课程名称: 大学物理A(1)

试卷满分 100 分

考试时间: 2013 年 07 月 01 日 (第 19 周 星期 一)

题号	_	=	21	22	23	24			总分
评卷得分									
评卷签名									
复核得分			·						
复核签名									

- 一、选择题(每题3分,共30分)只有一个答案正确,把正确答案的字母填在答题纸 上,注明题号
- 1. 一质点沿x轴作直线运动,其v-t曲线如图所示,如 t=0时,质点位于坐标原点,则t=4.5s时,质点在x轴 上的位置为 ()

(D)
$$-2 \, \text{m}$$

- 2. 如图,一圆锥摆的摆线长为 l,摆线与竖直方向的夹角为 θ ,则

摆锤转动的周期为(

(A)
$$\sqrt{\frac{l}{g}}$$

(B)
$$\sqrt{\frac{l\cos\theta}{g}}$$

(C)
$$2\pi\sqrt{\frac{l}{a}}$$

(A)
$$\sqrt{\frac{l}{g}}$$
 (B) $\sqrt{\frac{l\cos\theta}{g}}$ (C) $2\pi\sqrt{\frac{l}{g}}$ (D) $2\pi\sqrt{\frac{l\cos\theta}{g}}$

3. 一质量为 m 的质点在指向圆心的平方反比力 $F = -\frac{k}{r^2}$ (k 为常数) 作用下,作半径 为r的圆周运动,此质点的动能为(

(A) 2kr

(B)
$$\frac{k}{2r}$$
 (C) $\frac{2r}{k}$ (D) mr^2

(C)
$$\frac{2r}{k}$$

(D)
$$mr^2$$

- 4. 人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(

 - (A) 动量不守恒, 动能守恒 (B) 动量守恒, 动能不守恒
 - (C) 角动量守恒,动能不守恒 (D) 角动量不守恒,动能守恒

5. 一瓶氦气和一瓶氦气密度相同, ()	分子平均平动动能相同,	而且它们都处于平衡状态,	则他们
(A) 温度相同、压强相同 (C) 温度相同,但氦气的压弧			的压强
6. 有人设计一台卡诺热机(可逆的低温热源放热 800 J,同时对外做功(A)可以的,符合热力学第一(C)不行的,卡诺循环所做的(D)不行的,这个热机的效率	1000 J。这样的设计是(定律 (B)可以 功不能大于向低温热源放) 的,符合热力学第二定律	300 K 的
7. 一质点作简谐振动,周期为 T , 处到最大位移处这段路程所需要的 $(A) \frac{T}{4}$; $(B) \frac{T}{12}$	时间为())	正方向运动时,从二分之一 $(\mathrm{D})~rac{T}{8}$	最大位移
$(A) \frac{1}{4}; \qquad (B) \frac{1}{12}$	$\frac{6}{6}$	(D) $\frac{8}{8}$	- 9
8. 单色光垂直照射在薄膜上,经海如图所示。若薄膜厚度为 e ,且 n_1			
点的光程差为()	, 1 · · · · · · · · · · · · · · · · · ·	1	
(A) $2n_2e$;	(B) $2n_2e - \frac{\lambda_1}{2n_1}$;	n_1 n_2 n_2	$]$ $\overline{\downarrow}e$
(C) $2n_2e + \frac{n_2\lambda_1}{2}$;	$(D) 2n_2e + \frac{n_1\lambda_1}{2}$	n_3	
9. 在单缝夫琅禾费衍射实验中,波	そ大为え的単色光垂直入身	寸到单缝上,对应于衍射角 之	530°的
方向上,若单缝处波阵面可分成3~	个半波带,则缝宽度 a 等	于()	
(A) λ ; (B) 1.5λ ;	(C) 2λ;	(D) 3λ	
10. 两偏振片堆叠在一起,一束自然 180 ⁰ 时透射光强度发生的变化为: ((A)光强单调增加; (C)光强先增加,后又减小	(B) 光强先增加,然后凋	认小,再增加,再减小至零;	慢慢转动
二、填空题 (每题3分,共30分)	· 将答案写在答题纸上, ;	并在答案下画一横线,注明	题号

11. 质点沿半径为 0.1m 的圆周运动,运动方程为 $\theta=2+4t^2$ (SI),则 t=2s 时刻,质点的法向
加速度大小为 $a_n =$,切向加速度大小为 $a_r =$ 。
12. 一物体的质量 $m=2$ kg,在合外力 $\bar{F}=(3+2t)\bar{i}$ (SI) 的作用下,从静止出发沿水平 x 轴作
直线运动,则当 $t=1$ s时,物体的速度 \bar{v}_1 。
13. A、B 两飞轮的轴在一直线上,可通过啮合器 C 使它们连接。开始时 B 轮静止,A 轮以角速
度 ω_0 绕轴旋转,设啮合过程中两轮不再受其它力矩的作用,当两轮连在
一起后,共同的角速度为 ω 。若 A 轮的转动惯量为 J_A ,则 B 轮的转动
惯量 $J_{\scriptscriptstyle B}=$ 。
14. 已知 $f(v)$ 为麦克斯韦速率分布函数,N 为总分子数, v_p 为分子的最可几速率,则
$\int_{r}^{\infty} Nf(v)dv$,表示的物理意义为。
15. 一简谐振动用余弦函数表示,其振动曲线如图所示,则此简
16. 在简谐驻波中,同一个波节两侧的两个质元(在距离该波节二分之一波长的范围内)的振动
相位差 $\Delta \varphi =$ 。
17. 波长 $\lambda = 600$ n m 的单色光垂直照射到牛顿环装置上,第二级明纹与第五级明纹所对应的空
气膜厚度之差为n m。
18. 波长为 600 nm 的单色平行光,垂直入射到宽度为 $a = 0.60$ mm 的单缝上,缝后有一焦距
$f=60\mathrm{cm}$ 的透镜,在透镜焦平面上观察衍射图样。则:中央明纹的宽度为mm,两个
第三级暗纹之间的距离为mm。
19. 用平行的白光垂直入射在平面透射光栅上时,波长为 $\lambda_1 = 440 \mathrm{nm}$ 的第 3 级光谱线,将与波
长为 $\lambda_2 =n$ m 的第 2 级光谱线重叠。
20. 一束自然光从空气入射到玻璃表面上(空气的折射率为 1),当折射角为 30 ⁰ 时,反射光是完全偏振光,则此玻璃板的折射率等于。

三、计算题(共4题,每题10分,共40分)答案写在答题纸上,注明题号

21. 质量为 $M=15\,\mathrm{kg}$ 、半径为 $R=0.30\,\mathrm{m}$ 的圆柱体。可绕与其几何轴重合的水平固定轴转动,(转动惯量为 $J=\frac{1}{2}MR^2$)。现以一不能伸长的轻绳绕于柱面,而在绳的下端悬一质量 $m=8.0\,\mathrm{kg}$

的重物(如图),不计圆柱体与轴之间的摩擦,求:

- (1) 在答题纸上分别画出圆柱体和重物的受力图;
- (2) 重物自静止下落, 5s 内下降的高度 h:
- (3) 绳中的张力。

22. 5 mol 氦气(视为理想气体),温度由 17℃升为 27℃,若在升温过程中,(1)体积保持不变;(2)压强保持不变;(3)不与外界交换热量。试分别求出气体内能的改变、吸收的热量、外界对气体所做的功。

(普适气体常量 R=8.31 J·mol⁻¹·K⁻¹)

- 23. 一平面简谐波沿x轴负方向传播,t=2s 时刻的波形曲线如图所示,求:
 - (1) 原点 O 处质点的振动方程:
 - (2) 该波的波动表达式:
 - (3) P处质点的振动方程。

- **24.** 如图所示,假设有两个同相的相干点光源 S_1 和 S_2 ,发出波长为 λ 的单色光,O点是它们连线的中垂线上的一点,若在 S_1 与 O之间插入厚度为 e 折射率为 $n_1=1.4$ 的透明薄片,在 S_2 与 O
- 之间插入厚度同为 e 但折射率为 $n_2 = 1.7$ 的透明薄片,求:
- (1) 两光源发出的光在 O 点的光程差 δ 和相位差 $\Delta \phi$ 各等于多少?
- (2) 若已知 $\lambda = 480 \text{ nm}$, O 点恰为第五级明纹中心,则透明薄片的厚度 e = ?

广东工业大学试卷参考答案及评分标准 (A)

课程名称: __<u>大学物理 A (1)</u>____

考试时间: 2013年 07月 01 日 (第 19 周 星期 一)

选择题 (共10题,每题3分,共30分)

题号	1	2	3	4	5	6	7	8	9	10
答案	C	D	В	C	С	D	С	D	D	C

二、填空题 (共10题,每题3分,共30分)

11、 25.6 m/s^2 , $0.8 m/s^2$ (対 1 个 2 分) 12、 $2\bar{i} m/s$

13、 $J_A(\omega_0 - \omega)/\omega$ 14、<u>分子速率在</u> $v_p \to \infty$ 区间的分子数

15, $x = 0.05 \cos(\pi t - \pi/2)$ (SI) 16, π

900 nm

18、1.2 mm , 3.6 mm (对 1 个 2 分) 19、 660 nm

 $\sqrt{3}$ 20、

三、计算题(共4题,每题10分,共40分)

21. 解: (1) 力图 (图略)

(2分)

(2) mg - T = ma

(1分)

 $TR = J\alpha = \frac{1}{2}MR^2\alpha$

(1分)

 $a = R\alpha$

(1分)

联立求得

 $a = \frac{mg}{m + M/2} = 5.06 \text{ m/s}^2$

(1分)

 $h = \frac{1}{2}at^2 = 63.3$ m

(2分)

(3) T = m(g - a) = 37.9 N

(2分)

22. 解: 氦气 i=3

(1) 等体过程 W=0

 $Q_V = \Delta E = \nu C_V (T_2 - T_1) = 623$ J

(3分)

$$Q_p = \nu C_p (T_2 - T_1) = 1.04 \times 10^3 \text{ J}$$

$$\Delta E = 623 \text{ J}$$

$$W = Q_P - \Delta E = 417 \text{ J}$$
 (4 $\frac{4}{10}$)

(3)
$$Q=0$$
, $\Delta E=623$ J $W=-\Delta E=-623$ J (负号表示外界做功) (3分)

23. 解: (1) 设原点的振动方程为 $y_0 = A\cos(\omega t + \varphi)$

$$A = 0.5 \,\mathrm{m}$$
, $\omega = \frac{2\pi u}{\lambda} = \pi/2$ (2 $\%$)

$$t = 2 s, y_0 = 0, v_0 > 0, \quad \therefore \frac{\pi}{2} \times 2 + \varphi = -\frac{\pi}{2}, \quad \varphi = -\frac{3\pi}{2} \text{ if } \frac{\pi}{2}$$
 (2 \(\frac{\pi}{2}\))

故
$$y_0 = 0.5\cos(\frac{\pi}{2}t + \frac{\pi}{2})$$
 (SI) (2分)

(2) 波动方程:
$$y = 0.5\cos\left[\frac{\pi}{2}(t+x) + \frac{\pi}{2}\right]$$
 (SI) (2分)

(3) P点 $x_P = 2 \,\mathrm{m}$

所以
$$y_P = 0.5\cos\left[\frac{\pi}{2}(t+2) + \frac{\pi}{2}\right] = 0.5\cos\left(\frac{\pi}{2}t + \frac{3\pi}{2}\right)$$
 (SI) (2分)

24.

解: (1) 光程差
$$\delta = (r_2 - e + n_2 e) - (r_1 - e + n_1 e)$$
 (2分)

而
$$r_2 - r_1 = 0 \tag{2分}$$

所以光程差
$$\delta = (n_2 - n_1)e \tag{1分}$$

相位差
$$\Delta \varphi = 2\pi \frac{\delta}{\lambda} = \frac{2\pi e}{\lambda} (n_2 - n_1)$$
 (2分)

(2)
$$\pm$$
 $\delta = e(n_2 - n_1) = 5\lambda$

所以
$$e = \frac{5\lambda}{n_2 - n_1} = 8.0 \times 10^{-6} \text{ m}$$
 (3分)

广东工业大学考试试卷 (B)

课程名称: 大学物理A(1)

0

奘

试卷满分 100 分

月 日(第 考试时间: 2013 年 周 星期

题	号	_		21	22	23	24			总分
评卷	得分		·							
评卷	签名									
复核	得分									
复核	签名									·

- 一、选择题(每题 3 分,共 30 分)只有一个答案正确,把正确答案的字母填在答题 纸上, 注明题号
- 1. 一物体从某一确定高度以 \bar{v}_0 的速度水平抛出,已知它落地时的速度为 \bar{v}_i ,那么它运 动的时间是(

(A)
$$\frac{v_t - v_0}{g}.$$

(B)
$$\frac{v_t - v_0}{2g} .$$

(C)
$$\frac{\left(v_t^2-v_0^2\right)^{1/2}}{g}$$
.

(D)
$$\frac{\left(v_t^2-v_0^2\right)^{1/2}}{2g}$$

2. 在作匀速转动的水平转台上,与转轴相距 R处有一体积很小的 工件 A, 如图所示. 设工件与转台间静摩擦系数为从, 若使工件 在转台上无滑动,则转台的角速度 @应满足(

(A)
$$\omega \le \sqrt{\frac{\mu, g}{R}}$$
. (B) $\omega \le \sqrt{\frac{3\mu, g}{2R}}$

(C)
$$\alpha \le \sqrt{\frac{3\mu_s g}{R}}$$
. (D) $\alpha \le 2\sqrt{\frac{\mu_s g}{R}}$.

(D)
$$\sigma \le 2\sqrt{\frac{\mu_s g}{R}}$$
.

(A)
$$\frac{GMm}{R_2}$$

(B)
$$\frac{GMm}{R_2^2}$$

(C)
$$GMm \frac{R_1 - R_2}{R_1 R_2}$$

(D)
$$GMm \frac{R_1 - R_2}{R_1^2}$$

俳

4. 如图所示,一个小物体,位于光滑的水平桌	更面上,与一绳的一 单	端相连结,绳的另一端穿过桌面
中心的小孔 O 。该物体原以角速度 o 在半径为	R的圆周上绕O旋车	专,今将绳从小孔缓慢往下拉.则
物体()		
(A) 动能不变,动量改变.		
(B) 动量不变,动能改变.		
(C) 角动量改变,动量不变.		
(D) 角动量不变,动能、动量都改变.		, .
5.两瓶不同种类的理想气体,它们的温度和]压强都相同,但体和	识不同,则单位体积内的气体分
子数 n ,单位体积内的气体分子的总平动动能		
系: ()		
(A) n 不同, (E_k/V) 不同, ρ 不同.	(B) n 不同,	(E_{k}/V) 不同, ρ 相同.
(C) n 相同, (E_k/V) 相同, ρ 不同.		(E_{k}/V) 相同, ρ 相同.
(С) и при (Дет упина) р т на.	(2) IAI 1.	(=k, ,)
6. 用下列两种方法: (1) 使高温热源的流	温度 T ₁ 升高 ΔT;(2)	使低温热源的温度 T2降低同样
的值 ΔT ,分别可使卡诺循环的效率升高 $\Delta \eta_1$	和 🖍 n。, 两者相比。	()
出版 21. 为为"及下机场" 110次十八八 2-7 ₁	71. Ex. 72 / 14 Ex 14 PG	. **
(A) $\Delta \eta_1 > \Delta \eta_2$.	(B) $\Delta \eta_1 < \Delta \eta_2$.	
$\sim -\eta = \eta$	71 72	
(C) $\Delta \eta_1 = \Delta \eta_2$.)) 无法确定哪个大.	
7. 一质点作简谐振动,周期为 T. 质点由平衡		运动时,由平衡位置到二分之一
最大位移这段路程所需要的时间为() (C) T/8	(D) T/12
(A) $T/4$. (B) $T/6$	(C) 178	(D) 1712
8. 如图所示,平行单色光垂直照射到薄膜上	上,经上下两表面反!	射的两束光发生干涉,若薄膜的
厚度为 e ,并且 $n_1 < n_2 > n_3$, λ_1 为入射光在折	f射率为 n ₁ 的媒质中	的波长, 4 1
则两束反射光在相遇点的相位差为() .	$n_1 \downarrow \uparrow \uparrow 2$
(A) $2\pi n_2 e/(n_1 \lambda_1)$. (B) $[4\pi n_1 \lambda_1]$	$n_1e/(n_1\lambda_1)]+\pi$.	n_2
(C) $[4\pi n_2 e/(n_1 \lambda_1)] + \pi$. (D) $4\pi n_1$	$n_2 e/(n_1 \lambda_1)$.	n_2
		n_3
9. 在单缝夫琅禾费衍射实验中,波长为λ的		医度为 $a=4\lambda$ 的单缝上,对应于
衍射角为30°的方向,单缝处波阵面可分成)
(A) 2 个. (B) 4 个.	(C) 6 个.	(D) 8 个.
10. 如果两个偏振片堆叠在一起,且偏振化力	方向之间夹角为 60°	,光强为 16 的自然光垂直入射在
偏振片上,则出射光强为(•
(A) $I_0/8$. (B) $I_0/4$.	(C) $3I_0/8$.	(D) $3I_0/4$.
二、填空题 (每题3分,共30分) 将答案	写在答题纸上,并在	答案下画一横线,注明题号

$11.$ 一质点从静止出发沿半径 $R=1$ m 的圆周运动,其角加速度随时间 t 的变化规律是 $\alpha=12t^2-6t$
(SI),则质点的角速度 $\omega =$
12. 假设作用在一质量为 10 kg 的物体上的力,在 4 秒内均匀地从零增加到 50 N,使物体沿力的
方向由静止开始作直线运动.则物体最后的速率 v =
13. 一水平的匀质圆盘,可绕通过盘心的竖直光滑固定轴自由转动. 圆盘质量为 M ,半径为 R ,对轴的转动惯量 $J=\frac{1}{2}MR^2$. 当圆盘以角速度 ω 0 转动时,有一质量为 m 0 的子弹沿盘的直径方向射入而嵌在盘的边缘上. 子弹射入后,圆盘的角速度 $\omega=$
14. 当理想气体处于平衡态时,若气体分子速率分布函数为 $f(v)$,则分子速率处于最概然速率 v_p 至 ∞ 范围内的概率 $\frac{\Delta N}{N} =$
15. 一质点作简谐振动,速度最大值 $v_m=5$ cm/s,振幅 $A=2$ cm. 若令速度具有正最大值的那一
时刻为 t = 0,则振动表达式为
16. 一驻波表达式为 $y = A\cos 2\pi x \cos 100\pi t$ (SI). 位于 $x_1 = 1/8$ m 处的质元 P_1 与位于
$x_2 = 3/8$ m 处的质元 P_2 的振动相位差为
17. 用波长为 λ 的单色光垂直照射折射率为 n_2 的劈形膜(如图)图中各部分折射率的关系是 $n_1 < n_2 < n_3$. 观察反射光的干涉条纹,从劈形膜顶 n_2
开始向右数第 5 条暗条纹中心所对应的厚度 e=
18. 平行单色光垂直入射在缝宽为 a=0.15 mm 的单缝上. 缝后有焦距为 f=400mm 的凸透镜, 在其
焦平面上放置观察屏幕. 现测得屏幕上中央明条纹两侧的两个第三级暗纹之间的距离为 8 mm,
则入射光的波长为 $\lambda =$
19. 某单色光垂直入射到一个每毫米有 800 条刻线的光栅上,如果第一级谱线的衍射角为 30°,
则入射光的波长应为 <i>λ</i> =
20. 一束自然光自空气入射到折射率为 1.40 的液体表面上,若反射光是线偏振光,则折射光的折
射角为

三、计算题(共4题,每题10分,共40分)答案写在答题纸上,注明题号

- **21.** 一轴承光滑的定滑轮,质量为 M=2.00 kg,半径为 R=0.100 m,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为 m=5.00 kg 的物体,如图所示. 已知定滑轮的转动惯量为 J= $\frac{1}{2}MR^2$,其初角速度 ω_0 =10.0 rad/s,方向垂直纸面向里,求:
 - (1) 定滑轮的角加速度的大小和方向.
 - (2) 定滑轮的角速度变化到 $\omega = 0$ 时,物体上升的高度;
 - (3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.

- 22. 汽缸内有 2 mol 氦气,初始温度为 27℃,体积为 20 L(升),先将氦气等压膨胀,直至体积加倍,然后绝热膨涨,直至回复初温为止. 把氦气视为理想气体. 试求:
 - (1) 在 p-1/图上大致画出气体的状态变化过程.
 - (2) 在这过程中氦气吸热多少?
 - (3) 氦气的内能变化多少?
 - (4) 氦气所做的总功是多少?

(普适气体常量 R=8.31 J·mol⁻¹·K⁻¹)

- **23.** 某质点作简谐振动,周期为 2 s,振幅为 $0.06\,\mathrm{m}$, $t=0\,\mathrm{m}$ 时刻,质点恰好处在负向最大位移处,求
 - (1) 该质点的振动方程:
- (2) 此振动以波速 u = 2 m/s 沿 x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);
 - (3) 该波的波长.
- **24.** 在双缝干涉实验中,波长 λ =550 nm 的单色平行光垂直入射到缝间距 d=2×10 4 m 的双缝上, 解到双缝的距离 D=2 m. 求:
 - (1) 中央明纹两侧的两条第 10 级明纹中心的间距:
- (2) 用一厚度为 $e=6.6\times10^{-5}$ m、折射率为 n=1.58 的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处? $(1 \text{ nm}=10^{-9} \text{ m})$

广东工业大学试卷参考答案及评分标准 (B)

课程名称: 大学物理 A(1)

考试时间: 2013年 月 日 (第 周 星期)

选择题 (共10题,每题3分,共30分)

题号	1	2	3	4	5	6	7	8	9	10
答案	C	Α	C	D	C	В	D	С	В	A

二、**填空题** (共 10 题, 每题 3 分, 共 30 分)

11.
$$4t^3 - 3t^2 (\text{rad/s})$$
,

11、
$$4t^3 - 3t^2 \text{ (rad/s)}$$
 , $12t^2 - 6t \text{ (m/s}^2\text{)}$ (对 $1 \uparrow 2 \not f$) 12、 10 (m/s)

12.
$$10 \text{ (m/s)}$$

13.
$$M\omega_0/(M+m)$$

$$14. \int_{\nu_p}^{\infty} f(\nu) d\nu$$

15.
$$x = 2 \times 10^{-2} \cos(\frac{5t}{2} - \frac{\pi}{2})$$
 (SI)

$$17, \frac{9\lambda}{4n_2}$$

三、计算题(共4题,每题10分,共40分)

$$mg-T=ma$$

1分

$$TR=J\beta$$

2分 1分

$$\beta = mgR / (mR^2 + J) = \frac{mgR}{mR^2 + \frac{1}{2}MR^2} = \frac{2mg}{(2m + M)R}$$

$$mR^2 + \frac{1}{2}MR^2 - (2m+M)R$$

 $=81.7 \text{ rad/s}^2$

1分

方向垂直纸面向外.

1分

$$\theta = \frac{\omega_0^2}{2\beta} = 0.612 \text{ rad}$$

物体上升的高度 $h=R\theta=6.12\times10^{-2}$ m

2分

(3)
$$\omega = \sqrt{2\beta\theta} = 10.0 \text{ rad/s}$$
 方向垂直纸面向外.

2分

22. 解: (1) p-V图如图.

2分

(2) $T_1 = (273 + 27) \text{ K} = 300 \text{ K}$

得
$$T_2 = V_2 T_1 / V_1 = 600 \text{ K}$$

1分2分

$$Q = v C_p(T_2 - T_1)$$

= 1.25 × 10⁴ J

2分 1分

(3)
$$\Delta E = 0$$

2分

(4) 据
$$Q = W + \Delta E$$

:
$$W = Q = 1.25 \times 10^4 \text{ J}$$

2分

23. 解: (1) 振动方程

$$y_0 = 0.06\cos(\frac{2\pi t}{2} + \pi) = 0.06\cos(\pi t + \pi)$$
 (SI)

4分

(2) 波动表达式

$$y = 0.06\cos[\pi(t - x/u) + \pi]$$

4分

$$= 0.06\cos[\pi(t - \frac{1}{2}x) + \pi] \quad (SI)$$

(3) 波长

$$\lambda = uT = 4$$
 m

2分

24.

解: (1)

$$\Delta x = 20 D\lambda / d$$

2分

$$=0.11 m$$

2分

(2) 覆盖云玻璃后,零级明纹应满足

$$(n-1)e+r_1=r_2$$

2分

设不盖玻璃片时,此点为第 k 级明纹,则应有

$$r_2-r_1=k\lambda$$

2分

所以

$$(n-1)e = k\lambda$$

$$k=(n-1) e / \lambda = 6.96 \approx 7$$

零级明纹移到原第7级明纹处

2分