)$$
 (19)

$$(x-1)^2$$
, $0 \le x$ and $x \le 2$, $\frac{5}{2}(x-1)^2$, $2 < x$ and $x < 4$, $5 - \frac{5}{4}x$

> fchetn(x)

$$\begin{cases} 5 + \frac{5}{4}x & -4 < x \text{ and } x < -2 \\ \frac{5}{2}(-x-1)^2 & -2 \le x \text{ and } x \le 0 \\ \frac{5}{2}(x-1)^2 & 0 \le x \text{ and } x \le 2 \\ 5 - \frac{5}{4}x & 2 < x \text{ and } x < 4 \end{cases}$$
 (20)

> plot(fchetn(x), x = -4..4)

$$> l := 4$$

$$l := 4 \tag{21}$$

>
$$a0 := simplify \left(\frac{1}{l} \cdot int(fchetn(x), x = -l..l) \right);$$

$$a0 := \frac{25}{12}$$
(22)

>
$$an := simplify \left(\frac{1}{l} \cdot int \left(fchetn(x) \cdot \cos \left(\frac{\pi \cdot n \cdot x}{l} \right), x = -l..l \right) \right)$$
 assuming $n :: posint$

$$an := \frac{10 (-1)^{n+1} \pi n + 50 \pi n \cos\left(\frac{1}{2} \pi n\right) + 40 \pi n - 160 \sin\left(\frac{1}{2} \pi n\right)}{\pi^3 n^3}$$
 (23)

>
$$bn := simplify \left(\frac{1}{l} \cdot int \left(fchetn(x) \cdot sin \left(\frac{\pi \cdot n \cdot x}{l} \right), x = -l..l \right) \right)$$
 assuming $n :: posint$
 $bn := 0$ (24)

$$S := k \rightarrow \frac{a0}{2} + sum \left(an \cdot \cos \left(\frac{\text{Pi} \cdot n \cdot x}{l} \right) + bn \cdot \sin \left(\frac{\text{Pi} \cdot n \cdot x}{l} \right), \ n = 1 .. k \right)$$

$$S := k \rightarrow \frac{1}{2} \ a0 + \sum_{n=1}^{k} \left(an \cos \left(\frac{\pi \ n \ x}{l} \right) + bn \sin \left(\frac{\pi \ n \ x}{l} \right) \right)$$
(25)

> plot(S(10000), x = -12..12, discont = true);

> #nechentn func

>
$$fnech := x \rightarrow piecewise \left(-4 < x < -2, -\frac{5}{4} \cdot (4+x), -2 \le x \le 0, -\frac{5}{2} \cdot (-x-1)^2, \ 0 \le x \le 2, \frac{5}{2} \cdot (x-1)^2, \ 2 < x < 4, \frac{5}{4} \cdot (4-x) \right);$$

fnech:=
$$x \rightarrow piecewise\left(-4 < x \text{ and } x < -2, -5 - \frac{5}{4} x, -2 \le x \text{ and } x \le 0, -\frac{5}{2} (-x) \right)$$

 $(-1)^2, 0 \le x \text{ and } x \le 2, \frac{5}{2} (x-1)^2, 2 < x \text{ and } x < 4, 5 - \frac{5}{4} x$

> plot(fnech(x), x = -4..4)

>
$$a0 := simplify \left(\frac{1}{l} \cdot int(fnech(x), x = -l..l) \right);$$

$$a0 := 0$$
(27)

>
$$an := simplify \left(\frac{1}{l} \cdot int \left(fnech(x) \cdot \cos \left(\frac{\pi \cdot n \cdot x}{l} \right), x = -l..l \right) \right)$$
 assuming $n :: posint$

$$an := 0$$
(28)

>
$$bn := simplify \left(\frac{1}{l} \cdot int \left(fnech(x) \cdot sin \left(\frac{\pi \cdot n \cdot x}{l} \right), x = -l..l \right) \right)$$
 assuming $n :: posint$

$$bn := \frac{5 \pi^2 n^2 + 50 \pi n sin \left(\frac{1}{2} \pi n \right) + 160 cos \left(\frac{1}{2} \pi n \right) - 160}{\pi^3 n^3}$$
(29)

$$S := k \rightarrow \frac{a0}{2} + sum \left(an \cdot \cos \left(\frac{\text{Pi} \cdot n \cdot x}{l} \right) + bn \cdot \sin \left(\frac{\text{Pi} \cdot n \cdot x}{l} \right), \ n = 1 ...k \right)$$

$$S := k \rightarrow \frac{1}{2} \ a0 + \sum_{n=1}^{k} \left(an \cos \left(\frac{\pi \ n \ x}{l} \right) + bn \sin \left(\frac{\pi \ n \ x}{l} \right) \right)$$
(30)

> plot(S(10000), x = -12..12, discont = true);

$$f := 2\sin(2x)^3$$
 (31)

= \rightarrow funcplot := plot(f, x = -1..1) funcplot :=

> with(orthopoly)

$$[G, H, L, P, T, U]$$
 (32)

$$= \frac{\int_{-1}^{1} f \cdot P(n, x) \, dx}{\int_{-1}^{1} P(n, x)^{2} dx}; \text{ end do #Lejandr coef}$$

$$c_1 := -\sin(2)^2 \cos(2) - 2\cos(2) + \frac{1}{6}\sin(2)^3 + \sin(2)$$

$$c_2 := 0$$

$$c_3 := -\frac{49}{36}\sin(2)^2\cos(2) + \frac{133}{9}\cos(2) + \frac{469}{216}\sin(2)^3 + \frac{77}{18}\sin(2)$$

$$c_4 := 0$$

$$c_5 := -\frac{6215}{48}\sin(2) - \frac{6721}{24}\cos(2) + \frac{715}{288}\sin(2)^3 + \frac{209}{48}\sin(2)^2\cos(2)$$
$$c_6 := 0$$

(33)

$$c_7 := -\frac{123305}{10368} \sin(2)^3 + \frac{2499805}{432} \sin(2) + \frac{681785}{54} \cos(2) - \frac{8395}{1728} \sin(2)^2 \cos(2)$$
(33)

> $lej := plot(add(c[n] \cdot P(n, x), n = 0..7), x = -1..1, color = purple)$

$$f1 := plot(f+0.1, x=-1..1, linestyle = dash, color = red):$$
 $f2 := plot(f-0.1, x=-1..1, linestyle = dash, color = red):$

•
$$f2 := plot(f - 0.1, x = -1..1, linestyle = dash, color = red)$$

> plots[display]([f1, f2, lej, funcplot])

nmin := $plot(add(c[n] \cdot P(n, x), n = 0..6), x = -1..1, color = blue)$:

> plots[display](f1, f2, nmin, funcplot) #how we can see, when n is 6, function deviates by more than 0.1

> for n from 0 to 7 do $c[n] := \frac{2}{\pi} \int_{-1}^{1} \frac{f \cdot T(n, x)}{\sqrt{1 - x^2}} dx$; end do #chebish coef $c_0 := 0$

$$c_1 := \frac{2\left(\int_{-1}^{1} \frac{2\sin(2x)^3 x}{\sqrt{-x^2 + 1}} \, dx\right)}{\pi}$$
$$c_2 := 0$$

$$c_{2} := 0$$

$$c_{3} := \frac{2 \left(\int_{-1}^{1} \frac{2 \sin(2 x)^{3} (4 x^{3} - 3 x)}{\sqrt{-x^{2} + 1}} dx \right)}{\pi}$$

$$c_{4} := 0$$

$$c_{5} := \frac{2 \left(\int_{-1}^{1} \frac{2 \sin(2 x)^{3} (16 x^{5} - 20 x^{3} + 5 x)}{\sqrt{-x^{2} + 1}} dx \right)}{\pi}$$

$$c_{6} := 0$$

$$2 \left(\int_{-1}^{1} \frac{2 \sin(2 x)^{3} (64 x^{7} - 112 x^{5} + 56 x^{3} - 7 x)}{\sqrt{-x^{2} + 1}} dx \right)$$

$$c_{7} := \frac{2 \left(\int_{-1}^{1} \frac{2 \sin(2 x)^{3} (64 x^{7} - 112 x^{5} + 56 x^{3} - 7 x)}{\sqrt{-x^{2} + 1}} dx \right)}{\pi}$$
(34)

> cheb := $plot\left(\frac{c[0]}{2} + add(c[n] \cdot T(n, x), n = 1..7), x = -1..1, color = purple\right)$

> plots[display](f1, f2, cheb, funcplot)

- > $nmin := plot\left(\frac{c[0]}{2} + add(c[n] \cdot T(n, x), n = 1..6), x = -1..1, color = blue\right)$:
- > plots[display](f1, f2, nmin, funcplot) #how we can see, when n is 6,
 function deviates by more than 0.1

#lets check Fouriers coefs, func is odd, so we can find only Bn >
$$bn := simplify(int(f \cdot sin(Pi \cdot nn \cdot x), x = -1 ..1)) \text{ assuming } nn :: posint$$

$$bn := -\frac{\pi nn (-1)^{nn} (3 \pi^2 nn^2 sin(2) - \pi^2 nn^2 sin(6) - 108 sin(2) + 4 sin(6))}{\pi^4 nn^4 - 40 \pi^2 nn^2 + 144}$$
(35)

 $Sm := k \rightarrow sum(bn \cdot sin(\pi \cdot nn \cdot x), nn = 1..k)$

$$Sm := k \to \sum_{nn=1}^{k} bn \sin(\pi nn x)$$
 (36)

> fur := plot(Sm(60), x = -1..1, discont = true)fur:=

> #how we can see, when n is 60, function deviates by more than 0.1

$$St := convert(taylor(f, x = 0, 14), polynom)$$

$$St := 16 x^3 - 32 x^5 + \frac{416}{15} x^7 - \frac{2624}{189} x^9 + \frac{21472}{4725} x^{11} - \frac{4672}{4455} x^{13}$$
(37)

> StF := plot(St, x = -1..1, color = green)

> plots[display](f1, f2, StF, funcplot)

> # how we can see, when n is 14, function deviates by more than $0.1\,$

Lejandr and Chebishevs polynomes are more accurate than taylors and fouriers

> restart

>
$$f := 3 \cdot \arccos(x) - 1$$

 $f := 3 \arccos(x) - 1$ (38)

> funcplot := plot(f, x = -1..1)funcplot :=

> with(orthopoly)
$$[G, H, L, P, T, U]$$
(39)

> for n from 0 to 7 do $c[n] := \frac{\displaystyle\int_{-1}^{1} f \cdot P(n, x) \, \mathrm{d}x}{\displaystyle\int_{-1}^{1} P(n, x)^2 \mathrm{d}x}$; end do #Lejandr coef $c_0 := \frac{3}{2} \pi - 1$ $c_1 := -\frac{9}{8} \pi$

 $c_2 := 0$

$$c_{3} := -\frac{21}{128} \pi$$

$$c_{4} := 0$$

$$c_{5} := -\frac{33}{512} \pi$$

$$c_{6} := 0$$

$$c_{7} := -\frac{1125}{32768} \pi$$
(40)

= $lej := plot(add(c[n] \cdot P(n, x), n = 0..7), x = -1..1, color = purple)$ lej :=

- $nmin := plot(add(c[n] \cdot P(n, x), n = 0..4), x = -1..1, color = blue)$:
- > plots[display](f1, f2, nmin, funcplot) #how we can see, when n is 4, function deviates by more than 0.1

> for n from 0 to 7 do $c[n] := \frac{2}{\pi} \int_{-1}^{1} \frac{f \cdot T(n, x)}{\sqrt{1 - x^2}} dx$; end do #chebish coef

$$c_0 := \frac{2\left(\frac{3}{2}\pi^2 - \pi\right)}{\pi}$$

$$c_1 := -\frac{12}{\pi}$$
$$c_2 := 0$$

$$c_2 := 0$$

> cheb :=
$$plot(\frac{c[0]}{2} + add(c[n] \cdot T(n, x), n = 1..3), x = -1..1, color = purple)$$

> plots[display](f1, f2, cheb, funcplot)

- > $nmin := plot\left(\frac{c[0]}{2} + add(c[n] \cdot T(n, x), n = 1...3), x = -1...1, color = blue\right)$:
- > plots[display](f1, f2, nmin, funcplot) #how we can see, when n is 3,
 function deviates by more than 0.1

* #lets check Fouriers coefs
$$a0 := simplify(int(f, x = -1..1))$$

$$a0 := 3 \pi - 2$$
 (42)

(43)

>
$$an := simplify(int(f \cdot cos(Pi \cdot nn \cdot x), x = -1..1))$$
 assuming $nn := posint$

> $bn := simplify(int(f \cdot sin(Pi \cdot nn \cdot x), x = -1..1))$ assuming nn :: posint

$$bn := \int_{-1}^{1} (3\arccos(x) - 1) \sin(\pi \, nn \, x) \, dx$$
 (44)

>
$$Sm := k \rightarrow \frac{a0}{2} + sum(bn \cdot sin(\pi \cdot nn \cdot x), nn = 1..k)$$

$$Sm := k \rightarrow \frac{1}{2} a0 + \sum_{nn=1}^{k} bn \sin(\pi nn x)$$
 (45)

> fur := plot(Sm(11), x = -1..1, discont = true)

plots[display](f1, f2, fur, funcplot)

> #how we can see, when n is 11, function deviates by more than 0.1, cant experiment more, this takes a lot of time >
$$St := convert(taylor(f, x = 0, 14), polynom)$$

$$St := \frac{3}{2} \pi - 1 - 3 x - \frac{1}{2} x^3 - \frac{9}{40} x^5 - \frac{15}{112} x^7 - \frac{35}{384} x^9 - \frac{189}{2816} x^{11} - \frac{693}{13312} x^{13}$$
 (46)

> StF := plot(St, x = -1..1, color = green)

plots[display](f1, f2, StF, funcplot)

> # how we can see, when n is 14, function deviates by more than 0.1

Lejandr and Chebishevs polynomes are more accurate than taylors and fouriers

> #DONE