

AOD4189

P-Channel Enhancement Mode Field Effect Transistor

General Description

The AOD4189 uses advanced trench technology and design to provide excellent $R_{\text{DS(ON)}}$ with low gate charge. With the excellent thermal resistance of the DPAK package, this device is well suited for high current load applications.

- -RoHS Compliant
- -Halogen Free*

Features

 $V_{DS}(V) = -40V$

 $I_D = -40A$ $(V_{GS} = -10V)$

 $R_{DS(ON)}$ < 22m Ω (V_{GS} = -10V)

 $R_{DS(ON)}$ < 29m Ω (V_{GS} = -4.5V)

100% UIS Tested! 100% Rg Tested!

Absolute Maximum Ratings T _c =25°C unless otherwise no

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V_{DS}	-40	V	
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Drain	T _C =25°C		-40		
Current B,H	T _C =100°C	I _D	-28		
Pulsed Drain Current ^C		I _{DM}	-50	A A	
Avalanche Current ^C		I _{AR}	-35	7	
Repetitive avalanche energy L=0.1mH ^C		E _{AR}	61	mJ	
Power Dissipation ^B	T _C =25°C	Ь	62.5		
	T _C =100°C	$-P_{D}$	31	\exists w	
	T _A =25°C	р	2.5	¬	
Power Dissipation ^A	T _A =70°C	P _{DSM}	1.6	7	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 175	°C	

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A,G	t ≤ 10s	$R_{ hetaJA}$	15	20	°C/W			
Maximum Junction-to-Ambient A,G	Steady-State	ГС⊕ЈА	41	50	°C/W			
Maximum Junction-to-Case D,F	Steady-State	$R_{\theta JC}$	2	2.4	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Тур	Max	Units
STATIC P	ARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-40			V
1	Zero Gate Voltage Drain Current	V _{DS} =-40V, V _{GS} =0V			-1	μА
I _{DSS}		T _J =55	°C		-5	μΑ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_D=-250\mu A$	-1.7	-1.9	-3	V
I _{D(ON)}	On state drain current	V_{GS} =-10V, V_{DS} =-5V	-50			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-12A		18	22	
		T _J =125	°C	27	33	mΩ
		V_{GS} =-4.5V, I_D =-8A		23	29	
g _{FS}	Forward Transconductance	V_{DS} =-5V, I_D =-12A		35		S
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.74	-1	V
I _S	Maximum Body-Diode Continuous Cur	rrent			-20	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			1870		pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-20V, f=1MHz		185		pF
C _{rss}	Reverse Transfer Capacitance			155		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	2.5	4.5	6.5	Ω
SWITCHII	NG PARAMETERS					
Q _g (-10V)	Total Gate Charge			31.4	41	nC
Q _g (-4.5V)	Total Gate Charge	V _{GS} =-10V, V _{DS} =-20V,		7.9	10	
Q_{gs}	Gate Source Charge	I _D =-12A		7.6		nC
Q_{gd}	Gate Drain Charge			6.2		nC
t _{D(on)}	Turn-On DelayTime			10		ns
t _r	Turn-On Rise Time	V _{GS} =-10V, V _{DS} =-20V, R _L =1.6Ω	2,	18		ns
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		38		ns
t _f	Turn-Off Fall Time			24		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-12A, dI/dt=100A/μs		32	42	ns
Q_{rr}	Body Diode Reverse Recovery Charge	l _F =-12A, dl/dt=100A/μs		30		nC

A: The value of $R_{\theta JA}$ is measured with the device in a still air environment with T_A =25°C. The power dissipation P_{DSM} and current rating I_{DSM} are based on $T_{J(MAX)}$ =150°C, using steady state junction-to-ambient thermal resistance.

Rev1: Oct 2008

COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C: Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =175°C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using t \leq 300 μ s pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=175°C. The SOA curve provides a single pulse rating.

G. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C.

 $[\]ensuremath{\mathsf{H}}.$ The maximum current rating is limited by bond-wires.

^{*}This device is guaranteed green after data code 8X11 (Sep 1 ST 2008).

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics

Figure 2: Transfer Characteristics

Figure 3: On-Resistance vs. Drain Current and Gate Voltage

Figure 4: On-Resistance vs. Junction Temperature

Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Figure 10: Single Pulse Power Rating Junction-to-Case (Note F)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Single Pulse Avalanche Capability

Figure 13: Power De-rating (Note B)

Figure 14: Current De-rating (Note B)

Figure 15: Single Pulse Power Rating Junctionto-Ambient (Note G)

Figure 16: Normalized Maximum Transient Thermal Impedance (Note G)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

