Experimental Methods: Lecture 3

Attrition

Raymond Duch

May 17, 2022

University of Oxford

Road Map to Lecture 3: Attrition

- Non-interference re-visited
- Attrition
- RAND case study
- Combating Attrition
- MIPO
- MIPO—X and IPW
- Bounds

Non-interference

ATE = E
$$[Yi(1)_jD_i = 1]$$
 E $[Yi(0)_jD_i = 0]$

- Thus, average outcomes in the control and treatment groups in the sample are unbiased estimators of E [Yi (1)] and E [Yi (0)]
- But implicit in this description is the assumption that the researcher observes Yi for all subjects assigned
- Attrition occurs when outcome data are missing
- If attrition systematically related to potential outcomes, remaining subjects are no longer random samples of original group of subjects
- Thus, comparison of remaining group averages may no longer be an unbiased estimator of ATE

How Might Attrition Occur

- Subjects refuse to cooperate with researchers
 - Respondents refuse post-treatment questionnaire
- Researchers lose track of experimental subjects
 - Subjects change address or name
- Firms, organizations, or governments block researchers' access to outcomes
 - Common with experiments on sensitive topics, e.g. corruption
- Outcome variable unavailable for some subjects
 - For a job training program treatment that wants to measure wages six months later, how do you measure this outcome for subjects without jobs?
- Researchers deliberately discard observations
 - Subjects not understanding instructions get discarded

Duch and Torres

Duch and Torres

Duch and Torres

Rand Health Insurance Experiment: Setup

- Famous study illustrating the dangers of attrition for causal inference Cost \$80 million (1974 USD), or about \$300 million today
- Examines how copayment schemes in health insurance affect health service consumption and outcomes
- Four groups: 5%, 50% 75%, and 100% cost coverage treatments
- Costs over \$1,000 for last three groups fully insured
- Incentives so you "cannot lose financially by participating"
- As a related aside, Finkelstein et al's Oregon Health Insurance experiment

Rand Health Insurance Experiment: Setup

- Evaluation 3-5 years after treatment
- Those paying larger share made fewer physician visits and had lower rates of hospital admissions
- 100% group consumed 46% more in health services than 5% group
- 100% group no healthier on average than others, based on a wide array of health assessments
- Traditional interpretation of result: Requiring large co-pays does not have an adverse impact on health incomes for the average person
- But what about attrition? (Newhouse 1989)
- Any thoughts on how attrition might happen in a way that is systematically related to potential outcomes?

Rand Health Insurance Experiment: Critique

- 8% in free group refused to enroll
 - Military service, institutionalization, death, incomplete data collection
- 25% refusal rate in 5
 - 6.7% in free plan left voluntarily after enrolling
 - 0.4% in 5% treatment group left after enrolling
- One interpretation: Those who chose to remain in copay plans anticipated lower health costs
 - Those anticipating illness drop out to pick up cheaper private insurance
- Alternative: Those who dropped out have same unmeasured health outcomes and health service consumption than those remaining
- How would we know? How would we deal with it?

Four Strategies to Combat Attrition

- Assume missingness is independent of potential outcomes
 - Unbiased inferences but lose sample size
 - Cannot directly assess this
 - Newhouse points out average pre-treatment health outcomes and health service utilization are similar across experimental groups among subjects who do not drop out of the study
 - If one assumes prior health outcomes are indicative of subsequent unmeasured potential outcomes, one could interpret this evidence to mean missingness is independent of potential outcomes

Four Strategies to Combat Attrition

- Assume missingness independent of potential outcomes within subgroups defined by background attributes
 - Newhouse reports refusal to enroll is correlated with age/education
 - We could recover unbiased ATE by re-weighting the data to "fill in" age/education cells depleted by attrition
- Place bounds by guessing missing values (Manski 1995, 2007)
 - Assume those who disappear are extremely healthy or extremely ill
 - Alternatively, "trim" healthiest observations in free care group until attrition rate as high as cost-sharing groups
- Gather more data from missing subjects (Cochran 1977)
 - RAND eventually gathered health outcomes from 77

Special Forms of Attrition: MIPO

- If $R_i(z) \perp \!\!\! \perp Y_i(z)$, attrition is (relatively) innocuous
- Missing Independent of Potential Outcomes or MIPO
- Can only gather circumstantial evidence about plausibility
 - If result of random procedure, no systematic relationship between r_i and subject background attributes or experimental assignment should exist (regr F-test)
 - But do covariates at one's disposal include the systematic sources of missingness?
- MIPO assumption more convincing if subjects have little discretion over whether their outcomes will be reported
 - Tutoring: Students miss for midyear exam
 - Voter mobilization: Town clerk fails to record data in timely fashion
 - Arguments for/against MIPO in these cases?

Special Forms of Attrition: MIPO

- Alternative assumption: Attrition is unrelated to potential outcomes conditional on pre-treatment covariates X_i
- Not surprisingly, this is referred to as Missing Independent of Potential Outcomes given X, or MIPO | X
- Example: In student test example, we condition on attendance record prior to the treatment intervention as X_i
- Intuition: Assume $N_1=30$ Oxford, $N_2=10$ Cambridge students treated with tutoring vouchers
 - Let's say 15 Oxford students were missing at random
 - How might you recover an unbiased ATE in this example?

Weighting under MIPO | X

- Define π_i (z = 1; x) as the share of non-missing subjects among those who are treated and have covariate profile $X_i = x$
- When MIPO | X holds,

$$E[Y_i(1)] = \frac{1}{N} \sum_{i=1}^{N} \frac{Y_i(1)r_i(1)}{\pi_i(z=1,x)}$$
 (1)

- Subjects with missing outcomes do not appear in formula
- Produces accurate estimates of ATE when non-missing observations are good substitutes for missing outcomes
- Also known as inverse-probability weighting because subjects weighted by $\frac{1}{\pi_i(z=1,x)}$
- Typically, logistic regression is used to estimate $\hat{\pi}(z, x)$ weighted regression is then run

Weighting under MIPO | X

- Primary drawback is the possibility that missingness remains related to potential outcomes
- As before, this is not directly testable or observable
 - Maybe those missing Oxford students weren't randomly missing!
- If attrition biases $A\widehat{T}E$ for a subgroup, it may be given more weight in estimates and actually worsen bias
- Also increases sampling variability because more weight placed on subsamples with large share of missing observations

Simple Example

Obs	$Y_i(0)$	$Y_i(1)$	$R_i(0)$	$R_i(1)$	$Y_i(0) R_i(0)$	$Y_i(1)R_i(1)$	X_i
1	3	4	1	1	3	4	1
2	4	7	1	1	4	7	1
3	3	4	1	1	3	4	1
4	4	7	1	1	4	7	1
5	10	14	0	0	Missing	Missing	0
6	12	18	0	0	Missing	Missing	0
7	10	14	1	1	10	14	0
8	12	18	1	1	12	18	0

Simple Example

- Does MIPO hold? Implications?
- Does MIPO | X hold? Implications?
- What weights?
- Is unweighted expectation measuring something useful?

Placing Bounds on ATE

- Extreme value bounds gauge consequences of attrition
 - Bounds sample ATE by filling in all missing outcomes
- Substitute extreme values to generate upper/lower bounds
 - Upper bound: Maximum value for missing treatment outcomes, minimum value for missing control outcomes
 - Lower bound: Minimum value for missing treatment outcomes, maximum value for missing control outcomes
- Regression analogy is Leamer's Specification Search

Placing Bounds on ATE

- Can often bracket true ATE well, but wide bounds given weak assumptions
- As rate of attrition increases, bounds become less informative. Why?
- Can form bounds for transformations for Y_i
 - Example: $Y_i' = 1$ if $Y_i > 5$ and $Y_i' = 0$ otherwise)
 - Why might we want to do this?

Lee 2009 Lee Bounds

$$\begin{array}{rcl} q_{T} & = & \frac{\sum_{i} 1 \left(T_{i} = 1, S_{i} = 1 \right)}{\sum_{i} 1 \left(T_{i} = 1 \right)} \\ q_{C} & = & \frac{\sum_{i} 1 \left(T_{i} = 0, S_{i} = 1 \right)}{\sum_{i} 1 \left(T_{i} = 0 \right)} \end{array}$$

$$q = \frac{q_T - q_C}{q_T}$$

$$\begin{array}{rcl} y_q^T & = & G_{Y|T=1,S=1}^{-1}(q) \\ y_{1-q}^T & = & G_{Y|T=1,S=1}^{-1}(1-q) \end{array}$$

Lee 2009 Lee Bounds

$$\begin{split} \widehat{\theta}^{\text{upper}} &= \frac{\sum_{i} 1 \left(T_{i} = 1, S_{i} = 1, Y_{i} \geqslant y_{q}^{T} \right) Y_{i}}{\sum_{i} 1 \left(T_{i} = 1, S_{i} = 1, Y_{i} \geqslant y_{q}^{T} \right)} - \frac{\sum_{i} 1 \left(T_{i} = 0, S_{i} = 1 \right) Y_{i}}{\sum_{i} 1 \left(T_{i} = 0, S_{i} = 1 \right)} \\ \widehat{\theta}^{\text{lower}} &= \frac{\sum_{i} 1 \left(T_{i} = 1, S_{i} = 1, Y_{i} \leqslant y_{1-q}^{T} \right) Y_{i}}{\sum_{i} 1 \left(T_{i} = 0, S_{i} = 1 \right)} - \frac{\sum_{i} 1 \left(T_{i} = 0, S_{i} = 1 \right) Y_{i}}{\sum_{i} 1 \left(T_{i} = 0, S_{i} = 1 \right)} \end{split}$$

VSemenova Leebounds

```
install.packages("devtools")
library (devtools)
install_github("vsemenova/leebounds")
library(leebounds)
# compute basic Lee (2009) bounds for ATE in week
   208
leedata=data.frame(treat=JobCorps_data_baseline$
   TREATMNT.y, selection=JobCorps_data_employment$
   week_208,outcome=JobCorps_data_wages$week_208)
GetBounds (leebounds (leedata))
```

Duch and Torres IPW

TABLE A5—INTENTION-TO-TREAT: BELIEFS ABOUT MALFEASANCE - UNWEIGHTED AND IPW

	Qualitative		Resources		Distribution		
	Unweighted	Unstable	Unweighted	Unstable	Unweighted	Unstable	
Intercept	2.446***	1.344***	2.004***	2.168***	1.126***	1.152***	
-	(0.085)	(0.024)	(0.086)	(0.010)	(0.038)	(0.015)	
Prior	0.478***	0.827***	0.463***	0.828***	0.426***	0.846***	
	(0.014)	(0.012)	(0.016)	(0.009)	(0.016)	(0.015)	
Treat	0.780***	1.859***	0.779***	0.373***	0.362***	0.307***	
	(0.071)	(0.060)	(0.078)	(0.073)	(0.027)	(0.030)	
Covariates	Yes	Yes	Yes	Yes	Yes	Yes	
Num.Obs.	3592	3592	3592	3592	3592	3592	
R2	0.258	0.997	0.213	0.998	0.193	0.995	
R2 Adj.	0.257	0.997	0.212	0.998	0.192	0.995	

Note: This table reports the unweighted and weighted....

Source: All waves data

Duch and Torres Lee Bounds

Table A6—Intention-to-treat: Beliefs about malfeasance - Bounds

	Baseline			Upper bound			Lower bound		
	Baseline	Negative	Malfeasance levels	Baseline	Negative	Malfeasance levels	Baseline	Negative	Malfeasance level
Intercept	2.734***	2.471***	1.820***	1.159**	0.875*	-0.215	4.872***	4.695***	5.019***
	(0.401)	(0.446)	(0.596)	(0.474)	(0.489)	(0.695)	(0.434)	(0.490)	(0.708)
Prior	0.467***	0.466***	0.465***	0.416***	0.416***	0.415***	0.388***	0.388***	0.388***
	(0.020)	(0.020)	(0.020)	(0.020)	(0.020)	(0.019)	(0.021)	(0.021)	(0.020)
Treat	0.749***	0.575**	0.292	1.981***	1.830***	1.964***	-0.729***	-0.991***	-2.212***
	(0.079)	(0.208)	(0.458)	(0.091)	(0.258)	(0.619)	(0.095)	(0.208)	(0.533)
Negative		0.311			0.339*			0.213	
		(0.212)			(0.179)			(0.232)	
Log malfeasance			0.062**			0.094***			-0.011
			(0.029)			(0.034)			(0.035)
Treat x Negative		0.202			0.174			0.304	
		(0.227)			(0.276)			(0.236)	
Treat x Log malfeasance			0.032			0.001			0.104***
Covariates	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Num.Obs.	3439	3439	3439	3915	3915	3915	3915	3915	3915
R2	0.263	0.267	0.268	0.268	0.271	0.273	0.151	0.154	0.154
R2 Adj.	0.257	0.261	0.262	0.263	0.266	0.268	0.145	0.147	0.148

Note: Update notes

Source: All waves data