



# Analyse syntaxique Les fonctions Premier et Suivant



# Analyse syntaxique





#### Objectif

Construire l'arbre de dérivation d'une séquence donnée

#### Méthodes

Analyse descendante (top-down parsing): on parcourt la séquence en appelant des fonctions pour chaque non-terminal

Analyse ascendante : on parcourt la séquence en empilant les symboles identifiés

Analyse syntaxique. Les fonctions Premier et Suivant • 2



# Analyse descendante







# Sommaire

Analyse descendante récursive

Prédiction



# Analyse descendante récursive

```
void expr(void) {
   int t;
   term();
   while (1)
     switch (next token) {
     case '+': case '-':
       t = next token;
       match(next token); term(); emit(t, NONE);
       continue;
     default:
                                     Exemple: traduction des expressions
       return;
                                         arithmétiques dans le mini-compilateur
                                     Incompatible avec les grammaires récursives à
                                         gauche
                                     Utilisée par gcc pour C++ depuis 2004 et pour C
                                         depuis 2006
```





```
void term(void) {
     int t;
     factor();
     while (1)
       switch(next token) {
       case '*': case '/': case DIV: case MOD:
         t = next token;
         match(next token); factor(); emit(t, NONE);
         continue;
       default:
         return;
       }
}
void factor(void) {
     switch(next token) {
         case '(':
            match('(');expr();match(')');break;
         case NUM:
            emit(NUM, tokenval); match(NUM); break;
         case ID:
            emit(ID, tokenval); match(ID); break;
         default:
            error("syntax error");
}
```



# Analyse descendante récursive

$$\begin{cases}
E --> TE' \\
E' --> + TE' | - TE' | \varepsilon \\
T --> FT' \\
T' --> * FT' | / FT' | \varepsilon \\
F --> (E) | N
\end{cases}$$

Cette grammaire correspond à peu près au programme précédent





# Sommaire

Analyse descendante récursive

Prédiction



```
void factor (void)
                                    Prédire quelle règle appliquer
    switch(next token) {
       case '(':
         match('('); expr(); match(')'); break;
       case NUM:
         emit(NUM, tokenval); match(NUM); break;
       default:
         error("syntax error");
                                   1 E \longrightarrow TE'
                                   2 E' --> + T E'
                                     E' --> ε
                                   3
                                       T--> F T'
    Е
                                   4
                                      T' --> * F T'
                    3
                           3
                                   5
                                     T'--> ε
                                   6
                4
                                     F \longrightarrow (E)
        6
            5
                    6
                           6
                                     F -->
                                                   N
    F
```



|   | ••• | а | ••• |
|---|-----|---|-----|
|   |     |   |     |
| X |     | r |     |
|   |     |   |     |

# Prédire quelle règle appliquer

Technique LL(1)

On prédit quelle règle appliquer en utilisant 1 lexème d'avance

Il faut qu'il y ait au plus une règle par case du tableau

Les informations qu'on va utiliser sont :

- X, le non-terminal dans le nœud courant
- a, le prochain lexème

Selon ce tableau, il faut appliquer la règle X --> r





# $\boldsymbol{a}$ . . . X 3



# Un terminal spécial pour la fin

$$\begin{bmatrix}
E & --> & TE' \\
E' & --> & + TE' & | - TE' & | & \varepsilon \\
T & --> & FT' \\
T' & --> & * FT' & | / FT' & | & \varepsilon \\
F & --> & (E) & | & N
\end{bmatrix}$$

$$\begin{cases} E --> TE' \\ E' --> + TE' | - TE' | & \\ T --> FT' \\ T' --> *FT' | /FT' | & \\ F --> (E) | N \end{cases}$$

$$\begin{cases} S --> E $ \\ E --> TE' \\ E' --> + TE' | - TE' | & \\ T' --> *FT' \\ T' --> *FT' | /FT' | & \\ F --> (E) | & \\ N \end{cases}$$

Que vaut a dans ce cas ?

On veut avoir un lexème d'avance même à la fin Pour que a existe dans tous les cas, on veut qu'il existe un terminal \$ qui n'apparaisse qu'à la fin de règles de la forme S --> u \$ où S est l'axiome





# Un terminal spécial pour la fin



S'il n'y en a pas, on change d'axiome et on ajoute une règle S' --> S \$

a vaut \$









## Prédiction

| 1 | E>  | TE'   |
|---|-----|-------|
| 2 | E'> | + T E |
| 3 | E'> | 3     |
| 4 | T>  | FT'   |
| 5 | T'> | * F T |
| 6 | T'> | 3     |
| 7 | F>  | (E)   |
| 8 | F>  | N     |

Étant donné un E dans un arbre de dérivation, par quels terminaux peut commencer la frontière du sous-arbre dominé par *E* ?









## Prédiction

Étant donné un E' dans un arbre de dérivation, quels terminaux peuvent suivre la frontière du sous-arbre dominé par E'?



$$\begin{cases}
E &--> TE' \\
E' &--> + TE' \mid - TE' \mid \varepsilon \\
T &--> FT' \\
T' &--> * FT' \mid / FT' \mid \varepsilon \\
F &--> (E) \mid N
\end{cases}$$

## Prédiction

#### Comment être sur de

- prédire correctement la règle à appliquer ?
- détecter qu'aucune règle n'est applicable ?

Automatiser la construction du tableau LL(1)









## Premier et Suivant

On définit deux fonctions

**Premier()** de  $(A \mid V)^*$  dans  $\mathcal{P}(A \cup \{\epsilon\})$ 

 $a \in A : a$  est dans Premier(u) ssi on peut dériver à partir de u un mot commençant par a

 $\varepsilon$  est dans Premier(u) ssi on peut dériver  $\varepsilon$  à partir de u

**Suivant()** de V dans  $\mathcal{P}(A)$ 

 $a \in A : a$  est dans Suivant(X) ssi on peut dériver à partir de l'axiome un mot dans lequel un X est suivi d'un a



## Premier et Suivant

$$\begin{cases}
E --> E + T | E - T | T \\
T --> T * F | T / F | F \\
F --> (E) | N
\end{cases}$$

## Premier()

( est dans Premier(T) car  $T \rightarrow F \rightarrow (E)$ 

## Suivant()

) est dans Suivant(T) car E --> T --> F --> (E) --> (E + T)

Savoir calculer Premier() et Suivant() servira aussi pour utiliser Bison (analyse ascendante)





## Calcul de Premier et Suivant

#### Algorithme par graphes

On construit deux graphes dont les sommets sont des symboles et  $\epsilon$ 

On aura un **chemin** de X à  $a \in A$  ssi a est dans Premier(X) (ou Suivant(X))

On aura un **arc** de X à  $\varepsilon$  ssi  $\varepsilon$  est dans Premier(X)

### Premier()

On a un arc de X vers  $Y \in A \cup V$  ssi il existe une règle X --> u Y v avec  $u \stackrel{*}{--}> \varepsilon$ On a un arc de X vers  $\varepsilon$  ssi  $X \stackrel{*}{--}> \varepsilon$ 

#### Suivant()

On a un arc de X vers  $a \in A$  ssi il existe une règle  $Y \dashrightarrow u \times v$  avec  $a \in Premier(v)$ On a un arc de X vers Y ssi il existe une règle  $Y \dashrightarrow u \times v$  avec  $v \xrightarrow{*} \varepsilon$ (attention, l'arc remonte la flèche de dérivation, car Suivant(Y)  $\subseteq$  Suivant(X))





# Exemple







| Étape | 1 | 2   | 3                       | 4.1                     | 4.2                     |
|-------|---|-----|-------------------------|-------------------------|-------------------------|
| Ε     | Ø | Ø   | Ø                       | Ø                       | { <b>(</b> , <b>N</b> } |
| E'    | Ø | {s} | {e, +}                  | {ε <b>, +</b> }         | {e, +}                  |
| T     | Ø | Ø   | Ø                       | { <b>(</b> , <b>N</b> } | { <b>(</b> , <b>N</b> } |
| T'    | Ø | {s} | {e, *}                  | {e, *}                  | {e, *}                  |
| F     | Ø | Ø   | { <b>(</b> , <b>N</b> } | { <b>(</b> , <b>N</b> } | { <b>(</b> , <b>N</b> } |

## Calcul de Premier et Suivant

#### Algorithme par tableaux

On construit deux tableaux avec une ligne pour chaque non-terminal

#### Premier()

- 1. Initialiser chaque Premier(X) à l'ensemble vide
- 2. Ajouter  $\varepsilon$  à Premier(X) ssi  $X \longrightarrow \varepsilon$
- 3. Ajouter  $a \in A$  ssi il existe une règle X --> a u avec  $u \in (A \mid V)^*$
- 4. Ajouter Premier(Y) ssi il existe une règle X --> u Y v avec u -\*-> ε. Itérer l'étape 4 tant qu'un des ensembles change Analyse syntaxique. Les fonctions Premier et Suivant • 20



F

Ø

#### Étape 3.1 3.2 **{\$, )**} **{\$, }**} **{\$, }**} **{\$, )**} E'**{\$, }**} Ø **{+**} {**+**, **\$**, **)**} {**+**, **\$**, **)**} T Ø T'**{+**} **{+, \$, }**}

{\*, +, \$, **)**} {\*, +, \$, **)**}

## Calcul de Premier et Suivant

## Suivant()

- 1. Initialiser chaque Suivant(X) à l'ensemble vide
- 2. Pour chaque une règle Y --> u X v, ajouter Premier(v) \ { $\varepsilon$ }
- 3. Pour chaque une règle Y --> u X v telle que v \*-> ε, ajouter Suivant(Y)
   Itérer l'étape 3 tant qu'un des ensembles change