Unidad 04. Esfuerzos causados por flexión Centro de cortante y flexión elastoplástica

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales Departamento de Ingeniería Civil Análisis Estructural Básico

2023b

Advertencia

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada.

Derrotero

• El centro de cortante

• Flexión elastoplástica

Derrotero

• El centro de cortante

• Flexión elastoplástica

El centro de cortante

Derrotero

• El centro de cortante

• Flexión elastoplástica

Flexión elastoplástica

Figura: Idealización del diagrama esfuerzo-deformación para un material elastoplástico.

Hipótesis de análisis:

- Consideramos la flexión en vigas elastoplásticas cuando el material se deforma más allá de la región lineal. La distribución de los esfuerzos variará con la forma del diagrama esfuerzo-deformación.
- Asumiremos que el material tiene el mismo esfuerzo σ_y y deformación ε_y , de fluencia, tanto a compresión como a tracción.

Flexión de una viga hecha de material elastoplástico: distribución de esfuerzos

Figura: Distribución de esfuerzos en una viga hecha de material elastoplástico: (a) sección generalizada de la viga con el eje y de simetría, (b) comportamiento elástico lineal, (c) comportamiento inicial en fluencia, (d) y (e) comportamiento parcialmente plástico y (f) comportamiento plástico.

Momento de fluencia

Figura: Distribución de esfuerzos en una viga hecha de material elastoplástico: (a) sección generalizada de la viga con el eje y de simetría, (b) comportamiento elástico lineal, (c) comportamiento inicial en fluencia

Comportamiento elástico lineal:

 El eje neutro pasa a través del centroide de la sección transversal y los esfuerzos normales son obtenidos por la fórmula de la flexión:

$$\sigma = -My/I.$$

Comportamiento inicial de fluencia:

 El momento de fluencia, cuando el esfuerzo máximo alcanza el esfuerzo de fluencia del material:

$$M_y = \frac{\sigma_y I}{c} = \sigma_y S.$$

Momento plástico y eje neutro

Figura: Distribución de esfuerzos en una viga hecha de material elastoplástico: (d) y (e) comportameiento parcialmente plástico y (f) comportamiento plástico.

Comportamiento parcialmente plástico:

- Deformaciones ε mayores a la deformación de fluencia ε_n .
- Región plástica con esfuerzo máximo de fluencia.
- Núcleo central o núcleo elástico.
- Desplazamiennto del eje neutro cuando el eje z no es un eje de simetría (sección unisimétricas) al superarse el esfuerzo de fluencia.

Comportamiento plástico:

 El momento plástico, cuando se excede la capacidad de la sección de un material elastoplástico:

$$M_p = ?$$
.

Momento plástico y eje neutro

Figura: Localización del eje neutro y cálculo del momento plástico bajo condiciones de plastificación total.

El momento plástico:

• Condición de equilibrio en la sección $\sum F_x = 0$:

$$T = C A_1 = A_2,$$

vemos que $A_1 = A_2 = \frac{A}{2}$.

ullet M_p por integración en la sección transversal:

$$M_p = -\int_A \sigma y dA = \sigma_y \frac{A}{2} (\bar{y}_1 + \bar{y}_2).$$

M_p por evaluación de momentos.

$$M_p = C\bar{y}_1 + T\bar{y}_2 = \sigma_y \frac{A}{2}(\bar{y}_1 + \bar{y}_2).$$

Módulo plástico y factor de forma

Módulo plástico

• Reescribiendo el momento plástico como $M_p = \sigma_y Z$, donde

$$Z = \frac{A}{2}(\bar{y}_1 + \bar{y}_2).$$

 Geométricamente, es el primer momento (evaluado con respecto al eje neutro) del área de la sección transversal por encima del eje neutro más el primer momento del área por debajo del eje neutro.

Factor de forma

 La relación entre el momento plástico y el de fluencia es una función de la fórma de la sección transversal:

$$f = \frac{M_p}{M_y} = \frac{Z}{S}.$$

- Es una medida de la reserva de rigidez de la viga luego de comenzar la fluencia.
- Aumenta mientras más material haya cerca del eje neutro.

Análisis en vigas de sección rectangular

Figura: Sección transversal rectangular.

• Momento de fluencia, siendo $S = bh^2/6$:

$$M_y = \sigma_y \frac{bh^2}{6}.$$

ullet Momento plástico, siendo $Z=bh^2/4$:

$$M_p = \sigma_y \frac{bh^2}{4}.$$

Factor de forma:

$$f = \frac{M_p}{M_n} = \frac{Z}{S} = \frac{3}{2}.$$

Interpretación: el momento plástico para una seción rectangular es 50 % más grande que el momento de fluencia.

Análisis en vigas de sección rectangular

Comportamiento parcialmente plastico, $M_y \leq M \leq M_p$

• Resultantes de esfuerzo en la zona plastificada:

$$C_1 = T_1 = \sigma_y b \left(\frac{h}{2} - e\right).$$

• Resultantes de esfuerzo en el núcleo elástico:

$$C_2 = T_2 = \frac{\sigma_y e}{2} b.$$

• Condición de equilibrio $\sum M = 0$:

$$M = C_1 \left(\frac{h}{2} + e\right) + C_2 \left(\frac{4e}{3}e\right) = M_y \left(\frac{3}{2} - \frac{2e^2}{h^2}\right).$$

Figura: Distribución de esfuerzos en una viga de sección rectangular con núcleo elástico.

Análisis en vigas de patín ancho (wide-flange shape)

Figura: Sección transversal de viga de patín ancho.

 El módulo plástico Z se calcula tomando el primer momento alrededor del eje neutro del área de un ala más la mitad superior del alma y multiplicándolo por 2. El resultado es:

$$Z = \frac{1}{4} \left[\frac{bh^2}{4} - (b - t_w)(h - 2t_f)^2 \right].$$

- El momento plástico como $M_p = \sigma_u Z$.
- El factor de forma para elementos comerciales ronda entre 1.1 a 1.2.
 Observación: estas propiedades de la sección se toman del manual del distribuidor del producto.

Estudio autónomo de la sección

Ejercicios recomendados

- Todos los ejemplos de la sección
- 6.10-2
- 6.10-3
- 6.10-4

Referencias