CALCULATION OF THE WCS INVARIANT ON THE THURSTON EXAMPLE

SATOSHI EGI, YOSHIAKI MAEDA, AND STEVEN ROSENBERG

1. The calculation of the WCS invariant

We calculate the WCS invariant for the Thurston example in §4. Specifically, we prove

Theorem 4.1. We have

$$\int_{\overline{M_p}} \widetilde{CS}_5^W(e_1, \dots, e_5) = \left[2\pi p^{-1/2} \kappa\right] \frac{5\kappa}{128} p^2 \int_0^1 (3072p^4 - 640p^2 \beta^{-2} - 25\beta^{-4}) d\theta_2. \quad (1.1)$$

Notation: We denote the metric \tilde{g} on the Thurston example M just by g. We abbreviate $\theta_2 = \theta$, and recall that

$$\beta = 1 + \theta - \theta^2.$$

The Christoffel symbols are

$$\Gamma_{bc}^{a} = \frac{1}{2}g^{ae}(\partial_{b}g_{ce} + \partial_{c}g_{be} - \partial_{e}g_{bc}).$$

The curvature tensor components are

$$R_{abc}{}^d = \partial_a \Gamma^d_{bc} - \partial_b \Gamma^d_{ac} + \Gamma^d_{ae} \Gamma^e_{bc} - \Gamma^d_{be} \Gamma^e_{ac}.$$

Recall that $g = \tilde{g}$ has a compatible almost complex structure J.

The matrix of g is given in (4.7), so

$$g^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \kappa^{-1} \beta^{-1/2} (1+\theta) & \kappa^{-1} \beta^{-1/2} \theta \\ 0 & 0 & \kappa^{-1} \beta^{-1/2} \theta & \kappa^{-1} \beta^{-1/2} \end{pmatrix}.$$

The long calculations below have been checked by machine calculation at [4] in the references.

1.1. The curvature tensor on \overline{M}_p . Let \overline{R} be the metric on \overline{M}_p .

Lemma 1.1. In the notation of (4.8), we have

$$\overline{R}_{abc}{}^{d} = R_{abc}{}^{d} - p^{2}J_{bc}J_{a}{}^{d} + p^{2}J_{ac}J_{b}{}^{d} + 2p^{2}J_{ab}J_{c}{}^{d},$$

$$\overline{R}_{abc}{}^{0} = -p\nabla_{a}J_{bc} + p\nabla_{b}J_{ac} = p\nabla_{c}J_{ab},$$

$$\overline{R}_{ab0}{}^{d} = p\nabla_{a}J_{b}{}^{d} - p\nabla_{b}J_{a}{}^{d},$$

$$\overline{R}_{a0b}{}^{d} = p\nabla_{a}J_{b}{}^{d},$$

$$\overline{R}_{a0b}{}^{0} = -p^{2}g_{ab}.$$

Proof. These are the local frame expressions of Lemma 3.3.

Here we have used the identity

$$\nabla_a J_{bc} + \nabla_b J_{ca} + \nabla_c J_{ab} = 0,$$

which follows from $d\omega = 0$ and $g(JX, Y) = \omega(X, Y)$. For example, with this identity and curvature tensor symmetries, the second, third and fourth formulas in Lemma A.1 are equivalent.

1.2. The Christoffel symbols on M.

Lemma 1.2. The following is the list of the Christoffel tensors

$$\Gamma_{33}^2 = \frac{\kappa}{4} \beta^{-3/2} (1 - 2\theta), \quad \Gamma_{34}^2 = \frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2}), \quad \Gamma_{44}^2 = -\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta),$$

$$\Gamma_{23}^3 = -\frac{1}{4} \beta^{-1}, \quad \Gamma_{24}^3 = -\frac{1}{2} \beta^{-1}, \quad \Gamma_{23}^4 = -\frac{1}{2} \beta^{-1}, \quad \Gamma_{24}^4 = \frac{1}{4} \beta^{-1}.$$

All other Christoffel symbols are zero.

Proof. We have

$$\Gamma_{ab}^{1} = \frac{1}{2}g^{1e}(\partial_{a}g_{be} + \partial_{b}g_{ae} - \partial_{e}g_{ab}) = \frac{1}{2}g^{11}(\partial_{a}g_{b1} + \partial_{b}g_{a1} - \partial_{1}g_{ab}) = 0,$$

because $g_{\ell 1}$ is constant and $\partial_1 g_{ab} = 0$.

Since $\Gamma_{ab}^2 = \frac{1}{2}g^{2e}(\partial_a g_{be} + \partial_b g_{ae} - \partial_e g_{ab}) = \frac{1}{2}(\partial_a g_{b2} + \partial_b g_{a2} - \partial_2 g_{ab})$ and $g_{22} = 1$, we get

$$\Gamma_{11}^2 = \Gamma_{12}^2 = \Gamma_{12}^2 = 0$$

Note that $g_{b2} = 0$, $g_{b1} = 0$ and $g_{b2} = 0$ if b = 3, 4. Therefore,

$$\Gamma_{1b}^2 = \Gamma_{2b}^2 = 0$$

for b = 3, 4. We also get

$$\Gamma_{33}^2 = \frac{1}{2}(\partial_3 g_{32} + \partial_3 g_{32} - \partial_2 g_{33}) = -\frac{1}{2}\partial_2(\kappa \beta^{-1/2}) = \frac{\kappa}{4}\beta^{-3/2}(1 - 2\theta),$$

$$\Gamma_{34}^{2} = \frac{1}{2} (\partial_{3}g_{42} + \partial_{4}g_{32} - \partial_{2}g_{34}) = -\frac{1}{2} \partial_{2} (-\theta \kappa \beta^{-1/2})$$

$$= \frac{\kappa}{2} \beta^{-3/2} (1 + \frac{1}{2}\theta),$$

$$\Gamma_{44}^{2} = \frac{1}{2} (\partial_{4}g_{42} + \partial_{4}g_{42} - \partial_{2}g_{44}) = -\frac{1}{2} \partial_{2}g_{44} = -\frac{1}{2} \partial_{2} ((1 + \theta)\kappa \beta^{-1/2})$$

$$= -\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta).$$

Since $\Gamma_{ab}^3 = \frac{1}{2}g^{3e}(\partial_a g_{be} + \partial_b g_{ae} - \partial_e g_{ab})$, we have

$$\Gamma^3_{11} = \Gamma^3_{12} = \Gamma^3_{22} = \Gamma^3_{13} = \Gamma^3_{14} = 0$$

$$\Gamma_{23}^{3} = \frac{1}{2}g^{3e}(\partial_{2}g_{3e} + \partial_{3}g_{2e} - \partial_{e}g_{23}) = \frac{1}{2}g^{3e}(\partial_{2}g_{3e}) = \frac{1}{2}(g^{33}\partial_{2}g_{33} + g^{34}\partial_{2}g_{34})$$
$$= -\frac{1}{4}\beta^{-1},$$

$$\begin{split} \Gamma_{24}^3 &= \frac{1}{2} g^{3e} (\partial_2 g_{4e} + \partial_4 g_{2e} - \partial_e g_{24}) = \frac{1}{2} g^{3e} \partial_2 g_{4e} = \frac{1}{2} (g^{33} \partial_2 g_{43} + g^{34} \partial_2 g_{44}) \\ &= -\frac{1}{2} \beta^{-1}. \end{split}$$

Also, since e = 3, 4,

$$\Gamma_{33}^3 = \Gamma_{34}^3 = \Gamma_{44}^3 = 0$$

Furthermore, we have $\Gamma^4_{ab} == \frac{1}{2}g^{4e}(\partial_a g_{be} + \partial_b g_{ae} - \partial_e g_{ab}) = \frac{1}{2}g^{4e}(\partial_a g_{be} + \partial_b g_{ae})$, since e = 3, 4. For these values of e, $g_{1e} = 0$, $g_{24} = 0$, $g_{2e} = 0$, so

$$\Gamma_{11}^4 = \Gamma_{12}^4 = \Gamma_{22}^4 = \Gamma_{13}^4 = \Gamma_{14}^4 = 0.$$

Also,

$$\begin{split} \Gamma_{23}^4 &= \frac{1}{2} g^{4e} (\partial_2 g_{3e} + \partial_3 g_{2e}) = \frac{1}{2} (g^{43} \partial_2 g_{33} + g^{44} \partial_2 g_{34}) \\ &= \frac{1}{2} (\theta \kappa^{-1} \beta^{-1/2} \partial_2 (\kappa \beta^{-1/2}) + \kappa^{-1} \beta^{-1/2} \partial_2 (-\theta \kappa \beta^{-1/2})) \\ &= -\frac{1}{2} \beta^{-1}, \\ \Gamma_{24}^4 &= \frac{1}{2} g^{4e} (\partial_2 g_{4e} + \partial_4 g_{2e}) = \frac{1}{2} (g^{43} \partial_2 g_{43} + g^{44} \partial_2 g_{44}) \\ &= \frac{1}{2} (\theta \kappa^{-1} \beta^{-1/2} \partial_2 (-\theta \kappa \beta^{-1/2}) + \kappa^{-1} \beta^{-1/2} \partial_2 ((1 + \theta) \kappa \beta^{-1/2})) \\ &= \frac{1}{4} \beta^{-1}. \end{split}$$

Finally, we have

$$\Gamma_{33}^4 = \Gamma_{34}^4 = \Gamma_{44}^4 = 0.$$

This proves the Lemma.

1.3. The curvature tensor on M. We compute the curvature components $R_{abc}{}^d = \partial_a \Gamma^d_{bc} - \partial_b \Gamma^d_{ac} + \Gamma^d_{ae} \Gamma^e_{bc} - \Gamma^d_{be} \Gamma^e_{ac}$.

Lemma 1.3.

(i)
$$R_{abc}{}^d = 0$$
 if any of $a, b, c, d = 1$.
(ii)
$$R_{233}{}^2 = -\frac{\kappa}{16}\beta^{-5/2}(9 - 16\theta + 16\theta^2), \ R_{232}{}^3 = \frac{1}{16}\beta^{-2}(9 - 8\theta),$$

$$R_{232}{}^4 = \frac{1}{2}\beta^{-2}(1 - 2\theta),$$

$$R_{3232} = -R_{233}{}^a g_{a2} = -R_{233}{}^2 = \frac{\kappa}{16}\beta^{-5/2}(9 - 16\theta + 16\theta^2).$$

(iii)
$$R_{2424} = R_{4242} = R_{424}{}^{a}g_{a2} = R_{424}{}^{2} = -R_{244}{}^{2} = \frac{\kappa}{16}(1 + \theta + 24\theta^{2})\beta^{-5/2},$$

$$R_{242}{}^{4} = \frac{1}{16}\beta^{-2}(1 + 8\theta), \ R_{242}{}^{3} = \frac{1}{2}\beta^{-2}(1 - 2\theta).$$
(iv)

$$R_{234}^{2} = \frac{\kappa}{16} \beta^{-5/2} (-8 + 17\theta + 8\theta^{2}),$$

$$R_{2342} = R_{234}^{a} g_{a2} = R_{234}^{2} = \frac{\kappa}{16} \beta^{-5/2} (-8 + 17\theta + 8\theta^{2}),$$

$$R_{3242} = -R_{2342} = -\frac{\kappa}{16} \beta^{-5/2} (-8 + 17\theta + 8\theta^{2}).$$

(v)
$$R_{343}^{3} = -\frac{5}{16}\kappa\theta\beta^{-5/2}, \ R_{343}^{4} = -\frac{5}{16}\kappa\beta^{-5/2}, \ R_{344}^{3} = \frac{5}{16}\kappa(1+\theta)\beta^{-5/2},$$
$$R_{344}^{4} = \frac{5}{16}\kappa\theta\beta^{-5/2}, \ R_{3434} = -R_{3443} = -\frac{5}{16}\kappa^{2}\beta^{-2}.$$

Proof. (i)
$$R_{1bc}{}^d = \partial_1 \Gamma^d_{bc} - \partial_b \Gamma^d_{1c} + \Gamma^d_{1e} \Gamma^e_{bc} - \Gamma^d_{be} \Gamma^e_{1c} = 0$$
, because $\Gamma^d_{1b} = 0$. Similarly, $R_{a1c}{}^d = -R_{1ac}{}^d = 0$, $R_{ab1}{}^d = R_{b1a}{}^d + R_{1ab}{}^d = 0$. Using $\Gamma^1_{bc} = 0$, we get $R_{abc}{}^1 = \partial_a \Gamma^1_{bc} - \partial_b \Gamma^1_{ac} + \Gamma^1_{ae} \Gamma^e_{bc} - \Gamma^1_{be} \Gamma^e_{ac} = 0$.

(ii)
$$R_{233}^{2} = \partial_{2}\Gamma_{33}^{2} - \partial_{3}\Gamma_{23}^{2} + \Gamma_{2e}^{2}\Gamma_{33}^{e} - \Gamma_{3e}^{2}\Gamma_{23}^{e} = \partial_{2}\Gamma_{33}^{2} - \Gamma_{33}^{2}\Gamma_{23}^{3} - \Gamma_{34}^{2}\Gamma_{23}^{4}$$

$$= \partial_{2}(\frac{\kappa}{4}\beta^{-3/2}(1-2\theta)) - (\frac{\kappa}{4}\beta^{-3/2}(1-2\theta))(-\frac{1}{4}\beta^{-1})$$

$$- (\frac{\kappa}{2}\beta^{-3/2}(1+\frac{\theta}{2})(-\frac{1}{2}\beta^{-1})$$

$$= -\frac{\kappa}{16}\beta^{-5/2}(9-16\theta+16\theta^{2}),$$

and

$$\begin{split} R_{232}{}^3 &= \partial_2 \Gamma_{32}^3 - \partial_3 \Gamma_{22}^3 + \Gamma_{2e}^3 \Gamma_{32}^e - \Gamma_{3e}^3 \Gamma_{22}^e \\ &= \partial_2 \Gamma_{32}^3 + \Gamma_{23}^3 \Gamma_{32}^3 + \Gamma_{24}^3 \Gamma_{32}^4 \\ &= \partial_2 (-\frac{1}{4}\beta^{-1}) + (-\frac{1}{4}\beta^{-1})^2 + (-\frac{1}{2}\beta^{-1})^2 \\ &= \frac{1}{16}\beta^{-2}(9-8\theta), \\ R_{232}{}^4 &= \partial_2 \Gamma_4^{32} - \partial_3 \Gamma_4^{22} + \Gamma_4^{2e} \Gamma_e^{32} \\ &= \frac{1}{2}\beta^{-2}(1-2\theta). \end{split}$$

(iii) $R_{2424} = R_{242}{}^{a}g_{a4} = R_{242}{}^{3}g_{34} + R_{242}{}^{4}g_{44}$ $= \frac{8}{16}\beta^{-2}(1 - 2\theta)(-\kappa\theta\beta^{-1/2}) + \frac{1}{16}\beta^{-2}(1 + 8\theta)(\kappa(1 + \theta)\beta^{-1/2})$ $= \frac{\kappa}{16}\beta^{-5/2}(1 + \theta + 24\theta^{2}),$ $R_{242}{}^{4} = \partial_{2}\Gamma_{42}^{4} - \partial_{4}\Gamma_{22}^{4} + \Gamma_{2e}^{4}\Gamma_{42}^{e} - \Gamma_{4e}^{4}\Gamma_{22}^{e}$ $= \partial_{2}\Gamma_{42}^{4} + \Gamma_{23}^{4}\Gamma_{24}^{4} + \Gamma_{24}^{4}\Gamma_{42}^{4}$ $= \partial_{2}(\frac{1}{4}\beta^{-1}) + (-\frac{1}{2}\beta^{-1})(-\frac{1}{2}\beta^{-1}) + (\frac{1}{4}\beta^{-1})(\frac{1}{4}\beta^{-1})$ $= \frac{1}{16}\beta^{-2}(1 + 8\theta),$ $R_{242}{}^{3} = \partial_{2}\Gamma_{42}^{3} - \partial_{4}\Gamma_{22}^{3} + \Gamma_{2e}^{3}\Gamma_{42}^{e} - \Gamma_{4e}^{3}\Gamma_{22}^{e}$ $= \partial_{2}\Gamma_{42}^{3} + \Gamma_{23}^{3}\Gamma_{42}^{3} + \Gamma_{24}^{3}\Gamma_{42}^{4}$ $= -\frac{1}{2}\partial_{2}\beta^{-1} + (-\frac{1}{4}\beta^{-1})(-\frac{1}{2}\beta^{-1}) + (-\frac{1}{2}\beta^{-1})(\frac{1}{4}\beta^{-1})$ $= \frac{1}{2}\beta^{-2}(1 - 2\theta).$

(iv)
$$R_{234}^{2} = \partial_{2}\Gamma_{34}^{2} - \partial_{3}\Gamma_{24}^{2} + \Gamma_{2e}^{2}\Gamma_{34}^{e} - \Gamma_{3e}^{2}\Gamma_{24}^{e} = \partial_{2}\Gamma_{34}^{2} - \Gamma_{33}^{2}\Gamma_{24}^{3} - \Gamma_{34}^{2}\Gamma_{24}^{4}$$

$$= \frac{\kappa}{2}\partial_{2}(\beta^{-3/2}(1+\frac{\theta}{2})) - (\frac{\kappa}{4}\beta^{-3/2}(1-2\theta))(-\frac{1}{2}\beta^{-1})$$

$$- (\frac{\kappa}{2}\beta^{-3/2}(1+\frac{\theta}{2}))(\frac{1}{4}\beta^{-1})$$

$$= \frac{\kappa}{16}\beta^{-5/2}(-8+17\theta+8\theta^{2}).$$

The other formulas follow immediately.

(v)
$$R_{34a}{}^b = \partial_3 \Gamma^b_{4a} - \partial_4 \Gamma^b_{3a} + \Gamma^b_{3e} \Gamma^e_{4a} - \Gamma^b_{4a} \Gamma^e_{3a} = \Gamma^b_{3e} \Gamma^e_{4a} - \Gamma^b_{4e} \Gamma^e_{3a}$$
, so

$$\begin{split} R_{344}{}^2 &= \Gamma_{32}^2 \Gamma_{44}^2 - \Gamma_{43}^2 \Gamma_{34}^3 - \Gamma_{44}^2 \Gamma_{34}^4 = 0, \\ R_{343}{}^4 &= \Gamma_{32}^4 \Gamma_{43}^2 - \Gamma_{42}^4 \Gamma_{33}^2 = (-\frac{1}{2}\beta^{-1})(\frac{\kappa}{2}\beta^{-3/2}(1+\frac{\theta}{2})) - (\frac{1}{4}\beta^{-1})(\frac{\kappa}{4}\beta^{-3/2}(1-2\theta)) \\ &= -\frac{\kappa}{16}\beta^{-5/2}(4(1+\frac{\theta}{2})+(1-2\theta)) = -\frac{5}{16}\kappa\beta^{-5/2}, \\ R_{344}{}^3 &= \Gamma_{32}^3 \Gamma_{44}^2 - \Gamma_{32}^3 \Gamma_{34}^2 = (-\frac{1}{4}\beta^{-1})(-\frac{\kappa}{4}\beta^{-3/2}(1+3\theta)) - (-\frac{1}{2}\beta^{-1})(\frac{\kappa}{2}\beta^{-3/2}(1+\frac{\theta}{2})) \\ &= \frac{\kappa}{16}\beta^{-5/2}(1+3\theta+4(1+\frac{\theta}{2})) = \frac{5}{16}\kappa\beta^{-5/2}(1+\theta), \\ R_{344}{}^4 &= \Gamma_{32}^4 \Gamma_{44}^2 - \Gamma_{42}^4 \Gamma_{34}^2 = (-\frac{1}{2}\beta^{-1})(-\frac{\kappa}{4}\beta^{-3/2}(1+3\theta)) - (\frac{1}{4}\beta^{-1})(\frac{\kappa}{2}\beta^{-3/2}(1+\frac{\theta}{2})) \\ &= \frac{\kappa}{8}\beta^{-5/2}(1+3\theta-(1+\frac{\theta}{2})) = \frac{5}{16}\kappa\theta\beta^{-5/2}, \\ R_{343}{}^3 &= \Gamma_{32}^3 \Gamma_{43}^2 - \Gamma_{42}^3 \Gamma_{33}^2 = (-\frac{1}{4}\beta^{-1})(\frac{\kappa}{2}\beta^{-3/2}(1+\frac{\theta}{2})) - (-\frac{1}{2}\beta^{-1})(\frac{\kappa}{4}\beta^{-3/2}(1-2\theta)) \\ &= \frac{\kappa}{8}\beta^{-5/2}(-(1+\frac{\theta}{2}+(1-2\theta))) = -\frac{5}{16}\kappa\theta\beta^{-5/2}, \\ R_{3434} &= R_{343}{}^b g_{b4} = R_{343}{}^3 g_{34} + R_{343}{}^4 g_{44} \\ &= (-\frac{5}{16}\theta\kappa\beta^{-5/2})(-\theta\kappa\beta^{-1/2}) + (-\frac{5}{16}\kappa\beta^{-5/2})(1+\theta)\kappa\beta^{-1/2} \\ &= -\frac{5}{16}\kappa^2\beta^{-3}(1+\theta-\theta^2) = -\frac{5}{16}\kappa^2\beta^{-2}. \end{split}$$

1.4. The covariant derivatives of the almost complex structure on M. We note for later use that

$$(\omega_{ab}) = (J_a^c g_{cb}) = (J_{ab}) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \kappa \\ 0 & 0 & -\kappa & 0 \end{pmatrix}.$$
(1.2)

We now compute the covariant derivatives of J.

Lemma 1.4. (i)

$$\nabla_1 J_{ab} = \nabla_2 J_{ab} = 0.$$

(ii)
$$\nabla_3 J_{13} = -\frac{\kappa}{4} \beta^{-3/2} (1 - 2\theta), \ \nabla_3 J_{14} = -\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2}),$$

$$\nabla_3 J_{23} = -\frac{\kappa}{2} \beta^{-1}, \ \nabla_3 J_{24} = \frac{\kappa}{4} \beta^{-1}.$$
(iii)
$$\nabla_4 J_{13} = -\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2}), \ \nabla_4 J_{14} = \frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta)$$

$$\nabla_4 J_{23} = \frac{\kappa}{4} \beta^{-1}. \ \nabla_4 J_{24} = \frac{\kappa}{2} \beta^{-1}.$$

All other $\nabla_i J_{ab}$ vanish.

Proof. (i) Using $\Gamma_{1a}^e = 0$, we have $\nabla_1 J_{ab} = \partial_1 J_{ab} - \Gamma_{1a}^e J_{eb} - \Gamma_{1b}^e J_{ae} = 0$. We also have

$$\nabla_2 J_{ab} = \partial_2 J_{ab} - \Gamma^e_{2a} J_{eb} - \Gamma^e_{2b} J_{ae} = -\Gamma^e_{2a} J_{eb} - \Gamma^e_{2b} J_{ae}.$$

Thus

$$\nabla_{2}J_{12} = -\Gamma_{21}^{e}J_{e2} - \Gamma_{22}^{e}J_{1e} = -\Gamma_{22}^{e}J_{1e} = -\Gamma_{22}^{2}J_{12} = 0,$$

$$\nabla_{2}J_{34} = -\Gamma_{23}^{e}J_{e4} - \Gamma_{24}^{e}J_{3e} - \Gamma_{23}^{3}J_{34} - \Gamma_{24}^{4}J_{34}$$

$$= -(-\frac{1}{4}\beta^{-1})J_{34} - (\frac{1}{4}\beta^{-1})J_{34} = 0,$$

$$\nabla_{2}J_{11} = -\Gamma_{21}^{e}J_{e1} - \Gamma_{21}^{e}J_{1e} = 0,$$

$$\nabla_{2}J_{22} = -\Gamma_{22}^{e}J_{e2} - \Gamma_{22}^{e}J_{2e} = 0,$$

$$\nabla_{2}J_{2a} = -\Gamma_{2a}^{e}J_{ea} - \Gamma_{2a}^{e}J_{ae} = 0,$$

$$\nabla_{2}J_{13} = -\Gamma_{21}^{e}J_{e3} - \Gamma_{23}^{e}J_{1e} = -\Gamma_{21}^{4}J_{43} - \Gamma_{23}^{2}J_{12} = 0,$$

$$\nabla_{2}J_{14} = -\Gamma_{21}^{e}J_{e4} - \Gamma_{24}^{e}J_{1e}, = -\Gamma_{24}^{2}J_{12} = 0,$$

$$\nabla_{2}J_{23} = -\Gamma_{23}^{e}J_{e3} - \Gamma_{23}^{e}J_{2e} = -\Gamma_{22}^{4}J_{43} - \Gamma_{23}^{1}J_{21} = 0,$$

$$\nabla_{2}J_{24} = -\Gamma_{23}^{e}J_{e4} - \Gamma_{24}^{e}J_{24} = -\Gamma_{22}^{3}J_{34} - \Gamma_{24}^{1}J_{21} = 0.$$

Therefore, $\nabla_2 J_{ab} = 0$.

(ii) In general,

$$\nabla_3 J_{ab} = -\Gamma^e_{3a} J_{eb} - \Gamma^e_{3b} J_{ae}.$$

Thus

$$\begin{split} \nabla_{3}J_{1b} &= -\Gamma_{31}^{e}J_{eb} = 0, \\ \nabla_{3}J_{12} &= -\Gamma_{31}^{e}J_{e2} - \Gamma_{32}^{e}J_{1e} = -\Gamma_{31}^{1}J_{12} - \Gamma_{32}^{2}J_{12} = 0, \\ \nabla_{3}J_{13} &= -\Gamma_{31}^{e}J_{e3} - \Gamma_{33}^{e}J_{1e} = -\Gamma_{31}^{4}J_{43} - \Gamma_{33}^{2}J_{12} = -\Gamma_{33}^{2}J_{12} = -\Gamma_{33}^{2} \\ &= -\frac{\kappa}{4}\beta^{-3/2}(1-2\theta), \\ \nabla_{3}J_{14} &= -\Gamma_{34}^{2}J_{12} = -\frac{\kappa}{2}\beta^{-3/2}\left(1+\frac{\theta}{2}\right), \\ \nabla_{3}J_{21} &= -\Gamma_{32}^{2}J_{21} - \Gamma_{31}^{e}J_{2e} = 0, \\ \nabla_{3}J_{23} &= -\Gamma_{32}^{4}J_{43} - \Gamma_{33}^{1}J_{21} = \kappa\Gamma_{32}^{4} = -\frac{\kappa}{2}\beta^{-1}, \\ \nabla_{3}J_{24} &= -\Gamma_{33}^{2}J_{24} - \Gamma_{34}^{e}J_{21} = -\kappa\Gamma_{32}^{3} = -\kappa(-\frac{1}{4}\beta^{-1}) = \frac{\kappa}{4}\beta^{-1}, \\ \nabla_{3}J_{31} &= -\Gamma_{33}^{2}J_{21} - \Gamma_{31}^{e}J_{3e} = \Gamma_{33}^{2} = \frac{\kappa}{4}\beta^{-3/2}(1-2\theta), \\ \nabla_{3}J_{32} &= -\Gamma_{33}^{1}J_{12} - \Gamma_{32}^{e}J_{34} = -\Gamma_{32}^{4}J_{34} = -\kappa\Gamma_{32}^{4}, \\ \nabla_{3}J_{34} &= -\Gamma_{33}^{3}J_{42} - \Gamma_{31}^{4}J_{34} = 0, \\ \nabla_{3}J_{41} &= -\Gamma_{34}^{2}J_{21} - \Gamma_{41}^{e}J_{4e} = \Gamma_{34}^{2} = \frac{\kappa}{2}\beta^{-3/2}\left(1+\frac{\theta}{2}\right), \\ \nabla_{3}J_{42} &= -\Gamma_{34}^{1} - \Gamma_{32}^{2}J_{43} = -\Gamma_{32}^{3}(-\kappa) = \kappa\Gamma_{32}^{3} = -\frac{\kappa}{4}\beta^{-1}, \\ \nabla_{3}J_{43} &= -\Gamma_{34}^{4}J_{43} - \Gamma_{33}^{2}J_{43} = 0, \\ (iii) \text{ Since } \nabla_{4}J_{ab} &= -\Gamma_{4a}^{e}J_{eb} - \Gamma_{4b}^{e}J_{ae}, \text{ we have} \\ \nabla_{4}J_{12} &= -\Gamma_{4a}^{2}J_{eb} - \Gamma_{4b}^{e}J_{ae}, \text{ we have} \\ \nabla_{4}J_{14} &= -\Gamma_{4a}^{2}J_{21} - \Gamma_{41}^{e}J_{2e} = 0, \\ \nabla_{4}J_{21} &= -\Gamma_{42}^{2}J_{21} - \Gamma_{41}^{e}J_{2e} = 0, \\ \nabla_{4}J_{23} &= -\Gamma_{42}^{4}J_{43} - \Gamma_{43}^{4}J_{21} = -\Gamma_{42}^{4}(-\kappa) = \kappa\Gamma_{42}^{4} = \frac{\kappa}{4}\beta^{-1}, \\ \nabla_{4}J_{24} &= -\Gamma_{42}^{2}J_{21} - \Gamma_{41}^{e}J_{2e} = 0, \\ \nabla_{4}J_{23} &= -\Gamma_{42}^{2}J_{34} - \Gamma_{43}^{4}J_{21} = -\Gamma_{42}^{e}(-\kappa) = \kappa\Gamma_{42}^{4} = \frac{\kappa}{4}\beta^{-1}, \\ \nabla_{4}J_{24} &= -\Gamma_{42}^{2}J_{34} - \Gamma_{43}^{4}J_{21} = -\kappa\Gamma_{42}^{2}(-\kappa) = \kappa\Gamma_{42}^{4} = \frac{\kappa}{4}\beta^{-1}, \\ \nabla_{4}J_{24} &= -\Gamma_{42}^{2}J_{34} - \Gamma_{44}^{4}J_{21} = -\kappa\Gamma_{42}^{2}(-\kappa) = \kappa\Gamma_{42}^{4} = \frac{\kappa}{4}\beta^{-1}, \\ \nabla_{4}J_{24} &= -\Gamma_{42}^{2}J_{34} - \Gamma_{43}^{4}J_{21} = -\kappa\Gamma_{42}^{2}(-\kappa) = \kappa\Gamma_{42}^{4} = \frac{\kappa}{4}\beta^{-1}, \\ \nabla_{4}J_{24} &= -\Gamma_{42}^{2}J_{34} - \Gamma_{44}^{4}J_{21} = -\kappa\Gamma_{42}^{2}(-\kappa) = \kappa\Gamma_{42}^{4}$$

$$\nabla_4 J_{31} = -\Gamma_{43}^2 J_{21} - \Gamma_{41}^e J_{3e} = \Gamma_{43}^2 = \frac{\kappa}{2} \beta^{-3/2} \left(1 + \frac{\theta}{2} \right),$$

$$\nabla_4 J_{32} = -\Gamma_{43}^1 J_{12} - \Gamma_{42}^4 J_{34} = \kappa \Gamma_{42}^4 = -\frac{\kappa}{4} \beta^{-1},$$

$$\nabla_4 J_{34} = -\Gamma_{43}^3 J_{34} - \Gamma_{44}^4 J_{34} = 0,$$

$$\nabla_4 J_{41} = -\Gamma_{44}^2 J_{21} = -\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta),$$

$$\nabla_4 J_{42} = -\Gamma_{42}^3 J_{43} = -\Gamma_{42}^3 (-\kappa) = \kappa \Gamma_{42}^3 = -\frac{\kappa}{2} \beta^{-1},$$

$$\nabla_4 J_{43} = -\Gamma_{44}^2 J_{23} - \Gamma_{43}^3 J_{43} = 0.$$

1.5. The computation of (1.1). First steps. The goal is to show

$$S := \sum_{\sigma \in \mathfrak{S}_5} \operatorname{sgn}(\sigma) \overline{R}_{\sigma_0 \ell_1 0}{}^n \overline{R}_{\sigma_1 \sigma_2 \ell_2}{}^{\ell_1} \overline{R}_{\sigma_3 \sigma_4 n}{}^{\ell_2} = \frac{\kappa}{16} p^2 (3072 p^4 - 640 p^2 \beta^{-2} - 25 \beta^{-4}), (1.3)$$

(see (4.8)).

For $i \in \{0, 1, 2, 3, 4\}$, we set

$$S_i = \sum_{\substack{\sigma \in \mathfrak{S}_5 \\ \sigma_i = 0}} \operatorname{sgn}(\sigma) \overline{R}_{\sigma_0 \ell_{10}} {}^n \overline{R}_{\sigma_1 \sigma_2 \ell_2} {}^{\ell_1} \overline{R}_{\sigma_3 \sigma_4 n} {}^{\ell_2},$$

SO

$$S = \sum_{i=0}^{4} S_i.$$

Interchanging σ_1 and σ_2 gives $S_1 = S_2$, since both $\operatorname{sgn}(\sigma)$ and a curvature term change sign, and interchanging σ_3 and σ_4 gives $S_3 = S_4$. Thus,

$$S = S_0 + 2S_1 + 2S_3. (1.4)$$

For m=0,1,3, we set

$$S_m = S_{m,2} + S_{m,4} + S_{m,6},$$

where $S_{m,k}$ is the p^k -term of S_m . In this notation, (1.3) is equivalent to:

Proposition 1.5.

$$\bar{S}_{[2]} := S_{0,2} + 2S_{1,2} + 2S_{3,2} = \frac{\kappa}{16} p^2 (-25\beta^{-4}),$$

$$\bar{S}_{[4]} := S_{0,4} + 2S_{1,4} + 2S_{3,4} = \frac{\kappa}{16} (-640p^2\beta^{-2}),$$

$$\bar{S}_{[6]} := S_{0,6} + 2S_{1,6} + 2S_{3,6} = \frac{\kappa}{16} 3072p^6.$$

This will be proved in a number of steps. $\bar{S}_{[6]}$ is computed in Prop. 1.9, $\bar{S}_{[2]}$ is computed in Prop. 1.11, and $\bar{S}_{[4]}$ is computed in Prop. 1.13.

For notation, the metric \bar{g} on M is given by

$$\bar{g} = (\bar{g}_{ij}) = \begin{pmatrix} \frac{1 & 0 & 0 & 0 & 0 \\ \hline 0 & & & & \\ 0 & & & \bar{g}_{ab} \\ 0 & & & & \end{pmatrix}$$

where $i, j, k, \ldots \in \{0, 1, 2, 3, 4\}$ and $a, b, \ldots \in \{1, 2, 3, 4\}$. Thus $\bar{g}_{00} = \bar{g}(\partial_0, \partial_0), \bar{g}_{ab} = \bar{g}(\partial_0, \partial_0)$ $\bar{g}(\partial_{\theta_a}^L, \partial_{\theta_b}^L) = g(\partial_{\theta_a}, \partial_{\theta_b}).$ We now compute S_0 , using the formulas in Lemma 1.1. In the obvious notation,

$$S_{0} = \sum_{\sigma_{0}=0} \operatorname{sgn}(\sigma) \overline{R}_{0a_{1}0}{}^{b} \overline{R}_{\sigma_{1}\sigma_{2}\ell_{2}}{}^{a_{1}} \overline{R}_{\sigma_{3}\sigma_{4}b}{}^{\ell_{2}}$$

$$= \sum_{\sigma_{0}=0} \operatorname{sgn}(\sigma) \overline{R}_{0a_{1}0}{}^{b} [\overline{R}_{\sigma_{1}\sigma_{2}a_{2}}{}^{a_{1}} \overline{R}_{\sigma_{3}\sigma_{4}b}{}^{a_{2}} + \overline{R}_{\sigma_{1}\sigma_{2}0}{}^{a_{1}} \overline{R}_{\sigma_{3}\sigma_{4}b}{}^{0}].$$

Since $\overline{R}_{0a_10}{}^b = -p^2 \delta_{a_1}^b$, we get

$$\begin{split} S_{0} &= -p^{2} \sum_{\sigma_{0}=0} \mathrm{sgn}(\sigma) [\overline{R}_{\sigma_{1}\sigma_{2}a_{2}}{}^{a_{1}} \overline{R}_{\sigma_{3}\sigma_{4}a_{1}}{}^{a_{2}} + \overline{R}_{\sigma_{1}\sigma_{2}0}{}^{a_{1}} \overline{R}_{\sigma_{3}\sigma_{4}a_{1}}{}^{0}] \\ &= -p^{2} \sum_{\sigma_{0}=0} \mathrm{sgn}(\sigma) [\overline{R}_{\sigma_{1}\sigma_{2}a_{2}}{}^{a_{1}} \overline{R}_{\sigma_{3}\sigma_{4}a_{1}}{}^{a_{2}} - \overline{R}_{\sigma_{1}\sigma_{2}a'_{1}}{}^{0} \overline{R}_{\sigma_{3}\sigma_{4}a_{1}}{}^{0} g^{a_{1}a'_{1}}] \\ &= -p^{2} \sum_{\sigma_{0}=0} \mathrm{sgn}(\sigma) [\overline{R}_{\sigma_{1}\sigma_{2}a_{2}}{}^{a_{1}} \overline{R}_{\sigma_{3}\sigma_{4}a_{1}}{}^{a_{2}} - \overline{R}_{\sigma_{1}\sigma_{2}a'_{1}}{}^{0} \overline{R}_{\sigma_{3}\sigma_{4}a_{1}}{}^{0} g^{a_{1}a'_{1}}] \\ &= -p^{2} \sum_{\sigma_{0}=0} \mathrm{sgn}(\sigma) \overline{R}_{\sigma_{1}\sigma_{2}a_{2}}{}^{a_{1}} \overline{R}_{\sigma_{3}\sigma_{4}a_{1}}{}^{a_{2}} + p^{4} \sum_{\sigma_{0}=0} \mathrm{sgn}(\sigma) \nabla_{a'_{1}} J_{\sigma_{1}\sigma_{2}} \nabla_{a_{1}} J_{\sigma_{3}\sigma_{4}} g^{a_{1}a'_{1}} \\ &:= S_{0,*} + S_{0,4,1}. \end{split}$$

We will see below (Lemma 1.14) that

$$S_{0,4,1} = -S_{1,4,1} = 5p^4 \kappa \beta^{-2}. \tag{1.5}$$

(For the definition of $S_{1,4,1}$, see (1.13). The first equality follows from a "change of variables" sending σ to $(01)\sigma$.) For $S_{0,*}$, we have

$$S_{0,*} = -p^2 \sum_{\sigma_0 = 0} \operatorname{sgn}(\sigma) \overline{R}_{\sigma_1 \sigma_2 a_2}^{a_1} \overline{R}_{\sigma_3 \sigma_4 a_1}^{a_2}$$

$$= -p^2 \sum_{\sigma_0 = 0} \operatorname{sgn}(\sigma) (R_{\sigma_1 \sigma_2 a_2}^{a_1} - p^2 J_{\sigma_2 a_2} J_{\sigma_1}^{a_1} + p^2 J_{\sigma_1 a_2} J_{\sigma_2}^{a_1} + 2p^2 J_{\sigma_2 \sigma_2} J_{a_2}^{a_1})$$

$$\cdot (R_{\sigma_3 \sigma_4 a_1}^{a_2} - p^2 J_{\sigma_4 a_1} J_{\sigma_3}^{a_2} + p^2 J_{\sigma_3 a_1} J_{\sigma_4}^{a_2} + 2p^2 J_{\sigma_3 \sigma_4} J_{a_1}^{a_2})$$

$$= -p^{2} \sum_{\sigma_{0}=0} \operatorname{sgn}(\sigma) [(R_{\sigma_{1}\sigma_{2}a_{2}}^{a_{1}} R_{\sigma_{3}\sigma_{4}a_{1}}^{a_{2}})$$

$$+ p^{2} (-J_{\sigma_{2}a_{2}} J_{\sigma_{1}}^{a_{1}} + J_{\sigma_{1}a_{2}} J_{\sigma_{2}}^{a_{1}} + 2J_{\sigma_{1}\sigma_{2}} J_{a_{2}}^{a_{1}}) R_{\sigma_{3}\sigma_{4}a_{1}}^{a_{2}}$$

$$+ p^{2} R_{\sigma_{1}\sigma_{2}a_{2}}^{a_{1}} (-J_{\sigma_{4}a_{1}} J_{\sigma_{3}}^{a_{2}} + J_{\sigma_{3}a_{1}} J_{\sigma_{3}}^{a_{1}} + 2J_{\sigma_{3}\sigma_{4}} J_{a_{1}}^{a_{2}})$$

$$+ p^{4} (-J_{\sigma_{2}a_{2}} J_{\sigma_{1}}^{a_{1}} + J_{\sigma_{1}a_{2}} J_{\sigma_{2}}^{a_{1}} + 2J_{\sigma_{1}\sigma_{2}} J_{a_{2}}^{a_{1}})]$$

$$\cdot (-J_{\sigma_{4}a_{1}} J_{\sigma_{3}}^{a_{2}} + J_{\sigma_{3}a_{1}} J_{\sigma_{3}}^{a_{1}} + 2J_{\sigma_{3}\sigma_{4}} J_{a_{1}}^{a_{2}}).$$

The p^4 term in $S_{0,*}$ is

$$S_{0,4,2} := -p^4 \sum_{\sigma_0 = 0} \operatorname{sgn}(\sigma) [(-J_{\sigma_2 a_2} J_{\sigma_1}^{a_1} + J_{\sigma_1 a_2} J_{\sigma_2}^{a_1} + 2J_{\sigma_1 \sigma_2} J_{a_2}^{a_1}) R_{\sigma_3 \sigma_4 a_1}^{a_2} + R_{\sigma_1 \sigma_2 a_2}^{a_1} (-J_{\sigma_4 a_1} J_{\sigma_3}^{a_2} + J_{\sigma_3 a_1} J_{\sigma_3}^{a_1} + 2J_{\sigma_3 \sigma_4} J_{a_1}^{a_2})].$$

We can simplify $S_{0,4,2}$ using the change of variable $\sigma \mapsto \tau = \sigma(13)(24)$ as in the calculation of (β) in Appendix B:

$$S_{0,4,2} = -p^{4} \sum_{\sigma_{0}=0} \operatorname{sgn}(\sigma) \left[\left(-J_{\sigma_{2}a_{2}} J_{\sigma_{1}}^{a_{1}} + J_{\sigma_{1}a_{2}} J_{\sigma_{2}}^{a_{1}} + 2J_{\sigma_{1}\sigma_{2}} J_{a_{2}}^{a_{1}} \right) R_{\sigma_{3}\sigma_{4}a_{1}}^{a_{2}} \right]$$

$$+ R_{\sigma_{1}\sigma_{2}a_{2}}^{a_{1}} \left(-J_{\sigma_{4}a_{1}} J_{\sigma_{3}}^{a_{2}} + J_{\sigma_{3}a_{1}} J_{\sigma_{4}}^{a_{2}} + 2J_{\sigma_{3}\sigma_{4}} J_{a_{1}}^{a_{2}} \right) \right]$$

$$= -p^{4} \sum_{\sigma_{0}=0} \operatorname{sgn}(\sigma) \left[-R_{\sigma_{3}\sigma_{4}a_{1}a_{2}} J_{\sigma_{2}}^{a_{2}} J_{\sigma_{1}}^{a_{1}} + R_{\sigma_{3}\sigma_{4}a_{2}a_{1}} J_{\sigma_{1}}^{a_{1}} J_{\sigma_{2}}^{a_{2}} - 2R_{\sigma_{3}\sigma_{4}a_{1}a_{2}} J_{\sigma_{1}\sigma_{2}} J^{a_{1}a_{2}} \right]$$

$$- R_{\sigma_{1}\sigma_{2}a_{2}a_{1}} J_{\sigma_{4}}^{a_{1}} J_{\sigma_{3}}^{a_{2}} + R_{\sigma_{1}\sigma_{2}a_{1}a_{2}} J_{\sigma_{3}}^{a_{1}} J_{\sigma_{4}}^{a_{2}} - 2R_{\sigma_{1}\sigma_{2}a_{2}a_{1}} J_{\sigma_{3}\sigma_{4}} J^{a_{1}a_{2}} \right]$$

$$= 4p^{4} \sum_{\sigma_{0}=0} \operatorname{sgn}(\sigma) \left[R_{\sigma_{1}\sigma_{2}a_{1}a_{2}} J_{\sigma_{3}}^{a_{1}} J_{\sigma_{4}}^{a_{2}} + R_{\sigma_{1}\sigma_{2}a_{1}a_{2}} J^{a_{1}a_{2}} J_{\sigma_{3}\sigma_{4}} \right]$$

$$:= S_{0,4,2,1} + S_{0,4,2,2}.$$

where

$$S_{0,4,2,1} = 4p^4 \sum_{\sigma_0 = 0} \operatorname{sgn}(\sigma) R_{\sigma_1 \sigma_2 a_1 a_2} J_{\sigma_3}^{a_1} J_{\sigma_4}^{a_2},$$

$$S_{0,4,2,2} = 4p^4 \sum_{\sigma_0 = 0} \operatorname{sgn}(\sigma) R_{\sigma_1 \sigma_2 a_1 a_2} J^{a_1 a_2} J_{\sigma_3 \sigma_4}.$$

$$(1.7)$$

Here is a summary of S_0 , obtained from (1.5), (1.6), (1.7).

Lemma 1.6.

$$S_{0,2} = -p^{2} \sum_{\sigma_{0}=0} \operatorname{sgn}(\sigma) R_{\sigma_{1}\sigma_{2}a_{2}}{}^{a_{1}} R_{\sigma_{3}\sigma_{4}a_{1}}{}^{a_{2}},$$

$$S_{0,4} = p^{4} \sum_{\sigma_{0}=0} \operatorname{sgn}(\sigma) \nabla_{a'_{1}} J_{\sigma_{1}\sigma_{2}} \nabla_{a_{1}} J_{\sigma_{3}\sigma_{4}} g^{a_{1}a'_{1}}$$

$$-4p^{4} \sum_{\sigma_{0}=0} \operatorname{sgn}(\sigma) [R_{\sigma_{1}\sigma_{2}a_{1}a_{2}} J_{\sigma_{3}}{}^{a_{1}} J_{\sigma_{4}}{}^{a_{2}} + R_{\sigma_{1}\sigma_{2}a_{1}a_{2}} J^{a_{1}a_{2}} J_{\sigma_{3}\sigma_{4}}]$$

$$(1.8)$$

$$S_{0,6} = -p^{6} \sum_{\sigma_{0}=0} \operatorname{sgn}(\sigma) \left(-J_{\sigma_{2}a_{2}} J_{\sigma_{1}}^{a_{1}} + J_{\sigma_{1}a_{2}} J_{\sigma_{2}}^{a_{1}} + 2J_{\sigma_{1}\sigma_{2}} J_{a_{2}}^{a_{1}} \right) \cdot \left(-J_{\sigma_{4}a_{1}} J_{\sigma_{3}}^{a_{2}} + J_{\sigma_{3}a_{1}} J_{\sigma_{3}}^{a_{1}} + 2J_{\sigma_{3}\sigma_{4}} J_{a_{1}}^{a_{2}} \right).$$

We now turn to the computation of S_1 .

$$\begin{split} S_{1} &= -\sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) \overline{R}_{\sigma_{0}\ell_{1}0}{}^{n} \overline{R}_{0\sigma_{2}\ell_{2}}{}^{\ell_{1}} \overline{R}_{\sigma_{3}\sigma_{4}n}{}^{\ell_{2}} = -\sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) \bar{R}_{\sigma_{0}\ell_{1}0b'} \overline{R}_{0\sigma_{2}\ell_{2}}{}^{\ell_{1}} \overline{R}_{\sigma_{3}\sigma_{4}b}{}^{\ell_{2}} g^{bb'} \\ &= -\sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) \bar{R}_{\sigma_{0}00b'} \overline{R}_{0\sigma_{2}a}{}^{0} \overline{R}_{\sigma_{3}\sigma_{4}b}{}^{a} g^{bb'} - \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) \bar{R}_{\sigma_{0}a_{1}0b'} \overline{R}_{0\sigma_{2}\ell_{2}}{}^{a_{1}} \overline{R}_{\sigma_{3}\sigma_{4}b}{}^{\ell_{2}} g^{bb'} \\ &= -\sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) (p^{2}g_{\sigma_{0}b'}) (p^{2}g_{\sigma_{2}a_{2}}) \overline{R}_{\sigma_{3}\sigma_{4}b}{}^{a_{2}} g^{bb'} - \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) \bar{R}_{\sigma_{0}a_{1}0b'} \bar{R}_{0\sigma_{2}0a'_{1}} \bar{R}_{\sigma_{3}\sigma_{4}b0} g^{bb'} g^{a_{1}a'_{1}} \\ &- \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) \bar{R}_{\sigma_{0}a_{1}0b'} \bar{R}_{0\sigma_{2}a_{2}a'_{1}} \overline{R}_{\sigma_{2}\sigma_{4}b}{}^{a_{2}} g^{bb'} g^{a_{1}a'_{1}} \\ &= -\sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) p^{4} R_{\sigma_{3}\sigma_{4}\sigma_{0}\sigma_{2}} - \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) (-p \nabla_{b'} J_{\sigma_{0}a_{1}}) (-p^{2} g_{\sigma_{2}a'_{2}}) (p \nabla_{b} J_{\sigma_{3}\sigma_{4}}) g^{bb'} g^{a_{1}a'_{1}} \\ &- \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) (-p \nabla_{b'} J_{\sigma_{0}a_{1}}) (-p^{2} \nabla_{\sigma_{2}} J_{a_{2}a'_{1}}) \overline{R}_{\sigma_{3}\sigma_{4}b}{}^{a_{2}} g^{bb'} g^{a_{1}a'_{1}}. \end{split}$$

This can be simplified using the Bianchi identity

$$\sum_{\sigma_1=0} \operatorname{sgn}(\sigma) R_{\sigma_3 \sigma_4 \sigma_0 \sigma_2} = 0,$$

to give

$$\begin{split} S_{1} &= -\sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) p^{4} g^{bb'} \nabla_{b'} J_{\sigma_{0}\sigma_{2}} \nabla_{b} J_{\sigma_{3}\sigma_{4}} \\ &- \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) p^{2} \nabla_{b'} J_{\sigma_{0}a_{1}} \nabla_{\sigma_{2}} J_{a_{2}a'_{1}} \bar{R}_{\sigma_{3}\sigma_{4}ba'_{2}} g^{bb'} g^{a_{1}a'_{1}} g^{a_{2}a'_{2}} \\ &= -\sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) p^{4} g^{bb'} \nabla_{b'} J_{\sigma_{0}\sigma_{2}} \nabla_{b} J_{\sigma_{3}\sigma_{4}} \\ &- \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) p^{2} \nabla_{b'} J_{\sigma_{0}a_{1}} \nabla_{\sigma_{2}} J_{a_{2}a'_{1}} R_{\sigma_{3}\sigma_{4}ba'_{2}} g^{a_{2}a'_{2}} g^{bb'} g^{a_{1}a'_{1}} \\ &- \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) p^{4} \nabla_{b'} J_{\sigma_{0}a_{1}} \nabla_{\sigma_{2}} J_{a_{2}a'_{1}} \\ &\cdot (-J_{\sigma_{4}b} J_{\sigma_{3}a'_{2}} + J_{\sigma_{3}b} J_{\sigma_{4}a'_{2}} + 2J_{\sigma_{3}\sigma_{4}} J_{ba'_{2}}) g^{bb'} g^{a_{2}a'_{2}} g^{a_{1}a'_{1}} \\ &= -\sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) p^{4} g^{bb'} \nabla_{b} J_{\sigma_{0}\sigma_{2}} \nabla_{b'} J_{\sigma_{3}\sigma_{4}} \end{split}$$

$$+ \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) p^{4} \nabla_{b'} J_{\sigma_{0}a_{1}} \nabla_{\sigma_{2}} J_{a_{2}a'_{1}} J_{\sigma_{4}b} J_{\sigma_{3}a'_{2}} g^{bb'} g^{a_{2}a'_{2}} g^{a_{1}a'_{1}}$$

$$- \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) p^{4} \nabla_{b'} J_{\sigma_{0}a_{1}} \nabla_{\sigma_{2}} J_{a_{2}a'_{1}} J_{\sigma_{3}b} J_{\sigma_{4}a'_{2}} g^{bb'} g^{a_{2}a'_{2}} g^{a_{1}a'_{1}}$$

$$- 2 \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) p^{4} \nabla_{b'} J_{\sigma_{0}a_{1}} \nabla_{sigma_{2}} J_{a_{2}a'_{1}} J_{\sigma_{3}\sigma_{4}} J_{ba'_{2}} g^{bb'} g^{a_{2}a'_{2}} g^{a_{1}a'_{1}}$$

$$- \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) p^{2} \nabla_{b'} J_{\sigma_{0}a_{1}} \nabla_{\sigma_{2}} J_{a_{2}a'_{1}} R_{\sigma_{3}\sigma_{4}ba'_{2}} g^{a_{2}a'_{2}} g^{bb'} g^{a_{1}a'_{1}}$$

$$= - \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) p^{4} g^{bb'} \nabla_{b} J_{\sigma_{0}\sigma_{2}} \nabla_{b'} J_{\sigma_{3}\sigma_{4}}$$

$$+ 2 \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) p^{4} \nabla_{b'} J_{\sigma_{0}a_{1}} \nabla_{\sigma_{2}} J_{a_{2}a'_{1}} J_{\sigma_{4}b} J_{\sigma_{3}a'_{2}} g^{a_{2}a'_{2}} g^{bb'} g^{a_{1}a'_{1}}$$

$$- 2 \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) p^{4} \nabla_{b'} J_{\sigma_{0}a_{1}} \nabla_{\sigma_{2}} J_{a_{2}a'_{1}} J_{\sigma_{3}\sigma_{4}} J_{ba'_{2}} g^{a_{2}a'_{2}} g^{bb'} g^{a_{1}a'_{1}}$$

$$- p^{2} \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) \nabla_{b'} J_{\sigma_{0}a_{1}} \nabla_{\sigma_{2}} J_{a_{2}a'_{1}} R_{\sigma_{3}\sigma_{4}ba'_{2}} g^{a_{2}a'_{2}} g^{bb'} g^{a_{1}a'_{1}} .$$

In summary,

Lemma 1.7.

$$S_1 = S_{1,2} + S_{1,4}$$

where

$$S_{1,2} = -p^2 \sum_{\sigma_1 = 0} \operatorname{sgn}(\sigma) \nabla_{b'} J_{\sigma_0 a_1} \nabla_{\sigma_2} J_{a_2 a'_1} R_{\sigma_3 \sigma_4 b a'_2} g^{a_2 a'_2} g^{bb'} g^{a_1 a'_1},$$

$$S_{1,4} = -p^4 \sum_{\sigma_1 = 0} \operatorname{sgn}(\sigma) g^{bb'} \nabla_b J_{\sigma_0 \sigma_2} \nabla_{b'} J_{\sigma_3 \sigma_4}$$

$$+ 2p^4 \sum_{\sigma_1 = 0} \operatorname{sgn}(\sigma) \nabla_{b'} J_{\sigma_0 a_1} \nabla_{\sigma_2} J_{a_2 a'_1} J_{\sigma_4 b} J_{\sigma_3 a'_2} g^{a_2 a'_2} g^{bb'} g^{a_1 a'_1}$$

$$- 2p^4 \sum_{\sigma_1 = 0} \operatorname{sgn}(\sigma) \nabla_{b'} J_{\sigma_0 a_1} \nabla_{\sigma_2} J_{a_2 a'_1} J_{\sigma_3 \sigma_4} J_{b a'_2} g^{a_2 a'_2} g^{bb'} g^{a_1 a'_1}.$$

We now compute S_3 . Using $\overline{R}_{\sigma_0\ell_10}{}^0 = 0$, we obtain

$$S_{3} = -\sum_{\sigma_{3}=0} \operatorname{sgn}(\sigma) \overline{R}_{\sigma_{0}\ell_{1}0}{}^{n} \overline{R}_{\sigma_{1}\sigma_{2}\ell_{2}}{}^{\ell_{1}} \overline{R}_{0\sigma_{4}n}{}^{\ell_{2}} = -\sum_{\sigma_{3}=0} \operatorname{sgn}(\sigma) \overline{R}_{\sigma_{0}\ell_{1}0}{}^{b} \overline{R}_{\sigma_{1}\sigma_{2}\ell_{2}}{}^{\ell_{1}} \overline{R}_{0\sigma_{4}b}{}^{\ell_{2}}$$

$$= -\sum_{\sigma_{3}=0} \operatorname{sgn}(\sigma) \overline{R}_{\sigma_{0}00}{}^{b} \overline{R}_{\sigma_{1}\sigma_{2}a_{2}}{}^{0} \overline{R}_{0\sigma_{4}b}{}^{a_{2}} - \sum_{\sigma_{3}=0} \operatorname{sgn}(\sigma) \overline{R}_{\sigma_{0}a_{1}0}{}^{b} \overline{R}_{\sigma_{1}\sigma_{2}\ell_{2}}{}^{a_{1}} \overline{R}_{0\sigma_{4}b}{}^{\ell_{2}}$$

$$\begin{split} &= -\sum_{\sigma_3=0} \operatorname{sgn}(\sigma) \overline{R}_{\sigma_0 00}{}^b \overline{R}_{\sigma_1 \sigma_2 a_2}{}^0 \overline{R}_{0 \sigma_4 b}{}^{a_2} - \sum_{\sigma_3=0} \operatorname{sgn}(\sigma) \overline{R}_{\sigma_0 a_1 0}{}^b \overline{R}_{\sigma_1 \sigma_2 0}{}^{a_1} \overline{R}_{0 \sigma_4 b}{}^0 \\ &- \sum_{\sigma_3=0} \operatorname{sgn}(\sigma) \overline{R}_{\sigma_0 a_1 0}{}^b \overline{R}_{\sigma_1 \sigma_2 a_2}{}^{a_1} \overline{R}_{0 \sigma_4 b}{}^{a_2}. \end{split}$$

Since

$$\overline{R}_{0\sigma_4 b}{}^{a_2} = \overline{R}_b{}^{a_2}{}_0{}^{\sigma_4} = -\overline{R}_b{}^{a_2}{}_{\sigma_4 0}, \ \overline{R}_{0\sigma_4 b}{}^{a_2} = -\overline{R}_b{}^{a_2}{}_{\sigma_4 0},$$

this becomes

$$S_{3} = -\sum_{\sigma_{3}=0} \operatorname{sgn}(\sigma) (p^{2} \delta_{\sigma_{0}}^{b}) (p \nabla_{a_{2}} J_{\sigma_{1} \sigma_{2}}) (-p \nabla_{\sigma_{4}} J_{b}^{a_{2}}) - (-p^{2} \nabla_{\sigma_{4}} J_{\sigma_{0} a_{1}}) (-p \nabla^{a_{1}} J_{\sigma_{1} \sigma_{2}}) (p^{2} g_{\sigma_{4} b})$$

$$-\sum_{\sigma_{2}=0} \operatorname{sgn}(\sigma) (-p \nabla^{b} J_{\sigma_{0} a_{1}}) \overline{R}_{\sigma_{1} \sigma_{2} a_{2}}^{a_{1}} (-p \nabla_{\sigma_{4}} J_{b}^{a_{2}}).$$

This further simplifies, using

$$\sum_{\sigma_3=0} \operatorname{sgn}(\sigma) p^4 \nabla_{a_2} J_{\sigma_1 \sigma_2} \nabla_{\sigma_4} J_{\sigma_0}{}^{a_2} - \sum_{\sigma_3=0} \operatorname{sgn}(\sigma) p^4 \nabla_{\sigma_4} J_{\sigma_0 a_2} \nabla^{a_2} J_{\sigma_1 \sigma_2} = 0,$$

to give

Lemma 1.8.

$$S_{3} = S_{3,2} + S_{3,4}$$

$$= -\sum_{\sigma_{3}=0} \operatorname{sgn}(\sigma) p^{2} \nabla^{b} J_{\sigma_{0} a_{1}} \nabla_{\sigma_{4}} J_{b}^{a_{2}} R_{\sigma_{1} \sigma_{2} a_{2}}^{a_{1}}$$

$$-\sum_{\sigma_{3}=0} \operatorname{sgn}(\sigma) p^{4} \nabla^{b} J_{\sigma_{0} a_{1}} \nabla_{\sigma_{4}} J_{b}^{a_{2}} (-J_{\sigma_{2} a_{2}} J_{\sigma_{1}}^{a_{1}} + J_{\sigma_{1} a_{2}} J_{\sigma_{2}}^{a_{1}} + 2J\sigma_{1} \sigma_{2} J_{a_{2}}^{a_{1}})$$

$$= -\sum_{\sigma_{3}=0} \operatorname{sgn}(\sigma) p^{2} \nabla^{b} J_{\sigma_{0} a_{1}} \nabla_{\sigma_{4}} J_{b}^{a_{2}} R_{\sigma_{1} \sigma_{2} a_{2}}^{a_{1}}$$

$$+ 2p^{4} \sum_{\sigma_{2}=0} \operatorname{sgn}(\sigma) \nabla^{b} J_{\sigma_{0} a_{1}} \nabla_{\sigma_{4}} J_{b}^{a_{2}} [J_{\sigma_{2} a_{2}} J_{\sigma_{1}}^{a_{1}} - J_{\sigma_{1} \sigma_{2}} J_{a_{2}}^{a_{1}}].$$

The last equality follows from the change of variable $\sigma \mapsto \sigma(12)$.

1.6. The p^6 term in (1.3). We now compute the p^6 term in (1.3), or equivalently the third term in Prop. 1.5. Since $S_{1,6} = S_{3,6} = 0$ by Lemmas 1.7, 1.8, respectively, we need only compute $S_{0,6}$.

Proposition 1.9.

$$\bar{S}_{[6]} = S_{0,6} = 192p^6\kappa.$$

Proof. We have

 $S_{0.6}$

$$= -p^{6} \sum_{\sigma_{0}=0} \operatorname{sgn}(\sigma) (-J_{\sigma_{2}a_{2}}J_{\sigma_{1}}^{a_{1}} + J_{\sigma_{1}a_{2}}J_{\sigma_{2}}^{a_{1}} + 2J_{\sigma_{1}\sigma_{2}}J_{a_{2}}^{a_{1}})$$

$$\cdot (-J_{\sigma_{4}a_{1}}J_{\sigma_{3}}^{a_{2}} + J_{\sigma_{3}a_{1}}J_{\sigma_{4}}^{a_{2}} + 2J_{\sigma_{3}\sigma_{4}}J_{a_{1}}^{a_{2}})$$

$$= -p^{6} \sum_{\sigma_{0}=0} \operatorname{sgn}(\sigma) [J_{\sigma_{2}a_{2}}J_{\sigma_{1}}^{a_{1}}J_{\sigma_{4}a_{1}}J_{\sigma_{3}}^{a_{2}} - J_{\sigma_{2}a_{2}}J_{\sigma_{1}}^{a_{1}}J_{\sigma_{3}a_{1}}J_{\sigma_{4}}^{a_{2}} - 2J_{\sigma_{2}a_{2}}J_{\sigma_{1}}^{a_{1}}J_{\sigma_{3}\sigma_{4}}J_{a_{1}}^{a_{2}}$$

$$-J_{\sigma_{1}a_{2}}J_{\sigma_{2}}^{a_{1}}J_{\sigma_{4}a_{1}}J_{\sigma_{3}}^{a_{2}} + J_{\sigma_{1}a_{2}}J_{\sigma_{2}}^{a_{1}}J_{\sigma_{3}a_{1}}J_{\sigma_{4}}^{a_{2}} + 2J_{\sigma_{1}a_{2}}J_{\sigma_{2}}^{a_{1}}J_{\sigma_{3}\sigma_{4}}J_{a_{1}}^{a_{2}}$$

$$-2J_{\sigma_{1}\sigma_{2}}J_{a_{2}}^{a_{1}}J_{\sigma_{4}a_{1}}J_{\sigma_{3}}^{a_{2}} + 2J_{\sigma_{1}\sigma_{2}}J_{a_{2}}^{a_{1}}J_{\sigma_{3}a_{1}}J_{\sigma_{4}}^{a_{2}} + 4J_{\sigma_{1}\sigma_{2}}J_{a_{2}}^{a_{1}}J_{\sigma_{3}\sigma_{4}}J_{a_{1}}^{a_{2}}].$$
Using (??), we get
$$S_{0,6} = -p^{6} \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma)(-2 \cdot 4 - 16)J_{\sigma_{1}\sigma_{2}}J_{\sigma_{3}\sigma_{4}} = p^{6} \cdot 24 \cdot 2^{3}\kappa = 192p^{6}\kappa.$$

1.7. The p^2 term in (1.3). We now compute

$$\bar{S}_{[2]} = S_{0,2} + 2S_{1,2} + 2S_{3,2}.$$

We first note that there is no contribution from $S_{0,2}$.

Lemma 1.10.

$$S_{0,2} = 0.$$

Proof. By Lemmas 1.3(i) and 1.6, we get

$$S_{0,2} = \sum_{\sigma_0 = 0} \operatorname{sgn}(\sigma) R_{\sigma_1 \sigma_2 a_2}{}^b R_{\sigma_3 \sigma_4 b}{}^{a_2} = 0,$$

since every permutation has $\sigma_a = 1$ for some a.

Note that the middle term in the last equation is a multiple of the first Pontryagin form, which implies that the signature of M is zero.

Proposition 1.11.

$$\bar{S}_{[2]} = 2(S_{1,2} + S_{3,2}) = -\frac{25}{16}\kappa\beta^{-4}$$
(1.9)

Proof. We have

$$S_{1,2} + S_{3,2} = -p^2 \sum_{\sigma_1 = 0} \operatorname{sgn}(\sigma) \nabla_{b'} J_{\sigma_0 a'_1} \nabla_{\sigma_2} J_{a_2 a'_1} R_{\sigma_3 \sigma_4 b a'_2} g^{bb'} g^{a_1 a'_1} g^{a_2 a'_2}$$

$$- p^2 \sum_{\sigma_3 = 0} \operatorname{sgn}(\sigma) \nabla^b J_{\sigma_0 a_1} \nabla_{\sigma_4} J_b^{a_2} R_{\sigma_1 \sigma_2 a_2}^{a_1}$$

$$= p^2 \sum_{\sigma_0 = 0} \operatorname{sgn}(\sigma) \nabla_{a_1} J_{\sigma_1 b} \nabla_{\sigma_2} J_{a_2 b'} R_{\sigma_3 \sigma_4 a'_2 a'_1} g^{bb'} g^{a_1 a'_1} g^{a_2 a'_2}$$

$$+ p^2 \sum_{\sigma_0 = 0} \operatorname{sgn}(\sigma) \nabla_{b'} J_{\sigma_1 a_1} \nabla_{\sigma_2} J_{a'_2 b} R_{\sigma_3 \sigma_4 a_2 a'_1} g^{bb'} g^{a_1 a'_1} g^{a_2 a'_2},$$

where we use the change of variable $\sigma \mapsto (01)\sigma$ on the third line and $\sigma \mapsto (301)(24)\sigma$ on the fourth line. We know

$$(\sigma_3, \sigma_4) \in \{(2,3), (3,2), (2,4), (4,2), (3,4), (4,3)\}.$$

Case (1): $(\sigma_3, \sigma_4) = (2, 3)$ or (3, 2)In this case, in cycle notation

$$\sigma \in \{(243), (1432), (24), (142)\},\$$

with signs +1, -1, -1, +1, respectively. There is no contribution to $S_{1,2} + S_{3,2}$ if $\sigma = (1432)$ or $\sigma = (142)$, since $\nabla_1 J_{ab} = 0$. Thus for $(S_{1,2} + S_{3,2})(1)$ the contribution to $S_{2,2} + S_{4,2}$ from Case (1), we get

$$\begin{split} (S_{1,2}+S_{3,2})(1) &= 2p^2\nabla_{a_1}J_{1b}\nabla_4J_{a_2b'}R_{23a'_2a'_1}g^{a_1a'_1}g^{bb'}g^{a_2a'_2} \\ &\quad + 2\nabla_{b'}J_{1a_1}\nabla_4J_{a'_2b}R_{23a_2a'_1}g^{a_1a'_1}g^{bb'}g^{a_2a'_2} \\ &= 2p^2\nabla_{a_1}J_{1b}\nabla_4J_{a_2b'}R_{23a'_2a'_1}g^{a_1a'_1}g^{bb'}g^{a_2a'_2} \\ &\quad + 2p^2\nabla_{a_1}J_{1b'}\nabla_4J_{a_2b}R_{23a_2a'_1}g^{a_1a'_1}g^{bb'}g^{a_2a'_2} \\ &= 4p^2\nabla_{a_1}J_{1b}\nabla_4J_{a_2b}R_{23a'_2a'_1}g^{a_1a'_1}g^{bb'}g^{a_2a'_2}. \end{split}$$

Since $\nabla_1 J_{ab} = \nabla_2 J_{ab} = 0$, we must have $a_1 = 3$ or 4, and so

$$(S_{2,2} + S_{4,2})(1) = 4p^{2}\nabla_{3}J_{1b}\nabla_{4}J_{a_{2}b'}R_{23a'_{2}b'}g^{3a'_{1}}g^{bb'}g^{a_{2}a'_{2}}$$

$$+ 4p^{2}\nabla_{4}J_{1b}\nabla_{4}J_{a_{2}b'}R_{23a'_{2}a'_{1}}g^{4a'_{1}}g^{bb'}g^{a_{2}a'_{2}}$$

$$= 4p^{2}\nabla_{3}J_{1b}\nabla_{4}J_{2b'}R_{232}^{3}g^{bb'}$$

$$+ 4p^{2}\nabla_{4}J_{1b}\nabla_{4}J_{2b'}R_{232}^{4}g^{bb'}.$$

In summary,

$$(S_{2,2} + S_{4,2})(1) = 4p^2(\nabla_3 J_{1b'} \nabla_4 J_{2b} R_{232}{}^3 g^{bb'} + \nabla_4 J_{1b'} \nabla_4 J_{2b} R_{232}{}^4 g^{bb'}). \tag{1.10}$$

Case (2): $(\sigma_3, \sigma_4) = (2, 4)$ or (4, 2)Now

$$\sigma \in \{(23), (234), (132), (1342)\}$$

with signs -1, +1, +1, -1, respectively. There is no contribution to $S_{2,2} + S_{4,2}$ if $\sigma = (132)$ or $\sigma = (1342)$, since $\nabla_1 J_{ab} = 0$. Thus for $(S_{2,2} + S_{4,2})(2)$ in the notation of Case (1), we get

$$(S_{1,2} + S_{3,2})(2) = -2(\nabla_{a_1} J_{1b'} \nabla_3 J_{a_2'b} R_{24a_2}{}^{a_1} g^{bb'} g^{a_2 a_2'} + \nabla_{b'} J_{1a_1} \nabla_3 J_{a_2'b} R_{24a_2}{}^{a_1} g^{bb'} g^{a_2 a_2'}).$$

As above, we only get a nonzero contribution to this equation if $a_1 = 3$ or 4. Thus, we get

$$(S_{1,2} + S_{3,2})(2) = -2(\nabla_3 J_{1b'} \nabla_3 J_{a'_2b} R_{24a_2}{}^3 g^{bb'} g^{a_2 a'_2} + \nabla_4 J_{1b'} \nabla_3 J_{a'_2b} R_{24a_2}{}^4 g^{bb'} g^{a_2 a'_2} + \nabla_{b'} J_{13} \nabla_3 J_{a_2b} R_{24a_2}{}^3 g^{bb'} g^{a_2 a'_2} + \nabla_{b'} J_{14} \nabla_3 J_{a_2b} R_{24a_2}{}^3 g^{bb'} g^{a_2 a'_2})$$

$$= -4(\nabla_3 J_{1b'} \nabla_3 J_{2b} R_{242}{}^3 g^{bb'} + \nabla_4 J_{1b'} \nabla_3 J_{2b} R_{242}{}^4 g^{bb'}), \qquad (1.11)$$

because only a_2 and a'_2 remain.

Case (3):
$$(\sigma_3, \sigma_4) = (3, 4)$$
 or $(4, 3)$
Since $\sigma_2 = 1$ or 2, we have $\nabla_{\sigma_2} J_{a_2b'} = 0$. Thus,

$$(S_{1,2} + S_{3,2})(3) = 0.$$

In summary, at this point we have

$$\frac{1}{2}\bar{S}_{[2]} = S_{1,2} + S_{3,2} = (S_{1,2} + S_{3,2})(1) + (S_{1,2} + S_{3,2})(2). \tag{1.12}$$

We continue by simplifying the explicit expressions in (1.10), (1.11).

Lemma 1.12. (i) $\nabla_4 J_{1b'} \nabla_4 J_{2b} g^{bb'} = 0$ and $\nabla_3 J_{1b'} \nabla_3 J_{2b} g^{bb'} = 0$. (ii)

$$\nabla_3 J_{1b'} \nabla_4 J_{2b} g^{bb'} R_{232}^3 = -\frac{5\kappa}{4^4} \beta^{-4} (9 - 8\theta),$$

$$\nabla_4 J_{1b'} \nabla_3 J_{2b} g^{bb'} R_{232}^4 = \frac{5\kappa}{4^4} \beta^{-4} (1 + 8\theta).$$

(iii)
$$\nabla_3 J_{1b'} \nabla_4 J_{2b} g^{bb'} R_{232}^3 - \nabla_4 J_{1b'} \nabla_3 J_{2b} g^{bb'} R_{242}^4 = -\frac{50}{44} \kappa \beta^{-4}$$
.

Proof. (i) By Lem. 1.4,

$$\nabla_{4}J_{1b'}\nabla_{4}J_{2b}g^{bb'}$$

$$= \nabla_{4}J_{13} + \nabla_{4}J_{23}g^{33} + \nabla_{4}J_{13}\nabla_{4}J_{24}g^{34} + \nabla_{4}J_{14}\nabla_{4}J_{23}g^{43} + \nabla_{4}J_{14} + \nabla_{4}J_{24}g^{44}$$

$$= \left(-\frac{\kappa}{2}\beta^{-3/2}(1 + \frac{1}{2}\theta)\right)\left(\frac{\kappa}{4}\beta^{-1}\right)(\kappa^{-1}(1 + \theta)\beta^{-1/2})$$

$$+ \left(-\frac{\kappa}{2}\beta^{-3/2}(1 + \frac{\theta}{2})\right)\left(\frac{\kappa}{2}\beta^{-1}\right)(\theta\kappa^{-1}\beta^{-1/2})$$

$$+ \left(\frac{\kappa}{4}\beta^{-3/2}(1 + 3\theta)\right)\left(\frac{\kappa}{4}\beta^{-1}\right)(\theta\kappa^{-1}\beta^{-1/2})$$

$$+ \left(\frac{\kappa}{4}\beta^{-3/2}(1 + 3\theta)\right)\left(\frac{\kappa}{2}\beta^{-1}\right)(\kappa^{-1}\beta^{-1/2})$$

$$= \kappa\beta^{-3}\left(-\frac{1}{8}(1 + \frac{\theta}{2})(1 + \theta) - \frac{1}{4}(1 + \frac{\theta}{2})\theta + \frac{1}{16}(1 + 3\theta)\theta + \frac{1}{8}(1 + 3\theta)\right)$$

$$= \frac{\kappa}{16}\beta^{-3}\left(-2(1 + \frac{3\theta}{2} + \frac{1}{2}\theta^{2}) - 4\theta - 2\theta^{2} + \theta + 3\theta^{2} + 2 + 6\theta\right)$$

$$= \frac{\kappa}{16} \beta^{-3} (-2 - 3\theta - \theta^2 - 4\theta - 2\theta^2 + \theta + 3\theta^2 + 2 + 6\theta)$$

$$= 0,$$

$$\nabla_3 J_{1b'} \nabla_3 J_{2b} g^{bb'}$$

$$= \nabla_3 J_{13} + \nabla_3 J_{23} g^{33} + \nabla_3 J_{13} + \nabla_3 J_{24} g^{34} + \nabla_3 J_{14} \nabla_3 J_{23} g^{43}$$

$$= \nabla_{3}J_{13} + \nabla_{3}J_{23}g^{33} + \nabla_{3}J_{13} + \nabla_{3}J_{24}g^{34} + \nabla_{3}J_{14}\nabla_{3}J_{23}g^{43} + \nabla_{3}J_{14}\nabla_{3}J_{24}g^{44}$$

$$= \left(-\frac{\kappa}{4}\beta^{-3/2}(1-2\theta)\right)\left(-\frac{\kappa}{2}\beta^{-1}\right)\left(\kappa^{-1}(1+\theta)\beta^{-1/2}\right)$$

$$+ \left(-\frac{\kappa}{4}\beta^{-3/2}(1-2\theta)\right)\left(\frac{\kappa}{4}\beta^{-1}\right)\left(\theta\kappa^{-1}\beta^{-1/2}\right)$$

$$+ \left(-\frac{\kappa}{2}\beta^{-3/2}(1+\frac{\theta}{2})\right)\left(-\frac{\kappa}{2}\beta^{-1}\right)\left(\theta\kappa^{-1}\beta^{-1/2}\right)$$

$$+ \left(-\frac{\kappa}{2}\beta^{-3/2}(1+\frac{\theta}{2})\right)\left(\frac{\kappa}{4}\beta^{-1}\right)\left(\kappa^{-1}\beta^{-1/2}\right)$$

$$= \kappa\beta^{-3}\left(\frac{1}{8}(1-2\theta)(1+\theta) - \frac{1}{16}(1-2\theta)\theta + \frac{\theta}{4}(1+\frac{\theta}{2}) - \frac{1}{8}(1+\frac{\theta}{2})\right)$$

$$= \frac{\kappa}{16}\beta^{-3}(2(1-2\theta)(1+\theta) - \theta(1-2\theta) + 4\theta(1+\frac{\theta}{2}) - 2(1+\frac{\theta}{2}))$$

$$= \frac{\kappa}{16}\beta^{-3}(2(1-\theta-2\theta^{2}) - \theta + 2\theta^{2} + 4\theta + 2\theta^{2} - 2 - \theta)$$

$$= \frac{\kappa}{4}(2-2\theta-4\theta^{2}-\theta+2\theta^{2}+4\theta+2\theta^{2}-2-\theta)$$

$$= 0.$$

(ii) From

$$\nabla_{3}J_{1b'}\nabla_{4}J_{2b}g^{bb'}$$

$$= \nabla_{3}J_{13}\nabla_{4}J_{23}g^{33} + \nabla_{3}J_{14}\nabla_{4}J_{24}g^{43} + \nabla_{3}J_{13}\nabla_{4}J_{24}g^{34} + \nabla_{3}J_{14}\nabla_{4}J_{24}g^{44}$$

$$= (-\frac{\kappa}{4}(1-2\theta))(\frac{\kappa}{4}\beta^{-1})(\kappa^{-1}(1+\theta)\beta^{-1})$$

$$+ (-\frac{\kappa}{2}(1+\frac{\theta}{2}))(\frac{\kappa}{4}\beta^{-1})(\theta\kappa^{-1}\beta^{-1/2})$$

$$+ (-\frac{\kappa}{4}\beta^{-3/2}(1-2\theta))(\frac{\kappa}{2}\beta^{-1})(\theta\kappa^{-1}\beta^{-1/2})$$

$$+ (-\frac{\kappa}{2}(1+\frac{\theta}{2}))(\frac{\kappa}{2}\beta^{-1})(\kappa^{-1}\beta^{-1/2})$$

$$= \kappa\beta^{-3}(1\frac{1}{16}(1-2\theta)(1+\theta) - \frac{1}{8}(1+\theta)\theta - \frac{1}{8}\theta(1-2\theta) + \frac{1}{4}(1+\frac{\theta}{2}))$$

$$= -\frac{\kappa}{16}\beta^{-1}((1-2\theta)(1+\theta) + 2(1+\frac{\theta}{2})\theta + 2\theta(1-2\theta) + 4(1+\frac{\theta}{2}))$$

$$= -\frac{5}{16}\kappa\beta^{-3}(1+\theta-\theta^{2})$$

$$= -\frac{5}{16}\kappa\beta^{-2},$$

we get

$$\nabla_3 J_{1b'} \nabla_4 J_{2b} g^{bb'} R_{232}^3 = -\frac{5}{16} \kappa \beta^{-2} \frac{1}{16} \beta^{-2} (9 - 8\theta) = -\frac{5}{4^4} \kappa \beta^{-4} (9 - 8\theta).$$

Similarly, from

$$\begin{split} \nabla_4 J_{1b'} \nabla_3 J_{2b} g^{bb'} \\ &= \nabla_4 J_{13} \nabla_3 J_{23} g^{33} + \nabla_4 J_{14} \nabla_3 J_{23} g^{43} + \nabla_4 J_{13} \nabla_3 J_{24} g^{43} + \nabla_4 J_{14} \nabla_3 J_{24} g^{44} \\ &= (-\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2})) (-\frac{\kappa}{2}) (\kappa^{-1} (1 + \theta) \beta^{-1/2} \\ &\quad + (\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta)) (-\frac{\kappa}{2} \beta^{-1}) (\theta \kappa^{-1} \beta^{-1/2}) \\ &\quad + (-\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2}) (\frac{\kappa}{4} \beta^{-1}) (\theta \kappa^{-1} \beta^{-1/2}) \\ &\quad + (\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta)) (\frac{\kappa}{4} \beta^{-1}) (\kappa^{-1} \beta^{-1/2}) \\ &= \kappa \beta - 3 (\frac{1}{4} (1 + \frac{\theta}{2}) (1 + \theta) - \frac{1}{8} \theta (1 + 3\theta) - \frac{1}{8} (1 + \frac{\theta}{2}) \theta + \frac{1}{16} (1 + 3\theta)) \\ &= \frac{\kappa}{16} \beta^{-3} (4 (1 + \frac{3}{2} \theta + \frac{1}{2} \theta^2) - 2\theta - 6\theta^2 - 2\theta - \theta^2 1 + 3\theta) \\ &= \frac{\kappa}{16} \beta^{-3} (5 + 5\theta - 5\theta^2) \\ &= \frac{5}{16} \kappa \beta^{-2}, \end{split}$$

we get

$$\nabla_4 J_{1b'} \nabla_3 J_{2b} g^{bb'} R_{242}^4 = \frac{5}{16} \kappa \beta^{-2} (\frac{1}{16} \beta^{-2} (1 + 8\theta)) = \frac{5}{4^4} \kappa \beta^{-4} (1 + 8\theta).$$

(iii)

$$\nabla_3 J_{1b'} \nabla_4 J_{2b} g^{bb'} R_{232}{}^3 - \nabla_4 J_{1b'} \nabla_3 J_{2b} g^{bb'} R_{242}{}^4$$

$$= -\frac{5}{4^4} \kappa \beta^{-4} (9 - 8\theta) - \frac{5}{4^4} \beta^{-4} (1 + 8\theta) = \frac{5}{4^4} \kappa \beta (-10\theta) = -\frac{50}{4^4} \kappa \beta^{-4}.$$

Combining (1.10), (1.11), (1.12), we obtain

$$S_{2,2} + S_{4,2} = (S_{2,2} + S_{4,2})(1) + (S_{2,2} + S_{4,2})(2) = 4p^2(\frac{5}{4^4}\kappa\beta^{-4}(-10))$$
$$= -\frac{25}{16}\kappa\beta^{-4},$$

which finishes the proof of Prop. A.11.

1.8. The p^4 term in (1.3). We compute the p^4 -term of S by the following Proposition, which finishes the proof of (1.3) and hence Theorem 4.1.

Proposition 1.13. $\bar{S}_{[4]} = -\frac{640}{16} \kappa \beta p^4$.

The proof is a long calculation. We know

$$\bar{S}_{[4]} = S_{0,4} + 2S_{1,4} + 2S_{3,4},$$

where by Lemmas 1.6, 1.7, 1.8, we have

(1)
$$S_{0,4} = S_{0,4,1} + S_{0,4,2}$$
, with
$$S_{0,4,1} = p^4 \sum_{\sigma_0 = 0} \operatorname{sgn}(\sigma) \nabla_{a'_1} J_{\sigma_1 \sigma_2} \nabla_{a_1} J_{\sigma_3 \sigma_4} g^{a_1 a'_1},$$

$$S_{0,4,2} = 4p^4 \sum_{\sigma_0 = 0} \operatorname{sgn}(\sigma) R_{\sigma_1 \sigma_2 a_2 b} J_{\sigma_4}{}^b J_{\sigma_3}{}^{a_2} - 4p^4 \sum_{\sigma_0 = 0} \operatorname{sgn}(\sigma) R_{\sigma_1 \sigma_2 a_2}{}^b J_b{}^{a_2} J_{\sigma_3 \sigma_4}$$

$$:= S_{0,4,2,1} + S_{0,4,2,2}.$$

(2)
$$S_{1,4} = -p^{4} \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) g^{bb'} \nabla_{b} J_{\sigma_{1}\sigma_{2}} \nabla_{b'} J_{\sigma_{3}\sigma_{4}}$$

$$+ 2p^{4} \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) \nabla_{b'} J_{\sigma_{1}a_{1}} \nabla_{\sigma_{2}} J_{a_{2}a'_{1}} J_{\sigma_{4}b} J_{\sigma_{3}a'_{2}} g^{bb'} g^{a_{2}a'_{2}} g^{a_{1}a'_{1}}$$

$$- 2p^{4} \sum_{\sigma_{1}=0} \operatorname{sgn}(\sigma) \nabla_{b'} J_{\sigma_{1}a_{1}} \nabla_{\sigma_{2}} J_{a_{2}a'_{1}} J_{\sigma_{3}\sigma_{4}} J_{ba'_{2}} g^{bb'} g^{a_{2}a'_{2}} g^{a_{1}a'_{1}}$$

$$:= S_{1,4,1} + S_{1,4,2} + S_{1,4,3}. \tag{1.13}$$

(3)

$$S_{3,4} = 2p^4 \sum_{\sigma_3=0} \operatorname{sgn}(\sigma) \nabla^b J_{\sigma_1 a_1} \nabla_{\sigma_4} J_b{}^{a_2} J_{\sigma_2 a_2} J_{\sigma_1}{}^{a_1}$$

$$- 2p^4 \sum_{\sigma_3=0} \operatorname{sgn}(\sigma) \nabla^b J_{\sigma_3 a_1} \nabla_{\sigma_4} J_b{}^{a_2} J_{\sigma_1 \sigma_2} J_{a_2}{}^{a_1}$$

$$:= S_{3,4,1} + S_{3,4,2}.$$

These terms are computed as follows.

Lemma 1.14.

$$\begin{array}{l} (i) \ S_{0,4,1} = 5\kappa\beta^{-2}p^4, \ S_{0,4,2,1} = -10\kappa\beta^{-2}p^4, \ S_{0,4,2,2} = -10\kappa\beta^{-2}p^4; \\ (ii)(a) \ S_{1,4,1} = -5\kappa\beta^{-2}p^4, \ (b) \ S_{1,4,2} = -\frac{5}{2}\kappa\beta^{-2}p^4, \ (c) \ S_{1,4,3} = 5\kappa\beta^{-2}p^4; \\ (iii)(a) \ S_{3,4,1} = -5\kappa\beta^{-2}p^4, \ (b) \ S_{3,4,2} = -5\kappa\beta^{-2}p^4. \end{array}$$

Assuming the Lemma, we get

$$\bar{S}_{[4]} = (S_{0,4,1} + S_{0,4,2}) + 2(S_{1,4,1} + S_{1,4,2} + S_{1,4,3}) + 2(S_{3,4,1} + S_{3,4,2})$$

$$= -40p^4\kappa\beta^{-2} = -\frac{640}{16}p^4\kappa\beta^{-2},$$

finishing the proof of Proposition 1.13.

Proof of Lemma 1.14. (i) It suffices to prove the last two equalities. For $S_{0,4,2,1} = p^4 \sum_{\sigma_0=0} \operatorname{sgn}(\sigma) R_{\sigma_1 \sigma_2 a_2 b} J_{\sigma_3}^{a_2} J_{\sigma_4}^{b}$, the only possible σ have $(\sigma_1, \sigma_2) \in \{(2,3), (2,4), (3,4)\}$. This gives

$$\sigma \in \{(123), (1234), (13)(24)\},\$$

with signs +1, -1, +1, respectively. (Associated to e.g., (123) is another permissible permutation (14)(123) = (1234) switching the assignment of 1 and 4, but these permutations give the same contribution to $S_{0,4,2,1}$.) Thus, we have

$$\begin{split} S_{0,4,2,1} &= 4p^4 [4R_{23a_2b}J_1{}^{a_2}J_4{}^b - 4R_{24a_2b}J_1{}^{a_2}J_3{}^b + 4R_{34a_2b}J_1{}^{a_2}J_2{}^b] \\ &= 16p^4 [R_{232b}J_4{}^b - R_{242b}J_3{}^b + R_{342}{}^bJ_2{}^b] \\ &= 16p^4 [R_{2323}J_4{}^3 + R_{232}{}^4J_4{}^4 - R_{2423}J_3{}^3 - R_{2424}J_3{}^4 + R_{3423}J_2{}^3 + R_{3434}J_2{}^4] \\ &= 16p^4 [R_{232b}J_4{}^b - R_{242b}J_3{}^b + R_{342}{}^bJ_2{}^b] \\ &= 16p^4 [R_{2323}J_4{}^3 + R_{232}{}^4J_4{}^4 - R_{2423}J_3{}^3 - R_{2424}J_3{}^4], \end{split}$$

since $J_2^3 = J_2^4 = 0$. Therefore,

$$S_{0,4,2,1} = 16p^{4} \left[\frac{\kappa}{16} \beta^{-5/2} (9 - 16\theta + 16\theta^{2}) (-(1+\theta)\beta^{-1/2}) + (-\frac{\kappa}{16} \beta^{-5/2} (-8 + 17\theta + 8\theta^{2})) (-\theta\beta^{-1/2}) - (-\frac{\kappa}{16} \beta^{-5/2} (-8 + 17\theta + 8\theta^{2})) (\theta\beta^{-1/2}) - (\frac{\kappa}{16} (1 + \theta + 24\theta^{2})\beta^{-5/2}) (\beta^{-1/2}) \right]$$

$$= -10\kappa \beta^{-2} p^{4}.$$

For $S_{0,4,2,2} = -4p^4 \sum_{\sigma_0=0} \operatorname{sgn}(\sigma) R_{\sigma_1 \sigma_2 a_2}{}^b J_b{}^{a_2} J_{\sigma_3 \sigma_4}$, the only possible σ have $(\sigma_1, \sigma_2) \in \{(2,3), (2,4), (3,4)\}$. This gives

$$\sigma \in \{(123), (1243), (13(24))\},\$$

with signs +1, -1, +1, respectively. (As above, each permutation has a partner switching the assignment of 3 and 4.) This gives

$$\begin{split} S_{0,4,2,2} &= -4p^4 [4R_{23a_2}{}^b J_b{}^{a_2} J_{14} - 4R_{24a_2}{}^b J_b{}^{a_2} J_{13} + 4R_{34a_2}{}^b J_b{}^{a_2} J_{12}] \\ &= -4p^4 \cdot 4R_{34a_2}{}^b J_b{}^{a_2} \\ &= -16p^4 [R_{343}{}^4 J_3{}^3 + R_{343}{}^4 J_4{}^3 + R_{344}{}^3 J_3{}^4 + R_{344}{}^4 J_4{}^4] \\ &= -16p^4 \Big[(-\frac{5}{16}\theta \kappa \beta^{-5/2})(\theta \beta^{-1/2}) + (-\frac{5}{16}\kappa \beta^{-5/2})(-(1+\theta)\beta^{-1/2}) \Big] \end{split}$$

$$+ \left(\frac{5}{16}\kappa(1+\theta)\beta^{-5/2}\right)(\beta^{-1/2}) + \left(\frac{5}{16}\theta\kappa\beta^{-5/2}\right)(-\theta\beta^{-1/2})\right]$$

$$= -16p^{4}\left(\frac{5}{16}\kappa\beta^{-3}\right)\left[-\theta^{2} + (1+\theta) + (1+\theta) - \theta^{2}\right]$$

$$= -10\kappa\beta^{-2}p^{4}.$$

(ii)(a) We have

$$\begin{split} S_{1,4,1} &= -4p^4 \left(g^{bb'} \nabla_b J_{12} \nabla_{b'} J_{34} - g^{bb'} \nabla_b J_{13} \nabla_{b'} J_{24} + g^{bb'} \nabla_b J_{14} \nabla_{b'} J_{23} - g^{bb'} \nabla_b J_{23} \nabla_{b'} J_{41} \right. \\ &\quad - g^{bb'} \nabla_b J_{24} \nabla_{b'} J_{13} + g^{bb'} \nabla_b J_{34} \nabla_{b'} J_{12} \right) \\ &= -8p^4 \left(-g^{bb'} \nabla_b J_{13} \nabla_{b'} 24 + g^{bb'} \nabla_b J_{14} \nabla_{b'} J_{23} \right) \\ &= -8p^4 \left(-g^{33} \nabla_3 J_{13} \nabla_3 J_{24} - g^{34} \nabla_3 J_{13} \nabla_4 J_{24} - g^{43} \nabla_4 J_{13} \nabla_3 J_{24} - g^{44} \nabla_4 J_{13} \nabla_4 J_{24} \right. \\ &\quad + g^{33} \nabla_3 J_{14} \nabla_3 J_{23} + g^{34} \nabla_3 J_{14} \nabla_4 J_{23} + g^{43} \nabla_4 J_{14} \nabla_3 J_{23} + g^{44} \nabla_4 J_{14} \nabla_4 J_{23} \right). \end{split}$$

Recall that

$$g^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & \frac{(1+\theta)\kappa}{\beta^{1/2}\kappa^2} & \frac{\theta\kappa}{\beta^{1/2}\kappa^2}\\ 0 & 0 & \frac{\theta\kappa}{\beta^{1/2}\kappa^2} & \frac{\kappa}{\beta^{1/2}\kappa^2} \end{pmatrix}$$
(1.14)

After plugging in from (1.14) and Lemma 1.4, we find

$$\begin{split} S_{1,4,1} &= -8p^4 \Bigg[-(\kappa^{-1}(1+\theta)\beta^{-1/2})(-\frac{\kappa}{4}\beta^{-3/2}(1-2\theta)(\frac{\kappa}{4}\beta^{-1}) \\ &- (\theta\kappa^{-1}\beta^{-1/2})(-\frac{\kappa}{4}\beta^{-3/2}(1-2\theta))(\frac{\kappa}{2}\beta^{-1}) \\ &- (\theta\kappa^{-1}\beta^{-1/2})(-\frac{\kappa}{2}\beta^{-3/2}(1+\frac{\theta}{2}))(\frac{\kappa}{4}\beta^{-1}) \\ &- (\kappa^{-1}\beta^{-1/2})(-\frac{\kappa}{2}\beta^{-3/2}(1+\frac{\theta}{2})(\frac{\kappa}{2}\beta^{-1}) \\ &+ (\kappa^{-1}(1+\theta)\beta^{-1/2})(-\frac{\kappa}{2}\beta^{-3/2}(1+\frac{\theta}{2})(-\frac{\kappa}{2}\beta^{-1}) \\ &+ (\theta\kappa^{-1}\beta^{-1/2})(-\frac{\kappa}{2}\beta^{-3/2}(1+\frac{\theta}{2}))(\frac{\kappa}{4}\beta^{-1}) \\ &+ (\theta\kappa^{-1}\beta^{-1/2})(\frac{\kappa}{4}\beta^{-3/2}(1+3\theta))(-\frac{\kappa}{2}\beta^{-1}) \\ &+ (\kappa^{-1}\beta^{-1/2})(\frac{\kappa}{4}\beta^{-3/2}(1+3\theta))(\frac{\kappa}{4}\beta^{-1}) \Bigg] \\ &= -\frac{8}{16}p^4\kappa\beta^{-3} \Big[10 + 10\theta - 10\theta^2 \Big] \\ &= -5\kappa\beta^{-2}p^4. \end{split}$$

(ii)(b) For $S_{1,4,2} = 2p^4 \sum_{\sigma_1=0} \operatorname{sgn}(\sigma) \nabla_{b'} J_{\sigma_1 a_1} \nabla_{\sigma_2} J_{a_2 a_1'} J_{\sigma_4 b} J_{\sigma_3 a_2'} g^{bb'} g^{a_2 a_2'} g^{a_1 a_1'}$, we use $\nabla_1 J_{ab} = \nabla_2 J_{ab} = 0$ to obtain

$$S_{1,4,2} = 2p^{4} \sum_{\sigma_{1}=0,\sigma_{2}=3} \operatorname{sgn}(\sigma) \nabla_{b'} J_{\sigma_{1}a_{1}} \nabla_{3} J_{a_{2}a'_{1}} J_{\sigma_{4}b} J_{\sigma_{3}a'_{2}} g^{bb'} g^{a_{2}a'_{2}} g^{a_{1}a'_{1}}$$

$$+ 2p^{4} \sum_{\sigma_{1}=0,\sigma_{2}=4} \operatorname{sgn}(\sigma) \nabla_{b'} J_{\sigma_{1}a_{1}} \nabla_{4} J_{a_{2}a'_{1}} J_{\sigma_{4}b} J_{\sigma_{3}a'_{2}} g^{bb'} g^{a_{2}a'_{2}} g^{a_{1}a'_{1}}$$

$$:= S_{1,4,2}(\sigma_{2}=3) + S_{1,4,2}(\sigma_{2}=4). \tag{1.15}$$

For $S_{1,4,2}(\sigma_2 = 3)$, the possible σ are $\sigma \in \{(243), (24), (1423), (14)(23), (123), (124)\}$, with signs -1, +1, -1, +1, +1, -1, respectively. (Here we include all possible σ , not just half of them.) Thus

$$S_{1,4,2}(\sigma_2 = 3) = 2p^4 \left(-\nabla_{b'} J_{1a_1} \nabla_3 J_{1a_1'} J_{43} J_{21} g^{3b'} g^{a_1 a_1'} + \nabla_{b'} J_{2a_1} \nabla_3 J_{2a_1'} J_{43} J_{12} g^{3b'} g^{a_1 a_1'} \right)$$

$$= -2p^4 J_{34} J_{12} \left(\nabla_{b'} J_{1a_1} \nabla_3 J_{1a_1'} g^{3b'} g^{a_1 a_1'} + \nabla_{b'} J_{2a_1} \nabla_3 J_{2a_1'} g^{3b'} g^{a_1 a_1'} \right). \tag{1.16}$$

Similarly, we have

$$S_{1,4,2}(\sigma_{2}=4) = 2p^{4} \cdot \left(\nabla_{b'}J_{1a_{1}}\nabla_{4}J_{a_{2}a'_{1}}J_{3b}J_{21}g^{bb'}g^{a_{2}a'_{2}}g^{a_{1}a'_{1}}\right)$$

$$-\nabla_{b'}J_{1a_{1}}\nabla_{4}J_{a_{2}a'_{1}}J_{2b}J_{3a'_{2}}g^{bb'}g^{a_{2}a'_{2}}g^{a_{1}a'_{1}}$$

$$(\pm --which?)\nabla_{b'}J_{3a_{1}}\nabla_{4}J_{a_{2}a'_{1}}J_{2b}J_{2a'_{1}}g^{bb'}g^{a_{2}a'_{2}}g^{a_{1}a'_{1}}$$

$$-\nabla_{b'}J_{3a_{1}}\nabla_{4}J_{a_{2}a'_{1}}J_{1b}J_{2a'_{2}}g^{bb'}g^{a_{2}a'_{2}}g^{a_{1}a'_{1}}$$

$$-\nabla_{b'}J_{2a_{1}}\nabla_{4}J_{a_{2}a'_{1}}J_{3b}J_{1a'_{2}}g^{bb'}g^{a_{2}a'_{2}}g^{a_{1}a'_{1}}$$

$$+\nabla_{b'}J_{2a_{1}}\nabla_{4}J_{a_{2}a'_{1}}J_{1b}J_{3a'_{2}}g^{bb'}g^{a_{2}a'_{2}}g^{a_{1}a'_{1}}\right)$$

$$= -2p^{4}J_{34}J_{12}(\nabla_{b'}J_{1a_{1}}\nabla_{4}J_{1a'_{1}}g^{4b'}g^{a_{1}a'_{1}} + \nabla_{b'}J_{2a_{1}}\nabla_{4}J_{2a'_{1}}g^{4b'}g^{a_{1}a'_{1}}).$$

Combining (1.15), (1.16), (1.17), we get

$$S_{1,4,2} = -2p^{4}J_{34}J_{12} \left(\nabla_{b'}J_{1a_{1}}\nabla_{3}J_{1a'_{1}}g^{3b'}g^{a_{1}a'_{1}} + \nabla_{b'}J_{2a_{1}}\nabla_{3}J_{2a'_{1}}g^{3b'}g^{a_{1}a'_{1}} \right)$$

$$+ \nabla_{b'}J_{1a_{1}}\nabla_{4}J_{1a'_{1}}g^{4b'}g^{a_{1}a'_{1}} + \nabla_{b'}J_{2a_{1}}\nabla_{4}J_{2a'_{1}}g^{4b'}g^{a_{1}a'_{1}} \right)$$

$$= -2p^{4}J_{34}J_{12} \left(g^{33}\nabla_{3}J_{1a_{1}}\nabla_{3}J_{1a'_{1}}g^{a_{1}a'_{1}} + g^{34}\nabla_{4}J_{1a_{1}}\nabla_{3}J_{1a'_{1}}g^{a_{1}a'_{1}} \right)$$

$$+ g^{33}\nabla_{3}J_{2a_{1}}\nabla_{3}J_{2a'_{1}}g^{a_{1}a'_{1}} + g^{34}\nabla_{4}J_{2a_{1}}\nabla_{3}J_{2a'_{1}}g^{a_{1}a'_{1}}$$

$$+ g^{43}\nabla_{3}J_{1a_{1}}\nabla_{4}J_{1a'_{1}}g^{a_{1}a'_{1}} + g^{44}\nabla_{4}J_{1a_{1}}\nabla_{4}J_{1a'_{1}}g^{a_{1}a'_{1}}$$

$$+ g^{43}\nabla_{3}J_{1a_{1}}\nabla_{4}J_{1a'_{1}}g^{a_{1}a'_{1}} + g^{44}\nabla_{4}J_{1a_{1}}\nabla_{4}J_{1a'_{1}}g^{a_{1}a'_{1}}$$

$$(1.18)$$

$$+ g^{43} \nabla_3 J_{2a_1} \nabla_4 J_{1a_1'} g^{a_1 a_1'} + g^{44} \nabla_4 J_{2a_1} \nabla_4 J_{2a_1'} g^{a_1 a_1'}$$

$$:= -2p^4 J_{34} J_{12} (\langle 1 \rangle + 2\langle 2 \rangle + 2\langle 3 \rangle + \langle 4 \rangle + \langle 5 \rangle + \langle 6 \rangle)$$

where

$$\langle 1 \rangle = g^{33} \nabla_3 J_{1a_1} \nabla_3 J_{1a'_1} g^{a_1 a'_1}, \ \langle 2 \rangle = g^{34} \nabla_4 J_{1a_1} \nabla_3 J_{1a'_1} g^{a_1 a'_1},$$

$$\langle 3 \rangle = g^{34} \nabla_4 J_{2a_1} \nabla_3 J_{2a'_1} g^{a_1 a'_1}, \ \langle 4 \rangle = g^{33} \nabla_3 J_{2a_1} \nabla_3 J_{2a'_1} g^{a_1 a'_1}$$

$$\langle 5 \rangle = g^{44} \nabla_4 J_{1a_1} \nabla_4 J_{1a_1'} g^{a_1 a_1'}, \ \langle 6 \rangle = g^{44} \nabla_4 J_{2a_1} \nabla_4 J_{2a_1'} g^{a_1 a_1'}.$$

We claim that

Claim 1.15.

$$\langle 1 \rangle = \frac{5}{16} (1+\theta) \beta^{-3}, \ \langle 2 \rangle = -\frac{5}{16} \theta^2 \beta^{-3}, \ \langle 3 \rangle = -\frac{5}{16} \theta^2 \beta^{-3},
\langle 4 \rangle = \frac{5}{16} (1+\theta) \beta^{-3}, \ \langle 5 \rangle = \frac{5}{16} (1+\theta) \beta^{-3}, \ \langle 6 \rangle = \frac{5}{16} (1+\theta) \beta^{-3}.$$
(1.19)

Assume the claim. Plugging (1.19) into (1.18) and using (1.2) for J_{34} , J_{12} , we obtain

$$S_{1,4,2} = -2p^4 J_{34} J_{12} \left(\frac{5}{16} (1+\theta) \beta^{-3} + 2(-\frac{5}{16} \theta^2 \beta^{-3}) + 2(-\frac{5}{16} \theta^2 \beta^{-3}) + \frac{5}{16} (1+\theta) \beta^{-3} + \frac{5}{16} (1+\theta) \beta^{-3} + \frac{5}{16} (1+\theta) \beta^{-3} \right)$$
$$= -\frac{5}{2} p^4 \beta^{-2} \kappa.$$

We now prove Claim 1.15, which will finish (ii)(b).

Proof of Claim 1.15. The proofs are all direct calculations.

$$\langle 1 \rangle = g^{33} \nabla_3 J_{1a_1} \nabla_3 J_{1a_1'} g^{a_1 a_1'}$$

$$= g^{33} (\nabla_3 J_{13} \nabla_3 J_{13} g^{33} + \nabla_3 J_{13} \nabla_3 J_{14} g^{34} + \nabla_3 J_{14} \nabla_3 J_{13} g^{43} + \nabla_3 J_{14} \nabla_3 J_{14} g^{44})$$

$$= g^{33} (\nabla_3 J_{13} \nabla_3 J_{13} g^{33} + 2\nabla_3 J_{13} \nabla_3 J_{14} g^{34} + \nabla_3 J_{14} \nabla_3 J_{14} g^{44})$$

$$= \kappa (1 + \theta) \beta^{-1/2} \left(\kappa^{-1} (1 + \theta) \beta^{-1/2} \left(-\frac{\kappa}{4} \beta^{-3/2} (1 - 2\theta) \right) + 2\theta \kappa^{-1} \beta^{-1/2} \left(-\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2}) \right) \left(-\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2}) \right) + \kappa^{-1} \beta^{-1/2} \left(-\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2}) \right) \left(-\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2}) \right) \right)$$

$$= \frac{5}{16} \beta^{-3} (1 + \theta).$$

$$\begin{split} \langle 2 \rangle &= g^{34} \nabla_4 J_{1a_1} \nabla_3 J_{1a_1'} g^{a_1 a_1'} \\ &= g^{34} \Big(\nabla_4 J_{13} \nabla_3 J_{13} g^{33} + \nabla_4 J_{13} \nabla_3 J_{14} g^{34} + \nabla_4 J_{14} \nabla_3 J_{13} g^{43} + \nabla_4 J_{14} \nabla_3 J_{14} g^{44} \Big) \\ &= g^{34} \bigg((-\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2}) (-\frac{\kappa}{4} \beta^{-3/2} (1 - 2\theta)) (\kappa^{-1} (1 + \theta) \beta^{-1/2}) \\ &\quad + (-\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2})) (-\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2})) (\kappa^{-1} \theta \beta^{-1/2}) \\ &\quad + (\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta)) (-\frac{\kappa}{4} \beta^{-3/2} (1 - 2\theta)) (\kappa^{-1} \beta^{-1/2}) \\ &\quad + (\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta)) (-\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2})) (\kappa^{-1} \beta^{-1/2}) \bigg) \\ &= -\frac{5}{16} \theta^2 \beta^{-3}, \end{split}$$

where the last line follows from (1.14) and a direct calculation.

$$\begin{split} \langle 3 \rangle &= g^{34} \nabla_4 J_{2a_1} \nabla_3 J_{2a_1'} g^{a_1 a_1'} \\ &= g^{34} \bigg(\nabla_4 J_{23} \nabla_3 J_{23} g^{33} + \nabla_4 J_{23} \nabla_3 J_{24} g^{34} + \nabla_4 J_{24} \nabla_3 J_{23} g^{34} + \nabla_4 J_{24} \nabla_3 J_{24} g^{44} \bigg) \\ &= g^{34} \bigg((\frac{\kappa}{4} \beta^{-1}) (-\frac{\kappa}{2} \beta^{-1}) (\kappa^{-1} (1+\theta) \beta^{-1/2}) + (\frac{\kappa}{4} \beta^{-1}) (\frac{\kappa}{4} \beta^{-1}) (\kappa^{-1} \theta \beta^{-1/2}) \\ &\quad + (\frac{\kappa}{2} \beta^{-1}) (-\frac{\kappa}{2} \beta^{-1/2}) + (\frac{\kappa}{2}) (\frac{\kappa}{4} \beta^{-1}) (\kappa^{-1} \beta^{-1/2}) \bigg) \\ &= -\frac{5}{16} \theta^2 \beta^{-3}. \end{split}$$

$$\begin{split} \langle 4 \rangle &= g^{33} \nabla_3 J_{2a_1} \nabla_3 J_{2a_1'} g^{a_1 a_1'} \\ &= g^{33} (\nabla_3 J_{23} \nabla_3 J_{23} g^{33} + \nabla_3 J_{23} \nabla_3 J_{24} g^{34} + \nabla_3 J_{24} \nabla_3 J_{23} g^{43} + \nabla_3 J_{24} \nabla_3 J_{24} g^{44}) \\ &= g^{33} \bigg((-\frac{\kappa}{2} \beta^{-1}) (-\frac{\kappa}{2} \beta^{-1}) (\kappa^{-1} (1+\theta) \beta^{-1/2}) + (-\frac{\kappa}{2} \beta^{-1}) (\frac{\kappa}{4} \beta^{-1}) (\theta \kappa^{-1} \beta^{-1/2}) \\ &\quad + (\frac{\kappa}{4}) (-\frac{\kappa}{2} \beta^{-1}) (\theta \kappa^{-1} \beta^{-1/2}) + (\frac{\kappa}{4} \beta^{-1}) (\frac{\kappa}{4} \beta^{-1}) (\kappa^{-1} \beta^{-1}) \bigg) \\ &= \frac{5}{16} (1+\theta) \beta^{-3}. \end{split}$$

$$\langle 5 \rangle = g^{44} \nabla_4 J_{1a_1} \nabla_4 J_{1a_1'} g^{a_1 a_1'}$$

= $g^{44} (\nabla_4 J_{13} \nabla_4 J_{13} g^{33} + \nabla_4 J_{13} \nabla_4 J_{14} g^{34} + \nabla_4 J_{14} \nabla_4 J_{13} g^{43} + \nabla_4 J_{14} \nabla_4 J_{14} g^{44})$

$$= g^{44} \left(\left(-\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2}) \left(-\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2}) (\kappa^{-1} (1 + \theta) \beta^{-1/2}) \right) \right.$$

$$\left. + \left(-\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2}) \right) \left(\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) (\kappa^{-1} \theta \beta^{-1/2}) \right.$$

$$\left. + \left(\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) \left(-\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2}) (\kappa^{-1} \theta \beta^{-1/2}) \right.$$

$$\left. + \left(\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) \left(\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) (\kappa^{-1} \beta^{-1/2}) \right) \right.$$

$$\left. + \left(\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) \left(\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) (\kappa^{-1} \beta^{-1/2}) \right) \right.$$

$$\left. - g^{44} \kappa \beta^{-7/2} \left(\frac{1}{4} (1 + \frac{\theta}{2}) (1 + \frac{\theta}{2}) (1 + \theta) - \frac{1}{8} (1 + \frac{\theta}{2}) (1 + 3\theta) \theta \right.$$

$$\left. - \frac{1}{8} (1 + 3\theta) (1 + \frac{\theta}{2}) \theta + \frac{1}{16} (1 + 3\theta) (1 + 3\theta) \right) \right.$$

$$\left. - \frac{1}{16} g^{44} \kappa \beta^{-7/2} \left(4 (1 + \frac{\theta}{2} (1 + \frac{\theta}{2}) (1 + \theta) - 2 (1 + \frac{\theta}{2}) (1 + 3\theta) \theta \right.$$

$$\left. - 2 (1 + 3\theta) (1 + \frac{\theta}{2}) \theta + (1 + 3\theta) (1 + 3\theta) \right) \right.$$

$$\left. - \frac{5}{16} (1 + \theta) \beta^{-3}, \right.$$

after some calculation.

$$\begin{split} \langle 6 \rangle &= g^{44} \nabla_4 J_{2a_1} \nabla_4 J_{2a_1'} g^{a_1 a_1'} \\ &= g^{44} (\nabla_4 J_{23} \nabla_4 J_{23} g^{33} + \nabla_4 J_{23} \nabla_4 J_{24} g^{34} + \nabla_4 J_{24} \nabla_4 J_{23} g^{43} + \nabla_4 J_{24} \nabla_4 J_{24} g^{44}) \\ &= \frac{5}{16} (1 + \theta) \beta^{-3}. \end{split}$$

(ii)(c) We have

$$S_{1,4,3} = -2p^4 \sum_{\sigma_1 = 0} \operatorname{sgn}(\sigma) \nabla_{b'} J_{\sigma_1 a_1} \nabla_{\sigma_2} J_{a_2 a_1'} J_{\sigma_3 \sigma_4} J_{b a_2'} g^{bb'} g^{a_2 a_2'} g^{a_1 a_1'}. \tag{1.20}$$

If (σ_1, σ_2) equals (1, 2) or (2, 1, then $\nabla_1 J = \nabla_2 J = 0$ implies that the summand in (1.20) vanishes. Thus, $(\sigma_3, \sigma_4) \in \{(1, 2), (2, 1)\}$, so

$$\sigma \in \{(13)(24), (1324), (1423), (14)(23)\},\$$

with signs +1, -1, -1, +1, respectively. Thus by an easy symmetry argument,

$$S_{1,4,3}$$

$$= -4p^{4}(\nabla_{b'}J_{3a_{1}}\nabla_{4}J_{a_{2}a'_{1}}J_{ba'_{2}}g^{bb'}g^{a_{2}a'_{2}}g^{a_{1}a'_{1}} - \nabla_{b'}J_{4a_{1}}\nabla_{3}J_{a_{2}a'_{1}}J_{ba'_{2}}g^{bb'}g^{a_{2}a'_{2}}g^{a_{1}a'_{1}})$$
$$-4p^{4}(\nabla_{b'}J_{31}\nabla_{4}J_{a_{2}a'_{1}}J_{ba'_{2}}g^{bb'}g^{a_{2}a'_{2}}g^{a'_{1}1} + \nabla_{b'}J_{32}\nabla_{4}J_{a_{2}a'_{1}}J_{ba'_{2}}g^{bb'}g^{a_{2}a'_{2}}g^{a'_{1}1}$$

$$\begin{split} &-\nabla_{b'}J_{41}\nabla_{3}J_{a_{2}a'_{1}}J_{ba'_{2}}g^{bb'}g^{a_{2}a'_{2}}g^{a'_{1}1}-\nabla_{b'}J_{42}\nabla_{3}J_{a_{2}a'_{1}}J_{ba'_{2}}g^{bb'}g^{a_{2}a'_{2}}g^{a'_{1}1}\Big)\\ &=-4p^{2}\left(\nabla_{b'}J_{31}\nabla_{4}J_{31}J_{ba'_{2}}g^{bb'}g^{3a'_{2}}+\nabla_{b'}J_{31}\nabla_{4}J_{41}J_{ba'_{2}}g^{bb'}g^{4a'_{2}}+\nabla_{b'}J_{32}\nabla_{4}J_{32}J_{ba'_{2}}g^{bb'}g^{3a'_{2}}\right.\\ &+\nabla_{b'}J_{32}\nabla_{4}J_{42}J_{ba'_{2}}g^{bb'}g^{4a'_{2}}-\nabla_{b'}J_{41}\nabla_{3}J_{31}J_{ba'_{2}}g^{bb'}g^{a'_{2}3}-\nabla_{b'}J_{41}\nabla_{3}J_{31}J_{ba'_{2}}g^{bb'}g^{a'_{2}4}\right.\\ &-\nabla_{b'}J_{42}\nabla_{3}J_{32}J_{ba'_{2}}g^{bb'}g^{a'_{2}3}-\nabla_{b'}J_{42}\nabla_{3}J_{42}J_{ba'_{2}}g^{bb'}g^{a'_{2}4}\Big)\\ &=-4p^{4}\left(\nabla_{3}J_{31}\nabla_{4}J_{31}J_{ba'_{2}}g^{b3}g^{3a'_{2}}+\nabla_{4}J_{31}\nabla_{4}J_{31}J_{ba'_{2}}g^{b4}g^{3a'_{2}}+\nabla_{3}J_{31}\nabla_{4}J_{41}J_{ba'_{2}}g^{b3}g^{4a'_{2}}\right.\\ &+\nabla_{4}J_{31}\nabla_{4}J_{41}J_{ba'_{2}}g^{b4}g^{4a'_{2}}+\nabla_{3}J_{32}\nabla_{4}J_{32}J_{ba'_{2}}g^{b3}g^{3a'_{2}}+\nabla_{4}J_{32}\nabla_{4}J_{32}J_{ba'_{2}}g^{b4}g^{3a'_{2}}\right.\\ &+\nabla_{3}J_{32}\nabla_{4}J_{42}J_{ba'_{2}}g^{b3}g^{4a'_{2}}+\nabla_{4}J_{32}\nabla_{4}J_{42}J_{ba'_{2}}g^{b4}g^{4a'_{2}}-\nabla_{3}J_{41}\nabla_{3}J_{31}J_{ba'_{2}}g^{b3}g^{a'_{2}3}\right.\\ &-\nabla_{4}J_{41}\nabla_{3}J_{31}J_{ba'_{2}}g^{b4}g^{a'_{2}3}-\nabla_{3}J_{41}\nabla_{3}J_{41}J_{ba'_{2}}g^{b3}g^{a'_{2}4}-\nabla_{4}J_{41}\nabla_{3}J_{41}J_{ba'_{2}}g^{b4}g^{a'_{2}4}\right.\\ &-\nabla_{3}J_{42}\nabla_{3}J_{32}J_{ba'_{2}}g^{b3}g^{a'_{2}3}-\nabla_{4}J_{42}\nabla_{3}J_{32}J_{ba'_{2}}g^{b4}g^{a'_{2}3}-\nabla_{3}J_{42}\nabla_{3}J_{42}J_{ba'_{2}}g^{b3}g^{a'_{2}4}-\nabla_{4}J_{41}\nabla_{3}J_{41}J_{ba'_{2}}g^{b3}g^{a'_{2}4}-\nabla_{4}J_{41}\nabla_{3}J_{41}J_{ba'_{2}}g^{b3}g^{a'_{2}4}-\nabla_{4}J_{42}\nabla_{3}J_{42}J_{ba'_{2}}g^{b3}g^{a'_{2}4}-\nabla_{4}J_{42}\nabla_{3}J_{42}J_{ba'_{2}}g^{b3}g^{a'_{2}4}-\nabla_{4}J_{42}\nabla_{3}J_{42}J_{ba'_{2}}g^{b3}g^{a'_{2}4}-\nabla_{4}J_{42}\nabla_{3}J_{42}J_{ba'_{2}}g^{b3}g^{a'_{2}4}-\nabla_{4}J_{42}\nabla_{3}J_{42}J_{ba'_{2}}g^{b3}g^{a'_{2}4}-\nabla_{4}J_{42}\nabla_{3}J_{42}J_{ba'_{2}}g^{b3}g^{a'_{2}4}-\nabla_{4}J_{42}\nabla_{3}J_{42}J_{ba'_{2}}g^{b3}g^{a'_{2}4}-\nabla_{4}J_{42}\nabla_{3}J_{42}J_{ba'_{2}}g^{b3}g^{a'_{2}4}-\nabla_{4}J_{42}\nabla_{3}J_{42}J_{ba'_{2}}g^{b3}g^{a'_{2}4}-\nabla_{4}J_{42}\nabla_{3}J_{42}J_{ba'_{2}}g^{b3}g^{a'_{2}4}-\nabla_{4}J_{42}\nabla_{3}J_{42}J_{ba$$

Note that

$$\begin{split} J_{ba'_2}g^{b3}g^{3a'_2} &= J_{34}g^{33}g^{34} + J_{43}g^{43}g^{33} = 0, \ J_{ba'_2}g^{b4}g^{4a'_2} = J_{34}g^{34}g^{44} + J_{43}g^{44}g^{43} = 0, \\ J_{ba'_2}g^{b4}g^{3a'_2} &= J_{34}g^{34}g^{34} - J_{43}g^{44}g^{33} = J_{34}((g^{34})^2 - g^{44}g^{33}) \\ &= -\kappa^{-2}J_{34} = -\kappa^{-1}, \\ J_{ba'_2}g^{b3}g^{4a'_2} &= \kappa^{-2}J_{34} = \kappa^{-1}. \end{split}$$

This gives

$$\begin{split} S_{1,4,3} &= -4p^2 \left(-\kappa^{-2} \nabla_4 J_{31} \nabla_4 J_{31} + \kappa^{-2} \nabla_3 J_{31} \nabla_4 J_{41} - \kappa^{-2} \nabla_4 J_{32} \nabla_4 J_{32} \right. \\ &\quad + \kappa^{-2} \nabla_3 J_{32} \nabla_4 J_{42} + \kappa^{-2} \nabla_4 J_{41} \nabla_3 J_{31} - \kappa^{-2} \nabla_3 J_{41} \nabla_3 J_{41} \\ &\quad + \kappa^{-2} \nabla_4 J_{42} \nabla_3 J_{32} - \kappa^{-2} \nabla_3 J_{42} \nabla_3 J_{42} \right) \\ &= -4p^2 \kappa^{-1} \left(-(\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2})) (\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2})) \right. \\ &\quad + (\frac{\kappa}{4} \beta^{-3/2} (1 - 2\theta)) (-\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta)) - (-\frac{\kappa}{4} \beta^{-1}) (-\frac{\kappa}{4} \beta^{-1}) \right. \\ &\quad + (\frac{\kappa}{2}) (-\frac{\kappa}{2} \beta^{-1}) + (-\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta)) (\frac{\kappa}{4} \beta^{-3/2} (1 - 2\theta)) \\ &\quad - (\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2})) (\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2})) + (-\frac{\kappa}{2} \beta^{-1}) (\frac{\kappa}{2} \beta^{-1}) \\ &\quad - (-\frac{\kappa}{4} \beta^{-1}) (-\frac{\kappa}{4} \beta^{-1}) \right) \\ &= 5p^4 \beta^{-2} \kappa. \end{split}$$

(iii)(a) We compute $S_{3,4,1}$ as follows:

$$S_{3,4,1} = 2p^{4} \sum_{\sigma_{3}=0} \operatorname{sgn}(\sigma) \nabla_{b} J_{\sigma_{3}a_{1}} \nabla_{\sigma_{4}} J_{b'a_{2}} J_{\sigma_{2}a_{2}} J_{\sigma_{1}a'_{1}} g^{bb'} g^{a_{1}a'_{1}} g^{a_{2}a'_{2}}$$

$$= 2p^{4} \sum_{\sigma_{3}=0,\sigma_{4}=3} \operatorname{sgn}(\sigma) \nabla_{b} J_{\sigma_{3}a_{1}} \nabla_{3} J_{b'a'_{2}} J_{\sigma_{2}a_{2}} J_{\sigma_{1}a'_{1}} g^{bb'} g^{a_{1}a'_{1}} g^{a_{2}a'_{2}}$$

$$+ 2p^{4} \sum_{\sigma_{3}=0,\sigma_{4}=4} \operatorname{sgn}(\sigma) \nabla_{b} J_{\sigma_{3}a_{1}} \nabla_{4} J_{b'a'_{2}} J_{\sigma_{2}a_{2}} J_{\sigma_{1}a'_{1}} g^{bb'} g^{a_{1}a'_{1}} g^{a_{2}a'_{2}}$$

$$:= S_{3,4,1}(\sigma_{4}=3) + S_{3,4,1}(\sigma_{4}=4).$$

For $S_{3,4,1}(\sigma_4 = 3)$, the possible σ are $\sigma \in \{(34), (12)(34), (1432), (243), (143), (1243)\}$, with signs -1, +1, -1, +1, +1, -1, respectively. Thus

$$S_{3,4,1}(\sigma_4=3)$$

$$= 2p^{4} \left(-\nabla_{b} J_{4a'_{1}} \nabla_{3} J_{b'a'_{2}} J_{1a_{2}} J_{1a_{1}} g^{bb'} g^{a_{1}a'_{1}} g^{a_{2}a'_{2}} + \nabla_{b} J_{4a'_{1}} \nabla_{3} J_{b'a'_{2}} J_{1a_{2}} J_{2a_{1}} g^{bb'} g^{a_{1}a'_{1}} g^{a_{2}a'_{2}} \right.$$

$$\left. - \nabla_{b} J_{2a'_{1}} \nabla_{3} J_{b'a'_{2}} J_{1a_{2}} J_{4a_{1}} g^{bb'} g^{a_{1}a'_{1}} g^{a_{2}a'_{2}} + \nabla_{b} J_{2a'_{1}} \nabla_{3} J_{b'a'_{2}} J_{4a_{2}} J_{1a_{1}} g^{bb'} g^{a_{1}a'_{1}} g^{a_{2}a'_{2}} \right.$$

$$\left. + \nabla_{b} J_{1a'_{1}} \nabla_{3} J_{b'a'_{2}} J_{2a_{2}} J_{4a_{1}} g^{bb'} g^{a_{1}a'_{1}} g^{a_{2}a'_{2}} - \nabla_{b} J_{1a'_{1}} \nabla_{3} J_{b'a'_{2}} J_{4a_{2}} J_{2a_{1}} g^{bb'} g^{a_{1}a'_{1}} g^{a_{2}a'_{2}} \right).$$

From $\nabla_1 J_{ab} = \nabla_2 J_{ab} = 0$, we conclude

 $\nabla_b J_{2a'_1} \nabla_3 J_{b'a'_2} J_{4a_2} J_{1a_1} g^{bb'} g^{a_1 a'_1} g^{a_2 a'_2} = 0, \ \nabla_b J_{1a'_1} \nabla_3 J_{b'a'_2} J_{4a_2} J_{2a_1} g^{bb'} g^{a_1 a'_1} g^{a_2 a'_2} = 0.$ Therefore,

$$\begin{split} S_{3,4,1}(\sigma_4 &= 3) \\ &= 2p^4 \bigg(-\nabla_b J_{42} \nabla_3 J_{b'1} J_{21} J_{12} g^{bb'} g^{22} g^{11} - \nabla_b J_{42} \nabla_3 J_{b'1} J_{21} J_{12} g^{bb'} g^{22} g^{11} \\ &- \nabla_b J_{42} \nabla_3 J_{b'1} J_{21} J_{12} g^{bb'} g^{22} g^{11} - \nabla_b J_{42} \nabla_3 J_{b'1} J_{21} J_{12} g^{bb'} g^{22} g^{11} \bigg) \\ &:= 2p^4 \bigg(\langle \langle 1 \rangle \rangle + \langle \langle 2 \rangle \rangle + \langle \langle 3 \rangle \rangle + \langle \langle 4 \rangle \rangle \bigg). \end{split}$$

Similarly, for $S_{3,4,1}(\sigma_4 = 4)$, we have $\sigma \in \{id, (12), (123), (13), (23), (132)\}$, with signs +1, -1, +1, -1, -1, +1, respectively. Thus

$$S_{3,4,1}(\sigma_4 = 4)$$

$$=2p^{4}\bigg(\nabla_{b}J_{3a_{1}}\nabla_{4}J_{b'a'_{2}}J_{2a_{1}}J_{1a'_{1}}g^{bb'}g^{a_{1}a'_{1}}g^{a_{2}a'_{2}}-\nabla_{b}J_{3a_{1}}\nabla_{4}J_{b'a'_{2}}J_{1a_{2}}J_{2a'_{1}}g^{bb'}g^{a_{1}a'_{1}}g^{a_{2}a'_{2}}$$
$$+\nabla_{b}J_{1a_{1}}\nabla_{4}J_{b'a'_{2}}J_{3a_{2}}J_{2a'_{1}}g^{bb'}g^{a_{1}a'_{1}}g^{a_{2}a'_{2}}-\nabla_{b}J_{1a_{1}}\nabla_{4}J_{b'a'_{2}}J_{2a_{2}}J_{3a'_{1}}g^{bb'}g^{a_{1}a'_{1}}g^{a_{2}a'_{2}}$$

$$-\nabla_b J_{2a_1} \nabla_4 J_{b'a_2'} J_{3a_2} J_{1a_1'} g^{bb'} g^{a_1 a_1'} g^{a_2 a_2'} + \nabla_b J_{2a_1} \nabla_4 J_{b'a_2'} J_{1a_2} J_{3a_1'} g^{bb'} g^{a_1 a_1'} g^{a_2 a_2'} \bigg)$$

Using $\nabla_b J_{11} = \nabla_b J_{22} = 0$, we obtain

 $\nabla_b J_{1a_1} \nabla_4 J_{b'a_2'} J_{3a_2} J_{2a_1'} g^{bb'} g^{a_1 a_1'} g^{a_2 a_2'} = 0, \ \nabla_b J_{2a_1} \nabla_4 J_{b'a_2'} J_{3a_2} J_{1a_1'} g^{bb'} g^{a_1 a_1'} g^{a_2 a_2'} = 0.$ Therefore,

$$S_{3,4,1}(\sigma_4 = 4)$$

$$= 2p^4 \left(\nabla_b J_{32} \nabla 4b' 1 J_{21} J_{12} g^{bb'} g^{22} g^{11} - \nabla_b J_{31} \nabla 4b' 2 J_{12} J_{21} g^{bb'} g^{11} g^{22} \right)$$

$$- \nabla_b J_{1a_1} \nabla 4b' 1 J_{21} J_{34} g^{bb'} g^{a_1 4} g^{11} + \nabla_b J_{2a_1} \nabla 4b' 2 J_{12} J_{34} g^{bb'} g^{a_1 4} g^{22} \right)$$

$$:= 2p^4 \left(\langle \langle 5 \rangle \rangle + \langle \langle 6 \rangle \rangle + \langle \langle 7 \rangle \rangle + \langle \langle 8 \rangle \rangle \right).$$

We now compute $\langle \langle 1 \rangle \rangle - \langle \langle 8 \rangle \rangle$.

$$\langle\langle 1\rangle\rangle$$

$$= (J_{12})^{2} \nabla_{b} J_{42} \nabla_{3} J_{b'} g^{bb'}$$

$$= (J_{12})^{2} (\nabla_{3} J_{42} \nabla_{3} J_{31} g^{33} + \nabla_{3} J_{42} \nabla_{3} J_{41} g^{34} \nabla_{4} J_{42} \nabla_{3} J_{31} g^{43} + \nabla_{4} J_{42} \nabla_{3} J_{41} g^{44})$$

$$= (-\frac{\kappa}{4} \beta^{-1}) (\frac{\kappa}{4} \beta^{-3/2} (1 - 2\theta)) (\kappa^{-1} (1 + \theta) \beta^{-1/2})$$

$$+ (-\frac{\kappa}{4} \beta^{-1}) (\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2})) (\theta \kappa^{-1} \beta^{-1/2})$$

$$+ (-\frac{1}{2} \kappa \beta^{-1}) (\frac{1}{4} \beta^{-3/2} (1 - 2\theta)) (\theta \kappa^{-1} \beta^{-1/2})$$

$$+ (-\frac{1}{2} \kappa \beta^{-1}) (\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2})) (\kappa^{-1} \beta^{-1/2})$$

$$= -\frac{5}{16} \kappa \beta^{-2}.$$

$$\begin{split} &\langle \langle 2 \rangle \rangle \\ &= \nabla_b J_{41} \nabla_3 J_{b'2} (-J_{12})^2 g^{bb'} \\ &= -(J_{12})^2 \bigg(\nabla_3 J_{41} \nabla_3 J_{32} g^{33} + \nabla_4 J_{41} \nabla_3 J_{42} g^{34} + \nabla_4 J_{41} \nabla_3 J_{32} g^{43} + \nabla_4 J_{41} \nabla_3 J_{42} g^{44} \bigg) \\ &= (-1) \Big(\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2}) \Big) \Big(\frac{\kappa}{2} \beta^{-1} \Big) (\kappa^{-1} (1 + \theta) \beta^{-1/2}) \\ &\quad + \Big(\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{\theta}{2}) \Big) \Big(-\frac{\kappa}{4} \beta^{-1} \Big) (\kappa^{-1} \theta \beta^{-1/2}) \end{split}$$

$$+ \left(-\frac{\kappa}{4}\beta^{-3/2}(1+3\theta)\right)\left(\frac{\kappa}{2}\beta^{-1}\right)(\kappa^{-1}\theta\beta^{-1/2})$$

$$+ \left(-\frac{\kappa}{4}\beta^{-3/2}(1+3\theta)\right)\left(-\frac{\kappa}{4}\beta^{-1}\right)(\kappa^{-1}\beta^{-1/2})$$

$$= -\frac{5}{16}\kappa\beta^{-2}.$$

$$\langle \langle 3 \rangle \rangle$$

$$= -\nabla_b J_{2a_1'} \nabla_3 J_{b_2'} J_{12}$$

$$\begin{split} &= -\nabla_b J_{2a_1'} \nabla_3 J_{b'2} J_{12} J_{43} g^{a_1'^3} g^{bb'} \\ &= (-\kappa)(-1) (g^{33} \nabla_b J_{23} \nabla_3 J_{b'2} g^{bb'} + g^{34} \nabla_b J_{24} \nabla_3 J_{b'2} g^{bb'}) \\ &= \kappa \left(g^{33} (\nabla_3 J_{23} \nabla_3 J_{32} g^{33} + \nabla_3 J_{23} \nabla_3 J_{42} g^{34} + \nabla_4 J_{23} \nabla_3 J_{32} g^{43} + \nabla_4 J_{23} \nabla_3 J_{42} g^{44}) \right. \\ &\quad + g^{34} (\nabla_3 J_{24} \nabla_3 J_{32} g^{33} \nabla_3 J_{24} \nabla_3 J_{42} g^{34} + \nabla_4 J_{24} \nabla_3 J_{32} g^{43} + \nabla_4 J_{24} \nabla_3 J_{42} g^{44}) \right) \\ &= \kappa \left[\kappa^{-1} (1 + \theta) \beta^{-1/2} \left((-\frac{1}{2} \kappa \beta^{-1}) (\frac{\kappa}{2} \beta^{-1}) (\kappa^{-1} (1 + \theta) \beta^{-1/2}) \right. \right. \\ &\quad + (-\frac{\kappa}{2} \beta^{-1}) (-\frac{1}{4} \beta^{-1}) (\kappa^{-1} \theta \beta^{-1}) + (\frac{\kappa}{4} \beta^{-1}) (\frac{\kappa}{2} \beta^{-1}) (\kappa^{-1} \theta \beta^{-1}) \right. \\ &\quad + (\frac{\kappa}{4} \beta^{-1}) (-\frac{\kappa}{4} \beta^{-1}) (\kappa^{-1} \beta^{-1}) \right) \right] \\ &\quad + \kappa \theta \beta^{-1/2} \left[(\frac{\kappa}{4} \beta^{-1}) (\frac{\kappa}{2} \beta^{-1}) (\kappa^{-1} (1 + \theta) \beta^{-1/2}) + (\frac{\kappa}{4} \beta^{-1}) (-\frac{1}{4} \beta^{-1}) (\kappa^{-1} \theta \beta^{-1/2}) \right. \\ &\quad + (\frac{\kappa}{4} \beta^{-1}) (\frac{\kappa}{2} \beta^{-1}) (\kappa^{-1} \theta \beta^{-1/2}) + (\frac{\kappa}{2} \beta^{-1}) (\kappa^{-1} \beta^{-1/2}) \right] \\ &= -\frac{5}{16} \kappa \beta^{-2}. \end{split}$$

$$\langle\langle4\rangle\rangle$$

$$= -\nabla_b J_{42} \nabla_3 J_{b'1} J_{21} J_{12} g^{bb'} g^{22} g^{11}$$

$$= \kappa \left[\kappa^{-1} (1+\theta) \beta^{-1/2} \left(\left(-\frac{\kappa}{4} \beta^{-3/2} (1-2\theta) \right) \left(\frac{\kappa}{4} \beta^{-3/2} (1-2\theta) \right) (\kappa^{-1} (1+\theta) \beta^{-1/2}) \right.$$

$$+ \left. \left(-\frac{\kappa}{4} \beta^{-3/2} (1-2\theta) \right) \left(\frac{\kappa}{2} \beta^{-3/2} (1+\frac{\theta}{2}) \right) (\kappa^{-1} \theta \beta^{-1/2}) \right.$$

$$+ \left. \left(-\frac{\kappa}{2} \beta^{-3/2} (1+\frac{\theta}{2}) \right) \left(\frac{\kappa}{4} \beta^{-3/2} (1-2\theta) \right) (\kappa^{-1} \theta \beta^{-1/2}) \right.$$

$$+ \left. \left(\kappa^{-1} \theta \beta^{-1/2} \right) \left(-\frac{\kappa}{2} \beta^{-3/2} (1+\frac{\theta}{2}) \right) \left(\frac{\kappa}{4} (1-2\theta) \right) (\kappa^{-1} (1+\theta) \beta^{-1/2}) \right.$$

$$\begin{split} &+(-\frac{\kappa}{2}\beta^{-3/2}(1+\frac{1}{2}\theta))(\frac{\kappa}{2}\beta^{-3/2}(1+\frac{1}{2}\theta))(\kappa^{-1}\theta\beta^{-1/2})\\ &+(\frac{\kappa}{4}\beta^{-3/2}(1+3\theta))(\frac{\kappa}{4}\beta^{-3/2}(1-2\theta))(\kappa^{-1}\theta\beta^{-1/2})\\ &+(\frac{\kappa}{4}\beta^{-3/2}(1+3\theta))(\frac{\kappa}{2}\beta^{-3/2}(1+\frac{1}{2}\theta))(\kappa^{-1}\beta^{-1/2})\bigg)\bigg]\\ &=-\frac{5}{16}\kappa\beta^{-2}. \end{split}$$

$$\begin{split} &\langle \langle 5 \rangle \rangle \\ &= \nabla_b J_{32} \nabla_4 J_{b'1} (-(J_{12})^2) g^{bb'} = -1 \nabla_b J_{32} \nabla_4 J_{b'1} g^{bb'} \\ &= -(\nabla_3 J_{32} \nabla_4 J_{31} g^{33} + \nabla_3 J_{32} \nabla_4 J_{41} g^{34} + \nabla_4 J_{32} \nabla_4 J_{31} g^{43} + \nabla_4 J_{32} \nabla_4 J_{41} g^{44}) \\ &= -(\frac{\kappa}{2} \beta^{-1}) (\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{1}{2} \theta)) (\kappa^{-1} (1 + \theta) \beta^{-1/2}) \\ &\quad - (\frac{\kappa}{2} \beta^{-1}) (-\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta)) (\theta \kappa^{-1} \beta^{-1/2}) \\ &\quad - (-\frac{\kappa}{4} \beta^{-1}) (\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{1}{2} \theta)) (\theta \kappa^{-1} \beta^{-1/2}) \\ &\quad - (-\frac{\kappa}{4} \beta^{-1}) (-\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta)) (\kappa^{-1} \beta^{-1/2}) \\ &= -\kappa \beta^{-3} \left(\frac{1}{4} (1 + \frac{1}{2} \theta) (1 + \theta) - \frac{1}{8} \theta (1 + 3\theta) - \frac{1}{8} (1 + \frac{1}{2} \theta) \theta + \frac{1}{16} (1 + 3\theta) \right) \\ &= -\frac{\kappa}{16} (4 + 6\theta; 2\theta^2 - 2\theta - 6\theta^2 - 2\theta - \theta^2 + 1 + 3\theta) \\ &= -\frac{1}{16} \kappa \beta^{-3} (5 + 5\theta - 5\theta^2) \\ &= -\frac{5}{16} \kappa \beta^{-2}. \end{split}$$

$$\begin{split} &\langle\langle 6 \rangle\rangle \\ &= -\nabla_b J_{31} \nabla_4 J_{b'2} (-(J_{12})^2) g^{bb'} = \nabla_b J_{31} \nabla_4 J_{b'2} g^{bb'} \\ &= \nabla_3 J_{31} \nabla_4 J_{32} g^{33} + \nabla_3 J_{31} \nabla_4 J_{42} g^{34} + \nabla_4 J_{31} \nabla_4 J_{32} g^{43} + \nabla_4 J_{31} \nabla_4 J_{42} g^{44} \\ &= (\frac{\kappa}{4} \beta^{-3/2} (1 - 2\theta)) (-\frac{\kappa}{4} \beta^{-1}) (\kappa^{-1} (1 + \theta) \beta^{-1/2}) \\ &\quad + (\frac{\kappa}{4} \beta^{-3/2} (1 - 2\theta)) (-\frac{\kappa}{2} \beta^{-1}) (\kappa^{-1} \theta \beta^{-1/2}) \\ &\quad + (\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{1}{2} \theta) (-\frac{\kappa}{4} \beta^{-1}) (\kappa^{-1} \theta \beta^{-1/2}) \end{split}$$

$$+ \left(\frac{\kappa}{2}\beta^{-3/2}(1 + \frac{1}{2}\theta)\right)(-\frac{\kappa}{2}\beta^{-1})(\kappa^{-1}\beta^{-1/2})$$
$$= -\frac{5}{16}\kappa\beta^{-2}.$$

$$\begin{split} &\langle \langle 7 \rangle \rangle \\ &= -\nabla_b J_{1a_1} \nabla_4 J_{b'1} J_{21} J_{34} g^{bb'} g^{a_14} = \kappa \nabla_b J_{1a_1} \nabla_4 J_{b'1} g^{bb'} g^{a_14} \\ &= \kappa (g^{34} \nabla_b J_{13} \nabla_4 J_{b'1} g^{bb'} + g^{44} \nabla_b J_{14} \nabla_4 J_{b'1} g^{bb'}) \\ &= \kappa \left(g^{34} \left(\nabla_3 J_{13} \nabla_4 J_{31} g^{33} + \nabla_3 J_{13} \nabla_4 J_{41} g^{34} + \nabla_4 J_{13} \nabla_4 J_{31} g^{43} + \nabla_4 J_{13} \nabla_4 J_{41} g^{44} \right) \\ &+ g^{44} \left(\nabla_3 J_{14} \nabla_4 J_{31} g^{33} + \nabla_3 J_{14} \nabla_4 J_{41} g^{34} + \nabla_4 J_{14} \nabla_4 J_{31} g^{43} + \nabla_4 J_{14} \nabla_4 J_{41} g^{44} \right) \right) \\ &= \kappa \left[\kappa^{-1} \theta \beta^{-1/2} \left(\left(-\frac{\kappa}{4} \beta^{-3/2} \right) (1 - 2\theta) \left(\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{1}{2} \theta) \right) (\kappa^{-1} (1 + \theta) \beta^{-1/2}) \right. \right. \\ &+ \left. \left(-\frac{\kappa}{4} \beta^{-3/2} (1 - 2\theta) \right) \left(-\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) (\kappa^{-1} \theta \beta^{-1/2}) \right. \\ &+ \left. \left(-\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{1}{2} \theta) \right) \left(\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{1}{2} \theta) \right) (\kappa^{-1} \theta \beta^{-1/2}) \right. \\ &+ \left. \left(-\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{1}{2} \theta) \right) \left(-\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) (\kappa^{-1} \beta^{-1/2}) \right. \\ &+ \left. \left(-\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{1}{2} \theta) \right) \left(-\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) (\kappa^{-1} \theta \beta^{-1/2}) \right. \\ &+ \left. \left(-\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) \left(\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{1}{2} \theta) \right) (\kappa^{-1} \theta \beta^{-1/2}) \right. \\ &+ \left. \left(\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) \left(\frac{\kappa}{2} \beta^{-3/2} (1 + 3\theta) \right) (\kappa^{-1} \theta \beta^{-1/2}) \right. \\ &+ \left. \left(\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) \left(\frac{\kappa}{2} \beta^{-3/2} (1 + 3\theta) \right) (\kappa^{-1} \theta \beta^{-1/2}) \right. \\ &+ \left. \left(\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) \left(\frac{\kappa}{2} \beta^{-3/2} (1 + 3\theta) \right) (\kappa^{-1} \theta \beta^{-1/2}) \right. \\ &+ \left. \left(\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) \left(\frac{\kappa}{2} \beta^{-3/2} (1 + 3\theta) \right) (\kappa^{-1} \theta \beta^{-1/2}) \right. \\ &+ \left. \left(\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) \left(\frac{\kappa}{2} \beta^{-3/2} (1 + 3\theta) \right) (\kappa^{-1} \beta^{-1/2}) \right. \\ &+ \left. \left(\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) \left(\frac{\kappa}{2} \beta^{-3/2} (1 + 3\theta) \right) (\kappa^{-1} \beta^{-1/2}) \right. \\ &+ \left. \left(\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) \left(\frac{\kappa}{2} \beta^{-3/2} (1 + 3\theta) \right) (\kappa^{-1} \beta^{-1/2}) \right. \\ \\ &+ \left. \left(\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) \left(\frac{\kappa}{2} \beta^{-3/2} (1 + 3\theta) \right) (\kappa^{-1} \beta^{-1/2}) \right. \\ \\ &+ \left. \left(\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) \left(\frac{\kappa}{2} \beta^{-3/2} (1 + 3\theta) \right) (\kappa^{-1} \beta^{-1/2}) \right. \\ \\ &+ \left. \left(\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta) \right) \left(\frac{\kappa$$

$$\langle \langle 8 \rangle \rangle$$

$$= \nabla_b J_{2a_1} \nabla_4 J_{b'2} J_{12} J_{34} g^{bb'} g^{a_1 4} = J_{12} J_{34} (\nabla_b J_{23} \nabla_4 J_{b'2} g^{bb'} g^{34} + \nabla_b J_{24} \nabla_4 J_{b'2} g^{bb'} g^{44})$$

$$= \kappa (\nabla_b J_{23} \nabla_4 J_{b'2} g^{bb'} g^{34} + \nabla_b J_{24} + \nabla_4 J_{b'2} g^{bb'} g^{44})$$

$$= \kappa \left((\nabla_3 J_{23} \nabla_4 J_{32} g^{33} \nabla_3 J_{23} \nabla_4 J_{42} g^{34} + \nabla_4 J_{23} \nabla_4 J_{32} g^{43} + \nabla_4 J_{23} \nabla_4 J_{42} g^{44}) g^{34} \right)$$

$$+ (\nabla_{3}J_{24}\nabla_{4}J_{32}g^{33} + \nabla_{3}J_{24}\nabla_{4}J_{42}g^{34} + \nabla_{4}J_{24}\nabla_{4}J_{32}g^{43} + \nabla_{4}J_{24}\nabla_{4}J_{42}g^{44})g^{44})$$

$$= \kappa \left[\kappa^{-1}\theta\beta^{-1/2} \left((-\frac{\kappa}{2}\beta^{-1})(-\frac{\kappa}{4}\beta^{-1})(\kappa^{-1}(1+\theta)\beta^{-1/2}) + (-\frac{\kappa}{2}\beta^{-1})(-\frac{\kappa}{2}\beta^{-1})(\kappa^{-1}\theta\beta^{-1/2}) + (\frac{\kappa}{4}\beta^{-1})(-\frac{\kappa}{2}\beta^{-1})(\kappa^{-1}\beta^{-1/2}) \right) \right]$$

$$+ (\frac{\kappa}{4}\beta^{-1})(-\frac{\kappa}{4}\beta^{-1})(\kappa^{-1}\theta\beta^{-1/2}) + (\frac{\kappa}{4}\beta^{-1})(-\frac{\kappa}{2}\beta^{-1})(\kappa^{-1}\theta\beta^{-1/2}) + (\frac{\kappa}{4}\beta^{-1})(-\frac{\kappa}{2}\beta^{-1})(\kappa^{-1}\theta\beta^{-1/2}) + (\frac{\kappa}{2}\beta^{-1})(\kappa^{-1}\theta\beta^{-1/2}) + (\frac{\kappa}{2}\beta^{-1})(\kappa^{-1}\theta\beta^{-1/2}) \right]$$

$$= -\frac{5}{16}\kappa\beta^{-2}.$$

Thus

$$S_{3,4,1} = 2p^4(\langle\langle 1 \rangle\rangle + \ldots + \langle\langle 8 \rangle\rangle) = 2p^4 \cdot 8 \cdot \left(-\frac{5}{16}\kappa\beta^{-2}\right) = -5p^4\beta^{-2}.$$

(iii)(b) We compute $S_{3,4,2}$ as follows.

$$S_{3,4,2} = -2p^4 \sum_{\sigma_3=0} \operatorname{sgn}(\sigma) \nabla_b J_{\sigma_3 a_1} \nabla_{\sigma_4} J_{b'}{}^{a_2} J_{\sigma_1 \sigma_2} J_{a_2}{}^{a_1} g^{bb'}$$

$$= -2p^4 \sum_{\sigma_3=0} \operatorname{sgn}(\sigma) \nabla_b J_{\sigma_3 a_1} \nabla_{\sigma_4} J_{b' a'_2} J_{a_2 a'_1} J_{\sigma_1 \sigma_2} g^{bb'} g^{a_1 a'_1} g^{a_2 a'_2}.$$

We must have $(\sigma_1, \sigma_2) \in \{(1, 2), (2, 1), (3, 4), (4, 3)\}$ From the form of the symplectic structure, it follows that $\sigma \in S = \{\text{id}, (34), (13)(24), (1324)\}$. (There are also permutations of the form $(12)\tau, (34)\tau$ for $\tau \in S$, but by the skew-symmetry of J_{ab} , only the terms in S contribute to $S_{3,4,2}$.) The signs of the permutations in S are +1, -1, +1, -1, respectively.

Keeping track of the extra permutations and their signs, we have

 $S_{3,4,2}$

$$= -2p^{4} \cdot 2 \left(\nabla_{b} J_{3a_{1}} \nabla_{4} J_{b'a'_{2}} J_{a_{2}a'_{1}} J_{12} g^{bb'} g^{a_{2}a'_{2}} g^{a_{1}a'_{1}} - \nabla_{b} J_{4a_{1}} \nabla_{3} J_{b'a'_{2}} J_{a_{2}a'_{1}} J_{12} g^{bb'} g^{a_{2}a'_{2}} g^{a_{1}a'_{1}} \right.$$

$$+ \nabla_{b} J_{1a_{1}} \nabla_{2} J_{b'a'_{2}} J_{a_{2}a'_{1}} J_{34} g^{bb'} g^{a_{2}a'_{2}} g^{a_{1}a'_{1}} - \nabla_{b} J_{2a_{1}} \nabla_{1} J_{b'a'_{2}} J_{a_{2}a'_{1}} J_{34} g^{bb'} g^{a_{2}a'_{2}} g^{a_{1}a'_{1}} \right).$$
Using $\nabla_{1} J_{ab} = \nabla_{2} J_{ab} = 0$, and $J_{12} = 1$, we get
$$S_{3,4,2}$$

$$= -4p^{4} \left(\nabla_{b} J_{3a_{1}} \nabla_{4} J_{b'a'_{2}} J_{a_{2}a'_{1}} g^{bb'} g^{a_{2}a'_{2}} g^{a_{1}a'_{1}} - \nabla_{b} J_{4a_{1}} \nabla_{3} J_{b'a'_{2}} J_{a_{2}a'_{1}} g^{bb'} g^{a_{2}a'_{2}} g^{a_{1}a'_{1}} \right)$$

$$=4p^{4}\bigg(\nabla_{b}J_{3a'_{1}}\nabla_{4}J_{b'a'_{2}}J_{a_{1}a_{2}}g^{bb'}g^{a_{2}a'_{2}}g^{a_{1}a'_{1}}-\nabla_{b}J_{4a'_{1}}\nabla_{3}J_{b'a'_{2}}J_{a_{1}a_{2}}g^{bb'}g^{a_{2}a'_{2}}g^{a_{1}a'_{1}}\bigg).$$

The only nonzero terms come from $(a_1, a_2) \in \{(1, 2), (2, 1), (3, 4), (4, 3)\}$. Therefore, $S_{3,4,2}$

$$= -4p^{4} \left(\nabla_{b} J_{3a'_{1}} \nabla_{4} J_{b'a'_{2}} J_{12} g^{bb'} g^{2a'_{2}} g^{1a'_{1}} + \nabla_{b} J_{3a'_{1}} \nabla_{4} J_{b'a'_{2}} J_{21} g^{bb'} g^{1a'_{2}} g^{2a'_{1}} \right.$$

$$\left. - \nabla_{b} J_{4a'_{1}} \nabla_{3} J_{b'a'_{2}} J_{12} g^{bb'} g^{2a'_{2}} g^{1a'_{1}} - \nabla_{b} J_{4a'_{1}} \nabla_{3} J_{b'a'_{2}} J_{21} g^{bb'} g^{1a'_{2}} g^{2a'_{1}} \right.$$

$$\left. + \nabla_{b} J_{3a'_{1}} \nabla_{4} J_{b'a'_{2}} J_{34} g^{bb'} g^{4a'_{2}} g^{3a'_{1}} + \nabla_{b} J_{3a'_{1}} \nabla_{4} J_{b'a'_{2}} J_{43} g^{bb'} g^{3a'_{2}} g^{4a'_{1}} \right.$$

$$\left. - \nabla_{b} J_{4a'_{1}} \nabla_{3} J_{b'a'_{2}} J_{34} g^{bb'} g^{4a'_{2}} g^{3a'_{1}} - \nabla_{b} J_{4a'_{1}} \nabla_{3} J_{b'a'_{2}} J_{43} g^{bb'} g^{3a'_{2}} g^{4a'_{1}} \right.$$

$$\left. - \nabla_{b} J_{4a'_{1}} \nabla_{3} J_{b'a'_{2}} J_{34} g^{bb'} g^{4a'_{2}} g^{3a'_{1}} - \nabla_{b} J_{4a'_{1}} \nabla_{3} J_{b'a'_{2}} J_{43} g^{bb'} g^{3a'_{2}} g^{4a'_{1}} \right.$$

$$\left. + \nabla_{b} J_{31} \nabla_{4} J_{b'2} g^{bb'} - \nabla_{b} J_{32} \nabla_{4} J_{b'1} g^{bb'} - \nabla_{b} J_{41} \nabla_{3} J_{b'2} g^{bb'} + \nabla_{b} J_{42} \nabla_{3} J_{b'1} g^{bb'} \right.$$

$$\left. + \nabla_{b} J_{3a'_{1}} \nabla_{4} J_{b'a'_{2}} g^{bb'} \kappa g^{4a'_{2}} g^{3a'_{1}} - \nabla_{b} J_{3a_{1}} \nabla_{4} J_{b'a'_{2}} g^{bb'} \kappa g^{3a'_{2}} g^{4a'_{1}} \right.$$

$$\left. - \nabla_{b} J_{4a'_{1}} \nabla_{3} J_{ba'_{2}} g^{bb'} \kappa g^{4a'_{2}} g^{3a'_{1}} + \nabla_{b} J_{4a'_{1}} \nabla_{3} J_{ba'_{2}} g^{bb'} \kappa g^{3a'_{2}} g^{4a'_{1}} \right.$$

$$\left. - \nabla_{b} J_{4a'_{1}} \nabla_{3} J_{ba'_{2}} g^{bb'} \kappa g^{4a'_{2}} g^{3a'_{1}} + \nabla_{b} J_{4a'_{1}} \nabla_{3} J_{ba'_{2}} g^{bb'} \kappa g^{3a'_{2}} g^{4a'_{1}} \right.$$

$$\left. - \nabla_{b} J_{4a'_{1}} \nabla_{3} J_{ba'_{2}} g^{bb'} \kappa g^{4a'_{2}} g^{3a'_{1}} + \nabla_{b} J_{4a'_{1}} \nabla_{3} J_{ba'_{2}} g^{bb'} \kappa g^{3a'_{2}} g^{4a'_{1}} \right.$$

$$\left. - \nabla_{b} J_{4a'_{1}} \nabla_{3} J_{ba'_{2}} g^{bb'} \kappa g^{4a'_{2}} g^{3a'_{1}} + \nabla_{b} J_{4a'_{1}} \nabla_{3} J_{ba'_{2}} g^{bb'} \kappa g^{3a'_{2}} g^{4a'_{1}} \right.$$

$$\left. - \nabla_{b} J_{4a'_{1}} \nabla_{3} J_{ba'_{2}} g^{bb'} \kappa g^{4a'_{2}} g^{3a'_{1}} + \nabla_{b} J_{4a'_{1}} \nabla_{3} J_{ba'_{2}} g^{bb'} \kappa g^{3a'_{2}} g^{4a'_{1}} \right.$$

$$\left. = 4p^{4} \left(\left[[1] \right] + \left[[2] \right] + \left[[4] \right] + \left[[5] \right] + \left[[6] \right] + \left[[6] \right] + \left[[7] \right] + \left[[8] \right] \right).$$

We now compute [[1]]-[[8]].

$$\begin{split} & [[1]] \\ &= \nabla_b J_{31} \nabla_4 J_{b'2} g^{bb'} \\ &= \nabla_3 J_{31} \nabla_4 J_{32} g^{33} + \nabla_3 J_{31} \nabla_4 J_{42} g^{34} + \nabla_4 J_{31} \nabla_4 J_{32} g^{43} + \nabla_4 J_{31} \nabla_4 J_{42} g^{44} \\ &= (\frac{\kappa}{4} \beta^{-3/2} (1 - 2\theta)) (-\frac{\kappa}{4} \beta^{-1}) (\kappa^{-1} (1 + \theta) \beta^{-1/2}) \\ &\quad + (\frac{\kappa}{4} \beta^{-3/2} (1 - 2\theta)) (-\frac{\kappa}{2} \beta^{-1}) (\theta \kappa^{-1} \beta^{-1/2}) \\ &\quad + (\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{1}{2} \theta)) (-\frac{\kappa}{4} \beta^{-1}) (\theta \kappa^{-1} \beta^{-3/2}) \\ &\quad + (\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{1}{2} \theta)) (-\frac{\kappa}{2} \beta^{-1}) (\kappa^{-1} \beta^{-1/2}) \\ &= -\frac{5}{16} \kappa \beta^{-2}. \end{split}$$

$$[[2]]$$

$$= -\nabla_b J_{32} \nabla_4 J_{b'1} g^{bb'}$$

$$= -\left(\nabla_3 J_{32} \nabla_4 J_{31} g^{33} + \nabla_3 J_{32} \nabla_4 J_{41} g^{34} + \nabla_4 J_{32} \nabla_4 J_{31} g^{43} + \nabla_4 J_{32} \nabla_4 J_{41} g^{44}\right)$$

$$= -\left(\left(\frac{\kappa}{2} \beta^{-1}\right) \left(\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{1}{2} \theta)\right) (\kappa^{-1} (1 + \theta) \beta^{-1/2})$$

$$+ \left(\frac{\kappa}{2} \beta^{-1}\right) \left(-\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta)\right) (\kappa^{-1} \theta \beta^{-1/2})$$

$$+ \left(-\frac{\kappa}{4} \beta^{-1}\right) \left(\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{1}{2} \theta)\right) (\kappa^{-1} \theta \beta^{-1/2})$$

$$+ \left(-\frac{\kappa}{4} \beta^{-1}\right) \left(-\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta)\right) (\kappa^{-1} \beta^{-1/2})$$

$$= \frac{5}{16} \kappa \beta^{-2}.$$

$$= -\nabla_b J_{41} \nabla_3 J_{b'2} g^{bb'}$$

$$= -\left(\nabla_3 J_{41} \nabla_3 J_{32} g^{33} + \nabla_3 J_{41} \nabla_3 J_{42} g^{34} + \nabla_4 J_{41} \nabla_3 J_{32} g^{43} + \nabla_4 J_{41} \nabla_3 J_{42} g^{44}\right)$$

$$= -\left(\left(\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{1}{2} \theta)\right) \left(\frac{\kappa}{2} \beta^{-1}\right) (\kappa^{-1} (1 + \theta) \beta^{-1/2})\right)$$

$$+ \left(\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{1}{2} \theta)\right) \left(-\frac{\kappa}{4} \beta^{-1}\right) (\kappa^{-1} \theta \beta^{-1/2})$$

$$+ \left(-\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta)\right) \left(\frac{\kappa}{2} \beta^{-1}\right) (\kappa^{-1} \theta \beta^{-1/2})$$

$$+ \left(-\frac{\kappa}{4} \beta^{-3/2} (1 + 3\theta)\right) \left(-\frac{\kappa}{4} \beta^{-1}\right) (\kappa^{-1} \beta^{-1/2})\right)$$

$$= -\frac{5}{16} \kappa \beta^{-2}.$$

$$\begin{split} &= \nabla_b J_{42} \nabla_3 J_{b'1} g^{bb'} \\ &= \nabla_3 J_{42} \nabla_3 J_{31} g^{33} + \nabla_3 J_{42} \nabla_3 J_{41} g^{43} + \nabla_4 J_{42} \nabla_3 J_{31} g^{43} + \nabla_4 J_{42} \nabla_3 J_{41} g^{43} \\ &= (-\frac{\kappa}{4} \beta^{-1}) (\frac{\kappa}{4} \beta^{-3/2} (1 - 2\theta)) (\kappa^{-1} (1 + \theta) \beta^{-1/2}) \\ &+ (-\frac{\kappa}{4} \beta^{-1}) (\frac{\kappa}{2} \beta^{-3/2} (1 + \frac{1}{2} \theta)) (\kappa^{-1} \theta \beta^{-1/2}) \\ &+ (-\frac{\kappa}{2} \beta^{-1}) (\frac{\kappa}{4} \beta^{-3/2} (1 - 2\theta)) (\kappa^{-1} \theta \beta^{-1/2}) \end{split}$$

$$+ (-\frac{\kappa}{2}\beta - 1)(\frac{\kappa}{2}\beta^{-3/2}(1 + \frac{1}{2}\theta))(\kappa^{-1}\beta^{-1/2})$$
$$= -\frac{5}{16}\kappa\beta^{-2}.$$

We have

$$[[5]] = \kappa \nabla_b J_{3a'_1} \nabla_4 J_{b'a_2} g^{bb'} g^{4a'_2} g^{3a'_1} = 0,$$

since we must have $a'_1 = 3$ or 4, and $\nabla_b J_{33} = \nabla_b J_{34} = 0$. For the same reason,

$$[[6]] = -\kappa \nabla_b J_{3a_1'} \nabla_4 J_{b'a_2} g^{bb'} g^{3a_2'} g^{4a_1'} = 0.$$

Similarly,

$$[[7]] = -\kappa \nabla_b J_{4a'_1} \nabla_3 J_{b'a'_2} g^{bb'} g^{4a'_2} g^{3a'_1} = 0,$$

since $a'_1 = 3$ or 4, and $\nabla_b J_{43} = 0$, $\nabla_b J_{44} = 0$. For the same reason,

$$[[8]] = \kappa \nabla_b J_{4a'_1} \nabla_3 J_{b'a_2} g^{bb'} g^{3a'_2} g^{4a'_1} = 0.$$

Thus, we have

$$S_{3,4,2} = 4p^4 \left(-\frac{5}{16} \kappa \beta^{-2} \right) \cdot 4 = -5\kappa \beta^{-2} p^4.$$

This finishes the proofs of Lemma 1.14 and Proposition 1.13.

As explained below Proposition 1.5, this finishes the demonstration of (1.3).

RAKUTEN INSTITUTE OF TECHNOLOGY

Email address: egi@egison.org

TOHOKU CENTER FOR CREATIVITY, TOHOKU UNIVERSITY

Email address: yoshimaeda@m.tohoku.ac.jp

DEPARTMENT OF MATHEMATICS AND STATISTICS, BOSTON UNIVERSITY

Email address: sr@math.bu.edu