Unit Assignment: Rational Functions and Inequalities

Jin Hyung Park

MFH4U Virtual High School Hayden, Brian 2020.06.04

Question 1.

1-1. What is a rational function?

- A rational function has a ratio of two polynomial functions where its divider is not zero.
 The function has x-intercepts, y-intercepts, turning points, local maximum, and local minimum, and asymptotes.
- The domain of $f(x) = \frac{P(x)}{Q(x)}$ is all point of x where its denominator Q(x) is not zero and f(x), g(x) are polynomials.

1-2. How is it different from a polynomial?

- A polynomial function is composed of one or multiple monomials while a rational function has a denominator, which is a polynomial function, to divide another polynomial function.
- 1-3. Provide a graph of each to demonstrate the difference.
 - The graph of $f(x) = \frac{x+9}{x-6}$

• The graph of f(x) = x + 9

Question 2.

2-1.
$$f(x) = \frac{2x-1}{x+5}$$

• x-intercept $0 = \frac{2x-1}{x+5}$

$$0 = \frac{2x-1}{x+5}$$

$$0 = 2x - 1$$

$$1 = 2x$$

$$x = \frac{1}{2}$$

Therefore, the x-intercept is $\frac{1}{2}$

$$f(0) = \frac{2x-1}{x+5}$$

• y-intercept
$$f(0) = \frac{2x-1}{x+5}$$

$$f(0) = \frac{2(0)-1}{0+5}$$

$$f(0) = \frac{-1}{5}$$

$$f(0) = \frac{-1}{5}$$

Therefore, the y-intercept is $\frac{-1}{5}$

holes

Factor: $\frac{2x-1}{x+5}$

There is no hole since no common factor viable.

Vertical asymptotes

Factor:
$$\frac{2x-1}{x+5}$$

Thus, $x = -5$

Horizontal and Oblique asymptotes

The numerator and denominator have the same degree, thereby horizontal asymptotes are $y = \frac{a}{c}$ where a, c are both leading coefficient of the numerator and denominator.

$$y = \frac{2}{1}, y = 2$$

End behaviors

i) when
$$x \to -5^-$$

$$f(-5.001) = \frac{2*(-5.001)-1}{(-5.001)+5} = \frac{-11.002}{-0.001}$$

$$y \to \infty$$

ii) when
$$x \to -5^+$$

$$f(-4.999) = \frac{2*(-4.999)-1}{(-4.999)+5} = \frac{-10.998}{0.0001}$$

$$v \to -\infty$$

iii) if
$$x \to \infty$$

 $f(9999) = \frac{2*(9999)-1}{9999+5}$
 $x \to \infty$

iv) if
$$x \to -\infty$$

 $f(-9999) = \frac{2*(-9999)-1}{(-9999)+5}$
 $x \to -\infty$

• Defining Intervals

$$f(x) = \frac{2x-1}{x+5}$$

	<i>x</i> <- 5	$-5 < x < \frac{1}{2}$	$x > \frac{1}{2}$
2x - 1	-	-	-
<i>x</i> + 5	+	+	+
total	-	-	+

Sketch by hand

2-2.
$$f(x) = \frac{x^2-9}{x}$$

x-intercept

$$0 = \frac{x^2 - 9}{x}$$

$$0 = x^2 - 9$$

$$x = 3 \text{ or } x = -3$$

• y-intercept $f(x) = \frac{0-9}{0}$

$$f(x) = \frac{0-9}{0}$$

It is not allowed to let the denominator equals zero. Thus, there is no y-intercept.

Holes

Since the nominator and denominator do not have a common factor, there is no hole.

Vertical Asymptotes

$$f(x) = \frac{x^2 - 9}{x}$$

 $x \neq 0$

Thus, x = 0 is a vertical asymptote.

Horizontal/Oblique Asymptotes

The numerator has a larger degree than denominator which means there are no horizontal asymptotes.

There is an oblique asymptote, which is y = x.

To denote the following equation, $y = ax + b + \frac{e}{cx+d} \ (a \neq 0)$ has an oblique asymptote which is y = ax + b.

$$y = x - \frac{9}{x}$$

End behaviours

i)
$$x \to 0^-$$

 $y = \frac{(-0.001)^2 - 9}{(-0.001)} = \frac{(0.000001) - 9}{-0.001} > 0$
 $y \to \infty$

ii)
$$x \to 0^+$$

 $y = \frac{(0.001)^2 - 9}{(0.001)} = \frac{(0.000001) - 9}{0.001} < 0$
 $y \to -\infty$

iii)
$$x \to \infty$$

 $f(999) = \frac{(999)^2 - 9}{999} > 0$
 $y \to \infty$

iv)
$$x \to -\infty$$

 $f(-999) = \frac{(-999)^2 - 9}{(-999)} < 0$
 $y \to -\infty$

Defining Intervals

	x <- 3	0 < x < 3	<i>x</i> > 3
x	-	+	+
$x^2 - 9$	+	-	+
	-	-	+

Sketch by hand

2-3.
$$f(x) = \frac{x-3}{x^3-2x^2-5x+6}$$

$$f(x) = \frac{(x-3)}{(x-1)(x+2)(x-3)}$$

• x-intercept

$$0 = \frac{1}{(x-1)(x+2)}$$

0 * (x-1)(x+2) = 1 which is undefined.

There is no x-intercept.

• y-intercept
$$f(x) = \frac{1}{(0-1)(0+2)} = -\frac{1}{2}$$

Holes

Factor
$$f(x) = \frac{(x-3)}{(x-1)(x+2)(x-3)}$$

(x-3) is the common factor

$$x = 3$$

Substitute x = 3 to f(x)

$$\frac{(3-3)}{(3-1)(3+2)(3-3)} = \frac{1}{10}$$

Therefore hole is $(3, \frac{1}{10})$

Vertical Asymptotes

$$(x-1)(x+2)(x-3) \neq 0$$

 $x \neq -2, 1, 3$

However, x = 3 is a hole value

Therefore, the vertical asymptote is -2, 1

Horizontal/Oblique Asymptotes

The denominator has a bigger degree than the numerator

The horizontal asymptote happens in y = 0

There is no slant asymptote.

End behaviors

i)
$$x \to -2^-$$

 $f(x) = \frac{(-2.001-3)}{(-2.001-1)(-2.001+2)(-2.001-3)} = \frac{1}{(-3.001)(-0.001)} > 0$
 $f(x) \to \infty$

ii)
$$x \to -2^+$$

 $f(x) = \frac{(-1.999-3)}{(-1.999-1)(-1.999+2)(-1.999-3)} = \frac{1}{(-2.999)(0.0001)} < 0$
 $f(x) \to -\infty$

iii)
$$x \to 1^-$$

$$f(x) = \frac{(0.999-3)}{(0.999-1)(0.999+2)(0.999-3)} = \frac{1}{(-0.001)(2.999)} < 0$$

$$f(x) \to -\infty$$

iv)
$$x \rightarrow 1^+$$

$$f(x) = \frac{(1.001-3)}{(1.001-1)(1.001+2)(1.001-3)} = \frac{1}{(0.001)(3.001)} > 0$$

$$f(x) \to \infty$$

v)
$$x \to \infty$$

$$f(999) = \frac{(999-3)}{(999-1)(999+2)(999-3)} > 0$$

$f(x) \to \infty$

vi)
$$x \to -\infty$$

$$f(-999) = \frac{(-999-3)}{(-999-1)(-999+2)(-999-3)} > 0$$

$$f(x) \to \infty$$

Defining Intervals

x < -2	-2 < x < 1	x > 2
--------	------------	-------

x + 2	-	+	+
x-1	-	-	+
x-3	-	-	+
	-	+	+

Sketch by hand

Question 3.

a.
$$\frac{16x^2-9}{x^2+4x-12} = 0$$
$$\frac{(4x+3)(4x-3)}{(x-2)(x+6)} = 0$$

To extract the value that makes the function undefined.

$$(x-2) \neq 0, (x+6) \neq 0$$

$$x \neq 2, x \neq -6$$

To get the value that makes the function zero.

$$(4x+3)=0$$

$$or(4x-3)=0$$

$$x = \frac{3}{4} \text{ or } x = -\frac{3}{4}$$

b.
$$x(2x-13) < -20$$

$$2x^2 - 13x < -20$$

$$2x^2 - 13x + 20 < 0$$

$$(2x-5)(x-4) < 0$$

	$x < \frac{5}{2}$	$\frac{5}{2} < x < 4$	<i>x</i> > 4
(2x-5)	-	+	+
(x-4)	-	-	+
	+	-	+

Therefore, $\frac{5}{2} < x < 4$

C.
$$\frac{1}{r+3} > \frac{r+4}{r-2} + \frac{6}{r-2}$$
$$\frac{1}{r+3} > \frac{r+10}{r-2}$$

$$(r-2) > (r+10)(r+3)$$

$$(r-2) > r^2 + 13r + 30$$

$$r^2 + 12r + 32 < 0$$

$$(r+4)(r+8) < 0$$

	-8 < r	-8 < r <-4	r >- 4
(r+4)	-	-	+

(r+8)	-	+	+
	+	-	+

The answer is -8 < r < -4

Question 4.

The following formula determines the minimum number of hours of studying required to attain a test score, x.

$$p(x) = \frac{0.31x}{100.5 - x}$$

a. How many hours of study are needed to score an 80?

$$p(80) = \frac{0.31(80)}{100.5-80}$$

$$p(80) = about 1.21$$

Therefore, 1.21 hours of study are needed to score an 80.

b. What score can you achieve if you study for 6 hours?

$$6 = \frac{0.31x}{100.5 - x}$$

$$6(100.5 - x) = 0.31x$$

$$603 - 6x = 0.31x$$

$$6.31x = 603$$

$$x = 95.56$$

Therefore, I would score 95.56 after 6 hours of study.

c. How many hours of study are needed to score the mark you would like to obtain in this course?

I would like to obtain 100, thus would put 100 into the equation.

$$P(100) = \frac{0.31(100)}{100.5 - 100}$$

$$P = 62$$

Therefore, I should study for 62 hours to obtain 100.