Introduction to Big Data Science

11th Period
Essence in Data Mining
- Clustering and Association -

(SEC. I)

CLUSTERING ANALYSIS

What is Cluster Analysis?

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

What is not Cluster Analysis?

- Supervised classification
 - Have class label information
- Simple segmentation
 - Dividing students into different registration groups alphabetically, by last name
- Results of a query
 - Groupings are a result of an external specification
- Graph partitioning
 - Some mutual relevance and synergy, but areas are not identical

Notion of a Cluster can be Ambiguous

Types of Clustering

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partition Clustering

Hierarchical Clustering

Traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram

Other Distinctions Between Sets of Clusters

Exclusive versus non-exclusive

- In non-exclusive clusterings, points may belong to multiple clusters.
- Can represent multiple classes or 'border' points

Fuzzy versus non-fuzzy

- In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
- Weights must sum to 1
- Probabilistic clustering has similar characteristics

Partial versus complete

• In some cases, we only want to cluster some of the data

Heterogeneous versus homogeneous

Cluster of widely different sizes, shapes, and densities

Types of Clusters

- Well-separated clusters
- Center-based clusters
- Contiguous clusters
- Density-based clusters
- Property or Conceptual
- Described by an Objective Function

Types of Clusters: Well-Separated

Well-Separated Clusters:

 A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

Types of Clusters: Center-Based

Center-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster

•4 center-based clusters

Types of Clusters: Contiguity-Based

- Contiguous Cluster (Nearest neighbor or Transitive)
 - A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.

•8 contiguous clusters

Types of Clusters: Density-Based

Density-based

- A cluster is a dense region of points, which is separated by lowdensity regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.

•6 density-based clusters

Types of Clusters: Conceptual Clusters

- Shared Property or Conceptual Clusters
 - Finds clusters that share some common property or represent a particular concept.

©2 Overlapping Circles

(SEC. II)

ASSOCIATION RULES

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

©Example of Association Rules

```
{\mathfrak o}\{{\sf Diaper}\} \to \{{\sf Beer}\}, \ \{{\sf Milk}, {\sf Bread}\} \to \{{\sf Eggs}, {\sf Coke}\}, \ \{{\sf Beer}, {\sf Bread}\} \to \{{\sf Milk}\},
```

•Implication means cooccurrence, not causality!

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form X → Y, where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

oExample:

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

©Example of Rules:

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

(SEC. III)

FREQUENT ITEMSET GENERATION

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \begin{bmatrix} d \\ k \end{bmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{bmatrix}$$
$$= 3^{d} - 2^{d+1} + 1$$

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

"
$$X, Y: (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

oltems (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

©Triplets (3-itemsets)

olf every subset is considered,
$^{6}C_{1} + ^{6}C_{2} + ^{6}C_{3} = 41$
with support-based pruning, with support-based pr
6 + 6 + 1 = 13

Itemset	Count
{Bread,Milk,Diaper}	3

Another Example

 $_{\odot}Sup_{min} = 2$

Tid	Items
10	A, B, D
20	A, C, E
30	A, B, C, E
40	C, E

 $\mathfrak{o}C_1$

σ1st scan

Itemset	sup
{A}	3
{B}	2
{C}	3
{D}	1
{E}	3

	Itemset	sup
$\mathbf{o}L_1$	{A}	3
	{B}	2
	{C}	3
	{E}	3

			•
$\mathfrak{o}L_2$	Itemset	sup	
	{A, B}	2	
	{A, C}	2	
	{A, E}	2	
_	{C, E}	3	

 Itemset
 sup

 {A, B}
 2

 {A, C}
 2

 {A, E}
 2

 {B, C}
 1

 {B, E}
 1

 {C, E}
 3

₀2nd scan

ΦL_3	Itemset	sup
→	{A, C, E}	2

Apriori Algorithm

- Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - 1. Generate candidate (k+1)-itemsets from frequent k-itemsets
 - 2. Prune candidate (k+1)-itemsets containing some infrequent kitemset
 - 3. Count the support of each candidate by scanning the DB
 - 4. Eliminate infrequent candidates, leaving only those that are frequent

1. Generate Candidate (k+1) itemsets

$$\Phi Sup_{min} = 2$$

Input: frequent k-itemsets L_{k}

Output: frequent (k+1)-itemsets
$$L_{k+1}$$

- Procedure:
 - 1. Candidate generation, by self-join $L_k * L_k$
 - □ For each pair of $P=\{p_1, p_2, ..., p_k\} \in L_k$, $q=\{q_1, q_2, ..., q_k\} \in L_k$.
 - if $p_1=q_1, ..., p_{k-1}=q_{k-1}, p_k < q_{k}$ add $\{p_1, ..., p_{k-1}, p_k, q_k\}$ into C_{k+1}

- Example: L_2 ={AB, AC, AE, CE}
 - AB and AC => ABC
 - AB and AE => ABE
 - AC and AE => ACE

2. Prune Candidates

10	C
	_

ΦL_2	Itemset	sup
	{A, B}	2
	{A, C}	2
	{A, E}	2
	{C, E}	3

- Input: frequent k-itemsets L_k
- Output: frequent (k+1)-itemsets L_{k+1}
- Procedure:
- 1. Candidate generation, by self-join $L_k * L_k$
 - □ For each pair of P={ $p_1, p_2, ..., p_k$ } ∈ $L_{2, q}$ ={ $q_1, q_2, ..., q_k$ } ∈ $L_{2, q}$
 - if $p_1=q_1, ..., p_{k-1}=q_{k-1}, p_k < q_{k,}$ add $\{p_1, ..., p_{k-1}, p_k, q_k\}$ into C_{k+1}

- {A, B, C} {A, B, E} {A, C, E}
- 2. Prune candidates that contain infrequent k-itemsets
- Example: L_2 ={AB, AC, AE, CE}
 - AB and AC => ABC, pruned because BC is not frequent
 - AB and AE => ABE, pruned because BE is not frequent
 - AC and AE => ACE

3. Count support of candidates and

4. Eliminate infrequent candidates

$$\Phi Sup_{min} = 2$$

• Input: frequent k-itemsets L_k

Output: frequent (k+1)-itemsets L_{k+1}

Procedur	re:	:
----------	-----	---

- 1. Candidate generation, by self-join $L_k * L_k$
 - □ For each pair of $P=\{p_1, p_2, ..., p_k\} \in L_{2}$, $q=\{q_1, q_2, ..., q_k\} \in L_{2}$
 - if $p_1=q_1, ..., p_{k-1}=q_{k-1}, p_k < q_{k,}$ add $\{p_1, ..., p_{k-1}, p_k, q_k\}$ into C_{k+1}

- 2. Prune candidates that contain infrequent k-itemsets
- 3. Count the support of each candidate by scanning the DB
 - 4. Eliminate infrequent candidates

Reducing Number of Comparisons

Candidate counting:

- Scan the database of transactions to determine the support of each candidate itemset
- To reduce the number of comparisons, store the candidates in a hash structure
 - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Generate Hash Tree

Suppose you have 15 candidate itemsets of length 3:

 $\{1\ 4\ 5\},\ \{1\ 2\ 4\},\ \{4\ 5\ 7\},\ \{1\ 2\ 5\},\ \{4\ 5\ 8\},\ \{1\ 5\ 9\},\ \{1\ 3\ 6\},\ \{2\ 3\ 4\},\ \{5\ 6\ 7\},\ \{3\ 4\},\ \{5\ 6\ 7\},\ \{6\ 7\},$ 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

- Hash function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)
- An order on the items (e.g., 1 .. 9, Beer, Bread, Coke, Diaper, Egg, Milk)

37

Association Rule Discovery: Hash tree

Association Rule Discovery: Hash tree

Association Rule Discovery: Hash tree

Subset Operation

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

(SEC. IV)

ASSOCIATION RULES GENERATION

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f
 □ L such that f → L − f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,

◆ If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an anti-monotone property c(ABC →D) can be larger or smaller than c(AB →D)
 - But confidence of rules generated from the same itemset has an anti-monotone property

e.g.,
$$L = \{A,B,C,D\}$$
:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

—Confidence is anti-monotone w.r.t. the RHS of the rule

Rule Generation for Apriori Algorithm

Rule Generation for Apriori Algorithm

Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

- join(CD=>AB,BD=>AC)
 would produce the candidate
 rule D => ABC
- Prune rule D=>ABC if its subset AD=>BC does not have high confidence

