Egg-passaging mutations in influenza H3N2

Lab Meeting Katie Kistler February 20, 2018

production

Background: influenza vaccine

Influenza vaccine

• Seasonal flu burden: millions of cases, hundreds of thousands of deaths

Prevention via vaccine

Vaccine continually updated to combat antigenic drift

Influenza vaccine production

Hundreds of millions of doses yearly

- Mass-produced in embryonated chicken eggs
 - a. Make candidate vaccine virus (CVV)
 - b. Manufacturing facilities grow CVVs
 - c. Purification and inactivation of virus

Egg-adapted mutations during vaccine production

Low vaccine effectiveness may be attributed to egg-adapted mutations

2012-2013:

- 30-40% H3N2 vaccine effectiveness
- HA H156Q, G186V, S219Y

Low vaccine effectiveness may be attributed to egg-adapted mutations

2012-2013:

- 30-40% H3N2 vaccine effectiveness
- HA H156Q, G186V, S219Y

2016-2017:

- 30-40% H3N2 vaccine effectiveness
- HA T160K reversion

Low vaccine effectiveness may be attributed to egg-adapted mutations

2012-2013:

- 30-40% H3N2 vaccine effectiveness
- HA H156Q, G186V, S219Y

2016-2017:

- 30-40% H3N2 vaccine effectiveness
- HA T160K reversion

recombinant T160

egg-adapted K160

(Zost et al, 2017)

How to avoid egg-adapted mutations?

1. Egg-free vaccine production

2. Choose vaccine strains that will not mutate

and their effect on vaccine effectiveness

Predict egg-adapted mutations

Published reports of egg mutations & their effects

Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains

Seth J. Zost^a, Kaela Parkhouse^a, Megan E. Gumina^a, Kangchon Kim^b, Sebastian Diaz Perez^a, Patrick C. Wilson^c, John J. Treanor^d. Andrea J. Sant^e. Sarah Cobey^b. and Scott E. Hensley^{a.1}

of studies to determine whether the difference in glycosylation of HA antigenic site B of H3N2 vaccine strains and circulating strains contributed to a previously unrecognized vaccine mismatch during the 2016–2017 influenza season.

Single amino acid substitutions in the hemagglutinin of influenza A/Singapore/21/04 (H3N2) increase virus growth in embryonated chicken eggs

Bin Lu*, Helen Zhou, Winnie Chan, George Kemble, Hong Jin

Effects of egg-adaptation on receptor-binding and antigenic properties of recent influenza A (H3N2) vaccine viruses

Lauren Parker, ^{1,2} Stephen A. Wharton, ^{1,2} Stephen R. Martin, ^{1,3} Karen Cross, ^{1,2} Yipu Lin, ^{1,2} Yan Liu, ⁴ Ten Feizi, ⁴ Rodney S. Daniels ^{1,2} and John W. McCauley ^{1,2} acterise the correlation between receptor-binding and the antigenic properties of these viruses. Using the vaccine virus Vic361e, recommended for use in vaccines in 2012 and 2013, as a prototype, a panel of viruses was generated by

Low 2012-13 Influenza Vaccine Effectiveness Associated with Mutation in the Egg-Adapted H3N2 Vaccine Strain Not Antigenic Drift in Circulating Viruses

Danuta M. Skowronski^{1,2}*, Naveed Z. Janjua^{2,3}, Gaston De Serres^{4,5}, Suzana Sabaiduc¹, Alireza Eshaghi⁶, James A. Dickinson⁷, Kevin Fonseca^{5,9}, Anne-Luise Winter¹⁰, Jonathan B. Gubbay^{11,12,13}, Mel Krajden^{1,3}, Martin Petric^{1,3}, Hugues Charest^{14,15}, Nathalie Bastien¹⁶, Trijntje L. Kwindt², Salaheddin M. Mahmud¹⁷, Paul Van Caeseele^{18,19}, Yan Li^{16,19}

Poor Immunogenicity, Not Vaccine Strain Egg Adaptation, May Explain the Low H3N2 Influenza Vaccine Effectiveness in 2012–2013

Sarah Cobey, Sigrid Gouma, * Kaela Parkhouse. *2 Benjamin S. Chambers. *2 Hildegund C. Ertl, *3 Kenneth E. Schmader, *3 Rebecca A. Halpin, *4 Xudong Lin, *1 Timothy B. Stockwell, *5 Suman R. Das, *6 Emily Landon, *5 Vera Tesic. *5 Ilan Youngster, *7 Benjamin A. Pinsky, *5 David E. Wentworth, *6 Scott E. Hensley. *6 and Yonatan H. Grad^{11,12}

Immunodominance of Antigenic Site B over Site A of Hemagglutinin of Recent H3N2 Influenza Viruses

Lyubov Popova^{1,2}, Kenneth Smith³, Ann H. West², Patrick C. Wilson^{3,4,5}, Judith A. James³, Linda F. Thompson⁴, Gillian M. Air¹*

recent H3 HAs. We mapped the binding of two human monoclonal antibodies to wild type A/Oklahoma/309 HA and mutant HAs derived from it, and we tested the reactivity of polyclonal antibodies in human plasma samples after seasonal vaccination in 2006 (H3N2 2006–07 component A/Wisconsin/67/05) and/or after vaccination in 2008 (H3N2 2008–09 component A/Uruguay/716/2007), to wild type HA and mutants in antigenic sites A and B. Our results indicate that most

Predict egg-adapted mutations and their effect on vaccine effectiveness

Existing literature- individual studies on specific egg-adapted mutations in specific strains

My goal- use a phylogeny to identify:

- Common egg-adapted mutations
- Background specificity
- Epistasis between egg-adapted mutations
- Antigenic effect of egg-adapted mutations (titers model)

Common egg-passaging HA mutations

- HA1 L194P
- HA1 G186V
- HA1 T160K
- HA1 T203I
- HA1 S219F

- HA1 D225G
- HA1 S219Y
- HA1 A138S
- HA1 H156Q
- HA1 H156R

Mutations are egg-passaging-specific

Mutations are egg-passaging-specific

Background specificity of mutations

Background specificity of egg mutations

Genotype of virus influences whether it will mutate at that position during egg-passaging

Background specificity of egg mutations

Genotype of virus influences whether it will mutate at that position during egg-passaging

In the works: does HA genotype (proxy: clade) of virus determine whether it mutate during egg-passaging?

Epistasis between mutations

L194P OR G186V

L194P OR G186V

L194P OR G186V

Pairwise epistatic interactions

$$\frac{observed}{expected} = \log_2 \frac{f_{194P\&186V}}{f_{194P} * f_{186V}}$$

Pairwise epistatic interactions

Epistasis between HA sites in egg-passaged influenza H3N2

$$\frac{observed}{expected} = \log_2 \frac{f_{194P\&186V}}{f_{194P} * f_{186V}}$$

1. Virus only mutates at other sites during egg-passaging if 160K (pos. epistasis)

- 1. Virus only mutates at other sites during egg-passaging if 160K (pos. epistasis)
- 2. Mutations at positions 186 and 194 are mutually exclusive (neg. epistasis)

- 1. Virus only mutates at other sites during egg-passaging if 160K (pos. epistasis)
- 2. Mutations at positions 186 and 194 are mutually exclusive (neg. epistasis)
- 3. Positions 219 and 156 do not mutate if 194 is mutated (neg. epistasis)

- 1. Virus only mutates at other sites during egg-passaging if 160K (pos. epistasis)
- 2. Mutations at positions 186 and 194 are mutually exclusive (neg. epistasis)
- 3. Positions 219 and 156 do not mutate if 194 is mutated (neg. epistasis)
- 4. Positions 138 and 203 do not mutate if 186 is mutated (neg. epistasis)

- 1. Virus only mutates at other sites during egg-passaging if 160K (pos. epistasis)
- 2. Mutations at positions 186 and 194 are mutually exclusive (neg. epistasis)
- 3. Positions 219 and 156 do not mutate if 194 is mutated (neg. epistasis)
- 4. Positions 138 and 203 do not mutate if 186 is mutated (neg. epistasis)
- 5. Mutation at 225 does not depend on 186 or 194

- 1. Virus only mutates at other sites during egg-passaging if 160K (pos. epistasis)
- 2. Mutations at positions 186 and 194 are mutually exclusive (neg. epistasis)
- 3. Positions 219 and 156 do not mutate if 194 is mutated (neg. epistasis)
- 4. Positions 138 and 203 do not mutate if 186 is mutated (neg. epistasis)
- 5. Mutation at 225 does not depend on 186 or 194

Temporal order?

And temporal order

Background specificity + epistatic effects

How are mutations at a position influenced by genotype at other positions?

Effects of egg-passaging mutations

Documented phenotypic effects of egg mutations

	Documented egg mutation?	HA domain	Viral replication in eggs	Antigenicity
L194P		190-helix, antigenic site B	1	Δ
G186V		Antigenic site B	1	Neutral
T160K		Antigenic site B, glycosylation	1	Δ
T203I	sequenced.			
S219F/Y			1	∆ / Neutral
D225G	in H1N1	220-loop	↑ (in H1N1)	Neutral (in H1N1)
A138S	sequenced.	130-loop, antigenic site A		
H156Q/R		Antigenic site B	↑ (H156Q)	∆ (H156Q)

Phenotypic effects based on titers model

 Substitution model (Neher et al, 2016): ascribe titer drops to amino acid substitutions

Phenotypic effects based on titers model

 Substitution model (Neher et al, 2016): ascribe titer drops to amino acid substitutions

	Antigenic units (2-fold decrease in titer)		
	HI	FRA	
L194P	1.556	1.4434	
G186V	0.7317	0.2806	
T160K	0.2864	0.8269	
T203I	0.1125	None	
S219F	0.6432	None	
S219Y	0.2013	0.3543	

	Antigenic units (2-fold decrease in titer)		
	HI	FRA	
D225G	None	0.7157	
A138S	None	0.2315	
H156Q	None	None	
H156R	None	None	

Still to be done

- 1. Continuation of these analyses
 - a. Titers model interpretation
 - b. Larger n
 - c. Predict mutation based on background

2. Potential additional analyses

- a. Synonymous mutations
- b. NA mutations
- c. H1N1 mutations