Introduction to Computer Organization

Final Exam 605.204 Summer 2017

				and OUTDI
	· · · · · · · · · · · · · · · · · · ·		,	and OUTPO
The hardware ab What are these for	ove provides the founctions?	our basic function	s that every compu	ter performs
data	,	data		
data	,	and		•
How are negativ	e integer numbers	represented on th	ne MIPS machines	?
A) ASCII. B) 1	's complement. C)	2's complement.	D) negative integr	ers are not a
				1 1 11
programs, such a	language programs s C++, for the same True / False)			gh-level lan

Ala	n Turing	A) - ENIAC
	L0pht	
J. Prespe		C) - computing theory
	G. Cerf	
What is	the purpose of	each of the following MIPS assembler directives:
.globl _		
.text _		
.word _		
.asciiz		
		inary fraction (total of 8 bits) For example 0.75 = 0.1100 0000
Convert	0.435 to a b	inary fraction (total of 8 bits) For example 0.75 = 0.1100 0000
Convert	0.435 to a b	

- 14) Floating point arithmetic has problems different from integer arithmetic.
- (3) Which of these floating point arithmetic statements are **True** and which are **False**?
 - A) Addition of two positive numbers will never overflow.
 - B) Addition of a positive and a negative number will never overflow.
 - C) Multiplication of a positive and a negative number will never overflow.
- 15) What is the **primary** reason a two-pass assembler is necessary rather than a one-pass assembler?
- (1)
- A) Instructions may vary in length.
- B) Symbols need to be stored in the symbol table.
- C) Symbols may be defined before they are used as operands.
- D) Symbols may be used as operands before they are defined.
- 16) Computer Arithmetic has a problem called 'Overflow'. Simply what is this problem?
- (1)
- 17) Generate the hexadecimal <u>object machine code</u> for each line in the following MIPS source
- (20) program. (Use the Green reference card) Values are decimal numbers.

(For example: sub \$s4, \$s2, \$s1 = 0251 A022)

.text 2044

.globl strcpy # subroutine for memory copy of a string from A to B

strcpy: add \$t0, \$zero, \$zero # index to the next character to copy

loop: add \$t1, \$t0, \$a0 # t1 has address of A

lb \$t2, 0(\$t1) # get the next character

add \$t3, \$t0, \$a1 # t3 has the address of B

sb \$t2, 0(\$t3) # copy it

beq \$t2, \$zero, finish # if it is null character, then finished

addi \$t0, \$t0,1 # increment the index

j loop # continue the copy

finish: jr \$ra # return from the subroutine

BGT \$s4, \$t1, AGAIN
The MIDC bendered does not be seen that the second distance with the Wiles Co.
The MIPS hardware does not have a subtract immediate instruction. Why?
The MIPS architecture has five Addressing Modes . For each of the modes, give an example of an instruction that uses each.
Base
Register
Immediate
Pseudo Direct
Program Counter
Floating point numbers are stored in Normalized format. Give three reasons
A)
B)
C)
From the discussion readings: What was the first Internet 'killer app'?
What decimal value does this bit pattern:
0000 0000 0000 0000 0000 0000 0000 0000
represent (exactly) in the IEEE 754 format?

Write the MIPS Assembler pair of <u>hardware</u> instructions for this pseudoinstruction:

18)

Convert the following decimal value to its MIPS floating point binary value: (IEEE 754 32-bit format) Show result as hex digits. 8765.75
Identify which of these Assembly process functions would most likely occur in
1) Pass one or 2) Pass two of a two-pass assembler
a) Translate mnemonic operation codes to machine codes
b) Save addresses assigned to labels
c) Scan for label definitions
d) Write object code
Match the statements (a - e) with the most appropriate Object Program record type:
D) Data Segment S) Symbol
H) Header T) Text Segment
R) Relocation
a) Object instruction code.
b) Relative address of global symbol.
c) Modification information.
d) Program name.
e) Data values.
e) Data values.
Does the MIPS assemble language allow for arithmetic with 1-byte and 2-byte operands?
Yes / No? Why?

(1)	(True / False)
29) (1)	Register \$t5 contains a negative 32-bit value in two's complement form. After performing a 1-bit sll instruction, followed by a 1-bit srl instruction. Register \$t5 would contain the absolute value of the original value. (True / False)
30) (4)	The IEEE 754 floating point standard includes these objects. What they are, and how they are used ??
	Guard Bit :
	Round Bit :
	Sticky Bit :
	NaN :
5 1) 2)	What is RAID 1 ?
(2)	Which of the following is a primary characteristic of System Software ?
1)	 A) It is totally machine independent. B) Will run on any PC or Unix machine. C) Supports the operation of a specific computer. D) Calculates employee paychecks.
33) (2)	What is the primary purpose of Pass One of the Two-pass Linker/Loader?
34) (1)	A process that is BLOCKED must wait for an event to occur before it can resume processing. (True / False)

Natural languages are clear and concise, and therefore suitable for use as programming languages.

28)

Prog	gram ONE uses a large amount of CPU time and little I/O. Gram TWO uses a small amount of CPU time but performs a large number of I/O op och program should get the higher priority for dispatching the single CPU? Why?
to w	purpose of the Main Frame Operating System Job Scheduler is to assign resourses aiting program processes. The Scheduler has a priority scheme. the names of two of these schemes.
	Grammar describes the (A) SEMANTICS or (B) SYNTAX of the ramming language.
The	I / O Channel causes an I / O Interrupt when the I / O process completes. (True / False)
A) \$	purpose of Interrupts and the Interrupt Processing is to Stop the computer when a fault occurs.
	Slow down the processing of programs. Enable the operating system to efficiently process several concurrent programs.
Give	en this binary bit pattern, what is the MIPS instruction as Assembly Language:
1000	0 1101 0010 1000 0000 0100 1011 0000
One	of the two basic functions of any Operating System is to provide the programming

42) Given this Intermediate File of a Compiler:

(8)

(1)	:=	#1		Indx
(2)	JGT	Indx	#25	(20)
(3)	-	Indx	#1	t1
(4)	*	t1	#10	t2
(5)	*	#2	MLK	t3
(6)	-	t3	#1	t4
(7)	-	t4	#1	t5
(8)	+	t2	t5	t6
(9)	*	t6	#4	t7
(10)	-	Indx	#1	t8
(11)	*	t8	#10	t9
(12)	*	#2	MLK	t10
(13)	-	t10	#1	t11
(14)	+	t9	t11	t12
(15)	*	t12	#4	t13
(16)	:=	ZYX[t13]		CBA[t7]
(17)	+	#1	Indx	t14
(18)	:=	t14		Indx
(19)	JMP			(2)
(20)				

Optimize the code.

Mark which statements would be moved, modified, or removed. Machine independent code optimization uses many techniques. List the optimization methods you used.

In a few phrases, describe these components SCANNER -	of a compiler.
SCANNER -	
PARSER -	
CODE GENERATOR -	
From the discussion readings: What is Ubunt	ru?
Machine independent code optimization uses discussed in the presentation that you did no	, ,
Match the following terms with the most cor	rect definition.
1) CHANNEL PROGRAM	A) Set of programs in a Circular Wait.
2) CONTEXT SWITCHING	B) Set mask to prevent Interrupt Processing
3) DEAD - LOCK	C) Register containing interrupt mask
4) DISPATCHING	D) Set of instructions for special i/o
5) STORAGE PROTECTION KEY	E) Select next program to process by CPU
6) INHIBIT INTERRUPT	F) Data area used by the Memory Manager
7) PAGE TABLE MAP	G) Saving / restoring registers by Interrupt Processo
8) PROGRAM STATUS WORD	H) Half byte used for memory access control.

In many operating systems, the Timer Interrupt (the assigned time interval is used up) is a a lower priority than the Operating System Service Request Interrupt. Why is this done
Once the operating system detects that a Deadlock has occured, how does it resolve the conflict between the processes? List two methods. A)
B)
What actions must the Operating System perform when an interrupt is recognized ? A)
B)
Is it ever safe (you do not lose data values) for a MIPS user program to use registers \$k0 Yes / No ? Why ?
The Textbook, page 36, discusses the Classic CPU Performance Equation. Fill in the blan

< assign > < exp > < term >	<pre>::= < stmt > {; < stmt > } ::= < assign > < read > < write > < for > ::= id := < exp > ::= < term > { + < term > - < term > } ::= < factor > { * < factor > DIV < factor > } ::= id int (< exp >)</pre>
-	bove Grammar to include the exponentiation operation. Make exponentiation ity arithmetic operation.
Create quadr	uples of the form we have used in class for the following <assign> statemen</assign>
ZEE :=	3 * EX - 5 * WHY + EX / WHY;
The Optical I	Mouse includes an embedded processor. (True / False)
•	<u>*</u>
Data Security	(True / False)
Data Security	(True / False) y consists of a number of methods and techniques. Name two.
Data Security	(True / False) y consists of a number of methods and techniques. Name two.