SVM

B조 심지원 발표

SVM_(Support Vector Machine)이란?

- 속성 값에 따라 다차원 공간의 예제를 초평면(hyperplane)을 경 계로 분류
- 지도학습기법으로 비-중첩(non-overlapping) 분할을 제공하며 모든 속성(attributes)을 활용하는 전역적(global) 분류 모형
- 최근접 이웃학습과 선형회귀 모델링의 두 측면을 결합한 모델 링
- => 주로 분류Classification이나 회귀Regression 분석 모델로 사용한다.

SVM_(Support Vector Machine)이란?

- SVM은 유사한 데이터를 분류하기 위해 초평면(Hyperplane)이라는 선형 경계를 사용한다.
- (소프트 마진/커널 트릭을 사용하여 비선형 문제로 확장이 가능하다)

SVM의 이해

• Linear Regression은 정확한 예측을 위한 확률을 기반으로 분류

$$h_{\Theta}(x) = \frac{1}{1 + e^{-\Theta^{T}x}}$$

sigmoid function: $\sigma(t) = \frac{1}{1+e^{-t}}$

SVM의 이해

• Linear Regression은 정확한 예측을 위한 확률을 기반으로 분류

$$h_{\Theta}(x) = \frac{1}{1 + e^{-\Theta^{T}x}}$$

- H(x)는 정답의 확률을 의미. 이 확률을 입력값으로 손실값을 계산하고, 최소화하면서 분류를 진행한다.
- 학습 데이터에서 손실값을 최소화하는 관점으로 접근한다. => **학습에 최적화되어 테스트 데이터를 잘 분류하지 못한다.**

SVM의 이해

• SVM은 Margin을 최대화하는 Decision boundary를 제공한다.

Decision boundary란?

- Decision boundary는
 W^T*X+b=0의 수식에 따르는
 선형을 의미한다. 그리고 가
 중치 벡터(W)는 Decision
 boundary와 직교.
- 왜 직교해야 할까?
 편의상 b=0이라고 할 때,
 W^T *X=0가 Decision
 boundary라고 할 수 있다.
 2개의 벡터 내적의 결과가 0
 이 되는 각도는 90도이므로
 직교한다고 할 수 있다.

Margin을 최대로 하는 Decision Boundary

• SVM의 Decision boundary는 가중치 벡터(w)에 직교하면서, margin이 최대가 되는 선형을 찾는 것

Margin이 없는 경우 데이터를 분류할 때, 연두색 또는 분홍색의 Decision Boundary가 될 수도 있다.

이는 직관적으로 봤을 때도 Decision boundary가 추가되는 데이터를 제대로 분류하지 못할 가능성이 커 보인다.

Margin을 최대로 하는 Decision Boundary

• SVM의 Decision boundary는 가중치 벡터(w)에 직교하면서, margin이 최대가 되는 선형을 찾는 것

Margin을 활용하여 만든 검은색 Decision Boundary는 분류 정확도가 높아 보인다.

Margin을 최대로 하는 Decision Boundary

• Margin이 커지면 학습 데이터에 최적화되지 않고, 실제 데이터 의 분류 정확도를 향상시킨다.

Decision boundary와 평행하고, 가중치 벡터(w)와 직교하며, Decision boundary와 가장 가까운 좌표와의 거리가 최대가 되는(margin) 3개의 벡터(support vector)를 기준으로 Decision boundary를 결정한다.

Margin 계산법

각 클래스에서 decision boundary와 가장 가까운 포인트를 x1(class1), x2(class2)라고 가정, 편의상 b=0으로 가정,

$$W^{T} *X1 = -1$$

 $W^{T} *X2 = 1$

 $M = W^T *X1 - W^T *X2$ (이때 $W^T *X = 0$ 과 X1, X2 간의 거리로 계산) = |1| / ||W|| + |-1| / ||W||= |2| / ||W||

• Margin의 최대화를 위해 먼저 SVM이 어떻게 모델을 최적화하는지 알아보자.

• SVM의 비용함수를 구하기 위해서는 Logistic regression에 대한 이해가 필요하다.

$$h_{\Theta}(x) = \frac{1}{1 + e^{-\Theta^{T}x}} \qquad \text{If } \underline{y = 1}, \text{ we want } \underline{h_{\theta}(x) \approx 1}, \quad \underline{\theta^{T}x \gg 0}$$

$$\text{If } \underline{y = 0}, \text{ we want } \underline{h_{\theta}(x) \approx 0}, \quad \underline{\theta^{T}x \ll 0}$$

• Logistic Regression의 비용함수

$$-(y\log h_{\theta}(x) + (1-y)\log(1-h_{\theta}(x)))$$

• 위 식에 h(x)를 대입

• Logistic Regression의 비용함수

$$-(y\log h_{\theta}(x) + (1-y)\log(1-h_{\theta}(x)))$$

• 위 식에 h(x)를 대입

정답의 유형에 따라 Cost가 증가하는 방향이 다르다.

Logistic Regression의 Log 기반의 cost함수(cross-entropy)와 다르게 SVM은 Hinge loss 함수를 사용한다.

SVM uses "hinge" loss
$$\max(0, 1 - y_i f(\mathbf{x}_i))$$

$$\operatorname{cost}_0(z) = \max(0, k(1+z))$$

 $\operatorname{cost}_1(z) = \max(0, k(1-z))$

$$\min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left((-\log(1 - h_{\theta}(x^{(i)})) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

$$\min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left((-\log(1 - h_{\theta}(x^{(i)})) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

$$\min_{\theta} \left(\sum_{i=1}^{m} y^{(i)} \frac{\left(-\log h_{\theta}(x^{(i)}) \right) + (1-y^{(i)}) \left((-\log(1-h_{\theta}(x^{(i)})) \right)}{\left(\cos(1-h_{\theta}(x^{(i)})) \right)} \right] + \frac{\chi}{2\eta h} \sum_{j=1}^{n} \theta_{j}^{2} \left(C = \frac{1}{\lambda} \right)$$

$$Cost_{1} \left(\frac{\theta^{T} \chi^{(i)}}{\chi^{(i)}} \right)$$

$$\min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left((-\log(1 - h_{\theta}(x^{(i)})) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

$$\min_{\theta} \left(\sum_{i=1}^{m} y^{(i)} \frac{\left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left((-\log(1 - h_{\theta}(x^{(i)})) \right)}{\left(\cos(1 - h_{\theta}(x^{(i)})) \right)} \right] + \frac{\chi}{2\eta h} \sum_{j=1}^{n} \theta_{j}^{2} \left(C = \frac{1}{\lambda} \right)$$

$$Cost_{1} \left(\frac{\theta^{T} \chi^{(i)}}{\chi^{(i)}} \right)$$

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \underbrace{\frac{1}{2} \sum_{i=1}^{n} \theta_j^2}_{}$$

- C가 엄청 크다고 가정
- CA+B가 최소화하기 위해서는 A=0

```
If y=1, we want \Theta^T x \geq 1 (not just \geq 0)
If y=0, we want \Theta^T x \leq -1 (not just < 0)
```


• CA=0이 성립되어야 함

$$\sum_{i=1}^{m} y^{(i)} \cot_1(\Theta^T x) + (1 - y^{(i)}) \cot_0(\Theta^T x) = 0$$

• 비용함수를 간략화할 수 있다. (C가 엄청 크다는 전제하에)

$$J(heta) = C \cdot 0 + rac{1}{2} \sum_{j=1}^n \Theta_j^2$$

$$= rac{1}{2} \sum_{j=1}^n \Theta_j^2$$

참고) C가 미치는 영향

• C는 regularization 파라미터 λ와 관련되어 모델학습시 overfitting을 조정한다.

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

- C가 크면, $cost(\theta^T x^{(i)})$ 가 작아야 전체 cost가 최소화된다.
- C가 크다 = λ가 작다
 - -> 가중치 O가 미치는 영향이 커진다.
 - = margin이 좁아지는 경향이 있다.

Regularization에 영향이 적어,

모든 학습 데이터에 오분류가 없도록 분류하게 된다.

• 벡터의 내적 이해

- u=[u1, u2], v=[v1, v2]
- the inner products between the verctors u and v = u^T*v
- p = the length of the projection of the vector v onto u
- $u^T *v = p||u||$

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_j^2$$
s.t. $\theta^T x^{(i)} \ge 1$ if $y^{(i)} = 1$
$$\theta^T x^{(i)} \le -1$$
 if $y^{(i)} = 0$

- 간략한 설명을 위해 ⊙0 =0, n=2
- $\frac{1}{2}(\Theta 1^2 + \Theta 2^2) = \frac{1}{2}(\sqrt{\Theta 1^2 + \Theta 2^2})^2 = \frac{1}{2}||\Theta||^2$

- 벡터 내적 수식인 $\mathbf{u}^{\mathsf{T}} * \mathbf{v} = \mathbf{p} ||\mathbf{u}||$ 을 이용해서,
- $\Theta^T *x(i) = p(i)||\Theta||$ 로 나타낼 수 있다.

• 비용함수를 최소화하기 위해 O값을 구해야 한다.

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} = \frac{1}{2} \|\Theta\|^{2}$$
 (C는 엄청 큰 값을 가진다) s.t. $p^{(i)} \cdot \|\theta\| \ge 1$ if $y^{(i)} = 1$ (조건에 대입)
$$p^{(i)} \cdot \|\theta\| \le -1$$
 if $y^{(i)} = 1$

where $p^{(i)}$ is the projection of $x^{(i)}$ onto the vector θ .

Simplification: $\theta_0 = 0$

비선형 분류 문제

비선형 분류 문제

- 고차원으로 선형화하면 간단한 선형 분류기를 사용한 분류 가능!
- 성능상의 문제도 없지만 차원이 아주 큰 고차원 변환 시 너무 많은 연산비용이 소모된다.
 - → **커널 함수** 사용하여 해결

- SVM에서 연산은 개개의 Φ(x)가 아니라 두 벡터의 내적 Φ(x) · Φ(y)를 사용
- 고차원 매핑 Φ(x) 대신에 Φ(x) · Φ(y)를 하나의 함수 **k(x,y)**로 정의하여 사용한다. _{커널함수}

대표적인 커널 함수

_	다항식 커널	$k(\boldsymbol{x},\boldsymbol{y}) = (\boldsymbol{x} \cdot \boldsymbol{y} + \boldsymbol{c})^d$
	시그모이드 커널	$k(\boldsymbol{x}, \boldsymbol{y}) = \tanh(\boldsymbol{\theta}_1 \boldsymbol{x} \cdot \boldsymbol{y} + \boldsymbol{\theta}_2)$
	가우시안 커널	$k(\boldsymbol{x}, \boldsymbol{y}) = \exp\left\{-\frac{\parallel \boldsymbol{x} - \boldsymbol{y} \parallel^2}{2\sigma^2}\right\}$

• 문제에 따라 최적의 커널 함수를 직접 학습, 테스트 해서 찾아야한다.

$$f_i = similarity(x, l^{(i)})$$

$$=\exp(-rac{\left|\left|x-l^{(i)}
ight|
ight|^{2}}{2\sigma^{2}})$$

$$= \exp(-rac{\sum_{j=1}^n (x_j - l_j^{(i)})^2}{2\sigma^2})$$

- 랜드마크 I1 = (3,5)
- X가 I1에 가까워지면 f1 ≈ 1,
- X가 I1에 멀어지면 f1 ≈ 0

• σ^2 크기에 따른 경사의 변화

가정:

학습샘플 x가 아래 조건을 만족하면 정답 1을 예측한다.

Return 1 when $\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$

$$\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$$

• =
$$-0.5 + 1 * 1 + 1 * 0 + 0 * 0 = 0.5 \ge 0$$
 \Rightarrow 1\(\text{1} \) \Rightarrow 1\(\text{2} \) \Rightarrow 1\(\text{2} \)

예)
$$\Theta 0 = -0.5$$

 $\Theta 1 = 1$
 $\Theta 2 = 1$
 $\Theta 3 = 0$

•
$$\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$$

예)
$$\Theta 0 = -0.5$$

 $\Theta 1 = 1$

$$\Theta 2 = 1$$

$$\Theta 3 = 0$$

•
$$\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$$

예)
$$\Theta 0 = -0.5$$

$$\Theta 1 = 1$$

$$\Theta 2 = 1$$

$$\Theta 3 = 0$$

파라미터 값(θ_1 , θ_2 , θ_3)이 서로 다르게 정의되어 있으므로, 이 값에 따라 예측이 다르게 됨.

- θ₁, θ₂ = 1 → f₁, f₂ 값이 분류에 영향을 미침
- θ₃ = 0 → f₃ 값이 영향을 주지 못함.

랜드마크 선택하기

- 1. 학습 데이터를 읽어온다. (100건)
- 2. 학습 데이터 별로 landmark를 생성한다. (학습데이터와 동일한 위치)
 - 학습데이터 1건 별로 1개의 landmark가 생성됨.
 - 최종 100개의 landmark 생성
- 3. 새로운 샘플이 주어지면, 모든 landmark와의 거리(f)를 계산한다.
 - $f_0 \sim f_{99}$, 총 100개의 f 결과
 - $f_0 = 1$ (θ_0 는 bias 값이므로, 값을 그대로 유지)
 - 자세히 계산과정을 보면

X값이 vector(배열)로 구성된 경우

- $f_1^i = K(x^i, l^1)$
- $f_2^i = K(x^i, l^2)$
-
- $f_{99}^i = K(x^i, l^2)$
- 위 과정을 반복하면, X 자신과 동일한 landmark와 비교하는 구간이 있다. → 이 경우 Gaussian Kernel에서는 1로 평가 (동일한 위치)
- 이렇계 계산된 f 값을 [m(99)+1 x 1] 차원의 vector로 저장한다.
- fⁱ → f 벡터의 i 번째 데이터를 의미

랜드마크 선택하기

- 1. 이전에 정의했던 수식을 확인해보자
 - Predict y = 1
 - when $\theta^T f \ge 0$
 - And f = [m+1 * 1]
- 2. 그럼 θ 는 어떻게 계산할 수 있을까?
 - SVM Optimization 알고리즘 이용

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

- 위 최적화 결과를 최소화하기 위해 f 벡터를 이용한다.
- 그리고 이 최적화 알고리즘을 계산하면, θ를 찾을 수 있게 된다.
- 3. 계산 성능 향상을 위한 Tip
 - 위 예시에서 m = n으로 가정 (학습 데이터와 f 벡터의 수가 같기

- 좌측방식 구현보다는 우측 방식으로 구현하는 것이 계산성능 향상
- 데이터가 많을 경우 수많은 for loop를 하지 않고, 매트릭 계산

Bias, Variance trade off

SVM에서 bias와 variance는 C의 값과 σ^2 에 의해 조절이 가능

 $C(\frac{1}{2})$ 가 클 때: Lower bias/high variance

작을 때: Higher bias/low variance

 σ^2 가 클 때: 완만한 형태, Higher bias /low variance

작을 때: 가파른 형태, Lower bias/high variance

SVM의 장단점

- 장점
- 학습 데이터에 over fitting을 방지
- Kernal method 활용을 통해 비선형 데이터 분류도 가능하다.
- 단점
- 학습 데이터의 margin이 적을 때 문제가 발생할 가능성이 있다.
- Support vector(margin) 근처의 데이터만 고려를 하며, 고차원 데이터에서 효율적이다.

SVM 라이브러리

SM 라이브러리

LIBSVM: 서포트 벡터 머신만을 위한 라이브러리로 파이썬. R. 외 다양한 언어를 지원

파에썬

scikit-learn: 머신 러닝 기법들을 사용하는데 도움을 주는 라이브러리 PyML: 머신 러닝 기법들을 사용하는데 도움을 주는 라이브러리

R

kaR: SVM 알고리즘을 활용한 함수 패키지 Kembb: 초심자가 쉽게 사용할 수 있는 패키지