Lecture 3

9/8/2020

Why: Task Abstraction

Tasks

- Why? Understand data, but what do I want to do with it?
- ► Levels: High (Produce/Consume), Mid (Search), Low (Queries)
- Another key concern: Who?
 - Designer <-> User (A spectrum)
 - General <-> Context-Specific
 - ► Flexible <-> Constrained
 - Complex <-> Easy to Use
 - Varied Data <-> Specific Data

Tasks

Actions: Analyze

Analyze: Visualization for Consumption

- Discover new knowledge
 - Generate new hypothesis or verify existing one
 - Designer doesn't know what users need to see
 - "...separate out the questions of why the vis is being used from how the vis idiom is designed to achieve those goals, so...why doesn't dictate how."
- Present known information
 - Presenter already knows what the data says
 - Want to communicate this to an audience
 - Output of a discover session can become input of a present sessions
- Enjoy
 - Similar to discover, but without concrete goals
 - ► Goal of discovery by creator, but ends up being used for entertainment by a different group of people: e.g. babynamewizard.

Enjoy

Analyze: Visualization for Production

- ▶ Generate new material; goal is to produce output that is used immediate as input to a next instance
- Annotate
 - ▶ Add more to a visualization; attach information to a visualization
 - Usually associated with text, but can be graphical
- Record
 - Persist visualizations for historical record
 - Provenance (graphical histories): how did I get here?
 - Ex: screen shots, interaction logs
- Derive (Transform)
 - Create new data derived attributes
 - Create derived attributes (ex: mathematical operations, aggregation, transform numerically or between data types such as from continuous to categories (water temp: hot, warm, cold))
 - Decide what the right thing to show is

Actions: Search

Discussion: give me an examples of

each

Search

	Target known	Target unknown
Location known	Lookup	• Browse
Location unknown	C O D Locate	€ Explore

Actions: Search

Search

	Target known	Target unknown
Location known	Lookup	• Drowse
Location unknown	C O D Locate	< O → Explore

- What does a user know:
 - Lookup: check bearings
 - Locate: find on a map
 - Browse: what's nearby
 - Explore: where to go (patterns)

Actions: Query

- Number of targets: one, some (often 2), or all
- Identify: characteristics or references
- Compare: similarities and differences
- Summarize: overview of everything

Actions: Query

- Chloropleth map of US election results
 - Identify
 - Election results for one state
 - Search returns targets by lookup or locate, identify returns characteristics
 - ▶ E.g. winning party (identified by color) for the state of California
 - Search returns targets matching particular characteristics (via browse or explore), identify returns specific references
 - ▶ E.g. identify the state having the highest margin of victory
 - Compare
 - Scope: multiple targets
 - Typically more difficult than identify
 - Ex between states
 - Summarize
 - Overview
 - Ex all states

Targets

Targets: All Data

- High level for all types of data
 - Trends
 - ▶ Patterns in the data (example: increases, decreases, peaks, troughs, and plateaus)
 - Outliers
 - ▶ Elements that don't fit well with the general data
 - ► Aka anomalies, novelties, deviants, surprises
 - Features
 - ► Generally task dependent (any particular structures of interest)

Targets: Attributes

- Attributes specific properties that are visually encoded
 - Lowest level individual value
 - Extremes min or max across the range
 - ► Common target with high-level scope distribution of all values for an attribute
- Some targets have multiple attributes
 - Dependencies
 - Values for one depend on a second
 - Correlation
 - ▶ Tendency for the values of one attribute tied to the values of a second attribute
 - Similarity
 - Quantitative measurement on all values of two or more attributes
 - > Allows ranking of attributes with respect to how similar or different they are from each other

Targets: Network and Spatial Data

- Some targets have specific types of datasets
 - Network data specifies relationships between nodes as links
 - ► Target is to understand structure of these interconnections (network's topology)
 - ▶ Path (more specific topological target) of one or more links that connects two nodes
 - Spatial data
 - ▶ Understanding and comparing the geometric shape is the common target of user actions

How?

Sources/Credits

- ► Tamara Munzner, Visualization Analysis & Design, A K Peters Visualization Series, CRC Press, 2014.
- ▶ Utah, Miriah Meyer, Visualization (2014).
- ▶ UMass Dartmouth, David Koop, Data Visualization (2015).