

Problem Statement Title: Diabetic
Retinotherapy using Quantum Computing
Team Name: Misfits

Team members details

Team Name	Misfits	Misfits			
Institute Name/Names	National Institute of Te	National Institute of Technology, Rourkela			
Team Members >					
	1 (Leader)	2	3		
Name	Chandrachud Pati	Ravi Shankar	Dibyansika Biswal		
Batch	2024	2024	2024		

Glossary

- Ref
 DSC
 CNN
 Reference
 Depthwise Separable Convolution
 Convolutional Neural Network
- **Resnet** Residual Network
- EfficientNet Efficient Neural Network
- DR Diabetic Retinopathy
- FLOPs Floating Point Operations
- IDRiD Indian Diabetic Retinopathy Fundus Image
- ConvBnAct Convolution-BatchNormalization-Activation
- MBConvN Mobile Inverted Residual Bottleneck Convolutional Block N
- CZ Controlled-Z Gates

Solution statement:

Steps	Description
Dataset	Made a balanced dataset out of a highly skewed large dataset
Pre-processing	Augmenting images catering to all input edge-cases and applying some well known ben-graham crop and gaussian-filter.
Quantum Circuit on Cloud	A class 'MyQuantumCircuit' running on QiskitRuntime having a parameterized circuit is defined, whose probabilistic outcomes is used for feature-enhancement.
Transfer Learning	Following a hybrid-CNN approach, Quantum circuit integrated with our EfficientNet neural model has been implemented to process and classify images with high accuracy.

which is similar to **Smartphone Fundus photography** [Ref]

Recall: 0.7636

F1-Score: 0.7968

Test data: 0.8454

https://drdetection.streamlit.app/

https://github.com/Dibyansika/Deployment

Precision: 0.8527

Description

Model has been tested on Indian Diabetic Retinopathy Fundus Image Dataset

Ctono

Testing

Accuracy

Deployment

Dataset:

Dataset	No. of Fundus images	Balanced (Y/N) / No_DR (percentage)	Accuracy after training the model
<u>IDRID</u>	513	Balanced - N No_DR% = 32.59	50.25%
Diabetic Retinopathy (resized)	35126	Balanced - N No_DR% = 73.48	67.41%
Gaussian filtered APTOS dataset	3662	Balanced - Y No_DR% = 49.29	68.23%
Ours (pre-processed and balanced dataset)	20126	Balanced - Y No_DR% = 53.71	84.54%

- The dataset was highly skewed(75% of total was from NO_DR).
- Further, we have pre-processed the images by Ben-graham crop method[Ref], gaussian filter for
 - smoothing & reducing noise
 - highlighting the details[Ref] of Haemorrhages, Hard Exudates, Aneurysm, "COTTON WOOL" spot and abnormal growth of blood vessels

<u> Image</u>	Pre-processing	•
de	Changes implemented	

Cod

crop_image_from_gray

cv2.GaussianBlur(ima

ge, (0,0), 10)

cv2.addWeighted

cv2.GaussianBlur(

image , (0,0) , 10

(image, 4,

. -4 . 128)

the image. [Ref]

cv2.COLOR BGR2RGB

converting the image from BGR to RGB to pass in crop_image_from_gray function

corresponding channels.

Gaussian-blurred version.

We have found by experimenting that color image performs better than gray

grayscale image for better accuracy (from experiment)

If too dark, it returns the original image. [Ref]

Converts the input color(RGB) image to grayscale, crops the

Gaussian blur is a smoothing technique that reduces noise and details in

weighted combination of two images: the original image and its

It helps control the brightness of the final image. [Ref]

-4: This is the weight or beta value for the Gaussian-blurred image. 128: This is the gamma value or the scalar added to the weighted sum.

We have further modified this function to take RGB image instead of

(Demo) Pre-processing

ORIGINAL FUNDUS

After PreProcessing

Components	Description		
Encoded Quantum States	Microaneurysms, Haemorrhages, and Exudates are encoded into 3 quantum states (qubits). Additional features can be added with higher complexity and cost.		
Hadamard Gate	Creates a superposition of the $ 0\rangle$ and $ 1\rangle$ states by transforming the initial quantum state $ \psi\rangle$ of the qubit: $H \psi\rangle$ = $1/\sqrt{2}(0\rangle + 1\rangle)$.		
Subsequent	Introduces variations in superposition amplitudes, encoding probabilistic feature distribution based on angles.		

Quantum Circuit

Probability

Distributions

Feature Extractor

Method

indicating abnormalities like blood vessel issues.

constraints in the feature extractor method.

Insights gained from probability distributions from <u>Sampler</u> helps

identify strongly correlated bitstrings with image features, like

Probabilities associated with bitstrings are used as weights or

Why Transfer Learning with Efficient Net? We are using transfer Learning model because they are pretrained on large image dataset

and we can further	•	using fundus image.	3 3
Aspect E	EfficientNet	Resnet	Vanilla (from scratch

It has no predefined Resnet scales in terms of EfficientNet scales depth, Compound compound scaling method. width, and resolution depth or width , not Scaling so it do not scales depth together simultaneously and width together

58.23% accuracy on my 44.16% accuracy on my Performance-84.54% accuracy on my dataset while testing. dataset while testing. Size dataset while testing. more parameters required fewer parameters and FLOPs and FLOPs for similar performance On the same fine-tuning parameters , gradient of We trained on different loss function was very learning rates and steep which result in 48%

Performance-size balance Efficiency varies It was worst in this case. Even our best Model Adaptability fine-tuning perform very converges to 44% and did (very low) accuracy well show mild tuning. despite 93% accuracy

while training

Class

EfficientNet

ConvBnAct

SqueezeExcitation

StochasticDepth

MBConvN

Model Architecture :

FeaturesQuantumLayerAdaptive avg.

pooling

reduced

provides a

Computation cost

different weight

for each channel

train short and

at test time

Pointwise

convolution

use deep networks

Functions

QuantumLayer

by Pointwise

emphasizes the

important channels

subset of layers

dropped & bypass

identity function

is randomly

Expand input

them with

convolution

Apply adaptive

average pooling

Depthwise followed

Uses

Main class constructing

the EfficientNet model

DSC is one of the

Enhance important

This is one of the

tricks to accelerate

the training of the

depthwise convolution

efficient nets,

efficient

information

model

tricks which makes

Block Diagram of Model

Testing and Deploying

- Dataset used: IDRiD dataset (as it is similar to the resolution that we will receive in case of Smartphone Fundus photography [Ref])
- Images of the dataset has been pre-processed in the same way as described in Slide 6.
- Created an UI using Streamlit library, for uploading the image and predicting the level of diabetes retinopathy and deployed the web app in Streamlit cloud

Limitations to mitigate in Future:

- The current DR classifications rely only on 7 standard field photographs to grade the severity of DR. However, these standard photographic fields only cover about 30% of the total retinal surface area [Ref]
- We have run our quantum circuit on simulator whereas Real hardware introduces noise and errors which reflects real-world effects.
- The free account of IBM Quantum/Cloud comes with a lot of logistics issues from their end, with multiple time account suspension at intervals.

Thank You