Repaso de Lógica

Pablo F. Castro

Programación Avanzada, Universidad Nacional de Río Cuarto, Departamento de Computación

2014

Lógica Proposicional

A grandes rasgos, la lógica es la disciplina que estudia los sistemas de razonamientos. En particular intenta capturar la nociones de verdad y validez.

Lógica proposicional:

- Un conjunto (numerable) de letras proposicionales: P, Q, S, T,... (cada letra proposicional denota una aserción que puede ser verdadera o falsa, por ejemplo:
 - P = Todos los triangulos tienen tres lados .
- Las fórmulas se definen inductivament:
 - Las letras proposicionales son formulas.
 - ▶ Si φ y ψ son formulas, entonces $\varphi \land \psi$, $\neg \psi$, $\varphi \lor \psi$ y $\varphi \to \psi$.

2014

2 / 15

No hay otras formulas.

Lógica Proposicional (Continuación)

Las formulas pueden ser verdaderas o falsas. Una interpretación asigna un valor de verdad a cada variable proposicional. Dada una asignación podemos evaluar cada formula. Por ejemplo:

Ejercicio: Hacer las tablas de verdad para los demás conectivos.

Lógica Proposicional

Terminologia:

- Una formula es valida (o una tautología) si es verdadera bajo todas las interpretaciones.
- Una formula es una contradicción si es falsa bajo toda las interpretaciones.
- Una formula es satisfacible si existe una interpretación que es verdadera.
- Una formula es insatisfacible si no existe una interpretación bajo la cual es verdadera.

2014

4 / 15

Ejercicio: dar ejemplos de formulas validas, contradictorias, satisfacibles e insatisfacibles. En cada caso demostrar usando tablas de verdad.

Lógica Proposicional: La Equivalencia Lógica

El operador ≡ simboliza la igualdad de valores de verdad de dos formulas. Es decir:

 A ≡ B, puede leerse como las formulas A y B toman el mismo valor de verdad.

La tabla de verdad de este operador es:

$$\begin{array}{c|cccc} A & \equiv & B \\ T & T & T \\ T & F & F \\ F & F & T \\ F & T & F \end{array}$$

Lógica Proposicional: La Equivalencia y la Igualdad

El operador ≡ es asociativo, es decir:

$$(A \equiv (B \equiv C)) \equiv ((A \equiv B) \equiv C)$$

Esta propiedad nos permite evitar paréntesis, es decir, la expresión

$$A \equiv B \equiv C$$

está bien definida. En lógica proposicional, la equivalencia y la igualdad son exactamente lo mismo (es decir, $(A=B)\equiv (A\equiv B)$). Sin embargo, cuando sea conveniente usaremos la igualdad de la siguiente forma:

A = B = C para denotar la expresión $(A \equiv B) \land (B \equiv C)$.

Ejercicio: Encuentre la diferencia entre las expresiones A = B = C y $A \equiv B \equiv C$

Pablo F. Castro (UNRC) Repaso de Lógica

2014

6/15

Cálculo Proposicional

El cálculo proposicional nos permite demostrar teoremas (formulas validas) de la lógica.

Reglas de Deducción

Permiten obtener nuevos teoremas utilizando fórmulas ya probadas como teoremas.

Axiomas

Son fórmulas que asumimos teoremas, estas son los cimientos sobre los cuales descansa el cálculo.

Pruebas

Una prueba de que una fórmula es un teorema es una secuencia de formulas: A_1, A_2, \ldots, A_n en donde: A_n es la fórmula probada como teorema. Para cada $i \le n$, A_i es un axioma o es resultado de aplicar una regla de deducción a formulas que aparecen antes en la secuencia.

Reglas de Deducción

Transitividad

$$\frac{A \equiv B, B \equiv C}{A \equiv C}$$

Leibniz

$$\frac{P \equiv Q}{E[r := P] = E[r := Q]}$$

Sustitución

$$\frac{P}{P[r:=Q]}$$

Donde P, Q, R y E son formulas arbitrarias. La expresión P[r := Q] denota la formula obtenida de reemplazar la variable proposicional r por la formula Q en P.

Axiomas

Axiomas sobre equivalencia:

- $A \equiv (B \equiv C) \equiv (A \equiv B) \equiv C$ (Asociatividad)
- $(A \equiv B) \equiv (B \equiv A)$ (Simetría)
- $A \equiv True \equiv A \ (Neutro)$

Axiomas de la negación:

- $\neg (A \equiv B) \equiv (\neg A \equiv B)$
- False ≡ ¬True (Definición de False)
- $\neg \neg A \equiv A$ (Doble Negación)

Axiomas de la Disyunción (V)

- $A \lor (B \lor C) \equiv (A \lor B) \lor C$
- $\bullet \ A \lor B \equiv B \lor A$
- \bullet $A \lor A \equiv A$
- $A \lor (B \equiv C) \equiv (A \lor B) \equiv (A \lor C)$
- \bullet $A \lor \neg A$

Más Axiomas...

Axiomas de la Conjunción (^)

- $A \wedge B \equiv A \equiv B \equiv B \vee A$ (Regla Dorada)
- $A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$ (Asociatividad)
- $A \wedge B \equiv B \wedge A$ (Conmutatividad)
- $A \wedge A \equiv A$
- $A \wedge True \equiv A$

Axiomas de la Implicación (⇒)

 \bullet $A \Rightarrow B \equiv A \lor B \equiv B$

Ejemplos de demostración

Para demostrar teoremas utilizaremos el siguiente formato, supongamos que queremos demostrar $E \equiv E'$:

$$E$$

$$\equiv \text{ [justificación de } E \equiv E'\text{]}$$

$$E_1$$

$$\vdots$$

$$E_n$$

$$\equiv \text{ [justificación de } E_n \equiv E\text{]}$$

$$E$$

Demostremos $p \Rightarrow q \equiv \neg p \lor q$:

Demostraciones II

$$p \Rightarrow q$$

$$\equiv [Definición de \Rightarrow]$$

$$p \lor q \equiv q$$

$$\equiv [p \lor False \equiv p]$$

$$p \lor q \equiv q \lor False$$

$$\equiv [propiedad de \equiv]$$

$$(p \equiv False) \lor q$$

$$\equiv [p \equiv False \equiv \neg p]$$

$$\neg p \lor q$$

Ejercicio:¿Qué propiedad usamos en el punto 3?

Utilizando Lógica en la Práctica

Podemos utilizar la lógica para el análisis de razonamientos:

Si el general es leal, habría obedecido las ordenes, y si era inteligente las habría comprendido. O el general desobedeció las órdenes o no las comprendió. Luego, el general era desleal o no era inteligente.

- I: el general es leal.
- o: el general obedece las ordenes.
- *i*: el general es inteligente.
- c: el general comprende las ordenes.

Las premisas se expresan de la siguiente forma:

- \bullet $I \Rightarrow o$
- $i \Rightarrow c$
- ¬o ∨ ¬c

Y la conclusión es: $\neg I \lor \neg i$.

Resolución de Acertijos

En la isla de los mentirosos y los caballeros, si una persona A dice una aserción S, entonces formalizamos esto como:

 $A \equiv S$, donde A: A es un caballero. Es decir, A es un caballero si y solo si lo que dice es verdad.

Ejemplos:

- A dice: Yo soy un caballero. $A \equiv A$.
- A dice: Yo soy un mentiroso. $A \equiv \neg A$. Puede esto pasar en la isla?
- A dice: Yo soy del mismo tipo que B. $A \equiv (A \equiv B)$.

Supongamos que estamos buscando oro en la isla, y nos encontramos con un habitante (caballero o mentiroso) y nos dice: *Hay oro en esta isla si y solo si yo soy un caballero*.

2014

14 / 15

Caballeros y Mentirosos

- Podemos saber si A es un mentiroso o un caballero?
- Podemos deducir si hay oro en la isla?

Formalización: $A \equiv (A \equiv G)$ (G:Hay oro en la isla). Ahora tenemos:

$$A \equiv A \equiv G$$

$$\equiv [Asociatividad de \equiv]$$
 $(A \equiv A) \equiv G$

$$\equiv [Reflexividad de \equiv]$$
 $True \equiv G$

$$\equiv [identidad \equiv]$$
 G

Es decir, hay oro en la isla.