Exam
Social Choice Theory
Spring 2019
Solution

Problem 1: May's Theorem

- (a) For $\alpha = (+1, 0, -1, +1, +1)$ we obtain $\overline{\alpha}(\alpha) = 2/5$. Hence it follows that $f(\alpha) = +1$ (a strict preference for x over y) if $\tilde{\alpha} < 2/5$, and $f(\alpha) = 0$ (an indifference between x and y) if $\tilde{\alpha} \ge 2/5$.
- (b) See lecture slides.
- (c) [U] This axiom is always satisfied, because the method is applicable to all α and always delivers a preference $f(\alpha) \in \{-1, 0, +1\}$.
 - [N] It holds that $\overline{\alpha}(-\alpha) = -\overline{\alpha}(\alpha)$. In case $f(\alpha) = +1$, which is equivalent to $\overline{\alpha}(\alpha) > +\tilde{\alpha}$, we get $\overline{\alpha}(-\alpha) = -\overline{\alpha}(\alpha) < -\tilde{\alpha}$, which implies $f(-\alpha) = -1$.

In case $f(\alpha) = -1$, we get $f(-\alpha) = +1$ by an analogous argument.

In the remaining case $f(\alpha) = 0$, which is equivalent to $-\tilde{\alpha} \leq \overline{\alpha}(\alpha) \leq +\tilde{\alpha}$, we obtain $+\tilde{\alpha} \geq \overline{\alpha}(-\alpha) \geq -\tilde{\alpha}$ and hence $f(-\alpha) = 0$.

Therefore, the axiom is always satisfied.

[PR] Note first that $\overline{\alpha}(\boldsymbol{\alpha})$ takes values in increments of 1/n, i.e., around zero the possible values of $\overline{\alpha}(\boldsymbol{\alpha})$ are ..., -2/n, -1/n, 0, +1/n, +2/n, ...

Now consider some α such that $f(\alpha) = 0$, which is equivalent to $-\tilde{\alpha} \leq \overline{\alpha}(\alpha) \leq +\tilde{\alpha}$. If $\tilde{\alpha} < 1/n$, the only case in which this can hold is when $\overline{\alpha}(\alpha) = 0$. If support for x increases towards α' (in the sense of the axiom), we then obtain $\overline{\alpha}(\alpha') \geq 1/n$ and $f(\alpha') = +1$. Therefore, the axiom is satisfied when $\tilde{\alpha} < 1/n$. Note that the method is equivalent to majority voting in that case.

If $\tilde{\alpha} \geq 1/n$, consider profile $\alpha = (-1,0,\ldots,0)$ for which $\overline{\alpha}(\alpha) = -1/n$ and thus $f(\alpha) = 0$. For $\alpha' = (0,0,\ldots,0)$ we then obtain $\overline{\alpha}(\alpha') = 0$ and thus $f(\alpha') = 0$, in contradiction to the axiom. Therefore, the axiom is violated when $\tilde{\alpha} \geq 1/n$.

[A] This axiom is always satisfied, because only the sum $\sum_{i=1}^{n} \alpha_i$ matters.

Problem 2: Manipulability

- (a) $[\bar{\mathbf{U}}]$ This axiom is satisfied (for $\mathscr{A} = \mathscr{P}^2$) by definition of the method, no matter how * is replaced.
 - [M] If *=z, the axiom is satisfied. We only need to check preference changes of voter 1, because voter 2 does not matter in that case. Since the winning alternative is always the top-ranked alternative of voter 1, maintaining position means that it remains top-ranked, and hence it remains the winner.
 - If *=x, the axiom is violated. Start from $R_1=zyx$ and $R_2=zyx$, so that x wins. When voter 1's preference changes to $R'_1=zxy$, x maintains its position but no longer wins.
 - If * = y, the axiom is violated. Start from $R_1 = zyx$ and $R_2 = zyx$, so that y wins. When voter 2's preference changes to $R'_2 = yzx$, y maintains its position but no longer wins.
 - [P] If *=z, the axiom is satisfied. Since the winning alternative is always the top-ranked alternative of voter 1 in that case, it cannot be strongly Pareto-dominated.
 - If * = x or * = y, the axiom is violated, because when $R_1 = zyx$ and $R_2 = zyx$, the winner is strongly Pareto-dominated by z.
 - [D] If *=z, the axiom is violated because voter 1 is a dictator. If *=x or *=y, the axiom is satisfied, because voter 1 can no longer enforce her top-ranked alternative when $R_1 = zyx$ and $R_2 = zyx$.
- (b) The method is surjective no matter how * is specified.
 - $[\bar{\mathbf{U}}]$ See part (a).
 - $[\bar{D}]$ See part (a).
 - [S] If *=z, the axiom is satisfied, because a dictatorship is strategy-proof. If *=x or *=y, the axiom is violated, because when $R_1 = zyx$ and $R_2 = zyx$, voter 1 can benefit from unilaterally misreporting to have preference $R'_1 = zxy$ instead.
- (c) This method does not contradict the Gibbard-Satterthwaite theorem. It is not an SCF $c: \mathscr{A} \to X$, because its outcome is not deterministic. Hence the Gibbard-Satterthwaite theorem does not apply.

The method is a stochastic SCF $\tilde{c}: \mathscr{A} \to \Delta X$, which generates a distribution of winning alternatives. It is a random dictatorship.

Problem 3: Social Evaluation Functions

(a) The following table computes NP for each alternative in the example:

	v	w	\boldsymbol{x}	y	z
$\overline{U_1}$	1	1	5	5	2
U_2	2	2	2	2	4
U_3	3	4	1	0	4
U_4	5	5	6	10	3
U_5	6	6	4	4	2
$U_{i_m}/2$	3/2	2	2	2	3/2
NP	1	2	2	2	0

Hence we obtain z $e_P^{\rm NP}(\mathbf{U})$ v $e_P^{\rm NP}(\mathbf{U})$ w $e_I^{\rm NP}(\mathbf{U})$ x $e_I^{\rm NP}(\mathbf{U})$ y.

(b) – The SEF is not consistent with RM-NC (and hence not with CM-NC and OM-NC). In the following example, \mathbf{U}' is obtained from \mathbf{U} by multiplying citizen 1's utility by 1/2 and leaving everything else unchanged. We obtain $e^{\mathrm{NP}}(\mathbf{U}) \neq e^{\mathrm{NP}}(\mathbf{U}')$.

\mathbf{U}	x	y
U_1	1	2
U_2	3	3
U_3	4	4
$U_{i_m}/2$	3/2	3/2
NP	1	0

\mathbf{U}'	x	y
$\overline{U_1'}$	1/2	1
U_2'	3	3
U_3'	4	4
$U'_{i_m}/2$	3/2	3/2
NP	1	1

- The SEF is not consistent with CM-LC (and hence not with CM-UC and OM-LC). In the following example, \mathbf{U}' is obtained from \mathbf{U} by adding 3 to every citizen's utility. We obtain $e^{\mathrm{NP}}(\mathbf{U}) \neq e^{\mathrm{NP}}(\mathbf{U}')$.

\mathbf{U}	x	y
U_1	1	2
U_2	3	3
U_3	4	4
$U_{i_m}/2$	3/2	3/2
NP	1	0

$$\begin{array}{c|cccc} U' & x & y \\ \hline U'_1 & 4 & 5 \\ U'_2 & 6 & 6 \\ U'_3 & 7 & 7 \\ \hline U'_{i_m}/2 & 3 & 3 \\ \mathrm{NP} & 0 & 0 \\ \end{array}$$

- The SCF is consistent with RM-LC. Suppose \mathbf{U}' is obtained from \mathbf{U} by a common positive linear transformation $\varphi(u) = \beta u$, where $\beta > 0$. For each alternative x, we then obtain $i_m(x, \mathbf{U}) = i_m(x, \mathbf{U}')$. This implies $U'_{i_m(x, \mathbf{U}')}(x) = \beta U_{i_m(x, \mathbf{U})}(x)$. The condition

$$U_i(x) \le \frac{1}{2} U_{i_m(x,\mathbf{U})}(x)$$

in the definition of NP is therefore equivalent to

$$U'_{i}(x) \le \frac{1}{2} U'_{i_{m}(x,\mathbf{U}')}(x),$$

which implies $NP(x, \mathbf{U}) = NP(x, \mathbf{U}')$.