4.4 运算放大器的主要参数及简化低频等效电路

4.4.1 交流参数

1. 开环差模电压增益A_{ud}

2. 开环带宽 (-3dB带宽) f_H

3. 单位增益带宽f_{BWG}

4. 单位增益上升速率 $S_{\mathbb{R}}$

幅频特性

$$S_{R} = \left| \frac{\mathrm{d}u_{o}}{\mathrm{d}t} \right|_{\mathrm{max}} (V/\mu S)$$

 $(S_R=0.5 \text{ V/}\mu\text{s})$

5. 建立时间 $T_{\rm set}$

- 6. 最大差模输入电压 U_{IDM}
 - $(U_{\text{IDM}} = \pm 30 \text{V})$
- 7. 最大共模输入电压 U_{ICM} ($U_{ICM} = \pm 13V$)

- 8. 最大输出电流 I_{OM}
- 9. 输出电压峰-峰值 $U_{\rm opp}$

4.4.2 直流参数

- $U_{\mathrm{IO}} = \left| U_{\mathrm{BE1}} U_{\mathrm{BE2}} \right|$ $1. 输入失调电压<math>U_{IO}$
- 2. 输入偏置电流IIB

$$I_{\mathrm{IB}} = \frac{I_{\mathrm{B1}} + I_{\mathrm{B2}}}{2}$$

3. 输入失调电流I₁₀

$$I_{\mathrm{IO}} = \left| I_{\mathrm{B1}} - I_{\mathrm{B2}} \right|$$

 $I_{\rm IO} = |I_{\rm B1} - I_{\rm B2}|$ ($I_{\rm IO}$ 大约100~300 nA)

 $(I_{\rm IB}=800~{\rm nA})$

4. 失调电压和失调电流的温漂

$$\Delta U_{\rm IO}/\Delta T$$
, $\Delta I_{\rm IO}/\Delta T$

4.4.3 简化低频等效电路

上页 下页 后退

理想运放:

$$A_{
m ud}
ightarrow \infty$$
 $R_{
m i}
ightarrow \infty$
 $R_{
m o}
ightarrow 0$
 $K_{
m CMR}
ightarrow \infty$
 $f_{
m BW}
ightarrow \infty$

4.5 其它集成运算放大器

- 4.5.1 几种特殊用途的运算放大器
 - 1. 高精度运算放大器
 - 2. 高输入阻抗运算放大器

了解!!

- 3. 高速运算放大器
- 4. 低功耗运算放大器
- 5. 高压运算放大器

本章小结

集成运算放大器

集成运放的 组成及特点

双极型集成运放

运放参数及简 化低频模型

典型差分 放大电路 带恒流源差 分放大电路

复合管电路及互 补推挽放大电路

上页 下页 后退