Package 'WLogit'

July 17, 2023

Type Package

Title Variable Selection in High-Dimensional Logistic Regression Models using a Whitening Approach
Version 2.1
Date 2023-07-17
Author Wencan Zhu
Maintainer Wencan Zhu <wencan.zhu@yahoo.com></wencan.zhu@yahoo.com>
Description It proposes a novel variable selection approach in classification problem that takes into account the correlations that may exist between the predictors of the design matrix in a high-dimensional logistic model. Our approach consists in rewriting the initial high-dimensional logistic model to remove the correlation between the predictors and in applying the generalized Lasso criterion.
License GPL-2
Imports cvCovEst, genlasso, tibble, MASS, ggplot2, Matrix, glmnet, corpcor
VignetteBuilder knitr
Suggests knitr
Depends R (>= 3.5.0)
NeedsCompilation no
Repository CRAN
Date/Publication 2023-07-17 07:10:06 UTC
WLogit-package 2 beta 3 CalculPx 4 CalculWeight 5 Refit_glm 6 test 7 Thresholding 8

2 WLogit-package

WLog	it-package		ar sir						•		in	ıeı	nsi	ioi	na	l I	Lo,	gi	sti	c 1	Re,	gr	es.	si	on	. 1	1 0	de	ls
Index																													16
	у					•		 •			•				٠		•	•		•		٠				•			15
	X	 																											15
	WorkingResp .	 																											14
	WhiteningLogit																												10
	top_thresh	 																											9
	top	 																											8

Description

It proposes a novel variable selection approach in classification problem that takes into account the correlations that may exist between the predictors of the design matrix in a high-dimensional logistic model. Our approach consists in rewriting the initial high-dimensional logistic model to remove the correlation between the predictors and in applying the generalized Lasso criterion.

Details

The DESCRIPTION file:

Package: WLogit Type: Package

Title: Variable Selection in High-Dimensional Logistic Regression Models using a Whitening Approach

It proposes a novel variable selection approach in classification problem that takes into account the corre

Version:

Description:

2023-07-17 Date: Author: Wencan Zhu

Wencan Zhu <wencan.zhu@yahoo.com> Maintainer:

License: GPL-2

Imports: cvCovEst, genlasso, tibble, MASS, ggplot2, Matrix, glmnet, corpcor

VignetteBuilder: knitr Suggests: knitr Depends: R (>= 3.5.0)

NeedsCompilation:

Packaged: 2023-07-17 07:06:43 UTC; mmip

Index of help topics:

CalculPx Calculate the class-conditional probabilities.

CalculWeight Calculate the weight

Refit_glm Refit the logistic regression with chosen

variables

Thresholding Thresholding on a vector beta 3

WLogit-package Variable Selection in High-Dimensional Logistic

Regression Models using a Whitening Approach

WhiteningLogit Variable selection in high-dimensional logistic

regression models using a whitening approach

WorkingResp Calculate the working response

X Example of a design matrix of a logistic model

beta True coefficients in the esample.

test WLogit output

top Thresholding to zero of the smallest values top_thresh Thresholding to a given threshold of the

smallest values

y Example of a binary response variable of a

logistic model.

Further information is available in the following vignettes:

Vignettes WLogit package (source, pdf)

This package consists of functions: "WhiteningLogit", "CalculPx", "CalculWeight", "Refit_glm", "top", "top_thresh", "WorkingResp", and "Thresholding". For further information on how to use these functions, we refer the reader to the vignette of the package.

Author(s)

Wencan Zhu

Maintainer: Wencan Zhu <wencan.zhu@yahoo.com>

References

W. Zhu, C. Levy-Leduc, N. Ternes. "Variable selection in high-dimensional logistic regression models using a whitening approach". (2022)

beta

True coefficients in the esample.

Description

True coefficients in the esample given in the vignette.

Usage

data("beta")

4 CalculPx

Format

```
The format is: num [1:500] 1 1 1 1 1 1 1 1 1 1 ...
```

Examples

```
data(beta)
plot(beta)
```

CalculPx

Calculate the class-conditional probabilities.

Description

Calculate the probability for a repsonse to be 1 in the logistic regression model.

Usage

```
CalculPx(X, beta, intercept = 0)
```

Arguments

X Design matrix of the logistic model considered.

beta Vector of coefficients of the logistic model considered.

intercept Whether there is the intercept

Value

prob the probability for a repsonse to be 1

Author(s)

Wencan Zhu, Celine Levy-Leduc, Nils Ternes

See Also

Please read https://hastie.su.domains/Papers/glmnet.pdf for more details

```
data(X)
data(beta)
CalculPx(X=X, beta=beta)

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
```

CalculWeight 5

```
## The function is currently defined as
function (X, beta, intercept = 0)
{
    prob <- 1/(1 + exp(-(X %*% beta + intercept)))
    return(prob)
}</pre>
```

CalculWeight

Calculate the weight

Description

Calculate the weight in the penalized weighted-least-squares problem

Usage

```
CalculWeight(Px)
```

Arguments

Рx

The vector of estimated probability for each response to be 1.

Author(s)

Wencan Zhu, Celine Levy-Leduc, Nils Ternes

See Also

Please read https://hastie.su.domains/Papers/glmnet.pdf for more details

```
data(X)
data(beta)
px <- CalculPx(X=X, beta=beta)
CalculWeight(px)
##--- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

## The function is currently defined as
function (Px)
{
    return(Px * (1 - Px))
}
```

Refit_glm

Refit_glm

Refit the logistic regression with chosen variables

Description

Refit the logistic regression with chosen variables.

Usage

```
Refit_glm(X, beta_pred, y)
```

Arguments

X Design matrix of the logistic model considered.

beta_pred Predicted coefficients to be refited.

y Binary response

Value

beta_refit The new estimated coefficients

Author(s)

Wencan Zhu, Celine Levy-Leduc, Nils Ternes

```
data(X)
data(y)
data(beta)
Refit_glm(X=X, beta_pred=beta, y=y)
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (X, beta_pred, y)
   X_temp <- X[, which(beta_pred != 0)]</pre>
   if (length(which(beta_pred != 0)) == 0) {
       coef_est <- beta_pred</pre>
   else if (is.null(ncol(X_temp))) {
       mydata <- data.frame(Y = y, X_temp)</pre>
       colnames(mydata) <- c("Y", "X")</pre>
       "Y")], collapse = " + "))
       myform <- as.formula(formula)</pre>
       mod_lm <- glm(myform, data = mydata, family = "binomial")</pre>
```

test 7

```
coef_est <- mod_lm$coefficients</pre>
  }
  else {
      mydata <- data.frame(Y = y, as.matrix(X_temp))</pre>
      formula <- paste0("Y^{-1} +", paste0(colnames(mydata)[-which(colnames(mydata) ==
           "Y")], collapse = " + "))
      myform <- as.formula(formula)</pre>
      if (length(which(beta_pred != 0)) >= length(y)) {
           mod_ridge <- cv.glmnet(x = as.matrix(X_temp), y = y,</pre>
               alpha = 0, intercept = FALSE, family = "binomial")
           opt_lambda <- mod_ridge$lambda[which.min(mod_ridge$cvm)]</pre>
           coef_est \leftarrow as.vector(glmnet(x = as.matrix(X), y = y,
               alpha = 0, intercept = FALSE, family = "binomial"
               lambda = opt_lambda)$beta)
      }
      else {
           mod_lm <- glm(myform, data = mydata, family = "binomial")</pre>
           coef_est <- mod_lm$coefficients</pre>
      }
  beta_refit <- rep(0, length(beta_pred))</pre>
  beta_refit[which(beta_pred != 0)] <- coef_est</pre>
  return(beta_refit)
}
```

test

WLogit output

Description

The output of WLogit in the example given in the vignette.

Usage

```
data("test")
```

Format

The format is: List of 4 \$ beta: num [1:50, 1:500] 0 0 0 0 0 ... \$ lambda: num [1:50] 100.8 80 73 58.9 56.7 ... \$ beta.min: num [1:500] 0.0194 0.0348 0.0259 0.0287 0.0385 ... \$ log.likelihood: num [1:50] 57.7 57.7 57.7 57.7 ...

```
data(test)
str(test)
```

8 top

Thresholding	
IIII CONOTUTING	

Thresholding on a vector

Description

This function provides the thresholding (correction) given a vector. It calls the function top or top_thresh in the same package, and the output is the vector after correction with the optimal threshold parameter.

Usage

```
Thresholding(X, y, coef, TOP)
```

Arguments

X Design matrix of the logistic model considered.

y Binary response

coef Candidate vector to be corrected

TOP The grill of thresholding

Value

opt_top The optimal threshold

auc the log-likelihood for each grill of thresholding

Author(s)

Wencan Zhu, Celine Levy-Leduc, Nils Ternes

top

Thresholding to zero of the smallest values

Description

This function keeps only the K largest values of the vector sorted_vect and sets the others to zero.

Usage

```
top(vect, thresh)
```

Arguments

vect vector to threshold

thresh threshold

top_thresh 9

Value

This function returns the thresholded vector.

Author(s)

Wencan Zhu, Celine Levy-Leduc, Nils Ternes

Examples

```
x=sample(1:10,10)
thresh=3
top(x,thresh)
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

## The function is currently defined as
function (vect, thresh)
{
    sorted_vect <- sort(abs(vect), decreasing = TRUE)
    v = sorted_vect[thresh]
    ifelse(abs(vect) >= v, vect, 0)
}
```

top_thresh

Thresholding to a given threshold of the smallest values

Description

This function keeps only the K largest values of the vector vect and sets the others to the smallest value among the K largest.

Usage

```
top_thresh(vect, thresh)
```

Arguments

vect vector to threshold thresh threshold

Value

This function returns the thresholded vector.

Author(s)

Wencan Zhu, Celine Levy-Leduc, Nils Ternes

Examples

```
x=sample(1:10,10)
sorted_vect=sort(x,decreasing=TRUE)
thresh=3
top_thresh(x,thresh)

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

## The function is currently defined as
function (vect, thresh)
{
    sorted_vect <- sort(vect, decreasing = TRUE)
    v = sorted_vect[thresh]
    ifelse(vect >= v, vect, v)
}
```

WhiteningLogit

Variable selection in high-dimensional logistic regression models using a whitening approach

Description

Variable selection in high-dimensional logistic regression models using a whitening approach

Usage

```
WhiteningLogit(X = X, y = y, nlambda = 50, maxit = 100, gamma = 0.9999, top_grill=c(1:100))
```

Arguments

X	Design matrix of the logistic model considered.
у	Binary response of the logistic model considered.
nlambda	Number of lambda
maxit	Integer specifying the maximum number of steps for the generalized Lasso algorithm. It should not be smaller than nlambda.
gamma	Parameter γ defined in the paper Zhu et al. (2022) given in the references. Its default value is 0.95.
top_grill	A grill of provided for the thresholding

Value

Returns a list with the following components

lambda different values of the parameter λ considered. beta matrix of the estimations of β for all the λ considered.

beta.min estimation of β which minimize the MSE.

log.likelihood

Log-likelihood for all the λ considered.

Author(s)

Wencan Zhu, Celine Levy-Leduc, Nils Ternes

References

W. Zhu, C. Levy-Leduc, N. Ternes. "Variable selection in high-dimensional logistic regression models using a whitening approach". (2022)

```
X0 \leftarrow matrix(rnorm(50*10, mean=0, sd=1), 50, 10)
y0 <- c(rep(1,25), rep(0,25))
mod <- WhiteningLogit(X=X0, y=y0)</pre>
plot(mod$beta.min)
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function(X=X, y=y,
                    nlambda=50,
                    maxit=100,
                    gamma=0.9999,
                    top_grill=c(1:100)){
  p=ncol(X)
  n=nrow(X)
 mod_ridge <- cv.glmnet(x=as.matrix(X), y=y, alpha=0.5, intercept=FALSE, family="binomial")</pre>
  pr_est <- predict(mod_ridge, as.matrix(X), s = "lambda.min", type="response")</pre>
 beta_ini <- predict(mod_ridge, as.matrix(X), s = "lambda.min", type="coefficients")[-1]</pre>
  diag_w <- pr_est*(1-pr_est)</pre>
  square_root_w <- diag(sqrt(as.vector(diag_w)), nrow=n)</pre>
  X_new <- square_root_w</pre>
  Cov_est <- cvCovEst(
    dat = X_new,
    estimators = c(
      linearShrinkLWEst, thresholdingEst, sampleCovEst
    ),
```

```
estimator_params = list(
    thresholdingEst = list(gamma = seq(0.1, 0.3, 0.1))
  ),
  center = TRUE,
  scale = TRUE
Sigma_est <- Cov_est$estimate</pre>
SVD_new <- fast.svd(Sigma_est)</pre>
U_sigma_new <- SVD_new$u
D_sigma_new <- SVD_new$d
inv_transmat <- U_sigma_new</pre>
inv_diag_new <- ifelse(D_sigma_new<0.000001, 0, 1/sqrt(D_sigma_new))</pre>
trans_mat <- U_sigma_new</pre>
if (p \le 50) {
  top\_grill \leftarrow seq(1, p, 2)
}else if (p <= 200) {</pre>
  top\_grill <- c(1:50, seq(52, p, 2))
}else if (p <= 300) {
  top_grill <- c(1:50, seq(52, 100, 2), seq(105, 200, 5),
                  seq(210, p, 10))
}else {
  top\_grill \leftarrow c(1:50, seq(52, 100, 2), seq(105, 200, 5),
                  seq(210, 300, 10))
X_tilde <- X
beta_tilde_ini <- inv_transmat</pre>
Px <- CalculPx(X_tilde, beta=beta_tilde_ini)</pre>
wt <- CalculWeight(Px)</pre>
# wt <- ifelse(wt0==0, 0.0001, wt0)
ystar <- WorkingResp(y=y, Px=Px, X=X_tilde, beta=beta_tilde_ini)</pre>
X_tilde_weighted <- sweep(X, MARGIN=1, sqrt(wt), `*`)</pre>
ystar_weighted <- sqrt(wt)*ystar</pre>
gen.model0 <- genlasso(y=ystar_weighted, X=X_tilde_weighted,</pre>
                         D=trans_mat, maxsteps = 50)
parameter_tmp <- beta_tilde_ini</pre>
beta_final <- matrix(NA, length(gen.model0$lambda), p)</pre>
skip_i \leftarrow TRUE
eval_final <- c()
defaultW <- getOption("warn")</pre>
options(warn = -1)
for(i in 1:length(gen.model0$lambda)){
  #inner loop
  epsilon=10
```

```
j=0
if(skip_i){parameter_tmp <- beta_tilde_ini</pre>
} else {parameter_tmp <- parameter_current}</pre>
skip_i <-FALSE
while(epsilon > 0.001){
  j=j+1
  parameter_current <- parameter_tmp</pre>
  Px <- CalculPx(X_tilde, beta=parameter_current)</pre>
  wt0 <- CalculWeight(Px)</pre>
  wt <- ifelse(round(wt0,4)==0, 0.0001, wt)
  ystar <- WorkingResp(y=y, Px=Px, X=X_tilde, beta=parameter_current)</pre>
  X_tilde_weighted <- sweep(X, MARGIN=1, sqrt(wt), `*`)</pre>
  ystar_weighted <- sqrt(wt)*ystar</pre>
gen.model <- genlasso(y=ystar_weighted, X=X_tilde_weighted, D=trans_mat, maxsteps = maxit)</pre>
  if(gen.model0$lambda[i] < min(gen.model$lambda)){</pre>
    parameter_tmp <- parameter_current</pre>
    break
  } else {
    parameter_tmp <- coef(gen.model, lambda=gen.model0$lambda[i],</pre>
                            type = "primal")$beta
    beta_current <- parameter_tmp</pre>
    if(sum(is.na(parameter_tmp))>0){
      skip_i <-TRUE
      parameter_tmp <- rep(0,p)</pre>
      break}
    epsilon <- max(abs(parameter_current-parameter_tmp))</pre>
    if(epsilon >=100){
      skip_i <-TRUE
      break}
    if (j==maxit){
      skip_i <-TRUE
      break}
  }
}
if(skip_i){
  beta_final[i, ] <- rep(NA, p)</pre>
  eval_final[i] <- NA
} else{
  correction <- Thresholding(X_tilde, y, coef=parameter_tmp, TOP=top_grill)</pre>
  opt_top_tilde <- correction$opt_top</pre>
  beta_tilde_opt <- top_thresh(vect=parameter_tmp, thresh = opt_top_tilde)</pre>
  beta_final0 <- trans_mat</pre>
  correction <- Thresholding(X, y, coef=beta_final0, TOP=top_grill)</pre>
  opt_top_final <- correction$opt_top</pre>
  beta_final[i, ] <- beta_opt_final <- top(vect=beta_final0, thresh = opt_top_final)</pre>
  beta_refit <- Refit_glm(X=X, beta_pred = beta_opt_final, y=y)</pre>
```

WorkingResp

WorkingResp

Calculate the working response

Description

Calculate the working response in the iterative least square regression

Usage

```
WorkingResp(y, Px, X, beta, intercept = 0)
```

Arguments

Design matrix of the logistic model considered.
 Binary response of the logistic model considered.
 The probability of the reponse to be 1

beta Vector of coefficients intercept If there is an intercept

Value

This function returns the vector of working response.

Author(s)

Wencan Zhu, Celine Levy-Leduc, Nils Ternes

See Also

Please read https://hastie.su.domains/Papers/glmnet.pdf for more details

X 15

Χ

Example of a design matrix of a logistic model

Description

It contains an example of a design matrix of a logistic model.

Usage

```
data("X")
```

Format

The format is: num [1:100, 1:500] -1.576 -0.476 -0.237 -0.398 0.284 ...

Examples

data(X)

У

Example of a binary response variable of a logistic model.

Description

It contains an example of a binary response variable of a logistic model.

Usage

```
data("y")
```

Format

The format is: int [1:100] 0 1 0 1 1 0 0 0 1 1 ...

Examples

data(y)

Index

```
* ~thresholding
    top, 8
    top\_thresh, 9
\ast datasets
    beta, 3
    test, 7
    X, 15
    y, 15
beta, 3
CalculPx, 4
CalculWeight, 5
Refit_glm, 6
test, 7
Thresholding, 8
top, 8, 8
top\_thresh, 8, 9
WhiteningLogit, 10
WLogit(WLogit-package), 2
WLogit-package, 2
{\tt WorkingResp,\,14}
X, 15
y, 15
```