

GLIEDERUNG

Datum	Vorlesung	Übungsblatt	Abgabe
19.04.2024	Einführung	HamsterLib	06.05.2024
26.04.2024	Netzwerkprogrammierung	Theorie	
03.05.2024	World Wide Web	HamsterRPC 1	20.05.2024
10.05.2024	Remote Procedure Calls	Theorie	
17.05.2024	Webservices	HamsterRPC 2	03.06.2024
24.05.2024	Fehlertolerante Systeme	Theorie	
31.05.2024	Transportsicherheit	HamsterREST	17.06.2024
07.06.2024	Architekturen für Verteilte Systeme	Theorie	
14.06.2024	Internet der Dinge	HamsterloT	01.07.2024
21.06.2024	Namen- und Verzeichnisdienste	Theorie	
28.06.2024	Authentifikation im Web	HamsterAuth	15.07.2024
05.07.2024	Infrastruktur für Verteilte Systeme	Theorie	
12.07.2024	Wrap-Up	HamsterCluster (Bonus)	16.08.2024

AGENDA UND LERNZIELE

Agenda

- Namen und Adressen
- Namens-/Verzeichnisdienste
- Zeroconf
- LDAP Verzeichnisdienst
- OPC UA

Lernziele

- Begrifflichkeiten erklären können
- Zeroconf erklären können
- LDAP erklären können
- Verwendung von OPC UA erklären können

EINFÜHRUNG

- Numerische Identifier und Adressen sind für Menschen schwer zu merken (e.g. IP-Adressen)
- Adressen können sich ändern
 - Migration von Servern
 - DHCP
- Grundsätzliche Frage: Wie kommt man von einem Namen zu einer Adresse?

NAMEN

- Namen werden genutzt, um Objekte zu identifizieren
 - Ressource
 - Objekt
 - Dienst
- Name ist Bitstring oder Zeichenfolge
- Binding: Prozess, der Namen an Objekt bindet
- Eigenschaften von Namen
 - unique: Name ist eindeutig
 - pure/rein: Name ist nur Bitmuster, enthält keine weiteren Informationen
 - impure/unrein: Name impliziert zusätzliche Informationen über Objekt

BEISPIELE

• unique

- "Erika Mustermann" ist im Allgemeinen nicht unique
 - In Deutschland zählen erst Name, Geburtstag und Geburtsort als eindeutig
- UUID (Universally Unique Identifier) sind unique
 - Auch als Global Unique Identifier (GUID) bezeichnet
 - 128 Bit-Zahl
 - Spezifiziert in RFC 4122 / ISO/IEC 9834-8:2005
 - Beispiel: 123e4567-e89b-12d3-a456-426614174000

pure

• UUIDs als Namen (bspw. von DCOM-Objekten) sind pure

• impure

- Domain-Namen implizieren oft zusätzliche Funktionalität
 - z.B. mail.hs-rm.de

NAMENSRÄUME

- Bedeutung eines Namens abhängig vom Kontext
- Strukturierung von Namen in Namensräumen
 - Geben Struktur der Namen vor
 - Meist hierarchischer Aufbau
 - Beispiele: Namespaces in C++/C#, DNS, ISBN, ...

ADRESSEN

- Adressen sind Attribute von Objekten, die genutzt werden k\u00f6nnen, um mit dem Objekt zu interagieren
 - Straße, Hausnr., Ort
 - Telefonnummer
 - IP-Adresse, Port
 - Speicheradresse

Adresse eines Objekts i.d.R. nicht eindeutig aber oft ausreichend, um Objekt zu identifizieren

- Vorteile bei der Nutzung von Namen
 - Ortsunabhängig
 - Leichter zu merken
 - Eindeutig(er)
 - Abstraktion von Protokollart und –details
- Grenze zwischen Namen und Adressen ist fließend
 - Ist https://www.hs-rm.de Name oder Adresse?

UNIFORM RESOURCE IDENTIFIER (URI)

- Zeichenkette, die eine Ressource einheitlich darstellt
 - Nur ASCII-Zeichen, keine Leerzeichen, keine Kontrollzeichen
- <schema>:<Aufbau von Schema vorgegeben>
 - https://www.hs-rm.de
 - file:///d/lehre/verteilte%20systeme/
 - about:blank
 - urn:isbn:978-1543057386
- URL → Schema definiert Zugriff
- URN → Eindeutiger Name

SIND URIS UNIQUE?

URI-SCHEMATA SIND NAMENSRÄUME

- URI-Schema kann frei gewählt werden
 - Definiert Namensraum
 - Definiert Reinheit der Namen (oder ob als Adresse nutzbar)
 - Syntaxregeln für Namen werden durch URI-Schema vorgegeben
 - Erlaubt URI-Schema für spezifische Anwendung
- Betriebssysteme verwalten Standardanwendungen pro URI-Schema
 - HTTP, HTTPS: Browser
 - Mailto: E-Mail Client
 - •
 - → Nutzung von URIs zur Kommunikation zwischen Anwendungen auf einem System

VERZEICHNISDIENSTE

- Suche Objekte anhand bestimmter Eigenschaften
 - Analogie: Gelbe Seiten
 - Namensdienste: Suche Adressen anhand von Namen (Namensauflösung) → Telefonbuch

Suche durch Broadcast

- Anfrage wird an alle Einheiten geschickt; nur betreffende Einheit antwortet
- Keine Konfiguration notwendig
- Skaliert schlecht
- Beispiel: Multicast-DNS (Zeroconf)

Dedizierter Server

- Dedizierter Server hält Zuordnung von Eigenschaften
 - Namensdienst → Name Server
- Benötigt Wissen über Adresse des Servers
- Beispiel: DNS, LDAP

DOMAIN NAME SERVICE (DNS)

Wiederholung aus Rechnernetze

[Bild: Tanenbaum, van Steen: Verteilte Systeme]

- Dedizierte Name-Server lösen Domain-Namen zu IP-Adressen auf
- Hierarchischer Namensraum, aufgeteilt in verschiedene Schichten
 - Global Layer: Einstiegspunkt, verwaltet von IANA und beauftragten Gesellschaften
 - Administrational Layer: Verwaltet von einzelnen Organisationen
 - Managerial Layer: Individuell verwaltet

ZERO-CONFIGURATION (ZEROCONF)

Überblick

- Problem: Konfiguration von Kommunikationspartnern in kaum/nicht administrierten Netzwerken (e.g. Heimnetzwerke)
 - IP-Adressen typischerweise dynamisch per DHCP vergeben
- IETF Arbeitsgruppe 1999-2004 (ergebnislos beendet mangels Konsens)
 - Aber verbreitete Implementierungen: Apple Bonjeur, Avahi
 - Heute trotzdem weite Verbreitung
- Multicast-DNS (mDNS): Regeln für DNS-Aufruf im lokalen Netzwerk
 - Top-Level-Domain .local ist link-lokal
 - Andere Namensteile sind pro Anwendung frei wählbar
 - Versand der Pakete per UDP Multicast (Broadcast)
- DNS Service Discovery (DNS-SD): Registrierung der Services

ZERO-CONFIGURATION (ZEROCONF)

Ablauf

- 1. Client schickt Anfrage mit Service-Typ an alle Parteien im Netzwerk
 - Service-Typen wurden von IANA verwaltet, jedoch nicht weiter gepflegt
 - Service-Typen können Zusatzinformationen oder Adressangaben implizieren
 - Beispiel: _ipp._tcp (Internet Printing Protocol über Bonjeur)
- 2. Server antwortet mit Beschreibung

PTR Namen des Service (verpflichtend)

SRV Port (falls nicht per Protokoll definiert oder abweichend)

A IPv4-Adresse

AAAA IPv6-Adresse

TXT Zusatzinformationen als Key-Value-Paare (bspw. Druckermodell)

- 3. Client kann weitere Adressinformationen anfordern (optional)
- 4. Client nimmt Verbindung über eigentliches Protokoll auf, Adresse jetzt bekannt

ZERO-CONFIGURATION (ZEROCONF)

Beispiele

- Netzwerkdrucker
- Apple-Produkte (Safari, iChat, Messages, ...)
- Laborgeräte (SiLA2)

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP)

- Entstanden aus X.500 Standard basierend auf Directory Access Protocol
 - zu komplex, keine Implementierung
 - LDAP ist Vereinfachung, aktuell Version 3 (RFC 4511)
- Hierarchischer Namensraum: Directory Information Tree (DIT)
 - Einträge sind beliebige Objekte
 - Objekte sind Menge von <Attribut, Wert>-Paaren, gehören zu mindestens einer Klasse
 - Klassen definieren Attributmengen und Wertmengen, Vererbung möglich
 - Vordefinierte Klassen (e.g. f
 ür Person, Organisation)
 - Anwendungsspezifisch erweiterbar
- Verwendung typischerweise um auf unternehmensinterne Nutzerverwaltung zuzugreifen
 - Identifikation des Servers mit dem Protokoll → LDAP-Server

WAS HAT EIN VERZEICHNISDIENST WIE X.500 MIT X.509-ZERTIFIKATEN ZU TUN?

Bezeichnung der Objekte

- Bezeichnung von Objekten durch relative und absolute Namen im DIT
- Repräsentieren Organsisationsstruktur

Attribut	Kürzel	Beispiel-Wert
Country	С	DE
Locality	L	Wiesbaden
Organization	Ο	HSRM
OrganizationalUnit	OU	DCSM
OrganizationalUnit	OU	Informatik
CommonName	CN	Georg Hinkel

LDAP DN vs. RDN

Hochschule RheinMain

- Wurzelknoten des DIT heißt Root
- Jeder Knoten hat auf seiner Ebene eindeutigen Namen
 - Relative Distinguished Name (RDN)
- Zusammensetzung der RDNs ergibt kompletten Namen
 - Distinguished Name (DN)

Beispiele

Hochschule RheinMain

- Typische Informationen, die unternehmensweit "im LDAP" stehen
 - Name
 - Email-Adresse
 - Abteilung
 - Zugewiesene Rollen
 - Vorgesetzte(r)
 - Login-Informationen
 - ...
- Manche Attributmengen standardisiert
 - Bspw. RFC 2798 inetOrgPerson

Anfragen

- Nutzung als Namensdienst
 - Finde Objekt bei gegebenem Namen
 - Z.B. read(/C=DE/O=HSRM/OU=DCSM/OU=Informatik/CN=Georg Hinkel)
- Nutzung für Passwortvalidierung
 - Prüfe Passwort für Nutzer mit vollständigem Namen
 - Z.B. bind(/C=DE/O=HSRM/OU=DCSM/OU=Informatik/CN=Georg Hinkel, Password=******)
- Suche von Objekten mit bestimmten Attributwerten
 - Anfragen können mehrere Ergebnisse liefern
 - Wildcards, Logische Ausdrücke in ungarischer Notation
 - Z.B. &(C=DE)(CN=*Hinkel)
- Weitere Operationen zum Hinzufügen, Ändern, Entfernen, Umbenennen von Einträgen

Typische Anwendung: Authentifikation

- Problem: Nutzende sollen sich mit Unternehmens-Account anmelden können
- Lösung: LDAP-Integration
 - 1. UI-Fenster für Nutzername/Email-Adresse/Mitarbeiternummer
 - 2. Authentifikation mit Service-Account
 - 3. Suche nach DN des Nutzenden
 - z.B. &(C=DE)(|(CN=<user>)(email=<user>))
 - 4. Authentifikation mit Account des Nutzers

Replikation

- Problem: Verzeichnisse können sehr groß werden
 - Replikation aus Gründen der Fehlertoleranz und Performance
 - Replikation kann Stunden dauern
 - Master-Slave Konfigurationen
 - Änderungen nur auf Master
 - Propagation an Slaves
- Nächstes Problem: Update-Zeiten bei Änderungen
 - Updates nicht sofort global sichtbar

Produkte

- OpenLDAP (Open Source)
- NetIQ eDirectory
- Microsoft Active Directory
- Atos DirX
- Oracle Directory Server
- ...

OPC UNIFIED ARCHITECTURE (UA)

Einführung

- Probleme
 - Welche Geräte/Sensoren/... existieren in einer Fabrik?
- Lösung: OPC UA (Open Platform Communications, 2006)
 - Server bestehen aus Knoten, die Ressourcen repräsentieren
 - Informationsmodell basierend auf Ontologien
 - Vom Server repräsentierte Geräte werden als Objekt-Knoten bezeichnet
 - Referenzen auf Variablen-Knoten, Methoden-Knoten, Event-Knoten (optional, können zwischen Objekten geteilt werden)
 - Typisierung durch Typ-Knoten (optional): Definiert welche anderen Knotentypen im Objekt vorhanden sein müssen
 - Transportprotokoll zum Zugriff auf Informationsmodell (binär/TCP oder Webservice)
 - Variable setzen
 - Variable abrufen
 - Methode ausführen
 - Objekt erzeugen
 - ...

OPC UNIFIED ARCHITECTURE (UA)

Beispiel

OPC UNIFIED ARCHITECTURE (UA)

Einsatzgebiete

- Verzeichnisse von >1000 smarten Geräten (e.g. in der Produktion)
 - "Industrie 4.0"

ZUSAMMENFASSUNG

- Namen als Mittel, um Ortstransparenz zu erreichen
- Namens-/Verzeichnisdienste

Verbindung	Namensdienst	Verzeichnisdienst
Broadcast	Zero-configuration networking (zeroconf)	
Zentraler Server	Domain Name System (DNS)	Lightweight Directory Access Protocol (LDAP), OPC UA

MÖGLICHE PRÜFUNGSAUFGABEN

- Sind HTTP-Adressen pure? Sind sie unique?
- Bringen Sie die Abkürzungen URI, URL und URN in Zusammenhang!
- Wofür wird Zeroconf verwendet? Ist es ein Namens- oder Verzeichnisdienst?
- Welche Adresse muss ein Dienst haben, um über Zeroconf gefunden werden zu können?
- Welche Technologien könnte man für einen Verzeichnisdienst unter gegebenen Anforderungen verwenden?
- Was ist ein RDN in LDAP?
- Wie ist der grundsätzliche Aufbau, um in einer verteilten Anwendung eine Authentifikation über LDAP zu realisieren?
- Ein Unternehmen unterhält einen LDAP-Server, in dem Daten über die Mitarbeiter:innen verwaltet werden. Nun wird eine "Lisa Müller" eingestellt, obwohl bereits eine Mitarbeiterin dieses Namens im Unternehmen arbeitet. Ist das für den LDAP-Server ein Problem? Warum nicht?