

ANALYSING YOUTUBE DATA

Team 9 Arsalan Riaz & Lakshay Bansal

MOTIVATION

We watch over 1 billion hours of YT videos a day, more than Netflix and Facebook combined. A youtuber can earn money through advertisements and given such a wide viewer base there is a lot of scope in earning money through youtube right?

An average youtuber with 1 million subscriber makes roughly 60k USD a year. Rastko is super interested to make his own youtube channel now and earn some side money and he comes to us for his IT support.

GOALS AND OBJECTIVES

The goal is to help Rastko to have the most subscribers with the help of analytics.

- -We want to understand what makes a video trending?
- -Can we predict the success of a video?
- -How can demographics help us understand what the users want to see?

DATA

This dataset includes several months (and counting) of data on daily trending YouTube videos.

Data is included for the regions India, USA, Great Britain, Germany, Canada, France, Russia, Brazil, Mexico, South Korea, and, Japan respectively, with up to 200 listed trending videos per day.

Data includes the video title, channel title, publish time, tags, views, likes and dislikes, description, and comment count.

For our analysis we used data from US, India and Russia

ideo_id	title	publishedAt	channelId	channelTitle	categoryId tre	ending_date	tags	view_count	likes	d1s11
FcjOMV4 Meatpackin	ng: Last 2021-	02-22707;30:01Z UC3X	TzVzaHQEd30rQ	LastWeekTonight	24	21.22.02	[none]	1067147	60111	1
84AOzj@ Best 3D Pe	en Art W 2021-	02-21T20:43:28Z UCPA	k4rqVIwg1NCXh	ZHC Crafts		21.22.02	[none]	1047854	59662	
MCDdXYA 100 Days -	- [Minec 2021-	02-20T18:00:01Z UC9F	keEFIGd9FXRfx	Luke TheNotable	20	21.22.02	luke thenotable 1	6133266	372753	71
mt2gBjo Amazing! I	Luke Bry 2021-	02-22T01:53:12Z UCAP	Pco9Pqj8bI_ML	American Idol	24	21.22.02	American Idol sin	790238	14267	
yHEb7W4 Game Theor	ry: Did 2021-	02-20T19:05:26Z UCo_	IB5145EVNcf8h	The Game Theorists	20	21.22.02	fnaf five nights	3248661	225780	21
j2DBFe4 Deion Sand	ders win 2021-	02-21T23:24:44Z UCzR	MisFjqHklan40	ESPN College Foot	17	21.22.02	deion sanders dei	297852	6007	
vBHgkrg Broner vs	Santiag 2021-	02-21T06:00:12Z UCW	YAGB95adlL6p5	Premier Boxing Ch	17	21.22.02 8	Boxing Combat PBC	828431	5233	1
null	null	nul1	null	null	null	null	null	null	null	n
null	null	null	null	null	null	null	nul1	null	null	n
null	null	null	null!	null	null	null	nul1	null	null	ni
null	null	nul1	null	null	null	null	null	null	null	ni
null	null	null	null	nul1	null	null	null	null	null	n
null	null!	null	nul1	null	null	null	null	null	null	ni
6mHdh10 How Do Nuc	lear Su 2021-	02-21T14:00:10Z UC61	07grRI4m0o2.e	SmarterEveryDay	28	21.22.02	Smarter Every Day	968432	57637	
SZmAghE Rainbow 55	ix Siege 2021-	02-21T19:59:40Z UCBM	Nc6jvuTxH6TNo	Ubisoft North Ame	20	21.22.82	lores New Siege	294287	13574	
er87pwY UNITED 328	8 Engine 2021-	02-21T23:04:04Z UC88	tlMjiS7kf8uhP	Captain Joe	28	21.22.02	Inited 328 engine	396864	26385	
cf65el0 WHO IS THE	E BEST C 2021-	02-21T06:11:13Z UCPo	ATKOMMY-CNRNW	Alexa Rivera	261	21,22,02	[none]	2768920	183684	25
MBIrths my va	elentine :) 2021-	02-21T21:00:09Z UCCp	eNIVK xG594eJ	Clayton Bush	221	21.22.02	[none]	123607	12156	
		02-21T20:29:11Z UCHU			22	21.22.02	dan and philldan	511276	110828	
ZelM/910 JAY GOT A	CRUSH 0 2021-	02-20T23:08:16Z UC3x	MCpnWd817Haig			21,22,02	funnymike funny m	899525	74078	

TOOLS USED

DATA PROCESSING

DATA VISUALIZATION

matpletlib

DATA MODELLING

EXPLORATORY DATA ANALYSIS (USA)

"BLACKPINK" is the most trending channel in US

Among all the categories comedy and family are the most enjoyed among users

The content that has both comedy and family are likely to trend more

EXPLORATORY DATA ANALYSIS (INDIA)

T-Series is the most trending channel in India

Comedy is the most trending category amongst all categories

Auto and Vehicles are amongst the top 5 trending categories

Auto and Vehicles videos should be created in more quantity as they are trending amongst top 5 categories

EXPLORATORY DATA ANALYSIS (RUSSIA)

A4 is the most trending channel in Russia

Comedy and Family are the top trending categories amongst YouTube users

Comedy and Family can be combined to produce more content

Foreign and Auto Vehicle content is not viewed as much as it is created

OVERALL TRENDING CHANNELS

The total number of views that are received by the top viewed channels in India, Russia and United States.

Different trends are being followed in the three countries

FACT: The number of views are proportional to the population of each country

TIME TAKEN FOR VIDEOS TO GO TRENDING

US - The average hours for a video to trend from the time it is published are 90

IN - The average hours for a video to trend from the time it is published are 40

RU - The average hours for a video to trend from the time it is published are 15

BEST TIME TO UPLOAD VIDEOS

US - The videos that received the highest views were posted on the 17th hour of the day - 5 PM CT

IN - The videos that received the highest views were posted on the 5th hour of the day - 3:30 PM IST

RU - The videos that received the highest views were posted on the 12th and 9th hour of the day - 6 PM MST

MODELLING APPROACH

Gradient boosted Tree Regression

Features used: Likes, Dislikes, Comments, Categoryld

Predicting: View count

```
[51] from pyspark.ml.limalg import vectors
    from pyspark.ml.feature import VectorAssembler
    from pyspark.ml.clustering import KMeans
    vec_assembler = VectorAssembler(inputCols = ['categoryId', 'likes', 'dislikes', 'comment_count'], outputCols' features')
    final data = vec assembler.transform(Regression data)
    final_data*final_data.select('view_count', 'features')
    (trainingData, testData) = final_data.randomSplit([0.8, 0.2])
    # Train a GBT model.
    gbt = GBTRegressor(labelCol='view_count', featuresCol="features", maxIter=B)
    gbt_model= gbt.fit(trainingData)
    # Make predictions.
    predictions = gbt_model.transform(testData)
    # Select (prediction, true label) and compute test error
    evaluator = RegressionEvaluator(
        labelCol="view_count", predictionCol="prediction", metricName="rmse")
    rmse = evaluator.evaluate(predictions)
    print("Root Mean Squared Error (RMSE) on test data = %g" % rmse)
    Root Mean Squared Error (RHSE) on test data = 2.98671e+06
```

```
General Linear method Regression
```

MODELLING APPROACH

Used Word2Vec

from pyspark.ml.feature import HashingTF, IDF, Tokenizer
tokenizer = Tokenizer(inputCol="title", outputCol="Tokens_title")
Regression_data = tokenizer.transform(Regression_data)

from pyspark.ml.feature import StopWordsRemover
remover = StopWordsRemover(inputCol="Tokens_title", outputCol="filtered_tokens_title")
Regression_data=remover.transform(Regression_data)

word2Vec = Word2Vec(vectorSize=3, minCount=0, inputCol="filtered_tokens_title", outputCol="title_embedding")
model = word2Vec.fit(Regression_data)

embedded_data = model.transform(Regression_data)

Gradient boosted Tree Regression with Title embeddings

```
| See | vec_assembler = VectorAssembler(inputCols = ['categoryId', 'likes', 'dislikes', 'comment_count', 'title_embedding'], outputCol='features')
| final_data = vec_assembler.transform(embedded_data)
| final_data=final_data.select('view_count', 'features')
| (trainingData, testData) = final_data.randomSplit([0.8, 0.2])
| fill gbt = GBTRegressor(labelCol='view_count', featuresCol="features", maxIter=8)
| gbt_model= gbt.fit(trainingData)
| # Make predictions.
| predictions = gbt_model.transform(testData)
| # Select (prediction, true label) and compute test error
| evaluator = RegressionEvaluator(
| labelCol="view_count", predictionCol="prediction", metricName="rmse")
| rmse = evaluator.evaluate(predictions)
| print("Root Mean Squared Error (RMSE) on test data = %g" % rmse)
| Root Mean Squared Error (RMSE) on test data = 1.49897e+86
```

RESULTS

Model Used	Gradient Bossted Tree Regression	General Linear Regression	Gradient Boosted Tree Regression with word embeddings
RMSE	298671 ~ 298K views	217426 ~ 217K views	149897 ~ 149K views

CONCLUSION AND FUTURE WORK

DOES THIS MEAN AN END TO RASTKO'S CAREER?

We still have stuff to try out.

- 1. Using external API to clickbait scores of titles
- 2. Using CNN on the thumbnail image to extract features from the thumbnail image can be very useful predictors.
- 3. Using Bert instead of word2vec for embeddings
- 4. Extract Topics from video titles using LDA and use that as a feature.

Example of Clickbaity titles

KEY TAKEAWAYS

- 1. We saw that there was a difference in the type of content users want to watch in different regions.
- 2. Generally uploading videos around 5pm would increase your chances of getting more views.
- 3. We know that number of likes and comments are helpful to determine the success of a video.
- 4. Adding title embedding as a feature definitely improved model performance and hence this means having eyecatchy titles help.