Lineare Algebra 2 — Übungsblatt 2

Sommersemester 2020

AOR Dr. D. Vogel P. Gräf, R. Steingart

Abgabe: Do 14.05.2020 um 9:15 Uhr

- **8. Aufgabe:** (2+2+2 *Punkte, Operationen auf Idealen*) Seien *R* ein Ring und *I*, *J* und *K* Ideale in *R*. Man zeige:
 - (a) Es gilt I(J + K) = IJ + IK.
 - (b) Es gilt $(I \cap J)(I + J) \subseteq IJ \subseteq I \cap J$.
 - (c) Ist I + J = (1), so gilt $I \cap J = IJ$.
- **9. Aufgabe:** (4 Punkte, Der Professor und seine Python) Ein Professor füttert seine Python alle 4 Tage und badet sie alle 7 Tage. Diese Woche hat er sie am Dienstag gefüttert und am Mittwoch gebadet. Wann, wenn überhaupt, wird er die Python am gleichen Tag füttern und baden? **Hinweis:** Pythons kommen unter anderem in China vor.
- **10. Aufgabe:** $(1+1+2+2+2 \ Punkte, Der \ Ring \mathbb{Z}[\sqrt{-3}])$ Sei $\mathbb{Z}[\sqrt{-3}] := \{a+b\sqrt{-3} \mid a,b \in \mathbb{Z}\} \subset \mathbb{C}$. Mit der üblichen Addition und Multiplikation von komplexen Zahlen wird $\mathbb{Z}[\sqrt{-3}]$ zu einem nullteilerfreien Ring. Sei $\delta \colon \mathbb{Z}[\sqrt{-3}] \to \mathbb{N}_0$ gegeben durch $a+b\sqrt{-3} \mapsto a^2+3b^2$.
 - (a) Man zeige, dass $\delta(1) = 1$ und $\delta(x \cdot y) = \delta(x) \cdot \delta(y)$ für alle $x, y \in \mathbb{Z}[\sqrt{-3}]$.
 - (b) Man folgere aus (a), dass $\mathbb{Z}[\sqrt{-3}]^{\times} = \{x \in \mathbb{Z}[\sqrt{-3}] \mid \delta(x) = 1\} = \{\pm 1\}.$
 - (c) Man finde ein Element in $\mathbb{Z}[\sqrt{-3}]$, welches irreduzibel, aber nicht prim ist.
 - (d) Man zeige: $GGT(4, 2 + 2\sqrt{-3}) = \emptyset$.
 - (e) Man zeige, dass $\mathbb{Z}[\sqrt{-3}]$ nicht faktoriell ist.
- **11. Aufgabe:** (6 Punkte, Noethersche Ringe) Sei R ein Ring. Ein Ideal $I \subseteq R$ heißt endlich erzeugt, wenn es endlich viele Elemente $a_1, \ldots, a_n \in I$ gibt, sodass $I = (a_1, \ldots, a_n)$ ist. Dabei bezeichnet $(a_1, \ldots, a_n) = \{r_1 a_1 + \cdots + r_n a_n \mid r_1, \ldots, r_n \in R\}$ wie in der Vorlesung das von a_1, \ldots, a_n erzeugte Ideal. Man zeige, dass die folgenden Aussagen äquivalent sind:
 - (i) *R* is noethersch.
 - (ii) Jedes Ideal in *R* ist endlich erzeugt.

Hinweis: Für die Implikation (ii) \Rightarrow (i) orientiere man sich am Beweis aus der Vorlesung, dass jeder Hauptidealring noethersch ist.

Die Übungsblätter sowie weitere Informationen zur Vorlesung sind über MaMpf abrufbar.