Editor-Babita Malik

INORGANIC INORGANISTRY & CHENVISTRY & CHENVISTROSCOPY SPECTROSCOPY (A SYSTEMATIC APPROACH)

International E-Publication

www.isca.me, www.isca.co.in

INORGANIC CHEMISTRY AND SPECTROSCOPY (A SYSTEMATIC APPROACH)

FOR CSIR/JRF/NET AND SET (CHEMICAL SCIENCES)
(PROBLEMS WITH ITS SOLUTIONS)

Editor

Babita Malik
M.Sc (Chemistry)
Principal, KLG Public School
Saharanpur (UP)

2016
International E - Publication

www.isca.me, www.isca.co.in

International E - Publication

427, Palhar Nagar, RAPTC, VIP-Road, Indore-452005 (MP) INDIA Phone: +91-731-2616100, Mobile: +91-80570-83382

E-mail: contact@isca.co.in , Website: www.isca.me , www.isca.co.in

© Copyright Reserved 2016

All rights reserved. No part of this publication may be reproduced, stored, in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, reordering or otherwise, without the prior permission of the publisher.

ISBN:978-93-84659-36-3

PREFACE

We are extremely beholden to my learned colleagues and inquisitive students for the tremendous support; they have accord to the previous book FUNDAMENTAL CONCEPT OF TRANSITION AND INNER TRANSITION ELEMENTS. This has prompted us to edit the next volume in accordance with the syllabi framed by UGC.

This book will be of interest to students and researchers involved in the study NET/JRF and GATE examinations. We are proud to say that this is one of the most in-depth, multi-dimensional review works of scientific researches. We have spent a lot of time reading firstly the introductory-cum-tutorial part and analyzing how the authors have approached the subject of Inorganic Chemistry and Spectroscopy.

Advanced undergraduate students enrolled in smart grid programs and students preparing for different competitive entrance examination will also find this book useful.

Several books are available which provide guidance to students appearing for NET/JRF and GATE examinations but there was a dearth of books which provide ample practice to the students by incorporating numerous exercises. The success of this e-book has been gratifying, it tells us that teachers have found it effective and that students have been found it useful and informative. Emphasis has been laid to incorporate a variety of practice problems for the benefit of the students. The unique feature of the book is the approach towards inorganic chemistry. It has been presented in the simplest manner covering all areas.

Our major objective is to develop confidence among the students who are appearing in NET/JRF and GATE examinations after post graduation by providing them solved objective type questions which covers the main aspect of the topic.

Keeping in view the need of the hour authors presented a unique book which aims at further enhancement of knowledge of the complex topics. The vast range of questions from a unique perspective gives a real comprehension of the various topics related to the concerned examinations.

We are confident that our presentation shall be well received by both the students as well as the worthy teachers throughout the country. We shall be eagerly awaiting their valuable suggestions and healthy criticism. Any suggestions for improvement of this book are welcome and will be gratefully acknowledged.

Authors

ACKNOWLEDGMENT

Writing an acknowledgement becomes quite an uphill task, when so many persons contribute generously and whole heartedly for a project like this. One often finds it terrifically difficult to grip words to thank them, without whom this work would have been a non-entity. We are deeply indebted to a number of individuals who have made numerous contributions to the completion of this task. Some are identified below and others with apologies, perhaps, unwillingly overlooked.

We wish to express deep sense of gratitude to Dr. K K Sharma, Ex-Principal, Maharaj Singh College Saharanpur for his constant inspiration, intuitive guidance and timely help throughout the phase of my work.

We consider it most appropriate at this juncture to express our sincere thanks to Dr. Vijai Malik, Assistant Professor, Department of Botany, Maharaj Singh College Saharanpur for his kind advices, discussions and encouragement for writing this book.

The authors are also thankful to our students especially Mr. Navdeep Arora, Ms. Rakhi Verma, Ms. Gurmeet Kaur Bhatia and Mr. Arjun Tomar who provide all type of help for the completion of this book.

We shall ever remain grateful to all the staff members of Chemistry Department and all research scholars whose readily available help has been of immense value in completion of this work.

Last, but not the least, we bow our head to our parents for their affectionate love and blessings towards us throughout our education, which has placed us at present level of academics career.

Authors

TABLE OF CONTENTS

		Page No.
Preface		iii
Acknowledgement		iv
Table of Contents		v-vi
Chapter 1	Chemistry of Transition Elements	1-13
	(Author : Dr. Dinkar Malik, Department of C	Chemistry,
	M. S. College, Saharanpur)	
	Critical Points	1-2
	Multiple Choice Questions	3-12
	Answers	13
Chapter 2	Chemistry of f-Block Elements	14-26
	(Author: Dr. Dinkar Malik, Department of C	Chemistry,
	M. S. College, Saharanpur)	
	Critical Points	14-15
	Multiple Choice Questions	16-25
	Answers	26
Chapter 3	Spectroscopy	27-39
	(Author: Dr. Punam Yadav, Department of C	Chemistry,
	M. S. College, Saharanpur)	
	Critical Points	27-28
	Multiple Choice Questions	29-38
	Answers	39
Chapter 4	NMR Spectroscopy	40-51
	(Author: Dr. Punam Yadav, Department of C	Chemistry,
	M. S. College, Saharanpur)	
	Critical Points	40-41
	Multiple Choice Questions	42-50
	Answers	51
Chapter 5	Co-ordination Chemistryand Distortion in Co	
		52-62
	(Author: Dr. Dinkar Malik, Department of C	Chemistry,
	M. S. College, Saharanpur)	
	Critical Points	52-53
	Multiple Choice Questions	54-61
	Answers	62

International Science Community Association www.isca.in , www.isca.co.in, www.isca.net.co , www.isca.net.in

Chapter 6	Metal Carbonyls	63-75			
-	(Author : Dr. Dinkar Malik, Department of Chemistry,				
	M. S. College, Saharanpur)				
	Critical Points	63-64			
	Multiple Choice Questions	65-74			
	Answers	75			
Chapter 7	Reaction Mechanism of Transition Metal Complexes	76-84			
	(Author : Dr. Dinkar Malik, Department of Chemistry	y,			
	M. S. College, Saharanpur)				
	Critical Points	76-77			
	Multiple Choice Questions	78-83			
	Answers	84			
Chapter 8	p-Block Elements	85-94			
	(Author : Dr. Punam Yadav, Department of Chemistry,				
	M. S. College, Saharanpur)				
	Critical Points	85-86			
	Multiple Choice Questions	87-93			
	Answers	94			
Chapter 9	Chemical Bonding	95-102			
	(Author : Dr. Punam Yadav, Department of Chemistry,				
	M. S. College, Saharanpur)				
	Critical Points	95			
	Multiple Choice Questions	96-101			
	Answers	102			
Chapter 10	Periodicity	103-111			
	(Author : Dr. Punam Yadav, Department of Chemistry,				
	M. S. College, Saharanpur)				
	Critical Points	103			
	Multiple Choice Questions	104-110			
	Answers	111			
About the Author		112			
About the Editor					

Chapter 1

Chemistry of Transition Elements

(Contributed by: Dr. Dinkar Malik, Department of Chemistry, M. S. College, Saharanpur)

Critical Points:

- \triangleright The first transition series is 3d-series having ten elements from $_{21}$ Sc to $_{30}$ Zn.
- The second transition series is 4d-series having ten elements from 39Y to 48Cd.
- ➤ The third transition series is 5d-series having ten elements from 57La, 72Hf to 80Hg.
- ➤ Cu⁺ is diamagnetic while Co⁺² is paramagnetic.
- ➤ In the highest oxidation states, the transition metal show acidic character and form cationic complexes.
- > Zn, Cd and Hg have relatively lower melting points than the other d-block element as they have completely filled (n-1) d-orbitals, their atoms are not expected to form covalent bonding among themselves.
- The existence of Fe⁺² and NO⁺ in nitropruside ion, [Fe(CN)₅NO]⁻² can be established by measuring the magnetic moment of the solid compound which should correspond to Fe⁺² (3d⁶) i.e. 4 unpaired electrons.
- ➤ 4d, 5d same group cations will have nearly same ionic size due to Lanthanide contraction.
- ➤ Misch metal is an alloy of rare earth metals with composition (Rare earth metals-94.95%, Iron-5% and trace amount of S, C, Ca, Al etc.
- \triangleright Highest oxidation state (+8) is shown by Ru and Os in their oxides.
- > Low oxidation state is generally shown by carbonyl compounds.
- First ionization energy of 5d elements is higher than those of 3d and 4d elements due to greater effective nuclear charge that is experienced over weak shielding of thenucleus by 4f electrons.
- ➤ Most of the transition metals alloys and compounds are used as catalysts in various processes.
- ➤ Catalytic property is due to the presence of vacant d-orbital, tendency to show variable oxidation states and their large surface area.
- ➤ Elements from Cr to Cu have almost same atomic radii because successive addition of d-electrons screened the outer electron (4s) from the inward pull of the nucleus.
- Transition metals can easily form alloys due to their almost equal atomic sizes, they can mutually substitute one another in the crystal lattice.
- Alloys having mercury one of the constituent elements are called amalgams.
- ➤ Transition metals show variable oxidation states due to participation of ns and (n-1) d electrons in bonding.

- > Transition metals can trap some of the small size atoms such as C, H, B, N etc in the vacant spaces between the crystal lattice forming inter-orbital or interstitial compounds.
- ➤ Nickel is purified by Mond's Process.

$$Ni + 4CO$$
 __100°C \rightarrow $Ni(CO)_4 +$ Impurities
 $Ni(CO)_4$ __230°CN $i +$ 4CO
(Pure Nickel)
 $2Fe + 3H_2O$ $Fe_2O_3 + 3H_2$

- \triangleright The values of $E^0_{R.P.}$ of most of the transition elements except Cu and Hg is lower than that of hydrogen that is, a negative value, so they can easily displace hydrogen, from dilute acids.
- \triangleright The values of E⁰ is mainly governed by these factors:
 - a) Heat of hydration
 - b) Heat of sublimation
 - c) Heat of ionization
- Acidic character of oxides increases with increase in oxidation number.
- ightharpoonup $[Ti(H_2O)_6]^{+3}$ is colored while $[Sc(H_2O)_6]^{+3}$ is colorless.
- > 22 Carat Gold is an alloy of Cu and Au.
- Mercury is the only metal amongst transition elements which is liquid at 0°C due to weak metallic bond.

Multiple Choice Questions

Q.1.	The	sphere is enclosed in bracl	kets in form	ulas for complex species, and it				
	includes the central metal ion plus the coordinated groups.							
	(a)	Ligand	(b)	Donor				
	(c)	Oxidation	(d)	Co-ordination				
Q.2.	Which of following is least covalent or least acidic?							
	(a)	VCl_2	(b)	VCl ₃				
	(c)	VCl_4	(d)	VOCl ₃				
Q.3.	Ther	e are 3 unpaired electrons in [$Co(H_2O)_6$]	and calculated value of magnetic				
	mom	nentis 3.87 B.M. which is quite d	ifferent fron	n the experimental value of 4.40 B.M.				
	This	isbecause of:						
	(a)	d-d* transition						
	(b)	Change in orbital spin of the ele	ectron					
	(c)	Increase in no. of unpaired elec	trons.					
	(d)	Some contribution of the orbita	l motion of	the electron to the magnetic moment.				
Q.4.	In co	In coordination chemistry, the donor atom of a ligand is:						
	(a)	A Lewis acid.						
	(b)	The counter ion						
	(c)	The central metal atom.						
	(d)	The atom in the ligand that share	res an electro	on pair with the metal.				
Q.5.	For	For $[Ti(H_2O)_6]^{+3}$ absorption maximum due to d-d transition is found at 20000 cm ⁻¹ .						
	Ther	efore, the crystal field stabilization	n energy is:					
	(a)	-20000 cm ⁻¹	(b)	8000 cm ⁻¹				
	(c)	4/9×20000cm ⁻¹	(d)	-8000 cm ⁻¹				
Q.6.	Amo	Amongst following the lowest degree of paramagnetism per mole of the compound at						
	298k	K will be shown by:						
	(a)	$MnSO_4$. $4H_2O$	(b)	CuSO ₄ .5H ₂ O				
	(c)	FeSO ₄ .6H ₂ O	(d)	FeSO ₄ .5H ₂ O				
Q.7.	The oxidizing power of $[CrO_4]^2$, $[MnO_4]^2$ and $[FeO_4]^2$ follows the order:							
	(a)	$[CrO_4]^{2} < [MnO_4]^{2} < [FeO_4]^{2}$						
	(b)	$[FeO_4]^{2} < [MnO_4]^{2} < [CrO_4]^{2}$						
	(c)	$[MnO_4]^{2} < [FeO_4]^{2} < [CrO_4]^{2}$						
	(d)	$[CrO_4]^{2} < [FeO_4]^{2} < [MnO_4]^{2}$						
Q.8.	Cons	sider the coordination compound, l	Na ₂ [Pt(CN) ₄]. The Lewis acid is:				
	(a)	$[Pt(CN)_4]^2$	(b)					
	(c)	CN ⁻	(d)	Pt^{2+}				
Q.9.	In co	entext with the transition elements	which of the	e following statements is incorrect:				
	(a)	In addition to the normal oxidation	tion state, th	e zero oxidation state is also shown by				

these elements in complexes.

In the highest oxidation states, the transition metal show basic character and form (b) cationic complexes. In the highest oxidation states, the first transition elements (Sc to Mn) all the 4s (c) and 3d electrons are used for bonding. Once the d⁵ configuration is exceeded, the tendency to involve all the 3d electrons (d) in bonding decreases. Q.10. Which of the following ions form most stable complex compound? Cu^{+2} Ni^{+2} (a) (b) $\mathbf{M}\mathbf{n}^{+2}$ Fe^+ (c) (d) Q.11. The acidic, basic or amphoteric nature of Mn₂O₇, V₂O₅ and CrO are respectively Acidic, acidic and basic (b) Basic, amphoteric and acidic (a) Acidic, amphoteric and basic Acidic, basic and amphoteric (c) (d) Q.12. Using crystal field theory, identify from the following complex ions that shows same μ_{eff} (spin only) values: $[IrCl_6]^{3}$, $[Fe(H_2O)_6]^{2+}$ $[CoF_6]^{3}$, (A) (B) (C) A and B B and C (a) (b) (c) A and C (d) A, B and C Q.13. Consider the coordination compound, K₂[Cu(CN)₄]. A coordinate covalent bond exists between: Cu²⁺ and CN K⁺ and CN (a) (b) K^+ and $[Cu(CN)_4]^2$ C and N in CN (c) (d) Q.14. The pair of compound having metals in their of highest oxidation is [NiCl₄]⁻², CoCl₄ MnO₂, FeCl₃ (b) (a) $[Fe(CN)_6]^{-3}$, $Co(CN)_3$ MnO_4 CrO_2Cl_2 (d) (c) Q.15. The radii of the elements from Cr to Cu are much closed to one another. This is due to: Lanthanide contraction (a) (b) Atomic radii do not remain constant but decrease in normal gradation The fact that successive addition of d-electrons screened the outer electron (4s) (c) from the inward pull of the nucleus. (d) Increase in radii due to increase in 'n' is compensated by decrease in radii due to increase in 'Z'. Q.16. Which of the following pairs of metals is purified by Van Arkel Method? Ni and Fe Ga and In (a) (b) Zr and Ti (c) (d) Ag and Au Q.17. The correct statement for Mn—O bond lengths in $[Mn(H_2O)_6]^{2+}$ is All bonds are equal (a) Four bonds are longer than two bonds (b) Two bonds are longer than four bonds (c) They are shorter than the Mn—O bond in $[MnO_4]^{2-}$ (d)

Q.18.	Select the correct IUPAC name for: [FeF ₄ (H ₂ O) ₂]							
	(a)	diaquatetrafluoroiron(III) ion	(b)	diaquatetrafluoroferrate(III) ion				
	(c)	diaquatetrafluoroiron(I) ion	(d)	diaquatetrafluoroferrate(I) ion				
Q.19.	Mercu	ury is the only metal amongst transiti	ion elem	ents which is liquid at 0°C. This is due				
	to its:							
	(a)	Weak metallic bond.	(b)	High vapor pressure				
	(c)	High ionization energy.	(d)	Both (a) and (c).				
Q.20.	In Na	₂ [Fe(CN) ₅ NO], sodium nitroprusside	e:					
	(a)	Oxidation sate of Fe is +2	(b)	This has NO ⁺ as ligand				
	(c)	Both (a) and (b) are correct	(d)	None of the above is correct				
Q.21.	A tran	nsition metal complex shows a magn	etic mon	nent of 5.20 BM at room temperature.				
	The n	number of unpaired electron on the m	etal is:					
	(a)	3	(b)	4				
	(c)	5	(d)	2				
Q.22.	Amor	ng the following, species expected to	show flu	ixinal behavior are:				
	(A)	[NiCl ₄] ²⁻ (tetrahedral)	(B)	IF ₇ (pentagonal bipyramidal)				
	(C)	$[CoF_6]^{3-}$ (octahedral)	(D)	[Fe(CO) ₅] (trigonal bipyramidal)				
	(a)	B and C	(b)	B and D				
	(c)	C and D	(d)	A and D				
Q.23.	(Valance Bond Theory) Magnetic measurements indicate that $[Co(H_2O)_6]^{2+}$ has 3							
	unpai	red electrons. Therefore, the	hybridiza	ation of the metal's orbital's in				
	[Co(F	$(H_2O)_6]^{2+}$ is:						
	(a)	sp^3	(b)	sp^2d				
	(c)	dsp ²	(d)	$\mathrm{sp}^3\mathrm{d}^2$				
Q.24.	Ti ⁺² is purple in color while Ti ⁺⁴ is colorless because:							
	(a) Ti^{+2} has $3d^2$ configuration							
	(b)	Ti ⁺⁴ has 3d ² configuration						
	(c) Ti ⁺⁴ is a very small cation when compared to Ti ⁺² hence, does not absorb any							
	radiation.							
	(d)	Ti ⁺² has one unpaired electron.						
Q.25.	Select	t the incorrect statement(s):						
	(a)	Cu ⁺ is diamagnetic while Co ⁺² is pa	aramagne	etic.				
	(b)							
	(c)			r than those of 3d and 4d elements.				
	(d)	Transition elements cannot form co	_					
Q.26.	` '		_	ed to react completely with one mole of				
		is oxalate $Fe(C_2O_4)$ in acidic solutio						
	(a)	3/5	(b)	2/5				
	(c)	4/5	(d)	1				

Q.27.	[MnO ₄] is deep purple in color whereas [ReO ₄] is colorless. This is due to greater energy required for							
	(a)	d-d transition in the Re comp	ound compared	d to the Mn compound.				
	` '	(b) d-d transition in the Mn compound compared to the Re compound.						
	(c) Charge transfer from O to Re compared to O to Mn.							
	(d)	Charge transfer from O to M	-					
Q.28.	1							
Q.20.	(a)	$[Pt(NH_3)_2Cl_2]$ (square planer)		$[Zn(NH_3)_2Cl_2]$ (tetrahedral)				
	(c)			$[Co(NH_3)_5Cl]^{2+}$ (octahedral)				
Q.29.	` /			nanganese is 25. Although $[MnO_4]^-$				
Q.29.		dark violet color, that K ⁺ is colo						
				tue to the fact that				
	(a)	Mn is a transition element, w		1				
	(b)	In Mn high positive oxidation						
	(c		Mn in [MnO ₂	$[4]^{-}$ is 24 while for K^{+} , the effective				
	(1)	atomic no. is 18.		***				
0.20	(d)	[MnO ₄] is negatively charge	_					
Q.30.			eous solution	of CuSO ₄ , which of the following is				
		itated?						
		$Cu(CO_3)_2$	(b)	, , , , , , , , , , , , , , , , , , , ,				
		$Cu(HCO_3)_2$	(d)	$Cu(OH)_2$				
Q.31.	_	ur trioxide can be obtained by						
	(a)	$CaSO_4 + C \longrightarrow$	(b)	$Fe_2 (SO_4)_3 \xrightarrow{\Delta}$				
	(c)		(d)	$H_2SO_4 + PCl_5 \stackrel{\Delta}{\longrightarrow}$				
Q.32.		g the following complexes:						
	(A)	$\left[\operatorname{Co}(\operatorname{ox})_{3}\right]^{3},\qquad (B)$	trans-[CoCl ₂ ($[Cr(EDTA)]^{+}$, (C)				
	the ch	iral one(s) is/are:						
	(a)	A and B	(b)	B and C				
	(c)	C only	(d)	A and C				
Q.33.	(Valence Bond Theory) The coordination complex, $[Cu(H_2O)_6]^{2+}$ has one unpaired							
	electron. Which of the following statements are true ?							
	(1)							
	(2)	The complex is an outer orbit	tal complex.					
	(3)	The complex is d ² sp ³ hybridi	zed.					
	(4)	The complex is diamagnetic.						
	(5)	The coordination number is 6	5 .					
	(a)	1, 4	(b)	1, 2, 5				
	(c)	2, 3, 5	(d)	2, 3				
Q.34.		of following complex is most	` ′					
	(a)	V(CO) ₆	(b)	Cr(CO) ₆				
	(c)	Fe(CO) ₅	(d)	Ni(CO) ₄				
	(-)	- (/3	(-)	· \ - =/=				

Q.35.	The number of unpaired electrons present in Cr ⁺² , Fe ⁺² , Co ⁺² and Ni ⁺² are respectively:									
	(a)	2, 3, 4 and 4		(b)	4, 4, 3 and 2					
	(c)	4, 4, 2 and 3		(d)	1, 4, 2 and 3					
Q.36.	In Nitroprusside ion, the iron and NO exit as Fe ^{II} and NO ⁺ rather than Fe ^{III} and NO.									
	These	forms can be differentiated by:	:							
	(a)	Estimating the concentration	of iron.							
	(b)	Measuring the concentration of CN ⁻ .								
	(c)	e) Measuring the solid state magnetic moment.								
	(d)	Thermally decomposing the c	compou	nd.						
Q.37.	Which	statement most correctly des	cribes o	crystal	field theory for a d block complex of					
	unspec	cified geometry?								
	(a) The theory considers covalent interactions between a metal centre and the									
		surrounding ligands.								
	(b)	The theory considers electrostatic interactions between a metal centre and the								
		surrounding ligands which are taken to bo point charges.								
	(c)	The theory rationalizes the no	on-dege	eneracy	of the metal d orbitals for considering					
		the electrostatic repulsions between point charge ligands and electrons in the								
		metal d orbital's.								
	(d)	The theory rationalizes why the	he meta	al d orbi	itals are split into two levels.					
Q.38.	(Cryst	(Crystal Field Theory) Which one of the following statements is FALSE ?								
	(a)	In an octahedral crystal field,	the de	lectrons	s on a metal ion occupy the e _g set of					
		orbitals before they occupy the t_{2g} set of orbitals.								
	(b)	Diamagnetic metal ions canno	ot have	an odd	number of electrons.					
	(c)	Low spin complexes can be p	aramag	netic.						
	(d)	In high spin octahedral com	plexes,	Δ_{oct} is	less than the electron pairing energy,					
		and is relatively very small.								
Q.39.	The nu		dral and		edral sites, respectively in Mn ₃ O ₄ is:					
	(a)	One Mn ⁺² and two Mn ⁺³		(b)	One Mn ⁺³ and two Mn ⁺²					
	(c)	Two Mn ⁺³ and one Mn ⁺²		(d)	Two Mn ⁺² and one Mn ⁺³					
Q.40.	Which	of the following transition me	tal is p	resent i	n misch metal?					
	(a)	La		(b)	Sc					
	(c)	Ni		(d)	Cr					
Q.41.	Formu	ala of thiosulphate, mangnate ar	nd arse		÷					
	(a)	$S_4O_6^{-2}$, MnO ₄ -2, AsO ₃ -3			$S_2O_3^{-2}$, MnO ₄ ⁻² , AsO ₄ ⁻³					
	(c)	$S_2O_3^{-2}$, MnO_4^{-2} , AsO_3^{-3}		(d)	$S_4O_6^{-2}$, MnO_4^{-2} , AsO_4^{-3}					
Q.42.	Which series		ices the	ligand	s in their order in the spectrochemical					
	(a)	$Br < Cl < NH_3 < H_2O$	(b)	$\Gamma < Br$	< H ₂ O< OH					
	(c)	$F < Cl < H_2O < NH_3$	(d)	$I^- < Cl^-$	c H ₂ O < en					

Q.43.	` •	(Crystal Field Theory) When the valence d orbitals of the central metal ion are split in							
	energy	y in an octahedral ligand field, which	orbitals	are raised least in energy?					
	(a)	d_{xy} and $d_x 2_{-y} 2$	(b)	d_{xy} , d_{xz} and d_{yz}					
	(c)	d_{xz} and d_{yz}	(d)	d_{xz} , d_{yz} and d_z2					
Q.44.	Which	h Oxides will not give metal on heatin	g?						
	(a)	ZnO	(b	Ag_2O					
	(c)	HgO	(d)	All of these					
Q.45.	In a re	eaction the Ferrous (Fe ⁺²) ion is oxidiz	ed to F	erric (Fe ⁺³) ion. The equivalent weight					
	of the ion in the above reaction is equal to								
	(a)	Half of the atomic weight	(b)	1/5 of the atomic weight					
	(c)	The atomic weight	(d)	Twice the atomic weight					
Q.46.	Which	h of the following is not an element?							
	(a)	Graphite	(b)	Diamond					
	(c)	22-Carat Gold	(d)	Rhombic sulphur					
Q.47.	(Cryst	tal Field Theory) Consider the comple	x ion []	$Mn(H_2O)_6]^{2+}$ with 5 unpaired electrons.					
	Which	Which response includes all the following statements that are true , and no false							
	statements?								
	I. It is diamagnetic.								
	II. It is a low spin complex.								
	III.								
	IV.	IV. The ligands are weak field ligands.							
	V.	It is octahedral.							
	(a)	I, II	(b)	III, IV, V					
	(c)	I, IV	(d)	II, V					
Q.48.	Which	h of the following correctly place	s the	metal centers in their order in the					
	spectrochemical series?								
	(a)	Mn(II) < Fe(III) < Rh(III)	(b)	Co(III) < Co(II) < Rh(III)					
	(c)	Pt(IV) < Pd(II) < Ni(II)	(d)	Pd(II) < Ni(II) < Pt(IV)					
Q.49.	Interstitial compounds are formed by								
	(a)	Fe, Ni	(b)	Fe, Co					
	(c)	Co, Ni	(d)	All of these					
Q.50.	One o	of the following metal forms a volatile	carbon	yl compound and this property is taken					
		tage for its extraction. The metal is							
	(a)	Fe	(b)	Ni					
	(c)	Co	(d)	W					
Q.51.	In foll	lowing reaction							
	yMnC	$O_4^- + xH^+ + C_2O_4^{-2}$	→	$yMn^{++} + 2CO_2 + x/2 H_2O$					
		y are:	•						
	(a)	2 and 16	(b)	16 and 2					
	(c)	8 and 16	(d)	5 and 2					

Q.52. (Crystal Field Theory) Consider the violet-colored compound, [Cr(H₂O)₆]Cl₃ and the yellow compound, [Cr(NH₃)₆]Cl₃. Which of the following statements is false?

- (a) Both chromium metal ions are paramagnetic with 3 unpaired electrons.
- (b) Δ_{oct} for $[\text{Cr}(\text{NH}_3)_6]^{3+}$ is calculated directly from the energy of yellow light.
- (c) Δ_{oct} for $[Cr(H_2O)_6]^{3+}$ is less than Δ_{oct} for $[Cr(NH_3)_6]^{3+}$.
- (d) A solution of $[Cr(H_2O)_6]Cl_3$ transmits light with an approximate wavelength range of 4000 4200 angstroms.
- Q.53. AgCl and NaCl are colorless. NaBr and NaI are also colorless but AgBr and AgI are colored. This is due to:
 - (a) Ag⁺ polarizes Br⁻ and I⁻
 - (b) Ag⁺ has unpaired d- orbital.
 - (c) Ag^+ depolarizes Br^- and Γ
 - (d) None of the above.
- Q.54. (Crystal Field Theory) Strong field ligands such as CN:
 - (a) Usually produce high spin complexes and small crystal field splittings.
 - (b) Usually produce low spin complexes and small crystal field splittings.
 - (c) Usually produce low spin complexes and high crystal field splittings.
 - (d) Usually produce high spin complexes and high crystal field splittings.
- Q.55. The atomic number of Vanadium (V), Chromium (Cr), Manganese (Mn) and Iron (Fe) are respectively 23, 24, 25 and 26. Which one of these may be expected to have the highest second ionisation energy?
 - (a) V (b) Cr
- (c) Mn (d) Fe Q.56. Which metal complex ion is expected to have a Jahn- Teller distortion?
- (a) $[Cr(H_2O)_6]^{3+}$ (b) $[Cr(NH_3)_6]^{2+}$

	(c)	$\left[\operatorname{Cr}(\operatorname{CN})_{6}\right]^{3-}$	(d)	$\left[\operatorname{Cr}(\operatorname{bpy})_3\right]^{3+}$				
Q.57.	Different (variable) oxidation state is shown by transition element. It is due to the fact:							
	(a)	(a) ns electrons may be excited to (n-1) d orbitals.						
	(b)	(b) (n-1) d electrons may be excited to ns orbitals.						
	(c)	(n-1) d electron may get involved	along wi	th ns electron in bonding.				
	(d)	None of the above fact is correct.						
Q.58.	Which of the following complex ion is tetrahedral?							
	(a)	$[PdCl_4]^{2-}$	(b)	$[PtCl_4]^{2-}$				
	(c)	$[\mathrm{NiCl_4}]^{2}$	(d)	$[AuCl_4]^-$				
Q.59.	Whic	h of the following weighs less when	n weighed	l in magnetic field:				
	(a)	VCl_3	(b)	ScCl ₃				
	(c)	TiCl ₃	(d)	FeCl ₃				
Q.60.	Matcl	h up the correct formula and magne	tic proper	ty. Which pair is correct?				
	(a)	$[Zn(H_2O)_6]^{2+}$ (paramagnetic)	(b)	$[Co(NH_3)_6]^{3+}$ (diamagnetic)				
				$[V(H_2O)_6]^{2+}$ (diamagnetic)				
Q.61.								
		a) $Yb^{+3} < Pm^{+3} < Ce^{+3} < La^{+3}$						
		$Ce^{+3} < Yb^{+3} < Pm^{+3} < La^{+3}$						
	(c)	$Yb^{+3} < Pm^{+3} < La^{+3} < Ce^{+3}$						
	(d)	$Pm^{+3} < La^{+3} < Ce^{+3} < Yb^{+3}$						
Q.62.	Whic	Which statement is incorrect about typical metal carbonyl complexes M(CO) _n ?						
	(a)							
	(b)	They contain π -acceptor ligands						
	(c)	M is in zero oxidation state						
	(d)	They are likely to be paramagnetic	c					
Q.63.	Which transition metal reduces steam to evolve hydrogen?							
	(a)	Mn	(b)	Fe				
	(c)	Cu	(d)	Pt				
Q.64.								
	(a)	Cl	(b)	NH_3				
	(c)	CO	(d)	PF ₃				
Q.65.	Highe	est (+7) oxidation is shown by:						
	(a)	Co	(b)	Cr				
	(c)	V	(d)	Mn				
Q.66.	Whic	h of the following complexes does	not obey t	the 18-electron rule?				
	(a)	$[Fe(CO)_4]^{2-}$	(b)	$[Rh(CO)_2I_2]^-$				
	(c)	$[Mn(CO)_5]^-$	(d)	$[Co(CO)_4]^-$				
Q.67.	Selec	t the correct statement(s).						
	(a)	Fe ⁺² is stable and Fe ⁺³ is unstable	in aerate	d water.				
	(b)	Stabilities of variable oxidation state can be explained by standard electrode						

potential. (c) Cr^{+2} is stable and Cr^{+3} is unstable in aqueous solution.

- (d) All of the above are correct statements.
- Q.68. Which of the following statements is incorrect?
 - (a) The electronic spectrum of $[Ni(NH_3)_6]^{2+}$ contains three absorptions.
 - (b) Absorptions in the electronic spectrum of $[Mn(H_2O)_6]^{2+}$ are extremely weak.
 - (c) For a tetrahedral d⁴ complex, three absorptions are expected in its electronic spectrum.
 - (d) The absorption in the electronic spectrum of $[Ti(H_2O)_6]^{3+}$ is assigned to the $T_{2g} \rightarrow E_g$ transition.
- Q.69. Select the correct statement(s).
 - (a) When $FeCl_3$ solution is added to $K_4[Fe(CN)_6]$ solution, in addition to $Fe^{III}[Fe(CN)_6]^{\text{-}}$, $Fe^{II}[Fe^{III}(CN)_6]^{\text{-}}$ is also formed due to side redox reaction.
 - (b) When $FeCl_2$ solution is added to $K_3[Fe(CN)_6]$ solution, in addition to $Fe^{II}[Fe^{II}(CN)_6]^T$, $Fe^{III}[Fe^{II}(CN)_6]^T$ is also formed due to side redox reaction.
 - (c) $Fe^{III}[Fe^{II}(CN)_6]^T$ is diamagnetic, while $Fe^{II}[Fe^{III}(CN)_6]^T$, is paramagnetic.
 - (d) $Fe^{III}[Fe^{II}(CN)_6]^T$ is paramagnetic, while $Fe^{II}[Fe^{III}(CN)_6]^T$, is diamagnetic
- Q.70. $[Cr(CN)_6]^{3-}$ is expected to be:
 - (a) Paramagnetic with $\mu_{eff} = 3.87$ B.M. (b) Diamagnetic
 - (c) Paramagnetic with μ_{eff} < 3.87 B.M. (d) Paramagnetic with μ_{eff} > 3.87 B.M.
- Q.71. For which pair of complexes is the order of values of Δ_{oct} correct?
 - (a) $[Rh(NH_3)_6]^{3+} > [Co(NH_3)_6]^{3+}(b)$ $[Fe(CN)_6]^{4-} > [Fe(CN)_6]^{3-}$
 - (c) $[Cr(H_2O)_6]^{2+} > [Cr(H_2O)_6]^{3+}$ (d) $[CrF_6]^{3-} > [Cr(CN)_6]^{3-}$
- Q.72. Which of the following statement is true?
 - (a) Cu^{+2} is colourless ion.
 - (b) Ions of d-block element are coloured due to d-d transition.
 - (c) Ions of f- block elements are colourless due to f-f- transition.
 - (d) [Sc(H₂O)₆]⁺³, [Ti(H₂O)₆]⁺⁴are coloured complexes
- Q.73. The visible spectra of salts of following complexes are measured in aqueous solutions. For which complex would the spectrum contain absorptions with the highest ε_{max} values?
 - (a) $[MnO_4]$

(b) $[CoCl_4]^{2-}$

(c) $[Co(H_2O)_6]^{2+}$

- (d) $[Mn(H_2O)_6]^{2+}$
- Q.74. How many microstates are possible for a d² configuration, including both weak and strong field limits?
 - (a) 15

(b) 45

(c) 10

- (d) 90
- O.75. Maximum oxidation of Os is:
 - (a) +5

(b) +6

(c) +7

- (d) +8
- Q.76. The d-d transition in an octahedral $[NiX_6]^{2+}$ complexes are;

	(a)	Laporte forbidden but spin allowed.					
	(b)	Laporte forbidden and spin forbidden.					
	(c)	Laporte allowed and spin allowed.					
	(d)	Laporte allowed but spin forbidden.					
Q.77.	For which of the following configurations for an octahedral, first row d- block metal ion						
	do yo	u expect there to be an orbital configuration to the magnetic moment?					
	(a)	t_{2g}^2 (b) t_{2g}^3					
	(c)	$t_{2g}^{6}e_{g}^{1}$ (d) $t_{2g}^{6}e_{g}^{2}$					
Q.78.	First i	onization energy of 5d elements is higher than those of 3d and 4d elements. This					
	is due	e to:					
	(a)	Greater effective nuclear charge acting on outer valance electrons.					
	(b)	Greater effective nuclear charge is experienced because of weak shielding of the					
		nucleus by 4f electrons.					
	(c)	Both (a) and (b)					
	(d)	None of the above.					
Q.79.	_	Why does the absorption spectrum of aqueous $[Ti(H_2O)_6]^{3+}$ exhibit a broad band with a					
		shoulder?					
	(a)	The ground state of $[Ti(H_2O)_6]^{3+}$ is Jahn-Teller distorted					
	(b)	The excited state of $[Ti(H_2O)_6]^{3+}$ undergoes Jahn-Teller distortion					
	(c)	$[Ti(H_2O)_6]^{3+}$ is a d ² ion and therefore there are two absorptions					
	(d)	$[Ti(H_2O)_6]^{3+}$ is partly reduced to $[Ti(H_2O)_6]^{2+}$ in aqueous solution and two					
	~ .	absorptions which are close in energy are observed, one for each species					
Q.80.	Color in transition metal compounds is attributed to:						
	(a)	Small size of metal ions					
	(b)	Absorption of light UV region					
	(c)	Complete (ns) sub shell					
0.01	(d)	Incomplete (n-1) d sub shell					
Q.81.		h of the following ion does not form colored complex?					
	(a)	Ni ((II) (b) Sc (II)					
	(c)	Fe (II) (d) Cr (VI)					

Answers

1- (d)	2- (a)	3- (d)	4- (d)	5- (d)	6- (b)
7- (a)	8- (d)	9- (b)	10- (a)	11- (c)	12- (c)
13- (b)	14- (c)	15- (c)	16- (c)	17- (a)	18- (b)
19- (a)	20- (c)	21- (b)	22- (b)	23- (d)	24- (a)
25- (d)	26- (a)	27- (c)	28- (a)	29- (b)	30- (c)
31- (b)	32- (d)	33- (b)	34- (a)	35- (b)	36- (c)
37- (c)	38- (a)	39- (a)	40- (a)	41- (b)	42- (d)
43- (b)	44- (a)	45- (c)	46- (c)	47- (b)	48- (a)
49- (d)	50- (b)	51- (b)	52- (b)	53- (a)	54- (c)
55- (b)	56- (b)	57- (c)	58- (c)	59- (b)	60- (b)
61- (a)	62- (d)	63- (b)	64- (a)	65- (d)	66- (b)
67- (b)	68- (c)	69- (a,b,c)	70- (a)	71- (a)	72- (b)
73- (a)	74- (b)	75- (d)	76- (a)	77- (a)	78- (b)
79- (b)	80- (d)	81- (d)			

Chapter 2 **Chemistry of f-Block Elements**

(Contributed by: Dr. Dinkar Malik, Department of Chemistry, M. S. College, Saharanpur)

Critical Points:

- Lanthanides and Actinides are collectively known as f block elements because last electron enters into f orbital of the antepenultimate shell.
- \triangleright General electronic configuration (n-2)f ¹⁻¹⁴ (n-1)d⁰⁻¹ ns²
- The least basic hydroxide among Lanthanides is Lu(OH)₃.
- ➤ Uranium fluoride co-precipitate with CaF₂.
- > The regular decrease in the size of lanthanide ions from La⁺³ to Lu⁺³ due to increase in effective nuclear charge is known as Lanthanide Contraction.
- ➤ The magnetic moment of Eu⁺³ and Sm⁺³ complexes are higher than those of calculated by spin only values.
- > Consequences of Lanthanide Contraction :
 - Similarity in size of some elements of IInd and IIIrd transition series e.g. Zr-Hf, Nb-Ta and Mo-W are known as twins.
 - Difficulty in separation of Lanthanides due to their similar chemical (b) properties and similar size.
 - The covalent character of hydroxides of lanthanides increases as the size decreases from La⁺³ to Lu⁺³.
 - The basic strength of hydroxides of lanthanides decreases with decreases in size from La⁺³ to Lu⁺³.
 - Tendency to form stable complexes from La⁺³ to Lu⁺³ increases as the size (e) decreases in that order.
- \rightarrow M⁺² ions of lanthanide can be easily converted into M⁺³ ions by gain of electrons through reduction.
- The total magnetic moment of lanthanides with a lander's splitting factor follows therelation:

$$\mu = g \sqrt{J(J+1)}$$

- $\mu=g\; \sqrt{J(J+1)}$ > $\beta\text{-}$ diketone complexes of Eu^{+3} and Pr^{+3} are known as shift reagents e.g. $Eu(dpm)_2$ and $Eu(fod)_3$.
- The elements with atomic number 58 to 71 are called Lanthanides (Ce to Lu).
- The elements with atomic number 90 to 103 are called Actinides (Th to Lr).
- > Ce⁺⁴behave as a very good oxidizing agent.
- ➤ La⁺³ ions behave ashard lewis acids.
- ➤ Cerric ammonium nitrate has coordination number 12 because NO₃ behaves as bi dentate ligand.
- Lanthanides have lesser tendency to form complexes than transition metals.

International Science Community Association www.isca.in , www.isca.co.in, www.isca.net.co , www.isa.net.in

- > Shift reagents provide a method for spreading out NMR absorption patterns without increasing the strength of the applied magnetic field.
- ➤ According to VSEPR theory, Cerric ammonium Nirate has Distorted Icosahedral structure.
- The absorption bands of f -block elements are sharp line like peak due to weak metalligand interaction.
- ➤ Ion exchange method is the most effective and rapid method for the separation and purification of lanthanides.
- > The term lanthanide was introduced by Victor Goldschmidt.
- \triangleright Oxocations of actinides are stable in aqueous solution due to their high charge density e.g. UO_2^{+2} however oxocations of lanthanides are unstable in aqueous solution.
- ➤ Gel permeation chromatography can be used to separate Fatty acid and Low molecular weight peptides.
- Actinides have greater tendency to form complexes because of higher nuclear charge and greater multiplicity of oxidation states as compared to lanthanides.
- \triangleright The ground state forms of Sm⁺³ and Eu⁺³ are $^6H_{5/2}$ and 7F_0 respectively.
- ➤ Sm⁺², Eu⁺² and Yb⁺² are good reducing agent.
- ➤ The absorption bands in Lanthanides are sharp line like peak.
- There is a slight increase in electro negativity of the trivalent ions from La to Lu.

Multiple Choice Questions

Q.1.	Which one of the following pairs consists of a good oxidizing and a good reducing agent respectively?								
	(a)	Ce(IV),	Ln(III)	(b)	Ln(III), Eu(II)				
	(c)	Ce(IV),	Eu(II)	(d)	Ln(III), Ce(III)				
Q.2.	` '		nsitions, the f-f transition	ns	. ,, , ,				
	(a)								
	(b)		e significantly with chan	-					
	(c)	Appea	r at low energies i.e., at t	the near-IR r	egion.				
	(d)		r as broad bands.						
Q.3.	The distortion in the structure of Cerric Ammonium Nitrate is due to:								
	(a)	Bi den	tate nitrate ligand	(b)	Mono dentate nitra	te ligand			
	(c)	Bi den	tate nitrite ligand	(d)	Mono dentate nitrit	e ligand			
Q.4.			n is likely to result in the			(s) to LaCl ₃ (s) ?			
	(a)		$(s) + 6 \operatorname{Cl}_2(g) \rightarrow 2 \operatorname{LaCl}_2(g)$						
	(b)		$(s) + 3 \operatorname{COCl}_2(g) \rightarrow 2 \operatorname{Le}_{g}(g)$	- ' '	.0,				
	(c)		$(s) + 6 \text{ NaCl}(s) \rightarrow 2 \text{ LaC}(s) + 6 \text{ HCl}(s) \rightarrow 2 \text{ LaC}(s)$						
0.5	(d)		$(s) + 6 \operatorname{HCl}(aq) \rightarrow 2 \operatorname{La}$ quence of ionic radii in i			anida actions is:			
Q.5.	(a)		$Pm^{+3} < Ce^{+3} < La^{+3}$	(b)					
	(a) (c)		$Yb^{+3} < Pm^{+3} < La^{+3}$	` '	$Yb^{+3} < Pm^{+3} < La^{+3} < Ce^{-3}$				
0.6				(u)	10 < FIII < La <	Ce Ce			
Q.6.		CaF ₂	ride co-precipitate with:	(b)	ΛαE				
	(a)	=		(d)	AgF LiF				
0.7	(c)	MgF ₂	II (VII) is more stable	` '					
Q.7.	Statement I: U (VI) is more stable than Nd(VI). Statement II: The valence electron in II are in 5f 6d and 7sorbital's								
	Statement II: The valence electron in U are in 5f,6d and 7sorbital's. (a) Statement I and II are correct and II is correct explanation of I.								
	(a)				-				
	(b)		ent I and II are co		i is not correctex	pianation of 1.			
		(c) Statement I is correct and II is incorrect.							
0.0	(d)		ent I and II both are inco						
Q.8.			adii are abnormally high		0.1	<i>!</i>			
	(a)	Eu, Yb		(b)	Sm, Tm				
	(c)	Gd, Lu		(d)	Nd, Ho				
Q.9.	Cons		following statement for ($O_3)_6] (Z)$				
			ordination number of Ce	e is 12					
		B. Z is paramagnetic in nature							
			an oxidizing agent						
			atements are:						
	(a)	B and		(b)	A, B and C				
	(c)	A and	В	(d)	A and C				

Q.10.	In which of the following compound stochiometry is not followed:							
	(a)	UO_2		(b)	U_3O_8			
	(c)	UO_4		(d)	UO_3			
Q.11.	Urani	um exhibits s	everal oxidation s	tates because	:			
	(a) It is an inner transition element							
	(b)	5f orbital pa	articipate in bond	ing				
	(c)	Its atomic v	weight is high					
	(d)	It forms stro	ong bond with ox	ygen				
Q.12.	For u	ranocene, the	correct statement	(s) is/are				
	I-	oxidation st	tate of uranium is	+4.				
	II-	It has cyclo	-octatetraenide lig	gand.				
	III-	It is a bent s	sandwich compou	nd.				
	IV-	It has -2 cha	arge					
	(a)	I and II		(b)	II and III			
	(c)	I and IV		(d)	II only			
Q.13.	The le	east basic amo	ong the following	is:				
	(a)	$Al(OH)_3$		(b)	$La(OH)_3$			
	(c)	$Lu(OH)_3$		(d)	$Ce(OH)_3$			
Q.14.	The nuclides among the following capable of undergoing fission by thermal neutrons are:							
	1.	^{233}U	$2.^{235}U$		3. ²³⁹ Pu	4. ²³² Th		
	(a)	1,2 and 4		(b)	1,3 and 4			
	(c)	2,3 and 4		(d)	1,2 and 3			
Q.15.	Whic	Which one among the following lanthanides exhibits radioactive nature?						
	(a)	Sm		(b)	Eu			
	(c)	Gd		(d)	Pm			
Q.16.	Whic	Which of the following statements are TRUE for the lanthanides?						
	I- The observed magnetic moment of Eu ⁺³ at room temperature is higher than that							
	(calculated from	m spin-orbit coup	ling.				
	II- Lanthanide oxides are predominantly acidic in nature.							
	III- The stability of Sm(II) is due to its half-filled subshell.							
	IV- Lanthanide (III) ions can be separated by ion exchange chromatography.							
	Corre	ect answer is						
	(a)	I and IV		(b)	I and II			
	(c)	I and III		(d)	II and III			
Q.17.	The p	air of lanthan	ides with the high	est third ioniz	zation energy i	s:		
	(a)	Eu,Gd		(b)	Eu,Yb			
	(c)	Dy,Yb		(d)	Lu,Yb			
Q.18.	In nat	ture Thorium	exists as:					
	(a)	²³¹ Th		(b)	²³³ Th			
	(c)	²³² Th		(d)	234Th			

Q.19.	Staten	Statement I: The sizes of Zr and Hf are similar.							
	Statement II: Size of Hf is affected by lanthanide contraction.								
	(a)	(a) Statement I and II are correct and II is correct explanation of I.							
	(b)	Statement I and II are correct but II i	s not co	orrect explanation of I.					
	(c)	(c) Statement I is correct and II is incorrect.							
	(d)	(d) Statement I and II both are incorrect.							
Q.20.	M^{+2} ions of lanthanide can be easily converted into M^{+3} ions by								
	(a)	Loss of electrons through oxidation.							
	(b)	Gain of electrons through reduction.							
	(c)	By oxidation and reduction both.							
	(d)	None of them .							
Q.21.	The to	otal magnetic moment of lanthanide	s with	a lander'ssplitting factor follows					
	therela	therelation:							
		$\mu = g \sqrt{J(J+1)}$							
	(b)	(b) $\mu = \sqrt{n (n+2)}$ (c) $\mu = \sqrt{4S(S+1) + L(L+1)}$							
	(c)	$\mu = \sqrt{4S(S+1) + L(L+1)}$							
	(d)								
Q.22.	Among the following compounds, the powerful fluorinating agent is:								
	(a)	UF_3	(b)	UF ₄					
	(c)	UF_6	(d)	UF ₅					
Q.23.	The 1	lanthanide +3 ion having highest	partiti	on co-efficient between tri-n-butyl					
		hate and concentrated HNO ₃ is:							
	(a)	La ⁺³	(b)	Eu ⁺³					
	(c)	Na ⁺³	(d)	Lu ⁺³					
Q.24.	Hindered β - diketones like dpmH (dpmH = dipivaloylmethane) are used for the								
	separation of Lanthanides because complexes formed with dpmH can be separated by:								
	(a)	Gel permeation chromatography							
	(b) Gas chromatography								
	(c)	Gel filtration chromatography							
	(d)	Ion exchange chromatography		.2					
Q.25.		n of the following ligand forms a stable							
	(a)	C_2H_4	(b)	H_2O					
	(c)	PPh ₃	(d)	CO					
Q.26.		electronic configuration of Gadolin	nium is	[Xe] $4f^75d^16s^2$, where as that of Gd^{+2}					
	is:	5 0 . 2		2 6 . 0 2					
	(a)	[Xe] $4f^55d^06s^2$		[Xe] $4f^65d^06s^2$					
	(c)	$[Xe] 4f^65d^16s^1$	` ′	[Xe] $4f^75d^16s^0$					
Q.27.		_	omplex	es as compared to lanthanides because					
		des have:	<i>a</i> . \						
	(a)	Large size of ions	(b)	Low multiplicity of atoms					

	(c)	High nuclear	charge		(d)	Low nuclear of	charge		
Q.28.	La ⁺³ ic	ons are:							
	(a)	Hard lewis ac	ids		(b)	Hard lewis ba	ses		
	(c)	Soft lewis aci	ds		(d)	Soft lewis bas	ses		
Q.29.	Which	of the followi	ng confi	iguration is not	possible	e for lanthanide	es?		
	(a)	$4f^1 5d^1 6s^2$			(b)	$4f^45d^06s^2$			
	(c)	$4f^25d^06s^2$			(d)	$4f^{7}5d^{0}6s^{2}$			
Q.30.	Which one among the following element belongs to actinides series?								
	(a)	Sm			(b)	Eu			
	(c)	Cm			(d)	Pm			
Q.31.	A com	parison of the	valance	electron config	guration	of the element	s, Sm aı	nd Eu suggests	
	that:			_					
	(a)	Sm is a better	one ele	ectron reductant	than E	u			
	(b)	Sm is a better	one ele	ectron oxidant tl	han Eu				
	(c)	Facile oxidati	on state	is +2 for both	the elen	nents			
	(d)								
Q.32.	Which	Which one of the following pairs absorbs radiations in UV and IR region respectively:							
	1. Sm,		2. Ce,		3. La.I		4. Gd,l		
	(a)	1 and 2 only			(b)	1 and 3 only			
	(c)	2 and 3 only			(d)	2 only			
Q.33.	Which one of the following shows the highest solubility in hot concentrated NaOH?								
	(a)	$Nd(OH)_3$		C	(b)	$La(OH)_3$			
	(c)	Lu(OH) ₃			(d)	$Sm(OH)_3$			
Q.34.	Cerric	Cerric ammonium nitrate has coordination number 12 because							
	(a) NO ₃ behaves as mono dentate ligand								
	(b)	NO ₃ behaves		_					
	(c)	•							
	(d)	•							
Q.35.	Which of the following elements are soluble in liquidammonia?								
	(a)	Pm and Sm			(b)	Ce and Ho			
	(c)	Tm and Lu			(d)	Eu and Yb			
Q.36.	One of the consequences of lanthanide contraction is:								
	(a)	-							
	(b)	` '							
	(c) Zr &Nb have smaller oxidation state								
	(d) Zn & Dy have almost same atomic radius								
Q.37.	The m	ost common o	xidation	state of lanthar	nides is:				
-	(a)	+4	(b)	+3	(c)	+6	(d)	+2	
Q.38.	` '	of the followi	ng pair	of lanthanides of	can act a	as oxidizing an	d reduci	ng agents?	
	(a)	Sm,Dy			(b)	Nd,Gd		· =	

	(c)	Dy,Er	(d)	Ho,Er					
Q.39.	Cerric	c ammonium nitrate has distorted struc	cture du	e to:					
	(a)	Highest oxidation state of Ce							
	(b)	20 faces of the structure							
	(c)								
	(d)	highest co ordinated structure							
Q.40.	Acco	According to VSEPR theory the structure of Cerric ammonium Nirate is:							
	(a)	Distorted Icosahedral							
	(b)) Symmetrical Octahedral							
	(c)								
	(d)	Distorted Octahedral							
Q.41.	The la	anthanide (III) ion having the highest	partition	n coefficientbetween tri-n- butyl					
	Phosp	phateand concentrated HNO ₃ is:							
	(a)	Eu^{+3}	(b)	Nd^{+3}					
	(c)	Lu ⁺³	(d)	La ⁺³					
Q.42.	The c	The colour of Cerric Ammonium Nitrate is due to:							
	(a) d-d transition								
	(b)	Metal to Ligand charge transfer tran	sition						
	(c)	Crystal field transition							
	(d)	· ·							
Q.43.	Whic	Which element among lanthanides has smallest atomic radius?							
	(a)	Cerium	(b)	Holmium					
	(c)	Europium	(d)	Gadolinium					
Q.44.	Whic	Which of the following is true for lanthanides?							
	(a)	$H.E_3 < I.E_3$	(b)	$H.E_4 > I.E_4$					
	(c)	$L.E_3 < I.E_3$	(d)	L.E ₃ >I.E ₃					
Q.45.	The term lanthanide was introduced by:								
	(a)	Gringberg	(b)	Sir Thomas					
	(c)	Victor Goldschmidt	(d)	Albert Wright					
Q.46.	The separation of Lanthanides is possible by:								
	(a)	Normal method	(b)	Ion - exchange method					
	(c)	Permutit method	(d)	Chromatographic method					
Q.47.	Consi	Consider the following lanthanide(III) ions:							
	1. No	1. Nd(III) 2. Dy(III) 3. Gd(III)							
	The n	The magnetic moment close to spin only value is (are) for:							
	(a)	1 and 3 only	(b)	1 and 3 only					
	(c)	3 only	(d)	2 and 3 only					
Q.48.	The	•	(atom	ic number 41) is ⁶ D.The electronic					
		guration corresponding to this term sy							
	(a)	$[Kr] 4d^35s^2$	(b)	$[Kr] 4d^45s^1$					

	(c)	[Kr] 4d55s0	(d)	$[Kr] 4d^35s^15p^1$				
Q.49.	` '	Which of the following lanthanides has largest metallic radius?						
Q. 4 7.	(a)	Eu	(b)	Sm				
	(a) (c)	Lu	(d)	Pr				
0.50			` ,					
Q.50.		ch of the following lanthanide is a n						
	(a)	Sm	(b)	Pm				
0.51	(c)	Dy	(d)	Tm				
Q.51.	Gel permeation chromatography can be used to separate which of the following:							
		A. Lanthanides		B. Alkaline earths				
		C. Fatty acids		D. Low molecular weight peptides				
		correct answer is:						
	(a)	A and B	(b)	B and C				
	(c)	C and D	(d)	A and D				
Q.52.	M^{+4}	ions of Lanthanides can be convert	ted into M	$^{+3}$ ions by				
	(a) Gain of electron through Oxidation.							
	(b) Loss of electronthrough Reduction.							
	(c)	. ,						
	(d)							
Q.53.	` ′	coordination number of Ce in Cerr		um nitrate is:				
	(a)	10	(b)	11				
	(c)	12	(d)	14				
Q.54.	` '	Elements from atomic no 58 (Ce) to 71 (Lu) are:						
	(a)	Actinides	(b)	Lanthanides				
	(c)	Transition Metals	(d)	Alkali Metals				
Q.55.	The ground state forms of Sm ⁺³ and Eu ⁺³ respectively are:							
	(a)	$^{7}\mathrm{F}_{0}$ and $^{6}\mathrm{H}_{5/2}$	(b)	$^6\mathrm{H}_{5/2}$ and $^7\mathrm{F}_0$				
	` '	2 F _{5/2} and 5 I ₄	(d)	$^{7}F_{6}$ and $^{2}F_{7/2}$				
0.56.		ch of the following lanthanides are	` ,					
((a)	Ce,Ln	(b)	Gd,Dy				
	(c)	Eu,Ce	(d)	Yr,Ho				
Q.57.	` ′	mineral from first ever lanthanide w	` '					
Q.0 / ·	(a)	Monazite	(b)	Gadolnite				
	(c)	Ytteria	(d)	Feldspar				
Q.58.	` ′	absorption bands in Lanthanides are	` ′	- 3333F-13				
((a)	Broad peak	(b)	Sharp line like peak				
	(c)	Diffused peak	(d)	Broad and sharp peak				
Q.59.	` ′	nd Yb elements show similar reacti	` '					
£.07.	(a)	Li	(b)	Na				
	(c)	Tl	(d)	Ba				
0.60	` '	th of the following ion is colorless?	` ′					

	(a)	Pm^{+3}	(b)	Ce ⁺³				
	(c)	Sm^{+3}	(d)	Eu^{+3}				
Q. 61.	` '	h of the following lanthanide ion has	highest	magnetic moment?				
	(a)	Dy ⁺³	(b)	Gd^{+3}				
	(c)	Sm ⁺³	(d)	Tb^{+3}				
Q.62.	The g	The general electronic configuration of inner transition metalsis:						
	(a)	$(n-2)f^{1-14}$	(b)	$(n-2) f^{1-14} (n-1) d^0 ns^2$				
	(c)	$(n-2)f^{1-14}(n-1)d^{0-1}ns^2$	(d)	$(n-2) f^{1-14} ns^2$				
Q.63.	` '	electronic configuration of Gadolinius	m is:					
	(a)	$4f^{6} 5d^{0} 6s^{2}$	(b)	$4f^7 6d^0 6s^2$				
	(c)	$4f^7 5d^1 6s^2$	(d)	$4f^{8} 5d^{1} 6s^{2}$				
Q.64.	Identi	ify the pairs in which the covalent rac	` ′					
	1.	Nb,Ta 2. Mo,W	3.	La.Lu 4. Sc,Y				
		1 and 2 only		1 and 3 only				
		2 and 3 only	(d)	3 and 4 only				
Q.65.	` ′	Which among the following will be the most stable compound of Tb?						
	(a)	$Tb(OH)_2$	(b)	Tb(OH) ₃				
	(c)		(d)	Tb_2O_3				
Q.66.	Which among the following groups of lanthanides is used to make an alloy for flint of							
		cigarette lighter?						
	(a)	Ce,La,Pr,No	(b)	Ce,Pr,No,Lu				
	(b)	La,Pm,Sm,Pr	(d)	Pr,La,Lu,Ce				
Q.67.	In a n	In a nuclear reactor oxides of which of the following metals are used as a fuel material?						
	(a	(a) Uranium 2- Thorium 3- Actinium 4- Plutonium						
	Select the correct answer using the codes given below:							
	(a)	1 and 3	(b)	2 and 3				
	(c)	1, 2 and 4	(d)	2, 3 and 4				
Q.68.	The basic character of Lanthanides decreases from							
	(a)	Lu (OH) ₃ to La(OH) ₃						
	(b)	$La(OH)_3$ to $Lu(OH)_3$						
	(c) Increases from $La(OH)_3$ to $Gd(OH)_3$ and then decreases up to $Lu(OH)_3$							
	(d)	Decreases from La(OH) ₃ to Gd(OH	H) ₃ and the	hen Increases up to Lu (OH) ₃				
Q.69.	Whic	h lanthanide is used as a knocking ag	gent in ga	asoline?				
	(a)	Ce	(b)	Er				
	(c)	Lu	(d)	Yb				
Q.70.	Whic	h lanthanide has the highest tendency	y to get o	oxidized in air?				
	(a)	Lu	(b)	Eu				
	(c)	Tm	(d)	Gd				
Q.71.	Consi	ider the following statements:						

		1. The size of the lanthanides M ⁺³ io	ns decr	eases as the atomic number of M	
		increases.	_		
	2. Electronic spectra of lanthanides show very broad bands.				
		3. Co-ordination number six is very			
		of the following statements given about			
	(a)	1 and 2	(b)	1 and 3	
	(c)	1,2 and 3	(d)	1 only	
Q.72.		iclear reactor, oxides of which of the f		_	
	(a)		3. Ac	4. Pu	
		the correct answer using the codes give			
	(a)	1 and 3	(b)	2 and 3	
	(c)	1,2 and 4	(d)	2,3 and 4	
Q. 73.		reeder reactors are based on which one		9	
	(a)	Conversion of U ²³⁸ to Pu ²³⁹ and remo	_		
	(b)	Conversion of Th^{232} to Pu^{239} and using			
	(c)	Conversion of Th^{232} to U^{235} and remove			
	(d)	Conversion of U^{238} to U^{233} and remo	-		
Q.74.	The la	nthanide that is used in controlling	rods o	f nuclear power plantand carbon arc	
	lamps is:				
	(a)	Er	(b)	Sm	
	` /	Ce	(d)	Nd	
Q.75.	The lan	nthanides which are stable in oxidatio	n states	other than +3 are:	
	(a)	Ce,Sm	(b)	Ce,Er	
	(c)	Ce,Lu	(d)	Ce,Eu	
Q.76.	The lig	gand field bands of lanthanide comp	lexes a	re generally sharp line like peak than	
	those of	oftransition metal complexes because	•		
	(a)	Transitions are allowed for lanthanid	-		
	(b)	f orbital's have higher energy than d			
	(c)	f orbital's compared to d orbital's int			
	(d)	Intensity of the bands is higher for la	nthanic	les complexes.	
Q.77.	Consid	ler the ions Eu (III), Gd(III), Sm(III) a	and Lu(III). The observed and calculated	
Magne	tic Mor	ment is closest for the pair:			
	(a)	Lu(III),Gd(III)	(b)	Eu(III),Lu(III)	
	(c)	Sm(III),Gd(III)	(d)	Eu(III),Sm(III)	
Q.78.	Which	of the following compound shows a	charge t	transfer band?	
	(a)	Lanthanum nitrate	(b)	Cerric ammonium nitrate	
	(c)	Mangnese (II) acetate	(d)	Copper (II) sulphate	
Q. 79.	Among	g the following statements, identify th	e corre	ct ones for thecomplexes of lanthanide	
	(III) io	ns:			
	(a)	Metal-ligand bond is significantly ion	nic.		

	(b)	Complexes rarely show isomerism.					
	(c)	The co-ordination number is not more than 8.					
	(d)	The magnetic moment are not accounted even approximately by spin only value					
for ma	jority o	flanthanides.					
	(a)	1,2 and 3	(b)	1 and 4			
	(c)	1,2 and 4	(d)	2 and 3			
Q.80.	The el	ectrostatic forces of the lanthanide con	nplexes	s are:			
	(a)	Bidirectional	(b)	Unidirectional			
	(c)	Omni directional	(d)	Tri directional			
Q.81.	The tri	valent ions of lanthanides form more	stable c	complexes with:			
	(a)	O donor ligand	(b)	S donor ligand			
	(c)	N donor ligand	(d)	P donor ligand			
Q.82.	The ac	etual magnetic moment shows a large	deviati	ion from the spin only formula in case			
	of:						
	(a)	Ti ⁺³	(b)	V^{+3}			
	(c)	Gd^{+3}	(d)	Sm ⁺³			
Q.83.	The c	oordination number and geometry of G	Ce in [C	$Ce(NO_3)_6]^{2-}$ are respectively:			
	(a)	6 and octahedron	(b)	6 and trigonal prism			
	(c)	8 and cubic	(d)	12 and icosahedrons			
Q.84.	The m	ost stable oxidation state for U is:					
	(a)	+3	(b)	+4			
	(c)	+5	(d)	+6			
Q.85.	In neu	eutron capture nuclear reactions, the lanthanide which capture neutron the fastest is:					
	(a)	Pm	(b)	Nd			
	(c)	Eu	(d)	Sm			
Q.86.	Which	of the following names for lanthanide	es was l	ater on rejected by the Scientists?			
	(a)	Inner transition elements	(b)	Rare earth metals			
	(c)	Inner core metals	(d)	f- block elements			
Q.87.	Which	one of the following is a valuable lab	oratory	source of α- particle?			
	(a)	Np	(b)	Pu			
	(c)	U	(d)	Am			
Q.88.	The st	ructure of Cerric ammonium nitrate ha	as:				
	(a)	12 faces and 20 vertices	(b)	12 faces and 12 vertices			
	(c)	20 faces and 20 vertices	(d)	20 faces and 12 vertices			
Q.89.	Metal	electrides of Lanthanum and Cerium l	nave:				
	(a)	M^{+3} and $(I_2^-)^{e^-}$ ions	(b)	M^{+3} and I_2^- ions			
	(c)	M^{+3} and Γ ions	(d)	M^{+3} and I_2 ions			
Q.90.	Most r	reactive lanthanides get tarnished in th	e prese	nce of air due to the formation of:			
	(a)	$Ln_2S_{3.x}H_{2O}$	(b)	LnN.2H ₂ O			
	(c)	Ln ₂ O ₃	(d)	$Ln(OH)_3$			

- Q.91. Direct excitation of lanthanides id difficult due to:
 - (a) High extinction co-efficient
 - (b) High energy required for f-f transition
 - (c) Low excitation co-efficient (d) Low ionization energy

Answers

1- (c)	2- (a)	3- (a)	4- (b)	5- (a)	6- (a)
7- (b)	8- (a)	9- (d)	10- (c)	11- (b)	12- (a)
13- (a)	14- (d)	15- (d)	16- (a)	17- (b)	18- (c)
19- (a)	20 - (a)	21 - (a)	22- (c)	23- (d)	24- (b)
25- (d)	26 - (d)	27- (c)	28- (a)	29- (c)	30- (c)
31- (b)	32 -(d)	33 - (c)	34- (b)	35- (d)	36- (b)
37- (b)	38- (a)	39- (c)	40- (a)	41- (c)	42 - (d)
43- (b)	44- (d)	45- (c)	46 - (b)	47 - (c)	48- (b)
49- (d)	50 - (b)	51 - (c)	52- (d)	53- (c)	54- (b)
55 - (b)	56- (a)	57- (b)	58 - (b)	59 - (d)	60 - (b)
61 - (b)	62 - (c)	63 - (c)	64- (a)	65- (b)	66- (a)
67- (c)	68- (b)	69- (a)	70- (d)	71- (d)	72- (c)
73- (a)	74- (b)	75- (d)	76- (c)	77- (a)	78- (b)
79- (c)	80- (c)	81- (a)	82- (d)	83- (d)	84- (d)
85- (c)	86- (b)	87- (d)	88- (a)	89- (a)	90- (c)
91- (c)					

Chapter 3 Spectroscopy

(Contributed by: Dr. Punam Yadav, Department of Chemistry, M. S. College, Saharanpur)

Critical Points:

- ➤ Conjugation decreases the frequency at which absorption occurs in IR spectroscopy.
- ➤ IR spectroscopic techniques will be useful to distinguish between M-SCN and M-NCS binding modes.
- > X-rays absorption of electromagnetic radiation results in ionization of molecules.
- ➤ The carbonyl stretching frequency in the IR spectra of ketone, amide and anhydride follows the order Anhydride > ketone > amide.
- ➤ In IR spectroscopy, the C-O bond has a lower frequency than the C-N bond because O atom has more mass than an N atom.
- ➤ Only one EPR signals is observed for octahedral Ni(II) complex.
- \triangleright In the atomic adsorption spectroscopic estimation of Fe(III) using O₂/H₂ flame, the absorbance decreases with the addition of SO₄⁻² ions.
- Argon gas is commonly used in generating plasma in Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES).
- > The frequency of the stretching vibration of a bond in IR spectroscopy depends on the masses of the atoms and the stiffness of the bond.
- ➤ In atomic adsorption spectroscopy, the atomization process utilizes flame for its activation.
- > The oxidation state of metal ion in the catalyst can be deducted HPLC.
- ➤ The polar molecules like HCl, HBr etc are active in rotational microwave, infrared absorption as well as rotational Raman spectra.
- The absorption at λ_{max} 279 nm (ϵ = 15) in the UV spectrum of acetone is due to $\sigma \rightarrow \sigma^*$ transition.
- ➤ Hydrogen bonding broadens the absorption of oxygen-hydrogen band of CH₃OH in infrared spectroscopy.
- ➤ The total number of fine and hyperfine EPR lines expected for octahedral high spin Mn(II) complex are 5 and 30.
- ➤ HPLC techniques would be most useful to identify and quantify the presence of a known impurity in a drug substance.
- ➤ In a mass spectrometry the analyzed substance is ionized.
- ➤ The two characteristic stretching frequencies (cm⁻¹) observed in the IR spectrum of compounds containing NO₂ group are 1550 and 1350.
- ➤ For CO₂ molecule all the vibrational modes are either IR or Raman active.
- A mass spectrometry delivers the evidence about the molecular mass of a substance.

- ➤ The anti Stokes lines are generally weaker in intensity because the atoms are generally in the ground state.
- ➤ The source of ultra violet radiation used in UV-visible spectrophotometer is mercury vapour lamp.
- \triangleright The infra red and Raman spectrum of BF₃ are expected to show more absorption peaks in Raman in comparison to IR.
- \triangleright The rotational constant of non polar molecules such as H_2 , N_2 etc. cannot be determined by spectroscopic methods.
- ➤ The H-H bond distance in H₂ molecule can be determined by Rotational Raman Spectroscopy.
- Raman frequencies for ESR and NMR are found in the Microwave and Radiofrequency spectral region respectively.
- Cis and trans cinnamic acids can be most readily distinguished and identified by UV spectral studies.
- \triangleright The vibrational stretching frequency of N_2 can be determined by using Raman Spectroscopy.
- ➤ The UV light source used in UV-visible spectrophotometer is Deuterium Lamp.
- The number of IR active vibrational modes in ammonia is six.
- Naphthalene and acetophenone compounds can be readily separated by TLC method.

Multiple Choice Questions

Q.1.	Which compound would be expected to show intense IR absorption at 2820, 2710 and 1705 cm ⁻¹ ?							
	(a)	CH ₃ COCH ₂ CH ₃		(b)	But 1-yne			
	(c)	PhCOCH ₃		(d)	PhCHO			
Q.2.	The number of lines that appear in the EPR spectra of $[C_6H_6]^-$ is:							
₹.=.	(a)	5	P • • • • • • • • • • • • • • • • • • •	(b)	11			
	(c)	7		(d)	13			
Q.3.	` '		bonding in a	` /	c compound compound can easily be			
Q. 0.	-	established utilizing the following technique:						
	(a)	Mass Spectra		(b)	CD-ORD			
	(c)	IR Spectra		(d)	NMR Spectra			
Q.4.	Whic	h compound would be	expected to s	how inter	ase IR absorption at 2250 cm ⁻¹ ?			
	(a)	(CH ₃) ₂ CHCN		(b)	CH ₃ CH ₂ CH ₂ COOH			
	(c)	(CH ₃) ₂ CHCH ₂ OH		(d)	CH ₃ CH ₂ CH ₂ CONH ₂			
Q.5.	Ethyn	ne (HC≡CH) does not	show IR absor	rption in t	he region 2000-2500 cm ⁻¹ because:			
	(a)	C≡C stretches occur	at about 1640) cm ⁻¹ .				
	(b)							
	(c)	(c) There is no change in the dipole moment when the C≡C bond in ethyne stretches.						
	(d)	C≡H stretches occur		•				
Q.6.	Whic	_	l most conven	iently con	afirm if a non solid sample is impure?			
	(a)	Mass Spectra		(b)	Melting Point			
	(c)	IR Spectra		(d)	NMR Spectra			
Q.7.	Which of the following molecules will not absorb infrared radiations?							
	(a)	$COCl_2$		(b)	Cl_2			
	(c)	CO_2		(d)	CO			
Q.8.	Which compound would be expected to show intense IR absorption at 3363, 3185, 1660 cm ⁻¹ ?							
	(a)	(CH ₃) ₂ CHNH ₂		(b)	CH ₃ CH ₂ CH ₂ OH			
	(c)	CH ₃ CH ₂ CH=CH ₂		(d)	CH ₃ CH ₂ CONH ₂			
Q.9.		Which compound would show a larger than usual M+2 peak in the mass spectrum?						
	(a)	$(CH_3)_2CHNH_2$	S	(b)	CH ₃ CH ₂ SCH ₃			
	(c)	CH ₃ CH ₂ CH ₂ CH ₂ CH	\mathbf{I}_3	(d)	CH ₃ CH ₂ COOH			
Q.10.	The stark splitting for a given field is larger for a molecule AX as compared to BX.							
C		Which of the following is true? (µ is the dipole moment)						
	(a)	$\mu_{AX=}\mu_{BX}$		(b)	$\mu_{AX} > \mu_{BX}$			
	(c)	$\mu_{AX} < \mu_{BX}$		(d)	$\mu_{AX} = 2\mu_{BX}$			
Q.11.		ider the compounds,						
	(I)	SnF_4 (II)	$SnCl_2$	(III)	R ₂ SnCl			
	The n	uclear quadrupole spl		` ´				
		• • •	ional Science C		Association			

www.isca.in , www.isca.co.in, www.isca.net.co , www.isa.net.in

	(a)	I, II and III	(b)	I and II				
	(c)	II and III	(d)	I and III				
Q.12.	Which	n compound would be expected to sho	w inten	se IR absorption at 1715 cm ⁻¹ ?				
	(a)	$(CH_3)_2CHNH_2$	(b)	(CH ₃) ₂ CHCOOH				
	(c)	Hex-1-yne	(d)	2-Methyl Hexane				
Q.13.	When a high energy electron impacts molecule M in the ionization chamber, what type of species is initially produced?							
	(a)	Cation	(b)	Radical Cation				
	(c)	Radical Anion	(d)	Anion				
Q.14.	The o	order of carbonyl stretching frequen	cy in t	he IR spectra of ketone, amide and				
		ride is:	·	,				
	(a)	Anhydride > amide > ketone	(b)	Ketone > amide > anhydride				
	(c)	Amide > anhydride > ketone	(d)	Anhydride > ketone > amide				
Q.15.	Which	n of the following spectroscopic techni		•				
	M-SCN and M-NCS binding modes?							
	(a)	EPR	(b)	Mass				
	(c)	IR	(d)	NMR				
Q.16.		n compound would be expected to sho	w inten	se IR absorption at 1640 cm ⁻¹ ?				
	(a)	Hex-1-ene	(b)	2- Methyl Heptane				
	(c)	CH ₃ CH ₂ COCH ₃	(d)	CH ₃ CH ₂ CH ₂ OH				
Q.17.	Which compound would be expected to show intense IR absorption at 3367, 3282 cm ⁻¹ ?							
	(a)	But-1-ene	(b)	Ph CH ₂ NH ₂				
	(c)	$CH_3CH_2OCH_3$ (d)	PhCO	ОН				
Q.18.	If Mossbauer spectrum of Fe(CO) ₅ is recorded in the presence of a magnetic field, the							
	original spectrum with two lines changes into the one with:							
	(a)	Three Lines	(b)	Four Lines				
	(c)	Five Lines	(d)	Six Lines				
Q.19.	In IR spectrum of p-nitrophenyl acetate, the carbonyl absorption band appears at:							
	(a)	1670 cm ⁻¹	(b)	1700 cm ⁻¹				
	(c)	1730 cm ⁻¹	(d)	1760 cm ⁻¹				
Q.20.	Absorption of what type of electromagnetic radiation results in ionization?							
	(a)	Microwaves	(b)	X-rays				
	(c)	Infrared light	(d)	Radio waves				
Q.21.	In IR	spectroscopy, the C-O bond has a		_ frequency than the C-N bond				
		because						
	` ,	(a) lower, an O atom has more mass than an N atom						
	(b)	higher, an O atom has an even numb						
	(c) (d)	higher, an O atom has more electron higher, an O atom has more mass tha	_	-				
Q.22.	` ′	umber of EPR signals observed for oc						
Z.22.	(a)	One	(b)	Two				
	(c)	Three	(d)	Zero				
		International Science Con	` ′	Association				

Q.23.	Amo	ng the following, those can act a	s Mos	sbauer i	nuclei are:			
	(I)	¹²⁹ I (II) ⁵⁷ CO (III)	⁵⁷ Fe	(IV)	¹²¹ Sb			
	(a)	I,II,III and IV		(b)	II,III and IV			
	(c)	I,II and IV		(d)	I,III and IV			
Q.24.	The I	R spectrum of a sample contains	absor	ptions	at 3050, 2950, and 1620 cm ⁻¹ . To what			
		oforganic compound does this sa		_				
	(a)	Alkyne		(b)	Alkene			
	(c)	Ester		(d)	Alcohol			
Q.25.	When	n a compound contains a sulfur a peak.	tom, i	ts mass	spectrum contains a larger than usual			
	(a)	M+2		(b)	M-2			
	(c)	M-1		(d)	M+1			
Q.26.	In th	e atomic adsorption spectrosco	pic e	stimatio	on of Fe(III) using O ₂ /H ₂ flame, the			
	absor	absorbance decreases with the addition of:						
	(a)	EDTA		(b)	CO_3^{-2}			
	(c)	Cl ⁻		(d)	SO_4^{-2}			
Q.27.	The correct order of the isomeric shift in Mossbauer spectra (⁵⁷ Fe source) of iron compounds is:							
	(a)			(b)	Fe(III) > Fe(II) > Fe(IV)			
	(c)			(d)				
Q.28.	` ′	Which of the following has a C-H stretch that occurs at the highest stretching frequency?						
Q.20.	(a)	Hexane		(b)	Hex-1-ene			
	(c)	Hex-1-yne		(d)	Hex-2-yne			
Q.29.	` /	The gas commonly used in generating plasma in Inductively Coupled Plasma Atomic						
(.=> .		Emission Spectroscopy (ICPAES) is:						
	(a)	CO_2		(b)	N_2O			
	(c)	H_2		(d)	Ar			
Q.30.		=	elow.	` /				
Q. 50.	Among the isomers of C_4H_6 given below, the compound which exhibits an absorption band at 3300 cm ⁻¹ in the IR spectrum, is:							
	(a)	1,3-butadiene		(b)	1-butyne			
	(c)	2-butyne		(d)	cyclobutene			
Q.31.	The frequency of the stretching vibration of a bond in IR spectroscopy depends on what two quantities?							
	(a)	•						
	(b)	(b) The masses of the atoms and the stiffness of the bond						
	(c)							
	(d)	the electronegativity of the ato	ms an	d the m	asses of the atoms			
Q.32.	Whic	h of the following stretches tend	s to be	the lea	ast intense?			
	(a)	C=O		(b)	C=C			
	(c)	С-Н		(d)	O-H(Carboxylic acid)			
O.33.	Out	of the following, the one which is	s not a	n excita	ation source for IR spectrometer is			

	(a)	Deuterium Lamp	(b)	Mercury Arc		
	(c)	Nernst Glower	(d)	Tungsten Filament Lamp		
Q.34.	The total number of ways in which two non identical spin -1/2 particles can be oriented					
		e to a constant magnetic field is:		-		
	(a)	1	(b)	2		
	(c)	3	(d)	4		
Q.35.	In ator	nic adsorption spectroscopy, the atom	ization	process utilizes:		
	(a)	Electric Field	(b)	Magnetic Field		
	(c)	Flame	(d)	Electron Beam		
Q.36.	Which		contain	characteristic IR stretches at 3300 and		
	(a)	(CH ₃) ₂ CHCN	(b)	CH ₃ CH= CHCH ₂ OH		
	(c)	CH ₃ CH ₂ CH ₂ C≡CH	(d)	$CH_3C\equiv CCH_2CH_3$		
Q.37.				e following molecules exhibits two		
		teristicstretches at 2700 and 2800 cm				
	(a)	CH ₃ CH ₂ CHO	(b)	CH ₃ CH ₂ COOH		
	(c)	CH ₃ CH ₂ CH ₂ COCl	(d)	CH ₃ CH ₂ COOCH ₃		
Q.38.	The oxidation state of metal ion in the catalyst can be deducted by:					
	(a)	Atomic Adsorption Spectroscopy	(b)	HPLC		
	(c)	Gas Chromatography	(d)	Mossbauer Spectroscopy		
Q.39.			ave, inf	rared absorption as well as rotational		
		n spectra is:				
	(a)	CO_2	(b)	H_2		
	(c)	SF_6	(d)	HCl		
Q.40.	The number of hyperfine split lines observed in ESR spectrum of methyl radical is:					
	(a)	1	(b)	6		
	(c)	8	(d)	4		
Q.41.						
	(a)	(CH3CH2)2CO (b)				
	(c)	CH ₃ CH ₂ CH ₂ CHO	(d)	$CH_3CH_2CH_2CONH_2$		
Q.42.	One of the following functional groups, sometimes shows a single weak to medium IR adsorptionpeak in the 2100 to 2250 cm ⁻¹ range. Depending on the structure of the compound this peak issometimes not present, making it easy to misinterpret the spectrum. Which functional group is it?					
	(a)	Alkene	(b)	Alcohol		
	(c)	Alkyne	(d)	Carboxylic Acid		
Q.43.	The at	osorption at λ_{max} 279 nm ($\epsilon = 15$) in th	e UV sp	pectrum of acetone is due to		
	(a)	$\pi \to \pi^*$ transition		$n \to \pi^*$ transition		
	(c)	$\sigma \rightarrow \sigma^*$ transition	(d)	$\pi \to \sigma^*$ transition		
Q.44.	The co	orrect value of isomer shift (in Mossb	auer sp	ectra) and its explanation for		
	Fe(II)	- TPP and Fe(III) - TPP respectively	from tl	ne following are: (TPP =		
	Tetrap	henylporphyrinate)				

- (A) 0.52mms⁻¹ (B) 0.45 mms⁻¹ (C) Increase in s electron density
- (D) Decrease in s electron density
- (a) A and D, B and C

(b) A and C, B and C

(c) B and D, A and D

- (d) B and D, A and C
- Q.45. What is the structure of the compound that gives the following infrared spectrum?

(a) CH₃CH₂CH₂CH₂Cl

(b) $CH_3CH_2CH = CH_2$

(c) CH₃CH₂C≡CH

- (d) $CH_3CH_2CH_2CH_3$
- Q.46 Why is the oxygen-hydrogen absorption of CH₃OH such a broad band in the infrared?
 - (a) Rotational energy levels broaden the absorption.
 - (b) Hyperconjugation resonance broadens the absorption.
 - (c) Resonance broadens the absorption.
 - (d) Hydrogen bonding broadens the absorption.
- Q.47. The total number of fine and hyperfine EPR lines expected for octahedral high spin Mn(II) complex are :
 - (a) 3 and 30

(b) 5 and 33

(c) 4 and 24

- (d) 5 and 30
- Q.48. Which of the following bonds would show the strongest absorption in the IR?
 - (a) carbon-hydrogen

(b) sulfur-hydrogen

(c) oxygen-hydrogen

- (d) nitrogen-hydrogen
- Q.49. The number of lines in the ESR spectrum of CD₃ is (the spin of D is 1)
 - (a) 4

(b) 1

(c) 7

- (d) 3
- Q.50. What is the structure of the compound that gives the following infrared spectrum?

(a) $CH_3CH_2CH_2CH_2CI$

(b) $CH_3CH_2CH = CH_2$

(c) CH₃CH₂C≡CH

- (d) $CH_3CH_2CH_2CH_3$
- Q.51. What is the structure of the compound that gives the following infrared spectrum?

(a) $CH_3CH_2CH_2OH$

(b) $CH_3CH_2CH = CH_2$

(c) $CH_3CH_2C\equiv CH$

- (d) CH₃CH₂CH₂NH₂
- Q.52. What is the structure of the compound that gives the following infrared and PMR spectra?

(a) CH₃CH₂CH₂OH

(b) $(CH_3)_2 CHOH$

(c) $(CH_3)_2 CHNH_2$

- (d) $CH_3CH_2CH_2NH_2$
- Q.53. Which of the following techniques would be most useful to identify and quantify the presence of a known impurity in a drug substance?
 - (a) NMR

(b) MS

(c) HPLC

(d) IR

- Q.54 In a mass spectrometry,
 - (a) The analyzed substance remains intact.
 - (b) Large quantities of the substance is required.
 - (c) The analyzed substance is ionized.
 - (d) The analyzed substance is unionized.
- Q.55. The two characteristic stretching frequencies (cm⁻¹) observed in the IR spectrum of compounds containing NO₂ group are:
 - (a) 3400 and 3300

(b) 1550 and 1350

(c) 2250 and 1760

(d) 1860 and 1760

- Q.56. For CO₂ molecule:
 - (a) All the vibrational modes are either IR or Raman active.
 - (b) The number of IR and Raman active vibrations will be same.

	(c)	All vibrations are IR active.						
	(d)	All vibrations are Raman active.	All vibrations are Raman active.					
Q.57.	A ma	A mass spectrometry delivers the evidence about:						
	(a)	The color of a substance.						
	(b)	The molecular mass of a substanc	e.					
	(c)	The reactivity of a substance.						
	(d)	The polarity of a substance.						
Q.58.	The a	nti Stokes lines are generally weake	r in inten	sity because:				
	(a)	The molecules absorb the radiatio	n comple	etely.				
	(b)	The incident radiation is un-polari	ized.	•				
	(c)	The atoms are generally in the gro	ound state	2.				
	(d)	The vibrational energies are small						
Q.59.	Of the	_		that will absorb infra red radiations				
	are:	,						
	(a)	CH ₄ , CO ₂ and C ₆ H ₆	(b)	H_2 , CO_2 and C_6H_6				
	(c)	CH_4 , H_2 and C_6H_6	(d)	CH ₄ , CO ₂ and H ₂				
Q.60.	The in	nfra red spectrum of CO ₂ exhibits th	e follow	ing number of absorptions:				
	(a)	1	(b)	2				
	(c)	3	(d)	4				
Q.61.	Which	h of the following electronic transiti	on is disa	allowed?				
	(a)	$\pi \to \pi^*$ transition	(b)	$n \rightarrow \pi^*$ transition				
	(c)	$\sigma \rightarrow \sigma^*$ transition	(d)	$\delta \rightarrow \delta^*$ transition				
Q.62.	IR str	etching frequencies of carbonyl gro	ups in ald	dehydes and acid chlorides in cm ⁻¹ are:				
	(a)	1730-1700 and 1650-1580	(b)	1680-1660 and 1730-1700				
	(c)	1730-1700 and 1820-1770	(d)	1680-1660 and 1820-1770				
Q.63.	The se	ource of ultra violet radiation used i	n UV-vis	sible spectrophotometer is:				
	(a)	Mercury Vapour Lamp	(b)	HydrogenVapour Lamp				
	(c)	Sodium Vapour Lamp	(d)	Halogen Vapour Lamp				
Q.64.	You a	You are trying to find out if a thiocyanate ligand is bonded to a metal ion through the N						
	or S a	tom. Which technique would be Mo	OST usef	ul to you?				
	(a)	EPR	(b)	Mass				
	(c)	IR	(d)	NMR				
Q.65.	The in	nfra red and Raman spectrum of BF	3 are exp	ected to show:				
	(a)	The same number of peaks.						
	(b)	More absorption peaks in IR in co	mparisoi	n to Raman.				
	(c)	More absorption peaks in Raman	in compa	urison to IR.				
	(d)	Absorption peaks present in Rama	an and ab	sent in IR.				
Q.66.	Which	h of the following species is ESR ac						
	(a)	$KMnO_4$	(b)	$K_2Cr_2O_7$				
	(c)	$VOSO_4$	(d)	$[Co(NH_3)_6]Cl_2$				

Q.67. Among the following molecules, one having the highest zero point vibrational e			ghest zero point vibrational energy is					
	(a)	CH_4	(b)	H_2O				
	(c)	HF	(d)	NH_3				
Q.68.	Identi	ify the molecule whose rotational cons	tant ca	nnot be determined by spectroscopic				
	metho	ods:						
	(a)	$\mathrm{CH_4}$	(b)	H_2				
	(c)	CO_2	(d)	HCl				
Q.69.	The F	H-H distance in H ₂ molecule can be de-	termine	ed by:				
	(a)	Microwave rotational spectroscopy	(b)	NMR spectroscopy				
	(c)	IR spectroscopy	(d)	Rotational Raman spectroscopy				
Q.70.	Rama	an frequencies for ESR and NMR are r	especti	vely in the spectral region:				
	(a)	Microwave and far-IR.	(b)	Far IR and microwave.				
	(c)	Radiofrequency and microwave.	(d)	Microwave and radiofrequency.				
Q.71.	Whic	h of the following molecules will have	$e n \rightarrow \pi$	* transition at the longest wavelength?				
	(a)	CH ₃ COC ₂ H ₅	(b)	$C_6H_5COC_6H_5$				
	(c)	CH ₃ COC ₆ H ₅	(d)	НСНО				
Q.72.	In the	e UV spectrum of cyclohexanone, th	ne abso	exprision at λ_{max} ~ 215 nm is due to the				
	transi	tion:						
	(a)	$\sigma \rightarrow \pi transition$	(b)	$\pi \to \pi^*$ transition				
	(c)	$\sigma \rightarrow \sigma^*$ transition	(d)	$\pi \rightarrow n$ transition				
Q.73.	The band that gives the most intense band in the infrared spectrum for its stretching							
	vibrat	tion is:						
	(a)	С-Н	(b)	S-H				
	(c)	О-Н	(d)	N-H				
Q.74.	Cis aı	Cis and trans cinnamic acids can be most readily distinguished and identified by:						
	(a) Chemical shift of the olefinic hydrogen's							
	(b)	Coupling constant of the olefinic hy	drogen	's				
	(c)	IR spectra						
	(d)	UV spectra						
Q.75.	The most convenient spectroscopic technique to establish the presence of inter molecular							
	hydro	hydrogen bonding in hydroxyl compounds is:						
	(a)	UV	(b)	Mass				
	(c)	IR	(d)	EPR				
Q.76.	The v	ribrational stretching frequency of N ₂ of	can be o	determined by using:				
	(a)	Raman Spectroscopy	(b)	NMR Spectroscopy				
	(c)	IR Spectroscopy	(d)	Microwave Spectroscopy				
Q.77.	` '	JV light source used in UV-visible spe	ectroph					
-	(a)	Deuterium Lamp	(b)	Mercury Lamp				
	(c)	Sodium Lamp	(d)	Tungsten Lamp				

Q.78.	The n	umber of hyper lines in the EPR sp	ectrum	of a one electron reduced product of			
	$[Co_3(Co_3(Co_3(Co_3(Co_3(Co_3(Co_3(Co_3($	$(CO)_6Se$ (I= 7/2 for Co nucleus) is:					
	(a)	22	(b)	19			
	(c)	15	(d)	18			
Q.79.	Which	n among the following electronic trans	sitions v	vill have the lowest energy?			
	(a)	$n \to \pi^*$ transition	(b)	$\pi \to \pi^*$ transition			
	(c)	$\sigma \rightarrow \sigma^*$ transition	(d)	$n \rightarrow \sigma^*$ transition			
Q.80.	Amon	Among the following diatomic molecules, the one that shows EPR signals is:					
	(a)	B_2	(b)	N_2			
	(c)	C_2	(d)	Li_2			
Q.81.	The n	The number of IR active vibrational modes in ammonia is:					
	(a)	2	(b)	4			
	(c)	6	(d)	3			
Q.82.	Which of the two compounds will be most readily separated by TLC?						
	(a)	Acetophenone and 4-methyl acetoph	nenone				
	(b)	Benzoin acid and 3-toluic acid					
	(c)	Naphthalene and anthracene					
	(d)	Naphthalene and acetophenone					
Q.83.	Hydro	gen absorbency index and nitrogen ru	les are	related to:			
	(a)	UV Spectroscopy	(b)	IR Spectroscopy			
	(c)	NMR Spectroscopy	(d)	Mass Spectroscopy			

Answers

1- (d)	2- (c)	3- (c)	4- (a)	5- (c)	6- (b)
7- (b)	8- (d)	9- (b)	10- (b)	11- (c)	12- (b)
13-(b)	14- (d)	15- (c)	16- (a)	17- (b)	18- (d)
19- (d)	20 - (b)	21 -(a)	22- (a)	23- (d)	24- (b)
25-(a)	26 - (d)	27- (a)	28- (c)	29- (d)	30- (b)
31-(b)	32 - (b)	33 - (b)	34- (c)	35- (c)	36- (c)
37- (a)	38- (b)	39- (d)	40- (d)	41- (b)	42 - (c)
43-(c)	44- (b)	45- (d)	46 - (d)	47 - (d)	48- (c)
49- (c)	50 - (b)	51 - (d)	52- (b)	53- (c)	54- (c)
55 - (b)	56- (a)	57- (b)	58 - (c)	59 - (a)	60 - (c)
61 - (b)	62 - (c)	63 -(a)	64- (c)	65- (c)	66- (d)
67- (a)	68- (b)	69- (d)	70- (d)	71- (b)	72- (b)
73- (c)	74- (d)	75- (c)	76- (a)	77- (a)	78- (a)
79- (a)	80- (a)	81- (c)	82- (d)	83- (d)	

Chapter 4 NMR Spectroscopy

(Contributed by: Dr. Punam Yadav, Department of Chemistry, M. S. College, Saharanpur)

Critical Points:

- ➤ Electromagnetic radiation in the radio wave region is used in ¹H NMR spectroscopy.
- > ¹³C NMR spectroscopy can be used to distinguish between isophthalic and terephthalic acids.
- > Two signals will be observed in the proton decoupled ¹³C NMR for hexamethylbenzene.
- ➤ A singlet, a triplet, and a quartetare observed for the signals in the off-resonance decoupled ¹³C spectrum of 2-chloropropene.
- ➤ The approximate chemical shift of an alkynyl carbon in ¹³C NMR spectroscopy is 70 ppm.
- > 2,2-dichloropropane exhibits only one signal in the ¹H NMR spectra.
- \succ The order of chemical shift (δ value) in the 1H NMR spectrum of crotonaldehyde is CHO > olefinic > Me.
- > The ^{1}H NMR spectrum of $(\eta^{5}-C_{5}H_{5})_{2}$ Fe recorded at room temperature has one singlet.
- ➤ The pattern of ¹N NMR spectrum of 1,4-dichlorobenzene is A₄.
- ➤ The relative area of each peak in a quartet spin-spin splitting pattern 1:3:3:1.
- ➤ The low temperature ¹⁹F NMR spectrum of IF₅ molecule in solution exhibits one doublet and one quintet.
- ➤ Any process faster than 0.01 sec will be recorded as an average by NMR spectroscopy.
- ➤ In the broad band decoupled ¹³C NMR spectrum the number of signals expected for bicyclo [2.2.1] heptane are three.
- ➤ The ³¹P NMR spectrum of PF₄ N(CH₃)₂ at room temperature and low temperature (173K) shows quintet and triplet of triplets respectively.
- ➤ Inthe ¹H NMR spectrum of toluene, the resonance due to CH₃ group is expected at 1.25 ppm.
- ➤ In a ¹H NMR spectrum, ¹H nuclei that are located near to electronegative atoms tend to be deshilded relative to ¹H nuclei that are not near to electronegative atoms.
- ➤ The signal for the hydrogen bonded to oxygen in ethanol appear as a triplet in pure ethanol and as a singlet in ethanol that contain a trace amount of acid because proton exchange causes spin decoupling.
- ➤ In the broad band decoupled ¹³C NMR spectrum, the number of signals forCatechol, Resorcinol and Hydroquinone are three, four and two respectively.
- > Bathochromic shift is also known as red shift.

- > Water is not used as solvent in NMR Spectroscopy.
- ➤ The ¹⁹F NMR spectrum of ClF₃ showsdoublet and triplet for a T-shaped structure.
- Flix Bloch and Edward M. Purcellwere awarded Noble Prize in Physics for Phenomenon of NMR.
- ➤ In NMR if the atom contains three nearby protons then these will produce quartet.
- ➤ The reference material used in NMR Spectroscopy is Tetramethyl Silane.
- ➤ If a proton is coupled with N other equivalent protons the number of peaks in multiplet is N+1 and the relative intensities of these multiplets are determined byPascal's triangle.
- ➤ In comparison to the frequency of the EPR transition, the NMR transition frequency is almost same.
- > ¹⁹F NMR spectrum of meriodional isomer of octahedral RhCl₃F₃ complex, [¹⁰³Rh (I=1/2); ¹⁹F (I=1/2) assuming J_{Rh-F}> J_{F-F}} will show two doublets and two triplets.
- ➤ The ³¹P NMR spectrum of P₄S₃ consists of a doublet and a quartet.
- ➤ The fine structure and intensity ratios expected in the proton NMR spectrum of ¹⁴NH₄⁺ ion (for ¹⁴N I=1) are triplet 1:1:1
- For any NMR active nucleus, the magnitude of radiofrequency required for observing NMR phenomenon depends on: both magnetic field and choice of the nucleus.
- ➤ The ¹H NMR chemical shift of CH₃F, CH₃Cl, CH₃Br and CH₃I are 4.26, 3.05, 2.68 and 2.16 respectively.
- ➤ The sensitivity of a 600 MHz spectrometer is more than that of a 60 MHz spectrometer because according to the Boltzmann distribution law, the excess population in the lower spins state increases with increasing applied magnetic field.

Multiple Choice Questions

Q.1.	The energy difference between the allowed spin states for a ¹ H nucleus is the strength of the external magnetic field in which it is placed.					
	(a)	exponentially related to	(b)	inversely proportional to		
	(c)	logarithmically related to	(d)	directly proportional to		
Q.2.	. ′	•		be relative to 1H nuclei		
Q.2.		arenot.	is tella ti	o be relative to 111 liucier		
	(a)	resonanced	(b)	shielded		
	(c)	deshielded	(d)	split		
Q.3.		H NMR spectrum of 1,4-dimethoxybe	` ′	1		
	(a)	two singlets	(b)	two doublets and one singlet		
	(c)	ten singlets	(d)	two doublets and two singlet		
Q.4.	` ′	9	` ′	ds m- and p- dichlorobenzenes in the		
~ ···		band decoupled 13C NMR spectra, re	_	_		
	(a)	6 and 4	(b)	4 and 4		
	(c)	4 and 2	(d)	3 and 2		
Q.5.		romagnetic radiation in the	` ′	_		
Q.	(a)	X-ray	(b)	Radio wave		
	(c)	Infrared	(d)	Microwave		
Q.6.	` '	rotons marked H_a and H_b in the molecular	` '			
		Ha ///		"		
	(a)	Chemically equivalent	(b)	Enantiotopic		
	(c)	Diastereotopic	(d)	Endotopic		
Q.7.	` '	h technique can be used to distinguish	between	n isophthalic and terephthalic acids?		
	(a)	¹³ C NMR spectroscopy	(b)	IR spectroscopy		
	(c)			Mass spectrometery		
Q.8.	How			proton decoupled ¹³ C NMR for		
		nethylbenzene?		•		
	(a)	4	(b)	1		
	(c)	2	(d)	3		
Q.9.		multiplicities are observed for the rum of 2-chloropropene?	signals	in the off-resonance decoupled ¹³ C		
	(a)	A singlet, a doublet and a triplet	(b)	3 singlets		
	(c)	A singlet, a triplet, and a quartet	(d)	2 singlets and a doublet		
Q.10.		is the approximate chemical shift of a				
~ .10.	(a)	10 ppm	(b)	200 ppm		
	(4)	International Science Cor	` '			
		c. mational Science col				

www.isca.in , www.isca.co.in, www.isca.net.co , www.isa.net.in

(c) 70 ppm (d) 30 ppm

- Q.11. An organic compound with molecular formula C₃H₆Cl₂ exhibit only one signal in the ¹H NMR spectra. The compound is:
 - (a) 2,2-dichloropropane

(b) 1,2-dichloropropane

(c) 1,3-dichloropropane

- (d) 1,1-dichloropropane
- Q.12. The order of chemical shift (δ value) in the ¹H NMR spectrum of crotonaldehyde is:
 - (a) Olefinic > CHO > Me
- (b) CHO > Me > olefinic
- (c) CHO > olefinic > Me
- (d) Olefinic > Me > CHO
- Q.13. The protons marked Ha and Hb in the molecule below are:

- (a) Chemically equivalent
- (b) Enantiotopic

(c) Diastereotopic

- (d) Endotopic
- Q.14. The protons marked H_a and H_b in the molecule below are

- (a) Chemically equivalent
- (b) Enantiotopic

(c) Diastereotopic

- (d) Endotopic
- Q.15. The multiplicity of the signal in ³¹P NMR spectrum of PD₃ is:
 - (a) Singlet

- (b) Septet with unequal intensities
- (c) Quartet with equal intensities
- (d) Septet with equal intensities
- Q.16. The ¹H NMR spectrum of $(\eta^5-C_5H_5)_2$ Fe recorded at room temperature is:
 - (a) One singlet

(b) Two singlets

(c) One multiplet

- (d) Two multiplets
- Q.17. The pattern of ¹N NMR spectrum of 1,4-dichlorobenzene is:
 - (a) AX

(b) AM

(c) AB

(d) A_4

Q.18.		collecule contains 4 elements of unseen δ 7.0 and 8.0 ppm, what structural		and signals in the ¹ H NMR spectrum likely to be present?			
	(a)	A carbon-carbon triple bond	(b)	•			
	(c)	An aromatic ring	(d)	Ahydroxyl group			
Q.19.	the α a magne	¹ H NMR spectrum of bromoethane and βnuclear spins of the protons of the field, B _o , directs upward, which diffarthest peak down field within the	n the neig n sequenc spin-spin	hylene group is split into a quartet by ghboring methyl group. If the external ce of nuclear spins contributes to the a splitting pattern?			
	(a)	$\downarrow\downarrow\downarrow$	(b)	$\uparrow\downarrow\uparrow$			
	(c)	$\uparrow\downarrow\downarrow$	(d)	$\uparrow\uparrow\uparrow$			
Q.20.	What i	is the relative area of each peak in a	quartet sp	pin-spin splitting pattern?			
	(a)	1:2:2:1	(b)	1:2:1			
	(c)	1:4:4:1	(d)	1:3:3:1			
Q.21.	The lo	w temperature ¹⁹ F NMR spectrum of	of IF ₅ mol	lecule in solution should exhibit which			
	of the	following patterns? (Ignore any ma	gnetic co	upling effects to the iodine nucleus)			
	(a)	One singlet	(b)				
	(c)	One doublet and one quintet	• •				
Q.22.	` /	nany signals will vinyl chloride have	, ,	1			
	(a)	3	(b)	2			
	(c)	4	(d)	1			
Q.23.	` ′	of the following will occur farthest	` '				
C	(a)	The hydrogen of benzene	(b)	The hydrogen of ethene			
	(c)	• •	(d)	The hydrogen of dimethyl ether			
Q.24.	` ′		` '	blecular formula C_4H_8 exhibited only a			
Q.2		t at $\delta = 1.9$ ppm. The compound is:	pound in	szeutai formana C4116 emmented omiy a			
	(a)	1-butene	(b)	trans-2-butene			
	(c)	cis-2-butene	(d)	cyclobutane			
Q.25.	Any 1	process faster than	will be	recorded as an average by NMR			
	spectroscopy.						
	(a)	0.0005 sec	(b)	0.1 sec			
	(c)	0.001 sec	(d)	0.01 sec			
Q.26.	An NMR spectrometer that operates at a frequency of 60 MHz for ¹³ C NMR spectra, operates atwhat frequency for ¹ H NMR spectra?						
	(a)	es atwhat frequency for H NMK sp 60 MHz	(b)	240 MHz			
	(a) (c)	30 MHz	(d)	120 MHz			
O 27	` ′		` ′	in a spectrum are 4.08 and 4.06 using			
Q.27.		<u> </u>	-	-			
		MHz NMR spectrometer. The coupl	•				
	(a)	8	(b)	0.02			
0.20	(c)	8.14	(d)	10			
Q.28.		-	spectrum	n the number of signals expected for			
	-	o [2.2.1] heptane are:	(b)	3			
	(a)	3 International Science Co	(b) ommunity	2 Association			

	(c)	5		(d)	7			
Q.29. The ³¹ P NMR spectrum of PF ₄ N(CH ₃) ₂ at room temperature and low temperature					mperature and low temperature (173K)			
		ctively shows (assume						
	(a)	Triplet and quintet		(b)	Quintet and triplet of triplets			
	(c)	Quintet and triplet		(d)	Triplet and triplet of triplets			
Q.30.	` ′	•	of protons (giv	` '	que chemical shifts in ¹ H NMR) are			
		nt in styrene:	1 (2		,			
	(a)	3		(b)	4			
	(c)	6		(d)	5			
Q.31.	` '		oluene, the res	` /	due to CH ₃ group is expected at:			
Q.01.	(a)	δ 0.5	31 33113, 1113 133	(b)	δ 3.5			
	(c)	δ 1.25		(d)	δ 2.5			
Q.32.	` /		ound with the	` /	$1.5 \times 1.5 \times 1.5$ $1.5 \times 1.5 $			
Q.32.								
	region	band in the region from 3100-3600 cm ⁻¹ and also does not have an absorption band in the region from 1650-1800 cm ⁻¹ . To what functional class must this compound belong?						
	(a)	Alcohol - would have						
	(b)	Ketone - would have	C=O stretch in	1650-1	800 region			
	(c)	Ether						
	(d)	Ester - would have C=	O stretch in 1	650-180	00 region, also needs two 'O's for ester			
Q.33.	In a 1	H NMR spectrum, ¹ H	nuclei that are	located	near to electronegative atoms tend to			
	be	relative to	¹ H nuclei that	are not	near to electronegative atoms.			
	(a)	split		(b)	have a more intense signal			
	(c)	shielded		(d)	deshielded			
Q.34.					vn below has the molecular formula			
			absorption pe		740 cm ⁻¹ . What is its structure?			
	(a) (c)	ClCH ₂ COCH ₂ OCH ₃ CH ₃ COOCH ₂ CH ₂ Cl		(b) (d)	CH ₃ CH ₂ CH ₂ OCOCl ClCH ₂ COOCH ₂ CH ₃			
Q.35.	` /		ar ion peak in	` /				
Q .55.		A compound has a molecular ion peak in its mass spectrum at m/z 58, and a strong absorption band in its IR spectrum at 1720 cm ⁻¹ . What is the structure of the compound?						
		CH ₂ =CHCH ₂ OH						
	(c)	HCOOCH ₂ CH ₃		(d)	CH ₃ COCH ₃			
Q.36.	-	Why does the signal for the hydrogen bonded to oxygen in ethanol appear as a triplet in						
	-	pure ethanol and as a singlet in ethanol that contain a trace amount of acid?						
		(a) Spin exchange causes spin decoupling.						
	(b) (c)	(b) Electron exchange causes spin decoupling.(c) Proton exchange causes spin decoupling.						
	(d)	Chemical exchange cause		_				
Q.37.		broad band decoupled	¹³ C NMR spec	trum, th	ne number of signals for:			
C	(A)	Catechol (B)	Resorcinol	(C)	Hydroquinol			
	respec	ctively are:			, ,			
	(a)	Six, four and two		(b)	Three, four and two			
0.00	(c)	Six, six and four		(d)	Three, four and four			
Q.38.		MR spectrum of HD wo	ould show:	(1-)	A .l			
	(a)	A singlet		(b)	A doublet			

	(-)	A 4 .: 1 . 4: (41: 4: 4	(1)	A 401-1-4				
0.20	(c)	A triplet with intensity ratio 1:2:1		÷ • • • • • • • • • • • • • • • • • • •				
Q.39.		The NMR experiment consists of measuring the energy associated with what physical						
	-	menon?						
	(a)	Excitation of a core electron from an						
	(b)	Flipping the magnetic spin vector of		eus (having a non-zero magnetic				
		moment) in a strong magnetic field.						
	(c)	Activating a molecular vibration.						
	(d)	Promoting an electron from the HOl	MO to t	he LUMO.				
Q.40.	A con	npound has the molecular formula C	$_{5}H_{10}$ an	d shows a single line in the ¹ H NMR				
		um, at 1.50 ppm. Select the structure						
	(a)	Pentane	(b)	Cyclo pentane				
	(c)	Pentene	(d)	Cyclo pentene				
Q.41.		n one of the following factors does no		· ·				
	(a)	Inductive effect	(b)	Anisotropic effect				
	(c)	Concentration	(d)	Hydrogen bonding				
Q.42.	. ,	chromic shift is also known as	()	, 8				
C	(a)	Hypochromic shift	(b)	Hyper chromic shift				
	(c)	Red shift	(d)	Hypsochromic shift				
Q.43.	. ,	n one of the following solvent is not u		* -				
Q	(a)	Carbon di sulfide	(b)	Deuterated chloroform				
	(c)	Carbon tetra chloride	(d)	Water				
Q.44.	` /	4-Hydroxybenzoic acid exhibited signals at δ 171, 162, 133, 122 and 116 ppm in its						
Q	broad band decoupled 13C NMR spectrum. The correct assignment of the signals is:							
	(a)	δ 171 (C-4), 162 (COOH), 133 (C-3						
	(b)	δ 171 (COOH), 162 (C-4), 133 (C-2						
	(c) δ 171 (C-4), 162 (COOH), 133 (C-2&6) 122 (C-1) and 116 (C-3&5)							
	(d)							
Q.45.		(d) δ 171 (COOH), 162 (C-4), 133 (C-3&5) 122 (C-1) and 116 (C-2&6) The ¹⁹ F NMR spectrum of ClF ₃ shows:						
Q. 13.	(a) Doublet and triplet for a T-shaped structure							
	(b)	Singlet for a trigonal planar structure						
	(c)	Singlet for a trigonal pyramidal structure						
	(d)	Doublet and singlet for a T-shaped s		.				
O 46				due to the magnetic movement of				
Q. 10.		red electron, which spectroscopy is ap	-	=				
	(a)	NMR	(b)	ESR				
	` '		` ′					
0.47	(c)	IR	(d)	PMR				
Q.47.			Noble	Prize in Physics for Phenomenon of				
	NMR:							
	(a)	Henery and Moseley	(b)	Flix Bloch and Edward M. Purcell				
	(c)	Beer and Lambert	(d)	Frederic William Herschel				
Q.48.	The tr	ansition between a triplet excited state	e and sin	nglet excited state is known as:				
	(a)	Allowed	(b)	Forbidden				
	(c)	Both	(d)	None of these				
Q.49.		umber of peaks shown by Iso propyl a	` /					
∀ . † ₹.	(a)	Four	(b)	Two				
	(u)	1 001	(0)	1 YY O				

(c)	Three	(d)	Five			
The ra	tio of relative intensities of carbon si	gnals in	the firs	st order ¹³ C NMR spectrum of		
				•		
(a)	1:4:6:4:1	(b)	1:3:3:1			
(c)	1:6:15:20:15:6:1	(d)	1:3:6:7	:6:3:1		
In NM	IR spectroscopy, the product of the 1	nuclear	'g' fact	or (g _n), the nuclear magneton		
(β_n) an	d the magnetic field strength (B _n) give	es that				
(a)	Energy of transition from α to β state)	(b)	Chemical shift		
(c)	Spin-spin coupling constant		(d)	Magnetogyric ratio		
Consid	der the following statements for [18] a	nnulene	e			
[A]	It is aromatic					
[B[The inner portion resonate at δ 9.28 is	in its ¹ H	I NMR s	spectrum		
[C[
(a)	A,B and C	(b)	A and I	B only		
(c)	B and C only	(d)	A and	C only		
In NM	R if the atom contains three nearby pr	otons tl	hen thes	e will produce:		
(a)	Doublet	(b)	Triplet			
(c)	Quartet	(d)	Sestet			
The re	ference material used in NMR Spectro	oscopy	is			
(a)	Trimethyl silane	(b)		ethyl silane		
(c)	Both of these	(d)	None o	of these		
, ,		, ,		s triangle		
` /		` '				
			and dec	oupled ¹³ C NMR spectrum of		
-	•					
(a)		(b)				
		` '				
In con	parison to the frequency of the EPR t	ransitio		• •		
(a)	Much lighter	(b)				
(c)	Almost same	(d)	None o			
	=	f octahe	dral Rh	Cl_3F_3 complex, [^{103}Rh ($I=1/2$);		
¹⁹ F (I=	9 F (I=1/2) assuming $J_{Rh-F} > J_{F-F}$ will show					
(a)	One doublet	(b)	Two do	oublets and one triplet		
(c)	Two doublets and two triplets	(d)		nglet and two triplets		
A bora	ane (X) is reacted with ammonia to g	give a sa	alt of bo	prohydride (Y). The ¹¹ B NMR		
spectru	um of Y consists of a triplet and a quir	ntet. Th	e borane	e X is:		
(a)	B_2H_6	(b)	B_3H_9			
(c)	B_4H_8	(d)	B_5H_9			
	The ra CD ₃ Cl (a) (c) In NM (β _n) and (a) (c) Consid [A] [B[[C[(a) (c) In NM (a) (c) If a properties (a) (c) If a properties (a) (c) In contain (a) (c) In conta	The ratio of relative intensities of carbon si CD ₃ Cl is: (a) 1:4:6:4:1 (c) 1:6:15:20:15:6:1 In NMR spectroscopy, the product of the responsibility of the magnetic field strength (B _n) given and the magnetic field strength of the responsibility of the state of the spectrum of the state of the spectrum of the sp	The ratio of relative intensities of carbon signals in CD_3Cl is: (a) 1:4:6:4:1 (b) (c) 1:6:15:20:15:6:1 (d) In NMR spectroscopy, the product of the nuclear (β_n) and the magnetic field strength (B_n) gives that (a) Energy of transition from α to β state (c) Spin-spin coupling constant Consider the following statements for [18] annulence [A] It is aromatic [B[The inner portion resonate at δ 9.28 in its 1H [C[There are six protons in the shielded zone (a) A,B and C (b) (c) B and C only (d) In NMR if the atom contains three nearby protons the shielded zone (a) Doublet (b) (c) Quartet (d) The reference material used in NMR Spectroscopy (a) Trimethyl silane (b) (c) Both of these (d) If a proton is coupled with N other equivalent proton N+1 and the relative intensities of these multiplets at (a) Cram's rule (b) (c) Chemical shift (d) The number of signals that appear in the broad by phenanthrene and anthracene, repectively are: (a) Ten and four (b) (c) Seven and four (d) In comparison to the frequency of the EPR transition (a) Much lighter (b) (c) Almost same (d) ^{19}F (I=1/2) assuming $J_{Rh-F} > J_{F-F}$ will show (a) One doublet (b) (b) (c) Two doublets and two triplets (d) A borane (X) is reacted with ammonia to give a sample spectrum of Y consists of a triplet and a quintet. The (a) B_2H_6 (b)	The ratio of relative intensities of carbon signals in the first CD_3Cl is: (a) 1:4:6:4:1 (b) 1:3:3:1 (c) 1:6:15:20:15:6:1 (d) 1:3:6:7 In NMR spectroscopy, the product of the nuclear 'g' fact (β_n) and the magnetic field strength (B_n) gives that (a) Energy of transition from α to β state (b) (c) Spin-spin coupling constant (d) Consider the following statements for [18] annulene [A] It is aromatic [B[The inner portion resonate at δ 9.28 in its ¹ H NMR since [C[There are six protons in the shielded zone (a) A,B and C (b) A and (c) B and C only (d) A and (d		

Q.60.	In the proton decoupled ¹³ C and ³¹ P NMR spectrum of (CH ₃) ₃ P=O, the number of lines observed respectively are:						
		Two and one		(b)	One and two		
	(a)	Three and One		(b)	One and two		
O 61	(c)		amiaally miaid	(d)	Two and two	(I for ¹⁹ F=1/2) would	
Q.61.				IIS F	NVIR spectrum	(110f F=1/2) would	
	,	sume that Cl is not N	,	(b)	Two singlet		
	(a)	A doublet and a tripl A doublet and a sing		(b)	Two singlet		
0.62	(c)	P NMR spectrum of P		(d)	A singlet		
Q.62.	(a)	A doublet and a quar			Two doublets		
	(a) (c)	•		(b) (d)			
O 62	` ′	-		` ′	A singlet	la C U NO shaws tha	
Q.63.		ring features:	a compound	with in	olecular formu	la C ₃ H ₇ NO shows the	
		=	6.50		2.25	1.10	
		ical Shift (ppm):	6.50				
	Shape		Broad singlet		quartet	triplet	
		of the following is in	agreement wit			TT	
	(a)	(CH ₃) ₂ C=NOH		(b)	CH ₃ COCH ₂ N	=	
0.64	(c)	CH ₃ CH ₂ CONH ₂	•, ,•	(d)	HCON(CH ₃) ₂		
Q.64.	The fine structure and intensity ratios expected in the proton NMR spectrum of ¹⁴ NH ₄ ⁺						
	,	or ¹⁴ N I=1) are:		(1.)	T 1 1 1 1 1		
	(a)	Doublet 1:1		(b)	Triplet 1:1:1		
0.65	(c)	Triplet 1:2:1	.1	(d)	Singlet	. 1.0 1 .	
Q.65.				ude of 1	radiofrequency	required for observing	
		phenomenon depends		<i>a</i> >			
	(a)	Strength of magnetic		(b)	Choice of the	nucleus	
	(c)	Both onmagnetic field		f the nuc	cleus		
	(d)	The nuclear energy l				1	
Q.66.			ou expect to so	ee for 1.	,4-dinitro benze	ene in its ¹ H NMR and	
		MR spectra?		l			
	(a)	One of its ¹ H NMR a			•		
	(b)	Two of its ¹ H NMR					
	(c)	Two of its ¹ H NMR					
	(d)	One of its ¹ H NMR a			•		
Q.67.	Which	of the following com					
	(a)	2-chloro-2-methylbu	tane	(b)	3-chloropenta	ne	
	(c)	2-chloropentane		(d)	Both a and b		
Q.68.	In the	¹⁹ F NMR spectrum	of PF_5 , the	number	of signals and	d multiplicity at room	
	tempe	rature are:					
	(a)	One, doublet		(b)	One, singlet		
	(c)	Two, singlet		(d)	Two, doublet		

Q.69.	The ¹ H NMR chemical shift of CH ₃ F,CH ₃ Cl, CH ₃ Br andCH ₃ I are:						
	(a)	2.16, 2.68, 3.05, 4.26	(b)	4.26, 3.05, 2.68, 2.16			
	(c)	4.26, 3.05, 2.16, 2.68	(d)	2.16, 3.05, 2.68, 4.26			
Q.70.	An or	ganic compound (MF- C ₈ H ₁₀ O) exhi	bited the	e following ¹ H NMR spectral data δ 2.5			
	(3 H,	s), 3.8 (3H,s), 6.8 (2H,d,J 8Hz), 7.2	(2H, d, J	(8Hz) ppm. The compound among the			
	choic	es is:					
	(a)	4-ethylphenol	(b)	2-ethylphenol			
	(c)	4-methylanisol	(d)	4-methylbenzylalcohol			
Q.71.	In the	e ¹ H NMR spectrum of CH ₃ CH ₂ Cl,	the qua	rtet for the CH2 group has a coupling			
	const	ant of 7 Hz. What is the coupling con	stant for	the CH ₃ triplet?			
	(a)	0	(b)	3.5			
	(c)	7	(d)	10.5			
Q.72.	The N	NMR spectrum of AX ₃ exhibits lines	at $\delta=2$.	1 and 2.3 ppm (for X type proton) and			
	$\delta=4.1$, 4.3, 4.5 and 4.7 ppm (for A type pr	oton), n	neasured from TMS with an instrument			
	opera	ting at 100 MHz. The chemical shi	ft (in pp	om) of A and X protons and coupling			
	const	ant (in Hz) are respectively.					
	(a)	4.4, 2.2 and 20		2.2, 4.4 and 10			
	` '	2.2, 4.4 and 5	` ′	4.3, 2.1 and 20			
Q.73.			_	ound in liquid state (relaxation time=1s)			
	is 0.1 Hz. The uncertainty in the frequency (in Hz) of same compound in solid state						
		ration time=10 ⁻⁴ s) is:		2			
	(a)	10^{-4}	(b)	10^{-3}			
	(c)	100	(d)	1000			
Q.74.				1.0 ppm away from the TMS using an			
			What a	re the values of J_{AX} (in Hz) and δ_{AX} (in			
		, respectively:					
	(a)	12 and 3.6	(b)	6 and 3.6			
	(c)	12 and 2.86	(d)	6 and 2.86			
Q.75.			er is mo	re than that of a 60 MHz spectrometer			
	because:						
	(a)	-		rtional to the applied magnetic field.			
	(b)	Population of spin states is directly					
	(c)	_		aw, the excess population in the lower			
	<i>(</i> 1)	spins state increases with increasing applied magnetic field.					
	(d)	-	or a 600	0 MHz spectrum as compared to a 60			
0.76	1	MHz spectrum.					
Q.76.		MR spectrum of {18] annulene shows		0.1 1.4850(10.11)			
	(a)	Only one peak at δ 7.2 (18 H).	(b)	Only one peak at δ 5.0 (18 H).			
	(c)	Two peaks at δ 9.0 (12 H) and δ 3.0					
	(d)	Two peaks at δ 9.0 (6 H) and δ 3.0	(12 П).				

Q.77.	How	many	absorption li	nes v	vill 2-m	ethylpent-2-	-ene	have	in its pro	oton deco	upled ¹³ C
		R spect							-		-
	(a)	4				(b)	3				
	(c)	6				(d)	5				
Q.78.	How	many	signals does 2	2,2,4-	trimethy	lpentane ha	ve ir	ı its ¹ l	H NMR s	pectrum?	
	(a)	4				(b)	3				
	(c)	2				(d)	5				
Q.79.	The	low	temperature	^{1}H	NMR	spectrum	of	the	Fischer	carbine	complex
	[(CO) ₅ Cr(C	$C(OCH_3)Me)]$ s	how	s for the	methoxy gr	oup:				
	(a)	Two	o singlets of un	equa	l intensi	ty.					
	(b)	Fou	r resonances ir	the	ratio 1:3	:3:1 due to	coup	ling v	vith methy	yl group.	
	(c)		e single resona								
	(d)		ee peaks due					or ea	ch hydro	gen on tl	ne methyl
		grou									
Q.80.	In th	e 400	MHz ¹ H NMF	spe	ctrum, c	of organic co	ompo	ound	exhibited	a doublet	. The two
	lines	of the	doublets are δ	2.35	and 2.3	8 ppm. The	coup	oling o	constant v	alue is:	
	(a)	6 H	Z			(b)	3 I	Ηz			
	(c)	12 I	Hz			(d)	9 I	Ηz			
Q.81.	Give	n γ (¹H	$(H) = 2.7 \times 10^8 \text{ m}$	Γ^{-1} s ⁻¹	. The re	sonance fre	quen	cy of	a proton	in magnet	ic field of
	12.6	T is cl	ose to:				_		_		
	(a)	60 I	Hz			(b)	54	0 Hz			
	(c)	110	Hz			(d)	78	0 Hz			
Q.82.	The 1	numbe	r of signals ob	serve	d in ¹ H l	NMR spectr	um (of 3,5	-dibromot	toluene is:	
	(a)	4	_			(b)	3				
	(c)	2				(d)	6				

Answers

1- (d)	2- (c)	3- (a)	4- (c)	5- (b)	6- (a)
7- (a)	8- (c)	9- (c)	10- (c)	11- (a)	12- (c)
13-(c)	14- (b)	15- (b)	16- (a)	17- (d)	18- (c)
19- (b)	20 - (d)	21 - (c)	22- (a)	23- (a)	24- (d)
25- (d)	26 - (b)	27- (a)	28- (a)	29- (b)	30- (c)
31- (c)	32 -(c)	33 - (d)	34- (d)	35- (d)	36- (c)
37- (b)	38- (d)	39- (b)	40- (b)	41- (c)	42 - (c)
43- (d)	44- (b)	45- (a)	46 - (b)	47 - (b)	48- (b)
49- (c)	50 - (d)	51 - (a)	52- (d)	53- (c)	54- (b)
55 - (b)	56- (c)	57- (c)	58 - (c)	59 - (a)	60 - (a)
61 - (a)	62 - (a)	63 - (c)	64- (b)	65- (c)	66- (a)
67- (d)	68- (a)	69- (b)	70- (c)	71- (c)	72- (a)
73- (d)	74- (a)	75- (c)	76- (c)	77- (d)	78- (a)
79- (b)	80- (c)	81- (b)	82- (b)		

Chapter 5

Co-ordination Chemistry and Distortion in Complex Compounds

(Contributed by: Dr. Dinkar Malik, Department of Chemistry, M. S. College, Saharanpur)

Critical Points:

- > Zieses salt has square planar geometry.
- \triangleright In trisilyl amine three sp² orbital's are involved in σ bonding giving a plane trigonal structure.
- \triangleright The no. metal-metal bonds in [W₂(OPh)₆] is three.
- \triangleright The ground state term of V^{+3} ion is 3F_2 .
- ➤ trans-[Pt(NH₃)₂Cl₂] does not show optical isomerism because it is super- imposable on its mirror image.
- ➤ The dark purple colour of KMnO₄ is due to lignad to metal charge transfer spectra.
- ➤ If t_{2g} orbital is unsymmetrically filled than there is less Jahn-Teller distortion andIf e_g orbital is unsymmetrically filled then Jahn-Teller distortion will be large. However in case of symmetrically filled orbitals there is no Jahn-Teller distortion.e.g. in Cu⁺² (d⁹ configuration) e_g will be unsymmetrically filled. Hence largedistortion occurs in this complex.
- \triangleright Tropylium exists in +1 oxidation sate.
- \triangleright Jahn-Teller effect is not observed in high spin d^3 , d^8 and d^{10} complexes.
- \triangleright The complex ion $[Cu(NH_3)_6]^{+2}$, the number of possible d-d transitions will be: one.
- ➤ Jahn Teller effect is the separation of the degenerate electronic states in a givensymmetry so as to remove degeneracy.
- > The complexes [Co(NH₃)₃NO₂]Cl₂ and [Co (NH₃)₅(ONO)]Cl₂ are example of Linkage isomers.
- ightharpoonup The pale colour of $[Mn(H_2O)_6]^{+2}$ is due toSpin forbidden d-d transition.
- \triangleright CO, NO, PPh₃ are well known as π acid ligands.
- > Fe Oxygen transport (Haemoglobin, haemocyanin) oxygen storage (myoglobin)
 - Mn- Oxidation of H_2O_2 to O_2 (Photosynthesis II)
 - Mo- Nitrogen fixation (Nitrogenase)
 - Zn- Hydrolysis of peptide linkage (carboxy peptidase),

Decarboxylation of oxalo acetic acid (oxaloacetade carboxylase)

Oxidation of alcohol (alcohol dehydrogenase)

Cu- Oxygen transport (Haemocyanin)

Electron transfer (Blue copper protein)

Dismutation of superoxide (Superoxide dismutase)

- ➤ Jahn-Teller effect is in the field of Vibronic interactions.
- > EDTA is an hexadentate ligand.
- The number of microstates in term ¹G is nine.
- \triangleright In general the π accepting ability of phosphine increases as the electro-negativity of the substituent increases.

- ➤ In haemoglobin iron is present in +2 oxidation state.
- ➤ Unlike d-d transition, f-f transitions do not change much with the change in ligand.
- \triangleright cis [Pt^{II} (NH₃)₂Cl₂] is used in chemotherapy in cancer.
- \triangleright The oxidation state of Iron in the complex hemoglobin is +2.
- \triangleright Spin- orbit coupling of d- electron takes place when t_{2g} orbital's are asymmetrically filled.
- The self-indicating silica gel (impregnated with cobalt chloride) turns pink on absorbingmoisture and becomes blue on heating. The pink and blue color is respectively due to $[Co(H_2O)_6]^{+2}$ and $[CoCl_4]^{-2}$ respectively.
- ➤ MnO₄ involves ligand to metal charge transfer (LMCT).
- ➤ The metal fragments dⁿ- ML_m is isolobal with CH is d⁹- ML₃.
- \triangleright V(CO)₆ does not obey EAN and 18-electronrule.
- \triangleright The oxidation state of iron in met- haemoglobin is +3.
- \triangleright In trigonal bipyramidal complexes the two ligands lie on z-axes and three in xy- plane, somewhere in between the axes. In xy plane there are 4 electrons and on z-axes there is only one electron in d_{z^2} orbital.

$$d_{xz} = d_{yz} < d_{xy} = d_{x^2 - y^2} < d_{z^2}$$

- The total no. of Cu-O bonds present in the crystalline copper(II) acetate monohydrate are ten.
- \triangleright V(CO)₆ does not obey EAN rule.

Multiple Choice Questions

Q.1.	The no	o. of absorption band observed in [Fel	$[F_6]^{-3}$ and	[CoF ₆] ⁻³ respectively are,
	(a)	1 and 3	(b)	0 and 1
	(c)	0 and 3	(d)	3 and 1
Q.2.	The no	o. metal-metal bonds in $[W_2(OPh)_6]$ is	s:	
	(a)	1	(b)	2
	(c)	3	(d)	4
Q.3.	The O	ptical isomerism is not shown by the	complex	xes:
	(a)	$[\operatorname{Cr}(\operatorname{ox})_3]^{-3}$	(b)	[Co(EDTA)]
	(c)	$[Co(en)(NH_3)_2Cl_2]$	(d)	trans- $[Pt(NH_3)_4Cl_2]$
Q.4.	The gr	round state term of V^{+3} ion is:		
	(a)	$^{3}F_{2}$	(b)	$^{5}D_{0}$
	(c)	$^{3}F_{4}$	(d)	$^{3}D_{5/2}$
Q.5.	Amon	gst the following the strongest oxidiz	ing anio	n is:
	(a)	CrO_4^{-2}	(b)	VO_4^{-3}
	(c)	FeO_4^{-2}	(d)	MnO_4^{-2}
Q.6.	Which	n of the following acts as a π -acid liga	nd?	
	(a)	F	(b)	O^{-2}
	(c)	CO	(d)	NH_3
Q.7.	The ox	xidation state of molybdenum in $[(\Pi^7 - \Pi^7 - \Pi^3)]$	- tropyli	$um)Mo(CO)_3]^+$ is :
	(a)	+2	(b)	+1
	(c)	0	(d)	-1
Q.8.	Which	n of the following is a hexadentate liga	and?	
	(a)	Acetyl Acetonato	(b)	1,10 phenanthroline
	(c)	Ethylene Diamine	(d)	Ethylene diamine tetraacetic acid
Q.9.	The da	ark purple colour of KMnO ₄ is due to	•	
	(a)	d-d transition	(b)	Ligand field transition
	(c)	Charge transfer transition	(d)	$\sigma - \pi^*$ transition
Q.10.	The co	omplex which exhibit lowest energy e	lectroni	c absorption band is:
	(a)	[NiCl ₄] ⁻²	(b)	$[Ni(H_2O)_6]^{+2}$
	(c)	$[Ni(CN)_4]^{-2}$	(d)	Ni(CO) ₄
Q.11.	The d-	orbital will split under trigonal bipyr	amidal	ligand field into:
	(a)	One level	(b)	Two level
	(c)	Three level	(d)	Four level
Q.12.	The M	Iulliken symbols for the spectroscopic	states a	arising from the free-ion term F are:
	(a)	$T_{2g}+E_g$	(b)	$T_{1g}+T_{2g}+T_{1u}$
	(c)	$T_{1g} + T_{2g} + A_{2g}$	(d)	$T_{1g} + A_{1g} + T_{2g}$
Q.13.	Jahn-7	Teller effect is not observed in high sp	oin comp	· _
	(a)	d^4	(b)	d^7

	(c)	d^8	(d)	d^9
Q.14.	For wl	nich of the following ion colour is NO	T due t	o d-d transition?
	(a)	CrO ₄ -2	(b)	$\left[Cu(NH_3)_4\right]^{+2}$
	(c)	$[Ti(H_2O)_6]^{+2}$	(d)	CoF_6^{-3}
Q.15.	` /	urple colour of iodine is due to:	` '	G .
	(a)	d-d transition	(b)	π – σ * transition
	(c)	Charge transfer transition	(d)	π^* - σ^* transition
Q.16.		Celler effect is not observed in the high	` '	
	(a)	d^4	(b)	d^7
	(c)	d^{10}	(d)	d^9
Q.17.		gel contains [CoCl ₄] ⁻² as an indicator.	When a	activated silica gel becomes dark blue
	while	upon absorption of moisture, its color	r change	es to pale pink. This is because:
	(a)	Co(II) changes its coordination from	tetrahe	dral to octahedral.
	(b)	Co(II) changes its oxidation state to	Co(III).	
	(c)	Tetrahedral crystal field splitting is N	NOT eq	ual to octahedral field splitting.
	(d)	Co(II) forms kinetically labile CO(II	I) form	s kinetically inert complexes
Q.18.	Amon	g the following complexes, optical ac	tivity is	possible in:
	(a)	[Co(en)(NH3)2Cl2]	(b)	$\left[\text{Co (NH}_3)_3(\text{NO}_2)\text{Cl}\right]^+$
	(c)	$[Co(CN)_5NC]^{-}$	(d)	$\left[Co(H_2O)_4Cl_2\right]^+$
Q.19.	For the	e complex ion $[Cu(NH_3)_6]^{+2}$, the num	ber of p	ossible d-d transitions will be:
	(a)	1	(b)	2
	(c)	3	(d)	4
Q.20.	The co	ompound which shows MLCT is:		
	(a)	Ni(CO) ₄	(b	$K_2Cr_2O_7$
	(c)	HgO	(d)	$[Ni(H_2O)_6]^{+2}$
Q.21.	Coord	inated water molecules of Cd(II) co	mplex	can be successively replaced by Br
	finally	to result in [CdBr ₄] ⁻² . In this proces	s the fo	ourth equilibrium constant is observed
	which	is higher than one because:		
	(a)	Equilibrium for the last step is alway	s the hi	ghest.
	(b)	Three molecules of water are release	d durin	g the fourth step.
	(c)	The aqua-Cd(II) species is octahedra	ıl.	
	(d)	The Br anion replaces a neutral H ₂ O		-
Q.22.	The ba	ands in the electronic spectrum of [Cro		
	(A)	$^{4}A_{2g} \rightarrow ^{4}T_{1g}$ (B) $^{4}A_{2g} \rightarrow$	$^4T_{2g}$	$(C) \qquad {}^{4}A_{2g} \rightarrow {}^{2}E_{g}$
	Identif	Ty the correct statement about them:		
	(a)	Intensity of A is lowest	(b)	Intensity of C is lowest
	(c)	Intensities of A,B and C are similar	(d)	Intensities of B and C are similar.
Q.23.	The co	omplexes $[Co(NH_3)_3NO_2]Cl_2$ and $[Co$	$(NH_3)_5$	(ONO)]Cl ₂ are example of
	(a)	Linkage isomers	(b)	Ionization isomers
	(c)	Geometrical isomers	(d)	Co-ordination isomers

Q.24.	Jahn-	Teller distortion of CuSO ₄ .5H ₂ O acts	to:					
	(a) Raise symmetry.							
	(b)							
	(c)	Cause loss of H ₂ O ligand.						
	(d)	Promote a d-electron to an anti-bon	ding mo	olecular orbital.				
Q.25.	The p	vale colour of $[Mn(H_2O)_6]^{+2}$ is due to:						
	(a)	Spin forbidden d-d transition	(b)	Metal to ligand charge transfer				
	(c)	Ligand to metal charge transfer	(d)	Inter ligand excitation				
Q.26.	The e	experimental magnetic moment of K ₃ [Fe(CN)	₆] is 2.3 μ_B and is attributed to the:				
	(a)	Spin only value of low spin Fe						
	(b)	Spin only value of high spin Fe						
	(c)	Low spin Fe with orbital contribution	on.					
	(d)	High spin Fe with orbital contributi	on.					
Q.27.	The n	no. of possible isomers for [Ru(bpy) ₂ C	[l ₂] is (b	py = 2,2'-bipyridine)				
	(a)	2	(b)	3				
	(c)	4	(d)	5				
Q.28.	Ziese	s's salt is:						
	(a)	$K^{+}[PtCl_3(C_2H_4)]^{-}$	(b)	$K_2[PtCl_3-I]-C_3H_6]$				
	(c)	$K^{+}[PtCl_{3}-\Pi^{2}-C_{2}H_{4}]^{-}$	(d)	$K^{+}[PtCl_3-I]^2-C_3H_6]Cl^{-}$				
Q.29.	The g	ground state term symbol of Ni ⁺² ion is	s:					
	(a)	3 F	(b)	^{3}A				
	(c)	^{3}P	(d)	^{3}E				
Q.30.	The p	possible J values for ³ D term symbol a	re:					
	(a)	2	(b)	3				
	(c)	4	(d)	5				
Q.31.	CrO_3	is bright in color due to:						
	(a)	d-d transition	(b)	CT transition				
	(c)	both (a) and (b)	(d)	None of these				
Q.32.	Comp	plex in which organic ligand is having	only σ-	- bond with metal is:				
	(a)	$W(CH_3)$	(b)	$(\Pi^5 - C_5H_5)_2Fe$				
	(c)	$K[PtCl_3(C_2H_4)$	(d)	$(\Pi^6 - C_6H_6)_2Ru$				
Q.33.	Jahn-	Teller effect is in the field of:						
	(a)	Nuclear Physics	(b)	Vibronic interaction				
	(c)	Thermodynamics	(d)	Kinetic theory of gases				
Q.34.	The l	owest energy state of the 1s ² 2s ¹ 3s ¹ c	onfigura	ation of Be is:				
	(a)	$^{1}\mathrm{S}_{0}$	(b)	$^{1}\mathrm{D}_{2}$				
	(c)	${}^{3}S_{1}$	(d)	${}^{3}P_{1}$				
Q.35.	The n	number of microstates in term ¹ G is:						
	(a)	9	(b)	6				
	(c)	7	(d)	15				

Q.36.	The complex compound used in the chemotherapy of cancer is:						
	(a)	cis - [Pt ^{IV} (NH ₃) ₄ Cl ₂]Cl ₂		cis - [Pt ^{IV} (NH ₃) ₄ Cl ₄]			
	(c)	$cis - [Pt^{II}(NH_3)_2Cl_2]$		trans - $[Pt^{II}(NH_3)_4Cl_2]$			
Q.37.	[Ni(C	$(2N)_4]^{-2}$ and $[NiCl_4]^{-2}$ complex ions are	•				
	(a)	Both diamagnetic.					
	(b)	_					
	(c)		ectively	<i>y</i> .			
	(d)	Anti-ferromagnetic and diamagnetic	•				
Q.38.		Cl ₄ , the central atom tellurium involve		•			
	(a)	sp ³ hybridisation		sp ³ d hybridisation			
	(c)	sp^3d^2 hybridisation		sp ³ d ³ hybridisation			
Q.39.	Unlik	te d-d transition, f-f transitions		-			
	(a)	Do not change much with the chang	e in liga	and.			
	(b)	Change significantly with change in	ligand.				
	(c)	Appear at low energies, i.e. at the ne	ear-IR r	egion.			
	(d)	Appears as broad band.					
Q.40.	Whic	h of the following show charge transfe	er band	?			
	(a)	Lanthanum Nitrates	(b)	Ceric Ammonium Nitrate			
	(c)	Mangnese(II) acetate	(d)	Copper(II) sulphate pentahydrate			
Q.41.	Hemo	oglobin, a complex containing iron, is	a consti	ituent of blood. The oxidation state of			
	Iron in the complex is:						
	(a)	0	(b)	+1			
	(c)	+2	(d)	+3			
Q.42.	According to crystal field theory,Ni ⁺² can have two unpaired electrons in:						
	(a)	Octahedral geometry only	(b)	Square-planar geometry only			
	(c)	Tetrahedralgeometry only					
	(d)	Both octahedral and tetrahedral geor	metries				
Q.43.	In trig	gonal bipyramidal crystal field, the d-	orbital	with the highest energy is:			
	(a)	d_{xy}	(b)	d_{yz}			
	(c)	$d_{x^2-y^2}$	(d	d_{z^2}			
Q.44.	The electronic transition responsible for the colour of the transition metal ions is:						
	(a)	$d_\pi \rightarrow d_\sigma$	(b)	$d_{\pi} \rightarrow d_{\sigma^*}$			
	(c)	$d_{\pi} \rightarrow d_{\pi^*}$	(d)	$d_{\sigma} \rightarrow d_{\pi}*$			
Q.45.	The n	number of microstates for d ⁵ electronic	config	uration is:			
	(a)	21×6^3	(b)	14×6^3			
	(c)	7×6^2	(d)	28×6^3			
Q.46.	The s	elf-indicating silica gel (impregnated v	with col	balt chloride) turns pink on absorbing			
	moist	ture and becomes blue on heating. The	pink aı	nd blue color is respectively due to			
	(a)	$[Co(H_2O)_6]^{+2}$ and $[CoCl_4]^{-2}$					
	(b)	[Co(H2O)6]+2 and $Co2O3$					

	(c)	$[Co(H_2O)_6]^{+2}$ and $[Co(H_2O)_6]^{+3}$		
O 45		Co ⁺² and Co ⁺³	61	1 771
Q.47.		solid state the CuCl ₅ -3 ion has two ty	_	
	(a)	Three long and two short		Two long and three short
0.40	(c)	One long and four short		_
Q.48.				$PtCl_3(C_2F_4)$] the correct statement is
	(a)	C-C bond length is same in both (i))
		C-C bond length in (i) is smaller th		1 (6 ())
		C-C bond length in (i) is larger con	-	
0.40	(d)	A metallocycle is formed in each co	-	
Q.49.		octahedral ion which shows both facia		
	(a)			Tris ethylenediamine cobalt(III)
0.50		Dicholoro diglycinatocobalt(III)		
Q.50.		xistence of two different coloured con		
	(a)	Optical isomerism		Linkage isomerism
0.51	` '	Geometrical isomerism	` /	Coordination isomerism
Q.51.		$[\text{CoX}_4]^{-2}$, $[\text{CoX}_4]^{-2}$ and $[\text{MnX}_4]^{-2}$ are (where		
	(a)	Coloured	` '	Coloured due to $L \rightarrow MCT$
0.50	`	Colourless	. ,	Coloured due to $M \rightarrow LCT$
Q.52.		h of the following has zero field stabi		
		Fe ⁺³ (low spin)		Fe ⁺³ (high spin)
	(c)	Cr ⁺³ (high spin)	(d)	Co ⁺² (low spin)
Q.53.	The n	nolecule		
			OCH	3
		$(CO)_5M = C$		
			≻ Ph	
	•	18-electron rule. The two 'M' satisfy	ing the	condition are:
		Cr, Re ⁺	(b)	Mo, V
		V, Re ⁺	(d)	Cr, V
Q.54.		number of possible isomers for the squ	are pla	nar mononuclear complex
	$[(NH_3)]$	$_{3})_{2}M(CN)_{2}]$ of a metal M is:		
	(a)	2	(b)	4
	(c)	6	(d)	3
Q.55.	The li	igand that exhibits linkage isomerism	in its tr	ansition metal complexes is:
	(a)	$[SO_3]^{-2}$	(b	$[SO_4]^{-2}$
	(c)	$[NO_3]^{-1}$	(d)	$[ClO_4]^-$
Q.56.	Whic	h of following metal fragments d ⁿ - M	L _m is iso	olobal with CH?
	(a)	d^7 - ML ₅	(b)	d^9 - ML_3
	(c)	d^8 - ML ₄	(d)	d^5 - ML_6

Q.57.	Wha	t is the IUPAC name of [Co(NH ₃) ₃ (N	O ₂)Cl(C	N)] compound?			
	(a)	Chloro cyano nitro triamine cobalt	(III)	,- .			
	(b)	Triamine chloro cyano nitro cobalt	t (III)				
	(c)	Cyano chloro nitro triamine cobalt					
0.50	(d)	Nitro chloro cyano triamine cobalt		0.5FP1/47 (2) 2 ⁺² : 1			
Q.58.		asymmetric nature of visible absorption					
	(a)	Laprote's allowed transition		Laprote's forbidden transition			
	(c)	Dynamic Jahn-Teller distortion	` '	•			
Q.59.	The 1	number of stereo isomers of trans-[Co	oCl ₂ (triet	hylenetetramine)]Cl are:			
	(a)	1	(b)	2			
	(c)	3	(d)	4			
Q.60.	The 1	number of possible isomers of [Ru(PI	Ph ₃) ₂ (aca	c) ₂] (acac=acetylacetonate) is:			
	(a)	2	(b)	3			
	(c)	4	(d)	5			
Q.61.	Jahn-	-Teller distortion affects the geometry	of				
		$[Cu(NH_3)_4]^{+2}$	(b)	$[MnCl_4]^{-2}$			
	(c)	$\left[Ni(NH_3)_4\right]^{+2}$	(d)	None of these			
Q.62.	The o	correct d- electron configuration show	ving spin	i-orbit coupling is:			
	(a)	$t_{2g}^{4} e_{g}^{2} \\ t_{2g}^{4} e_{g}^{0}$	(b)	$t_{2g}^{6}e_{g}^{0}$			
	(c)		(d)	$t_{2g}^{6} e_{g}^{0} t_{2g}^{3} e_{g}^{2}$			
Q.63.		correct spinel structure of Co ₃ O ₄ is:					
		$({\rm Co}^{+2})_{\rm t} (2{\rm Co}^{+3})_{\rm oct} {\rm O}_4$		$(\text{Co}^{+2})_{\text{t}} (2\text{Co}^{+3} \text{Co}^{+3})_{\text{oct}} O_4$			
	(c)	$(\text{Co}^{+2}\text{Co}^{+3})_{t}(\text{Co}^{+3})_{oct}\text{O}_{4}$	(d)	$(2\text{Co}^{+3})_{t}(\text{Co}^{+2})_{\text{oct}}\text{O}_{4}$			
Q.64.	The	metal ion which is most likely to s	how the	low spin-high spin equilibrium in its			
	complexes has the electronic configuration:						
	(a)	d^3	(b)	d_{\perp}^4			
	(c)	d^6	(d)	d^8			
Q.65.	The e	effective magnetic moment is maximum	um for:				
	(a)	$K_4Mn(CN)_6$	(b)	K_2MnO_4			
	(c)	K_2MnCl_4	(d)	$KMnO_4$			
Q.66.	The p	purple color of KMnO ₄ is due to the tr	ransition	:			
	(a)	$CT (L \rightarrow M)$	(b)	$CT (M \rightarrow L)$			
	(c)	p-d transition	(d)	d-d transition			
Q.67.	The s	substitution of Cp group with nitric or	xide is th	ne easiest for:			
	(a)	$ \eta^2 - Cp_2Fe $		$ \eta^2 - Cp_2CoCl $			
	(c)	$ \eta^2 - Cp_2Ni $		$ \eta^2 - Cp_2Co $			
Q.68.		oxidation state of iron in met- haemog	` '				
C 1 1 1	(a)	+3	(b)	+2			
	(c)	+4	(d)	0			
Q.69.	The e	electric dipole allowed transition in d	² atomic				
	(a)	$^{3}F \rightarrow ^{1}D$	(b)	${}^{3}F \rightarrow {}^{1}P$			
	(c)	$^{3}\text{F} \rightarrow ^{3}\text{D}$	(d)	$^{3}\text{F} \rightarrow ^{3}\text{P}$			

Q.70.	For a	valence electron in a ² D state, th	ne possible J-	values are:			
	(a)	5/2 and 1/2	(b)	5/2 and 3/2			
0.51	(c)	3/2 and 1/2	(d)	3/2 and 0			
Q.71.	-	-	•	electronic state will undergo some			
			its symmetry	y, thereby removing degeneracy".			
	This	statement is:					
	(a)	Crystal field effect	(b)				
		Ligand- field effect	(d)	Tetrahedral distortion effect			
Q.72.	Amo	ng the following the strongest ox	aidizing agent	t is:			
	(a)	$[WO_4]^{-2}$ $[MoO_4]^{-2}$	(b)	$[\operatorname{CrO}_4]^{-2}$			
O 72	(c)	$[M0U_4]^2$		[ReO ₄] ⁻¹			
Q.73.				ine copper(II) acetate monohydrate are			
	(a)	10	(b)	6			
0.74	(c)	8	(d)	4			
Q.74.		magnetic property of Hg[Co(NCS	_				
	(a)	Diamagnetic	(b)	C			
	(c)	Ferromagnetic	(d)	Anti-ferromagnetic			
Q.75.		spin-only (μ_s) and spin plus orbit					
	(a)		` '	2.84 BM and 5.20 BM			
	(c)	3.87 BM and 6.34 BM	(d)				
Q.76.	The 1	owest energy d-d transition in Ca					
	(a)						
	(b)	$CrCl^{-6} < Cr(en)_3^{+3} < Cr(H_2O)_6^{-1}$, , ,	3			
	(c)	$Cr(CN)_6^{-3} < CrCl^{-6} < Cr(H_2O)_6^{+}$	$-3 < Cr(en)_3^{+3}$				
	(d)	$Cr(H_2O)_6^{+3} < Cr(en)_3^{+3} < CrCl$					
Q.77.	The light pink color of $[Co(H_2O)_6]^{+2}$ and the deep blue color of $[CoCl_4]^{-2}$ are due to:						
	(a)	MLCT transition in first and d	l-d transition	in second.			
	(b)	LMCT transition in both.					
	(c)	d-d transition in both.					
	(d)	d-d transition in first and MLC	CT transition	in second.			
Q.78.	In [M	$Io_2(S_2)_6]^{-2}$ cluster the no. of bridg	ging S_2^{-2} and c	coordination no. of Mo respectively			
	are:			1			
	(a)	2 and 8	(b)	2 and 6			
	(c)	1 and 8	(d)	1 and 6			
Q.79.			` '	opic ground state term symbol of			
Q .,,,		ganese centre in $[MnF_6]^{-3}$ are	one speed esc	opro ground state term symbol of			
	(a)	$4.9 \text{ BM and }^5\text{D}$	(b)	$3.9 \text{ BM} \text{ and } ^4\text{F}$			
	(c)	3.9 BM and ³ D	(d)	4.9 BM and ³ F			
Q.80.	` /	$[2]_{-2}^{-2}$ shows a deep blue colour be	` ′	1.7 DW und 1			
2 .00.	(a)	Metal to ligand CT transition	cause or .				
	(a) (b)	Ligand to metal CT transition					
	(1))	Liganu w niciai CT tiansillon					

- Spin allowed and Laporte forbidden d-d transition (c) (d) Spin allowed and Laporte allowed d-d transition Q.81. Among the complexes $K_4[Cr(CN)_6]$ (A), $K_4[Fe(CN)_6]$ (B), $K_3[Co(CN)_6]$ (C), $K_4[Mn(CN)_6]$ (D), Jahn-Teller distortion is shown by A,B and C B,C and D (c) A and D (d) B and C Q.82. Which of the following does not obey EAN rule? Fe(CO)₅ $V(CO)_6$ (a) (b) $K_4[Fe(CN)_6]$ $Mn_2(CO)_{10}$ (c) (d) Q.83. The no. of spin-allowed ligand field transitions for Ni(II) complexes with ³A_{2g} ground state are: (a) 2 (b) (c) (d) Q.84. The complex $[Fe(phen)_2(NCS)_2]$ (phen = 1,10 phenanthroline) shows spin cross-over behavior. CFSE and μ_{eff} at 250 and 150 K , respectively are: $0.4 \Delta_0$, 4.90 BM and 2.4 Δ_0 , 0.00 BM
- (d) $1.2~\Delta_o$, 4.90~BM and $2.4~\Delta_o$, 0.00~BM Q.85. Match the action of H_2O_2 in aqueous medium given in column A with the oxidation/reduction listed in column B

A: action of H ₂ O ₂	B: type of reaction
I: Oxidation in acid	(A) $[Fe(CN)_6]^{-3} \rightarrow [Fe(CN)_6]^{-4}$
II: Oxidation in base	(B) $[Fe(CN)_6]^{-4} \longrightarrow [Fe(CN)_6]^{-3}$
III:Reduction in acid	(C) MnO_4 \longrightarrow Mn^{+2}
IV: Reduction in base	$(D) Mn^{+4} \longrightarrow Mn^{+2}$

The correct answer is:

(b)

(c)

(a) I - (A), II - (B), III - (C), IV - (D)

 $2.4 \Delta_0$, 2.90 BM and $0.4 \Delta_0$, 1.77 BM

 $2.4 \Delta_0$, 0.00 BM and 0.4 Δ_0 , 4.90 BM

- (b) I (B), II (D), III (C), IV (A)
- (c) I (C), II (B), III (D), IV (A)
- (d) I (D), II (A), III (C), IV (B)

Answers

1 - (b)	2- (c)	3- (d)	4- (a)	5- (c)	6- (c)
7 - (c)	8 - (d)	9 - (c)	10- (a)	11 - (c)	12 - (c)
13- (c)	14- (a)	15- (b)	16- (c)	17- (a)	18- (a)
19- (a)	20- (a)	21- (b)	22- (b)	23- (a)	24- (b)
25- (a)	26- (c)	27- (b)	28- (c)	29- (a)	30- (b)
31- (b)	32- (a)	33- (b)	34- (c)	35- (a)	36- (c)
37- (c)	38- (b)	39- (a)	40- (b)	41- (c)	42- (d)
43- (d)	44- (b)	45- (c)	46- (a)	47- (b)	48- (a)
49- (a)	50- (c)	51- (a)	52- (b)	53- (a)	54- (c)
55- (a)	56- (b)	57- (b)	58- (b)	59- (c)	60- (b)
61- (a)	62- (c)	63- (a)	64- (c)	65- (c)	66- (a)
67- (c)	68- (a)	69- (c)	70- (b)	71- (b)	72- (b)
73- (a)	74- (a)	75- (a)	76- (a)	77- (c)	78- (a)
79- (a)	80- (c)	81- (c)	82- (b)	83- (b)	84- (a)
85- (c)					

Chapter 6

Metal Carbonyls

(Contributed by: Dr. Dinkar Malik, Department of Chemistry, M. S. College, Saharanpur)

Critical Points:

- ➤ In metal carbonyls metal generally exhibit zero oxidation state and metal carbonyls are generally covalent in nature.
- ➤ The no. of metal- metal bonds in dimmers [CpFe(CO)(NO)]₂ and [CpMo(CO)₃]₂are zero and one respectively.
- \triangleright In metal carbonyls σ-bond as well as π -bonds are formed between metal and carbon atoms.
- ➤ Wilkinson's catalyst is used for hydrogenation.
- ➤ The tendency to retain cluster of metal atoms will predominate in those metals which have large energies of atomization.
- ➤ Wilkinson's catalyst is(Ph₃P)₃RhCl.
- Linear NO is neutral and it donates 3 electrons, bent NO is also neutral but it donates 1 electron.

$$\eta^3$$
 - NO - linear η^1 - NO - bent

1- Polyhedral electron count (PEC) = (TVE - $n \times 12$)/2

n = no. of metal atoms.

TVE = total valence electron

n-1 = super hyper closo

n = hyper closo

n + 1 = closon + 2 = nido

n + 3 = arachano

 $n+4 \ = \ hypo$

n + 5 = conjuncto

- \triangleright Except Fe(CO)₅ and V(CO)₆ all other mononuclear carbonyls are colorless.
- \triangleright Among mononuclear carbonyl Fe(CO)₅ is yellow and V(CO)₆ is black.
- \triangleright CO, NO, CN etc. behaves as σ -donor as well as π acceptor ligand.
- \triangleright Ziegler-Nata Catalyst is Al(C₂H₅)₃ + TiCl₄.
- ➤ Wilkinson's Catalyst is [RhCl(PPh₃)₃] and it contains 16 valance electrons.
- $ightharpoonup Fe(CO)_5+$ 3NaOH Na[HFe(CO)₄] + Na₂CO₃ + H₂O
- ➤ V(CO)₆ is paramagnetic due to the presence of unpaired electrons (17 electrons in valance shell).
- Favorable conditions for a ligand to be pi-acceptor are availability of vacant d-orbital, low oxidation state of metal and high electron density of metal.

- ➤ In solid form Co₂(CO)₈ has two bridging CO groups. While in solution form it has no bridging CO groups, solid form converts into liquid form by heating.
- $ightharpoonup Fe_2(CO)_9 + 4Na \longrightarrow 2Na_2[Fe(CO)_4] + CO$
- ightharpoonup [IrCl₃(Ph₃P)₃] + Cl₂ \longrightarrow [IrCl₃(Ph₃P)₃
- $ightharpoonup Co_6(CO)_{16}$, Rh₆(CO)₁₆ and Ir₆(CO)₁₆ are paramagnetic in nature and do not follow 18 electron rule.
- A metal cluster may be defined as a group of two or more metal atoms in which there are substantial and direct bonds between the metal atoms.
- ➤ Poly nuclear carbonyls, nitroyls and related compounds exist in lower oxidation states
- \triangleright In trigonal bipyramidal complexes the two ligands lie on z- axis and there is xy plane somewhere between the axis. In xy plane there are four electrons and on z-axis there is only one electron in dz² orbital:

$$d_{xz} = d_{yz} < d_{xy} = d_{x^2 - y^2} < d_{z^2}$$

- \triangleright There will be no distortion if e_g and t_{2g} or both are symmetrical.
- $ightharpoonup Fe_2(CO)_5$ U.V. Light $Fe_2(CO)_9 + CO$
- $ightharpoonup Fe(CO)_5 <u>140^{0} C</u> Fe + 5CO$
- $ightharpoonup Fe_2(CO)_5 = \frac{70^{\circ} \text{ C}}{12}$ $Fe_2(CO)_9 + Fe_3(CO)_{12}$
- ightharpoonup In Mn₂(CO)₁₀, Ru₃(CO)₁₂ and Os₃(CO)₁₂ all the CO groups are Terminal.
- \triangleright Jahn Teller distortion will be large if e_g is unsymmetrical however Jahn Teller distortion will be small if t_{2g} is unsymmetrical.

Multiple Choice Questions

Q.1.	The no. of metal- metal bonds in dimmers [$CpFe(CO)(NO)$] ₂ and [$CpMo(CO)_3$] ₂ respectively are:							
	(a)	2 and 2	(b)	2 and 3				
	(c)	1 and 2	(d)	0 and 1				
Q.2.	Which of the following has NOT three bridging carbonyl group?							
	(a)	$Fe_2(CO)_9$	(b)	$Co_4(CO)_{12}$				
	(c)	$Rh_4(CO)_{12}$	(d)	$Fe_3(CO)_{12}$				
Q.3.	An example of species having quaderpole bond is:							
	(a)	$Mn_2(CO)_9$	(b)	$\operatorname{Cr}_2\operatorname{O}_7^{-2}$				
	(c)	$[Re_2Cl_8]^{-2}$	(d)	$Hg_2(CH_3COO)_2$				
Q.4.	(A) $[Cp_2Zr(CO)(Cl)]^+$ (B) $[Cp_2Zr(CO)_2]$							
	Which of the following statement is correct?							
	(a)							
	(b)	(b) v_{c-o} of B is greater than that of A						
	(c)	(c) v_{c-o} of A is equal to v_{c-o} of B						
	(d) The metal Zr having +4 oxidation state in (A) whereas in (B) Zr is present in Zero oxidation state.							
Q.5.	Which of the following complex has highest v _{c-o} stretching frequency?							
	(a)	$Fe(CO)_4(PF_3)$	(b)	Fe(CO) ₄ (PCl ₃)				
	(c)	$Fe(CO)_4(PMe_3)$	(d)	$Fe(CO)_4P(OMe)_3$				
Q.6.	On reducing Fe ₃ (CO) ₁₂ with an excess of Na, a carbonylate ion is formed. The Iron is							
	isoelectronic with:							
	(a)	$[Mn(CO)_5]^-$	(b)	[Ni(CO) ₄]				
	(c)	$[Mn(CO)_5]^-$	(d)	$[V(CO)_6]^-$				
Q.7.	Which of the following oxidation state stabilizes the metal atom in carbonyl compounds?							
	(a)	1	(b)	2				
	(c)	3	(d)	0				
Q.8.	Which of the following statement is false about ferrocene?							
	(a)	It obeys 18-electron rule.	(b)	It is diamagnetic.				
	(c)	It is an Orange solid.	(d)	It resists electrophilic reaction.				
Q.9.	Arrange the following in increasing order of V_{C-O} stretching frequency:							
	(I)	$[Mo(CO)_3(PF_3)_3]$	(II)	$[Mo(CO)_3(PCl_3)_3]$				
	(III)	$[Mo(CO)_3P\{Cl(Ph)_2\}_3]$	(IV)	$[Mo(CO)_3(PMe_3)_3]$				
	(a)	IV < III < II < I	(b)	III < IV < II < I				
	(c)	I < II < III < IV	(d)	II < III < I < IV				
Q.10.	The complex having highest V_{M-C} frequency:							
	(a)	$Mo(Co)_6$	(b)	$Mo(CO)_4(PMe_3)_2$				

	(c)	$Mo(CO)_4(P(OMe_3)_2)$	(d)	$Mo(CO)_4(PF_3)_2$				
Q.11.	The cl	uster having arachano type structure:						
	(a)	$[Os_3(CO)_{16}]$	(b)	[Os3(CO)12]				
	(c)	[Ir ₄ (CO) ₁₂]	(d)	$[Rh_6(CO)_{16}]$				
Q.12.		of the following statement is incorrect	ct about					
	(a)	In metal carbonyls metal present in z		•				
	(b)	-		onds are formed between metal and				
	, ,	carbonatoms.						
	(c)	In metal carbonyl CO act as a neutra	l ligand					
	(d)	Only σ -bond is formed between meta-	al atom	and carbon atom.				
Q.13.	Which	of the following has lowest stretching	g freque	ency?				
	(a)	$V(CO)_6^+$	(b)	Co(CO) ₄				
	(c)	Ni(CO) ₄	(d)	$Fe(CO)_4^{-2}$				
Q.14.	Wilkir	nson's catalyst is used for:						
	(a)	Hydrogenation	(b)	Epoxidation				
	(c)	Polymerization	(d)	Metathesis reaction				
Q.15.	Which	of the following is most easily reduce	ed?					
	(a)	$V(CO)_6$	(b)	$Cr(CO)_6$				
	(c)	Fe(CO) ₅	(d)	Ni(CO) ₄				
Q.16.	Reacti	on of Fe(CO) ₅ with OH ⁻ leads to a cor	nplex A	which on oxidation with MnO ₂ gives				
	B. Cor	npound A and B respectively are:						
	(a)	[HFe(CO) ₄] and Fe ₃ (CO) ₁₂	(b)	$[Fe(CO)_5(OH)]^T$ and $Fe_2(CO)_9$				
	(c)	$[Fe(CO)_4]^{-2}$ and $Mn_2(CO)_{10}$	(d)	[HFe(CO) ₄] and Fe ₂ O ₃				
Q.17.	Which of the following metal carbonyls cannot be formed by the direct combination							
	with CO?							
	(a)	Cr(CO) ₆	(b)	$Mn_2(CO)_{10}$				
	(c)	Fe(CO) ₅	(d)	$Co_2(CO)_8$				
Q.18.	Wilkir	nson's catalyst is:						
	(a)	$(Ph_3P)_3RhCl$	(b)	(Ph ₃ P)RhCl				
	(c)	Ph ₃ P ₃ RhCl	(d)	$(Ph_3P)_2RhCl_2$				
Q.19.	Which	of the following IR frequencies is the	closes	t to that of the triply bridged CO				
	group?							
	(a)	1700 cm ⁻¹	(b)	1810 cm ⁻¹				
	(c)	1920 cm ⁻¹	(d)	2140 cm ⁻¹				
Q.20.	Which	of the following does not obey 18 e ⁻ r	ules?					
	(a)	$Cr(CO)_6$	(b)	$Mn_2(CO)_{10}$				
	(c)	Fe(CO) ₅	(d)	$V(CO)_6$				
Q.21.	For the	e reaction,						
	trans-	$[IrCl(CO)(PPh_3)_2] + Cl_2$		trans- [$IrCl_3(CO)(PPh_3)_2$],				
	the co	errect observations:						

	(a)	$v_{\rm CO}({\rm product}) > v_{\rm CO}({\rm reactant})$	(b)	v_{CO} (product) < v_{CO} (reactant)				
	(c)	v_{CO} (product) = v_{CO} (reactant)	(d)	v_{CO} (product) = v_{CO} (Free CO)				
Q.22.	In the	reaction,						
		$IgBr + CrCl_3 + 2CO \longrightarrow A(unstable)$	(H ⁺)	$Cr(CO)_6 + 2Cr^{+3} + 12C_6H_5^{-} + 3H_2$				
	The un	nstable intermediate formed is:						
	(a)	$Cr(CO)_2(C_6H_5)_4$	(b)	$Cr(CO)_3(C_6H_5)_3$				
	(c)	$Cr(CO)_4(C_6H_5)_2$	(d)	$Cr(CO)(C_6H_5)_5$				
Q.23.	Which	n of the following compounds show no	ormal sp	oinal structure?				
	(a)	NaCr ₂ O ₄	(b)	ZnO				
	(c)	Fe_3O_4	(d)	Fe(CO) ₅				
Q.24.	Metal-	-Metal quadruple bonds are well know	n for m	netal:				
	(a)	Ni	(b)	Co				
	(c)	Fe	(d)	Re				
Q.25.	The no	o. of Metal-Metal bonds present in Ir ₄	$(CO)_{12}$ a	are:				
	(a)	4	(b)	5				
	(c)	6	(d)	8				
Q.26.	Na in	liq. NH ₃ reacts with Fe ₂ (CO) ₉ to give	:					
	(a)	$[Fe(CO)_5]$	(b)	$[HFe(CO)_4]^-$				
	(c)	$[H_2Fe(CO)_4]^-$	(d)	$[Fe(CO)_4]^{-2}$				
Q.27.	The correct statement regarding terminal/ bridging CO groups in solid $\text{Co}_4(\text{CO})_{12}$ and							
	Ir ₄ (CC	$Ir_4(CO)_{12}$ is:						
	(a)							
	(b)	Number of bridging CO groups in C	o ₄ (CO)	₁₂ is 4.				
	(c)	The no. of terminal CO groups in Co	$o_4(CO)_{12}$	2 is 8.				
	(d)	The no. bridging CO groups in Ir ₄ (C	$O)_{12}$ is (О.				
Q.28.	Which of the following is paramagnetic in nature?							
	(a)	$Cr(CO)_6$	(b)	$V(CO)_6$				
	(c)	Fe(CO) ₅	(d)	Ni(CO) ₄				
Q.29.	Regarding the catalytic cycle of hydrogenation of alkenes involving (Ph ₃ P) ₃ RhCl as the							
	catalyst, the correct statements is:							
	(a)	•						
	(b) 14-,16- and 18- electron Rh complexes are involved.							
	(c) 14- and 16- electron Rh complexes are involved.							
	(d)	16- and 18- electron Rh complexes	are invo	olved.				
Q.30.	The va	alue of x in $Fe_3(CO)_x$ is:						
	(a)	8	(b)	9				
	(c)	10	(d)	12				
Q.31.	Menti	on the incorrect statement about poly	nuclear	carbonyls:				
	(a)	They have the general formula $M_x(C)$						
	(b)	These are generally insoluble in orga	anic sol	vent.				
	(c)	They decompose at or below their m	elting p	ooint.				

International Science Community Association www.isca.in , www.isca.co.in, www.isca.net.co , www.isa.net.in

	(d)	These carbo	onyls are more	volatile tha	ın the	others.			
Q.32.	[Co(CO) ₄] is isolobal with:								
	(a)	CH_4			(b)	CH_3			
	(c)	CH_2			(d)	CH			
Q.33.	The fi	inal product o	f the reaction [$Mn(CO)_6$	+ N	MeLi \rightarrow is:			
	(a)	$[Mn(CO)_6]$	⁺ Me ⁻		(b)	$[Mn(CO)_5Me]$			
	(c)	$[Mn(CO)_6]$			(d)	[(MeCO)Mn(0	CO) ₅]		
Q.34.	The oxidative addition and reductive elimination are favored by:								
	(a) Electron rich metal centre.								
	(b)	Electron de	ficient metal co	entre.					
	(c) Electron deficient and electron rich metal centers respectively.								
	(d) Electron rich and electron deficient metal centers respectively.								
Q.35.	The hepticities 'x' and 'y' of the arenes moieties in the diamagnetic complex								
	$[(\prod^x - ($	$C_6H_6)Ru(\Pi^y-C_6H_6)$	C_6H_6)] are:						
	(a)	6 and 6			(b)	4 and 4			
	(c)	4 and 6			(d)	6 and 2			
Q.36.	Arran	ge the follow	ing in increasir	ng order of	CO s	tretching frequer	icies :		
	I. Cr(CO) ₆	II. [V(CO)	6]	III. [$[Mo(CO)_6]^+$	IV. CO		
	(a)	I > II > III >	> IV		(b)	II < I < III < I	V		
	(c)	IV < I < II <	III		(d)	I < III < IV < II	L		
Q.37.	What are the favorable conditions for a ligand to be pi-acceptor?								
	(a)	The ligand	must have vaca	ant orbital.					
	(b) The metal atom should be of low oxidation state.								
	(c)	The electron	n density shoul	d be high o	n me	tal atom.			
	(d)	All are corr	ect.						
Q.38.	Intense band generally observed for a carbonyl group in the IR spectrum is due to:								
	(a) The force constant of CO bond is large.								
	(b) The force constant of CO bond is small.								
	(c) There is no change in dipole moment for CO bond stretching.								
	(d) The dipole moment changes due to CO bond stretching is large.								
Q.39.	The p	roduct of the	reaction of pro	pene, CO a	ınd H	₂ in presence of ($Co_2(CO)_8$ is:		
	(a)	Butanoic ac	eid		(b)	Butanal			
	(c)	2-butanone			(d)	Methyl propar	noate		
Q.40.	Amor	ng the metals	Mn, Fe, Co and	d Ni the on	e thos	se would react in	its native form of	directly	
	with (CO giving me	tal carbonyl co	mpound ar	e:				
	(a)	Co and Mn			(b)	Mn and Fe			
	(c)	Fe and Ni			(d)	Ni and Co			
Q.41.	Carbo	onylate ions a	re formed by the	ne action of	:				
	(a)	Reaction of	Lewis acid su	ch as AlCl ₃	with	CO and carbony	l halide.		
	(b)	Reaction of	Halogen with	$Fe(CO)_{5.}$					

	(c)	Reaction of alkali with simple Carl	bonyl.					
	(d)	By reduction of carbonyls with alk	ali metal	s.				
Q. 42.	Total	number of vertices in metal	clusters	$[Ru_6(C) (CO)_{17}], [Os_5(C) (CO)_{15}]$ and				
	$[Ru_5(C)]$	$C)(CO)_{16}$] are 6, 5 and 5 res	pectively	7. The predicted structures of these				
	comple	exes respectively are:						
	(a)	Closo, nido and nido	(b)	Closo, nido and arachano				
	(c)	Arachano, closo and nido	(d)	Arachano, nido and closo				
Q.43.	Which	of the following is an example of p	oly nucle	ear carbonyl?				
	(a)	$Cr(CO)_6$	(b)	Fe(CO) ₅				
	(c)	$W(CO)_6$	(d)	$Fe_2(CO)_9$				
Q.44.	The n	o. of Metal-Metal bonds in the	dimers,	$[CpFe(CO)(NO)]_2$ and $[CpMo(CO)_3]_2$				
	respec	tively are						
	(a)	2 and 2	(b)	2 and 3				
	(c)	1 and 2	(d)	0 and 1				
Q.45.	In the	hydroformylation reaction, the inter-	mediate ($CH_3CH_2CH_2Co(CO)_4$:				
	(a) Forms acyl intermediate CH ₃ CH ₂ CO(CO) ₃							
	(b)	Forms an adduct with an olefin rea	gent.					
	(c)	Reacts with H ₂						
	(d)	Eliminates propane.						
Q.46.	Oxidat	tion occurs very easily in case of:						
	(a)	$(\eta^5 - C_5 H_5)_2 Fe$	(b)	$(\eta^5 - C_5 H_5)_2 Co$				
	(c)	$(\eta^5 - C_5 H_5)_2 Ru$	(d)	$(\eta^5 - C_5 H_5)_2 Co^+$				
Q.47.	The co	olor of Fe(CO) ₅ is:						
	(a)	White	(b)	Black				
	(c)	Yellow	(d)	Brown				
Q.48.	The no	o. of anti bonding electrons in NO	and CO	according to molecular orbital theory				
	are:							
	(a)	1,0	(b)	2 ,2				
	(c)	3,2	(d)	2,3				
Q.49.	The no	o. of terminal CO groups present in l	Fe ₂ (CO) ₉	is				
	(a)	2	(b)	5				
	(c)	6	(d)	3				
Q.50.	What a	are the oxidation states of metal ion	in the fol	lowing compounds?				
	1.	$PdCl_2$ 2. $Pd(PPh_3)_4$	3.	$Pd(OAc)_2$ 4. $Pd(Ar)Br$				
	(a)	2,4,2,2,	(b)	2,0,2,1				
	(c)	2,0,2,2,	(d)	0,0,0,2				
Q.51.	The re	efluxing ofRhCl ₃ .3H ₂ O with an ex	cess of	PPh ₃ in ethanol gives a complex A.				
	Compl	ex A and valence electron count on	Rhodiun	n are, respectively,				
	(a)	$[RhCl(PPh_3)_3], 16$	(b)	[RhCl(PPh ₃) ₅], 16				
	(c)	[RhCl(PPh ₃) ₃], 18	(d)	[RhCl(PPh ₃) ₅], 18				

Q.52. Which is the correct statement about metal carbonyls?

	(a)	The C	atom o	f CO m	olecule donate	s its elec	etron pair to	o the	e metal atom.	
	(b)	The O	atom o	f CO m	olecule donate	s its elec	ctron pair to	o the	e metal atom.	
	(c)	Both C	and O	atoms	of CO molecul	e donate	e its electro	n pa	ir to the meta	al atom.
	(d)	None o	of these							
Q.53.	Match	the foll	lowing-							
		Carbonyl Cluster					Total Va	alenc	ce Electron	
	1.		$Rh_6(C$	$O)_{16}$			(A	()	72	
	2.		Os ₅ (C	$O)_{16}$			(E	3)	74	
	3.		[Fe ₄ C($(CO)_{12}$	-2		(0	C)	86	
	4.		$Os_5(C)$	$O)_{15}C$			$(\Gamma$))	62	
		1	2	3	4					
	(a)	C	A	D	В					
	(b)	В	A	C	D					
	(c)	D	C	A	В					
	(d)	A	C	D	В					
Q.54.	An ef	fficient	cataly	st for	hydrogenatio	n of a	alkenes is	[R	$h(PPh_3)_3Cl$].	However
	[Rh(PI	$Ph_3)_3Cl$	does n	ot catal	yze this reaction	on becau	ise:			
	(a)	PPh ₃ b	oinds str	onger t	o Ir than Rh					
	(b)	Cl bine	ds stron	ger to I	r than Rh					
	(c)	PPh ₃ b	oinds str	onger t	o Rh than Ir					
	(d)			_	Rh than Ir					
Q.55.				-	n hydrogenatio		enes by Wi	lkin	son's catalys	t results in
	(negle	_	ting solvent in coordination sphere							. 2
	(a)	-	ed [Rh			(b)	_		ar [RhCl(PP	
	(c)	-	_		n ₃)Cl] ⁺ ,	(d)	_		ar [Rh(H)l(P	
Q.56.					mplex, the CO) stretch	ing freque	ncy	for $L = NH_3$	3, pyridine,
		decreas								
	(a)	•	ne > NF			(b)	•		$ne > NMe_3$	
~ 	(c)		> NH ₃ $>$	•		(d)	•	> NN	$Me_3 > NH_3$	
Q.57.				_	ments about m		=	.1		
		1- Generally mononuclear carbonyls are colorless while other is colored.								
	2- They are covalent in nature.									
	3-	•	-		ctor of electric	•				
	4- They are generally paramagnetic in nature. Which of the following statements given above is/are correct?									
				ng state	ments given at					
	(a)	2 and 4				(b)	1 and 4	4		
0.50	(c)	1,2 and		-4-4		(d)	1,2,3 and			
Q.58.					ent about mon		-	:		
	(a)	These	are reac	my solu	ıble in organic	solvent	•			

They have specific color.

These can be vaporized without decomposition.

These carbonyls are more volatile than the others.

(b)

(c)

(d)

Q.59.	Thou	gh cyclobutadiene (C ₄ H ₄) is highly un	nd readily polymerizes in its free state,				
	its transition metal complexes could be isolated because						
	(a)	Its engages in long-range interaction	with tr	ransition metals.			
	(b)	It gains stability due to formation of	(C_4H_4)	⁻² on binding to transition metals.			
	(c)	Its polymerization ability reduces in	the pre	sence of transition metal.			
	(d)	It becomes stable in presence of trans	nsition r	netals due to formation of $(C_4H_4)^{-2}$			
Q.60.	The s	tructure of carborane with formula, C2					
	(a)	Closo-borane	(b)	Nido-borane			
	(c)	Arachano- borane	(d)	Conjuncto-boranes			
Q.61.	The p	product of the following reaction is:					
		Fe(CO) ₅ U.V. Light					
	(a)	Fe and CO	(b)	Fe ₂ (CO) ₉ and CO			
	(c)	$Fe_3(CO)_{12}$	(d)	None of the above.			
Q.62.	The c	correct combination of metal, number of	of CO l	igands and charge for a metal carbonyl			
	comp	$\text{lex } [M(CO)_X]^{-z} \text{ that satisfies } 18\text{- elect}$	tron rul	e is:			
	(a)	M = Ti, x = 6, z = 1	(b)	M = V, x = 6, z = 1			
	(c)	M = Co, x = 4, z = 2	(d)	M = Mo, x = 5, z = 1			
Q.63.	Whic	h of the following compound has three	e bridgi	ng carbonyl group?			
	(a)	$Co_2(CO)_8$	(b)	$Fe_2(CO)_9$			
	(c)	$Mn_2(CO)_{10}$	(d)	None of these			
Q.64.	Whic	h of the following is NOT suitable as of	catalyst	for hydroformylation?			
	(a)	$HCo(CO)_4$	(b)	HCo(CO) ₃ PBu ₃			
	(c)	$HRh(CO)(PPh_3)_3$	(d)	$H_2Rh(PPh_3)_2Cl$			
Q.65.	The b	ond order of the metal-metal bond in t	the dim	eric complex [Re ₂ Cl ₄ (PMe ₂ Ph) ₄]+ is:			
	(a)	4.0	(b)	3.5			
	(c)	3.0	(d)	2.5			
Q.66.	Solid	Co ₂ (CO) ₈ shows infrared CO stretch	hing ba	ands at 1857,1886, 2001, 2031, 2044,			
	2059, 2071 and 2112 cm ⁻¹ . When dissolved in hexane, the carbonyl bands at 1887 and						
	1856 cm ⁻¹ disappears. These changes in infrared spectrum are due to:						
	(a) Loss of terminal CO						
	(b) Structural changes of Co ₂ (CO) ₈ involving conversion of terminal CO to bridging						
		CO.					
	(c)	Dissociation of Co ₂ (CO) ₈ toCo(CO) ₄	.				
	(d)	Structural changes of Co ₂ (CO) ₈ invo	olving o	conversion of bridging CO to terminal			
		CO.					
Q.67.	The	binding modes of NO in 18	electro	on compound $[Co(CO)_3(NO)]$ and			
	ΓNi(n	⁵ Cp)(NO)], respectively, are:					

Co. Linear and linear (d) Bent and bent Wacker's process uses the catalyst: (a) Wilkinson's catalyst (b) Ziese's salt (c) Ziegler's-Nata catalyst (d) Potash salt Q.69. The correct statement regarding terminal/bridging CO groups in solid Co ₄ (CO) ₁₂ and Ir ₄ (CO) ₁₂ is: (a) Both have equal no. of bridging CO groups. (b) No. of bridging CO groups in Co ₄ (CO) ₁₂ is 4. (c) The no. of terminal CO groups inCo ₄ (CO) ₁₂ is 0. Q.70. How many isomers are possible for C ₂ B ₂ H ₁₂ ? (a) Thre (b) Two (c) One (d) Four Q.71. Rh ₆ (CO) ₁₆ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 List-2 (A) Fe ₃ (CO) ₁₂ (B) Ni(CO) ₄ (C) Fe(CO) ₅ (D) [Ir(Ph ₃ P ₂) ₂ (CO)(NO)Cl] [†] A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrogen atoms are: (a) Both terminal (b) One terminal and other bridging (c) Both bridging between three Ru Q.74. The sandwich complex η-CpCoC _n H _n is an 18 electron species, when 'n' is:	Q.68. Wacker's process uses the catalyst: (a) Wilkinson's catalyst (b) Ziese's salt (c) Ziegler's-Nata catalyst (d) Potash salt Q.69. The correct statement regarding terminal/bridging CO groups in s $Ir_4(CO)_{12}$ is: (a) Both have equal no. of bridging CO groups. (b) No. of bridging CO groups in $Co_4(CO)_{12}$ is 4. (c) The no. of terminal CO groups $Ir_4(CO)_{12}$ is 8. (d) The no. of bridging CO groups $Ir_4(CO)_{12}$ is 0. Q.70. How many isomers are possible for $C_2B_2H_{12}$? (a) Three (b) Two (c) One (d) Four Q.71. $Rh_6(CO)_{16}$ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) $Fe_3(CO)_{12}$ 1. $Te_4(CO)_{12}$ 2. $Te_4(CO)_{12}$ 2. $Te_4(CO)_{12}$ 3. $Te_4(CO)_{12}$ 4. $Te_4(CO)_{12}$ 4. $Te_4(CO)_{12}$ 4. $Te_4(CO)_{12}$ 4. $Te_4(CO)_{12}$ 4. $Te_4(CO)_{12}$ 5. $Te_4(CO)_{12}$ 6.		(a)	Linear	and b	ent			(b)	Bent a	and linea	ar	
(a) Wilkinson's catalyst (b) Ziese's salt (c) Ziegler's-Nata catalyst (d) Potash salt Q.69. The correct statement regarding terminal/bridging CO groups in solid Co ₄ (CO) ₁₂ and Ir ₄ (CO) ₁₂ is: (a) Both have equal no. of bridging CO groups. (b) No. of bridging CO groups in Co ₄ (CO) ₁₂ is 4. (c) The no. of terminal CO groups inCo ₄ (CO) ₁₂ is 8. (d) The no. of bridging CO groups inIr ₄ (CO) ₁₂ is 8. (d) The no. of bridging CO groups inIr ₄ (CO) ₁₂ is 8. (d) The no. of bridging CO groups inIr ₄ (CO) ₁₂ is 0. Q.70. How many isomers are possible for C ₂ B ₂ H ₁₂ ? (a) Three (b) Two (c) One (d) Four Q.71. Rh ₆ (CO) ₁₆ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 List-2 (A) Fe ₃ (CO) ₁₂ 1. Tetrahedral (B) Ni(CO) ₄ 2. Octahedral (C) Fe(CO) ₅ 3. Trigonal Bipyramidal (C) Fe(CO) ₅ 3. Trigonal Bipyramidal (D) [Ir(Ph ₃ P) ₂ (CO)(NO)CI] [†] 4. Square Pyramidal (C) The contract of the properties	(a) Wilkinson's catalyst (b) Ziese's salt (c) Ziegler's-Nata catalyst (d) Potash salt Q.69. The correct statement regarding terminal/bridging CO groups in s Ir ₄ (CO) ₁₂ is: (a) Both have equal no. of bridging CO groups. (b) No. of bridging CO groups in Co ₄ (CO) ₁₂ is 4. (c) The no. of terminal CO groups inCo ₄ (CO) ₁₂ is 8. (d) The no. of bridging CO groups inIr ₄ (CO) ₁₂ is 0. Q.70. How many isomers are possible for C ₂ B ₂ H ₁₂ ? (a) Three (b) Two (c) One (d) Four Q.71. Rh ₆ (CO) ₁₆ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 List-2 (A) Fe ₃ (CO) ₁₂ 1. To (C) Fe(CO) ₅ 3. Th (D) [Ir(Ph ₃ P) ₂ (CO)(NO)CI] [†] 4. So (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydra (a) Both terminal (c) Both bridging between two Ru (d) Both bridging be Q.74. The sandwich complex η-CpCoC _n H _n is an 18 electron species, when a color of the complex of th		(c)	Linear	and l	inear			(d)	Bent a	and bent		
(c) Ziegler's-Nata catalyst (d) Potash salt Q.69. The correct statement regarding terminal/bridging CO groups in solid Co ₄ (CO) ₁₂ and Ir ₄ (CO) ₁₂ is: (a) Both have equal no. of bridging CO groups. (b) No. of bridging CO groups in Co ₄ (CO) ₁₂ is 4. (c) The no. of terminal CO groups in Ir ₄ (CO) ₁₂ is 8. (d) The no. of bridging CO groups inIr ₄ (CO) ₁₂ is 0. Q.70. How many isomers are possible for C ₂ B ₂ H ₁₂ ? (a) Thre (b) Two (c) One (d) Four Q.71. Rh ₆ (CO) ₁₆ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) Fe ₃ (CO) ₁₂ (B) Ni(CO) ₄ (C) Fe(CO) ₅ (D) [Ir(Ph ₃ P) ₂ (CO)(NO)CI] [†] A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrogen atoms are: (a) Both terminal (b) One terminal and other bridging between three Ru	(c) Ziegler's-Nata catalyst (d) Potash salt Q.69. The correct statement regarding terminal/bridging CO groups in s $Ir_4(CO)_{12}$ is: (a) Both have equal no. of bridging CO groups. (b) No. of bridging CO groups in $Co_4(CO)_{12}$ is 4. (c) The no. of terminal CO groups in $Co_4(CO)_{12}$ is 8. (d) The no. of bridging CO groups in $Ir_4(CO)_{12}$ is 0. Q.70. How many isomers are possible for $C_2B_2H_{12}$? (a) Three (b) Two (c) One (d) Four Q.71. $Rh_6(CO)_{16}$ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 List-2 (A) $Fe_3(CO)_{12}$ 1. To $Ir_4(CO)_{12}$ 2. Or $Ir_4(CO)_{12}$ 2. Or $Ir_4(CO)_{12}$ 3. The $Ir_4(CO)_{12}$ 4. So $Ir_4(CO)_{12}$ 5. One terminal and $Ir_4(CO)_{12}$ 6. One terminal and $Ir_4(CO)_{$	Q.68.	Wacke	r's pro	cess u	ses the	catalyst:						
Q.69. The correct statement regarding terminal/bridging CO groups in solid Co ₄ (CO) ₁₂ and Ir ₄ (CO) ₁₂ is: (a) Both have equal no. of bridging CO groups. (b) No. of bridging CO groups in Co ₄ (CO) ₁₂ is 4. (c) The no. of terminal CO groups inIr ₄ (CO) ₁₂ is 8. (d) The no. of bridging CO groups inIr ₄ (CO) ₁₂ is 0. Q.70. How many isomers are possible for C ₂ B ₂ H ₁₂ ? (a) Three (b) Two (c) One (d) Four Q.71. Rh ₆ (CO) ₁₆ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) Fe ₃ (CO) ₁₂ (B) Ni(CO) ₄ (C) Fe(CO) ₅ (C) Fe(CO) ₅ (D) [Ir(Ph ₃ P) ₂ (CO)(NO)CI] ⁺ A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrogen atoms are: (a) Both bridging between two Ru (d) Both bridging between three Ru	Q.69. The correct statement regarding terminal/bridging CO groups in s $Ir_4(CO)_{12}$ is: (a) Both have equal no. of bridging CO groups. (b) No. of bridging CO groups in $Co_4(CO)_{12}$ is 4. (c) The no. of terminal CO groups in $Co_4(CO)_{12}$ is 8. (d) The no. of bridging CO groups in $Ir_4(CO)_{12}$ is 0. Q.70. How many isomers are possible for $C_2B_2H_{12}$? (a) Three (b) Two (c) One (d) Four Q.71. $Rh_6(CO)_{16}$ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 List-2 (A) $Fe_3(CO)_{12}$ 1. To $Ir_4(CO)_{12}$ 2. On $Ir_4(CO)_{12}$ 3. The $Ir_4(CO)_{12}$ 4. So $Ir_4(CO)_{12}$ 4. So $Ir_4(CO)_{12}$ 4. So $Ir_4(CO)_{12}$ 4. So $Ir_4(CO)_{12}$ 5. The sandwich complex $Ir_4(CO)_{12}$ 1. The		(a)	Wilkir	nson's	catalys	st		(b)	Ziese'	s salt		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(c)	Ziegle	r's-Na	ata cata	lyst		(d)	Potasl	ı salt		
$(a) \text{Both have equal no. of bridging CO groups.} \\ (b) \text{No. of bridging CO groups in } \text{Co}_4(\text{CO})_{12} \text{ is } 4 \text{.} \\ (c) \text{The no. of terminal CO groups } \text{inCo}_4(\text{CO})_{12} \text{ is } 8 \text{.} \\ (d) \text{The no. of bridging CO groups } \text{inIr}_4(\text{CO})_{12} \text{ is } 0 \text{.} \\ Q.70. \text{How many isomers are possible for } \text{C}_2\text{B}_2\text{H}_{12}?} \\ (a) \text{Three} \qquad (b) \text{Two} \\ (c) \text{One} \qquad (d) \text{Four} \\ Q.71. \text{Rh}_6(\text{CO})_{16} \text{ has :} \\ (a) \text{All terminal CO groups.} \\ (b) 10 \text{ terminal and 6 bridged CO groups.} \\ (c) 4 \text{ bridged and 12 terminal CO groups.} \\ (d) 8 \text{ bridging and 8 terminal CO groups.} \\ Q.72. \text{Match the following:} \\ \text{List-1} \qquad \qquad \text{List-2} \\ \text{(A)} \text{Fe}_3(\text{CO})_{12} \qquad \qquad 1. \text{Tetrahedral} \\ \text{(B)} \text{Ni}(\text{CO})_4 \qquad \qquad 2. \text{Octahedral} \\ \text{(C)} \text{Fe}(\text{CO})_5 \qquad \qquad 3. \text{Trigonal Bipyramidal} \\ \text{(C)} \text{Fe}(\text{CO})_5 \qquad \qquad 3. \text{Trigonal Bipyramidal} \\ \text{(D)} [\text{Ir}(\text{Ph}_3\text{P})_2(\text{CO})(\text{NO})\text{CI}]^+ \qquad \qquad 4. \text{Square Pyramidal} \\ \text{A} \text{B} \text{C} \text{D} \\ \text{(a)} 1 2 3 4 \\ \text{(c)} 1 2 3 4 \\ \text{(d)} 3 2 1 4 \\ \text{Q.73.} \text{In } \text{H}_2\text{Ru}_6(\text{CO})_{18} \text{ cluster, containing 8 co-ordinate Ru centers, the hydrogen atoms are:} \\ \text{(a)} \text{Both terminal} \qquad \text{(b)} \text{One terminal and other bridging} \\ \text{(c)} \text{Both bridging between two Ru} \text{(d)} \text{Both bridging between three Ru} \\ \end{cases}$	(a) Both have equal no. of bridging CO groups. (b) No. of bridging CO groups in $Co_4(CO)_{12}$ is 4. (c) The no. of terminal CO groups in $Co_4(CO)_{12}$ is 8. (d) The no. of bridging CO groups in $In_4(CO)_{12}$ is 0. Q.70. How many isomers are possible for $C_2B_2H_{12}$? (a) Three (b) Two (c) One (d) Four Q.71. $Rh_6(CO)_{16}$ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) $Fe_3(CO)_{12}$ (B) $Ni(CO)_4$ (C) $Fe(CO)_5$ (D) $[Ir(Ph_3P)_2(CO)(NO)CI]^{\dagger}$ A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. $In H_2Ru_6(CO)_{18}$ cluster, containing 8 co-ordinate Ru centers, the hydres (a) Both bridging between two Ru (d) Both bridging be Q.74. The sandwich complex η -CpCoC _n H _n is an 18 electron species, when the color of	Q.69.	The co	orrect s	tatem	ent reg	arding te	erminal/l	oridgin	ig CO g	groups i	n solid Co ₄ (CO) ₁₂ a	and
$(b) \text{No. of bridging CO groups in } \text{CO}_4(\text{CO})_{12} \text{ is } 4.$ $(c) \text{The no. of terminal CO groups in} \text{CO}_4(\text{CO})_{12} \text{ is } 8.$ $(d) \text{The no. of bridging CO groups in} \text{In}_4(\text{CO})_{12} \text{ is } 8.$ $(d) \text{The no. of bridging CO groups in} \text{In}_4(\text{CO})_{12} \text{ is } 8.$ $Q.70. \text{How many isomers are possible for } \text{C}_2\text{B}_2\text{H}_12?}$ $(a) \text{Thre} \qquad \qquad (b) \text{Two}$ $(c) \text{One} \qquad \qquad (d) \text{Four}$ $Q.71. \text{Rh}_6(\text{CO})_{16} \text{ has :}$ $(a) \text{All terminal CO groups.}$ $(b) 10 \text{ terminal and } 6 \text{ bridged CO groups.}$ $(c) 4 \text{ bridged and } 12 \text{ terminal CO groups.}$ $(d) 8 \text{ bridging and } 8 \text{ terminal CO groups.}$ $(d) 8 \text{ bridging and } 8 \text{ terminal CO groups.}$ $Q.72. \text{Match the following:}$ $List-1 \qquad \qquad List-2 \qquad \qquad 1. \text{Tetrahedral}$ $(B) \text{Ni}(\text{CO})_{12} \qquad \qquad 1. \text{Tetrahedral}$ $(C) \text{Fe}(\text{CO})_{5} \qquad \qquad 3. \text{Trigonal Bipyramidal}$ $(C) \text{Fe}(\text{CO})_{5} \qquad \qquad 3. \text{Trigonal Bipyramidal}$ $(D) [\text{Ir}(\text{Ph}_3\text{P})_2(\text{CO})(\text{NO})\text{CI}]^+ \qquad \qquad 4. \text{Square Pyramidal}$ $A B C D \qquad \qquad$	(b) No. of bridging CO groups in $Co_4(CO)_{12}$ is 4. (c) The no. of terminal CO groups in $Co_4(CO)_{12}$ is 8. (d) The no. of bridging CO groups in $Io_4(CO)_{12}$ is 8. (d) The no. of bridging CO groups in $Io_4(CO)_{12}$ is 0. Q.70. How many isomers are possible for $C_2B_2H_{12}$? (a) Three (b) Two (c) One (d) Four Q.71. $Rh_6(CO)_{16}$ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) $Fe_3(CO)_{12}$ (B) $Ni(CO)_4$ (C) $Fe(CO)_5$ (D) $[Ir(Ph_3P)_2(CO)(NO)CI]^+$ A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. $In H_2Ru_6(CO)_{18}$ cluster, containing 8 co-ordinate Ru centers, the hydres (a) Both terminal (c) Both bridging between two Ru (d) Both bridging be Q.74. The sandwich complex η -CpCoC _n H _n is an 18 electron species, when a containing of the		$Ir_4(CO)_{12}$ is:										
(c) The no. of terminal CO groups inCo ₄ (CO) ₁₂ is 8. (d) The no. of bridging CO groups inIr ₄ (CO) ₁₂ is 0. Q.70. How many isomers are possible for C ₂ B ₂ H ₁₂ ? (a) Thre (b) Two (c) One (d) Four Q.71. Rh ₆ (CO) ₁₆ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) Fe ₃ (CO) ₁₂ (B) Ni(CO) ₄ (C) Fe(CO) ₅ (D) [Ir(Ph ₃ P) ₂ (CO)(NO)CI] ⁺ A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrogen atoms are: (a) Both terminal (b) One terminal and other bridging cere are as a second trace and the resulting to	(c) The no. of terminal CO groups $inCo_4(CO)_{12}$ is 8. (d) The no. of bridging CO groups $inIr_4(CO)_{12}$ is 0. Q.70. How many isomers are possible for $C_2B_2H_{12}$? (a) Three (b) Two (c) One (d) Four Q.71. $Rh_6(CO)_{16}$ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 List-2 (A) $Fe_3(CO)_{12}$ (B) $Ni(CO)_4$ (C) $Fe(CO)_5$ (D) $[Ir(Ph_3P)_2(CO)(NO)CI]^+$ A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. $In H_2Ru_6(CO)_{18}$ cluster, containing 8 co-ordinate Ru centers, the hydrological contents of the contents of t		(a)	Both h	ave e	qual no	. of bridg	ing CO	groups	S.			
$(d) \text{The no. of bridging CO groups inIr}_4(CO)_{12} \text{ is } 0.$ $Q.70. \text{How many isomers are possible for $C_2B_2H_{12}$?}$ $(a) \text{Three} \qquad \qquad (b) \text{Two}$ $(c) \text{One} \qquad \qquad (d) \text{Four}$ $Q.71. \text{Rh}_6(CO)_{16} \text{ has :}$ $(a) \text{All terminal CO groups.}$ $(b) 10 \text{ terminal and } 6 \text{ bridged CO groups.}$ $(c) 4 \text{ bridged and } 12 \text{ terminal CO groups.}$ $(d) 8 \text{ bridging and } 8 \text{ terminal CO groups.}$ $(d) 8 \text{ bridging and } 8 \text{ terminal CO groups.}$ $Q.72. \text{Match the following:}$ $List-1 \qquad \qquad List-2 \qquad \qquad \qquad 1. \text{Tetrahedral}$ $(B) \text{Ni}(CO)_4 \qquad \qquad \qquad 2. \text{Octahedral}$ $(C) \text{Fe}(CO)_5 \qquad \qquad \qquad 3. \text{Trigonal Bipyramidal}$ $(D) [\text{Ir}(Ph_3P)_2(CO)(\text{NO})\text{CI}]^{+} \qquad \qquad 4. \text{Square Pyramidal}$ $A B C D \qquad \qquad$	(d) The no. of bridging CO groups $inIr_4(CO)_{12}$ is 0. Q.70. How many isomers are possible for $C_2B_2H_{12}$? (a) Three (b) Two (c) One (d) Four Q.71. $Rh_6(CO)_{16}$ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 List-2 (A) $Fe_3(CO)_{12}$ 1. To (B) $Ni(CO)_4$ (C) $Fe(CO)_5$ 3. To (D) $[Ir(Ph_3P)_2(CO)(NO)CI]^{\dagger}$ 4. So (A) B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In $H_2Ru_6(CO)_{18}$ cluster, containing 8 co-ordinate Ru centers, the hydre (a) Both terminal (b) One terminal and (c) Both bridging between two Ru (d) Both bridging be Q.74. The sandwich complex η -CpCoCnHn is an 18 electron species, when (a) 6 (c) 3 (d) 5 Q.75. On reducing $Fe_3(CO)_{12}$ with an excess of sodium, a carbonylate ion is isoelectronic with		(b)	No. of	bridg	ging CO	groups i	n Co ₄ (C	O) ₁₂ is	4.			
Q.70. How many isomers are possible for $C_2B_2H_{12}$? (a) Three (b) Two (c) One (d) Four Q.71. $Rh_6(CO)_{16}$ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) $Fe_3(CO)_{12}$ 1. Tetrahedral (B) $Ni(CO)_4$ 2. Octahedral (C) $Fe(CO)_5$ 3. Trigonal Bipyramidal (D) $[Ir(Ph_3P)_2(CO)(NO)CI]^+$ 4. Square Pyramidal (D) $[a]$ (D)	Q.70. How many isomers are possible for $C_2B_2H_{12}$? (a) Three (b) Two (c) One (d) Four Q.71. $Rh_6(CO)_{16}$ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 List-2 (A) $Fe_3(CO)_{12}$ 1. To (B) $Ni(CO)_4$ 2. Oo (C) $Fe(CO)_5$ 3. To (D) $[Ir(Ph_3P)_2(CO)(NO)CI]^{\frac{1}{2}}$ 4. So (A) B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In $H_2Ru_6(CO)_{18}$ cluster, containing 8 co-ordinate Ru centers, the hydre (a) Both terminal (b) One terminal and (c) Both bridging between two Ru (d) Both bridging be Q.74. The sandwich complex η -CpCoC _n H _n is an 18 electron species, when (a) 6 (b) 4 (c) 3 (d) 5 Q.75. On reducing $Fe_3(CO)_{12}$ with an excess of sodium, a carbonylate ion is isoelectronic with		(c)	The no	o. of to	erminal	CO grou	ps inCo	$_4(CO)_1$	2 is 8.			
$(a) \text{Three} \qquad \qquad (b) \text{Two} \\ (c) \text{One} \qquad \qquad (d) \text{Four} \\ \\ Q.71. Rh_6(CO)_{16} \text{ has}: \\ \qquad (a) \text{All terminal CO groups.} \\ \qquad (b) 10 \text{ terminal and 6 bridged CO groups.} \\ \qquad (c) 4 \text{ bridged and } 12 \text{ terminal CO groups.} \\ \qquad (d) 8 \text{ bridging and 8 terminal CO groups.} \\ \qquad (d) 8 \text{ bridging and 8 terminal CO groups.} \\ \qquad Q.72. \text{Match the following:} \\ \qquad \qquad \text{List-1} \qquad \qquad \text{List-2} \\ \qquad (A) \text{Fe}_3(\text{CO})_{12} \qquad \qquad 1. \text{Tetrahedral} \\ \qquad (B) \text{Ni}(\text{CO})_4 \qquad \qquad 2. \text{Octahedral} \\ \qquad (C) \text{Fe}(\text{CO})_5 \qquad \qquad 3. \text{Trigonal Bipyramidal} \\ \qquad (C) \text{Fe}(\text{CO})_5 \qquad \qquad 3. \text{Trigonal Bipyramidal} \\ \qquad (D) \left[\text{Ir}(\text{Ph}_3\text{P})_2(\text{CO})(\text{NO})\text{CI}\right]^+ \qquad \qquad 4. \text{Square Pyramidal} \\ \qquad A B C D \\ \qquad (a) 1 2 4 3 \\ \qquad (b) 2 1 3 4 \\ \qquad (c) 1 2 3 4 \\ \qquad (d) 3 2 1 4 \\ \qquad Q.73. \text{In } \text{H}_2\text{Ru}_6(\text{CO})_{18} \text{ cluster, containing 8 co-ordinate Ru centers, the hydrogen atoms are:} \\ \qquad (a) \text{Both terminal} \qquad \qquad (b) \text{One terminal and other bridging} \\ \qquad (c) \text{Both bridging between two Ru} \qquad (d) \text{Both bridging between three Ru} \\ \end{cases}$	(a) Three (c) One (d) Four Q.71. Rh ₆ (CO) ₁₆ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) Fe ₃ (CO) ₁₂ (B) Ni(CO) ₄ (C) Fe(CO) ₅ (D) [Ir(Ph ₃ P) ₂ (CO)(NO)CI] ⁺ A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydration (a) Both terminal (b) One terminal and (c) Both bridging between two Ru (d) Soth bridging between two Ru (d) Soth bridging between two Ru (d) Soth bridging between two Ru (d) Both bridging between two Ru (e) 3 (f) 5 (f) 6 (f) 7 (f) 7 (f) 8 (f)		(d)	The no	o. of b	ridging	CO grou	ps inIr4	$(CO)_{12}$	is 0.			
(c) One (d) Four Q.71. Rh ₆ (CO) ₁₆ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) Fe ₃ (CO) ₁₂ (B) Ni(CO) ₄ (C) Fe(CO) ₅ (D) [Ir(Ph ₃ P) ₂ (CO)(NO)Cl] ⁺ A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrogen atoms are: (a) Both terminal (b) One terminal and other bridging crows and control of the control o	(c) One (d) Four Q.71. $Rh_6(CO)_{16}$ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) $Fe_3(CO)_{12}$ (B) $Ni(CO)_4$ (C) $Fe(CO)_5$ (D) $[Ir(Ph_3P)_2(CO)(NO)CI]^+$ A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In $H_2Ru_6(CO)_{18}$ cluster, containing 8 co-ordinate Ru centers, the hydre (a) Both bridging between two Ru (d) Both bridging be Q.74. The sandwich complex η -CpCoC _n H _n is an 18 electron species, when (a) 6 (b) 4 (c) 3 Q.75. On reducing $Fe_3(CO)_{12}$ with an excess of sodium, a carbonylate ion is isoelectronic with	Q.70.	How n	nany iso	omers	are pos	sible for	$C_2B_2H_1$	2?				
Q.71. Rh ₆ (CO) ₁₆ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) Fe ₃ (CO) ₁₂ (B) Ni(CO) ₄ (C) Fe(CO) ₅ (D) [Ir(Ph ₃ P) ₂ (CO)(NO)CI] ⁺ A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrogen atoms are: (a) Both terminal (b) One terminal and other bridging (c) Both bridging between two Ru (d) Both bridging between three Ru	Q.71. Rh ₆ (CO) ₁₆ has: (a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) Fe ₃ (CO) ₁₂ (B) Ni(CO) ₄ (C) Fe(CO) ₅ (C) Fe(CO) ₅ (D) [Ir(Ph ₃ P) ₂ (CO)(NO)Cl] ⁺ A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydre (a) Both terminal (b) One terminal and (c) Both bridging between two Ru (d) Both bridging between two Ru (d) Both bridging between two Ru (a) 6 (b) 4 (c) 3 Q.75. On reducing Fe ₃ (CO) ₁₂ with an excess of sodium, a carbonylate ion is isoelectronic with		(a)	Three					(b)	Two			
(a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) Fe ₃ (CO) ₁₂ (B) Ni(CO) ₄ (C) Fe(CO) ₅ (C) Fe(CO) ₅ (D) [Ir(Ph ₃ P) ₂ (CO)(NO)Cl] ⁺ A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrogen atoms are: (a) Both terminal (b) One terminal and other bridging (c) Both bridging between two Ru (d) Both bridging between three Ru	(a) All terminal CO groups. (b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) Fe ₃ (CO) ₁₂ (B) Ni(CO) ₄ (C) Fe(CO) ₅ (D) [Ir(Ph ₃ P) ₂ (CO)(NO)CI] ⁺ A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydre (a) Both terminal (b) One terminal and (c) Both bridging between two Ru (d) Soth bridging bridging bridging bridg		(c)	One					(d)	Four			
(b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) Fe ₃ (CO) ₁₂ 1. Tetrahedral (B) Ni(CO) ₄ 2. Octahedral (C) Fe(CO) ₅ 3. Trigonal Bipyramidal (D) [Ir(Ph ₃ P) ₂ (CO)(NO)Cl] ⁺ 4. Square Pyramidal A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrogen atoms are: (a) Both terminal (b) One terminal and other bridging (c) Both bridging between two Ru (d) Both bridging between three Ru	(b) 10 terminal and 6 bridged CO groups. (c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) Fe ₃ (CO) ₁₂ (B) Ni(CO) ₄ (C) Fe(CO) ₅ (D) [Ir(Ph ₃ P) ₂ (CO)(NO)CI] ⁺ A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydres (a) Both terminal (b) One terminal and (c) Both bridging between two Ru (d) Soth bridging bridging bridgin	Q.71.	Rh ₆ (Co	O) ₁₆ has	s:								
(c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) $Fe_3(CO)_{12}$ (B) $Ni(CO)_4$ (C) $Fe(CO)_5$ (D) $[Ir(Ph_3P)_2(CO)(NO)CI]^+$ (A) $Fe_3(CO)_{12}$ (B) C (B) C (C) C (C) C (D) C (D) C (D) C (E) C (C) C (E) C	(c) 4 bridged and 12 terminal CO groups. (d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) $Fe_3(CO)_{12}$ (B) $Ni(CO)_4$ (C) $Fe(CO)_5$ (D) $[Ir(Ph_3P)_2(CO)(NO)Cl]^+$ A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In $H_2Ru_6(CO)_{18}$ cluster, containing 8 co-ordinate Ru centers, the hydres (a) Both terminal (c) Both bridging between two Ru (d) Both bridging between two Ru (a) 6 (b) 4 (c) 3 Q.74. The sandwich complex η -CpCoC _n H _n is an 18 electron species, when a complex of the complex		(a)	All ter	minal	CO gro	oups.						
Q.72. Match the following: List-1 List-2 $ (A) Fe_3(CO)_{12} \qquad \qquad 1. Tetrahedral \\ (B) Ni(CO)_4 \qquad \qquad 2. Octahedral \\ (C) Fe(CO)_5 \qquad \qquad 3. Trigonal Bipyramidal \\ (D) \left[Ir(Ph_3P)_2(CO)(NO)Cl\right]^+ \qquad \qquad 4. Square Pyramidal \\ A B C D \\ (a) 1 2 4 3 \\ (b) 2 1 3 4 \\ (c) 1 2 3 4 \\ (d) 3 2 1 4 \\ Q.73. In \ H_2Ru_6(CO)_{18} \ cluster, \ containing \ 8 \ co-ordinate \ Ru \ centers, \ the \ hydrogen \ atoms \ are: \\ (a) Both \ terminal \ (b) One \ terminal \ and \ other \ bridging \ co-ordinate \ Ru \ centers, \ the \ hydrogen \ atoms \ are: \\ (a) Both \ bridging \ between \ two \ Ru (d) Both \ bridging \ between \ three \ Ru$	(d) 8 bridging and 8 terminal CO groups. Q.72. Match the following: List-1 (A) $Fe_3(CO)_{12}$ (B) $Ni(CO)_4$ (C) $Fe(CO)_5$ (D) $[Ir(Ph_3P)_2(CO)(NO)Cl]^+$ A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In $H_2Ru_6(CO)_{18}$ cluster, containing 8 co-ordinate Ru centers, the hydre (a) Both terminal (c) Both bridging between two Ru (d) Both bridging be Q.74. The sandwich complex η -CpCoC _n H _n is an 18 electron species, when (a) 6 (b) 4 (c) 3 (d) 5 Q.75. On reducing $Fe_3(CO)_{12}$ with an excess of sodium, a carbonylate ion it isoelectronic with		(b)										
Q.72. Match the following: List-1 List-2 (A) $Fe_3(CO)_{12}$ 1. Tetrahedral (B) $Ni(CO)_4$ 2. Octahedral (C) $Fe(CO)_5$ 3. Trigonal Bipyramidal (D) $[Ir(Ph_3P)_2(CO)(NO)CI]^+$ 4. Square Pyramidal A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 (d) 3 2 1 4 (d) 3 2 1 4 (e) 1	Q.72. Match the following: List-1 List-2 (A) $Fe_3(CO)_{12}$ 1. To (B) $Ni(CO)_4$ 2. Or (C) $Fe(CO)_5$ 3. To (D) $[Ir(Ph_3P)_2(CO)(NO)Cl]^+$ 4. So (A) B C D (A) 1 2 4 3 (B) 2 1 3 4 (C) 1 2 3 4 (C) 18 cluster, containing 8 co-ordinate Ru centers, the hydrogan (a) Both terminal (b) One terminal and (c) Both bridging between two Ru (d) Both bridging be Q.74. The sandwich complex η -CpCoC _n H _n is an 18 electron species, when (a) 6 (b) 4 (c) 3 (d) 5 (D.75. On reducing $Fe_3(CO)_{12}$ with an excess of sodium, a carbonylate ion it isoelectronic with		(c)	4 bridged and 12 terminal CO groups.									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	List-1 (A) $Fe_3(CO)_{12}$ (B) $Ni(CO)_4$ (C) $Fe(CO)_5$ (D) $[Ir(Ph_3P)_2(CO)(NO)CI]^+$ A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In $H_2Ru_6(CO)_{18}$ cluster, containing 8 co-ordinate Ru centers, the hydra (a) Both terminal (b) One terminal and (c) Both bridging between two Ru (d) Both bridging be Q.74. The sandwich complex η-CpCoC _n H _n is an 18 electron species, when (a) 6 (b) 4 (c) 3 (d) 5 Q.75. On reducing $Fe_3(CO)_{12}$ with an excess of sodium, a carbonylate ion is isoelectronic with		(d)	8 bridg	ging a	nd 8 tei	minal CO	O groups	S.				
$(A) Fe_3(CO)_{12} \qquad \qquad \qquad 1. Tetrahedral \\ (B) Ni(CO)_4 \qquad \qquad 2. Octahedral \\ (C) Fe(CO)_5 \qquad \qquad 3. Trigonal Bipyramidal \\ (D) \left[Ir(Ph_3P)_2(CO)(NO)Cl\right]^+ \qquad \qquad 4. Square Pyramidal \\ A B C D \\ (a) 1 2 4 3 \\ (b) 2 1 3 4 \\ (c) 1 2 3 4 \\ (d) 3 2 1 4 \\ Q.73. In \ H_2Ru_6(CO)_{18} \ cluster, \ containing 8 \ co-ordinate \ Ru \ centers, \ the \ hydrogen \ atoms \ are: \\ (a) Both \ terminal \qquad (b) One \ terminal \ and \ other \ bridging \ co-ordinate \ Ru \ centers, \ the \ hydrogen \ atoms \ are: \\ (a) Both \ bridging \ between \ two \ Ru \qquad (d) Both \ bridging \ between \ three \ Ru$	(A) $Fe_3(CO)_{12}$ 1. To (B) $Ni(CO)_4$ 2. Or (C) $Fe(CO)_5$ 3. Tr (D) $[Ir(Ph_3P)_2(CO)(NO)CI]^+$ 4. So (A) $II(CO)_1 II(CO)_2 II(CO)_3 II(CO)_4 II(CO)_5 II(CO)_6 II(CO)_6$	Q.72.	Match	the foll	lowing	g:		-					
(B) Ni(CO) ₄ (C) Fe(CO) ₅ 3. Trigonal Bipyramidal (D) [Ir(Ph ₃ P) ₂ (CO)(NO)CI] ⁺ 4. Square Pyramidal A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrogen atoms are: (a) Both terminal (b) One terminal and other bridging (c) Both bridging between two Ru (d) Both bridging between three Ru	(B) $Ni(CO)_4$ 2. Occordinate CO 1. CO 2. CO 2. CO 2. CO 3. CO 3. CO 4. CO 2. CO 4. CO 3. CO 4. CO 4. CO 6. CO 8. CO 9.			List-1							List-2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(C) $Fe(CO)_5$ 3. The control of th		(A)								1.	Tetrahedral	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(C) $Fe(CO)_5$ 3. The control of th		(B)	Ni(CC)) ₄						2.	Octahedral	
(D) [Ir(Ph ₃ P) ₂ (CO)(NO)Cl] ⁺ A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrogen atoms are: (a) Both terminal (b) One terminal and other bridging (c) Both bridging between two Ru (d) Both bridging between three Ru	(D) [Ir(Ph ₃ P) ₂ (CO)(NO)CI] ⁺ A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydres (a) Both terminal (b) One terminal and (c) Both bridging between two Ru (d) Both bridging be Q.74. The sandwich complex η-CpCoC _n H _n is an 18 electron species, when (a) 6 (b) 4 (c) 3 Q.75. On reducing Fe ₃ (CO) ₁₂ with an excess of sodium, a carbonylate ion is isoelectronic with		(C)								3.	Trigonal Bipyramic	lal
A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrogen atoms are: (a) Both terminal (b) One terminal and other bridging (c) Both bridging between two Ru (d) Both bridging between three Ru	A B C D (a) 1 2 4 3 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In $H_2Ru_6(CO)_{18}$ cluster, containing 8 co-ordinate Ru centers, the hydre (a) Both terminal (b) One terminal and (c) Both bridging between two Ru (d) Both bridging between two Ru (d) Both bridging between two Ru (a) Both bridging between two Ru (b) 4 (c) 3 (d) 5 Q.75. On reducing $Fe_3(CO)_{12}$ with an excess of sodium, a carbonylate ion is isoelectronic with		(D)								4.		
(b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrogen atoms are: (a) Both terminal (b) One terminal and other bridging (c) Both bridging between two Ru (d) Both bridging between three Ru	 (b) 2 1 3 4 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H₂Ru₆(CO)₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrestall (a) Both terminal (b) One terminal and (c) Both bridging between two Ru (d) Both bridging be Q.74. The sandwich complex η-CpCoC_nH_n is an 18 electron species, when (a) 6 (b) 4 (c) 3 (d) 5 Q.75. On reducing Fe₃(CO)₁₂ with an excess of sodium, a carbonylate ion is isoelectronic with 		, ,										
(c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrogen atoms are: (a) Both terminal (b) One terminal and other bridging (c) Both bridging between two Ru (d) Both bridging between three Ru	 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H₂Ru₆(CO)₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrest (a) Both terminal (b) One terminal and (c) Both bridging between two Ru (d) Both bridging between two Ru (d) Both bridging between two Ru (a) Both bridging between two Ru (b) 4 (c) 3 (b) 4 (d) 5 Q.75. On reducing Fe₃(CO)₁₂ with an excess of sodium, a carbonylate ion is isoelectronic with 		(a)	1	2	4	3						
(c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrogen atoms are: (a) Both terminal (b) One terminal and other bridging (c) Both bridging between two Ru (d) Both bridging between three Ru	 (c) 1 2 3 4 (d) 3 2 1 4 Q.73. In H₂Ru₆(CO)₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrestall (a) Both terminal (b) One terminal and (c) Both bridging between two Ru (d) Both bridging between two Ru (d) Both bridging between two Ru (a) Both bridging between two Ru (b) 4 (c) 3 (b) 4 (d) 5 Q.75. On reducing Fe₃(CO)₁₂ with an excess of sodium, a carbonylate ion is isoelectronic with 		, ,	2	1	3	4						
Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrogen atoms are: (a) Both terminal (b) One terminal and other bridging (c) Both bridging between two Ru (d) Both bridging between three Ru	 (d) 3 2 1 4 Q.73. In H₂Ru₆(CO)₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrogeneous (a) Both terminal (b) One terminal and (c) Both bridging between two Ru (d) Both bridging bridging between two Ru (d) Both bridging bridging bridging bridging bridging bridging		` '	1	2	3	4						
Q.73. In H ₂ Ru ₆ (CO) ₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrogen atoms are: (a) Both terminal (b) One terminal and other bridging (c) Both bridging between two Ru (d) Both bridging between three Ru	 Q.73. In H₂Ru₆(CO)₁₈ cluster, containing 8 co-ordinate Ru centers, the hydrogeneous (a) Both terminal (b) One terminal and (c) Both bridging between two Ru (d) Both bridging be Q.74. The sandwich complex η-CpCoC_nH_n is an 18 electron species, when (a) 6 (b) 4 (c) 3 (d) 5 Q.75. On reducing Fe₃(CO)₁₂ with an excess of sodium, a carbonylate ion isoelectronic with 		` '	3	2	1	4						
 (a) Both terminal (b) One terminal and other bridging (c) Both bridging between two Ru (d) Both bridging between three Ru 	 (a) Both terminal (b) One terminal and (c) Both bridging between two Ru (d) Both bridging be Q.74. The sandwich complex η-CpCoC_nH_n is an 18 electron species, when (a) 6 (b) 4 (c) 3 (d) 5 Q.75. On reducing Fe₃(CO)₁₂ with an excess of sodium, a carbonylate ion isoelectronic with 	Q.73.	` ′	$u_6(CO)$) ₁₈ clu	ster, co	ntaining 8	3 co-ord	inate R	Ru cente	rs, the h	ydrogen atoms are:	
(c) Both bridging between two Ru (d) Both bridging between three Ru	(c) Both bridging between two Ru (d) Both bridging be Q.74. The sandwich complex η -CpCoC _n H _n is an 18 electron species, when (a) 6 (b) 4 (c) 3 (d) 5 Q.75. On reducing Fe ₃ (CO) ₁₂ with an excess of sodium, a carbonylate ion isoelectronic with						C						
	Q.74. The sandwich complex η -CpCoC _n H _n is an 18 electron species, when (a) 6 (b) 4 (c) 3 (d) 5 Q.75. On reducing Fe ₃ (CO) ₁₂ with an excess of sodium, a carbonylate ion isoelectronic with									0 0			
	(a) 6 (b) 4 (c) 3 (d) 5 Q.75. On reducing Fe ₃ (CO) ₁₂ with an excess of sodium, a carbonylate ion isoelectronic with	O.74.	` ′		_	-			` ′				
(a) 6 (b) 4	(c) 3 (d) 5 Q.75. On reducing Fe ₃ (CO) ₁₂ with an excess of sodium, a carbonylate ion i isoelectronic with				1		1			_	,		
	Q.75. On reducing $Fe_3(CO)_{12}$ with an excess of sodium, a carbonylate ion isoelectronic with		` ′						` ′				
	isoelectronic with	O.75.		ducing	Fe ₃ (C	O) ₁₂ wi	th an exc	ess of se	` ′	a carbo	nylate i	on is formed. The ion	a is
				_		,12			,		J		
	() L () /33 (-) L () (-) L () (-) (-)								(b)	[Ni(C	O) ₄]		
	(c) $[Mn(CO)_5]^T$ (d) $[V(CO)_6]^T$												

Q.76.	In the	given reactions,							
	(i)	OsO ₄ + 5CO <u>250 °C</u>	C, 350atm.	?					
	(ii)	OsO ₄ + 9CO <u>100 c</u>	C , 50atm	?					
	The carbonyl formed in both the reactions are, respectively:								
	(a)	$Os(CO)_5$ in (i) $\&Os_2(CO)_9$	in (ii) (b)	$Os_2(CO)_9$ in both					
	(c)	Os ₂ (CO) ₉ in (i) & Os(CO) ₅	in (ii) (d)	Os(CO) ₅ in both					
Q.77.	Complex $Mo(py)_2(CO)_4$ has two forms. Which of the statement about these forms is true?								
	(a)	Cis- form will give single b	and around 200	00 cm ⁻¹ in IR and Trans-form will give					
		4bands.							
	(b)	Cis- form will give 4 bands	and Trans-form	will give single band round 2000 cm ⁻¹					
		in IR.							
	(c)	Both Cis and Trans-form w	-	_					
	(d)	Both Cis and Trans-form w	ill give single ba	ands at 2000 cm ⁻¹ .					
Q.78.	The F	HOMO in CO is:							
	(a)	π -bonding	(b)	σ-bonding					
	(c)	π - antibonding	(d)	σ -antibonding					
Q.79.	the oxidation state of Fe in the complex $[CpFe(CO)_2]_2$ is:								
	(a)	+2	(b)	+1					
	(c)	0	(d)	-1					
Q.80.	In me	In metal carbonyl complexes, as more electron density moves from the metal d-orbital's							
	toCO	π^* orbitals, the CO stretching	frequency:						
	(a)	Increases	(b)	Decreases					
	(c)	Remains same	(d)	Disappeares					
Q. 81.	Which metal carbonyls do not obey 18- electron rule:								
	1-	$Co_6(CO)_{16}$ 2- $Ir_6(C)$	O) ₁₆ 3-	$Co_4(CO)_{12}$ 4- $V(CO)_6$					
	(a)	3 and 4	(b)	2 and 3					
	(c)	1,2 and 4	(d)	1,2,3 and 4					
Q.82.		The neutral complex which follows 18- electron rule is:							
		$(\eta^5 - C_5H_5)$ Fe(CO) ₂		$(\eta^5 - C_5H_5)$ Mo (CO) ₃					
	(c)	$(\eta^5 - C_5 H_5)_2 Co$	(d)	$(\eta^5 - C_5H_5)Re(\eta^6 - C_6H_6)$					
Q.83.	Whic	h of the following metal c	arbonyls is NC	OT found in liquid form at ordinary					
	tempe	temperature?							
	(a)	Ni(CO) ₄	(b)	Fe(CO) ₅					
	(c)	$Os(CO)_5$	(d)	$Mn_2(CO)_{10}$					
Q.84.	The h	epticity of cyclo hepta1,3,5-tr	riene in $(C_7H_8)F_9$	e(CO) ₃ is:					
	(a)	2	(b)	4					
	(c)	6	(d)	7					
Q.85.	The o	xidation state of Fe in [Fe (η^5	$-C_5H_5)_2][BF_4]$ is	:					
	(a)	+1	(b)	+2					
	(c)	+3	(d)	+4					

Q.86.	An ex	xample of metal cluster with no bridg	ing ligai	nd:					
	(a)	$Mn_2(CO)_{10}$	(b)	$Co_2(CO)_8$					
	(c)	$Fe_2(CO)_9$	(d)	$Fe_3(CO)_{12}$					
Q.87.	In Zie	egler-Natta Catalysis the commonly u	sed cata	llyst is:					
	(a)	$Al(C_2H_5)_3$, $TiCl_4$	(b)	$(\eta^5 - Cp)_2 \text{ TiCl}_2, \text{Al}(OH)_3$					
	(c)	$VO(acac)_2$, $Al_2(CH_3)_6$	(d)	$TiCl_4$, BF_3					
Q.88.	The	The square planar complex [IrCl(Ph ₃ P) ₃] undergoes oxidative addition of Cl ₂ to give							
	twop	roducts:							
	(a)	fac and mer	(b)	cis and trans					
	(c)	Enantiomers	(d)	Linkage isomers					
Q.89.	The r	most unstable species among the follo	wing is:						
	(a)	$Ti(C_2H_5)_4$	(b)	$Ti(CH_2Ph)_4$					
	(c)	$Pb(CH_3)_4$	(d)	$Pb(C_2H_5)_4$					
Q.90.	CO b	ond order is lowest in:							
	(a)	Uncoordinated CO	(b)	CO bonded to one metal					
	(c)	CO bridging Two metals	(d)	CO bridging Three metals					
Q.91.	An ac	queous solution of NaOH reacts with	Fe(CO)	5 to form:					
	(a)	$[HFe(CO)_4]^{-}$	(b)	$[HFe_2(CO)_4]^{-}$					
	(c)	$[H_2Fe(CO)_4]^{-}$	(d)	None of these.					
Q.92.	Arrange the following in increasing order of CO stretching frequencies:								
	I. CO	II. $Mo(CO)_3(NH_3)_3$	III. M	$Io(CO)_6$ IV. $Mo(CO)_3(PPh_3)_3$					
	(a) IV	V < III < II < I	(b) $III < IV < II < I$						
	(c) $II < III < IV < I$ (d) $I > II > III > IV$								
Q.93.	The c	compound formed by the reaction of N	NO and	metals are called:					
	(a)	Nitrite	(b)	Nitrates					
	(c)	Nitrosyls	(d)	None of these.					
Q.94.	The c	oxidation state of Mn in [Mn(NO) ₃ (CO	O)] is:						
	(a)	-1	(b)	-2					
	(c)	-3	(d)	0					

Answers

1- (d)	2- (d)	3- (b)	4- (a)	5- (a)	6- (b)
7 - (d)	8 - (d)	9 - (a)	10 - (b)	11 - (b)	12 - (d)
13- (d)	14- (a)	15- (a)	16 (a)	17- (b)	18- (a)
19- (a)	20- (d)	21- (a)	22- (a)	23- (a)	24- (d)
25- (c)	26- (d)	27- (d)	28- (b)	29- (d)	30- (d)
31- (d)	32- (b)	33- (d)	34- (d)	35- (c)	36- (b)
37- (d)	38- (d)	39- (b)	40- (c)	41- (d)	42- (b)
43- (d)	44- (d)	45- (a)	46- (b)	47- (c)	48- (a)
49- (c)	50- (c)	51- (a)	52- (a)	53- (a)	54- (c)
55- (a)	56- (a)	57- (c)	58- (d)	59- (b)	60- (c)
61- (b)	62- (b)	63- (b)	64- (d)	65- (b)	66- (d)
67- (c)	68- (c)	69- (d)	70- (b)	71- (c)	72- (b)
73- (c)	74- (b)	75- (b)	76- (d)	77- (b)	78- (a)
79- (b)	80- (b)	81- (c)	82- (d)	83- (d)	84- (b)
85- (c)	86- (a)	87- (a)	88- (a)	89- (a)	90- (d)
91- (a)	92- (c)	93- (c)	94- (d)		

Chapter 7

Reaction Mechanism of Transition Metal Complexes

(Contributed by: Dr. Dinkar Malik, Department of Chemistry, M. S. College, Saharanpur)

Critical Points:

- > 5-co-ordinated and 8-co-ordinated complexes are generally fluxional even at low temperature.
- Fluxional molecules undergo deformational rearrangements in which the atom actually interchanges their places with one another e.g. PF₅.
- ➤ The non-rigid molecules in which two or more configurations are chemically equivalent and such non-rigid molecules are called fluxional.
- ➤ In an outer sphere redox reaction electron transfer occur through the intact coordination shells of the metal ions.
- The octahedral complexes, in general, are not fluxional.
- \triangleright In S_N1 mechanism the co-ordination no. of the complex is decreased from 6 to 5.
- > S_N1CB mechanism stands for substitution, nucleophilic, unimolecular, conjugate base.
- \triangleright Strong field octahedral complexes of metal ions with d^0, d^1, d^2, d^7, d^9 and d^{10} configuration are labile(-ve CFAE).
- \triangleright Strong field octahedral complexes of metal ions with d^0, d^1, d^2, d^7, d^9 and d^{10} configuration have positive value of CFAE (inert complexes).
- \triangleright A class of fluxional molecule of great importance is those with trigonal bipyramidal configuration. When all the five appended groups are identical single atoms, as in AB₅, the symmetry of the molecule D_{3n}.
- Trans- effect is explained by polarization theory.
- \triangleright The arrangement of stabilities of high spin complexes of the ions between Mn⁺² and Zn^{*2} with a ligand is known as Irving-William order of stability-

$$Mn^{+2} < Fe^{+2} < Co^{+2} < Ni^{+2} < Cu^{+2} < Zn^{+2}$$

- ➤ With the increase in trans- effect of ligands, the rate of reaction also increases.
- > The non-rigid molecules in which two or more configurations are not chemically equivalent and the process of inter conversion is called isomerism or tautomerism.
- Most of the inorganic reactions are ionic in nature
- ➤ In the dissociative mechanism of octahedral complexes, the more stable intermediate formed is square pyramidal.
- \triangleright S_N1 mechanism is favored when oxidation state of metal atom is less.
- Fluxional molecules undergo deformational rearrangements in which the atom actually interchanges their places with one another e.g. PF₅.
- ➤ Metal Complexes having low (-ve) or zero value of CFAE are labile complexes.
- Metal Complexes having high (+ve) value of CFAE are inert complexes.

International Science Community Association

- Cis- and trans- isomers of the complexes can be detected by Kurnakov's test.
- > CFAE is equal to the difference between CFSE of reactant and intermediate.
- \triangleright In S_N1 mechanism, the rate determining slowest step is metal-ligand bond breaking step.
- For inner sphere mechanism electron transfer reactions, one complex should be inert and other should be labile.
- ➤ For outer sphere mechanism electron transfer reactions, both the complexes should be labile.
- The process in which one of the more symmetrical forms (TBP for the 5-co-ordinated complex) changes to another (square pyramidal) and then back to an equivalent form in which the interchange of the ligands take place is called polytonal arrangement.
- ➤ In an inner sphere redox reaction the two metal ions are connected in the activated complex through a bridging ligand common to both co-ordination shells.
- For inner sphere mechanism, the inert complex should have a ligand capable of forming bridge between the two complexes.
- Weak field octahedral complexes of metal ions with $d^0,d^1,d^2,d^4,d^5,d^6,d^7,d^9,d^{10}$ are labile(-ve CFAE).
- \triangleright In S_N2mechanism pentagonal bi pyramidal (PBP) intermediate is formed, while octahedral wedge intermediate is more common.
- ➤ All non-transition metals complexes are labile in nature.

Multiple Choice Questions

Q.1.	Elect	ron transfer is fast if the conductivity	of the li	gand is:					
_	(a)	Zero	(b)	Low					
	(c)	High	(d)	None of these					
Q.2.		th one of the following statement is inc	correct?						
	(a)	Most of the inorganic reactions are							
	(b)	Reactions of transition metal compl		e slow.					
	(c)	It is possible to study the mechanism							
	(d)	It is possible to study the mechanism		-					
Q.3.		reaction of PtCl ₄ ⁻² with two equivalents							
V .0.	(a)	Cis-Pt(NH ₃) ₂ Cl ₂	(b)						
	(c)	Both (a) & (b)	(d)	Cis-[Pt(NH ₃) ₂ Cl ₄] ⁻²					
Q.4.		ron transfer is fast if:	(-)	2 [- ·(- ·5/24]					
~	(a)	The electron belongs to t_{2g} orbital.							
	(b)	The electron spins of the two completes	lex ions	are the same.					
	(c)	The concentration of the cations in							
	(d)	All of the above	the solu	iion is nign.					
0.5		th of the following statement is true fo	r the fol	lowing reaction?					
Q.5.		+ y-z		\longrightarrow $x-y+z$					
	(a)	The energy of xyz is lowest.							
	(c)	xyz has a long life.	(d)	xyz cannot be isolated.					
Q.6.		ion the correct statement about electron							
Q .0.	(a)			gh inner sphere mechanism are faster					
	(u)	that outersphere mechanism.							
	(b)	<u> </u>	throug	h outer sphere mechanism are faster if					
	(0)	Ligands are pi- acceptor.	, unoug	in outer spirere incentainsin are faster in					
	(c)	(c) Electron transfer reaction occurring through outer sphere mechanism are faster if							
	(0)	the conductivity of ligand is high.							
	(d)	All are correct.							
Q.7.	` ′		a ligan	I to occupy trans position with respect					
Q.7.	The ability of a group to direct the entering ligand to occupy trans-position with respect to the group is called:								
		Steric effect	(b)	Peroxide effect					
	(a)		(b)	Trans effect					
Q.8.	(c)	Inductive effect	(d)	Trans effect					
Q.o.	The reaction is an example of: $[Co(NH_3)_5Cl]^+ + Hg^{+2} \longrightarrow [Hg(NH_3)_5Cl]^+ + Co^{+2}$								
	- '		N113)5C1	J + C0					
	(a)	Electrophilic substitution reaction. Nucleophilic substitution reaction.							
	(b)	•							
	(c)	Electrophilic addition reaction.							
\cap 0	(d)	Nucleophilic addition reaction.	mhono m	a ahaniam.					
Q.9.		ion the correct statement about inner s	-						
	(a)		ngana c	apable of forming bridge between the					
	(1-)	twocomplexes.		L and					
	(b)	The labile complex should have a b							
	(c)	Both the complexes should have a b	ırıagıng	ngand.					

	(4)	None of the complexes should have	vo o hanida	ring ligand						
O 10	(d)	None of the complexes should have	-		o 10					
Q.10.	The	final product containing $(NH_3)_5]^{+2}$, $[Cr(H_2O)_6]^{+2}$ and H_3O^+ is:	chromiu	in the reaction between	ΞΠ					
	(a)	$[Cr(NH_1)(H_1O), C11^{+2}]$ and II_3O is.	(b)	$[C_r(H, O)]^{1+3}$						
	(a)	$[Cr(NH_3)(H_2O)_4Cl]^{+2}$ $[CrCl(NH_3)_5]^{+2}$	(d)	$[Cr(H_2O)_6]^{+3}$ $[Cr(H_2O)_5Cl]^{+2}$						
O 11					·+ ~					
Q.11.			edrai coi	mplexes, the more stable intermedia	пе					
	forme		(L)	Carrana mamani dal						
	(a)	Square planar	(b)	1 10						
0.10	(c)	Prismatic	(d)	Trigonal pyramidal						
Q.12.		nter sphere mechanism electron tran		tions:						
	(a)	Both the complexes should be iner								
	(b)	Both the complexes should be labi		L :11 -						
	(c)	One should be inert and other shou								
0.10	(d)	Electron transfer is slow if the liga								
Q.13.		on transfer from $[Fe(H_2O)_6]^{+2}$ to $[Fe(H_2O)_6]^{-2}$								
	(a)	d-d transition	(b)	*						
0.44	(c)	S _N 1 mechanism	(d)	Outer sphere mechanism						
Q.14.			1s/are	correct about S _N 1 mechanism	ot					
	octahedralcomplexes: (i) It is also known as dissociative mechanism									
	(i)									
	(ii)	It generally occurs through TBP in	ntermedia	ate.						
	(iii)	It occurs in a single step.								
	(iv)	The rate depends on the concentra								
	(a)	(i) only	(b)	(i) & (iv)						
0.45	(c)	(ii) & (iii)	(d)	(i),(ii),(iii) & (iv)						
Q.15.		ner sphere mechanism electron tran		tions:						
	(a)	Both the complexes should be iner								
	(b)	Both the complexes should be labi		••						
	(c)	One should be inert and other shou								
	(d)		n increase	e in nucleophilic character of bridging	5					
	ligand									
Q.16.		ate of exchange of cyanide ligands in								
	(i)	$[Ni(CN)_4]^{-2} (ii) [Mn(CN)_6]^{-1}$		(iii) $[Cr(CN)_6]^{-3}$						
	(a)	(ii)>(i)>(iii)	(b)	(iii)>(i)>(ii)						
0.45	(c)	(i)>(iii)>(ii)	(d)	(i)>(ii)>(iii)						
Q.17.		Which of the following conditions is favorable for S_N1 mechanism?								
	(a)	Smaller size of the metal ion.								
	(b)	Higher charge on metal ion.								
	(c)	Larger size of the leaving group.								
0.40	(d)	Absence of chelating group in the	-	es.						
Q.18.	_	uation reaction, the favorable condi								
	(a)	pH < 3	(b)	pH < 7						
0.40	(c)	pH > 7	(d)	pH > 12						
Q.19.		ubstitutionally inert complex ion am	_	<u> </u>						
	(a)	$[Cr(H_2O)_6]^{+3}$	(b)	$[Fe(H_2O)_6]^{+2}$						
	(c)	$[Cr(H_2O)_6]^{+2}$	(d)	$[Ni(H_2O)_6]^{+2}$						

Q.20.	Whic	h of the following condition is favorab	ole for S	S _N 2 mechanism?				
	(a)	<u> </u>	(b)					
	(c)	Larger size of the incoming group.	(c)	<u> </u>				
Q.21.	Trans	effect is not shown by:						
		$[PtCl_4]^{-2}$	(b)	[Pt(NH3)3Cl]+1				
		$Cis-[Pt(NH_3)_2Cl_2]$	(d)	Trans- $[Pt(NH_3)_2Cl_2]$				
Q.22.		of transition metal complexes can be	` '					
		UV-visible spectroscopy	(b)					
	(c)	Microwave spectroscopy	(1)					
O 23		h of the following statements is/are tru						
₹.25.	(i)			g slowest step is metal-ligand bond				
	(-)	breakingstep.		S sie west step is metal ligate come				
	(ii)		ning slo	owest step is metal-ligand bond making				
	()	step.	8					
	(iii)	<u> -</u>	no. of	the complex is decreased from 6 to 5.				
	(iv)			the complex is decreased from 6 to 5.				
	(a)	(i) & (ii)	(b)	(i) & (iii)				
	(c)	(i),(ii) & (iii)	(d)	(i),(ii) & (iv)				
O.24.	[Co(N	$[NH_3)_5X]^{+2} + H_2O$ ————	→	$[Co(NH_3)_5(H_2O)]^{+3} + X^{-1}$				
V	Mention the correct statement about the above reaction-							
	(a) It is found to be of second order							
	(b)							
	(c)	H ₂ O is involved in rate determining	step.					
	(d)	H ₂ O does not affect the rate of react	ion.					
Q.25.	In the inner sphere reduction of $[CoCl(NH_3)_5]^{+2}$ with $[Cr(H_2O)_6]^{+2}$, the chloride:							
	(a) Bridges the metal centre only.							
	(b) Mediates electron transfer only.							
	(c)	Bridges and mediates electron trans	fer both	l .				
	(d)	Does not play any role.						
Q.26.		ion the correct statement:						
	(a)	In $S_N 1$ mechanism the rate, $r = k[N]$		Y]				
	(b)	In S_N 2 mechanism the rate, $r = k[N]$						
	(c)	In $S_N 1$ mechanism the rate, $r = k[1]$						
0.05		In S_N 2 mechanism the rate, $r = k[N]$						
Q.27.		the increase in trans effect of ligands,						
	(a)	Decrease	(b)	Increase				
0.20	(c)	Neither increase nor decrease	(a)	May slightly increase or decrease. $[Co(NH_3)_5H_2O]^{+2} + [CrCl(H_2O)_5]^{+3}$				
Q.28.								
		orrect statement regarding the above r	eaction	is that:				
	(a)	It follows outer sphere mechanism	vith NIL	Lasting as the bridging ligand				
	(b)	It follows inner sphere mechanism v						
	(c)	It follows inner sphere mechanism v It is not an electron transfer reaction		acting as the bridging figure.				
Q.29.	(d) Menti	ion the correct statement about S_N 2 mo		m·				
Ų.∠J.	(a)	It is also known as dissociative mediated S_{N} 2 in S_{N} 2.						
	(a) (b)	In this mechanism the intermediate						

International Science Community Association www.isca.in , www.isca.co.in, www.isca.net.co , www.isa.net.in

co-ordinationno. of initial complex. (c) It is also known as inter ligand associative mechanism(I_a). In this mechanism pentagonal bi pyramidal (PBP) intermediate is formed, while (d) octahedral wedge intermediate is more common. Q.30. Trans effect is explained by: Polarization theory (a) (b) Mulliken theory (c) Pauling theory (d) Magnetic theory Q.31. The Cr(III) species formed soon after electron transfer between $IrCl_6^{-2}$ and $Cr(H_2O)_6^{+2}$ is: $Cr(H_2O)_6^{+3}$ $Cr(H_2O)_5Cl^{+2}$ (b) (a) CrCl₆-3 (c) (d) Cr(H₂O)₃Cl₃Q.32. Mention the correct statement about inert and labile complexes: $[Ni(CN)_4]^{-2}$ is thermodynamically unstable but kinetically stable. $[Co(NH_3)_6]^{-2}$ is thermodynamically stable but kinetically labile. (b) Labile complexes are those in which ligand substitution takes place easily. (c) The terms inert and labile are thermodynamic terms. (d) Q.33. $[Co (NH_3)_5Cl]^{+2}$ HO $[Co(NH_3)_5(OH)]^{+2}$ $C1^{-}$ The rate of above reaction depends upon the concentration of nucleophile. (i) When the concentration of –OH is high it follows first order rate law. (ii) (iii) It follows second order mechanism. (iv) It involves two steps in its mechanism. Which of the following statements is/are correct? (i) only (i) & (ii) (a) (c) (iii) & (iv) (d) All are correct. Q.34. The correct order of rate of exchange of water molecules between the co-ordination sphere and bulk is: $Cr^{+3} < Al^{+3} < Cr^{+2} < Ni^{+2}$ $Cr^{+3} < Al^{+3} < Ni^{+2} < Cr^{+2}$ (b) (a) $Cr^{+3} < Ni^{+2} < Cr^{+2} < Al^{+3}$ $Cr^{+3} < Cr^{+2} < Al^{+3} < Ni^{+2}$ (c) (d) O.35. Mention the correct statement about complexes: Outer orbital complexes of Ni(II) are labile. (a) Outer orbital complexes of Cr(III) are inert. (b) Inner orbital complexes of Sc(III) are inert. (c) (d) Outer orbital complexes of Zn (II) are labile. Q.36. $[Co(NH_3)_5Cl]^{+2}$ + $-OH \longrightarrow [Co(NH_3)_5(OH)]^{+2}$ $C1^{-}$ The above reaction follows: S_N2 mechanism S_N1 mechanism (b) (a) S_Ni mechanism S_N1CB mechanism (c) (d) Q.37. Lability of the ions Cr⁺², Mn⁺² and V⁺² should follow the order: w the order: $Mn^{+2} > Cr^{+2} > V^{+2}$ $V^{+2} > Cr^{+2} > Mn^{+2}$ $Cr^{+2} > Mn^{+2} > V^{+2}$ (b) (a) $Mn^{+2} > V^{+2} > Cr^{+2}$ (d) (c) Q.38. Mention the correct statement: Complexes having sp³d² hybridization have strong bonds than the complexes Complexes having d²sp³ hybridization have strong bonds than the complexes (b) havingsp³d². Both have equal bond strength. (c) It cannot be decided.

(d)

Q.39.	The co	prrect order of Transeffect is:						
	(a)	$H^{-}>SCN^{-}>Br^{-}>H_{2}O$ (b) $CO>Py>H_{2}O>CH_{3}^{-}$						
	(c)	$C_6H_5 > I < Py > OH$ (d) $CO>H_2O>CH_3>Py$						
Q.40.	Consid	ler thr following reaction:						
	[Cr(H ₂)]	$(O)_{6}^{+2} + [CoCl(NH_{3})_{5}]^{+2} \longrightarrow [Co(NH_{3})_{5}H_{2}O]^{+2} + [CrCl(H_{2}O)_{5}]^{+2}$						
	[Fe(CN	$[Co(NH_3)_5H_2O]^{+2} + [CoCl(NH_3)_5]^{+2} \longrightarrow [Co(NH_3)_5H_2O]^{+2} + [CoCl(H_2O)_5]^{+2}$ $[Co(NH_3)_5H_2O]^{+2} + [Mo(CN)_8]^{-3} \longrightarrow [Fe(CN)_6]^{-3} + [Mo(CN)_8]^{-4}$						
		one of the following is the correct statement?						
	(a) Both involve an inner sphere mechanism.							
	(b)	Both involve an outer sphere mechanism.						
	(c)	Reaction 1 follows an inner sphere and reaction 2 follows outer sphere						
		mechanism.						
	(d)	Reaction 1 follows an outer sphere and reaction 2 follows inner sphere mechanism.						
Q.41.	CFAE	is also known as:						
	(a)	The difference between CFSE of reactant and product.						
	(b)	The difference between CFSE of reactant and intermediate.						
	(c)	The difference between CFSE of product and intermediate.						
	(d)	The CFSE of reactant only.						
Q.42.	Which	of the following is the theory of Trans effect:						
	(a)	Mulliken theory (b) Huckel theory						
	(c)	pi-bonding theory (d) Sigma-bonding theory						
Q.43.	Mentio	on the correct statement:						
	(i)	Complexes having low(-ve) CFAE are labile.						
	(ii)							
	(iii)							
	(iv)							
	(a)	(iv) only (b) (i) & (ii)						
	(c)	(ii) & (iii) (d) (i),(ii) & (iii)						
Q.44.	The reaction of PtCl ₄ - ² with NH ₃ gives product A while its reaction with [NO ₂] ⁻² followed							
	by NH ₃ gives product B. The A and B respectively, are:							
	(a)	Trans- $[Pt(NH_3)_2Cl_2]$ and trans- $[Pt(NH_3)Cl_2(NO_2)]^T$						
	(b)	Cis-[Pt(NH ₃) ₂ Cl ₂] and trans-[Pt(NH ₃)Cl ₂ (NO ₂)] $^{-}$						
	(c)	Cis-[Pt(NH ₃) ₂ Cl ₂] and cis-[Pt(NH ₃)Cl ₂ (NO ₂)] $^{-}$						
	(d Trans- $[Pt(NH_3)_2Cl_2]$ and $cis-[Pt(NH_3)Cl_2(NO_2)]^T$							
Q.45.	Electro	ostatic polarization theory was proposed by:						
	(a)	Guldberg (b) Einstein						
	(c)	Gringberg (d) Chatt						
Q.46.	Mentio	on the incorrect statement about S _N 1 reactions which are occurring through square						
	pyrami	idal intermediate-						
	(a)	Weak field octahedral complexes of metal ions with d ⁰ ,d ¹ ,d ² ,d ⁴ ,d ⁵ ,d ⁶ ,d ⁷ ,d ⁹ ,d ¹⁰ are						
		labile.						
	(b)	Weak field octahedral complexes of metal ions with d ³ or d ⁸ configurations have						
		-ve CFAE.						
	(c)	Strong field octahedral complexes of metal ions with d ⁰ ,d ¹ ,d ² ,d ⁷ ,d ⁹ and						
		d ¹⁰ configuration are labile.						
	(d)	Strong field octahedral complexes of metal ions with d^0, d^1, d^2, d^7, d^9 and d^{10}						
		International Science Community Association						

configuration have negative value of CFAE. Q.47. Cis- and trans- isomers are detected by: Kurnakov's test (a) Lucas test (b) (c) Mulliken test (d) Ring test Q.48. The order of reactivity of ligands NMe₃, PMe₃, and CO with complexes MeTiCl₃ and (CO)₅Mo(Ph) are: $CO > PMe_3 > NMe_3$ and $CO > NMe_3 > PMe_3$ (a) (b) $PMe_3 > CO > NMe_3$ and $NMe_3 > CO > PMe_3$ NMe₃> PMe₃> CO and CO > PMe₃ > NMe₃ (c) (d) $NMe_3 > CO > PMe_3$ and $PMe_3 > NMe_3 > CO$ Q.49. $[Co(NH_3)_5X]^{+2}$ $[Co(NH_3)_5(H_2O)]^{+3}$ + X^{-} H_2O is an 'example of: Acid hydrolysis Base hydrolysis (a) (b) Anation reaction None of these (c) (d) Q.50. Pi-bond in tetrahedral complexes is formed by the following symmetry: (b) (a) (c) e (d) None of these Q.51. The platinum complex of NH₃ and Cl⁻ ligands is an anti-tumour agent. The correct isomeric formula of the complex and its precursor are: Trans- (NH₃)₂Cl₂ and PtCl₄⁻² Cis-Pt(NH₃)₂Cl₂ and PtCl₄⁻² (a) Cis- $Pt(NH_3)_2Cl_2$ and $Pt(NH_3)_4^{+2}$ Trans- $Pt(NH_3)_2Cl_2$ and $Pt(NH_3)_4^{-2}$ (c) (d) Q.52. $[Co (NH_3)_5(H_2O)]^{+3}$ + X^{-} $- (NH_3)_5 X]^{+2}$ + H₂O is an example of-(a) Acid hydrolysis (b) Base hydrolysis Anation reaction None of these (c) (d) Q.53. In an octahedral complex, non-bonding orbital's are: (a) 4s (b) $4p_x$, $4p_y$, $4p_z$ (c) $3d_{x2-y2}$, $3d_{z2}$ (d) $3d_{xy}$, $3d_{yz}$, $3d_{zx}$ Q.54. The reactions of Ni(CO)₄ with the ligands (L=PMe₃ or P(OMe)₃) yields Ni(CO)₃L. The reaction is: Associative Dissociative (a) (b) Interchange (I_a) (d) Interchange (I_d) (c) Q.55. Which of the following ligand orbital form pi-bond in octahedral complexes? (a) d_{x2-y2} (b) d_{72} None of these d_{xy} , d_{yz} , d_{zx} (d) (c) Q.56. MOT is also known as: (a) **VBT** (b) LFT **CFT** (d) None of these (c) Q.57. Which of the following metal orbital does not take part in sigma bonding? (a) (b) d_{xv} d_{x2-v2} , d_{z2} (c) d_{zx} (d)

Answers

1 - (c)	2- (d)	3- (a)	4- (d)	5- (d)	6- (d)
7 - (d)	8 - (a)	9 - (a)	10- (d)	11 - (b)	12 - (a)
13- (d)	14- (b)	15- (c)	16- (a)	17- (c)	18- (a)
19- (a)	20- (a)	21- (a)	22- (a)	23- (b)	24- (d)
25- (c)	26- (d)	27- (b)	28- (c)	29- (d)	30- (a)
31- (a)	32- (c)	33- (d)	34- (c)	35- (b)	36- (c)
37- (a)	38- (b)	39- (a)	40- (c)	41- (b)	42- (c)
43- (d)	44- (b)	45- (c)	46- (b)	47- (b)	48- (c)
49- (a)	50- (c)	51- (a)	52- (c)	53- (d)	54- (b)
55- (c)	56- (b)	57- (d)			

Chapter 8 p- Block Elements

(Contributed by: Dr. Punam Yadav, Department of Chemistry, M. S. College, Saharanpur)

Critical Points:

- ➤ The type of force that holds the layers of C atoms in graphite together is Vander Waal forces.
- \triangleright The Compound having an S-S bond is $H_2S_2O_3$.
- Alkali metals posses metallic luster when freshly cut because they contain loosely bound electrons which absorb the photons and then re-emit.
- The atomaticity and the total number of bonds in the elemental white phosphorusmolecule is 4 and 6 respectively.
- > Boron has highly symmetrical Icosahedral structure.
- ➤ When NaNO₂ is treated with Na, Na₂Oand N₂ are formed.
- ➤ Temporary hardness of water is due to calcium bicarbonate can be removed by adding Ca(OH)_{2.}
- ➤ Calcium is obtained by electrolysis of molten CaCl₂.
- The metallic lusture exhibited by sodium metal is due to oscillation of loose electron.
- ➤ KF combines with HF to form KHF₂which exists as K⁺ and [HF₂].
- \triangleright The geometries of Ni(CO)₄ and [NiCl₄]⁻² are tetrahedral and tetrahedralrespectively.
- \triangleright The hybridization of xenon atom inXeF₄is sp³d².
- ➤ The main products of the reaction of equi molar quantities of XeF₆with NaNO₃ are XeOF₄, NaF and NO₂F.
- > Bromine can be liberated from KBr solution by the action of chlorine water.
- \triangleright The perxenate is XeO₄⁻⁴ can be prepared by hydrolysis of XeF₆ in basic medium.
- ➤ The xenon fluoride which is excellent fluorinating agent of aromatic compound, in the presence of Lewis acid XeF₄.
- ➤ Chlorine acts as a bleaching agent only in presence of moisture.
- \triangleright In polymeric (BeCl₂)_n3c-2e bonds are present.
- A solution of sodium metal in liquid ammonia is strongly reducing due to presence of solvated electron.
- > The material used in solar cells contains silicon.
- ➤ In basic beryllium acetate the co-ordination of Be is four.
- ➤ The co-ordination number of Li in LiCH₃ is seven.
- The most abundant element in earth's crust is oxygen.
- Egyptian blue CaCuSi₄O₁₀ is an example of sheet silicate.
- ➤ A Sodalite cage in zeolites is a truncated octahedron.
- > Silicates with 3D frame work are phyllo silicate.
- \triangleright The formula of pyrosilicate ion is Si₂O₇⁻⁶.

International Science Community Association www.isca.in , www.isca.co.in, www.isca.net.co , www.isa.net.in

- ➤ Black phosphorus is thermodynamically most stable.
- \triangleright The percentage of p-character in the orbitals forming P-P bonds in P₄ is 75 percent.
- ➤ The product formed in the reaction of SOCl₂ with white phosphorus is PCl₅.
- \triangleright N₂Ois used as propellant for whipping creams.
- > Ammonia gas can be dried by quick lime.

Multiple Choice Questions

Q.1.	The atomicity and the total number of bonds in the elemental white phosphorus molecule is respectively:						
	(a)	4 and 6	(b)	6 and 4			
	(c)	4 and 4	(d)	6 and 6			
Q.2.	` '	product formed on heating S_2Cl_2 and I	` ′				
C	(a)	$(SN)_X$	(b)	$S_3N_3Cl_3$			
	(c)	S_8Cl_2	(d)	S_4N_4			
Q.3.	` '	Compound having an S-S bond is:	()	~			
	(a)	$H_2S_2O_3$	(b)	$H_2S_2O_4$			
	(c)	$H_2S_2O_7$	(d)	$H_2S_2O_8$			
Q.4.	` '	th of the following oxides is neutral?	. ,				
	(a)	CO	(b)	SnO_2			
	(c)	ZnO	(d)	SiO_2			
Q.5.	` '	nonia gas can be dried by:	. ,				
	(a)	Conc. H ₂ SO ₄	(b)	P_2O_5			
	(c)	CaCl ₂	(d)	Quick lime			
Q.6.	Whic	ch of the following is used as propellar	nt for w	hipping creams?			
	(a)	N_2O	(b)	NO			
	(c)	N_2O_3	(d)	N_2O_5			
Q.7.	There is no S-S bond in:						
	(a)	$S_2O_4^{-2}$	(b)	$S_2O_5^{-2}$			
	(c)	$S_2O_3^{-2}$	(d)	$S_2O_7^{-2}$			
Q.8.	The product formed in the reaction of SOCl ₂ with white phosphorus is:						
	(a)	PCl_3	(b)	SOCl ₂			
	(c)	SCl_2	(d)	POCl ₃			
Q.9.	Which among the following is the strongest base?						
	(a)	AsH_3	(b)	NH_3			
	(c)	PH_3	(d)	SbH_3			
Q.10.	Which of the following has O-O linkage?						
	(a)	$H_2S_2O_6$	(b)	$H_2S_2O_8$			
	(c)	$H_2S_2O_3$	(d)	$H_2S_4O_6$			
Q.11.	Whic	th of the following oxides of nitrogen	is a colo	ored gas?			
	(a)	N_2O	(b)	NO			
	(c)	N_2O_4	(d)	NO_2			
Q.12.	Amo	ng the trihalides of nitrogen, which or	ne is lea	st basic?			
	(a)	NF_3	(b)	NCl ₃			
	(c)	NBr_3	(d)	NI_3			
Q.13.	The p	percentage of p-character in the orbita	ls formi	ng P-P bonds in P ₄ is:			

	(a)	25	(b)	33			
	(c)	50	(d)	75			
Q.14.		h one of the following properties is no	ot show	n by NO?			
	(a)	It is diamagnetic in gaseous state.		•			
	(b)	It is a neutral oxide.					
	(c)	It combines with oxygen to form ni	trogen d	lioxide.			
	(d)	Its bond order is 2.5.	C				
Q.15.	` '	h of the following isomers of phospho	orus is tl	hermodynamically most stable?			
	(a)	Red	(b)	White			
	(c)	Black	(d)	Yellow			
Q.16.	Whic	h of the following compounds on stro	ng heati	ing evolves ammonia gas?			
	(a)	$(NH_4)_2SO_4$	(b)	HNO ₃			
	(c)	$(NH_4)_2Cr_2O_7$	(d)	NH_3NO_3			
Q.17.	The f	ormula of pyrosilicate ion is:					
	(a)	$\mathrm{SiO_4}^{-4}$	(b)	$\mathrm{Si}_2\mathrm{O}_7^{-6}$			
	(c)	$\mathrm{Si}_{3}\mathrm{O}_{9}^{-6}$	(d)	${\rm Si_6O_{18}}^{-12}$			
Q.18.	The g	gaseous product of the reaction of bord	on triflu	oride with tetrahydroborate ion is:			
	(a)	F_2	(b)	HF			
	(c)	H_2	(d)	B_2H_6			
Q.19.	Which of the following has smallest bond enthalpy?						
	(a)	Si - H	(b)	C - H			
	(c)	Ge - H	(d)	Pb - H			
Q.20.	Silicates with 3D frame work are:						
	(a)	Niso-silicate	(b)	Soro-silicate			
	(c)	Phyllo-silicate	(d)	Tecto-silicate			
Q.21.	A So	dalite cage in zeolites is:					
	(a)	a truncated tetrahedron	(b)	an icosahedron			
	(c)	a truncated octahedron	(d)	a dodecahedron			
Q.22.	Mode	erate electrical conductivity is shown l	by:				
	(a)	Silica	(b)	Graphite			
	(c)	Diamond	(d)	None of these			
Q.23.	What	is the nature of silicon-oxygen bond	in silica	?			
	(a)	Polar covalent	(b)	Ionic			
	(c)	Non polar covalent	(d)	Coordinate Covalent			
Q.24.	Whic	h of the following is least stable and h	nas dout	otful existence?			
	(a)	CCl_4	(b)	GeI_4			
	(c)	SnI_4	(d)	PbI_4			
Q.25.	Borio	acid does not have:					
	(a)	exists in polymeric form due to inte	r molec	eular hydrogen-bonding.			
	(b)	is used in manufacturing of optical	glasses.				

	(c)	is a tribasic acid.		
	(d)	with borax, it is used in preparation of	of a buf	fer solution.
Q.26.	en atoms of [SiO ₄] ⁻² are shared is			
	(a)	Pyrosilicate	(b)	Sheet-silicate
	(c)	Linear chain-silicate	(d)	Three dimensional-silicate
Q.27.	Egypti	ian blue CaCuSi ₄ O ₁₀ is an example of	:	
	(a)	Sheet-silicate	(b)	Cyclic-silicate
	(c)	Pyrosilicate	(d)	Chain-silicate
Q.28.	Amon	g the following substituted silanes, the	e one th	at gives cross-linked silicone polymer
	upon l	nydrolysis is:		
	(a)	(CH ₃) ₄ Si	(b)	CH ₃ SiCl ₃
	(c)	(CH ₃) ₂ SiCl ₂	(d)	(CH ₃) ₃ SiCl
Q.29.	The co	orrect statement regarding closo-{B _n H	n} spec	ies is:
	(a)	it always has -2 charge.		
	(b)	it always has +2 charge.		
	(c)	it is neutral species.		
	(d)	it is more reactive than nido-, arachn	o- and	hypo-boranes.
Q.30.	The m	ost abundant element in earth's crust	is:	
	(a)	Al	(b)	Fe
	(c)	Si	(d)	O
Q.31.	Which	n of the following molecules exits as a	monon	ner under ambient conditions?
	(a)	Trimethylaluminium	(b)	Triethylaluminium
	(c)	Triphenylaluminium	(d)	Trimesitylaluminium
Q.32.	In [B ₄	$O_5(OH)_4]^{-2}$, the number of boron atom	ns havii	ng an octet of electrons is:
	(a)	0	(b)	1
	(c)	2	(d)	4
Q.33.	The K	₂ CO ₃ is a diametric sesquioxide, and t	hen wh	ich is incorrect?
	(a)	It is a paramagnetic.		
	(b)	It is a diamagnetic.		
	(c)	It has a mixture of peroxide and supe	eroxide	
	(d)	It is colored.		
Q.34.	In bas	ic beryllium acetate the co-ordination	of Be is	s:
	(a)	4	(b)	3
	(c)	2	(d)	5
Q.35.	The co	o-ordination number of Li in LiCH ₃ is	:	
	(a)	7	(b)	6
	(c)	4	(d)	5
Q.36.	In bic	yclic cryptands form 1:1 metal comple	ex, whic	ch conformation of cryptand is most
likely present?				

	(a)	exo - exo	(b)	exo - endo				
	(c)	endo - endo	(d)	endo – exo				
Q.37.	The n	naterial used in solar cells contains:						
	(a)	Cs	(b)	Si				
	(c)	Sn	(d)	Ti				
Q.38.	Nitro	gen dioxide cannot be prepared by he	ating:					
	(a)	KNO ₃	(b)	$Pb(NO_3)_2$				
	(c)	$Cu(NO_3)_2$	(d)	$AgNO_3$				
Q.39.	A sol	ution of sodium metal in liquid ammo	onia is st	rongly reducing due to presence of:				
	(a)	Na atoms	(b)	NaH				
	(c)	NaNH ₂	(d)	Solvated electrons				
Q.40.	In pol	lymeric $(BeCl_2)_n$, there are:						
	(a)	3c-2e bonds	(b)	3c-3e bonds				
	(c)	2c-3e bonds	(d)	2c-2e bonds				
Q.41.	A me	tal which does not react with nitrogen	ı is:					
	(a)	Li	(b)	K				
	(c)	Ca	(d)	Mg				
Q.42.	KOH	is preferably used to absorb CO2 gas	because	»:				
	(a) KOH is more soluble than NaOH in water.							
	(b) KOH is stronger base than NaOH.							
	(c)	(c) KHCO ₃ is soluble in water and NaHCO ₃ is sparingly soluble in water.						
	(d)	KOH is cheaper than NaOH.						
Q.43.	HBr and HI reduce sulphuric acid, HCl can reduce KMnO ₄ and HF can reduce:							
	(a)	H_2SO_4	(b)	$KMnO_4$				
	(c)	$K_2Cr_2O_7$	(d)	None of these				
Q.44.	Chlor	ine acts as a bleaching agent only in p	resence	e of:				
	(a)	Dry air	(b)	Moisture				
	(c)	Sunlight	(d)	Pure oxygen				
Q.45.	The x	enon fluoride which is excellent fluor	rinating	agent of aromatic compound, in the				
	presence of Lewis acid, is:							
	(a)	XeF_6	(b)	$\mathrm{XeF_4}$				
	(c)	XeF_2	(d)	$XeOF_2$				
Q.46.	Whic	h of the following compounds formed	l by xen	on has the same number of valence				
	electr	on as I ₃ ⁻ ?						
	(a)	$\mathrm{XeO_4}$	(b)	XeF ₄				
	(c)	XeF_2	(d)	XeO_3				
Q.47.	The p	erxenate is XeO ₄ -4 can be prepared by	y:					
	(a)	Direct reaction of Xe with oxygen.						
	(b)	Reaction of XeF ₆ with oxygen.						
	(c)	Hydrolysis of XeF ₆ in acidic medium	n.					

	(d)	Hydrolysis of XeF ₆ in basic med	lium.				
Q.48.	Which of the following is not a pseudo halide?						
	(a)	CNO ⁻	(b)	RCOO ⁻			
	(c)	OCN ⁻	(d)	N_3			
Q.49.	Bromine can be liberated from KBr solution by the action of:						
	(a)	Iodine solution	(b)	Chlorine water			
	(c)	NaCl	(d)	KI			
Q.50.	The r	nain products of the reaction of eq	jui molar qu	antities of XeF ₆ with NaNO ₃ are:			
	(a)	XeOF ₄ , NaF and NO ₂ F	(b)	XeO ₂ F ₂ , NaF, NOF and F ₂			
	(c)	XeOF ₄ , NaNO ₂ and F ₂	(d)	XeF ₄ , NaNO ₂ and F ₂ O			
Q.51.	The h	ybridization of xenon atom inXel	F ₄ is:				
	(a)	sp^2	(b)	sp^3			
	(c)	sp ³ d	(d)	$\mathrm{sp}^{3}\mathrm{d}^{2}$			
Q.52.	Whic	h pair of ions forms the strongest	ionic bond?				
	(a)	Na^+ and Γ	(b)	Na ⁺ and F ⁻			
	(c)	Na ⁺ and Cl ⁻	(d)	K^+ and I^-			
Q.53.	Which of the following molecule has highest dipole moment?						
	(a)	BCl ₃	(b)	CCl ₄			
	(c)	NF ₃	(d)	NH_3			
Q.54.	The state of hybridization of Ni in K ₂ [NiCl ₄] is:						
	(a)	dsp^2	(b)	sp^3			
	(c)	sp^2d	(d)	d^3s			
Q.55.	Which of the following pair is isostructural?						
	(a)	CO ₂ and H ₂ O	(b)	BF ₃ and H ₃ C ⁺			
	(c)	CCl ₄ and PtCl ₄	(d)	NH ₃ and BF ₃			
Q.56.	Which of the following chemical species has highest bond order?						
	(a)	O_2	(b)	${ m O_2}^+$			
	(c)	O_2	(d)	O_2^{-2}			
Q.57.	Which of the following species is diamagnetic in the ground state?						
	(a)	O_2^{-2}	(b)	O_2^-			
	(c)	NO	(d)	${ m O_2}^+$			
Q.58.	Whic	h of the following molecules has	a dipole mo	ment?			
	(a)	SF_6	(b)	PCl ₅			
	(c)	BF_3	(d)	SF ₄			
Q.59.	In wh	nich of the following salt, cation a	nd anion are	e iso-electronic?			
	(a)	LiF	(b)	NaCl			
	(c)	KCl	(d)	KBr			
Q.60.	Whic	h molecule has zero bond order?					
	(a)	$\mathrm{H_2}^+$	(b)	H_2			
	(c)	НеН	(d)	He_2			

Q.61.	2.61. Which of following molecules has square planar geometry?								
	(a)	XeO_2F_2	(b)	SF_4					
	(c)	BF_4^-	(d)	XeF ₄					
Q.62.	Amor	ng the following pentachlorides the on	e which	does not exist due to 'inert pair					
	effect	'?							
	(a)	PCl ₅	(b)	BiCl ₅					
	(c)	SbCl ₅	(d)	AsCl ₅					
Q.63.	The g	eometries of Ni(CO) ₄ and [NiCl ₄] ⁻² res	spective	ly, are:					
	(a)	Tetrahedral and square planar	(b)	Square planar and tetrahedral					
	(c)	Tetrahedral and tetrahedral	(d)	Square planar andsquare planar					
Q.64.	KF co	ombines with HF to form KHF ₂ . The c	ompou	nd contains the species:					
	(a)	K^+ , F^- and H^+	(b)	K^+ , F^- and HF					
	(c)	K^+ and $[HF_2]^-$	(d)	[KHF] ⁺ and F ⁻					
Q.65.	Which	h of the following does not exist in sol	lid state	?					
	(i)	LiHCO ₃ (ii) Ca(HCO ₃) ₂	(iii)	$Zn(HCO_3)_2$ (iv) $AgHCO_3$					
	(a)	i, ii, iii and iv	(b)	i, ii, iii					
	(c)	i, ii, and iv	(d)	ii, iii and iv					
Q.66.	Melting point of a mixture of Na ₂ CO ₃ + K ₂ CO ₃ mixture is:								
	(a)	Higher than that of Na ₂ CO _{3.}							
	(b)	(b) Higher than that of K_2CO_{3} .							
	(c)	(c) Lower than that of both Na_2CO_3 and K_2CO_3 .							
	(d)	Lower than that of both K ₂ CO ₃ only							
Q.67.	Li does not resemble with other alkali metals in following properties:								
	(a) Li ₂ CO ₃ decomposes into oxides while other alkali metal carbonates are thermally stable.								
	(b)								
	(c)								
	(d)	All are correct.							
Q.68.	Which one of the following properties is not shown by NO?								
	(a) It is diamagnetic in gaseous state.								
	(b)								
	(c) It combines with oxygen to form nitrogen dioxide.								
	(d)	Its bond order is 2.5.							
Q.69.	K ⁺ for	rms most stable complex with:							
	(a)	crypt-221	(b)	crypt-222					
	(c)	dibenzo crown-6	(d)	dicyclohexyl crown-6					
Q.70.	The n	netallic lusture exhibited by sodium m	etal is e	explained by:					
	(a)	Diffusion of sodium ions.							
	(b)	Oscillation of loose electron.							
	(c)	Excitation of free protons.							

	(d)	Existence of body centered cubic lat	tice.					
Q.71.	` ′	ım is obtained by:						
	(a)	Electrolysis of molten CaCl ₂ .						
	(b)	Electrolysis of solution of CaCl ₂ in v	water.					
	(c)	Reduction of CaCl ₂ with carbon.						
	(d)	Roasting of limestone.						
Q.72.	The alkali metals which form normal oxide, peroxide as well as super oxides are:							
	(a)	Na, Li	(b)	K, Li				
	(c)	Li, Cs	(d)	K, Rb				
Q.73.	` '	ompound which does not have -O-O-	bond is					
	(a)	BaO_2	(b)	Na_2O_2				
	(c)	CrO ₅	(d)	Fe_2O_3				
Q.74.	` '	orary hardness of water is due to calci	` ′					
	(a)	CaCO ₃	(b)	Ca(OH) ₂				
	(c)	CaCl ₂	(d)	HCl				
Q.75.		NaNO ₂ is treated with Na:	` /					
	(a)	NaNO ₃ is formed	(b)	Na ₂ Oand N ₂ are formed				
	(c)	Na ₂ O ₂ and N ₂ are formed	(d)	Na ₂ Oand Na ₃ Nare formed				
Q.76.	To an acidified dichromate solution, a pinch of Na ₂ O ₂ is added and shaken. What is							
	observed?							
	(a)	Blue color.						
	(b)							
	(c)	Copious evolution of oxygen.						
	(d)	Bluish-Green precipitate.						
Q.77.	Alkali metals posses metallic luster when freshly cut because:							
	(a) They have a hard surface.							
	(b)	•						
	(c)	•						
	(d)	They are obtained from the minerals	on whi	ich light has been falling for years.				
Q.78.	Icosahedral structure is generally exhibited by							
	(a)	C	(b)	Si				
	(c)	Ge	(d)	В				
Q.79.	For bo	orazine, which of the following statem	ent is T	RUE?				
	(a)	N atom is nucleophilic in nature.						
	(b)	B atom is nucleophilic in nature.						
	(c) Bond between B and N is non-polar.							
	(d)	N atom is electrophilic in nature.						
Q.80.	The ty	ppe of force that holds the layers of C	atoms i	n graphite together is:				
	(a)	Ionic	(b)	H-bonding				
	(c)	Vander Waals	(d)	Covalent				

Answers

1 - (a)	2 - (d)	3 - (b)	4 - (a)	5 - (d)	6 - (a)
7 - (d)	8 - (a)	9 - (b)	10- (b)	11 - (d)	12 - (a)
13- (d)	14 - (a)	15- (c)	16- (a)	17- (b)	18 - (d)
19 - (d)	20 - (d)	21- (c)	22- (b)	23 - (a)	24 - (d)
25 - (c)	26 - (b)	27- (a)	28- (b)	29 - (a)	30 - (d)
31 - (d)	32 - (c)	33- (b)	34- (a)	35 - (a)	36 - (c)
37- (b)	38 - (a)	39- (d)	40- (a)	41 - (b)	42 - (c)
43- (d)	44 - (b)	45 - (b)	46 - (c)	47 - (d)	48 - (b)
49 - (b)	50 - (a)	51 - (d)	52 - (b)	53- (d)	54 - (b)
55 - (b)	56 - (b)	57 - (a)	58 - (d)	59 - (c)	60 - (d)
61 - (d)	62 - (b)	63 - (c)	64 - (c)	65 - (a)	66 - (c)
67 - (d)	68 - (a)	69 - (b)	70 - (b)	71 - (a)	72 - (d)
73 - (d)	74 - (b)	75 - (b)	76 - (a)	77 - (c)	78 - (d)
79 - (d)	80 - (c)				

Chapter 9 Chemical Bonding

(Contributed by: Dr. Punam Yadav, Department of Chemistry, M. S. College, Saharanpur)

Critical Points:

- ➤ The molecules NO₂is paramagnetic while N₂O₄is diamagnetic.
- The bond energies of H_2 , F_2 and Cl_2 decrease in the following order: $H_2 > Cl_2 > F_2$
- NaCl has ionic bonding and Kr has vander waals interaction.
- \triangleright The bond angle of Cl₂O is greater than that of H₂O.
- \triangleright S₂ and O₂ gases are paramagnetic in nature.
- \triangleright BF₃ and N(SiH₃)₃show back donation.
- $ightharpoonup P_2$ converts into P_4 due to weak P_{π} - P_x bonding.
- Number of co-ordinate bonds in BeH₄²⁻ are two.
- ➤ The cyanide ion, CN⁻ and N₂ are isoelectronic, but in contrast to CN⁻, N₂ is chemically inert, because of the presence of more number of electrons in bonding orbital's.
- \triangleright H₂O₂contains both polar and non-polar bonds.
- \triangleright CaC₂contains one σ and two π bonds between the carbon atoms.
- \triangleright The hybridization of sulphur in sulphur dioxide is sp².
- \triangleright The d_{π}-p_{π} bond is possible in phosphate ion.
- \triangleright I₃ ion is linear having and having sp³d hybridization.
- > Carbon and sulphur atoms form discrete polyatomic molecules in its elemental state.
- \triangleright The Si O Si bond angle in Me₃SiOSiMe₃ is 180° .
- According to VSEPR theory, sulphate ion has ideal tetrahedral shape.
- ➤ If CH₄ is assumed to give two disubstituted products. Then the shape of CH₄ will be square planer.
- ➤ Hybridization state of boron and oxygen in boric acid is sp² and sp³ respectively.
- \triangleright Bond angle in white phosphorous is 60° .
- ightharpoonup Hybridization of Si in Si₄O₁₁⁶⁻ is sp³.
- \triangleright Hybridization and shape of N(SiH₃)₃ is sp² and planer.
- Shape of O_2F_2 is similar to that of H_2O_2 and S_2Cl_2 .
- Maximum number of bond pair can be holded by N is four.
- \triangleright P₂ converts into P₄ due to weak P_{π}-P_x bonding.
- \triangleright The bond angle of Cl₂O isgreater than that of H₂O.

Multiple Choice Questions

Q.1.	Amoi	ng following sp	ecies th	e iso-st	ructural	species	s are:		
	(I)	BN	(II)	CO^{++}		(III)	CN^+	(IV)	$\mathrm{CN_2}^{2\text{-}}$
	(a)	I, II	` /			(b)	I, II, III	` ,	-
	(c)	III, IV				(d)	I, II, III, IV		
Q.2.		ect order of bon	d angles	s is:		()	, , , ,		
	(a)	PF ₃ <ph<sub>3</ph<sub>				(b)	AsH ₃ <sbh<sub>3</sbh<sub>		
	(c)	$OH_2 < OF_2$				(d)	OF ₂ >OCl ₂		
Q.3.		compound pair	which sl	how co	rrect ord	` ′	= =		
	(I)	$NH_3>PH_3$		(II)	$H_2S < I$		(III)	NO_2^+	>NO ₂
	(IV)	$NO_2^+ > NO_2^-$		(V)	NO_2		` /	-	-
	(a)	I, II,V		` /	2	(b)	II, III, IV, V		
	(c)	I > II,III, IV				(d)	I, II, III, IV		
Q.4.		K* molecular or	bital in	ethane i	s:	` /	, , ,		
	(a)					-symm	etric under refle	ection al	bout the plane of
	` /	the molecule				3			1
	(b)	Anti-symme	tric und	er invei	rsion an	d symr	netric under re	flection	about the plane
	` /	of the molec				J			1
	(c)	Symmetric u	ınder inv	ersion	and sym	metric	under reflectio	n about	the plane of the
	, ,	(c) Symmetric under inversion and symmetric under reflection about the plane of the molecule.							
	(d)	(d) Anti-symmetric under inversion and anti-symmetric under reflection about the							
		plane of the					•		
Q.5.	The b	The bond energies of H ₂ , F ₂ and Cl ₂ decrease in the following order							
	(a)	$H_2>F_2>Cl_2$				(b)	$Cl_2>F_2>H_2$		
	(c)	$F_2 > Cl_2 > H_2$				(d)	$H_2>Cl_2>F_2$		
Q.6.	Arran	ige the following	ng mole	cules in	order of	fincrea	sing bond pola	rity	
	(1)	H_2O	(2)	NH_3		(3)	PH_3	(4)	H_2S
	(a)	1 < 2 < 3 < 4				(b)	4 < 3 < 2 < 1		
	(c)	3 < 4 < 2 < 1				(d)	3 < 4 < 1 < 2		
Q7.	The element NaCl and Kr crystallize in a cubic structure. While NaCl is a solid at room								
	temperature, Kr is a gas? The reason for this is:								
	(a) NaCl has covalent bonding and Kr has metallic bonding.								
	(b) NaCl has ionic bonding and Kr has covalent bonding.								
	(c) NaCl has ionic bonding and Kr has vander waals interaction.								
	(d)								
Q.8.	The n	nolecules NO ₂	and N ₂ C	O ₄ are re	espective	ely:			
	(a)	Diamagnetic	, parama	agnetic					
	(b)	Paramagnetic, paramagnetic							
	(c)	(c) Paramagnetic, diamagnetic							
	(d)	Diamagnetic	, diamag	gnetic					
Q.9.	The b	ond angle of C	l_2O is:						
	(a)	Smaller than	that of	F_2O		(b)	Smaller than	that of l	H_2O
	(c)	Greater than	that of I	H_2O		(d)	Same as that	of F ₂ O	
Q.10.	Whic	h is/are parama	agnetic a	mong:					
	(I)	$S_2(gas)$	(II)	O_2		(III)	NO_2^+	(IV)	CaH_2

	(a) I, II	(b)	I, II, III
	(c) II only	(d)	all
Q.11.	• • • • • • • • • • • • • • • • • • • •		
	(a) BF_3	(b)	$N(SiH_3)_3$
	(c) Both	(d)	None
Q.12.		(4)	1 (0110
Q.12.	(a) Weak P_{π} - P_x bonding	(b)	Strong P _x -P _x bonding
	(c) Strong P_x -d _x bonding	(d)	Weak sigma bonding
Q.13.	2		vi can sigma conamg
Q.15.	(a) 2	(b)	1
	(c) 3	(d)	zero
Q.14.	0		
Q.1 1.	(a) C_2H_4	(b)	BF ₃
	(c) HCHO	(d)	All
Q.15.	· ·	` /	
Q.13.	(a) 2	(b)	3
	(c) 4	(d)	5
Q.16.	Correct order of bond angle among the foll		
Q.1 0.	(a) OCl ₂ >OH ₂ >OF ₂	(b)	
	(c) $OH_2 < OF_2 < OCl_2$	(d)	$OH_2 < OCl_2 < OF_2$
Q.17.	., = = =	` /	
Q. 177	(a) $AsH_3 < AsF_3 < AsCl_3$	(b)	
	(c) $AsH_3 < AsCl_3 < AsF_3$	(d)	
Q.18.		(0)	1 10113/ 1 10 013/ 1 101 3
C	(a) PH ₅	(b)	PCl ₅
	(c) NI_3	(d)	A and C both
Q.19.	Which will have highest dipole moment?	()	
<u> </u>	(a) o-Chloro Toluene	(b)	m-Chloro Toluene
	(c) p-Chloro Toluene	(d)	o-Dichloro Benzene
Q.20.	Which is most polar bond among the follow		
	(a) S-Cl	(b)	Se-Cl
	(c) S-Br	(d)	Se-Br
Q.21.			llowing molecule?
	(a) O_2F_2	(b)	H_2O_2
	(c) MnO_4	(d)	All
Q.22.	Shape of O_2F_2 is similar to that of:	` /	
	(a) H_2O_2	(b)	S_2Cl_2
	(c) CH_3 -O- C_6H_6 -OC H_3	(d)	All
Q.23.	Which of the following molecule has higher	st dipol	e moment?
	(a) CF_4	(b)	MnO_4
	(c) CH ₃ OH	(d)	NCl ₃
Q.24.	How many π bonds are present in P ₂ O ₅ mol	` /	, and the second
	(a) 4	(b)	2
	(c) 3	(d)	Zero
Q.25.	Which of the following bond is least covale	ent in na	iture?
-	(a) S-F in SF_2	(b)	S-F in SF ₄

	(c) S-F in SF_6	(d)	All have equally covalent nature	
Q.26.	In which process the hybridization s	state of bord	on is not changed in the last product	
	(adduct):			
	(a) $BF_3 + THF \rightarrow Adduct$	(b)	$BF_3 + H_2O \rightarrow Product$	
	(c) $BF_3 + SbF_5 \rightarrow Product$	(d)	$H_3BO_3 + NaCO_3 \rightarrow Product$	
Q.27.	Which have trigonal planar geometry?			
	(a) SF_4	(b)	XeO_3	
	(c) BF_3	(d)	CO_2	
Q.28.	Formula of a metal oxide in MO, form	ula of its ph	osphate will be:	
	(a) $M_3(PO_4)_2$	(b)	MPO_4	
	(c) $M_3(H_2PO_4)_2$	(d)	$M_2(PO_4)_3$	
Q.29.	Correct order of bond angles among th	` ′	, , , , ,	
		_	$H_2S < SiH_4 < BF_3$	
		, -	NH ₃ <bf<sub>3<sih<sub>4</sih<sub></bf<sub>	
Q.30.	Hybridisationin MnO ₄ is:	2		
Q .00.	(a) sd^3	(b)	sp^3	
	(c) p^3d	(d)	dsp^3	
Q.31.	Angles in XeO ₃ F ₂ are equal with which	` ′	dop	
Q.51.	(a) PBr_3F_2	(b)	XeO_2F_2	
	(c) BrF_3	(d)	All	
Q.32.	For hybridization which statement is in	` '	7 111	
Q.32.	(a) Different orbitals are mixed.	(b)	Hybrid from sigma bonds only.	
		` '		
	(c) Hybrid orbitals are lower in energy than atomic orbitals(d) Hybridization can be shown experimentally.			
Q.33.	Hybridization in boron is BF ₃ - ether m	-	, .	
Q.33.	(a) sp^3	(b)	sp^2	
	(c) sp	(d)	sp^3d	
Q.34.	Maximum number of atoms in same co	` /		
Q.54.	(a) 4	(b)	3	
	(a) 4 (c) 2	(d)	6	
Q.35.	Hybridization on anionic carbon in all	` '	O	
Q.33.	· •	•	sp^3	
		(b) (d)		
0.36	(c) sp Hybridization and shape of N(SiH) i		sp ³ d	
Q.36.	Hybridization and shape of $N(SiH_3)_3$ i		an ² nlanar	
	(a) sp^3 , tetrahedral	(b)	sp ² , planar	
0.27	(c) sp ³ , planar	(d)	sp ² , angular	
Q.37.	Hybridization in $(C_6H_5)_3C^-$ (on negative)			
	(a) sp^2	(b)	sp^3	
0.20	(c) sp	(d)	sp^3d	
Q.38.	Hybridization in carbon suboxide (C ₃ C	*	2	
	(a) sp in both	(b)	sp and sp^2	
0.20	(c) sp^2 and sp	. (d)	sp ³ and sp	
Q.39.	Hybridization on central atom in SOF ₄		3	
	(a) sp^2	(b)	sp^3	
0.40	(c) dsp ³	. (d)	sp ³ d	
Q.40.	Hybridization on central atom in Be ₂ C	1S:		

	(a)	sp^2		(b)	sp^3
	(c)	sp		(d)	None
Q.41.		dization of central atom in O_2	H ₃ is:	()	
	(a)	sp^2	5	(b)	sp^3
	(c)	dsp^2		(d)	sp^3d
Q.42.	` '	dization of Si in Si ₄ O ₁₁ ⁶⁻ is:		()	T .
~ ··-·	(a)	sp^2		(b)	sp_2^3
	(c)	sp^3d^2		(d)	sp^3d
Q.43.	` ′	er of singlet linkages in TeBr ₄	are:	(4)	SP =
Q	(a)	2		(b)	3
	(c)	1		(d)	4
Q.44.	` '	gular octahedral molecule MX	Ce the No	` /	0
~	(a)	2	10 0110 1 1	(b)	3
	(c)	6		(d)	4
Q.45.		ahedral structure the pair of d'	orbital's	` /	
Q. 15.	(a)	d_{xy} and d_{yz}	oronar i	(b)	d_{x-y}^{2} and d_{z}^{2}
	(c)	d_{xy} and $d_{x^2-y}^2$		(d)	d_x^2 and d_{xy}
Q.46.		NO angle is maximum in:		(u)	dz diid dxy
Q. 10.	(a)	NO_3		(b)	NO_2^-
	(c)	NO_2		(d)	NO_2^+
Q.47.		umber of H-C-H bond angles i	n CH ₄ a	` /	1102
Q. 17.	(a)	4	11 C114 u	(b)	2
	(c)	1		(d)	6
Q.48.	. ,	angle in white phosphorous is:	•	(4)	
Q	(a)	60°		(b)	90^{0}
	(c)	109 ⁰ 28		(d)	Zero
Q.49.	` '	dization state of boron and oxy	vgen in l	. ,	
	(a)	sp^3, sp^2		(b)	sp^2 , sp^3
	(c)	sp^2, sp^2		(d)	sp ³ ,sp ³
Q.50.		is correct order of bond angle	e:	()	r y r
	(a)	$CCl_4 > BF_3 > NO_2^+$		(b)	NH ₃ > NCl ₃ >NBr ₃
	(c)	$Br_2O > Cl_2O > OF_2$		(d)	$PCl_3 > PBr_3 > PI_3$
O.51.			stituted		s. Then the shape of CH ₄ will be:
	(a)	Tetrahedral		(b)	Square planar
	(c)	Trigonal bi pyramidal		(d)	Pyramidal
Q.52.	Which	is not paramagnetic among th	ne follow	ving mo	lecules?
	(a)	B_2		(b)	C_2
	(c)	O_2		(d)	None
Q.53.	Struct	ure of SbF ₄ is similar with:		, ,	
	(a)	SF ₄		(b)	XeOF ₄
	(c)	ClF ₄		(d)	XeO_4
Q.54.	The co	orrect non - linear and iso – str	uctural	pair is:	
	(a)	SCl ₂ and I ₃	•	(b)	SCl ₂ and I ₃ ⁺
	(c)	SCl ₂ and ClF ₂	(d)	$\hat{I_3}^+$ and	
Q.55.	Accor	ding to VSEPR theory, the mo	lecule h	aving io	deal tetrahedral shape is:
	(a)	SF_4		(b)	SO_4^{2-}

	(c)	S_2Cl_2	(d)	SO_2Cl_2
Q.56.	The S	i – O – Si bond angle in Me ₃ SiOSiMe	3 is:	
	(a)	~ 120 ⁰	(b)	$\sim 180^{0}$
	(c)	~ 90 ⁰	(d)	~ 109 ⁰
Q.57.	Amor	ng the following pairs in which the two	specie	s are not isostructural is:
	(a)	IO_3^- and XeO_3	(b)	BH ₄ and NH ₄
	(c)	PF ₆ and SF ₆	(d)	SiF ₄ and SF ₄
Q.58.	` /	toms that form discrete polyatomic mo	` /	
	(a)	C and S	(b)	C and O
	(c)	N and S	(d)	C and F
Q.59.		h of the following species has two non	` /	
C	(a)	TeCl ₄	(b)	ClF ₃
	(c)	ICl ₂	(d)	PCl ₃
Q.60.		n is linear having the hybridization:	(4)	
Q	(a)	sp	(b)	$\operatorname{sp}_{\frac{3}{2}}^{2}$
	(c)	sp^3d	(d)	sp ³
Q.61.		ag the molecular ions the d_{π} - $p_{\pi^{\wedge}}$ bond i	` '	
Q.01.	(a)	NO_3^-	(b)	PO ₄ -3
	(c)	CO_3^{-2}	(d)	NO_2^-
Q.62.	` /	h of the following compound is covale	` '	1102
Q.02.	(a)	H_2	(b)	CaO
	(c)	KCl	(d)	Na ₂ S
Q.63.	. ,		` /	sigma bonding orbital's used by M
Q.03.		ic number < 21) are:	ciit, tiic	signia boliding bibital s used by Wi
	(a)	Pure p	(b)	sp hybridized
	(c)	sp ² hybridized	(d)	sp ³ hybridized
Q.64.		on that is isoelectronic with CO is:	(u)	sp nyonaizea
Q.0 1.	(a)	CN ⁻	(b)	${ m O_2}^+$
	(c)	O_2^-	(d)	N_2^+
Q.65.		h one among the following does not hat	` /	-
Q .05.	(a)	Phenol	(b)	Liquid NH ₃
	(c)	Water	(d)	HCl
Q.66.		ybridization of sulphur in sulphur diox		
Q .00.	(a)		(b)	sp^3
	(c)	$\begin{array}{c} sp \\ sp^2 \end{array}$	(d)	dsp^2
Q.67.		pecies in which the central atom uses s		orid orbital's in its bonding is:
Q.07.	(a)	PH ₃	(b)	NH ₃
	(c)	CH ₃ ⁺	(d)	SbH ₃
Q.68.	` '	nolecule that has linear structure is:	(u)	50113
Q .00.	(a)	CO ₂	(b)	NO_2
	(c)	SO_2	(d)	SiO ₂
Q.69.	` '	nolecule which has zero dipole momer	` '	5102
Q.07.	(a)	CH ₂ Cl ₂	(b)	BF ₃
	(a) (c)	NF ₃	(d)	ClO ₂
Q.70.	` /	nolecule which has pyramidal shape is	, ,	
Q.70.		PCl ₃	(b)	SO_3
	\u /	1 011	101	NO1

	(c)	$\mathrm{CO_3}^{2-}$	(d)	NO_3^-		
Q.71. The type of hybrid orbital's used by the chlorine atom in ClO_2^- is:			om in ClO ₂ is:			
	(a)	sp^3	(b)	sp^2		
	(c)	sp	(d)	None of these		
Q.72.	Which	n one of the following molecules is pla	anar?			
	(a)	NF_3	(b)	NCl ₃		
	(c)	PH_3	(d)	BF_3		
Q.73.	The ni	The number and type of bonds between two carbon atoms in CaC ₂ are:				
	(a)	One sigma and one pi bond	(b)	One sigma and two pi bonds		
	(c)	One sigma and one half pi bonds	(d)	One sigma bond		
Q.74.				<u> </u>		
	dichlo	robenzene(II), o-dichlorobenzene(III)	, p-dich	lorobenzene(IV):		
	(a)	I < IV < II < III	` /	IV < I < II < III		
	(c)	IV < I < III < II	(d)	IV < II < I < III		
Q.75. The cyanide ion, CN and N ₂ are isoelectronic, but in contrast to			t in contrast to CN^{-} , N_2 is chemically			
	inert,	because of:				
	(a)	Low bond energy.	(b)	Absence of bond polarity.		
	(c)	Unsymmetrical electron distribution				
	(d)	Presence of more number of electron				
Q.76.	· · · · · · · · · · · · · · · · · · ·					
	(a)	NO_2^+ and BaO_2	(b)	KO_2 and AlO_2		
	(c)	KO ₂ only	(d)	BaO ₂ only		
Q.77.		n contain both polar and non-polar bor				
	(a)	NH ₄ Cl	(b)	HCN		
	(c)	H_2O_2	(d)	CH_4		
Q.78. Which one of the following compounds has sp ² - hybridization?						
	(a)	CO_2	(b)	SO_2		
	(c)	N_2O	(d)	CO		
Q.79.	The geometry and the type of hybrid orbital present about the central atom in BF_3 is:					
	(a)	Linear, sp	(b)	Trigonal planar, sp ²		
	(c)	Tetrahedral, sp ³	(d)	Pyramidal, sp ³		
Q.80.		In compounds of type ECl ₃ , where E=B,P,As or Bi the angles Cl-E-Cl are:				
	(a)	B > P = As = Bi	(b)	B > P > As > Bi		
	(c)	B < P = As = Bi	(d)	B < P < As < Bi		

Answers

1 - (d)	2- (c)	3- (c)	4- (a)	5- (d)	6- (c)
7 - (c)	8 - (c)	9 - (c)	10- (a)	11 - (c)	12 - (a)
13- (a)	14- (b)	15- (c)	16- (a)	17- (a)	18- (d)
19- (a)	20- (b)	21- (c)	22- (d)	23- (c)	24- (c)
25- (a)	26- (d)	27- (c)	28- (a)	29- (a)	30- (b)
31- (a)	32- (d)	33- (a)	34- (a)	35- (a)	36- (b)
37- (a)	38- (a)	39- (d)	40- (a)	41- (b)	42- (b)
43- (a)	44- (b)	45- (b)	46- (d)	47- (d)	48- (a)
49- (b)	50- (c)	51- (b)	52- (b)	53- (a)	54- (b)
55- (b)	56- (b)	57- (d)	58- (a)	59- (b)	60- (c)
61- (b)	62- (a)	63- (c)	64- (a)	65- (d)	66- (c)
67- (c)	68- (a)	69- (b)	70- (a)	71- (a)	72- (d)
73- (b)	74- (b)	75- (d)	76- (c)	77- (c)	78- (b)
79- (b)	80- (b)				

Chapter 10 Periodicity

(Contributed by: Dr. Punam Yadav, Department of Chemistry, M. S. College, Saharanpur)

Critical Points:

- > Chromium and lead can exhibit more than one oxidation states in compounds.
- \triangleright The basic anhydride of Ba(OH)₂ is BaO.
- \triangleright CO, H₂O, NO etc oxides are neutral in nature.
- > Seventeenth group elements have maximum electron affinity in the periodic table.
- Eighteenth group elements have maximum ionization energy in the periodic table.
- Electron affinity of eighteenth group elements is zero.
- ➤ Electron gain enthalpy of eighteenth group elements is a positive value because energy has to be supplied for the addition of electron to a inert electronic configuration.
- > Second electron gain enthalpy of all the elements is a positive value because energy has to be supplied for the addition of electron to a negatively charged ion.
- The properties of elements are the periodic function of their atomic numbers.
- Non metallic elements are lesser in number than metallic elements.
- ➤ The first ionization energies of elements along a period do not vary in a regular manner with increase in atomic number.
- ➤ The electron affinity of the members of oxygen family of the periodic table follows the sequence:

The correct order of second ionization potential of C, N, O and F is:

- ➤ The first ionization potential in electron volts of nitrogen and oxygen atoms are 14.6 and 13.6 ev respectively.
- ➤ In the periodic table on moving from left to right along a period the first ionization potential of the elements increases.
- ➤ In the periodic table on moving from left to right along a period the atomic and ionic radii of the elements decreases.
- ➤ In the periodic table on moving from left to right along a period the electron affinity of the elements increases.
- ➤ The size of isoelectronic species F, Ne, Na⁺ is affected by

Multiple Choice Questions

Q.1.	The s	The statement that is not correct for the periodic classification of elements is:							
	(a)	-							
	(b)								
	(c)			long a period do not vary in a regular					
	` /	manner with increase in atomic number.							
	(d)	For transition elements the d subs	hells ar	re filled electrons monotonically with					
	, ,	increase in atomic number.		·					
Q.2.	Whic	Which has maximum polarizing power of cation?							
	(a)	Li ⁺	(b)	Mg^{2+}					
	(c)	Al^{3+}	(d)	Mg^{2+} O^{2-}					
Q.3.	The s	ize of the following species increase in	n the or	der:					
		$Mg^{+2} < Na^+ < F^- < Ar$		$F < Ar < Na^+ < Mg^{+2}$					
	(c)	$A r < Mg^{+2} < F < Na^{+}$		$Na^+ < Ar < F^- < Mg^{+2}$					
Q.4.	The	element in which maximum ioniz	zation (energy of the following Electronic					
	Configuration would be:								
	(a)	$[Ne]3s^23p1$	(b)	$[Ne]3s^23p^2$					
	(c)	$[Ne]3s^23p^3$	(d)	$[Ar]3d^{10}4s^24p^3$					
Q.5.	The o	The outermost electronic configuration of most electronegative element is:							
	(a)	ns2 np ¹	(b)	$ns^2 np^4$					
	(c)	$ns^2 np^5$	(d)	$ns^2 np^6$					
Q.6.	The e	The electron affinity of the members of oxygen family of the periodic table follows the							
	sequence:								
	(a)	O.>S>Se	(b)	S>O <se< td=""></se<>					
	(c)	O <s>Se</s>	(d)	Se>O>S					
Q.7.	The process that requires absorption of energy is:								
	(a)	$F \rightarrow F$	(b)	$Cl \rightarrow Cl^{-}$					
	(c)	$O^{-} \rightarrow O^{2-}$	(d)	$H \rightarrow H^{-}$					
Q.8.	In the following which configuration has maximum electro-negativity?								
	(a)	$1s^2 2s^2 2p^5$	(b)	$1s^2 2s^2 2p^6$					
	(c)	$1s^2 2s^2 2p^4$	(d)	$1s^2 2s^2 2p^6 3s^2 3p^3$					
Q.9.	Highe	est size will be of:							
	(a)	Br	(b)	I					
	(c)	Γ	(d)	\mathbf{I}^{+}					
Q.10.	The c	orrect order of second ionization poten	ntial of	C, N, O and F is:					
	(a)	C > N > O > F	(b)	O > N > F > C					
	(c)	O > F > N > C	(d)	F > O > N > C					
Q.11.	Decre	easing ionization potential for K, Ca ar		:					
	(a)	Ba > K > Ca	(b)	Ca > Ba > K					

	(c)	K > Ba > Ca	(d)	Ca > K > Ba				
Q.12.		ent Hg has two oxidation states Hg ⁺¹ no		the right order of radii of these ions is:				
	(a)	$Hg^{+1} < Hg^{+2}$	(b)	$Hg^{+2} < Hg^{+1}$				
	(c)	$Hg^{+1} = Hg^{+2}$	(d)	None				
Q.13.		onization energy will be maximum for	` /					
	(a)	$Ba \rightarrow Ba^{++}$	(b)	$Be \rightarrow Be^{++}$				
	(c)	$Cs \rightarrow Cs^+$	(d)	Li → Li ⁺				
Q.14.	` '	The first ionization potential of Na, Mg, Al and Si are in the orde:r						
((a)	Na < Mg > Al < Si	(b)	Na > Mg > Al > Si				
	(c)	Na < Mg < Al > Si	(d)	Na > Mg > Al < Si				
Q.15.		on affinity is positive when	(4)	1,0,7,1,2,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1				
Q.10.	(a)	O'is formed from O	(b)	O ² -s formed from O ⁻				
		O ⁺ is formed from O	(d)	$Na^+ + e \rightarrow Na$				
Q.16.		n of the following elements has the hig	. ,					
Q.1 0.	(a)	O	(b)	S				
	(c)	Se	(d)	Te				
Q,17.		uter most electronic configuration of the	` /					
Q,17.	(a)	$ns^2 np^3$	(b)	$ns^2 np^4$				
	(c)	$ns^2 np^5$	(d)	$ns^2 np^6$				
Q.18.		Which of the following represent the correct order of electron affinities?						
Q.10.	(a)	Cl > Br > I > F	(b)	Cl > F < Br < I				
	` /	F > Cl > Br > I	(d)	Cl > F < Br < I Cl > F > Br > I				
Q.19.		orrect order of increasing first ionization	` '					
Q.17.	(a)	C > B > Be > Li	(b)	C > Be > B > Li				
		B > C > Be > Li	(d)	Be > Li > B > C				
Q.20.		The set representing correct order of first ionization potential is:						
Q.20.	(a)	K > Na > Li	(b)	Be > Mg > Ca				
	(a) (c)	B > C > N	(d)	Ge > Si > C				
Q.21.	Which of the following does not reflect the periodicity of elements?							
Q.21.	(a)	Bonding behavior	(b)	Electronegativity				
	(a) (c)	Ionization potential	(d)	9				
0.22	` '	<u> -</u>	. ,	Neutron/proton ratio				
Q,22.		n of the following ions has highest value. Li ⁺						
	(a) (c)	Li ⁺ O ²⁻	(d)	F				
0.22	` '	_	` '					
Q,23.		orrect order of first ionization potentia $B < Be < C < O < N$		B $<$ Be $<$ C $<$ N $<$ O				
	(a)		(b)	Be < B < C < O < N				
0.24	(c)	Be $<$ B $<$ C $<$ N $<$ O	(d)					
Q,24.		ecreasing order of the first ionization ϵ						
	(a)	Xe > Be > As > Al		Xe > As > Al > Be				
0.25	(c)	Xe > As > Be > Al	(d)	Xe > Be > Al > As				
Q.25.		n of the following configuration is exp	ectea to	nave maximum difference in				
		d and third ionization energies:	<i>(</i> 1.)	1 22 22 62 1				
	(a)	$1s^2 2s^2 2p^6$	(b)	$1s^2 2s^2 2p^6 3s^1$				
0.24	(c)	$1s^2 2s^2 2p^6 3s^2$		$1s^2 2s^2 2p^1$				
Q.26.		orrect order of second ionization poter	itial of	carbon, nitrogen, oxygen and				
	Fluori	ne is:						

	(a)	C > N > O > F	(b)	O > N > F > C				
	(c)	O > F > N > C	(d)	F > O > N > C				
Q.27.		lement with the highest first ionization	` /					
	(a)	Boron	(b)	Carbon				
	(c)	Nitrogen	(d)	Oxygen				
Q.28.		ydration energy of Mg ²⁺ is larger than						
Q. 20.	(a)	Al ³⁺	(b)	Na^{+}				
	(c)	Be ²⁺	(d)	Mg^{3+}				
Q.29.	` /		` /	•				
2.27.	The first ionization potential in electron volts of nitrogen and oxygen atoms are respectively given by:							
	(a)	14.6,13.6	(b)	13.6,14.6				
	(c)	13.6,13.6	(d)	14.6,14.6				
Q.30.		lectro negativity of the following elem	` /	,				
Q .50.	(a)	C,N,Si,P	(b)	N,Si,C,P				
	(a) (c)	Si,P,C,N	(d)	P,Si,N,C				
Q,31.		one of the following is the smallest in	` /	1,51,11,0				
Q,51.	(a)	N ³⁻	(b)	O^{2-}				
	(a) (c)	F	(d)	Na ⁺				
022								
Q32.	The ions O^{2-} , F_{-} , Na^{+} , Mg^{2+} , Al^{3+} are isoelectronic. Their ionic radii show:							
	(a) A significant decrease from O^2 to AI^{3+} .							
	(b) An increase from O^{2-} to F^{-} and then decrease from Na^{+} to Al^{3+} .							
	(c)	(c) A decrease from O^{2-} to F^{-} and then increase from Na^{+} to Al^{3+} .						
	(d)	A significant increase from O ² - to A	l ³⁺ .					
Q.33.	Whic	h of the following oxide is neutral?						
	(a)	CO	(b)	SnO_2				
	(c)	ZnO	(d)	SiO_2				
Q.34.	Which	n one of the following is correct:						
	(a)	$Ti^{4+} < Mn^{7+}$	(b)	$_{35}\text{Cl} <_{37}\text{Cl}^{-}$				
	(c)	$K^+ > Cl^-$	(d)	$_{35}Cl <_{37}Cl^{-}$ $P^{3+} < P^{5+}$				
Q,35.	The co	orrect order of acidic strength is:	` /					
	(a)	$Cl_2O_7 > SO_2 > P_4O_{10}$						
	` '	$CO_2 > N_2O_5 > SO_3$						
		$Na_2O > MgO > Al_2O_3$						
	(d)	$K_2O > CaO > MgO$						
Q.36.		et representing the correct order of firs	st ioniza	ation potential is:				
Q .000.	(a)	K > Na > Li	(b)	Be > Mg > Ca				
	(c)	B > C > N	(d)	Ge > Si > C				
Q.37.	` '	fy the correct order of acidic strength	(4)					
Q .57.		$CaO < CuO < H_2O < CO_2$	(b)	$H_2O < CuO < CaO < CO_2$				
	(c)	$CaO < H_2O < CuO < CO_2$	(d)	$H_2O < CO_2 < CaO < CuO$				
Q.38.	` '	eries with the correct order of decreasing $\frac{1}{2}$	` /					
Q.50.	(a)	$K^+ > Ca^{2+} > S^{2-} > Cl^-$	(b)	2				
	(a) (c)	$K > Ca^{2} > S^{2}$ $K^{+} > Cl^{-} > Ca^{2+} > S^{2-}$	(d)	$Cl > K^{+} > Ca^{2+}$				
Q.39.	` /	g lithium, nitrogen, carbon and oxyge	` /					
Q.33.		ig nunum, mirogen, carbon and oxygetion potential?	ii willel	referrent has the highest first				
		Lithium	(b)	Nitrogan				
	(a)	LIUIIUIII	(b)	Nitrogen				

	(c)	Carbon	(d)	Oxygen				
Q.40.	Identi	fy the correct option:						
		periodic table on moving from left to	right al	ong a period:				
	(a) The atomic size of the elements increase.							
	(b)	The first ionization potential of the e	lements	s decreases.				
	(c)	The oxide of the element becomes le						
	(d)	The oxide of the element becomes m	ore bas	ic.				
Q.41.		lecreasing order of the first ionization	energy	of the following elements is:				
	(a)	He > H > Be > B	(b)	Be > B > H > He				
	(c)	H > He > Be > B	(d)	B > Be > He > H				
Q,42.		egree of hydration is expected to be m	aximun					
	(a)	Mg^{2+}	(b)	$\mathrm{Na}^{^{+}}$				
	(c)	Ba^{2+}	(d)	K^+				
Q.43.	Anyth	ing that influences the valence e	lectrons	s will affect the chemistry of the				
		nt.Which of the following factors does						
	(a)	Valence principal quantum number		Nuclear charge				
	(c)	Nuclear mass	(d)	Number of core electrons				
Q.44.		The size of isoelectronic species F ⁻ , Ne, Na ⁺ is affected by:						
	(a) Nuclear charge							
	(b)	Valence principal quantum number						
	(c) Electron –electron interactions in the outer orbital							
	(d)	None of the factors because their size	e is the	same				
Q.45.	Whic	Which of the following statement is incorrect in relation with ionization enthalpy?						
	(a)							
	(b)	- ·						
	from core node noble gas configuration.							
	(c)							
	(d)							
	, ,	havinghigher n value.						
Q.46.	Considering the elements B,C,N, F,Si the correct order of their metallic character is:							
	(a)		(b)	Si > B > C > N > F				
	(c)	F > N > C > B > Si	(d)	F > N > C > Si > B				
Q.47.		Considering the elements F, Cl, O and N the correct order of their chemical reactivity in						
	terms of oxidizing properties is:							
	(a)	F > Cl > O > N	(b)	F > O > Cl > N				
	(c)	Cl > F > O > N	(d)	O > F > N > Cl				
Q.48.	The co	The correct order of increasing radius to the given elements is:						
	(a)	Si, Al, P, Na	(b)	P,Si,Al,Na				
	(c)	Al, Si, P, Na	(d)	Al,P,Si,Na				
Q,49.	Which	n of the following series of elements ha	ave nea	rly the same atomic radii?				
	(a)	F, Cl, Br, I	(b)	Na, K, Rb, Cs				
	(c)	Li, Be, B, C	(d)	Fe, Co, Ni, Cu				
Q.50.		ich of the following pair is the second	. ,					
	(a)	Br, Cl	(b)	Na,Mg				
	(c)	Sr, Ca	(d)	N,P				

Q,51.	Which	of the following compounds can one	expect	to show strong ionic character?			
	(a)	BaCl ₂	(b)	CsCl			
	(c)	CaCl ₂	(d)	SrCl ₂			
Q.52.	The or	der of increasing electron affinity of t	he elect	ronic configurations:			
	(i) $1s^2$	$2s^2 2p^6 3s^2 3p^5$ (ii) $1s^2 2s^2 2p^3$ (iii) $1s$	$^{2} 2s^{2} 2p$	$^{5}(iv) 1s^{2} 2s^{2} 2p^{6} 3s^{1}$			
	(a)	ii,iv,iii,i	(b)	i,ii,iii,iv			
	(c)	i,iii,ii,iv	(d)	iv,iii,iii,i			
Q,53.		of the following electronic configura	ations re	epresents the elements with maximum			
		on affinity?					
	(a)	$1s^2 2s^2 2p^6$	(b)	$1s^2 2s^2 2p^5$			
	(c)	$1s^2 2s^2 2p^6 3s^1$	(d)	$1s^{2} 2s^{2} 2p^{5}$ $1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{5}$			
Q.54.	Which	of the following oxides is neutral?		-			
	(a)	SnO_2	(b)	CO			
	(c)	Al_2O_3	(d)	Na ₂ O			
Q.55.	The el	ectronegativity of the following eleme	ents inc	reases in the order:			
	(a)	C < N < Si < P	(b)	Si < P < C < N			
	(c)	N < C < P < Si	(d)	C < Si < N < P			
Q.56.	Which	of the following is arranged in increa	sing or	der of atomic radii?			
	(a	$K^+ < Na^+ < Li^+ $ (b)		i < Na+			
	(c	$Li^+ < Na^+ < K^+ \tag{d}$	$Na^+ < I$	$Li^+ < K^+$			
Q.57.	The th	ird ionization energy is maximum for	:				
	(a)	Nitrogen	(b)	Phosphorus			
	(c)	Aluminium	(d)	Boron			
Q.58.	Which	of the following arrangements	shows	the correct order of decreasing			
		agnetic behavior?		_			
	(a)	Na > Al > O > Ca	(b)	N > O > Al > Ca			
	(c)	O > N > Al > Ca	(d)	O > Na > Ca > Al			
Q.59.	Which	of the following is arranged in order	of incre	easing density?			
	(a)	Ag < Au < Fe < Cu	(b)	Cu < Au < Ag < Fe			
	(c)	Fe < Cu < Ag < Au	(d)	Au < Ag < Cu < Fe			
Q.60.	Which	Which of the following is arranged in decreasing order of size?					
	(a)	$Mg^{2+} > Al^{3+} > O^{2-}$	(b)	$O^{2-} > Mg^{2+} > Al^{3+}$			
	(c)	$Al^{3+} > Mg^{2+} > O^{2-}$	(d)	$Mg^{2+} = Al^{3+} > O^{2-}$			
Q.61.	Which	of the following is arranged in order					
	(a)	C < N < O < F	(b)	F < C < N < O			
	(c)	C < N < F < O	(d)	F < O < N < C			
Q.62.	The or	The order of increasing ionic radius of the following is:					
	(a)	$K^{+} < Li^{+} < Mg^{2+} < Al^{3+}$ (b)	$K^+ < M$	$\lg^{2+} < \text{Li}^+ < \text{Al}^{3+}$			
	(c)	$Li^{+} < K^{+} < Mg^{2+} < Al^{3+}$ (d)		$Li^+ < Mg^{2+} < K^+$			
Q.63.	Arrang	ge the following in order of decreasing		-			
	(a)	S > O > N	(b)	O > S > N			
	(c)	N > O > S	(d)	S > N > O			
Q.64.	The ba	asicity of the hydroxides of the follow	ing alka	ali metals is of the order:			
	(a)	Li > Na > Rb > Cs	(b)	Na > Li > Rb > Cs			
	(c)	Cs > Rb > Na > Li	(d)	Rb > Cs > Na > Li			

Q.65.			tion of	neutral	atom	will have the highest first ionization		
	potent					. 2 - 2 - 3		
		$1s^2 2s^2 2p^1$			(b)	$1s^2 2s^2 2p^3$		
		$1s^2 2s^2 2p^2$				$1s^2 2s^2 2p^4$		
Q.66.	The in		ionizati	on entha	alpy of	the following element is:		
	(a)	F < S < P < B			(b)	P < S < B < F		
	(c)	B < P < S < F			(d)	B < S < P < F		
Q.67.	The ic	onization energy will be	e maxin	num for	the pro			
	(a)	$F \rightarrow F$			(b)	$Be \rightarrow Be^+$		
	(c)	$Cl \rightarrow Cl^{-}$			(d)	$0 \rightarrow 0$		
Q.68/	The ic	onization energy will be	e maxin	num for	the ele	ectronic configuration:		
	(a)				(b)	$1s^2 2s^2 2p^6 3s^1$		
	(c)	$1s^2 2s^2 2p^6 3s^2$			(d)	$1s^2 2s^2 2p^1$		
Q.69.	The e	element which is strong	ly elect	ropositi	ve in n	ature is:		
	(a)	Cu	. •	•	(b)	Cs		
	(c)	Cr			(d)	Ba		
Q.70.		n is correct order for ele	ectron 2	ain enth	` /			
C	(a)			,	(b)	O < S < F < Cl		
	(c)	Cl < F < S < O			(d)	F < Cl < O < S		
Q.71.		rder of Ionic radii is co	rrect in	which o				
Q./1.	(a)	$Ti^{4+} < Mn^{2+}$	11000 111	winen		$\operatorname{Cr}^{6+} > \operatorname{Cr}^{3+}$		
	(c)	$K^+ > Cl^-$			(d)	$P^{3+} > P^{5+}$		
Q.72.			of four	coseque	` /	- , -		
Q.72.		The first ionization energy of four cosequetive elements present in the second period of periodic table are 8.3, 11.3, 14.5 and 13.6 eV respectively. Which one of the following is						
	-	onization enthalpy of n			resp	ectively. Which one of the following is		
		13.6	nuogen :	1	(b)	14.5		
	(a)					8.3		
0.72	(c)	11.3	f	.1	(d)			
Q.73.	The electronic configuration of an element is $1s^2 2s^2 2p^6 3s^2 3p^3$. What is the atomic number of the element which is just below the above element in the periodic table?							
			i is just	below u		-		
	(a)	34			(b)	49		
0.74	(c)	33			(d)	31		
Q.74.		n of the following speci	ies nas i	nignest e				
	(a)	F			(b)	0		
~ - -	(c)	0			(d)	Na ⁺		
Q.75.		n pair follows the corre	ect hydra	ation end				
	(a)	$Fe^{2+} > Fe^{3+}$			(b)	$Cu^{2+} < Cu^+$		
	(c)	$K \rightarrow Cs^+$			(d)	F < Br		
Q.76.		the correct ionic radiu	s order	among t	he foll	lowing:		
	(a)	$P^{3} < P^{2}$			(b	$P^{3} < S^{3}$		
	(c)	$Na^+>Mg^{2+}$			(d)	$S^{2} < Ca^{2+}$		
Q.77.	In whi	ich of the following pro	ocess m	aximum	amou	nt of energy is evolved:		
	(a)	$Cl \rightarrow Cl^{-}$			(b)	$Br^{-} \rightarrow Br$		
	(c)	$F \rightarrow F$			(d)	$I^- \rightarrow I$		
Q.78.	Which	n element can exhibit n	nore tha	n one ox	` /	on states in compounds?		
-	(i) Cr		(ii)	Pb		(iii) Sr		
	(a)	(i) only	. ,		(b)	(i) and (ii) only		
		-						

	(c)	(ii) and (iii) only		(d)	(i), (ii) and (iii) only	
Q.79.	Which set of the orbital's is listed in the correct sequential order of filling electrons in a					
	atom?					
	(a)	3s 3p 3d		(b)	3d 4s 4p	
	(c)	3d 4p 5s		(d)	4p 4d 5s	
Q.80.	Which	equation shows exothermic re	action	for the f	formation of NaF(s)?	
	(i)	$Na(g) \rightarrow Na^+(g) + e^-$		(ii)	$F(g) + e^{-} \rightarrow F^{-}(g)$	
	(iii)	$Na^{+}(g) + F^{-}(g) \rightarrow NaF(s)$				
	(a)	(i) only		(b)	(ii) only	
	(c)	(i) and (iii) only		(d)	(ii) and (iii)	
Q.81.	Select	the correct order of ionic radii	:			
	(a)	$O^{2-} > S^{2-} > Se^{2-} > Te^{2-}$	(b)	$Te^2 > S$	$S^2 > O^2 > Se^2$	
	(c)	$O^2 > Te^2 > S^2 > Se^2$		(d)	$Te^{2-} > Se^{2-} > S^{2-} > O^{2-}$	
Q.82	The fo	rmation of oxide ion $O^{2-}(g)$ re	quires	first an	exothermic and then endothermic step	
	as show	wn below:			_	
	O(g) +	$e \rightarrow O^{-}(g)$	$\Delta H = -$	-142 kJ/	mol	
	O (g)	$+ e \rightarrow O^{2-}(g)$	$\Delta H = 8$	844 kJ/r	nol	
	This is	because:				
	(a)	O ion has comparatively large	e size t	han oxy	gen atom.	
		Oxygen has high electronegat				
	(c) O ion will tend to resist the addition of another electron.					
	(d) Oxygen has high ionization enthalpy.					
Q.83.	What i	s the formula for the basic anh	ydride	of Ba(C	$OH)_2$?	
	(a)	Ba_2O		(b)	BaO	
	(c)	BaO_2		(d)	Ba	

Answers

1 - (d)	2- (c)	3- (a)	4- (c)	5- (c)	6- (c)
7 - (c)	8 - (a)	9 - (c)	10- (c)	11 - (d)	12 - (b)
13- (b)	14- (a)	15- (b)	16- (b)	17- (c)	18- (d)
19- (b)	20- (b)	21- (d)	22- (c)	23- (a)	24- (d)
25- (c)	26- (c)	27- (c)	28- (b)	29- (a)	30- (c)
31- (d)	32- (a)	33- (a)	34- (b)	35- (a)	36- (b)
37- (a)	38- (b)	39- (b)	40- (c)	41- (c)	42- (a)
43- (c)	44- (a)	45- (d)	46- (b)	47- (b)	48- (a)
49- (d)	50- (d)	51- (b)	52- (a)	53- (d)	54- (b)
55- (b)	56- (c)	57- (a)	58- (b)	59- (c)	60- (b)
61- (c)	62- (d)	63- (ca	64- (c)	65- (b)	66- (d)
67- (b)	68- (a)	69- (b)	70- (b)	71- (d)	72- (d)
73- (c)	74- (b)	75- (c)	76- (c)	77- (a)	78- (b)
79- (c)	80- (d)	81- (d)	82- (c)	83- (b)	

ABOUT THE AUTHORS

Dr. Dinkar Malik, Assistant Professor, Maharaj Singh College, Saharanpur is erudite scholar and chemist scientist. He has published more than 30 research papers in peer-reviewed International Journals. He has experience to teach Medical Chemistry, Engineering Chemistry, Organic and Physical Chemistry since last fifteen years His area of research interests includes Synthesis, Characterization and Biological aspects of Transition Metal Complexes.

Dr. Punam Yadav, Assistant Professor, Maharaj Singh College, Saharanpur is a seasoned chemist scientist. She has done her Research Work in DEPARTMENT BIOCHEMISTRY L.L.R.M. MEDICAL COLLEGE. MEERUT on the topic A STUDY ON BIOCHEMICAL CHANGES IN CHRONIC RENAL FAILURE. She has ten years of teaching Chemistry at different levels. She is the author of more than 25 research papers, published in highly impacted International Journals. Her area of research interests includes studies of various parameters in Chronic Renal Failure patients.

ABOUT THE EDITOR

Babita Malik, Principal, K.L.G Public School, Saharanpur is highly learned and reputed member in the society She awarded a prize for excellent work in the field of education by SOF society. She has contributed to a number of high-end academic platforms and gathering masters in various fields of science and technology. She has conducted many workshops and trained many teachers especially, in various fields of science. She has also attached to several

NGOs and delivered talks on conservation as well as women empowerment. In addition to her academic excellence, she is also a pleasure for colleagues and seniors to work with. She is very easygoing and polite, and although she is very serious and motivated in her pursuit of knowledge, she is also very humble and willing to listen to others' ideas.

ISBN: 978-93-84659-36-3