LC 15 : Solvants

Niveau: CPGE

Prérequis:

- Interactions intermoléculaires (Van der Waals, liaisons hydrogène)
- Moment dipolaire
- Loi de Coulomb
- Constante d'équilibre thermodynamique
- Solubilité
- Cinétique chimique, loi de Beer-Lambert
- Spectrophotométrie UV-visible
- Extraction liquide-liquide

Introduction: solvatochromisme

6-NO₂-BIPS

H₃C CH₃ hv (UV)
NO₂
$$\Delta$$

Isomère N Incolore

Isomère MC Coloré

Solvants polaires $(\mu \neq 0)$

Solvants apolaires ($\mu \approx 0$)

Pouvoir dissociant : permittivité relative ε_r

Solvants	eau	éthanol	DMSO	cyclohexane	toluène
ε _r	78,4	24,5	46,7	2,02	2,38

Solvant protique : liaisons hydrogènes

Solvatation de NaCl

https://youtu.be/R4RkKvyf-dg

<u>Récapitulatif</u>: classification des solvants

Solvants	Caractères	Moment dipolaire μ (en D)	Permittivité relative (à 25°C)
eau	Polaire et protique	1,80	78,4
éthanol	Polaire et protique	1,74	24,5
DMSO	Polaire et aprotique	3,90	46,7
cyclohexane	Apolaire et aprotique	0,00	2,02
toluène	Apolaire et aprotique	0,43	2,38

Solubilité du sel dans l'eau et l'éthanol

Solvants	Caractères	Moment dipolaire μ (en D)	Permittivité relative (à 25°C)
eau	Polaire et protique	1,80	78,4
éthanol	Polaire et protique	1,74	24,5

$$s_{eau} = 360g/L >> s_{\'ethanol} = 0,65 g/L à 25°C$$

Extraction liquide-liquide: principe

Protocole:

- Dissoudre 1g de diiode dans 200mL de cyclohexane (C = 1,97.10⁻² mol/L)
- Prélever V_{org} = 20 mL de cette solution
- Ajouter V_{aq} = 200 mL d'eau distillée
- Agiter pendant 30 minutes
- Laisser décanter 30 minutes
- Extraire la phase aqueuse pour le titrage, en prélever V₀ = 50 mL

Titrage du diiode dans la phase aqueuse

Calcul de la constante de partage

A l'équivalence :
$$\frac{n(I_2)_{aq}}{1} = \frac{n(S_2O_3^{2-})}{2} \Rightarrow [I_2]_{aq} = \frac{C_eV_e}{2V_0}$$

$$n_{tot} = CV_{org}$$

$$n_{org} = n_{tot} - n_{aq} = CV_{org} - [I_2]_{aq}V_0$$

$$[I_2]_{org} = \frac{n_{org}}{V_{org}}$$

$$K_p = \frac{[I_2]_{org}}{[I_2]_{aq}}$$

Photochromisme: réaction

6-NO₂-BIPS

H₃C CH₃ hv (UV)
NO₂
$$\Delta$$

Isomère N Incolore

Isomère MC Coloré

Photochromisme: spectres d'absorbance

Photochromisme : cinétique de décoloration

- L'isomère MC est la seule espèce absorbante, donc d'après la loi de Beer-Lambert : $A = \epsilon_{max} l \, [MC]$
- Loi de vitesse d'ordre 1: $v=k\ [MC]$, on trace : ln(A)=f(t)
 - et on obtient une droite de pente –*k*
- On trouve :

$$k_{acetone} = 1,47.10^{-3} s^{-1} < k_{acetate} = 4,40.10^{-3} s^{-1}$$

<u>Photochromisme</u>: stabilisation de la forme MC par le solvant

Loi d'Arrhénius : $k=Ae^{-\frac{E_a}{RT}}$

Coordonnée Réactionnelle

Isomère N dans S1 ou S2

Acétone (S1) : $\mu = 2,88D$

Acétate d'éthyle (S2): $\mu = 1.78 D$