Program Reference

January 21, 2013

1

Contents

Interface

C routine	1
Fortran routine	2
Supported angular momentum	3
Data ordering	3
Tensor	4
function list	4
Interface	
C routine	
f(buf, shls, atm, natm, bas, nbas, env);	
• buf: column-major double precision array.	
– for 1e integrals of shells (i,j), data are stored as [i1j1 i2j1]]
- for 2e integrals of shells $(i,j k,l)$, data are stored as [i1j1k1l1 i2j1k1l1 i1j2k1l1 i1j1k2l1]	
$-$ complex data are stored as two double elements, first is real, followed by imaginary, e.g. [Re Im Re Im \dots]	ed
• shls: 0-based basis/shell indices.	
- int[2] for 1e integrals	

- int[4] for 2e integrals
- atm: int[natm*6], list of atoms. For ith atom, the 6 slots of atm[i] are
 - atm[i*6+0] nuclear charge of atom i
 - atm[i*6+1] env offset to save coordinates (env[atm[i*6+1]], env[atm[i*6+1]+1], env[atm[i*6+1]+2]) are (x,y,z)
 - atm[i*6+2] nuclear model of atom i, = 2 indicates gaussian nuclear model
 - atm[i*6+3] unused
 - atm[i*6+4] unused
 - atm[i*6+5] unused
- natm: int, number of atoms, natm has no effect **except nuclear attraction** integrals
- bas: int[nbas*8], list of basis. For ith basis, the 8 slots of bas[i] are
 - bas[i*8+0] 0-based index of corresponding atom
 - bas[i*8+1] angular momentum
 - bas[i*8+2] number of primitive GTO in basis i
 - bas[i*8+3] number of contracted GTO in basis i
 - bas[i*8+4] kappa for spinor GTO.
 - $< 0 \text{ the basis } \sim j = 1 + 1/2.$
 - > 0 the basis $\sim j = 1 1/2$.
 - = 0 the basis includes both j = l + 1/2 and j = l 1/2
 - bas[i*8+5] env offset to save exponents of primitive GTOs. e.g. 10 exponents env[bas[i*8+5]] ... env[bas[i*8+5]+9]
 - bas [i*8+6] env offset to save column-major contraction coefficients. e.g. 10 primitive -> 5 contraction needs a 10×5 array

- 'bas[i*8+7]' unused
 - nbas: int, number of bases, nbas has no effect
 - env: double[], save the value of coordinates, exponents, contraction coefficients

Fortran routine

call f(buf, shls, atm, natm, bas, nbas, env)

- atm and bas are 2D integer array
 - atm(1:6,i) is the (charge, offset_coord, nuclear_model, unused, unused, unused) of the ith atom
 - bas(1:8,i) is the (atom_index, angular, num_primitive_GTO, num_contract_GTO, kappa, offset_exponent, offset_coeff, unused) of the ith basis
- parameters are the same to the C function. Note those offsets atm(2,i) bas(6,i) bas(7,i) are 0-based.
- buf is 2D/4D double precision/double complex array

Supported angular momentum

- 1e integrals $l_{max} = 6$
- 2e integrals $l_{max} = 4$

Data ordering

• for Cartesian GTO, the output data in buf are sorted as

s shell	p shell	d shell	
•••		•••	
\mathbf{S}	p x	d xx	
\mathbf{S}	p y	d xy	
	p z	d xz	
	p x	dyy	
	p y	dyz	
	p z	dzz	

• for real spheric GTO, the output data in buf are sorted as

s shell	p shell	d shell	f shell	
		•••		
\mathbf{S}	p y	d xy	$f y(3x^2 - y^2)$	
\mathbf{s}	p z	$\begin{array}{c} d \ yz \\ d \ z^2 \end{array}$	f xyz	
	p x	$d z^2$	$ \begin{array}{c} f \ xyz \\ f \ yz^2 \\ f \ z^3 \end{array} $	
	p y	d xz	$f z^3$	
	p z	$d x^2 - y^2$	$f xz^2$	
	p x		$f z(x^2 - y^2)$	

• for spinor GTO, the output data in buf correspond to

 kappa=0,p shell	kappa=1,p shell	kappa=0,d shell	
$p_{1/2}(-1/2)$	$p_{1/2}(-1/2)$	$d_{3/2}(-3/2)$	
$p_{1/2}(1/2)$	$p_{1/2}(1/2)$	$d_{3/2}(-1/2)$	
$p_{3/2}(-3/2)$	$p_{1/2}(-1/2)$	$d_{3/2}(1/2)$	
$p_{3/2}(-1/2)$	$p_{1/2}(1/2)$	$d_{3/2}(3/2)$	
$p_{3/2}(1/2)$	$p_{1/2}(-1/2)$	$d_{5/2}(-5/2)$	
$p_{3/2}(3/2)$	$p_{1/2}(1/2)$	$d_{5/2}(-3/2)$	
$p_{1/2}(-1/2)$	•••	$d_{5/2}(-1/2)$	
$p_{1/2}(1/2)$		$d_{3/2}(-3/2)$	
$p_{3/2}(-3/2)$		$d_{3/2}(-1/2)$	
$p_{3/2}(-1/2)$			

Tensor

integrals like Gradients have tensor components. the output data is

- 3-component tensor
 - X buf(:,0)
 - Y buf(:,1)
 - Z buf(:,2)
- 9-component tensor
 - XX buf(:,0)
 - XY buf(:,1)
 - XZ buf(:,2)
 - YX buf(:,3)
 - YY buf(:,4)
 - YZ buf(:,5)
 - ZX buf(:,6)
 - ZY buf(:,7)
 - ZZ buf(:,8)

function list

• Cartesian GTO integrals

- cgto_cart
- $\bullet \ \, {\tt cint1e_ovlp_cart}$

 $\langle i|j\rangle$

- cint1e_nuc_cart
- $\langle i|V_{nuc}|j\rangle$
- cint1e_kin_cart
- $.5\langle i|\vec{p}\cdot\vec{p}j\rangle$
- cint1e_ia01p_cart
- $\langle i | \frac{\vec{r}}{r^3} | \times \vec{\nabla} j \rangle$
- cint1e_irxp_cart
- $\langle i|\vec{r}_c \times \vec{\nabla} j\rangle$
- cint1e_iking_cart
- $0.5i\langle \vec{p}\cdot\vec{pi}|U_gj\rangle$
- cint1e_iovlpg_cart
- $i\langle i|U_g j\rangle$
- cint1e_inucg_cart
- $i\langle i|V_{nuc}|U_gj\rangle$
- cint1e_ipovlp_cart
- $\langle \vec{\nabla} i | j \rangle$
- cint1e_ipkin_cart
- $0.5 \langle \vec{\nabla} i | \vec{p} \cdot \vec{p} j \rangle$
- cint1e_ipnuc_cart
- $\langle \vec{\nabla} i | V_{nuc} | j \rangle$
- cint1e_iprinv_cart
- $\langle \vec{\nabla} i | r^{-1} | j \rangle$
- cint1e_rinv_cart
- $\langle i|r^{-1}|j\rangle$

• cint2e_cart

- (ij|kl)
- cint2e_ig1_cart
- $i(iU_gj|kl)$

- cint2e_ip1_cart $(\vec{\nabla} ij|kl)$
- Spheric GTO integrals
- cgto_spheric
- \bullet cint1e_ovlp_sph $\langle i|j\rangle$
- \bullet cint1e_kin_sph $0.5 \langle i | \vec{p} \cdot pj \rangle$
- \bullet cint1e_ia01p_sph $\langle i|\frac{\vec{r}}{r^3}|\times\vec{\nabla}j\rangle$
- ullet cint1e_irxp_sph $\langle i|ec{r}_c imesec{
 abla}j
 angle$
- cint1e_iking_sph $0.5i \langle \vec{p} \cdot \vec{pi} | U_q j \rangle$
- \bullet cint1e_inucg_sph $i \langle i | V_{nuc} | U_g j \rangle$
- ullet cint1e_ipovlp_sph $\langle ec{
 abla} i | j
 angle$
- ullet cint1e_ipnuc_sph $\langle ec{
 abla} i | V_{nuc} | j
 angle$
- cint1e_iprinv_sph $\langle \vec{\nabla} i | r^{-1} | j \rangle$
- \bullet cint1e_rinv_sph $\langle i|r^{-1}|j\rangle$
- ullet cint2e_sph (ij|kl)

$$i(iU_g j|kl)$$

$$(\vec{\nabla} ij|kl)$$

$$\langle i|j\rangle$$

$$\langle i|V_{nuc}|j\rangle$$

$$\langle i|V_{nuc}|U_gj\rangle$$

$$\langle \vec{\sigma} \cdot \vec{r}i | \vec{\sigma} \cdot \vec{r}j \rangle$$

$$\langle \vec{\sigma} \cdot \vec{r} i | j \rangle$$

$$\langle \vec{\sigma} \cdot \vec{r} i | \vec{\sigma} \cdot \vec{p} j \rangle$$

$$\langle \vec{\sigma} \cdot \vec{p}i | \vec{\sigma} \cdot \vec{p}j \rangle$$

$$\langle \vec{\sigma} \cdot \vec{p}i|j\rangle$$

• cint1e_spspsp

$$\langle \vec{\sigma} \cdot \vec{pi} | \vec{\sigma} \cdot \vec{p} \vec{\sigma} \cdot \vec{pj} \rangle$$

• cint1e_spnuc

$$\langle \vec{\sigma} \cdot \vec{pi} | V_{nuc} | j \rangle$$

• cint1e_spnucsp

$$\langle \vec{\sigma} \cdot \vec{pi} | V_{nuc} | \vec{\sigma} \cdot \vec{pj} \rangle$$

• cint1e_srnucsr

$$\langle \vec{\sigma} \cdot \vec{r}i | V_{nuc} | \vec{\sigma} \cdot \vec{r}j \rangle$$

• cint1e_sa10sa01

$$0.5\langle \vec{\sigma} \times \vec{r_c} i | \vec{\sigma} \times \frac{\vec{r}}{r^3} | j \rangle$$

$$\langle i|U_g j\rangle$$

$$0.5\langle \vec{r}_c \times \vec{\sigma}i | \vec{\sigma} \cdot \vec{p}j \rangle$$

$$0.5 \langle \vec{r}_c \times \vec{\sigma}i | V_{nuc} | \vec{\sigma} \cdot \vec{p}j \rangle$$

$$\langle i | \frac{\vec{r}}{r^3} \times \vec{\sigma} | \vec{\sigma} \cdot \vec{p} j \rangle$$

• cint1e_spgsp

$$\langle U_q \vec{\sigma} \cdot \vec{p}i | \vec{\sigma} \cdot \vec{p}j \rangle$$

• cint1e_spgnucsp

$$\langle U_g \vec{\sigma} \cdot \vec{pi} | V_{nuc} | \vec{\sigma} \cdot \vec{pj} \rangle$$

• cint1e_spgsa01

$$\langle U_g \vec{\sigma} \cdot \vec{pi} | \frac{\vec{r}}{r^3} \times \vec{\sigma} | j \rangle$$

• cint1e_ipovlp

$$\langle \vec{\nabla} i | j \rangle$$

• cint1e_ipkin

$$0.5 \langle \vec{\nabla} i | p \cdot pj \rangle$$

• cint1e_ipnuc

$$\langle \vec{\nabla} i | V_{nuc} | j \rangle$$

• cint1e_iprinv

$$\langle \vec{\nabla} i | r^{-1} | j \rangle$$

• cint1e_ipspnucsp

$$\langle \vec{\nabla} \vec{\sigma} \cdot \vec{pi} | V_{nuc} | \vec{\sigma} \cdot \vec{pj} \rangle$$

• cint1e_ipsprinvsp

$$\langle \vec{\nabla} \vec{\sigma} \cdot \vec{pi} | r^{-1} | \vec{\sigma} \cdot \vec{pj} \rangle$$

• cint2e

• cint2e_spsp1

$$(\vec{\sigma} \cdot \vec{p}i\vec{\sigma} \cdot \vec{p}j|kl)$$

• cint2e_spsp1spsp2

$$(\vec{\sigma} \cdot \vec{p}i\vec{\sigma} \cdot \vec{p}j | \vec{\sigma} \cdot \vec{p}k\vec{\sigma} \cdot \vec{p}l)$$

$$(\vec{\sigma} \cdot \vec{r} i \vec{\sigma} \cdot \vec{r} j | k l)$$

• cint2e_srsr1srsr2

$$(\vec{\sigma} \cdot \vec{r} i \vec{\sigma} \cdot \vec{r} j | \vec{\sigma} \cdot \vec{r} k \vec{\sigma} \cdot \vec{r} l)$$

• cint2e_sa10sp1

$$0.5(\vec{r}_c \times \vec{\sigma} i \vec{\sigma} \cdot \vec{p} j | k l)$$

• cint2e_sa10sp1spsp2

$$0.5(\vec{r}_c \times \vec{\sigma} i \vec{\sigma} \cdot \vec{p} j | \vec{\sigma} \cdot \vec{p} k \vec{\sigma} \cdot \vec{p} l)$$

• cint2e_g1

$$(iU_g j|kl)$$

• cint2e_spgsp1

$$(\vec{\sigma} \cdot \vec{p}iU_g \vec{\sigma} \cdot \vec{p}j|kl)$$

• cint2e_g1spsp2

$$(iU_g j | \vec{\sigma} \cdot \vec{p} k \vec{\sigma} \cdot \vec{p} l)$$

• cint2e_spgsp1spsp2

$$(\vec{\sigma} \cdot \vec{p}iU_g \vec{\sigma} \cdot \vec{p}j | \vec{\sigma} \cdot \vec{p}k \vec{\sigma} \cdot \vec{p}l)$$

• cint2e_ip1

$$(\vec{\nabla} ij|kl)$$

• cint2e_ipspsp1

$$(\vec{\nabla}\vec{\sigma}\cdot\vec{p}i\vec{\sigma}\cdot\vec{p}j|kl)$$

• cint2e_ip1spsp2

$$(\vec{\nabla} ij|\vec{\sigma}\cdot\vec{p}k\vec{\sigma}\cdot\vec{p}l)$$

• cint2e_ipspsp1spsp2

$$(\vec{\nabla} \vec{\sigma} \cdot \vec{p} i \vec{\sigma} \cdot \vec{p} j | \vec{\sigma} \cdot \vec{p} k \vec{\sigma} \cdot \vec{p} l)$$

• cint2e_ssp1ssp2

$$(i\vec{\sigma}\vec{\sigma}\cdot\vec{p}j|k\vec{\sigma}\vec{\sigma}\cdot\vec{p}l)$$