PAT-NO:

JP411339969A

DOCUMENT-IDENTIFIER: JP 411339969 A

TITLE:

ORGANIC EL ELEMENT

PUBN-DATE:

December 10, 1999

INVENTOR-INFORMATION:

NAME

COUNTRY

ARAI, MICHIO

N/A

ASSIGNEE-INFORMATION:

NAME **TDK CORP** COUNTRY

N/A

APPL-NO:

JP10158490

APPL-DATE:

May 22, 1998

INT-CL (IPC): H05B033/26, H05B033/10, H05B033/14

ABSTRACT:

PROBLEM TO BE SOLVED: To suppress the peeling of electrodes and to prevent reduction in luminescent area by providing a protective electrode laminated with a low-resistance metal film of Ti, Mo, W, Ni, Ta, Cu, Hf, Cr and an Al film on an electron injection electrode, and specifying the absolute value of the internal stress of this electrode.

SOLUTION: A hole injection electrode is provided on a substrate, an organic layer is provided on it, and an electron injection electrode is provided to form an organic EL element. A low-resistance metal film of at least one kind selected from Ti, Mo, W, Ni, Ta, Cu, Hf, Cr and an Al film are laminated on the electron injection electrode to form a protective electrode. A Ti film is preferably used for the low-resistance metal film. The thickness ratio between the Al film and the low-resistance metal film is desirably set to 1-9. The absolute value of the internal stress of the protective electrode is controlled to 1×108 dyn/cm2 or below. The content quantity of AI in the protective electrode is preferably set to 50-90 at.%.

COPYRIGHT: (C)1999,JPO

2/20/05, EAST Version: 2.0.1.4

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平11-339969

(43)公開日 平成11年(1999)12月10日

(51) Int.CL.8		識別記号	ΡI		
H05B	33/26		H05B	33/26	Z
	33/10			33/10	
	33/14			33/14	A

| 審査請求 未請求 請求項の数9 FD (全 10 頁)

(74)代理人 弁理士 石井 陽一

(21)出願番号 特顧平10-158490 - (71)出願人 000003067 ティーディーケイ株式会社 (22)出廣日 東京都中央区日本橋1丁目13番1号 平成10年(1998) 5月22日 (72) 発明者 荒井 三千男 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内

(54)【発明の名称】 有機EL素子

(57)【要約】

【課題】 電極の剥離を抑制し、発光領域の発光面積の 低下がない有機EL素子を実現する。

【解決手段】 基板上に、ホール注入電極、有機層およ び電子注入電極を、この順に有する有機EL素子におい て、電子注入電極上に内部応力1×108dyn/cm²以下の A1-Ti等の低抵抗メタル膜(混合膜、積層膜、傾斜 膜)で形成した保護電極を設ける。

1

【特許請求の範囲】

【請求項1】 基板上にホール注入電極を有し、このホ ール注入電極上に有機層を有し、この有機層上に電子注 入電極を有する有機EL素子において、

前記電子注入電極上に、Ti、Mo、W、Ni、Ta、 Cu、HfおよびCrから選択される少なくとも1種の 低抵抗メタル膜とAI膜との積層膜で形成した保護電極 を設け、保護電極の内部応力の絶対値を1×108dyn/c ■2以下とした有機EL素子。

の有機EL素子。

【請求項3】 AI膜と前記低抵抗メタル膜との膜厚 比、A 1 膜/前記低抵抗メタル膜が1~9である請求項 1または2の有機EL素子。

【請求項4】 基板上にホール注入電極を有し、このホ ール注入電極上に有機層を有し、この有機層上に電子注 入電極を有する有機EL素子において、

前記電子注入電極上に、Ti、Mo、W、Ni、Ta、 Cu、HfおよびCrから選択される少なくとも1種の 低抵抗メタルとA1との混合膜で形成した保護電極を設 20 【0004】 け、保護電極の内部応力の絶対値を1×108 dyn/cm²以 下とした有機EL素子。

【請求項5】 基板上にホール注入電極を有し、このホ ール注入電極上に有機層を有し、この有機層上に電子注 入電極を有する有機EL素子において、

前記電子注入電極上に、Ti、Mo、W、Ni、Ta、 Cu、HfおよびCrから選択される少なくとも1種の 低抵抗メタルとA 1 とを含有し、前記低抵抗メタルおよ びA1の含有量を電子注入電極側と表面側とで変化させ 膜で形成した保護電極を設け、保護電極の内部応力の絶 対値を1×108dyn/cm²以下とした有機EL素子。

【請求項6】 低抵抗メタルがTiである請求項4また は5の有機EL素子。

【請求項7】 保護電極のA 1 含有量が50~90at% である請求項4~6のいずれかの有機EL素子。

【請求項8】 保護電極がスパッタ法により成膜された 請求項1~7のいずれかの有機EL素子。

【請求項9】 スパッタ圧力が0.1~1Paである請 求項8の有機EL素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、有機化合物を用い た有機EL素子に関し、さらに詳細には、発光層にホー ル(電荷)、電子を供給する電極と有機層界面等の改良 に関する。

[0002]

【従来の技術】近年、有機E L素子が盛んに研究されて いる。これは、ホール注入電極上にトリフェニルジアミ ン(TPD)などのホール輸送材料を蒸着により薄膜と 50 を有する有機EL素子において、前記電子注入電極上

し、さらにアルミキノリノール錯体(Ala3)などの 蛍光物質を発光層として積層し、さらにMgなどの仕事 関数の小さな金属電極(電子注入電極)を形成した基本 構成を有する素子で、10V前後の電圧で数100から 数10、000cd/₽ときわめて高い輝度が得られるこ とで注目されている。

【0003】有機EL素子において、電子注入電極は、 Li、Mg等の耐食性の低い金属を含有するので、電子 注入電極上には保護電極が設けられている。一般に、保 【請求項2】 低抵抗メタル膜がTi膜である請求項1 10 護電極はA1スパッタ膜などで形成されている。製法 上、発光層のような有機層のダメージの少ない低スパッ 夕動作圧力条件下で成膜すると、AIスパッ夕膜の引張 応力が大きくなり、電極の剥離等が生じたり、連続駆動 によりダークスポットと呼ばれる非発光領域が生じ、発 光領域が減少してしまう。一方、スパッタ動作圧力を高 くして引張応力を適性範囲に制御することも可能である が、有機層にダメージを与え、駆動電圧が上昇する。そ こで、こうした不都合を解消した保護電極が望まれてい る。

【発明が解決しようとする課題】本発明の目的は、電極 の剥離を抑制し、発光領域の発光面積の低下がない有機 EL素子を提供することである。

[0005]

L素子。

【課題を解決するための手段】上記目的は、下記の本発 明によって達成される。

- (1) 基板上にホール注入電極を有し、このホール注 入電極上に有機層を有し、この有機層上に電子注入電極 を有する有機EL素子において、前記電子注入電極上 た前記低抵抗メタルおよびA1の濃度勾配を有する傾斜 30 に、Ti、Mo、W、Ni、Ta、Cu、HfおよびC rから選択される少なくとも1種の低抵抗メタル膜とA 1 膜との積層膜で形成した保護電極を設け、保護電極の
 - (2) 低抵抗メタル膜がTi膜である上記(1)の有 機EL素子。

内部応力の絶対値を1×108 dyn/cm²以下とした有機E

- (3) A I 膜と前記低抵抗メタル膜との膜厚比、A I 膜/前記低抵抗メタル膜が1~9である上記(1)また は(2)の有機EL素子。
- 40 (4) 基板上にホール注入電極を有し、このホール注 入電極上に有機層を有し、この有機層上に電子注入電極 を有する有機EL素子において、前記電子注入電極上 に、Ti、Mo、W、Ni、Ta、Cu、HfおよびC rから選択される少なくとも1種の低抵抗メタルとA1 との混合膜で形成した保護電極を設け、保護電極の内部 応力の絶対値を1×108dyn/cm²以下とした有機EL素 子。
 - (5) 基板上にホール注入電極を有し、このホール注 入電極上に有機層を有し、この有機層上に電子注入電極

に、Ti、Mo、W、Ni、Ta、Cu、HfおよびC rから選択される少なくとも1種の低抵抗メタルとAl とを含有し、前記低抵抗メタルおよびA 1の含有量を電 子注入電極側と表面側とで変化させた前記低抵抗メタル およびA1の濃度勾配を有する傾斜膜で形成した保護電 極を設け、保護電極の内部応力の絶対値を1×108dyn /cm²以下とした有機EL素子。

- (6) 低抵抗メタルがTiである上記(4)または (5)の有機EL素子。
- (7) 保護電極のA1含有量が50~90at%である 上記 (4)~(6)のいずれかの有機EL素子。
- (8) 保護電極がスパッタ法により成膜された上記
- (1)~(7)のいずれかの有機EL素子。
- (9) スパッタ圧力が0.1~1Paである上記
- (8)の有機EL素子。

[0006]

【発明の実施の形態】以下、本発明について詳細に説明 する。本発明の有機EL素子は、基板上にホール注入電 極を有し、ホール注入電極層上には有機層が設けられて おり、有機層上に電子注入電極を有するものであり、さ 20 らに電子注入電極上には内部応力の絶対値が1×108d yn/cm²以下である保護電極が設けられている。保護電極 はA1と好ましくはTiとを含有し、好ましくはスパッ タ法により成膜されたものである。この場合のA1-T i膜は、A1とTiとの混合膜であってもよく、A1膜 とTi膜との積層膜であってもよい。さらには、Alお よびTiの含有量を電子注入電極側と表面側とで変化さ せたAlおよびTiの濃度勾配を有する傾斜膜であって もよい。

【0007】このような保護電極を設けることによっ て、電子注入電極の内部応力を緩和するとともに、保護 電極の内部応力が上記の適正範囲に制御されるため、電 極の剥離が抑制され、発光領域の発光面積の低下がな い。また、スパッタ法により成膜する場合、低いスパッ タ動作圧力にでき、製造が容易である。

【0008】上述のように、本発明では、A1とTiを 用いることが好ましく、Tiが本発明の効果を得る上で 好ましいが、TiのかわりにMo、W、Ni、Ta、C u、HfおよびCrから選択される低抵抗メタル[20] ℃での抵抗率 (Ω·cm) が10⁻⁵~10⁻⁶程度のオーダ 40 一のもの] を用いてもよい。

【0009】保護電極の内部応力が上記の範囲に制御さ れるのは、低スパッタ動作圧力条件下においてA1スパ ッタ膜を成膜した場合引張応力が大きくなるが、Ti等 の低抵抗メタルを併用することによって、Ti等の低抵 抗メタルを同様の低スパッタ動作圧力条件下で成膜した 場合に生じる同程度の大きさの圧縮応力によって緩和さ れるためと考えられる。

【0010】このように、A1とTi等の低抵抗メタル

 $1 \times 10^{8} \sim +1 \times 10^{8} dyn/cm^{2}$ 、好ましくは-0.5×10⁸~+0.5×10⁸dyn/cm²に制御することがで き、より好ましくは0~+0.5×108dyn/cm2の引張 応力に制御することができる。

【0011】これに対し、A1のみでは、有機層のダメ ージの少ない低スパッタ動作圧力条件下で成膜すると、 A 1 スパッタ膜の引張応力が大きくなって内部応力を上 記範囲とできず、Ti等の低抵抗メタルのみでは低スパ ッタ動作圧力条件下でスパッタを行うと、T i 等の低抵 抗メタルスパッタ膜の圧縮応力が大きくなって内部応力 を上記範囲にできない。また、A1スパッタ膜あるいは T i 等の低抵抗メタルスパッタ膜のみで内部応力を上記 範囲にすることも可能ではあるが、スパッタ動作圧力が 高くなりすぎて、有機層のダメージが大きくなり、駆動 電圧が上昇する。

【0012】なお、保護電極の内部応力は、保護電極 を、例えばシリコンウェハー上に実際と同条件で成膜し て測定することができる。

【0013】本発明の保護電極がA1とTi等の低抵抗 メタルとの混合膜である場合、A 1の含有量は50~9 Oat%、さらには60~80at%であることが好まし 11

【0014】また、A1膜とTi等の低抵抗メタル膜と の積層膜である場合、通常2層構成とされるが、電子注 入電極側に成膜するのは、A1膜であっても、Ti等の 低抵抗メタル膜であってもよく、特に制限はない。ま た、3層以上の多層構成としてもよい。A1膜とTi等 の低抵抗メタル膜との膜厚比はA1膜/Ti等の低抵抗 メタル膜=1~9程度である。 なお、A1膜とTi等の 30 低抵抗メタル膜との接触界面においては、AIとTi等 の低抵抗メタルとが相互に拡散していてもよい。

【0015】また、AlとTi等の低抵抗メタルの傾斜 膜である場合、Al含有量(あるいはTi等の低抵抗メ タル含有量)は、電子注入電極側で大きくなっても、表 面側で大きくなってもよく、連続的に変化しても断続的 に変化してもよく、特に制限はない。このような傾斜膜 全体におけるA1とTi等の低抵抗メタルの含有量は混 合膜におけるものと同様である。

【0016】傾斜膜におけるAlおよびTi等の低抵抗 メタルの濃度勾配は、イオンエッチングを行いながらオ ージェ電子分光法等を用いて確認することができる。こ の場合の濃度勾配は、例えばA 1 含有量が表面で8 Oat 7程度、表面から1/2の位置で70at7程度、電子注入 電極界面で60atは程度となるようなものであってもよ く、このほかA 1 含有量が表面と電子注入電極界面とで 反対になるようなものであってもよく、種々のものであ ってよい。

【0017】なお、Ti等の低抵抗メタルは、1種のみ を用いても2種以上を併用してもよい。また、A1およ とを併用することによって、保護電極の内部応力を、- 50 VTi等の低抵抗メタルのみで保護電極を構成すること が好ましいが、このほかSc、Nb、Zr、Nd、Si i、Mn、Pd、Pt等の金属元素を含有していてもよい。

【0018】保護電極の厚さは、積層膜である場合は合計厚で100~500mであることが好ましく、さらには200~300mであることが好ましい。保護電極が薄くなると、保護電極としての機能を果たし得ず、信頼性が低下し、厚くなると全体の応力の制御が困難になり、保護電極が剥離しやすくなる。保護電極は、電極の剥離や発光領域の発光面積の減少防止のほかに、水分や10酸素あるいは有機溶媒の進入を防止したり、配線電極としての機能を有することもある。

【0019】A1-Ti等の低抵抗メタル膜はスパッタ 法により成膜されることが好ましいが、具体的には公知 の方法によればよい。スパッタ動作圧力は、好ましくは 0.1~1Paである。A1とTi等の低抵抗メタルと の混合膜は、A1ターゲットとTi等の低抵抗メタルの ターゲットとを用いて同時多元スパッタを行っても、A1-Ti等の低抵抗メタル合金のターゲットを用いてスパッタを行ってもよい。また、積層膜とする場合は、A201膜あるいはTi等の低抵抗メタル膜をスパッタにより形成した後、Ti等の低抵抗メタル膜あるいはA1膜をスパッタにより形成すればよい。傾斜膜は、スパッタ圧力を上記範囲で調節することや、A1-Ti等の低抵抗メタル合金のターゲットとA1あるいはTi等の低抵抗メタルのターゲットとを同時に用いてスパッタすること などにより得られる。

【0020】スパッタ法としてはDCスパッタが好ましく、その投入電力としては、好ましくは0.1~4W/cm²の範囲が好ましい。特にDCスパッタ装置の電力と 30しては、好ましくは0.1~10W/cm²、特に0.2~5W/cm²の範囲である。また、成膜レートは2~100m/min、特に5~50m/minの範囲が好ましい。

【0021】スパッタガスとしては特に限定するものではなく、Ar、He、Ne、Kr、Xe等の不活性ガス、あるいはこれらの混合ガスを用いればよい。

【0022】本発明の有機EL素子は、例えば図1に示すように、基板1上にホール注入電極2と、電子注入電極4と、これらの電極間に設けられた有機層3とを有す 40 る。有機層3は少なくとも発光層を有し、このほか必要に応じホール注入輸送層、電子注入輸送層などを有する。有機層3上には電子注入電極4を有し、さらに最上層として保護電極5が設けられている。

【0023】基板に設けられるホール注入電極では、ホール注入を十分行える一定以上の厚さを有すれば良く、50m以上が好ましく、より好ましくは50~500m。特に50~400mmの範囲が好ましい。膜厚を150m以上とすることにより、抵抗値が低下し、特に好ましい結果が得られる。

【0024】ホール注入電極を形成する場合、通常、基板側から発光した光を取り出す構造であるため、透明な電極が好ましく、ITO(錫ドープ酸化インジウム)、IZO(亜鉛ドープ酸化インジウム)、ZnO、SnO2、In2 O3等が挙げられるが、好ましくはITO(錫ドープ酸化インジウム)、IZO(亜鉛ドープ酸化インジウム)が好ましい。In2 O3 に対しSnO2の混合比は、1~20wt%が好ましく、さらには5~12wt%が好ましい。In2 O3 に対しZnOの混合比は、1~20wt%が好ましく、さらには5~12wt%が好ましい。その他にSn、Ti、Pb等が酸化物の形で、酸化物換算にして1wt%以下含まれていてもよい。

【0025】ホール注入電極は蒸着法等によっても形成できるが、好ましくはスパッタ法により形成することが好ましい。ITO、IZO電極の形成にスパッタ法を用いる場合、好ましくはIn2 O3 にSnO2 やZnOをドープしたターゲットを用いる。スパッタ法によりITO透明電極を成膜した場合、蒸着により成膜したものより発光輝度の経時変化が少ない。スパッタ法としてはDCスパッタが好ましく、その投入電力としては、好ましくは0.1~4W/cm²の範囲が好ましい。特にDCスパッタ装置の電力としては、好ましくは0.1~10W/cm²、特に0.2~5W/cm²の範囲である。また、成膜レートは2~100m/min、特に5~50m/minの範囲が好ましい。

【0026】スパッタガスとしては特に限定するものではなく、Ar、He、Ne、Kr、Xe等の不活性ガス、あるいはこれらの混合ガスを用いればよい。このようなスパッタガスのスパッタ時における圧力としては、通常0.1~20Pa程度でよい。

【0027】電子注入電極の構成材料としては、電子注 入を効果的に行う低仕事関数の物質が好ましく、例え ば、K、Li、Na、Mg、La、Ce、Ca、Sr、 Ba, Al, Ag, In, Sn, Zn, Zr, Cs, E r, Eu, Ga, Hf, Nd, Rb, Sc, Sm, T a、Y、Yb等の金属元素単体、あるいは、BaO、B aS, CaO, HfC, LaB6, MgO, MoC, N bC, PbS, SrO, TaC, ThC, ThO2, T hS, TiC, TiN, UC, UN, UO2, W2C, Y 2O3、ZrC、ZrN、ZrO2等の化合物を用いると 良い。または安定性を向上させるためには、金属元素を 含む2成分、3成分の合金系を用いることもできる。合 金系としては、例えばA1・Ca(Ca:5~20at %) $Al \cdot In (In: 1 \sim 1 \text{ Oat}\%) \cdot Al \cdot Li$ (Li:0.1~20at%未満)、A1·R (RはY, Scを含む希土類元素を表す〕等のアルミニウム系合金 やIn·Mg (Mg: 50~80at%) 等が好ましい。 これらの中でも、特にA1単体やA1・Li(Li: 0.4~6.5 (ただし6.5を含まず) at%) または $(Li:6.5\sim14at\%)$, $(Al\cdot R(R:0.1\sim$ 50

25、特に0.5~20at%)等のアルミニウム系合金 も圧縮応力が発生しにくく好ましい。したがって、スパッタターゲットとしては、通常このような電子注入電極 構成金属、合金を用いる。これらの仕事関数は4.5 e V以下であり、特に仕事関数が4.0 e V以下の金属、 合金が好ましい。

【0028】電子注入電極の成膜には、蒸着法を用いて もよいが、上記のようにスパッタ法を用いてもよい。ス パッタ法による利点は以下のとおりである。成膜された 電子注入電極膜は、蒸着の場合と比較して、スパッタさ 10 れる原子や原子団が比較的高い運動エネルギーを有する ため、表面マイグレーション効果が働き、有機層界面で の密着性が向上する。また、プレスパッタを行うこと で、真空中で表面酸化物層を除去したり、逆スパッタに より有機層界面に吸着した水分や酸素を除去できるの で、クリーンな電極一有機層界面や電極を形成でき、そ の結果、高品位で安定した有機EL素子ができる。ター ゲットとしては前記組成範囲の合金や、金属単独でも良 く、これらに加えて添加成分のターゲットを用いても良 い。さらに、蒸気圧の大きく異なる材料の混合物をター 20 ゲットとして用いても、生成する膜とターゲットとの組 成のズレは少なく、蒸着法のように蒸気圧等による使用 材料の制限もない。また、蒸着法に比較して材料を長時 間供給する必要がなく、膜厚や膜質の均一性に優れ、生 産性の点で有利である。

【0029】スパッタ法により形成された電子注入電極は、一般的に、緻密な膜なので、粗な蒸着膜に比較して膜中への水分の進入が非常に少なく、化学的安定性が高く、長寿命の有機EL素子が得られる。

【0030】スパッタ時のスパッタガスの圧力は、好ま 30 しくは0.1~5 Paの範囲が好ましく、この範囲でスパッタガスの圧力を調節することにより、前記範囲のしi 濃度のAlLi合金を容易に得ることができる。また、成膜中にスパッタガスの圧力を、前記範囲内で変化させることにより、上記しi濃度勾配を有する電子注入電極を容易に得ることができる。また、成膜ガス圧力と基板ターゲット間距離の積が20~65 Pa·cmを満たす成膜条件にすることが好ましい。

【0031】スパッタガスは、通常のスパッタ装置に使用される不活性ガスや、反応性スパッタではこれに加え 40 てN2、H2、O2、C2 H4、N H3等の反応性ガスが使用可能である。

【0032】スパッタ法としてはRF電源を用いた高周波スパッタ法等も可能であるが、成膜レートの制御が容易であり、有機EL素子構造体へのダメージを少なくするためにはDCスパッタ法を用いることが好ましい。DCスパッタ装置の電力としては、好ましくは0.1~10W/cm²、特に0.5~7W/cm²の範囲である。また、成膜レートは5~100m/min、特に10~50 nm/min の範囲が好ましい。

【0033】電子注入電極の成膜は、材質等により、蒸 着法あるいはスパッタ法を選択すればよい。

【0034】電子注入電極薄膜の厚さは、電子注入を十分行える一定以上の厚さとすれば良く、1 nm以上、好ましくは3 nm以上とすればよい。また、その上限値には特に制限はないが、通常膜厚は3~500 nm程度とすればよい。

【0035】次に、本発明のEL素子に設けられる有機層について述べる。発光層は、ホール(正孔)および電子の注入機能、それらの輸送機能、ホールと電子の再結合により励起子を生成させる機能を有する。発光層には比較的電子的にニュートラルな化合物を用いることが好ましい。

【0036】ホール注入輸送層は、ホール注入電極からのホールの注入を容易にする機能、ホールを安定に輸送する機能および電子を妨げる機能を有し、電子注入輸送層は、電子注入電極からの電子の注入を容易にする機能、電子を安定に輸送する機能およびホールを妨げる機能を有するものであり、これらの層は、発光層に注入されるホールや電子を増大・閉じこめさせ、再結合領域を最適化させ、発光効率を改善する。

【0037】発光層の厚さ、ホール注入輸送層の厚さおよび電子注入輸送層の厚さは特に限定されず、形成方法によっても異なるが、通常、5~500m程度、特に10~300mとすることが好ましい。

【0038】ホール注入輸送層の厚さおよび電子注入輸送層の厚さは、再結合・発光領域の設計によるが、発光層の厚さと同程度もしくは1/10~10倍程度とすればよい。ホールもしくは電子の、各々の注入層と輸送層を分ける場合は、注入層は1m以上、輸送層は1m以上とするのが好ましい。このときの注入層、輸送層の厚さの上限は、通常、注入層で500m程度、輸送層で500m程度である。このような膜厚については注入輸送層を2層設けるときも同じである。

【0039】本発明の有機EL素子の発光層には発光機能を有する化合物である蛍光性物質を含有させる。このような蛍光性物質としては、例えば、特開昭63-264692号公報に開示されているような化合物、例えばキナクリドン、ルブレン、スチリル系色素等の化合物から選択される少なくとも1種が挙げられる。また、トリス(8-キノリノラト)アルミニウム等の8-キノリノールないしその誘導体を配位子とする金属錯体色素などのキノリン誘導体、テトラフェニルブタジエン、アントラセン、ペリレン、コロネン、12-フタロペリノン誘導体等が挙げられる。さらには、特願平6-110569号のフェニルアントラセン誘導体、特願平6-114456号のテトラアリールエテン誘導体等を用いることができる。

【0040】また、それ自体で発光が可能なホスト物質 50 と組み合わせて使用することが好ましく、ドーパントと

しての使用が好ましい。このような場合の発光層におけ る化合物の含有量は0.01~10wt%、さらには0. 1~5wt%であることが好ましい。ホスト物質と組み合 わせて使用することによって、ホスト物質の発光波長特 性を変化させることができ、長波長に移行した発光が可 能になるとともに、素子の発光効率や安定性が向上す る.

【0041】ホスト物質としては、キノリノラト錯体が 好ましく、さらには8-キノリノールないしその誘導体 を配位子とするアルミニウム錯体が好ましい。このよう なアルミニウム錯体としては、特開昭63-26469 2号、特開平3-255190号、特開平5-7073 3号、特開平5-258859号、特開平6-2158 74号等に開示されているものを挙げることができる。 【0042】具体的には、まず、トリス(8-キノリノ ラト) アルミニウム、ビス (8-キノリノラト) マグネ シウム、ビス (ベンゾ { f } -8-キノリノラト) 亜 鉛、ビス(2ーメチルー8ーキノリノラト)アルミニウ ムオキシド、トリス (8-キノリノラト) インジウム、 トリス (5-メチル-8-キノリノラト) アルミニウ _ム、8-キノリノラトリチウム、トリス(5-クロロー 8-キノリノラト) ガリウム、ビス (5-クロロー8-キノリノラト) カルシウム、5, 7-ジクロルー8-キ ノリノラトアルミニウム、トリス(5,7ージブロモー 8-ヒドロキシキノリノラト) アルミニウム、ポリ [亜 鉛(II)ービス(8ーヒドロキシー5ーキノリニル)メ タン〕、等がある。

【0043】また、8ーキノリノールないしその誘導体 のほかに他の配位子を有するアルミニウム錯体であって 8-キノリノラト) (フェノラト) アルミニウム(III) 、ビス(2ーメチルー8ーキノリノラト)(オルトー クレゾラト) アルミニウム(III) 、ビス(2ーメチルー 8-キノリノラト) (メタークレゾラト) アルミニウム (III)、ビス(2-メチル-8-キノリノラト)(パラ ークレゾラト) アルミニウム(III) 、ビス (2-メチル **-8-キノリノラト)(オルトーフェニルフェノラト)** アルミニウム(III) 、ビス (2-メチル-8-キノリノ ラト) (メターフェニルフェノラト) アルミニウム(II I)、ビス(2-メチル-8-キノリノラト)(パラ-フェニルフェノラト) アルミニウム(III) 、ビス (2 ー メチルー8ーキノリノラト)(2,3ージメチルフェノ ラト) アルミニウム(III) 、ビス (2-メチル-8-キ ノリノラト) (2,6-ジメチルフェノラト) アルミニ ウム(III) 、ビス(2-メチル-8-キノリノラト) (3, 4-ジメチルフェノラト) アルミニウム(III)、 ビス(2ーメチルー8ーキノリノラト)(3,5ージメ チルフェノラト) アルミニウム(III) 、ビス(2-メチ ルー8-キノリノラト)(3,5-ジーtert-ブチルフ

10

ーキノリノラト) (2,6ージフェニルフェノラト) ア ルミニウム(III)、ビス(2-メチル-8-キノリノラ ト)(2,4,6-トリフェニルフェノラト)アルミニ ウム(III) 、ビス(2-メチル-8-キノリノラト) (2, 3, 6-トリメチルフェノラト) アルミニウム(I II)、ビス(2-メチル-8-キノリノラト)(2, 3.5.6-テトラメチルフェノラト) アルミニウム(I II)、ビス(2-メチル-8-キノリノラト)(1-ナ フトラト) アルミニウム(III) 、ビス (2-メチル-8 10 -キノリノラト) (2-ナフトラト) アルミニウム(II I) 、ビス(2, 4ージメチルー8ーキノリノラト) (オルトーフェニルフェノラト)アルミニウム(III)、 ビス(2,4-ジメチル-8-キノリノラト)(パラー フェニルフェノラト) アルミニウム(III) 、ビス (2, 4-ジメチル-8-キノリノラト) (メターフェニルフ ェノラト) アルミニウム(III) 、ビス(2,4-ジメチ ルー8ーキノリノラト)(3.5ージメチルフェノラ ト) アルミニウム(III) 、ビス(2,4ージメチルー8 ーキノリノラト) (3,5-ジーtertーブチルフェノラ 20 ト) アルミニウム(III) 、ビス(2-メチル-4-エチ ルー8-キノリノラト)(パラークレゾラト)アルミニ ウム(III) 、ビス (2-メチルー4-メトキシー8-キ **ノリノラト)(パラーフェニルフェノラト)アルミニウ** ム(III) 、ビス(2-メチル-5-シアノ-8-キノリ ノラト)(オルトークレゾラト)アルミニウム(III)、 ビス(2-メチル-6-トリフルオロメチル-8-キノ リノラト)(2-ナフトラト)アルミニウム(III) 等が ある。

【0044】このほか、ビス(2-メチル-8-キノリ もよく、このようなものとしては、ビス(2-メチルー 30 ノラト)アルミニウム(III) ーμ-オキソービス(2-メチル-8-キノリノラト) アルミニウム(III) 、ビス (2,4-ジメチル-8-キノリノラト) アルミニウム (III) $-\mu - \pi + \gamma - \xi = (2, 4 - \xi) + \xi = 0$ ノリノラト) アルミニウム(III) 、ビス (4 -エチルー 2-メチル-8-キノリノラト) アルミニウム(III) μーオキソービス (4-エチルー2-メチルー8-キノ リノラト) アルミニウム(III) 、ビス(2-メチルー4 ーメトキシキノリノラト) アルミニウム(III) ーμーオ キソービス(2-メチルー4-メトキシキノリノラト) 40 アルミニウム(III) 、ビス (5-シアノー2-メチルー 8-キノリノラト) アルミニウム(III) -μ-オキソー ビス (5-シアノー2-メチルー8-キノリノラト) ア ルミニウム(III)、ビス(2-メチル-5-トリフルオ ロメチル-8-キノリノラト) アルミニウム(III) -μ ーオキソービス(2-メチルー5-トリフルオロメチル -8-キノリノラト) アルミニウム(III) 等であっても よい。

【0045】このほかのホスト物質としては、特願平6 -110569号に記載のフェニルアントラセン誘導体 ェノラト) アルミニウム(III) 、ビス(2-メチルー8 50 や特願平6-114456号に記載のテトラアリールエ

テン誘導体なども好ましい。

【0046】発光層は電子注入輸送層を兼ねたものであ ってもよく、このような場合はトリス(8-キノリノラ ト)アルミニウム等を使用することが好ましい。これら の蛍光性物質を蒸着すればよい。

【0047】また、必要に応じて発光層は、少なくとも 一種以上のホール注入輸送性化合物と少なくとも1種以 上の電子注入輸送性化合物との混合層とすることも好ま しく、この混合層中にドーパントを含有させることが好 ましい。このような混合層における化合物の含有量は、 0. 01~20vt%、さらには0. 1~15vt% とする ことが好ましい。

【0048】混合層では、キャリアのホッピング伝導パ スができるため、各キャリアは極性的に優勢な物質中を 移動し、逆の極性のキャリア注入は起こり難くなり、有 機化合物がダメージを受け難くなり、素子寿命がのびる という利点があるが、前述のドーパントをこのような混 合層に含有させることにより、混合層自体のもつ発光波 長特性を変化させることができ、発光波長を長波長に移 行させることができるとともに、発光強度を高め、かつ 20 素子の安定性を向上させることができる。

【0049】混合層に用いられるホール注入輸送性化合 物および電子注入輸送性化合物は、各々、後述のホール 注入輸送層用の化合物および電子注入輸送層用の化合物 の中から選択すればよい。なかでも、ホール注入輸送層 用の化合物としては、強い蛍光を持ったアミン誘導体、 例えばホール輸送材料であるトリフェニルジアミン誘導 体、さらにはスチリルアミン誘導体、芳香族縮合環を持 つアミン誘導体を用いるのが好ましい。

【0050】電子注入輸送性の化合物としては、キノリ ン誘導体、さらには8-キノリノールないしその誘導体 を配位子とする金属錯体、特にトリス(8-キノリノラ ト)アルミニウム(Alq3)を用いることが好まし い。また、上記のフェニルアントラセン誘導体、テトラ アリールエテン誘導体を用いるのも好ましい。

【0051】ホール注入輸送層用の化合物としては、強 い蛍光を持ったアミン誘導体、例えば上記のホール輸送 材料であるトリフェニルジアミン誘導体、さらにはスチ リルアミン誘導体、芳香族縮合環を持つアミン誘導体を 用いるのが好ましい。

【0052】この場合の混合比は、それぞれのキャリア 移動度とキャリア濃度を考慮する事で決定するが、一般 的には、ホール注入輸送性化合物の化合物/電子注入輸 送機能を有する化合物の重量比が、1/99~99/ 1、さらには10/90~90/10、特には20/8 0~80/20程度となるようにすることが好ましい。 【0053】また、混合層の厚さは、分子層一層に相当 する厚みから、有機化合物層の膜厚未満とすることが好 ましく、具体的には1~85mmとすることが好ましく、 さらには5~60m、特には5~50mとすることが好 50 体、ピリミジン誘導体、キノキサリン誘導体、ジフェニ

ましい。

【0054】また、混合層の形成方法としては、異なる 蒸着源より蒸発させる共蒸着が好ましいが、蒸気圧(蒸 発温度)が同程度あるいは非常に近い場合には、予め同 じ蒸着ボード内で混合させておき、蒸着することもでき る。混合層は化合物同士が均一に混合している方が好ま しいが、場合によっては、化合物が島状に存在するもの であってもよい。発光層は、一般的には、有機蛍光物質 を蒸着するか、あるいは樹脂バインダー中に分散させて コーティングすることにより、発光層を所定の厚さに形 成する。

1 2

【0055】また、ホール注入輸送層には、例えば、特. 開昭63-295695号公報、特開平2-19169 4号公報、特開平3-792号公報、特開平5-234 681号公報、特開平5-239455号公報、特開平 5-299174号公報、特開平7-126225号公 報、特開平7-126226号公報、特開平8-100 172号公報、EP0650955A1等に記載されて いる各種有機化合物を用いることができる。例えば、テ トラアリールベンジシン化合物(トリアリールジアミン ないしトリフェニルジアミン: TPD)、芳香族三級ア ミン、ヒドラゾン誘導体、カルバゾール誘導体、トリア ゾール誘導体、イミダゾール誘導体、アミノ基を有する オキサジアゾール誘導体、ポリチオフェン等である。こ れらの化合物は2種以上を併用してもよく、併用すると きは別層にして積層したり、混合したりすればよい。

【0056】ホール注入輸送層をホール注入層とホール 輸送層とに分けて設層する場合は、ホール注入輸送層用 の化合物のなかから好ましい組合せを選択して用いるこ とができる。このとき、ホール注入電極(ITO等)側 からイオン化ポテンシャルの小さい化合物の層の順に積 層することが好ましい。また陽電極表面には薄膜性の良 好な化合物を用いることが好ましい。このような積層順 については、ホール注入輸送層を2層以上設けるときも 同様である。このような積層順とすることによって、駆 動電圧が低下し、電流リークの発生やダークスポットの 発生・成長を防ぐことができる。また、素子化する場 合、蒸着を用いているので1~10m程度の薄い膜も、。 均一かつピンホールフリーとすることができるため、ホ 40 一ル注入層にイオン化ポテンシャルが小さく、可視部に 吸収をもつような化合物を用いても、発光色の色調変化 や再吸収による効率の低下を防ぐことができる。ホール 注入輸送層は、発光層等と同様に上記の化合物を蒸着す ることにより形成することができる。

【0057】また、必要に応じて設けられる電子注入輸 送層には、トリス (8-キノリノラト) アルミニウム (A1a3)等の8-キノリノールなしいその誘導体を 配位子とする有機金属錯体などのキノリン誘導体、オキ サジアゾール誘導体、ペリレン誘導体、ピリジン誘導

ルキノン誘導体、ニトロ置換フルオレン誘導体等を用い ることができる。電子注入輸送層は発光層を兼ねたもの であってもよく、このような場合はトリス(8-キノリ ノラト) アルミニウム等を使用することが好ましい。 電 子注入輸送層の形成は発光層と同様に蒸着等によればよ 61

【0058】電子注入輸送層を電子注入層と電子輸送層 とに分けて積層する場合には、電子注入輸送層用の化合 物の中から好ましい組み合わせを選択して用いることが できる。このとき、電子注入電極側から電子親和力の値 10 の大きい化合物の順に積層することが好ましい。このよ うな積層順については電子注入輸送層を2層以上設ける ときも同様である。

【0059】基板材料としては、ガラスや石英、樹脂等 の透明ないし半透明材料を用いる。基板に色フィルター 膜や蛍光性物質を含む色変換膜、あるいは誘電体反射膜 を用いて発光色をコントロールしてもよい。

【0060】色フィルター膜には、液晶ディスプレイ等 で用いられているカラーフィルターを用いれば良いが、 有機ELの発光する光に合わせてカラーフィルターの特 20 性を調整し、取り出し効率・色純度を最適化すればよ 11

【0061】また、EL素子材料や蛍光変換層が光吸収 するような短波長の外光をカットできるカラーフィルタ ーを用いれば、素子の耐光性・表示のコントラストも向 上する。

【0062】また、誘電体多層膜のような光学薄膜を用 いてカラーフィルターの代わりにしても良い。

【0063】蛍光変換フィルター膜は、EL発光の光を 吸収し、蛍光変換膜中の蛍光体から光を放出させること 30 で、発光色の色変換を行うものであるが、組成として は、バインダー、蛍光材料、光吸収材料の三つから形成 される。

【0064】蛍光材料は、基本的には蛍光量子収率が高 いものを用いれば良く、EL発光波長域に吸収が強いこ とが望ましい。実際には、レーザー色素などが適してお り、ローダミン系化合物・ペリレン系化合物・シアニン 系化合物・フタロシアニン系化合物 (サブフタロ等も含 む)ナフタロイミド系化合物・縮合環炭化水素系化合物 ・縮合複素環系化合物・スチリル系化合物・クマリン系 40 が終了するまで真空を破らなかった。 化合物等を用いればよい。

【0065】バインダーは基本的に蛍光を消光しないよ うな材料を選べば良く、フォトリソグラフィー・印刷等 で微細なパターニングが出来るようなものが好ましい。 また、ITO、IZOの成膜時にダメージを受けないよ うな材料が好ましい。

【0066】光吸収材料は、蛍光材料の光吸収が足りな い場合に用いるが、必要の無い場合は用いなくても良 い。また、光吸収材料は、蛍光性材料の蛍光を消光しな いような材料を選べば良い。

14

【0067】ホール注入輸送層、発光層および電子注入 輸送層の形成には、均質な薄膜が形成できることから真 空蒸着法を用いることが好ましい。真空蒸着法を用いた 場合、アモルファス状態または結晶粒径が0.1 μ■ 以 下の均質な薄膜が得られる。結晶粒径が0.1μω を超 えていると、不均一な発光となり、素子の駆動電圧を高 くしなければならなくなり、電荷の注入効率も著しく低 下する。

【0068】真空蒸着の条件は特に限定されないが、1 0⁻⁴ Pa以下の真空度とし、蒸着速度は0.01~1 mm/ sec 程度とすることが好ましい。また、真空中で連続し て各層を形成することが好ましい。真空中で連続して形 成すれば、各層の界面に不純物が吸着することを防げる ため、高特性が得られる。また、素子の駆動電圧を低く したり、ダークスポットの成長・発生を抑えたりするこ とができる。

【0069】これら各層の形成に真空蒸着法を用いる場 合において、1層に複数の化合物を含有させる場合、化 合物を入れた各ボートを個別に温度制御して共蒸着する ことが好ましい。

【0070】本発明の有機EL素子は、通常、直流駆動 型のEL素子として用いられるが、交流駆動またはパル _ ス駆動とすることもできる。印加電圧は、通常、2~2 OV程度とされる。

[0071]

【実施例】以下、本発明の具体的実施例を示し、本発明 をさらに詳細に説明する。

<実施例1>ガラス基板をDCスパッタ装置内に配置 し、錫ドープ酸化インジウム焼結体(SnO:10wt %)をターゲットとして、ITO電極を100m成膜し た。このときの成膜条件は、投入電力100W、スパッ 夕時の圧力 0.5Pa、スパッタガスはAr+1%O2で あった。

【0072】ITOからなるホール注入電極が成膜され たガラス基板を、中性洗剤、アセトン、エタノールを用 いて超音波洗浄し、煮沸エタノール中から引き上げて乾 燥した。次いで、表面をUV/O3 洗浄した。

【0073】次いで、有機機能層と、電子注入電極と、 保護電極とを連続して形成した。なお、保護電極の形成

【0074】真空蒸着装置の基板ホルダーに固定して、 槽内を1×10-4Pa以下まで減圧した。4,4',4" ートリス (-N-(3-メチルフェニル) -N-フェニ ルアミノ) トリフェニルアミン (以下、m-MTDAT A)を蒸着速度 0.2nm/sec. で40nmの厚さに蒸着 し、ホール注入層とし、次いで減圧状態を保ったまま、 $N, N' - \mathcal{Y}$ \mathcal{Y} \mathcal{Y} 4'ージアミノー1,1'ーピフェニル(以下、TP D)を蒸着速度0.2m/sec.で35nmの厚さに蒸着

50 し、ホール輸送層とした。さらに、減圧を保ったまま、

16

トリス(8-キノリノラト)アルミニウム(以下、A1q3)を蒸着速度0.2m/sec.で50nmの厚さに蒸着して、電子注入輸送・発光層とした。次いで減圧を保ったまま、MgAgを共蒸着(2元蒸着)で重量比Mg:Ag=10:1にて200nmの厚さに成膜し、電子注入電極とした。

【0075】さらに、減圧を保ったまま、このEL素子 基板をスパッタ装置に移し、A1Ti合金(A1 70 at%)のターゲットを用いたDCスパッタ法により、スパッタ圧力0.5PaにてA1とTiとの混合膜からな 10 る保護電極を300m厚に成膜した。この時スパッタガスにはArを用い、投入電力は500W、ターゲットの大きさは4インチ径、基板とターゲットの距離は90m とした。これをサンプルNo.1とする。

【0076】サンプルNo.1において、ターゲットを A1にかえて同条件でスパッタするほかは同様にしてA* *1保護電極を有するサンアルNo.2を作製した。 【0077】さらに、サンプルNo.1において、ターゲットをTiにかえて同条件でスパッタするほかは同様にしてTi保護電極を有するサンプルNo.3を作製した。有機EL素子の各サンプルの保護電極の内部応力は、各サンプルと同じ保護電極を、シリコンウェハー上に、同条件で成膜して測定した。

【0078】また、有機EL素子の各サンプルを乾燥空 気雰囲気中、80℃で、電流密度10mA/cm² にて10 0時間駆動し、加速評価試験を行った。

【0079】100時間後の64ドット×7ラインの各画素の発光を目視にて観察評価し、非発光領域の大きさを発光面積の減少率(%)とした(ドットサイズ100 μm×100μm)。結果を表1に示す。

[0080]

【表1】

サンプル No.	保護電極	内部応力 (dyn/cm²)	発光領域の発光面積の 減少率(%)
1 (本発明)	Al-Ti 混合膜	+0.4×10 ⁸	2
2 (比較)	AI膜	+1.5×10 ⁸	10
3 (比較)	Ti膜	-2×10 ⁸	30

【0081】表1より、保護電極をA1とTiとの混合 膜とした場合に内部応力が適正になり、電極の剥離などによる発光領域の発光面積の減少が抑制されることがわ 30 かる。また、スパッタ圧力も低く製造が容易である。これに対し、A1膜では引張応力が大きくなるため、電極の剥離などによる発光領域の発光面積の減少がみられ、Ti膜では圧縮応力が大きくなるため、電極の剥離などによる発光領域の発光面積の減少がみられる。

【0082】〈実施例2〉実施例1のサンプルNo.1において、電子注入電極側にA1膜(200mm厚)をスパッタにより形成し、この上にTi膜(100mm厚)をスパッタにより形成し、A1膜とTi膜との積層膜を保護電極とするサンプルNo.11を得た。

【0083】このサンプルNo.11について、保護電極の内部応力を実施例1と同様にして測定したところ、0.4×108dyn/cm²であった。また、実施例1と同様にして発光領域の発光面積の減少率を求めたところ2%であった。

【0084】<実施例3>実施例2のサンプルNo.1 1において、保護電極の積層膜の積層順を反対にするほかは同様にしてサンプルNo.12を得、同様に評価したところ、サンプルNo.11と同様の良好な結果が得られた。 ※【0085】<実施例4>実施例1のサンプルNo.1 において、AlとTiとを含有する傾斜膜の保護電極を300m厚にスパッタにより形成したサンプルNo.1 3を得た。保護電極の傾斜膜をイオンエッチングしながらオージェ電子顕微鏡を用いてAl濃度を調べたところ、表面での濃度が80at%、さらに1/2の距離での濃度が70at%、電子注入電極界面で60at%であった。

【0086】このサンプルNo.13について、保護電極の内部応力を実施例1と同様にして測定したところ、0.4×10⁸dyn/cm²であった。また、実施例1と同様にして発光領域の発光面積の減少率を求めたところ、2%であった。

【0087】<実施例5>実施例4のサンプルNo. 1 3において、保護電極の傾斜膜のA1濃度の高低をサン プルNo. 13と反対にするほかは同様にしてサンプル No. 14を得、同様に評価したところ、サンプルN o. 13と同様の良好な結果が得られた。

【0088】<実施例6>実施例1~5の本発明のサンプルにおいて、電子注入電極としてA1Li電極をスパッタ法にて400mの膜厚に成膜するほかは同様にしてサンプルを作製した。いずれも、実施例1~5の構成に※50 応じ同様の良好な結果が得られた。

18

17

[0089]

【発明の効果】以上のように本発明によれば、電極の剥離を抑制し、発光領域の発光面積の低下がない有機EL素子を実現することができる。

【図面の簡単な説明】

【図1】本発明の有機EL素子の一構成例を示す断面図である。

【符号の説明】

1 基板

2 ホール注入電極

3 有機層

4 電子注入電極

5 保護電極

【図1】

