Билет №1

- Гомотетия, поворот, параллельный перенос как аффинные преобразования (для E^2). 1.
- Доказать, что при аффинном преобразовании образом треугольника будет треугольник. 2.
- Найти центры и нормальное уравнение квадрики: $4x^2 12xy + 9y^2 2x + 3y 2 = 0$. 3.

Преподаватель: Зав. кафедрой: Дата утверждения: 13.04.2019, протокол №10

> Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года

Билет №2

- 1. Линейная часть аффинного отображения, его координатное выражение и свойства.
- Доказать, что для любых двух треугольников в A^n существует аффинное преобразование, переводящее один 2. треугольник в другой.
- Найти характеристику и указать взаимное расположение плоскостей. Написать уравнение аффинной оболочки 3.

объединения плоскостей Р1: $\begin{cases} 2x_1 + 3x_2 + 4x_3 + 5x_4 = 6 \\ 6x_1 + 5x_2 + 4x_3 + 3x_4 = 2 \end{cases}$

P2: $x_1 = 1 - t_1, x_2 = 1 + 2t_1 + t_2, x_3 = 1 - 2t_1 + 2t_2, x_4 = 1 + t_1 + t_2$

Зав. кафедрой: Преподаватель:

Дата утверждения: 13.04.2019, протокол №10

Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года Билет №3

- Расстояние от точки до гиперплоскости в E^n 1.
- Доказать, что при аффинных преобразованиях образами параллельных прямых будут параллельные прямые. 2.
- Найти аффинную оболочку пары плоскостей: $\underline{x_1 = x_2 = x_3} = \underline{x_4 = x_5} = \underline{0}$ и $\underline{x_1 = 2, x_3 = 1, x_1 + x_4} = \underline{0}$. 3.

Преподаватель: Зав. кафедрой:

Дата утверждения: 13.04.2019, протокол №10

Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года Билет №4

- Способы задания аффинных преобразований. 1.
- 2.. Доказать, что при аффинном преобразовании образом трапеции будет трапеция.
- 3. Найти характеристику и указать взаимное расположение плоскостей. Указать базис направляющего пространства аффинной оболочки объединения этих плоскостей P_1 : $x_1 = -2 + 3t$, $x_2 = 5$, $x_3 = 1 + 7t$, $x_4 = 3 + 3t$, $x_5 = -t$ и

$$P_2: \underbrace{x_1 = 1 + t_1 + t_2, x_2 = -1 + t_1 - 2t_2, x_3 = 2t_1 + 3t_2, x_4 = 3 + 2t_1 - t_2, x_5 = 2 - t_1 + t_2}_{1}.$$

Преподаватель:_____ Зав. кафедрой:

Дата утверждения: 13.04.2019, протокол №10

Билет №5

1.	Свойства аффинных	преобразований	я́в $oldsymbol{A}^n$	(penep	отображается	в репер,	плоскость в плоскость).
----	-------------------	----------------	----------------------	--------	--------------	----------	-----------------------	----

2. Найти аффинное преобразование E^2 , переводящее прямую $\Delta_1: x+y-1=0$ в прямую $\Delta_2: x-y-1=0$.

3. Найти уравнение и основание перпендикуляра, опущенного из точки M(4, 2, -5, 1) на плоскость $\Pi: 2x_1 - 2x_2 + x_3 + 2x_4 = 9, 2x_1 - 4x_2 + 2x_3 + 3x_4 = 12$

Зав. кафедрой:	Преподаватель:	
Дата утверждения	н: 13.04.2019, протокол №10	

Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года

Билет №6

- 1. Простое отношение трех точек. Отрезок. Середина отрезка.
- 2. Назовите фигуру Φ в E^2 , которую задает уравнение $x^2+y-1=0$. Найдите уравнение прообраза Φ при аффинном преобразовании $\underline{x'=2x+y-1},\ y'=x-y+2$.
- 3. Найти расстояние от точки M(1, -1, 1, -1, 1) до плоскости: $\underbrace{x_1 + x_2 x_4 2 = 0, x_3 x_4 + 1 = 0}_{}$.

Зав. кафедрой:	Преподаватель:
Дата утверждения: 13.04.2019, протокол Ј	№10

Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года

Билет №7

- 1. Уравнения образа и прообраза фигуры при аффинном преобразовании в A^n .
- 2. Даны два аффинных преобразования f_1 : $\begin{cases} x' = 2x + y 5 \\ y' = 3x y + 7 \end{cases}$ и f_2 : $\begin{cases} x' = x y + 4 \\ y' = -x + 2y + 5 \end{cases}$. Найти композицию $f_1 \circ f_2$.
- 3. В 4-хмерном точечном евклидовом пространстве опустите перпендикуляр из точки M(1,1,1,1) на плоскость $\underbrace{x_1+x_2+x_3-x_4-2=0,\,x_1+2x_3-x_4+1=0}_{}.$

Зав. кафедрой:	Преподаватель:	
Дата утверждения: 13.	.04.2019, протокол №10	

Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года

Билет №8

- 2. Пусть V = C[a,b] векторное пространство непрерывных на отрезке [a,b] функций. Установить характер линейной зависимости системы векторов $\{\vec{a},\vec{b},\vec{c},\}$, где $\vec{a}=1,\ \vec{b}=\cos x,\ \vec{c}=\sin x$.
- 3. Геометрически охарактеризовать движение $x' = \frac{4}{5}x \frac{3}{5}y + 6$, $y' = -\frac{3}{5}x \frac{4}{5}y 12$.

Зав. кафедрой:	Преподаватель:	
Лата утверждения: 13.04.2019	. протокол №10	

Билет №9

- 1. Подобие в E^2 как аффинное преобразование.
- 2. Найти аффинное преобразование, переводящее точку (6, -2) в точку (1, 1), а векторы (2, 1) и (-1, 2) соответственно в векторы (4, 2) и (-3, 6).
- 3. Найти характеристику и указать взаимное расположение плоскостей в A^5 . Указать базис направляющего пространства аффинной оболочки объединения плоскостей $x_1 = 2$, $x_1 x_3 = 1$, $x_5 = 0$ и $x_1 = 2$, $x_3 = 1$, $x_1 + x_4 = 0$.

Зав. кафедрой:	Преподаватель:	
Дата утверждения: 13.04		

Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года

Билет №10

- 1. Движения в \overrightarrow{E}^n : определение, координатное выражение в ортонормированном репере.
- 2. Найти асимптоты гиперболы $3x^2 + 7xy + 4y^2 + 5x + 2y 6 = 0$.
- 3. Найти характеристику и указать взаимное расположение плоскостей. Указать базис направляющего пространства аффинной оболочки объединения этих плоскостей P_1 : $x_1 x_2 x_4 x_5 = 2$, $x_1 x_3 x_4 + x_5 = 1$, $5x_1 + 3x_2 2x_3 x_5 = 0$ и

$$P_2:\ \underline{x_1=3,\,x_2=2+6t_1+5t_2,\,x_3=0,\,x_4=6+t_1+2t_2,\,x_5=6+t_1+2\underline{t_2}}\ .$$

Зав. кафедрой:	Преподаватель:
Лата утверждения: 13.04.2019, протокод М	<u></u>

Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года

Билет №11

- 1. Уравнение образа (прообраза) фигуры при аффинном преобразовании A^n .
- 2. Даны три точки в A^4 : B(1,1,1,1), C(2,2,3,3), D(4,4,7,7). Доказать, что они коллинеарны. Для точек B'(-1,1,-1,1), D'(2,4,5,7) указать такую точку C', чтобы тройки (B,C,D) и (B',C',D') были аффинно эквивалентны.
- 3. Найти систему линейных уравнений, задающую плоскость: $x_1 = 1 + t_1 + t_2$, $x_2 = 1 t_1 + t_2$, $x_1 = 1 + t_1 + t_2$, $x_1 = 1 + t_1 + t_2$, $x_2 = 1 t_1 + t_2$, $x_3 = 1 t_1 + t_2$.

Зав. кафедрой:	Преподаватель:
Лата утверждения: 13.04.2019, протокол М	 ©10

Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года

Билет №12

- 1. Определение векторного пространства. Примеры. Линейная зависимость и независимость векторов. Базисы. Координаты векторов.
- 2. Докажите, что переименование координат $(x_1, ..., x_i, ..., x_j, ..., x_n) \rightarrow (x_1, ..., x_j, ..., x_i, ..., x_n)$ является аффинным преобразованием.
- 3. Найти систему линейных уравнений, задающую плоскость: $\underbrace{x_1 = 1 t_1 + t_2}_{}, \underbrace{x_2 = 1 t_1 + 2t_2}_{}, \underbrace{x_3 = 1 + t_1 + 2t_2}_{}, \underbrace{x_4 = 1 + t_1 + 2t_2}_{}$

Зав. кафедрой:	Преподаватель:	
Дата утверждения:	13.04.2019, протокол №10	

	Билет №13
1.	Определение аффинного пространства. Примеры.
2.	Найти аффинное преобразование, переводящее точки $A(1,1,0)$, $B(0,0,1)$, $C(0,1,0)$ в точки $A'(0,1,0)$, $B'(1,1,0)$, $C'(0,0,1)$
3.	. Найти центры и нормальное уравнение квадрики: $x^2 + 2y^2 + 5z^2 + 2xy + 4yz + 4x - 8y + 2z + 9 = 0$.
Зав. ка Дата у	афедрой: Преподаватель:
	Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года Билет №14
1.	Аффинные реперы и координаты точек. Покоруную иле формули $y' = 2x + y + 1$, $y' = x + y + 2$, разгост оффинисо прообразорация. Наймую образ рауктора $\vec{y} = (1, 2)$
2.	Докажите, что формулы $x' = 2x + y - 1$, $y' = x - y + 2$ задают аффинное преобразование. Найдите образ вектора $\vec{v} = (1, 2)$
	при действии линейной части этого аффинного преобразования.
3.	Какую фигуру задает уравнение $\frac{x^2}{6} - \frac{y^2}{9} = 2z$. Для этой фигуры напишите уравнение диаметральной плоскости
	проходящей через прямую $\underbrace{x=y, z=1}$
Зав. ка Дата у	афедрой: Преподаватель:
	Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года Билет №15
1.	Преобразование координат точек при замене репера в аффинном пространстве.
2.	Дано аффинное преобразование $\begin{cases} x' = 2x + y - 2 \\ y' = x - y - 1 \end{cases}$ и точка A(1, 1) . Найти прямую, проходящую через точку A , которая при
	этом преобразовании переходит в прямую, также проходящую через точку А
3.	Найти систему линейных уравнений, задающую плоскость в A^4 :
	$\underbrace{x_1 = 1 - t_1 + 2t_2, \ x_2 = 1 - t_1 - t_2, \ x_3 = 1 + 3t_1 + 2t_2, \ x_4 = 1 + t_1 - t_2}_{}.$
	афедрой: Преподаватель:
	Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года Билет №16
1.	Понятие плоскости в аффинном пространстве.
2.	Применяя процесс ортогонализации, найти ортогональный базис линейной оболочки векторов $\vec{e}_1(0,1,1,1)$, $\vec{e}_2(0,0,1,1)$, $\vec{e}_3(0,0,0,1)$ в 4-мерном евклидовом векторном пространстве.
3.	Убедитесь, что определители матриц квадратичной части уравнения $2x^2 + y^2 - 3z^2 - 4xy + 2yz + 4xz + 2x + 4y - z + 1 = 0$
	квадратичной части нормального уравнения этой же квадрики имеют одинаковый знак. Это случайность или закономерность? Ответ обосновать.

Зав. кафедрой:_____ Преподаватель:_____

Дата утверждения: 13.04.2019, протокол №10

Белорусский государственный университет Механико-математический факультет

	весенняя экзаменационная сессия 2019/2020 учеоного года Билет №17
1.	Способы задания плоскостей в аффинном пространстве.
2.	Евклидовы точечные пространства. Расстояние между точками. Движения евклидова точечного пространства,
3.	Найти центры и нормальное уравнение квадрики: $x_1x_2 + x_3x_4 + 2x_1 + x_2 - 3x_3 + x_4 - 2 = 0$.
Зав. к	афедрой: Преподаватель:
	утверждения: 13.04.2019, протокол №10
	Белорусский государственный университет
	Механико-математический факультет
	Весенняя экзаменационная сессия 2019/2020 учебного года Билет №18
1.	Аффинная оболочка множества точек: определение, существование и единственность, технология построения.
2.	Существует ли аффинное преобразование, переводящее точки $A(1, 1, 1, 1)$, $B(2, 3, 2, 3)$, $C(3, 2, 3, 2)$ в точки $A'(-1, 1, -1, 1)$, $B'(0, 4, 0, 4)$, $C'(2, 2, 2, 2, 2)$? Доказать.
3.	Найти движение плоскости, являющееся симметрией относительно прямой $2x + y - 2 = 0$.
Зав. к	афедрой: Преподаватель:
Дата	утверждения: 13.04.2019, протокол №10
	Белорусский государственный университет
	Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года
	Билет №19
1.	Критерий пересечения пары плоскостей в A^n
2.	Доказать, что точка $M(4, 2, -5, 1)$ и векторы $\vec{e}_1(1,1,1,1)$, $\vec{e}_2(0,1,1,1)$, $\vec{e}_3(0,0,1,1)$, $\vec{e}_4(0,0,0,1)$ образуют репер (новый). Найти
	уравнение фигуры Φ в новом репере, если в старом она задается уравнением $x_1^2 + x_4^2 = 1$
3.	Найти систему линейных уравнений, задающую плоскость в A^4 : $\underbrace{x_1 = 1 - t_1 + 3t_2, x_2 = 1 + 4t_1 - t_2, x_3 = 1 + 3t_1 + t_2, x_4 = 1 + t_1 - t_2}_{}$
	афедрой:Преподаватель:
Дата	утверждения: 13.04.2019, протокол №10
	Белорусский государственный университет
	Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года
	Бесенняя экзаменационная сессия 2019/2020 учеоного года Билет №20
1.	Инвариантность характеристики пары плоскостей. Взаимное расположение плоскостей.
2.	Задать системой линейных уравнений подпространство в 4-мерном векторном пространстве, натянутое на векторы $\vec{e}_1(0,1,1,1), \vec{e}_2(0,0,1,1), \vec{e}_3(0,0,0,1)$.
3.	Найдите нормальное уравнение квадрики $2x^2 + y^2 - 3z^2 - 4xy + 2yz + 4xz + 2x + 4y - z + 1 = 0$.
Зав. к	афедрой: Преподаватель:
	утверждения: 13.04.2019, протокол №10
	Белорусский государственный университет
	Механико-математический факультет
	Весенняя экзаменационная сессия 2019/2020 учебного года Билет №21
1.	Способы задания аффинных преобразований.
2.	Найти инвариантные прямые аффинного преобразования $\underline{x' = 7x - y + 1}, \ \underline{y' = 4x + 2y + 4}$.
3.	Найти систему линейных уравнений, задающую плоскость в A^4 : $\underbrace{x_1=1, x_2=1, x_3=t_1, x_4=1-t_2}$.

Дата утверждения: 13.04.2019, протокол №10

Преподаватель:_

Зав. кафедрой:_

Билет №22

4	π v	1 1	~		U
1.	Линеиная часть	аффинного	отображения.	его координатное вы	ражение и своиства.

2.	Геометрически охарактеризуйте движение	$x' = \frac{1}{2}$	$\frac{\sqrt{3}}{2}x +$	$-\frac{1}{2}y-$	1, y'	$=\frac{1}{2}x$	$-\frac{\sqrt{3}}{2}y$, .

Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года

Билет №23

- 1. Группа автоморфизмов (аффинных преобразований) аффинного пространства. Способы задания аффинных преобразований
- 2. По отношению к аффинной системе координат даны три точки A(1,1), B(5,6), C(1,4). В новой аффинной системе координат те же точки имеют координаты A(0,1), B(3,0), C(1,2). Найдите формулы преобразования аффинных координат.
- 3. Найти систему линейных уравнений, задающую плоскость в A^4 : $x_1 = -1$, $x_2 = 2$, $x_3 = 1 t_1$, $x_4 = -2$

Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года

Билет №24

- 1. Аффинная эквивалентность фигур в A^n .
- 2. Найти инвариантные прямые аффинного преобразования $x' = \frac{13}{5}x + \frac{4}{5}y \frac{8}{5}, \quad y' = \frac{4}{5}x + \frac{7}{5}y \frac{4}{5}.$
- 3. Найти характеристику и указать взаимное расположение плоскостей. Указать базис направляющего пространства аффинной оболочки объединения этих плоскостей P_1 : $\underbrace{x_1-x_2-x_4-x_5=2, x_1-x_3-x_4+x_5=1, 5x_1+3x_2-2x_3-x_5=0}_{}$, P_2 :

$$x_1 = 3$$
, $x_2 = 2 + 6t_1 + 5t_2$, $x_3 = 0$, $x_4 = 6 + t_1 + 2t_2$, $x_5 = 6 + t_1 + 2t_2$

 Зав. кафедрой:
 Преподаватель:

 Дата утверждения:
 13.04.2019, протокол №10

Белорусский государственный университет Механико-математический факультет Весенняя сессия 2019/2020 учебного года

Билет №25

- 1. Свойство инвариантности аффинной оболочки фигуры.
- 2. Найти центры и нормальное уравнение квадрики: $5x^2 + 9y^2 + 9z^2 12xy 6xz + 12x 8y 36z = 0$
- 3. В E^4 найти расстояние от точки M(1,0,1,0) до гиперплоскости $x_1-x_4=1$

Билет №26

- 1. Критерий эквивалентности пар плоскостей.
- 2. Найдите диаметральную плоскость поверхности $6x^2 + 9y^2 + z^2 12xy + 6xy 4xz 2y 3 = 0$, параллельную плоскости x + 3y z + 5 = 0.
- 3. Найти расстояние в E^4 между плоскостями $x_1 + x_2 x_4 1 = 0$ и $x_1 + x_2 x_4 6 = 0$.

 Зав. кафедрой:
 Преподаватель:

 Дата утверждения:
 13.04.2019, протокол №10

Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года

Билет №27

- 1. Аффинная эквивалентность троек точек в A^n . Простое отношение трех точек. Отрезок. Середина отрезка. Центр фигуры.
- 2. Найти прямые, проходящие через точку A(1,2) и имеющие асимптотические направления относительно квадрики $3x^2 + 4y^2 + 7xy + 5x + 2y 6 = 0$
- 3. Найти канонический базис $\partial_u r$, $\partial_v r$ поверхности $x = \cos u$, $y = \sin u$, z = v

Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года

Билет №28

- 1. Нормальные уравнения фигур второго порядка.
- 2. Найти систему линейных уравнений, задающую плоскость в A^4 : $\underbrace{x_1 = 1, \, x_2 = 2, \, x_3 = 3 + 2t_1, \, x_4 = 4 t_1}_{}$
- 3. Найти угол между кривыми $u = \frac{t^2}{2}$, v = t и v = 1 на прямом геликоиде $x = \cos u$, $y = \sin u$, z = v

Зав. кафедрой:_____Преподаватель:____

Дата утверждения: 13.04.2019, протокол №10

Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года

Билет №29

- 1. Ассимптотические и неассимптотические направления относительно квадрики. Центры и диаметральные плоскости квадрик в A^n
- 2. Движения евклидового векторного пространства. Ортогональные матрицы.
- 3. Найти систему линейных уравнений, задающую плоскость в A^4

$$x_1 = 1 - t_1 + 3t_2, x_2 = 1 + 4t_1 - t_2, x_3 = 1 + 3t_1 + t_2, x_4 = 1 + t_1 - t_2$$

Билет №30

1.	Скалярное произведение в вещест	енном вектор	ном пространстве,	способы	задания.	Длина	вектора	и	угол	между
	векторами в евклидовом векторном	гространстве.								

Доказать, что при аффинном преобразовании к-мерная плоскость перейдет в к-мерную плоскость. 2.

3.	Найти параметрические уравнения плоскости в A^5 : $\underbrace{x_1 + x_2 - x_4 - 1 = 0, x_1 - x_2 + 1 = 0}_{}$

Зав. кафедрой: Преподаватель: Дата утверждения: 13.04.2019, протокол №10

> Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года

Билет №31

- 1. Расстояние от точки до гиперплоскости и угол между прямыми, между прямой и гипаерплоскостью в евклидовом точечном пространстве.
- Найти центр квадрики: $4x_1^2 + 2x_2^2 + 3x_3^2 + x_4^2 4x_1x_2 + 2x_2x_3 + 4x_1x_4 2x_2x_4 + 2x_1 x_2 + x_4 + 15 = 0$. 2.
- Найти систему линейных уравнений, задающую плоскость в A^4 : $x_1 = 1$, $x_2 = 0$, $x_3 = 3$, $x_4 = 1 + 2t_1$. 3.

Преподаватель: Зав. кафедрой: Дата утверждения: 13.04.2019, протокол №10

> Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года

Билет №32

- 1. Собственные движения евклидовой плоскости.
- 2. Найти характеристику и указать взаимное расположение плоскостей. Написать уравнение аффинной оболочки

объединения плоскостей:
$$P_1$$
:
$$\begin{cases} 2x_1 + 3x_2 + 4x_3 + 5x_4 = 6 \\ 6x_1 + 5x_2 + 4x_3 + 3x_4 = 2 \end{cases}$$
 и P_2 :
$$\begin{cases} x_1 - 1 - t_1 \\ x_2 = 1 + 2t_1 + t_2 \\ x_3 = 1 - 2t_1 + 2t_2 \end{cases}$$

и Р2:
$$\begin{cases} x_1 = 1 - t_1 \\ x_2 = 1 + 2t_1 + t_2 \\ x_3 = 1 - 2t_1 + 2t_2 \\ x_4 = 1 + t_1 + t_2 \end{cases}$$

Найти кривизну и кручение кривой $x = t^2$, y = t, z = 2t - 1. 3.

Преподаватель:___ Зав. кафедрой: Дата утверждения: 13.04.2019, протокол №10

> Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года

Билет №33

- Несобственные движения евклидовой плоскости 1.
- Найти параметрические уравнения плоскости в A^5 : $x_1 + x_2 x_4 1 = 0$, $x_1 x_2 + 1 = 0$ 2.
- Найти уравнение касательной к кривой $x=sint, \ y=cost, \ z=t$ в точке M , для которой $t_{\scriptscriptstyle M}=\pi$ 3.

Зав. кафедрой: Преподаватель: Дата утверждения: 13.04.2019, протокол №10

Билет №34

- 1. Кривые в $\,E^3\,$. Касательная прямая и соприкасающаяся плоскость кривой в точке. Длина дуги кривой.
- 2. Найти нормальное уравнение квадрики $2x_1^2 + 6x_2^2 + x_3^2 x_4^2 4x_1x_2 8x_1x_4 + 6 = 0$
- 3. Доказать, что, если для двух аффинных преобразований, f_1 , f_2 и двух различных точек M_1 , M_2 на прямой Δ имеем $f_1(M_1) = f_2(M_1)$, $f_1(M_2) = f_2(M_2)$, то $\forall M \in \Delta$ $f_1(M) = f_2(M)$.

Зав. кафедрой:	Преподаватель:	
Дата утверждения: 13.04.2019, пр	ротокол №10	

Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года

Билет №35

- 1. Поверхности в E^3 . Внутренние координаты и внутренние уравнения фигур на поверхности. Касательная плоскость и нормаль к поверхности в точке.
- 2. Даны три точки в A^4 : B(1,1,1,1), C(2,2,3,3), D(4,4,7,7). Доказать, что они коллинеарны. Для точек B'(-1,1,-1,1), D'(2,4,5,7) указать такую точку C', чтобы тройки (B,C,D) и (B',C',D') были аффинно эквивалентны.
- 3. Найти параметрические уравнения плоскости в A^4 : $2x_1 2x_2 + x_3 + 2x_4 = 9$, $2x_1 4x_2 + 2x_3 + 3x_4 = 12$

Зав. кафедрой:	Преподаватель:		
Дата утверждения: 13.04.2019, протокол №10			

Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года

Билет №36

- 1. Поверхности в E^3 . Угол между кривыми на поверхности.
- 2. Найти нормальное уравнение квадрики $2x_1^2 + 6x_2^2 + x_3^2 x_4^2 4x_1x_2 8x_1x_4 + 6 = 0$
- 3. Доказать, что, если для двух аффинных преобразований, f_1, f_2 и двух различных точек M_1, M_2 на прямой Δ имеем $f_1(M_1) = f_2(M_1), f_1(M_2) = f_2(M_2)$, то $\forall M \in \Delta$ $f_1(M) = f_2(M)$.

Зав. кафедрой:	Преподаватель:	
Лата утверждения: 13.0	4 2019 протокол №10	

Белорусский государственный университет Механико-математический факультет Весенняя экзаменационная сессия 2019/2020 учебного года

Билет №37

- 1. Поверхности в E^3 . Длина дуги кривой на поверхности.
- 2. Пусть V = C[a, b] векторное пространство непрерывных на отрезке [a, b] функций. Установить характер линейной зависимости системы векторов $\{\vec{a}, \vec{b}, \vec{c}, \}$, где $\vec{a} = 1$, $\vec{b} = \cos x$, $\vec{c} = \sin x$.
- 3. Найти систему линейных уравнений, задающую плоскость: $x_1 = 0$, $x_2 = 0$, $x_3 = t_1$, $x_4 = -2$

Зав. кафедрой:	Преподаватель:
Дата утверждения: 13.04.2019, протокол М	№10