Archiving Deferred Representations Using a Two-Tiered Crawling Approach

Justin F. Brunelle, Michele C. Weigle, and Michael L. Nelson Old Dominion University iPRES2015 11/04/2015

A simpler time...

Mass hysteria. Human sacrifices. Dogs and cats living together.

Missing resources (bad) and Temporal violations (worse)

http://en.wikipedia.org/wiki/Main_Page

January 18th, 2012

http://web.archive.org/web/20120118110520/http://en.wikipedia.org/wiki/Main_Page: January 18th, 2012

Not all tools can crawl equally

Live Resource

PhantomJS Crawled

Heritrix Crawled, Wayback replayed

Current Workflow

- Dereference URI-Rs
- Archive
- representation
- Extract embedded
- URI-Rs
- Repeat

Crawl Frontier 1. Crawl & archive U, 4. Repeat $U_{2...n}$ 2'. Classify representation Non-Deferred Deferred 3. Extract embedded resources and links from U 3'. Extract interactive elements in U₁ 4. Add U_3 , U_4 to frontier XMLHttpRequest 4. Add embedded links and resources from $U_{1,1}$, $U_{_{1.2}}$, $U_{_{1.3}}$ to frontier 3". Interact with Interaction elements & archive Frontier of $U_{_{1}}$ $U_{_{1.1}},\ U_{_{1.2}},\ U_{_{1.3}}$

Proposed Workflow

Run-time & Frontier size PhantomJS vs. Heritrix

Average Crawl Rate by Tool

To appear: iPres2015

Unions and Intersections (String Matching)

Unions and Intersections (Fuzzy Matching)

Trim Policy	Original URI-R	Trimmed URI-R
No Trim	http://example.com/folder/index.html?param=value	http://example.com/folder/index.html?param=value
Origin Trim	http://example.com/folder/index.html? callback=cs.odu.edu	http://example.com/folder/index.html
Base Trim	http://example.com/folder/index.html?param=value	http://example.com/folder/index.html
Session Trim	http://example.com/folder/index.html? param=value&sessionid=12345	http://example.com/folder/index.html?param=value
HTTP Trim	http://example.com/folder/index.html? param=value&httpParam=http://www.test.com/	http://example.com/folder/index.html?param=value

Trim Type	URI Duplicates	URI and Entity Duplicates	Accuracy
No Trim	6,469	4,684	0.68
Origin Trim	7,078	4,749	0.68
Base Trim	10,359	5,191	0.56
Session Trim	8,159	4,921	0.64
HTTP Trim	7,315	4,868	0.67

Table 4: Detected duplicate URIs, entity bodies, and the overlap between the two using the five URI string trimming policies.

Constructed a classifier for Deferred Representations

Features	Classification	Accuracy	F-measure	Precision	Recall
DOM	Deferred	79%	79%	78%	81%
Features Only	Non-deferred	1370	1370	76%	80%
DOM & Resource	Deferred	81%	82%	79%	81%
Features	Non-deferred	0170	0270	90%	80%

Table 8: Classification success statistics for DOM-only and DOM and Resource feature sets.

Performance metrics of a two-tiered crawling approach

Crawl Strategy	Crawl Time (hrs)	Crawl Rate (t_{URI})	Frontier Size (F)
wget	416.16	0.864	129,443
Heritrix	407.53	2.065	302,961
PhantomJS	8,684.38	0.170	531,484
Heritrix + PhantomJS	9,100.54	0.152	537,609
Heritrix + PhantomJS with Classifier	6,495.23	0.196	458,815

Table 9: A summary of *extrapolated* performance (based on our calculations) of single- and two-tiered crawling approaches.

The classifier helps crawl deferred representations most efficiently

Crawler	URI-R Set	\mathbf{Seed}	Frontier	Crawl
Clawlei		Size	Size	Time (hrs)
P	Deferred	5,187	311,903	84.9
H	Non-deferred	4,813	124,728	23.6
H	Deferred	5,187	171,499	26.7
P	All URI-Rs	10,000	438,388	686
H	All URI-Rs	10,000	275,234	48.3
Two-tier	All URI-Rs	10,000	399,202	133

Table 10: A simulated two-tiered crawl showing that the frontier sizes can be optimized while mitigating the performance impact of PhantomJS's (P) crawl speed vs Heritrix's (H).

Current & Future Work

- Using PhantomJS to execute actions on the client
 - Pushing buttons
 - Selecting drop-downs
 - Archiving resulting representation changes
- Represent representation state in WARCs
 - Graph structure of embedded resources
 - Replay in the Wayback Machine

Backups

Trim Type	URI Duplicates	URI and Entity Duplicates	Accuracy
No Trim	6,469	4,684	0.68
Origin Trim	7,078	4,749	0.68
Base Trim	10,359	5,191	0.56
Session Trim	8,159	4,921	0.64
HTTP Trim	7,315	4,868	0.67

Table 4: Detected duplicate URIs, entity bodies, and the overlap between the two using the five URI string trimming policies.

Web Browsing Process

- User-controlled
- Interaction
- Environment variables

Web Browsing Process

At any given time, users get "a" representation.

There is no longer "the" representation that archives target.

