Architettura degli Elaboratori

Esercitazione

Su cosa ci esercitiamo oggi?

- Espressioni in forma canonica POS e reti OR-to-AND
- > Altri operatori booleani
 - > NAND
 - > NOR

Espressioni POS

$$(\overline{x_2} + \overline{x_3})(x_1 + \overline{x_3})$$

- Maxtermine: somma di letterali in cui compare ogni variabile o vera o negata
- Una espressione normale POS è in forma canonica POS se i suoi termini sono tutti maxtermini

$$(x_1 + x_2 + x_3)(x_1 + x_2 + x_3)$$

Dalla tavola di verità all'espressione POS

Come determinare i maxtermini corrispondenti?

X ₃	X ₂	x_1	Maxtermini
0	0	0	x ₃ + x ₂ + x ₁
0	0	1	$x_3+x_2+\overline{x_1}$
0	1	0	$x_3+\overline{x_2}+x_1$
0	1	1	$x_3 + \overline{x_2} + \overline{x_1}$
1	0	0	$\frac{-}{x_3} + x_2 + x_1$
1	0	1	$\overline{x}_3 + x_2 + x_1$
1	1	0	$\overline{x_3}$ + $\overline{x_2}$ + x_1
1	1	1	$\overline{x}_3 + \overline{x}_2 + \overline{x}_1$

Nota: la combinazione di input 000 corrisponde al maxtermine X₃+X₂+X₁

Nota: la combinazione di input 111 corrisponde al maxtermine

$$\overline{x_3} + \overline{x_2} + \overline{x_1}$$

Esempio

Determiniamo le occorrenze di O nella tavola di verità di f e facciamo il prodotto dei maxtermini

2	x_1	f	corrispondenti

$$\overline{X_3} + \overline{X_2} + \overline{X_1}$$

Dall'espressione POS a una rete a due livelli

- > Nel primo livello varie porte OR
 - > Tante, quanti sono i maxtermini
- > Nel secondo livello, solo una porta AND

Esercizio 1

- Esprimere la funzione XOR in forma canonica POS
- Inoltre, disegnare il circuito OR-to-AND che realizza la funzione XOR

Esprimere la funzione XOR in forma canonica POS

X	У	x⊕y	
0	0	0	x + y
0	1	1	
1	0	1	
1	1	0	$\frac{1}{x} + \frac{1}{y}$

Tavola di verità

Espressione canonica POS

$$x \oplus y_{POS} = (x + y) \cdot (\overline{x} + \overline{y})$$

➤Il circuito OR-to-AND che realizza la funzione XOR è

$$x \oplus y_{POS} = (x + y) \cdot (\overline{x} + \overline{y})$$

- Metodo alternativo per calcolare la forma canonica POS per funzione XOR
 - \succ Calcolare la forma canonica SOP per la funzione XOR negata (coincidenza) $x \oplus y$
 - Negare il risultato ottenuto, applicando le leggi di De Morgan

Ricaviamo la forma canonica SOP per la funzione XOR negata, cioè la coincidenza:

X	У	$\overline{x \oplus y}$
0	0	1
0	1	0
1	0	0
1	1	1

Tavola di verità

 $\overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$

Espressione canonica SOP

$$\frac{1}{x \oplus y_{SOP}} = \frac{1}{x} \cdot \overline{y} + x \cdot y$$

$$XOR_{POS} = \overline{XOR}_{SOP} = \overline{\overline{x} \cdot \overline{y} + x \cdot y}$$

$$= (\overline{\overline{x} \cdot \overline{y}}) \cdot (\overline{x \cdot y})$$

$$= (\overline{\overline{x}} + \overline{\overline{y}}) \cdot (\overline{x} + \overline{y})$$

$$= (x + y) \cdot (\overline{x} + \overline{y})$$

×	У	x ⊕ y
0	0	0
0	1	1
1	0	1
1	1	0

$$x + y$$

$$\frac{1}{x} + \frac{1}{y}$$

Espressione canonica POS per XOR:

prodotto dei maxtermini in corrispondenza dei quali XOR assume valore 0

Esercizio 2

Esprimere la funzione NAND in forma canonica POS

X	У	x·y
0	0	1
0	1	1
1	0	1
1	1	0

Tavola di verità

Espressione canonica POS

$$\overline{x \cdot y}_{POS} = \overline{x} + \overline{y}$$

- Metodo alternativo per calcolare la forma canonica POS per funzione NAND
 - Calcolare la forma canonica SOP per la funzione NAND negata (AND)
 - Negare il risultato ottenuto, applicando le leggi di De Morgan

 $X \cdot y$

X	У	ху
0	0	0
0	1	0
1	0	0
1	1	1

Tavola di verità

Espressione canonica SOP

$$AND(x,y)_{SOP} = x \cdot y$$

$$NAND_{POS} = AND_{SOP} = x \cdot y$$

$$= \overline{x} + \overline{y}$$

Espressione canonica POS per NAND:

prodotto dei maxtermini in corrispondenza dei quali NAND assume valore 0

×	У	\overline{xy}
0	0	1
0	1	1
1	0	1
1	1	0

$$\frac{1}{x} + \frac{1}{y}$$

Determinare l'espressione canonica POS per la funzione F definita dalla seguente tavola di verità

X ₂	x_1	F	
0	0	0	$x_2 + x_1$
0	1	1	
1	0	0	$\overline{\mathbf{x}}_2 + \mathbf{x}_1$
1	1	1	

$$F_{POS} = (x_2 + x_1) \cdot (\overline{x_2} + x_1)$$

In alternativa, determiniamo la tavola di verità per la funzione \overline{F}

X ₂	x_1	F	
0	0	1	$\overline{x_2} \cdot \overline{x_1}$
0	1	0	
1	0	1	$x_2 \cdot \overline{x_1}$
1	1	0	

Poi determiniamo la forma canonica SOP per F $\overline{F}_{SOP} = \overline{x_2} \cdot \overline{x_1} + x_2 \cdot \overline{x_1}$

Da cui si ottiene

$$F_{POS} = \overline{F}_{SOP} = \overline{x_2} \cdot \overline{x_1} + x_2 \cdot \overline{x_1}$$

$$=(\overline{x_2}\cdot\overline{x_1})\cdot(\overline{x_2}\cdot\overline{x_1})$$

$$= (\overline{\overline{x}}_2 + \overline{\overline{x}}_1) \cdot (\overline{x}_2 + \overline{\overline{x}}_1)$$

$$= (x_2 + x_1) \cdot (\overline{x_2} + x_1)$$

X ₂	x_1	F
0	0	0
0	1	1
1	0	0
1	1	1

$$x_2 + x_1$$

$$\overline{x}_2 + x_1$$

Espressione canonica POS:

prodotto dei maxtermini in corrispondenza dei quali F assume valore 0

Il circuito OR-to-AND che realizza la funzione è

Mostriamo che NOT, AND, OR possono essere costruiti usando solo NAND

Ciò equivale a dire che NAND è un operatore logicamente completo

- Come calcolare NOT(x)?
 - \rightarrow NOT(x) = \overline{x} = $\overline{x \cdot x}$ = NAND(x,x)
- Come calcolare AND(x,y)?
 - > AND(x,y) = x·y = $\overline{x \cdot y}$ = $\overline{x \cdot y} \cdot \overline{x \cdot y}$ = = NAND(NAND(x,y), NAND(x,y))
- \triangleright Come calcolare OR(x,y)?
 - $OR(x,y) = x+y = \overline{x+y} = \overline{x \cdot x + y \cdot y} = \overline{x \cdot x} \cdot \overline{y \cdot y}$ = NAND(NAND(x,x), NAND(y,y))

- Sostituzione di una porta NOT con una porta NAND
 - \rightarrow NOT(x) = NAND(x,x)

- Sostituzione di una porta AND con tre porte NAND
 - \rightarrow AND(x,y) = NAND(NAND(x,y), NAND(x,y))

- Sostituzione di una porta OR con tre porte NAND
 - \triangleright OR(x,y) = NAND(NAND(x,x), NAND(y,y))

Reti ALL NAND

Una conseguenza del fatto che NAND è un operatore logicamente completo: ogni espressione SOP può essere realizzata da una rete che ha solo porte NAND

Esercizio 4

- Mostrare che l'operatore $NOR(x,y) = \overline{x+y}$ è logicamente completo
 - Suggerimento: Mostrare che NOT, AND, OR possono essere costruiti usando solo NOR

- Come calcolare NOT(x)?
 - \rightarrow NOT(x) = \overline{x} = $\overline{x+x}$ = NOR(x,x)
- Come calcolare AND(x,y)?
- \triangleright Come calcolare OR(x,y)?
 - $> OR(x,y) = x+y = \overline{x+y} = \overline{(x+y)\cdot(x+y)} = \overline{(x+y)} + \overline{(x+y)}$ = NOR(NOR(x,y), NOR(x,y))

- Sostituzione di una porta NOT con una porta NOR
 - \rightarrow NOT(x) = NOR(x,x)

- Sostituzione di una porta AND con tre porte NOR
 - \rightarrow AND(x,y) = NOR(NOR(x,x), NOR(y,y))

- Sostituzione di una porta OR con tre porte NOR
 - \triangleright OR(x,y) = NOR(NOR(x,y), NOR(y,y))

Reti ALL NOR

Una conseguenza del fatto che NOR è un operatore logicamente completo: ogni espressione SOP può essere realizzata da una rete che ha solo porte NOR

Esercizio 5

- > Gli operatori NAND e NOR sono
 - Commutativi?
 - Associativi?

- \triangleright Dobbiamo verificare se $\overline{x \cdot y} = \overline{y \cdot x}$
 - Applicando la legge di De Morgan si ha $\overline{x \cdot y} = \overline{x} + \overline{y} = \overline{y} + \overline{x} = \overline{y \cdot x}$ quindi NAND è commutativo

> Dobbiamo verificare se $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

	×	У	z	<u>x·(y·z)</u>	<u>(x·γ)·z</u>
	0	0	0	1	1
	0	0	1	1	0
	0	1	0	1	1
	0	1	1	1	0
	1	0	0	0	1
	1	0	1	0	0
2008	1	1	0	0	1
SAM	1	1	1	1	1

Le tavole di verità sono diverse!

NAND non è associativo

Esercizio 6

Data la rete seguente, trovare la rete tutta porte NAND equivalente

Data la rete seguente, trovare la rete tutta porte NAND equivalente

L'output del circuito è $x_1 \cdot x_2 \cdot \overline{x}_3 \cdot \overline{x}_4$

Sostituiamo le porte AND e NOT con porte NAND

L'output del circuito è $x_1 \cdot x_2 \cdot \overline{x}_3 \cdot \overline{x}_4$

Esercizio 7

Data la rete seguente, trovare la rete tutta porte NOR equivalente

Data la rete seguente, trovare la rete tutta porte NOR equivalente

L'output del circuito è $(x_1 \cdot \overline{x}_2 \cdot \overline{x}_3 + x_1) \cdot x_3 = x_1 \cdot \overline{x}_2 \cdot \overline{x}_3 \cdot x_3 + x_1 \cdot x_3$ $= x_1 \cdot x_3$

Sostituiamo le porte AND e NOT con porte NOR

L'output del circuito è $(x_1 \cdot \overline{x}_2 \cdot \overline{x}_3 + x_1) \cdot x_3 = x_1 \cdot \overline{x}_2 \cdot \overline{x}_3 \cdot x_3 + x_1 \cdot x_3$ $= x_1 \cdot x_3$

