DS 4400

Machine Learning and Data Mining I Spring 2024

David Liu
Khoury College of Computer Science
Northeastern University

Outline

- Review of Cross Validation
- Logistic regression
 - Objective for logistic regression
 - Gradient descent training
 - Regularization
- Logistic regression lab
- Evaluation of classifiers
 - Accuracy, error, precision, recall
 - ROC curves and the AUC metric
 - Why multiple metrics

Announcements

Based on class feedback there will be frequent code demos / examples to complement lecture slides.

Many of these will be the textbook's labs. However, in coming weeks I will likely create my own code demos as well.

Lab Demo for Cross Validation and Regularization

LOGISTIC REGRESSION

Linear Classifiers

Linear classifiers: represent decision boundary by hyperplane

$$h_{\theta}(x) = f(\theta^T x)$$
 linear classifier

- If $\theta^T x > 0$ classify "Class 1"
- If $\theta^T x < 0$ classify "Class 0"

All the points x on the hyperplane satisfy: $\theta^T x = 0$

Logistic Regression

Setup

- Training data: $\{x_i, y_i\}$, for i = 1, ..., N
- − Labels: $y_i \in \{0,1\}$

Goals

 $- \operatorname{Learn} h_{\theta}(x) = P(Y = 1 | X = x)$

Highlights

- Probabilistic output
- At the basis of more complex models (e.g., neural networks)
- Supports regularization (Ridge, Lasso)
- Can be trained with Gradient Descent

Logistic Regression

- Takes a probabilistic approach to learning discriminative functions (i.e., a classifier)
- $h_{\theta}(x)$ should give $P(Y = 1|X; \theta)$
 - Want $0 \le h_{\boldsymbol{\theta}}(\boldsymbol{x}) \le 1$
- Logistic regression model:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g\left(\boldsymbol{\theta}^{\intercal} \boldsymbol{x}\right)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

Maximum Likelihood Estimation (MLE)

Training data $X = \{x_1, \dots, x_N\}$, labels $Y = \{y_1, \dots, y_N\}$

What is the likelihood of training data for parameter θ ?

Define likelihood function $Max_{\theta} L(\theta) = P[Y|X;\theta]$

$$Max_{\theta} L(\theta) = P[Y|X; \theta]$$

Assumption: training labels are conditionally independent

$$L(\theta) = \prod_{i=1}^{N} P[Y = y_i | X = x_i; \theta]$$

Log likelihood has the same maximum

$$\log L(\theta) = \sum_{i=1}^{N} \log P[Y = y_i | X = x_i; \theta]$$

MLE for Logistic Regression

$$P(Y = y_i | X = x_i; \theta) = h_{\theta}(x_i)^{y_i} (1 - h_{\theta}(x_i))^{1 - y_i}$$

$$\theta_{MLE} = \operatorname{argmax}_{\theta} \sum_{i=1}^{N} \log P[Y = y_i | X = x_i; \theta]$$

$$= \operatorname{argmax}_{\theta} \sum_{i=1}^{N} y_i \log h_{\theta}(x_i) + (1 - y_i) \log \left(1 - h_{\theta}(x_i)\right)$$

Logistic Regression Cross-Entropy Loss Objective

$$\min_{\theta} J(\theta)$$

$$J(\theta) = -\sum_{i=1}^{N} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i))]$$

Cross-Entropy Objective

$$J(\theta) = -\sum_{i=1}^{N} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i))]$$

Loss of a single instance:

Intuition

loss
$$(h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

Intuition

loss
$$(h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

If
$$y = 1$$

- loss = 0 if prediction is correct
- As $h_{\theta}(x) \to 0$, loss $\to \infty$
- Captures intuition that larger mistakes should get larger penalties
 - e.g., predict $h_{m{ heta}}(m{x})=0$, but y = 1

Intuition

loss
$$(h_{\boldsymbol{\theta}}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\boldsymbol{\theta}}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

If y = 0

- loss = 0 if prediction is correct
- As $(1 h_{\theta}(x)) \to 0$, loss $\to \infty$
- Captures intuition that larger mistakes should get larger penalties

Gradient Descent for Logistic Regression

$$J(\theta) = -\sum_{i=1}^{N} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i))]$$

Want
$$\min_{oldsymbol{ heta}} J(oldsymbol{ heta})$$

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

Gradient Computation

$$J(\theta) = -\sum_{i=1}^{N} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i))]$$

Derivative Facts to Know:

$$\frac{d}{dx}\log x = \frac{1}{x}$$

If
$$f(x) = \frac{1}{1+e^{-x}}$$
, then

$$\frac{df}{dx} = f(x)(1 - f(x))$$

Computing Gradients

Derivative of sigmoid

$$-g(z) = \frac{1}{1+e^{-z}}; g'(z) = \frac{e^{-z}}{(1+e^{-z})^2} = g(z)(1-g(z))$$

Derivative of hypothesis

$$-h_{\theta}(x) = g(\theta^{T}x) = g(\theta_{j}x_{j} + \sum_{k \neq j} \theta_{k}x_{k})$$
$$-\frac{\partial h_{\theta}(x)}{\partial \theta_{j}} = \frac{\partial g(\theta^{T}x)}{\partial \theta_{j}}x_{j} = g(\theta^{T}x)(1 - g(\theta^{T}x))x_{j}$$

• Derivation of C_i

$$-\frac{\partial C_i}{\partial \theta_j} = y_i \frac{1}{h_{\theta}(x_i)} g(\theta^T x_i) \Big(1 - g(\theta^T x_i) \Big) x_{ij} -$$

$$(1 - y_i) \frac{1}{1 - h_{\theta}(x_i)} g(\theta^T x_i) \Big(1 - g(\theta^T x_i) \Big) x_{ij}$$

$$= \Big(y_i - h_{\theta}(x_i) \Big) x_{ij}$$

Gradient Descent for Logistic Regression

$$J(\theta) = -\sum_{i=1}^{N} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i))]$$

Want $\min_{oldsymbol{ heta}} J(oldsymbol{ heta})$

- Initialize θ
- Repeat until convergence (simultaneous update for j = 0 ... d)

$$\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i)$$

$$\theta_j \leftarrow \theta_j - \alpha \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i) x_{ij}$$

Gradient Descent for Logistic Regression

Want
$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

- Initialize θ
- Repeat until convergence

(simultaneous update for $j = 0 \dots d$)

$$\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i)$$

$$\theta_j \leftarrow \theta_j - \alpha \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i) x_{ij}$$

This looks IDENTICAL to Linear Regression!

However, the form of the model is very different:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

Regularized Logistic Regression

$$J(\theta) = -\sum_{i=1}^{N} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i))]$$

We can regularize logistic regression exactly as before:

$$J_{\text{regularized}}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda \sum_{j=1}^{d} \theta_j^2$$
$$= J(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}_{[1:d]}\|_2^2$$

L2 regularization

Logistic Regression Lab Example

Classifier Evaluation

- Classification is a supervised learning problem
 - Prediction is binary or multi-class
- Classification techniques
 - Linear classifiers
 - Logistic regression (probabilistic interpretation)
 - Instance learners
 - kNN: need to store entire training data
- Cross-validation should be used for parameter selection and estimation of model error

Evaluation of classifiers

Given: labeled training data $X, Y = \{\langle \boldsymbol{x}_i, y_i \rangle\}_{i=1}^n$

• Assumes each $oldsymbol{x}_i \sim \mathcal{D}(\mathcal{X})$

Train the model:

 $model \leftarrow classifier.train(X, Y)$

Apply the model to new data:

• Given: new unlabeled instance $x \sim \mathcal{D}(\mathcal{X})$ $y_{\mathsf{prediction}} \leftarrow \mathit{model}.\mathsf{predict}(\mathbf{x})$

Classification Metrics

$$accuracy = \frac{\# correct predictions}{\# instances}$$

$$error = 1 - accuracy = \frac{\# incorrect predictions}{\# instances}$$

- Can evaluate on both training or testing
- Training set accuracy and error
- Testing set accuracy and error

Confusion Matrix

Given a dataset of P positive instances and N negative instances:

Confusion Matrix

Given a dataset of P positive instances and N negative instances:

$$accuracy = \frac{TP + TN}{P + N}$$

Why One Metric is Not Enough

Assume that in your training data, Spam email is 1% of data, and Ham email is 99% of data

- Scenario 1
 - Have classifier always output HAM!
 - What is the accuracy?
- Scenario 2
 - Predict one SPAM email as SPAM, all other emails as legitimate
 - What is the precision?
- Scenario 3
 - Output always SPAM!
 - What is the recall?

Precision & Recall

Precision

- the fraction of positive predictions that are correct
- P(is pos | predicted pos)

$$precision = \frac{TP}{TP + FP}$$

Recall

- fraction of positive instances that are identified
- P(predicted pos | is pos)

$$recall = \frac{TP}{TP + FN}$$

- You can get high recall (but low precision) by only predicting positive
- Recall is a non-decreasing function of the # positive predictions
- Typically, precision decreases as either the number of positive predictions or recall increases
- Precision & recall are widely used in information retrieval

F-Score

Combined measure of precision/recall tradeoff

$$F_1 = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

- This is the harmonic mean of precision and recall
- In the F₁ measure, precision and recall are weighted evenly
- Can also have biased weightings that emphasize either precision or recall more ($F_2 = 2 \times \text{recall}$; $F_{0.5} = 2 \times \text{precision}$)
- Limitations:
 - F-measure can exaggerate performance if balance between precision and recall is incorrect for application
 - Don't typically know balance ahead of time

A Word of Caution

Consider binary classifiers A, B, C:

		A		В		\mathbf{C}		
		1	0	1	0	1	0	
Predictions	1 0.9 0	0.1	0.8	0	0.78	0	,	
Fredictions	0	0	0	0.1	0.1	0.12	0.1	

A Word of Caution

Consider binary classifiers A, B, C:

- Clearly A is useless, since it always predicts 1
- B is slightly better than C
 - less probability mass wasted on the off-diagonals
- But, here are the performance metrics:

Metric	A	В	\mathbf{C}
Accuracy	0.9	0.9	0.88
Precision	0.9	1.0	1.0
Recall	1.0	0.888	0.8667
F-score	0.947	0.941	0.9286

Classifiers can be tuned

- Logistic regression sets by default the threshold at 0.5 for classifying positive and negative instances
- Some applications have strict constraints on false positives (or other metrics)
 - Example: very low false positives in security (spam)

Probabilistic model $h_{\theta(x)} = P[y = 1|x; \theta]$

ROC Curves

- Receiver Operating Characteristic (ROC)
- Determine operating point (e.g., by fixing false positive rate)

Performance Depends on Threshold

Predict positive if $P(y = 1 \mid \mathbf{x}) > T$ otherwise negative

- Number of TPs and FPs depend on threshold T
- As we vary T we get different (TPR, FPR) points

ROC Curves

- Another useful metric: Area Under the Curve (AUC)
- The closest to 1, the better!

Area Under the ROC Curve

- Can take area under the ROC curve to summarize performance as a single number
 - Be cautious when you see only AUC reported without a ROC curve; AUC can hide performance issues

Same AUC, very different performance

ROC Example

i	y_i	$p(y_i = 1 \mid \mathbf{x}_i)$	$h(\mathbf{x_i} \mid \mathbf{T} = 0)$	$h(\mathbf{x_i} \mid 7 = 0.5)$	$h(\mathbf{x_i} \mid \mathbf{T} = 1)$
1	1	0.9	1	1	0
2	1	0.8	1	1	0
3	1	0.7	1	1	0
4	1	0.6	1	1	0
5	1	0.5	1	1	0
6	0	0.4	1	0	0
7	0	0.3	1	0	0
8	0	0.2	1	0	0
9	0	0.1	1	0	0
			TPR =	TPR =	$TPR = \hat{\ }$
			FPR =	FPR =	FPR =

ROC Example

i	y_i	$p(y_i = 1 \mid \mathbf{x}_i)$	$h(\mathbf{x_i} \mid \mathbf{T} = 0)$	$h(\mathbf{x_i} \mid \mathbf{T} = 0.5)$	$h(\mathbf{x_i} \mid T=1)$
1	1	0.9	1	1	0
2	1	0.8	1	1	0
3	1	0.7	1	1	0
4	1	0.6	1	1	0
5	1	0.2	1	0	0
6	0	0.6	1	1	0
7	0	0.3	1	0	0
8	0	0.2	1	0	0
9	0	0.1	1	0	0
			TPR =	TPR =	TPR =
			FPR =	FPR =	FPR =

Review

- Maximum Likelihood Estimation (MLE) is a general statistical method for parameter estimation
- Logistic regression is a linear classifier that predicts class probability
 - Cross-entropy objective derived with MLE
- Can be trained with Gradient Descent
- Multiple metrics for classifier evaluation
 - Accuracy, error, precision, recall, F1 score
 - RIC curves and AUC