## BART Toolbox for Computational MRI

- For research use
- Available for Linux, MacOS X, (Windows), ...
- ► BSD license (free for commercial use)
- https://mrirecon.github.io/bart/

#### **Contributors:**

Jon Tamir, Christian Holme, Moritz Blumenthal, Nick Scholand, Philip Schaten, ... many more (see ACKNOWLEDGMENTS)

#### Research Support

American Heart Association Grant 12BGIA9660006, NIH Grant R41RR09784 and Grant R01EB009690, UC Discovery Grant 193037, Sloan Research Fellowship, GE Healthcare, DZHK (German Centre for Cardiovascular Research), and a personal donation from David Donoho's Shaw Prize, NIH Grant U24EB029240-01









## Motivation

- Rapid prototyping (similar to Matlab, octave, ...)
- Reproducible research (i.e. scripts to reproduce experiments)
- Robustness and clinically feasible runtime (C/C++, OpenMP, GPU programming)
- Educational tool
- ► Platform for collaboration

## Motivation

- Rapid prototyping (similar to Matlab, octave, ...)
- Reproducible research (i.e. scripts to reproduce experiments)
- Robustness and clinically feasible runtime (C/C++, OpenMP, GPU programming)
- Educational tool
- ► Platform for collaboration

## **Programming library**

- ► Consistent API based on multi-dimensional arrays
- ► Fast transforms: FFT, nuFFT, wavelet
- ▶ Generic iterative (matrix-free) algorithms (conjugate gradients, FISTA, IRGNM, ADMM, iPALM, ...)
- ► Composable operators / algorithms
- ► Transparent GPU acceleration of most functions
- ► Neural networks

#### **Command-line tools**

- ► Simple file format
- ► Looping, parallelization, streaming
- Interoperability with Matlab, Python
- ▶ Basic operations: fft, resize, slice, . . .
- Sensitivity calibration and image reconstruction

## **Programming library**

- ► Consistent API based on multi-dimensional arrays
- ► Fast transforms: FFT, nuFFT, wavelet
- ▶ Generic iterative (matrix-free) algorithms (conjugate gradients, FISTA, IRGNM, ADMM, iPALM, ...)
- ► Composable operators / algorithms
- ► Transparent GPU acceleration of most functions
- ► Neural networks

#### **Command-line tools**

- ► Simple file format
- ► Looping, parallelization, streaming
- ► Interoperability with Matlab, Python
- ▶ Basic operations: fft, resize, slice, . . .
- Sensitivity calibration and image reconstruction

| Generic Tools                                                                                      |                                                                                                                                                                                                                          | MRI Tools                                                                                    |                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fft slice extract resize flip join zeros/ones circshift conv scale conj fmac saxpy sdot rss repmat | extract slice extract block crop / zeropad reverse dimensions merge files create files circular shift convolution scale complex ocnjugate fused multiply-add scalar mult. and add dot product root-sum-of-squares repmat | cc walsh caldir ecalib ncalib pics moba nlinv nufft pocsense fovshift pattern poisson signal | channel compression Walsh method Direct calibration ESPIRiT calibration non-linear calibration $\ell_1$ -SENSE/ESPIRiT model-based recon non-linear inversion non-uniform FFT POCSENSE Retrospectively shift FO extract pattern Poisson-disc pattern create signal curves |
| svd                                                                                                | singular-value d.                                                                                                                                                                                                        | Low field?                                                                                   |                                                                                                                                                                                                                                                                           |

| Generic Tools                                                                                      |                                                                                                                                                                                                                                            | MRI Tools                                                                                    |                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fft slice extract resize flip join zeros/ones circshift conv scale conj fmac saxpy sdot rss repmat | FFT extract slice extract slice extract block crop / zeropad reverse dimensions merge files create files circular shift convolution scale complex ocnjugate fused multiply-add scalar mult. and add dot product root-sum-of-squares repmat | cc walsh caldir ecalib ncalib pics moba nlinv nufft pocsense fovshift pattern poisson signal | channel compression Walsh method Direct calibration ESPIRiT calibration non-linear calibration ℓ₁-SENSE/ESPIRiT model-based recon non-linear inversion non-uniform FFT POCSENSE Retrospectively shift FO' extract pattern Poisson-disc pattern create signal curves |
| svd                                                                                                | singular-value d.                                                                                                                                                                                                                          | Low field?                                                                                   |                                                                                                                                                                                                                                                                     |

# pics: Parallel Imaging Compressed Sensing

> bart pics -RA:B:C:D -R ... [-t trj] [-B basis] kspace sens image

- parallel imaging and compressed sensing
- non-Cartesian k-space trajectories
- subspace reconstruction
- multiple regularization terms
- A: different types of regularization:  $\ell_2$ ,  $\ell_1$ , total variation,  $\ell_1$ -wavelet, (multi-scale) low-rank
- ► B: transforms along arbitrary dimensions (space, time, etc.)
- C: joint-thresholding along arbitrary dimensions
- D: regularization parameter

Note: Depending on the algorithm additional parameters (step size, number of iterations, etc.) must be set for optimal results.

moba: Model-Based Reconstruction

- > bart moba model -r ... [-t trj] kspace enc output [sens]
  - ▶ signal model  $(T_1, T_2, T_2^{\star}, T_2^{\star} + \delta B_0, Bloch)$
  - parallel imaging and compressed sensing
  - non-Cartesian k-space trajectories
  - ► A, B, C, D: regularization

Note: Depending on the algorithm additional parameters (step size, number of iterations, etc.) must be set for optimal results.

### Resources

- 1. README, doc/
- 2. Website: https://mrirecon.github.io/bart
- 3. Source code: https://github.com/mrirecon/bart
- 4. Mailing list with public archive (see website)
- 5. Workshops: https://github.com/mrirecon/bart-workshop
- 6. Webinars: https://github.com/mrirecon/bart-webinars
- 7. Help: Each command has '-h' option for a very brief help.

### Resources

- 1. README, doc/
- 2. Website: https://mrirecon.github.io/bart
- 3. Source code: https://github.com/mrirecon/bart
- 4. Mailing list with public archive (see website)
- 5. Workshops: https://github.com/mrirecon/bart-workshop
- 6. Webinars: https://github.com/mrirecon/bart-webinars
- 7. Help: Each command has '-h' option for a very brief help.

# Educational Track 2 (ET2): Reconstruction of Images and Parameter Maps

```
https:
```

```
//github.com/mritogether/ESMRMB2024_Hardware_to_Map
```

#### **Schedule**

- ► Image Reconstruction: Compressed Sensing, Model-Based Reconstruction, Machine Learning (Efrat Shimron)
- ► Introduction to the BART Toolbox (Martin Uecker)
- Parameter Mapping for Low-Field MRI (Julia Pfitzer)

## Literature

Model-based reconstruction for  $T_2$  mapping:

- Block, Uecker, Frahm. Model-based Iterative Reconstruction for Radial Fast Spin-Echo MRI. IEEE TMI 2009;28:1759-1769.
- ► Sumpf et al. Model-based Nonlinear Inverse Reconstruction for T2 Mapping Using Highly Undersampled Spin-Echo MRI. JMRI 2011;34:420-428. MARTINI (⇒ GRAPPATINI)
- Sumpf, Petrovic, Uecker, Knoll, Frahm. Fast T2 Mapping with Improved Accuracy Using Undersampled Spin-echo MRI and Model-based Reconstructions with a Generating Function. IEEE Transactions on Medical Imaging 2014;33:2213-2222. stimulated echos!
- ► Tamir et al. T2 Shuffling: Sharp, Multicontrast, Volumetric Fast Spin-Echo Imaging. MRM 2017;77:180-195 subspace
- Wang et al. Physics-based Reconstruction Methods for Magnetic Resonance Imaging. Philosophical Transactions of the Royal Society A. 2021;379:20200196. review with BART code!
- Scholand et al. Quantitative Magnetic Resonance Imaging by Nonlinear Inversion of the Bloch Equations. Magnetic Resonance in Medicine 2023;90:520-538. generic Bloch model, BART