0

O

- State and Prove that Pythagoras Theorem:
 OR
- State and Prove that Baudhayan Theorem:

It States that

"In right angle triangle, Square of length of the hypotenuse is equal to the sum of square of length of other two sides.

Given Data: $\angle A$ is a right angle in $\triangle ABC$.

To Prove: $BC^2 = AB^2 + AC^2$ Proof: Let $\overline{AD} \perp \overline{BC}$, $D \in \overline{BC}$

 $\angle B$ and $\angle C$ are acute angle in $\triangle ABC$.

$$B - D - C$$

$$\therefore BC = BD + DC$$

Now, Using Corollary

$$\therefore AB^2 = BD \times BC \text{ and } AC^2 = DC \times BC$$

$$AB^{2} + AC^{2} = BD \times BC + DC \times BC$$

$$= BC(BD + DC)$$

$$= BC^{2}$$

[From 1]

(: Co-linear)

(1)

Hence Proved

• Converse of Pythagoras Theorem:

It States that

"In a triangle, if square of one side is equal to the sum of squares of the other two sides, then the angle opposite to the first side is a right angle.

Given Data: $AC^2 = AB^2 + BC^2$

To Prove: $\angle B$ is a right angle in $\triangle ABC$.

Proof: We can construct a $\triangle PQR$ right angled at Q such that PQ = AB and QR = BC.

Now, from ΔPQR , we have:

$$PR^2 = PQ^2 + QR^2$$

(Pythagoras Theorem, as $\angle Q = 90^{\circ}$)

$$PR^2 = AB^2 + BC^2$$

$$(By\ Construction)$$
 (1)

But
$$AC^2 = AB^2 + BC^2$$

$$(Given)$$
 (2)

So,
$$AC = PR$$

So,

But

So,

$$[From (1)\& (2)]$$
 (3)

Now, in $\triangle ABC$ and $\triangle PQR$,

$$AB = PQ$$

$$BC = QR$$

$$AC = PR$$
So,
$$\Delta ABC \cong \Delta PQR$$
Therefore,
$$\angle B = \angle Q$$

$$But
$$\angle O = 90^{\circ}$$$$

[Proved in (3)above] (SSS Congruence)

(CPCT)

(By Construction)

Hence Proved

Basic Proportionality Theorem OR Thales Theorem

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Given: In the plane of $\triangle ABC$, a line $l \mid \mid \overline{BC}$ and l intersects \overline{AB} and \overline{AC} at points P and Q respectively.

To Prove:
$$\frac{AP}{PB} = \frac{AQ}{QC}$$

Proof: Let $\overline{QM} \perp \overline{AB}$, and $\overline{PN} \perp \overline{AC}$. Construct \overline{BQ} and \overline{CP} .

Area of triangle = $\frac{1}{2} \times base \times altitude$

 $\angle B = 90^{\circ}$

$$\therefore Area \ of \ \Delta APQ = \frac{1}{2}AP \times QM$$

Area of
$$\triangle PBQ = \frac{1}{2}PB \times QM$$

$$\therefore \frac{Area\ of\ \Delta APQ}{Area\ of\ \Delta PBQ} = \frac{\frac{1}{2}AP \times QM}{\frac{1}{2}PB \times QM} = \frac{AP}{PB}$$

Also Area of $\triangle APQ = \frac{1}{2}AQ \times PN$

Area of
$$\triangle CPQ = \frac{1}{2}QC \times PN$$

$$\therefore \frac{Area\ of\ \Delta APQ}{Area\ of\ \Delta PCQ} = \frac{\frac{1}{2}AQ\times PN}{\frac{1}{2}QC\times PN} = \frac{AQ}{QC}$$

 ΔPBQ and ΔPCQ are having common base \overline{PQ} and they are lying between two parallel lines \overrightarrow{PQ} and \overrightarrow{BC}

Area of
$$\triangle PBQ = Area$$
 of $\triangle PCQ$
From (i), (ii) and (iii) $\frac{AP}{PB} = \frac{AQ}{QC}$.

Areas of two similar triangles are proportional to squares of corresponding sides.

Given:Correspondence ABC \leftrightarrow *PQR* of \triangle ABC and \triangle PQR is a similarity.

To prove
$$\frac{ABC}{PQR} = \frac{AB^2}{PQ^2} = \frac{BC^2}{QR^2} = \frac{AC^2}{PR^2}$$

Proof: Draw altitudes \overline{AL} and \overline{PN} .

The correspondence ABC $\leftrightarrow PQR$ is a similarity.

(AA)

(iii)

$$\therefore \angle B \cong \angle Q$$

And
$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$$
 gives $\frac{AB^2}{PQ^2} = \frac{BC^2}{QR^2} = \frac{AC^2}{PR^2}$

In $\triangle ABL$ and $\triangle PQN$,

$$\angle B \cong \angle Q$$

$$\angle ALB \cong \angle PNQ$$

(Right Angle)

 \therefore The correspondence $ABL \leftrightarrow PQN$ is a similarity.

$$\therefore \frac{AB}{PQ} = \frac{AL}{PN}$$

$$\therefore \frac{AL}{PN} = \frac{AB}{PQ} = \frac{BC}{QR}$$
(ii)

Now, area of triangle = $\frac{1}{2}$ base × altitude

$$\frac{ABC}{PQR} = \frac{\frac{1}{2}BC \cdot AL}{\frac{1}{2}QR \cdot PN}$$

$$= \frac{BC}{QR} \times \frac{AL}{PN} = \frac{BC}{QR} \times \frac{BC}{QR} = \frac{BC^2}{QR^2}$$

[Using (ii)]

$$\therefore \frac{ABC}{PQR} = \frac{AB^2}{PQ^2} = \frac{BC^2}{QR^2} = \frac{AC^2}{PR^2}$$

• A tangent to a circle is perpendicular to the radius drawn from the point of contact.

Given: Line *l* is tangent to the circle with centre O radius *r* at point A.

To Prove: $\overline{OA} \perp l$

Proof: Let $P \in l, P \neq A$.

If P is in the exterior of circle with centre O radius r, then the line l will be a secant of the circle and not a tangent. But l is a tangent of the circle, so P is not in the interior of the circle. Also $P \neq A$.

 \therefore P is the point in the exterior of the circle.

$$\therefore$$
 OP > OA.

 (\overline{OA}) is the radius of the circle)

Therefore each point $P \in l$ except A satisfies the inequality OP > OA.

Therefore OA is the shortest distance of line / from O.

 $\overline{OA} \perp l$

Hence Proved

In the figure line I and circle with centre O and radius r in plane α and the line I is perpendicular to radius \overline{OA} at the end point A which is on the circle.

If P is any point on I, then

OA < OP because $\overline{OA} \perp I$

∴ OP > OA. Therefore OP > r

Therefore all point like P on I are in the exterior of circle with centre O radius r.

 \therefore Line *I* intersect the circle with centre O radius *r*. Hence *I* is a tangent to the circle at O.

Hence Proved

