Regression algorithm project

Algorithms in this notebook

1) Linear Regression 2) Ridge Regression 3) Lasso Regression 4) ElasticNet Regression

:		MPG	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model_year	Origin	Car_Name
	0	8.0	8	307.0	130	3504	12.0	2015	1	chevrolet
	1	15.0	8	350.0	165	3693	11.5	2015	1	buick
	2	18.0	8	318.0	150	3436	11.0	2015	1	plymouth
	3	16.0	8	304.0	150	3433	12.0	2015	1	amc
;	4	17.0	8	302.0	140	3449	10.5	2015	1	ford
	393	27.0	4	140.0	86	2790	15.6	2003	1	ford
	394	44.0	4	97.0	52	2130	24.6	2003	2	volkswagen
	395	32.0	4	135.0	84	2295	11.6	2003	1	dodge
	396	28.0	4	120.0	79	2625	18.6	2003	1	ford
	397	31.0	4	119.0	82	2720	19.4	2003	1	chevrolet

398 rows × 9 columns

In [4]: df.head(35)

	MPG	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model_year	Origin	Car_Name
0	8.0	8	307.0	130	3504	12.0	2015	1	chevrolet
1	15.0	8	350.0	165	3693	11.5	2015	1	buick
2	18.0	8	318.0	150	3436	11.0	2015	1	plymouth
3	16.0	8	304.0	150	3433	12.0	2015	1	amc
4	17.0	8	302.0	140	3449	10.5	2015	1	ford
5	15.0	8	429.0	198	4341	10.0	2015	1	ford
6	14.0	8	454.0	220	4354	9.0	2015	1	chevrolet
7	14.0	8	440.0	215	4312	8.5	2015	1	plymouth
8	14.0	8	455.0	225	4425	10.0	2015	1	pontiac
9	15.0	8	390.0	190	3850	8.5	2015	1	amc
10	15.0	8	383.0	170	3563	10.0	2015	1	dodge
11	14.0	8	340.0	160	3609	8.0	2015	1	plymouth
12	15.0	8	400.0	150	3761	9.5	2015	1	chevrolet
13	14.0	8	455.0	225	3086	10.0	2015	1	buick
14	24.0	4	113.0	95	2372	15.0	2015	3	toyota
15	22.0	6	198.0	95	2833	15.5	2015	1	plymouth
16	18.0	6	199.0	97	2774	15.5	2015	1	amc
17	21.0	6	200.0	85	2587	16.0	2015	1	ford
18	27.0	4	97.0	88	2130	14.5	2015	3	datsun
19	26.0	4	97.0	46	1835	20.5	2015	2	volkswagen
20	25.0	4	110.0	87	2672	17.5	2015	2	peugeot
21	24.0	4	107.0	90	2430	14.5	2015	2	audi
22	25.0	4	104.0	95	2375	17.5	2015	2	saab
23	26.0	4	121.0	113	2234	12.5	2015	2	bmw
24	21.0	6	199.0	90	2648	15.0	2015	1	amc
25	10.0	8	360.0	215	4615	14.0	2015	1	ford
26	10.0	8	307.0	200	4376	15.0	2015	1	chevrolet
27	11.0	8	318.0	210	4382	13.5	2015	1	dodge
28	9.0	8	304.0	193	4732	18.5	2015	1	honda
29	27.0	4	97.0	88	2130	14.5	2014	3	datsun
30	28.0	4	140.0	90	2264	15.5	2014	1	chevrolet
31	25.0	4	113.0	95	2228	14.0	2014	3	toyota
32	25.0	4	98.0	?	2046	19.0	2014	1	ford
33	19.0	6	232.0	100	2634	13.0	2014	1	amc
34	16.0	6	225.0	105	3439	15.5	2014	1	plymouth

In [5]: #print the number of rows and columns
df.shape

Out[5]: (398, 9)

In [6]: #print descriptive statistics
 df.describe()

Out[6]:

	MPG	Cylinders	Displacement	Weight	Acceleration	Model_year	Origin
count	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000
mean	23.489447	5.454774	193.425879	2970.424623	15.568090	2008.989950	1.572864
std	7.849757	1.701004	104.269838	846.841774	2.757689	3.697627	0.802055
min	8.000000	3.000000	68.000000	1613.000000	8.000000	2003.000000	1.000000
25%	17.125000	4.000000	104.250000	2223.750000	13.825000	2006.000000	1.000000
50%	23.000000	4.000000	148.500000	2803.500000	15.500000	2009.000000	1.000000
75%	29.000000	8.000000	262.000000	3608.000000	17.175000	2012.000000	2.000000
max	46.600000	8.000000	455.000000	5140.000000	24.800000	2015.000000	3.000000

```
Out[7]: MPG
Cylinders
                          float64
                            int64
         Displacement float64
         Horsepower
                          object
         Weight
                            int64
                          float64
         Acceleration
         Model_year
                           int64
         Origin 0
                            int64
         Car_Name
                           object
         dtype: object
In [8]: #change the data type of Horsepower as it is a numeric data stored as
         #object
         # errors='coerce' means replace all non numeric values(e.g. "apple", ?, - or any other signs) with NaN df['Horsepower']=pd.to_numeric(df['Horsepower'],errors='coerce')
         df['Horsepower']
Out[8]: 0
                 130.0
                165.0
                150.0
         2
         3
                150.0
         4
                140.0
                 86.0
         393
         394
                  52.0
         395
                  84.0
                 79.0
         396
         397
                 82.0
         Name: Horsepower, Length: 398, dtype: float64
In [9]: df.head(35)
```

	MPG	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model_year	Origin	Car_Name
0	8.0	8	307.0	130.0	3504	12.0	2015	1	chevrolet
1	15.0	8	350.0	165.0	3693	11.5	2015	1	buick
2	18.0	8	318.0	150.0	3436	11.0	2015	1	plymouth
3	16.0	8	304.0	150.0	3433	12.0	2015	1	amc
4	17.0	8	302.0	140.0	3449	10.5	2015	1	ford
5	15.0	8	429.0	198.0	4341	10.0	2015	1	ford
6	14.0	8	454.0	220.0	4354	9.0	2015	1	chevrolet
7	14.0	8	440.0	215.0	4312	8.5	2015	1	plymouth
8	14.0	8	455.0	225.0	4425	10.0	2015	1	pontiac
9	15.0	8	390.0	190.0	3850	8.5	2015	1	amc
10	15.0	8	383.0	170.0	3563	10.0	2015	1	dodge
11	14.0	8	340.0	160.0	3609	8.0	2015	1	plymouth
12	15.0	8	400.0	150.0	3761	9.5	2015	1	chevrolet
13	14.0	8	455.0	225.0	3086	10.0	2015	1	buick
14	24.0	4	113.0	95.0	2372	15.0	2015	3	toyota
15	22.0	6	198.0	95.0	2833	15.5	2015	1	plymouth
16	18.0	6	199.0	97.0	2774	15.5	2015	1	amc
17	21.0	6	200.0	85.0	2587	16.0	2015	1	ford
18	27.0	4	97.0	88.0	2130	14.5	2015	3	datsun
19	26.0	4	97.0	46.0	1835	20.5	2015	2	volkswagen
20	25.0	4	110.0	87.0	2672	17.5	2015	2	peugeot
21	24.0	4	107.0	90.0	2430	14.5	2015	2	audi
22	25.0	4	104.0	95.0	2375	17.5	2015	2	saab
23	26.0	4	121.0	113.0	2234	12.5	2015	2	bmw
24	21.0	6	199.0	90.0	2648	15.0	2015	1	amc
25	10.0	8	360.0	215.0	4615	14.0	2015	1	ford
26	10.0	8	307.0	200.0	4376	15.0	2015	1	chevrolet
27	11.0	8	318.0	210.0	4382	13.5	2015	1	dodge
28	9.0	8	304.0	193.0	4732	18.5	2015	1	honda
29	27.0	4	97.0	88.0	2130	14.5	2014	3	datsun
30	28.0	4	140.0	90.0	2264	15.5	2014	1	chevrolet
31	25.0	4	113.0	95.0	2228	14.0	2014	3	toyota
32	25.0	4	98.0	NaN	2046	19.0	2014	1	ford
33	19.0	6	232.0	100.0	2634	13.0	2014	1	amc
34	16.0	6	225.0	105.0	3439	15.5	2014	1	plymouth

In [10]: # recheck data type again to see horsepowers data type has been changed or not df.dtypes

Out[10]: MPG

float64 int64 float64 Cylinders Displacement float64 Horsepower Weight int64 Acceleration float64 Model_year int64 Origin int64 Car_Name dtype: object object

In [11]: # ---- Missing value imputation ----

In [12]: #check missing values
 df.isnull().sum()

Out[12]: MPG Cylinders 0 0 Displacement 0 Horsepower 6 0 Weight Acceleration 0 Model_year 0 Origin
Car_Name 0 0 dtype: int64

In [13]: # There are 6 missing values in Horsepower variable

In [14]: #missing value treatment #impute missing values
df['Horsepower']=df['Horsepower'].fillna(df['Horsepower'].median())

In [15]: df.head(35)

Out[15]:

:	MPG	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model_year	Origin	Car_Name
0	8.0	8	307.0	130.0	3504	12.0	2015	1	chevrolet
1	15.0	8	350.0	165.0	3693	11.5	2015	1	buick
2	18.0	8	318.0	150.0	3436	11.0	2015	1	plymouth
3	16.0	8	304.0	150.0	3433	12.0	2015	1	amc
4	17.0	8	302.0	140.0	3449	10.5	2015	1	ford
5	15.0	8	429.0	198.0	4341	10.0	2015	1	ford
6	14.0	8	454.0	220.0	4354	9.0	2015	1	chevrolet
7	14.0	8	440.0	215.0	4312	8.5	2015	1	plymouth
8	14.0	8	455.0	225.0	4425	10.0	2015	1	pontiac
9	15.0	8	390.0	190.0	3850	8.5	2015	1	amc
10	15.0	8	383.0	170.0	3563	10.0	2015	1	dodge
11	14.0	8	340.0	160.0	3609	8.0	2015	1	plymouth
12	15.0	8	400.0	150.0	3761	9.5	2015	1	chevrolet
13	14.0	8	455.0	225.0	3086	10.0	2015	1	buick
14	24.0	4	113.0	95.0	2372	15.0	2015	3	toyota
15	22.0	6	198.0	95.0	2833	15.5	2015	1	plymouth
16	18.0	6	199.0	97.0	2774	15.5	2015	1	amc
17	21.0	6	200.0	85.0	2587	16.0	2015	1	ford
18	27.0	4	97.0	88.0	2130	14.5	2015	3	datsun
19	26.0	4	97.0	46.0	1835	20.5	2015	2	volkswagen
20	25.0	4	110.0	87.0	2672	17.5	2015	2	peugeot
21	24.0	4	107.0	90.0	2430	14.5	2015	2	audi
22	25.0	4	104.0	95.0	2375	17.5	2015	2	saab
23	26.0	4	121.0	113.0	2234	12.5	2015	2	bmw
24	21.0	6	199.0	90.0	2648	15.0	2015	1	amc
25	10.0	8	360.0	215.0	4615	14.0	2015	1	ford
26	10.0	8	307.0	200.0	4376	15.0	2015	1	chevrolet
27	11.0	8	318.0	210.0	4382	13.5	2015	1	dodge
28	9.0	8	304.0	193.0	4732	18.5	2015	1	honda
29	27.0	4	97.0	88.0	2130	14.5	2014	3	datsun
30	28.0	4	140.0	90.0	2264	15.5	2014	1	chevrolet
31	25.0	4	113.0	95.0	2228	14.0	2014	3	toyota
32	25.0	4	98.0	93.5	2046	19.0	2014	1	ford
33	19.0	6	232.0	100.0	2634	13.0	2014	1	amc
34	16.0	6	225.0	105.0	3439	15.5	2014	1	plymouth

```
Out[16]: MPG
                             0
                             0
           Cylinders
           Displacement
                             0
           Horsepower
                             0
                             0
           Weight
           Acceleration
                             0
           Model_year
                             0
           Origin 
                             0
           {\tt Car\_Name}
                             0
           dtype: int64
In [17]: # create boxplots to check outliers
plt.boxplot(df['MPG']) #No outlier
           plt.show()
           45
           40
           35
           30
           25
           20
           15
           10
In [18]: #check outliers
           plt.boxplot(df['Horsepower']) # Has outlier
           plt.show()
           225
           200
           175
           150
           125
           100
            75
            50
           plt.boxplot(df['Displacement']) # No outlier
In [19]:
           plt.show()
           450
           400
           350
           300
           250
           200
           150
           100
           plt.boxplot(df['Weight']) # No outlier
In [20]:
           plt.show()
```

```
5000
          4500
          4000
          3500
          3000
          2500
          2000
          1500
In [21]:
          plt.boxplot(df['Acceleration']) # Has outlier
          plt.show()
          25.0
                                    9
9
          22.5
          20.0
          17.5
          15.0
          12.5
          10.0
           7.5
In [22]: #Horsepower and acceleration has outliers
In [23]:
          #user defined function for removing outliers
          def remove_outlier(d,c):
              #find q1 and q3
              q1=d[c].quantile(0.25)
              q3=d[c].quantile(0.75)
              #find iqr (inter quartile range)
              iqr=q3-q1
              #find upper and lower bound
              ub=q3+1.5*iqr
              lb=q1-1.5*iqr
              final data= d[(d[c]>lb) & (d[c]<ub)]
              return final data
In [24]: # to check sample size before removing outliers here & in next step we are removing outliers &
          #in previous line we wrote just fn for removing outliers
          df.shape # original observations (398rows*9columns)
          (398, 9)
Out[24]:
In [29]:
          #remove outlier from Horsepower
          df=remove_outlier(df, 'Horsepower')
          plt.boxplot(df['Horsepower'])
          plt.show()
          160
          140
          120
          100
           80
           60
```

To [36], df=remove outlier(df 'Acceleration')

df.shape #Horsepower has 37 outlires and removed here therefore sample size is 398-37=361 rows (or obs) * 9 col

In [30]: #to check data size

Out[30]: (361, 9)

```
In [37]: #to check data size df.shape #Acceleration has 13 outlires and removed here therefore sample size is 398-37-13=348 rows (or obs) *
```

Out[37]: (348, 9)

14

12

10

```
In [38]: #----- Start EDA (Exploratory Data Analysis) -----
        #---- Data quality test -----
        #Check the distribution of MPG
        #Check the distribution of Horsepower
        #Check the distribution of Weight
        #Check the distribution of Acceleration
        #----- Correlation test ------
        #Scatter plot to find the correlation betweeen MPG and Acceleration
        #Scatter plot to find the correlation betweeen MPG and Horsepower
        #Scatter plot to find the correlation betweeen MPG and Weight
        #Scatter plot to find the correlation betweeen MPG and Displacement
        #----- Understand data mix -----
        #Barplots:
         #No. of cars by cylinders
         #No. of cars by Origin
         #No. of cars by brand
        #-----End of EDA -----
```

```
In [39]: #distribution of MPG
sns.distplot(df['MPG'])
```

Out[39]: <AxesSubplot:xlabel='MPG', ylabel='Density'>


```
In [40]: #distribution of Horsepower
sns.distplot(df['Horsepower'])
```

Out[40]: <AxesSubplot:xlabel='Horsepower', ylabel='Density'>


```
In [41]: #distribution of Weight
sns.distplot(df['Weight'])
```

Out[41]: <AxesSubplot:xlabel='Weight', ylabel='Density'>


```
In [42]: #distribution of Acceleration
sns.distplot(df['Acceleration'])
```

Out[42]: <AxesSubplot:xlabel='Acceleration', ylabel='Density'>


```
In [43]: #Scatter plot to find the correlation between MPG and Acceleration df.plot(kind='scatter', x='Acceleration', y='MPG') # Medium to Weak +ve correlation
```

Out[43]: <AxesSubplot:xlabel='Acceleration', ylabel='MPG'>

In [44]: #Scatter plot to find the correlation betweeen MPG and Horsepower
df.plot(kind='scatter', x='Horsepower', y='MPG') #strong -ve correlation

Out[44]: <AxesSubplot:xlabel='Horsepower', ylabel='MPG'>

In [45]: #Scatter plot to find the correlation betweeen MPG and Weight
df.plot(kind='scatter', x='Weight', y='MPG') #strong -ve correlation

Out[45]: <AxesSubplot:xlabel='Weight', ylabel='MPG'>


```
In [46]: #Scatter plot to find the correlation betweeen MPG and Displacement
df.plot(kind='scatter', x='Displacement', y='MPG') #strong -ve correlation
```

Out[46]: <AxesSubplot:xlabel='Displacement', ylabel='MPG'>


```
In [51]: #No. of cars by cylinders
df.groupby('Cylinders')['Cylinders'].count().plot(kind='bar')
```

Out[51]: <AxesSubplot:xlabel='Cylinders'>


```
In [52]: #No. of cars by Origin
df.groupby('Origin')['Origin'].count().plot(kind='bar')
```

Out[52]: <AxesSubplot:xlabel='Origin'>


```
In [53]: #No. of cars by brand
df.groupby('Car_Name')['Car_Name'].count().plot(kind='bar')
```

Out[53]: <AxesSubplot:xlabel='Car_Name'>

4 17.0

24.0

df_numeric.head()

8

4

302.0

113.0

In [61]: # drop cylinders variable because it is categorical

140.0

95.0

& also remove model_year column as it is also a categorical feature
df_numeric = df_numeric.drop(['Cylinders','Model_year'], axis=1)

3449

2372

10.5

15.0

2015

2015

```
#----- End of EDA
          df.columns
In [55]:
          Index(['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight',
                  'Acceleration', 'Model_year', 'Origin', 'Car_Name'],
                dtype='object')
          #Check unique values in Origin variable
In [56]:
          df['Origin'].unique()
          array([1, 3, 2], dtype=int64)
Out[56]:
In [57]:
          #Replace Origin 1-US, 2-Germany, 3-Japan
          df['Origin']=df['Origin'].replace([1,2,3],["US","Germany","Japan"])
In [58]:
          #Print unique entries from origin column again
          df['Origin'].unique()
          array(['US', 'Japan', 'Germany'], dtype=object)
Out[58]:
In [59]:
          df.head()
             MPG Cylinders Displacement Horsepower Weight Acceleration Model_year Origin
                                                                                       Car_Name
Out[59]:
           0
               8.0
                         8
                                  307.0
                                              130.0
                                                     3504
                                                                 12.0
                                                                           2015
                                                                                   US
                                                                                        chevrolet
              18.0
                         8
                                  318.0
                                                                           2015
                                                                                   US
           2
                                              150.0
                                                     3436
                                                                 11.0
                                                                                        plymouth
              16.0
                         8
                                  304.0
                                              150.0
                                                     3433
                                                                 12.0
                                                                           2015
                                                                                   US
                                                                                            amc
              17.0
                         8
                                  302.0
                                              140.0
                                                     3449
                                                                 10.5
                                                                           2015
                                                                                   US
                                                                                            ford
          14 24 0
                         4
                                  113 0
                                              95.0
                                                     2372
                                                                 15.0
                                                                           2015 Japan
                                                                                          toyota
In [60]:
          #Print correlation plot of numeric columns
          #Check the correlation of numeric variables
          df_numeric = df.select_dtypes(include=['float64', 'int64'])
          df numeric.head()
             MPG Cylinders Displacement Horsepower Weight Acceleration Model_year
Out[60]:
           0
               8.0
                         8
                                  307.0
                                              130.0
                                                     3504
                                                                 12.0
                                                                           2015
              18.0
                         8
                                  318.0
                                              150.0
                                                     3436
                                                                 11.0
                                                                           2015
              16.0
                         8
                                  304.0
                                              150.0
                                                     3433
                                                                 12.0
                                                                           2015
           3
```

```
MPG Displacement Horsepower Weight Acceleration
Out[61]:
            0
                8.0
                           307.0
                                       130.0
                                               3504
                                                            12.0
              18.0
                           318.0
                                       150.0
                                               3436
                                                            11.0
               16.0
                           304.0
                                       150.0
            3
                                               3433
                                                            12.0
               17.0
                           302.0
                                       140.0
                                               3449
                                                            10.5
               24.0
                           113.0
                                        95.0
                                               2372
                                                            15.0
In [62]: # correlation matrix
           cor mat = df numeric.corr()
           cor mat
                            MPG Displacement Horsepower
                                                             Weight Acceleration
Out[62]:
                  MPG
                       1.000000
                                     -0.787844
                                                 -0.765025 -0.814122
                                                                        0.251711
           Displacement -0.787844
                                      1.000000
                                                  0.856691
                                                           0.934799
                                                                       -0.349404
                                                                       -0.568026
            Horsepower -0.765025
                                      0.856691
                                                  1.000000
                                                           0.864866
                Weight -0.814122
                                      0.934799
                                                  0.864866
                                                           1.000000
                                                                       -0.256231
            Acceleration 0.251711
                                     -0.349404
                                                 -0.568026
                                                          -0.256231
                                                                        1.000000
In [63]: # plot correlations on a heatmap
           # figure size
           plt.figure(figsize=(10,5))
           # heatmap
           sns.heatmap(cor mat, cmap="YlGnBu", annot=True) #YlGnBu
           plt.show()
                                                                                               1.00
                  MPG
                                        -0.79
                                                     -0.77
                                                                  -0.81
                                                                                               0.75
                                                                                              - 0.50
           Displacement
                           -0.79
                                                     0.86
                                                                  0.93
                                                                               -0.35
                                                                                              - 0.25
                           -0.77
                                        0.86
                                                                  0.86
                                                                               -0.57
            Horsepower
                                                                                              -0.00
                                                                                              - -0.25
                Weight
                           -0.81
                                        0.93
                                                     0.86
                                                                               -0.26
                                                                                              - -0.50
            Acceleration
                                        -0.35
                                                     -0.57
                                                                  -0.26
                                                                                               -0.75
                           MPG
                                     Displacement
                                                  Horsepower
                                                                 Weight
                                                                             Acceleration
           #Displacement, Horsepower, and Weight are the key features (significant variables)
In [64]:
           #to predict the mileage of the cars
In [65]:
           #Cylinders is a categorical variable hence change Cylinders to Object
           df['Cylinders']=df['Cylinders'].replace([3,4,5,6,8],
                                                    ['3cyl','4cyl','5cyl','6cyl','8cyl'])
In [66]: df['Cylinders'].unique()
           array(['8cyl', '4cyl', '6cyl', '3cyl', '5cyl'], dtype=object)
Out[66]:
In [67]:
           # One-hot encoding (dummy conversion)
           # create dummy variables for categorical variables
           # subset all categorical variables
           df_categorical = df.select_dtypes(include=['object'])
           df categorical.head()
Out[67]:
              Cylinders Origin Car_Name
            0
                   8cvl
                           US
                                 chevrolet
            2
                   8cyl
                           US
                                 plymouth
            3
                           US
                   8cyl
                                    amc
            4
                           US
                   8cvl
                                     ford
           14
                   4cyl
                        Japan
                                   toyota
In [68]: # convert into dummies
           df dummies = pd.get dummies(df_categorical)
```

```
Cylinders_3cyl Cylinders_4cyl Cylinders_5cyl Cylinders_6cyl Cylinders_8cyl Origin_Germany Origin_Japan Origin_US Car_Name_amc
Out[68]:
           0
                         0
                                       0
                                                    0
                                                                                               0
                                                                                                                                    0
                                                                  0
                                                                                1
                                                                                                           0
                                                                                                                      1
           2
                         0
                                       0
                                                    0
                                                                  0
                                                                                               0
                                                                                                           0
                                                                                                                                    0
           3
                         0
                                       0
                                                    0
                                                                  0
                                                                                1
                                                                                               0
                                                                                                            0
                                                                                                                      1
                         0
                                       0
                                                    0
                                                                  0
                                                                                               0
                                                                                                            0
                                                                                                                                    0
          14
                         0
                                       1
                                                    0
                                                                  0
                                                                                0
                                                                                               0
                                                                                                                      0
                                                                                                                                    Λ
         5 rows × 35 columns
In [69]:
          #combine numeric columns and dummies to create master data
          master=pd.concat([df_numeric,df_dummies], axis=1)
In [70]: master.head()
Out[70]:
              MPG Displacement Horsepower Weight Acceleration Cylinders_3cyl Cylinders_4cyl Cylinders_5cyl Cylinders_6cyl Cylinders_8cyl ...
                                                                                                                                  1 ...
               8.0
                          307.0
                                      130.0
                                              3504
                                                          12.0
                                                                          0
                                                                                        0
                                                                                                      0
                                                                                                                    O
           2
              18.0
                          318.0
                                      150.0
                                              3436
                                                          11.0
                                                                          0
                                                                                        0
                                                                                                      0
                                                                                                                    0
                                                                          0
                                                                                        0
                                                                                                      0
                                                                                                                    0
           3
              16.0
                          304.0
                                      150.0
                                              3433
                                                          12.0
           4
              17.0
                          302.0
                                      140.0
                                              3449
                                                          10.5
                                                                          0
                                                                                        0
                                                                                                      0
                                                                                                                    0
              24.0
                          113.0
                                       95.0
                                              2372
                                                          15.0
                                                                                                                                 0
         5 rows × 40 columns
          #Export data to excel to check the final values data after preparation
In [71]:
          #master.to excel('C:/Users/Sanjay Lohar/Desktop/final cars.xlsx')
          #create x and y
In [72]:
          y=master['MPG']
          x=master.drop('MPG',axis=1)
In [73]:
          # import the library to split the training-test sample
          from sklearn.model_selection import train_test_split
          #split data into training and test samples
In [74]:
          x_train,x_test,y_train,y_test=train_test_split(x,y, test_size=0.3, random_state=0)
          #check sample size
In [75]:
          print(x_train.shape,y_train.shape, x_test.shape,y_test.shape)
          (243, 39) (243,) (105, 39) (105,)
 In [ ]:
In [76]:
          # standardize or feature scaling dataset
          from sklearn.preprocessing import StandardScaler
          scaler = StandardScaler()
          x_train_scaled = scaler.fit_transform(x_train)
          x test scaled = scaler.transform(x test)
In [77]: x_train_scaled
Out[77]: array([[-0.90721285, -0.95930583, -1.37083325, ..., -0.06428243,
                    4.2062225 , -0.1118034 ],
                  [-0.61615541, -0.31961376, -0.44908641, ..., 15.55634919,
                   -0.23774301, -0.1118034 ],
                  [ 0.6644973 , -0.24435587, 0.52182026, ..., -0.06428243, -0.23774301, -0.1118034 ],
                  [-1.1167742, -1.10982161, -1.13186184, ..., -0.06428243,
                   -0.23774301, -0.1118034 ],
                  [-1.22155488, \quad 0.01904675, \quad -0.68123006, \quad \dots, \quad -0.06428243,
                  -0.23774301, -0.1118034 ],
[-0.2203173 , 0.43296515, 0.13810046, ..., -0.06428243,
                   -0.23774301, -0.1118034 ]])
In [78]: x test scaled
```

df_dummies.head()

```
-0.23774301, -0.1118034 ],
                  [-0.62779771, 0.58348093, 0.14219712, ..., -0.06428243,
                  -0.23774301, 8.94427191],
[-0.27852879, -0.24435587, 0.23778568, ..., -0.06428243,
                   -0.23774301, -0.1118034 ],
                  [-0.89557055, -1.1850795, -0.61295251, ..., -0.06428243,
                    -0.23774301, -0.1118034 ],
                  [-0.90721285, -0.69590321, -0.87513828, \ldots, -0.06428243,
                  -0.23774301, -0.1118034 ],
[-0.46480555, -0.47012954, -0.46274192, ..., -0.06428243,
                   -0.23774301, -0.1118034 ]])
 In [ ]:
 In [ ]:
          Linear regression
In [79]:
          #import library for linear regression
          from sklearn.linear_model import LinearRegression
          #create a model object
In [80]:
          model=LinearRegression()
In [81]: # fit the model
          model.fit(x train scaled,y train)
          LinearRegression()
Out[81]:
          #Goodness of fit test: check the accuracy ot training model
In [82]:
          model.score(x_train_scaled,y_train)
          0.7907794309128342
Out[82]:
In [83]:
          #check the accuracy ot testing model
          model.score(x test scaled,y test)
          0.7284320305884564
Out[83]:
In [84]: #predict y
          linreg_y_pred=model.predict(x_test_scaled)
          linreg y pred
Out[84]: array([20.59482181, 24.51458588, 21.85695933, 14.71368373, 32.97108143,
                  16.2695135 , 28.16051905, 28.02296528, 21.2756276 , 29.61801286,
                  32.89676057, 20.05819741, 30.35195322, 30.43438349, 19.84076454,
                  27.86335528, 25.22506659, 21.76532554, 17.43812594, 33.2450913 ,
                  17.83448035, 32.7527569 , 28.69736617, 14.56504336, 28.77133613,
                  18.68262228, 32.33532374, 24.43912589, 26.63494828, 15.32312412,
                  16.13641519, 28.40683891, 24.59676879, 30.48105791, 31.98559539,
                  15.14918655, 22.75303521, 10.0335068 , 29.76409721, 20.38157385,
                  22.76284406, 33.82051338, 34.60824657, 16.43949419, 16.85383954, 14.32467638, 19.57152681, 29.65801222, 24.71612975, 30.1997423,
                  19.04266479,\ 25.02553609,\ 32.6801491\ ,\ 21.92664453,\ 12.72020693,
                  34.94383707, 15.40892293, 27.53409899, 10.91711679, 30.44693484, 22.18057384, 32.82165018, 26.06706799, 35.38212063, 26.41835695,
                  11.99868274, 21.03288328, 19.70526021, 15.85046907, 14.51413261, 28.08407171, 24.10124836, 29.65676154, 19.26187747, 28.22754849, 22.21126496, 16.47124569, 29.51890595, 29.55033761, 15.56749768,
                  37.31725482, 32.49092518, 20.34654859, 20.09117441, 25.85707952,
                  21.18655843, 29.72224062, 31.2396371 , 11.26409308, 16.10207709,
                  24.89322333,\ 17.17357816,\ 33.37108228,\ 30.45716121,\ 30.2045559\ ,
                  28.58549478, 33.59074954, 13.18892731, 30.62367615, 22.06432275,
                  19.43242075, 22.91522651, 26.45469706, 25.60474274, 28.40230894])
 In [ ]:
In [85]: from sklearn.metrics import confusion matrix, accuracy score, precision score, recall score, f1 score
          \# we cant calculate confusion_matrix, accuracy score, precision score, recall score , f1 score for Regression \#
          #like Linear Regression, Random forest Regressor, etc. so for regression models we can calculate r2_score, mean
          #but we can calculate confusion matrix, accuracy score, precision score, recall score , f1 score for Classifica
          #like LogisicRegression, knn, svm, Decision tree, Random forest Classifier, naive-bayes, etc.
          # confusion matrix(ytest, linreg y pred)
In [86]:
          #model=LinearRegression()
          #model.fit(xtrain,ytrain)
          #linreg_y_pred=model.predict(xtest)
```

Out[78]: array([[0.28030148, 0.01904675, -0.07492547, ..., -0.06428243,

```
from sklearn.metrics import r2_score, mean_squared_error

linreg_r2_scr = r2_score(y_test, linreg_y_pred)
print("linreg_r2_scr: ", linreg_r2_scr)

mse= mean_squared_error(y_test, linreg_y_pred)
rmse=np.sqrt(mse)
print("Root Mean Squared Error:", rmse)

linreg_r2_scr: 0.7284320305884564
Root Mean Squared Error: 4.04161886584362
In []:
```

Ridge regression

```
In [87]: from sklearn.linear_model import Ridge
           ridge=Ridge()
           # fit the model
In [88]:
           ridge.fit(x_train_scaled,y_train)
           Ridge()
In [89]:
           #check the accuracy ot training model
           ridge.score(x_train_scaled,y_train)
           0.7907059483561818
In [90]: #check the accuracy ot testing model
           ridge.score(x test scaled,y test)
           0.7279478999875066
Out[90]:
           #predict y
           ridgereg y pred=ridge.predict(x test scaled)
           ridgereg_y_pred
Out[91]: array([20.58718046, 24.57818279, 21.92998307, 14.69869048, 32.89956391,
                   16.34630287,\ 28.2076056\ ,\ 28.13390811,\ 21.31815795,\ 29.59361007,
                    32.74874564, 20.13241094, 30.41185972, 30.39519244, 19.86416875,
                   27.84837419,\ 25.24190429,\ 21.76670582,\ 17.49995023,\ 33.232296
                    17.73296901, 32.71490573, 28.771418 , 14.50821144, 28.7647569
                   18.77478453, 32.32398413, 24.36412674, 26.74461407, 15.28619157, 16.18755529, 28.47893483, 24.60792602, 30.46650093, 31.92952017,
                    15.2390462 , 22.9245395 , 10.29191936 , 29.82080828 , 20.36242679 ,
                   22.60631712, 33.7527488 , 34.50823995, 16.4017143 , 16.88105197, 14.26714064, 19.54681924, 29.78633664, 24.72551053, 30.2067636 ,
                   19.10442617,\ 25.03125519,\ 32.5199236\ ,\ 21.92471853,\ 12.77330552,
                   34.92832247, 15.3917375 , 27.55155022, 10.92189842, 30.38553854, 22.18431019, 32.65873546, 26.08770709, 35.34647374, 26.39091051,
                   12.00169715, 20.96726215, 19.70657858, 15.96294248, 14.47222133,
                    28.0853002 , 24.10810116, 29.57427606, 19.26926339, 28.22079103,
                   22.18863388, 16.35023231, 29.48854661, 29.55230927, 15.61490863,
                   37.19635998, 32.47511591, 20.30088005, 20.04650913, 25.77354846, 21.17992062, 29.69102912, 31.13214847, 11.34125498, 16.11518656,
                   24.85065707,\ 17.21551642,\ 33.344151\quad,\ 30.50524198,\ 30.13980274,
                   28.63356704, 33.54394695, 13.17730746, 30.56332879, 21.99746453, 19.42584375, 22.93915513, 26.43726378, 25.61149784, 28.40131974])
In [92]: from sklearn.metrics import r2_score, mean_squared_error
           ridgereg_r2_scr = r2_score(y_test, ridgereg_y_pred)
           print("ridgereg_r2_scr: ", ridgereg_r2_scr )
           mse= mean squared error(y test, ridgereg y pred)
           rmse=np.sqrt(mse)
           print("Root Mean Squared Error:", rmse)
           ridgereg r2 scr: 0.7279478999875066
           Root Mean Squared Error: 4.045219806153347
 In [ ]:
```

Lasso regression

```
In [93]: from sklearn.linear_model import Lasso
In [94]: lasso = Lasso()
In [95]: # fit the model
```

```
lasso.fit(x train scaled,y train)
            Lasso()
In [96]:
            #check the accuracy ot training model
            lasso.score(x_train_scaled,y_train)
            0.6771283863648423
Out[96]:
In [97]:
            #check the accuracy ot testing model
            lasso.score(x test scaled,y test)
            0.6748960442061311
Out[971:
            #predict y
In [98]:
            lassoreg_y_pred=lasso.predict(x_test_scaled)
            lassoreg y pred
Out[98]: array([22.47525382, 24.4236182 , 25.15703188, 14.71948041, 31.47212284, 20.14601392, 28.90932643, 28.03018155, 22.43836536, 29.25615209,
                     28.99149146, 21.07472063, 28.13511379, 29.47432924, 22.31836769,
                     26.9543565 , 26.5662938 , 21.39538926 , 19.340534 , 29.88508372 , 18.74084988 , 30.09025899 , 29.20784836 , 14.33488296 , 27.90737081 ,
                     21.34363735, 29.03984144, 25.34073933, 28.58625117, 17.71901307,
                     17.14166302, 29.13116834, 25.35916291, 28.10686157, 28.53852171, 19.30400324, 26.34347368, 16.64545353, 28.02368914, 20.10665549,
                     23.23016449, 30.11987632, 30.36728392, 16.64949305, 18.24507352,
                    16.46379502, 19.57695947, 28.56211142, 24.19325201, 28.52696531, 21.9199921 , 26.36273434, 28.71751076, 23.56080289, 15.05027701,
                     31.24908615, 15.88439603, 26.23692563, 13.42770242, 28.14137257,
                     21.03427937, 28.46201201, 27.18001641, 31.37085535, 24.98941184, 15.68043262, 22.43909783, 21.54772977, 19.54959059, 16.8942433,
                    28.37434986, 25.58707621, 29.14898352, 20.65663665, 26.92448847, 22.2457539 , 17.02492863, 28.92941207, 28.28323952, 16.64545353,
                     30.50123004, 29.99691233, 21.99181259, 21.25510892, 25.52339313,
                     22.3339782 , 29.2626445 , 28.15556925 , 15.01355887 , 18.71239815 , 26.85369246 , 19.35621747 , 29.37082542 , 29.8976646 , 27.3421685 ,
                     28.4403447 , 30.24045073, 15.33845439, 29.18817162, 22.0904398
                     21.40144853, 25.88258309, 28.12916646, 28.15435739, 26.9768609 ])
In [99]: from sklearn.metrics import r2 score, mean squared error
            lassoreg_r2_scr = r2_score(y_test, lassoreg_y_pred)
            print("lassoreg r2 scr: ", lassoreg r2 scr )
            mse= mean_squared_error(y_test, lassoreg_y_pred)
            rmse=np.sqrt(mse)
            print("Root Mean Squared Error:", rmse)
            lassoreg_r2_scr: 0.6748960442061311
            Root Mean Squared Error: 4.422086266693381
 In [ ]:
            Elastic Net regression
In [100... from sklearn.linear_model import ElasticNet
In [101... ElsNet = ElasticNet()
In [102...
            # fit the model
            ElsNet.fit(x_train_scaled,y_train)
Out[102]: ElasticNet()
```

```
In [102... # fit the model
ElsNet.fit(x_train_scaled,y_train)
Out[102]: ElasticNet()

In [103... #check the accuracy of training model
ElsNet.score(x_train_scaled,y_train)
Out[103]: 0.6814251179097743

In [104... #check the accuracy of testing model
ElsNet.score(x_test_scaled,y_test)
Out[104]: 0.669389703736148

In [105... #predict y
ElsNetreg_y_pred=ElsNet.predict(x_test_scaled)
ElsNetreg_y_pred
```

```
Out[105]: array([21.92905031, 25.05170871, 24.96466669, 15.2276841 , 31.26970272,
                      20.04606535, 28.47708309, 28.35791502, 23.26283829, 28.89085085, 28.44650151, 21.04793429, 28.48874534, 29.63208379, 21.87011621,
                      27.42670178,\ 25.97617886,\ 21.58690043,\ 19.97863542,\ 30.61327491,
                      18.92724103,\ 30.56073468,\ 28.57668838,\ 15.10954814,\ 27.59988005,
                      20.42926662, 29.39944153, 25.60465486, 28.88112367, 17.53562149,
                      17.01467295,\ 29.1865128\ ,\ 26.07342086,\ 27.88860563,\ 28.45497948,
                      19.28618999, 25.86821094, 16.30068039, 28.59890677, 20.50539941, 24.6391605, 29.73194819, 30.70560978, 16.93365472, 18.01340781,
                      16.63734721, 20.2085407, 28.10508071, 25.02400644, 28.39388864, 21.21692739, 26.45782274, 28.29295391, 22.73200513, 14.9915485, 31.60620366, 16.31006005, 25.80849798, 14.08220545, 27.7115412,
                      22.57023351, 28.01339741, 26.44850049, 31.77823294, 25.64153123,
                      16.0115737 , 22.18128936, 21.696431 , 19.22901537, 16.93702719,
                      28.20584834, 25.32998895, 28.21015953, 20.65156664, 26.63262132,
                      22.04909605, 17.45303507, 29.21253017, 27.73260511, 16.73658118, 30.51656623, 30.41101537, 21.79424954, 20.86244758, 25.70701993,
                      22.40274687, 28.90359178, 27.74425218, 14.96537985, 19.46454795,
                      26.92121305, 18.27783485, 30.09529392, 30.02518229, 26.80170981, 28.49692877, 30.54750213, 15.76938672, 29.35754736, 22.26626011,
                      21.68531754, 26.2628076 , 27.63862121, 28.05397413, 26.59697967])
In [106... | from sklearn.metrics import r2_score, mean_squared_error
            ElsNetreg r2 scr = r2 score(y test, ElsNetreg y pred)
            print("ElsNetreg_r2_scr: ", ElsNetreg_r2_scr)
            mse= mean squared error(y test, ElsNetreg y pred)
            rmse=np.sqrt(mse)
            print("Root Mean Squared Error:", rmse)
            ElsNetreg r2 scr: 0.669389703736148
            Root Mean Squared Error: 4.459377836347032
 In [ ]:
```

Compairing accuracy scores of all models

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js