CSCI 6517 Recommender Systems Lab and Assignment 1: Collaborative Filtering

May 18, 2025

This lab and assignment involves creating a recommender engine, evaluating it to understand its performance, and making changes to improve performance where you can.

• Programming language: Python (Jupyter IPython Environment)

• Due Date: Posted in Syllabus

Marking scheme and requirements: Full marks will be given for (1) working, readable, reasonably efficient, documented code that achieves the assignment goals and (2) for providing appropriate answers to the questions in a Jupyter notebook (named assignment-cf.ipynb) committed to the student's assignment repository.

Please adhere to the collaboration policy on the course website – people you discussed the assignment solution with, or websites with source code you used should be listed in the submitted Jupyter notebook.

What/how to submit your work:

- All your code should be included in a notebook named assignment-cf.ipynb.
- Submit your ipython notebook (including the PDF version of it) to BrightSpace. You must include the outputs of each cell in the submitted version. Your last submission before the assignment deadline will be considered to be your submission.

1 Before and in the Introductory lab

In the introductory lab, you will be given an introduction to baseline recommendation algorithms, and evaluation methods that will be crucial for completing Assignment – Collaborative Filtering.

The recommendation dataset we will be using is from a collection called MovieLens, which contains users' movie ratings and is popular for implementing and testing recommender systems. The specific dataset we will be using for this lab is MovieLens 100K Dataset which contains 100,000 movie ratings from 943 users and a selection of 1682 movies.

You will also need to download the MovieLens data file (ml-100k.zip) from BrightSpace and upload it into the same folder with the lab ipython notebook.

Complete all sections of the lab notebook.

1.1 Frequently asked questions

- How do we create a similarity function from a distance metric? Simple: 0 distance is maximally similar and maximum (or infinite) distance is maximally dissimilar. You just have to find a function that appropriately transforms a distance to the proper similarity range (often [0, 1]) note that simple negation does not achieve this transformation.
- Why is the entry in my similarity matrix larger than 1? If similarities are not unnormalized, this can happen. However, a similarity should never be negative this is a clear sign of a bug in your code.
- Why are most of the Cosine similarity values zero? The cosine similarity is 0 for orthogonal vectors with no common non-zero indices. In recommendation, this would be caused by two users who never rated the same item, or two items never rated by the same user (depending on whether you are taking an item-item or user-user similarity approach).
- Why do we need to keep the train matrix and test matrix the same shape? Because we identify users and items by their row and column indices these indices must be consistent and shared between the train and test matrices.
- Why do we set test entries of predictions to zero if they are in training matrix? In short, because train and test data should be disjoint we only want to evaluate test entries that were not trained on. Further, do we want to recommend you to purchase something you've already purchased? Probably not.
- Does this lab/assignment use state-of-the-art recommenders? State-of-the-art methods are based on factorization and/or deep learning approaches, but nearest neighbor methods are still competitive and often used in industry due to their ease of implementation and modification.

2 Main Assignment

In the introductory lab section, you were presented with code for data manipulation for the Movie-Lens data, recommendation evaluation based on RMSE and ranking metrics, and baseline recommendation algorithms consisting of (a) average user rating, (b) nearest neighbor collaborative filtering based on user-user similarity, and (c) most popular items.

Please answer the questions below and provide IPython implementations. For all questions that request quantitative comparisons, please report the **5-fold cross validation average and 95**%

confidence intervals for the 5 predefined train/test splits demonstrated in the introductory lab. Note that most of the evaluation code is already provided in CrossValidation, so you just have to fill in the recommender algorithms and subroutines and call it to produce the results for each train/test split.

Q1. Data Preprocessing and Baseline algorithms

- (a) Data in recommendation systems is usually encoded as data frame with three or more columns: (user, item, rating, additional meta-data if present). Complete the function **dataPreprocessor** that takes the data frame, total number of users, total number of items and it should output a **user-item matrix** as demonstrated in the lab. See the function comments for more guidance. The following experiments will all use **dataPreprocessor**.
- (b) In this question, we'll port the baseline algorithms from the lab to our evaluation framework for the assignment. To do so, you need to implement the two baseline algorithms (popularity, user average rating). Please fill in the indicated functions(popularity, useraverage) in class BaseLineRecSys; see comments there for more guidance. The rest of BaseLineRecSys has been written for you.

Q2. Similarity in Collaborative Filtering

- (a) In class **SimBasedRecSys**, there are two similarity measurement functions (**cosine**, **euclidean**). Please fill in the missing part of those functions. Be careful how you convert Euclidean **distance** to a [0,1] **similarity** for use in the recommender. This implementation is very short and should use pairwise_distance. (Google for "pairwise_distance scikit learn" for a list of distance metrics, more Googling will tell you what they mean.) Which metric works better? Why?
- (b) Implement an additional third metric in function **somethingelse** (your choice, see other offerings of pairwise_distance) and justify in a sentence why you think this could be a good similarity metric for user or item comparison in collaborative filtering.

Q3. Collaborative Filtering

- (a) Leveraging the user-user collaborative filtering example from lab, implement user-user and item-item based collaborative filtering algorithms by filling out the **predict_all** function in class **SimBasedRecSys**. Note that you should implement vectorized versions of collaborative filtering (example give in lab) since loop-based versions will take excessively long to run.
- (b) Please use the given class **CrossValidation** to report comparative RMSE results (averages and confidence intervals) between user-user and item-item based collaborative filtering for cosine similarity. Can you explain why one method may have performed better? Consider the average number of ratings per user and the average number of ratings per item when you state your answer.

Q4. Performance Comparison

(a) Please use the given class **CrossValidation** to compare all the recommenders in Q1, Q2 and Q3 (using cosine similarity) on RMSE, P@k, and R@k. Show the cleanly formatted results of this comparison.

- (b) Some baselines cannot be evaluated with some metrics? Which ones and why?
- (c) What is the best algorithm for each of RMSE, P@k, and R@k? Can you explain why this may be?
- (d) Does good performance on RMSE imply good performance on ranking metrics and vice versa? Why / why not?

Q5. Similarity Evaluation

- (a) Go through the list of movies and pick three not-so-popular movies that you know well. I.e., do not choose "Star Wars" and note that we expect everyone in the class to have chosen different movies. For each of these three movies, list the top 5 most similar movie names according to item-item cosine similarity (you might use a function like numpy argsort).
- (b) Can you justify these similarities? Why or why not? Consider that similarity is determined indirectly by users who rated both items.

Q6. Testing with different user types

- (a) Look at a histogram of the number of ratings per user. (Google for "scipy histogram".) Pick a threshold τ that you believe divides users with few ratings and those with a moderate to large number of ratings. What τ did you choose? Evaluate the RMSE of user-user and item-item collaborative filtering, but in each of the following two cases testing on **only users** that meet the following criteria:
 - (i) Above threshold τ of liked items
 - (ii) Below threshold τ of liked items

For each of user-user and item-item collaborative filtering, are there any differences between recommender performance for (i) and (ii)? Can you explain these differences (or the lack thereof)?