Devoir surveillé nº 2 - MPI

Samedi 20 septembre 2025.

Ce devoir surveillé, d'une durée de 4h est constitué d'un problème issu des concours. On attachera une attention particulière au soin et à la présentation, et à la rigueur de l'argumentation, tout en évitant les lourdeurs inutiles.

Petite règle supplémentaire pour ce devoir : ne pas répondre à une question si vous n'êtes pas sûr de le faire soigneusement, et avec les idées à peu près claires. Barème généreux mais -1 pt sur la note "concours" (et 0 pt sur la note "bulletin") pour toute réponse qui ressemble à un brouillon. Bon courage!

L'objectif du problème est d'étudier des conditions pour que deux matrices admettent un vecteur propre commun.

Les parties I et III traitent chacune de cas particuliers en dimension 3 et n. Elles sont indépendantes l'une de l'autre. La partie II aborde la situation générale en faisant apparaître une condition nécessaire et certaines autres conditions suffisantes à l'existence d'un vecteur propre commun.

Notations et définitions

Soient n et p deux entiers naturels non nuls, \mathbb{K} l'ensemble \mathbb{R} ou \mathbb{C} . On note :

- $\mathcal{M}_{n,n}(\mathbb{K})$ l'espace vectoriel des matrices à n lignes et p colonnes à coefficients dans \mathbb{K} ,
- $\mathcal{M}_n(\mathbb{K})$ l'espace vectoriel des matrices carrées d'ordre n à coefficients dans \mathbb{K} ,
- 0_n la matrice nulle d'ordre n,
- I_n la matrice identité d'ordre n.

Pour $M \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$, on note :

- $\operatorname{Ker}(M) = \{ X \in \mathcal{M}_{n,1}(\mathbb{K}) \text{ tel que } MX = 0 \},$
- $\operatorname{Im}(M) = \{MX, X \in \mathcal{M}_{n,1}(\mathbb{K})\},\$
- $\operatorname{Sp}(M)$ le spectre de M,
- $E_{\lambda}(M) = \operatorname{Ker}(M \lambda I_n),$
- $\operatorname{Im}_{\lambda}(M) = \operatorname{Im}(M \lambda I_n).$

Définitions:

- Soient $(A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$ et $\mathbf{e} \in \mathcal{M}_{n,1}(\mathbb{K})$; on dit que \mathbf{e} est un **vecteur propre commun** à A et B si :
 - i) $\mathbf{e} \neq 0$;
 - ii) il existe $\lambda \in \mathbb{K}$ tel que $A\mathbf{e} = \lambda \mathbf{e}$;
 - iii) il existe $\mu \in \mathbb{K}$ tel que $B\mathbf{e} = \mu \mathbf{e}$;

On définit $[A, B] \in \mathcal{M}_n(\mathbb{K})$ par la formule : [A, B] = AB - BA.

- Soient f et g, deux endomorphismes d'un \mathbb{K} espace vectoriel E et $\mathbf{e} \in E$; on dit de même que \mathbf{e} est un **vecteur propre commun** à f et g si :
 - i) $\mathbf{e} \neq 0$;
 - ii) il existe $\lambda \in \mathbb{K}$ tel que $f(\mathbf{e}) = \lambda \mathbf{e}$;
 - iii) il existe $\mu \in \mathbb{K}$ tel que $g(\mathbf{e}) = \mu \mathbf{e}$;

On définit l'endomorphisme [f,g] de E par la formule : $[f,g]=f\circ g-g\circ f$.

Partie I: ÉTUDE DANS UN CAS PARTICULIER

On considère les matrices suivantes :

$$A = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 3 & -3 & -1 \\ 0 & 2 & 0 \\ 1 & -3 & 1 \end{pmatrix}, \ C = \begin{pmatrix} -5 & 3 & -1 \\ -2 & 6 & 2 \\ -5 & 3 & -1 \end{pmatrix} \text{et } D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & -6 \end{pmatrix}.$$

On note
$$\mathcal{F} = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$$
 où $\mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $\mathbf{u}_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ et $\mathbf{u}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

On note aussi
$$\mathbf{u}_4 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 et $\mathbf{u}_5 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$.

I.1.

I.1.a. Déterminer le spectre de A.

I.1.b. Vérifier que la famille \mathcal{F} est une base de $\mathcal{M}_{3,1}(\mathbb{R})$ constituée de vecteurs propres de A.

I.1.c. A est-elle diagonalisable?

I.1.d. Montrer qu'aucun des éléments de \mathcal{F} n'est un vecteur propre commun à A et B.

I.2.

I.2.a. Déterminer le spectre de B.

I.2.b. Montrer que $\operatorname{Im}_2(B) = \operatorname{vect}(\mathbf{u}_4)$ et que $\dim(E_2(B)) = 2$.

I.2.c. B est-elle diagonalisable?

I.3.

I.3.a. Montrer que $E_1(A) \cap E_2(B) = \text{vect}(\mathbf{u}_5)$.

I.3.b. Déterminer tous les vecteurs propres communs à A et B.

I.4.

I.4.a. Vérifier que [A, B] = C.

I.4.b. Montrer que C est semblable à la matrice D et déterminer le rang de C.

Partie II: CONDITION NÉCESSAIRE ET SUFFISANTE

Soit $n \in \mathbb{N}^*$ et soit $(A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$.

II.1. Dans cette question, on suppose que e est un vecteur propre commun à A et B.

II.1.a. Montrer que $e \in Ker([A, B])$.

II.1.b. Vérifier que rg([A, B]) < n.

Dans toute la suite de cette partie II, on suppose que $\mathbb{K} = \mathbb{C}$.

On dit que A et B vérifient la **propriété** \mathcal{H} s'il existe $\lambda \in \operatorname{Sp}(A)$ tel que :

$$E_{\lambda}(A) \subset \operatorname{Ker}([A, B]).$$

II.2. Montrer que si $[A, B] = 0_n$, alors A et B vérifient la propriété \mathcal{H} .

II.3. Dans cette question, on suppose que A et B vérifient la propriété \mathcal{H} .

- **II.3.a.** Pour tout $X \in E_{\lambda}(A)$, on pose $\psi(X) = BX$. Montrer que ψ définit un endomorphisme de $E_{\lambda}(A)$.
- II.3.b. En déduire l'existence d'un vecteur propre commun à A et B.

Pour $k \in \mathbb{N}^*$, on note \mathcal{P}_k la propriété suivante :

pour tout \mathbb{C} -espace vectoriel E de dimension k et pour tout couple d'endomorphismes (φ, ψ) de E tels que $\operatorname{rg}([\varphi,\psi]) \leq 1$, il existe un vecteur propre commun à φ et ψ .

- II.4. Vérifier la propriété \mathcal{P}_1 .
- II.5. Dans cette question, on suppose que \mathcal{P}_k est vérifiée pour tout entier $k \in [1, n-1]$ et que A et B ne vérifient pas la propriété \mathcal{H} .

On note C = [A, B], on suppose que rg(C) = 1 et on considère $\lambda \in \mathbb{C}$ une valeur propre de A.

- II.5.a. Justifier l'existence de $\mathbf{u} \in \mathcal{M}_{n,1}(\mathbb{C})$ tel que $A\mathbf{u} = \lambda \mathbf{u}$ et $C\mathbf{u} \neq 0$.
- II.5.b. Vérifier que $\operatorname{Im}(C) = \operatorname{vect}(\mathbf{v})$ où $\mathbf{v} = C\mathbf{u}$.
- **II.5.c.** Montrer que $\operatorname{Im}(C) \subset \operatorname{Im}_{\lambda}(A)$.
- **II.5.d.** Établir les inégalités suivantes : $1 \leq \dim(\operatorname{Im}_{\lambda}(A)) \leq n-1$.

Pour tout $X \in \text{Im}_{\lambda}(A)$, on pose $\varphi(X) = AX$ et $\psi(X) = BX$.

- **II.5.e.** Montrer que $[A, A \lambda I_n] = 0_n$ et $[B, A \lambda I_n] = -C$. En déduire que φ et ψ définissent des endomorphismes de $\operatorname{Im}_{\lambda}(A)$.
- II.5.f. Montrer l'existence d'un vecteur propre commun à φ et ψ ; en déduire qu'il en est de même pour A et B.
- **II.6.** Montrer que pour tout $n \in \mathbb{N}^*$, \mathcal{P}_n est vraie.

Partie III: ÉTUDE D'UN AUTRE CAS PARTICULIER

Soit $n \in \mathbb{N}^*$. On note $E = \mathbb{C}_{2n}[X]$ le \mathbb{C} -espace vectoriel des polynômes à coefficients complexes de degré inférieur ou égal à 2n.

Pour $P \in E$, on désigne par P' le polynôme dérivé de P.

Pour tout polynôme P de E, on pose f(P) = P' et $g(P) = X^{2n}P\left(\frac{1}{X}\right)$.

- III.1. Soient $(a_0, a_1, \dots, a_{2n}) \in \mathbb{C}^{2n+1}$ et $P = \sum_{k=0}^{2n} a_k X^k$. Montrer que $g(P) = \sum_{k=0}^{2n} a_{2n-k} X^k$.
- III.2. Montrer que f et g définissent des endomorphismes de E

III.3.

- III.3.a. Vérifier que si P est un vecteur propre de g, alors $\deg(P) \ge n$.
- III.3.b. Montrer que X^n est un vecteur propre de g.

Soit $i \in [1, 2n]$. f^i correspond à la composée $f \circ f \circ \cdots \circ f$ où f est prise i fois.

III.4.

- III.4.a. Vérifier que $\operatorname{Ker}(f^i) = \mathbb{C}_{i-1}[X]$.
- **III.4.b.** Montrer que $Sp(f^i) = \{0\}.$
- III.5. Montrer que f^i et g possèdent un vecteur propre commun si et seulement si $i \ge n+1$.

 \mathcal{B}_c désigne la base canonique de E définie par : $\mathcal{B}_c = (1, X, \dots, X^{2n})$. On note A_n la matrice de f dans la base \mathcal{B}_c et B_n celle de g dans la même base.

- **III.6.** Déterminer A_n et B_n .
- **III.7.** Dans cette question, on suppose que n = 1.

III.7.a. Montrer que
$$A_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$
 et $B_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ et en déduire l'expression de $(A_1)^2$ et $(A_1)^3$.

- III.7.b. Déterminer le rang de $[(A_1)^i, B_1]$ pour i = 1 et i = 2.
- III.7.c. En déduire que la condition nécessaire de la question II.1.b n'est pas suffisante et que la condition suffisante de la question II.6 n'est pas nécessaire.

Un corrigé

Partie I: ÉTUDE DANS UN CAS PARTICULIER

- **I.1.a.** On calcule le polynôme caractéristique de A : On trouve $\chi_A = (X+2)(X-1)^2$. Par I.1. conséquent le spectre de A est $\{-2, 1\}$.
 - **I.1.b.** $Au_1 = u_1$, $Au_2 = u_2$ et u_1 , u_2 ne sont pas colinéaires donc (u_1, u_2) est une famille libre de deux vecteurs dans $E_1(A)$. Cet espace propre ne peut pas être de dimension strictement supérieure à 2 donc (u_1, u_2) est une base de $E_1(A)$.

 $Au_3 = -2u_3$ et u_3 n'est pas nul donc (u_3) est une base de $E_{-2}(A)$.

Les sous espaces propres d'une matrice sont en somme directe donc (u_1, u_2, u_3) est une famille libre. Elle est de cardinal 3, égal à la dimension de $\mathcal{M}_{3,1}(\mathbb{R})$ donc c'est une base de $\mathcal{M}_{3,1}(\mathbb{R})$ constituée de vecteurs propres de A.

On peut aussi démontrer a priori que (u_1, u_2, u_3) est une base (par exemple en calculant le déterminant de cette famille dans la base canonique) puis que chacun de ces vecteurs est propre pour A.

I.1.c. On vient de trouver une base de $\mathcal{M}_{3,1}(\mathbb{R})$ constituée de vecteurs propres de A donc A est diagonalisable.

On peut aussi remarquer que A est une matrice symétrique réelle donc diagonalisable.

I.1.d. $Bu_1 = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix}$ n'est pas colinéaire à u_1 et de même pour u_2 et u_3 donc aucun élément de

 \mathcal{F} n'est vecteur propre de B donc a fortiori commun à A et B.

- I.2. **I.2.a.** On calcule $\chi_B = (X-2)^3$ (on développe par rapport à la deuxième ligne) donc le spectre de B est $\{2\}$.
 - **I.2.b.** $B 2I_3 = \begin{pmatrix} 1 & -3 & -1 \\ 0 & 0 & 0 \\ 1 & -3 & -1 \end{pmatrix}$. Les trois colonnes de cette matrice sont colinéaires à u_4

donc $\operatorname{Im}_2(B) \subset \operatorname{Vect}(u_4)$ et u_4 est la première colonne donc $\operatorname{Vect}(u_4) \subset \operatorname{Im}_2(B)$. Par conséquent $Im_2(B) = Vect(u_4)$.

Le théorème du rang nous dit alors que dim $E_2(B) = 2$.

- **I.2.c.** La somme des dimensions des sous espaces propres de B est égale à 2 < 3 donc B n'est pas diagonalisable.
- I.3. **I.3.a.** $Bu_5 = 2u_5$ et $Au_5 = u_5$ donc $Vect(u_5) \subset E_1(A) \cap E_2(B)$. $E_1(A)$ et $E_2(B)$ sont de dimension 2 donc cette intersection est de dimension 1 ou 2 (on a déjà un vecteur non nul dans l'intersection). Si elle est de dimension 2, alors $E_1(A) = E_2(B)$ ce qui est absurde car u_1 est dans $E_1(A)$ mais pas dans $E_2(B)$. Par conséquent l'intersection est de dimension 1 et $E_1(A) \cap E_2(B) = \text{Vect}(u_5)$.
 - **I.3.b.** Comme u_3 n'est pas vecteur propre de B et qu'il engendre $E_{-2}(A)$, il n'y a pas de vecteur propre commun à A et B dans $E_{-2}(A)$. De plus 2 est la seule valeur propre de B donc les vecteurs propres communs à A et B sont dans $E_1(A) \cap E_2(B)$. D'après la question précédente, les vecteurs propres communs à A et B sont les vecteurs

- I.4.a. $AB = \begin{pmatrix} -1 & 1 & -1 \\ -4 & 6 & 0 \\ -3 & 1 & 1 \end{pmatrix}$ et $BA = \begin{pmatrix} 4 & -2 & 0 \\ -2 & 0 & -2 \\ 2 & -2 & 2 \end{pmatrix}$ donc [A, B] = C.

 I.4.b. On calcule le polynôme caractéristique de C. $\chi_C = \begin{vmatrix} X+5 & -3 & 1 \\ 2 & X-6 & -2 \\ 5 & -3 & X+1 \end{vmatrix}$. On remplace L_1 par $L_1 - L_3$:

 $\chi_C = \left| \begin{array}{ccc} X & 0 & X \\ 2 & X-6 & -2 \\ 5 & -3 & X+1 \end{array} \right|.$ On utilise la linéarité par rapport à la première ligne puis

on remplace C_1 par $C_1+C_3:\chi_C=X$ $\begin{vmatrix} 0&0&-1\\0&X-6&-2\\X+6&-3&X+1 \end{vmatrix}$. Enfin, on développe

par rapport à la première ligne : $\chi_C = X(X-6)(X+6)$.

 χ_C est scindé à racines simples donc C est diagonalisable. De plus les valeurs propres de C sont -6, 0 et 6 donc C est semblable à D.

Les rangs de C et de D sont alors égaux et rg(C) = 2.

Partie II: CONDITION NÉCESSAIRE ET SUFFISANTE

- II.1. II.1.a. Soient λ et μ tels que $Ae = \lambda e$ et $Be = \mu e$. Alors $ABe = \mu Ae = \lambda \mu e$ et de même pour $BAe \text{ donc } e \in \text{Ker}([A, B]).$
 - **II.1.b.** e est non nul (car vecteur propre) donc [A, B] n'est pas injectif et comme il s'agit d'une matrice carrée (endomorphisme en dimension finie), cela prouve que [A, B] n'est pas inversible et rg([A, B]) < n.
- **II.2.** On suppose $[A, B] = 0_n$. Comme $K = \mathbb{C}$, A a au moins une valeur propre : soit $\lambda \in Sp(A)$. $[A,B] = 0_n \text{ donc } \operatorname{Ker}([A,B]) = \mathcal{M}_{n,1}(K) \text{ et } E_{\lambda}(A) \subset \operatorname{Ker}([A,B]) : A \text{ et } B \text{ vérifient la propriété}$
- II.3. II.3.a. Soit $X \in E_{\lambda}(A)$. Par hypothèse (AB BA)X = 0 soit ABX = BAX. Or $AX = \lambda X$ donc $A(BX) = \lambda BX$ ce qui signifie que $BX \in E_{\lambda}(A) : \psi : X \mapsto BX$ est une application de $E_{\lambda}(A)$ dans lui même. De plus, par propriété du produit matriciel, ψ est linéaire donc ψ est un endomorphisme de $E_{\lambda}(A)$.
 - II.3.b. λ est valeur propre de A donc $E_{\lambda}(A)$ est de dimension non nulle et comme $K=\mathbb{C}, \psi$ a au moins une valeur propre : il existe $\mu \in \mathbb{C}$ et $X \in E_{\lambda}(A)$ non nul tels que $\psi(X) = \mu X$. On a donc $BX = \mu X$, $AX = \lambda X$ et X non nul : X est un vecteur propre commun à A et B.
- II.4. En dimension 1, tous les vecteurs non nuls sont des vecteurs propres donc \mathcal{P}_1 est vérifiée.
- II.5. II.5.a. A et B ne vérifient pas \mathcal{H} donc $E_{\lambda}(A)$ n'est pas inclus dans $\operatorname{Ker}(C)$: il existe $u \in E_{\lambda}(A)$ tel que $u \notin \text{Ker}(C)$: u est donc un élément de $\mathcal{M}_{n,1}(\mathbb{C})$ qui vérifie $Au = \lambda u$ et $Cu \neq 0$.
 - II.5.b. Par hypothèse ImC est de dimension 1 et v = Cu est un vecteur non nul de cette image donc ImC = Vect(v).
 - **II.5.c.** $v = Cu \text{ donc } v = ABu BAu = ABu \lambda Bu \text{ soit } v = (A \lambda I)(Bu) : v \in \text{Im}_{\lambda}(A)$. La question précédente permet alors de dire que $\operatorname{Im} C \subset \operatorname{Im}_{\lambda}(A)$.
 - **II.5.d.** Im C est de dimension 1 donc $1 \leq \dim(\operatorname{Im}_{\lambda}(A))$. λ est valeur propre de A donc $E_{\lambda}(A)$ a une dimension non nulle et, d'après le théorème du rang, $\dim(\operatorname{Im}_{\lambda}(A)) \leq n - 1$. Finalement

$$1 \leqslant \dim(\operatorname{Im}_{\lambda}(A)) \leqslant n - 1$$

II.5.e A et $A-\lambda I_n$ commutent donc $[A,A-\lambda I_n]=0_n$. Par définition $[B,A-\lambda I_n]=B(A-\lambda I_n)-(A-\lambda I_n)B=BA-AB=-[A,B]$ d'où $[B, A - \lambda I_n] = -C.$

 φ et ψ sont des applications linéaires par propriétés du produit matriciel.

Soit $X \in \text{Im}_{\lambda}(A) : X = (A - \lambda I_n)Y$ où $Y \in \mathcal{M}_{n,1}(\mathbb{C})$.

Comme $[A, A - \lambda I_n] = 0_n$, $AX = (A - \lambda I_n)(AY)$ donc $AX \in Im_{\lambda}(A)$. Par conséquent φ est un endomorphisme de $\operatorname{Im}_{\lambda}(A)$.

De même $BX = (A - \lambda I_n)(BY) - CY$. $CY \in \text{Im}C$ et $\text{Im}C \subset \text{Im}_{\lambda}(A)$ donc $CY \in \text{Im}_{\lambda}(A)$;

on a aussi $(A - \lambda I_n)(BY) \in \operatorname{Im}_{\lambda}(A)$ donc $BX \in \operatorname{Im}_{\lambda}(A)$. On en conclut que ψ est un endomorphisme de $\operatorname{Im}_{\lambda}(A)$.

- **II.5.f.** $\operatorname{Im}([\varphi,\psi]) \subset \operatorname{Im}(C)$ donc $\operatorname{rg}([\varphi,\psi]) \leq 1$. On peut donc appliquer l'hypothèse de récurrence à φ et ψ , endomorphismes de $\text{Im}_{\lambda}(A)$ qui est de dimension non nulle et strictement inférieure à $n:\varphi$ et ψ ont un vecteur propre commun. A fortiori A et B ont un vecteur propre commun.
- II.6. \mathcal{P}_1 est vraie.

Soit $n \in \mathbb{N}$, $n \ge 2$. On suppose que \mathcal{P}_k est vérifiée pour tout entier $k \in [1, n-1]$.

Soit E de dimension n.

Soit φ et ψ deux d'endomorphismes de E tels que $\operatorname{rg}([\varphi,\psi]) \leq 1$.

On considère A et B les matrices associées respectivement à φ et ψ dans une base de E, C=AB - BA.

Si rg(C) = 1 et si A et B ne vérifient pas \mathcal{H} , alors, d'après II.5., A et B ont un vecteur propre commun: φ et ψ ont un vecteur propre commun ($K = \mathbb{C}$ donc A a au moins une valeur propre.

Si $\operatorname{rg}(C) = 1$ et A, B vérifient \mathcal{H} , alors d'après II.3., φ et ψ ont un vecteur propre commun.

Si $\operatorname{rg}(C) = 0$, alors [A, B] = 0 et, d'après II.2. et II.3., φ et ψ ont un vecteur propre commun. On en déduit que \mathcal{P}_n est vérifiée.

Par récurrence, on peut conclure que, pour tout $n \in \mathbb{N}^*$, \mathcal{P}_n est vraie.

Partie III: ÉTUDE D'UN AUTRE CAS PARTICULIER

III.1.
$$g(P) = \sum_{k=0}^{2n} a_k X^{2n-k}$$
. On pose $l = 2n - k$ pour obtenir $g(P) = \sum_{l=0}^{2n} a_{2n-l} X^l$. III.2. Pour tout polynôme P , deg $P' \leq \deg P$ et la dérivation des polynômes est linéaire donc f est un

endomorphisme de E.

La question précédente prouve que g est une application de E dans E.

Si $(P,Q) \in E^2$ et $\lambda \in \mathbb{C}$,

$$\begin{split} g(P+\lambda Q) &= X^{2n}(P+\lambda Q)\left(\frac{1}{X}\right) \\ &= X^{2n}P\left(\frac{1}{X}\right) + X^{2n}Q\left(\frac{1}{X}\right) \\ &= g(P) + \lambda g(Q) \end{split}$$

donc q est linéaire. q est donc un endomorphisme de E.

III.3. III.3.a. Soit P un vecteur propre de g et λ la valeur propre associée. $g(P) = \lambda P$. La question III.1. prouve que g est injective donc λ ne peut pas être nul. Par conséquent P et q(P) ont le même degré que l'on appelle d. (P n'est pas nul car vecteur propre).

> On reprend les notations de la question III.1.. $a_d \neq 0$ donc si k = 2n - d, $a_{2n-k} \neq 0$ et donc $\deg(g(P)) \ge 2n - d$. Par conséquent $d \ge 2n - d$ et donc $\deg(P) \ge n$.

- III.3.b. $g(X^n) = X^n$ et X^n n'est pas le polynôme nul donc X^n est un vecteur propre de g.
- III.4. III.4.a. $f^i(P) = P^{(i)}$. P' est nul si et seulement P est un polynôme constant c'est-à-dire un polynôme de degré ≤ 0 .

On suppose que $\operatorname{Ker} f^i = \mathbb{C}_{i-1}[X]$ pour un entier i entre 1 et 2n-1.

 $P \in \operatorname{Ker} f^{i+1}$ si seulement si $P' \in \operatorname{Ker} f^i$ donc si et seulement si $P' \in \mathbb{C}_{i-1}[X]$ donc $\operatorname{Ker} f^{i+1} = \mathbb{C}_i[X].$

Par récurrence, pour tout i entre 1 et 2n, $\operatorname{Ker} f^i = \mathbb{C}_{i-1}[X]$.

III.4.b. Si P est non nul de degré i-1, alors $f^i(P)=0P$ donc $O\in Sp(f^i)$. $(f^i)^{2n+1} = (f^{2n^1})^i$ et si $P \in E$, sa dérivée d'ordre 2n+1 est nul donc X^{2n+1} est un polynôme annulateur de f^i . 0 est sa seule racine donc 0 est la seule valeur propre possible

Finalement $Sp(f^i) = \{0\}.$

III.5. Si $i \ge n+1$, $f^i(X^n) = 0X^n$ donc X^n est vecteur propre de f^i . Avec la question III.3.b. on peut en déduire que X^n est un vecteur propre commun à f et g.

On suppose réciproquement que i est tel que f et g ont un vecteur propre commun.

Soit P un vecteur propre commun. D'après III.3.a., $\deg(P) \ge n$ et d'après III.4.b. $P \in \operatorname{Ker} f^i$ donc d'après $III.4.a. \deg(P) \leq i-1$. Ainsi, $n \leq i-1$ soit $i \geq n+1$.

Finalement f et g ont un vecteur propre commun si et seulement si $i \ge n+1$.

III.6. $A_n = (a_{ij})_{1 \le i,j \le 2n+1}$ où pour i entre 2 et 2n, $a_{i,i-1} = i-1$ et tous les autres coefficients nuls :

$$A_n = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & 2 & \ddots & \vdots \\ & & & \ddots & 0 \\ \vdots & & & \ddots & 2n \\ 0 & \cdots & & \cdots & 0 \end{pmatrix}$$

Pour k entre 0 et 2n, $g(X^k) = X^{2n-k}$ donc $B_n = (b_{ij})_{1 \le i,j \le 2n+1}$ où pour tout i entre 1 et 2n+1, $b_{i,2n+2-i} = 1$, tous les autres coefficients étant nuls.

III.7. III.7.a. En prenant n=1 dans la question précédente, on obtient bien $A_1=\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ et

$$B_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Par produit matriciel, $(A_1)^2 = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et $(A_1)^3$ est la matrice nulle.

III.7.b. On trouve $[A_1, B_1] = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 0 & -2 \\ 0 & -1 & 0 \end{pmatrix}$ qui est de rang 2. $[(A_1)^2, B_1] = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}$ qui est aussi de rang 2.

$$[(A_1)^2, B_1] = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
 qui est aussi de rang 2

III.7.c. Quand $i=2, i \ge 1+1$ donc $(A_1)^2$ et B_1 ont un vecteur propre commun alors que la condition de la question II.6. n'est pas vérifiée; celle-ci n'est donc pas nécessaire. Quand i = 1, $rg([A_1, B_1]) < 3$ mais A_1 et B_1 n'ont pas de vecteur propre commun donc la condition de la question II.1.b. n'est pas suffisante.