Regular Languages and Automata: Problems for Week 1

Note: when we ask for a DFA, we are happy for you to supply a partial DFA. Indeed that's usually better, because it's more efficient.

Exercise 1. Give a regexp over the alphabet $\Sigma = \{a, b, c\}$ for the set of words in which "a" occurs precisely twice.

Exercise 2. Build a DFA that checks whether a string is equal to "Goo...gle" with arbitrarily many o's following the initial two.

Exercise 3. *Design DFAs for the following regular expressions:*

- 1. (a/b)c
- 2. ab/bc
- 3. ab | ac (Careful! Remember that from any state there must be at most one transition labelled with a particular letter.)
- 4. c(a|b)*c

Exercise 4. An online shop requires users to provide a password during registration. Every password is a string of lowercase letters and digits. It must contain at least one letter and at least one digit, and it must be at least three characters long. Give a regular expression for passwords. You can use [a-z], which matches any lowercase letter, and [0-9], which matches any digit.

Exercise 5. *Determinize the following NFA.*

Exercise 6. *Remove* ε -*transitions from the following.*

Exercise 7. *Let Automaton A be the following DFA:*

Let Automaton B be the following DFA:

Give an isomorphism between these automata.

Exercise 8. Let Automaton A be the following NFA.

Let Automaton B be the following NFA.

 ${\it Give two isomorphisms between these automata}.$