# Complexity Theory: NP Hard

Travelling Salesperson Problem (TSP)



### By the end of this video you will be able to...

 Explain the value (and limitations) of identifying a problem is NP Hard In TSP, given n cities with one Hometown and all pairwise distances, plan a tour starting and ending at Hometown that visits every city exactly once and has minimum distance.

Brute force algorithm: Generate all paths and choose the shortest

#### How many permutations?

San Diogo How many choices for the first city? 1 (San Diego) Cairo How many choices for the next city? 7 Johannesburg How many choices for the next city? 6 Chennai How many choices for the next city? 5 Lima How many choices for the next city? 4 Paris How many choices for the next city? 3 Beijing How many choices for the next city? 2 Perth How many choices for the next city? 1 How many choices for the last city? 1 (San Diego)

In general we have (N-1)! permutations to try!

| N  | N! -                                              |
|----|---------------------------------------------------|
| 10 | ~3.6 million                                      |
| 19 | 1.22 x 10 <sup>17</sup> (the age of the universe) |
| 23 | # stars in the universe                           |
| 59 | # of atoms in the universe                        |

| N  | N!                                                |
|----|---------------------------------------------------|
| 10 | ~3.6 million                                      |
| 19 | 1.22 x 10 <sup>17</sup> (the age of the universe) |
| 23 | # stars in the universe                           |
| 59 | # of atoms in the universe                        |

Yikes!

What do we do now?

| N  | N!                                                |
|----|---------------------------------------------------|
| 10 | ~3.6 million                                      |
| 19 | 1.22 x 10 <sup>17</sup> (the age of the universe) |
| 23 | # stars in the universe                           |
| 59 | # of atoms in the universe                        |

Yikes!

What do we do now?

Think really hard about a faster solution?

| N  | N!                                                |
|----|---------------------------------------------------|
| 10 | ~3.6 million                                      |
| 19 | 1.22 x 10 <sup>17</sup> (the age of the universe) |
| 23 | # stars in the universe                           |
| 59 | # of atoms in the universe                        |

Yikes!

What do we do now?

Think really hard about a faster solution?

### Classifies problems by their inherent difficulty

## Classifies problems by their inherent difficulty

Searching a Linked List – O(n)

Sorting an Array – O(n log n)

n x n Matrix-Matrix Multiply-  $O(n^{-2.37})$ 

### Classifies problems by their inherent difficulty

Searching a Linked List – O(n)



Sorting an Array – O(n log n)

n x n Matrix-Matrix Multiply-  $O(n^{-2.37})$ 

# Classifies problems by their inherent difficulty



## Classifies problems by their inherent difficulty



P stands for "polynomial-time"

# Classifies problems by their inherent difficulty



# Classifies problems by their inherent difficulty



# Classifies problems by their inherent difficulty



NP: Some problems seem harder to find solutions, but its still easy to verify solution correctness

### Classifies problems by their inherent difficulty



NP: Some problems seem harder to find solutions, but its still easy to verify solution correctness

NP is *believed* to contain problems harder than P

### P?= NP How to get rich and famous



#### The Millennium Prize Problems

Following the decision of the Scientific Advisory Board, the Board of Directors of CMI designated a \$7 million prize fund for the solutions to these problems, with \$1 million allocated to the solution of each problem.

, with \$1 million allocated to the solution of each problem.



Let's expand the classifications a bit

(Hierarchy if P!= NP)



NP-Complete: No known polynomial time algorithm to find a solution, but can check a solution in polynomial time



NP-Hard: Problems are at least as difficult to solve as hardest problems in NP

NP-Complete: No known polynomial time algorithm to find a solution, but can check a solution in polynomial time



NP-Hard: Problems are at least as difficult to solve as hardest problems in NP

NP-Complete: No known polynomial time algorithm to find a solution, but can check a solution in polynomial time

A polynomial time solution for any NP-Hard problem would solve all NP-hard problems





TSP "optimization": given n cities with one Hometown and all pairwise distances, plan a tour starting and ending at Hometown that visits every city exactly once and has minimum distance.



TSP "optimization": given n cities with one Hometown and all pairwise distances, plan a tour starting and ending at Hometown that visits every city exactly once and has minimum distance.

TSP "decision": given n cities with one Hometown and all pairwise distances, plan a tour starting and ending at Hometown that visits every city exactly once and has a distance less than L.



Since TSP "optimization" is NP-Hard, solving it in polynomial time may be difficult (if not impossible)



Since TSP "optimization" is NP-Hard, solving it in polynomial time may be difficult (if not impossible)

Story doesn't end here though..

### **BACKUP**

























determinism (P) non-determinism (NP)



Non-determinism may seem more powerful