

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE 390 0000		ATTORNEY'S DOCKET NUMBER Mo-6305/HR-199 U.S. APPLICATION NO. (If known, see 37 CFR 1.5
TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371		09/830514
INTERNATIONAL APPLICATION NO. PCT/EP99/07952	INTERNATIONAL FILING DATE October 20, 1999	PRIORITY DATE CLAIMED October 31, 1998
TITLE OF INVENTION Construction of Production Strains for Producing Substituted Phenols By Specifically Inactivating Genes of the Eugenol and Ferulic Acid Catabolism		
APPLICANT(S) FOR DO/EO/US RABENHORST, Jurgen; STEINBUCHEL, Alexander; PRIEFERT, Horst and OVERHAGE, Jorg		
Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:		
<p>1. <input checked="" type="checkbox"/> This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.</p> <p>2. <input type="checkbox"/> This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.</p> <p>3. <input checked="" type="checkbox"/> This is an express request to begin national examination procedures (35 U.S.C. 371(f)). The submission must include items (5), (6), (9) and (21) indicated below.</p> <p>4. <input checked="" type="checkbox"/> The US has been elected by the expiration of 19 months from the priority date (Article 31).</p> <p>5. <input checked="" type="checkbox"/> A copy of the International Application as filed (35 U.S.C. 371(c)(2)) <ul style="list-style-type: none"> a. <input checked="" type="checkbox"/> is attached hereto (required only if not communicated by the International Bureau). b. <input type="checkbox"/> has been communicated by the International Bureau. c. <input type="checkbox"/> is not required, as the application was filed in the United States Receiving Office (RO/US). </p> <p>6. <input checked="" type="checkbox"/> An English language translation of the International Application as filed (35 U.S.C. 371(c)(2)) <ul style="list-style-type: none"> a. <input type="checkbox"/> is attached hereto. b. <input type="checkbox"/> has been previously submitted under 35 U.S.C. 154(d)(4). </p> <p>7. <input type="checkbox"/> Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)) <ul style="list-style-type: none"> a. <input type="checkbox"/> are attached hereto (required only if not communicated by the International Bureau). b. <input type="checkbox"/> have been communicated by the International Bureau. c. <input type="checkbox"/> have not been made; however, the time limit for making such amendments has NOT expired. d. <input type="checkbox"/> have not been made and will not be made. </p> <p>8. <input type="checkbox"/> An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).</p> <p>9. <input checked="" type="checkbox"/> An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).</p> <p>10. <input type="checkbox"/> An English language translation of the annexes of the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).</p>		
<p>Items 11 to 20 below concern document(s) or information included:</p> <p>11. <input type="checkbox"/> An Information Disclosure Statement under 37 CFR 1.97 and 1.98.</p> <p>12. <input checked="" type="checkbox"/> An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.</p> <p>13. <input checked="" type="checkbox"/> A FIRST preliminary amendment.</p> <p>14. <input type="checkbox"/> A SECOND or SUBSEQUENT preliminary amendment.</p> <p>15. <input type="checkbox"/> A substitute specification.</p> <p>16. <input type="checkbox"/> A change of power of attorney and/or address letter.</p> <p>17. <input checked="" type="checkbox"/> A computer-readable form of the sequence listing in accordance with PCT Rule 13ter.2 and 35 U.S.C. 1.821 - 1.825.</p> <p>18. <input type="checkbox"/> A second copy of the published international application under 35 U.S.C. 154(d)(4).</p> <p>19. <input type="checkbox"/> A second copy of the English language translation of the international application under 35 U.S.C. 154(d)(4).</p> <p>20. <input checked="" type="checkbox"/> Other items or information:</p>		
<p>Preliminary Amendment w/Abstract, Sequence Listing (Paper Copy and Disk Copy) Form PTO 1449 w/references</p>		

U.S. APPLICATION NO. (NOTE: see 37 CFR 1.137(a)) To Be Assigned 09/830514	INTERNATIONAL APPLICATION NO PCT/EP99/07952	ATTORNEY'S DOCKET NUMBER Mo-6305/HR-199		
21. <input checked="" type="checkbox"/> The following fees are submitted:		CALCULATIONS PTO USE ONLY		
BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) - (5)):				
Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO \$1000.00				
International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO \$860.00				
International preliminary examination fee (37 CFR 1.482) not paid to USPTO but international search fee (37 CFR 1.445(a)(2)) paid to USPTO \$710.00				
International preliminary examination fee (37 CFR 1.482) paid to USPTO but all claims did not satisfy provisions of PCT Article 33(l)-(4) \$690.00				
International preliminary examination fee (37 CFR 1.482) paid to USPTO and all claims satisfied provisions of PCT Article 33(1)-(4) \$100.00				
ENTER APPROPRIATE BASIC FEE AMOUNT =		\$ 860.00		
Surcharge of \$130.00 for furnishing the oath or declaration later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(e)).		\$ 0.00		
CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE	\$
Total claims	15 -20 =	0	x \$18.00	\$ 0.00
Independent claims	5 -3 =	2	x \$80.00	\$ 160.00
MULTIPLE DEPENDENT CLAIM(S) (if applicable)			+ \$270.00	\$ 0.00
TOTAL OF ABOVE CALCULATIONS =			\$ 1,020.00	
<input type="checkbox"/> Applicant claims small entity status. See 37 CFR 1.27. The fees indicated above are reduced by 1/2.		+	\$ 0.00	
SUBTOTAL =			\$ 1,020.00	
Processing fee of \$130.00 for furnishing the English translation later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(f)).		\$ 0.00		
TOTAL NATIONAL FEE =			\$ 1,020.00	
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property +		\$ 40.00		
TOTAL FEES ENCLOSED =			\$ 1,060.00	
		Amount to be refunded:	\$	
		charged:	\$	
<p>a. <input type="checkbox"/> A check in the amount of \$ _____ to cover the above fees is enclosed.</p> <p>b. <input checked="" type="checkbox"/> Please charge my Deposit Account No. <u>13-3848</u> in the amount of \$ <u>1,060.00</u> to cover the above fees. A duplicate copy of this sheet is enclosed.</p> <p>c. <input checked="" type="checkbox"/> The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. <u>13-3848</u>. A duplicate copy of this sheet is enclosed.</p> <p>d. <input type="checkbox"/> Fees are to be charged to a credit card. WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.</p>				
<p>NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137 (a) or (b)) must be filed and granted to restore the application to pending status.</p> <p>SIGNATURE</p>				
SEND ALL CORRESPONDENCE TO 00157 PATENT TRADEMARK OFFICE				
<u>Noland J. Cheung</u> NAME				
<u>39,138</u> REGISTRATION NUMBER				

**TRANSMITTAL LETTER TO THE
UNITED STATES RECEIVING OFFICE**

Date	April 27, 2001
International Application No.	PCT/EP9807952
Attorney Docket No.	Mo-6305/HR-199

I. Certification under 37 CFR 1.10 (if applicable)

ET146893673US
Express Mail mailing number

April 27, 2001
Date of Deposit

I hereby certify that the application/correspondence attached hereto is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to Assistant Commissioner for Patents, Washington, D.C. 20231.

Signature of person mailing correspondence

Donna J. Veatch
Typed or printed name of person mailing correspondence

II. New International Application

TITLE	CONSTRUCTION OF PRODUCTION STRAINS FOR PRODUCING SUBSTITUTED PHENOLS BY SPECIFICALLY INACTIVATING GENES OF THE EUGENOL AND FERULIC ACID CATABOLISM	Earliest priority date (Day/Mon/Year)
		(31/10/98)

SCREENING DISCLOSURE INFORMATION: In order to assist in screening the accompanying international application for purposes of determining whether a license for foreign transmittal should and could be granted and for other purposes, the following information is supplied. (Note: check as many boxes as apply):

- A. The invention disclosed was not made in the United States.
- B. There is no prior U.S. application relating to this invention.
- C. The following prior U.S. application(s) contain subject matter which is related to the invention disclosed in the attached international application. (NOTE. priority to these applications may or may not be claimed on form PCT/RO/101 (Request) and this listing does not constitute a claim for priority.)

application no.	filed on
application no.	filed on

- D. The present international application contains additional subject matter not found in the prior U.S. application(s) identified in paragraph C. above. The additional subject matter is found on pages and **DOES NOT ALTER** **MIGHT BE CONSIDERED TO ALTER** the general nature of the invention in a manner which would require the U.S. application to have been made available for inspection by the appropriate defense agencies under 35 U.S.C. 181 and 37 CFR 5.1. See 37 CFR 5.15

III. A Response to an Invitation from the RO/US. The following document(s) is(are) enclosed:

- A. A Request for An Extension of Time to File a Response
- B. A Power of Attorney (General or Regular)
- C. Replacement pages:

pages	of the request (PCT/RO/101)	pages	of the figures
pages	of the description	pages	of the abstract
pages	of the claims		

- D. Submission of Priority Documents

Priority document	Priority document
-------------------	-------------------

- E. Fees as specified on attached Fee Calculation sheet form PCT/RO/101 annex

IV. A Request for Rectification under PCT 91 A Petition A Sequence Listing Diskette

**V. Other (please specify): Preliminary Amendment w/Abstract, Sequence Listing (Paper and Disk Copy)
Form PTO 1449 w/references
Drawings (3 sheets)**

The person signing this form is the:

<input type="checkbox"/> Applicant	Notand J. Cheung
<input checked="" type="checkbox"/> Attorney/Agent (Reg. No.) 39,138	Typed name of signer
<input type="checkbox"/> Common Representative	Signature

09/830514

JC18 Rec'd PCT/PTO 27 APR 2001

PATENT APPLICATION
Mo-6305
HR-199

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICATION OF)
JÜRGEN RABENHORST, ET AL.) PCT/EP99/07952
SERIAL NUMBER: TO BE ASSIGNED)
FILED: HEREWITH)
TITLE: CONSTRUCTION OF)
PRODUCTION STRAINS FOR)
PRODUCING SUBSTITUTED)
PHENOLS BY SPECIFICALLY)
INACTIVATING GENES OF THE)
EUGENOL AND FERULIC ACID)
CATABOLISM)

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents

Washington, D.C. 20231

Sir:

Upon the granting of a Serial Number and Filing Date and prior to the examination of the subject application, kindly amend the Specification and Claims as follows:

"Express Mail" mailing label number ET146893673US
Date of Deposit April 27, 2001

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Assistant Commissioner of Patents and Trademarks, Washington, D.C. 20231

Donna J. Veatch

(Name of person mailing paper or fee)

Signature of person mailing paper or fee

IN THE SPECIFICATION:

Kindly replace the Title of the Invention with the following:

-- CONSTRUCTION OF PRODUCTION STRAINS FOR PRODUCING
SUBSTITUTED PHENOLS BY SPECIFICALLY INACTIVATING GENES OF THE
EUGENOL AND FERULIC ACID CATABOLISM --.

Kindly insert the following "ABSTRACT" page

-- The present invention relates to a transformed and/or mutagenated unicellular or multicellular organism which is characterized in that enzymes of the eugenol and/or ferulic acid catabolism are deactivated in such a manner that the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillinic acid are accumulated. --

On page 1, line 4, kindly insert the following:

-- FIELD OF THE INVENTION --.

On page 1, line 7, kindly insert the following:

--BACKGROUND OF THE INVENTION--.

On page 2, after line 9, kindly insert the following:

-- BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a to 1r show gene structures for isolating organisms and mutants.

FIG. 2a: shows a nucleotide sequence of the *caIA_QKm* gene structure (SEQ ID NO: 1).

FIG. 2b: shows a nucleotide sequence of the *caIA_QGm* gene structure (SEQ ID NO: 2).

FIG. 2c: shows a nucleotide sequence of the *caIA_A* gene structure (SEQ ID NO: 3).

FIG. 2d: shows a nucleotide sequence of the *caIB_QKm* gene structure (SEQ ID NO: 4).

FIG. 2e: shows a nucleotide sequence of the *calB Ω Gm* gene structure (SEQ ID NO: 5).

FIG. 2f: shows a nucleotide sequence of the *calB Δ* gene structure (SEQ ID NO: 6).

FIG. 2g: shows a nucleotide sequence of the *fcs Ω Km* gene structure (SEQ ID NO: 7).

FIG. 2h: shows a nucleotide sequence of the *fcs Ω Gm* gene structure (SEQ ID NO: 8).

FIG. 2i: shows a nucleotide sequence of the *fcs Δ* gene structure (SEQ ID NO: 9).

FIG. 2j: shows a nucleotide sequence of the *ech Ω Km* gene structure (SEQ ID NO: 10).

FIG. 2k: shows a nucleotide sequence of the *ech Ω Gm* gene structure (SEQ ID NO: 11).

FIG. 2l: shows a nucleotide sequence of the *ech Δ* gene structure (SEQ ID NO: 12).

FIG. 2m: shows a nucleotide sequence of the *vdh Ω Km* gene structure (SEQ ID NO: 13).

FIG. 2n: shows a nucleotide sequence of the *vdh Ω Gm* gene structure (SEQ ID NO: 14).

FIG. 2o: shows a nucleotide sequence of the *vdh Δ* gene structure (SEQ ID NO: 15).

FIG. 2p: shows a nucleotide sequence of the *aat Ω Km* gene structure (SEQ ID NO: 16).

FIG. 2q: shows a nucleotide sequence of the *aat Ω Gm* gene structure (SEQ ID NO: 17).

FIG. 2r: shows a nucleotide sequence of the *aat Δ* gene structure (SEQ ID NO: 18). --.

On page 2, line 10, kindly insert the following:

--SUMMARY OF THE INVENTION--.

On page 2, line 19, kindly insert the following:

--DETAILED DESCRIPTION OF THE INVENTION--.

IN THE CLAIMS:

Kindly cancel Claims 1 - 16.

Kindly add the following new claims:

-- 17. Transformed and/or mutagenized unicellular or multicellular organism comprising enzymes of eugenol and/or ferulic acid catabolism which are inactivated such that the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid accumulate.

18. An organism according to Claim 17, wherein eugenol and/or ferulic acid catabolism is altered by inserting Ω elements, or introducing deletions, into corresponding genes.

19. Organism according to Claim 17, wherein one or more genes encoding the enzymes coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, feruloyl-CoA synthetases, enoyl-CoA hydratase-aldolases, beta-ketothiolases, vanillin dehydrogenases or vanillic acid demethylases is/are altered and/or inactivated.

20. An organism according to Claim 17, wherein said organism is unicellular.

21. An organism according to Claim 20, wherein said organism is selected from a group consisting of a microorganism, a plant or animal cell.

22. An organism according to Claim 17, wherein said organism is a bacterium.

23. An organism according to Claim 22, wherein said organism is of the *Pseudomonas* species.

24. Gene structures comprising nucleotide sequences which encode the enzymes coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, feruloyl-CoA synthetases, enoyl-CoA hydratase-aldolases, beta-ketothiolases, vanillin-dehydrogenases or vanillic acid demethylases, or two or more of these enzymes, and are altered and/or inactivated.

25. Gene structures having the sequences corresponding to SEQ ID NO:1 to SEQ ID NO: 18.

26. Vectors comprising at least one gene structure having the sequences corresponding to SEQ ID NO:1 to SEQ ID NO: 18.

27. A transformed organism according to Claim 17, wherein said organism comprises at least one vector comprising at least one gene structure having the sequences corresponding to SEQ ID NO:1 to SEQ ID NO: 18.

28. Organism according to Claim 17, wherein said organism comprises at least one gene structure having the sequences corresponding to SEQ ID NO:1 to SEQ ID NO: 18 which is integrated into the genome instead of the respective intact gene.

29. Process for the biotechnological preparation of alcohols, aldehydes and organic acids, comprising the step of adding an organism comprising enzymes of eugenol and/or ferulic acid catabolism which are inactivated such that the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid accumulate.

30. Process for preparing an organism according to Claim 17, wherein the alteration eugenol and/or ferulic acid catabolism is achieved by microbiological culturing methods.

31. Process for preparing an organism according to Claim 29, wherein the alteration in eugenol and/or ferulic acid catabolism, and/or the inactivation of the corresponding genes, is achieved by means of recombinant DNA methods. --.

REMARKS

The Applicants respectfully request the Preliminary Amendment be entered as the amendment places the claims as well as the Specification in proper form.

New Claims 17 - 31 replace now cancelled Claims 1 - 16. Support for the new claims are found in the respective original cancelled claims. The Applicants respectfully submit that no new matter is added.

Additionally, the Applicants hereby submit a paper copy of the "Sequence Listing" as well as a copy of the "Sequence Listing" in computer readable form. The "Sequence Listing" has been amended to place it in proper form for U.S. filing. The Applicants also state that the information recorded in computer readable form is identical to the written sequence listing.

The attached page is captioned "VERSION WITH MARKINGS TO SHOW CHANGES MADE".

Respectfully submitted,

By
Noland J. Cheung
Attorney for Applicants
Reg. No. 39,138

Bayer Corporation
100 Bayer Road
Pittsburgh, Pennsylvania 15205-9741
(412) 777-8338
FACSIMILE PHONE NUMBER:
(412) 777-8363
s:\ks\NJC1008

VERSION WITH MARKINGS TO SHOW CHANGES MADE

IN THE SPECIFICATION:

Kindly replace the Title of the Invention with the following:

-- CONSTRUCTION OF PRODUCTION STRAINS FOR PRODUCING
SUBSTITUTED PHENOLS BY SPECIFICALLY INACTIVATING GENES OF THE
EUGENOL AND FERULIC ACID CATABOLISM --.

Kindly insert the following "ABSTRACT" page

-- The present invention relates to a transformed and/or mutagenated unicellular or multicellular organism which is characterized in that enzymes of the eugenol and/or ferulic acid catabolism are deactivated in such a manner that the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillinic acid are accumulated. --

On page 1, line 4, kindly insert the following:

-- FIELD OF THE INVENTION --.

On page 1, line 7, kindly insert the following:

--BACKGROUND OF THE INVENTION--.

On page 2, after line 9, kindly insert the following:

-- BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a to 1r show gene structures for isolating organisms and mutants.

FIG. 2a: shows a nucleotide sequence of the *caIA_QKm* gene structure (SEQ ID NO: 1).

FIG. 2b: shows a nucleotide sequence of the *caIA_QGm* gene structure (SEQ ID NO: 2).

FIG. 2c: shows a nucleotide sequence of the *caIA_A* gene structure (SEQ ID NO: 3).

FIG. 2d: shows a nucleotide sequence of the *calB Ω Km* gene structure (SEQ ID NO: 4).

FIG. 2e: shows a nucleotide sequence of the *calB Ω Gm* gene structure (SEQ ID NO: 5).

FIG. 2f: shows a nucleotide sequence of the *calB Δ* gene structure (SEQ ID NO: 6).

FIG. 2g: shows a nucleotide sequence of the *fcs Ω Km* gene structure (SEQ ID NO: 7).

FIG. 2h: shows a nucleotide sequence of the *fcs Ω Gm* gene structure (SEQ ID NO: 8).

FIG. 2i: shows a nucleotide sequence of the *fcs Δ* gene structure (SEQ ID NO: 9).

FIG. 2j: shows a nucleotide sequence of the *ech Ω Km* gene structure (SEQ ID NO: 10).

FIG. 2k: shows a nucleotide sequence of the *ech Ω Gm* gene structure (SEQ ID NO: 11).

FIG. 2l: shows a nucleotide sequence of the *ech Δ* gene structure (SEQ ID NO: 12).

FIG. 2m: shows a nucleotide sequence of the *vdh Ω Km* gene structure (SEQ ID NO: 13).

FIG. 2n: shows a nucleotide sequence of the *vdh Ω Gm* gene structure (SEQ ID NO: 14).

FIG. 2o: shows a nucleotide sequence of the *vdh Δ* gene structure (SEQ ID NO: 15).

FIG. 2p: shows a nucleotide sequence of the *aat Ω Km* gene structure (SEQ ID NO: 16).

FIG. 2q: shows a nucleotide sequence of the *aat Ω Gm* gene structure (SEQ ID NO: 17).

FIG. 2r: shows a nucleotide sequence of the *aat Δ* gene structure (SEQ ID NO: 18). --.

On page 2, line 10, kindly insert the following:

--SUMMARY OF THE INVENTION--.

On page 2, line 19, kindly insert the following:

--DETAILED DESCRIPTION OF THE INVENTION--.

IN THE CLAIMS:

Kindly cancel Claims 1 - 16.

Kindly add the following new claims:

-- 17. Transformed and/or mutagenized unicellular or multicellular organism comprising enzymes of eugenol and/or ferulic acid catabolism which are inactivated such that the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid accumulate.

18. An organism according to Claim 17, wherein eugenol and/or ferulic acid catabolism is altered by inserting Ω elements, or introducing deletions, into corresponding genes.

19. Organism according to Claim 17, wherein one or more genes encoding the enzymes coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, feruloyl-CoA synthetases, enoyl-CoA hydratase-aldolases, beta-ketothiolases, vanillin dehydrogenases or vanillic acid demethylases is/are altered and/or inactivated.

20. An organism according to Claim 17, wherein said organism is unicellular.

21. An organism according to Claim 20, wherein said organism is selected from a group consisting of a microorganism, a plant or animal cell.

22. An organism according to Claim 17, wherein said organism is a bacterium.

23. An organism according to Claim 22, wherein said organism is of the *Pseudomonas* species.

24. Gene structures comprising nucleotide sequences which encode the enzymes coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, feruloyl-CoA synthetases, enoyl-CoA hydratase-aldolases, beta-ketothiolases, vanillin-dehydrogenases or vanillic acid demethylases, or two or more of these enzymes, and are altered and/or inactivated.

25. Gene structures having the sequences corresponding to SEQ ID NO:1 to SEQ ID NO: 18.

26. Vectors comprising at least one gene structure having the sequences corresponding to SEQ ID NO:1 to SEQ ID NO: 18.

27. A transformed organism according to Claim 17, wherein said organism comprises at least one vector comprising at least one gene structure having the sequences corresponding to SEQ ID NO:1 to SEQ ID NO: 18.

28. Organism according to Claim 17, wherein said organism comprises at least one gene structure having the sequences corresponding to SEQ ID NO:1 to SEQ ID NO: 18 which is integrated into the genome instead of the respective intact gene.

29. Process for the biotechnological preparation of alcohols, aldehydes and organic acids, comprising the step of adding an organism comprising enzymes of eugenol and/or ferulic acid catabolism which are inactivated such that the

intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid accumulate.

30. Process for preparing an organism according to Claim 17, wherein the alteration eugenol and/or ferulic acid catabolism is achieved by microbiological culturing methods.

31. Process for preparing an organism according to Claim 29, wherein the alteration in eugenol and/or ferulic acid catabolism, and/or the inactivation of the corresponding genes, is achieved by means of recombinant DNA methods. --.

09/830514

WO 00/26355

PCT/EP99/07952/PTO 27 APR 2001

- 37 -

CONSTRUCTION OF PRODUCTION STRAINS
FOR PRODUCING SUBSTITUTED PHENOLS
BY SPECIFICALLY INACTIVATING GENES OF
THE EUGENOL AND FERULIC ACID CATABOLISM

ABSTRACT OF THE DISCLOSURE

The present invention relates to a transformed and/or mutagenated unicellular or multicellular organism which is characterized in that enzymes of the eugenol and/or ferulic acid catabolism are deactivated in such a manner that the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillanic acid are accumulated.

- 1 -

Constructing production strains for the preparation of substituted phenols by
specifically inactivating genes of eugenol and ferulic acid catabolism

5 The present invention relates to the construction of production strains and to a process for preparing substituted methoxyphenols, in particular vanillin.

DE-A 4 227 076 (process for preparing substituted methoxyphenols, and microorganism which is suitable for this purpose) describes the preparation of 10 substituted methoxyphenols using a novel *Pseudomonas* sp.. The starting material in this context is eugenol and the products are ferulic acid, vanillic acid, coniferyl alcohol and coniferyl aldehyde.

An extensive review of the biotransformations which were possible using ferulic 15 acid, which was written by Rosazza et al. (Biocatalytic transformation of ferulic acid: an abundant aromatic natural product; J. Ind. Microbiol. 15:457-471), also appeared in 1995.

The genes and enzymes for synthesizing coniferyl alcohol, coniferyl aldehyde, ferulic 20 acid, vanillic and vanillin acid from *Pseudomonas* sp. were described in EP-A 0 845 532.

The enzymes for converting *trans*-ferulic acid into *trans*-feruloyl-SCoA ester and subsequently into vanillin, and also the gene for cleaving the ester, were described by 25 the Institute of Food Research, Norwich, GB, in WO 97/35999. In 1998, the content of the patent also appeared in the form of scientific publications (Gasson et al. 1998. Metabolism of ferulic acid to vanillin. J. Biol. Chem. 273:4163-4170; Narbad and Gasson 1998. Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly isolated strain of *Pseudomonas fluorescens*. Microbiology 30 144:1397 - 1405).

"Express Mail" mailing label number ET146393673US
Date of Deposit April 27, 2001

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Assistant Commissioner of Patents and Trademarks, Washington, D.C. 20231

Donna J. Veatch

(Name of person mailing paper or fee)

Donna J. Veatch
Signature of person mailing paper or fee

HQ 199

DE-A 195 32 317 describes the use of *Amycolatopsis* sp. for obtaining vanillin from ferulic acid fermentatively in high yields.

The known processes suffer from the disadvantage that they either achieve only very
5 low yields of vanillin or make use of relatively expensive starting compounds. While the last-mentioned process (DE-A 195 32 317) does achieve high yields, the use of *Pseudomonas* sp. HR199 and *Amycolatopsis* sp. HR167 for biotransforming eugenol into vanillin requires a fermentation which is carried out in two steps, consequently leading to substantial expense and consumption of time.

10

The object of the present invention is therefore to construct organisms which are able to convert the relatively inexpensive raw material eugenol into vanillin in a one-step process.

15

This object is achieved by means of constructing production strains of unicellular or multicellular organisms, which strains are characterized in that enzymes of eugenol and/or ferulic acid catabolism are inactivated such that the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid accumulate.

20

The production strain may be unicellular or multicellular. Accordingly, the invention can relate to microorganisms, plants or animals. Furthermore, use can also be made of extracts which are obtained from the production strain. According to the invention, preference is given to using unicellular organisms. These latter organisms can be microorganisms or animal or plant cells. According to the invention, particular preference is given to using fungi and bacteria. The highest preference is given to bacterial species. Those bacteria which may in particular be used, after their eugenol and/or ferulic acid catabolism has/have been altered, are species of *Rhodococcus*,
25 *Pseudomonas* und *Escherichia*.

30

In the simplest case, known, conventional microbiological methods can be used for isolating the organisms which may be employed in accordance with the invention.

Thus, the enzymic activity of the proteins involved in eugenol and/or ferulic acid catabolism can be altered by using enzyme inhibitors. Furthermore, the enzymic activity of the proteins involved in eugenol and/or ferulic acid catabolism can be altered by mutating the genes which encode these proteins. Such mutations can be generated in a random manner by means of classical methods, for example by using UV irradiation or mutation-inducing chemicals.

Recombinant DNA methods, such as deletions, insertions and/or nucleotide exchanges, are likewise suitable for isolating the novel organisms. Thus, the genes of the organisms can, for example, be inactivated using other DNA elements (Ω elements). Suitable vectors can likewise be used for replacing the intact genes with gene structures which are altered and/or inactivated. In this context, the genes which are to be inactivated, and the DNA elements which are employed for the inactivation, can be obtained by means of classical cloning techniques or by means of polymerase chain reactions (PCR).

For example, in one possible embodiment of the invention, eugenol catabolism and ferulic acid catabolism can be altered by inserting Ω elements, or introducing deletions, into appropriate genes. In this context, the abovementioned recombinant DNA methods can be used to inactivate the functions of the genes, which encode dehydrogenases, synthetases, hydratase-adolases, thiolases or demethylases, such that production of the relevant enzymes is blocked. Preferably, the genes are those which encode coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, feruloyl-CoA synthetases, enoyl-CoA hydratase-aldolases, beta-ketothiolases, vanillin dehydrogenases or vanillic acid demethylases. Very particular preference is given to genes which encode the amino acid sequences specified in EP-A 0845532 and/or nucleotide sequences which encode their allelic variations.

The invention accordingly also relates to gene structures for preparing transformed organisms and mutants.

Preference is given to employing gene structures in which the nucleotide sequences encoding dehydrogenases, synthetases, hydratase-aldolases, thiolases or demethylases are inactivated for isolating the organisms and mutants. Particular preference is given to gene structures in which the nucleotide sequences encoding coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, feruloyl-CoA synthetases, enoyl-CoA hydratase-aldolases, beta-ketothiolases, vanillin dehydrogenases or vanillic acid demethylases are inactivated. Very particular preference is given to gene structures which exhibit the structures given in Figures 1a to 1r having the nucleotide sequences which are depicted in Figures 2a to 2r and/or nucleotide sequences encoding their allelic variations. In this context, particular preference is given to nucleotide sequences 1 to 18.

The invention also encompasses the part sequences of these gene structures as well as functional equivalents. Functional equivalents are to be understood as meaning those derivatives of the DNA in which individual nucleobases have been exchanged (wobble exchanges) without the function being altered. Amino acids may also be exchanged at the protein level without this resulting in an alteration in function.

One or more DNA sequences can be inserted upstream and/or downstream of the gene structures. By cloning the gene structures, it is possible to obtain plasmids or vectors which are suitable for the transformation and/or transfection of an organism and/or for conjugative transfer into an organism.

The invention furthermore relates to plasmids and/or vectors for preparing the organisms and mutants which are transformed in accordance with the invention. These organisms and mutants consequently harbour the gene structures which have been described. The present invention accordingly also relates to organisms which harbour the said plasmids and/or vectors.

The nature of the plasmids and/or vectors depends on what they are being used for. In order, for example, to be able to replace the intact genes of eugenol and/or ferulic

acid catabolism in pseudomonads with the genes which have been inactivated with omega elements, there is a need for vectors which, on the one hand, can be transferred into pseudomonads (conjugatively transferable plasmids) but which, on the other hand, cannot be replicated in these organisms and are consequently unstable in pseudomonads (so-called suicide plasmids). DNA segments which are transferred into pseudomonads with the aid of such a plasmid system can only be retained if they become integrated by homologous recombination into the genome of the bacterial cell.

The described gene structures, vectors and plasmids may be used for preparing different transformed organisms or mutants. The said gene structures can be used for replacing intact nucleic acid sequences with altered and/or inactivated gene structures. In the cells, which can be obtained by transformation or transfection or conjugation, the intact gene is replaced, by homologous recombination, with the altered and/or inactivated gene structure, as a consequence of which the resulting cells now only possess the altered and/or inactivated gene structure in their genome. In this way, preferably genes can be altered and/or inactivated, in accordance with the invention, such that the relevant organisms are able to produce coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid.

Mutants of the strain *Pseudomonas* sp. HR199 (DSM 7063), which was described in detail in DE-A 4 227 076 and EP-A 0845532, are examples of production strains which have been constructed in this way in accordance with the invention, with the corresponding gene structures ensuing, inter alia, from Figures 1a to 1r, in combination with Figures 2a to 2r:

1. *Pseudomonas* sp. HR199 $\text{calA}\Omega\text{Km}$, which contains the ΩKm -inactivated calA gene in place of the intact calA gene encoding coniferyl alcohol dehydrogenase (Fig. 1a; Fig. 2a).

2. *Pseudomonas* sp. HR199*calA*ΩGm, which contains the ΩGm-inactivated *calA* gene in place of the intact *calA* gene encoding coniferyl alcohol dehydrogenase (Fig. 1b; Fig. 2b).

3. *Pseudomonas* sp. HR199*calA*Δ, which contains the deletion-inactivated *calA* gene in place of the intact *calA* gene encoding coniferyl alcohol dehydrogenase (Fig. 1c; Fig. 2c).

4. *Pseudomonas* sp. HR199*calB*ΩKm, which contains the ΩKm-inactivated *calB* gene in place of the intact *calB* gene encoding coniferyl aldehyde dehydrogenase (Fig. 1d; Fig. 2d)

5. *Pseudomonas* sp. HR199*calB*ΩGm, which contains the ΩGm-inactivated *calB* gene in place of the intact *calB* gene encoding coniferyl aldehyde dehydrogenase (Fig. 1e; Fig. 2e).

6. *Pseudomonas* sp. HR199*calB*Δ, which contains the deletion-inactivated *calB* gene in place of the intact *calB* gene encoding coniferyl aldehyde dehydrogenase (Fig. 1f; Fig. 2f).

7. *Pseudomonas* sp. HR199*fcs*ΩKm, which contains the ΩKm-inactivated *fcs* gene in place of the intact *fcs* gene encoding feruloyl-CoA synthetase (Fig. 1g; Fig. 2g).

8. *Pseudomonas* sp. HR199*fcs*ΩGm, which contains the ΩGm-inactivated *fcs* gene in place of the intact *fcs* gene encoding feruloyl-CoA synthetase (Fig. 1h; Fig. 2h).

9. *Pseudomonas* sp. HR199*fcs*Δ, which contains the deletion-inactivated *fcs* gene in place of the intact *fcs* gene encoding feruloyl-CoA synthetase (Fig. 1i; Fig. 2i).

10. *Pseudomonas* sp. HR199*ech*ΩKm, which contains the ΩKm-inactivated *ech* gene in place of the intact *ech* gene encoding enoyl-CoA hydratase-alcohol dehydrogenase (Fig. 1j; Fig. 2j).

11. *Pseudomonas* sp. HR199*ech*ΩGm, which contains the ΩGm-inactivated *ech* gene in place of the intact *ech* gene encoding enoyl-CoA hydratase-alcohol dehydrogenase (Fig. 1k; Fig. 2k).

12. *Pseudomonas* sp. HR199 ϵ ch Δ , which contains the deletion-inactivated ϵ ch gene in place of the intact ϵ ch gene encoding enoyl-CoA hydratase-aldolase (Fig.11; Fig. 2l).

5 13. *Pseudomonas* sp. HR199 α at Ω Km, which contains the Ω Km-inactivated α at gene in place of the intact α at gene encoding beta-ketothiolase (Fig. 1m; Fig. 2m).

14. *Pseudomonas* sp. HR199 α at Ω Gm, which contains the Ω Gm-inactivated α at gene in place of the intact α at gene encoding beta-ketothiolase (Fig.1n; Fig. 2n).

10 15. *Pseudomonas* sp. HR199 α at Δ , which contains the deletion-inactivated α at gene in place of the intact α at gene encoding beta-ketothiolase (Fig.1o; 2o).

16. *Pseudomonas* sp. HR199 v dh Ω Km, which contains the Ω Km-inactivated v dh gene in place of the intact v dh gene encoding vanillin dehydrogenase (Fig.1p; Fig. 2p).

15 17. *Pseudomonas* sp. HR199 v dh Ω Gm, which contains the Ω Gm-inactivated v dh gene in place of the intact v dh gene encoding vanillin dehydrogenase (Fig.1q; Fig. 2q).

18. *Pseudomonas* sp. HR199 v dh Δ , which contains the deletion-inactivated v dh gene in place of the intact v dh gene encoding vanillin dehydrogenase (Fig.1r; Fig. 2r).

20 19. *Pseudomonas* sp. HR199 v dhB Ω Km, which contains the Ω Km-inactivated v dhB gene in place of the intact v dhB gene encoding vanillin dehydrogenase II.

20 20. *Pseudomonas* sp. HR199 v dhB Ω Gm, which contains the Ω Gm-inactivated v dhB gene in place of the intact v dhB gene encoding vanillin dehydrogenase II.

25 21. *Pseudomonas* sp. HR199 v dhB Δ , which contains the deletion-inactivated v dhB gene in place of the intact v dhB gene encoding vanillin dehydrogenase II.

22. *Pseudomonas* sp. HR199 a dh Ω Km, which contains the Ω Km-inactivated a dh gene in place of the intact a dh gene encoding alcohol dehydrogenase.

30

23. *Pseudomonas* sp. HR199 $\text{adh}\Omega\text{Gm}$, which contains the ΩGm -inactivated adh gene in place of the intact adh gene encoding alcohol dehydrogenase.
24. *Pseudomonas* sp. HR199 $\text{adh}\Delta$ which contains the deletion-inactivated adh gene in place of the intact adh gene encoding alcohol dehydrogenase.
- 5 25. *Pseudomonas* sp. HR199 $\text{vanA}\Omega\text{Km}$, which contains the ΩKm -inactivated vanA gene in place of the intact vanA gene encoding the α -subunit of vanillic acid demethylase.
- 10 26. *Pseudomonas* sp. HR199 $\text{vanA}\Omega\text{Gm}$, which contains the ΩGm -inactivated vanA gene in place of the intact vanA gene encoding the α -subunit of vanillic acid demethylase.
27. *Pseudomonas* sp. HR199 $\text{vanA}\Delta$, which contains the deletion-inactivated vanA gene in place of the intact vanA gene encoding the α -subunit of vanillic acid demethylase.
- 15 28. *Pseudomonas* sp. HR199 $\text{vanB}\Omega\text{Km}$, which contains the ΩKm -inactivated vanB gene in place of the intact vanB gene encoding the β -subunit of vanillic acid demethylase.
29. *Pseudomonas* sp. HR199 $\text{vanB}\Omega\text{Gm}$, which contains the ΩGm -inactivated vanB gene in place of the intact vanB gene encoding the β -subunit of vanillic acid demethylase.
- 20 30. *Pseudomonas* sp. HR199 $\text{vanB}\Delta$, which contains the deletion-inactivated vanB gene in place of the intact vanB gene encoding the β -subunit of vanillic acid demethylase.

The invention additionally relates to a process for the biotechnological preparation of
25 organic compounds. In particular, this process can be used to prepare alcohols, aldehydes and organic acids. The latter are preferably coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and vanillic acid.

The above-described organisms are employed in the novel process. The organisms
30 which are very particularly preferred include bacteria, in particular the *Pseudomonas*

species. Specifically, the abovementioned *Pseudomonas* species can preferably be employed for the following processes:

1. *Pseudomonas* sp. HR199calAΩKm, *Pseudomonas* sp. HR199calAΩGm and
5 *Pseudomonas* sp. HR199calAΔ for preparing coniferyl alcohol from eugenol.

2. *Pseudomonas* sp. HR199calBΩKm, *Pseudomonas* sp. HR199calBΩGm and
10 *Pseudomonas* sp. HR199calBΔ for preparing coniferyl aldehyde from eugenol or coniferyl alcohol.

3. *Pseudomonas* sp. HR199fcsΩKm, *Pseudomonas* sp. HR199fcsΩGm, *Pseudomonas* sp. HR199fcsΔ, *Pseudomonas* sp. HR199echΩKm, *Pseudomonas* sp. HR199echΩGm and *Pseudomonas* sp. HR199echΔ for preparing ferulic acid from eugenol or coniferyl alcohol or coniferyl aldehyde.
15

4. *Pseudomonas* sp. HR199vdhΩKm, *Pseudomonas* sp. HR199vdhΩGm, *Pseudomonas* sp. HR199vdhΔ, *Pseudomonas* sp. HR199vdhΩGmvdhBΩKm, *Pseudomonas* sp. HR199vdhΩKmvdhBΩGm, *Pseudomonas* sp. HR199vdhΔvdhBΩGm and *Pseudomonas* sp. HR199vdhΔvdhBΩKm for preparing vanillin from eugenol or coniferyl alcohol or coniferyl aldehyde or ferulic acid.
20

5. *Pseudomonas* sp. HR199vanAΩKm, *Pseudomonas* sp. HR199vanAΩGm, *Pseudomonas* sp. HR199vanAΔ, *Pseudomonas* sp. HR199vanBΩKm, *Pseudomonas* sp. HR199vanBΩGm and *Pseudomonas* sp. HR199vanBΔ for preparing vanillic acid from eugenol or coniferyl alcohol or coniferyl aldehyde or ferulic acid or vanillin.
25

Eugenol is the preferred substrate. However, it is also possible to add further substrates or even to replace the eugenol with another substrate.
30

Suitable nutrient media for the organisms which are employed in accordance with the invention are synthetic, semisynthetic or complex culture media. These media may comprise carbon-containing and nitrogen-containing compounds, inorganic salts, where appropriate trace elements, and vitamins.

5

Carbon-containing compounds which may be suitable are carbohydrates, hydrocarbons or organic standard chemicals. Examples of compounds which may preferably be used are sugars, alcohols or sugar alcohols, organic acids or complex mixtures.

10

The sugar is preferably glucose. The organic acids which may preferably be employed are citric or acetic acid. Examples of the complex mixtures are malt extract, yeast extract, casein or casein hydrolysate.

15

Inorganic compounds are suitable nitrogen-containing substrates. Examples of these are nitrates and ammonium salts. Organic nitrogen sources can also be used. These sources include yeast extract, soya bean meal, casein, casein hydrolysate and corn steep liquor.

20

Examples of the inorganic salts which may be employed are sulphates, nitrates, chlorides, carbonates and phosphates. The metals which the said salts contain are preferably sodium, potassium, magnesium, manganese, calcium, zinc and iron.

25

The temperature for the culture is preferably in the range from 5 to 100°C. The range from 15 to 60°C is particularly preferred, with 22 to 37°C being most preferred.

The pH of the medium is preferably 2 to 12. The range from 4 to 8 is particularly preferred.

30

In principle, any bioreactor known to the skilled person can be employed for carrying out the novel process. Preferential consideration is given to any appliance which is

suitable for submerged processes. This means that vessels which do or do not possess a mechanical mixing device may be employed in accordance with the invention. Examples of the latter are shaking apparatuses, and bubble column reactors or loop reactors. The former preferably include all the known appliances which are fitted
5 with stirrers of any design.

The novel process can be carried out continuously or batchwise. The fermentation time required for achieving a maximum quantity of product depends on the specific nature of the organism employed. However, in principle, the fermentation times are
10 between 2 and 200 hours.

The invention is explained in more detail below while referring to examples:

Mutants of the eugenol-utilizing strain *Pseudomonas* sp. HR199 (DSM 7063) were generated in a targeted manner by specifically inactivating genes of eugenol catabolism by means of inserting omega elements or introducing deletions. The omega elements employed were DNA segments which encoded resistances to the antibiotics kanamycin (Ω Km) and gentamycin (Ω Gm). These resistance genes were isolated from Tn5 and the plasmid pBBR1MCS-5 using standard methods. The genes
15 *calA*, *calB*, *fcs*, *ech*, *aat*, *vdh*, *adh*, *vdhB*, *vanA* and *vanB*, which encode coniferyl alcohol dehydrogenase, coniferyl aldehyde dehydrogenase, feruloyl-CoA synthetase, enoyl-CoA hydratase-aldolase, beta-ketothiolase, vanillin dehydrogenase, alcohol dehydrogenase, vanillin dehydrogenase II and vanillic acid demethylase, were isolated
20 from genomic DNA of the strain *Pseudomonas* sp. HR199 using standard methods and cloned into pBluescript SK⁻. By means of digesting with suitable restriction endonucleases, DNA segments were removed from these genes (deletion) or substituted with Ω elements (insertion), resulting in the respective gene being inactivated. The genes which had been mutated in this manner were recloned into conjugatively transferable vectors and subsequently introduced into the strain
25 *Pseudomonas* sp. HR199. Suitable selection was used to obtain transconjugants which had replaced the respective functional wild-type gene with the newly
30

introduced inactivated gene. The insertion and deletion mutants which were obtained in this way now only possessed the respective inactivated gene. This procedure was used to obtain both mutants possessing only one defective gene and multiple mutants, in which several genes had been inactivated in this manner. These mutants were
5 employed for biotransforming

- a) eugenol into coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid;
- b) coniferyl alcohol into coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid;
- c) coniferyl aldehyde into ferulic acid, vanillin and/or vanillic acid;
- 10 d) ferulic acid into vanillin and/or vanillic acid, and
- e) vanillin into vanillic acid.

Materials and Methods

Conditions for growing the bacteria.

Strains of *Escherichia coli* were propagated at 37°C in Luria-Bertani (LB) or M9 mineral medium (J. Sambrook, E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd Edition., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York). Strains of *Pseudomonas* sp. were propagated at 30°C in Nutrient Broth (NB, 0.8%, wt/vol) or in mineral medium (MM) (H. G. Schlegel, et al. 1961. Arch. Mikrobiol. **38**:209-222) or HR mineral medium (HR-MM) (J. Rabenhorst, 1996. Appl. Microbiol. Biotechnol. **46**:470-474.). Ferulic acid, vanillin, vanillic acid and protocatechuic acid were dissolved in dimethyl sulphoxide and added to the respective medium to give a final concentration of 0.1% (wt/vol). Eugenol was either added directly to the medium to give a final concentration of 0.1% (vol/vol) or applied to filter paper (circular filter 595, Schleicher & Schuell, Dassel, Germany) in the lids of MM agar plates. When transconjugants and mutants of *Pseudomonas* sp. were being propagated, tetracycline, kanamycin and gentamycin were employed in final concentrations of 25 µg/ml, 100 µg/ml and 7.5 µg/ml, respectively.

Qualitative and quantitative detection of metabolic intermediates in culture supernatants.

Culture supernatants were analysed by high pressure liquid chromatography (Knauer HPLC) either directly or after dilution with doubly distilled H₂O. The chromatography was carried out on Nucleosil 100 C18 (7 µm, 250 x 4 mm). 0.1% (vol/vol) formic acid and acetonitrile was used as the solvent. The course of the gradient employed for eluting the substances was as follows:

00:00 - 06:30 → 26% acetonitrile

06:30 - 08:00 → 100% acetonitrile

08:00 - 12:00 → 100% acetonitrile

12:00 - 13:00 → 26% acetonitrile

13:00 - 18:00 → 26% acetonitrile

Purification of vanillin dehydrogenase II.

The purification was carried out at 4°C.

5 **Crude extract.**

Pseudomonas sp. HR199 cells which had been propagated on eugenol were washed in 10 mM sodium phosphate buffer, pH 6.0, then resuspended in the same buffer and disrupted by being passed twice through a French press (Amicon, Silver Spring, Maryland, USA) at a pressure of 1000 psi. The cell homogenate was subjected to an ultracentrifugation (1 h, 100,000 x g, 4°C), resulting in the soluble fraction of crude extract being obtained as the supernatant.

10 **Anion exchange chromatography on DEAE Sephadel.**

The soluble fraction of the crude extract was dialysed overnight against 10 mM sodium phosphate buffer, pH 6.0. The dialysate was loaded onto a DEAE-Sephadel column (2.6 cm x 35 cm, bed volume[BV]: 186 ml) which had been equilibrated with 10 mM sodium phosphate buffer, pH 6.0, and which had a flow rate of 0.8 ml/min. The column was rinsed with two BV of 10 mM sodium phosphate buffer, pH 6.0. The vanillin dehydrogenase II (VDH II) was eluted with a linear salt gradient of from 0 to 400 mM NaCl in 10 mM sodium phosphate buffer, pH 6.0 (750 ml). 10 ml fractions were collected. Fractions having a high VDH II activity were combined to form the DEAE pool.

15 **Determining the vanillin dehydrogenase activity.**

20 The VDH activity was determined at 30°C using an optical enzymic test. The reaction mixture, whose volume was 1 ml, contained 0.1 mmol of potassium phosphate (pH 7.1), 0.125 µmol of vanillin, 0.5 µmol of NAD, 1.2 µmol of pyruvate (Na salt), lactate dehydrogenase (1 U; from pig heart) and enzyme solution. The oxidation of vanillin was monitored at $\lambda = 340$ nm ($\epsilon_{\text{vanillin}} = 11.6 \text{ cm}^2/\mu\text{mol}$). The enzyme activity was given in units (U), with 1 U corresponding to the quantity of enzyme which converts 1 µmol of vanillin per minute. The protein concentrations in

TOP SECRET//EYES ONLY

the samples were determined using the method of Lowry et al. (O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall. 1951. J. Biol. Chem. **193**:265-275).

Determining the coniferyl alcohol dehydrogenase activity.

5 The CADH activity was determined at 30°C using an optical enzymic test in accordance with Jaeger et al. (E. L. Jaeger, Eggeling and H. Sahm. 1981. Current Microbiology. **6**:333-336). The reaction mixture, whose volume was 1 ml, contained 0.2 mmol of tris/HCl (pH 9.0), 0.4 μ mol of coniferyl alcohol, 2 μ mol of NAD, 10 0.1 mmol of semicarbazide and enzyme solution. The reduction of NAD was monitored at $\lambda = 340$ nm ($\epsilon = 6.3 \text{ cm}^2/\mu\text{mol}$). The enzyme activity was given units (U), with 1 U corresponding to the quantity of enzyme which converts 1 μ mol of substrate per minute. The protein concentrations in the samples were determined by the method of Lowry et al. (O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall. 1951. J. Biol. Chem. **193**:265-275).

15

Determining the coniferyl aldehyde dehydrogenase activity.

The CALDH activity was determined at 30°C using an optical enzymic test. The reaction mixture, whose volume was 1 ml, contained 0.1 mmol of tris/HCl (pH 8.8), 0.08 μ mol of coniferyl aldehyde, 2.7 μ mol of NAD and enzyme solution. The 20 oxidation of coniferyl aldehyde to ferulic acid was monitored at $\lambda = 400$ nm ($\epsilon = 34 \text{ cm}^2/\mu\text{mol}$). The enzymic activity was given in units (U) with 1 U corresponding to the quantity of enzyme which converts 1 μ mol of substrate per minute. The protein concentrations in the samples were determined by the method of Lowry et al. (O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall. 1951. J. Biol. Chem. **193**:265-275).

Determining the feruloyl-CoA synthetase (ferulic acid thiokinase) activity.

The FCS activity was determined at 30°C using an optical enzymic test which was a modification of that of Zenk et al. (Zenk et al. 1980. Anal. Biochem. **101**:182-187).

30 The reaction mixture, whose volume was 1 ml, contained 0.09 mmol of potassium phosphate (pH 7.0), 2.1 μ mol of MgCl₂, 0.7 μ mol of ferulic acid, 2 μ mol of ATP,

0.4 μ mol of coenzyme A and enzyme solution. The formation of the CoA ester from ferulic acid was monitored at $\lambda = 345$ nm ($\epsilon = 10\text{ cm}^2/\mu\text{mol}$). The enzymic activity was given in units (U), with 1 U corresponding to the quantity of enzyme which converts 1 μ mol of substrate per minute. The protein concentrations in the samples were determined using the method of Lowry et al. (O. H. Lowry, N. J. Rosebrough, 5 A. L. Farr and R. J. Randall. 1951. J. Biol. Chem. **193**:265-275).

Electrophoretic methods.

Protein-containing extracts were fractionated under native conditions in 7.4% (wt/vol) polyacrylamide gels using the method of Stegemann et al. (Stegemann et al. 10 1973. Z. Naturforsch. **28c**:722-732) and under denaturing conditions in 11.5% (wt/vol) polyacrylamide gels using the method of Laemmli (Laemmli, U. K. 1970. Nature (London) **227**:680-685). Serva Blue R was used for non-specific protein staining. For specifically staining the coniferyl alcohol dehydrogenase, coniferyl 15 aldehyde dehydrogenase and vanillin dehydrogenase, the gels were rebuffered for 20 min in 100 mM KP buffer (pH 7.0) and subsequently incubated at 30°C in the same buffer to which 0.08% (wt/vol) NAD, 0.04% (wt/vol) p-nitro blue tetrazolium chloride, 0.003% (wt/vol) phenazine methosulphate and 1 mM of the respective substrate had been added until corresponding colour bands became visible.

Transfer of proteins from polyacrylamide gels to PVDF membranes.

Proteins were transferred from SDS-polyacrylamide gels to PVDF membranes (Waters-Millipore, Bedford, Mass., USA) using a Semidry Fastblot appliance (B32/33, Biometra, Göttingen, Germany) in accordance with the manufacturer's 25 instructions.

Determining N-terminal amino acid sequences.

N-terminal amino acid sequences were determined using a Protein Peptide Sequencer (Type 477 A, Applied Biosystems, Foster City, USA) and a PTH analyser in 30 accordance with the manufacturer's instructions.

Isolating and manipulating DNA

Genomic DNA was isolated using the method of Marmur (J. Marmur, 1961. J. Mol. Biol. **3**:208-218). Other plasmid DNA and/or DNA restriction fragments was/were isolated and analysed using standard methods (J. E. Sambrook, F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd Edition., Cold Spring Harbor Laboratory Press, Cold Spring Habor, New York).

Transferring DNA.

Competent *Escherichia coli* cells were prepared and transformed using the method of Hanahan (D. Hanahan, 1983. J. Mol. Biol. **166**:557-580). Conjugative plasmid transfer between plasmid-harbouring *Escherichia coli* S17-1 strains (donor) and *Pseudomonas* sp.strains (recipient) was performed on NB agar plates in accordance with the method of Friedrich et al. (B. Friedrich et al. 1981. J. Bacteriol. **147**:198-205), or by means of a "minicomplementation method" on MM agar plates containing 0.5% (wt/vol) gluconate as the C source and 25 µg of tetracycline/ml or 100 µg of kanamycin/ml. In this case, cells of the recipient were applied in one direction as an inoculation streak. After 5 min, cells of the donor strains were then applied as inoculation streaks, with these streaks crossing the recipient inoculation streak. After incubating at 30°C for 48 h, the transconjugants grew directly downstream of the crossing site whereas neither the donor strain nor the recipient strain was able to grow.

Hybridization experiments.

DNA restriction fragments were fractionated electrophoretically in a 0.8% (wt/vol) agarose gel in 50 mM tris- 50 mM boric acid- 1.25 mM EDTA buffer (pH 8.5) (J. E. Sambrook, F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.). The transfer of the denatured DNA out of the gel onto a positively charged nylon membrane (pore size: 0.45 µm, Pall Filtrationstechnik, Dreieich, Germany), the subsequent hybridization with biotinylated or digoxigenin-labelled DNA probes, and the preparation of these DNA probes, were all performed using standard methods

FBI LABORATORY

(J. E. Sambrook, F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York).

5 **DNA sequencing.**

Nucleotide sequences were determined "non-radioactively" in accordance with the Sanger et al. (Sanger et al. 1977. Proc. Natl. Acad. Sci. USA **74**:5463-5467) dideoxy chain termination method using a "LI-COR" DNA Sequencer Model 4000L"

10 (LI-COR Inc., Biotechnology Division, Lincoln, NE, USA) and using a "thermo sequenase fluorescent labelled primer cycle sequencing kit with 7-deaza-dGTP" (Amersham Life Science, Amersham International plc., Little Chalfont, Buckinghamshire, England), in each case in accordance with the manufacturer's instructions.

15 Synthetic oligonucleotides were used to carry out sequencing in accordance with the "primer-hopping strategy" of Strauss et al. (E. C. Strauss et al. 1986. Anal. Biochem. **154**:353-360).

Chemicals, biochemicals and enzymes.

20 Restriction enzymes, T4 DNA ligase, lambda DNA and enzymes and substrates for the optical enzymic tests were obtained from C.F. Boehringer & Söhne (Mannheim, Germany) or from GIBCO/BRL (Eggenstein, Germany). [γ -³²P]ATP was from Amersham/Buchler (Braunschweig, Germany). Oligonucleotides were obtained from MWG-Biotech GmbH (Ebersberg, Germany). Type NA agarose was obtained from Pharmacia-LKB (Uppsala, Sweden). All other chemicals were from Haarmann & Reimer (Holzminden, Germany), E. Merck AG (Darmstadt, Germany), Fluka Chemie (Buchs, Switzerland), Serva Feinbiochemica (Heidelberg, Germany) or Sigma Chemie (Deisenhofen, Germany).

DRAFT COPY
DO NOT DISTRIBUTE

Examples

Example 1

5 **Constructing omega elements which mediate resistances to kanamycin (Ω Km) or gentamycin (Ω Gm).**

For constructing the Ω Km element, the 2099 bp *Bgl*II fragment of Transposons Tn5 (E. A. Auerswald, G. Ludwig and H. Schaller. 1981. Cold Spring Harb. Symp. Quant. Biol. **45**:107-113; E. Beck, G. Ludwig, E. A. Auerswald, B. Reiss and H. Schaller. 1982. Genes **19**:327-336; P. Mazodier, P. Cossart, E. Giraud and F. Gasser. 1985. Nucleic Acids Res. **13**:195-205) was isolated on a preparative scale. The fragment was shortened down to approx. 990 bp by treating it with Bal 31 nuclease. This fragment, which now only comprised the kanamycin resistance gene (encoding an aminoglycoside-3'-O-phosphotransferase), was then ligated to *Sma*I-cut pSKsym DNA (pBluescript SK⁻ derivative which contains a symmetrically constructed multiple cloning site [*Sal*I, *Hind*III, *Eco*RI, *Sma*I, *Eco*RI, *Hind*III, *Sal*I]). It was possible to reisolate the Ω Km element from the resulting plasmid as a *Sma*I fragment, an *Eco*RI fragment, a *Hind*III fragment or a *Sal*I fragment.

20 For constructing the Ω Gm element, the 983 bp *Eae*I fragment of the plasmid pBR1MCS-5 (M. E. Kovach, P. H. Elzer, D. S. Hill, G. T. Robertson, M. A. Farris, R. M. Roop and K. M. Peterson. 1995. Genes **166**:175-176) was isolated on a preparative scale and then treated with mung bean nuclease (progressive digestion of single-stranded DNA molecule ends). This fragment, which now only comprised the gentamycin resistance gene (encoding a gentamycin-3-acetyltransferase), was then ligated to *Sma*I-cleaved pSKsym DNA (see above). It was possible to reisolate the Ω Gm element from the resulting plasmid as a *Sma*I fragment, an *Eco*RI fragment, a *Hind*III fragment or a *Sal*I fragment.

Example 2

Cloning the genes from *Pseudomonas* sp. HR199 (DSM7063) which were to be inactivated by inserting Ω elements or by means of deletions.

5 The *fcs*, *ech*, *vdh* and *aat* genes were cloned separately proceeding from the *E. coli* S17-1 strains DSM 10439 and DSM 10440 and using the plasmids pE207 and pE5-1 (see EP-A 0845532). The given fragments were isolated on a preparative scale from these plasmids and treated as described below:

10 For cloning the *fcs* gene, the 2350 bp *Sal*II/*Eco*RI fragment from plasmid pE207 and the 3700 bp *Eco*RI/*Sal*II fragment from plasmid pE5-1 were cloned together in pBluescript SK⁻ such that the two fragments were joined together by way of the *Eco*RI ends. The 6050 bp *Sal*II fragment was isolated on a preparative scale from the resulting hybrid plasmid and shortened down to approx. 2480 bp by being treated with Bal 31 nuclease. *Pst*I linkers were subsequently ligated to the ends of the fragment and, after digestion with *Pst*I, the fragment was cloned into pBluescript SK⁻ (pSKfcs). After transformation of *E. coli* XL1 blue, clones were obtained which expressed the *fcs* gene and exhibited an FCS activity of 0.2 U/mg of protein.

15 For cloning the *ech* gene, the 3800 bp *Hind*III/*Eco*RI fragment from plasmid pE207 was isolated on a preparative scale and shortened down to approx. 1470 bp by treating it with Bal 31 nuclease. *Eco*RI linkers were then ligated to the ends of the fragment and, after digestion with *Eco*RI, the fragment was cloned into pBluescript SK⁻ (pSKech).

20 For cloning the *vdh* gene, the 2350 bp *Sal*II/*Eco*RI fragment from plasmid pE207 was isolated on a preparative scale. After cloning into pBluescript SK⁻, the fragment was truncated at one end by approx. 1530 bp using an exonuclease III/mung bean nuclease system. An *Eco*RI linker was then ligated to the end of the fragment and, after digestion with *Eco*RI, the fragment was cloned into pBluescript SK⁻ (pSKvdh).

RECEIVED
CIRCA 1980
BIOCHEMISTRY
DEPT.
UNIVERSITY OF TORONTO LIBRARY
TORONTO CANADA

Following transformation of *E. coli* XL1 blue, clones were obtained which expressed the VDH gene and exhibited a VDH activity of 0.01 U/mg of protein.

For cloning the *aat* gene, the 3700 bp *Eco*RI/*Sal*I fragment from plasmid pE5-1 was isolated on a preparative scale and shortened down to approx. 1590 bp by treating it with Bal 31 nuclease. *Eco*RI linkers were then ligated to the ends of the fragment and, after digestion with *Eco*RI, the fragment was cloned into pBluescript SK⁻ (pSK_{aat}).

10 **Example 3**

Inactivating the above-described genes by inserting Ω elements or by deleting constituent regions of these genes.

Plasmid pSK_{fcs}, which contained the *fcs* gene, was digested with *Bss*HIII, resulting in a 1290 bp fragment being excised from the *fcs* gene. Following religation, the deletion derivative of the *fcs* gene (*fcs* Δ) (see Figs. 1i and 2i) was obtained in cloned form in pBluescript SK⁻ (pSK_{fcs} Δ). In addition, after the fragment had been excised, the omega elements Ω Km and Ω Gm were ligated in its stead. This resulted in the Ω -inactivated derivatives of the *fcs* gene (*fcs* Ω Km, see Figs. 1g and 2g) and (*fcs* Ω Gm, see Fig. 1h and 2h) being obtained in cloned form in pBluescript SK⁻ (pSK_{fcs} Ω Km and pSK_{fcs} Ω Gm). It was not possible to detect any FCS activity in crude extracts of the resulting *E. coli* clones, whose hybrid plasmids possessed an *fcs* gene which was inactivated by deletion or by Ω element insertion.

25 Plasmid pSK_{ech}, which contained the *ech* gene, was digested with *Nru*I, resulting in a 53 bp fragment and a 430 bp fragment being excised from the *ech* gene. After religation, the deletion derivative of the *ech* gene (*ech* Δ , see Fig. 1l and 2l) was obtained in cloned form in pBluescript SK⁻ (pSK_{ech} Δ). In addition, after the fragments had been excised, the omega elements Ω Km and Ω Gm were ligated in their stead. This resulted in the Ω -inactivated derivatives of the *ech* gene (*ech* Ω Km

and *ech* Ω Gm) being obtained in cloned form in pBluescript SK $^{-}$ (pSK*ech* Ω Km and pSK*ech* Ω Gm).

Plasmid pSK*vdh*, which contained the *vdh* gene, was digested with *Bss*HII, resulting in a 210 bp fragment being excised from the *vdh* gene. After religation, the deletion derivative of the *vdh* gene (*vdh* Δ , see Figs. 1o and 2o) was obtained in cloned form in pBluescript SK $^{-}$ (pSK*vdh* Δ). In addition, after the fragment had been excised, the omega elements Ω Km and Ω Gm were ligated in its stead. This resulted in the Ω -inactivated derivatives of the *vdh* gene (*vdh* Ω Km and *vdh* Ω Gm) being obtained in cloned form in pBluescript SK $^{-}$ (pSK*vdh* Ω Km, see Figs. 1m and 2m) and (pSK*vdh* Ω Gm, see Figs. 1n and 2n). It was not possible to detect any VDH activity in crude extracts of the resulting *E. coli* clones, whose hybrid plasmids possessed a *vdh* gene which was inactivated by deletion or by Ω element insertion.

Plasmid pSK*aat*, which contained the *aat* gene, was digested with *Bss*HII, resulting in a 59 bp fragment being excised from the *aat* gene. After religation, the deletion derivative of the *aat* gene (*aat* Δ , see Figs. 1r and 2r) was obtained in cloned form in pBluescript SK $^{-}$ (pSK*aat* Δ). In addition, after the fragment had been excised, the omega elements Ω Km and Ω Gm were ligated in its stead. This resulted in the Ω -inactivated derivatives of the *aat* gene (*aat* Ω Km, see Figs. 1p and 2p) and (*aat* Ω Gm, see Figs. 1q and 2q) being obtained in cloned form in pBluescript SK $^{-}$ (pSK*aat* Ω Km and pSK*aat* Ω Gm).

Example 4

Subcloning the Ω element-inactivated genes into the conjugatively transferable “suicide plasmid” pSUP202.

5 In order to be able to replace the intact genes in *Pseudomonas sp.* HR199 with the Ω -element inactivated genes, there is a need for a vector which can, on the one hand, be transferred into pseudomonads (conjugatively transferable plasmids) but which, on the other hand, cannot replicate in these bacteria and is consequently unstable in pseudomonads (“suicide plasmid”). DNA segments which are transferred into pseudomonads using such a plasmid system can only be retained if they are integrated by means of homologous recombination (RecA-dependent recombination) 10 into the genome of the bacterial cell. In the present case, the “suicide plasmid” pSUP202 (Simon et al. 1983. In: A. Pühler. Molecular genetics of the bacteria-plant interaction. Springer Verlag, Berlin, Heidelberg, New York, pp. 98-106) was used.

15 Following digestion with *PstI*, the inactivated genes *fcs* Ω Km and *fcs* Ω Gm were isolated from plasmids pSK*fcs* Ω Km and pSK*fcs* Ω Gm and ligated to *PstI*-cleaved pSUP202 DNA. The ligation mixtures were transformed into *E. coli* S17-1. Selection took place on tetracycline-containing LB medium which also contained kanamycin or gentamycin, respectively. Kanamycin-resistant transformants whose hybrid plasmid 20 (pSUP*fcs* Ω Km) contained the inactivated gene *fcs* Ω Km were obtained. The corresponding hybrid plasmid (pSUP*fcs* Ω Gm) of the gentamycin-resistant transformants contained the inactivated gene *fcs* Ω Gm.

25 Following *EcoRI* digestion, the inactivated genes *ech* Ω Km and *ech* Ω Gm were isolated from plasmids pSK*ech* Ω Km and pSK*ech* Ω Gm and ligated to *EcoRI*-cleaved pSUP202 DNA. The ligation mixtures were transformed into *E. coli* S17-1. Selection took place on tetracycline-containing LB medium which also contained kanamycin or gentamycin, respectively. Kanamycin-resistant transformants whose hybrid plasmid 30 (pSUP*ech* Ω Km) contained the inactivated gene *ech* Ω Km were obtained. The

corresponding hybrid plasmid (pSUPech Ω Gm) of the gentamycin-resistant transformants contained the inactivated gene ech Ω Gm.

Following EcoRI digestion, the inactivated genes vdh Ω Km and vdh Ω Gm were isolated from plasmids pSKvdh Ω Km and pSKvdh Ω Gm and ligated to EcoRI-cleaved pSUP202 DNA. The ligation mixtures were transformed into *E. coli* S17-1. Selection took place on tetracycline-containing LB medium which also contained kanamycin or gentamycin, respectively. Kanamycin-resistant transformants whose hybrid plasmid (pSUPvdh Ω Km) contained the inactivated gene vdh Ω Km were obtained. The corresponding hybrid plasmid (pSUPvdh Ω Gm) of the gentamycin-resistant transformants contained the inactivated gene vdh Ω Gm.

Following EcoRI digestion, the inactivated genes aat Ω Km and aat Ω Gm were isolated from plasmids pSKaat Ω Km and pSKaat Ω Gm and ligated to EcoRI-cleaved pSUP202 DNA. The ligation mixtures were transformed into *E. coli* S17-1. Selection took place on tetracycline-containing LB medium which also contained kanamycin or gentamycin, respectively. Kanamycin-resistant transformants whose hybrid plasmid (pSUPaat Ω Km) contained the inactivated gene aat Ω Km were obtained. The corresponding hybrid plasmid (pSUPaat Ω Gm) of the gentamycin-resistant transformants contained the inactivated gene aat Ω Gm.

Example 5

Subcloning the deletion-inactivated genes into the conjugatively transferable “suicide plasmid” PHE55, which possesses the “sacB selection system”.

In order to be able to replace the intact genes in *Pseudomonas* sp. HR199 with the deletion-inactivated genes, there is a need for a vector which possesses the properties which have already been described in the case of pSUP202. Since no possibility (no antibiotic resistance) exists of selecting for successful replacement of the genes in *Pseudomonas* sp. HR199 in the case of deletion-inactivated genes, in contrast to the Ω element-inactivated genes, another selection system had to be used. In the “sacB

selection system", the replacing, deletion-inactivated gene is cloned in a plasmid which possesses the *sacB* gene in addition to an antibiotic resistance gene. Following the conjugative transfer of this hybrid plasmid into a pseudomonad, the plasmid is integrated by means of homologous recombination at the site in the genome at which the intact gene is located (first crossover). This results in a "heterogenetic" strain which possesses both an intact gene and a deletion-inactivated gene, with these genes being separated from each other by the pHE55 DNA. These strains exhibit the resistance which is encoded by the vector and also possess an active *sacB* gene. The intention then is that the pHE55 DNA, together with the intact gene, should then be separated out of the genomic DNA by means of a second homologous recombination event (second crossover). This recombination event results in a strain which now only possesses the inactivated gene. In addition, the pHE55-coded antibiotic resistance and the *sacB* gene are both lost. If strains are streaked on sucrose-containing media, the growth of strains which express the *sacB* gene is inhibited since the gene product converts sucrose into a polymer which is accumulated in the periplasm of the cells. The growth of cells which no longer carry the *sacB* gene as a result of the second recombination event having taken place is consequently not inhibited. In order to have a possibility of selecting phenotypically for the integration of the deletion-inactivated gene, this gene is not exchanged for an intact gene; instead, use is made of a strain in which the gene to be replaced is already "labelled" by the insertion of an Ω element. When successful replacement takes place, the resulting strain loses the antibiotic resistance which is encoded by the Ω element.

Following digestion with *PstI*, the inactivated gene *fcs Δ* was isolated from plasmid pSK*fcs Δ* and ligated to *PstI*-cleaved pHE55 DNA. The ligation mixture was transformed into *E. coli* S17-1. Selection took place on tetracycline-containing LB medium. Tetracycline-resistant transformants, whose hybrid plasmid (pHE*fcs Δ*) contained the inactivated gene *fcs Δ* , were obtained.

Following digestion with *EcoRI*, the inactivated gene *ech Δ* was isolated from plasmid pSK*ech Δ* and treated with mung bean nuclease (generation of blunt ends).

The fragment was ligated to *Bam*HI-cleaved and mung bean nuclease-treated pHE55 DNA. The ligation mixture was transformed into *E. coli* S17-1. Selection took place on tetracycline-containing LB medium. Tetracycline-resistant transformants, whose hybrid plasmid (pHE $ech\Delta$) contained the inactivated gene $ech\Delta$, were obtained

5

Following digestion with *Eco*RI, the inactivated gene $vdh\Delta$ was isolated from plasmid pSK $vdh\Delta$ and treated with mung bean nuclease. The fragment was ligated to *Bam*HI-cleaved and mung bean nuclease-treated pHE55 DNA. The ligation mixture was transformed into *E. coli* S17-1. Selection took place on tetracycline-containing LB medium. Tetracycline-resistant transformants, whose hybrid plasmid (pHE $vdh\Delta$) contained the inactivated gene $vdh\Delta$, were obtained.

10

Following digestion with *Eco*RI, the inactivated gene $aat\Delta$ was isolated from plasmid pSK $aat\Delta$ and treated with mung bean nuclease. The fragment was ligated to *Bam*HI-cleaved and mung bean nuclease-treated pHE55 DNA. The ligation mixture was transformed into *E. coli* S17-1. Selection took place on tetracycline-containing LB medium. Tetracycline-resistant transformants, whose hybrid plasmid (pHE $aat\Delta$) contained the inactivated gene $aat\Delta$, were obtained.

15

20

Example 6

Generating mutants of the strain *Pseudomonas* sp. HR199 in which genes of eugenol catabolism have been specifically inactivated by inserting an Ω -element.

5 The strain *Pseudomonas* sp. HR199 was employed as the recipient in conjugation experiments in which strains of *E. coli* S17-1 harbouring the hybrid plasmids of pSUP202 which are listed below were used as donors. The transconjugants were selected on gluconate-containing mineral medium which contained the antibiotic corresponding to the Ω element. It was possible to distinguish between 10 "homogenotic" (replacement of the intact gene with the Ω element insertion-inactivated gene by means of a double crossover) and "heterogenetic" (integration of the hybrid plasmid into the genome by means of a single crossover) transconjugants on the basis of the pSUP202-encoded tetracycline resistance.

15 The mutants *Pseudomonas* sp. HR199 *fcs* Ω Km and *Pseudomonas* sp. HR199 *fcs* Ω Gm were obtained after conjugating *Pseudomonas* sp. HR199 with *E. coli* S17-1 (pSUP*fcs* Ω Km) and *E. coli* S17-1 (pSUP*fcs* Ω Gm), respectively. The replacement of the intact *fcs* gene with the Ω Km-inactivated or Ω Gm-inactivated gene (*fcs* Ω Km and *fcs* Ω Gm, respectively) was verified by means of DNA sequencing.

20 The mutants *Pseudomonas* sp. HR199 *ech* Ω Km and *Pseudomonas* sp. HR199 *ech* Ω Gm were obtained after conjugating *Pseudomonas* sp. HR199 with *E. coli* S17-1 (pSUP*ech* Ω Km) and *E. coli* S17-1 (pSUP*ech* Ω Gm), respectively. The replacement of the intact *ech* gene with the Ω Km-inactivated or Ω Gm-inactivated gene (*ech* Ω Km and *ech* Ω Gm, respectively) was verified by means of DNA sequencing.

25 The mutants *Pseudomonas* sp. HR199 *vdh* Ω Km and *Pseudomonas* sp. HR199 *vdh* Ω Gm were obtained after conjugating *Pseudomonas* sp. HR199 with *E. coli* S17-1 (pSUP*vdh* Ω Km) and *E. coli* S17-1 (pSUP*vdh* Ω Gm), respectively. The

replacement of the intact *vdh* gene with the Ω Km-inactivated or Ω Gm-inactivated gene (*vdh* Ω Km and *vdh* Ω Gm, respectively) was verified by means of DNA sequencing.

5 The mutants *Pseudomonas* sp. HR199 *aat* Ω Km and *Pseudomonas* sp. HR199 *aat* Ω Gm were obtained after conjugating *Pseudomonas* sp. HR199 with *E. coli* S17-1 (pSUP*aat* Ω Km) and *E. coli* S17-1 (pSUP*aat* Ω Gm), respectively. The replacement of the intact *aat* gene with the Ω Km-inactivated or Ω Gm-inactivated gene (*aat* Ω Km and *aat* Ω Gm, respectively) was verified by means of DNA sequencing.

10 The mutant *Pseudomonas* sp. HR199 *fcs* Ω Km*vdh* Ω Gm was obtained after conjugating *Pseudomonas* sp. HR199 *fcs* Ω Km with *E. coli* S17-1 (pSUP*vdh* Ω Gm). The replacement of the intact *vdh* gene with the Ω Gm-inactivated gene (*vdh* Ω Gm) was verified by means of DNA sequencing.

15 The mutant *Pseudomonas* sp. HR199 *vdh* Ω Km*aat* Ω Gm was obtained after conjugating *Pseudomonas* sp. HR199 *vdh* Ω Km with *E. coli* S17-1 (pSUP*aat* Ω Gm). The replacement of the intact *aat* gene with the Ω Gm-inactivated gene (*aat* Ω Gm) was verified by means of DNA sequencing.

20 The mutant *Pseudomonas* sp. HR199 *vdh* Ω Km*ech* Ω Gm was obtained after conjugating *Pseudomonas* sp. HR199 *vdh* Ω Km with *E. coli* S17-1 (pSUP*ech* Ω Gm). The replacement of the intact *ech* gene with the Ω Gm-inactivated gene (*ech* Ω Gm) was verified by means of DNA sequencing.

Example 7

Generating of mutants of the strain *Pseudomonas* sp. HR199 in which genes of eugenol catabolism have been specifically inactivated by deleting a constituent region.

The strains *Pseudomonas* sp. HR199 *fcs* Ω Km, *Pseudomonas* sp. HR199 *ech* Ω Km, *Pseudomonas* sp. HR199 *vdh* Ω Km and *Pseudomonas* sp. HR199 *aat* Ω Km were employed as recipients in conjugation experiments in which strains of *E. coli* S17-1 harbouring the hybrid plasmids of pHE55 which are listed below were used as donors. The "heterogenetic" transconjugants were selected on gluconate-containing mineral medium which also contained the antibiotic corresponding to the Ω element in addition to tetracycline (pHE55-encoded resistance). After streaking out on sucrose-containing mineral medium, transconjugants were obtained which had eliminated the vector DNA by means of a second recombination event (second crossover). By streaking out on mineral medium which was without antibiotic or which contained the antibiotic corresponding to the Ω element, it was possible to identify the mutants in which the Ω element-inactivated gene had been replaced with the deletion-inactivated gene (no antibiotic resistance).

The mutant *Pseudomonas* sp. HR199 *fcs* Δ was obtained after conjugating *Pseudomonas* sp. HR199 *fcs* Ω Km with *E. coli* S17-1 (pHE*fcs* Δ). The replacement of the Ω Km inactivated gene (*fcs* Ω Km) with the deletion-inactivated gene (*fcs* Δ) was verified by means of DNA sequencing.

The mutant *Pseudomonas* sp. HR199 *ech* Δ was obtained after conjugating *Pseudomonas* sp. HR199 *ech* Ω Km with *E. coli* S17-1 (pHE*ech* Δ). The replacement of the Ω Km-inactivated gene (*ech* Ω Km) with the deletion-inactivated gene (*ech* Δ) was verified by means of DNA sequencing.

The mutant *Pseudomonas* sp. HR199 *vdh* Δ was obtained after conjugating *Pseudomonas* sp. HR199 *vdh* Ω Km with *E. coli* S17-1 (pHE*vdh* Δ). The replacement

of the Ω Km-inactivated gene ($vdh\Omega$ Km) with the deletion-inactivated gene ($vdh\Delta$) was verified by means of DNA sequencing.

The mutant *Pseudomonas* sp. HR199 $aat\Delta$ was obtained after conjugating
5 *Pseudomonas* sp. HR199 $aat\Omega$ Km with *E. coli* S17-1 (pHE $aat\Delta$). The replacement
of the Ω Km-inactivated gene ($aat\Omega$ Km) with the deletion-inactivated gene ($aat\Delta$)
was verified by means of DNA sequencing.

Example 8

10

Biotransforming eugenol into vanillin using the mutant *Pseudomonas* sp. HR199 $vdh\Omega$ Km.

The strain *Pseudomonas* sp. HR199 $vdh\Omega$ Km was propagated in 50 ml of HR-MM containing 6 mM eugenol up to an optical density of approx. OD_{600nm} = 0.6. After
15 17 h, it was possible to detect 2.9 mM vanillin, 1.4 mM ferulic acid and 0.4 mM vanillic acid in the culture supernatant.

Example 9

20

Biotransforming eugenol into ferulic acid using the mutant *Pseudomonas* sp. HR199 $vdh\Omega$ Gma $aat\Omega$ Km.

The strain *Pseudomonas* sp. HR199 $vdh\Omega$ Gma $aat\Omega$ Km was propagated in 50 ml of HR-MM containing 6 mM eugenol up to an optical density of approx. OD_{600nm} = 0.6. After 18 h, it was possible to detect 1.9 mM vanillin, 2.4 mM ferulic acid and
25 0.6 mM vanillic acid in the culture supernatant.

Example 10

Biotransforming eugenol into coniferyl alcohol using the mutant *Pseudomonas* sp. HR199 $vdh\Omega Gmaat\Omega Km$.

5 The strain *Pseudomonas* sp. HR199 $vdh\Omega Gmaat\Omega Km$ was propagated in 50 ml of HR-MM containing 6 mM eugenol up to an optical density of approx. OD_{600nm} = 0.4. After 15 h, it was possible to detect 1.7 mM coniferyl alcohol, 1.4 mM vanillin, 1.4 mM ferulic acid and 0.2 mM vanillic acid in the culture supernatant.

10 **Example 11**

Fermentatively producing natural vanillin from eugenol in a 10 l fermenter using mutant *Pseudomonas* sp. HR 199 $vdh\Omega Km$.

The production fermenter was inoculated with 100 ml of a 24-hour-old preliminary culture which had been propagated at 32°C on a shaking incubator (120 rpm) in a medium which was adjusted to pH 7.0 and which consisted of 12.5 g of glycerol/l, 10 g of yeast extract/l and 0.37 g of acetic acid/l. The fermenter contained 9.9 l of medium of the following composition: 1.5 g of yeast extract/l, 1.6 g of KH₂PO₄/l, 0.2 g of NaCl/l, 0.2 g of MgSO₄/l. The pH was adjusted to pH 7.0 with sodium hydroxide solution. After sterilization, 4 g of eugenol were added to the medium. The temperature was 32°C, the aeration was 3 Nl/min and the stirrer speed was 600 rpm. The pH was maintained at pH 6.5 with sodium hydroxide solution.

At 4 hours after the inoculation, continuous addition of eugenol was begun such that 255 g of eugenol had been added to the culture when fermentation ended after 65 hours. 40 g of yeast extract were also fed in during the fermentation. At the end of the fermentation, the concentration of eugenol was 0.2 g/l. The content of vanillin was 2.6 g/l. 3.4 g of ferulic acid/l were also present.

The vanillin which is obtained in this way can be isolated by known physical methods such as chromatography, distillation and/or extraction and used for preparing natural flavourings.

5 Explanatory notes regarding the figures:

FIG. 1a to 1r:

Gene structures for isolating organisms and mutants

10

*calA**: Part of the inactivated gene for coniferyl alcohol dehydrogenase

*calB**: Part of the inactivated gene for coniferyl aldehyde dehydrogenase

*fcs**: Part of the inactivated gene for feruloyl-CoA synthetase

*ech**: Part of the inactivated gene for enoyl-CoA hydratase-aldolase

15

*vdh**: Part of the inactivated gene for vanillin dehydrogenase

*aar**: Part of the inactivated gene for beta-ketothiolase

While the restriction enzyme cleavage sites labelled "*" were used for the construction, they are no longer functional in the resulting construct.

20

EQUITY INFORMATION

FIG. 2a: Nucleotide sequence of the *calAΩKm* gene structure

FIG. 2b: Nucleotide sequence of the *calAΩGm* gene structure:

FIG. 2c: Nucleotide sequence of the *calAΔ* gene structure

FIG. 2d: Nucleotide sequence of the *calBΩKm* gene structure

5 FIG. 2e: Nucleotide sequence of the *calBΩGm* gene structure

FIG. 2f: Nucleotide sequence of the *calBΔ* gene structure

FIG. 2g: Nucleotide sequence of the *fcsΩKm* gene structure

FIG. 2h: Nucleotide sequence of the *fcsΩGm* gene structure

FIG. 2i: Nucleotide sequence of the *fcsΔ* gene structure

10 FIG. 2j: Nucleotide sequence of the *echΩKm* gene structure

FIG. 2k: Nucleotide sequence of the *echΩGm* gene structure

FIG. 2l: Nucleotide sequence of the *echΔ* gene structure

FIG. 2m: Nucleotide sequence of the *vdhΩKm* gene structure

FIG. 2n: Nucleotide sequence of the *vdhΩGm* gene structure

15 FIG. 2o: Nucleotide sequence of the *vdhΔ* gene structure

FIG. 2p: Nucleotide sequence of the *aatΩKm* gene structure

FIG. 2q: Nucleotide sequence of the *aatΩGm* gene structure

FIG. 2r: Nucleotide sequence of the *aatΔ* gene structure

Patent claims

1. Transformed and/or mutagenized unicellular or multicellular organism which is characterized in that enzymes of eugenol and/or ferulic acid catabolism are inactivated such that the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid accumulate.
5
2. Organism according to Claim 1, characterized in that eugenol and/or ferulic acid catabolism is altered by inserting Ω elements, or introducing deletions, into corresponding genes.
10
3. Organism according to either Claim 1 or 2, characterized in that one or more genes encoding the enzymes coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, feruloyl-CoA synthetases, enoyl-CoA hydratase-aldolases, beta-ketothiolases, vanillin dehydrogenases or vanillic acid demethylases is/are altered and/or inactivated.
15
4. Organism according to one of Claims 1 to 3, characterized in that it is unicellular, preferably a microorganism or a plant or animal cell.
20
5. Organism according to one of Claims 1 to 4, characterized in that it is a bacterium, preferably a *Pseudomonas* species.
6. Gene structures in which the nucleotide sequences encoding the enzymes coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, feruloyl-CoA synthetases, enoyl-CoA hydratase-aldolases, beta-ketothiolases, vanillin-dehydrogenases or vanillic acid demethylases, or two or more of these enzymes, are altered and/or inactivated.
25
7. Gene structures having the sequences given in Figures 1a to 1r.
30

8. Gene structures having the sequences given in Figures 2a to 2r.
9. Vectors which contain at least one gene structure according to one of Claims 6 to 8.
5
10. Transformed organism according to one of Claims 1 to 5, characterized in that it harbours at least one vector according to Claim 9.
11. Organism according to one of Claims 1 to 5, characterized in that it contains
10 at least one gene structure according to one of Claims 6 to 8 which is integrated into the genome instead of the respective intact gene.
12. Process for the biotechnological preparation of organic compounds, in particular alcohols, aldehydes and organic acids, characterized in that an
15 organism according to one of Claims 1 to 5 or 10 to 11 is employed.
13. Process for preparing the organisms according to one of Claims 1 to 5, characterized in that the alteration eugenol and/or ferulic acid catabolism is achieved by means of microbiological culturing methods which are known
20 per se.
14. Process for preparing an organism according to one of Claims 1 to 5 or 10 to 11, characterized in that the alteration in eugenol and/or ferulic acid catabolism, and/or the inactivation of the corresponding genes, is achieved by
25 means of recombinant DNA methods.
15. Use of the organisms according to one of Claims 1 to 5 or 10 to 11 for preparing coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid.

16. Use of gene structures according to one of Claims 6 to 8 or of a vector according to Claim 9 for preparing transformed and/or mutagenized organisms.

Sequences

CTGCAGCCAG GGCTGAAAAG GAGGGATTCA GTGAGGTCAT GAAGGGAGGG GACGGCGCCT	60
GGCTCCAATT GCTCGATGGC GCCCGGATTG AGTGTCTTGG GCGCGGTCTT GGAGAGTTCG	120
GCTAGGGAGA TAAATTTGCT GGCCATGGTG CGGGCCCCTG ATGGGTTGGA TGATTTCTG	180
CATTCTGCAT CATGAAATTC ATGAAATCAT CACTTTTCGG GGGGTGGGTG CACGGGATTG	240
AAGGTTGCTA GGAGAGTGCA TTGCTCGTAA GCCCAGGAAG CACGCGGGTT TCAGGATGGT	300
GCATGGAAAT GGCATGAGCT TTGCTGGATA TGATTAGAGA CATTAACTAT TTTGGCGGAA	360
TGGAAGCACG ATTCCCTCGCC CGGTAGAGCG GTAACCGCGA CATTCAAGGAC CGTAAAAAGG	420
AAAGAGCATG CAA CTG ACC AAC AAG AAA ATC GTC GTC ACC GGA GTG TCC TCC Met Gln Leu Thr Asn Lys Lys Ile Val Val Thr Gly Val Ser Ser	472
1 5 10 15	
GGT ATC GGT GCC GAA ACT GCC CGC GTT CTG CGC TCT CAC GGC GCC ACA Gly Ile Gly Ala Glu Thr Ala Arg Val Leu Arg Ser His Gly Ala Thr	520
20 25 30	
GTG ATT GGC GTA GAT CGC AAC ATG CCG AGC CTG ACT CTG GAT GCT TTC Val Ile Gly Val Asp Arg Asn Met Pro Ser Leu Thr Leu Asp Ala Phe	568
35 40 45	
GTT CAG GCT GAC CTG AGC CAT CCT GAA GGC ATC GAT AAG GCC ATC GGG Val Gln Ala Asp Leu Ser His Pro Glu Gly Ile Asp Lys Ala Ile	616
50 55 60 62	
ACAGCAAGCG AACCGGAATT GCCAGCTGGG GCGCCCTCTG GTAAGGTTGG GAAGCCCTGC	676
AAAGTAAACT GGATGGCTTT CTTGCCGCCA AGGATCTGAT GGCGCAGGGG ATCAAGATCT	736
GATCAAGAGA CAGGATGAGG ATCGTTTCGC ATG ATT GAA CAA GAT GGA TTG CAC Met Ile Glu Gln Asp Gly Leu His	790
1 5	
GCA GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGC TAT GAC TGG Ala Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp Trp	838
10 15 20	
GCA CAA CAG ACA ATC GGC TGC TCT GAT GCC GCC GTG TTC CGG CTG TCA Ala Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser	886
25 30 35 40	
GCG CAG GGG CGC CCG GTT CTT TTT GTC AAG ACC GAC CTG TCC GGT GCC Ala Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly Ala	934
45 50 55	
CTG AAT GAA CTG CAG GAC GAG GCA GCG CGG CTA TCG TGG CTG GCC ACG Leu Asn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala Thr	982
60 65 70	

ACG GGC GTT CCT TGC GCA GCT GTG CTC GAC GTT GTC ACT GAA GCG GGA Thr Gly Val Pro Cys Ala Ala Val Leu Asp Val Val Thr Glu Ala Gly 75 80 85	1030
AGG GAC TGG CTG CTA TTG GGC GAA GTG CCG GGG CAG GAT CTC CTG TCA Arg Asp Trp Leu Leu Leu Gly Glu Val Pro Gly Gln Asp Leu Leu Ser 90 95 100	1078
TCT CAC CTT GCT CCT GCC GAG AAA GTA TCC ATC ATG GCT GAT GCA ATG Ser His Leu Ala Pro Ala Glu Lys Val Ser Ile Met Ala Asp Ala Met 105 110 115 120	1126
CGG CGG CTG CAT ACG CTT GAT CCG GCT ACC TGC CCA TTC GAC CAC CAA Arg Arg Leu His Thr Leu Asp Pro Ala Thr Cys Pro Phe Asp His Gln 125 130 135	1174
GCG AAA CAT CGC ATC GAG CGA GCA CGT ACT CGG ATG GAA GCC GGT CTT Ala Lys His Arg Ile Glu Arg Ala Arg Thr Arg Met Glu Ala Gly Leu 140 145 150	1222
GTC GAT CAG GAT GAT CTG GAC GAA GAG CAT CAG GGG CTC GCG CCA GCC Val Asp Gln Asp Asp Leu Asp Glu Glu His Gln Gly Leu Ala Pro Ala 155 160 165	1270
GAA CTG TTC GCC AGG CTC AAG GCG CGC ATG CCC GAC GGC GAG GAT CTC Glu Leu Phe Ala Arg Leu Lys Ala Arg Met Pro Asp Gly Glu Asp Leu 170 175 180	1318
GTC GTG ACC CAT GGC GAT GCC TGC TTG CCG AAT ATC ATG GTG GAA AAT Val Val Thr His Gly Asp Ala Cys Leu Pro Asn Ile Met Val Glu Asn 185 190 195 200	1366
GGC CGC TTT TCT GGA TTC ATC GAC TGT GGC CGG CTG GGT GTG GCG GAC Gly Arg Phe Ser Gly Phe Ile Asp Cys Gly Arg Leu Gly Val Ala Asp 205 210 215	1414
CGC TAT CAG GAC ATA GCG TTG GCT ACC CGT GAT ATT GCT GAA GAG CTT Arg Tyr Gln Asp Ile Ala Leu Ala Thr Arg Asp Ile Ala Glu Glu Leu 220 225 230	1462
GGC GGC GAA TGG GCT GAC CGC TTC CTC GTG CTT TAC GGT ATC GCC GCT Gly Gly Glu Trp Ala Asp Arg Phe Leu Val Leu Tyr Gly Ile Ala Ala 235 240 245	1510
CCC GAT TCG CAG CGC ATC GCC TTC TAT CGC CTT CTT GAC GAG TTC TTC Pro Asp Ser Gln Arg Ile Ala Phe Tyr Arg Leu Leu Asp Glu Phe Phe 250 255 260 264	1558
TGAGCGGGAC TCTGGGGTTC GAAATGACCG ACCAAGCGAC GCCCTG GCC GCG GTG Ala Ala Val 225	1613
ATT GCA TTC ATG TGT GCT GAG GAG TCA CGT TGG ATC AAC GGC ATA AAT Ile Ala Phe Met Cys Ala Glu Glu Ser Arg Trp Ile Asn Gly Ile Asn 230 235 240	1661

ATT CCA GTG GAC GGA GGT TTG GCA TCG ACC TAC GTG TAA GTTCGTGGAC	1710
Ile Pro Val Asp Gly Gly Leu Ala Ser Thr Tyr Val	
245 250 255	
GCCCTTGCA CGCGCACTAT ATCTCTATGC AGCAGCTGAA AGCAGCTTG GTTTGATCG	1770
GAGGTAGCGG GCGGAAAGGT GCAGAATGTC TAAATAATAA AGGATTCTTG TGAAGCTTTA	1830
GTTGTCCGTA AACGAAAATA AAAATAAAGA GGAATGATAT GAAAGCAAGT AGATCAGTCT	1890
GCACCTTCAA AATAGCTACC CTGGCAGGCG CCATTATGC AGCGCTGCCA ATGTCAGCTG	1950
CAAACTCGAT GCAGCTGGAT GTAGGTAGCT CGGATTGGAC GGTGCGTTGG GGACAACACC	2010
CTCAAGTATA GCCTTGCCTC TCGCCTGAAT GAGCAAGACT CAAGTCTGAC AAATGCGCCG	2070
ACTGTCAATG GTTATATCCG GATATTCAA GTCAGGGTGA TCGTAACCTT GACCGGGGC	2130
TTGGTATCCA ATCGTCTCGA TATTCTGGCT GCAG	2164

FIG. 2a:

098301504200
CTGCAGCCAG GGCTGAAAAG GAGGGATTCA GTGAGGTCAT GAAGGGAGGG GACGGCGCCT 60
GGCTCCAATT GCTCGATGGC GCCCGCATTG AGTGTCTTGG GCGCGGTCTT GGAGAGTTCG 120
GCTAGGGAGA TAAATTTGCT GGCCATGGTG CGGGCCCCTG ATGGGTTGGA TGATTTCTG 180
CATTCTGCAT CATGAAATTC ATGAAATCAT CACTTTCGG GGGGTGGGTG CACGGGATTG 240
AAGGTTGCTA GGAGAGTGCA TTGCTCGTAA GCCCAGGAAG CACGCGGGTT TCAGGATGGT 300
GCATGGAAAT GGCATGAGCT TTGCTGGATA TGATTAGAGA CATTAACTAT TTTGGCGGAA 360
TGGAAGCACG ATTCTCGCC CGGTAGAGCG GTAACCGCGA CATTCAAGGAC CGTAAAAAGG 420
AAAGAGCATG CAA CTG ACC AAC AAG AAA ATC GTC GTC ACC GGA GTG TCC TCC 472
Met Gln Leu Thr Asn Lys Lys Ile Val Val Thr Gly Val Ser Ser
1 5 10 15
GGT ATC GGT GCC GAA ACT GCC CGC GTT CTG CGC TCT CAC GGC GCC ACA 520
Gly Ile Gly Ala Glu Thr Ala Arg Val Leu Arg Ser His Gly Ala Thr
20 25 30
GTG ATT GGC GTA GAT CGC AAC ATG CCG AGC CTG ACT CTG GAT GCT TTC 568
Val Ile Gly Val Asp Arg Asn Met Pro Ser Leu Thr Leu Asp Ala Phe
35 40 45
GTT CAG CCT GAC CTG AGC CAT CCT GAGGGGAGAG GCGGTTGCG TATTGGCGC 622
Val Gln Ala Asp Leu Ser His Pro
50 55
ATGCATAAAA ACTGTTGTAATTCATTAAGC ATTCTGCCGA CATGGAAGCC ATCACAAACG 682
GCATGATGAA CCTGAATCGC CAGCGGCATC AGCACCTGT CGCCTGCGT ATAATATTTG 742
CCCATGGACG CACACCGTGG AAACGGATGA AGGCACGAAC CCAGTTGACA TAAGCCTGTT 802
CGGTTCGTAA ACTGTAATGC AAGTAGCGTA TGCGCTCACG CAACTGGTCC AGAACCTTGA 862
CCGAACGCAG CGGTGGTAAC GGCGCAGTGG CGGTTTCAT GGCTTGTAT GACTGTTTTT 922
TTGTACAGTC TATGCCCTCGG GCATCCAAGC AGCAAGCGCG TTACGCCGTG GGTCGATGTT 982
TGATGTTATG GAGCAGCAAC G ATG TTA CGC AGC AGC AAC GAT GTT ACG CAG 1033
Met Leu Arg Ser Ser Asn Asp Val Thr Gln
1 5 10
CAG GGC AGT CGC CCT AAA ACA AAG TTA GGT GGC TCA AGT ATG GGC ATC 1081
Gln Gly Ser Arg Pro Lys Thr Lys Leu Gly Gly Ser Ser Met Gly Ile
15 20 25
ATT CGC ACA TGT AGG CTC GGC CCT GAC CAA GTC AAA TCC ATG CGG GCT 1129
Ile Arg Thr Cys Arg Leu Gly Pro Asp Gln Val Lys Ser Met Arg Ala
30 35 40
GCT CTT GAT CTT TTC GGT CGT GAG TTC GGA GAC GTA GCC ACC TAC TCC 1177
Ala Leu Asp Leu Phe Gly Arg Glu Phe Gly Asp Val Ala Thr Tyr Ser
45 50 55

CAA CAT CAG CCG GAC TCC GAT TAC CTC GGG AAC TTG CTC CGT AGT AAG Gln His Gln Pro Asp Ser Asp Tyr Leu Gly Asn Leu Leu Arg Ser Lys 60 65 70	1225
ACA TTC ATC GCG CTT GCT GCC TTC GAC CAA GAA GCG GTT GTT GGC GCT Thr Phe Ile Ala Leu Ala Ala Phe Asp Gln Glu Ala Val Val Gly Ala 75 80 85 90	1273
CTC GCG GCT TAC GTT CTG CCC AGG TTT GAG CAG CCG CGT AGT GAG ATC Leu Ala Ala Tyr Val Leu Pro Arg Phe Glu Gln Pro Arg Ser Glu Ile 95 100 105	1321
TAT ATC TAT GAT CTC GCA GTC TCC GGC GAG CAC CGG AGG CAG GGC ATT Tyr Ile Tyr Asp Leu Ala Val Ser Gly Glu His Arg Arg Gln Gly Ile 110 115 120	1369
GCC ACC GCG CTC ATC AAT CTC CTC AAG CAT GAG GCC AAC GCG CTT GGT Ala Thr Ala Leu Ile Asn Leu Leu Lys His Glu Ala Asn Ala Leu Gly 125 130 135	1417
GCT TAT GTG ATC TAC GTG CAA GCA GAT TAC GGT GAC GAT CCC GCA GTG Ala Tyr Val Ile Tyr Val Gln Ala Asp Tyr Gly Asp Asp Pro Ala Val 140 145 150	1465
GCT CTC TAT ACA AAG TTG GGC ATA CGG GAA GAA GTG ATG CAC TTT GAT Ala Leu Tyr Thr Lys Leu Gly Ile Arg Glu Glu Val Met His Phe Asp 155 160 165 170	1513
ATC GAC CCA AGT ACC GCC ACC TAA CAATTCGTTCA AAGCCGAGAT CGGCTTCCCT Ile Asp Pro Ser Thr Ala Thr 175 177	1567
G ATT GCA TTC ATG TGT GCT GAG GAG TCA CGT TGG ATC AAC GGC ATA AAT Ile Ala Phe Met Cys Ala Glu Glu Ser Arg Trp Ile Asn Gly Ile Asn 228 230 235 240	1616
ATT CCA GTG GAC GGA GGT TTG GCA TCG ACC TAC GTG TAA GTTCGTGGAC Ile Pro Val Asp Gly Gly Leu Ala Ser Thr Tyr Val 245 250 255	1665
GCCCTTGCA CGCGCACTAT ATCTCTATGC AGCAGCTGAA AGCAGCTTTG GTTTGATCG	1725
GAGGTAGCGG GCGGAAAGGT GCAGAATGTC TAAATAATAA AGGATTCTTG TGAAGCTTTA	1785
GTTGTCCGTA AACGAAAATA AAAATAAAGA GGAATGATAT GAAAGCAAGT AGATCAGTCT	1845
GCACTTTCAA AATAGCTACC CTGGCAGGCG CCATTATGC AGCGCTGCCA ATGTCAGCTG	1905
CAAACCTCGAT GCAGCTGGAT GTAGGTAGCT CGGATTGGAC GGTGCGTTGG GGACAACACC	1965
CTCAAGTATA GCCTTGCCTC TCGCCTGAAT GAGCAAGACT CAAGTCTGAC AAATGCGCCG	2025
ACTGTCAATG GTTATATCCG GATATTCAAA GTCAGGGTGA TCGTAACCTT GACCGGGGGC	2085
TTGGTATCCA ATCGTCTCGA TATTCTGGCT GCAG	2119

FIG. 2b:

CTGCAGCCAG GGCTGAAAAG GAGGGATTCA GTGAGGTCAT GAAGGGAGGG GACGGCGCCT	60
GGCTCCAATT GCTCGATGGC GCCCGATTG AGTGTCTTGG GCGCGGTCTT GGAGAGTTCG	120
GCTAGGGAGA TAAATTGCT GCCCATGGTG CGGGCCCTG ATGGGTTGGA TGATTTCTG	180
CATTCTGCAT CATGAAATTC ATGAAATCAT CACTTTCGG GGGGTGGGTG CACGGGATTG	240
AAGGTTGCTA GGAGAGTGCA TTGCTCGTAA GCCCAGGAAG CACGCGGGTT TCAGGATGGT	300
GCATGGAAAT GGCATGAGCT TTGCTGGATA TGATTAGAGA CATTAACTAT TTTGGCGGAA	360
TGGAAGCACG ATTCCCTCGCC CGGTAGAGCG GTAACCGCGA CATTCAAGGAC CGTAAAAAGG	420
AAAGAGCATG CAA CTG ACC AAC AAG AAA ATC GTC GTC ACC GGA GTG TCC TCC	472
Met Gln Leu Thr Asn Lys Lys Ile Val Val Thr Gly Val Ser Ser	
1 5 10 15	
GGT ATC GGT GCC GAA ACT GCC CGC GTT CTG CGC TCT CAC GGC GCC ACA	520
Gly Ile Gly Ala Glu Thr Ala Arg Val Leu Arg Ser His Gly Ala Thr	
20 25 30	
GTG ATT GGC GTA GAT CGC AAC ATG CCG AGC CTG ACT CTG GAT GCT TTC	568
Val Ile Gly Val Asp Arg Asn Met Pro Ser Leu Thr Leu Asp Ala Phe	
35 40 45	
GTT CAG GCT GAC CTG AGC CAT CCT GAA GGC ATC GATC AAC GGC ATA AAT	617
Val Gln Ala Asp Leu Ser His Pro Glu Gly Ile Asn Gly Ile Asn	
50 55 58 240	
ATT CCA GTG GAC GGA GGT TTG GCA TCG ACC TAC GTG TAA GTTCGTGGAC	666
Ile Pro Val Asp Gly Gly Leu Ala Ser Thr Tyr Val	
245 250 255	
GCCCTTGCA CGCGCACTAT ATCTCTATGC AGCAGCTGAA AGCAGCTTTG GTTTGATCG	726
GAGGTAGCGG GCGGAAAGGT GCAGAAATGTC TAAATAATAA AGGATTCTTG TGAAGCTTTA	786
GTTGTCCGTA AACGAAAATA AAAATAAAGA GGAATGATAT GAAAGCAAGT AGATCAGTCT	846
GCACCTTCAA AATAGCTACC CTGGCAGGCG CCATTATGC AGCGCTGCCA ATGTCAGCTG	906
CAAACCTCGAT GCAGCTGGAT GTAGGTAGCT CGGATTGGAC GGTGCGTTGG GGACAACACC	966
CTCAAGTATA GCCTTGCCTC TCGCCTGAAT GAGCAAGACT CAAGTCTGAC AAATGCGCCG	1026
ACTGTCAATG GTTATATCCG GATATTCAA GTCAGGGTGA TCGTAACCTT GACCGGGGGC	1086
TTGGTATCCA ATCGTCTCGA TATTCTGGCT GCAG	1120

FIG. 2c:

GAATTCCGCG TATCGCCCGG TTCTATCAGC GGGCCGCTTT CGAAAGTCAT GGTGTTAGCC 60
GGTAGGGTCT TTTTCTTGGC CATGCTTGTT GCCTGAACCT TCGTTGACAT AGGGCAGAGG 120
TGCCTTGCC GCTTCGCTTC GCGATGAACC GCATCGAGAT GCTGAGGTCA GGATTTTCC 180
TTAACTCGCG TAAGCATTCT GTCATTTTT TGTTGGCTTT GAACAGCCTG ATGAAAGGTG 240
GTCTGCCCT TTGAGGCCGA TTCTTGGCG CTTGGCGCG TCGAAGCGAT GCTCCACTAC 300
CGATTAAGAT AATTAAAATA AGGAAACCGC ATGGTTCTT ATGTGAATT GTCTGGCATA 360
CTCCAGCTCA AGGGCAATT TTGGGCTATT GGCTGAGCAG TTGCCTCTAT ATGGTTATTC 420
AGAATAACAA TTGACTCCTC AGGAGGTCAG CG ATG AGC ATT CTT GGT TTG AAT 473
Met Ser Ile Leu Gly Leu Asn
1 5
GGT GCC CCG GTC GGA GCT GAG CAG CTG GGC TCG GCT CTT GAT CGC ATG 521
Gly Ala Pro Val Gly Ala Glu Gln Leu Gly Ser Ala Leu Asp Arg Met
10 15 20
AAG AAG GCG CAC CTG GAG CAG GGG CCT GCA AAC TTG GAG CTG CGT CTG 569
Lys Lys Ala His Leu Glu Gln Gly Pro Ala Asn Leu Glu Leu Arg Leu
25 30 35
AGT AGG CTG GAT CGT GCG ATT GCA ATG CTT CTG GAA AAT CGT GAA GCA 617
Ser Arg Leu Asp Arg Ala Ile Ala Met Leu Leu Glu Asn Arg Glu Ala
40 45 50 55
ATT GCC GAC GCG GTT TCT GCT GAC TTT GGC AAT CGC AGC CGT GAG CAA 665
Ile Ala Asp Ala Val Ser Ala Asp Phe Gly Asn Arg Ser Arg Glu Gln
60 65 70
ACA CTG CTT TGC GAC ATT GCT GGC TCG GTG GCA AGC CTG AAG GAT AGC 713
Thr Leu Cys Asp Ile Ala Gly Ser Val Ala Ser Leu Lys Asp Ser
75 80 85
CGC GAG CAC GTG GCC AAA TGG ATG GAG CCC GAA CAT CAC AAG GCG ATG 761
Arg Glu His Val Ala Lys Trp Met Glu Pro Glu His His Lys Ala Met
90 95 100
TTT CCA GGG GCG GAG GCA CGC GTT GAG TTT CAG CCG CTG GGT GTC GTT 809
Phe Pro Gly Ala Glu Ala Arg Val Glu Phe Gln Pro Leu Gly Val Val
105 110 115
GGG GTC ATT AGT CCC TGG AAC TTC CCT ATC GTA CTG GCC TTT GGG CCG 857
Gly Val Ile Ser Pro Trp Asn Phe Pro Ile Val Leu Ala Phe Gly Pro
120 125 130 135
CTG GCC GGC ATA TTC GCA GCA GGT AAT CGC GCC ATG CTC AAG CCG TCC 905
Leu Ala Gly Ile Phe Ala Ala Gly Asn Arg Ala Met Leu Lys Pro Ser
140 145 150
GAG CTT ACC CCG CGG ACT TCT GCC CTG CTT GCG GAG CTA ATT GCT CGT 953
Glu Leu Thr Pro Arg Thr Ser Ala Leu Leu Ala Glu Leu Ile Ala Arg
155 160 165

TAC TTC GAT GAA ACT GAG CTG ACT ACA GTG CTG GGC GAC GCT GAA GTC 1001
Tyr Phe Asp Glu Thr Glu Leu Thr Thr Val Leu Gly Asp Ala Glu Val
170 175 180

GGT GCG CTG TTC AGT GCT CAG CCT TTC GAT CAT CTG ATC TTC ACC GGC 1049
Gly Ala Leu Phe Ser Ala Gln Pro Phe Asp His Leu Ile Phe Thr Gly
185 190 195

GGC ACT GCC GTG GCC AAG CAC ATC ATG CGT GCC GCG GCG GAT AAC CTA 1097
Gly Thr Ala Val Ala Lys His Ile Met Arg Ala Ala Ala Asp Asn Leu
200 205 210 215

GTG CCC GTT ACC CTG GAA TTG GGT GGC AAA TCG CCG GTG ATC GTT TCC 1145
Val Pro Val Thr Leu Glu Leu Gly Gly Lys Ser Pro Val Ile Val Ser
220 225 230

CGC AGT GCA GAT ATG GCG GAC GTT GCA CAA CGG GTG TTG ACG GTG AAA 1193
Arg Ser Ala Asp Met Ala Asp Val Ala Gln Arg Val Leu Thr Val Lys
235 240 245

ACC TTC AAT GCC GGG CAA ATC TGT CTG GCA CCG GAC TAT GTG CTG CTG 1241
Thr Phe Asn Ala Gly Gln Ile Cys Leu Ala Pro Asp Tyr Val Leu Leu
250 255 260

CCG GAA GGGACAGCAA GCGAACCGGA ATTGCCAGCT GGGGCGCCCT CTGGTAAGGT 1297
Pro Glu
265

TGGGAAGCCC TGCAAAGTAA ACTGGATGGC TTTCTGCCG CCAAGGATCT GATGGCGCAG 1357

GGGATCAAGA TCTGATCAAG AGACAGGATG AGGATCGTTT CGC ATG ATT GAA CAA 1412
Met Ile Glu Gln
1

GAT GGA TTG CAC GCA GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC 1460
Asp Gly Leu His Ala Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe
5 10 15 20

GGC TAT GAC TGG GCA CAA CAG ACA ATC GGC TGC TCT GAT GCC GCC GTG 1508
Gly Tyr Asp Trp Ala Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val
25 30 35

TTC CGG CTG TCA GCG CAG GGG CGC CCG GTT CTT TTT GTC AAG ACC GAC 1556
Phe Arg Leu Ser Ala Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp
40 45 50

CTG TCC GGT GCC CTG AAT GAA CTG CAG GAC GAG GCA GCG CGG CTA TCG 1604
Leu Ser Gly Ala Leu Asn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser
55 60 65

TGG CTG GCC ACG ACG GGC GTT CCT TGC GCA GCT GTG CTC GAC GTT GTC 1652
Trp Leu Ala Thr Thr Gly Val Pro Cys Ala Ala Val Leu Asp Val Val
70 75 80

ACT GAA GCG GGA AGG GAC TGG CTG CTA TTG GGC GAA GTG CCG GGG CAG		1700
Thr Glu Ala Gly Arg Asp Trp Leu Leu Leu Gly Glu Val Pro Gly Gln		
85 90 95 100		
GAT CTC CTG TCA TCT CAC CTT GCT CCT GCC GAG AAA GTA TCC ATC ATG		1748
Asp Leu Leu Ser Ser His Leu Ala Pro Ala Glu Lys Val Ser Ile Met		
105 110 115		
GCT GAT GCA ATG CGG CGG CTG CAT ACG CTT GAT CCG GCT ACC TGC CCA		1796
Ala Asp Ala Met Arg Arg Leu His Thr Leu Asp Pro Ala Thr Cys Pro		
120 125 130		
TTC GAC CAC CAA GCG AAA CAT CGC ATC GAG CGA GCA CGT ACT CGG ATG		1844
Phe Asp His Gln Ala Lys His Arg Ile Glu Arg Ala Arg Thr Arg Met		
135 140 145		
GAA GCC GGT CTT GTC GAT CAG GAT CTG GAC GAA GAG CAT CAG GGG		1892
Glu Ala Gly Leu Val Asp Gln Asp Asp Leu Asp Glu Glu His Gln Gly		
150 155 160		
CTC GCG CCA GCC GAA CTG TTC GCC AGG CTC AAG CGC CGC ATG CCC GAC		1940
Leu Ala Pro Ala Glu Leu Phe Ala Arg Leu Lys Ala Arg Met Pro Asp		
165 170 175 180		
GGC GAG GAT CTC GTC GTG ACC CAT GGC GAT GCC TGC TTG CCG AAT ATC		1988
Gly Glu Asp Leu Val Val Thr His Gly Asp Ala Cys Leu Pro Asn Ile		
185 190 195		
ATG GTG GAA AAT GGC CGC TTT TCT GGA TTC ATC GAC TGT GGC CGG CTG		2036
Met Val Glu Asn Gly Arg Phe Ser Gly Phe Ile Asp Cys Gly Arg Leu		
200 205 210		
GGT GTG GCG GAC CGC TAT CAG GAC ATA GCG TTG GCT ACC CGT GAT ATT		2084
Gly Val Ala Asp Arg Tyr Gln Asp Ile Ala Leu Ala Thr Arg Asp Ile		
215 220 225		
GCT GAA GAG CTT GGC GGC GAA TGG GCT GAC CGC TTC CTC GTG CTT TAC		2132
Ala Glu Glu Leu Gly Gly Glu Trp Ala Asp Arg Phe Leu Val Leu Tyr		
230 235 240		
GGT ATC GCC GCT CCC GAT TCG CAG CGC ATC GCC TTC TAT CGC CTT CTT		2180
Gly Ile Ala Ala Pro Asp Ser Gln Arg Ile Ala Phe Tyr Arg Leu Leu		
245 250 255 260		
GAC GAG TTC TTC TGA GCGGGACTCT GGGGTTCGAA ATGACCGACC AAGCGACGCC		2235
Asp Glu Phe Phe		
264		
CGC CAT GCC AAG CCT GTT CTC GTG CAA AGT CCT GTG GGT GAG TCG AAC		2283
His Ala Lys Pro Val Leu Val Gln Ser Pro Val Gly Glu Ser Asn		
444 445 450 455		
TTG GCG ATG CGC GCA CCC TAC GGA GAA GCG ATC CAC GGA CTG CTC TCT		2331
Leu Ala Met Arg Ala Pro Tyr Gly Glu Ala Ile His Gly Leu Leu Ser		
460 465 470		

GTC CTC CTT TCA ACG GAG TGT TAG AACCGTTGGT AGTGGTTTG GACGGGCCA	2385
Val Leu Leu Ser Thr Glu Cys	
475 480 481	
GGAGCATGCG CTTCTGGCC CGTTTCTTGA GTATTCATTG GATAGTCACG CGTGGTAGCT	2445
TCGAGCCTGC ACAGCTGATG AGCACCCCTGG AAGGCGCGCT GTACGCGGAC GACTGGTTTC	2505
ATCTTCGCCA TTCATGACGG AACTCCGTTTC CCCAGTACCG CGATGACTAT TTTGCCTCTT	2565
CCGATGTCCG ATTCCACGCC GCCTGACGCT AAGCGGGGGC GGGGGCGCCC GCATCCCAGC	2625
CCAGACAGCA ACAAAATGAGT AGGCTCTTGG ATGCCCGGGC GGCTGAGATT GGTAACGGCA	2685
ATTCGTCAA TGTGACGATG GATTCGATTG CCCGTGCTGC CGGCGTCTCA AAAAAAACGC	2745
TGTACGTCTT GGTGGCGAGC AAGGAAGAAC TCATTTCCCG GTTAGTGGCT CGAGACATGT	2805
CCAACCTTGA GGAATTC	2822

FIG. 2d:

GAATTCCGCG TATCGCCGG TTCTATCAGC GGGCCGCTTT CGAAAGTCAT GGTGTTAGCC	60
GGTAGGGTCT TTTTCTGGC CATGCTTGTT GCCTGAACCT TCGTTGACAT AGGGCAGAGG	120
TGCCTTGCC GCTTCGCTTC GCGATGAACC GCATCGAGAT GCTGAGGTCA GGATTTTCC	180
TTAACTCGCG TAAGCATTCT GTCATTTTT TG GTGGCTTT GAACAGCCTG ATGAAAGGTG	240
GTCTGCCCT TTGAGGCCGA TTCTGGGCG CTTGGCGCG TCGAAGCGAT GCTCCACTAC	300
CGATTAAGAT AATTAAAATA AGGAAACCGC ATGGTTCTT ATGTGAATT GTCTGGCATA	360
CTCCAGCTCA AGGGCAATT TTGGGCTATT GGCTGAGCAG TTGCCTCTAT ATGGTTATTC	420
AGAATAACAA TTGACTCCTC AGGAGGTCAG CG ATG AGC ATT CTT GGT TTG AAT Met Ser Ile Leu Gly Leu Asn	473
1 5	
GGT GCC CCG GTC GGA GCT GAG CAG CTG GGC TCG GCT CTT GAT CGC ATG Gly Ala Pro Val Gly Ala Glu Gln Leu Gly Ser Ala Leu Asp Arg Met	521
10 15 20	
AAG AAG GCG CAC CTG GAG CAG GGG CCT GCA AAC TTG GAG CTG CGT CTG Lys Lys Ala His Leu Glu Gln Gly Pro Ala Asn Leu Glu Leu Arg Leu	569
25 30 35	
AGT AGG CTG GAT CGT GCG ATT GCA ATG CTT CTG GAA AAT CGT GAA GCA Ser Arg Leu Asp Arg Ala Ile Ala Met Leu Leu Glu Asn Arg Glu Ala	617
40 45 50 55	
ATT GCC GAC GCG GTT TCT GCT GAC TTT GGC AAT CGC AGC CGT GAG CAA Ile Ala Asp Ala Val Ser Ala Asp Phe Gly Asn Arg Ser Arg Glu Gln	665
60 65 70	
ACA CTG CTT TGC GAC ATT GCT GGC TCG GTG GCA AGC CTG AAG GAT AGC Thr Leu Leu Cys Asp Ile Ala Gly Ser Val Ala Ser Leu Lys Asp Ser	713
75 80 85	
CGC GAG CAC GTG GCC AAA TGG ATG GAG CCC GAA CAT CAC AAG GCG ATG Arg Glu His Val Ala Lys Trp Met Glu Pro Glu His His Lys Ala Met	761
90 95 100	
TTT CCA GGG GCG GAG GCA CGC GTT GAG TTT CAG CCG CTG GGT GTC GTT Phe Pro Gly Ala Glu Ala Arg Val Glu Phe Gln Pro Leu Gly Val Val	809
105 110 115	
GGG GTC ATT AGT CCC TGG AAC TTC CCT ATC GTA CTG GCC TTT GGG CCG Gly Val Ile Ser Pro Trp Asn Phe Pro Ile Val Leu Ala Phe Gly Pro	857
120 125 130 135	
CTG GCC GGC ATA TTC GCA GCA GGT AAT CGC GCC ATG CTC AAG CCG TCC Leu Ala Gly Ile Phe Ala Ala Gly Asn Arg Ala Met Leu Lys Pro Ser	905
140 145 150	
GAG CTT ACC CCG CGG ACT TCT GCC CTG CTT GCG GAG CTA ATT GCT CGT Glu Leu Thr Pro Arg Thr Ser Ala Leu Leu Ala Glu Leu Ile Ala Arg	953
155 160 165	

TAC TTC GAT GAA ACT GAG CTG ACT ACA GTG CTG GGC GAC GCT GAA GTC Tyr Phe Asp Glu Thr Glu Leu Thr Thr Val Leu Gly Asp Ala Glu Val 170 175 180	1001
GGT GCG CTG TTC AGT GCT CAG CCT TTC GAT CAT CTG ATC TTC ACC GGC Gly Ala Leu Phe Ser Ala Gln Pro Phe Asp His Leu Ile Phe Thr Gly 185 190 195	1049
GCG ACT GCC GTG GCC AAG CAC ATC ATG CGT GCC GCG GCG GAT AAC CTA Gly Thr Ala Val Ala Lys His Ile Met Arg Ala Ala Ala Asp Asn Leu 200 205 210 215	1097
GTG CCC GTT ACC CTG GAA TTG GGT GGC AAA TCG CCG GTG ATC GTT TCC Val Pro Val Thr Leu Glu Leu Gly Gly Lys Ser Pro Val Ile Val Ser 220 225 230	1145
CGC AGT GCA GAT ATG GCG GAC GTT GCA CAA CGG GTG TTG ACG GTG AAA Arg Ser Ala Asp Met Ala Asp Val Ala Gln Arg Val Leu Thr Val Lys 235 240 245	1193
ACC TTC AAT GCC GGG CAA ATC TGT CTG GCA CCG GAC TAT GTG CTG GGG Thr Phe Asn Ala Gly Gln Ile Cys Leu Ala Pro Asp Tyr Val Leu 250 255 260 262	1241
GAGAGGGCGGT TTGCGTATTG GGCGCATGCA TAAAAACTGT TGTAATTCAT TAAGCATTCT	1301
GCCGACATGG AAGCCATCAC AAACGGCATG ATGAACCTGA ATCGCCAGCG GCATCAGCAC	1361
CTTGTGCGCCT TGCCTATAAT ATTTGCCAT GGACGCACAC CGTGGAAACG GATGAAGGCA	1421
CGAACCCAGT TGACATAAGC CTGTTGGTT CGTAAACTGT AATGCAAGTA GCGTATGCGC	1481
TCACGCAACT GGTCCAGAAC CTTGACCGAA CGCAGCGGTG GTAACGGCGC AGTGGCGGTT	1541
TTCATGGCTT GTTATGACTG TTTTTTGTA CAGTCTATGC CTCGGGCATC CAAGCAGCAA	1601
GCGCGTTACG CCGTGGTCG ATGTTGATG TTATGGAGCA GCAACG ATG TTA CGC Met Leu Arg 1	1656
AGC AGC AAC GAT GTT ACG CAG CAG GGC AGT CGC CCT AAA ACA AAG TTA Ser Ser Asn Asp Val Thr Gln Gln Gly Ser Arg Pro Lys Thr Lys Leu 5 10 15	1704
GGT GGC TCA AGT ATG GGC ATC ATT CGC ACA TGT AGG CTC GGC CCT GAC Gly Gly Ser Ser Met Gly Ile Ile Arg Thr Cys Arg Leu Gly Pro Asp 20 25 30 35	1752
CAA GTC AAA TCC ATG CGG GCT CTT GAT CTT TTC GGT CGT GAG TTC Gln Val Lys Ser Met Arg Ala Ala Leu Asp Leu Phe Gly Arg Glu Phe 40 45 50	1800
GGA GAC GTA GCC ACC TAC TCC CAA CAT CAG CCG GAC TCC GAT TAC CTC Gly Asp Val Ala Thr Tyr Ser Gln His Gln Pro Asp Ser Asp Tyr Leu 55 60 65	1848
GGG AAC TTG CTC CGT AGT AAG ACA TTC ATC GCG CTT GCT GCC TTC GAC Gly Asn Leu Leu Arg Ser Lys Thr Phe Ile Ala Leu Ala Ala Phe Asp 70 75 80	1896
CAA GAA GCG GTT GTT GGC GCT CTC GCG GCT TAC GTT CTG CCC AGG TTT	1944

Gln Glu Ala Val Val Gly Ala Leu Ala Ala Tyr Val Leu Pro Arg Phe 85 90 95		
GAG CAG CCG CGT AGT GAG ATC TAT ATC TAT GAT CTC GCA GTC TCC GGC Glu Gln Pro Arg Ser Glu Ile Tyr Ile Tyr Asp Leu Ala Val Ser Gly 100 105 110 115		1992
GAG CAC CGG AGG CAG GGC ATT GCC ACC GCG CTC ATC AAT CTC CTC AAG Glu His Arg Arg Gln Gly Ile Ala Thr Ala Leu Ile Asn Leu Leu Lys 120 125 130		2040
CAT GAG GCC AAC GCG CTT GGT GCT TAT GTG ATC TAC GTG CAA GCA GAT His Glu Ala Asn Ala Leu Gly Ala Tyr Val Ile Tyr Val Gln Ala Asp 135 140 145		2088
TAC GGT GAC GAT CCC GCA GTG GCT CTC TAT ACA AAG TTG GGC ATA CGG Tyr Gly Asp Asp Pro Ala Val Ala Leu Tyr Thr Lys Leu Gly Ile Arg 150 155 160		2136
GAA GAA GTG ATG CAC TTT GAT ATC GAC CCA AGT ACC GCC ACC TAA CAA Glu Val Met His Phe Asp Ile Asp Pro Ser Thr Ala Thr 165 170 175 177		2184
TTCGTTCAAG CCGAGATCGG CTTCCCTG CAA AGT CCT GTG GGT GAG TCG AAC Gln Ser Pro Val Gly Glu Ser Asn 451 455		2236
TTG GCG ATG CGC GCA CCC TAC GGA GAA GCG ATC CAC GGA CTG CTC TCT Leu Ala Met Arg Ala Pro Tyr Gly Glu Ala Ile His Gly Leu Leu Ser 460 465 470		2284
GTC CTC CTT TCA ACG GAG TGT TAG AACCGTTGGT AGTGGTTTG GACGGGCCA Val Leu Leu Ser Thr Glu Cys 475 480 481		2338
GGAGCATGCG CTTCTGGGCC CGTTCTTG GAATTCAATTG GATAAGTCACG CGTGGTAGCT		2398
TCGAGCCTGC ACAGCTGATG AGCACCCCTGG AAGGCGCGCT GTACGCGGAC GACTGGGTTTC		2458
ATCTTCGCCA TTCATGACGG AACTCCGTTCC CCCAGTACCG CGATGACTAT TTTGCCTCTT		2518
CCGATGTCCG ATTCCACGCC GCCTGACGCT AAGCGGGGGC GGGGGCGCCC GCATCCCAGC		2578
CCAGACAGCA ACAAAATGAGT AGGCTCTTGG ATGCCCGGGC GGCTGAGATT GGTAACGGCA		2638
ATTTCGTCAA TGTGACGATG GATTCGATTG CCCGTGCTGC CGGCGTCTCA AAAAACACGC		2698
TGTACGTCTT GGTGGCGAGC AAGGAAGAAC TCATTCCCCG GTTAGTGGCT CGAGACATGT		2758
CCAACCTTGA GGAATTC		2775

FIG. 2e:

GAATTCCGCG TATGCCCGG TTCTATCAGC GGGCCGCTTT CGAAAGTCAT GGTGTTAGCC	60
GGTAGGGTCT TTTTCTTGGC CATGCTTGTT GCCTGAACCT TCGTTGACAT AGGGCAGAGG	120
TGCCTTGCC GCTTCGCTTC GCGATGAACC GCATCGAGAT GCTGAGGTCA GGATTTTCC	180
TTAACTCGCG TAAGCATTCT GTCATTTTT TGTTGGCTTT GAACAGCCTG ATGAAAGGTG	240
GTCTCGCCCT TTGAGGCCGA TTCTTGGCG CTTGGCGCG TCGAAGCGAT GCTCCACTAC	300
CGATTAAGAT AATTAAAATA AGGAAACCGC ATGGTTTCTT ATGTGAATTT GTCTGGCATA	360
CTCCAGCTCA AGGGCAATTT TTGGGCTATT GGCTGAGCAG TTGCCTCTAT ATGGTTATTC	420
AGAATAACAA TTGACTCCTC AGGAGGTCAG CG ATG AGC ATT CTT GGT TTG AAT Met Ser Ile Leu Gly Leu Asn	473
1 5	
GGT GCC CCG GTC GGA GCT GAG CAG CTG GGC TCG GCT CTT GAT CGC ATG Gly Ala Pro Val Gly Ala Glu Gln Leu Gly Ser Ala Leu Asp Arg Met	521
10 15 20	
AAG AAG GCG CAC CTG GAG CAG GGG CCT GCA AAC TTG GAG CTG CGT CTG Lys Lys Ala His Leu Glu Gln Gly Pro Ala Asn Leu Glu Leu Arg Leu	569
25 30 35	
AGT AGG CTG GAT CGT GCG ATT GCA ATG CTT CTG GAA AAT CGT GAA GCA Ser Arg Leu Asp Arg Ala Ile Ala Met Leu Leu Glu Asn Arg Glu Ala	617
40 45 50 55	
ATT GCC GAC GCG GTT TCT GCT GAC TTT GGC AAT CGC AGC CGT GAG CAA Ile Ala Asp Ala Val Ser Ala Asp Phe Gly Asn Arg Ser Arg Glu Gln	665
60 65 70	
ACA CTG CTT TGC GAC ATT GCT GGC TCG GTG GCA AGC CTG AAG GAT AGC Thr Leu Leu Cys Asp Ile Ala Gly Ser Val Ala Ser Leu Lys Asp Ser	713
75 80 85	
CGC GAG CAC GTG GCC AAA TGG ATG GAG CCC GAA CAT CAC AAG GCG ATG Arg Glu His Val Ala Lys Trp Met Glu Pro Glu His His Lys Ala Met	761
90 95 100	
TTT CCA GGG GCG GAG GCA CGC GTT GAG TTT CAG CCG CTG GGT GTC GTT Phe Pro Gly Ala Ala Arg Val Glu Phe Gln Pro Leu Gly Val Val	809
105 110 115	
GGG GTC ATT AGT CCC TGG AAC TTC CCT ATC GTA CTG GCC TTT GGG CCG Gly Val Ile Ser Pro Trp Asn Phe Pro Ile Val Leu Ala Phe Gly Pro	857
120 125 130 135	
CTG GCC GGC ATA TTC GCA GCA GGT AAT CGC GCC ATG CTC AAG CCG TCC Leu Ala Gly Ile Phe Ala Ala Gly Asn Arg Ala Met Leu Lys Pro Ser	905
140 145 150	
GAG CTT ACC CCG CGG ACT TCT GCC CTG CTT GCG GAG CTA ATT GCT CGT Glu Leu Thr Pro Arg Thr Ser Ala Leu Leu Ala Glu Leu Ile Ala Arg	953
155 160 165	

TAC	TTC	GAT	GAA	ACT	GAG	CTG	ACT	ACA	GTG	CTG	GGC	GAC	GCT	GAA	GTC	1001
Tyr	Phe	Asp	Glu	Thr	Glu	Leu	Thr	Thr	Val	Leu	Gly	Asp	Ala	Glu	Val	
170						175						180				
GGT	GCG	CTG	TTC	AGT	GCT	CAG	CCT	TTC	GAT	CAT	CTG	ATC	TTC	ACC	GGC	1049
Gly	Ala	Leu	Phe	Ser	Ala	Gln	Pro	Phe	Asp	His	Leu	Ile	Phe	Thr	Gly	
185						190					195					
GGC	ACT	GCC	GTG	GCC	AAG	CAC	ATC	ATG	CGT	GCC	GCG	GCG	GAT	AAC	CTA	1097
Gly	Thr	Ala	Val	Ala	Lys	His	Ile	Met	Arg	Ala	Ala	Ala	Asp	Asn	Leu	
200					205				210			215				
TGT	CCC	GTT	ACC	CTG	GAA	TTG	GGT	GGC	AAA	TCG	CCG	GTG	ATC	GTT	TCC	1145
Val	Pro	Val	Thr	Leu	Glu	Leu	Gly	Gly	Lys	Ser	Pro	Val	Ile	Val	Ser	
220					225				230							
CGC	AGT	GCA	GAT	ATG	GCG	GAC	GTT	GCA	CAA	CGG	GTG	TTG	ACG	GTG	AAA	1193
Arg	Ser	Ala	Asp	Met	Ala	Asp	Val	Ala	Gln	Arg	Val	Leu	Thr	Val	Lys	
235					240				245							
ACC	TTC	AAT	GCC	GGG	CAA	ATC	TGT	CTG	GCA	CC	GTG	GGT	GAG	TCG	AAC	1240
Thr	Phe	Asn	Ala	Gly	Gln	Ile	Cys	Leu	Ala		Val	Gly	Glu	Ser	Asn	
250					255			257		454	455					
TTG	GCG	ATG	CGC	GCA	CCC	TAC	GGA	GAA	GCG	ATC	CAC	GGA	CTG	CTC	TCT	1288
Leu	Ala	Met	Arg	Ala	Pro	Tyr	Gly	Glu	Ala	Ile	His	Gly	Leu	Leu	Ser	
460					465				470							
GTC	CTC	CTT	TCA	ACG	GAG	TGT	TAG	AACCGTTGGT	AGTGGTTTG	GACGGGCCA						1342
Val	Leu	Leu	Ser	Thr	Glu	Cys										
475					480	481										
GGAGCATGCG	CTTCTGGGCC	CGTTTCTTGA	GTATTCAATTG	GATAGTCACG	CGTGGTAGCT											1402
TCGAGCCTGC	ACAGCTGATG	AGCACCCCTGG	AAGGCCGCGCT	GTACGCCGAC	GACTGGGTTTC											1462
ATCTTCGCCA	TTCATGACGG	AACTCCGTTTC	CCCAGTACCG	CGATGACTAT	TTTGCCTCTT											1522
CCGATGTCCG	ATTCCACGCC	GCCTGACGCT	AAGCGGGGGC	GGGGGCCGCC	GCATCCCAGC											1582
CCAGACAGCA	ACAAATGAGT	AGGCTCTTGG	ATGCCGCGGC	GGCTGAGATT	GGTAACGGCA											1642
ATTCGTCAA	TGTGACGATG	GATTGCGATTG	CCCGTGCTGC	CGGCGTCTCA	AAAAAAACGC											1702
TGTACGTCTT	GGTGGCGAGC	AAGGAAGAAC	TCATTCCC	GTTAGTGGCT	CGAGACATGT											1762
CCAACCTTGA	GGAATTG															1779

FIG. 2f:

CTGCAGCCGA GCATCGATTG AGCACTTAC CCAGCTGCGC TGGCTGACCA TTCAGAATGG 60
CCCGCGGCAC TATCCAATCT AAATCGATCT TCAGGGCGCCG CGGGCATCAT GCCCCGGCG 120
CTCGCCTCAT TTCAATCTCT AACTTGATAA AAACAGAGCT GTTCTCCGGT CTTGGTGGAT 180
CAAGGCCAGT CGCGGAGAGT CTCGAAGAGG AGAGTACAGT GAACGCCGAG TCCACATTGC 240
AACCGCAGGC ATCATCATGC TCTGCTCAGC CACGCTACCG CAGTGTGTCG ATTGGTCATC 300
CTCCGGTTGA GGTTACGCAA GACGCTGGAG GTATTGTCCG G ATG CGT TCT CTC GAG 356
Met Arg Ser Leu Glu 1 5
GCG CTT CTT CCC TTC CCG GGT CGA ATT CTT GAG CGT CTC GAG CAT TGG 404
Ala Leu Leu Pro Phe Pro Gly Arg Ile Leu Glu Arg Leu Glu His Trp 10 15 20
GCT AAG ACC CGT CCA GAA CAA ACC TGC GTT GCT GCC AGG GCG GCA AAT 452
Ala Lys Thr Arg Pro Glu Gln Thr Cys Val Ala Ala Arg Ala Ala Asn 25 30 35
GGG GAA TGG CGT CGT ATC AGC TAC GCG GAA ATG TTC CAC AAC GTC CGC 500
Gly Glu Trp Arg Arg Ile Ser Tyr Ala Glu Met Phe His Asn Val Arg 40 45 50
GCC ATC GCA CAG AGC TTG CTT CCT TAC GGA CTA TCG GCA GAG CGT CCG 548
Ala Ile Ala Gln Ser Leu Leu Pro Tyr Gly Leu Ser Ala Glu Arg Pro 55 60 65
CTG CTT ATC GTC TCT GGA AAT GAC CTG GAA CAT CTT CAG CTG GCA TTT 596
Leu Leu Ile Val Ser Gly Asn Asp Leu Glu His Leu Gln Leu Ala Phe 70 75 80 85
GGG GCT ATG TAT GCG GGC ATT CCC TAT TGC CCG GTG TCT CCT GCT TAT 644
Gly Ala Met Tyr Ala Gly Ile Pro Tyr Cys Pro Val Ser Pro Ala Tyr 90 95 100
TCA CTG CTG TCG CAA GAT TTG GCG AAG CTG CGT CAC ATC GTA GGT CTT 692
Ser Leu Leu Ser Gln Asp Leu Ala Lys Leu Arg His Ile Val Gly Leu 105 110 115
CTG CAA CCG GGA CTG GTC TTT GCT GCC GAT GCA GCA CCT TTC CAG GGG 740
Leu Gln Pro Gly Leu Val Phe Ala Ala Asp Ala Ala Pro Phe Gln 120 125 130 132
ACAGCAAGCG AACCGGAATT GCCAGCTGGG GCGCCCTCTG GTAAGGTTGG GAAGCCCTGC 800
AAAGTAAACT GGATGGCTTT CTTGCCGCCA AGGATCTGAT GGCGCAGGGG ATCAAGATCT 860
GATCAAGAGA CAGGATGAGG ATCGTTTCGC ATG ATT GAA CAA GAT GGA TTG CAC 914
Met Ile Glu Gln Asp Gly Leu His 1 5
GCA GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGC TAT GAC TGG 962
Ala Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp Trp 10 15 20

GCA CAA CAG ACA ATC GGC TGC TCT GAT GCC GCC GTG TTC CGG CTG TCA Ala Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser 25 30 35 40	1010
GCG CAG GGG CGC CCG GTT CTT TTT GTC AAG ACC GAC CTG TCC GGT GCC Ala Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly Ala 45 50 55	1058
CTG AAT GAA CTG CAG GAC GAG GCA GCG CGG CTA TCG TGG CTG GCC ACG Leu Asn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala Thr 60 65 70	1106
ACG GGC GTT CCT TGC GCA GCT GTG CTC GAC GTT GTC ACT GAA GCG GGA Thr Gly Val Pro Cys Ala Ala Val Leu Asp Val Val Thr Glu Ala Gly 75 80 85	1154
AGG GAC TGG CTG CTA TTG GGC GAA GTG CCG GGG CAG GAT CTC CTG TCA Arg Asp Trp Leu Leu Gly Glu Val Pro Gly Gln Asp Leu Leu Ser 90 95 100	1202
TCT CAC CTT GCT CCT GCC GAG AAA GTA TCC ATC ATG GCT GAT GCA ATG Ser His Leu Ala Pro Ala Glu Lys Val Ser Ile Met Ala Asp Ala Met 105 110 115 120	1250
CGG CGG CTG CAT ACG CTT GAT CCG GCT ACC TGC CCA TTC GAC CAC CAA Arg Arg Leu His Thr Leu Asp Pro Ala Thr Cys Pro Phe Asp His Gln 125 130 135	1298
GCG AAA CAT CGC ATC GAG CGA GCA CGT ACT CGG ATG GAA GCC GGT CTT Ala Lys His Arg Ile Glu Arg Ala Arg Thr Arg Met Glu Ala Gly Leu 140 145 150	1346
GTC GAT CAG GAT GAT CTG GAC GAA GAG CAT CAG GGG CTC GCG CCA GCC Val Asp Gln Asp Asp Leu Asp Glu Glu His Gln Gly Leu Ala Pro Ala 155 160 165	1394
GAA CTG TTC GCC AGG CTC AAG GCG CGC ATG CCC GAC GGC GAG GAT CTC Glu Leu Phe Ala Arg Leu Lys Ala Arg Met Pro Asp Gly Glu Asp Leu 170 175 180	1442
GTC GTG ACC CAT GGC GAT GCC TGC TTG CCG AAT ATC ATG GTG GAA AAT Val Val Thr His Gly Asp Ala Cys Leu Pro Asn Ile Met Val Glu Asn 185 190 195 200	1490
GGC CGC TTT TCT GGA TTC ATC GAC TGT GGC CGG CTG GGT GTG GCG GAC Gly Arg Phe Ser Gly Phe Ile Asp Cys Gly Arg Leu Gly Val Ala Asp 205 210 215	1538
CGC TAT CAG GAC ATA GCG TTG GCT ACC CGT GAT ATT GCT GAA GAG CTT Arg Tyr Gln Asp Ile Ala Leu Ala Thr Arg Asp Ile Ala Glu Glu Leu 220 225 230	1586
GGC GGC GAA TGG GCT GAC CGC TTC CTC GTG CTT TAC GGT ATC GCC GCT Gly Gly Glu Trp Ala Asp Arg Phe Leu Val Leu Tyr Gly Ile Ala Ala 235 240 245	1634

CCC GAT TCG CAG CGC ATC GCC TTC TAT CGC CTT CTT GAC GAG TTC TTC	1682
Pro Asp Ser Gln Arg Ile Ala Phe Tyr Arg Leu Leu Asp Glu Phe Phe	
250 255 260 264	
TGAGCGGGAC TCTGGGTTC GAAATGACCG ACCAAGCGAC GCCCCT GTT TTG CAA	1737
Val Leu Gln	
563 565	
TGG CGG TCG GCG AAA GTT GAT GCG CTG TAT CGT GGT GAA GAT CAA TCC	1785
Trp Arg Ser Ala Lys Val Asp Ala Leu Tyr Arg Gly Glu Asp Gln Ser	
570 575 580	
ATG CTG CGT GAC GAG GCC ACA CTG TGA GTTGGTCAGG GGGGGCTTAC	1832
Met Leu Arg Asp Glu Ala Thr Leu	
585 589	
TCGGCGTTT CCGACACTGC GTTGGTTGCC GCAGTGCAGCA CCCCTGGAT TGATTGCGGG	1892
GGTGCCCTGT CGCTGGTGT GCCTATCGAC TTAGGGTAA AGGTCGCTCG CGAAGTTCTG	1952
ATGCGTGCCT CGCTTGAACC ACAAAATGGTC GATAAGCGTAC TCGCAGGCTC TATGGCTCAA	2012
GCAAGCTTG ATGCTTACCT GCTCCCGCGG CACATTGGCT TGTACAGCGG TGTTCCAAG	2072
TCGGTTCCGG CCTTGGGGGT GCAGCGCATT TGCAGCACAG GCTTCGAACG GCTTCGGCAG	2132
GCCGGCGAGC AGATTTCCA AGGCGCTGAT CACGTGCTGT GTGTCGCGGG CTGCAG	2188

FIG. 2g:

CTGCAGCCGA GCATCGATTG AGCACTTTAC CCAGCTGCGC TGGCTGACCA TTCAGAATGG 60
CCCGCGGCAC TATCCAATCT AAATCGATCT TCGGGCGCCG CGGGCATCAT GCCCGCGGCG 120
CTCGCCTCAT TTCAATCTCT AACTTGATAA AAACAGAGCT GTTCTCCGGT CTTGGTGGAT 180
CAAGGCCAGT CGCGGAGAGT CTCGAAGAGG AGAGTACAGT GAACGCCGAG TCCACATTGC 240
AACCGCAGGC ATCATCATGC TCTGCTCAGC CACGCTACCG CAGTGTGTCG ATTGGTCATC 300
CTCCGGTTGA GGTTACGCAA GACGCTGGAG GTATTGTCCG G ATG CGT TCT CTC GAG 356
Met Arg Ser Leu Glu 1 5
GCG CTT CTT CCC TTC CCG GGT CGA ATT CTT GAG CGT CTC GAG CAT TGG 404
Ala Leu Leu Pro Phe Pro Gly Arg Ile Leu Glu Arg Leu Glu His Trp
10 15 20
GCT AAG ACC CGT CCA GAA CAA ACC TGC GTT GCT GCC AGG GCG GCA AAT 452
Ala Lys Thr Arg Pro Glu Gln Thr Cys Val Ala Ala Arg Ala Asn
25 30 35
GGG GAA TGG CGT ATC AGC TAC GCG GAA ATG TTC CAC AAC GTC CGC 500
Gly Glu Trp Arg Arg Ile Ser Tyr Ala Glu Met Phe His Asn Val Arg
40 45 50
GCC ATC GCA CAG AGC TTG CTT CCT TAC GGA CTA TCG GCA GAG CGT CCG 548
Ala Ile Ala Gln Ser Leu Leu Pro Tyr Gly Leu Ser Ala Glu Arg Pro
55 60 65
CTG CTT ATC GTC TCT GGA AAT GAC CTG GAA CAT CTT CAG CTG GCA TTT 596
Leu Leu Ile Val Ser Gly Asn Asp Leu Glu His Leu Gln Leu Ala Phe
70 75 80 85
GGG GCT ATG TAT GCG GGC ATT CCC TAT TGC CCG GTG TCT CCT GCT TAT 644
Gly Ala Met Tyr Ala Gly Ile Pro Tyr Cys Pro Val Ser Pro Ala Tyr
90 95 100
TCA CTG CTG TCG CAA GAT TTG GCG AAG CTG CGT CAC ATC GTA GGT CTT 692
Ser Leu Leu Ser Gln Asp Leu Ala Lys Leu Arg His Ile Val Gly Leu
105 110 115
CTG CAA CCG GGA CTG GTC TTT GCT GCC GAT GCA GCA CCT TTC CAG GGG 740
Leu Gln Pro Gly Leu Val Phe Ala Ala Asp Ala Ala Pro Phe Gln
120 125 130 132
GAGAGGCGGT TTGCGTATTG GGCGCATGCA TAAAAACTGT TGTAATTCAT TAAGCATTCT 800
GCCGACATGG AAGCCATCAC AAACGGCATG ATGAACCTGA ATGCCAGCG GCATCAGCAC 860
CTTGTGCCCT TGCCTATAAT ATTTGCCCAT GGACGCCACAC CGTGGAAACG GATGAAGGCA 920
CGAACCCAGT TGACATAAGC CTGTTGGTT CGTAAACTGT AATGCAAGTA GCGTATGCGC 980
TCACGCAACT GGTCCAGAAC CTTGACCGAA CGCAGCGGTG GTAACGGCGC AGTGGCGGTT 1040
TTCATGGCTT GTTATGACTG TTTTTTGTA CAGTCTATGC CTCGGGCATC CAAGCAGCAA 1100

GCGCGTTACG CCGTGGTCG ATGTTGATC TTATGGAGCA GCAAACG ATG TTA CGC Met Leu Arg 1	1155
AGC AGC AAC GAT GTT ACG CAG CAG GGC AGT CGC CCT AAA ACA AAG TTA Ser Ser Asn Asp Val Thr Gln Gln Gly Ser Arg Pro Lys Thr Lys Leu 5 10 15	1203
GGT GGC TCA AGT ATG GGC ATC ATT CGC ACA TGT AGG CTC GGC CCT GAC Gly Gly Ser Ser Met Gly Ile Ile Arg Thr Cys Arg Leu Gly Pro Asp 20 25 30 35	1251
CAA GTC AAA TCC ATG CGG GCT CTT GAT CTT TTC GGT CGT GAG TTC Gln Val Lys Ser Met Arg Ala Ala Leu Asp Leu Phe Gly Arg Glu Phe 40 45 50	1299
GGA GAC GTA GCC ACC TAC TCC CAA CAT CAG CCG GAC TCC GAT TAC CTC Gly Asp Val Ala Thr Tyr Ser Gln His Gln Pro Asp Ser Asp Tyr Leu 55 60 65	1347
GGG AAC TTG CTC CGT AGT AAG ACA TTC ATC GCG CTT GCT GCC TTC GAC Gly Asn Leu Leu Arg Ser Lys Thr Phe Ile Ala Leu Ala Ala Phe Asp 70 75 80	1395
CAA GAA GCG GTT GTT GGC GCT CTC GCG GCT TAC GTT CTG CCC AGG TTT Gln Glu Ala Val Val Gly Ala Leu Ala Ala Tyr Val Leu Pro Arg Phe 85 90 95	1443
GAG CAG CCG CGT AGT GAG ATC TAT ATC TAT GAT CTC GCA GTC TCC GGC Glu Gln Pro Arg Ser Glu Ile Tyr Ile Tyr Asp Leu Ala Val Ser Gly 100 105 110 115	1491
GAG CAC CGG AGG CAG GGC ATT GCC ACC GCG CTC ATC AAT CTC CTC AAG Glu His Arg Arg Gln Gly Ile Ala Thr Ala Leu Ile Asn Leu Leu Lys 120 125 130	1539
CAT GAG GCC AAC GCG CTT GGT GCT TAT GTG ATC TAC GTG CAA GCA GAT His Glu Ala Asn Ala Leu Gly Ala Tyr Val Ile Tyr Val Gln Ala Asp 135 140 145	1587
TAC GGT GAC GAT CCC GCA GTG GCT CTC TAT ACA AAG TTG GGC ATA CGG Tyr Gly Asp Asp Pro Ala Val Ala Leu Tyr Thr Lys Leu Gly Ile Arg 150 155 160	1635
GAA GAA GTG ATG CAC TTT GAT ATC GAC CCA AGT ACC GCC ACC TAA CAA Glu Glu Val Met His Phe Asp Ile Asp Pro Ser Thr Ala Thr 165 170 175 177	1683
TTCGTTCAAG CCGAGATCGG CTTCCCCCT GTT TTG CAA TGG CGG TCG GCG AAA Val Leu Gln Trp Arg Ser Ala Lys 563 565 570	1735
GTT GAT GCG CTG TAT CGT GGT GAA GAT CAA TCC ATG CTG CGT GAC GAG Val Asp Ala Leu Tyr Arg Gly Glu Asp Gln Ser Met Leu Arg Asp Glu 575 580 585	1783

GCC ACA CTG TGA GTTGGTCAGG	GGGGGCTTAC	TCGGCGTTT	CCGACACTGC	1835		
Ala Thr Leu						
589						
GTTGGTTGCG	GCAGTGCGCA	CCCCCTGGAT	TGATTGCGGG	GGTGCCCTGT	CGCTGGTGT	1895
GCCTATCGAC	TTAGGGTAA	AGGTCGCTCG	CGAAGTTCTG	ATGCGTGCCT	CGCTTGAACC	1955
ACAAATGGTC	GATAGCGTAC	TCGCAGGCTC	TATGGCTCAA	GCAAGCTTG	ATGCTTACCT	2015
GCTCCCGCGG	CACATTGGCT	TGTACAGCGG	TGTTCCCAAG	TCGGTTCCGG	CCTTGGGGT	2075
GCAGCGCATT	TGCGGCACAG	GCTTCGAACT	GCTTCGGCAG	GCCGGCGAGC	AGATTCCCCA	2135
AGGCGCTGAT	CACGTGCTGT	GTGTCGCGGG	CTGCAG			2171

FIG. 2h:

CTGCAGCCGA GCATCGATTG AGCACTTAC CCAGCTGCGC TGGCTGACCA TTCAGAATGG 60
CCCGCGGCAC TATCCAATCT AAATCGATCT TCGGGCGCCG CGGGCATCAT GCCCGCGGCG 120
CTCGCCTCAT TTCAATCTCT AACTTGATAA AAACAGAGCT GTTCTCCGGT CTTGGTGGAT 180
CAAGGCCAGT CGCGGAGAGT CTCGAAGAGG AGAGTACAGT GAACGCCGAG TCCACATTGC 240
AACCGCAGGC ATCATCATGC TCTGCTCAGC CACGCTACCG CAGTGTGTG 300 ATTGGTCATC
CTCCGGTTGA GGTTACGCAA GACGCTGGAG GTATTGTCCG G ATG CGT TCT CTC GAG 356
Met Arg Ser Leu Glu 1 5
GCG CTT CTT CCC TTC CCG GGT CGA ATT CTT GAG CGT CTC GAG CAT TGG 404
Ala Leu Leu Pro Phe Pro Gly Arg Ile Leu Glu Arg Leu Glu His Trp 10 15 20
GCT AAG ACC CGT CCA GAA CAA ACC TGC GTT GCT GCC AGG GCG GCA AAT 452
Ala Lys Thr Arg Pro Glu Gln Thr Cys Val Ala Ala Arg Ala Ala Asn 25 30 35
GGG GAA TGG CGT CGT ATC AGC TAC GCG GAA ATG TTC CAC AAC GTC CGC 500
Gly Glu Trp Arg Arg Ile Ser Tyr Ala Glu Met Phe His Asn Val Arg 40 45 50
GCC ATC GCA CAG AGC TTG CTT CCT TAC GGA CTA TCG GCA GAG CGT CCG 548
Ala Ile Ala Gln Ser Leu Leu Pro Tyr Gly Leu Ser Ala Glu Arg Pro 55 60 65
CTG CTT ATC GTC TCT GGA AAT GAC CTG GAA CAT CTT CAG CTG GCA TTT 596
Leu Leu Ile Val Ser Gly Asn Asp Leu Glu His Leu Gln Leu Ala Phe 70 75 80 85
GGG GCT ATG TAT GCG GGC ATT CCC TAT TGC CCG GTG TCT CCT GCT TAT 644
Gly Ala Met Tyr Ala Gly Ile Pro Tyr Cys Pro Val Ser Pro Ala Tyr 90 95 100
TCA CTG CTG TCG CAA GAT TTG GCG AAG CTG CGT CAC ATC GTA GGT CTT 692
Ser Leu Leu Ser Gln Asp Leu Ala Lys Leu Arg His Ile Val Gly Leu 105 110 115
CTG CAA CCG GGA CTG GTC TTT GCT GCC GAT GCA GCA CCT TTC CAG CGC 740
Leu Gln Pro Gly Leu Val Phe Ala Ala Asp Ala Pro Phe Gln Arg 120 125 130 133
GCT GTT TTG CAA TGG CGG TCG GCG AAA GTT GAT GCG CTG TAT CGT GGT 788
Ala Val Leu Gln Trp Arg Ser Ala Lys Val Asp Ala Leu Tyr Arg Gly 562 565 570 575
GAA GAT CAA TCC ATG CTG CGT GAC GAG GCC ACA CTG TGA GTTGGTCAGG 837
Glu Asp Gln Ser Met Leu Arg Asp Glu Ala Thr Leu 580 585 589
GGGGGCTTAC TCGGCGTTTT CCGACACTGC GTTGGTTGCG GCAGTGCAGCA CCCCTGGAT 897
TGATTGCGGG GGTGCCCTGT CGCTGGTGTG GCCTATCGAC TTAGGGTAA AGGTCGCTCG 957

CGAAGTTCTG ATGCGTGC GT CGCTTGAACC ACAAAATGGTC GATAGCGTAC TCGCAGGCTC	1017
TATGGCTCAA GCAAGCTTTG ATGCTTACCT GCTCCCGCGG CACATTGGCT TGTACAGCGG	1077
TGTTCCCAAG TCGGGTCCGG CCTTGGGGGT GCAGCGCATT TGCGGCACAG GCTTCGAACT	1137
GCTTCGGCAG GCCGGCGAGC AGATTTCCA AGGCGCTGAT CACGTGCTGT GTGTCGCCGG	1197
CTGCAG	1203

FIG. 2i:

GAATTCCCCCT GGCGACGAAA GGGCGGCAGG CCGCATGGCC ACGGCTGGGC GGTAACTGAT	60
GCTTGCCTTA ATCGTTAACCC GTTGAAATT CCTTGCCAAA TTTCGGCGAG AGAATCATGC	120
GGGTACGCCCT TTCCGTGCGC TTTGATCTGC GCTTCCGTGC CTTGAATCAG AAAAATAGTT	180
AATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGCTCACC CACCAAATCC ACAGCACTGG	240
GGTGCACG ATG AAT AGC TAC GAT GGC CGT TGG TCT ACC GTT GAT GTG AAG Met Asn Ser Tyr Asp Gly Arg Trp Ser Thr Val Asp Val Lys	290
1 5 10	
GTT GAA GAA GGT ATC GCT TGG GTC ACG CTG AAC CGC CCG GAG AAG CGC Val Glu Glu Gly Ile Ala Trp Val Thr Leu Asn Arg Pro Glu Lys Arg	338
15 20 25 30	
AAC GCA ATG AGC CCA ACT CTC AAT CGA GAG ATG GTC GAG GTT CTG GAG Asn Ala Met Ser Pro Thr Leu Asn Arg Glu Met Val Glu Val Leu Glu	386
35 40 45	
G TG CTG GAG CAG GAC GCA GAT GCT CGC GTG CTT GTT CTG ACT GGT GCA Val Leu Glu Gln Asp Ala Asp Ala Arg Val Leu Val Leu Thr Gly Ala	434
50 55 60	
GGC GAA TCC TGG ACC GCG GGC ATG GAC CTG AAG GAG TAT TTC CGC GAG Gly Glu Ser Trp Thr Ala Gly Met Asp Leu Lys Glu Tyr Phe Arg Glu	482
65 70 75	
ACC GAT GCT GGC CCC GAA ATT CTG CAA GAG AAG ATT CGT CGGGGACAGC Thr Asp Ala Gly Pro Glu Ile Leu Gln Glu Lys Ile Arg	531
80 85 90 91	
AAGCGAACCG GAATTGCCAG CTGGGGCGCC CTCTGGTAAG GTTGGGAAGC CCTGCAAAGT	591
AAACTGGATG GCTTCTTGC CGCCAAGGAT CTGATGGCGC AGGGGATCAA GATCTGATCA	651
AGAGACAGGA TGAGGATCGT TTGCG ATG ATT GAA CAA GAT GGA TTG CAC GCA Met Ile Glu Gln Asp Gly Leu His Ala	703
1 5	
GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGC TAT GAC TGG GCA Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp Trp Ala	751
10 15 20 25	
CAA CAG ACA ATC GGC TGC TCT GAT GCC GCC GTG TTC CGG CTG TCA GCG Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser Ala	799
30 35 40	
CAG GGG CGC CCG GTT CTT TTT GTC AAG ACC GAC CTG TCC GGT GCC CTG Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly Ala Leu	847
45 50 55	
AAT GAA CTG CAG GAC GAG GCA GCG CGG CTA TCG TGG CTG GCC ACG ACG Asn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala Thr Thr	895
60 65 70	

Gly Val Pro Cys Ala Ala Val Leu Asp Val Val Thr Glu Ala Gly Arg	75	80	85	943
GAC TGG CTG CTA TTG GGC GAA GTG CCG GGG CAG GAT CTC CTG TCA TCT	90	95	100	991
Asp Trp Leu Leu Gly Glu Val Pro Gly Gln Asp Leu Leu Ser Ser			105	
CAC CTT GCT CCT GCC GAG AAA GTA TCC ATC ATG GCT GAT GCA ATG CGG	110	115	120	1039
His Leu Ala Pro Ala Glu Lys Val Ser Ile Met Ala Asp Ala Met Arg				
CGG CTG CAT ACG CTT GAT CCG GCT ACC TGC CCA TTC GAC CAC CAA GCG	125	130	135	1087
Arg Leu His Thr Leu Asp Pro Ala Thr Cys Pro Phe Asp His Gln Ala				
AAA CAT CGC ATC GAG CGA GCA CGT ACT CGG ATG GAA GCC GGT CTT GTC	140	145	150	1135
Lys His Arg Ile Glu Arg Ala Arg Thr Arg Met Glu Ala Gly Leu Val				
GAT CAG GAT GAT CTG GAC GAA GAG CAT CAG GGG CTC GCG CCA GCC GAA	155	160	165	1183
Asp Gln Asp Asp Leu Asp Glu Glu His Gln Gly Leu Ala Pro Ala Glu				
CTG TTC GCC AGG CTC AAG GCG CGC ATG CCC GAC GGC GAG GAT CTC GTC	170	175	180	1231
Leu Phe Ala Arg Leu Lys Ala Arg Met Pro Asp Gly Glu Asp Leu Val			185	
GTG ACC CAT GGC GAT GCC TGC TTG CCG AAT ATC ATG GTG GAA AAT GGC	190	195	200	1279
Val Thr His Gly Asp Ala Cys Leu Pro Asn Ile Met Val Glu Asn Gly				
CGC TTT TCT GGA TTC ATC GAC TGT GGC CGG CTG GGT GTG GCG GAC CGC	205	210	215	1327
Arg Phe Ser Gly Phe Ile Asp Cys Gly Arg Leu Gly Val Ala Asp Arg				
TAT CAG GAC ATA GCG TTG GCT ACC CGT GAT ATT GCT GAA GAG CTT GGC	220	225	230	1375
Tyr Gln Asp Ile Ala Leu Ala Thr Arg Asp Ile Ala Glu Glu Leu Gly				
GGC GAA TGG GCT GAC CGC TTC CTC GTG CTT TAC GGT ATC GTC GCC GCT CCC	235	240	245	1423
Gly Glu Trp Ala Asp Arg Phe Leu Val Leu Tyr Gly Ile Ala Ala Pro				
GAT TCG CAG CGC ATC GCC TTC TAT CGC CTT CTT GAC GAG TTC TTC TGA	250	255	260	1471
Asp Ser Gln Arg Ile Ala Phe Tyr Arg Leu Leu Asp Glu Phe Phe			264	
GCGGGACTCT GGGGTTCGAA ATGACCGACC AAGCGACGCC CC GAG CAG GGC ATG				1525
Glu Gln Gly Met				
255				
AAG CAG TTC CTT GAC GAG AAA AGC ATC AAG CCG GGC TTG CAG ACC TAC	260	265	270	1573
Lys Gln Phe Leu Asp Glu Lys Ser Ile Lys Pro Gly Leu Gin Thr Tyr				

AAG CGC TGA TAAATGCGCC	GGGGCCCTCG	CTGC	CCCC	GGC	C	TCAA	TAATGACAAT	1632
Lys Arg								
275	276							
AATGAGGAGT	GCCCAATGTT	TCACGTGCC	CTGCTTATTG	GTGGTAAGCC	TTGTT	CAGCA		1692
TCTGATGAGC	GCACCTTCGA	CGCTCGTAGC	CCGCTGACCG	GAGAAGTGGT	ATCG	CGCGTC		1752
GCTGCTGCCA	GT	TTGGAAGA	TGCGGACGCC	GCAGTGGCCG	CTGCACAGGC	TGC	GTTCC	1812
GAATGGCGG	CGCTTGCTCC	GAGCGAACGC	CGT	CCCCGAC	TGCTGCGAGC	GGC	GGATCTT	1872
CTAGAGGACC	GTTCTTCCGA	GTCACCGCC	GCAGCGAGTG	AAACTGGCGC	AGC	GGAAAC		1932
TGGTATGGGT	TTAACGTTA	CCTGGCGGCG	GGCATGTTGC	GGG	GAATT			1981

FIG. 2j:

GAATTCCCCT GGCGACGAAA GGGCGGCAGG CCGCATGGCC ACGGCTGGGC GGTAACTGAT	60
GCTTGCCTTA ATCGTTAAC CTTGAAATT CCTTGCCAAA TTTCGGCGAG AGAATCATGC	120
GGGTACGCCT TTCCGTGCGC TTTGATCTGC GCTTCCGTGC CTTGAATCAG AAAAATAGTT	180
AATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGCTCACC CACCAAATCC ACAGCACTGG	240
GGTGCACG ATG AAT AGC TAC GAT GGC CGT TGG TCT ACC GTT GAT GTG AAG	290
Met Asn Ser Tyr Asp Gly Arg Trp Ser Thr Val Asp Val Lys	
1 5 10	
GTT GAA GAA GGT ATC GCT TGG GTC ACG CTG AAC CGC CCG GAG AAG CGC	338
Val Glu Glu Gly Ile Ala Trp Val Thr Leu Asn Arg Pro Glu Lys Arg	
15 20 25 30	
AAC GCA ATG AGC CCA ACT CTC AAT CGA GAG ATG GTC GAG GTT CTG GAG	386
Asn Ala Met Ser Pro Thr Leu Asn Arg Glu Met Val Glu Val Leu Glu	
35 40 45	
GTG CTG GAG CAG GAC GCA GAT GCT CGC GTG CTT GTT CTG ACT GGT GCA	434
Val Leu Glu Gln Asp Ala Asp Ala Arg Val Leu Val Leu Thr Gly Ala	
50 55 60	
GGC GAA TCC TGG ACC GCG GGC ATG GAC CTG AAG GAG TAT TTC CGC GAG	482
Gly Glu Ser Trp Thr Ala Gly Met Asp Leu Lys Glu Tyr Phe Arg Glu	
65 70 75	
ACC GAT GCT GGC CCC GAA ATT CTG CAA GAG AAG ATT CGT CGGGGGAGAG	531
Thr Asp Ala Gly Pro Glu Ile Leu Gln Glu Lys Ile Arg	
80 85 90 91	
GCGGTTTGCCT ATTGGCGC ATGCATAAAA ACTGTTGTA TTCATTAAGC ATTCTGCCGA	591
CATGGAAGCC ATCACAAACG GCATGATGAA CCTGAATCGC CAGCGGCATC AGCACCTTGT	651
CGCCTTGCCT ATAATATTTG CCCATGGACG CACACCGTGG AAACGGATGA AGGCACGAAC	711
CCAGTTGACA TAAGCCTGTT CGGTTCGTAA ACTGTAATGC AAGTAGCGTA TGCGCTCACG	771
CAACTGGTCC AGAACCTTGA CCGAACGCAG CGGTGGTAAC GGCGCAGTGG CGGTTTCAT	831
GGCTTGTAT GACTGTTTT TTGTACAGTC TATGCCCTCGG GCATCCAAGC AGCAAGCGCG	891
TTACGCCGTG GGTCGATGTT TGATGTTATG GAGCAGCAAC G ATG TTA CGC AGC AGC	947
Met Leu Arg Ser Ser	
1 5	
AAC GAT GTT ACG CAG CAG GGC AGT CGC CCT AAA ACA AAG TTA GGT GGC	995
Asn Asp Val Thr Gln Gln Gly Ser Arg Pro Lys Thr Lys Leu Gly Gly	
10 15 20	
TCA AGT ATG GGC ATC ATT CGC ACA TGT AGG CTC GGC CCT GAC CAA GTC	1043
Ser Ser Met Gly Ile Ile Arg Thr Cys Arg Leu Gly Pro Asp Gln Val	
25 30 35	

AAA TCC ATG CGG GCT GCT CTT GAT CTT TTC GGT CGT GAG TTC GGA GAC Lys Ser Met Arg Ala Ala Leu Asp Leu Phe Gly Arg Glu Phe Gly Asp 40 45 50	1091
GTA GCC ACC TAC TCC CAA CAT CAG CCG GAC TCC GAT TAC CTC GGG AAC Val Ala Thr Tyr Ser Gln His Gln Pro Asp Ser Asp Tyr Leu Gly Asn 55 60 65	1139
TTG CTC CGT AGT AAG ACA TTC ATC GCG CTT GCT GCC TTC GAC CAA GAA Leu Leu Arg Ser Lys Thr Phe Ile Ala Leu Ala Ala Phe Asp Gln Glu 70 75 80 85	1187
GCG GTT GTT GGC GCT CTC GCG GCT TAC GTT CTG CCC AGG TTT GAG CAG Ala Val Val Gly Ala Leu Ala Ala Tyr Val Leu Pro Arg Phe Glu Gln 90 95 100	1235
CCG CGT AGT GAG ATC TAT ATC TAT GAT CTC GCA GTC TCC GGC GAG CAC Pro Arg Ser Glu Ile Tyr Ile Tyr Asp Leu Ala Val Ser Gly Glu His 105 110 115	1283
CGG AGG CAG GGC ATT GCC ACC GCG CTC ATC AAT CTC CTC AAG CAT GAG Arg Arg Gln Gly Ile Ala Thr Ala Leu Ile Asn Leu Leu Lys His Glu 120 125 130	1331
GCC AAC GCG CTT GGT GCT TAT GTG ATC TAC GTG CAA GCA GAT TAC GGT Ala Asn Ala Leu Gly Ala Tyr Val Ile Tyr Val Gln Ala Asp Tyr Gly 135 140 145	1379
GAC GAT CCC GCA GTG GCT CTC TAT ACA AAG TTG GGC ATA CGG GAA GAA Asp Asp Pro Ala Val Ala Leu Tyr Thr Lys Leu Gly Ile Arg Glu Glu 150 155 160 165	1427
GTG ATG CAC TTT GAT ATC GAC CCA AGT ACC GCC ACC TAA CAATTCGTT Val Met His Phe Asp Ile Asp Pro Ser Thr Ala Thr 170 175 177	1476
AAGCCGAGAT CGGCTTCCCC GAG CAG GGC ATG AAG CAG TTC CTT GAC GAG Glu Gln Gly Met Lys Gln Phe Leu Asp Glu 255 260	1526
AAA AGC ATC AAG CCG GGC TTG CAG ACC TAC AAG CGC TGA TAAATGCGCC Lys Ser Ile Lys Pro Gly Leu Gln Thr Tyr Lys Arg 265 270 275 276	1575
GGGGCCCTCG CTGCGCCCCC GGCTTCCAA TAATGACAAT AATGAGGAGT GCCCAATGTT	1635
TCACGTGCCCT CGCTTATTG GTGGTAAGCC TTGTTCAAGCA TCTGATGAGC GCACCTTCGA	1695
GCGTCGTAGC CCGCTGACCG GAGAAGTGGT ATCGCGCGTC GCTGCTGCCA GTTTGGAAGA	1755
TGCGGACGCC GCAGTGGCCG CTGCACAGGC TGCGTTCCT GAATGGCGG CGCTTGCTCC	1815
GAGCGAACGC CGTGCCCCGAC TGCTGCGAGC GGCGGATCTT CTAGAGGACC GTTCTTCCGA	1875

GTTCACCGCC GCAGCGAGTG AAACTGGCGC AGCGGGAAAC TGGTATGGGT TTAACGTTA	1935
CCTGGCGGCG GGCATGTTGC GGGGAATTTC	1964

FIG. 2k:

GAATTCCCTT GGCGACGAAA GGGCGGCAGG CCGCATGGCC ACGGCTGGGC GGTAACTGAT	60
GCTTGCCTTA ATCGTTAACCG TTTCGAAATT CCTTGCCAAA TTTCGCGAG AGAATCATGC	120
GGGTACGCCT TTCCGTGCGC TTTCGATCTGC GCTTCCGTGC CTTGAATCAG AAAAATAGTT	180
AATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGCTCACC CACCAAATCC ACAGCACTGG	240
GGTGCACG ATG AAT AGC TAC GAT GGC CGT TGG TCT ACC GTT GAT GTG AAG	290
Met Asn Ser Tyr Asp Gly Arg Trp Ser Thr Val Asp Val Lys	
1 5 10	
GTT GAA GAA GGT ATC GCT TGG GTC ACG CTG AAC CGC CCG GAG AAG CGC	338
Val Glu Glu Gly Ile Ala Trp Val Thr Leu Asn Arg Pro Glu Lys Arg	
15 20 25 30	
AAC GCA ATG AGC CCA ACT CTC AAT CGA GAG ATG GTC GAG GTT CTG GAG	386
Asn Ala Met Ser Pro Thr Leu Asn Arg Glu Met Val Glu Val Leu Glu	
35 40 45	
GTG CTG GAG CAG GAC GCA GAT GCT CGC GTG CTT GTT CTG ACT GGT GCA	434
Val Leu Glu Gln Asp Ala Asp Ala Arg Val Leu Val Leu Thr Gly Ala	
50 55 60	
GCC GAA TCC TGG ACC GCG GGC ATG GAC CTG AAG GAG TAT TTC CGC GAG	482
Gly Glu Ser Trp Thr Ala Gly Met Asp Leu Lys Glu Tyr Phe Arg Glu	
65 70 75	
ACC GAT GCT GGC CCC GAA ATT CTG CAA GAG AAG ATT CGT CGC GAG CAG	530
Thr Asp Ala Gly Pro Glu Ile Leu Gln Glu Lys Ile Arg Arg Glu Gln	
80 85 90 92 255	
GGC ATG AAG CAG TTC CTT GAC GAG AAA AGC ATC AAG CCG GGC TTG CAG	578
Gly Met Lys Gln Phe Leu Asp Glu Lys Ser Ile Lys Pro Gly Leu Gln	
260 265 270	
ACC TAC AAG CGC TGA TAAATGCGCC GGGGCCCTCG CTGCGCCCCC GGCCTTCCAA	633
Thr Tyr Lys Arg	
275 276	
TAATGACAAT AATGAGGAGT GCCCAATGTT TCACGTGCCCTTGTT ATTG GTGGTAAGCC	693
TTGTTCAGCA TCTGATGAGC GCACCTTCGA GCGTCGTAGC CCGCTGACCG GAGAAGTGGT	753
ATCGCGCGTC GCTGCTGCCA GTTGGAAAGA TGCGGACGCC GCAGTGGCCG CTGCACAGGC	813
TGGCTTCCT GAATGGCGG CGCTTGCTCC GAGCGAACGC CGTGCCCCGAC TGCTGCGAGC	873
GGCGGATCTT CTAGAGGACC GTTCTTCCGA GTTCACCGCC GCAGCGAGTG AAACTGGCGC	933
AGCGGGAAAC TGGTATGGGT TTAACGTTTA CCTGGCGCG GGCATGTTGC GGGGAATTC	992

FIG. 21:

GAATTCCAAT AATGACAATA ATGAGGAGTG CCCA ATG TTT CAC GTG CCC CTG CTT Met Phe His Val Pro Leu Leu	55
1 5	
ATT GGT GGT AAG CCT TGT TCA GCA TCT GAT GAG CGC ACC TTC GAG CGT Ile Gly Gly Lys Pro Cys Ser Ala Ser Asp Glu Arg Thr Phe Glu Arg	103
10 15 20	
CGT AGC CCG CTG ACC GGA GAA GTG GTA TCG CGC GTC GCT GCT GCC AGT Arg Ser Pro Leu Thr Gly Glu Val Val Ser Arg Val Ala Ala Ala Ser	151
25 30 35	
TTG GAA GAT GCG GAC GCC GCA GTG GCC GCT GCA CAG GCT GCG TTT CCT Leu Glu Asp Ala Asp Ala Ala Val Ala Ala Gln Ala Ala Phe Pro	199
40 45 50 55	
GAA TGG GCG GCG CTT GCT CCG AGC GAA CGC CGT GCC CGA CTG CTG CGA Glu Trp Ala Ala Leu Ala Pro Ser Glu Arg Arg Ala Arg Leu Leu Arg	247
60 65 70	
GCG GCG GAT CTT CTA GAG GAC CGT TCT TCC GAG TTC ACC GCC GCA GCG Ala Ala Asp Leu Leu Glu Asp Arg Ser Ser Glu Phe Thr Ala Ala Ala	295
75 80 85	
AGT GAA ACT GGC GCA GCG GGA AAC TGG TAT GGG TTT AAC GTT TAC CTG Ser Glu Thr Gly Ala Ala Gly Asn Trp Tyr Gly Phe Asn Val Tyr Leu	343
90 95 100	
GCG GCG GGC ATG TTG CGG GAA GCC GCG GCC ATG ACC ACA CAG ATT CAG Ala Ala Gly Met Leu Arg Glu Ala Ala Met Thr Thr Gln Ile Gln	391
105 110 115	
GCG GAT GTC ATT CCG TCC AAT GTG CCC GGT AGC TTT GCC ATG GCG GTT Gly Asp Val Ile Pro Ser Asn Val Pro Gly Ser Phe Ala Met Ala Val	439
120 125 130 135	
CGA CAG CCA TGT GGC GTG GTG CTC GGT ATT GCG CCT TGG AAT GCT CCG Arg Gln Pro Cys Gly Val Val Leu Gly Ile Ala Pro Trp Asn Ala Pro	487
140 145 150	
GTA ATC CTT GGC GTA CGG GCT GTT GCG ATG CCG TTG GCA TGC GGC AAT Val Ile Leu Gly Val Arg Ala Val Ala Met Pro Leu Ala Cys Gly Asn	535
155 160 165	
ACC GTG GTG TTG AAA AGC TCT GAG CTG AGT CCC TTT ACC CAT CGC CTG Thr Val Val Leu Lys Ser Ser Glu Leu Ser Pro Phe Thr His Arg Leu	583
170 175 180	
ATT GGT CAG GTG TTG CAT GAT GCT GGT CTG GGG GAT GGC GTG GTG AAT Ile Gly Gln Val Leu His Asp Ala Gly Leu Gly Asp Gly Val Val Asn	631
185 190 195	
GTC ATC AGC AAT GCC CCG CAA GAC GCT CCT GCG GTG GTG GAG CGA CTG Val Ile Ser Asn Ala Pro Gln Asp Ala Pro Ala Val Val Glu Arg Leu	679
200 205 210 215	

ATT GCA AAT CCT GCG GTA CGT CGA GTG AAC TTC ACC GGT TCG ACC CAC Ile Ala Asn Pro Ala Val Arg Arg Val Asn Phe Thr Gly Ser Thr His 220 225 230	727
GTT GGA CGG ATC ATT GGT GAG CTG TCT GCG CGT CAT CTG AAG CCT GCT Val Gly Arg Ile Ile Gly Glu Leu Ser Ala Arg His Leu Lys Pro Ala 235 240 245	775
GTG CTG GAA TTA GGT GGT AAG GCT CCG TTC TTG GTC TTG GAC GAT GCC Val Leu Glu Leu Gly Gly Lys Ala Pro Phe Leu Val Leu Asp Asp Ala 250 255 260	823
GAC CTC GAT GCG GCG GTC GAA GCG GCG GCC TTT GGT GCC TAC TTC AAT Asp Leu Asp Ala Ala Val Glu Ala Ala Phe Gly Ala Tyr Phe Asn 265 270 275	871
CAG GGT CAA ATC TGC ATG TCC ACT GAG CGT CTG ATT GTG ACA GCA GTC Gln Gly Gln Ile Cys Met Ser Thr Glu Arg Leu Ile Val Thr Ala Val 280 285 290 295	919
GCA GAC GCC TTT GTT GAA AAG CTG GCG AGG AAG GTC GCC ACA CTG CGT Ala Asp Ala Phe Val Glu Lys Leu Ala Arg Lys Val Ala Thr Leu Arg 300 305 310	967
GCT GGC GAT CCT AAT GAT CCG CAA TCG GTC TTG GGT TCG TTG ATT GAT Ala Gly Asp Pro Asn Asp Pro Gln Ser Val Leu Gly Ser Leu Ile Asp 315 320 325	1015
GCC AAT GCA GGT CAA CGC ATC CAG GTT CTG GTC GAT GAT GCG CTC GGG Ala Asn Ala Gly Gln Arg Ile Gln Val Leu Val Asp Asp Ala Leu 330 335 340 342	1063
GACAGCAAGC GAACCGGAAT TGCCAGCTGG GGCGCCCTCT GGTAAGGTTG GGAAGCCCTG	1123
CAAAGTAAAC TGGATGGCTT TCTTGCCGCC AAGGATCTGA TGGCGCAGGG GATCAAGATC	1183
TGATCAAGAG ACAGGATGAG GATCGTTTCG C ATG ATT GAA CAA GAT GGA TTG Met Ile Glu Gln Asp Gly Leu 1 5	1235
CAC GCA GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGC TAT GAC His Ala Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp 10 15 20	1283
TGG GCA CAA CAG ACA ATC GGC TGC TCT GAT GCC GCC GTG TTC CGG CTG Trp Ala Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu 25 30 35	1331
TCA GCG CAG GGG CGC CCG GTT CTT TTT GTC AAG ACC GAC CTG TCC GGT Ser Ala Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly 40 45 50 55	1379
GCC CTG AAT GAA CTG CAG GAC GAG GCA GCG CGG CTA TCG TGG CTG GCC Ala Leu Asn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala 60 65 70	1427

ACG ACG GGC GTT CCT TGC GCA GCT GTG CTC GAC GTT GTC ACT GAA GCG Thr Thr Gly Val Pro Cys Ala Ala Val Leu Asp Val Val Thr Glu Ala 75 80 85	1475
GGA AGG GAC TGG CTG CTA TTG GGC GAA GTG CCG GGG CAG GAT CTC CTG Gly Arg Asp Trp Leu Leu Leu Gly Glu Val Pro Gly Gln Asp Leu Leu 90 95 100	1523
TCA TCT CAC CTT GCT CCT GCC GAG AAA GTA TCC ATC ATG GCT GAT GCA Ser Ser His Leu Ala Pro Ala Glu Lys Val Ser Ile Met Ala Asp Ala 105 110 115	1571
ATG CGG CGG CTG CAT ACG CTT GAT CCG GCT ACC TGC CCA TTC GAC CAC Met Arg Arg Leu His Thr Leu Asp Pro Ala Thr Cys Pro Phe Asp His 120 125 130 135	1619
CAA GCG AAA CAT CGC ATC GAG CGA GCA CGT ACT CCG ATG GAA GCC GGT Gln Ala Lys His Arg Ile Glu Arg Ala Arg Thr Arg Met Glu Ala Gly 140 145 150	1667
CTT GTC GAT CAG GAT GAT CTG GAC GAA GAG CAT CAG GGG CTC GCG CCA Leu Val Asp Gln Asp Asp Leu Asp Glu Glu His Gln Gly Leu Ala Pro 155 160 165	1715
GCC GAA CTG TTC GCC AGG CTC AAG GCG CGC ATG CCC GAC GGC GAG GAT Ala Glu Leu Phe Ala Arg Leu Lys Ala Arg Met Pro Asp Gly Glu Asp 170 175 180	1763
CTC GTC GTG ACC CAT GGC GAT GCC TGC TTG CCG AAT ATC ATG GTG GAA Leu Val Val Thr His Gly Asp Ala Cys Leu Pro Asn Ile Met Val Glu 185 190 195	1811
AAT GGC CGC TTT TCT GGA TTC ATC GAC TGT GGC CGG CTG GGT GTG GCG Asn Gly Arg Phe Ser Gly Phe Ile Asp Cys Gly Arg Leu Gly Val Ala 200 205 210 215	1859
GAC CGC TAT CAG GAC ATA GCG TTG GCT ACC CGT GAT ATT GCT GAA GAG Asp Arg Tyr Gln Asp Ile Ala Leu Ala Thr Arg Asp Ile Ala Glu Glu 220 225 230	1907
CTT GGC GAA TGG GCT GAC CGC TTC CTC GTG CTT TAC GGT ATC GCC Leu Gly Gly Glu Trp Ala Asp Arg Phe Leu Val Leu Tyr Gly Ile Ala 235 240 245	1955
GCT CCC GAT TCG CAG CGC ATC GCC TTC TAT CGC CTT CTT GAC GAG TTC Ala Pro Asp Ser Gln Arg Ile Ala Phe Tyr Arg Leu Leu Asp Glu Phe 250 255 260	2003
TTC TGA GCGGGACTCT GGGGTTCGAA ATGACCGACC AAGCGACGCC CG GCC CAG Phe Ala Gln 264 421	2057
CGC GTC GAT TCG GGC ATT TGC CAT ATC AAT GGA CCG ACT GTG CAT GAC Arg Val Asp Ser Gly Ile Cys His Ile Asn Gly Pro Thr Val His Asp 425 430 435	2105

GAG GCT CAG ATG CCA TTC GGT GGG GTG AAG TCC AGC GGC TAC GGC AGC Glu Ala Gln Met Pro Phe Gly Gly Val Lys Ser Ser Gly Tyr Gly Ser 440 445 450	2153
TTC GGC AGT CGA GCA TCG ATT GAG CAC TTT ACC CAG CTG CGC TGG CTG Phe Gly Ser Arg Ala Ser Ile Glu His Phe Thr Gln Leu Arg Trp Leu 455 460 465 470	2201
ACC ATT CAG AAT GGC CCG CGG CAC TAT CCA ATC TAA ATCGATCTTC Thr Ile Gln Asn Gly Pro Arg His Tyr Pro Ile 475 480 481	2247
GGCGGCCGCG GGCATCATGC CCGCGCGCT CGCCTCATTT CAATCTCTAA CTTGATAAAA ACAGAGCTGT TCTCCGGTCT TGGTGGATCA AGGCCAGTCG CGGAGAGTCT CGAAGAGGAG AGTACAGTGA ACGCCGAGTC CACATTGCAA CCGCAGGCAT CATCATGCTC TGCTCAGCCA CGCTACCGCA GTGTGTCGAT TGGTCATCCT CCGGTTGAGG TTACGCAAGA CGCTGGAGGT ATTGTCCGGA TGCCTCTCT CGAGGCGCTT CTTCCCTTCC CGGGTGGAAT TC	2307 2367 2427 2487 2539

FIG. 2m:

GAATTCCAAT AATGACAATA ATGAGGAGTG CCCA ATG TTT CAC GTG CCC CTG CTT Met Phe His Val Pro Leu Leu 1 5	55
ATT GGT GGT AAG CCT TGT TCA GCA TCT GAT GAG CGC ACC TTC GAG CGT Ile Gly Gly Lys Pro Cys Ser Ala Ser Asp Glu Arg Thr Phe Glu Arg 10 15 20	103
CGT AGC CCG CTG ACC GGA GAA GTG GTA TCG CGC GTC GCT GCT GCC AGT Arg Ser Pro Leu Thr Gly Glu Val Val Ser Arg Val Ala Ala Ala Ser 25 30 35	151
TTG GAA GAT GCG GAC GCA GTG GCC GCT GCA CAG GCT GCG TTT CCT Leu Glu Asp Ala Asp Ala Ala Val Ala Ala Gln Ala Ala Phe Pro 40 45 50 55	199
GAA TGG GCG GCG CTT GCT CCG AGC GAA CGC CGT GCC CGA CTG CTG CGA Glu Trp Ala Ala Leu Ala Pro Ser Glu Arg Arg Ala Arg Leu Leu Arg 60 65 70	247
GCG GCG GAT CTT CTA GAG GAC CGT TCT TCC GAG TTC ACC GCC GCA GCG Ala Ala Asp Leu Leu Glu Asp Arg Ser Ser Glu Phe Thr Ala Ala Ala 75 80 85	295
AGT GAA ACT GGC GCA GCG GGA AAC TGG TAT GGG TTT AAC GTT TAC CTG Ser Glu Thr Gly Ala Ala Gly Asn Trp Tyr Gly Phe Asn Val Tyr Leu 90 95 100	343
GCG GCG GGC ATG TTG CGG GAA GCC GCG GCC ATG ACC ACA CAG ATT CAG Ala Ala Gly Met Leu Arg Glu Ala Ala Met Thr Thr Gln Ile Gln 105 110 115	391
GGC GAT GTC ATT CCG TCC AAT GTG CCC GGT AGC TTT GCC ATG GCG GTT Gly Asp Val Ile Pro Ser Asn Val Pro Gly Ser Phe Ala Met Ala Val 120 125 130 135	439
CGA CAG CCA TGT GGC GTG CTC GGT ATT GCG CCT TGG AAT GCT CCG Arg Gln Pro Cys Gly Val Val Leu Gly Ile Ala Pro Trp Asn Ala Pro 140 145 150	487
GTA ATC CTT GGC GTA CGG GCT GTT GCG ATG CCG TTG GCA TGC GGC AAT Val Ile Leu Gly Val Arg Ala Val Ala Met Pro Leu Ala Cys Gly Asn 155 160 165	535
ACC GTG GTG TTG AAA AGC TCT GAG CTG AGT CCC TTT ACC CAT CGC CTG Thr Val Val Leu Lys Ser Ser Glu Leu Ser Pro Phe Thr His Arg Leu 170 175 180	583
ATT GGT CAG GTG TTG CAT GAT GCT GGT CTG GGG GAT GGC GTG GTG AAT Ile Gly Gln Val Leu His Asp Ala Gly Leu Gly Asp Gly Val Val Asn 185 190 195	631
GTC ATC AGC AAT GCC CCG CAA GAC GCT CCT GCG GTG GTG GAG CGA CTG Val Ile Ser Asn Ala Pro Gln Asp Ala Pro Ala Val Val Glu Arg Leu 200 205 210 215	679

ATT GCA AAT CCT GCG GTA CGT CGA GTG AAC TTC ACC GGT TCG ACC CAC Ile Ala Asn Pro Ala Val Arg Arg Val Asn Phe Thr Gly Ser Thr His 220 225 230	727
GTT GGA CGG ATC ATT GGT GAG CTG TCT GCG CGT CAT CTG AAG CCT GCT Val Gly Arg Ile Ile Gly Glu Leu Ser Ala Arg His Leu Lys Pro Ala 235 240 245	775
G TG CTG GAA TTA GGT GGT AAG GCT CCG TTC TTG GTC TTG GAC GAT GCC Val Leu Glu Leu Gly Gly Lys Ala Pro Phe Leu Val Leu Asp Asp Ala 250 255 260	823
GAC CTC GAT GCG GCG GTC GAA GCG GCG GCC TTT GGT GCC TAC TTC AAT Asp Leu Asp Ala Ala Val Glu Ala Ala Phe Gly Ala Tyr Phe Asn 265 270 275	871
CAG GGT CAA ATC TGC ATG TCC ACT GAG CGT CTG ATT GTG ACA GCA GTC Gln Gly Gln Ile Cys Met Ser Thr Glu Arg Leu Ile Val Thr Ala Val 280 285 290 295	919
GCA GAC GCC TTT GTT GAA AAG CTG GCG AGG AAG GTC GCC ACA CTG CGT Ala Asp Ala Phe Val Glu Lys Leu Ala Arg Lys Val Ala Thr Leu Arg 300 305 310	967
GCT GGC GAT CCT AAT GAT CCG CAA TCG GTC TTG GGT TCG TTG ATT GAT Ala Gly Asp Pro Asn Asp Pro Gln Ser Val Leu Gly Ser Leu Ile Asp 315 320 325	1015
GCC AAT GCA GGT CAA CGC ATC CAG GTGGGGAGAG GCGGTTGCG TATTGGCGC Ala Asn Ala Gly Gln Arg Ile Gln 330 335	1069
ATGCATAAAA ACTGTTGTAATTCATTAAGC ATTCTGCCGA CATGGAAGGCC ATCACAAACG	1129
GCATGATGAA CCTGAATCGC CAGCGGCATC AGCACCTTGT CGCCTTGCCT ATAATATTG	1189
CCCATGGACG CACACCGTGG AAACGGATGA AGGCACGAAC CCAGTTGACA TAAGCCTGTT	1249
CGGTTCGTAA ACTGTAATGC AAGTAGCGTA TGCGCTCACG CAACTGGTCC AGAACCTTGA	1309
CCGAACGCAG CGGTGGTAAC GGCGCAGTGG CGGTTTCAT GGCTTGTAT GACTGTTTT	1369
TTGTACAGTC TATGCCCTCGG GCATCCAAGC AGCAAGCGCG TTACGCCGTG GGTCGATGTT	1429
TGATGTTATG GAGCAGCAAC G ATG TTA CGC AGC AGC AAC GAT GTT ACG CAG Met Leu Arg Ser Ser Asn Asp Val Thr Gln 1 5 10	1480
CAG GGC AGT CGC CCT AAA ACA AAG TTA GGT GGC TCA AGT ATG GGC ATC Gln Gly Ser Arg Pro Lys Thr Lys Leu Gly Gly Ser Ser Met Gly Ile 15 20 25	1528
ATT CGC ACA TGT AGG CTC GGC CCT GAC CAA GTC AAA TCC ATG CGG GCT Ile Arg Thr Cys Arg Leu Gly Pro Asp Gln Val Lys Ser Met Arg Ala 30 35 40	1576

GCT CTT GAT CTT TTC GGT CGT GAG TTC GGA GAC GTA GCC ACC TAC TCC Ala Leu Asp Leu Phe Gly Arg Glu Phe Gly Asp Val Ala Thr Tyr Ser 45 50 55	1624
CAA CAT CAG CCG GAC TCC GAT TAC CTC GGG AAC TTG CTC CGT AGT AAG Gln His Gln Pro Asp Ser Asp Tyr Leu Gly Asn Leu Leu Arg Ser Lys 60 65 70	1672
ACA TTC ATC GCG CTT GCT GCC TTC GAC CAA GAA GCG GTT GTT GGC GCT Thr Phe Ile Ala Leu Ala Phe Asp Gln Glu Ala Val Val Gly Ala 75 80 85 90	1720
CTC GCG GCT TAC GTT CTG CCC AGG TTT GAG CAG CCG CGT AGT GAG ATC Leu Ala Ala Tyr Val Leu Pro Arg Phe Glu Gln Pro Arg Ser Glu Ile 95 100 105	1768
TAT ATC TAT GAT CTC GCA GTC TCC GGC GAG CAC CGG AGG CAG GGC ATT Tyr Ile Tyr Asp Leu Ala Val Ser Gly Glu His Arg Arg Gln Gly Ile 110 115 120	1816
GCC ACC GCG CTC ATC AAT CTC CTC AAG CAT GAG GCC AAC GCG CTT GGT Ala Thr Ala Leu Ile Asn Leu Leu Lys His Glu Ala Asn Ala Leu Gly 125 130 135	1864
GCT TAT GTG ATC TAC GTG CAA GCA GAT TAC GGT GAC GAT CCC GCA GTG Ala Tyr Val Ile Tyr Val Gln Ala Asp Tyr Gly Asp Asp Pro Ala Val 140 145 150	1912
GCT CTC TAT ACA AAG TTG GGC ATA CGG GAA GAA GTG ATG CAC TTT GAT Ala Leu Tyr Thr Lys Leu Gly Ile Arg Glu Glu Val Met His Phe Asp 155 160 165 170	1960
ATC GAC CCA AGT ACC GCC ACC TAA CAATTCTTC AAGCCGAGAT CGGCTTCCCA Ile Asp Pro Ser Thr Ala Thr 175 177	2014
A TTG GCC CAG CGC GTC GAT TCG GGC ATT TGC CAT ATC AAT GGA CCG ACT Leu Ala Gln Arg Val Asp Ser Gly Ile Cys His Ile Asn Gly Pro Thr 420 425 430 435	2063
GTG CAT GAC GAG GCT CAG ATG CCA TTC GGT GGG GTG AAG TCC AGC GGC Val His Asp Glu Ala Gln Met Pro Phe Gly Val Lys Ser Ser Gly 440 445 450	2111
TAC GGC AGC TTC GGC AGT CGA GCA TCG ATT GAG CAC TTT ACC CAG CTG Tyr Gly Ser Phe Gly Ser Arg Ala Ser Ile Glu His Phe Thr Gln Leu 455 460 465	2159
CGC TGG CTG ACC ATT CAG AAT GGC CCG CGG CAC TAT CCA ATC TAA Arg Trp Leu Thr Ile Gln Asn Gly Pro Arg His Tyr Pro Ile 470 475 480 481	2204
ATCGATCTTC GGGCGCCGCG GGCATCATGC CCGCGGCGCT CGCCTCATT CAATCTCTAA	2264
CTTGATAAAA ACAGAGCTGT TCTCCGGTCT TGGTGGATCA AGGCCAGTCG CGGAGAGTCT	2324

CGAAGAGGAG AGTACAGTGA ACGCCGAGTC CACATTGCAA CCGCAGGCAT CATCATGCTC	2384
TGCTCAGCCA CGCTACCGCA GTGTGTCGAT TGGTCATCCT CCGGTTGAGG TTACGCAAGA	2444
CGCTGGAGGT ATTGTCCGGA TGC GTTCTCT CGAGGCGCTT CTTCCCTTCC CGGGTGGAAT	2504
TC	2506

FIG. 2n:

GAATTCCAAT AATGACAATA ATGAGGAGTG CCCA ATG TTT CAC GTG CCC CTG CTT Met Phe His Val Pro Leu Leu	55
1 5	
ATT GGT GGT AAG CCT TGT TCA GCA TCT GAT GAG CGC ACC TTC GAG CGT Ile Gly Gly Lys Pro Cys Ser Ala Ser Asp Glu Arg Thr Phe Glu Arg	103
10 15 20	
CGT AGC CCG CTG ACC GGA GAA GTG GTA TCG CGC GTC GCT GCT GCC AGT Arg Ser Pro Leu Thr Gly Glu Val Val Ser Arg Val Ala Ala Ala Ser	151
25 30 35	
TTG GAA GAT GCG GAC GCC GCA GTG GCC GCT GCA CAG GCT GCG TTT CCT Leu Glu Asp Ala Asp Ala Ala Val Ala Ala Gln Ala Ala Phe Pro	199
40 45 50 55	
GAA TGG GCG GCG CTT GCT CCG AGC GAA CGC CGT GCC CGA CTG CTG CGA Glu Trp Ala Ala Leu Ala Pro Ser Glu Arg Arg Ala Arg Leu Leu Arg	247
60 65 70	
GCG GCG GAT CTT CTA GAG GAC CGT TCT TCC GAG TTC ACC GCC GCA GCG Ala Ala Asp Leu Leu Glu Asp Arg Ser Ser Glu Phe Thr Ala Ala Ala	295
75 80 85	
AGT GAA ACT GGC GCA GCG GGA AAC TGG TAT GGG TTT AAC GTT TAC CTG Ser Glu Thr Gly Ala Ala Gly Asn Trp Tyr Gly Phe Asn Val Tyr Leu	343
90 95 100	
GCG GCG GGC ATG TTG CGG GAA GCC GCG GCC ATG ACC ACA CAG ATT CAG Ala Ala Gly Met Leu Arg Glu Ala Ala Met Thr Thr Gln Ile Gln	391
105 110 115	
GGC GAT GTC ATT CCG TCC AAT GTG CCC GGT AGC TTT GCC ATG GCG GTT Gly Asp Val Ile Pro Ser Asn Val Pro Gly Ser Phe Ala Met Ala Val	439
120 125 130 135	
CGA CAG CCA TGT GGC GTG CTC GGT ATT GCG CCT TGG AAT GCT CCG Arg Gln Pro Cys Gly Val Val Leu Gly Ile Ala Pro Trp Asn Ala Pro	487
140 145 150	
GTA ATC CTT GGC GTA CGG GCT GTT GCG ATG CCG TTG GCA TGC GGC AAT Val Ile Leu Gly Val Arg Ala Val Ala Met Pro Leu Ala Cys Gly Asn	535
155 160 165	
ACC GTG GTG TTG AAA AGC TCT GAG CTG AGT CCC TTT ACC CAT CGC CTG Thr Val Val Leu Lys Ser Ser Glu Leu Ser Pro Phe Thr His Arg Leu	583
170 175 180	
ATT GGT CAG GTG TTG CAT GAT GCT GGT CTG GGG GAT GGC GTG GTG AAT Ile Gly Gln Val Leu His Asp Ala Gly Leu Gly Asp Gly Val Val Asn	631
185 190 195	
GTC ATC AGC AAT GCC CCG CAA GAC GCT CCT GCG GTG GTG GAG CGA CTG Val Ile Ser Asn Ala Pro Gln Asp Ala Pro Ala Val Val Glu Arg Leu	679
200 205 210 215	

ATT GCA AAT CCT GCG GTA CGT CGA GTG AAC TTC ACC GGT TCG ACC CAC
Ile Ala Asn Pro Ala Val Arg Arg Val Asn Phe Thr Gly Ser Thr His 727
220 225 230

GTT GGA CGG ATC ATT GGT GAG CTG TCT GCG CGT CAT CTG AAG CCT GCT
Val Gly Arg Ile Ile Gly Glu Leu Ser Ala Arg His Leu Lys Pro Ala 775
235 240 245

GTC CTG GAA TTA GGT GGT AAG GCT CCG TTC TTG GTC TTG GAC GAT GCC
Val Leu Glu Leu Gly Gly Lys Ala Pro Phe Leu Val Leu Asp Asp Ala 823
250 255 260

GAC CTC GAT GCG GCG GTC GAA GCG GCG GCC TTT GGT GCC TAC TTC AAT
Asp Leu Asp Ala Ala Val Glu Ala Ala Ala Phe Gly Ala Tyr Phe Asn 871
265 270 275

CAG GGT CAA ATC TGC ATG TCC ACT GAG CGT CTG ATT GTG ACA GCA GTC
Gln Gly Gln Ile Cys Met Ser Thr Glu Arg Leu Ile Val Thr Ala Val 919
280 285 290 295

GCA GAC GCC TTT GTT GAA AAG CTG GCG AGG AAG GTC GCC ACA CTG CGT
Ala Asp Ala Phe Val Glu Lys Leu Ala Arg Lys Val Ala Thr Leu Arg 967
300 305 310

GCT GGC GAT CCT AAT GAT CCG CAA TCG GTC TTG GGT TCG TTG ATT GAT
Ala Gly Asp Pro Asn Asp Pro Gln Ser Val Leu Gly Ser Leu Ile Asp 1015
315 320 325

GCC AAT GCA GGT CAA CGC ATC CAG GTT CTG GTC GAT GAT GCG CTC GCA
Ala Asn Ala Gly Gln Arg Ile Gln Val Leu Val Asp Asp Ala Leu Ala 1063
330 335 340

AAA GGC GCG CAATGGAA TTG GCC CAG CGC GTC GAT TCG GGC ATT TGC CAT
Lys Gly Ala Leu Ala Gln Arg Val Asp Ser Gly Ile Cys His 1113
345 346 420 425 430

ATC AAT GGA CCG ACT GTG CAT GAC GAG GCT CAG ATG CCA TTC GGT GGG
Ile Asn Gly Pro Thr Val His Asp Glu Ala Gln Met Pro Phe Gly Gly 1161
435 440 445

GTG AAG TCC AGC GGC TAC GGC AGC TTC GGC AGT CGA GCA TCG ATT GAG
Val Lys Ser Ser Gly Tyr Gly Ser Phe Gly Ser Arg Ala Ser Ile Glu 1209
450 455 460

CAC TTT ACC CAG CTG CGC TGG CTG ACC ATT CAG AAT GGC CCG CGG CAC
His Phe Thr Gln Leu Arg Trp Leu Thr Ile Gln Asn Gly Pro Arg His 1257
465 470 475

TAT CCA ATC TAA ATCGATCTTC GGGGCCGCG GGCATCATGC CCGCGGCGCT
Tyr Pro Ile 1309
480 481

CGCCTCATTT CAATCTCTAA CTTGATAAAA ACAGAGCTGT TCTCCGGTCT TGGTGGATCA 1369

AGGCCAGTCG CGGAGAGTCT CGAACAGGAG AGTACAGTGA ACGCCGAGTC CACATTGCAA 1429

CCGCAGGCAT CATCATGCTC TGCTCAGCCA CGCTACCGCA GTGTGTCGAT TGGTCATCCT	1489
CCGGTTGAGG TTACGCAAGA CGCTGGAGGT ATTGTCCGGA TGC GTTCTCT CGAGGCGCTT	1549
CTTCCCTTCC CGGGT GGAAT TC	1571

FIG. 2o:

GAATTCCGCG GTCGGCGAAA GTTGATGCGC TGTATCGTGG TGAAGATCAA TCCATGCTGC 60
GTGACGAGGC CACACT GTG AGT TGG TCA GGG GGG GCT TAC TCG GCG TTT TCC 112
Met Ser Trp Ser Gly Gly Ala Tyr Ser Ala Phe Ser
1 5 10

GAC ACT GCG TTG GTT GCG GCA GTG CGC ACC CCC TGG ATT GAT TGC GGG 160
Asp Thr Ala Leu Val Ala Val Arg Thr Pro Trp Ile Asp Cys Gly
15 20 25

GGT GCC CTG TCG CTG GTG TCG CCT ATC GAC TTA GGG GTA AAG GTC GCT 208
Gly Ala Leu Ser Leu Val Ser Pro Ile Asp Leu Gly Val Lys Val Ala
30 35 40

CGC GAA GTT CTG ATG CGT GCG TCG CTT GAA CCA CAA ATG GTC GAT AGC 256
Arg Glu Val Leu Met Arg Ala Ser Leu Glu Pro Gln Met Val Asp Ser
45 50 55 60

GTA CTC GCA GGC TCT ATG GCT CAA GCA AGC TTT GAT GCT TAC CTG CTC 304
Val Leu Ala Gly Ser Met Ala Gln Ala Ser Phe Asp Ala Tyr Leu Leu
65 70 75

CCG CGG CAC ATT GGC TTG TAC AGC GGT GTT CCC AAG TCG GTT CCG GCC 352
Pro Arg His Ile Gly Leu Tyr Ser Gly Val Pro Lys Ser Val Pro Ala
80 85 90

TTG GGG GTG CAG CGC ATT TGC GGC ACA GGC TTC GAA CTG CTT CGG CAG 400
Leu Gly Val Gln Arg Ile Cys Gly Thr Gly Phe Glu Leu Leu Arg Gln
95 100 105

GCC GGC GAG CAG ATT TCC CAA GGC GCT GAT CAC GTG CTG TGT GTC GCG 448
Ala Gly Glu Gln Ile Ser Gln Gly Ala Asp His Val Leu Cys Val Ala
110 115 120

GCA GAG TCC ATG TCG CGT AAC CCC ATC GCG TCG TAT ACA CAC CGG GGC 496
Ala Glu Ser Met Ser Arg Asn Pro Ile Ala Ser Tyr Thr His Arg Gly
125 130 135 140

GGG TTC CGC CTC GGT GCG CCC GTT GAG TTC AAG GAT TTT TTG TGG GAG 544
Gly Phe Arg Leu Gly Ala Pro Val Glu Phe Lys Asp Phe Leu Trp Glu
145 150 155

GCA TTG TTT GAT CCT GCT CCA GGA CTC GAC ATG ATC GCT ACC GCA GAA 592
Ala Leu Phe Asp Pro Ala Pro Gly Leu Asp Met Ile Ala Thr Ala Glu
160 165 170

AAC CTG GGGACAGCAA GCGAACCGGA ATTGCCAGCT GGGCGCCCT CTGGTAAGGT 648
Asn Leu
174

TGGGAAGCCC TGCAAAGTAA ACTGGATGGC TTTCTGCCG CCAAGGATCT GATGGCGCAG 708

GGGATCAAGA TCTGATCAAG AGACAGGATG AGGATCGTT CGC ATG ATT GAA CAA 763
Met Ile Glu Gln
1

GAT GGA TTG CAC GCA GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC Asp Gly Leu His Ala Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe 5 10 15 20	811
GGC TAT GAC TGG GCA CAA CAG ACA ATC GGC TGC TCT GAT GCC GCC GTG Gly Tyr Asp Trp Ala Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val 25 30 35	859
TTC CGG CTG TCA GCG CAG GGG CGC CCG GTT CTT TTT GTC AAG ACC GAC Phe Arg Leu Ser Ala Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp 40 45 50	907
CTG TCC GGT GCC CTG AAT GAA CTG CAG GAC GAG GCA GCG CGG CTA TCG Leu Ser Gly Ala Leu Asn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser 55 60 65	955
TGG CTG GCC ACG ACG GGC GTT CCT TGC GCA GCT GTG CTC GAC GTT GTC Trp Leu Ala Thr Thr Gly Val Pro Cys Ala Ala Val Leu Asp Val Val 70 75 80	1003
ACT GAA GCG GGA AGG GAC TGG CTG CTA TTG GGC GAA GTG CCG GGG CAG Thr Glu Ala Gly Arg Asp Trp Leu Leu Gly Glu Val Pro Gly Gln 85 90 95 100	1051
GAT CTC CTG TCA TCT CAC CTT GCT CCT GCC GAG AAA GTA TCC ATC ATG Asp Leu Leu Ser Ser His Leu Ala Pro Ala Glu Lys Val Ser Ile Met 105 110 115	1099
GCT GAT GCA ATG CGG CGG CTG CAT ACG CTT GAT CCG GCT ACC TGC CCA Ala Asp Ala Met Arg Arg Leu His Thr Leu Asp Pro Ala Thr Cys Pro 120 125 130	1147
TTC GAC CAC CAA GCG AAA CAT CGC ATC GAG CGA GCA CGT ACT CGG ATG Phe Asp His Gln Ala Lys His Arg Ile Glu Arg Ala Arg Thr Arg Met 135 140 145	1195
GAA GCC GGT CTT GTC GAT CAG GAT GAT CTG GAC GAA GAG CAT CAG GGG Glu Ala Gly Leu Val Asp Gln Asp Asp Leu Asp Glu Glu His Gln Gly 150 155 160	1243
CTC GCG CCA GCC GAA CTG TTC GCC AGG CTC AAG GCG CGC ATG CCC GAC Leu Ala Pro Ala Glu Leu Phe Ala Arg Leu Lys Ala Arg Met Pro Asp 165 170 175 180	1291
GGC GAG GAT CTC GTC GTG ACC CAT GGC GAT GCC TGC TTG CCG AAT ATC Gly Glu Asp Leu Val Val Thr His Gly Asp Ala Cys Leu Pro Asn Ile 185 190 195	1339
ATG GTG GAA AAT GGC CGC TTT TCT GGA TTC ATC GAC TGT GGC CGG CTG Met Val Glu Asn Gly Arg Phe Ser Gly Phe Ile Asp Cys Gly Arg Leu 200 205 210	1387
GGT GTG GCG GAC CGC TAT CAG GAC ATA GCG TTG GCT ACC CGT GAT ATT Gly Val Ala Asp Arg Tyr Gln Asp Ile Ala Leu Ala Thr Arg Asp Ile 215 220 225	1435

GCT GAA GAG CTT GGC GGC GAA TGG GCT GAC CGC TTC CTC GTG CTT TAC Ala Glu Glu Leu Gly Gly Glu Trp Ala Asp Arg Phe Leu Val Leu Tyr 230 235 240	1483
GGT ATC GCC GCT CCC GAT TCG CAG CGC ATC GCC TTC TAT CGC CTT CTT Gly Ile Ala Ala Pro Asp Ser Gln Arg Ile Ala Phe Tyr Arg Leu Leu 245 250 255 260	1531
GAC GAG TTC TTC TGA GCGGGACTCT GGGGTTCGAA ATGACCGACC AAGCGACGCC Asp Glu Phe Phe 264	1586
CA TTG AGG GCG CAA GAG GAG AAA TGG ATT GAC CAA GAG ATC GTG GCT Leu Arg Ala Gln Glu Glu Lys Trp Ile Asp Gln Glu Ile Val Ala 197 200 205 210	1633
GTT ACG GAT GAA CAG TTC GAT TTA GAG GGC TAC AAC AGT CGA GCA ATT Val Thr Asp Glu Gln Phe Asp Leu Glu Gly Tyr Asn Ser Arg Ala Ile 215 220 225	1681
GAA CTG CCT CGG AAG GCA AAA TTG TTG ATC GTG ACA GTC ATC CGC GGC Glu Leu Pro Arg Lys Ala Lys Leu Leu Ile Val Thr Val Ile Arg Gly 230 235 240	1729
CTA GCA GTC TTT GAA GCC CTT TCC CGA TTG AAG CCT GTT CAT TCT GGC Leu Ala Val Phe Glu Ala Leu Ser Arg Leu Lys Pro Val His Ser Gly 245 250 255	1777
GGG GTG CAG ACT GCG GGC AAC AGC TGT GCC GTA GTG GAC GGC GCC GCG Gly Val Gln Thr Ala Gly Asn Ser Cys Ala Val Val Asp Gly Ala Ala 260 265 270 275	1825
GCG GCT TTG GTG GCT CGA GAG TCG TCT GCG ACA CAG CCG GTC TTG GCT Ala Ala Leu Val Ala Arg Glu Ser Ser Ala Thr Gln Pro Val Leu Ala 280 285 290	1873
AGG ATA CTG GCT ACC TCC GTA GTC GGG ATC GAG CCC GAG CAT ATG GGG Arg Ile Leu Ala Thr Ser Val Val Gly Ile Glu Pro Glu His Met Gly 295 300 305	1921
CTC GGC CCT GCG CCC GCG ATT CGC CTG CTG CTT GCG CGT AGT GAT CTT Leu Gly Pro Ala Pro Ala Ile Arg Leu Leu Leu Ala Arg Ser Asp Leu 310 315 320	1969
AGT TTG AGG GAT ATC GAC CTC TTT GAG ATA AAC GAG GCG CAG GCC GGC Ser Leu Arg Asp Ile Asp Leu Phe Glu Ile Asn Glu Ala Gln Ala Ala 325 330 335	2017
CAA GTT CTA GCG GTA CAG CAT GAA TTG GGT ATT GAG CAC TCA AAA CTT Gln Val Leu Ala Val Gln His Glu Leu Gly Ile Glu His Ser Lys Leu 340 345 350 355	2065
AAT ATT TGG GGC GGG GCC ATT GCA CTT GGA CAC CCG CTT GCC GCG ACC Asn Ile Trp Gly Gly Ala Ile Ala Leu Gly His Pro Leu Ala Ala Thr 360 365 370	2113

GGA TTG CGT CTC TGC ATG ACC CTC GCT CAC CAA TTG CAA GCT AAT AAC Gly Leu Arg Leu Cys Met Thr Leu Ala His Gln Leu Gln Ala Asn Asn 375 380 385	2161
TTT CGA TAT GGA ATT GCC TCG GCA TGC ATT GGT GGG GGA CAG GGG ATG Phe Arg Tyr Gly Ile Ala Ser Ala Cys Ile Gly Gly Gln Gly Met 390 395 400	2209
GCG GTT CTT TTA GAG AAT CCC CAC TTC GGT TCG TCC TCT GCA CGA AGT Ala Val Leu Leu Glu Asn Pro His Phe Gly Ser Ser Ala Arg Ser 405 410 415	2257
TCG ATG ATT AAC AGA GTT GAC CAC TAT CCA CTG AGC TAA CGGGCATCTC Ser Met Ile Asn Arg Val Asp His Tyr Pro Leu Ser 420 425 430 431	2306
CTTGTTGCT TTGAGGTGGC GCACGAAGGA GGGCTCGAAA ATCTCTGCTA AAAACAAGAA GAAGGAACAG GGAACATGAT TAGTTTCGCT CGTATGGCAG AAAGTTAGG AGTCCAGGCT AAACTTGCCC TTGCCTTCGC ACTCGTATTATGTGTCGGC TGATTGTTAC CGGCACGGGT TTCTACAGTG TACATACCTT GTCAGGGTTG GTGGGAATTC	2366 2426 2486 2526

FIG. 2p:

DRAFT - FILED

GAATTCCGCG GTCGGCGAAA GTTGATGCGC TGTATCGTGG TGAAGATCAA TCCATGCTGC 60
GTGACGAGGC CACACT GTG AGT TGG TCA GGG GGG GCT TAC TCG GCG TTT TCC 112
Met Ser Trp Ser Gly Gly Ala Tyr Ser Ala Phe Ser
1 5 10

GAC ACT GCG TTG GTT GCG GCA GTG CGC ACC CCC TGG ATT GAT TGC GGG 160
Asp Thr Ala Leu Val Ala Val Arg Thr Pro Trp Ile Asp Cys Gly
15 20 25

GGT GCC CTG TCG CTG GTG TCG CCT ATC GAC TTA GGG GTA AAG GTC GCT 208
Gly Ala Leu Ser Leu Val Ser Pro Ile Asp Leu Gly Val Lys Val Ala
30 35 40

CGC GAA GTT CTG ATG CGT GCG TCG CTT GAA CCA CAA ATG GTC GAT AGC 256
Arg Glu Val Leu Met Arg Ala Ser Leu Glu Pro Gln Met Val Asp Ser
45 50 55 60

GTA CTC GCA GGC TCT ATG GCT CAA GCA AGC TTT GAT GCT TAC CTG CTC 304
Val Leu Ala Gly Ser Met Ala Gln Ala Ser Phe Asp Ala Tyr Leu Leu
65 70 75

CCG CGG CAC ATT GGC TTG TAC AGC GGT GTT CCC AAG TCG GTT CCG GCC 352
Pro Arg His Ile Gly Leu Tyr Ser Gly Val Pro Lys Ser Val Pro Ala
80 85 90

TTG GGG GTG CAG CGC ATT TGC GGC ACA GGC TTC GAA CTG CTT CGG CAG 400
Leu Gly Val Gln Arg Ile Cys Gly Thr Gly Phe Glu Leu Leu Arg Gln
95 100 105

GCC GGC GAG CAG ATT TCC CAA GGC GCT GAT CAC GTG CTG TGT GTC GCG 448
Ala Gly Glu Gln Ile Ser Gln Gly Ala Asp His Val Leu Cys Val Ala
110 115 120

GCA GAG TCC ATG TCG CGT AAC CCC ATC GCG TCG TAT ACA CAC CGG GGC 496
Ala Glu Ser Met Ser Arg Asn Pro Ile Ala Ser Tyr Thr His Arg Gly
125 130 135 140

GGG TTC CGC CTC GGT GCG CCC GTT GAG TTC AAG GAT TTT TTG TGG GAG 544
Gly Phe Arg Leu Gly Ala Pro Val Glu Phe Lys Asp Phe Leu Trp Glu
145 150 155

GCA TTG TTT GAT CCT GCT CCA GGA CTC GAC ATG ATC GCT ACC GCA GAA 592
Ala Leu Phe Asp Pro Ala Pro Gly Leu Asp Met Ile Ala Thr Ala Glu
160 165 170

AAC CTG GGGGAGAGGC GGTTGCGTA TTGGGCGCAT GCATAAAAC TGTTGTAATT 648
Asn Leu
174

CATTAAGCAT TCTGCCGACA TGGAAGCCAT CACAAACGGC ATGATGAACC TGAATGCCA 708
GCGGCATCAG CACCTTGTG CCGTGCAT AATATTTGCC CATGGACGCA CACCGTGGAA 768
ACGGATGAAG GCACGAACCC AGTTGACATA AGCCTGTTG GTTCGTAAC TGTAATGCAA 828
GTAGCGTATG CGCTCACGCA ACTGGTCCAG AACCTTGACC GAACGCAGCG GTGGTAACGG 888

CGCAGTGGCG GTTTCATGG CTTGTTATGA CTGTTTTT GTACAGTCTA TGCCTCGGGC	948
ATCCAAGC AGCAAGCGCG TTACGCCGTG GGTCGATGTTG ATGTTATGGA GCAGCAACG	1007
ATG TTA CGC AGC AGC AAC GAT GTT ACG CAG CAG GGC AGT CGC CCT AAA Met Leu Arg Ser Ser Asn Asp Val Thr Gln Gln Gly Ser Arg Pro Lys	1055
1 5 10 15	
ACA AAG TTA GGT GGC TCA AGT ATG GGC ATC ATT CGC ACA TGT AGG CTC Thr Lys Leu Gly Gly Ser Ser Met Gly Ile Ile Arg Thr Cys Arg Leu	1103
20 25 30	
GCC CCT GAC CAA GTC AAA TCC ATG CGG GCT GCT CTT GAT CTT TTC GGT Gly Pro Asp Gln Val Lys Ser Met Arg Ala Ala Leu Asp Leu Phe Gly	1151
35 40 45	
CGT GAG TTC GGA GAC GTA GCC ACC TAC TCC CAA CAT CAG CCG GAC TCC Arg Glu Phe Gly Asp Val Ala Thr Tyr Ser Gln His Gln Pro Asp Ser	1199
50 55 60	
GAT TAC CTC GGG AAC TTG CTC CGT AGT AAG ACA TTC ATC GCG CTT GCT Asp Tyr Leu Gly Asn Leu Leu Arg Ser Lys Thr Phe Ile Ala Leu Ala	1247
65 70 75 80	
GCC TTC GAC CAA GAA GCG GTT GTT GGC GCT CTC GCG GCT TAC GTT CTG Ala Phe Asp Gln Glu Ala Val Val Gly Ala Leu Ala Ala Tyr Val Leu	1295
85 90 95	
CCC AGG TTT GAG CAG CCG CGT AGT GAG ATC TAT ATC TAT GAT CTC GCA Pro Arg Phe Glu Gln Pro Arg Ser Glu Ile Tyr Ile Tyr Asp Leu Ala	1343
100 105 110	
GTC TCC GGC GAG CAC CGG AGG CAG GGC ATT GCC ACC GCG CTC ATC AAT Val Ser Gly Glu His Arg Arg Gln Gly Ile Ala Thr Ala Leu Ile Asn	1391
115 120 125	
CTC CTC AAG CAT GAG GCC AAC GCG CTT GGT GCT TAT GTG ATC TAC GTG Leu Leu Lys His Glu Ala Asn Ala Leu Gly Ala Tyr Val Ile Tyr Val	1439
130 135 140	
CAA GCA GAT TAC GGT GAC GAT CCC GCA GTG GCT CTC TAT ACA AAG TTG Gln Ala Asp Tyr Gly Asp Asp Pro Ala Val Ala Leu Tyr Thr Lys Leu	1487
145 150 155 160	
GGC ATA CGG GAA GAA GTG ATG CAC TTT GAT ATC GAC CCA AGT ACC GCC Gly Ile Arg Glu Glu Val Met His Phe Asp Ile Asp Pro Ser Thr Ala	1535
165 170 175	
ACC TAA CAATTCGTTC AAGCCGAGAT CGGCTTCCCCA TTG AGG GCG CAA GAG GAG Thr Leu Arg Ala Gln Glu Glu	1589
177 197 200	
AAA TGG ATT GAC CAA GAG ATC GTG GCT GTT ACG GAT GAA CAG TTC GAT Lys Trp Ile Asp Gln Glu Ile Val Ala Val Thr Asp Glu Gln Phe Asp	1637
205 210 215	

100% 100% 100% 100%

TTA GAG GGC TAC AAC AGT CGA GCA ATT GAA CTG CCT CGG AAG GCA AAA Leu Glu Gly Tyr Asn Ser Arg Ala Ile Glu Leu Pro Arg Lys Ala Lys 220 225 230	1685
TTG TTG ATC GTG ACA GTC ATC CGC GGC CTA GCA GTC TTT GAA GCC CTT Leu Leu Ile Val Thr Val Ile Arg Gly Leu Ala Val Phe Glu Ala Leu 235 240 245 250	1733
TCC CGA TTG AAG CCT GTT CAT TCT GGC GGG GTG CAG ACT GCG GGC AAC Ser Arg Leu Lys Pro Val His Ser Gly Gly Val Gln Thr Ala Gly Asn 255 260 265	1781
AGC TGT GCC GTA GTG GAC GGC GCC GCG GCG GCT TTG GTG GCT CGA GAG Ser Cys Ala Val Val Asp Gly Ala Ala Ala Leu Val Ala Arg Glu 270 275 280	1829
TCG TCT GCG ACA CAG CCG GTC TTG GCT AGG ATA CTG GCT ACC TCC GTA Ser Ser Ala Thr Gln Pro Val Leu Ala Arg Ile Leu Ala Thr Ser Val 285 290 295	1877
GTC GGG ATC GAG CCC GAG CAT ATG GGG CTC GGC CCT GCG CCC GCG ATT Val Gly Ile Glu Pro Glu His Met Gly Leu Gly Pro Ala Pro Ala Ile 300 305 310	1925
CGC CTG CTG CTT GCG CGT AGT GAT CTT AGT TTG AGG GAT ATC GAC CTC Arg Leu Leu Ala Arg Ser Asp Leu Ser Leu Arg Asp Ile Asp Leu 315 320 325 330	1973
TTT GAG ATA AAC GAG GCG CAG GCC GCC CAA GTT CTA GCG GTA CAG CAT Phe Glu Ile Asn Glu Ala Gln Ala Gln Val Leu Ala Val Gln His 335 340 345	2021
GAA TTG GGT ATT GAG CAC TCA AAA CTT AAT ATT TGG GGC GGG GCC ATT Glu Leu Gly Ile Glu His Ser Lys Leu Asn Ile Trp Gly Gly Ala Ile 350 355 360	2069
GCA CTT GGA CAC CCG CTT GCC GCG ACC GGA TTG CGT CTC TGC ATG ACC Ala Leu Gly His Pro Leu Ala Ala Thr Gly Leu Arg Leu Cys Met Thr 365 370 375	2117
CTC GCT CAC CAA TTG CAA GCT AAT AAC TTT CGA TAT GGA ATT GCC TCG Leu Ala His Gln Leu Gln Ala Asn Asn Phe Arg Tyr Gly Ile Ala Ser 380 385 390	2165
GCA TGC ATT GGT GGG GGA CAG GGG ATG GCG GTT CTT TTA GAG AAT CCC Ala Cys Ile Gly Gly Gln Gly Met Ala Val Leu Leu Glu Asn Pro 395 400 405 410	2213
CAC TTC GGT TCG TCC TCT GCA CGA AGT TCG ATG ATT AAC AGA GTT GAC His Phe Gly Ser Ser Ser Ala Arg Ser Ser Met Ile Asn Arg Val Asp 415 420 425	2261
CAC TAT CCA CTG AGC TAA CGGGCATCTC CTTTGTTGCT TTGAGGTGGC His Tyr Pro Leu Ser 430 431	2309

GCACGAAGGA GGGCTCGAAA ATCTCTGCTA AAAACAAGAA GAAGGAACAG GGAACATGAT	2369
TAGTTTCGCT CGTATGGCAG AAAGTTTAGG AGTCCAGGCT AAACTTGCC TTGCCTTCGC	2429
ACTCGTATT A TGTGTCGGGC TGATTGTTAC CGGCACGGGT TTCTACAGTG TACATACCTT	2489
GTCAGGGTTG GTGGGAATTC	2509

FIG. 2q:

GAATTCCGCG	GTCGGCGAAA	GTTGATGCGC	TGTATCGTGG	TGAAGATCAA	TCCATGCTGC	60											
GTGACGAGGC	CACACT	GTG	AGT	TGG	TCA	GGG	GGG	GCT	TAC	TCG	GCG	TTT	TCC	112			
		Met	Ser	Trp	Ser	Gly	Gly	Ala	Tyr	Ser	Ala	Phe	Ser				
		1			5					10							
GAC	ACT	GCG	TTG	GCG	GCA	GTG	CGC	ACC	CCC	TGG	ATT	GAT	TGC	GGG	160		
Asp	Thr	Ala	Leu	Val	Ala	Ala	Val	Arg	Thr	Pro	Trp	Ile	Asp	Cys			
		15			20					25							
GGT	GCC	CTG	TCG	CTG	GTG	TCG	CCT	ATC	GAC	TTA	GGG	GTA	AAG	GTC	GCT	208	
Gly	Ala	Leu	Ser	Leu	Val	Ser	Pro	Ile	Asp	Leu	Gly	Val	Lys	Val	Ala		
		30			35					40							
CGC	GAA	GTT	CTG	ATG	CGT	GCG	TCG	CTT	GAA	CCA	CAA	ATG	GTC	GAT	AGC	256	
Arg	Glu	Val	Leu	Met	Arg	Ala	Ser	Leu	Glu	Pro	Gln	Met	Val	Asp	Ser		
		45			50				55			60					
GTA	CTC	GCA	GGC	TCT	ATG	GCT	CAA	GCA	AGC	TTT	GAT	GCT	TAC	CTG	CTC	304	
Val	Leu	Ala	Gly	Ser	Met	Ala	Gln	Ala	Ser	Phe	Asp	Ala	Tyr	Leu	Leu		
		65			70					75							
CCG	CGG	CAC	ATT	GGC	TTG	TAC	AGC	GGT	GGT	CCC	AAG	TCG	GTT	CCG	GCC	352	
Pro	Arg	His	Ile	Gly	Leu	Tyr	Ser	Gly	Val	Pro	Lys	Ser	Val	Pro	Ala		
		80			85					90							
TTG	GGG	GTG	CAG	CGC	ATT	TGC	GGC	ACA	GGC	TTC	GAA	CTG	CTT	CGG	CAG	400	
Leu	Gly	Val	Gln	Arg	Ile	Cys	Gly	Thr	Gly	Phe	Glu	Leu	Leu	Arg	Gln		
		95			100					105							
GCC	GGC	GAG	CAG	ATT	TCC	CAA	GGC	GCT	GAT	CAC	GTG	CTG	TGT	GTC	GCG	448	
Ala	Gly	Glu	Gln	Ile	Ser	Gln	Gly	Ala	Asp	His	Val	Leu	Cys	Val	Ala		
		110			115					120							
GCA	GAG	TCC	ATG	TCG	CGT	AAC	CCC	ATC	GCG	TCG	TAT	ACA	CAC	CGG	GGC	496	
Ala	Glu	Ser	Met	Ser	Arg	Asn	Pro	Ile	Ala	Ser	Tyr	Thr	His	Arg	Gly		
		125			130				135			140					
GGG	TTC	CGC	CTC	GGT	GCG	CCC	GTT	GAG	TTC	AAG	GAT	TTT	TTG	TGG	GAG	544	
Gly	Phe	Arg	Leu	Gly	Ala	Pro	Val	Glu	Phe	Lys	Asp	Phe	Leu	Trp	Glu		
		145			150					155							
GCA	TTG	TTT	GAT	CCT	GCT	CCA	GGA	CTC	GAC	ATG	ATC	GCT	ACC	GCA	GAA	592	
Ala	Leu	Phe	Asp	Pro	Ala	Pro	Gly	Leu	Asp	Met	Ile	Ala	Thr	Ala	Glu		
		160			165					170							
AAC	CTG	GCG	CGC	A	TTG	AGG	GCG	CAA	GAG	GAG	AAA	TGG	ATT	GAC	CAA	GAG	641
Asn	Leu	Ala	Arg		Leu	Arg	Ala	Gln	Glu	Lys	Trp	Ile	Asp	Gln	Glu		
		175	176	197		200					205						
ATC	GTG	GCT	GTT	ACG	GAT	GAA	CAG	TTC	GAT	TTA	GAG	GGC	TAC	AAC	AGT	689	
Ile	Val	Ala	Val	Thr	Asp	Glu	Gln	Phe	Asp	Leu	Glu	Gly	Tyr	Asn	Ser		
		210			215					220							
CGA	GCA	ATT	GAA	CTG	CCT	CGG	AAG	GCA	AAA	TTG	TTG	ATC	GTG	ACA	GTC	737	
Arg	Ala	Ile	Glu	Leu	Pro	Arg	Lys	Ala	Lys	Leu	Leu	Ile	Val	Thr	Val		
		225			230				235			240					

ATC CGC GGC CTA GCA GTC TTT GAA GCC CTT TCC CGA TTG AAG CCT GTT Ile Arg Gly Leu Ala Val Phe Glu Ala Leu Ser Arg Leu Lys Pro Val 245 250 255	785
CAT TCT GGC GGG GTG CAG ACT GCG GGC AAC AGC TGT GCC GTA GTG GAC His Ser Gly Gly Val Gln Thr Ala Gly Asn Ser Cys Ala Val Val Asp 260 265 270	833
GGC GCC GCG GCG GCT TTG GTG GCT CGA GAG TCG TCT GCG ACA CAG CCG Gly Ala Ala Ala Leu Val Ala Arg Glu Ser Ser Ala Thr Gln Pro 275 280 285	881
GTC TTG GCT AGG ATA CTG GCT ACC TCC GTA GTC GGG ATC GAG CCC GAG Val Leu Ala Arg Ile Leu Ala Thr Ser Val Val Gly Ile Glu Pro Glu 290 295 300	929
CAT ATG GGG CTC GGC CCT GCG CCC GCG ATT CGC CTG CTG CTT GCG CGT His Met Gly Leu Gly Pro Ala Pro Ile Arg Leu Leu Leu Ala Arg 305 310 315 320	977
AGT GAT CTT AGT TTG AGG GAT ATC GAC CTC TTT GAG ATA AAC GAG GCG Ser Asp Leu Ser Leu Arg Asp Ile Asp Leu Phe Glu Ile Asn Glu Ala 325 330 335	1025
CAG GCC GCC CAA GTT CTA GCG GTA CAG CAT GAA TTG GGT ATT GAG CAC Gln Ala Ala Gln Val Leu Ala Val His Glu Leu Gly Ile Glu His 340 345 350	1073
TCA AAA CTT AAT ATT TGG GGC GGG GCC ATT GCA CTT GGA CAC CCG CTT Ser Lys Leu Asn Ile Trp Gly Gly Ala Ile Ala Leu Gly His Pro Leu 355 360 365	1121
GCC GCG ACC GGA TTG CGT CTC TGC ATG ACC CTC GCT CAC CAA TTG CAA Ala Ala Thr Gly Leu Arg Leu Cys Met Thr Leu Ala His Gln Leu Gln 370 375 380	1169
GCT AAT AAC TTT CGA TAT GGA ATT GCC TCG GCA TGC ATT GGT GGG GGA Ala Asn Asn Phe Arg Tyr Gly Ile Ala Ser Ala Cys Ile Gly Gly Gly 385 390 395 400	1217
CAG GGG ATG GCG GTT CTT TTA GAG AAT CCC CAC TTC GGT TCG TCC TCT Gln Gly Met Ala Val Leu Leu Glu Asn Pro His Phe Gly Ser Ser Ser 405 410 415	1265
GCA CGA AGT TCG ATG ATT AAC AGA GTT GAC CAC TAT CCA CTG AGC TAA Ala Arg Ser Ser Met Ile Asn Arg Val Asp His Tyr Pro Leu Ser 420 425 430 431	1313
CGGGCATCTC CTTTGTGCT TTGAGGTGGC GCACGAAGGA GGGCTCGAAA ATCTCTGCTA	1373
AAAACAAGAA GAAGGAACAG GGAACATGAT TAGTTTCGCT CGTATGGCAG AAAGTTAGG	1433
AGTCCAGGCT AAACTGCC TTGCCTCGC ACTCGTATT A TGTCGGGC TGATTGTTAC	1493
CGGCACGGGT TTCTACAGTG TACATACCTT GTCAGGGTTG GTGGGAATTC	1543

FIG. 2r:

Sequence 1

CTGCAGCCAG	GGCTGAAAAG	GAGGGATTCA	GTGAGGTCAT	GAAGGGAGGG	GACGGCGCCT	60
GGCTCCAATT	GCTCGATGGC	GCCCGGATTG	AGTGTCTGG	GCGCGGTCTT	GGAGAGTTG	120
GCTAGGGAGA	TAAATTGCT	GGCCATGGTG	GCGGCCCTG	ATGGGTTGGA	TGATTTCCTG	180
CATTCTGCAT	CATGAAATTG	ATGAAATCAT	CACTTTCTGG	GGGGTGGGTG	CACGGGATTG	240
AAGGTTGCTA	GGAGAGTGCA	TTGCTCGTAA	GCCCAGGAAG	CACGCGGGTT	TCAGGATGGT	300
GCATGGAAT	GGCATGAGCT	TTGCTGGATA	TGATTAGAGA	CATTAACTAT	TTTGGCGGAA	360
TGGAAGCACC	ATTCTCGCC	CGTAGAGCCG	GTAACCGCGA	CATTACCGGG	CGTAAAAAAGG	420
AAAGAGCATG	CAACTGACCA	ACAAGGAAAT	CGTCGTCACC	GGAGTGTCTC	CCGGTATCGG	480
TGCGGAAACT	GCCCGCGTTC	TGCGCTCTCA	CGGCGCCACA	GJGATTGGCG	TAGATCGCAA	540
CATGCCGAGC	CTGACTCTGG	ATGCTTCTCGT	TCAGGCTGAC	CTGAGCCATC	CTGAAGGCAT	600
CGATAAGGCC	ATCGGGACAG	CAAGCGAAC	GGAATTGCCA	GCTGGGGCGC	CCTCTGGTAA	660
GGTTGGGAAAG	CCCTGCAAAG	TAAACTGGAT	GGCTTCTTG	CCGCCAACCGA	TCTGATGGCG	720
CAGGGGATCA	AGATCTGATC	AAGAGACAGG	ATGAGGATCG	TTTCGATCGA	TTGAACAAAGA	780
TGGATTGCAC	GCAGGTTCTC	CGGCGCCTTG	GGTGGAGAGG	CTATTGCGCT	ATGACTGGC	840
ACAAACAGACA	ATCGGCTGCT	CTGATGCCGC	CGTGTCCGG	CTGTCAGCGC	AGGGCGCCC	900
GGTTCTTTT	GTCAAGACCG	ACCTGTCCGG	TGCCCTGAAT	GAACACTGAGG	ACGAGGCAGC	960
GCGGCTATCG	TGGCTGGCCA	CGACGGGCGT	TCCTTGCAGCA	GCTGTGCTCG	ACGTTGTCAC	1020
TGAAGCGGGA	AGGGACTGGC	TGCTATTGGG	CGAAGTGCCTG	GGGCAGGATC	TCCTGTCATC	1080
TCACCTTGCT	CCTGCCGAGA	AAAGTATCCAT	CATGGCTGAT	GCAATGCCGC	GGCTGCATAC	1140
GCTTGATCCG	GCTACCTGCC	CATTGACCA	CCAAGCGAAA	CATCGCATCG	AGCGAGCACG	1200
TACTCGGATG	GAAGCCGGTC	TTGTCGATCA	GGATGATCTG	GACGAAGAGC	ATCAGGGGCT	1260
CGCGCCAGCC	GAACCTGTCG	CCAGGCTCAA	GGCGCGCATG	CCCGACGGCG	AGGATCTCGT	1320
CGTGACCCAT	GGCGATGCCT	GCTTGCCGAA	TATCATGGTG	AAAAATGGCC	GCTTTCTGG	1380
ATTCATCGAC	TGTGGCCGGC	TGGGTGTGGC	GGACCGCTAT	CAGGACATAG	CGTTGGCTAC	1440
CCGTGATATT	GCTGAAGAGC	TTGGCGGCCGA	ATGGGCTGAC	CGCTTCTCG	TGCTTTACGG	1500
TATCGCCGCT	CCCGATTTCGC	AGCGCATCGC	CTTCTATCGC	CTTCTTGACG	AGTTCTTCTG	1560
AGCGGGACTC	TGGGGTTCGA	AATGACCGAC	CAAGCGACGC	CCTGGCCGCG	GTGATTGCAT	1620
TCATGTGTGC	TGAGGAGTCA	CGTTGGATCA	ACGGCATAAA	TATTCCAGTG	GACGGAGGTT	1680
TGGCATCGAC	CTACGTGTAA	GTTCGTGGAC	GCCCTTGCA	CGCGCACTAT	ATCTCTATGC	1740
AGCAGCTGAA	AGCAGCTTTG	GTTTTGATCG	GAGGTAGCGG	GGGAAAGGT	GCAGAAATGTC	1800
TAAATAATAA	AGGATTCTTG	TGAAGCTTA	GTTGTCCTGA	AACGAAAATA	AAAATAAAAGA	1860
GGAATGATAT	GAAAGCAAGT	AGATCAGTCT	GCACTTCAA	AATAGCTACC	CTGGCAGGCG	1920
CCATTATGC	AGCGCTGCCA	ATGTCAGCTG	CAAACCTCGAT	GCAGCTGGAT	GTAGGTAGCT	1980
CGGATTGGAC	GGTGCCTTGG	GGACAACACC	CTCAAGTATA	GCCTTGCCTC	TCGCCTGAAT	2040
GAGCAAGACT	CAAGTCTGAC	AAATGCGCCG	ACTGTCATG	GTTATATCCG	GATATTCAA	2100
GTCAGGGTGA	TCGTAACCTT	GACCGGGGGC	TTGGTATCCA	ATCGTCTCGA	TATTCTGGCT	2160
GCAG						2164

Sequence 2

CTGCAGCCAG	GGCTGAAAAG	GAGGGATTCA	GTGAGGTCAT	GAAGGGAGGG	GACGGCGCCT	60
GGCTCCAATT	GCTCGATGGC	GCGCGATTG	AGTGTCTTGG	GCGCGGTCTT	GGAGAGTTCG	120
GCTAGGGAGA	TAAATTGCT	GGCCATGGTG	GCGGCCCTG	ATGGGTTGGA	TGATTTCCTG	180
CATTCTGCAT	CATGAAATTC	ATGAAATCAT	CACTTTCTGG	GGGGTGGGTG	CACGGGATTG	240
AAGGTTGCTA	GGAGAGTGCA	TTGCTCGTAA	GCCCAGGAAG	CACGCGGGTT	TCAGGATGGT	300
GCATGGAAAT	GGCATGAGCT	TTGCTGGATA	TGATTAGAGA	CATTAACTAT	TTTGGCGGAA	360
TGGAAGCACG	ATTCTCGCC	CGGTAGAGCG	GTAACCGCGA	CATTCAAGGAC	CGTAAAAAAGG	420
AAAGAGCATG	CAACTGACCA	ACAAGAAAAT	CGTCGTCACC	GGAGTGTCTC	CCGGTATCGG	480
TGCGGAAACT	GCCC CGGTT	TGCGCTCTCA	CGGC GCCACA	GTGATTGGCG	TAGATCGCAA	540
CATGCCGAGC	CTGACTCTGG	ATGCTTTCTG	TCAGGCTGAC	CTGAGGCCATC	CTGAGGGGAG	600
AGGCGGTTTG	CGTATTGGC	GCATGCATAA	AAACTGTTGT	AATTCAATTAA	GCATTCTGCC	660
GACATGGAAG	CCATCACAAA	CGGCATGATG	AACCTGAATC	GCCAGCGGCA	TCAGCACCTT	720
GTCGCCTTGC	GTATAATATT	TGCCC ATGGA	CGCACACCGT	GGAAACGGAT	GAAGGCACGA	780
ACCCAGTTGA	CATAAGCCTG	TTCGGTTCTG	AAACTGTAAT	GCAAGTAGCG	TATGCCCTCA	840
CGCAACTGGT	CCAGAACCTT	GACCGAACGC	AGCGGTGGTA	ACGGCGCAGT	GGCGGTTTTC	900
ATGGCTTGTT	ATGACTGTTT	TTTGATACAG	TCTATGCCTC	GGGCATCCAA	GCAGCAAGCG	960
CGTTACGCCG	TGGGTCGATG	TTTGATGTTA	TGGAGCAGCA	ACGATGTTAC	GCAGCAGCAA	1020
CGATGTTACG	CAGCAGGGCA	GTCGCCCTAA	AACAAAGTTA	GGTGGCTCAA	GTATGGGCAT	1080
CATTGCGACA	TGTAGGCTCG	GCCCTGACCA	AGTCAAATCC	ATGCGGGCTG	CTCTTGATCT	1140
TTTCGGTCGT	GAGTTCGGAG	ACGTAGCCAC	CTACTCCCAA	CATCAGCCGG	ACTCCGATTA	1200
CCTCGGGAAC	TTGCTCCGTA	GTAAAGACATT	CATCGCGCTT	GCTGCCCTCG	ACCAAGAACG	1260
GGTTGTTGGC	GCTCTCGCG	CTTACGTTCT	GCCCAGGTT	GAGCAGCGCG	GTAGTGAGAT	1320
CTATATCTAT	GATCTCGCAG	TCTCCGGCGA	GCACCCGGAGG	CAGGGCATTG	CCACCGCGCT	1380
CATCAATCTC	CTCAACCATG	AGGCCAACGC	GCTTGGTGCT	TATGTGATCT	ACGTGCAAGC	1440
AGATTACGGT	GACGATCCCG	CAGTGGCTCT	CTATACAAAG	TTGGGCATAC	GGGAAGAAAGT	1500
GATGCACTTT	GATATCGACC	CAAGTACCGC	CACCTAACAA	TTCGTTCAAG	CCGAGATCGG	1560
CTTCCCTGAT	TGCATTCTATG	TGTGCTGAGG	AGTCACGTTG	GATCAACGGC	ATAAAATATT	1620
CAGTGGACGG	AGGTTTGGCA	TCGACCTACG	TGTAAGTTG	TGGACGCCCT	TTGCACCGCG	1680
ACTATATCTC	TATGCAGCAG	CTGAAAGCAG	CTTTGGTTT	GATCGGGAGGT	AGCGGGCGGA	1740
AAGGTGCGAGA	ATGTCTAAAT	AATAAAGGAT	TCTTGTGAAG	CTTAGTTGT	CCGTAAACGA	1800
AAATAAAAAT	AAAGAGGAAT	GATATGAAAG	CAAGTAGATC	AGTCTGCAC	TTCAAAATAG	1860
CTACCCCTGGC	AGGCGCCATT	TATGCAGCGC	TGCCAATGTC	AGCTGCAAAC	TCGATGCAGC	1920
TGGATGTAGG	TAGCTCGGAT	TGGACGGTGC	GTTGGGACA	ACACCCTCAA	GTATAGCCTT	1980
GCCCTCTCGCC	TGAATGAGCA	AGACTCAAGT	CTGACAAATG	CGCCGACTGT	CAATGGTTAT	2040
ATCCGGATAT	TCAAAGTCAG	GGTGATCGTA	ACTTGACCG	GGGGCTTGTT	ATCCAATCGT	2100
CTCGATATTG	TGGCTGCGAG					2119

Sequence 3

CTGCAGCCAG	GGCTGAAAAG	GAGGGATTCA	GTGAGGTCAT	GAAGGGAGGG	GACGGCGCCT	60
GGCTCCAATT	GCTCGATGGC	GCCGCGATTG	AGTGTCTGG	GCGCGGTCTT	GGAGAGTTCG	120
GCTAGGGAGA	TAAATTGCT	GGCCATGGTG	GCGGCCCTG	ATGGGTTGGA	TGATTTCTG	180
CATTCTGCAT	CATGAAATTG	ATGAAATCAT	CACTTTCCGG	GGGGTGGGTG	CACGGGATTG	240
AAGGTTGCTA	GGAGAGTGCA	TTGCTCGTAA	GCCCAGGAAG	CACGCCGGT	TCAGGGATGGT	300
GCATGGAAAT	GGCATGAGCT	TTGCTGGATA	TGATTAGAGA	CATTAACATAT	TTTGGCGGAA	360
TGGAAGCACC	ATTCCCTCGCC	CGGTAGAGCG	GTAACCGCGA	CATTCAAGGAC	CGTAAAAAGG	420
AAAGAGCATG	CAACTGACCA	ACAAGAAAAT	CGTCGTCACC	GGAGTGTCTT	CCGGTATCGG	480
TGCCGAAACT	GCCC CGGTTC	TGCGCTCTCA	CGGC GCCACA	GTGATTGGCG	TAGATCGCAA	540
CATGCCGAGC	CTGACTCTGG	ATGCTTCGT	TCAGGCTGAC	CTGAGCCATC	CTGAAGGCAT	600
CGATCAACGG	CATAAAATATT	CCAGTGGACG	GAGGTTGGC	ATCGACCTAC	GTGTAAGTTC	660
GTGGACGCC	TTTGACCGCG	CACTATATCT	CTATGCAGCA	GCTGAAAGCA	GCTTTGGTTT	720
TGATCGGAGG	TAGCGGGCGG	AAAGGTGCAG	AATGCTAAA	TAATAAAGGA	TTCTTGTGAA	780
GCTTAGTTG	TCCG TAAACG	AAAATAAAA	TAAAGAGGAA	TGATATGAAA	GCAAGTAGAT	840
CAGTCTGCAC	TTTCAAAATA	GCTACCCTGG	CAGGCCCAT	TTATGCAGCG	CTGCCAATGT	900
CAGCTGCAAA	CTCGATGCAG	CTGGATGTAG	GTAGCTCGGA	TTGGACGGTG	CGTTGGGGAC	960
AACACCCCTCA	AGTATAGCCT	TGCCTCTCGC	CTGAATGAGC	AAGACTCAAG	TCTGACAAAT	1020
GCGCCGACTG	TCAATGGTTA	TATCGGATA	TTCAAAGTCA	GGGTGATCGT	AACTTGACC	1080
GGGGGCTTGG	TATCCAATCG	TCTCGATATT	CTGGCTGCAG			1120

Sequence 4

GAATTCCGCG	TATCGCCCGG	TTCTATCAGC	GGGCCGCTT	CGAAAGTCAT	GGTGTAGCC	60
GGTAGGGTCT	TTTCTGGC	CATGCTTGT	GCCTGAACCT	TCGTTGACAT	AGGGCAGAGG	120
TGCGTTGCC	GCTTCGCTTC	GCATGAACC	GCATCGAGAT	GCTGAGGTCA	GGATTTTCC	180
TTAACTCGCG	TAAGCATTCT	GTCATTTTTT	TGGTGGCTT	GAACAGCCTG	ATGAAAGGTG	240
GTCTGCCCT	TTGAGGCCGA	TTCTGGCG	CTTGGCGCG	TCGAAGCGAT	GCTCCACTAC	300
CGATTAAGAT	AATTAAAATA	AGGAAACCGC	ATGGTTTCTT	ATGTGAATT	GTCTGGCATA	360
CTCCAGCTCA	AGGGCAATT	TTGGGCTATT	GGCTGAGCAG	TTGCTCTAT	ATGGTTATT	420
AGAATAACAA	TTGACTCCTC	AGGAGGTAG	CGATGAGCAT	TCTTGGTTTG	AATGGTGC	480
CGGTCGGAGC	TGAGCAGCTG	GGCTCGGCTC	TTGATCGCAT	GAAGAAGGCG	CACCTGGAGC	540
AGGGGCCTGC	AAACTTGGAG	CTGCGTCTGA	GTAGGCTGGA	TCGTGCGATT	GCAATGCTTC	600
TGGAAAATCG	TGAAGCAATT	GCCGACGCGG	TTTCTGCTGA	CTTGGCAAT	CGCAGCCGTG	660
AGCAAACACT	GCTTTCGAC	ATTGCTGGCT	CGGTGGCAAG	CCTGAAGGAT	AGCCGGAGC	720
ACGTGGCCAA	ATGGATGGAG	CCCGAACATC	ACAAGGCGAT	GTTTCCAGGG	GCGGAGGCAC	780
GCGTTGAGTT	TCAGCCGCTG	GGTGTGCGTT	GGGTCAATTAG	TCCCTGGAAC	TTCCCTATCG	840
TACTGGCCTT	TGGGCCGCTG	GCCGGCATAT	TCGCAGCAGG	TAATCGCGCC	ATGCTCAAGC	900
CGTCCGAGCT	TACCCCGCGG	ACTTCTGCC	TGCTTGCAGA	GCTAATTGCT	CGTTACTTCG	960
ATGAAACTGTA	GCTGACTACA	GTGCTGGCG	ACGCTGAAGT	CGGTGCGCTG	TTCAGTGCTC	1020
AGCCTTTCGA	TCATCTGATC	TTCACCGCGG	GCAC TGCCGT	GGCCAAGCAC	ATCATGCGTG	1080
CCGGCGCGGA	TAACCTAGTG	CCCGTTACCC	TGGAATTGGG	TGGCAAATCG	CCGGTGATCG	1140
TTTCCCCGAG	TGCAGATATG	GGGGACGTTG	CACAAACGGGT	TTTGACGGTG	AAAACCTTC	1200
ATGCCGGGCA	AATCTGCTG	GCACCGGACT	ATGTGCTGCT	GCCCGGAAGGG	ACAGCAAGCG	1260
AACCGGAATT	GCCAGCTGGG	GCCGCCCTCTG	GTAAAGGTTGG	GAAGCCCTGC	AAAGTAAACT	1320
GGATGGCTTT	CTTGCCGCCA	AGGATCTGAT	GGCGCAGGGG	ATCAAGATCT	GATCAAGAGA	1380
CAGGATGAGG	ATCGTTTCG	ATGATTGAAC	AAGATGGATT	GCACGCAGGT	TCTCCGGCCG	1440
CTTGGGTGGA	GAGGCTATT	GGCTATGACT	GGGCACAACA	GACAATCGGC	TGCTCTGATG	1500
CCGGCGTGT	CCGGCGTGTCA	GGCGCAGGGG	GCCCAGTCT	TTTTGTCAG	ACCGACCTGT	1560
CCGGTGCCT	GAATGAACTG	CAGGACGAGG	CAGCGCGGCT	ATCGTGGCTG	GCCACGACGG	1620
GCGTTCCCTG	CCGAGCTGTG	CTCGACGTTG	TCACTGAAGC	GGGAAGGGAC	TGGCTGCTAT	1680
TGGCGAAGT	GGCGGGCAG	GATCTCCTGT	CATCTCACCT	TGCTCCTGCC	GAGAAAGTAT	1740
CCATCATGGC	TGATGCAATG	CGCGCGCTGC	ATACGCTTGA	TCCGGCTACC	TGCCCATTCG	1800
ACCACCAAGC	GAAACATCGC	ATCGAGCGAG	CACGTACTCG	GATGGAAGCC	GGTCTTGTG	1860
ATCAGGATGA	TCTGGACGAA	GAGCATCAGG	GGCTCGCGCC	AGCGAAGTC	TTCGCCAGGC	1920
TCAAGGCGCG	CATGCCGAC	GGCGAGGATC	TCGTCGTGAC	CCATGGCGAT	GCCTGCTTGC	1980
CGAATATCAT	GGTGGAAAAT	GGCCGCTTTT	CTGGATTCTAT	CGACTGTTGGC	CGGCTGGGTG	2040
TGGCGGACCG	CTATCAGGAC	ATAGCGTTGG	CTACCCGTGA	TATTGCTGAA	GAGCTTGGCG	2100
CGCAATGGGC	TGACCGCTTC	CTCGTGCTTT	ACGGTATCGC	CGCTCCCGAT	TCGCAGCGCA	2160

TCGCCTTCTA	TCGCCTCTT	GACGAGTTCT	TCTGAGCGGG	ACTCTGGGT	TCGAAATGAC	2220
CGACCAAGCG	ACGCCGCCA	TGCCAAGCCT	GTTCTCGTGC	AAAGTCCTGT	GGGTGAGTCG	2280
AACTTGGCGA	TGCGCGCAC	CTACGGAGAA	GCGATCCACG	GACTGCTCTC	TGTCCCTCCTT	2340
TCAACGGAGT	GTTAGAACCG	TTGGTAGTG	TTTGAGACGG	GCCCAGGAGC	ATGCGCTTCT	2400
GGGCCCGTTT	CTTGAGTATT	CATTGGATAG	TCACGCGTGG	TAGCTTCGAG	CCTGCACAGC	2460
TGATGAGCAC	CCTGGAAGGC	GCGCTGTACG	CGGACCACTG	GGTTCATCTT	CGCCATTCTAT	2520
GACGGAACTC	CGTTCCCCAG	TACCGCGATG	ACTATTTCG	CTCTTCCGAT	GTCCGATTCC	2580
ACGCCGCCTG	ACGCTAACGCG	GGGGCGGGGG	CGCCCCATC	CCAGCCCCAGA	CAGCAACAAA	2640
TGAGTAGGCT	CTTGGATGCC	GCGGCGGCTG	AGATTGGTAA	CGGCAATTTC	GTCAATGTGA	2700
CGATGGATTG	GATTGCCGT	GCTGCCGGCG	TCTCAAAAAA	AACGCTGTAC	GTCTGGTGG	2760
CGAGCAAGGA	AGAACTCATT	TCCCGGTTAG	TGGCTCGAGA	CATGTCCAAC	CTTGAGGAAT	2820
TC						2822

Sequence 5

GAATTCCGCG	TATCGCCCGG	TTCTATCAGC	GGGCCGCTTT	CGAAAGTCAT	GGTGTAGCC	60
GGTAGGGTCT	TTTCCTTGGC	CATGCTTGT	GCCTGAACCT	TCGTTGACAT	AGGGCAGAGG	120
TGCGTTGCC	GCTTCGCTTC	GCATGAAACC	GCATCGAGAT	GCTGAGGTC	GGATTTTCC	180
TTAACTCGCG	TAAGCATTCT	GTCATTTTT	TGGTGCTTT	GAACAGCCTG	ATGAAAGGTG	240
GTCTGCCCT	TTGAGGCCGA	TTCTTGGCG	CTTGGCGCG	TCGAAGCGAT	GCTCCACTAC	300
CGATTAAGAT	AATTAAAATA	AGGAAACC	ATGGTTTCTT	ATGTGAATT	GTCTGGCATA	360
CTCCAGCTCA	AGGGCAATT	TTGGGCTATT	GGCTGAGCAG	TTGCCCTCAT	ATGGTTATT	420
AGAATAACAA	TTGACTCCTC	AGGAGGTCA	CGATGAGCAG	TCTGGTTTG	AATGGTGCCC	480
CGGTCGGAGC	TGAGCAGCTG	GGCTCGGCTC	TTGATCGCAT	GAAGAAGGCG	CACCTGGAGC	540
AGGGGCCTGC	AAACTGGAG	CTGCGTCTGA	GTAGGCTGGA	TCGTGCGATT	GCAATGCTTC	600
TGAAAATCG	TGAAGCAATT	GGCGACGCGG	TTTCTGCTGA	CTTGGCAAT	CGCAGCCGTG	660
AGCAAACACT	GCTTTGCGAC	ATTGCTGGCT	CGGTGGCAAG	CCTGAAGGAT	AGCCCGGAGC	720
ACGTGGCCAA	ATGGATGGAG	CCCGAACATC	ACAAGGCAT	GTTCCTCAGGG	GCGGAGGCAC	780
GC GTTGAGTT	TCAGCCGCTG	GGTGTGCGTT	GGGTCAATTAG	TCCCTGGAAC	TTCCCTATCG	840
TACTGGCCTT	TGGGCCGCTG	GGCGGCATAT	TCGCAGCAGG	TAATCGCGCC	ATGCTCAAGC	900
CGTCCGAGCT	TACCCCGCGG	ACTTCTGCC	TGCTTGC	GCTAATTGCT	CGTTACTTCG	960
ATGAAAATG	GCTGACTACA	GTGCTGGCG	ACGCTGAAGT	CGGTGCGCTG	TTCAGTGCTC	1020
AGCCTTTCGA	TCATCTGATC	TTCACCGGG	GA C T G C C G T	GGCCAAGCAC	ATCATGCGTG	1080
CCGC GGCGGA	TAACCTAGTG	CCCGTTACCC	TGGAATTGGG	TGGCAATCG	CCGGTGATCG	1140
TTTCCCGCAG	TGCAGATATG	GGCGACGTTG	CACAA CGGGT	GTTGACGGTG	AAAACCTTCA	1200
ATGCCGGGCA	AATCTGTCTG	GCACCGGACT	ATGTGCTGGG	GGAGAGGCGG	TTTGC GTATT	1260
GGGCGCATGC	ATAAAAAACTG	TTGTAATTCA	TTAACGATT	TGCCGACATG	GAAGCCATCA	1320
CAAACGGCAT	GATGAACCTG	AATCGCCAGC	GGCATCAGCA	CCTTGTGCC	TTGCGTATAA	1380
TATTTGCCCA	TGGACGCACA	CCGTGGAAAC	GGATGAAGGG	ACGAACCCAG	TTGACATAAG	1440
CCTGTTGGT	TCGTAAACTG	TAATGCAAGT	AGCGTATGCG	CTCACGCAAC	TGGTCCAGAA	1500
CCTTGACCGA	ACGCAGCGGT	GGTAACGGCG	CAGTGGCGGT	TTTCATGGCT	TGTTATGACT	1560
GT TTTTTG	ACAGTCTATG	CCTCGGGCAT	CCAAGCAGCA	AGCGCGTTAC	GCCGTGGTC	1620
GATGTTTGAT	GTTATGGAGC	AGCAACGATG	TTACCGAGCA	GCAACGATGT	TACGCAGCAG	1680
GGCAGTCGCC	CTAAAACAAA	GTTAGGTGGC	TCAAGTATGG	GCATCATTG	CACATGTAGG	1740
CTCGGCCCTG	ACCAAGTCAA	ATCCATGCC	GCTGCTCTTG	ATCTTTTCGG	TCGTGAGTTC	1800
GGAGACGTAG	CCACCTACTC	CCAACATCAG	CCGGACTCCG	ATTACCTCGG	GAAC TTGCTC	1860
CGTAGTAAGA	CATT CATCGC	GCTTGTGCC	TTCGACCAAG	AAGCGGTGT	TGGCGCTCTC	1920
GCGGCTTACG	TTCTGCCAG	GGTGAGCAG	CCGCGTAGTG	AGATCTATAT	CTATGATCTC	1980
GCAGTCTCCG	GCGAGCACCG	GAGGCAGGGC	ATTGCCACCG	CGCTCATCAA	TCTCCTCAAG	2040
CATGAGGCCA	ACGCGCTTGG	TGCTTATGTG	ATCTACGTGC	AAGCAGATTA	CGGTGACGAT	2100
CCCGCAGTGG	CTCTCTATAC	AAAGTTGGGC	ATACGGGAAG	AA GTGATGCA	CTTTGATATC	2160

GACCCAAGTA	CCGCCACCTA	ACAATTGTTT	CAAGCCGAGA	TCGGCTTCCC	TGCAAAGTCC	2220
TGTGGGTGAG	TCGAACCTGG	CGATGCGCGC	ACCCTACGGA	GAAGCGATCC	ACGGACTGCT	2280
CTCTGTCCTC	CTTTCAACGG	AGTGTAGAA	CCGTTGGTAG	TGGTTTGGA	CGGGCCCAGG	2340
AGCATGCGCT	TCTGGGCCCC	TTCTTGAGT	ATTCAATTGGA	TAGTCACGCG	TGGTAGCTTC	2400
GAGCCTGCAC	AGCTGATGAG	CACCCCTGGAA	GGCGCGCTGT	ACGCGGACGA	CTGGGTTCAT	2460
CTTCGCCATT	CATGACGGAA	CTCCGTTCCC	CAGTACCGCG	ATGACTATTT	TGCCTCTTCC	2520
GATGTCCGAT	TCCACGCCGC	CTGACGCTAA	GCGGGGCGG	GGGCGCCCGC	ATCCCAGCCC	2580
AGACAGCAAC	AAATGAGTAG	GCTCTTGGAT	GCCGCGGCGG	CTGAGATTGG	TAACGGCAAT	2640
TTCGTCAATG	TGACGATGGA	TTCGATTGCC	CGTGCTGCCG	GCGTCTCAAA	AAAAACGCTG	2700
TACGTCTTGG	TGGCGAGCAA	GGAAGAACTC	ATTTCGGCGGT	TAGTGGCTCG	AGACATGTCC	2760
AACCTTGAGG	AATTC					2775

Sequence 6

GAATTCCGCG	TATCGCCCGG	TTCTATCAGC	GGGCCGCTT	CGAAAGTCAT	GGTGTAGCC	60
GGTAGGGTCT	TTTTCTGGC	CATGCTTGT	GCCTGAACCT	TCGTTGACAT	AGGGCAGAGG	120
TGCGTTGCC	GCTTCGCTTC	GCGATGAACC	GCATCGAGAT	GCTGAGGTCA	GGATTTC	180
TTAACTCGCG	TAAGCATTCT	GTCATTTC	TGGTGCTT	GAACAGCCTG	ATGAAAGGTG	240
GTCTGCCCT	TTGAGGCCGA	TTCTGGCG	CTTGGCGCG	TCGAAGCGAT	GCTCCACTAC	300
CGATTAAGAT	AATTAAAATA	AGGAAACCGC	ATGGTTCTT	ATGTGAATT	GTCTGGCATA	360
CTCCAGCTCA	AGGGCAATT	TTGGGCTATT	GGCTGAGCAG	TTGCCCTAT	ATGGTTATT	420
AGAATAACAA	TTGACTCCTC	AGGAGGTCA	CGATGAGCAT	TCTTGTTT	AATGGTGC	480
CGGTCGGAGC	TGAGCAGCTG	GGCTCGGCTC	TTGATCGCAT	GAAGAAGGCG	CACCTGGAGC	540
AGGGGCCCTG	AAACTGGAG	CTGCGTCTGA	GTAGGCTGGA	TCTGCGATT	GCAATGCTTC	600
TGAAAATCG	TGAAGCAATT	GGCGACGCCG	TTTCTGCTGA	CTTTGGCAAT	CGCAGCCGTG	660
AGCAAACACT	GCTTTCGAC	ATTGCTGGCT	CGGTGCAAG	CCTGAAGGAT	AGCCGCGAGC	720
ACGTGGCAA	ATGGATGGAG	CCCGAACATC	ACAAGGCAT	GTTTCCAGGG	GGGGAGGCAC	780
CGCTTGAGTT	TCAGCCGCTG	GGTGTGTT	GGGTGATTAG	TCCCCTGAAAC	TTCCCTATCG	840
TACTGGCTT	TGGGCCGCTG	GGCGGCATAT	TCGCAGCAGG	TAATCGCGCC	ATGCTCAAGC	900
CGTCCGAGCT	TACCCCGCGG	ACTTCTGCC	TGCTTGC	GCTAATTGCT	CGTTACTTCG	960
ATGAAACTGA	GCTGACTACA	GTGCTGGCG	ACGCTGAAGT	CGGTGCGCTG	TTCAGTGCTC	1020
AGCCTTCGA	TCATCTGATC	TTCACCGGCG	GACTGCCGT	GGCCAAGCAC	ATCATGCGTG	1080
CCGGCCGCGA	TAACCTAGTG	CCCGTTACCC	TGGAATTGGG	TGGCAAATCG	CCGGTGTATCG	1140
TTTCCCGCAG	TGCAGATATG	GGGACGTTG	CACAACGGGT	GTTGACGGTG	AAAACCTTC	1200
ATGCCGGGCA	AATCTGTCTG	GCACCGTGGG	TGAGTCGAAC	TTGGCGATGC	GCGCACCC	1260
CGGAGAAGCG	ATCCACGGAC	TGCTCTCTGT	CCTCC	ACGGAGTGT	AGAACCGTTG	1320
GTAGTGGTTT	TGGACGGGCC	CAGGAGCATG	CGCTTCTGGG	CCCGTTCTT	GAGTATT	1380
TGGATAGTCA	CGCGTGGTAG	CTTCGAGCC	GCACAGCTGA	TGAGCACCC	GGAGGCGCG	1440
CTGTACCGGG	ACGACTGGGT	TCATCTTCG	CATTGATGAC	GGAAC	TCCCCAGTAC	1500
CGCGATGACT	ATTTGCCTC	TTCGGATGTC	CGATTCCACG	CCGCGTGACG	CTAACGGGG	1560
GCGGGGGCGC	CCGCATCCCA	GCCGAGACAG	CAACAAATGA	GTAGGCTCTT	GGATGCCGCG	1620
GCGGCTGAGA	TTGGTAACGG	CAATTCGTC	AATGTGACGA	TGGATTGAT	TGCCCCGTGCT	1680
GCGGGCGTCT	CAAAAAAAAC	GCTGTACGTC	TTGGTGGCGA	GCAAGGAAGA	ACTCATT	1740
CGGTTAGTGG	CTCGAGACAT	GTCCAACCTT	GAGGAATT			1779

Sequence 7

CTGCAGCCGA	GCATCGATTG	AGCACTTTAC	CCAGCTGCGC	TGGCTGACCA	TTCAGAATGG	60
CCCGCGGCAC	TATCCAATCT	AAATCGATCT	TCGGGCGCCG	CGGGCATCAT	GCCCCGGCG	120
CTCGCCTCAT	TTCAATCTCT	AACTTGATAA	AAACAGAGCT	GTTCTCCGGT	CTTGGTGGAT	180
CAAGGCCAGT	CGCGGAGAGT	CTCGAAGAGG	AGAGTACAGT	GAACGCCGAG	TCCACATTGC	240
AACCAGCAGGC	ATCATCATGC	TCTGCTCAGC	CACGCTACCG	CAGTGTGTCG	ATTGGTCATC	300
CTCCGGTTGA	GGTTACGCAA	GACGCTGGAG	GTATTGTCCG	GATGCGTTCT	CTCGAGGCAG	360
TTCTTCCCTT	CCCGGGTCGA	ATCTTGAGC	GTCTCGAGCA	TTGGGCTAAG	ACCCGTCCAG	420
AACAAACCTG	CGTTGCTGCC	AGGGCGGCAA	ATGGGAAATG	CGCTCGTATC	AGCTACGCGG	480
AAATGTTCCA	CAACGTCGCC	GCCATCGCAC	AGAGCTTGCT	TCCTTACGGA	CTATCGGCAG	540
AGCGTCCGCT	GCTTATCGTC	TCTGGAAATG	ACCTGGAACA	TCTTCAGCTG	GCATTGGGG	600
CTATGTATGC	GGGCATTCCTT	TATTGCCCCG	TGTCTCCTGC	TTATTCACTG	CTGTCGCAAG	660
ATTGGCGAA	GCTGCGTCAC	ATCGTAGGTC	TTCTGCAACC	GGGACTGGTC	TTTGTGCGCG	720
ATGCAGCACC	TTTCCAGGGG	ACAGCAAGCG	AACCAGGAATT	GCCAGCTGGG	GCGCCCTCTG	780
GTAAAGGTTGG	GAAGCCCTGC	AAAGTAAACT	GGATGGCTTT	CTTGCCGCCA	AGGATCTGAT	840
GGCGCAGGGGG	ATCAAGATCT	GATCAAGAGA	CAGGATGAGG	ATCGTTTCGC	ATGATTGAAC	900
AAGATGGATT	GCACGCAGGT	TCTCCGGCCG	CTTGGGTGGA	GAGGCTATTG	GGCTATGACT	960
GGGCACAACA	GACAATCGGC	TGCTCTGATG	CCGCCGTGTT	CCGGCTGTCA	GCGCAGGGGC	1020
GCCC GGTTCT	TTTGCTCAAG	ACCGACCTGT	CCGGTGCCT	GAATGAAC	CAGGACGAGG	1080
CAGCGCGGCT	ATCGTGGCTG	GCCACGACGG	GCGTTCTTG	CCGAGCTGTG	CTCGACGTTG	1140
TCACTGAAGC	GGGAAGGGAC	TGGCTGCTAT	TGGGCGAAGT	GCCGGGGCAG	GATCTCCTGT	1200
CATCTCACCT	TGCTCCTGCC	GAGAAAGTAT	CCATCATGGC	TGATGCAATG	CGGC GGCTGC	1260
ATACGCTTGA	TCCGGCTACC	TGCCCATTCG	ACCACCAAGC	GAAACATCGC	ATCGAGCGAG	1320
CACGTACTCG	GATGGAAGCC	GGTCTTGTG	ATCAGGATGA	TCTGGACGAA	GAGCAGTCAGG	1380
GGCTCGCGCC	AGCCGAAC	TTCGCCAGGC	TCAAGGCGCG	CATGCCCGAC	GGCGAGGATC	1440
TCGTCGTGAC	CCATGGCGAT	GCTGCTTGC	CAGAATATCAT	GTTGGAAAAT	GGCCGCTTTT	1500
CTGGATTCTAT	CGACTGTGCC	CGGCTGGGTG	TGGCGGACCG	CTATCAGGAC	ATAGCGTTGG	1560
CTACCCGTGA	TATTGCTGAA	GAGCTTGGCG	GCGAATGGGC	TGACCGCTTC	CTCGTGCCTT	1620
ACGGTATCGC	CGCTCCCGAT	TCGCAGCGCA	TCGCCTTCTA	TCGCCTTCTT	GACGAGTTCT	1680
TCTGAGCGGG	ACTCTGGGT	TCGAAATGAC	CGACCAAGCG	ACGCCCCGT	TTTGCAATGG	1740
CGGT CGCGA	AAGTTGATGC	GCTGTATCGT	GGTGAAGATC	AATCCATGCT	GC GTGACGAG	1800
GCCACACTGT	GAGTTGGTCA	GGGGGGGCTT	ACTCGCGTT	TTCCGACACT	GC GTTGGTTG	1860
CGGCAGTGCG	CACCCCTGG	ATTGATTGCG	GGGGTGCCT	GTCGCTGGTG	TCGCCTATCG	1920
ACTTAGGGGT	AAAGGTCGCT	CGCGAAGTTC	TGATGCGTGC	GTCGCTTGAA	CCACAAATGG	1980
TCGATAGCGT	ACTCGCAGGC	TCTATGGCTC	AAGCAAGCTT	TGATGCTTAC	CTGCTCCCGC	2040
GGCACATTGG	CTTGTACAGC	GGTGTTCCTCA	AGTCGGTTCC	GCGCTTGGGG	GTGCAGCGCA	2100
TTTGCAGGCAC	AGGCTTCGAA	CTGCTTCGGC	AGGCCGGCGA	GCAGATTCTC	CAAGGGCGCTG	2160
ATCACGTGCT	GTGTGTCGCG	GGCTGCAG				2188

Sequence 8

CTGCAGCCGA	GCATCGATTG	AGCACTTTAC	CCAGCTGCGC	TGGCTGACCA	TTCAGAATGG	60
CCCGCGGCAC	TATCCAATCT	AAATCGATCT	TCGGGCGCCG	CGGGCATCAT	GCCCCGGCG	120
CTCGCCTCAT	TTCAATCTCT	AACTTGATAA	AAACAGAGCT	GTTCCTCCGGT	CTTGGTGGAT	180
CAAGGCCAGT	CGCGGAGAGT	CTCGAAGAGG	AGAGTACAGT	GAACGCCGAG	TCCACATTGC	240
AACCGCAGGC	ATCATCATGC	TCTGCTCAGC	CACGCTACCG	CAGTGTGTCG	ATTGGTCATC	300
CTCCGGTTGA	GGTTACGCAA	GACGCTGGAG	GTATTGTCCG	GATGCGTTCT	CTCGAGGCAG	360
TTCTTCCCTT	CCCGGGTCGA	ATTCTTGAGC	GTCTCGAGCA	TTGGGCTAAG	ACCCGTCCAG	420
AACAAACCTG	CGTTGCTGCC	AGGGCGGCAA	ATGGGGAATG	GCCTCGTATC	AGCTACGCGG	480
AAATGTTCCA	CAACGTCCGC	GCCATCGCAC	AGAGCTTGCT	TCCTTACGGA	CTATCGGCAG	540
AGCGTCCGCT	GCTTATCGTC	TCTGGAAATG	ACCTGGAACA	TCTTCAGCTG	GCATTTGGGG	600
CTATGTATGC	GGGCATTCCC	TATTGCCCCG	TGTCTCCTGC	TTATTCACTG	CTGTCGCAAG	660
ATTTGGCGAA	GCTGCGTCAC	ATCGTAGGTC	TTCTGCAACC	GGGACTGGTC	TTTGGCTGCCG	720
ATGCAGCACC	TTTCCAGGGG	GAGAGGGCGT	TTGCGTATTG	GGCGCATGCA	TAAAAACTGT	780
TGTAATTCAT	TAAGCATTCT	GCCGACATGG	AAGCCATCAC	AAACGGCATG	ATGAACCTGA	840
ATCGCCAGCG	GCATCAGCAC	CTTGTGCGCT	TGCGTATAAT	ATTGCCCCAT	GGACGCACAC	900
CGTGGAAACG	GATGAAGGCA	CGAACCCAGT	TGACATAAGC	CTGTTCGGTT	CGTAAACTGT	960
AATGCAAGTA	GCGTATGCGC	TCACGCAACT	GGTCCAGAAC	CTTGACCGAA	CGCAGCGGTG	1020
GTAACGGCGC	AGTGGCGGTT	TTCATGGCTT	GTTATGACTG	TTTTTTTGTG	CAGTCTATGC	1080
CTCGGGCATC	CAAGCAGCAA	GCGCGTTACG	CCGTGGGTCG	ATGTTTGATG	TTATGGAGCA	1140
GCAACGATGT	TACGCAGCAG	CAACGATGTT	ACGCAGCAGG	GCAGTCGCC	TAAAACAAAG	1200
TTAGGTGGCT	CAAGTATGGG	CATCATTGCG	ACATGTAGGC	TCGGCCCTGA	CCAAGTCAAA	1260
TCCATGCGGG	CTGCTTCTGA	TCTTTTCCGGT	CGTGAGTTCG	GAGACGTAGC	CACCTACTCC	1320
CAACATCAGC	CGGACTCCGA	TTACCTCGGG	AACTTGCTCC	GTAGTAAGAC	ATTCATCGCG	1380
CTTGCTGCCT	TCGACCAAGA	AGCGGTTGTT	GGCGCTCTCG	CGGCTTACGT	TCTGCCAGG	1440
TTTGAGCAGC	CGCGTAGTGA	GATCTATATC	TATGATCTCG	CAGTCTCCGG	CGAGCACCAGG	1500
AGGCAGGGCA	TTGCCAACCGC	GCTCATCAAT	CTCCTCAAGC	ATGAGGCCAA	CGCGCTTGGT	1560
GCTTATGTGA	TCTACGTGCA	ACCAGATTAC	GGTGACGATC	CCGCACTGGC	TCTCTATACA	1620
AAAGTGGGCA	TACGGGAAGA	AGTGATGCAC	TTTGATATCG	ACCCAAAGTAC	CGCCACCTAA	1680
CAATTGTTTC	AAGCCGAGAT	CGGCTTCCCC	TGTTTTGCAA	TGGCGGTGG	CGAAAGTTGA	1740
TGCGCTGTAT	CGTGGTGAAG	ATCAATCCAT	GCTGCGTGAC	GAGGCCACAC	TGTGAGTTGG	1800
TCAGGGGGGG	CTTACTCGGC	GTTTTCCGAC	ACTGCGTTGG	TTGCGGCAGT	CGGCACCCCC	1860
TGGATTGATT	GGGGGGGTGC	CCTGTCGCTG	GTGTGCCCTA	TCGACTTAGG	GGTAAAGGTC	1920
GCTCGCGAAG	TTCTGATGCG	TGCGTCGCTT	GAACCAACAA	TGGTCGATAG	CGTACTCGCA	1980
GGCTCTATGG	CTCAAGCAAG	CTTGATGCT	TACCTGCTCC	CGCGGCACAT	TGGCTTGTAC	2040
ACCGGTGTTTC	CCAAGTCGGT	TCCGGCCTTG	GGGGTGCAGC	GCATTTGGGG	CACAGGCTTC	2100
GAACTGCTTC	GGCAGGCCGG	CGAGCAGATT	TCCCAAGGCG	CTGATCACGT	GCTGTGTGTC	2160
GGGGGCTGCA	G					2171

Sequence 9

CTGCAGCCGA	GCATCGATTG	AGCACTTTAC	CCAGCTGCGC	TGGCTGACCA	TTCAGAATGG	60
CCCGCGGCAC	TATCCAATCT	AAATCGATCT	TCGGGCGCCG	CGGGCATCAT	GCCC CGGGCG	120
CTCGCCTCAT	TTCAATCTCT	AACTTGATAA	AAACAGAGCT	GTTCTCCGGT	CTTGGTGGAT	180
CAAGGCCAGT	CGCGGAGAGT	CTCGAAGAGG	AGAGTACAGT	GAACGCCGAG	TCCACATTGC	240
AACCGCAGGC	ATCATCATGC	TCTGCTCAGC	CACGCTACCG	CAGTGTGTG	ATTGGTCATC	300
CTCCGGTTGA	GGTTACGCAA	GACGCTGGAG	GTATTGTCCG	GATGCGTTCT	CTCGAGGGCGC	360
TTCTTCCCTT	CCCGGGTCGA	ATTCTTGAGC	GTCTCGAGCA	TTGGGCTAAG	ACCCGTCCAG	420
AACAAACCTG	CGTTGCTGCC	AGGGCGGCAA	ATGGGGAATG	GCGTCGTATC	AGCTACGCCG	480
AAATGTTCCA	CAACGTCGC	GCCATCGCAC	AGAGCTTGCT	TCCTTACGGA	CTATCGGCAG	540
AGCGTCCGCT	GCTTATCGTC	TCTGGAAATG	ACCTGGAACA	TCTTCAGCTG	GCATTGGGG	600
CTATGTATGC	GGGCATCCC	TATTGCCCGG	TGTCTCCTGC	TTATTCACTG	CTGTCGCAAG	660
ATTTGGCGAA	GCTGCGTCAC	ATCGTAGGTC	TTCTGCAACC	GGGACTGGTC	TTTGCTGCCG	720
ATGCAGCACC	TTTCCAGCGC	GCTGTTTG	AATGGCGGT	GGCGAAAGTT	GATGCGCTGT	780
ATCGTGGTGA	AGATCAATCC	ATGCTGCGTG	ACGAGGCCAC	ACTGTGAGTT	GGTCAGGGGG	840
GGCTTACTCG	CGCTTTTCCG	ACACTCCGTT	GGTTGCCGCA	GTGCGCACCC	CCTGGATTGA	900
TTGCGGGGGT	GCCCTGTCGC	TGGTGTGCGC	TATCGACTTA	GGGGTAAAGG	TCGCTCGCGA	960
AGTTCTGATG	CGTGCCTCGC	TTGAACCACA	AATGGTCGAT	AGCGTACTCG	CAGGCTCTAT	1020
GGCTCAAGCA	AGCTTTGATG	CTTACCTGCT	CCCGCGGCAC	ATTGGCTTGT	ACAGCGGTGT	1080
TCCAAGTCG	GTTCCGGCCT	TGGGGGTGCA	GCGCATTG	GGCACAGGCT	TCGAACTGCT	1140
TCGGCAGGCC	GGCGAGCAGA	TTTCCCAAGG	CGCTGATCAC	GTGCTGTG	TCGCGGGCTG	1200
						1203
CAG						

Sequence 10

GAATTCCCTT	GGCGACGAAA	GGGCAGCAGG	CCGCATGGCC	ACGGCTGGC	GGTAACGTGAT	60
GCTTGCCTTA	ATCGTTAAC	GTGGAAATT	CCTTGCCAAA	TTTCGGCGAG	AGAATCATGC	120
GGGTACGCC	TTCCGTGCG	TTTGATCTGC	GCTTCCTGTC	CTTGAATCAG	AAAAATAGTT	180
AATTGACAGA	ACTATAAGGTT	CCGAGTAGCT	TTTGCTCAC	CACCAAAATCC	ACAGCACTGG	240
GGTGCACGAT	GAATAGCTAC	GATGGCCGTT	GGTCTACCGT	TGATGTGAAG	GTTGAAGAAG	300
GTATCGCTT	GGTCACGCTG	AACCAGCCGG	AGAAGCGAA	CGCAATGAGC	CCAACACTCTCA	360
ATCGAGAGAT	GGTCAGGTT	CTGGAGGTG	TGGACAGGA	CGCAGATGCT	CGCGTGTCTG	420
TTCTGACTGG	TGCAGGCAGA	TCCCTGGACCG	CGGGCATGGA	CCTGAAGGAG	TATTTCCGCG	480
AGACCGATGC	TGGCCCCGAA	ATTCTGCAAG	AGAAGATTG	TCGGGGACAG	CAAGCGAAC	540
GGAATTGCCA	GCTGGGGCGC	CCTCTGGTAA	GGTTGGGAAG	CCCTGCAAAG	TAAACTGGAT	600
GGCTTCTTG	CCGCCAAGGA	TCTGATGGCG	CAGGGGATCA	AGATCTGATC	AAGAGACAGG	660
ATGAGGATCG	TTTCGCATGA	TTGAACAAGA	TGGATGCA	GCAGGTTCTC	CGGCCGCTTG	720
GGTGGAGAGG	CTATTCCGGCT	ATGACTGGGC	ACAACAGACA	ATCGGCTGCT	CTGATGCCGC	780
CGTGTCCGG	CTGTCAGCGC	AGGGGCGCCC	GGTTCTTTT	GTCAAGACCG	ACCTGTCCGG	840
TGCCCTGAAT	GAACTGCAGG	ACGAGGCAGC	CGGGCTATCG	TGGCTGGCCA	CGACGGCGT	900
TCCTTGC	GCTGTGCTCG	ACGTTGTCAC	TGAAGCGGA	AGGGACTGGC	TGCTATTGGG	960
CGAAGTGC	GGGCAGGATC	TCCTGTCATC	TCACCTTGCT	CCTGCCAGA	AAGTATCCAT	1020
CATGGCTGAT	GCAATGCGGC	GGCTGCATAC	GCTTGATCCG	GCTACCTGCC	CATTCGACCA	1080
CCAAGCGAA	CATCGCATCG	AGCGAGCAGC	TACTCGGATG	GAAGCCGGTC	TTGTCGATCA	1140
GGATGATCTG	GACGAAGAGC	ATCAGGGCT	CGCGCAGGCC	GAACGTGTCG	CCAGGCTCAA	1200
GGCGCGCATG	CCCGACGGCG	AGGATCTCGT	CGTGACCCAT	GGCGATGCGCT	GCTTGCCGAA	1260
TATCATGGT	GAAAATGGCC	GCTTTCTGG	ATTCTATCGAC	TGTGGCCGGC	TGGGTGTGGC	1320
GGACCGCTAT	CAGGACATAG	CGTTGGCTAC	CCGTGATATT	GCTGAAGAGC	TTGGCGGCAG	1380
ATGGGCTGAC	CGCTTCTCTG	TGCTTTACGG	TATCCCGCT	CCCGATTCCG	AGCGCATCGC	1440
CTCTATCGC	CTTCTTGACG	AGTTCTCTG	AGCGGGACTC	TGGGGTTCGA	AATGACCGAC	1500
CAAGCGACG	CCCGAGCAGG	GCATGAAGCA	GTTCCCTGAC	GAGAAAAGCA	TCAAGCCGGG	1560
CTTGAGACC	TACAAGCGCT	GATAAAATGCG	CCGGGGCCCT	CGCTGCGCCC	CCGGCCCTTCC	1620
AATAATGACA	ATAATGAGGA	GTGCCAATG	TTTCACGTG	CCCTGCTTAT	TGGTGGTAAG	1680
CCTTGTTCAG	CATCTGATGA	GCGCACCTTC	GAGCGTCGTA	CCCCGCTGAC	CGGAGAAGTG	1740
GTATCGCGC	TCGCTGCTGC	CAGTTGGAA	GATGCGGACG	CCGCACTGGC	CGCTGCACAG	1800
GCTGCGTTTC	CTGAATGGGC	GGCGCTTGCT	CCGAGCGAAC	GCCGTGCCCG	ACTGCTGCGA	1860
GCGGCGGATC	TTCTAGAGGA	CCGTTCTTCC	GAGTCACCG	CCGCAGCGAG	TGAAACTGGC	1920
GCAGCGGGAA	ACTGGTATGG	GTAACTCGTT	TACCTGGCGG	CGGGCATGTT	GCGGGAAATT	1980
C						1981

Sequence 11

GAATTCCCT	GGCGACGAAA	GGGC GG CAGG	CCGC ATGGCC	ACGG CTGGGC	GGTA ACTGAT	60
GCTTGCCTA	ATCGTTAAC	GTTTGAAATT	CCTTGC CAAA	TTTCGGC GAG	AGAATCATGC	120
GGGTACGCCT	TTCCGTGCG	TTTGATCTGC	GCTTCCGTGC	CTTGAATCAG	AAAAATAGTT	180
AATTGACAGA	ACTATAAGGTT	CGCAGTAGCT	TTTGCTCACC	CACCAATCC	ACAGCACTGG	240
GGTGCACGAT	GAATAGCTAC	GATGGCCGTT	GGTCTACCGT	TGATGTGAAG	GTTGAAGAAG	300
GTATCGCTTG	GGTCACGCTG	AACC GCCC GG	AGAAGCGCAA	CGCAATGAGC	CCAACTCTCA	360
ATCGAGAGAT	GGTCGAGGTT	CTGGAGGTG	TGGAGCAGGA	CGCAGATGCT	CGCGTGCTTG	420
TTCTGACTGG	TGCAGGGC	AA	TCC TGGACCG	CGGGC ATGGA	CCTGAAGGAG	480
AGACCGATGC	TGGCCCCGAA	ATTCTGCAAG	AGAAGATTG	TCGGGGGAGA	GGCGGTTTGC	540
GTATTGGCG	CATGCATAAA	AACTGTTGTA	ATTCA TTAA	CATTCTGCCG	ACATGGAAGC	600
CATCACAAAC	GGCATGATGA	ACCTGAATCG	CCAGCGGCAT	CAGCACCTTG	TCGCC TTGCG	660
TATAATATTT	GCCC ATGGAC	GCAC ACCGTG	GAAACGGATG	AAGGCACGAA	CCCAGTTGAC	720
ATAAGCCTGT	TCGGTTCGTA	AACTGTAATG	CAAGTAGCGT	ATGC GCTCAC	GCAACTGGTC	780
CAGAACCTTG	ACCGAACGCA	GCGGTGGTAA	CGGCGCAGTG	GCGGTTTTC	TGGCTTGTTA	840
TGACTGTTT	TTTGTACAGT	CTATGCCCTG	GGCATCCAAG	CAGCAAGCGC	GTTACGCCGT	900
GGGTCGATGT	TTGATGTTAT	GGAGCAGCAA	CGATGTTACG	CAGCAGCAAC	GATGTTACGC	960
AGCAGGGCAG	TCGCCCTAAA	ACAAAGTTAG	GTGGCTCAAG	TATGGGCATC	ATTCGCACAT	1020
GTAGGCTCGG	CCCTGACCAA	GTCAAATCCA	TGCGGGCTGC	TCTTGATCTT	TTCGGTCGTG	1080
AGTTCCGGAGA	CGTAGGCCACC	TACTCCCAAC	ATCAGCCGGA	CTCCGATTAC	CTCGGGAACT	1140
TGCTCCGTAG	TAAGACATTC	ATCGCGCTTG	CTGCCTTCGA	CCAAGAAGCG	GTTGTTGGCG	1200
CTCTCGCGGC	TTACGTTCTG	CCCAGGTTTG	AGCAGCCGCG	TAGTGAGATC	TATATCTATG	1260
ATCTCGCAGT	CTCCGGCGAG	CACCGGAGGC	AGGGCATTGC	CACCGCGCTC	ATCAATCTCC	1320
TCAAGCATGA	GGCCAACGCG	CTTGGTGCTT	ATGTGATCTA	CGT GCAAGCA	GATTACGGTG	1380
ACGATCCC	AGTGGCTCTC	TATACAAAGT	TGGGCATACG	GGAAGAAGTG	ATGC ACTTTG	1440
ATATCGACCC	AAAGTACGCC	ACCTAACAA	TCGTTCAAGC	CGAGATCGGC	TTCCCCGAGC	1500
AGGGCATGAA	GCAGTTCTT	GACGAGAAAA	GCATCAAGCC	GGGCTTGCG	ACCTACAAGC	1560
GCTGATAAAAT	GGCGCCGGGGC	CCTCGCTGCG	CCCCCGGCCT	TCCA ATAATG	ACAATAATGA	1620
GGAGTGCCC	ATGTTTACG	TGCCCTGCT	TATTGGTGGT	AAGCCTTGT	CAGCATCTGA	1680
TGAGCGCACC	TTCGAGCGTC	GTAGCCCGCT	GACCGGAGAA	GTGGTATCGC	GCGTCGCTGC	1740
TGCCAGTTG	GAAGATGCGG	ACGCCGAGT	GGCCGCTGCA	CAGGCTGCGT	TTCCCTGAATG	1800
GGCGCGCTT	GCTCCGAGCG	AACGCCGTG	CCGACTGCTG	CGAGCGGGCG	ATCTTCTAGA	1860
GGACCGTTCT	TCCGAGTTCA	CCGCCGCAGC	GAGT GAAACT	GGCGCAGCGG	GAAACTGGTA	1920
TGGGTTAAC	GT	TTACCTGG	CGGC GG GCAT	GTTGCGGGGA	ATT	1964

Sequence 12

GAATTCCCT	GGCGACGAAA	GGGCAGCAGG	CCGCATGGCC	ACGGCTGGC	GGTAAGTGT	60
GCTTGCCTTA	ATCGTTAAC	GTGGAAATT	CCTTGCCAAA	TTTCGGCGAG	AGAATCATGC	120
GGGTACGCCT	TTCCGTGCGC	TTTGATCTGC	GCTTCGCGC	CTTGAATCAG	AAAAATAGTT	180
AATTGACAGA	ACTATAAGTT	CGCAGTAGCT	TTTGCTCAC	CACCAATCC	ACAGCACTGG	240
GGTGCACGAT	GAATAGCTAC	GATGGCCGT	GGTCTACCGT	TGATGTGAAG	GTTGAAGAAG	300
GTATCGCTTG	GGTCACGCTG	AACCAGCCGG	AGAAGCGCAA	CGCAATGAGC	CCAACCTCTCA	360
ATCGAGAGAT	GGTCAGGTT	CTGGAGGTG	TGGAGCAGGA	CGCAGATGCT	CGCGTGCTTG	420
TTCTGACTGG	TGCAGGCAGA	TCCGGGACCG	CGGGCATGGA	CCTGAAGGAG	TATTTCCGCG	480
AGACCGATGC	TGGCCCCGAA	ATTCTGCAAG	AGAAGATTG	TCGCGAGCAG	GGCATGAAGC	540
AGTTCCCTTGA	CGAGAAAAGC	ATCAAGCCGG	GCTTGAGAC	CTACAAGGCC	TGATAAAATGC	600
GCCGGGGCCC	TCGCTGCGCC	CCCGGCCTTC	CAATAATGAC	ATAATGAGG	AGTGGCCAAT	660
GTTCACGTG	CCCCCTGCTTA	TTGGTGGTAA	GCCTTGTCA	GCATCTGATG	AGCGCACCTT	720
CGAGCGTCGT	AGCCCCGCTGA	CCGGAGAAGT	GGTATCGCGC	GTCGCTGCTG	CCAGTTGGA	780
AGATGCGGAC	GCCGCAGTGG	CCGCTGCACA	GGCTGCGTT	CCTGAATGGG	CGGCGCTTGC	840
TCCGAGCGAA	CGCCGTGCC	GACTGCTGCG	AGCGGGGAT	CTTCTAGAGG	ACCGTTCTTC	900
CGAGTTCAACC	GCCGCAGCGA	GTGAAAATGG	CGCAGCGGG	AACTGGTATG	GGTTAACGT	960
TTACCTGGCG	CGGGGCATGT	TGCGGGGAAT	TC			992

Sequence 13

GAATTCCAAT	AATGACAATA	ATGAGGAGTG	CCCAATGTTT	CACGTGCC	TGCTTATTGG
TGGTAAGCCT	TGTTCA	CTGATGAGCG	CACCTTCGAG	CGCTGTAGCC	CGCTGACCGG
AGAAGTGGTA	TCGC	CTGCTGCCAG	TTTGGAAAGAT	GCGGACGCCG	CAGTGGCCGC
TGCACAGGCT	CGCTT	AATGGCGGC	GCTTGCTCCG	AGC	GAAACGCC
GCTGCGAGCG	GGGAT	TAGAGGACCG	TTCTTCCGAG	TTCACCGCCG	CAGCGAGTGA
AACTGGCGCA	GCGGAA	GGTATGGGTT	TAACGTTTAC	CTGGCGGCCG	GCATGTTGCG
GGAAGCCGCG	GCCAT	CACAGATTCA	GGCGATGTC	ATTCCGTCCA	ATGTGCCCGG
TAGCTTGCC	ATGGCGGTT	GACAGCCATG	TGGCGTGGTG	CTCGTATTG	CGCCTTGAA
TGCTCCGTA	ATCCTTGGCG	TACGGGCTGT	TGCGATGCCG	TTGGCATGCG	GCAATACCGT
GGTGTGAAAG	AGCTCTGAGC	TGAGTCCCCTT	TACCCATCGC	CTGATTGGTC	AGGTGTTGCA
TGATGCTGGT	CTGGGGGATG	GC	TGTATCAGC	AATGCCCGC	AAGACGCTCC
TGCGGTGGTG	GAGCGACTGA	TTGCAAATCC	TGCGGTACGT	CGAGTGA	ACTTCACCGGTT
GACCCACGTT	GGACGGATCA	TTGGT	GAGCT	CATCTGAAGC	CTGCTGTGCT
GGAATTAGGT	GTAAGGCTC	C	TG	CTTGGACGAT	GCCGACCTCG
CGAAGCGGCG	GCTTTGGTG	CCTACTTCAA	TCAGGGTCAA	ATCTGATGT	ATGCGGCGGT
TCTGATGTG	ACAGCAGTCG	CAGACGCC	TGTTGAAAAG	CCACTGAGCG	900
ACTGCGTGCT	GGCGATCCTA	ATGATCCGCA	ATCGGTCTTG	CTGGCGAGGA	AGGTCGCCAC
TGCAGGTCAA	CGCATCCAGG	TTCTGGTCGA	TGATGCGCTC	GGGGACAGCA	1020
AATTGCCAGC	TGGGGCGCCC	TCTGGTAAGG	TTGGGAAGCC	CTGCAAAGTA	1080
CTTTCTGCC	GCCAAGGATC	TGATGGCGCA	GGGGATCAAG	ATCTGATCAA	1140
GAGGATCGTT	TCGCATGATT	GAACAAGATG	GATTGCACCG	AGGTTCTCCG	1200
TGGAGAGGCT	ATTGGCTAT	GA	CT	GCGCTGCTCT	GCCGCTTGGG
TGTTCCGGCT	GTCAGCGCAG	GGGCGCCCGG	TTCTTTTTGT	CAAGACCGAC	1260
CCCTGAATGA	ACTGCAGGAC	GAGG	CAGCGC	CTG	GGCCACG
CTTGCAGCAG	TGTGCTCGAC	GTTGTCACTG	AAGC	GGCTGCTG	ACGGGC
AAAGTCCGGG	CGAGGATCTC	CTGTCATCTC	ACCTTGCTCC	TG	GGAGAAA
TGGCTGATGC	AATGCGCGG	CTGCATACGC	TTGATCCGGC	TAC	CTGCCCCA
AAGCGAAACA	TCGCATCGAG	CGAGCACGTA	CTCGGATGGA	AG	CCGGTCTT
ATGATCTGGA	CGAAGAGCAT	CAGGGCTCG	CGC	CGAC	GTCGATCAGG
CGCGCATGCC	CGACGGCGAG	GATCTCGTG	TGACCCATGG	AG	GTCAAGG
TCATGGTGG	AAATGGCCGC	TTTCTGGAT	TCATCGACTG	TG	GGCTGGAATA
ACCGCTATCA	GGACATAGCG	TTGGCTACCC	GTGATATTG	GAAGAGCTT	1860
GGGCTGACCG	CTTCCTCGT	CTT	TACGGTA	GGCGGCGAAT	1920
TCTATGCCCT	TCTTGACGAG	TTCTTCTGAG	CGGGACTCTG	CG	CATCGCCT
AGCGACGCC	GGCCCAGCGC	GTCGATT	TGAGTCCAG	CCGACTGTG	1980
ATGACGAGGC	TCAGATGCCA	TTCGG	GGGGT	TGACCGACCA	2040

GTCGAGCATC	GATTGAGCAC	TTTACCCAGC	TGGCCTGGCT	GACCATTCA	AATGGCCCGC	2220
GGCACTATCC	AATCTAAATC	GATCTTCGGG	CGCCGCGGGC	ATCATGCCCG	CGGCCTCGC	2280
CTCATTCAA	TCTCTAACCT	GATAAAAACA	GAGCTGTTCT	CCGGTCTTGG	TGGATCAAGG	2340
CCAGTCGGG	AGAGTCTCGA	AGAGGGAGGT	ACAGTGAA	CCGAGTCCAC	ATTGCAACCG	2400
CAGGCATCAT	CATGCTCTGC	TCAGGCCACGC	TACCGCAGTG	TGTGATTGG	TCATCCTCCG	2460
GTTGAGGT	TA CGCAAGACGC	TGGAGGTATT	GTCCGGATGC	GTTCTCTCGA	GGCGCTTCTT	2520
CCCTTCCC	GG GTGGAATT	C				2539

Sequence 14

GAATTCCAAT	AATGACAATA	ATGAGGAGTG	CCCAATGTTT	CACGTCCCC	TGCTTATTGG	60
TGGTAAGCCT	TGTTCAAGCAT	CTGATGAGCG	CACCTCGAG	CGTCGTAGCC	CGCTGACCGG	120
AGAAGTGGTA	TCGCGCGTCG	CTGCTGCCAG	TTTGAAGAT	GCGGACGCCG	CAGTGGCCGC	180
TGCACAGGCT	CGCTTCTCG	AATGGGCGGC	GCTTGTCCG	AGCGAACGCC	GTGCCGACT	240
GCTCGAGCG	GCGGATCTTC	TAGAGGACCG	TTCTTCCAG	TTCACGCCG	CAGCGAGTGA	300
AACTGGCGCA	GCGGGAAACT	GGTATGGGTT	TAACGTTAC	CTGGCGGCCG	GCATGTTGCG	360
GGAAGCCCGC	GCCATGACCA	CACAGATTCA	GGGCATGTC	ATTCCGTCCA	ATGTGCCCGG	420
TAGCTTGGCC	ATGGCGGTT	GACAGCCATG	TGGCGTGGTG	CTCGGTATTG	CGCCTGGAA	480
TGCTCCGGTA	ATCCTTGGCG	TACGGGCTGT	TGCGATGCCG	TTGGCATGCC	GCAATAACCGT	540
GGTGGTGAAG	AGCTCTGAGC	TGAGTCCCTT	TACCCATCGC	CTGATTGGTC	AGGTGGTGC	600
TGATGCTGGT	CTGGGGGATG	CGCTGGTGA	TGTCATCAGC	AATGCCCGC	AAGACGCTCC	660
TGCGGTGGTG	GAGCGACTGA	TTGCAAATCC	TGCGGTACGT	CGAGTGAAC	TCACCGGTT	720
GACCCACGTT	GGACGGATCA	TTGGTGAGCT	GTCTGCGCGT	CATCTGAAGC	CTGCTGTGCT	780
GGAATTAGGT	GGTAAGGCTC	CGTTCTTGGT	CTTGGACGAT	GCCGACCTCG	ATGCGGCGGT	840
CGAAGCGGCCG	GCCTTGGTG	CCTACTTCAA	TCAGGGTCAA	ATCTGCATGT	CCACTGAGCG	900
TCTGATTGTG	ACAGCAGTCG	CAGACGCCCT	TGTTGAAAAG	CTGGCGAGGA	AGGTGCCAC	960
ACTGCGTGCT	GGCGATCCTA	ATGATCCGCA	ATCGGTCTTG	GGTTCGTTGA	TTGATGCCAA	1020
TGCAAGGTCAA	CGCATCCAGG	TGGGGAGAGG	CGGTTGCGT	ATTGGGCGCA	TGCATAAAAAA	1080
CTGTTGTAAT	TCATTAAGCA	TTCTGCCGAC	ATGGAAGCCA	TCACAAACGG	CATGATGAAC	1140
CTGAATGCC	AGCGGCATCA	GCACCTTGT	GCCTTGCFTA	TAATATTTC	CCATGGACGC	1200
ACACCGTGG	AACGGATGAA	GGCACGAACC	CAGTTGACAT	AAGCCTGTC	GGTCGTAAA	1260
CTGTAATGCA	AGTAGCGTAT	GGCCTCACGC	AACTGGTCCA	GAACCTTGAC	CGAACGCAGC	1320
GGTGGTAACCG	GCGCAGTGGC	GGTTTTCATG	GCTTGTATG	ACTGTTTTTT	TGTACAGTCT	1380
ATGCCCTCGGG	CATCCAAGCA	GCAAGCGCGT	TACGGCGTGG	GTGATGTTT	GATGTTATGG	1440
AGCAGCAACG	ATGTTACGCA	GCAGCAACGA	TGTTACGCA	CAGGGCAGTC	GCCCTAAAC	1500
AAAGTTAGGT	GGCTCAAGTA	TGGGCATCAT	TCGCACATGT	AGGCTCGGCC	CTGACCAAGT	1560
CAAATCCATG	CGGGCTGCTC	TTGATCTTT	CGGTGCGAG	TTGGGAGACG	TAGCCACCTA	1620
CTCCCCAACAT	CAGCGGACT	CCGATTACCT	CGGGAACCTG	CTCCGTAGTA	AGACATTCA	1680
CGCGCTTGCT	GCCTTCGACC	AAGAAGCGGT	TGTTGGCGCT	CTCGCGGCTT	ACGTTCTGCC	1740
CAGGTTGAG	CAGCGCGCTA	GTGAGATCTA	TATCTATGAT	CTCGCAGTCT	CCGGCGAGCA	1800
CCGGAGGCAG	GGCATTGCCA	CCGCGCTCAT	CAATCTCCTC	AAGCATGAGG	CCAACCGCGCT	1860
TGGTGTCTTAT	GTGATCTACG	TGCAAGCAGA	TTACGGTGAC	GATCCCGCAG	TGGCTCTCTA	1920
TACAAAGTTG	GGCATACGGG	AAGAAGTGT	GCACTTTGAT	ATCGACCCAA	GTACCGCCAC	1980
CTAACAAATT	GTTCAAGCCG	AGATCGGCTT	CCCAATTGGC	CCAGCGCGTC	GATTGGGCA	2040
TTTGCCATAT	CAATGGACCG	ACTGTGCATG	ACGAGGCTCA	GATGCCATT	GGTGGGGTGA	2100
AGTCCAGCGG	CTACGGCAGC	TTCGGCAGTC	GAGCATCGAT	TGAGCACTT	ACCCAGCTGC	2160

GCTGGCTGAC	CATTCAGAAT	GGCCCGCGGC	ACTATCCAAT	CTAAATCGAT	CTTCGGGCGC	2220
CGCGGGCATC	ATGCCCCGCG	CGCTCGCCTC	ATTTCAATCT	CTAACTTGAT	AAAAACAGAG	2280
CTGTTCTCCG	GTCTTGGTGG	ATCAAGGCCA	GTCGCGGAGA	GTCTCGAAGA	GGAGAGTACA	2340
GTGAACGCCG	AGTCCACATT	GCAACCGCAG	GCATCATCAT	GCTCTGCTCA	GCCACGCTAC	2400
CGCAGTGTGT	CGATTGGTCA	TCCTCCGGTT	GAGGTTACGC	AAGACGCTGG	AGGTATTGTC	2460
CGGATGCGTT	CTCTCGAGGC	GCTTCTTCCC	TTCCCGGGTG	GAATTC		2506

Sequence 15

GAATTCCAAT	AATGACAATA	ATGAGGAGTG	CCCAATGTTT	CACGTCCCC	TGCTTATTGG	60
TGGTAAGCCT	TGTTCAAGCAT	CTGATGAGCG	CACCTTCGAG	CGTCGTAGCC	CGCTGACCGG	120
AGAAGTGGTA	TCGCGCGTCG	CTGCTGCCAG	TTTGGAAAGAT	GCGGACGCCG	CAGTGGCCGC	180
TGACAGGCT	GCGTTTCCTG	AATGGGCGGC	GCTTGCTCCG	AGCGAACGCC	GTGCCCAGCT	240
GCTGCGAGCG	GCGGATCTTC	TAGAGGACCG	TTCTTCCGAG	TTCACCGCCG	CAGCGAGTGA	300
AACTGGCGCA	GCGGGAAACT	GGTATGGGT	TAACGTTAC	CTGGCGGCCG	GCATGTTGCG	360
GGAAGCCGCG	GCCATGACCA	CACAGATTCA	GGGCGATGTC	ATTCCGTCCA	ATGTGCCCGG	420
TAGCTTGCC	ATGGCGGTTC	GACAGCCATG	TGGCGTGGTG	CTCGGTATTG	CGCCTTGGAA	480
TGCTCCGGTA	ATCCTTGGCG	TACGGGCTGT	TGCGATGCCG	TTGGCATGCC	GCAATAACCGT	540
GGTGGTAAA	AGCTCTGAGC	TGAGTCCCTT	TACCCATCGC	CTGATTGGTC	AGGTGTTGCA	600
TGATGCTGGT	CTGGGGATG	GGCTGGTGA	TGTCATCAGC	AATGCCCGC	AAGACGCTCC	660
TGCGGTGGTG	GAGCGACTGA	TTGCAAATCC	TGCGGTACGT	CGAGTGAAC	TCACCGGTTTC	720
GACCCACGTT	GGACGGATCA	TTGGTGAGCT	GTCTGCGCGT	CATCTGAAGC	CTGCTGTGCT	780
GGAATTAGGT	GGTAAGGCTC	CGTTCTTGGT	CTTGGACGAT	GCCGACCTCG	ATGCGGCGGT	840
CGAAGCGGCCG	GCCTTGGTG	CCTACTTCAA	TCAGGGTCAA	ATCTGCATGT	CCACTGAGCG	900
TCTGATTGTG	ACAGCAGTCG	CAGACGCCCT	TGTTGAAAAG	CTGGCGAGGA	AGGTCGCCAC	960
ACTGCGTGCT	GGCGATCCTA	ATGATCCGCA	ATCGGTCTTG	GGTCGTTGA	TTGATGCCAA	1020
TGCAAGGTCAA	CGCATCCAGG	TTCTGGTCGA	TGATGCGCTC	GCAAAGGCCG	CGCAATGGAA	1080
TTGGCCCAGC	GCGTCGATTC	GGGCATTGTC	CATATCAATG	GACCGACTGT	GCATGACGAG	1140
GCTCAGATGC	CATTCCGGTGG	GGTGAAGTCC	AGCGGCTACG	GCAGCTTCGG	CAGTCGAGCA	1200
TCGATTGAGC	ACTTTACCCA	GCTGCGCTGG	CTGACCATTG	AGAATGGCCC	CGGGCACTAT	1260
CCAATCTAAA	TCGATCTTCG	GGCGCCGCCGG	GCATCATGCC	CGCGGCCGCTC	GCCTCATTTC	1320
AATCTCTAAC	TTGATAAAAAA	CAGAGCTGTT	CTCCGGTCTT	GGTGGATCAA	GGCCAGTCGC	1380
GGAGAGTC	GAAGAGGAGA	GTACAGTGAA	CGCCGAGTCC	ACATTGCAAC	CGCAGGCATC	1440
ATCATGCTCT	GCTCAGCCAC	GCTACCGCAG	TGTGTCGATT	GGTCATCCTC	CGGTTGAGGT	1500
TACGCAAGAC	GCTGGAGGTA	TTGTCCGGAT	CGCTTCTCTC	GAGGCGCTTC	TTCCCTTCCC	1560
GGGTGGAATT	C					1571

DRAFT Sequence

Sequence 16

GAATTCCCGCG	GTCGGCGAAA	GTTGATGCGC	TGTATCGTGG	TGAAGATCAA	TCCATGCTGC	60
GTGACGAGGC	CACACTGTGA	GTGGTCTCAGG	GGGGGCTTAC	TCGGCGTTTT	CCGACACTGC	120
GTGGGTTGCG	GCAGTGCAGCA	CCCCCTGGAT	TGATTGCGGG	GGTGCCTCTG	CGCTGGTGTG	180
GCCTATCGAC	TTAGGGGTA	AGGTCGCTCG	CGAAGTTCTG	ATCGTGCCTG	CGCTTGAACC	240
ACAAATGGTC	GATAAGCGTAC	TCGCAGGCTC	TATGGCTCAA	GCAAGCTTG	ATGCTTACCT	300
GCTCCCGCGG	CACATTGGCT	TGTACAGCGG	TGTTCCCAAG	TCGGTCCGG	CCTTGGGGGT	360
GCAGCGCATT	TGCGGCACAG	GCTTCGAAC	GCTTCGGCAG	GCCGGCGAGC	AGATTCCCAG	420
AGGCGCTGAT	CACGTGCTGT	GTGTCGCCGC	AGAGTCCATG	TCGCGTAACC	CCATCGCGTC	480
GTATACACAC	CGGGGCGGGT	TCGCCTCGG	TGCGCCCGTT	GAGTTCAAGG	ATTTTTGTG	540
GGAGGCATTG	TTTGTATCCTG	CTCCAGGACT	CGACATGATC	GCTACCGCAG	AAAACCTGGG	600
GACAGCAAGC	GAACCGGAAT	TGCCAGCTGG	GGCGCCCTCT	GGTAAGGTTG	GGAAGCCCTG	660
CAAAGTAAAC	TGGATGGCTT	TCTTGCCGCC	AAGGATCTGA	TGGCGCAGGG	GATCAAGATC	720
TGATCAAGAG	ACAGGATGAG	GATCGTTTC	CATGATTGAA	CAAGATGGAT	TGCACGCCAGG	780
TTCTCCGGCC	GCTTGGGTGG	AGAGGCTATT	CGGCTATGAC	TGGGCCAAC	AGACAATCGG	840
CTGCTCTGAT	GCCGCCGTGT	TCCGGCTGTC	AGCGCAGGGG	CGCCCGGTT	TTTTGTCA	900
GACCGACCTG	TCCGGTGC	TGAATGAACT	GCAGGACGAG	GCAGCCGCG	TATCGTGGCT	960
GGCCACCGACG	GGCGTTCC	CGCGAGCTGT	GCTCGACGTT	GTCACTGAAG	CGGGAAGGGA	1020
CTGGCTGCTA	TTGGGCGAAG	TGCCGGGCA	GGATCTCTG	TCATCTCAC	TTGCTCTGC	1080
CGAGAAAGTA	TCCATCATGG	CTGATGCAAT	GGCGCGCTG	CATACCGCTT	ATCCGGCTAC	1140
CTGCCCATTC	GACCACCAAG	CGAAACATCG	CATCGAGCGA	GCACGTACTC	GGATGGAAGC	1200
CGGTCTTGTC	GATCAGGATG	ATCTGGACGA	AGAGCATCAG	GGGCTCGCG	CAGCCGAAC	1260
GTTCGCCAGG	CTCAAGGCGC	GCATGCCGA	CGGCGAGGAT	CTCGTCGTG	CCCATGGCGA	1320
TGCCCTGTTG	CCGAATATCA	TGGTGGAAA	TGCGCGCTT	TCTGGATTCA	TCGACTGTGG	1380
CCGGCTGGGT	GTGGCGGACC	GCTATCAGGA	CATAGCGTT	GCTACCCGTG	ATATTGCTGA	1440
AGAGCTTGGC	GGCGAATGGG	CTGACCGCTT	CCTCGTGT	TACGGTATCG	CCGCTCCCGA	1500
TTCGCAGCGC	ATCGCCTTC	ATCGCCTTCT	TGACGAGTT	TTCTGAGCGG	GACTCTGGGG	1560
TTCGAAATGA	CCGACCAAGC	GACGCCATT	GAGGGCGCAA	GAGGAGAAAT	GGATTGACCA	1620
AGAGATCGTG	GCTGTTACGG	ATGAACAGT	CGATTAGAG	GGCTACAA	GTCGAGCAAT	1680
TGAATCGCT	CGGAAGGCAA	AATTGTTGAT	CGTACAGTC	ATCCGGGCC	TAGCAGTCTT	1740
TGAAGCCCTT	TCCCGATTGA	AGCCTGTTCA	TTCTGGCGG	GTGCAGACTG	CGGGCAACAG	1800
CTGTGCCGTA	GTGGACGGCG	CCGCGGCC	TTTGGTGT	CGAGAGTCGT	CTGCGACACA	1860
GCCGGTCTTG	GCTAGGATAC	TGGCTACCTC	CGTAGTCGGG	ATCGAGCCCG	AGCATATGGG	1920
GCTCGGCCCT	GCGCCCGCGA	TTCGCTGTG	CGTTGCGCGT	AGTGATTTA	TTTGAGGGG	1980
TATCGACCTC	TTTGAGATAA	ACGAGGGCGA	GGCCGCCCAA	GTTCTAGCGG	TACAGCATGA	2040
ATTGGGTATT	GAGCACTCAA	AACTTAATAT	TTGGGGCGGG	GCCATTGAC	TTGGACACCC	2100
GCTTGGCCGCG	ACCGGATTGC	GTCTCTGCAT	GACCCTCGCT	CACCAATTGC	AAGCTAATAA	2160

CTTCGATAT	GGAATTGCCT	CGGCATGCAT	TGGTGGGGGA	CAGGGGATGG	CGGTTCTTTT	2220
AGAGAATCCC	CACTCGGTT	CGTCCTCTGC	ACGAAGTCG	ATGATTAACA	GAGTTGACCA	2280
CTATCCACTG	AGCTAACGGG	CATCTCCTT	GTTGCTTGGA	GGTGGCGCAC	GAAGGAGGGC	2340
TCGAAAATCT	CTGCTAAAAA	CAAGAAGAAG	GAACAGGGAA	CATGATTAGT	TTCGCTCGTA	2400
TGGCAGAAAG	TTTAGGAGTC	CAGGCTAAC	TTGCCCTTGC	CTTCGCACTC	GTATTATGTG	2460
TCGGGCTGAT	TGTTACCGGC	ACGGGTTCT	ACAGTGTACA	TACTTGTCA	GGGTTGGTGG	2520
GAATTC						2526

Sequence 17

GAATTCCGCG	GTCGGCGAAA	GTTGATGCGC	TGTATCGTGG	TGAAGATCAA	TCCATGCTGC	60
GTGACGAGGC	CACACTGTGA	GTTGGTCAGG	GGGGGCTTAC	TCGGCGTTTT	CCGACACTGC	120
GTGCGTTGCG	GCAGTGGCA	CCCCCTGGAT	TGATTGCGGG	GGTGCCCTGT	CGCTGGTGTC	180
GCCTATCGAC	TTAGGGTAA	AGGTCGCTCG	CGAAGTTCTG	ATGCGTGCCT	CGCTTGAACC	240
ACAAATGGTC	GATAGCGTAC	TGCGCAGGCTC	TATGGCTCAA	GCAAGCTTTG	ATGCTTACCT	300
GCTCCCAGGG	CACATTGGCT	TGTACAGCGG	TGTTCCAAG	TGGTTCGGG	CCTTGGGGGT	360
GCAGCGCATT	TGCGGCACAG	GCTTCGAAC	GCTTCGGCAG	GCCGGCGAGC	AGATTTCCCA	420
AGGCCTGAT	CACGTGCTGT	GTGTCGCGGC	AGAGTCCATG	TCGCGTAACC	CCATCGCGTC	480
GTATAACACAC	CGGGCGGGT	TCCGCTCGG	TGCGCCCGTT	GAGTTCAAGG	ATTTTTGTG	540
GGAGGCATTG	TTTGATCCTG	CTCCAGGACT	CGACATGATC	GCTACCGCAG	AAAACCTGGG	600
GGAGAGGCGG	TTTGCGTATT	GGGCGCATGC	ATAAAAATG	TTGTAATTCA	TTAACGCATTC	660
TGCGGACATG	GAAGCCATCA	AAACCGGCAT	GATGAACCTG	AATCGCCAGC	GGCATCAGCA	720
CCTTGTGCC	TTGCGTATAA	TATTTGCCCA	TGGACGCACA	CCGTGGAAAC	GGATGAAGGC	780
ACGAACCCAG	TTGACATAAG	CCTGTTCGGT	TCGTAAACTG	TAATGCAAGT	AGCGTATGCG	840
CTCACGCAAC	TGGTCCAGAA	CCTTGACCGA	ACGCAGCGGT	GGTAACGGCG	CAGTGGCGGT	900
TTTCATGGCT	TGTTATGACT	GTTTTTTG	ACAGTCTATG	CCTCGGGCAT	CCAAGCAGCA	960
ACCGCGTTAC	GCCGTGGTC	GATGTTTGAT	GTTATGGAGC	AGCAACGATG	TTACGCAGCA	1020
GCAACGATGT	TACGCAGCAG	GGCAGTCGCC	CTAAAACAAA	GTTAGGTGGC	TCAAGTATGG	1080
GCATCATTG	CACATGTAGG	CTCGGCCCTG	ACCAAGTCAA	ATCCATGCGG	GCTGCTCTTG	1140
ATCTTTTCGG	TCGTGAGTTC	GGAGACGTAG	CCACCTACTC	CCAACATCAG	CCGGACTCCG	1200
ATTACCTCGG	GAACTTGCTC	CGTAGTAAGA	CATTCTATCGC	GCTTGCTGCC	TTCGACCAAG	1260
AAGCGGTTGT	TGGCGCTCTC	GGGGCTTACG	TTCTGCCCAG	GTTTGAGCAG	CCGCGTAGTG	1320
AGATCTATAT	CTATGATCTC	GCAGTCTCCG	GCGAGCACCG	GAGGCAGGGC	ATTGCCACCG	1380
CGCTCATCAA	TCTCCTCAAG	CATGAGGCCA	ACGCCCTGG	TGCTTATGTC	ATCTACGTGC	1440
AAGCAGATTA	CGGTGACGAT	CCCGCAGTGG	CTCTCTATAC	AAAGTTGGGC	ATACGGGAAG	1500
AAGTGTGCA	CTTTGATATC	GACCCAAGTA	CCGCCACCTA	ACAATTCTGGT	CAAGCCGAGA	1560
TCGGCTTCCC	ATTGAGGGCG	CAAGAGGAGA	AATGGATTGA	CCAAGAGATC	GTTGGCTGTTA	1620
CGGATGAACA	TTTCGATTTA	GAGGGCTACA	ACAGTCGAGC	AATTGAAC	CCTCGGAAGG	1680
CAAAATTGTT	GATCGTGACA	GTCATCCGCG	GCCTAGCAGT	CTTGAAAGCC	CTTTCCCGAT	1740
TGAAGCCTGT	TCATTCTGGC	GGGGTGCAGA	CTGCGGGCAA	CAGCTGTGCC	GTAGTGGACG	1800
GGGCCGCGGC	GGCTTTGGTG	GCTCGAGAGT	CGTCTGCGAC	ACAGCCGGTC	TTGGCTAGGA	1860
TACTGGCTAC	CTCCGTAGTC	GGGATCGAGC	CCGAGCATAT	GGGGCTCGGC	CCTGCCCGCG	1920
CGATTGCGCT	GCTGCTGCG	CGTAGTGTAC	TTAGTTGAG	GGATATCGAC	CTCTTGAGA	1980
TAAACGAGGC	GCAGGCCGCC	CAAGTTCTAG	CGGTACAGCA	TGAATTGGGT	ATTGAGCACT	2040
CAAAACTTAA	TATTTGGGGC	GGGGCCATTG	CACTTGGACA	CCCGCTTGCC	GCGACCGGAT	2100
TGCGTCTCTG	CATGACCCCTC	GCTCACCAAT	TGCAAGCTAA	TAACCTTCGA	TATGGAATTG	2160

DRAFT - 4.0 RELEASE DATE 2024-01-01

CCTCGGCATG	CATTGGTGGG	GGACAGGGGA	TGGCGGTTCT	TTTAGAGAAT	CCCCACTTCG	2220
GTTCGTCCTC	TGCACGAAGT	TCGATGATTA	ACAGAGTTGA	CCACTATCCA	CTGAGCTAAC	2280
GGGCATCTCC	TTTGTGCTT	TGAGGTGGCG	CACGAAGGAG	GGCTCGAAA	TCTCTGCTAA	2340
AAACAAGAAG	AAGGAACAGG	GAACATGATT	AGTTTCGCTC	GTATGGCAGA	AAGTTTAGGA	2400
GTCCAGGCTA	AACTGCCCT	TGCCTTCGCA	CTCGTATTAT	GTGTCGGGCT	GATTGTTACC	2460
GGCACGGGTT	TCTACAGTGT	ACATACCTTG	TCAGGGTTGG	TGGGAATTTC		2509

Sequence 18

GAATTCCGCG	GTCGGCGAAA	GTTGATGCGC	TGTATCGTGG	TGAAGATCAA	TCCATGCTGC	60
GTGACGAGGC	CACACTGTGA	GTTGGTCAGG	GGGGGCTTAC	TCGGCGTTT	CCGACACTGC	120
GTGGGTTGCC	GCAGTGGCA	CCCCCTGGAT	TGATTGCGGG	GGTGCCTGT	CGCTGGTGTC	180
GCCTATCGAC	TTAGGGTAA	AGGTCGCTCG	CGAAGTTCTG	ATGCGTGCCT	CGCTTGAACC	240
ACAAATGGTC	GATAGCGTAC	TCGCAGGCTC	TATGGCTCAA	GCAAGCTTTG	ATGCTTACCT	300
GCTCCCGCGG	CACATTGGCT	TGTACAGCGG	TGTTCCAAG	TGGTCCCGG	CCTTGGGGGT	360
GCAGCGCATT	TGCGGCACAG	GCTTGAACCT	GCTTGGCAG	CCGGCGAGC	AGATTTCCCA	420
AGGCCTGAT	CACGTGCTGT	GTGTCGCGGC	AGAGTCCATG	TCGCGTAACC	CCATCGCGTC	480
GTATACACAC	CGGGCGGGT	TCCGCCTCGG	TGCGCCCCTG	GAGTTCAAGG	ATTTTTGTG	540
GGAGGCATTG	TTTGATCTG	CTCCAGGACT	CGACATGATC	GCTACCGCAG	AAAACCTGGC	600
GGCATTGAG	GGCGCAAGAG	GAGAAATGGA	TTGACCAAGA	GATCGTGGCT	GTTACGGATG	660
AACAGTTCGA	TTTAGAGGGC	TACAACAGTC	GAGCAATTGA	ACTGCCTCGG	AAGGCAAAAT	720
TGTTGATCGT	GACAGTCATC	CGCGCCTAG	CAGTCCTTG	AGCCCTTCC	CGATTGAAGC	780
CTGTTCATTC	TGGCGGGGTG	CAGACTGCGG	GCAACAGCTG	TGCCGTAGTG	GACGGCGCCG	840
CGGCGGCTTT	GGTGGCTCGA	GAGTCGCTCG	CGACACAGCC	GGTCTGGCT	AGGATACTGG	900
CTACCTCCGT	AGTCGGGATC	GAGCCCGAGC	ATATGGGCT	CGGCCCTGCG	CCCGCGATTC	960
GCCTGCTGCT	TGCGCGTAGT	GATCTTAGTT	TGAGGGATAT	CGACCTCTT	GAGATAAACG	1020
AGGCGCAGGC	CGCCAAGTT	CTAGCGGTAC	AGCATGAATT	GGGTATTGAG	CACTCAAAC	1080
TTAATATTTG	GGGCGGGGCC	ATTGCACTTG	GACACCCGCT	TGCCCGACCC	GGATTGCGTC	1140
TCTGCATGAC	CCTCGCTCAC	CAATTGCAAG	CTAATAACTT	TCGATATGGA	ATTGCCTCGG	1200
CATGCATTGG	TGGGGGACAG	GGGATGGCGG	TTCTTTAGA	GAATCCCCAC	TTCGGTTCGT	1260
CCTCTGCACG	AAGTTCGATG	ATTAACAGAG	TTGACCACTA	TCCACTGAGC	TAACGGGCAT	1320
CTCCTTTGTT	GCTTTGAGGT	GGCGCACGAA	GGAGGGCTCG	AAAATCTCTG	CTAAAAACAA	1380
GAAGAAGGAA	CAGGGAACAT	GATTAGTTTC	GCTCGTATGG	CAGAAAGTTT	AGGAGTCCAG	1440
GCTAAACTTG	CCCTTGCCCTT	CGCACTCGTA	TTATGTGTCG	GGCTGATTGT	TACCGGCACG	1500
GGTTTCTACA	GTGTACATAC	CTTGTCAAGGG	TTGGTGGGAA	TTC		1543

0 1 2 3 4 5 6 7 8 9

09/830514

Fig. 1a

Fig. 1b

Fig. 1c

Fig. 1d

Fig. 1e

Fig. 1f

09/830514

Fig. 1g

Fig. 1h

Fig. 1i

Fig. 1j

Fig. 1k

Fig. 1l

09/830514

Fig. 1m

Fig. 1n

Fig. 1o

Fig. 1p

Fig. 1q

Fig. 1r

COMBINED DECLARATION AND POWER OF ATTORNEY

ATTORNEY DOCKET NO

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name. I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought
on the invention entitled

"CONSTRUCTION OF PRODUCTION STRAINS FOR PRODUCING SUBSTITUTED PHENOLS BY SPECIFICALLY INACTIVATING GENES OF THE EUGENOL AND FERULIC ACID CATABOLISM"

the specification of which is attached hereto,

or was filed on **October 20, 1999**

as a PCT Application Serial No. **PCT/EP99/07952**

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims.

I acknowledge the duty to disclose information which is material to the patentability of this application in accordance with Title 37, Code of Federal Regulations, §1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, §119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior Foreign Application(s), the priority(ies) of which is/are to be claimed:

198 50 242.7
(Number)

Germany
(Country)

October 31, 1998
(Month/Day/Year Filed)

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose the material information as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

(Application Serial No.)	(Filing Date)	(Status)
(patented, pending, abandoned)		
(Application Serial No.)	(Filing Date)	(Status)
(patented, pending, abandoned)		

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

JOSEPH C. GIL, Patent Office Registration Number 26,602
ARON PREIS, Patent Office Registration Number 29,426
LYNDANNE M. WHALEN, Patent Office Registration Number 29,457
THOMAS W. ROY, Patent Office Registration Number 29,582
RICHARD E. L. HENDERSON, Patent Office Registration Number 31,619
GODFRIED R. AKORLI, Patent Office Registration Number 28,779
N. DENISE BROWN, Patent Office Registration Number 36,097
NOLAND J. CHEUNG, Patent Office Registration Number 39,138
DIDERICO VAN EYL, Patent Office Registration Number 38,641
CAROLYN M. SLOANE, Patent Office Registration Number 44,339
JAMES R. FRANKS, Patent Office Registration Number 42,552
JACKIE ANN ZURCHER, Patent Office Registration Number 42,251

all of Bayer Corporation, Pittsburgh, Pennsylvania 15205-9741

Send Correspondence To: Patent Department Bayer Corporation 100 Bayer Road Pittsburgh, Pennsylvania 15205-9741		Direct Telephone Calls To: (412) 777-2349
FULL NAME OF SOLE OR FIRST INVENTOR <u>Jürgen Rabenhorst</u>		INVENTOR'S SIGNATURE <u>Jürgen Rabenhorst</u>
RESIDENCE D 37671 Höxter, Germany		CITIZENSHIP German
POST OFFICE ADDRESS c/o HAARMANN & REIMER GMBH, D 37601 Holzminden, Germany		DATE <u>3.03.2001</u>
FULL NAME OF SECOND INVENTOR <u>Alexander Steinbüchel</u>		INVENTOR'S SIGNATURE <u>Alexander Steinbüchel</u>
RESIDENCE D 48341 Altenberge, Germany		CITIZENSHIP German
POST OFFICE ADDRESS Rönnenthal 27, D 48341 Altenberge, Germany		DATE <u>17.4.2001</u>
FULL NAME OF THIRD INVENTOR <u>Horst Priefert</u>		INVENTOR'S SIGNATURE <u>Horst Priefert</u>
RESIDENCE D 48291 Telgte, Germany		CITIZENSHIP German
POST OFFICE ADDRESS Potthoffskamp 5, D 48291 Telgte, Germany		DATE <u>18.4.2001</u>
FULL NAME OF FOURTH INVENTOR <u>Jörg Overhage</u>		INVENTOR'S SIGNATURE <u>Jörg Overhage</u>
RESIDENCE D 59192 Bergkamen, Germany		CITIZENSHIP German
POST OFFICE ADDRESS Rotherbachstr. 42A, D 59192 Bergkamen, Germany		
FULL NAME OF FIFTH INVENTOR		INVENTOR'S SIGNATURE
RESIDENCE		CITIZENSHIP
POST OFFICE ADDRESS		
FULL NAME OF SIXTH INVENTOR		INVENTOR'S SIGNATURE
RESIDENCE		CITIZENSHIP
POST OFFICE ADDRESS		
FULL NAME OF SEVENTH INVENTOR		INVENTOR'S SIGNATURE
RESIDENCE		CITIZENSHIP
POST OFFICE ADDRESS		