Резюме

Пусть A — либо число, либо один из символов $+\infty$, $-\infty$, ∞ , и пусть функция f определена в проколотой окрестности \mathring{V}_a , где a — либо число, либо символ ∞ .

 $A = \lim_{x \to a} f(x)$, если для любой последовательности $\{x_k\}$, такой, что: 1) при всех $k \in \mathbb{N}$ $x_k \in \mathring{V}_a$ и 2) $x_k \to a$, соответствующая последовательность $\{f(x_k)\}$ стремится к A.

B частности, $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$.

Пусть $\lim_{x\to a} f(x) = A$, $\lim_{x\to a} g(x) = B$, где a, A и B — некоторые числа. Тогда:

- a) $\lim_{x\to a} (f(x) + g(x)) = A + B$, $\lim_{x\to a} f(x) \cdot g(x) = AB$;
- б) $\lim_{x\to a} \lambda f(x) = \lambda A$, где $\lambda \in \mathbf{R}$;
- в) если при всех $x \in \mathring{V}_a$ $g(x) \neq 0$ и $B \neq 0$, то $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$;
- Γ) если в \mathring{V}_a $f(x) \le g(x)$, то $A \le B$.

Если p < A (p > A), то существует $\delta > 0$ такое, что в \mathring{V}_a p < f(x) (p > f(x)).

Пусть 1) при всех $x_k \in \mathring{V}_a$, где a — либо число, либо символ ∞ , справедливо $f(x) \le g(x) \le h(x)$, и 2) $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = A$, $A \in \mathbf{R}$. Тогда $\lim_{x \to a} g(x)$ существует и равен A.

Пусть a — либо число, либо символ ∞ , функция $\alpha(x)$ определена в \mathring{V}_a . $\alpha(x)$ называют бесконечно малой (бесконечно большой) функцией при $x \to a$, если $\lim_{x\to a} \alpha(x) = 0$ ($\lim_{x\to a} \alpha(x) = \infty$).

Справедливы утверждения:

- 1) Сумма и произведение бесконечно малых функций есть бесконечно малые функции.
- 2) Произведение бесконечно малой функции на ограниченную функцию есть бесконечно малая функция.

- 3) $\lim_{x\to a}f(x)=A$, $A\in \mathbf{R}$, тогда и только тогда, когда $\lim_{x\to a}\bigl(f(x)-A\bigr)=0$.
- 4) Пусть $\alpha(x)$ определена в \mathring{V}_a и при всех $x \in \mathring{V}_a$ $\alpha(x) \neq 0$; тогда

а) если
$$\alpha(x) \xrightarrow[x \to a]{} 0$$
, то $\frac{1}{\alpha(x)} \xrightarrow[x \to a]{} \infty$;

б) если
$$\alpha(x) \xrightarrow[x \to a]{} \infty$$
, то $\frac{1}{\alpha(x)} \xrightarrow[x \to a]{} 0$.

Пусть функция f определена в \mathring{V}_{x_0} , $x_0 \in \mathbf{R}$, и удовлетворяет условиям: 1) $\lim_{x \to x_0} f(x) = y_0$, $y_0 \in \mathbf{R}$, и 2) при всех $x \in \mathring{V}_{x_0}$ $f(x) \neq y_0$. Пусть, далее, функция g определена в \mathring{V}_{y_0} . Если существует конечный или бесконечный предел $\lim_{y \to y_0} g(y)$, то существует и $\lim_{x \to x_0} F(x)$, где F(x) = g(f(x)), причем $\lim_{x \to x_0} F(x) = \lim_{y \to y_0} g(y)$.

Пусть функция f монотонно не убывает (монотонно не возрастает) на (a;b), a < b, а E(f) есть множество ее значений.

- I. Если E(f) ограничено сверху, то $\lim_{x\to b^{-0}} f(x) = \sup E(f)$ ($\lim_{x\to a+0} f(x) = \sup E(f)$).
- II. Если E(f) ограничено снизу, то $\lim_{x\to a+0} f(x) = \inf E(f)$ ($\lim_{x\to b-0} f(x) = \inf E(f)$).

Контрольные вопросы к главе 2

- 1. Опишите понятие «функция одной переменной». Что называют графиком функции y = f(x), определенной на промежутке (a, b)? Приведите примеры.
- 2. Пусть a и A некоторые числа. На языке последовательн6остей и на языке « ε — δ » сформулируйте утверждение: $A = \lim_{x \to 0} f(x)$.
 - 3. Опираясь на определение предела, докажите: $\limsup_{x\to 0} \sin x = 0$.
- 4. Пусть A некоторое число. На языке последовательностей сформулируйте утверждения: a) $\lim_{x\to +\infty} f(x) = A$; б) $\lim_{x\to -\infty} f(x) = A$; в) $\lim_{x\to \infty} f(x) = A$. Как эти утверждения формулируются на языке « ε - δ »?

- 5. Пусть $\lim_{x \to a} f(x) = A$, $\lim_{x \to a} g(x) = B$, где A и B числа, а a либо число, либо символ ∞ . Чему равны $\lim_{x \to a} \left(f(x) + g(x) \right)$ и $\lim_{x \to a} f(x) \cdot g(x)$? В каком случае можно гарантировать, что существует конечный $\lim_{x \to a} \frac{f(x)}{g(x)}$? Чему он равен?
- 6. Сформулируйте определение функции, бесконечно большой при x, стремящихся к a, где a некоторое число. Приведите пример.
- 7. Сформулируйте определение функции, бесконечно большой при x, стремящемся к ∞ . Приведите пример.
- 8. Пусть $\lim_{x\to a} f(x) = \infty$, где a либо число, либо ∞ . Что можно утверждать о поведении функций $g(x) = \frac{1}{f(x)}$ в окрестности a?
- 9. Пусть $\lim_{x\to a} f(x) = 0$, где a либо число, либо ∞ , причем $f(x) \neq 0$ в проколотой окрестности a. Что можно утверждать о поведении функций $g(x) = \frac{1}{f(x)}$ в окрестности a?
- 10. Опишите понятие сложной функции, приведите примеры. Сформулируйте теоремы о пределе сложной функции.
- 11. Дайте определение функции, монотонной (строго монотонной) на промежутке. Приведите примеры.
 - 12. Пусть функция f определена на (a; b), a < b, и
 - а) монотонно не убывает и ограничена сверху на (a;b);
 - а) монотонно не убывает и не ограничена сверху на (a; b);
 - а) монотонно не возрастает и ограничена снизу на (a; b);
 - а) монотонно не возрастает и не ограничена снизу на (a; b).

Что можно утверждать о $\lim_{x\to b-0} f(a)$ в случаях а) и б) и о $\lim_{x\to +0} f(x)$ в случаях в) и г)?

Ответы на контрольные вопросы к главе 2

- 4. а) Для всякого $\varepsilon > 0$ найдется $\delta > 0$, такое, что при всех x, $x > \delta$, справедливо $|f(x) A| < \varepsilon$.
- б) Для всякого $\varepsilon > 0$ найдется $\delta > 0$, такое, что при всех x, $x < -\delta$, справедливо $|f(x) A| < \varepsilon$.
- в) Для всякого $\varepsilon > 0$ найдется $\delta > 0$, такое, что при всех x, $|x| > \delta$, справедливо $|f(x) A| < \varepsilon$.
 - 12. а) Существует конечный $\lim_{x \to b-0} f(x) = \sup_{(a;b)} f(x)$.
 - $6) \lim_{x \to b-0} f(x) = +\infty.$
 - в) Существует конечный $\lim_{x\to a+0} f(x) = \inf_{(a;b)} f(x)$.
 - $\Gamma) \lim_{x \to a+0} f(x) = -\infty$