The Precipitable Water Project:

Using Zenith Clear Sky Temperature to Approximate Precipitable Water in Areas without Nearby Measurements in the Western U.S.

Vicki Kelsey¹²³

¹Langmuir Laboratory for Atmospheric Research ²South Dakota School of Mines and Technology ³National Weather Service ABQ Student Volunteer Summer 2021

vkelsey@pmat.app

2 April 20225th Texas Weather Conference

PWAT: Drought to Deluge

This project shows how zenith clear sky temperatures can be used to approximate PWAT in higher elevation, arid and semi-arid regions of the west where data is not currently available for forecasting

PWAT Data Gaps

GOES-R limitations

- Angle of incidence
- Topography

POES limitations

- Orbits
- Frequency

GPS measurements and Ground based monitoring equipment

- Few measurement sites
- Funding
- Elevation

Radiosondes

- Large WFO areas
- Large distances between sites

Previous Works

Smith and Toumi. 2008 London, UK

Maghrabi and Clay. 2009 Coastal South Australia

Mims et al. 2011 Seguin, Texas

Image: Bulletin of the American Meteorological Society, 92(10), 1311-1320. https://journals.ametsoc.org/view/ journals/bams/92/10/2011bams3215_1.

Instrumentation

TE 1610

Field of view: 4.8° Cone

low temperature limit: -20°C

Target emissivity: 0.95

FLIR i3

Field of view: 12.5° x 12.5° Rectangle

Low temperature limit: -40°C

Target emissivity: 0.95

AMES 12:1

Field of view: 4.8° Cone

Low temperature limit: -50°C

Target emissivity: 0.95

Methodology

Daily zenith sky temperature measurements

- Started January 2019, Socorro, NM
- 1700-1800 UTC or 2300-2400 UTC
- Designation of either cloudy or clear sky
- Ground Temperature measurements taken to check for calibration and drift

Compare zenith clear sky temperatures with PWAT measurements

- Radiosondes from ABQ and EPZ WFOs
- SuomiNet data (when available)
- AERONET data (when available)

Checking our data against MODTRAN6 and Mims et al.

Zenith Sky Temperature matches
Brightness Temperature data from
MODTRAN6

Planck function evaluated

Our fit more in line with MODTRAN6 points than Mims et al. achieved

Local PWAT measurement comparisons

SC01 SuomiNet

- On M Mountain
- Satellite GPS
- ~2600 ft difference in elevation
- Not online ~50% of the time since Jan 2019

AERONET

- Sevilleta National Wildlife Refuge
- Sun Photometer
- 22 miles north
- similar elevation
- online 5 months/year

Approximation based on Correlation

Seasonal Trends

Spatiotemporal average with best-fit line

Correlation proved first, then PWAT values approximated

If GPS based satellite readings or POES data is available, it should be used

Approximation provides insight where there are no PWAT measurements available

Next steps

Automation

 Have measurements taken on an hourly basis to be useful to NWS

Citizen Science / GLOBE Project

- Manual measurements at rural locations

Data

- Automated Surface Observing System (ASOS)
- Advanced Weather Interactive Processing System (AWIPS)

Continued development of PMAT

- Open source software
- Full access to our dataset

https://docs.pmat.app/

Any Questions?

Thanks for coming and hearing about the Precipitable Water Project today!

For more info, please see our paper (published 18 March 2022)

Atmos. Meas. Tech., 15, 1563–1576, 2022 https://doi.org/10.5194/amt-15-1563-2022 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

Atmospheric Measurement Techniques

Atmospheric precipitable water vapor and its correlation with clear-sky infrared temperature observations

Vicki Kelsey^{1,a}, Spencer Riley², and Kenneth Minschwaner²

Vicki Kelsey vkelsey@pmat.app

Spencer Riley sriley@pmat.app

Kenneth Minschwaner kminschwaner @pmat.app

