

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr. IPLCO
 Date: 22-08-15

 Time: 9:00 AM to 12:00 Noon
 RPTM-4
 Max.Marks: 360

KEY SHEET

PHYSICS MATHS CHEMIST					
Q.NO ANSWER		Q.NO	ANSWER	Q.NO	ANSWER
1	3	31	1	61	1
2	2	32	2	62	2
3	3	33	1	63	2
4	2	34	1	64	1
5			2		
	4	35		65	1
6	1	36	3	66	2
7	1	37	2	67	1
8	3	38	3	68	4
9	2	39	2	69	3
10	1	40	3	70	3
11	2	41	3	71	4
12	4	42	4	72	2
13	2	43	1	73	2
14	4	44	2	74	1
15	4	45	1	75	4
16	1	46	2	76	2
17	3	47	3	77	1
18	1	48	1	78	4
19	4	49	2	79	1
20	2	50	1	80	1
21	3	51	1	81	3
22	1	52	3	82	3
23	3	53	2	83	1
24	3	54	2	84	1
25	4	55	3	85	1
26	2	56	4	86	4
27	1	57	2	87	2
28	4	58	4	88	2
29	1	59	4	89	3
30	1	60	4	90	3

MATHS

31.

OA=OB,
$$|\underline{AoB} = \alpha \Rightarrow Z_2 = Z_1 cis\alpha$$

 $\Rightarrow Z_2 - Z_1 cos\alpha = Z_1 i \sin \alpha$
 $\Rightarrow Z_2^2 + Z_1^2 cos^2 \alpha - 2Z_1 Z_2 \cos \alpha = -Z_1^2 \sin^2 \alpha$
 $\Rightarrow Z_1^2 + Z_2^2 = 2Z_1 Z_2 \cos \alpha$
 $(Z_1 + Z_2)^2 = 2Z_1 Z_2 (1 + \cos \alpha)$
 $\Rightarrow \frac{p^2}{q} = 2(1 + \cos \alpha) = 4\cos^2 \frac{\alpha}{2}$

32.
$$\sum_{r=1}^{10} (r-w)(r-w^2) = 450 \sin ce \ w + w^2 = -1, w^3 = 1$$

33.
$$z=re^{i\theta}, \overline{z}=re^{-i\theta}$$

$$\left| \frac{z}{r} - \frac{\vec{z}}{r} \right| = \left| 2i \sin \theta \right| \le \left| \arg z - \arg \vec{z} \right|$$

$$\Rightarrow \left| z - \vec{z} \right| \le \left| z \right| \left| \arg z - \arg \vec{z} \right|$$

$$34 put z = x + iy$$

35.
$$\left(\frac{1+i}{1-i}\right)^n = \frac{2}{\pi}\sin^{-1}\left(\frac{x^2+1}{2x}\right)x > 0$$

$$\Rightarrow \left(\frac{1+i}{1-i}\right)^n = \frac{2}{\pi} \cdot \frac{\pi}{2}$$

$$\Rightarrow$$
 least value of n is 4

36.
$$\frac{z^{n}-1}{z-1}=(z-w)(z-w^{2})-(z-w^{n-1})$$

Take 'log' both sides and diff w.r. to z both sides and put z = 2

37.
$$z^5 = (z-1)^5 \Rightarrow |z| = |z-1| = 1 \operatorname{Re}(z) = \frac{-1}{2}$$

$$\therefore$$
 The roots lie on line $\operatorname{Re}|z| = \frac{-1}{2}$

38.
$$\log_2 |(\alpha + \alpha^2 + \alpha^3 + 1) - \alpha^4|$$

Sri Chaitanya IIT Academy

$$\log_2\left|-2\alpha^4\right| = \log_2^2 = 1$$

39.
$$z^{100} - 1 = (z - 1)(z - \alpha_1)(z - \alpha_2)...(z - \alpha_{\infty}) = 0$$

Sum of roots = $1+\alpha_1+\alpha_2+\dots+\alpha_{99}=0$

Sum of roots taken two at a time = 0

$$\Rightarrow \sum_{1 \le i < i \le 99} \alpha_i \alpha_j + \alpha_1 + \alpha_2 + \dots \alpha_{99} = 0$$

$$\Rightarrow \Sigma \alpha_i \alpha_j = 1$$

40.
$$\alpha = cisx$$
, $\beta = cisy$, $\gamma = cisz$ Given

$$\alpha + 2\beta + 3\gamma = 0 \Rightarrow \alpha^3 + 8\beta^3 + 27\gamma^3 = 18\alpha\beta\gamma$$

$$\Rightarrow \sin 3x + 8\sin 3y + 27\sin 3z = 18\sin(x + y + z)$$

$$z_1(z_1^2 - 3z_2^2) = 2$$
 – (1)

41.
$$z_2(3z_1^2 - z_2^2) = 11$$
 - (2)

Multiply (2) by i add to (1) \Rightarrow $(z_1 + iz_2)^3 = 2 + 11i$

Multiply (2) by i substract from (1) $\Rightarrow (z_1 - iz_2)^3 = 2 - 11i$

$$\Rightarrow (z_1 + iz_2)^3 (z_1 - iz_2)^3 = 125$$

$$\Rightarrow (z_1^2 + z_2^2)^3 = 125 \Rightarrow z_1^2 + z_2^2 = 5$$

42. Arg
$$(z-(1+i)) = \begin{cases} \frac{3\pi}{4} & x \le 1 \\ \frac{-\pi}{4} & x > 2 \end{cases}$$

:. The locus of z is Set of two rays

43.
$$x = 6$$
 and $(x-3)^2 + (y+3)^2 = 9 \Rightarrow y = -3$

Sri Chaitanya IIT Academy

44. $OA \perp PA$

$$\frac{z_1}{z_1} + \frac{z - z_1}{z - z_1} = 0$$

Similarly
$$OB \perp PB \implies \frac{z_2}{\overline{z}_2} + \frac{z - z_2}{\overline{z} - \overline{z}_2} = 0$$

On eliminating \bar{z} we get $z = \frac{2z_1z_2}{z_1 + z_2}$

45. $ln \left(\frac{|z-3|^2 + 2}{11|z-3|-2} \right) > 1$

$$\Rightarrow \frac{\left|z-3\right|^2+2}{11\left|z-3\right|-2} < \frac{1}{3}$$

$$\Rightarrow$$
 3 $t^2 + 6 < 11t - 2$

$$\Rightarrow$$
 3 t^2 – 11 t + 8 < 0

$$(3t-8)(t-1) < 0$$

$$1 < |z-3| < 8/3$$

46. For any
$$z_1, z_2 \in \mathbb{C}, |az_1 - bz_2|^2 + |bz_1 + az_2|^2 = (a^2 + b^2)(|z_1|^2 + |z_2|^2)$$

47. The locu1 of z is part of $|z-7-9i| = 3\sqrt{2}$

48.
$$w = \frac{z-1}{z+1}$$

$$\Rightarrow z = \frac{1+w}{1-w}$$

$$|z|=1$$

$$\Rightarrow |1+w| = |1-w|$$

⇒wlies onimaginary axis

$$\therefore \operatorname{Re}(w) = 0$$

49. A(-1, 1) B(5, 1) are diameter ends of a circle and P(z) is on the circle $|z+1-i|^2 + |z-5-i|^2 = AB^2 = 36$

50.
$$\alpha + \beta = -a$$

$$\alpha\beta = b^{2}$$

$$\frac{a^{2}}{b^{2}} = \frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2$$

$$= 2 + \frac{2}{r^2} Re(\alpha \overline{\beta})$$
$$b^2 = ac$$

The equation is $10(x^2 + y^2) - 3i(2x)(2iy) - 6 = 0c$

$$\Rightarrow 5(x^2 + y^2) + 6xy - 8 = 0 \rightarrow (1)$$

Let $(r\sin\theta, r\cos\theta)$ be the point on (1)

then
$$5r^2 + 6r^2 \sin \theta \cos \theta = 0 \Rightarrow r^2 = \frac{8}{5 + 3\sin 2\theta}$$

 $\therefore r_1 + r_2 = 2 + 1 = 3$

53.
$$z_1 = r.e^{i\theta} \Rightarrow \tan \theta = \sqrt{2} - 1 \Rightarrow \theta = \frac{\pi}{8} \Rightarrow 2\theta = \frac{\pi}{4} \Rightarrow n = 8$$

54.
$$z_1 = \frac{1}{2} - 2i \Rightarrow G.E. = \frac{\sqrt{17}}{2} - \tan^{-1}(4)$$

55.
$$G = S \Rightarrow \frac{z_1 + z_2 + z_3}{3} = 1 \Rightarrow z_1 + z_2 + z_3 = 3 \Rightarrow \sum z_1^2 + 2\sum z_1 z_2 = 9 \Rightarrow \frac{9 - \sum z_1^2}{\sum z_1 z_2} = 2$$

56.
$$z^{4} + z^{3} + 2 = (z - z_{1})(z - z_{2})(z - z_{3})(z - z_{4})$$
$$put z = \frac{-1}{2}$$

57. Maximum value of |3+i(3-i)| is $2\sqrt{2}$ $G.E. = \lceil 2\sqrt{2} \rceil = 2$

58.
$$G.E \le 3(4+9+16) \le 87$$

Put z = x + iy and find the vertices, Area = 62 sq.u

60. Clearly
$$z = -\sqrt{3} - 3i \Rightarrow \frac{z}{2\sqrt{3}} = -\left(\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)$$