Reconstrução Geométrica Torácica em Tomografia de Impedância Elétrica com Filtro de Kalman

Adrian W. Roque

Universidade Federal do ABC

Dezembro de 2018

Sumário

- Introdução
- Objetivos
- Revisão de Literatura
- Metodologia
- Resultados e Discussões
- Conclusões
- Referências

Introdução

(ADLER, 2013)

Tomografia de Impedância Elétrica

- Vantagens:
 - Baixo Custo
 - Segurança ao Paciente
 - Alta Velocidade de Aquisição de Dados
- Desvantagens:
 - Baixa Resolução
 - Baixa Relação Sinal-Ruído
 - Medições Dependentes da Geometria

Introdução

A construção de uma cinta de eletrodos instrumentada com extensômetros (GREGÓRIO, 2017) permite obter uma estimativa muito melhor para a determinação do formato do tórax de um paciente, principalmente durante o monitoramento da função pulmonar pela EIT.

Entretanto...

Como obter um sinal fiel das medições e obter as medidas de geometria?

Introdução

A construção de uma cinta de eletrodos instrumentada com extensômetros (GREGÓRIO, 2017) permite obter uma estimativa muito melhor para a determinação do formato do tórax de um paciente, principalmente durante o monitoramento da função pulmonar pela EIT.

Entretanto...

Como obter um sinal fiel das medições e obter as medidas de geometria? Filtro de Kalman!

Objetivos

 Construção de modelo de observação e evolução de estados, considerando os raios de curvatura em diversos pontos da cinta torácica;

Objetivos

- Construção de modelo de observação e evolução de estados, considerando os raios de curvatura em diversos pontos da cinta torácica;
- implementação do filtro de Kalman para o modelo proposto, tornando o problema bem-posto e adequando a geometria para aplicação em TIE;

Objetivos

- Construção de modelo de observação e evolução de estados, considerando os raios de curvatura em diversos pontos da cinta torácica;
- implementação do filtro de Kalman para o modelo proposto, tornando o problema bem-posto e adequando a geometria para aplicação em TIE;
- e simular computacionalmente e experimentalmente o desempenho dos métodos de filtragem, analisando os comportamentos obtidos para uma discussão mais detalhada a respeito da usabilidade dos métodos de processamento.

Estimativas Ótimas

O filtro de Kalman é um método de *filtragem bayesiana*, sendo capaz de fornecer uma estimativa ótima para um problema inverso não-estacionário de modelo linear.

Processo: $\mathbf{x}_{k+1} = \mathbf{F} \mathbf{x}_k$

Medição: $\mathbf{y}_k = \mathbf{H} \, \mathbf{x}_k$

Símbolos

- ▶ x ⇒ Vetor de Estados
 ▶ H ⇒ Matriz de Medição
- ▶ y ⇒ Vetor de Observadores (Medição)
 ▶ P ⇒ Covariância de Estados
- ► F ⇒ Matriz de Transição de Estado
 ► G ⇒ Ganho de Kalman
- $lackbox{ } lackbox{ } lac$
- ightharpoonup
 igh

Estimativas Ótimas

O filtro de Kalman é um método de *filtragem bayesiana*, sendo capaz de fornecer uma estimativa ótima para um problema inverso não-estacionário de modelo linear.

Fase de Propagação

$$\hat{\mathbf{x}}_{k}^{-} = \mathbf{F}_{k,k-1} \hat{\mathbf{x}}_{k-1}$$

$$\mathbf{P}_{k}^{-} = \mathbf{F}_{k,k-1} \mathbf{P}_{k-1} \mathbf{F}_{k,k-1}^{T} + \mathbf{Q}_{k-1}$$

Fase de Atualização

$$\mathbf{G}_{k} = \mathbf{P}_{k}^{-} \mathbf{H}_{k}^{T} \left[\mathbf{H}_{k} \mathbf{P}_{k}^{-} \mathbf{H}_{k}^{T} + \mathbf{R}_{k} \right]^{-1}$$

$$\hat{\mathbf{x}}_{k} = \hat{\mathbf{x}}_{k}^{-} + \mathbf{G}_{k} \left(\mathbf{y}_{k} - \mathbf{H}_{k} \hat{\mathbf{x}}_{k}^{-} \right)$$

$$\mathbf{P}_{k} = \left(\mathbf{I} - \mathbf{G}_{k} \mathbf{H}_{k} \right) \mathbf{P}_{k}^{-}$$

Extended Kalman Filter (EKF)

Equações do EKF
$$\mathbf{y}_k = \mathbf{h}\left(k, \mathbf{x}_k\right) + \mathbf{v}_k$$

$$\mathbf{H}_k = \frac{\partial \mathbf{h}\left(k, \mathbf{x}\right)}{\partial \mathbf{x}}\Big|_{\mathbf{x} = \mathbf{x}_k^-}$$

O Filtro de Kalman, em sua forma tradicional, só pode ser aplicado a sistemas dinâmicos lineares. Para sistemas não-lineares, é possível utilizar o filtro em sua forma estendida ou *Unscented*, embora seu resultado não possa mais ser considerado como a estimativa ótima.

Metodologia

- Desenvolver o Modelo de Observação
- Desenvolver o Modelo de Evolução
- Simular um Único Extensômetro
 - segundo uma função constante
 - segundo uma função linear
 - segundo uma função seno
- Simular uma Cinta Torácica
 - com extensômetros atuando isoladamente
 - com extensômetros reconhecendo o estado dos vizinhos

Modelo de Observação

$$\frac{R - R_0}{R_0} = \underbrace{(8 \pm 2)}_{G_f} \varepsilon \implies R = \frac{G_f R_0 c}{\rho} + R_0$$

$$h(k,x) = \frac{G_f R_0 c}{\rho_k} + R_0 + \bar{\epsilon}$$

$$\mathbf{H}_{k} = -\frac{G_f R_0 c}{o^2}$$

Símbolos

- ρ: Raio de Curvatura
- R: Resistência do Extensômetro
- ► R₀: Resistência Inicial

- c: Meia-altura do Extensômetro
- $ightharpoonup G_f$: Fator de Extensometria
- ε_a: Erro de Aproximação

Erro de Aproximação

Erro de Aproximação

O método do erro de aproximação busca refletir o comportamento do observador \mathbf{y}_k em situações reais, mesmo com perturbações e outras aproximações.

Valores utilizados para o cálculo do erro de aproximação.

Grandeza	Valor Verdadeiro k	Valor Medido k^a
ρ	$\mathcal{N}(190, 20^2)^*$	$\mathcal{N}(190, 20^2)^*$
R_0	9000	$\mathcal{N}(9000, 100^2)$
G_f	8	$\mathcal{N}(8,1^2)$
c	1.7	1.7
ϵ	0	$\mathcal{U}(-0.5, 0.5)$

^{*} Valores iguais aplicados a cada iteração.

$$\epsilon_{a}(t) = R_{v}(t) - R_{m}(t)$$

$$\epsilon_{a} = \bar{\epsilon_{a}}(t)$$
UFABC

Modelo de Evolução

Passeio Aleatório

Modelo Unidimensional

$$\rho_{k+1} = \rho_k + w_k$$

Espaço de Estados

$$\mathbf{F}_{k,k+1} = \underbrace{\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}}_{m \text{ dimensões}}$$

Primeiro Caso - Simulação do Extensômetro Isolado

Parâmetros utilizados na observação das variáveis e no observador do EKF.

Grandeza (unidade)	Valor Verdadeiro k	Valor Estimado k^a
$ ho\left(mm ight)$	f(x)	\mathbf{x}_k
$R_0\left(\Omega ight)$	9216	9000
G_f	8.1	8
c (mm)	1.532	1.7
$\epsilon\left(\Omega\right)$	0	0

Primeiro Caso - Simulação do Extensômetro Isolado

Simulações do Extensômetro Isolado.

Modelo	Função	Estado Inicial (x_0)	Covariância do Estado Inicial (P_0)	Covariância do Ruído de Processo (w_k)
Constante	$x = 10, t \in [0:1000]$	20	100	0.001
Linear	x = -0.25 t + 300	15	100	0.01
Seno	$x = 100 \sin 0.005 t + 100 + 100$	15	100	0.1

Equações do Filtro de Kalman

$$\mathbf{x}_0 = \begin{bmatrix} x_0 \end{bmatrix} \qquad \mathbf{F} = \begin{bmatrix} 1 \end{bmatrix} \\ \mathbf{P}_0 = \begin{bmatrix} P_0 \end{bmatrix} \qquad \mathbf{Q} = \begin{bmatrix} w_k \end{bmatrix} \\ \mathbf{R} = \begin{bmatrix} \mathbf{Cov}(\epsilon_a) \end{bmatrix}$$

Segundo Caso - Simulação da Geometria Torácica

Etapas Iniciais

- Dados obtidos a partir do US Army and Marine Corps Anthopometric Surveys;
- obtenção das medidas médias de largura e profundidade do tórax com ferramentas estatísticas;
- geração de modelo dinâmico, simulando a expansão do tórax de um paciente, utilizando 12 extensômetros.

Segundo Caso - Simulação de Geometria Torácica

Momento k = 249

Segundo Caso - Simulação da Geometria Torácica

Parâmetros utilizados na observação das variáveis para o segundo caso.

Grandeza (unidade)	Valor Verdadeiro k	Valor Estimado k^a
ho (mm)	$\rho\left(x,y\right)$	\mathbf{x}_k
$R_{0}\left(\Omega \right)$	$\mathcal{N}(9000, 100^2)$	9000
G_f	$\mathcal{N}(8, 0.4^2)$	8
c (mm)	$\mathcal{N}(1.7, 0.1^2)$	1.7

Segundo Caso - Modelo sem Compensação

Foram consideradas duas situações de transição. Na primeira, a filtragem leva em consideração apenas os estados dos extensômetros como unidade distintas. Na segunda, os extensômetros vizinhos influenciam a evolução de estado do extensômetro central.

Equações do Filtro de Kalman

$$\mathbf{x}_0 = 100 \cdot \underbrace{\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}}^{\mathbf{T}} \qquad \mathbf{R} = \mathbf{Cov}(\epsilon_a) \cdot \mathbf{I}_{12}$$

$$\mathbf{P}_0 = 100 \cdot \mathbf{I}_{12} \qquad \mathbf{Q} = 0.01 \cdot \mathbf{I}_{12}$$

$$\mathbf{Q} = 0.01 \cdot \mathbf{I}_{12}$$

$$\mathbf{F} = 1 \cdot \mathbf{I}_{12}$$

Segundo Caso - Compensação por Vizinhos

$$\mathbf{Q} = 0.1 \cdot \mathbf{I}_{12}$$

Segundo Caso - Reconstrução por ODR

A regressão por distâncias ortogonais é um método de *fitting* baseado no método dos mínimos quadrados.

$$\rho = \rho(\theta, a, b) = \frac{\left(a^2 \sin^2(\theta) + b^2 \cos^2(\theta)\right)^{\frac{3}{2}}}{a b}$$

Variáveis ODR

 $\rho = \mathbf{x}$ obtido pelo EKF $\sigma_{\rho} = diag(\mathbf{P})$ obtido pelo EKF

 θ = Posições dos extensômetros equidistantes σ_{θ} = Metade da distância entre extensômetros

Resultados e Discussões

Erro de Aproximação

Média:

 $\bar{\epsilon} = 2.21048\Omega$

Desvio Padrão:

$$\sigma_{\epsilon} = 134.92088 \Omega$$

Modelo 1 - Função Constante

Modelo 1 - Função Constante

Modelo 2 - Função Linear

25/37

Modelo 2 - Função Linear

Modelo 3 - Função Seno

26/37

Modelo 3 - Função Seno

Resultados - Extensômetro Isolado

Valores de covariância do estado e mediana ao fim das simulações.

Modelo	$\mathbf{P}_{1000}(\Omega^2)$	$\operatorname{Med}(\mathbf{P}_k)(\Omega^2)$
Constante	0.00341	0.00338
Linear	0.41404	1.60205
Seno	0.00013	4.12573

Pontos Importantes

- Em todos os casos, $P_{1000} < 5\Omega^2$;
- A covariância de processo Q deve ser diferente para que os modelos possuam melhor desempenho em filtragem;
- 3 A covariância de medição **R** pode ser tomada como $Cov(\epsilon_a)$.

Resultados - Geometria Torácica

Filtragem - Extensômetro 0

Resultados - Geometria Torácica

Filtragem - Extensômetro 4

Resultados - Extensômetros Isolados

Traço de Covariância de Processo ${f Q}$

Resultados - Extensômetros Isolados

Reconstrução do Modelo

Resultados - Compensação por Extensômetros Vizinhos

Traço de Covariância de Processo Q

Resultados - Compensação por Extensômetros Vizinhos

Reconstrução do Modelo

Resultados - Geometria Torácica

Traços de covariância do estado e mediana ao fim das simulações.

Modelo	$tr(\mathbf{P}_{249})(\Omega^2)$	$Med(tr(\mathbf{P}_k))(\Omega^2)$
Extensômetros Isolados	27.30728	41.23845
Compensação por Vizinhos	23.32405	26.51812

Pontos Importantes

- O modelo com compensação por vizinhos apresenta mediana do traco de covariâncias inferior ao outro modelo;
- ② Os extensômetros de número 0 a 6 obtiveram desempenho de filtragem menor.

Conclusões

- Mesmo com divergências em relação à geometria real, a utilização do EKF é uma ferramenta importante de auxílio na determinação da geometria verdadeira pela reconstrução por extensômetros.
- Apesar do desempenho, outros de métodos de filtragem podem levar a melhores resultados. O *Unscented Kalman Filter* é um destes exemplos.

Conclusões

- O jacobiano da matriz de medição pode tornar inviável o uso do EKF para problemas mais complexos, com não-linearidades mais abruptas.
- Mesmo com a utilização da regressão por distâncias ortogonais, modelar o tórax como elipse não é de muita utilidade. Uma outra abordagem viável seria a reconstrução geométrica com métodos de geometria diferencial, determinando-se a função de curvatura da geometria em certos pontos.

Referências

ADLER, A. *CT* of human thorax showing current paths for EIT and equipotentials. 2013. Disponível em: ."

ALEXANDROV, O. *Random Walk in 2D Closeup*. 2013. Disponível em: https://commons.wikimedia.org/wiki/File:Random walk in2D closeup.png.

GREGÓRIO, É. D. C. Instrumentação de Cinta de Eletrodos de Equipamento de Tomografia de Impedância Elétrica para Monitoração em Tempo Real do Formato e Excursão Torácica em Pacientes em Leito de UTI. 29 p. Tese (Doutorado) — Universidade Federal do ABC, 2017. HAYKIN, S. Kalman Filters. In: Kalman Filtering and Neural Networks. John Wiley & Sons, Inc., 2001. p. 1–21. ISBN 9780471221548. Disponível em: http://dx.doi.org/10.1002/0471221546. ch1>.

4 D F 4 D F 4 D F 4 D F