

技术开启新"视"界

Technology Bring New Vision

2018.10.19-20 北京丽亭华苑酒店

LiveVideoStackCon 讲师热身分享会

7月19日19:30 准时开始

《基于强化学习的自动码率调节》

王亚楠 爱奇艺 资深工程师

Agenda

- 自适应码流
 - 自动码率调节
 - 评价标准
- 强化学习
- 基于强化学习的自动码率调节
 - 技术架构
 - 实现要点

关于我们

- 爱奇艺拥有丰富的视频内容和海量的用户
 - 2800+部电视剧,10000+部电影
 - 移动端MAU 6.1亿, PC端MAU3.6亿
- 用户网络环境和设备平台千差万别
 - 有线连接/WiFi/数据网络
 - Phone/Pad/PC/网络电视/奇异果
- 我们一直致力于用技术手段为用户提供更 清晰流畅的观看体验

自适应码流

- 根据用户的网络情况提供不同码率节目
 - 充分利用用户带宽
 - 更清晰流畅
- 传输形式
 - HLS/DASH/Smooth Streaming
- 码率调节算法
 - ABR

自适应码流

自适应码流

- 如何根据用户的当前状态确定下一个要播放的码率
 - 带宽?缓存?设备类型?支持的码率?
 - 自动码率调节是自适应码流的关键技术

现行自动码率调节算法

- 基于带宽的算法
 - FESTIVE
 - CS2P
- 基于Buffer的算法
 - BOLA
- 综合考虑Buffer和带宽的算法
 - MPC

现行自动码率调节算法

- 基于带宽的算法
 - 逻辑简单
 - 依赖于带宽预测的准确度
- 基于Buffer的算法
 - 无需预测带宽
 - 频繁切换
- 综合考虑Buffer和带宽的算法
 - 依然需要带宽预测
 - 参数较多,且参数不具有通用性

自动码率调节评价标准

- •清晰度,流畅度,平滑度
 - 尽量不产生卡顿的基础上最大化的利用用户带宽
 - 成本控制

$$QoS = \sum_{i=1}^{n} q(R_n) - \alpha * \sum_{i=1}^{n} T_n - \beta * \sum_{i=1}^{n} |q(R_{n+1}) - q(R_n)|$$

- 未考虑卡顿次数
- 并不是用户观看体验的直接体现

强化学习

- At each step t the agent:
 - Receives state st
 - Receives scalar reward rt
 - Executes action at
- ▶ The environment:
 - Receives action at
 - Emits state st
 - Emits scalar reward r_t

为什么用强化学习完成自动码率调节

- ABS问题是一个MDP问题
 - 根据当前的状态选择下一个码率
 - 无需带宽预测,自动训练
 - 无需调参,且不同场景可使用不同模型

S: 当前的状态(当前码率, 当前带宽等)

A:可选择的码率集合

R:所选码率的QoS

- 客户端实现码率预测功能
 - 架构简单,客户端可根据当前状态直接选择下一码率
- 服务器端实现码率预测功能(B/S架构)
 - 客户端和服务器保持长连接
 - 客户端将当前状态发送给服务器
 - 由服务器决定下一码率并发送给客户端

• 如何确定一个最优模型?

- 通过A/B Test选取最优模型
 - A/B Test的结果是确定最终模型的关键
 - C/S架构更适合做A/B Test

•实时多模型的A/B Test架构

- 码率预测模型的选择
 - DQN
- 选择合理的训练方式
 - 训练数据的收集
 - reward的选择
 - On-Policy/Off-Policy
- QoS评估
 - 增加卡顿次数因素
 - 增加用户反馈数据
- 成本控制

技术开启新"视"界

Technology Bring New Vision

2018.10.19-20 北京丽亭华苑酒店

LiveVideoStackCon 讲师热身分享完

7月26日19:30 准时开始

《建立中国自主视频技术生态》

王荣刚 北京大学 教授

