Total No.	of Questions : 9]	90	SEAT No. :						
P6485			[Total No. of Pages : 4						
	[5868]-101								
	F.E. (Semester- I & II)								
	ENGINEERING M		•						
	2019 Patte								
Time : 21/2) (-010	[Max. Marks : 70						
	ons to the candidates;								
1)	Q. 1 is compulsory.								
2)	Attempt Q2 or Q3, Q4 or Q5,Q6	or Q7, Q8	or Q9.						
3)	Neat diagrams must be drawn	wherever ne	ecessary.						
4)	Figures to the right indicate ful	l marks.	·						
5)	Use of electronic pocket calcula	itor is allow	ved.						
6)	Assume suitable data, if necessor	ary.	5						
<i>Q1</i>) Wri	te the correct option for the follo		7						
a)	If eigen value of a square matr	` ')							
	i) A is non-singular	ii)	A is orthogonal						
	iii) A is singular	iw)	None of these						
	∂u	100							
b)	If $u = y^x$ then $\frac{\partial}{\partial x}$ is equal to	2	[1]						
	i) 0	ii)	xy^{x-1}						
	iii) $y^x \log y$, and the second	.,0						
c)	, , , , , ,	ŕ	None of these transforms the quadratic form ical form $Q' = y_1^2 + 2y_2^2 + y_3^2$. [2]						
	$Q = x_1^2 + 3x_2^2 + 3x_3^2 - 2x_2x_3$ to		ical form $Q' = v^2 + 2v^2 + v^2$.						
	The rank of quadratic from is								
	i) 2	ii)	3						
	iii) 1	iv)							
	<u> </u>								
4)	$u = \sec^{-1} \left \frac{x^2 + y^2}{xy^2} \right $. Find the v	value of Y-	$\frac{\partial u}{\partial v} + \frac{\partial v}{\partial v}$						
d)	$\begin{bmatrix} xy^2 \end{bmatrix}$. Find the V	ratue of A	∂x ∂y [2]						
	i) –tan u	ii)	-cot u						
	iii) tan u	iv)	cot u						

P.T.O.

e) If
$$u = x^2 - y^2$$
 and $v = 2xy$ then the value of $\frac{\partial(u, v)}{\partial(x, y)}$ is [2]

i)

- A system of linear equations Ax = B, where B is a null (zero) matrix is [2] f)
 - Always consistent
 - Consistent only if |A| = 0ii)

Q2) a) If
$$z = \tan(y + ax) + (y - ax)^{3/2}$$
 find value of $\frac{\partial^2 z}{\partial x^2} - a^2 \frac{\partial^2 z}{\partial y^2}$. [5]

b) If
$$u = \tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$$
 then prove that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = (1 - 4\sin^{2} u)\sin 2u$$
 [5]

c) If
$$u = f(x^2 - y^2; y^2 - z^2, z^2 - x^2)$$
 find value of $\frac{1}{x} \frac{\partial u}{\partial x} + \frac{1}{y} \frac{\partial u}{\partial y} + \frac{1}{z} \frac{\partial u}{\partial z}$ [5]

i) Always consistent:
ii) Consistent only if
$$|A| = 0$$
iii) Consistent only if $|A| \neq 0$
iv) In consistent only if $|A| \neq 0$
iv) In consistent if $\rho(A) < No$, of variables

$$Q2) \text{ a)} \quad \text{If } u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right) \text{ then prove that}$$

$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = (1 - 4\sin^2 u)\sin 2u$$
[5]
c) If $u = f\left(x^2 - y^2; y^2 - \frac{x^2}{2}; z^2 - \frac{x^2}{2}\right)$ find value of $\frac{1}{x} \frac{\partial u}{\partial x} + \frac{1}{y} \frac{\partial u}{\partial y} + \frac{1}{z} \frac{\partial u}{\partial z}$ [5]

OR

$$Q3) \text{ a)} \quad \text{If } u = ax + by; v = bx - ay \text{ find value of } \left(\frac{\partial u}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_x \left(\frac{\partial y}{\partial y}$$

$$y\frac{\partial u}{\partial x} + x\frac{\partial u}{\partial y} = 4xy\frac{\partial u}{\partial r}.$$
 [5]

Q4) a) If
$$x = \text{uv}$$
 and $y = \frac{u+v}{u-v}$, find $\frac{\partial(u,v)}{x,y}$. [5]

- b) Examine for functional dependence $u = \frac{x y}{1 + xy}$, $v = \tan^{-1} x \tan^{-1} y$ and if dependent find the relation between them. [5]
- c) Discuss maxima and minima of $f(x, y) = x^2 + y^2 + 6x + 12$ [5]

 OR
- **Q5**) a) Prove $y = 1 \text{ for } x = u \cos y, y = u \sin y.$ [5]
 - b) In calculating the volume of a right circular cone, errors of 2% and 1% are made in measuring the height and radius of base respectively find the error in the calculated volume. [5]
 - c) Find maximum value of $u = x^2y^3z^4$ such that 2x + 3y + 4z = a by Langrange's method. [5]
- **Q6)** a) Investigate for what values of μ & λ the equations x+y+z=6, x+2y+3z=10, $x+2y+\lambda$ $z=\mu$ have i) No solution ii) Infinitely many solutions.
 - b) Examine for linear dependence and independence the vectros (1,1,3), (1,2,4), (1,0,2). If dependent, find the relation between them. [5]
 - c) Verify whether matrix $A = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$ is orthogonal or not. [5]
- **Q7**) a) Solve the system of equations x+y+2z = 0, x+2y+3z=0, x+3y+4z=0.[5]
 - b) Examine following vectors for linear dependence and independence (1,-1,1), (2,1,1), (3,0,2). If dependent, find the relation between them.[5]
 - c) Determine the currents in the network given in the figure. [5]

Find the eigen values of the matrix $A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$. **Q8**) a) [5]

Find eigen vector corresponding to the highest eigen value.

Verify cayley-Hamilton theorem for $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. Hence find A^{-1} if it exists. b)

[5]

Find the modal matrix p which diagonalises $A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$. [5]

Find the eigen values of $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 2 \\ 0 & 0 & -2 \end{bmatrix}$. [5]

Find eigen vector corresponding to the highest eigen value.

- Verify cayley-Hamilton theorem for $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ b) [5]
- $x_1 + 2x_1x_2$ x_2 x_3 x_4 x_5 x_5 Reduce the quadratic form $Q = x_1^2 + 2x_2^2 + x_3^2 + 2x_2x_3 - 2x_3x_1 + 2x_1x_2$ to c) canonical form by congruent transformations.

Total No. of	Questions	: 9]
--------------	-----------	------

P-3926

SEAT No.:	
-----------	--

[Total No. of Pages: 5

[6001]-4001

F.E.

ENGINEERING MATHEMATICS - I

(2019 Pattern) (Semester - I) (107001)

Time : 2½ *Hours*]

[Max. Marks: 70]

Instructions to the candidates:

- 1) Question No. I is compulsory.
- 2) Solve Q. No. 2 or Q. No. 3, Q. No. 4 or Q. No. 5, Q. No. 6 or Q. No. 7, Q. No. 8 or Q. No. 9.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Electronic pocket calculator is allowed.
- 6) Assume suitable data, if necessary.
- Q1) Write the correct option for the following multiple choice questions:

a) If
$$u = \frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{x^2 + y^2}$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to [2]

i) 2u

ii) -2u

iii) 0

iv) None

b) If
$$u = x^y$$
 then $\frac{\partial u}{\partial y}$ is equal to

[1]

i) 0

ii) yx^{y-1}

iii) $x^y \log x$

iv) x^{y-1}

c) If
$$x = uv$$
, $y = \frac{u}{v}$ then the value of $\frac{\partial(u, v)}{\partial(x, y)}$ is [2]

i) $\frac{-2u}{v}$

ii) uv

iii) $\frac{v}{2u}$

 $\frac{-v}{2u}$

iii) A²

For what value of K the homogeneous system x + 2y - z = 0, e) 3x + 8y - 3z = 0; 2x + 4y + (k-3)z = 0 has infinitely many solution.[2]

Using Cayley Hamilton theorem A⁻¹ for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ f) [2]

- ii) $\frac{1}{5}(A-4I)$ iv) $\frac{1}{5}(4I-A)$

Q2) a) If
$$u = ln(x^2 + y^2)$$
, show that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$. [5]

b) If
$$e^{2u} = y^2 - x^2$$
, $\cos ec \ v = \frac{3}{x}$ then find the value of [5]

$$\left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}\right) \cdot \left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}\right)$$

c) If u = f(x - y, y - z, x - x) then find the value of $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$. **[5]**

Q3) a) If
$$u = ax + by$$
, $v = bx - ay$ find the value of $(\frac{\partial u}{\partial x})_y \cdot (\frac{\partial x}{\partial u})_v$. [5]

b) If
$$T = \sin\left(\frac{xy}{x^2 + y^2}\right) + \sqrt{x^2 + y^2}$$
, find the value of $x\frac{\partial T}{\partial x} + y\frac{\partial T}{\partial y}$. [5]

If u = f(r, s) where $r = x^2 + y^2$, $s = x^2 - y^2$ then show that $y \frac{\partial u}{\partial x} + x \frac{\partial u}{\partial y} = 4xy \frac{\partial u}{\partial r}$. [5]

Q4) a) If
$$x = u + v$$
, $y = v^2 + w^2$, $z = u^3 + w^5$ then find $\frac{\partial u}{\partial x}$. [5]

In calculating resistance R of a circuit by using the formula: b)

$$R = \frac{V}{I}$$

errors of 3% and 1% are made in measuring Voltage V and current I respectively. Find the % error in the calculated resistance. [5]

Discuss the maxima and minima of: c) [5]

$$f(x, y) = x^2 + y^2 + xy + x - 4y + 5$$

Q5) a) If
$$u + v^2 = x$$
, $v + w^2 = y$, $w + u^2 = z$ find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ [5]

- Examine for functional dependence: b) [5] u = y + z, $v = x + 2z^2$, $w = x - 4yz - 2y^2$
- A space probe in the shape of the ellipsoid $4x^2 + y^2 + 4z^2 = 16$ enters the earth's atmosphere and it's surface begins to heat. After one hour, the temperature at the point (x, y, z) on the surface of the probe is

$$T(x, y, z) = 8x^2 + 4yz - 16z + 600.$$

Find the hottest point on the surface of the probe, by using Lagrange's method.

- Examine for consistency and if consistent then solve it *Q***6**) a) 2x + 3y + 5z = 1; 3x + y - z = 2; x + 4y - 6z = 1
 - Examine whether the vectors b) $X_1 = (1, 1, -1, 1); X_2 = (1, -1, 2, -1); X_3 = (3, 1, 0, 1)$ are linearly independent or dependent. If dependent find relation

between them.

c) If
$$A = \begin{bmatrix} 1/3 & 2/3 & a \\ 2/3 & 1/3 & b \\ 2/3 & -2/3 & c \end{bmatrix}$$
 is orthogonal

Find a, b, c.

1]-4001

between them.

Investigate for what values of k, the equations **Q7**) a)

[5]

x + y + z = 1; 2x + y + 4z = k; $4x + y + 10z = k^2$ have infinite number of solution? Hence find solution.

Examine whether the vectors. b)

[5]

$$X_1 = (2, 3, 4, -2); X_2 = (-1, -2, -2, 1); X_3 = (1, 1, 2, -1)$$

are linearly independent or dependent. If dependent find relation between them.

Find the current I_1 ; I_2 ; I_3 in the circuit shown in the figure c)

[5]

Find eigen values and eigen vectors of the following matrix **Q8**) a)

[5]

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

Verify Cayley-Hamilton theorem for A = b) find A⁻¹. [5]

Find the modal matrix p which transform the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ to c)

the diagonal form.

[5]

- (29) a) Find eigen values and eigen vectors of the following matrix $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$. [5]

 b) Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ and use it to find A^{-1} [5]

 c) Reduce the following quadratic form to the "sum of the squares form". [5]
 - [5]

$$Q(x) = 2x^2 + 9y^2 + 6z^2 + 8xy + 8yz + 6xz$$

Q(x) = $2x^2 + 9y^2 + 6z^2 + 8xy + 8yz + 6xz$ an of the And the state of t Total No. of Questions—8]

Total No. of Printed Pages—4+1

Seat No.

F.E. (I Semester) EXAMINATION, 2019

ENGINEERING MATHEMATICS—I

(Phase-II)

(2019 PATTERN)

Time: 2½ Hours

Maximum Marks: 70

- Attempt Q. No. 1 or Q. No. 2, No. 3 or Q. No. 4, *N.B.* :-Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - Use of electronic pocket calculator is allowed. (ii)
 - Assume suitable data, if necessary. (iii)
 - Neat diagrams must be drawn wherever necessary. (iv)
 - Figures to the right indicate full marks. (v)
- If $z = \tan (y + ax) + (y ax)^{3/2}$, find the value of 1.

$$\frac{\partial^2 z}{\partial x^2} - a^2 \frac{\partial^2 z}{\partial y^2}$$
 [6]

If $T = \sin\left(\frac{xy}{x^2 + y^2}\right) + \sqrt{x^2 + y^2}$, by using Euler's theorem find $x\frac{\partial T}{\partial x} + y\frac{\partial T}{\partial y}$. If $u = x^2 - y^2$, v = 2xy and z = f(u, v), then show that $x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = 2\sqrt{u^2 + v^2} \frac{\partial z}{\partial u}.$ [6]

find
$$x \frac{\partial \mathbf{T}}{\partial x} + y \frac{\partial \mathbf{T}}{\partial y}$$
. [6]

$$x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = 2\sqrt{u^2 + v^2} \frac{\partial z}{\partial u}.$$
 [6]

- (a) If $x = u \tan v$, $y \neq u \sec v$, prove that : 2. [6]

prove that:
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x^2} + y^2 \frac{\partial^2 u}{\partial x^2} = \frac{1}{2} (\tan^3 u - \tan u).$$

- (b) If $u = \sin^{-1}\left(\frac{\partial v}{\partial x}\right)_{y} = \left(\frac{\partial u}{\partial y}\right)_{x} \left(\frac{\partial v}{\partial y}\right)_{x}$.

 (b) If $u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, by using Euler's theorem.

 prove that: $x^{2}\frac{\partial^{2}u}{\partial x^{2}} + 2xy\frac{\partial^{2}u}{\partial x\partial y} + y^{2}\frac{\partial^{2}u}{\partial y^{2}} = \frac{1}{4}(\tan^{3}u \tan u).$ (c) If $x = \frac{\cos\theta}{u}$, $y = \frac{\sin\theta}{u}$ and z = f(x, y), then show that: [6]
- $u \frac{\partial z}{\partial u} \frac{\partial z}{\partial \theta} = (y x)\frac{\partial z}{\partial x} (y + x)\frac{\partial z}{\partial y}.$ (a) If u = x + y + z, $v = x^2 + y^2 + z^2$, w = xy + yz + zxfind $\frac{\partial (u, v, w)}{\partial (x, y, z)}$.

 [6]
 (b) Examine whether $u = \frac{x y}{1 + xy}$, $v = \tan^{-1} x \tan^{-1} y$ are **3.**
 - functionally dependent, if so find the relation between them. [5]
 - Find the extreme values of $x^2 + y^2 + \frac{2}{x} + \frac{2}{y}$

(a) If $u = x + y^2$, $v = y + z^2$, $w = z + x^2$, using Jacobian find $\frac{\partial x}{\partial u}$. [6] 4.

[5667]-1001

- A power dissipated in a resistor is given by $P = \frac{\epsilon^2}{R}$. If errors (*b*) of 3% and 2% are found in ϵ and R respectively, find the percentage error in P. [5]
- Using Lagrange's method find extreme value of xyz if (c) [6]
- Examine for consistency of the system of linear equations and **5.** (a)solve if consistent: [6]

$$x_1 + x_2 + x_3 = 0$$
 $-2x_1 + 5x_2 + 2x_3 = 1$
 $8x_1 + x_2 + 4x_3 = -1$

- Examine for linear dependence or independence the vectors (*b*) (1, 1, 1, 3), (1, 2, 3, 4), (2, 3, 4, 7). Find the relation between them if dependent. [6]
- Determine the values of a, b, c when A is orthogonal (c)where:

$$\mathbf{A} = \begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}.$$

- Investigate for what values of a and b, the system of equations 6. (a)2x - y + 3z = 2, x + y + 2z = 2, 5x - y + az = b have :
 - No solution (1)
 - A unique solution (2)
 - An infinite number of solutions. (3)[6]

[5667]-1001

Examine for linear dependence or independence the vectors (*b*) $x_1 = (2, \ 3, \ 4, \ -2), \ x_2 = (1, \ 1, \ 2, \ -1), \ x_3 = \left(\frac{-1}{2}, \ -1, \ -1, \ \frac{1}{2}\right)$

Find the relation between them if dependent. [6]

Determine the currents in the network given in figure (c)[5]

Find the eigen values and the corresponding eigen vectors for **7.** (a)the following matrix:

- Verify Cayley-Hemilton theorem for A = (*b*) and use it to find A^{-1} . [6]
- Find a matrix P that diagonalizes the matrix Γ 1 ϵ (c)

$$A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 [6]

Find the eigen values and the corresponding eigen vectors for 8. (*a*)

the following matrix :
$$A = \begin{bmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{bmatrix}.$$

Ley-Hamilton theorem for $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{bmatrix}$ and if to find A^{-1} . [6]

Reduce the following quadratic form to the sum of the squares form: $Q = 2x^2 + 9y^2 + 6z^2 + 8xy + 8yz + 6xz.$

P1268

SEAT No.:		
[Total	No. of Pages : 2	2

OCT/FE/INSEM-1

F.E. (Phase - I)

ENGINEERING MATHEMATICS - I (2019 **Pattern**)

Time: 1 Hour]

[Max. Marks: 30

Instructions to the condidates:

- Attempt Q1 or Q2 and Q3 or Q4. 1)
- 2) Use of electronic pocket calculator is allowed.
- Assume suitable data, if necessary. 3)
- Near diagrams must be drawn wherever necessary. **4**)
- Figures to the right indicate full marks. 5)

$$Q1$$
) a) For $0 < a < b$, show that

[5]

$$\left(\frac{b-a}{b}\right) < \log\left(\frac{b}{a}\right) < \left(\frac{b-a}{a}\right)$$

Hence show that $\frac{1}{4} < \log \left(\frac{1}{3}\right) < \frac{1}{3}$

- By using Taylor's theorem, expand $f(x) = e^x$ in powers of (x-2). b)
- Evaluate $\lim_{x\to 0} \left(\frac{a^x + b^x}{2} \right)$ c)

Q2) a) Prove that
$$\log(1 + \tan x) = x - \frac{x^2}{2} + \frac{2}{3}x^3 - \cdots$$
 [5]

- b)
- c)

Expand
$$7+(x+1)+3(x+1)^3+(x+1)^4$$
 in ascending powers of x by using Taylor's theorem. [5]

Find a and b if
$$\lim_{x\to 0} \left[\frac{a\cos x - a + bx^2}{x^4} \right] = \frac{1}{12}$$
[5]

P.T.O.

Find fourier series to represent the function **Q3**) a)

$$f(x) = x \text{ for } -\pi < x < \pi \text{ and } f(x) = f(x + 2\pi).$$
 [5]

- Find half range cosine series for $f(x) = x^2$, 0 < x < 2. b) [5]
- Obtain constant term and coefficients of the first sine and cosine terms c) in the Fourier expansion of y as given in the following table. [5]

$$(Given f(x) = f(x + 2\pi))$$

X	0 $\frac{11}{2}$	211	П	$\frac{4\Pi}{2}$	$\frac{5\Pi}{2}$	
	/3	213		3	3	
у	1.0 1.4	1.9	1.7	1.5	1.2	

OR

- Find Fourier series for the function f(x)**Q4**) a) f(x) = f(x+4).**[5]**
 - Find half-range sine series for $f(x) = \prod x x^2$ where $0 < x < \prod$. [5]
 - Find first three terms in cosine series to represent y as given in the following c) **[5]** table.

x	0	1	2 3 4 5
у	4	8	15 7 6 2
			RAJESOO ON THE STATE OF THE STA
			9.7
EM	-1		2
			2 3 5 5 7 6 2 2 1 5 7 6 7 2 1 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Total No	o. of Questions : 4]	SEAT No. :
PA-1		[Total No. of Pages : 2
	[5931]-1001	
	F.E.	A TENT COC. T
	ENGINEERING MATHEM	
	(2019 Pattern) (Semester-I)	(107001)
Time: 1	-	[Max. Marks : 30
	Attempt Ol or 02 and 02 or 04	
1) 2)	Attempt Q1 or Q2 and Q3 or Q4. Figures to the right indicate full marks.	
3)	Assume sunable data wherever necessary.	
4)	Use of electronic pocket calculator is allowed.	9
	U* 36	
	b-a	b-a
Q1) a)	If $f(x) = \sin^{-1}x$ then show that $\frac{b-a}{\sqrt{1-a^2}} < \sin^{-1}x$	$a^{-1}b - \sin^{-1}a < \frac{1}{\sqrt{1-h^2}}$ where
	0 <a<b<1.< td=""><td>[5]</td></a<b<1.<>	[5]
1 \		~
b)	Using Taylor's theorem, expand $1+2x+3x^2$	$+4x^3$ in powers of $x+1$ [5]
2)	Evaluate $\lim_{x \to \infty} (\cos x)^{\cos x}$	[5]
c)	Evaluate $\lim_{x \to \frac{\pi}{2}} (\cos x)^{\cos x}$	[5]
	OR	
Q2) a)	Expand $\sqrt{1 + \sin x}$ upto x^4 in ascending po	owers of x [5]
Q2) u)	Expand VI + Sin x apto x mascending po	
b)	Expand logcosx in ascending powers of (x)	$-\frac{\pi}{3}$) upto the term in $\left(x-\frac{\pi}{3}\right)^2$
	by using Taylor's theorem.	[5]
	O. T. C.	
<i>a</i>)	Find the values of a and b if $\lim_{x\to 0} \frac{\sin x + ax}{x^3}$	$+bx^3$
c)	Find the values of a and b if $\lim_{x\to 0} \frac{1}{x^3}$	= 0
00	$(\pi - x)^2$	
Q3) a)	Find Fourier series for $f(x) = \left(\frac{\pi - x}{2}\right)^2$, 0	$< x < 2\pi \text{ and } f(x) = f(x+2\pi)[5]$
b)	R	
U)	1 mu man-range sine series (U)	(5)

f(x)=2x-1, 0 < x < 1

P.T.O.

Obtain the constant term and the coefficients of the first sine and cosine c) term in the fourier series of f(x) as given in the following table. [5]

X	0	1	2	3	4	5
у	9	18	24	28	26	20
				Y /		\sim D

Q4) a)

Find the fourier series to represent
$$f(x) = \begin{cases} -3, & -1 < x < 0 \\ 3, & 0 < x, < 1 \end{cases}, f(x) = f(x+2)$$

Find half-range consine series for $f(x) = x^2, 0 < x < \pi$ b) [5]

[5]

 $0 < x < \pi$ Find half-range sine series for f(x) = 1, $0 < x < \pi$. Hence using parsevals identify, deduce that [5]

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$$