WORKSHEET I

1. Predict the positions of the major absorption bands in the IR spectra of the following compounds

- 2. Which compound would be expected to show intense IR absorption at 3300 cm⁻¹?
- A) CH₃C≡CCH₃
- B) butane
- C) but-1-ene
- **D)** CH₃CH₂C≡CH
- 3. Which compound would be expected to show intense IR absorption at 2820, 2710 and 1705 cm⁻¹?
- A) CH₃COCH₂CH₃
- **B)** PhCOCH₃
- C) PhCHO
- **D)** CH₂=CHCOCH₃
- 4. Which compound would be expected to show intense IR absorption at 2250 cm⁻¹?
- A) CH₃CH₂CH₂CO₂H
- **B)** (CH₃)₂CHCH₂OH
- C) $(CH_3)_2CHCN$
- D) CH₃CH₂CH₂CONH₂
- 5. Deduce a possible structure for the following compounds from their IR absorptions below.
- **A** C₃H₃Br: 3300, 2900, 2100 cm⁻¹
- **B** C₃H₅N: 2950, 2250 cm⁻¹

C C₅H₈O: 2950, 1750 cm⁻¹

D C₄H₈O: 2950, 2820, 2715, 1715 cm⁻¹

- **E** C₆H₁₀: 3040, 2980, 1660 cm⁻¹
- 6. How could IR spectroscopy be used to distinguish between the following pair of compounds? You should also list all the major absorption bands in the IR spectra of each of compound.
- A CH₃OCH₂CH₃ and CH₃CH₂CH₂OH

- **B** HOCH₂CH₂CHO and CH₃CH₂CO₂H
- **C** CH₃COCH=CHCH₂CH₃ and CH₃COCH₂CH₂CH=CH₂
- **D** CH₃CH₂C≡CH and CH₃C≡CCH₃
- E CH₂=CHCH₂CH(CH₃)₂ and CH₃CH₂CH₂CH(CH₃)₂

- 7. Ethyne (HC=CH) does not show IR absorption in the region 2000-2500 cm⁻¹ because:
- A) C-H stretches occur at lower energies.
- B) C≡C stretches occur at about 1640 cm⁻¹.
- **C)** there is no change in the dipole moment when the C=C bond in ethyne stretches.
- **D)** there is a change in the dipole moment when the C=C bond in ethyne stretches.
- 8. Which of the following structures is consistent with the IR spectra shown below?

9. Explain which functional group(s) is present in the compound that has the following IR spectra The molecular formula is $C_4H_{10}O$

10. Explain which functional group(s) is present in the compound that has the following IR spectra The molecular formula is C₄H₉NO

- 11. Which compound would be expected to show intense IR absorption at 1715 cm⁻¹?
- A) $(CH_3)_2CHNH_2$
- B) hex-1-yne
- C) 2-methylhexane
- D) (CH₃)₂CHCO₂H
- 12. Which compound would be expected to show intense IR absorption at 3363, 3185, 1660 cm⁻¹?
- A) CH₃CH₂CH₂OH
- **B)** (CH₃)₂CHNH₂ **C)** CH₃CH₂CONH₂
- **D)** but-1-ene
- 13. 2-Methylhexane shows an intense peak in the mass spectrum at m/z = 43. Propose a likely structure for this fragment.
- 14. Which compound would show a larger than usual M+2 peak in the mass spectrum?
- A) CH₃CH₂SCH₃
- **B)** (CH₃)₂CHNH₂ **C)** CH₃CH₂CO₂H
- **D)** $CH_3(CH_2)_2CH_3$
- 15. Sodium borohydride can be used to reduce cyclohexanone to cyclohexanol. How could one use IR to determine if all starting material had been consumed?
- 16. Predict the major fragments and their m/z that would appear in the mass spectra of these compounds:

- 17. **a)** Both $C_6H_{10}O$ and C_7H_{14} have the same nominal mass, namely 98. Show how these compounds can be distinguished by the m/z ratio of their molecular ions in high-resolution mass spectrometry.
- **b)** same question for C_6H_9N and C_5H_5NO .
- 18. Carboxylic acids often give a strong fragment ion at m/z (M-17). What is the likely structure of this cation? Show by drawing contributing structures that it stabilized by resonance.
- 19. The base peak in the mass spectrum of propanone (acetone) occurs at m/z 43. What cation does this peak represents?
- 20. A characteristic peak in the mass spectrum of most aldehydes occurs at m/z 29. What cation does this peak represent? (This fragment is not ethyl cation, $CH_3CH_2^+$, if you don't remember the functional group in aldehydes, check your list of functional groups for help).
- 21. Which of the following structures is consistent with the mass spectrum shown below?

- 23. An unknown, foul-smelling hydrocarbon gives the mass spectrum and infrared spectrum shown.
- a) Use the mass spectrum to propose a molecular formula. How many elements of unsaturation are there?
- **b)** Use the IR spectrum to determine the functional group(s), if any.
- **c)** Propose one or more structures for this compound. What parts of the structure are uncertain? If you knew that hydrogenation of the compound gives n-octane, would the structure still be uncertain?
- **d)** Propose structures for the major fragments at 39, 67, 81 and 95 in the mass spectrum. Explain why the base peak is so strong.

