

KALINGA INSTITUTE OF INDUSTRIAL TECHNOLOGY DEEMED TO BE UNIVERSITY, BHUBANESWAR – 24 (Decld. U/S 3 of UGC Act, 1956)

Probability and Statistics

KIIT Deemed to be University Online Mid Semester Examination(Spring Semester-2022)

Subject Name & Code: MA-2011 **Applicable to Courses: B.Tech (CSSE)**

Full Marks=20 Time:1 Hour

SECTION-A(Answer All Questions. All questions carry 2 Marks) Time:20 Minutes (5×2=10 Marks)

Question No	Questi on Type (MCQ/ SAT)	<u>Question</u>	CO Mappin g	Answer Key (For MCQ Question s only)
Q.No:1(a)	MCQ	If are mutually exclusive events with , then a. b. c. is undefined d. is defined	CO1	c
	MCQ	A certain system can experience three different types of defects. Let denote the event that the system has a defect of type. Suppose that . Find the value of a. 0.20 b. 0.15 c. 0.22 d. 0.19	CO1	b
	MCQ	Let <i>A</i> , <i>B</i> and <i>C</i> be three independent events with probabilities , . What is the value of ? a. 0.7842 b. 0.4287 c. 0.8742 d. 0.8642	CO1	c
	MCQ	If probability mass function of the random variable <i>X</i> is , then find to the value of <i>k</i> and . a. and b. and c. and d. and	CO1	b
Q.No:1(b)	MCQ	When the variance of a random variable is, then a. 81 b. 12 c. 27 d. 36 	CO2	b
	MCQ	A random variable has a Poisson distribution such that Then the standard deviation(S.D) of is a. b. c.	CO2	c

	MCQ	In the following probability distribution list, probability	CO2	b
		distribution values of the rv X are given as follows 0 1 2 3 4 5 6		
		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
		Find the value of .		
		a. 0.56		
		b. 0.66		
		c. 0.67		
	7500	d. 0.76	~~	
	MCQ	In the following probability distribution, the pmf of the rv X are	CO2	c
		given as follows 0 1 2 3 4 5 6		
		F(x) 0.13 0.28 0.49 0.67 0.83 0.95 1		
		If find.		
		a. 0.812		
		b. 0.721		
		c. 0.821		
		d. 0.825		
Q.No:1(c	<u>SAT</u>	The value of the constant, such that defined by	CO ₃	NA
1		is a probability density function, is		
	SAT	Find the value of z_{α} for	CO ₃	NA
	SAT	If the rv with number of success and probability of success,	CO ₃	NA
		then what is the upper bound of?	·	
	<u>SAT</u>	k Find the value of such that $f(x) = \begin{cases} ke^{-2x}, & x \ge 0 \\ 0, & \text{Otherwise is} \end{cases}$	CO3	NA
		$f(x) = \begin{cases} 0 & \text{Otherwise} \end{cases}$		
Q.No:1(d	SAT	a probability density function. Let <i>X</i> be normally distributed with mean 10 and standard	CO ₂	NA
)	5711	deviation is 5. Then evaluate $P(0 \le X \le 10)$.	002	11/1
	SAT	Find the value of k such that	CO ₂	NA
	<u> </u>			1111
		$(1.5 - k(x - 1.5)^2, 1 < x < 2$		
		f(x) =		
		$f(x) = \begin{cases} f(x) = \begin{cases} f(x) & \text{otherwise} \\ f(x) & \text{otherwise} \end{cases}$ is a probability		
		density function.		
	SAT	If the rv has a hypergeometric distribution with . Find the	CO ₂	NA
		approximate mean and variance of .		
	<u>SAT</u>	If the random variable X has a Poisson distribution process with	CO2	NA
O Marrie	MCC	parameter . Find mean and standard deviation of .	COs	TAT A
Q.No:1(e	MCQ	Find the value of k such that	CO3	NA
L		$f(x) = \begin{cases} kx, & 0 < x < 1 \\ k, & 1 < x < 2 \\ -kx + 3k, & 2 < x < 3 \\ 0, & \text{Otherwise} \end{cases}$		
		k, $1 < x < 2$		
		$f(x) = \begin{cases} -kx + 3k, & 2 < x < 3 \end{cases}$		
		Otherwise		
		o, Otherwise		
		is a pur.	~~	
	SAT	If the rv then what is the approximated value of?	CO ₃	NA NA
	SAT	If the rv has a Poisson distribution with parameter and is	CO ₃	NA
		approximated to normal rv then what is the approximated value of ?		
	SAT	Let <i>X</i> be normally distributed with mean 10 and standard	CO ₃	NA
		deviation is 5. Then evaluate $P(5 \le X \le 20)$.	200	4344
	1	actuation to 3. Then evaluate (- =).		

(1×10=10 Marks)

Question No. (Question Bank)	Question Croup 1	CO Manning
Question No:2	Group-1 Consider the system illustrated in the Figure. There are two subsystems	Mapping CO1
Question 11012	consider the system illustrated in the Figure. There are two subsystems connected in parallel, each one containing two cells. In order for the system to function, at least one of the two parallel subsystem must work. Within each subsystem, the two cells are connected in series, so the subsystem work only if all cells in the subsystem work. Consider a particular life-time value. Let denote the event that the lifetime of the cell exceeds. Assume that 's are independent events. If and the probability that the system lifetime exceeds is 0.98. Find the value of.	
	A random variable <i>X</i> has the following probability function:	
	a. Find <i>k</i> so that it will be a legitimate pmf.	
	b. Evaluate	
Question No:3	c. Find mean and variance of Binomial distribution for a random variable X	CO ₂
Question 110.5	having number of experiments with probability of success is and	(5×2)
	probability of failure is . Find the moment generating function of continuous uniform distribution. Then	
	find the mean and variance.	
Question No:4	A pediatrician wishes to recruit 5 couples, each of whom is expecting their first child, to participate in a new natural childbirth regimen. Let p=P(a randomly selected couple agrees to participate). If p=0.2 what is the probability that 15 couples must be asked before 5 are found who agrees to participate? That is, with S={agrees to participate}, what is the probability that 10 F's occur before the fifth S? An ecologist wishes to mark off a circular sampling region having radius m. However, the radius of the resulting region is actually a random variable with pdf	
	What is the variance area of the resulting circular region?	
0	Group-2	CO1
Question No:5	 a. Let X = the time between two successive arrivals at the drive-up window of a local bank. If X has an exponential distribution with λ = 1 (which is identical to a standard gamma distribution with α = 1), compute the following: i. The expected time between two successive arrivals ii. The standard deviation of the time between successive arrivals iii. P(2 ≤ X ≤ 5). b. Prove that 	
Question No:6	a. The weekly demand for propane gas (in 1000s of gallons) from a	CO ₂
	particular facility is an rv X with pdf	(5×2)
	i. Compute the $P(1 \le X \le 1.5)$.	(3 ^ 2)

	 ii. What is the value of the median? iii. Compute <i>V(X)</i>. b. Find the moment generating function of standard normal distribution, then find its mean and variance 	
Question No:7	a. If is the normal r.v with ., determine the value of the constant for which .b. Define exponential distribution. Find the probability distribution function, mean, median of exponential distribution.	CO ₃ (5 × 2)