

COMP3430 / COMP8430 Data wrangling

Lecture 6: Resolving data quality issues and data cleaning (Lecturer: Peter Christen)

Lecture outline

- Data quality issues
- Forms of data pre-processing
- An overview of data cleaning
 - Impute missing data
 - Smooth noisy data
 - Remove duplicate data
 - Resolve inconsistent data
- Summary

Data quality issues

- Various causes of data errors:
 - Data entry errors / subjective judgment
 - Limited (computing) resources
 - Security / accessibility trade-off
 - Complex data, adaptive data
 - Volume of data
 - Redundant data
 - Multiple sources / distributed heterogeneous systems

Forms of data pre-processing

Data cleaning: An overview

- A highly crucial data pre-processing step
- Includes various tasks:
 - Dealing with missing data
 - Handling outliers and noisy data
 - Removing redundant and duplicate data
 - Resolving inconsistencies

Missing data

- One of the most common data quality issues is missing data
- Absence of attribute values due to various reasons
 - Equipment malfunction
 - Not entered due to misunderstanding
 - Not considered important during data entry
 - Deleted due to inconsistency with other values

Impute missing data

- Manual imputation
 - Time consuming and infeasible
- Automatic imputation
 - Global constant (for example, N/A)
 - Mean attribute value
 - Mean value of all records belonging to the same class
 - Inference-based (for example, Bayesian or decision tree) use data mining and machine learning to predict most likely values to impute

Automatic imputation

	Gender	Weight
R1	М	65
R2	М	72
R3	F	54
R4	F	51
R5	M	?
R6	F	?
R7	М	82

Global	Mean	Group mean				
Weight	Weight	Weight				
65	65	65				
72	72	72				
54	54	54				
51	51	51				
N/A	64.8	73				
N/A	64.8	52.5				
82	82	82				

Inference-based

Outliers and noisy data

- Random error or variance in the data
- Incorrect values and errors occur due to
 - Faulty data collection instruments
 - Data entry problems
 - Data transmission problems
 - Technology limitation
 - Misunderstanding of required data
- Depending upon application outliers are important
 - For example fraud detection or national security

Smooth noisy data

- Binning
 - Sort data and partition into equal-frequency bins
 - Smooth by bin means, bin median, bin boundaries
- Regression
 - Smooth by fitting data to regression functions
- Clustering
 - Identify outliers not belonging to clusters
- Manual inspection (active learning) of possible outliers

Binning (1)

- Equal-width / distance
 - Divide the range into N intervals of equal size
 - Width of intervals = (max-min)/N
 - Skewed data is not handled well

- Equal-depth / frequency
 - Divide the range into N intervals of (approximately) same number of samples
 - Suitable for skewed data distributions

Binning (2)

Values	5	27	100	59	28	48	50	39	9	7	20	63	10	41	9
Bins equal-frequency	5	7	9	9	10	20	27	28	39	41	48	50	59	63	100
Smooth by bin means	8	8	8	8	8	31	31	31	31	31	64	64	64	64	64
Smooth by															
bin medians	9	9	9	9	9	28	28	28	28	28	59	59	59	59	59
Smooth by bin boundaries	5	5	10	10	10	20	20	20	41	41	48	48	48	48	100

Regression

To be covered in more detail in the data mining course

Clustering

- Data
- Outliers

To be covered in more detail in the data mining course

Redundant data

- Duplicate records occur within a single data source, or when combining multiple sources
 - The same entity/object might have different values in an attribute
 - One attribute may be a derived attribute in another database
 - Attribute values of the same object entered in different time
- Redundant attributes can be identified by correlation analysis
- Redundant records can be identified by deduplication or data integration (more about this later in the course)

Identifying redundant attributes (1)

- Correlation analysis
 - Numerical attributes (A and B) using Pearson coefficient

$$r = \frac{\sum (A - A_{mean})(B - B_{mean})}{(n-1) A_{std} B_{std}}$$

Categorical attributes (A and B) using chi-square test

$$x^2 = \sum \frac{(observed-expected)^2}{expected}$$

The higher the value the stronger the correlation

Identifying redundant attributes (1)

	Ca	ncer	No o	cancer	Sum (row)
	Observed	Expected	Observed	Expected	
Smoking	250	90	200	360	450
Not smoking	50	210	1000	840	1050
Sum (column)	3	300	1	200	1500

$$x^2 = \frac{(250-90)^2}{90} + \frac{(50-210)^2}{210} + \frac{(200-360)^2}{360} + \frac{(1000-840)^2}{840} = 507.93$$

Therefore, smoking and cancer are highly correlated

Inconsistent data

- Different formats, codes, and standards across different sources (even within a single source)
- Resolving using external reference data
 - Lookup tables
 - E.g. Sydney, NSW, 7000 -> Sydney, NSW, 2000
 - Rules
 - Male or 0 -> M
 - Female or 1 -> F

Summary

- Data cleaning is a crucial data pre-processing step
- The data cleaning cycle includes several tasks:
 - Handling missing values, smoothing noisy data, removing redundant values, and resolving inconsistencies
- Directions of future developments in data cleaning:
 - Efficient data cleaning tools for Big data, automated data cleaning, and interactive data cleaning