

人工智能导论

Lecture 6: Training

Supervised Learning - Review

□ Given training data $\{(x_i, y_i)\}_{i=1}^n$ i.i.d. from distribution D

- which works well on test data i.i.d. from distribution D

$$\widehat{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i; \theta), y_i)$$

Underfitting & Overfitting

Underfitting & Overfitting

- Underfitting: the model cannot capture the underlying trend of the data
 - ◆ Large training error
 - Model is not complex enough
- Overfitting: the model describes random noise instead of the underlying relationship
 - Small training error but large test error
 - Model is too complex

Outline

- Model selection
- Optimization
- Not work well on training data
- Not work well on testing data
- Hyperparameter tuning

Model selection

□ Given m models $f_1, f_2 ..., f_m$, how to find the best model?

train	validation	test
-------	------------	------

- Split data into train, validation, and test
- Choose hyperparameters on the validation data and evaluate on the test data

Cross validation

■ Split data into folds, try each fold as validation and average the results

Example: 5-fold cross validation

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Outline

Model selection

- Optimization
- Not work well on training data
- Not work well on testing data
- Hyperparameter tuning

Optimization

■ Minimize the empirical loss

$$\min_{\theta} L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i; \theta), y_i)$$

□ Usually $L(\theta)$ is continuous and differentiable (or subdifferentiable)

History of optimization

- ◆ 1847: Cauchy proposes gradient descent
- ◆ 1950s: Linear Programs, soon followed by nonlinear, Stochastic Gradient Descent (SGD)
- ◆ 1980s: General optimization, convergence theory
- ◆ 2005-2015: Large scale optimization (mostly convex), convergence of SGD
- 2015-today: Improved understanding of SGD for deep learning

Gradient descent

 \square What is the steepest descent direction at x^t ?

opposite direction of the gradient

Gradient descent

- \blacksquare Start with an initial point x^0
 - ◆ In each iteration, compute

$$x^{t+1} = x^t - \eta_t \nabla f(x^t)$$

 \square η_t is the learning rate

Gradient descent

 \square Objective function: $f(x) = x_1^2 + 2x_2^2$, initial point: $x^{(0)} = (1,1)^T$, learning rate $\eta = 0.2$ $\nabla f(\mathbf{x}) = \begin{vmatrix} 2x_1 \\ 4x_2 \end{vmatrix}$ $\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \eta \nabla f(\mathbf{x}^{(0)}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - 0.2 \times \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 0.6 \\ 0.2 \end{bmatrix}$ $\mathbf{x}^{(2)} = \mathbf{x}^{(1)} - \eta \nabla f(\mathbf{x}^{(1)}) = \begin{bmatrix} 0.6 \\ 0.2 \end{bmatrix} - 0.2 \times \begin{bmatrix} 1.2 \\ 0.8 \end{bmatrix} = \begin{bmatrix} 0.36 \\ 0.04 \end{bmatrix}$ $\mathbf{x}^{(3)} = \mathbf{x}^{(2)} - \eta \nabla f(\mathbf{x}^{(2)}) = \begin{bmatrix} 0.36 \\ 0.04 \end{bmatrix} - 0.2 \times \begin{bmatrix} 0.72 \\ 0.16 \end{bmatrix} = \begin{bmatrix} 0.216 \\ 0.008 \end{bmatrix}$

. . .

Stochastic gradient descent

■ Gradient descent:

$$\theta^{t+1} = \theta^t - \nabla_{\theta} \left(\frac{1}{n} \sum_{i=1}^n \ell(f(x_i; \theta^t), y_i) \right)$$

- Stochastic gradient descent:
 - lacktriangle Pick an data (x_i, y_i)

$$\theta^{t+1} = \theta^t - \nabla_{\theta}(\ell(f(x_i; \theta^t), y_i))$$

Mini-batch SGD

□ In each iteration, randomly pick a minibatch $S = \{(x_{b_1}, y_{b_1}), ..., (x_{b_k}, y_{b_k})\}$

$$\theta^{t+1} = \theta^t - \nabla_{\theta} \left(\frac{1}{|S|} \sum_{(x_i, y_i) \in S} \ell(f(x_i; \theta^t), y_i) \right)$$

- What are the parameters?
 - Learning rate
 - Batch size
 - When to stop

Challenges of nonconvex optimization

Momentum

Vanilla Gradient Descent

Momentum

Movement: movement of last step minus gradient at present

→ Movement

of the last step

Starting at $oldsymbol{ heta}^0$

Movement $m^0 = 0$

Compute gradient g^0

Movement $m^1 = \lambda m^0 - \eta g^0$

Move to $\theta^1 = \theta^0 + m^1$

Compute gradient g^1

Movement $m^2 = \lambda m^1 - \eta g^1$

Move to $\theta^2 = \theta^1 + m^2$

Movement not just based on gradient, but previous movement.

Momentum

The effects of different learning rates

□ SGD usually require decaying learning rate:

$$\eta_t = \frac{1}{T}$$

Adagrad

Divide the learning rate of each parameter by the root mean square of its previous deviation

◆ Vanilla Gradient descent

•
$$g^t = \nabla_{\theta} \left(\frac{1}{|S|} \sum_{(x_i, y_i) \in S} \ell(f(x_i; \theta^t), y_i) \right)$$

•
$$\theta^{t+1} = \theta^t - \eta_t g^t$$

◆ Adagrad

•
$$r = r + g^t \odot g^t$$

•
$$\theta^{t+1} = \theta^t - \eta_t \frac{1}{\delta + \sqrt{r}} \odot g^t$$

RMSProp

Adagrad

$$r = r + g^t \odot g^t$$

$$\theta^{t+1} = \theta^t - \eta_t \frac{1}{\delta + \sqrt{r}} \odot g^t$$

RMSProp

$$r = \alpha r + (1 - \alpha)g^t \odot g^t$$
$$\theta^{t+1} = \theta^t - \eta_t \frac{1}{\delta + \sqrt{r}} \odot g^t$$

Adam

RMSProp

$$\overline{r = \alpha r} + (1 - \alpha)g^t \odot g^t$$

$$\theta^{t+1} = \theta^t - \eta_t \frac{1}{\delta + \sqrt{r}} \odot g^t$$

Adam: RMSProp+Momuntem

$$r = \alpha r + (1 - \alpha)g^{t} \odot g^{t}$$

$$v = \rho v - \eta_{t} \frac{1}{\delta + \sqrt{r}} \odot g^{t}$$

$$\theta^{t+1} = \theta^{t} + v$$

Convergence of Adam

Adam may not convergent in some special cases!

- Many provable variants of Adam:
 - Amsgrad
 - Adashift
 - **♦** ...

Adam vs SGD

■ Adam

- ◆ Faster convergence in practice
- Not sensitive to the learning rate
- Does not perform well on image classification tasks

□ SGD

- Usually slower than Adam
- Require fine tune of learning rate
- Has better generalization performance

Outline

Model selection

- Optimization
- Not work well on training data
- Not work well on testing data
- Hyperparameter tuning

Vanishing Gradient Problem

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Feature Scaling

Mean: m_i Standard deviation: σ_i

$$x_i^r \leftarrow \frac{x_i^r - m_i}{\sigma_i}$$

Batch Normalization

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
                 Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
   \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2
                                                                                // mini-batch mean
                                                                          // mini-batch variance
     \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}
                                                                                               // normalize
      y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                                                      // scale and shift
```

Outline

Model selection

- Optimization
- Not work well on training data
- Not work well on testing data
- Hyperparameter tuning

Early stopping

Regularization

New loss function to be minimized

□ Find a set of weight not only minimizing the original cost but also close to zero

$$L'(\theta) = L(\theta) + \lambda R(\theta) \rightarrow \text{Regularization term}$$

Original loss

Dropout

Training:

- Each time before updating the parameters
 - Each neuron has a probability of p to be dropped

Dropout

Testing:

■ No dropout during testing

- If the dropout rate at training is p, all the weights times 1-p
- Usually we choose p = 0.5

Why dropout performs well?

Hyperparameter tuning

■ Baby sitting

Data

Act/Grad/Filter

Metric

Space

Grid Search

■ Workflow:

- ◆ Define a grid on n dimensions, where each of these maps is for an hyperparameter.
 - e.g. $n = (learning_rate, dropout_rate, batch_size)$
- For each dimension, define the range of possible values:
 - e.g. batch_size = [8, 16, 32, 64, 128, 256]
- Search for all the possible configurations and wait for the results to establish the best one:
 - e.g. C1 = (0.1, 0.3, 8) -> acc = 92%, C2 = (0.1, 0.35, 8) -> acc = 92.3%, etc...

Grid Search vs Random Search

Bad on high dimensional spaces

Important parameter

It doesn't guarantee to find the best hyperparameters

Good on high dimensional spaces

Give better results in less iterations

Summary

- Supervised Learning: underfitting & overfitting
- Model selection
- Optimization
- Not work well on training data
- Not work well on testing data
- Hyperparameter tuning

Questions

