

区块链中的进阶密码学

徐海霞 xuhaixia@iie.ac.cn

中国科学院信息工程研究所

基础密码学

进阶密码学

困难与挑战

区块链是什么

区块链(Blockchain)

- ▶ 是一种分布式交易验证和 数据共享技术
- > 也被称为分布式共享总账

特点:

- > 分布式平等部署系统
- > 分布式共享相同数据
- > 无中心控制
- > 全网节点协作完成交易验证存储

Hash函数

SHA-256

Signature

Hierarchical wallets

- \triangleright Private key: k, x, y
- > ith sk: $x_i = y + H(k||i)$
- \triangleright Address: k, g^y
- \succ ith pk: $g^{x_i} = g^{H(k||i)}g^y$
- \triangleright ith address: $H(g^{x_i})$

进阶

Threshold Signature

效率

币种	吞吐量(TPS)	
比特币	7	
Hyperledger Fabric 1.0	1,000	
VISA	56,000	
支付宝双11	256,000	
微信除夕红包	760,000	

安全

- >安全性证明&形式化验证
- ▶应急预案
- ▶钱包、交易所攻击
- ▶量子计算机

隐私

- > 敏感信息(账户、余额等)
- > 数据公开存储

基础

进阶

进阶

	Signature	VRF	PVSS
Dfinity	\checkmark		
Algorand		\checkmark	
Ouroborus			\checkmark
Scrape			Optimized
Randherd			\checkmark

Coin-tossing into the well

$$(1^n, 1^n) \longrightarrow (b, b)$$

where b is uniformly distributed in {0, 1}.

A Coin-tossing-into-the-well Protocol

Figure: Coin Tossing Protocol

A hoforo platoqui

进阶

进阶

挑战

	方案	发送方隐私	接收方隐私	隐藏交易金额	技术
	Zerocoin	✓	×	×	NIZK&Accumulator
	Zerocash	√	√	✓	ZK-SNARK
	RingCT2.0	✓	√	✓	NIZK&Accumulator
	DASH	✓	×	×	Mixing
	Monero	✓	✓	✓	Ring Signatures
	Zcash	✓	√	✓	ZK-SNARK
			A		

环签名 (Ring Signature)

2001年, Rivest, shamir和Tauman三位密码学家首次提出了环签名

图1.1 Rivest 等提出的环签名算法示意图

Fig.1.1 The Ring Signature Scheme Proposed by Rivest et al.

Zerocash (ZK-SNARKs)

--铸币交易 (Mint)

(c) coin commitment (d) serial number

--转账交易Pour

$$\mathbf{c} = (a_{pk}, v, r, s,
ho, cm, sn)$$

$$\mathbf{c_1} = (b_{pk}, y, \rho_1, r_1, s_1, cm_1)$$

$$\mathbf{c_2} = (a_{pk}, v - y, \rho_2, r_2, s_2, cm_2)$$
 (找零)

将如下交易信息发送到公网上: $TX_{pour}=(sn,cm_1,cm_2,\pi)$.

基础

进阶

挑战

[PGHR13]在[GGPR13]的基础上提出了基于普通QAP而非强QAP(其次数将近是普通QAP的三倍)下的接近实用的SNARK方案。并提供一种编译器可以将C程序转换成相对应的算术电路。

•BCIPO13

[BCIPO13]中提出了一种从LPCP(linear Probabilistically checkable Proof)转换成线性交互证明 (linear interactive proof, LIP)的技术,并在LIP上设计zk-SNARK方案。

基础

进阶

兆战

[BCTV14]中实现了一种zk-SNARK系统。此系统对[PGHR13]中方案进行了优化,改进了证明与验证的时间。

- ➤ 在[BCGTV13]的TinyRAM的基础上提出了适用于冯诺依曼体系结构的vnTinyRAM,并提供了可将C程序编译成 vnTinyRAM机器语言的编译器。
- ▶他们所设计的电路生成器相比与之前的实现([BCGTV13], [PGHR13])的优势:
 - ▶ 电路生成是通用(Universal)的,即不依赖于程序;
 - ▶ 可以很高效地处理任意较大型的程序。

基础

进阶

libsnark中提供了4条椭圆曲线

- ➤Edwards曲线
- ➤ Barreto Naehrig曲线
- ≻MNT4曲线

未建平台

预设式监管

区块链

已有平台

追加式监管

础进防

础进

基础 进阶

石出

进阶挑战

感谢倾听! 敬请指正!

