CMA6134 - Tutorial 2

Show your calculations correct to SIX decimal places.

- 1. How many steps of Bisection method are required if the tolerance is 10⁻⁴ when the initial interval is [a,b].
- 2. By using the Bisection method, find the root for the following:
 - (a) $f(x) = e^x 3x$, [0.60,0.65], with tolerance 1×10^{-3} .
 - (b) $f(x) = 2x^3 + 3x^2 3x 5$, [1,2], with tolerance 1×10^{-3} .
 - (c) $f(x) = \sin x 0.75$, [0.8,0.9], with tolerance 1×10^{-3} .
- 3. By using the Secant method, find the root for the following:
 - (a) $f(x) = x^2 2x 1$, [2.5,2.6], with tolerance 1×10^{-3} .
 - (b) $f(x) = 2x^3 + 3x^2 3x 5$, [1,2], with tolerance 1×10^{-3} .
 - (c) $f(x) = \sin x 0.75$, [0.8,0.9], with tolerance 1×10^{-3} .
- 4. By using the Newton's method, find the root for the following:
 - (a) $f(x) = e^{-x} \cos x$, $p_0 = 1.6$, with tolerance 1×10^{-3} .
 - (b) $f(x) = 2x^3 + 3x^2 3x 5$, $p_0 = 2$, with tolerance 1×10^{-3} .
 - (c) $f(x) = \sin x 0.75$, $p_0 = 0.9$, with tolerance 1×10^{-3} .
- 5. Estimate the error e_{n+1} in terms of the previous error e_n as Newton's Method converges to the given roots. Is the convergence linear or quadratic?
 - $x^5 2x^4 + 2x^2 x = 0$:
- r = -1.
- r = 1
- (b) $2x^4 5x^3 + 3x^2 + x 1 = 0;$ $r = -\frac{1}{2},$ r = 1

1 KCY/LSL/THL