

Quantum Computing with Rydberg Atoms

Chen Huang

Quantum Operating System Group, BAQIS Department of Physics, Imperial College London

Outline

- Rydberg Physics
 - What are the Rydberg atoms?
 - Two-body interactions
 - Rydberg blockade
- Rydberg Quantum Computing
 - Two-atom blockade gate
 - CZ gate
 - CNOT gate
 - Preparation of single-atom states
 - Rydberg coupled ensembles

What are the Rydberg atoms?

Rydberg atoms are atoms with one or more electrons in highly excited state (very high principal quantum number n).

Properties

- Dipole-dipole interactions scale as $r^2 = (a_0 n^2)^2 \sim n^4$.
- Radiative lifetimes for alkalis scale as n^3 .

Two-body interactions

Figure 1: Interaction potentials for $43d_{5/2}+43d_{5/2}$ Rb Rydberg atoms. The cutoff radius R_c represents the distance scale for the transition from resonant dipole-dipole to van der Waals behavior.

Dipole-dipole interaction

$$V_{\rm dd} = \frac{1}{4\pi\varepsilon_0 R^3} \left(\vec{p}_1 \cdot \vec{p}_2 - 3(\vec{p}_1 \cdot \hat{R})(\vec{p}_2 \cdot \hat{R}) \right) \propto \frac{1}{R^3}$$

Rydberg blockade

When one atom in a pair is excited to a Rydberg state, the strong dipole-dipole interaction shifts the energy levels of nearby atoms, **preventing** them from being excited to the same state. This ensures that only one atom can be in the Rydberg state at a time within a certain volume.

Controlled-Z gate

- $|00\rangle \rightarrow -|00\rangle$
- $|01\rangle \rightarrow -|01\rangle$
- $|10\rangle \rightarrow -|10\rangle$
- ullet |11
 angle
 ightarrow |11
 angle

$$U = e^{i\pi} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

- Basis states $|0\rangle$, $|1\rangle$ and Rydberg level $|r\rangle$.
- $|0\rangle$ is coupled to $|r\rangle$ with excitation Rabi frequency Ω .

CNOT gate

Preparation of single-atom states¹

¹Saffman and Walker (2002)

Rydberg coupled ensembles²

Extend: 2 atoms $\rightarrow N$ atoms

- Logical 0: $|\bar{0}\rangle = \prod_{i=1}^N |0_i\rangle$.
- Logical 1: $\left|\bar{1}\right\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \left|0 \cdots 1_{i} \cdots 0\right\rangle$ \Rightarrow a closed two-level system with the collectively enhanced Rabi frequency $\Omega_{N} = \sqrt{N}\Omega$

In the limit of strong blockade, the probability of unwanted double excitation is

$$P_2 = \frac{N-1}{N} \frac{\Omega_N^2}{2B^2}.$$

²Lukin et al. (2001)

²Lukin et al. (2001)

Summary

- Rydberg Physics
 - What are the Rydberg atoms?
 - Two-body interactions
 - Rydberg blockade
- Rydberg Quantum Computing
 - Two-atom blockade gate
 - CZ gate
 - CNOT gate
 - Preparation of single-atom states
 - Rydberg coupled ensembles

Thanks for Listening!