Ch 15. Dynamic Programming

Dynamic Programming

- 표(table)를 만들어 채워가면서 답을 구하는 방법
- Divide and Conquer 와의 차이점 : overlaps in subproblems
- meaning of "programming" here: tabular method
- used in solving optimization problem
 - find an optimal solution, as opposed to the optimal solution

Dynamic Programming

- 1. 최적해의 구조적 특징을 찾는다.
- 2. 최적해의 값을 재귀적으로 정의한다.
- 3. 최적해의 값을 일반적으로 상향식 방법으로 계산한다.
- 4. 계산된 정보들로부터 최적해를 구성한다.

examples of dynamic programming

- 15.1 rod cutting
- 15.2 matrix-chain multiplication
- 15.4 longest common subsequence

15.1 : rod cutting

- n 인치 막대를 잘라서 판매하여 얻을 수 있는 최대 수익 r_n 을 찾아라.
- 막대를 자르는 비용은 0
- sample price table $\frac{\text{length } i}{\text{price } p_i}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |

• 예를 들어, 4 inch rod 를 자르는 방법은 8=2³ 가지가 있다.

n-inch rod cutting

• 자르는 방법은 2^{n-1} 가지가 있다. \rightarrow brute-force algorithm : $\Theta(2^n)$

• 7 = 2+2+3 로 자르면 수익은 r_7 = 5 + 5 + 8 = 18

```
r_1 = 1 from solution 1 = 1 (no cuts),
                                                                  best among 1+1 and 2
       r_2 = 5 from solution 2 = 2 (no cuts),
       r_3 = 8 from solution 3 = 3 (no cuts),
                                                                  best among 1+1+1, 1+2 and 3
       r_4 = 10 from solution 4 = 2 + 2,
                                                                   best among 1+1+1+1, 1+1+2, 1+3, 2+2, 4
       r_5 = 13 from solution 5 = 2 + 3,
       r_6 = 17 from solution 6 = 6 (no cuts),
        r_7 = 18 from solution 7 = 1 + 6 or 7 = 2 + 2 + 3,
        r_8 = 22 from solution 8 = 2 + 6,
                                                                            r<sub>n</sub> 은 r<sub>n-1</sub> ,r<sub>n-2</sub> ... r<sub>1</sub> 로부터 구할 수 있다.
       r_9 = 25 from solution 9 = 3 + 6,
r_{10}=30 from solution 10=10 (no cuts). n=i_1+i_2+\cdots+i_k \quad \text{all} \quad r_n=p_{i_1}+p_{i_2}+\cdots+p_{i_k}
                                             p_j = \frac{\text{length } i}{\text{price } p_i} = \frac{1}{1} = \frac{2}{5} = \frac{3}{4} = \frac{4}{5} = \frac{5}{6} = \frac{6}{7} = \frac{8}{9} = \frac{9}{10}
```

r_i for i < n 으로부터 r_n 을 구할 수 있다.

→ optimal substructure 를 가졌다.

$$=> r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

Recursive top-down implementation

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j)$$
. $\rightarrow T(n) = 2^n$ (exercise 15.1-1)

Dynamic Programming – top-down $\Theta(n^2)$

return q

```
MEMOIZED-CUT-ROD (p, n)
                                                            let r[0..n] be a new array
                                 -1
                                      | -1
                                           -1
                                                -1
                                                    -1
                              r
  for i = 0 to n
                                                             0
                                                                       5
                                                                           8
                                                                                10
       r[i] = -\infty
   return MEMOIZED-CUT-ROD-AUX(p, n, r)
                                                                  1+0
                                                                       2+0 3+0 2+2
MEMOIZED-CUT-ROD-AUX(p, n, r)
                                                      Cut-Rod(p, n)
   if r[n] \geq 0
                                                         if n == 0
                                                  VS.
       return r[n]
                                                             return 0
   if n == 0
                                                         for i = 1 to n
                                                             q = \max(q, p[i] + \text{CUT-Rod}(p, n - i))
   else q = -\infty
                                                         return q
       for i = 1 to n
6
           q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))
```

Dynamic Programming – top-down $\Theta(n^2)$

```
MEMOIZED-CUT-ROD (p, n)
                                                        let r[0..n] be a new array
                              -1
                                    -1
                                             -1
                                                 -1
  for i = 0 to n
                                                                  5
                                                                      8
                                                                           10
       r[i] = -\infty
   return MEMOIZED-CUT-ROD-AUX(p, n, r)
                                                             1+0
                                                                  2+0 3+0 2+2
MEMOIZED-CUT-ROD-AUX(p, n, r)
  if r[n] \geq 0
       return r[n]
   if n == 0
   else q = -\infty
       for i = 1 to n
6
           q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))
```

return q

Dynamic Programming – bottom-up

Reconstructing a solution : 어떻게 잘라야 하나?

```
EXTENDED-BOTTOM-UP-CUT-ROD(p,n)
                                                  PRINT-CUT-ROD-SOLUTION (p, n)
      let r[0..n] and s[0..n] be new arrays
                                                      (r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)
      r[0] = 0
                                                      while n > 0
      for j = 1 to n
                                                          print s[n]
                          자르지 않은 길이 i의 막대 가격
                                                                                           \Theta(n^2)
                                                          n = n - s[n]
           q = -\infty
                                나머지 부분의 최적 분할 가격
          for i = 1 to j
                                                                                                  10 ← j
                    s[i] =
                                                                     10
                                                                                                  30
          r[j] = q
                                                                                                  10
      return r and s
  10
                                                       p[1]+r[0]
                                                                             p[1]+r[3]=1+8
length i
                                                                             p[2]+r[2]=5+5
                                               10
                                                            p[1]+r[1] = 1+1
price p_i
                                      20
                                                                             p[3]+r[1]=8+1
                        10
                                               30
                                                            p[2]+r[0] = 5+0
                                                                             p[4]+r[0]=9+0
```

n-inch rod cutting $\begin{vmatrix} i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ r[i] & 0 & 1 & 5 & 8 & 10 & 13 & 17 & 18 & 22 & 25 & 30 \\ s[i] & 0 & 1 & 2 & 3 & 2 & 2 & 6 & 1 & 2 & 3 & 10 \end{vmatrix}$

- 자르는 방법은 2ⁿ⁻¹ 가지가 있다.
- 7 = 2+2+3 로 자르면 수익은 r_7 = 5 + 5 + 8 = 18

```
r_1 = 1 from solution 1 = 1 (no cuts),
                                                    best among 1+1 and 2
      r_2 = 5 from solution 2 = 2 (no cuts),
     r_3 = 8 from solution 3 = 3 (no cuts),
                                                    best among 1+1+1, 1+2 and 3
     r_4 = 10 from solution 4 = 2 + 2,
                                                    best among 1+1+1+1, 1+1+2, 1+3, 2+2, 4
     r_5 = 13 from solution 5 = 2 + 3,
      r_6 = 17 from solution 6 = 6 (no cuts),
      r_7 = 18 from solution 7 = 1 + 6 or 7 = 2 + 2 + 3.
      r_8 = 22 from solution 8 = 2 + 6,
      r_9 = 25 from solution 9 = 3 + 6,
     r_{10} = 30 from solution 10 = 10 (no cuts).
n = i_1 + i_2 + \cdots + i_k \supseteq \square r_n = p_{i_1} + p_{i_2} + \cdots + p_{i_k}
```

Dynamic Programming

- 표(table)를 만들어 채워가면서 답을 구하는 방법
- Divide and Conquer 와의 차이점 : overlaps in subproblems
- meaning of "programming" here: tabular method
- used in solving optimization problem
 - find an optimal solution, as opposed to the optimal solution

r_i for i < n 으로부터 r_n 을 구할 수 있다.

→ optimal substructure 를 가졌다.

$$=> r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

행렬 곱셈 C = ABMATRIX-MULTIPLY (A, B)**if** $A.columns \neq B.rows$ error "incompatible dimensions" **else** let C be a new A.rows \times B.columns matrix for i = 1 to A. rows for j = 1 to B. columns $c_{ij} = 0$ for k = 1 to A. columns $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ return C $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 6 & 3 \\ 5 & 2 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 1*6+2*5+3*4 & 1*3+2*2+3*1 \\ 4*6+5*5+6*4 & 4*3+5*2+6*1 \end{pmatrix}$ $=\Theta(A.rows \times B.columns \times A.columns)$

행렬 곱셈의 교환법칙은 성립하지 않음
$$AB \neq BA$$

행렬 곱셈의 결합법칙은 성립 $A(BC) = (AB)C$

15.2 Matrix-chain multiplication

• 여러 개의 행렬을 곱할 때 곱셈 순서에 따라 연산 갯수가 달라진다.

```
MATRIX-MULTIPLY (A, B)

1 if A.columns \neq B.rows

2 error "incompatible dimensions"

3 else let C be a new A.rows \times B.columns matrix

4 for i = 1 to A.rows

5 for j = 1 to B.columns

6 c_{ij} = 0

7 for k = 1 to A.columns

8 c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}

9 return C

A<sub>1</sub>: 2 \times 3 A<sub>2</sub>: 3 \times 5 A<sub>3</sub>: 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1 A_2 A_3: 2 \times 5 \times 6 \rightarrow A_1
```

행렬 곱셈의 순서를 정하는 문제 (곱셈을 하는 게 아님)

$$(A_1(A_2(A_3A_4)))$$

 $(A_1((A_2A_3)A_4))$
 $((A_1A_2)(A_3A_4))$
 $((A_1(A_2A_3))A_4)$
 $(((A_1A_2)A_3)A_4)$

중에서 어떤 순서로 연산하는 것이 scalar 곱셈 횟수가 최소화될까?

brute-force approach

• Exhaustive search when n = 4 $(A_1(A_2(A_3A_4)))$ P(n): n 개의 행렬을 괄호로 묶는 서로 다른 방법의 수 $(A_1((A_2A_3)A_4))$ $((A_1A_2)(A_3A_4))$ $P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k) P(n-k) & \text{if } n \ge 2. \end{cases} = \Omega(2^n)$ $((A_1(A_2A_3))A_4)$ $(((A_1A_2)A_3)A_4)$ 4..4 •3..4 overlapping 1...1 subproblem 3..3

Dynamic Programming for solving matrix chain multiplication

- 1. 최적해의 구조적 특징을 찾는다.
- 2. 최적해의 값을 재귀적으로 정의한다.

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j. \end{cases}$$

 $m[i,j]: A_i$ x... x A_j 의 곱을 optimal 순서로 곱했을 때 연산의 횟수 $p_k: A_k$ 의 column 의 갯수 = A_{k+1} 의 row 의 갯수 단 p_0 는 A_l 의 row의 갯수 따라서 $\rightarrow A_k$ 의 크기는 p_{k-1} x p_k

matrix	A_1	A_2	A_3	A_4	A_5	A_6	 P_{θ}	P_1	P_2	P_3	P_4	P_5	P_6
dimension	30 × 35	35 × 15	15 × 5	5 × 10	10 × 20	20 × 25	30	35	15	5	10	20	25

3. 최적해의 값을 일반적으로 상향식 방법으로 계산한다.

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j. \end{cases}$$

을 recursive call 로 구현하면 $\Omega(2^n)$

- optimal substructure 를 가지고 subproblem 들이 overlapped 되어있다.
- → dynamic programming 의 조건

 r_i for i < n 으로부터 r_n 을 구할 수 있다. \rightarrow optimal substructure 를 가졌다.

P_{θ}	P_{I}	P_2	P_3	P_4	P_5	P_6	m[i,j] : (<i>l=j-i+1</i> : 곱하는 행렬의 갯수)
30	35	15	5	10	20	25	$A_{i}A_{j}$ 를 계산하는데 필요한 곱셈 연산의 최소갯수 $^{\prime\prime\prime}$
				\			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
MA	TRIX-	Снаі	N-OF	RDER	(<i>p</i>)		i 11 975 10 500 i
1	n =	p.ler	igth -	- 1 (n	=6)		3 9,375 7,125 5,375 4
2	let m	[11	ı, 1	n] an	d <i>s</i> [1	n -	[-1,2n] be new tables $[2,7,875,4,375,2,500,3,500]$
3	for i	= 1	to n				1 15,750 2,625 750 1,000 5,000 6
4	1	m[i, i]] = 0)			
5						// l	is the chain length $0 0 0 0 0$
6	1	for i	= 1 t	io n –	l +	1	A_1 A_2 A_3 A_4 A_5 A_6
7		j	=i	+ l -	- 1		m[1,1] m[6,6]
8		n	i[i,j]	$ = \circ$	0		i
9		fe	$\mathbf{r} k =$	= i t o	j –	1	
10			q	= m	[i,k]	+m[$[k+1,j] + p_{i-1}p_kp_j$
11			if	q < n	n[i, j]	
				m	[,j]:	= a	
12				/// [/	\cdot, J] -	4	m[6 1] is not used
12 13					[j]		m[6,1] is not used

return m and s

P_{θ}	P_{I}	P_2	P_3	P_4	P_5	P_6		
30	35	15	5	10	20	25		
				\	\		•	
MA	TRIX-	Снаі	N-OF	RDER	(<i>p</i>)			
1	n =	p.ler	ıgth -	- 1 (n	=6)			
2		_		\		n –	-1,2n] be new table	les
3		= 1		,				<i>l</i> =2
4] = 0)				$i=1\sim$
5	for l	= 2	to n			// l i	is the chain length	j=i+1
6	1		= 1 t			1		
7		j	=i	+ l -	- 1			
8		n	$\imath[i,j]$	= 0	∞			
9		fe	or k :	= i t	o j —	1		
10			q	= m	[i, k]	+m[$[k+1,j] + p_{i-1}p_kp_j$	j
11			if	q < r	n[i, j]		m[2
12				m[[i,j]:	= q		A ₂ A
13				s[i]	, j] =	= <i>k</i>		A ₂ (

```
l=6
                         m
             i=1\sim n-5(=1)
            j=i+5
                       (15,125)
                   (11,875)(10,500)
               9,375
                       7,125
                                5,375
           7,875
                            2,500
                                    3,500
                   4,375
                                1,000
      15,750
               2,625
                        750
                                        5,000
                                      0
            A_2
                     A_3
                             A_4
                                      A_5
                                              A_6
    A_1
 m[1,2]: (l≠2 일 때 계산됨)
 A<sub>1</sub>A<sub>2</sub> 를 계산하는데 필요한 곱셈 연산의 갯수
 = p_0 x p_1 x p_2 = 30x35x15 = 15750
[2,4] : (l=3 일 때 계산됨)
A<sub>3</sub>A<sub>4</sub> 를 계산하는데 필요한 곱셈 연산의 최소갯수
(A_3A_4) or (A_2A_3)A_4
```

14 **return** *m* and *s*

computing m[2,5]

MATRIX-CHAIN-ORDER (p)

$$1 \quad n = p.length - 1$$

2 let
$$m[1...n, 1...n]$$
 and $s[1...n-1, 2...n]$ be new tables

3 **for**
$$i = 1$$
 to n

$$4 m[i,i] = 0$$

5 for
$$l = 2$$
 to n when $l=4$ // l is the chain length

for
$$i = 1$$
 to $n - l + 1$ *when* $i = 2$

$$j = i + l - 1 \qquad j = 5$$

$$m[i,j] = \infty$$

for
$$k = i$$
 to $j - 1$

$$q = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$$

if
$$q < m[i, j]$$

$$m[i,j] = q$$

$$s[i,j] = k$$

14 **return** m and s

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimension	30×35	35×15	15×5	5×10	10×20	20×25

m[2,5]: $A_2A_3A_4A_5$ 를 계산하는데 필요한 곱셈 연산의 갯수 중 최소값

Time complexity = $O(n^3)$

```
MATRIX-CHAIN-ORDER (p)
 1 \quad n = p.length - 1
 2 let m[1...n, 1...n] and s[1...n-1, 2...n] be new tables
 3 for i = 1 to n
    m[i,i]=0
    for l = 2 to n // l is the chain length for i = 1 to n - l + 1 j = i + l - 1
             m[i,j] = \infty
              for k = i to j - 1

q = m[i, k] + m[k + 1, j] + p_{i-1}p_k p_j
10
                   if q < m[i, j]
                        m[i,j] = q
                        s[i, j] = k
13
     return m and s
```

MATRIX-CHAIN-ORDER
$$(p)$$
 $\Theta(n^3)$ Time Complexity $\sum_{l=2}^n \sum_{i=1}^{n-l+1} \sum_{k=i}^{j-1} c$ 3 for $i=1$ to n $m[i,i]=0$ $\sum_{l=2}^n \sum_{i=1}^{n-l+1} \sum_{k=i}^{l+l-2} c$ $\sum_{l=2}^n \sum_{i=1}^{n-l+1} \sum_{k=i}^{l+l-2} c$ $\sum_{l=2}^n \sum_{i=1}^{n-l+1} (l-1)c$ $\sum_{l=2}^n \sum_{i=1}^{n-l+1} (l-1)c$ $\sum_{l=2}^n \sum_{i=1}^{n-l+1} (n-i)i$ $\sum_{l=0}^n c = (n+1)c$ $\sum_{l=0}^n c = (n+1)c$ $\sum_{l=0}^n c = (n-1)c$ $\sum_{l=0}^n c = (n-1)c$

```
PRINT-OPTIMAL-PARENS (s, i, j)
```


곱셈 횟수 = m[1,6] = 15125 회

$$((A_1(A_2A_3))((A_4A_5)A_6))$$

```
m[1,6]:
         A<sub>1</sub>A<sub>2</sub>A<sub>3</sub>A<sub>4</sub>A<sub>5</sub>A<sub>6</sub> 를 계산하는데 필요한 곱셈 연산의 갯수 중 최소값
MATRIX-CHAIN-ORDER (p)
    n = p.length - 1
 2 let m[1...n, 1...n] and s[1...n-1, 2...n] be new tables
     for i = 1 to n
         m[i,i] = 0
    for l = 2 to n // l is the chain length
         for i = 1 to n - l + 1
              j = i + l - 1
              m[i,j] = \infty
              for k = i to j - 1
                   q = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j
                   if q < m[i, j]
                       m[i,j] = q
                       s[i,j] = k
```


10

13

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimension	30×35	35×15	15×5	5×10	10×20	20×25

m

15.3 elements of dynamic programming

• matrix multiplication 을 dynamic programming 으로 풀 수 있는가?

```
SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)
 1 n = A.rows
 2 let C be a new n \times n matrix
 3 if n == 1
    c_{11} = a_{11} \cdot b_{11}
 5 else partition A, B, and C as in equations (4.9)
        C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
         C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
        C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
 8
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
        C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
    return C
```

elements of dynamic programming 1

• Optimal substructure : 문제의 최적해가 subproblem 의 최적해를 포함한다.

elements of dynamic programming 2

• Overlapping subproblems : 최적화 문제의 부분 문제를 풀기 위한 재귀 알고리즘이 같은 문제를 반복해서 푼다.

15.4 Longest common subsequence (LCS)

• subsequence $Z = \langle z_1, z_2, \dots, z_k \rangle$ of sequence $X = \langle x_1, x_2, \dots, x_m \rangle$ 단조 증가하는 X 의 인덱스 시퀀스 $\langle i_1, i_2, \dots, i_k \rangle$ such that $x_{ij} = z_j$ 가 있다. i.e. $X = \langle A, B, C, B, D, A, B \rangle$

i.e.
$$X = \langle A,B,C,B,D,A,B \rangle$$

 $| \Box |$ subsequence Z = <B,C,D,B> for <2,3,5,7>

common subsequence Z of X and Y : Z is subsequence of X, and of Y.

brute-force approach for finding LCS Z of X and Y

- LCS: Longest Common Subsequence
- X의 모든 subsequence X'를 찾음 (2^m 개, m=X의 길이)
- X'이 Y의 subsequence 인지 확인하고 가장 긴 것을 찾음
- $=O(n2^m)$ n=Y의 길이

Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

$$X_{m-1} = \langle x_1, x_2, ... x_{m-1} \rangle$$

concatenation of X and $a: X|a = \langle x_1, x_2, ... x_m, a \rangle$

Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.

X = ABACAB Y = BCACCBZ = BACB

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .
- $oldsymbol{1}.~~ extbf{X}~ ext{ Y}~ ext{ Y}~ ext{ P}~ ext{ U}~ ext{ V}~ ext{ Y}~ ext{ Y}~ ext{ V}~ ext{ Y}~ ext{ V}~ ext{ V}~$

proof by contradiction)

 $z_k \neq x_m$ 라면 (1) $Z|x_m 는 X 와 Y 의 common subseq. 이다. <math>Z|x_m 의 길이가 k+1$ 이므로 $Z 는 LCS 가 아니다. 모순. 따라서 <math>z_k = x_m = y_n$.

(2) 그러면 Z_{k-1} 은 X_{m-1} 의 subseq. 이면서 Y_{n-1} 의 subseq.이다. 즉, X_{m-1} 과 Y_{n-1} 의 common subseq.이다. 그런데 Z_{k-1} 이 X_{m-1} 과 Y_{n-1} 의 LCS 가 아니라면 k-1 보다 길이가 긴 LCS W가 있을텐데 $W|x_m$ 은 X와 Y의 common subsequence 이고 길이는 k보다 크다. 그러면 Z는 LCS가 아니다. 모순. 따라서 Z_{k-1} 은 X_{m-1} 과 Y_{n-1} 의 LCS 이다.

Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.

X = ABACABAY = BCACBBC

Z = BACB

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .
- 2. X 와 Y 의 마지막 글자가 다른 경우 LCS Z의 마지막 글자가 x_m 이 아니면 Z는 X_{m-1} 과 Y 의 LCS 이다.

proof by contradiction)

 $Z_k \neq X_m$ 라면 Z는 X_{m-1} 의 subsequence 이고 Y의 subsequence 이다. 즉, Z는 X_{m-1} 과 Y의 common subsequence 이다. X_{m-1} 과 Y의 common subsequence W가 있고 그 길이가 k보다 크다면 그 W 가 X와 Y의 LCS 가 될 것이므로 Z는 X와 Y의 LCS가 될 수 없다. 모순 \rightarrow 따라서 Z는 X_{m-1} 과 Y의 LCS 이다.

Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.

X = ABACAB Y = BCACCBC Z = BACB

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

3. X 와 Y 의 마지막 글자가 다른 경우 LCS Z의 마지막 글자가 y_n 이 아니면 Z는 X 과 Y_{n-1} 의 LCS 이다.

proof by contradiction)

 $Z_k \neq y_n$ 라면 Z는 X의 subsequence 이고 Y_{n-1} 의 subsequence 이다. 즉, Z는 X과 Y_{n-1} 의 common subsequence 이다. X과 Y_{n-1} 의 common subsequence W가 있고 그 길이가 k보다 크다면 그 W 가 X와 Y의 LCS 가 될 것이므로 Z는 X와 Y의 LCS가 될 수 없다. 모순 \rightarrow 따라서 Z는 X 과 Y_{n-1} 의 LCS 이다.

Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences, and let Z = $\langle z_1, z_2, \ldots, z_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} . 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y. 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i-1,j],c[i,j-1]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

 $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_i.$

$$X = \langle a, t, o, m \rangle$$
 and $Y = \langle a, n, t \rangle$

LCS-LENGTH(X, Y) X₁(A)와 Y₅(BDCAB)의 LCS 길이 m = X.length $2 \quad n = Y.length$ let b[1..m, 1..n] and c[0..m, 0..n] be new tables Dfor i = 1 to mc[i, 0] = 0 X_i for j = 0 to nAc[0, j] = 0Bfor i = 1 to m Xˌ와 Yˌ의 LCS를 찾음 for j = 1 to nif $x_i == y_i$ 10 dase 1 c[i, j] = c[i - 1, j - 1] + 111 12 b[i,j] ="\\" D**elseif** $c[i - 1, j] \ge c[i, j - 1]$ 13 c[i,j] = c[i-1,j]14 case 2or3 7 15 $b[i,j] = "\uparrow"$ **else** c[i, j] = c[i, j-1]16

```
LCS-LENGTH(X, Y)
                                                           X<sub>7</sub>(ABCBDAB)와 Y<sub>6</sub>(BDCABA)의 LCS 길이
    m = X.length
    n = Y.length
    let b[1..m, 1..n] and c[0..m, 0..n] be new tables
                                                                                D
    for i = 1 to m
      c[i, 0] = 0
                                                                   X_i
    for j = 0 to n
                                                                   A
         c[0, j] = 0
                                                                   B
    for i = 1 to m
                              X<sub>i</sub>와 Y<sub>i</sub>의 LCS를 찾음
         for j = 1 to n
             if x_i == y_i
10
                                                dase 1
                 c[i, j] = c[i - 1, j - 1] + 1
11
                  b[i,j] = "\\"
12
                                                                   D
             elseif c[i - 1, j] \ge c[i, j - 1]
13
                  c[i,j] = c[i-1,j]
14
                                                   -case 2or3 7
15
                  b[i,j] = "\uparrow"
              else c[i, j] = c[i, j - 1]
16
```

```
LCS-LENGTH(X, Y)
 1 m = X.length
2 n = Y.length
 3 let b[1..m, 1..n] and c[0..m, 0..n] be new tables
 4 for i = 1 to m
 5 	 c[i,0] = 0
 6 for j = 0 to n
   c[0, j] = 0
   for i = 1 to m
        for j = 1 to n
             if x_i == y_i
10
                 c[i, j] = c[i-1, j-1] + 1
11
12
                 b[i,j] = "\\\"
13
             elseif c[i - 1, j] \ge c[i, j - 1]
                 c[i, j] = c[i - 1, j]
14
                 b[i,j] = "\uparrow"
15
             else c[i, j] = c[i, j - 1]
16
                 b[i,j] = "\leftarrow"
17
18
    return c and b
```

 $=\Theta(mn)$


```
PRINT-LCS(b, X, i, j)

1 if i == 0 or j == 0

2 return

3 if b[i, j] == \text{``\cdot'}

4 PRINT-LCS(b, X, i - 1, j - 1)

5 print x_i

6 elseif b[i, j] == \text{``\cdot'}

7 PRINT-LCS(b, X, i - 1, j)

8 else PRINT-LCS(b, X, i, j - 1)
```


step 4. constructing LCS : PRINT-LCS(b,X,m,n)

5

5


```
PRINT-LCS(b,X,7,6)
PRINT-LCS(b, X, 6, 6)
PRINT-LCS(b,X,5,5) "A"
PRINT-LCS(b,X,4,5)
PRINT-LCS(b,X,3,4) "B"
PRINT-LCS(b,X,3,3)
PRINT-LCS(b,X,2,2) "C"
PRINT-LCS(b,X,2,1)
```

```
PRINT-LCS(b, X, i, j)

1 if i == 0 or j == 0

2 return

3 if b[i, j] == \text{``\[ \text{`'} \text{`'} \text{PRINT-LCS}(b, X, i - 1, j - 1) }

5 print x_i

6 elseif b[i, j] == \text{``\[ \text{''} \text{`'} \text{PRINT-LCS}(b, X, i - 1, j) }

8 else PRINT-LCS(b, X, i, j - 1)
```



```
PRINT-LCS(b,X,7,6)
PRINT-LCS(b, X, 6, 6)
PRINT-LCS(b,X,5,5) "A"
PRINT-LCS(b,X,4,5)
PRINT-LCS(b,X,3,4) "B"
PRINT-LCS(b,X,3,3)
PRINT-LCS(b,X,2,2) "C"
PRINT-LCS(b,X,2,1)
PRINT-LCS(b,X,1,0) "B"
```


