- 13.10 (a) Proof. We will use proof by contradiction. Suppose $S \neq \emptyset$ is an open subset of $\{\frac{1}{n} : n \in \mathbb{N}\}$. Then $S = \{\frac{1}{n} : \text{some } n \in \mathbb{N}\}$. Let n_0 be the smallest such n. Such a n_0 must exist since any nonempty subset of \mathbb{N} has a minimum element in the subset. Then $\max(S) = \frac{1}{n_0} \in S$. Since S is open, there is some $\varepsilon > 0$ such that $\operatorname{Ball}(\frac{1}{n_0}, \varepsilon)$ is in S. However, since $\frac{1}{n_0}$ is the maximum of S, $\frac{1}{n_0} + \varepsilon > \frac{1}{n_0}$ so no such open ball can exist. Contradiction so S is not open. Since S was arbitrary, \emptyset is the largest open set contained within $\{\frac{1}{n} : n \in \mathbb{N}\}$ so interior($\{\frac{1}{n} : n \in \mathbb{N}\}$) = \emptyset .
 - (b) *Proof.* We will use proof by contradiction. Suppose $A \neq \emptyset$ is an open subset of \mathbb{Q} . Let $a \in A$. Since A is open, there is some $\varepsilon > 0$ such that $\operatorname{Ball}(a,\varepsilon)$ is in A. By denseness, there is always some irrational number between a and $a + \varepsilon$ so no such open ball can exist. Since a was arbitrary, contradiction so A is not open. Since A was arbitrary, \emptyset is the largest open set contained within \mathbb{Q} so interior $(\mathbb{Q}) = \emptyset$.
 - (c) Proof. We will use proof by contradiction. Suppose $A \neq \emptyset$ is an open subset of F. Then A is in the intersection of some F_i 's. Since $1 \in F_i$ for all $i \in \mathbb{N}$, $1 \in A$. Since A is open, there is some $\varepsilon > 0$ such that Ball $(1, \varepsilon)$ is in A. Since $\max(A) = 1$, $a + \varepsilon > a$ so no such open ball can exist. Contradiction so A is not open. Since A was arbitrary, \emptyset is the largest open set contained within F so interior(F) = \emptyset .
- 13.13 *Proof.* E is a compact subset of \mathbb{R} so by the Heine-Borel Theorem, E is bounded and closed. Since E is bounded and nonempty, $\sup(E)$ and $\inf(E)$ exist by completeness. Then by Homework (10.7) and (11.11), there is an E-valued sequence $< a_n > \sup$ that $\lim_{n\to\infty} a_n = \sup(E)$. Since E is closed, $\sup(E) \in E$. Likewise, there is an E-valued sequence $< b_n > \sup$ that $\lim_{n\to\infty} b_n = \inf(E)$. Since E is closed, $\inf(E) \in E$. Therefore, $\sup(E)$ and $\inf(E)$ belong to E.
- 14.12 (a) $\sum \frac{1}{n}$ diverges so $\sum \frac{1}{2n}$ diverges as well. Since $\frac{n-1}{n^2} > \frac{n-\frac{n}{2}}{n^2} = \frac{1}{2n}$, by the Comparison Test, $\sum \frac{n-1}{n^2}$ diverges.
 - (b) $\lim_{n\to\infty} (-1)^n \neq 0$ so $\sum (-1)^n$ diverges by the Preliminary Test.
 - (c) $\frac{3n}{n^3} = \frac{3}{n^2}$. $\sum \frac{1}{n^2}$ converges so $\sum \frac{3}{n^2} = 3 \sum \frac{1}{n^2}$ converges as well.

(4)

$$\lim_{n\to\infty}\left|\frac{\frac{(n+1)^3}{3^{n+1}}}{\frac{n^3}{2n}}\right|=\lim_{n\to\infty}\left|\frac{(n+1)^3}{3n^3}\right|=\frac{1}{3}<1$$

So by the Ratio Test, the series converges.

(e)

$$\lim_{n \to \infty} \left| \frac{\frac{(n+1)^2}{(n+1)!}}{\frac{n^2}{n!}} \right| = \lim_{n \to \infty} \left| \frac{n+1}{n^2} \right| = 0 < 1$$

So by the Ratio Test, the series converges.

(f) $\lim_{n\to\infty} \left|\frac{1}{n^n}\right|^{\frac{1}{n}} = \lim_{n\to\infty} \frac{1}{n} = 0 < 1$ so by the Root Test, the series converges.

(g)

$$\lim_{n\to\infty}\left|\frac{\frac{(n+1)}{2^{n+1}}}{\frac{n}{2^n}}\right|=\lim_{n\to\infty}\left|\frac{n+1}{2n}\right|=\frac{1}{2}<1$$

So by the Ratio Test, the series converges.

23 February 2018