R1.06 – MATHEMATIQUES DISCRETES

PREMIERE PARTIE: ENSEMBLES

QCM PARTITIONS (COURS)

QCM1

Parmi les ensembles suivants, préciser (en justifiant) ceux qui sont des partitions de E :

 $\{A, \bar{A}\}$: partition

 $\{A \cup B, \overline{A \cup B}\}$: partition

 $\{A \cap B, A \cap \overline{B}, \overline{A} \cap B, \overline{A \cup B}\}$: partition

 $\{A,B,\overline{A\cup B}\}$: A et B ne sont pas disjoint, $\{A,B,\overline{A\cup B}\}$ n'est pas une partition $\{A,\bar{A},\mathcal{C},\bar{\mathcal{C}}\}$: A et C ne sont pas disjoint, $\{A,\overline{A},\mathcal{C},\overline{\mathcal{C}}\}$ n'est pas une partition

Soit S un ensemble non vide et soit Q une partition de S.

Dégagez le vrai du faux parmi les énoncés suivants :

 $Q \in P(S)$: Faux $Q \subset P(S)$: Vrai $Q \in P(P(S))$: Vrai

Pour illustrer ces réponses prenons comme exemple de partition $Q = \{TD1, TD2, TD3\}$ partition de S, ensemble des étudiants de S1.

 $TD1 \subset S, TD2 \subset S, TD3 \subset S$

 $donc\ TD1 \in P(S), TD2 \in P(S), TD3 \in P(S)$

 $donc \{TD1, TD2, TD3\} \subset P(S) : \mathbf{Q} \subset \mathbf{P}(S) \text{ et } \mathbf{Q} \in \mathbf{P}(\mathbf{P}(S))$

EXERCICES

QCM 1: APPARTENANCE-INCLUSION

Soit S un ensemble, A un sous-ensemble de S et a un élément de A.

	Vrai	Faux	Commentaires
$A \in S$		×	A sous ensemble de S : $A \subset S$
$a \in S$	X		A est un sous-ensemble de S donc tous les éléments de A appartiennent à S : a est élément de A donc a est aussi élément de S
$a \in P(\{a\})$		X	$P(\{a\}) = \{\emptyset, \{a\}\}$ donc on peut dire que $\{a\} \in P(\{a\})$ mais pas que $a \in P(\{a\})$
$\{a\} \subset P(A)$		X	$a \in A \text{ donc } \{a\} \subset A \text{ donc } \{a\} \in P(A)$ On ne peut pas dire $\{a\} \subset P(A)$, on pourrait dire $\big\{\{a\}\big\} \subset P(A)$
$A \subset S$	X		$oldsymbol{A}$ un sous-ensemble de $oldsymbol{S}:A\subset S$
$\{A\} \in S$		X	$A \subset S \operatorname{donc} \{A\} \in P(S)$
$\{a\} \subset P(\{a\})$		×	$\{a\} \subset \{a\} \operatorname{donc} \{a\} \in P(\{a\})$

EXERCICE 1: OPERATIONS - SIGNIFICATION

On s'intéresse aux étudiants d'une faculté F. On note M l'ensemble des étudiants suivant le cours de mathématique, I l'ensemble des étudiants suivant le cours d'informatique et E l'ensemble des étudiants suivant le cours d'économie.

Exprimer en fonction de M,I et E les ensembles suivants :

a. E₁: L'ensemble des étudiants qui ne suivent aucun des trois cours

$$E_1 = \overline{M} \cap \overline{I} \cap \overline{E} = \overline{M \cup E \cup I}$$

- b. E_2 : L'ensemble des étudiants qui ne suivent que le cours d'économie $E_2 = \overline{M} \cap \overline{I} \cap E$ (étudiants qui suivent le cours d'économie et qui ne suivent ni le cours de math, ni le cours d'informatique)
- c. E₃: L'ensemble des étudiants qui suivent le cours d'économie et le cours de math mais pas celui d'informatique

$$E_3 = M \cap \overline{I} \cap E = (M \cap E) \setminus I$$

- d. E4: L'ensemble des étudiants qui suivent au plus deux des trois cours.
 - Une méthode un peu longue : $E_4 = C_0 \cup C_1 \cup C_2$

Où $C_0 = \{ \text{\'etudiants ne suivant aucun cours} \}$, $C_1 = \{ \text{\'etudiants suivant un seul cours} \}$ et $C_2 = \{ \text{\'etudiants suivant deux cours} \}$

$$C_0 = E_1 = \overline{M} \cap \overline{I} \cap \overline{E}$$

 $C_1 = \{ \text{\'etudiants suivant uniquement le cours d'\'economie} \}$

∪ {étudiants suivant uniquement le cours de math}

∪ {étudiants suivant uniquement le cours d'informatique}

$$\boldsymbol{C}_1 = (\overline{\boldsymbol{M}} \cap \overline{\boldsymbol{I}} \cap \boldsymbol{E}) \cup (\overline{\boldsymbol{E}} \cap \overline{\boldsymbol{I}} \cap \boldsymbol{M}) \cup (\overline{\boldsymbol{M}} \cap \overline{\boldsymbol{E}} \cap \boldsymbol{I})$$

 $C_2 = \{\text{\'etudiants suivant uniquement les cours d'\'economie et de math}\}$

∪ {étudiants suivant uniquement les cours d'économie et d'informatique}

∪ {étudiants suivant uniquement le cours d'informatique et de math}

$$\boldsymbol{C}_2 = (\boldsymbol{M} \cap \overline{\boldsymbol{I}} \cap \boldsymbol{E}) \cup (\overline{\boldsymbol{M}} \cap \boldsymbol{I} \cap \boldsymbol{E}) \cup (\boldsymbol{M} \cap \overline{\boldsymbol{E}} \cap \boldsymbol{I})$$

$$E_4 = C_0 \cup C_1 \cup C_2$$

 $= (\overline{M} \cap \overline{I} \cap \overline{E}) \cup (\overline{M} \cap \overline{I} \cap E) \cup (\overline{E} \cap \overline{I} \cap M) \cup (\overline{M} \cap \overline{E} \cap I) \cup (M \cap \overline{I} \cap E) \cup (\overline{M} \cap I \cap E) \cup (M \cap \overline{E} \cap I)$

• Plus rapide, en passant par le complémentaire de E_4 . On peut remarquer que les étudiants qui ne suivent pas « au plus deux cours » sont les étudiants qui suivent les trois cours : $\overline{E}_4 = M \cap I \cap E$ Donc $E_4 = \overline{M} \cap \overline{I} \cap \overline{E} = \overline{M} \cup \overline{E} \cup \overline{I}$

Ce qui veut dire aussi que si on suit au plus deux cours, il y a au moins un des trois cours que l'on ne suit pas (l'union traduit « au moins un »)

OCM 2

A, B et C sont trois sous-ensembles de E. On suppose que A et B sont inclus dans C.

$A \cap C \subset C$	■ Vrai	□ Faux
$\bar{A} \cap \bar{B} \subset \bar{C}$	☐ Vrai	
$A \cap C = C$	☐ Vrai	
$A \cup B \cup C = C$	■ Vrai	☐ Faux

l'intersection est toujours « plus petite »

QCM 3: PARTITIONS

Soient A, B et C trois sous-ensembles d'un ensemble E.

Parmi les ensembles suivants, cochez les partitions de E:

 $\boxtimes \{A \cup B, \overline{AUB}\}\$

$\square \{A, \bar{A}, C, \bar{C}\}$
$\boxtimes \{A \cup B, \overline{A} \cap \overline{B} \cap \overline{C}, C \cap \overline{A} \cap \overline{B}\}$
$\square \{A \cup B \cup C, \bar{A} \cup \bar{B} \cup \bar{C}\}$
$\boxtimes \{A \cap \overline{B}, \overline{A} \cap B, A \cap B, \overline{A \cup B}\}\$

QCM4: PARTITIONS, APPARTENANCE, INCLUSION

Soit E un ensemble, $P = \{A, B, C\}$ une partition de E, a un élément de A et P(E) l'ensemble des parties de E. ☐ Vrai $P \in P(E)$ **☒** Faux **▼** Vrai ☐ Faux ${a} \in P(A)$ $A \in P$ **▼** Vrai ☐ Faux $B \subset P$ □ Vrai **▼** Faux **▼** Faux $A \cup B \subset P$ □ Vrai ☐ Faux $\{A, B\} \subset P$ $a \in P$ □ Vrai **▼**Faux $\{A\} \in P$ □ Vrai **▼** Faux QCM5: PARTITIONS, ENSEMBLE DES PARTIES

Soit E un ensemble et P(E) l'ensemble des parties de E.

P(E) est une partition de E \square Vrai \boxtimes FauxUne partition de E est incluse dans E \square Vrai \boxtimes Faux $E \in P(E)$ \boxtimes Vrai \square Faux

PROPRIETES DES OPERATIONS - DISTRIBUTIVITE ET LOIS DE MORGAN

EXERCICE 1: ENTRAINEMENT A LA REDACTION

Simplifiez les expressions ci-dessus en utilisant les propriétés <u>des</u> opérations ensemblistes.

 $\circ A \cup (A \cap B)$

$$A \cup (A \cap B) = A \operatorname{car} (A \cap B) \subset A$$

 \circ $(A \cap B) \cup (A \cap \overline{B})$

$$(A \cap B) \cup (A \cap \overline{B}) = A \cap (B \cup \overline{B}) = A \cap E = A$$

 $\circ (A \cup (A \cap B)) \cap B$

$$A \cup (A \cap B) = A \operatorname{car} (A \cap B) \subset A \operatorname{donc} (A \cup (A \cap B)) \cap B = A \cap B$$

 $\circ \quad (\overline{A \cup B}) \cap (\mathcal{C} \cup \overline{A})$

$$(\overline{A \cup B}) \cap (C \cup \overline{A}) = (\overline{A} \cap \overline{B}) \cap (C \cup \overline{A}) = \overline{A} \cap \overline{B} \cap (C \cup \overline{A}) = \overline{A} \cap \overline{B} \text{ car } \overline{A} \subset C \cup \overline{A}$$

 $\circ ((A \cup B) \cap C) \cup B$

$$((A \cup B) \cap C) \cup B = ((A \cap C) \cup (B \cap C)) \cup B = (A \cap C) \cup (B \cap C) \cup B$$

 $= (A \cap C) \cup B \operatorname{car} (B \cap C) \subset B$

 $\circ \quad \big((A \cap B) \cup (\bar{A} \cap B \cap C) \big) \cap \bar{B}$

$$((A \cap B) \cup (\overline{A} \cap B \cap C)) \cap \overline{B} = (A \cap B \cap \overline{B}) \cup (\overline{A} \cap B \cap C \cap \overline{B}) = (A \cap \emptyset) \cup (\overline{A} \cap C \cap \emptyset) = \emptyset \cup \emptyset = \emptyset$$

C

Ε

 \circ $((A \cap \overline{B}) \cup \overline{B}) \cap C$

$$(A \cap \overline{B}) \cup \overline{B} = \overline{B} \operatorname{car} (A \cap \overline{B}) \subset \overline{B}$$

Donc
$$((A \cap \overline{B}) \cup \overline{B}) \cap C = \overline{B} \cap C$$

 $\circ \quad \left((C \cup A) \cap (\bar{B} \cup C) \right) \cup A$

$$((C \cup A) \cap (\overline{B} \cup C)) \cup A = (C \cup (A \cap \overline{B})) \cup A = C \cup (A \cap \overline{B}) \cup A = C \cup A$$

$$\operatorname{car}(A \cap \overline{B}) \subset A$$

Soit A et B deux sous-ensembles d'un ensemble E. Parmi les ensembles suivants, précisez ceux qui sont égaux à A :

- $A \cup (A \cap B) = A \operatorname{car}(A \cap B) \subset A$
- $(A \cup B) \cap (A \cup \overline{B}) = A \cup (B \cap \overline{B}) = A \cup \emptyset = A$
- $A \cap (A \cup B) = A \operatorname{car} A \subset (A \cup B)$
- $(A \cap B) \cup (A \cap \overline{B}) = (A \cap B) \cup (A \setminus B) = \mathbf{A}$

QCM 2

Soit A et B deux sous-ensembles d'un ensemble E. Parmi les assertions suivantes, précisez celles qui sont vraies (pour que l'assertion soit vraie, il faut que **l'égalité et la justification** soient vraies)

 $\square B \cup (\overline{B} \cap A) = (B \cup \overline{B}) \cap A$ car la réunion et l'intersection sont associatives

La justification n'est pas bonne : il aurait fallu dire « car la réunion est distributive par rapport à l'intersection »

 $\square \ A \cap (B \cup A) = A \cup B \ \text{car} \ A \subset A \cup B$

 $A \cap (B \cup A) = A \ car \ A \subset A \cup B$

 $\boxtimes A \cup (B \cap A) = A \operatorname{car} A \cap B \subset A$

QCM₃

C -							
$(E \cup (E \cap F)) \cap F$	est égal à :	$\Box E$	$\Box F$	$\Box E \cap F$	$\boxtimes E \cup F$	$\square \varnothing$	
$E \cap (E \cup F)$	est égal à :	$\times E$	$\Box F$	$\square E \cap F$	$\square E \cup F$	$\square \varnothing$	
$E \cup (E \cap F)$	est égal à :	$\times E$	$\Box F$	$\square E \cap F$	$\square E \cup F$	$\square \varnothing$	
$(E \cap F) \cap (E \cup \overline{F})$	est égal à :	$\square E$	$\Box F$	$\boxtimes E \cap F$	$\square E \cup F$	$\square \varnothing$	
$E \cap (\overline{E} \cup F)$	est égal à :	$\square E$	$\Box F$	$\boxtimes E \cap F$	$\square E \cup F$	$\square \varnothing$	
$F \cup (E \cap \overline{F})$	est égal à :	$\square E$	$\Box F$	$\square E \cap F$	$\boxtimes E \cup F$	$\square \varnothing$	
$E \cup \overline{\left(\overline{F} \cup (\overline{F} \cap E)\right)}$	est égal à :	$\Box E$	$\Box F$	$\square \ E \cap F$	$\boxtimes E \cup F$	$\square \varnothing$	

EXERCICE 2

Soient A et B deux sous-ensembles d'un ensemble E. La différence symétrique de A et B est l'ensemble, noté $A\Delta B$, défini par :

$$A\Delta B = (A \backslash B) \cup (B \backslash A)$$
 ou $A\Delta B = (A \cup B) \backslash (B \cap A)$

3. Montrer que les deux expressions ci-dessus sont équivalentes.

 $(A \cup B) \setminus (B \cap A) = (A \cup B) \cap (\overline{B \cap A}) = (A \cup B) \cap (\overline{B} \cup \overline{A})$

On développe (double distributivité):

 $(A \cup B) \cap (\overline{B} \cup \overline{A}) = (A \cap \overline{B}) \cup (A \cup \overline{A}) \cup (B \cap \overline{B}) \cup (B \cup \overline{A})$

Or $A \cup \overline{A} = \emptyset$ et $B \cap \overline{B} = \emptyset$

Donc $(A \cup B) \cap (\overline{B} \cup \overline{A}) = (A \cap \overline{B}) \cup (B \cap \overline{A}) = (A \backslash B) \cup (B \backslash A)$

 $A\Delta B = (A \cup B) \setminus (B \cap A) = (A \setminus B) \cup (B \setminus A)$

4. Représenter la différence symétrique sur un diagramme de Venn.

- 3. Expliciter les ensembles suivants :
 - a. $A\Delta\emptyset = A$
 - b. $A\Delta A = \emptyset$
 - c. $A\Delta B = B \setminus A \text{ si } A \subset B$
 - d. $(A\Delta B) \cup (A\Delta \overline{B}) = A$