

Dr Xuefei Lu

The University of Edinburgh Business School

Calculate the information gain if you split based on the number of bottles of whisky bought (>2).

A.
$$IG(T,N) = 1$$

C.
$$IG(T,N) = 0.971$$

	Visited the Castle (V)	Bought a kilt (B)	#bottles of whisky bought (N)	Tourist (T)
Visitor 1	Yes	Yes	4	Yes
Visitor 2	Yes	No	1	No
Visitor 3	No	Yes	3	Yes
Visitor 4	No	Yes	4	Yes
Visitor 5	No	Yes	2	No
Visitor 6	Yes	Yes	1	Yes
Visitor 7	Yes	No	10	No
Visitor 8	No	No	5	Yes
Visitor 9	No	Yes	1	Yes
Visitor 10	No	Yes	0	No

Calculate the information gain if you split based on the number of bottles of whisky bought (>2).

A.
$$IG(T,N) = 1$$

C.
$$IG(T,N) = 0.971$$

D.
$$IG(T,N) = 0.0996$$

$$H(T) = -\frac{6}{10}\log_2\frac{6}{10} - \frac{4}{10}\log_2\frac{4}{10} = 0.971$$

$$H(T|B > 2) = -\frac{4}{5}\log_2\frac{4}{5} - \frac{1}{5}\log_2\frac{1}{5} = 0.722$$

$$H(T|B \le 2) = -\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5} = 0.971$$

$$IG(T,N) = H(T) - \frac{4}{10}H(T|B > 2) - \frac{6}{10}H(T|B \le 2)$$

$$= 0.971 - \frac{4}{10}0.722 - \frac{6}{10}0.971 = 0.0996$$

	Visited the Castle (V)	Bought a kilt (B)	#bottles of whisky bought (N)	Tourist (T)
Visitor 1	Yes	Yes	4	Yes
Visitor 2	Yes	No	1	No
Visitor 3	No	Yes	3	Yes
Visitor 4	No	Yes	4	Yes
Visitor 5	No	Yes	2	No
Visitor 6	Yes	Yes	1	Yes
Visitor 7	Yes	No	10	No
Visitor 8	No	No	5	Yes
Visitor 9	No	Yes	1	Yes
Visitor 10	No	Yes	0	No

Calculate the Gini impurity after splitting based on N<2, N<4, N>=4.

- A. G(after N split) = 0.033
- B. G(after N split) = 0.025
- C. G(after N split) = 0.0583
- D. G(after N split) = 0.1

	Visited the Castle (V)	Bought a kilt (B)	#bottles of whisky bought (N)	Tourist (T)
Visitor 1	Yes	Yes	4	Yes
Visitor 2	Yes	No	1	No
Visitor 3	No	Yes	3	Yes
Visitor 4	No	Yes	4	Yes
Visitor 5	No	Yes	2	No
Visitor 6	Yes	Yes	1	Yes
Visitor 7	Yes	No	10	No
Visitor 8	No	No	5	Yes
Visitor 9	No	Yes	1	Yes
Visitor 10	No	Yes	0	No

Calculate the Gini impurity after splitting based on N<2, N<4, N > = 4.

- A. G(after N split) = 0.033
- B. $G(after \ N \ split) = 0.025$
- C. G(after N split) = 0.0583
- D. G(after N split) = 0.1

G(after V split)

$$= p_t \cdot (2 \cdot p_{<2,t} \cdot p_{<4,t} \cdot p_{\leq 4,t}) + p_{nt}$$
$$\cdot (2 \cdot p_{<2,nt} \cdot p_{<4,nt} \cdot p_{\leq 4,nt})$$

$$\cdot \left(2 \cdot \boldsymbol{p}_{<2,nt} \cdot \boldsymbol{p}_{<4,nt} \cdot \boldsymbol{p}_{\leq 4,nt}\right)$$

$$= 0.6 \cdot \left(2 \cdot 2 \cdot 6 \cdot 1 \cdot 6 \cdot 3 \cdot 6\right) + 0.4 \cdot \left(2 \cdot \frac{2}{4} \cdot \frac{1}{4} \cdot 1 \cdot 4\right)$$

$$= 0.033 + 0.025 = 0.0583$$

	Visited the Castle (V)	Bought a kilt (B)	#bottles of whisky bought (N)	Tourist (T)
Visitor 1	Yes	Yes	4	Yes
Visitor 2	Yes	No	1	No
Visitor 3	No	Yes	3	Yes
Visitor 4	No	Yes	4	Yes
Visitor 5	No	Yes	2	No
Visitor 6	Yes	Yes	1	Yes
Visitor 7	Yes	No	10	No
Visitor 8	No	No	5	Yes
Visitor 9	No	Yes	1	Yes
Visitor 10	No	Yes	0	No

A decision tree's performance cannot suffer from...

- A. Having too many nodes.
- B. Having a high depth.
- C. Dividing the feature space into rectangular subspaces.
- D. All of the above.

A decision tree's performance cannot suffer from...

- A. Having too many nodes.
- B. Having a high depth.
- C. Dividing the feature space into rectangular subspaces.
- D. All of the above.

Which statement is false?

- A. The Gini index and entropy both capture the unstructuredness in the data.
- B. The Gini index captures statistical dispersion of the dataset.
- C. Information gain needs to be as low as possible, Gini impurity as high as possible.

Which statement is false?

- A. The Gini index and entropy both capture the unstructuredness in the data.
- B. The Gini index captures statistical dispersion of the dataset.
- C. Information gain needs to be as low as possible, Gini impurity as high as possible.

