4. Decide whether you think the following statement is true or false. If it is true, give a short explanation. If it is false, give a counterexample.

Let G be an arbitrary flow network, with a source s, a sink t, and a positive integer capacity c_e on every edge e. If f is a maximum s-t flow in G, then f saturates every edge out of s with flow (i.e., for all edges e out of s, we have $f(e) = c_e$).

5. Decide whether you think the following statement is true or false. If it is true, give a short explanation. If it is false, give a counterexample.

Let G be an arbitrary flow network, with a source s, a sink t, and a positive integer capacity c_e on every edge e; and let (A,B) be a mimimum s-t cut with respect to these capacities $\{c_e : e \in E\}$. Now suppose we add 1 to every capacity; then (A,B) is still a minimum s-t cut with respect to these new capacities $\{1+c_e : e \in E\}$.

24. Let G = (V, E) be a directed graph, with source $s \in V$, sink $t \in V$, and nonnegative edge capacities $\{c_e\}$. Give a polynomial-time algorithm to decide whether G has a *unique* minimum s-t cut (i.e., an s-t of capacity strictly less than that of all other s-t cuts).

32. Given a graph G = (V, E), and a natural number k, we can define a relation $\xrightarrow{G,k}$ on pairs of vertices of G as follows. If $x,y \in V$, we say that $x \xrightarrow{G,k} y$ if there exist k mutually edge-disjoint paths from x to y in G.

Is it true that for every G and every $k \ge 0$, the relation $\xrightarrow{G,k}$ is transitive? That is, is it always the case that if $x \xrightarrow{G,k} y$ and $y \xrightarrow{G,k} z$, then we have $x \xrightarrow{G,k} z$? Give a proof or a counterexample.

33. Let G = (V, E) be a directed graph, and suppose that for each node v, the number of edges into v is equal to the number of edges out of v. That is, for all v,

$$|\{(u, v) : (u, v) \in E\}| = |\{(v, w) : (v, w) \in E\}|.$$

Let x, y be two nodes of G, and suppose that there exist k mutually edge-disjoint paths from x to y. Under these conditions, does it follow that there exist k mutually edge-disjoint paths from y to x? Give a proof or a counterexample with explanation.

• 考虑地震救灾场景,*n*个伤员需要被尽快送往医院. 在这个 地区有k所医院,这n个人中每个人需要被送到距他们目前 的地点半小时车程以内的医院(因此不同的人将对医院有 不同的选择,依赖于他们当前所在的地方).同时,人们不 想由于太多的病人送来而使得任何一个医院超负荷. 医护 人员通过移动电话联系,他们想共同解决是否可以为每个 受伤的人选择一所医院,这种选择方式要求医院负荷是均 衡的,即每个医院至多接受[n/k]的人. 给出一个多项式时 间的算法,它以关于这些人所在位置的给定信息作为输入 并且确定这是不是可能的.

考虑郊野环境中的移动通信场景,给定n个基站的位置,它们由平面上的点 $b_1,b_2,...,b_n$ 来指定,以及n个手机用户位置,它们也指定为平面上的点 $p_1,p_2,...,p_n$,最后,给定一个域参数 $\Delta>0$. 如果能以下述这样的方式把每个电话分配给一个基站,我们就说这组便携式电话是**完全连通**的.

• 每个手机被分到不同的基站,且如果位于 p_i 的电话被分配到位于 b_j 的基站,那么在点 p_i 和 b_j 之间的直线距离至多是 Δ . 假设在点 p_i 的用户决定开车向东经过Z距离,需要修改手机对基站的分配(可能要几次)以便保持完全连通,给出一个多项式时间的算法.(假定在此期间其他手机固定.)如果可能,报告一个电话到基站的分配序列;如果不可能,报告使得完全连通性不可能再维持的一个点. 算法运行在 $O(n^3)$ 时间.