QF Group Theory CC2022 By Zaiku Group

Lecture 17

Delivered by Bambordé Baldé

Friday, 28/10/2022

Learning Journey Timeline

quantumformalism.com

Theorem 1.0 (The Orbit-Stabiliser Theorem)

Let G be a finite group acting on a set X. Then $|G| = |Stab_G(x)||Orb_G(x)|$ for all $x \in X$.

Some Linear Algebra Refresher (A)

Definition 1.0

Let V be an n- dimensional vector space over the reals \mathbb{R} . A map $L:V\longrightarrow V$ is linear if it satisfies the following conditions:

- 2 $L(\alpha v) = \alpha L(v)$ for all $v \in V$ and $\alpha \in \mathbb{R}$.

Proposition 1.0

Let Lin(V) be the set of all linear maps $L:V\longrightarrow V$. If $L,L'\in Lin(V)$, then $L'\circ L\in Lin(V)$ where \circ is the ordinary composition of maps.

Proof: Homework challenge!

Side note: We can equip Lin(V) with a real vector structure as well!

The Abstract General Linear Group

Proposition 1.1

We define the set GL(V) to be the set of all invertible linear maps on V i.e. $GL(V) = \{L \in Lin(V) \mid L \text{ is invertible}\}$. Then GL(V) is a group under ordinary composition of maps \circ .

- GL(V) is known in the literature as the general linear group of V.
- For our purposes V is finite dimensional, however even if V is infinite dimensional, GL(V) exists and very interesting to study!

Challenge 1

Let V_1 and V_2 be two real vector spaces. Is it true that if $V_1 \simeq V_2$ then $GL(V_1) \simeq GL(V_2)$ i.e. isomorphism of two vector spaces implies isomorphism of their corresponding general linear groups?

Some Linear Algebra Refresher (B)

Definition 1.1

We'll write $M_n(\mathbb{R})$ to denote the set of all $n \times n$ matrices over the reals \mathbb{R} .

- Some authors use the notation $M^{n\times n}(\mathbb{R})$ instead of $M_n(\mathbb{R})$.
- I'll assume everyone knows about the basics of $n \times n$ matrices over the reals \mathbb{R} including; how to compute the transpose, perform addition and multiplication of $n \times n$ matrices.
- When equipped with the ordinary matrix addition and multiplication, which of the following algebraic structures $M_n(\mathbb{R})$ forms?
- An abelian group under addition.
- A nonabelian group under multiplication.
- 3 A real vector space of dimension n^2 .

Important: From linear algebra 101 an element $A \in M_n(\mathbb{R})$ induces a linear map $L_A : \mathbb{R}^n \longrightarrow \mathbb{R}^n$, with \mathbb{R}^n equipped with the canonical vector space structure over \mathbb{R} . Likewise, any linear map $L : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ induces an element $A_L \in M_n(\mathbb{R})$ i.e. linear maps on $\mathbb{R}^n \equiv n \times n$ matrices over \mathbb{R} .

Real Matrix Groups

Definition 1.2

A subset $G \subset M_n(\mathbb{R})$ is a matrix group if it's a group under the ordinary matrix multiplication. This obviously implies the following:

- **1** If $A, B \in G$ then $AB \in G$ i.e. matrix multiplication is a closed binary operation in G.
- ② If $A, B, C \in G$ then A(BC) = (AB)C i.e. matrix multiplication is associative in G. This is trivial to show because it is associative in $M_n(\mathbb{R})$!
- **3** The identity matrix $I_n \in G$.
- **4** For any $A \in G$ there exists an inverse matrix A^{-1} such that $AA^{-1} = A^{-1}A = I_n$.
- Since G is a group, then all the abstract group-theoretic properties and constructions we've made so far also applies to it! Hence, we can ask about subgroups of G, left G— actions, left cosets, orbits, stabilisers and so on.

Concrete Matrix Group Example

• Let n = 2 and G be the set of all 2×2 real matrices defined as

$$R_{ heta} = egin{pmatrix} cos heta & -sin heta \\ sin heta & cos heta \end{pmatrix}$$
 where $heta \in [0, 2\pi]$. It's not hard to verify that

G is a matrix group under ordinary matrix multiplication. If you're not convinced G is group, then you're encouraged to try prove or disprove it!

• Let us consider a left action of
$$G$$
 above on the plane \mathbb{R}^2 defined as: For each $R_\theta \in G$ and $v = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$, we produce an element $v' \in \mathbb{R}^2$ via $v' = R_\theta v = \begin{pmatrix} x \cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{pmatrix}$.

Side note: The group G above is indeed an interesting group acting on the plane \mathbb{R}^2 ! Does anyone know what it is?

Challenge 2

Let G be the rotation group in the previous example together with the constructed action on \mathbb{R}^2 . You're encouraged to identify the orbit and stabiliser of each of the following elements:

- $lackbox{0}{0}$
- $2 \binom{1}{0}$
- $lackbox{0}{1}$

The General Linear Group over \mathbb{R}

Proposition 1.2

Let us consider the subset of $M_n(\mathbb{R})$ defined as $GL(n,\mathbb{R}) = \{A \in M_n(\mathbb{R}) \mid det(A) \neq 0\}$. Then $GL(n,\mathbb{R})$ is a group under ordinary matrix multiplication.

Proof: Homework challenge!

- As a hint to help you prove the above: Recall from kindergarten linear algebra that if $A \in M_n(\mathbb{R})$ and $det(A) \neq 0$, then A is invertible! In fact A is invertible iff $det(A) \neq 0$!
- $GL(n,\mathbb{R})$ is known in the literature as the general linear group of order n over \mathbb{R} . Also, some authors use the notation $GL_n(\mathbb{R})$!
- In general, $GL(n,\mathbb{R})$ is obviously nonabelian right?
- Again, since $GL(n,\mathbb{R})$ is a group, then all the general properties and constructions we made abstractly also applies to it! Hence, we can ask about subgroups of $GL(n,\mathbb{R})$, left cosets, orbits, stabilisers and so on.

Side note: $GL(n,\mathbb{R})$ is a real Lie group of dimension n^2 that will be covered in the next course!

Theorem 1.1

Let $GL(\mathbb{R}^n)$ be the group of all invertible linear maps $L: \mathbb{R}^n \longrightarrow \mathbb{R}^n$, where \mathbb{R}^n is equipped with the ordinary vector space structure over \mathbb{R} . Then $GL(\mathbb{R}^n) \simeq GL(n,\mathbb{R})$.

Proof: Homework challenge! As a hint, you can use the canonical basis of \mathbb{R}^n to construct your proof!

Challenge 3

Is it true that every matrix group $G \subset M_n(\mathbb{R})$ is a subgroup of $GL(n,\mathbb{R})$ i.e. $GL(n,\mathbb{R})$ is indeed the largest possible matrix group?

GitHub: github.com/quantumformalism

YouTube: youtube.com/ZaikuGroup

Discord: discord.gg/SPcmcsXMD2

Linkedin: linkedin.com/showcase/quantum-formalism

Twitter: twitter.com/ZaikuGroup