Zadatci iz Matematičke analize 1

Skripta

Tomislav Franov, Fakultet za matematiku Sveučilišta u Rijeci

Sadržaj

Pı	redge	ovor	5
1	Osn	ove logike i teorije skupova. Uvod u matematičke dokaze	7
	1.1	Osnove matematičke logike	7
	1.2	Skupovi	13
	1.3	Direktni dokazi	15
	1.4	Dokazi kontradikcijom	19
	1.5	Primjeri raznih dokaznih zadataka iz teorije brojeva	23
2	Sku	p N. Matematička indukcija	30
	2.1	Princip matematičke indukcije	30
	2.2	Princip jake indukcije	34
	2.3	Princip dobrog uređaja	36
3	Sku	\mathbb{R} . Uvod u nejednakosti. Supremum i infimum. Kompleksni brojevi	44
	3.1	Uvod u nejednakosti	45
	3.2	Minimum i maksimum. Arhimedov aksiom	54
	3.3	Supremum i infimum	60
	3.4	Kompleksni brojevi	76
4	Fun	ıkcije	89
	4.1	Pojam funkcije. Crtanje grafa funkcije	89
	4.2	Injekcija, surjekcija i bijekcija. Slika i praslika skupa	94
	4.3	Kompozicija funkcija. Inverzna funkcija	104
	4.4	Rastav na parcijalne razlomke	114
	4.5	Prirodna domena	117
	4.6	Periodične funkcije	120

5	Niz	ovi	128
	5.1	Pojam niza. Limes niza	128
	5.2	Osnovne operacije s konvergentnim nizovima. Kriteriji konvergencije niza	135
	5.3	Podniz. Nizovi zadani rekurzivno. Limesi složenijih nizova	142
	5.4	Limes superior i limes inferior	152
6	Nep	orekidnost funkcije	162
	6.1	Definicija neprekidnosti funkcije	162
	6.2	Svojstva neprekidnih funkcija	168

Predgovor

Ova skripta dodatna je literatura za gradivo s vježbi iz kolegija *Matematička analiza 1* u prvom semestru prijediplomskih studija matematike i fizike na Fakultetu za matematiku Sveučilišta u Rijeci. Uz gradivo s vježbi, sadržaj skripte obuhvaća i neke dodatne teme koje su tijekom zadnjih godina izbačene iz srednjoškolskog kurikuluma, a za koje se zbog vremenskih i praktičnih razloga smatra da su poznate (npr. lakši zadatci vezani uz matematičku indukciju, dokazivanje nejednakosti, crtanje složenijih grafova i sl.).

Ova skripta je, u svojoj prvoj verziji 2023. godine, nastala sa svrhom da bude popratna literatura za studente uz održane demonstrature, ali se od tada njezin opseg proširio i trenutno je namijenjena kao pomoć studentima u savladavanju gradiva s vježbi, ali i izvor naprednijih tema i zadataka za one koji žele znati više.

Zadatci su podijeljeni na riješene zadatke i zadatke za vježbu. Savjetujemo studentima i studenticama da riješe što više zadataka za vježbu, jer su, po našem mišljenju, oni solidno ponavljanje naučenog gradiva, a mnogi su u nečemu izmjenjeni tako da postupak rješavanja bude ipak nešto različit u odnosu na zadatke obrađene prije njih.

Za one koji žele više, pripremili smo i dodatne teme koje se inače ne bi stigle obraditi u sklopu kolegija, ali i teže zadatke, tj. zadatke s jednom (*) i dvije (**) zvjezdice, od kojih su neki originalni, a većina preuzeta iz nekolicine izvora, često s matematičkih natjecanja za srednju školu ili iz kolokvija s PMF-a. Važno je napomenuti da je težinu zadataka procijenio autor i da je na koncu subjektivna, tj. nekima neki zadatci koje su svrstani u teže nekima mogu biti jednostavniji od nekih koji nisu i obratno.

U svakom slučaju, autor je svojim izborom zadataka nastojao svesti "šablonske" zadatke na što manju mjeru (iako su i oni korisni, pogotovo u stjecanju brzine i prakse), uglavnom zato što je prolaznost kolegija jako niska, najviše zbog zahtjevnijih zadataka koji uključuju dokazivanje, poput onih sa supremumima i infimumima te onih s neprekidnošću. Za vježbanje "šablonskih" zadataka, koji su također dio ovog kolegija, preporučujemo zbirku [8].

Važno je naglasiti i da je ova skripta za sada još nedovršena – nedostaje gradivo vezano uz limes funkcije i derivaciju, koje će, ako autor bude imao vremena, biti prisutno u sljedećoj verziji skripte.

Ako Vam treba pomoć u rješavanju nekog zadatka, ili želite prijaviti neku grešku, propust, ili prijedlog za poboljšanje skripte, slobodno se javite. Želimo Vam puno sreće u rješavanju zadataka i u polaganju kolokvija i završnog ispita!

Tomislav Franov

Poglavlje 1

Osnove logike i teorije skupova. Uvod u matematičke dokaze

1.1 Osnove matematičke logike

Za početak ćemo definirati neke važne osnovne pojmove vezane uz matematičku logiku. Iako naša razmatranja neće biti skroz precizna, za naše potrebe bit će sasvim u redu. Važnost poznavanja bar osnovnih elemenata matematičke logike se sastoji u tome da se, u velikoj većini matematike, matematički jezik i simboli zapisuju upravo pomoću logičkih simbola (predikata, kvantifikatora, veznika), te zato što se neke od osnovnih činjenica koje ćemo ovdje spomenuti koriste vrlo često u matematici.

Definicija 1. Vrijedi:

- Sud je smislena rečenica koja može biti istinita ili lažna. Npr. rečenica "Postoji beskonačno mnogo prirodnih brojeva." je sud i to istinit sud, rečenica "Zemlja je ravna." je sud i to lažan sud, a "Pada li kiša?" nije sud jer je to rečenica za koju nema smisla govoriti je li točna ili ne. Sudove označavamo velikim tiskanim slovima i ta slova nazivamo propozicionalnim varijablama.
- Svaki sud A ima negaciju, tj. sudu A odgovara jedinstveni sud kojeg označavamo s $\neg A$ i koji je lažan ako je A istinit, odnosno istinit ako je A lažan. Zapravo, $\neg A$ znači "Ne vrijedi A".
- Sudove možemo kombinirati veznicima i (konjunkcija, \wedge), ili (disjunkcija, \vee), implika-cijom (\Rightarrow) i ekvivalencijom (\Leftrightarrow), i tako dobivamo nove sudove. Pritom $A \wedge B$ znači "Vrijedi A i B", $A \vee B$ znači "Vrijedi A ili B", gdje je "ili" ovdje inkluzivno, tj. vrijedi

- ili A, ili B, ili oboje. $A \Rightarrow B$ znači "Ako vrijedi A, onda vrijedi B", a $A \Leftrightarrow B$ znači "Ako vrijedi A, vrijedi B, te ako vrijedi B, vrijedi A".
- Konjunkcija $A \wedge B$ je istinita isključivo ako je A istinit i B istinit, disjunkcija $A \vee B$ je istinita isključivo ako je bar jedan od A i B istinit, vrijedi $A \Rightarrow B$ isključivo kada iz istinitosti od A slijedi istinitost od B, te vrijedi $A \Leftrightarrow B$ samo ako je iz istinosti od A slijedi istinitost od B i iz lažnosti od A slijedi lažnost od B. Pritom se u implikaciji $A \Rightarrow B$, sud A zove antecedenta, a sud B konzekventa. Ako vrijedi $A \Leftrightarrow B$, onda još kažemo i "Vrijedi A ako i samo ako vrijedi B" ili "A je nužan i dovoljan uvjet za B".

Primjer 1. Vrijedi:

- Neka je A sud "Vrijedi 1+1=2.", a B sud "Superman postoji u stvarnosti." Sud $A \vee B$ je istinit.
- Neka je A sud "Vrijedi 3>2" i B sud "Crna boja je tamnija od bijele." Sud $\neg(A \land B)$ je lažan.
- Neka je A sud "Zemlja je ravna" i B sud "Vrijedi 1 + 1 = 2". Sud $A \Rightarrow B$ je istinit. (U ovakvim slučajevima, kada je antecedenta lažna, uvijek uzimamo da je tvrdnja trivijalno istinita, bez obzira na istinitost konzekvente. Ovako definirati istinitost implikacije se pokazuje korisnim u logici (v. [1], napomena 1.7.)
- Za implikaciju $A \Rightarrow B$ definiramo njezin **obrat** kao implikaciju $B \Rightarrow A$. Uočite da $A \Rightarrow B$ može biti istinita, a da njezin obrat bude lažan. Uzmite npr. da je A sud "Padala je kiša.", a B sud "Ulice su mokre.".

Označimo li istinitost neke tvrdnje s 1, a lažnost s 0, onda definiciju 1 možemo zapisati u obliku **tablice istinitosti**:

A	В	$\neg A$	$A \vee B$	$A \wedge B$	$A \Rightarrow B$	$A \Leftrightarrow B$
0	0	1	0	0	1	1
0	1	1	1	0	1	0
1	0	0	1	0	0	0
1	1	0	1	1	1	1

U navedenoj tablici, jedan redak korespondira jednome od četiri moguća izbora istinitosti od A i B – tako prvi redak predstavlja situaciju gdje su A i B oba lažni, drugi redak predstavlja situaciju gdje je A lažan i B istinit, treći redak predstavlja situaciju gdje je A istinit i B lažan, a četvrti redak predstavlja situaciju gdje su A i B oba istiniti. Izborom jedne od te

 $^{^1 \}mathrm{Rije}$ čtrivijalnočesta je u matematičkom žargonu i ona značijednostavno,očigledno.

četiri mogućnosti je jednoznačno određena vrijednost istinitosti svih ostalih formula, koje su prikazane u nastavku u istome retku.

Zadatak 1. Zapišite sljedeće sudove koristeći propozicionalne varijable i veznike.

- a) Broj 2 je veći od broja 1 i 3 nije prirodan broj.
- b) Ako je 5 prost broj, onda Sunce nije zvijezda niti da je Zemlja planet.
- c) 369 je djeljiv s 3 ako je suma njegovih znamenaka djeljiva s 3.
- d) Ako je 1 + 1 = 2, onda iz 1 + 2 = 3 slijedi da je Zemlja okrugla.

 $Rje\check{s}enje$. a) Uzmemo li da je A sud "Broj 2 je veći od broja 1.", a B sud "3 je prirodan broj.". Tada je sud iz zadatka $A \wedge \neg B$. Mogli smo i uzeti da je B_1 sud "3 nije prirodan broj", pa bi sud iz zadatka bio sud $A \wedge B_1$.

- b) Ako je A sud "5 je prost broj", B sud "Sunce je zvijezda.", a C sud "Zemlja nije planet.", onda je sud iz zadatka $A \Rightarrow (\neg B \land \neg C)$. Ovdje se zagrade mogu i ispustiti, budući da je standardna praksa u logici da \neg ima prednost nad \land , koji ima prednost nad \lor , \Rightarrow i \Leftrightarrow (međutim, u različitoj literaturi se ovaj dogovor može razlikovati).
- c) Ako je A sud "369 je djeljiv s 3.", a B sud "Suma znamenaka broja 369 je djeljiva s 3." Tada je sud iz zadatka $B \Rightarrow A$.
- d) Ako je A sud "Vrijedi 1+1=2.", B sud "Vrijedi 1+2=3", a C sud "Zemlja je okrugla." Tada je sud iz zadatka $A\Rightarrow (B\Rightarrow C)$.

Napomena 1. Neka su A, B, C sudovi. Bez obzira na to je li bilo koji od sudova A, B, C istinit ili lažan, istiniti su sljedeći sudovi.

Navedeni sudovi su primjeri tautologija, sudova koji su istiniti bez obzira na istinitost sudova koji se u njima javljaju. Pritom je u gornjim pravilima 1 proizvoljna tautologija, a 0 proizvoljna antitautologija (tj. sud koji je uvijek lažan bez obzira na istinitost propozicionalnih varijabli. Skupa s činjenicom da ako je A istinit, te $A \Rightarrow B$ istinit, onda je i B istinit (tzv. $modus\ ponens$), navedeni sudovi bit će neophodni alati u argumentiranju i logičkom zaključivanju u matematici.

Zadatak 2. Pokažite da je $(A \Leftrightarrow B) \Leftrightarrow (\neg B \Leftrightarrow \neg A)$ istinit bez obzira na istinitost sudova A i B.

Rješenje. U ovo se možemo uvjeriti koristeći tablicu istinitosti.

A	В	$A \Leftrightarrow B$	$\neg A$	$\neg B$	$\neg B \Leftrightarrow \neg A$
0	0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	1	0	0	1

Kao što vidimo, bez obzira na koji redak promotrimo u tablici, ako je $A \Leftrightarrow B$ istinit, onda je i $\neg B \Leftrightarrow \neg A$, te ako je $A \Leftrightarrow B$ lažan, onda je i $\neg B \Leftrightarrow \neg A$ lažan, što zaključujemo iz činjenice da ta dva suda imaju jednake stupce u tablici. Ovo po definiciji znači da je istinit $(A \Leftrightarrow B) \Leftrightarrow (\neg B \Leftrightarrow \neg A)$.

Alternativno, u tablicu se može dodati i sud $(A \Leftrightarrow B) \Leftrightarrow (\neg B \Leftrightarrow \neg A)$, čiji bi stupac imao sve vrijednosti 1, pa se i tako može primijetiti da je dani sud istinit bez obzira na istinitost sudova A i B.

Napomena 2. Slično kao u zadatku 2 može se pokazati da bez obzira na istinitost sudova A,B,C, vrijedi

- Ako je $A \Leftrightarrow B$ istinit, te $B \Leftrightarrow C$ istinit, onda je i $A \Leftrightarrow C$ istinit.
- Ako je istinit $A \Leftrightarrow B$, onda je istinit i $B \Leftrightarrow A$ i obratno.

Ovom važnim činjenicama ćemo se koristiti u nastavku.

Zadatak 3.

- a) Ako je A istinit, te su istiniti $A \Rightarrow B$ i $B \Rightarrow C$, možemo li tada zaključiti da je C istinit?
- b) Ako je istinit $A \Rightarrow B$, možemo li tada zaključiti da je $\neg A \lor B$ istinit?

Rješenje. a) Možemo. Naime, iz činjenice da su A i $A \Rightarrow B$ istiniti slijedi da je B istinit, odakle iz činjenice da je i $B \Rightarrow C$ istinit slijedi da je C istinit.

b) Možemo. Kako znamo da je $A \Rightarrow B$ istinit, kako bi mogli primijeniti modus ponens, preostaje se uvjeriti samo da je $(A \Rightarrow B) \Rightarrow (\neg A \lor B)$ istinit. Jedan način za to pokazati bi bio direktno iz tablice istinitosti.

A	В	$\neg A$	$A \Rightarrow B$	$\neg A \lor B$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	0	1	1

Iz tablice vidimo da, u svakom retku u kojem $A \Rightarrow B$ poprima vrijednost 1 (prvi, treći i četvrti), $\neg A \lor B$ također poprima vrijednost 1, tj. iz istinitosti od $A \Rightarrow B$ slijedi $\neg A \lor B$, dakle po definiciji je istinit $(A \Rightarrow B) \Rightarrow (\neg A \lor B)$ što smo i tvrdili.

Uočimo još jedan način da pokažemo da je $(A \Rightarrow B) \Rightarrow (\neg A \lor B)$ istinit. Naime, prema napomeni 1, za sudove A i B je istinit sud $\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$. Odavde direktno slijedi istinitost suda $\neg \neg (A \Rightarrow B) \Leftrightarrow \neg (A \land \neg B)$ (koristimo tvrdnju zadatka 2 i činjenicu da je antecedenta istinita, pa je po definiciji i konzekventa istinita). Sada iz činjenice da za proizvoljan sud D, bez obzira na njegovu istinitost, vrijedi $\neg \neg D \Leftrightarrow D$ (pa posljedično i $D \Leftrightarrow \neg \neg D$), slijedi da je istinit sud

$$(A \Rightarrow B) \Leftrightarrow \neg \neg (A \Rightarrow B) \Leftrightarrow \neg (A \land \neg B) \Leftrightarrow \neg A \lor \neg \neg B \Leftrightarrow \neg A \lor B,$$

odakle prema napomeni 2 slijedi da je istinit sud $(A \Rightarrow B) \Leftrightarrow (\neg A \lor B)$. Lako se vidi da je onda istinit i sud $(A \Rightarrow B) \Rightarrow (\neg A \lor B)$. Naime, ako iz istinitosti (odnosno lažnosti) od $A \Rightarrow B$ slijedi istinitost (odnosno lažnost) od $\neg A \lor B$, onda trivijalno iz istinitosti od $A \Rightarrow B$ slijedi istinitost od $\neg A \lor B$.

Pokazuje se da je korištenje samo propozicionalnih varijabli i veznika previše restriktivno za velik dio matematike, pa se u nastavku bavimo sudovima koji uključuju svojstva (predikate) nekih objekata $x_1, x_2, \ldots x_n$, označimo ih sa $p(x_1, \ldots, x_n)$. I tu za svaki izbor objekata x_i (gdje je i prirodan broj takav da je $1 \le i \le n$) koji dolazi u obzir moramo biti u stanju odrediti je li $p(x_1, \ldots, x_n)$ istinit ili lažan.

Primjer 2. Neka je P(x,y) sud "x je veći od y.". Tada je P(1,2) lažan, a P(2,1) istinit. S druge strane, P(x,1) nećemo smatrati sudom, jer ne možemo na nedvosmislen način odrediti je li on istinit, njegova istinitost ovisi o vrijednosti broja x.

Sada uvodimo još i kvantifikatore. Ove pojmove, kao ni one prethodne, nećemo strogo uvoditi, ali ćemo ih objasniti na primjeru. Kvantifikatori su oznake $\forall (za \ svaki)$ i $\exists (postoji)$, tj. ako je p(x) neko svojstvo od x, onda će $\forall x \ p(x)$ značiti "Za svaki x vrijedi p(x)", a $\exists x \ p(x)$ "Postoji

²U ovom zadatku smo se implicitno koristili vrlo intuitivnom tvrdnjom da

bar jedan x takav da vrijedi p(x)". Pritom vrijedi

$$\neg(\forall x \, p(x)) \Leftrightarrow \exists x \, \neg p(x), \, \neg(\exists x \, p(x)) \Leftrightarrow \forall x \, \neg p(x).$$

Napominjemo i da svojstva iz napomene 1 vrijede i za formule s predikatima i kvantifikatorima.

Zadatak 4. Zapišite sljedeće sudove koristeći predikate, kvantifikatore i veznike.

- a) Svaki čovjek je smrtan.
- b) Ne postoji prirodan broj koji je susjedan svakom prirodnom broju.
- c) Za svaki $x \in \mathbb{N}$ i za svaki $y \in \mathbb{N}$ vrijedi x + y = y + x.
- d) Za svaki $x \in \mathbb{N}$ postoji $y \in \mathbb{N}$ takav da je x < y.

Rješenje. a) Neka je P(x) sud "Čovjek x je smrtan.". Sud iz zadatka je $\forall x P(x)$.

- b) Neka je P(x,y) sud "Prirodan broj x je susjedan prirodnom broju y.". Sud iz zadatka je $\neg(\exists x\,\forall y\,P(x,y))$.
- c) Neka je P(x,y) sud "Za prirodne brojeve x i y vrijedi x+y=y+x." Tada je traženi sud $\forall x \, \forall y \, P(x,y)$.
- d) Neka je P(x,y) sud "Za prirodne brojeve x i y vrijedi x < y.". Tada je traženi sud $\forall x \exists y \, P(x,y)$.

Zadatak 5. Odredite negaciju sljedećih sudova (i neke njoj ekvivalentne sudove).

- a) Svi trokuti su jednakostranični.
- b) Postoji prirodan broj koji je istovremeno paran i neparan.

Rješenje. a) Prvo zapišimo dani sud u jeziku predikata, kvantifikatora i veznika. Ako je P(x) sud "Trokut x je jednakostraničan.", tada početni sud glasi $\forall x P(x)$. Pripadna negacija je $\neg \forall x P(x)$, koja vrijedi ako i samo ako vrijedi

$$\exists x \, \neg P(x). \tag{1.1}$$

Dakle, u prirodnom jeziku negacija je "Nije istina da su svi trokuti jednakostranični.", te možemo promatrati njoj ekvivalentan sud (1.1), "Postoji trokut koji nije jednakostraničan.". (Pokazuje se da je promatranje ovakvih sudova ekvivalentnih negaciji vrlo bitno u dokazivanju tvrdnji i u matematici općenito, što ćete ubrzo vidjeti i na konkretnim primjerima.)

b) Neka je $P_1(x)$ sud "Prirodan broj x je paran.", te $P_2(x)$ sud "Prirodan broj x je neparan.". Početni sud je $\exists x \ (P_1(x) \land P_2(x))$, njegova negacija je $\neg \exists x \ (P_1(x) \land P_2(x))$, a jedna njoj ekvivalentna tvrdnja $\forall x \ (\neg P_1(x) \lor \neg P_2(x))$. Dakle, u prirodnom jeziku, pripadna negacija je "Ne postoji prirodan broj koji je istovremeno paran i neparan.", a pripadna ekvivalentna tvrdnja je

Imajući na umu činjenice da prirodan broj ne može istovremeno biti paran i neparan, da je svaki prirodan broj paran ako i samo ako nije neparan, te neparan ako i samo ako nije paran, imamo da je (1.2) ekvivalentno sudu

1.2 Skupovi

Jedan od temeljnih pojmova u matematici je pojam skupa. Skup ne definiramo, no intuitivno ga zamišljamo kao kolekciju nekih objekata za koje kažemo da su elementi ili članovi skupa. Činjenicu da neki objekt x pripada skupu A zapisujemo sa $x \in A$ i čitamo "x je element skupa A". U suprotnom pišemo $x \notin A$. Skup koji nema niti jedan element zovemo **prazan skup** i označavamo sa \emptyset . S druge strane, skup svih matematičkih objekata relevantnih za diskusiju nazivamo **univerzalni skup**³. Nadalje, $S = \{x \mid P(x)\}$ će nam značiti da je S skup svih objekata x za koje vrijedi P(x) i samo takvih objekata. Preciznije, vrijedi $a \in S$ ako i samo ako vrijedi P(a).

Elemente skupova često nabrajamo u vitičastim zagradama, npr. skup koji sadrži brojeve 1, 2, 3 i niti jedan drugi element označavamo s $\{1, 2, 3\}$. Često je nabrajanje svih elemenata nepraktično pa tada koristimo tri točkice (\ldots) , npr skup svih elemenata od 1 do 100 označavamo s $\{1, 2, \ldots, 100\}$.

Važno je naglasiti i da kod skupova često koristimo $(\forall x \in S) P(x)$, odnosno $(\exists x \in S) P(x)$, što znači "Za svaki x iz S vrijed P(x)", odnosno "Postoji x iz S za kojeg vrijedi P(x)". Nadalje, $(\forall x \in S) P(x)$ se u logici promatra kao pokrata za sud $\forall x \ (x \in S \Rightarrow P(x))$, a $(\exists x \in S) P(x)$ kao pokrata za sud $\exists x \ (x \in S \land P(x))$. Nadalje, koristit ćemo i notaciju $\{x \in S : P(x)\}$ ("skup svih elemenata x iz S za koje vrijedi P(x)"), i to se promatra kao pokrata za skup $\{x : x \in S \land P(x)\}$

³Čitatelj/ica će se možda zapitati zašto uzimamo skup svih matematičkih objekata relevantnih za diskusiju, a ne naprosto skup svega. Uspostavlja se da, za pojam skupa kako ga mi opisujemo i zamišljamo u većini matematike (tzv. naivna teorija skupova), skup svega ne postoji, zbog tzv. Russellovog paradoksa.

Definicija 2. Neka je U univerzalni skup.

- Kažemo da je $A\subseteq B$ ako za svaki $x\in U$, gdje je U univerzalni skup, vrijedi $x\in A\Rightarrow x\in B.$
- Kažemo da su A i B **jednaki** i pišemo A=B ako vrijedi $A\subseteq B$ i $B\subseteq A$.
- Unija skupova A i B je skup $A \cup B = \{x \in U : x \in A \lor x \in B\}.$
- **Presjek** skupova A i B je skup $A \cap B = \{x \in U : x \in A \land x \in B\}.$
- Razlika skupova A i B je skup $A \setminus B = \{x \in U : x \in A \land x \notin B\}.$
- Simetrična razlika skupova A i B je skup $A \triangle B = \{x \in U : x \in A \cup B \land x \notin A \cap B\}.$
- Komplement skupa A (s obzirom na univerzalni skup U je skup $A^c = \{x \in U : x \notin A\}$
- Partitivni skup skupa A je skup svih podskupova od A.
- Kartezijev produkt nepraznih skupova A i B je $A \times B = \{(a, b) : a \in A \land b \in B\}$.

Pritom je (a, b) oznaka za **uređeni par**, što je zapravo kolekcija dva elementa u kojoj je bitan poredak, dakle ako su a i b različiti elementi onda je $(a, b) \neq (b, a)$. Nadalje, kažemo da su A i B **disjunktni** ako vrijedi $A \cap B = \emptyset$.

Zadatak 6.

a) Neka je

$$A = \{1, 2, ..., 30\}, \ B = \{x \in \mathbb{R} : x + 1 < x\}, \ C = \{n \in \mathbb{Z} : n < 9\} \setminus \{n \in \mathbb{Z} : n < -7\}.$$

Odredite $(A \cap C) \cup B$.

- b) Neka je $\mathbb N$ univerzalni skup. Odredite $\{2,3,4\}\times\{4,5,6\dots\}^c.$
- c) Odredite $\mathcal{P}(\{1,2,3\})$.

d) Je li
$$\{\{\emptyset, \{\emptyset\}\}\}\}\in \mathcal{P}\bigg(\mathcal{P}\Big(\mathcal{P}\Big(\mathcal{P}\Big(\emptyset\Big)\Big)\bigg)\bigg)$$
?

Rješenje. a) Vrijedi $B = \emptyset$ – očito ne postoji realan broj takav da je x + 1 < x. Skup C se sastoji od svih cijelih brojeva manjih od 9, te onih brojeva koji nisu manji od -7. Dakle, vrijedi $C = \{-7, -6, -5, -4, \dots, 6, 7, 8\}$. Dakle, vrijedi $A \cap C = \{1, 2, \dots, 8\}$, te $\{1, 2, \dots, 8\} \cup B = \{1, 2, \dots, 8\}$, budući da je B prazan skup.

b) Vrijedi $\{4, 5, 6, \dots\}^c = \{1, 2, 3\}$, dakle

$$\{2,3,4\} \times \{4,5,6,\dots\}^c = \{2,3,4\} \times \{1,2,3\}$$

= $\{(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3)\}.$

c) Vrijedi

$$\mathcal{P}(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.$$

d) Vrijedi
$$\mathcal{P}(\emptyset) = \{\emptyset\}$$
 i $\mathcal{P}\Big(\mathcal{P}(\emptyset)\Big) = \{\emptyset, \{\emptyset\}\}$. Kako je $\{\emptyset, \{\emptyset\}\} \subseteq \{\{\emptyset, \{\emptyset\}\}\} = \mathcal{P}\Big(\mathcal{P}(\emptyset)\Big)$, vrijedi $\{\emptyset, \{\emptyset\}\}\} \in \mathcal{P}\Big(\mathcal{P}\Big(\mathcal{P}(\emptyset)\Big)\Big)$. Konačno, kako je $\{\{\emptyset, \{\emptyset\}\}\}\} \subseteq \mathcal{P}\Big(\mathcal{P}\Big(\mathcal{P}(\emptyset)\Big)\Big)$, vrijedi $\{\{\emptyset, \{\emptyset\}\}\}\} \in \mathcal{P}\Big(\mathcal{P}\Big(\mathcal{P}\Big(\mathcal{P}(\emptyset)\Big)\Big)\Big)$.

1.3 Direktni dokazi

U ostatku ovog poglavlja na intuitivnoj razini uvodimo pojam dokaza. Dokaz možemo shvatiti kao precizan logički argument koji pokazuje zašto je neka tvrdnja istinita. Obično se u dokazima koristimo osnovnim činjenicama kojih ne dokazujemo (aksiomima), definicijama tvrdnji o kojima govorimo, te prethodno dokazanim tvrdnjama.

Obično se kaže da je matematika deduktivna znanost. Naime, u znanostima poput fizike, kemije i biologije koje ispituju svijet oko nas, nemamo luksuz koristiti samo deduktivne argumente, nego koristimo kombinaciju induktivnih i deduktivnih argumenata. Induktivno zaključivanje je ono gdje iz prethodno poznatih činjenica i podataka pokušavamo doći do novih zaključaka i pokušavamo potkrijepiti te nove zaključke sa što više podataka koji podupiru taj zaključak, a deduktivno zaključivanje je ono gdje iz prethodnih činjenica primjenom logičkog zaključivanja dobivamo nove činjenice – ono za razliku od induktivnog zaključivanja donosi zaključke za koje možemo garantirati da su istiniti.

U matematici, za razliku od drugih prirodnih znanosti, imamo mogućnost razviti cijele matematičke teorije koristeći deduktivno zaključivanje, te zato uvijek inzistiramo da nešto što tvrdimo budemo u stanju dokazati (kada god je to moguće), jer nam to daje sigurnost da je tvrdnja koju smo dokazali točna. Bitno je naglasiti da u matematici također koristimo induktivno zaključivanje, ali nikad u samoj teoriji, već u samom procesu otkrivanja novih činjenica, gdje onda iste pokušavamo dokazati koristeći deduktivno zaključivanje.

Slijede zadatci koji će služiti kao uvod u dokazivanje matematičkih tvrdnji, i to uglavnom

na primjeru osnovnih činjenica o parnim i neparnim brojevima, djeljivosti, te racionalnim i iracionalnim brojevima. Dokazi se obično u matematici javljaju u dva oblika – **direktan** dokaz i svođenje na kontradikciju.⁴

Direktan dokaz je proces dokazivanja tvrdnji direktnom primjenom definicija i prethodno dokazanih tvrdnji. Za početak, krenut ćemo od definicija parnosti i neparnosti.

Definicija 3. Kažemo da je cijeli broj $a \in \mathbb{Z}$ paran ako postoji bar jedan $k \in \mathbb{Z}$ takav da je a = 2k. Nadalje, kažemo da je a neparan ako postoji bar jedan $l \in \mathbb{Z}$ takav da je a = 2l + 1.

Uočite da naš odabir ovih dvaju definicija možda i nije najprirodniji, ali prednost ovakve definicije je njezina jednostavnost, jer da smo npr. definirali parne brojeve kao one čija je zadnja znamenka 0, 2, 4, 6 ili 8, tada se pozivamo na pojam dekadskog zapisa broja, a u definiciji 3 se ne pozivamo na ništa osim na množenje cijelih brojeva, pojam koji je za naše svrhe elementaran i kojeg na ovom mjestu nećemo definirati. Nadalje, uočite da smo mogli definirati da je $a \in \mathbb{Z}$ paran ako postoji točno jedan $k \in \mathbb{Z}$ takav da je a = 2k, no kasnije ćemo pokazati da jedinstvenost broja k zapravo slijedi iz same definicije. Napominjemo i da je česta praksa u matematici promotriti definicije s najmanje pretpostavki (pogledajte npr. točku 2.6. u [2]).

Zadatak 7. Riješite sljedeće zadatke.

- a) Dokažite da je zbroj dva parna broja ponovno paran broj.
- b) Dokažite da je umnožak dva neparna broja neparan broj.
- c) Odredite sve $n \in \mathbb{N}_0$ za koje je n! paran (Sjetite se da se za $n \in \mathbb{N}_0$, broj n! definira kao broj za kojeg je 0! = 0, te $n! = n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1$ za $n \in \mathbb{N}$).

Rješenje. a) Neka su $a, b \in \mathbb{Z}$ proizvoljni parni brojevi. To znači da postoje $k, l \in \mathbb{Z}$ takvi da je a=2k i b=2l. No tada je

$$a + b = 2k + 2l = 2(k + l).$$

Budući da je $k+l \in \mathbb{Z}$, slijedi i da je a+b paran. Time smo dokazali tvrdnju.

b) Dokaz ide analogno⁵ prethodnom. Zaista, neka su $a, b \in \mathbb{Z}$ proizvoljni neparni brojevi. Tada postoje $k, l \in \mathbb{Z}$ takvi da je a = 2k + 1 i b = 2l + 1. Tada je

$$ab = (2k+1)(2l+1) = 4kl + 2k + 2l + 1 = 2(2kl + k + l) + 1,$$

 $^{^4\}mathrm{U}$ literaturi ćete još za dokaze kontradikcijom naći i sljedeće nazive – metoda suprotnog, indirektan dokaz, reductio ad absurdum.

⁵Riječ analogno ćete često vidjeti u matematičkim tekstovima i ona znači slično, usporedivo.

pa tvrdnja očito vrijedi, kako je $2kl + k + l \in \mathbb{Z}$.

c) Za n=0 i n=1 vrijedi n!=1, a 1 očito nije paran broj, jer ne postoji $k\in\mathbb{Z}$ takav da je 1=2k. Međutim, vrijedi 2!=2, a 2 je paran jer je $2=2\cdot 1$. Za n>2 vrijedi

$$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-1) \cdot n = 2 \cdot (1 \cdot 3 \cdot \dots \cdot (n-1) \cdot n),$$

pa je n! očito paran i za n > 2. Slijedi da je n! paran ako i samo ako je $n \in \mathbb{N}_0 \setminus \{0, 1\}$. \square Zadatak 8. Dokažite da za svaki $x \in \mathbb{R}$ vrijedi $x^2 - 4x \ge -4$.

 $Rje\check{s}enje$. Neka je $x\in\mathbb{R}$ proizvoljan. Vrijedi

$$x^{2} - 4x > -4 \Leftrightarrow x^{2} - 4x + 4 > 0 \Leftrightarrow (x - 2)^{2} > 0$$

te kako smo dobili ekvivalenciju s istinitom tvrdnjom $(x-2)^2 \geq 0$, tvrdnja mora vrijediti. Uočite da bi zapravo jedan direktan dokaz bio sljedeći: Znamo da za svaki $x \in \mathbb{R}$ vrijedi $(x-2)^2 \geq 0$. Imamo

$$(x-2)^2 \ge 0 \Rightarrow x^2 - 4x + 4 \ge 0 \Rightarrow x^2 - 4x \ge -4$$

što smo i tvrdili. Međutim, u prethodnom dokazu je bilo puno intuitivnije ići "unazad", tj. od zaključka ka nekoj istinitoj tvrdnji, pa ako dobijemo da su te tvrdnje ekvivalentne, tvrdnja sigurno vrijedi i možemo konstruirati i direktan dokaz, analogno kako smo to napravili u ovom primjeru.

Zadatak 9. Dokažite da za sve skupove A, B, C vrijede sljedeća svojstva.

a)
$$A \cup B = B \cup A$$
,

c)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$
,

b)
$$A \subseteq B \Rightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$$
,

d)
$$(A \cup B)^c = A^c \cap B^c$$
 (De Morgan).

Rješenje. a) Neka su A i B proizvoljni. Ako je barem jedan od njih prazan, onda tvrdnja vrijedi, pa pretpostavimo da su svi oni neprazni. Neka je zatim $x \in A \cup B$ proizvoljan. Tada vrijedi $x \in A \lor x \in B$, što povlači $x \in B \lor x \in A$, tj. $x \in B \cup A$. Obratno, ako je $x \in B \cup A$, to znači da je $x \in B \lor x \in A$, odnosno $x \in A \lor x \in B$, tj. $x \in A \cup B$.

- b) Neka su A i B proizvoljni i neka je $X \in \mathcal{P}(A)$ proizvoljan. Iz definicije slijedi $X \subseteq A$. Kako vrijedi $X \subseteq A$ i $A \subseteq B$, slijedi $X \subseteq B$, odnosno $X \in \mathcal{P}(B)$.
- c) Neka su $A,\,B$ i C proizvoljni i neka je $(x,y)\in (A\cup B)\times C$ proizvoljan. Tada je $x\in A\cup B$

i $y \in C$, odnosno $(x \in A \lor x \in B) \land y \in C$. Dobivamo

$$x \in A \land y \in C \lor x \in B \land y \in C$$

- (v. napomenu 1), tj. $(x,y) \in A \times C$ ili $(x,y) \in B \times C$, odakle dobivamo $(x,y) \in (A \times C) \cup (B \times C)$.
- d) Neka su A i B proizvoljni i neka je $x \in (A \cup B)^c$ proizvoljan. Tada vrijedi $x \notin A \cup B$, što je drukčiji zapis za $\neg (x \in A \cup B)$. Kako $x \in A \cup B$ povlači $x \in A \vee x \in B$, vrijedi

$$\neg(x \in A \cup B) \Leftrightarrow \neg(x \in A \lor x \in B) \Leftrightarrow \neg(x \in A) \land \neg(x \in B),$$

odnosno $x \notin A \land x \notin B$, pa vrijedi $x \in A^c \land x \in B^c$, odnosno $x \in A^c \cap B^c$. Analogno se dokazuje drugi smjer.

Napomena 3. Znamo da vrijedi A=B ako i samo ako vrijedi $A\subseteq B$ i $B\subseteq A$. No to po definiciji vrijedi ako i samo ako da za svaki $x\in U$, gdje je U univerzalni skup, vrijedi $x\in A\Rightarrow x\in B$ i $x\in B\Rightarrow x\in A$, tj. $x\in A\Leftrightarrow x\in B$. Prema tome, da bi vrijedilo A=B nužno je i dovoljno za proizvoljan $x\in U$ vrijedi $x\in A\Leftrightarrow x\in B$ da bismo pokazali jednakost. To znači da zapravo u podzadatcima a), c) i d) zapravo i ne treba dokazivati drugi smjer, jer imamo niz ekvivalencija za koje znamo da vrijedi tranzitivnost.

Napomena 4. Uočite da vrijedi $\{a,a\} = \{a\}$ i $\{a,b\} = \{b,a\}$. Zaista, zapis $\{a,a\}$ znači da promatrani skup sadrži samo elemente a i a i niti jedan drugi. Očito to vrijedi ako i samo ako skup sadrži samo element a i niti jedan drugi, dakle on je jednak $\{a\}$. Slično se dokazuje i druga jednakost, te da gornja svojstva vrijede i za elemente skupova s više članova. Odavde slijedi da u skupu nije bitan poredak elemenata, te da duplikate možemo zanemariti. Međutim, postoje određeni slučajevi u kojima je bitno postojanje duplikata, odnosno u kojima je poredak bitan (tada se koristimo multiskupovima, indeksiranim familijama skupova, uređenim n-torkama).

Zadatak 10. Dokažite da tvrdnja da za sve skupove A, B vrijedi $A \cap B \supseteq A \cup B$ nije istinita. Rješenje. Dokažimo da je istinita njezina negacija, tj. da je istinita tvrdnja

$$(\exists A, B \in U) \ A \cap B \subset A \cup B.$$

Ovo dokazujemo naprosto po definiciji unije i presjeka. Zaista, uzmimo $A = \{1, 2, 3\}$ i $B = \{3, 4, 5\}$. Vrijedi $A \cap B = \{3\}$ i $A \cup B = \{1, 2, 3, 4, 5\}$, te očito vrijedi $A \cap B \subset A \cup B$. \square

Iz prethodnog primjera vidimo da, kako bi pokazali da tvrdnja oblika $\forall x P(x)$ nije istinita,

dovoljno je naći samo jedan primjer x_0 takav da je $P(x_0)$ lažna. Takav primjer zove se kontraprimjer. Ako neka tvrdnja s univerzalnim kvantifikatorom nije istinita, onda često kažemo da općenito nije istinita, jer se može ipak dogoditi da postoji skup za kojeg je tvrdnja istinita. Npr. za $A = B = \emptyset$ vrijedi $A \cap B \supset A \cup B$.

Definicija 4. Neka je $x \in \mathbb{R}$. Kažemo da je x racionalan ako postoje cijeli brojevi a i $b \neq 0$ takvi da je $x = \frac{a}{b}$. Ako x nije racionalan, kažemo da je on iracionalan.

Zadatak 11. Dokažite da za svaki racionalan broj postoji racionalan broj koji je strogo veći od njega.

 $Rje\check{s}enje$. Neka je $q \in \mathbb{Q}$ proizvoljan. Tada postoje brojevi $m \in \mathbb{Z}$ i $n \in \mathbb{Z} \setminus \{0\}$ takvi da je $q = \frac{m}{n}$. Promotrimo broj q + 1. Očito je q + 1 > q, te vrijedi

$$q+1 = \frac{m}{n} + 1 = \frac{m+n}{n}.$$

Kako je $m + n \in \mathbb{Z}$ i po definiciji $n \in \mathbb{Z} \setminus \{0\}$, imamo i da je q + 1 racionalan broj.

1.4 Dokazi kontradikcijom

Ideja dokaza kontradikcijom je pretpostaviti da je tvrdnja koju želimo dokazati lažna, a zatim zdravim logičkim zaključivanjem doći do apsurdnog zaključka, odakle slijedi da je početna pretpostavka (da je tvrdnja koju želimo dokazati lažna) bila sama lažna, odakle dobivamo istinitost tvrdnje koju smo htjeli dokazati. Pokažimo to kroz nekoliko primjera.

Zadatak 12. Dokažite da ako je b paran, tj. ako postoji bar jedan $k \in \mathbb{Z}$ takav da je b = 2k, onda je taj k jedinstven.

 $Rje\check{s}enje$. Tvrdnju dokazujemo svođenjem na kontradikciju. Pretpostavimo da postoje $k,l\in\mathbb{Z},\,k\neq l,$ takvi da je

$$b = 2k$$
 i $b = 2l$.

No tada je 2k = 2l, odnosno k = l. Dakle, dobili smo da istovremeno vrijedi $k \neq l$ i k = l, što je apsurdno. Dakle, zaključujemo da je naša početna pretpostavka bila lažna, odnosno takav k je zaista jedinstven.

Zadatak 13. Dokažite: Niti jedan cijeli broj nema svojstvo da je istovremeno paran i neparan. (Iako se ova tvrdnja na prvi pogled čini očiglednom, zapravo nije odmah vidljiva iz naših definicija parnosti i neparnosti!)

 $Rje\check{s}enje$. Pretpostavimo da postoji takav broj, neka je to $a \in \mathbb{Z}$. Tada postoje cijeli brojevi $k, l \in \mathbb{Z}$ takvi da je a = 2k i a = 2l + 1. Odavde imamo 2k = 2l + 1, odnosno

$$2(k-l) = 1.$$

Zapravo, dobili smo da je 1 paran broj, što intuitivno znamo da ne vrijedi, ali to možemo i dokazati. Možda najprirodniji argument je iskoristiti činjenicu da, kad bi ove operacije proširili na skup $\mathbb Q$, onda bi imali $k-l=\frac12$, što je kontradikcija s činjenicom da je k-l cijeli broj. No ovo možemo i dokazati i bez pozivanja na skup racionalnih brojeva. Uočimo da je

$$1 = 2(k - l) > 0,$$

pa slijedi i da je k-l>0. S druge strane, kako je k-l>0, imamo

$$k - l < 2(k - l) = 1.$$

Dakle 0 < k-l < 1, kontradikcija s $k-l \in \mathbb{Z}$, jer nema cijelih brojeva između 0 i 1.6 $\hfill\Box$

Zadatak 14. Dokažite da ne postoji broj $a \in \mathbb{R}$ sa svojstvom da za svaki $\epsilon > 0$ vrijedi $a > \epsilon$.

Rješenje. Pretpostavimo da postoji takav $a \in \mathbb{R}$. Za $\epsilon = a+1$ vrijedi a > a+1, što je očito nemoguće. Međutim, da bi ovakav izbor broja ϵ bio dobar, mora vrijediti $\epsilon = a+1>0$. Međutim, to lagano slijedi iz činjenice da uvrštavanjem 0 umjesto ϵ u početnu pretpostavku imamo a > 0, pa posljedično i a+1>0.

Još jedan tip dokazivanja zove se dokaz kontrapozicijom, a on se sastoji u sljedećem – iz činjenice da za sudove A i B vrijedi

$$A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$$

slijedi da je dovoljno dokazati $\neg B \Rightarrow \neg A$. Uočimo da se dokaz kontrapozicijom može gledati kao specijalan slučaj dokaza kontradikcijom i to onaj slučaj gdje, ako pretpostavimo da je tvrdnja koju želimo dokazati lažna, dobivamo negaciju pretpostavke.

Zadatak 15. Dokažite:

- a) Neka je $a \in \mathbb{N}$ proizvoljan. Ako 4a nije kvadrat nekog prirodnog broja, onda to nije ni a.
- b) Neka je $a \in \mathbb{Z}$ proizvoljan. Vrijedi da je a^2 paran ako i samo ako je a paran.

⁶Ovu, na prvi pogled očiglednu činjenicu, dokazujemo u zadatku 48.

 $Rje\check{s}enje$. a) Dokazat ćemo ovu tvrdnju kontrapozicijom. Dovoljno je pokazati sljedeće: Ako je a kvadrat nekog prirodnog broja, onda je to i 4a. Ako postoji p takav da je $a=p^2$, onda je

$$4a = 4p^2 = 2^2p^2 = (2p)^2$$
,

pa tvrdnja vrijedi.

b) Dokazat ćemo ovu tvrdnju tako da prvo pokažemo jednu implikaciju, a onda drugu. Pretpostavimo da je a paran, tj. a=2k za neki $k\in\mathbb{Z}$. Tada je

$$a^2 = 4k^2 = 2(2k^2),$$

dakle i a^2 je paran.

Dokažimo sada drugi smjer i to kontrapozicijom, tj. da ako je a neparan, da je tada i a^2 neparan. Zaista, ako je a neparan, onda postoji k takav da je a = 2k + 1. Tada je

$$a^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1,$$

pa tvrdnja vrijedi.

Definicija 5. Neka su $a, b \in \mathbb{Z}$ i $b \neq 0$. Kažemo da je a **djeljiv** s b ako postoji $q \in \mathbb{Z}$ takav da je a = bq. Ako za broj $c \in \mathbb{Z} \setminus \{0\}$ vrijedi da je a djeljiv s c i b djeljiv s c, onda kažemo da je broj c **zajednički djelitelj** tih dvaju brojeva. Najveći od tih zajedničkih djelitelja naprosto zovemo **najveći zajednički djelitelj** i označavamo taj broj s M(a, b). Kažemo da su a i b **relativno prosti** ako je M(a, b) = 1.

Relativno prosti brojevi su npr. 3 i 7, 14 i 25 itd. Može se intuitivno gledati na relativno proste brojeve kao one za koje vrijedi da ako od njih napravimo razlomak, da se taj razlomak ne može dalje kratiti, a da brojnik i nazivnik i dalje budu cijeli brojevi.

Zadatak 16. Dokažite da je $\sqrt{2}$ iracionalan.

 $Rje\check{s}enje.$ Pretpostavimo suprotno, da je $\sqrt{2}$ racionalan. Tada postoje cijeli brojevia i $b\neq 0$ takvi da je

 $\sqrt{2} = \frac{a}{b}$

Možemo bez smanjenja općenitosti pretpostaviti da je M(a,b) = 1 (da je razlomak "maksimalno skraćen"), jer kada bi vrijedilo M(a,b) > 1 onda bi imali

$$\frac{a}{b} = \frac{M(a,b)a'}{M(a,b)b'} = \frac{a'}{b'},$$

tj. vrijednost razlomka se ne mijenja. Sada kvadriranjem obiju strana dobivamo

$$2 = \frac{a^2}{b^2} \Leftrightarrow b^2 = 2a^2$$

Iz definicije parnosti slijedi da je b^2 paran, pa je i b paran. No tada postoji $k \in \mathbb{Z}$ takav da je b=2k, tj. $b^2=4k^2$. Sada vrijedi $4k^2=2a^2$, odnosno

$$2k^2 = a^2.$$

Odavde slijedi da je a^2 paran, pa je i a paran. Dakle 2 je zajednički djelitelj od a i b, što je kontradikcija s pretpostavkom M(a,b)=1.

Definicija 6. Kažemo da a dijeli b i pišemo $a \mid b$ ako je b djeljiv s a.

Zadatak 17. Odredite sve $a \in \mathbb{Z} \setminus \{0\}$ takve da je $\frac{4}{a}$ cijeli broj.

Rješenje. Tvrdnja očito vrijedi ako je $a \mid 4$, tj. tvrdnja vrijedi za a = 1, -1, 2, -2, 4, -4. Naime, da $a \mid 4$ znači da postoji $k \in \mathbb{Z}$ takav da je 4 = ak, pa vrijedi

$$\frac{4}{a} = \frac{ak}{a} = k \in \mathbb{Z}.$$

Dokažimo da su ovo jedine mogućnosti. Tvrdnja očito ne vrijedi za 3 i -3, te pretpostavimo li da postoji neki a>4 takav da tvrdnja vrijedi, onda djeljenjem sa dobivamo $\frac{4}{a}<1$, no tada očito vrijedi i $\frac{4}{a}>0$, jer to vrijedi ako i samo ako je 4>0, što je istina. Znamo da ne postoji cijeli broj između 0 i 1, pa imamo kontradikciju. Tvrdnja se analogno pokazuje za a<-4.

Analogno se pokazuje da je $\frac{b}{a}$ cijeli broj ako i samo ako je a djelitelj od b.

Zadatak 18. Odredite sve $a \in \mathbb{Z}$ takve da je

- a) $\frac{a+2}{a}$ cijeli broj, $a \neq 0$.
- b) $\frac{2a}{a+2}$ cijeli broj, $a \neq -2$.

Rješenje. a) Vrijedi

$$\frac{a+2}{a} = 1 + \frac{2}{a},$$

te kako znamo da je 1+x cijeli broj ako i samo ako je x cijeli broj, treba pronaći kada je sve $\frac{2}{a}$ cijeli broj, a prema već pokazanome to vrijedi ako i samo ako je a=1,-1,2,-2.

b) Vrijedi

$$\frac{2a}{a+2} = \frac{2a+4-4}{a+2} = 2 - \frac{4}{a+2},$$

što je cijeli broj ako i samo ako je a = 0, -4, -3, -1, 2, -6.

1.5 Primjeri raznih dokaznih zadataka iz teorije brojeva

Definicija 7. Neka je $n \in \mathbb{N}$ i n > 1. Kažemo da je n **prost broj** ako su jedini njegovi djelitelji 1 i n. Kažemo da je n **složen broj** ako nije prost broj.

Uočimo da je $n \in \mathbb{N}$ složen ako i samo ako postoje prirodni brojevi k,l>1 takvi da je $n=k\cdot l.$

Zadatak 19. Dokažite da svaki složeni broj $n \in \mathbb{N}$ ima prosti faktor (tj. prosti broj s kojim je djeljiv), nazovimo ga p, sa svojstvom da je $p \leq \sqrt{n}$.

Rješenje. Kako je n složen, sigurno postoji prirodan broj veći od 1 s kojim je djeljiv. Nadalje, prirodnih brojeva s tim svojstvom ima konačno mnogo, jer za svaki djelitelj k>1 od n vrijedi $1 < k \le n$. Kako ih ima konačno mnogo, sigurno među njima postoji najmanji takav – neka je to p. Tada po definiciji postoji $m \in \mathbb{N}$ takav da je $n = m \cdot p$. No kako je p najmanji, očito je $p \le m$. No tada slijedi

$$p^2 < m \cdot p = n$$
,

odnosno $p \leq \sqrt{n}$, što smo i tvrdili.

Zadatak 20. Dokažite da za svaki $n \in \mathbb{N}$ postoji n uzastopnih složenih brojeva.

 $Rje\check{s}enje.$ Dovoljno je naći neki $x\in\mathbb{N}$ sa svojstvom da su

$$x + 2, \ldots, x + n, x + (n + 1)$$

složeni brojevi, te ako to uspijemo, dokazali smo tvrdnju. Uočimo da je dovoljno uzeti broj x koji je djeljiv sa svim brojevima $2, 3, \ldots, n, n+1$. Jedan takav broj je x=(n+1)!, jer za proizvoljan $i \in \mathbb{N}$ takav da je $i \leq n$ vrijedi

$$(n+1)! + i = (n+1)n \dots (i+1)i(i-1) \dots 2 \cdot 1 + i$$

= $i((n+1)n \dots (i+1)(i-1) \dots 2 \cdot 1 + 1),$

pa je

$$(n+1)! + 2, \dots, (n+1)! + n, (n+1)! + (n+1)$$

traženi niz od n uzastopnih složenih brojeva.

Napomena 5. Uočite da u prethodnom zadatku nismo promatrali niz $x, \ldots, x + (n-1)$, nego niz $x+2, \ldots, x+n, x+(n+1)$, iako je promatranje prvog niza pri rješavanju zadatka sigurno intuitivnije. Naime, da smo promatrali prvi niz, ne bismo mogli primijeniti ideju iz prethodnog zadatka, jer nam "smetaju" brojevi x i x+1. Dakako, možemo u ovom slučaju uzeti x=(n+1)!+2 i tvrdnja će vrijediti, ali da smo to napravili, ne bi bilo na prvi pogled jasno kako smo došli do tog broja.

Definicija 8. Kažemo da je $\overline{a_1a_2\dots a_n}$ dekadski zapis broja $L\in\mathbb{N}$ ako vrijedi

$$L = 10^{n-1}a_1 + 10^{n-2}a_2 + 10^{n-3}a_3 + \dots + 10a_{n-1} + a_n.$$

Npr. dekadski zapis broja deset je $\overline{10}$, a dekadski zapis broja sto devetnaest je $\overline{119}$. Obično potez na vrhu izostavljamo, ako je iz konteksta jasno da se radi o dekadskom zapisu broja. Imajući na umu prethodnu definiciju, promotrimo sljedeći zadatak.

Zadatak 21 (Školsko natjecanje, 4. razred, A varijanta, 2015.). Za $n \in \mathbb{N}$ označimo s R_n broj $\underbrace{111...11}_{n \text{ puta}}$. Dokažite da ako je R_n prost broj, onda je i n prost broj.

Rješenje. Tvrdnju dokazujemo kontrapozicijom, tj. dokazat ćemo da za proizvoljan $n \in \mathbb{N}$ vrijedi sljedeće: Ako je n složen, da je onda i R_n složen. Korištenjem definicije dekadskog zapisa broja i formule za sumu prvih n članova geometrijskog niza (v. definiciju 34), imamo

$$R_n = 10^{n-1} \cdot 1 + 10^{n-2} \cdot 1 + \dots + 10 \cdot 1 + 1 = 10^{n-1} + 10^{n-2} + \dots + 10 + 1 = \frac{10^n - 1}{9}.$$

Kako je n složen, postoje prirodni brojevi k, l > 1 takvi da je $n = k \cdot l$. Dobivamo

$$R_n = \frac{10^n - 1}{9} = \frac{10^{kl} - 1^l}{9} = \frac{\left(10^k\right)^l - 1^l}{9}$$

$$= \frac{(10^k - 1)(10^{k(l-1)} + 10^{k(l-2)} + \dots + 10^k)}{9}$$

$$= \frac{(10 - 1)(10^{k-1} + 10^{k-2} + \dots + 1)(10^{k(l-1)} + 10^{k(l-2)} + \dots + 10^k)}{9},$$

pa dobivamo da je $R_n = (10^{k-1} + 10^{k-2} + \dots + 1)(10^{k(l-1)} + 10^{k(l-2)} + \dots + 10^k)$. Kako je R_n očito umnožak brojeva većih od 1, zaključujemo da je složen.

Napomena 6 (Osnovni teorem aritmetike). Svaki prirodan broj n > 1 može se na jedinstven način (do na poredak) prikazati kao produkt jednog ili više prostih brojeva (Napomena.

Produkt od jednog prostog broja, radi jednostavnosti, definiramo kao sam taj prost broj.)

Ovaj teorem ostavljamo bez dokaza (Dokaz možete naći u [4]), naveli smo ga jer je vrlo elementaran i bit će vrlo bitan pri rješavanju sljedećih zadataka.

Zadatak 22. Dokažite da prostih brojeva ima beskonačno mnogo.

 $Rje\check{s}enje$. Pretpostavimo da prostih brojeva ima konačno mnogo, neka su to p_1, p_2, \ldots, p_n . Prema osnovnom teoremu aritmetike, znamo da se svaki broj može prikazati kao produkt brojeva p_1, p_2, \ldots, p_n . Dovoljno je, dakle, konstruirati broj koji nije djeljiv ni s jednim od brojeva p_1, p_2, \ldots, p_n , jer ćemo tada dobiti kontradikciju s činjenicom da se svaki broj može prikazati kao produkt brojeva p_1, \ldots, p_n . Međutim – nije teško konstruirati takav broj, jedan primjer je

$$p = p_1 p_2 p_3 \dots p_n + 1.$$

Lako se vidi da p nije djeljiv ni s jednim od brojeva p_1, \ldots, p_n . Naime, kad bi postojao broj p_i takav da $p_i \mid p$, onda kako vrijedi

$$p_i \mid p_1 p_2 \dots p_i \dots p_n$$

očito vrijedi i

$$p_i \mid p - p_1 p_2 \dots p_n$$

tj. $p_i \mid 1$. To bi povlačilo da je $p_i = 1$, što je kontradikcija s činjenicom da je p_i prost, dakle veći od 1.

Zadatak 23. Za proizvoljan $n \in \mathbb{N}_0$, definiramo n-ti Fermatov broj kao broj $f_n := 2^{2^n} + 1$.

- a) Dokažite da za sve $m, n \in \mathbb{N}$ vrijedi sljedeće: Ako je $m \neq n$, onda je $M(f_n, f_m) = 1$.
- b) Pokažite da a) povlači da prostih brojeva ima beskonačno mnogo.

 $Rje\check{s}enje$. Da bismo dokazali tvrdnju a), dokažimo sljedeću pomoćnu tvrdnju: Za svaki $n \in \mathbb{N}$ vrijedi $f_{n+1} = f_n f_{n-1} f_{n-2} \dots f_1 f_0 + 2$. Zaista, imamo

$$f_{n+1} - 2 = 2^{2^{n+1}} - 1 = (2^{2^n} - 1)(2^{2^n} + 1)$$

$$= (2^{2^{n-1}} - 1)(2^{2^{n-1}} + 1)(2^{2^n} + 1) = (2^{2^{n-2}} - 1)(2^{2^{n-2}} + 1)(2^{2^{n-1}} + 1)(2^{2^n} + 1)$$

$$= \dots = (2^{2^0} - 1)(2^{2^0} + 1)(2^{2^1} + 1)(2^{2^2} + 1)\dots(2^{2^{n-1}} + 1)(2^{2^n} + 1)$$

$$= f_0 f_1 \dots f_n,$$

što smo i tvrdili. Pretpostavimo sada da je $m \neq n$ i da postoji zajednički djelitelj p > 1 brojeva f_m i f_n . Bez smanjenja općenitosti možemo uzeti da je m > n (Dokaz bi bio potpuno

analogan u slučaju da je n > m). Kako je

$$f_m = f_{m-1} f_{m-2} \dots f_n \dots f_1 f_0 + 2,$$

onda iz činjenice da $p \mid f_n$ slijedi da

$$p \mid f_1 \dots f_n \dots f_{m-1},$$

a s druge strane $p \mid f_m$, pa

$$p \mid f_m - f_1 \dots f_n \dots f_{m-1}$$

tj. $p\mid 2$. Odavde zaključujemo da je p=2, ali to je nemoguće jer su Fermatovi brojevi neparni.

Dokažimo b). Rastavimo li f_0 na proste faktore, onda kako su f_0 i f_1 relativno prosti, slijedi da f_1 sadrži bar jedan prosti faktor koji nije prosti faktor od f_n . Nadalje, f_2 je relativno prost s f_1 i f_0 , pa on sadrži bar jedan prost faktor koji nije prosti faktor niti jednog od ta dva broja.

Ponavljanjem tog argumenta vidimo da je svaki Fermatov broj ima bar jedan prosti faktor koji ujedno i nije bio prosti faktor prethodnih Fermatovih brojeva. Time smo dobili beskonačno mnogo prostih brojeva, čime smo dokazali tvrdnju.

Zadatci za vježbu

Osnove matematičke logike, Skupovi

Zadatak 24. Zapišite sljedeće skupove matematičkim simbolima. Po potrebi koristite i skupovne operacije (unija, presjek, razlika skupova, simetrična razlika).

- a) Skup svih realnih brojeva koji su strogo manji od 100 i nisu prirodni brojevi,
- b) Skup svih prirodnih brojeva koji su manji ili jednaki od svih prirodnih brojeva,
- c) Skup koji sadrži sva slova hrvatske abecede i sve prirodne brojeve od 1 do 30.
- d) Skup svih podskupova skupa {1,2,3} koji imaju točno dva elementa.

Zadatak 25.

- a) Izračunajte $\{1, 2, 3\} \triangle \{4, 5, 6\}$.
- b) Navedite primjer univerzalnog skupa U takvog da $\{1,2,3\}^c$ ima 5 elemenata.
- c) Prikažite skup

$$\{(1,5),(2,1),(1,1),(2,4),(1,6),(2,5),(1,4),(2,6)\}$$

kao kartezijev produkt dva skupa.

d) Navedite primjer skupova A i B takvih da vrijedi

$$\mathcal{P}(A) \cup \mathbb{N} \setminus B = \{\emptyset, \{1\}, \{3\}, \{1, 3\}, 1, 2, 3, 4\}.$$

Direktni dokazi, Dokazi kontradikcijom

Zadatak 26.

- a) Dokažite da je zbroj parnog broja i neparnog broja neparan broj.
- b) Dokažite da je umnožak dva kvadrata nekog prirodnog broja ponovno kvadrat nekog prirodnog broja.

Zadatak 27.

- a) Dokažite da za svaki prirodan broj postoji neparan broj veći od njega.
- b) Neka su $a, b \in \mathbb{Z}$ parni brojevi. Dokažite da postoji $n \in \mathbb{Z}$ takav da je a < n < b.
- c) Dokažite da ne postoje $p,q\in\mathbb{N}$ takvi da je p paran, q neparan, te $2p^2+q=500.$

d) Neka je $a \in \mathbb{N}$, a > 1. Dokažite da ne postoji $n \in \mathbb{N}$ sa svojstvom da $a \mid n$ i $a \mid n + 1$.

Zadatak 28. Dokažite da za skupove A, B, C vrijedi

- a) $A \cap B \subseteq A \cup B$,
- b) $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$.

Zadatak 29.

- a) Ako je $\mathcal{P}(A)$ jednočlan skup (skup koji sadrži jedan i samo jedan element), dokažite da je $A = \emptyset$.
- b) Dokažite: Ako je $A \cup B = \emptyset$, onda je $A = B = \emptyset$.
- c) Neka je U univerzalni skup. Odredite sve skupove $A \subseteq U$ za koje vrijedi $A \subseteq A^c$.
- d) Dokažite: Ako dva skupa nisu disjunktna, tada oni imaju zajednički neprazan podskup.

Zadatak 30. Dokažite:

- a) Simetrična razlika je komutativna, tj. vrijedi $A\triangle B = B\triangle A$,
- b) Simetrična razlika je asocijativna, tj. vrijedi $(A\triangle B)\triangle C = A\triangle (B\triangle C)$.
- c) Dokažite da za sve skupove A, B vrijedi $A \cup (A^c \cap B) = A \cup B$.

Zadatak 31. Neka je U univerzalni skup i A, B, $C \subseteq U$. Dokažite da vrijedi $A \cap B \subseteq C$ ako i samo ako je $A \subseteq B^c \cup C$.

Zadatak 32.

- a) Dokažite da za svaki a > 0 postoje tri točke $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$ u pravokutnom koordinatnom sustavu (tj. tri elementa iz $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$) takve da je trokut $\triangle ABC$ jednakostraničan i ima površinu a.
- b) Dokažite da za svaki $(x_1, x_2) \in \mathbb{R}^2$ postoji $(y_1, y_2) \in \mathbb{Z}^2$ takav da je

$$d((0,0),(y_1,y_2)) > d((0,0),(x_1,x_2)).$$

Zadatak 33. Dokažite da je $\sqrt{27}$ iracionalan.

Zadatak 34.

- a) Dokažite da je zbroj racionalnog i iracionalnog broja uvijek iracionalan broj.
- b) Dokažite da ako je barem jedan od brojeva \sqrt{a} i \sqrt{b} iracionalan, da je tada i $\sqrt{a} + \sqrt{b}$ iracionalan.

- c) Dokažite da ako pozitivan realan broj x nije racionalna potencija broja 10, onda je $\log x$ iracionalan broj.
- d) Dokažite da je $\log_2 3$ iracionalan broj.

Zadatak 35. (*) Neka je U univerzalni skup i $A\subseteq U$ proizvoljan. Odredite sve $X\subseteq U$ takve da je $X\cap A=X\cup A$.

Poglavlje 2

Skup N. Matematička indukcija

2.1 Princip matematičke indukcije

Napomena 7 (Princip matematičke indukcije). Neka je P(n) neka tvrdnja koja ovisi o prirodnom broju n. Ako vrijedi:

- P(1) je istinita (baza indukcije),
- Za svaki $k \in \mathbb{N}$ vrijedi da ako je P(k) istinita (pretpostavka indukcije), onda je P(k+1) istinita (korak indukcije),

tada je P(n) istinita za svaki $n \in \mathbb{N}$.

Napomena 8. Ako smo primijenili princip matematičke indukcije na tvrdnju P(n) da bi dokazali da ona vrijedi za sve $n \in \mathbb{N}$, onda još kažemo da smo $tvrdnju\ P(n)\ dokazali\ indukcijom$.

Alternativna formulacija principa matematičke indukcije je sljedeća:

Neka je $S\subseteq \mathbb{N}$. Ako je $1\in S$ i za svaki $n\in \mathbb{N}$ vrijedi $n\in S\Rightarrow n+1\in S,$ onda je $S=\mathbb{N}.$

Ova formulacija je često zgodnija zbog teorijskih razloga (primijetite da je ovo peti Peanov aksiom, v. [3]), ali mi ćemo se na većini mjesta koristiti formulacijom navedenom u napomeni 7.

Zadatak 36. Dokažite da za svaki $n \in \mathbb{N}$ vrijedi

$$1+2+...+n=\frac{n(n+1)}{2}.$$

Rješenje. Za n=1 tvrdimo da je $1=\frac{1\cdot 2}{2}$, što očigledno vrijedi – time smo dokazali bazu indukcije. Pretpostavimo da tvrdnja vrijedi za neki $n\in\mathbb{N}$ – ovo je pretpostavka indukcije. Treba pokazati da tvrdnja tada vrijedi i za n+1 – korak indukcije. Zaista, iz pretpostavke indukcije slijedi

$$1 + 2 + \dots + n + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2},$$

čime smo dokazali korak indukcije, pa time i početnu tvrdnju.

Zadatak 37. Dokažite da za svaki $n \in \mathbb{N}$ vrijedi

$$1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}.$$

Rješenje. Za n=1 tvrdnja očito vrijedi. Pretpostavimo li da tvrdnja vrijedi za neki n, onda prema toj pretpostavci imamo

$$1^{3} + \dots + n^{3} + (n+1)^{3} = \frac{n^{2}(n+1)^{2}}{4} + (n+1)^{3} = (n+1)^{2} \left(\frac{n^{2}}{4} + n + 1\right) = \frac{(n+1)^{2}(n+2)^{2}}{4},$$

čime je tvrdnja dokazana.

Napomena 9. Možemo indukcijom dokazivati i tvrdnje koje ne vrijede nužno za sve prirodne brojeve, nego i tvrdnje koje vrijede za neki prirodan broj i za sve njegove sljedbenike. Preciznije, neka je P(n) tvrdnja koja ovisi o prirodnom broju n. Ako vrijedi:

- $P(n_0)$ je istinita, gdje je $n_0 \in \mathbb{N}$,
- Za svaki prirodni broj $k \ge n_0$ vrijedi da ako je P(k) istinita, onda je P(k+1) istinita, tada je P(n) istinita za sve $n \in \{n_0, n_0 + 1, \dots\}$.

Zadatak 38. Dokažite da za sve $n \in \mathbb{N}$ takve da je $n \geq 3$ vrijedi $3^n > 2^n + 3n$.

Rješenje. Tvrdnja vrijedi za n=3. Pretpostavimo da tvrdnja vrijedi za neki n. Treba dokazati $3^{n+1}>2^{n+1}+3(n+1)$. Iz činjenice da je 6k>3 za sve $k\in\mathbb{N}$, imamo

$$3^{n+1} > 3 \cdot (2^n + 3n) = 3 \cdot 2^n + 9n = 3 \cdot 2^n + 3n + 6n > 2 \cdot 2^n + 3n + 3 = 2^{n+1} + 3(n+1),$$

što smo i tvrdili. □

Zadatak 39. Neka je $n \in \mathbb{N}$ proizvoljan. Odredite sumu

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)}$$
.

Rješenje. Označimo

$$S(n) = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)}.$$

Vrijedi $S(1) = \frac{1}{2}$, $S(2) = \frac{2}{3}$, $S(3) = \frac{3}{4}$ itd. Odavde je razumno pretpostaviti da vrijedi

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}.$$

Zaista, dokažimo indukcijom da ovo vrijedi. Za n=1 tvrdnja vrijedi. Pretpostavimo da tvrdnja vrijedi za neki n. Tada

$$S(n+1) = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} + \frac{1}{n(n+2)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)}$$
$$= \frac{n^2 + 2n + 1}{(n+1)(n+2)} = \frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+1}{n+2}.$$

Zadatak 40. Dokažite da je

$$1 + 2 \cdot 2 + 3 \cdot 2^2 + 4 \cdot 2^3 + \dots + 2024 \cdot 2^{2023} = 2023 \cdot 2^{2024} + 1.$$

Rješenje. Dokazat ćemo općenitiju tvrdnju, i to da za svaki $n \in \mathbb{N}$ vrijedi

$$1 + 2 \cdot 2 + 3 \cdot 2^2 + 4 \cdot 2^3 + \dots + (n+1) \cdot 2^n = n \cdot 2^{n+1} + 1.$$

Za n=1 tvrdnja vrijedi, pa pretpostavimo da tvrdnja vrijedi za neki n. Tada po pretpostavci indukcije imamo

$$1 + 2 \cdot 2 + \dots + (n+1) \cdot 2^{n} + (n+2) \cdot 2^{n+1} = n \cdot 2^{n+1} + 1 + (n+2) \cdot 2^{n+1}$$
$$= (2n+2) \cdot 2^{n+1} + 1 = (n+1) \cdot 2^{n+2} + 1.$$

Zadatak 41. Dokažite da za svaki $n \in \mathbb{N}$ vrijedi $7 \mid 13^{2n} - 1$.

 $Rje\check{s}enje$. Dokaz provodimo indukcijom. Za n=1 imamo tvrdnju 7 | 168, što je istinito, jer je $168 \div 7 = 24$. Pretpostavimo da tvrdnja vrijedi za neki n, tj. da postoji $k \in \mathbb{Z}$ takav da je $13^{2n} - 1 = 7k$. Tada vrijedi

$$13^{2(n+1)} - 1 = 169 \cdot 13^{2n} - 1 = 168 \cdot 13^{2n} + 13^{2n} - 1 = 7 \cdot (24 \cdot 13^{2n}) + 7k = 7(24 \cdot 13^{2n} + k),$$

što je i trebalo pokazati.

Zadatak 42. Dokažite da za svaki $n \in \mathbb{N}$ vrijedi 33 | $6^{2n} + 3^{n+2} + 3^n$.

 $Rje\check{s}enje$. Za n=1 tvrdnja vrijedi. Pretpostavimo da tvrdnja vrijedi za neki $n\in\mathbb{N}$, tj. neka je $6^{2n}+3^{n+2}+3^n=33k$ za neki $k\in\mathbb{Z}$. Tada imamo

$$6^{2n+2} + 3^{n+3} + 3^{n+1} = 36 \cdot 6^{2n} + 3 \cdot 3^{n+2} + 3 \cdot 3^{n}$$

$$= 3 \cdot 6^{2n} + 3 \cdot 3^{n+2} + 3 \cdot 3^{n} + 33 \cdot 6^{2n} = 33 \cdot 3k + 33 \cdot 6^{2n} = 33(3k + 6^{2n}). \quad \Box$$

Zadatak 43. Dokažite da za svaki $n \in \mathbb{N}$ vrijedi 84 | $4^{2n} - 3^{2n} - 7$.

 $Rje\check{s}enje$. Za n=1 tvrdnja vrijedi. Pretpostavimo da postoji $k\in\mathbb{Z}$ takav da je $4^{2n}-3^{2n}-7=84k$. Tada vrijedi

$$4^{2n+2} - 3^{2n+2} - 7 = 16 \cdot 4^{2n} - 9 \cdot 3^{2n} - 7 = 16 \cdot 4^{2n} - 16 \cdot 3^{2n} - 112 + 105 + 7 \cdot 3^{2n} = 84 \cdot 16k + 105 + 7 \cdot 3^{2n} = 84 \cdot 16k + 7(15 + 3^{2n})$$

Kako je 84 ÷ 7 = 12, preostaje pokazati da vrijedi 12 | 15 + 3^{2n} , što se lako pokazuje indukcijom.

Zadatak 44 (Županijsko natjecanje, 4. razred, A varijanta, 2015.). Neka je $a=\sqrt[2024]{2024}$ i neka je (a_n) niz takav da je $a_1=a$ i $a_{n+1}=a^{a_n}$ za $n\geq 1$. Postoji li $n\in\mathbb{N}$ takav da je $a_n\geq 2024$?

Rješenje. Tvrdimo da takav prirodan broj n ne postoji. Zaista, dokažimo da za sve $n \in \mathbb{N}$ vrijedi $a_n < 2024$. Za n = 1 tvrdnja očito vrijedi. Uzmemo li da tvrdnja vrijedi za neki n, onda je

$$a_{n+1} = a^{a_n} = 2024^{\frac{a_n}{2024}},$$

te kako je $\frac{a_n}{2024} < 1$ prema pretpostavci, te vrijedi $x^k < x^1$ za sve k < 1 i x > 1, očito je $2024\frac{a_n}{2024} < 2024$, pa tvrdnja vrijedi.

Zadatak 45 (Županijsko natjecanje, 3. razred, A varijanta, 2013.). Dokažite da je $\cos \frac{\pi}{2 \cdot 3^n}$ iracionalan za sve $n \in \mathbb{N}$.

Dokaz. Za n=1 vrijedi $\cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}$. Pretpostavimo da tvrdnja vrijedi za neki n. Ideja je "povezati" izraze $\cos\frac{\pi}{2\cdot 3^{n+1}}$ i $\cos\frac{\pi}{2\cdot 3^n}$ pomoću činjenice da za sve $x\in\mathbb{R}$ vrijedi

$$\cos 3x = 4\cos^3 x - 3\cos x. \tag{2.1}$$

Zaista, (2.1) vrijedi jer za sve $x \in \mathbb{R}$ imamo

$$\cos 3x = \cos(x + 2x) = \cos x \cos 2x - \sin x \sin 2x$$

$$= \cos x (\cos^2 x - \sin^2 x) - 2\sin^2 x \cos x = \cos^3 x - 3\sin^2 x \cos x$$

$$= \cos^3 x - 3(1 - \cos^2 x) \cos x = 4\cos^2 x - 3\cos x.$$

Direktno iz (2.1) slijedi

$$\cos\frac{\pi}{2\cdot 3^n} = \cos\left(3\cdot \frac{\pi}{2\cdot 3^{n+1}}\right) = 4\cos^3\frac{\pi}{2\cdot 3^{n+1}} - 3\cos\frac{\pi}{2\cdot 3^{n+1}}.$$
 (2.2)

Kad bi $\cos \frac{\pi}{2 \cdot 3^{n+1}}$ bio racionalan, onda iz činjenice da je umnožak ili zbroj racionalnih brojeva racionalan broj slijedi da je desna strana jednakosti (2.2) racionalan broj, tj. $\cos \frac{\pi}{2 \cdot 3^n}$ je racionalan broj, što je u kontradikciji s pretpostavkom indukcije.

2.2 Princip jake indukcije

U nekim situacijama je zgodno primijeniti sljedeću, naizgled jaču verziju principa matematičke indukcije, koja je ekvivalentna "običnom" principu matematičke indukcije, što pokazujemo na kraju ovog poglavlja.

Napomena 10 (Princip jake indukcije). Neka je P(n) neka tvrdnja koja ovisi o prirodnom broju n. Ako vrijedi

- P(1) je istinita (baza indukcije),
- Za svaki prirodni broj k vrijedi da ako su tvrdnje $P(1), P(2), \ldots, P(k)$ istinite (pretpostavka indukcije), onda je i P(k+1) istinita (korak indukcije),

tada je P(n) istinita za svaki $n \in \mathbb{N}$.

Nadalje, analogoni napomene 9 i dogovora iz napomene 8 vrijede i za princip jake indukcije.

Zadatak 46. Dokažite da se svaki prirodan broj n > 1 može prikazati kao produkt jednog ili više prostih brojeva. (*Napomena*. Ovo je specijalan slučaj osnovnog teorema aritmetike koji se obično koristi kao međukorak u dokazivanju samog teorema.)

Rješenje. Tvrdnju dokazujemo jakom indukcijom. Za n=2 tvrdnja vrijedi, jer je 2 prost, dakle umnožak jednog prostog broja. Uzmimo da sada tvrdnja vrijedi za sve brojeve $1, \ldots, n$. Tvrdimo da se tada i n+1 može prikazati kao produkt prostih brojeva. Zaista, ako je n+1 prost, tvrdnja je dokazana, a ako nije, onda postoje cijeli brojevi $n_1, n_2 \in \{2, \ldots, n\}$ takvi da je

$$n+1=n_1n_2.$$

No prema pretpostavci indukcije vrijedi da se n_1 i n_2 mogu zapisati kao umnožak prostih brojeva, uzmimo npr.

$$n_1 = p_1 \cdot \ldots \cdot p_k, \ n_2 = q_1 \cdot \ldots \cdot q_l,$$

gdje su p_i, q_j prosti brojevi, i = 1, ..., k, j = 1, ..., l. Tada je

$$n+1=p_1\cdot\ldots\cdot p_k\cdot q_1\cdot\ldots\cdot q_l,$$

što smo i tvrdili. \Box

Zadatak 47 (Školsko natjecanje, 4. razred, A varijanta, 2024.). Neka je (a_n) niz definiran s $a_1 = 1, a_2 = 2$ i

$$a_n = a_{n-1} + (n-1)a_{n-2}$$
 za $n > 3$.

Dokažite da vrijedi $a_{2024} \ge \sqrt{2024!}$.

 $Rje\check{s}enje$. Dokazat ćemo općenitiju tvrdnju – tvrdimo da vrijedi $a_n \geq \sqrt{n!}$ za sve $n \in \mathbb{N}$. Lako se vidi da tvrdnja vrijedi za n=1 i n=2. Tvrdnju za $n\geq 3$ dokazujemo jakom indukcijom. Za n=3 tvrdnja vrijedi, jer je $a_3=2+(3-1)\cdot 1=4$ i $4\geq \sqrt{3!}$. Pretpostavimo da tvrdnja vrijedi za sve brojeve $3,\ldots,n$. Treba dokazati da je $a_{n+1}\geq \sqrt{(n+1)!}$. Po pretpostavci indukcije imamo

$$a_{n+1} = a_n + na_{n-1} \ge \sqrt{n!} + n\sqrt{(n-1)!} = \sqrt{n!} + \sqrt{n} \cdot \sqrt{n}\sqrt{(n-1)!}$$
$$= \sqrt{n!} + \sqrt{n}\sqrt{n!} = \sqrt{n!}(1 + \sqrt{n}).$$

Uočimo da je dovoljno pokazati da je

$$1 + \sqrt{n} \ge \sqrt{n+1}, \quad \forall n \in \mathbb{N}.$$

Zaista, vrijedi $1+\sqrt{n} \geq \sqrt{n+1}$ ako i samo ako je $(1+\sqrt{n})^2 \geq n+1$, odnosno $1+2\sqrt{n}+n \geq 1$

n+1, što očito vrijedi zbog $\sqrt{n} \geq 0$. Dakle, imamo

$$\sqrt{n!}(1+\sqrt{n}) \ge \sqrt{n!}\sqrt{n+1} = \sqrt{(n+1)!},$$

dakle $a_{n+1} \ge \sqrt{(n+1)!}$, što smo i tvrdili.

2.3 Princip dobrog uređaja

Definicija 9. Neka je $S \subseteq \mathbb{R}$. Kažemo da je S dobro uređen ako svaki neprazan skup $S' \subseteq S$ ima minimum (v. definiciju 11).

Princip dobrog uređaja je činjenica da je skup \mathbb{N} dobro uređen. Ova činjenica je zanimljiva jer je često vrlo koristan alat u nekim dokazima, a ovdje je navodimo, između ostalog, jer je zapravo ekvivalentna indukciji i jakoj indukciji.

Zadatak 48. Ne postoji cijeli broj n koji ima svojstvo 0 < n < 1.

Rješenje. Pretpostavimo suprotno, da postoji takav cijeli broj, nazovimo ga w. Očito je tada $w \in \mathbb{N}$, jer je w > 0. Dakle, trebamo pokazati da ne postoje prirodni brojevi manji od 1. Promotrimo skup svih prirodnih brojeva u intervalu $\langle 0, 1 \rangle$. To je, prema pretpostavci, neprazan podskup od \mathbb{N} , pa on ima minimum, neka je to n. Kako je umnožak dva cijela broja opet cijeli broj, slijedi i da je n^2 cijeli broj. No kako je n > 0 i n < 1, vrijedi $n^2 < n$, što daje kontradikciju s minimalnošću od n.

Zadatak 49. Dokažite da za svaki $a \in \mathbb{Z}$ vrijedi da svaki neprazan podskup skupa $\mathbb{N} \cup \{a\}$ ima minimum.

 $Rje\check{s}enje$. Ako je a>0, nemamo što dokazivati. Uzmimo zato da je $a\leq 0$. Neka je S proizvoljan neprazan podskup skupa $\mathbb{N}\cup\{a\}$. Ako on ne sadrži a, onda je $S\subseteq\mathbb{N}$ i on ima minimum, a ako on sadrži a, onda je očito a minimum. Zaista, pretpostavimo li da postoji element n_0 manji od a, onda je n_0 različit od a, pa je $n_0\in\mathbb{N}$, što je nemoguće jer je $a\leq 0$. \square

Zadatak 50 (Teorem o dijeljenju s ostatkom). Neka je $b \in \mathbb{Z}$ i $a \in \mathbb{N}$. Dokažite da tada postoje jedinstveni cijeli brojevi q, r takvi da je b = qa + r, gdje je $0 \le r < a$. Kažemo da je u tom zapisu q **kvocijent**, a r **ostatak** pri dijeljenju a sa b.

Rješenje. Egzistencija. Ideja dokaza je interpretirati dijeljenje u cijelim brojevima kao uzastopno oduzimanje broja a od broja b (ili dodavanje ako je b negativan), recimo da smo to napravili q puta, sve dok ne dođemo do broja r većeg od 0 manjeg od broja a. U toj interpretaciji pokazat će se da je q zaista kvocijent, a r zaista ostatak pri dijeljenju broja b sa a.

Tako bi npr. dijeljenjem broja 25 sa 6 dobili ostatak 25 - 6 - 6 - 6 - 6 = 1, a kako smo oduzeli 6 od 25 točno 4 puta, kvocijent je 4. U tu svrhu promotrimo skup

$$S = \{x : x = b - am, m \in \mathbb{Z}, x \ge 0\} \subseteq \mathbb{N}_0$$

Skup S je neprazan, jer je

$$b - a(-|b|) = b + a|b| \ge 0.$$

Prema zadatku 49, svaki neprazan podskup skupa \mathbb{N}_0 ima minimum, pa onda i S ima minimum, označimo ga s r. Očito je $r \geq 0$, te kako je on element iz S, postoji $q \in \mathbb{Z}$ takav da je r = b - aq, odnosno b = aq + r.

Preostaje dokazati da je r < a. Pretpostavimo li da je $r \ge a$, onda imamo $r - a \ge 0$ i

$$r - a = b - a(q+1) \in S.$$

Kako je r - a < r, dobili smo kontradikciju s minimalnosti od r.

Jedinstvenost. Pretpostavimo da postoji još jedan par brojeva $q_1, r_1 \in \mathbb{Z}$ takvih da je $b = aq_1 + r_1$. Bez smanjenja općenitosti uzmimo $r_1 < r$. Tada je $0 < r - r_1 < a$. S druge strane, za r = b - qa i $r_1 = b - q_1a$ slijedi $b - qa > b - q_1a$, odakle slijedi $q < q_1$, odnosno $q_1 - q > 0$. Sada oduzimanjem jednakosti b = aq + r i $b = aq_1 + r_1$ dobivamo

$$r - r_1 = (q_1 - q)a \ge a,$$

kontradikcija s $r - r_1 < a$.

U nastavku, kao što je najavljeno, dokazujemo da su principi dobrog uređaja, matematičke indukcije i jake indukcije međusobno ekvivalentni. To ćemo dokazati tako da dokažemo sljedeće implikacije:

- Princip matematičke indukcije ⇒ Princip dobrog uređaja,
- Princip dobrog uređaja ⇒ Princip jake indukcije,
- Princip jake indukcije \Rightarrow Princip matematičke indukcije.

Uvjerite se da, ukoliko dokažemo ove tri implikacije, iz njih slijedi ekvivalencija sve tri tvrdnje.

Zadatak 51. Princip matematičke indukcije povlači princip dobrog uređaja.

 $Rje\check{s}enje$. Dokaz provodimo kontradikcijom – Pretpostavimo da postoji neprazan $S\subseteq\mathbb{N}$ koji nema minimum. Tvrdimo da za svaki $n\in\mathbb{N}$ vrijedi $n\notin S$.

Pokušajmo tvrdnju dokazati indukcijom. Zaista, uočimo da vrijedi $1 \notin S$. Zaista, pretpostavimo li da je $1 \in S$, onda slijedi da u skupu S postoji prirodan broj strogo manji od 1, što je nemoguće. Pretpostavimo da za $n \in \mathbb{N}$ vrijedi $n \notin S$. Treba dokazati da tada $n+1 \notin S$. Uočimo da bi nam bilo zgodno kad bi za pretpostavku imali da

$$1, \ldots, n \notin S$$
,

jer uz tu pretpostavku, pretpostavimo li da je $n+1 \in S$, iz činjenice da je n+1 minimum skupa $N \setminus \{1, \ldots, n\} \supseteq S$ slijedi da je n+1 nužno minimum. Ovaj argument ne možemo primijeniti samo uz pretpostavku $n \notin S$, jer nemamo pretpostavku da brojevi $1, \ldots, n-1$ nisu u skupu S (Na ovom mjestu ne možemo koristiti princip jake indukcije dok ga ne dokažemo!). Pokušajmo zato modificirati naš argument.

Umjesto da za svaki $n \in \mathbb{N}$ vrijedi $n \notin S$, pokazat ćemo sličnu tvrdnju: Za svaki $n \in \mathbb{N}$ vrijedi: Niti jedan element iz skupa $\{1,\ldots,n\}$ nije u skupu S. Tvrdnju možemo zapisati u sljedećem obliku: Za svaki $n \in \mathbb{N}$ vrijedi $S \cap \{1,\ldots,n\} = \emptyset$. Zaista, trebamo dokazati da je

$$((\forall x \in \mathbb{N}) \ x \in \{1, \dots, n\} \Rightarrow x \notin S) \Leftrightarrow ((\forall x \in \mathbb{N}) \ S \cap \{1, \dots, n\} = \emptyset)$$

istinita tvrdnja. No tvrdnja $A \Leftrightarrow B$ je istinita ako i samo ako je istinita tvrdnja $\neg B \Leftrightarrow \neg A$, a to je u ovom slučaju tvrdnja

$$\left((\exists x \in \mathbb{N}) \ x \in S, x \in \{1, \dots, n\} \right) \Leftrightarrow \left((\exists x \in \mathbb{N}) \ x \in \{1, \dots, n\}, x \in S \right)$$

koja je očito istinita.

Tvrdnja za n=1 je već dokazana u prethodnom slučaju. Pretpostavimo sada da za $n \in \mathbb{N}$ vrijedi $S \cap \{1, \ldots, n\} = \emptyset$. Tvrdimo da tada za n+1 vrijedi $S \cap \{1, \ldots, n+1\} = \emptyset$. Zaista, pretpostavimo da postoji $a \in \mathbb{N}$ takav da je $a \in S$ i $a \in \{1, \ldots, n+1\}$. Tada je sigurno a = n+1, jer kad bi bilo $a = 1, \ldots, n$ to bi bilo u kontradikciji s pretpostavkom indukcije. Međutim, ovo povlači da je n+1 minimum u S, što je nemoguće, pa je korak indukcije dokazan.

Konačno, S je neprazan, pa postoji prirodan broj $q \in S$. No tada je $S \cap \{1, 2, \dots, q\} = \emptyset$, pa zaključujemo da vrijedi $q \notin S$, kontradikcija!

Zadatak 52. Princip dobrog uređaja povlači princip jake indukcije.

 $Rje\check{s}enje$. Neka je $S \subseteq \mathbb{N}$ skup takav da je

• 1 ∈ S

• Za svaki $k \in \mathbb{N}$, iz $1, \dots, k \in S$ slijedi $k+1 \in S$.

Pretpostavimo da je $S \neq \mathbb{N}$, te označimo sa $S' \subseteq \mathbb{N}$ skup svih brojeva koji nisu u S. Prema pretpostavci je S' neprazan, pa on ima minimum, neka je to k_0 . Kako je $1 \in S$, očito je $1 \notin S'$. Nadalje, kako je k_0 najmanji i $k_0 - 1 \in \mathbb{N}$, slijedi da za sve $n = 1, \ldots, k_0 - 1$ vrijedi $n \in S$. No odavde slijedi $k_0 \in S$, što je nemoguće jer $k_0 \in S'$ povlači $k_0 \notin S$.

Zadatak 53. Princip jake indukcije povlači princip matematičke indukcije.

 $Rje\check{s}enje$. Neka je $S\subseteq\mathbb{N}$ skup takav da je

- 1 ∈ S
- Za svaki $k \in \mathbb{N}$, iz $k \in S$ slijedi $k+1 \in S$.

Uočimo da iz tvrdnje "Za svaki $k \in \mathbb{N}$, iz $k \in S$ slijedi $k+1 \in S$." slijedi tvrdnja "Za svaki $k \in \mathbb{N}$, iz $1, \ldots, k \in S$ slijedi $k+1 \in S$.", no ovo po principu jake indukcije povlači $S = \mathbb{N}$, što upravo i tvrdi princip matematičke indukcije.

Zadatci za vježbu

Princip matematičke indukcije

Zadatak 54. Dokažite da za svaki $n \in \mathbb{N}$ vrijede sljedeće tvrdnje.

a)
$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$
,

b)
$$\frac{1^2}{1 \cdot 3} + \frac{2^2}{3 \cdot 5} + \dots + \frac{n^2}{(2n-1)(2n+1)} = \frac{n(n+1)}{2(2n+1)}$$
.

Zadatak 55. Dokažite da vrijede sljedeće tvrdnje.

a)
$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} < 2\sqrt{n} - 1, \ \forall n > 2$$

b) (Županijsko natjecanje, 4. razred, A varijanta, 2018.) Za sve $n \in \mathbb{N}$ vrijedi

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n+1} > 1.$$

Zadatak 56. Dokažite:

- a) Za sve $n \in \mathbb{N}$ vrijedi 13 | $2^{12n+4} 3^{6n+1}$
- b) Za sve $n \in \mathbb{N}$ vrijedi $8 \mid 3^n 2n^2 1$.
- c) Odredite najmanji prirodan broj a > 1 takav da vrijedi

$$a \mid 2^{6n-1} + 5 \cdot 9^n, \ \forall n \in \mathbb{N}.$$

Zadatak 57. Dokažite da za svaki $n \in \mathbb{N}$ vrijedi $7 \mid 2^{4n+1} - 3 \cdot 7^n + 5^{n+1} \cdot 6^n$. (**Uputa:** Ovaj zadatak možete si pojednostaviti na sljedeći način – dokažite da vrijedi $7 \mid 2^{4n+1} - 3 \cdot 7^n + 5^{n+1} \cdot 6^n$ ako i samo ako vrijedi $7 \mid 2^{4n+1} + 5^{n+1} \cdot 6^n$).

Zadatak 58. Dokažite da za pozitivne brojeve a i b i za svaki prirodan broj n vrijedi

$$\left(\frac{a+b}{2}\right)^n \le \frac{a^n + b^n}{2}.$$

Zadatak 59. Dokažite za za sve $n \in \mathbb{N}$ vrijedi

$$\sum_{k=0}^{n} \binom{m+k}{k} = \binom{n+m+1}{n}.$$

Zadatak 60. Izračunajte

$$\sum_{k=0}^{n} (-1)^k \frac{1}{k+1} \binom{n}{k}.$$

Zadatak 61. Dokažite da se svaki iznos od n kuna, gdje je $n \in \mathbb{N}$ i $n \geq 4$, može platiti kovanicama od 2 i 5 kuna.

Zadatak 62. U ravnini je zadano n pravaca tako da se nikoja tri ne sijeku u jednoj točki i nikoja dva nisu međusobno paralelna.

- a) Na koliko dijelova je ravnina podijeljena s tim pravcima?
- b) Dokažite da se svi dijelovi mogu obojiti s dvije boje tako da susjedna područja budu obojena različitim bojama (Sva područja su jednobojna).

Napomena 11. Neka je (G, \circ) polugrupa i $a_i \in G$, gdje je $i \in \{1, 2, ..., m\}$. Tada produkt od $n \ge 1$ elemenata definiramo induktivno

$$\prod_{k=1}^{1} a_k = a_1, \quad \prod_{k=1}^{n+1} a_k = \left(\prod_{k=1}^{n} a_k\right) \circ a_{n+1}.$$

Lako se vidi da je svaki skup polugrupa u odnosu na uniju, odnosno presjek. Također uvodimo oznaku

$$a_1 \circ a_2 \circ \cdots \circ a_n = \prod_{k=1}^n a_k.$$

U svezi s time riješite sljedeće zadatke.

Zadatak 63. Neka je U univerzalni skup i $A_i \in U$, gdje je $i \in \mathbb{N}$. Dokažite da vrijedi

$$\left(\bigcap_{k=1}^{n} A_k\right)^c = \bigcup_{k=1}^{n} A_k^c.$$

Zadatak 64. Neka je (G, \circ) polugrupa. Dokažite da tada za bilo kojih m+n elemenata $a_1, a_2, \ldots, a_{m+n-1}, a_{m+n} \in G$ vrijedi

$$a_1 \circ \cdots \circ a_{m+n} = (a_1 \circ \cdots \circ a_m) \circ (a_{m+1} \circ \cdots \circ a_{m+n})$$

Uvjerite se da se iz prethodnog zadatka lako može dokazati generalizirana asocijativnost, tj.

ako su n, m, ..., p prirodni brojevi, onda vrijedi

$$(a_1 \circ \cdots \circ a_n) \circ (b_1 \circ \cdots \circ b_m) \circ \cdots \circ (d_1 \circ \cdots \circ d_n) = a_1 \circ \cdots \circ a_n \circ b_1 \circ \cdots \circ b_m \circ \cdots \circ d_1 \circ \cdots \circ d_n$$

gdje su $a_1, a_2, ..., d_p \in G$. Ovime smo zapravo dokazali da kad imamo produkt od konačno mnogo elemenata, onda možemo po volji dodavati i brisati zagrade gdje god to ima smisla.

Zadatak 65. (*) Dokažite da se ploča dimenzija $2^n \times 2^n$ s jednim izbačenim kvadratićem (bilo od kuda) dimenzija 1×1 , može pokriti pločicama dimenzija 4×4 s jednim izbačenim kvadratićem dimenzija 1×1 .

Zadatak 66 (Županijsko natjecanje, 4. razred, A varijanta, 2017.). (*) Dan je niz pozitivnih realnih brojeva a_0, a_1, a_2, \ldots takvih da vrijedi

$$a_1 = 1 - a_0$$
, $a_{n+1} = 1 - a_n(1 - a_n)$ za $n \ge 1$.

Dokažite da za sve $n \in \mathbb{N}$ vrijedi

$$a_0 a_1 \dots a_n \left(\frac{1}{a_0} + \frac{1}{a_1} + \dots + \frac{1}{a_n} \right) = 1.$$

Zadatak 67 (Županijsko natjecanje, 4. razred, A varijanta, 2013.). (*) Dokažite da je broj čiji se dekadski zapis sastoji od 2187 znamenki 1 djeljiv s 2187.

Zadatak 68 (Županijsko natjecanje, 4. razred, A varijanta, 2016.). (**) Dokažite da za svaki prirodni broj $n \geq 3$ postoji n različitih prirodnih brojeva čiji je zbroj recipročnih vrijednosti jednak 1.

Princip jake indukcije. Princip dobrog uređaja

Zadatak 69. Neka je (x_n) niz realnih brojeva dan sa $x_n=2^n+3^n$. Dokažite da za sve $n\in\mathbb{N}$ vrijedi $x_{n+2}=5x_{n+1}-6x_n$.

Zadatak 70. Neka su $m, n \in \mathbb{N}$ i neka je dana ploča dimenzija $m \times n$ koju želimo "razrezati" do kvadratića 1×1 (režemo između kvadratića i to tako da razrežemo cijeli redak ili stupac i time rastavimo početnu ploču na dvije manje ploče). Dokažite da je za to potrebno točno mn-1 koraka, bez obzira kako tu ploču razrezali. (**Uputa:** Indukcijom po n dokažite da je potrebno točno mn-1 koraka za sve m).

Zadatak 71.

a) Neka je $S\subseteq\mathbb{R}$ dobro uređen i $S'\subseteq S$. Dokažite ili opovrgnite: S je dobro uređen skup.

b) Dokažite da svaki podskup skupa svih negativnih cijelih brojeva ima maksimum (v. definiciju 11).

Zadatak 72. Dokažite da je skup $A = \left\{-\frac{1}{p}: p \text{ prost}\right\}^1$ dobro uređen.

Zadatak 73 (Školsko natjecanje, 4. razred, A varijanta, 2022.). (*) Za $p,q\in\mathbb{C}$ vrijedi p+q=5 i $p^2+q^2=9$. Dokažite da je p^n+q^n neparan cijeli broj za sve $n\in\mathbb{N}$.

¹v. definiciju 12.

Poglavlje 3

Skup \mathbb{R} . Uvod u nejednakosti. Supremum i infimum. Kompleksni brojevi

Napomena 12. Svojstva uređaja \leq i < na \mathbb{R} :

• Trihotomija: Za sve $x, y \in \mathbb{R}$ vrijedi točno jedna od sljedećih tvrdnji

$$(x < y), (x = y), (x > y),$$

• Linearnost: Za sve $x, y \in \mathbb{R}$ vrijedi

$$(x \le y) \lor (y \le x),$$

• Antisimetričnost: Za sve $x, y \in \mathbb{R}$ vrijedi

$$x \le y \land y \le x \Rightarrow x = y,$$

• Tranzitivnost: Za sve $x, y, z \in \mathbb{R}$ vrijedi

$$x < y \land y < z \Rightarrow x < z, \quad x < y \land y < z \Rightarrow x < z,$$

• Kompatibilnost s + : Za sve $x, y, z \in \mathbb{R}$ vrijedi

$$x \le y \Leftrightarrow x + z \le y + z, \quad x < y \Leftrightarrow x + z < y + z,$$

• Kompatibilnost s · : Za sve $x, y, z \in \mathbb{R}$ vrijedi

$$x \le y \land z > 0 \Leftrightarrow xz \le yz, \quad x < y \land z > 0 \Leftrightarrow xz < yz.$$

Svojstva iz napomene 12 imaju teorijsku važnost (Zapravo, ova svojstva dio su aksioma realnih brojeva vezanih uz uređaj), ali ovdje ih navodimo da bi se lakše vidjelo kako primjenjujemo ova vrlo jednostavna pravila u rješavanju zadataka.

3.1 Uvod u nejednakosti

U ovoj točki pokazujemo kako dokazivati razne nejednakosti, što će biti korisno u narednim zadatcima, ali i na drugim mjestima u analizi.

Zadatak 74. Neka su $x, y \in \mathbb{R}$ proizvoljni. Dokažite da vrijedi

a)
$$\frac{1}{1+r^2} > 0$$
,

- b) Ako je $x 5y^2 > 0$, onda je $x + 5y^2 > 0$,
- c) Ako su $x, y \ge 0$, onda vrijedi $\frac{x+y}{2} \ge \sqrt{xy}$.

Rješenje. a) Znamo da za svaki $x \in \mathbb{R}$ vrijedi $x^2 \ge 0$, što povlači $1+x^2 \ge 1 > 0$, što povlači $1+x^2 > 0$. Odavde slijedi da vrijedi $\frac{1}{1+x^2} > 0$ ako i samo ako vrijedi 1 > 0, dakle tvrdnja je dokazana.

- b) Iz $x-5y^2>0$ slijedi $x-5y^2+10y^2>10y^2$. Kako vrijedi $y^2\geq 0$, pa i $10y^2\geq 0$, pa smo time dokazali da je $x-5y^2+10y^2\geq 0$, odnosno $x+5y^2>0$.
- c) Uočimo da vrijedi

$$\frac{x+y}{2} \ge \sqrt{xy} \Leftrightarrow x+y \ge 2\sqrt{xy} \Leftrightarrow \sqrt{x^2} - 2\sqrt{xy} + \sqrt{y^2} \ge 0 \Leftrightarrow (\sqrt{x} - \sqrt{y})^2 \ge 0,$$

čime je tvrdnja dokazana.

Napomena 13. Neka su $a,b,c,d \in \mathbb{R}$. Ako je $a \le c$ i $b \le d$, onda je $a+b \le c+d$, te ako su pritom i $a,c \ge 0$, onda je $ab \le cd$. Vrijedi i varijanta za <, tj. a < c i b < d povlači a+b < c+d, a ako vrijedi i a,c > 0 onda vrijedi i ac < bd.

Zadatak 75. Dokažite:

a) Za sve
$$x \in \mathbb{R}$$
 vrijedi $\frac{1}{(1+x^2)(2+x^2)} \le \frac{1}{2}$.

b) Za sve realne x, y takve da je x > 0 i y > 1 vrijedi $x^2 - 2x\sqrt{y} + y^2 > 0$.

 $Rje\check{s}enje.$ a) Neka je $x\in\mathbb{R}$ proizvoljan. Tada je $x^2+1\geq 1$ i $x^2+2\geq 2$ slijedi

$$\frac{1}{1+x^2} \le 1$$
 i $\frac{1}{2+x^2} \le \frac{1}{2}$.

Kako vrijedi $\frac{1}{1+x^2}$, $\frac{1}{2+x^2}>0$, te su očito 1 i $\frac{1}{2}$ pozitivni, korištenjem napomene 13 dobivamo tvrdnju.

b) Neka su x>0 i y>1 proizvoljni. Tvrdimo da vrijedi $\sqrt{y}< y$. Zaista, zbog $y\geq 0$ to vrijedi ako i samo ako vrijedi $y< y^2$ (a da bi to tvrdili treba nam da za sve $a,\,b\geq 0$ vrijedi da $a< b\Rightarrow \sqrt{a}< \sqrt{b}$, što se lako dokazuje kontrapozicijom), tj. ako i samo ako vrijedi y>1, što je istinito prema pretpostavci. Sada iz x>0 slijedi $2xy>2x\sqrt{y}$, odakle slijedi i $-2xy<-2x\sqrt{y}$, te konačno imamo

$$x^{2} - 2x\sqrt{y} + y^{2} > x^{2} - 2xy + y^{2} = (x - y)^{2} \ge 0.$$

Zadatak 76. Dokažite da za sve $a, b, c \in \mathbb{R}$ vrijedi $a^2 + b^2 + c^2 \ge ab + bc + ca$.

 $Rje\check{s}enje$. Neka su $a,b,c\in\mathbb{R}$ proizvoljni. Vrijedi

$$a^{2} + b^{2} + c^{2} \ge ab + bc + ca$$

$$2a^{2} + 2b^{2} + 2c^{2} \ge 2ab + 2bc + 2ca$$

$$a^{2} - 2ab + b^{2} + b^{2} - 2ac + c^{2} + c^{2} - 2ca + a^{2} \ge 0$$

$$(a - b)^{2} + (b - c)^{2} + (c - a)^{2} \ge 0.$$

Posljednja tvrdnja je očito istinita za realne brojeve a,b,c, pa je tvrdnja zadatka dokazana.

Zadatak 77. Neka su $a, b \in \mathbb{R}$ takvi da je $a + b \ge 1$. Dokažite da je $a^4 + b^4 \ge \frac{1}{8}$.

 $Rje\check{s}enje$. Uzmimo proizvoljne $a,b\in\mathbb{R}$ takve da je $a+b\geq 1$. Kvadriranjem jednakosti dobivamo $a^2+2ab+b^2\geq 1$, no kako je $(a-b)^2\geq 0$ imamo i $a^2-2ab+b^2\geq 0$. Zbrajanjem te dvije nejednakosti dobivamo $2a^2+2b^2\geq 1$, odnosno

$$a^2 + b^2 \ge \frac{1}{2}.$$

Sad kvadriranjem dobivamo

$$a^4 + 2a^2b^2 + b^4 \ge \frac{1}{4}.$$

46

Sada iz $a^4 - 2a^2b^2 + b^4 = (a^2 - b^2)^2 \ge 0$ zbrajanjem nejednakosti dobivamo

$$2a^4 + 2b^4 \ge \frac{1}{4},$$

odnosno $a^4 + b^4 \ge \frac{1}{8}$, što smo i tvrdili.

Zadatak 78 (Županijsko natjecanje, 4. razred, A varijanta, 2021.). Neka su $x, y, z \in \mathbb{R} \setminus \{0\}$ realni brojevi takvi da je xy + zy + xz = 1, te neka je

$$S = \frac{x^2}{1+x^2} + \frac{y^2}{1+y^2} + \frac{z^2}{1+z^2}.$$

Dokažite da vrijedi S < 1 ako i samo ako su brojevi x, y, z istog predznaka.

Rješenje. Za početak ćemo pojednostaviti izraz S kako bi bilo manje "raspisivanja". Vrijedi

$$S = \frac{x^2 + 1 - 1}{1 + x^2} + \frac{y^2 + 1 - 1}{1 + y^2} + \frac{z^2 + 1 - 1}{1 + z^2} = 3 - \frac{1}{1 + x^2} - \frac{1}{1 + y^2} - \frac{1}{1 + z^2},$$

pa očito vrijedi S < 1 ako i samo ako vrijedi

$$\frac{1}{1+x^2} + \frac{1}{1+y^2} + \frac{1}{1+z^2} = \frac{3+2x^2+2y^2+2z^2+x^2y^2+y^2z^2+x^2z^2}{(1+x^2)(1+y^2)(1+z^2)} > 2,$$

pa, kako je nazivnik pozitivan, množenjem s nazivnikom dobivamo da je prethodna nejednakost ekvivalentna s

$$3 + 2x^2 + 2y^2 + 2z^2 + x^2y^2 + y^2z^2 + x^2z^2 > 2 + 2x^2 + 2y^2 + 2z^2 + 2x^2y^2 + 2y^2z^2 + 2x^2z^2 + 2x^2y^2z^2 + 2x^2z^2 + 2x^2$$

što je ekvivalentno nejednakosti

$$x^{2}y^{2} + y^{2}z^{2} + x^{2}z^{2} + 2x^{2}y^{2}z^{2} < 1. (3.1)$$

S druge strane, iz početnog uvjeta xy + zy + xz = 1 kvadriranjem dobivamo uvjet

$$x^{2}y^{2} + z^{2}y^{2} + x^{2}z^{2} + 2xy^{2}z + 2x^{2}yz + 2xyz^{2} = 1$$
(3.2)

Sada uvrštavanjem (3.2) u (3.1) umjesto 1 i poništavanjem dobivamo

$$x^{2}yz + xy^{2}z + xyz^{2} - x^{2}y^{2}z^{2} > 0 \Leftrightarrow$$
$$xyz(x + y + z - xyz) > 0.$$

Sada iz početnog uvjeta xy + zy + xz = 1 imamo

$$x + y + z - xyz = x(1 - yz) + y + z = x(xy + xz) + y + z$$
$$= x^{2}(y + z) + y + z = (x^{2} + 1)(y + z).$$

Iz svega zaključujemo da je tvrdnja S < 1 ekvivalentna tvrdnji $xyz(x^2+1)(y+z) > 0$, odnosno tvrdnji

$$xyz(y+z) > 0, (3.3)$$

budući da je $x^2+1>0$ za sve $x\in\mathbb{R}$. Sada vidimo da ako su x,y,z svi istog predznaka, (3.3) vrijedi. Zaista, ako su x,y,z>0, onda je xyz>0 i y+z>0, pa (3.3) vrijedi, a ako su x,y,z<0, onda je xyz<0 i y+z<0, pa (3.3) i u ovom slučaju vrijedi. Time je prva implikacija tvrdnje zadatka dokazana.

S druge strane, tvrdimo da ako je S < 1, onda su svi brojevi x,y,z istog predznaka. Da bismo to vidjeli, dokažimo kontrapoziciju – Za sve x,y,z iz uvjeta zadatka vrijedi: Ako brojevi x,y,z nisu svi istog predznaka, onda je $S \ge 1$. Možemo bez smanjenja općenitosti pretpostaviti da je $x \le y \le z$, jer je izraz simetričan u odnosu na te tri varijable, odnosno zamjenom uloga tih varijabli izraz se neće promijeniti. Imamo dva slučaja:

- x < 0, y > 0, z > 0
- x < 0, y < 0, z > 0.

U prvom slučaju imamo xyz < 0 i y+z > 0, pa je xyz(y+z) < 0, pa vrijedi $S \ge 1$. Da bismo pokazali drugi slučaj, primijetimo i da je tvrdnja S < 1 ekvivalentna sxyz(x+y) > 0 – ovo se dokazuje potpuno analogno kao i uvjet (3.3). Sada je xyz > 0 i x+y < 0, pa analogno dobivamo da vrijedi $S \ge 1$.

Napomena 14 (A-G nejednakost). Za sve $n \in \mathbb{N}$, n > 1 i $a_1, \ldots, a_n \ge 0$, aritmetička sredina brojeva $a_1, \ldots, a_n \ge 0$ veća je ili jednaka geometrijskoj sredini tih brojeva, tj.

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n},$$

a jednakost vrijedi ako i samo ako je $a_1 = a_2 = \cdots = a_n$.

Zadatak 79 (H-G nejednakost). Dokažite da je za sve $n \in \mathbb{N}, n > 1$ i $a_1, \ldots, a_n > 0$, geometrijska sredina brojeva $a_1, \ldots, a_n \geq 0$ veća ili jednaka harmonijskoj sredini tih brojeva,

tj.

$$\sqrt[n]{a_1 a_2 \dots a_n} \ge \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}.$$

Jednakost vrijedi ako i samo ako je $a_1 = a_2 = \cdots = a_n$.

Rješenje. Iz A-G nejednakosti imamo

$$\sqrt[n]{\frac{1}{a_1} \cdot \frac{1}{a_2} \cdot \dots \cdot \frac{1}{a_n}} \le \frac{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}{n},$$

što je ekvivalentno tvrdnji zadatka, budući da za pozitivne brojeve a i $b, a \leq b$ ekvivalentno s $\frac{1}{b} \leq \frac{1}{a}$.

Iz prethodne dvije tvrdnje izravno slijedi sljedeća tvrdnja.

Korolar 1 (A-H nejednakost). Za sve $n \in \mathbb{N}, n > 1$ i $a_1, \ldots, a_n > 0$ vrijedi

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}.$$

Jednakost vrijedi ako i samo ako je $a_1 = a_2 = \cdots = a_n$.

Zadatak 80.

- a) Neka su $x, y, z \ge 0$. Dokažite: Vrijedi $(x + y)(y + z)(x + z) \ge 8xyz$.
- b) Neka su x, y, z > 0 takvi da je $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$. Dokažite: Vrijedi $x + y + z \ge 9$.
- c) Neka su a,b,c>0. Dokažite: Vrijedi $abc(a+b+c)\leq a^4+b^4+c^4$.
- d) Neka su a,b,c>0. Dokažite: Vrijedi $\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\geq \frac{b}{a}+\frac{c}{b}+\frac{a}{c}$
- e) Neka su $a,b,c,d\geq 0$. Dokažite: Vrijedi $\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{d}+\frac{d^2}{a}\geq a+b+c+d$.

 $Rje\check{s}enje$. a) Uočite da iz A-G nejednakosti slijedi $\frac{u+v}{2} \geq \sqrt{uv}$ (Ovo smo i dokazali u zadatku 74), odnosno $u+v \geq 2\sqrt{uv}$, za sve $u,v \geq 0$. Odavde slijedi

$$(x+y)(y+z)(x+z) > 2\sqrt{xy} \cdot 2\sqrt{yz} \cdot 2\sqrt{xz} = 8xyz.$$

b) Primjenom A-H nejednakosti dobivamo da za proizvoljan $n \in \mathbb{N}$ vrijedi

$$\frac{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}{3} \ge \frac{3}{x + y + z},$$

pa korištenjem pretpostavke $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$ dobivamo $\frac{1}{3} \ge \frac{3}{x+y+z}$, odnosno $x+y+z \ge 9$, što smo i tvrdili.

c) Uočimo da na prvi pogled ne možemo primijeniti neke od prethodnih nejednakosti da bi dokazali tvrdnju. Međutim, uočimo da je lijeva strana nejednakosti jednaka $a^2bc+ab^2c+abc^2$. Pokušajmo primijeniti A-G nejednakost na svaki od pribrojnika. Imamo

$$a^2bc = \sqrt[4]{a^4a^4b^4c^4} \le \frac{2a^4 + b^4 + c^4}{4}, \ ab^2c \le \frac{a^4 + 2b^4 + c^4}{4}, \ abc^2 \le \frac{a^4 + b^4 + 2c^4}{4},$$

pa zbrajanjem tih nejednakosti dobivamo $a^2bc + ab^2c + abc^2 = abc(a+b+c) \le a^4 + b^4 + c^4$, što smo i tvrdili.

d) Pokušamo li direktno primijeniti A-G nejednakost, dobit ćemo

$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} \ge 3\sqrt[3]{\frac{a^2}{b^2} \cdot \frac{b^2}{c^2} \cdot \frac{c^2}{a^2}} = 3,$$

no budući da vrijedi i $\frac{b}{a} + \frac{c}{b} + \frac{a}{c} \ge 3\sqrt[3]{\frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{a}} = 3$, vidimo da ovim pristupom ne dobivamo nikakav nama koristan zaključak. Pokušajmo zato sličnim razmišljanjem kao u prethodnom zadatku doći do rješenja, i to tako da na svaki član jedne strane nejednakosti primijenimo A-G nejednakost. Uočimo da je $\frac{a}{c} = \frac{a}{b} \cdot \frac{b}{c} = \sqrt{\frac{a^2}{b^2} \cdot \frac{b^2}{c^2}}$ i analogno $\frac{b}{a} = \sqrt{\frac{b^2}{c^2} \cdot \frac{c^2}{a^2}}, \frac{c}{b} = \sqrt{\frac{c^2}{a^2} \cdot \frac{a^2}{b^2}}$. Vrijedi

$$\frac{a}{c} = \sqrt{\frac{a^2}{b^2} \cdot \frac{b^2}{c^2}} \le \frac{\frac{a^2}{b^2} + \frac{b^2}{c^2}}{2}, \ \frac{b}{a} = \sqrt{\frac{b^2}{c^2} \cdot \frac{c^2}{a^2}} \le \frac{\frac{b^2}{c^2} + \frac{c^2}{a^2}}{2}, \ \sqrt{\frac{c^2}{a^2} \cdot \frac{a^2}{b^2}} \le \frac{c}{b} = \frac{\frac{c^2}{a^2} + \frac{a^2}{b^2}}{2}.$$

Zbrajanjem ovih nejednakosti dobivamo tvrdnju.

e) Ponovno ćemo na svaki član primijeniti A-G nejednakost, analognom metodom kao u prethodna dva primjera. Uočimo da je $a=\sqrt{\frac{a^2}{b}\cdot b} \leq \frac{\frac{a^2}{b}+b}{2}$. Uočimo da smo ovo rastavili ovako jer smo htjeli pod korijen "ubaciti" izraz $\frac{a^2}{b}$ koji se pojavljuje kao jedan od sumanada

na lijevoj strani nejednakosti. Pritom nam b neće smetati, jer kad budemo sumirali, dobit ćemo $\frac{a+b+c+d}{2}$, kojeg ćemo onda moći "prebaciti" na drugu stranu jednakosti, na kojoj ćemo imati a+b+c+d. Zaista, imamo

$$b = \sqrt{\frac{b^2}{c} \cdot c} \le \frac{\frac{b^2}{c} + c}{2}, \ c = \sqrt{\frac{c^2}{d} \cdot d} \le \frac{\frac{c^2}{d} + d}{2}, \ d = \sqrt{\frac{d^2}{a} \cdot a} \le \frac{\frac{d^2}{a} + a}{2}.$$

Sumiranjem svih nejednakosti dobivamo

$$a+b+c+d \leq \frac{\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{d} + \frac{d^2}{a} + a + b + c + d}{2} \Leftrightarrow \frac{a+b+c+d}{2} \leq \frac{\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{d} + \frac{d^2}{a}}{2},$$

pa množenjem s 2 dobivamo tvrdnju.

Napomena 15. Uvjerite se da smo e) mogli riješiti i tako da uzmemo $a = \sqrt[4]{\frac{a^2}{b} \cdot \frac{a^2}{b} \cdot \frac{b^2}{c} \cdot c}$, analogno rastavimo i b, c, d i primijenimo A-G nejednakost.

Napomena 14 kaže i da jednakost vrijedi ako i samo ako su svi brojevi a_1, \ldots, a_n međusobno jednaki. Ponekad i ta informacija može biti korisna, kao što ćemo vidjeti u sljedećim zadatcima.

Zadatak 81.

- a) Pronađite sve uređene parove (a,b) pozitivnih realnih brojeva za koje je $a^3+b^3+1\leq 3ab$.
- b) (Županijsko natjecanje, 4. razred, A varijanta, 2018.)
¹ Za sve $n\in\mathbb{N}$ vrijedi

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n+1} > 1.$$

Rješenje.a) Neka su $a,b\in\mathbb{R}$ proizvoljni brojevi takvi da je $a^3+b^3+1\leq 3ab.$ Uočimo da iz A-G nejednakosti dobivamo

$$a^3 + b^3 + 1 > 3\sqrt{a^3 \cdot b^3 \cdot 1} = 3ab.$$

Zato je nužno $a^3 + b^3 + 1 = 3ab$. Međutim, znamo iz napomene 14 da jednakost vrijedi ako i samo ako je a = b = 1, pa je jedini uređeni par koji zadovoljava polazni uvjet par (1,1).

¹Ovaj zadatak je i u prethodnom poglavlju dan za vježbu (zadatak 55).

b) Primjenom A-H nejednakosti dobivamo

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n+1} > \frac{(2n+1)^2}{(n+1) + (n+2) + \dots + (3n+1)},\tag{3.4}$$

gdje vrijedi stroga nejednakost jer su brojevi $\frac{1}{n+1}, \ldots, \frac{1}{3n+1}$ međusobno različiti. Nadalje, imamo

$$(n+1) + (n+2) + \dots + (3n+1) = (n+1) + (n+2) + \dots + (n+2n) + (n+2n+1)$$
$$= n(2n+1) + \frac{(2n+1)(2n+2)}{2} = (2n+1)^2.$$

Uvrštavanjem u (3.4) dobivamo tvrdnju.

Zadatak 82 (Nejednakost Cauchy-Schwarz-Bunjakovskog). Neka su a_1, \ldots, a_n i b_1, \ldots, b_n realni brojevi. Dokažite:

$$\left(\sum_{k=1}^{n} a_k b_k\right)^2 \le \left(\sum_{k=1}^{n} a_k^2\right) \cdot \left(\sum_{k=1}^{n} b_k^2\right)$$

Jednakost vrijedi ako i samo ako postoji $k \in \mathbb{R}$ takav da je $b_i = ka_i$, za sve $i = 1, \dots, n$.

Rješenje. Promotrimo izraz $D = \left(\sum_{k=1}^n a_k b_k\right)^2 - \left(\sum_{k=1}^n a_k^2\right) \cdot \left(\sum_{k=1}^n b_k^2\right).$ Trebamo pokazati da je $D \leq 0$. No uočimo da je D diskriminanta kvadratne funkcije $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \frac{1}{2} \cdot \left(\sum_{k=1}^{n} a_k^2\right) x^2 + \left(\sum_{k=1}^{n} a_k b_k\right) x + \frac{1}{2} \left(\sum_{k=1}^{n} b_k^2\right).$$

Očito je dovoljno pokazati da je $f(x) \ge 0$ za sve $x \in \mathbb{R}$, jer ćemo time dobiti da f ima najviše jednu nultočku (Uvjerite se u to!), što povlači da za njezinu diskriminantu D vrijedi $D \le 0$, što i želimo pokazati. Uočimo da je

$$f(x) = \frac{1}{2} \sum_{k=1}^{n} a_k^2 x^2 + 2a_k b_k x + b_k^2 = \frac{1}{2} \sum_{k=1}^{n} (a_k x + b_k)^2 \ge 0,$$

što smo i htjeli pokazati. Nadalje, znamo da je D=0 ako i samo ako f ima jedinstvenu

nultočku x_0 . Tada je

$$\sum_{k=1}^{n} (a_k x_0 + b_k)^2 = 0,$$

što vrijedi ako i samo ako je $a_k x_0 + b_k = 0$ za sve k = 1, ..., n. No to je ekvivalentno tvrdnji $b_k = (-x_0)a_k$ za sve k = 1, ..., n, što smo i htjeli dokazati.

Ova nejednakost, koju često u kraćem obliku zovemo *CSB-nejednakost* ima i svoju teorijsku važnost (S generalizacijom upravo dokazane tvrdnje susrest ćete se na kolegiju *Linearna algebra 2*), ali je korisna i za dokazivanje raznih nejednakosti.

Zadatak 83.

a) Neka je $n \in \mathbb{N}$ i $a_1, \ldots, a_n \in \mathbb{R}$ takvi da je $a_1 + a_2 + \cdots + a_n = 1$. Dokažite da je

$$a_1^2 + a_2^2 \cdots + a_n^2 \ge \frac{1}{n}$$
.

b) Neka su $a_1, a_2, a_3 > 0$ takvi da je $a_1^2 + a_2^2 + a_3^2 = 1$. Dokažite da je $2a_1 + 2a_2 + a_3 \le 3$. Rješenje. a) Primjenom CSB-nejednakosti imamo

$$1 = (a_1 + a_2 + \dots + a_n)^2 = (a_1 \cdot 1 + a_2 \cdot 1 + \dots + a_n \cdot 1)^2$$

$$\leq (a_1^2 + a_2^2 + \dots + a_n^2)(1^2 + 1^2 + \dots + 1^2)$$

$$= n(a_1^2 + a_2^2 + \dots + a_n^2)$$

Odnosno $a_1^2 + a_2^2 \cdots + a_n^2 \ge \frac{1}{n}$, što smo i tvrdili.

b) Koristeći CSB-nejednakost dobivamo

$$(2a_1 + 2a_2 + a_3)^2 \le (2^2 + 2^2 + 1)(a_1^2 + a_2^2 + a_3^2) = 9,$$

pa korjenovanjem obje strane dobivamo traženu tvrdnju.

Zadatak 84 (Nesbittova nejednakost). Dokažite da za sve a, b, c > 0 vrijedi

$$\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \ge \frac{3}{2}.$$

 $Rje\check{s}enje$. Uočimo da ako svakom razlomku na lijevoj strani nejednakosti dodamo 1, u brojniku svakog razlomka ćemo dobiti izraz a+b+c, odakle slijedi da ćemo moći faktorizirati taj

²Općenito, za sve $x_1, \ldots, x_n \in \mathbb{R}$ vrijedi $x_1^2 + \cdots + x_n^2 = 0$ ako i samo ako vrijedi $x_1 = \cdots = x_n = 0$. Dokažite to!

izraz, što je često korisno ukoliko se CSB-nejednakost pokaže korisnom u dokazivanju dane nejednakosti. Imamo

$$\frac{a}{b+c} + 1 + \frac{b}{a+c} + 1 + \frac{c}{a+b} + 1 \ge \frac{9}{2}$$

$$\frac{a+b+c}{b+c} + \frac{a+b+c}{a+c} + \frac{a+b+c}{a+b} \ge \frac{9}{2}$$

$$(a+b+c)\left(\frac{1}{b+c} + \frac{1}{a+c} + \frac{1}{a+b}\right) \ge \frac{9}{2}$$

$$(2a+2b+2c)\left(\frac{1}{b+c} + \frac{1}{a+c} + \frac{1}{a+b}\right) \ge 9.$$

Uočimo da vrijedi 2a + 2b + 2c = (a + b) + (a + c) + (b + c), pa je nejednakost ekvivalentna s

$$((b+c) + (a+c) + (a+b)) \left(\frac{1}{b+c} + \frac{1}{a+c} + \frac{1}{a+b} \right) \ge 9,$$

što slijedi direktno iz CSB-nejednakosti. Zaista,

$$((b+c)+(a+c)+(a+b))\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)$$

$$\geq \left(\sqrt{b+c}\cdot\frac{1}{\sqrt{b+c}}+\sqrt{a+c}\cdot\frac{1}{\sqrt{a+c}}+\sqrt{a+b}\cdot\frac{1}{\sqrt{a+b}}\right)^2=9.$$

3.2 Minimum i maksimum. Arhimedov aksiom

Sigurno ste se prije u obrazovanju susreli s pojmovima otvorenih, zatvorenih, poluotvorenih i poluzatvorenih intervala, za koje sad dajemo preciznu definiciju.

Definicija 10. Neka su zadani $a, b \in \mathbb{R}$, a < b. Definiramo sljedeće skupove:

- $\langle a, b \rangle := \{ x \in \mathbb{R} : a < x < b \}.$
- $\langle -\infty, b \rangle := \{x \in \mathbb{R} : x < b\},\$
- $[a, b] := \{x \in \mathbb{R} : a < x < b\},\$
- $\langle -\infty, b \rangle := \{ x \in \mathbb{R} : x < b \},$
- $[a, b) := \{x \in \mathbb{R} : a < x < b\}.$
- $[a, \infty) := \{x \in \mathbb{R} : a < x\},\$
- $\langle a, b \rangle := \{ x \in \mathbb{R} : a < x \le b \},$
- $\langle a, \infty \rangle := \{ x \in \mathbb{R} : a < x \}.$

Skupovi $\langle a, b \rangle$, $\langle a, \infty \rangle$, $\langle -\infty, b \rangle$ su **otvoreni intervali**, skup [a, b] je **zatvoreni interval**, a skupovi $[a, b \rangle$, $\langle a, b \rangle$, $\langle a, b \rangle$, $[a, \infty \rangle$ su **poluotvoreni intervali**.

Zadatak 85. Dokažite da je $[0,1\rangle \subseteq \langle -1,2\rangle$.

Rješenje. Neka je $x \in [0,1)$ proizvoljan. Po definiciji vrijedi $0 \le x < 1$. No tada vrijedi i -1 < x < 2, odnosno $x \in \langle -1,2 \rangle$.

Definicija 11. Kažemo da je $a \in \mathbb{R}$ gornja međa skupa $S \subseteq \mathbb{R}$ ako za svaki $x \in S$ vrijedi $x \leq a$, odnosno **donja međa** skupa S ako za svaki $x \in S$ vrijedi $a \leq x$. Ako je pritom $a \in S$, onda je a maksimum (ako je on gornja međa), odnosno minimum (ako je on donja međa) skupa S. Maksimum skupa S označavamo sa max S, a minimum s min S. Ako skup ima gornju (donju među), onda kažemo da je odozgo (odozdo) ograničen/omeđen. Ako ima obje, onda samo kažemo da je ograničen/omeđen.

Primjer 3. Skup $T = \{1, 2, 3, 4, 5.5, 8\}$ je odozgo ograničen, jer je 8 jedna njegova gornja međa. Uočite da su njegove gornje međe npr. 9, 12 te 2000 (Općenito, svi brojevi iz skupa $[8, \infty)$). S druge strane, skup \mathbb{N} nije odozgo ograničen.

Analogno imamo da ako skup sadrži neku svoju donju među, onda je ona najveća od svih donjih međa.

Zadatak 86. Navedite primjer...

- a) ...skupa $A \subseteq \mathbb{R}$ koji je odozgo ograničen, odozdo neograničen, te nema maksimum.
- b) ...beskonačnog skupa $A\subseteq\mathbb{R}$ takvog da je min A=0, max A=5, te vrijedi $1\notin A$ i $3\notin A.$
- c) Ograničenog skupa $A\subseteq\mathbb{R}$ takvog da je max A=1, nema minimum i sadrži točno dva racionalna broja.

Rješenje. a) Jedan takav skup je npr. $A:=\langle -\infty, 3 \rangle$. Zaista, očito je odozgo ograničen (vrijedi $x \in A$ ako i samo ako je x < 3, dakle jedna gornja međa je npr. 4), odozdo neograničen (za svaki $a \in \mathbb{R}$ postoji $x \in A$ takav da je x < a, npr. bilo koji član skupa A ako je $a \geq 3$ i a-1 ako je a < 3), te nema maksimum (kad bi postojao maksimum b, po definiciji je b < 3, no $b < \frac{b+3}{2} < 3$, što je kontradikcija s činjenicom da je b maksimum). Još nekoliko primjera skupova s danim svojstvom: $\mathbb{N}^- \cup [3,4\rangle, \langle -\infty,2] \cap \mathbb{I}$.

b) Uzmimo npr. $A:=\left[0,\frac{1}{2}\right]\cup[4,5]$. Uvjerimo se npr. da je min A=0. Neka je $x\in A$ proizvoljan. Vrijedi $x\in A$ ako i samo ako vrijedi $x\in\left[0,\frac{1}{2}\right]$ ili $x\in[4,5]$. Ako je $x\in\left[0,\frac{1}{2}\right]$, tj. $0\leq x\leq\frac{1}{2}$, onda je očito i $x\geq0$, isto vrijedi i ako je $x\in[4,5]$. Dakle, $0\leq x$ za sve $x\in A$. Kako je $0\in A$, zaključujemo da je min A=0. Analogno se zaključuje da je max A=5. Očito vrijedi $1\notin A$, jer bi inače trebalo vrijediti $0\leq 1\leq\frac{1}{2}$ ili $4\leq 1\leq 5$, a nikoja od te dvije

tvrdnje nije istinita. Slično vidimo i da vrijedi $3 \notin A$.

c) Uzmimo $A:=\left(\langle 0,1\rangle\cap\mathbb{I}\right)\cup\left\{\frac{1}{2},1\right\}$. Lako se vidi da A sadrži točno dva racionalna broja $\left(\frac{1}{2}\text{ i }1,\text{ ostali su svi iracionalni po definiciji}\right)$ i slično kao i u b) se pokaže da je max A=1. Pretpostavimo da skup A ima minimum, neka je to a. Očito je a>0 (jer za sve $x\in A$ vrijedi a>0), pa uzmemo li bilo koji iracionalan broj u intervalu $\langle 0,a\rangle^3$, neka je to b, dobivamo b< a i $b\in A$, što je kontradikcija s minimalnošću od A.

Sada uvodimo korisnu notaciju kojom ćemo se koristiti na više mjesta.

Definicija 12. Neka je f(x) neki realan broj u ovisnosti o $x \in A \subseteq \mathbb{R}$. Oznaka $S = \{f(x) : x \in A\}$ je zapravo oznaka za skup $S = \{y \in \mathbb{R} : \exists x \in A \text{ t.d. } y = f(x)\}$.

Zadatak 87. Zadan je skup $S = \left\{ \frac{1}{x^2 + 1} : x \in \mathbb{R} \right\}$. Odredite min S i max S, ako postoje.

Rješenje. Pokušamo li umjesto x uvrstiti razne brojeve, naslućujemo da bi njegov maksimum mogao biti 1. Zaista, za sve $x \in \mathbb{R}$ vrijedi

$$\frac{1}{x^2+1} \le 1,$$

jer je ta tvrdnja ekvivalentna tvrdnji $x^2 \ge 0$. Vrijedi i $1 \in S$, i to za x = 0. Dakle, max S = 1. Nadalje, tvrdimo da min S ne postoji. Zaista, pretpostavimo da postoji min $S = m \in \mathbb{R}$. Kako je $m \in S$, po definiciji postoji $x_0 \in \mathbb{R}$ takav da je $m = \frac{1}{x_0^2 + 1}$. Uzmimo $x_1 := |x_0| + 1$. Vrijedi

$$\frac{1}{x_0^2 + 1} > \frac{1}{(|x_0| + 1)^2 + 1},$$

jer je

$$\frac{1}{x_0^2 + 1} > \frac{1}{(|x_0| + 1)^2 + 1} \Leftrightarrow x_0^2 + 1 < (|x_0| + 1)^2 + 1 \Leftrightarrow -1 < 2|x_0|,$$

a tvrdnja $-1 < 2|x_0|$ je očito istinita. Nadalje, očito je $|x_0| + 1 \in \mathbb{R}$, pa vrijedi

$$\frac{1}{(|x_0|+1)^2+1} \in S,$$

što je u kontradikciji s minimalnošću od m.

Zadatak 88. Neka je $S = \{x^3 - x : x \ge 1\}$. Odredite min S.

 $^{^3}$ To možemo po napomeni 18, za $\epsilon=x=rac{a}{2}$. Pokušajte za vježbu dokazati da je to moguće i bez pozivanja na taj teorem.

Rješenje. Očito je $0 \in S$. Dokažimo da je $x^3 - x \ge 0$ za sve $x \ge 1$. Zaista, taj uvjet je ekvivalentan sa

$$x(x^2 - 1) \ge 0, \quad \forall x \ge 1,$$

što je ekvivalentno tvrdnji da je $x^2-1\geq 0$ za sve $x\geq 1$, što očito vrijedi. Prema tome tvrdnja vrijedi po definiciji minimuma.

Zadatak 89. Neka su $a, b, c \in \mathbb{R}$ i a > 0. Neka je $S = \{ax^2 + bx + c : x \in \mathbb{R}\}$. Odredimo min S.

 $Rje\check{s}enje$. Za sve $x \in \mathbb{R}$ vrijedi

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right) = a\left(x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}} + \frac{c}{a} - \frac{b^{2}}{4a^{2}}\right)$$
$$= a\left(\left(x + \frac{b}{2a}\right)^{2} + \frac{4ac - b^{2}}{4a^{2}}\right) = a\left(x + \frac{b}{2a}\right)^{2} + \frac{4ac - b^{2}}{4a},$$

pa zbog a > 0 vrijedi

$$a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a} \ge \frac{4ac - b^2}{4a}$$

i $\frac{4ac-b^2}{4a}$ je ujedno i minimum jer se on postiže za $x=-\frac{b}{2a}$.

Napomena 16. Analogno se pokazuje da, ukoliko je a < 0, vrijedi da je $\max S = \frac{4ac - b^2}{4a}$ i on se, kao i u prethodnom slučaju, postiže za $x = -\frac{b}{2a}$. Ovo je vrlo koristan rezultat, za koji se nadamo da Vam je poznat iz srednje škole.

Zadatak 90. Neka je $S = \left\{ \frac{1}{\sqrt{x^2 + 3x + 4}} : x \in \mathbb{R} \right\}$. Odredite max S.

 $Rje\check{s}enje$. Neka je $x\in\mathbb{R}$ proizvoljan. Iz tvrdnje prethodnog zadatka imamo da vrijedi

$$x^2 + 3x + 4 \ge \frac{7}{4},$$

gdje jednakost vrijedi za $x=-\frac{3}{2}$. Odavde iz monotonog rasta funkcije funkcije korijen dobivamo

$$\sqrt{x^2 + 3x + 4} \ge \frac{\sqrt{7}}{2},$$

odnosno

$$\frac{1}{\sqrt{x^2+3x+4}} \le \frac{2}{\sqrt{7}}.$$

Zaključujemo i da je ovo maksimum, jer jednakost vrijedi za $x=-\frac{3}{2}$.

Zadatak 91. Neka je $S = \left\{ \frac{\pi^2}{4x \sin x} + x \sin x : 0 < x < \pi \right\}$. Odredite min S.

 $Rje\check{s}enje$. Neka je x>0 proizvoljan. Kako vrijedi $\sin x>0$ za sve $x\in\langle 0,\pi\rangle$, možemo primijeniti A-G nejednakost. Vrijedi

$$\frac{\pi^2}{4x\sin x} + x\sin x \ge 2 \cdot \sqrt{\frac{\pi^2}{4x\sin x} \cdot x\sin x} = \pi.$$

Dakle, π je jedna donja međa. Pokažimo i da je $\pi \in S$. Naime, jednakost se postiže ako i samo ako je

$$\frac{\pi^2}{4x\sin x} = x\sin x,$$

što je ekvivalentno tvrdnji

$$x\sin x = \frac{\pi}{2}.$$

Očito je jednadžba zadovoljena npr. za $x=\frac{\pi}{2}$, pa zaključujemo da u tom slučaju vrijedi

$$\frac{\pi^2}{4x\sin x} + x\sin x = \pi.$$

Dakle $\pi \in S$, pa je on i minimum.

Zadatak 92. Neka je $S = \{(1+x)^2(1-x) : x > 0\}$. Odredite max S.

 $Rje\check{s}enje$. Neka je x>0 proizvoljan. Direktnom primjenom A-G nejednakosti dobivamo

$$(1+x)(1+x)(1-x) \ge \left(\frac{1+x+1+x+1-x}{3}\right)^3 = \frac{3+x}{3}.$$

Kako želimo pri korištenju A-G nejednakosti doći do konstante, ova nejednakost nam nije korisna. Međutim, uočite da, kad bi umjesto 1-x imali 2-2x, onda bi se varijable x u brojniku poništile i u tom slučaju bi došli do konstante. No to možemo i postići. Zaista,

$$(1+x)^2(1-x) = \frac{1}{2}(1+x)(1+x)(2-2x) \ge \frac{1}{2}\left(\frac{1+x+1+x+2-2x}{3}\right)^3 = \frac{1}{2}\left(\frac{4}{3}\right)^3 = \frac{32}{27}.$$

Jednakost se postiže ako i samo ako je 1+x=2-2x, odnosno $x=\frac{1}{3}$. Dakle, max $S=\frac{32}{27}$ i on se postiže za $x=\frac{1}{3}$.

Napomena 17 (Arhimedov aksiom). Neka su a>0 i b>0 proizvoljni. Tada postoji $n\in\mathbb{N}$ takav da je na>b.

Napomena 18 (Gustoća \mathbb{Q} i \mathbb{I} u \mathbb{R}). Vrijedi sljedeće.

- a) Za svaki $\epsilon > 0$ i za sve $x \in \mathbb{R}$, $\langle x \epsilon, x + \epsilon \rangle \cap \mathbb{Q} \neq \emptyset$,
- b) Za svaki $\epsilon > 0$ i za sve $x \in \mathbb{R}, \langle x \epsilon, x + \epsilon \rangle \cap \mathbb{I} \neq \emptyset$.

Zadatak 93. Dokažite da za svaki realan r > 0 postoji bar jedan $a \in \mathbb{N}$ takav da je $\frac{1}{a} < r$. Postoji li i beskonačno mnogo prirodnih brojeva koji zadovoljavaju tvrdnju?

 $Rje \check{s}enje.$ Prema Arhimedovu aksiomu za svaki r>0 postoji $a\in\mathbb{N}$ takav da je ra>1,odnosno $\frac{1}{a}< r.$ Nadalje, za svaki $b\in\mathbb{N}$ takav da je b>a vrijedi

$$\frac{1}{b} < \frac{1}{a} < r,$$

pa očito ako tvrdnja vrijedi za a, onda vrijedi i za svaki b>a. Dakle, postoji beskonačno mnogo takvih prirodnih brojeva.

Zadatak 94. Dokažite koristeći Arhimedov aksiom da je skup $A = \{x^2 : x \in \mathbb{N}\}$ odozgo neograničen.

Rješenje. Da skup S ima gornju među znači da postoji bar jedan $M \in \mathbb{R}$ tako da za svaki $x \in S$ vrijedi $x \leq M$. Mi moramo dokazati negaciju ove tvrdnje, tj. moramo dokazati da za svaki $M \in \mathbb{R}$ postoji $x_0 \in A$ takav da je $x_0 > M$. Da je $x_0 \in S$ znači da je on oblika x^2 , gdje je $x \in \mathbb{N}$, pa zapravo trebamo dokazati da za svaki $M \in \mathbb{R}$ postoji $x \in \mathbb{N}$ takav da je $x^2 > M$.

Prema Arhimedovu aksiomu za svaki $M \in \mathbb{R}$ postoji $x \in \mathbb{N}$ takav da je x > M. Znamo da je $n^2 \ge n$ za sve $n \in \mathbb{N}$, pa vrijedi

$$x^2 \ge x > M,$$

čime smo pokazali da za tako odabrani x vrijedi i $x^2 > M$. Time je tvrdnja dokazana. \square

Napomena 19. Prethodni zadatak mogli smo riješiti i pomoću dokaza kontradikcijom. Zaista, pretpostavimo da je M jedna gornja međa za A, tj. da postoji $M \in \mathbb{N}$ takav da za svaki $x \in \mathbb{N}$ vrijedi $x^2 \leq M$. Dobivamo kontradikciju s činjenicom da tvrdnja očito ne vrijedi npr. za x = M + 1.

Zadatak 95. Dokažite da za svaki $a \in \mathbb{R}$ postoji $n \in \mathbb{Z}$ takav da je $n-1 \le a \le n$.

 $Rje\check{s}enje$. Uzmimo prvo da je a>0. Tada prema Arhimedovu aksiomu postoji $n\in\mathbb{N}$ takav da je n>a. Uzmimo od svih prirodnih brojeva takvih da je n>a najmanji takav broj, nazovimo ga n_0 . Tada je $n_0>a$, pa i $n_0\geq a$ i $n_0-1\leq a$, No n_0 je upravo broj koji smo tražili. Za a=0 tvrdnja vrijedi za n=0, a ako je a<0, onda je zahtjev

$$n-1 \le a \le n \iff -n \le -a \le -n+1$$
.

No sada je -a > 0, pa prema dokazanom upravo postoji $l \in \mathbb{Z}$ takav da je $l-1 \le -a \le l$, pa za -n = l-1, tj. n = 1-l tvrdnja vrijedi.

Napomena 18 je često korisna ako treba dokazati egzistenciju nekog racionalnog ili iracionalnog broja u nekom intervalu bez da ga eksplicitno konstruiramo. Pokažimo to u sljedećem zadatku.

Zadatak 96.

- a) Dokažite da između svaka dva realna broja $c < d, c, d \in \mathbb{R}$ postoji $x \in \mathbb{I}$ takav da je c < x < d.
- b) Dokažite da je skup $A' = \{x^2 : x \in \mathbb{I}\}$ odozgo neograničen.

 $Rje\check{s}enje$. a) Uvrstimo u napomenu 18 $x = \frac{c+d}{2}$, $\epsilon = \frac{d-c}{2}$. Tada dobivamo da postoji bar jedan $x \in \mathbb{I}$ u intervalu $\langle c, d \rangle$, tj. bar jedan $x \in \mathbb{I}$ takav da je c < x < d, što smo i tvrdili.

b) Analogno kao i u zadatku 94, dovoljno je dokazati da za svaki $M \in \mathbb{R}$ postoji $x \in \mathbb{I}$ takav da je $x^2 > M$. Uzmimo bilo koji $x_0 \in \mathbb{I}$ takav da je $x_0 \in \langle M, M+1 \rangle$. Očito je $x_0^2 \ge x_0 > M$, pa je x_0 upravo traženi broj.

3.3 Supremum i infimum

Definicija 13. Neka je S odozgo ograničen skup. **Supremum** skupa S je najmanja gornja međa od S.

Definicija 14. Neka je S odozdo ograničen skup. **Infimum** skupa S je najveća donja međa od S.

Kako su supremum i infimum jedinstveni ako postoje, ima smisla uvesti oznake sup A i inf A. Napomenimo da infimum (supremum) odozdo (odozgo) ograničenog skupa može, ali i ne mora biti unutar tog skupa. Vrijedi sljedeće – ako je $S \subseteq \mathbb{R}$ odozgo omeđen skup koji sadrži neku svoju gornju među b, onda je sup S=b. Zaista, kad bi postojao $a \in S$ takav da je a < b i da za sve $x \in S$ vrijedi $x \leq a$, onda $b \in S$ povlači $b \leq a$, što je u kontradikciji s

a < b. Analogno se pokaže da ako je S odozdo omeđen skup koji sadrži neku svoju donju među, onda je ona infimum tog skupa.

Zadatak 97. Dokažite da je sup $[0,1\rangle = 1$.

Rješenje. Pretpostavimo da 1 nije supremum, tj. da postoji neka gornja međa M takva da je M<1, dakle vrijedi $a\leq M$ za svaki $a\in [0,1\rangle$. Očito je $M\geq 0$. No dobivamo kontradikciju s činjenicom da je

$$\frac{M+1}{2} > M \ \text{i} \ 0 \leq \frac{M+1}{2} < 1,$$

što znači da je $\frac{M+1}{2} \in [0,1\rangle$.

Zadatak 98. Neka je $A = \left\{ \frac{4}{4n^2 - 1} : n \in \mathbb{Z} \right\}$. Odredite inf A.

 $Rje\check{s}enje$. Neka je $n\in\mathbb{Z}$ proizvoljan. Kako za n=0 dobivamo da je -4 element ovog skupa, te uvrštavanjem ostalih brojeva dobivamo pozitine brojeve, naslućujemo da je -4 minimum, pa i infimum. Zapravo, moramo dokazati da za $n\neq 0$ vrijedi

$$\frac{4}{4n^2 - 1} > 0.$$

No da bismo to dokazali, potrebno je prvo pokazati da je $4n^2-1>0$ za $n\neq 0$. Kako je $4(-n)^2-1=4n^2-1$, slijedi da je nužan i dovoljan uvjet da tvrdnja vrijedi za sve $n\neq 0$ upravo taj da tvrdnja vrijedi za sve $n\in \mathbb{N}$. Za n=1 tvrdnja vrijedi. Pretpostavimo li da tvrdnja vrijedi za neki n, onda za n+1 imamo

$$4(n+1)^2 - 1 = 4n^2 + 8n + 4 - 1.$$

Znamo da vrijedi 8n + 4 > 0, jer je to ekvivalentno s istinitom tvrdnjom $n > -\frac{1}{2}$. Sada očigledno vrijedi

$$4n^2 - 1 + 8n + 4 > 0.$$

Zato je -4 nužno minimum, pa i infimum, te je infA = -4.

Zadatak 99. Neka je $S = \left\{ \frac{1}{x+1} : x > -1 \right\}$. Odredite inf S i sup S.

Rješenje. Neka je x > -1 proizvoljan. Tvrdimo da je infS = 0. Zaista, 0 je očito jedna donja međa, kako je x + 1 > 0, vrijedi $\frac{1}{x+1} > 0$ (dijelili smo s $(x+1)^2$), pa je onda i $\frac{1}{x+1} \ge 0$.

Pretpostavimo da 0 nije infimum. Tada postoji neka donja međa skupa S, nazovimo ju a, takva da je a>0. Po definiciji, za sve x>-1 vrijedi

$$\frac{1}{x+1} \ge a.$$

Odavde iz a > 0 slijedi

$$x \le \frac{1}{a} - 1.$$

Dobili smo gornju među skupa $\langle -1, \infty \rangle$, što je kontradikcija jer znamo da je taj skup neograničen.

Tvrdimo da ovaj skup nema supremum, tj. sup $S=\infty$. Moramo, dakle, pokazati da je ovaj skup odozgo neograničen. Pretpostavimo da je odozgo ograničen, tj. da postoji $M\in\mathbb{R}$ takav da vrijedi

$$\frac{1}{x+1} \le M.$$

Očito je M>0, jer za npr. x=0 imamo $\frac{1}{0+1}=1\leq M$. Sada trebamo dobiti kontradikciju i to tako da pronađemo neki x_0 takav da je $\frac{1}{x_0+1}>M$. Rješavanjem jednadžbe $\frac{1}{x_0+1}=M$ dobivamo

$$x_0 = \frac{1}{M} - 1,$$

pa kako bi "naštimali" kontradikciju, uzmimo

$$x_0 = \frac{1}{M+1} - 1.$$

Tada je $x_0 > -1$ i

$$\frac{1}{\frac{1}{M+1} - 1 + 1} = M + 1 > M,$$

i time zaista dobivamo kontradikciju s činjenicom da za svaki x>-1 vrijedi $\frac{1}{x+1}\leq M!$ Time smo dokazali da je S odozgo neograničen.

Zadatak 100. Neka je $S = \left\{ \frac{x^2 - 5}{x^2 + 5} : x \in \mathbb{R} \right\}$. Odredite sup S.

 $Rje\check{s}enje$. Neka je $x \in \mathbb{R}$ proizvoljan. Vrijedi

$$\frac{x^2 - 5}{x^2 + 5} = \frac{x^2 + 5 - 10}{x^2 + 5} = 1 - \frac{10}{x^2 + 5}.$$
 (3.5)

Odavde vidimo da je očito 1 jedna gornja međa. Naslućujemo da je 1 supremum. Zaista, pretpostavimo da postoji $a \in \mathbb{R}$ takav da je

$$\frac{x^2 - 5}{x^2 + 5} \le a$$

za svaki $x \in \mathbb{R}$, gdje je a < 1. Množenjem s $x^2 + 5$ dobivamo

$$x^2 - 5 \le ax^2 + 5a,$$

odnosno

$$(1 - a)x^2 \le 5(a + 1).$$

Kako je a < 1, možemo podijeliti s 1 - a, pa dobivamo

$$x^2 \le \frac{5(a+1)}{1-a},$$

što je u kontradikciji s činjenicom da je skup $\{x^2 : x \in \mathbb{R}\}$ odozgo neograničen (što smo pokazali u zadatku 94).

U rješenju prethodnog zadatka smo naslutili da je 1 supremum koristeći (3.5). Intuitivno, promotrimo li graf funkcije $x\mapsto \frac{10}{x^2+5}$ vidimo da ona poprima sve pozitivne vrijednosti, dakle i one jako bliske nuli, što znači da će $1-\frac{10}{x^2+5}$ biti po volji blizu broju 1, pa ne može postojati gornja međa manja od 1 jer ćemo uvijek moći odabrati takav x koji će "premašiti" tako odabranu "gornju među". Ova razmatranja vode na sljedeće zaključke, koji nisu teški za dokazati.

Lema 1. Neka je S odozgo ograničen skup. Tada je $L \in \mathbb{R}$ supremum skupa S ako i samo ako je on gornja međa od S, tj. za svaki $x \in S$ vrijedi $x \leq L$, te za svaki $\epsilon > 0$ postoji $a \in S$ takav da je $L - \epsilon < a$.

Lema 2. Neka je S odozdo ograničen skup. Tada je $L \in \mathbb{R}$ infimum skupa S ako i samo ako je on donja međa od S, tj. za svaki $x \in S$ vrijedi $x \ge L$, te za svaki $\epsilon > 0$ postoji $a \in S$ takav da je $L + \epsilon > a$.

Ovi rezultati pokazuju se zgodnima za dokazivanje tvrdnji o supremumima i infimumima u mnogo slučajeva. Navedimo nekoliko primjera.

Zadatak 101. Odredite infimum skupa iz zadatka 99 koristeći lemu 2.

Rješenje. U rješenju zadatka 99 smo već pokazali da je 0 jedna donja međa. Dokažimo sada

da za proizvoljan $\epsilon>0$ postoji $a\in S$ takav da je $\epsilon>a$. To je ekvivalentno tvrdnji da za proizvoljan $\epsilon>0$ postoji x>-1 takav da je

$$\frac{1}{x+1} < \epsilon.$$

Da bismo dobili ideju kako bi x trebao izgledati, riješimo jednadžbu $\frac{1}{x+1} = \epsilon$ po x. Imamo

$$\frac{1}{x+1} = \epsilon \Leftrightarrow (x+1)\epsilon = 1 \Leftrightarrow x\epsilon = 1 - \epsilon \Leftrightarrow x = \frac{1-\epsilon}{\epsilon} = \frac{1}{\epsilon} - 1.$$

Kako je $\frac{1}{\epsilon} - 1$ rješenje jednadžbe $\frac{1}{x+1} = \epsilon$, slijedi da je

$$\frac{1}{\left(\frac{1}{\epsilon} - 1\right) + 1} = \epsilon.$$

Sada trebamo taj izbor x-a "popraviti" tako da za novi izbor x-a vrijedi $\frac{1}{x+1} < \epsilon$. Kako je

$$\frac{1}{\left(\frac{1}{\epsilon} - 1\right) + 1} = \epsilon > 0,$$

očito ako mu "povećamo" nazivnik, broj kojim time dobivamo bit će sigurno manji od ϵ . Zato ima smisla uzeti da je

$$x = \frac{1}{\epsilon} + 1.$$

Tada vrijedi

$$x > \frac{1}{\epsilon} - 1 \Rightarrow x + 1 > \frac{1}{\epsilon} \Rightarrow \frac{1}{x+1} < \frac{1}{\frac{1}{\epsilon}} = \epsilon,$$

čime smo dokazali tvrdnju.

Zadatak 102. Neka je $A = \left\{ \frac{n}{n+1} : n \in \mathbb{N} \right\}$. Odredite sup A, ako postoji.

 $Rje\check{s}enje$. Za svaki $n \in \mathbb{N}$ vrijedi

$$\frac{n}{n+1} = \frac{n+1-1}{n+1} = 1 - \frac{1}{n+1}$$

1 je očito jedna gornja međa ovog skupa. Tvrdimo da je 1 i supremum ovog skupa. Zaista,

treba dokazati da za svaki $\epsilon > 0$ postoji $n \in \mathbb{N}$ takav da vrijedi

$$\frac{n}{n+1} > 1 - \epsilon,$$

što je ekvivalentno tvrdnji

$$(n+1)\epsilon > 1.$$

Prema Arhimedovu aksiomu postoji $n \in \mathbb{N}$ takav da je $n\epsilon > 1$. No za taj n očito vrijedi

$$(n+1)\epsilon > n\epsilon > 1.$$

Time smo dokazali tvrdnju.

Zadatak 103. Neka je $A = \left\{ \frac{2}{x^2 - 1} : |x| > 3 \right\}$. Odredite inf A, ako postoji.

Rješenje. Uzmimo proizvoljan $x\in\mathbb{R}$ takav da je |x|>3. Naslućujemo da je inf A=0, jer broj $\frac{2}{x^2-1}$ teži ka 0 za po apsolutnoj vrijednosti velike x. Zaista, pokažimo da je 0 jedna donja međa. Zapravo je dovoljno pokazati da je $x^2-1>0$, jer onda je očito $\frac{2}{x^2-1}\geq 0$. Zaista, iz |x|>3 slijedi $x^2>9$, odakle slijedi $x^2-1>8>0$, pa tvrdnja vrijedi.

Pokažimo sada da za svaki $\epsilon>0$ postoji $x\in\mathbb{R}$ takav da je

$$0 + \epsilon = \epsilon > \frac{2}{r^2 - 1}$$
 i $|x| > 3$.

Rješavanjem jednadžbe $\epsilon = \frac{2}{x^2 - 1}$ po x dobivamo da je jedno od rješenja

$$x = \sqrt{\frac{2}{\epsilon} + 1},$$

pa sličnom intuicijom kao i prije pokušajmo "povećati" nazivnik, s time da treba imati na umu i da treba vrijediti |x| > 3. Naslućujemo da će tvrdnja vrijediti za

$$x = \sqrt{\frac{2}{\epsilon} + 9}.$$

Zaista, vrijedi

$$|x| = x = \sqrt{\frac{2}{\epsilon} + 9} > \sqrt{9} = 3,$$

te vrijedi

$$x > \sqrt{\frac{2}{\epsilon} + 1} \Rightarrow x^2 > \frac{2}{\epsilon} + 1 \Rightarrow x^2 - 1 > \frac{2}{\epsilon} \Rightarrow \frac{1}{x^2 - 1} < \frac{\epsilon}{2} \Rightarrow \frac{2}{x^2 - 1} < \epsilon.$$

Time smo pokazali da je inf A = 0.

Zadatak 104. Neka je $S = \left\{ \frac{x^2 - 5}{x^2 + 5} : x \in \mathbb{R} \right\}$ (skup iz zadatka 100). Već je dokazano da je supremum ovog skupa 1, ali dokažite da je supA = 1 koristeći karakterizaciju danu lemom 1.

Rješenje. U rješenju zadatka 100 smo već vidjeli da je 1 jedna gornja međa. Treba pokazati da za sve $\epsilon > 0$ postoji $x \in \mathbb{R}$ takav da je

$$1 - \frac{10}{x^2 + 5} > 1 - \epsilon,$$

što je ekvivalentno uvjetu

$$\frac{10}{x^2 + 5} < \epsilon.$$

Kroz rješavanje prethodnih zadataka pokazalo se je da je rješavanje jednadžbe po x često od pomoći, pa rješavanjem jednadžbe $\frac{10}{r^2+5}=\epsilon$ dobivamo

$$x = \sqrt{\frac{10}{\epsilon} - 5} = \sqrt{\frac{10 - 5\epsilon}{\epsilon}}.$$

No primijetimo da ovaj izraz nije definiran ako je $10-5\epsilon<0$, tj. ako je $\epsilon>2$. No uočimo da ako je $\epsilon>2$, onda tvrdnja koju želimo dokazati vrijedi i to za x=0. Zato možemo pretpostaviti da je $\epsilon\leq 2$. Sličnom intuicijom kao i prije, uzmemo li $x=\sqrt{\frac{10}{\epsilon}}$, vrijedi

$$x > \sqrt{\frac{10}{\epsilon} - 5} \Rightarrow x^2 > \frac{10}{\epsilon} - 5 \Rightarrow x^2 + 5 > \frac{10}{\epsilon} \Rightarrow \frac{1}{x^2 + 5} < \frac{\epsilon}{10} \Rightarrow \frac{10}{x^2 + 5} < \epsilon,$$

čime smo dokazali tvrdnju.

Napomena 20. Prethodni zadatak mogao se riješiti i kraće. Primijetimo da je

$$\frac{10}{x^2+5} < \frac{10}{x}$$

za sve x>0. Rješavanjem jednadžbe $\frac{10}{x}=\epsilon$ dobivamo $x=\frac{10}{\epsilon}>0$, pa nam se isplati upravo

uzeti taj x. Dobivamo

$$\epsilon = \frac{10}{x} > \frac{10}{x^2 + 5},$$

pa smo time dokazali tvrdnju.

Zadatak 105. Neka je
$$A = \left\{ \frac{m^2}{n^2} : m, n \in \mathbb{N} \right\}$$
. Postoji li sup A ?

Rješenje. Tvrdimo da ne postoji sup A, tj. da je ovaj skup odozgo neograničen i to tako što ćemo pronaći neki njegov odozgo neograničen podskup. Zaista, to je dovoljno da bismo dokazali tvrdnju jer kontrapozicijom dobivamo da ako je skup odozgo ograničen, onda je i svaki njegov podskup odozgo ograničen, a to je očigledna tvrdnja. Neka je

$$A' := \{m^2 : m \in \mathbb{N}\}.$$

Očito je $A' \subseteq A$ i on je odozgo neograničen, pa je i A odozgo neograničen.

Istaknimo sljedeću korisnu lemu.

Lema 3. Neka su $A, B \subseteq \mathbb{R}$ neprazni, $A \subseteq B$ i neka je B odozgo (odozdo) ograničen skup. Tada je i A odozgo (odozdo) ograničen skup, te vrijedi sup $A \le \sup B$ (inf $A \ge \inf B$).

Zadatak 106. Neka je
$$A = \left\{ \frac{n}{1 + nx^2} : n \in \mathbb{N}, \ x \in \mathbb{R} \right\}$$
. Odredite inf A , ako postoji.

 $Rje\check{s}enje$. Prvo dokažimo sljedeću jednostavnu tvrdnju: Neka je $A\subseteq\mathbb{R}$ neprazan i odozdo ograničen, te neka je $a\in\mathbb{R}$ donja međa skupa A. Ako postoji $B\subseteq A$ sa svojstvom da je inf B=a, onda je $a=\inf A$. Zaista, iz prethodne leme slijedi da je B odozdo ograničen, te $a=\inf B\geq\inf A$. S druge strane, po definiciji infimuma vrijedi $a\leq\inf A$, pa je zaista $a=\inf A$.

Promotrimo skup

$$A' = \left\{ \frac{1}{1+x^2} : x \in \mathbb{R} \right\}.$$

Uočimo da je $A'\subseteq A$ (dobiven za n=1) i inf A'=0 (ovo se pokazuje slično kao u prethodnim zadatcima). Kako za sve $x\in\mathbb{R}$ i $n\in\mathbb{N}$ vrijedi $\frac{n}{1+nx^2}\geq 0$, vrijedi inf A=0.

Zadatak 107. Neka je $A = \left\{ \frac{4x}{4x^2 - 1} : x > \frac{1}{2} \right\}$. Odredite sup A i inf A, ako postoje.

Rješenje. Neka je

$$A' = \left\{ \frac{4x}{4x^2 - 1} : \frac{1}{2} < x < 1 \right\}.$$

Tvrdimo da je A' odozgo neograničen. Pretpostavimo da postoji $M \in \mathbb{R}$ takav da za proizvoljan $x \in \left\langle \frac{1}{2}, 1 \right\rangle$ vrijedi

$$\frac{4x}{4x^2 - 1} \le M.$$

Očito je M > 1. Kako je tada

$$\frac{4}{4x^2 - 1} < \frac{4x}{4x^2 - 1},$$

očito je M gornja međa i za skup

$$A'' = \left\{ \frac{4}{4x^2 - 1} : \frac{1}{2} < x < 1 \right\}.$$

Pokažimo sada da postoji element skupa A'' koji je veći od M, čime dobivamo kontradikciju. Zaista, jedno od rješenja jednadžbe $\frac{4}{4x^2-1}=M$ je $x=\frac{\sqrt{4+M}}{2\sqrt{M}}$, pa ima smisla uzeti

$$x = \frac{\sqrt{3+M}}{2\sqrt{M}}$$

da bismo dobili kontradikciju, jer je očito $x < \frac{\sqrt{4+M}}{2\sqrt{M}}$, što iz pozitivnosti oba izraza povlači

$$\frac{4}{4x^2 - 1} > \frac{4}{4\left(\frac{(\sqrt{4+M})^2}{2\sqrt{M}}\right)^2 - 1} = M.$$

Još samo treba pokazati da je ovakav izbor x-a smislen, tj. da vrijedi $x > \frac{1}{2}$ i x < 1. Zaista, prvi uvjet je ekvivalentan s $M \ge 0$, a drugi sM > 1, a obje tvrdnje su očito istinite. Time smo dobili kontradikciju s činjenicom da je M gornja međa od A'', pa zaključujemo da A nema supremum.

Odredimo sada infimum. Kako vidimo da ovaj izraz teži ka 0 za sve veće i veće x, intuitivno možemo pretpostaviti da je 0 infimum. Zaista, 0 je donja međa, jer vrijedi $\frac{4x}{4x^2-1} \geq 0$ za sve $x>\frac{1}{2}$, što se lako provjeri. Sada još treba provjeriti da za svaki $\epsilon>0$ postoji $x>\frac{1}{2}$ takav da je

$$0 + \epsilon = \epsilon > \frac{4x}{4x^2 - 1}.$$

Vrijedi

$$x > \frac{1}{2} \Rightarrow \frac{1}{x} < 2 \Rightarrow 4x - \frac{1}{x} > 4x - 2 \Rightarrow \frac{1}{4x - \frac{1}{x}} < \frac{4}{4x - 2} \Rightarrow \frac{4x}{4x^2 - 1} < \frac{4}{4x - 2}.$$

Rješenje jednadžbe $\frac{4}{4x-2} = \epsilon$ je

$$x = \frac{\epsilon + 2}{2\epsilon} = \frac{1}{\epsilon} + \frac{1}{2} > \frac{1}{2}$$

i uzmemo li upravo taj x, tvrdnja je dokazana.

Zadatak 108. Neka je $A = \left\{ \frac{1}{m+n} : n \in \mathbb{N}, \ m \in \mathbb{N} \right\}$. Odredite inf A i sup A, ako postoje.

 $Rje\check{s}enje$. Lako se vidi da je maksimum ovog skupa $\frac{1}{2}$ i on se postiže za m=n=1. Tvrdimo da je 0 infimum. Zaista, treba dokazati da za sve $\epsilon>0$ postoje $m,\,n\in\mathbb{N}$ takvi da je

$$\epsilon > \frac{1}{m+n}.$$

što je ekvivalentno sa

$$(m+n)\epsilon > 1.$$

Zaista, prema Arhimedovu aksiomu postoje prirodni brojevi m i n takvi da je $m\epsilon > \frac{1}{2}$ i $n\epsilon > \frac{1}{2}$. Zbrajanjem ovih nejednakosti dobivamo tvrdnju.

Zadatak 109. Neka je $A = \left\{ \frac{n^2 + 4m^2}{mn} : n, m \in \mathbb{N} \right\}$. Odredite inf A i sup A, ako postoje.

 $Rje\check{s}enje$. Neka su $m,n\in\mathbb{N}$ proizvoljni. Znamo da je

$$(n-2m)^2 = n^2 - 4mn + 4m^2 \ge 0,$$

odakle slijedi $n^2 + 4m^2 \ge 4mn$, odnosno

$$\frac{n^2 + 4m^2}{mn} \ge 4.$$

Dakle 4 je jedna donja međa, no ona je i minimum jer se postiže za n=2 i m=1. Stoga je

inf A=4. Tvrdimo da A nema supremum. Uzmimo m=1. Pretpostavimo li da skup

$$A' = \left\{ \frac{n^2 + 4}{n} : n \in \mathbb{N} \right\}$$

ima gornju među M, onda dobivamo kontradikciju za n = M.

Napomena 21. Neka su $m, n \in \mathbb{N}$ proizvoljni. Iz A-G nejednakosti imamo

$$\frac{n^2 + 4m^2}{mn} = \frac{n}{m} + \frac{4m}{n} \ge 2\sqrt{\frac{n}{m} \cdot \frac{4m}{n}} = 4,$$

pa smo i tako mogli dobiti da je 4 donja međa, ali i minimum jer jednakost vrijedi ako i samo ako je $\frac{n}{m}=\frac{4m}{n}$, odnosno $\frac{n}{m}=2$ i to vrijedi za n=2 i m=1, ali mogli smo uzeti i neke druge brojeve, npr. n=50 i m=25.

Napomena 22. Vrijedi:

a) Ako su $A, B \subseteq \mathbb{R}$ odozgo (odozdo) ograničeni skupovi, onda je skup

$$A + B = \{a + b : a \in A, b \in B\}$$

odozgo (odozdo) ograničen i vrijedi

$$\sup(A+B) = \sup A + \sup B \quad (\inf(A+B) = \inf A + \inf B).$$

b) Ako su $A, B \in \mathbb{R}$ odozgo ograničeni skupovi, takvi da je $a \ge 0$ za svaki $a \in A$, te $b \ge 0$ za svaki $b \in B$ (kraće: $A \ge 0$ i $B \ge 0$, dakle oni su i odozdo ograničeni), tada je skup

$$A \cdot B = \{a \cdot b : a \in A, \ b \in B\}$$

ograničen i vrijedi

$$\sup(A \cdot B) = \sup A \cdot \sup B \wedge \inf(A \cdot B) = \inf A \cdot \inf B.$$

c) Ako je $A \subseteq \mathbb{R}$ odozdo (odozgo) ograničen skup, tada je skup

$$-A = \{-a : a \in A\}$$

odozgo (odozdo) ograničen i vrijedi

$$\sup(-A) = -\inf A, \quad (\inf(-A) = -\sup A).$$

d) Ako su $A, B \in \mathbb{R}$ odozgo (odozdo) ograničeni skupovi, tada je skup $A \cup B$ odozgo (odozdo) ograničen i vrijedi

$$\sup(A \cup B) = \max\{\sup A, \sup B\}, \quad (\inf(A \cup B) = \min\{\inf A, \inf B\}).$$

Zadatak 110. Neka je $A = \left\{ \frac{n}{n+1} + \frac{1}{m^2} : n \in \mathbb{N}, m \in \mathbb{N} \right\}$. Odredite sup A i inf A ako postoje.

Rješenje. Neka je

$$A' = \left\{ \frac{n}{n+1} : n \in \mathbb{N} \right\} \text{ i } A'' = \left\{ \frac{1}{m^2} : m \in \mathbb{N} \right\}.$$

Prije smo pokazali da je sup A'=1. No vrijedi da je inf $A'=\frac{1}{2}$, jer je to i minimum, s obzirom da se postiže za n=1 i da vrijedi

$$\frac{n}{n+1} \ge \frac{1}{2}$$

za sve $n \in \mathbb{N}$. Nadalje, vrijedi sup A'' = 1, jer je to i maksimum koji se postiže za m = 1, te inf A'' = 0, jer prema Arhimedovu aksiomu za svaki $\epsilon > 0$ postoji $m \in \mathbb{N}$ takav da je $m > \frac{1}{\epsilon}$, te kako je $y^2 \ge y$ za sve $y \in \mathbb{N}$, slijedi da za tako odabrani m vrijedi $\epsilon > \frac{1}{m^2}$. Dakle vrijedi

$$\sup A = \sup(A' + A'') = \sup A' + \sup A'' = 2,$$

te analogno

$$\inf A = \inf(A' + A'') = \inf A' + \inf A'' = \frac{1}{2}.$$

Zadatak 111. Neka je $A = \left\{ \frac{n+1}{(n+7)(nm+5n+m+5)} : m, n \in \mathbb{N} \right\}$. Odredite sup A, ako postoji.

 $Rje\check{s}enje$. Za proizvoljne $m, n \in \mathbb{N}$ vrijedi

$$\frac{n+1}{(n+7)(nm+5n+m+5)} = \frac{n+1}{(n+7)(m(n+1)+5(n+1))} = \frac{n+1}{(n+7)(n+1)(m+5)} = \frac{1}{(n+7)(m+5)}.$$

Neka je
$$A' = \left\{ \frac{1}{n+7} : n \in \mathbb{N} \right\}$$
 i $A'' = \left\{ \frac{1}{m+5} : m \in \mathbb{N} \right\}$. Lako se vidi da su $A', A'' \ge 0$ i

da je
$$\sup A' = \frac{1}{8}$$
, $\sup A'' = \frac{1}{6}$, pa je $\sup A = \frac{1}{48}$.

Zadatak 112. Neka je $A = \left\{ \frac{4n+13}{n+2} \cdot \frac{5m+12}{m+3} : n \in \mathbb{N}, \ m \in \mathbb{N} \right\}$. Odredite sup A, ako postoji.

 $Rje\check{s}enje$. Za proizvoljne $m,n\in\mathbb{N}$ vrijedi

$$\frac{4n+13}{n+2} = 4 + \frac{5}{n+2} \quad i \quad \frac{5m+12}{m+3} = 5 - \frac{3}{m+3}.$$

Promotrimo skup

$$A' = \left\{ 5 - \frac{3}{m+3} : m \in \mathbb{N} \right\} = \left\{ \frac{5m+12}{m+3} : m \in \mathbb{N} \right\}.$$

Uočimo da je A'=X+(-Y), gdje je $X=\left\{5\right\}$ i $Y=\left\{\frac{3}{m+3}:m\in\mathbb{N}\right\}$, pa kako je sup $X=\inf X=5$, sup $Y=\frac{3}{4}$ i inf Y=0, zaključujemo da je

$$\sup A' = \sup ((X + (-Y))) = \sup X + \sup (-Y) = \sup X - \inf Y = 5.$$

Nadalje, lako se vidi da je supremum svih brojeva oblika

$$A'' = \left\{ 4 + \frac{5}{n+2} : n \in \mathbb{N} \right\} = \left\{ \frac{4n+13}{n+2} : n \in \mathbb{N} \right\}$$

jednak $\frac{17}{3}$ (dobiva se za n=1, to je ujedno i maksimum skupa). Sada iz činjenice da za sve $n \in \mathbb{N}$ vrijedi $4 + \frac{5}{n+2} \ge 0$ i $5 - \frac{3}{n+3} \ge 0$, slijedi da je sup $A = \frac{17}{3} \cdot 5 = \frac{85}{3}$.

Zadatak 113. Neka je $A = \left\{ \frac{n - (-1)^n}{n} : n \in \mathbb{N} \right\}$. Odredite sup A i inf A, ako postoje.

Rješenje. Pokazat ćemo dva rješenja.

Prvi~način. Neka je $n \in \mathbb{N}$ proizvoljan. Iz činjenice da je $(-1)^n \ge -1$ slijedi $-(-1)^n \le 1$, odakle slijedi

$$\frac{n - (-1)^n}{n} \le \frac{n+1}{n} = 1 + \frac{1}{n} \le 2$$

i to je maksimum, jer se postiže za n=1. Slično, iz $(-1)^n \leq 1$ slijedi $-(-1)^n \geq -1$, odakle slijedi

$$\frac{n - (-1)^n}{n} \ge \frac{n - 1}{n} = 1 - \frac{1}{n} \ge \frac{1}{2},$$

što je i minimum, jer se postiže za n=2. Dakle, sup A=2 i inf $A=\frac{1}{2}$.

Drugi način. Definiramo

$$A' = \left\{ \frac{n-1}{n} : n \text{ paran} \right\} \text{ i } A'' = \left\{ \frac{n+1}{n} : n \text{ neparan} \right\}.$$

Lako je pokazati da je $A' \cup A'' = A$. Nadalje realan broj a je element skupa A' ako i samo ako postoji paran n takav da je $a = \frac{n-1}{n}$. No prirodan broj n je paran ako postoji $k \in \mathbb{N}$ takav da je n = 2k, što povlači prema napomeni 1 da je

$$A' = \left\{ \frac{2k-1}{2k} : k \in \mathbb{N} \right\}.$$

Sada analogno kao i u prethodnim zadatcima možemo pokazati da je sup A' = 2, inf $A' = \frac{1}{2}$ (Dokažite to!). Analogno vidimo da vrijedi

$$A'' = \left\{ \frac{2k}{2k-1} : k \in \mathbb{N} \right\},\,$$

iz činjenice da je $a \in \mathbb{N}$ neparan ako i samo ako postoji $k \in \mathbb{N}$ takav da je a = 2k-1. Provjerite da je sup A'' = 2, te inf A'' = 1. Dakle, sveukupno imamo sup A = 2 i inf $A = \frac{1}{2}$.

Zadatak 114. Neka je $A \subseteq \mathbb{R}$ odozgo ograničen skup koji ima dva ili više elemenata. Dokažite da je $A' := A \setminus \{\min A\}$ također odozgo ograničen i vrijedi sup $A = \sup A'$.

Rješenje. Skup A' je neprazan, pa tvrdnja zadatka ima smisla. Nadalje, očito sup A' postoji, jer je npr. sup A jedna gornja međa skupa A'. Prema pretpostavci znamo da za svaki $\epsilon > 0$ postoji $a \in A$ takav da je $L - \epsilon < a$. Naš je cilj dokazati da za svaki $\epsilon > 0$ postoji $a' \in A'$ takav da je $L - \epsilon < a$. Imamo dva slučaja.

• $\epsilon < \frac{L - \min A}{2}$. Tada postoji a za kojeg vrijedi

$$a > L - \epsilon > L - \frac{L - \min A}{2} = \frac{L + \min A}{2} > \min A.$$

Dakle, pronašli smo $a \in A'$ koji zadovoljava tvrdnju.

• $\epsilon \geq \frac{L - \min A}{2}$. Ovdje možemo uzeti neki a za kojeg je $L - \epsilon' < a$, gdje je ϵ' proizvoljan

broj takav da je $\epsilon' < \frac{L - \min A}{2}$. Kako je $\epsilon > \epsilon'$, vrijedi

$$L - \epsilon < L - \epsilon' < a$$

te analogno kao i u prethodnom slučaju imamo $a > \min A$, odnosno $a \in A'$, pa i u ovom slučaju smo pronašli $a \in A$ koji zadovoljava tvrdnju.

Napomena 23. Neka su S, I neprazni skupovi i $\mathcal{F} = \{A_n : n \in I\}$ familija skupova (skup nekih podskupova od S), dakle $A_n \subseteq S$, za sve $n \in I$. Definiramo:

$$\bigcup_{n \in I} A_n := \left\{ x \in S : (\exists n \in I) \ x \in A_n \right\},\tag{3.6}$$

$$\bigcup_{n \in I} A_n := \left\{ x \in S : (\exists n \in I) \ x \in A_n \right\},$$

$$\bigcap_{n \in I} A_n := \left\{ x \in S : (\forall n \in I) \ x \in A_n \right\}.$$
(3.6)

Skup (3.6) zovemo unija familije \mathcal{F} , (3.7) zovemo presjek familije \mathcal{F} . Unije i presjeci familija se inače definiraju i za neindeksirane familije, ali ovo će za nas biti dovoljno. Više o familijama skupova možete vidjeti u [9], str. 9.

Zadatak 115 (Cantorov aksiom). Neka je za sve $n \in \mathbb{N}$ zadan segment $[a_n, b_n] \subseteq \mathbb{R}$ i neka za sve $m \in \mathbb{N}$, $m \ge n$ povlači $[a_m, b_m] \subseteq [a_n, b_n]$. Dokažite:

$$\bigcap_{n\in\mathbb{N}} [a_n, b_n] \neq \emptyset.$$

Rješenje. Naš je cilj dokazati da postoji $b \in \mathbb{R}$ takav da za sve $n \in \mathbb{N}$ vrijedi $a_n \leq b \leq b_n$. Uočimo prvo da je tvrdnja $[a_m, b_m] \subseteq [a_n, b_n]$ ekvivalentna tvrdnji $a_n \le a_m \le b_m \le b_n$. Neka je sada

$$A = \{a_n : n \in \mathbb{N}\} \text{ i } B = \{b_n : n \in \mathbb{N}\}.$$

Uočimo da za sve $n_1, n_2 \in \mathbb{N}$ vrijedi $a_{n_1} \leq b_{n_2}$. Zaista, ako je $n_1 \leq n_2$, onda vrijedi $a_{n_1} \leq b_{n_2}$ $a_{n_2} \leq b_{n_2}$, a ako je $n_2 \leq n_1$, onda je $a_{n_1} \leq b_{n_1}$. Kako je svaki element skupa Ajedna donja međa od B, očito postoji $b = \inf B$. Očito je $b_n \geq b$ za sve $n \in \mathbb{N}$. Tvrdimo da za sve $n \in \mathbb{N}$ vrijedi $a_n \leq b$. Pretpostavimo suprotno, tj. da postoji $n_1 \in \mathbb{N}$ takav da je $b < a_{n_1}$. Tada a_{n_1} sigurno nije donja međa skupa B, pa postoji $n_2 \in \mathbb{N}$ takav da je $b_{n_2} < a_{n_1}$, kontradikcija s $A \leq B!$ Dakle, vrijedi $a_n \leq b \leq b_n$, pa je tvrdnja dokazana.

Definicija 15. Za funkciju $p: \mathbb{R}^2 \to \mathbb{R}$ kažemo da je **polinom** n+m-tog stupnja u dvije varijable (kraće: polinom u dvije varijable) ako postoje brojevi $i = 1, \ldots, n, j = 1, \ldots, m$ i

 $a_{ij} \in \mathbb{R}$ takvi da je

$$p(x,y) = \sum_{i=0}^{n} \sum_{j=0}^{m} a_{ij} x^{i} y^{j},$$

pri čemu nisu svi a_{ij} takvi da je i + j = n + m jednaki 0.

Tako su npr. $p_1, p_2 : \mathbb{R}^2 \to \mathbb{R}$,

$$p_1(x,y) = x^2 + 2xy + 3y^2,$$

 $p_2(x,y) = xy + 2$

dva polinoma u dvije varijable.

Zadatak 116. Dokažite da postoji polinom u dvije varijable $p: \mathbb{R}^2 \to \mathbb{R}$ takav da je p(x,y) > 0 za sve $(x,y) \in \mathbb{R}^2$, koji nema minimum, tj. ne postoji min $\{p(x,y): x \in \mathbb{R}, y \in \mathbb{R}\}$.

Rješenje. Označimo $S=\{p(x,y):x\in\mathbb{R},\ y\in\mathbb{R}\}$. Definirat ćemo polinom drugog stupnja za koji je infS=0, ali $0\notin S$. Korisna opservacija je da za polinome $q:\mathbb{R}^2\to\mathbb{R}$ zapisane u obliku

$$q(x,y) = (\dots)^2 + (\dots)^2$$

vrijedi q(x,y)>0 ako (i samo ako) izrazi u ove dvije zagrade ne mogu istodobno biti 0. Dakle, nama je cilj u ove dvije zagrade dodati izraze (najprirodnije je dodati polinome) koji ne mogu istodobno biti 0, ali tako da infimum skupa S bude jednak 0, tj. tako da možemo odabrati brojeve x,y tako da izraz p(x,y) bude "proizvoljno malen". Možda je najjednostavnije u prvu zagradu staviti izraz x. U drugu zagradu ćemo morati staviti izraz koji ne može biti 0 kada je x=0. To možemo postići tako da npr. uzmemo neki izraz koji je 0 kada je x=0 (možemo naprosto uzeti neki izraz koji sadrži u sebi x kao faktor) i tom izrazu dodamo 1. Tu je najlakše uzeti xy+1 kao taj izraz u drugoj zagradi⁴, jer taj izraz možemo skupa s izrazom u prvoj zagradi učiniti po volji malim (uzimajući x vrlo blizu 0 da prva zagrada bude mali broj i kao y suprotnu i recipročnu vrijednost tog broja kojeg smo uzeli za x, kako bi druga zagrada bila 0). Dakle, uzet ćemo

$$p(x,y) = x^2 + (xy + 1)^2$$
.

Sad ćemo formalizirati naša razmatranja. Tvrdimo da za skup

$$S = \{x^2 + (xy+1)^2 : x \in \mathbb{R}, y \in \mathbb{R}\}\$$

 $^{^4}$ Uočimo da npr. $x^2 + 1$ ne bi bio dobar odabir, jer ne bi izraze u obije zagrade istovremeno mogli učiniti po volji malima.

vrijedi inf S=0, te $0 \notin S$. Uočimo da je očito $x^2+(xy+1)^2 \ge 0$ i vrijedi $x^2+(xy+1)^2=0$ ako i samo ako je x=0 i xy=-1, što je nemoguće, dakle vrijedi $x^2+(xy+1)^2>0$ za sve $x,y\in\mathbb{R}$, što povlači $0\notin S$.

Dokažimo da je infS=0. Treba pokazati da za proizvoljan $\epsilon>0$ postoje $x,y\in\mathbb{R}$ tako da vrijedi

$$\epsilon > x^2 + (xy+1)^2$$

Uzmimo $x = \frac{\sqrt{\epsilon}}{2}$ i $y = -\frac{2}{\sqrt{\epsilon}}$. Tada je

$$x^2 + (xy+1)^2 = \frac{\epsilon}{4} < \epsilon.$$

Dakle, $p:\mathbb{R}^2\to\mathbb{R},\ p(x,y)=x^2+(xy+1)^2$ je jedan polinom koji zadovoljava uvjete zadatka.

3.4 Kompleksni brojevi

Definicija 16. Skup kompleksnih brojeva je skup $\mathbb{C} = \left\{ a + bi : a, \ b \in \mathbb{R}, \ i = \sqrt{-1} \right\}$. (Ova definicija nije stroga, strogu definiciju obradili ste na predavanjima.)

Kompleksne brojeve zbrajamo i oduzimamo "po komponentama", tj.

$$(a+bi) \pm (c+di) = (a+c) \pm (b+d)i,$$

te ih množimo poput polinoma, tj.

$$(a+bi)(c+di) = ac + adi + bci - bd = (ac - bd) + (ad + bc)i.$$

Vrijedi i

$$\frac{1}{a+bi} = \frac{a-bi}{a^2+b^2},$$

što se lako pamti kao "racionalizacija nazivnika", tj. množimo brojnik i nazivnik sa-bi, pa u nazivniku dobivamo

$$(a + bi)(a - bi) = a^2 - abi + abi + b^2 = a^2 + b^2.$$

Zadatak 117. Neka je $z = \frac{(2+3i)(4+5i)}{6+7i}$. Napišite z u standardnom obliku.

Rješenje. Vrijedi (2+3i)(4+5i) = 8+10i+12i-15 = -7+22i. Imamo

$$z = \frac{-7 + 22i}{6 + 7i} \cdot \frac{6 - 7i}{6 - 7i} = \frac{(-7 + 22i)(6 - 7i)}{85} = \frac{-42 + 49i + 132i - 154}{85} = \frac{112}{85} + \frac{181}{85}i.$$

Napomena 24.

- Vrijedi a + bi = c + di ako i samo ako vrijedi a = c i b = d.
- Modul kompleksnog broja z = a + bi je broj $|z| = \sqrt{a^2 + b^2}$.
- Neka je z = x + yi. Tada je **realni dio** od z broj Re(z) = x, a **imaginarni dio** od z broj Im(z) = y.
- Kompleksno-konjugirani broj od z = x + yi je broj $\overline{z} = x yi$.

Zadatak 118.

- a) Odredite sve $a \in \mathbb{R}$ takve da je $(a+3i)^2 = 216 + 90i$.
- b) Dokažite da za sve $z_1, z_2 \in \mathbb{C}$ vrijedi $|z_1 z_2| = |z_1| |z_2|$.
- c) Dokažite da za sve $z_1, z_2 \in \mathbb{C}$ vrijedi $|z_1 + z_2| \le |z_1| + |z_2|$.

Rješenje. a) Neka je $a \in \mathbb{R}$ proizvoljan. Tvrdnja vrijedi ako i samo ako vrijedi $a^2 + 6ai - 9 = 216 + 90i$, što vrijedi ako i samo ako vrijedi $a^2 - 9 = 216$ i 6a = 90. Sada lako vidimo da obje tvrdnje vrijede za a = 15 i to je jedini takav a.

b) Neka su $z_1 = a + bi$ i $z_2 = c + di$ proizvoljni. Sjetimo se da je

$$(a+bi)(c+di) = ac + adi + bci - bd = (ac - bd) + (ad + bc)i.$$

Stoga tvrdimo da vrijedi

$$\sqrt{(ac-bd)^2 + (ad+bc)^2} = \sqrt{a^2 + b^2}\sqrt{c^2 + d^2} = \sqrt{(a^2 + b^2)(c^2 + d^2)}.$$

No vrijedi

$$(ac - bd)^{2} + (ad + bc)^{2} = a^{2}c^{2} + b^{2}d^{2} + a^{2}d^{2} + b^{2}c^{2}$$

i

$$(a^2 + b^2)(c^2 + d^2) = a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2,$$

pa zaključujemo da su ta dva broja jednaka, odakle slijedi tvrdnja.

c) Stavimo li $z_1 = a + bi$ i $z_2 = c + di$, treba dokazati

$$\sqrt{(a+c)^2 + (b+d)^2} < \sqrt{a^2 + b^2} + \sqrt{c^2 + d^2}$$

Kvadriranjem i pojednostavljivanjem dobivamo ekvivalentnu tvrdnju

$$ac + bd \le \sqrt{(a^2 + b^2)(c^2 + d^2)}.$$

Primijetimo da općenito ne možemo kvadrirati ovu nejednakost jer ac+bd može biti negativan. Međutim, vrijedi obrat – ako vrijedi $x^2 \geq y^2$, gdje je $x \geq 0$, a $y \in \mathbb{R}$, onda vrijedi $x \geq y$. Zaista, vrijedi $\sqrt{y^2} = |y|$, pa vrijedi $x^2 \geq y^2 \Rightarrow x \geq |y| \geq y$, što povlači $x \geq y$. Zato je dovoljno dokazati da vrijedi

$$(ac + bd)^2 \le (a^2 + b^2)(c^2 + d^2).$$

Zaista, ova tvrdnja je ekvivalentna $(ad - bc)^2 \ge 0$, što je istina.⁵

Zadatak 119. Prikažite u Gaussovoj ravnini skup $S = \{z : |z - 3| = 4\}.$

Rješenje. Ideja u rješavanju zadataka ovog tipa je pronaći nužne i dovoljne uvjete da je neki kompleksan broj u S takve da pomoću njih lako možemo skicirati S u Gaussovoj ravnini. Neka je z=x+yi. Tada vrijedi |z-3|=|(x-3)+yi|=4, odnosno $\sqrt{(x-3)^2+y^2}=4$, što vrijedi ako i samo ako vrijedi $(x-3)^2+y^2=16$. Prema tome, vrijedi $z\in S$ ako i samo ako vrijedi $(x-3)^2+y^2=16$, gdje je z=x+yi. No znamo da je ovaj skup kružnica radijusa 4 sa središtem u točki (3,0).

Zadatak 120. Prikažite u Gaussovoj ravnini skup

$$S = \{z : |z + 1 + 8i|^2 - |z + 2 + i|^2 = 100\}.$$

⁵Tvrdnja je i specijalan slučaj CSB-nejednakosti.

 $Rje\check{s}enje$. Neka je $z\in\mathbb{C}$ proizvoljan. Vrijedi

$$|z+1+8i|^2 - |z+2+i|^2 = 100$$

$$\sqrt{(x+1)^2 + (y+8)^2}^2 - \sqrt{(x+2)^2 + (y+1)^2}^2 = 100$$

$$(x+1)^2 + (y+8)^2 - (x+2)^2 - (y+1)^2 = 100$$

$$14x - 2y = 40$$

$$y = 7x - 20.$$

Pravac je prikazan na slici 3.1.

Slika 3.1: Pravac y = 7x - 20

Zadatak 121. Odredite skup $S = \{z : z + |z| = 8 - 4i\}.$

 $Rje\check{s}enje.$ Neka je z=x+yi. Uvjetz+|z|=8-4i je tada ekvivalentan uvjetu

$$x + \sqrt{x^2 + y^2} + yi = 8 - 4i.$$

No to vrijedi ako i samo ako vrijedi

$$\begin{cases} x + \sqrt{x^2 + y^2} = 8, \\ y = -4. \end{cases}$$

Supstitucijom y=-4 dobivamo $x+\sqrt{x^2+16}=8$. Rješavanjem jednadžbe dobivamo x=3. Dakle $S=\{3-4i\}$ i on je u Gaussovoj ravnini točka (3,-4).

Neka je $S\subseteq \mathbb{C}$ neprazan i neka su zadane $f,g:S\to \mathbb{C}$. Problem određivanja skupa

 $T = \{z : f(z) = g(z)\}$ zovemo rješavanje jednadžbe f(z) = g(z) u skupu \mathbb{C} .

Zadatak 122. Riješite sljedeće jednadžbe u \mathbb{C} .

a)
$$|z - 1|^2 + 2\overline{z} = 6 - 2i$$
.

b)
$$z \cdot |z| + 2z + i = 0$$
.

 $Rje\check{s}enje$. a) Neka je z=x+yi. Tada je početna jednadžba ekvivalentna jednadžbi

$$(x-1)^2 + y^2 + 2x - 2yi = 6 - 2i,$$

što vrijedi ako i samo ako je

$$\begin{cases} (x-1)^2 + y^2 + 2x = 6, \\ -2y = -2. \end{cases}$$

Odavde slijedi y=1 i $(x-1)^2+2x=5$, odnosno $x^2=4$, tjx=2 ili x=-2. Dakle, jedina rješenja su z=2+i i z=-2+i.

b) Neka je z = x + yi. Tada vrijedi

$$z \cdot |z| + 2z + i = 0 \Leftrightarrow (x + yi)\sqrt{x^2 + y^2} + 2x + (2y + 1)i = 0$$
$$\Leftrightarrow x\sqrt{x^2 + y^2} + 2x + y\sqrt{x^2 + y^2}i + (2y + 1)i = 0.$$

Posljednje vrijedi ako i samo ako je

$$\begin{cases} x\sqrt{x^2 + y^2} + 2x = 0, \\ y\sqrt{x^2 + y^2} + (2y + 1) = 0. \end{cases}$$

Uočimo da vrijedi

$$x\sqrt{x^2 + y^2} + 2x = x(\sqrt{x^2 + y^2} + 2) = 0,$$

pa kako je $\sqrt{x^2+y^2}+2>0$ slijedi x=0. Odavde dobivamo da početna tvrdnja vrijedi ako i samo ako je

$$y|y| + 2y + 1 = 0.$$

Sada razlikujemo dva slučaja – $y \ge 0$ i y < 0.

Ako je $y \geq 0,$ onda je |y| = y,pa imamo jednadžbu

$$y^2 + 2y + 1 = 0,$$

čije rješenje je y=-1, ali kako je $y\geq 0$, ovo rješenje "odbacujemo".

Ako je y < 0, imamo jednadžbu

$$-y^2 + 2y + 1 = 0,$$

čija rješenja su $y=1-\sqrt{2}$ i $y=1+\sqrt{2}$, ali jedino uzimamo u obzir rješenje $y=1-\sqrt{2}$, jer je $1+\sqrt{2}\geq 0$. Dakle, jedino rješenje početne jednadžbe je $z=(1-\sqrt{2})i$.

Napomena~25. Kompleksan broj z je napisan u **trigonometrijskom obliku** ako je $z=r(\cos\theta+i\sin\theta)$, gdje je r=|z| i $\theta\in[0,2\pi\rangle$ kut koji taj broj zatvara s osi x. Vrijedi:

- tg $\theta=\frac{y}{x},$ s time da pri određivanju broja θ treba uzeti u obzir i kvadrant u kojem se znalazi.
- Neka je $z_1 = r_1(\cos\theta_1 + i\sin\theta_1), z_2 = r_2(\cos\theta_2 + i\sin\theta_2).$ Tada je

$$z_1 z_2 = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)),$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2)), \text{ gdje je } z_2 \neq 0.$$

• Za sve $z \in \mathbb{C}$ i $n \in \mathbb{N}$ vrijedi $z^n = r^n(\cos n\theta + i\sin n\theta)$.

Zadatak 123.

- a) Zapišite $z=1-\sqrt{3}i$ u trigonometrijskom obliku. Odredite $z^5.$
- b) Odredite najmanji $\alpha \in \mathbb{N}$ takav da je $z = (1+i)^{\alpha} \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{\alpha} \in \mathbb{R}$.

Rješenje. a)
$$z = 2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right), z^5 = 32\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right).$$

b) Vrijedi

$$(1+i)^{\alpha} \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i \right)^{\alpha} = \sqrt{2}^{\alpha} \left(\cos \frac{\alpha \pi}{4} + i \sin \frac{\alpha \pi}{4} \right) \left(\cos \frac{2\alpha \pi}{3} + i \sin \frac{2\alpha \pi}{3} \right)$$
$$= \sqrt{2}^{\alpha} \left(\cos \frac{11\alpha \pi}{12} + i \sin \frac{11\alpha \pi}{12} \right)$$

Kompleksan broj z je realan ako i samo ako je $\operatorname{Im}(z)=0$. Zato je najmanji takav $\alpha\in\mathbb{N}$ upravo najmanji α koji zadovoljava sin $\frac{11\alpha\pi}{12}=0$, a to je $\alpha=12$.

Definicija 17. Neka je $z \in \mathbb{C}$. Kažemo da je n-ti korijen iz z, u oznaci $\sqrt[n]{z}$, skup svih $w \in \mathbb{C}$ takvih da je $w^n = z$.

Skup \mathbb{R} . Uvod u nejednakosti. Supremum i infimum. Kompleksni brojevi

Napomena 26. Vrijedi
$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos\frac{\phi + 2k\pi}{n} + \sin\frac{\phi + 2k\pi}{n}\right), k \in \{0, 1, 2, \dots, n-1\}.$$

Zadatak 124. Odredite $\sqrt[3]{1+i}$.

Rješenje.

$$\sqrt[3]{1+i} = \left\{ \sqrt[6]{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right), \sqrt[6]{2} \left(\cos \frac{3\pi}{12} + i \sin \frac{3\pi}{12} \right), \sqrt[6]{2} \left(\cos \frac{17\pi}{12} + i \sin \frac{17\pi}{12} \right) \right\}. \quad \Box$$

Zadatci za vježbu

Uvod u nejednakosti

Zadatak 125. Dokažite da za sve x > 1 vrijedi

- a) $x^3 x^2 + \frac{1}{x} > 0$,
- b) $x^2 \ge x \sin x$.

Zadatak 126.

- a) Dokažite da za sve $x \in \mathbb{R}$ vrijedi $|x| \ge -x$.
- b) Koristeći tvrdnju a) dijela zadatka, dokažite da za sve $x \in \mathbb{R}$ vrijedi

$$|x^3 - 2x\cos x + \sin^2 x + 1| + |x^3 - 2x\cos x - \cos^2 x + 6| \ge 4.$$

Zadatak 127.

a) (Državno natjecanje, 4. razred, A varijanta, 2018.) Neka je $n \in \mathbb{N}$. Dokažite da za sve $x_1, \ldots, x_n \in [0, 1]$ vrijedi

$$(x_1 + x_2 + \dots + x_n + 1)^2 \ge 4(x_1 + x_2 + \dots + x_n).$$

b) (Državno natjecanje, 1. razred, A varijanta, 2019.) Neka su a,b,c>0 takvi da je a+b+c=1. Dokažite:

$$\frac{1+9a^2}{1+2a+2b^2+2c^2} + \frac{1+9b^2}{1+2b+2c^2+2a^2} + \frac{1+9c^2}{1+2c+2a^2+2b^2} < 4$$

c) Neka su x, y, z > 0. Dokažite:

$$\sqrt{x(3x+y)} + \sqrt{y(3y+z)} + \sqrt{z(3z+x)} \le 2(x+y+z).$$

d) Neka je $n \in \mathbb{N}, p: \{1,\dots,n\} \to \{1,\dots,n\}$ permutacija skupa $\{1,\dots,n\}$ i $a_1,\dots a_n>0.$ Dokažite:

$$\frac{a_1}{a_{p(1)}} + \frac{a_2}{a_{p(2)}} + \dots + \frac{a_n}{a_{p(n)}} \ge n$$

Zadatak 128. (HMO 2016.) (**) Dokažite da za sve $n \in \mathbb{N}$ i sve $x_1, x_2, \dots, x_n \geq 0$ vrijedi

$$\left(x_1 + \frac{x_2}{2} + \dots + \frac{x_n}{n}\right)(x_1 + 2x_2 + \dots + nx_n) \le \frac{(n+1)^2}{4n}(x_1 + x_2 + \dots + x_n)^2.$$

Minimum i maksimum. Arhimedov aksiom

Zadatak 129. Dokažite ili opovrgnite (Univerzalni skup je \mathbb{R}):

- a) Postoji odozgo neograničen skup $A \subseteq \mathbb{R}$ takav da je A^c odozgo ograničen.
- b) Postoji odozgo ograničen skup $A\subseteq\mathbb{R}$ takav da je A^c odozgo neograničen.
- c) Postoji odozgo neograničen skup $A \subseteq \mathbb{R}$ takav da je A^c odozgo neograničen.
- d) Postoji odozgo ograničen skup $A \subseteq \mathbb{R}$ takav da je A^c odozgo ograničen.

Zadatak 130. Neka je $A = \{n^2 - 2^n : n \in \mathbb{N}\}$. Odredite min A i max A, ako postoje.

Zadatak 131. Neka je $S = \left\{ \sin^2 x \cos 2x : 0 \le x \le \frac{\pi}{2} \right\}$. Odredite max S i min S, ako postoje.

Zadatak 132. Dokažite koristeći Arhimedov aksiom da je skup $A = \{x^2 - x : x \in \mathbb{N}\}$ odozgo neograničen.

Zadatak 133.

- a) Dokažite da svaki $a \in \mathbb{R}$ ima najmanji prirodan broj veći ili jednak a.
- b) Dokažite: Neka je $a \ge 0$ i b > 0. Ako za sve $n \in \mathbb{N}$ vrijedi $a \le \frac{b}{2^n}$, onda je a = 0.

Zadatak 134. (*) Dokažite da Arhimedov aksiom i Cantorov aksiom (v. zadatak 115) povlače aksiom potpunosti.

Napomena 27. Kako iz aksioma realnih brojeva možemo dokazati Arhimedov i Cantorov aksiom (Za dokaz Arhimedova aksioma v. [3]), iz ovog zadatka slijedi da se u aksiomima realnih brojeva aksiom potpunosti može zamijeniti konjunkcijom Arhimedova i Cantorova aksioma.

Supremum i infimum

Zadatak 135.

- a) Odredite primjer skupa $S \subseteq \mathbb{R}$ takvog da je sup $A^c = 1$.
- b) Odredite primjer dva skupa $A, B \subseteq \mathbb{R}, A \neq B$ takva da je sup $A \cap B = 3$ i da $A \cap B$ nema infimum.
- c) Odredite primjer beskonačnog skupa $A \subseteq \mathbb{Q}$ čiji je infimum 2, a supremum 3.

d) Odredite primjer skupa $A \subseteq \mathbb{R}$ takvog da je inf A = 2, sup A = 3, nema minimum ni maksimum, te se ne može prikazati kao unija konačno mnogo otvorenih intervala. (Dokažite da skup koji ste naveli zaista zadovoljava navedene tvrdnje.)

Zadatak 136. Odredite inf A, sup A, min A, max A ako postoje, gdje je

a)
$$A = \left\{ \frac{18 - 2n}{2n + 1} : n \in \mathbb{N} \right\},$$
 g) $A = \left\{ \frac{n + 1}{2m + 1} : m, n \in \mathbb{N} \right\}$
b) $A = \left\{ \frac{x^2 - 10}{x^2 + 10} : x \in \mathbb{R} \right\},$ h) $A = \left\{ \frac{n^2}{m^2 + m + 7n^2} : m, n \in \mathbb{N} \right\},$ c) $A = \left\{ \frac{1}{n + 2} : n \in \mathbb{N}, n \neq 4 \right\},$ i) $A = \left\{ 1 + \frac{n}{n + 1} \cos\left(\frac{n\pi}{2}\right) : n \in \mathbb{N} \right\},$ d) $A = \left\{ \frac{n}{(n + 1)!} : n \in \mathbb{N} \right\},$ j) $A = \left\{ \frac{1}{3 - (-1)^n \cdot n} + (-1)^n : n \in \mathbb{N} \right\},$ e) $A = \left\{ (2 + (-1)^m) \cdot \frac{3}{n} : m, n \in \mathbb{N} \right\},$ k) $A = \left\{ \frac{1}{\sqrt{n} + 1} : n \in \mathbb{N} \right\}.$ f) $A = \left\{ \frac{n^2}{m^2 + 2mn + 5n^2} : m, n \in \mathbb{N} \right\},$ l) $A = \left\{ \frac{1}{p} : p \text{ prost} \right\}.$

Zadatak 137. Odredite inf A, sup A, min A, max A ako postoje, gdje je

a)
$$A = \left\{ \frac{12m - n - 3mn + 7}{5n - 2n - 2mn + 5} : n \in \mathbb{N}, \ m \in \mathbb{N}, \ n > 4 \right\},$$

b) $A = \left\{ \frac{1}{3n + 4} \cdot \frac{1}{3m - 4} : m, n \in \mathbb{N} \right\}$ (Budite pažljivi ovdje!),
c) $A = \left\{ \frac{m^2 + 4mn\cos\frac{x}{2} + 5n^2}{mn} : m, n \in \mathbb{N}, \ x \in [\pi, 3\pi] \right\},$
d) $A = \left\{ \frac{3}{x + 4} : x \in \mathbb{I}, \ x > -4 \right\}.$

Zadatak 138. Neka je $A \subseteq \mathbb{R}$ skup koji nema maksimum, takav da $A \setminus \langle 1, 2 \rangle$ ima maksimum. Dokažite da je A odozgo ograničen i da je sup $A \leq 2$. Postoji li $a \in \mathbb{R}$, a < 2 takav da za svaki $A \subseteq \mathbb{R}$ s gornjim svojstvima vrijedi sup A = a?

Zadatak 139. Neka su $a, b \in \mathbb{R}$, a < b. Odredite supremum skupa $\langle a, b \rangle \cap \mathbb{Q}$, ako postoji.

Zadatak 140. Odredite sve $a \in \mathbb{R} \setminus \{0\}$ takve da za skup

$$S = \left\{ a - \frac{2}{an} : n \in \mathbb{N} \right\}$$

vrijedi sup S = 1.

Zadatak 141. Neka je $A \subseteq \langle 0, \infty \rangle$ i neka je inf A > 0. Definiramo

$$\frac{1}{A} = \left\{ \frac{1}{a} : a \in A \right\}.$$

Dokažite da je tada $\frac{1}{A}$ odozgo ograničen i da vrijedi sup $\frac{1}{A} = \frac{1}{\inf A}$.

Zadatak 142. (*) Odredite inf A, sup A, min A, max A ako postoje, gdje je

a) (Županijsko natjecanje, 3. razred, A varijanta, 2020.)

$$A = \left\{ \frac{1}{\sin^4 x + \cos^2 x} + \frac{1}{\sin^2 x + \cos^4 x} : x \in \mathbb{R} \right\},\,$$

b)
$$A = \left\{ \frac{n+k^2}{2^n + k^2 + 1} : n, k \in \mathbb{N} \right\},$$

c)
$$A = \left\{ \cos \sqrt{\frac{\pi}{2} - x^2} : 0 < x \le \frac{\pi}{2} \right\},$$

d)
$$A = \left\{ \frac{mn}{1+m+n} : m, n \in \mathbb{N} \right\}$$

e)
$$A = \{\sqrt{n} - \lfloor \sqrt{n} \rfloor : n \in \mathbb{N} \}.$$

Kompleksni brojevi

Zadatak 143. Prikažite $z = \frac{(3+i+i^{140})^2}{3-i}$ u standardnom obliku.

Zadatak 144.

- a) Dokažite da za sve $z\in\mathbb{C}$ vrijedi $z\cdot\overline{z}=|z|^2.$
- b) Dokažite da za sve $z_1, z_2 \in \mathbb{C}$ vrijedi $|z_1 + z_2| \le |z_1| + |z_2|$ koristeći a). (**Uputa:** Promotrite izraz $|z_1 + z_2|^2$).

Zadatak 145. Za kompleksne brojeve z i w vrijedi $|z+w|=\sqrt{3}$ i |z|=|w|=1. Izračunajte |z-w|.

Zadatak 146. Dokažite da za sve $z, w \in \mathbb{C}$ vrijedi

a)
$$|z + w|^2 + |z - w|^2 = 2(|z|^2 + |w|^2)$$
.

b)
$$||z| - |w|| \le |z - w|$$
,

Sada se lako vidi da se prethodni zadatak može riješiti i pomoću a).

Zadatak 147. Riješite jednadžbu $|z| - \overline{z} = 1 + 2i$.

Zadatak 148.

a) Dokažite: Ako je |z| = 0, onda je z = 0.

b) Riješite jednadžbu
$$\left(\operatorname{Im}(z) - 2z - 2\overline{z}\right)^2 + \left(|z| - 4\right)^2 = 0.$$

c) Riješite jednadžbu $z^3 + z^2 + z + 1 = 0$.

 \mathbf{Z} adatak 149. Odredite skup S i skicirajte ga u Gaussovoj ravnini, gdje je

a)
$$S = \{z : \text{Re}(z-3) = |z+2i|\}.$$

d)
$$S = \left\{ z : \operatorname{Re}\left(\frac{z+3+2i}{\overline{z}-3+2i}\right) = 0 \right\},$$

b)
$$S = \{z : |z+2| = |1-\overline{z}|\},\$$

e)
$$S = \{z : z^5 = 1\},\$$

c)
$$S = \{z : |z - 2i| \le 1 \text{ i } z^2 \overline{z}^2 = 1\},$$

f)
$$S = \left\{ z : |z - 4 - 4i| > \sqrt{2} \right\},\,$$

Zadatak 150. Neka je $n \in \mathbb{N}$ proizvoljan i neka je $S = \{z : z^n = 1\}$. Dokažite da je S grupa u odnosu na množenje.

Općenito, skup svih n-tih korijena (gdje je $n \in \mathbb{N}$) nekog kompleksnog broja čini pravilni n-terokut sa središtem u ishodištu.

Zadatak 151. Neka je $z = \frac{(2+3i)^{2024}}{(2-3i)^{2020}}$. Odredite |z|.

Zadatak 152. Neka je $S = \left\{ \left| z - \frac{1}{z} \right| : z \in \mathbb{C}, \ |z| = 2 \right\}$. Odredite inf S i sup S, ako postoje.

Zadatak 153. Odredite sve $z \in \mathbb{C}$ za koje vrijedi

$$\begin{cases} \operatorname{Re}(z) = 9, \\ \operatorname{Im}(z^2) = \operatorname{Im}(z^3). \end{cases}$$

Zadatak 154. Za $n \in \mathbb{N}$ definiramo kompleksan broj

$$a_n = (1+i)\left(1+\frac{i}{\sqrt{2}}\right)\left(1+\frac{i}{\sqrt{3}}\right)\dots\left(1+\frac{i}{\sqrt{n}}\right).$$

Izračunajte $|a_1 - a_2| + |a_2 - a_3| + \dots + |a_{2019} - a_{2020}|$.

Zadatak 155. Odredite sve $z \in \mathbb{C}$ za koje vrijedi |z-5| = |z-1| + 4.

Zadatak 156. Neka je $S = \{z : \exists n \in \mathbb{N} \text{ t.d. } z^n = 1\}$. Dokažite ili opovrgnite: Vrijedi $S = \{z : |z| = 1\}$.

Zadatak 157. Neka je $d \in \mathbb{R}$ i $P,Q \in \mathbb{R}^2$. Skup $A \subseteq \mathbb{R}^2$ ima svojstvo da za sve $T \in A$ vrijedi $|PT|^2 + |QT|^2 = d^2$. Koju krivulju u koordinatnom sustavu čini taj skup? Dokažite.

Zadatak 158. (*) Neka je $n \in \mathbb{N}$ i neka su a_n i b_n realni brojevi takvi da je $(\sqrt{3} + i)^n = a_n + ib_n$. Dokažite da izraz

$$\frac{a_n b_{n+1} - a_{n+1} b_n}{a_{n+1} a_n + b_{n+1} b_n}$$

poprima istu vrijednost za sve $n \in \mathbb{N}$ i odredite tu vrijednost.

Zadatak 159. (**) Neka je $n \in \mathbb{N}$ proizvoljan. Odredite sve $z \in \mathbb{C}$ takve da vrijedi

$$(1-z+z^2)(1-z^2+z^4)(1-z^4+z^8)\dots(1-z^{2^{n-1}}+z^{2^n})=\frac{3z^{2^n}}{1+z+z^2}$$

Poglavlje 4

Funkcije

4.1 Pojam funkcije. Crtanje grafa funkcije

Definicija 18. Neka su S i S' dva neprazna skupa. Ako je svakom elementu $x \in S$ pridružen jedinstven element $f(x) \in S'$, onda kažemo da je zadana **funkcija** f sa skupa S u skup S', ili kraće $f: S \to S'$. Skup $\mathcal{R}(f) = \{f(x) : x \in S\}$ zove se **slika** od f. Skup S zove se **domena** od f.

Kao i prije, ove definicije nisu stroge, ali su za naše svrhe u redu.

Definicija 19. Neka su A, A_0 i B neprazni skupovi i neka su zadane $f: A \to B$ i $f_0: A_0 \to B$. Kažemo da je f_0 **restrikcija** funkcije f na skup A_0 ako je $f_0(x) = f(x)$ za svaki $x \in A_0$, te pišemo $f_0 = f|_{A_0}$. Kažemo i da je f **proširenje** funkcije f_0 na skup f_0 ako je f_0 restrikcija funkcije f_0 na skup f_0 .

Napomena 28. Na nekim mjestima ćemo funkciju $f: S \to \mathbb{R}$, gdje je $\emptyset \neq S \subseteq \mathbb{R}$ samo navesti u kraćem obliku $x \mapsto f(x)$, u nadi da su domena i kodomena jasne iz konteksta (ili ako je kodomena nebitna). U tom slučaju govorimo o funkcijama zadanima formulom. Tako npr. $x \mapsto 2x + 1$ predstavlja funkciju $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 1. (Uočite da je ovdje jedina kodomena koja ima smisla upravo \mathbb{R} , jer je $\mathcal{R}(f) = \mathbb{R}$ i $\mathcal{R}(f)$ je podskup kodomene).

Definicija 20 (Operacije s funkcijama). Neka je S neprazan skup i neka su zadane $f,g:S\to\mathbb{R}$. Tada definiramo $f+g,fg,\alpha f:S\to\mathbb{R}$ formulama

$$(f+g)(x) := f(x) + g(x), \quad (fg)(x) = f(x)g(x), \ \forall x \in S$$
$$(\alpha f)(x) = \alpha f(x). \ \forall x \in S.$$

Ako je i $g(x) \neq 0$ za sve $x \in S$, onda definiramo i $\frac{f}{g}$ formulom

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \ \forall x \in S.$$

Nadamo se da ste se u srednjoj školi susreli s crtanjem grafova raznih funkcija. U ovoj točki pokazujemo "trikove" koje možemo upotrijebiti da bismo brže nacrtali graf neke funkcije. Ovo će biti osobito korisno u narednim točkama, gdje će crtanje grafa biti korisno u rješavanju zadataka. U skladu s time, promotrimo sljedeću napomenu.

Napomena 29. Neka je zadana $f: S \to \mathbb{R}$, gdje je $S \subseteq \mathbb{R}$ i neka je $c \in \mathbb{R}$.

- Graf funkcije $x \mapsto f(x) + c$ za $x \in S$ je graf funkcije f pomaknut vertikalno za |c|. Ako je c > 0, pomaknut je prema gore, a ako je c < 0, pomaknut je prema dolje.
- Ako je c > 0, onda graf funkcije $x \mapsto cf(x)$ za $x \in S$ se dobiva dilatacijom grafa funkcije f u smjeru prema osi y. Ako je c > 1, graf će biti rastegnut, a ako je c < 1, on će biti stisnut.
- Graf funkcije $x \mapsto -f(x)$ za $x \in S$ je graf funkcije f dobiven zrcaljenjem u odnosu na os x.
- Graf funkcije $x \mapsto f(x+c)$ za $x \in S$ je graf funkcije f dobiven horizontalnom translacijom za |c| jediničnih dužina. Ako je c > 0, translatiramo ga ulijevo, a ako je c < 0, translatiramo ga udesno.
- Ako je c > 0, onda je graf funkcije $x \mapsto f(cx)$ za $x \in S$ graf funkcije f dilatiran u smjeru x osi. Ako je c < 1, graf će biti rastegnut, a ako je c > 1, on će biti stisnut.
- Graf funkcije $x \mapsto f(-x)$ za $x \in S$ je graf funkcije f dobiven zrcaljenjem s obzirom na os y.
- Graf funkcije $x \mapsto |f(x)|$ za $x \in S$ je graf funkcije f dobiven tako da sve njegove dijelove koji su ispod osi x zrcalimo u odnosu na os x, a ostale dijelove ostavimo nepromijenjene.
- Neka je zadana $g: S \to \mathbb{R}$. Tada su grafovi funkcija f+g, fg dobiveni tako da za svaki $x \in S$ gledamo vrijednost funkcija f(x) i g(x) i ta dva broja zbrojimo, odnosno pomnožimo. Ovo je direktna posljedica definicija operacija s funkcijama.
- Ako za funkciju $g: S \to \mathbb{R}$ vrijedi $g(x) \neq 0$ za sve $x \in S$, onda funkciju $\frac{f}{g}$ dobivamo tako da f i g podijelimo "po točkama", analogno kao u prethodnoj natuknici.

Zadatak 160. Nacrtajte graf funkcije $f: \mathbb{R} \to \mathbb{R}$, gdje je

- a) $f(x) = 3x^2 + 4x + 1$,
- b) f(x) = ||x| 4|.

Rješenje. a) Nadamo se da je crtanje grafa kvadratne funkcije poznato otprije, ali za svaki slučaj ćemo to ovdje pokazati. Pri crtanju kvadratne funkcije korisno nam je znati njezino tjeme, nultočke, te eventualno još neke njezine točke. Možemo se koristiti činjenicom i da je ona simetrična s obzirom na njezinu os simetrije.¹

Već smo pokazali (v. zadatak 89) da je tjeme kvadratne funkcije $x\mapsto ax^2+bx+c$ (gdje je $a\neq 0$) točka

$$T(x_0, y_0) = \left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right),$$

i to minimum ako je a>0, a maksimum ako je a<0. Dakle, uvrštavanjem ovih podataka dobivamo da je tjeme parabole u točki $\left(-\frac{2}{3},-\frac{1}{3}\right)$, gdje je $-\frac{1}{3}$ najmanja vrijednost koju funkcija postiže.

Nadalje, njezine nultočke su rješenja jednadžbe $3x^2 + 4x + 1 = 0$, dakle x = -1 i $x = -\frac{1}{3}$. Pored toga, vrijedi f(0) = 1, $f\left(\frac{1}{2}\right) = \frac{7}{4}$. Sad uz ove podatke nije teško nacrtati graf funkcije. b) Primijenit ćemo napomenu 29.

- Promotrimo graf funkcije $x\mapsto x$, čiji graf je prikazan točkasto-iscrtkanom linijom.
- Tada je graf funkcije $x \mapsto |x|$ dobiven zrcaljenjem cijelog dijela grafa funkcije $x \mapsto x$ ispod osi x u odnosu na os x, a ostali dijelovi su nepromijenjeni. Njezin graf je na slici 4.1 prikazan točkastom linijom.
- Graf funkcije $x \mapsto |x| 4$ je dobiven translacijom grafa funkcije $x \mapsto |x|$ četiri jedinične dužine prema dolje. Njezin graf je na slici 4.1 prikazan iscrtkanom linijom.
- Graf funkcije $x \mapsto |x| 4$ je dobiven zrcaljenjem cijelog dijela grafa funkcije $x \mapsto |x| 4$ ispod osi x u odnosu na os x, a ostali dijelovi su nepromijenjeni. Njezin graf je na slici 4.1 prikazan punom linijom.

¹Os simetrije parabole definira se kao pravac koji prolazi kroz fokus parabole, a okomit je na njezinu direktrisu.

Slika 4.1: Grafovi funkcija iz zadatka 160

Zadatak 161. Nacrtajte graf funkcije $x \mapsto f(x)$, gdje je

a)
$$f(x) = \frac{x-5}{x+5}$$
,

b)
$$f(x) = e^{|x|}$$

c)
$$f(x) = x - \lfloor x \rfloor$$
.

Rješenje. a) Uočimo da je

$$\frac{x-5}{x+5} = \frac{x+5-10}{x+5} = 1 - \frac{10}{x+5}.$$

- Promotrimo graf funkcije $x\mapsto -\frac{10}{x}$ (Prikazan točkastom linijom).
- Tada je graf funkcije $x\mapsto -\frac{10}{x-5}$ dobiven translacijom grafa funkcije $x\mapsto \frac{10}{x}$ pet jediničnih dužina udesno (Prikazan iscrtkanom linijom).
- Konačno, graf funkcije $x\mapsto \frac{x-5}{x+5}=1-\frac{10}{x+5}$ je dobiven translacijom grafa funkcije $x\mapsto -\frac{10}{x-5}$ jednu jediničnu dužinu prema gore.
- b) Uočimo da je

$$e^{|x|} = \begin{cases} e^x, & x \ge 0, \\ e^{-x}, & x < 0. \end{cases}$$

Uz ovaj podatak nije teško nacrtati graf ove funkcije. Naime, desno od osi y on će biti

identičan grafu funkcije $x \mapsto e^x$, a lijevo od osi y bit će identičan grafu funkcije $x \mapsto e^{-x}$, koji nastaje zrcaljenjem grafa funkcije $x \mapsto e^x$ u odnosu na os y. Na slici 4.2 graf funkcije $x \mapsto e^{|x|}$ prikazan je punom linijom. Graf funkcije $x \mapsto e^x$ (odnosno $x \mapsto e^{-x}$), na mjestima gdje se on ne podudara s grafom funkcije $x \mapsto e^{|x|}$, prikazan je točkastom (odnosno iscrtkanom) linijom.

Slika 4.2: Grafovi funkcija iz zadatka 161 a) i b)

c) Na slici 4.3 prikazan je točkastom linijom graf funkcije $x \mapsto x$ i iscrtkanom linijom graf funkcije $x \mapsto -\lfloor x \rfloor$. Prema napomeni 29, graf funkcije $x \mapsto x - \lfloor x \rfloor$ (prikazan punom linijom) bit će dobiven tako da za proizvoljnu točku $x \in \mathbb{R}$ zbrojimo vrijednosti te dvije funkcije u točki x.

Slika 4.3: Graf funkcije iz zadatka 161 c)

Zadatak 162. Neka je $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin x$. Graf funkcije f je zrcaljen po osi y, zatim je pomaknut za dvije jedinične dužine udesno, a potom je skaliran u odnosu na ishodište, te je koeficijent tog skaliranja (homotetije) $\frac{1}{2}$. Graf koje funkcije je novodobiveni skup?

 $Rje\check{s}enje$. Zrcaljenjem dobivamo $x\mapsto -\sin x$, pomakom za dvije jedinične dužine udesno dobivamo $x\mapsto -\sin(x-2)$, dilatacijom po x dobivamo $x\mapsto -\sin(2x-2)$, a dilatacijom po y imamo $x\mapsto \frac{1}{2}\sin(2x-2)$. Prema tome novodobiveni skup je graf funkcije $x\mapsto \frac{1}{2}\sin(2x-2)$.

4.2 Injekcija, surjekcija i bijekcija. Slika i praslika skupa

Definicija 21. Neka su S i S' neprazni skupovi. Funkcija $f: S \to S'$ je

• injekcija ako za sve $x, y \in S$ vrijedi

$$f(x) = f(y) \Rightarrow x = y.$$

- surjekcija ako za sve $y \in S'$ postoji bar jedan $x \in S$ takav da je f(x) = y (tj. vrijedi $S' = \mathcal{R}(f)$).
- bijekcija ako je injekcija i surjekcija.

Zadatak 163. Neka je $f: \mathbb{R}^+ \to \langle 1, \infty \rangle$ zadana formulom $f(x) = 1 + \frac{1}{x}$. Dokažite da je f bijekcija.

Rješenje. Dokažimo da je f injekcija. Neka su $x, y \in \langle 1, \infty \rangle$ takvi da vrijedi

$$1 + \frac{1}{x} = 1 + \frac{1}{y}.$$

Zbog $x, y \neq 0$ pojednostavljivanjem i množenjem dobivamo x = y.

Dokažimo da je f surjekcija. Neka je $y \in \langle 1, \infty \rangle$ proizvoljan. Treba dokazati da tada postoji bar jedan x takav da je

$$y = 1 + \frac{1}{x}.$$

No ovo je zbog $x \neq 0$ i $y - 1 \neq 0$ ekvivalentno s

$$x = \frac{1}{y - 1}.$$

Zaista, $\frac{1}{y-1}$ je upravo jedan (i jedini) takav x.

Napomena 30. Lako se vidi sljedeća formulacija definicije bijekcije: $f: S \to S'$ je bijekcija ako i samo ako za svaki $y \in S'$ postoji i jedinstven je $x \in S$ takav da je y = f(x). Prema tome, u prethodnom zadatku prvi dio rješenja je zapravo suvišan.

Zadatak 164. Dokažite da je $f: \mathbb{R} \to \langle 0, 1]$ zadana formulom $f(x) = \frac{1}{x^2 + 1}$ surjekcija. Je li i injekcija?

Rješenje. Neka je $y \in (0,1]$. Treba dokazati da postoji bar jedan $x \in \mathbb{R}$ takav da je

$$y = \frac{1}{1+x^2}.$$

No to je ekvivalentno s

$$x^2 = \frac{1}{y} - 1.$$

Očito je $x=\sqrt{\frac{1}{y}-1}$ jedan x koji zadovoljava tvrdnju. Nadalje, f nije injekcija, jer je $-1\neq 1$ i f(1)=f(-1).

Zadatak 165.

- a) Odredite neku bijekciju (ako postoji) s \mathbb{N} u $\mathbb{N} \setminus \{1, 2\}$.
- b) Odredite neku bijekciju (ako postoji) s \mathbb{N} s [0,1]u [1,3].
- c) Odredite neku bijekciju (ako postoji) s \mathbb{N} s[0,1]u $[0,1\rangle.$
- d) Odredite neku bijekciju (ako postoji) s \mathbb{R} u skup svih funkcija s \mathbb{R} u \mathbb{R} (Taj skup nazivamo $\mathbb{R}^{\mathbb{R}}$).

 $Rje\check{s}enje$. a) Neka je zadana $f: \mathbb{N} \to \mathbb{N} \setminus \{1,2\}$, f(n) = n+2 (Ideja je "pomaknuti" svaki broj za 2 udesno). Uvjerite se da je ova funkcija zaista bijekcija.

- b) Ideja će biti uzeti linearnu funkciju čiji graf prolazi kroz točke (0,1) i (1,3) i promotriti njezinu restrikciju na segment [0,1]. Uzmimo $f:[0,1] \to [1,3]$, f(x)=2x+1. Nije teško pokazati da je ova funkcija zaista bijekcija.
- c) Promotrimo funkciju $f:[0,1] \to [0,1]$, f(x)=x. Ona je očito bijekcija s [0,1] na [0,1]. Ideja će sada biti nju izmijeniti tako da f(1) bude neki broj iz skupa $[0,1\rangle$. Doduše, ako to napravimo, funkcija više neće biti injekcija. Zaista, znamo da je f(f(1))=f(1), pa kad bi ona bila injekcija bilo bi f(1)=1, što nije točno. Dakle, da bi izbjegli situaciju gdje funkcija poprima dvije jednake vrijednosti, moramo je izmijeniti i za x=f(1). Injektivnost

će se opet "pokvariti", ali ćemo tada funkciju moći opet izmijeniti u točki koja "kvari" injektivnost. Ovaj postupak ponavljamo u beskonačnost. Zato ima smisla promotriti npr. funkciju $g:[0,1] \to [0,1\rangle$,

$$g(x) = \begin{cases} x, & x \notin S, \\ \frac{x}{2}, & x \in S, \end{cases}$$

gdje je
$$S = \left\{ \frac{1}{2^n} : n \in \mathbb{N}_0 \right\}.$$

Tvrdimo da je g injekcija. Zaista, neka su $x, y \in [0, 1)$ takvi da je f(x) = f(y). Uočimo da ako je $x \in S$ ako i samo ako je $f(x) \in S$, pa ako je f(x) = f(y), onda su ili x, y oboje u S, ili oboje nisu u S. U oba slučaja je očigledno x = y.

Tvrdimo da je g i surjekcija. Zaista, neka je $y \in [0,1)$ proizvoljan. Ako je $y \notin S$, onda je f(y) = y, ako je $y \in S$, onda postoji $p \in \mathbb{N}$ takav da je $y = \frac{1}{2^p}$. No tada je

$$g\left(\frac{1}{2^{p-1}}\right) = \frac{1}{2^p},$$

gdje je $\frac{1}{2^{p-1}} \in S$, budući da je $y \neq 1$.

Slika 4.4: Graf funkcije iz zadatka 165 c)

d) Tvrdimo da takva bijekcija ne postoji. Zaista, pretpostavimo da postoji bijekcija $f: \mathbb{R} \to \mathbb{R}^{\mathbb{R}}$. Tada je ona surjekcija, što znači da za svaki $y \in \mathbb{R}^{\mathbb{R}}$ postoji $x_0 \in \mathbb{R}$ takav da je $f(x_0) = y$, što povlači da je $f(x_0)(x_0) = y(x_0)$. No to očito ne vrijedi ako promotrimo

funkciju $y: \mathbb{R} \to \mathbb{R}$ definiranu formulom y(x) = f(x)(x) + 1, za svaki $x \in \mathbb{R}$.

Definicija 22. Neka je $S \subseteq \mathbb{R}$ neprazan, te $x, y \in S$. Kažemo da je funkcija $f: S \to \mathbb{R}$ monotono rastuća (kraće: rastuća) ako vrijedi $x < y \Rightarrow f(x) \leq f(y)$, strogo rastuća ako vrijedi $x < y \Rightarrow f(x) \leq f(y)$, monotono padajuća (kraće: padajuća) ako vrijedi $x < y \Rightarrow f(x) \geq f(y)$, strogo padajuća ako vrijedi $x < y \Rightarrow f(x) > f(y)$.

Napomena 31. Neka su $S, S' \subseteq \mathbb{R}$ neprazni i neka je zadana $f: S \to S'$. Ako je f strogo monotona (tj. strogo rastuća ili strogo padajuća), ona je injekcija.

Zadatak 166. Zadana je $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{-2x}$. Dokažite da je f injekcija koristeći se činjenicom da je strogo monotona.

 $Rje\check{s}enje$. Iz grafa se vidi da je f strogo padajuća.

Slika 4.5: Graf funkcije $x \mapsto e^{-2x}$

Zaista, treba pokazati da za sve $x, y \in \mathbb{R}$ vrijedi

$$x < y \Rightarrow e^{-2y} < e^{-2x}. (4.1)$$

Uočimo da, kako je $e^x \ge 0$ za sve $x \in \mathbb{R}$ i $x \mapsto x^2$ i $x \mapsto \sqrt{x}$ strogo rastuće funkcije, vrijedi

$$e^{-2y} < e^{-2x} \Leftrightarrow \frac{1}{(e^y)^2} < \frac{1}{(e^x)^2} \Leftrightarrow (e^x)^2 < (e^y)^2 \Leftrightarrow e^x < e^y.$$

Dakle (4.1) je ekvivalentno tvrdnji da za sve $x, y \in \mathbb{R}$ vrijedi

$$x < y \Rightarrow e^x < e^y$$
,

što vrijedi, jer je funkcija $x \mapsto e^x$ strogo rastuća.

Definicija 23. Neka je $S \subseteq \mathbb{R}$ neprazan. Kažemo da je $f: S \to \mathbb{R}$ injekcija, odnosno surjekcija na nekom podskupu od $S' \subseteq S$ ako je $f|_{S'}$ injekcija, odnosno surjekcija. Također, kažemo da je f strogo rastuća (padajuća) na S' ako je $f|_{S'}$ strogo rastuća (padajuća) na S.

Zadatak 167. Dokažite da je funkcija $f: \mathbb{R} \to \mathbb{R}, f(x) = x\sqrt{1+x^2}$ injekcija.

 $Rje\check{s}enje$. Iz grafa funkcije f vidi se da je ona strogo rastuća.

Slika 4.6: Graf funkcije $x \mapsto x\sqrt{1+x^2}$

Dokažimo to! Uočimo da je $x\mapsto \sqrt{1+x^2}$ strogo rastuća na $[0,\infty\rangle$ i strogo padajuća na $\langle -\infty,0]$. Zaista, za sve $x,y\geq 0$ vrijedi

$$x < y \Rightarrow x^2 < y^2 \Rightarrow 1 + x^2 < 1 + y^2 \Rightarrow \sqrt{1 + x^2} < \sqrt{1 + y^2}$$
.

Analogno dobivamo i da f strogo pada na $\langle -\infty, 0]$. Neka su sada $x, y \in \mathbb{R}$ takvi da je x < y. Razlikujemo tri slučaja.

- a) $x \le 0, y > 0,$
- b) x, y > 0,
- c) x, y < 0.

U slučaju a), f(x) < f(y) je trivijalno, jer je $f(x) \le 0$ i f(y) > 0.

U slučaju b) imamo $\sqrt{1+x^2} < \sqrt{1+y^2}$, pa množenjem s nejednakosti x < y dobivamo $x\sqrt{1+x^2} < y\sqrt{1+y^2}$ (Uočimo da ovo smijemo zaključiti, jer su ili x,y>0, pa primjenjujemo napomenu 13, ili je x=0 i y>0, pa je tvrdnja očigledna).

U slučaju c) imamo -y < -x i $-y, -x \ge 0$, pa iz b) slijedi

$$-y\sqrt{1+(-y)^2} < -x\sqrt{1+(-x)^2}.$$

Tvrdnja sada slijedi množenjem s-1 i korištenjem svojstva parnosti funkcije $x\mapsto x^2$, tj. činjenice da je $(-x)^2=x^2$ za sve $x\in\mathbb{R}$.

Slijede zadatci gdje određujemo sliku $\mathcal{R}(f)$ zadane funkcije f.

Zadatak 168. Neka je $f: \mathbb{R} \to \mathbb{R}$ zadana formulom

$$f(x) = \begin{cases} 2x, & x \neq 3, \\ 0, & x = 3. \end{cases}$$

Odredite $\mathcal{R}(f)$.

Rješenje. Iz grafa funkcije f vidi se da je $\mathcal{R}(f) = \mathbb{R} \setminus \{6\}$. Zaista, dokazat ćemo da je

$$\mathcal{R}(f) \subseteq \mathbb{R} \setminus \{6\}$$
 i $\mathbb{R} \setminus \{6\} \subseteq \mathcal{R}(f)$.

Neka je $y \in \mathbb{R}$ takav da je $y \neq 6$. Tvrdimo da tada postoji $x \in \mathbb{R}$ takav da je f(x) = y. Zaista, uzmimo $x = \frac{y}{2}$. Tada je $f\left(\frac{y}{2}\right) = y$ ako je $y \neq 0$, a isto vrijedi i za y = 0, jer je f(0) = 0.

Slika 4.7: Graf funkcije iz zadatka 168

S druge strane, neka je $y \in \mathcal{R}(f)$. Tvrdimo da je $y \neq 6$. Zaista, postoji $x \in \mathbb{R}$ takav da je y = f(x). Ako je x < 3, onda je y = 2x < 6, te analogno y = 2x > 6 za x > 3. Za x = 3

imamo $y = 0 \neq 6$, pa je tvrdnja dokazana.

Zadatak 169. Zadana je funkcija $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{1}{x^2 + 5x + 8}$. Odredite $\mathcal{R}(f)$.

Rješenje. Po definiciji, $\mathcal{R}(f)$ je skup svih $k \in \mathbb{R}$ za koje postoji $x \in \mathbb{R}$ takav da je

$$\frac{1}{x^2 + 5x + 8} = k. ag{4.2}$$

Jednakost (4.2) je ekvivalentna jednakosti

$$kx^2 + 5kx + 8k - 1 = 0.$$

Za k=0 imamo -1=0, što ne vrijedi. Dakle, $0 \notin \mathcal{R}(f)$. Ako je $k \neq 0$, onda imamo kvadratnu jednadžbu, za koju znamo da ima rješenja ako i samo ako je

$$25k^2 - 4k(8k - 1) \ge 0$$
, odnosno $4k - 7k^2 \ge 0$.

Rješenje kvadratne nejednadžbe $4k - 7k^2 \ge 0$ je $\left[0, \frac{4}{7}\right]$, ali kako je $k \ne 0$, zaključujemo da postoji $x \in \mathbb{R}$ takav da vrijedi (4.2) ako i samo ako je $k \in \left\langle 0, \frac{4}{7}\right]$. Dakle, $\mathcal{R}(f) = \left\langle 0, \frac{4}{7}\right]$.

Slika 4.8: Graf funkcije iz zadatka 169

Napomena 32. Uočimo da iz slike 4.8 nije odmah jasno čemu bi slika funkcije mogla biti jednaka. Dakle, osim radi matematičke strogosti, ponekad se određivanje slike po definiciji isplati upravo zato što daje točno, a ne približno, rješenje.

Definicija 24. Neka je zadana $f: A \to B$ i $S \subseteq A$, te $T \subseteq B$. Tada je **slika skupa** S u odnosu na f skup $f(S) = \{f(x) : x \in S\}$, a **praslika skupa** T u odnosu na f je skup $f^{-1}(T) = \{a \in A : f(a) \in T\}$. Dogovorno uzimamo $f(\emptyset) = \emptyset$ i $f^{-1}(\emptyset) = \emptyset$.

Definicija 25. Neka je $S \subseteq \mathbb{R}$ neprazan. Kažemo da je $f: S \to \mathbb{R}$ injekcija, odnosno surjekcija na nekom podskupu od $S' \subseteq S$ ako je $f|_{S'}$ injekcija, odnosno surjekcija. Također, kažemo da je f strogo rastuća (padajuća) na S' ako je $f|_{S'}$ strogo rastuća (padajuća) na S.

Zadatak 170. Zadana je $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 2x - 1$. Odredite f([1,2]) i $f^{-1}([2,7])$. Rješenje. Iz grafa vidimo da je f([1,2]) = [2,7], te $f^{-1}([2,7]) = [-4,-3] \cup [1,2]$.

Slika 4.9: Graf funkcije $x \mapsto x^2 + 2x - 1$

Dokažimo da je $f^{-1}([2,7]) = [-4,-3] \cup [1,2]$. Trebamo pronaći sve $x \in \mathbb{R}$ takve da je $f(x) \in [2,7]$, tj. trebamo riješiti sustav

$$\begin{cases} x^2 + 2x - 1 \ge 2, \\ x^2 + 2x - 1 \le 7. \end{cases}$$

Vrijedi

$$x^2 + 2x - 1 \ge 2 \Leftrightarrow x^2 + 2x - 3 \ge 0 \Leftrightarrow (x - 1)(x + 3) \ge 0 \Leftrightarrow x \in \langle -\infty, -3] \cup [1, \infty \rangle.$$

Analogno dobivamo da je $x^2 + 2x - 1 \le 7$ ako i samo ako je $x \in [-4, 2]$. Rješenje sustava je presjek ta dva skupa, što daje tvrdnju.

Dokažimo sada da je f([1,2]) = [2,7]. Neka je $y \in f([1,2])$ proizvoljan. Po definiciji, postoji

 $x \in [1, 2]$ za kojeg vrijedi

$$y = x^2 + 2x - 1. (4.3)$$

Izrazimo li iz ove jednakosti x (Tako da je tretiramo kao kvadratnu jednadžbu po x), dobivamo da je (4.3) ekvivalentno tvrdnji

$$x = -1 + \sqrt{y+2}$$
 ili $x = -1 - \sqrt{y+2}$. (4.4)

Kako je $-1 - \sqrt{y+2} \le -1$, kad bi vrijedilo $x = -1 - \sqrt{y+2}$, bilo bi $x \notin [1,2]$, suprotno pretpostavci. Zaključujemo da je (4.4) ekvivalentno tvrdnji $x = -1 + \sqrt{y+2}$.

Sada moramo ispitati nužne i dovoljne uvjete da vrijedi

$$-1 + \sqrt{y+2} \in [1,2],$$

tj. trebamo riješiti sustav

$$\begin{cases} -1 + \sqrt{y+2} \ge 1, \\ -1 + \sqrt{y+2} \le 2, \end{cases}$$

Imamo

$$-1 + \sqrt{y+2} \ge 1 \Leftrightarrow \sqrt{y+2} \ge 2 \Leftrightarrow y+2 \ge 4 \Leftrightarrow y \ge 2$$

te se analogno dobije $y \leq 7$ iz drugog uvjeta. Dakle, pokazali smo da vrijedi $y \in f([1,2])$ ako i samo ako vrijedi $y \in [2,7]$, pa je tvrdnja dokazana.

Napomena 33. Vidimo da što imamo "kompliciranije" funkcije, to je određivanje slike zapravo teže. Zapravo, često je jedna od najbitnijih tvrdnji o kojoj ovisi slika funkcije ta da f poprima svaku međuvrijednost, da je slika funkcije zaista interval, odnosno da u sebi nema "rupe". Ovo je jedan od mnogih razloga zašto se pokazuje korisnim proučavanje neprekidnih funkcija na nekom skupu, što su, neformalno, funkcije čiji graf nema prekide na nekom skupu, tj. izgleda kao da je nacrtan u jednom potezu. Kasnije na kolegiju ćete vidjeti da sve funkcije neprekidne na segmentu imaju ovo svojstvo, i ako je neka funkcija neprekidna na nekom segmentu (a ovo svojstvo zadovoljava vrlo velika klasa funkcija) onda koristeći ovo svojstvo relativno lako možemo matematički precizno odrediti sliku. Time ćemo se još baviti u poglavlju o neprekidnosti.

Napomena34. Neka su $X,Y\subseteq\mathbb{R}$ neprazni. Za funkciju $f:X\to Y$ i neprazne $A,B\subseteq X,$ $C,D\subseteq Y$ vrijedi

- $\bullet \ \ f(A \cup B) = f(A) \cup f(B), \qquad f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D),$
- $f(A \cap B) \subseteq f(A) \cap f(B)$, $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$,
- $f(A \setminus B) \supseteq f(A) \setminus f(B)$, $f^{-1}(C \setminus D) = f^{-1}(C) \setminus f^{-1}(D)$,
- $A \subseteq f^{-1}(f(A))$.

Zadatak 171. Neka su A, B, X, Y i f isti kao i u napomeni 34. Dokažite $f(A \cup B) = f(A) \cup f(B)$.

Dokaz. Neka je $y \in f(A \cup B)$. Tada postoji $x \in A \cup B$ takav da je y = f(x). No ovo vrijedi ako i samo ako postoji $x \in A$ takav da je y = f(x), ili postoji $x \in B$ takav da je y = f(x), što zapravo znači $y \in f(A) \cup f(B)$.

Zadatak 172. Dokažite da je funkcija $f: \mathbb{R} \to \langle -1, 1 \rangle$ zadana formulom $f(x) = \frac{x}{1+|x|}$ bijekcija.

Rješenje. Dokažimo prvo injektivnost. Neka su x i y proizvoljni i neka vrijedi f(x) = f(y), tj.

$$\frac{x}{1+|x|} = \frac{y}{1+|y|} \Leftrightarrow x(1+|y|) = y(1+|x|).$$

Kako je ovaj izraz simetričan, odnosno možemo zamijeniti mjesta varijablama x i y bez promjene smisla jednakosti, bez smanjenja općenitosti možemo uzeti da je $x \leq y$. Sada imamo tri slučaja:

- $y \ge 0$ i $x \ge 0$,
- $y \le 0 \text{ i } x \le 0$,
- $y \ge 0 \text{ i } x \le 0.$

U prvom slučaju imamo

$$x(1+y) = y(1+x),$$

što je ekvivalentno tvrdnji x=y. Drugi slučaj je analogan.

Treći slučaj je nešto zahtjevniji. Ako je $y \ge 0$ i $x \le 0$, onda je |y| = y i |x| = -x. No to povlači da za sve tako odabrane x i y vrijedi

$$x(1+y) = y(1-x)$$
, odnosno $x + 2xy - y = 0$.

Rješavanjem po y dobivamo

$$y = -\frac{x}{2x - 1}.$$

Sada iz $x \leq 0$ slijedi 2x - 1 < 0, pa iz toga i iz $y \geq 0$ imamo

$$y = -\frac{x}{2x - 1} \ge 0 \Leftrightarrow -x \le 0 \Leftrightarrow x \ge 0.$$

Sada $x \le 0$ i $x \ge 0$ povlači x = 0 i posljedično y = 0, pa očito vrijedi x = y.

Dokažimo sada surjektivnost. Zapravo treba pokazati da je $f(\mathbb{R}) = \langle -1, 1 \rangle$. To će biti najlakše korištenjem napomene 34. Znamo da je

$$f(\mathbb{R}) = f(\langle -\infty, 0] \cup [0, \infty \rangle) = f(\langle -\infty, 0]) \cup f([0, \infty \rangle)$$

Kako za $g = f|_{[0,\infty)}$ vrijedi $g(x) = \frac{x}{1+x}$ i vrijedi $f([0,\infty)) = g([0,\infty)) = \mathcal{R}(g)$, slijedi da je $f([0,\infty)) = [0,1)$ i $f(\langle -\infty, 0]) = \langle -1, 0]$ (Uvjerite se u to!). Sada je $f(\mathbb{R}) = \langle -1, 1 \rangle$ i tvrdnja je dokazana.

4.3 Kompozicija funkcija. Inverzna funkcija

Definicija 26. Zadane su funkcije $f: A \to B$ i $g: C \to D$. Ako je $\mathcal{R}(f) \subseteq \mathcal{D}(g)$, onda je funkcija $h: A \to D$, h(x) = g(f(x)) kompozicija funkcija f i g, i označavamo je s $h = g \circ f$.

Zadatak 173.

- a) Zadana je $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \sqrt{1+x^2}$. Prikažite f kao kompoziciju jednostavnijih funkcija.
- b) Zadana je $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^2 + 4x$. Dokažite da postoje $a, b \in \mathbb{R}$ takvi da se f može prikazati kao kompozicija funkcija

$$f, g_a, h_b : \mathbb{R} \to \mathbb{R}, \ f(x) = x^2, \ g_a(x) = x + a, \ h_b(x) = bx.$$

Rješenje. a) Definiramo $f_1, f_2, f_3 : \mathbb{R} \to \mathbb{R}$ formulama $f_1(x) = x^2, f_2(x) = 1 + x, f_3(x) = \sqrt{x}$. Tada je očito $f = f_3 \circ f_2 \circ f_1$.

b) Uočimo da je

$$2x^2 + 4x = 2(x+1)^2 - 2.$$

Odavde direktno slijedi $f = g_1 \circ f \circ g_{-1} \circ h_2$.

Napomena 35. Vrijedi:

- Neka su S_1, S_2, S_3 i S neprazni. Zadane su $f_1: S_1 \to S$, $f_2: S_2 \to S$ i $f_3: S_3 \to S$ za koje je $\mathcal{R}(f_1) \subseteq S_2$ i $\mathcal{R}(f_2) \subseteq S_3$. Tada su dobro definirane funkcije $(f_3 \circ f_2) \circ f_1$, $f_3 \circ (f_2 \circ f_1)$ i vrijedi $(f_3 \circ f_2) \circ f_1 = f_3 \circ (f_2 \circ f_1)$.
- Neka su $A, B, C, D \subseteq \mathbb{R}$ neprazni i neka su zadane injekcije $f: A \to B$ i $g: C \to D$ takve da je $\mathcal{R}(f) \subseteq \mathcal{D}(g)$. Tada je i $g \circ f$ injekcija.
- Neka su $A, B, C \subseteq \mathbb{R}$ neprazni i neka su zadane surjekcije $f: A \to B$ i $g: B \to C$. Tada je i $g \circ f$ surjekcija.
- Neka su $A, B, C \subseteq \mathbb{R}$ neprazni i neka su zadane bijekcije $f: A \to B$ i $g: B \to C$. Tada je i $g \circ f$ bijekcija.

Zadatak 174. Dokažite da je $f:[0,1)\to\mathbb{R}$ zadana formulom $f(x)=x^4+5x^2+6$ injekcija.

Rješenje. Neka je $g_1:[0,1\rangle\to\mathbb{R}$ zadana formulom $g_1(x)=x^2$, a $g_2:\mathbb{R}\to\mathbb{R}$ zadana formulom $g_2(x)=x^2+5x+6$. Kako je $\mathcal{R}(g_1)=[0,1\rangle$ (Provjerite to, računski ili pomoću grafa!) i $\mathcal{D}(g_2)=[0,\infty\rangle$, te očito vrijedi $[0,1\rangle\subseteq\mathbb{R}$, kompozicija $g_2\circ g_1$ je definirana. Očito je g_1 strogo rastuća, ali i g_2 je također strogo rastuća, a to se (s trenutnim teorijskim aparatom) najlakše pokazuje na sljedeći način. Neka su $x,y\in\mathbb{R}$ takvi da je $0\le x< y$. Tada je očito $x+\frac{5}{2}< y+\frac{5}{2}$, a iz $x\ge 0$ i y>0 slijedi

$$\left(x + \frac{5}{2}\right)^2 < \left(y + \frac{5}{2}\right)^2.$$

Sada vrijedi

$$x^{2} + 5x + 6 = \left(x + \frac{5}{2}\right)^{2} - \frac{1}{4} < \left(y + \frac{5}{2}\right)^{2} - \frac{1}{4}$$

i tvrdnja je dokazana. To znači da su g_1 i g_2 injekcije, pa je i kompozicija $g_2 \circ g_1 = f$ također injekcija, čime smo dokazali početnu tvrdnju.

Zadatak 175. Neka je $k \in \mathbb{N}$ proizvoljan. Uvedimo oznaku: $\mathbb{N}_k := \{1, 2, \dots, k\}$. Dokažite: Ako je $f : \mathbb{N}_k \to \mathbb{N}_k$ injekcija, ona je i surjekcija.

Rješenje. Tvrdnju dokazujemo indukcijom po k. Za k=1 je jedina funkcija koja ima smisla ona koja preslikava 1 u 1, a ta je očito i injekcija i surjekcija.

Pretpostavimo da za $k \in \mathbb{N}$ vrijedi da je svaka funkcija i dokažimo da je injekcija $f : \mathbb{N}_k \to \mathbb{N}_k$ injekcija, ona je i surjekcija. Neka je $f : \mathbb{N}_{k+1} \to \mathbb{N}_{k+1}$ injekcija. Tada je $f|_{\mathbb{N}_k}$ također injekcija.

Pretpostavimo da je f(k+1) = k+1, Tada je dobro definirana funkcija $g: \mathbb{N}_k \to \mathbb{N}_k$, g(n) = f(n) za sve $n \in \mathbb{N}_k$. Ona je očito injekcija, pa je po pretpostavci indukcije i surjekcija. Sada uočimo da je

$$f(x) = \begin{cases} g(x), & x \in \mathbb{N}_k, \\ k+1, & x=k+1, \end{cases}$$

i odavde se vidi da je f surjekcija. Zaista, ako je $y \in \mathbb{N}_k$, onda postoji $x \in \mathbb{N}_k$ takav da je g(x) = f(x) = y, a ako je y = k + 1, onda je očito f(k + 1) = k + 1.

Preostaje dokazati tvrdnju u slučaju kad je $f(k+1) = i_0 \in \mathbb{N}_k$. Tvrdimo da postoji $j_0 \in \mathbb{N}_k$ takav da je $f(j_0) = k+1$. Zaista, ako takav j_0 ne postoji, onda je dobro definirana funkcija $f': \mathbb{N}_k \to \mathbb{N}_k$, f'(x) = f(x), za sve $x \in \mathbb{N}_k$. Očito je f' injekcija, pa je po pretpostavci indukcije i surjekcija, pa postoji $i_1 \in \mathbb{N}_k$ takav da je $f(i_1) = i_0 = f(k+1)$, dakle $i_1 = k+1$, što je nemoguće.

Sada je ideja sljedeća – za funkciju f vrijedi $f(k+1)=i_0$ i postoji $j_0\in\mathbb{N}_k$ takav da je $f(j_0)=k+1$, pa promotrimo funkciju $F:\mathbb{N}_{k+1}\to\mathbb{N}_{k+1}$,

$$F(x) = \begin{cases} f(x), & x \notin \{j_0, k+1\}, \\ k+1, & x=k+1, \\ i_0, & x=j_0, \end{cases}$$

i pokažimo da je ona injekcija. U tu svrhu definiramo funkciju $h: \mathbb{N}_{k+1} \to \mathbb{N}_{k+1}$,

$$h(x) = \begin{cases} x, & x \notin \{i_0, k+1\}, \\ k+1, & x = i_0, \\ i_0, & x = k+1. \end{cases}$$

Nije teško provjeriti da je h injekcija (Dokaz je vrlo sličan onome u zadatku 165 c)). Pokažimo da je $F = h \circ f$. Zaista, vrijedi

$$(h \circ f)(k+1) = h(f(k+1)) = h(i_0) = k+1 = F(k+1),$$

$$(h \circ f)(j_0) = h(f(j_0)) = h(k+1) = i_0 = F(j_0).$$

Ako je $x \neq j_0$ i $x \neq k+1$, onda je $f(x) \neq k+1$ i $f(x) \neq i_0$, pa za $x \in \mathbb{N} \setminus \{j_0, k+1\}$ vrijedi

$$(h \circ f)(x) = h(f(x)) = f(x) = F(x),$$

čime smo pokazali da je $F = h \circ f$. Zaključujemo da je F injekcija, kao kompozicija injekcija. Sada surjektivnost slijedi iz prvog dijela dokaza.

Zadatak 176. Neka su $f: X \to Y$ i $g: A \to B$ funkcije takve da je $\mathcal{R}(f) \subseteq A$. Dokažite da za neprazne $X_1 \subseteq X$ i $B_1 \subseteq B$ vrijedi

$$(g \circ f)(X_1) = g(f(X_1))$$
 i $(g \circ f)^{-1}(B_1) = f^{-1}(g^{-1}(B_1)).$

Rješenje. Dokažimo $(g \circ f)(X_1) = g(f(X_1)), (g \circ f)^{-1}(B_1) = f^{-1}(g^{-1}(B))$ se pokazuje analogno. Neka je $y \in (g \circ f)(X_1)$ proizvoljan. To znači da postoji $x_1 \in X_1$ takav da je

$$y = g(f(x_1)).$$

No to vrijedi ako i samo ako postoji $x_2 \in f(X_1)$ takav da je $y = g(x_2)$, što je ekvivalentno tvrdnji $y \in g(f(X_1))$.

Definicija 27. Neka je $n \in \mathbb{N}$ i $f_1 : A_1 \to B_1$, $f_2 : A_2 \to B_2$, ..., $f_n : A_n \to B_n$ zadane funkcije, gdje su $A_i, B_i \subseteq \mathbb{N}$, za sve i = 1, ..., n. Ako je $\mathcal{R}(f_i) \subseteq A_{i+1}$, za i = 1, ..., n-1, onda kompoziciju $f_n \circ f_{n-1} \circ \cdots \circ f_2 \circ f_1$ definiramo induktivno:

$$f_n \circ f_{n-1} \circ \cdots \circ f_2 \circ f_1 := \begin{cases} f_1, & n = 1 \\ f_n \circ (f_{n-1} \circ \cdots \circ f_2 \circ f_1), & n \ge 2. \end{cases}$$

Napomena 36. Iz zadatka 176 indukcijom lako slijede sljedeće generalizacije: Ako su zadane funkcije f_1, f_2, \ldots, f_n kao u definiciji 27, onda za $A \subseteq A_1$ i $B \subseteq B_n$ vrijedi

$$(f_n \circ f_{n-1} \circ \cdots \circ f_2 \circ f_1)(A) = f_n(\dots f_2(f_1(A))\dots),$$

 $(f_n \circ f_{n-1} \circ \cdots \circ f_2 \circ f_1)(B) = f_1^{-1}(\dots f_{n-1}^{-1}(f_n^{-1}(B))\dots).$

Nadalje, ako su f_i injekcije za sve $i=1,\ldots,n$, onda je $f_n\circ f_{n-1}\circ\cdots\circ f_2\circ f_1$ ponovno injekcija. Ako su f_i surjekcije i vrijedi

$$B_i = A_{i+1}$$
, za $i = 1, \dots, n-1$,

onda je $f_n \circ f_{n-1} \circ \cdots \circ f_2 \circ f_1$ surjekcija.

Zadatak 177. Funkcija f je zadana formulom $x \mapsto 2^{\sin x^2}$. Odredite $\mathcal{R}(f)$.

Rješenje. Uvedimo oznake: f_1 je $x \mapsto x^2$, f_2 je $x \mapsto \sin x$, f_3 je $x \mapsto 2^x$. Koristimo napomenu 36.

Vrijedi $f_1(\mathbb{R}) = \mathcal{R}(f_1) = [0, \infty)$. Zaista, neka je $y \in \mathcal{R}(f_1)$. Tada postoji $x \in \mathbb{R}$ takav da je $y = x^2$. Odavde imamo $y \ge 0$, pa je $\mathcal{R}(f_1) \subseteq [0, \infty)$. S druge strane, ako je $q \ge 0$, onda je $\sqrt{q} \in [0, \infty)$ i vrijedi $q = \sqrt{q}^2$, pa je $[0, \infty) \subseteq \mathcal{R}(f_1)$, odakle slijedi tvrdnja.

Nadalje, vrijedi $f_2([0,\infty)) = [-1,1]$. Ovo za sada ne dokazujemo, ali je očito iz grafa funkcije.

Nadalje, $f_3([-1,1]) = \left[\frac{1}{2},2\right]$. Zaista, $y \in f_3([-1,1])$ znači da postoji $x \in [-1,1]$ takav da je $y = 2^x$. Uočimo da je $y \mapsto \log_2 y$ dobro definirana, jer je $y = 2^x > 0$. Nadalje, f_3 je strogo rastuća, pa je $\frac{1}{2} \le y \le 1$, čime smo dobili $f_3([-1,1]) \subseteq \left[\frac{1}{2},2\right]$.

Dokažimo $\left[\frac{1}{2},2\right]\subseteq f_3\left([-1,1]\right)$. Uzmimo proizvoljan $q\in\mathbb{R}$ takav da je $\frac{1}{2}\leq q\leq 1$. Kako je $x\mapsto \log_2 x$ strogo rastuća, vrijedi $-1\leq \log_2 q\leq 1$ i očito $q=2^{\log_2 q}$, pa je tvrdnja dokazana.

Dakle, slika od
$$f$$
 je upravo $\left[\frac{1}{2}, 2\right]$.

Zadatak 178. Neka je zadana $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 5^x - 5^{2x}$. Odredite $f^{-1}\left(\left[0, \frac{1}{4}\right]\right)$.

Rješenje. Označimo s f_1 funkciju $x\mapsto x-x^2,$ a s f_2 funkciju $x\mapsto 5^x.$ Očito je $f=f_1\circ f_2.$

Odredimo $f_1^{-1}\left(\left[0,\frac{1}{4}\right]\right)$. Trebamo odrediti sve $x \in \mathbb{R}$ takve da je

$$\begin{cases} x - x^2 \ge 2, \\ x - x^2 \le 7, \end{cases}$$

Rješavanjem sustava dobivamo da je on ekvivalentan uvjetu $x \in [0, 1]$.

Odredimo sada $f_2^{-1}([0,1])$. Trebamo odrediti sve $x \in \mathbb{R}$ takve da je $0 \le 5^x \le 1$. $0 \le 5^x$ vrijedi za sve $x \in \mathbb{R}$, a $5^x \le 1$ vrijedi ako i samo ako je $x \le 0$, jer su $x \mapsto \log_5 x$ i f_2 strogo rastuće.

Dakle,
$$f^{-1}\left(\left[0, \frac{1}{4}\right]\right) = \langle -\infty, 0].$$

Definicija 28 (Hiperbolne funkcije). Funkcije sh, ch, th : $\mathbb{R} \to \mathbb{R}$ definirane su formulama

$$\operatorname{sh} x = \frac{e^x - e^{-x}}{2}, \quad \operatorname{ch} x = \frac{e^x + e^{-x}}{2}, \quad \operatorname{th} x = \frac{e^x - e^{-x}}{e^x + e^{-x}},$$

a funkcija cth: $\mathbb{R} \setminus \{0\} \to \mathbb{R}$ je definirana formulom

$$cth x = \frac{e^x + e^{-x}}{e^x - e^{-x}}.$$

Funkcija sh je sinus hiperbolni, ch kosinus hiperbolni, th tangens hiperbolni, a cth kotangens hiperbolni.

Zadatak 179. Koristeći činjenicu da je slika funkcije $x \mapsto e^x$ jednaka $(0, \infty)$, dokažite da je $\mathcal{R}(\operatorname{ch}) = [1, \infty)$.

 $Rje\check{s}enje$. Neka je $g_1(x)=e^x,\,g_2(x)=\dfrac{x+\dfrac{1}{x}}{2}$. Tada za svaki $x\in\mathbb{R}$ vrijedi ch $=g_2\circ g_1$, odakle slijedi da trebamo pokazati da je $\mathcal{R}(\operatorname{ch})=g_2(\langle 0,\infty\rangle)=[1,\infty\rangle$. Zaista, za sve $y\in[1,\infty\rangle$

postoji x>0 takav da je $y=\frac{x+\frac{1}{x}}{2}$, jer rješavanjem jednadžbe po x vidimo da možemo uzeti

$$x = y + \sqrt{y^2 - 1}$$

To pokazuje da je $[1,\infty)\subseteq g_2(\langle 0,\infty\rangle)$. Vrijedi i $[1,\infty)\supseteq g_2(\langle 0,\infty\rangle)$, jer za sve x>0 vrijedi

$$\frac{x + \frac{1}{x}}{2} \ge 1.$$

Zaista, rješavanjem nejednadžbe dobivamo da je ta tvrdnja ekvivalentna s istinitom tvrdnjom $(x-1)^2 \geq 0$.

Zadatak 180.

- a) Zadane su $f, g: S \to \mathbb{R}$, gdje je $\emptyset \neq S \subseteq \mathbb{R}$. Dokažite: Ako su f i g strogo rastuće, onda je i f+g strogo rastuća. Vrijedi li tvrdnja i za strogo padajuće funkcije?
- b) Zadane su $f_1: S_1 \to \mathbb{R}$ i $f_2: S_2 \to \mathbb{R}$, gdje su $S_1, S_2 \subseteq \mathbb{R}$ neprazni, te neka je $\mathcal{R}(f_1) \subseteq S_2$. Dokažite: Ako su f_1 i f_2 strogo rastuće, onda je takva i $f_2 \circ f_1$. Vrijedi li tvrdnja i za strogo padajuće funkcije?
- c) Dokažite da je funkcija $x \mapsto 2^{\sin x}$ injekcija.

 $Rje\check{s}enje.$ a) Neka su $x,y\in S$ takvi da je x< y. Tada je f(x)< f(y) i g(x)< g(y). Zbrajanjem tih nejednakosti dobivamo

$$f(x) + g(x) < f(y) + g(y)$$
, odnosno $(f + g)(x) < (f + g)(y)$,

što smo i tvrdili. Tvrdnja vrijedi i za strogo padajuće funkcije i dokaz je potpuno analogan.

b) Neka su $x, y \in S$ takvi da je x < y. Zbog strogog rasta od f_1 imamo $f_1(x) < f_1(y)$, te zbog strogog rasta od f_2 imamo $f_2(f_1(x)) < f_2(f_1(y))$, odnosno $(f_2 \circ f_1)(x) < (f_2 \circ f_1)(y)$.

Lako se vidi da tvrdnja ne vrijedi za strogo padajuće funkcije, npr. $g: \mathbb{R} \to \mathbb{R}$, g(x) = -x je strogo padajuća, a $g \circ g$ nije strogo padajuća.

Štoviše, tvrdimo da je kompozicija dvije strogo padajuće funkcije uvijek strogo rastuća. Zaista, uzmimo f_1 i f_2 iz uvjeta zadatka i pretpostavimo da su one strogo padajuće, te neka su $x, y \in S$ takvi da je x < y. Zbog strogog pada od f_1 imamo $f_1(x) > f_2(x)$, te zbog strogog pada od f_2 imamo $f_2(f_1(x)) < f_2(f_1(y))$.

c) Prvo ćemo dokazati da je sh injekcija i to tako da ćemo pokazati da je strogo rastuća. Naime, lako je pokazati da je $g_1: \mathbb{R} \to \mathbb{R}, \ g_1(x) = \frac{e^x}{2}$ strogo rastuća i $g_2: \mathbb{R} \to \mathbb{R},$ $g_2(x) = \frac{e^{-x}}{2}$ strogo padajuća. Kako je graf funkcije $g_3: \mathbb{R} \to \mathbb{R}, \ g_3(x) = -\frac{e^{-x}}{2}$ osna simetrija grafa funkcije g_2 u odnosu na os y, naslućujemo da je g_3 strogo rastuća.

Zaista, ako je $S \subseteq \mathbb{R}$ neprazan i $f: S \to \mathbb{R}$ strogo padajuća, onda je -f strogo padajuća i obratno, jer uzmemo li proizvoljne $x,y \in S, \ x < y$ povlači f(x) > f(y), što povlači -f(x) < -f(y), čime je tvrdnja pokazana.

Sada je sh injekcija jer je strogo rastuća, a strogo je rastuća jer su g_1 i g_3 strogo rastuće i vrijedi sh $= g_3 + g_1$.

No kako je i $x\mapsto 2^x$ injekcija, slijedi da je $x\mapsto 2^{\sin x}$ injekcija, jer je ona kompozicija dvaju injekcija.

Napomena 37. Općenito, indukcijom možemo pokazati da ako imamo kompoziciju parno mnogo strogo padajućih funkcija, kompozicija će biti strogo rastuća, a u slučaju kompozicije neparno mnogo strogo padajućih funkcija, kompozicija je strogo padajuća. Radi ilustracije, dokažimo tvrdnju za kompoziciju parnog broja funkcija, drugi slučaj dokazuje se potpuno analogno.

Neka su $f_1, f_2, \ldots, f_{2n-1}, f_{2n}$ definirane kao u definiciji 27 i napomeni 36. Baza indukcije je već dokazana, pa pretpostavimo da tvrdnja vrijedi za neki n.

Dokažimo tvrdnju za n+1. Kompozicija $(f_{2n+2} \circ f_{2n+1}) \circ (f_{2n} \circ \cdots \circ f_1)$ je dobro definirana i vrijedi²

$$f_{2n+2} \circ f_{2n+1} \circ f_{2n} \circ \cdots \circ f_1 = (f_{2n+2} \circ f_{2n+1}) \circ (f_{2n} \circ \cdots \circ f_1),$$

²Dokaz ove tvrdnje bi se proveo slično kao u zadatku 64, samo bi prvo trebalo pokazati da je $(f_{2n+2} \circ f_{2n+1}) \circ (f_{2n} \circ \cdots \circ f_1)$ zaista dobro definirana.

gdje su funkcije u zagradama obje strogo rastuće, gdje strogi rast funkcije $f_{2n+2} \circ f_{2n+1}$ izlazi iz baze indukcije, a strogi rast funkcije $f_{2n} \circ \cdots \circ f_1$ iz pretpostavke indukcije. Sada tvrdnja slijedi iz a).

Definicija 29. Neka su $S, S' \subseteq \mathbb{R}$ neprazni i neka je zadana injekcija $f: S \to S'$. Tada svakom $y \in \mathcal{R}(f)$ odgovara jedinstveni $x \in S$ takav da je y = f(x). Funkcija $f^{-1}: \mathcal{R}(f) \to S$, $f^{-1}(y) = x$ zove se **inverzna funkcija** od f.

Zadatak 181. Zadana je $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{2x+1}$. Odredite inverznu funkciju, ako postoji.

Dokaz. Promotrimo $f_1, f_2 : \mathbb{R} \to \mathbb{R}$, $f_1(x) = e^x$, $f_2(x) = 2x + 1$. Uočimo da su f_1 i f_2 injekcije i vrijedi $f = f_1 \circ f_2$, pa je i f injekcija. Zato ona ima inverznu funkciju. Uočimo, nadalje, da je $f_2(\mathbb{R}) = \mathbb{R}$ i $f_1(\mathbb{R}) = \langle 0, \infty \rangle$, pa je $\mathcal{R}(f) = \langle 0, \infty \rangle$. To znači da svakom $y \in \langle 0, \infty \rangle$ odgovara jedinstveni $x \in \mathbb{R}$ takav da je $y = e^{2x+1}$. Logaritmiranjem dobivamo

$$\log_2 y = 2x + 1$$
, odnosno $x = \frac{\log_2 y - 1}{2}$.

Dakle, to je upravo traženi $x \in \mathbb{R}$. Zaključujemo da je inverzna funkcija $f^{-1}: \langle 0, \infty \rangle \to \mathbb{R}$, $f^{-1}(x) = \frac{\log_2 x - 1}{2}.$

Napomena 38. Zapravo, u zadatku 181 nije trebalo pokazivati da je f injekcija, jer to slijedi iz činjenice da je

$$y = e^{2x+1} \Leftrightarrow x = \frac{\log_2 y - 1}{2}.$$

Napomena 39 (Teorem o inverznoj funkciji strogo monotone funkcije). Neka su $S, S' \subseteq \mathbb{R}$ neprazni i $f: S \to S'$ strogo rastuća (padajuća). Tada f ima inverznu funkciju koja strogo raste (strogo pada).

Iz prethodne napomene slijedi da sve funkcije

$$\mathrm{Sin} := \sin \big|_{\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]}, \ \ \mathrm{Cos} := \cos \big|_{[0,\pi]}, \ \ \mathrm{Tg} := \mathrm{tg} \,\big|_{\left\langle -\frac{\pi}{2}, \frac{\pi}{2}\right\rangle}, \ \ \mathrm{Ctg} := \mathrm{ctg} \,\big|_{\left\langle 0, \pi \right\rangle}$$

imaju inverze, jer su strogo monotone. Funkciju arcsin := Sin^{-1} zovemo **arkus sinus**, arccos := Cos^{-1} je **arkus kosinus**, arctg := Tg^{-1} je **arkus tangens**, arcctg := Ctg^{-1} je **arkus kotangens**.

Slično definiramo i tzv. area funkcije – arsh := \sinh^{-1} je area sinus hiperbolni, arch := $\cosh |_{[0,\infty)}^{-1}$ je area kosinus hiperbolni, arth := \sinh^{-1} je area tangens hiperbolni, a arcth := $\coth |_{(0,\infty)}^{-1}$

Zadatak 182. Zadana je $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x + 2^x$. Dokažite da postoji f^{-1} i odredite $f^{-1}(6)$.

Rješenje. Promotrimo $f_1, f_2 : \mathbb{R} \to \mathbb{R}$, $f_1(x) = x$, i $f_2(x) = 2^x$. f_1 i f_2 su strogo rastuće i vrijedi $f = f_1 + f_2$, pa je i f strogo rastuća. Zato ona ima inverznu funkciju. Sada tvrdimo da je $6 \in \mathcal{R}(f)$. Zaista, vrijedi $6 = 2 + 2^2$, i 2 je zbog injektivnosti jedini broj za koji to vrijedi. Sada iz definicije inverzne funkcije imamo $f^{-1}(6) = 2$.

Napomena 40. Ako su $f: S \to S_1$ i $g: S_2 \to S_3$ injekcije i vrijedi $\mathcal{R}(f) \subseteq S_2$, onda je i $g \circ f$ injekcija i vrijedi $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. Općenito, ako imamo injekcije $f_1, f_2, f_3, \ldots, f_n$ definirane kao u definiciji 27 i napomeni 36, onda je $f_n \circ f_{n-1} \circ \cdots \circ f_2 \circ f_1$ bijekcija, $f_1^{-1} \circ f_2^{-1} \circ \cdots \circ f_{n-1}^{-1} \circ f_n^{-1}$ dobro definirana i vrijedi

$$(f_n \circ f_{n-1} \circ \cdots \circ f_2 \circ f_1)^{-1} = f_1^{-1} \circ f_2^{-1} \circ \cdots \circ f_{n-1}^{-1} \circ f_n^{-1}.$$

Zadatak 183. Zadana je $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \ln \sqrt{1 + e^x}$. Dokažite da ona ima inverznu funkciju i odredite tu funkciju.

Rješenje. Promotrimo funkcije $f_1: \mathbb{R} \to \mathbb{R}$, $f_1(x) = e^x$, $f_2: \mathbb{R} \to \mathbb{R}$, $f_2(x) = 1 + x$, $f_3: [0, \infty) \to \mathbb{R}$, $f_3(x) = \sqrt{x}$, $f_4: \langle 0, \infty \rangle \to \mathbb{R}$, $f_4(x) = \ln x$. Sve ove funkcije su injekcije i vrijedi $f = f_4 \circ f_3 \circ f_2 \circ f_1$. Zato je i f injekcija, pa ima inverznu funkciju. Nadalje, pripadne inverzne funkcije su

$$\begin{split} f_1^{-1} &: \langle 0, \infty \rangle \to \mathbb{R}, & f_1^{-1}(x) = \ln x, \\ f_2^{-1} &: \mathbb{R} \to \mathbb{R}, & f_2^{-1}(x) = x - 1, \\ f_3^{-1} &: \mathbb{R} \to [0, \infty), & f_3^{-1}(x) = x^2, \\ f_4^{-1} &: \mathbb{R} \to \langle 0, \infty \rangle, & f_4^{-1}(x) = e^x, \end{split}$$

pa je inverzna funkcija $f^{-1}:\langle 0,\infty\rangle\to\mathbb{R}$ definirana formulom $f^{-1}(x)=\ln(e^{2x}-1)$.

Zadatak 184. Dokažite da za sve $x \in [-1, 1]$ vrijedi $\arcsin x + \arccos x = \frac{\pi}{2}$.

 $Rje\check{s}enje$. Sjetimo se da za sve $p,q\in\mathbb{R}$ vrijedi $\sin(p+q)=\sin p\cos q+\cos p\sin q$. Zato za sve $x\in[-1,1]$ vrijedi

 $\sin(\arcsin x + \arccos x) = \sin(\arcsin x)\cos(\arccos x) + \cos(\arcsin x)\sin(\arccos x) \tag{4.5}$

Odredimo $\sin(\arccos x)$. Kako je $\arccos x \in [0, \pi]$, vrijedi $\sin(\arccos x) \ge 0$, pa vrijedi

$$\sin(\arccos x) = \sqrt{\sin^2(\arccos x)} = \sqrt{1 - \cos^2(\arccos x)} = \sqrt{1 - x^2}.$$

Analogno dobivamo $\cos(\arcsin x) = \sqrt{1-x^2}$. Zbog ovog i zbog činjenice da je $1-x^2 \ge 0$ je (4.5) jednako

$$x^{2} + \left(\sqrt{1-x^{2}}\right)^{2} = x^{2} + 1 - x^{2} = 1.$$

Dakle, za svaki $x \in [-1,1]$ postoji $k \in \mathbb{Z}$ takav da je

$$\arcsin x + \arccos x = \frac{\pi}{2} + 2k\pi.$$

Međutim, kako je $-\frac{\pi}{2} \leq \arcsin x \leq \frac{\pi}{2}$ i
 $0 \leq \arccos x \leq \pi,$ slijedi

$$-\frac{\pi}{2} \le \arcsin x + \arccos x \le \frac{3\pi}{2}.\tag{4.6}$$

Sada se lako vidi da za proizvoljan $x \in [-1, 1]$ vrijedi k = 0, jer inače bi dobili kontradikciju s (4.6).

Napomena 41. Neka je $x \mapsto f(x)$ funkcija zadana formulom i neka je ona injekcija. Tada je graf njezine inverzne funkcije dobiven zrcaljenjem s obzirom na pravac y = x.

Zadatak 185. Nacrtajte graf funkcije $f:\left[-\frac{1}{2},\infty\right)\to\mathbb{R},\ f(x)=x^2+x$ i njezine inverzne funkcije.

Rješenje. Funkciju f možemo nacrtati tako da promotrimo $f_1, f_2 : \left[-\frac{1}{2}, \infty\right) \to \mathbb{R}, f_1(x) = x,$ $f_2(x) = x^2$ i uočimo da je $f = f_1 + f_2$, ali i tako da pronađemo neke njezine karakteristične točke. Na slici 4.10 funkcija f je prikazana iscrtkanom, pravac y = x točkastom, a f^{-1} punom linijom.

Slika 4.10: Graf funkcije iz zadatka 185

4.4 Rastav na parcijalne razlomke

Definicija 30. Racionalna funkcija je funkcija oblika

$$x \mapsto \frac{f(x)}{g(x)},$$

gdje su f i g polinomi i $g \neq 0$ za bar jedan $x \in \mathbb{R}$. Ako je st $f < \operatorname{st} g$, onda kažemo da je ona **prava** racionalna funkcija, a ako je st $f \geq \operatorname{st} g$, kažemo da je ona **neprava**.

Napomena 42 (O rastavu prave racionalne funkcije na parcijalne razlomke). Neka su f i $g \neq 0$ polinomi. Svaka prava racionalna funkcija $x \mapsto R(x) = \frac{f(x)}{g(x)}$ može se na jedinstven način prikazati kao zbroj parcijalnih razlomaka. Preciznije, zapišimo g(x) u obliku

$$g(x) = (x - x_1)^{k_1} \dots (x - x_s)^{k_s} (x^2 + a_1 x + b_1)^{l_1} \dots (x^2 + a_r x + b_r)^{l_r}$$

Tada postoje jedinstveni realni brojevi $A_1, \ldots, A_{k_1}, D_1, \ldots, D_{k_s}, M_1, N_1, \ldots, M_{l_1}, N_{l_1}, \ldots R_1, S_1, \ldots, R_{l_r}, S_{l_r} \in \mathbb{R}$ takvi da za sve x iz domene funkcije $x \mapsto R(x)$ vrijedi

$$R(x) = \frac{A_1}{x - x_1} + \dots + \frac{A_{k_1}}{(x - x_1)^{k_1}} + \dots + \frac{D_1}{x - x_s} + \dots + \frac{D_{k_s}}{(x - x_s)^{k_s}} + \frac{M_1 x + N_1}{x^2 + a_1 x + b_1} + \dots + \frac{M_{l_1} x + N_{l_1}}{(x^2 + a_1 x + b_1)^{l_1}} + \dots + \frac{R_1 x + S_1}{x^2 + a_r x + b_r} + \dots + \frac{R_{l_r} x + S_{l_r}}{(x^2 + a_r x + b_r)^{l_r}}.$$

Pri rješavanju zadataka trebat će nam još i sljedeći rezultat.

Napomena 43. Neka je S podskup od \mathbb{R} koji se sastoji od svih realnih brojeva, osim možda njih konačno mnogo. Zadane su funkcije $f, g: S \to \mathbb{R}$,

$$f(x) = \sum_{k=0}^{n} a_k x^k, \quad g(x) = \sum_{k=0}^{m} b_l x^l,$$

gdje su $a_n, b_m \neq 0$. Tada vrijedi f = g ako i samo ako je m = n i $a_j = b_j$ za sve $j = 0, 1, \dots, n$.

Prethodna tvrdnja je zapravo generalizacija teorema o jednakosti polinoma i na one polinome koji nisu definirani na cijelom \mathbb{R} . Međutim, dokaz je potpuno analogan.⁴

³U strogom smislu, takve funkcije nisu polinomi, jer ste na predavanju sve polinome definirali na cijelom ℝ, v. [3].

 $^{^4 {\}rm v.}~[12],$ str. 58, 59. Za vježbu pokušajte uočiti što bi trebalo promijeniti u dokazu teorema 1 i 2.

Zadatak 186. Rastavite funkciju $x \mapsto \frac{1}{(x+2)(x+3)^2}$ na parcijalne razlomke.

 $Rje\check{s}enje$. Prema napomeni 42 znamo da postoje i jedinstveni su brojevi A, B i C takvi da za sve $x \in \mathbb{R} \setminus \{-2, -3\}$ vrijedi

$$\frac{1}{(x+2)(x+3)^2} = \frac{A}{x+2} + \frac{B}{x+3} + \frac{C}{(x+3)^2}.$$

Želimo odrediti A, B i C. Pomnožimo li obje strane s $(x+2)(x+3)^2$, proširivanjem dobivamo da za sve $x \in \mathbb{R} \setminus \{-2, -3\}$ vrijedi

$$1 = Ax^2 + 6Ax + 9A + Bx^2 + 5Bx + 6B + Cx + 2C,$$

odnosno

$$1 = (A+B)x^{2} + (6A+5B+C)x + (9A+6B+2C).$$

Iz prethodnog imamo da su

$$P_1, P_2: \mathbb{R} \setminus \{-2, -3\} \to \mathbb{R}, P_1(x) = 1, P_2(x) = (A+B)x^2 + (6A+5B+C)x + (9A+6B+2C)$$

jednaki, pa iz napomene 43 slijedi

$$\begin{cases} A + B = 0, \\ 6A + 5B + C = 0, \\ 9A + 6B + 2C = 1. \end{cases}$$

Rješavanjem prethodnog sustava dobivamo $A=1,\,B=-1$ i C=-1, pa zaključujemo da je

$$\frac{1}{(x+2)(x+3)^2} = \frac{1}{x+2} - \frac{1}{x+3} - \frac{1}{(x+3)^2}.$$

Zadatak 187. Dokažite da je funkcija zadana formulom $x \mapsto R(x) = \frac{x^3 + 6x^2 + 9x + 1}{x^2 + 5x + 6}$ injekcija na $\langle -2, \infty \rangle$.

 $Rje\check{s}enje$. Ideja je R(x) prikazati kao sumu jednostavnijih razlomaka, u nadi da ćemo funkciju iz zadatka moći prikazati kao zbroj strogo rastućih funkcija. Dijeljenjem polinoma imamo

$$\frac{x^3 + 6x^2 + 9x + 1}{x^2 + 5x + 6} = x + 1 + \frac{-2x - 5}{x^2 + 5x + 6}.$$

Rastavimo $x\mapsto \frac{-2x-5}{x^2+5x+6}$ na parcijalne razlomke. Faktorizacijom nazivnika dobivamo $x^2+5x+6=(x+3)(x+2)$. Slijedi da postoje jedinstveni $A,\ B\in\mathbb{R}$ takvi da za sve $x\in\mathbb{R}\setminus\{-2,-3\}$ vrijedi

$$\frac{-2x-5}{(x+2)(x+3)} = \frac{A}{x+2} + \frac{B}{x+3},$$

te množenjem s (x+2)(x+3) dobivamo

$$-2x - 5 = A(x+3) + B(x+2), \quad \forall x \in \mathbb{R} \setminus \{2, 3\}. \tag{4.7}$$

Analogno kao u prethodnom zadatku dobivamo A, B = -1. To znači da vrijedi

$$\frac{x^3 + 6x^2 + 9x + 1}{x^2 + 5x + 6} = x + 1 - \frac{1}{x + 2} - \frac{1}{x + 3}$$

za sve $x \in \mathbb{R} \setminus \{-2, -3\}$, pa specijalno i za sve $x \in \langle -2, \infty \rangle$. Kako su $x \mapsto x+1$, $x \mapsto -\frac{1}{x+2}$, $x \mapsto -\frac{1}{x+3}$ strogo rastuće na $\langle -2, \infty \rangle$, slijedi i da je početna funkcija strogo rastuća na tom intervalu.

Napomena 44. Na ovome mjestu bi bilo dobro spomenuti jedan trik koji bi u situacijama poput ove mogao uštedjeti vrijeme. Naime, da bi odredili A i B dovoljno je u (4.7) uvrstiti x = -2 i x = -3, respektivno. Međutim, nije odmah očigledno da to možemo, jer u (4.7) nemamo jednakost polinoma i u točkama x = 2, x = 3.

Tvrdimo da su polinomi jednaki i u tim točkama. Zaista, znamo da svaki polinom koji nije konstanta ima najviše n nultočaka, gdje je $n \in \mathbb{N}$ stupanj polinoma. Kontrapozicijom dobivamo da ako proizvoljan polinom ima beskonačno mnogo nultočaka, onda je on nužno konstanta. No lako vidimo da je jedini polinom koji uopće ima nultočku nul-polinom.

Posljedica prethodne tvrdnje je sljedeća – ako su dva polinoma jednaka u beskonačno mnogo točaka, onda su oni jednaki za sve realne brojeve. Zaista, neka su f i g polinomi koji su jednaki u beskonačno mnogo točaka. No tada f-g ima beskonačno mnogo nultočaka, a to znači da je f-g=0, odnosno f=g. Time smo dokazali tvrdnju.

Kako su u našem slučaju polinomi $x \mapsto -2x - 5$ i $x \mapsto A(x+3) + B(x+2)$ očito jednaki u beskonačno mnogo točaka, oni su sigurno jednaki i u x = -2 i x = -3, što smo i tvrdili.

4.5 Prirodna domena

Napomena 45. Neka je $x \mapsto f(x)$ funkcija zadana formulom. Skup svih $x \in \mathbb{R}$ za koju je f(x) dobro definiran zove se **prirodna domena** funkcije f.

Zadatak 188. Odredite prirodnu domenu funkcije $x \mapsto f(x)$, ako je

- a) $f(x) = \sqrt{\log_2(x^2 1)}$,
- b) $f(x) = \operatorname{arch}(x^2 4x) + \operatorname{cth}(x 6)$,
- c) $f(x) = \operatorname{arth} \sqrt{x} + \log_2(x+2)$.

 $Rje\check{s}enje$. a) Uočimo da je domena od $x\mapsto \log_2 x$ jednaka \mathbb{R}^+ , a domena od $x\mapsto \sqrt{x}$ jednaka $[0,\infty)$. Zato trebaju biti zadovoljeni sljedeći uvjeti:

- $x^2 1 > 0$,
- $\log_2(x^2 1) \ge 0$.

Prvi uvjet vrijedi ako i samo ako je $x \in \langle -\infty, -1 \rangle \cup \langle 1, \infty \rangle$.

Promotrimo drugi uvjet. Uočimo da vrijedi

$$\log_2(x^2 - 1) \ge 0 \Leftrightarrow x^2 - 1 \ge 1,$$

za sve $x \in \langle -\infty, -1 \rangle \cup \langle 1, \infty \rangle$ (Uvjerite se u to!). No ovo je ekvivalentno tvrdnji $x \in \langle -\infty, -\sqrt{2} \rangle \cup \langle \sqrt{2}, \infty \rangle$. Dakle, domena funkcije f je upravo

$$\langle -\infty, -\sqrt{2} \rangle \cup \langle \sqrt{2}, \infty \rangle.$$

- b) Uočimo da je domena od $x \mapsto \operatorname{arch} x$ jednaka $[1, \infty)$, a domena od $x \mapsto \operatorname{cth} x$ je jednaka $\mathbb{R} \setminus \{0\}$. Imamo sljedeće uvjete:
 - $x^2 4x \ge 1$,
 - $x 6 \neq 0$, odnosno $x \neq 6$.

Rješenje nejednadžbe $x^2-4x\geq 1$ je $x\in \langle -\infty, 2-\sqrt{5}]\cup [2+\sqrt{5},\infty\rangle,$ pa je domena

$$\langle -\infty, 2 - \sqrt{5}] \cup [2 + \sqrt{5}, \infty) \setminus \{6\}.$$

c) Uočimo da je domena od $x\mapsto \operatorname{arth} x$ jednaka $\langle -1,1\rangle$. Odavde slijedi da trebaju biti zadovoljeni sljedeći uvjeti:

- x > 0,
- x + 2 > 0, odnosno x > -2,
- $\sqrt{x} \in \langle -1, 1 \rangle$.

Primijetimo da drugi uvjet možemo zanemariti. Nadalje, treba vrijediti $\sqrt{x} > -1$ i $\sqrt{x} < 1$. $\sqrt{x} > -1$ je istinita za sve realne x, pa je možemo zanemariti. Nadalje, vrijedi $\sqrt{x} < 1$ ako i samo ako vrijedi x < 1. Dakle, domena početne funkcije je [0, 1).

Zadatak 189. Odredite sve $x \in \mathbb{R}$ za koje vrijedi

$$\arcsin \frac{\log_2(x+2)}{2} = \sqrt{-x - \frac{7}{4}} - \frac{\pi}{2}.$$

 $Rje\check{s}enje$. Prvo bi bilo dobro vidjeti kad su oba izraza definirana. Drugim riječima, trebamo odrediti prirodne domene funkcija $x\mapsto \arcsin\frac{\log_2(x+2)}{2}$ i $x\mapsto\sqrt{-x-\frac{7}{4}}-\frac{\pi}{2}$. Lako se vidi da je domena funkcije $x\mapsto\sqrt{-x-\frac{7}{4}}-\frac{\pi}{2}$ jednaka $\left<-\infty,-\frac{7}{4}\right|$.

Odredimo domenu funkcije $x\mapsto \arcsin\frac{\log_2(x+2)}{2}$. Sjetimo se da je domena funkcije $x\mapsto \arcsin x$ jednaka [-1,1]. Zato trebaju biti zadovoljeni sljedeći uvjeti:

- x + 2 > 0, odnosno x > -2,
- $\frac{\log_2(x+2)}{2} \in [-1,1].$

Očito za sve x > -2 vrijedi $\frac{\log_2(x+2)}{2} \in [-1,1]$ ako i samo ako je

$$-2 \le \log_2(x+2) \le 2,$$

što je ekvivalentno tvrdnji

$$\frac{1}{4} \le x + 2 \le 4,$$

što vrijedi ako i samo ako je $x \in \left[-\frac{7}{4}, 2\right]$. Dakle jedini realan broj za kojeg su oba izraza definirana je upravo $\frac{7}{4}$. No lako se provjeri da $x \mapsto \arcsin \frac{\log_2(x+2)}{2}$ i $x \mapsto \sqrt{-x - \frac{7}{4}} - \frac{\pi}{2}$ poprimaju vrijednost $-\frac{\pi}{2}$ za $x = \frac{7}{4}$. Zato je to jedino rješenje početne jednadžbe.

Zadatak 190. Neka je $x \mapsto f(x)$ funkcija zadana formulom $f(x) = \arccos\left(\operatorname{tg}\left(1 + \frac{1}{x}\right)\right)$. Odredite prirodnu domenu ove funkcije.

Rješenje. Trebaju biti zadovoljeni sljedeći uvjeti:

• $x \neq 0$,

•
$$1 + \frac{1}{x} \notin \left\{ \frac{\pi}{2} + k\pi : k \in \mathbb{Z} \right\},$$

•
$$\operatorname{tg}\left(1 + \frac{1}{x}\right) \in [-1, 1].$$

Vrijedi $\operatorname{tg}\left(1+\frac{1}{x}\right) \in [-1,1]$ ako i samo ako je

$$1 + \frac{1}{x} \in \bigcup_{k \in \mathbb{Z}} \left[-\frac{\pi}{4} + k\pi, \frac{\pi}{4} + k\pi \right], \tag{4.8}$$

odnosno ako i samo ako (v. napomenu 23) postoji $k \in \mathbb{Z}$ takav da je

$$-\frac{\pi}{4} + k\pi \le 1 + \frac{1}{x} \le \frac{\pi}{4} + k\pi.$$

Primijetimo da (4.8) obuhvaća i činjenicu $1 + \frac{1}{x} \notin \left\{ \frac{\pi}{2} + k\pi : k \in \mathbb{Z} \right\}$. Uočimo da je (4.8) ekvivalentno uvjetu

$$-\frac{\pi}{4} - 1 + k\pi \le \frac{1}{x} \le \frac{\pi}{4} - 1 + k\pi. \tag{4.9}$$

Htjeli bismo odavde dobiti u kojem segmentu se nalazi x. Uočimo prvo da su svi intervali $\left[-\frac{\pi}{4}-1+k\pi,\frac{\pi}{4}-1+k\pi\right]$ podskupovi jednog (i samo jednog) od skupova $\langle -\infty,0\rangle$ i $\langle 0,\infty\rangle$. Zaista, za $k\geq 1$ vrijedi

$$-\frac{\pi}{4} - 1 + k\pi \ge -\frac{\pi}{4} - 1 + \pi > 0$$

i analogno $\frac{\pi}{4}-1+k\pi<0$ za $k\leq 0$. Dakle, za $k\geq 1$ imamo $\frac{1}{x}>0$, odnosno x>0, pa možemo "množiti" sx i $\frac{\pi}{4}-1+k\pi$. U tom slučaju dobivamo

$$x \in \bigcup_{k \in \mathbb{Z}} \left[\frac{1}{\frac{\pi}{4} - 1 + k\pi}, \frac{1}{-\frac{\pi}{4} - 1 + k\pi} \right],$$

Analogno, ako je $k \leq 0$, onda također možemo "množiti" sx i $\frac{\pi}{4} - 1 + k\pi$, ali se pritom mijenja predznak. Analogno dobivamo

$$x \in \bigcup_{k \in \mathbb{Z} \setminus \mathbb{N}} \left[\frac{1}{\frac{\pi}{4} - 1 + k\pi}, \frac{1}{-\frac{\pi}{4} - 1 + k\pi} \right],$$

te kako oba uvjeta obuhvaćaju i uvjet $x \neq 0$ (jer su ili oba "ruba" segmenta negativna ili oba pozitivna), slijedi da je prirodna domena početne funkcije upravo

$$\bigcup_{k \in \mathbb{N}} \left[\frac{1}{\frac{\pi}{4} - 1 + k\pi}, \frac{1}{-\frac{\pi}{4} - 1 + k\pi} \right] \cup \bigcup_{k \in \mathbb{Z} \setminus \mathbb{N}} \left[\frac{1}{\frac{\pi}{4} - 1 + k\pi}, \frac{1}{-\frac{\pi}{4} - 1 + k\pi} \right] \\
= \bigcup_{k \in \mathbb{Z}} \left[\frac{1}{\frac{\pi}{4} - 1 + k\pi}, \frac{1}{-\frac{\pi}{4} - 1 + k\pi} \right].$$

Napomena 46. Uočite da smo u prethodnom zadatku primijenili vrlo intuitivnu činjenicu da je za sve familije $\mathcal{F} = \{A_n : n \in \mathbb{Z}\}, \ \mathcal{F}' = \{A_n : n \in \mathbb{N}\}\ i \ \mathcal{F}'' = \{A_n : n \in \mathbb{Z} \setminus \mathbb{N}\},$

$$\bigcup_{k\in\mathbb{Z}} A_n = \bigcup_{k\in\mathbb{N}} A_n \cup \bigcup_{k\in\mathbb{Z}\setminus\mathbb{N}} A_n.$$

Dokažimo to! Zaista, vrijedi $x \in \bigcup_{k \in \mathbb{N}} A_n \cup \bigcup_{k \in \mathbb{Z} \setminus \mathbb{N}} A_n$ ako i samo ako ili postoji $i \in \mathbb{N}$ takav da je $x \in A_i$, ili postoji $j \in \mathbb{Z} \setminus \mathbb{N}$ takav da je $x \in A_j$. Očito, to vrijedi ako i samo ako postoji $k \in \mathbb{Z}$ takav da je $x \in A_k$, tj. $x \in \bigcup_{k \in \mathbb{Z}} A_n$.

4.6 Periodične funkcije

Definicija 31. Neka je zadana funkcija $f: A \to B$, $A, B \subseteq \mathbb{R}$ i $\tau > 0$. Kažemo da je f **periodična s periodom** τ ako za sve $x \in A$ vrijedi $x + \tau \in A$ i $f(x + \tau) = f(x)$. Najmanji od svih perioda, ako postoji, zvat ćemo **temeljnim periodom**.

Lako vidimo iz grafova od sin i cos da su oni periodični s temeljnim periodom 2π . Nadalje, funkcija $x \mapsto c, c \in \mathbb{R}$ je periodična i ona nema temeljni period.

Zadatak 191. Dokažite da je $x \mapsto \sin x$ periodična s temeljnim periodom 2π .

 $Rje\check{s}enje$. Znamo da $x\mapsto\sin x$ ima domenu \mathbb{R} , pa je tvrdnja o domeni trivijalno zadovoljena za bilo koji $\tau\in\mathbb{R}$. Znamo i da je

$$\sin(x+2\pi) = \sin x, \quad \forall x \in \mathbb{R}.$$

Još preostaje pokazati da je 2π temeljni period.

Pretpostavimo da postoji neki period τ_0 takav da je $\tau_0 < 2\pi$. Tada je $\sin(x + \tau_0) = \sin x$. Specijalno, iz definicije za x = 0 imamo $\sin \tau_0 = 0$. To je moguće ako i samo ako je

$$x \in \{k\pi : k \in \mathbb{Z}\}.$$

No kako imamo $0 < \tau_0 < 2\pi$ slijedi nužno $\tau_0 = \pi$. No π očito nije period, jer je npr. sin $\frac{\pi}{2} = 1$ i $\sin\left(\frac{\pi}{2} + \pi\right) = -1$.

Zadatak 192. Funkcija $D: \mathbb{R} \to \mathbb{R}$,

$$D(x) = \begin{cases} 0, & x \in \mathbb{I}, \\ 1, & x \in \mathbb{Q} \end{cases}$$

zove se Dirichletova funkcija. Dokažite da je ona periodična, ali nema temeljni period.

Rješenje. Tvrdimo da je svaki pozitivan $\tau \in \mathbb{Q}^+$ jedan period funkcije D. Odavde će biti očito da je D periodična i da nema temeljni period.

Zaista, neka je $x \in \mathbb{R}$ proizvoljan. Tvrdimo da je $x \in \mathbb{Q}$ ako i samo ako je $x + \tau \in \mathbb{Q}$. Zaista, ako je $x \in \mathbb{Q}$, onda je očito $x + \tau \in \mathbb{Q}$. Nadalje, ako je $x + \tau \in \mathbb{Q}$, iz činjenice da je $-\tau \in \mathbb{Q}$ slijedi da je i $(x + \tau) - \tau = x \in \mathbb{Q}$.

Kontrapozicijom slijedi: Ako je $x \in \mathbb{Q}$, onda je $x + \tau \in \mathbb{Q}$, te ako je $x \in \mathbb{I}$ iracionalan, onda je i $x + \tau \in \mathbb{I}$. U oba slučaja imamo $f(x + \tau) = f(x)$ i tvrdnja je dokazana.

Zadatak 193. Je li funkcija $x \mapsto x \sin x$ periodična?

Rješenje. Iz grafa funkcije možemo naslutiti da ona nije periodična.

Dokažimo tvrdnju. Zaista, pretpostavimo da postoji neki period $\tau > 0$. Funkcija je definirana za sve realne brojeve, pa je $x + \tau \in \mathcal{D}(f)$. Po pretpostavci imamo

$$(x+\tau)\sin(x+\tau) = x\sin x, \ \forall x \in \mathbb{R}.$$

Slika 4.11: Graf funkcije $x \mapsto x \sin x$

Specijalno, za $x=-\tau$ imamo $\tau\sin\tau=0$, odnosno $\sin\tau=0$. To je ekvivalentno sa $\tau\in\{k\pi:k\in\mathbb{N}\}$, gdje je $k\in\mathbb{N}$ jer je $\tau>0$, po definiciji perioda. No to znači da postoji $k\in\mathbb{N}$ takav da je

$$(x + k\pi)\sin(x + k\pi) = x\sin x, \ \forall x \in \mathbb{R}.$$

Ako je k paran, onda je $\sin(x+k\pi) = \sin x$. Uzmimo x takav da je $\sin x \neq 0$. Tada dijeljenjem sa $\sin x$ dobivamo $\pi = 0$, kontradikcija!

Ako je k neparan, onda je $\sin(x+k\pi)=-\sin x$. Uzmimo x takav da je $x\in\mathbb{N}$. Zaista, kako je $\pi\in\mathbb{I}$, vrijedi $\sin x\neq 0$, jer bi u suprotnom imali $\frac{x}{k}=\pi$. Dijeljenjem sa $\sin x$ dobivamo $-x-k\pi=x$, odnosno $-\frac{2x}{k}=\pi$. Kontradikcija s činjenicom da je $\pi\in\mathbb{I}$! Dakle slijedi $\tau\notin\{k\pi:k\in\mathbb{N}\}$, čime imamo kontradikciju s činjenicom $\tau\in\{k\pi:k\in\mathbb{N}\}$, i time smo dokazali tvrdnju.

Zadatci za vježbu

Pojam funkcije. Crtanje grafa funkcije

Zadatak 194. Nacrtajte grafove sljedećih funkcija. (Kada je interval cijeli \mathbb{R} , prikažite "najreprezentativniji" dio grafa).

- a) $f: [-1,1] \to \mathbb{R}, f(x) = x^2 + 4x + 5,$
- b) $f : \mathbb{R} \to \mathbb{R}, f(x) = |x + 2| |x|,$
- c) $f : \mathbb{R} \to \mathbb{R}, f(x) = (x 2025)^3 2025.$
- d) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, f(x) = x + \frac{1}{x}$.

Zadatak 195. Promotrite sljedeću sliku.

Ako je poznato da postoje $a, b, c \in \mathbb{R}$, $a \neq 0$ takvi da je graf na slici upravo graf funkcije $f(x) = \left| \left| ax^2 + bx + c \right| - 2 \right|$, odredite neke takve a, b, c.

Injekcija, surjekcija i bijekcija. Slika i praslika skupa

Zadatak 196. Za svaku od sljedećih funkcija odredite je li bijekcija. Ako smatrate da je, dokažite da je, u suprotnom dokažite zašto nije.

- a) $f : \mathbb{R} \to \mathbb{R}, f(x) = x^4 x^2,$
- b) $f : \mathbb{R} \to \mathbb{R}, f(x) = 2x^3 + 3.$
- c) $f : \mathbb{R} \to [-2, \infty], f(x) = e^x 2,$

Zadatak 197.

- a) Navedite primjer rastuće funkcije $f: \mathbb{R} \to [-1, 1]$.
- b) Navedite primjer padajuće funkcije s \mathbb{R} u \mathbb{R} koja nije ni injekcija ni surjekcija.
- b) Navedite primjer bijekcije $f: \mathbb{R} \to \langle 10, \infty \rangle$.
- c) Navedite primjer bijekcije $f: \langle 10, 20 \rangle \to \mathbb{R}$.
- d) Navedite primjer surjekcije $f: \mathbb{R} \to [-1, 0) \cup (0, 1] \cup \{2025\}$.
- e) Navedite primjer surjekcije $f: \mathbb{R} \to \langle -1, 1 \rangle \cup \mathbb{N}$.

Zadatak 198.

- a) Navedite primjer funkcije $f: \mathbb{R} \to \mathbb{R}$ za koju vrijedi f([0,5]) = [2,3].
- b) Navedite primjer funkcije $f: \mathbb{R} \to \mathbb{R}$ za koju vrijedi f([0,5]) = [2,3] i $f^{-1}(\langle 5,15]) = [-2,-1\rangle \cup \langle 5,7.5|$.
- c) Postoji li funkcija $f: \mathbb{R} \to \mathbb{R}$ za koju vrijedi f([0,1]) = [1,2] i $f^{-1}([1,3]) = [4,5]$? Dokažite svoje tvrdnje.
- d) Neka je zadana $f: S \to \mathbb{R}$ i neka su $A, B \subseteq S$. Dokažite da je $f(A \cap B) = f(A) \cap f(B)$ ako i samo ako je f injekcija.

Zadatak 199. (*) Neka je $g: \mathbb{R} \to \mathbb{R}$ funkcija takva da je za svaku injekciju $f: \mathbb{R} \to \mathbb{R}$, funkcija f+g također injekcija. Dokažite da je tada g konstanta.

Kompozicija funkcija. Inverzna funkcija

Zadatak 200. Neka su zadane $f: A \to B$ i $g: B \to C$. Dokažite da ako je $g \circ f$ injekcija, onda je i f injekcija.

Zadatak 201. Neka je $f: \mathbb{R} \to \mathbb{R}$ zadana formulom $f(x) = x^3 - 2x^2$.

- a) Nacrtajte graf funkcije f.
- b) Dokažite da je $f|_{[0,1]}$ injekcija. Je li f injekcija?
- c) Odredite $f^{-1}([0,9])$ i $f^{-1}([2024,2025]) \cap f^{-1}([23,24])$.
- d) Koristeći graf, odredite f([2,2.2]).

Zadatak 202.

a) Zadana je $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4 + 3|x|^3 + 4$. Odredite $\mathcal{R}(f)$.

- b) Zadana je $f:[0,\infty)\to\mathbb{R}, f(x)=e^{\frac{1-\sqrt{x}}{1+\sqrt{x}}}$. Odredite $f^{-1}([1,e])$.
- d) Odredite primjer funkcije $f: \mathbb{R} \to \mathbb{R}$ za koju je $f^{-1}([4,5]) = [-3,2] \cup [6,7]$.

Zadatak 203.

- a) Dokažite da je $f: \left[0, \frac{\pi}{2}\right] \to [4, 8]$ za koju je $f(x) = \sin^4 x + 3\sin^2 x + 4$ bijekcija i odredite njezin inverz.
- a) Odredite skup S (ako postoji) takav da $f:\mathbb{R}\to S,\, f(x)=\operatorname{th}^3x+1$ bude bijekcija.
- b) Neka je $f: \mathbb{R} \to [-2, \infty)$ zadana formulom f(x) = ||x| 2| 2| 2. Ispitajte injektivnost, surjektivnost i koristeći graf odredite $f^{-1}\left(\left[\frac{1}{2}, 4\right)\right)$.

Zadatak 204.

- a) Odredite neki $a \in \mathbb{R}$ (ako postoji) takav da je $f:[a,\infty) \to \mathbb{R}, f(x)=x^4-2x^2$ injekcija.
- b) Neka su zadane $f, g: S \to \mathbb{R}$. Dokažite ili opovrgnite: Ako su f i g strogo rastuće i ako vrijedi $f(x) \ge 0$ i $g(x) \ge 0$ za sve $x \in S$, onda je i fg strogo rastuća.
- c) Odredite sve $x \in \mathbb{R}$ takve da je $x^3 2x = 4$. (Dokažite svoje tvrdnje!)

Zadatak 205. Neka je $g: \mathbb{R} \to \mathbb{R}$ funkcija takva da za funkciju $h: \mathbb{R} \to \mathbb{R}$, $h(x) = g^{9}(x) + 2g^{3}(x) + 1$, vrijedi h([0,2]) = [-2,4]. Odredite g([0,2]).

Zadatak 206. (*) Neka je $f: \mathbb{R} \to \mathbb{R}$ dana izrazom $f(x) = \frac{x}{\sqrt{1+x^2}}$. Neka je $f_n(x) = \underbrace{f(f(\dots f(x))\dots)}_{n \text{ puta}}$. Izračunajte $f_{2024}(2024)$ i pokažite da je f_{2024} injekcija.

Zadatak 207. (*) Zadana je $f : \mathbb{R} \to \mathbb{R}$,

$$f(x) = (x+2)(x+3)(x+7)(x+8)$$

Odredite $\mathcal{R}(f)$.

Zadatak 208. (*) Izračunajte

$$\arctan \frac{1}{2} + \arctan \frac{1}{8} + \arctan \frac{1}{18} + \dots + \arctan \frac{1}{2 \cdot 2024^2}$$
.

Zadatak 209. (**) Može li se funkcija $x \mapsto x \cos(x^3 - x)$ prikazati kao kompozicija konačno mnogo funkcija $x \mapsto -x$, $x \mapsto x \sin x$, $x \mapsto \sin x$, $x \mapsto x^3 + x$? Dokažite.

Rastav na parcijalne razlomke

Zadatak 210. Rastavite sljedeće funkcije na parcijalne razlomke (po potrebi prvo funkciju prikazati kao zbroj polinoma i prave racionalne funkcije).

a)
$$x \mapsto \frac{x^3 + 2x + 3}{x^3 - x}$$
,

b)
$$x \mapsto \frac{1}{x^3 + 1}$$
.

Zadatak 211. Zadana je $f : \mathbb{R} \setminus \{-1\} \to \mathbb{R}$,

$$f(x) = \frac{x^3 + 6x^2 + 12x + 9}{(x+1)^3}.$$

Odredite f([0,2]).

Zadatak 212. (*) Zadan je sustav jednadžbi

$$\begin{cases} A+C & = 9, \\ 3A+B+C+D & = 5, \\ 2A+4B-2C+E & = 7, \\ -2A+6B-2C-2D-E+F & = 4, \\ -3A+4B+C-E-2F & = 6, \\ -A+B+C+D+E+F & = 3 \end{cases}$$

Dokažite (bez korištenja rezultata iz linearne algebre i bez rješavanja sustava) da ovaj sustav ima jedinstveno rješenje, tj. da postoje jedinstveni $A, B, C, D, E, F \in \mathbb{R}$ za koje vrijedi sustav jednadžbi.

Prirodna domena

Zadatak 213. Odredite prirodnu domenu sljedećih funkcija.

a)
$$x \mapsto \operatorname{arch}\left(\operatorname{arccos}\frac{x-1}{x+2}+1\right)$$
, c) $x \mapsto \operatorname{arcsin}\left(\sqrt{x+2}-\sqrt{x+1}\right)$,
b) $x \mapsto \frac{1}{\sqrt{\frac{1}{x^2}-\frac{3}{x}-4}}$ e) $x \mapsto \ln\left(\frac{1}{\sin x}-2\cos x\right)$.

Zadatak 214. Navedite primjer elementarne funkcije čija je prirodna domena:

a) $[1,\infty)\setminus\{2\}$,

d) N,

b) $\langle 1, \infty \rangle \setminus \mathbb{N}$,

e) $\langle 0, \infty \rangle \setminus \{2025^n : n \in \mathbb{N}\}.$

c) $\langle -\infty, 2 \rangle \cup [3, \infty \rangle$,

(**Uputa:** Elementarne funkcije su sve one funkcije koje se mogu dobiti pomoću konačnog broja operacija zbrajanja, množenja, oduzimanja, dijeljenja i kompozicije iz potencija, eksponencijalnih, hiperbolnih, trigonometrijskih funkcija i njihovih inverznih funkcija – korijena, logaritamskih, area i arkus funkcija).

Zadatak 215.

- a) Zadana je elementarna funkcija $f: \mathbb{R} \to \mathbb{R}$. Dokažite da je za svaki konačan skup $S \subseteq \mathbb{R}$ restrikcija $f|_{\mathbb{R} \setminus S}$ također elementarna funkcija.
- b) Dokažite da za svaki konačan skup $S \subseteq \mathbb{R}$ postoji elementarna funkcija čija je prirodna domena S.

Periodične funkcije

Zadatak 216. Je li $x \mapsto \sin^2 x$ periodična? Ako je, koji joj je temeljni period? Dokažite sve svoje tvrdnje.

Zadatak 217. Zadana je funkcija $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} -x + 5n + 1 & \text{za } x \in [5n, 5n + 1], \ n \in \mathbb{N}, \\ 0 & \text{za } x \in [5n + 1, 5n + 2], \ n \in \mathbb{N}, \\ -x + 5n + 2 & \text{za } x \in [5n + 2, 5n + 3], \ n \in \mathbb{N}, \\ x - 5n - 4 & \text{za } x \in [5n + 3, 5n + 5], \ n \in \mathbb{N}, \end{cases}$$

Dokažite da je f periodična i odredite joj temeljni period. Dokažite sve svoje tvrdnje.

Poglavlje 5

Nizovi

5.1 Pojam niza. Limes niza

Definicija 32.

- Funkcija $a: \mathbb{N} \to S$ zove se **niz** na S. Specijalno, ako je $S = \mathbb{R}$, radi se o nizu realnih brojeva, ako je $S = \mathbb{C}$ radi se o nizu kompleksnih brojeva, a ako je S skup svih funkcija definiranih na nekom skupu, kažemo da imamo niz funkcija.
- Kažemo da je a(n) n-ti član niza, u oznaci a_n . Općenito, alternativna oznaka za niz a koju ćemo često koristiti je (a_n) .
- Na nekim mjestima, ako je jasno kako se niz nastavlja, možemo niz zadati "nizanjem" njegovih prvih nekoliko elemenata:

$$a_1, a_2, a_3, \ldots, a_n, \ldots$$

U daljnjem tekstu, ako nije navedeno drukčije, smatrat ćemo da se radi o nizu realnih brojeva.

Definicija 33. Aritmetički niz s prvim članom a_1 i razlikom d je niz (a_n) zadan općim članom

$$a_n = a_1 + (n-1)d, \ n \in \mathbb{N}.$$

Iz definicije aritmetičkog niza slijedi:

• $a_{n+1} - a_n = d$,

•
$$\frac{a_{n-1} + a_{n+1}}{2} = a_n, \ n \ge 2,$$

• Neka je $S_n = a_1 + a_2 + \cdots + a_n$. Vrijedi

$$S_n = \frac{n}{2}(a_1 + a_n), \ S_n = \frac{n}{2}(2a_1 + (n-1)d)$$
 (5.1)

Definicija 34. Geometrijski niz s prvim članom a_1 i kvocijentom $q \neq 0$ je niz (a_n) zadan općim članom

$$a_n = a_1 \cdot q^{n-1}, \ n \in \mathbb{N}.$$

Iz definicije geometrijskog niza slijedi:

- $\bullet \ \frac{a_{n+1}}{a_n} = q,$
- $\sqrt{a_{n-1} \cdot a_{n+1}} = a_n, \ n \ge 2,$
- Neka je $S_n = a_1 + a_2 + \cdots + a_n$. Vrijedi

$$S_n = \begin{cases} na_1, & q = 1, \\ a_1 \frac{1 - q^n}{1 - q}, & q \neq 1. \end{cases}$$
 (5.2)

Zadatak 218.

- a) Neka je (a_n) geometrijski niz
, $a_1=64$ i $a_7=15625.$ Odredite $a_3.$
- b) Niz (a_n) zadan je općim članom $a_n = -3 + \frac{1}{4}(n-1)$. Ako je zbroj prvih m članova niza $\frac{21}{2}$, koliko je m?

 $Rje\check{s}enje$. a) Po definiciji, za niz (a_n) vrijedi $a_n=64\cdot q^n$. Nadalje, dobivamo jednadžbu

$$a_7 = 64 \cdot q^6 = 15625$$
, čije je rješenje $q = \frac{5}{2}$.

Odavde direktno slijedi $a_3 = 64 \cdot \left(\frac{5}{2}\right)^2 = 400.$

b) Uočimo da je niz (a_n) aritmetički, pa vrijedi (5.1). Imamo

$$\frac{m}{2}\left(-6 + \frac{1}{4}(m-1)\right) = \frac{21}{2}.$$

Rješavanjem kvadratne jednadžbe dobivamo $m_1 = 28$ i $m_2 = -3$. Kako je (a_n) definiran samo za $n \in \mathbb{N}$, slijedi da je jedino moguće rješenje m = 28.

Definicija 35. Niz (a_n) u \mathbb{R} je rastući ako za sve $n \in \mathbb{N}$ vrijedi $a_n \geq a_{n+1}$, strogo rastući

ako za sve $n \in \mathbb{N}$ vrijedi $a_n < a_{n+1}$, **padajući** ako za sve $n \in \mathbb{N}$ vrijedi $a_n \ge a_{n+1}$, te **strogo padajući** ako za sve $n \in \mathbb{N}$ vrijedi $a_n > a_{n+1}$.

Zadatak 219.

- a) Dokažite da je niz (a_n) zadan formulom $a_n = 2^n + n$ strogo rastući.
- b) Dokažite da je niz (a_n) zadan formulom $a_n = \sqrt{n+1} \sqrt{n}$ strogo rastući.
- c) Dokažite da je niz (a_n) zadan formulom $a_n = \frac{n^2 + 1}{n^2 1}$ strogo padajući.

 $Rje\check{s}enje$. a) Treba dokazati da za sve $n\in\mathbb{N}$ vrijedi $2^{n+1}+n+1>2^n+n$. Očito vrijedi

$$2^{n+1} + n + 1 > 2^{n+1} + n > 2^n + n, \ \forall n \in \mathbb{N},$$

pa je tvrdnja dokazana.

b) Treba dokazati da za sve $n \in \mathbb{N}$ vrijedi $\sqrt{n+2} - \sqrt{n+1} > \sqrt{n+1} - \sqrt{n}$. Znamo da je

$$-\sqrt{n} > -\sqrt{n+1}$$
 i $\sqrt{n+2} > \sqrt{n+1}$ $\forall n \in \mathbb{N}$.

Zbrajanjem tih dvaju jednakosti dobivamo tvrdnju.

c) Neka je $n\in\mathbb{N}$ proizvoljan. Vrijedi $\frac{n^2+1}{n^2-1}=1+\frac{2}{n^2-1}$. Sada treba pokazati da za sve $n\in\mathbb{N}$ vrijedi

$$1 + \frac{2}{n^2 - 1} > 1 + \frac{2}{(n+1)^2 - 1}.$$

No to je ekvivalentno s tvrdnjom $(n+1)^2 > n^2$, što je očigledno istinito za sve $n \in \mathbb{N}$.

Definicija 36. Niz (a_n) je **odozgo ograničen** ako postoji $M \in \mathbb{R}$ takav da za sve $n \in \mathbb{N}$ vrijedi $a_n \leq M$, **odozdo ograničen** ako postoji $m \in \mathbb{R}$ takav da za sve $n \in \mathbb{N}$ vrijedi $a_n \geq m$, a **ograničen** ako je ograničen odozgo i odozdo.

Zadatak 220. Dokažite da je niz (a_n) zadan formulom $a_n = \frac{1}{\left(n - \frac{3}{2}\right)^2}$ ograničen.

 $Rje \check{s}enje.$ Uočimo da za sve $n\in\mathbb{N}$ vrijedi $\frac{1}{\left(n-\frac{3}{2}\right)^2}\geq 0.$ Nadalje, tvrdimo da za sve $n\in\mathbb{N}$

vrijedi $\left(n-\frac{3}{2}\right)^2 \geq \frac{1}{4}$. Zaista, to je ekvivalentno tvrdnji

$$(n-1)(n-2) \ge 0. (5.3)$$

Ako je n=1,2, onda je (n-1)(n-2)=0, a za n>2 je (n-1)(n-2)>0, pa (5.3) vrijedi za sve $n\in\mathbb{N}.$ Sada je očito $\frac{1}{\left(n-\frac{3}{2}\right)^2}\leq 4,$ za sve $n\in\mathbb{N}.$

Zadatak 221. Dokažite da je niz (a_n) ograničen ako i samo ako za sve $n \in \mathbb{N}$ postoji $M \geq 0$ takav da je $|a_n| \leq M$.

 $Rje\check{s}enje$. Prvi smjer očito vrijedi, jer je M gornja međa i -M donja međa.

Dokažimo drugi smjer. Po definiciji postoje $m \in \mathbb{R}$ i $M \in \mathbb{R}$ takvi da je

$$m \leq |a_n| \leq M$$
.

Neka je M_1 veći od brojeva |m| i |M|, tj. $M_1 = \max\{|m|, |M|\}$. Tada vrijedi

$$a_n \le M \le |M| \le M_1,$$

dakle $a_n \leq M_1$. S druge strane, vrijedi

$$a_n \ge -m \ge -|m| \ge -M_1$$

tj. $a_n \ge -M_1$. Odavde slijedi $|a_n| < M_1$, što smo i tvrdili.

Definicija 37. Neka je (a_n) niz realnih brojeva. Kažemo da je $L \in \mathbb{R}$ limes niza (a_n) ako

$$(\forall \epsilon > 0) (\exists n_0 \in \mathbb{N}) (\forall n \in \mathbb{N}) \quad n \ge n_0 \Rightarrow |a_n - L| < \epsilon.$$

Može se pokazati da limes niza, ukoliko postoji, je jedinstven. Nadalje, ako niz ima limes kažemo da je **konvergentan**, a ako ga nema kažemo da je **divergentan**. Ako je (a_n) konvergentan s limesom L pišemo $\lim_{n\to\infty} a_n = L$.

Definicija 38. Neka je (a_n) niz realnih brojeva. Kažemo da je (a_n) divergentan...

- ... $u \propto ako \ (\forall M > 0) \ (\exists n_0 \in \mathbb{N}) \ (\forall n \in \mathbb{N}) \quad n \geq n_0 \Rightarrow a_n > M$
- ... $\mathbf{u} \infty$ ako $(\forall M > 0)$ $(\exists n_0 \in \mathbb{N})$ $(\forall n \in \mathbb{N})$ $n \ge n_0 \Rightarrow a_n < -M$.

Ako je niz divergentan u ∞ , odnosno $-\infty$, pišemo $\lim_{n\to\infty} a_n = \infty$, odnosno $\lim_{n\to\infty} a_n = -\infty$.

Napomena 47.

- a) Konvergentan niz ima samo jedan limes.
- b) Konvergentan niz je ograničen.

Intuitivno, limes niza predstavlja kojem broju vrijednosti niza "teže" kako je n sve veći.

Zadatak 222. Koristeći definiciju limesa niza, odredite

a)
$$\lim_{n\to\infty} \frac{n}{n+1}$$
,

b)
$$\lim_{n\to\infty} \frac{n}{n^2+1}$$
.

 $Rje\check{s}enje$. a) Neka je (a_n) niz zadan općim članom $a_n = \frac{n}{n+1}$. Za velike n vidimo da ovaj niz teži ka 1.

Zaista, dokažimo da je $\lim_{n\to\infty}\frac{n}{n+1}=1$. Treba pokazati da za svaki $\epsilon>0$ postoji $n_0\in\mathbb{N}$ takav da za sve prirodne $n\geq n_0$ vrijedi

$$\left| \frac{n}{n+1} - 1 \right| = \frac{1}{n+1} < \epsilon.$$

Prema Arhimedovu aksiomu znamo da postoji $n_0 \in \mathbb{N}$ takav da je $n_0 \epsilon > 1$. Dokažimo da tvrdnja vrijedi i za sve $n \geq n_0$. Zaista, ako je $n \geq n_0$, onda vrijedi i $n+1 \geq n_0+1$, odnosno

$$(n+1)\epsilon \ge (n_0+1)\epsilon > n_0\epsilon > 1.$$

Odavde imamo $\frac{1}{n+1} < \epsilon$ za sve $n \ge n_0$, što smo i tvrdili.

b) Tvrdimo da je $\lim_{n\to\infty}\frac{n}{n^2+1}=0$, t
j. da za svaki $\epsilon>0$ postoji $n_0\in\mathbb{N}$ takav da za sve prirodne
 n_0 vrijedi

$$\left| \frac{n}{n^2 + 1} - 0 \right| = \frac{n}{n^2 + 1} < \epsilon.$$

Prema Arhimedovu aksiomu postoji $n_0 \in \mathbb{N}$ takav da je $n_0 \epsilon > 1$. Odavde za sve prirodne $n \geq n_0$ imamo

$$1 < n_0 \epsilon \le n \epsilon < \left(n + \frac{1}{n}\right) \epsilon = \frac{n^2 + 1}{n} \epsilon,$$

odnosno $\frac{n}{n^2+1} < \epsilon$ za sve $n \ge n_0$, pa je tvrdnja dokazana.

Zadatak 223. Neka je (a_n) niz takav da je (b_n) , $b_n = a_{n+1}$ konvergentan. Dokažite da je tada i (a_n) konvergentan i ima isti limes kao i (b_n) .

 $Rje\check{s}enje.$ Neka je $\epsilon>0$ proizvoljan. Tada postoji $n_0\in\mathbb{N}$ takav da za sve prirodne $n\geq n_0$ vrijedi

$$|a_{n+1} - a| < \epsilon. \tag{5.4}$$

Uzmimo proizvoljan $m \in \mathbb{N}$ takav da je $m \geq n_0 + 1$. Posebno je $m - 1 \geq n_0$, pa posljedično i

$$|a_{(n-1)+1} - a| = |a_n - a| < \epsilon, \tag{5.5}$$

odakle slijedi tvrdnja zadatka.

Zadatak 224. Odredite $\lim_{n\to\infty} (n^2+1)$.

Rješenje. Vidimo da za velike n niz (a_n) zadan formulom $a_n = n^2 + 1$ teži ka ∞ . Dokažimo to.

Treba dokazati da za svaki M>0 postoji $n_0\in\mathbb{N}$ takav da za sve $n\geq n_0$ vrijedi $n^2+1>M$.

Prema Arhimedovu aksiomu postoji $n_0 \in \mathbb{N}$ takav da je $n_0 > M$, te očito vrijedi i n > M. Ako dokažemo da vrijedi $n^2 + 1 > n$ za sve $n \in \mathbb{N}$, tvrdnja će biti dokazana.

Tvrdnju možemo dokazati indukcijom – za n=1 tvrdnja vrijedi, a pretpostavimo li da tvrdnja vrijedi za neki n, trebamo dokazati $(n+1)^2+1=n^2+2n+2>n+1$, odnosno prema pretpostavci indukcije 3n+1>n+1, što očito vrijedi za sve $n \in \mathbb{N}$.

Zadatak 225. Neka je (a_n) niz takav da je $a_n \neq 0$ i $\lim_{n \to \infty} a_n = \infty$. Dokažite da je tada $\left(\frac{1}{a_n}\right)$ konvergentan i vrijedi $\lim_{n \to \infty} \left(\frac{1}{a_n}\right) = 0$.

 $Rje\check{s}enje$. Znamo da za sve $\epsilon > 0$ postoji $n_0 \in \mathbb{N}$ takav da za sve $n \geq n_0$ vrijedi $a_n > \frac{1}{\epsilon}$, odakle slijedi $\frac{1}{a_n} < \epsilon$, jer je $a_n > 0$. No ujedno vrijedi i $\left| \frac{1}{a_n} \right| < \epsilon$, ponovno zbog $a_n > 0$.

Zadatak 226. Neka su (a_n) i (b_n) nizovi takvi da je $a_n \ge b_n$ za sve $n \in \mathbb{N}$. Dokažite: Ako je $\lim_{n \to \infty} b_n = \infty$, onda je i $\lim_{n \to \infty} a_n = \infty$.

 $Rje\check{s}enje$. Po definiciji, za svaki M>0 postoji $n_0\in\mathbb{N}$ takav da za sve $n\geq n_0$ vrijedi $b_n\geq M$. Kako je $a_m\geq b_m$ za sve $m\in\mathbb{N}$, vrijedi i $a_n\geq M$, što smo i tvrdili.

Tvrdnja iz zadatka 226 nam može pomoći u dokazivanju divergencije niza u ∞ . Pokažimo to.

Zadatak 227. Dokažite da je
$$\lim_{n\to\infty} \left(\sin n + \frac{n}{2}\right) = \infty.$$

 $Rje\check{s}enje$. Promotrimo niz $(a_n),\ a_n=-1+\frac{n}{2}$. Kako je $-1+\frac{n}{2}\leq \sin n+\frac{n}{2}$, dovoljno je pokazati da je $\lim_{n\to\infty}a_n=\infty$. Neka je M>0 proizvoljan. Prema Arhimedovu aksiomu postoji $n_0\in\mathbb{N}$ takav da je $n_0>2M+2$, odnosno $\frac{n_0}{2}-1>M$. Tada za sve $n\geq n_0$ vrijedi

$$\frac{n}{2} - 1 \ge \frac{n_0}{2} - 1 > M,$$

što smo i htjeli dokazati.

Zadatak 228. Neka je (a_n) konvergentan niz. Dokažite da on tada ne divergira u ∞ . (Ovo se možda na prvi pogled čini očiglednim, ali je ipak nešto što je potrebno dokazati!)

Dokaz. Pretpostavimo da (a_n) divergira u ∞ . Kako (a_n) konvergira, on je ograničen. S druge strane, ako niz divergira u ∞ , on ne može biti odozgo ograničen, što onda daje kontradikciju. Zaista, pretpostavimo da postoji $M \in \mathbb{R}$ (Možemo bez smanjenja općenitosti uzeti M > 0) takav da za sve $n \in \mathbb{N}$ vrijedi $a_n \leq M$. Tada za taj M postoji $n_0 \in \mathbb{N}$ takav da za sve $n \geq n_0$ vrijedi $a_n > M$, što nije moguće.

Napomena 48 (Binomni teorem). Za sve $a, b \in \mathbb{R}$ i $n \in \mathbb{N}$ vrijedi

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Binomni teorem nam je često koristan u dokazivanju tvrdnji o konvergenciji nizova. Pokažimo to kroz sljedeće zadatke.

Zadatak 229. Dokažite da za sve a > 1 vrijedi $\lim_{n \to \infty} a^n = \infty$.

Dokaz. Iskoristit ćemo binomni teorem da dođemo do niza (b_n) takvog da je $a^n \ge b_n$ takvog da je $\lim_{n\to\infty} b_n = \infty$. Uočimo da je

$$a^{n} = (1 + (a-1))^{n} = 1 + n(a-1) + \frac{n(n-1)}{2}(a-1)^{2} + \dots + (a-1)^{n} \ge 1 + n(a-1),$$

što vrijedi jer su $\binom{n}{k}$ prirodni brojevi za $k=1,\ldots,n$ i jer je a>1. Preostaje dokazati da je $\lim_{n\to\infty} \left(1+n(a-1)\right)=\infty$. Neka je M>0 proizvoljan. Uzmimo $n_0\in\mathbb{N}$ takav da je

 $n_0 > \frac{M-1}{a-1}$. Tada je za sve prirodne $n \ge n_0$

$$1 + n(a-1) \ge 1 + n_0(a-1) > M$$

što smo i htjeli dokazati.

Zadatak 230. Dokažite da za sve a > 1 vrijedi $\lim_{n \to \infty} \sqrt[n]{a} = 1$.

 $Rje\check{s}enje.$ Treba dokazati da za sve $\epsilon>0$ postoji $n_0\in\mathbb{N}$ takav da za sve prirodne $n\geq n_0$ vrijedi

$$|\sqrt[n]{a} - 1| = \sqrt[n]{a} - 1 < \epsilon.$$

Ideja će biti primijeniti binomni teorem tako da dobijemo izraz veći od $\sqrt[n]{a} - 1$, ali i dalje takav da možemo naći n_0 takav da je za sve $n \ge n_0$ manji od ϵ .

Uzmimo $n_0 \in \mathbb{N}$ takav da je $n\epsilon > a$. Ako je a > 1, onda je i $\sqrt[n]{a} > 1$. Sada slično kao u rješenju zadatka 229 imamo da za sve prirodne $n \ge n_0$ vrijedi

$$a = (1 + (\sqrt[n]{a} - 1))^n \ge 1 + n(\sqrt[n]{a} - 1) > n(\sqrt[n]{a} - 1).$$

Dijeljenjem s n dobivamo da vrijedi $\sqrt[n]{a} - 1 < \frac{a}{n} < \epsilon$, što smo i tvrdili.

Ispitivanje konvergencije niza koristeći definiciju limesa niza ima nekoliko mana – kako bi uopće mogli dokazati da niz konvergira, trebamo biti bar u stanju naslutiti koji je njegov limes, što nije uvijek jednostavno. Nadalje, čak i ako znamo što bi limes trebao biti, dokazati da je to zaista limes nije uvijek jednostavno. Radi toga ćemo u nastavku pokazati nekoliko rezultata koji nam olakšavaju traženje limesa i ispitivanje konvergencije niza.

5.2 Osnovne operacije s konvergentnim nizovima. Kriteriji konvergencije niza

Napomena 49 (Osnovne operacije s konvergentnim nizovima). Neka su (a_n) i (b_n) konvergentni nizovi realnih brojeva. Vrijedi sljedeće:

- Niz $(a_n \pm b_n)$ je konvergentan i vrijedi $\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$,
- Niz $(a_n \cdot b_n)$ je konvergentan i vrijedi $\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$,

 $^{^1}$ Vrijedi i sljedeća općenitija verzija Arhimedova aksioma: Neka je a>0 i $b\in\mathbb{R}.$ Tada postoji $n\in\mathbb{N}$ takav da je na>b. Njome se koristimo na ovom mjestu.

- Ako za sve $n \in \mathbb{N}$ vrijedi $b_n \neq 0$ i $\lim_{n \to \infty} b_n \neq 0$, onda je niz $\left(\frac{a_n}{b_n}\right)$ konvergentan i vrijedi $\lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$,
- Niz $(|a_n|)$ je konvergentan i vrijedi $\lim_{n\to\infty} |a_n| = \left|\lim_{n\to\infty} a_n\right|$.

Napomena 49 nam znatno olakšava traženje limesa. Pokažimo to kroz nekoliko zadataka.

Zadatak 231. Odredite $\lim_{n\to\infty} \frac{1+\frac{1}{n}}{n+\frac{2}{n}}$.

 $Rje\check{s}enje$. Kako su $n\mapsto 1$ i $n\mapsto \frac{1}{n}$ konvergentni nizovi i vrijedi $\lim_{n\to\infty}1=1,\ \lim_{n\to\infty}\frac{1}{n}=0$ slijedi da je $n\mapsto 1+\frac{1}{n}$ konvergentan i

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = 1.$$

Nadalje, vrijedi $\lim_{n\to\infty}\left(n+\frac{2}{n}\right)=\infty$, jer je $n+\frac{2}{n}>n$, te $\lim_{n\to\infty}n=\infty$. Sada iz zadatka 225 (ali i iz napomene 49) slijedi da je

$$\lim_{n \to \infty} n \mapsto \frac{1}{n + \frac{2}{n}} = 0,$$

pa je limes početnog niza jednak0.

Zadatak 232. Odredite $\lim_{n\to\infty}\frac{n^2+3n+4}{n^2+3}$.

Rješenje. Vrijedi

$$\frac{n^2 + 3n + 4}{n^2 + 3} = \frac{n^2 + 3n + 4}{n^2 + 3} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \frac{1 + \frac{3}{n} + \frac{4}{n^2}}{1 + \frac{3}{n^2}},$$

te kako su $n\mapsto 1+\frac{3}{n^2}$ i $n\mapsto 1+\frac{3}{n}+\frac{4}{n^2}$ konvergentni nizovi čiji je limes 1, slijedi da je limes početnog niza također 1.

Napomena 50.

• Neka je $q \in \mathbb{R}$. Vrijedi

$$\lim_{n \to \infty} q^n = \begin{cases} 0, & |q| < 1, \\ 1, & q = 1, \\ \infty, & q > 1, \\ \text{ne postoji}, & q \le -1. \end{cases}$$

• Neka je a > 0. Vrijedi

$$\lim_{n \to \infty} \sqrt[n]{n} = 1, \lim_{n \to \infty} \sqrt[n]{a} = 1.$$

• Neka je a > 1 i m > 0. Vrijedi

$$\lim_{n \to \infty} \frac{a^n}{n!} = 0, \quad \lim_{n \to \infty} \frac{n^m}{a^n} = 0.$$

Zadatak 233. Odredite sljedeće limese.

a)
$$\lim_{n \to \infty} \frac{2^n + n}{5^n + 1},$$

b)
$$\lim_{n \to \infty} \frac{2^n (2n^3 + 1) + 3^n (n^3 + n)}{3^n (2n^3 + 1)},$$

c)
$$\lim_{n\to\infty} \frac{n^m}{n!}$$
 (gdje je $m>0$).

Rješenje. a) Koristeći napomenu 50, imamo

$$\lim_{n \to \infty} \frac{2^n + n}{5^n + 1} = \lim_{n \to \infty} \frac{\left(\frac{2}{5}\right)^n + \frac{n}{5^n}}{1 + \frac{1}{5^n}} = \frac{\lim_{n \to \infty} \left(\frac{2}{5}\right)^n + \lim_{n \to \infty} \frac{n}{5^n}}{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{5^n}} = \frac{0 + 0}{1} = 0.$$

b) Dijeljenjem s $3^n \cdot n^3$ dobivamo

$$\lim_{n \to \infty} \frac{2^n (2n^3 + 1) + 3^n (n^3 + n)}{3^n (2n^3 + 1)} = \lim_{n \to \infty} \frac{\left(\frac{2}{3}\right)^n \left(2 + \frac{1}{n^3}\right) + 1 + \frac{1}{n^2}}{2 + \frac{1}{n^3}} = \frac{1}{2}.$$

c) Vrijedi

$$\lim_{n \to \infty} \frac{n^m}{n!} = \lim_{n \to \infty} \frac{n^m}{a^n} \cdot \frac{a^n}{n!} = 0.$$

Zadatak 234. Odredite $\lim_{n\to\infty} \left(\frac{1}{2} + \frac{3}{2^2} + \frac{5}{2^3} + \dots + \frac{2n-1}{2^n}\right)$.

Rješenje. Neka je

$$S_n := \frac{1}{2} + \frac{3}{2^2} + \frac{5}{2^3} + \dots + \frac{2n-1}{2^n}.$$

Vrijedi

$$\frac{1}{2}S_n = \frac{1}{2^2} + \frac{3}{2^3} + \frac{5}{2^4} + \dots + \frac{2n-3}{2^n} + \frac{2n-1}{2^{n+1}},$$

pa imamo

$$S_n - \frac{1}{2}S_n = \frac{1}{2}S_n = \frac{1}{2} + \frac{2}{2^2} + \frac{2}{2^3} + \dots + \frac{2}{2^n} - \frac{2n-1}{2^{n+1}}$$
$$= \frac{1}{2} + \left(\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}}\right) - \frac{2n-1}{2^{n+1}}.$$

Korištenjem (5.2), imamo

$$\frac{1}{2} + \frac{1}{2} \cdot \frac{1 - \frac{1}{2^{n-1}}}{1 - \frac{1}{2}} - \frac{2n - 1}{2^{n+1}} = \frac{3}{2} - \frac{1}{2^{n-1}} - \frac{2n}{2^{n+1}} + \frac{1}{2^{n+1}}.$$

Odavde direktno slijedi $\lim_{n\to\infty}\frac{1}{2}S_n=\frac{3}{2}$. Kako je niz $n\mapsto 2$ konvergentan s limesom u 2, vrijedi

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} 2 \cdot \frac{1}{2} S_n = \lim_{n \to \infty} 2 \cdot \lim_{n \to \infty} \frac{1}{2} S_n = 2 \cdot \frac{3}{2} = 3.$$

Napomena 51 (Limes čuva uređaj). Neka su (a_n) i (b_n) konvergentni nizovi realnih brojeva, te $n_0 \in \mathbb{N}$. Ako je $a_n \leq b_n$ za sve prirodne $n \geq n_0$, onda je $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$.

Napomena 52 (Kriterij sendviča). Neka su (a_n) i (b_n) konvergentni nizovi realnih brojeva, te $n_0 \in \mathbb{N}$. Neka je (c_n) niz realnih brojeva takav da vrijedi $a_n \leq c_n \leq b_n$ za sve prirodne $n \geq n_0$ i $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = c$. Tada je (c_n) konvergentan niz i vrijedi $\lim_{n \to \infty} c_n = b$.

Zadatak 235. Odredite sljedeće limese, ako postoje.

a)
$$\lim_{n \to \infty} \frac{1}{n2^n}$$
,

b)
$$\lim_{n \to \infty} \frac{\sin n}{n}$$
,

c)
$$\lim_{n \to \infty} \sqrt[n]{4^n + 5^n + 6^n}$$

 $Rje\check{s}enje$. a) Uočimo da za sve $n \in \mathbb{N}$ vrijedi

$$0 \le \frac{1}{n2^n} \le \frac{1}{2^n},$$

te kako je $\lim_{n\to\infty} 0 = 0$, te $\lim_{n\to\infty} \frac{1}{2^n} = 0$, iz kriterija sendviča imamo $\lim_{n\to\infty} \frac{1}{n2^n} = 0$.

b) Za sve $n \in \mathbb{N}$ vrijedi

$$-\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n},$$

te vrijedi $\lim_{n\to\infty}\frac{1}{n}=0$ i $\lim_{n\to\infty}-\frac{1}{n}=0$, pa iz kriterija sendviča dobivamo $\lim_{n\to\infty}\frac{\sin n}{n}=1$.

c) Vrijedi

$$\sqrt[n]{4^n + 5^n + 6^n} < \sqrt[n]{3 \cdot 6^n} = 6 \cdot \sqrt[n]{3}$$

i vrijedi

$$\lim_{n \to \infty} 6 \cdot \sqrt[n]{3} = \lim_{n \to \infty} 6 \cdot \lim_{n \to \infty} \sqrt[n]{3} = 6.$$

S druge strane, imamo

$$\sqrt[n]{4^n + 5^n + 6^n} \ge \sqrt[n]{6^n} = 6,$$

te očito vrijedi $\lim_{n\to\infty} 6=6$. Sada iz kriterija sendviča slijedi da je

$$\lim_{n \to \infty} \sqrt[n]{4^n + 5^n + 6^n} = 0.$$

Zadatak 236. Dokažite da je $\lim_{n\to\infty} \frac{n}{2^n} = 0$.

Rješenje. Tvrdnju ćemo dokazati na dva načina.

Prvi način. Prema binomnom teoremu vrijedi

$$0 < \frac{n}{2^n} = \frac{n}{(1+1)^n} = \frac{n}{1+n+\frac{n(n-1)}{2}+\dots+1} < \frac{n}{\frac{n(n-1)}{2}} = \frac{2}{n-1},$$

pa iz kriterija sendviča dobivamo $\lim_{n\to\infty}\frac{n}{2^n}=0,$ što smo i tvrdili.

 $Drugi\ na\check{c}in$. Neka je $\epsilon>0$. Prema Arhimedovu aksiomu postoji $l\in\mathbb{N}$ takav da je $l\epsilon>1$. Neka je $n_0=\max\{l,5\}$. Vrijedi

$$n_0\epsilon \geq l\epsilon > 1$$
,

dakle $n_0 \epsilon > 1$. No i za sve $m \in \mathbb{N}$, $m \ge 5$ vrijedi $m < \frac{2^m}{m}$, što se lako pokazuje indukcijom.

Stoga za sve prirodne $n \geq n_0$ vrijedi $\frac{2^n}{n} \epsilon > 1$, odakle imamo

$$\frac{n}{2^n} = \left| \frac{n}{2^n} \right| < \epsilon,$$

što smo i htjeli pokazati.

Napomena 53.

• Ako je niz (a_n) rastući i ograničen odozgo, on je konvergentan i vrijedi

$$\lim_{n \to \infty} a_n = \sup \{ a_n : n \in \mathbb{N} \},\,$$

• Ako je niz (a_n) padajući i ograničen odozdo, on je konvergentan i vrijedi

$$\lim_{n \to \infty} a_n = \inf \{ a_n : n \in \mathbb{N} \}.$$

Zadatak 237. Dokažite da je niz (a_n) , $a_n = \frac{1}{\sinh n}$ konvergentan.

Rješenje. Uočimo da za sve $n \in \mathbb{N}$ vrijedi $a_n \geq 0$. Uočimo da je niz (b_n) , $b_n = \operatorname{sh} n$ strogo rastuća funkcija. Zaista, funkcije

$$f_1, f_2, f_3 : \mathbb{N} \to \mathbb{R}, \quad f_1(n) = \frac{n}{2}, \quad f_2(n) = n - \frac{1}{n}, \quad f_3(n) = e^n$$

su sve strogo rastuće i niz (b_n) je jednak $f_3 \circ f_2 \circ f_1$, dakle kao kompozicija strogo rastućih funkcija je i sam strogo rastuća funkcija. Odavde slijedi da za sve $n, m \in \mathbb{N}$ vrijedi da n < m povlači $b_n < b_m$, pa specijalno vrijedi $b_n < b_{n+1}$ za sve $n \in \mathbb{N}$, što smo i tvrdili.

Nadalje, tvrdimo da je niz (a_n) strogo padajući. Zaista, za sve $n \in \mathbb{N}$ vrijedi sh $(n+1) > \operatorname{sh} n$, odakle dobivamo $\frac{1}{\operatorname{sh} n} > \frac{1}{\operatorname{sh}(n+1)}$, što smo i tvrdili.

Zadatak 238. Dokažite da je niz (a_n) , $a_n = \frac{1}{n^2 - 6n + 10}$ konvergentan.

Rješenje. Vrijedi

$$\frac{1}{n^2 - 6n + 10} = \frac{1}{(n-3)^2 + 1} > 0.$$

Nadalje, nije teško dokazati da $n\mapsto (n-3)^2+1$ pada za $n\le 3$, te raste za $n\ge 3$. Slijedi da $n\mapsto \frac{1}{(n-3)^2+1}$ raste za $n\le 3$ i pada za $n\ge 3$.

Budući da ste na predavanju (v. [3]) pokazali da ako nizu promijenimo prvih k članova, da to ne utječe na njegov limes, to možemo napraviti i ovdje i to tako da dobijemo monoton niz s istim limesom kao i početan niz. Uzmimo npr. niz (a_n) zadan na sljedeći način:

$$a_n = \begin{cases} 8, & n = 1, \\ 6, & n = 2, \\ \frac{1}{(n-3)^2 + 1}, & n \ge 3. \end{cases}$$

Niz (a_n) će ograničen odozdo s 0 i padajući, pa je stoga konvergentan, što povlači i da je početan niz konvergentan.

Napomena 54. Iz zadatka 238 daje se naslutiti sljedeće: Ako za niz (a_n) postoje $M \in \mathbb{R}$ i $n_0 \in \mathbb{N}$ takvi da za sve prirodne $n \geq n_0$ vrijedi $a_n \leq M$ i $a_n \leq a_{n+1}$, onda je on konvergentan. Analogno, ako postoje $m \in \mathbb{R}$ i $n_1 \in \mathbb{N}$ takvi da za sve prirodne $n \geq n_1$ vrijedi $a_n \geq m$ i $a_n \geq a_{n+1}$. Ovo nije teško i dokazati.

Zadatak 239. Neka je $A = \left\{ \frac{1}{\sqrt{n+3} + n} : n \in \mathbb{N} \right\}$. Odredite inf A i sup A.

Rješenje. Definiramo niz (a_n) , $a_n=\frac{1}{\sqrt{n+3}+n}$. Očito je $a_n\geq 0$ za sve $n\in\mathbb{N}$. Uočimo sada da je za sve $n\in\mathbb{N}$

$$\frac{1}{\sqrt{n+3}+n} \ge \frac{1}{\sqrt{n+4}+n+1},$$

pa je (a_n) strogo padajući. Nadalje,

$$\lim_{n \to \infty} \frac{1}{\sqrt{n+3} + n} = \frac{\frac{1}{n}}{\sqrt{\frac{1}{n} + \frac{3}{n^2} + 1}} = 0,$$

pa iz napomene 53 slijedi inf A=0. Konačno, za sve $n\in\mathbb{N}$ vrijedi

$$\frac{1}{\sqrt{n+3}+n} \le \frac{1}{\sqrt{1+3}+1} = \frac{1}{3},$$

pa je sup $A = \max A = \frac{1}{3}$.

Zadatak 240. Neka je (a_n) rastući niz. Dokažite: Ako (a_n) ne divergira u ∞ , onda je on konvergentan i odozgo omeđen.

Dokaz. Po definiciji, postoji M > 0 takav da za svaki $n_0 \in \mathbb{N}$ postoji $n \in \mathbb{N}$, $n \geq n_0$ takav da je $a_n \leq M$. Neka je $m \in \mathbb{N}$ proizvoljan. Tada postoji $m' \geq m$ takav da je $a_{m'} \leq M$, no tada vrijedi i $a_m \leq M$, jer je niz rastući (v. a) dio zadatka 259). Time smo dokazali da je niz odozgo omeđen, pa kako je rastući, on je i konvergentan.

5.3 Podniz. Nizovi zadani rekurzivno. Limesi složenijih nizova

Definicija 39. Za niz $b: \mathbb{N} \to S$ kažemo da je **podniz** niza $a: \mathbb{N} \to S$ ako postoji strogo rastući niz prirodnih brojeva $p: \mathbb{N} \to \mathbb{N}$ takav da je $b=a \circ p$. Za podniz (b_n) niza (a_n) pišemo $b_n=b(n)=a(p(n))=a_{p_n}$, pa podniz označavamo i sa (a_{p_n}) .

Napomena 55. Neka je (a_n) konvergentan niz realnih brojeva i (a_{p_n}) neki njegov podniz. Tada je (a_{p_n}) konvergentan i ima isti limes kao i (a_n) .

Zadatak 241. Ispitajte je li niz (a_n) , $a_n = (-1)^n + \frac{1}{n}$ konvergentan, te ako je, odredite mu limes.

 $Rje\check{s}enje$. Tvrdimo da je (a_n) divergentan. Zaista, pretpostavimo da je on konvergentan. Promotrimo podnizove (a_{2n}) i (a_{2n-1}) . Vrijedi

$$a_{2n} = 1 + \frac{1}{2n}, \ a_{2n-1} = -1 + \frac{1}{2n-1}.$$

Odavde slijedi $\lim_{n\to\infty} a_{2n} = 1$ i $\lim_{n\to\infty} a_{2n-1} = -1$, kontradikcija s činjenicom da je $\lim_{n\to\infty} a_{2n-1} = \lim_{n\to\infty} a_{2n} = \lim_{n\to\infty} a_n$.

Zadatak 242. Neka je (a_n) konvergentan niz takav da je $a_n \neq 0$ za sve $n \in \mathbb{N}$. Konvergira li općenito niz $\left(\frac{a_{n+1}}{a_n}\right)$? Za one (a_n) za koje konvergira, što sve može biti limes tog niza?

Rješenje. Neka je $\lim_{n\to\infty} a_n \neq 0$. Kako je (a_{n+1}) podniz od (a_n) , vrijedi $\lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} a_n$, pa je

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{a}{a} = 1. \tag{5.6}$$

Općenito, tvrdimo da $\left(\frac{a_{n+1}}{a_n}\right)$ ne mora konvergirati. Zaista, uzmimo $a_n = \frac{\frac{1}{2} + (-1)^n}{n}$. Tada

je

$$\frac{a_{n+1}}{a_n} = \frac{\frac{\frac{1}{2} + (-1)^{n+1}}{n+1}}{\frac{\frac{1}{2} + (-1)^n}{n}} = \frac{\left(2(-1)^{n+1} + 1\right)n}{(n+1)\left(2(-1)^n + 1\right)}$$

Definiramo niz (b_n) , $b_n = \frac{a_{n+1}}{a_n}$. Vidimo da je

$$\lim_{n \to \infty} b_{2n} = \lim_{n \to \infty} -\frac{2}{3} \cdot \frac{n}{n+1} = -\frac{2}{3} \cdot \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = -\frac{2}{3}$$

i slično dobivamo $\lim_{n\to\infty} b_{2n+1} = -3$. Dakle, pokazali smo da za niz (a_n) , $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ ne postoji.

Pretpostavimo sada da $\left(\frac{a_{n+1}}{a_n}\right)$ konvergira ili divergira u ∞ ili $-\infty$. Neka je $S \subseteq \mathbb{R} \cup \{-\infty,\infty\}$ skup svih mogućih limesa niza $\left(\frac{a_{n+1}}{a_n}\right)$. Tvrdimo da je S = [-1,1].

Dokažimo da je $[-1,1]\subseteq S$. Uzmimo zato da je $\lim_{n\to\infty}a_n\neq 0$. Lako se provjeri sljedeće:

- $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q$ za $a_n = q^n$, gdje je $q \in \langle -1, 1 \rangle \setminus \{0\}$,
- $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = -1 \text{ za } a_n = (-1)^n \frac{1}{n},$
- $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 0 \text{ za } a_n = \frac{1}{n!}.$

Pretpostavimo sada da je $S \notin [-1,1]$. Tada postoji $a \in S$ takav da je

$$a \in \langle 1, \infty \rangle \cup \langle -\infty, -1 \rangle \cup \{-\infty, \infty\} \quad \text{i} \quad \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = a.$$

Tvrdimo:

- a) Vrijedi $\lim_{n\to\infty} a_n = 0$.
- b) Postoji $n_0 \in \mathbb{N}$ takav da za sve prirodne $n > m \ge n_0$ vrijedi $|a_n| > |a_m|$.
- a) je očigledno pretpostavimo li da je $\lim_{n\to\infty} a_n \neq 0$, onda je zbog (5.6) a=1, što je kontradikcija s pretpostavkom.

Dokažimo b). Ako je npr. $a \in \langle 1, \infty \rangle$, onda postoji $m_0 \in \mathbb{N}$ takav da za sve prirodne $m \geq m_0$

vrijedi

$$\left| \frac{a_{m+1}}{a_m} - a \right| < \frac{a-1}{2},$$

odakle specijalno imamo

$$\frac{a_{m+1}}{a_m} - a > -\frac{a-1}{2}$$
, odnosno $\frac{a_{m+1}}{a_m} > 1$.

Kako je $\frac{a_{m+1}}{a_m} = \left| \frac{a_{m+1}}{a_m} \right|$, slijedi $|a_{m+1}| > |a_m|$ za sve $m \ge m_0$. Odavde lako slijedi da je $|a_n| > |a_m|$ za sve $n > m \ge n_0$. Tvrdnja se analogno pokazuje za $a \in \langle -\infty, -1 \rangle$.

Ako je $a = \infty$, onda postoji $n_0 \in \mathbb{N}$ takav da za sve prirodne $n \ge n_0$ vrijedi $\frac{a_{n+1}}{a_n} > 1$, tj. $|a_{n+1}| > |a_n|$, odakle slijedi tvrdnja. Dokaz je analogan u slučaju $a = -\infty$.

Odaberimo sada proizvoljan $n_0 \in \mathbb{N}$ takav da za sve prirodne $n > m \ge n_0$ vrijedi $|a_n| > |a_m|$. Znamo da postoji $p_0 \in \mathbb{N}$ takav da za sve prirodne $p \ge p_0$ vrijedi $|a_p| < |a_{n_0}|$. Neka je sada $q_0 = \max\{n_0, p_0\}$. Tada zbog $q_0 \ge n_0$ imamo $|a_{q_0}| \ge |a_{n_0}|$, a zbog $q_0 \ge p_0$ imamo da za $p = q_0$ vrijedi $|a_{q_0}| < |a_{n_0}|$. Kontradikcija!

Ovime smo pokazali da je S = [-1, 1], što smo i tvrdili.

Zadatak 243. Odredite sve $a \in \mathbb{R}$ takve da niz (a_n) zadan formulom

$$a_n = \left(1 + a + \frac{a}{n}\right) \sin\frac{n\pi}{2}$$

bude konvergentan.

 $Rje\check{s}enje$. Promotrimo sljedeće podnizove od (a_n) :

$$a_{4n} = 0$$
, $a_{4n-1} = -1 - a - \frac{a}{4n-1}$, $a_{4n-2} = 0$, $a_{4n-3} = 1 + a + \frac{a}{4n-3}$.

Da bi niz bio konvergentan, svaki podniz mora konvergirati k istom limesu (a to je 0), pa je jedini potencijalni kandidat a=-1. U tom slučaju je $a_n=-\frac{1}{n}\sin\frac{n\pi}{2}$. Vrijedi

$$0 \le \left| -\frac{1}{n} \sin \frac{n\pi}{2} \right| = \frac{1}{n} \left| \sin \frac{n\pi}{2} \right| \le \frac{1}{n},$$

pa po kriteriju sendviča slijedi da je $\lim_{n\to\infty}|a_n|=0$, odakle imamo i $\lim_{n\to\infty}a_n=0$ (v. b) dio zadatka 259).

Nizove možemo zadati i rekurzivno. Intuitivno, nizovi zadani rekurzivno su oni nizovi definirani pomoću jednog ili više početnih članova i pomoću jednog ili više prethodnih članova. Npr. niz $a_1 = 1$ i $a_n = a_{n-1} + 1$ za n > 1 je niz (a_n) , $a_n = n$ zadan rekurzivno. Precizirajmo! Napomena 56 (Princip definicije indukcijom). Neka je $n \in \mathbb{N}$ proizvoljan i neka je zadana funkcija $\phi_n : \mathbb{R}^n \to \mathbb{R}$ i neka je $x_0 \in \mathbb{R}$. Tada postoji jedinstveni niz (a_n) takav da je

$$a_1 = x_0,$$

 $a_{n+1} = \phi_n(f(1), f(2), \dots, f(n)), \forall n \in \mathbb{N}.$

i kažemo da je taj niz zadan rekurzivno.

Dokaz principa definicije indukcijom možete pronaći u [9], str. 44.

U nastavku ćemo vidjeti da je zapisivanje konvergentnih nizova u ovakvom obliku često pogodno za izračunavanje njihovih limesa.

Zadatak 244. Niz (a_n) je zadan rekurzivno uvjetima $a_1 = 0$ i $a_{n+1} = \frac{a_n^2 + 1}{2}$. Ispitajte je li (a_n) konvergentan i ako je, odredite mu limes.

 $Rje\check{s}enje$. Dokažimo da je (a_n) konvergentan. Zaista, on je rastući, jer je

$$\frac{a_n^2 + 1}{2} \ge a_n,$$

što vrijedi, budući da je ta tvrdnja ekvivalentna s tvrdnjom $a_n^2 - 2a_n + 1 = (a_n - 1)^2 \ge 0$.

Izračunavanjem velikih vrijednosti naslućujemo da je (a_n) odozgo ograničen s 1. Zaista, dokažimo to indukcijom. Za a_1 tvrdnja očito vrijedi. Pretpostavimo da vrijedi $a_n \leq 1$. Vrijedi i $a_n \geq 0$ zbog činjenice da je (a_n) rastući, što povlači $a_n^2 \leq 1$, odnosno $\frac{a_n^2+1}{2} \leq 1$. Time smo dokazali konvergenciju.

Neka je L limes niza (a_n) . Kako je (a_{n+1}) podniz od (a_n) , vrijedi $\lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} a_n$, odakle slijedi

$$\lim_{n \to \infty} \frac{a_n^2 + 1}{2} = L, \text{ tj. } \frac{L^2 + 1}{2} = L.$$

No posljednje je ekvivalentno s $(L-1)^2=0$, odnosno L=1. Dakle, limes niza (a_n) je 1. \square

Zadatak 245. Niz (a_n) je zadan rekurzivno uvjetima $a_1 = 3$ i $a_{n+1} = \frac{1}{2} \left(a_n + \frac{3}{a_n} \right)$. Ispitajte je li (a_n) konvergentan i ako je, odredite mu limes.

 $Rje\check{s}enje$. Lako se indukcijom pokazuje da je $a_n > \sqrt{3}$ za sve $n \in \mathbb{N}$. Naime, za n = 1 tvrdnja je trivijalna. Pretpostavimo da tvrdnja vrijedi za n. Vrijedi

$$\frac{1}{2}\left(a_n + \frac{3}{a_n}\right) > \sqrt{3} \Leftrightarrow \frac{(a_n - \sqrt{3})^2}{a_n} > 0.$$

Međutim, $a_n > \sqrt{3}$ povlači $(a_n - \sqrt{3})^2 > 0$, što povlači $\frac{(a_n - \sqrt{3})^2}{a_n} > 0$, pa je korak indukcije dokazan.

Pokažimo da za sve $n \in \mathbb{N}$ vrijedi

$$\frac{1}{2}\left(a_n + \frac{3}{a_n}\right) < a_n.$$

Kako je $a_n > 0$ za sve $n \in \mathbb{N}$, gornje je ekvivalentno tvrdnji $a_n^2 > 3$, tj. $a_n > \sqrt{3}$, što je već dokazano. Dakle, niz (a_n) konvergira.

Neka je L limes niza (a_n) . Analogno kao u prethodnom zadatku, imamo da vrijedi

$$L = \frac{1}{2} \left(L + \frac{3}{L} \right).$$

No to vrijedi ako i samo ako je $L = \sqrt{3}$ ili $L = -\sqrt{3}$. Kako vrijedi $a_n > \sqrt{3}$ za sve $n \in \mathbb{N}$, intuitivno zaključujemo da $-\sqrt{3}$ ne može biti limes niza (a_n) .

Da bismo to dokazali, trebamo se pozvati na činjenicu da za sve odozdo ograničene nizove (b_n) vrijedi

$$\inf\{b_n: n \in \mathbb{N}\} \le \lim_{n \to \infty} b_n,$$

što zapravo dobivamo primjenom napomene 51 na nizove $n \to \inf\{b_n : n \in \mathbb{N}\}$ i (b_n) . U našem slučaju imamo

$$\sqrt{3} \le \inf a_n \le \lim_{n \to \infty} a_n$$

čime smo dokazali da $-\sqrt{3}$ nije limes, što znači da to mora biti $\sqrt{3}$.

Zadatak 246. Neka je a > 1. Dokažite da je $\lim_{n \to \infty} \frac{a^n}{n!} = 0$.

Rješenje. Primijetimo da vrijedi

$$a_1 = a$$
, $a_{n+1} = \frac{a}{n+1}a_n$.

Time je zapravo dana karakterizacija početnog niza, jer je svaki niz zadan rekurzivno jedins-

tven. Dokažimo sada da (a_n) konvergira! Očito je $\frac{a^n}{n!} \geq 0$.

Prema Arhimedovu aksiomu postoji $n_0 \in \mathbb{N}$ takav da je $n_0 > a.$ Tada za $n \geq n_0 > a$ vrijedi

$$\frac{a}{n+1} < 1 \Leftrightarrow n > a-1,$$

a n>a-1 je istinito, jer je $n\geq n_0>a>a-1$. Sada konvergencija niza (a_n) slijedi iz napomene 54. Ako je $\lim_{n\to\infty}a_n=L$, imamo $L=0\cdot L=0$, čime smo dokazali tvrdnju. \square

Za zadatak 248 bit će nam korisna sljedeća pomoćna tvrdnja.

Zadatak 247. Neka je (a_n) niz realnih brojeva i $c \in \mathbb{R}$. Ako je $\lim_{n \to \infty} a_{2n} = c$ i $\lim_{n \to \infty} a_{2n-1} = c$, onda je $\lim_{n \to \infty} a_n = c$.

 $Rje\check{s}enje.$ Neka je $\epsilon>0$ proizvoljan. Tada postoje $n_0,\ l_0\in\mathbb{N}$ takvi da za sve prirodne $n\geq n_0$ i $l\geq l_0$ vrijedi

$$|a_{2n} - c| < \epsilon$$
 i $|a_{2l-1} - c| < \epsilon$.

Neka je $N_0 = 2 \max\{n_0, l_0\}$ i neka je $N \geq N_0$ proizvoljan prirodan broj. Tada vrijedi ili N = 2q ili N = 2q - 1, gdje je $q \in \mathbb{N}$. Ako je N = 2q, onda vrijedi $2q \geq 2 \max\{n_0, l_0\}$, što povlači $q \geq \max\{n_0, l_0\}$, što prema pretpostavci daje $|a_N - c| < \epsilon$.

Ako je N=2q-1, dobivamo $q\geq \max\{n_0,\ l_0\}+\frac{1}{2}>\max\{n_0,l_0\}$, što također daje $|a_N-c|<\epsilon$.

Zadatak 248. Niz (a_n) je zadan rekurzivno uvjetima $a_1 = -4$, $a_{n+1} = -2 + \frac{1}{1+a_n}$, za sve $n \in \mathbb{N}$. Ispitajte je li (a_n) konvergentan i ako je, odredite mu limes.

 $Rje\check{s}enje$. Pogledajmo čemu bi bio jednak $\lim_{n\to\infty}a_n$ kada bi (a_n) konvergirao. Vrijedilo bi

$$L = -2 + \frac{1}{1+L},$$

pa bi rješavanjem dobili $L_1 = \frac{-3 + \sqrt{5}}{2}$, $L_2 = \frac{-3 - \sqrt{5}}{2}$. Tvrdimo da je $\lim_{n \to \infty} a_n = L_2$. Za sve $n \in \mathbb{N}$ vrijedi

$$a_{n+2} = -2 + \frac{1}{1 + \left(-2 + \frac{1}{1 + a_n}\right)} = -2 + \frac{1}{\frac{-a_n}{1 + a_n}} = -3 - \frac{1}{a_n},$$

odakle dobivamo

$$a_{2(n+1)} = a_{2n+2} = -3 - \frac{1}{a_{2n}}, \ a_{2(n+1)-1} = a_{2n+1} = a_{(2n-1)+2} = -3 - \frac{1}{a_{2n-1}}.$$

Tvrdimo da je $a_{2n} > L_2$ za sve $n \in \mathbb{N}$. Zaista, za n = 1 imamo $a_2 = -\frac{7}{3} > L_2$, a pretpostavimo li da tvrdnja vrijedi za n, onda je

$$-3 - \frac{1}{a_n} > -3 - \frac{1}{L_2} = L_2.$$

Analogno se vidi i da je $a_{2n} < L_1$ za sve $n \in \mathbb{N}$.

Dokažimo da je (a_{2n}) padajući. Treba dokazati da za sve $n \in \mathbb{N}$ vrijedi

$$a_{2n} \ge -3 - \frac{1}{a_{2n}},$$

što je ekvivalentno nejednadžbi $a_{2n}^2 + 3a_{2n} + 1 \ge 0$, koja je ekvivalentna tvrdnji $L_2 \le a_{2n} \le L_1$, što znamo da vrijedi.

Vrlo slično se dokazuje da je (a_{2n-1}) rastući i odozgo ograničen s L_2 . Dakle, (a_{2n}) i (a_{2n-1}) su konvergentni. Rješavanjem jednadžbe

$$L' = -3 - \frac{1}{L'}$$

dobivamo $L_1' = L_1$ i $L_2' = L_2$. No L_1 ne može biti limes, jer je $L_1 > -\frac{7}{3}$, a $\frac{7}{3}$ je gornja međa oba niza. Zato je $\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} a_{2n-1} = L_2$, pa je po zadatku 247 (a_n) konvergentan i vrijedi $\lim_{n \to \infty} a_n = L_2$.

U zadatku 248 vidjeli smo da možemo upotrijebiti napomenu 55 i u slučajevima kad nismo još dokazali da je niz konvergentan. Pokažimo još jednu takvu situaciju.

Zadatak 249. Zadan je niz (a_n) . Definiramo niz (b_n) , $b_1 = 0$, $b_n = a_n + 2a_{n+1}$ za $n \ge 1$. Dokažite: Ako (b_n) konvergira, onda konvergira i (a_n) .

Dokaz. Neka je $a = \lim_{n \to \infty} b_n$. Ako (a_n) konvergira s limesom u a', onda je a = a' + 2a', tj. vrijedi $a' = \frac{a}{3}$. Dakle, trebamo dokazati da (a_n) konvergira s limesom u $\frac{a}{3}$.

Neka je $\epsilon>0$ proizvoljan. Tada postoji $n_0\in\mathbb{N}\setminus\{1\}$ takav da za sve $n\geq n_0$ vrijedi

$$\frac{\epsilon}{2} > |a_{n-1} + 2a_n - a| = \left| 2\left(a_n - \frac{a}{3}\right) + a_{n-1} - \frac{a}{3} \right|,$$
 (5.7)

pa zbog činjenice da za sve $x,y\in\mathbb{R}$ vrijedi $||x|-|y||\leq |x-y|,$ odakle slijedi $|x|-|y|=|x|-|-y|\leq |x+y|,$ vrijedi

$$\left| 2\left(a_n - \frac{a}{3}\right) + a_{n-1} - \frac{a}{3} \right| \ge 2\left|a_n - \frac{a}{3}\right| - \left|a_{n-1} - \frac{a}{3}\right|,$$

odnosno

$$\left| a_n - \frac{a}{3} \right| < \frac{\epsilon}{4} + \frac{1}{2} \left| a_{n-1} - \frac{a}{3} \right|.$$

Tada za sve $m \in \mathbb{N}$ vrijedi

$$\left| a_{n+m} - \frac{a}{3} \right| < \frac{\epsilon}{4} + \frac{1}{2} \left| a_{n+m-1} - \frac{a}{3} \right| < \frac{\epsilon}{4} + \frac{1}{2} \left| \frac{\epsilon}{4} + \frac{1}{2} \left| a_{n+m-1} - \frac{a}{3} \right| \right|$$

$$= \frac{\epsilon}{4} + \frac{1}{2} \cdot \frac{\epsilon}{4} + \frac{1}{4} \left| a_{n+m-1} - \frac{a}{3} \right| = \dots = \frac{\epsilon}{4} \sum_{k=0}^{m} \frac{1}{2^m} + \frac{1}{2^{m+1}} \left| a_{n-1} - \frac{a}{3} \right|.$$

Uočimo da je

$$\sum_{k=0}^{m} \frac{1}{2^m} = 2\left(1 - \frac{1}{2^n}\right) < 2.$$

Zato je

$$\left| a_{n+m} - \frac{a}{3} \right| < \frac{\epsilon}{4} \sum_{k=0}^{m} \frac{1}{2^m} + \frac{1}{2^{m+1}} \left| a_{n-1} - \frac{a}{3} \right| < \frac{\epsilon}{2} + \frac{1}{2^{m+1}} \left| a_{n-1} - \frac{a}{3} \right|. \tag{5.8}$$

Prema Arhimedovu aksiomu, postoji $m_0 \in \mathbb{N}$ takav da je $m_0 \cdot \frac{\epsilon}{2} > \left| a_{n-1} - \frac{a}{3} \right|$. Tada za sve $m \ge m_0$ vrijedi

$$\left| a_{n-1} - \frac{a}{3} \right| < m_0 \cdot \frac{\epsilon}{2} < (m_0 + 1) \cdot \frac{\epsilon}{2} < 2^{m_0 + 1} \cdot \frac{\epsilon}{2} < 2^{m+1} \cdot \frac{\epsilon}{2},$$

odnosno

$$\frac{1}{2^{m+1}} \left| a_{n-1} - \frac{a}{3} \right| < \frac{\epsilon}{2}. \tag{5.9}$$

Sada iz (5.7), (5.8) i (5.9) slijedi da za sve $n \ge n_0$ i $m \ge m_0$ vrijedi

$$\left|a_{n+m} - \frac{a}{3}\right| < \epsilon$$
, tj. $\left|a_p - \frac{a}{3}\right| < \epsilon$, $\forall p \in \mathbb{N}$ za kojeg je $p \ge n_0 + m_0$,

što smo i tvrdili. □

Zadatak 250 (Cesàro-Stolzov teorem). Neka su (a_n) i (b_n) nizovi takvi da je $b_n \neq 0$ za sve $n \in \mathbb{N}$, te (b_n) strogo rastući i neka je $\lim_{n \to \infty} b_n = \infty$. Ako niz $\left(\frac{a_{n+1} - a_n}{b_{n+1} - b_n}\right)$ konvergira u $L \in \mathbb{R}$, onda i niz $\left(\frac{a_n}{b_n}\right)$ konvergira u L.

 $Rje\check{s}enje$. Po definiciji, za svaki $\epsilon>0$ postoji $n_0\in\mathbb{N}$ takav da za sve prirodne $N\geq N_0$ vrijedi

$$\left| \frac{a_{N+1} - a_N}{b_{N+1} - b_N} - L \right| < \frac{\epsilon}{2},$$

te postoji $m_0 \in \mathbb{N}$ takav da za sve prirodne $m \geq m_0$ vrijedi $b_m > 0$. Tada za sve $n \geq n_0 = \max\{m_0, N_0\}$ vrijedi $b_n > 0$ i

$$L - \frac{\epsilon}{2} < \frac{a_{n+1} - a_n}{b_{n+1} - b_n} < L + \frac{\epsilon}{2}.$$

Kako je (b_n) strogo rastući, to je $b_{n+1} - b_n > 0$, pa je

$$a_{n+1} < \left(L + \frac{\epsilon}{2}\right)(b_{n+1} - b_n) + a_n,$$

pa slično kao u zadatku 249 dobivamo

$$a_{n+1} < \left(L + \frac{\epsilon}{2}\right)(b_{n+1} - b_n) + \left(L + \frac{\epsilon}{2}\right)(b_n - b_{n-1}) + \dots + \left(L + \frac{\epsilon}{2}\right)(b_{n_0+1} - b_{n_0}) + a_{n_0}$$

$$= \left(L + \frac{\epsilon}{2}\right)(b_{n+1} - b_n + b_n - \dots + b_{n_0+1} - b_{n_0})$$

$$= \left(L + \frac{\epsilon}{2}\right)(b_{n+1} - b_{n_0}) + a_{n_0}.$$

Dijeljenjem s b_{n+1} dobivamo

$$\frac{a_{n+1}}{b_{n+1}} < \left(L + \frac{\epsilon}{2}\right) \left(1 - \frac{b_{n_0}}{b_{n+1}}\right) + \frac{a_{n_0}}{b_{n+1}},$$

pa promotrimo li niz (c_n) , $c_n = \left(L + \frac{\epsilon}{2}\right) \left(1 - \frac{b_{n_0}}{b_{n+1}}\right) + \frac{a_{n_0}}{b_{n+1}}$, po zadatku 225 vrijedi $\lim_{n \to \infty} c_n = L + \frac{\epsilon}{2}$, pa postoji $n_1 \in \mathbb{N}$ takav da za sve prirodne $n' \ge n_1$ vrijedi

$$c_n - L - \frac{\epsilon}{2} < \frac{\epsilon}{2}$$
, tj. $c_n < L + \epsilon$.

Analogno kao i gore dobivamo da je

$$\left(L - \frac{\epsilon}{2}\right) \left(1 - \frac{b_{n_0}}{b_{n+1}}\right) + \frac{a_{n_0}}{b_{n+1}} < \frac{a_{n+1}}{b_{n+1}},$$

te za niz (c'_n) definiran s $c'_n = \left(L - \frac{\epsilon}{2}\right) \left(1 - \frac{b_{n_0}}{b_{n+1}}\right) + \frac{a_{n_0}}{b_{n+1}}$ postoji $n_2 \in \mathbb{N}$ takav da za sve $n'' \ge n_2$ vrijedi $L - \epsilon < c'_n$. Sada za sve prirodne $n''' \ge n_3 = \max\{n_0, n_1, n_2\}$ dobivamo

$$\left| \frac{a_{n+1}}{b_{n+1}} - L \right| < \epsilon,$$

dakle dobili smo da niz $\left(\frac{a_{n+1}}{b_{n+1}}\right)$ konvergira kL, pa prema zadatku 223 i $\left(\frac{a_n}{b_n}\right)$ konvergira u L.

Prethodni rezultat može biti koristan pri računanju limesa raznih "složenijih" nizova.

Zadatak 251. Odredite sljedeći limes, ako on postoji.

$$\lim_{n\to\infty}\frac{1+\sqrt{2}+\sqrt[3]{3}+\cdots+\sqrt[n]{n}}{n}.$$

Rješenje. Definiramo nizove (a_n) , (b_n) s $a_n = 1 + \sqrt{2} + \sqrt[3]{3} + \cdots + \sqrt[n]{n}$ i $b_n = n$. Uočimo da je (b_n) strogo rastući i vrijedi $\lim_{n \to \infty} b_n = \infty$, te je $b_n \neq 0$ za sve $n \in \mathbb{N}$, pa primjenom Cesàro-Stolzovog teorema dobivamo

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n}$$

$$= \lim_{n \to \infty} \frac{1 + \sqrt{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n} + \sqrt[n+1]{n+1} - (1 + \sqrt{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n})}{(n+1) - n}$$

$$= \lim_{n \to \infty} \frac{\sqrt[n+1]{n+1}}{1} = 1.$$

Zadatak 252. Odredite sljedeći limes, ako postoji.

$$\lim_{n \to \infty} \frac{1}{n^5} \sum_{k=n}^{2n} k^4.$$

Rješenje. Promotrimo nizove (a_n) , (b_n) , $a_n = \sum_{k=n}^{2n} k^4$, $b_n = n^5$. Uočimo da je b_n rastući, te kako vrijedi $b_n \geq n$, za sve $n \in \mathbb{N}$, iz zadatka 226 slijedi da je $\lim_{n \to \infty} b_n = \infty$, te $b_n \neq 0$. Prema Cesàro-Stolzovom teoremu imamo

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \lim_{n \to \infty} \frac{\sum_{k=n+1}^{2n} k^4 - \sum_{k=n}^{2n} k^4}{(n+1)^5 - n^5} = \lim_{n \to \infty} \frac{(2n+1)^4 + (2n+2)^4 - (n+1)^4}{(n+1)^5 - n^5}$$

$$= \frac{31n^4 + 92n^3 + 114n^2 + 68n + 16}{5n^4 + 10n^3 + 10n^2 + 5n + 1} = \frac{31}{5}.$$

5.4 Limes superior i limes inferior

Definicija 40. Kažemo da je $\alpha \in \mathbb{R}$ gomilište niza (a_n) realnih brojeva ako postoji podniz (a_{p_n}) od (a_n) takav da je $\lim_{n\to\infty} a_{p_n} = \alpha$.

Napomena 57. Neka je (a_n) ograničen niz. Tada je $\alpha \in \mathbb{R}$ gomilište niza ako i samo ako za svaki $\epsilon > 0$ interval $\langle \alpha - \epsilon, \alpha + \epsilon \rangle$ sadrži beskonačno mnogo članova niza (a_n) .

Zadatak 253. Odredite skup svih gomilišta niza (a_n) zadanog formulom $a_n = 3 + (-1)^n$.

 $Rje\check{s}enje$. Niz (a_n) je zapravo niz

pa vidimo da nizovi (a_{2n-1}) , (a_{2n}) teže ka 2, odnosno 4, respektivno. To znači da su 2 i 4 gomilišta niza (a_n) .

Dokažimo da su to jedina gomilišta od (a_n) . Pretpostavimo da postoji neko gomilište $\alpha \notin \{2,4\}$ niza (a_n) . Neka je

$$\epsilon = \min\{|\alpha - 2|, |\alpha - 4|\}.$$

Tada interval $\langle \alpha - \epsilon, \alpha + \epsilon \rangle$ ne sadrži ni 2 ni 4. Naime, kad bi bilo npr. $2 \in \langle \alpha - \epsilon, \alpha + \epsilon \rangle$, ako je $\alpha > 2$, onda bi imali

$$2 > \alpha - |\alpha - 2| = \alpha - (\alpha - 2) = 2,$$

te za $\alpha < 2$, bi vrijedilo

$$2 < \alpha + |\alpha - 2| = \alpha + (2 - \alpha) = 2$$

što je nemoguće. Analogno se dokazuje da je $4 \notin \langle \alpha - \epsilon, \alpha + \epsilon \rangle$. No ova situacija je nemoguća, jer su 2 i 4 jedini članovi niza. Time smo dokazali da je skup svih gomilišta niza (a_n) skup $\{2,4\}$.

Zadatak 254. Neka je (a_n) ograničen niz i $\alpha \in \mathbb{R}$ takav da za sve $\epsilon > 0$ skup $\langle \alpha - \epsilon, \alpha + \epsilon \rangle \setminus \{\alpha\}$ sadrži bar jedan član niza (a_n) . Dokažite da je tada α gomilište niza (a_n) .

Rješenje. Neka je $\epsilon > 0$. Tada postoji $a_{p_1} \in \langle \alpha - \epsilon, \alpha + \epsilon \rangle \setminus \{\alpha\}$.

Za $\epsilon_2 = |\alpha - a_{p_1}|$ postoji $a_{p_2} \in \langle \alpha - \epsilon_2, \alpha + \epsilon_2 \rangle \setminus \{\alpha\}$ i vrijedi $a_{p_2} \neq a_{p_1}$. Naime, ako je $\alpha > a_{p_1}$, onda je

$$a_{p_2} > \alpha - |\alpha - a_{p_1}| = \alpha - (\alpha - a_{p_1}) = a_{p_1}$$

i analogno $a_{p_2} < a_{p_1}$ ako je $\alpha < a_{p_1}$. Uočimo i da je $\epsilon_2 < \epsilon$. Naime, vrijedi

$$\alpha - \epsilon < a_{p_1} < \alpha + \epsilon$$

odakle dobivamo

$$-\epsilon < a_{p_1} - \alpha < \epsilon$$
, tj. $\epsilon_2 = |\alpha - a_{p_1}| < \epsilon$.

Dakle, imamo $a_{p_2} \in \langle \alpha - \epsilon, \alpha + \epsilon \rangle \setminus \{\alpha\}.$

Za $\epsilon_3 = |\alpha - a_{p_2}|$ postoji $a_{p_3} \in \langle \alpha - \epsilon_3, \alpha + \epsilon_3 \rangle \setminus \{\alpha\}$ i vrijedi $a_{p_3} \notin \{a_{p_1}, a_{p_2}\}$. Tvrdnja $a_{p_3} \neq a_{p_2}$ pokazuje se analogno kao i u prethodnom slučaju. Analogno dobivamo i $a_{p_3} \in \langle \alpha - \epsilon_2, \alpha + \epsilon_2 \rangle \setminus \{\alpha\}$, odakle kao i prije slijedi da je $a_{p_3} \neq a_{p_1}$. Iz iste tvrdnje dobivamo i $a_{p_3} \in \langle \alpha - \epsilon, \alpha + \epsilon \rangle \setminus \{\alpha\}$.

Ovaj postupak možemo nastaviti i time doći do niza (a_{p_n}) međusobno različitih brojeva takvog da za svaki $i \in \mathbb{N}$ vrijedi

$$a_{p_i} \in \langle \alpha - \epsilon, \alpha + \epsilon \rangle \setminus \{\alpha\},\$$

no tada je i $a_{p_i} \in \langle \alpha - \epsilon, \alpha + \epsilon \rangle$, pa je α gomilište niza (a_n) .

Napomena 58 (Bolzano-Weierstrassov teorem za nizove). Neka je (a_n) ograničen niz realnih brojeva. Tada on ima konvergentan podniz.

Definicija 41. Neka je (a_n) ograničen niz realnih brojeva. **Limes superior** niza (a_n) (u oznaci lim sup a_n) je supremum skupa svih gomilišta od (a_n) . **Limes inferior** niza (a_n) (u oznaci lim inf a_n) je infimum skupa svih gomilišta od (a_n) .

Prema Bolzano-Weierstrassovom teoremu za nizove, svaki ograničen niz ima konvergentan podniz, te kako je limes niza također jedna točka gomilišta, slijedi da je skup svih gomilišta ograničenog niza neprazan, odakle slijedi da prethodna definicija ima smisla.

Napomena 59. Za niz (a_n) iz zadatka 253 vrijedi $\limsup a_n = 4$ i $\liminf a_n = 2$.

Zadatak 255. Neka je (a_n) niz zadan formulom $a_n = 1 + (-1)^n + \frac{1}{3^n}$. Odredite lim inf a_n i lim sup a_n .

 $Rje\check{s}enje$. (Vidite sliku 5.1). Prvo ćemo pronaći skup gomilišta niza (a_n) . Promotrimo podnizove (a_{2n}) i (a_{2n-1}) , respektivno. Vrijedi

$$a_{2n} = 2 + \frac{1}{3^{2n}}$$
, te $a_{2n-1} = \frac{1}{3^{2n-1}}$.

Imamo $\lim_{n\to\infty} a_{2n} = 2$ i $\lim_{n\to\infty} a_{2n-1} = 0$, jer su to podnizovi konvergentnih nizova $n\mapsto 2+\frac{1}{3^n}$ i $n\mapsto \frac{1}{3^n}$, respektivno. Slijedi da su 0 i 2 dva gomilišta niza (a_n) .

Dokažimo da su to jedina gomilišta. Pretpostavimo da postoji $\alpha \in \mathbb{R} \setminus \{0, 2\}$. Uzmimo

$$\epsilon = \frac{1}{2} \min\{|\alpha|, |\alpha - 2|\}.$$

Tvrdimo da je

$$\langle \alpha - \epsilon, \alpha + \epsilon \rangle \cap \langle -\epsilon, \epsilon \rangle = \langle \alpha - \epsilon, \alpha + \epsilon \rangle \cap \langle 2 - \epsilon, 2 + \epsilon \rangle = \emptyset.$$

Zaista, pretpostavimo da postoji $x \in \langle \alpha - \epsilon, \alpha + \epsilon \rangle \cap \langle -\epsilon, \epsilon \rangle$.

Ako je $\alpha < 0$, onda je

$$\alpha + \epsilon = \alpha - \frac{\alpha}{2} = \frac{\alpha}{2} < -\frac{\alpha}{2} = -\epsilon.$$

No po pretpostavci vrijedi $-\epsilon < x < \alpha + \epsilon$. Kontradikcija! Tvrdnja se analogno pokazuje za $0 < \alpha < 2$ i $\alpha > 2$, te se analogno pokazuje i da je $\langle \alpha - \epsilon, \alpha + \epsilon \rangle \cap \langle 2 - \epsilon, 2 + \epsilon \rangle = \emptyset$. Iz dokazanog slijedi i

$$\langle \alpha - \epsilon, \alpha + \epsilon \rangle \cap (\langle -\epsilon, \epsilon \rangle \cup \langle 2 - \epsilon, 2 + \epsilon \rangle) = \emptyset. \tag{5.10}$$

Nadalje, kako je $\lim_{n\to\infty}a_{2n}=2$ i $\lim_{n\to\infty}a_{2n-1}=0$, iz definicije slijedi da za gore odabrani ϵ postoji $n_0\in\mathbb{N}$ takav da za sve $n\geq n_0$ vrijedi $a_{2n-1}\in\langle-\epsilon,\epsilon\rangle$, te postoji $n_1\in\mathbb{N}$ takav da za sve $n'\geq n_1$ vrijedi $a_{2n}\in\langle2-\epsilon,2+\epsilon\rangle$. Sada za $N_0=2\max\{n_0,l_0\}$, slično kao u zadatku 247 dobivamo $a_n\in\langle-\epsilon,\epsilon\rangle\cup\langle2-\epsilon,2+\epsilon\rangle$. No iz (5.10) slijedi da on sadrži najviše konačno

mnogo članova niza (a_n) . Stoga α ne može biti gomilište niza (a_n) .

Time smo dokazali da su jedina gomilišta 0 i 2, pa je lim inf $a_n = 0$ i lim sup $a_n = 2$.

Slika 5.1: Niz (a_n) iz zadatka 255

Napomena 60. Vidjeli smo da je računanje limesa inferiora i superiora u zadatku 255 bio poprilično dugotrajan posao. Srećom, postoji rezultat koji znatno olakšava traženje limesa inferiora, koji ovdje nećemo dokazati i to sljedeći – Neka su (a_n) i (b_n) ograničeni nizovi i neka je (a_n) konvergentan. Tada su nizovi $(a_n + b_n)$ i $(a_n b_n)$ ograničeni i vrijedi

$$\lim \sup(a_n + b_n) = \lim_{n \to \infty} (a_n) + \lim \sup(b_n),$$

$$\lim \sup(a_n b_n) = \lim_{n \to \infty} (a_n) \lim \sup(b_n),$$

$$\lim \inf(a_n + b_n) = \lim_{n \to \infty} (a_n) + \lim \inf(b_n),$$

$$\lim \inf(a_n b_n) = \lim_{n \to \infty} (a_n) \lim \inf(b_n).$$

Napomena 61. Ograničen niz realnih brojeva (a_n) je konvergentan ako i samo ako vrijedi $\lim\inf a_n=\lim\sup a_n.$

Zadatak 256. Neka je (a_n) ograničen niz za kojeg vrijedi $\lim_{n\to\infty} (a_{2^n} - 3a_n) = 0$. Dokažite da je (a_n) konvergentan i odredite mu limes.

Rješenje. Pretpostavimo da (a_n) ne konvergira. Tada je lim inf $a_n \neq \limsup a_n$, što znači da (a_n) ima barem dva gomilišta. Pokažimo da to ne vrijedi, tj. da (a_n) ima samo jedno gomilište i to 0.

Neka je $a \in \mathbb{R}$ gomilište niza (a_n) . Tada postoji podniz (a_{p_n}) takav da je $\lim_{n \to \infty} a_{p_n} = a$. Promotrimo niz $(a_{2^{p_n}} - 3a_{p_n})$. To je podniz od $(a_{2^n} - 3a_n)$, pa vrijedi $\lim_{n \to \infty} (a_{2^{p_n}} - 3a_{p_n}) = 0$, odakle iz činjenice da je $(3a_{p_n})$ niz koji konvergira u 3a i iz teorema o osnovnim operacijama s konvergentnim nizovima slijedi da je $(a_{2^{p_n}})$ konvergentan i vrijedi $\lim_{n \to \infty} a_{2^{p_n}} = 3a$.

Odavde zaključujemo da ako je a gomilište, da je onda i 3a gomilište. No i 3a je gomilište, pa je i 9a gomilište, i tako dalje. Općenito, ako je a gomilište, imamo da je za sve $n \in \mathbb{N}$ i $3^n a$ gomilište. Kad bi bilo a > 0, ovo vodi na to da bi postojalo neko gomilište koje je veće od $\limsup a_n$ (prema Arhimedovu aksiomu postoji $n_0 \in \mathbb{N}$ takav da je $n_0 a > \limsup a_n$, te iz $3^{n_0} a \geq n_0 a > \limsup a_n$ slijedi tvrdnja). Analogno za a < 0 dobivamo da postoji neko gomilište koje je manje od $\liminf a_n$. Zato mora nužno biti a = 0, i time je tvrdnja dokazana.

Zadatci za vježbu

Pojam niza. Limes niza

Zadatak 257.

- a) Odredite sve $x \in \mathbb{R}$ za koje postoji aritmetički niz (a_n) takav da su $\sqrt{24x+1}$, $\sqrt{10x-1}$, $\sqrt{x+4}$ neka tri njegova uzastopna člana.
- b) Dokažite: Ako je S_n zbroj prvih n članova niza (a_n) , a $n \mapsto S_n$ je kvadratna funkcija (definirana na nekom podskupu od \mathbb{N}) čiji je slobodni član 0, onda je niz (a_n) aritmetički.

Zadatak 258. Koristeći definiciju limesa niza, dokažite sljedeće tvrdnje:

a)
$$\lim_{n \to \infty} \frac{4}{2n+3} = 0,$$

$$d) \lim_{n \to \infty} \frac{n}{1 + n!} = 0$$

b)
$$\lim_{n \to \infty} \frac{1}{\sqrt{n+7}} = 0,$$

e)
$$\lim_{n \to \infty} \frac{(n+1)(n+2)}{n^2} = 1$$
,

c)
$$\lim_{n \to \infty} \frac{1}{n^2 - 2} = 0$$
,

f)
$$\lim_{n \to \infty} \frac{\lfloor 3n + 11 \rfloor}{n^2 + 1} = 0,$$

Zadatak 259.

- a) Dokažite da je niz rastući ako i samo ako je on rastuća funkcija.
- b) Neka je (a_n) niz realnih brojeva. Dokažite da vrijedi

$$\lim_{n\to\infty}a_n=a\;$$
ako i samo ako vrijedi $\;\lim_{n\to\infty}|a-a_0|=0\;$

c) Dokažite: Ako je (a_n) konvergentan, onda je i $(|a_n|)$ konvergentan. Vrijedi li obrat? Neka je $a_n \geq 0$ za sve $n \in \mathbb{N}$. Ako je (a_n) konvergentan s limesom u a, onda je $(\sqrt{a_n})$ konvergentan s limesom u \sqrt{a} . $\left(\mathbf{Uputa:} \ \mathrm{Pomnožite} \ \sqrt{a_n} - \sqrt{a} \ \mathrm{s} \ \frac{\sqrt{a_n} + \sqrt{a}}{\sqrt{a_n} + \sqrt{a}}\right)$

Zadatak 260.

- a) Dokažite da niz (a_n) zadan formulom $a_n = 2^{\sqrt{n}}$ divergira u ∞ .
- b) Neka je niz (a_n) zadan formulom

$$a_n = \begin{cases} 1, & \text{za } n = \frac{m(m+1)}{2}, m \in \mathbb{N}, \\ 0, & \text{inače.} \end{cases}$$

Ispitajte konvergenciju niza (a_n) i ako je konvergentan, odredite mu limes.

Zadatak 261. (*) Neka je (a_n) konvergentan niz i $\sigma : \mathbb{N} \to \mathbb{N}$ bijekcija. Dokažite da je niz $(a_{\sigma(n)})$ konvergentan i odredite mu limes.

Zadatak 262. (**) Dokažite koristeći definiciju limesa niza da je $\lim_{n\to\infty} 2^{\frac{1}{2^n}} = 1$.

Osnovne operacije s konvergentnim nizovima. Kriteriji konvergencije niza Zadatak 263.

- a) Navedite primjer strogo monotonog niza koji konvergira u 20.
- b) Navedite primjer neograničenog niza koji niti ne konvergira, niti ne divergira u ∞ ili $-\infty$.
- c) Navedite primjer konvergentnog niza sa svojstvom da za sve $n \in \mathbb{N}$ i za sve $m \in \mathbb{N}$ vrijedi $a_{2n} > a_{2m+1}$.

Zadatak 264. Ispitajte konvergenciju niza (a_n) i ako je konvergentan odredite mu limes, ako je:

a)
$$a_n = \frac{n^2 + 4n + 3}{2n^2 + 2n + 1}$$
, d) $a_n = \frac{n^2 + 1}{n + 2\sqrt{n^4 + 1}}$,
b) $a_n = \frac{(2n+1)(3n+2)(4n+3)(5n+4)}{(4n+4)(5n+5)(6n+6)(7n+7)}$, e) $a_n = \frac{7 + 11 + 15 + \dots + (3+4n)}{4n^2}$,
c) $a_n = \frac{(2n+1)(3n+2)(n+1)!}{(4n+3)^3n!}$, g) $a_n = \sqrt{n+2} - \sqrt{n}$

Zadatak 265. Ispitajte konvergenciju niza (a_n) i ako je konvergentan odredite mu limes, ako je:

a)
$$a_n = \sqrt[n]{n2^n + 1}$$
,
b) $a_n = \frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \dots + \frac{1}{n^2 + n}$.
c) $a_n = 1 + \frac{2}{(-1)^n + 3^n}$

Zadatak 266. Koristeći činjenicu da je niz $n \mapsto \left(1 + \frac{1}{n}\right)^n$ konvergentan s limesom u e, odredite sljedeće limese.

Nizovi

a)
$$\lim_{n \to \infty} \left(\frac{n + \frac{1}{2}}{n} \right)^n$$

b)
$$\lim_{n \to \infty} \left(1 + \frac{1}{-n} \right)^{-n}$$

Zadatak 267. Koliko ima prirodnih brojeva $n \in \mathbb{N}$ za koje vrijedi

$$\frac{2n}{n+1} - \frac{3}{2^n} - \frac{1}{n} - \frac{2}{n^4} > 1?$$

Dokažite svoje tvrdnje! (Uputa: Iskoristite definiciju limesa niza.)

Zadatak 268.

- a) Neka je (a_n) niz takav da je niz (b_n) zadan formulom $b_n = a_1 + a_2 + \cdots + a_n$ konvergentan. Dokažite da je tada i (a_n) konvergentan i vrijedi $\lim_{n \to \infty} a_n = 0$.
- b) Odredite sve polinome $P: \mathbb{R} \to \mathbb{R}$ takve da je

$$\lim_{n \to \infty} \frac{P(n)}{n^2 + 2n + 5} = 2025.$$

c) Neka su (a_n) i (b_n) dva niza takva da je $a_n \leq b_n$, (a_n) raste i (b_n) pada. Dokažite da tada oba niza konvergiraju. Jesu li njihovi limesi općenito jednaki?

Zadatak 269. (**) Neka je $f: \mathbb{R} \to \langle 0, \infty \rangle$ padajuća funkcija, te neka je zadan niz (a_n) takav da je $a_1 = 1$ i za sve $n \in \mathbb{N}$ vrijedi $a_{n+1} = a_n + f(a_n)$. Dokažite da (a_n) divergira u ∞ .

Zadatak 270. (**) Neka je (a_n) ograničen niz realnih brojeva takav da za sve $n \geq 2$ vrijedi

$$a_n \le \frac{a_{n-1} + a_{n+1}}{2}.$$

Pokažite da je (a_n) konvergentan.

Podniz. Nizovi zadani rekurzivno. Limesi složenijih nizova

Zadatak 271. Neka su (a_n) , (b_n) (c_n) nizovi zadani formulama

$$a_n = 2n + 1, \ b_n = 8n^2 + 8n + 3, \ c_n = 8n^2 - 9$$

- a) Dokažite da je (b_n) podniz od (a_n) .
- b) Je li niz (c_n) podniz od (a_n) ? Dokažite.

Zadatak 272. Ispitajte konvergenciju niza (a_n) i ako je konvergentan odredite mu limes, ako je:

a)
$$a_n = \underbrace{\sqrt{5 + \sqrt{5 + \dots + \sqrt{5}}}}_{n \text{ korijena}},$$

b)
$$a_1 = 2$$
, $a_{n+1} = \frac{3a_n - 1}{2a_n}$, $n \ge 1$,

c) $a_1 = 1$, $a_{n+1} = \frac{a_n + 3}{2a_n}$, $n \ge 1$. (Ovaj niz neće biti monoton – pokušajte se snaći drukčije!)

Zadatak 273.

- a) Neka je (a_n) monoton niz koji ima konvergentan podniz. Dokažite da je tada (a_n) konvergentan.
- b) (*) Neka je (a_n) konvergentan niz i neka je (b_n) niz zadan formulom

$$b_1 = \sup\{a_m : m \in \mathbb{N}\}\$$

 $b_n = \sup\{a_m : m \in \mathbb{N} \setminus \{1, \dots, n-1\}\}\ (\text{za } n \ge 2).$

Dokažite da je (b_n) konvergentan i odredite $\lim_{n\to\infty} b_n$.

Zadatak 274. Ispitajte konvergenciju niza (a_n) i ako je konvergentan odredite mu limes, ako je:

a)
$$a_n = \frac{1}{(2n)!^2} \cdot \sum_{i=1}^{2n} i!^2$$
,

b)
$$a_n = \frac{\sum_{i=n}^{2n} (-i)^i}{(2n)^{2n}},$$

Zadatak 275. (**) Dokažite tvrdnje zadatka 256 koristeći definiciju limesa niza.

Limes superior i limes inferior

Zadatak 276. Neka je (a_n) niz zadan formulom $a_n = (-1)^n \left(1 - \frac{1}{3^n}\right)$. Odredite lim inf a_n i lim sup a_n . (Dokažite sve svoje tvrdnje.)

Zadatak 277. (*) Dokažite da svaki konvergentan niz postiže ili svoj infimum, ili svoj supremum, ili oboje. Dajte primjer sva tri tipa niza.

Poglavlje 6

Neprekidnost funkcije

6.1 Definicija neprekidnosti funkcije

Definicija 42 (Definicija neprekidnosti funkcije). Neka je $I \subseteq \mathbb{R}$ otvoreni interval i $c \in I$. Kažemo da je funkcija $f: I \to \mathbb{R}$ neprekidna u točki c ako za svaki $\epsilon > 0$ postoji $\delta > 0$ takav da za sve $x \in I$ vrijedi

$$|x - c| < \delta \Rightarrow |f(x) - f(c)| < \epsilon.$$

- fje neprekidna na skupu $S\subseteq I$ ako je ona neprekidna u svakoj točki skupa S.
- f ima **prekid** u točki c ako ona nije neprekidna u c.
- f ima **prekid na skupu** $S \subseteq I$ ako postoji bar jedna točka $c \in S$ u kojoj f ima prekid.

Napomena62. Gornja definicija može se generalizirati na proizvoljne neprazne skupove I.

Zadatak 278. Dokažite sljedeće tvrdnje koristeći definiciju neprekidnosti funkcije.

- a) $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 4 je neprekidna u točki -2.
- b) $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} 2x, & x \neq 1, \\ 1, & x = 1, \end{cases}$$

je neprekidna u svakoj točki $c \neq 1$, a u točki c = 1 ima prekid.

 $Rje\check{s}enje.$ a) Treba dokazati da za sve $\epsilon>0$ postoji $\delta>0$ takav da za sve $x\in\mathbb{R}$ vrijedi

$$|x+2|<\delta \Rightarrow |3x+6|=3|x+2|<\epsilon$$

Uzmemo li $\delta = \frac{\epsilon}{3}$, tvrdnja vrijedi.

b) Iskoristit ćemo sljedeće slike da bi lakše dokazali tvrdnju.

(a) Neprekidnost funkcije iz zadatka 278 u $\frac{1}{2}$

(b) Prekid funkcije iz zadatka 278 u 1

Primijetimo da za sve $x \in \mathbb{R}$ vrijedi f(x) = 2x ako i samo ako je $x \neq 1$, pa moramo odabrati δ takav da interval $\langle c - \delta, c + \delta \rangle$ ne sadrži broj 1. Zaista, neka je $\epsilon > 0$ proizvoljan. Uzmemo li

$$\delta = \min \left\{ \frac{\epsilon}{2}, \ \frac{|1 - c|}{2} \right\},\,$$

vrijedi $1\notin \langle c-\delta,c+\delta\rangle,$ pa za svaki $x\in\mathbb{R}$ za koji je $|x-c|<\delta$ je

$$|2x - 2c| = 2|x - c| < 2 \cdot \frac{\epsilon}{2} = \epsilon.$$

Dokažimo sada da za c=1 funkcija ima prekid. Treba dokazati da postoji $\epsilon>0$ takav da za sve $\delta>0$ postoji $x_\delta\in\mathbb{R}$ takav da je

$$|x_{\delta} - 1| < \delta$$
 i $|f(x_{\delta}) - 1| \ge \epsilon$.

Uzmemo li $\epsilon=\frac{1}{2},\;\delta>0$ proizvoljan i $x_{\delta}=1+\frac{\delta}{2},$ imamo

$$|x_{\delta} - 1| = \frac{\delta}{2} < \delta$$

i kako je $x_{\delta} > 1$, slijedi $f(x_{\delta}) = 2x_{\delta} > 2$, pa vrijedi $|f(x_{\delta}) - 1| > 1 > \epsilon$.

Napomena 63. Primijetimo da za sve $x, c \in \mathbb{R}$ i $\delta > 0$ takav da je $|x - c| < \delta$ imamo

$$|c| = |c - x + x| \le |x - c| + |x| < \delta + |x|,$$

 $|x| = |x - c + c| \le |x - c| + |c|,$

što daje

$$|x| > |c| - \delta, \tag{6.1}$$

$$|x| < \delta + |c|. \tag{6.2}$$

(6.1) daje donju među, a (6.2) gornju među za |x|, stoga su ove dvije tvrdnje često korisne kada se treba izraza |x| "riješiti" kako bismo mogli uzeti δ koji ne ovisi o x.

Zadatak 279. Dokažite sljedeće tvrdnje koristeći definiciju neprekidnosti funkcije.

- a) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ je neprekidna na \mathbb{R} .
- b) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = \frac{1}{x^2}$ je neprekidna na svojoj domeni.

 $Rje\check{s}enje$. a) Neka su $c\in\mathbb{R}$ i $\epsilon>0$ proizvoljni. Uzmimo

$$\delta = \min \left\{ \frac{\epsilon}{1 + 2|c|}, 1 \right\}.$$

Tada za sve $x \in \mathbb{R}$ takve da je $|x-c| < \delta$ vrijedi

$$|x| = |x - c + c| \le |x - c| + |c| \le 1 + |c|,$$

 $|x + c| \le |x| + |c| \le 1 + 2|c|.$

Odavde slijedi

$$|x^2 - c^2| = |x - c||x + c| < \frac{\epsilon}{1 + 2|c|} \cdot (1 + 2|c|) = \epsilon.$$

b) Neka su $c \in \mathbb{R} \setminus \{0\}$ i $\epsilon > 0$ proizvoljni. Vrijedi

$$\left| \frac{1}{x^2} - \frac{1}{c^2} \right| = \frac{|x^2 - c^2|}{|x|^2 |c|^2} = \frac{|x - c||x + c|}{x^2 c^2}$$

Uzmimo

$$\delta = \min \left\{ \frac{\epsilon \cdot c^4}{4(1+2|c|)}, 1, \frac{|c|}{2} \right\}.$$

Iz (6.1) imamo

$$|x| > |c| - \frac{|c|}{2} = \frac{|c|}{2}$$
, tj. $x^2 > \frac{c^2}{4}$.

Nadalje, kao i u a) dijelu zadatka imamo $|x|+|c| \leq 1+2|c|$. Sve skupa, imamo

$$\frac{|x^2 - c^2|}{|x|^2|c|^2} = \frac{|x - c||x + c|}{x^2c^2} < \frac{4|x - c|(1 + 2|c|)}{c^4} < \epsilon.$$

Napomena64. U b) dijelu zadatka 279, gornju među od |x+c| mogli smo naći i na sljedeći način.

Ako je c>0, onda za neki $\delta \leq \frac{c}{2}$ imamo

$$|x-c| < \delta \le \frac{c}{2} \Longrightarrow -\frac{c}{2} < x - c < \frac{c}{2},$$

odakle, zbog činjenice da je x = |x| slijedi

$$\frac{c}{2} < |x| < \frac{3c}{2}, \quad \frac{3c}{2} < |x+c| < \frac{5c}{2},$$
 (6.3)

pa imamo gornju i donju među za |x+c|, ali i |x|.

Ako je c<0, za neki $\delta \leq -\frac{c}{2}$ dobivamo $\frac{c}{2} < x-c < -\frac{c}{2},$ odnosno

$$\frac{3c}{2} < x < \frac{c}{2}, \quad \frac{5c}{2} < x + c < \frac{3c}{2},$$

no kako je $x\mapsto |x|$ strogo padajuća na $\langle -\infty, 0 \rangle$, dobivamo

$$-\frac{c}{2} < |x| < -\frac{3c}{2}, -\frac{3c}{2} < |x+c| < -\frac{5c}{2},$$

dakle opet imamo gornju i donju među za |x+c| i |x|.

Zadatak 280. Dokažite koristeći definiciju neprekidnosti funkcije da je funkcija $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} -x, & x \in \mathbb{Q}, \\ x, & x \in \mathbb{I}, \end{cases}$$

neprekidna u 0 i ima prekid u svakoj drugoj točki.

 $Rje\check{s}enje$. Neka je $\epsilon > 0$ proizvoljan. Tada za $\delta = \epsilon$ i za $x \in \mathbb{R}$ takve da je $|x| < \delta$ vrijedi $|f(x)| = |x| < \epsilon$, čime smo dokazali neprekidnost u 0.

Dokažimo da f ima prekid u svakoj točki c > 0. Pretpostavimo sada da je f neprekidna za neki iracionalni c > 0. Tada tvrdnja vrijedi i za $\epsilon = f(c)$, pa postoji $\delta > 0$ takav da za sve $x \in \mathbb{R}$ za koje je $|x - c| < \delta$ vrijedi |f(x) - f(c)| < f(c). Tada vrijedi

$$f(x) - f(c) > -f(c),$$

odnosno f(x)>0 za sve x za koje je $|x-c|<\delta$. No za δ zbog gustoće skupa $\mathbb Q$ u $\mathbb R$, postoji $x_\delta\in\mathbb Q$ takav da je

$$|x_{\delta} - c| < \delta.$$

Kako je $x_{\delta} \in \mathbb{Q}$, vrijedi $f(x_{\delta}) \leq 0$, što je nemoguće.

Tvrdnja se analogno dokazuje ako je x racionalan i ako je c < 0.

Zadatak 281. Dokažite sljedeće tvrdnje koristeći definiciju neprekidnosti funkcije.

- a) $f:[0,\infty)\to\mathbb{R},\,f(x)=\sqrt{x}$ je neprekidna na svojoj domeni.
- b) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin x$ je neprekidna na svojoj domeni.

Rješenje.a) Neka je $\epsilon,c>0$ proizvoljni. Uzmemo li $\delta=\sqrt{c}\epsilon,$ za sve $x\geq0$ za koje je $|x-c|<\delta$ imamo

$$|\sqrt{x} - \sqrt{c}| = \left| (\sqrt{x} - \sqrt{c}) \frac{\sqrt{x} + \sqrt{c}}{\sqrt{x} + \sqrt{c}} \right| = \frac{|x - c|}{\sqrt{x} + \sqrt{c}} < \frac{|x - c|}{\sqrt{c}} < \epsilon$$

b) Neka su $\epsilon>0$ i $c\in\mathbb{R}$ proizvoljni. Uzmemo li $\delta=\epsilon,$ za sve $x\in\mathbb{R}$ za koje je $|x-c|<\delta$ vrijedi

$$\left|\sin x - \sin c\right| = \left|2\cos\frac{x+c}{2}\sin\frac{x-c}{2}\right| \le 2\left|\sin\frac{x-c}{2}\right|,$$

gdje smo iskoristili činjenicu da je $\left|\cos\frac{x+c}{2}\right| \leq 1$. Kako za sve $x \in \mathbb{R}$ vrijedi $\left|\sin\frac{x-c}{2}\right| \leq \left|\frac{x-c}{2}\right|$, imamo

$$2\left|\sin\frac{x-c}{2}\right| \le |x-c| < \epsilon.$$

Zadatak 282. Koristeći definiciju neprekidnosti funkcije, odredite najveći¹ skup na kojem je funkcija $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} \sqrt{2x - 1}, & x \ge 1, \\ \frac{1}{2} - x, & x < 1. \end{cases}$$

neprekidna.

 $Rje\check{s}enje$. Iz grafa funkcije f vidimo da će ona biti neprekidna svugdje osim u točki 1. Dokažimo prvo da je f neprekidna na skupu $\mathbb{R} \setminus \{1\}$.

Zaista, neka je c > 1 i

$$\delta = \min \left\{ \frac{\sqrt{2c-1}}{2} \epsilon, \ c-1 \right\}.$$

Tada za sve $x \in \mathbb{R}, \; |x-c| < c-1$ povlačix > 1,stoga je

$$f(x) = \sqrt{2x - 1}$$
 i $f(c) = \sqrt{2c - 1}$.

Neka je $\epsilon>0$ proizvoljan. Slično kao u
a) dijelu zadatka 281, za sve $x\in\mathbb{R}$ za koje je
 $|x-c|<\delta$ vrijedi

$$\left| \left(\sqrt{2x - 1} - \sqrt{2c - 1} \right) \cdot \frac{\sqrt{2x - 1} + \sqrt{2c - 1}}{\sqrt{2x - 1} + \sqrt{2c - 1}} \right| = \frac{\left| (2x - 1) - (2c - 1) \right|}{\sqrt{2x - 1} + \sqrt{2c - 1}}$$
$$= \frac{2|x - c|}{\sqrt{2x - 1} + \sqrt{2c - 1}} < \frac{2|x - c|}{\sqrt{2c - 1}} < \epsilon.$$

Neka je sada c < 1 i

$$\delta = \min\{\epsilon, \ 1 - c\}.$$

Dobivamo |x-c| < 1-c, odakle slijedi x < 1, pa je

$$f(x) = \frac{1}{2} - x$$
 i $f(c) = \frac{1}{2} - c$.

Neka je $\epsilon > 0$ proizvoljan. Za sve $x \in \mathbb{R}$ takve da je $|x - c| < \delta$ vrijedi

$$\left| \left(\frac{1}{2} - x \right) - \left(\frac{1}{2} - c \right) \right| = |x - c| < \epsilon.$$

 $^{^1}$ Najveći skup $S\subseteq\mathbb{R}$ takav da je f neprekidna je skup sa svojstvom da za sve $T\subseteq\mathbb{R}$ za koje je f neprekidna vrijedi $T\subseteq S.$

Pokažimo sada da funkcija ima prekid za c=1. Uzmimo $\epsilon=\frac{1}{2}$ i neka je $\delta>0$ proizvoljan. Uzmimo sada $x_{\delta}=\max\left\{0,\ 1-\frac{\delta}{2}\right\}$. Uočimo da vrijedi

$$|x_{\delta} - 1| \le \frac{\delta}{2} < \delta.$$

Naime, ako je $1-\frac{\delta}{2}\geq 0$, to je jasno, a ako je $1-\frac{\delta}{2}\leq 0$, onda je $\delta\geq 2$ i $x_{\delta}=0$, pa je

$$|x_{\delta} - 1| = |0 - 1| = 1 \le \frac{\delta}{2}.$$

Kako je $0 \le x_{\delta} < 1$, slijedi $f(x_{\delta}) = \frac{1}{2} - x_{\delta} \in \left\langle -\frac{1}{2}, \frac{1}{2} \right|$. To povlači

$$|f(x_{\delta}) - 1| \ge \frac{1}{2} = \epsilon.$$

Slika 6.2: Graf funkcije iz zadatka 282

6.2 Svojstva neprekidnih funkcija

Napomena 65 (Neprekidnost kompozicije funkcija). Neka su $I, I' \subseteq \mathbb{R}$ otvoreni intervali i $f: I \to \mathbb{R}, g: I' \to \mathbb{R}$ funkcije takve da je $f(I) \subseteq I'$. Neka je f neprekidna u točki $c \in I$, a g neprekidna u točki $d = f(c) \in I'$. Tada je $h = g \circ f$ neprekidna u točki c.

Napomena 66 (Teorem o lokalnoj ograničenosti neprekidne funkcije). Neka je $I \subseteq \mathbb{R}$ otvoreni

interval, $c \in I$ i neka je $f: I \to \mathbb{R}$ neprekidna u c. Tada postoje realni brojevi $\eta > 0$ i M > 0 takvi da za sve $x \in I$ vrijedi

$$|x - c| < \eta \Longrightarrow |f(x)| < M.$$

Napomena 67 (Osnovne operacije s neprekidnim funkcijama). Neka je $I \subseteq \mathbb{R}$ otvoreni interval, te neka su $f,g:I\to\mathbb{R}$ neprekidna u točki $c\in I$. Vrijedi:

- a) f + g je neprekidna u c,
- b) fg je neprekidna u c,
- c) Ako je $g(x) \neq 0$ za sve $x \in I$, onda je $\frac{f}{g}$ neprekidna u c,
- d) |f| je neprekidna u c.

Zadatak 283. Dokažite napomenu 67 koristeći definiciju neprekidnosti funkcije.

Dokaz.a) Budući da sufi gneprekidne u c, za svaki $\epsilon>0$ postoje $\delta_1,\delta_2>0$ takvi da za sve $x\in I$ vrijedi

$$|x-c| < \delta_1 \Longrightarrow |f(x) - f(c)| < \frac{\epsilon}{2}$$
 i $|x-c| < \delta_2 \Longrightarrow |g(x) - g(c)| < \frac{\epsilon}{2}$

Uzmimo $\delta = \min\{\delta_1, \delta_2\}$. Tada za sve $x \in I$ za koje je $|x - c| < \delta$ vrijedi

$$|(f+g)(x) - (f+g)(c)| = |(f(x) + g(x)) - (f(c) + g(c))| = |f(x) - f(c) + g(x) - g(c)|$$

$$\leq |f(x) - f(c)| + |g(x) - g(c)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

b) Prema napomeni 66 postoje $\eta_1,\eta_2,M_1,M_2>0$ takvi da za sve $x\in I$ vrijedi

$$|x - c| < \eta_1 \Longrightarrow |f(x)| < M_1 \quad i \quad |x - c| < \eta_2 \Longrightarrow |g(x)| < M_2.$$

Sada za $\eta = \min\{\eta_1, \eta_2\}$ i $M = \max\{M_1, M_2\}$ imamo da za sve $x \in I$ takve da je $|x - c| < \eta$ vrijedi |f(x)|, |g(x)| < M. Nadalje, zbog neprekidnosti od f i g, za svaki $\epsilon > 0$ postoje $\delta_1, \delta_2 > 0$ takvi da za sve $x \in I$ vrijedi

$$|x-c| < \delta_1 \Longrightarrow |f(x) - f(c)| < \frac{\epsilon}{2M}$$
 i $|x-c| < \delta_2 \Longrightarrow |g(x) - g(c)| < \frac{\epsilon}{2M}$.

Uzmimo $\delta = \min\{\delta_1, \delta_2, \eta\}$. Tada je

$$\begin{aligned} |(fg)(x) - (fg)(c)| &= |f(x)g(x) - f(c)g(c)| \\ &= |f(x)g(x) - f(c)g(x) + f(c)g(x) - f(c)g(c)| \\ &\leq |f(x) - f(c)||g(x)| + |g(x) - g(c)||f(c)| < \frac{\epsilon}{2M} \cdot M + \frac{\epsilon}{2M} \cdot M = \epsilon. \end{aligned}$$

- c) Nije teško pokazati da je funkcije $q:I\setminus\{0\}\to\mathbb{R},\ q(x)=\frac{1}{x}$ neprekidna na svojoj domeni. Uočimo da je $\frac{1}{g}=q\circ g$. Za sve $c\in I\setminus\{0\}$ vrijedi $g(c)\neq 0$, pa je, po napomeni 65 i $\frac{1}{g}=q\circ g$ neprekidna u c. No i f je neprekidna u c, pa je prema b), $f\cdot\frac{1}{g}=\frac{f}{g}$ neprekidna u c, dakle i neprekidna na $I\setminus\{0\}$.
- d) Lako je pokazati da je $q: \mathbb{R} \to \mathbb{R}$, q(x) = |x| neprekidna na \mathbb{I} . Kako je f neprekidna na \mathbb{R} , slijedi i da je $q \circ f = |f|$ neprekidna na \mathbb{R} .

Napomena 68 (Heineova karakterizacija neprekidnosti). Neka je $I \subseteq \mathbb{R}$ otvoreni interval i neka je zadana $f: I \to \mathbb{R}$. Funkcija f je neprekidna u točki $c \in I$ ako i samo ako za svaki niz (a_n) iz I koji konvergira prema c, niz $(f(a_n))$ konvergira prema f(c).

Prethodna činjenica je vrlo korisna kako bi pokazali da neka funkcija ima prekid u nekoj točki.

Zadatak 284. Dokažite: Funkcija $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} 2x - 1, & x \le 3, \\ -x + 6, & x > 3. \end{cases}$$

ima prekid u točki c=3.

 $Rje\check{s}enje$. Dovoljno je pokazati da postoji niz (a_n) realnih brojeva koji konvergira u 3 takav da $(f(a_n))$ ne konvergira u f(3) = 5. Promotrimo niz (a_n) zadan formulom $a_n = 3 + \frac{1}{n}$. Tada je $\lim_{n \to \infty} a_n = 3$, te kako je $a_n > 3$ za sve $n \in \mathbb{N}$, za niz $(f(a_n))$, gdje je

$$f(a_n) = -\left(\frac{1}{n} + 3\right) + 6 = 9 - \frac{1}{n}$$

vrijedi $\lim_{n\to\infty} f(a_n) = 9 \neq 5$, što je i trebalo pokazati.

Zadatak 285. Zadana je funkcija $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} -2, & x < 0, \\ 1, & x \ge 0. \end{cases}$$

Dokažite da je ona neprekidna u svakoj točki $c \neq 0$ koristeći Heineovu karakterizaciju neprekidnosti.

Dokaz. Uzmimo npr. da je c > 0, slučaj c < 0 tretira se analogno. Uzmimo proizvoljan niz (a_n) takav da je $\lim_{n \to \infty} a_n = c$. Iz definicije slijedi da postoji $n_0 \in \mathbb{R}$ takav da za sve prirodne $n \ge n_0$ vrijedi $|a_n - c| < c$, odakle slijedi da je $a_n > 0$ za sve $n \ge n_0$. Zato je $f(a_n) = 1 = f(c)$ za sve $n \in \mathbb{N}$ osim za njih konačno mnogo, pa je jasno da je $\lim_{n \to \infty} a_n = 1$.

Zadatak 286. Zadana je funkcija $f:[0,1]\to\mathbb{R}$,

$$f(x) = \begin{cases} 1, & x = 0, \\ \frac{1}{n}, & x = \frac{m}{n} \in \mathbb{Q} \setminus \{0\}, \text{gdje su } m \in \mathbb{Z} \text{ i } n \in \mathbb{N} \text{ relativno prosti.} \\ 0, & x \in \mathbb{I}. \end{cases}$$

Ova funkcija zove se *Thomaeova funkcija*. Dokažite da je ona neprekidna u svakoj iracionalnoj točki i ima prekid u svakoj racionalnoj točki.

 $Rje\check{s}enje$. Dokažimo sljedeću pomoćnu tvrdnju: Neka je M>0 proizvoljan. Tada je skup

$$S_M = \{x \in [0,1] : f(x) \ge M\}$$

konačan.

Zaista, ako je M > 1, vrijedi $S_M = \emptyset$.

Ako je $M \le 1$, iz $f(x) \ge M > 0$ slijedi da je ili x = 1 (pa je S_M konačan) ili postoji $n \in \mathbb{N}$ takav da je $f(x) = \frac{1}{n}$. Uočimo da je

$$\frac{1}{n} \ge M \Longleftrightarrow n \le \frac{1}{M},$$

pa je $\left\{n \in \mathbb{N} : \frac{1}{n} \geq M\right\}$ odozgo ograničen podskup skupa \mathbb{N} , dakle on je konačan. To znači da za sve $x \in S_M$ vrijedi ili x = 0, ili postoje $m \in \mathbb{Z}$ i $n \in \mathbb{N}$ takvi da je $x = \frac{m}{n}$, kojih je

očito konačno mnogo, jer je $n \in \left\{1, 2, \dots, \frac{1}{M}\right\}$, te $m \in \{1, \dots, n\}$.

Pokažimo sada neprekidnost funkcije u svakoj iracionalnoj točki. Neka su $\epsilon > 0$ i $c \in \mathbb{I}$ proizvoljni. Tvrdimo da postoji $\delta > 0$ takav da za sve $x \in \mathbb{R}$ vrijedi

$$|x - c| < \delta \Rightarrow |f(x)| = f(x) < \epsilon.$$

Ako je $\epsilon \geq 1$, tvrdnja je trivijalna. Uzmimo zato $\epsilon < 1$. Očito je tada skup S_{ϵ} neprazan, jer je npr. $0 \in S_{\epsilon}$.

Neka je $x_0 \in S_{\epsilon}$ točka takva da za sve $y \in S_{\epsilon}$ vrijedi $|x_0 - c| \leq |y - c|$. Takva točka postoji, jer inače bi slično kao u rješenju zadatka 254 dobili da je S_{ϵ} beskonačan, što očito ne vrijedi. Tvrdimo da za $\delta = |x_0 - c|$, ne postoji $x \in \mathbb{R}$ takav da je $|x - c| < \delta$ i $x \in S_{\epsilon}$. Zaista, u tom slučaju bi imali

$$|x_0 - c| \le |x - c| < \delta = |x_0 - c|,$$

kontradikcija! Ovo povlači da za sve $x \in \mathbb{R}$ takve da je $|x - c| < \delta$ vrijedi $|f(x)| < \epsilon$, što je i trebalo pokazati.

Dokažimo sada da funkcija ima prekid u svakoj racionalnoj točki. Zaista, ako je $q \in \mathbb{Q}$, onda je $f(q) \neq 0$, a kako za svaki broj q postoji niz (a_n) iracionalnih brojeva koji konvergira prema q (Dokažite to!), za taj niz je $\lim_{x\to\infty} f(a_n) = 0 \neq f(q)$, čime smo dokazali tvrdnju.

Napomena 69 (Bolzano-Weierstrassov teorem). Neka je $f:[a,b] \to \mathbb{R}$ neprekidna funkcija na segmentu [a,b]. Tada je f([a,b]) također segment.

Napomena 70. Neka je $f:[a,b] \to \mathbb{R}$ neprekidna funkcija na segmentu [a,b]. Prethodni teorem je ekvivalentan s konjunkcijom sljedeće tri tvrdnje.

- f je ograničena na [a,b], tj. postoji $M \in \mathbb{R}$ takav da je $|f(x)| \leq M$ za sve $x \in [a,b]$.
- f dostiže svoj infimum i supremum na [a,b], tj. postoje $x_m,x_M\in[a,b]$ za koje je²

$$f(x_m) = \inf f = \min f = m,$$

$$f(x_M) = \sup f = \max f = M.$$

• (Teorem o međuvrijednostima) Za svaki $C \in [m, M]$ postoji $c \in [a, b]$ takav da je C = f(c).

²Ako je $S \neq \emptyset$ i $f: S \rightarrow \mathbb{R}$, onda se inf f, sup f, min f, max f definiraju kao inf $\mathcal{R}(f)$, sup $\mathcal{R}(f)$, min $\mathcal{R}(f)$, max $\mathcal{R}(f)$, respektivno.

Zadatak 287. Zadana je $f:[0,2]\to\mathbb{R}, f(x)=x^5+3x^3$. Odredite $\mathcal{R}(f)$.

Rješenje. Uočimo da su $f_1:[0,2]\to\mathbb{R},\ f(x)=x^5$ i $f_2:[0,2]\to\mathbb{R},\ f_2(x)=3x^3$ strogo rastuće, pa je i $f=f_1+f_2$ strogo rastuća. Zato je

$$f(0) = 0 = \min f$$
 i $f(2) = 56 = \max f$,

pa je $\mathcal{R}(f) \subseteq [0, 56]$.

S druge strane, može se pokazati da je $x \mapsto x^n$ je neprekidna na \mathbb{R} za sve $n \in \mathbb{N}$ (v. [3]), odakle slijedi i da je f neprekidna na \mathbb{R} , te je specijalno f neprekidna na [0,2]. Iz teorema o međuvrijednostima imamo da za sve $C \in [0,56]$ postoji $c \in [0,2]$ takav da je C = f(c). Odavde slijedi $[0,56] \subseteq \mathcal{R}(f)$, pa je $\mathcal{R}(f) = [0,56]$.

Zadatak 288. Zadana je $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x \sin x$. Odredite $\mathcal{R}(f)$.

 $Rje\check{s}enje$. Neka je $n\in\mathbb{N}$ proizvoljan. Kako je f neprekidna na \mathbb{R} , ona je i neprekidna na segmentu $\left[-\frac{\pi}{2}-2n\pi,\frac{\pi}{2}+2n\pi\right]$. Uočimo da za sve $x\in\left[-\frac{\pi}{2}-2n\pi,\frac{\pi}{2}+2n\pi\right]$ vrijedi

$$|x\sin x| = |x||\sin x| \le |x| \le \frac{\pi}{2} + 2n\pi$$

i vrijedi $f\left(\frac{\pi}{2}+2n\pi\right)=\frac{\pi}{2}+2n\pi$, pa je

$$\min f = -\frac{\pi}{2} - 2n\pi$$
 i $\max f = \frac{\pi}{2} + 2n\pi$.

Odavde, slično kao u zadatku 287, slijedi

$$f\left(\left[-\frac{\pi}{2} - 2n\pi, \frac{\pi}{2} + 2n\pi\right]\right) = \left[-\frac{\pi}{2} - 2n\pi, \frac{\pi}{2} + 2n\pi\right].$$

Neka je sada $y \in \mathbb{R}$ proizvoljan. Prema Arhimedovu aksiomu postoje $n_0, m_0 \in \mathbb{N}$ takav da je

$$n_0 > \frac{y - \frac{\pi}{2}}{2}$$
 i $m_0 > -\frac{y + \frac{\pi}{2}}{2\pi}$,

odnosno

$$\frac{\pi}{2} + 2n_0\pi > y$$
 i $-\frac{\pi}{2} - 2m_0\pi < y$,

odakle za $n_1 = \max\{n_0, m_0\}$ slijedi da je $y \in \left[-\frac{\pi}{2} - 2n_1\pi, \frac{\pi}{2} + 2n_1\pi\right]$. Međutim, kako je f

neprekidna na $\left[-\frac{\pi}{2} - 2n_1\pi, \frac{\pi}{2} + 2n_1\pi\right]$, postoji $x \in \mathbb{R}$ takav da je y = f(x). Dakle, vrijedi $\mathbb{R} \subseteq \mathcal{R}(f)$, što znači da je $\mathcal{R}(f) = \mathbb{R}$.

Zadatak 289. Neka je $I \subseteq \mathbb{R}$ otvoreni interval i neka je $f: I \to \mathbb{R}$ neprekidna i strogo monotona na I. Dokažite da je tada $\mathcal{R}(f)$ otvoreni interval.

Dokaz. Uzmimo da f strogo raste na I (Analogno se tretira slučaj gdje f strogo pada). Pretpostavimo da je inf $\mathcal{R}(f) = \inf f \in \mathcal{R}(f)$. Tada postoji $a \in I$ takav da je $f(a) = \inf f$. Međutim, kako je I otvoreni interval, postoji $a' \in I$ takav da je a' < a. Odavde je $f(a_1) \in \mathcal{R}(f)$ i vrijedi $f(a_1) < f(a) = \inf f$, kontradikcija! Analogno se pokazuje da sup $f \notin \mathcal{R}(f)$. Odavde dobivamo $\mathcal{R}(f) \subseteq \langle \inf f, \sup f \rangle$.

Neka je $z \in \langle \inf f, \sup f \rangle$. Tada postoje $x, y \in \langle \inf f, \sup f \rangle$ takvi da je x < z < y. Kako je f strogo rastuća, ona ima inverznu funkciju f^{-1} koja je također strogo rastuća, pa je $f^{-1}(x) < f^{-1}(z) < f^{-1}(y)$. No tada je $f\left(\left[f^{-1}(x), f^{-1}(y)\right]\right)$ segment, pa je

$$z \in f([f^{-1}(x), f^{-1}(y)])$$
 i $f([f^{-1}(x), f^{-1}(y)]) \subseteq f(I) = \mathcal{R}(f),$

što vrijedi zbog činjenice da za svaku funkciju $g: S \to \mathbb{R}$ i skupove $A \subseteq B \subseteq S$ vrijedi $f(A) \subseteq f(B)$ (Dokažite to!). Dobivamo $z \in \mathcal{R}(f)$, pa zaključujemo da je $\mathcal{R}(f) = \langle \inf f, \sup f \rangle$. NADOPUNITI SLUCAJ KAD SLIKA NIJE OGRANICEN SKUP

Zadatci za vježbu

Definicija neprekidnosti funkcije

Zadatak 290. Koristeći definiciju neprekidnosti funkcije, dokažite sljedeće tvrdnje:

- a) $x \mapsto |3x + 2|$ je neprekidna na \mathbb{R} ,
- b) $x \mapsto x(x+1)$ je neprekidna na \mathbb{R} ,
- c) $x \mapsto x^3$ je neprekidna na \mathbb{R} ,
- d) $x \mapsto \frac{1}{\sqrt{x}}$ je neprekidna na \mathbb{R}^+ ,
- e) $x \mapsto \sqrt{x^2 + 1}$ je neprekidna u 0,
- f) $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$

je neprekidna u 0,

g) $x \mapsto 2\sin^2 x - 1$ je neprekidna na \mathbb{R} .

Zadatak 291. Zadan je otvoreni interval $I \subseteq \mathbb{R}$ i funkcija $f: I \to \mathbb{R}$. Dokažite ili opovrgnite: f je neprekidna u c ako i samo ako...

- a) Postoji $\delta > 0$ takav da za sve $\epsilon > 0$ i sve $x \in I$ vrijedi $|x c| < \delta \Rightarrow |f(x) f(c)| < \epsilon$,
- b) Za svaki $\epsilon>0$ postoji $\delta>0$ takav da za sve $x\in I$ vrijedi $|f(x)-f(c)|<\epsilon\Rightarrow |x-c|<\delta,$
- c) Za svaki $\delta>0$ postoji $\epsilon>0$ takav da za sve $x\in I$ vrijedi $|x-c|<\delta\Rightarrow |f(x)-f(c)|<\epsilon.$

Zadatak 292. Neka je $I \subseteq \mathbb{R}$ otvoreni interval i $c \in I$. Zadana je funkcija $f: I \to \mathbb{R}$ sa sljedećim svojstvom: Za svaki $k \in \mathbb{N}$ postoji $\delta > 0$ tako da za sve $x \in I$ vrijedi $|x - c| < \delta \Rightarrow |f(x) - f(c)| < \frac{1}{2^k}$. Dokažite ili opovrgnite: f je neprekidna u c.

Zadatak 293. Koristeći definiciju neprekidnosti funkcije, odredite najveći skup na kojem je funkcija $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} x^2, & x \le 3, \\ 2x + 1, & x > 3. \end{cases}$$

neprekidna.

Zadatak 294. (*) Koristeći definiciju neprekidnosti funkcije, dokažite da je $\sqrt[3]{x}$ neprekidna na svojoj domeni.

Svojstva neprekidnih funkcija

Zadatak 295. Postoji li $c \in \mathbb{R}$ takav da vrijedi:

a) $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} \arctan \frac{1}{x-1}, & x \neq 1, \\ c, & x = 1 \end{cases}$$

je neprekidna u 1.

b) Funkcija $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} 2x - c, & x \le 1, \\ \sqrt{x - 1}, & x > 1. \end{cases}$$

je neprekidna u 1.

b) $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} \sin\frac{1}{x}, & x \neq 0, \\ c, & x = 0. \end{cases}$$

je neprekidna u 0.

Zadatak 296. Dokažite da je $\mathcal{R}(\sin) = \mathcal{R}(\cos) = [-1, 1]$ i da je $\mathcal{R}(\operatorname{tg}) = \mathbb{R}$.

Bibliografija

- [1] M. Vuković, Matematička logika, skripta, PMF Matematički odsjek, Zagreb, 2007.
- [2] K. Horvatić, *Linearna algebra*, Golden marketing Tehnička knjiga, Zagreb, 2004.
- [3] D. Krizmanić, *Matematička analiza 1*, skripta, Fakultet za matematiku Sveučilišta u Rijeci, Rijeka, 2024.
- [4] A. Dujella, *Teorija brojeva*, Školska knjiga, Zagreb, 2019.
- [5] S. Kurepa, Matematička analiza 1, Školska knjiga, Zagreb, 1976.
- [6] Applying the Arithmetic Mean Geometric Mean Inequality. Brilliant.org. Preuzeto u 11:12, 19. srpnja 2024., Za link kliknite ovdje.
- [7] Arithmetic Mean Geometric Mean. Brilliant.org. Preuzeto u 15:54, 19. srpnja 2024., Za link kliknite ovdje.
- [8] B. P. Demidovič i suradnici, Zadaci i riješeni primjeri iz matematičke analize za tehničke fakultete, Sedmo ispravljeno izdanje, Golden marketing, Zagreb, 2003.
- [9] S. Mardešić, *Matematička analiza u n-dimenzionalnom realnom prostoru*, Prvi dio, Školska knjiga, Zagreb, 1974.
- [10] Grupa autora, Spravočnoe posobie po matematičeskomu analizu, Prvi dio, Višča škola, Kijev, 1978.
- [11] M. Vuković, Teorija skupova, predavanja, PMF Matematički odsjek, Zagreb, 2015.
- [12] B. Pavković, D. Veljan, Elementarna matematika 1, Školska knjiga, Zagreb, 2004.
- [13] T.-L. Radulescu, V. D. Radulescu, T. Andreescu, *Problems in Real Analysis: Advanced Calculus on the Real Axis*, Springer, 2009.
- [14] S. Kurepa, Matematička analiza 2, Školska knjiga, Zagreb, 1997.

[15] Grupa autora, Male teme iz matematike, Element d.o.o., Zagreb, 1994.Dio zadataka preuzet je iz kolokvija iz Matematičke analize 1 na PMF-u.