

INDIAN AGRICULTURAL
RESEARCH INSTITUTE, NEW DELHI.

I. A. R. I. 6.

MGIPC—SI—6 AR/54—7-7-54—10,000.

PROCEEDINGS

OF THE

Royal Society of Victoria.

VOL. XLVI. (NEW SERIES)

PARTS I. AND II

Edited under the Authority of the Council

ISSUED 22nd DECEMBER, 1933, and 7th MAY, 1934

(*Containing Papers read before the Society during the months of April to December, 1933, and also the Author Index to the Publications of the Royal Society and of Societies amalgamated with it, from 1855 to 1934*)

THE AUTHORS OF THE SEVERAL PAPERS ARE INDIVIDUALLY RESPONSIBLE FOR THE SOUNDNESS OF THE OPINIONS GIVEN AND FOR THE ACCURACY OF THE STATEMENTS MADE THEREIN

ROYAL SOCIETY'S HALL,
VICTORIA STREET, MELBOURNE, C1

H. J. GRINN, GOVERNMENT PRINTER, MELBOURNE.

1934.

CONTENTS OF VOLUME XLVI.

PART I

		PAGE
ART.	I.—An Investigation of the Bacterial Pollution of the Waters of Port Phillip Bay By NANOV ATKINSON, M Sc	1
	II.—Australian Hydrophilidae—Notes and New Species, No 2 By CEDRIC DEANE, A M.I E, Aust .	20
	III.—Three Species of the Genus <i>Prasophyllum</i> R Br By W. H. NICHOLLS .. .	28
	IV.—Notes on <i>Porotermes</i> and <i>Calotermes</i> (Isoptera) from the Australian Region, with Descriptions of New Species By GERALD F HILL (Plates I and II) .. .	36
	V.—On a gigantic Polyzoan referable to <i>Lichenopora</i> , from the Miocene of Airey's Inlet, Victoria By FREDERICK CHAPMAN, A L S, F G S (Plate III) .	55
	VI.—On Fossiliferous Grits and Cherts, presumably of Cretaceous Age, associated with the Nullagine of Western Australia By FREDERICK CHAPMAN, A L S, F G S (Plate IV) .	60
	VII.—New and Rare Tertiary Mollusca from Deep Boorings in Gippsland, Victoria By FREDERICK CHAPMAN, A L S., F G.S., and IRENE CRESPIN, B A (Plate V) ..	66
	VIII.— <i>Isograptus Caduceus</i> and its Allies in Victoria By WILLIAM J. HARRIS, B A (Plate VI) .. .	79
	IX.—Ecological Studies in Victoria—Part II The Fern Gully By R. T PATTON, D Sc (Melb), D I C (Lond), M F. (Harv), F R H S .	117

PART II

ART.	X.—A Practical Application of Photoperiodic Response to Plant Breeding Methods at the State Research Farm, Werribee By ALAN R. RAW, M Agr Sc .	131
	XI.—Australia's Antarctic Dependency By J K DAVIS .	139
	XII.—The Tertiary Sands and Older Basalt of Coburg, Pascoe Vale, and Campbellsfield, Victoria By WALTER HANKS .	141
	XIII.—The Geological Structure of the Lower Ordovician Rocks of Eastern Talbot, Victoria By W J HARRIS, B A , and D E THOMAS, B Sc. .	153
	XIV.—Some Sap-staining Organisms of <i>Pinus Radiata</i> D Don. in Victoria, Australia By AUDREY M ECKERSLEY, M Sc.	179
	XV.—A Lower Cretaceous Brittle-Star from Queensland By FREDERICK CHAPMAN, A L S, F G S (Plate VII) .	195
	XVI.—The Eastern Boundary of the Bendigo Gold-field. By W J HARRIS, B A .. .	200

	PAGE
ART. XVII.—On the Occurrence of the Polycopod Genus <i>Miltha</i> in the Australian Tertiary By F A SINGLETON, M Sc, and NELLY HOOPER WOODS, M A (Plates VIII.)	207
XVIII.—The Isolation of the Organism causing Crown Gall on Almond Trees in Victoria By B J GRIEVE (Plates IX.)	213
XIX.—The Palaeozoic Starfish of Victoria By ROBERT B WITHERS, B Sc, Dip Ed, and R A KEULE, F G S. (Plates X—XII.)	220
XX.—On some Australian Cereuhonidea—Part II. By CHARLES OKE	250
XXI.—Notes on some Tertiary Leaves from Pascoo Vale. By HELEN T PATERSON, B A (Plates XIII., XIV.)	264
Author Index to Publications of the Royal Society and of Societies amalgamated with it, from 1855 to 1934	275
List of Members	323
Index to Volume XLVI.	329

PROCEEDINGS

OF THE
Royal Society of Victoria.

VOL XLVI. (NEW SERIES).
PART II

Edited under the Authority of the Council.

ISSUED 7th MAY, 1934

(Containing Papers read before the Society during the months of
August to December, 1933, and also the Author Index
to the Publications of the Royal Society and
of Societies amalgamated with it,
from 1855 to 1931.)

THE AUTHORS OF THE SEVERAL PAPERS ARE INDIVIDUALLY RESPONSIBLE FOR THE
SOUNDNESS OF THE OPINIONS GIVEN AND FOR THE ACCURACY OF THE
STATEMENTS MADE THEREIN

ROYAL SOCIETY'S HALL,
VICTORIA STREET, MELBOURNE, C.1

H. J. GREEN, GOVERNMENT PRINTER, MELBOURNE

1934

Wholly set up and printed in Australia by
the Government Printer, Melbourne

Registered at the G P O, Melbourne, for
transmission through the post as a book

ART. X—*A Practical Application of Photoperiodic Response to Plant Breeding Methods at the State Research Farm, Werribee*

By ALAN R. RAW, M.Agr.Sc.

(Cereal Geneticist, Department of Agriculture, Melbourne)

[Read 10th August, 1933, issued separately 7th May, 1934]

I. Introduction.

Since the discovery by Garner and Allard(2, 3, 4) of the phenomenon of photoperiodic response, the subject has been investigated and developed rapidly in many directions, until, at the present time, it has assumed a practical importance to the plant breeder. Extensive reviews of the literature on the subject have been written by Kellerman(6), Redington(8), Schick(9), and others, and obviate the necessity of any general introduction here. Numerous workers, including Oden and Rasmusson(7), Tscheimak(11), Schatz(10), and Harrington(5), have recorded the production of two generations of plants in one year, by the use of artificial illumination. The purpose of this paper is to indicate the methods adopted at the Victorian State Research Farm, Werribee, to obtain three generations of wheat and barley hybrid material in twelve months. Under conditions of normal daylight prevailing in the southern States of Australia, the production of two generations of cereals in one year is possible, and is the accepted practice in South Australia at the Waite Research Institute and at Roseworthy Agricultural College, and in Victoria at the State Research Farm, Werribee. At the last-mentioned station (lat. 37° 54' S.), the summer day exceeds fifteen hours from late November to late January, and enables material sown in early December to develop rapidly and mature fully in ample time for sowing during the normal seeding months of May and June. This treatment is normally applied to first generation material.

II. Experimental.

During 1930-31 it was decided to attempt the production of an extra generation in the period February to June, by subjecting the plants growing during this period to artificial illumination sufficient to give them the equivalent of a sixteen-hour day, a possibility suggested by the work of Forster and co-workers(1) on the photoperiodism of wheat varieties.

It was obvious that the adoption of such a course would necessitate the harvesting of the grain in an immature condition in the first and second generations, and in view of this, series of tests were made to determine the effect of such harvesting on

the germination of the grain. Samples of Pryor barley were harvested in two stages of development, air-dried for twelve days, and subjected to laboratory germination tests.

TABLE I—BARLEY GERMINATION TEST

Stage of Grain When Harvested	Per Cent Germination at—				
	48 Hours	72 Hours	96 Hours	168 Hours	216 Hours
I Milk stage	6.0	22.8	34.0	43.5	56.8
II Dough stage	0.5	27.0	51.5	72.5	81.5
Number of grains per sample, 400					

The results given in Table I indicated that a satisfactory germination could be obtained from barley harvested in the early stages of maturity.

A test with the wheat variety, Free Gallipoli, yielded similar results, which are shown in Table II. Grain was harvested in five stages of development, air-dried for fourteen days, and germinated. A satisfactory germination was obtained only in the case of sample V. The results indicated that the early dough stage was probably the earliest at which wheat could be harvested to ensure a satisfactory germination in the following generation.

TABLE II—WHEAT GERMINATION TEST

Stage of Grain When Harvested	Per Cent Germination at—				
	72 Hours	120 Hours	168 Hours	240 Hours	336 Hours
I Grain half formed	.		3.0	3.1	12.5
II Grain two-thirds formed				8.3	23.3
III. Three-quarters formed	1.0	1.0	5.7	15.5	30.1
IV Fully formed, milk stage	1.0	3.0	14.0	33.0	51.0
V Fully formed, dough stage	4.6	14.6	46.0	82.8	95.4
Number of grains per sample, 300–400					

During the two years in which the experiments have been in progress, the progeny of five different barley matings were successfully carried through three generations (F₁, F₂, and F₃ plants) in one year. In addition, three generations of the wheat variety Rajah were produced during 1930–31. The behaviour of the three barley hybrids, and the wheat variety Rajah, comprising the 1930–31 material, is summarized in Table III. In the case of the hybrids, matings were made in the field on 2nd October, 1930, and the treated ears were harvested

seven weeks later, the grain being fully developed and hard. After being air-dried for eleven days, the F1 was sown in the plant-breeding cage on 1st December. Germination was rapid, and was complete by 10th December. All plants were in ear by 16th January, 1931, the time required from germination to heading being from 35 to 39 days. The first batch of plants was harvested on 5th February, when the grain was fully formed and in the dough stage. A second batch was taken twelve days later when the grain was just colouring. Both lots of plants were air-dried, the first for fourteen days, the second for six. The grain from these was sown in the cage on 19th and 23rd February. Germination was complete by 28th February in the first case, and from this date until harvest, 89 days later, all

FIG. 1.—Barley Matings, 1930-31

plants were subjected to an additional daily period of illumination to bring the total "length of day" up to sixteen hours. The lighting system was automatically controlled by means of a clock which enabled the extra illumination to be applied in the mornings. Again, the plants were harvested in an immature condition, after the grain was fully formed, they were then air-dried for sixteen to twenty-one days. The F3 families were sown in June in the field, where they developed normally and matured in December. The general behaviour of these three generations, in relation to the conditions of normal daylight prevailing at Melbourne throughout the year, is represented

graphically in Figure 1. The wheat variety Rajah behaved in a manner essentially similar to that of the barleys except that the time required for development was rather longer.

The 1931-32 material consisted of the progeny of two barley matings. These were effected in the field on 27th October, 1931, harvested 34 days later in the late dough stage, and sown in the cage on 1st December. As was the case of the 1930-31 material, the F₂ was the only generation to receive artificial light. Oven-drying of the seed was substituted for air-drying in this generation, and resulted in a saving of several days between F₂

FIG. 2.—Barley Matings, 1931-32

and F₃. The behaviour of this material (Table IV.), was essentially similar to that of the previous season, and three generations were again obtained in the year. The results are represented graphically in Figure 2.

III. Discussion.

The outstanding feature of the experiment was the marked response of the F₂ plants to long day conditions. In all cases the time required from germination to heading, by plants in this generation, was approximately the same as in the F₁ grown under the normal summer day of fifteen hours. On the other hand, F₃ plants in the field receiving an average of only twelve hours daylight, required from two to three times the number of days to develop. It is thus obvious that length of day is a major factor influencing time of flowering in the varieties under

consideration. In its relation to the maturity of the grain, however, photoperiodism is of definitely lesser importance, and is superseded by temperature as a major factor. The results have indicated striking differences in the time required by the plant to mature its grain, the most rapid development occurring in the case of the F₁ grown during the summer months when the temperature is high. In the case of the F₂, which develops a few months later when the average daily temperature is decreasing, it is doubtful whether complete maturity could be accomplished. At this time the grain develops rapidly until it is fully formed, but the final stages of drying out and hardening, accompanied by the change in colour, are definitely retarded. For this reason harvesting in an immature condition must be resorted to.

One of the most striking features of the experiment was furnished by the barley hybrid material, the F₂ plants of which exhibited marked degrees of individual response to long day conditions. These responses were most marked in the case of the 1931-32 hybrids, probably on account of the great differences in the length of growing period characteristic of the parent forms under normal conditions. In one culture of 30 plants, 22 responded to long day conditions, suggesting a single-factor difference for this character.

Other points of interest were the production of twin grains and of branching stems by some of the plants grown under the intensive conditions. Neither of these characters was inherited.

The necessity of harvesting the plants in an immature condition, and the fact that the scope of the work is limited by the area under controlled lighting, furnish the two most serious drawbacks to the scheme, which is however of definite value in special cases.

It is essential that this method of accelerating breeding operations be confined to the early generations, since it will be realized that the selection of desired types is impossible under the artificial environment induced by controlled lighting. By growing the F₁ in summer, subjecting the F₂ to controlled lighting, and selecting in F₃ under field conditions, it is possible to produce homozygous F₄ selections for sowing the following year, thus effecting a saving of two years in the breeding programme.

In conclusion, the writer wishes to record his indebtedness to Mr H A Mullett, Director of Agriculture, Department of Agriculture, Victoria, under whose supervision the work was conducted, and to Professor S M Wadham, School of Agriculture, University of Melbourne, for his helpful criticism and suggestions.

TABLE III.—BARLEY AND WHEAT, THREE GENERATIONS, 1930-31.

Mating	Illumination			F.1.			F.2.			F.3.		
	Normal Day = 15 Hours			Normal Day, + Light = 16 Hours			Normal Day = 12 Hours					
	Date of—			Date of—			Date of—					
Seeding	Germin- ation.	Heading	Harvest	Seeding	German- ation	Heading	Harvest	Seeding	German- ation	Heading	Harvest	
Barley— Pryor x Himalaya	1.xii.30	8.xii.31	16.i.31	19 u. 23 u.	28.n. 10.m.	8.iv. 15.iv.	28.v. 2.vi.	18.vi. 18.vi.	9.vii. 9.vii.	12.viii. $\{ \frac{12.v}{14.v} \}$	12.xii.31	
Pryor x Skinless	1.xii.30	9.xii	14.i.31	19 u. 23.u.	28 n. 10.m.	6.iv. 13.iv.	28.v. 2.vi.	18.vi. 18.vi.	9.vii. 9.vii.	9.viii. 12.xii.31		
Pryor x Balkulung	1.xii.30	10.xii.	14.i.31	19 u. 23.u.	28 n. 10.m.	8.iv. 15.iv.	28.v. 2.vi.	18.vi. 18.vi.	9.vii. 12.vii.	12.viii. 12.xii.31		
Wheat— Rajah	1.xii.30	10.xii.	27.i.31	17.u.	23.u.	9.m.	27.iv.	13.vi.	4.vii.	24.vii	2.xi.30.xii.31

TABLE IV.—BARLEY, THREE GENERATIONS, 1931-32

Illumination	F 1			F 2			F 3		
	Normal Day = 15 Hours			Normal Day, + Light = 16 Hours			Normal Day = 12 Hours		
	Date of—			Date of—			Date of—		
Mating	Seedling	Germina-tion	Harvest	Seedling	Germina-tion	Harvest	Seedling	Germina-tion	Harvest
Pryor × Pusa 20 ..	1 xii 31	18 xii	28 i. 32	13 ii.	8 iii.	15 iii.	18 iv. 21. iv	24 vi 24 vi	28 vi 28 vi
Pusa 12 × Plumage Archer ..	1 xii. 31	18 xi.	23 i. 32	13 ii.	8 iii.	15 iii.	16 iv.	24 vi 28 vi	15 vii 15 vii

References.

- 1 FORSIL, H. C., TINCKLE, M. A. H., VASEY, A. J., and WADDELL, S. M. Experiments in England, Wales, and Australia on the Effect of Length of Day on Various Cultivated Varieties of Wheat. *Ann. Applied Biol.*, xix, 378-412, 1932.
- 2 GARNER, W., and ALLARD, H. A. Effect of Length of Day and other factors of the Environment on Growth and Reproduction in Plants. *Jour. Agric. Res.*, xxviii, 553, 1920.
- 3 GARNER, W., and ALLARD, H. A. Effect of Light on Plants. *Rep. Smith. Inst. Wash.*, 569, 1920.
- 4 GARNER, W., and ALLARD, H. A. Further Studies on Photoperiodism. The Response of the Plant to Relative Length of Day and Night. *Jour. Agric. Res.*, xxiii, 871, 1923.
- 5 HARRINGTON, J. B. Growing Wheat and Barley Hybrids in Winter by Means of Artificial Light. *Sci. Agric.*, vii, 125, 1926.
- 6 KELLERMAN, K. H. A Review of the Discovery of Photoperiodism. The Influence of daily Light Periods upon the Growth of Plants. *Quart. Review Biol.* 1, 87, 1920.
- 7 ODEN, S., and RASMUSSEN, J. The Raising of Seed with the help of Electric Light. *Handl. T.*, 1933, Nr. 8, 1094-1107.
- 8 RIDINGTON, G. The Effect of the Duration of Light upon the Growth and Development of the Plant. *Biol. Reviews* (Camb.), iv, 180, 1928.
- 9 SCHICK, R. Photoperiodism. *Der Züchter*, iv, 122-135, 1932.
- 10 SCHRATZ, E. Influence of Artificial Lighting on Higher Plants. *Ibid.*, iii, 45-57, 1931.
- 11 TSCHERMAK-SPIESFNEGG, E. Artificial Illumination as a Stimulation Medium in Greenhouses as an aid to Plant Breeding. *Gartenbauung*, Vienna, 1932.

[PROC ROY SOC VICTORIA, 46 (N.S.), PT II, 1934]

ART XI.—*Australia's Antarctic Dependency*

By J K DAVIS

[Read 14th September, 1933, issued separately 7th May, 1934]

The history of the eastern coast of Australia begins with the first voyage of Lieut James Cook in the *Endeavour*. The history of the great land which surrounds the South Pole may also be said to begin with Commander James Cook, whose second voyage with the *Resolution* and *Adventure* is remarkable for three achievements—

- 1 The crossing of the Antarctic Circle for the first time in history, on 17th January, 1773
- 2 The high latitude reached by the *Resolution*, $71^{\circ} 10' S.$, in longitude $106^{\circ} 54' W$, on 30th January, 1774
- 3 The circumnavigation of the globe in a high southern latitude with its revelation that the Great South Land did not, as believed by the map makers of that time, extend into the temperate regions

Cook's account of what he observed (during his three years' voyaging in Antarctic Seas) forms depressing reading, but his description may still be accurately applied to Antarctica as it is known to-day “Countries condemned to everlasting rigidity by Nature, never to yield to the warmth of the sun, for whose wild and desolate aspect I find no words, such are the countries we have discovered, what then may those resemble which lie still further to the South?”

With the passing of the Australian Antarctic Territory Acceptance Act in June, 1933, by the Parliament of the Commonwealth of Australia at Canberra, we reach a new stage in the history of this portion of the South Polar regions, it marks the culmination of the progress made in this area since Cook's time by explorers of many nations, who have sought to unveil one of the last hidden portions of this world of ours

The area over which the authority of the Commonwealth has recently been proclaimed is about half that of Australia itself; extending from the meridian of $160^{\circ} E$, the western boundary of the New Zealand (Ross) Dependency, to $45^{\circ} E.$, it has a coastline measured along the Antarctic Circle of about 2,600 miles. It includes Oates Land in the east, and extends through King George V. Land, Wilkes Land, Queen Mary Land, Wilhelm Land, Princess Elizabeth Land, Kemp Land, and MacRobertson Land, to Endeby Land in the west.

The Australian sector is divided into two portions by Adelie Land, which was discovered by Dumont d'Urville in 1840 and was constituted a French Dependency by a decree signed by President Millerand in 1924. With a coastline of 130 miles, the French territory extends from longitude 142° E to $136\frac{1}{2}^{\circ}$ E. Cape Denison, the site of the main base of the Australasian Antarctic Expedition of 1911-1914 under Sir Douglas Mawson, is situated in longitude $142^{\circ} 40'$ E, and is therefore within the Australian territory, some 16 miles from the eastern boundary of the French Dependency. Fifteen hundred miles of stormy ocean

separate the south coast of Tasmania from Antarctica, and it is then over 1,400 miles from the coastline of the continent to its central point, the South Pole, where it attains an elevation of 10,000 feet

It may be asked, what does this Antarctic Land look like? The fact is that, except in a very few places, the land cannot be seen, as it is completely covered by an immense shield of ice which flows outward and downward from a vast inland plateau to the sea-board, where it terminates in vertical coastal ice cliffs. Over considerable distances of the coast this huge continental glacier extends seawards in the form of glacier tongues and shelf ice.

Except for very occasional nunataks, which protrude from the marginal slopes of the glacier, the only visible land is where the ice cliff has receded and exposed, in the form of islands or small coastal areas, the rock it has previously covered. In Enderby Land, some rocky mountain summits emerge and are not now covered by the overwhelming ice flood. Constantly swept by icy winds, in winter shrouded by total darkness, the new territory is a land of desolation, and but for the whales, seals, penguins, and other birds, which thrive upon the abundant marine life in the surrounding seas, might be described as lifeless.

It is not intended to recount here the history of the exploration of this portion of the earth's surface, except to recall that the first land to appear on the map of what is now known as the Australian Dependency of Antarctica was named by John Biscoe (a retired Master R.N.), who, in 1831, while engaged on a sealing voyage, discovered Enderby Land. Biscoe had two small vessels under his command, the brig *Tula* of 150 tons, manned by 17 men, and the cutter *Lively* of 50 tons, manned by 10 men, both owned by Messrs Enderby, of London. What stout fellows these old time seamen were may be gathered when reading the brief record of their doings from Biscoe's log, which is now in possession of the Royal Geographical Society of London.

The account of Biscoe's voyages, given by Dr. H. R. Mill, in *The Siege of the South Pole* (1), is based on this log. Land, now known as Enderby Land, was sighted on 28th February, 1831, from latitude 66° S and longitude $47^{\circ} 20'$ E. A prominent headland, named Cape Ann, was approached and its approximate position fixed as $66^{\circ} 25'$ S and $49^{\circ} 18'$ E. Just as it seemed certain that the land could be reached a south-easter burst upon the ships, which became separated. After five days' battling against a hurricane, Biscoe again turned southwards in the *Tula* and again sighted Cape Ann on 16th March. He was, however, unable to reach the land and, being forced to retire, eventually made Hobart on 10th May, 1831.

After the *Lively* was separated from the *Tula* in the storm off Cape Ann, she eventually reached Port Phillip after the ship's company had been reduced from ten to three, including a boy whose hand had been crushed by a boat falling on it. On landing in Port Phillip they nearly died of starvation and the cutter drifted away. She was found ashore after a fortnight, and the party reached the Derwent on 3rd September to meet the *Tula* coming out. Biscoe then put back and waited until the *Lively* was refitted and her crew restored to health, before pursuing his southern voyages.

Further particulars of the adventures of the *Lively* are to be found in a report in the Hobart Town *Courier* on 17th September, 1831(2) As these particulars are not readily accessible and as Port Phillip is connected with the events, it seems pertinent to quote the following extract —

"On parting company in the ice previous to making for this port for refreshment, this little vessel (*Lively*) reached Port Phillip with the greatest difficulty, near the entrance of Western Port, having on board only three individuals surviving out of a crew of ten men from the effects of scurvy and disease consequent upon it So dreadful was the situation of these unfortunate men, that the bodies of two of the number who died below deck could not be got up for several days to be thrown overboard, the survivors being so reduced by sickness and infirmity as to be totally unable to perform the painful task As last the master, partially recovering his strength, continued to make a rope fast round their bodies, and by the help of the tackle succeeded in hauling up first one and then the other, and launching them into the deep On making the land at Port Phillip(3) the survivors, after bringing the vessel to anchor, managed to get on shore in the boat with some provisions, where after some considerable time they gradually recovered Meantime, however, a gale coming on drove the little bark from her anchor during the night up the inlet many miles out of sight Their situation then became truly forlorn(4), their hope of regaining a civilized part of the country being torn from them Having taken note, however, of the direction in which the wind blew when the vessel disappeared, as soon as they had recovered sufficient health and strength they continued to travel along the shore, keeping the water always in view, until after a weary journey of nearly 40 miles they had at last the satisfaction to see the object of their pursuit stranded, but otherwise uninjured, on the beach On a nearer approach, however, they found her beset by a tribe of blacks, busily engaged in plundering her Here were their difficulties and dangers renewed afresh, but being fortunately furnished with guns and ammunition they at last succeeded in driving them off and regaining possession of the vessel, although we have not been able to learn the particulars of the rencontre They at last managed, with almost inconceivable labour, to refit and launch her again into the deep, and ultimately to navigate her to Bull Bay, in the Derwent, where the *Tula* happily fell in with her."

A further notice in the same paper on 8th October, 1831, reads. "Sailed this morning, the discovery ship *Tula* with her tender *Lively*, in prosecution of her voyage through the South Seas"

References.

- 1 *The Siege of the South Pole*, H R Mill Alston Rivers Ltd London 1905
 - 2 I am indebted to Miss Wayne, of Hobart, for obtaining these extracts and to Capt D S Bull for sending me a copy of them
 - 3 Discovered by Lieut Murray in the *Lady Nelson*, 1802
 - 4 An attempt to form a settlement at Sorrento, Port Phillip, was made by Collins in 1803. It was a failure, and was abandoned in 1804. Victoria was not settled until 1835, when John Batman arrived at Port Phillip and the site of Melbourne was chosen
-

[PROC. ROY. SOC. VICTORIA, 46 (N.S.), Pt. II., 1934.]

ART. XII.—*The Tertiary Sands and Older Basalt of Coburg, Pascoe Vale, and Campbellfield, Victoria*

By WALTER HANKS

[Read 14th September, 1933, issued separately 7th May, 1934.]

1. Introduction.

The area dealt with in this paper comprises part of the northern suburbs of Melbourne, and includes the City of Coburg, the south-western portion of the Shire of Broadmeadows, and the western portion of the City of Preston.

The area has been mapped previously, and is shown on Quarter-sheets Nos 1N.W., 1N.E., 2S.W., and 2S.E. of the Victorian Geological Survey.

Portions of the older basalts have been mentioned by T. S. Hart(2) and R. A. Keble(3), and petrological descriptions given by E. W. Skeats(6) and D. M. McCance(4). The geology east of Sydney-road, Coburg, is described by G. A. Cook(1) and R. B. Pretty(5). Re-mapping has been aided by numerous sewerage excavations, and has revealed considerable modifications in the geological boundaries as shown on the Quarter-sheets. Outcrops of Older Basalt have been altered and extended, Silurian and Tertiary inliers are shown in the Newer Basalt at Coburg, while the sands and clays at Campbellfield have been recognized as pre-Older Basalt, instead of Newer Pliocene as on the Quarter-sheet.

2. Physiography.

The area is for the most part a plain. It is composed of Silurian, Older Basalt, Tertiary, Newer Basalt, and Pleistocene rocks, and slopes from 400 feet in the north to 190 feet in the south.

Towards the western boundary the plain is dissected by the wide and deep valley of the Moonee Ponds Creek, and in its eastern portion by the comparatively narrow and shallow valleys of the Merri Creek and Edgars Creek.

The central portions of the area are dissected by three intermittent streams which rise in areas of Tertiary rock. Dry Creek rises in the Northern Golf Links, Glenroy, and joins the Moonee Ponds Creek near Pascoe Vale Railway Station. Manchester's Creek drains central Coburg from about the junction of Sussex and Gaffney streets, and joins the Moonee Ponds Creek in Brunswick south of Moreland-road; while Deanery Creek flows from Campbellfield and joins the Merri Creek just north of the Lake Reserve, Coburg. This stream has a winding course, and the valley is very shallow. The two former flow in deeply entrenched valleys.

3. Older Basalt and Leaf Beds.

These rocks are exposed in a number of places in the district, usually in the sides of the creek valleys

Exposures on Moonee Ponds Creek

Exposures occur on the Moonee Ponds Creek at Moreland-road. Here the basalt overlies Silurian on the south side and Tertiary river sands on the north. An impure common opal is found in the joints of the basalt. A few hundred feet north and adjacent to the gasometer is another exposure, overlying beds of fine white sand and sandy clay. A few fossil leaves have been secured from these sands.

The next and most interesting exposure occurs a few feet north of the bridge at Reynards-road. It consists of a strip of Older Basalt about 10 feet wide. The upper portion consists of narrow, vertical columns, and is fairly well preserved, while the lower portion is decomposed to a white clay. The stream whose valley has been filled with lava is part of a small tributary that came from a south-easterly direction and ran east and west at this point. It has had portion of the banks on each side preserved. The north bank is Silurian. The south bank is composed of a bed of coarse sand, a conglomerate containing large pebbles of quartz and Silurian sandstone and fine sand, the whole mass being cemented with iron oxide. Fossil leaves were collected in the fine sand, which is in a bed 2 inches thick, overlying the coarser deposits. These coarse deposits underlying Older Basalt do not occur elsewhere in the area. This exposure is marked on Quarter-sheet No 1N W. as a dyke.

A small exposure of basalt occurs between Bell and O'Hea streets in the eastern bank. Both sides of the valley at Gaffney-street, Pascoe Vale, are Older Basalt.

The last exposure on the Moonee Ponds Creek in the area described occurs at the rear of a large house known as Oak Park. It is on the western bank, and consists of an amygdaloidal basalt in a very decomposed condition. It overlies beds of fine sands and silts of fluvial origin. Iron is practically absent from some of the beds, others are deeply impregnated with limonite. All of the beds contain fossil leaves. One bed about a foot thick is a mass of leaf impressions. This bed seems to be a replacement of a fine carbonaceous silt by limonite. The basalt is overlain by a quartzite which also contains fragments of leaves. All these exposures with the exception of those at Reynards-road and Gaffney-street are shown on the maps of the Victorian Geological Survey.

The fossil leaves from the exposures were first found in 1930 by the writer, and are identified and described by Miss H. Paterson, B.A.

Exposures on Dry Creek

A number occur on Dry Creek and are not recorded elsewhere. The first exposure occurs at the intersection of Northumberland and Prospect streets, where the basalt is in all stages of decomposition. Some of the better preserved rock has a columnar structure and some of it is decomposed into a clay. The basalt overlies similar sands to those previously mentioned.

Some very thick beds of white pottery clay occur, they underlie and also outcrop on the surface alongside the basalt, as may be seen in a cutting in the road. The beds show a slight dip to the south-west and no fossils were found.

A small exposure of Oldei Basalt occurs at Arndt-street, and another at Kent-street, just north of a small bridge.

Exposures on Deanery Creek.

The first exposure on Deanery Creek is opposite the intersection of Kent and Sussex streets. It is a basalt decomposed to a white clay, which was excavated from a sewer. As no Newer Basalt in the district is decomposed to anything like the same degree, it was considered to be Oldei Basalt. The deposit is covered by Newer Basalt.

The second exposure on Deanery Creek is just outside the Fawkner Cemetery on its north side, and is near Sydney-road. It consists of a hard black basalt underlying red sands and grits.

Exposures on Merri Creek.

On Merri Creek there are a number of exposures, from Mellody's clay pits at Campbellfield, for about a mile to the east. At Mellody's there is an exposure of decomposed basalt very similar to that in the Moonee Ponds Creek and differing greatly from the surrounding Newer Basalt.

This Oldei Basalt overlies the clays and fine sands which outcrop extensively in this district and which are similar to those previously described from the Moonee Ponds Creek. Further east along the creek the basalt is decomposed to a white clay, and is partly overlying a bed of fine white silt and clay. The soft Tertiary rocks of this locality seem to have been protected from erosion on the north-west by Silurian rocks which evidently represent the sides of the older basaltic valley. The basalt filled the valley and covered the Tertiary sediments upon its floor. The basalt has since been eroded away, with the exception of that which occupies the depression of the actual watercourse on the floor of the valley, again exposing the Tertiary sands and clays. All the above-mentioned exposures of basalt are within sight of each other. They appear to belong to flows that filled the valley of a stream that flowed in a south-westerly direction and was either the upper portion, or more

probably a tributary, of the stream represented by the Older Basalts of Ascot Vale and Royal Park. The Older Basalt no doubt extended toward Thomastown and further east.

Other Exposures

A few outcrops of sands occur, to which it is difficult to give a relationship.

A small outcrop at Montifore-street, Coburg, shows white pottery clay bedded with red sands to a depth of 16 feet. This rests on Silurian sandstones, and the whole is partly overlain by the post-Older Basaltic sands to be described later.

Another small outcrop surrounded by Newer Basalt occurs at Middle-street, Pascoe Vale. Both these outcrops are equivalent to the Campbellfield sands and clays and also to the leaf-beds on Moonee Ponds Creek.

The well-known Preston sands present the same difficulty. No Older Basalt and no fossils have been found. The beds seem to belong to the leaf-beds from their appearance. The Campbellfield clays, representing their extension northerly, have been located in bores just north of Major-road, Fawkner, and a small exposure of sands occurs on Edgar's Creek, north of Edwards Lake, Preston. The height above sea level of the base of the bed corresponds with that of the Campbellfield beds, the known Pliocene beds being 50 feet lower.

4. Lower Pliocene Beds.

The area also contains outcrops of sands and conglomerates laid down after the Older Basalt and before the Newer Basalt. These deposits have been laid down after an immense amount of erosion of the Older Basalt. The basalt was reduced to the remnants previously described before the sands were laid upon and around them.

They consist of a wide variety of materials, quartz predominating. Fragments of basalt are absent except close to an outcrop of this rock. No fossils have been secured except those mentioned as occurring in the quartzite near Oak Park.

The deposits in the area are known from excavations for sewers to a depth of 19 feet, and they occur in wide areas, some of which have not been recorded. An area one mile long and half a mile wide, that has not been recorded, is intersected by O'Hea and Sussex streets, Coburg. Further areas occur in Pascoe Vale and Campbellfield and are shown on the accompanying map. The deposits are of fluvial origin and consist of fine sand abruptly abutting on coarse sand or conglomerate. At Prospect-street, Pascoe Vale, a section of a trench showed Older Basalt overlain by a fine yellow sand containing ilmenite, which was followed in ascending order by grit one foot, fine

yellow sand two feet, grit one foot, then a coarse red sand gradually merging into a coarse conglomerate of quartz pebbles of various sizes, the biggest being the size of a fist. The fine sand was examined for fossils, and Mr F. Chapman found flesh-water sponge spicules. The beds have been traced through West Brunswick and seem to correspond to the beds above the grit band at Royal Park, where the age of the upper beds is lower Pliocene.

The nearest point to the area where marine fossils have been found was in a shaft near Essendon Railway Station. The fossils were casts in ironstone similar to those at Royal Park and were laid down upon Older Basalt.

5 Alterations of Drainage.

A point of interest in a study of the various valleys infilled by basalt is that there has been a local alteration of the direction of drainage.

The pre-Older Basaltic drainage was from Thomastown to the south-west through Flemington; while the pre-Newer Basaltic drainage was from Glenroy to the south-east, through Brunswick and Carlton, to the pre-Newer Basaltic Yarra River below Studley Park. There has been a further alteration since the outpouring of the Newer Basalt. The Moonee Ponds Creek closely follows the Older Basaltic line of drainage and the Merri Creek the Newer Basaltic. Just why the pre-Newer Basaltic streams took their course to the Yarra River is difficult to understand, as the streams appear to have been flowing south when the lower Pliocene sediments described were laid down. The probable explanation is that after the outpouring of the Older Basalt the drainage followed the margin of the flow, and in the period of erosion that followed, northern tributaries eroded a system of drainage that was gradually filled by river sediments during the period of sinking associated with the lower Miocene.

The drainage flowed south to the nearby sea during the lower Pliocene and, as the land rose again gradually, resumed the old valleys and eroded the river sediments out of them with the exception of a few residuals left on the higher levels.

Summary.

The Older Basalts of the area are described and the Tertiary sands separated into pre-Older Basaltic leaf-beds and lower Pliocene beds. The localities from which fossils have been secured are recorded. Alterations of drainage are pointed out and the reason discussed.

Acknowledgments.

My thanks are due to Miss H. Paterson for undertaking the description of the fossil leaves, to Mr. F. A. Singleton for the use of maps and advice; and to Mr. F. Chapman and Mr. R. B. Withers for advice as to the form of the paper.

References.

- (1) COOK, G. A. Notes on the Geology of the Coburg Area. *Proc. Roy. Soc. Vic.* (n.s.), xxviii (2), pp. 173-182, 1916
- (2) HART, T. S. The Volcanic Rocks of the Melbourne District. *Vic. Naturalist*, xi, p. 74, 1895
- (3) KEEBLE, R. A. The Significance of Lava Residuals in the development of Western Port and Port Phillip drainage system. *Proc. Roy. Soc. Vic.* (n.s.), xxxi (1), 1918.
- (4) McCANCE, D. M. Weathering of the Older Basalt of Royal Park. *Ibid.*, xliv. (2), pp. 243-256, 1932.
- (5) PRETTY, R. B. Bad Lands Deposits of Coburg, Victoria. *Ibid.*, xxxix., pp. 59-75, 1926
- (6) SKEATS, E. W. The Volcanic Rocks of Victoria. *Rept. Aust. Assoc. Adv. Sci.*, xii, 1909

**GEOLOGICAL MAP
OF
BROADMEADOWS, PRESTON,
ESSENDON AND COBURG.**

Scale of Chains
0 10 20 30 40 50 60 70 80

LEGEND

Alluvium	
Pleistocene	
Newer Basalt	
Lower Pliocene	
Older Basalt	
Tertiary, Leaf beds	
Silurian,	
Dykes	
Faults	

[PROC ROY SOC VICTORIA 46 (N S), PT. II, 1934]

ART. XIII.—*The Geological Structure of the Lower Ordovician Rocks of Eastern Talbot, Victoria*

By WM J HARRIS, B A and D E THOMAS, B Sc.

[Read 12th October, 1933; issued separately 7th May, 1934]

Index of Contents.

- I INTRODUCTION
- II PREVIOUS WORKERS
- III PHYSIOGRAPHY OF THE AREA
- IV EVOLUTION OF THE DRAINAGE SYSTEM
- V GENERAL GEOLOGY
 - (a) Rocks of the Area
 - (b) General Structure
 - (c) Structural Detail
- VI DISTRIBUTION OF THE GRAPTOLITE SERIES, AND THEIR RELATION TO AXIAL LINES
 - (a) Maldon, Dean Anticlinoria, and Werona Synclinorium
 - (b) Muckleford-Bullarto Synclinorium
 - (c) Chewton-Lyonville Anticlinorium
 - (d) Expedition Pass Synclinorium
 - (e) Taradale-Lauriston Anticlinorium
 - (f) Eastern Belt
- VII RELATION OF AURIFEROUS AREAS TO STRUCTURE
- VIII CRITICAL LOCALITIES AND SUGGESTIONS FOR FURTHER WORK
- IX LIST OF PRINCIPAL GRAPTOLITE LOCALITIES
- X REFERENCES

I. Introduction.

The present paper is an account of the palaeontological succession in the region south and west of Castlemaine as deduced primarily from the study of its Lower Ordovician graptolites. Graptolites of younger age are not known from this district. The area is, roughly, a rectangle containing over 1,000 square miles, and including the eastern half of the County of Talbot and a smaller area in the south-west of Dalhousie. Its northern boundary is the Mount Tarrengower-Alexander granitic massif, its southern the Great Divide, its western the volcanic rocks covering the Moolort-Loddon Deep Leads system, and its eastern, roughly, the Kyneton-Redesdale railway line. The north-eastern sector of about 100 square miles was dealt with in some detail by one of us in 1916(9), but circumstances prevented the continuation of the work until three or four years ago, when it was resumed. Dealing with a larger area, and one more difficult to study in detail on account of distance from

centres of population and paucity of artificial excavations, the treatment adopted in the present paper is more general than that in the earlier paper. This more general treatment was also made desirable by our plan to give a comprehensive account of the structure of the district. Towards the latter part, suggestions will be found for detailed work in critical localities.

II. Previous Workers.

For so extensive an area it is impracticable to give a detailed list of all maps and papers which may with profit be consulted. The following summary, though incomplete, will provide a basis for those who wish to study the area in detail.

1 The greater part of the area is covered by Quarter-sheets(22) of the Geological Survey of Victoria, published between 1860 and 1870. The amount of detail shown on these maps varies, some, such as 15 N.E., being particularly fine examples of the geological surveyor's work, others leaving extensive areas unmapped or merely outlined.

Other maps include geological survey plans of parishes(23) — a particularly good example being the plan of Campbelltown — and maps accompanying reports, &c., on gold-fields such as Castlemaine, Maldon, Daylesford, and Lauriston. None of these maps shows more than a few of the hundreds of localities from which graptolites have been since recorded. For a general view of the geology of the whole district, the best maps are probably those included in "The Deep Leads of Victoria"(4). This memoir also gives a bibliography, which includes articles on most parts of the district now dealt with.

2 A detailed bibliography up to 1903 is given by J. W. Gregory in the "Records of the Geological Survey"(5). Later incidental contributions are scattered through various publications of the Victorian Mines Department.

3. Dr. T. S. Hall in his "Geology of Castlemaine"(6) gave a general account of the geology of the district around Castlemaine, and zoned the Castlemaine graptolite series. Hall's paper deals chiefly with the area east of a north-south line through Castlemaine.

4 The present Secretary for Mines in Victoria (W. Baragwanath(1)) in "The Castlemaine Gold-field" included a detailed map showing axial lines, and an east-west section showing the area as the eastern limb of a synclinorium.

5. Harris(9), in 1916, verified Hall's zoning and carried the study of structure west to the line of Muckleford Creek, showing that in the area between Castlemaine and Guildford there are beds characterized by *Oncograptus* and *Cardiograptus*, and that

these beds are stratigraphically between the Upper Castlemainian and Darriwilian of Hall. This extended Darriwilian was provisionally zoned.

6 For the Maldon area, the chief authorities are Moon(18) and Bradford(2).

7 Lidgey(17) published a description and map of the Malmesbury and Lauriston gold-field.

8 The Daylesford district has been discussed from one aspect or another by W Baragwanath and H S Whitelaw(20, 21), and by T S Hart(11), while extensive collections of graptolites were made from that district by T S Hart and W H Ferguson. Identifications from these collections were made by Dr Hall Ferguson, on an unpublished plan, also delimited the graptolite zones of the district on the basis of the graptolites he collected.

9 For the southern part of the area we have used unpublished records of the work of the late H Foster, formerly of the Geological Survey. Foster's painstaking detailed work has enabled us to plot the structure of an extensive area hitherto little known, and to connect it with the better known area to the north.

10 For the western portion of the district between Yandoit and Campbelltown, T Smith has made available to us the results of many years of careful field work. This enthusiastic worker's records, from a district where even such an experienced field geologist as Norman Taylor failed to find fossils, enabled us to confirm the conclusions which we had drawn from our own rather scanty collections along the western boundaries of our district. Mr Smith not only placed his extensive and valuable graptolite collections at our disposal, but acted as our guide in visits to critical localities in the Yandoit district.

For the rest we have relied on our own field work, particularly in the Maldon-Newstead area, south of Guildford, and around Woodend, Kyneton, Lauriston, and Taradale, not to mention large areas which have been unsuccessfully prospected for fossils. Even in the areas from which we have recorded the results of other workers, we ourselves have in most cases verified the main points in the field.

In conclusion, we gratefully acknowledge the encouragement and practical assistance of the Secretary for Mines (Mr W Baragwanath), whose detailed knowledge of the structure of the gold-fields of Victoria is probably unique. Without Mr. Baragwanath's interest, the preparation of this paper would have been impracticable. As on other occasions, the draughting staff of the Mines Department have come to our assistance in the preparation of maps and sections for publication.

III. Physiography (*vide* Map 1).

The area under discussion lies north of the Main Divide, and with the exception of the eastern portion is entirely within the drainage basin of the Loddon River. The eastern section drains to the Coliban and the Campaspe. The main physiographic control seems to be the granitic massif which extends on the north from Maldon to Metcalfe and Taradale. The Cobaw granitic massif further south-east has also influenced the Campaspe drainage. The Loddon collects its water not only from the northern slopes of the Main Divide, but from practically all the inner or southern arc of the Tariegower-Alexander massif (cf Geological Map of Victoria), while the Coliban and the Campaspe drain the south-eastern portion of this massif, and flow northwards between it and the Cobaw Ranges.

The Tertiary lava flows also have a profound bearing on the present drainage system, the main watercourses being either laterals with relation to the flows or else occupying central depressions on them, as, for example, long portions of the Campaspe. It will be shown later that the lavas for the most part followed drainage channels already established in late Tertiary times; these in turn are intimately related to the present streams.

The third factor is the relative hardness of certain Lower Ordovician strata. The general strike of these rocks is almost north and south (usually a little west of north), and a great number of streams, particularly tributaries, flow in this general direction for a greater or lesser distance.

These factors, together with the position of the Main Divide in the south, make the drainage scheme intelligible.

The Loddon flows in a northerly direction from its source in the south centre of the area, and then turns westward, to leave the map near Newstead. It is fed by a number of tributaries which for the most part follow, as we have said, either north or south courses. None of these streams has a large catchment area, and as the whole district is one of only moderate rainfall, the Loddon receives little water from any tributaries in the mapped area, except in winter and after rains. For the greater part of the year, practically all the smaller creeks are either dry or reduced to a mere trickle.

The Coliban River flows through the eastern section, and its chief tributaries, which also have a northerly course—the Kangaroo (near Taradale), Back, and Shepherd's Hut Creeks—are good examples of lateral streams. Near Taradale, the Coliban enters the Mount Alexander granite massif, and then for some distance flows just inside the border of the granite.¹ The border of the igneous masses has proved weaker than either

¹ Here, as elsewhere, the term granite is used in a popular sense. The rock is for the most part a granodiorite rather than a true granite.

Map 1 —Pre-basaltic and present-day Drainage Systems.

the main mass of the igneous rock or the contact selvages of the sedimentary rocks, so that usually a valley runs parallel to the edge of the granite and just inside it. As a result of this, the Elphinstone-Faraday-Harcourt road keeps just within the granite of the Mount Alexander massif. The hardened aureole of sedimentary rock, on the contrary, stands up as a more or less continuous ridge, though breached in places by streams. Mount Tairengower is an example of such a hardened mass, while similar conditions in the east cause the Melbourne-Bendigo railway to enter the Loddon Valley through a tunnel near Elphinstone, and to leave it by a similar tunnel near Ravenswood. Barker's Creek has breached the hardened belt near Harcourt, or a third tunnel would have been required.

In keeping with the north-south direction of the main valleys the chief ridges are also meridional, but minor streams often run either east or west, and in the field it is difficult to follow any definite north-south ridge for any considerable distance. It is only on a map, or from some specially favorable view-point, that the north-south trend of the main ridges can be seen.

IV. Evolution of the Drainage System.

The pre-basaltic drainage system can be followed with some degree of precision, as the old auriferous river gravels have been mined in most parts of the district. Data regarding these old "leads" may be found in Hunter's "Deep Leads of Victoria" (14), and in order to make the present drainage system intelligible, the pre-basaltic drainage lines must be reconstructed.

In "Deep Leads" times two main streams which have been called the Loddon and the Campaspe Deep Leads systems (14) drained the area. The Loddon Deep Leads system occupied approximately the present Loddon drainage basin, but the main stream flowed under the present basalt plateau, west of the mapped area, and therefore west of the present Loddon. The lava flows here are very extensive, and are of the type called by Keble (16) "unconfined" lava flows, although they occupy the wide and flat valleys which existed when they were poured out. The details of the drainage were altered considerably, but the general northerly trend was maintained. The present streams are much smaller than those represented by the Loddon-Moolort Deep Leads system. Joyce's Creek developed as a lateral along the eastern flanks of the Moolort lava flow, and collected the drainage which formerly flowed westward to the earlier main channel. The present main stream, the Loddon—in earlier times only a large tributary—maintained the general direction of its pre-basaltic representative, the valley of which had been followed by a long but comparatively narrow flow of lava. Flowing down the same valley, the stream took the line of least resistance, and meandered from one side of the basalt to the other, leaving

"islands" of basalt standing alternately above either bank as flat-topped plateaux. The most extensive of these plateaux is that north of Guildford. Often the lava flow was not sufficient to cover all the old gravels, which in these cases still survive as hills without a volcanic capping.

The Coliban-Campaspe system is most interesting. In "Deep Leads" times the Campaspe drained almost the whole of the eastern area. The Leads systems show that the main stream of the Campaspe rose south of Bullarto and flowed north-easterly towards Kyneton, where it was joined by a west-flowing stream from between the Cobaw and Macedon uplands. It then flowed north-west and was joined by tributaries from rising ground near the present Upper Coliban Reservoir, and then by a stream represented by the Malmsbury-Taradale Deep Lead. Booring records show conclusively that near Malmsbury this stream received the Taradale drainage from the north (see also Note 3, Q.S. 9 N.W.). The Coliban therefore could not have drained much of the area, and its course was confined to the eastern edge of the Mount Alexander granitic mass. Here lava residuals, perched on hills alongside the present stream, show the course of the pre-basaltic Coliban.

The Divide between the Coliban-Campaspe and the Loddon was in practically the same position as at present, but, as indicated, the distribution of the drainage between the Coliban and the Campaspe differed considerably. The basalt flows in this area are complicated and have been derived from many sources. It is evident, however, that lava filled the old main valley and effectively dammed part of the outlet between the Cobaw Ranges and Mount Alexander. Lateral streams developed along the western edges of the flows, but meeting other south-west to north-east flows, had to cut across their necks. The Campaspe was altogether blocked south of Carlsruhe, and from Kyneton to East Metcalfe it had to flow over the surface of the basalt. After this it secured an easier path, first as a western lateral, and then, having crossed the lava near Barfold, as an eastern lateral.

The drainage of the original head streams near Trentham was disorganized. Many laterals developed, some of them crossed the narrower parts of the lava flows, as at the Trentham falls, but all were seemingly diverted northwards when they approached the main flow. They then either broke into the Coliban system or were captured by the Coliban, working back through the soft granite selvage. The result is that the initially shorter stream, the Coliban, has enlarged itself by capturing most of the pre-basaltic western tributaries of the original Campaspe.

The basalt flows have introduced new features into the topography—plains, flat-topped hills and plateaux, ridges, deep gorges, asymmetrical valleys, ungraded river courses with notable waterfalls, and even river capture on a large scale.

V. General Geology.

(a) Rocks of the Area

The basal rocks of the whole district are the Lower Ordovician sandstones and shales, but younger rocks are well represented. The following list will give some idea of the general geology.—

(1) *Post-tertiary*—Surface soil, present river gravels, and alluvial material. The nature of this indicates its wide-spread occurrence.

(ii) *Tertiary*—The rocks of this age are either river deposits or of volcanic origin. The volcanic rocks are not all of the same type, but are usually grouped as "Newer Basalts". Though now found often as hill cappings, they seem for the most part to have originally been lava flows down the old valleys. There are also some volcanic necks, occasionally with small associated flows. It is not clear whether some of these at least may not belong to the so-called "Older Basalts". Mount Consultation (locally called Bald Hill), near Castlemaine, is an example of this class. Lastly, there are the "lava dykes" through the sediments, referred to as limburgite (1, p. 34), but including other types of rock.

Gravels, often auriferous, occur both as surface cappings and as beds underlying the basalt. These gravels have been divided by the Geological Survey into two classes—Newer and Older Pliocene.

The lava flows were probably responsible for the formation of small lakes, since small deposits of limestone are found in many places, sometimes with freshwater shells, as along Limestone Creek and near the mouth of Muckleford Creek.

(iii) *Permocarboniferous*—A small patch of glacial tillite occurs in the Parish of Campbelltown, in the west of the area, and traces of similar rocks are found elsewhere in the same parish and along the Coliban River north of Tylden. Sandstones, referred to the same general age, have been quarried near Kyneton for use as building stone.

(iv) *Devonian*.—The granodiorites and granites of the Mount Alexander massif and the Cobaw Ranges are intrusive into the Lower Ordovician, and by analogy with similar rocks elsewhere in Victoria, are dated as at the close of the Devonian. A small intrusive mass south of Tarilta is marked on Q.S. 15 S.W. as syenite, but is more probably lamprophyre.

(v) *Ordovician*.—The "bed-rock" of the district is Lower Ordovician in age. Sandstones, shales, and claystones are found, limestone being absent. In some places, as near Castlemaine, the shales have been altered to slates, which have been quarried as flagstones. Graptolites are to be found in all types of the finer sediments, but their extraction is rendered difficult either by the

entire absence of cleavage, as in many of the claystones or mudstones, or by the development of cleavage at varying angles to the lamination. Lithology is no guide to age, as Lancefieldian graptolites may be obtained from rocks which in appearance might well be mistaken for either Bendigonian or Castlemainian. Two generalizations may be made with some reserve—beds with thin black bands through lighter-coloured shales are likely to be Lancefieldian, while thick beds of rather thin-bedded bluish-purple shales are likely to be Darriwilian. Still, there are so many exceptions, particularly to the latter statement, that only the discovery of fossils is decisive.

(b) *General Structure* (*vide Map 2 and Sections*).

For convenience, the general structure of the district will be considered before dealing with the distribution of the various graptolite zones on which our interpretation of this structure is mainly based.

The main structural lines trend a little to the west of north, as plainly indicated by the strikes noted on the various Quarter-sheets. One of the main axial lines is the Maldon, Dean anticlinoria in the west of the mapped area. On the western flank of this, Bendigonian beds appear to follow in normal succession, with at least one small area of Castlemainian in the Werona synclinorium, but the eastern limb is truncated through probably the whole length of the map by what must be regarded as one of the major geological features of the district—the Muckleford Fault.

These anticlinoria are succeeded to the east by the Muckleford-Bullarto synclinorium. Still further east is the Chewton-Lyonville anticlinorium, which becomes more pronounced to the south. A small synclinorium intervenes between it and the next major anticlinorium—the Taradale-Lauriston. The continuation of these anticlinoria and synclinoria to the south must be left for separate treatment. A wide stretch of Darriwilian rocks along the Gisborne Creek and as far north as Woodend forms a break between the area mapped and the Bendigonian beds outcropping in the Pyrete Ranges (10). It may confidently be predicted that a succession of anticlinoria and synclinoria similar to that dealt with will be found south of the Main Divide, but detailed mapping will be required before it is known how far faulting has modified the succession.

West of the area mapped in this paper, no rocks high in the Castlemainian or of Darriwilian age are known to occur, but to the east there is in the south a wide expanse of Darriwilian beds, giving place still further south to the Upper Ordovician of the Kiddell synclinorium (19). North of Mount Macedon, Darriwilian beds also occur in a broad east-west belt, but are cut off in the north by the Cobaw massif, north of which the most widely distributed series are the Castlemainian and Bendigonian.

Map 2.—Structural Sketch Map of East Talbot Area.

BASALT CRANITE DARRIWIL SERIES CASTLEMAINE SERIES BENDIGO BEDS LANCEFIELD BEDS
 Scale of Miles
 0 1 2 3 4 5 6 7 8

Diagrammatic Sections (see letters on Map 2) to illustrate General Structure of Area

(c) *Structural Detail.*

The positions of the anticlinoria mentioned above have been fixed by the record from them of graptolites of the older series, particularly the Lancefieldian, the plotting of dips being unreliable, since in the field close folding makes it impossible to distinguish major from minor lines of folding. Some of the more obvious anticlines, as for example in the neighbourhood of the Town of Castlemaine, are almost immediately "cancelled out" by less prominent synclines. From the plotting of the graptolite zones it is evident that pitch is a very important factor when considering such a large area, and observed angles of pitch, though not numerous, show that the effects attributed to it cannot be considered exaggerated. It must be realized that over a wide expanse of country individual folds are usually elongated troughs or domes, and when followed along the line of strike die out, to be succeeded by similar features along parallel lines. Hall (6, pp 64-65) has referred to this in his account of the Castlemaine district. It follows, therefore, that when an anticline is traced for a considerable distance along the line of strike, younger beds will occur along the nose of the fold. This is usually so gradual that it is rarely observable except when observations from an extensive area are plotted. It is very noticeable on the map (Fig 2) for the more complicated structures, as, for example, in the Chewton-Lyonville anticlinorium, where Lancefieldian beds near Lyonville are followed by Bendigonian from Glenlyon to the Monk Hill (Castlemaine), then by lower Castlemainian at Chewton and higher Castlemainian further north.

The structures termed anticlinoria are really complicated domes. The latter term brings out the fundamental structure of Victorian Ordovician rocks—viz., isolated areas of older beds surrounded by younger ones. Frequently, as one dome loses its importance and dies out, two others arise, one on either side of the first, so that the anticlinal structure of that belt gradually becomes a synclinal one. The term dome has not been used, as it has a restricted and particular meaning in Victorian mining geology.

The folding of the area is very close, and therefore the outcrops of the various zones are much more complicated than a small-scale map will indicate. Such a map must necessarily be generalized. For this reason, the structural features have been considered in the wider terms of anticlinoria and synclinoria, or domes and troughs, leaving more detailed treatment of boundaries for the future. Faulting is common, as can be seen in any large outcrop and in plans of most of the mines, but it is only when a fault is of considerable magnitude that it can be traced in the field or indicated on the map. The absence of fault lines from the plans is therefore no indication that they do not exist.

VI. Distribution of Graptolite Series and their Relation to Axial Lines.

(a) Maldon, Dean Anticlinoria, and Werona Synclinorium

This area, west of the Muckleford Fault, shows Lancefieldian beds at Maldon, near Fentiman's Reef (east of Maldon), along the Tarrengower Creek, east of Newstead, west of Yandoit and Franklinford, and in the Parishes of Bullarook and Dean. These are the beds below those characterized by the appearance in force of *Tetragraptus fruticosus*, and are marked by the presence of *Dictyonema*, *Bryograptus*, *Clonograptus*, and *Tetragraptus* such as *T. decipiens* T.S.H. and *T. approximatus* Nich. Fossiliferous outcrops are not as common as one would desire in this belt, but as Lancefieldian graptolites are often confined to very thin soft black bands interbedded with silty shales and massive sandstones, and are only observable under favorable conditions, it is rather remarkable that so many outcrops have been located in a region where artificial excavations are not common. The western beds of this anticlinorium appear to show the normal rise to Bendigonian at Dean, Smeaton, Campbelltown, and west of Newstead. In the Parish of Campbelltown, lower Castlemainian (*Didymograptus* cf. *bifidus*) beds are represented—one of the most westerly occurrences in Victoria as far as we are aware—indicating a synclinorium in the extreme west of the mapped area—the Werona synclinorium.

The eastern limb presents a different picture. Only to the south do Bendigonian beds appear, and even here they are apparently of less than normal extent, partly due to faulting, as will be described presently, and partly due to pitch—southerly, south-west of Daylesford, and northerly, near Hepburn. North of Hepburn, Castlemainian beds seem to make contact with the Lancefieldian of Yandoit, while still further north there is a great development of Darriwilian rocks in the Guildford-Bullarto synclinorium and a most pronounced break in the normal succession. The whole of the evidence points to a fault line just west of, and parallel to, Muckleford Creek, and continued southward. The Quarter-sheets, as far as they include this portion of the district, show two features of interest:—(1) The graptolitic localities recorded by the old survey are much less frequent west of this line than further east—in fact, only two or three localities are marked to the west; and (2) the quartz reefs so carefully marked on these old plans are much more numerous in the western belt, and show up as a band of closely packed parallel lines with a general trend a little to the west of north, in contrast with the more open arrangement to the east. In the field, the predominance of sandstones and the almost complete absence of belts of black slate are notable. All these features give reasonable grounds for suspecting that the valley of the Muckleford Creek roughly marks an important structural break.

in the country, and our field work confirms this. In amount of throw, and in the faulting of Darriwilian against Lancefieldian, as well as in the normal rise to Bendigonian on the east, it compares with the Whitelaw fault (Harris, MS.) in the Bendigo East district.

(b) *Muckleford-Bullarto Synclinorium*

This synclinorium is marked by the extent of Darriwilian rocks in the north. Further south, high Castlemainian beds appear, indicating a northerly pitch in this part. There is apparently a reversal of pitch still further south, indicated by a patch of Darriwilian near Bullarto. In the extreme south the succession passes from Darriwilian beds through Castlemainian to Bendigonian, so that the pitch seems to be again northerly, and the syncline dies out.

(c) *Chewton-Lyonville Anticlinorium*

The general pitch of this anticlinorium is to the north, with some relatively unimportant reversals. It is represented by a wide but northerly-narrowing belt of lower Castlemainian between Chewton and Wesley Hill (east of Castlemaine), Bendigonian from the Monk Hill nearly to Lyonville, and Lancefieldian in the south occupying a wide belt between Lyonville and Trentham.

(d) *Expedition Pass Synclinorium.*

This is seemingly a smaller feature than the others dealt with, and brings upper Castlemainian up at Expedition Pass, lower Darriwilian half-way between Chewton and the Elphinstone railway tunnel, and upper Castlemainian further south, and is then represented on our map by a belt of Bendigonian, the existence of which is only inferred from records to the east and west. This southern strip covers rough country crossed by few tracks, and almost lacking in good rock exposures except in the larger creeks. What exposures there are show for the most part sandstones and sandy shales, while nothing but sandstone shows on the slopes even where the surface is not obscured by thick scrub. Detailed work, which will take much more time than we were able to allot to this area, will be necessary before any possible graptolite outcrops can be located. Here we are compelled to fall back on inference and on the very doubtful evidence of lithological resemblance. This, for what it is worth, would seem to negative the suggestion that the belt is Darriwilian, but there is no positive evidence as to which, or how many, of the lower series may be represented.

(e) *Taradale-Lauriston Anticlinorium.*

This anticlinorium, like its western counterpart, is one of the major features of the district, and the evidence on which it is plotted is conclusive, for the records, though comparatively few, are well spaced. The most northerly record is from near the

Taradale Railway Station South of this, the surface is almost entirely composed of basalt, but nearly every mine dump examined yielded Lancefieldian graptolites. This welcome result is all the more acceptable as there were rarely more than a few weathered fragments of black shale available, and these so badly cleaved that often a consultation was necessary to determine in which direction the precious fragments should be broken. Still further south, a good collection was made from the Kangaroo Reef, at Lauriston (near the old survey locality Ba 77, Q.S. 9 S.W.). Lancefieldian graptolites have been collected from Shepherd's Hut Creek and the Coliban River by H. Foster, and they also occur near the Kyneton-Tylden road.

In the extreme south, younger beds occur along the line of strike. This feature can be explained by a marked southerly pitch. This we think is the probable explanation, but in the absence of direct evidence other explanations, such as faulting, are possible. It is here also that we again meet the difficulty referred to under (d) above. The area between Glenlyon and Drummond is the southern continuation of the Taradale-Glenluce belt. It represents rough unpromising country, but is practically unexplored as far as graptolites are concerned. Our own trips through it have been fruitless, but there is no reason why a greater expenditure of time may not yield important results. In the absence of records we have presumed that a narrow belt of Bendigonian divides the Taradale-Lauriston anticlinorium from the Chewton-Lyonville line.

(f) The Eastern Belt.

This area will be treated more or less sketchily since it lies outside the area on which we have mainly concentrated our attention. Moreover, the development of granitic and volcanic rocks is so extensive that the axial lines can be understood only when studied as part of a larger unit outside the present mapped area.

To the north-east, the Taradale Lancefieldian seems to be succeeded normally by Bendigonian, which is shown below Mitchell's Falls (near Barfold), and by Castlemainian further east. In the south-east, Castlemainian beds south-west of Woodend and an extensive area of Darriwilian east of them extend far to the south, towards the Woodend-Newham-Rochford-Gisborne area, which fringes the Upper Ordovician of the Riddell synclinorium.

South of the mapped area the succession is broken along a north and south line by the Djerriwarrh Fault. The extensive area of the Darriwilian south-west of Woodend and in the valley of the Gisborne Creek west of Macedon, taken together with the distribution of lower zones north and south of this section, as for example in the Pyrete Ranges, would seem to imply the existence of numerous smaller faults, which, however, cannot be demonstrated. The extent to which faulting must be invoked

to reconcile discrepancies can be determined only by detailed field work. The following extract from Whitelaw's account (21, p 13) of the structure of the Daylesford gold-field will indicate the important part that faulting may be assumed to play.—“ Subsequently to the folding which they have undergone, the beds have been cut into innumerable slices by west-dipping thrust-faults, which, on the eastern side of the main anticlines, form the principal reef-channels of the field. There has been considerable movement upwards on the western side of most of these faults, which fact, no doubt, in a measure accounts for the appearance at the surface of the closely-folded intensely-fractured Bendigonian beds of the western area . The most graphic description would not half so well convey (as the plans and sections) to the interested person the manner in which the folds—the arches and troughs—have formed, rolled out, and re-formed; how and where they converge, diverge, and throw out laterals; how, the pressure persisting, the beds in refusing further to fold have had, perforce, to snap, causing the set of beds on the upper side of the fissures so formed to slide upwards to where they came temporarily to rest some scores of feet above their counterparts ”

VII. Relation of Auriferous Areas to Structure.

The subject of “ favorable stratigraphical zones ” from the point of view of the gold miner has been prominent since the early days of the gold-fields Hall (6, pp 76-77) discusses it, and after giving an account of the recognition of auriferous and non-auriferous bands, sums up —“ When we reach what Selwyn states to be the highest beds of the district . the quartz reefs are barren In the Lancefield rocks again no gold occurs It appears then that the auriferous strata of the Lower Silurian [i e , Ordovician, Ed] rocks begin above the base of the apparently thick *Tetragraptus fruticosus* zone, and range at any rate as high as *Phyllograptus*, but probably no higher.” Selwyn's placing of the highest beds as along the Muckleford Creek has been confirmed, though the “ more numerous reefs ” referred to in a part of the above paragraph not quoted are possibly those of the Lancefieldian series west of Muckleford Creek. The range of *Phyllograptus* as understood by Hall would be up to the middle Castlemainian, while the “ Lancefield rocks ” would refer only to the original type locality north of the old Mount William Railway Station—a point overlooked by Junner (15, p. 211) It may be noted that we have found *Phyllograptus* at the type C2 locality in Victoria Gully, and that it is common in the Darriwilian

E. J. Dunn, formerly Director of Geological Survey, also held the opinion that there were favorable and unfavorable beds, his “ favorable beds ” being the “ Bendigo zone, especially the upper portion ” (3, p 170).

H Herman(12) discusses Dunn's conclusions, and points out that at Bendigo beds on a particular horizon which are favorable in one mine or group of mines may be unfavorable in others, and the only generalization which seems to hold as to favorable beds in the district we have studied is that the Darriwilian series is invariably unfavorable, though the older series are not uniformly favorable. The question apart from this seems rather to be one of structure than of age, and will be discussed from a structural stand-point. Before we proceed to do this, attention may be called to Junner's similar discussion of a younger area(15), and also to the conclusions arrived at by Gepp, Baragwanath, and Stillwell, in a report on our present area(4). These conclusions are —

- (1) The Darriwil beds have so far been uniformly barren.
- (2) The upper beds of the Castlemainian have contained productive fault reefs. Occasional saddle reefs are known, but productive spurry reefs are more characteristic.
- (3) The Bendigo horizon has been proved to contain numerous productive saddle reefs in addition to productive spurry reefs.
- (4) Saddle reefs occur in beds of the Lancefield horizon, but there is a tendency towards the occurrence of "indicator" gold.

These opinions, which may be taken as the most authoritative yet expressed on the subject, are quoted in full, as the present paper is based on the realization of "the importance of the extension and continuance of the detailed geological mapping in order to delimit the more productive horizons and to elicit the facts bearing upon the chance of success of further exploration and deep sinking"(4).

In considering the connexion between structure and auriferous areas, only reef mining is considered, except where the original source from which alluvial gold was shed can be indicated. A map on which auriferous areas are marked shows that they appear to be limited to several meridional belts. This depends on the more or less north-south strike, but a study of structure shows just what fields may be regarded as related. Structurally, Maldon is connected with Yandoit and Daylesford, while Castlemaine is linked up with Trentham and Blackwood. The Lauriston gold-field is on a structural line still further east. This line continued to the north includes Taradale, and would pass through Bendigo, but the great plutonic mass of Mount Alexander prevents reliable correlation between the belts on its north and south sides.

Another point, already referred to, is that the stratigraphical mapping shows that auriferous reefs in this district have been worked in the Lancefieldian, Bendigonian, and Castlemainian

series, but not in the Darriwilian. It does not follow, however, that gold is to be found in a region merely because its rocks are, for example, of Bendigonian age, but, on the other hand, the absence of gold-mining from the Darriwilian is clearly shown.

Interpreting this evidence structurally, it appears that the anticlinoria of the district are favorable for gold, synclinoria are unfavorable. This conclusion is empirical—the result of observation—but it can be defended on logical grounds. Thus, anticlines are notoriously lines of tensional stress, and the fractures caused by the stresses they have suffered would make them peculiarly favorable for the infiltration of mineral solutions. This is only an inadequate explanation, since quartz reefs are not limited to any one series, but occur in all. Our observations would also seem to indicate that the "nose" of an anticlinorium where the pitch steepens, or where reversal of pitch occurs, seems to have been favorable for the deposition of gold. These conditions seem to apply at Daylesford, Fryerstown, and Castlemaine, but in the light of observations made at Bendigo(12) on all such factors as stratigraphical age, folding, and pitch, the difficulty of making any generalizations will be realized.

Other results bearing on the deposition of gold have been the determination of the stratigraphical age of certain areas which hitherto had not been fixed. Thus Lauriston and Maldon both turn out to be Lancefieldian. This is of importance, as in the past stress has been placed on the recurrence of saddle reefs at Lauriston(13) though it is added that profitable mining had been mainly on an inverted saddle or synclinal reef. It is possible that the Lauriston gold-field may resemble Ballarat rather than Bendigo, and also that, though "indicators" do not seem to have been recorded in the district, they should be worth prospecting for.

VIII. Critical Localities and Suggestions for further Work.

In so extensive a district, where only comparatively small areas have been studied in detail, and then usually from a different point of view from that of the palaeontologist, it must happen that there are portions where further and more detailed search for fossils is desirable.

Commencing in the west, details are desirable in the country to the east of Campbelltown and west of Newstead. There is also a gap between Welshman's Reef and the Muckleford Creek, where further discoveries may be made. On the whole, however, the localities along the line of the Muckleford Creek seem decisive, though a critical examination of the line between Franklinford and the Castlemaine–Maryborough railway might yield important information.

Our information is fairly full for the Castlemaine sector (9), and it seems unlikely that more detailed work will modify our conception of the stratigraphy of this area except in details. The same remark applies to the area north-west of Glenlyon. Minor anticlines of Bendigonian beds may break the continuity of this Castlemainian synclinorium, but it is improbable that our general mapping here is in error.

East of Glenlyon, the case is different. Between Glenlyon and Lauriston the note on Q.S. 9 S.W. reads, "High scrubby ranges intersected with numerous deep gullies, probably auriferous. The prevailing rocks are coarse and fine-grained sandstones of different shades of grey and brown; micaceous shales occur only as occasional beds. Quartz reefs are abundant, having the same direction as the schist rocks with which they occur—N. 10-20° W." Certainly this is not encouraging country in which to search for graptolites, and our own efforts, necessarily limited, have been unsuccessful. Yet the provisional zoning of the stretch of country from Fryerstown and Taradale in the north to Glenlyon and Drummond in the south must be regarded as unsatisfactory, and subject to revision when further data shall have been collected.

The same remark applies to the belt shown as Lancefieldian east of Taradale. Here again fossils have not been found, except along the western margin.

It is hoped that the present paper will provide an outline which can be filled in by others, who, taking smaller areas for study, will be able to work them out in greater detail. One important point which such detailed work will make clear is the normal thickness of each zone to be expected in any part of the district. When this is known, we shall have a clearer idea of the structure of the whole area.

IX. List of Principal Graptolite Localities in the Area.

In the following list of principal graptolite localities it may be noted that:—

- (i) In districts where a more or less complete succession has been worked out, as around Castlemaine, reference is given only to the records of previous workers.
- (ii) Where no zonal reference is given, the serial age only has been determined or numerous beds of differing ages occur.
- (iii) Except where otherwise stated, the determinations are those of the present writers.
- (iv) Names in brackets indicate parishes, e.g., (Maldon).

I LANCFIELDIAN SERIES

[Zones of *Dictyonema* and *Bryograptus* (L3), *Bryograptus* (L2),
Tetragraptus approximatus (L1)]

A Maldon, Dean Anticlinoria

(a) Maldon area—

- (i) Old mining dumps, east of Maldon-Castlemaine road, about 20 chains south of South German shaft (Maldon) (L2)
- (ii) "Flying Pig" dumps, about 1 mile south of Maldon, on Maldon-Newstead road (Maldon) (L2)
- (iii) Several outcrops in Tarrengower Creek, between Maldon and Welshman's Reef (Maldon) (L2 and 3)
- (iv) Dumps on north of road to Goldsborough mine, west of (iii) (Maldon) (L2)
- (v) Dumps near road junction north of (iv) (Maldon) (L2).
- (vi) Cuttings on Maldon-Castlemaine railway, near Fentiman's Reef (Maldon) (L2)

(b) West of South Muckleford—

- (i) Note 35 "Graptolites," Q.S. 15 N.E. (Strangways) (L1)

(c) Yandoit area—

- (i) Allotment 19A of section XII (Yandoit), 25 chains west of Yandoit State School (L3)
- (ii) Road cutting south of Clydesdale, Newstead-Yandoit road (Yandoit) (L1) T Smith coll
- (iii) Dumps of Golconda Mine, S.W. of Yandoit (Franklin) (Lancefieldian?—only record, *Clonograptus*)

(d) Bullarook-Wombat-Dean area—

See T. S. Hall's identifications (7)

B Trentham-Lyonville Anticlinorium (References, except (iv), to unpublished work of the late H. Foster, Geol Surv. Vict.)

- (i) Near the north-west corner of Township of Lyonville (Bullarto) (L3)
- (ii) Near Newbury (Trentham) from old shaft near Old Snake Gully mine
- (iii) Trentham-Daylesford railway, about 1 mile west of Trentham (Trentham).
- (iv) Kangaroo Creek (Coliban) Several bands of badly-cleaved decomposed black slate occur about 40 chains south of the Spring Hill-Glenlyon road. No graptolites were obtained *in situ* in these, but a piece of similar slate in the bed of the creek showed *Bryograptus* sp

C Taradale-Lauriston Anticlinorium

(a) Taradale area—

- (i) Road cutting north of railway crossing near Taradale Railway Station (Elphinstone) (probably L2).
- (ii) Road cutting about 30 yards south-west of Taradale Railway Station (Elphinstone) (probably L2).
- (iii) Old mining dump west of creek, in allotment 14, Township of Taradale (L2)
- (iv) Road cutting at south-west corner of allotment 36 of section 10 (Elphinstone) The only graptolite found was *Clonograptus*.
- (v) Old mining dumps opposite side of east and west road to allotment 9 of section 11 (Elphinstone) (L2)
- (vi) Old mining dump near "65 miles" Q.S. 9 N.W. allotments 50-51 (Edgecombe) (L2)

- (vii) Dumps of Ironstone Mine, south-east corner, allotment 55 (Edgecombe) (L2-3)
- (viii) Old mining dumps, Little Wonder Lead, N.W. of Malmesbury Railway Station (Edgecombe) (L3)
- (b) Fryerstown-Taradale area—
We found no determinable graptolites between Taradale and Fryerstown until the higher beds near Fryerstown were reached. Fragments with primitive thecae were found near the Coliban-Loddon Divide, near Fryerstown-Taradale road.
- (c) Lauriston area—
 - (i) Aroona shaft, allotment 59A (Burke) (L2)
 - (ii) Shaft in allotment 5 (Burke), west of (i) (probably L2).
 - (iii) Kangaroo Reef, Ba 77, Q.S. 9 S.W. (Burke) (L3).
 - (iv) Russell's Reef, Amalgamated, shaft in Lauriston Township (Lauriston) (only record, *Bryograptus*)
 - (v) Energetic Reef, allotment 286 (Lauriston) (L2)
- (d) Tylden area—
 - (i) Allotment 3 (Tylden) (note on Q.S. 9 S.E.).
 - (ii) Premier Mine, allotment 82 (Tylden) (L3).
 - (iii) Coliban River, allotment 98 (Tylden).
 - (iv) Coliban River, north of allotment 96 (Tylden)

(The last two localities from H. Foster's records.)

II BENDIGONIAN SERIES

(Zones of *Tetragraptus fruticosus* and *T. fruticosus* with *Didymograptus* cf "protofusidius.")

A Werona Synclinorium

- (a) Newstead-Campbelltown area—
 - (i) Numerous localities in the north-east of the Parish of Campbelltown T. Smith
 - (ii) Allotment 26 of section 12 (Tariengower) (locality on an old plan of W. H. Ferguson. We have been unable to verify it. Thin bands of black shale remind us of Lancefieldian.)

B Dean Anticlinorium

- (a) Dean area—
See reference (7)
- (b) Daylesford area—
See (7), (8), and (11).

C Trentham-Chewton Anticlinorium

- (a) Chewton-Fryerstown area—
 - (i) West of Mt Eureka (The Monk Hill) (Castlemaine) (B3-B1).
 - (ii) On both sides of Chewton-Fryerstown road, south of Spectreman Hill (Chewton and Fryerstown)
 - (iii) South of Fryerstown (B4-B2)
[For further details see Harris (9)]
- (b) Area south-west of Glenluce—
 - (i) Ba 80, Q.S. 15 N.E. (Fryerstown) (B1)
 - (ii) Along Glenluce-Glenlyon road (west of Loddon River) (Holcombe)
 - (iii) Sebastopol Diggings (Holcombe)
- (c) Glenlyon area—
 - (i) Allotment 3 (Glenlyon), on Loddon River, above falls.
 - (ii) Quarry, allotment 7 of section 1 (Glenlyon) (H. Foster).
- (d) Lyonville area—
 - (i) On boundary of Township of Lyonville
 - (ii) Around Blackwood (Blackwood) (south of mapped area).

D Area between Lauriston and Trentham Anticlinoria

The only records are from the extreme north and south

(a) North--

At both east and west approaches to Elphinstone railway cutting
(Chewton and Elphinstone)

(b) South--

On Coliban River, in north-west corner of Parish of Trentham

E Eastern area

Our only record is of B3 from Italian Diggings, below Mitchell's Falls, Campaspe River, Q S 13 S E

III CASTLEMAINIAN SERIES

(Zones of *Isograptus caduceus* var *primula* and *lunata* to *I. caduceus* var *maximo-divergens*)

A Werona Synclinorium

(1) South bank of Deep Creek, Werona (Campbelltown) (C5), coll T Smith

B Around Dean Anticlinorium

See references (7, 8)

C Muckleford Synclinorium

(1) Castlemaine area See Hall (6) and Harris (9)

(ii) Between allotment 8 of section IX and 13 of VIII (Yandoit) (C1)

(iii) In south-east corner of section IV A (Yandoit) "Rocky Waterholes Creek" Q S 15 S E (C1)

(iv) South of Vaughan (Fryerstown) (C5)

(v) Sebastopol Diggings (Holcombe) (C5)

(vi) North of Glenlyon Township (C4) See note in extreme south-west corner of Q S 9 S W

(vii) For numerous records in the Bullarto district we have depended on the work of H Foster

D Expedition Pass Synclinorium

(1) On both sides of Forest Creek, north of Chewton (Faraday and Chewton) (C3-C1)

(ii) South of the Chewton-Elphinstone railway (C5-C1) See also Harris (9)

(iii) North-east of Parish of Fryerstown (C3 and higher)

E South-eastern area

Numerous Castlemainian localities along the Campaspe River, south-west of Woodend (C5-C1) (H. Foster and the authors)

IV. DARPIWILLIAN SERIES

(Zones of *Oncograptus*, *Cardiograptus*, *Glyptograptus austrodentatus*, and zones with *D. nodosus*, &c)

A Muckleford Synclinorium

(i) Northern area See Harris, cit sup

(ii) Between sections II and VII. (Yandoit)—several localities

(iii) Allotment 11 of section II (Yandoit) (D4), coll T Smith.

(iv) Between allotments 4 and 5 of section IV A (Yandoit)

B. Bullarto Synclinorium

D5 recorded by H Foster, on Leitch's Creek, about $\frac{1}{2}$ mile upstream from mineral spring on road from Musk

C Expedition Pass Synclinorium

(1) On both east and west of bridge over Chewton-Elphinstone railway at $73\frac{1}{2}$ miles (D5)

D South-eastern area

- (1) Numerous localities on both sides of the Carlsruhe-Lancefield road, and between this road and the Mt. Macedon igneous series (D1)
- (ii) On main Bendigo road, about $\frac{1}{2}$ mile north of Clock Tower, Woodend (Woodend) (D1).
- (iii) Between allotments 95 and 98, north-east of Woodend (Woodend) (D1)
- (iv) Ba 74 Q.S. 10 N.E., south-west of "Woodend Town Common" (D2)
- (v) South of the mapped area, extending south from Woodend to beyond Gisborne, there is an extensive belt of Dariwilian beds, with probably a complete series along the Gisborne Creek

X. References.

- 1 BARAGWANATH, W. The Castlemaine Gold-field. *Mem. Geol. Surv. Vic.*, No. 2, 1907.
- 2 BRADFORD, W. The Maldon Gold-field. *Bull. Geol. Surv. Vic.*, No. 14.
- 3 DUNN, E. J. The Garden Gully Consols Mine, Bendigo. *Rec. Geol. Surv. Vic.*, iii. (2), p. 170, 1912.
- 4 GEPP, H. W., BARAGWANATH, W., and STILLWELL, F. L. Castlemaine, Maldon, and other areas of the main Bendigo District. Report to Minister for Development and Minister of Mines (Victoria), 1931.
- 5 GREGORY, J. W. Bibliography of Economic Geology of Victoria. *Rec. Geol. Surv. Vic.*, ii. (3), 1907.
- 6 HALL, T. S. Geology of Castlemaine. *Proc. Roy. Soc. Vic.* (n.s.), vii, 1895.
- 7 HALL, T. S. Reports on Graptolites. *Rec. Geol. Surv. Vic.*, iii. (2).
- 8 HALL, T. S. *Ibid* i. (4), ii. (1 and 4).
- 9 HARRIS, W. J. Palaeontological Sequence of the Lower Ordovician Rocks of the Castlemaine District Part I. *Proc. Roy. Soc. Vic.* (n.s.), xxix (1), 1916.
- 10 HARRIS, W. J., and CRAWFORD, W. Sedimentary Rocks of the Gisborne District. *Ibid* (n.s.), xxxiii, 1920.
- 11 HART, T. S. Graptolite Beds at Daylesford. *Ibid* (n.s.), xxi. (1), 1908.
- 12 HERMAN, H. Structure of the Bendigo Gold-field. *Bull. Geol. Surv. Vic.*, No. 47, 1923.
- 13 HERMAN, H. Economic Geology and Mineral Resources of Victoria. *Bull. Geol. Surv. Vic.*, No. 34, 1914.
- 14 HUNTER, S. Deep Leads of Victoria. Plates 4 and 6. *Mem. Geol. Surv. Vic.*, No. 7, 1909.
- 15 JUNNER, N. R. The Geology and Ore Deposits of the Walhalla-Woods Point Auriferous Belt. *Proc. Aust. Inst. Min. and Met.* (n.s.), No. 39, 1920.
- 16 KEBLE, R. A. Lava Residuals. *Proc. Roy. Soc. Vic.* (n.s.), xxvi (1), 1918.
- 17 LIDGEY, E. Report on the Malmsbury and Lauriston Gold-field. *Prog. Rept., Mines Dept., Vic.*, No. VIII., 1894.
- 18 MOON, R. A. The Maldon Gold-field. Special Reports, Mines Dept., Vic.
- 19 THOMAS, D. E. Kerrie Series and Associated Rocks. *Proc. Roy. Soc. Vic.* (n.s.), xliv. (2), 1932.
- 20 WHITELAW, H. S., and BARAGWANATH, W. Some Daylesford Mines. *Bull. Geol. Surv. Vic.*, No. 29, 1914.
- 21 ——— The Daylesford Gold-field. *Ibid*, No. 42, 1923.
- 22 Geological Survey of Victoria, Quarter-sheets 9, 10 (N.E. and N.W. only published), 13 (S.W. and S.E.), 14 (no N.E.), 15 (S.E. and N.E. only), 16 (S.E. and N.E. only).
- 23 ———, Geological Surveys of Parishes Bungaree and Dean (1890, Sandon (1903), Tarrengower (1903), Campbelltown (1906).

[PROC ROY SOC VICTORIA, 46 (N.S.), PT. II., 1934.]

ART XIV—*Some Sap-staining Organisms of Pinus Radiata,*
D. Don, in Victoria, Australia.

By AUDREY M ECKERSLEY, M Sc

(Botany School, University of Melbourne)

[Read 9th November, 1933, issued separately 7th May, 1934.]

A considerable amount of attention has been paid to fungi responsible for sap-stain in the Northern Hemisphere, but as far as I know there have only been two reports concerning sap-stain from Australia and New Zealand. The first(13) deals with the staining of *Pinus radiata* (syn *P. insignis*) boards by *Ceratostomella* sp in New Zealand, and the second(8) with staining which was cited as being due to the same genus, in pine timber in Queensland.

I. Origin of Forms Dealt with.

The sap-staining or blue-staining organisms dealt with in this report were isolated from *P. radiata* timber in all three cases.

(a) *Hormonema dematioides* Lagerberg and Melin(6). This organism was isolated from timber kindly sent by the Forests Commission of Victoria. *P. radiata* boards from Castlemaine were marred by light neutral-gray to green-black streaks(9). The transverse surface showed the characteristic staining in radial sectors. When samples of the three lots of material were split, the staining was found to penetrate throughout the boards.

(b) *Ceratostomella* sp, Form A and Form B. I am indebted to Mr J E. Cummins, of the Council for Scientific and Industrial Research, for cultures of these forms and for specimens of timber stained by them.

Form A was isolated from case stock from Somerville, Victoria. Attention was first directed towards staining caused by this form when some very badly stained fruit-cases which had been made up in the green condition were examined. The previous history is unknown.

Form B was isolated from case stock from Redhill, Victoria. *Pinus radiata* sapwood, after being felled and cut into case ends and sides at Redhill, Victoria, was immediately sent to the case manufacturers, where it was stacked out to dry. After about three weeks, while the material was still in the stacks, blue streaks appeared on the surfaces of the sapwood pieces. This condition rapidly grew worse until entire surfaces were badly blued and perithecia appeared in profusion. The staining degraded the stock, rendering it unfit for use in best class cases.

II. Methods of Isolation of Organisms.

In order to isolate the organisms responsible for the bluing, two methods were employed —

- (a) In the case of *Ceratostomella* sp., Forms A and B, where perithecia were present, one of these was removed with sterile needles and plated on to malt agar
- (b) In the case of *Hormonema dematioides*, where no perithecia were present, and as an alternative method for the isolation of Forms A and B, the following method was employed — The surface of a sample of the infected wood was cleaned with mercuric chloride solution 1:1000 to eliminate chances of contamination with surface organisms. A tomahawk was sterilized similarly. After chopping through the board to expose a tangential surface, a small sliver of the blued interior was dug out by means of flame-sterilized chisel-forceps and emplanted in a malt agar slope

Pure cultures were obtained by transferring to plain agar and back again to malt agar. Cultures were also grown on starch media and pine- and corn-nical media

III. Methods of Re-infection.

In order to test the pathogenicity of the forms isolated, pure cultures were used to infect clean *P. radiata* blocks.

P. radiata sapwood was cut up into blocks 4" x 1" x 1" (approximately). These were put into flasks on a small pad of cotton wool and were sterilized for half an hour at half an atmosphere pressure. When cold, a quantity of sterile water or prune juice was added and the blocks were infected by inoculating transverse, radial, and tangential surfaces with a portion cut from a young culture of the organism growing on malt agar. The cultures were cut so that each piece of inoculum consisted of a young growing edge of culture together with the adjacent portion of older growth. The flasks were plugged with cotton wool and a cellophane cap was tied over the plug. Flasks were incubated at room temperature during the warm months and at a constant temperature of 26° C. during the winter. After three weeks the organism was re-isolated from the blued blocks in the manner described previously

In the first inoculation experiment the blocks were too wet to permit of any staining by the fungus. At the end of the experiment the moisture content (based on the oven-dry weight) of two of the blocks was determined and found to be 191 and 158 per cent respectively

In subsequent inoculation experiments with the moisture content in the neighbourhood of 100 per cent, the organisms were found to stain the blocks throughout.

For the purpose of examining the distribution and nature of the organism within infected wood, small blocks, 1 cm square approximately, were cut from the experimental blocks and boiled in water until they were fully saturated. Then radial and tangential sections were cut from them and stained by Cawt-wright's method and mounted in balsam(1).

IV. Description of Organisms.

(A) *HORMONEMA DEMATIOIDES* Lagerberg and Melin

This fungus, which shows a great variety of form in the habit of its mycelium, was first described by Lagerberg, Lundberg, and Melin in "Blueing in Pine and Spruce"(6), as occurring in sawn-pine and spruce and living pine-needles.

1 Cultural characters

The culture on malt agar commences growth as a colourless mat which in a few days takes on a greenish tinge. This darkens rapidly and in older cultures the upper and lower surfaces both show as a deep green-black. Growth occurs either regularly, in a concentric fashion, or more irregularly, in the form of fan-shaped outgrowths and small bays which indent the periphery of the culture. The surface is slightly roughened or more coarsely corrugated. In cultures from freshly isolated strains practically the whole surface becomes covered by dirty whitish moist masses of conidia. When the strain becomes older, conidial production is not so abundant, and the surface of cultures become covered with a brown air mycelium.

2 Mycelium

Young hyphae are hyaline, non-septated, and sparingly branched. Further back in the slightly older parts of the plate, septa occur at frequent intervals. This fungus is interesting in that the mycelium shows such a number of types of modification. The following types were noted.—

(a) Ordinary longicellular hyphae with straight-sided cells and lenticular septa (Fig 1)

(b) Brevicellular hyphae with rounded sides and lenticular septa (Fig 2)

(c) As the mycelium ages the walls become enormously thickened, sometimes with granular excrescences, and are greenish-brown. The lenticular transverse septa show up well and very often longitudinal and oblique septa occur also (Fig 4). If only transverse septa are present, the hyphae appear as moniliform chains (Fig. 3). In examining the central part of a month-old culture, it is found that these moniliform chains tend to break up into bicellular portions with thick walls (Fig 5).

(d) The peculiar resorption phenomena noted by Lagerberg and Melin were also noticed, but no cases of such an extreme type as they depicted were observed. This phenomenon consists of a thinning of the lateral thick walls of a portion of a hypha and the loss of the cell contents in this region. In parts where resorption phenomena occurred, it was found occasionally that the part of the hypha which retained its cell contents sprouted, and from one of its ends a branchlet grew which penetrated the outer wall of the old hypha (Fig. 6).

(e) *Coniothecium*-like groups of cells often occur along the length of a hypha which is just commencing to thicken its walls. These are little groups of very thick-walled cells which extend out further than the diameter of the hypha in which they are situated (Fig. 7).

(f) On the surface of the culture little dark crusts develop concentrically. These appear to mark the situation of most abundant spore production, since on examination they are seen to consist of moniliform chains of thick-walled cells which are covered with spores, and inside this zone of crusts the moist white spore masses occur.

3. Spore Production

Spores are produced anywhere on the surface of the older thick-walled hyphae, thus forming a kind of palisade layer (Fig. 8). Each spore is large, rounded at both ends, being either oval or with a slight pyriform tendency, and contains from one to four oil globules at each pole (Fig. 9).

Size.—Length, range from 5.1 to 17.0 μ ; average, 9.0 μ .

Breadth, " " 2.5 to 5.9 μ average, 3.8 μ .

Spores are occasionally septated

4. Air Mycelium.

This occurs, as already stated, only on cultures from older strains. It is generally brown, floccose, and not very abundant. The hyphae composing it are thickish-walled and longicellular and become wefted together in ropey strands.

Very often hyphae become enormously thickened—single cells proliferating to give large clumps.

Lagerberg, &c., only note that these occur in wood, but probably their *Coniothecium* forms are the forerunners of such clumps.

5 Distribution of the Fungus in Wood

In a transverse cut across a piece of infected timber, it is seen that the surface is stained, not uniformly, but in dark radial wedges tapering from the periphery to the heart. The border line between sap and heartwood was noticed because of the abrupt cessation of the stain at the inner limit of the sapwood (Fig. 11).

On the tangential and radial surfaces of infected wood are often found the dark crusts which are present in cultures. In sections of the stained wood it is found that hyphae are most abundant in the rays, which appear as dark lines to the naked eye.

The rays are found to be completely disorganized in many cases. Sometimes only the ray tracheids remain intact. The hyphae here are mostly of the longicellular thick-walled type, but may become brevicellular, and occasionally *Coniothecium* groups occur along their length. Resin canals are usually nearly as full of hyphae as are the rays, and tracheids are also entered. Here they run a sinuous course and are sparingly branched. The hyphae appear to use the pits as the sole means of crossing from one element to another (Fig 12). Sometimes enormously proliferated hyphae like those present in the air mycelium are seen in the resin canals and tracheids.

Lagerberg, &c., noted that spores were always very abundant in their sections. I have scarcely ever found any spores.

(B) CERATOSTOMELLA spp

1. Historical Outline of Ceratostomellas causing sap-stain in Timber.

In 1822, Fries(2) described *Cerastostoma piliferum*, which by later mycologists was not treated as a uniform species. In 1869-70, Fichel(3) described four forms of this species affecting various trees, but it was not until 1878 that Hartig first connected sap-stain with fungi, and described a species causing blueing, which he thought might belong to *Cerastostoma piliferum* Fr. This species was therefore regarded as the specific blueing fungus until 1906. In 1878, Saccardo(10) separated *Ceratostomella* from *Cerastostoma* because of its colourless spores, and in 1887 the old *C. piliferum* was put into this new genus by Winter(12). This species still included several forms within itself as it did originally.

In 1903, von Schrenck(11) described blueing of timber in North America as due to *Ceratostomella pilifera* (Fr.) Wint. Munch(7) in 1907 sorted out the confusion of blueing of timber in Germany and found the name, *C. pilifera* (Fr.) Wint., covered four separate species of *Ceratostomella* and one new genus as follows.—

- (i) *C. Pini*.
- (ii) *C. coerulea*.
- (iii) *C. Piceae*.
- (iv) *C. cana*.
- (v) *Endoconidiphora coerulescens*.

C. Pini was distinguished by the smallness of its perithecia, and the other three species of *Ceratostomella* can be separated by means of their conidial stage and other differences.

Endoconidiophora, with its *Ceratostomella*-like perithecia, is characterized by its peculiar conidial stage

At about the same time (1906) Hedgcock (5) had been investigating the blueing fungi of North America. He retained the name *C. pilifera* (Fr.) Winter for a very widely disseminated species, and also described numerous other species of *Ceratostomella* which were less important from the blueing point of view. Comparisons of the species of *Ceratostomella* of the two continents have not yet been undertaken systematically, and it is not known whether any of the European forms are identical with any of the American ones, or, if they are separate, which European species occur in America and vice versa. Lagerberg, &c (6) note that in their experience with Swedish forms they have found that they may vary considerably, and they suggest that the species *C. capillifera*, *pilifera*, and *Schrenkiana* are connected with *C. coerulea*.

2 Significance of *C. pilifera* (Ir.) Winter.

In the attempt to establish the identity of *Ceratostomella* sp. Forms A and B, they were compared with *C. coerulea* Munch and *C. pilifera* (Fr.) Winter, cultures of which were obtained from Baarn, Holland, the former originally deposited there by Zachs and Melin, and the latter by Rumbold. There is some ambiguity in connexion with the latter species. As it stands—*C. pilifera* (Fr.) Winter—it should represent the old composite species before it was split up by Munch, but I have regarded it as a single species, and cultural observations show that it is so. In this case it must be the *C. pilifera* (Fries) Winter, described by Hedgcock in 1906 in his "Chromogenic Fungi which Discolour Wood" (5), although measurements of the form in culture do not correspond very closely with those given by Hedgcock for the same thing.

Lagerberg, &c, have noticed that a great deal of variation occurs in Swedish forms of *Ceratostomella*. This factor of variation may be the cause of disparity in this instance, since there seems to be no essential differences between the form described, and the form in culture.

3 Results of Comparisons between *C. pilifera* (Fr.) Winter, *C. coerulea* Munch, and Recently Isolated Forms.

Results of comparisons between *C. pilifera* (Fr.) Winter, and *C. coerulea* Munch, and the forms recently isolated—Form A from Somerville case stock, and Form B from Redhill case stock—seem to support the view of Lagerberg, &c, expressed at the end of their historical outline on page 7, that *C. pilifera* and other American forms may be connected to *C. coerulea*, since in some characters Forms A and B appear to approximate to *C. coerulea*, and in others to *C. pilifera*.

In general appearance, all four appear very similar, the main difference being that in *C. coerulea*, in contrast to the other three types, the thick-stranded erect hyphae are generally much better defined.

The two types of conidial fructification, viz.—(a) the so-called "ear" arrangement of Lagerberg, &c., in which the projections on the fructiferous hyphae from which the conidia have fallen

GROWTH RATE CURVES

are likened to ears; and (b) *Cephalosporium*-type (Figs 13 and 14) in which conidia are arranged in grape-bunch clusters—occur in all four types, although it is found that the ear form which is most characteristic of *C. coerulea* is also predominant in Form B, whereas in Form A it is the *Cephalosporium*-type of fructification that one notices more especially.

The size of conidia in these four types is very variable—*C. pilifera*, and Forms A and B (Figs 15 and 16), showing a very great range in length. *C. coerulea* is more conservative in this respect.

In shape, the perithecia of all four types appear similar—the ventral is practically spherical, but is nearly always flattened basally. The neck is long and smooth and crowned by cilia. Perithecia of Form B are occasionally seen with two necks. This is noted by Lagerberg, &c., to be the case also with occasional perithecia in *C. coerulea*. Difficulty was experienced in obtaining measurements of perithecia. *C. coerulea* consistently refused to produce perithecia either on malt agar, pine and cornmeal media, starch media, or on pine blocks. All measurements of this stage had, therefore, to be taken from Lagerberg, &c. They note that old strains of *C. coerulea* often do not fruit in culture. The same difficulty was experienced with *C. pilifera*—the first few subcultures produced perithecia, but after that none appeared. Form A produced perithecia, but these most often did not reach maturity, maturity being taken as the time when the ascospores are first discharged and remain suspended in an opalescent pale yellow droplet on the outstretched cilia.

It is in the characters of the cilia (Fig. 18) that most of the differences appear to arise in *C. coerulea*, *C. pilifera*, and Form B. The first has very long cilia—35–100 μ —and there are about twenty-four per neck. Hedgcock gives no figures for his *C. pilifera* (Fr.) Winter, but in those observed by me in culture the range in length was from 9.24 μ and the number per neck was about nine. This seems to separate the two species, and yet in Form B, which shows characters of both, the length varies from 15–50 μ and the number per neck, while only nine (average) in culture, may reach thirty on wood, therefore bringing it into the province of both species.

Comparisons of the growth rates of the four forms at room temperature, 19°C., and 12°C., show that they all grow at approximately the same rate (see text-figure).

COMPARATIVE DESCRIPTION OF THE FOUR FORMS.

1 Cultural Appearance.

(a) *C. pilifera*.—For a few days the colony is colourless, then the older parts become olive-green and a well-grown plate appears brown-black from beneath. On the upper surface arise colourless erect stranded hyphae which bear dendritically arranged conidia. This area of stranded hyphae may be confined to the centre but often extends further. If only present centrally the rest of the plate is cottony-white with abundant conidia. Sometimes conidial production is much less and the plate remains brownish

or blackish on top and faint radial ridges are visible on the upper surface A definite acid smell is noticeable in older cultures Hedgecock did not mention this latter fact

(b) *C. coerulea*—As given by Lagerberg, Lundberg, and Melin—"The mycelium forms a compact light-grey air mycelium which becomes a maze of filaments like wire-netting, and these fibres appear floury-white through the conidia Underside of plate is green-black Noticeable acid smell" In culture some variations of the above description were noticed A well-grown colony appears deep green-brown with faint radial ridges Centrally there arise numerous stout white strands of hyphae which give forth branches, and these bear conidia These strands may attain a height of one cm The rest of the plate may be covered similarly with these stranded hyphae or may be cottony-white with a felt of conidial-producing hyphae as in *C. pilifera*

(c) Form A—Commences growth as a colourless mat which in older cultures darkens to a brownish-black, shading to olive-green near the edge of the colony Owing to a light dusting of conidia the upper surface often appears blue-grey Air mycelium as in the two last types may be in the form of strands, although this is rare Mostly it forms a cottony-white network on the surface and bears numerous conidia Sometimes conidial formation is poor and the surface remains dry and faintly radially ridged Older cultures often show thick, dirty-white patches of conidia centrally There is a definite acid smell

(d) Form B—Shows similar characters to Form A but conidial production has always been profuse No occurrence of whitish moist conidial masses A definite acid smell is noticeable

2 Hyphal Characters

In all cases hyphae at the outer edge of the colony are fine, hyaline, sparingly-branched and straight-sided Further back the cells become claviform and brownish-green and are often rugose

3 Conidial Production.

(a) *C. pilifera*—Conidia are produced on the aerial hyphae and on submerged hyphae The erect strands which arise from the surface of the plate consist of wefted hyphae These bear fine branching hyphae from their sides, and these in their turn bear densely-packed conidia On these superficial hyphae the conidia are mostly arranged in the so-called ear-shaped manner of Lagerberg, &c. The *Cephalosporium* type of arrangement is also seen where the conidia are arranged in grape-bunch clusters This type is mostly submerged Conidial production commences in two or three days

(b) *C. coerulea*—Conidial producing hyphae completely clothe the erect strands Types of arrangement as for the last species.

(c) Form A—Conidial arrangement as in the last two types. The *Cephalosporium* type of conidial arrangement is especially common

(d) Form B—Conidial arrangement as in the other three types. The *Cephalosporium* type of arrangement is not so common

4 Conidial Size and Shape.

(a) *C. pilifera*—Conidia are elongated, rounded at both ends, but usually more pointed towards the end of attachment. Larger conidia show irregularities in outline very often.

(b) *C. coerulea*—Similar to last type in size and shape, but without such a great range in length

(c) Form A—Similar to other types. Great range in length (Fig 15)

(d) Form B—Similar to other types. Great range in length (Fig 16)

DIMENSIONS IN MICRONS (μ)

—	<i>C. pilifera</i>	<i>C. coerulea</i> .	Form A	Form B.
Average length	6.6	5	8.0	9.7
Average diameter .. :	2.3	2.1	2.7	2.6
Range in length ..	4-16	2.5-10	4.3-17	3.0-17
Range in diameter ..	1.5-3	2-2.5	1.7-4.3	1.7-4.3

For *C. coerulea* Lagerberg &c give length of conidia as 5.6-11.2 μ .
diameter of conidia as 1.9-3.7 μ .

For *C. pilifera* Hedgcock gives length of conidia as 8-12 μ .
diameter of conidia as 2-4 μ .

5. Perithecial Formation in Culture.

(a) *C. pilifera*—Perithecia commenced to appear in a few days, first as globular light-brown to black cellular bodies without necks, but with long hyphal appendages. They are fully ripe within a fortnight. In all malt-agar cultures except the very first lot, perithecia have been absent (Fig. 20).

(b) *C. coerulea*—No perithecia were observed in culture or on wood. According to Lagerberg, &c, in malt agar perithecia appear in about ten days, and in general appearance and development they are apparently similar to those of *C. pilifera* described by Hedgcock

(c) Form A—Form A behaves very capriciously. Sometimes no perithecia are produced, and sometimes they have appeared within twelve days, but none have ever reached maturity. Immature perithecia are perfectly spherical, light-brown to black. Hyphal appendages spring from the whole surface, and are about 15-50 μ in length. Most often they remain in this undeveloped state, but sometimes a neck is produced.

(d) Form B—Each sub-culture has produced perithecia, at some times more abundantly than at others. They do not occur in concentric rings, but often in isolated patches commencing from the centre of the plate. They are fully developed in a fortnight. Both in culture and on wood there is a noticeable absence of conidial formation in the areas given over to the production of perithecia. Immature perithecia are the same as in the Form A and *C. pilifera*.

6. Mature perithecia

In general characters the mature peritheciun is the same in all four types. It consists of a somewhat globular black basal portion, which is slightly sunken into the surface of the medium, and it is attached by means of hyphal appendages. The neck is long and slender, and tapers at the apex to about half its basal diameter. It is black and smooth, and usually straight, but may be curved, and small irregularities are not uncommon. Just beneath the apex the neck pales to a brown colour, and the top spreads out to form a varying number of colourless cilia which support the spore drop (Fig. 17).

(a) Neck

DIMENSIONS

	<i>C. pilifera</i>	<i>C. coerulea</i>	Form A	Form B
<i>Neck</i> —				
Maximum length	1.4 mm	1.5 mm	400–500 μ	2 mm
<i>Cilia</i> —				
Number average	about 9	24	about 9	about 9
Length average	19 μ	..	5–17 μ	25 μ
Length range	9–24 μ	35–7–100 μ		15–50 μ

Measurements for Form A were taken from what were probably immature perithecia.

(b) Venter

(a) *C. pilifera*.—Practically spherical. Ratio of length to breadth variable. Perithecia measured here were immature, since no cilia or spore drops were visible. Hedcock states, "perithecia are somewhat flattened basally."

(b) *C. coerulea*.—Lagerberg, &c., note that perithecia were nearly spherical, but flattened basally.

(c) Form A.—Ratio of length to breadth variable, but were mostly broader than long, and flattened slightly at the base.

(d) Form B.—Generally flattened at the base, but may be spherical or longer than broad.

DIMENSIONS IN MICRONS (μ)

—	<i>C. pilifera</i>	<i>C. coerulea</i>	Form A	Form B
Average length ..	142	..	161	166
" diameter	147	..	167	187
Maximum length ..		240	200	250
" diameter		288	220	280
Minimum length ..		144		
" diameter		160		
Hedgecock's length ..	160	..		.
" diameter	180	..		.

7. Ascospores (Fig. 21)

Ascospores, in every case, are of the same shape—they have been likened to orange quarters by some authors.

DIMENSIONS IN MICRONS (μ)

—	<i>C. pilifera</i>	<i>C. coerulea</i>	Form A	Form B
Average length ..	4.8	3.7-4.7	3.5	4.5
" diameter	1.7	1.5-1.9	1.5	1.5
Hedgecock's length ..	5.5
" diameter	2.5

In the case of Form B only were asci observed. As in the case of other species of *Ceratostomella*, they were slightly globular to pyriform in shape, and contained eight ascospores. Asci disintegrated fairly rapidly in water.

8. Perithecial Occurrence on Wood

(a) *C. pilifera*—Within three weeks after inoculation, perithecia appeared, but these remained stunted, and did not come to maturity.

(b) *C. coerulea*—Lagerberg, &c., noted that, "on wood, perithecia take a month to become fully developed." None appeared on the inoculated blocks.

(c) Form A—Perithecia commenced to appear within twelve days. Were not very abundant, and only the immature stages occurred—no necks were developed on the artificially infected experimental blocks. In natural infections, perithecia are large and well-developed.

Venter—Average length, 220 μ ; average diameter, 200 μ ; maximum length, 230 μ ; maximum diameter, 210 μ .

(d) Form B—Perithecia appeared in profusion on the artificially infected blocks within seven days, and were ripe within three weeks. These perithecia are, on the whole, slightly larger

than those grown in culture, but the difference is practically negligible. In these perithecia, the number of cilia per neck may be much greater—sometimes rising to 30 per neck.

9 Distribution of Hyphae in Wood

In all cases (i.e., in the four types studied) hyphae are most abundant in the rays, which are often as completely disorganized as those affected by *Hormonema*. Hyphae are also seen in the resin canals to a less extent, and also in the tracheids, where, on the whole, they are finer in size.

Hyphae in rays and resin canals are mostly brownish, and rather thick-walled, often becoming rugose.

Penetration from element to element takes place by direct penetration and not by way of the pits. This fact was also noted by Lagerberg, Lundberg, and Melin (Fig. 19).

V. Discussion.

The two Forms A and B isolated from Australian sap-stained timber would appear to be intermediate between the American and European species, and may form a link between them. Form A, in general appearance and number of cilia, is more like *C. pilifera*, but in size of perithecia it is closer to *C. coerulea*. Form B, in general appearance, is sometimes like *C. pilifera* and sometimes very like *C. coerulea*. Its perithecia in size are closer to those of *C. coerulea*, and are like those of this form, in that two necks occasionally occur. The average number of its cilia brings it close to *C. pilifera* and away from *C. coerulea*, and their range in length brings it sometimes into the province of *C. coerulea*, and again away from it. It seems that there is no constant difference between *C. pilifera* and *C. coerulea*.

If the European and American fungi do not belong to separate species (and our observations lead us to think they do not), then *C. pilifera* (Fr.) Winter should be relegated to synonymy, as Munch has shown that this old name really included a complex of forms, which he referred to as the *pilifera* group, so *C. coerulea* Munch should be used for the form under discussion in preference to *C. pilifera* (Fr.) Winter.

VI. Summary.

Two forms of *Ceratostomella* infecting *P. radiata* are described, which appear to form a link between the American *C. pilifera* (Fr.) Winter and the European *C. coerulea* Munch. It is suggested that the two latter forms are really variants of the same species, which should be known as *C. coerulea* Munch.

Hormonema dematioides Lagerberg and Melin is also described from blue-stained *P. radiata* case stock.

FIGS. 1-21.

Acknowledgments.

This work was carried out in the Botanical Department, University of Melbourne, and I have to thank Professor Ewart for his helpful interest, and Associate Professor McLennan, under whose guidance the work was done.

References.

- 1 CARTWRIGHT, K ST G *Ann Bot*, xliii, 1929
- 2 FRIES, E *Systema mycologicum*, 2 Lundae, p 472, 1822
- 3 FUCKEL, L Beitrage zur Kenntniss der rheinischen Pilze *Jahrb. nassauisch Ver Naturkunde*, xxxiii, xxxiv, 1869-70
- 4 HARTIG, R Die Zersetzungerscheinungen des Holzes der Nadelbaume und der Eiche Berlin, 1878
- 5 HEDGCOCK, G C Some studies upon chromogenic fungi which colour wood *Missouri Bot Gard*, 17th Ann Rpt, 1906
- 6 LAGFRERFG, T, LUNDNERG, G, and MELIN, E Biological and Practical Researches into Bluing in Pine and Spruce *Svenska Skogsvards forningens Tidskr*, xvii, Och IV, 1927.
- 7 MUNCH, E Die Blaufaule des Nadelholzes *Zeitschr Forst- u Landwirtschaft*, v and vi, 1907-8
- 8 Report of the Provisional Forestry Board for the year ended 30th June, 1930. Queensland Forest Service, Brisbane, 1930
- 9 RINGWAY, R Colour Standards and Colour Nomenclature Washington, 1912
- 10 SACCARDO, P A Fungi nonnulli extra italicici novi *Michelia*, Patavii, 1878
- 11 SCHRENCK, H von The Bluing and red Rot of the yellow Western Pine with special reference to the Black Hills Forest Reserve *U.S. Dept Agric Bureau of Plant Industry, Bull* 36, Washington, 1903.
- 12 WINTER, G Die Pilze Deutschlands, Oesterreichs, und der Schweiz 2 Ascomyceten Rabenhorst's *Kryptogamenflora*, Bd 1, Leipzig, 1887
- 13 YEATES, J S Sap stain in timber of *Pinus radiata* *NZ J Sci Tech*, vii, 1924

Explanation of Figures 1-21.

- FIG 1 Young hypha with straight sided walls and lenticular septa ($\times 1000$)
- FIG 2 Older hypha with rounded outer walls W—lenticular wall of transverse septum ($\times 1000$)
- FIG 3 (a) enormously thickened walls (b) additional septations which have occurred. ($\times 1000$)
- FIG 4 Moniliform chains of cells ($\times 600$)
- FIG 5 Bicellular portions of hyphae which are found in the oldest part of cultures
- FIG 6 (a) portion of a hypha where resorption phenomenon has occurred (b) a branchlet which is growing out from the still living cells of the hypha, through the old wall ($\times 1000$)

- FIG 7 Diagram— \times about 1000 c—Coniothecium-body situated on hyphae
- FIG 8 Spores arising directly on hyphae
- FIG 9. Spores, occasionally septated showing oil globules at poles
- FIG 10 Diagram s—sapwood h—heartwood sh—junction between sap wood and heartwood where the staining ceases abruptly x—stained sector of sapwood.
- FIG 11 w—wall of medullary ray p—pits in ray walls through which hyphae are passing r—rugose thickened wall of hyphae.
- FIG 12 Ear-like fructification. Form B Diagram (\times about 1000)
- FIG 13 Form B—*Cephalosporium* type of fructification
- FIG 14 (a) and (b) *Cephalosporium* type of fructification (c) Conidiophore from which the conidia have fallen Form A
- FIG 15 Conidia of Form A (\times 1000).
- FIG 16 Conidia of Form B (\times 1000).
- FIG 17. Diagram of a typical peritheciun which might have been produced by any one of the four forms (\times about 105.)
- FIG 18 Form B—neck apices with cilia (\times 1000.)
- FIG 19 t—tracheid wall h—hypha penetrating wall (\times 1000.)
- FIG 20 Immature perithecia which might belong to any one of the four types Diagram.
- FIG. 21 Form B (a) ascus containing ascospores (b) ascospores. (\times 1000)

[PROC ROY SOC VICTORIA, 46 (N S), PT II, 1934]

ART XV—*A Lower Cretaceous Brittle-star from Queensland*By FREDERICK CHAPMAN, A L S , F G S
(Commonwealth Palaeontologist)

(With Plate VII)

[Read 9th November, 1933, issued separately 7th May, 1934]

Introduction.

The following description is based on a well-preserved fossil brittle-star on the fractured faces of a bore-core obtained at Cleeve, near Longreach, Queensland

The boring was put down by Oil Search Ltd , and was in charge of Mr. J F Foster, who took especial care to preserve the fossil, and after whom it is named.

Description.

Sub-phylum ASTEROZOA

Class OPHIUROIDEA

Family OPHIACANTHIDAE

Genus **Ophiacantha** Mueller and TroschelSub-genus **Ophioglyphoida**, nov

Note on the Sub-genus —The genus *Ophiacantha*, *sensu stricto*, has the disk formed of small plates and clothed with imbricating scales A fundamental distinction of the present form is the distinctly platy structure of the disk, here exhibited on the oral side, showing a mosaic of more or less angulated pentagonal elements as in *Ophioglypha*

OPHIACANTHA (OPHIOGLYPHOIDA) FOSTERI, sub-gen
et sp nov

Description of Holotype —Specimen showing oral face of the disk, which is roundly pentagonal and somewhat petaloid. Roof covered with small pentagonal plates, visible on the denuded under surface Diameter of disk, 6mm The teeth attached to the jaw-frame are short and bluntly pointed, whilst the mouth-shield itself is well-preserved. The sharply pentagonal border, showing the track of the nerve-ring, is also clearly seen on moistening the surface of the fossil.

Arms.—Of the five arms one is complete, and the four remaining, nearly so, whilst the bases or proximal portions are in place Length of arms, circ 32 mm , diameter of arms, without spines, at junction with the disk, 1.6 mm., full width with spines, 3 mm

The vertebral ossicles are somewhat elongate in the direction of the arms, constricted in the middle, fossetted on the inner margin, and gently concave on the outer. Height of vertebral ossicle, fifth from disk margin, 0.47 mm.; width, 0.41 mm. Adamambulacral plates of the arm short, rectangular, bearing on the outer surface from two to three long, slender, gently recurved, and thorny spines, directed distally. Average width of adamambulacral, 0.2 mm.

Observations.—The character of the thorny spines and the existence of rectangular adamambulacral plates, taken in conjunction with other structural features, support the reference of this fossil to *Ophiacantha*. It is of great interest to note that this living genus has at least persisted from Mesozoic times, and that it is still most abundant in the Pacific and East Indian regions (Clark, 1911, and Koehler, 1922). There is little doubt also that many of the recorded ophiuroids of Mesozoic strata from the Triassic onwards, such as *Ophioderma cyrtoma* of the Upper Lias (probably a *Pectinura* according to Lyman), may belong to genera still living. *Ophiolepis leckenbyi* with its surface tuberculation of the disk, from the Oolite, has been compared to *Ophioglypha* by Lyman (1882, p. 327). That author also states (*op. cit.*, p. 327) that "from the Trias upward there is nothing unfamiliar in the look of the ophiurans."

A Lower Cretaceous ophiuran has been described from the Grayson formation of Texas by C. I. Alexander (1931, pp. 152, 153, woodcuts Fig. 1, Pl. xx, Figs. 19, 20), as an *Ophioglypha*, which does not, however, show any preservation of the short delicate spines seen in the living forms of the genus. *Ophiacantha* as a Cretaceous genus does not seem to have been definitely recognized, although its probable occurrence in the earlier Lias formation has been suggested by Lyman (1882, p. 328).

The genus *Ophiacantha* (*O. heterotyla*) is found living as far south as Tasmania. It is especially abundant in the East Indian and Philippine areas as well as in the Pacific.

Locality of Holotype.—From No 2 Bore, Gavin's Anticline, Cleeve, near Longreach, Queensland, at a depth of 519 feet. (Commonwealth Coll. No. 62.)

Horizon.—Dark-grey carbonaceous mudstones. Probably in the Tambo Series (Albian), Lower Cretaceous.

Note on the Bore Horizons.—At 447 feet, or 72 feet above the ophiuran horizon there occur the following fossils:—*Aucellina incurva*, *Syncyclonemia socialis*, *Lenticulina rotulata*, and *L. subalata*, with the ostracod *Cytheropteron concentricum* (a Cretaceous species well known in England and Europe). The first two bivalved shells point to a Tambo fauna for the overlying beds. The ophiuran bed, with plant remains, indicates a horizon probably near the base of the Tambo series.

[F C photo]

Lower Cretaceous Brittle-Star : Longreach, Queensland.

References.

- ALEXANDER, C. I., 1931 A New Lower Cretaceous Ophiuroid *Journ. Pal.*, v No 2, pp 152, 153, woodcuts, fig 1 A B, pl xx, figs. 19, 20
- CLARK, H. L., 1911 North Pacific Ophirurans in the Collection of the United States National Museum *Bull* No 75, pp 1-302, wood-cuts 1-144
- CLARK, H. L., 1916 Report on the Sea-lilies, Starfishes, Brittle-Stars, and Sea-Urchins obtained by the FIS *Endeavour* on the Coasts of Queensland, New South Wales, Tasmania, Victoria, South Australia, and Western Australia Biological Results FIS *Endeavour*, v (1), pp 1-123, pls 1-xliv, figs 1-11
- KOHLER, R., 1922 Ophirurans of the Philippine Seas and Adjacent Waters *Bull U.S. Nat Mus.*, No 100, pp 1-486, pls 1-cii
- LYMAN, T., 1879 Reports on the Dredging Operations of the United States Coast Survey Steamer *Blake* Ophirurans *Bull Mus Comp Zool. Harvard*, v No 9, pp 217-238, pls 1-iii
- LYMAN, T., 1882 Report on the Ophiuroidea dredged by H M *Challenger* during the years 1873-6 *Zool vol v*, pt xiv, pp 1-386, pls 1-xlviii
- MACBRIDE, E. W., 1906 Echinodermata The Cambridge Natural History, pp 427-623

Explanation of Plate VII.

- Fig 1.—*Ophiacantha* (*Ophnoglyphoida*) *fosteri*, sub-gen et sp nov Holotype. On Core from No. 2 Bore, Cleeve, near Longreach, Queensland $\times 2$
- Fig. 2.—Ditto Paratype (Counterpart of same core) Matrix showing abundant plant fragments $\times 2$
- Fig 3.—Ditto. Magnified arm showing opposed arm ossicles with spines Holotype $\times 11$
- Fig. 4.—Ditto. Magnified thorny spines attached on right to ambulacral ossicles Holotype $\times 14$

[PROC ROY SOC VICTORIA, 46 (N.S.), Pt II, 1934]

ART XVI—*The Eastern Boundary of the Bendigo Gold-field*

By WM J HARRIS, B.A.

[Read 14th December, 1933, issued separately 7th May, 1934]

Introduction.

The existence east of Bendigo of beds higher than those of the central or gold-fields area has long been known, or at any rate surmised. E. J. Dunn(1) gave a geological plan on which a central "favorable area" is shown surrounded by a "No 2 area" of overlying rocks, and outside this a still higher "No 3 area, either non-auriferous or but slightly so." Heiman(2) criticized Dunn's interpretation of the structure of the field, and showed, incidentally, that portions of the No 3 area are lower, not higher, than the central portion.

In 1924, A. T. Woodward (*vide* Harris(3)) discovered Darriwilian graptolites east of Bendigo, and I was led to examine the area in some detail. It was at once evident that at one point at least the boundary between Dunn's No 2 and No 3 areas east of Bendigo marked an important stratigraphical break, and an attempt was made to obtain further information north and south of this point. Several successful traverses were made, enabling a boundary line to be plotted for a distance of about 14 miles. It is possible that further work may extend this

In this work I received every encouragement from Mr. W. Baragwanath, Secretary for Mines, and assistance from the Bendigo Branch of the Geological Survey, then in charge of the late Mr. H. S. Whitelaw. While my work was in progress, Mr. J. Caldwell, of the Survey staff, was engaged on an area which included part of the district that I was studying. His work enabled a more comprehensive account of the structure of the whole district to be given, and in the portion nearer to Bendigo, with which I was mainly concerned, it served as a check on my earlier observations, except in one of the described sections, where Mr. Caldwell's mapping fills in an important gap in my records. I had the opportunity of visiting many parts of the district with Mr. Caldwell, identifying the numerous graptolites he collected and indicating the zones represented.

In addition, I have had on many occasions the pleasure of the company in the field of Messrs. P. Tilson, of the Echuca Technical School, and D. E. Thomas, of the Geological Survey of Victoria.

Traverses across the Boundary.**(a) Emu Creek Water Race**

The most southerly observations were made in the south-west of the Parish of Strathfieldsaye. Here the meanders of the Emu Creek No 2 water race of the Victorian Water Supply Commission expose numerous graptolite beds. The only part relevant to the present discussion is that between the Emu Creek Church of England (allotment 30B of section III) and the south-west corner of the parish. From the church southward the race cuts through almost continuously fossiliferous beds till it reaches the boundary of the State forest. These beds all belong to the upper part of the Darriwilian, but a troublesome cleavage makes an exact account of their fauna difficult. As the race is followed southwestward the last Darriwilian outcrop occurs near a series of low brick falls in the race. Then upstream for about 20 chains one crosses a flat with no rock exposures. When rock again appears in the channel walls it is no longer soft-pink or purple crushed shales, but hard brown or greenish micaceous shales and sandstones. Lithologically these beds would be placed lower, and this is corroborated by the finding of a solitary specimen of *Tetragraptus fruticosus* (4-br) about half a mile west of the falls. The brown shales and sandstones continue, and in the extreme south-west of the parish Bendigonian beds can be recognized with certainty, *Tetragraptus fruticosus* (3-br) and *Phyllograptus* being found.

(b) West of Strathfieldsaye Township

This section is a short distance to the north of the one just described, and for it I am indebted to the work of J. Caldwell, which I quote with the permission of the Secretary for Mines. On the western boundary of the Parish of Strathfieldsaye, about 1½ miles from the north-west corner, Upper Darriwilian graptolites occur in broken material thrown out from shallow alluvial shafts. They can be traced to the eastward, and one of the best exposures is the surfaced area near the north-west corner of allotment 3 of section XIX, marked A196 on Caldwell's plan. Less than 60 chains to the south, and, therefore, much closer across the dividing line, running a little to the west of north, Lancefieldian graptolites (*Bryograptus*) occur. Similar fossils are found further south, and again Upper Darriwilian graptolites occur within a mile to the east of them. The actual line of demarcation passes across soil-covered flats, but its general direction is obvious. Still further south, in allotments 5 and 6 of section IV, Caldwell has found Bendigonian graptolites, showing that the Lancefieldian belt is narrow and about half a mile wide. My own observations lead me to believe that it narrows still further.

as it is traced south, but the evidence of a single *Tetragraptus fruticosus* found in situ along the Emu Creek race is insufficient to warrant a definite statement.

FIG. 1

(c) *McIvor-road and Heathcote Railway (Fig. 1).*

The McIvor-road leads east from Bendigo towards Axedale and Heathcote, and, like the Mount Alexander-road further south, preserves the name of the once famous gold diggings, on which the township of Heathcote arose. For its whole length it is closely followed by the railway, so that road and railway give practically the same section. Leaving the closely settled

city area of Bendigo, one goes eastward over rising ground along the slopes of which runs a water race shown on old maps as the "Spring Gully Aqueduct". Along this race and east of it Lancefieldian graptolites may be gathered, including *Tetragraptus approximatus* and *T. decipiens*. The rocks are predominantly brown sandstones and shales, the latter with the somewhat satiny gloss often characteristic of the older beds. Further east, graptolites are hard to find, but a few distinct forms were discovered north-west and east of the Grassy Flat Reservoir No 2. North of this, the road passes through a cutting which, though shallow, fortunately shows a continuous section along the south side of the road. When the road cutting ends the section is continued by a storm-water channel. With breaks, the channel and the railway cuttings carry the section eastward for 3 miles. This is the most satisfactory section in the district. The brown shales just mentioned are not fossiliferous in their most easterly extension, but can be traced westward to Lancefieldian graptolite beds as already stated. Their dip is uniformly to the east, and they end abruptly, being succeeded on the road by 10 feet or so of ferruginous rubble, immediately east of which is a thin band of flinty quartz fragments, probably representing as nearly as can be determined the actual break in the country. Then come crushed and slickensided soft pink and purple shales, in the fragments of which, even close to the break, fragments of graptolites can be distinguished. As these shales become less shattered, they are seen to be richly fossiliferous, and for over a mile and a half every favorable band—some of considerable width—yields nothing but high Darriwilian (D 1) graptolites in profusion so characteristic of this horizon. To complete the section, it may be stated that the highest beds pass through transition beds to D 2 and then to D 4, a bed repeated after a considerable interval. Still further east the beds descend through the Castlemainian to Bendigonian and Lancefieldian.

(d) *White Hills and Epsom*

North of the McIvor-road section is an area of country unfavorable for detailed work, but the continuation of the line was picked up just north of the Bendigo city area. The bedrock, where exposed in the railway cuttings at White Hills, is almost certainly not Darriwilian, but just outside the city boundary the characteristic blue and purple shales are shown among the debris from old alluvial shafts, now filled in, between the Echuca road and the railway. Across the Bendigo Creek to the west is the old spoil heap of a mine on the Isabella Reef. The change in the nature of the sediments is most striking. The alluvial shafts yield, from material weathered almost to clay, the characteristic D 1 forms. The brown shales of the reef mine are unfossiliferous, but after an intensive search *Tetragraptus decipiens*, *Clonograptus*, *Bryograptus*, and Phyllocarids were

tound in thin black partings, demonstrating the Lancefieldian age of the beds. The distance between these two beds is about half a mile, but the line is even more closely marked by the finding of Darriwilian graptolites in or near allotment 46 of Epsom.

(c) *Huntly*

As one works north from Bendigo, the relief of the area becomes less pronounced, and rock outcrops are less frequent. Where shales do occur, they are often so bleached that all traces of graptolites are obliterated. The Bendigo Creek also meanders here through wide silted flats. Fortunately, the course of the Huntly Deep Lead is more or less coincident with the valley of the Bendigo Creek, and numerous spoil heaps show the typical pink and purple shales. Badly weathered as is the material it rarely disappoints the searcher for fossils, provided he is indifferent as to state of preservation. The lower or Lancefieldian rocks provide a marked contrast, but fortunately graptolites, though very rare, are not entirely absent. The most northern line of section was run west from Huntly township. At the Huntly Railway Station, and just north of the township, lower and middle Darriwilian graptolites may be obtained from numerous bands (D 5-D 3). Southwest of the township, in allotment 8 of section XXIX, higher beds occur (probably D 2-D 1), and the occurrence in close proximity of slabs, some of which split along the bedding and some almost at right angles to it, would seem to indicate that the beds are closely folded. Still further west, W. Kingston, of the Bendigo Geological Survey Office, collected typical D 1 graptolites, while from thin partings of ferruginous shale near the Wallace Reef 1 was fortunate enough to collect *Clonograptus* and *Bryograptus*, indicating that as far north as this the Lancefieldian abuts on the Upper Darriwilian.

This last locality is just on the edge of the "Whipstick" or Mallee belt, into which the beds have not yet been traced.

Summary of the Evidence of the Sections.

When the results of the above five sections are plotted on the map (Fig. 2), it is seen that the dividing line between high Darriwilian beds to the east and Lancefieldian beds to the west (possibly Bendigonian in the south-west) is an almost straight line bearing about N 15° W and traceable for 14 miles or more. Evidence from the Bendigo area on the west and the Axedale area on the east shows that Bendigonian and Castlemainian beds were deposited throughout the whole district, and that the succession is normal. Herman's estimate (pp 12-13), based on the palaeontological work of R. A. Keble, gives the thickness of the incomplete Castlemainian in the Bendigo area as 3,300 feet.

measured vertically, but the evidence for this cannot be regarded as conclusive Herman's estimate (also based on Keble's work) for the thickness of the Bendigonian vertically is 5,400 feet, and may be accepted as being as nearly accurate as the weighing of a considerable amount of evidence by the palaeontologist best acquainted with these beds would permit. The thickness of the Darriwilian east of Strathfieldsaye has not been measured, but may perhaps be taken as being as great as that given above for the Castlemainian. Assuming these thicknesses, and knowing that the highest Darriwilian abuts on beds which are almost certainly not the highest of the Lancefieldian, the thickness of missing beds would appear to be over 12,000 feet measured vertically, or perhaps 5,000 feet measured at right angles to the dip. The only practicable explanation of this seems to be faulting, and I would suggest the name "Whitelaw Fault" for the feature, perpetuating the name of a family whose work on Victorian gold-fields was outstanding, and particularly of the late H S Whitelaw, who was, at my request, the first to show any portion of the fault line on a plan. The direction of the fault is practically that of the strike of the rocks.

Comparison with Dunn's plan shows that while at first sight it appeared that the fault coincided with his boundary, this was due only to the fact that the fault was first noted at the only point where there was any coincidence—on the McIvor-road North and south of this, Dunn's line and the fault do not approach each other.

The most striking comparison is with the Muckleford Fault described by Harris and Thomas(4). This, like the Whitelaw Fault, has a direction practically coincident with the strike of the bedrock, and separates Lancefieldian beds on the west from Darriwilian on the east, though the Darriwilian beds east of Bendigo are higher than those along the Muckleford Fault. In both cases the line is important as separating an area in which reef gold-mining has been successfully carried on from one in which no great discoveries have been made.

References.

- 1 DUNN, E J Reports on the Bendigo Gold-field, Pts I and II Special Reports, Dept of Mines, Victoria, 1893, 1896
- 2 HERMAN, H Structure of the Bendigo Gold-field *Bull Geol Surv Vic*, No 47, 1923
- 3 HARRIS, W J Victorian Graptolites, Part 2 *Proc Roy Soc. Vic (ns)*, xxxviii, 1926
- 4 HARRIS, W J, and THOMAS, D E, Geological Structure of the Lower Oldovician Rocks of Eastern Talbot *Ibid*, xlvi (2), 1934

FIG. 2.

[PROC ROY SOC VICTORIA, 46 (N S), PT II, 1934]

ART XVII—*On the Occurrence of the Pelecypod Genus Miltha
in the Australian Tertiary*

By F A SINGLETON, M Sc,
and NELLY HOOPER WOODS, M A

(With Plate VIII)

[Read 14th December, 1933, issued separately 7th May, 1934]

Introduction.

One of the most striking fossils among the Tertiary mollusca from the Abattoirs Bore, near Adelaide, South Australia, consists of fragments of a large and exceedingly thick bivalve shell of Dosinid appearance, recently described by one of us under the name of *Dosinia grandis*. The present authors, after further examination of the type material and of some additional specimens from the same locality collected by Mr F A Cudmore, are of the opinion that it is better placed in the Lucinoid genus *Miltha*, being referable to the subgenus *Milthoidea*, recently proposed by Marwick for two Tertiary species from New Zealand. Tate's record (1890, p 174) of *Miltha* from a similar horizon in the Dry Creek Bore possibly refers to the present species, which is the only one of the genus as yet described from Australia.

The difficulty in recognition of its true affinities is due to the fragmentary nature of the material, and it may be noted that an incomplete shell from a boring on Flinders Island, Bass Straits, submitted to the senior author by Mr P B. Nye, and herein described as a subspecies, also bears a deceptive resemblance to a depressed *Dosinia* such as the North Australian *D. lamellata* Reeve or *D. plana* Reeve from China.

Our best thanks are due to Mr Cudmore for the loan of his topotypes, to Mr Nye, B M E, Government Geologist of Tasmania, for permission to describe the Flinders Island specimen, and to Miss J Wilson-Smith for her excellent photographs of a difficult subject.

Family LUCINIDAE

Genus **Miltha** H and A Adams, 1857

Lucina (Miltha) H and A Adams, 1857, ii., p. 468 (Apr.).
Lamy, 1920, p. 119 (Grant and Gale, 1931, p. 291).

Phacourea (Miltha) H and A Adams. Dall, 1901, p. 806, and
1903, p. 1361.

Miltha, H and A Adams Woodring, 1925, p. 115.

Type (by monotypy) *Lucina childreni* (Gray) = *Tellina childreni* (Gray), 1825 Recent, Brazil

"Shell inequivalve, with the surface of the valves nearly smooth Hinge with the lateral teeth obsolete" (H and A. Adams)

"Shell large, thick, ovate, compressed; umbo low, acute, lunule very small, deeply depressed, anterior and posterior dorsal areas poorly defined, sculpture consisting of exaggerated incrementals and obscure traces of radials, ligament and resilium external, wide, long, hinge of right valve consisting of a narrow anterior cardinal (3a) and a heavy obscurely bifid posterior cardinal (3b), hinge of left valve consisting of a heavy obscurely bifid anterior cardinal (2) and a narrow posterior cardinal (4b), anterior adductor scar very long." (Woodring.)

Subgenus **Milthoidea** Marwick, 1931.

Miltha (Milthoidea) Marwick, 1931, p. 70.

Type (by original designation) *Miltha neozelanica* Marshall and Murdoch, 1921 Pliocene, New Zealand. Figured by Marshall and Murdoch, 1921, pl. 16, figs. 1, 2, and pl. 17, fig. 1.

"Shell similar to *Miltha*, but having the posterior wing well developed and the long anterior muscular impression adjacent to the pallial line. The lunule, though small, is deeply excavated and tends to obliterate the right anterior cardinal. The attachment of the ligament is relatively broadly triangular, and differs markedly from that of Reeve's figure of *M. childreni* (Conch. Syst., 1841, pl. 59, fig. 2)." (Marwick.)

MILTHA (MILTHOIDEA) GRANDIS (Hooper Woods, 1931).

(Pl. VIII., figs. 1-3.)

Dosima grandis H. Woods, 1931, p. 148, pl. 7, figs. 5, 6.

Shell large, solid, subcircular, gently convex, umbo prosogyrate, acute, lunule small, deeply impressed; sculpture dominantly concentric, of closely but irregularly spaced fine raised threads, more prominent posteriorly, with intervening concentric striae, crossed by microscopic radial incised markings, visible only upon magnification, which are irregular and discontinuous, and commonly unite and bifurcate. This gives rise in the umbonal region to a fimbriate ornament, with the bifurcations usually directed umbonad, towards the ventral margin

the radial scratchings, which cross the concentric threads, form a septinate ornament, in both cases this is to be seen only under a lens.

In addition to the fine ornament, obscure lineations from the umbo to the ventral margin form curved radii which are concave anteriorly. Approximately medially there is also a very shallow radial sulcus, about $4\frac{1}{2}$ mm wide near the ventral border, the finer concentric striae becoming somewhat irregular and oblique when crossing it. Traces of a posterior sulcus are present below the post-umbonal dorsal margin.

Hinge plate broad and heavy, anteriorly shallowly excavate, posteriorly bearing an elongate ligamental groove and an obliquely triangular roughened area for attachment of resilium. Right valve with a prominent narrow anterior cardinal, grooved on the posterior side, and a broad somewhat bevelled posterior cardinal, having a tendency to become bifid, separated by a deep pit for the reception of the left anterior cardinal, the latter is long, narrowly triangular, and weakly bifid, posterior to which is the deep pit for the right anterior cardinal, followed by the elongate left posterior cardinal. The anterior cardinal teeth tend to become effaced by a backward prolongation from the deeply inflexed lunule.

Adductor scars very large, deeply impressed, the anterior scar very long, ovate, and finely transversely striate, the posterior scar much smaller and longitudinally striate, inner ventral margin broad, weakly crenulate, pallial line entire.

About half the considerable thickness, 6 mm, of the shell is due to a secondary layer of chalky texture, which is distinctly punctate as in the Recent *Codakia punctata* (Linné).

Umbono-ventral diameter of largest fragment circa 61 mm.

Type Material—Five syntypes, of which three are fragmentary left and two right valves, in the Tate Museum, Adelaide University Geology Department.

Type Locality—Between 400 and 500 feet in the Abattoirs Bore, Dry Creek, near Adelaide, South Australia. Horizon uncertain but probably late Tertiary.*

Topotypes in the private collection of Mr F A Cudmore comprise portions of two right valves and one left valve, which show a few additional features. In one the remarkable thickness of 11 mm is attained, of which 8 mm is due to secondary thickening, across which, in a second specimen, a deep groove runs obliquely from beneath the umbo past the anterior margin.

* Since the paper was read, Mr L W Stach has shown one of us (F A S), an imperfect right valve, measuring 39 mm in height, from the Kalimna (Lower Pliocene) of Beaumaris, Port Phillip, Victoria. It is a *Multhonidea* closely allied to *M. grandis*, but definite identification with it is not made, since what remains of the post-umbonal margin is more curved, and internal thickening of the shell is wanting. It is less depressed than the Flinders Island shell.

of the posterior adductor scar. This groove is not always present, but there are traces of a second trending towards the tip of the anterior muscle scar, as is sometimes seen in *Codakia punctata*. Another fragmentary specimen shows the long anterior scar to be entirely within the pallial line, though closer to it than is usual in the Lucinidae.

The species is evidently a near relative of *M. neozelania*, the type of the subgenus *Milhoidea*, but differs in the crenulation of the inner margin and in the crassness of the Australian shells, which are too fragmentary for closer comparison.

The associated molluscan species are numerous but somewhat puzzling, they appear to indicate an admixture of faunas extending from the Lower Aldingan (Janjukian) through Upper Aldingan (Kalmnan) to possibly still later, or ranging from Oligocene or Miocene to Pliocene or younger. It is probable that several horizons are represented by the material dumped beside the bore, but the state of preservation and nature of the matrix appear uniform throughout, so far as can be judged. The mollusca are being worked out by the junior author, who has already listed the pelecypods (Woods, 1931).

MILTINA (MILTHOIDEA) GRANDIS FLINDERSIANA, subsp. nov
(Pl. VIII, Fig. 4)

This is founded on portion of a somewhat worn right valve which is probably conspecific with the South Australian specimens, with which it agrees in ornament and in hinge characters, though the teeth are less strongly developed.

The median radial sulcus is practically obsolete, but the narrower posterior sulcus is prominent. The interior shows the elongate anterior adductor scar, but lacks the characteristic secondary thickening of the larger shells from the Abattoirs Bore, a difference perhaps due in part to age. It is also more depressed at all stages.

Length, circa 53 mm. (estimate); height, circa 50 mm.; thickness of valve 7 mm.; of shell, $2\frac{1}{2}$ mm. (max.).

Type Material.—Holotype in the collection of the Tasmanian Geological Survey, Mines Department, Hobart, Tasmania.

Type Locality.—Between 55 and 80 feet in No. 1 Bore, Winghamoo, Flinders Island, Tasmania. Horizon probably very late Tertiary or post-Tertiary.

The associated mollusca, which have not yet been studied, appear to be for the most part of still existing species, so that a late Cainozoic age is suggested. The conchological and geographic differences, as well as a probable difference in horizon, make separation as a sub-species the safest course, at least for the present.

J. Wilson-Smith photo]

Miltha. Tertiary, Australia.

[Page 211]

References.

- ADAMS, H and A, 1857 The Genera of Recent Mollusca 3 vols, 8vo, London, 1858 (issued in parts, 1853-58)
- DALL, W H, 1901 Synopsis of the Lucinacea, and of the American Species *Proc U S Nat Mus*, xxiii, No 1237, pp. 779-833, pls xxxix-xlii, 1901
- DALL, W H, 1903 Contribution to the Tertiary Fauna of Florida, Part VI *Trans Wagner Free Inst Sci*, iii (6), pp 1219-1654, pls xlvi-xli, Oct., 1903
- GRANT, U S, and GALT, H R, 1931 Pliocene and Pleistocene Mollusca of California *Mem San Diego Soc Nat Hist*, 1, 1036 pp, 32 pls, Nov 3, 1931
- LAMY, E, 1920 Révision des Lucinacea vivants du Muséum d'Histoire Naturelle de Paris *Journ Conchyliol*, Paris, lxv (1), pp 71-122, 169-222, July, 1920
- MARSHALL, P, and MURDOCH, R, 1921 Some Tertiary Mollusca, with Descriptions of New Species *Trans Proc NZ Inst*, liii (new issue), pp 77-84, pls xiv-xix, Aug 31, 1921
- MARWICK, J, 1931 The Tertiary Mollusca of the Gisborne District *NZ Geol Surv Pal Bull* No 13, 177 pp, 18 pls, Aug 1, 1931
- TATE, R, 1890 On the discovery of Marine Deposits of Pliocene Age in Australia *Trans Roy Soc S Aust*, xii (2), pp 172-180, 1890
- WOODRING, W P, 1925 Miocene Mollusks from Bowden, Jamaica Pelecypods and Scaphopods Carnegie Inst Washington, Publ No 366, 222 pp, 32 pls, May 20, 1925
- WOODS, N H, 1931 Pelecypoda from the Abattoirs Bore, including Twelve New Species *Trans Roy Soc. S. Aust*, iv, pp 147-151, pls vii, viii 1931

Explanation of Plate VIII.

(All figures approximately natural size)

- Fig 1—*Miltha (Milthoidea) grandis* (H Woods) Syntype, left valve
(a) interior, (b) exterior
- Fig 2—*M. grandis* Syntype, right valve (a) interior, (b) exterior
- Fig 3—*M. grandis* Syntype, interior of left valve
- Fig 4—*M. grandis flindersiana*, n. subsp. Holotype, right valve (a)
interior, (b) exterior.
-
-

[PROC ROY SOC VICTORIA, 46 (N S), Pt II, 1934]

ART XVIII—*The Isolation of the Organism causing Crown Gall on Almond Trees in Victoria*

By B. J. GRIEVE

(Botany School, University of Melbourne)

(With Plate IX)

[Read 14th December, 1933, issued separately 7th May, 1934]

So far as can be ascertained a pathogenic organism has not definitely been described as the cause of galls on fruit trees in Australia, although such galls are commonly known as Crown Galls and are attributed to *Bacterium tumefaciens* Sm and T (1, 3). The object of this note is thus to put on record the isolation and identification of the organism causing Crown Gall in Australia.

Galls found occurring on Almond trees at Eldorado in Victoria were sent to the author by Mr Adam, of the Victorian Department of Agriculture. Isolation experiments were carried out and an organism isolated in pure culture which, on inoculation into the stems of healthy Almond plants, was capable of producing the typical gall formation.

Distribution of the Crown Gall Disease in Australia.

Although the isolation of the organism from Crown Galls on fruit trees was made from affected Almond trees in Victoria, it may be safely set out that galls occurring on fruit trees in the various Australian States are due to *Bacterium tumefaciens*. Crown Gall has been recorded as occurring in most of the Australian States. It appears particularly to attack Pear and Peach trees in New South Wales(1, 2), and Peach, Pear, Plum, and Almond trees in South Australia(3). It has been found occurring on Almond trees in Victoria and on Hop plants in Tasmania.

Isolation Experiments.

Advantage was taken of the improved technique of isolating the Crown Gall organism as described by Riker(4), and by Robinson and Walkden(5). Fifteen suggestive colonies were selected from the plates resulting from isolation experiments from Almond tree galls, these colonies were subcultured, and after the organisms were found to be in pure culture, inoculations were made into various young and rapidly growing plants.

Five of the cultures used were demonstrated to be virulent, producing quite large galls on a number of hosts, namely, Almond, Peach, Hop, Castor Oil plant (Pl IX, fig 1), Tomato (fig 2), and Sunflower (fig 3). The same organism was re-isolated in pure culture from the galls which had been experimentally produced on the plants named above.

Description of the Causal Organism.

MORPHOLOGICAL CHARACTERS

The organism is a small rod-shaped bacterium, measuring from 0.9 to 1.6 μ in length, and 0.4 to 0.5 μ in diameter. It occurs singly or in pairs, and is motile by one to two polar flagella. Neither spores nor capsules have been observed. It is Gram negative and not acid fast.

CULTURAL CHARACTERS

All cultures were incubated at 25° C unless otherwise noted.

Beef Agar Plates—Surface colonies develop within 64 hours, and finally reach a size of from three to four millimetres. The colonies are circular, white, at first translucent, later becoming rather opaque with a translucent margin. The edges of the colonies remain regular.

Beef Agar Slope, pH 7—Growth is moderate, raised, moist, wet-shining, regular to slightly undulate-edged. No odour is produced.

Gelatine Plates—The plates were incubated at 20° C. Colonies appeared within 64 hours, being small, round, white, and irregular-edged. The colonies were translucent at first, later becoming opaque white.

Gelatine Stab—A whitish, moist, spreading growth occurred at the surface. Growth continued in the depth for two centimetres, and was filiform in character. No liquefaction occurred.

Gelatine Slope—Growth on gelatine slopes was whitish, wrinkled, somewhat dull, and the edges were irregular.

Beef Bouillon—The organism grew well in broth, good uniform clouding occurring within 64 hours.

Litmus Milk—The colour of the litmus milk was reduced by the twelfth day to a greyish white, and slight clearing had occurred. No clot occurred in the milk.

Potato Cylinders—Abundant, moist, wet-shining, spreading growth occurred on the potato slices. After some days a suggestion of browning became apparent.

Uschinsky's Solution—Growth in Uschinsky's solution was moderate. A pellicle was formed.

Cohn's Solution—No visible growth occurred in this medium.

PHYSIOLOGICAL CHARACTERS

Fermentation Reactions —

Dextrose Broth—Good uniform clouding appeared in 64 hours, and a pellicle was formed. Neither acid nor gas was produced.

Lactose Broth—Uniform clouding with the formation of a thin pellicle occurred in 64 hours. Neither acid nor gas was produced. After some days a whitish deposit gathered at the base of the tube.

Galactose Broth—Clouding occurred in 64 hours, and later a pellicle was formed. Neither acid nor gas was produced.

Saccharose Broth—Good growth in 64 hours with the formation of a pellicle. Neither acid nor gas was produced. A whitish deposit gathered at the base of the tube.

Nitrate Reduction—Nitrates are not reduced. The organism was grown in nitrate broth, the tests for the presence of nitrite being made at the end of five, ten, and fifteen days with sulphamic acid and alpha-naphthylamine in acetic acid.

Hydrogen Sulphide.—Hydrogen sulphide was produced.

Ammonia Production—Ammonia was produced.

Indol Production—Indol was not produced. Peptone water, using Witte's peptone, was employed, and the Ehrlich test was used.

Diastatic Reaction—No diastatic reaction was observable. Tests were made after five, ten, and fifteen days.

Temperature Relations —

The optimum temperature for growth was found to lie between 25° C. and 30° C. No growth occurred above 37° C., while a scanty growth was visible when the organism was grown at 1° C.

Thermal Death Point—Growth of the organism was found still to occur at 51° C., but not at 52° C.

Parallel experiments to the above were made using cultures of *Bacterium tumefaciens* which were kindly forwarded by Dr. N. Brown, of the United States Department of Agriculture. The cultural and physiological characters of the Australian organism were found to agree with those of the type culture in all essential respects. Such differences as were observed, as the inability of the Australian organism to clot milk and the absence of a pellicle and stringing gelatinous threads in broth, do not appear to be significant, since one of the cultures received from America failed to clot milk and the other produced a uniform clouding in broth without the formation of a pellicle. Neither of the type cultures used produced acid in sugar-containing media.

Crown Galls.

From the above it is concluded that the organism causing galls on fruit trees in Victoria and other States of Australia is identical with *Bacterium tumefaciens*, Sm and T.

In conclusion, the author wishes to express his thanks to Dr McLennan, of the Botany School, Melbourne, for her helpful advice, and also to Professor Ewart for providing facilities for carrying on the investigation.

References.

- 1 BIRMINGHAM, W. A. Crown Gall of Fruit Trees *Agric Gaz New South Wales*, xxxi, p 717, 1920
- 2 —————. The Detection of Crown Gall before Planting *Ibid*, xxxii, pp 901-903, 1921.
- 3 QUINN, G. Root Gall in Fruit Trees *Fruit World of Australasia*, xxxi, p 428, 1930
- 4 RIKER, A. J. Some Relations of the Crown Gall organism to its host tissue *Jour Ag Res*, xxv, p 119, 1923
- 5 ROBINSON, W., and WALKDEN, H. A critical study of Crown Gall on *Chrysanthemum frutescens* in Britain *Ann Bot* xxxvii, p 299, 1923

Explanation of Plate IX.

- Fig. 1—Galls produced on Castor Oil plant by *B. tumefaciens* isolated from galls on Almond trees
Fig. 2—Galls produced on Tomato plant
Fig. 3—Galls produced on Sunflower plant
Fig. 4—Galls produced on Castor Oil plant
-

[PROC ROY SOC VICTORIA, 46 (N.S.), Pt II, 1934]

ART XIX—*The Palaeozoic Starfish of Victoria*

By ROBERT B. WITHERS, B.Sc., Dip. Ed.

and R. A. KEBLE, F.G.S.

(Palaeontologist to the National Museum, Melbourne)

(With Plates X-XII)

[Read 14th December, 1933, issued separately 7th May, 1934]

The Palaeozoic Stelleroidea of Victoria constitute, with three exceptions, the whole of that group known from the Palaeozoic rocks of Australia. This paper deals only with the Asteroidea. The Asteroidea were first recognized in Victoria by McCoy, who in 1874 described two forms, *Urasterella selwyni* and *Petraster smythi*, from Silurian strata. The list of species recorded or described prior to the publication of the present paper is as follows. They are arranged according to date of publication —

Species	Reference
<i>Petraster smythi</i> McCoy	McCoy, 1874
<i>Urasterella selwyni</i> McCoy	Ibid
<i>Palaeaster meridionalis</i> Eth. fil.	Etheridge, 1891
<i>Urasterella</i> sp. (two species)	Chapman, 1913

In the present work the authors have re-examined the above forms, as well as a considerable amount of new material. As a result the faunal list now comprises fifteen recognizable species, of which ten are new. These are distributed over eight genera, of which five have not hitherto been recorded from Victoria. All the starfishes recorded are from the Silurian. The list now known from Victoria is as follows —

Species	Horizon	Locality
<i>Caractacaster yarraensis</i> , sp. nov	Silurian (Yarravian)	South Yarra
<i>Hudsonaster australis</i> , sp. nov	Silurian	Yan Yean
<i>Palasterina flemingtonensis</i> , sp. nov	Silurian (Yarravian)	Moonee Ponds
<i>P. stachi</i> , sp. nov	Silurian (Yarravian)	Melbourne (excavations)
<i>P. umbonata</i> , sp. nov	Silurian	Plenty Ranges
<i>P. sp.</i>	Silurian (Yarravian)	South Yarra
<i>Petraster (?) aff. americanus</i> (d'Orbigny)	Silurian	Kinglake West
<i>P. angustior</i> , sp. nov	Silurian (Yarravian)	South Yarra

Species	Horizon	Locality
P. richi, sp. nov.	Silurian	Clonburane
P. smythi McCoy	{ Silurian including Yarrawian)	Kilmore, Moonee Ponds
Promopalaeaster meridionalis (Eth fil.)	Silurian (Yarrawian)	Moonee Ponds
P. meridionalis (Eth fil.) var. parvior, nov.	Silurian (Yarrawian)	Moonee Ponds
Urasterella cresswelli, sp. nov.	Silurian (Yeringian)	Lilydale
Salteraster selwyni (McCoy)	Silurian	Kilmore
S. biradialis, sp. nov.	Silurian	Kilmore
Schuchertia juniori, sp. nov.	Silurian	Kinglake West
S. macrarta, sp. nov.	Silurian (Yarrawian)	Brunswick

Outside Victoria the only known Australian asteroids are (?) *Australaster stutchburyi* (Eth fil.) and *Monaster clarkci* (de Koninck), which are both from the Permo-Carboniferous of New South Wales and have not been studied by the authors

With few exceptions, the material studied has been preserved in sandstone. A few have been preserved in mudstone, but the result is generally not so satisfactory. In the course of preservation the calcite ossicles have been dissolved away while the intervening spaces have been filled with matrix. The specimens, therefore, have a negative character, and a wax squeeze is necessary for examination. Most of the material was in the National Museum, Melbourne, and the Museum of the Geology School, University of Melbourne. The latter portion was generously placed at our disposal by Mr F. A. Singleton, M.Sc. Some of the best Kinglake specimens were recently presented to the Museum by Mr P. Junior, while others were collected by the senior author. The bed at Yan Yean from which *Hudsonaster australis* was obtained was discovered by both authors.

The genera *Hudsonaster*, *Caractacaster*, *Promopalaeaster*, and *Petraster* are restricted to the Ordovician in England and America. *Urasterella*, *Salteraster*, and *Schuchertia* begin in the Ordovician, but range into the Silurian. *Palasterina* is the only Victorian genus which does not occur elsewhere lower than the Silurian. This would seem to indicate that asterid distribution started from a point in the Northern Hemisphere.

The classification adopted in this work is that due to Schuchert (Schuchert, 1915) with the addition of the following genera by Spencer (Spencer, 1914, *et seq.*) viz., *Caractacaster* and *Salteraster*. To these comprehensive works on the American and British stelleroridea respectively, the authors are very deeply indebted.

Class STELLEROIDEA

Sub-Class ASTEROIDEA

PHANEROZONIA Sladen

Family HUDSONASTERIDAE Schuchert

Genus **Hudsonaster** Stenz

HUDSONASTER AUSTRALIS, sp. nov

(Pl. X, Fig. 6, Text-figs. 1, 3)

Description.—Small disc, with five short, tapering, rays, interbrachial arcs absent, each interbrachial area occupied by a prominent bullate axillary plate

Apically, usually three columns of large tumid and tuberculate plates are well shown (one radial, two supramarginals) and portions of two inframarginals, making five in all. The disc consists of a small, tumid, central disc-plate surrounded by still smaller accessory plates of variable size and extending to the arms. Madreporite not detected with certainty, though in the paratype one of the prominent axillary plates appears to be striate.

Orally, the narrow ambulacral channels may be entirely roofed over by the adambulacrals, or they may be open exposing markedly carinate, rectangular ambulacrals. In the holotype, ambulacrals with prominent, straight carinae are closely packed, the podial pores being small and located in the suture between the ambulacral groove and the adambulacrals. In the paratype the ambulacrals, with their sharp T-shaped carinae, and similarly placed large, distinct, podial pores, are less closely packed.

Ambulacrals opposite, about 15 in number. Adambulacrals small, rounded, one to each ambulacral plate. Inframarginal plates large, elongate, rectangular, strongly tuberculate, rapidly diminishing in size distally. Oral armature consists of elongate basal adambulacral plates.

Dimensions.—Syntypes, $R = 8$ mm., $r = 2.5$ mm., width of arms at base = 2.5 mm. Other specimens have similar dimensions.

Remarks.—The syntypes were obtained by splitting a slab of sandstone, a mould of the apical side coming away with one half and a mould of the oral side with the other. A portion of the mould of the central plate system of the apical side came away with the mould of the oral side, thus obscuring the mouth structure. In the paratype, however, this portion is clearly seen. Both agree in every essential feature with the generic characters of *Hudsonaster*, in size, arrangement, and form of plates on the rays both apically and orally, and in the primitive structure of the interbrachial areas.

Schuchert (1915, pp. 31-36) regards *Hudsonaster* as the most primitive Ordovician Stelleroid, and states that it is "near the radicle that gave rise through modification and inheritance to all the subsequent Stelleroidea". Spencer (1915, p. 57) combats this view, and claims (*ibid.*, 1914, p. 5) that the Stelleroidea were evolved from primitive stalked forms with a simple arrangement of plates.

Of the American forms, our species most resemble *H. narrawayi* (Hudson) (Schuchert, 1915, p. 59, fig. 1, pl. II, fig. 1, pl. IV, fig. 1) from the Middle Ordovician (Black River), U.S.A. *H. australis* is comparable in size, but has several more ambulacral plates to each arm. Furthermore, *H. narrawayi* has not the characteristic T-shaped carinae on the ambulacrals of the Victorian specimen.

Another somewhat related form is *H. matutinus* (Hall), (Schuchert, 1915, p. 57, pl. 2, fig. 2, pl. 3, fig. 2, pl. 5, figs. 1, 2) from the Trenton Limestone (Middle Ordovician) of U.S.A., but that species has wider ambulacral grooves and less round interbrachial marginals. The disc is somewhat narrower, and the disc plates larger. *H. milleri* Schuchert (*ibid.*, p. 60, pl. 4, fig. 2) from the Trenton Limestone is very similar, but apart from its oral side it is little understood.

Associates—*Ampyx yarracensis* Chapman, *Lindstroemia parva* Chapman, Brachiopods indet., Crinoids indet., &c.

Horizon—*Hudsonaster* has hitherto been recorded from the Middle and the Upper Ordovician of America and the Upper Ordovician of the Girvan District, Scotland. Its occurrence in Victoria is undoubtedly Silurian, but the beds from which it was obtained have not so far been correlated with any other bed either stratigraphically or palaeontologically. Its associated forms are known from the Melbourne area, but their ranges have not been ascertained.

Locality—At the summit of an anticline in a cutting on Yarrawa Creek-road, 3 miles east of Doreen Junction.

Family PROMOPALAEASTERIDAE Schuchert

Sub-Family MESOPALAEASTERINAE Schuchert

Genus **Caractacaster** Spencer

CARACTACASTER YARRAENSIS, sp. nov.

(Pl. X, Figs. 1, 2, Text-figs. 2, 4)

Palaeaster meridionalis Eth fil., Chapman, 1913, *Aust. Ass. Adv. Sci.* xiv, p. 214

Comparing those forms relegated to *P. meridionalis* with Etheridge's type, which was kindly loaned to us by the Australian Museum, Sydney, we are convinced that they are generically distinct and conform to the characters of *Caractacaster*, a

genus erected by Spencer (1916, p. 80) on *Palaeaster caractai* Gregory, of the Upper Ordovician (Caradocian) of the Welsh border.

Description.—From a relatively small central disc, five rays with straight borders taper rapidly, forming an obtuse interbrachial angle. Apically, the disc consists of a depressed central portion with a rather small centrale, surrounded by three circles of intermediate plates set in irregularly preserved smaller accessory plates.

Rays with a central row of round, tumid and tuberculate radalia, of which the primary plate is only very slightly larger than the remainder. To each side of these is a single row of small and in the distal portions indistinct row of adiadialia. The arms are bordered by a row of prominent rectangular supramarginals, which decrease in size only slowly as the tip of the arm is approached. Interbrachial areas distinguished by a somewhat enlarged transverse primary interradial and bordered by supra-marginals.

Orally, distinguished by a prominent, rather pear-shaped interbrachial axillary, only slightly enclosed by the adjacent infra-marginals. Ambulacral grooves deep, wide, and gradually tapering. Ambulacral plates, 15 or 16 in number, and bearing a prominent L-shaped ridge. Podial pores situated laterally, close to the adambulacrals.

Ambulacrals and inframarginals, both rectangular and about equal in number, border the rays.

Structure of the mouth not well defined, but in the holotype the oral armature appears to be formed by the prolongation of spines from the proximal ambulacral. The spines are curved and elongate, and are separated from the axillary interbrachial by two small adambulacrals.

Dimensions.—Holotype, $R = 8$ mm., $r = 2.5$ mm. Paratype, $R = 10$ mm., $r = 3.0$ mm.

Remarks.—In the holotype, one primary interradial is replaced by a rounder and more tumid plate, probably the madieporite. In a portion of the rays, the adambulacrals and infra-marginals appear to be fused into a series of very transverse plates. Closer inspection suggests, however, that this is only a false fusion due to petrifaction; in the holotype a few of the proximal plates show separate rectangular adambulacrals and infra-marginals.

C. yarraensis is smaller than *C. caractai* (Gregory) (Spencer, 1916, p. 80) of the Upper Ordovician of the Welsh border, and has fewer ambulacrals, and the oral armature appears somewhat less elongate. *C. intermedius* (Schuchert) [= *Mesopalaeaster intermedius* Schuchert] (Schuchert, 1915, p. 79) is similar in size, and resembles our species in the occurrence of two small adambulacrals between the interbrachial

marginal and the oral armature. The interbrachial marginal and inframarginal plates are, however, more prominent in *C. yarracensis*, and the coarse granulation of the adambulacrals found in the American species is absent. *C. intermedius* is an Upper Ordovician form in the United States of America.

Other species which it resembles belong to the related genus *Mesopalacaster*. *M. bellulus* (Billings) occurs in the Silurian (Rochester Shale) of Ontario, and is larger, as well as exhibiting some differences in the inframarginal plates. *M. shafferi* of the Upper Ordovician (Cincinnati Group) is comparable in size, but shows the arms terminating apically in large radial plates. There are also oral differences.

Associates—*Petraster angustior* sp. nov., brachiopods, pelecypods, trilobites, &c.

Horizon—Silurian (Yarriavian Series)

Locality—South Yarra, Victoria

Sub-Family PROMOPALAEASTERINAE Schuchert

Genus **Promopalaeaster** Schuchert

PROMOPALAEASTER MERIDIONALIS (Eth fil.)

(Pl XII, Fig 7, Text-fig 5)

1891 *Palacaster meridionalis* Eth fil., Rec. Aust. Mus., 1, pp. 199-200,
pl. xxx, figs 16, 17

Original description (emended)—Body small, rays moderately long and rather acutely pointed, 15 mm from the actinal centre to the apices, interbrachial angles broad and obtuse; abactinal surface unknown. Ambulacral avenues wide in comparison to the size of the body, deep, very gradually tapering [except at distal end where they taper quickly], the sides more or less straight-walled, ambulacral plates about 20 in number on each side, transversely oblong, bearing more or less pyriform pores [placed close to the adambulacrals], adambulacral plates quadrangular [tumid and granulose], [proximally much] smaller than the marginal plates, placed along the prominent edges of the ambulacral avenues, marginal plates transversely elongated, [tumid and pustulose], slightly supra-marginal in position, and thus partially visible dorsally, diminishing very gradually in size towards the apices of the rays, interbrachial marginals [inframarginals] apparently two in number [it is quite clear there are two], much larger than the others, and generally triangular in shape [orad to these are two small interbrachial marginals]. Oral plates not distinctly visible but apparently lanceolate. [They can be quite well seen, are lanceolate in shape, and adambulacral in origin.]

Dimensions—R = 16 mm; r = 6 mm

Observations.—Definitely a *Promopalaeaster*. Many species of *Mesopalaeaster* bear a quite striking superficial resemblance, particularly *M. shafferi* (Hall) (= *Palaeaster shafferi* Hall), from Upper Ordovician (Cincinnati) U.S.A., but *Mesopalaeaster* has a single pentagonal axillary interbrachial, while *Promopalaeaster* commonly has two or more interbrachial marginals in addition. *Promopalaeaster meridionalis* has two of the latter, but the former cannot clearly be seen.

Etheridge (Etheridge, 1891) compared his species with several *Promopalaeasters*, namely *P. granulosus* (Hall), *P. antiquatus* (Locke), *P. excultus* (Miller), and *P. dyeri* (Meek), all of which were then called *Palaeaster*, and, as Etheridge pointed out, were much larger than the Australian species, and exhibited other differences.

A species comparable both in size and in other ways is *Promopalaeaster wykoffi* (Miller and Gurley) (Schuchert, pp. 119-120, pl. 18, fig. 6, pl. 19, fig. 2), from the Upper Ordovician (Richmondian) of U.S.A., but the rays are not as pointed, and the ambulacral furrow is wider.

Associates—*Petraster smythii* McCoy; *Gregoriura spryi* Chapman, also brachiopods, pelecypods, trilobites, &c.

Horizon—Silurian (Yairavian Series)

Locality—Moonee Ponds, Victoria

PROMOPALAEASTER MERIDIONALIS (Eth. fil.) var. **PARVIOR**, nov.
(Pl. X, Fig. 5)

The specimen shows the oral surface of one complete arm, and the margins of the two adjacent arms.

Description.—Arm petaloid, with wide and shallow ambulacrinal groove. Ambulacrals with a sharp T-shaped carina which unites with a narrow extension from the adjacent adambulacrals. Adambulacrals prominent, subquadrate distally, but becoming transverse proximally; largest near centre of ray; surface convex and pustulose; 17 in length of arm. Podial openings large, situated in sutures between ambulacrals and adjacent to adambulacrals. Inframarginal plates smaller than adambulacrals, rectangular proximally, but rapidly decreasing in size, and becoming elongate distally. Interbrachial angles acute, bounded by inframarginals. Between inframarginals and the pair of proximal adambulacrals which form the mouth angle-plates is a small area probably occupied by accessory plates. The structure has not been preserved sufficiently well for description.

Dimensions of Holotype— $R = 75$ mm.; $r = 4$ mm. Width of arm at widest part, 35 mm.

Remarks.—The variety, as the name indicates, is smaller than *P. meridionalis*. The arms also taper more rapidly in the distal half, giving a more petaloid appearance. The inframarginals

are not as large nor as quadrate, nor are there as many plates developed in the interbrachial areas. Possibly all these characters may be due to greater youth.

Associates—*Promopalaeaster meridionalis* (Etheridge), *Petraster smythi*, &c.

Horizon—Silurian (Yarravian Series)

Locality—Moonee Ponds Creek, Flemington Collected by Geological Survey of Victoria

Family PALASTERINIDAE Gregory (emend.)

Genus **Petraster** Billings

PETRASTER (?) aff **AMERICANUS** (d'Orbigny)

1915 *Petraster* (?) *americanus* (d'Orbigny), Schuchert, p 146, pl 26, fig 2

The specimen occurs on the same slab as *Schuchertia junoni*, sp nov (*qv*), and is only partially exposed. The large inframarginals bounding both the arms and the interbrachial arcs suggest it is a *Petraster*, while the shape and arrangement of the other ossicles most closely resemble the above form.

Horizon—Silurian

Locality—Collins Quarry, Kinglake West, Victoria

PETRASTER ANGUSTIOR, sp nov

(Pl XII, Figs 4, 5, Text-fig 6)

1913 *Palaeaster smythi* (McCoy), (*pars*) Chapman, Aust Assoc Adv Science, p 214

Specimens 372-6 of the National Museum Collection, Melbourne, were labelled *Palaeaster smythi* (McCoy) in 1902, and published as such above. Specimens 372-4 are in a hard brown sandstone and specimens 375 and 376 in a soft grey mudstone. All five specimens prove to be quite distinct from *Petraster smythi* McCoy. The first three are described as *Petraster angustior*, sp nov, but the last two can be described only as *Palasterina* sp.

Description—Arms five, sharply pointed and tapering rapidly from broad central disc. Each arm has a prominent central ridge along which are situated the convex, polygonal, and pustulose radials. To either side, but on the slopes of the ridge, is a row of small irregular accessory plates, increasing to two rows within the confines of the disc. At the base of the ridge is a row of supramarginals, similar in appearance to the radials, but smaller. The arms are bordered by relatively large subquadrate inframarginals, between which and the supramarginals there is, proximally, a row of ambital plates. Disc large, and characterized by a stellate pentagonal ridge. This is made by the union of the adjacent portions of the ridge from each ray, which portions bifurcate proximally. Inside of this pentagon

is a small rounded central disc plate surrounded by a ring of rather smaller plates, the whole interspersed with small accessory plates. Interbrachial areas broad and obtuse, bordered by inframarginals, and consisting of a number of small polygonal plates. Ambulacral plates (visible from apical side of specimen 372) transversely rectangular.

Dimensions of Holotype—R = 16 mm, 1 ~ 6 mm Width of arm at base, 5 mm

Remarks—*Petraster angustior*, as the name indicates, has less stout arms than *Petraster smythi*. Further, the inframarginals are not so large, especially in the interbrachial arcs. The nearest foreign species is *P. speciosus* (Miller and Dyer), which is also the form nearest to *P. smythi*. *P. speciosus* has the distinctive central ridge on the arms like the Victorian species, but it is larger.

Associates—*Caractacaster yarraensis*, sp. nov., brachiopods, pelecypods, trilobites, &c.

Horizon.—Silurian (Yarravian Series)

Locality—South Yarra

PETRASTER RICHII, sp. nov.

After this paper had gone to press, some recently-acquired specimens were brought under our notice by the Director of the Geological Survey of Victoria. They have moderately stout petaloid arms. Prominent inframarginals border the arms and continue across the obtuse interbrachial angles. Between them and the mouth angle-plates is a series of small accessory plates. These features indicate the genus *Petraster*. The form is less stout than *Petraster smythi* McCoy; and has more petaloid arms and larger inframarginal plates than *Petraster angustior*, sp. nov.

Horizon—Silurian

Locality—1 mile south-east of the Clonbinane Pre-emptive Right, just above junction of Comet and Sunday Creeks. Specimens 34,508–34,510, 34,514, Geol. Surv. Mus. Pies by T. Rich, Esq.

PETRASTER SMYTHII McCoy.

(Pl. XII., Figs. 1, 2)

1874 *Petraster smythi* McCoy. McCoy, Prod. Pal. VII, Dec 1, p 41, pl. x, figs 1, 1a, 1b

1913 *Palaeaster smythi* (McCoy) (part.) Chapman, F. On the Pal. of the Sil. of Vict., Aust. Assoc. Adv. Science 1913, p 214

The genus *Petraster* was founded by Billings in 1858, but the genotype was considered by James Hall in 1868 to be a *Palaeaster*. Hence the listing of *Petraster smythi* McCoy as *Palaeaster smythi* (McCoy) by Chapman in 1913.

Schuchert, however, in his 1915 monograph (p 142) was able to show that Billing's holotype was "a normal individual of a distinct genus," and not a *Palaeaster* as considered by Hall. In the circumstances McCoy's original name for the Australian species must stand. McCoy's specimen was not a clear one, but Schuchert (1915, p 148) regarded it as a genuine *Petraster* "so far as could be judged from the description and illustrations." We are able to confirm Schuchert's conclusion, and from specimens obtained by the late Mr George Sweet from the Silurian of E Kilmore, have been able to select an excellent plesiotype. Specimens from the Silurian of South Yarra, listed by Chapman in 1914 as "*Palaeaster smythi*" can be shown on examination to be a distinct species of *Petraster* with narrower arms than *P. smythi*. This is described above as *Petraster angustior*. The plesiotype shows very clearly the prominent inframarginals bordering the entire form, and the stout ridged arms, typical of *Petraster*.

Description of Holotype.—Five broad semi-elliptical lobes meeting at slightly rounded re-entering angles, leaving the length and the width at the base of the rays nearly equal, and less than the width of the disc. The upper surface is covered with irregularly polygonal tumid plates. Madiepoliform tubercle very large ($1\frac{1}{3}$ lines = 2.5 mm in diameter), irregularly porous, and rugged with branching vermicular ridges, excentric towards base of the two posterior ridges. Ambulacral groove narrow, bordered with a row of large transversely oblong adambulacral plates, wider than long, about 6 in 2 lines (7 in $\frac{1}{2}$ cm) at middle of ray [This interpretation is surely wrong. The transverse plates are the flooring plates of the ambulacral groove. They are opposite, and about 12 in a column]. Margin of rays bordered with a rather smaller row of similar (?) marginal plates (inframarginals). [These are smaller and not so transverse]. Between the row of adambulacral [ambulacral] and (infra) marginal plates an intercalary row of small irregular plates. [No evidence can be found of such "irregular" plates, the "intercalary" rows referred to are the adambulacrals, which are smaller and less transverse than the ambulacrals.]

Width of disc between the rays 7 lines; from tip to tip of rays, about 1 inch 2 lines, length of ray about 5 lines.

Dimensions.— $R = 15$ cm., $r = 7$ mm.

Remarks on Holotype.—The holotype is an impression of the dorsal side, but in the case of two of the rays, the apical plates are missing, and the ambulacral plates are seen from the inner side. The specimen must have suffered a good deal of crushing in the course of preservation, for many of the plates are displaced from their normal position, and the structure is not easily distinguished. McCoy's figure is not an accurate reproduction of the specimen but a generalized drawing showing the structure.

Horizon—Silurian (Yarravian Series)

Locality,—Flemington, near Melbourne

Description of Plesiotype.—Apical side only five short, stout arms emerging from a broad cential disc. The entire body of the animal is bordered by prominent granulate inframarginals. These are small and rectangular distally, but become much larger and elongate in the interbrachial arcs, where they are 4-5 times as long as broad, the long axis being transverse to the margin. The total number from the tip of one ray to that of an adjacent ray is about 20. A striking feature is their loose arrangement. Rays with a central row of polygonal radials, situated on a ridge, with a row of supramarginals on each side, followed by the inframarginals. Proximally the axis of the rays is occupied by two column of plates, which with the two supramarginal and two inframarginal columns makes six in all, as McCoy shows in his figure of the holotype. Proximally numerous accessory plates developed between the radial and supramarginal columns and particularly between the latter and the bounding inframarginals. The supramarginals can be traced in a broad arc across the interbrachial areas, between which and the boundary of the disc is a copious development of small accessory plates. Structure of cential part of disc, and position of madreporite uncertain.

Dimensions.—R 16 mm, r = 6 mm

Remarks.—The nearest related species is *Petraster speciosus* (Miller and Dyer) (Schuchert, 1915, p. 142, pl. 23, figs. 5-7; pl. 26, fig. 1, pl. 27, figs. 1-4) from the Upper Ordovician of the United States of America. The latter has, however, inframarginal plates which do not increase so much in size in the interbrachial areas, while the interbrachial arcs are more obtuse. While some of the specimens of *P. speciosus* are of similar size to our species, others are twice the size.

Associates.—*Salteraster selwyni* (McCoy); *Salteraster bivalvis*, sp. nov.

Horizon—Silurian.

Locality—East Kilmore. Discovered by the late Mr. G. Sweet, in yellow micaceous sandstone, and comprising part of the Sweet Collection presented by him to the National Museum.

Genus **Palasterina** McCoy

PALASTERINA sp.

1913 *Palaeaster smythi* (McCoy) (*part*) Chapman, *Aust. Assoc. Adv. Science*, p. 214

The two specimens (375, 376) now described as *Palasterina* sp. were labelled in the National Museum, Melbourne, as *Palaeaster smythi* (McCoy) (now known as *Petraster smythi* McCoy).

They were with three others (372-4) from the same locality which in this paper have been designated *Petraster angustior* sp nov. From the latter specimens, numbers 375 and 376 differ completely. The arms (the oral side only of which is preserved) are bordered by adambulacral plates only, and the interbrachial angles are acute. The grooves are wide and shallow, and the rectangular ambulacrals bear L-shaped carinae. The arms taper gradually as far as they are preserved, but the distal half of three of them is missing. In the remaining two the distal portion of two adjacent arms has been bent back into an interbrachial angle. This gives a false appearance of a broad disc, which perhaps accounts for their original identification. *Petraster* is further excluded by the absence of inframarginals from the arms.

Associates — *Petraster angustior*, sp nov., *Caractacaster yarraensis*, sp nov., &c.

Horizon — Silurian (Yarravian Series). The specimens are preserved in a grey mudstone. It is worth noting that the three other specimens from the same locality which were classed in the National Museum as *Palacaster smythii* were in a hard brown sandstone.

Locality — South Yarra. Collected by the late Mr F. P. Spy

PALASIERINA FLEMINGTONENSIS, sp nov

(Pl XI, Fig 3, Text-fig 7)

1913 *Urasterella* sp., Chapman, Aust Assoc Adv Science, p 214

This species is based on four specimens from the Silurian of "Flemington," and judging from the distinctive matrix, probably from the Geological Survey Locality (B8). Two were labelled *Taeniaster* by McCoy, and later *Urasterella flemingtonensis*, sp nov., by Chapman. Another (the holotype of the present species) was labelled "*Urasterella*, sp nov., but not *Urasterella flemingtonensis*," and the fourth, "*Urasterella* (?) sp." In spite of a certain variation in size, all four specimens have the same specific structure. Unfortunately the oral side only is preserved.

Description — Five long slender arms tapering slowly and uniformly to a sharp extremity. Ambulacral grooves wide and deep, the floor made of about fifteen stout rectangular ambulacrals with a strong and rather broad T-shaped ridge. The lateral end of this ridge is in line with a projection from the adjacent adambulacral. The adambulacral plates are prominent, rectangular to quadrate, and without exception have a convex tuberculate surface. Spines formerly attached can be seen alongside parts of the arms. Inframarginal plates elongate rectangular, but visible only for a short distance from interradius. Interbrachial structure consists of a stout lunate interbrachial axillary plate adoral to which are a pair of curved tuberculate mouth angle-plates.

Dimensions of Holotype—R = 20 mm, 1 = 4 mm Other specimens range from this size to one-half

Remarks—The above form has been identified as *Palasterina* on account of the wide ambulacral grooves bordered by the characteristic convex tuberculate adambulacrals. The mouth angle-plates, too, are of the *Palasterina* type, as are also the poorly developed inframarginals. *P. flemingtonensis* is distinguished from *P. stachi* (*q.v.*) by the absence of the wide border of ambital plates, and of the stellate interbrachial plate. The narrowing of the ambulacral groove towards the disc is not well marked in *P. flemingtonensis*, though it can be seen in one of the arms. This suggests that this character may not be specific, but may merely indicate the degree to which the animal has opened the groove. In the case of *Palasterina stachi*, however, the constriction is so marked on each arm that it is surely specific. *Palasterina flemingtonensis* is most closely related, among foreign forms, to *Palasterina primaeva* (Forbes). (Spencer, 1922, p. 223, pl. xv, figs. 5-7, pl. xvii, fig. 3, text-figs. 30, 138, 157-164) from the Ludlow of Westmoreland, England. The latter is about the same size, and lacks the abundant development of ambital and interradial plates seen in some species of *Palasterina*, but not in *Palasterina flemingtonensis*. The interbrachial axillary plate has a concave proximal edge and convex distal edge in both forms, but is more slender in the Australian species. In *Palasterina primaeva*, the tubercles on the adambulacrals are restricted to a ridge, but in *P. flemingtonensis* they are distributed over the whole surface. This indicates a more primitive stage of development.

Associates—*Sturtzura brisingoides* (Gregory); *Purcaster leptosomoides* (Chapman), *Petraaster smythi* McCoy; also brachiopods, pelecypods, and trilobites.

Horizon—Silurian (Yarravian Series).

Locality—"Flemington," near Melbourne.

PALASTERINA STACHI, sp. nov.

(Pl. XI, Figs. 4, 6)

Description—Rays, five, rather stout, uniformly tapering. Ambulacral groove wide, deep and petaloid, broadest about distal end of proximal third, tapering from there to mouth and more so distally. Ambulacrals sub-rectangular, wider than long, and with prominent L-shaped ridge, the foot of the L directed proximally, 10 to 12 in 10 mm. Adambulacral plates sub-square, convex and granulate; number about the same as the ambulacrals. Mouth angle-plates small, swollen and distinctly curved. Interbrachial angles characterized by a large interbrachial marginal plate, which is convex and hexagonally stellate with a rib radiating to each point, and distinctly pustulose. No plates intervene between this plate and the mouth angle-plates.

nor between it and the adjacent adambulacrals, but immediately to the side of it are three or four (the exact number cannot be determined) rectangular inframarginals, which rapidly decrease in size along the arm and then disappear.

The rays are bordered throughout their entire length by a series of small, elongate, ambital plates. The width of the border is greatest in the interbrachial areas, but gradually tapers distally. Apically, the arms consist of a prominent row of rounded convex radials on either side of which are a row of more elongate adradials (also convex) and a row of slightly smaller supramarginals.

Dimensions.—Holotype, $R = 20$ mm, $i = 7$ mm Paratype, $R =$ about 27 mm, $r = 7$ mm

Remarks.—The species is named after its finder, Mr L Stach, who a few years ago made a valuable collection of starfishes and crinoids from the Silurian of the Melbourne district.

The holotype shows the oral side, the paratype is a less perfect specimen of the apical side. The form is identified as *Palasterina* by the almost entire absence of inframarginal plates from the oral side, the petaloid arms, the swollen and curved mouth angle-plates and the well-developed ambital plates. The two latter characters exclude *Urasterella*. The polygonal interbrachial marginal, with the few adjacent inframarginals also suggest *Eoactus simplex* Spencer (Spencer, 1920, p 206, pl 1, fig 4; pl xv, fig 8, text-fig 147-148), but the latter has well-developed adambulacrals, and no ambital plates. It is also much smaller. The nearest species is *P. antiqua* (Hisinger) from the Wenlock and Ludlow beds of Great Britain (Spencer, 1922, p 228, pl iv, fig 6, pl xv, fig 9, pl xvi, figs 1, 2, text-figs 165-170). The ambulacral groove is constricted proximally as in the Victorian species, and in some cases (text-fig 170) a well-developed interbrachial marginal plate is present. *P. follmani* Sturtz (Spencer, *supra cit.*, pl. xvi, figs 3-7, text-fig 171) from the Lower Devonian of Germany is a very much larger species, but has a well-developed axillary plate like *P. stachi*.

Associates.—Crinoids and starfishes indet.

Horizon.—Silurian (Yarravian Series).

Locality.—Excavations for foundations of *Herald* office, corner of Collins-place and Flinders-street, Melbourne.

Holotype and paratype presented to the National Museum by Mr. L Stach

PALASTERINA UMBONATA, sp nov
(Pl X, Fig 4)

Description.—Five, rather stout, petaloid arms, with wide and shallow ambulacral grooves. Ambulacrals opposite; about 20 in number, rectangular, with prominent proximally directed L-shaped carina. Proximal to carina, and about one-third of

the distance from the central groove to the adambulacral, is a boss-like projection. Adambulacrals equal in number to ambulacrals, small, quadrate, with convex pustulose surface. A slight prolongation of each adambulacral is in line with the carina of the corresponding ambulacral. Oral armature made of five pairs of stout curved mouth angle plates. Interbrachial angles filled with a large reniform interbrachial axillary plate, and a number of other irregular interradial plates, the largest of which bound the interbrachial arc. Apical side unknown.

Dimensions— $R = 20$ mm., $r = 5$ mm.

Remarks.—The specimen on which the above is based was labelled *Urasterella* in the National Museum collections. *P. umbonata* is distinguished from *P. stachi* and *P. flemingtonensis* by its broader arms, and the presence of the boss-like protuberances on the ambulacrals. The specific name is a reference to the latter character. *P. stachi* is also distinguished by the greater development of ambital plates.

P. umbonata shows considerable resemblance to *P. primæva* (Forbes) from the Ludlow of Westmoreland, England (Spencer, 1922, p. 223, pl. xv, figs. 5-7, pl. xvii, fig. 3, text-figs. 30, 138, 157-164). The size and interbrachial structure are similar, but *P. primæva* has more prominent adambulacrals, and lacks the boss on the ambulacral plates, it also has less petaloid arms.

Horizon.—Silurian.

Locality.—Near Plenty Ranges, 6 feet beneath surface. Specimen purchased by National Museum from Miss M. F. Macfarlane, 27th February, 1915.

Group CRYPTOZONIA Sladen

Family URASTERELLIDAE Schuchert.

Genus **Urasterella** McCoy (Emend.).

URASTERELLA CRESWELLI, sp. nov.

(Pl. XII., Fig. 6.)

1913 *Urasterella* sp., Aust. Assoc. Adv. Science, p. 223.

Description.—Five slender arms radiating from a small central disc. Each arm has its margins almost parallel or only slightly tapering for three-quarters of its length, after which it tapers more rapidly. Grooves narrow and deep or arched over by adambulacrals. Structure of the ambulacrals not visible. Adambulacrals like coins set on edge, inclined towards the mouth, about nineteen in length of the arm. Viewed orally the adambulacrals appear transversely rectangular with convex surfaces. Outside the adambulacrals is a row of subquadrate inframarginals which extend the whole length of the arm. These increase in size proximally, become less closely packed, and more

triangular in shape. The latter is due to a lateral, probably paxillar, prolongation. Interbrachial angles acute, but structure not discernible. Oral structure also lost. Apical side unknown.

Dimensions— $R = 10$ mm., $r = 1$ mm. Width of arm at base = 2 mm.

Remarks.—The specimen gives just sufficient information to class it as a Urasterellid, but it may be *Salteraster*. In the absence of knowledge of the apical side, it is however best identified as *Urasterella*. Its arms are less petaloid than *Salteraster selwyni*, which form it resembles in size.

Urasterella ruthveni (Forbes) (Spencer, 1918, p. 140, pl. ix, fig. 5, pl. x, figs 4-6, text-figs 90, 91) has transverse adambulacrals like *U. cresswelli*, and has the same shape of arm; but it is a larger form. It occurs in the Upper Ludlow slates of the Lake District, England. *U. ruthveni* var. *leintwardensis* Spencer (Spencer, 1918, p. 142, pl. ix, figs 3, 4, text-fig. 92), is a slightly smaller form than *U. ruthveni*, but only the apical side is known. It is found in the Lower Ludlow beds of Herefordshire.

Salteraster (?) *coronella* (Salter) (Spencer, 1918, p. 153, pl. xi, fig. 6, text-fig. 99) is the form closest to *U. cresswelli* in size, but it has a broader disc. It is from Lower Silurian (May Hill Sandstone) of England. *U. cresswelli* is the only asteroid known from the type locality for the Yeringian (Middle Silurian) rocks of Victoria. It is named after the Rev A W Cresswell, who was a student of Professor McCoy's, and who contributed so largely to our knowledge of the Yeringian.

Associates.—It is associated with an abundant fauna of corals, brachiopods, pelecypods, trilobites from the neighbouring mudstones, and of corals, gasteropods, and ostracodes from adjacent limestones.

Horizon.—Silurian (Yeringian). Equivalent to Wenlock.

Locality.—Lilydale, Victoria. Collected by the late Rev A W Cresswell from the "mudstone quarries."

Genus **Salteraster** Sturtz

SALTERASTER SELWYNI (McCoy)

(Pl. XI, Figs 1, 2)

1874 *Urasterella selwyni* McCoy *Prodrom. Pal. Vic.*, Dec 1, p. 42-43, pl. x, figs 2, 3

The name *Salteraster* was proposed in 1893 by Sturtz, who named as the genoholotype, *Palaeaster asperrina* Salter. Spencer (1918, pp. 149-152) re-examined this species, and confirmed the erection of the genus *Salteraster*, which he diagnosed as "a Urasterellid with all its rows of adradalia exactly similar." Commenting on the Australian species *U. selwyni* he said (p.

155) "The figures and description suggest that the species might really belong to *Salteraster*, but good structural details are not given." An examination of McCoy's syntypes (moulds of the oral and apical sides respectively) confirms Spencer's opinion. Moreover, we have been able to make out some additional structural details.

Description.—Rays five, elongate, gradually tapering from a little beyond the base, which is slightly contracted. Angulated on the upper side by a prominent ridge along the middle of each ray, having a row of conical subcircular plates (radials), about eight in two lines (18–20 per cm.), each side sloping on the dorsal aspect from the middle with about three rows of conical tubercular plates (adiradials) rather smaller than the middle row. Three of the rows are exactly alike—the adiрадials, the fourth—the inframarginals—are only partially visible from the apical side and carry elongate spines. The five axial plates (axillary interbrachials) small, ovate, triangular, very tumid. Plates of central disc consist of a central plate with the five primary radials arranged in a circle about it. Adamambulacral plates large (tuberculate) extending to the tubercular margin, (according to McCoy, but it is quite clear that inframarginals are present), transversely oblong, about twice as wide as long (about 9 in two lines = about 12 in 5 mm.), the size decreasing distally. Bounding the adamambulacra for the entire length of the arm is a row of rectangular inframarginals, each with a long grooved spine. It is the outer end of these spines which are visible from the apical side. Ambulacral plates small rectangular and sharply ridged with the characteristic L-shaped carina, and large podial pores situated midway between central groove and adamambulacra, and in a deep ambulacral groove. Surface of plates granular (Madreporite not observed.)

Dimensions of Syntypes.—Length of ray from mouth to tip six lines ($R = 13$ mm., $r = 2$ mm.), greatest width near base $1\frac{1}{2}$ lines (2.5 mm.)

Remarks.—McCoy was unable to describe the character of the oral plates from his types, but other specimens from Kilmore are sufficiently clear to show that *S. selwyni* had the flat triangular oral plates characteristic of the Urasterellids. The nature of the spine-bearing ossicles is also of interest, Schuchert (1915, p. 174) describes long grooved spines springing from the adamambulacrals, but Spencer (1914, pl. viii, fig. 7) show spines attached to the inframarginals in *U. medusa*. In *S. selwyni*, the long spines are undoubtedly attached to the inframarginals. McCoy compared *S. selwyni* with *U. ruthveni* (Forbes) from the Upper Ludlow beds of the Lake district, but this form is a true *Urasterella*, and is distinctly larger. A more closely related species now known is *S. (?) coronella* (Salter) (Spencer, 1918, p. 153, pl. xi, fig. 6, text-fig. 99).

The ossicles of the apical side are somewhat similar, but the form has less pointed arms and is smaller than *S. selwyni*. *S. (?) coronella* is from the Lower Silurian (May Hill Sandstones) of Worcestershire

Associates—*Saltcraster biradiata*, sp nov Also *Dalmanites meridianus*, corals, brachiopods, &c

Horizon—Silurian

Locality—Range on E side of Commonage, Kilmore G.S.V
Loc Bb23

SALTERASTER BIRADIALIS, sp nov

(Pl XI, Fig 5, Text-figs 9, 10)

Five relatively slender convex arms radiating from a small central disc. For almost the entire visible length the sides of the arms are parallel, but the distal ends are in no case preserved. Apical sides of arms with two columns of subquadrate to rectangular radials, each with a granulate surface and a boss-like eminence. Entire margins of the rays made of row of inframarginal plates. In apical view these are round, with a convex surface, but laterally they can be seen to be elongate. Outside of them, in a few cases, there are some small plates, which must be displaced adambulacrals. Interbrachial angles with a small round interbrachial marginal visible also from oral side. Grooves wide, ambulacrals rectangular and ridged. Adambulacrals (15-20) prominent, swollen, and transverse rectangular. Inframarginals not visible, except close to interradius where they appear as a few small round plates. Oral plates small and triangular.

Dimensions—Holotype $R = \text{about } 12 \text{ mm}$, $r = 1.5 \text{ mm}$
Paratype $R = \text{about } 7 \text{ mm}$ (but distal end of arm not visible);
 $r = 1 \text{ mm}$

Remarks—*S. biradiata* is distinguished from *S. selwyni* by the shape of the arms, and the distinctive arrangement of the two central radial columns. The most nearly related foreign form is *S. (?) coronella* (Salter) (Spencer, 1914, p 153, pl xi, fig 6, text-fig 99) from the Lower Silurian (May Hill Sandstone) of Great Britain. This form, has, however, a single central radial column. It is also smaller. Most of the arms have the distal third broken off, but one which is better preserved is curved into an open S. This indicates a wriggling method of progression.

Associates—As for *S. selwyni*.

Locality—Range, E side of Commonage Reserve, Kilmore
Geol Surv Vict Loc Bb23

Horizon—Silurian, from the same open reddish sandstone bed as *S. selwyni*

Family SCHUCHERTIIDAE Schuchert

Genus **Schuchertia** Gregory*SCHUCHERTIA JUNORI*, sp. nov

(Pl. X, Fig. 3)

Description.—Central disc of moderate size, with five long and pointed rays. Apical side unknown. Orally, grooves narrow, ambulacrals strongly carinated; podial openings on sutures between plates, and close to adambulacrals. Exact number of ambulacrals difficult to determine, but in length of 10 mm near centre of one of arms there are about 11. Adambulacrals well developed, with convex granular surface, proximally subquadrate, medially more rectangular and distally broadly lunate. Each ambulacral is angulate nearest the ambulacral groove, the angle pointing to the carina of the adjoining ambulacral. Decreasing in size distally—most rapidly towards the slender tip of the ray. Inframarginal plates prominent, particularly in the proximal region where they are larger than adambulacrals, subquadrate to transversely rectangular, with convex, granular surface. Distally, they rapidly decrease in size, till medially they are elongate, rectangular, and much smaller than the adambulacrals. In places, particularly distally, the inframarginals appear to bear elongate spines, but from the sporadic occurrence of these they are probably paxillae displaced from the apical surface. Mouth angle plates adambulacral, large, high, and somewhat narrow. Interbrachial areas characterized by a rather prominent interbrachial marginal to either side of which are large inframarginals, while adorally are the prominent mouth angle plates and externally a mass of interbrachial accessory plates. These are mostly irregularly shaped and margin the arms for over one-half their length.

Madreporite fairly large, situated orally, in one of the interbrachial angles and close to the bordering inframarginals of one arm, finely and radially striate.

Dimensions of Holotype.— $R = 3.5$ cm., $r = 9$ mm., diameter of madreporite, 2.0 mm.

Remarks.—This fine specimen is named after its finder, Mr. P. Junor, of Kinglake West, who was good enough to present it to the National Museum, Melbourne.

Generically it has some of the characters of both *Petraster* and *Palasterina*, it is excluded from the first by the absence of accessory plates from the area between the interbrachial marginal plate and the mouth, from the second by the prominent inframarginals which margin the oral side of the arms. The most closely related species is *S. laxata* Schuchert, from the Upper Ordovician of Great Britain and America (Schuchert, p. 198, pl. 32, fig. 3, pl. 33, figs. 2, 3; Spencer, 1920, pl. v, p. 212, pl. xv, fig. 1, text-figs. 150–153), but it is stouter, and its arms are shorter and disc broader than *S. junori*. Nevertheless,

the narrow ambulacral furrows, strongly carinate ambulacrals, shape of ambulacral plates and structure of interbrachial arcs suggest a close relationship. Another form which resembles ours is *S. wenlocki* Spencer (Spencer, 1920, p. 215, pl. xiv, figs 5, 6, pl. xv, figs, 2-4, text-figs 124, 127, 143, 145, 154-156) from the Wenlock of Britain. *S. wenlocki* has, however, a much larger madreporite and a wide ambulacral groove.

Associates—*Pleurodictyum megastomum* Dun, *Furcaster leptosomoides* (Chapman), *Sturtzura brisingoides* (Gregory), *Chonetes bipartita* Chapman, *Rhynchotrema hopleura* McCoy, *Rutrocypraea junori* Withers

Horizon—Silurian The above facies is distinctly Upper Silurian

Locality—Collins Quarry, Kinglake West, in hard greenish sandstone

SCHUCHERTIA MACRARTA, sp. nov

(Pl. XII, Fig. 3, Text-fig. 8)

Description—Pentagonal disc with five relatively slender rays arising somewhat abruptly, tapering slightly to the distal third, then rapidly to the terminal plate, which is imperfectly preserved. Ambulacral grooves relatively wide. Ambulacrals broad, about 20 in number, rectangular, opposite, with L-shaped ridges, the foot of the L directed along the median groove towards the disc. Adambulacrals smaller than ambulacrals, asymmetrically lunate-triangular, concave towards mouth, the inner end of the lune being in the same line as the carina of the adjacent ambulacral, swollen and finely granulate. The transverse axis of each adambulacral is not at right angles to the median axis of the arm, but has its outer end directed away from the disc. Inframarginals elongate and rectangular and smaller than the ambulacrals, extend for about one-half the length of the arm, but have not been found on all the arms. The oral structure has been lost from the central disc, instead, is seen the inner side of the covering plates which are polygonal and numerous. It is not possible to define the boundary between the inframarginals and the numerous interbrachial accessory plates, nor is the outer margin of the latter clearly defined, though probably concave. Few of the interbrachial accessory plates extend along the arms, and then only for a short distance. The arms are in consequence relatively slender and appear to leave the disc abruptly.

Dimensions of Holotype—Radius 40 mm 15 mm These measurements are not exact as the outer margin of the disc and terminal plates of the rays are not clearly shown.

Remarks—The holotype, which was found by Mr R. Evans, is not well preserved, the interbrachial and oral structure being ill-defined. The inframarginal plates may be seen bounding the arm for about two-thirds their length, which character excludes the genus *Palasterina*. On the other hand, the inframarginals

are not sufficiently conspicuous for *Petraster*, nor are the arms stout enough. The closest form is *Schuchertia wenlocki* Spencer, from the Wenlock of Great Britain (Spencer, 1920, p. 215, pl. xiv, figs 5, 6, pl. xv, figs 2-4, text-figs, 124, 127, 143, 145, 154-156). The distinctive shape of the adambulacral is the same in both forms (*vide* Spencer, *loc. cit.*, figs 124, 155). The arms are, however, rather more petaloid than in *S. wenlocki*, and the inframarginals are not so well developed. In these respects our form shows some relationship with *Palasterina primaeva* (Forbes) (Spencer, *loc. cit.*, p. 225, fig. 161). The ratio R/r is about the same in *S. macrarta* and *S. wenlocki*, but the former is about twice as large. Indeed, *S. macrarta* is as large as the largest specimen of the American Upper Ordovician species, *S. laxata* Schuchert (Schuchert, 1915, pp. 198-9, pl. 32, fig. 3, pl. 33, figs 2, 3, Spencer, *loc. cit.*, p. 212, pl. xv, fig. 1, text-figs 150-153). In other respects, *S. laxata* is not closely related. The specific name refers to the slender arms (Latin, *macer*, lean, *artus*, limb).

Associates—*Bylhotrepis gracilis* (J. Hall), *Discophyllum mirabile* Chapman (also found by Mr R. Evans), *Camarotoechia* sp., *Nucleospira australis* McCoy, *Euomphalus* sp., *Conularia* sp., ? *Endoceras* sp., ? *Ooceras* sp., *Calymene* sp., *Encrinurus* sp.

Horizon—Silurian

Locality—Hoffman Brick Pit, Brunswick, in bluish mudstone, 100 feet below the surface.

References.

- CHAPMAN, F., 1913 On the Palaeontology of the Silurian of Victoria *Aust. Assoc. Adv. Sci.*, xiv, pp. 207-235
- ETTERIDGE, R., Jun., 1891. On the occurrence of the Genus *Palaeaster* in the Upper Silurian Rocks of Victoria. *Rec. Aust. Mus.*, 1, No. 10, pp. 199-200, pl. xxx
- _____, 1892 A Monograph of the Carboniferous and Permoo-Carboniferous Invertebrates of New South Wales, Pt. 2 Echinodermata, Annelida, and Crustacea. *Mem. Geol. Surv. N. S. Wales, Pal.* No. 55, pp. 65-133, pl. 12-22.
- GREGORY, J. W., 1899 On *Lindstromaster* and the Classification of the Palaeasterids. *Geol. Mag.*, Dec 4, vi., pp. 341-354, pl. 16, Text Figs. 1.
- McCoy, F., 1874 Prodromus of the Palaeontology of Victoria, Dec 1, pp. 41-43, pl. x., figs 1-3.
- SCHUCHERT, C., 1915 Revision of Palaeozoic Stellerioidea with Special Reference to North American Asteroidea. *U.S. Nat. Mus. Bull.*, 88
- SPENCER, W. K. A Monograph of the British Palaeozoic Asterozoa. *Mon. Pal. Soc.*
- 1914 (issued for 1913), Pt I., pp. 1-56, text-figs. 1-31, pl. i
- 1916 (issued for 1915), Pt II., pp. 57-108, text-figs. 32-63, pl. ii.-v.
- 1918 (issued for 1916), Pt III., pp. 109-168, text-figs. 64-112, pl. vi.-xiii
- 1919 (issued for 1917), Pt IV., pp. 169-196, text-figs. 113-138.
- 1922 (issued for 1920), Pt V., pp. 197-236, text-figs. 139-171, pl. xiv.-xvii
- 1925 (issued for 1922), Pt VI., pp. 237-324, text-figs. 172-212, pl. xviii.-xxxii.

TEXT-FIGS 1-10

Palaeozoic Starfish.

[Page 241]

R B W del.

TEXT-FIGS 1-10

- Fig 1—*Hudsonaster australis* sp nov Apical side $\times 7$
 Fig. 2—*Caractacaster yarraeensis* sp nov Apical side $\times 7$
 Fig 3—*Hudsonaster australis* sp nov Oral side $\times 7$
 Fig. 4—*Caractacaster yarraeensis* sp nov Oral view of interbrachial structure $\times 7$
 Fig 5—*Promopalaeaster meridionalis* (Eth fil) Oral view of interbrachial structure $\times 6$
 Fig 6—*Petraster angustior* sp nov Apical side $\times 2$
 Fig 7—*Palasterina flemingtonensis* sp nov Oral view of interbrachial structure $\times 10$
 Fig 8—*Schuchertia macrarta* sp nov Arrangement of ossicles on oral side in proximal region of arm $\times 4$
 Fig 9—*Salteraster bivalvis* sp nov Oral view of portion of arm $\times 8$
 Fig 10—*Salteraster bivalvis* sp nov Apical view of portion of arm and interradius $\times 10$

Explanation of Plates X.-XII.

PLATE X

- Fig 1—*Caractacaster yarraeensis*, sp nov Oral surface of syntype. $\times 4$
 South Yarra Coll by F P Spry Nat Mus Coll, No 377.
 Fig 2—*C. yarraeensis*, sp nov Apical surface of syntype $\times 4$ South Yarra Coll by F P Spry Nat Mus Coll, No 377
 Fig 3—*Schuchertia junori*, sp nov. Oral surface of holotype $\times 1.5$
 Collins Quarry, Kinglake West Coll and pres. by P Junior Nat Mus Coll, No 13808
 Fig 4—*Palasterina umbonata*, sp nov. Oral surface of holotype $\times 15$
 Near Plenty Ranges, 6 feet beneath surface Purchased by Nat. Mus from Miss M E Macfarlane, No 13810
 Fig 5—*Promopalaeaster meridionalis* (Eth fil) var *parvior*, nov. Oral surface of holotype $\times 3$ Moonee Ponds Creek, Flemington Coll. by Geol Surv, Vict Nat Mus Coll, No 13816
 Fig 6—*Hudsonaster australis*, sp nov Oral surface of syntype $\times 15$
 At the summit of an anticline in a cutting on Yean-Yean-Arthur's Creek-road, ½ mile east of Doreen Junction Nat. Mus Coll, No 13806

PLATE XI

- Fig. 1—*Salteraster selwyni* (McCoy). Oral side of syntype $\times 2.5$ Range on east side of Commonage, Kilmore. Geol. Surv Loc Bb 23 Nat Mus. Coll., No. 12207
 Fig. 2.—*Salteraster selwyni* (McCoy) Apical side of syntype. $\times 2.5$. Same locality Nat. Mus Coll No. 12208
 Fig. 3.—*Palasterina flemingtonensis*, sp nov. Oral side of holotype $\times 1.5$. "Flemington," near Melbourne Nat. Mus. Coll., No 13813.
 Fig. 4.—*Palasterina stachi*, sp nov Oral side of holotype $\times 2$ Excavation for foundation of Herald Office, corner of Collins-place and Flinders-street, Melbourne. Pres. by L Stach. Nat. Mus Coll., No 13811.
 Fig. 5.—*Salteraster bivalvis*, sp. nov. Photograph of holotype showing arrangement of adradials on apical side $\times 2.3$ Range east of Commonage Reserve, Kilmore. Geol. Surv Loc Bb 23 Nat. Mus. Coll., No 352.
 Fig 6—*Palasterina stachi*, sp nov Apical side of paratype $\times 2$. Same locality as holotype Nat. Mus. Coll., No. 13812

R A K photo]

Palaeozoic Starfish.

[Page 243]

R A K photo]

Palaeozoic Starfish.

[Page 245]

R. A. K. photo]]

Palaeozoic Starfish.

[Page 217]

PLATE XII.

- Fig 1.—*Petraster smythi* (McCoy). Apical side $\times 15$. Wax impression of plesiotype. From near East Kilmore. Sweet Coll., Nat. Mus. Coll., No 13815
- Fig 2.—*P. smythi* (McCoy). Apical side of holotype $\times 15$. Moonee Ponds Creek, Flemington. Nat. Mus. Coll., No 7604
- Fig. 3.—*Schuchertia macrarta*, sp nov. Oral surface imperfectly preserved. $\times 15$. Hoffman Brick Pit, Brunswick. Nat. Mus. Coll., No 13809
- Fig 4.—*Petraster angustior*, sp nov. Apical surface of holotype $\times 15$. South Yarra. Nat. Mus. Coll., No 374
- Fig 5.—*Petraster angustior*, sp nov. Paratype, showing apical view of ambulacrals $\times 15$. South Yarra. Nat. Mus. Coll., No 372.
- Fig 6.—*Urasterella cresswelli*, sp nov. Oral side of holotype $\times 14$. Mudstone Quarries, Lilydale Coll. and pres by Rev A W Cresswell to Nat. Mus. Coll., No 13817
- Fig 7.—*Piomopalaester meridionalis* (Eth fil). Photograph of Etheridge's type in possession of Australian Museum, Sydney $\times 14$
-

[PROC ROY SOC VICTORIA, 46 (NS), Pt II, 1934]

ART XX—*On some Australian Curculionoidea* Part 2

By CHARLES OKE

[Read 14th December, 1933, issued separately 7th May, 1934]

This article contains the description of two new genera, eight new species, and one new variety, with some notes on previously described species, and is in continuation of my first part on this superfamily. A new genus, *Ipsocossonus*, has been proposed in the family Ipidae. The typical species looks very like some of the true weevils, belonging to the subfamily Cossominae, but this appearance is only superficial, as its characters are certainly those of Ipidae. In the family Anthribidae a new species of *Allochromicis* has brought this beautiful genus, hitherto known only from Queensland and New South Wales, into the Victorian lists. In the true weevils, a small species of *Rhadinosomus* is described, four new species have been added to the genus *Mandalotus*, a new variety of *Isacantha papulosa* Pasc is noted, and a new genus, *Cisolea*, has been proposed for a very interesting species found in Northern New South Wales, with only three tarsal segments, which has been rather doubtfully referred to the Rhypaeosominae.

Family IPIDAE

Section MIXODENTATAE

Ipsocossonus, n gen

Body elongate, subcylindric, finely pubescent. Head small, round, deflexed, produced into a short rostrum, with distinct, transverse antennal scrobes. Antennae rather short; scape curved, same length as funicle, funicle of seven segments, the first and second elongate, the others transverse, club ovate, of four segments. Eyes large, transverse, subelliptic, facets of moderate size. Mandibles short and broad, trilobed on inner edge. Maxilla with its chewing-edge furnished with spines and hairs, the outer edge with a few long hairs; palpi of three segments. Labium elongate, narrowed to apex, where there are three groups of long hairs, palpi of three segments, the first stout, the second small, transverse, the third small, round. Prothorax longer than wide, slightly produced over head, hollowed on its lower-anterior edge, and deeply grooved to front coxae. Scutellum very small, rounded behind. Elytra elongate, striate-punctate. Mesosternum very short, with episterna and epimera well developed. Metasternum long, lightly sulcate down centre, episterna fairly wide. First segment of abdomen as long as next three combined, second, third, and fourth subequal, fifth

about twice the length of fourth. Anterior coxae almost touching, intermediate well separated, posterior a little further apart. Legs fairly long, femora lightly compressed, tibiae strongly compressed and widened to apices, which are obliquely grooved for tarsi and strongly spurred, the outer edge strongly denticulate; tarsi of moderate length, the first segment longer than the second, second and third equal, fourth a little longer than first, without a basal node.

This genus is proposed for a species that has the appearance of belonging to the Cossoninae rather than to the Ipidae. Its long narrow form, almost glabrous body, and the rostrum, with distinct scrobes, are suggestive of Cossoninae, but by the non-geniculate antennae, the denticulate tibiae, and the mouth parts, it must be referred to the Ipidae. The inner edge of the maxilla having both spines and hairs would place the genus in Hagendorf's section Mixodentatae, but it has little in common with the only genus placed there in Wytsman's *Gen Insectorum*(8). There is no sign, even in a balsam slide, of the node at the base of the fourth tarsal segment, so usual in this family.

Genotype, *I. anomalus*, n. sp.

Ipsocossonus anomalus, n. sp.

(Figs. 1-7)

Piceous. Uppersurface very sparsely clothed with short yellowish pubescence, except near apex of rostrum, where it is fairly long and plentiful; undersurface moderately clothed with pale ashen pubescence. Subopaque. The whole insect covered with fine criss-cross lines.

Head convex, the base with small, dense punctures, becoming larger and distinctly umbellicate on frons and rostrum. Rostrum narrower than head, lightly emarginate at apex, and with a distinct median carina from base to apex. Antennae with scape a little longer than funicle, strongly curved, clavate at apex, first segment of funicle curved, thin at base, suddenly clavate near apex, second obconical, third to seventh transverse, increasing in width, club large, nearly length of funicle. Prothorax widest about apical fourth, the apex recurved, with angles widely rounded off, the base truncate with angles lightly rounded; with large, subreticulate, umbellicate punctures. Elytra about twice as long as prothorax, base truncate, with angles lightly rounded off, sides parallel to apical slope, apex rounded, the striae with fairly large punctures, the interstices rugulose. Metasternum and abdomen with rather small punctures on the disc but much larger on sides and episternae. The apical segment of abdomen with a large, shallow impression. Legs roughly punctured all over, all the tibiae with three large teeth near apex and several small ones on outer edge. Length, 4.25 mm.

Hab Victoria Violet Town (C Oke)

A very distinct species from any previously described from Australia, or, as far as I have been able to ascertain, from elsewhere. The two specimens examined were taken from an old log and are almost certainly males, as the apical half of the metasternum has a moderately wide and deep channel and the apex of the abdomen is distinctly foveate.

Type in coll. Oke

Family ANTHRIBIDAE

ALLOCHROMICIS MONTANUS, n. sp

(Fig. 8)

Scarlet and blackish-brown. Moderately clothed with fairly long, white, black, and reddish pubescence.

Head moderately convex, densely longitudinally stribose. Eyes large, elliptic, strongly faceted. Rostrum rather strongly dilated to apex, about twice the length of width at apex; with a fine median carina from base to near apex and a finer one on either side from base to insertion of antennae, from base to insertion of antennae with fine reticulate punctures, becoming substribose near apex. Antennae moderately stout, second segment same thickness as, and longer than visible part of first, longer and stouter than third, third to sixth decreasing, seventh and eighth increasing again, eighth about as long as wide, ninth and tenth suddenly much wider, subequal, eleventh one and a half times as long as tenth, bluntly pointed. Prothorax widest at subbasal carina, where it is equal to the length; subbasal carina arcuate, nearer base in centre than on sides. Elytra wider than prothorax, with a shallow, oblique impression across basal fourth, with rows of large punctures in feeble striae, the interstices with fine close punctures. Undersurface of rostrum and prosternum with close, large punctures, metasternum and abdomen with sparse, fine punctures. Length, 4 mm.

Hab. Victoria-Warburton, Mount Donna Buang at 4,048 feet.
(C. Oke.)

(FIGS. 1-20)

1-7—*Ipsocossonus anomalus*, n. sp. 1 Imago 2 Antenna 3 Maxilla.
4 Two spines of maxilla 5 Labium 6 External portion of mandible
7 Part of intermediate leg

8 *Allochromicis montanus*, n. sp. 9 *Rhadinosomus parvus*, n. sp. 10.
Antenna of same 11 Antenna of *R. lacordairei* Pasc.

12-20—Parts of legs of male *Mandaloti*, except 18, which is of a female.
12-14. *M. luciphilus*, n. sp., 12 Anterior 13 Intermediate 14 Posterior
(inner side) 15-16 *M. exilis*, n. sp. 15 Anterior 16 Posterior 17-20.
M. sternocerus Lea 17 Anterior 18 Anterior (female) 19 Posterior.
20 Posterior femur

FIGS 1-20

b. Che.

The type when alive was bright scarlet and piceous, and still is when wetted, but ordinarily the brighter colour has faded to salmon. The prothorax is dark, except the apex and centre of base of pronotum, there is a black band around the centre of each femur and the apices of the tibiae are infuscated, as also are the ninth and tenth segments of antennae. The dark markings on the elytra are the suture and two interstices from base to basal third, from the outer edge of which an oblique fascia runs towards the apical third of margin, but does not quite attain the margin, and part of the apical declivity is infuscated. The abdomen is convex throughout.

This species is nearer *A. bifasciatus* Lea(3) than the other two described species, but the apical segment of antenna is paler than tenth, the elytral markings and its puncturation are also different. In the present species all the larger punctures on the elytra are in rows.

Types in coll Oke

Family CURCULIONIDAE
Subfamily BRACHYDERINAE

RHADINOSOMUS PARVUS, n sp
(Figs 9, 10)

Dark reddish, with head, rostrum, abdomen, antennae, tarsi, and apical mucros of elytra piceous. Moderately clothed with thin, elongate, whitish scales, these becoming round on sides of elytra, where they are condensed in the middle into a short oblique vitta.

Head lightly widened from base to eyes, where it is strongly impressed; with large, round, rough punctures. Rostrum dilated to apex, punctures as on head. Antennae with scape strongly curved, clavate at apex, funicle with first segment curved and longer than second, second to sixth subequal, seventh much wider and clasping club, club as long as three preceding combined. Prothorax subcylindrical, incurved on sides from base to near coxae; with fine, transverse strigosity and a few large punctures on anterior portion. Elytra widened from base to about middle and then abruptly narrowed to apex; apex of each elytron produced into a fairly long mucro, striae with rows of close punctures, wider than the interstices. Length, 5.50 mm.

Hab New South Wales. Dorrigo (C Oke)

Distinguished from *R. lacordairei* Pasc (7) by its small size and antennae and from *R. frater* Bl (1) (which Lea (2) thought was the same species as Pascoe's) by its antennae and the head impressed between the eyes. Numerous specimens were seen on a small, rather prickly, shrub.

Types in coll Oke

Subfamily LEPTOPINAE

MANDALOTUS STERNOCERUS Lea.

(Figs 17-20)

Lea, Proc Linn Soc N S W, iii, p 357, 1927

This species was noted as from Victoria only. A pair, one of each sex, which I took near Ballarat, agree with the description in all particulars. But the hind femora might easily be considered as dentate at the apex, in fact they are more so than in some species of the Cryptorhynchinae. Figures are given for comparison with other species.

MANDALOTUS DECIPIENS Lea

Lea, Trans Roy Soc S Aust, xxxvi, 1914

I obtained a single male of this species right on top of Mount Kosciusko, New South Wales. It is evidently an alpine form.

First record for New South Wales

MANDALOTUS GRAMINICOLA Oke

Oke, Proc Roy Soc Vic (ns), xliii (2), p 186, 1931

Lea gave this as a synonym of his *M. rufipes*(6), but in this I think that he was in error, and that it is more likely that *M. rufipes* Lea and *M. denticulatus* Lea are the same species.

In *M. granunicola* Oke the pronotum is less dilated than in *M. denticulatus* Lea, and the females of the latter are larger than those of the former. Lea described the separation of the front coxae in *M. denticulatus* as touching, and I took that as my guide in so describing *M. graminicola*, as the front coxae are the same in the two species, taken male to male and female to female, in the latter sex they are a little further apart. Lea did not have a female of my species when he wrote his note. For the present the three names must stand.

MANDALOTUS MEDCOXALIS Lea

Rec S A Mus, iii, p 179, 1926

In the description of this species Lea said, "hind (tibiae) with an oblique ridge on lower surface" and in the note below "The ridge on the hind tibiae from the sides appears as a small tooth," and was so noted in the key(4). The illustration (5) shows quite a distinct sharp tooth. I obtained three males at Dorrigo, the type locality, only one of which could be said to be dentate, the second is distinctly ridged, while the third is so indistinctly ridged that it is scarcely traceable.

MANDALOTUS FOVEATUS Lea

Trans Roy Soc SA, xxxvi, p 76, 1912

By a curious coincidence I obtained seven specimens of this species, at Dorrigo, the same number that Mr Carter found at Guyra. They all agree with the description. In all cases the pronotum has the appearance of being abraded, with the granules very distinct and shining, which must be the natural condition.

MANDALOTUS OBLIQUUS, n sp

(Figs 21-22)

Piceous, funicle, club and tibiae dilated with red, tarsi almost flavous. Densely clothed with ochreous and light-brown scales, interspersed with stout, curved setae, anterior tibiae with fine, pale cilia.

Male.—Rostrum stout and strongly curved; carina, if present, not traceable through clothing. Antennae of moderate length, scape strongly curved and dilated at apex, funicle with first segment longer than second, second as long as next two combined, club subfusiform, about the length of four pieceding combined. Prothorax transverse, widest about middle, lightly bilobed on sides, surface very uneven and subtuberculate, with an impression on either side of middle near apex and another near base. Elytra evenly arcuate at base, but from behind appearing to be interrupted by the bases of the third and fifth interstices, shoulders lightly produced, behind which strongly notched to subhumeral process and evenly narrowing from process to apex; strongly tuberculate; with punctures in striae appearing narrower than interstices, through clothing. Metasternum shorter than usual and incurved at apex; lightly concave. Basal segment of abdomen strongly raised in middle, where it is highly polished and with a carina on either side and a more strongly raised one near apex, obliquely directed forward, forming three sides of a square. Anterior and intermediate coxae widely and equally separated. All tibiae dilated and spurred at apex, anterior rather strongly curved; posterior with a small tooth on inner side near apex.

Female.—Differs in being smaller, less strongly tuberculate, anterior tibiae not so widely curved and posterior without subapical tooth, and abdomen simply convex. Length.—Male, $5\frac{1}{2}$ mm; female $4\frac{1}{2}$ mm.

Hab New South Wales, Dorrigo (C Oke)

A very distinct species, not closely allied to any described one, and hence difficult to place in the Key(4) but could be taken as far as DD, gg, m. From the species placed there it is easily separated by its tuberculate pronotum and elytra.

The tubercles on the elytra are, on first interstice a semi-conjoined one on edge of apical slope and a slightly larger one half way down apical slope, on third interstice an elongate one on base (largest on elytra) a post median (second largest) and a small one on edge of apical slope, on fifth a small one on the base and a small antemedian, on sixth a fairly large one on edge of apical slope and one, slightly sharper, down the slope, on margin of elytra, on seventh a small one just behind the shoulder and a small submedian

Types in coll Oke

MANDOLORUS LUCIPHILUS, n sp

(Figs 12-14)

Blackish-brown, legs and antennae diluted with red Densely clothed with muddy-brown scales, interspersed with pale, curved setae, anterior tibiae with soft, short setae, but not ciliate

Male—Rostrium short and stout, median carina not traceable Antennae fairly long Eyes rather small and round Prothorax lightly transverse, widest about apical third, thence gradually decreasing to base and suddenly to apex, surface moderately uneven Elytra conjointly arcuate at base, rather suddenly widened to subhumeral process and then evenly narrowed to apical slope, suture posteriorly and parts of odd interstices lightly elevated; punctures in striae appearing small through clothing, but mostly obscured Metasternum and basal segment of abdomen widely, but not deeply, depressed Front and middle coxae narrowly and equally separated, the middle coxae ridged and produced into an oblique tooth Anterior tibiae thickened to basal third then obliquely cut away and again, sinuately, thickened to apex, which is spired, on the hollowed part it is roughened or feebly denticulate Intermediate tibiae sharply dentate at apex, posterior lightly arched, with three carinae near apex Length, 4.25 mm

Hab New South Wales Paterson (C Oke), attracted to camp light

The pronotum before abrasion appears to have about nine sub-tubercular swellings On abrading a small part of pronotum it was seen to have fairly numerous, but feebly defined, nodules, without any definite arrangement

The anterior and intermediate coxae narrowly and equally separated seems to make a new section, NNNN, necessary for this species If it be referred to NN it would fall beside *M. tibialis* Lea, which is a very different species It is closer to the description of *M. oxyomus* Lea and *M. medianus* Lea, but with prothoracic granules not transversely arranged and tibiae different.

Type (unique) in coll Oke

MANDALOTUS EXILIS, n. sp

(Figs 15, 16, 23)

Black, antennae and legs reddish Densely clothed with dingy, variegated scales, interspersed with short, curved, stout setae, undersurface with very short, sparse pubescence.

Male—Rostum stout and curved, median carina obsolete. Antennae moderately long. Prothorax transverse, strongly rounded on the sides, without a median impression, with faintly distinct granules, even before abrasion, showing a rather feeble transverse arrangement. Elytra conjointly arcuate at base, subhumeral notch very faint, evenly narrowing to apex, interstices feebly raised, striae with punctures appearing small through clothing, but on abrasion seen to be as wide as interstices. Undersurface with rather small, distinct punctures. Metasternum and basal segment of abdomen with a wide and fairly deep impression, this bounded behind by a short, straight carina, almost at apex of segment, the ends of the carina produced into small points. Anterior and intermediate coxae equally, and rather widely, separated. Tibiae spurred at apex, anterior appearing bisinuate from the sides, with the apical sinus longer and deeper than the basal.

Female—Differs in having the prothorax narrower, the elytral punctures smaller, the abdomen convex and without a carina, and the anterior tibiae less sinuate. Length, 2.50-2.70 mm.

Hab Victoria Bendigo (C Oke), Castlemaine (E Nye)

In the Key(4) falls beside *M. reticulatus* Lea, from which it differs in not having a medial impression on pronotum and in having the impression on basal segment of abdomen. From some directions there appears to be a distinct tubercle at either end of the abdominal carina, but from other angles they are seen as part of the carina itself.

The sides of the prothorax are whitish on all the specimens, and on the types there is a white vitta down each elytron, but these are not so noticeable on two other females from Bendigo.

Types in coll Oke

MANDALOTUS LUCARIS, n. sp

Piceous, appendages diluted with red. Rather densely clothed with muddy-brown, yellowish, and greyish scales, giving a variegated appearance, but not forming any definite pattern; interspersed with numerous short, curved setae.

Male—Rostrum short and constricted near base. Eyes fairly large, separated by about the width of an eye. Antennae of moderate length; first segment of funicle thin at base and suddenly swollen near apex, where it is much wider than second, second shorter than first, the others transverse, club of moderate size. Prothorax lightly transverse, surface not visible through

clothing, but on abrasion, finely and closely punctate Elytra feebly trisinate at base, lightly widening to apical slope, then suddenly narrowed to apex, suture lightly raised posteriorly, punctures appearing small through the clothing, but wider than the interstices Metasternum and basal segment of abdomen with a fairly large impression common to both and bounded behind with a short, curved carina on apex of segment Anterior coxae moderately separated, but less than intermediate pair All tibiae obtusely spurred at apex, anterior lightly curved near apex, posterior thinned on inner side near, then clubbed at, apex

Female—Differs in being a little wider across elytra, in the metasternum and abdomen being convex and without a carina, and the posterior tibiae not thinned near apex Length, 2 30-2 75 mm

Hab New South Wales Dorrigo (C Oke), under decaying leaves in a small grove

In the Key(4), this would be placed at DD ss with *M blackburni* Lea, which is a much larger and very different species It is of about the same size as *M exilis*, n sp, but the prothorax of the latter has distinct granules and a very different carina, and its anterior coxae are further apart

Types in coll Oke.

Subfamily RHYPAROSOMINAE

Cisolea, n gen

Body short, robust, squamose and setose, apterous Head subglobular, shagreened on base Rostrum rather short, stout, and arcuate; with a nitid triangular space on apex. Submentum with a short, broad peduncle Mandibles protruding a little, pincer-shaped, toothed on inner edge Scrobes deep, showing on upper surface in front of antennae, but not quite reaching the buccal fissure, and running obliquely to lower margin of eyes Antennae with scape curved, moderately thickened to apex, passing eyes, funicle of seven segments, club fairly large, of three segments, closely united, the first longer than the others combined, with fine pubescence Eyes small, oval, coarsely faceted Prothorax subquadrate, ocular lobes wanting, the antero-inferior margin lightly hollowed Scutellum not visible Elytra strongly clasping the body, wider than prothorax, sinuate at base Mesosternum short, with its intercoxal process of moderate size, prominent, declivious to apex, episterna large, epimera very small, produced to a sharp point in front Metasternum short, with its episterna narrow Abdomen with first and second segments long, first a little longer than second; third and fourth very short, equal; fifth a little longer than two

preceding combined Anterior coxae almost touching, intermediate well separated, posterior widely separated Legs of moderate length, femora thickened in middle, tibiae arcuately widened and strongly spurred at apex, the posterior corbells open, tarsi with three segments only, the first obconic, the second almost globular, the third dilated, transverse, with a slight impression on its upper surface, tarsi spongy beneath

This genus is proposed for a small dingy weevil found in leaf debris which, at a glance looks like a *Mandalotus*, to which genus the late A M Lea considered it was closely allied, but its mouth is certainly not adelognathus It hardly seems correctly placed in Ryparosominae, as all the tibiae are distinctly micronate, but it is less out of place there than in the other subfamilies, having the short metasternum

The genus is dedicated to the memory of the noted Australian entomologist, Mr A M Lea

Genotype, *C umbratilis*, n sp

CISOLFA UMBRATILIS, n sp

(Figs 21-28)

Black, in parts diluted with red, antennae and tarsi reddish castaneous Densely clothed on uppersurface, prosternum and legs with ferruginous scales interspersed with fairly long, coarse, curved setae; metasternum and abdomen moderately clothed with short, pale setae or pubescence

Male—Head and rostrum with rather fine rugose sculpture Rostrum dilated to apex; with a rather narrow, but deep, sulcus from base to beyond insertion of antennae, and a fine one on either side, extending slightly on to the head Antennae with scape slightly passing eye, distinctly thickened from middle, first segment of funicle the length of the next three combined Prothorax transverse, widest before middle, much narrowed to apex, base rounded, lightly ridged down centre and with a transverse impression near apex; with large, deep, reticulate punctures, Elytra strongly trisinuate at base, widened from base for about a fourth of their length and then suddenly narrowed to apex, in places subtuberculate and with transverse ridges, the base of the third interstice raised, and the basal edge of the clytra narrowly reflexed, the striae with large, close punctures, nearly as wide as the interstices, the interstices with fine, close punctures The whole undersurface with large, deep, reticulate punctures Front coxae touching Metasternum and basal segment of abdomen with a large and fairly deep impression, which is lightly carried on to the second segment All tibiae dilated and spurred at apex, the anterior and intermediate fairly strongly scooped out near apex and the posterior thinned there

Female—Differs from the male in being a little wider, with the elytra not nearly so uneven and the metasternum and abdomen gently convex Length, 3.50 mm

Hab New South Wales Dorrigo (C Oke) amongst decaying leaves in a dark and densely vegetated gully

The whole upper surface is so densely covered by the scales that the sculpture is not visible before abrasion, and so one specimen has been completely denuded On the lower surface each puncture has a pale, shining seta in its centre

Types in coll Oke

Figs. 21-30

21 *Mandalotus obliquus*, n. sp 22 Same, ventral surface 23 Carina on abdomen of *M exilis*, n. sp.

24-30 *Cisolea umbratilis*, n. sp 24 Dorsal view 25 Side view
26 Part of intermediate leg 27 Antenna 28 Apex of rostrum
29 Maxilla 30 Mandible

Subfamily BELINAE

ISACANTHA PAPULOSA Pasc var NIGRA, n var

Some specimens from the Victorian Mallee represent a distinct variety of this well-known species. Specimens from New South Wales are distinctly reddish-brown, but all the Victorian ones are black and have the granules on pronotum and elytra slightly larger. The clothing of elytra is of two colours as in typical specimens, the dark-brown being of the same shade, but the pale patches vary from whitish, in some, to dark yellowish-brown in others.

Hab Victoria Gypsum (J E Dixon, C Oke)

Subfamily CRYPTORHYNCHINAE

NYELLA TUBERCULATA Oke

Proc Roy Soc Vic (n.s.), xliii (2), p 200, 1931.

The following is added to the original description.—

On detaching the head from a specimen mounted on its back a wide, distinct, pectoral canal becomes evident, though it is evenly clothed with the rest of the prosternum. The canal is bounded by ridges that terminate between the front coxae. Behind the coxae the intercoxal process widens out, continues as a broad plate between the middle coxae and actually touches the metasternum, completely taking the place of the intercoxal process of the mesosternum, though the episterna and epimera of the latter are unusually large. The prosternum and metasternum are actually in contact, as previously illustrated in fig 6*H* (*loc cit.*), the former having a narrow groove along its basal edge which receives the metasternum. On the inner side of each intermediate coxa there is a small projecting process which clasps the prosternum, on its outer surface. The metasternum of the male has a rather shallow depression which dilates posteriorly and is continued on to the abdomen. The third and fourth segments of abdomen are curved at the sides. All the femora are grooved, the front and middle ones are dentate, the hind ones edentate. On the pronotum there is a loosely compacted fascicle, but it is easily abraded and is only distinct on one of the specimens in front of me, though indicated on some others. The claws are simple and smaller than on any other weevil, of its size, that I have seen.

By having its prosternum with a short canal this genus should apparently be referred to the Cryptorhynchinae, as now defined, but the displacing of the mesosternum and the small, almost hidden, claws are most unusual features.

References.

- 1 BLACKBURN, T., Notes on Australian Coleoptera, Part XIV *Proc Linn Soc NSW* (Second Series), viii, p 258, 1893
 - 2 LEA, A. M. Descriptions of Australian Curculionidae, Part II *Trans Roy Soc S Aust*, xxviii, p 81, 1904
 - 3 LEA, A. M. Notes on Some Miscellaneous Coleoptera, Part VI *Ibid*, p 77, 1926
 - 4 LEA, A. M. On the Genus *Mandalotus* (Coleoptera, Curculionidae) *Rec S Aust Mus*, iii, p 149, 1926
 - 5 LEA, A. M., *Ibid*, Figs 80, l, m, 1926
 - 6 LEA, A. M. Notes on Some Miscellaneous Coleoptera, Part VIII *Trans Roy Soc S Aust*, iv, p 50, 1931
 - 7 PASCOE, F. Contributions towards a Knowledge of the Curculionidae *Journ Linn Soc*, x, p 449, 1870
 - 8 WYTSMAN, P. A. G. Genera Insectorum, fasc ii, 1910
-

[PROC ROY SOC VICTORIA 46 (N S), PT II, 1934]

ART XXI—*Notes on some Tertiary Leaves from Pascoe Vale*

By HELEN T. PATERSON, B.A.

(With Plates XIII and XIV)

[Read 14th September, 1933, issued separately 7th May, 1934]

Source of the Material.

Some of the leaf remains from a Tertiary deposit collected, in conjunction with Mr W Hanks, from the Moonee Ponds Creek during 1933, are in a fairly good state of preservation, and seem to be of sufficient interest to put on record.

The leaf impressions are generally of a light-brown colour, though in some instances they vary from a light to dark grey. The venation in several of the leaves is very distinct. So far, not many perfect specimens have been found, but portions of leaves and stems are often so thickly intermingled as to make identification impossible. The soft and crumbling nature of the rock made the handling of these specimens somewhat difficult.

The leaves belong to a vegetation chiefly of the bush type, though among them are forms resembling those of *Eucalyptus* and *Banksia*. Three minute compressed leaves were discovered between the layers of brown pipe-clay (Plate XIII, fig 4). They are so small that identification is difficult, but they resemble *Eucalyptus* and *Nothofagus*.

It is unsatisfactory to attempt to catalogue many of the fossil plants according to their generic relationship on the evidence of the leaves alone; as more fruits and stems are found in this deposit, however, better proof will be forthcoming. The naming of these specimens may therefore be open to future corrections.

The following are the determinations now made on these leaf remains from Pascoe Vale —

- Nothofagus* cf *Maideni* (Deane)
- N* cf *Benhami* (Ettingshausen)
- N* cf *Muelleri* (Ettingshausen)
- Ficonium nitidum*, sp nov
- Magnolia microphylla*, sp nov
- Lomatia* cf *Brownii* Ettingshausen
- Nephelites* cf *berwickense* Deane
- Pomaderris Banksii* Ettingshausen
- Bombax Mitchellii* Ettingshausen
- Eucalyptus Kitsonii* Deane
- cf *Cordia tasmanica* Ettingshausen

Description of the Leaves.

ANGIOSPERMEAE (DICOTYLEDONES)
FAGACEAE

NOTHOFAGUS cf MAIDENI (Deane)

(Pl XIII, fig 3)

Fagus Maideni Deane, 1902, p 30, pl vii, fig 10

Fagus (Nothofagus) Maideni Chapman, 1921, p 118, pl viii, fig 3

Observations—The upper surface of the leaf is shown, measuring 60 mm long and 22 mm wide Surface smooth and of delicate texture In shape narrowly ovate and oblique at the base Midrib straight, lateral veins nearly so, extending to the points of the teeth on the serrate margin and at an angle of 35° from the midrib The leaf has the general characters of the *Fagus* group and closely resembles that figured by Deane from the Berwick leaf-beds

NOTHOFAGUS cf BENTHAMI Ettingshausen

(Pl XIII, fig 5)

Fagus Benthami Ettingshausen, 1888, p 119, pl x, fig 9

Deane, 1902, pl xvii, fig 5

Observations—This specimen shows a thin-textured leaf (not figured), 76 mm long and about 25 mm wide The margins are not well preserved, but there is sufficient evidence to show that they are distinctly denticulate The lamina narrows towards the base, which is slightly obtuse, showing a petiole about 9 mm in length The secondary veins arise at an acute angle from the midrib and are about 8 mm distant from each other; tertiary veins are at right angles to them The fact that several *Nothofagus* fruits have been found resembling *N Benthami* (see fig 5) seems to justify the placing of this fossil provisionally under that species

NOTHOFAGUS cf MUELLERI Ettingshausen

(Pl XIII, figs 1, 2)

Fagus Muelleri Ettingshausen, 1888, p 117, pl x, figs 3-7, 7A

Deane, 1902, p 29, pl vii., fig 8

Observations—These leaf impressions, upper and lower surfaces, are almost perfect and remarkably distinct They resemble the figures recorded by Deane from Wilson's quarry, Berwick, as well as those given by Ettingshausen in his "Contributions to the Tertiary Flora of Australia," cited above, from Vegetable Creek, New South Wales

NOTHOFAGUS WILKINSONI Ettingshausen

(Pl XIII, fig 7)

Fagus Wilkinsoni Ettingshausen, 1888, p 32, pl II, fig 1

Observations—The present occurrence is a well-preserved leaf, referable to the above species. It agrees in size, venation, and other characteristics with Ettingshausen's figured example, which comes from Dalton, near Gunning, New South Wales.

Family MOREAE

FICONIUM NITIDUM, sp nov.

(Pl XIII, fig. 6)

Observations—This specimen shows a perfect impression of a leaf about 55 mm long and 17 mm wide, recalling *Ficonium Solanderi* Ettingshausen (1885, p 38, pl III, fig 4), but of a neater type. The substance of the leaf is firm, margin entire, and with a strong, straight midrib, in the secondary veining there is much irregularity and the tertiary veins are quite inconspicuous. The base of the leaf is very narrow compared with *F. Solanderi*, and the apex is roundly acuminate, instead of sharply pointed as in that species.

Family MAGNOLIACEAE

MAGNOLIA MICROPHYLLA, sp nov

(Pl XIII, fig 8)

Observations—This specimen, not quite perfect, is a large ovate, thick-textured leaf, with a firm and entire margin. The strong midrib narrows to the apex, and the secondary veins, which are distinct, are placed at unequal distances from each other, slightly curved and flexuose. The tertiary veins are feebly shown. This type of leaf may be compared with *Magnolia Brownii* Ettingshausen (1888, p 59, pl V, fig 7), but is of smaller dimensions and has more widely spaced secondary veins. The type measured, when complete, circ. 10 cm., with a width of 5 cm.

Family PROTEACEAE

LOMATIA cf BROWNII Ettingshausen

(Pl XIV, fig 9)

Lomatia Brownii Ettingshausen, 1888, p 135, pl xii, figs 4-5.

Observations—This leaf bears a fairly close resemblance to the type figured by Ettingshausen. The actual apex is missing but apparently tapered, the base is narrowed. Texture thick, midrib strongly marked, whilst the lateral veins are distinct and run acutely from the midrib, reaching the margins at the points of the denticulae. Tertiary veining is very distinctly reticulate. Length of leaf about 75 mm when complete, and width 26 mm.

In certain characters this leaf also resembles *Lomatia reticulata* Deane (1902, p 28, pl iv, fig 8), but in that species the marginal teeth are more widely spaced and less regular than in *Lomatia Brownii*, to which this specimen is provisionally referred

Family SAPINDACEAE

NEPHELITES cf BERWICKENSE Deane

(Pl XIV, fig 10)

Nephelites berwickense Deane, 1902, p 23, pl vi, fig 9

Observations—The leaf somewhat resembles *Quercus Dam-pieri* Ettingshausen (1888, pl ix, fig 15), and also that of *Nephelites denticulata* figured in Deane's "Tertiary Leaves from Bungonia" (1902, p 16, pl xvi, fig 5). The eccentric midrib might even suggest its being the portion of a compound leaf. The margin is dentate towards the apex, whilst the midrib is well marked with secondary veins. The general characteristics link it with species of the living genus *Nephelium*

Family RHAMNACEAE

POMADERRIS BANKSII Ettingshausen

(Pl XIV, fig 11)

Pomaderris Banksii Ettingshausen, 1888, p 165, pl xiv, fig 10, pl xv, figs 1-2

Observations—A perfect firmly-textured leaf is comparable with the above species, the leaf is oblong in shape, with the margin slightly waved or even dentate. Midrib prominent, secondary veins curving out and ascending to the margin; tertiary veins run transversely to the leaf axis and are very fine, flexuous, and anastomosing. The leaf is about 85 mm long and 17 mm wide. Ettingshausen's specimens were recorded from Vegetable Creek, New South Wales

Family STERCULIACEAE

BOMBAX MITCHELLI Ettingshausen

(Pl XIV, fig 12)

Bombax Mitchellii Ettingshausen, 1888, p 61, pl vi, fig 3

Observations—This leaf resembles the one figured by Ettingshausen from Dalton, New South Wales. The present example shows a portion of a large obovate leaf, of rigid texture, with an entire margin and a strongly contracted base. The midrib is straight and prominent; the secondary veins are distinct and of unequal strength, being stouter at the base, they ascend to the margin in a more or less bold curve. The tertiary veins are branched and have acute angles. The development of the leaf is not symmetrical; its form closely compares with those previously figured from Dalton, near Gunning, New South Wales

Family MYRTACEAE

EUCLYPTUS KITSONI Deane

Eucalyptus Kitsoni Deane, 1902, p 25, pl iv, figs 5, 6, 7

Chapman, 1926, p 185, pl xiii, fig 6 Maiden, 1922, p. 188, pl ccxxii, figs 100-c

Observations—Portion of a linear leaf was found, showing the intra-marginal vein close to the edge. The lateral veins are fine, close together, and parallel, as they proceed from the midrib, though indistinct. The leaf also resembles *E. Hayii* (Ettingshausen, 1888, p 171, pl xv, figs 4-5) in certain features, but on comparing it with the specimens of *E. Kitsoni*, recorded from Berwick and Narracan, the resemblance is seen to be closer to the latter species, since the lateral veins are much more crowded and longer than in *E. Hayii*. The veins also leave the midrib at a more acute angle than in *E. Hermannii* (Deane, 1902, p 25, pl iv, figs 3-4).

Family BORAGINEAE

cf CORDIA TASMANICA Ettingshausen

(Pl XIV, fig 13)

Cordia tasmanica Ettingshausen, 1888, p 54, pl v, fig 3

Observations—An imperfect leaf occurs here, the identity of which is in some doubt. In shape and veining it apparently resembles the above species, but being incomplete it can only provisionally be referred to this form. The original record was from the estuarine deposits of the River Derwent, Tasmania.

Summary.

The Moonee Ponds leaf-beds occur under the Older Basalt, and form part of the Tertiary strata extending from North Essendon to Heidelberg. These beds consist of sand and leaf-bearing clays, with the Newer Basalt cutting through in places.

It is interesting to note in this newly discovered leaf-bed that some of the impressions found closely resemble types of leaves recorded from Berwick and Narracan. Fragments of *Cinnamomum* and *Laurus* also occur, and it is possible that complete forms will also be found similar to *Cinnamomum polymorphoides*. These facts tend to indicate that this leaf-bed belongs to the same pre-Older Basaltic series as the tertiary deposits described from Berwick and Narracan by Henry Deane and F Chapman.

In conclusion I should like to thank Mr F Chapman for his invaluable help in the preparation of these notes, and Mr A. A. C Carter, who kindly photographed the specimens.

[A.A.C. Carter, photo]

Tertiary Leaves. Pascoe Vale, Victoria.

[Page 269]

9

10

11

12

13

A. A. C. Carter, phot.

Tertiary Leaves. Pascoe Vale, Victoria.
(Page 271)

References.

- CHAPMAN, F., 1921—A Sketch of the Geological History of Australian Plants. *The Cainozoic Flora Vic Nat*, xxxvii, Nos 10, 11
- , 1926—Tertiary Plant Remains from Narracan, S Gippsland. *Proc Roy Soc Vict* (n.s.), xxxviii, pp 188-191, pls xii, xiii
- DFANG, H., 1902—Notes on Fossil Leaves from Tertiary Deposits of Wingello and Bungoma. *Rec Geol Surv NSW*, vii (2), pp 59-65, pls xv-xvii
- , 1902—Notes on Fossil Flora of Berwick. *Rec Geol Surv Vic*, i (1), pp 21-32, pls iii-vii
- ETTINGSHAUSEN, C., 1888—Contributions to the Tertiary Flora of Australia. *Mem Geol Surv NSW Palaeontology*, No 2, pp 1-189, pls 1-xxv
- MAIDEN, J. H., 1922—*Critical Revision of the Genus Eucalyptus*. Vol vi, pt 4, pp 165-216, pls ccxx-ccxxxiiii

Explanation of Plates.

PLATE XIII

- FIG 1—*Nothofagus* cf *Muelleri* Ettingshausen Upper surface Circ nat size
- FIG 2—*Nothofagus* cf *Muelleri* Ettingshausen Lower surface Circ nat size
- FIG 3—*Nothofagus* cf *Maideni* Deane Circ nat size
- FIG 4—Compressed leaves (?) *Eucalyptus*, (?) *Nothofagus* $\times 1\frac{1}{2}$
- FIG 5—Fruits, (a & b) cf *Nothofagus Benthami* Ettingshausen Nat. size
- FIG 6—*Ficonium nitidum*, sp nov Nat size
- FIG 7—*Nothofagus Wilkinsoni* Ettingshausen Circ nat size
- FIG 8—*Magnolia macrophylla*, sp nov Circ nat size

PLATE XIV

- FIG 9—*Lomatia* cf *Brownei* Ettingshausen Nat size
- FIG 10—*Nephelites* cf *berwickense* Deane Nat size
- FIG 11—*Pomaderia* Banksii Ettingshausen $\frac{1}{2}$ nat size
- FIG 12—*Bombax Mitchellii* Ettingshausen $\frac{1}{2}$ nat size
- FIG 13—cf *Cordia tasmanica* Ettingshausen Circ nat size

AUTHOR INDEX

to the Publications of the

ROYAL SOCIETY OF VICTORIA

together with those of the Societies amalgamated with it, namely,

of the former

PHILOSOPHICAL INSTITUTE OF VICTORIA,

of the former

PHILOSOPHICAL SOCIETY OF VICTORIA,

of the former

VICTORIAN INSTITUTE FOR THE ADVANCEMENT OF SCIENCE;

and of the first

MICROSCOPICAL SOCIETY OF VICTORIA (1879-1882);

1855-1934.

Compiled by the Honorary Librarian to the Society
(F. A. Cudmore)

1934

Introduction.*Melbourne, 1934*

The year 1934 marks the centenary of the settlement of Victoria, an event which is being widely celebrated by the Government and citizens. It has a further significance, however, for the Royal Society of Victoria, since the eightieth volume of the publications of the Society is appearing contemporaneously.

Eighty years ago, about the middle of 1854, the Victorian Institute for the Advancement of Science and the Philosophical Society of Victoria were founded in Melbourne. A year later, they combined under the name of Philosophical Institute of Victoria, which body was granted a Royal Charter, and became the Royal Society of Victoria in 1860. The only alteration since that date has been the absorption in 1882 of the first Microscopical Society of Victoria, which thereupon ceased issuing its Journal. It should be noted that the present Microscopical Society of Victoria has no connexion with the Royal Society of Victoria, except that it meets in the same building.

No general index to the various publications has ever been published, though in 1861 Tables of Contents for the first seven volumes were printed in Transactions (8vo), vol v (1860). Much trouble has been caused by this lack of an index, especially owing to the inability of research workers to locate quickly any desired paper among the fifteen hundred papers and reports. Pending the appearance of a general index, this Author Index is submitted.

In it, Reports of Committees are indicated, but all Presidential Addresses, Reports of Sections, and Annual Reports of the Council are omitted. In the case of papers in the early volumes, reference to the Proceedings of the monthly meetings will usually produce additional information. The only current publication is the Proceedings.

Beneath is a list of the publications which have been printed, together with the respective abbreviations used in the following pages (shown in square brackets) —

Victorian Institute for the Advancement of Science
Transactions and Proceedings Vol I (1854-55)
["Tr & Proc Vict Inst"]

Philosophical Society of Victoria Transactions Vol I
(1854-55) ["Trans Phil Soc"]

Philosophical Institute of Victoria Transactions Vols
1-4 1855-56—1859 ["Trans Phil Inst."]

Royal Society of Victoria—

Transactions and Proceedings (Vol v entitled Transactions) (8vo) Vols 5-24 1860-1887 ["Trans (8vo), v. and Tr & Proc, vi -xxiv"]

Transactions (4to) Vols 1, 2, 3 (Pt 1 only was published), 4, 5 (Pt 1 only), 6 1888-1914 Publication discontinued ["Trans"]

Proceedings (New Series) (8vo) Vol 1 (1888)-46 (1934) Publication continuing ["Proc (ns)"]

Microscopical Society of Victoria Journal (Vol 1, Pt 1, entitled Quarterly Journal). Vols 1 (Pts 1-4), 2 (Pt 1), title page, and index (all published) 1879-1882 ["Jouin"]

A

- Abbott, R, 1889—The Maintenance of Energy Proc (n.s.), 1, pp 12-20
 Acheson, F, 1857—On a proposed Floating Railway Pier (Abridged) Trans Phil Inst, 1, pp 18-24, with plate
 —, 1857—On Motive Power in Victoria economically considered Trans Phil Inst, 1, pp 108-126
 Adams, R, 1865—Yarra Floods and their Remedy (Abstract) Tr. & Proc, vi, pp 148-155, with plate
 Allan, Frances E, 1929—Solitary Waves at the Common Boundary of two Liquids Proc (n.s.), xl, pp 165-175
 Allen, Natalie C B, 1918—Magnetic Deflection of β Rays Tabulation of v against RH assuming Lorentz Theory Proc (n.s.), xxx (2), pp 142-144
 —, and Laby, T H, 1919—The Sensitiveness of Photographic Plates to X rays Proc (n.s.), xxxi (2), pp 421-430, with four text figures
 Ampt, G A—See David, T W E, Summers, H S, and Ampt, 1927
 —, and Hartung, R J, 1926—The Occurrence of Helium in a Spa Gas from Daylesford, Victoria Proc (n.s.), xxxviii, pp 150-154
 Anderson, D, 1883—Patent for "Improvements in Contrivances for Varying the Gauge of the Wheels of Rolling Stock for Rail and other Permanent Ways" Tr. & Proc, xix, pp 275-280, with plate
 Anderson, H H, and Shephard, J, 1892—Notes on Victorian Rotifers Proc (n.s.), iv (1), pp 69-80, pls. xii, xiii
 Andrew, H M, 1878—Amorphous Phosphorus Tr. & Proc, xiii, p 93
 —, 1885—The Recent Red Sunsets (Title only) Tr. & Proc, xxii, p 28
 —, 1885—Notes on the Electroscope (Title only) Tr. & Proc, xxii, p 86
 —, 1887—On the value of J, and the value of g (Title only, but see also p 91) Tr. & Proc, xxiv (1), p 80
 Archer, W H, 1855—On Statistical Sanitary Processes Tr. & Proc Vict Inst, 1, pp 20-27
 —, 1865—On a Genus of Coleoptera hitherto unfound in Victoria Tr. & Proc, vi, pp 106, 107
 Archey, Ellinor, 1917—A Disease or Teratological Malformation of Lucerne Proc (n.s.), xxix (2), pp 150-153, pl. x
 —, 1917—Abnormal Circulation of a Frog Proc (n.s.), xxv (1), pp 96, 97, pl. xviii
 —, 1920—The Longevity of Cut Flowers Proc (n.s.), xxii (2), pp 246-251
 Ashby, E, 1921—Description of Bracebridge Wilson Collection of Victorian Chitons, with Description of Two New Species Proc (n.s.), xxxiii, pp 149-159, pl. viii
 —, 1925—Monograph on Australian Fossil Polyplacophora (Chitons) Proc (n.s.), xxxvii (2), pp 170-205, pls. xviii-xxii, with diagram and text figure
 —, 1929—Notes on and Additions to Australian Fossil Polyplacophora (Chitons) Proc (n.s.), xli (2), pp 220-230, pl. xxiv
 Ashton, H, 1912—Some New Australian Cicadidae Proc (n.s.), xxiv (2), pp 221-229, pls. xl-xli
 —, 1914—Notes on Australian Cicadidae Proc (n.s.), xxvii (1), pp 12-14, pl. ii
 —, 1914—Three New African Cicadas Proc (n.s.), xxvii (1), pp 15-18, pl. iii
 —, 1921—A Revision of the Australian Cicadidae Part I Proc (n.s.), xxviii, pp 87-107
 —, 1924—Notes on the "Hairy Cicada" (Tettigarella crinita) Proc (n.s.), xxvii (2), pp 238, 239
 Atkinson, J A, 1897—A Locality List of all the Minerals hitherto recorded from Victoria Proc (n.s.), ix, pp 68-119
 Atkinson, Nancy, 1933—An Investigation of the Bacterial Pollution of the Waters of Port Phillip Bay Proc (n.s.), xlvi (1), pp 1-19, with two text figures.
 Audas, J. W—See Ewart, A J, White, Jean, and Rees, Bertha, 1909

B

- Bage, Freda, 1908—The Body Spaces and so called Excretory Organs of *Ibla quadrivalvis* Proc (n.s.), xxi (1), pp 226-232, pl. vi
 —, 1910—Contributions to our Knowledge of Australian Earthworms—The Nephridia Proc (n.s.), xxii (2), pp 224-243, pls. xliv, xlvii
 Bailey, F M, 1882—On a Supposed New Species of *Nipa* (Title only) Tr. & Proc, xviii, p. 2
 Baker, R T, 1908—On the Validity of *Callitris morrisoni* Proc (n.s.), xx (2), pp 104-106
 —, 1913—On *Eucalyptus polystachya*, R T Baker Proc (n.s.), xxvi (1), pp 148-151
 —, and Smith, H G, 1915—Note on *Eucalyptus alpina*, Lind., and its Essential Oil Proc (n.s.), xxvii (2), pp 367-369

- Baldwin, J M, 1920—Note on the Correction for Chronometer Rate Proc (n.s.), xxii, (2), p 147
 ———, 1921—An intercomparison of Important Standard Yard Measures. Proc (n.s.), xxxiv, (1), pp 49-54
 ———, 1926—The Technique of the Nanson Preferential Majority System of Election Proc (n.s.), xxxix, (1), pp 42-52.
- Bale, W M, 1880—On Covering Fluid Mounts to avoid Leakage or Running-in Journ., 1 (2 and 3), pp 57-60
 ———, 1880—On Selecting and Mounting Diatoms Journ., 1 (2 and 3), pp 65-69
 ———, 1880—Notes on Insect Eggs Journ., 1 (2 and 3), pp 69-71
 ———, 1882—On Mounting Diatoms in Symmetrical Groups Journ., 1 (4), pp 97-99
 ———, 1882—Notes on Dry and Balsam Mounting Journ., 1 (4), pp 101-105
 ———, 1882—On the Hydroidea of South-Eastern Australia, with Descriptions of Supposed New Species, and Notes on the Genus Aglaophenia Journ., 11 (1), pp 15-48, pls xi-xv
 ———, 1887—The Genera of the Plumulariidae, with Observations on various Australian Hydroids Tr & Proc, xxiii, pp 73-110
 ———, 1894—Further Notes on Australian Hydroids, with descriptions of some New Species Proc (n.s.), vi, pp 93-117, pls iii-vi
 ———, 1913—Further Notes on Australian Hydroids—II Proc (n.s.), xxvi (1), pp 114-147, pls xii, xiii
 ———, 1914—Idem—III Proc (n.s.), xxvii (1), pp 72-93, pls xi, xii
 ———, 1919—Idem—IV Proc (n.s.), xxxi (2), pp 327-361, pls xvii, xviii
 ———, 1922—New Species of Bryozoa Proc (n.s.), xxxxv (1), pp. 108 113, pl viii
 ———, 1926—Further Notes on Australian Hydroids—V Proc (n.s.), xxxviii, pp. 13-23, with five text figures.
- Balfour, L—See Officer, G, and Balfour, 1893 and 1894 Also Officer, G, Balfour, and Hogg, E G, 1895
- Baracchini, F, 1894—Results of Observations with the Kater's Invariable Pendulums, made at the Melbourne Observatory, June to September, 1893. Proc (n.s.), vi, pp 162-177
- Barker, D W, 1883—Notes on the Storms of High South Latitudes Tr & Proc, xix, pp 139-143, with plate
- Barnard, F, 1879—Notes on Sponge from Northern Territory Journ., 1 (1), pp 14, 15, pl 1, figs. 5-8
- , 1880—A New Method of Making Cells of Wax for Mounting Opaque and Transparent Objects Journ. 1 (2 and 3), pp 53-57
- , 1882—On Cleaning Used Slides and Covers Journ., 1 (4), pp. 106, 107
- Barrett, A O, 1928—The Diurnal and Annual Fluctuations of Temperature in the Interior of a large Tree Proc (n.s.), xli (1), pp 32-44, with text-figure
- , and Green, H, 1931—The Seasonal Sap Flow of *Eucalyptus botryoides* Proc (n.s.), xlii (2), pp 241-250, with two graphs
- Barrett, J W, 1893—The Present Position of the Snakebite Controversy. Proc (n.s.), v, pp 181-186
- , 1893—Sneezing Fallacious Observations Proc (n.s.), v, pp 187-192
- , 1894—Some Statistics showing the extent of the Damage done to Members of the Medical Profession by the Abuse of Alcohol Proc. (n.s.), vi, pp 147-149
- Barton, R, 1876—On "Surcharge" of the Bullion Assay Tr & Proc, xii, pp 89-92
- Bastow, R A, and Gathiff, J. H, 1907.—New Species of Australian Chiton from Queensland, *Enoplochiton torri*. Proc (n.s.), xx (1), pp 27-30, pls iii, iv
- Becker, L, 1855—Meteorological Observations at Bendigo Trans Phil Soc, 1, pp 87-91, with plate
- , 1857—On a Viviparous Fish, from Hobson's Bay Trans Phil Inst, 1, pp 11-13, with plate
- , 1857—On a Sognathus, from Hobson's Bay Trans Phil Inst, 1, p 14, with plate
- , 1857—On the Age of the Animal and Vegetable Kingdoms of Australia relatively to that of the rest of the world; and some remarks on the Changes of this Land by Upheavals Trans Phil Inst, 1, pp 15-18, with plate
- , 1857—The Nest, Egg, and Young of the Lyrebird (*Menura superba*) Trans Phil Inst, 1, pp 153, 154
- , 1857—The Tenacity of Life in the Platypus (*Ornithorhynchus paradoxus*) Trans Phil Inst, 1, pp 155, 156
- , 1857—Native Zinc embedded in Basalt Trans Phil Inst, 1, pp 156-158
- , 1859—Some Facts determining the date of the Upheaval of the South Coast of the Australian Continent Trans Phil Inst, iii., pp 7-9
- , 1859—A few notes on two kinds of Australian Leeches Trans Phil Inst, iii., pp 36-38, with plate
- , 1859—On an Australian Bat No I Trans Phil Inst, iii., pp 38-40, with plate
- , 1860—Observations on Donati's Comet, made between Oct. 12th and Nov 12th 1858 Trans Phil Inst, iv, pp 9-13, with five plates
- , 1860—Notes on an Australian Bat No II Trans Phil Inst, iv, pp 41-43, with plate

- Behrendt, P., 1883—On Electric Railways (Title only) Tr & Proc., viii, p 196
- , 1884—Modern Fireproof and Watertight Building Materials—Traegerwellblech and Asphalt Tr & Proc., ix, pp 75-83, with six plates
- Bellamy, J W., 1857—On the "Lyre Bird" (*Menura superba*) Trans Phil Inst., ii (1), pp 12-14
- , 1869—Facts from the Ancient of Nature apparently at variance with the accepted Theories of Science Tr & Proc., ix (2), pp 88-108
- , 1869—A Sketch of a New Theory of the Oceanic Tides, based upon examination of the causes assigned to exceptional "tidal" waves (Abstract) Tr & Proc., ix (2), p 148
- Bell, F., 1855—Wrought Iron Bridges as Adapted to the Colony Trans & Proc Vict Inst., i, pp 154-157
- Bergroth, E., 1895—Contributions to a knowledge of the Rhynchota of Australia. Proc. (n.s.), vii, pp 287-302
- , 1916—New Genera and Species of Australian Hemiptera Proc. (n.s.), xxix (1), pp 1-18
- , 1916—Heteropterous Hemiptera collected by Professor W. Baldwin Spencer during the Horn Expedition into Central Australia Proc. (n.s.) xxix (1), pp 19-39
- Berry, R J A., 1907—A Living Descendant of an Extinct (Tasmanian) Rice Proc. (n.s.), xx (1), pp 120, pl 1
- , and Robertson, A W D., 1909—Preliminary Communication on Fifty three Tasmanian Crania, Forty two of which are now recorded for the first time. Proc. (n.s.), xxii (1), pp 47-58
- , —, 1909—Dioptriographic Tracings in Four Normae of Fifty two Tasmanian Crania Trans., v (1), pp 1-11, pls 1 A in D
- , —, 1914—Dioptriographic Tracings in Three Normae of Ninety Australian Aboriginal Crania Trans., vi, pp 1-6, pls 1 A & C
- , and Buchner, L W G., 1913—The Correlation of Size of Head and Intelligence as Estimated from the Cubic Capacity of Brain of 355 Melbourne Criminals Proc. (n.s.), xxv (2), pp 229-253
- , —, 1913—The Correlation of Size of Head and Intelligence as Estimated from the Cubic Capacity of Brain of 332 Melbourne Criminals Hanged for Murder Proc. (n.s.), xxv (2), pp 254-267
- Beveridge, P., 1865—A Few Notes on the Dialects, Habits, Customs, and Mythology of the Lower Murray Aborigines Tr & Proc., vi, pp 14-24
- Bingham, R., Laby, T H., and Shearer, J., 1928—Note on the Reflection of X rays from Glass and Quartz Proc. (n.s.), viii (1), pp 55-58, with text figure
- Bird, H S., 1923—The Occipital Bones of the Diplop. Proc. (n.s.), xxxx (2) pp 115, 116
- Blackburn, T., 1900—On some New Genera and Species of Australian Coleoptera Proc. (n.s.), xii (2), pp 206-233
- , 1904—Revision of the Australian Aphodiidae, and Descriptions of Three New Species allied to them Proc. (n.s.), xvii (1), pp 145-181
- Blackett, C. R., 1881—A New Process of Purifying Water discovered by Mr Birkmyre (Title only) Tr & Proc., xvii, p 23
- , 1884—Schone's New System of Sewage (Title only) Tr & Proc., xx, p 79
- , 1888—Notes on Some Determinations of Chlorine in the Water of the Yarra Tr & Proc., xxiv (2), pp 97-99
- Blandowski, W., 1855—Personal Observations made in an Excursion towards the Central Parts of Victoria, including Mount Macedon, McIvor, and Black Ranges Trans Phil Soc., i, pp 50-74, with plate
- , 1855—A Description of Fossil Annelidae in Primitive Rocks from the Upper Yarra District Trans Phil Soc., i, pp 221-223, with plate
- , 1855—On the Primary Upheaval of the Land round Melbourne, and the Recent Origin of the Gypsum or Sulphate of Lime in the great swamp between Batman's and Emerald Hill, Flemington, Williamstown, and Melbourne, illustrated by a large number of Specimens from that Locality Trans. Phil. Soc., i, pp. 223-234, with two plates
- , 1857—Report II. of William Blandowski, Esq., to the Honourable the Surveyor General, on an Excursion to Frankston, Bulcomb's Creek, Mount Martha, Port Phillip Head, and Cape Shank Trans Phil Inst., i, pp 24-37
- , 1857—Report, No III to the Surveyor General, of an Excursion from King's Station to Bass River, Phillip and French Islands Trans Phil Inst., i, pp 50-67
- , 1858—Recent Discoveries in Natural History on the Lower Murray (Preliminary Report—No IV—Addressed to the Honorable the President of Public Lands and Works By order, handed over to the Philosophical Institute) Trans Phil Inst., ii (2), pp 124-130, 135-137 (Pages 131-134 and four plates omitted by order of the Council)
- , 1858—On Extensive Infusoria Deposits in the Mallee Scrub, near Swan Hill, on the Lower Murray River in Victoria and, on the Presence of Fucoidae in Silurian Rocks, near Melbourne Trans Phil Inst., ii (2), pp 141-146, two plates and text-figures i-v
- Bleasdale, J J., 1865.—On Chlorine as a Solvent of Gold Tr & Proc., vi, pp 47-52
- , 1865—On Precious Stones Tr & Proc., vi, pp 98-104

- Blaesdale, J. J., 1866—A Report on the Results of an Exhibition of Gems, both Victorian and Foreign, and Works in the Jewellers' Art, in both Gold and Silver, held in the Hall of the Royal Society of Victoria during the week ending the 6th May, 1865 (See also under "Committees, 1865") Tr & Proc, vii, pp 64-92
 ——, 1866—Gems and Sapphires Tr & Proc, viii, pp 147-149
 ——, 1867—On Colonial Wines Tr & Proc, viii (1), pp 53-72
 ——, 1868—Rubellite—Red Tourmaline—found at Tarrangoweri, Victoria, 1867 Tr & Proc, viii (2), pp 225-227
 ——, 1868—On Colonial Gems Tr & Proc, ix (1), pp 72-75
 Blunt, J. P.—See Downes, A., & Blunt, 1884
 Bonwick, J., 1866—The Volcanic Rocks of Rome and Victoria compared Tr & Proc, vii, pp 149-165
 Bosisto, J., 1859—On the Hirudo australis Trans Phil Inst, iii, pp 18-22
 ——, 1865—Abstract of a Paper on the Yield and Uses of Volatile Oils, from Native and Imported Plants, in the Colony of Victoria Tr & Proc, vi, pp 52-61
 ——, 1874—Some Notes on the Culture of Opium in Gipps Land Tr & Proc, x, pp 39-42
 ——, 1874—On the Cultivation of *Mentha piperita* or Twin Peppermint, in Victoria based on a Report received from England relating to its Oil value Tr & Proc, x, pp 116-120
 ——, 1876—Is the Eucalyptus a Fever destroying Tree? Tr & Proc, xii, pp 10-23
 Biazenoi, C. W., 1933—First Record of a Beaked Whale (*Mesoplodon greyi*) from Victoria Proc (n.s.), xlvi (1), pp 23, 24, pl vi
 Breidahl, H. G., and Rothera, A. C. H., 1915—Bitter Pit and Sensitivity of Apples to Poison An Answer to Prof A. J. Ewart Proc (n.s.), xxvii (2), pp 191-197
 Broadhurst, E., and Campbell, J. D., 1933—The Geology and Petrology of the Mt Leunster District, N.E. Victoria Proc (n.s.), xlvi (2), pp 219-240, pl x, and three text figures
 Bryson, W. E., 1860—On the Resources of Victoria and their Development Trans Phil Inst, iv, pp 141-159
 Buchanan, Gwynneth, 1909—Contributions to our knowledge of Australian Earth worms—The Blood Vessels—Part I Proc (n.s.), xxii (1), pp 59-84, pls xiv-xvii
 ——, 1910—Idem, Part II Proc (n.s.), xxii (2), pp 209-220, pls xi-xlii
 ——, 1910—Note on the Accessory Glands of *Cryptodrilus saccarius* (Fletcher) Proc (n.s.), xxii (2), pp 224-243, pls xlii-xliii
 ——, 1910—Note on a Supposed Nematode Parasitic in the Circular Muscle of an Earthworm (*Diporochieta grandis*) Proc (n.s.), xxii (1), pp 99-101, pls xx, xxii
 ——, 1916—A Comparative Examination of the Blood of Certain Australian Animals Proc (n.s.), xxviii (2), pp 183-207, pls xviii, xix.
 Buchner, L. W. G.—See Berry, R. J. A., and Buchner, 1913 (2)
 ——, 1912—An Investigation of Fifty-two Tasmanian Crania by Klaatsch's Craniotrigonometrical Methods Proc (n.s.), xxv (1), pp 122-134, with four text figures and a table
 ——, 1912—A Study of the Prognathism of the Tasmanian Aboriginal Proc (n.s.), xxv (1), pp 135-150, with four text figures
 ——, 1913—On the Estimation of the Position and Slope of the Foramen Occipitale Magnum Proc (n.s.), xxvi (1), pp 202-210
 Bull, L. B.—See Gilruth, J. A., and Bull, 1910
 Butler, L. S. G., 1929—Studies in Victorian Spiders, No 1 Proc (n.s.), xlii (1), pp 41-52, with two text figures
 ——, 1932—Idem, No 2 Proc (n.s.), xliv (2), pp 103-117, with two text figures
 Byrne, P. M., 1896—Note on the Customs connected with the use of the so-called Kurdaitcha Shoes of Central Australia Proc (n.s.), viii, pp 65-68

C

- Cairns, J., 1859—On the Weir Mallee, a water-yielding Tree, the Bulrush, and Porcupine Grass of Australia Trans Phil Inst, iii, pp 32-35
 ——, 1860—A description of the Silver Mines of the Cerro de Pasco, and the Journey to them across the Andes Trans Phil Inst, iv, pp 61-65
 Caldwell, R., 1874—On Meat Preserving (Abstract) Tr & Proc, x, p 125
 Campbell, A. J., 1891—Notes on West Australian Oology, with Description of New Eggs Proc (n.s.), iii, pp 1-7, pls 1, 11
 ——, 1893—Three rare Species of Eggs hitherto only described from the Oviduct of the Bird Proc (n.s.), v, pp 123-126
 ——, 1895—Notes on Birds Proc (n.s.), vii, p 201
 ——, 1895—The Gymnorhinae or Australian Magpies, with a description of a New Species Proc (n.s.), vii, pp 202-213
 Campbell, F. A., 1880—Experiments on the Tensile Strength of a few of the Colonial timbers Tr & Proc, xvi, pp 6-10, with plate
 ——, 1883—Experiments upon the Hardwoods of Australia Tr & Proc, xix, pp 106-111
 ——, 1887—On the Stability of Structures in regard to Wind Pressure Paper No 1 Tr & Proc, xxiii, pp 39-45, with diagram

- Campbell, F. A., 1887—*Idem Part II*, Bridges 11 & Proc., xxiii, pp. 58-64, with two text figures.
- , 1887—On the Want of a Uniform System of Experimenting upon Timbees. Tr. & Proc., xxiii, pp. 244-249, with text figure.
- , 1889—The Active Volcano of Tanna, New Hebrides, with some Remarks on the Cause of Volcanic Action. Proc. (n.s.), i., pp. 71-83, pls. v-viii.
- Campbell, J. D.—See Broadhurst, E., and Campbell, 1933.
- Carandal, M. A., 1874—A Proposition for the Improvement and Extension of the Wharfage Accommodation on the Yarra River (Abstract). Tr. & Proc., v, p. 47.
- Carpenter, P. H., 1890—Report of the Port Phillip Biological Survey Committee, 1889. (1) Preliminary Report on the Crinoids obtained in the Port Phillip Biological Survey. Proc. (n.s.), ii., pp. 135-136.
- Carter, H. I., 1915—Revision of the Australian Castelidae Order Coleoptera. Proc. (n.s.), xxviii (1), pp. 52-104, pl. vi.
- Castelnau, F. de, 1867—Notes on Australian Coleoptera. Tr. & Proc., viii (1), pp. 30-38.
- , 1868.—*Idem Part II* Tr. & Proc., viii (2), pp. 95-225.
- Chapman, F.—See Jutson, J. I., 1908. Also Jutson, J. T., and Chapman, 1913. Also Thiele, E. O., 1908.
- , 1903—New or Little known Victorian Fossils in the National Museum, Melbourne. Part I—Some Palaeozoic Species. Proc. (n.s.), xv (2), pp. 104-122, pls. xvi.-xviii.
- , 1903—*Idem Part II*—Some Silurian Molluscoidea. Proc. (n.s.), xvi (1), pp. 60-82, pls. x-xii.
- , 1904—On Some Foraminifera and Ostracoda from Jurassic (Lower Oolite) Strata, near Geraldton, Western Australia. Proc. (n.s.), xvi. (2), pp. 181-206, pls. xxii., xxiii.
- , 1904—On a Collection of Upper Palaeozoic and Mesozoic Fossils from West Australia and Queensland in the National Museum, Melbourne. Proc. (n.s.), xvi. (2), pp. 306-335, pls. xxvii.-xxx.
- , 1904—New or Little known Victorian Fossils in the National Museum. Part III—Some Palaeozoic Pteropoda. Proc. (n.s.), xvi. (2), pp. 336-342, pl. xxxi.
- , 1904—New or Little known Victorian Fossils in the National Museum, Melbourne. Part IV—Some Silurian Ostracoda and Phyllocorda. Proc. (n.s.), xvii. (1), pp. 298-319, pls. xiii.-xvii.
- , 1905—*Idem Part V*—On the Genus Receptaculites. With a Note on K. australis from Queensland. Proc. (n.s.), xviii. (1), pp. 515, pls. xi.-xiv.
- , 1905.—*Idem Part VI*—Notes on Devonian Spiriferids. Proc. (n.s.), xviii. (1), pp. 16-19, pl. v.
- , 1906—*Idem Part VII*—A New Cephalaspid from the Silurian of Wombat Creek. Proc. (n.s.), xviii. (2), pp. 93-100, pls. vii., viii.
- , 1907—New or Little known Victorian Fossils in the National Museum. Part VIII—Some Palaeozoic Brittle stars of the Melbournian Series. Proc. (n.s.), xix. (2), pp. 21-27, pls. vi-viii.
- , 1907—Description of a New Species of Cypridina from Hobson's Bay, Melbourne. Proc. (n.s.), xix. (2), pp. 28-32, pl. ix.
- , 1908—New or Little known Victorian Fossils in the National Museum. Part IX—Some Tertiary Species. Proc. (n.s.), xx (2), pp. 208-221, pls. xvii.-xix.
- , 1909—On the Occurrence of the Selachian Genus Corax in the Lower Cretaceous of Queensland. Proc. (n.s.), xxi. (2), pp. 452, 453, with text-figure.
- , 1909—On a New Species of Leperditia from the Silurian of Yass, New South Wales. Proc. (n.s.), xxii. (1), pp. 1-5, pls. i., ii.
- , 1910—New or Little-known Victorian Fossils in the National Museum. Part X—Some Palaeozoic Worms and Crustacea. Proc. (n.s.), xxii. (2), pp. 101-112, pls. xxvii.-xxix.
- , 1910—A Study of the Batesford Limestone. Proc. (n.s.), xxii. (2), pp. 263-314, pls. iii.-iv.
- , 1910—New or Little known Victorian Fossils in the National Museum, Melbourne. Part XI—On an Impression of a Bird's Feather in the Tertiary Ironstone of Redruth, Victoria. Proc. (n.s.), xxiii. (1), pp. 21-26, pls. iv., v.
- , 1911—New or Little-known Victorian Fossils in the National Museum. Part XII.—On a Trilobite Fauna of Upper Cambrian Age (Olenus Series) in N.E. Gippsland, Victoria. Proc. (n.s.), xxiii. (2), pp. 305-324, pls. lviii.-lxii.
- , 1911—On some supposed Pyritized Sponges from Queensland. Proc. (n.s.), xxiii. (2), pp. 415-418, pl. lxxxii.
- , 1911—A Revision of the Species of Limopsis in the Tertiary Beds of Southern Australia. Proc. (n.s.), xxiii. (2), pp. 419-432, pls. lxxxiii.-lxxxv.
- , 1911—New or Little known Victorian Fossils in the National Museum. Part XIII. Proc. (n.s.), xxiv. (1), pp. 179-186, pl. xlvi.
- , 1912—*Idem. Part XIV*—On some Silurian Trilobites. Proc. (n.s.), xxiv. (2), pp. 293-300, pls. lxii.-lxiii.
- , 1912—*Idem. Part XV*—Some Tertiary Gasteropoda. Proc. (n.s.), xxv (1), pp. 186-192, pls. xii., xiii.

- Chapman, F., 1913—*Idem* Part XVI—Some Silurian Brachiopoda Proc (n.s.), xxvi (1), pp 99-113, pls x, xi
 —, 1913—Descriptions of New and Rare Fossils obtained by Deep Boring in the Mallee Part I—Plantae, and Rhizopoda to Brachiopoda Proc (n.s.), xxvi (1), pp 165-191, pls xvii-xix
 —, 1914—*Idem* Part II—Mollusca Proc (n.s.), xxvi (2), pp 301-330, pls xxiv-xxviii
 —, 1914—On a New Species of Ceratodus from the Cretaceous of New South Wales Proc (n.s.), xxvii (1), pp 25-27, pl v
 —, 1914—Description of New and Rare Fossils obtained by Deep Boring in the Mallee Part III—Ostracoda to Fishes With a complete list of Fossils found in the Borings Proc (n.s.), xxvii (1), pp 28-71, pls vi-x
 —, 1915—New or Little-known Victorian Fossils in the National Museum Part XVII—Some Tertiary Cephalopoda Proc (n.s.), xxvii (2), pp 350-361, pls iii-viii
 —, 1915—*Idem* Part XVIII—Some Yeringian Trilobites Proc (n.s.), xxviii (1), pp 157-171, pls xiv-xvi
 —, 1916—On the Generic Position of "Asterolepis ornata, var. australis," McCoy with Description of a New Variety Proc (n.s.), xxviii (2), pp 211-215, pls xx, xxii
 —, 1916—New or Little-known Victorian Fossils in the National Museum Part XIX—The Yeringian Gasteropod Fauna Proc (n.s.), xxix (1), pp 75-103, pls ii-vi
 —, 1917—On the Probable Environment of the Palaeozoic Genus Hercynella in Victoria Proc (n.s.), xxix (2), pp 123-126
 —, 1917—New or Little-known Victorian Fossils in the National Museum Part XX—Some Tertiary Fish teeth Proc (n.s.), xxix (2), pp 134-141, pl i
 —, 1917—*Idem* Part XXI—Some Tertiary Cetacean Remains Proc (n.s.), xxx (1), pp 32-43, pls iv, v
 —, 1918—On the Occurrence of Acrotreta in Lower Palaeozoic (Lancefieldian and Heathcotean) Shales in Victoria Proc (n.s.), xxx (2), pp 145-148, pl xxvi
 —, 1918—On an Apparently New Type of Cetacean Tooth from the Tertiary of Tasmania Proc (n.s.), xxx (2), pp 149-152, pl xxvii
 —, 1918—Ostracoda from the Upper Cambrian Limestone of South Australia Proc (n.s.), xxxi (1), pp 108-112, pl ix
 —, 1918—On the Age of the Barnsdale Gravels, with a note on the included Fossil Wood Proc (n.s.), xxxi (1), pp 166-175, pl x and text figure
 —, 1919—New or Little-known Victorian Fossils in the National Museum Part XXII—Palaeozoic Worms, with evidence of Soft Parts Proc (n.s.), xxxi (2), pp 315-324, pls xiii, xiv
 —, 1919—*Idem* Part XXIII—On some Hydroid Remains of Lower Palaeozoic Age from Monegetta, near Lancefield Proc (n.s.), xxxi (2), pp 388-393, pls xix, xx
 —, 1919—*Idem* Part XXIV—On a Fossil Tortoise in Ironstone from Caiaopook, near Casterton Proc (n.s.), xxxii (1), pp 111-13, pl 1
 —, 1919—On an Ostracod and Shell Marl of Pleistocene Age from Boneo Swamp, West of Cape Schanck, Victoria Proc (n.s.), xxxii (1), pp 24-32, pls. iii, iv
 —, 1920—Notes on a Collection of Tertiary Fossils from Ooldea and Watson, South Australia Proc (n.s.), xxxii (2), pp 225-245, pls xvi, xvii, and text figure
 —, 1921—New or Little-known Victorian Fossils in the National Museum Part XXV—Some Silurian Tabulate Corals Proc (n.s.), xxxiii, pp 212-225, pls ix-xi
 —, 1921—The Age of the Ironstone Beds of the Mornington Peninsula, as adduced from the Marine Fauna Proc (n.s.), xxxiv (1), pp 7-11
 —, 1921—The Specific Name of the Australian Aturia and its Distribution Proc (n.s.), xxxiv (1), pp 12-16, with text figure
 —, 1922—On a Fossil Filamentous Alga and Sponge-Spicules forming Opal Nodules at Richmond River, N.S.W. Proc (n.s.), xxxiv (2), pp. 167-171, with two text figures
 —, 1922—New or Little known Victorian Fossils in the National Museum Part XXVI—Some Tertiary Mollusca Proc (n.s.), xxxv (1), pp 1-18, pls i-ii
 —, 1925—*Idem* Part XXVIII—Some Silurian Rugose Corals. Proc. (n.s.), xxxvii (1), pp 104-118, pls xii.-xv
 —, 1926—Geological Notes on Neumeiella, and the Section from Barnsdale to Orbost Proc (n.s.), xxxviii, pp 125-142, pl x, with two text-figures
 —, 1926—New or Little-known Fossils in the National Museum Part XXIX—Some Tertiary Plant Remains from Narracan, South Gippsland Proc (n.s.), xxxviii, pp 183-191, pls xii., xiii, with text-figure
 —, 1926—*Idem* Part XXX—A Silurian Jelly fish Proc (n.s.), xxxix (1), pp 13-17, pls i, ii
 —, 1927—On a Limestone containing Lepidocyathina and other Foraminifera from the Cape Range, Exmouth Gulf, W.A. Proc (n.s.), xxxix (2), pp 125-190, pl xii
 —, 1929—On the Flanged Cowry, Palliocypraea gastroplax Proc (n.s.), xl (2), pp 202-205, pls xix, xx
 —, 1929—On some Trilobites and Brachiopods from the Mount Isa District, N.W. Queensland Proc (n.s.), xl (2), pp 206-216, pls xxii, xxiii

- Chapman, F., 1929—On a New Species of Capulus found attached to a *Pterygotus* Carapace Proc (n.s), xli (2), pp 217-219, pl xxiii
—, 1931—On the Occurrence of a Fossil Hydractinia in Australia Proc (n.s), xliii (2), pp 233-235, pl viii
—, 1932—Two New Species of Fossil King Crabs Proc (n.s), xliv (1), pp 100-102, pl xiv
—, 1932 On some Palaeozoic Fossils from Deep Creek and Evans' Creek, Salt water River, Victoria Proc (n.s), xliv (2), pp 212-217
—, 1933 Some Palaeozoic Fossils from Victoria Proc (n.s), xlvi (2), pp 215-248, pl xi
—, 1933—On a gigantic Polyzoan referable to *Lichenopora*, from the Miocene of Airey's Inlet, Victoria Proc (n.s), xlvi (1), pp 55-59, pl iii
—, 1933—On Fossiliferous Grits and Cherts, presumably of Cretaceous Age, associated with the Nullagine of Western Australia Proc (n.s), xlvi (1), pp 60-65, pl iv
—, 1934—A Lower Cretaceous Brittle Star from Queensland. Proc (n.s), xlvi (2), pp 195-199, pl vii
—, and Clespin, Irene, 1923—The Austral Rhynchonellacea of the "Niguan Series," with a special description of the new Genus *Tegulorhynchia*. Proc. (n.s), xxxv (2), pp 170-193, pls xi-xiii
—, 1930—Rare Foraminifera from Deep Boilings in the Victorian Tertiaries—*Victoriella*, gen. nov., *Cycloclypeus communis* Martin, and *Lepidocyclus horneensis* Provale Proc (n.s), xlvi (2), pp 110-115, pls vii-viii
—, 1930—Rare Foraminifera from Deep Boilings in the Victorian Tertiaries Part II Proc (n.s), xlvi (1), pp 96-100, pl v
—, 1932—Idem Part III Proc (n.s), xliv (1), pp 92-99, pls xi-xiii
—, 1933—New and Rare Tertiary Mollusca from Deep Boilings in Gippsland, Victoria Proc (n.s), xlvi (1), pp 66-76, pl v
—, and Cudmoe, F. A., 1924—New or Little known Fossils in the National Museum Part XXVII—Some Cainozoic Fish Remains, with a revision of the Group Proc (n.s), xxxvi (2), pp 107-162, pls ix-xi
—, and Gabriel, C. J., 1914—Description of New and Rare Fossils obtained by Deep Boring in the Mallee Part II—Mollusca Proc (n.s), xxvi (2), pp 301-330, pls xxiv-xxviii
—, 1917—On a Shell bed underlying Volcanic Tuff near Warrnambool, with Notes on the Age of the Deposit Proc (n.s), xxx (1), pp 4-14
—, 1923—A Revision and Description of the Australian Tertiary Patellidae, Patellolididae, Cocculinidae, and Fissurellidae Proc (n.s), xxxvi (1), pp 22-40, pls i-iii
—, and Parr, W. J., 1931—Notes on New and Aberrant Types of Foraminifera Proc (n.s), xlvi (2), pp 236-240, with text figure
—, and Pritchard, G. B., 1904—Fossil Fish Remains from the Tertiaries of Australia Part I Proc (n.s), xvii (1), pp 267-297, pls xi, xii
—, 1907—Idem Part II Proc (n.s), xx (1), pp 59-75, pls v-viii
—, and Singleton, F. A., 1925—A Revision of the Cainozoic Species of *Glycynnis* in Southern Australia. Proc (n.s), xxvii (1), pp 18-60, pls i-iv
—, 1927—Descriptive Notes on Tertiary Mollusca from Fyansford and other Australian Localities Part I. Proc (n.s), xxxix (2), pp 113-124, pls x, xi
—, and Thiele, A. O., 1911—On a Limestone Rock occurring as a Volcanic Plug at Balwyn, near Doncaster Proc (n.s), xxiv (1), pp 124-134, pls xl, xl-i
Cheney, Gwendolyn M., 1930—A Correlation between Leaf Dimensions and Osmotic Concentrations in Chickweeds. Proc (n.s), xlvi (2), pp 85-91, with three text-figures.
Cherry, T., 1896—Note on a Victorian Host of the Larval Stages of the Liver Fluke (*Distoma hepaticum*). Proc (n.s), viii, p 183.
—, 1902—Six Months' Daily Examination of Melbourne Tap Water Proc (n.s), xv (1), pp 69-75
Christy, F. C., 1857—Irrigation Trans Phil Inst, i, pp 67-70
—, 1865—On Water Supply and Irrigation (Abstract) Ti & Proc, vi, pp 104-106
—, 1874—On Railway Working Expenses in Victoria. (Abstract) Ti & Proc, x, p 46
—, 1874—Paper upon Colonial Timber Trees, and some European Trees, which have been proved to be suitable to the Colony of Victoria. Ti & Proc, x, pp 47-56
—, 1878—Extracts from Diary in Japan Tr. & Proc, vii, pp 66-84
Clark, D.—See Dennant, J., and Clark, 1898 and 1903
—, 1898—The Roasting and Treatment by Chlorine of Gippsland Auriferous Ores Proc (n.s), xi (1), pp 1-13
—, 1899—Notes on the Solubility of Gold-Silver Alloys in Cyanide of Potassium Solutions Proc (n.s), xi (2), pp 147-151
Clark, J., 1930—Some New Australian Formicidae Proc (n.s), xli (2), pp 116-128, with text figure
—, 1930—New Formicidae, with Notes on some Little known Species Proc (n.s), xlii (1), pp 225, with text-figure
—, 1931—A New Species of Lymexylonidae (Coleoptera) Proc (n.s), xliii (2), pp 120-122, with text figure

- Clarke, H., 1880—On the Yarra Dialect and the Languages of Australia in connexion with those of the Mozambique and Portuguese Africa Tr & Proc, xvi, pp. 170-176
- Clarke, W. B., 1861—A Communication from the Rev W B Clarke, of Sydney, to His Excellency Sir Henry Barkly, K C B, etc, etc, President of the Royal Society of Victoria, on Prof McCoy's "New Taeniopterus" from the Coal bearing Rocks of the Cape Patterson District in particular, and on the Evidence bearing on the Question of the Age of Australian Coal Beds in general Trans (8vo), v, pp. 89-95
- , 1861—Remarks on Professor McCoy's Commentary Trans (8vo), v, pp. 209-214
- , 1865—On the Coal Seams near Stony Creek (junction of Singleton and Wollombi roads), West Maitland district, New South Wales Tr & Proc, vi, pp. 27-31
- , 1865—On the Carboniferous and other Geological Relations of the Maranoa District in Queensland in reference to a Discovery of Zoological Fossils in Wollombilla Creek and Stony Creek, West Maitland Tr & Proc, vi, pp. 32-42, with two plates
- Clarson, W., 1855—Phonetics Tr & Proc Vict Inst, i, pp. 92-100
- Coates, J., 1861—On a Deposit of Diatomaceae at South Yarra Trans (8vo), v, pp. 158-164
- Cockle, J., 1866—On Differential Equations and on Co-resolvents Tr & Proc, vii, pp. 176-196
- Codrington, R. H., 1880—Notes on the Customs of Mota, Banks Islands (With Remarks by the Rev Lorimer Fison, Fiji) Tr & Proc, xvi, pp. 119-143, with plate
- Collins, A. C.—See Parr, W. J., and Collins, 1910
- Committees, Reports of, 1855-1897—See Appendix after letter "Z"
- Cook, G. A., 1916—Notes on the Geology of the Coburg Area Proc (n.s.), xxviii (2), pp. 173-182, pl. xvii
- Cooke, W. M., 1876—The Sciopticton (Title only) Tr & Proc, xii, p. 69
- Cookson, Isabel—See McLennan, Ethel, and Cookson, 1923 and 1926
- Cookson, Isabel C., 1921—Floral Abnormalities in the Genera Eriostemon and Glossodia Proc (n.s.), xxxii, pp. 32-38, pl. iii, and four text-figures
- , 1926—On the Occurrence of the Devonian Genus Arthrostigma in Victoria Proc (n.s.), xxxviii, pp. 65-68, pl. iii
- , 1929—An Account of a Crown Rot of English Walnut Trees in Victoria Proc (n.s.), xlii (1), pp. 5-26, pl. 1, and 26 text figures.
- Corbett, F. A., 1861—The Conjugal Condition of the People of Victoria, considered in relation to the Laws of Divorce Trans (8vo), v, pp. 108-127
- , 1861—Indigenous Fibrous Plants Trans (8vo), v, pp. 205-208
- , 1876—On Abyssinian Tube Wells Tr & Proc, xi, pp. 5-10
- Cotton, B. C., and Gabriel, C. J., 1932—Australian Unionidae Proc (n.s.), xliv (2), pp. 155-162, pl. xvi
- Coulson, A., 1930—On the Relationship of the Epidiorite and the Granite at Barrabool Hills and Dog Rocks, near Geelong, Victoria Proc (n.s.), xlii (2), pp. 99-109, pl. vi, with text figure
- , 1930—Notes on the Jurassic Rocks of the Barrabool Hills, near Geelong, Victoria Proc (n.s.), xliii (1), pp. 36-41, pl. i, and two text figures
- , 1932—Phosphatic Nodules in the Geelong District Proc (n.s.), xliv (2), pp. 118-128, pl. xv, and text figure
- , 1933—Diabase Rocks at the You Yangs, near Geelong Proc (n.s.), xlvi (2), pp. 137, 138, and text-figure
- , 1933—The Older Volcanic and Tertiary Marine Beds at Curlewis, near Geelong Proc (n.s.), xlii (2), pp. 140-148, with two text figures
- Coulson, A. L., 1924—The Geology of the Coromadai Area, Victoria, with special reference to the Limestone Series Proc (n.s.), xxxvi (2), pp. 163-174, pl. xii, and text figure
- Coverlid, Alice M., 1927—The leaf of Grewia polygama and its Tannin Content Proc (n.s.), xxxix (2), pp. 149-153, with three text figures
- Crawford, W.—See Harris, W. J., and Crawford, 1921
- Crespin, Irene—See Chapman, F., and Crespin, 1923, 1930 (2), 1932, and 1934
- , 1926—The Geology of Green Gully, Keilor, with special reference to the Fossiliferous Beds Proc (n.s.), xxxviii, pp. 100-124, pls. vii-ix, with two text figures
- Cresswell, A. W., 1893—Notes on the Lilydale Limestone Proc (n.s.), v, pp. 38-44, pls. viii, ix
- , 1894—Additional Notes on the Lilydale Limestone Proc (n.s.), vi, pp. 156-159
- Cudmore, F. A.—See Chapman, F., and Cudmore, 1924
- Culcheth, W. W., 1882—The Drainage of Melbourne Tr & Proc, xviii, pp. 60-71
- , 1882—Floods on the River Barwon Tr & Proc, xviii, pp. 82-97, with diagram
- , 1883—Quantity of Water Consumed in Irrigation Tr & Proc, xix, pp. 24-48
- , 1885—Shingle on the East Coasts of New Zealand. Tr & Proc, xxi, pp. 52-85
- Cumming, A. C., 1903—Coorongite, a South Australian Elaterite Proc (n.s.), xv (2), pp. 134-140
- Curl, S. M., 1885—Australian Cave Paintings (Title only) Tr & Proc, xxii, p. 100

D

- Dahlke, J G W, 1868—On Purification of Water. *Ti & Proc*, viii (2), pp 289-294
- Davey, E, 1855—On the Construction of an Instrument for Ascertaining the Mean Temperature of any Place. *Trans Phil Soc*, i, pp 85-87, with plate
- _____, 1855—The Meteorology of Melbourne. *Trans Phil Soc*, i, pp 164-175
- David, T W Edgeworth, Summers, H S, and Aupt G A, 1927—The Tasmanian Tekrite—Darwin Glass. *Proc (n.s)*, xxxix (2), pp. 167-190, pl xiii, and four text figures.
- Davies, Olive B, 1912—The Anatomy of the Slug, *Cystopelta petterdi*, var *purpurea*, var nov. *Proc (n.s)*, xxiv (2), pp 331-342, pls lxiv-lxix
- _____, 1913—The Anatomy of Two Australian Land Snails, *Paryphanta atramentaria*, *Shuttleworthi*, and *P compacta*, Cox and Hedley. *Proc (n.s)*, xxv (2), pp 221-228, pls xv-xvii
- _____, 1913—On Two New Species of *Chaetogaster*. *Proc (n.s)*, xxvi (1), pp 88-98, pl ix
- _____, 1914—The Anatomy of *Caryodes diiresnyi*, Leach. *Proc (n.s)*, xxvii (1), pp 19-24, pl iv
- Davis, A C—See Light, S F, and Davis, 1929
- _____, 1929—Notes on *Coptotermes boiensis* Oshima (Isoptera). A Study in Description of the Termite Soldier. *Proc (n.s)*, xlii (1), pp 53-61, with six text figures
- Davis, J K, 1934—Australia's Antarctic Dependency. *Proc (n.s)*, xlvi (2), pp 139-143, with one text-figure
- Davy, E—Identical with Davey, E
- _____, 1885—On the Extinction of Waves at the Entrance of Harbours. *Ti & Proc*, xxi, pp 146, 147
- Dawkins, A E, 1915—Further Notes on the Essential Oils of Australian Myrtaceae. Part I—The Essential Oil of *Eugenia smithii*, and Part II—The Calculation of the Oil Content of Foliation from Measurements of the Number and Size of the Oil Glands (For Part III, see Earl, J C, 1915) *Proc (n.s)*, xxviii (1), pp 149-154
- Deane, C, 1931—Australian Hydrophilidae, Notes and New Species. *Proc (n.s)*, xlii (2), pp 166-176, with two text figures
- _____, 1933—Idem No 2. *Proc (n.s)*, xlii, (1), pp 20-27, and ten text figures
- Dendy, A, 1889—On the Anatomy of an Arenaceous Polyzoan. *Proc (n.s)*, i, pp 1-11, pls 1-11
- _____, 1889—An Alphabetical List of the Genera and Species of Sponges described by H J Carter, Esq, F R S, together with a number of his more important references to those of other Authors, with an Introductory Notice. *Proc (n.s)*, i, pp 34-59
- _____, 1889—Preliminary Notes on the Structure and Development of a Horn Sponge (*Stelospongia flabelliformis*). *Proc (n.s)*, i, pp 62-72
- _____, 1889—Notes from the Biological Laboratory of the University of Melbourne (4) Note on Some Actinian Larvae parasitic upon a Medusa from Port Phillip. *Proc (n.s)*, i, pp 112-114
- _____, 1889—The Anatomy of an Australian Land Planarian. *Trans*, i, (2), pp 50-95, pls vii x
- _____, 1890—Observations on the Australian Species of *Peripatus*. *Proc (n.s)*, ii, pp 50-62
- _____, 1890—On the Pseudogastrula Stage in the Development of Calcereous Sponges. *Proc (n.s)*, ii, pp. 93-101, pl 1A
- _____, 1891—The Victorian Land Planarians. *Trans*, ii (1), pp. 65-80, pl viii
- _____, 1891—Note from the Biological Laboratory of the University of Melbourne, on the Presence of Corpuscles in the Liquid Discharged from the Apertures of the Nephridia and Oral Papillae of *Peripatus*. *Proc (n.s)*, iii, pp 44, 45
- _____, 1891—A Monograph of the Victorian Sponges. Part I—The Organisation and Classification of the *Calcarea Homocoela*, with Descriptions of the Victorian Species. *Trans*, iii (1), pp 1-81, pls. i-xi
- _____, 1892—Additional Observations on the Victorian Land Planarians. *Trans*, ii (2), pp 25-41, pl iv
- _____, 1892—Preliminary Account of *Synute pulchella*, a New Genus and Species of Calcereous Sponges. *Proc (n.s)*, iv (1), pp. 1-6
- _____, 1892—On the Oviparity of *Peripatus leuckartii*. *Proc (n.s)*, iv, (1), pp 31-34
- _____, 1892—Short Descriptions of New Land Planarians. *Proc (n.s)*, iv (1), pp 35-38
- _____, 1892—On the Presence of Ciliated Pits in Australian Land Planarians. *Proc (n.s)*, iv (1), pp 39-46, pl v
- _____, 1892—On the Australian Land Nemertine (*Geonemeteis australiensis*, n sp.). *Proc (n.s)*, iv (2), pp 85-122, pls vii-x
- _____, 1892—Descriptions of some Land Planarians from Queensland. *Proc (n.s)*, iv (2), pp. 123-129, pl xi
- _____, 1893—Further Notes on the Oviparity of the larger Victorian *Peripatus*, generally known as *P leuckartii*. *Proc (n.s)*, v, pp 27-35
- _____, 1893—Synopsis of the Australian *Calcarea Heterocoela*, with a proposed Classification of the Group and Descriptions of some New Genera and Species. *Proc (n.s)*, v, pp 69-116

- Dendy, A., 1893—Notes on the Mode of Reproduction of *Geonemertes australiensis* Proc (n.s.), v, pp 127-130.
 —, 1893—On a New Species of *Leucosolenia* from the neighbourhood of Port Phillip Heads Proc (n.s.), v, pp 178-180
 —, 1894—The Hatching of a *Peripatus* Egg Proc (n.s.), vi, pp 118, 119—
 —, 1894—Note from the Biological Laboratory of the Melbourne University—
 On a Crayfish with abnormally developed Appendages Proc (n.s.), vi, pp 160, 161
 —, 1894—Notes on some new or little known Land Planarians from Tasmania and South Australia Proc (n.s.), vi, pp 178-188, pl x
 —, 1895—Catalogue of Non Calcareous Sponges collected by J. Bracebridge Wilson, M.A., Esq., in the neighbourhood of Port Phillip Heads Part I. Proc (n.s.), vii, pp 232-260
 —, 1896—Idem Part II. Proc (n.s.), viii, pp 14-51
 —, 1897—Idem Part III. Proc (n.s.), ix, pp 230-259
- Dennant, J., 1887—Notes on Post-Tertiary Strata in South-Western Victoria Tr & Proc, xxiii, pp 225-243, with two text figures and two maps.
 —, 1891—Notes on Miocene Strata at Jemmey's Point, with Brief Remarks upon the Older Tertiary at Bairnsdale Proc (n.s.), iii, pp 53-66, with diagram
 —, 1891—Appendix to "Remarks on the Older Tertiary Strata at Bairnsdale" Proc (n.s.), iii, pp 67-69
 —, 1898—Description of a New Species of *Unio* from the River Glenelg Proc (n.s.), x (2), pp 112, 113, pl iv
 —, 1901—Further Notes on the Igneous Rocks of South Western Victoria Proc (n.s.), xiv (1), pp 10-16, pl i
 —, and Clark, D., 1898—The Miocene Strata of the Gippsland Lakes Area Proc (n.s.), x (2), pp 129-139, pl vii
 —, 1903—Geology of the Valley of the Lower Mitchell River Proc (n.s.), xvi (1), pp 12-47, pls ii-viii
 —, and Mulder, J. F., 1897—Probable Miocene Age of a Conglomerate at Shelford Proc (n.s.), ix, pp 174-182, pl vii
 —, 1898—The Geology of the Lower Leigh Valley Proc (n.s.), xi (1), pp 54-95
- Derrick, E. M.—See Ewart, A. J., Keri, Lesley, R., and Derrick, 1926.
- Deverell, S. R., 1874—Ocean Waves and their Action on Floating Bodies Tr. & Proc, x, pp 82-99, with four plates and a text-figure.
 —, 1874—On Ocean Wave Power Machinery Tr & Proc, x, pp 148-154
 —, 1878—Some Experiments in Propulsion Tr & Proc, xiv, pp 7-9
 —, 1878—On the Ratio of the Length and Height of Sea Waves Tr & Proc, xiv, pp 109-115, with plate.
- Dobree, A., 1861—On the Nest and Eggs of the Coach-whip Bird (*Psophodes crepitans*, Gould), and of the White-fronted Eptianura (*Eptianura albifrons*, Gould), with some general remarks on the Nidification of Australian Birds (Svo.) v, pp 141-144
- Dodd, A. P., 1930—New Hymenoptera Proctotrypoidae from Victoria Proc (n.s.), xlvi (1), pp 26-35
- Downes, A., and Blunt, T. P., 1884.—The Influence of Light on Bacteria Tr & Proc, xx, pp 1, 2
- Drew, R., Green, H., and St John, P. R. H., 1912—Notes on some "Stringybark" Eucalypts Proc (n.s.), xxv (1), pp 176-185, pls v, xi, and two text-figures
- Drew, R. B., and Rosenblum, E. I., 1915—Studies in the Physical Chemistry of Essential Oils Part I—The Physical Properties of mixtures of two Terpene substances in relation to those of the constituents Proc (n.s.), xxvii (2), pp 149-163, with two text figures
- Dumaresq, Frances K. M., 1913—The Viscosity of Cream Proc (n.s.), xxv (2), pp 307-322, with five text-figures
- Dun, W. S., 1898—Contributions to the Palaeontology of the Upper Silurian Rocks of Victoria, based on Specimens in the Collections of Mr George Sweet Part I Proc (n.s.), x (2), pp 79-90, pl vii
 —, 1900—Note on Two Fossil Plants from Dundas Proc (n.s.), xii (2), pp. 160, 161
- Dunn, E. J., 1874—Notes on the occurrence of Enhydros or Water Stones at Beechworth Tr & Proc, x, pp 32-35, with plate
 —, 1887—Notes on the Occurrence of Glaciated Pebbles and Boulders in the so called Mesozoic Conglomerate of Victoria Tr. & Proc, xxiv. (1), pp 44-46
 —, 1894—Glaciation of the Western Highlands, Tasmania. Proc (n.s.), vi, pp 133-138, pl viii
 —, 1898—The Northward Extension of the Deirinal Conglomerate (Glacial) Proc (n.s.), x (2), pp. 204-208
 —, 1898—Note on Perforated Rocks from West Australia Proc (n.s.), x (2), pp 209, 210
 —, 1904—The Auriferous Sandstones of Chiltern Proc (n.s.), xvi (2), pp 285-291
 —, 1905—The Mount Morgan Gold Mine, Queensland Proc (n.s.), xvii (2), pp 341-355, pls xxxi, xxxii
 —, 1915—Geological Notes Northern Territory, Australia Proc (n.s.), xxviii. (1), pp 112-114, pls x, xi

- Dunn, E J, 1916—Additional Notes on Australites Darwin Glass Proc. (n.s.), xxviii (2), pp. 223-227, pl. xxiii
 ——, 1916—Notes on a New Acacia from Victoria River, Northern Territory Proc. (n.s.), xxviii (2), pp. 228, 229, pls. xxiv, xxv
 ——, 1926—Distorted Pebbles from Goat Island, Tasmania Proc. (n.s.), xxix (1), pp. 18, 19, pls. iii-v
 Dunn, F—See Newberry, J C, and Dunn, 1879
 Dunn, J A, 1921—The Petrology of the Ordovician Sediments of the Bendigo District Proc. (n.s.), xxxiv (1), pp. 55-64
 ——, 1921—On the Inclusion of Ordovician Sandstone in the Granite of Big Hill Proc. (n.s.), xxiv (1), pp. 65-70, with text figure
- E**
- Earl, J C, 1915—Further Notes on the Essential Oils of Australian Myrtaceae Part III—The Essential Oil of *Eucalyptus platypus* (For Parts I and II see Dawkins, A E, 1915) Proc. (n.s.), xxviii (1), pp. 154-156
 Eckersley, Audrey M, 1934—Some Sap staining Organisms of *Pinus radiata* D Don, in Victoria Proc. (n.s.), xlvi (2), pp. 179-194, with twenty two text figures
 Eddy, C E, 1926—The L absorption limits of Lutecium, Ytterbium, Erbium, and Terbium Proc. (n.s.), xxxviii, pp. 1-12, with four text figures
 Edwards, A B, 1932—The Geology and Petrology of the Black Spur Area (Healesville) Proc. (n.s.), xliv (1), pp. 49-76, pls. vii, viii, and four text figures
 ——, 1932—The Geology and Petrology of the Warburton Area, Victoria Proc. (n.s.), xliv (2), pp. 163-181, pls. xviii, xix
 ——, 1933—On the Dacite Granodiorite Contact Relations in the Warburton Area Proc. (n.s.), xliv (2), pp. 182-194, pls. xviii, xix, and text figure
 Elford, F G, 1930—The Palisade Cells of the Seed Coat of *Albizia lophantha* Proc. (n.s.), xiii (2), pp. 92-98, with three text figures
 Ellery, R J L, 1861—On the Application of Galvanic Electricity to Practical Astronomy Trans. (8vo), v, pp. 145-152
 ——, 1865—On the Determination of Personal Equation in Astronomical Observing (Abstract) Tr. & Proc., vi, pp. 90-91
 ——, 1865—On the Determination of the Sun's Distance Tr. & Proc., vi, pp. 124-131
 ——, 1865—Abel's Fuses and Wheatstone's Explosive. Tr. & Proc., vi, pp. 167, 168
 ——, 1866—On Ozone Tr. & Proc., vii, pp. 131-144
 ——, 1866—The Rainfall in Victoria Tr. & Proc., vii, pp. 197-201, with two tables
 ——, 1868—On a New Self Registering Electrometer, or, Electrograph Tr. & Proc., viii (2), pp. 294-300
 ——, 1868—On the Temperature of Solar Radiation, as Measured by the Black Bulb Thermometer Tr. & Proc., ix (1), pp. 23-26
 ——, 1868—Aneroid Barometers, and the Methods of Obtaining their Errors (Abstract) Tr. & Proc., ix, (1), pp. 60-62
 ——, 1868—On a Plan for maintaining True Time throughout the City and on the Railways Tr. & Proc., ix (1), pp. 66-70, with plate
 ——, 1868—Description of a Clock made for the Lobby of the General Post Office, Melbourne Tr. & Proc., ix (1), pp. 75, 76
 ——, 1869—On the Black Bulb Thermometer as a measure of the Temperature of Solar Radiation Tr. & Proc., ix (2), pp. 112-115
 ——, 1869—On the Earthquake Wave of the 15th August, 1868 Tr. & Proc., ix (2), pp. 116, 117.
 ——, 1874—Notes on the Earthquake in Gipps Land Tr. & Proc., x, pp. 1-4
 ——, 1874—Notes on a Simplification of a Photographic Process used with Self registering Instruments. Tr. & Proc., x, pp. 28-31
 ——, 1874—On the Brilliant Aurora of the 5th April, 1870 (Title only) Tr. & Proc., x, p. 32
 ——, 1874—On the late Exceptional Season and Frequency of Auroras Tr. & Proc., x, pp. 56-64
 ——, 1874—On a New Form of Spectroscope. Tr. & Proc., x, pp. 64, 65, with plate
 ——, 1874—On Gun Cotton as an Explosive Agent (Abstract) Tr. & Proc., x, p. 78
 ——, 1874—On Siemens's Universal Galvanometer for testing Telegraphic Lines (Abstract) Tr. & Proc., x, p. 139
 ——, 1874—Suggestions for the Construction and Erection of Lightning Conductors Tr. & Proc., xi, pp. 9-13
 ——, 1874—Eckhold's Omnitmeter (Title only) Tr. & Proc., xi, p. 13
 ——, 1876—On the forthcoming Transit of Venus (Title only) Tr. & Proc., xii, p. 1
 ——, 1876—On the Photographic Processes to be adopted in Observing the Transit of Venus. (Title only) Tr. & Proc., xii, p. 32
 ——, 1876—Notes on some of the Physical Appearances Observed in the late Transit of Venus Tr. & Proc., xii, pp. 60-65
 ——, 1878—Notes on the Radiometer (Title only) Tr. & Proc., xiii, p. 67
 ——, 1878—Comparison of the Melbourne and Paris Reflecting Telescopes (Title only) Tr. & Proc., xiii, p. 73
 ——, 1878—On Various Forms of Electrometer (Title only) Tr. & Proc., xiii, p. 73

- Elley, R J., 1878—On the Absence of Sun Spots during the Year. (Title only) Tr & Proc, xiii, p 73
- , 1878—Notes on a Chronographic Apparatus, with Huyghen's Parabolic Pendulum Tr & Proc, xiii, pp 74-78, with plate
- , 1878—Notes on Some Observations of Atmospheric Electricity Tr & Proc, xiii, pp 89-92
- , 1878—The Present State of Meteorology Tr & Proc, xiv, pp 10-19
- , 1878—Notes on the Recent Earthquake (Title only) Tr & Proc, xiv, p 34
- , 1878—On various Forms of Galvanic Battery (Title only) Tr & Proc, xiv, p 65
- , 1878—Notes on the Newly found Satellites of Mars (Title only) Tr & Proc, xiv, p 115
- , 1879—On a New Form of Self-Registering Rain-Gauge Tr & Proc, xv, pp 12, 13, with plate
- , 1879—Note of the Great Meteor of June 8th, 1878 Tr & Proc, xv, pp 27, 28
- , 1879—On the supposed Intra-Mercurial Planet Tr & Proc, xv, pp 35, 36
- , 1880—On the Relation between Forest Lands and Climate in Victoria Tr & Proc, xvi, pp 1-6
- , 1880—The Tidal Datum of Hobson's Bay Tr & Proc, xvi, pp 146-148
- , 1881—An Improved Ombiograph, or Self registering Rain Gauge Tr & Proc, xvii, pp 62-65, with plate
- , 1881—A Sunshine Recorder (Title only) Tr & Proc, xvii, p 88
- , 1882—Description of a Hagemann's Vacuum Anemometer erected at the Observatory (Title only) Tr & Proc, xviii, p 47
- , 1883—A Note on the Apparatus to be used in viewing the forthcoming Transit of Venus, in December, 1882 (Title only) Tr & Proc, xix, p 169
- , 1884—Astronomical Notes (Title only) Tr & Proc, xx, p 98
- , 1884—A New Form of Darkfield Illumination Micrometer (Title only) Tr & Proc, xx, p 118
- , 1884—Notes of an Interesting Fact in Connection with the Early History of the Electric Telegraph Tr & Proc, xx, pp 118-120
- , 1884—Notes on the Rainfall Map recently Issued by the Government of Victoria Tr & Proc, xx, pp 121-123
- , 1884—The Return of the Pons Comet (Title only) Tr & Proc, xx, p 123
- , 1884—The Recent Red Sunsets Tr & Proc, xx, pp 124, 125
- , 1885—On a Recent Shower of Mud stained Rain. (Title only) Tr & Proc, xxi, p 86
- , 1887—Note on the Proposed Photographic Charting of the Heavens (Title only, but see also p 93) Tr & Proc, xxiv (1), p 80
- , 1890—Short Address on the Progress in Astronomy during 1888-1889 Proc (n.s.), ii, pp x-xiii
- , 1892—Photographic Charting of the Heavens Proc (n.s.), iv (1), pp 47-55
- , 1892—The Magnetic Shoal near Bezout Island, off Cossack, N.W. Coast of Australia Proc (n.s.), iv (1), pp 65-68
- , 1894—A Description of a New Pendulum Apparatus, with Half Seconds Pendulums Proc (n.s.), vi, pp 227-232
- , 1894—The New Chain Test Range at the Melbourne Observatory Proc (n.s.), vi, pp 233, 234
- Elliott, S., 1857—On the Cestracion philippi (Port Jackson Shark), Trigonia and Terebratula of the Australian Seas Trans Phil Inst, ii (1), pp 15-17
- , 1860—On Lightning Conductors generally, with special reference to the Conductor attached to the tower and spire of the Wesley Church, Melbourne Trans Phil Inst, iv, pp 99-102
- Etheridge, R., Jun., 1874—On the Occurrence of a species of Retepora (allied to R. phoenicea, Busk), in the tertiary beds of Schnappe Point, Hobson's Bay Tr & Proc, xi, pp 13, 14.
- , 1876—Observations on Sand-dunes of the Coast of Victoria Tr & Proc, xii, pp 2-5
- , 1876—Notes on some Upper Palaeozoic Polyzoa, from Queensland Tr & Proc, xii, pp 66-68
- , 1878—On the History of Palaeozoic Actinology in Australia Tr & Proc, xiv, pp 102-108
- , 1894—An Operculum from the Lilydale Limestone Proc (n.s.), vi, pp 150-155, pl ix
- , 1894—The Largest Australian Trilobite hitherto discovered Proc (n.s.), vi, pp 189-194, pl xi
- , 1896—Evidence of the Existence of a Cambrian Fauna in Victoria Proc (n.s.), viii, pp 52-64, pl i
- , 1917—Reptilian Notes Megalania prisca, Owen, and Notiosaurus dentatus, Owen, Lacertilian dermal armour, Opalised remains from Lightning Ridge Proc (n.s.), xxix (2), pp 127-133, pl viii.
- , and Woodward, A. S., 1892—On the Occurrence of the Genus Belonostomus in the Rolling Downs Formation (Cretaceous) of Central Queensland Trans, n (2), pp 1-7, pl. i

- Ewart, A J, 1907—Contributions to the Flora of Australia Proc (n.s.), xix (2), pp 33-45, pls x-xii
 ———, 1907—The Movements of the Soluble Constituents in fine Alluvial Soil Proc (n.s.), xx (1), pp 38-58
 ———, 1907—Contributions to the Flora of Australia, No 6 Proc (n.s.), xx (1), pp 76-87, pls ix-xii
 ———, 1908—Idem No 7 Proc (n.s.), xx (2), pp 125-139
 ———, 1908—On the Longevity of Seeds (With an Appendix by Jean White) Proc (n.s.), xxi (1), pp 1210, pls i, ii
 ———, 1909—Contributions to the Flora of Australia, No 10 Proc (n.s.), xxi (2), pp 540-550, pls xxx-xxxxiii
 ———, 1911—Fluctuation of "Blackfellow's Bread" (*Polyporus mylittic*, Cooke) Proc (n.s.), xxiv (1), pp 59, 60
 ———, 1912—On Bitter Pit and the Sensitivity of Apples to Poison Proc (n.s.), xxiv (2), pp 367-419
 ———, 1912—The Ascent and Descent of Water in Trees Proc (n.s.), xxv (1), pp 115-119, pl viii
 ———, 1913—On Bitter Pit and the Sensitivity of Apples to Poison Proc (n.s.), xxvi (1), pp 12-44, pls iii-v
 ———, 1914—On Bitter Pit and Sensitivity to Poisons 3rd Paper, Proc (n.s.), xxvi (2), pp 226-242, pl xxiii
 ———, 1915—Contributions to the Flora of Australia, No 22 Proc (n.s.), xxvii (2), pp 297-304
 ———, 1915—On Bitter Pit and Sensitivity of Apples to Poison Proc (n.s.), xxvii (2), pp 342-349
 ———, 1916—Contributions to the Flora of Australia, No 23 Proc (n.s.), xxviii (2), pp 216-222, pl xxii
 ———, 1917—Contributions to the Flora of Australia, No. 25 Proc (n.s.), xxix (2), pp 142-149
 ———, 1917—The Cause of Bitter Pit, Proc (n.s.), xxx (1), pp 15-20
 ———, 1918—Contributions to the Flora of Australia, No 26 Proc (n.s.), xxx (2), pp 173-177
 ———, 1918—On Chlorophyll, Carotin and Xanthophyll, and on the Production of Sugar from Formaldehyde Proc (n.s.), xxx (2), pp 178-209
 ———, 1919—Contributions to the Flora of Australia, No 27 Proc (n.s.), xxi (2), pp 367, 368, pl xviii
 ———, 1919—On the Synthesis of Sugars from Formaldehyde, Carbon Dioxide and Water Proc (n.s.), xxxi (2), pp 379-387, pls xix, xx
 ———, 1920—On the Synthesis of Sugar from Formaldehyde and its Polymers, its Quantitative Relations and its Exothermic Character Proc (n.s.), xxvii (2), pp 168-188
 ———, 1921—Contributions to the Flora of Australia, No 29 Proc (n.s.), xxviii, pp 226-232, with two text figures
 ———, 1922—On the Changes of Volume in a Mixture of Dry Seeds and Water Proc (n.s.), xxiv (2), pp 172-179.
 ———, 1925—The Nutrient Value of Artificial Sugar Proc (n.s.), xxxvii (1), p 78
 ———, 1928—Contributions to the Flora of Australia, No 35 The Naturalised Aliens of Victoria Proc (n.s.), xli (1), pp 59-62
 ———, 1930—Idem No 36 Proc (n.s.), xlii (2), pp 78-74, pl. v
 ———, and Jarrett, Phyllis H, 1927.—Idem No 33 Additions to the Flora of the Northern Territory and Locality Records Proc (n.s.), xxxix (2), pp 154-161.
 ———, ———, 1928—Idem No 34. Additions to the Flora of the Northern Territory and Locality Records Proc (n.s.), xl (2), pp 81-87
 ———, and Kerr, Lesley, R, 1926—Idem No 32. Additions to the Flora of the Northern Territory Proc (n.s.), xxxix (1), pp 1-12, with five text figures.
 ———, Kerr, Lesley R., and Derrick, E M, 1926—Idem No 30 Records of and additions to the Flora of Central Australia Proc (n.s.), xxxviii, pp. 77-87.
 ———, and Morrison, A, 1913—Idem No 21 The Flora of the Northern Territory (Leguminosae) Proc (n.s.), xxvi (1), pp 152-164, pls xiv, xv
 ———, and Petrie, A H K, 1926—Idem No 31. Additions to the Flora of the Northern Territory and Locality Records Proc (n.s.), xxxviii, pp. 164-182, with four text figures
 ———, and Rees, Bertha, 1912—Idem No 19 Proc (n.s.), xxv (1), pp 105-114, pls v, vi
 ———, ———, 1913—Idem No 20 Proc (n.s.), xxvi (1), pp 1-11, pls i, ii
 ———, Rees, Bertha, and Wood, Bertha, 1910—Idem No 14 Proc (n.s.), xxiii (1), pp 54-64, pls xii, xiii
 ———, ———, 1911—Idem No 17 Proc (n.s.), xxiv (1), pp 61-75, pl xxxiii
 ———, and Sharman, P J, 1916—Idem No 24 Proc (n.s.), xxviii (2), pp 230-239, pls xxvi-xxviii
 ———, and Thomson, N, 1913—On the Cross Inoculation of the Root Tuberous Bacteria upon the Native and the Cultivated Leguminosae Preliminary Communication Proc (n.s.), xxv (2), pp. 193-200, pl xiv, and two text figures

- Ewart, A J., and Tovey, J R., 1920—Contributions to the Flora of Australia, No 28 Proc (n.s.), xxvii (2), pp 182-209, pl viii
 —, and White, Jean, 1909—Idem No 12 Proc (n.s.), xxii (1), pp 91-98, pls xxix-xxxi
 —, 1910—Idem No 13 Proc (n.s.), xxii (2), pp 315-329, pls lvi-lx
 —, and Rees, Bertha, 1909—Idem No 11 (With Appendices by J R Tovey and J W Audas) Proc (n.s.), xxii (1), pp 6-28, pls iii-x
 —, —, 1910—Idem No 15 Proc (n.s.), xxiii (1), pp 110-115, pls xxix-xxxiv
 —, —, and Wood, Bertha, 1912—Idem No 18 Proc (n.s.), xxiv (2), pp 255-269, pls li-lii
 —, —, and Wood, Bertha, 1911—Idem No 16 Proc (n.s.), xxiii (2), pp 285-304, pls lvi-lvii

F.

- Farmar, P W—See McAlpine, D, and Farmar, 1893
 Fenner, C, 1914—Physiography of the Mansfield District Proc (n.s.), xxvi (2), pp 386-402, with sixteen text figures
 —, 1915—Notes on an occurrence of Quartz in Basalt Proc (n.s.), xxviii (1), pp 124-132
 —, 1918—The Physiography of the Glenelg River Proc (n.s.), xxix (2), pp 99-120, pl xix
 —, 1918—The Physiography of the Werribee River Area Proc (n.s.), xxxi (1), pp 176-313, pls xi, xii, and 40 text figures
 —, 1925—The Bacchus Marsh Basin, Victoria Proc (n.s.), xxxvii (2), pp 144-169, pl xvii, and nine text figures
 Fenton, J J, 1886—Fuller's Calculating Slide-Rule Tr & Proc, xxii, pp 57-61
 —, 1890—The Calculimetre Proc (n.s.), ii, pp 84-86
 Ferguson, E W, 1914—Notes on Amycterides, with Descriptions of New Species Part I Proc (n.s.), xxvi (2), pp 243-255.
 —, 1915—Idem Part II Proc (n.s.), xxvii (2), pp 232-260
 —, 1921—New Australian Tabanidae, with Notes on Previously Described Species Proc (n.s.), xxxiii, pp 1-29, pls i, ii, and four text figures
 —, 1921—Description of a New Species of Corethra (Mochlonyx) from Australia Proc (n.s.), xxixiii, pp 30, 31
 —, 1921—Notes on Amycterides, with Descriptions of New Species Part III Proc (n.s.), xxxiv (1), pp 17-32
 Ferguson, W H, 1900—On the Age of the Auriferous Quartz Veins and Alluvial Deposits in Victoria Proc (n.s.), xii (2), pp 115-121
 Fisher, Eileen E, 1933—The "Sooty Moulds" of some Australian Plants Proc (n.s.), xlvi (2), pp 171-202, pl ix, and 25 text-figures.
 Fison, L—See Codrington, R. H, 1880
 —, 1874—The Classificatory System of Kinship Tr & Proc, x, pp 154-179
 Fitzpatrick, A S, and Strong, H W, 1925—Investigations of Waters and Saline Materials from Lake Eyre and District (Central Australia) Proc (n.s.), xxvii (1), pp 98-103
 Foord, G, 1874—Decay of Gaspipes in certain Soils Tr & Proc, v, pp 16-23
 —, 1874—On Hydrogenium Tr & Proc, x, pp 42-46
 —, 1874—Notes on Enhydros found at Beechworth Ti & Proc, x, pp 71-76, with two plates
 —, 1874—Aреometer Tr & Proc, x, pp 113-115, with plate
 —, 1874—On a Specimen of Native Copper recently found at Footscray, near Melbourne, Victoria Ti & Proc, x, pp 131-135
 —, 1874—Notes on the Mechanical Assay of Quartz Tr & Proc, x, pp 139-147
 —, 1874—Palladium (Title only) Tr & Proc, xi, p 8
 —, 1876—On some Results of the Challenger Expedition (Title only) Tr & Proc, xii, p 68
 —, 1876—On a Proposed New Method of Weighing, applicable to the Gold Bullion Assay Tr & Proc, xii, pp 93-109
 —, 1878—Notes on Barometer Construction Tr & Proc, xiv, pp 35-55, pls i-iv
 Ford, P, 1874—On Biangular Coordinates. (Title only) Tr & Proc, x, p 125
 Forster, H C, and Vasey, A J, 1928—Experimental Error of Field Trials in Australia Proc (n.s.), xl (2), pp 70-80, with four text-figures
 Fowler, T W, 1896—Observations with Aneroid and Mercurial Barometers and Boiling Point Thermometers. Proc (n.s.), viii, pp 169-179
 —, 1896—Observed Variations in the Dip of the Horizon (Abstract) Proc (n.s.), viii, pp 180-182
 Frost, C—See Lucas, A H S, and Frost, 1894, 1895, 1896, 1897, 1900, and 1903
 Fulton, S W, and Grant, F E, 1902—Some little known Victorian Decapod Crustacea with Description of a New Species Proc (n.s.), xiv (2), pp 55-64, pl v
 —, 1902—Idem No II Proc (n.s.), xv, (1), pp 59-68, pls viii-x
 —, 1906—Idem No III Proc (n.s.), xix (1), pp 5-15, pls iii-v
 —, 1906—Census of the Victorian Decapod Crustacea Part I (Brachyura) Proc (n.s.), xix (1), pp 16-20

G

- Gabriel, C J—See Gatlift, J II, and Gabriel, 1908 (2), 1909 (2), 1910 (2), 1911 (2), 1912 (2), 1913 (2), 1914 (2), 1915, 1917, 1922, 1926, and 1931. Also Chapman, F, and Gabriel, 1917 and 1923. Also Cotton, B. C, and Gabriel, 1932.
- , 1930—Catalogue of the Land Shells of Victoria Proc (n.s.), xiii (1), pp 62-88, pls 1, ii
- Gardiner, M, 1860—Improvements in Fundamental Ideas and Elementary Theorems in Geometry Trans Phil Inst, iv, pp 76-96, with four text figures
- , 1861—The "Three Sections," the "Tangencies," and a "Loci Problem" of Apollonius, and Porismatic Developments Trans (8vo), v, pp 19-89, with fifteen text figures
- , 1878—On Practical Geodesy Tr & Proc, xiii, pp 1-66, with plate
- , 1893—On "Confocal Quadrics of Moments in Incititia" pertaining to all Planes in Space, and Loci and Envelopes of Straight Lines whose "Moments of Inertia" are Constant Proc (n.s.), v, pp 200-208
- Gatlift, J H—See Bastow, R A, and Gatlift, 1907. Also Pitchard, G B, and Gatlift, 1898, 1899 (3), 1900 (3), 1902 (2), 1903 (3), 1904 (2), 1906, and 1913
- , 1906—On some Victorian Marine Mollusca, New Species, and Others little-known Proc (n.s.), xix (1), pp 1-4, pls 1, ii
- , 1907—Additions to the Catalogue of the Marine Shells of Victoria Proc (n.s.), xx (1), pp 31-37
- , and Gabriel, C J, 1908—On Some New Species of Victorian Marine Mollusca Proc (n.s.), xxi (1), pp 365-367, pl xxi
- , 1908—Additions to and Revision of the Catalogue of Victorian Marine Mollusca Proc (n.s.), xxi (1), pp 368-391
- , 1909—Description of a New Marine Shell of the Genus Larima (?) Proc (n.s.), xxii (1), pp 35, 36, pl xviii
- , 1909—Additions to the Catalogue of the Marine Shells of Victoria Proc (n.s.), xxii (1), pp 37-46
- , 1910—On some New Species of Victorian Marine Mollusca Proc (n.s.), xxiii (1), pp 82-86, pls xviii, xix
- , 1910—Additions to the Catalogue of the Marine Shells of Victoria Proc (n.s.), xxiii (1), pp 87-98
- , 1911—On Some New Species of Victorian Marine Mollusca Proc (n.s.), xxiv (1), pp 187-192, pls xlvi, xlvi
- , 1911—Additions to and Alterations in the Catalogue of Victorian Marine Mollusca Proc (n.s.), xxiv (1), pp 193-200
- , 1912—On Some New Species of Victorian Marine Mollusca Proc (n.s.), xxv (1), pp 167, 168, pl ix
- , 1912—Additions to and Alterations in the Catalogue of Victorian Marine Mollusca Proc (n.s.), xxv (1), pp 169-175
- , 1913—On Some New Species and Varieties of Victorian Marine Mollusca Proc (n.s.), xxvi (1), pp 67-70, pl viii
- , 1913—Additions to the Catalogue of the Marine Shells of Victoria Proc (n.s.), xxvi (1), pp 71-87
- , 1914—On some New Species of Victorian Marine Mollusca Proc (n.s.), xxvii (1), pp 94-98, pls xiv, xvii
- , 1914—Additions to the Catalogue of the Marine Shells of Victoria Proc (n.s.), xxvii (1), pp 99-103
- , 1915—Notes on some Victorian Species of Teredo Proc (n.s.), xxviii (1), pp 115-123, pls xii, xiii
- , 1916—Additions to and Alterations in the Catalogue of the Marine Shells of Victoria Proc (n.s.), xxix (1), pp 106-113
- , 1916—Description of a New Genus and two New Species of Victorian Marine Mollusca Proc (n.s.), xxix (1), pp 104, 105, pl viii
- , 1917—Idem. Proc (n.s.), xxx (1), pp 21-31, pl viii
- , 1922—Idem Proc (n.s.), xxxiv (2), pp 128-161
- , 1926—Additions to the Catalogue of Victorian Marine Mollusca Proc (n.s.), xxxviii, pp 88-94
- , 1931—Additions to and Alterations in the Catalogue of Victorian Marine Mollusca Proc (n.s.), xlvi (2), pp 202-232
- , and Singleton, F A, 1930—On the Relationship between "Pecten" asperimus Lamarck and "Pecten" antiaustralis Tate, with a description of an Allied Fossil Form Proc (n.s.), xlii (2), pp 71-77, pls ii, iv
- Gellibrand, J T, 1859—Mr J T Gellibrand's Memoranda of a Trip to Port Phillip in 1836 Addressed to His Excellency the Lieutenant Governor From a MS Copy presented to the Philosophical Institute of Victoria by the Hon Capt Clarke, R E Trans Phil Inst, iii, pp 63-85
- Gibbons, S W—Identical with Gibbons, W S, 1855
- , 1874—Note on the Cranbourne Meteorite Tr & Proc, x, pp 130, 131
- , 1874—On Yan Yean Water (Abstract) Tr & Proc, x, p 135
- , 1874—Air and Water Poisoning in Melbourne Part I—City Sewage Part II—On the Possible Pollution of the Yan Yean Reservoir by the Drainage of Whittlesea Tr & Proc, x, pp 180-195, pls 1, ii
- , 1874—Contaminated Water Supply. (Title only) Tr & Proc, xi, p 13
- , 1876—On the Utilization and Disposal of Excreta (Title only) Tr & Proc, xii, p 1
- , 1876—On Cremation (Title only) Tr & Proc, xii, p 10
- , 1890—On the Illumination of Public Clocks (Title only) Proc (n.s.), ii, p 110

- Gibbons, W S, 1855—Microscopic Investigation, and some Minor Details of Manipulation Tr & Proc Vict Inst, i, pp 104-113
 —, 1855—The Translation of Languages T_i & Proc Vict Inst, i, pp 157-162
 Gillen, F J—See Spencer W Baldwin, and Gillen, 1897 and 1898.
 Gilruth, J A, 1910—Notes on a Protozoan Parasite found in the Mucous Membrane of the Abomasum of a Sheep Proc (n.s.), xxiii (1), pp 19, 20, pl iii
 —, 1910—Note on a Haemogregarine in the Blood of *Varanus varius* Proc (n.s.), xxii (1), pp 36-38, pl vi
 —, 1910—Note on the Existence of Spirochaetosis affecting Fowls in Victoria Proc (n.s.), xxiii (1), pp 102-104
 —, 1910—Spirochaetae in Animals affecting the Pig Proc (n.s.), xxiii (1), pp 105-109
 —, 1912—The Introduction and Spread of the Cattle Tick (*Boophilus annulatus*, var *microplus*), and of the Associated Disease Tick Fever (*Babesiosis*) in Australia Proc (n.s.), xxv (1), pp 15-22
 —, 1913—Paralysis in Horses and in Cows due to the Ingestion of Fodder Proc (n.s.), xxv (2), pp 201-220
 —, and Bull, L B, 1912—Enteritis, Associated with Infection of the Intestinal Wall by Cyst-forming Protozoa (*Neosporidia*) Occurring in certain Native Animals (Wallaby, Kangaroo and Wombat) Proc (n.s.), xxiv (2), pp 432-450, pls lxxxi-lxxxii
 —, and Sweet, Georgina, 1912—Further Observations on *Onchoceca gibsoni*, the Cause of Worm-nodules in Cattle Proc (n.s.), xxv (1), pp 23-30
 —, —, Dodd, S, 1910—Notes on Blood Parasites Proc (n.s.), xxiii (1), pp 231-241, pls xxviii-xxix
 Glynne, Mary D, 1929—A Note on some Experiments dealing with Sulphur Treatments of a Soil and its effect on Wheat Yield Proc (n.s.), xlii (1), pp 30-35
 Goldstein, J R Y, 1880—A New Species of Polyzoa. Journ, i (2 and 3), p 63, pl v, figs 1-3
 —, 1880—On a New Species of Polyzoa Journ, i (1), pp 19, 20, pl iii, fig 5
 —, 1880—Notes on living Polyzoa Journ i (2 and 3), pp 42-50
 —, 1880—On the Use of Carbolic Acid in Mounting Microscopic Objects Jouin, i (2 and 3), pp 50-53.
 —, 1882—Some New Species of Bryozoa from the Marion Islands, with Notes on *Bicellaria grandis* Tr & Proc, xviii, pp 39-46, pls i, ii
 Gordon, Mary, 1922—The Development of Endosperm in Cereals Proc (n.s.), xxxiv (2), pp 105-116, with nine text figures
 Gould, L Le, 1878—Notes on a Remarkable Meteor seen May 20th at Ballan (Title only) Tr & Proc, xiv, p 20
 Goyder, G—See Rennie, —, and Goyder, 1892
 Grant, F. E—See Fulton, S W, and Grant, 1902 (2) and 1906 (2) Also Thiele, E O, and Grant, 1902
 —, and Thiele, E O, 1902—Notes on some Recent Marine Deposits in Neighbourhood of Williamstown Proc (n.s.), xv (1), pp 36-40
 —, —, 1903—On some Rocks from the fairway of Port Phillip Heads Proc (n.s.), xv (2), pp 132, 133
 Grant, K, 1909—Obsidianites—Their Origin from a Physical Standpoint Proc (n.s.), xxi (2), pp. 443-448
 Grayson, H J, 1910—Modern Improvements in Rock Section Cutting Apparatus. Proc (n.s.), xxii (1), pp 65-81, pls xiv-xvii
 —, 1917—Description of a New Dividing Engine for Ruling Diffraction Gratings Proc (n.s.), xxx (1), pp 44-95, pls vi-xvii
 Green, W Heber—See Barrett, A O, and Green, 1931 See also Diew, R, Green, and St John, P R H, 1912
 —, 1899—The Oxidation of Cane Sugar by Aqueous Solutions of Potassium Permanganate Proc (n.s.), xi, (2), pp 214-237, pls xxi, xxii
 Gregory, A C, 1860—Some interesting facts founded on Barometrical Observations Trans Phil Inst, iv, p 14, with plate
 Gregory, J W, 1901—*Cyphaspis spryi*, a New Species of Trilobite from the Silurian of Melbourne Proc (n.s.), xii (2), pp 179-182, pl xxii
 —, 1902—Some Remains of an extinct Kangaroo in the Dune-Rock of the Sorrento Peninsula, Victoria Proc (n.s.), xiv (2), pp 139-144
 —, 1902—The Geology of Mount Macedon, Victoria Proc (n.s.), xiv (2), pp 185-217, pls vii-viii
 —, 1903—The Age of the Metamorphic Rocks of North-Eastern Victoria Proc (n.s.), xv (2), pp 123-131, pls xix-xxi
 —, 1903—The Heathcote—a Pre-Ordovician Series—and its Distribution in Victoria Proc (n.s.), xv, (2), pp 148-173, pls xxiii-xxvi
 —, 1903—Some Features in the Geography of North Western Tasmania Proc (n.s.), xvi (1), pp 177-183, pls xx, xxii
 —, 1904—The Antiquity of Man in Victoria Proc (n.s.), xvii (1), pp 120-144
 —, and Smith, F Voss, 1903—A New Ammonite from the Cretaceous Rocks of Queensland Proc (n.s.), xv, (2), pp 141-144, pl xxii
 Grieve, B J, 1930—The Influence of the type of thickening on the rate of flow in models of Wood Vessels Proc (n.s.), xlii, (2), pp 140-153, pl xii, and six text figures
 —, 1934—The Isolation of the Organism causing Crown Gall in Almond Trees in Victoria Proc (n.s.), xlvi (2), pp 214-219, pl. ix

- Griffiths, —, 1883—Propulsion of Steam Vessels without Machinery. (Title only) Tr & Proc, viii, p. 143
 Griffiths, G S, 1885—On the Evidences of a Glacial Epoch in Victoria during Post-Miocene Times Tr & Proc, xxii, pp. 1-28
 —, 1886—On the Recent Earth Tremors, and the Conditions which they Indicate Tr & Proc, xxii, pp. 10-19
 —, 1887—Evidences of a Glacial Epoch from Keiguelen's Land, being Comments on the "Challenger" Reports Tr & Proc, xxiii, pp. 45-49
 —, 1887—On the Official Reports of the Tarawera Outbreak, with Objections to some of the Conclusions drawn up by the Government Geologist, Dr. Hector Tr. & Proc, xxiii, pp. 117-126, with map.
 —, 1887—The Geology of the Portland Promontory, Western Australia Tr & Proc, xxiv (1), pp. 61-80, with two plates and a map.
 —, 1890—Short Address on Geological Progress Proc (n.s.), ii, pp. xxv, xxxi
 —, 1891—Notes on the Marine Rocks Underlying Warrnambool Proc (n.s.), iii, pp. 94-100, with two diagrams
 —, 1893—The Bluff at Barwon Heads Proc (n.s.), v, pp. 131-133, pl. x.v
 —, 1894—Report of the Antarctic Committee of the Royal Society of Victoria Proc (n.s.), vi, pp. 211, 212
 Gouuelle, A, 1911—Descriptions de Quelques Nouveaux Espèces de Coleoptères Australiens Proc (n.s.), xxix (1), pp. 135-151
 Groves, G W, 1867—A Contribution to Meteorology (Abstract) Tr & Proc, viii (1), p. 43

H

- Haast, J, 1868—Notes on the Rev J E Tenison Woods's paper "On the Glacial Epoch of Australia" Tr & Proc, viii (2), pp. 273-278
 Haddon, Kathleen, 1918—Some Australian String Figures Proc (n.s.), xxx (2), pp. 121-136, pls. xx-xxiv
 Halford, G B, 1865—On the Intimate Structure of Cartilage Tr & Proc, vi, pp. 155-158
 —, 1866—On the Skeleton of the Gorilla Tr & Proc, vii, pp. 34-49.
 —, 1866—Experiments and Observations on Absorption Tr & Proc, vii, pp. 165-175
 —, 1868—On the Condition of the Blood after Death from Snake Bite, as a probable clue to the further study of Zymotic Diseases, and of Cholera especially Tr & Proc, viii (2), pp. 73-94, pls. i, v
 —, 1868—Further Observations on the Condition of the Blood after Death from Snake-Bite Tr & Proc, viii (2), pp. 271-273
 —, 1868—On a Pair of Scissors for the excision of Snake bite (Abstract) Tr & Proc, ix, (1), p. 47
 —, 1869—Further Observations on Snake Poisoning Tr & Proc, ix (2), pp. 85-87.
 —, 1869—On a Remarkable Symmetrically Deformed Skeleton Tr & Proc, ix (2), pp. 108, 111, with plate
 Hall, R, 1899—Notes on *Malurus gouldii* and *Malurus cyaneus*, with special reference to changes in plumage Proc (n.s.), xii (1), pp. 59-73.
 —, 1900—Notes on the Plumage Changes of *Petroeca phoenicea* (Gould), *Pachycephala gutturalis* (Latham), and *Microeca fascinans* (Latham) Proc (n.s.), xiii (1), pp. 10-24
 1901—A Revision of the genus *Gymnorhina* Proc. (n.s.), xiv. (1), pp. 1-9
 Hall, T. S.—See Officer, G, and Hogg, E G, 1898. Also Spencer, W Baldwin, and Hall, 1897
 —, 1889—On Two New Fossil Sponges from Sandhurst Proc (n.s.), i, pp. 60, 61, pl. iv.
 —, 1892—On a New Species of *Dictyonema*. Proc (n.s.), iv. (1), pp. 7, 8, pls. i, ii
 —, 1893—On Two New Tertiary Styelasterids Proc (n.s.), v, pp. 117-122, pl. xiii
 —, 1895—The Geology of Castlemaine, with a subdivision of part of the Lower Silurian Rocks of Victoria, and a list of Minerals. Proc (n.s.), vii, pp. 55-88
 —, 1896—Notes on *Didymograptus caduceus*, Salter, with Remarks on its Synonymy Proc (n.s.), viii, pp. 69-73
 —, 1897—On the Occurrence of the Anchoring Tubes of *Adeona* in the Older Tertiaries of Victoria with an Account of their Structure. Proc (n.s.), ix, pp. 14, pl. i
 —, 1897—On the Occurrence of Graptolites in North Eastern Victoria Proc (n.s.), ix, pp. 183-186
 —, 1897—Victorian Graptolites Part I Proc (n.s.), x (1), pp. 13-16
 —, 1898—Styelasteridae from the Victorian Tertiaries Proc (n.s.), x (2), pp. 175-179
 —, 1899—Two new Victorian Palaeozoic Sponges Proc (n.s.), xi (2), pp. 152-155, pl. xiv
 —, 1899—Victorian Graptolites Part II—The Graptolites of the Lancefield Beds Proc (n.s.), xi (2), pp. 164-178, pls. xvii-xix
 —, 1900—A New Genus and a New Species of Fish from the Mesozoic Rocks of Victoria Proc (n.s.), xii (2), pp. 147-151, pl. xiv
 —, 1901—Growth stages in modern *Trigonias*, belonging to the section *Pectinatae* Proc (n.s.), xiv (1), pp. 17-21, with text figure

- Hill, J S, 1902—New or little known Fossils from the Tertiaries of Victoria Proc (n.s.), xv (1), pp 80-85, pls xi
- _____, 1905—A Description of *Ommatocarcinus congoensis*, Cresswell sp., from the Lower Tertiary of Victoria Proc (n.s.), xvii (2), pp 356-360, pl xxviii
- _____, 1905—On the Occurrence of Two Species of *Cryptoplax* in the Tertiary Rocks of Victoria Proc (n.s.), xvii (2), pp 391-393, pl xxv
- _____, 1905—Victorian Graptolites Part III—From near Mount Wellington. Proc (n.s.), xviii (1), pp 20-24, pl vi
- _____, 1907—Four New Echinoids from the Australian Tertiary Proc (n.s.), xix (2), pp 47-53, pls xiii-xvi
- _____, 1907—Note on the Deposition of Bedded Tuffs Proc (n.s.), xx (1), pp 21-26, pl ii
- _____, 1908—On the occurrence of a Marsupium in an Echinoid belonging to the Genus *Scutellina* Proc (n.s.), xx (2), pp 140-142, with text-figure
- _____, 1910—Notes on the Geology of the Country about Anglesea Proc (n.s.), xxiii (1), pp 44-53, pl xi
- _____, 1911—On the systematic position of the species of *Squalodon* and *Zeuglodon* described from Australia and New Zealand Proc (n.s.), xxiii (2), pp 258-265, pl xxxvi
- _____, 1914—Victorian Graptolites, Part IV, Some New or Little Known Species. Proc (n.s.), xxvii (1), pp 104-118, pls xvii, xviii, and seven text-figures
- _____, and Pritchard, G B, 1892—Notes on the Lower Tertiaries of the Southern Portion of the Moorabool Valley Proc (n.s.), iv (1), pp 9-26, pls iii, iv
- _____, 1894—Notes on the Eocene Strata of the Bellarine Peninsula, with brief references to other deposits Proc (n.s.), vi, pp 1-23, pl i
- _____, 1895—The Older Tertiaries of Maude, with an Indication of the Sequence of the Eocene Rocks of Victoria Proc (n.s.), vi, pp 180-196
- _____, 1896—Remarks on the Proposed Sub Division of the Eocene Rocks of Victoria Proc (n.s.), viii, pp 151-168
- _____, 1897—A Contribution to our Knowledge of the Tertiaries in the Neighbourhood of Melbourne Proc (n.s.), ix, pp 187-229, pl viii
- _____, 1897—Geology of the Lower Moorabool Proc (n.s.), x (1), pp 43-56, pls i, ii
- _____, 1897—Note on a Tooth of *Palorchestes* from Beaumaris Proc. (n.s.), x (1), pp 57-59
- _____, 1899—The Tertiary Deposits of the Aire and Cape Otway Proc. (n.s.), xi (1), pp 36-58, pl vi
- _____, 1901—Some Sections illustrating the Geological Structure of the Country about Mornington Proc (n.s.), xiv (1), pp 32-54, pl iv
- _____, 1902—A Suggested Nomenclature for the Marine Tertiary Deposits of Southern Australia Proc (n.s.), xiv (2), pp 75-81
- _____, 1904—The Geology of the Barwon about Inverleigh, Proc (n.s.), xvi (2), pp 292-305, pl xxvi
- Hamley, H R, and Rossiter, A L, 1911—The Magnetic Properties of Stalloy. Proc. (n.s.), xxiii, (2), pp 325-341, pls lix-lxi
- Hanks, W, 1934—The Tertiary Sands and Older Basalt of Coburg, Pascoe Vale, and Campbellfield Proc (n.s.), xlvi (2), pp 144-152, with map and one text-figure
- Hardy, A D, 1910—Association of Alga and Fungus in Salmon Disease Proc. (n.s.), xxiii (1), pp 27-32
- _____, 1916—Leiatalogical Notes, Part I Proc (n.s.), xxviii (2), pp 240-244, pl xxix
- _____, 1917—Idem Part II Proc (n.s.), xxix (2), pp 165-173, pls xi-xiii
- _____, 1918—Teratological Note Pentamery in a Flower of *Narcissus* Proc (n.s.), xxxi (1), pp 7-8
- _____, 1926—Delayed Dehiscence in Myrtaceae, Proteaceae and Coniferae Proc (n.s.), xxviii, pp 157, 158, pl xi
- Harris, W J, 1916—The Palaeontological Sequence of the Lower Ordovician Rocks in the Castlemaine District Part I Proc. (n.s.), xxix (1), pp 50-74, pl i
- _____, 1924—Victorian Graptolites (New Series), Part I. Proc (n.s.), xxxvi (2), pp 92-106, pls vii, viii
- _____, 1926—Idem Part II Proc (n.s.), xxxviii, pp 55-61, pls i, ii.
- _____, 1933—Isograptus caducus and its Allies in Victoria. Proc (n.s.), xlvi (1), pp 79-114, pl vi, and sixty-eight text figures
- _____, 1934—The Eastern Boundary of the Bendigo Goldfield Proc. (n.s.), xlvi (2), pp 200-206, with two text-figures
- _____, and Crawford, W, 1921—The Relationships of the Sedimentary Rocks of the Gisborne District, Victoria Proc. (n.s.), xxxviii, pp 39-78, with map and three text-figures.
- _____, and Keble, R A, 1928—The Staurograptus Bed of Victoria Proc (n.s.), xl (2), pp 91-95, pl. ix
- _____, 1929—A Collection of Graptolites from the Federal Territory. Proc (n.s.), xlii (1), pp 27-29, with text figure.
- _____, 1932—Victorian Graptolite Zones with Correlations and Descriptions of Species Proc (n.s.), xliv (1), pp 25-48, pls. iii, vi, and five text-figures
- _____, and Thomas, D E, 1934—The Geological Structure of the Lower Ordovician Rocks of the Eastern Talbot District, Victoria Proc (n.s.), xlvi (2), pp 153-178, with two maps and one section

- Harrison, I., 1865—Notes on the Geology of Hobart Town (Abstract) Tr & Proc, vi, pp 131-137
 ——, 1865—The Wealden Formation of Europe, as Illustrated by the Physical Features of Port Phillip Bay. (Abstract) Tr & Proc, vi, pp 159, 160
 ——, 1866—Victoria as a Field for Geologists. Tr & Proc, vii, pp 15 29
 ——, 1866—Probable Astronomical Causes of the Conformities in Palaeozoic Strata, and in the Prevailing Meridional Strike of the Older Rocks of Victoria Tr & Proc, vii, pp 54-64
 ——, 1867—Notes of a Geological Trip over the Coal Basin of New South Wales Tr & Proc, viii (1), pp 1-11
 ——, 1869—Notes relative to the respective theories, Creation by Law, and Creation by Fact (Abstract) Tr & Proc, ix (2), p 85
 ——, 1874—Patents and their Utilization (Abstract) Tr & Proc, x, pp 121-125
 ——, 1876—A Universal Equatorial and an Instrument for Facilitating the Observation of Mars (Title only) Tr & Proc, xu, p. 82
 Hart, L., 1866—Photography Its Past and Present (Title only) Tr. & Proc, xxii, p. 10
 Hart, T. S., 1864—Notes on the Tiawling Expedition off Lakes Entrance Proc (n.s.), vi, pp 144 146
 ——, 1899—The Bone Clay and Associated Basalts at the Great Buninyong Estate Mine Proc (n.s.), xii (1), pp 74-80
 ——, 1902—On some Features of the Ordovician Rocks at Daylesford, with a comparison with similar occurrences elsewhere Proc. (n.s.), xiv (2), pp 166-179
 ——, 1903—On certain Conglomerates near Sydenham Proc (n.s.), xvi (1), pp 48 56, pl. ix
 ——, 1904—On an Unnoticed Feature of the Faulting at Ballarat East Proc. (n.s.), xvi (2), pp 343-353, pl. xxxii
 ——, 1905—Notes on the Stony Creek Basin, Daylesford Proc (n.s.), xvii (2), pp 366 370, pls xxv, xxvi
 ——, 1905—The Mineralogical Characters of Victorian Auriferous Occurrences Proc (n.s.), xviii. (1), pp 25 37
 ——, 1908—The Highlands and Main Divide of Western Victoria Proc (n.s.), xv (2), pp 250 273, pls xxii xxvi
 ——, 1908—The Graptolite Beds at Daylesford Proc (n.s.), xxi (1), pp 270 284, pl. xii
 ——, 1913—On the Country between Melbourne and the Dandenong Creek Proc (n.s.), xxv (2), pp 268-285
 Hartung, E J.—See Aupt G A., and Hartung, 1926
 ——, and Rivett, A C D., 1915—An occurrence of Ammonium Chloride at Frankston Proc (n.s.), xxviii. (1), pp 133 138
 Hayter, H. H., 1865—Remarks on a Filamentous Material, Grown upon the Plant "Cryptostemma calendulaceum," believed to be suitable for Manufacturing Purposes Tr. & Proc, vi, pp 26, 27
 Hearn, W E., 1857—Some Observations on Primary Schools Trans Phil Inst., pp 70-79
 Hedley, C., 1895—On a Molluscan Genus new to, and another forgotten from, Australia Proc (n.s.), vii, pp. 197 200, pl. xi
 Henderson, A. M., 1882—A New Form of Scale for the use of Engineers and Architects (Title only) T & Proc, xviii, p 47.
 Heslop, G G., 1921—Researches into the Serological Diagnosis of Contagious Pleuro Pneumonia in Cattle. Proc (n.s.), xxxiii, pp 160-211.
 ——, 1922—Further Researches into the Serological Diagnosis of Contagious Pleuro Pneumonia of Cattle Proc (n.s.), xxxiv (2), pp 180 195
 ——, 1924—Further Studies in Contagious Bovine Pleuro pneumonia Experiments to demonstrate the occurrence of two distinct types of the virus in Victoria Proc (n.s.) xxxvi (2), pp. 83-91
 Heyward, Jean, 1931—Flowering Periods of Victorian Plants Proc. (n.s.), xliii (2), pp 154-165, with seven text-figures
 ——, 1932—The Relation between Period of Flowering and Degree of Evolution Proc (n.s.), xlii (2), p 242
 ——, 1933—Notes on a Callus Shoot of Eucalyptus ovata and E. diversifolia Proc (n.s.), xlv (1), pp 25-27
 ——, 1933—Two Species of Ophiocytium Nageli in Victoria O. terrestre, n sp., and O. arbustula Rabenhorst Proc (n.s.), xlv (2), pp 165 170, and two text-figures
 Hickson, S J., 1890—Report of the Port Phillip Biological Survey Committee, 1889 (2) Preliminary Report on a Collection of Alcyonaria and Zoantharia from Port Phillip Proc (n.s.), ii, pp 136 140
 ——, 1907—Note on Caligorgia flabellum from Port Phillip Proc (n.s.), xix (2), p 46
 Hill, G F., 1918—Relationship of Insects to Parasitic Diseases in Stock Proc (n.s.), xxxi. (1), pp 11-107, pls ii viii
 ——, 1925—The Distribution of Anopheline Mosquitoes in the Australian Region, with Notes on some Culicine Species Proc (n.s.), xxxvii (1), pp 61-77, pls v-ix
 ——, 1925—Notes on Mastotermes darwiniensis Froggatt (Isoptera) Proc (n.s.), xxxvii (1), pp. 119 124, and text-figure

- Hill, G F, 1925—Termites from the Australian Region Descriptions of New Species and hitherto undescribed Castes Proc (n.s.), xxxvii (2), pp 206 229, pls xxiii xxvi
 —, 1926—Termites from the Ellice Group Proc (n.s.), xxxviii, pp 95-99, with text figure
 —, 1926—The Genus *Porotermes* (Isoptera) Proc (n.s.), xxxviii, pp 143 149
 —, 1926—Australian Termites (Isoptera) Notes on *Stolotermites*, *Calotermites*, and *Coptotermes*, with descriptions of new species Proc (n.s.), xxxviii, pp 192 216, with three text figures
 —, 1926—Termites (Isoptera) from South Seas and Torres Strait Islands. Proc (n.s.), xxxix (1), pp 20 24
 —, 1929—Notes on Australian Termites (Isoptera) Descriptions of New Species Proc (n.s.), xli (2), pp 85-96, pl xiv, and text figure
 —, 1932—Australian Termites (Isoptera) Biological Notes and Descriptions of New Species Proc (n.s.), xliv (2), pp 134 154, with sixteen text figures
 —, 1933—Australian Rhinotermites (Isoptera) Proc (n.s.), xlv (1), pp 117, pls i-iv
 —, 1933—Notes on *Porotermes* and *Calotermites* (Isoptera) from the Australian Region, with Descriptions of New Species Proc (n.s.), xlii (1), pp 36 50, pls i, ii
 Hill, W, 1860—An Attempt to Simplify and Generalise the Theory and Practice of Railway Curves Trans Phil Inst, iv, pp 123 141, with plate
 Hill, W H F—See McAlpine, D, and Hill, 1895
 Hills, E S, 1929—The Geology and Palaeontology of the Cathedral Range and the Blue Hills, in North-Western Gippsland Proc (n.s.), xli (2), pp 176 201, pls xvii, xviii, with three text-figures
 —, 1929—Notes on the Evidence of Age of the Dacites and Associated Igneous Rocks in the Marysville-Taggerty District, Victoria Proc (n.s.), xlii (1), pp 36 40
 Hodgkinson, C, 1855—Original Rules and Tables adapted to Cases of Suleton Ground in the Setting Out and Computation of Railway Earthworks Trans Phil Soc, i, pp 74 84, with plate
 —, 1855—On the Probable Influence of Evaporation on the Quantity of Water to be supplied to the Reservoir at Yan Yean Trans Phil Soc, i, pp 175 187, with map
 —, 1855—Practical Remarks on Hydrometry Trans Phil Soc, i, pp 223 228
 —, 1855—Remarks on the favourable Geological and Chemical Nature of the principal Rocks and Soils of Victoria, in reference to the production of ordinary Cereals and Wine Trans Phil Soc, i, pp 260 265
 —, 1857—Observations on the Geology and Soil of the Country adjacent to the Upper Murray, and also on the Development of the Productive Capabilities of that Portion of the Territory of Victoria Trans Phil Inst, i, pp 37 50
 Hogg, E G—See Officer, G, Balfour, L, and Hogg, 1895 Also Officer, G, and Hogg, 1897 and 1898
 —, 1899—A Contribution to the Petrology of Kerguelen Island Proc (n.s.), xi (2), pp 209 213
 —, 1899—On the Occurrence of Trachyte in Victoria Proc (n.s.), xii (1), pp 87 99
 —, 1901—The Petrology of certain Victorian Granites Proc (n.s.), xiii (2), pp 214 224
 Hogg H R, 1899—Notes on some Spiders from the Upper Endeavour River, Queensland, with Description of two New Species Proc (n.s.), xi (2), pp 137-146, pl xiii
 —, 1900—A Contribution to our Knowledge of the Spiders of Victoria, including some New Species and Genera Proc (n.s.), xiii (1), pp 68 123, pls xiiii xviii
 Holmes, G, 1855—On the Timber of the Colony Tr & Proc Vict Inst, i, pp. 100 104
 Holmes, W M, 1933—The Mornington Earth Tremor of 3rd September, 1932 Proc (n.s.), xlv (2), pp 150, 151, with text figure
 Hood, J, 1860—Suggestions for a System of Drainage for Melbourne Trans Phil Inst, iv, pp 43 60
 Horne, E K, 1874—On a Linear Method of finding the Stability of Ships (Title only) Tr & Proc, x, p 99
 Horne, G, 1923—Cylindrico Conical and Cornute Stones Proc (n.s.), xxxv (2), pp 139 142
 Howitt, A W 1879—Notes on the Examination of Thin Slices of Rocks under the Microscope by Means of Polarised Light Journ, i (1), pp 8 14, pl 1, figs 1 4
 —, 1880—The Diorites and Granites of Swift's Creek and their Contact Zones, with Notes on the Auriferous Deposits Tr & Proc, xvi, pp 11 88, with three plates, nine text figures, and a map
 —, 1882—Notes on the Microscopic Structure of some Igneous Dykes of North Gippsland Journ, i (4), pp 79 91, pl vi
 —, 1882—Notes on the Diabase Rocks of the Buchan District Tr. & Proc, xviii, pp 7 38, with plate
 —, 1884—The Rocks of Noyang Tr & Proc, xx, pp 18 70, with map
 —, 1885—Supplementary Notes on the Diabase Rocks of the Buchan District Tr & Proc, xxi, pp 101-105, with text figure

- Howitt, A. W., 1886—The Sedimentary, Metamorphic and Igneous Rocks of Ensary Tr & Proc, xxii, pp 64-124, pls i-v
 —, 1887—Notes on the Area of Intrusive Rocks at Dargo Tr & Proc, xxiii, pp 127-164, pls i-iii
 —, 1888—Notes on Certain Metamorphic and Plutonic Rocks at Omeo Tr & Proc, xxiv (2), pp 100-131, pls i, ii
 —, 1889—On the Organization of Australian Tribes Trans, i (2), pp 96-137, with map
 —, 1891—The Eucalypts of Gippsland Trans, ii (1), pp 81-120, pls viii-xvi
 —, 1891—Anthropology in Australia Proc (ns), iii, pp 15-22
 Hughes, Winifred Kent, 1928—Some Trematode Parasites on the Gills of Victorian Fishes Proc (ns), xli (1), pp 45-54, pls viii-xi, and two text figures
 Hull, A. F. Bassett, 1912—Description of Two New Ischnochitonids from Western Port, Victoria Proc (ns), xxv (1), pp 120, 121, pl viii

I.

- Ilichevsky, S., 1932—Does the Flowering of Plants of the Victorian Flora Repeat the Order of their Evolution? Proc (ns), xliv (2), pp 239-241
 Ivens, W. G., 1915—Certain Suffixes in Oceanic Languages Proc (ns), xxvii (2), pp 305-332

J.

- Jackson, M. B., 1855—On Water Supply to the City of Melbourne Tr & Proc Vict Inst, i, pp 54-61
 James, A. V. G., 1920—The physiography and Geology of the Bulla Sydenham Area Proc (ns), xxxii (2), pp 323-349, pls xxxii-xxxv
 Jamieson, J., 1878—Experiments on the Comparative Power of some Disinfectants Tr & Proc, xiv, pp 91-101
 —, 1879—Photographs on the Retina Tr & Proc, xv, pp 1-4
 —, 1879—A New Point of Resemblance in the Respiration of Plants and Animals Tr & Proc, xv, pp 21-27
 —, 1879—The Perception of Colour Tr & Proc, xv, pp 28-34.
 —, 1883—Influence of Light on the Development of Bacteria Tr & Proc, xix, pp 116-124
 —, 1884—The Influence of Light on Bacteria Tr & Proc, xx, pp 2-6
 —, 1888—Experiments on the Range of Action of the Digestive Ferments Tr & Proc, xxiv (2), pp 159-163
 —, 1890—Short Address on Recent Developments in Public Hygiene Proc (ns), ii, pp xxii-xxv
 —, 1895—An Attempt to Estimate the Population of Melbourne at the present time Proc (ns), vii, pp 173-179
 Jarrett, Phyllis H.—See Ewart, A. J., and Jarrett, 1927 and 1928
 Jenkins, H. C., 1903—Rocks and Ore Occurrences at Bethanga and the Lower Mitta Mitta Proc (ns), xvi (1), pp 1-11, pl 1
 Jennings, N. E., 1889—Irrigation and Water Supply in the Australian Colonies. Proc (ns), i, pp 21-27
 Jona, J. L., 1912—Osmotic Equilibration in the Living Body Proc (ns), xxiv (2), pp 230-254
 Joseph, R. E., 1879—A New Form of Circuit Closer for the firing of Torpedoes (Title only) Tr & Proc, xv, p 1.
 —, 1880—Hughes' Induction Currents Balance and Sonometer Tr & Proc, xvi, pp 152-155
 —, 1881—On Recent Improvements in Electric Lighting Tr & Proc, xvii, pp 53-62
 —, 1882—Electric Fire Alarms Tr & Proc, xviii, pp 51-56
 —, 1883—Electric Lighting Tr & Proc, xix, pp 97-105.
 —, 1884—Incandescent Lamps for Surgical and Microscopical Purposes. Tr & Proc, xx, pp 84-87
 —, 1884—Electric Lighting for Mines. Tr & Proc, xx, pp 114-117
 —, 1885—Fire Alarms (Title only) Tr & Proc, xxi, p 100
 Joshua, E. C., 1912—On a new Holothurian of the Genus *Taeniohygryus* found in Port Phillip Bay Proc (ns), xxv (1), pp 79-81, pls iii, iv
 —, 1914—Victorian Holothuroidea, with descriptions of New Species Proc (ns), xxvii (1), pp 1-11, pl 1
 Junner, N. R., 1913—General and Mining Geology of the Diamond Creek Area Proc (ns), xxv (2), pp 323-353, pls xxv, xxvi
 —, 1914—The Petrology and Mining Geology of the Country near Queenstown Proc (ns), xxvii (1), pp 119-147, pl xix
 —, 1915—The Petrology of the Igneous Rocks near Healesville and Narbethong Proc (ns), xxvii (2), pp 261-285, pl 1, with map
 —, 1915—On the Occurrence of Igneous Pebbles in a Conglomerate of Upper Silurian Age from near Walhalla Proc (ns), xxvii (2), pp 286-296, pl ii.
 Jutson, J. T., 1908—The Silurian Rocks of the Whittlesea District (With an Appendix on the Fossils Collected, by F. Chapman) Proc (ns), xxi (1), pp 211-225, pls iii-v.
 —, 1910—A Contribution to the Physical History of the Plenty River, and of Anderson's Creek, Warrandyte, Victoria Proc (ns), xxii (2), pp 153-171, pls xxxi, xxxii, and two text-figures

- Jutson, J T, 1911—A Contribution to the Physiography of the Yarra River and Dandenong Creek Basins, Victoria. Proc (n s), xxvii (2), pp 499-515, pls lxxxvi, xc.
- , 1911—The Structure and General Geology of the Warrandyte Goldfield and Adjacent Country. Proc (n s), xviii (2), pp 516-554, pls xci-xcii.
- , 1913—On the Age and Physiographic Relations of the Older Basalts of Greensborough and Kingarop Ground, and of certain Basalts at Bundoora and Ivanhoe. Proc (n s), xxvi (1), pp 45-56.
- , 1918—On the Formation of "Natural Qualities" in Sub-Arid Western Australia. Proc (n s), xxx (2), pp 159-164, pls xxviii, xxix.
- , 1918—The Influence of Salts in Rock Weathering in Sub-Arid Western Australia. Proc (n s), xxx (2), pp 165-173, pl xxx.
- , 1918—The Sand Ridges, Rock Floors, and other Associated Features at Goongarie in Sub-Arid Western Australia, and their Relation to the Growth of Lake Goongarie, a "Dry" Lake or Playa. Proc (n s), xxxi (1), pp 113-128, with three text figures.
- , 1919—The Sand Ridges, Sand Plains, and "Sand Glaciers" at Comet Vale in Sub-Arid Western Australia. Proc (n s), xxxi (2), pp 412-420, with three text figures.
- , 1919—On the "Clawing" Action of Rain in Sub-Arid Western Australia. Proc (n s), xxxii (1), pp 20, 21, pl ii.
- , 1919—A Striking Example of Rock Expansion by Temperature Variation in Sub-Arid Western Australia. Proc (n s), xxxii (1), pp 22, 23, pl ii.
- , 1920—Notes on Dust Whirls in Sub-Arid Western Australia. Proc (n s), xxxii, (2), pp 314-322.
- , 1921—Note on the "Dumpling" of Granite Hills in Sub-Arid Western Australia. Proc (n s), xxxiii, pp 108-110, pl v, figs 1, 2.
- , 1921—An Example of Gravitational Drift of Rock Debris in Parallel Lines in Sub-Arid Western Australia. Proc (n s), xxxiii, pp 111-114, pl v, figure 3.
- , 1927—Notes on the Coastal Physiography of Port Campbell, Victoria. Proc (n s), xl (1), pp 45-57, pls vi, vii, and two text figures.
- , 1929—On Grooved, Pitted and Miniature Pedestal Rocks at Lake Goongarie, Western Australia. Proc (n s), xl (2), pp 63-84, pls viii, ix, and text-figure.
- , 1931—Erosion and Sedimentation in Port Phillip Bay, Victoria, and their bearing on the Theory of a Recent Relative Uplift of the Sea Floor. Proc (n s), xlii (2), pp 130-153, with text-figure.
- , and Chapman, F, 1913—On the Occurrence of a Felsitic Dyke and Associated Breccias at Sugar Loaf Hill (Mont Park), near Heidelberg. Proc (n s), xxvi (1), pp 57-62, pl vi, and text-figure.

K.

- Keble, R A—See Harris, W J, and Keble, 1928, 1929, and 1932. Also Thomas, D E, and Keble, 1933. Also Withers, R B, and Keble, 1934.
- , 1918—The Significance of Lava Residuals in the Development of the Western Port and Port Phillip Drainage Systems. Proc (n s), xxxi (1), pp 129-165, with ten text-figures.
- , 1932—Notes on the Faunas of the Geelong Nodule Beds. Proc (n s), xliv (2), pp 129-133.
- Kelly, W, 1874—On a method of combining Marsh's Test for Arsenic with Reinsch's (Abstract). Tr & Proc, x, p 116.
- Kelsey, Helen, 1911—Subdivision of the Spinal Canal in the Lumbar Region of Chick Embryos. Proc (n s), xxiv (1), pp 152-155, pl xlvi.
- Kennedy, D, 1876—On a late Extraordinary Escape of a Miner from Drowning. Tr & Proc, xii, p 1.
- Kenyon, Agnes F, 1913—A New Variety of Volute from Western Australia. Proc (n s), xxv (2), p 354.
- Kenyon, A S, and Stirling, D L, 1901—Australian Aboriginal Stone Implements. Proc (n s), xiii (2), pp 191-200, pls xxv-xxxi, and table.
- Kernot, W C, 1876—The Arithmometer. Tr & Proc, xi, pp 82-88.
- , 1878—Notes on Iron Arches. Tr & Proc, xiii, pp 81-88, with plate.
- , 1878—Notes on the Design of Telescope Tubes. Tr & Proc, xiv, pp 20-25, with plate.
- , 1878—On the Telephone (Title only). Tr & Proc, xiv, p 115.
- , 1879—The Strength of Columns. Tr & Proc, xv, pp 14-20.
- , 1880—Notes on Small Motors. Tr & Proc, xvi, pp 165-170.
- , 1881—On the Best Form for a Balance-Beam. Tr & Proc, xvii, pp 19-22, with plate.
- , 1881—The Tay Bridge. Tr & Proc, xvii, pp 23-33.
- , 1881—Notes on Professor Bell's Photophone (Title only). Tr & Proc, xvii, p 88.
- , 1882—Some Notes on the Storage of Electricity and Faure's Form of Planté's Secondary Battery (Title only). Tr & Proc, xviii, p 47.
- , 1883—Floods on the River Barwon. Tr & Proc, xix, pp 111-115.
- , 1883—Experiments on Model Girders. Tr & Proc, xix, pp 189, 190, with plate.
- , 1883—On the Lateral Stability of the Victoria street Bridge. Tr & Proc, xix, pp 281-286, with plate.
- , 1884—On Iron Girders (Title only). Tr & Proc, xx, p 98.
- , 1884—Gas as a Motive Power (Title only). Tr & Proc, xx, p 128.

- Kernot, W C, 1887—On Lightning Conductors *Tr & Proc*, xxiii, pp 111 117, with two diagrams
 —, 1888—Remarks on the Early History of the Biennin Torpedo (Title only, but see also page 184) *Tr. & Proc*, xxiv (2), p 97
 —, 1890—Notes on the Biaimetric Measurements of Heights *Proc* (n.s.), ii, pp 78 81, with two diagrams
 —, 1895—On the Best Form for a Balance Beam *Proc* (n.s.), vii, pp 140 142
 —, 1904—Field Practice with the Aneroid Barometer *Proc* (n.s.), vii (2), pp 354 364
 Kerr, Lesley R.—See Ewart, A J, and Kerr, 1926 See also Ewart, A J Kerr, and Derrick, E M, 1926
 —, 1925—The Lignotubers of Eucalypt Seedlings *Proc* (n.s.), xxxvii (1), 79 97, pls x, xi, with seven text figures
 —, 1925—A Note on the Symbiosis of Loianthus and Eucalyptus *Proc* (n.s.), xxxvii (2), pp 248 252, pl xxviii, and text figure
 Kershaw, J A, 1910—Notes on the Wombat, *Phascolomys uisimus*, Shaw, from Flinders Island *Proc* (n.s.), xxii (2), pp 330 334, pl ix
 Kidson, E, 1926—The Annual Variation in the Velocity of Cirrus Cloud over Melbourne *Proc* (n.s.), xxxviii, pp 159 163, with text figure
 Kincaid, Hilda, 1911—The Biochemical Significance of Phosphorus *Proc* (n.s.), xxii (2), pp 368 392
 Kirkland, J B, 1882—Remarks upon and Experiments with Fiure's Secondary Battley *Tr & Proc*, xviii, pp 57 58
 Kitson, A E, 1897—Geological Notes on the Gehi and Indi Rivers and Mono Gap, Mount Kosciusko, N S W *Proc* (n.s.), ix, pp 22 28
 —, 1901—Geological Notes on the River Yarra Improvement Sections at the Botanical Gardens and vicinity, Melbourne *Proc* (n.s.), xii, (2), pp 243 252, pls xli, xlii
 —, 1902—Observations on the Geology of Mount Mary and the Lower Werribee Valley *Proc* (n.s.), xiv (2), pp 153 165
 —, 1902—On the Occurrence of Glacial Beds at Wynyard, near Table Cape, Tasmania *Proc* (n.s.), xv (1), pp 28 35, pl iii
 —, 1902—Further Notes on the River Yarra Improvement Sections, at the Botanical Gardens, Melbourne *Proc* (n.s.), xv (1), pp 41 46
 —, 1903—Glacial Deposits at Taminick, Glenrowan, and Greta, North Eastern District, Victoria *Proc* (n.s.), xvi (1), pp 148 153
 —, 1903—Volcanic Necks at Anderson's Inlet, South Gippsland, Victoria. *Proc* (n.s.), xvi (1), pp 154 176, pls xviii, xix
 Krause, F M, 1887—The Tiopolite Deposits of Lillicui *Tr & Proc*, xxiii, pp. 250 255, with map

L

- Laby, T H—See Bingham, R, Laby, T H, and Shearer, J, 1928
 —, 1920—A New Method of Determining the Mechanical Equivalent of Heat *Proc* (n.s.), xxii. (2), pp 148 155, pls x, xi, and text-figure
 Lambert, Ada M, 1898—The Structure of an Australian Land Leech, *Proc* (n.s.), x (2), pp 211 235, pls x-xiv
 —, 1899—Description of two new Species of Australian Land Leeches, with Notes on their Anatomy *Proc* (n.s.), xi (2), pp 156 163, pls xv, xvi
 Lambert, C A.—See Shirley, J, and Lambert, 1922
 Langford, W G, 1916—The Petrology of the Silurian Sediments near Melbourne. *Proc* (n.s.), xxix (1), pp 40 49
 Lea, A M, 1905—On Nephritis and other Ants' Nest Beetles, taken by Mr J C Gouldie, at Birchip *Proc* (n.s.), xvii (2), pp 371 383, pl. xxvii
 —, 1908—The Coleoptera of King Island, Bass Strait *Proc* (n.s.), xx (2), pp 143-207
 —, 1910—On Australian and Tasmanian Coleoptera, with Descriptions of New Species—Part I, *Proc* (n.s.), xxii. (2), pp. 113 152, pl xxx
 —, 1910—On some Pselaphidae of the Howitt Collection *Proc* (n.s.), xxiii. (1), pp 8-14
 —, 1910—Australian and Tasmanian Coleoptera Inhabiting or Resorting to the Nests of Ants, Bees, and Termites *Proc* (n.s.), xxiii (1), pp 116 230, pls xxv, xxvi
 —, 1911—On a New Australian Genus of Phoridae associated with Termites *Proc* (n.s.), xxiv (1), pp 76, 77, pl xxiv
 —, 1912—Australian and Tasmanian Coleoptera Inhabiting or Resorting to the Nests of Ants, Bees, and Termites Supplement *Proc* (n.s.), xxv (1), pp 31 78, pl ii
 —, 1914—On Australian and Tasmanian Coleoptera, with Descriptions of New Species and Varieties *Proc* (n.s.), xxvi (2), pp 211-225, pl xxii
 —, 1915—Notes on Australian and Tasmanian Scydmaenidae, with Descriptions of New Species *Proc* (n.s.), xxvii (2), pp 198 231
 —, 1923—On Australian Aphodiidae (Coleoptera), *Proc* (n.s.), xxxvi (1), pp 1 20.
 —, 1925—On some New Australian Chrysomelidae (Coleoptera) *Proc* (n.s.), xxvii (1), pp 1-17
 —, 1927—Australian Curculionidae of the Subfamily Gonipteridae *Proc* (n.s.), xxix. (2), pp 76-112.

- Leach, J A, 1907—Surface Tension as an Aid in Canyon Formation, the production of Bad Lands, and in River Capture Proc (n.s.), xix (2), pp 54-59, pl xvii
- Lewis, J C—See Spencer, W Baldwin, and Lewis, 1911
- Lewis, J M, 1921—The Estimation of Acidity Proc (n.s.), xxviii, pp 233-260, with eleven text-figures
- Ligar, C W, 1866 Grass Tree Tr & Proc, viii, pp 145-147
- Light, S F, and Davis, A C, 1929—Two New Species of *Coptotermes* Wassmann (Isoptera) Proc (n.s.), xlii (1), pp 62-70, with fifteen text figures
- Lilly, A, 1881—On Some Curious Effects of Lightning at Gabo Island Tr & Proc, xvi, pp 52, 53, with plate
- Love, E F J, 1894—Report of the Gravity Survey Committee of the Royal Society of Victoria Proc (n.s.), vi, pp 213-226
- , 1895—Observations with Kater's Invariable Pendulums, made at Sydney during January and February, 1894, with an Appendix on the Stability of the Pendulum Stand Proc (n.s.), vii (2), pp 1-18
- , 1898—On Entropy Meters Proc (n.s.), x (2), pp 91-96, with diagram
- , 1902—The Theory of Temporary Stars Proc (n.s.), xv (1), pp 1-16
- , 1919—Note on the Real Significance of the Michelson Morley Experiment Proc (n.s.), xxxi (2), pp 364-366
- , 1922—Gravity Determinations in Australia Proc (n.s.), xxxv (1), pp 90-96
- , 1923—Acceleration of Gravity at the Melbourne Observatory Supplementary Note Proc (n.s.), xxxvi (1), p 21
- , 1926—A Low-lag thermocouple with a new type of insulation Proc (n.s.), xxxviii, pp 155, 156
- , and Smeal, G, 1912—The Psychrometric Formula Proc (n.s.), xxiv (2), pp 201-220, pl xlvi
- Lowe, W, 1912—The Tiopics and Pigment, The Physical Properties of Pigment, and its Physiological Importance in the Protection of Living Organisms, Especially Man Proc (n.s.), xxiv (2), pp 353-366
- Lucas, A H S, 1886—Note on the Habits of Hermit Crabs Tr & Proc, xxii, pp 61-63
- , 1887—On the Sections of the Delta of the Yarra, Displayed in the Fisherman's Bend Cutting Tr & Proc, xxiii, pp 165-173, with text-figure
- , 1887—On the Sound Organs of the Green Cicada Tr & Proc, xxiii, pp 173-178, with plate
- , 1887—On the Production of Colour in Birds' Eggs Tr & Proc, xxiv (1), pp 52-60
- , 1890—Short Address on Recent Progress in Biology Proc (n.s.), ii, pp xvii-xxi
- , 1890—A Systematic Census of Indigenous Fish, hitherto recorded from Victorian Waters Proc (n.s.), ii, pp 15-47
- , 1890—On the Occurrence of *Kraussina lamarckiana* (Davidson), at Williams-town, with a Census of the Victorian Brachiopoda Proc (n.s.), ii, pp 48, 49
- , 1890—On Some Additions to the Fish Fauna of Victoria Proc (n.s.), ii, p 63
- , 1890—Notes from the Biological Laboratory of the Melbourne University (1) On the Occurrence of a Partially Double Chick Embryo Proc (n.s.), ii, pp 11-12, pl vi
- , 1891—On the Occurrence of Certain Fish in Victorian Seas, with Description of Some New Species Proc (n.s.), iii, pp 8-14, pl iii
- , 1892—A New Species of Fresh-Water Fish from Lake Nigothoruk, Mount Wellington, Victoria Proc (n.s.), iv (1), pp 27, 28
- , 1892—Notes on the Distribution of Victorian Batrachians, with Descriptions of Two New Species Proc (n.s.), iv (1), pp 59-64
- , 1902—Descriptions of some New Lizards from Western Australia Proc (n.s.), xv (1), pp 76-79
- , 1897—On some Facts in the Geographical Distribution of Land and Fresh-Water Vertebrates in Victoria Proc (n.s.), ix, pp 34-53
- , and Frost, C, 1894—The Lizards Indigenous to Victoria Proc (n.s.), vi, pp 24-92, pl ii
- , 1895—Preliminary Notice of Certain New Species of Lizards from Central Australia Proc (n.s.), viii, pp 264-269
- , 1896—Further Preliminary Notice of Certain Species of Lizards from Central Australia Proc (n.s.), viii, pp 1-4
- , 1897—Description of two new Species of Lizards from Central Australia Proc (n.s.), ix, pp 54-56
- , 1900—Description of a New Lizard from Northern Queensland Proc (n.s.), xii (2), pp 145-146
- , 1902—Description of Some New Lizards from Western Australia Proc (n.s.), xv (1), pp 76-79
- , 1903—Description of two new Australian Lizards, *Varanus spenceri* and *Diplodactylus bilineatus* Proc (n.s.), xv (2), pp 145-147
- Lyle, T R, 1904—The Alternate Current Transformer Proc (n.s.), xvii (1), pp 1-75, pls 1-5
- , 1905—On an Expedited Practical Method of Harmonic Analysis Proc (n.s.), xvii (2), pp 394-410, pls xxxi-xxxii

M

- Macadam, J., 1865.—On Kerosene (Abstract) Tr & Proc, vi, pp 61, 62
 McAlpine, J., 1888—Notes from the Biological Laboratory, Ormond College
 I—Observations on the Movements of Detached Gills, Mantle lobes, Labial
 Palps, and Foot in Bivalve Mollusks Ti & Proc, xxiv (2), pp 139 149
 —, 1891—Observations on the Movement of the Heart of *Hoplocephalus superbus*,
 In and Out of the Body Proc (n.s), iii, pp 27 35
 —, 1891—On a Nematode found in the Stomach of a Copperhead Snake Proc.
 (n.s), iii, pp 36 39, pl viii
 —, 1891—Remarks on a Fluke Parasite in the Copperhead Snake Proc.
 (n.s), iii, pp 40 43
 —, 1895—Australian Fungi Proc (n.s), vii, pp 214 221.
 —, and Farmer, P. W., 1893—Notes on a Poisonous Species of *Hormea* (II
collina, Vent.—var. *minima*), found at Pascoe Vale, causing death in
 cattle and other animals feeding upon it Proc (n.s), v, pp 209 217
 —, and Hill, W. H. F., 1895—The Entomogenous Fungi of Victoria Proc
 (n.s), vii, pp 159 165
 —, and Remfry, J. R., 1891—The Transverse Sections of Petioles of Eucalypts
 as Aids in the Determination of Species Trans n (1), pp 1 64, pl.
 1 via
 —, and Tepper, J. G. O., 1895—A New Australian Stone making Fungus Proc
 (n.s), vii, pp 166 168, pl x
 McCance, D. M., 1932—Weathering of the "Older Basalt" of Royal Park Proc
 (n.s), xiv (2), pp 243-256, with three tables
 McCoy, F., 1857—Museums in Victoria Trans Phil Inst, i, pp 127 134 (Con
 tinuation omitted by order of the Council)
 —, 1861—A Commentary on "A Communication made by the Rev W. B
 Clarke to His Excellency Sir Henry Barkly, K.C.B., &c., &c., President
 of the Royal Society of Victoria, on Professor M'Coy's "New Taenopteris,"
 &c., &c. Trans (8vo), v, pp 96 107
 —, 1861—Note on Rev Mr. Clarke's "Remarks," &c. Trans (8vo), v, pp
 215 217
 —, 1865—On the Snakes of Victoria (Abstract) Tr & Proc, vi, pp 7, 8
 —, 1865—On the Bones of a New Gigantic Marsupial (Abstract) Ti &
 Proc vi, p 23.
 —, 1865—Remarks on a Series of Fossils collected at Wollumbilla, and trans
 mitted by Rev W D Clarke, of Sydney (Abstract) Ti & Proc, vi,
 pp 42 46
 —, 1865—Remarks on the Australian Fish of the Genus *Ariopsis* Tr & Proc,
 vi, pp 158, 159.
 —, 1866—On the Discovery of Cretaceous Fossils in Australia (Abstract)
 Tr & Proc, vii, pp 49 51
 —, 1867—On Three New Victorian Birds Ti & Proc, viii (1), p 41
 —, 1867—On the Discovery of *Enaliosaura* and other Cretaceous Fossils in
 Australia Tr & Proc, viii (1), pp 41, 42
 —, 1868—On the Species of Wombats (Abstract) Tr & Proc, viii (2), pp
 266 270, with text figure.
 —, 1869—On the Fossil Eye and Teeth of the *Ichthyosaurus australis* (M'Coy),
 from the Cretaceous formations of the source of the Flinders River, and
 on the Palate of the Diprotodon, from the Tertiary Limestone of Lime
 burner's Point, near Geelong Tr & Proc, ix (2), pp 77, 78
 —, 1898—Note on an Additional Genus of Fossil Plants found in the Bacchus
 Marsh Sandstone by George Sweet, Esq., F.G.S. Proc. (n.s), x (2), pp
 285, 286, with text figure
 Macdonald, D. 1883.—The Oceanic Languages Semitic a Discovery Tr. & Proc,
 xix, pp 241 273
 —, 1887—The Oceanic Languages Semitic Ti & Proc, xxiii, pp 1 34.
 —, 1887—The Oceanic Languages Semitic Part II Tr and Proc, xxiv (1),
 pp 1-41
 —, 1889—Idem (Title only) Proc. (n.s), i, p 83
 McDonald, G. T.—See Committees, 1865, Appendix III
 MacDonald, N., 1912.—Machine Drawn versus Hand-Drawn Milk An Enquiry into the
 Relative Bacterial Content. Proc (n.s), xxiv (2), pp 420 431
 MacGeorge, F., 1874—Some Notes of Observation with the Melbourne Great Tele
 scope. Tr & Proc, x, pp. 65-71
 —, 1874—On some Hydraulic Clock-weights (Abstract) Tr & Proc., x,
 p. 79.
 —, 1874—On η Argus and Nebula Tr & Proc, x, pp 106 113, with two
 plates
 —, 1874—Notes on Sirius and its Companion Stars (Great Telescope) Tr
 & Proc, x, pp 128-130, with two plates
 —, 1874—On Matter—a Mode of Motion (Title only) Ti. & Proc, x,
 p 147.
 MacGillivray, P. H., 1860—On some New Australian Polyzoa. Trans Phil Inst,
 iv, pp 97, 98, with plate
 —, 1860—Notes on the Cheilostomatous Polyzoa of Victoria and other parts of
 Victoria Trans Phil Inst, iv, pp 159-168, with two plates
 —, 1861—Description of a New Species of *Plumatella* Trans (8vo), v, pp
 203, 204

- MacGillivray, P. H., 1869—Descriptions of some new Genera and Species of Australian Polyzoa, to which is added a List of Species found in Victoria. *Tr & Proc.*, ix (2), pp. 126-148
- , 1881—On Two New Genera of Polyzoa. *Tr & Proc.*, xvii, pp. 15-18, with plate
- , 1881—On Some New Species of Catenicella and Dictyopora, and on Urceolipora, a New Genus of Polyzoa. *Tr & Proc.*, xvii, pp. 84-87, with plate
- , 1882—Descriptions of New, or Little Known, Polyzoa Part I *Tr & Proc.*, xviii, pp. 115-121
- , 1883—Idem Part II *Tr & Proc.*, xix, pp. 130-138, pls. 1-iii
- , 1883—Idem Part III *Tr & Proc.*, xix, pp. 191-195, pls. 1, ii
- , 1883—Idem Part IV *Tr & Proc.*, xix, pp. 287-293, pls. 1, ii
- , 1884—Idem Part V *Tr & Proc.*, xx, pp. 103-113, pls. 1-iii
- , 1884—Idem Part VI *Tr & Proc.*, xx, pp. 126-128, with plate
- , 1885—Idem Part VII *Tr & Proc.*, xxi, pp. 92-99, pls. 1-iii
- , 1885—Idem Part VIII. *Tr & Proc.*, xxi, pp. 106-119, pls. 1-v
- , 1885—Notes on the Reproduction of the Ornithorhynchus. *Tr & Proc.*, xxi, pp. 120-122
- , 1886—Description of New, or Little Known, Polyzoa Part IX, *Tr & Proc.*, xxii, pp. 128-139, pls. 1-ii
- , 1887—Idem Part X. *Tr & Proc.*, xxiii, pp. 34-38, pl. 1
- , 1887—Idem Part XI. *Tr & Proc.*, xxiii, pp. 64-72, pls. 1-ii
- , 1887—Idem Part XII. *Tr & Proc.*, xxiii, pp. 179-186, pls. 1, ii
- , 1887—Catalogue of the Marine Polyzoa of Victoria. *Tr & Proc.*, xxiii, pp. 187-224
- , 1890—Description of New or Little Known Polyzoa Part XIII *Proc.* (n.s.), ii, pp. 106-110, pls. iv, v
- , 1891—Idem Part XIV *Proc.* (n.s.), iii, pp. 77-83, pls. ix, x
- , 1895—On the Australian Species of Amathia. *Proc.* (n.s.), vii, pp. 131-139, pls. a.d.
- , 1895—A Monograph of the Tertiary Polyzoa of Victoria. *Tians.*, iv, pp. 1-166, pls. i-xvii
- McInerny, Kathleen—Identical with Sheridan, Kathleen, 1930
- , 1929—The Building Stones of Victoria, Part II. The Igneous Rocks. *Proc.* (n.s.), xli (2), pp. 121-159, pl. xvi, and three text figures (For Part I, see Richards, H. C., 1910)
- Mackenzie, W. Colin, 1911—Some Observations on the Comparative Anatomy of the Fibula. *Proc.* (n.s.), xxxii (2), pp. 358-367, pls. lxxvi-lxxxviii
- , and Owen, W. J., 1923—Studies on the Comparative Anatomy of the Alimentary Canal of Australian Reptiles. *Proc.* (n.s.), xxxvi (1), pp. 41-49, pl. iv, and five text figures
- Maclean, C. W., 1883—An Improved Grab Crane. *Tr & Proc.*, xix, pp. 166-169, with plate
- , 1886—On an Apparatus for Determining the Stability of Ships (Title only). *Tr & Proc.*, xxii, p. 139
- McLennan, Ethel, 1916—The Influence of Gaseous Pressure on Growth (Preliminary Communication). *Proc.* (n.s.), xxviii. (2), pp. 245-250
- , 1920—The Endophytic Fungus of Loliom. Part I. *Proc.* (n.s.), xxxii (2), pp. 242-301, pls. xviii-xvi, and eight text figures
- , and Cookson, Isabel, 1923—Additions to the Australian Ascomycetes No. 1. *Proc.* (n.s.), xxxv (2), pp. 153-158, pls. ix, x, and text-figure.
- , 1926—Idem No. II. *Proc.* (n.s.), xxxviii, pp. 69-76, pls. iv vi.
- Mahony, D. J., 1928—Some Tertiary Volcanic Minerals and their Parent Magma. *Proc.* (n.s.), xl (2), pp. 62-69, with text figure
- , 1931—Alkaline Tertiary Rocks near Trentham and at Drouin, Victoria. *Proc.* (n.s.), xlii (2), pp. 123-129, pl. vii
- Maiden, J. H., 1890—Iquid Kino. *Proc.* (n.s.), ii, pp. 82, 83
- , 1914—Is Eucalyptus fruticorum, F v M, identical with E polybractea, R. T. Baker? *Proc.* (n.s.), xvi (2), pp. 298-300.
- , 1922—An Alphabetical List of Victorian Eucalypts. *Proc.* (n.s.), xxxiv (2), pp. 73-84
- Mann, J., 1911—Papuan Timbers. Some Properties of Six Species. *Proc.* (n.s.), xxiv (1), pp. 20-45, pls. x-xx
- Maplestone, C. M., 1879—Infusoria in Australia. *Journ.*, i (1), pp. 15-18, pl. ii, figs. 1-17
- , 1879—A New Species of Polyzoa. *Journ.*, i (1), p. 19, pl. iii, figs. 1-4
- , 1880—Idem. *Journ.*, i (2 and 3), p. 64, pl. v, fig. 4
- , 1882—Observations on Living Polyzoa. *Tr & Proc.*, xviii, pp. 48-51, with plate
- , 1889—Further Descriptions of the Tertiary Polyzoa of Victoria. Part I. *Proc.* (n.s.), xi (1), pp. 14-22, pls. 1, ii
- , 1899—Idem. Part II. *Proc.* (n.s.), xii (1), pp. 113, pls. 1, ii
- , 1900—Idem. Part III. *Proc.* (n.s.), xii (2), pp. 162-169, pls. xvii, xviii
- , 1900—Idem. Part IV. *Proc.* (n.s.), xiii (1), pp. 19, pls. 1, ii
- , 1901—Idem. Part V. *Proc.* (n.s.), xiii (2), pp. 183-190, pls. xxiii, xxiv.
- , 1901—On a new name "Vittaticella," for the Polyzoan genus Caloporella, McG. *Proc.* (n.s.), xiii (2), pp. 201-203
- , 1901—Further Descriptions of the Tertiary Polyzoa of Victoria. Part VI. *Proc.* (n.s.), xiii (2), pp. 204-213, pls. xxxiv, xxxv

- Maplestone, C. M., 1902—*Idem Part VII Proc (n.s.), xiv (2), pp 65-74, pls vi viii*
 ———, 1902—*Idem Part VIII Proc (n.s.), xv (1), pp 17-27, pls i, ii*
 ———, 1903—*Idem Part IX Proc (n.s.), xvi (1), pp 140-147, pls xvi, xvii*
 ———, 1904—*Notes on the Victorian Fossil Scleractinia, and Descriptions of some New Species (Recent and Fossil) Proc (n.s.), xvi (2), pp 207-217, pls xxiv, xxv*
 ———, 1904—*Tabulated List of the Fossil Chilostomatus Polyzoa in the Victorian Tertiary Deposits Proc (n.s.), xvii (1), pp 182-219*
 ———, 1905—*Laid Howe Island Polyzoa Proc (n.s.), xvii (2), pp 386-390, pls viii, ix*
 ———, 1908—*Further Descriptions of the Tertiary Polyzoa of Victoria Part X Proc (n.s.), xxvi (1), pp 233-239, pls viii, viii*
 ———, 1909—*Polyzoa from the Gilbert Islands Proc (n.s.), xxvi (2), pp 410-419, pls xxvii, xxviii*
 ———, 1910—*On the Growth and Habits of Bipora Proc (n.s.), xxviii (1), pp 1-7, pl i*
 ———, 1910—*On a New Species of Cellepora from the South Australian Coast Proc (n.s.), xxix (1), pp 39-41, pls viii, ix*
 ———, 1910—*Observations on *Parinularia obliqua* and a Fossil Species Proc (n.s.), xxix (1), pp 42, 43, pl x*
 ———, 1911—*Further Descriptions of the Tertiary Polyzoa of Victoria Part XI Proc (n.s.), xxxi (2), pp 266-284, pls xxxviii, xlvi*
 ———, 1913—*Idem Part XII Proc (n.s.), xxv (2), pp 355, 356, pl xxvii*
 ———, 1913—*New or Little-known Polyzoa Proc (n.s.), xxv (2), pp 357-362, pl xxviii*
- Marks, E. L., 1881—*Suggestions for a New and Economical Method for the Scientific Production of some Acids Tr & Proc, xvii, pp 78, 79*
 ———, 1883—*On the Occurrence of Alcohol and Iodoform in a supposed Non-Alcoholic Wine (Title only) Tr & Proc, xix, p 274*
 ———, 1886—*The Atmosphere a Source of Nitrogen in Plant Economy (Title only) Tr & Proc, xxii, p 19*
- Martin, L. H., 1923—*The High Frequency K Series Absorption Spectrum of Erbium Proc (n.s.), xxxv (2), pp 164-169, with text figure*
- Masson, Orme, 1889—*The Preparation of Alkyl Sulphine, Selenine, and Phosphonium Salts Tians, i (2), pp 46-49*
 ———, 1890—*Short Address on the Chemistry of To Day Proc (n.s.), ii, pp xiii-xvii*
- Mathews, J., 1897—*Note on the Aboriginal Rock Painting in the Victorian Range, County of Dundas, Victoria Proc (n.s.), ix, pp 29-33, pl v*
 Mathews, R. H., 1895—*Aboriginal Rock Paintings and Carvings in New South Wales Proc (n.s.), vii, pp 143-156, pls viii, ix*
 ———, 1897—*The Burbung of New England Tribes, New South Wales Proc (n.s.), ix, pp 120-136*
 ———, 1897—*Aboriginal Bora held at Tallwood, Queensland, in 1895 Proc (n.s.), ix, pp 137-173*
 ———, 1897—*The Burbung of the Darkinung Tribes Proc (n.s.), x (1), pp 1-12*
 ———, 1897—*The Wandalor of the Richmond and Clarence River Tribes Proc (n.s.), x (1), pp 29-42*
 Maund, J., 1855—*On the Deterioration of Grain and Flour. Tr & Proc Vict Inst, i, pp 48-53*
 ———, 1855—*On the Mineral Waters of Victoria Tr & Proc. Vict Inst, i, pp 70-74*
 ———, 1855—*The Water of the Plenty River Tr & Proc Vict Inst, i, pp 136-143*
- Mayne, E. G., 1855—*Observations on the Proposed Loan for Public Works in Victoria Tr & Proc Vict Inst, i, pp 61-67*
- Merfield, Z. A., 1926—*Metallic Replicas of Diffraction Gratings Proc (n.s.), xxxviii, pp 62-64*
 ———, 1927—*The Total Solar Eclipse of May 9th, 1929 Proc (n.s.), xxx x. (2), pp 53, 54, with text figure*
 ———, 1927—*A Note on Solar Radiation in the Lyman Region and Far Ultra Violet. Proc (n.s.), xxxix (2), pp 55-58, pl vii*
- Mickle, K. A., 1911—*Flotation of Minerals Proc (n.s.), xxiii (2), pp 555-585*
 ———, 1912—*Idem Part II Proc (n.s.), xxiv (2), pp 301-330*
- Millar, J., 1857—*On the Supply of Water to the Town of Geelong Trans Phil Inst, ii (1), pp 34-61, with tables i-x*
- Mitten, W., 1883—*Australian Mosses, enumerated by William Mitten, Esq, Tr & Proc, xix, pp 49-96*
- Moors, H., 1882—*On the Seacell as a Possible Source of Danger in Torpedo Experiments Tr & Proc, xviii, pp 71-81*
- Morrice, R., 1881—*The Lowan, or Mallee Hen (Title only) Tr & Proc, xvii, p 88*
- Morris, Ethel M., and Raft, Janet, 1909—*Notes on the Structure of Asymmetron bassanum, Gunther Proc (n.s.), xxii (1), pp 85-90, pls xviii, xix*
- Morris, M., 1914—*On the Geology and Petrology of the District between Lilydale and Mount Dandenong Proc (n.s.), xxvi (2), pp 331-366, pl xxix, xxxi*
- Morris, P. F.—See Tovey, J. R., and Morris, 1922 (2), and 1923
- Morrison, A.—See Ewart, A. J., and Morrison, 1913

- Morton, J L, 1885—Suggestions for Reducing Excessively High Temperature in Ships and Buildings Tr & Proc, xxi, pp 86-88
 —, 1886—On an Apparatus for Utilising the Force of the Tides (Title only) Tr & Proc, xxii, p 139
- Morton, W L, 1860—Notes of a recent personal visit to the unoccupied Northern District of Queensland Trans Phil Inst, iv, pp 188-199, with a Map of the District
 —, 1861—Remarks on the Physical Geography, Climate, &c, of the Regions lying between the Rivers Lachlan and Darling Trans (8vo), v, pp 128-140
 —, 1861—Suggestions for the Introduction of Animals and Agricultural Seeds into Victoria Trans (8vo), v, pp 153-157.
- Mueller, F—From 1887 shown as Mueller, F von
 —, 1855—Description of Fifty New Australian Plants, chiefly from the Colony of Victoria Tr & Proc Vict Inst, i, pp 28-48
 —, 1855—Account of the Gunyang A New Indigenous Fruit of Victoria Tr & Proc, Vict Inst, i, pp 67-70
 —, 1855—Description of New Australian Plants, chiefly from the Colony of Victoria 2nd Series Tr & Proc Vict Inst, i, pp 114-135
 —, 1855—Definitions of Rare or hitherto Undescribed Australian Plants, chiefly collected within the Boundaries of the Colony of Victoria, and examined by Dr Ferd Mueller Trans Phil Soc, i, pp 5-24, and continued on pp 34-50
 —, 1855—Descriptive Characters of New Alpine Plants, from Continental Australia Trans Phil Soc, i, pp 96-111
 —, 1857—On the Octoclinis macleayana—a new Australian Pine Trans Phil Inst, ii (1), pp 20-22, with plate
 —, 1857—Account of some New Australian Plants Trans Phil Inst, ii (1), pp 62-77, with two plates
 —, 1858—On a General Introduction of Useful Plants into Victoria Trans Phil Inst, ii (2), pp 93-109
 —, 1858—An Historical Review of the Explorations of Australia Trans Phil Inst, ii (2), pp 148-168, with plate
 —, 1859—Diagnostic Notes on New or Imperfectly Known Australian Plants Trans Phil Inst, iii, pp 22-31
 —, 1859—Some hitherto unknown Australian Plants Trans Phil Inst, iii, pp 40-63
 —, 1859—Index of the Plants described in the Transactions of the Victorian Institute, of the Philosophical Society, and the Philosophical Institute of Victoria Trans Phil Inst, iii, pp 114-120
 —, 1860—Notes on the Plants collected during Mr John McDouall Stuart's recent Expedition into the North-West interior of South Australia Trans Phil Inst, iv, pp 183-188
 —, 1865—On the Systematic Position of the Naidoo Plant, and the Physiological Characteristics of its Fruit Tr & Proc, vi, pp 137-147
 —, 1865—Notes on Gastrolobium grandiflorum Tr & Proc, vi, pp 147, 148
 —, 1867—Characteristics of an undescribed Senecio, from South Africa Tr & Proc, viii (1), pp 38-40
- Mueller, F von, 1887—Plants collected in Capricornic Western Australia, by H S King, and recorded by Baron von Mueller, K C M G, M & Ph D, F R S Tr & Proc, xxiii, pp 49-57
 —, 1888—Remarks on a New Victorian Haloragis, and on the occurrence of the Genus Pluchea within the Victorian Territory Tr & Proc, xxiv (2), pp 132-139
 —, 1888—Description of some Hitherto Unknown Australian Plants Tr & Proc, xxiv (2), pp 168-174
 —, 1888—Two Hitherto Unrecorded Plants from New Guinea. Tr & Proc, xxiv, (2), pp 174, 175
 —, 1889—Records of Observations on Sir William MacGregor's Highland Plants from New Guinea Trans, i (2), pp 1-5
- Mulder, J F—See Dennant, J, and Mulder, 1897 and 1898
 —, 1902—Newer Pliocene Strata on the Moorabool River Proc (ns), xiv (2), pp 82-84

N

- Nanson, E J, 1881—Proportional Representation Tr & Proc, xvii, pp 34-52
 —, 1883—Methods of Election Tr & Proc, xix, pp 197-240
- Neild, J E, 1874—On the Advantages of Burning the Dead Tr & Proc, xi, pp 18-27.
- , 1890—Short Address on Literature and the Fine Arts Proc (ns), ii, pp xxxiii-xlii
- Neumayer, G, 1859—Description and System of Working of the Flagstaff Observatory Trans. Phil Inst, iii, pp 94-103, with three plates
 —, 1859—Some Facts illustrative of the Meteorology of the month of August, 1858 Trans Phil Inst, iii, pp 104-114, pls 1-iv
 —, 1860—On Dove's Law of the Turning of the Wind, as illustrated and supported by the Observations made at the Flagstaff Meteorological and Magnetic Observatory, Melbourne Trans Phil Inst, iv, pp 102-122, with four plates

- Neumayer, G., 1865—Description of a Pendulum Apparatus for Determining the Length of a Seconds' Pendulum in Melbourne (Abstract) Tr & Proc, vi, pp 91, 92
- Newberry, J C, 1867—The Manufacture of Paper from Native Plants Tr & Proc, viii (1), pp 47 52
- , 1868—The Mineral Waters of Victoria Part I Tr & Proc, viii (2), pp 278 283
- , 1868—Experiments on Mr Julius Dahlke's Filter Tr. & Proc, viii (2), pp 300, 301
- , 1868—The Introduction of Gold to, and the Formation of Nuggets in, the Auriferous Drifts Tr & Proc, ix (1), pp 52 60
- , 1869—On the Ornamental Stones of the Colony Tr & Proc, ix (2), pp 79 85
- , 1874—A Method for the Manufacture of Chloride of Aluminium and Calcium, for use as a Disinfectant (Abstract) Tr & Proc, x, p 81
- , 1874—The Use of Bisulphide of Carbon as a Solvent in the Extraction of Vegetable Oils, &c Tr & Proc, x, pp 135 138
- , 1879—Formation of Hyalite by the Action of Ammonia Tr & Proc, xv, pp 49 51
- , 1880—Some New Localities for Minerals in Victoria Tr & Proc, xvi, pp 144, 145
- , 1882—Notes on the Specification of a recent Patent for the Manufacture of Gas (Title of paper, with a Resolution passed by the meeting before which it was read) Tr & Proc, xviii, p 47
- , 1884—Notes on the Dressing of Tin Ore Tr & Proc, xx, pp 99 102
- , 1886—The Examination of Waters Tr & Proc, xxii, pp 1 9
- , and Dunn, F., 1879—Experiments made on a Sample of Pig Iron received from the British and Tasmanian Iron Company, Port Lempriere, Tasmania Tr & Proc, xv, pp 43 49
- Nicholas, W., 1882—The Origin of Quartz Reefs and Gold. (Title only) Tr & Proc, xviii, p 47
- Nicholls, Annie, 1930—The Structural Features of the Silurian Rocks in the Melbourne District Proc (n s), xlvi (2), pp 129-134, pls ix, x, and two text figures
- Nicholls, W H, 1933—Three Species of the genus *Prasophyllum* R Br Proc (n s), xlvi (1), pp 28 35
- Nisser, P., 1860—On the Geological distribution of Gold, with special reference to some Auriferous Rocks in South America Trans Phil Inst, iv, pp 15 40
- , 1860—On some Domesticated Animals of South America which would be useful in Victoria Trans Phil Inst, iv, pp 65 69
- , 1860—On the First Technical Use of Gold by the Aborigines of South America, with a description of the Indian Tombs Trans Phil Inst, iv, pp 69-75, with plate
- Nordstedt, —, 1918—Australasian Characeae Proc (n s), xxxi (1), pp 1-6

O.

- Officer, G., and Balfour, L, 1893—Preliminary Account of the Glacial Deposits of Bacchus Marsh Proc (n s), v, pp 45 68, pls x xi
- , 1894—Further Note on the Glacial Deposits of Bacchus Marsh Proc (n s), vi, pp 139-143
- , —, and Hogg, E G, 1895—Geological Notes on the Country between Strahan and Lake St Clair, Tasmania Proc (n s), vii, pp 119-130, with map
- , and Hogg E G, 1897.—The Geology of Coomaidae Part I Proc (n s), x (1), pp 60-74
- , —, 1898—Idem Part II The Silurian and Glacial Beds With Appendices by C W De Vis, M A, and T S Hall, M A, on the Marsupial Bones of the Coomaidae Limestone and the Gaptolithes of the District respectively. Proc (n s), x (2), pp 180-203, pls viii, ix
- Oke, C, 1931—On some Australian Curculionoidea Proc (n s), xlvi (2), pp 177-201, with six text figures
- , 1932—Aculagnathidae—A New Family of Coleoptera Proc (n s), xliv (1), pp 22-24, pl ii
- , 1933—Australian Staphylinidae Proc (n s), xlvi (2), pp 101 136, with 95 text-figures.
- , 1934—On some Australian Curculionoidea Part II Proc (n s), xlvi (2), pp 250 263, with thirty text-figures.
- Oliver, Kathleen K, 1910.—The Structure of the Truncus Arteriosus in Species of the genera *Hyla*, *Limnodynastes*, *Chiroleptes*, *Heleoporus*, *Pseudophryne*, and *Notadem* Proc (n s), xxii (2), pp 198-208, pls xxxviii xxxix
- , 1911.—On the Displacement of the Optic Lobes during the Development of the Brain of the Fowl Proc (n s), xxiv (1), pp 78-91, pls xxv-xxv
- Orr, D, 1927.—The Stony Creek Basin and the Cornella Dyke Proc (n s), xl (1), pp 25-33, and text-figure
- , 1927—An Olivine Anorthoclase Basalt from Daylesford Proc (n s), xl (1), pp 34 44

- Osborne, Alice, 1918—Abnormal Renal Portal Circulation of a Frog Proc (n.s.), xxxi (1), pp 9, 10, pl 1, and text figure
 Osborne, J. W., 1860—On a new Photo Lithographic Process Trans Phil Inst, iv, pp 172-183, with an illustrative map
 Osborne, W. A., 1917—Oscillatory Adjustments in the Animal Body Proc (n.s.), xxix (2), pp 115 118
 —, 1917—The Wet Bulb and Kata Thermometers Proc (n.s.), xxix (2), pp 119-122
 —, 1918—A Contribution to the Theory of Gel Structure Proc (n.s.), xxx (2), pp 153-158
 Ostenfeld, C. H., 1915—On the Geographical Distribution of the Sea Grasses A Preliminary Communication Proc (n.s.), xxvii (2), pp 179 190
 —, 1929—A List of Australian Sea Grasses Proc (n.s.), xlii (1), pp 1-4
 —, 1930—Additions to the List of Australian Sea-Grasses Proc (n.s.), xliii (1), p 1
 Owen, W. J.—See Mackenzie, W. Colin, and Owen, 1923

P

- Pain, 1874—Abstract of a Paper on Aboriginal Art in Australasia, Polynesia, and Oceanica, and its Decay (Abstract) Tr & Proc, x, pp 100-105
 Parr, W. J.—See Chapman, F., and Parr, 1931
 —, 1932—Victorian and South Australian Shallow Water Foraminifera Part I Proc (n.s.), xliv (1), pp 1-14, pl 1, and text-figure
 —, 1932—Victorian and South Australian Shallow Water Foraminifera Part II Proc (n.s.), xliv (2), pp 218 238, pls xxi xxi and text-figure
 —, 1933—Notes on Australian and New Zealand Foraminifera No 2 The Genus Pavonina and its Relationships Proc (n.s.), xlvi (1), pp 28-31, pl vii
 —, and Collins, A. C., 1930—Idem No 1—The Species of Patellina and Patellinella, with a Description of a new Genus, Annulopatellina Proc (n.s.), xliii (1), pp 89-95, pl iv
 Parry, R. E., 1914—The Essential Oil from the leaves of Agonis flexuosa Proc (n.s.), xxvi (2), pp 367-372, with text-figure
 Patching, H. S., 1873—On Heat and Molecular Energy (Title only) Tr & Proc, xiv, p 102
 Paterson, Helen T., 1934—Notes on some Tertiary Leaves from Pascoe Vale Proc (n.s.), xlii (2), pp 264-273, pls xiii, xiv
 Patton, R. T., 1917—Timber Production and Growth Curves in the Mountain Ash (*Eucalyptus regnans*) Proc (n.s.), xxx, (1), pp 1-3, pls 1, 11
 —, 1919—Notes on Eucalypt Leaves occurring in the Tertiary Beds at Bulla Proc (n.s.), xxxi (2), pp 362, 363, with text-figure
 —, 1919—On the Growth, Treatment, and Structure of some common Hardwoods Proc (n.s.), xxxi (2), pp 394-411, pl. xxi and seven text figures
 —, 1920—On the Seasoning of Hardwoods Proc (n.s.), xxxii (2), pp. 350-354
 —, 1922—On the Drying of Timber Proc (n.s.), xxxv (1), pp 63-85, with nine text-figures
 —, 1927—Anatomy of Australian Coniferous Timbers Proc (n.s.), xl (1), pp 1-16, pls 1-v, and two text-figures
 —, 1928—Fossil Plants of the Stony Creek Basin Proc (n.s.), xl. (2), pp 88-90, pl viii, and text-figure
 —, 1930—The Factors Controlling the Distribution of Trees in Victoria Proc. (n.s.) xlii (2), pp 154 210, pls xii-xx, and four text figures
 —, 1933—Ecological Studies in Victoria—The Cheltenham Flora Proc (n.s.), xlvi (2), pp 205-218, with two tables and four text figures
 —, 1933—Ecological Studies in Victoria—Part II The Fern Gully Proc (n.s.), xlvi (1), pp 117-129
 Pern, S., 1918—A Method of Estimating Small Amounts of Calcium Proc (n.s.), xxx (2), pp 137, 138
 Perry, C. J., 1868—On a Discovery for Determining Danger of Collision in Vessels Crossing one another's Track Tr & Proc, viii (2), pp 284 288, with text-figure
 —, 1874—On an Easy and Expeditious Method of verifying a Ship's Position on a Coast when only one Object can be seen either in the Day or Night, by the use of Perry's Anti-collision Dial (Title only) Tr & Proc, x, p 147
 Perry, G. W., 1890—A New System of Photo Lithography (Title only) Proc (n.s.), xi, p 81
 Perry, J., 1876—On the Meteor of April 15th (Title only) Tr & Proc, viii, p 88
 Petrie, A. H. K.—See Ewart, A. J., and Petrie, 1926
 Pirani, F. J., 1876—On some Processes of Scientific Reasoning Tr & Proc, xii, pp 23-32
 —, 1878—On Force Tr & Proc, xiv, pp. 3-6
 —, 1879—Sir William Thomson's Electric Replenisher (Title only) Tr. & Proc, xv, p 4.
 —, 1879—Sir William Thomson's Form of Daniell's Constant Battery (Title only) Tr & Proc, xv, p 14

- Pirani, F J, 1882—On a Modification of Mance's Method of Measuring the Resistance of a Battery Tr & Proc, xviii, pp 35, with text figure
 —, 1882—On a Form of Tangent Galvanometer suitable for Measuring Powerful Currents Tr & Proc, xxii, p 6, with diagram
- Poolman, F, 1874—Self-acting Safety Regulator and Coal Economiser for Steam Engines Tr & Proc, x, pp 125-127
- Postle, J D, 1868—On the Application of the Cold, resulting from the Expansion of Compressed Air, to the Preservation of Animal Food Tr & Proc, ix (1), pp 47-52
- Petty, R B, 1897—On the Bad Lands Deposit of Coburg, Victoria, and their Mapping by Elutriation Methods Proc (n.s.), xxix (2), pp 59-75, pls viii, ix, and two text figures
- Pritchard, G B, —See Hall, T S, and Pritchard, 1892, 1894, 1895, 1896, 1897 (3), 1899, 1901, 1902, and 1904 Also Chapman, F, and Pritchard, 1904 and 1907
- , 1892—On a New Species of Graptolithidae Proc (n.s.), iv (1), pp 56-58, pl vi
- , 1895—Notes on some Lancefield Graptolites Proc (n.s.), vii, pp 27-30
- , 1895—Note on the Occurrence of Fossil Bones at Werribee Proc (n.s.), viii, pp 157, 158
- , 1895—Contribution to the Palaeontology of the Older Tertiary of Victoria Lamellibranchs Part I Proc (n.s.), viii, pp 225-231, pl xii
- , 1896—A Revision of the Fossil Fauna of the Table Cape Beds, Tasmania, with Descriptions of the New Species Proc (n.s.), viii, pp. 74-150, pls ii-iv
- , 1898—Contributions to the Palaeontology of the Older Tertiary of Victoria Gastropoda Part I Proc (n.s.), xi (1), pp 96-111, pls vii, viii
- , 1899—On the Occurrence of Diprotodon australis (Owen) near Melbourne Proc (n.s.), xii (1), pp 112-114, pl ix
- , 1900—On the Nomenclature of Geological Age Proc (n.s.), xiii (1), pp 157-174
- , 1901—Contributions to the Palaeontology of the Older Tertiary of Victoria, Lamellibranchs Part II Proc (n.s.), xiv (1), pp 22-31, pls ii, iii
- , 1903—Idem Lamellibranchs Part III Proc (n.s.), xv (2), pp 87-103
- , 1903—On Some Australian Tertiary Pleurotomariids Proc (n.s.), xvi (1), pp 83-91, pls xii, xiii, xiv
- , 1904—Contributions to the Palaeontology of the Older Tertiary of Victoria Gastropoda Part II Proc (n.s.), xvii (1), pp 320-337, pls xviii, xix
- , 1908—On the Occurrence of the Genus Lintzia in Victoria, with description of a new species Proc (n.s.), xxi (1), pp 392-400, pls xxii, xxiii
- , 1910—On the Bacchus Marsh Sandstones and their Fossils Proc (n.s.), xxii (2), pp 255-262
- , 1913—On a New Silurian Bivalve from the Lilydale Quarries, Lucina (Prolucina) mitchelli Proc (n.s.), xxv (2), pp 363, 364, pl xxix
- , 1913—A Revision of the Fossil Volutes of the Table Cape Beds, Tasmania, with Descriptions of New Species and Varieties Proc (n.s.), xxvi (1), pp 192-201, pls xx, xxxi
- , and Gathiff, J H, 1898—On a New Species of Victorian Mollusc (Corallophila wilsoni) Proc (n.s.), x (2), pp 140, 141
- , —, 1898—Catalogue of the Marine Shells of Victoria, Part I Proc (n.s.), x (2), pp 236-284
- , —, 1899—On some new species of Victorian Mollusca. Proc (n.s.), xi (2), pp 179-184, pl xx
- , —, 1899—Catalogue of the Marine Shells of Victoria Part II Proc (n.s.), xi (2), pp 185-208
- , —, 1899—On Some New Species of Victorian Mollusca. Proc (n.s.), xii (1), pp 100-106, pl viii
- , —, 1900—Catalogue of the Marine Shells of Victoria Part III. Proc (n.s.), xiii (2), pp 170-205
- , —, 1900—Idem Part IV Proc (n.s.), xiii (1), pp 140-156
- , —, 1900—On some New Species of Victorian Mollusca, No 4 Proc (n.s.), xiii (1), pp 131-139, pls xx, xxxi
- , —, 1902—Catalogue of the Marine Shells of Victoria Part V. Proc (n.s.), xiv. (2), pp 85-118
- , —, 1902—On Some New Species of Victorian Mollusca, No 5 Proc (n.s.), xiv. (2), pp 180-184, pls ix, x.
- , —, 1903—Catalogue of the Marine Shells of Victoria Part VI Proc (n.s.), xv (2), pp 176-223
- , —, 1903—On Some New Species of Victorian Mollusca, No 6 Proc (n.s.), xvi (1), pp 92-95, pl xv
- , —, 1903—Catalogue of the Marine Shells of Victoria Part VII Proc (n.s.), xvi (1), pp 96-139
- , —, 1904—Idem Part VIII Proc (n.s.), xvii (1), pp 220-266
- , —, 1904—On Some New Species of Victorian Mollusca, No 7 Proc (n.s.), xvii (1), pp 338, 339, pl xx
- , —, 1906—Catalogue of the Marine Shells of Victoria Part IX, with complete Index to the whole Catalogue Proc (n.s.), xviii (2), pp 39-92
- , —, 1913—On Natica tasmanica, Tenison Woods, and description of a New Species of Natica Proc (n.s.), xxvi (1), pp 63-66, pl viii
- Pritchard, M O, 1874—On a Kaleidograph (Title only) Tr & Proc, x, p 147

Q.

- Quayle, E. T., 1921—Possibilities of Modifying Climate by Human Agency, with Special Application to South-Eastern Australia Proc (n.s.), xxxiii, pp 115-132, with map
 ——, 1922—Local Rain Producing Influences under Human Control in South Australia Proc (n.s.), xxiv (2), pp 89-104, with map
 ——, 1923—The Increasing Run off from the Avoca River Basin (due apparently to Deforestation) Proc (n.s.), xxxv (2), pp 143-152, with text figure
 ——, 1925—Sunspots and Australian Rainfall Proc (n.s.), xxxvii (2), pp 131-143, with three maps and two text figures
 ——, 1929—Long Range Rainfall Forecasting from Tropical (Darwin) Air Pressures Proc (n.s.), xl (2), pp 160-164, with two text-figures

R.

- Raff, Janet—See Morris, Ethel M., and Raff, 1909
 ——, 1910—Contributions to our Knowledge of Australian Earthworms—The Alimentary Canal—Part I Proc (n.s.), xxii (2), pp 244-254, pls xviii-xxi
 ——, 1911—Protozoa Parasitic in the Large Intestine of Australian Frogs. Part I Proc (n.s.), xxii (2), pp 586-594
 ——, 1912—Idem Part II—Proc (n.s.), xxiv (2), pp 343-352, pls lxxi, lxxii
 ——, 1919—Abnormal Development of the Head Appendages in the Crayfish, Parachaeraps bicarinatus, Gray Proc (n.s.), xxxi (2), pp 325, 326, pl xv
 Ralph, T S., 1865—On some Remarkable Changes which have taken place in the Flowers of the *Plantago major* Tr & Proc, vi, pp 1, 2
 ——, 1865—Observations on the Microscopical Characters presented by a Mineral (Dysodil) from Tasmania (Abstract) Tr & Proc, vi, p 7
 ——, 1865—On the Structure of the Flower of the Mignionette Tr & Proc, vi, pp 8-10
 ——, 1865—On the Coccus affecting the Orange Tr & Proc, vi, pp 10-13
 ——, 1865—On Dry Rot (Abstract) Tr & Proc, vi, p 24
 ——, 1865—On the Structure of the Plants Nitella and Chara (Abstract) Tr & Proc, vi, p 26
 ——, 1882—Micro Chemical Experiments and Observations on the Structure of Human Blood Journ, ii (1), pp 114, pl xi
 ——, 1884—On the Occurrence of Bacteria (Bacilli) in Living Plants Tr & Proc, xx, pp 70-74
 Raw, A R., 1934—A Practical Application of Photo Periodic Response to Plant Breeding Methods at the State Research Farm, Werribee Proc (n.s.), xlii (2), pp 131-138, with two text figures
 Rawlinson, T E., 1857—The Importance of Sanitary Works for Towns, having especial reference to Collingwood with suggested Remedial Works for that district Trans Phil Inst, i, pp 81-108
 ——, 1858—Observations on the Saw Fish Tians Phil Inst, ii (2), pp 146-148
 ——, 1865—On Suggestions for the Formation of a Colonial Navy, and for securing Speedy and Certain Communication with Europe, and Defence of our Coasts in time of War Tr & Proc, vi, pp 69-82
 ——, 1865—Report on the Entrance to the Gipps Land Lakes. Tr & Proc, vi, pp 84-90
 ——, 1865—Further Notes on the Coast and Lakes of Gipps Land, with sketch plan, being supplementary to the report on the Lakes Entrance Tr & Proc, vi, pp 92-98, with plate
 ——, 1865—Notes on the Tidal Phenomena of Hobson's Bay, as affecting the discharge of Flood Waters from the River Yarra Tr & Proc, vi, pp 161-167, with plate
 ——, 1866—On the Probable Erosion of the Mountain Ranges of Gipps Land Tr & Proc, vii, pp 29-34
 ——, 1866—On the Desirability of Establishing the Geographical and Ethnographical Section under Law 60 Tr & Proc, vii, pp 51-54
 ——, 1868—Speculations of the Zodiacal Light (Title only) Tr & Proc, ix (1), p 72
 ——, 1876—Notes on the Discovery of some Keys in the Shore Formation of Corio Bay, near Geelong Tr & Proc, xii, pp 33-43
 ——, 1876—On the Importance of a more close and systematic Observation of the Oceanic and Atmospheric Phenomena of our Coasts (Title only) Tr & Proc, xii, p 68
 ——, 1876—On the Past and Present of the Port of Melbourne, and Proposed Works for its Improvement Tr & Proc, xii, pp 110-122
 ——, 1878—On the Improvement of the Port of Melbourne Tr & Proc, xiii, pp 67-73, with plate
 ——, 1878—Notes on the Coast Line Formation of the Western District, and Proofs of the Uniform Conditions of Meteorological Phenomena over long periods of time Tr & Proc, xiv, pp 25-34, with map
 Rayment, T., 1930—*Microglossa* and *Melitribus*, New Genera of Australian Bees Proc (n.s.) xlii (2), pp. 211-220, pl xxi, and text figure
 ——, 1930—New and Remarkable Bees. Proc (n.s.), xliii (1), pp 42-61, with eight text-figures

- Rees, Bertha—See Ewart, A. J., Rees, and Wood, Bertha, 1910, and 1911. Also Ewart, A. J. and Rees, 1912 and 1913. Also Ewart, A. J., White, Jean, and Rees, 1909, 1910, and 1911. Also Ewart A. J., White, Jean, Rees, and Wood, Bertha, 1912.
- , 1908—Note on an Abnormal Development on Leaves of *Prunus cerasus* Proc. (n.s.), xxii (1), pp. 247, 248, pl. x.
- , 1911—Longevity of Seeds and Structure and Nature of Seed Coat Proc. (n.s.), xxii (2), pp. 393-414, pls. lxxxix, lxxxii.
- Renfrew, J. R.—See McAlpine, D., and Renfrew, 1891.
- Rennie, —, and Goyder, G., Jun., 1892—Note on the Alkaloids of *Stychnos psilosperma* Proc. (n.s.), iv (1), pp. 29, 30.
- Richards, H. C., 1909—On the Separation and Analysis of Minerals in the Dacite of Mount Dandenong, Victoria. Proc. (n.s.), xxii (2), pp. 528-539.
- , 1910—The Building Stones of Victoria—Part I, The Sandstones (For Part II, see McInerny, Kathleen, 1929) Proc. (n.s.), xxii. (2), pp. 172-197, pls. xxxiii-xxxxvi.
- Richardson, E., 1855—Keilor Bridge Tr. & Proc. Vict. Inst., 1, pp. 149-153.
- Rickard, R. H., 1891—The New Britain Currency or Shell Money Proc. (n.s.), iii, pp. 46-52.
- , 1891—The Dukduk Association of New Britain Proc. (n.s.), iii, pp. 70-76.
- Ridge, G. H., 1885—Experience of the Barque "W. H. Besse" in the Java Earthquake, August, 1883. Tr. & Proc., xxii, pp. 89-91.
- Ripper, Elizabeth A., 1932—The Distribution of the Zones of the Castlemaine and Darrwil Series near Ingleston. Proc. (n.s.), xliv (2), pp. 200-211, pl. xx, and text-figure.
- , 1933—The Stromatoporoids of the Lilydale Limestones Part I—Actinostictoma and Clathrodictyon Proc. (n.s.), xlvi (2), pp. 152-162, and six text-figures.
- Rivett, A. C. D.—See Hartung, E. J., and Rivett, 1915.
- Roberts, J. K.—See Laby, T. H., and Roberts, 1920.
- , 1920—The Design of an Induction Motor with large Air Gap and Rotating Field Magnets Proc. (n.s.), xxvii (2), pp. 156-163, with two text-figures.
- Robertson, A. W. D.—See Berry, R. J. A., and Robertson, 1909 (2) and 1914.
- Rodgers, J. S., 1922—High Frequency Spectra—K Series of Platinum. Proc. (n.s.), xxiv (2), pp. 196-206, with three text-figures.
- Rodgers, R. S., 1915—Notes on certain species of *Pterostylis*. Proc. (n.s.), xxviii (1), pp. 105-111, pls. vii-vii.
- , 1918—*Chiloglottis pescottiana*, sp. nov. Proc. (n.s.), xxx (2), pp. 139-141, pl. xxv.
- Rosenblum, E. I.—See Drew, R. B., and Rosenblum, 1915.
- , 1915—Studies in the Physical Chemistry of Essential Oils Part II—The Physical Constants of some Terpenes and oxygenated derivatives thereof, and their variation with temperature. (For Part I, see Drew and Rosenblum, 1915) Proc. (n.s.), xxvii (2), pp. 155-163.
- Rosenham, W., 1898—On a Method of Determining the Specific Heat of a Liquid, especially of Solutions Proc. (n.s.), x (2), pp. 97-111, with two diagrams.
- Rossiter, A. L.—See Hamley, H. R., and Rossiter, 1911.
- Rothera, A. C. H.—See Breidahl, H. G., and Rothera, 1915.
- Rudall, J. T., 1883—Remarks on Railway and Marine Signals, and on the Necessity of Accurate Testing of the Sight of Signal and Look out Men by Land and Sea Tr. & Proc., xix, pp. 124-129.
- , 1884—On Germs of *Blechnorrhagia* (Translated from an original paper by Dr. Ecklund, of Sweden Title only) Tr. and Proc., xx, p. 87.
- Rummel, L., 1897.—On the Spectra of the Alkalies Proc. (n.s.), ix., pp. 260-263.
- , 1897.—The Spectra of the Alkalies and their Atomic Weights Proc. (n.s.), x (1), pp. 75-78.
- , 1899.—The Spectra of Oxygen, Sulphur, and Selenium, and their Atomic Weights Proc. (n.s.), xii. (1), pp. 14-19.
- Rusden, H. K., 1868—The Ethics of Opinion and Action Tr. & Proc., viii (2), pp. 249-266.
- , 1868—Moral Responsibility Tr. & Proc., ix. (1), pp. 27-46.
- , 1874—On the Treatment of Criminals in Relation to Science (Title only) Tr. & Proc., x, p. 147.
- , 1876—The Week Tr. & Proc., xi., pp. 43-60.
- , 1895—Cremation and Burial in relation to Death Certification Proc. (n.s.), vii, pp. 169-172.

S.

- St John, P. R. H.—See Drew, R. Green, H., and St John, 1912.
- Sayce, O. A., 1899—On the Structure of the Alimentary System of *Gryllotalpa australis* (Erichs.) with some Physiological Notes Proc. (n.s.), xi (2), pp. 113-129, pls. ix, x.
- , 1900—Phreatocoides, a new Genus of Fresh water Isopoda Proc. (n.s.), xii (2), pp. 122-138, pls. x-xii.
- , 1900—Niphargus pulchellus, a New Victorian Blind Amphipod. Proc. (n.s.), xii. (2), pp. 152-159, pls. xv, xvi.

- Sayce, O A, 1900—*Phreatoicus shephardi*, a New Genus of Fresh-water Isopoda from Victoria Proc (n.s.), xii (1), pp 25-28, pl iii
 —, 1900—*Janrella*, a New Genus of Isopoda from Fresh water, Victoria Proc (n.s.), xiii (1), pp 124-130, pls xviii, xix
 —, 1901—Description of some New Victorian Freshwater Amphipoda Proc. (n.s.), xiii (2), pp 225-242, pls xxxvi, xl
 —, 1902—A New Genus of Phreatoicidae Proc (n.s.) vii (2), pp 218-224, pls xviii, xix
 —, 1902—Description of some New Victorian Freshwater Amphipoda, No. 2. Proc (n.s.), xv (1), pp 47-58, pls iv-vi
 —, 1903—The Phyllopoda of Australia, including descriptions of some new Genera and Species Proc (n.s.), xv (2), pp 224-261, pls xxvii-xxxvi
 —, 1909—Description of Two Terrestrial Species of Talitridae from Victoria Proc (n.s.), xxii (1), pp 29-34, pls xi, xii
 Seddon, H. R., 1915—Some Observations on the Methods of Using the Agglutination Test in the Diagnosis of Disease in Bovines caused by the Bacillus of Contagious Abortion Proc (n.s.), xxvii (2), pp 370-390
 —, 1923—The Specific Identity of *Bacillus parabotulinus* Proc (n.s.), xxxv (2), pp 159-163
 Selby, G W, Junr., 1884—Electricity as a Motive Power on Railways (Title only) Tr. & Proc, xx, p 125
 Severn, H A, 1874—On the Melbourne Great Telescope (Title only) Tr. & Proc, x, p 39
 Shannon, Jean H, 1920—On the Structure of a New Species of Earthworm from South Australia, *Megascolex fletcheri* Proc (n.s.), xxvii (2), pp 302-313, pls xxvii-xxxii
 Shairman, F J—See Ewart, A J, and Sharman, 1916
 Shearer, J—See Bingham, R, Laby, T H, and Shearer, 1928
 Shephard, J—See Anderson, H H, and Shephard, 1892
 —, 1899—On the Structure of the Vibratile Tags or Flame Cell in Rotifera. Proc (n.s.), xi (2), pp 130-136, pls xi, xii
 —, 1899—A New Rotifer, *Lacinularia striolata*, with a Note on *L pedunculatata* Proc (n.s.), xii (1), pp 20-33, pls iii-v
 —, 1911—A List of Victorian Rotifers, with Description of Two New Species and the Males of Two Species Proc (n.s.), xxiv (1), pp 46-58, pls xli, xxi
 —, 1922—The Rotifers of Australia and their Distribution Proc (n.s.), xxxiv (2), pp 85-88
 Sheridan, Kathleen—See McInerny, Kathleen, 1929
 —, 1930—Notes on a Phyllocardia and a Brachiopod found in the Lancefield Zone of the Lower Ordovician Rocks of Victoria Proc (n.s.), xlii (2), pp 135-139, pl xi
 Shiress, —, 1867—On the Decomposition of Pyrites (Abstract, see also Tr. & Proc, viii (2), pp 310, 311) Tr. & Proc, viii (1), p 41
 Shirley, J, and Lambert, C A, 1922—On *Coprosma baueri*, Endlicher Proc (n.s.), xxxv (1), pp 19-23, pl iv
 Singleton, F A—See Chapman, F, and Singleton, 1925 and 1927 Also Gathiff, J, H, and Singleton, 1930
 —, 1932—Studies in Australian Tertiary Mollusca, Part I Proc (n.s.), xliv (2), pp 289-308, pls xxiv-xxvi
 —, and Woods, Nelly H, 1934—On the Occurrence of the Pelecypod Genus *Miltha* in the Australian Tertiary Proc (n.s.), xlvi. (2), pp 207-213, pl viii
 Sinnott, F, 1855—A Few Observations on the Country near Lake Torrens Tr. & Proc Vict Inst, i, pp 15-20
 Skeats, E W, 1908—Notes on the Geology of Moorooduc in the Mornington Peninsula Proc (n.s.), xx (2), pp 89-103, pls xiv-xvi
 —, 1908—On the Evidence of the Origin, Age, and Alteration of the Rocks near Heathcote, Victoria Proc (n.s.), xxi (1), pp 302-348, pls xii-xviii
 —, 1914—On a Volcanic Agglomerate, containing glaciated pebbles, at Kangaroo Gully, near Bendigo Proc (n.s.), xxvi (2), pp 373-385, pl xxxxii, and text-figure
 —, 1915—Notes on the so-called Obsidian from Geelong and from Taradale, and on Australites Proc (n.s.), xxvii (2), pp 333-341
 —, 1915—Descriptions of three unusual forms of Australites from Western Victoria Proc (n.s.), xxvii (2), pp 362-366, pl ix
 —, 1917—On the Age of the Alkali Rocks of Port Cygnet and the D'Entrecasteaux Channel in S F Tasmania Proc (n.s.), xxix (2), pp 154-164
 —, 1923—The Evidence of Post Lower Carboniferous Plutonic and Hypabyssal Intrusions into the Grampian Sandstones of Western Victoria Proc (n.s.), xxxvi (1), pp 50-57, pls v, vi
 —, 1929—The Devonian and Older Palaeozoic Rocks of the Tabberabbera District, North Gippsland, Victoria Proc (n.s.), xi (2), pp 97-120, pl xv, and text figure
 —, 1931—The Age, Distribution, and Petrological Characters of the Granites of Eastern Australia Proc (n.s.), xliii (2), pp 101-119, pl vi
 Sloane, T G, 1915—On the Faunal Subregions of Australia Proc (n.s.), xxviii. (1), pp 139-148
 Smeal, G—See Love, E. F J, and Smeal, 1912
 —, 1912—The Psychrometric Formula Proc (n.s.), xxv (1), pp 151-166

- Smith, A K, 1855—On Gas and Gas Works *Ti & Proc Vict Inst*, i, pp 74-92
 (to be continued)
- _____, 1855—Gas and Gas Works considered in Relation to the Present Circumstances and Requirements of the Colony (Continued) *Tr & Proc Vict Inst*, i, pp 143-148
- _____, 1855—The Manufacture of Sulphuric Acid and Stearine Candles. *Ti & Proc Vict Inst*, i, pp 162-167
- _____, 1859.—On the Reclamation and Cultivation of Batman's Swamp *Trans Phil Inst*, iii, pp 9-18, with plate
- _____, 1865—Surface and Underground Drainage of Melbourne *Ti & Proc*, vi, pp 107-122
- _____, 1865—On the Surface and Underground Drainage of the City of Melbourne (Abstract) *Tr & Proc*, vi, pp 122, 123, with plate
- _____, 1868—An Improved Method of Preserving Wines, Spirits, &c *Tr & Proc*, ix (1), pp 62-66
- _____, 1874—Notes on the Quality of Hartley and Greta Shale for the Manufacture of Gas, together with a Description of the New Coal Seam at Greta *Tr & Proc*, x, pp 5-11
- _____, 1874—Hand v Machine Broken Metal, with regard to their comparative value for the construction and repair of city and suburban streets and roads *Tr & Proc*, x, pp 36-38.
- _____, 1874—On a Self Acting Hydrostatic Clime and Clock Weight *Ti & Proc*, x, pp 76-78, with plate
- _____, 1874—Improved Fire Plug *Tr & Proc*, x, pp. 127, 128, with plate
- _____, 1874—On the Prevention of Street Floods in the City of Melbourne *Ti & Proc*, xi, pp 1-8
- _____, 1874—Embankment above Prince's Bridge (Abstract) *Tr & Proc*, xi, pp 15-17
- Smith, A M, 1876—Notes concerning the Phenomena of the Approach and Recession of Bodies under the Influence of Radiant Energy *Tr & Proc*, xii, pp. 69-81
- _____, 1879—Some Experiments in the Gold Bullion Assay *Tr & Proc*, xv, pp. 4-11, with four diagrams
- Smith, F Voss—See Gregory, J W, and Smith, 1903
- Smith, H G—See Baker, R T, and Smith, 1915
- _____, 1919—On the Essential Oil of *Boronia pinnata*, Sm., and the presence of Elemenin *Proc (n.s.)*, xxvii (1), pp 14-19
- Smyth, R Brough, 1855—On the Comparative Value and Durability of the Building Materials in Use in Melbourne *Trans Phil Soc*, i, pp 24-33
- _____, 1855—On the Influence of the Physical Character of a County on the Climate, being a Letter to the President *Trans Phil Soc*, i, pp 203-221, with five sketch sections
- _____, 1857—Phenomena of Hailstorms in Victoria *Trans Phil Inst*, i, pp 135-138
- _____, 1857—On a New Mineral from Mt. Voi *Trans Phil Inst*, ii (1), pp 17-19
- _____, 1857—On the Construction of an Instrument for ascertaining the Dew Point *Trans Phil Inst*, ii (1), pp 61, 62, with plate
- _____, 1865—On the Unexplored Districts of Victoria *Tr & Proc*, vi, pp 62-67
- Souef, D Le, 1893—Nest and Egg of Queen Victoria's Rifle Bird (*Ptiloris victoriae*) *Proc (n.s.)*, v, pp 36, 37, pl. 1
- _____, 1895—Description of some Australian Birds' Eggs and Nests collected at Bloomfield, near Cooktown, Queensland *Proc (n.s.)*, vii, pp 19-26.
- Spencer, W. Baldwin, 1888—The Anatomy of *Megascolides australis*, (Abstract of paper to be published later) *Tr & Proc*, xxiv (2), pp 164-168
- _____, 1888—The Anatomy of *Megascolides australis*, the Giant Earth worm of Gippsland *Trans*, i (1), pp 3-60, pls 1-vi
- _____, 1889—Notes from the Biological Laboratory of the University of Melbourne (1) On the Presence of a Fluke in the Egg of a Fowl. *Proc (n.s.)*, i, pp 109, 110
- _____, 1889—Item (2) On the Presence of a *Pentastomum* Parasitic in the Lung of the Copper head Snake (*Hoplocephalus superbus*) *Proc (n.s.)*, i, pp 110, 111
- _____, 1889—Item (3) On the Structure and Presence of the Cestode *Amphiptychus* parasitic in *Callorhynchus Antarcticus* (Title only.) *Proc (n.s.)*, i, p 111
- _____, 1889—The Anatomy of *Amphiptychus urna* (Grube and Wagener) *Tians*, i, (2), pp 138-151, pls xi-xiii
- _____, 1890—The Pineal Eye in *Mordacia mordax* *Proc (n.s.)*, ii, pp 102-105, with woodcut
- _____, 1890—Notes from the Biological Laboratory of the Melbourne University (2) On the Formation of a Double Embryo in the Hen's Egg. *Proc (n.s.)*, ii, pp 113-115, pl. vi
- _____, 1891—The Nomenclature of Chicken Embryos for Teaching Purposes *Proc (n.s.)*, iii, pp 23-26, pls iv-vii
- _____, 1891—A New Family of Hydrodea, together with a Description of the Structure of a New Species of *Plumularia* *Trans*, ii (1), pp 121-140, pls xvii-xxiii
- _____, 1891—Notes on Some Victorian Land Planarians *Proc (n.s.)*, iii, pp 84-93, pls xi, xii
- _____, 1892—On the Structure of *Ceratella fusca* (Gray) *Trans*, ii (2), pp 8-24, pls ii-iii

- Spencer, W. Baldwin, 1892—Land Planarians from Lord Howe Island Part I—
 Description of Species Trans., II (2), pp 42-51, pls v-vi
 —, 1892—Notes on the Habits of *Ceratodus forsteri* Proc. (n.s.), IV (1), pp 81-84
 —, 1892—Preliminary Description of Victorian Earthworms Part I—The Genera *Cryptodrilus* and *Megascolides* Proc. (n.s.), IV, (2), pp 130-156, pls xiv-xix
 —, 1893—Preliminary Notice of Victorian Earthworms Part II—The genus *Perichaeta*. Proc. (n.s.), V, pp 1-26, pls ii-vii
 —, 1895—Note on the presence of *Pteripatus insignis* in Tasmania Proc. (n.s.), VII, pp 31, 32
 —, 1895—Preliminary Notes on Tasmanian Earthworms Proc. (n.s.), VII, pp 33-54, pls 1-5
 —, 1895—Preliminary Notice of Two New Species of Marsupials from Central Australia Proc. (n.s.), VI, pp 222-224
 —, 1896—Preliminary Description of Certain New Marsupials from Central Australia, together with Remarks upon the Occurrence and Identity of *Phascogale cristicauda* Proc. (n.s.), VIII, pp 5-13
 —, 1897—Description of a New Species of Marsupial from Central Australia Proc. (n.s.), IX, pp 5-11, pl. II
 —, 1900—Further Descriptions of Victorian Earthworms Part I Proc. (n.s.), XII (1), pp 29-67, pls IV-XII
 —, 1901—Two New Species of Frogs from Victoria Proc. (n.s.), XIII (2), pp 175-178
 —, 1909—On the Structure of *Hologloea dubia*, an Organism of doubtful affinity Proc. (n.s.), XXI (2), pp 401-409, pls XXIV, XXV
 —, 1909—Description of a New Species of Peripatoides from West Australia Proc. (n.s.), XXI (2), pp 420-422
 —, 1909—Description of a New Species of *Sminthopsis* Proc. (n.s.), XXI (2), pp 449-451
 —, 1921—Blood and Shade Divisions of Australian Tribes Proc. (n.s.), XXXIV (1), pp 1-6
 —, and Gillen, F. J., 1897—An Account of the Engwurra or Fire Ceremony of Certain Central Australian Tribes (Abstract) Proc. (n.s.), X (1), pp 17-28
 —, 1898—Notes on Certain of the Initiation Ceremonies of the Arunta Tribe, Central Australia Proc. (n.s.), X (2), pp 142-174
 —, and Hall, T. S., 1897—Description of a New Genus of Terrestrial Isopoda, allied to the Genus *Phreitoicus* Proc. (n.s.), IX, pp 12-21, pls III, IV
 —, and Walcott, R. H., 1911—The Origin of Cuts on Bones of Australian Extinct Marsupials Proc. (n.s.), XXIV (1), pp 92-123, pls XXXVI-XXXIX
 Stach, L. W., 1933—Victorian Tertiary Cateniciliidae (Bryozoa) Part I Proc. (n.s.), XLV (2), pp 85-98, pl. VIII
 Stanbridge, W. E., 1858—On the Astronomy and Mythology of the Aborigines of Victoria Trans. Phil. Inst., II (2), pp 137-140
 Staples, W., 1910—A Study of the Guttural Pouches of Horse Proc. (n.s.), XXII (1), pp 33-35
 —, 1912—The Occurrence and Development of Cervical Ribs in Man and some of the Mammals that have abandoned Quadrupedal Progression Proc. (n.s.), XXV (1), pp 82-104
 —, and Lewis, T. C., 1911—Morphology of the Vermiform Appendix Proc. (n.s.), XXIII (2), pp 342-357, pls LXVI-LXVII
 Steane, G. R. B., 1884—Notes on Hydrology Tr. & Proc., XX, pp 88-97
 1888—Rainfall and Flood Discharge Tr. & Proc., XXIV (2), pp 149-158
 Steele, W. Huey, 1893—On the Conductivity of a Solution of Copper Sulphate Proc. (n.s.), V, pp 134-140, pls XV, XVI
 —, 1893—Physical Constants of Thallium Proc. (n.s.), V, pp 193-199, pl. XVII
 —, 1894—A New Thermoelectric Phenomenon Proc. (n.s.), VI, pp 120-132, pl. XVI
 Stewart, B., 1855—On the Influence of Gravity on the Physical Condition of the Moon's Surface Trans. Phil. Soc., I, pp 92-95, with diagram
 —, 1855—On the Adaptation of the Eye to the Nature of the Rays which emanate from Bodies Trans. Phil. Soc., I, pp 95, 96
 Stillwell, F. L., 1911—Notes on the Geology of Broadmeadows Proc. (n.s.), XXIV (1), pp 156-178, pls. XIII, XIV
 —, 1912—Preliminary Notes on the Monchiquite Dykes of the Bendigo Goldfield. Proc. (n.s.), XXV (1), pp 1-14, pl. I
 —, 1922—Gold Specimens from Bendigo and their Probable Modes of Origin Proc. (n.s.), XXXIV (2), pp 162-166, pl. I
 Stirling, D. L.—See Kenyon, A. S., and Stirling, 1901
 Stirling, J., 1882—The Physical Features of the Australian Alps Tr. & Proc., XVII, pp 98-110, with two plates
 —, 1883—The Phanerogamia of the Mitta Mitta Source Basin and their Habitats Tr. & Proc., XIX, pp 1-23
 —, 1884—On the Caves Perforating Marble Deposits, Limestone Creek Tr. & Proc., XX, pp 7-17, with five text figures
 —, 1885—The Phanerogamia of the Mitta Mitta Source Basin (Art II), Tr. and Proc., XXI, pp 29-51
 —, 1885—Notes on the Meteorology of the Australian Alps Tr. & Proc., XXI, pp 123-145

- Stirling, J., 1886—Notes on some Evidences of Glaciation in the Australian Alps (*Part I*) *Ti & Proc.*, xxii, pp. 20-34, with text figure
 ———, 1886—The Cryptogamia of the Australian Alps (*Part I*) *Ti & Proc.*, xxii, pp. 49-56
 ———, 1889—Notes on the Physiography of the Western Portion of the County of Croajingolong *Proc. (n.s.)*, 1, pp. 84-108, with two woodcuts
 Stirton, J., 1881—Additions to the Lichen Flora of Queensland *Tr & Proc.*, xvii, pp. 66-78
 ———, 1882—A New Genus of Lichens *Ti & Proc.*, xviii, pp. 1, 2
 Stone, A. C., 1911—The Aborigines of Lake Boga, Victoria *Proc. (n.s.)*, xxiii (2), pp. 443-498
 Stoward, F., 1912—The Effect of Certain Chemical Substances on the Vitality of the Buds of Potato Tuberis, and their Disinfective Action on Potato Blight (*Phytophthora infestans*) *Proc. (n.s.)*, xxiv (2), pp. 270-292, pls. iv-vi ix
 Strong, H. W.—See Fitzpatrick, A., and Strong, 1925
 Sueur, A. Le, 1874— η Argus and Surrounding Nebula *Tr & Proc.*, x., pp. 11-16
 ———, 1874—On η Argus and Jupiter's Spectrum *Tr & Proc.*, x., pp. 23-27, with plate
 ———, 1874—On the Melbourne Great Telescope (Abstract.) *Ti & Proc.*, x., p. 46
 Summers, H. S.—See David, T. W. E., Summers, and Aupti, G. A., 1927
 ———, 1908—The Cherts and Diabase Rocks of Tatong *Proc. (n.s.)*, xxi (1), pp. 240-246, pl. ix
 ———, 1908—Geology of the Proposed Nillahcoote Water Conservation Area *Proc. (n.s.)*, xxi. (1), pp. 285-301, pl. xiii
 ———, 1909—Obsidianites—Their Origin from a Chemical Standpoint *Proc. (n.s.)*, xxi (2), pp. 423-442
 ———, 1914—On the Origin and Relationship of some Victorian Igneous Rocks *Proc. (n.s.)*, xxvi (2), pp. 256-297, with six text figures
 ———, 1923—The Relationship between Dacite and Granodiorite in Victoria *Proc. (n.s.)*, xxxv (2), pp. 134-138, with text-figure
 Sutherland, A., 1878—On the Probability that a Connexion of Causation will be shown to exist between the Attraction of Gravitation and the Molecular Energy of Matter *Tr & Proc.*, xiv, pp. 84-91
 ———, 1879—The Sounds of the Consonants, as Indicated by the Phonograph *Tr & Proc.*, xv, pp. 37-42
 ———, 1880—On the Method of Calculating the Increment in the Value of Land *Tr & Proc.*, xvi, pp. 148-152
 ———, 1884—The First Discoverers of the New Hebrides (Title only) *Ti & Proc.*, xx, p. 125.
 ———, 1895—Some Quantitative Laws of Incubation and Gestation *Proc. (n.s.)*, vii, pp. 270-286
 ———, 1897—The Temperatures of Reptiles, Monotremes, and Marsupials *Proc. (n.s.)*, ix, pp. 57-67, pl. vi
 Sutherland, Brenda, 1916—Phosphate Fertilisers *Proc. (n.s.)*, xxviii (2), pp. 208-210
 Sutherland, I. M., 1904—The Relations of the Granitic and Lower Palaeozoic Rocks near Dandenong *Proc. (n.s.)*, xvii (1), pp. 112-119, pl. x
 Sutton, H., 1882—On a New Form of Secondary Cell for Electrical Storage *Tr & Proc.*, xviii, pp. 110-114
 ———, 1882—Description of Vacuum Apparatus *Tr & Proc.*, xviii, p. 122, with diagram
 Sweet, G., 1890—On the Discovery of Fossil Fish in the Old Red Sandstone Rocks of the Mansfield District *Proc. (n.s.)*, ii, pp. 1-14, pls. i-iii
 Sweet, Georgina—See Gilruth, J. A., and Sweet, 1912 Also Gilruth, J. A. Sweet, and Dodd, S., 1910
 ———, 1897—On the Variations in the Spinal Nerves of *Hyla aurea* *Proc. (n.s.)*, ix, pp. 264-296
 ———, 1904—Contributions to our Knowledge of the Anatomy of *Notoicyctes typhlops*, Stirling. Parts I and II *Proc. (n.s.)*, xvii (1), pp. 76-111, pls. vi-vii
 ———, 1908—Variations in the Anatomy of *Hyla aurea* *Proc. (n.s.)*, xxi (1), pp. 349-364, pls. xix, xx
 ———, 1908—The Anatomy of Some Australian Amphibia Part I—A—The Openings of the Nephirostomes from the Coelom B—The Connection of the Vasa efferentia with the Kidney *Proc. (n.s.)*, xx (2), pp. 222-249, pls. xx, xxx
 ———, 1909—The Endoparasites of Australian Stock and Native Fauna, Part I, Introduction, and Census of Forms recorded up to date *Proc. (n.s.)*, xxi (2), pp. 454-502
 ———, 1909—Idem. Part II, New and Unrecorded Species *Proc. (n.s.)*, xxi (2), pp. 503-527, pl. xxix
 ———, 1910—A Species of *Argas*, apparently new to Science *Proc. (n.s.)*, xxiii (1), pp. 15-18, pl. ii
 ———, 1910—Some New and Unrecorded Endoparasites from Australian Chickens *Proc. (n.s.)*, xxiii (1), pp. 242-256, pls. xxi-xxxv
 ———, 1915—Investigations into the Occurrence of *Oncocerciasis* in Cattle and Associated Animals in Countries other than Australia. *Proc. (n.s.)*, xxviii (1), pp. 1-51, pls. i-v

T.

- Tattam, C M, 1925—Contact Metamorphism in the Bulla Area and Some Factors in Differentiation of the Granodiorite of Bulla, Victoria Proc. (n.s.), xxxvii (2), pp 230-247, pl xxvii
- Taylor, F H, 1920—Australian Phlebotomine Diptera—New Culicidae, Tabanidae, and Synonymy Proc. (n.s.), xxxii (2), pp 164-167
- Taylor, Griffith, 1921—A Geologist's Notes on Water-Divining Proc. (n.s.), xxviii, pp 79-86, pl iv, and two text figures
- Taylor, H D'E, 1886—International Statistical Uniformity Tr & Proc., xxii, pp 35-48, with specimen sheet
- Taylor, N, 1880—Notes on the Geology of the West Tamar District, Tasmania Tr & Proc., xv, pp 155-165
- Teale, E O—See also Thiele, E O
- , 1919—The Diabases and Associated Rocks of the Howqua River near Mansfield, with reference to the Heathcote Problem in Victoria Proc. (n.s.), xxvii (1), pp 33-66, pl v, map and four text-figures
- , 1920—A Contribution to the Palaeozoic Geology of Victoria, with special reference to the Districts of Mount Wellington and Nowa Nowa respectively Proc. (n.s.), xxxii (2), pp 67-146, pls vi, ix
- Tepper, J G O—See McAlpine, D, and Tepper, 1895
- Thiele, E O—See also Teale, E O
- , See Grant, F E, and Thiele, 1902 and 1903 Also Chapman, F, and Thiele, 1911
- , 1903—On the Occurrence of Stratified Boulders in the Permian Carboniferous Rocks near the mouth of the Shoalhaven River, New South Wales Proc. (n.s.), xvi, pp 57-59
- , 1905—On a Palaeozoic Serpentine Conglomerate, North Gippsland Proc. (n.s.), xviii (1), pp 14, pl i
- , 1908—Notes on the Dolodrook Serpentine Area and the Mt Wellington Rhyolites, North Gippsland (With an Appendix by F Chapman) Preliminary Notes on a Collection of Trilobite Remains from the Dolodrook River, N Gippsland) Proc. (n.s.), xxi (1), pp 249-269, pl xi
- , and Grant, F E, 1902—On the Fossil contents of the Eocene Clays of the Altona Coal Shaft Proc. (n.s.), xiv (2), pp 145-152
- Thomas, D E—See Harris, W J, and Thomas, 1934
- , 1932—The Keirie Series and Associated Rocks Proc. (n.s.), xliv (2), pp 257-288, pl xxiii, and six text figures
- , and Kehle, R A, 1933—The Ordovician and Silurian Rocks of the Bulla-Sunbury Area, and Discussion of the Sequence of the Melbourne Area Proc. (n.s.), xlvi (2), pp 33-84, with seven text figures
- Thomas, L A, 1932—Readvancement of the Vegetation over the Mined Areas of Bendigo Proc. (n.s.), xlvi (1), pp 77-91, pls ix, x, and three text figures
- Thomas, R G, 1922—Present and Probable Future Distribution of Wheat, Sheep, and Cattle in Australia Proc. (n.s.), xxxiv (2), pp 117-127, with three text-figures
- Thompson, H A, 1868—On the Formation of Mineral Veins and the Deposit of Metallic Ores and Metals in them Tr & Proc., viii (2), pp 228-249, with six text figures
- , 1868—On the Extraction of Gold Tr & Proc., viii (1), pp 15-26
- , 1869—Notes on the Secondary Beds of Northern Australia Tr & Proc., ix (2), pp 117, 118, 121-125 with plate
- Thomson, N—See Ewart, A J, and Thomson, 1913
- Tisdall, H T, 1887—On the Fungi Growing in Mines Part I. Tr & Proc., xxiv (1), pp 41-44
- , 1887—Idem Part II Tr & Proc., xxiv (1), pp 46-52
- Tovey, J R—See Ewart, A J, and Tovey, 1920 Also Ewart, A J, White, Jean, and Rees, Birtha, 1909
- , 1921—The Australian Species of Carex in the National Herbarium of Victoria Proc. (n.s.), xxxiv (1), pp 42-48
- , and Morris, P F, 1922—Contributions from the National Herbarium of Victoria—No 1. Proc. (n.s.), xxxiv (2), pp 207-212, with two text figures
- , —, 1922—Idem No 2 Proc. (n.s.), xxxv (1), pp 86-89, pl vi
- , —, 1923—Idem No 3 Proc. (n.s.), xxxv (2), pp 194-196
- Trebilcock, R E, 1928—Notes on New Zealand Hydroids Proc. (n.s.), xl (1), pp 1-31, pls 1-7
- Treloar, H M, 1927—Variation of Wind with Height at Melbourne when Geostrophic Winds are Northerly Proc. (n.s.), xxix (2), pp 162-166, with two text figures
- Turner, A J, 1904—Revision of Australian Lepidoptera, Family Geometridae Proc. (n.s.), xvi (2), pp 218-284
- , 1922—Studies in Australian Lepidoptera Proc. (n.s.), xxxv, (1), pp 26-62
- , 1923—New Australian Micro Lepidoptera Proc. (n.s.), xxxvi (1), pp 58-81
- Turner, A W, 1926—Sensitising Powers of Proteins of Parasites as tested by the isolated sensitised uterus reaction Proc. (n.s.), xxxviii, pp 24-54, with two text-figures
- Tymms, A O V, 1913—The Syrinx of the Common Fowl, its Structure and Development Proc. (n.s.), xxv (2), pp 286-306, pls xviii, xxiv

V.

- Vasey, A. J.—See Foster, H. C., and Vasey, 1928
 Vis, C. W. Dc—See Officer, G., and Hogg, E. G., 1898
 —, 1899—Remarks on a Fossil Implement and Bones of an Extinct Kangaroo
 Proc (n.s.), xii (1), pp. 81-86, pl. vii
 —, 1899—On Some Remains of Marsupials from Lake Colongulac, Victoria
 With Introductory Remarks on the Locality by I. S. Hall Proc (n.s.),
 xii (1), pp. 107-111

W

- Waite, E. R., 1898—Observations on Muricidae from Central Australia Proc (n.s.),
 x (2), pp. 114-128, pls. v, vi
 Wakelin, T., 1885—An Inquiry into the Cause of Gravitation (Title only) Tr &
 Proc, xxi, p. 100
 —, 1886—On the Dynamical Equivalent of a Pressure (Title only) Tr &
 Proc, xxii, p. 34
 —, 1887—On the Possibility of the Force Producing Gravitation not Acting
 Directly on every Particle of a Planet (Title only) Tr & Proc, xxii,
 p. 57
 —, 1888—The Production of the Tides, Mechanically Considered Tr & Proc,
 xxiv, (2), pp. 176-178
 —, 1889—An Experiment to show how the Earth is made to Gravitate towards
 the Sun (Title only) Proc (n.s.), i, p. 28.
 Walcott, R. H.—See Spencer, W. Baldwin, and Walcott, 1911
 —, 1898—The Occurrence of So-called Obsidian Bombs in Australia Proc
 (n.s.), xi (1), pp. 23-53, pls. iii, iv
 —, 1900—Note on a Basalt Tree Cast Proc (n.s.), xii (2), pp. 139-144,
 pl. xiii
 —, 1901—Additions and Corrections to the Census of Victorian Minerals Proc
 (n.s.), xiii (2), pp. 253-272
 —, 1919—The Origin of the Volcanic Tuff of Pejark Marsh, Victoria Proc
 (n.s.), xxxii (1), pp. 1-10
 Walker, W., 1874—On Street Odours and Neglect of Ventilation (Abstract) Tr
 & Proc, x, p. 35
 —, 1874—On the Ventilation of Ships (Abstract) Tr & Proc, x, p. 47
 Walpole, G. S., 1905—Account of the Separation and Identification of a Kaolin
 Incrustation on Pyrolusite from Broken Hill Proc (n.s.), xvii (2), pp.
 361-365, pl. xxiv
 Watts, H., 1865—On the Fresh Water Algae of Victoria Tr & Proc, vi, pp
 67, 68
 —, 1865—On Fossil Polyzoa Tr & Proc, vi, pp. 82-84
 Weatherburn, C. E., 1915—Singular Parameter Values in the Boundary Problems of
 the Potential Theory Proc (n.s.), xxvii (2), pp. 164-178
 White, F. J., 1874—Suggestions for the Improvement of the Marine's Compass
 Tr & Proc, x, pp. 79, 80
 —, 1874—E. K. Horne's Method of finding Greenwich Time and the Longitude
 (Title only) Tr & Proc, xi, p. 14
 —, 1878—Notes on the Longitude of the Melbourne Observatory Tr & Proc,
 xiii, pp. 79-81
 —, 1898—Account of the Telegraphic Determination of the Difference of Longitude
 between Melbourne and Hobart Town in the Year 1875 Tr. & Proc, xiii,
 pp. 94-98
 —, 1880—Observations of the Outer Satellite of Mars in 1879 Tr & Proc, xvi,
 pp. 176-179
 —, 1883—On the Performance of Some Timekeepers Tr & Proc, xix, pp
 170-188
 —, 1890—Remarks on Some New Tables for Finding Heights by the Barometer
 Proc (n.s.), ii, pp. 68-77
 —, 1890—On Finding the Longitude from Lunar Distances Proc (n.s.), ii,
 pp. 87-93
 White, Jean—See Ewart, A. J., White, Jean, and Rees, Bertha, 1909, 1910, and
 1911 Also Ewart, A. J., and White, 1909 and 1910 Also Ewart, A. J.,
 White, Rees, Bertha, and Wood, Bertha, 1912 Also Fwart, A. J., 1908
 —, 1908—The Formation of Red Wood in Conifers Proc (n.s.), xx (2), pp
 107-124
 —, 1911—Bitter Pit in Apples Proc (n.s.), xxiv (1), pp. 1-19, pls. 1-ix
 Wickens, C. H., 1927—Vitality of White Races in Low Altitudes Proc (n.s.),
 xi (1), pp. 17-24
 Wigg, H. C., 1889—The Rabbit Question Proc (n.s.), 1, pp. 28-33
 Wilhelm, C., 1861—Manners and Customs of the Australian Natives, in particular of
 the Port Lincoln District Trans (8vo), v, pp. 164-203
 Wilkie, D. E., 1855—On What Data does the City of Melbourne depend for an
 Adequate Supply of Water from the Yan Yean Reservoir Trans Phil
 Soc., 1, pp. 234-260
 —, 1855—On the Failure of the Yan Yean Reservoir Embracing an Examina-
 tion of the Report of the Committee on the Yan Yean Scheme Trans
 Phil. Soc., 1, pp. 111-164
 —, 1857—On a New Form of Propeller for Steam Ships Trans Phil Inst.,
 ii (1), pp. 1-12, pls. 1-11

- Wilkie, D E, 1860—On a new application of Lever Power in the Extraction of Teeth Trans Phil Inst, ii, pp 200-204, with plate
 —, 1861—On the Multisection of an Angle by means of the Cycloid Trans (8vo), v, pp 217-220, with plate
- Wilkinson, C, 1867—On the Theory of the Formation of Gold Nuggets in Drift Tr & Proc, viii (1), pp 11-15
 —, 1868—On a Patent Ear Trumpet and Stethoscope, invented by David Wilkinson, Esq Tr & Proc, viii, pp 27-30
- Wilkinson, W F, 1894—Preliminary Survey of Eucalyptus Oils of Victoria. Proc (n.s), vi, pp 195-210
 —, 1895—The Sugar Strength and Acidity of Victorian Musts, with Reference to the Alcoholic Strength of Victorian Wines Part II, Proc (n.s), vii, pp 89-118
- Williamson, H B, 1920—A Revision of the Genus *Pultenaea*, Part I Proc (n.s), xxxii (2), pp 210-224, pls xiii-xv
 —, 1921—Idem Part II Proc (n.s), xxxiii, pp 133-148, pls vi, vii
 —, 1922—Description of a New Victorian *Helichrysum* Proc (n.s), xxxv (1), pp 24, 25, pl v
 —, 1922—A Revision of the Genus *Pultenaea*, Part III Proc (n.s), xxxv (1), pp 97-107, pl vii
 —, 1925—Idem Part IV Proc (n.s), xxxvii (1), pp 125-129, pl xvi
 —, 1928—Idem Part V Proc (n.s), xl (2), pp 57-61, with text-figure
- Wilson, E, 1857—On the Murray River Cod, with particulars of Experiments instituted for introducing this Fish into the River Yarra Yarra Trans Phil Inst, ii (1), pp 23-34
 —, 1857—On the Introduction of the British Song Bird Trans Phil Inst, ii (1), pp 77-88
- Wilson, F E, 1921—New Australian Coleoptera with Notes on some Previously Described Species, Part I Proc (n.s), xxxiv (1), pp 33-41, with text figure
 —, 1923—Idem Part II Proc (n.s), xxxv (2), pp 117-133
 —, 1926—Idem Part III Proc (n.s), xxxix (1), pp 25-41
- Wilson, F R M, 1893—The Lichens of Victoria Part I Proc (n.s), v, pp 141-177
- Wilson, H W, 1924—Studies on the Transpiration of some Australian Plants, with Notes on the Structure of their Leaves Proc (n.s), xxxvi, (2), pp 175-217, pls xiii-xviii, and seven text-figures
- Wilson, J B, 1880—Fossil Catenicellae, from the Miocene Beds at Bird Rock, near Geelong Journ., i (2 and 3), pp 60-63
 —, 1880—On a New Genus of Polyzoa Journ., i (2 and 3), pp 64, 65, pl iv
 —, 1890—On a New Species of *Bicellaria* Proc (n.s), ii, p 64
 —, 1899—On Some New Species of Marine Mollusca Proc (n.s), ii, pp 64-67
 —, 1892—Catalogue of Algae collected at or near Port Phillip Heads and Western Port Proc (n.s), iv (2), pp 157-190
 —, 1895—List of Dredging Stations at and near Port Phillip Heads Proc (n.s), vii, pp 261-263
- Wilson, —, 1857—Report on the Steps taken in England to provide a Telescope for observing the Nebulae of the Southern Hemisphere Trans. Phil Inst, i, pp 138-152
 —, 1857—On the Phenomena attending an Interesting Case of Mirage Trans Phil Inst, ii (1), pp 14, 15
 —, 1857—On a Suggestion for a new Mode of Life Insurance Trans Phil Inst, ii (1), pp 88-92
 —, 1874—On a Direction Rain Gauge (Abstract) Tr & Proc, x, p 81
 —, 1874—Electric Potential (Title only) Tr & Proc, xi, p 8
- Withers, R B, 1932—The Development of the Tabulate Coral, *Pleurodictyon megastomum* Proc (n.s), xlvi (1), pp 15-21, with six text figures
 —, 1933—A New Genus of Fossil King Crabs Proc (n.s), xlvi (1), pp 18-22, pl v, and text-figure
 —, and Keble, R A, 1934—The Palaeozoic Star Fish of Victoria Proc (n.s), xlvi (2), pp 220-249, pls x-xii, and ten text figures
- Wood, Bertha—See Ewart, A J, Rees, Bertha, and Wood, 1910 and 1911 Also Ewart, White, and Wood, 1911 Also Ewart, White, Rees, and Wood, 1912
- Woods, J E T, 1858—Observations on some Metamorphic Rocks in South Australia Trans Phil Inst, ii (2), pp 168-176
 —, 1859—Remarks on a Tertiary Deposit in South Australia Trans. Phil Inst, iii, pp 85-94
 —, 1860—On Some Tertiary Rocks at Portland Bay Trans. Phil Inst, iv, pp 169-172
 —, 1865—On some Tertiary Fossils in South Australia Tr & Proc, vi, pp 3-6, with plate
 —, 1867—On the Glacial Period in Australia Tr & Proc, viii (1), pp 43-47
 —, 1878—On some New Marine Mollusca Tr & Proc, xiv, pp 55-65
 —, 1879—On the Radula or Lingual Ribbon of Australian Mollusca Journ., i (1), pp 21-27
 —, 1880—On the Genus *Amathia* of Lamouroux, with a Description of a New Species (With an Appendix—see below) Tr & Proc, xvi, pp 89-106, with plate

- Woods, J E T, 1880—List of authors who have written directly or indirectly on Polyzoa (Appendix to above paper) Tr & Proc, xvi., pp 107-118
 —, 1881—The Hodgkinson Goldfield, Northern Queensland Tr & Proc, xvii., pp 1-14, with two plates
 —, 1881—On Some New Marine Mollusca Tr & Proc, xvii., pp 80-83, with plate
 —, 1883—A Physical Description of the Island of Tasmania Tr. & Proc, xix., pp 144-166
 Woods, Nelly H—See Singleton, F, and Woods, 1934
 Woodward, A S—See Etheridge, R, Jun and Woodward, 1892
 Woolnough, W G, 1910—Origin of Mud Island, near Paynesville, Victoria Proc (n.s.), xii (2), pp 221-234, pl xxii, and two text figures
 Wooster, W H, 1882—How the Lerp Crystal Palace is Built Jouin, i (4), pp 91-94, pl vi
 —, 1882—Lime and Pattein Mounting Jouin, i (4), pp 94-96
 —, 1882—On an Impromptu Bramhall Reflector Jouin i (4), pp 100, 101

Z.

- Zeal, W A, 1858—On Railway Gradients Trans Phil Inst, n. (2), pp 109-124
-

APPENDIX

- Committees, Reports of, 1855-1894 Also Correspondence and Reports of Special Meetings —
- 1855—Report of the Commissioners appointed by the Philosophical Society of Victoria, to investigate the Alleged Insufficiency of Supply for the Yan Yean Water Works by Dr Wilkie Trans Phil Soc, i, pp 187-203
- 1857—Report of the Committee of the Philosophical Institute of Victoria, appointed at the General Meeting, held 20th May, 1856, for the purpose of memorialising his Excellency the Acting Governor on the subject of the Removal of the National Museum, and also on the expediency of allotting some room for the use of the Philosophical Institute Trans Phil Inst, i, pp 1-61
- 1857—First Report of the Standing Committee on the National Museum and Accommodation for the Philosophical Institute Trans Phil Inst, i, pp vi-xi
- 1857—Idem Second Report Trans Phil Inst, i, pp xi-xii
- 1857—Appendix Account of Public Meeting on Question of Site for the National Museum Trans Phil Inst, i, pp xxxvii-xxxix
- 1858—Report of the Proceedings of the Observatory Committee Trans Phil Inst, ii (2), pp 1-8
- 1858—Report drawn up by a Committee of the Council, on the subject of Mr. A K Smith's Paper on Wood Pavement Trans Phil Inst, ii (2), pp x-xiii
- 1858—Report of the "Exploration" Committee Trans Phil Inst, ii (2), pp xiv-xxiii
- 1858—Appendix Australian Exploration Account of Public Meeting Trans Phil Inst, ii (2), pp lvi-lxi
- 1858—Correspondence in Reference to a Site for the Buildings of the Institute Trans Phil Inst, ii (2), pp lxi-lxii
- 1859—Second Report of the Exploration Committee Trans Phil Inst, iii, pp xxxv-xxxix
- 1859—Third Report of the Exploration Committee Trans Phil Inst, iii, pp xxxix-xli
- 1859—Report of the Committee "on the Formation of Sections" Trans Phil Inst, iii, pp xl, xlii
- 1860—Report by Committee on "The Resources of the Colony of Victoria" Trans Phil Inst, iv, pp 1-79, at end of volume
- 1860—Report of the Exploration Fund Committee Trans Phil Inst, iv, pp 1-8, at end of volume
- 1860—Report of Committees Trans Phil Inst, iv, pp lxii-lxx
- 1861—Report of Committees Trans (8vo) v, pp xxxiii-xliv
- 1861—Appendix I—Instructions to Members of Exploring Expedition, List of Stores, &c Trans (8vo), v, pp lxv-lxxv
- 1865—Appendix I—Proposal for an Exhibition of Works of Colonial Jewellery and Colonial Gems, whether wrought or in the natural state, as, also, of Colonial Works in Plating, Gilding, and Burnishing Tr & Proc, vi, pp lxi-lxi
- 1865—Appendix II—Report on White Men's Graves in the Interior Tr & Proc, vi, pp lxi-lxx
- 1865—Appendix III—The Corrjong or Corragine Shrub Tr & Proc, vi, pp lxx, lxxi
- 1888—Report of the Port Phillip Biological Survey Committee Tr & Proc, xxiv (2), pp 197-199

- 1890 —Report of the Port Phillip Biological Committee, 1889 Proc. (n.s.), ii, pp 134-140
1891 —Report of the Port Phillip Biological Committee, 1890 Proc. (n.s.), iii, pp 110-112
1893 —Report of the Committee of the Royal Society of Victoria, consisting of Professors Kernot, Lyle, and Masson, and Messrs Ellery, Love, and White, appointed to arrange for the carrying out of the Gravity Survey of Australasia Proc. (n.s.), v, pp 218 221
1893 —Report of the Cremation Committee of the Royal Society of Victoria, appointed to enquire into and report upon "Cremation" and other methods of disposing of the dead, with particular regard to hygiene and economy Proc. (n.s.), v, pp 222 228
1893 —Report of the Port Phillip Biological Committee, 1892 Proc. (n.s.), v, p 229
1894 —Report of the Antarctic Committee of the Royal Society of Victoria By G S Griffiths. Proc. (n.s.), vi, pp 211, 212
1894 —Report of the Gravity Survey Committee of the Royal Society of Victoria By E F J Love. Proc. (n.s.), vi, pp 213 226
1895 —Report of the Port Phillip Biological Committee Proc. (n.s.), viii, pp 313, 314.
1895 —Report of the Gravity Survey Committee Proc. (n.s.), viii, p 313
1896 —Antarctic Exploration Committee Report Proc. (n.s.), viii, pp 189, 190
1896 —Gravity Survey Committee Report Proc. (n.s.), viii, p 190
1896 —Port Phillip Biological Committee Report Proc. (n.s.), viii, p 191
1897 —Report of the Port Phillip Biological Committee Proc. (n.s.), ix, p 302
1897 —Report of the Gravity Survey Committee Proc. (n.s.), ix, p 302
-

Royal Society of Victoria

1933.

President

Assoc PROF W J YOUNG, D Sc

Vice-Presidents

N A ESSERMAN, B Sc, A Inst P
PROF S M WADHAM, M A, Agr Dip

Hon Treasurer

F J RAE, B A, B Sc., B Agr Sc

Hon Librarian

F A CUDMORE

Hon Secretary

F. L STILLWELL, D Sc

Council

PROF W E AGAR, M A, D Sc,
FRS

PROF W A OSBORNE, M B,
B Ch, D Sc

Assoc PROF H S SUMMERS,
D Sc

J M BALDWIN, M A, D Sc

J A KERSHAW, F ES

J SHEPHARD

PROF A J EWART, D Sc, PH D,
FRS, F LS

PROF E W SKEATS, D Sc
ARCSc, F GS

F CHAPMAN, A LS, F GS

D J MAHONY, M Sc

CAPT J K DAVIS

J S ROGERS, B A., M Sc

Committees of the Council

Publication Committee

THE PRESIDENT.

THE HON. TREASURER

THE HON. SECRETARY

Honorary Auditors

ASSOC. PROF W N KERNOT

J SHEPHARD.

Honorary Architect.

W A M BLACKETT

Trustees

J A KERSHAW, F.E.S.

PROF E W SKEATS, D Sc, A R.C Sc, F G S.

1934.

LIST OF MEMBERS

WITH THEIR YEAR OF JOINING

[Members and Associates are requested to send immediate notice of any change of address to the Hon Secretary]

LIFE MEMBERS

Chapman, F, A L S, Hon. F R M S, F G S, National Museum, Melbourne, C 1	1902
Ewart, Prof A J, D Sc, Ph D, F R S, F L S, University, Carlton, N 3	1906
Kernot, Assoc Prof W N, B C E, M Mech E, M Inst C E, University, Carlton, N 3	1906
Pratt, Ambrose, M A, 376 Flinders-lane, Melbourne, C 1	1918
Selby, G W, Glenbrook-avenue, Malvern, S E 5	1889
Sweet, Georgina, D Sc, "Queongo," 64 Mont Albert-road, Canterbury, E 7	1906
Speaks, Prof E W, D Sc, A R C Sc, F G S, University, Carlton, N 3	1905
Walcott, R H, Technological Museum, Melbourne, C 1	1897

ORDINARY MEMBERS

Agar, Prof W E, M A, D Sc, F R S, University, Carlton, N 3	1920
Anderson, George, M A, LL M, M Com, 36 Lansell-road, Toorak, S E 2	1924
Baldwin, J M, M A, D Sc, F Inst P, Observatory, South Yarra, S E 1	1915
Bale, W M, F R M S, 83 Walpole-street, Kew, E 4	1887
Balfour, Lewis J, B A, M B, B S, 62 Hopetoun-road, Toorak, S E 2	1892
Baragwanath, W, Geological Survey Department, Treasury Gardens, East Melbourne, C 2	1922
Barrett, A O, 25 Oriong-road, Armadale, S.E 3	1908
Barrett, Sir J W, K B E, C M G, M D, M S, 105 Collins-street, Melbourne, C 1	1910
Casey, Dermot A, c/o Melbourne Club, Collins-street, Melbourne, C 1	1932
Cherry, Prof T M, B A, Ph D, University, Carlton, N 3	1930
Clark, G Lindsay, M C, B Sc, M M E, c/o Gold Mines of Australia Ltd, P O Box 856K, Melbourne, C 1	1931
Cudmore, F A, 12 Valley View-road, East Malvern, S E 6	1920
Davis, Captain John King, 35 Wills-street, Melbourne, C 1	1920
Devine, H B, M B, M S, 57 Collins-street, Melbourne, C 1	1931
Dunn, E J, F G S, "Rosenneath," Pakington-street, Kew, E 4	1893
Dyason, E C, B Sc, B M E, 92 Queen-street, Melbourne, C 1	1913
Esserman, N A, B Sc, A Inst P., Research Laboratories, Maribyrnong, W 3	1923
Gault, E L, M A, M B, B S, 4 Collins-street, Melbourne, C 1	1899

Gepp, Sir Herbert W, c/o P W Powell, Temple Court, Collins-street, Melbourne, C 1	1926
Giruth, J A, D V Sc, M R C V S, F R S E, 7 Clowes-street, South Yarra, S E 1	1909
Grimwade, W Russell, B Sc, 420 Flinders-lane, Melbourne, C 1	1912
Hartung, Prof E J, D Sc, University, Carlton, N 3	1923
Jack, R Lockhart, B E, D Sc, F G S, c/o Broken Hill Pty Ltd., 422 Little Collins-street, Melbourne, C 1	1931
Jones, Wood, Prof F, D Sc, M B, B S, M R C S, L R C P, F R S, F Z S, University, Carlton, N 3	1930
Jutson, J T, B Sc, LL B, "Darlington," 9 Ivanhoe-parade, Ivanhoe, N 21	1902
Kebble, R A, National Museum, Melbourne, C 1	1911
Kershaw, J A, F.E S, 11 Wrexham-road, Prahran, S 1	1900
Laby, Prof T H, M A, Sc D., F R S., University, Carlton, N 3	1915
Lewis, J M, D D Sc, "Whitethorns," Boundary-road, Burwood, E 13	1921
Lyle, Prof Sir Thos R, M A, D Sc, F R S, Irving-road, Toorak, S E 2	1889
MacCallum, Prof Peter, M C, M A, M Sc, M B, Ch B, D P H, University, Carlton, N 3	1925
Mahony, D J, M Sc, National Museum, Russell-street, Melbourne, C 1	1904
Masson, Prof Sir David Orme, K B E, M A, D Sc, F R S E, F R S, 14 William-street, South Yarra, S E 1	1887
Merfield, Z A, F R A S, University, Carlton, N 3	1923
Michell, J H, M A, F R S, 52 Prospect Hill-road, Camberwell, E 6	1900
Millen, Senator J D, 90 William-street, Melbourne, C 1	1920
Miller, Leo F, "Moonga," Power-avenue, Malvern, S E 4	1920
Miller, E Studley, 396 Flinders-lane, Melbourne, C 1	1921
Newton, H A S, M B, M S, F R C S, 85 Spring-street, Melbourne, C 1	1931
Orr, Dr W F, 8 Collins-street, Melbourne, C 1	1932
Osborne, Prof W A, M B, B Ch, D Sc, University, Carlton, N 3	1910
Patton, R T, D Sc, M F, Hartley-avenue, Caulfield, E 8	1922
Penfold, Dr W J., M B., Alfred Hospital, Commercial-road, Prahran, S 1	1923
Picken, D K, M.A, Ormond College, Parkville, N.2	. 1916
Piesse, E L, 43 Sackville-street, Kew, E 4	1921
Quayle, E T, B A, 27 Collins-street, Essendon, W 5	. 1920
Rae, F J, B A, B Sc, B Agr Sc, Botanic Gardens, South Yarra, S E 1	1927
Reid, J S, 498 Punt-road, South Yarra, S E 1	1924
Rigg, Gilbert, 20 Finch-street, Malvern, S E 5	. 1931
Rivett, Dr A C D, M.A, D Sc, Council for Scientific and Industrial Research, 314 Albert-street, East Melbourne, C 2	1911
Rogers, J Stanley, B A, M Sc, University, Carlton, N 3	. 1924
Rymill, R R, c/o National Bank of Australasia, Collins-street, Melbourne, C 1	1931
Schlapp, H H, 31 Queen-street, Melbourne, C 1	1906
Shephard, John, "Norwood," South-road, Brighton Beach, S 5	1894
Singleton, F. A, M Sc, University, Carlton, N 3	. 1917
Stillwell, F L, D Sc, 44 Elphin-grove, Hawthorn, E.2	1910

Summers, Associate Prof H S, D Sc, University, Carlton, N 3	1902
Thirkell, Geo Lancelot, B Sc, 4 Grace-street, Malvern, S E 4	1922
Thomas, D E, c/o Geological Survey, Mines, Dept, C 2	1929
Thomas, Dr D J, M D, 12 Collins-street, Melbourne, C 1	1924
Tiegs, O W, D Sc, University, Carlton, N 3	1925
Wadham, Prof S M, M A, Agr Dip, University, Carlton, N 3	1932
Woodruff, Prof H A, M R C S, L R C P, M R C V S, University, Carlton, N 3	1913
Young, Assoc Prof W J, D Sc, University, Carlton, N 3	1923

COUNTRY MEMBERS

Caddy, Dr Arnold, "Chandpara," Tylden, Vic	1924
Caldwell, J J, Geological Survey Office, Bendigo, Vic	1930
Coulson, A, B Sc, 80 Fitzroy-street, East Geelong, Vic	1929
Cox, H M S, Wombat Park, Daylesford	1931
Crawford, W, Gisborne, Vic	1920
Drevermann, A C, Dookie Agricultural College, Dookie, Vic	1914
Easton, J G, "Kewa," Murphy-street, Bairnsdale, Vic	1913
Fairbairn, P, Lara, Vic	1932
Harris, W J, B A, High School, Echuca, Vic	1914
Hart, T S, M A, B C E, 9 Black-street, Brighton, S 5	1894
Hope, G B, B M E, "Carrical," Hermitage-road, Newtown, Geelong, Vic	1918
James, A, B A, M Sc, High School, Colac, Vic	1917
Kitson, Sir Albert E, C M G, C B E, F G S, "Benalta," Ireby-crescent, Beaconsfield, Bucks, England	1894
Lawrence, A O, B Sc, Dip For, 509 Ligar-street, Ballarat	1931
Mackenzie, H P, Engr Commr, R N (Ret), Trawalla, Vic	1924
Mann, S F, Caramut, Vic	1922
Trebilcock, Captain R E, M C, Wellington-street, Kerang, Vic	1921
White, R A, B Sc, School of Mines, Bendigo, Vic	1918

CORRESPONDING MEMBER

Lucas, A H S, M A, B Sc, Sydney Grammar School, Sydney, N S W	1895
---	------

ASSOCIATES

Abraham, W S, Geological Survey Museum, Gisborne-street, East Melbourne, C 2	1929
Albiston, H E, M V Sc, Veterinary School, Parkville, N 2	1925
Allen, Miss N C B, B Sc, University, Carlton, N 3	1918
Ashton, H, "The Sun," Castlereagh-street, Sydney, N S W	1911
Atkinson, Miss Nancy, M Sc, Bacteriological Department, University, Carlton, N 3	1933
Bage, Miss F, M Sc, Women's College, Kangaroo Point, Brisbane, Qld	1906
Barkley, H, Meteorological Bureau, cr Victoria and Drummond streets, Carlton, N 3	1910
Blake, A S, 19 Rose-street, Ivanhoe, N 21	1929
Bordeaux, E F J, D V Sc, B ès L, Mangalore-street, Flemington, W 2	1913

Brazenor, C W	National Museum, Russell-street, Melbourne, C 1	1931
Breidahl, H	M Sc, M B, B S, 23 Chatsworth-avenue, North Brighton, S 5	1911
Broadhurst, E	M Sc, 457 St Kilda-road, Melbourne, S C.2	1930
Buchanan, Gwynneth	D Sc, University, Carlton, N 3	1921
Butler, L S G	173 Barkly-street, St Kilda, S 2	1929
Campbell, J D	B Sc, B M E, Llewellyn-street, Beaumaris, S 10	1932
Carter, A A C	"Fairholm," Threadneedle-street, Balwyn, E 8	1927
Cavanagh, B A	M A D Sc, Chemistry School, University, Carlton, N 3	1931
Chapman, Miss F	Threadneedle-street, Balwyn, E 8	1930
Chapman, W D	M C E, "Hellas," Heidelberg-road, Clifton Hill, N 8	1927
Chapple, Rev E H	The Manse, Warrigal-road, Oakleigh, S E 12	1919
Clark, J	F L S, National Museum, Melbourne, C 1	1929
Clinton, H F	Produce Office, 605 Flinders-street, Melbourne, C 1	1920
Collins, A C	Public Works Department, Treasury Gardens, East Melbourne, C 2	1928
Collier, F S	14 McCarron-parade, Essendon, W 5	1933
Cook, G A	M Sc, B M E, 58 Kooyongkoot-road, Hawthorn, E 2	1919
Cookson, Miss I C	B Sc, 154 Power-street, Hawthorn, E 2	1916
Coulson, A L	M Sc, D I C, F G S, Geological Survey of India, 27 Chowringhee, Calcutta	1919
Cox E H	Literary Staff, <i>The Argus</i> , Elizabeth-street, Melbourne, C 1	1924
Crespin, Miss I	B A, 67 Studley Park-road, Kew, E 4	1919
Croll, I C H	4 Derby-street, Camberwell, E 6	1934
Cudmore, Mrs F A	B A, B Sc, Dip Ed, 12 Valley View-road, East Malvern, S E 6	1929
Deane, Cedric	"Cloyne," State-street, Malvern, S E 4	1923
Drummond, F H	University, Carlton, N 3	1933
Eckersley, Miss A. M.	13 Haverbrack-avenue, Malvern, S E 4	1933
Edwards, A B	B Sc, 5 McLaughlin-avenue, Sandringham, S 8	1930
Elford, F G	B Sc, High School, Ballarat, Vic	1929
Fenner, C	D.Sc, Education Department, Flinders-street, Adelaide, S.A	1913
Ferguson, W. H.	37 Brinsley-road, E Camberwell, E 6	1894
Finney, J M	"Armidale," 387 Springvale-road, Forest Hill, Tunstall	1925
Fisher, Miss E E	M Sc, 1 Balwyn-road, Canterbury, E 7	1930
Flecker, Dr H	71 Collins-street, Melbourne, C 1	1922
Frostick, A C	9 Pentland-street, N Williamstown, W 16	1933
Gabriel, C J	293 Victoria-street, Abbotsford, C 1	1922
Grieve, Brian J	B Sc, 194 Osborne-street, Williamstown, W 16	1929
Hanks, W	16 Holroyd-street, Coburg, N 13	1930
Hardy, A. D.	Forests Department, Melbourne, C 2	1903
Hauser, H B	M Sc, Geology School, University, Carlton, N 3	1919
Head, W C E	22 The Esplanade, Williamstown, W 16	1931
Heyward, Miss L J	M Sc, 256 Wattletree-road, Malvern, S E 4	1930
Hill, Gerald F	Council for Scientific and Industrial Research, Box 109, Canberra City, Canberra, F C T	1924

Hills, E S , M Sc , Geology School, University, Carlton, N 3	1928
Holland, R A., 126 Kooyong-road, Caulfield, S E 7	1931
Holmes, W M , M A , B Sc , Observatory, South Yarra, S E 1	1913
Howitt, A M , Department of Mines, Treasury Gardens, East Melbourne, C 2	1910
Huelin, F E , University, Carlton, N 3 .	1933
Jack, A K , M Sc , 49 Aroona-road, Caulfield, S E 7	1913
Jessep, A W , B Sc , M Ag Sc , Dip Ed , Horticultural Gardens, Burnley, E 1	1927
Jona, J Leon, M D , M S , D Sc , Lister House, 61 Collins-street, Melbourne, C 1	1914
Keartland, Miss B , M Sc , Cramer-street, Preston, N 18	1919
Kilvington, Mrs T B , 95 Kooyongkoot-road, Hawthorn, E 2	1929
Kubale, J C , 167 Power-street, Hawthorn, E 2	1929
Lambert, C A , Carlyon's Hotel, Spencer-street, Melbourne, C 1	1919
Leeper, G W , M Sc , Chemistry School, University, Carlton, N 3	1931
Luly, W H , Esplanade, Altona, Vic	1896
McCance, D , M Sc , 106 Gatehouse-street, Parkville, N.2 .	1931
MacDonald, B E , "The Heights," 127 Banksia-street, Heidelberg, N 22	1920
McLennan, Assoc Prof Ethel, D Sc , University, Carlton, N 3 .	1915
Melhuish, T D'A , M Sc , Adelaide Chemical and Fertilizer Co , Box 7, Port Adelaide, S A	1919
Mollison, Miss E , M Sc , Royal-crescent, Camberwell, E 6	1915
Moon, A , Ramsay, c/o Murex Welding Processes, Ferry-lane, Walthamstow, England	1929
Moore, F E , O B E , Chief Electrical Engineer's Branch, P M G's Department, Treasury Gardens, East Melbourne, C 2	1920
Morris, P F , National Herbarium, South Yarra, S E 1	1922
Newman, B W , Meteorological Bureau, Adelaide, S A	1927
Nicholls, Miss A , B Sc , 633 Inkerman-road, Caulfield, S.E 7	1929
Nye, E E , 194 Punt-road, Prahran, S 1	1932
Oke, C , 4 Raleigh-street, Prahran, S 1	1922
Orr, D , B Sc , 860 Mount Alexander-road, Essendon, W 5	1927
Osborne, N , c/o Vacuum Oil Co , 90 William-street, Melbourne, C 1	1930
Parr, W J., 17 Bokhara-road, Caulfield, S E 8 .	1927
Paterson, Miss Helen T , 19 Power-street, Hawthorn, E 2	1933
Petersen, Miss K , B Sc , 56 Berkeley-street, Hawthorn, E 2	1919
Pretty, R B , M Sc , Technical School, Warrnambool, Vic	1922
Raff, Miss J W , M Sc , F R E S , University, Carlton, N 3	1910
Rayment, Tarlton, Bath-street, Sandringham, S 8	1929
Richardson, Sidney C , 2 Geelong-road, Footscray, W 11	1923
Ripper, Miss E A , 8 Mitchell-street, St Kilda, S 2	1930
Rosenthal, Newman H , B A , B Sc , 10 Oulton-street, Caulfield, S E 7	1921
Sayce, E L , B Sc , A Inst P , Research Laboratories, Maribyrnong, W 3	1924
Scott, T R , 7 Garden-avenue, Hawthorn, E 3	1934
Shaw, Dr C Gordon, 75 Clendon-road, Toorak, S E 2	1931
Shaw, F H , B Sc , 41 Prospect Hill-road, Camberwell, E 6 .	1933
Sherrard, Mrs H M , M Sc , 16 Shellcove-road, Neutral Bay, Sydney	1918
Smith, J A , 25 Collins-place, Melbourne, C 1	1905

Stach, L W , 78 Herbert-street, Albert Park, S C 6	1932
Stickland, John, 433 Brunswick-street, Fitzroy, N 6	. 1922
Thomas, L A , B Sc , 191 Royal-parade, Parkville, N 2	1930
Traill, J C , B A , B C E , 630 St Kilda-road, Melbourne, S C 3	. 1903
Trudinger, W , 27 Gerald-street, Murrumbeena, S E 9	. 1918
Turner, A H , M Sc , Natural Philosophy Dept , University, Carlton, N 3	1927
Turner, A W , D V Sc , Animal Health Research Institute, Oonomba, via Townsville, Queensland	1925
Wilcock, A A , 294 The Avenue, Parkville, N 2	. 1934
Wilcock, E L , B Sc , University High School, Carlton, N 3	1925
Wilson, F E , F E S , 22 Ferncroft-avenue, E Malvern, S E 5	1921
Wilson, Major H W , O B E , M C , C de G , B Sc , 630 Inkerman- road, Caulfield, S E 7	1923
Withers, R B , B Sc , Dip Ed , Higher Elementary School, Yallourn, Vic	1926
Wood, Assoc Prof G L , M A , Litt D , University, Carlton, N 3	. 1933
Woodburn, Mrs Fenton, 21 Bayview-crescent, Black Rock, S 9 ..	1930

INDEX.

The names of new genera and species are printed in italics.

- Airey's Inlet, 55
Allochromicis montanus, 252
 Almond Trees, Crown Gall of, 214
 Antarctic exploration, 139
 Atkinson, Nancy, 1
 Auriferous areas geology of, 153
 Author Index, 275
- Bacterial pollution by sewage, 1
Bacterium tumefaciens, 214
 Basalt, Coburg, &c, 144
 Bendigo goldfield, 200
Bombyx Mitchellii, 267
 Brittle-star, Lower Cretaceous, 195
- Calotermes*, 36, *atratus*, 48, *buxtoni*, 44, *convexus*, 38, *irregularis*, 38, *neotuberculatus*, 42, *queenslandicus*, 45, *repandus*, 38, *spolator*, 39, *tillyardi*, 41
 Campbellfield, geology of, 144
Caractacaster varrensi, 223
Cardiograptus, 85, 95
Ceratostomella, 183, *pilifera*, 184, *coculea*, 184
Cerithiopsis woolnoughi, 60
 Chapman, F., 55, 60, 66, 195
 Cherts, fossiliferous, 60
Cisolea, 259, *umboniflora*, 260
 Coburg, geology of, 144
Cordia tasmanica, 268
 Crespin, Irene, 66
 Cretaceous Brittle-star, 195, fossiliferous grits, 60
 Crown Gall, 214
Cryptotermes, 44, 45, 48
Cuna particula, 66
Curculionoidea, 250
Cyphonochelus, 72
- Daphnella granulosa*, 73
 Davis, J. K., 139
 Deane, Cedric, 20
Didymograptus eocaducus, 98, 109, *gibberulus*, 101, *hemicyclus*, 98, 109, *ovatus*, 98
 Dosinia, 207
- Eckersley, Audrey M., 179
 Ecology of Fern Gully, 117
 Enatimene, 71
 Etremea alliterata, 74
 Eucalyptus Kitsoni, 268
- Fern Gully, 117
Ficicum nitidum, 266
- Gippsland, mollusca, 66
Glyptotermes, 42
 Goldfield, Bendigo, 200
Graptolites, 79, 168, 174, 203
 Grièvre, B. J., 214
 Grits, fossiliferous, 60
- Hanks, W., 144
 Harns, W. J., 79, 153, 200
 Hill, Gerald F., 36
Hormonema dematioides, 181
Hudsonaster australis, 222
Hydraena plenipennis, 27, *selecta*, 27
Hydrophiidae, 20
- Index of Authors since 1855, 275
Inso ossorus, 250, *anomalus*, 251
Isacantha papulosa nigra, 262
Isograptidae, 85, 100
Isograptus caduceus, 79, &c, *dumosus*, 94, 105, *forcipiformis*, 95, *gibberulus*, 83, *hastatus*, 98, 104, *manubriatus*, 94, 102, *ovatus*, 105
Isopelta, 36
- Keble, R. A., 220
- Leaf-beds, Tertiary, 144
Lichenopora patersoniae, 56, *watersi*, 56
 List of Members, 323
 Lomatia Brownii, 266
 Longreach, 195
- Maeandrograptus*, 85, &c, *aggrestus*, 107, *tau*, 107
Magnolia microphylla, 266
Mandalotus decipiens, 255, *erilis*, 258, *foveatus*, 256, *gramincola*, 255, *lucaris*, 258, *lueophilus*, 257, *medcoxalis*, 255, *obliquus*, 256, *sternocoris*, 255
Marginella latimana, 73
 Members, List of, 323
Miltha, 207, *grandis*, 208, *grandis flindersiana*, 210
Miltolidea, 208
 Miocene of Airey's Inlet, 55
 Mollusca from deep borings, 66
- Neoterme, 38
Nephelites berwickense, 267
 Nicholls, W. H., 28
Nothofagus Benthami, 265, *Maideni*, 265, *Muelleri*, 265, *Wilkinsoni*, 266
Nullagine, 60
Nyella tuberculata, 262
- Ochthebius costatus*, 21, *flavocinctus*, 24, *hercynicus*, 20, *labratus*, 26, *levis*, 22, *lividus*, 23, *natalis*, 24, *schizolabrus*, 25, *subcostatus*, 22
 Oke, C., 250
Oncograptus, 85, 95
Ophiacantha fosteri, 195
Ophioglyphaida, 195
 Ordovician rocks, 153
- Palaeozoic Starfish, 220
Palasterina, 230, *flemingtonensis*, 231, *stachii*, 232, *umbonata*, 233
 Pascoe Vale, geology of, 144, tertiary leaves, 264
 Paterson, Helen T., 264
 Patton, R. T., 117
Personella clarkei, 70
Petraster aff. americanus, 227, *angustior*, 227, *ruchi*, 228, *smythii*, 228
 Photoperiodism and plant breeding, 131
Pinus radiata, fungi on, 179
 Plant breeding and photoperiodism, 131
 Pollution of Bay by bacteria, 1
Polyzoa, gigantic, 55
Pomadermis Banksii, 267
Porothermes, 36, *adamsoni*, 36
Prasophyllum, 28, *alpinum*, 31, *fuseum*, 28, 30, *pallidum*, 33

- Promopalaester meridionalis, 225, var
parva, 226
- Queensland, Lower Cretaceous, 195
- Raw, A R., 131
- Rhadinosomus *parvus*, 254
- Salteraster *hirudulus*, 237, selwyni, 235
- Sap-staining organisms, 179
- Schuchertia *juncta*, 238; *mucrata*, 239
- Sewage Farm effluents, 1
- Singleton, F A., 207
- Skaggsitus*, 85, 108; *gnomonicus*, 108
- Starfish, Palaeozoic, 220
- Talbot, Eastern, geology of, 153
- Tertiary deposits, 144, 207, leaves, 264
- Tertiary mollusca, 66
- Thomas, D E., 153
- Trophon *metungensis*, 71
- Typhis *rufostatus*, 72
- Urasterella *cressoni*?, 234
- Venericardia *depressulata*, 67, *gpplundica*,
67, *spinulosa dennanti*, 68
- Withers, R B., 220
- Woods, Nelly H., 207

PROCEEDINGS

OF THE

Royal Society of Victoria.

VOL XLVII. (NEW SERIES)

PARTS I AND II

Edited under the Authority of the Council

ISSUED 22nd DECEMBER, 1934, and 8th MAY, 1935

(*Containing Papers read before the Society during the months of
March to December, 1934*)

THE AUTHORS OF THE SEVERAL PAPERS ARE INDIVIDUALLY RESPONSIBLE FOR THE
SOUNDNESS OF THE OPINIONS GIVEN AND FOR THE ACCURACY OF THE
STATEMENTS MADE THEREIN

28168/136

ROYAL SOCIETY'S HALL,
VICTORIA STREET, MELBOURNE, C1

H J GREEN, GOVERNMENT PRINTER, MELBOURNE

1935

CONTENTS OF VOLUME XLVII.

PART I.

	PAGE
ART. I—Notes on the Histology of the Alimentary Canal in some Australian Termites By JEAN L SUTHERLAND, M Sc. (Plates I and II) .. .	1
II—Zooecial Variation within Species of the Catenicellidae By LEO W STACH	14
III—Victorian Tertiary Catenicellidae, Part II. By LEO W. STACH (Plate III)	18
IV—Observations on Saw-flies of the Genus <i>Perga</i> , with Notes on some reared Primary Parasites of the Families Trigonahidae, Ichneumonidae, and Tachinidae. By JANET W RAFF, M Sc, F R E S (Plates IV and V) .	54
V—An Investigation into the Influence of Sulphate of Ammonia on Stubble-sown Oat Crops in Victoria By D C WARK, B Agr Sc .. .	78
VII—A Disease of Cauliflowers in Victoria, Australia (<i>Gloeosporium concentricum</i> (Grev) Berk and Br) By FRANCES J HALSEY, M Sc (Plate VI)	96
VII—Tertiary Dykes and Volcanic Necks of South Gippsland, Victoria By A B EDWARDS, B Sc (Melb), Ph D (Plate VII) .. .	112
VIII—Ecological Studies in Victoria Part III—Coastal Sand Dunes By R T PATTON, D Sc (Melb), D.I.C (Lond), M F (Harv), F R H S (Plates VIII and IX.) ..	135
IX—Some Fundamental Concepts in Victorian Physiography By E S HILLS, M Sc, Ph D .	158
X—A Revision of the Nomenclature of the Permian Foraminifera of New South Wales By F CHAPMAN, A L S, F G S, Prof W HOWCHIN, F G S, and W J PARR, F R M S	175
XI—New Species of a Crinoid (<i>Lecanocrinus</i>) and a Cephalopod (<i>Ophidoceras</i>), from the Silurian of Yass By F CHAPMAN, F G S (Plate X.)	190
XII—The Palaeozoic Brittle-Stars of Victoria By R B WITHERS, B Sc, Dip Ed, and R A KEEBLE, F G S (Plate XI)	196

PART II

ART XIII—The Muckleford Fault in the Guildford-Strangways Area (near Castlemaine, Victoria) By D E THOMAS, B Sc	213
XIV—Manganese Deficiency Disease of Cereals Plot Experiments and a New Hypothesis By G. W LEEPER, M Sc	225
XV—Some Algae of Victorian Soils. By JEAN PHILLIPSON, M Sc .	262

	PAGE
XVI—Victorian Graptolites (New Series) Part III By WM J HARRIS, D Sc , and D E THOMAS, B Sc	288
XVII—The Graptolite Succession of Bendigo East, with Suggested Zoning By W J HARRIS, D Sc	314
XVIII—Victorian Lower Pliocene Bryozoa Part I By LEO W STACH (Plate XII)	338
XIX—An Account of the Cultural and Cytological Characteristics of a New Species of Mycogala By KATHLEEN M CROOKS, M Sc	352
XX—A Powdery Mildew of <i>Boronia megastigma</i> Nees By KATHLEEN M CROOKS, M Sc (Plate XIII)	365
XXI—An Account of Sclerote-forming Fungi causing Diseases in <i>Matthiola</i> , <i>Primula</i> , and <i>Delphinium</i> in Victoria By ILMA G. BALFE, M Sc	369
XXII—"Sooty Mould " of the Tree-Fern <i>Dicksonia</i> By EILEEN E FISHER, M Sc	387
XXIII—The Genera of Catenicellidae By LEO W STACH	389
List of Members	399
Index to Volume XLVII	405

ART I—*Notes on the Histology of the Alimentary Canal in some Australian Termites*

By JEAN L SUTHERLAND, M Sc

(With Plates I and II)

[Read 8th March, 1934, issued separately, 22nd December, 1934]

Introduction.

Observations on the alimentary canal of Metatermitidae of the genus *Eutermes* show several peculiar features which seem to have been overlooked in the most complete previous account, that of Holmgren (1909). It is the purpose of this paper to recapitulate Holmgren's description, to describe the structures which he did not mention, and to compare them with analogous structures, if present, in termites of other families.

The classification adopted is that of Holmgren.

The order Isoptera is divided into four families —

Mastotermitidae (type *Mastotermes*), Protermitidae (*Archotermopsis*, *Calotermes*, *Porotermes*, *Stolotermes*) Mesotermitidae (*Coptotermes*), and Metatermitidae (*Eutermes*).

Method.

Longitudinal and transverse serial sections, usually 10μ thick, were cut of alimentary canals dissected out and fixed in Bouin or corrosive acetic Delafield's haematoxylin and Heidenhain's iron haematoxylin, with or without an eosin counterstain, were the most generally satisfactory stains, occasionally picric acid was used to show chitinous structures. Unstained alimentary canals mounted whole were useful for observing the demarcation of the various regions.

General Features of Alimentary Canal.

The alimentary canal of a termite may be divided externally into the following regions —

- (1) *Fore-gut*, consisting of pharynx, oesophagus, crop and gizzard. Posteriorly the fore-gut may be invaginated into the mid-gut, the invaginated portion and the tube immediately anterior to it being termed by Holmgren the "collum" and by Imms (1919) the "oesophageal valve".
- (2) *Mid-gut*, the posterior boundary of which is marked by the opening of the Malpighian tubes.
- (3) *Hind-gut*, which can be divided into five parts —
 - (a) A narrow tube of varying length, extending from the end of the mid-gut to the posterior curvature. This division is particularly long in Metatermitidae, but short in the other three families.

28168/136

- (b) The region extending from the posterior curvature to the greatly dilated "large intestine" of Imms. The walls of this part of the gut are very muscular, deeply folded, and bear numerous chitinous spines. The great development of muscular coats suggests that the final subdivision of food occurs here, this region which is called by Imms the "pyloric valve" has been termed in this paper the *posterior gizzard*
- (c) The large intestine named by Holmgren the "Hinterdarmblase" is a large thin-walled sac projecting to one side of the intestine
- (d) A narrow tube leading from the large intestine to the slightly expanded rectal portion
- (e) Rectum

As types of the family Metatermitidae *Eutermes dixoni*, and *E. exitiosus*, which very closely resembles it, have been used

These species agree in most particulars with *Eutermes chaquimayensis* as described by Holmgren, but show some interesting and characteristic structures which are not mentioned in his account

Macroscopic Structure of Genus Eutermes.

In the genus *Eutermes*, the pharynx is short. The oesophagus extends through the thorax to a dilated conical crop, behind which lies the gizzard. This is lined by large crushing plates, clearly visible in alimentary canals which have been dissected out and mounted whole.

The mid-gut is long, tubular, and U-shaped. From it, at the point of entry of the four Malpighian tubes, leads the hind-gut.

The slender anterior part (= section (a)) of the hind-gut is elongated in *Eutermes*, and forms a large loop passing behind the posterior end of the crop. The dilated large intestine, which immediately follows the tubular anterior portion, forms one limb of another loop. It bends back on itself, and is continued as the tubular hind part, which becomes expanded at the posterior end to form the rectum, and opens to the exterior by the anus.

Histology of *Eutermes dixoni* and *E. exitiosus*.

FORE-GUT

The *fore-gut* is similar to that of *E. chaquimayensis*.

The *oesophagus* consists of cubical epithelium, beneath which lies an outer circular and an inner longitudinal muscle layer.

The *crop* has the same two layers as the *oesophagus*, but its lumen is much dilated.

The *gizzard* is characterized by continuous longitudinal ridges used for grinding food. These ridges are heavily chitinized, and are of two types —

- (1) Tall narrow folds, constricted at the base, which appear club-shaped in transverse section
- (2) Lower cushion-like folds over which the chitinous lining is thinner

Each ridge contains a core of connective tissue covered by columnar epithelium which secretes the chitin. The edges of the tall ridges are finely serrated. There is a well-developed circular layer of striated muscle.

The *oesophageal* valve or collum, which projects from just below the gizzard into the mid-gut, is composed solely of thin columnar cells resting on a basement membrane.

MID-GUT

The wall is slightly folded, and is composed of cells arranged in three ways —

- (1) An outer thin epithelium of flattened cells.
- (2) Elongated columnar cells, which are broader at their outer edge, and have a striated border, a large nucleus and definite nucleolus. They have the appearance of glandular tissue.
- (3) Crypts of cells, lying at right angles to the long axis of the mid-gut. These vary in number and in depth in different specimens. It is probable from their great variability that they are nests of young cells from which the epithelium is regenerated, as suggested by Imms, rather than glandular crypts as assumed by Holmgren. In some sections the crypts are so numerous and deep that the gut wall has a "scalloped" appearance, while in surface view the wall shows a mosaic effect.

The muscle-layers are very poorly developed. The cells seem to be bounded on the outside by a thin membrane only.

Malpighian Tubes, four in number, are lined by a single layer of flattened epithelium, the cells of which frequently contain refractive granules.

HIND-GUT.

(Pl I, Fig 1r, Pl II, Figs 2A, B, and 3A, B, C, and D)

Eutermes dixoni and *E. exitiosus* are similar to *E. chaquimayensis* in many ways, but show some conspicuous features not included in Holmgren's description.

Division (a) of the hind-gut is very much elongated, and has down one side for half its length a strip of cell continuous with and similar to those forming the mid-gut wall, i.e., apparently glandular cells interspersed with regenerative crypts. This

structure extends from the mid-gut to a point half-way between the opening of the Malpighian tubes and division (*b*)—the posterior gizzard.

Except for this strip the wall of this division of the hind-gut is composed of a thin layer of flattened epithelium.

Running longitudinally on each side of the strip is a fold or valve (Fig 2A). The tissue composing this forms a nearly complete ring at the level of the Malpighian opening (Fig 3A and B), and then is continued backwards as two projecting folds (Fig 3C). Anteriorly the folds project inwards towards the middle line. Further back they meet and fuse (Fig 3D), thus enclosing a space between them and the strip of glandular tissue. No food has ever been observed in this space, even when the main cavity of the gut is full of food.

Each fold consists of two layers (Fig 2B) —

- (1) An inner flattened or cubical layer on the side towards the glandular strip
- (2) An outer layer of deep columnar cells with clear protoplasm and distinct nuclei.

The Malpighian tubes open above the origin of the valve, i.e. into the posterior end of the mid-gut.

The region of the hind-gut leading from division (*a*) to the large intestine is very characteristic. It is here termed the *posterior gizzard* (division (*b*)) since in *Eutermes*, as in other genera, the folded muscular walls have a chitinous lining bearing numerous pointed toothlike projections (Fig 1F). The lumen of this region is narrow and the walls are very muscular. It is probable that it serves to grind any larger particles of food which have been left by the anterior gizzard before they enter the large intestine. Imms working on *Archotermopsis*, names this region the "pyloric valve," and holds that the backwardly-pointing teeth serve to prevent the regurgitation of large particles into the mid-gut. He considers that the fluid contents of the hind-gut can be regurgitated, and are acted upon by the secretion of the mid-gut. Grassi and Sandias (1895) held a similar view, and termed the mid-gut the "chylific ventricle."

Holmgren does not mention the presence in *Eutermes chaquimayensis* of either double valve or mid-gut strip, neither does he record the presence of chitinous teeth in the posterior gizzard region, although he describes "lashes" in the large intestine itself. The writer has seen no constant structures corresponding to his "lashes," but occasionally chitinous threads can be observed stretching from the tip of some of the folds to the food. In other respects the histology of the "large intestine" of *Eutermes dixoni* and *E. eritrosus* is similar to that which Holmgren describes for *E. chaquimayensis*. The more slender part of the gut behind the large intestine and the dilated rectal portion are also similar to those of *E. chaquimayensis*.

Comparison between certain Structures of the Hind-Gut in Eutermes and in Termites of other Families.

1 MASTOTERMITIDAE

Mastotermes darwiniensis (Figs 1A, 4).—The wall of the first division of the hind-gut is thrown into longitudinal folds made up of columnar epithelium supported on a pad of connective tissue. For a short distance anterior to the gizzard, the wall bears fine spines pointing forwards. Although there is a fair development of muscles here, they are much less marked than in the posterior gizzard itself.

The posterior gizzard bears four deep longitudinal folds, which are supported by well-developed outer circular and inner oblique muscle layers. In some sections the oblique muscles seem so disposed that one fibre goes to each epithelial spine-bearing cell, suggesting independent movement of the individual teeth. The lining epithelium is composed of short columnar cells, bearing large backwardly-directed spines.

From the gizzard to the large intestine there extend four shallower folds, the chitinous lining of which bears spines like those of the gizzard. The actual spine-bearing surface is greater in *Mastotermes* than in any other termite which the author has examined.

2 PROTERMITIDAE

In termites of this group, as well as those of the Mastotermitidae and Mesotermitidae, the first division of the hind-gut is not elongated, i.e., the Malpighian tubes arise comparatively near the large intestine.

Archotermopsis wroughtoni.—The histology of the alimentary canal of this termite was fully described by Imms (1919).

"The first portion of the hind-gut is 0·9-1 mm. in length.

Near the middle of its course is a group of three inwardly-projecting folds, covered by a chitinous lining, and invested with fine backwardly-directed spines. These folds are well-supplied with muscle-fibres, and serve as a valve. At the junction with the large intestine, four groups of columnar epithelial cells pass back from the valve region, and project for a short distance into the cavity of the large intestine."

Imms states that the folded walls of the gut, both anterior and posterior to the posterior gizzard or "valve" have a chitinous lining, but he does not mention the occurrence of spines in either position.

Calotermes insularis (Fig. 1B).—Posterior to the opening of the Malpighian tubes, the hind-gut wall is thrown into longitudinal folds. Anteriorly these consist of columnar epithelium, but this changes to cubical epithelium, i.e., the folds become lower, towards the posterior gizzard.

The portion of these folds next to this gizzard bears, for approximately one-third of the total length, small chitinous teeth which point in the opposite way to those in the gizzard itself. These latter are developed on continuous, rather shallow longitudinal folds, which lead directly into the large intestine. The muscle-layers are not so easily defined as those of *Mastotermes*.

Stolotermes victoriensis (Fig. 1c) —The hind-gut of *Stolotermes* shows a condition intermediate between that found in *Calotermes*, and that of the more highly-developed *Porotermes*. The walls are thrown into folds which are shallower and more uniform than those of *Porotermes*, and are lined by low columnar epithelium. The posterior gizzard is very muscular, the arrangement being similar to that previously described in *Mastotermes*. The chitinized epithelium of the posterior gizzard has large spines, but there are no spines on the folds anterior to it as were described in *Calotermes*, and no toothless folds posterior to it.

Porotermes grandis (Figs 1d, 5) —Immediately posterior to the entry of the Malpighian tubes, the walls are thrown into irregular longitudinal folds. These may be divided into two series, separated transversely by more flattened cells. The folds of the anterior series are made up of tall columnar epithelium with a small central core of connective tissue, while those of the posterior series consist of slightly lower cells resting on a well-marked basement membrane, and supported by a thick connective tissue cushion. There are no chitinous spines in this region.

Behind these folds is the tooth-bearing posterior gizzard. This shows longitudinal ridges which are lower than those of the preceding series, and bear large chitinous spines. The muscle-layers are thick, and as in *Mastotermes*, consist of inner oblique fibres, sometimes showing a fan-like arrangement beneath the spine-bearing cells, and outer longitudinal fibres. The posterior gizzard is shorter than in *Calotermes*, i.e., the tooth-bearing region is more concentrated. Folds similar to those of the second series lead from the gizzard to the large intestine.

The hind-gut of *Porotermes* seems to be leading on to the *Coptotermes* type. It differs from that of *Eutermes* in those points which have already been described for *Calotermes*.

3 MESOTERMITIDAE

Coptotermes flavus (Fig. 1e) —Between the entry of the Malpighian tubes and the posterior gizzard, the walls of the hind-gut are folded, and lined with columnar cells.

The posterior gizzard has well-marked teeth, and its walls have numerous irregular longitudinal folds. As in *Porotermes*, there is a definite demarcation between the toothless longitudinal folds and those of the posterior gizzard, and also, as in *Porotermes*,

there is a series of toothless folds between gizzard and large intestine. These probably correspond to the "four groups of columnar cells" which Imms describes as extending from the "pyloric valve" of *Archotermopsis* to the large intestine.

These three groups of termites, therefore, although showing considerable variation, resemble each other in general plan, and differ markedly from the Metatermitidae.

Discussion.

The alimentary canals of termites of different families can be arranged in a definite series, corresponding to their systematic positions. This series shows a progressive reduction of the spine-bearing area, together with elaboration of the folds in front of the posterior gizzard, and development of a further series of toothless folds behind it.

The most primitive termite, *Mastotermes*, has, as described above, an extensive spine-bearing area both anterior and posterior to the posterior gizzard. The folds at the beginning of division (a) of the hind-gut are relatively simple.

The comparatively unspecialized Protermitidae, *Archotermopsis* and *Calotermes*, closely resemble *Mastotermes*. In *Archotermopsis* the spine-bearing area anterior and posterior to the true gizzard is represented merely by a thickening of the chitinous lining. In *Calotermes* the posterior folds leading into the large intestine are very poorly developed, and there is no thickening of their chitinous lining, but the region anterior to the posterior gizzard retains its teeth. In both *Calotermes* and *Mastotermes* these anterior teeth point in the opposite direction to those of the gizzard.

Stolotermes, although its anterior folds are simple, shallow, and uniform, has no teeth except in the posterior gizzard. *Porotermes* also has its teeth confined to a short thick-walled gizzard, but the anterior folds are very well-developed, and are divided by a circular constriction into two series. There are also definite toothless folds behind the posterior gizzard.

Of the Mesotermitidae, *Coptotermes* very closely resembles *Porotermes* except that the folds behind the posterior gizzard are better developed.

In Metatermitidae such as *Eutermes*, the typical structures of the anterior part of the hind-gut are very much altered, and new parts are introduced. Thus the characteristic double valve may be regarded as a modification of the most anterior folds of other forms, correlated with the elongation of division (a) of the hind-gut. The glandular strip, histologically resembling mid-gut tissue, is a new development, as is the thin-walled tube which forms the hinder part of division (a).

Termites of this family are regarded by Imms, Tillyard, Wheeler, and others as the most highly-evolved Isoptera. They have usually no intestinal protozoa, although Cleveland (1926) has found a few small amoebae and flagellates in two species of *Amistermes*. Numerous spirochaetes and fungi are usually present. The fungus-gardens described by many authors are made only by termites of this family. Many Metatermitidae are grass-eating, others, however, are wood-feeding.

Although it is, so far, not possible to establish any definite relationship between the mode of nutrition and the structure of the alimentary canal, it is worthy of note that the extreme modifications of structure occur in those termites in which the digestive function of the alimentary canal must differ greatly from that of other groups.

Summary.

(1) The general external features of the alimentary canal in termites are described. The hind-gut can be divided into five regions, termed (a), (b), (c), (d), and (e), of which (a) and (b) are treated in some detail.

Division (a) is greatly elongated in the Metatermitidae.

(2) Macroscopic features of the alimentary canals of *Eutermes dixoni* and *E. exitiosus* are described. These are very similar to *Eutermes chaquimayensis* as given by Holmgren (1909).

(3) The histology of the alimentary canal of *E. dixoni* and *E. exitiosus* is described, with particular reference to divisions (a) and (b) of the hind-gut.

Certain structures are present which were not mentioned by Holmgren. A strip of glandular cells similar to those of the mid-gut extends down one side of division (a) of the hind-gut. This strip has on each side of it a fold of epithelium forming a double valve, the folds almost surround the gut at their extreme anterior end, and fuse in the mid-line at the posterior. The rest of division (a), which is extremely elongated, is lined by flattened epithelium not seen in termites of other families. Division (b) bears chitinous spines, and the wall is deeply folded and very muscular. It has here been termed the posterior gizzard, and leads directly into division (c)—the large intestine.

(4) Brief descriptions of the histology of divisions (a) and (b) of the hind-gut of Mastotermitidae (*Mastotermes*), Protermitidae (*Calotermes*, *Stolotermes*, *Porotermes*) and Mesotermitidae (*Coptotermes*) are given. In main features these resemble each other, and differ greatly from Metatermitidae.

(5) The alimentary canals of termites of various families are arranged in series, corresponding to their systematic position. This series shows a reduction of the spine-bearing area, and an elaboration of the folds anterior and posterior to it.

Alimentary Canals of Termites.

Alimentary Canals of Termites.

Eutermes shows the greatest modification of primitive structures, as shown in *Mastotermes*, and also the introduction of new ones. This is probably correlated with its lack of intestinal protozoa, which would imply a mode of nutrition different from that of other termite families.

In conclusion, I wish to thank Professor Agar for his supervision, and Dr G Buchanan for her help throughout the year. My thanks are also due to Mr G F Hill, of the Council for Scientific and Industrial Research, who has supplied and identified most of my material.

References.

- CLEVELAND, L R, 1926 Symbiosis among animals with special reference to Termites and their Intestinal Flagellates *Quart Rev Biol*, i, pp 51-59
- GRASSI, B., and SANDIAS, A., 1896 Constitution and Development of Termites *Quart Journ Micr Sci*, xxxix, pp 245-316
- HOLMGREN, N., 1909 Termitenstudien I *Kungl Svensk Vetensk Hand*, xliv, 3
- IMMS, A D, 1919 On the Structure and Biology of *Aichotermopsis wroughtonii*, with descriptions of new species of Intestinal Protozoa and General Observations on the Isoptera *Phil Trans Roy Soc Lond (B)*, ccix, pp 75-180
- TILLYARD, R J, 1926 Insects of Australia and New Zealand Angus and Robertson
- WHEELER, W M, 1907 The Fungus-growing Ants of North America *Bull Amer Mus Nat Hist*, pp 669-807

Explanation of Plates I. and II.

All outlines were drawn with the camera lucida

Fig 1—Plan only, details of Figs. 2, 3, 4 and 5 were compiled from two or three adjacent sections

PLATE I

Fig 1.—Longitudinal sections of alimentary canals of various termites to show the demarcation of the different regions (X 40)
 A *Mastotermes*, B *Calotermes*, C *Stolotermes*, D *Poiotermes*, E *Coptotermes*, F *Eutermes*

PLATE II

- Fig 2—A, L S Alimentary canal of *Eutermes* (X 66)
 a-a, b-b, c-c, d-d, levels of transverse sections in Fig 3
 B, H P Portion of valve and mid-gut strip (X 360)
- Fig 3—A, B, C, D T S Alimentary canal of *Eutermes* at levels shown in Fig AA. (X 66)
- Fig 4—L S Alimentary canal of *Mastotermes* (X 66)
- Fig 5—L S Alimentary canal of *Poiotermes* (X 66)

LETTERING

a ev = anterior end of valve a f = folds anterior to posterior gizzard
 a f₁ and a f₂ = 1st and 2nd series of anterior folds c m = circular muscle-fibres d a = division a of hind-gut e p = epithelium
 g c = glandular cell giz = posterior gizzard i v = inner layer of valve l m = longitudinal muscle-fibres m g = mid-gut m g s = strip of mid-gut like tissue m t = malpighian tube o l v = outer layer of valve o m = oblique muscle-fibres p e v = posterior end of valve p f = folds behind posterior gizzard r c = regenerative crypt s = space between valve and mid-gut strip t a f = tooth-bearing folds anterior to posterior gizzard t p f = tooth-bearing folds posterior to posterior gizzard t r = thin-walled region opposite valve v = valve.

[PROC ROY SOC VICTORIA, 47 (N.S.), Pt I, 1934]

ART II—*Zooecial Variation within Species of the Catenicellidae*

By LEO W. STACH

[Read 8th March 1934, issued separately, 22nd December, 1934]

Introduction.

A close study of the morphology of the zooecia of both Recent and fossil species of the Catenicellidae has shown the necessity for an understanding of the directions in which the zooecia of species of this group tend to vary. It may be safely asserted that all major zooecial structures vary, within certain limits. This paper attempts to illustrate the extent of variation of the zooecia within species.

Waters (1883) realized that zooecia of the Catenicellidae showed considerable variation, and stated that "until the amount of variation in Recent species has been carefully studied, it will be very difficult for palaeontologists to determine the *Catenicellae*". Macgillivray (1895) in his observations on *Catenicella hastata* has remarked that it is a very variable species, but his observations are apparently based on specimens of several species of the genus *Costaticella* Maplestone (1899), which are shown to be distinct by their different types of ovicells.

Variation, together with the imperfect state of preservation of fossil specimens, has led to duplication of fossil species by early workers, and it is believed that this contribution will justify the reduction of the number of species recorded from the Victorian Tertiary deposits.

The zooecia of each species figured were taken from the same zoarium, except the fossil zooecia of *Strophipora harveyi* (Wyy-Th.)

Variations of Zooecia.

OUTLINE

The shape of the outline of the zooecia depends mainly on the development of the scapular compartments, which feature will be considered later.

The proportion of length to width, often a distinctive character, varies considerably, depending upon the position of the zooecium in the zoarium. Generally speaking, the older zooecia near the base of the main branch are abnormally elongated, higher up on the main branch the zooecia tend to become broader, while the zooecia near the base of the subsidiary lateral branches tend to elongate, those near the tips of the branches becoming broader.

At the extremities of the branches the developing, immature zooecia are generally broadly oval, and show no distinctive character in their outline, owing to the fact that the lateral compartments have not become fully developed.

Zooecia of individual species vary considerably in size, particularly in the genus *Scuticella* Levinson (1909), although the majority of the zooecia of a zoarium conform to a fairly constant mean

APERTURE

The shape and dimensions of the aperture are practically constant. The proximal rim may be made more salient in older zooecia by elevation of the sternal area just proximal to the aperture as in *Cribrecellina cibraria* (Busk). The distal rim in young zooecia is not thickened.

STERNAL AREA

The variation in proportion of length to width of the zooecia and the development of the proximal and distal infrascapular compartments considerably modify the shape of the sternal area.

The fenestrae vary considerably in size and disposition. The variable number of fenestrae depends to a certain extent on the length of the sternal area, which is generally longer in older zooecia. In a specimen of *Scuticella urnula* (MacG.), five, six, seven, eight, and nine fenestrae were seen on different individuals in a continuous series of twelve zooecia.

LATERAL COMPARTMENTS

In young zooecia terminating the branches, the scapular compartments are the last to develop. They may or may not lodge avicularia. The scapular compartments may be developed upward into long hollow projecting spines in some species. This is found in the younger zooecia of those species which have this characteristic. In old zooecia of such species the spine is rarely developed, and this feature gives an entirely different aspect to the zooecium.

The scapular compartments may develop into enormous avicularia, almost equal in size to that of the zooecium. In *Scuticella plagiostoma* (Busk), large avicularia and others much smaller are developed. The widest range in size of avicularia is seen in *Strophipora harveyi* (Wyv.-Th.). A series of fossil zooecia are figured to illustrate this. They vary from small avicularia surrounding short tubular protuberances to large avicularia greater than the size of the zooecium itself. In *Claviporella aurita* (Busk) also, the avicularia are almost as large as the zooecia.

The direction in which the avicularium faces is fairly constant in some species, but may vary greatly in others. In *Strophipora harveyi* (Wyv.-Th.), they may be directed forward, obliquely laterally, laterally, or backward. In *Scuticella plagiostoma* (Busk), they may face laterally or forward.

The suprascapular compartments in old zooecia of many species of *Scuticella* face forward, whereas in young zooecia of these species, they are directed upward. They also extend much further proximally in the older zooecia, as in *Scuticella ventricosa* (Busk).

Generally in old zooecia the proximal infrascapular compartment is greatly increased in extent, the distal one being correspondingly reduced. They vary slightly in the direction in which they face.

Conclusion.

Zooecial features, in species of the Catenicellidae, vary considerably, and the sum total of the characters of all structures must be considered in the identification of isolated zooecia of species of this group. The variation between old and young zooecia of individual species is particularly remarkable.

References.

- LEVINSEN, G M R, 1909 *Morphological and Systematic Studies on the Cheilostomatous Bryozoa* Kjobenhavn—"Nationale Forfatteres Forlag," pp 1-vii, 1-431, 27 plates
- MACGILLIVRAY, P H, 1895 Monograph of the Tertiary Polyzoa of Victoria *Trans Roy Soc Vic*, iv, pp 1-166, pls 1-xxii
- WATERS, A W, 1883 Fossil Chilostomatous Bryozoa from Muddy Creek, Victoria, &c *Quart Jour Geol Soc*, xxxix, pp 423-442, pl xii

Explanation of Text Figures.

(All figures drawn with camera lucida)

- Fig 1—*Pterocella alata* (Wvv-Th) (a), (b) Zooecia, illustrating variation in proportion of length to width, (c) Young zooecium, scapular and suprascapular compartments not fully developed
- Fig 2—*Cribricellina rufa* (MacG) (a) Elongate zooecium from base of subsidiary lateral branch, (b) Broad convex zooecium from tip of branch
- Fig 3—*Scuticella lorica* (Busk) (a), (b) Zooecia showing variation in size
- Fig 4—*Costaticella solida* (Levinse) (a) Mature zooecium, (b) Young zooecium, distal lateral compartments not developed
- Fig 5—*Scuticella uninula* (MacG) (a) Single zooecium showing seven fenestrae, (b) Geminant pair showing nine fenestrae on mother zooecium and five on daughter zooecium
- Fig 6—*Scuticella ventricosa* (Busk) (a) Old zooecium, showing great development of suprascapular and proximal infrascapular compartments, reduction of scapular compartments lacking the upward projection into a hollow spine, (b) Mature zooecium
- Fig 7—*Claviporella aurita* (Busk) (a) Zooecium with normally developed scapular compartment; (b) Zooecium showing abnormally large scapular compartment, (c) Young zooecium lacking distal lateral compartments
- Fig 8—*Scuticella plagiostoma* (Busk) (a) Zooecium showing small laterally-directed avicularium, (b) Zooecium showing large avicularium facing forward
- Fig 9—*Strophopora harveyi* (Wvv-Th) (a) Zooecium showing small forwardly-directed avicularium mounted on tubular protuberance, (b) Zooecium showing large forwardly-directed and small protruding avicularium, (c) Zooecium showing large bulbous forwardly-directed avicularium; (d) Zooecium showing large laterally-directed and small upwardly-protruding avicularium, (e) Zooecium showing two normal laterally-directed avicularia, (f) Zooecium showing abnormally large laterally-directed avicularium, (g) Zooecium showing enormous backwardly-directed avicularium.

(Magnification is in every case $\times 45$)

Zooecial Variation.

[PROC ROY SOC VICTORIA, 47 (NS), Pt I, 1934.]

ART III—*Victorian Tertiary Catenicellidae, Part II*

By LEO W STACH

(With Plate III.)

[Read 8th March, 1934 issued separately, 22nd December, 1934.]

Introduction.

This paper consists of a revision of the fossil species of the genera of the Catenicellidae having a terminal gonoecium, which are here grouped in the sub-family Scuticellinae, containing the greatest number of genera and species in the Catenicellidae.

There is usually very little evidence to aid the correlation of gonoecia of the Scuticellinae with their zooecia, since during the process of fossilization, the chitinous joints between the zooecia and gonoecia decay, resulting in their separation and scattering, while in those genera with adnate ovicells the characters of the pertaining zooecia serve as evidence for correlation. Certain characteristics of the zooecia are sometimes expressed in the gonoecia, but a correlation can only be tentative in those genera with a large number of species. In those genera with few species, such as *Strophipora* Macgillivray, the choice is correspondingly restricted, and a correlation of the gonoecia with their zooecia is then possible.

Terminal gonoecia are extremely rare in Tertiary deposits owing to the small number produced by each zoarium, they are consequently of little importance in stratigraphical palaeontology, and are therefore not dealt with in this contribution, except where correlation has been possible.

A study of variation in the zooecia of Recent species (Stach, 1934), has shown the necessity for a considerable reduction in the number recorded from the Victorian Tertiary deposits. Macgillivray's figures (1895) of some of the species of this group are misleading, and Maplestone, who in many cases did not have the opportunity of examining Macgillivray's types, has unfortunately duplicated several of Macgillivray's species. This has been revealed by an examination of both Macgillivray's and Maplestone's type specimens. Maplestone has also described young zooecia of previously described forms as separate species.

In those genera having several species, keys have been supplied for ready identification. As far as possible, the least variable characteristics have been employed, but it is necessary to refer to the descriptions in order to check the identification of abnormal zooecia.

Systematic Description.

Sub-family VITTATICELLINAE

Genus **Vittaticella** Maplestone, 1901**VITTATICELLA ELEGANS** (Busk, 1852)

(Pl III, figs 1-4)

Catenicella elegans Busk, 1852, p 361, fig 2, *idem*, 1852, 2, p 10, pl. ix, figs 1-4 P H Macgillivray, 1859, p 161, *idem*, 1868, p 143 Hutton, 1880, p 181 Jelly, 1889, p 36 Ortmann, 1890, p 27, pl ii, fig 1 Kirkpatrick, 1890, p 17, *idem*, 1890, 2, p 611 Thorneley, 1905, p 109

Vittaticella elegans (Busk), Maplestone, 1901, p 203 Waters, 1913, p 484, pl lxv, figs 1-7, 12 Okada, 1921, p 27 Livingstone, 1927, p 57, *idem*, 1929, p 99 Canu and Bassler, 1929, pp 439, 440, text figs 173 A, E, F, 174 A-N

Catenaria elegans (Busk), Levinson, 1909, p 255, pl xiii, figs 3A-B, pl xxi, fig 2A

Description.—To Levinson's description (1909), it needs to be added that the narrow vittae have a single row of six to ten pores

Dimensions.—Fossil specimen. Zooecium, length 0.42 mm, width 0.23, aperture, diameter 0.08 Recent specimen Zooecium, length 0.41, width 0.22, aperture, diameter 0.08 (from Two Sisters' Is.)

Distribution.—Recent Pacific Ocean Bass Strait 48 fathoms, Port Dalrymple on stones at low water (Busk, 1852), "Challenge" station 188 (Torres Strait) 28 fathoms, 163 a off Two-fold Bay (N S W) 150 fathoms, Port Cooper, Banks' Peninsula (Busk, 1884), off Two Sisters' Island (Bass Strait) (coll J Gabriel), Three Kings' Island 65 fathoms, Stewart Island 35 fathoms (New Zealand) (Livingstone, 1929); Sagamibai (Japan) (Ortmann, 1890); shallow sea at Hamajima and Kushimoto (Japan) (Okada, 1921), Tizard bank (China Sea) 6 fathoms (Kirkpatrick, 1890), the authorities of the Australian Museum, Sydney, have kindly supplied the following additional Australian localities Broughton Island (N S W.), 12-22 miles N $\frac{1}{2}$ E from Green Cape (N S W) 39-46 fathoms, Port Darwin (Northern Territory), Noosa Head (South Queensland), Oyster Bay (Tasmania) 40 fathoms, Banks' Strait (Tas), 50 miles S. of Cape Wiles (South Australia)

Indian Ocean Gulf of Manaar, attached to floating oyster cages (Thorneley, 1905); Arafura Sea, Zanzibar channel 10 fathoms (Waters, 1913), Algoa Bay (Busk, 1884)

Atlantic Ocean Madeira, J G J (*fide* Busk, 1884), "Challenger" station 135 Tristan da Cunha 60-1,100 fathoms, 122 South Atlantic 32-400 fathoms (Busk, 1884)

Lower Miocene Forsyth's (below remanié nodule bed) on Grange Burn Creek (Hamilton).

Observations.—This well-known species, unlike the vast majority of the Catenicellidae, has a surprisingly wide distribution throughout tropical and temperate seas This, however, constitutes its first record as a fossil Maplestone (1904) has indicated that Waters had recorded this species from Muddy Creek and Curdie's Creek It was, however, "*Catenicella elegans* var *buskii*" which he recorded

It appears to thrive in waters of moderate depth, but it is interesting to note Busk's record of its occurrence on stones at low water at Poit Dalrymple.

As is usual with such a widespread species, it varies somewhat, particularly in its dimensions, length of vittae, and proportion of length to width. It is readily recognized, however, by its narrow vittae facing forward with a single row of pores, and the generally elongate form of the zoocia, which, however, does not approach the elongation of *V. praetenuis* (MacG., 1895), to which it is allied.

VITTATICELLA SPECIOSA (Macgillivray, 1895)

Catenicella elegans var. *buskii* Waters (non *C. buskii* Wyv.-Th.), 1881, p. 317, pl. xvi, figs. 42, 43, *idem*, 1883, p. 430 Jelly, 1889, p. 35.

Caloporella speciosa Macgillivray, 1895, p. 19, pl. ii, fig. 15.

Vittaticella speciosa (Macgillivray), Maplestone, 1901, p. 202, *idem*, 1904, p. 189 Stach, 1933, p. 90, pl. viii, figs. 1-3.

Vittaticella cruciformis Maplestone, 1911, p. 271, pl. xxxviii, fig. 13.

Observations.—The geminate pair figured by Waters (1881) has the vittae facing obliquely forward, whereas *Vittaticella buskii* (Wyv.-Th.) has the vittae facing laterally. His comparison of this form with *Cornuticella perforata* (Busk) is also disallowed by this observation. Maplestone (1904) has apparently referred this form to *Vittaticella elegans* (Busk), since the only localities given for it (under the name of *Catenicella elegans* Busk), are those given by Waters (1883), which Maplestone acknowledges. Waters did not record *V. elegans* Busk from the Victorian Tertiary. The form figured agrees in all respects with *Vittaticella speciosa* (MacG., 1895). The following additional locality should thus be added to those of *V. speciosa*, Curdie's Creek (Waters).

Marcus (1920) has included *C. elegans* var. *buskii* Waters (non *C. buskii* Wyv.-Th.) in his synonymy of *Catenicella buskii* Wyv.-Th.

Artificial Key to the Tertiary Species of Vittaticella Maplestone.

1	{ Vittae facing forward . .	2
	{ Vittae facing laterally . .	3
	{ Vittae facing obliquely ..	4
2	{ Vittae with one row of pores ..	5
	{ Vittae with two rows of pores ..	<i>V. grandis</i> (Mapl.)
	{ Vittae with four rows of pores ..	<i>V. enomis</i> (Mapl.)
3	{ Zoocium ovate ..	6
	{ Zoocium hastate ..	<i>V. rostrata</i> (Mapl.)
4	{ Vittae with one row of pores ..	7
	{ Vittae with two rows of pores ..	<i>V. speciosa</i> (MacG.)
5	{ Length width of zoocium as 2 1	<i>V. elegans</i> (Busk)
	{ Length width of zoocium as 3 1	<i>V. praetenuis</i> (MacG.)
6	{ Marginal flange in dorsal view ..	<i>V. teres</i> (MacG.)
	{ No marginal flange in dorsal view ..	<i>V. hannahfordi</i> (MacG.)
7	{ Length width of zoocium as 3 . 1	<i>V. sacculata</i> (Busk)
	{ Length width of zoocium as 2 1 .	<i>V. insignis</i> (MacG.)

Sub-family SCUTICELLINAE, sub-fam. nov

Description.—Internodes of one zooecium or a geminate pair, rarely three zoecia in each internode

Avicularia well developed, usually facing laterally and situated about the level of the aperture, suprascapular and infrascapular compartments usually membranous, rarely calcified, one or two pairs of infrascapular compartments Avicularia rarely present on adzooecial side of mother zooecium of geminate pair

Sternal area may be ornamented by fenestrae, hollow spines separated by fissures, scattered pores, a submarginal row of pores around a central spinous area, or may be represented by a median ridge with a central pore

Ovicell a terminal gonoecium

Genus **Scuticella** Levinsen, 1909

Scuticella Levinsen, 1909, p. 221 Canu and Bassler, 1927, p. 21, *idem*, 1929, pp. 444, 446, 447, text-fig. 179

Genotype.—*Scuticella plagiostoma* (Busk, 1852)

Observations.—This genus, well-described and figured by Levinsen (1909) and Canu and Bassler (1929), is characterized by its fenestrated sternal area and non-calcified suprascapular compartments. Although Levinsen designated no genotype, the first species, *S. plagiostoma* (Busk), which he described very fully, should be chosen, although a more typical species of this group could have been selected.

SCUTICELLA AURICULATA (Macgillivray, 1895)

Catenicella auriculata Macgillivray, 1895, p. 15, pl. II, fig. 5
Maplestone, 1904, p. 186

Catenicella baccata Maplestone, 1899, p. 8, pl. II, figs. 15, 15A;
idem, 1904, p. 186

Description.—Zooecium elliptical in outline, greatest width, at middle level of zooecium, slightly greater than one-third length of zooecium.

Slightly convex proximal rim, in middle third of zooecium, situated one-third of distance proximally from distal connecting-tube aperture. Height of aperture equals half distance from proximal rim to distal connecting-tube aperture

Elongate, semielliptical sternal area, equalling in length slightly more than one-third length of zooecium, has nine to thirteen fenestrae

Scapular compartments, situated at level of distal half of aperture, lodge small avicularia facing obliquely forward. Suprascapular compartments well-developed, broad, and facing obliquely forward. Distal infrascapular compartments extend to middle level of zooecium, the proximal infrascapular compartment extending to base, both face obliquely forward

Dorsal surface moderately convex, depressed at projecting distal angles. Axis of daughter zooecium inclined at 60 deg to that of mother zooecium.

Ovicell not observed

Dimensions—Zooecium from Glencoe No 7 bore 790 feet, Zooecium, length 0.56 mm, width 0.24; aperture, diameter 0.10

Distribution—Lower Miocene Clifton Bank (Muddy Creek, Hamilton), Campbell's Point (Mulder), north side of Armstrong's Creek 10 chains east of Torquay-road, Mitchell River at Bairnsdale, Knight's bore at Dartmoor, Glencoe No 7 bore 790 feet, Moonoduc No 6 bore 4 feet-6 feet, Balcombe Bay

Upper Oligocene Glencoe No 7 bore 1,270 feet

Observations—This species is characterized by its elongated zooecium and sternal area with nine to thirteen fenestrae and the small obliquely-directed avicularia, which, however, tend to become laterally-directed in old zooecia of this species.

The geminate pair described as *Catenicella baccata* by Maplestone (1899) agrees in every detail with *S. auriculata* (MacG.). The fact of its having opaque spots on the dorsal surface (it is not papillose as stated by Maplestone, 1899) is considered to be of no systematic value.

Waters (1904) has compared his *Catenicella frigida* with this species. It differs from *S. auriculata* (MacG.) in having only five to eight fenestrae, while the observed range in *S. auriculata* is nine to thirteen. There seems no doubt that these two species are distinct.

SCUTICELLA URNULA (Macgillivray, 1887)

(Plate III, figs 5, 6)

Catenicella urnula Macgillivray, 1887, p 34, pl i, figs 2, 2A, *idem*, 1879-1890, dec xv, p 174, pl 146, figs 2, 2A, *idem* 1887, 2, p 197 Jelly, 1889, p 39

Catenicella nobilis Macgillivray, 1895, p 9, pl 1, fig 3 Maplestone, 1904, p 187

Catenicella acutirostris Maplestone, 1899, p 9, pl ii, fig 19, *idem*, 1904, p 186

Scuticella urnula (Macgillivray), Levinson, 1909, p 231, pl xi, figs 4A-B, pl. xx, figs 1A-R Stach, 1934, p 15, text-figs 5A-B

Description—Levinson (1909) has given a satisfactory diagnosis of this species.

Dimensions—Zooecium from Mitchell River, Bairnsdale, Zooecium, length 0.61 mm, width 0.37, aperture, diameter 0.12

Distribution—Recent Port Phillip Heads (Macgillivray)

Middle Miocene Glencoe No 7 bore, 330 feet

Lower Miocene Clifton Bank (Muddy Creek, Hamilton), Foysth's (below remanié nodule bed) on Grange Burn (Hamilton), Campbell's Point (Mulder), Mitchell River at Bairnsdale

Observations—A comparison of Macgillivray's type of *Catenicella nobilis* and Maplestone's type of *Catenicella acutirostris* with Recent zooceria of *S. urnula* (MacG) has shown that they differ in no essential feature

This species is characterized by its prominent avicularia constantly facing directly forward. The size of the avicularia varies slightly in both fossil and Recent zooceria

SCUTICELLA LORICA (Busk, 1852)

(Text-figs 1-4)

Catenicella lorica Busk, 1852, p. 358, *idem*, 1852, 2, p. 6, pl. 1, figs 1-3. Maplestone, 1882, p. 49. Jelly, 1889, p. 37 (early synonymy). Harmer, 1902, p. 310.

Scuticella lorica (Busk), Levinson, 1909, pp. 215, 219. Stach, 1934, p. , text-figs 3A, B.

Description—Zooecium subrectangular in outline, tapering slightly to proximal connecting-tube aperture, greatest width, at summit of zooecium, equals two-thirds length of zooecium

FIG 1

(Magnification $\times 45$)

FIG 1.—*Scuticella lorica* (Busk), fragment of zoarium illustrating terminology, *ap g*, aperture of gonoeicum, *ap z*, aperture of zoecium; *av*, avicularium, *c* connecting tube, *ca*, connecting-tube aperture, *f*, fenestra, *G.*, gonoeicum, *G.P.*, geminate pair, *m*, mandible; *p*, septulae, *r.d*, distal rim of aperture, *r.p*, proximal rim of aperture, *s*, scapular compartment, *sa*, sternal area, *sid*, distal infrascapular compartment, *sip*, proximal infrascapular compartment; *ss*, suprascapular compartment, *Z*, single zoecium, *Zd*, daughter zoecium, *Zm*, mother zoecium

Straight proximal rim in middle third of zooecium, with partly closed small sinus, situated one-quarter of length of zooecium proximally from distal connecting-tube aperture Lateral and distal margins as in *S. marginata* (Waters)

Broad, smooth sternal area, slightly elevated in region of proximal rim, has three large elliptical fenestrae, the proximal median fenestra, equalling about two-thirds area of aperture, being the largest

Scapular compartments, variable in size, and usually lodging a small avicularium, situated at and above level of distal half of aperture, facing directly laterally Upwardly-directed suprascapular compartments shallow and of small extent Distal infrascapular compartments, pierced by about seven septulae, reach almost to middle level of zooecium Proximal infrascapular compartments pierced by numerous septulae, and flanged at their proximal extremities Both infrascapular compartments face almost directly laterally

Dorsal surface shows moderately convex elongated hexagonal area flanged at proximal and distal ends by lateral compartments

Axis of daughter zooecium inclined at 40 deg to that of mother zooecium of a geminate pair

Gonoecium ovate in outline, erect, surmounted by an upwardly-projecting avicularium Steinal area, two-thirds length of gonoecium, has three large fenestrae Aperture almost equal in width to that of gonoecium Height of aperture one-third its width Two pairs of lateral compartments, below level of proximal rim, and facing obliquely forward, are pierced by numerous septulae

FIGS 2-4

(Magnification $\times 45$)

FIG 2—*Scuticella lorica* (Busk) Recent incinerated geminate pair from Bass Strait cable FIG 3—*S. lorica* (Busk) Recent incinerated single zoecium from Bass Strait cable showing avicularium and septulae of infrascapular compartments in side view FIG 4.—*S. lorica* (Busk) Fossil geminate pair from Mitchell River cliffs at Bairnsdale

Dimensions—Recent specimen, single zooecium Zooecium, length 0.65 mm, width 0.41, aperture, diameter 0.1. Recent specimen, mother zooecium Zooecium, length 0.60, width 0.27 Fossil specimen, mother zooecium Zooecium, length 0.69, width 0.31

Distribution—Recent Southern Australia Bass Strait cable, off Two Sisters' Island (Bass Strait), Western Port (J. G. Gabrie!), Bass Strait, 45 fathoms (Busk); off Devonport and Launceston (Tasmania), off Gabo Island 100-200 fathoms (Australian Museum coll.)

Lower Miocene Mitchell River at Bairnsdale

Observations—This species is readily distinguished by its three large fenestrae and subrectangular outline

A single geminate pair of this species was found fossil. It agrees closely with the dimensions of Recent zooecia, and shows the large elliptical proximal median fenestra, and a suggestion of the two distal fenestrae on the mother zooecium. The disposition of the lateral compartments is identical with that of *S. lorica*. Although the specimen is damaged, it undoubtedly belongs to this species.

The fossil and a Recent geminate pair are figured for comparison

Scuticella gibbslandica, sp. nov.

(Text fig 7, Pl III, figs 7, 8)

Catenicella marginata Macgillivray (*non* Waters), 1895, pl 1, fig 26

Description—Zooecium somewhat elliptical in outline, greatest width, across centre of zooecium below avicularia, equals about two-thirds length of zooecium

Straight proximal rim of aperture, in middle third of zooecium, situated slightly above level of greatest width, aperture extending less than half distance to summit from proximal rim, the much-thickened distal and lateral rims forming an arc greater than a semicircle. Two small denticles above level of proximal rim

Scutiform sternal area extends two-thirds distance from proximal rim to distal connecting-tube aperture bordered by wide raised margins of infrascapular compartments. Fenestrae six or seven

Scapular compartments, level with upper half of aperture, face directly laterally and equal in extent half height of aperture. A broad raised band descends from summit to distal rim and laterally to the scapular compartments, then to base, the latter bordering a single infrascapular compartment on each side of zooecium facing obliquely laterally.

Dorsal surface smooth, moderately convex in axial region, merging into a distinct flange around lateral margins of zooecium

Geminate pair or ovicell not observed

Dimensions—Holotype, from Mitchell River Zooecium, length 0.69 mm, width 0.50, aperture, diameter 0.10 Specimen from Largon Creek Zooecium, length 0.79, width 0.54, aperture, diameter 0.11

Distribution—Lower Miocene. Mitchell River at Bairnsdale, Largon Creek off Toorloo Arm (8 miles E of Lakes Entrance).

FIGS 5-7

(Magnification X 45)

FIG. 5—*Scuticella wilsoni* (Macgillivray) Recent normal zoecium showing single long infrascapular compartment as found in *S. gippslandica* sp. nov FIG 6—*S. wilsoni* (Macgillivray) Recent abnormal zoecium showing trace of development of a proximal infrascapular compartment. FIG 7—*S. gippslandica*, sp. nov Zooecium showing the single long infrascapular compartment typical of this fossil species

Observations—Macgillivray has placed this distinctive form with *Scuticella marginata* (Waters) from which it differs in many respects. The elliptical outline, single infrascapular compartment and the lesser number of fenestrae distinguish this species.

It is closely allied to *Scuticella wilsoni* (MacG.) (1879-1890), both having a single long infrascapular compartment and seven fenestrae. *S. wilsoni*, however, differs in the distinctly quadrate outline and the greater proportionate width of its zoocia.

This somewhat rare species has shown but little variation except in the number of fenestrae and the dimensions mentioned above.

S. gippslandica is restricted to the Miocene deposits of Gippsland, to which feature it owes its specific designation

SCUTICELLA AMPLA (Waters, 1881)

Catenicella ampla Waters, 1881, p. 317, pl. xvi, figs 46, 50, *idem*, 1882, p. 259, *idem*, 1883, p. 429 Macgillivray, 1895, p. 9, pl. 1, figs 4-6 Maplestone, 1904, p. 186, *idem*, 1911, p. 266, pl. xxxvii, fig. 2

- Catenicella stricta* Macgillivray, 1895, p 15, pl 11, fig 6 Maplestone, 1904, p 188
Catenicella lunifera Macgillivray, 1895, p 16, pl 11, fig 2 Maplestone, 1904, p 187
Catenicella ovoidea Macgillivray, 1895, p 16, pl 11, figs 3, 4 Maplestone, 1904, p 187
Calpidium morningtonensis Maplestone, 1898, p 20, pl 11, figs 17, 18, *idem*, 1904, p 190
Catenicella dennanta Maplestone, 1899, p 9, pl 11, fig 17; *idem*, 1904, p 187

Description—Zooecium subovate in outline, greatest width, at middle level of zooecium, equals about one-half its length

Slightly convex proximal rim, made salient by elevation of distal median portion of sternal area, situated in middle third of zooecium one-quarter of distance proximally from distal connecting-tube aperture

Broad sternal area, with five to nine pyriform fenestrae, equals in length two-thirds that of zooecium

Scapular compartments extend from level of proximal rim to slightly above level of distal connecting-tube aperture and face directly laterally, appearing as auricular processes in frontal view Suprascapular compartments small in extent and upwardly-directed Distal infrascapular compartments extend to a level one-half to two-thirds distance proximally from distal connecting-tube aperture, proximal infrascapular compartments extending to base of zooecium Both infrascapular compartments face obliquely backward

Dorsal surface with a median longitudinal groove flanked by the depressions of the lateral compartments Axis of daughter zooecium inclined at 30° to that of mother zooecium

Ovicell not observed

Dimensions—Zooecium from Moorooduc No 6 bore 4 feet-6 feet Zooecium, length 0.71 mm, width 0.45; aperture, diameter 0.13 Zooecium from Glencoe No 7 bore 790 feet Zooecium, length 0.67, width 0.39, aperture, diameter 0.13

Distribution—Lower Miocene Clifton Bank (Muddy Creek, Hamilton), Flinders, Torquay, Campbell's Point (Mulder), Griffin's near Batesford, Hamilton bore 80 feet-85 feet, Glencoe No 7 bore 580 feet, 650 feet, 660 feet, 705 feet, 725 feet, 790 feet, Moorooduc No 6 bore 4 feet-6 feet, Grice's Creek (near Frankston), Balcombe Bay, Mitchell River at Bairnsdale, Curdie's Creek

Upper Oligocene· Glencoe No 7 bore 1270 feet

Observations—This species is characterized by its large auricular laterally-directed avicularia and its distinctive dorsal surface, the appearance of which is caused by the infrascapular

compartments being directed obliquely backward. In some zooecia the infrascapular compartments tend to become laterally-directed.

An examination of the type specimen of *Catenicella structa* MacG revealed no fundamental difference from typical specimens of *S. ampla*, the zooecium being slightly more elongate than normal zooecia of this species.

Catenicella lunipora MacG represents an old zooecium of *S. ampla*. It has the typical avicularia of the latter species, but has fewer fenestrae (five) and the infrascapular compartments tend to become laterally-directed, both departures being due to normal zoocial variation within species of the Catenicellidae (Stach, 1934).

Macgillivray's figures of *Catenicella ovoidea* show a frontal view in all respects similar to his figures of *S. ampla* (1895, pl i, figs 5-6), but his representation of the dorsal view does not show the infrascapular compartments directed obliquely backward as is seen in Macgillivray's plesiotypes. This species was also recognized as *S. ampla* by T. S. Hall, who examined the Macgillivray collection after the latter's death.

The fenestrae of the type specimen of *Catenicella demanti* Mapl are not strongly bordered as Maplestone has figured them. The specimen has the same disposition of lateral compartments and the typical avicularia of *S. ampla*.

The apparent great protrusion of the distal rim of the aperture of *Calpidium morningtonensis* Mapl is exaggerated in Maplestone's figures, the specimen showing the thickened distal and lateral rims of the aperture accentuated by fracture of the elevated distal portion of the sternal area. This zooecium agrees in all respects with typical zooecia of *S. ampla*.

SCUTICELLA MARGINATA (Waters, 1881)

Catenicella marginata Waters, 1881, p. 317, pl. xvi, figs. 44, 45
Macgillivray, 1895, p. 13, pl. i, figs. 25-27 Maplestone, 1904
p. 187

Catenicella daedala Macgillivray, 1895, p. 14, pl. 1, fig. 28 Maplestone, 1898, p. 16, pl. 1, figs. 4, 5; *idem*, 1904, p. 187

Catenicella barnsdalei Maplestone, 1911, p. 266, pl. xxxvii, fig. 8

Description.—Zooecium oval in outline, slightly constricted near base; greatest width, one-third of distance proximally from distal connecting-tube aperture, equals one-half length of zooecium.

Proximal rim of aperture, in middle third of zooecium, situated one-third distance proximally from distal connecting-tube aperture. Aperture extends one half to two-thirds distance from proximal rim to distal connecting-tube aperture, lateral and distal margins forming an arc greater than a semicircle, distal rim greatly thickened. Proximal rim straight with two short denticles a short distance up lateral margins.

Elongate scutiform sternal area extends two-thirds distance from proximal rim to proximal connecting-tube aperture, bordered by wide raised margins of infrascapular compartments Fenestrae, eight to eleven

Scapular compartments, facing directly laterally, situated at middle level of aperture and equal in extent half height of aperture, a broad band extends half way round summit descending to and following distal rim, then branching out to scapular compartments, forming border of suprascapular compartments Below scapular compartment is the small elliptical depressed area of the distal infrascapular compartment facing obliquely forward, extending one-third distance from base of scapular to proximal connecting-tube aperture, bordered by a broad raised band continuing around proximal infrascapular compartment which extends as a depressed elliptical area to base

Dorsal surface smooth, very convex in axial region, lateral chambers form narrow flange around zooecium.

Axis of daughter zooecium inclined at 50 deg to that of mother zooecium

Ovicell unknown

Dimensions—Old zooecium from Mitchell River Zooecium, length 0.92 mm, width 0.52, aperture, diameter 0.12 Young zooecium from Balcombe Bay Zooecium, length 0.60, width 0.42; aperture, diameter 0.12

Distribution—Middle Miocene Glencoe No 7 bore, 330 feet

Lower Miocene Clifton Bank (Muddy Creek, Hamilton), Forsyth's (below remanié nodule bed), Flinders, Griffin's (near Batesford), Campbell's Point (Lake Connewarre), Thompson's Creek (south of Moriac), mouth of Spring Creek, north side of Armstrong's Creek 10 chains east of Torquay-road, Batesford Tunnel marl, Prowse's marl pit (2 miles west of Mount Moriac), Mitchell River at Bairnsdale, Lagon Creek off Toorloo Arm (8 miles east of Lakes Entrance), Dartmoor (at foot of railway bridge over Glenelg River), Knight's bore (Dartmoor), Curdie's Creek (Waters), Hamilton bore 80 feet-85 feet, Glencoe No 7 bore 650 feet-1,110 feet, Moorooduc No 6 bore 4 feet-6 feet, Balcombe Bay

Upper Oligocene Glencoe No 7 bore, 1,270 feet

Observations—This very common and widespread species varies considerably as regards size, proportion of length to width and convexity of dorsal surface

In zoaria of the Catenicellidae there is a tendency for the early-formed zooecia to be larger in size, elongated, and with a slightly curved dorsal surface The young zooecia at the summits of the curling tips of the branches tend to be shorter and more convex dorsally

The form described as *Catenicella daedala* by Macgillivray, represents a young zooecium of *Scuticella marginata*, no fundamental difference being apparent between the two forms. Macgillivray's figured specimens of *C. marginata* represent old zooecia of the species.

An examination of Maplestone's type of *Catenicella bairnsdalei* shows that it is a rotund young zooecium of *S. marginata* (Waters).

This form is readily distinguished by the thick margins of the lateral compartments and the great thickening of the distal rim of the aperture.

SCUTICELLA PAPILLATA (Maplestone, 1899)

Catenicella papillata Maplestone, 1899, p 7, pl 11, figs 14, 14a-b,
idem, 1904, p 187

Catenicella concinna Maplestone, 1911, p 267, pl xxxvii, fig 5

Description.—Zooecium elongate-oval in outline, greatest width at upper level of scapular compartments, equals about half length of zooecium.

Slightly concave proximal rim, in middle third of zooecium, situated less than one-third distance proximally from distal connecting-tube aperture. Height of aperture slightly more than one-half distance from proximal rim to distal connecting-tube aperture. A pair of small denticles on lateral margins of aperture.

Small elongate sternal area, equal in length to one-third that of zooecium, with eight to ten fenestrae.

Scapular compartments, at level of distal rim of aperture, lodge small avicularia facing directly laterally. Suprascapular compartments face obliquely forward. Distal infrascapular compartments extend to middle level of zooecium, the proximal infrascapular compartments extending to proximal connecting-tube aperture; both face obliquely forward.

Dorsal surface moderately convex, slightly flattened at distal end of zooecium.

Axis of daughter zooecium inclined at about 80 deg to that of mother zooecium.

Ovicell not observed.

Dimensions.—Syntype (single zooecium) from Clifton Bank, Zooecium, length 0.52 mm, width 0.29, aperture, diameter 0.09.

Distribution.—Lower Miocene Campbell's Point (Lake Connewarre), Clifton Bank (Muddy Creek, Hamilton), Flinders, Batesford Tunnel marl, Knight's bore (Dartmoor), Hamilton bore 80 feet-85 feet, Balcombe Bay.

Observation.—An examination of the types of *Catenicella papillata* Maplestone and *C. concinna* Maplestone reveals no fundamental difference between the two specimens

This species is characterized by its elongate oval outline and the position of the scapular compartments on a level with the distal rim of the aperture

The "papillose dorsal surface" of Maplestone (1899) is seen to be quite smooth in the syntype (specimen showing dorsal view), but opaque white spots are visible in the otherwise transparent dorsal surface. This is believed to be due to external influences either in life or during preservation, and is therefore regarded as being of no specific value. Other specimens from the type locality (Clifton Bank) agree in every feature with the types, except in not having a spotted dorsal surface

The name *Catenicella concinna* has previously been used by Macgillivray (1881) for a form which Maplestone (1899) and Jelly (1889) regard as synonymous with *Strongylopora pulchella* (Maplestone), and therefore Maplestone's name for his later *Catenicella concinna* (1911) could not be used in any case

SCUTICELLA VENTRICOSA (Busk, 1852)

Catenicella ventricosa Busk, 1852, p. 357, *idem*, 1852, 2, p. 7 pl. 11, figs 1, 2, pl. iii, figs 1-5 Macgillivray, 1859, p. 160, *idem*, 1868, p. 143 Waters, 1883, p. 431 Kirchenpauer, 1885, p. 535. Jullien, 1888, p. 275, pl. xi, fig. 3 Jelly, 1889, p. 39 (early bibliography) Macgillivray, 1889, p. 25, *idem*, 1890, p. 6, *idem*, 1895, p. 9, pl. 1, figs 1, 2 Hamilton, 1898, p. 194 Maplestone, 1904, p. 188

Scuticella ventricosa (Busk), Levinsen, 1909, p. 227, pl. 21, figs 6A-B pl. xx, figs 5A-C Livingstone, 1928, p. 116 Cauu and Bassler, 1929, p. 439, text-fig. 173 D, p. 447, text-figs 179 A-F Livingstone, 1929, p. 97 Stach, 1934, text-figs 6A-E.

Description.—Levinsen (1909) has given an excellent diagnosis of this species

Dimensions.—Recent zoecium from Bass Strait Zoecium, length 0.58 mm., width 0.39, aperture, diameter 0.13. Fossil zoecium from Mitchell River Zoecium, length 0.55, width 0.33, aperture, diameter 0.13

Distribution.—Recent Victoria Bass Strait 45 fathoms (Busk), Queenscliff, Western Port, Sealers' Cove (Macgillivray), off Two Sisters' Island (Bass Strait) (J. Gabriel coll.), Lorne, Glennie Group (Wilsons Promontory) (Austr. Mus. coll.) New South Wales 3-4 miles off Eden (J. Gabriel coll.) Port Jackson, Newcastle, Broughton Island, 12-22 miles north $\frac{1}{2}$ east from Green Cape 39-46 fathoms, La Perouse (Botany Bay) (Austr. Mus. coll.) South Australia Robe (Macgillivray), Sanders Bank (Kangaroo Island) (Austr. Mus. coll.) Tasmania 7 miles north-east of Cape Pillar 50-60 fathoms, Oyster

Bay 40 fathoms, off Launceston and Devonport, Circular Head (Austl Mus coll) New Zealand Napier, Wellington, Dunedin, Foveaux Strait (Hamilton), Stewart Island 35 fathoms, 10 miles off Cape Maria van Diemen 50 fathoms, Colville Channel 35 fathoms (Livingstone)

Lower Miocene Clifton Bank (Muddy Creek, Hamilton), Campbell's Point (Lake Connewarre), Spring Creek (Toorquay), Mitchell River at Bairnsdale, Glencoe No 7 bore 705 feet, Moorooduc No 6 bore 4 feet-6 feet

Observations—This common species has a wide distribution in south-east Australian and New Zealand waters of moderate depth.

The fossil specimens have been compared with incinerated zooecia of typical Recent specimens from Bass Strait, with which they are identical. In the fossil specimens examined, however, the upward protrusion of the scapular compartments is invariably broken off.

SCUTICELLA LATA, sp nov

(Plate III, figs 9, 10)

Description—Zooecium semielliptical in outline; greatest width, at level of distal connecting-tube aperture, almost equals length of zooecium

Straight proximal rim, in middle third of zooecium, situated less than one-third of the distance proximally from distal connecting-tube aperture. Aperture semielliptical, equalling in height three-quarters of distance from distal connecting-tube aperture to proximal rim, below which is a large subcircular ascopore.

Broad sternal area equal in length to half of that of zooecium. Fenestrae five to seven.

Scapular compartments, at and above level of distal half of aperture, lodge small avicularia facing directly laterally. Upwardly-directed shallow suprascapular compartments of small extent. Distal infrascapular compartments extend to middle level of zooecium, proximal infrascapular compartments extending below it almost to proximal connecting-tube aperture, both facing obliquely forward.

Dorsal surface moderately convex, depressed at distal angles.

Axis of daughter zooecium inclined at 35 deg to that of mother zooecium.

Ovicell not observed.

Dimensions—Recent zooecium from Western Port Zooecium, length 0.60 mm, width 0.49, aperture, diameter 0.14. Fossil zooecium from Forsyth's Zooecium, length 0.53, width 0.43; aperture, diameter 0.14.

Distribution—Recent Western Port (J. Gabriel coll.)

Lower Miocene· Clifton Bank (Muddy Creek, Hamilton), Bell's Beach (between Torquay and Point Addis), Prowse's marl pit (2 miles west of Mount Moriac), Flinders, Forsyth's (below remanié nodule bed), Mitchell River at Bairnsdale

Observations—This species is characterized by the broad outline of the zooecium, the large scapular compartment projecting upward and the subcircular ascopore. The fossil specimens, although the sternal area is damaged in all those examined, agree in all other details with the Recent specimens, as will be seen from a comparison of the figures.

S. lata is allied to *S. margaritacea* (Busk) (1852), from which it is distinguished by its broader outline and comparatively large ascopore.

SCUTICELLA INTERMEDIA (Macgillivray, 1868)

(Text-figs 8, 9)

Catenicella intermedia Macgillivray, 1868, p 127 Jelly, 1889, p 37 (early bibliography) Macgillivray, 1895, p 16, pl II, fig 1 Maplestone, 1904, p 187

Scuticella intermedia (Macgillivray), Levinsen, 1909, pp 215, 219.
Catenicella longispinosa Maplestone, 1911, p 268, pl xxxvii, fig 8.

Description—Zooecium broadly semielliptical in outline; greatest width, at level of distal connecting-tube aperture, almost equals length of zooecium

Slightly convex proximal rim, one-quarter width of zooecium in length, situated one-third distance proximally from distal connecting-tube aperture. Height of aperture equals three-quarters distance from proximal rim to distal connecting-tube aperture. A minute ascopore below proximal rim

Ovate sternal area, equalling in length half that of zooecium, is ornamented with five to eight pyriform fenestrae varying considerably in size

Scapular compartments, facing directly laterally, usually developed into large avicularia extending to level of distal connecting-tube aperture from level of proximal rim. Suprascapular compartments, of small extent, face forward and upward. Distal infrascapular compartments extend to a level almost one-half distance distally from proximal connecting-tube aperture, the proximal infrascapular compartments extending to base, both face obliquely laterally.

Dorsal surface slightly convex, flattened along lateral margins and distal angles of zooecium

Axis of daughter zooecium inclined at 40 deg to that of mother zooecium

Ovicle not observed

Dimensions—Recent specimen Zooecium, length 0.50 mm., width 0.46, aperture, diameter 0.13 Fossil zooecium from Campbell's Point Zooecium, length 0.53, width 0.50; aperture, diameter 0.14

Distribution—Recent Port Phillip Heads, off Launceston and Devonport (Tasmania) (Austr Mus coll.)

Lower Miocene Clifton Bank (Muddy Creek, Hamilton), Flinders, Griffin's (near Batesford), Campbell's Point (Lake Connewarre), Mitchell River at Bairnsdale, Balcombe Bay

Observations—This species is closely allied to *Scuticella lata*, sp. nov., from which it is distinguished by its very minute ascopore and the relatively large size of the fenestrae. In some zooecia the minute ascopore is only represented by a narrow sinus.

FIGS 8, 9

(Magnification $\times 45$)

FIG 8—*Scuticella intermedia* (Macgillivray) Maplestone's type of *Catenicella longispinosa*. FIG 9—*S. intermedia* (Macgillivray) Recent zoecium showing large avicularium approaching the size of those in Fig 8

This species is characterized by its minute ascopore and the large avicularia extending upward to the level of the distal connecting-tube aperture. No essential difference could be observed between fossil and Recent zooecia of this species.

The specimen described as *Catenicella longispinosa* by Maplestone (1911) is a mature zooecium of this species, in which the avicularia are very well developed. In the small fragment of a Recent zoarium examined by the author, some zooecia had avicularia approaching the size of those seen in Maplestone's specimen, and there appear to be no grounds for regarding *Catenicella longispinosa* Maplestone as a separate species.

Artificial Key to the Victorian Tertiary Species of Scuticella Levinson.

1	$\left\{ \begin{array}{l} \text{Scapular compartments directed laterally} \\ \text{Scapular compartments directed obliquely forward} \end{array} \right.$	2
	$\left\{ \begin{array}{l} \text{Scapular compartments facing directly forward} \\ \text{..} \end{array} \right.$	<i>S. auriculata</i> (MacG.)
2	$\left\{ \begin{array}{l} \text{Sternal area with three oval fenestrae} \\ \text{Sternal area with more than three fenestrae} \end{array} \right.$	<i>S. urnula</i> (MacG.)
	$\left\{ \begin{array}{l} \text{One infrascapular compartment} \\ \text{Two infrascapular compartments} \end{array} \right.$	<i>S. loria</i> (Busk)
3	$\left\{ \begin{array}{l} \text{Non-spinous scapular compartment extending above level of distal connecting-tube} \\ \text{aperture} \end{array} \right.$	3
	$\left\{ \begin{array}{l} \text{Not as above} \\ \text{Elongate sternal area bounded by thick margins of proximal lateral compartments} \end{array} \right.$	<i>S. ampla</i> (Waters)
4	$\left\{ \begin{array}{l} \text{Not as above} \\ \text{Scapular compartment developed upward into a hollow spine} \end{array} \right.$	4
	$\left\{ \begin{array}{l} \text{Not as above} \\ \text{Zooecium elongate} \end{array} \right.$	<i>S. marginata</i> (Waters)
5	$\left\{ \begin{array}{l} \text{Zooecium broad} \\ \text{Large sub-circular ascopore present} \end{array} \right.$	5
	$\left\{ \begin{array}{l} \text{Not as above} \\ \text{Not as above} \end{array} \right.$	<i>S. ventricosa</i> (Busk)
6	$\left\{ \begin{array}{l} \text{Zooecium elongate} \\ \text{Zooecium broad} \end{array} \right.$	6
	$\left\{ \begin{array}{l} \text{Large sub-circular ascopore present} \\ \text{Not as above} \end{array} \right.$	<i>S. papillata</i> (Mapl.)
7	$\left\{ \begin{array}{l} \text{Zooecium broad} \\ \text{Not as above} \end{array} \right.$	7
	$\left\{ \begin{array}{l} \text{Large sub-circular ascopore present} \\ \text{Not as above} \end{array} \right.$	<i>S. lata</i> sp nov
8	$\left\{ \begin{array}{l} \text{Zooecium broad} \\ \text{Not as above} \end{array} \right.$	<i>S. intermedia</i> (MacG.)

Genus *Costaticella* Maplestone, 1899

Costaticella Maplestone, 1899, p 9 Canu and Bassler, 1927, p 21,
idem, 1929, pp. 445, 448, text-fig 180

Costicella Levinson, 1909, p 233

Genotype — *Costaticella lineata* (Macgillivray, 1895)

Observations — An examination of Recent specimens of species of Levinson's genus *Costicella* and fossil specimens of Maplestone's genus *Costaticella* shows that no generic distinction can be drawn between the fossil and Recent groups. *C. lineata* (MacG., 1895), has a sternal area similar in structure to that of *C. hastata* (Busk, 1852), and the lateral compartments are all calcified in both species. The form described as *Costaticella escharoides* by Maplestone (1899) is regarded as a mature zooecium of *C. lineata* (MacG., 1895), Macgillivray's holotype obviously being a young zooecium. Contrary to Maplestone's statement (1899), the sternal area has fenestrae at the base of the hollow spines, but they are comparatively small in his figured specimen.

Levinson (1909) has given a good account of this genus, and the distinctive characteristics are seen to be that the lateral compartments are all calcified and that the sternal area is ornamented with a series of hollow spines separated by fissures and with a corresponding number of fenestrae at their bases.

Macgillivray's *Catenicella latitrons* (1895) has the lateral compartments partly uncalcified, and it is proposed to erect a new sub-genus *Costaticellina* for its reception. This sub-genus has all the characteristics of typical species of *Costaticella*, but differs in not having the suprascapular compartments calcified.

COSTATICELLA LINEATA (Macgillivray, 1895)

Catenicella lineata Macgillivray, 1895, p 14, pl 1, fig 30 Maplestone, 1904, p 187

Costaticella lineata (Macgillivray), Maplestone, 1899, p 10 Canu and Bassler, 1929, p 445

Costaticella escharoides Maplestone, 1899, p 10, pl 1, fig 13. *idem*, 1904, p 190

Description.—Zooecium subrectangular in outline, width equals approximately one-half length of zooecium

Slightly concave proximal rim, in centre third of zooecium, situated one-third of distance proximally from distal connecting-tube aperture. Height of aperture slightly greater than one-half distance from proximal rim to distal connecting-tube aperture.

Elongate sternal area, about three times as long as wide, has about 27 small oval fenestrae, with as many hollow spines separated by fissures and equals almost one-half length of zooecium

Scapular compartments, situated at level of proximal half of aperture, face directly laterally. Suprascapular compartments extend slightly above level of distal connecting-tube aperture. Distal infrascapular compartments, facing directly laterally, extend slightly below middle level of zooecium, proximal infrascapular compartments extending to proximal connecting-tube aperture.

Dorsal surface depressed along lateral margins

Axis of daughter zooecium inclined at 50 deg to that of mother zooecium.

Ovicle not observed

Dimensions.—Mother zooecium of Maplestone's figured specimen: Zooecium, length 0.70 mm, width 0.37, aperture, diameter 0.13

Distribution.—Lower Miocene Campbell's Point (Lake Connewarre), Glencoe No 7 bore, 650 feet, Balcombe Bay

Observations.—Canu and Bassler (1929) have erroneously named a figure of *Costaticella hastata* (Busk) taken from Harmer (1902) as *Costaticella lineata* (MacG.)

Macgillivray's type of *Catenicella lineata* is a young zooecium of Maplestone's *Costaticella escharoides*, as an examination of the type specimens readily shows. In the holotype of *C. lineata* the distal lateral compartments are not developed.

This species is characterized by its subrectangular outline and the elongated sternal area with the exceptionally large number of fenestrae and spines

Contrary to Maplestone's statement (1899), small oval fenestrae are visible at the outer extremities of the spines of the sternal area of his figured specimen

COSTATICELLA CRIBRIFORMIS (Waters, 1881)

Catenicella cribriformis Waters, 1881, p 317, pl xvi, fig 39,
idem, 1883, p 428 Maplestone, 1904, p 186

Catenicella ampliata Maplestone, 1899, p 8, figs. 16, 16A, *idem*,
1904, p 186

Description—Zooecium broadly semielliptical in outline, greatest width, at summit of zooecium, equals slightly less than length of zooecium

Straight proximal rim, equalling one-quarter width of zooecium in length, situated more than one-third distance proximally from distal connecting-tube aperture Height of aperture equals nearly two-thirds distance from proximal rim to distal connecting-tube aperture

Short broad sternal area, equalling in length slightly more than one-third length of zooecium, has ten to eleven fenestrae.

Small scapular compartments, situated at middle level of aperture, face laterally Large suprascapular compartments extend above level of distal connecting-tube aperture Distal infrascapular compartments extend to a level almost two-thirds distance proximally from distal connecting-tube aperture and face laterally. Proximal infrascapular compartments extend to base and face obliquely forward

Dorsal surface not observed

Axis of daughter zooecium inclined at 40 deg to that of mother zooecium

Ovicell not observed

Dimensions—Zooecium from Balcombe Bay. Zooecium, length 0.59 mm, width 0.55, aperture, diameter 0.14

Distribution—Lower Miocene. Griffin's (near Batesford), Campbell's Point (Lake Connewarre), Spring Creek (Torquay), Curdie's Creek (Waters) Balcombe Bay

Observations—Of this rare species only the two specimens on Maplestone's type slide have been seen The one which Maplestone did not figure is the more perfect

This species is characterized by the broadness of the zooecium and its ten to eleven fenestrae. The type specimen figured by Waters (1881) is not as broad as the zooecia designated *Catenicella ampliata* by Maplestone (1899), but otherwise there is no essential difference between the two forms

COSTATICELLA BENECOSTATA (Levinsen, 1909)

(Pl III, figs 11, 12)

Catenicella hastata Waters (non Busk, 1852), 1883, p 431 Jelly, 1889, p 37 (Waters, 1883 only) Macgillivray, 1895, p 13, pl 1, figs 21-23 Maplestone, 1904, p 187

Costicella benecostata Levinsen, 1909, p 237, pl XII, figs 1A-B, pl XX, fig 91

Observations.—Levinsen (1909) has given a figure of the aperture and sternal area of this species, but gives no idea of the general outline of the zooecium either in the description or figure. He has, however, named his figures on the plate *Catenicella hastata*, and it may be assumed that the general appearance of the zooecium is that of *Costaticella hastata* (Busk, 1852).

The sternal area of Macgillivray's (1895) figured specimens and of all the specimens examined agree exactly with Levinsen's figures. The observed range in the number of fenestrae was nine to fourteen.

This species differs from *Costaticella hastata* (Busk) in the more elongate form of the zooecium and sternal area and the greater number of fenestrae.

Waters (1883) has recorded *Catenicella hastata* from Waurn Ponds and Torquay, but this is open to doubt since no specimen in the National Museum collections or in those of the author can be referred to *Costaticella hastata* (Busk).

Recent specimens of *C. benecostata* have not been available for examination and comparison.

Dimensions.—Zooecium from Clifton Bank (Muddy Creek). Zooecium, length 0.47 mm, width 0.28, aperture, diameter 0.10

Distribution.—Recent: Western Port (Levinsen).

Lower Miocene. Waurn Ponds and Spring Creek (Torquay) (Waters), Clifton Bank (Muddy Creek, Hamilton), Griffin's (near Batesford), Campbell's Point (Lake Connewarre), Batesford Tunnel marl dump, Mitchell River at Bairnsdale, Glencoe No 7 bore 580 feet-790 feet, Balcombe Bay.

COSTATICELLA HIULCA (Maplestone, 1899)

Catenicella hiulca Maplestone, 1899, p 9, pl II, fig 18, *idem*, 1904, p 187

Costicella cuspidata Levinsen, 1909, p 235, pl XX, figs 6A-C

Description.—Levinsen (1909) has given a satisfactory diagnosis of this species.

Dimensions.—Of holotype. Zooecium, length 0.53 mm, width 0.49; aperture, diameter 0.11. Recent zooecium from Western Port. Zooecium, length 0.47, width 0.42; aperture, diameter 0.11.

Distribution.—Recent Port Phillip (Levinsen), Western Port (J. Gabriel, coll.)

Lower Miocene Clifton Bank (Muddy Creek, Hamilton)

Observations—A comparison of Recent specimens with Maplestone's type of *Catenicella hulca* shows that these two forms are identical. Maplestone's obscure figure is rather misleading, but an examination of the specimen leaves no doubt as to the two forms being conspecific.

This species is characterized by its broad zooecium and its sternal area with seven to ten fenestrae and spines.

Sub-genus **Costaticellina**, sub-gen nov

Description—This sub-genus has all the characters of the genus *Catenicella* Maplestone, except that the suprascapular compartments are not calcified.

Observations—This sub-genus has been erected for the reception of *Catenicella latifrons* Macgillivray, which differs from all other species of *Costaticella* in having uncalcified suprascapular compartments.

Costaticella (*Costaticellina*) *latifrons* (Macgillivray, 1895)

Catenicella latifrons Macgillivray, 1895, p 15, pl 1, fig 31
Maplestone, 1904, p 187

Phycopora daedala Macgillivray, 1895, p 26, pl iv, fig 4

Catenicella orbicularis Maplestone, 1898, p 15, pl 1, fig 1, *idem*, 1904, p. 187

Description—Zooecium broadly subovate in outline, greatest width, at level of scapular compartments, almost equals length of zooecium.

Slightly concave proximal rim, in middle third of zooecium, situated one-quarter of distance proximally from distal connecting-tube aperture. Height of aperture equals two-thirds distance from proximal rim to distal connecting-tube aperture.

Sub-circular sternal area, equalling in length nearly three-quarters that of zooecium, is ornamented by about fifteen hollow spines separated by fissures with a corresponding number of fenestrae.

Scapular compartments, at level of distal half of aperture, face laterally or obliquely upward. Restricted suprascapular compartments face upward and obliquely forward. Distal infrascapular compartments extend to middle level of zooecium and proximal infrascapular compartments extend to proximal connecting-tube aperture, both facing directly laterally.

Dorsal surface depressed in middle line and along the lateral and distal margins.

Axis of daughter zooecium inclined at 30 deg to that of mother zooecium.

Ovicell not known

Dimensions—Mother zooecium of holotype. Zooecium, length 0.56 mm., width 0.42, aperture, diameter 0.14

Distribution—Lower Miocene Clifton Bank (Muddy Creek, Hamilton), Griffin's (near Batesford), Campbell's Point (Lake Connewarrie), Flinders, Glencoe No 7 bore 580 feet, Moorooduc No 6 bore 4 feet-6 feet, Balcombe Bay

Observations—This species is characterized by its broad outline and the very large sternal area. The latter is not always preserved, but the bases of the hollow spines may be seen as a submarginal row of crenulations.

Macgillivray's *Plicopora dacdala*, which he has figured with the distal end downwards, is an old zooecium of this species which has the sternal area worn off.

Maplestone's *Catenicella orbicularis* is a well-preserved old zooecium of this species, and differs in no essential feature from *C. latifrons*.

Artificial Key to the Victorian Tertiary Species of Costaticella Maplestone.

1	{ Suprascapular compartments not calcified	<i>C. (Costaticellina) latifrons</i> (MacG.)
	{ Suprascapular compartments calcified	2
2	{ More than twenty-five fenestrae	<i>C. lineata</i> (MacG.)
	{ Less than twenty-five fenestrae	3
3	{ Length width of zooecium as 1 1	<i>C. cribiformis</i> (Waters)
	{ Length width of zooecium as less than 1 1	4
4	{ Zooecium elongate	<i>C. benecostata</i> (Levinsen)
	{ Zooecium broad	.. . <i>C. hulca</i> (Maplestone)

Genus *Digenopora* Maplestone, 1899

Digenopora Maplestone, 1899, p 6 Canu and Bassler, 1927, p 21, *idem*, 1929, p 449, text figs 181 C, D

Genotype—*Digenopora retroversa* (Macgillivray, 1895)

Observations—Maplestone (1899) described the single species *Digenopora compta* as belonging to this genus, but an examination of the type specimen of *Catenicella retroversa* (Macgillivray, 1895), shows it to be an old zooecium of Maplestone's *Digenopora compta*, between which a connecting series can readily be obtained.

The distinctive characteristics of this genus are that the suprascapular compartments are not calcified, and the frontal combines the sternal ornamentation of *Costaticella* Maplestone, 1899, and *Strongylopora* Maplestone, 1899.

This genus is placed provisionally in the sub-family Scuticellinae since no ovicell which can be correlated with the genotype has been discovered. Its general affinities are, however,

with this group, as is shown by its uncalcified suprascapular compartments and its sternal area ornamented by hollow spines as in *Costaticella*, but with the additional submarginal row of oval pores, typical of *Strongylopora* Maplestone, 1899 which, however, is not a member of the Scuticellinae

To Maplestone's description (1899) should be added that the suprascapular compartments are not calcified

DIGENOPORA RETROVERSA (Macgillivray, 1895)

Catenicella cribaria Macgillivray (non Busk, 1852), 1895, pl 1, fig 20

Catenicella retroversa Macgillivray, 1895, p 13, pl 1, fig 24. Maplestone, 1904, p 188.

Digenopora compacta Maplestone, 1899, p 6, pl 1, figs 10, 10a, *idem*, 1904, p 190 Canu and Bassler, 1929, p 449, text figs 181 C, D

Description—Zooecium ovate in outline, greatest width, at level of scapular compartments, equals two-thirds length of zooecium

Broad short sternal area, less than one-third length of zooecium, bears seven to nine hollow spines and fenestrae A submarginal row of nine to thirteen oval fenestrae borders the sternal area

Scapular compartments, at and above level of distal rim of aperture, lodge small avicularia facing directly laterally and slightly upward Forwardly and upwardly-directed shallow suprascapular compartments have a proximal extension bordering distal rim of aperture Distal infrascapular compartments, facing directly laterally, extend to middle level of zooecium, proximal infrascapular compartments extending to proximal connecting-tube aperture

Slightly convex proximal rim, in middle third of zooecium, situated more than one-third distance proximally from distal connecting-tube aperture Height of aperture equals one-half to two-thirds distance from proximal rim to distal connecting-tube aperture

Dorsal surface depressed at lateral margins and distal angles of zooecium

Axis of daughter zooecium inclined at 50 deg. to that of mother zooecium

Ovicell not known.

Dimensions—Mature zooecium from Balcombe Bay. Zooecium, length 0.63 mm, width 0.46; aperture, diameter 0.14 Old zooecium from Hamilton bore 80 feet-85 feet. Zooecium, length 0.55, width 0.48, aperture, diameter 0.14.

Distribution—Lower Miocene Clifton Bank (Muddy Creek, Hamilton), Campbell's Point (Lake Connewarre), Giffin's (near Batesford), Flinders, Hamilton bore 80 feet-85 feet, Mitchell River at Bairnsdale, Glencoe No 7 bore 650 feet, 705 feet, 790 feet, Moorooduc No 6 bore 4 feet-6 feet, Balcombe Bay

Upper Oligocene Glencoe No 7 bore 1,270 feet

Observations—Macgillivray's figure of *Catenicella retroversa* represents an old zooecium of the same species as the mature zooecia figured by Maplestone (1899) under the name of *Digenopora compta*. In old zooecia of this species the lateral margins tend to become backwardly-directed, and the sternal area is more heavily calcified, the outline of the zooecium becomes sub-circular.

The specimen figured by Macgillivray (1895) under the name of *Catenicella cribaria* is seen on examination to be a zooecium of this species, as suggested by Maplestone (1899) who, however, also thought it might be a distinct species.

The position of the avicularia, the characters of the sternal area and the suprascapular compartments extending around the distal rim of the aperture are distinctive features of this species.

Genus **Cribricellina** Canu and Bassler, 1927

Cribricella Levinsen, 1909, pp 220, 238 (name preoccupied by Canu, 1902, *fide* Canu and Bassler, 1927)

Cribricellina Canu and Bassler, 1927, p 21, *idem*, 1929, p 449, text fig 182

Genotype—*Cribricellina rufa* (Macgillivray, 1868)

Observations—This very natural group is characterized by the sternal area being perforated by scattered pores and by the presence of uncalcified suprascapular compartments. Levinsen's name, as pointed out by Canu and Bassler (1927), is preoccupied (Canu, 1904).

CRIBRICELLINA CRIBRARIA (Busk, 1852)

Catenicella cribaria Busk, 1852, p. 359, *idem*, 1852, 2, p. 9, pl. v, figs 3, 4. Macgillivray, 1859, p. 161; *idem*, 1868, p. 143 Jelly, 1889, p. 36 (early bibliography). Macgillivray, 1889, p. 25, *idem*, 1895, p. 12. Hamilton, 1898, p. 194 Maplestone, 1904, p. 186

Cribricella cribaria (Busk), Levinsen, 1909, p. 240, pl. xii, figs 8 a-c

Cribricellina cribaria (Busk), Canu and Bassler, 1929, p. 450, text figs 182 H-K. Livingstone, 1929, p. 97 Stach, 1934, p. 15

Description—Levinsen (1909) has given an adequate description of this species.

Dimensions—Recent zooecium. Zooecium, length 0.47 mm., width 0.38; aperture, diameter 0.11. Zooecium from Glencoe No. 7 bore 330 ft., Zooecium, length 0.53, width 0.35, aperture, diameter, 0.11

Distribution.—Recent Victoria Queenscliff, Port Phillip, Sealers' Cove (Macgillivray), off Two Sisters' Is (J Gabriel coll.), Griffith's Point (Aust Mus coll.) New South Wales: 3-4 miles off Eden 25-30 fathoms, 12-22 miles N $\frac{1}{2}$ E from Green Cape 39-46 fathoms (Aust Mus coll.) Queensland Port Denison (Aust Mus coll.) Tasmania off Launceston and Devonport (Aust Mus coll.) New Zealand Akaroa (Levinsen), Napier, Wellington, Dunedin (Hamilton), Three Kings' Is 65 fathoms, Colville Channel (Livingstone).

Middle Miocene Glencoe No 7 bore 330 feet.

Lower Miocene Clifton Bank (Muddy Ck, Hamilton), Campbell's Point (Lake Connewarre), Mitchell River at Bairnsdale, Balcombe Bay

Observations.—The zooecia of this species are very variable in character. Old zooecia show very large and well-marked sub-marginal pores and are larger and much more elongated than younger zooecia. There is no doubt of the identity of the fossil specimens with Recent zooecia.

The specimen figured by Macgillivray (1895) as *Catenicella cibraria* is seen on examination to be a zooecium of *Digenopora retroversa* (MacG.), 1895, but many authentic specimens of *Cribriellina cibraria* (Busk, 1852), have been seen in the Macgillivray collection.

Genus *Strophipora* Macgillivray, 1895

Strophipora Macgillivray, 1895, p. 17 Levinsen, 1909, p. 257.
Canu and Bassler, 1929, p. 449, text fig. 184

Genotype—*Strophipora harveyi* (Wyville-Thompson, 1858).

Observations.—The terminal gonoecia described as *Strophipora triangularis* and *S. episcopalis* by Maplestone (1911, 1913) are regarded as ovicells of the genotype, and on this evidence (p. 45) this genus is placed in the sub-family Scuticellinae. Wyville-Thompson's diagnosis (1859) of the ovicell of the genotype is believed to be a description of an abnormal avicularium such as that figured by the author (1934, text fig. 9g).

Canu and Bassler (1929) have proposed that Macgillivray's genera *Stenostomaria*, *Microstomaria* and *Ditaxipora* should be made sub-genera of the genus *Strophipora*. The form described as *Strophipora bellis* by Maplestone (1898) shows an ovicell surmounting the mother zooecium of a triglobulus, the daughter zooecium of which has the distinctive characters of *Stenostomaria solida* (Waters). Maplestone (1899) later figures the distal portion of a similar specimen, naming it the ovicell of *S. solida* (Waters). The ovicell of *Stenostomaria* is thus shown to belong to the mother zooecium of a triglobulus, as is also the case in the genera *Pterocella* Levinsen, *Claviporella* Macgillivray, and

Strongylopora Maplestone Since *Stenostomaria* has a different type of ovicell from that found in the genus *Strophipora*, it should retain generic rank.

The affinities of the genus *Microstomaria* Macgillivray with the Catenicellidae are very doubtful. The holotype of the genotype, *M. tubulifera* Macgillivray, does not show any distal connecting-tube apertures, and until a series of specimens have been examined, its validity must remain in doubt.

The zoarial habit of *Ditauipora* appears to be sufficiently distinctive for the retention of its generic rank.

Levinsen (1909) has given a good diagnosis of *Strophipora*

STROPHIPORA HARVEYI (Wyville-Thompson, 1858)

Catenicella harveyi Wyville-Thompson, 1858, p. 137 (*fide* Nickles and Bassler (1900) and Macgillivray (1895)), *idem*, 1859, p. 145; Jelly, 1889, p. 37 (early bibliography).

Strophipora harveyi (Wyville-Thompson), Macgillivray, 1895, p. 17, pl. 11, figs. 9-12; Maplestone, 1904, p. 188; Levinsen, 1909, p. 258, pl. xxii, figs. 6 a-f; Canu and Bassler, 1929, p. 449, text fig. 184; Stach, 1934, p. 15, text figs. 9 a-g.

Strophipora triangularis Maplestone, 1911, p. 268, pl. xxxviii, figs. 9, 9a.

Strophipora laevis Maplestone, 1911, p. 269, pl. xxxviii, fig. 10.

Strophipora episcopalis Maplestone, 1913, p. 355, pl. xxvii, fig. 2.

Description.—Levinsen (1909) has amply described and figured zooecia of this species and Maplestone (1911, 1913) has described and figured the ovicell.

Dimensions.—Zooecium from Forsyth's (below remanié nodule bed) Zooecium, length 0.54 mm., width 0.27, aperture, diameter 0.10.

Distribution.—Recent Bass Strait (Wyville-Thompson), Western Australia (*fide* Maplestone, 1904).

Lower Miocene—Clifton Bank (Muddy Creek, Hamilton), Batesford Tunnel marl, Waurn Ponds, Spring Creek (Torquay), Fyansford, Griffin's (near Batesford), Campbell's Point (Lake Connewarre), Bell's Beach (between Torquay and Pt Addis), Forsyth's below remanié nodule bed (Grange Burn, Hamilton), Mitchell River at Bairnsdale, Nhill (Maplestone) Hamilton bore 80 feet-85 feet, Glencoe No 7 bore 580 feet, 650 feet, 705 feet, 725 feet, Balcombe Bay.

Observations.—This species is characterized by its elongate oval outline and proportion of length to width. Old zooecia tend to become broader and very rotund, the small avicularia generally facing forward. These characters serve to distinguish old zooecia of this species from zooecia of *Strophipora lata* Macgillivray.

This distinctive species varies considerably, particularly as regards the form of the avicularia as pointed out by the author (1934). Unfortunately, no Recent specimens were available for examination, and Wyville-Thompson's original paper (1858) was inaccessible to the author. However, a review of his paper has been given (1859) together with the original descriptions of the species, and this, together with Levinson's description and figures (1909) of zooecia from the original zoarium taken by Harvey, form the basis of comparison.

The fossil forms agree with Levinson's description and figures, but since he only dealt with a small fragment of the zoarium, it is possible that all the variations recorded by the author (1934) in fossil zooecia did not appear on this fragment. Levinson (1909) did, however, record a certain amount of variation in size and position of the avicularia.

The ovicell of this species has been described by Wyville-Thompson (1859) as follows, "Ovicell calypriform, sessile by a broad base in the position of one of the avicularian processes of the cell, which it replaces. Back of ovicell furnished with a very large sessile avicularium." It is believed that Wyville Thompson has described a large avicularium, similar to that figured by the author (1934, text-fig. 9G), being deceived into regarding this as an ovicell by the large swelling seen in frontal view. This also strengthens the belief that the abnormal forms figured (Stach, 1934) come under the category of zooacial variation.

The ovicell is believed to be a terminal gonoecium, and the forms described as *Strophipora triangularis* (1911) and *S. episcopalensis* (1913) by Maplestone are correlated with this species. The evidence for this correlation is that three specimens of this type of ovicell are known, and *S. harveyi* is by far the most prolific species of the genus *Strophipora*. The ovicell of *S. excavata* Maplestone, represented by a single specimen in the Macgillivray collection, has certain features in common with its zooecia, and by a process of elimination these ovicells must belong to *S. harveyi* since Maplestone has recorded them from localities at which *S. harveyi* is common, but from which *S. lata*, the remaining species, has not been recorded.

The form described as *Strophipora laevis* by Maplestone (1911) is obviously a young zooecium of *S. harveyi*, the "curved spinous processes arching over the distal part" being the beginning of the development of the distal boundaries of the lateral compartments.

Macgillivray's *S. harveyi* var. *porosa* (1895) is regarded as a zooecium in which excessive calcification of the septulae has made them salient. Calcification of pores is a common feature in old zooecia of species of the Catenicellidae. It may here be stressed that it is practically useless to give fossil forms varietal

standing from a study of a series of isolated zooecia, since it is almost impossible to decide whether the distinctive character does or does not come under the category of zooecial variation

STROPHIPORA EXCAVATA Maplestone, 1899

Strophipora excavata Maplestone, 1899, p 10, pl II, figs 20, 20a,
idem, 1904, p 188

Strophipora sulcata Maplestone, 1899, p 10, pl II, figs 21, 21a,
idem, 1904, p 188

Description.—Zooecium sub-triangular in outline tapering to proximal connecting-tube aperture, lateral margins concave, greatest width, at summit of zooecium, equals half length of zooecium

Slightly concave proximal rim, one-third width of zooecium in length, situated one-third distance proximally from distal connecting-tube aperture. Height of aperture equals two-thirds distance from proximal rim to distal connecting-tube aperture

Large elliptical pore, situated in centre of zooecium one-third distance proximally from proximal rim to proximal connecting-tube aperture, surrounded by a raised band extending from proximal rim to proximal connecting-tube aperture

Small scapular compartments, situated at level of distal rim of aperture, face directly laterally or surmount forwardly-directed short tubular prominences. Small suprascapular compartments face obliquely forward and upward. Long forwardly-directed infrascapular compartments extend from level of distal rim of aperture to proximal connecting-tube aperture, perforated by about five septulae

Dorsal surface with a broad median longitudinal ridge raised at the margins

Axis of daughter zooecium inclined at 50 deg to that of mother zooecium

Ovicell a terminal gonoecium transversely elliptical in outline. The aperture, facing obliquely downward, equals one-half length of zooecium, slightly concave proximal rim situated less than half distance proximally from proximal connecting-tube aperture to summit of ovicell. Oval pore below proximal rim in centre of raised band extending from proximal rim to proximal connecting-tube aperture. About five septulae pierce depressed areas on either side of raised band. A large pore pierces ovicell above distal rim of aperture

Dorsal surface very convex with a median broad raised band giving off lateral branches at level of proximal rim

Dimensions.—Zooecium from Clifton Bank. Zooecium, length 0.45 mm, width 0.30, aperture, diameter 0.11. Ovicell from Clifton Bank. Length 0.83, width 0.92, aperture, diameter 0.48

Distribution—Lower Miocene Clifton Bank (Muddy Creek, Hamilton), Flinders, Campbell's Point (Lake Connewarre), Glencoe No 7 bore, 580 feet

Observations—This species is characterized by its outline and the more proximal position of the central pore

An ovicell from Clifton Bank, where this species is most prolific, was found in the Macgillivray collection. It is correlated with this species mainly on the characters of the central pore and of the depressions on either side of the raised median band.

Maplestone's *Strophipora sulcata* (1899) is a zooecium of this species with large avicularia which decrease the extent of the depressions on either side of the median ridge seen in dorsal view. A series of zooceria can readily be obtained to link these two forms, and they undoubtedly both belong to the same species.

STROPHIPORA LATA Macgillivray, 1895

Strophipora harveyi, var *lata* Macgillivray, 1895, p 18, pl 11, fig 12

Description—Zooecium broadly semielliptical in outline, greatest width, at summit of zooecium, equals length of zooecium.

Concave proximal rim, in centre third of zooecium, situated almost one-half distance proximally from distal connecting-tube aperture. Height of aperture equals three-quarters of distance from proximal rim to distal connecting-tube aperture. A pair of stout downwardly-curved denticles situated one-third distance distally from proximal rim to distal rim of aperture which is salient.

Large circular pore, situated in centre of zooecium one-third distance distally from proximal connecting-tube aperture to summit of zooecium, surrounded by a transversely-elliptical raised border.

Moderate-sized scapular compartments, situated at level of distal half of aperture, face directly laterally. Suprascapular compartments small and directed upward. Extensive infrascapular compartments on each side of zooecium are longitudinally depressed in middle line and have about seven septulae.

Dorsal surface very strongly arched in plane of axis of zooecium and depressed along lateral margins. A raised band extends distally from proximal connecting-tube aperture and, proximal to distal connecting-tube aperture, divides into two branches extending to tips of avicularia.

Axis of daughter zooecium inclined at 30 deg to that of mother zooecium.

Ovicell not known.

Dimensions—Single zooecium from Hamilton bore 80 feet-85 feet. Zooecium, length 0.57 mm, width 0.56, aperture, diameter 0.14.

Distribution.—Lower Miocene Clifton Bank (Muddy Creek, Hamilton), Flinders, Batesford Tunnel mail, Hamilton bore 80 feet—85 feet, Balcombe Bay

Observations.—This species is characterized by its usually laterally-directed aviculae, broad outline, strong denticles, and the transversely-elliptical raised border surrounding the central pore.

Macgillivray's *Strophopora harveyi* var. *lata* is raised to specific rank, since the above characters are practically constant and afford sufficient character to separate this form as a distinct species.

Acknowledgments.

The Director of the National Museum, Melbourne, has most kindly placed the facilities of that institution at my disposal, and I have had access to the Macgillivray and Maplestone collections.

The Geology Department of the University of Melbourne, to whom the author is indebted, has assisted financially in the completion of this work.

Thanks are also due to the authorities of the Australian Museum, Sydney, who most promptly supplied me with a list of localities of species of the Catenicellidae in their collection, thus enabling a greater geographic distribution of many of the recent species occurring in our Victorian tertiary deposits to be recorded.

References.

- BUSK, G., 1852 Appendix to *Voyage of the Rattlesnake*, by J. Macgillivray, vol. i, pp. 343-402, pl. i
- _____, 1852, 2 Catalogue of Marine Polyzoa in Collection of British Museum, *Cheilostomata*, pt. 1, pp. 1-54, 68 plates
- _____, 1884 *Challenger Reports, Zoology*, vol. x, pt. xxx., pp. 1-216, 36 plates.
- CANU, F., 1904 Etude des Bryozoaires tertiaires recueillis en 1885 et 1886 par M. Ph. Thomas dans la Région sud de la Tunisie *Explor. Sci. Tunis*, p. 20 (*sive Zool. Record*, 1904).
- CANU, F., and BASSLER, R., 1927 Classification of Cheilostomatous Bryozoa. *Proc. United States Nat. Mus.*, Ixix, Art. 14, pp. 1-42, pl. i.
- _____, and _____, 1929 Bryozoa of the Philippine Region. *United States Nat. Mus. Bull.*, No. 100, vol. ix, pp. 1-567, 94 plates.
- HAMILTON, A., 1898 List of fossil and Recent Bryozoa collected in New Zealand. *Trans. N.Z. Inst.*, xxxx., pp. 192-199.
- HARMIER, S. F., 1902 On the Morphology of the Cheilostomata. *Quart. Journ. Micro. Sci.*, n^o s, xlvi, pp. 263-350, 4 plates
- HUTTON, F. W., 1880 *Manual of New Zealand Mollusca* (Bryozoa, pp. 179-199), Wellington
- JILLY, E. C., 1889 *Synonymic Catalogue of Recent Marine Bryozoa, including fossil synonyms*, pp. 1-322, London.
- JULLIEN, J., 1888 Observations anatomiques sur les Caténicelles. *Mem. Soc. Zool. France*, 1., pp. 274-280, pl. xi.
- KIRCHENPAUER, G. H., 1885 Record of localities of some New South Wales Zoophytes (communicated by F. von Mueller) *Proc. Linn. Soc. N.S.W.*, ix, pp. 534-536.

- KIRKPATRICK, R., 1890 Report on Hydrozoa and Polyzoa collected in China Sea. *Ann Mag. Nat Hist*, ser 6, vol v, pp. 11-24, pls iii-v
- _____, 1890, 2 Report on Hydrozoa and Polyzoa from Torres Strait *Sci Proc Roy Dub Soc*, ns, vi, pp. 603-626, pls xiv-xvii
- LIVINGSTON, G M R., 1909 *Morphological and Systematic Studies on the Cheilostomatous Bryozoa*, pp. 1-431, 27 plates Kjobenhavn—“Nationale Forstatteres Forlag”
- LIVINGSTONE, A. A., 1927 A Check List of Marine Bryozoa of Queensland *Rec Aust Mus*, xvi (1), pp. 50-69
- _____, 1928 Bryozoa from South Australia *Rec S Aust Mus*, iv (1), pp. 111-124, figs 31-35
- _____, 1929 Bryozoa Cheilostomata from New Zealand *Saertryk af Vidensk Medd fra Dansk Naturh Foren*, lxxxvii, pp. 45-104, pls 1-11
- MACGILLIVRAY, P H., 1859. Notes on Cheilostomatous Polyzoa of Victoria and other parts of Australia *Trans Phil Inst Vic*, iv, pp. 159-168, pls ii-iii
- _____, 1868 Descriptions of new genera and species of Australian Polyzoa and list of species found in Victoria *Trans Proc Roy Soc Vic*, ix, pp. 126-148
- _____, 1879-1890 Bryozoa in *Prodromus of the Zoology of Victoria*, by McCoy, decades 1-xx, Melbourne
- _____, 1881 On some new species of *Catenicella* and *Dictyopora*, and on *Uiceophora*, a new genus of Polyzoa *Trans Proc Roy Soc Vic*, xvii, pp. 84-87, 1 plate
- _____, 1887 Descriptions of new or little known Polyzoa, Part X *Ibid*, xxiii, pp. 34-38, pls. i-ii
- _____, 1887, 2 Catalogue of the Marine Polyzoa of Victoria *Ibid*, xxiii, pp. 187-224
- _____, 1889 On some South Australian Polyzoa *Trans Roy. Soc. S Aust.*, xii, pp. 24-30, pl. ii
- _____, 1890 Additional List of South Australian Polyzoa *Ibid*, xiii, pp. 1-7, pl. i
- _____, 1895 A Monograph of the Tertiary Polyzoa of Victoria *Trans Roy. Soc. Vic.*, iv, pp. 1-166, pls 1-xxii
- MARSHALL, C M., 1882 Observations on living Polyzoa. *Trans Proc Roy Soc Vic*, xviii, pp. 48-51, 1 plate
- _____, 1898 Further descriptions of the Tertiary Polyzoa of Victoria, Part I *Proc Roy Soc Vic* (ns), xi (1), pp. 14-22, pls 1-ii
- _____, 1899 Further descriptions, &c., Part II. *Ibid* (ns), xii (1), pp. 1-13, pls 1-ii
- _____, 1901. On a new name, *Vittaticella* for the polyzoan genus *Caloporella* Macgillivray. *Ibid* (ns), xiii (2), pp. 201-203
- _____, 1904 Tabulated list of fossil Cheilostomatous Polyzoa in Victorian Tertiary deposits *Ibid*. (ns.), xvii. (1), pp. 182-217
- _____, 1911 Further descriptions, &c., Part XI. *Ibid* (ns), xxiii. (2), pp. 266-284, pls xxxvii-xlviii
- _____, 1913 Further descriptions, &c., Part XII. *Ibid* (ns), xxv (2), pp. 355-356, pl. xxvii
- MARCUS, E., 1920 Bryozoa from Swedish Scientific Expeditions to Australia during 1910-1913 *Kungl Svenska Vet Akademens Handlingar*, lxi, No. 5, pp. 1-34, pls 1-ii
- NICKLES, J M., and BASSLER, R S., 1900 Synopsis of American Fossil Bryozoa, including Bibliography and Synonymy *United States Geol Surv Bull*, No 173, pp. 1-663.
- OKADA, Y., 1921. Notes of some Japanese Chilostomatous Bryozoa *Annotationes Zoologicas Japonenses*, x (3), pp. 19-32.
- ORTMANN, A. E., 1890. Die Japanische Bryozoen-Fauna. *Archiv fur Naturgesch.*, lvi (1), pp. 1-74, pls 1-4

- STACH, L. W., 1933 Victorian Tertiary Catenicellidae, Part I *Proc. Roy. Soc. Vict.* (n.s.), xlvi (2), pp 85-98, pl. viii
- , 1934. Zoocelial variation within species of the Catenicellidae. *Ibid.* (n.s.), xvii (1), pp 14-17, text figs. 1-9
- THORNLEY, L. R., 1905 Report on Polyzoa from Ceylon. *Ceylon Pearl Oyster Fisheries, Report to Col. Govt.* pt 4 suppl., Rept. No. 26, pp 107-130, 1 plate
- WATERS, A. W., 1881 On fossil Chilostomatous Bryozoa from south-west Victoria. *Quart. Jour. Geol. Soc. Lond.*, xxxvii, pp 309-347, pls xiv-xviii
- , 1882. On fossil Chilostomatous Bryozoa from Mt Gambier. *Ibid.*, xxxviii, pp 257-276, pls vii-ix
- , 1883 Fossil Chilostomatous Bryozoa from Muddy Creek, Victoria, &c. *Ibid.*, xxxix, pp 423-443, pl. xii
- , 1904 *Résultats Voyage Belgique, Zoologie* Bryozoa, pp 1-114 9 plates
- , 1913. Marine Fauna of British East Africa and Zanzibar, Bryozoa-Chilostomata. *Proc. Zool. Soc. Lond.*, for 1913, pp. 458-537, pls. lxiv-lxxii
- WYVILLE-THOMPSON, T. C., 1858 On new genera and species of Polyzoa in the collection of W. H. Harvey. *Natural History Review*, v., pp 134-147, pls x-xiii (*fide* Nickles and Bassler, 1900)
- , 1859 Zoophytology Polyzoa from Bass's Strait and New Zealand. *Quart. Jour. Micro. Sci.*, vii, pp 143-154

Explanation of Plate III.

All figures (except fig. 5) drawn with camera lucida

Magnification is $\times 54$, except where otherwise stated

- Fig. 1.—*Vittaticella elegans* (Busk). Geminate pair from Forsyth's (below remanié nodule bed) Grange Burn, Hamilton (Stach Coll.) Nat. Mus Coll., Regd No 13898
- Fig. 2.—*V. elegans* (Busk). Single zoocellum from same locality Nat. Mus Coll., Regd No 13898.
- Fig. 3.—*V. elegans* (Busk). Single zoocellum from near Two Sisters' Is. (Bass Strait) (Coll. J. Gabriel). Nat. Mus Coll., Regd. No 68050.
- Fig. 4.—*V. elegans* (Busk). Gemmate pair from same locality (Coll. J. Gabriel) Nat. Mus Coll., Regd. No. 68050
- Fig. 5.—*Scuticella urnula* (Macgillivray). Single Recent zoocellum (modified from Levinson, 1909), $\times 33$.
- Fig. 6.—*S. urnula* (Macgillivray). Single zoocellum from Forsyth's (below remanié nodule bed), Grange Burn, Hamilton (Stach Coll.). Nat. Mus Coll., Regd No. 13899
- Fig. 7.—*S. gibbslandica*, sp. nov. Single zoocellum (holotype) from Mitchell River at Bannisdale (Stach Coll.) Nat. Mus. Coll., Regd No. 13900
- Fig. 8.—*S. gibbslandica*, sp. nov. Single zoocellum (paratype) from Largon Ck, off Toorloo Arm, 8 mls. E. of Lakes Entrance (Stach Coll.). Nat. Mus. Coll., Regd. No 13901
- Fig. 9.—*S. lata*, sp. nov. Single zoocellum (paratype) from Forsyth's (below remanié nodule bed), Grange Burn, Hamilton (Stach Coll.) Nat. Mus Coll., Regd. No. 13902.

Victorian Tertiary Catenicellidae.

- Fig 10.—*S. lata*, sp nov Single zoecium from holotype zoarium from Western Port (J Gabriel Coll) Nat Mus Coll, Regd No 68051
- Fig 11.—*Costaticella benecostata* (Levinsen) Single zoecium from Batesford Tunnel mail (Stach Coll) Nat Mus Coll, Regd No 13903
- Fig 12.—*C. benecostata* (Levinsen) Geminate pair from Clifton Bank (Muddy Ck, Hamilton) (Stach Coll) Nat. Mus Coll, Regd No 13904
- Fig 13.—*Strophopora lata* Macgillivray Single zoecium from Hamilton bore 80 ft -85 ft (Geol Surv Vic Coll) Nat Mus Coll, Regd No 13905
- Fig 14.—*S. lata* Macgillivray Geminate pair from same locality Nat Mus Coll, Regd No 13906
- Fig 15.—*S. excavata* Maplestone Ovicell from Clifton Bank (Muddy Ck, Hamilton) (Macgillivray Coll) Nat Mus Coll, Regd No 13907
-

[PROC ROY SOC VICTORIA, 47 (N.S.), Pt 1, 1934]

ART IV—*Observations on Saw-flies of the Genus Perga, with Notes on some reared Primary Parasites of the Families Trigonalidae, Ichneumonidae, and Tachinidae*

By JANET W. RAFF, M.Sc., F.R.E.S.

(With Plates IV and V)

[Read 12th April, 1934, issued separately, 22nd December, 1934]

In a previous paper (11) details are recorded of emergences from four broods of saw-fly larvae of the genus *Perga*. It was not realized then that delayed emergences occurred, and further saw-flies and parasites subsequently emerged from three of the broods (Broods 1, 2, and 4). The total emergences are now recorded, together with identifications of the species. The saw-fly reared from Brood 2 was a new species, *Perga nemoralis* Wilson (14), with marked sexual dimorphism. Results of emergences from other broods are also recorded, the conditions of isolation of these "captive" broods being similar in all cases.

The details of emergences from the different broods forms the second section of this paper. It is preceded by a general account of the history of saw-fly development from the time the fully-grown larva enters the soil, for cocoon-spinning, to the emergence of the adult. This is desirable as discrepancies have appeared in accounts of this portion of the life-history. Froggatt (5, 6) has apparently confused the stages of a parasite (probably an Ichneumonid) with those of the saw-fly. By removing the cocoons from the soil, examining them from time to time, and noting the contents of cocoons from which emergences have occurred, a correct idea of the order of development has been obtained. This sequence of events is important for the interpretation of the meaning of exuviae or "remains," found in cocoons under examination, especially with a parasitized brood.

The third section comprises notes on three types of primary parasites, bred from "captive" broods of saw-flies, viz., Trigonalidae, Ichneumonidae, and Tachinidae. The existence of a Trigonalid as a primary parasite is noteworthy, as the Trigonalidae have hitherto been recorded only as secondary parasites.

Section A.—Life-history of the Saw-flies from Time of Entering the Soil for Cocoon-spinning to Emergence of the Adult.

From an examination of cocoons removed from the soil, the following four stages have been identified, and are represented diagrammatically in Fig 1—

A Cocoon containing the "above-ground" larva. cocoon weak or incomplete at top.

- B. Cocoon containing the prepupa, the larval exuvia being shut off at top of cocoon
 C. Cocoon containing pupa, with prepupal exuvia adhering
 D. Cocoon containing adult, with exuviae of prepupa and pupa

TEXT-FIG. 1.—Diagram showing metamorphosis of saw-fly (a), Larva, (a^1), Exuvia of larva, (b), Prepupa, (b^1), Exuvia of prepupa, (c), Pupa, (c^1), Exuvia of pupa, (d), Adult, (e), Partition

These four stages indicate the following sequence of events in the life-history after the cessation of feeding.—The fully-fed larva enters the soil and spins an oval cocoon, weak or incomplete at the top. The cocoon is firm, of a silky texture mixed with sand, and more or less "glazed" in appearance inside—Text-fig. I A. They are generally massed together from 1 to 3 inches beneath the surface of the soil. Almost immediately after cocoon-spinning, the larva moults or changes to the *prepupal* stage, the cast skin being left at the top of the cocoon. A firm flat partition is then formed near the top, shutting off the larval exuvia—Text-fig. 1 B. The partition is a closely woven meshwork appearing more or less lace-like from above. The inner walls of the cocoon are apparently "glazed" still further by the prepupa, the glazing being continued over the lower surface of the partition. The prepupa is larval in appearance, but compared with the above-ground larva, is shorter and more compact, with a softer and lighter-coloured body. The folds of the body wall are more pronounced, the legs are shorter, and owing to the lighter colour of the head, the single black ocellus is conspicuous on either side (Pl. IV, Fig 1). There is no external indication of wings. The prepupa can apparently change its position while glazing the inner walls (Pl. IV., Fig 2). The usual position of rest appears to be with the head at the top of the cocoon. Without entering into the minute differences in structure of the cocoon-spinning larva and the prepupa, it may suffice to mention the differences in the mandibles, as these are useful in determining the nature of the exuviae or "remains" found in cocoons. The mandibles of the larva are hard and heavily chitinized throughout, dark brown or black, and bluntly toothed,

(Pl V, Fig 9) The mandibles of the prepupa are much less heavily chitinized, especially at their outer or lateral margins; they are yellowish, with the cutting edges dark brown, the latter furnished with sharply-pointed teeth (Pl V, Fig 10). The cutting edges of the right and left mandibles differ slightly from each other in both stages.

After a varying period, which may be very prolonged, ecdysis occurs, and the pupal stage is revealed, the prepupal exuvia adhering to the hinder abdominal region of the pupa—Text-fig 1 C. The pupa is soft and whitish at first, darkening later, and has the head region placed against the flat partition of the cocoon (Pl IV, Figs 3 and 4). The pupal stage is probably very short. At the next ecdysis the fully-formed adult is revealed (Pl IV, Fig. 5), the thin transparent exuvia being pushed to the bottom of the cocoon, where it is seen along with the old prepupal exuvia—Text-fig 1 D. The pre-pupal and pupal exuviae often appear to be cemented together, no doubt by the moulting fluid, and by the movements of the adult. They can easily be separated and identified, after soaking for a short time in a weak potash solution.

To emerge from the cocoon, the adult cuts the partition in a more or less neat circle at the top. It is very active and capable of strong flight immediately.

The above facts show that in normal healthy broods of saw-flies, complete or unopened cocoons should contain either the saw-fly larva, or one of the three subsequent stages (prepupa, pupa, or adult), along with the exuviae of their previous instars. "Opened" cocoons, i.e., those from which emergences have occurred naturally, should contain the exuviae of all stages. These are to be found generally inside the cocoon mixed with loose sand which has fallen in when the adult was emerging.

In cases where cocoons are found to contain stages other than those mentioned above, parasites are present. A careful examination is necessary to determine the relationship of the parasite to the host.

NOTES ON THE PREPUPA AND PUPA

The prepupal stage refers to the stage interpolated between the fully-fed larva and the pupa. In the case of *Perga* sp., it is the larva-like, non-feeding form enclosed in the cocoon, and is the stage following the fully-fed cocoon-spinning larva. It is referred to as the "ultimate" larval stage by MacGuillivray(7). In some cases, this prepupal stage apparently spins the cocoon; thus Middleton(8) says "the prepupa, or seventh larval instar, is the non-feeding cocoon-spinning stage in which the larvae search out a suitable place to spend their quiescent period"; and Miles (9) notes, regarding saw-flies infesting Ribes, that the prepupal stage forms the cocoon.

In all cases, however, the prepupa is the stage which "lasts over" for varying periods before changing to the pupal stage.

In captivity the duration of the prepupal period varies considerably in the case of *Perga* sp., even in individuals of the same brood. Where larvae have entered the soil in the spring, emerging as adults towards the end of the following summer, as exemplified in Broods 1, 2, and 4, it is probable that nearly the whole of this period was spent as a prepupa, viz., between four and five months. In those broods where further emergences occurred at the end of the second summer (as in Broods 1 and 2), the prepupa would "last-over", the prepupal period being probably between sixteen and seventeen months. Indirect evidence of the existence of this long prepupal stage is obtained from examination of cocoons of "captive" broods from time to time, from the frequency with which the prepupal stage is found. The writer has obtained direct evidence of a prolonged prepupal period in three individual cases; the most noteworthy occurred in Brood 2, where the saw-fly remained in the prepupal stage for nearly four years. The other two cases are those of prepupae living for three years and four months, and for two years at least (Broods 1 and 10). Details of these cases are as follows —

Case 1. *Prepupal Period*—3 years, 11 months Brood 2

Perga nemoralis Wilson (see Section B) Larvae entered the soil on 16th October, 1928; emergences occurred during March and April, 1929, and again in March, 1930. On February 24th, 1932, as no further emergences had occurred, the cocoons were removed from the soil and examined, one contained a living prepupa. This prepupa had then lived for 3 years and 4 months. The cocoon was placed in a gelatine capsule supported in damp sawdust, and kept isolated for further observation. The prepupa was alive on 14th September, 1932, i.e., after a period of 7 months, bringing its total existence in this stage to 3 years and 11 months. Owing to the growth of moulds later, it died. This appears to be a record of longevity.

Case 2. *Prepupal Period*—3 years, 4 months Brood 1

Perga dorsalis Leach (see Section B) Larvae entered the soil 9th October, 1928; emergences occurred during March and April, 1929, and in April, 1930. Cocoons were examined on 24th February, 1932, i.e., 3 years and 4 months after being spun, a living prepupa was found in one. In June, 1932, this prepupa was found dead, being attacked by mites and moulds.

Case 3 *Prepupal Period*—2 years at least Blood 10

Perga polita Leach Three larvae entered the soil on 16th October, 1930 On February 24th, 1932, no emergences having occurred, the cocoons were removed for examination One was opened, revealing a prepupa, the other two were kept intact. The opened cocoon was tied round with cotton and replaced, with the other two, in the soil In July they were again examined, the prepupa was living, and had repaired the hole previously made in the cocoon wall The cocoons were now placed in separate phials plugged with cotton-wool and supported in damp sawdust On 26th October, 1932, an adult female emerged from one of the previously unopened cocoons, examination of the previously opened cocoon showed that the prepupa was living and apparently healthy, that is, after a period of at least two years In March, 1933, the prepupa was found dead, owing to attack by mites and moulds In July, 1933, when the third cocoon was opened a developed female was found infested with moulds No doubt it should have emerged during the previous March or April.

There appears to be no previous record of this prolonged prepupal period for Australian saw-flies Of British species, Cameron (1) mentions the possibility of a period of two years in the cocoon before changing into the pupa, though he does not seem to recognize a prepupal instar He says "When the larva has become full fed it proceeds to pupate Some larvae spin no cocoon . . . but most species spin oblong silken cocoons After being in the cocoon the larva in a short time shortens and contracts its shape, the legs at the same time being withdrawn into the skin as it were The period which elapses between the spinning of the cocoon and becoming a pupa varies according to the season With the summer broods it may be seven to ten days, but the autumnal broods do not change until the following spring, so that the greater part of their larval existence is spent in this inert condition. In exceptional cases they may remain two years in the cocoon before changing."

Dealing with *Dielocerus formosus* Klug, da Costa(2) refers to the probable aestivation of the larva in the cocoon, for at least three years. Apparently, however, these cocoons had not been isolated or kept under quarantine conditions during that period.

The duration of the pupal stage is probably very short, and is easily overlooked. Pupae found in cocoons opened for examination, being soft and delicate, are easily damaged, and fail to metamorphose As other broods become available for examination, it is hoped to determine the length of this pupal period. Cameron(1) remarks that the pupal state does not last over 12 or 14 days, as a rule, and may be shorter

The well-developed pupae shown in Plate IV, Fig 4, were found within three months of the larvae entering the soil. As the details available to date for this brood of larvae (Brood 46) are not shown in Section B, they are noted as follows—Larvae, collected at Healesville by Mr H G Andrewartha, entered the soil on 27th November, 1933. cocoons were opened and these pupae exposed on 16th February, 1934 on 21st February the pupal skins were cast, revealing adults of *Perqa dorsalis*, Leach

Section B.—Results of Emergences from captive Broods of Saw-fly Larvae.

The following details are results of emergences from different broods of larvae, collected from time to time, and kept isolated for observation. The main object in view at first was to determine the proportion of sexes emerging from the various broods, and this has been set out in each case. Owing, however, to frequent internal parasitism of the larvae when collected, this has been masked in most cases. Parasitism is frequent, particularly by Tachinid flies.

Another object in view was to associate the larvae with the adults for identification. When the various larvae were collected, a few were preserved in alcohol, with the brood number attached, while others were allowed to enter the soil.

The dates have been shown for each brood, these being important, especially in regard to the relative times of emergence of males and females. Though no generalization can be made from the data, the females appear to preponderate, and males are the earliest to emerge. The "lasting-over" of both saw-flies and parasites is also shown for some of the broods.

The conditions in captivity were as follows—The different broods were placed on soil in flower-pots covered with hurricane lamp chimneys or fly-wire covers. In most cases, the pots have been buried in soil in larger glazed pots, and by keeping the soil in these moist, suitable conditions have been maintained in the inner pots. These have been kept in the Insectary at the School of Agriculture, University of Melbourne.

BROOD 1 *Perqa dorsalis* Leach

Larvae collected by Mr G F Hill, at Warrandyte, Victoria, October

9th October, 1928—34 larvae entered soil for cocoon-spinning

Emergences occurred as follows—

15th March, 1929—1 saw-fly (male)

8th April, 1929—5 saw-flies (females)

29th August, 1929.—5 Tachinid flies

- 13th September, 1929—1 Tachinid fly
 8th April, 1930—1 saw-fly (male)
 16th April, 1930—1 saw-fly (female)
 22nd April, 1930—1 saw-fly (male)
 16th September, 1930—1 Tachinid fly
 22nd September, 1930—1 Tachinid fly

Total Emergences—Three male and six female saw-flies and eight Tachinid flies.

- 24th February, 1932—In cocoons opened for examination, ten developed female saw-flies, apparently unable to emerge from the cocoons, were found, also a living prepupa.

BROOD 2 *Perga nemoralis* Wilson

Larvae collected by the writer at Wonga Park (South Warrandyte), Victoria, October, 1928

16th October, 1928—Larvae entered soil.

Emergences occurred as follows.—

- 14th March, 1929—2 saw-flies (1 male and 1 female).
 20th March, 1929—3 saw-flies (females)
 1st April, 1929—2 saw-flies (females)
 9th April, 1929—1 Tachinid fly.
 24th March, 1930—1 saw-fly (male)
 27th March, 1930—2 saw-flies (1 male and 1 female)
 28th March, 1930—2 saw-flies (1 male and 1 female)
 30th March, 1930—3 saw-flies (females)
 31st March, 1930—1 saw-fly (female).
 17th April, 1930—1 Tachinid fly.
 1st May, 1930—1 Tachinid fly.

Total Emergences.—Four male and twelve female saw-flies, and three Tachinid flies.

- 24th February, 1932.—On examination of cocoons removed from soil, one was found to contain a living prepupa.

BROOD 3. *Perga polita* Leach.

Larvae collected, by the writer, at Blackburn, Victoria, October, 1928; 19 larvae entered the soil almost immediately.

Details of emergences have already been given (11).

Total emergences were as follows.—During March and April, 1929, sixteen female saw-flies emerged.

BROOD 4 *Perga dorsalis* Leach

Larvae collected by the writer at Eltham, Victoria, September, 1929.

11th October, 1929—16 larvae entered soil.

Emergences occurred as follows —

- 12th December, 1929 — 5 Tachinid flies
- 13th December, 1929 — 1 Tachinid fly
- 14th December, 1929 — 1 Tachinid fly
- 16th December, 1929 — 1 Tachinid fly
- 18th February, 1930 — 1 Tachinid fly found dead (actual date of emergence not known)
- 28th March, 1930 — 1 saw-fly (female)
- 30th March, 1930 — 1 saw-fly (female)
- 2nd April, 1930 — 2 saw-flies (females)
- 5th April, 1930 — 1 saw-fly (male)
- 8th April, 1930 — 1 saw-fly (female)
- 12th July, 1930 — 1 Tachinid fly

Total Emergences — One male and five female saw-flies, and ten Tachinid flies

BROOD 14 *Perga dorsalis* Leach

Larvae collected Eltham, Victoria, October, 1931

17th October, 1931 — 35 larvae entered soil

Emergences occurred as follows —

- 19th February, 1932 — Two cocoons were removed from the soil and opened — found to contain prepupae
- 18th March, 1932 — 5 saw-flies (females)
- 19th March, 1932 — 2 saw-flies (1 male and 1 female)
- 21st March, 1932 — 3 saw-flies (females)
- 23rd March, 1932 — 1 saw-fly (female)

Total Emergences — One male and ten female saw-flies

Examination of cocoons on 30th May, 1932, yielded the following results —

- 11 cocoons contained saw-fly exuviae only, and represented those from which saw-fly emergences had already occurred
- 2 cocoons contained dead prepupae.
- 5 cocoons were not opened
- 13 cocoons contained 18 Tachinid parasites (larvae and puparia) with remains of saw-fly prepupae

BROOD 16 *Perga dorsalis* Leach.

Larvae collected, by the writer, Healesville, Victoria, December, 1931

23rd December, 1931 — 22 larvae entered the soil

Emergences occurred as follows —

- 15th February, 1932 — 1 Tachinid fly (female)
- 29th February, 1932 — 1 saw-fly (male)
- 1st March, 1932 — 1 saw-fly (male).

- 3rd March, 1932 — 1 Tachinid fly (female)
 4th March, 1932 — 3 saw-flies (females)
 8th March, 1932 — 1 saw-fly (female)
 10th March, 1932 — 1 saw-fly (female).
 29th March, 1932 — 1 Tachinid fly

Total Emergences.—Two male and five female saw-flies, and three Tachinid flies

This is the shortest period noted for complete metamorphosis.

Examination of cocoons on 9th July, 1932, yielded the following results —

- 7 cocoons contained saw-fly exuviae only, and represented those from which emergences had occurred.
 3 cocoons each contained a prepupa (two dead, and one living, from the latter a female emerged between March and May, 1933)
 1 cocoon contained a dead adult saw-fly, enveloped in its pupal membrane
 6 cocoons contained Tachinid parasites (two of these were subsequently bred out—emerging in September, 1933.)
 2 cocoons each contained an Ichneumonid cocoon

BROOD 22 *Perga dorsalis* Leach

Larvae collected by Miss J. Robertson, at Eltham, Victoria, October, 1932

25th October, 1932 — About 16 larvae entered soil

Emergences occurred as follows —

- 7th March, 1933.—1 saw-fly (male).
 16th March, 1933 — 1 saw-fly (male).
 17th March, 1933 — 1 saw-fly (female).
 23rd March, 1933.—2 saw-flies (females).
 24th March, 1933.—1 saw-fly (male).
 27th March, 1933.—1 saw-fly (female)
 8th August, 1933.—1 Tachinid fly (male)
 12th August, 1933 — 1 Tachinid fly (female).
 23rd August, 1933 — 1 Tachinid fly (female).
 28th August, 1933 — 1 Tachinid fly (female).
 30th August, 1933 — 1 Tachinid fly (male).
 5th September, 1933 — 1 Tachinid fly (female)
 18th September, 1933.—1 Tachinid fly (female)
 19th September, 1933 — 1 Tachinid fly (male).

Total Emergences.—Three male and four female saw-flies, and eight Tachinid flies

BROOD 23 *Perga dorsalis* Leach

Large mass of larvae, collected by Mr K M Ward, at Mooropna, Victoria, October, 1932

26th October, 1932—Larvae entering soil

Emergences were as follows—

- 28th March, 1933—2 saw-flies (1 male and 1 female)
- 30th March, 1933—3 saw-flies (females)
- 3rd April, 1933—3 saw-flies (females)
- 4th April, 1933—14 saw-flies (4 males, and 10 females)
- 5th April, 1933—4 saw-flies (1 male and 3 females)
- 6th April, 1933—3 saw-flies (1 male and 2 females)
- 10th April, 1933—1 saw-fly (female)
- 3rd May, 1933—6 Trigonalids (females)
- 8th May, 1933—1 Trigonalid (female)
- 9th May, 1933—2 Trigonalids (females)
- (?) May, 1933—1 Trigonalid (female)
- (?) May, 1933—Cocoons were examined—1 dead Trigonalid female found

Total Emergences—Seven male and twenty-three female saw-flies, and eleven female Trigonalids

(A large number of this brood died during moulting.)

BROOD 24 *Perga nemoralis* Wilson

Larvae, collected by the writer, at Eltham, Victoria, October, 1932

5th November, 1932—Larvae entered soil

Emergences occurred as follows—

- 16th March, 1933—1 saw-fly (male)
- 17th March, 1933—2 saw-flies (males)
- 18-20th March, 1933—6 saw-flies (2 males and 4 females)
- 22-29th March, 1933.—11 saw-flies (females)
- 3rd April, 1933—1 saw-fly (male)
- 11th April, 1933—1 Trigonalid (female)
- 26th April, 1933.—2 Trigonalids (males)
- 26th April, 1933—Cocoons were removed from soil, and subsequent emergences were as follows.—
- 27th April, 1933—2 Trigonalids (1 male and 1 female) emerged on cocoons being opened slightly
- 29th April, 1933—1 Trigonalid (male) emerged
- 29th April, 1933.—2 Trigonalids (1 male and 1 female) emerged on cocoons being opened slightly.
- 30th April, 1933—1 Trigonalid (male) emerged
- 27th June, 1933—2 Ichneumonids emerged

Total Emergences—Six male and fifteen female saw-flies, nine Trigonalids (6 male and 3 females), and two Ichneumonids

Examination of 17 cocoons from which emergences had not occurred yielded the following results on 28th April, 1933 —

- 6 cocoons each contained a prepupa
- 4 cocoons each contained a Trigonalid (3 pupae and one larva, apparently decaying)
- 7 cocoons each contained an Ichneumonid cocoon (5 containing an Ichneumonid larva, and 2 an Ichneumonid pupa)

Section C.—Notes on Primary Parasites of *Perga* spp., viz., Trigonalidae, Ichneumonidae, and Tachinidae.

1 TRIGONALIDAE

The occurrence of wasps of the family Trigonalidae emerging from "captive" broods of saw-fly larvae is of special interest, they have, until now, been shown to be secondary parasites only. It is now established that the species bred is a primary parasite on *Perga nemoralis* Wilson, and on *P. dorsalis* Leach. The specimens from both broods are identical with *Trigonalis maculatus* Sm, (= *Taenionotus maculatus* Sm), in the collection of the National Museum.

The family Trigonalidae, though small and rare, is widely distributed, only two species being known in Australia, viz., *Trigonalis maculatus* Sm, and *Mimelogonalos bouvieri* Sch. Tillyard (13) places the family in the Super-family Vespoidea, mainly on the presence of a terminal ovipositor, and the extension of the sides of the pronotum back to the tegulae. He notes, however, that "This small family appears to be intermediate between the Ichneumonoidea and typical Vespoidea, as it has the divided trochanters and many-segmented antennae of the former, whereas the ovipositor issues from the end of the abdomen, and closely resembles those of the latter, though it does not appear to be known whether it is used as a sting or not."

Other external features of the adult Trigonalid are the following.—Body brownish-black with yellowish markings, antennae with 25 segments; tarsal claws pectinate; tip of abdomen of female turned ventrally, directed towards a median process on the hinder edge of the second visible sternite. In the male, the second visible sternite has a depressed circular area in the position of the process of the female. Details of the anatomy of the family, with figures, are given by Schultz (12).

The Trigonalidae are known chiefly as secondary parasites on Vespoidea and on Tachinids. Recently, however, Clausen (3) has recorded the emergence of a Trigonalid (*Poecilogonalos thwaitesi* Westw.), from cocoons of an Ichneumonid (*Hemicosmus rufus* Tosq.), the latter being regarded as a parasite of a

"lepidopterous larva, probably of the Noctuidae." In this case, therefore, the Trigonalid is also a secondary parasite. In a later paper, Clausen (4) has reviewed the literature on Trigonalidae, giving the known habits of the species. From his summary all cases recorded to that time (1931) were secondary parasites only. In searching for caterpillar hosts of Ichneumonids, from which the Trigonalids emerged, Clausen secured a single saw-fly larva, which on dissection was found to contain in the body cavity three Trigonalid larvae in first stage. All his rearings of Trigonalids, however, were from cocoons of Ichneumonids, which previously parasitized some unknown phytophagous larva, that is, they were secondary parasites.

The life cycle of the Trigonalidae in the Ichneumonid, Vespoïd, and Tachinid hosts, is set out by him (hypothetically in the case of Vespoïds), in tabulated form, as follows —

*Evidence of Primary Parasitism of a Trigonalid on *Perga* spp.*

The details of emergences show that in Brood 23 (*Perga dorsalis* Leach), the only parasites present were Trigonalids, whereas in Brood 24 (*Perga nemoralis* Wilson) parasites belonging to both Trigonalidae and Ichneumonidae appeared. An examination of the cocoons from which the Trigonalids had emerged, or which might still yield Trigonalids, was made to determine the relationship of the parasite to the saw-fly, as many of the broods of

larvae under observation had yielded Tachinid parasites. In Brood 24, where Trigonalids were present, Ichneumonid cocoons were also found in some of the saw-fly cocoons, and Ichneumonids have recently been recorded as hosts for Trigonalids.

If the Trigonalid is a *primary* parasite on the saw-fly, one would expect to find inside the host cocoons, where the Trigonalids are present (or had been), not only the larval and pupal exuviae of the Trigonalid, but also "remains" of the saw-fly larva, or prepupa, left by the parasite. If, on the other hand, it is a *secondary* parasite, then there also should be present, in the cocoon, exuviae, or "remains" of some other form representing the primary parasite. Examination of every fragment of material which might represent exuviae or "remains" of possible hosts, was made with a binocular microscope.

TEXT-FIG 2.—Diagram showing arrangement of parts in host cocoon, when Trigonalid is present (a'), Exuvia of larva of saw-fly; (b'), Remains of prepupa of saw-fly, (e), Partition, (f), Meconium, and exuviae of Trigonalid larva and pupa, (g), Adult Trigonalid

Examination of cocoons of Brood 24 yielded the following results.—Trigonalids were about to emerge from four of them when opened. The adult Trigonalid was free from the pupal covering. The antennae were vibrating actively, and it immediately escaped through the hole made. It was active and capable of flight. (There was no cocoon belonging to the Trigonalid—compare Clausen (4).) After the walls of the saw-fly cocoon were sufficiently cut away, the relative position of the contents was as represented in Text-figure 2. At the top of the cocoon was a flat partition, with a saw-fly larval exuvia above. At the bottom was a compact dark-greyish mass, "livery" in appearance, surrounded by a thin membrane, with the dried remains of the saw-fly prepupa adhering to it. Two exuviae were seen to be adhering to the "livery" mass, and these, after softening slightly in weak potash, could be separated easily, and were identified as Trigonalid larval and pupal exuviae respectively. The larval exuvia is dirty white, and bears two tridentate mandibles (Plate V, Fig. 11), resembling those of the full-grown larva of the Trigonalid figured by Clausen (3). The pupal exuvia was translucent white, and showed a pair of slight bulges or papillae, which later were seen to be the portions of the pupal covering, in the region of the adult mandibles. The "livery" mass is the meconium, or material voided from the alimentary canal of the Trigonalid larva. By teasing out this meconium, numerous sharp, sickle-like mandibles (Plate V, Fig.

12) were found scattered through the mass, also minute chitinous head-capsules, an occasional one of which bore one or both mandibles. These closely resemble the heads and sharp mandibles of the earlier instars of Trigonalid larvae, as figured by Clausen (3), and no doubt represent the remains of the younger and weaker Trigonalid larvae. The remains of these competitors would be in the alimentary canal of the surviving Trigonalid larva, and therefore in the meconium, expelled at ecdysis from larval to pupal stage. These mandibles and head capsules are extremely minute and difficult to separate from the more or less little mass of meconium when preserved in alcohol. In some cases the whole of the meconium has not been teased out, the greatest number of head-capsules and mandibles found in any one meconium has been five of the former and nine of the latter.

Of the three cocoons which contained each a Trigonalid pupa (Brood 24), the arrangement of the contents was similar to the above four cases (with, of course, the absence of the Trigonalid pupal exuviae). In these three cases, the meconium and the Trigonalid larval exuviae were attached to the pupa, near the anus. In one case the saw-fly had metamorphosed to the pupal stage, the skin of the latter, as well as the exuvia of the prepupal stage, being found. When the five cocoons from which Trigonalids had emerged whilst in the soil were opened for examination, it was found that the contents resembled those of cocoons where Trigonalids were observed emerging. The examination revealed no indication of the presence of any form, other than the Trigonalid and the saw-fly. It is concluded, therefore, that the Trigonalid is a primary parasite on the saw-fly.

2 ICHNEUMONIDAE

Of the various broods of larvae kept under observation, Ichneumonids have occurred in Broods 16, 24, 25, and 36. The arrangement of the contents of saw-fly cocoons, when parasitized by Ichneumonids, is somewhat similar to that described for the Trigonalid parasite, excepting that the Ichneumonid is enclosed in a cocoon within the saw-fly cocoon. Examination of these cocoons shows that the Ichneumonids are primary parasites. The usual arrangement within the host cocoon is as follows.—The saw-fly larval exuvia is at the top chamber of the cocoon, the Ichneumonid cocoon almost fills the space within the host cocoon; in most cases it was found to contain a large larva (Plate IV., Fig. 6). Where the parasites had metamorphosed to the pupal stage, the cast larval skin and the meconium were also present, adhering to the tip of the pupa. Lying on the outer side of the Ichneumonid cocoon, and flattened against the wall of the host cocoon, the remains of the saw-fly prepupa are found. In some of the cocoons it was noticed that the sieve-like partition had not been formed, the prepupa being weakened by the parasite.

In these cases, both the saw-fly larval exuvia and the remains of the prepupa were found attached to the outside of the Ichneumonid cocoon.

Though Ichneumonids have most often been found to be the only parasite present in a particular brood, it has already been indicated (Brood 24) that there was also a Tigonatid. Both these parasites have been proved to be primary in different larvae of the brood. In two cases which have come under my notice, both Ichneumonids and Tachinid flies have been found as parasites in the same brood, these, however, being primary parasites, on separate individuals.

The following details regarding the Ichneumonid parasites have been recorded from the four broods of saw-fly larvae —

Brood 16 — From the data set out in Section B, it is seen that when the host cocoons were examined in July, 1932, two were found to contain an Ichneumonid cocoon. On opening one of these, the parasite was still in the larval stage. The Ichneumonid had thus spent at least seven months as a larva within the host cocoon.

Brood 24 — Two Ichneumonids (species not identified) emerged on June 27th, 1933, i.e., seven months after the cocoon-spinning of the host (see data, Section B). The cocoons of these Ichneumonids had been removed from the host cocoons during April, 1933, each was supported in a phial, plugged with cotton-wool, and placed in an incubator kept at 20 deg C.

When the host cocoons were examined in April, 1933, five Ichneumonid larvae had lived for at least five months within the host cocoon, while two others had metamorphosed to the pupal stage at the end of that time.

Brood 25 — *Perga polita* Leach (Date not given in Section B)

15th November, 1932 — Seven saw-fly larvae, collected at Eltham by the writer, entered the soil.

4th April, 1933 — One saw-fly (female) emerged.

21st July, 1933 — One Ichneumonid (*Pamsicus productus* Brulle) emerged.

The Ichneumonid emerged eight months after the cocoon-spinning of the host.

Brood 36 — Identification of saw-fly not known, as no emergences occurred (Data not given in Section B).

Larvae collected at Kalorama, Victoria, by Miss H. V. Steele

10th May, 1933 — Twenty larvae entered the soil.

19th July, 1933 — Cocoons removed from soil.

Cocoon No 1 was opened slightly and found to contain a prepupa which evidently supported an internal Ichneumonid, for on July 31st on re-examination it contained an Ichneumonid cocoon "Remains" of prepupal saw-fly were also present

Two others (Nos 9 and 10) containing Ichneumonid cocoons were kept in separate phials plugged with cotton-wool, for possible emergences. These were placed in a vessel containing saturated salt solution (about 75 per cent relative humidity) and kept at ordinary room temperature. A mass of about eight cocoons was kept under similar conditions for possible emergences.

4th December, 1933—Male Ichneumonid (*Labium assouatum* T and W) emerged from mass of cocoons

2nd February, 1934—Ichneumonid (*Eriostethus* sp.) emerged from cocoon No 9

2nd February, 1934—Ichneumonid (not identified) emerged from cocoon No 10

In this brood an Ichneumonid larva (cocoon 1) fed within its host for two months before spinning its cocoon. Two Ichneumonids (cocoons Nos 9 and 10) emerged six to seven months, at least, after spinning their cocoons, and eight to nine months after the host larva had spun.

3 TACHINIDAE

In the numerous broods of *Perga* larvae held in captivity, the commonest parasite proved to be the Tachinid fly. Of the broods collected, some have failed to spin, others spun weak cocoons and died. Of 20 normal or apparently healthy broods of larvae, Tachinids were present in fourteen. Some emerged normally, others were found in cocoons removed from the soil. In these broods there was no external indication of parasitism (with the exception of one case—Brood 16—where eggs were found adhearing to the skin of the fully-grown larvae). Examination of host cocoons, noting exuviae, &c., shows the Tachinid fly to be a primary parasite.

The early larval stages of the parasite have not been studied, nor has the association of the parasite to the host regarding attachment for respiratory purposes. The stages found have been well advanced, corresponding to those represented in Figs 7 and 8. A prepupa has been found to support, internally, five Tachinid larvae, though the usual number appears to be one or two. On opening cocoons, the host prepupa may appear perfect, but in time the body of the prepupa becomes irregular, and appears shrivelled except where one or more parasite larvae are present. Later they leave the host and pupate within the host.

cocoon (Plate IV, Fig. 8). It is noticeable that where complete puparia have been found, lying freely within the cocoon, with the shrivelled remains of the prepupa pushed to one side, the sieve-like partition at the top invariably shows an aperture or break. This partition, however, always appears complete when the parasite is within the body of the prepupa. Apparently the partition is cut by the Tachinid larva, previous to pupating, to facilitate emergence of the fly.

There is seldom any indication of the existence of these parasites when the larvae are collected, no doubt due to an ecdysis having taken place after the Tachinid eggs were laid on the body of the host. In some broods, however, where parasitism occurred it was noticed that the host cocoons were spun irregularly, i.e. more or less horizontally instead of vertically, and singly instead of in masses.

The length of time spent by the Tachinid within the host is shown in the emergence data in Section B.—

Brood 1—Tachinids emerged ten months after cocoon-spinning of the host, and again twelve months later.

Brood 2—Tachinids emerged six months after cocoon-spinning, and again twelve months later.

Brood 22—Tachinids emerged between nine and eleven months, after cocoon-spinning.

Brood 4—Tachinids emerged two months after cocoon-spinning, and again nine months later.

Although all the larvae of these four broods spun during the same month (October), the time spent by the parasites within their host cocoons varies widely in the different broods. This might be accounted for by the fact that some broods were attacked in early larval life, while others remained free until more fully grown.

In *Broods 1* and *2* it appears that the Tachinid may be capable of "lasting-over" for a year, as was seen to be the case in the host. From the emergences noted in *Brood 4*, one might surmise that the individual host larvae of that brood had been "struck" at varying intervals during their larval life. The individuals of this brood would, at the time of spinning, contain parasitic larvae of various ages, which would account for the irregularities noted in the times of emergences of the parasites. This might also be the case in *Brood 16*, which spun in December and emerged in February and March, and again in September. The latter emergences occurred from cocoons which had previously been removed from the soil. (Some of the larvae of this brood were noted to be carrying eggs of Tachinids.)

Brood 14—Of the thirteen cocoons found to contain Tachinid parasites, nine contained one each, three contained two each, and one had three. Of the nine hosts with a single parasite each, four of the latter were full-grown larvae, feeding within the host prepupa, the remaining five parasites, which were beginning to darken into the puparial condition, were lying freely within their host cocoon, having apparently only recently worked their way out of the prepupa. In those four host cocoons which each carried either two or three Tachinids, the latter had already metamorphosed into the pupal stage, the darkened puparia lying freely within the cocoons. It was noticeable that where there was more than one Tachinid puparium in the cocoon, there was a big difference in their sizes.

Brood 35—*Perga* sp. (Data not given in Section B)
Larvae collected at Kalorama, Victoria, by Miss H V Steele

28th April, 1933—Four larvae entered the soil

19th July, 1933—Cocoons dug up for examination

Three cocoons were removed, and on being opened slightly were found to contain one Tachinid puparium each. The cocoons were supported in phials plugged with cotton-wool, and were stood in a vessel containing saturated salt solution (about 75 per cent relative humidity), these were then kept in an ordinary glass-house, and the following emergences occurred—

14th August, 1933—One Tachinid

25th August, 1933—One Tachinid

28th August, 1933—One Tachinid

The Tachinids emerged, in this brood, within four months from the time of cocoon-spinning of the host.

Brood 36—*Perga* sp. (Data not given in Section B)

10th May, 1933—Larvae entered the soil

19th July, 1933—Cocoons removed for examination

One cocoon was found which contained a large Tachinid larva within the prepupa.

31st July, 1933—Tachinid larva exposed by cutting the saw-fly prepupa

5th August, 1933—Tachinid still in larval stage

8th August, 1933—Tachinid puparium formed

11th September, 1933—Still in puparium condition

26th September, 1933—Tachinid emerged

The metamorphosis of the fully-grown Tachinid larva to adult stage, occupied no more than seven weeks.

Acknowledgments.

I wish to express grateful thanks to Professor Wadham for his kindly advice during the progress of this work, to Miss F V Murray, M Sc., for drawing the text-figures, and to Mr A O'Brien for producing the accompanying photographs. My thanks are also due to Mr J Clark, Entomologist to the National Museum, for his ready assistance at all times, and for identification of species, to Mr F E Wilson, F R E S., who described the new species to enable me to record emergences under a name, and to various collectors of larvae used in the breeding experiments.

References.

- 1 CAMFRON, P Monograph of the British Phytophagous Hymenoptera, 4 Vols, London Ray Society 1882-1892
- 2 COSTA LIMA, A da *Comptes Rendus des Séances de la Société de Biologie*, xcvi (2), 1927
- 3 CLAUSEN, C P Biological Studies on *Poecilogonalos thwaitesii* (Westw.) parasitic in the Cocoons of *Hemicospilus* *Proc Ento. Soc.*, xxxi, No 4, 1929, p 67
- 4 CLAUSEN, C P Biological Studies on the Trigonalidae *Ibid.*, xxxiii, No 4, 1931, p 72
- 5 FROGGAIT, W W Notes on Australian Saw-flies *Proc Linn. Soc N S W*, xlvi, 1918, p 668
- 6 FROGGAIT, W W Forest Insects of Australia, 1923. See Plate, p 70
- 7 MACGUILLYRAY, A D The Immature Stages of the Tenthredinoidea Forty-fourth Annual Report of the Entomological Society of Ontario, 1913
- 8 MIDDLETON, W Leconte's Saw-fly (*Neodiprion lecontei*), an Enemy of Young Pines *Journ. Agric. Res.*, xx, 1921, p 741
- 9 MILES, H W Biological Study of Saw-flies infesting Ribes *Bull. Ento. Res.*, xxiii, 1932, p 1
- 10 MUSGRAVE, A Bibliography of Australian Entomology, 1775-1930. (*Roy. Zool. Soc., N S W*, 1932)
- 11 RAFT, J W Observations on the Life-history of Saw-flies. *Vic. Nat.*, xlvi, 1930, p 215
- 12 SCHULTZ, W A "Trigonalidae" Genera Insectorium, Fasc. 61, 1907.
- 13 TILLYARD, R. J The Insects of Australia and New Zealand 1926
- 14 WILSON, F. E A New Victorian Saw-fly *Vic. Nat.*, xlix., 1932, p 43

Explanation of Plates IV. and V.

PLATE IV

- (All photographs on Plate IV are approximately natural size)
- Fig 1—Cocoon-spinning larva (above), and prepupa (below), of *Perga dorsalis* Leach (Brood 14)
 - Fig 2—Mass of cocoons of *Perga* sp, four of which have been cut open to show the living prepupae and cocoon-spinning larva (preserved in alcohol) of the same brood (Brood 33)
 - Fig 3—Living prepupa and pupa of *Perga* sp (Brood 44)
 - Fig 4—Cocoons of *Perga dorsalis* Leach, opened to expose pupae (Brood 46)
 - Fig 5—Cocoon of *Perga dorsalis* Leach, cut open to show adult ready to emerge Note partition and larval exuviae at top of cocoon. Other exuviae not visible

Saw-fly and Parasite.

9

10

11

12

Saw-fly and Parasite.

Fig. 6—Cocoons of *Perga* sp. (Brood 36) opened to show Ichneumonid primary parasite right, Ichneumonid cocoon in position, left, Ichneumonid larva removed from its cocoon

Fig. 7—Mature larva of Tachinid fly exposed by cutting open shrivelled prepupa of *Perga* sp. (Brood 36)

Fig. 8—Pupal shells of Tachinid fly, exposed by cutting open cocoon of *Perga* sp.

Pl. XVII V

Fig. 9—Photomicrograph of mandibles of cocoon-spinning larva of *Perga nemoralis* Wilson (Brood 24) $\times 15$

Fig. 10—Photomicrograph of mandibles of prepupa of *Perga nemoralis* Wilson (Brood 24) $\times 15$

Fig. 11—Photomicrograph of portion of exuvia of mature larva of *T. maculatus* Sm., showing tri-dentate mandibles $\times 29$

Fig. 12—Photomicrograph of sickle-like mandibles of early instars of *T. maculatus* Sm. larvae, teased out from meconium of a mature larva of same $\times 29$

[PROC ROY SOC VICTORIA, 47 (N S), PT I, 1934]

ART. V—*An Investigation into the Influence of Sulphate of Ammonia on Stubble-sown Oat Crops in Victoria*

By D. C. WARK, B Agi Sc

(Communicated by G W Leeper, M Sc)

Introduction.

[Read 10th May, 1934, issued separately, 22nd December, 1934]

A series of experiments at the Waite Institute, South Australia(5, 6), has shown that cereal crops when grown on land which has carried a crop the previous year respond to the application of nitrogenous fertilizers. It was with the object of determining whether a similar response occurs in the region of higher rainfall (20 inches or more per annum) in Victoria that this investigation was initiated. Oaten hay, being the cereal crop most sown on stubble in Victoria, was chosen for the experiment. Although Howell(3), thirty years ago, described experiments in which the application of 1 cwt of sulphate of ammonia per acre increased the yields of hay crops by as much as 0.5 to 0.8 ton per acre, comparatively little attention has since been given to this matter.

Two series of field trials were conducted, one at Bannockburn, one at Buangor.

The Bannockburn plots were on the property of Mr F G Mason, 4 miles from Bannockburn, which is 13 miles from Geelong on the railway line to Ballarat.

The plots were sown on a level area of uniform soil which has been derived from later Tertiary sediments and has undergone considerable leaching. The surface soil is a fine-textured sandy loam, light brown in colour and slightly acid. Below 8-9 inches there is a yellow clay subsoil which becomes lighter in colour with increase in depth.

The Buangor plots were on the property of Pickford Bros., about 1 mile from Buangor, which is 14 miles west of Beaufort. The plots were sown on a level piece of ground, but the soil is very variable, four different types of surface soil being present. These occur in patches of 1 square yard or less, and differ from each other in colour and in the amount of gravel they contain. This gravel, locally known as buckshot, consists mainly of iron oxide. All the types are slightly acid loams or clay loams, grey or brown in colour. The types of subsoil contain more clay and silt than the types of surface soil immediately above them. The buckshot gravel is irregularly distributed in depth. This variability of soil is typical of a large area in this part of the Western District of Victoria. This soil is derived from Ordovician marine sediments. Red box (*Eucalyptus polyanthemos*) and red stringybark (*Eucalyptus macrorrhyncha*) are the chief native trees.

The mechanical analyses of the various types of soil are shown in Table I.

At Bannockburn the total rainfall during the year was 19½ inches, of which 12 inches fell during the growing period of the crop (May–November). At Buangor the total rainfall was 23 inches, of which 14½ inches fell during the growing period of the crop. The monthly rainfall at both places and the number of days on which one or more points were recorded are shown in Table II.

TABLE I.—MECHANICAL ANALYSES OF THE SOILS AT BANNOCKBURN AND BUANGOR

Site . . .	Bannockburn.				Buangor			
			Grey loam	Grey rubbly loam	Light brown clay loam	Dark-brown clay loam		
Soil type								
Depth, inches	0-8	8-11	28-32	0-5 18-24	0-8 21-24	0-11 11-20	0-8 8-12	
Coarse sand	% 24.0	% 18.7	% 16.8	% 19.8	% 7.3	% 21.5	% 13.7	% 4.0
Fine sand .	31.5	20.2	20.6	31.1	22.5	36.1	20.6	21.4
Silt .	23.4	8.0	0.5	21.7	44.0	23.3	36.6	22.6
Clay .	18.1	31.7	41.6	14.8	14.6	14.3	19.7	40.4
Loss on peroxide + acid treatment	5.0	7.0	7.7	5.6	1.8	3.5	2.3	4.7
Moisture	2.6	6.5	4.6	2.6	11.2	2.4	7.2	7.7
Gravel (in air-dry sample) per cent	2.8	5.5	2.0	5.7	10.3	31.5	20.6	4.0
Total nitrogen, per cent	0.07	.		0.11		0.13		0.11
Soil reaction pH	5.5	5.3	7.2	5.1	6.8	5.4	6.8	6.0
	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0

TABLE II.—THE MONTHLY RAINFALL AND THE NUMBER OF RAINY DAYS IN 1933 AT BANNOCKBURN AND AT BUANGOR.

	Bannockburn		Buangor	
	Rainfall (Points)	Number of Rainy Days	Rainfall (Points)	Number of Rainy Days
January .	34	3	57	5
February .	30	3	.	.
March .	53	3	137	4
April .	129	5	105	5
May .	262	9	224	10
June .	124	8	114	8
July .	170	8	205	10
August .	171	12	240	16
September .	128	4	281	12
October .	70	4	129	6
November .	288	3	267	4
December .	491	7	540	10
Total	1,950	69	2,299	90

Experimental Procedure.

(a) *General*.—At each site the unit plot was 1/20th acre in area. Each plot received a basal dressing of $1\frac{1}{2}$ cwt of superphosphate per acre, and the oats were sown at the rate of 2 bushels per acre. The treatments included were—

- 1 No nitrogen
- 2 Sulphate of Ammonia, $\frac{3}{4}$ cwt per acre
- 3 Sulphate of Ammonia, $1\frac{1}{2}$ cwt per acre

Commercial fertilizer mixtures were used to supply these dressings, and were drilled in with the seed. Each treatment was replicated four times, and the plots were arranged in the form of a "randomized block" (1). At harvest the hay obtained from each plot was weighed separately, and the yields of each treatment expressed as cwt per acre. The grain yields were estimated from selected samples of the crop. (See section c.) In addition, the features b, c, and d were studied by the methods described.

(b) *Changes in the Nitrate and the Ammonia Content of the Soil*.—The soil from each plot was sampled to a depth of 9 inches, at monthly intervals, throughout the growing period of the crop. A $\frac{1}{4}$ -inch soil tube was used and nine cores were removed at distances of 9 yards apart along the midline of each plot. These were mixed to form the sample. A larger tube, $1\frac{1}{4}$ inches in diameter, was sometimes used, but the sampling method was otherwise the same. Moisture, ammonia, and nitrate were determined on each sample. The moisture contents were determined by drying the material in an oven at 105 deg C for 24 hours. The loss of weight is expressed as a percentage of the weight of the oven-dry soil. Nitrate was determined by Harper's phenoldisulphonic acid method (2), and ammonia by the method described in Appendix 1. It may be noted here that the amounts of nitrogen added to the top 9 inches of soil in the dressings of $\frac{3}{4}$ and $1\frac{1}{2}$ cwt sulphate of ammonia were $6\frac{1}{2}$ and 13 parts per million of soil respectively.

(c) *Census Study of Growth and Yield of the Crop*.—A census study was included, so that the effect of the different quantities of sulphate of ammonia on the growth of the individual plants could be observed. The plants on fifteen one-foot lengths of drill-row on each plot were counted, and their development studied at intervals throughout the growing period.

Three weeks after germination the plants on each selected length of drill row were counted, and the average number of plants per foot was calculated, in the case of each plot, and each treatment. In October, the average number of plants per foot was again determined, together with the average number of tillers per plant. At harvest time the number of plants per foot, the number of ears per plant, and the number of spikelets and grains per ear were determined, together with the average weight of 1,000 grains and the bushel weight of the grain.

The grain from these samples and from fifteen other one-foot length of drill row on each plot was thrashed out and weighed, and the weights were used to estimate the yields of grain from each plot.

(d) *Nitrogen Content of the Crop*—The nitrogen content of the crop on each plot was determined on the material collected in October for the tillering count. The plants on fifteen one-foot lengths of drill row on each plot were hand-pulled and the roots were later removed. The above-ground material was analyzed by the Kjeldahl method. The nitrogen content of the grain and of the straw at harvest were determined on the material from fifteen one-foot lengths of drill row from each plot. The amount of nitrogen removed from the soil was then calculated.

Details of Results.

BANNOCKBURN

(a) *General*—The plots were sown on 5th May, 1933, the unit plot being a 14-row drill strip 88 yards long and 1/20th acre in area. (The heaviest dressing contained only 152 lb each of superphosphate and sulphate of ammonia, instead of the desired 168 lb of each.)

The plots were harvested on 24th November. The final hay yields and the estimated grain yields are given in Table III. The grain yields were estimated from the material of 30 1-foot lengths of drill row on each plot.

TABLE III.—FINAL YIELDS AT BANNOCKBURN.

Treatment	Hay Yields (Cwt per Acre)	Increment Due to Nitrogen (Cwt per Acre)	Estimated Grain Yield (Bushels per Acre)	Increment Due to Nitrogen (Bushels per Acre)
No nitrogen	17.9		21.4	.
Sulphate of ammonia, $\frac{3}{4}$ cwt per acre	31.8	13.9	36.8	15.4
Sulphate of ammonia, $1\frac{1}{2}$ cwt per acre	38.3	20.4	41.8	20.4

The differences in the hay yields are significant*, the standard error of the mean being 0.84 cwt per acre. The grain yield on the $\frac{3}{4}$ cwt per acre treatment is significantly higher than that on the no-nitrogen treatment, the standard error of the mean being 2.14 bushels per acre.

* A "significant" difference is one that might be obtained by chance not more than once in twenty times. The term is used throughout this Paper with this meaning.

(b) *Nitrate and Ammonia Content of the Soil*—Samples of the soil were analyzed at monthly intervals until 9th October. The results of the analysis are shown in Table IV, and are illustrated in the form of a graph in Figure 1.

FIGURE 1

Graph showing changes in nitrate and ammonia nitrogen content of the soil at Bannockburn during the growing period of the crop 1933

- 1 Amount of nitrogen applied in $\frac{1}{2}$ cwt sulphate of ammonia per acre
- 2 Amount of nitrogen applied in $1\frac{1}{2}$ cwt sulphate of ammonia per acre

Treatments

- 01 No nitrogen
- 02 Sulphate of ammonia— $\frac{1}{2}$ cwt per acre.
- 03 Sulphate of ammonia— $1\frac{1}{2}$ cwt per acre.

TABLE IV—CHANGES IN THE MOISTURE, NITRATE, AND AMMONIA CONTENT OF THE SOIL AT BANNOCKBURN

Date	Treatment	Moisture Content Per Cent	Nitrate Nitrogen Content—Parts per Million	Ammonia Nitrogen Content—Parts per Million
25 33	Before sowing	10.2	4.3	
29 5 33	No nitrogen	13.2	2.9	
	Sulphate of ammonia, $\frac{3}{4}$ cwt per acre.	11.3	3.7	
	Sulphate of ammonia, $1\frac{1}{2}$ cwt per acre.	10.0	3.4	
26 6 33	No nitrogen	15.2	3.0	4.5
	Sulphate of ammonia, $\frac{1}{2}$ cwt per acre.	15.7	5.0	7.8
	Sulphate of ammonia, $1\frac{1}{2}$ cwt per acre	15.5	6.2	13.8*
24 7 33	No nitrogen	12.6	1.8	1.2
	Sulphate of ammonia, $\frac{3}{4}$ cwt per acre.	13.2	2.8	3.8
	Sulphate of ammonia, $1\frac{1}{2}$ cwt per acre	13.5	4.8	8.6*
21 8 33	No nitrogen	13.4	1.4	4.4
	Sulphate of ammonia, $\frac{3}{4}$ cwt per acre	14.1	2.0	6.3
	Sulphate of ammonia, $1\frac{1}{2}$ cwt per acre	14.4	1.7	12.1*
18 9 33	No nitrogen	11.7	1.8	4.6
	Sulphate of ammonia, $\frac{3}{4}$ cwt per acre.	10.8	1.2	6.7
	Sulphate of ammonia, $1\frac{1}{2}$ cwt per acre	9.6	1.9	11.3*
9 10 33	No nitrogen	10.5	1.9	5.0
	Sulphate of ammonia, $\frac{3}{4}$ cwt per acre.	8.7	2.0	5.0
	Sulphate of ammonia, $1\frac{1}{2}$ cwt per acre	7.0	1.5	8.1

All figures in *italics* are significantly different from the corresponding figures for the no-nitrogen plots.

* These figures are also significantly different from those in the preceding row.

The chief points of interest are—

- (1) The disappearance of the ammonia, whether by absorption by the plants, by leaching, or by change to nitrate or to other nitrogen compounds in the soil, was slow. Five months after the fertilizer was applied there was still appreciably more ammonia nitrogen in the soil of the $1\frac{1}{2}$ cwt per acre plots than in that of the no-nitrogen plots. This can be explained by assuming either that the addition of ammonium sulphate had a stimulating effect on the organisms which form ammonia in the soil, or that the nitrification (i.e., change to nitrate) was unusually slow in this soil. However, all the added ammonia on the $\frac{3}{4}$ cwt per acre plots had disappeared during the first five months after application.

(2) In June and July there was a significantly higher content of nitrate nitrogen in the soil of the sulphate of ammonia plots. The nitrate content was then appreciably higher on the 1½ cwt per acre plots than on the ¼ cwt per acre plots. This was in accordance with general experience, as was the low value for the nitrate content of the soil in September and October.

It must be noted that the soil was sampled between the drill rows, so that the samples did not exactly represent the soil on which the plants were growing.

(c) *Census Study of Growth and Yield of Crop*—The results of the census study are summarized in Table V.

TABLE V.—RESULTS OF THE CENSUS STUDY AT BANNOCKBURN

	No Nitrogen	Sulphate of Ammonia, ¼ Cwt per Acre	Sulphate of Ammonia, 1½ Cwt per Acre
(1) Population			
Mean number grains sown per foot, 5th May, 1933	16.2	16.2	16.2
Germination—Mean number plants per foot, 19th June, 1933	12.7	11.3	10.3
Mean number plants per foot, 9th October, 1933	13.2	12.3	10.9
Mean number plants per foot at harvest, 24th November, 1933	11.7	11.1	8.6
Percentage survival of plants to harvest	89.0	90.0	79.0
(2) Tillerage			
Average number of tillers per plant, 9th October, 1933	3.5	5.2	6.2*
†Estimated green weight of the crop (ewt per acre), 9th October, 1933	37.4	67.6	82.7*
Average number of tillers per foot, 9th October, 1933	45.3	63.4	67.6
(3) Ears and Grains			
Average number of ears per plant	1.2	1.6	2.0
Average number of ears per foot	14.2	17.3	17.1
Percentage of tillers formed which produce ears	31.4	27.4	25.3
Average number of spikelets per ear	7.1	9.8	10.6*
Average number of grains per spikelet	1.82	1.89	1.90
Average number of grains per ear	12.8	18.6	20.0*
Average number of sterile grains per ear	0.46	0.67	0.58
Average weight of 1000 grains (grams)	28.3	29.5	29.2
Bushel weight of the grain, lb per bushel	36.7	37.7	38.2
Estimated grain yield, bushels per acre	21.4	36.8	41.8

All figures in *italics* are significantly different from the corresponding figures for the no nitrogen plots.

* These figures are also significantly different from those in the preceding column.

† This figure indicates the amount of silage that could have been obtained from the crop. The estimated air-dry weights at this stage are given in Table VII.

The chief points of interest are as follows —

(1) There was a depression of germination on the sulphate of ammonia plots, the effect being more marked on the $1\frac{1}{2}$ cwt per acre plots. Germination was later on the sulphate of ammonia plots than on the no-nitrogen plots.

(2) There was an increased formation of tillers on the sulphate of ammonia plots, and this more than compensated for the depression of germination. However, there was a lower percentage survival of tillers to harvest on the sulphate of ammonia plots. This was a direct result of the large number of tillers formed, and the competition between them.

(3) There was an increase, both in the number of ears produced per plant and in the size of the ears, on the sulphate of ammonia plots. Nevertheless, there were no more ears produced per foot of drill row on the $1\frac{1}{2}$ cwt per acre plots than on the $\frac{1}{2}$ cwt per acre plots.

(4) The main reason for the higher yield of grain on the sulphate of ammonia plots than on the no-nitrogen plots was the larger number of grains per ear. There were also more ears per plant and per foot of drill row (see 3).

(5) There was no appreciable difference in the average size of the individual grains from the various treatments, but the bushel weight was slightly greater in the case of the grain from the sulphate of ammonia plots.

(6) The crop on the no-nitrogen plots showed marked yellowing in July and August, but the sulphate of ammonia plots were a healthy bright green in colour. Although the no-nitrogen plots showed superior growth in May and June, the sulphate of ammonia plots showed superior growth in the next four months. The plots that had received $\frac{1}{2}$ cwt and $1\frac{1}{2}$ cwt per acre were respectively 3 inches and 6 inches taller than the no-nitrogen plots in October. The crop was also much denser on the sulphate of ammonia plots than on the no-nitrogen plots. At harvest, however, there was little difference in height between the crops on the various plots.

(d) *Nitrogen Content of the Crop* — The nitrogen content of the crop in October, and that of the grain and straw at harvest, are shown in Table VI.

TABLE VI.—NITROGEN CONTENT AS PERCENTAGE OF AIR-DRY MATERIAL, IN OCTOBER AND AT HARVEST

Treatment	Percentage of Nitrogen in Crop on 9th October 1933	Percentage of Nitrogen at Harvest	
		In Grain	In Straw
No nitrogen	1.07	1.46	0.37
Sulphate of ammonia, $\frac{1}{2}$ cwt per acre	1.06	1.46	0.37
Sulphate of ammonia, $1\frac{1}{2}$ cwt per acre	1.07	1.47	0.39

The added nitrogen had no effect on the percentage of nitrogen in the crop. Richardson and Fricke(6) have also shown that dressings of sulphate of ammonia applied at the rates of less than

1 cwt per acre did not appreciably increase the nitrogen percentage of the grain or of the straw of barley. Larger dressings caused a marked increase in the nitrogen percentage of both the grain and the straw.

The total amounts of nitrogen removed by the crop per acre under each treatment was then calculated. The results, as well as the quantity of nitrogen applied to the soil per acre under each treatment, are shown in Table VII.

TABLE VII.—TOTAL NITROGEN REMOVED BY THE VARIOUS CROPS

Treatment	Nitrogen Applied in Fertilizer (lb p a)	October Material		Harvest Material.				Total Nitrogen Removed by crop (lb p a)
				Grain		Straw		
		Dry Weight (lb p a)	Nitrogen Removed (lb p a)	Weight (lb p a)	Nitrogen Removed (lb p a)	Weight (lb p a)	Nitrogen Removed (lb p a)	
No nitrogen		2,036	21.8	856	12.50	1,144	4.23	16.7
Sulphate of ammonia, 1 cwt per acre	17.8	3,831	36.1	1,472	21.49	2,088	7.73	29.2
Sulphate of ammonia, 1½ cwt per acre	35.6	4,452	41.6	1,672	24.58	2,808	10.17	34.7

It will be noticed that the total nitrogen content in the above-ground portions of the crop was greater in October than at harvest. Knowles and Watkins (4) have shown that there is a migration of the various plant nutrients from the above-ground portions of the wheat plant during the later stages of the life history.

BUANGOR

(a) *General*.—The plots were sown on 9th May, 1933. The unit plot was a 15-row drill strip 83 yards long, the area being 1/20th acre. The outside row on each side was removed immediately before the plots were harvested. The area at harvest was 1/25th acre.

The final hay yields and the estimated grain yields are shown in Table VIII. The grain yields were estimated from thirty 1-foot lengths of drill row from each plot.

TABLE VIII.—FINAL YIELDS AT BUANGOR

Treatment	Hay Yields (Cwt per Acre)	Increment Due to Nitrogen (Cwt per Acre)	Estimated Grain Yield (Bushels per Acre)	Increment Due to Nitrogen ('Bushels per Acre)
No nitrogen	27.8	35.9
Sulphate of ammonia, 1 cwt per acre	43.9	16.1	46.2	10.3
Sulphate of ammonia, 1½ cwt per acre	57.4	29.6	59.5	23.6

All the above differences are significant, the standard error of the mean being 1.6 cwt per acre in the case of the hay yields, and 2.7 bushels per acre in the case of the grain yields.

(b) *Nitrate and Ammonia Content of the Soil*—Samples of the soil were analyzed at monthly intervals until 31st October. The results are shown in Table IX, and are illustrated in the form of a graph in Fig. 2.

FIGURE 2

Graph showing changes in nitrate and ammonia nitrogen content of the soil at Buangor during the growing period of the crop 1933.

- 1 Amount of nitrogen applied in $\frac{1}{4}$ cwt sulphate of ammonia per acre
- 2 Amount of nitrogen applied in $1\frac{1}{2}$ cwt sulphate of ammonia per acre

Treatments

01. No nitrogen
02. Sulphate of ammonia— $\frac{1}{4}$ cwt per acre
03. Sulphate of ammonia— $1\frac{1}{2}$ cwt per acre

TABLE IX—CHANGES IN THE MOISTURE, NITRATE, AND AMMONIA CONTENT OF THE SOIL AT BUANGOR

Date	Treatment	Moisture Content Per Cent	Nitrate Nitrogen Content— Parts per Million	Ammonia Nitrogen Content— Parts per Million
9 5 33	Before seeding	10.7	3.4	
13 6 33	No nitrogen	22.5	2.4	
	Sulphate of ammonia, $\frac{1}{2}$ cwt per acre	22.5	2.6	
	Sulphate of ammonia, $1\frac{1}{2}$ cwt per acre	22.5	2.4	
11 7 33	No nitrogen	21.3	3.4	6.2
	Sulphate of ammonia, $\frac{1}{2}$ cwt per acre	21.8	4.9	7.2
	Sulphate of ammonia, $1\frac{1}{2}$ cwt per acre	22.6	6.2*	12.6*
8 8 33	No nitrogen	22.4	1.4	9.8
	Sulphate of ammonia, $\frac{3}{4}$ cwt per acre	20.6	3.0	12.3
	Sulphate of ammonia, $1\frac{1}{2}$ cwt per acre	20.0	3.3	19.9*
12 9 33	No nitrogen	22.0	1.0	13.2
	Sulphate of ammonia, $\frac{1}{2}$ cwt per acre	22.0	1.3	13.9
	Sulphate of ammonia, $1\frac{1}{2}$ cwt per acre	22.0	1.1	18.0
3 10 33	No nitrogen	19.8	1.2	8.4
	Sulphate of ammonia, $\frac{1}{2}$ cwt per acre	21.7	1.4	8.2
	Sulphate of ammonia, $1\frac{1}{2}$ cwt per acre	21.1	1.4	14.9

All figures in *italics* are significantly different from the corresponding figures for the no-nitrogen plot.

* This figure is also significantly different from that in the preceding row.

The chief points of interest are —

(1) As was the case at Bannockburn, the plots that had received $1\frac{1}{2}$ cwt of sulphate of ammonia per acre still showed an appreciably higher ammonia content than the no-nitrogen plots five months after the application. It was expected that all would have been absorbed by the plants, changed to other nitrogen compounds, or been leached from the surface soil by this time. The excess ammonia in the plots that had received $\frac{3}{4}$ cwt of sulphate of ammonia per acre had, however, all disappeared during the first five months.

(2) The sulphate of ammonia plots had, in July and August, more nitrate nitrogen than the no-nitrogen plots. The nitrate content of the soil was then highest on the $1\frac{1}{2}$ cwt per acre plots.

The results of these soil analyses are not as reliable as those of the Bannockburn soil. The errors of sampling are large because the soil is variable.

The samples were taken from between the drill rows, and so do not accurately represent the soil on which the plants were growing.

(c) *Census Study of Growth and Yield of Crop*—The results of the census study of the crop are summarized in Table X.

TABLE X—RESULTS OF THE CENSUS STUDY AT BUANGOR

	No Nitrogen	Sulphate of Ammonia, 1 cwt per Acre	Sulphate of Ammonia, $1\frac{1}{2}$ cwt per Acre
(1) Population			
Mean number grains sown per foot, 9th May, 1933	16.1	16.1	16.1
Germination—Mean number plants per foot, 30th June, 1933	11.2	11.7	11.6
Mean number plants per foot, 3rd October, 1933	11.6	12.5	11.6
Mean number plants per foot at harvest, 9th December, 1933	10.6	11.3	11.2
Percentage survival of plants to harvest	92.5	90.5	97.0
(2) Tillering			
Mean number tillers per plant, 31st October, 1933	3.8	5.2	6.0*
† Estimated green weight of crop (cwt. per acre), 3rd October, 1933	44.3	81.5	101.4
Mean number tillers per foot, 31st October, 1933	41.4	63.5	69.3
(3) Ears and Grains			
Mean number ears per plant	1.3	1.7	1.8
Mean number ears per foot	14.0	18.9	20.0
Percentage of tillers formed which produce ears	34.8	29.8	27.8
Mean number spikelets per ear	9.9	10.4	11.2
Mean number grains per spikelet	1.91	1.90	1.88
Mean number grains per ear	18.9	19.4	21.2
Mean number sterile grains per ear	0.66	0.61	0.66
Mean weight of 1,000 grains (grams)	32.2	31.7	33.4
Bushel weight (lb per bushel)	37.0	39.0	40.2
Estimated grain yield (bushels per acre)	35.9	46.2	59.5

All figures in italics are significantly different from the corresponding figures for the no-nitrogen plots.

* This figure is also significantly different from that in the preceding column.

† This figure includes the amount of silage or green feed that could have been obtained. The estimated air dry weights of the crop at this stage are shown in Table XII.

The chief points of interest are as follows—

(1) There was no depression of germination on the sulphate of ammonia plots

(2) There was an increased formation of tillers on the sulphate of ammonia plots

(3) There was an increase in the number of ears produced per plant, as well as in the size of the ears on the sulphate of ammonia plots

(4) The higher yield on the sulphate of ammonia plots than on the no-nitrogen plots was mainly due to an increase in the number of ears per foot of drill row. There was also an increase in the size of the ear.

(5) There was no appreciable difference in the size of the individual grains from the various treatments. The bushel weight was slightly higher in the case of the grain on the sulphate of ammonia plots.

(6) In July and August yellowing was widespread—particularly on the no-nitrogen plots. It was particularly noticeable on the light-brown patches of soil. In August and September the crop on the sulphate of ammonia plots was definitely taller than that on the no-nitrogen plots. This difference in height increased until at harvest the plants on the $1\frac{1}{2}$ cwt plots were at least 9 inches taller than those on the no-nitrogen plots. Those on $\frac{1}{4}$ cwt plots were intermediate in height.

(d) *Nitrogen Content of the Crop*—The nitrogen content of the crop in October, and of the grain and straw at harvest, is shown in Table XI.

TABLE XI.—NITROGEN CONTENT AS PERCENTAGE OF AIR-DRY MATERIAL, IN OCTOBER AND AT HARVEST.

Treatment	Percentage of Nitrogen in Crop on 9th October, 1933	Percentage of Nitrogen at Harvest	
		In Grain.	In Straw
No nitrogen	1.05	1.44	0.35
Sulphate of ammonia, $\frac{1}{4}$ cwt per acre	1.06	1.44	0.36
Sulphate of ammonia, $1\frac{1}{2}$ cwt per acre	1.10	1.46	0.36

In October there was no appreciable difference in the nitrogen percentage of the crops grown with the various treatments. At harvest there was no appreciable difference in the nitrogen percentage of the grain or the straw.

The actual amounts of nitrogen removed by the crop, together with that applied in the fertilizer dressing, appear in Table XII.

TABLE XII.—TOTAL NITROGEN REMOVED BY THE VARIOUS CROPS

Treatment	Nitrogen Applied in Fertilizer (lb p a)	October Material		Harvest Material				Total Nitrogen Removed (lb p a)
				Grain		Straw		
		Dry Weight (lb p a)	Nitrogen Removed (lb p a)	Weight (lb p a)	Nitrogen Removed (lb p a)	Weight (lb p a)	Nitrogen Removed (lb p a)	
No nitrogen .		1,965	20 6	1,436	20 68	1,796	6 29	27 0
Sulphate of ammonia, $\frac{3}{4}$ cwt. per acre	17 8	3,677	38 9	1,848	26 61	3,138	11 30	37 9
Sulphate of ammonia, $1\frac{1}{2}$ cwt per acre	35 6	4,034	44 4	2,380	34 75	4,161	14 98	49 7

It will be noticed that the total nitrogen in the crop was greater at harvest than when the October material was collected. This material was collected at an earlier stage of maturity than that at Bannockburn, and probably had not developed the maximum nitrogen content.

Comparison of Results from Bannockburn and Buangor.

The final yields at Bannockburn and at Buangor given in Tables III and VIII respectively may be compared as follows.—

A FINAL YIELDS

Hay Yields.—At each place the increment in yield obtained with the first $\frac{3}{4}$ cwt of sulphate of ammonia per acre was greater than that obtained with the second $\frac{3}{4}$ cwt. per acre. The yield on the no-nitrogen plots was greater at Buangor than at Bannockburn, and the actual increments in yield due to sulphate of ammonia were greater at Buangor. At both places the yield was more than doubled by applying $1\frac{1}{2}$ cwt per acre.

Grain Yields.—At Buangor the first $\frac{3}{4}$ cwt of sulphate of ammonia increased the yield by 10 bushels per acre (= 25 per cent of the no-nitrogen yield). The second $\frac{3}{4}$ cwt. increased the yield by an equal amount. At Bannockburn the first $\frac{3}{4}$ cwt. increased the yield by 15 bushels (= 70 per cent of the no-nitrogen yield), the second $\frac{3}{4}$ cwt increased it only by 5 bushels. The grain yields were higher at Buangor than at Bannockburn.

If sulphate of ammonia is valued at 9s 9d per $\frac{3}{4}$ cwt applied (market price = £12 7s 6d. per ton for) oaten hay at 30s per ton, and oats at 1s 6d per bushel, the profit or loss of applying each successive $\frac{3}{4}$ cwt. per acre is shown in Table XIII.

TABLE XIII.—THE PROFIT (+) OR LOSS (—) PER ACRE OF APPLYING INCREASING DRESSINGS OF SULPHATE OF AMMONIA

Due to—	Bannockburn		Buangor	
	For Hay		For Hay	
	s	d	s	d
First $\frac{1}{4}$ cwt per acre	+ 11	6	+ 13	0
Second $\frac{1}{2}$ cwt per acre	+ 1	0	— 2	0
Total $1\frac{1}{2}$ cwt per acre	+ 12	6	+ 11	0
			+ 35	6
			+ 13	0

With these assumed prices, $1\frac{1}{2}$ cwt per acre with a suitable dressing of superphosphate, is profitable at both places when oats are grown for hay

If oaten hay were valued at 20s per ton the profits of applying successive $\frac{3}{4}$ cwt dressings at Bannockburn would have been + 4s. 6d and — 3s, and at Buangor they would have been + 6s. 6d and + 4s, so that $\frac{1}{4}$ cwt per acre would be the more profitable quantity to apply at Bannockburn

At Bannockburn, $\frac{3}{4}$ cwt per acre is the more profitable amount to apply if the oats are grown for grain. At Buangor $1\frac{1}{2}$ cwt per acre is the more profitable amount

B NITRATE AND AMMONIA CONTENT OF THE SOIL

At both places there was, from the time of application onwards, a steady decline in the amount of ammonia that the sulphate of ammonia plots contained in excess of the no-nitrogen plots. There was a definite seasonal change in the ammonia content of the soil, and the graph representing this was of the same form at each place, although the ammonia content of the soil was somewhat higher at Buangor than at Bannockburn. It is usual for the nitrate content of the soil carrying a cereal crop to be very low in September and October.

At both places there was a steady drop in the nitrate content of the soil in the no-nitrogen plots from seeding to October. The nitrate content of the soil was lower at Buangor than at Bannockburn. On the sulphate of ammonia plots there was an increase in the nitrate content of the soil from the end of June to the beginning of August. This was largest on the $1\frac{1}{2}$ cwt plots. The increases in nitrate content on the sulphate of ammonia plots was almost equal at each place.

C CENSUS STUDIES OF GROWTH AND YIELD OF CROP

(1) *Population*—At both places the number of grains sown per foot of drill row was slightly over 16.

The germination on the no-nitrogen plots was higher at Bannockburn than at Buangor. At Bannockburn, the sulphate of ammonia delayed germination, and caused a definite depression of germination. This was probably due to the osmotic power of the concentrated solution formed in the soil, which had an injurious action on the seeds. It did not occur at Buangor, where the soil is heavier.

In October, there were in many cases actually more plants per foot of drill row than in June. This was because grains which had failed to germinate in the dry soil did so after the heavy rains in June (108 points fell at Bannockburn between 22nd June and 28th June, at Buangor light rains towards the end of June were followed by 45 points on 10th July).

At both places there was a slightly lower percentage survival of plants till harvest on the no-nitrogen plots than on the sulphate of ammonia plots. At Bannockburn, however, the no-nitrogen plots still contained the most plants per foot of drill row.

(2) *Tillering*—At each place most tillers were formed per plant and per foot of drill row on the sulphate of ammonia plot that had received $1\frac{1}{2}$ cwt per acre, and least were formed on the no-nitrogen plots.

(3) *Ears and Grains*—At Buangor the applied nitrogen caused an increase in the number of ears produced per plant, and in the number of spikelets and grains per ear. The number of ears per foot of drill row was also increased. There was little difference in the size of the individual grains, but the bushel weight was slightly higher on the sulphate of ammonia plots.

Similar results were obtained at Bannockburn, except that there was no difference between the number of ears formed per foot of drill row on the $\frac{3}{4}$ cwt per acre and on the $1\frac{1}{2}$ cwt per acre plots.

The higher yields at Buangor than at Bannockburn were due more to larger ears and larger grains than to an increase in the number of ears.

D NITROGEN CONTENT OF THE CROP

October Material—The results obtained at the two places are not comparable as the material from Bannockburn was at a later stage of maturity than that from Buangor. At neither place was there any appreciable difference in the nitrogen percentage of the crops due to the various treatments.

Harvest Material—Neither the grain nor the straw showed any appreciable difference in nitrogen percentage due to the various treatments. At neither place was the nitrogen applied in the fertilizer completely recovered in the crop. However, about two-thirds was recovered in the crop; the amount of the heavier dressing recovered being higher at Buangor than at Bannockburn.

Summary.

The effect of ammonium sulphate on the growth and yield of stubble-sown oaten hay crops has been studied on field plots at Bannockburn and Buangor, where the rainfall for 1933 was 19.5 and 23 inches respectively. At each site the field plots were arranged in the form of a randomized block.

The final yields of hay and of grain were markedly increased by an application of sulphate of ammonia at seeding. At both sites a dressing of $\frac{3}{4}$ cwt per acre gave an increase in the hay yield and in the grain yield, which would be economic at current prices. The increase given by a second $\frac{3}{4}$ cwt per acre was likewise economic for hay at both places, and for grain at Buangor.

Although the ammonia content of the soil is not generally thought to have any relationship with the crop yield, it was found that marked variations occurred in the ammonia content of the soil throughout the growing period of the crop. The amount of ammonia that the sulphate of ammonia plots contained in excess of the no-nitrogen plots became gradually less in amount as the season advanced. The change was slow, requiring more than five months for completion on the $1\frac{1}{2}$ cwt. per acre plots. The nitrate content of the soil increased from June to August on the sulphate of ammonia plots.

Census studies showed an increase in the tillering of the plants, an increase in the number of ears produced and in the size of the ears, on the sulphate of ammonia plots. There was also a slight increase in the bushel weight of the grain. At Bannockburn, but not at Buangor, there was a depression of germination on the sulphate of ammonia plots.

The nitrogen percentage of the crops in October showed no differences between the different treatments, nor was there any difference in the nitrogen content of the grain or straw at harvest.

The total nitrogen removed by the crop on the sulphate of ammonia plots was in all cases more than that removed by the crop on the corresponding no-nitrogen plots, but the difference in nitrogen removed by the crop was less than two-thirds the difference in the amounts of nitrogen applied in the corresponding fertilizer dressings.

Acknowledgments.

The writer wishes to thank Nitrogen Fertilizers Pty Ltd, which company financed the investigation, and provided transport to and from the plots. He wishes, in particular, to thank Mr O H Gepp, who greatly assisted him with the field work.

He wishes to thank Mr Mason and Messrs Pickford Bros., on whose land the field trials were conducted, and who kept the records of the rainfall. He also wishes to thank Mr G W Leeper, under whose guidance the work was done, and Prof S M Wadham, for kindly interest in the work.

References.

- 1 FORSTER, H C, and VASEY, A J The Development of Accuracy in Agricultural Experiments *Journ Dept Agric Vic*, xxx, 1932, p 35
- 2 HARPER, H J Accurate Determination of Nitrates in Soils Phenoldisulphonic Acid Method *Ind and Eng Chem*, xvi, 1924, p 180
- 3 HOWELL, F J Field Experiments in Manuring, 1903-1904 Hay Manuring Experiments *Journ Dept Agric Vic*, ii, 1904, p 690
- 4 KNOWLDS, FRANK, and WATKIN, J E The Assimilation and Translocation of Plant Nutrients in Wheat during Growth *Journ. Agric Sci*, xxii, 1931, p 612
- 5 RICHARDSON, A E V, and FRICKE, F E The Effect of Nitrogenous Fertilizers on the Growth and Yield of Wheat and Barley *Journ Dept Agric S Aust*, xxxv, 1931, p 57
- 6 RICHARDSON, A E V, and GURNEY, H C The Effect of Nitrogenous Fertilizers on Wheat and Barley in South Australia Part I—Wheat *Emp Journ Exp Agric*, i, 1933, p 193.

APPENDIX

Method Used to Determine the Ammonia Content of the Soil

Twenty-five grams of soil are leached with 250 c.c. of N/10 hydrochloric acid. The soil is shaken with 100 c.c. of the acid, and is washed on to a filter paper in a Buchner funnel. The acid is slowly drawn through the soil on the filter paper. When just sufficient acid to wet the soil remains in the funnel, a further 25 c.c. are added. This is repeated until the whole 250 c.c. of acid have been drawn through the soil.

The washings are distilled with magnesium oxide into a measured amount of N/50 HCl, and the titration is completed with N/50 NaOH.

[PROC ROY SOC VICTORIA, 47 (NS), Pt I, 1934]

ART VI—*A Disease of Cauliflowers in Victoria, Australia*
(Gloeosporium concentricum (Grev) Berk and Br)

By FRANCES J. HALSEY, M.Sc.

(Government Research Scholar)

(With Plate VI)

[Read 10th May, 1934, issued separately, 22nd December, 1934]

Index of Contents.

- I INTRODUCTION
- II SYMPTOMS
- III HISTORICAL
- IV DESCRIPTION OF THE PATHOGEN ON THE HOST
- V DESCRIPTION OF THE PATHOGEN IN CULTURE
 - (a) Isolation and growth on various culture media
 - (b) Spore production in culture
 - (c) Spore germination.
 - (d) Chlamydospore production
- VI INOCULATIONS TO PROVE PATHOGENICITY
- VII THE EFFECT OF pH ON SPORE GERMINATION
- VIII DISCUSSION
- IX SUMMARY
- X BIBLIOGRAPHY

Introduction.

A disease of cauliflowers is very prevalent in Victoria, not only affecting the leaves, but also damaging the inflorescences, especially if heavy rains occur during the season. Affected plants greatly deteriorate in market value. The disease was brought under the writer's notice by Mr D. Adam, Government Pathologist, Department of Agriculture, Victoria, in February, 1933. From communication with Mr Adam the writer learns that a fungus resembling the Victorian pathogen has been isolated from *Brassica* leaves in England, and is considered to be a *Gloeosporium*. There exists no published account of this isolation.

The following account has been undertaken with the view of establishing the identity of the fungus isolated in Victoria, and of placing on record a detailed survey of the behaviour of the pathogen as it occurs on the host and in pure culture.

Symptoms.

The fungus occurs on the thick fleshy midribs, laminae, and petioles of cauliflower leaves, on both upper and lower surfaces (Plate VI, Fig 1) The most characteristic feature is the presence of minute, roughly circular, greyish-white patches on both surfaces of the leaf These are arranged in a more or less concentric pattern, each individual patch is the result of the fungus sporing beneath the cuticle of the host

The formation of spores creates an internal pressure, which eventually ruptures the overlying cuticle The spores then escape, and collect on the surface of the leaf in clusters, the latter are very white and fluffy, suggesting extremely minute fragments of cotton wool (Plate VI, Fig. 2) On the midribs and petioles these snow-white clusters of spores are not so easily seen, owing to the lack of contrasting green colour However, brown to almost black scarred areas develop abundantly, usually after the spores have ruptured the cuticle The scars are narrow, elongated in the direction of the course of the midrib, varying in length from less than 1 cm to more than 2 cm, more or less raised at the margin, and slightly sunken towards the centre

Small patches of brown discolorations may extend on to the laminae of the leaves, and are then found in the neighbourhood of the sporing areas On the midribs and petioles the scars later become wrinkled or furrowed in appearance, owing to the formation of cork (Plate VI, Fig 1)

Historical.

The genus *Cylindrosporium* was set up by Greville (9) in 1823, on the basis of *Cylindrosporium concentrum* Grev., found on both surfaces of cabbage leaves (*Brassica oleracea* Linn.) Greville stated, "The peculiarity of its cylindrical sporidia, and its situation on the surface of living leaves, fully entitle it to generic distinction"

In 1850, Berkeley and Broome (2) examined Greville's original material, and found that the spores were produced beneath the cuticle, and formed "little heaps by oozing out as in other species of *Glocosporium*," and hence placed the fungus in this genus

It is clear, therefore, that *C. concentricum* Grev = *G. concentricum* Berk and Br. Von Hohnel (16) in 1916 abandoned the old genus *Glocosporium* as a mixture, and replaced it by four new genera, *Glocosporina*, *Monostichella*, *Glocosporidium*, and *Cylindrosporella*, of which the first two and the last had subcuticular acervuli, and in the third the acervuli lay deeper *Glocosporina* possessed micro-conidia Nannfeldt(24) in 1931 showed that spore size was a very unreliable character, as acervuli may contain both macro- and microconidia while others

may possess microconidia only, he suggested that *Glocosporina* was founded in this way. He also regarded the attempt to divide the genera by their position in the host as futile.

In 1927, Karakulin (21) discussed von Hohnel's attempt to break up the genus *Glocosporium*, but he did not accept this suggestion in its entirety, owing to the lack of constancy in the morphological characters of the new genera. Karakulin regarded it as too early to abandon the old genus *Glocosporium*, as it had widespread recognition, and no entirely satisfactory subdivision had, as yet, been proposed.

Since Greville's time, many species were placed, by Saccardo, under the genus *Cylindrosporum*, and a great deal of confusion resulted. Von Hohnel (17), however, in 1924, clarified this point. He discussed thirty-three species of *Cylindrosporum*, and referred these to eleven genera, five of the latter being new. Von Hohnel regarded *Cylindrosporum concentricum* as the only true species of the genus.

If Berkeley and Broome are correct, and the fungus is named *Gloeosporium concentricum* (Grev.) Berk and Broome, then there is nothing left in the genus *Cylindrosporum*.

Description of the Pathogen on the Host.

Spores of the fungus were easily obtained from the small snow-white fructifications on the leaves of the host, and were examined microscopically. They were extremely numerous, and each possessed a mucilaginous envelope. The spores measured on the average $11.9 \times 3\mu$, and were cylindrical, rounded at each extremity, hyaline, straight, or slightly curved, one-celled, generally bi-guttulate, sometimes, however, more than one oil drop occurring at each end.

Portions of leaves of a diseased cauliflower were fixed, and embedded, and sections about 5μ thick were cut, and stained by Haidenhain's iron-alum haematoxylin method. In this way sections were obtained which showed the fructifications at a fairly young stage before the rupture of the cuticle, and a still later stage depicting mature fruiting areas when the cuticle of the host had been ruptured (Fig. 1).

The acervuli were subcuticular, intercellular fungal hyphae were observed within the leaf tissue, extending several layers below the cuticle (Fig. 1G). From a slight, but nevertheless well-defined stroma, the conidiophores arose perpendicularly. These were unbranched, fairly closely packed, short, usually one-celled, from which the conidia, each with a single well defined nucleus, were constricted off one at a time from the apex. One conidium was completely formed and set free before another started to develop (Fig. 2). The acervuli finally became erumpent, and the spores oozed out on the leaf surface.

Figs 1, 2—1 Transverse section of an acervulus on the under surface of a cauliflower leaf $\times 364$ 2 Portions of transverse sections of ascervuli, showing conidia borne on conidiophores $\times 364$ A Epidermis of leaf, B ruptured cuticle, C stroma of acervulus, D conidiophore constricting off a spore, E spores set free, F spores cut transversely, G intercellular hyphae

Figs 3, 4—3 Transverse section through a midrib of a cauliflower leaf, at an early stage in cork formation $\times 282$ 4 A later stage showing the deep-seated cork cambium, and layers of diseased tissue. $\times 168$ A Cork cambium, B cork cells; C diseased leaf tissue

Sections of midribs and petioles showing brownish-black scars were also cut and stained. They showed acervuli similar to those found on the laminae of the leaves. Sections of the scars after they became wrinkled in appearance showed a very extensive development of corky tissue, on the surface of which fungal hyphae were distinguishable, also a few spores. Early and later stages in cork formation are depicted in Figs. 3 and 4. Staining with chlor-zinc-iodine served to define the full extent of the corky tissue.

Description of the Pathogen in Culture.

(a) Isolation from Host, and Growth on Various Media

The pathogen was first isolated from the leaves of *Brassica oleracea* in 1932, and since then frequent isolations have been made, and the fungus obtained in pure culture without any great difficulty.

The following media were used—Malt agar, oatmeal agar, Brown's synthetic potato dextrose agar, cabbage agar*, sterilized cabbage midribs, sterilized potato slopes, turnip juice.

Malt agar (Plate VI, Fig. 3)—Growth is fairly slow and restricted. Young colonies have a puckered appearance with a moist cream-coloured mycelium, due to the formation of spores in great numbers. Later the culture turns dark green to black in colour, except at the growing edges, and small black spherical to sub-spherical bodies appear. These vary from 200μ - 670μ in diameter, and may be simple or confluent. These structures appear macroscopically very like pycnidia. Ashby (1) in investigating *Gloesporium musarum* states that, "Both Lassuer (22) and Toro (30) refer to these structures as pycnidia. Kruger calls them pseudopycnidia." The term was originated by Potebnia (25) when describing certain species of *Septoria*. Following Potebnia's example, the term pseudopycnidium will be used throughout this account.

A mature pseudopycnidium possesses a rounded or sometimes stellate ostiole, which opens wide to expose the hymenial layer of branched conidiophores bearing conidia.

Oatmeal agar—Compared with the rate of growth on malt agar measured in terms of diameter of the colony, growth on oatmeal agar is quick. As the culture ages, the hyphae turn dark-green to black. On the dark mycelium, discrete sporing areas of a dirty cream colour, together with black spherical pseudopycnidia, are clearly visible. Aerial mycelium is absent in these cultures.

* 500 gms of fresh cabbage leaves were boiled in 500 ccs. of water. The extract so obtained was made up to 500 ccs., added to 500 ccs. of 2% agar plus 1% dextrose, and autoclaved in Erlenmeyer flasks.

Brown's synthetic potato dextrose agar—This medium is unfavourable to growth. The mycelium is slightly raised and very restricted, white to cream, and not moist, on account of limited spore formation.

Cabbage agar—Growth on this medium is similar to that on malt agar. The pseudopycnidia, however, are not as numerous, and growth, on the whole, is more restricted.

Sterilized cabbage midribs—On cabbage tissue the fungus exhibits a different mode of growth. The mycelium is more aerial in type. As the culture ages, there is a darkening of the tissue, and also of the fungal mycelium. Pseudopycnidia are developed.

Sterilized potato slopes—This medium also exhibits a distinct type of growth. Young cultures appear quite dry, pure white, dense and decidedly wrinkled; later becoming black, accompanied by blackening of the potato tissue. Spore formation is very restricted and no pseudopycnidia are formed.

Turnip juice—Growth in a liquid medium such as turnip juice is very slow, a mycelium is gradually formed on the surface. The spores may sink to the bottom of the tube, where they germinate.

It is evident, therefore, that starch media, such as Brown's agar, and potato slopes, are unfavourable for the growth of this fungus, this was also noted by Lasnier (22) in his account of the growth of *Glomerella* (*Glocosporium*) *Cattleyae* on starch media.

The optimum temperature for growth on any medium is from 19 deg C—20 deg C, and all the cultures described above, were grown at approximately 19 deg C.

b Spore Production in Culture

In culture the average spore measurements are as follows. 10.4–13.1 μ \times 25–28 μ , and conidial formation takes place in three distinct ways—

1. Conidia may be formed at any point throughout the culture; the conidiophores are short, branched, and arise from the ordinary growing hyphae. The conidia are constricted from the tip of a conidiophore, one by one, when one conidium is completely formed, it is set free, and then the conidiophore sends out a second spherical protuberance, which elongates until it reaches the normal dimensions of a spore, and is then set free. In this way numerous spores are formed from the one conidiophore, which is soon completely masked by them. This type of spore

formation is best studied in single spore colonies, which are sown in malt agar in petri dishes. Conidia commence to develop after about four days at 19 deg C (Figs 5 and 6).

FIGS 5, 6—5 Colony grown on malt agar, from a single spore, showing conidia being formed at any point from short branched conidiophores, after five days $\times 261$ 6 The same after six days $\times 261$ A Conidiophore commencing to divide into two, B the second spore being formed, in succession

2 The discrete sporing areas, which are easily seen on oatmeal cultures, are seen, when sectioned, to consist of a definitely raised plectenchymatous stroma, and from this arise numerous branched conidiophores, multicellular, elongated, and producing spores in the same way as described above (Fig 7). On account of the well-developed stromata, these fructifications may be termed "sporodochia."

FIGS 7-9—7. Conidiophores and conidia from discrete sporing areas on oatmeal agar, from transverse sections $\times 400$. A. Elongated, branched conidiophore; B. conidia formed in succession 8 Transverse section of a mature pseudopycnidium, growing on malt agar $\times 43$ A. Surface of culture medium, B. outer region of loose hyphae, C dark inner region, E. elongated branched conidiophores 9 Conidiophores and conidia from a pseudopycnidium $\times 418$ A Branched conidiophore, B conidia forming in succession

3 Finally conidia are produced in pseudopycnidia. When sectioned a typical pseudopycnidium shows an outer region of loosely arranged hyphae, and a dark inner region, about 40μ in thickness, which consists of closely compressed hyphae. This inner region is lined by elongated, branched, conidiophores (Fig 8), which produce conidia from their tips in the usual manner (Fig. 9)

c Spore Germination

This was studied in hanging drops of sterile water. Spores were germinated at 19 deg C and also at the fluctuating temperature of the laboratory. Germination commenced slightly earlier, and was more rapid at 19 deg C than at room temperature. The experiments were carried out with spores obtained directly from the host, and also with spores produced in culture.

FIGS. 10-13.—Spores from host, germinating in a hanging drop of water.
X 291. 10 After 24 hours. 11 After 48 hours. 12 After 72 hours.
13 After six days. A Conidium before germination, B germinating
conidium, C median septum in germinating conidium, D germ tube,
E original conidium; F conidiophore, G secondary conidium.

After twenty-four hours spores about to germinate appeared slightly swollen, and others still further advanced showed a median septum. The first germ tube generally proceeded from one end of the spore, and later the other section of the spore produced germ tubes (Fig 10). After forty-eight hours the germinating filaments exhibited septa, and some showed the commencement of branching (Fig 11). Finally secondary conidia were produced from short conidiophores, as shown in Fig 13, at or after six days.

Appressoria such as were observed in hanging drops of *Gloeosporum musarum* spores, were not formed by the fungus from *Brassica* leaves. The hanging drops were inverted, so that a great number of the spores when they germinated came into contact with the glass coverslip, thus receiving the contact stimulus necessary for the production of appressoria, but in no case were appressoria observed.

d Chlamydospore production

Chlamydospores were not noticed on actively growing cultures, but were frequently observed in very old cultures and were abundantly developed on Brown's agar. The chlamydospores measure from $10-15\mu \times 5-9\mu$, and may be developed either in an intercalary position or terminally (Fig. 14). They are roughly oval to round in shape, and pale yellow in colour.

Inoculations to prove Pathogenicity.

Healthy cauliflower seeds were planted in seed boxes, and when the plants had grown about three inches high, they were transplanted into small flower pots, one plant in each pot, and allowed to establish themselves.

Then four plants were sprayed with a suspension of spores in distilled water and controls with distilled water alone. The seedlings were placed in a glasshouse and kept in a moist atmosphere for four days. Then they were placed under ordinary glasshouse conditions, and the plants closely examined each day for the first sign of infection.

After ten days minute blackish scars were noticed on the stems of the infected plants. At this stage the pots were transferred to a sheltered position out of doors.

Later the small scarred areas extended up the midribs of the leaves and along the veins. Spores were easily demonstrated from stems or leaves, occurring in the characteristic snow-white areas, associated with the darkened regions (Plate VI., Fig. 4.) Symptoms were developed by each of the four infected plants. The control plants showed no sign of infection, remaining healthy throughout the experiment. The above experiment was repeated with the same results. The pathogen was isolated quite readily from the sporing areas on the leaves or stems of the seedlings, and its appearance on culture media agreed in every particular with the growth of the fungus isolated from diseased plants in the field.

In order to determine the way the pathogen entered the host, seedling leaves of cauliflowers were sprayed with a spore suspension and the plants treated as before. After four days, the leaves were removed from the plants, and fixed in Gilson's fixative, then stained with cotton blue in lacto-phenol for about an hour. When examined microscopically the spores with their germ tubes were stained a deep blue, the single cross wall in each germinating

spore was clearly defined. The germ tubes seemed to penetrate the leaves more readily on the lower surface, and in many instances just at the point of penetration the filament seemed to swell slightly, but in no case was a definite appressorium developed. The germinating filaments, after piercing the cuticle, could easily be traced for some distance, appearing a paler blue colour, owing to the overlying cuticle. Germ tubes entered the leaf through the walls of the epidermal cells and the guard cells, but were not found passing through the stomatal pore in any case (Fig. 15)

FIGS. 14, 15—14 Chlamydospores developed on Brown's agar $\times 282$
A Chlamydospore, B hypha, C conidium 15 Spores germinating on
the under surface of a cauliflower leaf, after a period of 4 days. $\times 282$
A Germ tube on surface of leaf, B point of penetration, C germ
tube after penetrating cuticle, D stomatal pore, E epidermal cell of
leaf

The Effect of pH on Spore Germination.

The effect of various pH values on spore germination was tried. Hanging drops over a wide range of pH values were set up in sterile water, with spores obtained directly from the host. The hanging drops were placed in a moist atmosphere, and left at room temperature for 24 hours. The maximum temperature during this period was 14.4 deg C., and the minimum 10 deg C. Spores in sterile water (pH 6.0) were used as controls.

The percentage germination at each particular pH value was determined after taking counts from five microscope fields. The results are tabulated below—

Spores Germinating in Lactic Acid		Spores Germinating in Na_2CO_3	
pH	Average Germination %	pH	Average Germination %
4.9	62	8.4	75
3.9	73	9.4	73
3.7	39	9.6	67
3.5	35	9.9	74
3.4	32	10.1	61

The controls gave an average percentage germination of 95.5 per cent. On each side of pH 6 a general fall in percentage germination of spores took place, from 95 to some 73 per cent., within a range of pH 9.9 and 3.9. Beyond this range, the percentage germination fell sharply, especially on the acid side.

Discussion.

In 1823, Greville described a fungus from *Brassica* leaves in Scotland, which he named *Cylindrosporium concentricum*. Later Berkeley and Broome examined Greville's original material, and changed the name to *Gloeosporium concentricum* (Grev.) Berk and Br. Buddin, whose work is unpublished, isolated a fungus in England which (Miss) Wakefield considered to be undoubtedly *Gloeosporium concentricum* (Grev.) Berk and Br.

The average spore measurements of the fungus found on *Brassica* leaves in Victoria are $11.9 \times 3\mu$. Buddin's spore measurements for his fungus are $10 \times 2\mu$. The latter show a good practical correspondence with the measurements obtained for the Victorian pathogen. The spores are not very narrow in relation to their length, and come well within the range of spore measurements for a typical *Gloeosporium* species. The way the conidia are borne on the ends of short conidiophores, in this case usually unbranched in the acervuli, is also typical of *Gloeosporium*. The type of spore formation when compared with that of *Gloeosporium musdrum* is found to agree in every particular. A typical *Gloeosporium*, however, generally develops appressoria, when the germinating filaments are stimulated by mechanical contact. The greater number of diseases described as anthracoses fall under the genera *Gloeosporium* and *Colletotrichum*, and in the majority of these appressoria are developed. However, both on the host and in hanging-drop cultures of water, appressoria fail to develop in the fungus under discussion. It is usually considered that a genuine *Gloeosporium* develops subepidermally, whereas this fungus originates subcuticularly. It has been mentioned above that Nannfeldt regards the attempt to classify genera by their position within the host (subcuticular, subepidermal, &c.) as futile. The perfect stage of the fungus has not been found, as yet, on the host or in culture. Many methods of culture have been tried, in order to try and induce the perfect stage, but up to date without success.

From the data collected, it is evident that the lack of appressoria is the only real divergence from *Gloeosporium*. Correspondence with Butler reveals the fact that it is uncertain whether Greville's fungus and that isolated by Buddin are the same species. Butler suggests that until Greville's fungus is redescribed the name *Gloeosporium concentricum* (Grev.) Berk and Br may stand.

The form isolated in Victoria seems to resemble Buddin's isolation. Therefore, until the redescription of Greville's fungus and the discovery of a perfect form, Butler's suggestion is followed—the Victorian pathogen is retained in the Melanconia-ceous genus *Gloeosporium*, the full nomenclature being *Gloeosporium concentrum* (Grev.) Berk and Br.

Summary.

1 A study of a disease of cauliflowers in Australia has been made, as a result of which the pathogen is named *Gloeosporium concentricum* (Grev.) Berk and Br.

2 A disease was recorded on *Brassua* leaves in Scotland by Greville in 1823, when he considered the pathogen peculiar enough to entitle it to generic distinction—hence he named it *Cylindrosporium concentricum* Grev. Berkeley and Broome, in 1850, examined Greville's material, and changed the name to *Gloeosporium concentricum* (Grev.) Berk and Br.

Buddin isolated a fungus in England which Wakefield considered to be *Gloeosporium concentricum* (Grev.) Berk and Br. However, Butler is uncertain whether Greville's fungus and that isolated by Buddin are the same species, and suggests that until Greville's fungus is redescribed, the name *Gloeosporium concentricum* (Grev.) Berk and Br. may stand.

3 The disease is characterized by minute snow-white clusters of spores, which burst through the cuticle of the leaves and stalks, the spoiling areas or acervuli being arranged more or less concentrically.

4 The pathogen was isolated from the host, and obtained in pure culture. Growth on different media was studied.

5 Spore germination was followed in hanging drops of sterile water, and the effect on germination of varying pH values was studied.

Acknowledgments.

The author wishes to record her appreciation of the helpful interest of Professor Ewart, and to thank Dr McLennan, under whose guidance the work was done. Gratitude is also expressed to Dr Butler of the Imperial Mycological Institute, for his valuable suggestions.

References.

- 1 ASHBY, S. F. Notes on thirty-two isolations of *Gloeosporium* from Bananas in Trinidad. *Top Agric.*, viii, 1931, No. 12.
- 2 BERKELEY, M. J., and BROOME, C. E. Notices of British Fungi. *Ann. Mag. Nat. Hist.*, v (2nd S.), 1850.
- 3 CUNNINGHAM, H. S. Histology of lesions produced by *Sphaceloma Fawcettii*. *Phytopath.*, xviii, 1928, pp. 539-545.

- 4 DAVIES, W H Notes on the *Cercosporaella* leafspot of Chinese Cabbage in Massachusetts *Phytopath.*, xvii, 1927, pp 669-670, 1 pl
- 5 DIEDICKE, H Noch einige "Leptostromaceen," die Nectriodeen, Fungi-pulaceen, und Melanconineen *Ann Mycol.*, xi, xii, 1913, 1914.
- 6 EDGERTON, C W The physiology and development of some anthracnoses. *Bot Gaz.*, xlvi, 1908
- 7 ————— Plus and minus strains in the genus *Glomerella* *Amer Journ Bot.*, 1, 1914, pp 244-254
- 8 FAUREY and ROUMEG *Cylindrosporum Brassicarum* *Revue Mycol.*, xiii, 1891, p 81
- 9 GREVILLE, R K. Scottish Cryptogamic Flora, 1, 1823 Not available to the author
- 10 GROVE, W B A cabbage disease *Journ Roy Hort Soc.*, xl, 1914-1915
- 11 HALSTED, B D The secondary spores in anthracnoses *Rep New Jersey Agric Exp Sta* for 1892
- 12 ————— A study of solanaceous anthracnoses. *Bull Ton Bot Club.*, xx, 1893, pp 109-112
- 13 ————— Anthracnose of the Rose *Rep New Jersey Agric Exp Sta* for 1893, pp 401-405
- 14 HASSELBRING, H Appressoria of the anthracnoses *Bot Gaz.*, viii, 1906, pp 135-142
15. HIGGINS, B B Contribution to the life history and physiology of *Cylindrosporum* on Stone Fruits *Amer Jour Bot.*, 1, 1914, No 4
- 16 HOHNEL, F v Fragmente zur Mykologie *Kais Akad der Wissenschaften Mathemat-Natur Klasse Sitzungsberichte*, cxv, (1) 1916, p 94
- 17 ————— Beitrag zur Kenntnis der Gattung *Cylindrosporum*, Greif *Ann Mycol.*, xxii, 1924, 1-2, pp 191-203
- 18 JENKINS, A E Citrus scab fungus *Phytopath.*, xv, 1925, pp 99-104
- 19 ————— *Gloeosporum Rosae* A Nomen Nudum *Mycol.*, xxiii, 1931, pp 223-224
- 20 ————— Rose anthracnose caused by *Sphaceloma* *Jour Agric Res.*, xlvi, 1932, No 6
- 21 KARAKULIN, B P Contribution to the character of the genus *Gloeosporum Morbi Plantarum*, Leningrad, xvi, 1927, pp 54-60. (Abstract only, *Rev App Myc.*, vii, 1928).
- 22 LASNIER, M. E Recherches biologiques sur deux *Gloeosporium* *Bull. Soc Mycol France*, xxiv, 1908
- 23 McALPINE, D. Fungus diseases of Cabbage and Cauliflower in Victoria, and their treatment (Pamphlet). Dept Agric Vic, Jan, 1901
- 24 NANNFELDT, J A Contribution to the mycosphaerae of Sweden *Svensk Bot Tidskr.*, xxv, (1), 1931, pp 1-31 (Abstract only in *Rev App Myc.*, x, p 554)
25. POTEINIA, A Beitrag zur Micromycetenflora Mittel-Russlands *Annal Mycol.*, viii, 1910, pp 42-93
- 26 SALMON, E S, and WARE, W M Reports from the Mycological Department *Jour South-Eastern Agric Coll. Wye*, Kent, xxv, 1928
- 27 SAMIPSON, K. Comparative studies of *Kabatiella caulinaria* (Kirchn.) Karak., and *Colletotrichum trifoli* Bain and Essary Two fungi which cause Red Clover Anthracnose *Trans Brit Mycol Soc.*, xiii, 1928, Parts I and II

Gloeosporium concentricum on Cauliflower

[Part 109]

- 28 SHEAR and WOOD Ascogenous forms of *Gloeosporium* and *Colletotrichum* *Bot Gaz*, xliii, 1907
- 29 SIONEMAN, B A comparative study of the development of some anthracnoses *Ibid*, xxvi, 1898, pp 69-120
- 30 TORO, R A Studies in Banana anthracnose *Journ Dept Agric Porto Rico*, vi, 1922, No 4, pp 1-23
- 31 WEIMER, J L Ringspot of crucifers caused by *Mycosphaerella brasiliensis* (Fr) Lindau *Journ Agric Res*, xxxii, 1926.
- 32 WINSTON, J R Citrus scab—its cause and control *U.S. Dept Agric Bull* 1118, 1923

Explanation of Plate VI.

- Fig 1—Cauliflower leaves infected with *Gloeosporium concentricum*. Note the white sporing areas associated with the blackened regions on the laminae, and the corky scars on the midribs
- Fig 2—Portion of a cauliflower leaf infected with *Glocosporium concentricum*, showing the white fructifications somewhat concentrically arranged
- Fig 3—*G. concentricum*, growing on malt agar. Note small black pseudopycnidia, blackened stroma, and white growing zone
- Fig 4—Cauliflower seedling, which developed symptoms of the disease after being sprayed with a spore suspension of *G. concentricum*

[PROC ROY SOC VICTORIA, 47 (NS), Pt I, 1934]

ART VII—*Tertiary Dykes and Volcanic Necks of South Gippsland, Victoria.*

By A. B. EDWARDS, B.Sc. (Melb.), Ph.D

(With Plate VII.)

[Read 14th June, 1934, issued separately, 22nd December, 1934]

Index of Contents.

INTRODUCTION

GENERAL FEATURES OF THE DYKES AND VOLCANIC NECKS.

PETROGRAPHY —

- 1 Olivine-nephelinite
- 2 Monchiquites
3. Monchiquite-basalts
- 4 Olivine-analcite-basalts
- 5 Analcite-olivine-dolerites
- 6 Felsitic dykes

GEOCHEMISTRY AND DIFFERENTIATION

AGE RELATIONS AND CORRELATIONS

CONCLUSIONS

REFERENCES

Introduction.

The Geological Survey of Victoria, over a period of years from 1890 to 1920, published a number of reports, by Stirling (1892), Kitson (1903, 1917), and Ferguson (1909), in which were included detailed accounts of the geology of the areas covered by a series of Quarter Sheets—Nos 67 S.E., 67 N.E., 75 S.W., 76 S.W., and 76 N.W. (unpublished). In the course of this field work, an extensive collection was made from the dykes and volcanic necks herein described, to which later workers have added. The specimens were sectioned, and five analyses were prepared in the Survey Laboratory.

At the time of the author's departure for England to take up an 1851 exhibition, this collection was put at his disposal through the generosity of the present Director of the Geological Survey of Victoria, Mr W Baragwanath, together with a number of unsliced specimens. These latter have been sectioned in the Geology Department of Imperial College, and six further analyses have been completed.

The general geological map of South Gippsland, published in the Report of the Secretary for Mines, Victoria, for the year 1917, has been used as the basis of the appended sketch map. Locations of dykes and plugs were added from quarter-sheets, parish plans, and other records. The positions of the fault lines are based upon information supplied by the Geological Survey of Victoria.

The probable extent and strength of the dyke swarm can only be conjectured, owing to the limitation of exposures by the deep surface soils and vegetable accumulations of the gullies, by the dense undergrowth and forest that covers most of the hills, and by the burying of the dykes in the down-faulted blocks by later Tertiary sands. Bore records show that the dykes occur, to unknown extent, in these down-thrown areas.

General Features of the Dykes and Volcanic Necks.

The Dykes

These are composed of a suite of analcrite-olivine-dolerites (cumanites), olivine-basalts, and monchiquites. They show a strong north-westerly trend, with indications of a minor group striking north-easterly to easterly, both groups being contemporaneous.

They are best exposed in the strip of Jurassic country parallel with the coast line from Kilcunda to Cape Paterson, either along the shore-line, or on the deforested hills. Describing this area, Ferguson (1909, p 8), states —

"All the dykes observed were in the Jurassic rocks and were basaltic, though their texture varies . . . so that they appear to range from fine-grained basalts to gabbros. They vary in width from a few inches to two chains . . . and range up to 20 chains in length."

Stirling (1890, 1892), examined dykes in the Parishes of Jeetho, Jeetho West, Poowong, and Korumburra. These dykes also intruded and indurated the Jurassic country rocks, and all but one showed the north-westerly strike. The exception was a large doleritic dyke which crosses the railway cutting in the Korumburra township reserve, and trends north-easterly. A small basaltic dyke just west of Outtrim township has an east-west strike, and a large dolerite dyke met with in the workings at Tuition's Creek strikes north-east, but all other dykes whose strikes have been recorded have the north-west strike. They have been affected by both major and minor faults, and the Bena and Korumburra dykes rise through anticlinal structures in the Jurassic sediments.

The dykes described by Stirling are generally larger than those in the Kilmunda area, the largest being the Ciuikston Dyke (allotments 21, 23, Parish of Poowong), which is about 16 chains across, and has a coarse gabbroic texture. It thins out to the south-east. The Cheviot Neck (Parish of Jumbunna East) is similar.

Felsitic Dykes

Felsitic dykes have been recorded in various parts of the area (Muriay, 1876; Stirling, 1892). These intrude the Jurassic sediments, and were locally faulted during the intrusion of the dolerite dykes. They are commonly much decomposed, but fresh samples show them to be trachyandesites. It seems probable that they represent an acid differentiate of the "crinanitic" suite.

The Volcanic Necks

The volcanic necks of South Gippsland are divisible into two main groups—A group of eight, all of a basic, and generally clastic, character, outcropping along the coast from Cape Paterson to Anderson's Inlet, and another group of about ten, which are more basaltic, and generally free from clastics, occurring north-west of the Kongwak Fault, in the Parish of Jumbunna East. Isolated plugs occur farther to the north, e.g., the olivine-nephelinite plug near Drouin West.

The largest of the four necks at Cape Paterson has a three-quarter acre pear-shaped outcrop, and intrudes Jurassic sediments, which are indurated for several feet from the contact. The greater part of the plug is occupied by a dense blue-black tuff, composed of fragments of basic igneous rocks. It is traversed by small irregular dykes, and in places roughly columnar monchiquite is found. This contains scattered crystals of felspar, and large masses of olivine, much of which is decomposed, up to 2 feet across. Inclusions of Jurassic material are numerous.

The four volcanic necks at Anderson's Inlet (Kitson, 1903), differ from those in the other parts of the area by being composed almost entirely of clastic material. Blocks of two types of basalt are found in the agglomerates—a dark dense rock (monchiquite) with patches of olivine, and a very vesicular grey basalt. The neck near the mouth of Screw Creek is rimmed with a narrow shell of finely vesicular scoriaceous mud-basalt, which shows laminations parallel with the wall. It contains some hard blocks of basalt, but is mainly composed of an agglomerate of blocks of decomposed basalt, Jurassic sediments, tuff and lapilli, and a material that resembles volcanic mud. The largest neck of the group has a visible extent of outcrop of 12 chains by 8 chains before it passes under the sea, or into the mangrove swamps.

The group of volcanic necks north-west of the Kongwak Fault have been described by Kitson (1917) — “In size the necks vary from a few square feet to 53 acres. They are ranged roughly along certain lines, and occur either singly, or in small groups. The rocks forming the necks are either coarse-grained or very fine-grained. The coarse-grained type (dolerites) occurs at the Cheviot Neck, and at Pollock’s Hill (allotment 54, Parish of Jumbunna East). There are several similar occurrences to the north and north-east.”

The fine-grained type (monchiquite) may contain scattered crystals of felspar, hornblende, black mica, olivine, and pieces of glass. The porphyritic type occurs in the four largest necks (Moyarra, Wilson’s Knob, the adjoining neck, and the Wolonga Neck). The cryptocrystalline rock occurs at Thompson’s Hill, Krowera, and in one of the group of necks of allotment 54, Parish of Jumbunna.”

Tufaceous basaltic outcrops, possibly necks, occur in allotment 30A, 37, 41A, and 23c of Kongwak, and in allotment 31 of Kirrak. Ferguson also regards as possible necks the three outcrops in allotments 26A and 94c of Woolamat, and 9 of Kirrak.

Petrography.

OLIVINE-NEPHELINITE

A single plug of this rock has been found in South Gippsland, and the only other occurrence known in Victoria is a plug associated with monchiquite dykes, found near Greendale. It is not known for certain that the nephelinite belongs to the association to be described in the following pages, but it is of the same age, and many features suggest that it should be included. The Greendale nephelinite has more distinct monchiquitic features.

The olivine-nephelinite, which has been described by Mahony (1931), is worked in a quarry in allotment 91, Parish of Drouin West, and from the map appears to penetrate, and so post-date the Older Basalts. Actually it is surrounded by basaltic soils, and no definite relations are to be observed, but it has been proved to be a plug by boring.

Microscopically it is a holocrystalline, panidiomorphic rock, consisting of nepheline, augite, olivine, and iron-ore; felspar is absent. Nepheline, in limpid and colourless crystals, some of which are 0.25 mm wide, and almost microporphyritic, forms about one-third of the rock. Pyroxene is the next most abundant mineral, forming colourless to greenish, and non-pleochroic prisms, about 0.08 mm long, in felted aggregates between the

nepheline crystals. Olivine is microphenocrytic in fairly abundant idiomorphic crystals from 0.5 to 1.5 mm across; it is partially altered to serpentine, and is then marked along the rim by a strong irregular border of iron-ore crystals, thrown down during the serpentization. Abundant cubes of titaniferous iron-ore and rods of apatite are scattered uniformly throughout the rock. Elongated zeolites are present, probably of natrolite.

The Greendale nephelinite approaches closer to a monchiquite, having less nepheline, and rather more augite, both in the ground mass and as microphenocrysts—a brown augite, with a narrow rim of titanaugite. The augite crystals are idiomorphic and zoned, with their cores rich in iron-ore inclusions ("spongy"), or the core may be greenish, due to the presence of the aegirine molecule. The analyses (Table 1, Nos 1 and 2), show the difference in amount of nepheline and pyroxene in the higher Na_2O and lower CaO of the Drouin rock; and it is to be noted that while the TiO_2 content of the two rocks is similar, only one of them reflects its presence in possessing titanaugite.

MONCHIQUITES

True monchiquites have been collected from some twelve localities within the area, including both dykes and volcanic necks, and though the latter might be designated limburgites appropriately, it has been thought simpler to describe all the very similar specimens by the same name. The close similarity between these rocks and the monchiquite dykes of the Bendigo gold-field makes the term monchiquite the more suitable. No analysis of the typical monchiquite has been made on this account, but a Bendigo analysis is quoted (Table I, No 3), to give the approximate composition.

In hand specimens the rocks are generally dense and bluish-black in colour, with occasional microphenocrysts of greenish olivine, and more numerous small white vesicles.

Under the microscope the microphenocrysts of olivine are seen to be thoroughly serpentized. They average about 0.3 mm across, and retain their idiomorphic outline. Xenocrysts of fresh olivine, showing strong reaction rims or corrosion, are occasionally observed. These are as large as 3 mm in diameter, and irregularly concentrated.

These phenocrysts are set in a uniformly fine ground-mass, which consists of idiomorphic prisms of augite, a little altered olivine, iron-ore, some biotite, hornblende, and a quantity of glassy material. Patchiness, due to local concentration of glass, is a feature of the groundmass, just as in the Bendigo dykes (Stillwell, 1912). Rare grains of picotite are present.

The augite shows zoning—a diopsidic core with a titanaugite rim—and is markedly idiomorphic. The titanaugite is pleochroic, generally faintly, with X = yellowish, Y = reddish-violet, Z = yellowish. The iron-ore is equally idiomorphic, in octahedra, smaller in size than the augite prisms with which it is associated. Intersertal between these is the glassy material, which is generally clear and colourless, but turns yellow and deposits trichytes of iron-ore during devitrification. It is always an important constituent.

Occasional scales of biotite and hornblende occur in association with lighter-coloured patches of the groundmass, and with certain of the vesicles. These scales may be shreds with no structure, or laths up to 0.1 mm long, showing strong pleochroism from brown to straw-yellow, and provide a close parallel with the biotite and hornblende flakes of the Bendigo dykes. Reaction between the iron-ore and the apparently felspathic glassy residuum seems to contribute to their formation.

No felspar is observed in the typical sections, but in one or two with basaltic tendencies a few fine laths or microliths of labradorite are dispersed through the groundmass.

Amygdales may be very abundant, and may contain (a) fibrous natrolite, (b) chlorite and aragonite, or (c) an isotropic material similar to the glassy base. The last (c) is often surrounded by dark zones, due to the abundant development of skeletal iron-ore, together with biotite and hornblende laths. Crystals of the latter minerals are largest at the outer edge, and there show tendencies towards radial orientation of their long axes about the amygdale. Nearer the amygdale the skeletal iron-ore is concentrated, and the biotite and hornblende diminish to mere scraps. Some of these amygdales contain ragged cores of calcite within the glass, and in the calcite are small isotropic cubes of analcite (?) In some cases these amygdales extend as short veins into the rock.

Cape Paterson Variety

The rock from the largest neck at Cape Paterson contains microphenocrysts of both olivine and augite, set in a glassy base which is rich in iron-ore. The olivine is generally fresh, and is marginated by well-marked reaction rims of brown to purple-brown augite. Like the olivine, the augite microphenocrysts are idiomorphic. They consist of a colourless core of diopsidic material, with an outer zone of purplish-brown, pleochroic titan-augite. Some of the crystals exhibit twinning parallel to (100), with thin lamellae separating the principal parts of the twin.

Picotite is present in small grains, included within olivines, and small zeolites are frequent. The analysis (Table I, No 4) shows the rock to be richer in magnesia, and poorer in titania.

than the normal type, and agrees well with a microscopically similar rock (Analysis No 5) from Moorabool East, which is also associated with normal monchiquite dykes.

Anderson's Inlet Variety

The specimen from Townsend Bluff (Neck No 1, of Kitson) is richer in augite than that at Cape Paterson, and contains xenoliths of plagioclase. The augites show three zones, the innermost zone is occasionally green, and pleochroic to yellow, indicating the earlier development of the aegirine molecule, but more commonly both the inner zones are colourless, the second being very narrow. The rim is of brownish-purple titanaugite, which is pleochroic with X = yellow, Y = brownish-purple, Z = faint yellow. The central zone may contain inclusions of more or less altered olivine. The groundmass, apart from the plagioclase, is similar to that of the Cape Paterson rock.

Xenoliths of Dunitic

Masses of olivine, up to 2 feet in diameter, have been observed in the monchiquitic volcanic necks. These must represent either segregations of the olivine from the magma of the monchiquite, or a dunitic phase within the magma chamber, through which, or from which, the monchiquitic material was forced.

Such a xenolith, found in the large Cape Paterson neck, consists almost entirely of olivine and picotite. The edges of the olivine crystals are sometimes deeply iron-stained, and almost opaque. The olivine itself is colourless, and contains less than 12 per cent of FeO. Individual grains reach 1.5 mm across, but the average is 0.5 mm. They are allotriomorphic, and the picotite is either included within, or caught up between the crystals. The approximate composition is —Picotite 5 per cent, olivine 70 per cent, and opaque iron-stains about 25 per cent.

MONCHIQUITE-BASALTS

The rocks of this group are about as equally developed as the true monchiquites, and include most of the smaller plugs of the Jumbunna East group. They grade by increase of plagioclase into olivine-basalts, and by decrease of plagioclase into true monchiquites.

In the hand specimen they are not to be differentiated from the monchiquites. They weather to a greyish rock with a fine hackly fracture. Analyses have been made from the Moyaia Neck, in the south-west of allotment 55, Parish of Jumbunna East, and from Glanfield's cultivation paddock, near Kilcunda (Table 1, Analyses Nos 6 and 5 respectively).

These rocks differ from the monchiquites in that the olivine crystals are usually rounded by resorption. The groundmass is equally uniform, but coarser, and contains a characteristic, though variable, amount of plagioclase, which may be in the form of minute microliths, or as numerous laths of the composition $\text{Ab}_{50}\text{An}_{50}$. The glassy base appears to be related to the felspar, and is rich in trichytes of iron-ore. Analcite may be present, and is accompanied by shreds of biotite. Fine needles of apatite are abundant, and rare grains of picotite are included in the olivine crystals. The zeolites parallel those of the monchiquites.

This gradation of monchiquite into olivine-basalt is similar to that described by Stillwell (1912) for the Bendigo monchiquites.

Anorthoclase Crystals

The large crystals of felspar found in these rocks (Kitson, 1917) are of a composition approaching $\text{Or}_2\text{Ab}_{68}\text{An}_9$, from a poor analysis (Mahony, 1928).

OLIVINE-ANALCITE-BASALTS

These may be described under two groups.

Group A—Basaltic Dykes with Titaniferous Augite

Several of the necks, and a number of the dykes, fall in this group. The typical analysis from Callanan's Hill (Table 1, No. 8) shows very little difference in composition from those of the monchiquite-basalts, but there is a marked contrast in their microscopical appearance, owing to the much coarser and less uniform groundmass of the olivine-basalt. These average about the texture of a medium-grained intergranular basalt, and grade towards the analcite-olivine-dolerites with increase of grain size. The difference is accentuated by the increased amount of plagioclase present in the sections.

The idiomorphic or corroded microphenocrysts of olivine average about 0.4 mm. in diameter, and are serpentinized to varying degrees. They are set in an intergranular, sometimes partially ophitic groundmass, in which the felspar laths tend towards parallel orientation. The augite of the groundmass equals the plagioclase in quantity, and is idiomorphic, or in small plates of reddish-violet colour, with weak pleochroism to a faint yellow, the violet colour often being limited to the rim zone about a diopsidic core. The iron-ore is coarser than in the monchiquite-basalts, and less evenly distributed. Analcite occurs abundantly intersertal to the other minerals, or in zeolitic patches, and is both turbid and clear. A little colourless felspar, possibly orthoclase, shreds of biotite and needles of apatite accompany it.

Group B—Basaltic Dykes Poor in Analcite and with no Titanaugite

Analysis No 9 (Table 1) shows this variety to be richer in Al_2O_3 , and poorer in MgO than the group preceding. This is reflected in an increase in plagioclase at the expense of olivine. The augite is generally colourless, but may show a faint violet colouration under high magnification. There is also a trace of the aegirine molecule where analcrite appears, but the amount of the latter discernible is very small. The titania has gone to the iron-ore crystals, which are rod-like and skeletal. Interstitial orthoclase is present, and in some cases the plagioclase laths are larger than usual, developing microphenocrystic habit.

ANALCITE-OLIVINE-DOLERITE.

Analcite-olivine-dolerites (crinanitic dolerites) are the most widespread type among the dykes, and they also form the larger volcanic necks, e.g., Cheviot's Hill and Pollock's Hill. With a decrease of olivine and an increase of analcrite the latter outcrops would become teschenites.

The hand-specimens have a coarsely crystalline grey to greenish appearance, suggestive of a fine-grained gabbro, with individual felspars and augites as large as 5 mm in length.

The typical rock consists of olivine, augite, labradorite, and analcrite, with some alkali felspar, iron-ore, biotite, in some cases a little aegirine, and rare scraps of barkevikite. Natrolite and analcrite form zeolithic patches, and the rock is pierced with abundant coarse rods of apatite. Ophitic texture is prominent, but may be subdued by the idiomorphic tendencies of the augite.

The olivine forms unaltered, but corroded, crystals up to 3 mm across. Being the first mineral to crystallize, apart from the apatite, it is often enclosed by small unorientated augite individuals, or by poecilitic augite plates.

The augite is more abundant than the olivine, and is strongly zoned, the inner zone being colourless or faintly yellow, and the outer a pleochroic pinkish-violet, with X = faint yellow, Y = pinkish-violet, Z = faint yellow. It shows twinning parallel to (100), with thin lamellae separating the principal parts. In some dykes the crystals are strongly idiomorphic, but more generally the augite forms plates from 2 to 3 mm across, which may be fractured by differential movements. The colour varies locally, and in some examples the augite is colourless or only very faintly violet.

Analcite appears in varying quantities, reaching a maximum of about 15 per cent by volume in the Doomburium and Crunkston dykes. It occurs interstitially, as clear or turbid patches, between the felspar laths, and when in contact with the violet

augite, it reacts with the latter to form a green pleochroic pyroxene, of a composition varying between aegirine-augite and aegirine, depending on the degree to which the Na_2O has been incorporated in the pyroxene. Small idiomorphic crystals of aegirine, pleochroic from green to yellow, are found within patches of analcrite. Aegirine develops only where augite is in contact with analcrite; the rims cease where the augite has been sheltered by a plagioclase lath or an olivine crystal. Rare scraps of barkevikite are found within the analcrite areas. The analcrite has "patterned" the plagioclase, but the latter is too fresh to have been the source of the soda in the analcrite, it must be regarded, therefore, as pyrogenetic or deuteritic in origin.

Two types of felspar are present — (a) laths of labradorite, and (b) interstitial alkali felspar, which appears to be orthoclase (this would agree with the high percentages of K_2O shown by the analyses, Table 1, Nos. 10–13). The plagioclase laths in the coarser rocks are 3 mm by 0.5 mm, but for the more average-grained types are between 1 and 2 mm long. They are generally of labradorite composition— $\text{Ab}_{15}\text{An}_{55}$, but in some cases are more acid. Some show strong zoning, with a marginal zone of oligoclase, while in the Korumburia dyke the marginal zone is nearly as wide as the labradorite core, and is of albite-oligoclase. The felspars, like the augites, are fractured by differential movement.

The iron-ore occurs as irregular plates, up to 1 mm in diameter, generally ophitic about plagioclase laths. A few inclusions of it are seen within the augites, but never within the olivine crystals. Associated with the iron-ore and the analcrite is a small amount of biotite, which forms strongly pleochroic laths and scales, making partial or complete rims about the iron-ore crystals. The abundant apatite rods may be up to 2 mm long.

The order of crystallization has been — Apatite; olivine, iron-ore, augite, plagioclase, alkali felspar, analcrite, biotite, aegirine, barkevikite, and natrolite.

FELSITIC DYKES

Only one specimen of the felsitic or "wackenitic" dykes of Stirling (1892) was sufficiently preserved for sectioning.

This rock, which includes the Jurassic sediments in the Ouitium cemetery, consists of microphenocrysts of acid andesine, $\text{Ab}_{15}\text{An}_{55}$, and long flakes of hornblende, set in a holocrystalline groundmass of slightly more acid plagioclase, orthoclase, a trace of quartz, shreds of hornblende and biotite, and a very little iron-ore. The felspar phenocrysts are idiomorphic, and show combined Carlsbad and albite twinning with strong zoning, and have a microscopic outer rim of orthoclase. The hornblende is a light green variety, idiomorphic in small crystals, but more commonly

poorly structured, and apparently about to change over to biotite. Both sets of phenocrysts show sub-parallel orientation from flow movements.

The groundmass is granular to sub-tachytic, and formed of idiomorphic basic oligoclase $\text{Ab}_{70}\text{An}_{30}$, with interstitial orthoclase and quartz, shreds of biotite, and hornblende, and grains of iron-ore.

Reactions Observed

The reactions observed to be taking place throughout the suite may be summarized as follows —

- 1 Olivine \rightarrow diopsidic augite \rightarrow titanaugite \rightarrow aegirine-augite \rightarrow aegirine \rightarrow barkevikite
- 2 Ilmenite + analcite (or plagioclase) = biotite
- 3 Ilmenite + analcite (or plagioclase) = hornblende
- 4 Lime-soda plagioclase \rightarrow soda lime plagioclase
- 5 Olivine = serpentine + magnetite

The serpentinization has occurred before consolidation. Idiomorphic olivine microphenocrysts in the monchiquites are strongly, if not completely, serpentinized, but in some slides there are found, in addition, fresh corroded xenocrysts of this mineral; and in others, some fresh cores of olivine have been retained by the formation around them of a protecting rim of augite. In the doleritic rocks serpentinization of the olivine is a minor feature, and commonly absent. The water vapour has preferred combination with the analcite molecule.

Geochemistry and Differentiation.

The Analyses

The table of analyses is most informative when considered in conjunction with the table of norms. While the CaO content does not vary greatly throughout the series, the normative anorthite content rises more or less progressively from the basic to the less basic rocks. This represents an increase in plagioclase and a corresponding decrease in pyroxene. Normative olivine decreases as the anorthite increases. Albite and nepheline, as individuals, fluctuate; but taken in combination, they show an increase parallel to that of the anorthite. The Na₂O content in the analyses reflects this; but among the dolerites the concentration of Na₂O shows marked local variation, according as to whether the individual dykes are rich or poor in analcite. The K₂O, by contrast, remains much steadier throughout, and is higher than is usual for crinanitic rocks, while the TiO₂ is low for them (a fact reflected in the pale colour of the titanaugite), and falls progressively from the nephelinite towards the dolerites.

ANALYSES.

Analyses —

- 1 Olivine-nephelinite, plug in allot 91, Parish of Dioum West (F. F. Field) Proc Roy Soc Vict., 1931
- 2 Olivine-nephelinite, plug, 8 chains S of Gicendale Hotel, Parish of Blackwood (A. B. Edwards)
- 3 Monchiquite dyke, Central Red, White, and Blue Mine, Bendigo (F. Stillwell) Proc Roy Soc Vict., 1912
- 4 Monchiquite pipe, Old Landing Place, Cape Paterson, Gippsland (A. B. Edwards)
- 5 Monchiquite dyke allotment 2, section VIII, Parish of Moorabool East, in Korweinguboora Creek (A. B. Edwards)
- 6 Monchiquite-basalt, Glanfield's Cultivation Paddock, Kilcunda, Parish of Woolamai (A. B. Edwards)
- 7 Monchiquite-basalt, Moyarra Neck, Parish of Jumbunna East (A. B. Edwards)
- 8 Olivine-analcite-basalt, Callanan's Hill, north end, Parish of Jumbunna (Bayly, 1902—poor analysis)
- 9 Olivine-basalt dyke, Logan's Paddock, Kilcunda, Parish of Woolamai (A. B. Edwards)
- 10 Olivine-analcite-dolerite, alkali-felspar type, Creek west of Gibson's allotment, Kilcunda, Parish of Woolamai (A. B. Edwards)
- 11 Olivine-analcite-dolerite, dyke opposite Cadd's smithy, Kilcunda, Parish of Woolamai (A. B. Edwards)
- 12 Analcite-olivine-dolerite, Cruikston dyke, allotment 21, Parish of Jeetho (J. Dennant) Prog Rept X, 1899
- 13 Analcite-olivine-dolerite, Kilcunda-road State School, Parish of Jumbunna East (Bayly, 1903)

The Variation Diagram

The variation diagrams (Fig. 1), plotted from analyses calculated to 100 per cent, free of water and calcium carbonate, place the rocks as follows, in the decreasing order of their silica percentage—Analcite - olivine - dolerites; olivine - analcite - basalts; monchiquite-basalts, monchiquites; olivine-nephelinites. This arrangement is parallel with the decreasing order of grain size of the crystals (Fig. 2).

Three of the constituents give approximately straight-line graphs— K_2O , TiO_2 , and P_2O_5 , except for the TiO_2 of No. 3, the typical monchiquite. A different form of curve is necessary to fit the points for the other constituents. As the basic end of the series is approached, the stem of the curve splits along two divergent paths towards the monchiquite group and the nephelite group respectively.

The divergence is most complete for Al_2O_3 and Na_2O , in the other three graphs one or other of the monchiquite points falls on the nephelite curve.

In the acid region (the dolerites), three analyses (Nos. 9, 11, 13) fall above or below the curve. If arranged in the reverse order of their acidity—13, 9, 11—it is seen that a deficiency of iron and magnesia corresponds with an equally great excess of alumina, suggesting that excess sinking of olivine is the explanation of this divergence.

Fig. 1.—Variation Diagram

The source of the high Na_2O in analyses 13 and 12 cannot be explained in this manner, but it is reflected in the rocks, which are especially rich in analcrite. It suggests that the concentration of soda is independent of the concentration of the lime, and takes place locally. This suggests that the origin of the analcrite might be deuteric (compare Daly, 1933, p. 398, in connexion with the late concentration of soda in the crinanite of the Shiant Isles).

The graphs throw little light upon the origin of the nephelinites, beyond demonstrating a number of points which they have in common with the monchiquites.

Differentiation

No instance of one dyke rock intruding another type is known. The only direct evidence for age sequence is a xenolith of colourless augite ophitically intergrown with plagioclase (acid labradorite) found in one of the monchiquite necks at Anderson's Inlet. All the varieties occur as dykes in close parallel associations, the dolerites being dominant, intruded contemporaneously, so that the differentiation, or much of it, must have occurred within a pre-extrusion magma chamber.

Assuming this, the rocks have been arranged in a column of increasing order of acidity, which should represent in some degree the state of differentiation and the temperature gradient of the magma immediately prior to the intrusion of the dykes. The table of specific gravities, where known, for this arrangement is —

Dolerites	2.28-2.95
Basalts	2.68
Monchiquite-basalts	2.78
Monchiquites	2.80-2.99
Nephelinites	3.05

This, in itself, carries little weight as evidence.

Figure 2, drawn in conjunction with this assumption, illustrates the relative grain size of the constituent minerals. It is seen that olivine was phenocrystic throughout, but that cooling to a greater degree in the upper regions permitted the individual crystals in

GRAIN SIZE

Fig. 2

TEMPERATURE

Fig. 3

the dolerite types to crystallize more completely, and to attain larger dimensions than those in the lower, and hotter, regions of the column. Moreover, in the upper regions the olivine has been

actively resorbed, while at the higher temperatures of the "monchiquitic layers" idiomorphic outlines are retained, showing that resorption had not set in. Resorption might be expected to commence with the appearance of diopsidic augite (Bowen, *The System Foersterite-Anorthite-Silica*). Actually there seems to be a delay, and the corrosion of olivine is not appreciable until after the plagioclase has commenced to crystallize.

The augite was initiated as a diopsidic material, and had grown to a moderate size in the upper regions before the temperature of the lower part of the column had fallen sufficiently for it to appear there. By the time it was forming in the lower regions, titanaugite was crystallizing in the upper parts, wherever the titania was free to enter the pyroxene molecule. Plagioclase commenced to crystallize soon after the appearance of titanaugite, and the stronger crystallizing force of the former prevented idiomorphic growth of the latter as soon as a crystal mesh was established.

Intrusion apparently occurred just before the augite of the monchiquite layer reached the titanaugite stage, but not before augites had begun to sink towards these layers. Rapid cooling set up numerous diopsidic cores in the fluid magma, and a final rim of titanaugite developed before the consolidation or freezing. Movement into position probably squeezed out much of the residual liquid, concentrating the crystals, but a large portion of the fluid, of felspathic character, congealed as glass. In the slightly cooler "monchiquite-basalt layer," the pre-intrusion cooling had advanced sufficiently for felspar to commence to crystallize in increasing proportion. A factor supporting the view of intrusion in this almost fluid state is the uniform fineness and idiomorphic character of the groundmass crystals in the monchiquitic rocks, as opposed to the variable coarseness of the less basic types.

In the higher parts of the column, where crystallization had proceeded further, gravitational differentiation had been increasingly active, probably about a mean composition of magma represented by the olivine-analcite basalt, resulting in a downward movement of the olivine, and to a lesser extent, of augite. In a few rocks even the plagioclase shows evidence of sinking. The soda content appears to have concentrated locally in the upper region, quite independently of gravitational differentiation, enriching individual dykes, and may have been carried into place by the volatile fluxes, such as the water vapour now associated with it in the analcite. It arrived immediately prior to complete consolidation, enabling a slight reaction with the pyroxene to take place, and producing an intersertal distribution of the incoming material, i.e., the analcification was deuteritic.

There might in this manner be some comparison between the differentiation of the rocks forming these dykes and necks, and such bodies as the Garbh Eilean sill of the Shiant Isles (Walker,

1930), but while in the latter case there was a floor on which the sinking olivine might concentrate, the lack of floor in the magma chamber here postulated, or its abyssal situation would lead merely to the remelting of the olivine as it sank to depth, and the consequent enrichment of the magma in magnesia and iron. Such clots of olivine as have been found in the monchiquites (p. 11) are to be regarded as remnants of this "potential layer," rather than as evidence of such a layer itself.

The nepheline, on account of its restricted and isolated occurrence, presents difficulties. The early crystallization of nepheline with diopside indicates that the conditions peculiar to aegiritic differentiation (Backlund, 1932) obtained during the early period of differentiation. In such a system nepheline and orthoclase are among the first minerals to separate, and are forced by their specific gravities to rise in the magma, and concentrate at the top of the magma column. Kranck (1928), in discussing the origin of the abyssal melilite rock, turjaite, showed that the crystallization of nepheline precedes that of orthoclase, the nepheline accompanying diopside, while the appearance of orthoclase was delayed until the aegirine molecule commenced to crystallize strongly. This should lead then to the nepheline concentrating in the uppermost layers, as an airtic magma, while nepheline and orthoclase in decreasing amount would form the layers beneath.

From the petrographic evidence of the Gippsland suite, olivine commenced to crystallize earlier than did nepheline, and was still crystallizing when the nepheline appeared (see Fig. 2), but the olivine of the nephelite is wholly phenocrystal, and does not appear in the groundmass, so that olivine had ceased to crystallize within the nephelite magma before extrusion caused consolidation. This would suggest that the olivine of this uppermost layer of the magma column was sinking while the nepheline was rising, and that the extrusion of the nephelite "fixed" the magma in this intermediate stage of differentiation, and left behind a magma enriched in magnesia and somewhat impoverished in soda. Backlund writes (p. 11) — ". . . The early and sudden crystallization of felspars and felspathoids, and their strong tendency to rise in the thin but heavy residual fluid, leads to the formation of a film at the top of the advancing channel of the magma chamber in such a manner as to preclude an escape of gas. In consequence of this, pressure (and temperature) in the top film rises . . . As a result, pronounced rhythms of periodical culminations tend to develop, viz., intrusions at regular intervals . . . Meanwhile the volatiles accumulate."

The ultimate tendency is to separate the mother liquid into two sheet-like suites—the upper of felsic, and the lower of femic composition, probably grading into one another. It is suggested that the nephelite represents the upper "sheet" in mid-process of differentiation, and that the felsitic dykes of the area represent

the process at the stage when orthoclase is concentrating in the upper region, partial removal of the nepheline leaving the residual magma enriched in silica, which has led to the formation of oligoclase rather than nepheline in the felspar "sheet." The main suite of dykes, spasmodically enriched in analcrite by fluxing of the alkalies by the partially retained gases, represent the feric "sheet." It is probable that the analcrite-rich dolerites belong, as in the hypothetical column of Fig. 2, to the upper part of this zone, where the gas attack would be concentrated.

Temperatures

In Fig. 3, an attempt has been made to suggest the temperatures of formation of the various dyke types, and the minerals constituting them. Like Fig. 2, it is based on the assumption of differentiation within a magma chamber.

The temperatures suggested are, at best, wide approximations, since they are based on data for the melting points of single crystals (Daly, 1933) or from suggestively similar points within restricted systems (Bowen, 1923). The effects of fluxing or eutectic crystallization are ignored.

The olivine crystallized out before the iron-ore, but later than the picotite. Daly gives 1,580 deg C as the melting point of magnetite, and that of olivine as 1,360 deg -1,410 deg C, while forsterite is formed about 1,890 deg C. It would seem that Daly's figure is low, and that the olivine appeared about 1,580 deg C +

The mineral to crystallize after magnetite appears to have been nepheline (commences to crystallize at 1,350 deg C, Bowen, melts at 1,370 deg C, Daly). Following closely, or simultaneous with it, the diopsidic augite appeared. From Bowen's experimental data, this might be expected to coincide with the beginning of the resorption of olivine, at a temperature of about 1,370 deg C, but actually the resorption is delayed until the appearance of plagioclase, about 1,260 deg C (Daly, gabbros commence to crystallize about 1,250 deg C, Bowen, 1,260 deg C). Daly gives the figures 1,391 deg C, 1,310 deg C - 1,370 deg C, and 1,185 deg C - 1,200 deg C for the melting point of artificial diopside, bronzites, and augites respectively. Here the diopsidic augite crystallizes at or about 1,350 deg C, and titan augite between this temperature and 1,250 deg C, when plagioclase appears, i.e., approximately at 1,300 deg. C - 1,310 deg C.

Then the olivine-nephelinite should have been extruded at about 1,310 deg C - 1,350 deg C, monchiquites at about 1,260 deg C - 1,310 deg C, and monchiquite-basalts around 1,250 deg C. The analcrite-olivine-dolerite, despite its ability to form aegirine, has done so to only a very slight degree, the probable prohibitive factor being consolidation. Daly gives the melting

point of acmite as 975 deg C (natural), and 990 deg. C. (artificial). If aegirine is assumed to melt about this range, the dolerites should have completed solidification between 950 deg. C.-1,000 deg C, and were probably intruded at a temperature not greatly above 1,100 deg C. The analcrite-basalts, which show little or no sign of aegirine, must have solidified about 1,000 deg C., and have been intruded at a correspondingly higher temperature, between 1,100 deg C.-1,200 deg. C. This agrees approximately with the statement of Daly, that the Clee Hill dolerite (England) flows readily when heated to 1,070 deg C. This rock is of a grain size intermediate between the basalts and the dolerites here described.

The felsitic, or trachyandesitic dykes, contain a little green hornblende, which could not have formed above 750 deg C (green hornblende changes to brown at 750 deg. C. or above, Kozu, Yoshiki, and Kani, 1927). Grout suggests a temperature of 550 deg C for the formation of such an amphibole, but this seems too low, since the remainder of the rock is entirely felspathic and fine-grained.

Age Relations and Correlations.

The age of these dykes and necks cannot be fixed precisely, but they pre-date the major faulting of South Gippsland, and appear to have been intruded before the previous subsidence period, when the Brown Coals were deposited, which would place them at least as old as Older Basalt (i.e., Lower Oligocene). Their relation to the Older Basalts of this area is not yet known, but isolated slides of the latter have many characters in common with the dykes, which may represent feed channels from which the basalts are now eroded. At Berwick and Aberfeldy large anorthoclase crystals, similar to those of the Moyarra Neck, are found in the basalts. The age of these Older Basalts was regarded formerly as Miocene, but with accumulating evidence as to the age of the younger Brown Coals, they are becoming to be regarded to be at least as old as Lower Oligocene.

The other possibility is that the Older Basalt period closed with a widespread intrusion of dykes about various centres—one in South Gippsland, one about Bendigo, and another south of the Harcourt granitic massif. The dykes of the latter centre intrude the Older Basalts there.

The constancy of the north-west strike throughout all these dyke areas is probably due to the equally constant north-westerly strike of the Palaeozoic basement through which they have all penetrated.

The remarkable similarity to the smallest detail between the monchiquites of Gippsland, and those of Bendigo, Ballarat, Gorong, Greendale, Maldon, and Daylesford, in Central Victoria,

is such as to convince the author that they must have had a closely similar origin, despite the absence of crinanites from the latter areas. They show early segregation of olivine, with widespread serpentinization of that mineral, and an inclusion in one Bendigo dyke points to the existence of a gabbro body at depth. The associated dykes are camptonites, olivine-basalts, and some olivine-dolerites, while at Greendale there is the olivine-nephelinite referred to in this paper (p. 115). It seems apparent that in these areas the gravity differentiation has acted alone, and that late-stage analcitzation did not develop.

The north-west dykes of Colonsay (Mem. G. S. Scott, 1908, 1911), consisting of crinanites, olivine-dolerites, a minor number of monchiquites, and occasional nepheline-bearing monchiquites, present a close parallel to the Gippsland association, both in the types developed, and their relative quantities. In composition, however, the Gippsland "crinanites" are nearer to the Palaeozoic crinanites of Scotland (Tyrrell, 1923, 1928), in that they have a high potash content. They differ from both of these groups in their low titania content. The picrite-crinanite sill of the Shiant Isles (Walker, 1930) provides a further parallel association, if the individual types of dyke are regarded as representing, in step form, the gradation there produced by gravity differentiation. There again, the analcitzation has been independent of the differentiation, and developed at a late stage (Daly, 1933, p. 398).

Conclusions.

A suite of dykes, with a prevalent north-westerly strike, was intruded into the Jurassic sediments of South Gippsland in Lower Oligocene time. The suite comprises trachyandesites, analcrite-olivine-dolerites, olivine-analcite-basalts, monchiquite-basalts, monchiquites, and possibly olivine-nephelinites. When arranged in this order of increasing basicity, they exhibit chemical and petrological gradation into the adjacent types, and are considered to have been derived from a common magma, of a composition about that of the olivine-analcite basalt, mainly by gravity differentiation, initiating under aphytic conditions. The analcitzation, however, developed independently, and locally, at a late pre-consolidation stage, by volatile fluxing, the fluxing agent being probably water vapour. The fluxing action on the alkalies was selective in favour of the soda, possibly because potash does not so readily enter into solution or combination with water vapour.

The rocks may post-date, but are probably genetically related to the Old Basalt Series. The very similar monchiquite dykes of Central Victoria are considered to be contemporaneous with the Gippsland dykes, and to have had a similar origin, but in that area the analcitzation has not been developed.

References.

- 1876—R A F MURRAY Report on the Geology and Mineral Resources of South-west Gippsland *Progress Rept. Geol. Surv. Vic.*
- 1892—J. STIRLING Special Report on Victorian Coalfields *Geol. Surv. Vic.*
- 1903.—A E KITSON Volcanic Necks at Anderson's Inlet *Proc. Roy. Soc. Vic.* (n.s.), xvi
- 1908—*Memoir No. 35, Geol. Surv. Scotland* The Geology of Colonsay and Oronsay, with part of Ross
- 1909—W H FRERGUSON Report on the Lower Powlett, Cape Paterson, and Inverloch Quarter Sheets *Memoir No. 8, Geol. Surv. Vic.*
- 1911—*Memoir No. 45, Geol. Surv. Scotland* The Geology of Knapdale and Jura.
- 1912—F STILLWELL Notes on the Monchiquite Dykes of Bendigo *Proc. Roy. Soc. Vic.* (n.s.), xxv
- 1917.—A E KILSON The Jumbunna and Powlett Plains District, South Gippsland *Bulletin No. 40, Geol. Surv. Vic.*
Annual Report for the Secretary for Mines, Victoria, for the year 1917
- 1923—N L BOWEN The Evolution of Igneous Rocks
G W TYRRELL Classification and Age of the Analcite-bearing Igneous Rocks of Scotland *Geol. Mag.* Ix., p. 249
- 1927—KOZU, YOSHIKI, and KANT *Sai Rept., Tokoku Imp. Univ.*, Ser. III, iii, pp. 143–159
- 1928—G W TYRRELL The Geology of Arran *Geol. Surv. Scotland*
D J MAHONY Some Tertiary Volcanic Minerals *Proc. Roy. Soc. Vic.* (n.s.), xl, (2), p. 62
E H KRANCK On Turjaite and the Ijolite Stem of Tuija, Kola.
Diss. Helsingfors (Also Backlund, 1932, p. 10)
- 1930—F. WALKER The Geology of the Shiant Isles *Quart. Journ. Geol. Soc.*, lxxxvi, p. 355
- 1931—D J MAHONY Alkaline Tertiary Rocks near Trentham and Drouin, Victoria. *Proc. Roy. Soc. Vic.* (n.s.), xlii., (2), p. 123.
- 1932—H. G. BACKLUND On the mode of Intrusion of Deep-seated Alkaline Bodies *Bull. Geol. Instit. Upsala*, xxiv.
- 1933—R. A. DAILY The Igneous Rocks and the Depths of the Earth, p. 65.

[PROC ROY SOC VICTORIA, 47 (N S), PT I, 1934]

ART VIII—Ecological Studies in Victoria Part III—Coastal Sand Dunes

By R T PATTON, D Sc (Melb), D J C (Lond), M F (Harv), F R H S

(With Plates VIII and IX)

[Read 12th July, 1934, issued separately, 22nd December, 1934]

Coastal Dunes are a universal phenomenon, and, as remarked by Luhdegardh (4), they are very similar ecologically, no matter where found, but the species which constitute the vegetative cover, while being morphologically similar, may be entirely different taxonomically.

In all latitudes, the dune plants are subjected to the same environment, but the particular species present is mainly a matter of the floral province in which the dune finds itself. This is well illustrated by the dunes along the Victorian coast, and the majority of plants found are closely related to typical Australian genera and families.

Although we are considering the dune as an association (and indeed Dune Vegetation is of a special type), it must be borne in mind that from the outermost or seawards dune to the innermost, there occurs a succession, both of growth forms and of species, so much so that there is a greater difference between the vegetation of the first and last dune than is usual between many associations, or indeed higher units (Pl VIII B, IX C). Nevertheless, by common consent, we take the dune vegetation as a unit, since the two main factors of the environment, sand and wind, are the determining factors in fixing the limits of the association. Once the sand is fixed permanently, other associations take the place of the coastal vegetation. Thus we find that both *Eucalyptus viminalis* and its common associate, *Pteridium aquilinum*, are present in the area immediately succeeding where the dunes have been fixed, but they do not occur in the area of moving sand. The dunes then cannot be said to have a uniform physiognomy, nor a constant composition, except spacially. The composition is constant from front to rear, but not in any unit area. If we were to take quadrats, even of very large size, they would give very differing results. Nevertheless, across the width of the dunes the same factors of environment are operating, but their incidence steadily diminishes from front to rear, and at last ceases to have effect. It is a peculiar feature of this association that the environmental factors change comparatively rapidly. As a rule, the environmental factors are uniform throughout an association, but here, as indicated, the uniformity is only in space, and not in minimum area. The definition of Flahault and Schroter (Braun Blanquet (1)) that an association has definite composition, must be read in a very broad sense.

Uniformity there is, however. The recognition of the Dune Vegetation as a unit of Vegetation, and not several units, bears witness to the fact that it is the environment which finally determines the particular association and growth forms found in any particular locality. No one would attempt surely to separate Dune Vegetation into its two extreme constituent parts, Grassland and Forest (Pl VIII B, IX C), which are distinctive enough. There is here from first to last a struggle for existence. The sand dune is in a hostile area (Pl IX A), and on the outermost dune the hostile forces of the environment, advancing from the sea, meet the outposts of vegetation advancing from the land (Pl IX B). The moving sand, derived from the disintegration of rocks by the constant action of the sea, is finally arrested, and the vegetation makes a complete canopy (Pl VIII B).

Although we pass from grass to trees in the succession, the change is due to the modification of the unfavorable elements, moving sand and wind, by the vegetation itself. This feature compels one to keep dissimilar elements, grass and trees, together in the one association. In other areas, where trees or shrubs abruptly succeeded grassland (Pl VIII C), one would naturally expect a material change in the environment.

Environment is the primary cause of plant associations whose distinctive features are due to the growth forms occurring in them. Hence classification of associations to be truly scientific must ultimately rest on the cause or effect, i.e., on either the environment or growth forms. Linnean species, as such, retreat into the background as a basis of classification. Indeed, it can be shown that Linnean species themselves are partly the outcome of the environment. The members of diverse associations may be related taxonomically, but wholly unrelated ecologically. Thus the dunes along the Victorian coast bear the genera *Helichrysum*, *Olearia*, *Senecio*, *Leptospermum*, *Acacia*, and *Banksia*, as may the adjacent heath lands, but the two associations are not related ecologically. It merely illustrates the fact that the composition of any particular association is due to the general floral composition of the land in which it finds itself. Thus we shall see that the sand dune flora, which essentially is characteristic, yet is taxonomically connected with other widely differing associations. Change or variation is an inherent quality of life and, through this, forms are evolved which gradually colonize new land areas capable of sustaining plant growth.

The dune, since it is new land, is populated by a pioneer vegetation. This is the same in all climates, and it is of interest to note the families and genera that contribute to these pioneers. It may be concluded, since those families and genera, constituting the settled and stable communities in the hinterland, give rise to the population of the adverse area, that evolution and environment are closely associated. Not all evolution is a response to environment, but the latter is a contributing factor.

In a pioneer vegetation, but few forms are to be found. The limit of variation has to be stretched wide, hence few occur. The more favorable a locality, generally the greater is the number of species. The Fein Gully may be regarded as an exception, but it is an association far removed from its chief source of development. The front rank of the dune association is essentially composed of pioneers, which stand, not in close proximity (Pl. IX C), but far removed from one another. Conditions of life are hard, and the struggle against the destructive forces of inanimate nature is severe. Struggle for existence goes on in two directions, firstly, against similar individuals, in which thousands perish for each survivor which is more or less perfect; secondly, against the destructive forces of nature. They survive only because they rise superior to their surroundings.

Dunes exist extensively along our coast, but although the same forces are operating, they differ appreciably both as to their degree and extent of development. They may be only a few yards wide or, as at Tarwin Meadows, may be hundreds of yards wide. All stages of development are met, there may be only fragmentary parts of the typical dune vegetation, or there may be complete development, from free sand to complete cover, as at Lakes Entrance. While attention has been given to the dunes at various points along the coast, the occurrences at Lakes Entrance have been most closely studied.

The Habitat.

A SAND

Were it not for the constant action of the wind the sand would be very readily settled by vegetation. In the dune the moving sand has to be arrested effectively before satisfactory colonization can finally take place. The sand is composed chiefly of silicon dioxide, but in the vicinity of rocky headlands, as along Phillip Island, where both seaweeds and shell fish are abundant, both the organic and calcareous content may be high and conspicuous to the naked eye. Neither of these constituents, however, affects the vegetation of the dunes. They are broken down into fragments as small as sand, and physically behave as such. In other areas, as along the Ninety Mile beach, both the organic and calcareous content are low. Any chemical or other effect that such constituents might have in other associations is lost here, since the physical environment is of greater consequence. Evenness of size of particle is an outstanding character. Darbshire (2) gives the size of grains in the dunes investigated by him as between 0.2 and 0.4 mm., while Warming (10) states that the grains generally average $\frac{1}{3}$ mm. In Table I is given a series of analyses of material taken from dunes along the Victorian coast, and for comparison analyses of drift sand from the Victorian Mallee and of dune sand collected by the author in the Northern Sahara, in the vicinity of Biskra, Algeria, are included. The sizes of the fractions are given in inches.

TABLE I—MECHANICAL ANALYSES OF SAND DUNE MATERIAL.

Locality	Percentage of Fractions—Inch					
	1/10 to 1/20	1/20 to 1/40	1/40 to 1/80	1/80 to 1/160	1/160 to 1/320	Less than 1/320
Phillip Island		1 14	48 50	46 00	4 20	04
Taiwin Meadows		07	13 25	60 75	23 50	2 17
Brighton Beach	05	11	27 33	62 66	8 50	95
Lakes Entrance		11 20	81 01	7 45	29	
Mallee Drift	01	22 20	50 31	12 22	5 80	9 41
Sahara		95	21 00	50 00	20 00	8 05

It will be noted that a high percentage of the grains lies between 1-40 (0.6 mm app.) and 1-80 in (0.3 mm app.). The lower limit is in agreement with those of Darbshire and Warming. The grains are not strictly spherical, but are more or less ellipsoid or ovoid as indicated by Darbshire (2). The similarity in the size of sand grains constituting dunes in various parts of the world suggests that the forces forming them are similar. It has been found by Vageleci (9) that there is a relationship between strength of wind and size of sand particles moved, expressed in the equation

$$y = 0268x^{1.208}$$

where y = diameter of particle in mm., and x = wind velocity in metres per sec. For a particle 0.5 mm in diameter, which closely corresponds to 1-50 in., this formula would give a value of 6.46 mm per sec., or slightly more than 14 miles per hour. Experiments with the fraction 1-40–1-60 in showed that the grains just moved in a wind speed of 12 miles per hour, but moved freely at 15 miles per hour, which agrees with the value obtained from the formula. It has been shown by Stevenson and by Hellman, quoted by Lundegardh (4), that wind velocity is greatly retarded by the earth's surface, and that the wind velocity steadily increases upwards. Thus, to quote Lundegardh, the force at 0.05 m. and 0.5 m. is as 1 : 1.9, that is nearly twice as great at half a metre above the surface, a strength, then, which will just move sand, must be blowing in the shrub phase at about 30 miles per hour. A wind with sufficient velocity to move the sand grains only occasionally blows, and therefore sand movement is irregular. It will be found on examination of sections of dunes that they are built up intermittently, and not continuously.

B. MOISTURE.

It would appear from some writers on sand dunes that drought is a feature of the habitat, and that the xeromorphic character of dune vegetation is the outcome of the xerophytic conditions there existing (Schimper (6)). Darbshire (2), on the other

hand, quotes Swellengrebel as stating that the lower layers of the dunes are tolerably moist. The moisture content of these layers he believes to be under the influence of the ground water. This may be true for very shallow dunes, but in high dunes, such as occur at Taiwan Meadows, this cannot be so. The roots of *Spinifex hirsutus* have been traced down 6 feet, but ground water is not found at that depth. The dampness of the deeper layers is due entirely to the percolation of rain water. In contrast to other associations, no rain water is lost in run-off, and very little in evaporation, for practically all the rain that falls passes into the soil. Experiments with percolation of water through dune material show that an inch of water penetrates on the average 3.3 inches into the sand, so that a rainfall of 30 inches would sink 8 ft. 3 in. However, the depth to which this amount of water actually penetrates is much greater than this. The depth to which water will percolate is governed not only by the character of the soil particles, but also by the depth of the moist sand itself. When the water has sunk to a certain depth, it exerts a downward pull on the upper portion of the water column, and therefore less water is held in the upper layers of soil than when only a few inches are present. The high percentage in the upper layers of the soil can no longer be held by the sand grains against the force of gravity, and therefore the water-holding capacity of the upper layers varies with the depth to which the moisture has penetrated. The experiment of adding small and large quantities of water to long columns of dune sand, arranged so as to permit of drainage from the bottom, showed that after equal intervals of time the amount of moisture of the upper 2 inches in the short moistened section was always much greater than that of the upper 2 inches of the long moistened column. After standing for 24 hours, it has been found that the ratio of moisture in the short moistened section to that of a similar length from the completely moistened column averaged 59.1. Furthermore, if a long column be completely saturated, and then left to drain, evaporation from the upper surface being guarded against, there is, as long as the experiment be conducted, a very great difference in the moisture content between the upper and lower portions of the column. This has been extensively studied by King (3).

Size of soil particle and depth to which the moisture penetrates are not the only factors, for time is also a factor in determining the amount of water in the upper layers. Hence the usual determination of water-holding capacity of soils has no real ecological significance. In Table II are given the moisture contents of the upper 2 inches of sand columns 73 cm. long and 2.3 cm. in diameter, the columns being first saturated, and then left to drain for varying lengths of time, the first measurement being taken after dripping at the bottom had actively ceased.

TABLE II.—MOISTURE CONTENT OF UPPER 2 INCHES OF A SATURATED SAND COLUMN LEFT TO DRAIN FOR TIMES GIVEN

Time	Percentage of Moisture
3 hours	0 ⁰
24 hours	5 6
48 hours	3 3
15 days	3 0
	2 3

The depth of the moisture available for plants in the dunes is thus very variable, depending not only upon the above factors, but also upon the amount of sand that has been added to or removed from the area by the wind. Along the Victorian coast it rarely happens that the plants are in need of water, but in the year 1923 the water content had reached an amount too low for the needs of these plants, and wilting occurred extensively. The rainfall for the six months, November to April, for 1922-23, as well as the average for these months, is given in Table III.

TABLE III.—COMPARISON OF AVERAGE MONTHLY RAINFALL OF MELBOURNE WITH THAT OF 1922-23

Month	Actual Rainfall	Average 66 Years	
		Points	Points
1922—			
November	105	224
December	202	232
1923—			
January ..	.	99	188
February	61	170
March	33	223
April	0	223

It has been repeatedly found that the dunes are constantly moist a short distance beneath the surface, and during the early part of 1934 a series of investigations was made to ascertain the moisture content, the results of which are given in Table IV. At Melbourne and Cowes (a few miles from Cape Woolamai), the rainfall for February and March was below normal, and conditions were favorable for a low moisture content of the soil. At Lakes Entrance the rainfall was well above normal. The samples were all taken from the highest point of the dunes; those at Woolamai being taken at an elevation of 100 feet.

TABLE IV—MOISTURE CONTENT AT VARIOUS DEPTHS OF SAND DUNES

Locality	Date	Moisture Content					
		Surface	6 In	12 In	18 In	24 In	30 In
Lakes Entrance	5 2 34		2 06		2 85		3 12
Brighton Beach	14 3 34	Trace	1 06	1 26			.
Cape Woolamai	17 3 34	0 33	1 44	2 23	2 4		.
Lakes Entrance	2 4 34		2 7		2 3		2 9

The percentage of moisture in the dunes appears to be very low, but germination experiments with wheat and mustard showed that these seeds can germinate in dune sand with as low a moisture content as 1 per cent, and from this it may be assumed that the amounts of moisture given in Table IV are generally sufficient for the growth of plants.

The rapid entry of rain water and its continuous movement downwards are both important factors in the conservation of moisture, but equally important are the new layers of dry sand blown over the moistened area. Usually wind is a desiccating agent, but on the dune it acts as a conservator of moisture by adding the sand mulch. How effective is the retardation by a dry sand layer of water loss from damp dune sand can be seen from Fig. 1, where the losses from bare surface are contrasted with similar surfaces covered by 1, 2, and 3 cm of dry sand respectively.

FIG. 1.—Effect of sand mulch on the loss of moisture from moist dune sand.

It is probable that with all the factors operating for the conservation of moisture, the evaporation loss is surprisingly small. This, together with the uniform distribution of rain (Table V) throughout the year, indicates that there is normally no scarcity of moisture at the roots, and therefore the habitat, in so far as the soil is concerned, is in no way xerophytic.

TABLE V—DISTRIBUTION OF RAIN THROUGHOUT THE YEAR FOR
STATIONS ALONG THE VICTORIAN COAST
(Rain recorded in points, 100 points = 1 inch)

Station	January	February	March	April	May	June	July	August	September	October	November	December	Average Annual
Portland	136	138	163	264	371	412	422	417	347	281	194	180	3325
Cowes	182	154	251	261	238	320	275	287	280	258	220	213	2989
Lakes Entrance	258	174	262	223	217	231	234	181	243	293	209	243	2768

Although the dunes are in close proximity to the sea, the salt content of the dune is very low and negligible from an osmotic point of view. The contrary view was held by Schumper (6), but Wainright (10) and Daubshire (2) have found the same condition, so that it may be taken as a feature of environment that the water in the sand dune has no osmotically ecological significance. Even if salt were present, its solubility and the ready percolation of water would cause the salt to be carried far down out of the region of the roots.

C DUNE BUILDING

It is only on the outer dune that sand is free to move. The distance, however, from the high-tide level to the arrest of the sand differs enormously. At Sydenham Inlet, the dunes are densely clothed but a few yards from high tide, while at Tarwin Meadows there are some hundreds of yards between these two points. The reasons for these differences are probably that the amount of material produced is more, at some points than at others, and also that the conditions favouring accumulation vary. In this latter connection, land of low elevation extending for a considerable distance inland is more favorable for extensive sand accumulation than where rising ground exists. The narrowness of dunes, on the other hand, may be due to the destructive force of wind, or to the encroachment of the sea upon the land. Dunes are not built continuously and gradually, but rather by layers, since wind action is not constant. In breached dunes the successive layers may be seen. There are two sand-fixing agents, water and plants. Water has a binding action, and holds the dunes against the destructive force of the wind. It is the only binding force on the plantless dunes. A moisture content of 1 per cent. holds the sand grains together only feebly, but at 2 per cent the cohesive force is very manifest. Examples of this are best seen near Cape Woolamai, where the dunes are 100 feet high, and quite devoid of vegetation. Excavations along the sides of these show how moist they are.

Plants act in a twofold manner. The aerial portions are a direct obstacle in the path of the moving sand, and the particles are arrested. This action is important in the building of the dune. The roots do not assist in the building, but are resistant to the destructive action of the wind. On the lee side of the dune the sand comes to rest at an angle of 32 deg to the horizontal. This value has been taken from measurements at Wilson's Promontory, Lakes Entrance, and Sydenham Inlet. This angle of rest is usually found only at the inner face of the first dune, which is sparsely covered with vegetation, since the rapid deposition of sand makes it difficult for plants to establish themselves.

On the outer face of the first dune the angle of inclination is very variable, being frequently higher than the angle of rest, due to the holding action of roots of *Spinifex hirsutus*. These roots are long and slender, and bear very short laterals. The combined action of these is to resist the destructive action of wind. Measurements of Spinifex-fixed dunes at Lakes Entrance gave an average value of 49 deg for the outer face, while at Wilson's Promontory the outer face in many cases was almost vertical.

Composition.

It has already been remarked that a pioneer vegetation must be drawn from those families and genera inhabiting the nearby vegetated areas. In habitats so widely different, it is obvious that but few species could occur in both. It is true that some do, but they occupy but a minor place in the vegetation. The author prefers to call such forms "versatile wids" since their distribution is not controlled by any particular set of ecological conditions. On the sand dunes are found such accommodating forms as *Pelargonium australe* and *Acaena Sanguisorba*, but they are not conspicuous. The dune vegetation is very distinctive, and is formed of characteristically littoral species. There is a close relationship, although naturally a pioneer settlement is sparse as regards number of species present, with the adjacent heathland floor, which has been called Cheltenham flora (5). In fact, some of the heathland consists of old dunes (5). The reason why the dune flora, with the exception of *Leptospermum laevigatum*, remains close to the sea, and does not move inland, is probably due to the change in the soil conditions. The leaves of the dune vegetation are large (see Table VII) compared with the heath vegetation.

The composition in so far as the larger Dicotyledons are concerned, is essentially Australian, the characteristic genera being found in other typical Australian associations.

In Table VI are given the commonly occurring species found on the dunes. A feature of this association is that there are no dominants, for in each phase the members are of almost equal height.

TABLE VI—SPECIES OCCURRING ON SAND DUNES IN VICTORIA

I—MONOCOTYLEDONAL

- (Gramineae)—*Spinifex hirsutus* (V C)
Festuca littoralis (C)
(Cyperaceae)—*Lepidosperma gladiatum* (F)
Scirpus nodosus (F)

II—DICOTYLEDONAL

- (Proteaceae)—*Banksia integrifolia* (V C)
(Polygonaceae)—*Mitchella repens* adpressa (F)
(Chenopodiaceae)—*Rhagodia baccata* (C)
(Aizoaceae)—*Mesembrianthemum aequilaterale* (L)
(Ranunculaceae)—*Clematis microphylla* (C).
(Rosaceae)—*Acaena Sanguisorba* (F)
(Leguminosae)—*Acacia Sophorae* (V C)
(Geraniaceae)—*Pelargonium australe* (F)
(Myrtaceae)—*Leptospermum laevigatum* (V C)

Metachlamydeae

- (Epacridaceae)—*Leucopogon parviflorus* (C.)
(Apocynaceae)—*Alyxia buxifolia* (C)
(Myoporaceae)—*Myoporum insulare* (V C)
(Goodeniaceae)—*Scaevola calendulacea* (R R)
(Compositae)—*Olearia axillaris* (V C)
Helichrysum cimereum (V C)
Calocephalus Brownii (C)
Senecio spathulatus (C)

V C = very common, C = common, F. = frequent, R.R. = rather rare.

It will be seen that the families and genera so conspicuous on the adjacent heath lands, Proteaceae (*Banksia*), Leguminosae (*Acacia*), Myrtaceae (*Leptospermum*), Epacridaceae (*Leucopogon*), Compositae (*Olearia*), are found here. However, no commonly occurring characteristic species, with the exception of *Leptospermum laevigatum*, is common to both associations. It has already been pointed out that species as *Acaena Sanguisorba*, which are very subordinate members, are found also in other widely differing associations. They are capable of existing under very diverse environments. Such species are capable of being Wides in the sense of Willis (11). There is a connexion, too, with the Fern Gully Association in the families Compositae (*Olearia*), Leguminosae (*Acacia*), Ranunculaceae (*Clematis*), and Apocynaceae. The last family is mostly tropical, but is represented here by two genera, each with one species.

The pioneers of this new land are therefore derived from the adjacent vegetation. However, since no species except one is common, it may be taken that a long time has elapsed since they first arose. Their lack of spread is an argument against Willis's (11) Theory of Age and Area, in so far as time only is concerned. The theory is true in a general way, but the confining of a species to a particular area is not necessarily because it is new born, nor because of any physical barrier to its spread, but possibly because of the dissimilarity of ecological conditions. The characteristic dune species are ecologically spot-bound.

One family of interest is Myoporaceae, which has a great development in the Mallee. Very frequently *Casuarina struma* is found on the innermost dunes, and this tree is also a versatile wide.

Succession.

It has already been noted that the vegetation on this narrow strip along the coast, from outermost to innermost dune, is very diverse, and in other areas would be divided into separate associations, but here the same set of factors, wind and sand, operate, modified by the interference of the pioneers. The steady arrest of the moving sand is associated with a number of other changes, and the sequence of these changes is known as Succession.

The outermost dune is usually sparingly covered with *Spinifex*, with which a few other plants are sparsely associated. In Pl IX, C, is shown an outermost dune at Lakes Entrance, where *Spinifex hirsutus* is the chief species, but both *Senecio spathulatus* and *Calocephalus Brownii* are also sparingly present. Occasionally *Festuca littoralis* is met with. The binding action of the roots and rhizomes, and the accumulative action of the leaves steadily bring about more stable conditions. At Lakes Entrance, *Spinifex* is abundant on the outer part of the second dune, but here low, extensive, prostrate masses of the so-called *Acacia Sophorae* effectively protect the soil (Pl VIII C). This *Acacia* is in all probability but a biotype of *Acacia longifolia* which occurs in the rearmost dunes. It may, however, be merely a habitat form of the latter. At Lakes Entrance probably the most extreme forms of it occur. The phyllodes are exceedingly thick (Fig 3) and broad. This *Acacia* sends out widely spreading horizontal roots, which are close to the surface, and may be exposed by the wind. On the underside of these, secondary roots occur, which grow downwards. On these, nodules of *Bauillus radicicola* are abundantly produced. In this spreading mass of the *Acacia*, plants of other species, particularly *Olearia axillaris*, are found. The *Acacia* marks the end of the *Spinifex* phase (Pl. VIII C) and the commencement of the scrub phase, which is composed, in addition to the two species just mentioned, of *Helichrysum cinereum* and *Scaevola calendulacea*, which may also form extensive prostrate masses. With these may be associated smaller plants as *Acaena Sanguisorba*, *Pelargonium australe*, and *Mesembrianthemum aequilaterale*. These latter are infrequent, and never affect the physiognomy. There is a marked difference here between these two successive stages. The vegetation is higher, and covers considerably more than half the surface of the soil. In the scale suggested by Braun Blanquet (1) the plant cover (Deckungsgrad), on the outermost dune being less than 5 per cent has a numerical value of 1, while in the shrub or second phase (Pl VIII, D) the area of soil covered is between 50 per cent and 75 per cent., and to this the value 4 is

given. The change is very abrupt, as can be seen in Pl. VIII, C. On the innermost dune (Pl. VIII, B) the degree of soil covering is complete, and this has the numerical value of 5. In this last phase, shrubs are replaced by small trees, and associated with these are both lianes and parasites. The tree species are *Banksia integrifolia*, *Myoporum insulare*, *Leptospermum laevigatum*, and with these are associated the tall shrubs *Alyria buxifolia* and

Phase I	Phase II	Phase III
<i>Senecio spathulatus</i> <i>Calocephalus Brownii</i> <i>Spinifex hirsutus</i> <i>Festuca littoralis</i>	<i>Acacia Sophorae</i> <i>Olearia axillaris</i> <i>Heichrysum cinereum</i> <i>Scaevola calendulacea</i> <i>Myoporum insulare</i> <i>Banksia integrifolia</i> <i>Clematis microphylla</i> <i>Acaena Sanguisorba</i> <i>Pelargonium australe</i> <i>Spinifex hirsutus.</i>	<i>Leptospermum laevigatum</i> <i>Myoporum insulare</i> <i>Banksia integrifolia</i> <i>Alyria buxifolia</i> <i>Leucopogon parviflorus</i> <i>Clematis microphylla</i>

FIG. 2.—Variation in the soil acidity from front to rear of the sand dunes

Leucopogon parviflorus. The degree of soil cover is so great—denser than any other local association, except possibly the Fern Gully—that there is an accumulation of raw humus. This is unusual in warm temperate climates. The dampness is shown by

the presence of species of *Biyophyta*. The soil may be discoloured for several inches, due to the accumulation of plant debris. The slowness of decomposition of the leaves may be due to the thickness of the cuticle (Fig. 3). No such accumulation, however, occurs on the adjoining heathlands, for here the material is quickly decomposed.

The presence of the tree phase gives opportunity for other life forms to occur, such as lianes, but only one, *Clematis microphylla*, is commonly met with. Occasionally another liane, *Muehlenbeckia adpressa*, also occurs. In this phase phanerogamous parasites make their appearance, being represented by a species of Loranthaceae.

The succession above ground, life forms, species, height of phases, degree of soil cover, fixation of sand, accumulation of litter, is also associated with a succession as regards soil acidity. This is to be expected, since in the foremost dunes shell fragments occur, and in the innermost dunes plant remains are accumulating. In Fig. 2 are given two graphs of the pH values, ascertained by the Hellige Compaiator, from front to rear of the dunes, one series of soil samples being taken at regular intervals of a chain, and the other being taken from front, top, and rear of each dune respectively.

Morphology.

The leaves of the dune plants are essentially xeromorphic (xeromorphy being defined as by Thoday (8)), but it cannot be contended on that account that the plants are xerophytic, since there is usually no deficiency of water for deeply penetrating roots. Although there is sufficient soil water, the strong winds provide a powerful desiccating force. Hence the xeromorphy must be ascribed to this cause. The xeromorphy extends right through the succession, those leaves occurring in the more favorable situation behind the third dune are just as xeromorphic. There are some truly mesomorphic leaves, as those of *Acaena Sanguisorba*, *Pelargonium australe*, and *Clematis microphylla*, but these plants occur in sheltered places, and are not exposed to the wind.

The xeromorphy of the leaves does not express itself in any particular direction, for we find that there is no uniformity as regards the leaf in (1) size, (2) structure, (3) cuticle, (4) disposition or number of stomata, (5) moisture content.

SIZE OF LEAF

Size is very variable, ranging from the leptophyll of *Calochephalus Brownii* to the microphyll of *Banksia integrifolia*. In Table VII is given the percentage of leaf sizes according to Raunkaier (7) for the dunes at Lakes Entrance. The monocotyledons are excluded, as Raunkaier's system is not applicable to these.

TABLE VII.—LEAF SIZE CLASSES OF DUNE VEGETATION AT LAKES ENTRANCE

	Per cent
Leptophyll	20
Nanophyll	33
Microphyll	47

It is surprising to find so high a percentage of microphyllous leaves, for in adjacent heath flora only one microphyll is found. On the other hand, in the heath flora, leptophyllous leaves are abundant (5), while in the dune vegetation they form only 20 per cent, and these are all species of Compositae, confined to the first and second dunes.

STRUCTURE

The leaf types, so far as the arrangement and development of tissues are concerned, may readily fall into three classes—normal, isobilateral, and succulent.

Fig 3

FIG 3.—Section of leaves of Dune Vegetation (A) *Alyria buxifolia*, (B) *Senecio spathulatus*, (C) *Acacia Sophorae* (section of leaf from exposed position)

(a) *Normal*—The normal type (Fig. 3A) has palisade cells on the upper side, a well developed spongy mesophyll below, and stomata confined to the lower surface. These leaves are placed horizontally, and function as ordinary mesophyllous leaves. The spongy mesophyll is particularly well developed, and the air spaces are abundant. This type is represented by *Bankia integrifolia*, *Alyria buxifolia*, and *Olearia avicularis*.

(b) *Isobilateral*—The phyllode of *Acacia Sophorae* has almost identical structure with the true leaves of *Myoporum insulare* and *Leptospermum laevigatum* (Fig. 3, c). In these organs the palisade occurs on both surfaces, and stomata occur on both also. The association of stomata with palisade is an inversion of the normal structure. There is no spongy mesophyll, and the tissue between the outside layers of palisade is thin-walled and devoid of chlorophyll. This tissue is pith-like in character. The leaves of this type are not horizontal, but are more or less vertical. In *Acacia* the leaves are held strictly upright.

(i) *Succulent*—There is a greater variety here than in the other two types, but the modifications are all in the direction of dispensing with normal cell arrangement and of conversion of all tissues to water storage. The family Aizoaceae is represented by *Mesembrianthemum acutilaterale* and *Tetragonia implexicoma*, in the latter even the epidermal cells are converted into water vesicles. Also the family Chenopodiaceae, which contains many succulents, is represented here by *Rhagodia baccata*. Of more interest, however, is *Senecio spathulatus* (Fig. 3, B), which occurs on the outermost dune, and *Scaevola calendulacea*. In these two latter, palisade tissue is non-existent, and there is no normal spongy mesophyll. The cells are thin-walled, and air spaces are fairly plentiful. Stomata occur on both surfaces. Chlorophyll may occur right through the leaf, but it is not concentrated in particular layers as in the first two types.

CUTICLE

The xeromorphy expresses itself particularly in regard to the development of the cuticle. This reaches its greatest development in *Acacia Sophorae*, where it occurs on the exposed parts of the second dune. These measurements of the cuticles, given in Table VIII, are taken from leaves collected at Lakes Entrance. It is of interest to note that all of the species occurring in the shelter of the third dune have well-developed cuticles.

TABLE VIII.—THICKNESS OF CUTICLE OF LEAVES OF SAND DUNE PLANTS

	Microns (μ)
<i>Acacia Sophorae</i>	18.6
<i>Alyxia buxifolia</i>	15.2
<i>Olearia axillaris</i>	15.0
<i>Banksia integrifolia</i>	13.6
<i>Myoporum insulare</i>	13.0
<i>Leptospermum laevigatum</i>	12.2
<i>Senecio spathulatus</i>	9.6
<i>Spinifex hirsutus</i>	8.0

STOMATA.

Mostly the stomata are sunk beneath the level of the cuticle, and this fact, together with the thickness of the cuticle, may be regarded as protection against excessive transpiration. The number of stomata per sq. mm. is, on the whole, only moderate. A feature of the association is the number of plants that have stomata on both surfaces. Since the stomata are sunken, and since they do not abut on spongy mesophyll where diffusion readily takes place, and also since the leaves are thick, or very thick, stomata are probably necessary on both surfaces in order to fulfil the ordinary functions of a plant. To have stomata on both surfaces gives double the efficiency. However, it must be

emphasized that as regards number of stomata per unit area, comparisons between an ordinary mesophytic dorsiventral leaf and a xeromorphic leaf, such as occur here, are of very little value, since other structures of the leaves are so widely different. The number of stomata per sq. mm. is given for the dune plants in Table IX.

TABLE IX.—NUMBER OF STOMATA PER SQ. MM. ON LEAVES OF SAND DUNE PLANTS

Leaf Type	Species	Average Number on Each Surface
Normal	<i>Alyxia buxifolia</i>	152 — 0
Isobilateral	<i>Acacia Sophorae</i>	138 — 138
	<i>Leptospermum laevigatum</i>	122 — 58
	<i>Myoporum insulare</i>	69 — 69
Succulent	<i>Senecio spathulatus</i>	69 — 69
	<i>Scaevola calendulacea</i>	82 — 48

Further it may be remarked that the number of stomata per unit area cannot be ascertained from such plants as *Spinifex hirsutus*, where the stomata are set in grooves, nor from *Banksia integrifolia*, because the stomata are not uniformly distributed over the leaf, but are localized between broad sclerenchymatous strands. Where the veins are excessive, there cannot be any effective measure of the number of stomata per sq. mm., but some larger unit is needed. In other words the sq. mm. is too small a unit for leaves that have a great number of veins. It is of interest to note that *Acacia melanoxylon*, found in the Fern Gully, averages 307 stomata per sq. mm. on each surface of the phyllode.

MOISTURE CONTENT.

It is natural to expect that sclerenchymatous leaves would necessarily contain a low amount of water. It has already been shown (5) that the moisture content of the heath plants, which are true xerophytes, is low. These leaves are generally xeromorphic and sclerenchymatous. If we consider similar leaves here, we find also a low average content of the leaves, namely, 163 per cent, calculated to the dry weight.

Leaves such as those of *Myoporum insulare*, which are xeromorphic and coriaceous, have a high moisture content, and such leaves might almost be classed as semi-succulent.

The true succulents—*Senecio spathulatus*, *Scaevola calendulacea*, and *Tetragona implexicoma*, have a very high moisture content.

In Table X are given the moisture contents, calculated to dry weight, of typical dune plants.

TABLE X.—MOISTURE CONTENT OF THE LEAVES OF DUNE
PLANTS GIVEN AS A PERCENTAGE OF DRY WEIGHT

<i>Helichrysum cimereum</i>	118
<i>Leptospermum laevigatum</i>	121
<i>Banksia integrifolia</i>	129
<i>Alyxia buxifolia</i>	165
<i>Spinifex hirsutus</i>	184
<i>Acacia Sophorae</i>	275
<i>Myoporum insulare</i>	408
<i>Scaevola calendulacea</i>	635
<i>Senecio spathulatus</i>	683
<i>Rhagodia baccata</i>	756
<i>Tetragonia implexicoma</i>	1,040
<i>Mesembrianthemum aequilaterale</i>	1,338

Adaptation to Environment.

Warming (10) has given certain adaptations of plants growing on sand, and these in part are the case here. *Spinifex hirsutus* has long runners (Pl. IX B), in cases up to 20 feet, but normally the moving sand does not permit unrestricted development. These runners are facultative rhizomes, for when buried the runner functions as a rhizome, and sends up shoots. *Acacia Sophorae*, which is the immediate successor to *Spinifex hirsutus*, has also prostrate shoots which root at intervals. This is an unusual character for the genus *Acacia*. This habit enables the *Acacia* to form large masses (Pl. VIII C).

Another adaptation given by Warming is that of tufted habit, which is exemplified by *Senecio spathulatus*.

Hairiness is not an outstanding character, for it occurs on but a few plants. Glabrousness is more common. *Senecio spathulatus* is quite glabrous, and thus occurs (Pl. IX C) side by side with the very hirsute *Spinifex hirsutus*. The leaves of the shrubby Composites are hairy underneath, as are also those of *Banksia integrifolia*. The cushion plant, *Culcophalus Brownii*, exhibits the extreme case of hairiness.

Succulence occurs only to a minor extent. The extremely succulent members of Aizoaceae are not very frequent. Instead of succulence, sclerophyllly is more often the case both in the foremost and last dunes. Succulence and sclerophyllly are found side by side in *Senecio spathulatus* and *Spinifex hirsutus*.

As a possibly important factor in the vegetation, light might be considered. There is a powerful reflection from the glistening white sand, particularly on the first dune and the outer side of the second dune. It cannot be said, however, that there is any particular adaptation against it. As soon as vegetation covers the sand, this factor ceases to be of importance, yet the morphological characters of the vegetation persist.

The outstanding example of adaptation to environment is to be found in *Spinifex hirsutus*. Its whole organization is a marked series of adaptations. This plant grows on the exposed outer dune, and its life is spent in one long continuous struggle with adverse conditions. It is the ultimate victor in the suppression of the destructive forces, but at times it suffers defeat and destruction.

In its habit of rooting, each node sending down a few long sparsely branched roots, it not only obtains a constant supply of moisture, but (Pl. IX A) binds the sand together against erosion by wind. These roots, even when dead, still have binding power. The runners when buried send up shoots to the new surface, and shoots and rhizome combined assist the roots in sand binding. Another adaptation is to be found in the fact that the stomata occur in grooves on the upper surface of the leaf which is mostly unrolled. In addition to the hairiness, there is a cuticle. When the leaf is unrolled the stomata are no longer exposed to the air, and thus transpiration is restricted. In addition, cuticle and hairy covering prevent cuticular transpiration. The plants are dioecious, and therefore must be wind-pollinated. The distribution of the seed (Pl. IX D) is again wind-controlled. The inflorescence breaks off, and is rolled by the wind, dropping the seed until it finally is arrested by the shrub succession. These spherical inflorescences are extremely light and easily moved. In germination there is a final adaptation. In seeds which have a coleoptile, the depth of soil through which the seedling can emerge is limited by the length of the coleoptile. In general the coleoptile is a very short organ, and limits the depth to which grass seed may be sown. Once the coleoptile ceases growth in length, the first leaf emerges, and leaves are very poor instruments for getting through the soil. The percentage of germination very rapidly falls when the seed is sown deeper than the length of the coleoptile. In *Spinifex hirsutus*, however, where there is the constant danger of the seed being buried deeper than the length of the coleoptile, there occurs a hypocotyl which can carry the coleoptile high up towards the surface of the sand. From seed to tip of coleoptile, 5 inches have been measured.

Generally speaking, there cannot be said to be any one constant adaptation in this association except prevention of water loss due to the constant wind. The modification of leaf structure, whether sclerophyll or succulent, is most probably connected with wind action. Where there is water supply at the root, xeromorphy is not a matter of course, no matter how powerful the condition for transpiration and evaporation may be.

[Page 153] Vegetation of Sand Dunes

[Page 151] Vegetation of Sand Dunes

References.

- 1 BRAUN BLANQUET, J Pflanzensoziologie 1928
- 2 DARBISHIRE, O V Die Dungen der englischen Westküste gleich südlich von South-port Vegetationsbilder Vol 16
- 3 KING, F H Physics of Agriculture
- 4 LUNDGARDH, H Klima und Boden in ihrer Wirkung auf das Pflanzenleben Jena, 1930
- 5 PARSON, R T Ecological Studies in Victoria The Cheltenham Flora. *Proc Roy Soc Vic* (n.s.), xliv (2), 1933
- 6 SCHIMPER, A F W Plant Geography
- 7 SMITH, W G Raunkjaer's life forms and statistical methods *Jour Ecol.*, 1, 1913
- 8 THODAY, D The Terminology of Xerophytism *Jour Ecol.*, xxii, 1933
- 9 VAGELLER, P An Introduction to Tropical Soils London, 1933.
- 10 WARMING, E Oecology of Plants 1909
- 11 WILLIS, J C Age and Area

Explanation of Plates VIII. and IX.

PLATE VIII

- A—Second Dune showing the junction of Phase I (Grass) and Phase II (Shrubs) Photograph taken from top of First Dune looking towards the Third Dune *Banksia integrifolia* on upper left
- B—Third Phase (Trees) of Dune Vegetation Photo taken from top of Third Dune seen in A
- C—Prostrate masses of *Acacia Sophorae* at junction of Phases I and II
- D—Shrub phase Photo taken from rear of Second Dune looking towards the Third Dune

PLATE IX

- A—*Spinifex hirsutus* protecting an isolated Dune against denudation
- B.—Runners of *Spinifex hirsutus* on top of First Dune advancing seawards.
- C—Top of First Dune Vegetation mainly *Spinifex hirsutus*, but at (a) are seen plants of *Senecio spathulatus* and at (b) specimens of the Cushion Plant, *Calocephalus Brownii*
- D—Inflorescences of *Spinifex hirsutus*
-

[PROC ROY SOC VICTORIA, 47 (N.S.), Pt 1, 1934]

ART IX—*Some Fundamental Concepts in Victorian Physiography*

By EDWIN SHERBON HILLS, M.Sc., Ph.D.

[Read 12th July, 1934, issued separately, 22nd December, 1934]

Table of Contents.

INTRODUCTION

PART I RECOGNITION OF EROSION SURFACES

- 1 The Cretaceous Terrain
- 2 The pre-Older Basaltic Terrain
- 3 The pre-Older Basaltic Divide
 - (A) Discussion of Gregory's Hypothesis
 - (i) The Gorge of the Goulburn at Trawool
 - (ii) Reversal of Former South-flowing Streams
 - (iii) The Yarra Plateau
 - (a) Kangaroo Ground Residual
 - (b) Watson's Creek Residual
 - (iv) Conclusions
 - (B) Alternative Hypothesis
 - (C) The Werribee Gorge Area
- 4 The Nillumbik Peneplain
- 5 Post-Kalimna Earth Movements

PART II FAULT MOVEMENTS IN RELATION TO PHYSIOGRAPHIC EVOLUTION

- 1 The Croydon Senkungsfeld
 - (i) Brushy Creek and Yarra Faults
 - (ii) Dandenong's Fault
 - (iii) Steele's and Briat's Hills
- 2 Alternative Hypothesis
 - (i) The Course of the Yarra across the Yarra Plateau
 - (ii) The Yarra Flats
 - (iii) The Yarra Plateau
 - (iv) The Yering Gorge
- 3 The Ballan Sunkland.
- 4 The Mansfield District
- 5 Conclusion
- 6 Glossary and Summary
- 7 Bibliography.

Introduction.

It may readily be gathered from the somewhat scant literature, that there is no general agreement among Victorian physiographers as to the nature of the chief factors that have combined to influence the topographic evolution of the State, more particularly the south-central portions, since the beginning of the Cainozoic Era. The extent to which the views of the workers

concerned diverge may be gathered from the following table, which presents in summarized form the main results achieved since 1903, when Gregory published his "Geography of Victoria."

TABLE I

REFERENCE	EROSION SURFACES	AGE
Gregory, 1903 .	One peneplain, with the divide lying well to the north, in the Strathbogies and Mt Buller	?
Skeats, 1910	1 Ancient peneplain, represented in the summits of Mt Macedon and the Dandenongs	1 Pre-M Cainozoic
	2 Second peneplain, represented in the level of the country around Mt Macedon	2. ?
Jutson, 1911 .	Nillumbik peneplain, including the Yarra Plateau and the Croydon Senkungsfeld	Post-Older Basalt, pre-Kaimnan
Keble, 1918 .	Various erosion cycles are described, but apart from the old river valleys, erosion surfaces are not recognized	
Fenner, 1918 .	"Great Peneplain." Level of the summit of the Blackwood and Brisbane Ranges, an extremely well-developed peneplain	Pre-Older Basalt, and called M Tertiary
Summers, 1923	Planation complete at the beginning of the Tertiary period. This again refers to the "Great Penoplain"	Early Tertiary
Fenner, 1925	"Great Peneplain," destroyed in the Middle Tertiary	M. Tertiary
Baragwanath, 1925	1 Older peneplain, now at 4,500 feet—5,000 feet	1 Older than No 2
	2 Second peneplain, which is the pre-Older Basaltic erosion surface. Now at 3,000 feet—3,500 feet	2. Pre-Older Basaltic

Lack of a well-attested theory of historical physiography is particularly felt in teaching, and the present contribution aims at supplying, in so far as is at present possible, a basis for discussion and further advance. I have been over most of the country dealt with, in order to test the suggestions here put forward, and have been greatly helped by discussions with members of the staff of the Geology School at the University, Mr. F. A. Singleton, whose advice was especially welcome in connexion with Tertiary stratigraphy, and Mr. H. B. Hauser, in particular. The accurate relief model of the country around Port Phillip and Western Port Bays, constructed from the Military Survey Maps by Mr. H. B. Hauser and Mr. J. S. Mann, has proved of inestimable value.

PART I

RECOGNITION OF EROSION SURFACES

1. The Cretaceous Terrain.

It may be seen around the Dandenong Ranges that the land surface at the time of extrusion of the Older Basalts was of diversified relief, the resistant Devonian lavas rising above the general level of the surrounding country. With a topography such as this, the possibility exists that at the summits of the monadnocks of resistant rocks, we might find relics of the former land surface, which upon elevation and dissection gave rise to the later surface upon which the Older Basalts were poured out. Although such relics do not occur either at Mount Macedon or in the Dandenong Ranges, where the outcrops of resistant lavas are so small that the escarpments on the eastern and western sides of the lava outcrops have intersected to produce a ridge (see Fig. 1), the conditions are different further to the east. Here, the much larger outliers of Devonian lavas stretching from Warburton to Healesville, Marysville, the Cumberland

Fig. 1—Diagrammatic section to show the evolution of a residual ridge (A) and of a plateau remnant (B). The old land surface is represented by the thin line 1, and there are two outliers of resistant lavas, a smaller at A and a larger at B. Upon uplift of the land, erosion of the soft bedrock begins, and escarpments develop at the junctions of the lavas and bedrock. An intermediate stage with two plateau remnants is shown by the broken line 2, and the existing topography, where A represents ridges such as the Macedon and Dandenong Ranges, and B dissected plateaus such as that around Donna Buang and northwards, is shown by the thick line 3.

Valley, and north to the Rubicon River, is so extensive that the summit still preserves, though no doubt in a somewhat modified form, a remnant of the old uplifted land surface. This mountain mass is to-day a dissected plateau, the summit of which ranges from about 5,000 feet at Mount Torbreck, down to 3,500 feet at Mount Strickland, near Marysville (see Hills, 1932, pp. 147-48). Therefore, the Devonian lavas must, at some period long antedating the extrusion of the Older Basalts, have been so reduced by erosion as to have formed part of a well-developed erosional plain, more complete than any which has since been developed in south-central Victoria.

Our estimate of the probable age of this erosional plain (whether it is to be termed "peneplain" or "pauplain" will be, as yet, a matter of opinion), depends on the age assigned to the

Older Basalts By the time these lavas were extruded, the old erosional plain had been uplifted and dissected to a late mature, or perhaps even old stage (see section on the pre-Older Basaltic Terrain), so it is clear that the uplift must have antedated the basalts by a very considerable period. Unfortunately, the evidence of age of basalts that do not come into relationships with marine Tertiary deposits is usually inconclusive, but it is now generally believed that the earliest flows were at least as old as Oligocene. If the basalts of the older deep leads are of this age, or even slightly younger, it is clear that the old erosional plain whose age is in question must have been uplifted either well down in the Eocene, or perhaps earlier still. The epi-Cretaceous movements which produced folding in Queensland may, in Victoria, have resulted in broad upwarping of the Upper Cretaceous land surface, and I would suggest that the ancient land surface preserved around Donna Buang, Marysville, and in the Cerberians, is this uplifted Upper Cretaceous surface. Other probable remnants of this land surface, such as the Baw Baw Plateau, which was recognized by Baragwanath (1925) as representing a "peneplain" uplifted and dissected before Older Basaltic times, will be indicated below.

As we pass eastwards from the Melbourne district, the Older Basalt residuals become, in the Eastern Highlands, progressively more elevated. At the same time, the interfluves of the pre-Older Basaltic streams become continuously more eroded and reduced, so that we pass from a region where the Older Basalt may still occupy lower ground than the old interfluves (more especially than the old divides) to a region where the residuals now occupy the highest land, and where extensive relics of the monadnocks and interfluves of Older Basaltic times no longer exist. This explains why types of the Cretaceous Terrain (see Glossary for terms used with a special significance) are more easily recognizable nearer Melbourne than in the Alps. The pre-Older Basaltic land surface has been differentially elevated, being tilted up to the east about an axis in the Melbourne district chiefly as a result of post-Kalmnan movements (q.v.).

2. The Pre-Older Basaltic Terrain.

It has for long been realized that, in the sub-Older Basaltic deep leads, we have preserved traces of an ancient river system, which has been discussed in detail by Kehle (1918) and Baragwanath (1925). The land surface over which these rivers flowed is the "Great Peneplain" described by Fenner (1918, 1925), and by Summers (1923), the 3,000 feet-3,500 feet peneplain of Baragwanath (1925), and is probably the low level peneplain referred to by Skeats (1910) at Mount Macedon.

The evidence of the sub-Older Basaltic leads shows that over an extensive inland region, in the valley tracts of the rivers, the surface was maturely dissected, and towards the south, in the

plain tracts of the streams, there was much flat land. In the south, the basalts which further inland were confined within the stream courses, often spread out as sheets. Above these extensive regions at a mature or old stage of dissection, residuals of resistant Devonian lavas and "granite" rose.

3. The Pre-Older Basaltic Divide.

A DISCUSSION OF GREGORY'S HYPOTHESIS

Gregory (1903) has suggested that the main divide at this period was in the Strathbogies, and that from there streams ran south, over the present divide. Similarly, it is suggested (Keble, 1918) that a stream ran south from Mount Buller to join the well authenticated parent of the twin streams Thomson-Aberfeldy. The following considerations bear on this question —

(1) *The Gorge of the Goulburn at Tiawool* — On Gregory's hypothesis the Goulburn has developed by headward erosion from an initial source west of the King Parrot Creek. At Tiawool, the Goulburn has been superimposed upon a granite massif, through which, clearly over a protracted period of time, it has cut a gorge. It is difficult to find any reason why a stream so retarded should have been able to effect any significant extension of its headwater regions by headward erosion, a process which depends so completely upon the ability of a stream to rapidly degrade its course. Furthermore, it is difficult to see why, if the Goulburn in this district were not very early established as a master stream, it should not have been itself captured by a stream working round the south end of the Tiawool granite.

(ii) *The Reversal of Former South-flowing Streams* — Gregory's hypothesis also necessitates the postulate that the streams flowing south from the Strathbogies and Mount Buller, i.e., the streams now represented by the Upper Goulburn, Acheron, Yea, and King Parrot Creek, have been reversed, apparently by continually having their headwaters encroached upon by vigorously headwardly eroding streams of the developing Goulburn system. It must be pointed out that the Goulburn, as well as being handicapped by traversing the Tiawool granite, would on Gregory's hypothesis be able to capture only a meagre amount of water from the supposed south-flowing streams, for it would have been necessary for it to have effected its development at the headwaters of those streams, near a presumably well-marked and mountainous divide. That it should have succeeded in reducing a mountain mass to a great valley, indeed to a river system, during post-Older Basaltic times is inconceivable, especially in view of the comparatively insignificant extent of post-Older Basaltic erosion on the Yarra Plateau, where in addition, the streams have been aided by post-Kalinman uplift.

(iii) *The Yarra Plateau*

(a) *Kangaroo Ground Residual*—The Kangaroo Ground and adjacent residuals on the Yarra Plateau are some 900 feet lower than the divide at Kinglake. If the Kangaroo Ground pre-Older Basaltic stream had to pass over the divide on its way from the Strathbogies, this difference in elevation between two parts of its course so far from the headwaters is, assuming a normal thalweg, impossible. The conditions are better satisfied by assuming a pre-Older Basaltic divide not far from the present divide and only slightly higher.

(b) *Watson's Creek Residual*—Watson's Creek and the creek to the south of it are twin streams, and the basalt residuals on the ridge between them are still at a lower level than the adjacent interfluves, which clearly represent the reduced pre-Older Basaltic interfluves. The Christmas Hills ridge, determined by a hard quartzite band (Jutson, 1911), is also higher than the residuals, and as shown by Kebble and recognized by Jutson, must have been a divide between pre-Older Basaltic streams flowing west and east of this area. Followed to the north, the Christmas Hills merge into the Kinglake Plateau at the divide. It follows that the present divide itself, like the Christmas Hills, formed part of the pre-Older Basaltic Terrain.

(iv) *Conclusions*.—The above will have shown that it is impossible to place the pre-Older Basaltic divide as far north as the Strathbogies and Mt Buller, that already in the pre-Older Basaltic times the Goulburn system was well developed, whether in its present form or not is immaterial, that therefore the pre-Older Basaltic divide approximated to the present divide.

(B) ALTERNATIVE HYPOTHESIS

We may now consider the proposition that the pre-Older Basaltic divide was situated not far from the present divide, as an alternative hypothesis.

It has already been pointed out by Jutson (1911) and Kebble (1918) that the Watts River, within the outcrop of the Devonian lavas, occupies an ancient course. This is the course initiated or rejuvenated on the break-up of the Cretaceous Terrain. The headwaters of the Acheron, by analogy, may be regarded as holding a similar inherited course. Donna Buang being the highest peak on the Warburton-Healesville Plateau, we may take it as marking the continuation of the old divide in this region. The Yarra at Warburton has clearly come to occupy a transverse course because of the ease of erosion in an east-west direction as compared with that in a north-south direction, and during the course of erosion from the beginning of Tertiary time to the

present, has become a master stream because of this fact. At the present time the thalwegs of the Yea River and King Parrot Creek are at a much lower gradient than the streams flowing to the Yarra from the Kinglake Escarpment (see Fig 2). This is due to the fact that the Goulburn, between its confluence with the King Parrot Creek and the Yea River, averages some 500 feet above sea level, while the Yarra is only 100 feet above the sea at its confluence with Diamond Creek. These gradients are the reverse of what would be expected on Gregory's hypothesis of stream development.

Fig 2.—Stream profiles north and south of the divide. Data from Military Survey maps. Note the low gradient of the north-flowing streams. These erode relatively to the level of their confluence with the Goulburn, which is still some 500 feet above sea level. The irregular gradients of the south-flowing streams are probably due to the presence of hard bands in the Silurian rocks which they traverse, the effects of these hard bands being accentuated because of the steep gradient.

The Kinglake Plateau is a reduced pre-Older Basaltic land surface. Being at a divide, where rivers are stable in their courses for very long periods, this surface has been preserved, and merely reduced in level by gradual removal of soluble material from the soil, which is deep and rich, in contrast with the soils on the Silurian rocks of the Yarra Plateau, a younger land surface until recently undergoing active denudation. The actual divide is slowly migrating northwards, due to the steep gradient of the southern streams, the higher land at Mount Sugarloaf marking the probable position of the pre-Older Basaltic divide. The Older Basalt near Flowerdale on the King Parrot Creek is at a lower elevation than the divide at the head of the creek, and this clearly shows that the divide is an ancient feature. It is probable, therefore, that the Hume Plateau, which rises high above the present divide and above the basalt residuals, is a relic of the Cretaceous Terrain, and was a plateau remnant in pre-Older Basaltic times, as it is to-day.

(C) THE WERRIBEE GORGE AREA

Fenner, in his papers (1918, 1925) on the Werribee River and Bacchus Marsh Basin, insists on the existence of only one peneplain, the Great Peneplain, which is the pre-Older Basaltic Terrain. This peneplain, now dissected, is the level surface exhibited by the upthrown blocks of the Blackwood Ranges and the Brisbane Ranges, and is the second peneplain of Skeats, above which Mount Macedon rises. I believe this view to be in great measure correct, but as will be pointed out later, if this is so our ideas of the nature of the Greendale and Spring Creek faults must be considerably revised.

4. The Nillumbik Peneplain.

This is defined by Jutson as including the Yarra Plateau of Gregory, together with the Croydon "Senkungsfeld". The peneplain was produced after the extrusion of the Older Basalts and before the deposition of the Baiwonian and Kalimnan fluvialite and shallow marine sands and gravels of the Melbourne district, which rest upon it.

In the Port Phillip region, immediately after or during the main Older Basaltic outbursts, depression of the land, leading to the marine incursions of the Baiwonian, was initiated. This depression persisted until Kalimnan times, and during these periods it is clear that river erosion in the neighbouring districts must have been retarded. We may picture the streams distributing sand and gravel as flood-plain deposits in the lower parts of their courses, and, by lateral planation, producing local level erosion surfaces. It is clear, however, from the fact that Older Basalt residuals were left on the erosion surface, that no widespread erosional plain was produced. The Nillumbik Peneplain is best regarded as a modified pre-Older Basaltic Terrain, which, within the area prescribed, was of low relief. I propose, for reasons given below (see Peneplain, in the Glossary), to refer to it as the Nillumbik Terrain. It may be seen to-day as a stripped fossil plain, along the Mitcham-Tunstall axis, where the overlying Tertiary sands have been removed by erosion.

5. Post-Kalimnan Earth Movements

We have no evidence that any major period of uplift, such, for instance, as might have raised the Eastern Highlands to their present elevation, took place between the extrusion of the Older Basalts and the end of Kalimnan times in Victoria. It is the post-Kalimnan movements which have determined the major topographic features of the State.

Evidence for a general Pliocene uplift antedating by some time the Newer Basalts is afforded by the uplifted marine Kalimnaan sands of the Melbourne district. The fluviatile deposits which cap the hills in many parts of the Central Highlands were also uplifted before the Newer Basalts were erupted, and their physiographic relations are analogous to those of the Kalimnaan sands around Melbourne, which themselves grade inland into fluviatile deposits. It is considered that the thick gravel deposits around Bairnsdale are Pliocene also, and these gravels, or a similar series, cap the hills as far inland as Buchan. It will be seen that there is good reason to place a general period of uplift somewhere between the Kalimnaan (Lower Pliocene) and the earliest Newer Basalts. Before the basalts were erupted mature valleys were excavated in the uplifted land.

To turn to South Gippsland, the youngest deposits affected by the late Tertiary faulting are again the "Older Pliocene" fluviatile series. Here there is no doubt that the hills owe their elevation to post-Kalimnaan movements, repercussions of which are still to be felt. In attempting to define a period of maximum late Tertiary uplift, it must be borne in mind that we are concerned with movements that can be shown to have been of wide geographical extent and of restricted time range. Locally, uplift or depression with minor oscillations has gone on throughout practically the whole of Tertiary time, as in the ancient Murray Gulf and at Sorrento. In addition, we once more come up against the difficulty that it is hard to fix the age of a series of subaerial lavas, the Newer Basalts. In the Western District, vulcanicity clearly continued into Pleistocene or Recent times, but the lava fields around Melbourne have been more deeply dissected, and appear to be slightly older. They were already extruded when swamp deposits containing *Diprotodon* were laid down, and a soil cover derived from the weathering of the basalts themselves is universal. If all the Newer Basalts are to be regarded as Pleistocene, those of the Melbourne district must belong to the earliest part of that period.

The period of maximum Pliocene uplift, then, as shown by all the evidence to date, was post-Lower Pliocene and pre-Pleistocene. Movements along the Rowsley and neighbouring faults of post-Newer Basaltic age seem to have been concerned chiefly with the depression of Port Phillip, and not with the uplift of the Highlands. There is no evidence anywhere in Victoria for a maximum uplift in the Pleistocene (Kosciusko Uplift), the elevation of the Highlands having taken place throughout Middle and Upper Pliocene times, culminating in the Upper Pliocene. In the Eastern Highlands it may prove to be the case that upwarp began earlier still near the divide, with concomitant downwarp in the Gippsland region.

PART II

FAULT MOVEMENTS IN RELATION TO PHYSIOGRAPHIC
EVOLUTION**1. The Croydon Senkungsfeld.**

In his paper on the Yarra, Jutson (1911) postulated a depressed area, bounded by faults—many of which are admittedly hypothetical—and named this area the Croydon Senkungsfeld. Keble (1918), however, presented an entirely different explanation of the topographic evolution of the district, unfortunately without any attempt to discuss Jutson's earlier work. The supposed fault scarps of the Brushy Creek and Yarra Faults are, it would appear, regarded by Keble as erosion escarpments, marking the position of an ancient watershed, the Wuiunjerrai Range, of which the Christmas Hills form part.

(i) BRUSHY CREEK AND YARRA FAULTS

It is a remarkable coincidence that, as was clearly pointed out by Jutson himself (1911, *a*), the line of the supposed Brushy Creek and Yarra Faults should be faithfully followed, on the high level side, by a band of the most highly siliceous Silurian quartzite found by Jutson on the Yarra Plateau. As the strike of this hard band varies, so do the supposed faults change their course, striking east of north in the south, then west of north, and later east of north again. Jutson explains this by postulating a line of weakness along the hard beds, but there is no *a priori* reason to suppose that such actually existed. Jutson finds himself in difficulty when he traces these hard beds further north where they determine the Christmas Hills Spur. The same conditions hold—there is the hard band, the high land on the west, and the lower land on the east. But it is impossible to place a fault at the foot of the Christmas Hills, which are clearly (as was recognized by Gregory, Jutson, and Keble) a spur developed by differential erosion, jutting out from the Kinglake Plateau. Jutson therefore arbitrarily places a northern limit to the Yarra Fault movement, and marks a purely hypothetical fault running east-west across the spurs on the north side of the Yarra. As there is every reason to believe that the Christmas Hills owe their relative elevation to differential erosion, then stronger evidence than has yet been adduced is necessary to prove that the eastern boundary of the Yarra Plateau is not an erosion escarpment also, determined by the hard quartzite described by Jutson.

(ii) DANDENONGS FAULT

On the eastern side of the Acheron valley, between Maysville and Taggerity, there are Upper Devonian lavas resting unconformably upon Silurian sediments, and the dissection of these,

as in the case of the rhyolites at Mount Wellington, has produced a well-defined escarpment parallel to the strike of the lavas. There is no reason to doubt that the escarpment at the edge of the Devonian lavas extending from Healesville round to Warburton is due to the same cause, for the boundary of the lavas and the Silurian, as mapped by Junner (1915) and Edwards (1932), is a natural one. The fault mapped by Jutson is non-existent. At the Dandenongs, remapping of the boundary of the Devonian lavas by Edwards, as shown in a MS map kindly placed at my disposal, shows that the boundary faults marked by Morris Morris (1912) do not exist, the junction with the Silurian rocks being again a natural one. An escarpment at the edge of the hardest of the lavas is therefore to be expected as at Marysville and Healesville.

(iii) STEELE'S AND BRAY'S HILLS

These peaks on a north-south trending ridge of Silurian rocks (the Waranmate Hills) are marked by Jutson as being on the upthrown side of one of the boundary faults of the "Senkungsfeld". They are composed of silicified sandstones much more resistant than the average Silurian sediments of the district, and differential erosion is again sufficient, in my opinion, to explain their present elevation above the surrounding country.

I therefore maintain that there are no adequate grounds for regarding the basin of the middle Yarra and the Croydon Lowlands as a Senkungsfeld.

2. Alternative Hypothesis.

An alternative hypothesis must give an adequate explanation of (i) the course of the Yarra across the Yarra Plateau, (ii) the Yarra Flats, (iii) the general high level of the plateau as compared with the Croydon Lowlands; and (iv) the Yering Gorge.

(i) *The Course of the Yarra across the Yarra Plateau*—Keble explains the present transverse course of the Yarra as being due to the capture of a stream formerly flowing south through Lilydale by the streams flowing west from the old divide of the Wurunjerri Range. Such a contingency is most improbable, firstly because of the extreme slowness of the migration of divides, and secondly because the conditions of the bedrock are such that, on Keble's hypothesis, the streams working in soft rocks are captured by those working in hard rocks (see section on the Yarra Plateau), and, moreover, are captured across a well-defined resistant ridge, the Wurunjerri Range.

I would suggest as a possible alternative that the diversion of the Yarra across the Wurunjerri Range was brought about by the blocking of the valley of the former north-south river flowing through Lilydale in pre-Older Basaltic times by ejectamenta from the Older Basalt vent recognized at Lilydale (Morris, 1912). In pre-Older Basaltic times the edge of the Dandenongs escarpment would have been a little further west, the denudation of the toscanites would not have progressed to the extent seen to-day, and thus at Lilydale the valley of the pre-Older Basaltic stream must have been somewhat constructed. If blocked by lavas and tuffs, a lake would have been formed which would have found an outlet across a low part of the Wurunjerri Range, probably at the head of one of the tributaries of the stream flowing in the position of the Kangaroo Ground residual.

(ii) *The Yarra Flats*.—The level of the outlet so formed would act as a local base level of erosion, since composed of hard rock, and upstream from it the Yarra would meander and deposit extensive flats—the Yarra Flats. The level of these flats should be continually in a process of reduction if this hypothesis is true. We should find alluvium extending from the flats up among the higher hills around Lilydale, particularly in the valleys, into which long-continued rain action would wash most of the material. This is actually the case.

If the Flats are due to the exceedingly slow uplift of the Yarra Plateau, then they should never have been more extensive than they now are, and, further, since movement along the hypothetical Yarra Fault has presumably ceased, the Yarra should now be cutting away the Flats. This is not the case, the factor causing their development is still operative, and is to be sought in the presence of the hard rocks of the old Wurunjerri Range.

(iii) *The Yarra Plateau*.—The general high level of this region is due mainly to the resistant nature of the rocks of which it is composed. Quartzites, sandstones, and conglomerates occur there, and, in addition, the rocks have been indurated by the penetration of siliceous solutions, quartz veins being common in the mining districts. It was from various places on the Plateau and its southern extension in the Melbourne district that building stones were obtained in the early days of Melbourne's growth East of the Plateau, especially to the south of the Yarra, the usual type of rock is a soft shale, often highly fossiliferous, any harder rocks being found as high land.

(iv) *The Yering Gorge*.—On the hypothesis here presented, this is to be explained as a part of the edge of the Yarra Plateau, isolated by having superimposed on it, from the older high level alluvium, a meander of the Yarra.

3. The Ballan Sunkland.

The data given by Fenner (1918) allow a reconstruction of the condition of the Ballan Sunkland immediately after the operation of the Greendale and Spring Creek Faults (see Figure 3). It is clear from this section that, if we are to regard the level of the Blackwood and Brisbane Ranges as representing the uplifted surface of the pre-Older Basaltic Terrain (Great Peneplain), then our interpretation of the geological history must be somewhat more complex than has usually been considered necessary.

Fig. 3.—Section across the Ballan Sunkland. This section shows the sunkland as it was immediately after the operation of the Spring Creek Fault (F1) and the Greendale Fault (F2), according to data given by Fenner (1918). The existing topography is represented by the heavy line at about 1,200 feet in the south and over 2,000 feet in the north. The lower part of the section is from Fenner's Figure 13.

It will be clear that either the present level of the Blackwood Ranges (north of F2) is not that of the Great Peneplain (the pre-Older Basaltic surface), or that most of the movement along this fault had already occurred before the completion of the peneplain. If the Brisbane Ranges are regarded as part of the peneplain, then either they are a stripped and slightly dissected fossil plain, from which the Tertiary sands have been removed, or else the sands occupy a basin initiated by movements along the Spring Creek line.

The possibilities are as follows.—

(a) If the Spring Creek Fault is correctly drawn, then the Brisbane Ranges are a "stripped fossil plain," from which the overlying Tertiary sands have been washed, not so much by normal stream erosion, but as "mud may be washed from a board" (an expression recently used, as a quotation, by Fenner in another connexion). The great ease of erosion of these beds makes this quite a feasible idea.

(b) The Spring Creek fault may be regarded as a line of post-Older Basaltic sag, initiating a basin which was filled by the lignitiferous sands of the Parwan Basin and Lal Lal district. The sands on this hypothesis never covered the Brisbane Ranges.

(c) The preservation of so much Permocarboniferous tillite on the downthrown side of the Greendale Fault is a very strong indication that most of the movement along this line went on during the formation of the Great Peneplain, or earlier still, for

the upthrown side has suffered about 1,000 feet of reduction since the major movement went on. If the Blackwood Ranges represent the Great Peneplain surface, the erosion must have been pre-Older Basaltic. Later movement of small amount has probably gone on.

4. The Mansfield District.

In his paper on this area, Fenner (1914) discusses the evolution of the rivers, and concludes that the drainage has been directly affected by what he clearly regards as Tertiary block faulting, although the age of the faults is not unequivocally stated, and no stratigraphical evidence for their existence was obtained. As a result of a visit to the Mansfield and neighbouring districts in 1928, I was able to supply the missing stratigraphical evidence of block faulting, which is of fundamental

Fig 4.—View from Keppel's Lookout, Marysville, looking north. This view over the timbered valleys of the Taggerty and Steavenson Rivers illustrates the importance of subsequent stream dissection. The Lookout is situated on the top of the escarpment bounding the Devonian lavas, and the continuation of the escarpment to the north is seen at (E). The lavas at (E) probably once covered the hard Silurian Sandstones of the Cathedral Range (C-D), which pass beneath the Devonian at the saddle between the Sugarloaf (D) and the escarpment (E). The curve of the talus slope from the Cathedral (C), a massive sandstone dipping to the east, is well shown. At Buxton, an intrusion of garnetiferous grandodiorite porphyry forms the hill (B) to the east of the village. Between Buxton and Marysville the rocks are Silurian sediments, and the topography is determined by differences in hardness among these beds. The ridge (A) leading up to Mount Gordon is composed of hard sandstones.

importance for an understanding of the geology of the region, but could find no evidence that the movements are of Tertiary age. The scarps are all fault line scarps, and the presence of quartz veins along certain of the fault lines, as on the western side of Mount Timbertop, is a good indication that the faults are much older than Tertiary, more probably Upper Palaeozoic. One of the faults postulated by Fenner is, he thinks, connected with the uplift of the Cerbereans, but, as has already been shown,

these mountains are a relic of the Cretaceous Terrain, and their steep edge is the escarpment at the edge of the Upper Devonian lavas of which they are in part composed (Hills, 1932). In the absence of more definite evidence to the contrary, therefore, I would suggest that the development of the complex middle course of the Goulburn has been controlled, not by Tertiary faulting, but by subsequent (differential) dissection of a region of complex geology.

5. Conclusion.

The above remarks are not intended to minimize the importance of Tertiary faulting as a physiographic control in Victoria. In Gippsland, particularly, the evidence for extensive late Tertiary faulting is conclusive and illuminating, but in the Eastern Highlands such is not the case, and no undoubted Tertiary fault has yet been identified. My own reference (1932) to the "tilted blocks of a broken peneplain," occurring west of the Black Hills, Taggerty, is incorrect. The supposed tilted blocks are a series of strike ridges. Indeed, a preconceived idea of the dominance of block faulting in this region for long prevented the author from realizing what is actually the chief topographic control over extensive areas, and that is, geological structure, etched out by the long continued attack of erosive agents.

6. Glossary and Summary.

A SYSTEMATIC TERMS

1 *Terrain*—The land surface at any specified time within the region under consideration. It is sometimes preferable to use this term instead of "erosion surface," since it includes erosion surfaces of all ages represented in the topography.

2 *Inherited*—A term used to describe physiographic entities such as stream courses or summit levels, the former condition of which has left a very marked impress upon the existing feature.

3 *Peneplain*—The errors that may be introduced by a loose application of this term to all moderately flat (often, too, only locally flat) erosion surfaces are very great. Wherever preliminary investigations only are made without detailed study, it is preferable to use a term such as "Terrain," without the genetic significance attached to the word "peneplain."

4 *Plateau Remnant*—A small plateau or table mountain, representing a relic of a former land surface of low relief, uplifted and dissected in a new cycle of erosion.

B REGIONAL TERMS

1 *Cretaceous Terrain*.—The land surface, of uniformly low relief, before the major late-Cretaceous uplift. Remnants now to be seen are (a) the Cerbereans—Donna Buang Plateau, (b) the Hume Plateau, (c) the Trawool Plateau, (d) Baw Baw Plateau.

2 *Pre-Older Basaltic Terrain*.—This is the "Great Peneplain" of Fennel. It is the land surface produced by erosion between the late-Cretaceous uplift and the earliest Older Basalts. The plateau remnants of the Cretaceous Terrain described above were monadnocks on the pre-Older Basaltic surface, but large areas, especially in the Palaeozoic sediments, were of low relief. Remnants now to be seen are (a) the Kinglake Plateau—representing the modified pre-Older Basaltic divide, (b) the Christmas Hills; (c) the Brisbane Ranges (in part), (d) the Blackwood Ranges (in part), (e) the sub-Older Basaltic leads.

3 *Yillumbik "Peneplain"*.—This is the land surface produced during post-Older Basaltic and pre-Kalmunian times in the Yarra Plateau and Croydon Lowlands. It is a modified pre-Older Basaltic surface, and may now be seen as a stripped fossil plain, along the Mitcham Axis.

4 *Hume Plateau*.—The Hume "Ranges" are really a plateau, whose summit ranges from 2,200 feet to 2,500 feet.

5. *Trawool Plateau*.—The granitic country south of Trawool is a plateau, more deeply dissected than the Hume Plateau because nearer the Goulburn, but with a summit at much the same elevation.

6 *Kinglake Escarpment*.—See Kinglake Plateau.

7 *Kinglake Plateau*.—The present divide from Kinglake West to above Kinglake is a narrow plateau trending roughly east-west, at an elevation of 1,600-1,800 feet. This is bounded on the south by a steep erosion escarpment, for which I propose the term Kinglake Escarpment. The plateau bears deep and rich soils, which extend down in places on to the tops of the main spurs that run off from it to north and south, and which are, like the Plateau, ancient topographic features.

8 *Yarra Plateau*.—This comprises the country from the Christmas Hills to the Plenty River, and from Kinglake Escarpment to the divide on the Mitcham Axis. It is composed mainly of relatively hard and resistant Silurian sediments. (Gregory, 1903, Jutson, 1911).

9 *Croydon Lowlands*.—Since I believe that the term "Senkungsfeld," as applied to the Croydon district, implies an erroneous conception of the history of the area, I propose the name Croydon Lowlands for the country between the Yarra Plateau and the Dandenongs, south of Lilydale.

10 *Brushy Creek and Christmas Hills Escarpments*.—The scarps of the supposed Brushy Creek and Yarra Faults are, I believe, erosion escarpments. The scarp of the so called Yarra Fault, continued to the north, is seen to form part of the Christmas Hills Escarpment.

11 *Wurunjerri Range*.—A pre-Older Basaltic divide, represented to-day by the Christmas Hills, and the eastern edge of the Yarra Plateau (Keble, 1918).

12 *Mitcham Axis*.—A line, possibly a post-Kalmann warp axis, from Burt's Hill through "Pinemont" and Blackburn to Camberwell (Jutson, 1911).

7. References.

- BARAGWANATH, W., 1925 The Aberfeldy District, Gippsland *Mem. Geol Surv Vic.*, No 15
- EDWARDS, A. B., 1932 The Geology and Petrology of the Black Spur Area (Healesville) *Proc Roy. Soc Vic.*, (n.s.), xliv (1), pp 49-76
- FENNER, C., 1914 The Physiography of the Mansfield District *Ibid* (n.s.) xxvi (2), pp 386-402
- _____, 1918 The Physiography of the Werribee River Area *Ibid.*, (n.s.) xxxi (1), pp 176-313
- _____, 1925 The Bacchus Marsh Basin, Victoria *Ibid.*, (n.s.) xxvii. (2), pp 144-169
- GREGORY, J. W., 1903 The Geography of Victoria Also 2nd Edn, 1912.
- HERMAN, H., 1922 The Brown Coals of Victoria *Bull. Geol. Surv. Vic.*, No 45
- HILLS, E. S., 1932 The Geology of Marysville, Victoria. *Geol. Mag.*, lxix, pp 145-166
- HUNTER, S., 1909 The Deep Leads of Victoria *Mem. Geol. Surv. Vic.*, No. 7
- JUNNITR, N. R., 1915 The Petrology of the Igneous Rocks near Healesville and Narbethong. *Proc. Roy. Soc. Vic.*, (n.s.), xxvi. (2), pp. 331-336.
- JUTSON, J. T., 1911. A contribution to the Physiography of the Yarra River and Dandenong Creek Basins, Victoria. *Ibid.*, (n.s.), xxiii (2), pp. 469-515.
- _____, 1911 (a) The Structure and General Geology of the Warrandyte Goldfield and adjacent Country *Ibid.*, pp. 516-554
- KEBLE, R. A., 1918 The Significance of Lava Residuals in the Development of the Western Port and Port Phillip Drainage Systems *Ibid.*, (n.s.) xxxi. (1), pp 129-165
- MORRIS, M., 1914 On the Geology and Petrology of the District between Lilydale and Mt Dandenong *Ibid* (n.s.) xxvi (2), pp 331-366.
- SKEATS, E. W., 1910 The Volcanic Rocks of Victoria Pres Address Sect C, *Rept. Aust. Assoc. Adv. Sci.*, xii, Brisbane Meeting, 1909
- SUMMERS, H. S., 1923 The Geology of the Bacchus Marsh and Corinnaia District *Proc. Pan-Pac. Sci. Congr.*, (Aust.), 1923

[PROC. ROY. SOC. VICTORIA, 47 (N.S.), PT. I., 1934.]

ART. X.—*A Revision of the Nomenclature of the Permian Foraminifera of New South Wales*

By FREDERICK CHAPMAN, A.L.S., F.G.S., Prof. WALTER HOWCHIN, F.G.S., and WALTER J. PARR, F.R.M.S.

[Read 12th July, 1934, issued separately, 22nd December, 1934.]

Introduction.

So long a period has elapsed since the publication of the "Monograph of the Foraminifera of the Permocarboniferous Limestone of New South Wales" by two of the present authors (Chapman and Howchin, 1905), and such great advances in our knowledge of Upper Palaeozoic foraminifera have been made in recent years, that, as a preliminary to further work on the Permian of Australia, it has been necessary to revise the determinations given in 1905. In this revision, which we now submit, we have not attempted to add to the list of forms recorded previously, although further material from Pokolbin has been examined with the object of settling several doubtful points. Correlative notes on published occurrences elsewhere in Australia are given, and the species referred to their accepted genera.

Although in the former publication the two foraminiferal horizons dealt with were referred to as in the Permocarboniferous system, in the latest note on the subject by Professor Sir T. W. Edgworth David and Mr. Süssmilch, they are now regarded as of Permian age; the beds at Pokolbin being placed in the Lower Permian, and those at Wollong in the Middle Permian. The Pokolbin foraminiferal horizon is very closely comparable with that of Fossil Cliff, Irwin River, in Western Australia, which is also included in the Lower Permian by the authors named.

In recent publications on the Upper Palaeozoic foraminifera, many new genera have been described, and a better understanding of the structure and relationships of a number of forms has also been gained. Much work, however, yet remains to be done, particularly in regard to the character of the shell-wall of several genera, before their positions can be satisfactorily settled. As three of them, viz., *Monogenerina*, *Geinitzina*, and *Spandelina* (including its sub-genus *Spandelinoides*) appear to have been recorded under these or other generic names, from the Permian rocks of New South Wales, it is deemed advisable to make some comments on these genera before proceeding with the revision and the systematic notes on the species.

**Notes on the Genera Monogenerina, Spandelina
(including Spandelinoides) and
Geinitzina.**

Genus *Monogenerina* Spandel, 1901.

This genus was described by Spandel (1901, p. 181) from the Permocarboniferous of Hooser, Kansas, U.S.A., with two species, *M. atava*, the genotype, and *M. nodosariaeformis*, both based on sections of specimens in silicified limestone. While Spandel was uncertain as to whether the shell-wall was sandy or calcareous, he placed the genus between *Bigenicrina* and *Textularia*, and stated that the chambers and the aperture had the form characteristic of those in *Bigenicrina*. He mentions he was unable to see any pores in the shell of *M. atava*.

Cushman (1933, p. 110), in the second edition of his "Foraminifera," describes the wall as finely arenaceous, with much cement and a thin outer covering, and groups the genus with the Textulariidae. Galloway (1933, p. 168), on the contrary, states that the walls are finely fibrous or finely granular, or with fibrous inner layer and granular outer layer, not arenaceous. He includes *Spandelinoides* Cushman and Waters, in the synonymy of *Monogenerina*, which he places in the family Nodosinellidae.

Without an opportunity of examining the type species of *Monogenerina* and *Spandelinoides*, we can only base our opinion as to their relationships on published descriptions and figures, and on our knowledge of Palaeozoic faunas. It appears to us that *Monogenerina* is one of the group of *Cribrostomum* Möller, *Climacammina* Brady, *Deckerella* Cushman and Waters, and *Cribrogenerina* Schubert. The large aperture and the general form strongly suggest to us, as they did to Spandel and Cushman, a relationship with the Textulariidae. They are quite different from those of *Spandelinoides*, which we discuss later under *Spandelina*. Since we regard *Monogenerina* as having an agglutinated test, the species described by two of us as *M. pyramidalis*, from Pokolbin, New South Wales, is now transferred to *Nodosaria*, as the wall is hyaline and perforate.

**Genera *Geinitzina* and *Spandelina* (including sub-genus
Spandelinoides).**

In view of the generally accepted family relationship of *Geinitzina*, *Spandelina*, and *Spandelinoides*, it seems to be advantageous to discuss them together. We will first give the history of each, its genotype, salient characters, geological and geographical distribution, and then consider the position of the three.

Genus **Geinitzina** Spandel, 1901

This genus was originally described by Spandel (1898, p 7), as *Geinitzella* from the Zeichstein of Germany. This name was found to be preoccupied, and the genus was renamed by Spandel (1901, p 189), in his paper on the foraminifera of the Permocarbonaceous of Hoozer, Kansas, United States of America. Spandel referred two species to *Geinitzella*, *Textularia cuneiformis* T. R. Jones and *G. acuta*, sp. nov., both of which he figured.

Subsequently, *Textularia cuneiformis* Jones was designated the genotype of *Geinitzina* by Cushman. As Galloway, following Jones and H. B. Brady, considers *T. cuneiformis* to be biserial, he restricts *Geinitzina* to this and similar biserial species, and places other described species of *Geinitzina* in *Spandelia*. In doing so, he makes (*loc. cit.*) the following observations—"It is very unfortunate that Cushman designated *Textularia cuneiformis* Jones as the genotype of *Geinitzina*, thereby changing the definition of that genus from a uniserial form, as intended by Spandel, to a biserial form."

This does not necessarily follow, as the genus must rest on Spandel's type material. As Spandel described and figured both species of *Geinitzella* as uniserial, therefore *Geinitzina*, if used at all, must be restricted to uniserial forms, unless, as is exceedingly unlikely, the species he had were actually biserial.

After studying Jones's figure and description of *Textularia cuneiformis* (Jones, 1850, p 18, pl vi, fig 6), which is at best an unsatisfactory species, we consider that the form figured by Spandel under this name was wrongly identified. In our opinion, Spandel's two figures represent the one species, *G. acuta*, either the differences between the two specimens are due to dimorphism, or, what appears more probable in the light of our experience of the Australian species, *G. triangularis* Chapman and Howchin, the two specimens are both megalospheric examples of the same species, with prolocula of different sizes.

The general characters of *Geinitzina* may be described as follows.—Test free, triangular in outline, much compressed, especially along the median line; chambers uniserial, in a rectilinear series, usually arched in the early stages, becoming more or less transverse in the mature shell, aperture generally elliptical, but in *G. ciscoensis* Cushman and Waters, it may be linear, and more or less zig-zag in shape.

The nature of the shell-wall in *Geinitzina* is of major importance in determining the position of the genus. Spandel by placing *Geinitzina* in the "Nodosariidae," interpreted it to be hyaline. Cushman (1933, p 111), in his latest classification, states that it is finely arenaceous, with much cement and a thin outer layer when well preserved, and includes the genus in the

Textulariidae Galloway (1933, pp 164, 169, under *Spandelina*), describes the wall as calcareous, finely granular or fibrous, with the fibres at right angles to the surface of the test, possibly finely perforated *Spandelina* is placed by him in the Nodosinellidae

According to published records, *Gemitzina* occurs only in the Carboniferous and the Permian, and is often abundant in the latter. It has a wide geographical distribution, being known from Germany, United States of America, Australia, Japan, and Timor

Genus ***Spandelina*** Cushman and Waters, 1928

Spandelina and its sub-genus *Spandelinoides* were both originally described from the Upper Pennsylvanian-Lower Permian of Sutton County, Texas, United States of America (Cushman and Waters, 1928, pp 363 *et seq*). The genoholotype of *Spandelina* is *S. excurvata* Cushman and Waters, and the subgenoholotype of *Spandelinoides*, *S. (S.) nodosariformis*, of the same authors

Cushman (1933, p 110), describes the genus as follows — "Test uniserial, the chambers in a generally rectilinear series, the earlier ones at least compressed, especially in the microspheric form, wall calcareous, finely arenaceous, with a thin coating, aperture simple, terminal, elliptical or rounded. Without the thin outer covering, the wall of *Spandelina* appears perforate, especially when calcitized, as is common" He places it in the Textulariidae In the original description of *Spandelina* and *Spandelinoides*, the wall was stated to be calcareous and perforate

It will be noted that the above description embraces rounded as well as flattened forms, the former being placed in the sub-genus *Spandelinoides*, which is apparently an isomorph of *Nodosaria*

Galloway (1933, p 169) considers the wall of *Spandelina* to be calcareous, finely granular or fibrous, and finely perforate. As we have said under *Monogenerina*, he gives a similar description "the shell-wall of *Spandelinoides*, except that no mention of its being perforate is then made. All three are included by him in the Nodosinellidae.

We may observe that Cushman and Waters described costate, as well as smooth, species of *Spandelina* and *Spandelinoides*. Costation is of very unusual occurrence in the other genera placed by Cushman in the Textulariidae, and in those included by Galloway in the Nodosinellidae. It is generally characteristic of the hyaline forms of foraminifera

According to Cushman (1933, p. 110), *Spandelina* occurs in the Permian, and doubtfully in the Pennsylvanian, the only published records appear to be from North America

Discussion on the Relationships of *Geinitzina* and *Spandelina*.

Comparison of the generic characters of *Geinitzina* and *Spandelina* (*sensu stricto*) will show that *Spandelina* has a proportionately more elongated test than *Geinitzina*, and the majority of the chambers are slightly arched. As in *Geinitzina*, each face may have a strong median groove, or may be flat, or even slightly concave. Galloway, as we have already remarked, considers the differences between the two are so slight as to justify the use of one genus only.

In general, the forms placed in *Geinitzina*, *Spandelina*, and *Spandelinoides* remind one strongly of the Nodosariidae, *Geinitzina* and *Spandelina* of *Frondularia*, and *Spandelinoides* of *Nodosaria*. No trace of coiling has, however, been recorded in the genera under discussion. No figures of the early stages of the microspheric form of any of the species have been given. Cushman (1933, p. 11), however, states that the microspheric form of *Geinitzina* shows a trace of the biserial ancestry. Of *Spandelina*, he says (*op. cit.*, p. 110), that the microspheric form is compressed in the early chambers, but no mention of biseriality is made.

We have no personal knowledge of the type species of *Geinitzina* and *Spandelina* (including *Spandelinoides*), and are, therefore, placed at a disadvantage in considering the position of these genera. *Geinitzina* has, however, been recorded from the Permian of New South Wales by two of us (F. C. and W. H.), and there can be little doubt that the species included in the same work under the names of *Frondicularia woodwardi* Howchin, and *Nodosaria labiata* (Spandel) are of similar types of shell structure to the forms placed by Cushman and Waters in *Spandelina*.

Frondicularia woodwardi was described by Howchin (1895, p. 197, pl. x, figs. 4-6) from the "Permio-Carboniferous" of the Irwin River, in Western Australia, together with another new species, *Nodosaria irwinensis*, which closely resembles the costate forms placed in *Spandelinoides*. By the kindness of Professor E. de C. Clarke, of the University of Western Australia, we have a quantity of material from the same locality. This contains many exceptionally well preserved foraminifera, including, in addition to the species already mentioned, *Geinitzina triangularis*. As all three occur in considerable numbers, we have studied them carefully to see if they throw any light on the relationships of *Geinitzina* and *Spandelina*. Examples of each have been examined as opaque objects and in section, and the shell-wall has been studied under the petrological microscope.

In thin sections of the best preserved specimens, the wall is typically hyaline, but generally there has been an alteration in its character which, in such cases, is finely granular. This structure has been interpreted by some authors as evidence that the wall is

not hyaline, but we find exactly the same structure in some Upper Cretaceous examples of species of *Flabellina* and *Frondicularia*, from the Chalk of Gingin, Western Australia. Under crossed nicols, the delicate pinks and greens of calcite plates are visible.

The wall is closely and finely perforate, the tubules in *Geinitzina triangularis* measuring 0.0015 mm. in diameter.

Externally, the shell-wall in all three species is indistinguishable from that of fossil Nodosariidae; in *Frondicularia woodwardi* and *Geinitzina triangularis* the surface is polished.

The aperture in *Nodosaria utrenensis* is circular and terminal and situated at the base of a slight depression. It is not radiate, and is similar to that found in *Spandelinoides*. In *Frondicularia woodwardi* and *Geinitzina triangularis*, we have what does not appear to have been recorded in any other Palaeozoic foraminifera, a stellate aperture. This is weakly developed in some specimens, but, as a rule, is quite typical when the margin is regularly toothed and slightly exsert. In *G. triangularis* the aperture is elongate, and in *F. woodwardi* it is rounded. The apertural chamberlet described by Cushman (1928, pp. 22, *et seq.*) is absent from both species.

Amongst the specimens of *Geinitzina triangularis*, we were so fortunate as to find several examples of the microspheric form. These begin with a minute proloculum, measuring in the specimen figured 0.01 mm. in diameter, which is succeeded by a gently curved series of three or four chambers, gradually increasing in size. These in turn are followed by chambers similar to those seen in the megalospheric form. In no case are the chambers biserially arranged. We figure examples showing the arrangement of the chambers in Forms A and B.

In view of the above evidence, it appears to us that all three species were correctly placed in the genera under which they were described. *Frondicularia woodwardi* is typical of the genus. Except for the radiate aperture, *Geinitzina triangularis*, in its megalospheric form, is similar in generic characters to the species placed by Spandl in *Geinitzina*. The stellate aperture is, in our opinion, merely a development from the simple oval orifice of *G. acuta* (Spandl), an intermediate stage in its evolution being represented by the zig-zag slit seen in *G. viscoensis* Cushman and Waters. Similarly, we believe that *Nodosaria utrenensis* is, despite the absence of a radiate aperture, a true nodosarian.

It will be observed that, except for the rare microspheric examples of *Geinitzina triangularis*, our three species are rectilinear forms. Cushman and Waters had a similar association of such forms in their material from Sutton County. There can, therefore, be little doubt, as we have already suggested, that our species belong to the same genera as theirs. What, then, is the position of *Geinitzina* and *Spandelinoides*? Are they true Nodosariidae, and if not, what are their relationships?

The hyaline test, radiate aperture, and evidence of coiling in the microospheric form, of *Gemitzina triangularis*, point to an affinity with the Nodosariidae, in which family Spandel placed the genus.

Spandelina was grouped by Cushman and Waters with the Textulariidae because of the compression of the early stages in the microospheric form, and of the absence of evidence of any of the species having a coiled young stage. To understand the position of *Spandelina*, it is necessary to remember that, in the two latest

Gemitzina triangularis Chapin and Howch

- 1-3. Outlines of Form A, showing simple test and megasphere $\times 33$
 4. Outline of Form B (microospheric), showing ancestral openly coiled commencement. $\times 33$
 4a. Early stage of same, more highly magnified. $\times 66$
 5. Aperture of *G. triangularis*. $\times 33$.
 5a. Ditto, more highly magnified. $\times 44$.

classifications of the foraminifera, those by Cushman (1933), and Galloway (1933), the primitive Nodosariidae are stated to be coiled forms. Galloway (1933, p 232) says, "Lenticulina is the most primitive member of the family, from which, directly or indirectly, all the other genera of the family were derived." Cushman (1933, p 175) is not so definite, but, after referring to *Robulus*, *Darbyella*, and *Planularia*, he goes on to remark, "From

these coiled forms there are several different genera developed." Of these later genera, we need mention only *Flabellina*, *Frondicularia*, *Dentalina*, *Nodosaria*, and *Lingulina*.

When the early geological history of the Nodosariidae is studied, we find in the Trias and Jurassic, an abundance of straight, curved, and partially uncoiled forms, many of which are ornamented with costae, while the closely coiled ones are fewer and of simple types of structure. This is particularly apparent in Terquem's memoirs on the foraminifera of the Lias (Terquem, 1858-1866). In the Permian, most of the species are rectilinear, with a few dentaline ones, but closely coiled forms have not been recorded from rocks of this epoch. The straight forms have been described under the generic names of *Frondicularia*, *Nodosaria*, *Spandelia*, *Spandelinoides*, *Gemitzina*, *Lingulina*, and *Orthocerina*. The predominance of such forms and the absence of closely coiled ones from known Permian faunas have undoubtedly contributed to the present understanding that these genera are not true Nodosariidae.

Brady (1876) and Spandel (1898) have figured dentaline forms from the Permian of Europe, and one of the present authors (W J P) has recently met with both smooth and costate *Dentalinæ*, of primitive types, in the Permian of Western Australia. We may also refer to the record of a curved nodosarian under the name of *Nodosaria (Dentalina) farumen*, from the Carboniferous Limestone of England (Howchin, 1888, p 11, pl ix, fig 21a, b). Except in the last-mentioned case, the dentaline forms occur together with the straight forms. As we now find the microspheric stage of *Gemitzina triangularis* to begin with a gently curved series of chambers, it seems that the straight forms were derived from curved forms. It is also suggested that all are species of the Nodosariidae, and that this family evolved, not from a closely coiled ancestor, but from a curved or openly coiled one. The closely coiled genera such as *Lenticulina* and *Robulus* are probably not primitive types, as has been thought, but a specialized development from an openly coiled one.

Since writing the above, we have received from Dr J Hofker a copy of his work on the foraminifera collected by Dr Th Mortensen during the Danish Expedition to the Kei Islands in 1922 (Hofker, 1933). On page 117 of this, we were much interested to read, in his notes on *Cristellaria costata* (Fichtel and Moll), the following "The first chambers of the microspheric shells show the peculiarity of being arranged in a very slowly coiling spiral, not only in this species, but also in other ones of the genus *Cristellaria*. This characteristic points to the possibility that this genus might descend from a form closely related to *Nodosaria* or something like that (*Marginulina*?). This would be in agreement with the fact that such genera are geologically older than *Cristellaria*".

It appears to us, therefore, that *Spandelina* is one of the genera of the Nodosariidae, and that the flattened forms placed in it by authors are true *Frondiculariae*. Similarly we consider that the sub-genus *Spandelinoides* is inseparable from *Nodosaria*. We retain *Geinitzina* for the short forms of Frondicularian type with a slit-like aperture, for purposes of taxonomy, but it is clear from our Western Australian material that, in regard to any points of distinction between the original conception of *Geinitzina* and *Frondicularia*, the characters of transverse septation and median surface depression are not constant even in the one species, for different parts of the same test will show *Geinitzina*, *Geinitzina-Frondicularia* and *Frondicularia* phases. This variability is, as is well known, a special feature of the Nodosariidae, and has been responsible for much of the difficulty experienced by authors in satisfactorily separating the genera of the family.

Revised Names of Foraminifera recorded in "A Monograph of the Permocarboniferous Limestones of New South Wales." (Chapman & Howchin, 1905.)

FORMER NAME	REVISED NAME
<i>Nubecularia stepheni</i> Howchin, p. 5, pl. 1, figs 1, 2, pl. iii, figs 13, 14, pl. iv, figs 1, 4.	<i>Calcarinella stepheni</i> (Howchin)
<i>Pelosina hemisphaerica</i> Chapman & Howchin, p. 6, pl. ii, figs 2a, b	<i>Pelosina hemisphaerica</i> Chapman & Howchin
<i>Hyperammina vagans</i> Brady, p. 6, pl. ii, fig 1	<i>Tolyphammina vagans</i> (Brady)
<i>Haplophragmium agglutinans</i> (d'Orb.) p. 7, pl. i, fig 5	<i>Ammobaculites</i> sp.
<i>Haplophragmium emarginatum</i> Brady, p. 7, pl. i, figs. 10a, b	<i>Haplophragmoides neocomianus</i> (Chapman).
<i>Haplophragmium pokolbiense</i> Chapman & Howchin, p. 7, pl. i, fig 6	<i>Ammodiscus millethianus</i> Chapman
<i>Haplophragmium</i> cf. <i>tenuimargo</i> Brady, p. 8, pl. i, fig 11.	<i>Ammobaculites</i> ? <i>pseudospiralis</i> (Williamson) ?
<i>Placopslina tenuitesta</i> Chapman & Howchin, p. 8, pl. iii, fig 9	<i>Placopslina tenuitesta</i> Chapman & Howchin
<i>Lituola cristellaroides</i> Chapman & Howchin, p. 9, pl. i, figs 3, 4.	Not a foraminifer
<i>Lituola</i> cf. <i>rhaetica</i> (Chapman), p. 9, pl. i, fig 7, pl. iii, fig. 7.	<i>Ruditaxis</i> sp. cf <i>rhaetica</i> (Chapman).
<i>Thurammina papillata</i> Brady, p. 9, pl. ii, fig 13.	<i>Thurammina papillata</i> Brady.
<i>Ammodiscus incertus</i> (d'Orb.), p. 10, pl. ii, fig. 3	Specimens not available for revision.
<i>Ammodiscus millettianus</i> Chapman, p. 10, pl. ii, fig 3	<i>Ammodiscus millettianus</i> Chapman
<i>Ammodiscus anceps</i> (Brady), p. 11, pl. iii, fig 1	<i>Trochamminoides anceps</i> (Brady)
<i>Ammodiscus</i> ? sp., p. 11, pl. i, figs. 12a-c.	<i>Aminodiscus ovalis</i> Chapman
<i>Stacheia simulans</i> Chapman & Howchin, p. 11, pl. ii, fig 4.	Not a foraminifer.
<i>Endothyra bowmani</i> Phillips, p. 12, pl. i., figs. 13a-c	<i>Endothyra</i> cf. <i>bowmani</i> Phillips.

<i>Endothyia macella</i> Brady, p 12	<i>Endothyia macella</i> Brady
<i>Monoquaterna pyramidis</i> Chapman & Howchin, p 13, pl ii, fig 5	<i>Nodosaria pyramidis</i> (Chapman & Howchin)
<i>Jalvulina bulloides</i> Brady, p 13, pl i, figs 9a-c	<i>Globivalvulina bulloides</i> (Brady)
<i>Bulimina affinis</i> d'Orb, p 14, pl ii, fig 7	<i>Lingulina davidi</i> , sp nov
<i>Pleuroxostomella ? antiqua</i> Chapman & Howchin, p. 14, pl ii, fig 5	<i>Nodosaria ? antiqua</i> (Chapman & Howchin)
<i>Lagena acuta</i> (Reuss), p 14, pl iii, fig 10	Not a foraminifer (Zooecium of polyzoan)
<i>Nodosaria permiana</i> (Spandel), p 15, pl ii, fig 6	<i>Nodosaria permiana</i> (Spandel).
<i>Nodosaria</i> (<i>Dentalina</i>) cf <i>sarcinum</i> (Reuss), p 15, pl ii, fig 11	Foraminifer, gen et sp indet.
<i>Nodosaria</i> (<i>Dentalina</i>) ? <i>bradyi</i> (Spandel), p 15, pl ii, fig 12	<i>Dentalina bradyi</i> Spandel
<i>Nodosaria</i> (<i>Dentalina</i>) <i>labiata</i> (Spandel), p 16, pl iii, fig 4	<i>Nodosaria irwinensis</i> Howchin
<i>Fundularia woodwardi</i> Howchin, p 16, pl iii, fig 2	<i>Prondicularia woodwardi</i> Howchin
<i>Genitina triangularis</i> Chapman & Howchin, p 16, pl ii, figs 9 a, b, 10	<i>Genitina triangularis</i> Chapman & Howchin
<i>Genitina postcarbonica</i> Spandel, p 17, pl iv, fig 3	Fig 6, <i>Dentalina</i> sp
<i>Lunularia</i> cf <i>permiana</i> Spandel, p 17, pl iii, figs, 6, 12	Fig 12, Gen et sp indet
<i>Marginulina</i> cf <i>brevoni</i> (Terquem), p 17, pl iii, fig 11	<i>Dentalina</i> ? sp indet.
<i>Vaginulina</i> cf <i>legumen</i> (Linné), p 18, pl iii, fig 8	<i>Prondicularia</i> ? sp indet
<i>Anomalina supracarbonica</i> Chapman & Howchin, p 18, pl i, figs 8a-c	Specimen lost before revision undertaken
<i>Truncatulina haidingeri</i> (d'Orb), p 18, pl iii, figs 3a-c	<i>Ammodiscus planoconvexa</i> , sp. nov

Systematic Notes on the Species.

Family NODOSARIIDAE

Genus **Dentalina** d'Orbigny, 1826

DENTALINA BRADYI Spandel

Dentalina bradyi Spandel, 1901, p. 16, text-fig 9

Nodosaria (*Dentalina*) *bradyi* (Spandel) ?; Chapman & Howchin, 1905, p 15, pl ii, fig 12

No further examples of this species have been met with.

Genus **Nodosaria** Lamarck, 1812

NODOSARIA IRWINENSIS Howchin

Nodosaria irwinensis Howchin, 1895, p 196, pl x, figs. 7, 8

Nodosaria (*Dentalina*) *labiata* Chapman & Howchin, (non *Dentalina labiata* Spandel), 1905, p 16, pl iii., fig 4

The only example available for the present revision is that figured from Pokolbin. This is now found to be very finely costate, and is identical with the species described by one of us

(W.H.) under the name of *Nodosaria muenensis*, from the Permian of the Irwin River, in Western Australia. The same form is very common in beds of similar age in the Wooramel River district, also in that State. While generally perfectly straight, in a large series of specimens dentaline examples are usually met with. The aperture of *N. muenensis* is circular, and situated at the base of a slight depression. Spandl's *Nodosaria striato-clavata*, from the Zechstein of Germany, is related to the present form.

Nodosaria pyramidis (Chapman and Howchin)

Monogenerina pyramidis Chapman & Howchin, 1905, p. 13, pl. III,
fig. 5

For reasons which are given earlier in our notes on *Monogenerina*, we now transfer this species to the genus *Nodosaria*. It is known only from thin sections, no free examples having been met with.

Nodosaria (?) antiqua (Chapman and Howchin)

Pleurostomella (?) antiqua Chapman & Howchin, 1905, p. 14, pl. II,
fig. 5

The present species was originally referred, with some slight reservation, to the genus *Pleurostomella*, to which it is now clear it certainly does not belong. The generic position of this form, which is represented by a unique example is, however, still doubtful. The first three or four chambers of the type specimen are laterally compressed; the next is circular in section, while the remaining chambers are flattened in a plane at right angles to that of the early portion of the test. The shell appears to have been crushed, and the apertural end has been broken away. The affinities of the species appear to lie with *Nodosaria*, to which genus, in the absence of better material, we doubtfully refer it.

Genus *Lingulina* d'Orbigny, 1826

LINGULINA DAVIDI, sp. nov.

Bulinina affinis Chapman & Howchin (non d'Orbigny), 1905,
p. 14, pl. II, fig. 7

Description. Test rectilinear, sub-pyriform, slightly compressed, initial end acute, apertural end bluntly pointed, beginning with a small globular proloculum, followed by four or five chambers which increase rapidly in size as added, sutures distinct, slightly depressed in the later part of the shell; wall calcareous, perforate, aperture radiate.

Length of holotype (in collection of Department of Mines, Sydney) 0.62 mm., longest diameter, 0.34 mm., shortest diameter, 0.26 mm., from Permian of Wollong, New South Wales.

Remarks.—This species is apparently the same as that previously recorded under the name of *Bulinina affinis* d'Orbigny. The specimen then figured has unfortunately been lost during the

revision, and before it was thoroughly examined. The present specimen is a finer example which we have since picked out of the same sample, and we have no doubt it is the same species. The genus *Lingulina* has previously been recorded by Spandel from the Permian (Zechstein) of Germany.

We desire to associate the name of the late Professor Sir T. W. Edgeworth David, F.R.S., with this new form.*

Genus **Ammodiscus** Reuss, 1861

AMMODISCUS OVALIS Chapman

Ammodiscus ? sp Chapman & Howchin, 1905, p 11, pl 1, figs. 12 a-c

Ammodiscus ovalis Chapman, 1913, p 170, pl xvi, figs 5 a, b

This species was originally doubtfully referred to the genus *Ammodiscus*, but we have obtained some additional examples which confirm its identification by one of us (F.C.) with *A. ovalis*, described later by him from the Kalimnan (Lower Pliocene) of the Mallee Bores.

AMMODISCUS PLANOCOVAEXA, sp nov

Truncatulina haidingeri Chapman & Howchin, (non *Rotalina haidingeri* d'Orb.), 1905, p 18, pl iii, figs 3 a-c

Description.—Test planoconvex, periphery sub-acute, proloculum large, tubular chamber increasing rather quickly in diameter, forming two to two and a half coils, obliquely flattened in section and on the convex side of the test overlapping the earlier coils, suture on flat side depressed, wall comparatively thick, composed of small sand grains, firmly cemented, surface not smoothly finished, aperture oblique, formed by the end of the tubular chamber.

Diameter, 0.77 mm, thickness, 0.25 mm

Holotype (Collection of Department of Mines, Sydney), from Pokolbin, New South Wales.

Remarks.—This is a very interesting well-defined species which connects *Ammodiscus* with *Trochammina*, having the form of the latter, but with the undivided tube of *Ammodiscus*. The figured specimen is the only one that has been found.

Genus **Tolypammina** Rhumbler 1895

TOLYPAMMINA VAGANS (Brady)

Hyperammina vagans Brady, 1879, p 33, pl v, fig 3 Chapman & Howchin, 1905, p 6, pl. ii, fig 1.

This species has not so far been met with elsewhere as a fossil in Australia. It has a long geological history, beginning at least as far back as the Carboniferous. The specimen figured from

* It is with deep regret that we record the decease of Sir Edgeworth, while this paper, in which he took a keen interest, was passing through the press.

Wollong resembles *T. confusa*, described by Galloway and Harlton (1928, p 344, pl xlvi, fig 5), as *Ammoventella*? *confusa* from the Middle Pennsylvanian of Oklahoma, United States of America.

Genus **Calcitornella** Cushman and Waters, 1928

CALCITORNELLA STEPHENSI (Howchin)

Cornuspira, sp nov Jones, 1882, p 6
Nubcularia lucifuga Defrance var *stephensi* Howchin, 1894, p 345, pl xa, xia
N. stephensi Howchin Chapman & Howchin, 1905, p 5, pl 1, figs 1, 2, pl iii, figs 13, 14, pl iv, figs 1, 4 Etheridge, jnr, 1907, p 13, pl xi, fig 11

This species belongs to the genus *Calcitornella*, described in 1928 by Cushman and Waters from the Pennsylvanian and Permian of the United States of America. The only occurrences of the genus outside America with which we are acquainted are those given above, and it is of much interest to note that this generic type was met with by Professor Rupert Jones as long ago as 1882, when he recorded it from the Piper River beds in Tasmania as "a contorted porcellaneous foramunifer (new species of *Cornuspira*)". *C. stephensi* is now known to occur in the Permian of New South Wales, Tasmania, Western Australia, and Northern Territory.

Genus **Trochamminoides** Cushman, 1910

TROCHAMMINOIDES ANCEPS (Brady)

Trochammina anceps Brady, 1876, p 76, pl iii, figs 8 a, b.
Ammodiscus anceps (Brady) Chapman & Howchin, 1905, p 11, pl iii, fig 1.

Brady's description of this species indicates that it is referable to the genus *Trochamminoides*, the tubular chamber being merely constricted, and not truly septate. The example figured from Pokolbin is the only one available, it is very typical.

Genus **Haplophragmoides** Cushman, 1910

HAPIOPHRAGMOIDES NEOCOMIANUS (Chapman)

Haplophragmium neocomianum Chapman, 1894, p 695, pl xxxiv, figs 2 a, b.
Haplophragmium emaciatum Chapman & Howchin, (non H B Brady), 1905, p 7, pl i, figs 10 a, b.

The specimens formerly recorded under the name of *Haplophragmium emaciatum* Brady, from Wollong, are thin and almost complanate, and are now referred to the present species, which they closely resemble. This was described from the Bargate Beds of Surrey, England.

Genus **Ammobaculites** Cushman, 1910

AMMOBACULITES sp

Haplophragmium agglutinans Chapman & Howchin (non *Spirolina agglutinans* d'Orbigny), 1905, p 7, pl 1, fig 5

This species is represented by a single example, which, while referable to the genus *Ammobaculites*, differs from *A. agglutinans* in having a broader, less regular test, of quite different form. In the absence of better defined material, we hesitate to attach a name to it.

AMMOBACULITES ? PSEUDOSPIRALIS (Williamson) ?

Haplophragmium cf tenuimargo Chapman & Howchin (non Brady), 1905, p 8, pl 1, fig 11

Only one example of this form is available, and a section is necessary to determine its generic position, hence we doubtfully refer it to the above genus and species, which it resembles more than *A. tenuimargo*.

Genus **Ruditaxis** Schubert, 1920

RUDITAXIS sp cf RHAETICA (Chapman)

Lituola cf rhactica Chapman Chapman & Howchin, 1905, p 9, pl 1, fig 7, pl III, fig 7

The present specimens are referable to Schubert's genus *Ruditaxis*. The range of this is given by Cushman in his latest classification as from Carboniferous to Permian, but it apparently extends into the Triassic, as *Lituola rhactica* Chapman, from the Rhaetic of England, belongs to this genus.

Genus **Globivalvulina** Schubert, 1920

GLOBIVALVULINA BULLOIDES (Brady)

Valvulina bulloides Brady, 1876, p 89, pl IV, figs 12-15 Chapman & Howchin, 1905, p 13, pl 1, figs 9 a-c

The only example is from Wollong, but is typical. The known range of this genus is Carboniferous to Permian.

References.

- BRADY, H. B., 1876, A Monograph of Carboniferous and Permian Foraminifera (the genus *Fusulina* excepted) *Palaeontogr Soc*, xxx, pp 1-166, pls I-xii
 —, 1879 Notes on some of the Reticularian Rhizopoda of the "Challenger" Expedition *Quart Journ Micr Sci* (London), xix, pp 20-63, pls III-v
 CHAPMAN, F., 1894 The Bargate beds of Surrey and their Microscopic Contents *Quart Journ Geol Soc*, 1, pp 677-730, pls XXXIII, XXXIV
 —, 1913 Descriptions of New and Rare Fossils obtained by Deep Boring in the Mallee Part 1, Plantae, and Rhizopoda to Brachiopoda *Proc Roy Soc Vict* xxvi (n.s.) (1), pp 165-191, pls XVI-XIX

- CHAPMAN, F., & HOWCHIN, W., 1905 A Monograph of the Foraminifera of the Permocarboniferous Limestone of New South Wales
Mem Geol Surv NSW Pal No 14, pp 1-22, pls 1-iv
- CUSHMAN, J. A., 1928 Apertural Characters in the Lagenidae *Contr Cushman Lab Foram Reseach*, iv (1), pp 22-25, pl iii
- _____, 1933 Foraminifera Their Classification and Economic Use Second Edition *Cushman Lab Foram Res Spl Publ* No 4
- _____, & WATERS, J. A., 1928 Upper Palaeozoic Foraminifera from Sutton County, Texas *Journ Pal*, ii, No 4, pp. 358-371, pls xlvi-xlix
- ETHERIDGE, R., JUNR., 1907 Official Contributions to the Palaeontology of South Australia *Supplement to Fauny Paper* No 55 of 1906, pp 1-21, pls i-xii (foraminifera on p 13 and pl xii)
- GALLOWAY, J. J., 1933 A Manual of Foraminifera Principia Press, Bloomington, U.S.A.
- _____, & HARTON, B. H., 1928 Some Pennsylvanian Foraminifera of Oklahoma, with Special Reference to the Genus Orobias *Journ Pal*, ii, pp 338-357, pls xlvi, xlvi
- HOFKER, J., 1933 Papers from Dr Th Mortensen's Pacific Expedition 1914-16, lxii Foraminifera of the Malay Archipelago, *Vidensk Medd fra Dansk naturh Foren*, xciii, 1932-3, pp 71-167, pls i-vi
- HOWCHIN, W., 1888 Additions to the Knowledge of the Carboniferous Foraminifera *Journ Roy Microsc Soc*, 1888, pp 533-545, pls viii-ix
- _____, 1894 On the Occurrence of Foraminifera in the Permocarboniferous Rocks of Tasmania *Rept Aust Assoc Adv Sci. Adelaide Meeting* (1893), pp 344-348, pls x, xi
- _____, 1895 Carboniferous Foraminifera of Western Australia *Trans Roy Soc S Aust*, xix, pp 194-198, pl x
- JONES, T. R., 1850 In W King A Monograph of the Permian Fossils of England *Mon Pal Soc*, vol iii, pp 15-20, pl vi, figs 1-9
- _____, 1882 Catalogue of the Fossil Foraminifera in the British Museum (Natural History) London, 1882, 100 pp
- SPANDEL, E., 1898 Die Foraminiferen des deutschen Zechsteines *Verl Inst, General Anzeiger, Nurnberg*, 1898, pp 1-15, 11 text-figs
- _____, 1901 Die Foraminiferen des Permo-Carbon von Hooser, Kansas, Nord Amerika *Festschr nat Ges Nurnberg*, 1901, pp 175-194, 10 text-figs
- TERQUEM, O., 1858-1866 Recherches sur les Foraminifères du Lias Series of Six Memoirs, in *Mém Acad Imp Metz*, 1858-1866, with 22 plates

[PROC ROY SOC VICTORIA, 47 (N S), PT I, 1934]

ART XI—*New Species of a Crinoid (Lecanocrinus) and a Cephalopod (Ophidioceras), from the Silurian of Yass*

By F CHAPMAN, A L S , F G S

(Commonwealth Palaeontologist)

(With Plate X)

[Read 12th July, 1934, issued separately, 22nd December, 1934]

Introduction.

The crinoid here described as *Lecanocrinus breviarticulatus* was presented many years ago to the National Museum by Mr A J Shearsby of Yass, who from time to time added many interesting and unique specimens to the Collections

It was held over in the hope of discovering further specimens, but up to the present it remains unique It is the first occurrence of the genus in Australia

The Cephalopod *Ophidioceras giblini* has also the distinction of being the first occurrence of that genus in Australia Although partially preserved as a cast, some of the fine ornament of the shell is still visible, enabling a more precise diagnosis to be given than from a mere cast and mould Professor Giblin has presented this and another unique Silurian specimen to the Commonwealth Collection

Class CRINOIDEA

ORDER FLEXIBILIA

Fam LECANOCRINIDAE

Genus **Lecanocrinus** J Hall

LECANOCRINUS BREVIARTICULATUS, sp nov

(Pl X, Figs 1-6)

Description of Holotype—Crown broadly ficiform in outline, but somewhat compressed, due to inclusion in shaly limestone, Height, 34 mm , greatest width, 31.5 mm Dorsal cup showing vestiges of two infrabasals, a basal (cf postbasal), a radial (1st left R), an upper plate, and the centrodorsal or summit stem-joint, which is much thicker and wider than the adjacent columnals

The infrabasals are moderately small and unequal, the postbasal(?) fairly large, apparently pentagonal, but not clearly defined on all margins, radials large, pentagonal, and more or less shield-shaped, faceted above and steeply sloping inwards, bearing broad low axillaries which are medially grooved on the ventral side, and visible where worn down Radianal hexagonal, apparently resting on the right upper truncated side of the postbasal, and between the left and right radials. Special anal slightly

larger than the radial and subrectangular, resting on the postbasal, and supported between the right (?) basal and the right postradial.

Arms dichotomous, twice branched, pinnules simple. Biachials low and numerous, sutures crenulate, the lower having on the inferior surface toothed projections which fit into corresponding sockets in the adjacent ossicles. Primibrachs 2, wide and low, secundibrachs about 6, gradually decreasing in height, distally, and one-half the width of the primibrachs. Arms spirally inrolled at the distal ends, around the summit of the crown. Summit of tegmen visible, showing a pentagonal (?) madreporite with a distinctly perforated area, and connected with what is apparently a portion of the ventral tube.

Columns (preserved as hollow mould) roundly cylindrical, rather wide, average diameter about 5 mm., strongly curved, especially near the junction with the cup, 35 mm. in length, so far as preserved, the distal extremity missing. Stem-joints, as shown by a wax impression, very low, alternating, discoidal and flanged, with a minutely tuberculate surface. The proximal joints are thinner, and consequently more numerous. This character, by the way, appears to be more typical in the taxocrinids.

Observations.—This specimen, although not so perfectly preserved as could be desired, shows a definite relationship with the genus *Lecanocrinus*, and may be compared in general features with *L. billingsi* Angelin, which occurs in the Silurian of Gotland (Angelin, 1878, p. 12, pl. xxii, figs. 25, 25a). It has a considerably larger crown than Angelin's species, more numerous lower arm-ossicles, and more distinctly granulated columnar joints.

Another genus which at first sight bears resemblance to the present specimen is *Ichthyocrinus pyriformis* (Phillips) from the Wenlock Series of Dudley and Kendal (*Cyathocrinites pyriformis* Phillips, 1839, p. 672, pl. xvii, fig. 6, and Angelin, 1878, p. 13, pl. xvii, fig. 6).

The presence of a radial and special anal plate in our fossil shows, however, that it cannot be referred to that genus. The tegmenal portion of the crown seems to have been previously unobserved in *Lecanocrinus*, and the same may be said for *Ichthyocrinus* (Wachsmith and Springer, 1869, p. 256). Another feature in favour of placing our crinoid with *Lecanocrinus* is the regular size of the columnars throughout. From *Euspirocrinus*, which also has simple, dichotomous and inrolled arms, the present example differs in the heavily plated calyx, the narrower primibrachs, and the distinctly regular columnar joints.

Horizon and Locality.—Silurian Hatton's Corner, Yass, New South Wales. Collected by Mr A. S. Shearsby, F.R.M.S., and presented to the National Museum. Reg. No. 13897.

Class CEPHALOPODA

Order NAUTILOIDEA

Family OPHIDIOCERATIDAE

Genus **Ophidioceras** Barrande*Ophidioceras giblini*, sp nov

(Pl X, Fig 7)

Description.—Shell discoidal, in all but the last stage closely coiled, centrally depressed, consisting of 5 whorls of which the last fifth of the outer whorl is free and reverted. Whorls slightly compressed at sides. Dorsum in region of body chamber compressed and widely concave, the surface transversely conspicuously grooved and crossed by threadlike longitudinal striae. Aperture broadly Y-shaped, the ventral lobe being longer than the others. The lateral lobes are prominent and thickly bordered. Whorls costae, the ribs sub-acute to sharp, closely arranged in the early stages, more widely spaced and prominent in the last two whorls, the outer whorl bearing 28 costae. The shell surface is transversely striated, the striae (10 in intercostal area) reverted obliquely across the costae on the ventral and dorsal.

Dimensions.—Greatest diameter of shell, from the ventral tip to opposite side of the 5th whorl, 56 mm. Diameter of shell across 4th whorl, 38 mm. Approximate thickness of shell on the 4th whorl, 7 mm; ditto at aperture, 12 mm.

Observations.—This is the first recorded occurrence of the genus *Ophidioceras* in Australia. Although the fossil is preserved in a hard, reddish-brown mudstone, it is not merely a cast, for it shows the delicate ornament of the shell-wall as well as the original costation. The fossil therefore represents a partial replacement of the test.

At first sight *Ophidioceras giblini* might be confused with the shell figured by Etheridge, jun., from the same locality, named *Cyclolitites bowningensis* (Etheridge, jun., 1904, p 75, pl viii), but that the latter, besides having other characters which makes it generically distinct, shows about 36 costae on the strongly depressed whorls. In *C. bowningensis*, moreover, the whorls are closely wound, and strongly impressed against one another, whilst the hyponomic lobe is V-shaped rather than U-shaped as in *Ophidioceras giblini*. The close coiling of the shell in *Cyclolitites* as distinct from the free and reverted termination of *Ophidioceras*, is a generic difference.

There are apparently no very close affinities between *O. giblini* and the species of *Ophidioceras* previously described from England or Bohemia, to which countries the genus has hitherto been restricted.

Lecanocrinus and Ophidiooceras Silurian, Yass, N S W
[Page 193]

Ophidioceras articulatum (Sow.) occurs in the Wenlock shales of Dudley and Ludlow (*Lituites articulatus* J. de C. Sowerby, 1839, p. 622, pl. xi, fig. 5, non fig. 7). It is a small form never more than $1\frac{1}{2}$ inches in diameter, having, however, the same number of annulations to the whorl, from 26 to 28 as compared with 28 in *O. giblini*. *O. articulatum* differs from the present species in having comparatively straight costae on the lateral surface, whereas in *O. giblini* they are strongly recurved, especially in the earlier whorls. The distinct tessellation of the surface in *O. giblini*, which is especially well seen on the earlier whorls, is apparently absent in *O. articulatum*.

The species *Ophidioceras tessellatum* Barrande, occurring in the Silurian (Salopian) of Bohemia (Barrande, 1867, p. 186, pl. xcvi, figs. 13, 14, 16, 17, pars, and 19) resembles the present form in its fine surface ornament, but it is smooth, and has fewer whorls, with only slightly curved costae.

Ophidioceras rudens Barrande has narrower whorls, and is more closely ribbed (ibid., pl. xlvi, figs. 13, 14, 16, 17, pars, and 21).

This unique fossil (holotype) is named in honour of Professor L. F. Giblin, D.Sc., M.C., M.A., who presented it to the Commonwealth Palaeontological Collection (Reg. No. 63). It was discovered by Master Ian Filshie.

Horizon and Locality—Silurian (Bowning Series) Hatton's Corner, near Yass, New South Wales

References.

- ANGELIN, N. P., 1878 *Iconographia Crinoideorum in stratis Sueciae Siluricus fossilium*
 BARRANDE, J., 1867 *Système Silurien de la Bohême*, vol. II, *Céphalopodes*, pt. I
 ETHURINGER, R., Jun., 1904 On the occurrence of a Lituitean in the Upper Silurian Rocks of Bowning, New South Wales *Rec. of the Aust. Mus.*, vol. v, No. 2, pp. 75-77, pl. viii
 FOORD, A. H., 1891 Catalogue of the Fossil Cephalopoda in the British Museum (Nat. Hist.), pt. II
 PHILLIPS, J., 1839, in Murchison's Silurian System, pt. II
 SOWERBY, J. de C., 1839, in Murchison, *ibid.*, pt. II
 MURCHISON, C., and SPRINGER, F., 1879-86 Revision of the Palaeocrinoidea, pts. I-III *Proc. Acad. Nat. Sci.*, Philad.

Explanation of Plate X.

- Fig. 1 *Leptoceras bicanaliculatum*, sp. nov. Nearly complete crown with arms and mould of stem Holotype Silurian. Hatton's Corner, Yass, N.S. Wales Nat. size
- Fig. 2 Ditto, with plan of preserved plates Nat. size
- Fig. 3 Ditto Portion of arm in ventral aspect with interlocked brachials $\times 3$
- Fig. 4 Ditto Four brachials, more highly magnified $\times 5$
- Fig. 5 Ditto Proximal columnars showing low platy character $\times 3$
- Fig. 6 Ditto Columnars of distal part of stem, with tuberculate surface $\times 5$
- Fig. 7 *Ophidioceras giblini*, sp. nov. Holotype Silurian Hatton's Corner, Yass, N.S. Wales Nat. size

[PROC ROY SOC VICTORIA, 47 (NS), PT I, 1934]

ART XII—*The Palaeozoic Brittle-Stars of Victoria*

By ROBERT B. WITHERS, B.Sc., Dip. Ed.,

and R. A. KEEBLE, F.G.S.

(Palaeontologist, National Museum, Melbourne)

(With Plate XI)

[Read 12th July, 1934, issued separately, 22nd December, 1934]

This paper completes the work of the authors on the Palaeozoic Stelleroidea, the results of their studies of the Asteroidea having been published in an earlier volume of these Proceedings (Withers and Keble, 1934).

The known Victorian Palaeozoic brittle stars before this work was undertaken numbered only four, namely.—

Species	Reference
<i>Protaster brisingoides</i> Gregory	Gregory, 1889
<i>Gregoriura spryi</i> Chapman	Chapman, 1907 (1)
<i>Sturtzia leptosomoides</i> Chapman	Ibid
<i>Palaeocoma</i> sp	Chapman, 1913

The faunal list now comprises thirteen species. Seven of these are entirely new, and two are species which have not hitherto been recognized in Victoria. The remaining four are those previously described or recorded by Gregory and Chapman, but the nomenclature of these forms has been subject to revision. The complete faunal list is now as follows—

FORM	HORIZON	LOCALITY	PAGE
cf <i>Aganaster gregarius</i> (Meek and Worthen)	Carboniferous	Mansfield	207
<i>Crepidosoma kinglakensis</i> , sp nov.	Silurian .	Kinglake West	200
<i>Eospondylus tenuis</i> , sp nov	Silurian (Yarravrian)	Moonee Ponds	206
<i>Furcaster bakeri</i> , sp nov	Silurian (Yarravrian)	Studley Park	204
<i>F. kilmorensis</i> , sp nov	Silurian	Kilmore .	205
<i>F. leptosomoides</i> (Chapman) .	Silurian (Yarravrian)	Moonee Ponds	206
<i>Gregoriura spryi</i> , Chapman	Silurian (Yarravrian)	South Yarra	197
<i>Hallaster parvus</i> , sp nov .	Silurian	Blue Hills, Taggerty	203
<i>Lapworthura miltoni</i> (Salter)	Silurian (including Yarravrian)	Moonee Ponds, and Kinglake West	201
<i>L. pulcherrima</i> , sp nov	Silurian (Yarravrian)	West Bruns-wick	201
<i>Sturtzaster aff mitchelli</i> , Etheridge ,	Silurian (Yarravrian)	Moonee Ponds, and Melbourne (excavations)	202
<i>Sturtzia brisingoides</i> (Gregory)	Silurian (Yarravrian and Yeringian)	Moonee Ponds, and Parish of Yering	198
<i>Taeniaster yeringae</i> , sp nov . .	Silurian (Yeringian)	Parish of Yering	199

All the above species are classed in Schondorf's group the Auluroidea, true Ophiuroidea of Palaeozoic age being rare here as elsewhere. As with the Asteroidea, Victoria is practically the only Australian locality for Palaeozoic Brittle Stars. *Sturtzaster* (?) *mitchelli* Eth fil (Etheridge, 1899) from the Silurian beds of Bowning, New South Wales, is the only exception.

The best preservation of these forms is found in sandstone, though the cast has a negative character. Several are preserved in mudstone, and one in limestone. In some cases the ossicles are represented by films of limonite on the rock. This is the case with the type of *Gregoriura spryi* Chapman, and makes the interpretation of structure a difficult matter. The material was again obtained chiefly from the National Museum, Melbourne, and the Museum of the Geology School, Melbourne University.

We are indebted to Dr E S Hills for the loan of specimens of *Hallaster parvus*, sp nov., from the Silurian of Blue Hills, Taggerty, and to Miss Irene Crespin and Mr F Chapman for generously placing at our disposal the only Carboniferous species recorded, cf *Aganaster gregarius* (Meek and Worthen), from Mansfield. This is the only species which is not of Silurian age.

A note should perhaps be added on the locality of certain of the specimens from the neighbourhood of Melbourne. The terms "Flemington" and "Moonee Ponds" were both used by the early Geological Survey for the one locality (B8). The term "Union St Cliff" is also identical.

The classification adopted, as with the Asteroidea, is that of Schuchert (1915), with additional genera later erected by Spencer (1914 *et seq.*). To both these works we again record our very deep indebtedness.

Sub-Class AULUROIDEA Schondorf.

Order LYSOPHIJURAE Gregory

Family PROTASTERIDAE Müller

Genus **Gregoriura** Chapman

GREGORIURA SPRYI Chapman.

1889 *Protaster brisingoides* Gregory *Geol Mag* (3), vi, pp. 22-24, text-fig 3 (not text-figs 1 and 2)

1907. *Gregoriura spryi* Chapman *Proc Roy Soc Vic* (ns), xix, p 5, pl vi., fig 1, pl viii, figs 1-3

1915 *Gregoriura spryi* Chapman Schuchert, *Bull 88, U.S. Nat. Mus.*, p 233

This species is the genoholotype and only species of the genus. For notes on the identity of certain specimens of *Protaster brisingoides* Gregory with the above form, see under *Sturtzura brisingoides*.

Associates — *Caractacaster yarraensis*, sp nov., *Petraster angustior*, sp nov. Brachiopods, pelecypods, trilobites, &c

Horizon — Silurian (Yarravian Series)

Locality—South Yarra, Victoria Type specimen No 9105
 in National Museum, Melbourne Collected and presented by
 F P Spry

Family PALAEOPHIURIDAE Gregory

Genus **Sturtzura** Gregory

STURTZURA BRISINGOIDES (Gregory)

- 1889 *Protaster brisingoides* Gregory *Geol Mag* (3), vi, pp 22-24, text-figs 1, 2 (not text-fig 3)
- 1897 *Sturtzura brisingoides* (Gregory) *Proc Zool Soc London* for 1896, p 1034
- 1907 *Protaster brisingoides* Gregory Chapman, *Proc Roy. Soc. Vic.* (n.s.), xix, p 22, pl vi, fig 2, pl viii, fig 2
- 1914 *Sturtzura brisingoides* (Gregory) Schuchert, *Fossilium catalogus Animalia*, pt 3, pp 35, 41, 42
- 1915 *Sturtzura brisingoides* (Gregory) Schuchert, *Bull. U.S. Nat. Mus.*, p 236
- 1927 *S. brisingoides* (Gregory) Spencer, *Monograph of British Pal. Asterozoa, Mem. Pal. Soc.* for 1925, p 366 Text-figs 232b, 233b

A good deal of confusion has arisen over the nomenclature of this genus (*vide* Spencer, *loc. cit. supra*, p 365). The original material from Moonee Ponds was described by Gregory in 1889 as a species of *Protaster*. In 1897, he made it the type of the new genus *Sturtzura*. The next investigator was Chapman, who, working in Australia on a large collection of similar material in 1907, showed that the genus *Sturtzura* had been founded on misinterpretation of the specimens. Chapman showed that the specimens were negatives of the original form, and that the true structure was that of *Protaster*, the genus in which Gregory first placed it. Spencer, investigating the type material in the British Museum in 1927, re-instituted the name *Sturtzura*, apparently regarding the ossicles as sufficiently distinct from *Protaster* to warrant this. His figures make it clear that he appreciates the negative character of the specimens. We have therefore followed him in reverting to *Sturtzura*. We think however that he has misinterpreted parts of Chapman's work. It is not correct to say that "Chapman decided that Gregory's specimens represented more than one species" (p. 365). Chapman merely renamed Gregory's specimens from the Silurian of Moonee Ponds as *P. brisingoides*, which is the first species he refers to in his 1907 paper. The second species (described as *Gregoriura spryi*) was not known to Gregory, the specimens being discovered at a later date and from a different locality, though from the same horizon. Neither did he know the third species, *Sturtzura leptosomoides*, though from the same locality and horizon as *P. brisingoides*. Mr Chapman, in a personal communication, states he would not be prepared to identify Gregory's figure 3 (which is of mouth part only), with *Gregoriura spryi*, for he has found considerable variation in the mouth part of *S. brisingoides*. As, however,

Dr Spencer refers to a difference in the vertebrae of the type specimens on which figure 3 is based compared with those for figures 1 and 2, we must leave that point to him.

S. brisingoides has no real relationship with *Furcaster leptosoma* (Salter), which was named by Gregory *Sturtzura leptosoma*, nor with the corresponding Australian species, *Sturtzura leptosomoides* Chapman. The differences between *Furcaster leptosomoides* and *Sturtzura brisingoides* were clearly brought out by Chapman in 1907 (*loc. cit.*, pl. 8).

Associates—*Petraster smythii* McCoy, *Promopalacaster meridionalis* (Eth fil.), *Camarotoechia decemplicata* (Sow.), &c.

Horizon—Silurian (Yarravian Series)

Locality—Near Flemington, Victoria

Family TAENIACTINIDAE Spencer

Sub-Family TAENIACTINAE Spencer

Genus **Taeniactis** Spencer

TAENIACTIS YERINGAE, sp. nov.

(Text-fig. 1)

1913 *Urasterella* sp. Chapman, F., *Aust. Assoc. Adv. Sci.*, xiv, p. 223

Description—Five long slender and slowly tapering arms radiating from a circular disc. The plates of the disc vary in both size and shape, and are irregularly arranged. The boundary of the disc is convex, but this may be due to post-mortem distortion. For the same reason, the original size of the disc is uncertain. Ambulacral plates opposite and quadrate with a prominent ridge bordering the thread-like ambulacral channel and a less prominent transverse ridge situated medially. The two ridges thus form a T. Adambulacrals elongate, subrectangular and tumid, outer edge slightly concave, inner edge bearing a prolongation opposite the transverse ridge on each ambulacral. The point of attachment of a spine can be seen on the outer edge of some of the adambulacrals. Mouth angle plates elongate and curved. Apical side unknown.

Dimensions—Greatest length of arm preserved 17 mm.; apparent radius of disc 6 mm.

Remarks—This interesting form is the first stelleroid described in the Yeringian series of the Victorian Silurian. The two specimens on which it is based were discovered by the Geological Survey of Victoria in 1862. They were referred to by Chapman (1907 (1), p. 23), and recorded by him in 1913 (p. 223), as *Urasterella* sp. The arrangement of the ossicles, however, and the existence of the central disc free from the arms class the form as a brittle star. The elongate adambulacrals, and the subquadrate ambulacrals, with the T-shaped ridge, show close relationship with the Wenlock species *Taeniactis wenlocki* Spencer, from Pentland Hills, Scotland (Spencer, 1927, p.

380, pl xvii, figs 4, 5, text-figs 245-247) *T. yeringae* is a larger form with slightly stouter adambulacrals. There are also differences in the disc structure. The boundary in *T. wenlocki* is concave, but in *T. yeringae* it is convex. Little dependence can be placed on this, however, for it has been largely determined by post-mortem distortion.

Horizon—Silurian (Yeringian Series)

Locality—Section 12, Parish of Yering, Geol. Surv. Locality B15. Specimens in National Museum, Melbourne, Nos 13827 (holotype) and 13828 (topotype).

Family ENCRINASTERIDAE Schuchert

Sub-Family EUZONOSOMATIDAE Spencer

Genus **Crepidosoma** Spencer.

CREPIDOSOMA KINGLAKENSIS, sp nov

(Pl XI, fig 3 Text-figs 2, 3)

1933 *Palaeaster* sp nov (nomen nudum), Withers, Proc Roy Soc Vic (ns), xlvi (1), p 21

Description—Five short straight arms, broadest at disc margin, thence tapering to a finely drawn-out extremity. Disc circular, relatively large, extending about one-third of the distance along the arms, margined by a ring of rectangular plates with convex surfaces, at least six plates in each interradius. Orally, the ambulacrals are elongate rectangular, apically they are quadrate. Adambulacrals convex, large, almost elliptical in shape, except that extremities are angular, with major axis inclined to axis of arm. Mouth frame composed of long slender bars in apical view, but orally they appear stouter.

Dimensions—Holotype, $R = 10$ mm, $r = 2.5$ mm

Remarks—The specimens comprise a negative of the oral side, very well preserved (holotype), and one of the apical side, in which the arms are incomplete but the mouth frame shows clearly (paratype). All the essential features of *Crepidosoma* are present, but our species is only half the size of the corresponding Wenlock species of Scotland, *Crepidosoma wenlocki* Spencer. (Spencer, 1930, p. 430, pl 27, figs 1, 2, 7; text-figs 276, 277). *C. wenlocki* has only three marginal plates in each interradius. Otherwise the British form shows very close correspondence to the Australian.

Associates—*Lapworthia multoni* (Salter), *Schuchertia junori* Withers and Keble; *Rutroclypeus junori* Withers

Horizon—Silurian

Locality—Collin's Quarry, Kinglake West, Victoria. Specimens presented to National Museum by their finder, Mr P. Junor. Nos 13831 (holotype) and 13832 (paratype).

Order STREPTOPHIURAE Bell

Family LAPWORTHURIDAE Gregory

Genus **Lapworthura** Gregory

LAPWORTHURA MILTONI (Salter)

(Pl XI, fig 4)

1925 *Lapworthura miltoni* (Salter) Spencer, *Mem Pal Soc*, pp 302-309, pl 1, figs 9, 10, pl xix, figs 3-6, pl xx, figs 2, 3, pl xxii, figs 7, 8, Text-figs 175, 188-191, 203-205

The full synonymy is given in the above paper. Two specimens are known from Victoria. One (from Kinglake) is a mould of the oral side preserved in a hard greenish sandstone. Only one arm is fully preserved, and this is about 25 cm in length. In England, the form ranges from the Upper Ordovician to the Ludlow, the Ordovician specimens generally being smaller than the Silurian. The Kinglake specimen is nearly as small as the minimum size known from the Ordovician. The second specimen (from Moonee Ponds) is a single incomplete arm 3 cm in length.

Associates—*Schuchertia junori* Withers and Keble, *Rutro-clypeus junori* Withers (Kinglake), *Promopalaester meridionalis* (Eth fil), *Petraster smythi* McCoy, &c, (Moonee Ponds)

Horizon—Silurian, also Silurian (Yarravian Series)

Locality—Collin's Quarry, Kinglake West, Victoria. The specimen (No 13833) was found by Mr P Junor and donated by him to the National Museum, also known from Moonee Ponds Creek (Specimen No 1035, Geology School, University of Melbourne)

LAPWORTHURA PULCHERRIMA, sp nov

(Pl XI, figs 1, 2 Text-figs 4, 5)

Description—Five short flexible petaloid arms. Apically the arms have a prominent double row of alternate ambulacrals forming a central ridge. Each ossicle closely resembles a knuckle-bone, it is quadrate with concave boundaries, the outer lateral concavity being the deepest, and has a broad, well-marked transverse groove. Orally, the ambulacrals are boot-shaped, the lateral distal corner being deeply excavated for the ventral longitudinal muscle. Adambulacrals viewed from apical side elongate sub-rectangular, and set obliquely to axis of the arm. The proximal edge of the rectangle is modified so as to rise to a low point in the middle. The outer end of the adambulacral is tapered. Orally the ambulacrals are more slender than apically, and are approximately L-shaped. The L consists

of a sharp ridge set obliquely to the ambulacrals, joined laterally to a stouter piece making an obtuse angle with the first. Attached to the latter are slender, oblique spines of length about equal to adambulacrals. Frame composed of narrow and high mouth angle plates.

Dimensions—Syntypes—Length of arm, 10 mm., maximum width of arm (in middle), 3 mm., diameter of oral pentagon, 2.5 mm.

Remarks—In size, and in the petaloid form of the arms this species is like *Furcaster leptosomoides* (Chapman), which is found in neighbouring beds. The subquadrate shape of the ambulacrals (in apical view) clearly indicates however that it is *Lapworthia*. Further the arms are relatively flat, the mouth structure not sufficiently acute for *Furcaster* and the spines not parallel with the arms. From *Lapworthia multoni*, the only other species of this genus, the form is distinguished by the more transverse side shields, and the petaloid arms. *L. multoni* ranges from the Upper Ordovician to the Ludlow in Great Britain.

Associates—*Cyphaspis spryi* Gregory, *Enocrinurus (Cromus) spryi* Chapman. Less than a quarter of a mile away the types of *Furcaster leptosomoides* (Chapman), *Sturtzura brisingoides* (Gregory), *Petraster smythi* McCoy were obtained.

Horizon—Silurian (Yarravian Series)

Locality—Dawson-street, West Brunswick, about $\frac{1}{4}$ mile north of the Geological Survey of Victoria Locality "Flemington" (B8). Specimen found by D. McCance, Esq., and now in Museum of Geology Department, University of Melbourne.

Syntypes—No 1157, apical specimen; and No 1500, oral specimen (counterpart).

Genus **Sturtzaster** Etheridge.

STURTZASTER aff MITCHELLI Etheridge

1913 *Palaeocoma* sp Chapman, *Aust. Assoc. Adv. Sci.*, xiv, p. 214

The name *Sturtzaster* was proposed by Etheridge (1899, p. 129) for the genus *Palaeocoma* Salter (1857, pp. 324-327). The latter name, he pointed out, had already been used by d'Orbigny (1850, p. 240) as a new generic name for *Ophiura mulleri* Phillips, a distinct type of brittle-star from the Lias. *Palaeocoma marstoni* Salter has become the genotype of *Sturtzaster*. The genus has a large disc which has caused some authors to place it among the Asteroids, but the long slender spines and the ambulacral characters show it is an Auluroid. The two Victorian specimens are not well preserved, but they both have a large disc, subquadrate ambulacrals, large quadrate adambulacrals, and long spines on the margins of the disc and

arms These features are sufficient to show a relationship with *Sturtzaster* (?) *mitchelli* Etheridge, though we have not been able to examine the type specimen of the latter. *S* (?) *mitchelli* occurs in the Silurian (Wenlock) beds at Bowning, N S W

Horizon—Silurian (Yarravian Series)

Locality—Swanston-street, Melbourne (excavations), No 13835, presented by Mr F P Spry. Also Moonee Ponds, No 13836. Both specimens in the National Museum, Melbourne

Genus **Hallaster** Sturtz

HALLASTER PARVUS, sp nov

(Pl XI, figs 5, 6 Text-figs 8, 9)

1929 *Tacnaster* (?) aff *spinosis* Billings E S Hills, Proc Roy Soc Vic (ns), xli, p 179

Description—A small species with five short, petaloid arms. Only faint traces of the central disc preserved. Orally the arms are high, and have two central columns of sub-quadrata plates with the outer distal side scooped so as to resemble a stout boot. The side plates are first narrow then broader, slightly curved and set obliquely to the axis of the arm. No spines were observed. Apically the ambulacrals unite in a low central ridge. They are sub-quadrata. Side plates similar to apical view. Ooral armature made of stout sub-triangular plates, but not well preserved.

Dimensions—Syntypes—R = about 5 mm, r, indeterminate

Remarks—The species bears quite a strong resemblance to *Tacnaster spinosus* Billings (Billings, 1858, p 81, pl 10, figs 3 a-d, Schuchert, 1915, p 219, pl 36, fig 1, text-fig 17), but is distinctly smaller. The ambulacrals in apical view, and the side plates are also stouter. In these respects *T parvus* resembles *Hallaster cylindricus* (Billings) (Spencer, 1925, p 291, pl 19, figs 1, 2, pl 21, figs 1-5, text-figs 178-179, 198-201), originally described by Billings as *Tacnaster cylindricus*. *H cylindricus* exhibits the asteroid-like ooral armature which is a rather striking feature of our species. This structure is not well preserved, so that the exact details cannot be made out. It is also possible that the stout appearance is due to a foreshortening of the plates (Spencer, loc cit, p 294). *T spinosus* occurs in the Middle Ordovician (Trenton Limestone), *H cylindricus* is found in Canada, U S A, and Scotland, and ranges from the Middle Ordovician to the Lower Devonian.

Associates—*Orthis* (*Dalmanella*) *testudinaria* Dalman, *Coleolus* cf *aciculum* J Hall, &c

Horizon—Silurian

Locality—Blue Hills, Taggeity Specimens (counterparts) collected by Dr E S Hills in 1929, now in collection of Geological Department, University of Melbourne Syntypes Nos 792 (oral), No 793 (apical)

Genus ***Furcaster*** Sturtz

***FURCASTER BAKERI*, sp nov**

(Pl XI, figs 9, 10 Text-figs 10, 11)

Description—Five small flexible arms emanating from a small central disc and tapering only slowly. The oral aspect of arms shows a central row of alternating hatchet-shaped ambulacrals, the broadest part of each ambulacial adjoining the median line of the arm. Ambulacrals sub-rectangular but tapering laterally, arranged obliquely with outer tips pointing distally. Apically the ambulacrals are much excavated, for the most part they are thin slabs laid end to end. The only prominent part is a ridge which broadens near the axis of the arm. Ambulacrals in apical view appear as elongate tapering plates bordering the arm, each with a lateral process opposite the ridge on the corresponding ambulacial. Mouth frame not preserved. Spines on side plates not observed.

Dimensions—Syntypes—Greatest length of arm, 7 mm, greatest width of arm, 1.5 mm. Diameter of oral pentagon about 3 mm.

Remarks—The specimens comprise the mould of the oral side in sandstone, and its counterpart which is a mould of the apical side. Apically the ambulacrals resemble closely those of *Furcaster leptosoma* (Salter), from the Lower Ludlow of England (Spencer, 1925, p 320, text-figs, 211), the characteristic median ridge being clearly discernible. Orally they differ from all other species of *Furcaster*. In place of the typical boot-shape, they are hatchet-shaped, that is, the excavation for the dorsal longitudinal muscle eats into the proximal edge of one ossicle and the distal edge of the adjoining ossicle, instead of into the distal edge of each ossicle. The ossicles of *F. bakeri* are thus a link between those of *Hallaster* or *Lapworthura* and those of the typical *Furcaster*. *F. bakeri* is smaller than *F. leptosomoides* (Chapman), and smaller again than *F. kilmorensis*; and its arms are not petaloid as in these two species. It is distinguished from *Lapworthura pulcherrima*, sp nov by the absence of the long oblique spines (of generic importance), the more excavated ambulacrals, and its smaller size. The arms have been preserved in an attitude indicative of its wriggling mode of progression. An unpaired arm is thrust out to the rear, and this has to either side, first a slightly curved arm, and then one of the forward arms strongly retroflexed (see Pl XI, figs 5, 6).

Associates—Fossils from the same locality, though not the same bed are *Camarotoechia decemplicata* (Sow), *Monograptus chimaera*, *M. roemerii*, *M. colonus*, *M. varians* (all Ludlovian)

Horizon—Silurian (Yarravian)

Locality—East side of new Yalla Boulevard, vicinity of Dight's Falls, Studley Park. The specimen was not *in situ*. Collected by G. Baker, Esq. Museum of Geology School, University of Melbourne, Nos 1498 (oral), 1499 (apical)

FURCASTER KILMORENSIS, sp nov

(Pl XI, fig 8 Text-figs 6, 7)

Description—Five moderately long arms, orally, when the groove is open, they are petaloid, but apically they are straight and slender. The oral surface is composed of two rows of boot-shaped ambulacrals, arranged slightly alternately. The back of the boot faces proximally, the toe distally. Ambulacrals rectangular, with a prominent L-shaped ridge. The horizontal portion of the ridge is first thin, becoming stouter as the lateral portion is approached. The latter, which is directed distally, is both thick and prominent. No spines were observed. Apically the ambulacrals form a high ridge, they appear subquadrate with the median and lateral boundaries concave, the adambulacrals are also quadrate, and bear a prominent ridge similar to that seen orally. Mouth frame petaloid and acute, made of five pairs of first ambulacrals surmounted by five pairs of slender mouth angle plates.

Dimensions—Holotype—Length of complete arm, 20 mm, greatest width of arm, 2.5 mm (groove open). Paratype. Width of arm, 2 mm, diameter of oral pentagon, 4.5 mm, arms incomplete. Other specimens are only slightly smaller or slightly larger.

Remarks—The holotype is a preservation of the oral side with the groove wide open, the paratype shows the apical side, including an excellent view of the mouth parts. *Furcaster kilmorensis* is a larger species than *F. leptosomoides*. It most closely resembles *F. leptosoma* (Salter), which is found in Great Britain and Europe in rocks of Upper Ordovician to Carboniferous age. Our specimens, however, are most like those from the Lower Ludlow beds of England, which they resemble in size and disposition of arms. They differ in having petaloid arms, in lacking the thin transverse ridge on the ambulacrals, in the alternate arrangement of the latter and in consequence the absence of the well-marked hollow between apical halves of the vertebral ossicles.

Associates—The specimens come from the same district as *Salteraster selwyni* (McCoy), and *Salteraster biradialis* Withers and Keble, but not the precise locality, for the matrix is a yellow sandstone, while in the latter cases it was red.

Horizon—Silurian

Locality—Kilmore, Victoria Collected and presented by G. Sweet, Esq., to National Museum, Melbourne Holotype No. 13829, paratype No. 13830

FURCASTER LEPTOSOMOIDES (Chapman)

1907 *Sturtzura leptosomoides* Chapman *Proc. Roy. Soc. Vic.* (ns), xix, p. 26, pl. vii, figs 1, 2, pl. viii, fig. 4

The genus *Furcaster* was erected by Sturtz in 1886 to receive a species (*F. palaeozoicus*) from the Lower Devonian of Germany. Since then, members of the genus have been recorded from horizons ranging from the Lower Silurian to the Lower Carboniferous in England, Europe, and America. The form is extraordinarily variable in size, and as a result has been described under a number of generic and specific names. In 1925, however, Spencer (pp. 312-326) made an exhaustive study of the genus, and among other things, placed *Sturtzura leptosoma* (Salter), in the genus *Furcaster*. Hence the change in name in the Victorian form, which is certainly congeneric with Salter's species from the Lower Ludlow.

Associates—*Petrastrum smythii* McCoy, *Promopalacaster meridionalis* (Eth. fil.), &c.

Horizon—Silurian (Yarravian Series)

Locality—Moonee Ponds Creek, Flemington (Geol. Surv. Locality B8)

Family EOLUIDIIDAE Gregory

Genus **Eospondylus** Gregory

EOSPONDYLUS IENUIS, sp. nov

(Pl. XI, fig. 7 Text-fig. 12.)

Description—Arms five, flexuous, exceedingly slender. Each half of a vertebra has the appearance of a long boot, the back of the boot facing towards the tip of the arm. Side plates very small, and round, close to vertebrae, and bearing long slender spines set almost at right angles to axis of the arm. Disc probably large, consisting of squamose granulate plates. Mouth frame large.

Dimensions—Length of arms uncertain, the parts preserved projecting little beyond the disc. Radius of disc (approximately), 7.5 mm.; width of arm, 1 mm.

Remarks.—The specimen comprises part of a disc and portions of each arm (oral side). The only species of the genus *Eospondylus* known from elsewhere is *E. primigenius* (Sturtz), from the Lower Devonian of Bundenbach, Germany (Spencer, 1925, p. 309, pl. 21, fig. 9, text-figs 206 a-c). *E. primigenius* is a larger species than *E. tenuis*, the ventral ossicles are stouter, and the side plates more prominent.

Horizon.—Silurian (Yarravian Series).

Locality.—Moonee Ponds. Specimen found by Dr E. S. Hills in 1926, now in the collection of the Geological Department, University of Melbourne, No. 1497. Holotype.

Family AGANASTERIDAE Sturtz

Genus **Aganaster** Miller and Guile

cf. *AGANASTER GREGARIUS* (Meek and Worthen)

1915 *Aganaster gregarius* (Meek and Worthen) Schuchert, Bull., 88, U.S. Nat. Mus., p. 264

1925 *Aganaster gregarius* (Meek and Worthen) Spencer, Mon. Pal. Asterozoa, pt. 6, Mem. Pal. Soc. for 1922, p. 285, pl. 18, fig. 3, pl. 20, figs. 4, 5, 6, text-figs. 194, 195.

The Victorian specimens of this form are poorly preserved in a hard chocolate sandstone. Five very slender arms radiate from a small central disc. The arm structure consists of a double row of rectangular to sub-quadratale plates, as in *A. gregarius*. Another character which assists in identification is the gregarious nature of the form. In many British and American specimens the rock is crowded with a large number of small forms. In our specimen there are three tiny forms not more than an inch away from each other.

The American examples are from the Keokuk formation (Lower Carboniferous) of Indiana, U.S.A. The disc in these specimens varies from 3-7 mm., and the longest arm is 15 mm. The British specimens, from the Lower Carboniferous of Ardross, Fife, are smaller (R. 1-6 mm., 1 mm. maximum, with many specimens only half as large).

This is the first stelleroid identified from the Victorian Carboniferous.

Dimensions.—Maximum length of arm preserved, 35 mm., diameter of disc about 1 mm.

Horizon.—Carboniferous.

Locality.—At back of homestead, Maindample Park, Mansfield, Victoria. The specimen was discovered by Miss Irene Ciespin, B.A., and presented by her to the National Museum No. 13834.

References.

- BATHER, F. A., 1907 Australian Palaeontologist on Silurian Ophiuroids *Geol Mag* (5), iv, pp. 313-314
- BILLINGS, E., 1858 On the Asteriidae of the Lower Silurian Rocks of Canada *Geol Surv Canada Canadian Organic Remains*, dec. 3, pp. 75-85
- CHAPMAN, F., 1907 (1) New or little-known Victorian Fossils in the National Museum, Pt. 8 Some Palaeozoic Brittle Stars of the Melbourne Series *Proc Roy Soc Vic* (n.s.), xix, (2), pp. 21-27, pl. vi-viii
- , 1907 (ii) Nomenclature of the Australian Ophiuroids *Geol Mag* (5), iv, p. 479
- , 1913 On the Palaeontology of the Silurian of Victoria *Aust Assoc Adv Sci*, xiv, p. 214
- ETHERIDGE, R., jr., 1899 On the Occurrence of a Starfish in the Upper Silurian Series of Bowning, New South Wales *Rec Aust Mus*, iii, No. 5, pp. 128-129
- GREGORY, J. W., 1889 On a New Species of the Genus *Protaster* (*P. brisingoides*) from the Upper Silurian of Victoria, Australia *Geol Mag* dec. 3, vi, pp. 24-27, woodcut
- , 1897 On the Classification of the Palaeozoic Echinoderms of the Group Ophiuroidea *Proc Zool Soc London* for 1896, pp. 1028-1044, text-figs
- d'ORBIGNY, A. D., 1849 *Prodrome de Paléontologie*, vol. 1
- SALTER, J. W., 1857 On some new Palaeozoic Starfishes *Ann Mag Nat Hist* (2), xx, pp. 321-334, pl. ix
- SCHUCHERT, C., 1915 Revision of the Palaeozoic Stelleroidea with special reference to the North American Asteroidea *U.S. Nat. Mus., Bull.* 88
- SPENCER, W. K. A Monograph of the British Palaeozoic Asterozoa *Mem Pal. Soc.*
- 1925 (issued for 1922), Pt. VI, pp. 237-324, text-figs 172-212, pl. 18-22
- 1927 (issued for 1925), Pt. VII, pp. 325-388, text-figs 213-248, pl. 23-24
- 1930 (issued for 1928), Pt. VIII, pp. 389-436, text-figs 249-280, pl. 25-28
- WITHERS, R. B., and KEBLE, R. A., 1934 The Palaeozoic Starfish of Victoria *Proc Roy Soc Vic* (n.s.), xlvi (2), pp. 220-249, pl. x-xii, text-figs 1-10

Explanation of Plate XI.

(NOTE.—All specimens of Silurian age, except *Aganaster* (Carboniferous))

Fig. 1.—*Lapworthura pulcherrima*, sp. nov. Apical side of syntype $\times 15$ West Brunswick Coll by D. McCance, Esq. Mus. of Geol. School, Univ. of Melb., No. 1157

Fig. 2.—*L. pulcherrima*, sp. nov. Oral view of syntype $\times 15$ West Brunswick Coll by D. McCance, Esq. Mus. of Geol. School, Univ. of Melb., No. 1500

Fig. 3.—*Crepidosoma kinglakeensis*, sp. nov. Oral view of holotype $\times 25$ Kinglake West Coll by P. Junior, Esq. Nat. Mus. Coll., No. 13831

Palaeozoic Brittle-Stars

[Page 209]

TEXT FIGS 1-12

- Fig 4.—*Lapworthia multonii* (Salter) Oral view $\times 2$ Kinglake West Coll by P. Junor, Esq Nat Mus Coll, No 13833
- Fig 5.—*Hallaster parvus*, sp nov Oral view of syntype $\times 4.5$ Blue Hills, Taggerty Coll by Dr E S Hills Mus of Geol School, Univ of Melb, No 792
- Fig 6.—*H. parvus*, sp nov Apical view of syntype $\times 4.5$ Blue Hills, Taggerty Coll by Dr E S Hills Mus of Geol School, Univ of Melb, No 793
- Fig 7.—*Eospondylus tenuis*, sp nov Oral view of holotype $\times 4$ Moonee Ponds Coll by Dr E S Hills Mus of Geol School, Univ of Melb, No 1497
- Fig 8.—*Furcaster kilmorensis*, sp nov Oral view of holotype $\times 1.5$ Kilmore Coll by G. Sweet, Esq Nat Mus Coll, No 13829
- Fig 9.—*Furcaster bakeri*, sp nov Oral view of syntype $\times 1$ Studley Park Coll by G. Baker, Esq Mus of Geol School, Univ of Melb, No 1498
- Fig 10.—*F. bakeri*, sp nov Apical view of syntype $\times 1$ Studley Park Coll by G. Baker, Esq Mus of Geol School, Univ of Melb, No 1499

TEXT FIGURES 1-12

(1) *Taenactis yeringae*, sp nov Oral view of mouth structure, disc, and part of arm $\times 3\frac{1}{2}$ (2, 3) *Cepidosoma kinglakensis*, sp nov (2) Oral view of mouth structure, disc and part of arm $\times 3\frac{1}{2}$ (3) Apical view of same $\times 3\frac{1}{2}$ The oral groove is closed so that side plates have moved almost entirely to that side (4, 5) *Lapworthia pulcherrima*, sp nov (4) Apical view of arm $\times 5$ (5) Oral view of mouth parts and portion of arm, with spines $\times 9$ (6, 7) *Furcaster kilmorensis*, sp nov (6) Oral view of part of arm and mouth structure (latter imperfect) $\times 7$ (7) Apical view of mouth structure and part of arm $\times 7$ Figured from paratype—No 13830 Nat Mus. Melb, of which no photograph is given (8, 9) *Hallaster parvus*, sp nov (8) Oral view of mouth structure and part of arm $\times 17$ (9) Apical view of same $\times 17$ (10, 11) *Furcaster bakeri*, sp nov. (10) Oral view of mouth structure and part of arm $\times 14$ (11) Apical view of same $\times 17$ (12) *Eospondylus tenuis*, sp nov Oral view of mouth structure and part of arm $\times 14$

[PROC ROY SOC. VICTORIA 47 (N S), PT II., 1935]

ART XIII—*The Muckleford Fault in the Guildford-Strangways Area (near Castlemaine, Victoria)*

By D E THOMAS, B Sc

[Read 9th August, 1934, issued separately, 8th May, 1935]

I INTRODUCTION AND ACKNOWLEDGMENTS

II PHYSIOGRAPHY

III PREVIOUS WORK

IV GEOLOGY

(1) Lower Ordovician Rocks

(ii) Tertiary Rocks

(a) Sub-basaltic auriferous wash

(b) Basalt flows

(iii) Faulting

V SOME LATE TERTIARY FAULDS AFFECTING ALLUVIAL WORKINGS IN
VICTORIA

VI SUMMARY

VII REFERENCES

I. Introduction and Acknowledgments.

The Muckleford Fault was postulated by Harris and Thomas (9) as a north and south fault which in the area between Castlemaine and Newstead separates Lancefieldian beds on the west from Darriwilian on the east. Owing to the nature of the country the line of fault can be traced only approximately in the field, though the palaeontological evidence in support of it is strong. North-west of Guildford, however, excavations by the Guildford Plateau Mining Company exposed a fault which was noticed by the Director of Geological Survey (Mr W Baragwanath) who drew my attention to it. My thanks are due to Mr Baragwanath for the opportunity of studying the occurrence. I am also indebted to Mr G G. Dunstan for much general information; to Mr Ray, the manager of the mine, for many acts of kindness during the progress of my work, and lastly to Dr W J Harris, who placed his knowledge of the graptolites of the area at my disposal.

II. Physiography.

The area north of Guildford consists of a basalt plateau (Fig. 1) about 900 feet above sea level, with steep and—in places—precipitous slopes to the two lateral streams, the Loddon River on the south and the Muckleford Creek on the west. These separate the plateau from the rolling hills of Ordovician rocks

on the south and west, while the basalt thins out on the slopes of similar hills to the north. The streams flow about 200 feet below the surface level of the plateau. The Muckleford Creek, after a general southerly course, turns to the west before joining the Loddon, flowing through a narrow valley. The Loddon, flowing towards the west, has a flat-bottomed valley. The plateau and the alluvial flats along the Loddon are the fertile areas of the district. The Ordovician hills are generally tree-covered. Apart from the line of gentle eastward slope north of the Guildford Plateau shaft, to be discussed later, the plateau slopes generally towards the west.

FIG. 1

III. Previous Work.

Q.S. 15 N.E. of the Geological Survey of Victoria (by Ulrich and Aplin) is the only detailed geological map of the area. The physiography and distribution of the various groups of rocks are very accurately shown, even though this sheet was published in 1864. Later work has increased our knowledge of the graptolite succession in the area. Apart from this Quarter-sheet the only other detailed references to the geology of the area are to be found in mining reports.

IV. Geology.

The rocks of the area are Lower Ordovician sandstones and shales, covered in part with a relatively thin mantle of basalt and river gravels or "wash" of pre-basaltic age (Figs 2 and 3).

The age of the Ordovician rocks is known from their contained graptolites, while from analogy with similar occurrences in other parts of Victoria the gravels are referred to Tertiary times (Miocene to Pliocene).

(1) LOWER ORDOVICIAN ROCKS

The Lower Ordovician rocks consist, as is usually the case in Victoria, of sandstones ranging from coarse- to fine-grained, with intercalated shales and mudstones. Their strike is slightly to the west of north, they are inclined at a high angle (in places they are almost vertical), and they are closely folded, as may be seen from the sections exposed along the Muckleford Creek and in railway and road cuttings. The high angles of dip make it impossible to trace individual folds for any distance.

Many of the graptolite localities were first found by Harris (8) who showed that the beds along the railway line between Guildford and Limestone Creek were of Darriwilian age. Later Harris and Thomas (9) recorded additional localities and showed that the Muckleford Fault formed a dividing line between Lancefieldian and Darriwilian. The most westerly outcrop at which graptolites were found along the Castlemaine-Newstead railway line (87 m 52 ch) yielded the following forms indicating a low Darriwilian zone (D4) —

- Isograptus caduceus* var. *divergens* Harris, and other variants
- Cardiograptus morsus* Harris and Keble
- Oncograptus epsilon* var. *biangulatus* (H and K)
- Didymograptus v-deflexus* H and K
- Trigonograptus* sp (probably *T. ensiformis* Hall)
- Phyllograptus* sp

Oncograptus beds also occur on the north and south road south of the railway crossing at 87 m 33 ch, and *Cardiograptus morsus* beds at 86 m 57 ch on the railway and further east. Poorly preserved graptolites may also be obtained from the soft shales along the Loddon below the outlier of Tertiary gravels, the commonest forms being Darriwilian varieties of *I. caduceus*.

The spoil heap of the Guildford Plateau mine contains many fragmentary graptolites. The mudstone here, however, is doubly cleaved, making the extraction of specimens difficult. The following were identified —

- Isograptus caduceus* var. *maximo-divergens* Harris
- I. caduceus* var. *divergens* Harris
- I. forcipiformis* (Rued.)
- Didymograptus v-deflexus* H and K
- Didymograptus* spp
- Tetragraptus sericeus* Brong.
- Tetragraptus* sp (cf. *headi* Hall)

Although *Oncograptus* was not found, the assemblage points to a low Darriwilian horizon (probably D5).

Two other outcrops yielded assemblages indicating passage-beds between the D3 and D2 zones, or perhaps what might better be called the basal beds of the D2 zone (zone of *D. (Glyptograptus) austrodentatus*). Previously this assemblage had been

recorded only from the Brisbane Ranges. One of these localities, originally discovered by M₁ Baragwanath, is the spoil-heap of the old Plateau shaft, which was sunk through basalt in Allot 26, Guildford. The following forms are present —

- Isograptus caduceus var maximo-divergens Harris
- I. caduceus var divergens Harris
- I. hastatus Harris
- Skiagraptus gnomonicus (Harris and Keble)
- Cardiograptus morsus H and K
- Tetragraptus serra Brong
- Tetragraptus spp
- Goniograptus speciosus T S Hall
- Trigonograptus ensiformis J Hall
- Phyllograptus cf nobilis H and K
- Didymograptus v-deflexus H
- Diplograptus (Glyptograptus) austrodentatus H and K

The Grand Trunk tunnel dump yielded —

- Cardiograptus morsus H and K (long narrow variety)
- Didymograptus spp.
- Tetragraptus sp
- Trigonograptus cf ensiformis J Hall
- Phyllograptus cf nobilis H and K
- Loganograptus sp
- Variants of I. caduceus

All these localities are east of the Muckleford Fault and show the strata ascending eastward towards the centre of the Muckleford synclinorium which Harris and Thomas place as near the 85½ mile-post on the railway

To the west of the fault in the Lancefieldian belt the search for graptolites was less successful. Lancefieldian forms (L1) (*Tetragraptus decipiens* T S Hall, *T approximatus* Nicholson, and *Clonograptus* sp) occur at the locality marked as Note 25 on Q S 15 N E. The strike of this band would pass to the west of the Guildford Plateau mine. Lithologically the rocks east and west of the Muckleford Fault resemble each other, although waxy brown shales common to the Lancefieldian are missing from the Darriwilian. Generally speaking, hard sandstones predominate in the west and thick shales with softer sandstones in the east, with the result that surface relief is greater in the west. The differences, too slight to enable individual outcrops to be separated, give a regional distinction. This, together with the strike of the Lancefieldian band recognized, and the occurrence of Darriwilian graptolites near the Guildford Plateau mine, makes it reasonably certain that the fault exposed in the excavation at the mine is on the line of the Muckleford Fault. This Fault, which is responsible for the absence at this locality of the whole of the Bendigonian and Castlemainian series, must be, as far as one can estimate, of the order of 4,000 feet.

FIG. 2

[Page 217]

Fig. 3

(ii) TERTIARY ROCKS

The Tertiary rocks are represented by the pre-basaltic auriferous wash and the basalt flows. Since the distribution of the wash and the basalt is connected with the Tertiary physiography, it becomes important to reconstruct as far as possible the early Tertiary topography.

(a) *Pre-basaltic Tertiary Gravels*

These gravels range from a coarse conglomerate to fine sandy beds cemented by ferruginous material or quite unconsolidated. The thickness varies considerably, as might be expected from a fluviaatile deposit laid down in a wide valley. The size of the boulders, their worn nature and their composition (vein quartz and quartzite predominate), afford information as to the velocity of the streams and the time needed for the deposition of the gravels. They must belong to a period when the climate was wetter and the relief more pronounced than at present. The gradient was steeper than at present, as east of Guildford the bed of the ancient stream is higher than the present Loddon, while further west it lies below the Loddon alluvium, as is shown in the workings of the Guildford Plateau mine.

West of the fault and south of Strangways railway station is an extensive area of exposed gravels, known as the Old Ironstone Diggings. This lies to the south of the Loddon, but probably represents a meander of the ancient Loddon as, immediately to the north, the basalt rests directly on bed-rock without any intervening gravel. The wash here was extensively worked, the sinking being comparatively deep—as far as one can gather from the old shafts and from information available, just over 100 feet. The surface level is about 800 feet so that the floor of the old valley would be under 700 feet. Immediately west of the Guildford Plateau mine the bottom of the wash is at a level of approximately 790 feet.

East of the fault the “bottom” lies below river level, and the mine workings show it to be about 675 feet above sea level. Further upstream the deepest part of the gravels is under the basalt, and its course can be traced roughly from the two shafts on the plateau, called the Old Plateau and New Plateau shafts, and by Cumings’ and the Grand Trunk Tunnels.

Upstream from the Grand Trunk Tunnel the lead passed partly under the Loddon and here dredging yielded good results, and still further upstream it passed once more under the basalt, as is shown by the hillside workings. Here conflicting data make it difficult to reconstruct the course of the lead. The Forest Creek and Upper Loddon lead systems junctioned near the Guildford railway station (the “Guildford Gap”) and flowed beneath the basalt. Two bores (14) near the north-east corner of Allot

25, Guildford, proved the presence of auriferous wash at a depth of 200 feet—about the same level as on the worked lead to the south. A feasible explanation is that this is gravel deposited by a lateral stream developed on the northern side of the first basalt flow, but in the absence of full boring records this cannot be definitely asserted.

The Muckleford Lead lies along the Muckleford Creek and its upper part around Muckleford township has not been covered by basalt. Several tunnels have been driven from the valley of the Muckleford Creek to intercept the portion of this lead that lies beneath the basalt, the largest being Frenchman's Tunnel (3, p. 131). This tunnel proved that the course of the lead was very tortuous. The exact position of this lead is now being fixed by boring. While, as far as can be gathered, only the wash at the base of the gravel has been worked in the western part of this area, there is evidence of another run of consolidated auriferous wash or false bottom at a higher level in the east (2, p. 26).

(b) Basalt Flows

The main or upper basalt flow of the plateau is a dark greenish-grey, more or less vesicular rock, which in some places along the escarpment has a rough columnar structure, while a platy structure is developed elsewhere. Crystals of olivine and augite can be seen with the naked eye, the largest being about 2.5 mm long. An older flow exposed near the Guildford Gap immediately underlies the younger flow, but it must extend a considerable distance downstream as both the old shafts on the plateau went through this flow.

The upper flow is composed essentially of olivine, pale brown augite, labradorite and iron ores. There is a marked tendency towards a glomeroporphyritic structure of the ferro-magnesian minerals and occasional felspar phenocrysts occur. The augite encloses small crystals of magnetite. The groundmass consists of granules of augite and olivine and rods and plates of magnetite, between the felspar laths which average 0.2 to 0.3 mm. in length. A fair amount of carbonate and occasional needles of apatite are present, and some olivine is altered to iddingsite.

The underlying basalt is on the whole finer-grained and less vesicular. Crystals of olivine up to 2.5 mm. in length alter to serpentine, not to iddingsite. Augite occurs as crystals up to 2 mm. long. The felspar is less acid than in the upper flow, some of the larger crystals giving symmetrical extinctions of 25°. Much interstitial felspar is untwinned or shows undulose extinction as in the oligoclase basalts, so that the affinities of this flow are with the basic mugearites. Some iron ore, apatite and carbonate are also present. The basalt flows which are in direct contact have a maximum thickness of over 75 feet.

(iii) FAULTING

The fault, which may be seen in the excavation at the mine, displaces the gravel nearly 100 feet. It is a reversed fault having in the west at 70° on the surface, where it is 21 feet from the east side of the shaft, while at the 97-foot level it is 7 ft 6 in from the same side. The Ordovician rocks are bleached for about 10 feet from the fault while the blue mudstones are shattered. A very sharp syncline lies just to the west, and on this another fault can be seen which, however, does not affect the Tertiary rocks. Along the fault affecting the Tertiaries about 6 inches of coarse gravel may be seen representing auriferous wash caught up during the faulting movement as colours of gold may be obtained by panning. To the east the "gravel" is represented by clay bands, sandy beds, and some conglomerate, with an easterly dip of 30° . The flexure certainly seems to be due to the fault which has its upthrow side to the west. The floor on which the wash rests has been displaced vertically 100 feet (± 5 feet), as can be seen from the surface exposures and the level of the mine workings. Although the wash has been displaced 100 feet vertically, the basalt has been displaced rather less than 50 feet, indicating two movements along the fault line, each of about 50 feet. No other direct evidence of pre-basaltic faulting was seen, but the post-gravel physiography seems to show that movement caused by the fault interfered with the drainage system before the outpouring of the upper basalt flow. As a general rule the basalt flowed down the valley in which the gravel had been deposited. Lateral streams developed one on each side of the basalt, and have exposed pre-basaltic wash. The area of auriferous gravels in the neighbourhood of Shepherd's Flat was probably deposited at the junction of two broad valleys excavated by the pre-basaltic Loddon and Muckleford Creek in the soft Darriwilian bed-rock. To the west, however, the deposits at the Old Ironstone Diggings represent a large meander south of Strangways railway station, and show that the valley here was narrow and steep-sided. The basalt did not follow this meander, but flowed west and rejoined the old valley further down stream. It thus seems likely that changes of level due to movement along the fault caused the stream to cut through a low neck of bed-rock and abandon the meander, and it is through this gap that the basalt flowed. An alternative explanation is that a basalt covering of the Old Ironstone gravels has been completely denuded, but it is improbable that this is so since such a great amount of erosion locally would be hard to explain when compared with the smaller amount both up- and down-stream.

North of the Guildford Plateau mine the Quarter-sheet indicates by its hachuring a sudden change of level along a line corresponding with the hidden extension of the fault. On both sides of this line the basalt is similar, while the general slope of

the plateau surface on both sides is to the west in the general direction of the flow of the basalt, but in the opposite direction to the local slope shown by the hachures. Though the observed fault cannot be definitely identified with the Muckleford Fault, which as already stated is of much greater magnitude, it seems clear that it represents movement along the line of this greater fault. The Muckleford Fault displaces the Lower Ordovician beds vertically at least 4,000 feet, the auriferous wash is displaced 100 feet while the basalt has been displaced only 50 feet, thus showing at least three movements along the same line of weakness, the last movement being very recent.

V. Some late Tertiary Faults affecting Alluvial Workings in Victoria.

Late Tertiary faults play an important part in the geological history of eastern Australia. The existence of many faults has been inferred, and the following have been actually verified chiefly by underground mining operations. Nicholas (12), discussing the workings of the New Australian Company, Creswick, refers to a "well-formed vertical wash" 20 feet in height worked over a length of 200 feet, and states that no doubt it was the result of an upheaval. While this is a case where auriferous wash has been worked along the fault line, his statement that as a rule "there is a general absence of wash between the upper and lower part parallel to the cleavage" evidently means that faulting of wash is not uncommon, it is rarely that wash is found along the fault plane itself.

In 1917, E J Dunn (5) described a post-Tertiary fault at Beechworth, in a section which he had first noted in 1871 (4) without realizing its significance. This fault is a thrust fault with a hade of 45° and a vertical displacement of about 20 feet. Dunn considers it to be of the same age as faults in the Berry Lead at Spring Hill and elsewhere near Allendale. W Baragwanath (1) has recorded post-Newer Basalt faulting in the Ballarat area.

A late Tertiary fault affecting alluvial mining appears to be present in the Sebastian area (15), as H S Whitelaw reports, "Extremely good gold, it is said, was traced from near the Frederick the Great Company's main shaft westward to Myer's Creek, a distance of about a quarter of a mile where a sudden drop of 70 feet from 30 feet to 100 feet was encountered."

Harris states (personal communication) that the Whitelaw Fault at Bendigo—a fault in every way comparable with the Muckleford Fault—also shows evidence of post-Tertiary movement, auriferous gravels being carried 50 to 100 feet downwards on the Darriwilian side of the fault line.

These late Tertiary faults observed during mining operations are insignificant compared with those postulated in south-eastern Australia by physiographers and palaeo-geographers. Fennell (6), for example, finds evidence of two periods of Tertiary fault movements in the Bacchus Marsh area—the post-Older Basalt block faults and the post-Newer Basalt movement along the Rowsley Fault. Others have also explained the development of the physiography of this part of Australia by invoking faulting (10, 13).

VI. Summary.

1 Reversed faulting has occurred along the line of the Muckleford Fault, with a hade to the west of approximately 70° .

2 Evidence based on graptolites from the east and west sides of the fault line, together with the estimated thickness of the Ordovician graptolite zones in this locality, indicates that the vertical displacement is of the order of 4 000 feet.

3 The greater part of this movement took place before the deposition of the pre-basaltic auriferous river gravels.

4 The movement continued in Tertiary times two late movements being observable, (i) of about 50 feet after the deposition of the gravels, but before the extrusion of the upper basalt flow, though probably after the lower flow, and (ii) of another 50 feet in post-basaltic times.

5 Similar Tertiary faults, including many of considerably greater magnitude, have been postulated to explain the physiography of south-eastern Australia or have been observed in mine workings elsewhere in Victoria.

References.

1. W BARAGWANATH The Ballarat Goldfield. *Mem. Geol Surv. Vic.*, No. 14, p. 54
- 2 *Dicker's Mining Journal*, 20th July, 1866, p. 26
- 3 *Ibid.*, 20th February, 1866, p. 131
- 4 E J DUNN Notes on the Rocks and Minerals of the Ovens District. Rep Min Surveyors Vic for quarter ending 31st Mar, 1871
- 5 E J DUNN. A Post-Tertiary Fault at Beechworth *Rec Geol Surv Vic.*, iv (1), 1917, p. 77
- 6 C FENNER Physiography of the Werribee River Area *Proc Roy Soc Vic*, n.s., xxxi (1), 1918
- 7 Geological Survey of Victoria Quarter Sheet 15 N.E., 1864
- 8 W J. HARRIS Palaeontological Sequence of the Lower Ordovician Rocks of the Castlemaine District *Proc Roy. Soc Vic*, n.s., xxiv (1), 1916
- 9 W. J. HARRIS and D E THOMAS Structure of the East Talbot Area. *Proc Roy Soc Vic*, n.s., xlvi (2), 1934

- 10 T S HART. The Highlands and Main Divide of Western Victoria.
Proc Roy Soc Vn, n.s., xx (2), 1908
 - 11 J T JURSON A Contribution to the Physiography of the Yarra River
and Dandenong Creek Basins, Victoria *Proc Roy Soc Vn*,
n.s., xxiii, 1911
 - 12 W NICHOLAS *Quart Rept Min Recg* (Mines Dept Vic) for quarter
ending 31st Mar, 1887, p 71
 - 13 GRIFFITH TAYLOR The Australian Environment Adv Counc for Sci
and Ind (Australia) Mem 1 Physiography of Eastern Australia.
Com Bureau of Meteorology, Bull 8, 1911
 - 14 Third Report, Diamond Drills, Mines Dept Vic, 1887, p 44
 - 15 H S WHITELAW Report on Sebastian Goldfield *Mon Prog Rept
Geol Surv Vic*, 1899, p 4
-

[PROC ROY SOC VICTORIA, 47 (N S), PT II, 1935]

ART XIV—*Manganese Deficiency of Cereals Plot Experiments and a New Hypothesis*

By G W LEEPER, M Sc

[Read 11th October, 1934, issued separately, 8th May, 1935]

Introduction.

It is now generally recognized that manganese is an essential element in the growth and reproduction of plants. Oats are especially sensitive to a deficiency of manganese. Barley and wheat are not quite so sensitive, while rye and most of the common grasses are far less sensitive, though not even rye is immune. The actual symptoms of the deficiency are shown in most characteristic fashion by oats, in which the disease has been called "grey-speck". These symptoms have been fully described and illustrated by Samuel and Piper (1928), and by Davies and Jones (1931).

In the last few years, cases of manganese deficiency have been reported from many parts of Europe, North America, and Australia, as occurring on many important crops besides wheat, barley, and oats. This deficiency occurs sometimes on soils that have naturally a neutral or alkaline reaction, as in the cases recorded in Western Australia by Caine (1927), and in South Australia by Samuel and Piper (1928), and sometimes on soils naturally acid in reaction, after so much lime has been added as to make them neutral or alkaline, as in Wales (Davies and Jones, 1931), Rhode Island (Gilbert *et al.*, 1926), Sweden (Arrhenius, 1926), etc. The present case belongs to the second class, and is the first of its kind to be reported in Australia, and though the soil in question does not belong to any type met with in practice, the results obtained show some features of general interest.

Description of Soil.

The area referred to in this work is a plot of land 21 yards by 9 yards, in the grounds of the Agriculture School of the University of Melbourne. The soil is a grey sandy loam to a depth of 18 inches; below this it rapidly becomes heavier, with occasional lumps of yellow clay, until at 30 inches it passes into an impermeable yellow clay which is derived from the Silurian mudstones of the district.

The surface soil, which is homogeneous in texture and appearance to a depth of 18 inches, has the same origin as the adjacent garden beds of the University grounds, this is a sandy loam which contains about 3 per cent of gravel (above 2 mm diameter), in the form of ironstone and quartz grains. The fine earth consists of 32 per cent of coarse sand (2 to 0.2 mm) 38 of fine sand (0.2 to 0.02 mm) 15 of silt (0.02 to 0.002 mm), 12 of clay (below 0.002 mm), and about 3 of organic matter. The coarse sand consists of quartz together with some grains of ironstone. The fine sand contains, besides much quartz, 18 per cent of plagioclase, 6 per cent of augite, and other basaltic minerals. This augite is mostly angular, and shows no sign of weathering. It appears that the soil consists of material derived from the nearby basalt country, but not normally weathered. (It has been suggested that it may have been made up from road sweepings derived from the use of basalt as road-metal.) Its natural pH value is 5.0 (This figure, like all other pH values recorded in this paper, refers to a 1:1 soil-water suspension measured with the quinhydrone electrode at 20° C., where the value of a surface soil is quoted, this refers to the 8 inches of surface soil).

The area under discussion has been cropped fairly continuously with numerous varieties of crops, mainly cereals, since 1914, and is protected from birds by wire netting. It has been heavily limed, and contains about 0.2 per cent CaCO₃ in the 9 inches of surface soil, the last liming was a dressing of about 2 tons to the acre in 1923. The effect of this liming has been to bring the pH of the upper 18 inches well into the alkaline range. The reaction of the surface soil varies from 7.2 to 7.7 over the area, this falls to about 7.0 at 18 inches, then 6.5 from 18 to 30 inches, and then rises again to 8.0 at 40 inches, where the heavy clay occurs. It may be remarked that the disease discussed here does not seem to occur on soil derived directly from the Silurian mudstones, even after liming.

Results of Plot Trials.

EXPERIMENTS IN 1928*

A portion of the area was used in 1928 for various experimental treatments in work carried out by Glynne. For some years previously it had been noted that oats, wheat, and barley had been making poor growth, and it was thought that the sickness of the crops might be due to parasitic organisms in the soil. Sulphur and various sulphur compounds were used, and the treatments comprised varying applications of ammonium sulphate (ranging from 27 to 81 cwt per acre), sulphur (from

* In all these experiments the seed was put in during the last ten days of May, and plants were harvested by pulling up in the last fifteen days of December.

6 to 20 cwt per acre), sulphuric acid (from 1 ton to 3 tons), sodium thiosulphate crystals (from 17 to 75 cwt), calcium carbonate (from 1 to 3 tons), and various combinations of these last three substances. These tests were replicated over 44 plots each one yard square, on ground that had grown partly wheat and partly oats in the previous season. The plots were sown with Federation wheat, 4 rows per plot. Superphosphate, which had been applied at 2 cwt per acre for some years past, was omitted this year.

The season of 1928 was a dry one, and the crop was an almost complete failure on all but nine of the plots. These successful plots included the heavier treatments with sulphur (13 cwt or more) and sulphuric acid (2 tons or more) and the lightest treatment with ammonium sulphate (27 cwt). The heavier treatments with ammonium sulphate, and all the thiosulphate treatments, were evidently toxic.

The pH values of the 8 inches of surface soil of various plots were determined in December, 1928. It is shown in Table I that all plots of pH more alkaline than 6·7 were failures irrespective of treatment, but while all the control plots, of pH from 7·4 to 7·7, failed to produce any grain worth mentioning, the nine plots that produced grain had pH values ranging from 5·5 to 6·6, with yields of from 5·3 to 30·3 bushels per acre.

TABLE I—FEDERATION WHEAT, 1928

Treatment	Number of Plots	Yield, bushels per acre	
		Average	Maximum Yield
All thiosulphates and heavier amm. sulph.	12	Nil (Toxic)	0 0
All treatments and controls, pH 6·7-7·7	11	0·4	1 7
Various treatments, pH 6·0-6·6	6	14·2	26·2
Various treatments, pH < 6·0	3	22·5	29·9

Rainfall, May to November inclusive, 9·65 inches

No evidence of parasitical attack was found on the control plots, and in her account of the work Glynne (1929) suggested that there was an actual deficiency of sulphur in the soil, but this suggestion cannot be right, as the sulphate sulphur in the surface soil of the control plots is 0·01 per cent, enough for many successive crops.

EXPERIMENTS IN 1929

In 1929 the same plots were resown with Federation wheat on the same lines, with 2 cwt per acre superphosphate, but no further treatment. Yields were far better this year, but in spite of high variability among the control plots, the correlation of good yield with low pH was again very noticeable. Control plots ranged from 8·5 to 33·4 bushels, while acidic plots and those previously treated with thiosulphate gave yields ranging from 14·1 to 56·2 bushels. The results are summarized in Table II., where thiosulphate treatments are collected in one group, irrespective of pH. It is remarkable that the best yields on the acidic plots were on those of pH more acid than 6·3. The heavy applications of ammonium sulphate have brought down the pH to 6·7 or less.

TABLE II.—FEDERATION WHEAT AFTER WHEAT, 1929

Treatment	Plots	pH	Yield, bushels per acre	
			Average	Maximum
All thiosulphates	10	6·6-7·6	28·1	56·0
Excluding thiosulphates—				
All below pH 7·0	7	5·6-7·0	34·0	52·3
Intermediate	4	7·0-7·2	25·2	32·5
All above pH 7·2	23	7·2-7·8	16·9	33·2

Rainfall, May to November inclusive, 13·99 inches

EXPERIMENTS IN 1930

It was thought that the effect of sulphur might have been connected with the intake of nitrogen or phosphorus. A fresh experiment was therefore carried out in 1930, in which the treatments included, beside a 1-ton per acre dressing of sulphur, a 2-cwt dressing of sodium nitrate and a 4-cwt dressing of superphosphate. These three treatments were replicated four times each, and with four control plots this gave a total of sixteen plots each of 2 square yards. Free Gallipoli wheat was sown on adjacent soil that had been fallowed the previous year and had accumulated large reserves of nitrate. Most of the nitrate was washed away by heavy rain in early May (before sowing), but there was an ample supply left in all plots, the nitrate nitrogen in the surface soil (0·9 in.) averaged 36 lb per acre at sowing (May 25), 15 lb at the end of July, and then fell to a steady value of about 5 lb through September and October. The nitrate concentration of the various plots during June and July was correlated with the tiller count made on September 19, but when the harvest was taken in December, there was no

correlation between autumn or winter nitrate and yield. Nitrate concentration was also unconnected with the use of sulphur or superphosphate. The application of superphosphate had no effect on tillering nor on the final yield, this is not surprising in view of the heavy doses given in former years. But the correlation of final yield with pH was as marked as in previous years. The sulphur oxidized quickly in the autumn and lowered the pH (determined on a composite of six cores), from 7.3-7.6 to 6.3-6.6 within six weeks after application. It would seem that the bacteria responsible for this oxidation are somewhat sensitive to the acidity which they produce, as even in December a considerable amount of sulphur remained unchanged, especially around the roots of the plants. A similar effect has been noted by Rountree (1933) at Renmark. One of the unsulphured plots in this experiment had a consistent acidic reaction, about 6.6. It is not known how this occurred, but this plot is included with the four sulphured plots in Table III, leaving eleven alkaline plots with which to compare the acidic plots. (This seems reasonable since in their whole behaviour the plants on this exceptional plot followed those on the sulphured plots.) The high production of tillers per plant is due to the fact that the rows were spaced at an interval of 2 feet.

TABLE III—FREE GALLIPOLI WHEAT AFTER FALLOW, 1930.

—	No. of Plots	pH	Tillers		Ears		Grain		
			Per Plant	Per square yard	Per square yard	Per cent surviv- ing.	Gram per ear	Bushels per acre	
								Average	Range.
Alkaline plots	11	7.2-7.6	5.8	208	126	81	0.69	15.5	10.8-18.8
Acidic plots	5	6.4-6.7	4.8	186	147	79	0.86	22.6	20.2-25.3

Standard error of difference of mean, 1.8 bushels per acre

Rainfall, May to November, 15.30 inches

Yields significantly different from controls are in black type.

EXPERIMENTS IN 1931

It had by now seemed likely that the trouble was manganese deficiency, and further tests were then carried out with this in mind. It is known that the good effects of sulphur on certain soils are connected with the flocculating effect of the calcium sulphate that is formed, so a 1-ton gypsum treatment—enough to give a marked flocculation—was included in 1931. Other treatments were 40 lb each of "chemically pure" crystalline hydrates of CuSO_4 , FeSO_4 , MnSO_4 , and $\text{Ca}(\text{MnO}_4)_2$, and sulphur at 30 cwt per acre. Each treatment was replicated over four plots of 1 square yard each. Free Gallipoli wheat was

sown in rows at intervals of 1 foot, with 2 cwt superphosphate and 2 cwt calcium nitrate on all plots. Tillers were counted as before in late September, and these showed a mean value of 26 per plant, no treatment showing any significant difference from any other. Neither gypsum nor any other salt applied showed any significant difference from the control plots at harvest. Treatments other than sulphur are therefore not entered separately in Table IV, which compares the four sulphured plots with (a) the four control plots, and (b) sixteen alkaline plots of various treatments, chosen from those neighbouring the sulphured plots.

TABLE IV—FREE GALLIPOLI WHEAT AFTER OATS AND BARLEY, 1931

—	No. of Plots	pH	Tillers		Ears		Grain		
			Per Plant	Per square yard	Per square yard	Per cent surviv- ing	Gram per ear	Bushels per acre	
							Mean	Range	
Alkaline plots (control)	4	7 3-7 6	2 69	210	138	63	0 61	14 7	8 0-19 7
Alkaline plots (various)	16	7 2-7 7	2 58	214	120	56	0 67	14 3	3 0-31 8
Acidic plots	4	6 3-6 5	2 50	206	141	68	0 92	23 5	18 7-20 3

Standard error of mean of 4 plots, 2 76 bushels per acre

Rainfall, May to November, 17 26 inches

Yields significantly different from controls are in black

The result was similar to that of 1930. Yields on control and other alkaline plots were very erratic, although the alkalinity was nowhere greater than pH 7.7 nor less than pH 7.2.

On one patch of soil in this test the disease hardly showed itself, so that a sulphured plot in this section could not gain much advantage over the control, while on another patch the sulphured plot gave a yield of 128 gm to the square yard, where surrounding alkaline plots averaged only 29 gm. This characteristically high variability of the soil with respect to manganese deficiency was partially eliminated from the calculation of the standard error, by Fisher and Wishart's (1930) method of analysis of total variance. The figures, however, underestimate the true effect of the sulphur.

The manganese used in this test was applied at the rate of 10 lb. Mn per acre, in four plots each as $\text{Ca}(\text{MnO}_4)_2$ and MnSO_4 at germination and in four more plots as MnSO_4 in early September. It is remarkable that this addition to the soil of about 100 times as much manganese as the crop needed had no perceptible effect on the development of the plant. Chemical analyses at harvest time showed that these plants had taken up no more manganese than the controls. Other tests done on this soil, together with results reported elsewhere by Samuel and

Piper (1928), indicate that at least 30 lb per acre of soluble manganese applied at sowing to the soil may be needed if such severe deficiency is to be overcome by a surface application. Many disappointing results of the surface application of manganese salts have been due to the use of too small quantities. For example, Tunney and Findlay (1932) in Yorkshire attempted to control the disease with 45 lb per acre of $MnSO_4$ crystals, sprayed over the crop. This was successful to a limited extent, but only if done after the disease had appeared—i.e., the manganese was then absorbed through the leaf, and not through the soil and root.

EXPERIMENTS IN 1932

Since the deficiency is confined to soils of pH above about 6.7, there are two possible ways of overcoming the unfavourable state of the soil in the field. The soil may be left alkaline and enough manganese be added, preferably as sulphate, to carry the plant through the season, or the reaction of the soil may be permanently changed by the addition of sulphur or any other acidifying agent—a line of action that is feasible only when the $CaCO_3$ in the soil is fairly low, as here. The literature to date contains no comparisons of the effects of these two treatments on the development of the plant. With this comparison in view, therefore, a fresh experiment was carried out in 1932.

In this year Free Gallipoli wheat was sown with 2 cwt. each superphosphate and calcium nitrate; treatments comprised sulphur (1 ton per acre), $MnSO_4$ crystals at germination (1 cwt and 3 cwt) and in early September (1 cwt). Each treatment was replicated four times in square-yard plots, and four control plots were included. The original pH of about 7.5 was brought down by the sulphur only to 6.8-7.0, a figure not low enough to ensure a uniform cure of the deficiency, however, some definite conclusions may be drawn from the results which are summarized in Table V.

TABLE V.—FREE GALLIPOLI WHEAT AFTER WHEAT, 1932

—	No. of Plots	Tillers		Ears		Grain		
		Per Plant	Per square yard	Per square yard.	Per cent surviving	Gram per ear	Bushels per acre.	
						Mean	Range	
Control	4	2.03	253	180	51	0.98	22.5	11.2-38.9
Sulphur	4	3.87	259	188	72	1.33	44.2	30.2-59.0
$MnSO_4$								
1 cwt (autumn)	4	3.62	303	211	70	1.41	53.0	35.5-78.6
1 cwt (spring)	4	3.06	259	187	64	1.06	31.3	18.5-39.1
3 cwt. (autumn)	4	3.54	280	176	63	1.17	36.5	20.6-48.0

Standard error of mean of four plots, 7.1 bushels per acre.

Rainfall, May to November, 13.44 inches.

Yields significantly different from controls are in black.

These figures are not as significant as one would desire. For instance, the figure of 53 bushels quoted for 1 cwt MnSO₄ includes an individual plot of 78.6 bushels. The sulphur was not applied heavily enough to control the disease uniformly, and the application of MnSO₄ to the surface soil after germination also failed to give complete or uniform control. It has been shown by Scott (1932) at Coony Point, South Australia, that manganese applied with the seed, like superphosphate, gives the plant a better chance of overcoming the deficiency than when applied to the surface after germination, 28 lb of the hydrated crystals used in this way were more effective than 112 lb applied to the surface soil.

EXPERIMENTS IN 1933

The experiment was therefore continued in 1933 on the same plots. Superphosphate, 2 cwt per acre, was applied with the seed, but no nitrogenous fertilizer was added. Sulphur was again applied, and an extra 10 cwt per acre now brought the pH to the desired range (6.2-6.4). The plots given MnSO₄ late in 1932 were now given MnSO₄ sown with the seed, those given 3 cwt in 1932 were given 1 cwt applied to the soil after germination, while those given 1 cwt early in 1932 were left without further manganese in order to determine if there were any residual effect. Results are summarized in Table VI.

TABLE VI—FREE GALLIPOLI WHEAT AFTER WHEAT, 1933

—	No. of Plots	Tillers		Ears		Grain.		
		Per Plant	Per square yard	Per square yard	Per cent surviving	Gram per ear	Bushels per acre	
						Mean	Range	
Control	4	2.23	196	54	27	0.66	6.8	1.1-9.8
Sulphur	4	2.47	194	128	66*	1.30*	29.4*	22.0-39.6
MnSO ₄								
With seed	4	2.75	251	119	47	0.82	17.4	0.1-26.8
After germination	4	2.47	216	100	46	0.93	16.5	0.8-24.7
Residual	4	2.46	218	84	39	0.85	12.8	3.1-21.2

Standard error of mean of four plots, 2.33 bushels per acre

Rainfall, May to November, 13.53 inches

Yields significantly different from control are in black. Yields significantly the highest in their respective columns are asterisked.

This season was definitely less favourable than the preceding, and in addition the soil was poor in available nitrogen; the nitrate nitrogen in the top 9 inches of soil at sowing averaged eight parts per million on the alkaline plots and four on the sulphured, acidic plots. When the results of the various years were compared, it was seen that there is a very marked dependence on the weather, as is shown by the complete failure of

alkaline plots in the dry season 1928 as compared with 15-bushel yields in the better years 1930 and 1931, and 22.5 bushels in the excellent season 1932, in which the distribution of rainfall was very favourable. It has, in fact, often been noted that manganese deficiency is more marked in a dry year than in a wet one.

Review of Results from Experimental Plots.

While the results reported here are largely confirmatory of previous work, they have peculiar features which in spite of the artificial nature of the soil may have a bearing on the problem in other countries. Some of these are as follows —

1 *Tillering* — In each of four years 1930 to 1933, the number of tillers per square yard, counted in late September, was unaffected by sulphur, although the leaves of plants on acidic soil were a darker green. On the other hand, germination was rather adversely affected by sulphur in 1933, and both in 1930 and still more in 1933, the plants on the acidic plots were definitely yellower and poorer in appearance than those on the control, or other alkaline plots, up till the end of August. In 1933 this was correlated with a lower accumulation of nitrate on the acidic soil during the preceding summer and autumn, though it is doubtful if this alone explains the effects noted.

Manganese sulphate, on the other hand, increases the tillering somewhat if it is applied early enough and copiously enough to the soil. If it is applied in the most efficient way—with the seed—it is shown in Table VI to have a very favourable effect on tillering.

2 *Survival of Tillers to Ears* — The survival of tillers to ears is much improved by either sulphur or manganese, but in the less favourable year 1933 sulphur was far more effective in this respect. In every year there is a very striking relative improvement of the sulphured plots during October and November, and they show their superiority in every way at harvest.

3 *Size of Ears* — While the total number of ears is much increased by either treatment, the ears on the sulphured plots gave far more grain than those sown with $MnSO_4$ in 1933. Analysis shows that this superiority exists in both mean number of spikelets per ear, mean number of grains per spikelet, and weight per grain.

Sterility is more marked on the alkaline plots, representative samples from these in 1931 showed that on the average 41 per cent. of the spikelets were sterile, compared with 32 per cent. on the acidic plots. Both grains per spikelet and weight per

grain are also higher on the acidic plots—all of which illustrates the importance of manganese for the development of flower and fruit.

The course of the disease seems to vary a good deal according to climate and soil, while in Melbourne the plants on "deficient" soil appear fairly healthy through winter and sicken only when the soil begins to dry in spring, in Western Australia (Carne, 1927) the plants appear to recover in spring after looking poor in August, this recovery by plants that have shown "grey speck" in September has also been observed on inadequately sulphured plots in Melbourne, and is probably connected with mild cases of deficiency only Odland and Crandall (1932) in Rhode Island found deficiency showing in some years on the spring crops and not on the autumn, and vice versa in other years

4 Residual Effect of MnSO₄—The effect of heavy application of MnSO₄ a year earlier is still seen in a somewhat healthier growth, but is strikingly small

5 Effect of Heavy Applications of MnSO₄—The comparative failure in 1932 of the crop on soil given 3 cwt per acre of MnSO₄ crystals is striking, however, the yield is not significantly lower than that of the 1 cwt plots, and the difference only shows how variable the soil is with regard to the deficiency-effect (See manganese content of grain, below)

6 Effect of Nitrates—Nitrates are said to make the disease worse In this work, the deficiency has been more marked on plots of higher nitrate status, both in 1930 and in 1933

7 Effect of Ammonium Salts—Ammonium sulphate has been recommended on grounds of economy for grey-speck in countries of northern Europe, notably by Arrhenius (1926) in dealing with lime-induced grey-speck on podzolic sands in south-western Sweden Its good effect is clearly related to its acidifying action, though it is hard to see how it could be as efficient in the small amounts used (2 cwt) as is sulphur in large doses In the work reported here, the amounts of ammonium sulphate used in 1928 (Table I) were so huge as to lower the pH to a point where manganese is available, the effect seems to have nothing to do with the amount of soluble nitrogen in the soil, which in 1930 was no higher on the ammonium sulphate plots of 1928 than on the controls, although the treated plots were very much healthier

8 Effect of Thiosulphates—Thiosulphates are oxidized in the soil according to the ultimate scheme,

but in many plots the fall in alkalinity due to the NaHSO₄ produced was not very marked, in fact, the best plot in 1929, yielding at the rate of 56 bushels per acre, after a 75-cwt dose of Na₂S₂O₃ 5H₂O in early 1928, had a pH in bulk sample

(surface 8 inches) of 7.3. It is possible that there was a local production of high enough acidity to overcome the deficiency. Otherwise, the highly reducing nature of the thiosulphate ion may have been responsible for the effect noted (This will be discussed later)

9. *pH Value of Profile.*—The pH of the soil falls to 6.5 at 18 inches. At such a value one would expect a fair availability of manganese, and the failure of a wheat plant to collect its necessary fraction of a milligram from this level may be partly due to the fact that it is essential for the manganese to be at hand from the earliest stages of growth (However, spraying $MnSO_4$ solution on very sick oat plants growing on this soil, in early September, led in about a week to a recovery from an apparently hopeless position, and finally these plants yielded reasonable amounts of grain.) But a plant already suffering from deficiency would not be likely to explore the 18-inch level at all thoroughly

10. *Varietal Differences*—It has often been noted that different varieties show very different degrees of tolerance (e.g., Davies and Jones, 1931). This effect was very marked in this work also, from observations on varieties of wheat, barley, and oats which were grown in connexion with other work. Common wheat was found to be less sensitive than emmer and macaroni, while single varieties of spelt and "mummy" were about as tolerant of deficiency as most varieties of common wheat. Barley is generally more tolerant than oats, but the most tolerant oat varieties (viz., Lachlan, and still more Palestine) are better than some barley varieties (such as Gatami and Hanchen). But there are many oat varieties which are so sensitive that they may die in September, an extreme case being Dawn (a local variety), though others such as Fulghum and Algerian are also very sensitive. Of the barleys, Pryor and Moira are the least sensitive

11.—*Manganese in Dry Matter and Requirements of Various Plants*—The total manganese in the dry matter of a plant is closely connected with its availability in the soil. The manganese content of healthy plants of wheat, oats, and barley ranges from 15 to over 200 parts per million (p.p.m.) of dry matter; a figure of less than 15 p.p.m. indicates a probable deficiency. The difference in sensitiveness of various plants to this deficiency has already been remarked on, it is very striking to see how invariably rye yields a splendid crop while the neighbouring row of oats or wheat is languishing. Wimmera rye-grass (*Lolium subulatum*) and wild vetches (*Vicia sativa*) also grow vigorously to maturity on this soil, which is evidently highly fertile for all but sensitive plants. In fact, weeds of all kinds have been observed to flourish, and during the autumn of 1934 it was observed that alkaline plots of the previous year's experiments

were supporting a vigorous growth of weeds, largely *Sonchus oleraceus*, *Malva rotundifolia*, and *Portulaca oleracea*, while the acidic plots were almost bare. This avoidance of acidic plots may have been due to the direct effect of the sulphur, in lowering the pH, causing a very high concentration of CaSO_4 , or producing other unfavourable oxidation products. It was incidentally noted in 1930 that the activity of *Azotobacter* was adversely affected by sulphuring. These facts may be compared with the poor growth shown also by wheat on the acidic soil up till late in August. Rye, rye-grass, and the tolerant barley variety Pryor, were sampled in the spring of 1931 and the whole plants were analyzed for manganese. It was found in each case that the total manganese was only 10 to 11 p.p.m. of dry matter. It would appear, therefore, in accordance with Samuel and Piper's work on culture solutions, that tolerance implies a lower need for manganese, rather than a greater power to obtain it, though no doubt plants differ in this power also, of course, the total Mn in the crop of the tolerant plant may be considerable. The question is bound up with that of the function of manganese, about which very little is known as yet.

TABLE VII.—MANGANESE IN GRAIN OF WHEAT

Treatment	Sample	Year	Yield of oven-dry grain at selected point, grams per square yard	Mn parts per million dry matter	Mn in grain	
					Milligrams per square yard	Grams per acre
Control (alkaline) .	1	1930	77	12	0.92	4.5
	2	1930	59	8	0.47	2.3
	3	1931	73	9	0.66	3.2
	4	1932	65	12	0.78	3.8
	5	1932	39	10	0.39	1.9
	6	1933	50	5.5	0.28	1.3
MnSO_4 in autumn .	7	1931	69	10	0.69	3.3
	8	1932	440	12	5.28	25.6
	9	1932	189	30	5.67	27.5
	10	1933	45	12	0.54	2.6
	11	1933	135	32	4.33	2.1
Sulphur (acidic) ..	12	1930	103	21	2.16	10.5
	13	1932	119	7	0.83	4.5
	14	1932	324	27	8.75	42.5
	15	1933	136	32	4.35	21.1

The figures collected in Table VII. refer only to the grain of Free Gallipoli wheat. The table shows, firstly, that the manganese content of grain from alkaline, deficient soil (samples 1 to 6) ranges from 5.5 to 12 p.p.m., the yields being mainly poor. Of samples 7 to 11, from soil to which MnSO_4 had been applied, Nos 8, 9, and 11 showed a marked response to the

applied manganese. The low proportion of manganese in the grain of the enormous crop of No 8 is striking, however, the total Mn removed by the crop is quite high. Information is not available about the Mn in the straw. Samples 7 and 10 showed symptoms of Mn deficiency, and both the yield and the Mn content are of the same order as in the control plots—in each case the added $MnSO_4$ was presumably precipitated out of reach of the main mass of roots. Sample 10 was collected from soil that had been treated with 3 cwt per acre of $MnSO_4$ crystals; it gives clear evidence that the comparative failure of these 3-cwt. plot was connected with very low local availability of added manganese. Samples 12, 14, and 15 show the typical increase in concentration in Mn that follows acidification. Sample 13 was taken from an inadequately sulphured patch of pH 7.0, where the yield was disappointing and symptoms of deficiency were seen. The figure 7 p.p.m. again recalls the alkaline plots.

General Discussion of Availability of Manganese in Soil.

These experiments make it of interest to review the question of the availability of manganese in the soil. The nature of this availability has been discussed by several workers, a useful summary being given by Piper (1931). Work in South Australia has made it clear that figures for the total manganese in the soil (above a certain minimum), or for strong or dilute acid extracts, have little or no bearing on the problem, a healthy soil may well yield less soluble manganese to an extracting acid than will a deficient soil (Samuel and Piper, 1928). Soils more acid than pH 6.7 do not show the disease. On such soils manganese compounds do no good, and on more definitely acidic soils they may be harmful. On the alkaline side of this boundary line (especially beyond pH 7.0) the manganous ion may be represented by the bicarbonate, by exchangeable manganese, or by basic compounds (phosphate, carbonate, silicate) which as Britton (1930) showed, begin to appear as bulky precipitates below pH 7. The existence of such basic compounds makes it irrelevant in this regard to quote the laboratory precipitation of manganous hydroxide from chloride solutions at pH 8 to 9. It is probably safe to say, however, that exchangeable manganese is the only important store of the bivalent ion available in alkaline soils of any considerable degree of maturity.

At pH values above 7, bivalent manganese is easily oxidized in the air to a higher valence. The composition of this manganese material is not constant, but it may be conventionally written as the dioxide, MnO_2 . Piper showed that water-soluble manganese (as $MnSO_4$) was largely converted* into the "dioxide" within

* His method, however, as is shown later in this paper, is bound to underestimate the extent of this conversion (Piper, 1931, p. 768).

three weeks when it was added to a soil of high pH, whether deficient or not, at a water content well below saturation. As the dioxide is practically insoluble it follows that soluble manganese compounds, when added to a soil of high pH, will be precipitated at the surface even more effectively than other elements (such as potassium) which are held by the soil only in the form of exchangeable bases. The failure of light applications of $MnSO_4$ to overcome manganese deficiency may be explained by the complete precipitation of manganese in the surface inch of soil, which can be reached by only a small proportion of the root system, i.e., the failure is positional, not physiological. This aspect of availability is discussed in general by Spencer and Stewart (1934). This concentration of manganese in the surface soil under certain conditions was well shown by Bishop (1928), who found that the surface soil at a depth of 3 inches under a Eucalyptus tree contained 3 to 7 per cent Mn, derived from the leaves, twigs, and bark, while the subsoil, and the surface soil away from the tree, contained 0.25 to 0.6 per cent Mn.

PREVIOUS HYPOTHESES

The scheme put forward by Piper may be summarized as follows—Manganese is absorbed only as the bivalent ion, and MnO_2 is unavailable. While at low pH values Mn exists in solution in fair concentration, it exists at high pH only as the bivalent exchangeable base or as insoluble dioxide. There is an equilibrium between these forms, swinging towards the exchangeable form as conditions favour reduction, and towards the dioxide as conditions favour oxidation. The occurrence of deficiency on neutral and alkaline soils must therefore depend on the oxidation-reduction potential (E_h) of the soil.

Under fully aerobic conditions, the effect of the very low solubility of the manganic compounds would be to reduce the maximum possible concentration of manganous ions in equilibrium with the atmosphere to a very low figure, especially if bacteria were also oxidizing manganous to manganic compounds.

Steenbjerg (1933) accepts the same explanation as Piper. He discusses the prevalence of the disease on light, sandy soils, and concludes (p. 428), "The content of available manganese in the soil is controlled by (1) the reaction, and (2) the oxidation-reduction conditions."

This hypothesis is supported by the fact that some manganese present in soils as MnO_2 may be brought back into solution by reducing conditions; this may be connected with the good effects of thiosulphate referred to earlier in this paper, but is best shown by waterlogging, especially in the presence of a source of bacterial energy such as glucose. Piper used for many of his tests the

deficient soil that occurs locally around Mount Gambier (S Aust). This soil type has been described by Prescott and Piper (1931), it is a highly immature volcanic ash, containing variable quantities of CaCO_3 . The University soil appears to be, in fact, a synthetic imitation of the Mount Gambier soil, being light, permeable, calcareous, well-drained, and highly immature, with an abundance of primary minerals such as augite in the fine sand, and of good fertility except for the manganese deficiency. The similarity extends also to the very low availability of added MnSO_4 . For the effect of waterlogging, Piper compared a sample from Mount Gambier, of pH 7.4, with a sample from the experimental fields at the Waite Institute, Glen Osmond—a red-brown earth, also of pH 7.4, on which no sign of manganese deficiency had been observed. These soils were waterlogged under various conditions for three weeks, in every case the water-soluble manganese was increased by this treatment, though the healthy soil yielded always more than the deficient soil. In all cases pot tests showed that deficient soils, after a long enough waterlogging, became free from deficiency during the following few months at least, and possibly for much longer.

It is thus implied that healthy soils of high pH either have a lower oxidation-reduction potential, or are capable of developing one more easily, than deficient soils. It is, of course, conceivable that even a well-drained soil on account of natural heterogeneity might contain numerous tiny waterlogged patches in which the dioxide might be reduced. However, the following facts show that this explanation cannot be right.

EXPERIMENTS ON WATERLOGGING

The alkaline "deficient" University soil, sampled to 8 inches, was compared with the sulphured, healthy soil from neighbouring plots, and with the surface soil from Dooen, in the Wimmera district of Victoria. This soil is typical of the so-called "Wimmera Black" soil. It is a grey self-mulching clay, slightly calcareous and of pH 7.3, it produces good crops of wheat in a normal season, and the dry matter of the crop contains 90 ppm of manganese.

Samples of the deficient (alkaline) and of the healthy (sulphured) University soil, and of the Dooen soil, were waterlogged at laboratory temperatures (about 10° C) both with and without the addition of 0.25 per cent of their weight of glucose, and at the end of three weeks were shaken for an hour with enough water to bring the soil water ration to 1.5, and filtered through candle filters. This was the method used by Piper, whose figures for the Mount Gambier and Glen Osmond soils are also included in Table VIII for comparison, though doubtless the temperature of waterlogging was considerably higher in his experiments.

TABLE VIII.—AMOUNTS OF MANGANESE MADE WATER-SOLUBLE
BY THREE WEEKS' WATERLOGGING

(Parts per million)

	University Soil		Dooen	Mount Gambier	Glen Osmond
	Alkaline	Sulphured			
Waterlogged without glucose	0.08	2.8	0.02	1.2	6.3
Waterlogged with 0.25 per cent glucose	2.5	11.9	2.6	5.4	13.0

It will be seen that the waterlogging has brought manganese into solution in greatest amounts in the Glen Osmond and healthy (sulphured) University soils, but the equally healthy Dooen soil has yielded less soluble manganese than the two deficient soils studied. In another experiment on the Dooen soil not a trace was found. The waterlogging with glucose shows a similar order of results.

Even under intensely reducing conditions the Dooen soil cannot produce manganous ions for the soil solution. But, in fact, the Dooen soil is more actively *oxidizing* than the deficient University soil. This was shown by shaking each soil with solutions of benzidine and of guaiacum, which are turned blue by actively oxidizing soils. The Dooen soil gave a good colour with each reagent, while the University soil gave no colour. This test will be seen to support the suggestion put forward later in this paper.

EXPERIMENTS WITH LEACHING REAGENTS

Piper also found that the Mount Gambier soil yielded only 4.2 p.p.m. of soluble manganese to rapid leaching with cold 0.05N sulphuric acid, while the healthy Glen Osmond soil yielded 65.7 p.p.m. Further leaching with the same acid containing 0.2 per cent quinol in each case dissolved relatively huge amounts of manganese, presumably from the state of MnO_2 (again using this formula in a conventional way). This supports his idea that a deficient soil contains only small quantities of exchangeable manganese, while it may be rich in the dioxide.

The same extracting method was therefore tried on both deficient (alkaline) and healthy (sulphured) soil from the University plots, and also on alkaline soil to which manganese sulphate had been added. In each case 30 gm samples of air-dry soil were leached first with 500 c.c. of 0.05N H_2SO_4 , then with 500 c.c. of 0.05N H_2SO_4 containing 1 gm quinol in solution.

TABLE IX.—AMOUNTS OF MANGANESE DISSOLVED FROM SOILS BY LEACHING WITH VARIOUS REAGENTS

(Parts per million)

(a) Without quinol (b) With 0.2 per cent quinol

Soil	pH	Dissolved by 0.5N H ₂ SO ₄	Dissolved by ammonium acetate pH 4.6	Dissolved by ammonium acetate pH 7.0	Total soluble in cone HCl.
Glen Osmond	7.4*	(a) 66*	(b) 315*	(a)	(b)
Mount Gambier	7.4*	4*	124*	7.5	18
University alkaline + 30 parts per million Mn	7.3	34	11	12	1
University sulphured	7.3	50	23		3
Dooen	6.1	44	11		5
Tatchera sand .	7.3	97	166	10	Tr
Penola	8.0	40		40	3.6
Coiny Point	6.9*	0	<1		Tr
	8.0*	3	8		0.4
				2.6	8.0
					187*

* These figures are taken from Piper (1931), and Samuel and Piper (1928).

Piper's figures for Glen Osmond and Mount Gambier are also included for comparison in Table IX.

It will be seen that in spite of the mineralogical and physical similarities of the soils from the University and from Mount Gambier, the results here reported seem incompatible with the theory discussed at the beginning of this section. There is little significant difference in acid-soluble manganese between deficient and healthy samples of University soil and the healthy Glen Osmond soil, but the most striking fact about the sulphuric acid extracts is the very low figure for the "dioxide" values (quinol-soluble manganese) of the former.

Further tests were therefore made by leaching 30 gm. of soil with 500 c.c. of a normal solution of ammonium acetate at pH 7.0, followed by further leaching of the residual soil with the same solution containing 0.2 per cent quinol. In a few cases additional tests were made in which the solution at pH 7.0 was replaced by a solution of ammonium acetate and acetic acid, of pH 4.6, normal with respect to total acetate. In each case the soil was first warmed to 50° with 100 c.c. of the leaching solution, then cooled and filtered under gentle suction, using successive portions of 50 c.c. of the leaching solution at room temperature. The whole 500 c.c. took about seven hours to filter.

Ammonium acetate was chosen partly for its buffer capacity as emphasized by Schollenberger and Dreisels, who proposed its use (1928), and partly because it can be completely destroyed in the leachate, so making it possible to use small amounts of liquid for estimating the very small quantities of manganese sometimes present. In spite of these advantages, Steenbjerg

(1933) has shown that ammonium is much less efficient than calcium or magnesium in replacing manganese from alkaline soil. However, the differences between various soils found in this work would almost certainly reappear with other leaching agents so long as the pH of leaching were standardized.

Table IX summarizes the results, together with Piper's figures already referred to. The soils tested included the above-mentioned soils, and also the following —

(1) A sample of Tatchera sand, a Mallee soil, from Cresco (Vic.). This soil has been described by Taylor *et al* (1933). It has a pH of 8.6, and is perhaps representative of the lighter soils of the Victorian Mallee. Manganese deficiency has never yet been found on such a soil.

(2) A heavy clay from Penola (S Aust.). This is a reclaimed swamp, of pH 6.9, is highly deficient, and has been experimented on by Piper (1931).

(3) A grey highly calcareous soil from Corny Point (S Aust.), of pH 8.0. This represents about 10,000 acres of deficient country, and work has been reported on it by Piper and by Scott (1932).

Comparison of results for manganese replaced at various pH values shows how quickly this is repressed by growing alkalinity, until at pH 7 the figures are all small, especially for the Dooen soil, for which not a trace of manganese could be detected. The figures for the "dioxide" manganese, however, show a huge contrast between the deficient and healthy soils, the former have very little at pH 7, the latter have a copious supply at all pH values. Since the pH value of the soil solution in the alkaline and calcareous soils here compared would seldom fall much below 7.0, it would appear that the secret of the success of the Wimmera soil is connected with the presence, not of exchangeable manganese, but of *active* manganese dioxide, which can be easily reduced at a high pH value. The Dooen soil contains more than twelve times as much of this component as does the "deficient" soil from the University. This may explain the results obtained with benzidine and with guaiacum, referred to above.

While healthy alkaline soils *may* be higher in manganese set free by waterlogging (e.g., Glen Osmond) or exchangeable at pH 7.0 (e.g., Tatchera sand), than are deficient soils, these tests fail for the Dooen soil. There is only one respect in which all healthy and deficient soils of high pH are distinguished—viz., in their content of active "dioxide" which is brought into solution by 0.2 per cent quinol in normal ammonium acetate at pH 7.0. It appears, therefore, that quinol is a chemical metaphor for the plant roots in much the same style as has been suggested for dilute citric acid in the problem of phosphate

availability. This can happen only in one or both of two ways, reducing conditions may be set up at the surface of the root providing a direct source of manganous ions from the more active dioxide, or else colloidal manganic oxide, such as readily oxidizes quinol, can be directly absorbed by the plant. In favour of the former possibility, one may quote the observation of Schreiner, Sullivan, and Reid (1910), that selenites may be reduced to selenium on the surface of a root—a reaction that calls for a higher reducing power at pH 7 than the reduction of manganese dioxide. The possibility of colloidal absorption is not generally favoured, though Comber (1922) has argued in its favour, and work on the water-soluble phosphate of soils points to it (Parker and Pierre, 1928), while the very considerable intake of silica into glasses and cereals growing on soils of pH 5 or less may well be colloidal. Such colloidal material, however, would seem to be a "second choice," being less available than ordinary ions, and therefore needing to be present in fairly copious amount to avoid a deficiency. In either case, one must dispense with the belief in an intermediate condition of manganous ions in the soil solution, especially in view of the failure of the Dooen soil to produce more than a trace of soluble manganese under a waterlogging far more drastic than would occur in the field, even in a wet winter (since the drainage of this soil is good).

The success of KMnO_4 in curing manganese deficiency in some cases (Gilbeit *et al.* 1926, Samuel and Piper, 1928) may also be explained if it is the most active form of "manganese dioxide" which prevents deficiency at high pH values. KMnO_4 can only increase the oxidation-reduction potential, so could only do harm if that were the important factor. However, this salt must change very quickly to a bulky mass of colloidal MnO_2 , which is probably very easily available. Reports on the success of applications of MnO_2 as such are conflicting, probably because the physical state of the MnO_2 is so important.

It is interesting to note that apparently only two cases have been reported of manganese deficiency occurring on soils of basaltic or similar origin—namely, the two highly immature soils from Mt. Gambier and the University. Evidently the slow supply of manganese coming from the rich reserve of primary minerals is not enough for the purpose.

Oxidizing Power of Manganic Compounds.

It is well known that rising alkalinity increases the power of solutions of given strength of either Fe^{++} or Mn^{++} to reduce many oxidizing agents such as oxygen. The interaction with oxygen is clearly seen in the rapid deepening in colour of ferrous and manganous hydroxides as soon as they are precipitated. The prior formation of an actual basic precipitate of

the bivalent form is not necessary to this oxidation, since ammoniacal solutions of $MnSO_4$, if exposed to the air, show a rapid separation of a manganic deposit, while all but strongly acidic solutions of $FeSO_4$ are similarly attacked. In each case this effect is due to the very low solubility of the hydroxide of the more highly oxidized ion. The oxidation-reduction potential (E_1) at $30^\circ C$ of an inert electrode dipping into a solution containing ferric and ferrous ions in molar concentrations per liter, $[Fe^{+++}]$ and $[Fe^{++}]$ respectively, is given by (1), where the low concentrations considered may be taken as equal to activities —

$$E_1 = 0.74 + 0.06 \log \frac{[Fe^{+++}]}{[Fe^{++}]} \quad \dots \quad (1)$$

If the solution is in equilibrium with solid $Fe(OH)_3$ (which might well be the case at pH greater than 3) one can combine this formula with the solubility product of $Fe(OH)_3$, namely —

$$[Fe^{+++}] [OH^-]^3 = 10^{-36},$$

or multiplying by $[H^+]^3$, and using the relation $[H^+]^3 \cdot [OH^-]^3 = 10^{-42}$,

$$[Fe^{+++}] = 10^6 [H^+]^3$$

(1) now becomes—

$$E_1 = 0.74 + 0.06 \log \frac{10^6 [H^+]^3}{[Fe^{++}]} \quad \dots$$

$$= 0.74 + 0.36 - 18 \text{ pH} - 0.06 \log [Fe^{++}] \quad \dots$$

One may arbitrarily fix $[Fe^{++}]$ at 10^{-5} (about 0.5 parts per million of soil solution), since it is unlikely to exceed such a figure. If $[Fe^{++}]$ is thus considered constant, this gives —

$$E_1 = 1.40 - 18 \text{ pH} \quad \dots \quad (2)$$

This great fall in oxidation potential with rising pH is due to the removal of ferric ion in an insoluble form, a similar fall may be obtained without a change in pH by the addition of ions such as F^- or $C_2O_4^{--}$, which form stable complexes with Fe^{++} and so again remove it from the system. In such a case, ferrous salts can reduce cupric salts, as described by Müller (1908).

In the case of manganese, the potential for a solution in contact with solid MnO_2 is given different values by different workers; as the accurate value is of minor importance in this argument, we may use the value given by Latimer and Hildebrand (1929) —

$$E_2 = 1.33 + 0.03 \log \frac{[H^+]^4}{[Mn^{++}]} \quad \dots \quad (3)$$

Keeping $[Mn^{++}]$ constant at 10^{-5} , this gives

$$E_2 = 1.48 - .12 \text{ pH} \quad \dots \quad (4)$$

The rate of fall of potential with rising pH is three times (for iron) and twice (for manganese) the rate of 0.06 volts per pH shown by the oxygen, quinhydrone, and hydrogen electrodes. It follows therefore that the compounds Fe(OH)_3 and MnO_2 are much stronger oxidizing agents and so more easily reduced, in an acid than in a neutral environment. The importance of this fact (illustrated in Fig. 1) has not been realized enough by soil scientists, although the use of excess acid to prevent or destroy any MnO_2 precipitate has long been a commonplace of titrations involving KMnO_4 and oxalates. Very strong acidification raises MnO_2 into the region of oxygen overvoltage—solutions in fairly strong H_2SO_4 , for instance, slowly evolve oxygen on standing.

The use of the term rH is convenient here. This may be taken (for 30° C.) as the thirtieth part of the difference in millivolts between the system considered and the normal hydrogen electrode at the same pH, the rH value of the system $\text{MnO}_2 - \text{Mn}^{++}$ at pH 0 from (4) would be 49.3, and at pH 7 it would be 35.3. The iron system would have $rH = 34.3$ at pH 3, and 18.3 at pH 7—i.e., a fall of two and four rH units, respectively, for every rise of one pH unit.

As yet, little is known of the factors controlling the E_h (oxidation-reduction potential) and the rH of soils. Heintze, however, has shown (1934) that the soils which she studied lie in a range of rH just above the quinhydrone system, and this rH seems to be independent of pH. However, it must be emphasized that in so far as the potential is set by the system (Mn^{++} , sat MnO_2), it should give a lower rH on liming and a higher rH on acidification.

This point was excellently brought out by Sen-Gupta (1925), who measured the amount of phenol which was destroyed by rapid oxidation when it was added to various soils which had been brought to a low pH value by previous treatment with an acid, followed by a leaching out of the free acid. It was shown conclusively that this oxidizing power of soils depended on their content of MnO_2 . $\text{Fe}_2(\text{SO}_4)_3$ was only very feebly active. This power could be destroyed by mineral acids stronger than 4.5 N, especially by concentrated HCl—i.e., the conditions where MnO_2 has its highest rH, so is most easily destroyed. So long as this limit was not exceeded, the stronger the acid treatment the better the destruction of the phenol. It was also found that the power of the soil to destroy phenol was removed by treatment with citric or tartaric acid. These acids, being strongly reducing, can dissolve MnO_2 , being themselves oxidized in the process; working on the manganeseiferous soils of Hawaii, Dean and Dean (1929) noticed that citric acid was largely destroyed by the active MnO_2 that was present, so that citric acid extractions for phosphate were often useless.

But if the pH of the soil was raised to the alkaline range (by washing with alkali), phenol was no longer destroyed; i.e.-acidifying largely restored the power to oxidize phenol rapidly. There must obviously have been a big difference in pH values between the alkali-treated and the acid-treated samples—probably enough to change the gap of oxidation-reduction potential between soil and phenol by 300 to 400 millivolts or 10 to 13 redox units; the actual pH figures, however, were apparently not measured.

FIG. 1—1 (a) E_h values, and 1 (b), rH values, of various systems, numbered as follows—

- 1 $O_2 + 4H^+ + 4e = 2H_2O$
- 2 $MnO_2 + 4H^+ + 2e = Mn^{+1} (10^{-5}M) + 2H_2O$
- 3 $Fe(OH)_3 + 3H^+ + e = Fe^{+4} (10^{-5}M) + 3H_2O$
- 4 Normal Soil
- 5 $H_2SeO_3 + 4H^+ + 4e = Se + 3H_2O$
- 6 $C_6H_4O_2 + 2H^+ + 2e = C_6H_6O_2$
- 7 Waterlogged Soil
- 8 $2H^+ + 2e = H_2$

Most of Sen-Gupta's tests were made on soil that was treated with acid for 20 minutes, then washed free of acid and tested with the phenol. If the acid was allowed to stand on the soil

for some days, the phenol-destroying power of the soil gradually decreased. It seems very likely that during this period the organic matter of the soil gradually reduced the MnO_2 —an effect that would be impossible at the pH found in the field, on account of the very different gap of oxidation-reduction potential between MnO_2 and organic matter at the two pH values of about 1-2 and 6-7 respectively. Soils rich in organic matter were less active than others; this may have been due to the absence of much MnO_2 in the original soil, or to its partial destruction by organic matter on acidifying.

Figs 1 (a) and 1 (b) represent graphically the main issues in this argument. 1 (a) shows the actual difference in potential (E_h) between the various systems and the normal hydrogen electrode, while 1 (b) shows the same systems reduced to the rH scale, on which the value for the hydrogen electrode at all pH values is taken as zero. The systems (Mn^{++} , MnO_2) and (Fe^{++} , $Fe(OH)_3$) are plotted in each case for an arbitrary concentration of 10^{-5} gm-ions per liter of the bivalent ion (such as would not be likely to be greatly exceeded) in equilibrium with the solid oxide or hydroxide of higher valence. The absolute level of the E_h and rH lines must depend on this arbitrary concentration, and incidentally there is no agreement about the normal potential of the former system. However, the object of the graph is to illustrate the smallness of the rH gap between MnO_2 and normal soils at high pH, as contrasted with the bigger gap between MnO_2 and normal soils at low pH, and that between MnO_2 and waterlogged soils at high pH values. The rH of normal soils is a rough average taken from Heintze (1934), while that of waterlogged soils is a similar average taken from Gillespie (1920), who found a fall due to waterlogging of about 13 rH units for the soils under test. It is of course not implied that these potentials of soils necessarily follow a straight-line formula; the lines as drawn are meant to represent the most typical results obtained to date.

Quinhydrone Drift.

It is known that the pH values of certain soils are hard to measure accurately with the quinhydrone electrode. The potential shows a rapid drift in the direction of increasing alkalinity, amounting to several tenths of a pH unit within a few seconds after adding the quinhydrone. This effect has been studied by several workers, and the information was well summarized by Best (1931), who showed that it is due to "active" MnO_2 , which rapidly oxidizes the quinol of the quinhydrone. The $Mn(OH)_2$ thus produced is an active base, as pointed out by Schollenbeiger (1928), so that the pH of the suspension steadily rises. Best estimated this "active MnO_2 " by determining the manganese liberated from the soil by $0.05N\ H_2SO_4 + 0.2$ per cent quinol.

It would seem from the soil analyses quoted in Table IX, and from the above account of Sen-Gupta's work, that such a method is liable to lead to too high a figure. It is the MnO_2 active at the pH of the soil (usually 6 to 7) which is responsible for "quinhydrone drift", and it appears more satisfactory to estimate such MnO_2 by leaching with a dilute solution of quinol at approximately the actual pH of the soil, as is done, for example, in the neutral ammonium acetate method described above. Sen-Gupta's test of the destruction of phenol is a qualitative test similar to Best's, showing only acid-active MnO_2 . Other qualitative tests for active MnO_2 are carried out at the soil's own pH, viz., the blue colour developed with alcoholic guaiacum or with benzidine, and the green colour developed on long standing with KCNS, as was discussed by Brewer and Carr (1926).

The concentrations of MnO_2 found in healthy alkaline soils in this work are of the order of 0.01 per cent Mn. This is below the level at which Best found that the quinhydrone electrode was liable to "drift". Hence, one need not expect that all healthy alkaline soils would show a "quinhydrone drift", but it must follow from the hypothesis suggested in this paper that a soil showing such a drift cannot be associated with manganese deficiency. It is interesting to note that of the soils listed by Best, the deficient Mount Gambier soil does not drift, while the healthy Glen Osmond soil does so. Schollenberger (1930) describes how a "drifting" soil lost its power to drift after leaks of natural gas had made it anaerobic, so reducing MnO_2 to $Mn(OH)_2$.

Nature of Manganic Compounds ("MnO₂") in Soil.

The state of this active manganic material in the soil is not at all clear. It appears that the manganic oxides may form a continuous series, from the most active to the most inert, for convenience, one may separate these oxides into four classes—(a) extremely active, capable of oxidizing quinol at pH 7 and of oxidizing the organic matter of the soil rapidly in sulphuric acid suspension (pH 1.5 to 2); (b) also very active, capable of oxidizing quinol at pH 7, but only slowly attacking organic matter at pH 1.5-2, (c) moderately active, capable of oxidizing quinol at about pH 2 or $Na_2S_2O_4$ at pH 7 (see Table X below), and (d) inert (including all the remaining manganic compound). The total Mn of the soil also includes (e) bivalent Mn present in the minerals of sand, silt, and clay.

Best, for instance, (1931), found that a soil from Bundaberg (Queensland), which gave a bad drift with quinhydrone, yielded 0.32 per cent of manganese to dilute sulphuric acid, and a further 0.27 per cent on adding quinol or ferrous ammonium sulphate to the sulphuric acid. These two figures would correspond respectively to (a) and to (b) + (c). Sen-Gupta's test for "active

MnO_2 " would also give (b) + (c). Only (a) and (b), however, are concerned in insuring against manganese deficiency, causing "quimhydrone drift", or reacting with guaiacum.

It is suggested that this difference in activity is to be put in the same category as the "ageing" of colloids. The active fraction (a) is then analogous to the flesh precipitate obtained in the reaction between a permanganate and a manganous salt. Such a precipitate, after thorough washing with 0.05N H_2SO_4 , when mixed with Mt Gambier soil (also well leached with the same acid), will give large quantities of Mn to the solution on further leaching with 0.05N H_2SO_4 . (Probably most normal soils will do the same as Mt Gambier.) Schollenberger (1928) ascribed the presence of Mn, in a filtrate of a mixture of soil and 0.1N HCl, to the same reduction. The fraction (d) on the other hand is analogous to the most resistant residues of pyrolusite, which dissolve in oxalic and sulphuric acid only after prolonged boiling. In this case, all the fractions are thermodynamically capable of performing the reactions described, but they differ enormously in the speed of reaction.

Robinson (1929) and Sen-Gupta (1925) agree that active MnO_2 is present mainly in the coarser fractions. While this statement is no doubt true of the more definitely manganiferous soils, no attempt has been made to test it in the present work with regard to the soils under study, in any case, colloidal activity might well be shown on the surface of the coarser particles.

However, all this discussion assumes that the formula of manganic oxides in the soil is uniformly MnO_2 , whereas in fact there would probably be compounds of every combining proportion from MnO to MnO_2 , which might differ chemically in their oxidizing capacities. In the absence of any information on this matter it is not considered further here.

This separation of MnO_2 into four categories does not rule out the possibility of change from one state to another. Such changes are inevitable in a dynamic system such as soil. The dynamic equilibrium,

Exchangeable Mn \rightleftharpoons Unavailable MnO_2 ,
of former workers, however, may now be replaced by some such series as—

where it must again be emphasized that the four classes are separated by arbitrary tests. Waterlogging will displace the equilibrium from right to left, as has in fact been shown by Piper (1931). The Dooen soil, for instance, after six weeks' waterlogging, showed a rise of exchangeable Mn from 0 to 8 ppm, and of types (a) and (b) together from 137 to 200. The speed of any change in the direction (b) to (c) is quite

unknown. It may well be that the change from (*c*) to (*b*) on waterlogging takes place by way of the bivalent ion, but it seems unlikely that this bivalent Mn should escape almost complete oxidation on restoring good drainage.

TABLE X.—AMOUNTS OF MANGANESE DISSOLVED FROM DEFICIENT SOILS BY VARIOUS SUCCESSIVE TREATMENTS
(Parts per Million)

Soil	Normal ammonium acetate pH 7.0				Sulphuric acid + 0.2 per cent quinol	
	(i)	(ii)	(iii)	(iv)	N ₂₀ acid	N ₂ acid
Mount Gambier	0.25	3.7	2.0	58		
Penola	Tr	0.4	0.0	0.4	0.1	
Corny Point	2.6	8	nd	17		3.5

(i) No reducing agent, (ii) With 0.2 per cent quinol, (iii) With 0.4 per cent Na₂SO₃, (iv) With 0.4 per cent Na₂S₂O₄.

Three of the deficient soils studied here were tested successively with more drastic reagents than the solution of 0.2 per cent quinol at pH 7.0—viz., solutions of 0.4 per cent Na₂SO₃ and 0.4 per cent Na₂S₂O₄, in N ammonium acetate, and then with 0.2 per cent solutions of quinol, first in 0.05N, then in 0.5N H₂SO₄. The results, given in Table X, show the success of Na₂S₂O₄ at pH 7.0 in the case of both Gambier and Corny Point soils. The acid treatment was not tried on the latter as it contains such large amounts of CaCO₃, but in the case of Penola, treatment with 0.5N acid + quinol was needed to dissolve even as much as 1 of the 50 parts of Mn which every million parts of this soil contain. From these figures one might have predicted the results actually obtained by Piper (1931, p. 771) in pot tests—viz., that Penola soil (which has hardly any MnO₂ of class (*c*)) would respond more to added Mn than to waterlogging, that the Mt Gambier soil, with plenty of class (*c*), would show the best response to waterlogging of the three, while the Corny Point soil would be intermediate.

Figures are included in Table IX which show that the University soil, to which 30 ppm of Mn had been added in past years as MnSO₄, gave almost complete recovery of this extra Mn at pH 7.0. Too much importance must not be given to the exact agreement of these results, on account of the large sampling error, but they do indicate that much of the added MnSO₄ is held in the soil in a form at least as available as the class (*b*) above. Yet symptoms of manganese deficiency were observed in the wheat on these plots, and the last two months of growth were disappointing. This fact is provisionally put down to the completeness of precipitation of the Mn in the surface layer of the

soil the plots in these experiments were not dug (in order to avoid the risk of mixing the soil of neighbouring plots) It is intended to test at a future date how far the response to added $MnSO_4$ depends on the thoroughness of mixing of the soil The chemical analyses quoted above would certainly indicate that a fairly active MnO_2 , if well mixed with the soil to a depth of several inches, should be quite as effective as any soluble salt of manganese, and 30 ppm of this Mn should ensure against a deficiency It is clear that manganese brought into the available state by waterlogging must be already intimately mixed with the soil

While the fairly drastic treatment of waterlogging may be very good for soils which, like that of Mt Gambier, have large stores of MnO_2 just below the critical level of availability, it is difficult to see how such a mild reducing agent as well-rotted farm-yard manure could make available to plants any MnO_2 , except such kinds as the plants can in any case secure for themselves It seems more likely that the good effects sometimes claimed for farm-yard manure are due to its own content of manganese and to its lowering of pH values

As the pH value of the soil is lowered, more manganese may be leached out, partly, no doubt, by direct reduction of the dioxide and partly because it is easier for exchangeable Mn set free by weathering to accumulate at these more acid levels The sulphured University soil, for instance (Table IX), evidently owes its health to the greater concentration of manganese exchangeable at pH 7 and to the greater availability of this manganese at its pH of 6 However, it is not possible from the information available, to determine what importance to ascribe to "exchangeable Mn" which may easily be leached out at low pH levels but cannot be leached at pH 7 The 34 parts of manganese leached by 0.05N acid from the University soil must have come from some other source than the "(a) + (b)" MnO_2 , which alone could provide only 11 parts This source might well be a manganous silicate, since the soil is so immature, such a compound might be dissolved at low pH but be quite unavailable at pH 7 It is also interesting to recall the often-noted fact that during the electro-dialysis of soils, manganese is released only in the later stages—i.e., as the pH of the soil drops This appearance of manganese may be at least partly due to the reduction of MnO_2

It appears that useful information may be obtained about the state of Mn in the various horizons of the soil by the method followed in Table IX—leaching with buffered solutions at various pH values, containing reducing agents chosen to bring the solution to given pH values

It is possible that some reagent may be found to replace quinol, which is troublesome to destroy before analyzing extracts for Mn Meanwhile, it may be noticed that deficient soils contain less than

15 p.p.m. of Mn replaceable by normal ammonium acetate at pH 7.0, including the help of quinol, so that one might guess that a content of, say, 25 to 30 p.p.m. of this manganese was needed to avoid deficiency. No more definite statement can be made with the present figures. In fact, the limit for deficiency probably depends on the climate as well as on the crop.

As the pH of the soil decreases, the life of more active manganese oxides becomes shorter. McGeoghe (1923), in discussing the Hawaiian soils that are rich in MnO_2 , says that none has been found with a pH below 5.9. At lower values one would expect the organic matter to reduce the MnO_2 more easily, so that bivalent manganese would be formed and would be washed out.

Since reserves of "active MnO_2 " fall off rapidly with a fall in pH, one might forecast that, other things being equal, it is more dangerous to lime a highly acid than a moderately acid soil. It may be remarked that many of the soils that have become "deficient" after liming have naturally a very acid reaction.

Effect of Liming.

Steenbjerg (1933) working on field plots, has shown how successive additions of lime to an acid soil quickly lower the amount of manganese replaceable by semi-molar magnesium nitrate. He also estimated the manganese leached in successive portions of 25, 50, or 100 c.c., and showed that while acid soils released most of their total manganese in the first 100 c.c., with alkaline soils this release was much more gradual and prolonged. The difference between these two types is shown in Fig. 2, where the percentage of the total replaceable manganese in the filtrate is plotted against the volume of the filtrate, using Steenbjerg's figures. From the shape of these curves he worked out a function called qS , which is low for acid soils (curve 1), and high for alkaline soils (curve 2). Steenbjerg concluded that exchangeable manganese was bound in a different and a far firmer way in the alkaline soils, but though this may be true, the differences obtained in the values of qS must be partly due to the fact that the leaching solutions were unbuffered, so that the first 50 c.c. would be leaching the soil at a much lower pH for acid than for alkaline soils, and so the leaching solution would be more efficient, as shown in Table IX. Steenbjerg also came to the conclusion (p. 423) that "Other things being equal, of two soils each with the same low figure for total exchangeable Mn, deficiency will be more likely on the soil that has the higher qS value." One would expect a soil to have a higher qS value—a slower rate of liberation of Mn—if it had more $CaCO_3$, but it is not clear whether $CaCO_3$ content is included among the "other things" that are equal.

Whatever may be the importance of this greater firmness of holding of replaceable manganese, it is clear that a great deal of the Mn is oxidized by liming, as is shown by the appearance of black MnO_2 on the particles of $CaCO_3$ (Robinson, 1929), as well as by Piper's experiments quoted on p 237. The normal decrease in the quantity of Mn available to plants following liming is also shown by Steenbjerg's plant analyses on experimental limed plots, by Mann's work (1930) in laboratory tests, and by Piper's work on the increase of Mn absorbed by plants on acidifying the soil from both Glen Osmond and Mt Gambier.

FIG. 2

FIG. 2—Curves to illustrate rate of liberation of exchangeable manganese from two types of soil, after Steenbjerg (1933). Curve 1, Soil No 685, pH = 5.3, qS = 0.256; Curve 2, Soil No 1011, pH = 7.6, qS = 4.39. Each curve corresponds to the equation $y(x + qS) = 100x$.

The soil, after liming, contains small amounts of Mn exchangeable at pH 7, together with very variable amounts of MnO_2 soluble in quinol at pH 7. The very small amounts of exchangeable Mn may perhaps delay the onset of deficiency disease for a few years, Clausen (1931), for instance, states that in Holstein the maximum effects are shown six years after overliming, and a similar position apparently holds for the University soil, since when the original, acidic soil was treated with lime, pot tests with oats showed manganese deficiency only in the

second year after heavy overliming. This delayed effect may also be connected with the slow process of oxidation, by atmospheric oxygen or by bacteria, by which basic manganous compounds are turned to MnO_2 .

The MnO_2 formed from Mn^{+4} , after liming to over pH 7, is probably of the most actively oxidizing kind, but it is possible that in some circumstances it gradually "ages" and becomes less available. Though the active MnO_2 is held to be available, it is definitely inferior to the bivalent form as a source of plant food, so that while a soil may before liming be perfectly healthy with 10 ppm of Mn exchangeable at pH 7, and no reserve of active MnO_2 , it will no longer be healthy after liming when much of the exchangeable Mn is converted into MnO_2 . The healthy alkaline soils tested here both contain well over 100 ppm of active "dioxide" Mn.

Lack of available manganese exists naturally on both light (e.g., Mt. Gambier) and heavy soils (e.g., Penola), while after liming it seems to occur almost entirely on sandy podzols, which may sometimes be rich in organic matter. The University soil is related to the limed podzols on the one hand and to the Mt. Gambier soil on the other. The deficiency of the University and the Mt. Gambier soils appears to be connected with their extreme immaturity. Possibly a waterlogging, unaccompanied by leaching, occurring even once in many years, would cure both of these soils.

Where the deficiency occurs naturally on heavy soils liable to waterlogging, as at Penola and in North Carolina (Willis, 1932), it is probable that the active MnO_2 as soon as it is formed, is continually reduced and washed out; at Penola the total Mn is also very low. The acid podzols, on the other hand, lose their active MnO_2 by reduction at low pH, followed by leaching; there is less need at low pH values to have the assistance of waterlogging to effect this change. The rapidity with which soluble Mn accumulates in some acid soils under optimum conditions, described by McCool (1934), illustrates this point.

It is suggested that about 25 ppm of manganese soluble in ammonium acetate + 0.2 per cent quinol at pH 7.0 is a safety limit for heavy liming. It is of course essential to test many more soils before such a figure can be accepted. The number of cases of deficiency following overliming in Australia is as yet one (here described) or perhaps two (see Bellarine, below), so that such tests would need to be made on soils in the podzol belt of the United States of America or of north-western Europe. Up to the present, however, liming has not been carried on to any great extent in the podzol belt of Victoria, and the figures of the Mn replaced by ammonium acetate at pH 7.0, with and without quinol, given in Table XI, refer to some typical southern soils.

TABLE XI—AMOUNTS OF MANGANESE DISSOLVED AT pH 7.0
FROM PODZOLIC SOILS OF SOUTHERN VICTORIA

—	University	Timboon	Bellarine	Coleraine	Dixie	Lairpent	Yarragon
Ammonium acetate per cent quinol	15 0	0.2 0.7	5 3	7 10	21 33	98 127	100 285
pH of soil	5.0	5.8	5.4	6.1	5.5	5.8	5.5

Of the four soils low in available manganese, the University soil showed a deficiency some years after overliming, while the Bellarine soil has shown, in a heavily-limed patch, symptoms believed to be those of manganese deficiency. Pot tests are in progress to determine whether the other two soils of these four are liable to develop deficiency on heavy liming. If the surface soil is shallow, it is of course possible that the subsoil might avert deficiency in the field.

It might incidentally be pointed out that manganese deficiency cannot possibly be due to excess calcium ion concentration (cf Lundegårdh, 1931, p 219). The well sulphured University plots, on which not a sign of manganese deficiency was seen, had a higher concentration of calcium in solution (as calcium sulphate) than the alkaline plots, where the most soluble compound would be the bicarbonate. This higher concentration of the highly flocculating calcium ion on the acidic plots was shown by the very rapid flocculation of the soil after shaking with water.

Note on the Availability of Iron.

Plants growing on certain calcareous soils are liable to a chlorosis which may be overcome by treatment with iron salts. As manganese and iron are both essential to plants, and are chemically alike in many ways, it might be expected that the availability of iron in the soil would be similar to that of manganese. Each metal forms well-marked bivalent "ous" compounds, from which a hydroxide or basic salt may be precipitated about pH 7, and in each case this precipitate is easily changed at atmospheric oxygen to the "ic" state, corresponding to an extremely weak base. Again, deficiency is noted almost exclusively on soils on the alkaline side of neutrality, and may be overcome by treating the plant or the soil with a soluble "ous" salt, usually the sulphate. The bivalent state in the soil may also be reached in each case by reducing conditions such as waterlogging.

Ferrous hydroxide is both a weaker base than manganous hydroxide, and more easily oxidized. Halvorson (1931) estimated the concentration of ferrous ion in solutions of FeSO_4 of

varying pH values exposed to the atmosphere for four months, and expressed his results by the formula—

$$[\text{Fe}^{++}] [\text{OH}^-]^2 = 4.8 \times 10^{-26},$$

where any attempt to increase the ferrous ion concentration at a given pH would lead to the deposition of ferric hydroxide. He also used the solubility product of Fe(OH)_3 , the potential values of the ferric-ferrous electrode and the oxygen-hydroxide electrode to calculate the *theoretical* value of the above expression, namely—

$$[\text{Fe}^{++}] [\text{OH}^-]^2 = 3.7 \times 10^{-11}$$

The difference between these two values is due to the slowness of the reaction. But each equation shows that the concentration of ferrous ion in solution in a well-aerated soil must be very low. While information is lacking as to the quantities of exchangeable Fe^{++} to be expected in soils, it has been pointed out by Afanassiev (1930), and by Morison and Doyne (1914), that the ferrous ion found in solutions extracted from soil by acids is due to the reduction of ferric compounds by organic matter at low pH values at which ferric compounds are more soluble, and hence strong oxidizing agents. Manganous ions are liberated at low pH values by an analogous reaction from manganic compounds.

Both ferric and manganic ions may be ruled right out of consideration as a source of food for plants above pH 6. The only other possibilities remaining are the absorption of these elements as complex ions, and the use of colloidal ferric or manganic compounds, as suggested above, directly, or by reduction at the root-soil interface. It is the former possibility that marks off iron from manganese. Manganic complexes certainly exist, but they are neither stable nor well-defined, while tervalent iron forms complexes, which are soluble at high pH values, with several hydroxy-acids, such as citric and tartaric acids. (It need hardly be pointed out that the ferric ion concentration at pH 7 is *lower* in the presence of citrate than in its absence.) It seems very likely that such "ferrri-organic" complexes are the source of the high intake of iron by plants growing on peaty soils after heavy liming. Olsen (1930) has remarked that comparing soils of the same pH value, chlorosis is more likely to occur on soils poor in organic matter—a fact which he attributes to ferrri-organic complexes, a far more likely explanation than the common one that the organic matter reduces the iron to the ferrous state, which is hard to accomplish in the presence of oxygen at such high levels of pH.

On account of these ferrri-organic complexes, the actual content of iron in even highly chlorotic plants growing on calcareous soil may be of the same order as in healthy plants. (It may even be higher, which may be connected with the high stability of

ferri-organic complexes at pH 7) As these chlorotic plants readily respond to sprays or injections of ferrous sulphate or ferric citrate, it is clear that this chlorosis is due to immobility of the iron, i.e., a physiological disturbance, and Rogers and Shive (1932) have suggested that it is due to the failure of the affected plants, which all have a sap of high pH, to produce, or conserve, the hydroxy-acids needed to keep the iron in the sap soluble and mobile, and such a failure is associated especially with certain calcareous soils, and also with manganiferous, non-calcareous soils in the pineapple-growing regions of Oahu.

If, as has at times been suggested, the actual *intake* of iron from manganiferous soils is too low for healthy growth, it is conceivable that the following reason may hold. If iron can also be absorbed by the reduction of ferric colloids at the root-soil interface, a low rH must be reached (at the higher pH values) to achieve this, and this lowering of rH cannot be achieved so long as active manganese compounds are present. This, in fact, is implied by Willis (1932), who, however, was more concerned with the *oxidation* of iron and manganese. Since all the iron and nearly all the manganese will in any case be in the more oxidized form in a well-aerated, neutral soil, it seems more helpful to focus attention rather on the possibility of *reduction* by the root. However, it is possible that the suggestion dealt with in this paragraph is superfluous.

Large amounts of iron were liberated by some of the treatments described in this paper, but no analyses were carried out.

It might be pointed out here—perhaps a fact of practical significance—that apparently no soil has yet been reported on which both iron and manganese deficiency exist.

Summary.

Wheat plants growing on a heavily limed soil have been found to suffer from lack of available manganese. This state of things was improved either (1) by acidification of the soil, most conveniently by sulphur, to a pH at least as acid as 6.5, or (2) by heavy applications of manganous sulphate to the soil.

The first treatment had no effect on early growth, nor on the number of tillers produced in late September, but it led to a far higher survival of tillers to grain-bearing ears, and an increase in the number of grains per ear, and in the weight per grain.

Powdered manganese sulphate had no effect when applied to the soil at the rate of 40 lb of the crystals per acre, whether at germination or in the spring. The best response was obtained by applying 1 cwt per acre, sown with the seed, or applied to the soil at germination, and a residual effect was noted a year later. The application of 1 cwt increased the tillering, especially when applied with the seed, and also improved the survival rate of the tillers and the weight of grain per ear compared with the

control plots, but the MnSO₄ plots were very inferior to the sulphured plots in these last two values, so that the final yield of grain averaged the best on the sulphured soil.

It is possible that the poorer survival on the MnSO₄ plots was due partly to the too great tilling of the plants, leading to a loss in the warm, dry weather of late spring. In any case, the experiments definitely show that, if the production of grain is the aim, the more effective way of dealing with overliming, in the Melbourne climate at least, is to bring the pH down again by the use of heavy applications of sulphur, possibly in more than one annual instalment. It is, however, possible that results might have been different if the MnSO₄ had been thoroughly worked into the soil.

Laboratory tests on various soils have shown that the crucial test among soils of pH greater than 7 is to leach the soil with a solution of quinol at pH 7 (normal ammonium acetate was the reagent used). Deficient soils yielded less than 15 parts of Mn per million of soil to this solution, while two typical healthy soils tested gave over 130 parts per million.

The theory of this test is discussed in connexion with the oxidation-reduction potential of the system (MnO₂ — H⁺ — Mn²⁺). It is suggested that the plant uses MnO₂ as its source of manganese, whether directly in the colloidal state or by reduction at the root-soil interface, and it is only the manganese dioxide dissolved by quinol at pH 7 which can be used by plants, and not the more copious supply that may sometimes be dissolved with or without quinol at low pH value (1 to 2). The magnitude of this figure (Mn dissolved by quinol at pH 7) may be taken as a test whether a given soil is liable to develop manganese deficiency after liming, though this suggestion can hardly be tested in this country, where no important areas have suffered from overliming.

If sulphuring is impracticable (as it will be on a very calcareous soil) an "active" MnO₂ should on theoretical grounds be as good as MnSO₄, especially if finely divided and worked well into the soil.

It is suggested that information may be gathered as to the state and translocation of manganese in the soil by leaching with a series of solutions buffered to a constant pH and poised to steady ranges of rH by a series of materials such as quinol.

Acknowledgments.

The writer is much indebted to Mr C. S. Piper, M.Sc., and to Mr F. Penman, M.Sc., for kindly supplying samples of some of the soils dealt with in this paper, and his thanks are particularly due to Professor S. M. Wadham, M.A., at whose suggestion the work was begun, and whose help and criticism have been invaluable.

Appendix.

Method of Analyzing for Manganese

Manganese was analyzed colorimetrically as the permanganate in all the above work, using a Duboscq colorimeter. The colour was developed by sodium periodate, usually in sulphuric acid solution, but sometimes in phosphoric acid solution if it was necessary to avoid the formation of large amounts of calcium sulphate. The plant ash material was treated with hydrofluoric acid to avoid loss of manganese as insoluble silicate, the hydrofluoric acid being then destroyed with sulphuric acid. The ammonium acetate solutions were treated by first evaporating them to small bulk, then destroying organic matter and ammonium ions with aqua regia, finally destroying chlorides by treating with sulphuric or phosphoric acid.

References.

- ARANASSIEV, J. N., 1930 Über anaerobe Prozesse und Verstümpfungsprozesse (German summary of Russian article) *Pochvovedenie*, xxv (6), pp. 46-54
- ARRHENIUS, O., 1926 *Kalkfrage, Bodenreaktion und Pflanzenwachstum*. Leipzig, Akad. Verlagsgesellschaft
- BESI, R. J., 1931 A Comparison of Methods for determining the Hydrogen Ion Concentration of Soils *Journ. Agric. Sci.*, xxi, pp. 337-365
- BISHOP, W. B. S., 1928 The Distribution of Manganese in Plants, and its Importance in Plant Metabolism *Aust. Journ. Emp. Biol. Med. Sci.*, v, p. 129
- BREWER, P. H., and CARR, R. H., 1926 Fertility of a Soil as related to the forms of its Iron and Manganese *Soil Sci.*, xxiii, pp. 165-173
- BRIITON, H. T. S., 1930 *Hydrogen Ions* 2nd Edn, pp. 354, 379
- CARNE, W. M., 1927 Grey Speck Disease of Wheat and Oats *Journ. Agric. W' Aust.*, iv, pp. 515-519
- CLAUSEN, —, 1930 Reaktionen des Hafer auf die Sauregrade in Boden *Deutsch. Landw. Presse*, lvii, p. 506 Abstracted in *Rev. Appl. Min.*, x, 1931, p. 93
- COMBLK, N. M., 1922 The Availability of mineral Plant Food. A Modification of the present Hypothesis *Journ. Agric. Sci.*, xii, p. 363-369
- DAVIES, D. W., and JONES, E. T., 1931 Grey Speck Disease of Oats *Welsh Journ. Agric.*, vii, pp. 349-357
- DFAN, L. A., and DEAN, A. L., 1929 Decomposition of Citric Acid by Soil *Soil Sci.*, xxviii, pp. 281-287
- FISHER, R. A., and WISHART, J., 1930 The Arrangement of Field Experiments and the Statistical Reduction of the Results *Imp. Bur. Soil Sci. Tech. Comm.* 10
- GILBERT, B. E., McILROY, F. T., and HARDIN, L. J., 1926 The Relation of Manganese and Iodine to a lime-induced Chlorosis *Soil Sci.*, xxii, pp. 437-446
- GILFISER, L., 1920 Reduction Potentials of Waterlogged Soils *Soil Sci.*, ix, pp. 199-216
- GLYNNE, MARY D., 1929 A Note on some Experiments dealing with Sulphur Treatment of a Soil and its Effect on Wheat Yield *Proc. Roy. Soc. Vic. (n.s.)*, xlvi (1), pp. 30-35
- HALVORSON, H. O., 1931 Studies on the Transformations of Iron in Nature Part III *Soil Sci.*, xxxii, pp. 141-165
- HEINTZ, S. G., 1934 The Use of the Glass Electrode in Soil Reaction and Oxidation-Reduction Potential Measurements *Journ. Agric. Sci.*, xxiv, pp. 28-41

- LUTIMER, W. M., and HILDERBRAND, J. H., 1929 Reference Book of Inorganic Chemistry Macmillan and Sons
- LUNDEGÅRDH, H., 1931 Environment and Plant Development Edwin Arnold London
- MCCOOL, M. M., 1934 The Effect of Various Factors on the Soluble Manganese in Soils *Contr Boyce Thompson Inst.*, vi, pp 147-164
- McGFORGE, W. T., 1923 Acidity of Highly Basic Soils *Soil Sci.*, xvi, p 204
- MANN, H. B., 1930 Availability of Manganese and of Iron as affected by Applications of Calcium and Magnesium Carbonates to the Soil *Soil Sci.*, xxx, pp 117-142
- MORISON, C. G. T., and DOYNE, H. C., 1914 Ferrous Iron in Soils *Journ Agric Sci.*, vi, pp 97-101
- MULLER, E., 1908 Über die reduzierende und oxydierende Kraft von Eisensalzen *Zeits f. Elektrochemie*, xiv, pp 76-82
- ODLAND, T. E., and CRANDALL, F. K., 1932 The Effect of the Lack of Available Manganese in the Soil on Crop Yields *Journ Amer Soc Agron.*, xxiv, pp 622-625
- OLSEN, C., 1930 Influence of humus Substances on the Growth of Green Plants *Compt rend trav lab Carlsberg*, xviii, pp 1-16 (abstracted in *Nature*, cxxxvi, p 256)
- PARKER, F. W., and PIERRE, W. H., 1928 The Relation between the Concentration of Mineral Elements in a Culture Medium and the Absorption and Utilization of those Elements by Plants *Soil Sci.*, xxv, pp 337-343
- PIPER, C. S., 1931 The Availability of Manganese in the Soil *Journ Agric Sci.*, xxi, pp 762-779
- PREScott, J. A., and PIPER, C. S., 1929 The Volcanic Soil of Mount Gambier, South Australia *Trans Roy Soc. Aust.*, lxi, pp 196-202
- ROBINSON, W. O., 1929 Detection and Significance of Manganese Dioxide in the Soil *Soil Sci.*, xxvii, pp 335-350
- ROGERS, C. H., and SHIVE, J. W., 1932 Factors affecting the Distribution of Iron in Plants *Plant Phys.*, vii, p 248
- ROUNTREE, PHYLLIS M., 1933 The Bacteriological Oxidation of Sulphur in Australian Soil *Aust Journ Exp Biol Med Sci.*, xi, pp 209-218
- SAMUEL, G., and PIPER, C. S., 1928 "Grey Speck" (Manganese deficiency) Disease of Oats *Journ Agric S Aust.*, xxxi, pp 696-705, 789-799
- SAMUEL, G., and PIPER, C. S., 1929. Manganese as an essential Element for Plant Growth *Ann Appl Biol.*, xvi, pp 493-534
- SCHOLLENBERGER, C. J., 1928 Manganese as an active Base in the Soil *Soil Sci.*, xxv, pp 357-358
- SCHOLLENBERGER, C. J., 1930 Effect of leaking Natural Gas on the Soil *Soil Sci.*, xxix, pp 261-266
- SCHOILTENBERGER, C. J., and DREIBELBIS, F. R., 1928 Analytical Methods in Base Exchange Investigations on Soils *Soil Sci.*, xxx, pp 161-174
- SCHREINER, O., SULLIVAN, M. X., and REID, F. R., 1910 Studies in Soil Oxidation *U.S. Dept Agric, Bur Soils Bull.* 73
- SCOTT, R. C., 1932 Field Experiments with Manganese Deficiency Disease of Barley *Journ Agric S Aust.*, xxxv, pp 771-780
- SEN-GUPTA, N. N., 1925 Dephenolisation in Soil *Journ Agric Sci.*, xv, pp 497-515

- SPLINGER, V E, and SILWARR, R, 1934 Soil Phosphate Studies I Soil Penetration of some Organic and Inorganic Phosphates *Soil Sci.*, xxviii, pp 65-79
- SJERNERUP, F, 1933 Undersøgelser over Manganindholdet i dansk Jord *Iuds for Plantecavl.*, xxix (3), pp 401-436 (English summary)
- TAYLOR, J K, PENMAN, F, MARSHALL, T J, and LEEPR, G W, 1933 A Soil Survey of the Nyah, Tresco, Tresco West, Kangaroo Lake and Goodnight Settlements *Council Sci Ind Research (Aust.), Bull 73*
- TURNER, D M, and FINDLAY, D H, 1932 Grey Leaf of Oats *Journ Ministry Agric (England)*, xxxix, pp 699-701
- WILLIS, L G, 1932 The Effect of Liming Soils on the Availability of Manganese and Iron *Journ Amer Soc Agron.*, xxiv, pp 716-725

SUPPLEMENTARY NOTE

Pot tests carried out in the open since this paper was read have confirmed the above evidence that plants can use "active" MnO_2 . One pot (A) contained 25 kg of a typical "deficient" soil from Mount Gambier, which before being placed in the pot was thoroughly and uniformly mixed with a freshly prepared sample of MnO_2 containing 2 gm manganese (or 80 parts of Mn per million of soil). This MnO_2 was made by mixing strong solutions of $NaMnO_4$ and $MnSO_4$, filtering the brown precipitate and washing it several times with dilute H_2SO_4 , then with dilute $NaOH$, finally with water. The control pot (B) contained 25 kg of the same deficient soil. Two grams each of superphosphate and sodium nitrate were applied to the surface of each pot, and 0.25 gm $MnSO_4$ crystals was added at the same time uniformly to the surface of pot B. Six seedlings of a variety of Tasmanian White Oats (known to be sensitive to deficiency) were transplanted to each pot on 10th October, 1934, when all were in the one-leaf stage. Temperatures were normal during the next two months, and 13 inches of rain fell. Differences in growth appeared early in the experiment, and by 6th December the oats on pot A had tillered vigorously and were free from any sign of deficiency, while marked symptoms of "grey speck" were shown by the plants on pot B, which had made only poor growth. This clearly supports the suggestion that the failure of surface applications of manganese salts is due to "positional" unavailability, which may be overcome by thorough mixing. It also makes it more reasonable to expect that large applications of $MnSO_4$ will bring about a permanent cure on any soil, if thorough mixing is possible.

[PROC ROY SOC VICTORIA 47 (N S), PT II, 1935]

ART XV—*Some Algae of Victorian Soils*

By JEAN PHILLIPSON, M Sc

(Government Research Scholar.)

[Read 11th October, 1934, issued separately, 8th May, 1935]

Although for a long time it has been recognized that many algae, especially Myxophyceae, grow on the surface of the soil, it is only during comparatively recent years that it has been realized to what a large extent they inhabit the deeper layers of the soil, and what a significant part they play in its economy. Their exact role has not yet been determined, but Schiamann(34) and later Wann(42) considered that they had the power of fixing free nitrogen. Moore and Webster(23) also claimed that they had obtained definite nitrogen fixation by algae, but as their cultures were not free from bacteria, this may have affected their results. This theory was not upheld by Bristol-Roach and Page(9). Waksman(40), however, suggests that algae may aid bacteria in the fixation of nitrogen by providing the carbon hydriates required by the bacteria. Whatever their part, their abundance in the soil suggests that they cannot be without some effect on its fertility.

Algae are more abundant in the upper layers of the soil, but they may exist at depths of 100 cm beneath the surface. They are more numerous in manured than in unmanured ground. No very satisfactory count of their numbers has been made, but according to Bristol-Roach(4), they vary from 700 to many thousands per gram according to the conditions of the soil.

These soil Algae belong to four groups, (i) Myxophyceae or Blue-green Algae, (ii) Chlorophyceae or Green Algae, (iii) Heterokontae, (iv) Bacillinaeaceae including Diatoms. The Chlorophyceae and Heterokontae are universally distributed, while the Myxophyceae appear as a general rule in greater numbers in cultivated rather than in uncultivated soils(4), and Diatoms appear mostly in soil from old gardens(40).

In England, America, Germany, and Africa, soil microbiologists have succeeded in identifying soil forms representing over a hundred genera. However, no work of this kind has previously been attempted in Victoria or even, for that matter, in Australia. There have been, however, some investigations in connexion with fresh-water forms in Australia and New Zealand. As far

as Victoria is concerned the most outstanding work is that of West(43) on the algae of the Yan Yean Reservoir. In this work, Professor West has identified over 300 species from material forwarded to him by Mr Hardy of the Lands Department, Melbourne.

The purpose of this investigation is to identify as many Victorian soil species as possible. At first it was intended to make a count of the number of cells of each species per gram of soil using the method suggested by Bristol-Roach(6), but this was found to be impossible until the forms could be identified with greater ease. It is first necessary to obtain cultures of the organisms, and since many algae exhibit polymorphism in a marked degree, it is preferable to isolate each species and obtain cultures which are as far as possible pure—at least free from other algae even if contaminated by bacteria or fungi. This has not been possible in all cases, but some were readily obtainable in pure culture.

The following method was used. By means of a sterilized soil auger, 10 grams of soil were obtained, passed through a sterilized 3 mm sieve, and then placed in a bottle containing 100 c.c. of a sterilized mineral salts solution, thus giving a 1 in 10 suspension. The solution was that recommended by Bristol-Roach(6) and was of the following composition—

KH ₂ PO ₄	1 0 gm
NaNO ₃	1 0 gm
MgSO ₄ · 7H ₂ O	. 3 gm
CaCl ₂	. 1 gm
FeCl ₃	. 01 gm.
Glass-distilled water	2,000 c.c.

Glass-distilled water is essential as water distilled in an ordinary copper still is unsuitable for this work, since even minute traces of copper are toxic to many algae.

The 1 in 10 suspension was carefully shaken for half an hour in order to thoroughly separate the organisms. This prolonged shaking was necessary because of the difficulty in separating the cells of many species on account of the layer of mucilage investing them. It is because of this difficulty that it has so far been impossible to obtain a really satisfactory count of the total number of algae present in the soil, especially of the Myxophyceae. After shaking, 50 c.c. of the 1 in 10 suspension were pipetted into an erlenmeyer flask containing 50 c.c. of the sterile mineral salts solution, thus giving a 1 in 20 suspension. From this second suspension, 50 c.c. were transferred into another flask containing 50 c.c. of sterile mineral salts solution giving a 1 in 40 suspension. This process of half and half dilution was repeated until a series of suspensions was obtained ranging

in dilution from 1 in 20 to 1 in 1,310,720 in the seventeenth flask. These flasks were then exposed to light in a window with a northern aspect, the light stimulating the growth of the algae but retarding to a certain extent the development of contaminating bacteria. In four to five weeks' time, the surface of the solutions became quite green and the algae present were examined. The soil for the first and second series of cultures was taken from a garden at the Melbourne University, the soil being derived from Silurian mudstone and sandstone. The first sample was taken in July, 1930, and in the following March, a second series of flasks was set up in the above manner. Three months later, at the end of May, a third series was set up. This third sample was taken from virgin bush soil at Heathmont which is also in the Silurian belt. From these mixed cultures, pure cultures were then obtained as far as possible. There are two factors which render this task difficult, (1) the mucilage investing many forms making them not readily separable, and (2) their slow growth in comparison with either fungi or bacteria. To obtain pure cultures the ordinary plating-out method was first used. The medium was mineral salts agar, 1.75 gm of agar being added to a litre of the mineral salts solution previously used. This medium is suitable for the growth of algae, but is entirely unsuitable for the growth of most fungi and bacteria.

A loopful of the solution in No 1 flask was put in 5 cc of sterilized mineral salts solution and carefully shaken for half an hour. From this, 1 cc was pipetted into a sterilized petri dish and then approximately 10 cc of the liquid agar medium at about 37° C was run into the petri dish and left to solidify. This process was repeated with each flask, until a series of plates was obtained. In these plates the algae grow in colonies and can be cut out aseptically and transferred to fresh media. In this way pure cultures of *Chlorococcum humicola* (Naeg.) Rabenh., *Stichococcus baillaris* Naeg., *Ulothrix variabilis* Kutz., *Bumelia exilis* Klebs, *Phormidium tenue* (Menegh.) Gomont, *Phormidium autumnale* (Ag.) Gomont, *Trochiscia hirta* Hansgug., *Protococcus viridis* Agardh, *Chlorella vulgaris* Beyerinck, have been obtained. Many organisms identified in the solutions in the flasks have not so far been obtained in pure culture. These include *Nostoc paludosum* Kutz., *Nostoc muscorum* Kutz., *Botrydiopsis arhiza* Borzi, and many others. Other organisms have not yet been identified or subcultured. The Chlorophyceae are by far the most numerous in the cultures, while very few Diatoms can be found. Only three genera of the Myxophyceae have been observed, and these did not develop for many weeks after the Chloophyceae first appeared.

The following are the species which have been successfully identified as present in Victorian soil —

	Garden Soil A	Garden Soil B	Bush Soil
I MYXOPHYCEAE—			
<i>Nostoc paludosum</i> Kutz	×	×	
<i>Nostoc muscorum</i> Kutz	✓		
<i>Anabaena minutissima</i> Lemm	×		
<i>Anabaena variabilis</i> Kutz			
<i>Phormidium foveolarum</i> Gom	×		×
<i>Phormidium tenue</i> Gom	×	×	
<i>Phormidium autumnale</i> Gom	×		
<i>Phormidium australe</i> , n sp	×		
<i>Phormidium subterraneum</i> , n sp			×
II CHLOROPHYCEAE—			
<i>Chlamydomonas communis</i> Snow			×
<i>Chlamydomonas communis</i> Snow, var grandis, n var			✓
<i>Chlamydomonas gracilis</i> Snow		✓	
<i>Chlorococcum humicola</i> Rabenh	×	✓	
<i>Chlorella vulgaris</i> Beyenck	✓		✓
<i>Oocystes bicandatus</i> Grobéty			
<i>Ankistrodesmus falcatus</i> Ralfs			✓
<i>Oocystes solitaria</i> var <i>terrestris</i> , n var	×		
<i>Trichosira hirta</i> Hantzsch	×	×	
<i>Protococcus viridis</i> Agardh	×	×	×
<i>Muriella australis</i> , n sp		×	
<i>Ulothrix variabilis</i> Kutz	×	×	
<i>Ulothrix subtilissima</i> Rabenh			×
<i>Ulothrix aequalis</i> Kutz			×
<i>Hormidium flaccidum</i> A Br	×	×	×
<i>Stachococcus bacillaris</i> Nag			×
<i>Gongrosia australis</i> , n sp			×
<i>Vaucleria hamata</i> (Vauch) Lyngb			
III HETEROKONTAE—			
<i>Botrydiopsis arhiza</i> Boiss		×	
<i>Chlorocloster minor</i> , n sp			✓
<i>Ophiocytium terrestre</i> Heyward			✓
<i>Heterococcus viridis</i> Chodat	✓		
<i>Bumilleria exilis</i> Klebs	✓	×	✓
IV BACILLARIACEAE—			
<i>Hantzschia amphioxys</i> (Ehr) Grun	✓	×	
<i>Navicula mutica</i> Kutz	✓		

Myxophyceae.

The Myxophyceae do not appear in the culture flasks until some months after the Chlorophyceae, and as a rule they appear in the flasks at the beginning of the series which are less dilute. Only three genera, *Nostoc*, *Phormidium*, and *Anabaena* were found, though each was represented by more than one species.

The Myxophyceae are difficult to obtain in pure culture, and so far only two have been successfully grown—*Phormidium autumnale* and *P. tenuic*. However, it was quite possible to identify the other species from the mixed flasks without any measure of doubt. The following are the species found, with a brief description of each—

NOSTOC PALUDOSUM Kutz

(Figure 1)

This species was found in flasks Nos 1 and 2 of the culture of garden soil A. Tiny hemispherical colonies were formed on the sides of the flask slightly above the level of the liquid medium. Where the edges of two colonies met, the sides became flattened (Fig. I A). Upon examination, each colony was seen to be without a firm outer sheath (Fig. I B), but each individual

Fig. 1 Nostoc paludosum Kutz. A Microscopic view of two colonies side by side. B Edge of the colony showing no firm outer sheath. C Chain of spores. D Germinating spore, $\times 700$. E Vegetative trichome. f heterocyst, vc vegetative cell, sh sheath.

trichome possessed a distinct wide gelatinous sheath (sh), which varied in width from $1.5-5\mu$. The vegetative cells (vc) of the filament measured from $4.5-5\mu$ in diameter and from $6-9\mu$ in length, in some cases the length and breadth being approximately equal. The heterocysts (h) were slightly larger, measuring $5-6\mu$ in diameter and $8-10\mu$ in length. The spores were oval, being $5-6.5\mu$ in diameter and $8-9\mu$ in length. Although these measurements are slightly larger than those given by Pascher for this species, the type of colony without any firm outer sheath, the presence of a wide sheath around each individual trichome, and the type of spores formed seem to place it without doubt as *N. paludosum*. This species seems to be mainly a freshwater form usually found in ditches and pools. This species has been recorded by Bailey(2) for Australia.

NOSTOC MUSCORUM Kutz

(Figure 2.)

The occurrence of this alga in one flask only of the culture of garden soil A, and, contrary to the general rule, in a later and more dilute flask of the series—No 16—showed that it was not widely distributed. The colonies formed flat, irregular masses which floated on the surface of the liquid medium among other algae in the flask. The filaments were flexuous and densely entangled. The vegetative cells measured 4-4.5 μ in breadth and were nearly twice as long as broad (Fig. 2 A). Heterocysts (h) were almost spherical, being approximately 5 μ in diameter. The spores (Fig. 2 B) were longer than broad, approximately 6 μ in diameter and 8 μ in length, and were found in chains. The sheaths of the trichomes were for the most part invisible, being apparent occasionally towards the edges of the colonies.

Fig. 2 4-2 Nostoc muscorum Kutz
 A Vegetative trichome B Spores 3 Anabaena
 minutissima Lemm 4 Anabaena variabilis
 Kutz h heterocyst, s spore, gs germinating
 spore, vc vegetative cell, ac apical cell. X 700

This species has frequently been recorded for the soil in other countries, but no previous record has been made for Australia.

ANABAENA MINUTISSIMA Lemm

(Figure 3.)

Filaments which were found to correspond closely to the description of this alga were found growing among the algae in the cultures of garden soil A. The more or less straight filaments were isolated and did not form a definite colony. The vegetative cells measured 2-2.5 μ in breadth and were slightly

shorter than broad, being $1.5-2\mu$ in length. Spherical heterocysts, approximately 2μ in diameter, were present. A few elongated spores developed later and measured $18-20\mu$ in length and $4-5\mu$ in diameter.

ANABAENA VARIABILIS Kuetz

(Figure 4)

A second *Anabaena* species was found in the bush soil. The vegetative cells were approximately as long as broad, measuring $4.5-5\mu$ in breadth and $4-5.5\mu$ in length, the end cell being obtuse-conical. The heterocysts were intercalary, spherical or sometimes slightly longer than broad. Spores were later developed in chains and measured $7-8\mu$ in diameter, and $9-13\mu$ in length. They were never found next to the heterocysts.

Bristol-Roach(4) has recorded this species as present in English soils.

PHORMIDIUM FOVEOLARUM (Montague) Gom

(Figure 5)

This alga was found in garden soil A, always in association with *P. tenue* and *P. autumnale*, and was therefore very hard to separate and obtain in pure culture. The cells of the trichome were more or less quadangular, sometimes shorter than broad, but never longer. The breadth measured approximately 1.5μ , while the length was from 0.8μ - 1.5μ . The trichome was pale blue-green in colour and was distinctly constricted at the transverse walls. The end cell (a.c.) of the trichome was rounded and did not taper. The sheath (sh) was narrow and colourless.

P. foveolarum is a terrestrial species, but has not previously been recorded for Australia.

PHORMIDIUM TENUЕ (Menegh) Gom

(Figure 6)

In flasks Nos 1 and 2 of garden soils both A and B, this species occurred frequently in association with *P. autumnale* and *P. foveolarum*, the three together forming a flat bluish-green matted mass adhering to the sides of the flasks or sometimes floating on the surface of the liquid.

Phormidium tenuе is one of the two Myxophyceae which have been grown in pure culture on agar. The trichomes were a pale blue-green in colour, the cells measuring from $1.5-2\mu$ in diameter and varying in length from $2-3\mu$, the end cell (a.c.) tapering. The trichome was slightly constricted at the transverse walls, which were more or less indistinct. The sheath (sh) was very narrow and could only be distinctly seen where the filament was broken and the sheath protruded past the trichome.

The species has a world-wide distribution in the soil, being recorded in England by Bristol Roach(4), in the United States of America by Moore and Carter(22), and in India by West

It has also been recorded for Australia by Bailey(2)

Figs 5-12. 5 *Phormidium forcolarum* Gom 6 *Phormidium tenue* Gom
 7 *Phormidium autumnale* Gom 8 *Phormidium australe*, n sp 9 *Phormidium subterraneum* n sp 10 *Chlamydomonas communis* Snow A Motile cell
 B Zoospore ingulum C Chlamydomonas communis var ovata Playfair
 11 *Chlamydomonas communis* Snow var *grandis*, n var A Motile cell
 B Zoospore ingulum 12 *Chlamydomonas gracilis* Snow sh sheath, ac apical
 cl, c calyptra, cl calyptra, s stigma, ch chloroplast X 700

PHORMIDIUM AUTUMNALE (Ag) Gom

(Figure 7)

This was another species which occurred in garden soil A in the first three flasks of the culture. The filaments were greyish-green in colour with very narrow sheaths (sh). The cells were shorter than broad, being 4.5-6 μ in diameter and 3 μ or less in length, and were not constricted at the transverse walls, which were often granulated. The filament tapered at the apex, which, as a rule, was slightly curved with a distinct calyptia (c) on the tip of the end cell. This species was often found in the flasks in association with *P. tenue* and *P. forcolarum*, but has not been obtained in pure culture.

This has been recorded for the soil in England by Bristol Roach(4)

PHORMIDIUM AUSTRALE, n.sp

(Figure 8)

A species of *Phormidium* occurred in flask No 2 of the culture of garden soil A among the other species of this genus, but could not be identified with any form previously described. It was very slow in developing and did not appear in the flask in any appreciable quantity until after the other *Phormidium* species were more or less abundant. The trichome was a very light blue-green, the cells being approximately 4μ in breadth and slightly shorter than broad, with quite definite constrictions at transverse walls. The sheath was very narrow and was not apparent unless it protruded past the trichome. The end cell (a.c.) of the filament was elongated and tapering. *P. Jadinianum* Gom., which also measures approximately 4μ in the diameter of the cells, differs from this form in its colour, being an olive-green.

Cellulis polis caeruleis viridis, latis 4μ , latoribus paulo quam longioribus, constrictis ab muris transversis Extrema cella valli extenta et attenuata

PHORMIDIUM SUBTERRANEUM, n.sp

(Figure 9)

In the cultures of bush soil another *Phormidium* was found which did not agree with any species previously described. The filaments were greyish in colour, with very indistinct transverse walls. The cells of the trichome were approximately 4.5μ in diameter and slightly longer than broad. The end cell (a.c.) was rounded, not tapering in any way and without a calyptra. The sheath (s) of the filament was narrow and showed only where it protruded past the trichome. It seemed closest to *P. ambiguum* Gom., which, however, is slightly constricted at the transverse walls.

Cellulis glaucis, latis $4-5\mu$, longioribus paulo quam latoribus, non constrictis ab muris transversis quae confusa sunt Extrema cella valli globosa, non extenta nec attenuata

Chlorophyceae.

These are plentiful in all cultures and the majority develop within a few weeks of inoculation. *Chlorococcum humicola* Rabenh. is the most frequent species, while *Stichococcus bacillaris* Nag. and a small species of *Chlorella* also appear constantly. Quite a number of these green forms have been obtained in pure culture on mineral salts agar. In the bush soil cultures, moss protonemata frequently occurred. The species identified are briefly described in the following pages.

CHLAMYDOMONAS COMMUNIS Snow

(Figure 10)

This species, although generally regarded as a plankton species, has been described from the soil by Bristol Roach(4) in England. In Victoria it was found in cultures from the bush soil and

occurred in many of the flasks. The cells were oblong-ovate and measured on an average $10\text{-}11\mu$ in length and $5\text{-}6\mu$ in diameter. At the anterior end of the cell there was a distinct papilla from either side of which two long cilia arose. The chloroplast was cup-shaped with a distinct central pyrenoid. A lateral stigma occurred near the anterior end. Reproduction by division of the cell contents into daughter cells has been observed, the mother cell previously shedding its cilia and settling into a non-motile state (Fig. 10B).

Playfair (30) has recorded this species in New South Wales, and mentions also an ovate or broader form of this organism which he calls *C. communis* Snow var *ovata*. This description seems to agree with a broader form of *C. communis* found in the soil cultures (Fig. 10C).

CHLAMYDOMONAS COMMUNIS Snow var *GRANDIS*, n. var.

(Figure 11)

This species also occurred in the cultures of the bush soil. It differed from the preceding species only in size, being very much larger, hence it was thought to be a new variety, *C. communis* var. *grandis*. The cells were oval with a distinct papilla at anterior end, from either side of which the two cilia arose. There was a cup-shaped chloroplast with a distinct central pyrenoid and a small lateral stigma near the anterior end of the cell.

Non-motile cells dividing to form daughter cells have been observed (Fig. 11B).

CHLAMYDOMONAS GRACILIS Snow

(Figure 12)

A third *Chlamydomonas* was found in the cultures from garden soil B. This species was broader in comparison with its length than the preceding species, also it tapered more towards the anterior end, being almost pear-shaped. The cell measured from $11\text{-}15\mu$ in length and from $7\text{-}8\mu$ in breadth. A papilla was present at the anterior end between the two cilia. The chloroplast was cup-shaped, with a large pyrenoid towards the posterior end of the cell. A lateral stigma was noted near the posterior end. Reproduction typical of the genus has been observed.

The measurements are slightly larger than those given by Pascher for this species, but otherwise it seems to agree closely with the description given.

CHLOROCOCCUM HUMICOLA (Naeg.) Rabenh.

(Figure 13)

This is perhaps the most commonly occurring species, being found in most flasks of both garden and bush soil. It grows well on mineral salts agar and is obtainable in pure culture without much difficulty.

The vegetative cells (Fig 13A) are round, bright green, and very granulated in appearance. The diameter of the cells varies, being on an average from $15-17\mu$, while the maximum is 22μ . There is a single parietal bell-shaped chloroplast (Fig 13 ch), with one large pyrenoid (Fig 13 p) which seems to lie opposite the opening of the chloroplast. The pyrenoid seems occasionally to divide into several parts. The cell wall (Fig 13 w) is thin, about 0.5μ in thickness. Reproduction by zoospores (Fig 13 z) is quite common. When the cell reaches a certain size the contents divide to form from 16-32 zoospores (Fig 13B). When these are ready to be freed, the mother cell wall (w) becomes mucilaginous and finally bursts. The zoospores are approximately 9μ long and 5μ broad, with a single parietal chloroplast containing one pyrenoid. There is an unpigmented space (s) at each end of the zoospore. Two cilia (Fig 13 c) of equal length ($10-12\mu$) are attached to the basal end. The zoospores swim actively around and finally settle down, shed their cilia, and gradually become adult rounded vegetative cells.

Figs 13-16.—13. *Chlorococcum lunulae* Rohenh. A. Vegetative cell. B. Zoospores. C. Cells forming autospores. 14. *Chlorella vulgaris* Beyennek. A. Vegetative cells. B. Cells forming autospores. C. Autospores freed from mother cell. 15. *Otocococcus bicarinatus* Grobety. A. Vegetative cells. B. Cells dividing. 16. *Ankistrodesmus falcatus* Rafts. A. Vegetative cells. B. Cells forming autospores. w. cell wall, ch. chloroplast, p. pyrenoid, m. mucilaginous wall, z. zoospores, c. cilia, ch. chloroplast, a. autospore, mw. mother cell wall, ap. appendage. $\times 700$

This form agrees with the description given by Pascher, but seems slightly larger than the normal species. In this respect it agrees with the Malay form described by Bristol Roach (5).

This species has been recorded from the soil in England by Bristol Roach (4), and in America by Moore and Carter (22).

CHLORELLA VULGARIS Beyenck

(Figure 14)

This species also occurred frequently in the cultures of both bush and garden soil, and has been quite readily obtained in pure culture. The cells were round, varying in diameter from 5μ - 9μ with a thin cell wall. There was a solitary parietal bell-shaped chloroplast (ch) with one pyrenoid (p) which was not always distinct.

The reproduction was by means of autospores, 4-8 of these being formed within the mother cell wall by the division of the cell contents, and being ultimately set free by the gelatinization of the old cell wall.

Several species of *Chlorella*, including *C. vulgaris*, have been recorded from the soil.

OUCROCOCUS BICAUDATUS Giobéty

(Figure 15)

There seems to exist some doubt regarding the nomenclature of this species, synonyms being *Keratococcus caudatus* Pascher and *Dactylococcus bicaudatus* A. Bi., but because of its ability to divide vegetatively it has been taken out of Oocystaceae, therefore, it cannot be a *Dactylococcus*, and the name *Ourococcus* seems to have priority over *Keratococcus*. This species was found in the cultures of bush soil only, in one or two of the less dilute flasks. It has been grown on plates of mineral salts agar, but as yet no very successful pure culture has been obtained.

The cells were fusiform in shape, straight or slightly bent with an appendage at both ends, both of which were pointed or one was pointed while the other was more or less rounded. The length of the cells measured from 25 - 34μ , including the appendages, which were approximately 5μ long. The diameter of the cells varied from 3 5 - 6μ . The chloroplast was peripheral, with one pyrenoid, which was often indistinct.

Reproduction by longitudinal division was observed (Fig. 15B). Although autospore formation may occur in this species, it has not been observed.

This species has been recorded for the soil by Bristol Roach(4) in England.

ANKISTRODESMUS FALCATUS Ralfs

(Figure 16)

This species agrees with the form described from the soil in England by Bristol Roach(4) which, because of its habitat and special resistant powers, she regarded as a special form of the species *A. falcatus* forma *terrestris*. It has been found in the cultures of bush soil only. The cells were crescent-shaped with pointed ends, and measured approximately 17 - 20μ in length and

2.5-3.5 μ in breadth. A single parietal chloroplast covering the entire cell wall was present, but no pyrenoid has been observed. Reproduction was by longitudinal division into 4 to 8 autospores which are set free by the gelatinization of the mother cell wall.

Playfair (30) recorded the presence of two varieties of *O. falcatus* in plankton in New South Wales, while West (43) found it among the algae of the Yan Yean Reservoir, Victoria.

OOCYSTIS SOLITARIA var. *TERRESTRIS*, n. var.

(Figure 17)

A species of *Oocystis* was grown in several cultures of garden soil A, being one of the first forms to develop, but dying out of the cultures completely within a few months.

The cells were always solitary, being elongated in shape and measuring approximately 7-9 μ in diameter and 19-27 μ in length. Each cell contained several chloroplasts without pyrenoids, and at both ends the wall was thickened slightly. Reproduction was by the formation of autospores, which measured on an average 6 μ in diameter by 8-9 μ in length. No mother cell with an unbroken wall was observed, but in many cases autospores were seen lying within portions of the old mother wall (see Fig. 17B).

The identification of this species was rather difficult. At first sight it closely resembled *O. rupestris* Kirchner, but upon closer observation was seen, unlike this species, to have polar thickenings of the cell wall. Pascher mentions several varieties of *O. solitaria* Wittrock. This form was very close to *O. solitaria* var. *elongata* Printz, from which, however, it differed in the type of polar thickening. It was therefore regarded as a new variety—*O. solitaria* var. *terrestris*.

Species of *Oocystis* are found as a rule in lakes and ponds, and as far as can be ascertained this is the first record of one from soil. West (43) has recorded *O. solitaria* Wittrock from the Yan Yean Reservoir, Victoria, and Playfair (29) has described many species and varieties of *Oocystis* in New South Wales, among them being *O. solitaria* Wittrock, all, however, from ponds or swamps.

TROCHISCIA HIRTA (Reinsch) Hansgirg

(Figure 18)

This alga was found in several cultures of garden soils A and B, and has been obtained in pure culture. In this condition, unfortunately, the organism did not grow normally, and in many cases even developed an almost spineless wall. Some *Chorellas* have been described with appendages on their walls, but as this form contained several definite chloroplasts it seemed to be undoubtedly a *Trochiscia*. Following Pascher's key it was identified as *Trochiscia hirta*. With this identification, however, Professor Fritsch, to whom a culture of the organism was sent,

did not agree. However, it has been concluded that the culture, on reaching him, was not in a normal condition, probably even the spines on the walls were undeveloped or reduced.

The cells were spherical, varying in diameter from 9.5μ - 21μ , with minute needle-like spines covering the outer wall (Fig. 18A). There were several chloroplasts (ch), slightly yellowish-green in colour, some with a pyrenoid (p). Reproduction by auto-spores was common (Fig. 18B), the spores developing the characteristic spines on their outer walls only after liberation from the mother cell.

Several species of *Trochiscia* have been recorded from the soil, including *T. hirta* in England by Bristol Roach(4)

Figs. 17-20.—17 *Oocystis solitaria* var. *terrestris*, n. var. A Vegetative cells, B Auto-spores freed from mother cell 18 *Trochiscia hirta* Hansgirg. A Vegetative cells, B Auto-spores being freed from mother cell 19 *Protococcus viridis* Agardh. A Single cell B Colony 20 *Muriella australis*, n. sp. A Vegetative cell B Auto-sporangium ch chloroplast, pt polar thickening, a auto-spore, p pyrenoid, o outgrowth $\times 700$

PROTOCOCCUS VIRIDIS Agardh

(Figure 19)

Owing to one or two doubtful features, the identification of this species was left in abeyance for some time and the organism carefully observed in pure culture for over a period of two years. At the end of that time the organism was taken to be a *Protococcus* and more or less identical with *P. viridis*. This latter, however, usually has no pyrenoid, while in this form from the Victorian soil the pyrenoid was always very large and distinct (Fig. 19A (p)). West and Fritsch(44) draw attention to the fact

that there seem to be two species of *P. viridis*, one with a pyrenoid and one without. Whether that is so or not, it is certain that this species was never without one.

The cells were spherical, containing a single peripheral bright-green chloroplast (ch) with a large central pyrenoid (p). Adult cells measured on an average 9-10 μ in diameter. Reproduction was always by vegetative division into two, then four, &c., often all the daughter cells remaining together to form a large colony (Fig. 19B, c). This is one of the commonest of the green algae, being world-wide in distribution. It is found as a green scum not only on damp soil, but on fences, tree-trunks, &c.

MURIELLA AUSTRALIS, n. sp

(Figure 20)

In many of the flasks of the cultures of garden soil B an organism was observed which could not be identified with any known species. It has been grown in pure culture, and carefully watched for over two years. The cells were solitary and spherical, and contained several green chloroplasts without pyrenoids. The chloroplasts were slightly yellowish-green in colour, but the cell walls gave a very definite cellulose reaction with chlozo-zinc-iodine and no blue colour change when boiled with HCl, hence it could not be placed among the Heterokontae.

Many of the cells in an old culture developed peculiar out-growths on the cell wall (Fig. 20A, o), which were not unlike those found in *Eugleniosphaera*. However, these thickenings were by no means general.

Reproduction was by autospore formation, four or more being formed within the mother cell (Fig. 20B). Although this species has been grown in pure culture in mineral salts agar as well as in liquid mineral salts, no sign of zoospore formation has been observed.

The organism agreed with the generic characters given by J. Boye Petersen in his description of *Muriella*, but differed from his species in being much larger, measuring 10-18 μ in diameter, also in having a thicker cell wall, and therefore the name *Muriella australis* is proposed for it.

Cellulis globosis, latis 10-18 μ cum muri modice crassis, et aliquot iridibus chromatophoris sine pyrenoidibus. Reproduc-tione per autospores.

ULOPHRIX VARIABILIS Kutz

(Figure 21)

U. variabilis Kutz was fairly common in the cultures from garden soils A and B, but was never found in the cultures of bush soil. It has been obtained in pure culture without any difficulty.

The organism consisted of long unbranched filaments, the individual cells of which measured 12-13 μ in length and 7-8 μ in diameter, with a single green chloroplast (ch) encircling

two-thirds of the protoplast, and containing one large central pyrenoid (p). The end cell of the filament was rounded at the apex. In a fairly old culture the filaments break up into 2 or 3-celled fragments (Fig. 21B). This vegetative type of reproduction was the only kind observed, the typical method by zoospore formation not taking place in the cultures.

This species has been described by Bristol Roach (4) for the soil in Great Britain.

Figs 21-25 — 21 *Ulothrix variabilis* Kutz. A Vegetative filaments B Filaments breaking up 22 *Ulothrix subtilissima* Rabenh 23 *Ulothrix aequalis* Kutz A Vegetative filament B Filament forming akinetes 24 *Hormidium flaccidum* A Br 25 *Stichococcus bacillaris* Nag p pyrenoid, ch chloroplast, w thin cell wall, a. akinete
X 700

ULOTHRIX SUBTILISSIMA Rabenhorst

(Figure 22)

Unlike the preceding one, this species was found in the bush soil only, and did not appear in any of the flasks containing garden soil. It has not yet been obtained in pure culture. The filaments were narrower than those of *U. variabilis*, measuring from 4.5-5.5 μ in diameter, while the individual cells varied in

length from 11-13 μ , and contained a single chloroplast (Fig 22 ch), encircling two-thirds of the protoplast with one central pyrenoid (p) The cell wall (w) was comparatively thin

In this species of *Ulothrix* again no zoospore formation could be observed This species does not appear to have been previously recorded for the soil

ULOTHRIX AEQUALIS Kutzning
(Figure 23)

This form was observed in cultures of the bush soil, and although small colonies have been found growing on agar plates, no pure culture has yet been obtained

The thick cell wall distinguished it from the foregoing species of *Ulothrix* The cells of the filaments measured approximately 12 μ in diameter, and were as long as broad, sometimes slightly longer Each cell contained a single chloroplast (ch), which covered the entire longitudinal wall and encircled two-thirds of the protoplast According to Pascher there may be two pyrenoids present in each cell, but in all these cultures each cell contained one pyrenoid only (p)

No zoospore formation has been observed, but in many filaments, particularly those in older cultures, the contents of the cell have rounded off to form akinetes, the longitudinal walls of the filament in these cases being constituted (Fig 23b)

This species does not appear to have been previously recorded from the soil

HORMIDIUM FLACCIDUM A Br
(Figure 24)

A few filaments which have been identified as *Hormidium flaccidum* A Br were found growing in one or two of the earlier or less dilute flasks of bush soil The size of the chloroplast, which covered a small portion only of the cell wall, distinguished this genus from *Ulothrix* The filaments were long and unbranched and did not break up as readily as many species of *Hormidium* The individual cells of the filaments measured from 5-6 μ in diameter and from 11-15 μ in length The chloroplast (ch) did not cover more than half of the cell wall, and contained a distinct pyrenoid (p) The vegetative filaments only have been observed, no reproduction having taken place

Bristol Roach(4) records the presence of *H. nilens* Menegh, but this species does not appear have been previously recorded

STICHOCOCCUS BACILLARIS Naegeli
(Figure 25)

This species occurred frequently in the cultures from both bush and garden soil It grew particularly well on the mineral salts agar, and formed quite a large colony in a few weeks and was comparatively easy to obtain in pure culture Although it

belongs to the Ulotrichales, the filamentous form was rarely seen in culture, single cells predominating or two or three cells united in short chains.

The cells agreed in all particulars with the typical form as described by Pascher, being from 3-3.5 μ in breadth and varying in length from 6-11 μ , the ends being rounded. There was a single plate-like chloroplast (Fig 25 c), which filled about two-thirds of the cell, but no pyrenoid was present.

This species is a common terrestrial form and has been recorded for the soil by Bristol Roach (4) in England and by Moore and Carter in Missouri, United States of America (22).

Fig. 26 *Gongrosira australis*, n. sp. ch chloroplast, p pyrenoid, mc mother cell, a spore

GONGROSIRA AUSTRALIS, n. sp

(Figure 26)

This organism occurred frequently in the cultures of bush soil, either as small irregular colonies or short filaments two or three cells in length. It has been grown on mineral salts agar, where it formed spherical colonies. By its vegetative characters it was identified as a *Gongrosira*, but further investigation showed that no zoospores were ever formed. The organism was carefully watched for over a year, and during that period many of the larger cells of the filaments became gonidangia, their contents dividing up to form numerous small round gonidia or autospores which were never motile.

However, it was concluded that this was due to cultural conditions, as neither *Botydiopsis arhiza* Borzi nor *Heterococcus viridis* Chodat, both of which normally form zoospores, did so under conditions identical with those under which this alga was grown. It was, therefore, decided that this species belonged to *Gongrosira*, and it is suggested that the generic description be modified to include the formation of non-motile spores under cultural conditions. The species, however, did not agree with any previously described, being closest to *G. terrula* Bristol but larger in size with both intercalary and terminal gonidangium.

Fig. 27 *Vaucheria hamata* (Vauch.) Lynch. $\times 100$ vt
vegetative filament, b. sexual branch, g. gonidium, i. antheridium

The thallus consisted of cells of varying sizes branching irregularly to form colonies, only slightly differentiated into basal cushion-forming cells and upper filamentous ones, the end cells of the filament gradually decreasing in size. There was a single irregular chloroplast (ch) in each cell, usually with one pyrenoid (p) but occasionally with two or even three. The vegetative cells were generally longer than broad, measuring from $8-15\mu$ in diameter and from $12-45\mu$ in length. Any of the larger cells in the filament was apparently capable of becoming a gonidangium (Fig. 26 mc), the contents dividing up to form numerous small round gonidia or autospores (a). The wall at the apex of the mother cell became swollen and mucilaginous, finally breaking down to free the gonidia.

Filamentis inferioribus cum cellulis subglobosis et superioribus erectis cellulis 8-15 μ latis, et longis 12-45 μ cum singularis inaequalibus chromatophoris et 1-3 pyrenoidibus Reproductione per gonidangias extremas vel intercalarias cum gonodus multis rotundis

VAUCHIERIA HAMATA (Vauch.) Lyngb
(Figure 27)

This alga did not grow in any of the culture flasks but grew in abundance on the surface of a sample of the garden soil A which had been placed in a sterile petri dish. The filaments (vf) measured approximately 35-40 μ in diameter. Oogonia (o) were found on lateral branches, either one or two being present on each branch from which an antheridium (a) also grew. An oogonium measured about 70 μ x 56 μ , being subspherical, while an antheridium was 26 μ in diameter, and very much curved. This species is frequently found growing on damp soil.

Heterokontae.

Only five species of Heterokontae have been identified from Victorian soils, and of these *Bumilleria caulis* Klebs is the most frequent form, occurring in garden soil A and B as well as in the bush soil. *Heterococcus viridis* Chodat occurs in one series of the garden soil and in the bush soil. *Botrydiopsis arhiza* Borzi also is a very common terrestrial form, being world-wide in its distribution, but here it was found only in one series of the garden soil cultures.

Brief descriptions of the five species are given.

OPHIOCYTIUM TERRESTRE Heyward

In a previous paper (18) the author has described this species, which was found in the cultures of bush soil. The organism grew readily in the flasks but could not be obtained in pure culture. It was a non-colonial form not attached in any way to some substratum. The size of the adult cell (A) varied from 9-12 μ in breadth and up to 135 μ in length. The cell was slightly curved and had a distinct apical cap (a c), while at the basal end was a wavy stalk. Reproduction by both aplanospores and zoospores was observed.

This was the first occasion on which the genus was recorded from soil.

BOTRYDIOPSIS ARHIZA Borzi
(Figure 28)

This species was identified from cultures of garden soil B, but has not been obtained in pure culture. The cells were solitary and large, with very thin walls, and contained numerous yellowish-green disk-like chloroplasts. The cells varied in diameter from 15-30 μ , the smaller ones containing fewer chloroplasts.

No zoospores were observed, but autospore formation was infrequent, this being probably due to cultural conditions. The contents of the mother cell divided to form numerous rounded spores which were freed by the bursting of the mother cell wall (Fig. 28B)

This species is a very common terrestrial alga and has frequently been recorded for the soil.

CHLOROCLOSTER MINOR, n. sp.

(Figure 29)

A small brownish-green unicellular alga was frequently observed in the earlier stages of development of the cultures of bush soil. Unfortunately, it could not be obtained in pure culture and later died out completely.

FIGS. 28, 29, 31.—28 *Botrydiopsis arhiza* Borzi. A Vegetative cell. B Autospores being freed from mother cell. 29 *Chlorocloster minor* n. sp. A Vegetative cell. B Autosporangium. 31 *Bumilleria* cells Klebs. A Vegetative filaments. B Filaments breaking down to form alanelles. C Cell forming zoospores. ch chloroplast, s autospores forming, z zoospores, h shaped pieces showing. $\times 700$

The cells were solitary, elongated in shape, and contained two or more brownish-green chloroplasts. No starch reaction was given with iodine, while with chlor-zinc-iodine the cell walls gave no cellulose reaction. The alga was therefore placed in the Heterokontae and was found to be very similar to *Chlorocloster terrestreis* Pascher, from which it differed in size, being much smaller. The length measured from $7-8\mu$ while the diameter was $2.5-4\mu$. The cell wall was very thin, and each cell contained two or more chloroplasts (ch).

Reproduction took place by longitudinal division into autospores (Fig. 29B).

Cellulis solitarius extensis latis 2.5-4 μ , longis 7-8 μ cum duo aut multis chromatophoris fuscis irridibus Reproductione per auto-spores

HETEROCOCCUS VIRIDIS Chodat

(Figure 30)

This alga grew in the cultures of bush soil and garden soil A It developed in a few weeks after inoculation and in the earlier examinations was one of the most prominent forms Later it apparently died out of the culture This disappearance, however, may have been due to the fact that the more mature filaments tended to break down into unicellular spherical organisms This was proved by growing a colony on mineral salts agar and watching its development (see Fig 30A, B, c)

Fig. 30 Heterococcus viridis Chodat. A Young colony B Portion of filament C Filament breaking up into unicells ch chloroplast, s autospores forming X 700

In its filamentous form, the organism was built up of cells of irregular shape and size, longer than broad, and containing numerous disk-like yellowish-green chloroplasts (ch) No pyrenoids were present and the cell walls gave a negative chlorophyll test with chlor-zinc-iodine The diameter of the cells averaged from 7-10 μ , while the length varied from 10-60 μ In the unicellular form the diameter measured from 10-15 μ , and in many of these cells the contents divided up to form numerous small spores (Fig 30c (s)) These may have been autospores or zoospores which had not then become motile, both types of reproduction taking place This form has been recorded for the soil by Moore and Carter(22) in America

BUMILLERIA EXILIS Klebs

(Figure 31)

This was perhaps the most frequently occurring member of the Heterokontae, being present in numerous flasks of both bush and garden soil. Identification of this species was difficult because the so-called characteristic H-shaped pieces in the cell wall were not very evident in the vegetative condition. This is apparently always the case in this species of the genus, and on this account Pascher suggests taking it out of *Bumilleria* and renaming it *Heterothrix exilis*.

The organism consisted of comparatively short unbranched filaments, the individual cells measuring $4\text{-}5\mu$ in diameter and $10\text{-}15\mu$ in length. In each cell there were usually two chloroplasts (ch), but occasionally more. The species has been obtained in pure culture on mineral salts agar and under these conditions reproduction took place by the liberation of akinetes. The contents of an individual cell rounded off to form a spherical spore which is set free by the breaking of the cell wall (Fig. 31c). In these circumstances H-shaped pieces are more apparent. In one instance only was more than one spore in a cell observed. Here the contents rounded off to form four small spores. It was impossible to tell whether these were zoospores or autospores as no motile organs were observed (Fig. 31b).

This species has been previously recorded for the soil by Bristol Roach (4) in England.

Bacillariaceae.

Very few diatoms or desmids have been identified in the culture flasks. They do not appear until long after the other algae are well established, and only two have been identified with certainty.

HANTZSCHIA AMPHILOXYS (Ehr.) Grun

(Figure 32)

This was the only diatom which was found in any appreciable quantity. It measured on an average $7\mu \times 33\mu$. This form has been described by Bristol Roach (4) from the soil in England and by Moore and Carter (22) in U.S.A.

NAVICULA MUTICA Kutz

(Figure 33.)

This diatom was identified in many flasks of the cultures from garden soils A and B. The breadth of the valve averaged 6μ while the length varied from $14\text{-}17\mu$. This species was found by Bristol Roach (4) to be one of the commonest soil diatoms.

From this investigation, it will be realized how very cosmopolitan are the terrestrial algae in their distribution, many forms identified from soils in England, America, and Europe, reappearing here in Victorian soils. It is very significant to find three algae—*Chlorococcum humicola*, *Bumilleria exilis* and *Hantzschia amphioxys*, which Bristol Roach (4) points out as being three of the most frequently occurring species in English soils—again occupying that position in regard to Victorian soils. Quite a number of other species which have been identified in other parts of the world are also present here, including *Nostoc muscorum*, *Anabaena variabilis*, *Phormidium tenuie*,

Figs 32 *Hantzschia amphioxys*, (Ehr.) Grun. 33 *Navicula mutica* Kutz. X 700

Phormidium autumnale, *Chlamydomonas communis*, *Chlorella vulgaris*, *Ourococcus buaudatus*, *Ancistrodesmus falcatus*, *Trochuscia hirta*, *Stichococcus bacillaris*, *Vaucheria hamata*, *Botrydiopsis arhiza*, and *Heterococcus viridis*. Some few, such as *Oocystis solitaria*, *Ulothrix subtilissima*, *Ophiocytium terrestre*, have not previously been recorded from the soil, while others again were found to be new species belonging, for the most part, to terrestrial genera e.g., *Phormidium australe*, *Phormidium subterraneum*, *Muriella australis*, *Gongrosira australis*, *Chlorocloster minor*.

In conclusion I should like to thank all those who have helped me during this investigation—Professor Ewart for his unfailing interest, Dr McLennan for her ever willing assistance and helpful suggestions, and Professor Fritsch of the London University, to whom many specimens were forwarded for verification.

Bibliography.

- 1 ACKLEY, ALMA. New Species and Varieties of Michigan Algae *Trans Amer Micro Soc* xlvi, 1929
- 2 BAILEY, F M. Contributions to the Flora of Queensland *Bot. Bulletin, Queensland Dept of Agriculture* vi, xv, 1895, 1898
- 3 BECK-MANAGETTA, G. New Blue and Green Algae *Arch f Protist* lxvi, 1929
- 4 BRISTOL, B M. On the Alga-Flora of some Desiccated English Soils. *Ann. Bot.* xxxiv, 1920

- 5 BRISTOL, B M On a Malay form of *Chlorococcum humicola* (Naeg.) Rab *Journ Linn Soc Bot* xliv, 1917-1920
- 6 BRISTOL-ROACH, B M Methods in use in Studying the Algae of the Soil (Manuscript) 1926
- 7 BRISTOL-ROACH, B M On the Relation of Certain Soil Algae to some Soluble Carbon Compounds *Ann Bot* xl, 1926
- 8 BRISTOL-ROACH, B M Influence of Glucose and Light on Growth of Soil Algae *Ibid*, xli, 1928
- 9 BRISTOL, B M, and PAGE, H J A Critical Enquiry into the Alleged Fixation of Nitrogen by Green Algae *Ann App Biol* x, 1923
- 10 CARTER, N Fresh Water Algae *Journ, Linn Soc Bot* xlvi, 1922
- 11 CHOLNOKY, B Planogonidien und Gametenbildung bei *Ulothrix variabilis* *Beih z Bot Centralb* I Abt 49, 1932
- 12 CHODAT, F *Protococcus viridis* *Comp Rend Soc Phys Hist Nat Genève*, xli, 1924
- 13 CROW, W B Contributions to the Morphology of colonial Cyanophyceae *Arch f Protist* lxii, 1928
- 14 FRANCE, R H, and MAGDEBURG, P Vergleichende Untersuchung der Hochmoor-Algen flora zweier deutscher Mittelgebirge *Hedwya*, lxvi, 1926
- 15 FRITSCH, F E Contributions to our Knowledge of freshwater Algae of Africa *Trans Roy Soc S Africa*, ii, 1924
- 16 GARDNER, N Myxophyceae from Porto Rico *Mem New York Bot Gard* 7, 1927
- 17 GHOSE, S E Blue Green Algae from Lahore and Simla *Journ Linn Soc Bot* vi, x, 1927 and 1931
- 18 HEYWARD, J Two Species of *Ophycytum* in Victoria—*O. terrestre*, n sp., and *O. arbuscula* Rabenh *Proc Roy Soc Vic* (n.s.), xliv (2), 1932
- 19 LUCAS, A H S Marine Algae of Australia *Proc Linn Soc NSW* lii, 1927
- 20 MOEWUS, F Neue Chlamydomonaden *Arch f Protist* lxxv, 1931
- 21 MOORE, G T New or little known Unicellular Algae (i) *Eremosphaera viridis*, (ii) *Excentrosphaera* *Bot Gaz*, xxxii, 1901
- 22 MOORE, G T, and CARTER, N Further Studies on the Subterranean Algal Flora of the Missouri Bot Garden *Ann Missouri Bot Gard* xiii, 1926
- 23 MOORE, G T, and WEIRSFER, T A Studies on Photosynthesis in Green Algae I The Fixation of both Carbon and Nitrogen from the atmosphere to form organic tissue by the Green Plant cell *Proc Roy Soc Lond* xcib, 1920, p 201
- 24 PALMER, C M Algae of Marion County, Indiana *Buller Univ Bot Studies* ii, 1931
- 25 PASCHER, A *Die Süsswasserflora* Gustav Fischer, Jena, 1915
- 26 PASCHER, A Drei Neue Protococcocalengattungen *Arch f. Protist*, lxxvi, 1932
- 27 PASCHER, A Zur Kenntnis der Heterokonten Algen *Ibid*, lxix, 1930
- 28 PETERSEN, J BOYE New earth Algae *Ibid*, lxxvi, 1932
- 29 PLAYFAIR, G I Australian Freshwater Phytoplankton *Proc Linn. Soc NSW* xli, 1916
- 30 PLAYFAIR, G I Notes on Freshwater Algae *Ibid*, xlvi, 1923
- 31 POULTON, E M. Studies of the Heterokontae *New Phyt* xxv, 1926.
- 32 POULTON E M Further Studies of the Heterokontae Some Heterokontae of New England, U.S.A *Ibid*, xxix, 1930

- 33 PRINGSHEIM, E G Neue Chlamydomonadaceen *Arch f Protist* Ixix, 1930
- 34 RUSSELL, E J *The Muroorganisms of the Soil* Longmans, Green and Co, 1923
- 35 SCHIRAM, J R Some pure culture methods in the Algae *Ann Missouri Bot Gard* 1, 1914
- 36 SCHIRAM, J R A contribution to our knowledge of the relation of certain Species of Grass Green Algae to Elementary Nitrogen *Ibid*, 1, 1914
- 37 SMITH, G M *Fresh-Water Algae of the United States* McGraw-Hill Book Co 1933
- 38 TILDEN, J *Minnesota Algae* Minnesota, 1910
- 39 WAGER, H Notes on the Blue Green Algae with a key to the species of *Oscillatoria* and *Phormidium* *N Eng Naturalist*, 680 and 683 1913
- 40 WAKSMAN, S A *Principles of Soil Microbiology* Williams and Wilkins 1927
- 41 WAKSMAN, S A, and STARKEY, R L *The Soil and the Microbe* John Wiley and Sons 1931
- 42 WANN, F B The fixation of Nitrogen by Green Plants *Amer Journ Bot* viii, 1921
- 43 WEST, G S The Algae of the Yan Yean Reservoir, Victoria—a Biological and Ecological Study *Journ Linn Soc* xxxix, 1909-1911
- 44 WEST, G S, and FRITSCH, F E *British Fresh Water Algae* Cambridge 1927

[PROC ROY SOC VICTORIA, 47 (N S), Pt II, 1935]

ART. XVI—*Victorian Graptolites (New Series). Part III.*

By WM J HARRIS, D Sc
and D E THOMAS, B Sc

[Read 11th October, 1934, issued separately, 8th May, 1935]

The graptolites described in the present paper are for the most part high Darriwilian forms from the area east of Bendigo, and include those on which the subdivision of the Darriwilian beds is based. Others are interesting for purposes of comparison or from an evolutionary point of view.

Biserial forms predominate in the D2 and higher zones which have been included by one of us(11) in a *Diplograptus* series. *Glyptograpti* are abundant, including mutations between *D (Glyptog.) dentatus* (Blong) and *D (G.) teretiusculus* (His.). *D (G.) intersitus*, sp nov, is one of these, and is so restricted in range that it serves as a zonal fossil. *D (G.) euglyphus* (Lapworth) is common in the higher beds. Dichograptid species are still common, but become progressively rarer in the higher beds. Many of the *Didymograpti* show thecal elaboration. The presence of these complex forms adds interest but also difficulty to the task of description, since the material available is for the most part soft, soapy shale in which details of graptolite structure are not clearly seen.

A notable feature is the general resemblance of the upper Darriwilian forms here described to those described and figured by Bulman(1, 2) from South America. Though it seems unsafe to insist on specific identity in many cases, it seems clear that further work will emphasize the equivalence of horizon of our beds to the South American beds referred to the Llanvirnian, in spite of the notable absence of the dependent *Didymograpti* from these Victorian beds.

At the end of the paper a list is given showing the position of graptolite localities referred to by numbers in the body of the paper. The stratigraphy of the area from which most of the Upper Darriwilian forms were obtained, with graptolite associations and remarks on zoning, is given in an accompanying paper by Harris(11).

The forms described and figured are —

Family DICHOGRAPTIIDAE Lapworth

Genus PTEROGRAPTUS Holm

Pterograptus incertus, sp nov

Genus TRICHOGRAPTUS Nicholson

Trichograptus immotus, sp nov

Genus TETRAGRAPTUS Salter

Tetrograptus defensus, sp nov

Genus **DIDYMOGRAPSIUS** McCoy

- Didymograptus cognatus*, sp nov
- " *distinctus*, sp nov
- " *cuspidatus* Ruedemann
- " *compiessus*, sp nov
- " *nodosus* Harris
- (?) *Didymograptus dubitatus*, sp nov

Family DIPLOGRAPTIDAE Lapworth

Genus **DIPLOGRAPPUS** McCoy.Sub-genus **GLYPTOGRAPTRUS** Lapworth

- Glyptograptus austriodentatus* Harris and Keble
- " *intersitus*, sp nov
- " *euglyphus* (Lapworth)

Sub-genus **MESOGRAPTRUS** Elles and Wood
(= *DIPLOGRAPTUS* McCoy, *sensu stricto*)

- (?) *Mesograptus decoratus*, sp nov

Sub-genus **AMPLEXOGRAPSIUS** Elles and Wood

- Amplexograptus modicellus*, sp nov
- " *confertus* (Lapworth)
- " *dissertus*, sp nov

Genus **CRYPTOGRAPTRUS** Lapworth

- Cryptograptus schaferi* (Lapworth)

Family GLOSSOGRAPTIDAE Lapworth, emend Elles and Wood

Genus **GLOSSOGRAPTRUS** Emmons

- Glossograptus acanthus* Elles and Wood
- (?) *Glossograptus crudus*, sp nov

Genus **LASIOGRAPTRUS** LapworthSub-genus **HALLOGRAPTRUS** Carruthers

- Hallograptus proteus*, sp nov

Sub-genus **THYSANOGRAPTRUS** Elles and Wood (= *Lasiograptus* Lapw.)

- Thysanograptus etheridgei* Harris

Family ISOGRAPTIDAE Harris

Genus **CARDIOPRAPTRUS** Harris and Keble

- Cardiograptus cławfordi* Harris

Family DICHOGRAPTIDAE Lapworth

Genus **Pterograptus** Holm

- PTEROGRAPTUS INCERTUS*, sp nov

(Fig 1, Nos 1 and 1a, Fig 2, Nos 1-6.)

Description.—From a long and slender sicula two dependent stipes diverge at an angle usually of more than 90°, but sometimes less. These in turn, apparently by dichotomy, give rise to a number of stipes ranging from three or four to eight, forming a *Bryograptus*-like rhabdosome. Thecae of simple dichograptid type, 10-11 in 10 mm., 2-3 times as long as wide, with small overlap, concave ventral margins and straight or slightly concave apertures, the apertural margins approximately normal to the

axis of the stipe. The sicula is rather less than 1 mm long, and the first theca originates sub-orally. The first dichotomy takes place sub-orally from th 1¹ and th 1², and further dichotomy from succeeding thecae. The distal stipes are in every observed case less than 1 mm wide and often considerably less.

Remarks—This form provides an example of the difficulty of classifying graptolites by method of branching. By that criterion the four-branched forms might be regarded as dependent *Tetragraptus* like *T pendens*, and the forms with more numerous branches resemble externally *Bryograptus* of a much lower horizon, yet the affinities of the species are rather with *Pterograptus* than with these earlier genera. Dichotomy may possibly be due to the equal spacing of the thecae as regards food supply.

Affinities—The present species can be easily distinguished from *P scanicus* Moberg and *P lyricus* Kehle and Harris by the general form of the rhabdosome. It is a much more robust form than *P elegans* Holm, from which it differs also in thecal characters. In general habit it differs from the unnamed form figured by Bulman from Bolivia(1), although a form resembling this occurs in the same beds but has not yet been found in a sufficiently well-preserved state for description.

Localities and Horizon—Widely distributed and locally abundant at Upper Darriwilian localities in the Strathfieldsaye district, where it is most characteristic of a sub-zone between the zones of *Diplograptus (Glyptograptus) austrodentatus* and *D (G) intersitus*. For example, on the road near Allot 3 of Sect IX, Strathfieldsaye (Caldwell's loc A 169), it is associated with *D (G) austrodentatus* and *D (G) intersitus*, while further south (locs 283-285) it is associated with *D (G) intersitus*. At other outcrops of *D (G) intersitus*, apparently higher, such as loc 196, it occurs very rarely.

Genus **Trichograptus** Nicholson

TRICHOGRAPATUS IMMORUS, sp nov.

(Fig 1, Nos 2a-c, Fig 2, Nos 7, 8)

Description—Rhabdosome slender, bilaterally symmetrical, consisting of two main branches which diverge at about 150° but soon turn back to form almost a straight line or even take up a reclined position. Each of these gives off, from successive thecae near their apertures, secondary branches on the same side of the main stipes. These secondary stipes do not divide further. Sicula long and narrow, the primary thecae also long, narrow tubes, about 8 in 10 mm. Thecae on secondary stipes about 10-11 in 10 mm inclined at an angle usually less than 25°, slightly overlapping, with apertural margins almost straight and generally at right angles to the axis of stipe.

Remarks—By its size and general aspect this form may be distinguished from *Trichograptus fergusoni* T S Hall and *T fragilis* (Nicholson). It is probably more closely related to *T crinitus* Moberg, but differs from this Swedish form in having more rigid primary and secondary stipes and in having the thecae on the primary stipes more loosely spaced—8 in 10 mm as compared with 10—thus spacing the secondary stipes more widely. The general characters of the thecae on the secondary stipes agree fairly well, but the overlap in our species is, if anything, somewhat less than in Moberg's species.

Horizon and Locality—Rather rare in the upper Darriwilian beds (zone of *Didymograptus nodosus*) of Allot 8, Section XXIX, Huntly (Bendigo).

Genus *Tetragraptus* Salter

TETRAGRAPTUS DEFENSUS, sp nov

(Fig 2 No 9)

Description—Rhabdosome consisting of four reflexed stipes widening gradually from less than 1 mm to nearly 2 mm. Thecae 16–10 in 10 mm. The characteristic feature is the presence on distal portions of the stipes of stout dorsal spines 1 mm long, at right angles to the axis of the stipe and numbering 7 in 10 mm.

Remarks—This description is based on one poorly-preserved specimen, but this is so distinct from any form yet found in Australia that special attention is called to it. In the nature and disposition of its dorsal spines this species resembles *T echinatus* Clark (3, p 65), but it seems to differ from Clark's species in every other respect—form, thecal measurements, etc. The state of preservation unfortunately does not permit of greater descriptive detail, and should better material be found later, the specific description may require amendment. From the description and figure future workers should be able to recognize any fragments that may come to light.

Horizon and Locality—The single specimen was obtained from a band of pink and bluish-purple shale outcropping on the east and west road between Sects 25 and 26, Strathfieldsaye, on the continuation of the band marked on Caldwell's plan of Strathfieldsaye as A 169. The horizon—high D2 (zone of *Diplograptus (Glyptograptus) austrodentatus*)—closely approximates to that recorded by Clark for *T echinatus* (3, p 56).

Genus *Didymograptus* McCoy

DIDYMOGRAPTUS COGNATUS, sp nov

(Fig 1, Nos 4a–c, Fig 2, Nos 13, 14)

Description—Stipes occasionally up to 3 cm long (longer if the reference of fragmentary stipes to this species is correct), but usually much shorter, very narrow throughout, not exceeding

in our specimens a width of about 0.4 mm., diverging from a comparatively long and narrow sicula at an angle of 140°. Thecae 8 in 10 mm., triangular or slightly concavo-convex tubes with so little overlap as to appear to be placed almost end to end. Inclination very low, apertural margins straight or slightly concave, almost normal to axis of stipe.

Remarks—The description of this slender *Didymograptus* approaches very closely that of *Didymograptus affinis* Nicholson. In spite of this, the cumulative effect of small differences is to give an impression quite distinct from that given by Elles and Wood's figures (4, pl. 11, figs. 1a, b). On close examination it will be seen that the overlap is even less than in the British species, the apertural margins are less concave, the ventral margins straighter, and there is no denticle. The species seems to have had a thin perideum, and consequently will be hard to find at outcrops where graptolites are not especially well preserved.

Horizon and Localities—Common, but, on account of its delicacy, rarely well preserved in the upper Daillwilian beds of Bendigo East in the zone of *Didymograptus nodosus*, especially on the water-race in the south-east corner of Allot 19, Sect III, Strathfieldsaye (A 164).

DIDYMOGRAPTUS DISTINCTUS, sp. nov.

(Fig. 1, No. 3, Fig. 2, No. 10)

Description—Sicula relatively long and slender, 1.5 mm. in length, but tenuous and often unobservable, its position being indicated only by the divergence of the horizontal stipes and the unequal length of th 1¹ and th 1². Rhabdosome small, stipes as observed not more than 2 cm. long, originating nearer the apex than the aperture of the sicula and diverging at an angle of 180°. Thecae triangular tubes with negligible overlap, 9-10 in 10 mm., inclined at an angle of 40° or more, ventral margins slightly concave, apertural margins almost straight and making an angle of 100° with the distal portion of the stipe.

Remarks—The type specimen shows clearly the divergence of th 1¹, the budding of th 1² and its horizontal growth. We are unable to cite any very close relations of this form *Didymograptus acutidens* Lapw. MS and *D. cuspidatus* Rued. approach it in some respects. From the former it is readily distinguished by its shorter, broader thecae, their greater angle of inclination and smaller overlap. From *D. cuspidatus* it differs in the initially greater angle of divergence (absence of a central v), uniform width of stipes, uniform angle of inclination, and widely-spaced thecae.

Horizon and Localities—The type is from the Specimen Hill and Fryerstown water-race south of the Elphinstone-Chewtown railway (C1—upper Castlemainian). It also occurs on the same

horizon south of Bagshot railway station (Bendigo). Near the old agricultural show-grounds at Gisborne and in the Lancefield district ($\frac{LL}{20}$) it is found in Darriwilian beds

DIDYMOGRAPTUS CUSPIDATUS Ruedemann

(Fig 1, No 9, Fig 2, Nos 11, 12)

1904 *Didymograptus cuspidatus* Ruedemann, Giaps N.Y., Part I N.Y. State Museum Mem 7, p 684, figs 79, 80, pl 13, fig 16

Description.—Stipes originating sub-parallel at slightly different levels from a comparatively small sicula at an angle of 150–160°, but later becoming sub-horizontal. Stipes 2 cm or more long, narrow at first but rapidly widening to rather less than 1 mm. Thecae 12–13 in 10 mm, mature thecae with an overlap of one-third. Inclination of earlier thecae low, increasing to 40° or more in the distal portion of the stipes. Apertural margins slightly convex in most cases and approximately normal to the axis of the stipes.

Remarks.—The above description, drawn up from specimens from the upper Darriwilian of Strathfieldsaye, agrees well with Ruedemann's description and figures, which are based on a single specimen.

Horizon and Localities.—Rare in the high Darriwilian beds of Allot 19, Sect III, Strathfieldsaye (A 164), and at other Bendigo East localities in the zone of *Didymograptus nodosus*.

DIDYMOGRAPTUS COMPRESSUS, sp nov

(Fig 1, Nos 6a-c, Fig 2, Nos 20, 21)

Description.—Stipes up to 8 cm in length, and from the evidence of detached stipes, probably longer, uniformly slender, diverging from a comparatively long and slender sicula at an angle of about 120° (though sometimes at a greater or less angle), very narrow proximally but widening gradually till a width of 0.6 mm is reached, this width being then maintained. The stipes swing back to a sub-horizontal position. Thecae 8–10 in 10 mm long, sub-rectangular tubes, 4–5 times as long as wide, in contact for one-third to one-half their length, and inclined at an angle as low even as 10°. Ventral margins slightly sigmoid, apertural margins inclined at an angle of a little less than 90°.

Remarks.—The thecae of this species are characteristic, and it is comparatively easy to recognize from a fragmentary stipe. The thecal tubes seem to be sub-rectangular and wider than deep. Where in a species such as *D. extensus* a profile view would be expected, in this species one seems to look down on the ventral side of the thecae in perspective, and this side is often lighter in shade than the rest of the rhabdosome. Proximal thecae often have an indented apertural margin as if the periderm were thin and had been frayed from between the marginal lists.

Occasionally specimens are found in the *Didymograptus nodosus* zone with spines like those of some specimens of *D. nodosus*

Horizon and Localities—Common at many upper Dartmouthian outcrops in the Bendigo East area and characteristic of the *D. (Glyptog.) intersitus* zone between the D2 zone (zone of *D. (G.) austrodentatus*) and the zone of *D. nodosus*. It is also found, though more rarely, with *D. (G.) austrodentatus*, as at loc 169, and with *D. nodosus*. It is commonest, perhaps, at loc 196 in the State Forest, Sect XIX, Strathfieldsaye, along the McIvor Road near the 97m 36 ch railway crossing, and in Sect XXIX, Huntly. It is worth noting that Bulman's figures (2, pl. xxxiii, fig. 6) of *Didymograptus* aff. *euodus* show considerable resemblance to *Didymograptus compressus*, especially the two fragmentary stipes in fig 6b. The horizon of these forms is very close to that from which *Didymograptus compressus* is recorded in Victoria.

(?) *DIDYMOGRAPTUS DUBITATUS*, sp nov

(Fig 1, Nos 5a-d, Fig 2, Nos 22-25)

Description—This deflexed form has stipes up to 25 mm in length, and probably longer, diverging from a comparatively long conical sicula (1 mm long) at an angle of about 135° and then gradually flattening out. The stipes are very slender, not exceeding 0.5 mm in width. Thecae 10 in 10 mm., five times as long as broad, overlapping less than one-half, inclined at a very low angle as they arise and then lying almost parallel to the axis of the stipe. The proximal thecae have not been clearly seen, partly owing to the way they are impressed on the stipe, but appear to be rather more typically didymograptid than the distal ones. In the distal thecae, as stated above, the apertural half seems to lie parallel to the axis of the stipe, due to the sigmoidal curve of the early portion of each theca. In the obverse aspect the thecae appear to open into a small but distinct excavation, in the reverse aspect the thecal apertures are somewhat extroverted, with a slight but characteristic constriction. These differing aspects point to torsion of the thecal axis.

Remarks—The thecae of this species are peculiar, approaching those of *Atopograptus woodwardi*. The stipes are so narrow that it is difficult to note the characters of proximal thecae, and small forms with indistinguishable thecal characters are included in the species. The stipes widen gradually for about 1 cm and then are practically parallel-sided. Comparison with other species is difficult. There is some resemblance to *Didymograptus compressus*, sp nov, but this latter form is more robust and its thecae very different. *Atopograptus woodwardi* Harris is the only form for which fragments of *D. dubitatus* may be mistaken, the thecal characters in one form of preservation having a great resemblance. *D. dubitatus*, however, is much narrower than the

type specimen of *Atopograptus woodwardi* and its sicula is distinctly of the didymograptid type. This form is, therefore, left for the present as an aberrant *Didymograptus* showing thecal elaboration, as the development of *Atopograptus* is not well known, the only specimen of that genus showing proximal characters at all clearly being the type specimen, although fragments are common.

Horizon and Localities—This species has been clearly seen only at one upper Darriwilian locality (loc 164), at Strathfieldsaye (Bendigo East). It probably occurs in a similar association at other outcrops on the same horizon—zone of *Didymograptus nodosus*—but is difficult to recognize except from well-preserved material. The smaller forms provisionally included in the species are rather common in the Strathfieldsaye high Darriwilian beds.

DIDYMOGRAPTUS NODOSUS Harris

(Fig 2, No 27)

1926 *Didymograptus nodosus* W J Harris, Proc Roy Soc Vic (n.s.), xxxviii, p 56, pl 1, figs 1-4

Two specimens of this species are figured showing a pronounced development of flexuous spines absent from the type material. This increases the resemblance of the species to *Didymograptus spinosus* Rued (17, p 689). If Ruedemann's specimens were less well-preserved it might be suggested that the two forms were identical, but the detail of *D. spinosus* as shown by Ruedemann in figs 84, 85, shows a form quite distinct from *D. nodosus*. The spines are single and arise from the apertures of the thecae and also from the "heel," which is so pronounced a feature of the thecae of this species. As might be expected, the spines are best shown on distal thecae.

Horizon and Localities—*Didymograptus nodosus* is a zonal graptolite of the highest Darriwilian beds, being associated with *Amplexograptus confertus* (Lapw.), (?) *Mesograptus decoratus*, etc. The spinose form has been collected at Strathfieldsaye (A 164) and at Huntly (Sect XXIX).

Genus *Diplograptus* McCoy.

Sub-genus *Glyptograptus* Lapworth.

DIPLOGRAPTUS (GLYPTOGRAPTUS) AUSTRODENTATUS Harris and Kebble

(Fig 3, Nos 1-5)

1932 W J Harris and R A Kebble, Proc Roy Soc Vic (n.s.), xlvi (1), text figs 1-4, pl v, figs 4-5

This species is re-figured for comparison with *Diplograptus (Glyptograptus) intersitus*, sp. nov., which is a typical graptolite of the next higher zone of the Darriwilian. The rhabdosome is squat and short (up to 15 mm long) and about 2 mm wide, with parallel sides. Proximally there is a stout virgella, which is not

always visible, but may be 2 mm long. The first thecae are short, and the upward growth of th 1¹ and th 1² is not well marked. The proximal thecae have apertural spines. The thecae have well-marked ventral curvature and the apertures are slightly introverted. The virgula is produced for only a short distance beyond the distal end of the rhabdosome.

Habitat and Localities—This graptolite is the zone fossil and commonest form in the D2 zone of the Darriwilian which has been placed as the basal bed of a *Diplograptus* series (11). Characteristic squat forms are figured, including some which are found as moulds in Allot 2, Sect XI, Sedgwick (A 310). The form is extremely common at many localities in the southern portion of the Bendigo East area, as well as in the Brisbane Ranges and at the other localities given by Harris and Keble (12, p 41).

DIPLOGRAPTUS (GLYPTOGRAPTUS) INTERSITUS, sp nov

(Fig 1, nos 11a-c, Fig 3, nos 7-10)

Description—Rhabdosome comparatively small, averaging about 15 mm, but occasionally reaching 25 mm in length, with a breadth not exceeding 2 mm attained within the first 6 mm, usually with a short but conspicuous virgula distally and a short virgella proximally. Thecae 13-10 in 10 mm. The proximal end is quadrate, just over 1 mm wide, and the first thecae have thin apertural spines which are not often preserved. The virgella is about 1 mm long.

The sicula is just over 1 mm long (about 12 mm), and approximately three times as long as broad. Theca 1¹ arises about one-third of the distance from the apical end and grows downward before growing outward. Its aperture is distinctly everted. Theca 1² also grows distinctly downward, and its upward growth is stronger than that of th 1¹. Thereafter budding is normal. Septum is complete.

Thecae 1¹ and 1² have fine apertural spines, but these are not always preserved. Ventral margins show slight sigmoidal curvature, and apertural margins are either horizontal or slightly introverted. The low angle of inclination is very characteristic—generally about 20°. Thecal overlap is about one-half, and the thecae are 4-5 times as long as broad. Distally the virgula is usually prolonged for a short distance, but in some cases it may be over 5 mm long.

Remarks—*D. (Glyptograptus) intersitus* is distinguished from *D. (G.) austrodentatus* by—

- (i) its less sigmoidally curved thecae, with less introverted apertures,
- (ii) the narrowness and low angle of inclination of the thecae,
- (iii) its more tapering and less squat rhabdosome,
- (iv) its more pronounced virgula.

Its smaller size and narrower and more inclined thecae distinguish it easily from *D (G) teretiusculus*, to which it is closely allied, and it may be regarded as a forerunner of that species. Bulman(1) has described mutations between *D dentatus* and *G teretiusculus*, and the present form is similar in character. Its common occurrence, restricted range, and constant characters are factors which were considered in describing it as a distinct species.

Habitat and Localities—*Diplograptus (Glyptograptus) interciliatus* does not seem to occur with *D (G) austrodentatus*, the typical *Diplograptus* of the D2 zone, until the higher beds of that zone are reached as at loc A 169, Strathfieldsaye. It then becomes exceedingly abundant as the typical graptolite of the next higher zone as at locs 196, 210, 298, etc. It then becomes less common, but is occasionally found in the higher beds with *Diplograptus (? Mesograptus) decoratus* and *Didymograptus nodosus*. Its commonest associates in its particular zone are *Didymograptus compressus*, sp nov., *Lasiograptus etheridgei* Harris, *Trigonograptus cf. cuneiformis* Hall, *Glossograptus acanthus* E and W, *Cardiograptus crawfordi* Harris, *Tetragraptus* spp., and *Phyllograptus cf. anna* Hall.

DIPLOGRAPTUS (GLYPTOGRAPTUS) cf. EUGLYPHUS (Lapworth) (Fig. 3, nos 39-41)

- 1880 *Diplograptus (Glyptograptus) euglyphus* Lapworth, Ann Mag Nat Hist (5), v, p 166, pl 4, figs 14A-E
 1907 *Diplograptus (Glyptograptus) teretiusculus*, var *euglyphus* Lapw Elles and Wood, Mon Brit Graps., Part VI, p 252, text-fig 172, pl XXXI, figs 2A-D
 198 *Diplograptus (Glyptograptus) euglyphus* Lapw Ruedemann, Graps New York, Part 2, N.Y. State Mus Mem 11, pp 369-370, pl 25, figs 21-23, text-figs 315, 316

Description—Rhabdosome typically long and narrow, up to 4.5 cm in length, with a maximum breadth of 2.5 mm, widening gradually from a narrow sicula end (0.75 mm) until the maximum width is reached in about 2 cm. There is a blunt vulgella 1 mm. long. Lateral spines have not been observed. Thecae of the *Glyptograptus* type, proximally 13 in 10 mm, but distally only 9 or 10 in the same length, with overlap of about one-third to one-half.

Remarks—In its general form and tapering rhabdosome our species approaches *D teretiusculus* var *euglyphus*, as figured by Elles and Wood (*vide supra*). The thecal measurements, however, are closer to those of *D (Glyptograptus) teretiusculus* than to the variety or to *D euglyphus* as described by Ruedemann(18). The proximal development is the same. It appears to be one of the many mutations between *D (G) dentatus* and *D (G) teretiusculus*, but is perhaps best recorded as *D cf. euglyphus*.

Horizon and Localities.—Rare in the Upper Darriwilian as at Turner's Quarry (Bittern) and on the Howqua River. More common with *D. (Glyptograptus) teretiusculus* in the lowest beds of the Upper Ordovician, as at Ba67 (junction of Jackson's and Riddell Creek, Gisborne). The Upper Ordovician form seems to have rather more closely packed proximal thecae. These Victorian horizons can be correlated with the zones of *Didymograptus murchisoni* and of *Diplograptus teretiusculus* in the English succession, indicating that here *D. euglyptus* enters on a somewhat lower horizon than in England.

Sub-genus **Mesograptus** Elles and Wood

(=**Diplograptus** McCoy, s.s.)

(?) **MESOGRAPTUS DECORATUS**, sp. nov.

(Fig. 3, nos. 31-38)

1874 *Diplograptus pristes* His R Etheridge, Ann Mag Nat Hist, pl. 3, fig. 18

1875 *Diplograptus palmatus* (Baill.) McCoy, Prod Pal Vict, Dec 2, p. 32, pl. xx, fig. 6

Description.—Rhabdosome large, 3-6 cm long, widening from a blunt proximal end (about 10 to 15 mm wide) and reaching a maximum width of up to 4 mm, after which this width may be maintained or the rhabdosome may narrow slightly and gradually. The distal narrowing is very common. Virgella conspicuous and partly enclosed in a membrane. The virgula is usually well shown, and is often produced beyond the distal end of the rhabdosome to carry a heart-shaped vesicle. Thecae 12-7 in 10 mm, overlapping about one-half.

Remarks.—The type specimen is preserved as a pseudomorph in limonite, and shows features not observable in the more usual compressed specimens. The difference in appearance between the thecae on either side of the rhabdosome is due to the peculiar cross-section of the form which is shown in Fig. 3, No. 35B. This makes it impossible, strictly speaking, to refer the species to any of the described sub-genera of *Diplograptus*, but till further material in relief is available the erection of a new sub-genus would, in our opinion, be premature, since the sub-generic characters are not observable in ordinary specimens. Even in these, however, the difference between the appearance presented by the thecae on opposite sides of the rhabdosome is so constant that it cannot be regarded as due to deformation, but must be due to the shape of the cross-section.

On account of the limitation of the climacograptid appearance of the thecae to the proximal portion only, the form is tentatively referred to *Mesograptus*.

The apertural edges of the thecae are undulate (highest in the centre) and flanged, and the free ventral surface is also undulate with a medial longitudinal depression. The cross-section of the

rhabdosome is such that no undistorted specimens show what is normally the bi-profile view of *Diplograptus* (cf figs of *D. euglyptus*) This difference will be noticed in Fig 3, Nos 35, 36, 38 On one side the thecae appear as almost horizontal indentations, while on the other they are hardly observable, but the low angle of inclination of the thecal walls is very pronounced. The aperture on this side is not observable, being directed obliquely behind the surface shown

In America and Great Britain trouble has been experienced in separating *Amplexograptus coelatus* from *Clinacograptus antiquus* (4, 17), and the difficulty we are faced with is not decreased by the resemblance the present form bears to both these species and by its possession of a vesicle identical with that recorded by Ruedemann (17, p 449) as possessed by *C. antiquus* Each of Ruedemann's figures—with the vesicle at the end of a long virgula, or resting on the distal end of the rhabdosome—may be paralleled by Victorian specimens On the other hand, the cross-section of the Victorian form is in itself sufficient to prevent its inclusion in the genus *Clinacograptus*

In measurements and general appearance compressed specimens of *D. decoratus* closely approach *D. (Amplexog.) coelatus* (Lapw.) which occurs on an equivalent horizon, and most Victorian records of *Diplograptus coelatus* are probably based on specimens of *D. decoratus*. It may be separated from *D. coelatus* by its *Amplexograptus* aspect in the proximal portion only, thus indicating a different cross-section in the mature portion From British specimens of *D. coelatus* it is also distinguished by its distal vesicle American forms with such a vesicle have, as stated, been referred to *C. antiquus* The emphasis placed on the clinacograptid character of *D. coelatus* is sufficient reason in itself for our description of *D. decoratus* as a distinct species having marked resemblances to *D. coelatus* Lapworth(20) later emphasized the close relationship of *D. coelatus* and *D. (Glyptograptus) teretiusculus* *D. decoratus* is a form which varies greatly, as may be seen from the figures, but every gradation between these forms may be found. Etheridge's and McCoy's descriptions of the present form were written when knowledge of the *Diplograpti* was limited, and it is unnecessary now to comment on their figures and descriptions (5, 15)

Horizon and Localities—Common in the upper Darriwilian of Bendigo East, Cobaw (Geol Surv loc B29, Q S 5 SW); Surprise Gully (Romsey); and north-west of Turner's main quarry, Allot 27B, Bittern (Mornington Peninsula) It is characteristic of the zone above that of *Diplograptus (Glyptograptus) intersitus*, and is commonly associated with *Didymograptus nodosus*. However, it first appears with *D. intersitus* (it has not been recorded in association with *D.*

austrodentatus), and is also found in beds in which *Didymograptus nodosus*, if present, is rare. It has therefore a greater range than that form, and the *D. nodosus* association probably indicates the higher beds of its horizon.

AMPLEXOGRAPTUS MODICELLUS, sp. nov.

(Fig 1, nos 10a-f, Fig 3, nos 17-20)

Description.—Rhabdosome small and parallel-sided—only a little over 5 mm in length and 1 mm wide. Sicular end unsymmetrically blunt, provided with a thin but conspicuous vilgella, which may be more than 1 mm long. Sicula narrow, 1 mm long, the first theca budding some distance from its aperture and growing downwards along the sicula before turning outwards. Thecae closely spaced, 14-18 in 10 mm (7-8 in 5 mm), alternate, the free ventral edges slightly convex, excavations long, narrow and oblique, about one-fourth to one-third of the free ventral edge and one-third the width of the rhabdosome.

Remarks.—This small form (*modicellus*, very little) is similar in appearance to *Climacograptus pungens* Rued., but may be separated by the absence of the two proximal spines and the much more closely spaced thecae. It reminds one of *C. modestus* as figured by Bulman (1, p. 51, fig. 22), but differs in the character of the proximal end and, what is more important, in the presence of a straight instead of a zig-zag septum. From *Amplexograptus arctus* E and W, it may be separated by its small size and by the absence of lateral spines. Its nearest ally appears to be *Amplexograptus confertus* (Lapworth), but here again its smaller size makes it quite distinct.

Horizon and Localities.—Very abundant in certain bands of the Upper Darriwilian (zone of *Didymograptus nodosus*), associated with the characteristic assemblage of that zone. Some slabs, especially as loc. A164, Strathfieldsaye, are crowded with individuals showing all stages of growth.

AMPLEXOGRAPTUS CONFERTUS (Lapworth)

(Fig 1, nos 14a, b, Fig 3, nos 21-26)

- 1875 *Climacograptus confertus* Lapworth, *Quart Journ Geol Soc*, xxxxi, p. 655, pl. xxxiv, figs 4A-1
- 1880 *Climacograptus confertus* Lapworth, *Ann Mag Nat Hist* (5), v, p. 169, pl. iv, figs 15A-c
- 1907 *Diplograptus (Amplexograptus) confertus* Elles and Wood, *Mon Brit Graps (Pal Soc)*, lxi, p. 269, text-figs. 185A-c, pl. xxxi, figs 18A-c

Description.—Length usually 1.5 to 2 cm, though a length of 3 cm. may occasionally be reached. Width under 2 mm (usually about 1.8 mm). Rhabdosome almost parallel-sided, about 1 mm wide or rather more near the proximal end.

Virgella about 1 mm long, and a virgula prolonged for about the same length distally proximal end sub-quadrate, spines on thecae 1¹ and 1² sometimes preserved. Thecae 14–10 in 10 mm, in reverse aspect with well-marked oblique excavations occupying one-third to one-fourth of the ventral margin and one-third the width of the rhabdosome, in obverse aspect, ventral margin rounded, apertural margin thickened, concave, and oblique.

Remarks.—This description is so like that given by Elles and Wood (the only points of difference being the somewhat looser spacing of the thecae and the gradual widening) that we hesitate to make it a distinct variety. It appears to be nearer the typical *D. (Amplexograptus) confertus* than the *A* cf. *confertus* figured by Bulman (1, p. 60, pl. v, figs. 7–9). In thecal measurements it approaches *Amplexograptus differtus*, sp. nov., but the rhabdosome is narrower and has not the decided widening of that form. From *A. arctus* it may be distinguished by its greater width and its more typical amplexograptid thecae.

Horizon and Localities.—Common in the *Didymograptus nodosus* zone of the upper Darriwilian at localities in Sect. XXIX, Huntly (Bendigo), less common at other outcrops of the same horizon at Bendigo East.

AMPLEXOGRAPTUS DIFFERENS, sp. nov.

(Fig. 1, no. 15, Fig. 3, nos. 27–31.)

Description.—Rhabdosome up to 25 mm long, widening gradually from a blunt proximal end and reaching its maximum width of 20 to 25 mm in about 1 cm, this width then being maintained. Thecae 13–10 in 10 mm, apertures slightly inclined with notably thickened margins, the apertures occupying one-third of the width of the rhabdosome and one-fourth to one-third of the free edge. Virgula occasionally prolonged beyond the distal end of the rhabdosome.

Remarks.—In shape and general appearance this species is reminiscent of *Amplexograptus peruviana* Lapworth, but the thecal measurements differ and the excavations are narrower and not so deep, and are distinctly oblique. Its proximal widening and greater width separate it from *A. confertus*, and the thecal spacing is more lax though the characters of the thecae are very similar. Its greater width and somewhat narrower excavations separate it from the South American *A* cf. *confertus* figured by Bulman (1, p. 60, pl. v, figs. 7–9, text-fig. 28).

Horizon and Localities.—Rather common but rarely well-preserved in the upper Darriwilian beds (zone of *Didymograptus nodosus*) of Bendigo East, as, for example, in Sect. XXIX, Huntly.

Family GLOSSOGRAPTIDAE Lapworth, emend Elles and Wood

Genus **Glossograptus** Emmons

The interpretation by Hadding (7, p 310, fig. 1) of the structure of *Glossograptus* leads to the possibility of two genera being confounded under *Glossograptus*. The question is reviewed by Bulman (1, pp 68, 69). Our material, unfortunately, is not sufficiently well-preserved to enable us at present to add to the discussion, but as septal spines have not been identified with certainty in *Glossograptus acanthus* E and W, and are certainly absent in a new form which we have described as (?) *Glossograptus crudus*, the question of the generic characters of *Glossograptus* is left open.

GLOSSOGRAPTUS ACANTHUS Elles and Wood.

(Fig 3, nos 13-16)

1908 *Glossograptus acanthus* E and W *Mon Brit. Graps.*, Part 7, p 314, pl. 33, figs 4A-C

Description.—Rhabdosome sub-fusiform, having a length of 20 mm or more, widening gradually from the sicular end to a width of 3 mm or more, and then narrowing distally. Thecae 10 in 10 mm, apertural margins distinctly everted, with robust, rigid, slightly-curved apertural spines, apparently only one per thecae, nearly equal in length to the width of the rhabdosome. No septal spines have been observed. In the proximal region the spines are directed downwards, but they gradually become horizontal and finally have a somewhat upward direction.

Remarks.—The above description differs only slightly from that given by Elles and Wood (*cit. sup.*). A long but thin vulgula not noticed in the English description is prominent in many Victorian specimens.

After examination of a great number of forms sufficiently well-preserved to show external characters at least, we have been unable to detect septal or paired apertural spines. This corroborates Elles and Wood's conclusions, and in our opinion it is therefore difficult to retain the present form under *Glossograptus* as at present defined. The heavy spines of the species may be accounted for as being processes formed by the strong development of the apertural mucros, as is seen also in (?) *Glossograptus crudus*, sp nov.

No evidence of the early stages of the species is available. The absence of a record of scalariform mode of preservation may be accounted for by the width of the rhabdosome being great compared with its thickness, so that it always came to rest in the profile position.

Horizon and Localities.—Common at many upper Darriwilian outcrops in Bendigo East, in the zone of *Diplog* (*Glyptog*) *intersitus*. Locally it is very abundant as at loc 196, Strathfield-saye. Forms referable to the species are also found on a somewhat higher horizon near the old Agricultural Show-grounds at Gisborne, and elsewhere, and on a slightly lower horizon (associated with *D* (*Glyptograptus*) *austrodentatus*) at Guildford, the Busselton Ranges, and Lancefield. These lower forms may later be separated as varieties.

(?) *GLOSSOGRAPTUS CRUDUS*, sp nov

(Fig 1, no 13, Fig 2, nos 15-17)

Description.—Rhabdosome small, rarely more than 10 mm long, commencing with a width of 2-3 mm, or even sometimes 5 mm, the initial width being usually maintained though some specimens narrow distally. Vugula conspicuous and often projecting beyond the distal end of the rhabdosome, which in juvenile forms is emarginate. Thecae 10-12 in 10 mm, inclined in the distal part at an angle of about 45°, though this angle may be either considerably greater or smaller, about twice as long as wide and with considerable overlap. Apertural margins of these thecae straight or slightly concave and directed upwards, or upwards and outwards. Thecae ending in a stout mucro or denticle directed outwards or slightly downwards.

Remarks.—This previously undescribed graptolite has been known for many years from middle Darriwilian (D4-D3) beds, and is responsible for the reference to *Glossograptus* in these beds. Strictly speaking, it is not possible to include it in that genus as there is no evidence of septal spines even in forms so preserved that, if present, they could hardly escape observation, and the thecae seem to be furnished with a strong mucro instead of the two apertural spines of *Glossograptus*—the apertural walls of the thecae appearing to coalesce ventrally and to be produced into this spinose projection. The species in its juvenile state has a considerable resemblance to *Isograptus* (vide fig 1, No. 9), and it may form a connecting link between that genus and *Glossograptus*. The species is of importance as being the earliest typically biserial form to develop in the Darriwilian, occurring in the same beds as *Skiagraphtus gnomonicus*, but before *Diplographtus* has become established. It shows at times a tendency to split along the median plane, and forms are found with more thecae on one side than the other, indicating either a complete median septum, or possibly that the form has originated by the concrescence of two didymograptid stipes growing back and at an angle of 360°. This would not be surprising if the form is related to *Isograptus*.

Horizon and Localities—Widely distributed but rarely common in the middle Darriwilian beds along the Barker's Creek-Maldon pipe line (Castlemaine) and elsewhere in the same district, also in beds on the same horizon at Lancefield

(?) *Glossograptus crudus*, var *gisbornensis*, var nov
(Fig 2, nos 13, 14)

A form of (?) *Glossograptus crudus* is found rather commonly at some outcrops, e.g., along the Gisborne Creek, which is much narrower than the typical form. This may be separated as var *gisbornensis*. Its horizon is the same as that of the *forma typica*. The figured specimens are from the Gisborne Creek between the Bullengarook slate quarry and the Gisborne gold mine.

Genus *Cryptograptus* Lapworth

Cryptograptus schaferi (Lapworth)

(Fig 3, nos 11, 12)

- 1880 *Cryptograptus tricornis* var *schaferi* Lapworth *Ann Mag. Nat Hist* (5) v, pl v, figs 28A-B
- 1908 *Cryptograptus tricornis* var *schaferi* Lapw. Elles and Wood *Mon Brit Graps*, part vii p 299, pl xxxii, figs 13A-C
- 1931 *Cryptograptus tricornis* var *schaferi* Lapw. Bulman, *Archiv f Zoologi*, xxii A (3), p 65, pl 6, figs 1-5, pl 7, fig 3, text-fig 31
- 1933 *Cryptograptus schaferi* (Lapworth). Bulman, *Quart Journ. Geol Soc*, lxxxix, p 352

Description—Rhabdosome about 10 mm long, parallel-sided as a rule, and with a breadth, inclusive of denticles, of about 2 mm, usually with a long virgula sometimes inflated. Thecae 12-10 in 10 mm, with well-marked denticles. The proximal end bears a stout sicular spine, and the proximal thecae have short but well-marked coarse spines. The characteristic long spines of *C. tricornis* are absent. As far as can be made out, the proximal thecae grow downwards.

Remarks—Lapworth's variety *schaferi* of *C. tricornis* has recently been raised to specific rank by Bulman (2, p 352), and is so regarded here. Most, if not all, of the upper Darriwilian forms referred to *Cryptograptus tricornis* seem to fall under this heading, including some recorded by Harris (10). Now that the distinction is made future work may show the zonal importance, if any, of the two species.

Horizon and Localities—Not uncommon in the upper Darriwilian of Bendigo East, most abundant, but sporadic, in the zone of *Didymograptus nodosus*, as at loc 164, but widely distributed and perhaps ranging as low as the upper part of the D2 (*D. austrodentatus*) zone.

Genus **Lasiograptus** LapworthSub-genus **Hallograptus** Caullieteis MS

LASIOPRATUS (HALLOGRAPPUS) PROTEUS, sp. nov.

(Fig. 1, nos. 12a-b, Fig. 2, nos. 30-33)

Description.—Rhabdosome up to 3 cm in length and 2 mm wide, exclusive of spines and external meshwork, with the meshwork about 3 mm. Rapidly widening to almost its maximum width in the first two or three mm and then widening much more gradually to about its centre, after which in mature specimens there is a slight and very gradual narrowing distally. Thecae about 11 in 10 mm, resembling those of *Glossograptus hincksi* (Hopkinson) at first, but later becoming quite distinctive. The spines of proximal thecae are recurved, but those of later thecae become normal to the axis of the rhabdosome, and at last directed distinctly upwards, these distal spines being much more massive than the earlier ones. Network delicate and sometimes only shown on the proximal portion of the rhabdosome, consisting, as usually seen, of an extra-marginal thread independent of the spines and looped to the rhabdosome by supports which alternate with the apertural spines. This apparent independence of apertural spines and meshwork does not seem to be absolute, and is less well shown on the distal portions of rhabdosomes where the meshwork seems sometimes to be supported by outgrowths from the upper side of the spines themselves.

Remarks.—This species is easily distinguished from a characteristic *Lasiograptus etheridgei* Harris by—

- (a) its more parallel-sided and narrower rhabdosome
- (b) the greater development of spines, giving it a more *Glossograptus* aspect,
- (c) the more regularly developed external meshwork

A long spine often projects from the proximal end, but its origin and nature cannot well be made out.

Horizons and Localities.—Common at many Upper Daillwihan localities at Bendigo East (zone of *Didymograptus nodosus*). It is probable that MS records of graptolites from this district include *L. proteus* under *L. etheridgei*. This latter species seems quite distinct and seemingly occurs on a slightly lower horizon. The two species may occur together, but as a rule they do not, there being no record of *L. proteus* from Allot 95, Woodend, loc B29, Sect. 20, Newham, nor from loc A196, Stiathfieldsaye, at all of which localities *Lasiograptus etheridgei* occurs, while *Lasiograptus etheridgei* does not seem to be known from such outcrops as loc 164, Stiathfieldsaye. The best specimens of *L. proteus* yet discovered came from this last-named locality and from spoil-heaps between the Eaglehawk and Bendigo Creeks in Sect. XXIX, Huntly.

LASIOGRAPTUS (THYSANOGRAPTUS) ETHERIDGEI Harris

(Fig 2, nos 28, 29)

1874 *Diplograptus mucronatus* Etheridge *Ann Mus Nat Hist* (4), iv, p 5, pl iii, figs 16, 171924 *Lasiograptus (Thysanograptus) etheridgei* Harris *Proc Roy Soc Vict* (n.s.), xxxvi (2), pp 98, 99, pl vii, figs 3-7

Remarks—Two figures of *Lasiograptus (Thysanograptus) etheridgei* Harris are given for comparison with *Lasiograptus (Hallograptus) proteus*, sp nov. The most obvious differences between the two species are that *L. etheridgei* widens more gradually than *L. proteus* and has a much more fully developed meshwork. The glossograptid thecae of *L. proteus* are also much more clearly seen than the thecae of *L. etheridgei*, and the alternation of meshwork and apertural spines is also more marked in *L. proteus*. Forms, however, occur which can be separated only with difficulty, and it may be that *L. etheridgei*, by modification of thecae and simplification, passes into *L. proteus* and possibly into *Glossograptus hinchii* (Hopkinson).

Horizon and Localities—One of the commonest graptolites at many outcrops in the upper Darriwilian beds of Bendigo East, as for example at locs. 163, 168, 169, 170, 172, 176, 298, etc., and in Sect XII, Epsom. It appears on the horizon of *D (Glyptograptus) austrodentatus* (zone D2), apparently in the higher part of this zone, is very common in some occurrences of the next higher zone (that of *D (G) intersitus*), and is commonest in what are probably the lower beds of the zone still higher (that of *Didymograptus nodosus*), then giving place in still higher beds to *Lasiograptus proteus*, with which, however, it may occur sparingly as at loc 298. Outside the Bendigo district it occurs near Allot 95, Woodend, and at Cobaw, as well as other less well-known outcrops.

Family ISOGRAPTIDAE Harris.

Genus *Cardiograptus* Harris and Keble.

CARDIOPRAPTUS CRAWFORDI Harris

(Fig 2, no. 26)

1926 W J Harris *Proc. Roy. Soc. Vict.* (n.s.), xxxviii, p. 57, pl i, figs 5-7.

In the original description of *C. crawfordi* (Harris, 1926, p. 57) it was stated that *C. crawfordi* could be distinguished from *C. morsus* H. and K. by smaller size and less pronounced emargination. Since then forms have been discovered which are undoubtedly *C. crawfordi*, but which also show distinct distal emargination. One of these is figured. The locality is north-west of Strathfieldsaye township (loc 196) and the horizon is the lower part of the D1 (zone of *D (Glyptograptus) intersitus*). Similar emarginate forms are also found on the higher horizon (zone of *Didymograptus nodosus*) of Sect XXIX, Huntly.

List of Localities.

Localities mentioned by numbers or letters in this article are as follows —

- A 164 Emu Creek Water Race, No 2, at the S.E. corner of allot 19, sect III, Parish of Strathfieldsaye
- A 169a On E and W road near S.E. corner of allot 25, sect III, Parish of Strathfieldsaye
- A 170 On E and W road near S.E. corner of allot 27, sect III, Parish of Strathfieldsaye (Outcrop hardly exposed)
- A 173 On Emu Creek No 2 Water Race, near N.E. corner of allot 1A of sect V, Parish of Strathfieldsaye
- A 176 On Strathfieldsaye-Sedgwick road, about 11 chains N.W. of S.W. corner of allot 1B, sect V, Parish of Strathfieldsaye (In small gutter on S.W. side of road)
- A 196 Near the most northeasterly corner of allot 3, sect XIX, Parish of Strathfieldsaye (An extensive surfaced area)
- A 198 On S. side of E and W road, N. of allot 8, sect VI, Parish of Strathfieldsaye (On slope above the right bank of Axe Creek)
- A 210 In bed of small watercourse on S. side of Bendigo-Heathcote road, about 170 yards W. of 97-miles 36-chain crossing on Bendigo-Heathcote railway, Parish of Strathfieldsaye
- A 298 In bed of watercourse in allot 2, sect V, Parish of Sedgwick
- A 310 In bed of eastern tributary of watercourse in allot 2, sect XI. Parish of Sedgwick
- CH 6. Chinamen's Creek, near Muckleford railway station (Note 6, Q.S. 15 N.W.)
- S.F. Sewerage Farm, allot 8, sect XXIX, Parish of Huntly
- G.C. Near N.E. corner of allot 58, Parish of Bullengarook (cliff on south bank of Gisborne Creek).
- Ba67 Near junction of Riddell and Gisborne Creeks (Q.S. 6 S.E.).

NOTE.—"A" numbers are from the plans of J. J. Caldwell, Geol. Survey of Vict. Other numbers refer to specimens in the Geological Survey Museum

References.

1. BULMAN, O. M. B. South American Graptolites *Arkiv f. Zool., K. svenska vetecknafak.*, xxii, A., (3), 1931
2. —————— Graptolites from the Quirari Area, Eastern Peru. *Quart. Journ. Geol. Soc.*, lxxxix, 1933
3. CLARK, T. H. Palaeontology of the Beckmantown Series at Lévis, Quebec *Bull. Amer. Pal.*, x no. 41, 1924
4. ELLES, G. L., and WOOD, E. M. R. Monograph of British Graptolites, Parts 1-4, 1901-04, Parts 6, 7, 1907-8. *Pal. Soc., London*
5. ETHERIDGE, R., junr. Observations on a Few Graptolites from the Lower Silurian Rocks of Victoria, Australia. *Ann. Mag. Nat. Hist.* (4), xiv, 1874.
6. HADDING, A. Om de svenska arterna af slæktet *Pterograptus* Holm. *Geol. foren. Forh.*, xxxiii, Tafl 7, p. 487.
7. —————— Om *Glossograptus*, *Cryptograptus*, etc. *Ibid.*, xxxvii, pp. 303-336.

- 8 HALL, T S Reports on Graptolites *Rec Geol Surv Vic.*, iii (2), 1912
- 9 HARRIS, W J Victorian Graptolites (New Series), Part 1 *Proc Roy Soc Vic* (n.s.), xxxvi (2), 1924
- 10 ————— Victorian Graptolites (New Series), Part 2 *Ibid* (n.s.) xxviii, 1926
- 11 ————— Geological Structure of Bendigo East *Ibid* (n.s.), xlvi (1), 1934
- 12 HARRIS, W J, and KEBBLE, R A Victorian Graptolites Zones, etc *Ibid* (n.s.), xliv (1), 1932
- 13 HOLM, G Pterograptus ett nytt graptolitsslægt *K sven vetenskapsak Offvers at Forh*, xxxviii (4), 1881
- 14 KEBBLE, R A, and HARRIS, W J Graptolites of Victoria, etc *Nat Mus Melb, Mem* 8, 1934
- 15 MCCOY, F *Prod Pal Vic*, Dec 1, 1874
- 16 MORENG, J C Pterograptus scanicus, n sp *Geol foren Forh*, xxii, 1901
- 17 RUDEMANN, R Graptolites of New York, Part 1 *NY State Museum, Mem* 7, 1904
- 18 ————— Graptolites of New York, Part 2 *NY State Museum, Mem* 11, 1908
- 19 TORONQUIST, S L Lunds Univ Arrski Afd 1, No 2, 1904, p 4

FIGURE 1

All Figures are $\times 3\frac{1}{2}$ except where otherwise stated

- No 1 *Pterograptus incertus*, sp nov (a) proximal portion (30795), (b) proximal portion of stipe (30795) Loc
- No 2 *Trichograptus immotus*, sp nov (a) proximal portion (37434), (b) proximal portion (37442), (c) distal portion (37434) Loc SF
- No 3 *Didymograptus distinctus*, sp nov (37431) Fryerstown water-riace, south of Elphinstone railway tunnel
- No 4 *Didymograptus cognatus*, sp nov (a) proximal portion (37401 b), (b) distal thecae (37401 a), (c) proximal portion (37418) $\times 10$ Loc A 164.
- No 5 *Didymograptus dubitatus*, sp nov (a) proximal portion (37404), (b) distal thecae (37404), (c) proximal portion (37404) $\times 10$, (d) distal thecae (37404) $\times 10$ Loc A 164
- No 6 *Didymograptus compressus*, sp nov (a) proximal portion (37405), Loc A 196, (b) distal fragment, (37405) Loc A196, (c) distal thecae, (37417, b) $\times 10$ Loc A 173
- No 7 *Didymograptus nodosus* Harris (37448) Loc A 164
- No 8 *Didymograptus compressus* mut (a) proximal portion, (37440), (b) distal thecae (37440) Loc A 173
- No 9 *Didymograptus cuspidatus* Ruedemann, (37402) Loc A 164
- No 10 *Diplograptus (Amplexograptus) modicellus*, sp nov a, b, c, d, to show various growth stages (37394, 10c is 37444) (e) to show long virgula (37393), (f) Type (37392) Loc A 164

FIG. 1.

14051.—7

- No 11 *Diplograptus (Glyptograptus) intersitus*, sp nov (a, b, c) young forms $\times 4$ (37377) Loc A 298 (a) distal $\times 4$ (37428a), Loc A 196, (c) proximal portion, (37428 b,—counterpart of 37428 a) Loc A 196
- No 12 *Lasiograptus proticus*, sp nov (a) proximal portion (37422), (b) distal portion (37421) Loc A 164
- No 13 (?) *Glossograptus crudus*, sp nov Young form $\times 4$ (37409) Loc A 164
- No 14 *Diplograptus (Amplexograptus) confertus* Lapw (a) proximal portion $\times 4$ (37414), (b) distal portion $\times 4$ (37414) Loc S F
- No 15 *Diplograptus (Amplexograptus) differtus*, sp nov, $\times 4$ 37385 a—counterpart of Type 37385) Loc S F

FIGURE 2

Figures are natural size unless otherwise stated

- Nos 1-6 *Pterograptus meeki*, sp nov 1, 2 (30795) Loc A 170, 3 Type (37433) Loc A 170 4 (37438) Loc A 210 5 (opposite side of 4, on same slab) (37438) Loc A 210 6 (reverse of 30793) Loc A 170
- Nos 7-9 *Trichograptus immotus*, sp nov 7 (37442) Loc S F 8 Type (37434) Loc S F 9. Type (37400) Loc A 160
- No 10 *Didymograptus distinctus*, sp nov (37431) (*vide* Fig 1, No 3)
- Nos 11, 12 *Didymograptus cuspidatus*, Rued, (37402, 37403) Loc A 164
- Nos 13, 14. *Didymograptus cognatus*, sp nov, type, (37401, 37425) Loc A 164
- Nos 15-17 (?) *Glossograptus crudus*, sp nov (37406, 37408, 37415) Loc CH 6
- Nos 18, 19 (?) *Glossograptus crudus*, var. *gisborneensis*, var nov (37407, 37407 a). Loc Gisborne Creek (G C)
- Nos 20, 21 *Didymograptus compressus*, sp nov 20 Type, (37405) Loc A 196 21 Corrugated dorsal margin indicating approximation to nodose form *D. nodosus* (37417) Loc A 173
- Nos 22-25 *Didymograptus dubitatus*, sp nov, Loc A 164 22 Type, (37404). 23 (37416) 24 Proximal portion of young form on same slab as 23 ($\times 2\frac{1}{2}$). 25 Type, distal portion of stipe of type specimen (37404)
- No. 26 *Cardiograptus crawfordi* Harris, shows emarginate rhabdosome not a specific character of this form (37410) Loc A 196
- No 27. *Didymograptus nodosus* Harris, shows spines at apertures and dorsal nodes of thecae (37445) Loc S F.
- Nos 28, 29 *Lasiograptus etheridgei* Harris (37435, 37436) Loc A 176
- Nos 30-33 *Lasiograptus proticus*, sp nov 30 Type (37432) Loc S F 31 With long proximal spines and virgula (37421) Loc A 164 32 Young form showing well preserved mesh-work (37423) Loc A 164 33 Typical young rhabdosome (37424) Loc A 164

FIG. 2.

FIGURE 3

Figures are natural size unless otherwise stated

- Nos 1-5 *Diplograptus (Glyptograptus) austrodentatus* (Harris and Keeble) 1 Small form from D2 horizon (low), (37372).
 Loc A 198 2 Typical rhabdosome (37373) Loc A 310
 3 Typical rhabdosome (37374) Loc A 310 4 Typical rhabdosome (37375) Loc A 310 5 Typical rhabdosome (37376) Loc A 310
- Nos 6-10 *Diplograptus (Glyptograptus) incisitus*, sp nov, 6. Type b, (37428) Loc A 196 7 Distal counterpart of type (37428)
 Loc A 196 8 Marked 8 on slab, (37427) Loc A 196
 9 Marked 9 on slab, (37427) Loc A 196 10 Smaller rhabdosome, (37377) Loc A 298
- Nos 11, 12 *Glyptograptus schaferi* Lapworth 11 A typical group (37384) Loc S F 12 (37439) Loc A 164
- Nos 13-16 *Glossograptus acanthus* E and W (37412, 37430, 37413, 37411) Loc A 196
- Nos 17-20 *Diplograptus (Amplexograptus) modicellus*, sp nov, 17 Type (37392) 18 (37393) 19 Shows virgula and virgella (on same slab as 18) 20 (37395) Loc A 164
- Nos 21-26 *Diplograptus (Amplexograptus) confertus* Lapworth 21 Reverse aspect of long rhabdosome, (37388) Loc S F 22 Obverse aspect of shorter rhabdosome (37384) Loc S F 23 Reverse aspect (37443) Loc S F 24 Obverse aspect and shorter rhabdosome (37391) Loc S F 25 Obverse aspect and shorter rhabdosome (37390) Loc S F 26 (37429) Loc S F
- Nos 27-31 *Diplograptus (Amplexograptus) differtus*, sp nov. 27. Obverse aspect, (37384) Loc S F. 28 Type, obverse aspect, (37385) Loc S F 29 Obverse aspect, (37386) Loc S F 30 Distal portion showing characteristic Amplexograptid thecae, (37387) Loc S F 31 Intermediate aspect, (37384) Loc S F
- Nos 32-38 *Diplograptus (? Mesograptus) decoratus*, sp nov 32 (37446) Loc T Q M 33 (37381) Loc B 29 34 (37379) Loc A 176 35 Type (37378), Limonite pseudomorph in relief Loc B/HR 35A Medial portion of Type X 2₁ 35B Cross section of distal portion of Type X 2₁ 35C Lateral view of distal thecae of Type X 2₁ 36 (37380) Loc S F 37 (37382) Loc S F 38 (37384) Loc S F
- Nos 39-41 *Diplograptus (Glyptograptus) euglyptus* Lapworth 39 (37396) Loc. T Q M 40. (37397) Loc Ba67 41 (37398) Loc T Q M

FIG. 3.

[PROC. ROY. SOC. VICTORIA 47 (N.S.), PT. II, 1935]

ART. XVII—*The Graptolite Succession of Bendigo East, with suggested Zoning*

By WM. J. HARRIS, D.Sc.

[Read 11th October, 1934, issued separately, 8th May, 1935]

Table of Contents and Summary.

- I INTRODUCTION
- II ACKNOWLEDGMENTS
- III SCOPE OF THE SURVEY

The area discussed includes the parishes of Wellsford, Strathfieldsaye, and Sedgwick, with adjacent portions of other parishes. Attention is concentrated on the Darriwilian.
- IV PHYSIOGRAPHY

The physiography of the area—a region of mature topography—is outlined
- V GENERAL GEOLOGY

The bed-rock of the district consists of Lower Ordovician sandstones and shales, striking west of north and closely folded. The Whitelaw Fault divides the area into two parts, older beds being on the west
- VI DISTRIBUTION OF THE GRAPTOLITE SERIES

The general distribution of Lancefieldian, Bendigonian, Castlemainian, and Darriwilian series is described
- VII ZONING OF THE DARRIWILIAN SERIES

An outline is given of the zoning of the Darriwilian as high as the D2 zone
- VIII INCOMING OF THE DIPLOGRAPTIDAE

It is contended that the incoming of the Diplograptidae in force in the D2 zone marks a very important stage in the graptolite succession, and the relationship of D2 beds to the lower zones is discussed
- IX TYPICAL SECTIONS

Five sections across the district from west to east are described. It is shown that after the Whitelaw Fault is crossed there is a normally descending series of beds, and that above the D2 horizon two zones may be distinguished with possible passage beds, (a) a zone characterized by *Diplograptus (Glyptograptus) interstitus* H. and T., and *Didymograptus compressus* H. and T., and (b) a higher zone characterized by *Diplograptus (?Mesograptus) decoratus* H. and T., and *Didymograptus nodosus* Harris, and that these zones can be recognized right through the area
- X THE UPPER DARRIWILIAN SUCCESSION.

It is maintained that field and biological evidence fixes the position of the zones already mentioned, and that elsewhere in Victoria a higher zone of the Lower Ordovician can be recognized, while the basal graptolite bed of the Upper Ordovician (as at Ba 67) should also be included in a *Diplograptus* series
- XI ZONING OF THE DARRIWILIAN AND CASTLEMAINIAN IN VICTORIA

The grouping of zones from D2 to basal Upper Ordovician inclusive, as a *Diplograptus* series, leads to an attempt to treat lower beds in the same way. It is shown that the present breaks between

the topical series are largely artificial and it is suggested that the zones below the *Diplograptus* series, i.e., from D3 downwards to C4 (inclusive) may be regarded as an *Isograptus* series. Below this series are passage beds marked out only by the occurrence of *Didymograptus proto-bifidus* Elles, while below these again the Bendigoman zones form a *Tetragraptus sinuosus* series. The proposed classification is then summarized.

XII CORRELATION

The *Diplograptus* series of Victoria is correlated with the Llanvirnian. The correlation of beds immediately below these will probably be facilitated by a study of the Victorian extensiform *Didymograptus*.

XIII FOILS ON THE MAP

XIV INDEX TO GRAPTOLITE LOCALITIES

XV REFERENCES

I. Introduction.

Attention was directed to the Bendigo East area by the discovery some years ago of high Darriwilian graptolite beds hitherto unknown from that part of Victoria. The existence of a definite and sharp boundary between these high beds and the lower beds of the Bendigo Gold-field has been demonstrated (1), and field work has been continued to ascertain whether any light could be thrown on the succession of Darriwilian graptolites above the zone of *Diplograptus (Glyptograptus) austrodentatus* (zone D2). The present paper is an account of this work.

II. Acknowledgments.

The field work in the northern half of the area, as far south as Strathfieldsaye, was carried out by the writer. In Strathfieldsaye his work and that of J. J. Caldwell of the Geological Survey of Victoria overlapped. In Sedgwick and the parishes east and west of it the present work is based on Caldwell's survey. Through the kindness of the Director of the Geological Survey (Mr W. Baragwanath) the writer was able to study most of Caldwell's graptolite collections, and though these were rarely complete enough for detailed work they indicated the critical localities which were then visited and studied in detail. Except for the beds west of the Whitelaw fault in Sedgwick, for which R. A. Keble's identifications have been accepted, practically all important parts of the district have been visited often with Mr D. E. Thomas of the Geological Survey or with Mr. P. Tilson (Echuca). Great assistance has been given by the officers of the Mines Department, both in Melbourne and at the Bendigo Mines Office—the latter at first under the late H. S. Whitelaw and then under Mr W. Kingston—while the details given above will show the writer's indebtedness to Mr J. J. Caldwell. For the re-drawing of the map thanks are due to Mr W. Bennett of the Draughting Branch of the Mines Department.

III. Scope of the Survey.

The area discussed is roughly a rectangle measuring about 22 miles from north to south and 8 miles from east to west. It includes the parishes of Wellsford, Strathfieldsaye, and Sedgwick, portions of the two northern parishes, Huntly and Bagshot, and the edges only of the western and eastern parishes, Sandhurst, Mandwring, Axedale, and Eppalock. All parts of the 180 square miles have not been treated in equal detail, attention being concentrated on the Darriwilian beds.

IV. Physiography.

The whole of the area shows mature topography. There are no permanent streams except the Axe and Bendigo Creeks. The northern part is within the basin of Bendigo Creek, but in the centre and south the drainage of Sedgwick, Strathfieldsaye, and the southern part of Wellsford finds its way to the Campaspe River through Axe Creek and its tributaries. The general slope is to the north-east, the divide between the two drainage systems mentioned being almost unrecognizable in the field. Heights above sea level decrease from about 1,200 feet on the northern slopes of the Mount Alexander granodiorite massif to less than 500 feet in the north. The gentle slopes and creek flats provide rather poor grazing and agricultural land, and much of the poorer land, especially on the low ridges, is included in forest reserves, settlement being restricted mainly to narrow strips along the watercourses. In Wellsford there are few exposures of bed-rock, though numerous fragments of ironstone (limonite) litter the surface. There are no roads other than innumerable dray-tracks, and practically no mining excavations. In such an area search for graptolites is disheartening work, but fortunately the few fossiliferous outcrops discovered were so spaced as to give some idea of the general structure though details are not ascertainable.

In Strathfieldsaye and Sedgwick occasional shallow road cuttings, small watercourses, the Emu Creek No 2 waterrace, and the Bendigo-Heathcote railway provide most of the fossiliferous outcrops.

V. General Geology.

The bed-rock of the district consists of Lower Ordovician sandstones and shales and may be divided into two unequal parts (Fig. 3)—Lancefieldian, Bendigonian, and Castlemainian west of the Whitelaw Fault, and younger rocks, mostly Darriwilian, east of the Fault, though these descend in normal succession to the east and, partly outside the mapped area, Lancefieldian is also reached in the east. An important feature of the beds east of the Fault is the extensive development of beds above the middle Darriwilian (D2 and higher). This feature gives the district

its special interest. The general strike of the Ordovician rocks is in most places 20° or more west of north, but local strikes of north-west or even almost east and west may be noted. The limited nature of fossiliferous rock exposures, together with close folding and pronounced cleavage, makes the working out of detailed structure impracticable at present.

VI. Distribution of the Graptolite Series.

(A) LANCEFIELDIAN

Caldwell's survey demonstrated that the belt of Lancefieldian-Bendigonian which abuts on the Whitelaw Fault east and north of Bendigo can be traced right to the granite in the south of Sedgwick. It is uncertain whether the beds along the Fault in the southern part of the district are Lancefieldian or Bendigonian. No fossils were found sufficiently near the fault-line to settle the question. Caldwell shows the Lancefieldian as a narrow strip right along the fault-line. My own opinion is that the Lancefieldian beds narrow to the south and do not extend much further south than the southern boundary of Strathfieldsaye. In Sedgwick, if this is so, the Fault separates Darriwilian and Bendigonian. This opinion is partly based on the discovery of a slab showing *Tetragraptus fruticosus* along the Emu Creek water-course east of the south-west corner of Strathfieldsaye. Apart from this question of its relationship to the Whitelaw Fault, the western Lancefieldian belt does not appear to possess any features of special interest.

Caldwell also proved the existence of a wide belt of Lancefieldian to the east of the mapped area. This extends far east of Axedale. Only its north-western extension in the north of the parish of Axedale falls within the map. The relationship of this north-eastern area to the younger beds cannot be regarded as satisfactorily settled. Lancefieldian graptolites have been found at four rather widely separated outcrops. In the north-east of Wellstord, the Yankee Creek Gold-field occupies a narrow belt with the abnormal strike of N $55-60^{\circ}$ W. No fossils were obtained near the old workings, but the spoil-heaps show that thin coal-black bands occur among lighter-coloured sandstones and shales. These carbonaceous partings are badly cleaved and are now so badly weathered that at a touch they fall to powder. Their occurrence is suggestive of Lancefieldian, but the evidence is inconclusive since similar thin bands yield Bendigonian graptolites at Brett's Freehold, west of Bagshot railway station. These beds strike towards more meridional lower Castlemainian (C5) beds further west. Whether they ultimately are shown to be Bendigonian or Lancefieldian, faulting has probably been responsible for their abnormal features. Whitelaw (2) noted a fault which shifted the strata near the shafts 200 feet to the east, and much more extensive faulting is probable but unproved.

(B) BENDIGONIAN

In the west of the mapped area the Lancefieldian beds are succeeded by the Bendigonian series in normal ascending order. This may be accounted for by presuming a southerly pitch in this part of the area, in accordance with the general observations of pitch in the southern portion of the Bendigo Gold-field. In the north-east the Lancefieldian is also bordered by a narrow belt of Bendigonian. Its narrowness may be the result of faulting as has been suggested above.

Bendigonian beds are more widespread in the north, definite Bendigonian graptolites having been found at Brett's Freehold, and also some distance east of Bagshot railway station. Whether these two outcrops are part of a continuous area is uncertain.

In Axedale and Eppalock the Castlemainian beds which succeed the Dariwilian on the east are in turn succeeded by Bendigonian.

(C) CASTLEMAINIAN

In the south of Mandurang and the south-west of Sedgwick the Bendigonian beds give place to lower Castlemainian. This is the normal succession, which is also found in the west of Axedale and Eppalock.

In the north of the district a rather extensive area of upper Castlemainian occurs in the east of Huntly and the south of Bagshot, graptolites of this horizon being rather common in material from the spoil-heaps of shafts along the course of the Huntly Deep Lead. Most of the localities yield upper Castlemainian graptolites, but at least two show middle Castlemainian forms. These beds come in their normal place between Bendigonian and Dariwilian. One interesting feature was a bed at Huntly, which in both lithology and graptolite content was practically indistinguishable from the type C2 locality at Victoria Gully, Castlemaine.

A continuation of the Castlemainian belt runs through the east of Wellsford. *Didymograptus proto-bifidus* was obtained from small fragments of shale at two places along Yankee Creek, and *Isograptus caducus* var. *victoriae* still further south. West of this last outcrop the presence of *Isograptus caducus* var. *maximodivergens*, almost in the centre of the parish of Wellsford, indicated either a high Castlemainian or a low Dariwilian horizon. This is the Castlemainian belt which has already been mentioned as striking across the continuation of the Axedale-Yankee Creek-Lancefieldian.

(D) DARWIWILIAN

The Dariwilian beds, both from their extent and from their special features, are the most interesting in the district. The whole of the central portion of the map from north to south is included in this belt. The Whitelaw Fault crosses the southern

boundary of the parish of Huntly and runs east of south to the Mount Alexander massif in the south of Sedgwick. Darriwilian beds border it on the east for the whole distance. They are succeeded on the east by a continuous belt of Castlemainian. These Darriwilian beds will be discussed in a later section of this paper.

VII. Zoning of the Darriwilian Series.

Since the Darriwilian zones were outlined in 1916(3) the succession of beds as high as the D2 zone (*Diplograptus austrodentatus*) has been tested in many parts of Victoria. With minor differences, probably due to passage-beds and locally abnormal ranges, the series has been described from Ingleston by Ripper(4) and from Lancefield by D E Thomas (personal communication).

The base of the Darriwilian is marked by the incoming in force of *Oncograptus epsilon* T S Hall, and the first appearance of *Trigonograptus* and *Didymograptus v-deflexus* H and K. In beds which are stratigraphically closely connected with the upper Castlemainian the typical form of *Oncograptus epsilon* is common. *Oncograptus epsilon* var *biangulata* seems to come in later, but passage-beds between D5 and D4 may be expected in any locality where the succession is shown in great detail. Later *Cardiograptus morsus* H and K appears. A typical assemblage from a D5 outcrop might include —

- Isograptus caducus*, var *maximo-divergens*, Hall var
" " *divergens*, Hall var
- " *manubriatus* (T S H)
- " *hastatus* Hall
- " *forcipiformis* (Rued)
- " *dumosus* Hall
- Skiagriptus gnomonicus* (H and K)
- Oncograptus epsilon* T S H
" *vai biangulata*, H and K var
- Didymograptus v-deflexus* H and K
" *uniformis* E and W
- Maeandriograptus tau* Hall
- ? *Cryptograptus* sp
- Trigonograptus ensiformis* J Hall
- Phyllograptus* sp
- Dichograptus octobrachiatus* J Hall
- Goniograptus speciosus* T S H
- Tetragraptus quadibrachiatus* J Hall
" *scira* Bieng (normal and also abnormally large variety)
" *headi* J Hall

This list is incomplete as there are many undescribed species. The common basis of the lower Darriwilian zones (D5, D4, D3) is shown by a comparison of this list with an assemblage from either of the two higher zones(4). Advance is shown by the

incoming of *Cardiograptus morsus* in D4 and its usual survival beyond *Oncograptus* into D3, but the three beds form a stage in which the only important distinction is the degree of development of the Isograptidae as represented by *Oncograptus* and *Cardiograptus*. Even this distinction cannot always be made, though sometimes the dividing line is surprisingly sharp. Noting this we are forced to the conclusion, corroborated by the evidence of the Isograptidae themselves, that these zones represent a shorter time- or developmental-interval than is the average for other zones. The Isograptidae, as it were, shot ahead of their contemporary species. The Australian graptolite succession is more elaborate than other Lower Ordovician successions and its details are emphasized, especially when compared with a highly condensed succession such as that of the classic Point Levis section. Another point to be emphasized here is that the general character of an assemblage must be taken into account, and not the mere occurrence of a single "zonal" graptolite. *Oncograptus* and *Cardiograptus* are found rarely but definitely in assemblages which undoubtedly represent higher zones than D4 or D3. In the same way occasional specimens of *Diplograptus* may turn up—and may be expected to occur—on horizons lower than those characterized by this genus.

VIII. Incoming of the Diplograptidae.

With the zone above D3 a distinct stage is reached leading to the Upper Ordovician—the incoming in force of the Diplograptidae. Three of the important trends of evolution followed by the graptolites are (1) stipe reduction, (ii) growth-direction change, and (iii) thecal elaboration. *Diplograptus* marks an important stage in each of these, and the suddenness of its development in Victoria is specially noteworthy, though probably more detailed work will tend to show that its entry is not as dramatic as it now appears to be. It is doubtful if many of the records of *Diplograptus* below the D2 zone are reliable. The forms on which the records are based are probably preferable to other genera, or at any rate are not typical *Diplograptus*, though they may be forerunners. Such forms appear in C2, but are rare, and are even rarer in C1. Since *Diplograptus* is so common in D2, representatives may be expected in zones D5-D3, and though they have not yet been recognized, the Bendigo East survey leads one to believe that they occur. In the D2 zone we have a sudden outburst of the genus. Not only is *Diplograptus austrodentatus* the commonest graptolite of the zone, but it often outnumbers all other species so as to give a distinct character to the horizon. Many D4 and D3 species persist and some higher forms enter, but all are subordinate to *Diplograptus austrodentatus*, which is as typical of the zone as *I. caducus* var. *victoriae* is of zone C2.

The following actual assemblage is given as typical of the horizon —

- Diplograptus (Glyptograptus) austrodentatus H and K (v c)
- Isograptus caduceus var divergens, Hallis var (v c)
 - " forcipiformis (Rued.)
 - " hastatus Hallis
 - " dumosus Hallis
- Cardiograptus morsus (1) H and K
- Skiagraptus gnomonicus (r) (H and K)
- Didymograptus v-desflexus H and K
- Tetragraptus seria Brong (c)
- Phyllograptus sp (probably P anna J Hall) (v c)
- Trigonograptus ensiformis J Hall
- Dichograptus sp

Though the Darriwilian succession as high as D2 is well established, few localities show a continuous section from D3 to D2. Ripper (4) reports that at Inglinton the succession is normal, but cannot be continuously traced. The zone is well represented in the Brisbane Ranges south of the area studied by Ripper, and observations made there by Thomas and the writer make it certain that *Diplograptus austrodentatus* enters with *Cardiograptus* and even with *Oncograptus* and ranges beyond these forms. The original locality for the zone of D2 was the Guildford-Stringways road west of Guildford (2), and here the succession from D3 to D2 is clear, *Diplograptus austrodentatus* and *Cardiograptus morsus* occurring at first together and being succeeded by beds from which *Cardiograptus morsus* is absent. (The *D angustifolius* mentioned was later described as *D austrodentatus*) Thomas has since confirmed this observation as the result of his examination of the area north of the Loddon River in the same district. The nominal succession also is found along the Gisborne Creek near the Gisborne gold-mine at Bullengarook, where D2 beds occur west of D3 beds in a succession which, traced from the east, is ascending normally to this horizon. Details of folding have not yet been worked out here. D2 beds are also extensively developed in the Brisbane Ranges and at Steiglitz, but no detailed work has been done in either area apart from an unpublished survey of Steiglitz by W H Ferguson, late of the Geological Survey. T S Hall identified many of Ferguson's graptolites (6), but in the light of later work the determinations both published and unpublished stand in need of revision. The writer has also recognized *Diplograptus austrodentatus* in a small collection from Sebastian (between Bendigo and Raywood) shown him by W Kingston of the Bendigo Mines Office.

IX. Typical Sections.

(1) HUNFLY-BAGSHOT

This section is taken across the north of the mapped area. As stated above, the Whitelaw Fault crosses the west of the parish, running diagonally through Section XXIX. In the south of this section the parish plan shows a "Stone and Gravel Reserve". This derives its local name, Ironstone Hill, from the capping of cemented gravel now partly removed by mining operations or for use as road-making material, and is on the western side of the fault-line. Immediately to the north-east the continuation of these gravels lies below the surface and they have been mined by shallow shafts, the spoil-heaps of which yield abundant upper Darriwilian graptolites. The difference of level is interesting as it is probably the result of post-Pliocene movement along the line of the Whitelaw Fault. Examples of later movement along fault-lines which are very old are found elsewhere in this district and in other parts of Victoria (7). Further to the south-east the similar gravel outcrops of the White Hills end rather abruptly at the fault-line and are succeeded on the north by buried gravels. A search of old mining records shows that the difference of level was observed nearly forty years ago. In 1898 James Stirling reported (8), "Mr. Mining Surveyor O'Dwyer has stated that on the Hunly Lead south of the White Hills the sinking is shallow—from 10-25 feet deep—but north it suddenly drops to 50 feet and at lower levels 70 feet". A similar abrupt change of level is recorded west of Sebastian where, although the only recorded graptolites are Darriwilian (D5 and D2), there is quite possibly a fault comparable with the Whitelaw Fault. Repeated movement along the lines of major faults is a widely recognized phenomenon. An interesting observation is that the floor of the Hunly Deep Lead beyond Brett's Freehold rises 27 feet in five miles instead of having the usual fall (9).

Practically every spoil-heap in the northern part of Section XXIX Hunly (now used as a sewerage farm for the city of Bendigo) yields upper Darriwilian graptolites. A good collection, though in very soft, weathered shale, can be gathered in Allot 8. Owing to the troublesome cleavage at many localities and our total ignorance of the folding of the bed-rock, detailed zoning is difficult and has not been attempted. The underlying rocks are probably closely folded, and beds as low as D2 may be present, though they have not been noticed.

East of the Bendigo Creek the spoil-heaps give a fairly complete section. Just outside the city area, between the Echuca-road and railway, upper Darriwilian graptolites are common, and this belt may be traced as far as the north-east of Epsom. The beds are characterized by the common occurrence of *Amplexograptus* and *Didymograptus nodosus* Haasis, which are associated

with other characteristic forms such as *Lasiograptus proteus* Haasis and Thomas and *Cardiograptus rawfordi* Harris. These beds occur west of the Bendigo Pottery at Epsom (within the belt defined above), but a few chains north of the Pottery a somewhat disjunct facies is observed (Sect XII, Ascot). Here several spoil-heaps show different *Diplograpti*, chiefly *Diplograptus interstans* II and T, and a disjunct *Didymograptus*, *D. compressus* II and T. The commonest *Lasiograptus* is also distinct—*Lasiograptus etheridgei* Haasis. This belt may be traced north-westerly through Sections IV and V, Huntly. Still proceeding east from Epsom *Diplograptus austrodentatus* makes its appearance in Section VIII, Huntly, and on the Sandy Creek-road near Allot 7 of Section I. This has not been traced further north, though it is very likely that an exhaustive search would show it. In Section XX D3 beds occur, though only a few graptolites were found, and then in Section XVIII, further north-east there are several occurrences of D4 and D5 beds. The last of these are just east of the Echuca-road north-east of Huntly township, but similar beds cross the railway at Huntly RS. East of the Echuca-road the spoil-heaps in Section XIX, Huntly, and Section XII, Bagshot, give upper Castlemainian graptolites (C1 and C2) though there is an isolated record of D5 in Allot 4, Section XII. C1 beds outcrop south of the railway on the Sandy Creek-road, and slightly lower beds are found not far from them. Along Yankee Creek, on the southerly continuation of the strike of these beds, the writer found *Didymograptus protobifidus* Elles, and then near Bagshot railway station, *Tetragraptus fruticosus* J. Hall, and other Bendigonian forms. The immediate purpose of this paper does not need the extension of this section further east, though this is the locality where the next beds to the east are Lancefieldian, apparently striking right into the Castlemainian.

For the present it is sufficient to sum up that—

- (a) as low as the Castlemainian the succession is apparently normally sinking to the east
- (b) above the D2 beds is a bed characterized by *Diplograptus interstans* and *Didymograptus compressus*
- (c) above (i.e., further west than this) is a bed characterized by *Diplograptus* (?*Mesograptus*) *decoratus* II and T (allied to *D. coelatus* Lapworth), *Amplexograptus*, and *Didymograptus nodosus* Harris

This succession is seemingly in normal order, and attention is directed to it, since it seems to hold elsewhere in the district and will be used as a suggested zoning of these high Darriwilian beds. This section, although described first, was the last to be worked out in the field, when it was found that the boundaries provisionally fixed on the evidence of sections further south did not need adjustment.

(ii) MCIVOR-ROAD

South of the Huntly-Bagshot section just described is the unsatisfactory area of Wellsford. The next line of section is along the Bendigo-Heathcote railway and the almost parallel road (McIvor-road). This gave a succession descending from upper Darriwilian to Castlemanian and even lower and seemed so promising that attention was devoted to it first. As in most sections, exposures are not continuous, but the gradually descending order generally as one went east from the Whitelaw Fault was soon evident. Local interruption and repetition of beds was to be expected, but the section proved to be unexpectedly complete. The two zones mentioned in the account of the more northern section as being above D2 were recognizable—in fact, it was along this section that they were first recognized—as well as probable passage-beds. Caldwell's survey enabled similar beds to be located further south, and from some of these, as well as from others already known to the writer, fairly extensive collections were made.

From the Whitelaw Fault to the crossing of road and railway at 97 miles 36 chains, a distance of about $1\frac{1}{2}$ miles, there are numerous graptolite beds, all above the zone D2. As stated, two distinct zones could be noted, though there are minor differences between beds even of the same general zone. Some of these differences may later prove to be of stratigraphical value, or they may be due to the tendency of forms on this horizon to be abundant in some narrow bands and almost absent from bands quite close by.

The first locality from which a good collection was made is opposite the junction with the McIvor-road of a road from the north-east, about 30 chains east of the Whitelaw Fault. Similar beds occur near the north-west corner of the parish of Strathfieldsaye (loc 209)*. A good collection can, with some trouble, be made at either outcrop, but the horizon—the zone of *Didymograptus nodosus*—is represented by better material south of Strathfieldsaye township (loc 164) and elsewhere, and only its horizon need be noted. The second assemblage—the zone of *Diplograptus intersitus*—occurs nearer the crossing (locs 210, 211) and in a fragmentary state at the crossing itself. All these beds extend through to the railway line a little distance to the north. The loc 210 assemblage is also better represented further south (locs 196, 201, 298). Along this section then, as elsewhere, two assemblages above the D2 zone may be noted.

Proceeding east from the crossing the next fossiliferous band was found near the 97 mile post—the zone of *Diplograptus austrodentatus* (D2)—and this is repeated further east. Near the 96 m 8 ch crossing, a *Diplograptus intersitus* band crosses

* For convenience Caldwell's field numbers are used hereafter for all localities which are marked on his plans.

the railway. If the normal descending order had been maintained, this bed should have been below the D2 zone, but there is little doubt that it is rather on the same horizon as loc 210.

East of the 96 m 8 ch crossing a typical D4 outcrop is found, but this need not be considered in detail. Intervening beds may be hidden, but it is probable that the zones of D3 and D2 are missing from this part of the area. More than a mile of unfavourable beds or shallow cuttings separates this occurrence from the next to the east—beds of almost the same horizon in cuttings between Allots 1 and 2, Section XVII, Strathfieldsaye. Caldwell's survey shows that still further east Castlemainian beds occur, and then, near Axedale, Bendigonian and Lancefieldian.

(III) STRATHFIELDSAYE

The main Country Roads Board road through Strathfieldsaye to Eppalock has few cuttings, but a section can be obtained roughly along it. The Whitelaw Fault crosses the road almost on the western boundary of the parish of Strathfieldsaye, with Lancefieldian beds (loc 230) west of it. The beds nearest to it, but east of it, are not well shown, but *Didymograptus nodosus* has been recorded from them. The next outcrop (loc 196) yields abundant material which shows graptolites clearly when "green," but less distinctly when dry. *Diplograptus intersitus* and *Didymograptus compressus*, the zonal fossils, are very common. A few chains to the east, *Didymograptus nodosus* occurs, but the material is fragmentary. The variety of *Didymograptus nodosus* is less robust than the typical zonal form and the bed is probably transitional.

North of the township of Strathfieldsaye a very shallow water-race yields a limited amount of shale with indistinct graptolites. *Diplograptus intersitus* occurs here also. Badly cleaved graptolite shale (loc 244) is also found in Allot 41 about a mile east of the last outcrop mentioned. *Isograptus caduceus* occurs in association with poorly-preserved *Diplograptus*, probably *D. austrodentatus*, marking the southern extension of the D2 zone noted on the railway to the north. Still farther east a group of outcrops on the Axe Creek (locs 159, 160) yield *Oncograptus epsilon triangulata*, *Cardiograptus morsus*, and *Didymograptus v-deslexus*, and can be correlated also with the similar beds on the railway. Before the parish boundary is reached the horizon is Castlemainian (locs. 226, 229), conclusive evidence being supplied by outcrops north and south of the road.

(IV) EMU CREEK (Fig. 1)

This section is taken across the south of the parish of Strathfieldsaye. Bendigonian beds are shown in the south-west corner of the parish (locs. 179, 180, 181) on the west side of the Whitelaw Fault. Near the fault along the Emu Creek No 2

water-race the writer found a single specimen of *Tetragraptus fruticosus*, and it is doubtful whether the Lancefieldian belt which lies along the west of the fault-line farther north extends as far south as this. It may pitch underfoot bringing Bendigonian beds up against the Dairiwillian. Caldwell, however, shows a narrow strip of Lancefieldian right along the line. Once the fault-line is crossed there is an almost continuous section of upper Dairiwillian along the water-race, which here cuts obliquely across the strike of the bed-rock. Probably the best outcrop of the *Didymograptus nodosus* zone in the district is on the water-race, but noth of this section (loc. 164). Along the race most of the fossiliferous bands seem to belong to passage beds between the typical zones of *Didymograptus nodosus* and *Diplograptus intersitus*, but for the present are grouped with either one or the other. A locality such as 176 on the Sedgwick-road provides a good example. Here, *Diplograptus decoratus* is very common, associated with the less robust variety of *Didymograptus nodosus* and *Lastiograptus etheridgei*, the last-named

FIG. 1

species being usually associated with the *Diplograptus intersitus* zone in other parts of the district. This outcrop is included in the *D. nodosus* zone. Farther east, as at loc. 173, *Diplograptus intersitus* is found, but the variety of *Didymograptus compressus* associated with it shows some affinities with *Didymograptus nodosus*. It is remarkable that though the two mentioned species of *Didymograptus* are easily distinguished when typically developed, specimens are often found which seem to lie between them.

After the race is left near the Eureka Creek State School, an outcrop of the *Diplograptus decoratus-Didymograptus nodosus* zone is found (loc. 167) and then, after beds on the *Diplograptus intersitus* horizon (loc. 203), *Diplograptus austrodentatus* appears in the north-east corner of Allot 26, Section III, Strathfieldsaye, indicating that the *D²* zone has been reached, though the presence of an occasional *Diplograptus intersitus* (loc. 169) is an indication that these beds are well up in the *D²* zone. Similar, or slightly lower, beds are found on the other side of Axe Creek (loc. 198), though *Diplograptus intersitus* is well represented in

beds a little to the west of this last locality (locs 170, 202, 203) A mile east of loc 198 the record of *Oncograptus* (loc 205) shows that lower Daithwilian has been reached, and near the eastern boundary of the parish, upper and middle Castlemainian beds occur, C1 beds outcropping on the road between Sections VII and VIII about 150 yards west of the boundary and being separated by less than 50 feet from C2 beds In the parish of Eppalock the succession is continued through middle and lower Castlemainian to Bendigonian and Lancefieldian

(v) SEDGWICK

Sedgwick is the parish south of Strathfieldsaye Little attention was given to beds west of the Whitelaw Fault since Keble's identifications from Caldwell's collections showed that Bendigonian beds near the fault were succeeded regularly on the west by lower Castlemainian (C5) No Lancefieldian graptolites have been recorded from the parish, though Caldwell shows a narrow strip of Lancefieldian right along the Whitelaw Fault

In the eastern half of the parish the chief feature is the extensive development of the zone of *Diplograptus austrodentatus* (D2) and the zone of *Diplograptus intersitus*. No direct section was obtained across the area east of the fault-line, but a composite section can be made which gives a good idea of the structure The first locality (loc 300), is near the Sedgwick-road in the north of the parish Here the *Diplograptus decoratus*-*Didymograptus nodosus* zone is well represented Farther south loc 303 on Axe Creek yielded *Diplograptus* probably of the same zone, and certainly higher than the zone of *Diplograptus intersitus*. These outcrops show that a narrow belt of the *Didymograptus nodosus* zone extends along the fault line

The next group of localities lies south-east of loc 300 Here a number of outcrops (locs 298, 283, 284, 285) yield *Diplograptus intersitus* in profusion, the associated *Didymograptus*, *D. compressus*, being less common but occasionally forming tangled masses The most northerly band (loc 299) contains more rarely *Didymograptus nodosus*, and more commonly the larger *Diplograptus*, and is probably just above the *Diplograptus intersitus* horizon East of Axe Creek *Diplograptus austrodentatus* is well represented (locs 309, 313, 314) though *Diplograptus intersitus* is also present Loc 314 is particularly interesting, as not only do both these *Diplograptus* occur, but *Oncograptus epsilon* is sparingly represented, an example of survival which has already been commented on At loc. 310 farther south is a typical outcrop of the *Diplograptus austrodentatus* zone, and here and at loc 314 forms are occasionally found preserved as pseudomorphs in limonite or as moulds when the crumbling filling has fallen out At both localities also a small species of *Phyllograptus* (? *P. annu*) is not uncommon, though this genus is more common on higher and lower horizons

elsewhere *Diplograptus intersitus* occurs as far south as Section XVI. (loc. 325) and east of the D2 belt, near the eastern boundary of the parish lower Darriwilian beds come in, typically represented by loc. 316. The survey has not been extended eastward into Lyell, but indistinct graptolites obtained about a mile within this parish appeared to be of lower Castlemainian age and lower Castlemainian and Bendigonian graptolites are found in the south of the parish.

X. The Upper Darriwilian Succession.

It will be seen that this district provides details of the D2-D1 succession not yet found elsewhere. The succession indicated by the development of the graptolites is corroborated by the field evidence. Commencing with *Diplograptus austrodentatus* we find this form the predominant graptolite at outcrops such as locs. 310, 313, and many outcrops in the south of the area, as also near the 97-mile post and elsewhere in the centre. Then at outcrops such as 169, 198, 309, and 314, although this form is one of the commonest graptolites, it is associated with *Diplograptus intersitus*. *Diplograptus intersitus* then characterizes a series of beds (locs. 196, 201, 210, 284, 298). It is then found associated with the larger *Diplograptus* such as *Diplograptus decoratus* (loc. 299) and finally these forms, mainly *Amplexograpti*, predominate, *D. intersitus* occurring only rarely (locs. 164, 176, and Section XXIX, Huntly).

Apart from the *Diplograptus* other forms also show progression. *Lasiograptus etheridgei* enters with *Diplograptus austrodentatus*, is common at some, but not all, beds with *Diplograptus intersitus* (it is rare at loc. 196), becomes one of the commonest graptolites in beds where *Diplograptus decoratus* is associated with the less rigid variety of *Didymograptus nodosus* (loc. 176), and finally is replaced by *Lasiograptus proteus* H and T (loc. 164, Section XXIX, Huntly). This latter species has a much less complete meshwork than *L. etheridgei* and in adult stages mimics *Glossograptus lunckei* with which it has probably been confused in some lists. *Glossograptus acanthus* E and W enters with *Diplograptus austrodentatus*, and is common with *Diplograptus intersitus*, but does not commonly range higher. *Diplograptus intersitus* is associated with a distinctive *Didymograptus* of restricted range (*Didymograptus compressus* H and T). This has at first a straight dorsal margin, but later forms are found in which this margin has become "corrugated" (loc. 173) and the appearance of the species approaches *Didymograptus nodosus*. *Didymograptus nodosus* itself appears to be preceded by a variety with initially narrow stipes resembling those of *D. compressus* (loc. 176, 197). Another graptolite typically restricted to the *D. intersitus* zone is *Pterograptus incertus* H and T. *Cardiograptus crawfordi* is not characteristic of any bed below the zone of *D. intersitus*, but is found on this and higher horizons.

No zone higher than that of *Diplograptus decoratus-Didymograptus nodosus* has been found in this district, nor is the presence of any such zone indicated by the stratigraphy, but such a bed is known elsewhere in Victoria. Near the 8-mile stockyard on the Howqua River, eight miles upstream from the deserted township of Howqua (now commonly called "Fry's"), *Diplograptus* beds are found. More than one species of *Diplograptus* is present, but specimens showing thecal characters clearly are rare. One of the commonest forms is *Diplograptus (Glyptograptus) euglyptus* Lapw. With it are associated *Glossograptus hincksii*, *Pterograptus liricus* K. and H., and *Isograptus ovatus* (T. S. Hall). The same assemblage is found at the more accessible locality of Turner's Quarry, Mornington Peninsula (Allot 27B, Bittein). This assemblage bears a very close resemblance to that of Ba 67 at the junction of Jackson's and Riddell's Creeks (Q.S. 6 S.E.) usually taken as the basal graptolite zone of the Upper Ordovician, and the identifications of New Zealand forms by Keble and Benson (10) show from the Cobb River in Nelson a closely related assemblage, probably between our Howqua and Ba 67 beds. The New Zealand forms are preserved in hard blue-black shale but have a "fayed" appearance which makes comparison with our more clear-cut forms difficult especially in the case of *Diplograpti*, but the painstaking work of the authors quoted leaves no doubt as to the general resemblance (*ibid.*, p. 845, loc. 1231). There is hardly a form which does not occur at Turner's Quarry or Ba 67, or is not closely related to forms occurring there, but the general aspect of the *Diplograpti* seems to point to a rather closer resemblance to the Turner's Quarry beds than to those of the higher horizon. This is a case where an opinion is based on the general nature of the assemblages and on evidence which a faunal list cannot weigh. At present the writer's personal opinion is that the Cobb River beds may best be regarded as passage beds which, in a broad classification, would be included in the same zone as those from Turner's Quarry.

To complete the *Diplograptus* series the Ba 67 beds should be included as the uppermost zone. Immediately and conformably above them are beds containing *Dicellograptus sextans* J. Hall and *Dicranograptus bicirculus* E. and W. with an assemblage otherwise the same as the lower horizon. These beds mark the incoming of the Dicranograptidae, the first really important stage after the incoming of the Diplograptidae. (Throughout this paper the earlier appearance of one of the Diplograptidae, *Trigonograptus*, has not been emphasized owing to the general paucity of specimens of this genus.) Thomas and Keble (11) leave Ba 67 as the base of the Upper Ordovician, with which stratigraphically its relationship is very close, but we have no certain knowledge that elsewhere in Victoria, as for example

between Newham and Rochford, similar beds may not be found closely associated with typical D1 beds. Moreover, Keble has recorded from Mornington, north-east of Turner's Quarry, a bed which seems to be either equivalent to Ba 67 or a passage-bed leading to it. Unfortunately the outcrop is so limited that this information cannot be amplified.

XI. Zoning of the Darriwilian and Castlemainian in Victoria.

The erection of zones of *Diplograptus interitus*, *Diplograptus decoratus*, and *Diplograptus euglyphus* from beds hitherto grouped as upper Darriwilian or D1 lessens the exactness of the index number. Since such numbers, though convenient for field use, do not of themselves convey any definite meaning, an attempt is now made to convert the present classification into one which will indicate the biological development of the graptolites selected as zonal fossils, it being kept in mind that a zonal fossil, like a zone number, is little more than a reference aid, the whole assemblage and relative abundance of forms being important factors.

The division of the Victorian graptolite succession into Lancefieldian, Bendigonian, Castlemainian, and Darriwilian series is due to T. S. Hall (12). The same pioneer worker used the term "zone" to include indifferently the "zone of *Tetragraptus caducus*" (i.e., C2), and the "zone of *Tetragraptus fruticosus*" (i.e., the whole Bendigonian series (13)), but it has long been evident that the division between any two series is not in any case more important than the division between some zones within the same series, while the local names are no longer descriptive since every series is represented in each of the several districts except possibly at Darriwil. When Lancefieldian meant only the Mount William quarry assemblage, Bendigonian the typical beds of the Bendigo gold-field, and Darriwilian the isolated *Diplograptus* bed at Darriwil, the series could be regarded as distinct. Fig. 2 shows this diagrammatically, no attempt being made to represent the thickness of any zone or series.

Fig. 2.—Scope of Hall's scheme, 1899, shown by shaded portion. Present scope shown by full length of column.

With the extension of knowledge even in Hall's time the spaces in the succession were filled in, until when Hall's work was complete the only gaps were above the Castlemainian. It is not proposed to deal with the Bendigonian or Lancefieldian as they

lie outside the scope of the present paper, but since the tuning-fork *Didymograptus* in England are associated with what are Darriwilian forms in Victoria, a beginning will be made with them.

The incoming of *Didymograptus proto-bifidus* is locally sufficient to warrant the erection of a transition series between the *Tetragraptus fruticosus* series and the succeeding series of *Isograptus*. The *Didymograptus proto-bifidus* beds may be divided into a lower and an upper part, and if the predominance of one species is not considered sufficient for the constitution of a separate series the lower bed would be the uppermost zone of the *Tetragraptus fruticosus* series, while the upper (C5) would be the base of the *Isograptus* series. The present numbers B1 and C5 express this. Later work on the horizontal *Didymograptus* may make possible a more useful zoning as apart from *D. proto-bifidus* in C5, the C5 and C4 beds have no easily recognized zonal forms. *Isograptus caducus* not becoming important usually till the C3 horizon is reached.

Isograptus caducus, then, entering with *D. proto-bifidus* in C5, becomes important in C3 and the Isogriaptidae then predominate as high as the middle Darriwilian (D3). The dividing line between C1 and D5 does not mark an important break, the chief difference being the stage of development of the Isogriaptidae as indicated by the incoming of *Oncograptus*, though new forms such as *Didymograptus v-deflexus* and *Trigonograptus* also appear first in D5. The *Oncograptus-Cardiograptus* (D4) and *Cardiograptus* (D3) zones are usually recognizable, carrying on the development of the Isogriaptidae, but the occasional survival of both *Oncograptus* and *Cardiograptus* to a higher horizon, though upsetting to any hard and fast zoning, is what might be expected and in the field is not usually disconcerting. The developmental period occupied by zones D5-D3 was probably relatively brief. The zones commencing with D2 (zone of *Diplograptus austrodentatus*) mark an important advance and may be grouped as a *Diplograptus* series. Biologically this series should include all beds below that which marks the next important stage—the incoming of the Dicranogriaptidae. This would include in this series the Ba 67 bed. It is not necessary for the older serial names to be discarded for purposes of reference (in the field they are very useful) but the suggested scheme makes the basis of the succession clearer. An obvious classification would be to call the *Diplograptus* series Middle Ordovician, intermediate as these beds are in texture and life-content between the typical Lower and Upper Ordovician. This suggestion, first tentatively made in conversation by Thomas, has the disadvantage that in Britain the Middle Ordovician is characterized by *Nemagraptus*, *Dicellograptus* and *Climacograptus* (14), an assemblage corresponding with the lower zones of our Upper Ordovician.

The proposed *Diplograptus* series in outline is therefore as under —

Diplograptus Series

Zone of DIPLOGRAPTUS (GLYPTOGRAPTUS) TERETICULUS (highest)

Typical locality—Ba 67 at junction of Riddell's and Jackson's Creeks (Q S 6 S E)

Characteristic assemblage

- Diplograptus tereticulus (v c) His
- " euglyptus (c) Lapw
- Climacograptus riddellensis (c) Harris
- Cryptograptus ticornis (c) Cair
- Glossograptus hincksi (c) Hopk
- Reticograptus speciosus (c) Harris
- Isograptus caduceus, var. tenuis (v 1) Harris var
- Didymograptus (horizontal spp) (c)
- Pterograptus lyricus K and H

Zone of DIPLOGRAPTUS (GLYPTOGRAPTUS) EUGLYPTUS

Typical localities—Turner's Quarry, 8-mile, Ilowqua River

Characteristic assemblage —

As above, except that *D. tereticulus* has not been recognized with certainty, *Tetragraptus* is more common, and *Reticograptus speciosus* not yet recorded. *Isograptus ovatus* occurs at both the typical localities, though elsewhere it seems to be an Upper Ordovician form.

Zone of DIPLOGRAPTUS (? MESOGRAPTUS) DECORATUS (D aft. CONFITATUS)

Typical localities—Loc 164 Strathfieldsaye, loc 300 Sedgwick, Allot 8, Sect XXIX Huntly

- Diplograptus (? Mesograptus) decoratus (v c) H and T
- " (Amplexograptus) confertus (c) Lapw
- " " differtus H and T (c)
- " modicellus H and T (c locally)

- Cryptograptus schaferi Lapw
- Lasiograptus proteus H and T
- Isograptus forcipiformis (Rued)
- Cardiograptus crawfordi Harris
- Brachiograptus etaformis H and K
- Trigonograptus ensiformis J Hall
- Didymograptus nodosus (v c) Harris
- " dubitatus H and T
- " cognatus H and T (c)
- " cuspidatus Rued
- " aciculus K and H
- Atopograptus woodwardi Harris
- Phyllograptus nobilis (v c) H and K
- Tetragraptus spp

In what are probably the lower beds of this zone, *D. decoratus*, *Didymograptus nodosus*, and *Lasiograptus etheridgei* are the commonest species as, e.g. at loc 176 and north-west of Turner's Quarry. A similar assemblage, with *D. nodosus* very rare, is found at Woodend (Allots 95-99) and at Newham (Sect 20).

Zone of DIPLOGRAPTUS (GLYPTOGRAPTUS) INTERSITUS

Typical localities—Locs 196, 210 Strathfieldsaye, 298 Sedgwick

- Diplograptus (Glyptograptus) intersitus (v c) H and T
- Lasiograptus etheridgei (v c) Harris
- Isograptus forcipiformis (Rued)
- " caduceus var

Cardiograptus crawfordi (c) Hall
Cyptograptus schaferi Lapw
Glossograptus acanthus E and W
Tigonograptus ensiformis J Hall
Didymograptus compressus (c) H and T
 spp
Tetragraptus spp
Pterograptus incertus (c) H and T
Phyllograptus sp
Loganograptus cf. logani (v1)

Zone of *DIPLOGRAPLUS AUSTRODENTIUS* (D2)
 Typical localities—Loc 310 Sedgwick, Guildford-Strangways Road,
 Brisbane Ranges
 Characteristic Assemblage (See list on page 321)

Isograptus Series.

Zone of *CARDIOGRAPPUS MORSUS* (D3)
 Zone of *CARDIOGRAPPUS* and *ONCOGRAPPUS* (D4)
 Zone of *ONCOGRAPLUS* (D5)
 Zone of *ISOGRAPLUS CADUCEUS* var *MAXIMA* and *MAXIMOBIVIRGENS* (C1)
 Zone of *ISOGRAPLUS CADUCEUS* var *VICTORIAE* (C2)
 Zone of *ISOGRAPLUS CADUCEUS* var *LUNATA* (C3, C4)

Didymograptus proto-bifidus Passage Beds.

Zone of *DIDYMOGRAPLUS PROTO-BIFIDUS* and *ISOGRAPLUS CADUCEUS*
 var *PRIMULA* and *LUNATA* (C5)
 Zone of *DIDYMOGRAPLUS PROTO-BIFIDUS* and *TETRAGRAPLUS FRUTICOSUS* (B1)

Tetragraptus fruticosus Series.

(Bendigonian zones)

XII. Correlation.

The correlation of Victorian graptolite zones with those of the other side of the world lies outside the scope of the present paper, but the subject cannot be altogether neglected. There can be little doubt that, as stated in an earlier paper (5), the Victorian *Diplograptus* series is the equivalent of the Llanvirnian, and it is probable that more detailed work will increase rather than lessen the resemblances of the assemblages. It should be noted, however, that in England *Diplograptus* enters on a lower horizon and that in Victoria the tuning-fork *Didymograptus* are absent from the Darriwilian. In fact, whether our common Victorian dependent *Didymograptus* is *D. bifidus* Hall or *D. proto-bifidus* Elles, its associations are not the same here as in either Europe or America.

The correlation of lower zones is more difficult and the opinion is expressed that it would be well to delay a revision of the correlation until a detailed and systematic study has been made of Victorian horizontal *Didymograpti*. Our knowledge of these forms is at present very limited, partly because their zonal value has not been stressed, and partly because as a rule Victorian forms which otherwise resemble those of the old world have lower angles of thecal inclination, and the value to be attached

to this has not been decided. It is rare, as far as I have studied these forms, to find any with angles of over 35° , and the identity of even well-known forms such as *D. nitidus* and *D. nicholsoni* has not yet been definitely asserted.

XIII. Notes on the Map (Fig. 3.)

The map which accompanies this paper is intended chiefly to show the distribution in the Bendigo East district of the graptolite zones outlined. Fossiliferous outcrops are too scattered to enable it to represent detailed structure. It is probable that as faulting can be clearly demonstrated east and west of the mapped area (towards Heathcote and at Bendigo) it also affects the present area.

When the features marked on the map are shown on a larger scale, e.g., 2 inches to the mile, several interesting features, rather obscure on a smaller map, stand out.

(1) It is probable that the broad belts of Lancefieldian, Bendigonian, and Castlemainian west of the Whitelaw Fault enclose smaller areas or strips of one or other series. The detailed survey of the Bendigo Gold-field (15) shows that this is so in the central Bendigo area. If it is found not to be so south of Bendigo, the difference in folding may possibly be correlated with the less auriferous nature of the rocks in that direction.

(2) The belts of Daaliwilian east of the fault are shown as long usually narrow strips, with some minor indentations in their outline due to pitch. It is certain that more detailed work will show that the number of indentations and inliers of other series is much greater than the present map indicates. With the increase of emphasis on assemblages of species and relative abundance rather than the mere occurrence of a "zonal" form, large collections are necessary for accurate zoning, especially when there is a tendency for species to be restricted locally to bands.

(3) The appearance of great width of the lower to middle Daaliwilian in the parish of Wellsford may be partly due to lack of evidence to the contrary. Indefinite evidence of the presence of *Diplograptus austrodentatus* near the centre of the parish was obtained, but was insufficient to warrant alterations in the mapping. Here again, and in fact over the whole of this unsatisfactory parish, detailed work is much to be desired.

(4) The problem of the relationship of Lancefieldian to Bendigonian and Castlemainian in the north-east of the area has already been mentioned. A possible partial solution would be the placing of a fault running north and south almost along the western boundary of Eppalock and Axedale. This might help to account for the narrow strip of D3-D5 in Sedgwick, but as no positive evidence at all has yet been produced it does not seem wise to do more than suggest the possibility.

FIG. 3

XIV. Index to Graptolite Localities.

Caldwell's
Field No

- A 159 28 chains west from south-east corner of Allot 11, Sect X, Strathfieldsaye (D5)
- 160 23 chains west, 7 chains south from north-east corner of Allot 12, Sect X, Strathfieldsaye (D4)
- 164 Where water-race touches Emu Creek-road at south-east corner of Allot 19, Sect IV, Strathfieldsaye (Zone of *Didymograptus nodosus*)
- 167 21 chains east of Allot 30, Sect III, Strathfieldsaye (on road) (Zone of *Didymograptus nodosus*)
- 169 Across north-east corner of Allot 26, Sect III, Strathfieldsaye (Outcrops on both roads) (D2—high)
- 170 Near north-east corner of Allot 4, Sect V, Strathfieldsaye (on east and west road—very limited outcrop) (Zone of *Diplograptus interstitius*)
- 173 On race at north-east corner of Allot 1A, Sect V, Strathfieldsaye (Zone of *Diplograptus interstitius*)
- 176 On Sedgwick-road about half-way between water-race and the south-west corner of Allot 4, Sect V, Strathfieldsaye (Zone of *Didymograptus nodosus*—low)
- 179 At south-west corner of Parish of Strathfieldsaye (B2)
- 180, 181 Near loc 179
- 196 1 chain east from north corner of Allot 3, Sect XIX, Strathfieldsaye (an extensive surfaced area) (Zone of *Diplograptus interstitius*)
- 197 10 chains east from loc 196 (Zone of *Didymograptus nodosus*—low)
- 198 On south side of road north of Allot 8, Sect VI, Strathfieldsaye, and just east of Axe Creek (D2)
- 201 13 chains north, 8 chains west from south-east corner of Allot 2A, Sect V, Strathfieldsaye (in bed of watercourse). (Zone of *Diplograptus interstitius*)
- 202 In water-course in north-east corner of Allot 27, Sect III, Strathfieldsaye (Zone of *Diplograptus interstitius*)
- 203 On small water-race in centre of same allotment as loc 202 (Zone of *Diplograptus interstitius*)
- 205 On road south of Allot 3A, Sect VIII, Strathfieldsaye (D4 D5)
- 209 McIvor-road at south-east corner of Parish of Sandhurst. (Zone of *Didymograptus nodosus*—low)
- 210-211 In storm-water channel on south side of McIvor-road, between loc 209 and railway crossing at 97 miles 36 chains (Zone of *Diplograptus interstitius*)
- 226 On Axe Creek in Allot 3, Sect XVI, Strathfieldsaye (C2)
- 229 On Axe Creek in south-west of same allotment as loc 226 (C1)
- 230 At north-west corner of Allot 9, Sect XIX, Strathfieldsaye (on road) (L3)
- 244 In north of Allot 41, Township of Strathfieldsaye (on water-race—badly cleaved material) (D2)
- 283, 284, 285 In road cutting west of Axe Creek, south-east of Sect V, Sedgwick (Zone of *Diplograptus interstitius*)
- 298-299 In watercourse 9 and 19 chains north respectively from the north-west corner of Allot 1, Sect IX, Sedgwick (Zone of *Diplograptus interstitius*).

- 300 At north-east corner of dam in north-west corner of Allot 1A, Sect V, Sedgwick (just off Sedgwick-road) (Zone of *Didymograptus nodosus*)
- 303 On right bank of Axe Creek in south-west of Allot 7, Sect X, Sedgwick (Zone of *Didymograptus nodosus*—probably)
- 309 7 chains west from south-east corner of Allot 8, Sect X, Sedgwick (Zone of *Diplograptus interstitus*—low, or D2 high)
- 310 9 chains south, 13 chains west from north-east corner of Allot 2, Sect XI, Sedgwick (in tributary water-course) (D2)
- 313 3 chains south, 3 chains west from north-east corner of Allot 6, Sect X, Sedgwick (on road) (Zone of *Diplograptus interstitus*—low)
- 314 In small watercourse in north of Allot 2A, Sect VIII, Sedgwick (D2)
- 316 1 chain north from south-east corner of Sect. XI, Sedgwick (just south of dam) (D5)
- 325 1 chain north, 3½ chains east from north-east corner of Allot 1, Sect XVII, Sedgwick (Zone of *Diplograptus interstitus*)

XV. References.

- 1 HARRIS, W J *Proc Roy Soc Vic* (ns), xlvi (2), 1934
- 2 WHITELAW, H S *Monthly Proc Rept Geol Surv Vic* No 10, 1900
- 3 HARRIS, W J *Proc Roy Soc Vic* (ns), xxix (1), 1916
- 4 RIPPER, E A *Ibid* (ns), xlii (2), 1932
- 5 HARRIS, W J *Ibid* (ns), xlvi (1), 1933
- 6 HALL, T S *Rec Geol Surv Vic*, iii (3), 1914, p 290 et seq
- 7 FENNTR, C A *Proc Roy Soc Vic* (ns), xxxi (1), 1918, p 248, &c
- 8 STRELING, J *Prog Rept Geol Surv Vic*, No IX, 1898
- 9 HUNTER, S Deep Leads of Victoria *Mem Geol Surv Vic*, No 7, 1909, p 93 (The plates and maps in Memoir No 7 are in error headed "Memon No 6")
- 10 KEBBLE, R A, and BENSON, W N, *Trans N.Z Inst*, lix, 1928
- 11 THOMAS, D E, and KEBBLE, R A *Proc Roy Soc Vic* (ns), xliv (2), 1933, p 40
- 12 HALL, T S *Geol Mag*, Dec IV, vi, 1899
- 13 HALL, T S *Proc Roy Soc Vic* (ns), vii, 1894
- 14 ELLES, G L *Encyc Brit* (14th Edition), Vol XVI, 1929, p 871
- 15 HIRMAN H *Bull Geol Surv Vic*, No 47, 1923

[PROC ROY SOC VICTORIA 47 (N.S.), PT II., 1935]

ART XVIII—*Victorian Lower Pliocene Bryozoa Part I*

By LEO W. STACH

(With Plate XII.)

[Read 11th October, 1934, issued separately, 8th May, 1935]

Introduction.

The Victorian Lower Pliocene Bryozoa, probably because of their comparative rarity and the overwhelming variety and extraordinary preservation of Victorian Lower Tertiary forms, have received but passing mention from previous workers. The Bryozoa form, however, a definite constituent of Lower Pliocene faunas and their stratigraphical application in borings has scarcely been utilized because of the lack of systematic treatment of the Lower Pliocene species. The present contribution lists the forms in an extensive series of sievings collected from the classic Macdonald's locality on Muddy Creek, Hamilton, during January, 1934.

The author (1933) stated that the Catenicellidae had not been found in the Lower Pliocene, his material being then confined to an extensive series of washings from Beaumaris, the upper section of No 7 bore, Parish of Glencoe, and a small amount of material from Macdonald's. Further search has revealed their occurrence at the present locality, and it is hoped that further work on the Lower Pliocene Catenicellidae will materially assist the elucidation of the phylogeny of this interesting southern Australian group.

Previous Literature.

The earliest record of Victorian Lower Pliocene Bryozoa known to the author is that of Maplestone (1902) who records the occurrence of "*Schizoporella*" *flabellata* Mapl., 1902, from Jemmy's Point (Lakes Entrance) and the Reeves River. Livingstone (1924) has shown this form to be an early zoatal growth stage of the Recent *Purmularia obliqua* (Macgillivray). The former author (1904, 1) later records several species of *Scenaria* from Jemmy's Point and *S. petaloidea* from Beaumaris. It is doubtful whether the species recorded from Beaumaris by Maplestone in the latter paper and in his tabulated list (1904, 11) were obtained from the series above or below the remains nodule bed (Lower Pliocene and Lower Miocene respectively) at this locality.

Chapman (1916) has recorded Bryozoa from mixed Miocene-Pliocene faunas in the Mallee bores, and later (1928) a fairly extensive series consisting mainly of Cellariidae and "*Lunulites*" from the Lower Pliocene (Kalmann) of the Sorrento bore.

List of Species.

<i>Otionella grandipora</i> , sp nov P	<i>Tubucellaria hirsuta</i> (Lamx.)
<i>Brachnopora acanthoceras</i> (MacG.) P-R	P-R
<i>Asteronota terminalis</i> (Watson) M-P	<i>Terebratula crenoides gracilis</i> Canu and Bassler P-R
<i>Calestheria denticulata</i> (MacG.) M-R	<i>Reticularia porcellana</i> MacG. M-R
" <i>Selinaria punctata</i> T-Woods	<i>Ideonellopsis australis</i> MacG.
" <i>maculata</i> (Busk) M-R	P-R
<i>Steganoportella magnilobus</i> (Busk) M-R	<i>Littorina elegans</i> (Busk) M-R
<i>Cellaria australis</i> MacG. M-R	<i>V. gracilenta</i> (MacG.) P-R
<i>Cellaria setigera</i> Pelegens P-R	<i>V. hannahfordi</i> (MacG.) M-R
<i>Caberea grandis</i> Hincks M-R	<i>Cornuticella perforata</i> (Busk) P-R
<i>Schizoporella conservata</i> Waters M-R	<i>Pterocella alata</i> (Wyv-Th.) M-R
<i>Parimularia obliqua</i> (MacG.) P-R	<i>Claviporella aurita</i> (Busk) P-R.

M == Lower Miocene, P == Lower Pliocene, R == Recent

Aspect of the Faunal Assemblage.

The abundance of *Lunulites*-form zoaria in this deposit is the most striking feature of the bryozoan fauna. Daiteville (1933) notes that "*Lunulites*" are common on sandy bottoms subject to the influence of tides and currents, thus indicating moderately shallow-water conditions. The occurrence of abundant Catenicellidae also points to a similar bathymetric facies, the group, from available records, apparently flourishing at depths of five to forty fathoms and forming, together with *Cellaria setigera*, a conspicuous constituent of storm débris around the Victorian coast.

The fauna has an essentially Recent character, and the gap in the marine history of the Muddy Creek area from Lower Miocene to Lower Pliocene represented by the remanié nodule bed, accounts for the extinction of a large proportion of the Lower Miocene fauna of the underlying series represented at Clifton Bank. Many of the forms are recorded as fossil for the first time.

Systematics and Distribution.

OTIONELLA GRANDIPORA, SP NOV

(Pl. XII, Figs 1, 2)

Description.—Zoarium discoidal, slightly convex. The zoecia are roughly polygonal with the distal raised margins rounded. The operium is oval and slightly broader at the proximal end, the free edge of the finely papillose cryptocyst being minutely denticulate. The asymmetrical interzoocial vibracula occur in the angle between the distal rims of neighbouring zoecia.

The radial ribs of the slightly concave inner face are minutely papillose and slightly convex, perforated by a longitudinal row of scattered pores and separated by narrow raised ridges.

Dimensions—Zoarium, diameter 3.6 mm., zoocium, length 0.43 mm., width 0.37; opesum, length 0.27, width 0.18, vibaculum, length 0.20, width 0.08.

Observations—This species appears to belong to the genus *Olionella* Canu and Bassler (1920), but lacks the raised "collar" bordering the opesum, which feature seems to be a characteristic of the genus. The species is distinguished from the North American Tertiary forms by its larger dimensions and the greater proportionate area of the opesum.

Distribution—Lower Pliocene Macdonald's.

ARACHINOPUSIA ACANTHOCEROS (Macgillivray, 1887)

Cribulina acanthoceros Macgillivray, 1887, p. 68, pl. II, fig. 4.

Arachnopusia acanthoceros (Macgillivray), Livingstone, 1924, p. 204.

Distribution—Recent Port Phillip Heads, Portland (Macgillivray).

Lower Pliocene Macdonald's.

ARACHINOPUSIA TERMINATA (Waters, 1881)

Cribulina terminata Waters, 1881, p. 326, pl. xvii, fig. 68.

Arachnopusia terminata (Waters), Canu and Bassler, 1920, p. 313.

Observations—A single specimen of this species agreeing in minute detail with the zoocia figured by Waters (1881) was found encrusting a shell fragment. This is one of the few extinct species common to both the upper and lower Tertiary of Victoria.

Dimensions—Zoecium, length 0.80 mm., width 0.58, aperture, width 0.23, height 0.15.

Distribution—Lower Pliocene Macdonald's.

Lower Miocene *vide* Maplestone (1904, II) and add Sollento bore, 1,320 feet.

CALESCHEARA DENTICULATA (Macgillivray, 1869).

Eschara denticulata Macgillivray, 1869, p. 138.

Caleschera denticulata (Macgillivray), 1895, p. 51, pl. VI, figs. 8, 9. Livingstone, 1928, p. 112, text-fig. 31.

Observations—This form is abundant at Macdonald's, occurring as bilaminate foliaceous fragments. The Lower Miocene specimens are generally of the type described as var. *tenuis* by Busk (1884), but whether it should be separated as a distinct species is doubtful. The lower Tertiary series has a deeper-water facies than that represented by the Lower Pliocene, and it is possible that the narrow bilaminate fronds with their more elongate zoocia constitute a growth variation correlated with the more equable conditions prevailing in deeper water than in the littoral zone within the limits of wave action, where zoarial

growth would tend to dominate in the horizontal plane rather than in the vertical plane. Significant in this direction is the fact that var. *tenuis* was recorded from 38 fathoms, while Macgillivray's foliaceous specimens were obtained from storm débris and tidal scour.

Distribution.—Recent Queensclif, Moorington, Warrnambool (Macgillivray), off East Moncoeur Is. (Bass St.) at 38 fathoms, Curtis Is. (Bass Str.) (Busk), South Australia 14-40 fathoms (details, Livingstone, 1928).

Lower Pliocene Macdonald's

Lower Miocene *vide* Maplestone (1904, II) and add Batesford Tunnel marl, Curlew Is. marl, Forsyth's (below remanié nodule bed) on Grange Burn (Hamilton).

?SELENARIA PUNCTATA Tenison-Woods, 1880

Selenaria punctata Tenison-Woods, 1880, p. 9, pl. II, figs. 8 a-c

Dimensions.—Zooecium, length 0.32 mm., width 0.25, operculum, diameter 0.08

Observations.—A very much abraded zoarium was found with a single zooecium intact. The zooecium has the two operculae characteristic of the above species, but its zoothelial dimensions are greater than those given by Maplestone (1904, I) and less than those of *S. magnipunctata* Maplestone, 1904, which is a lower Tertiary form. It is doubtfully referred here to the Recent species, but its relationship cannot be fully ascertained without further specimens.

SELENARIA MACULATA (Busk, 1852)

Lunulites maculata Busk, 1852, I, pl. I, figs. 15, 16

Selenaria maculata (Busk), Macgillivray, 1895, p. 47, pl. VII, figs. 5-7

Distribution.—Recent Bass Strait (Busk), Holborn Is. (Queensland), Barnard Is. (N.E. Aust.) at 10 fathoms.

Lower Pliocene Macdonald's, Sorrento bore, 660 ft.-730 ft.

Lower Miocene *vide* Maplestone (1904, II) and add Batesford Tunnel marl, Curlew Is. marl, quarry on Thompson's Ck. ½ ml. E. of Toorquay Road, Sorrento bore, to 1,525 ft.

STEGANOPORELLA MAGNILABRIS (Busk, 1854)

Membranipora magnilabris Busk, 1854, p. 62, pl. Ixv, fig. 4

Steganoporella magnilabris (Busk), Canu and Bassler, 1929, p. 144, pl. xv, figs. 1, 2

Observations.—This well-known, widely-distributed species is represented throughout the greater part of the Victorian Tertiary sequence. Regarding its bathymetric occurrence, Canu and Bassler (1929) have stated that "Its presence in the fossils does not have a great bathymetric significance." A single abraded specimen with zooecia identical with Victorian Recent specimens

was obtained. Contrary to the general habit of this species, the specimen is unilamellar and apparently had been encrusting an irregular substratum.

Distribution—Recent Atlantic Ocean 8-182 fathms. (details, Canu and Bassler, 1928); Indo-Pacific Region 2-230 fathms (details, Canu and Bassler, 1928, 1929). Southern Australia Bass Str., Lakes Entrance, Beachport 40 fathms, 7 mls. S W Newland Head (Encounter Bay) 20 fathms, 3 mls S Tunk Hds 16 fathms, Port Wallaroo 15 fathms (Livingstone).

Pliocene Caloosahatchee marl (Florida)

Lower Pliocene Macdonald's.

Miocene Choctawhatchee marl (Florida)

Lower Miocene *vide* Maplestone (1904, II) and add: Laigton Ck off Tooloo Arm (8 mls E of Lakes Entrance), Sonnenfels bore, 1,693 ft (Chapman).

CELLARIA AUSTRALIS Macgillivray, 1880

Cellaria fistulosa var *australis* Macgillivray, 1880, dec v, p 48, pl 49, fig 1

Cellaria australis Macgillivray, 1895, p 29, pl iii, fig 19.

Distribution—Recent. Bass Str. cable, Queenscliff, Portland (Vic.), off Port Morowie 14 fathms (South Aust.).

Lower Pliocene Macdonald's, Glencoe No. 7 bore 160 ft - 200 ft, Sorrento bore 324 ft - 719 ft

Lower Miocene *vide* Maplestone (1904, II) and add Sorrento bore, to 1,608 ft

CELLARIA SETIGERA Pergens, 1887

Salicornaria hirsuta Macgillivray, 1869, p 128

Cellaria hirsuta Macgillivray, 1880 (*non* Lamouroux, 1816 = *Tubucellaria hirsuta*), dec v, p 48, pl 49, fig 2

Cellaria setigera Desmarest and Lesueur MS, 1829, pl viii, fig. 6
Pergens, 1887, p 89

Observations—This species is readily recognized in the fossil state by the perforations at the bases of the zooecia, indicating the points of attachment of the numerous chitinous, filiform appendages which suggested both the trivial names attached to this form.

Distribution—Recent Western Port, Torquay, Queenscliff, Portland, Bass Str cable (Vic.)

Lower Pliocene Macdonald's

CABEREA GRANDIS Hincks, 1881

(Pl XII, Fig 3)

Caberica grandis Hincks, 1881, p 50, pl iii, fig 4

Observations—Several very much abraded fragments referable to this species were found. The characters of the zooecia are made out with great difficulty, but the dorsal view of the

vibracular grooves is quite distinctive. This species was recorded from the lower Tertiary of Victoria by Macgillivray (1895), who remarks that none of his specimens showed the large vibracularia usually seen in the Recent forms. Maplestone, however, has written a note in his copy of the "Monograph" stating that he had seen specimens with that feature.

Distribution—Recent Bass Strait cable, Western Port, Lakes Entrance, Port Phillip Heads (Vic.), 22 mls E of Port Jackson at 80 fathoms, Darnley Is. (Tooles St.) at 10-30 fathoms.

Lower Pliocene Sorrento bore 726 ft., Macdonald's.

Lower Miocene *vide* Maplestone (1904, II)

SCHIZOPORELLA CONSERVATA Waters, 1881

(Pl. XII, Fig. 4)

Schizoporella conservata Waters, 1881, p. 340, pl. xviii, fig. 81.
Hincks, 1882, p. 165, pl. vii, fig. 2 Maplestone, 1904, II,
p. 207

Schizoporella insignis Macgillivray (*non* Hincks, 1881), 1883, p. 132, pl. II, fig. 11 Hincks, 1884, p. 281

Schizoporella daedala Macgillivray, 1887, dec. xiv, p. 146, pl. 138,
fig. 4, *idem*, 1895, p. 84, pl. xi, fig. 15 Maplestone, 1904, II,
p. 207

Observations—Hincks (1884) pointed out that *S. insignis* MacG. (1883) could be referred to *S. conservata* Waters, 1881. Macgillivray (1887) denied this (misquoting Waters' species as "*controversa*") and changed the trivial name to *daedala*, since his original name was preoccupied by Hincks (1881). Later (1895) Macgillivray admitted the conspecificity of the two forms and described the species under the name "*daedala*," ignoring the priority of Waters' name "*conservata*". Maplestone perhaps regarded them as separate species, but may have accidentally listed them separately during the laborious mechanical assemblage of his catalogue (1904, II).

Distribution—Recent Off Port Phillip Heads (Macgillivray).

Lower Pliocene Macdonald's

Lower Miocene *vide* Maplestone (1904, II)

PARMULARIA OBLIQUA (Macgillivray, 1869).

(Pl. XIII, Fig. 5)

Exchara obliqua Macgillivray, 1869, p. 137

Schizoporella flabellata Maplestone, 1902, p. 68, pl. vii, figs. 10, 10A

Parmularia obliqua (Macgillivray) Livingstone, 1924, p. 190, pl. xxii, figs. 1, 2, pl. xxv, fig. 1, pl. xxvi, text-fig. 1

Distribution—Recent Eastern and southern Australia at 5-100 fathoms (details, Livingstone, 1924, 1928)

Lower Pliocene Jimmy's Point, Reeves River (Victoria)
(Maplestone), Macdonald's

TUBUCELLARIA HIRSUTA (Lamouroux, 1816)

(Pl XII, Fig 6)

Cellaria hirsuta Lamouroux, 1816 (*non Cellaria hirsuta* (MacG., 1869) = *C. setigera* Pergens, 1887), p 126, pl II, fig 4*Tubucellaria hirsuta* (Lamouroux), Livingstone, 1928, p 117

Observations.—This species is readily distinguished in the fossil state by its similar zooecial arrangement to that of the genus *Tetraplaria* Tenison-Woods, and by the presence of the pits on either side of the peristome marking the insertion of the jointed, filiform, chitinous processes characteristic of this species. The fossil specimens are generally much worn, the peristome being usually completely abraded away. It is essentially a shallow-water form and is common around the Victorian coast amongst storm débris.

Distribution.—Recent Queenscliff, Western Port, Cape Otway, Portland (Vic.) (Macgillivray), off Two Sisters' Is., Bass Strait (J. Gabriel coll.) South Australia 12 mls S E by S from Newland Head (Encounter Bay) at 24 fathoms (Livingstone).

Lower Pliocene Macdonald's

TUBUCELLARIA CEREOIDES GRACILIS Canu and Bassler, 1929

(Pl XII, Fig 7)

Tubucellaria cereoides (*non* Ellis and Solander), Macgillivray, 1885, p 107, pl 1, fig 4*Tubucellaria cereoides gracilis* Canu and Bassler, 1929, p 355, pl xlvi, figs 1, 2

Observations.—The Lower Pliocene specimens agree with the Philippine specimens of Canu and Bassler (1929) in the more proximal position of the ascopore and the dimensions of the zooecia. Macgillivray's specimens from Port Phillip Heads also show these features, the typical *T. cereoides* (Ell and Sol.) from Naples having the ascopore situated close to the peristome.

Distribution.—Recent Port Phillip Heads (Macgillivray), various localities in the Philippine Is. at depths of 20-240 fathoms (Canu and Bassler).

Lower Pliocene Macdonald's

RETEPORA PORCELLANA Macgillivray, 1869

Retepora porcellana Macgillivray, 1869, p 140, *idem*, 1895, p 115, pl xv, fig 15

Distribution.—Recent Port Phillip Heads

Lower Pliocene Macdonald's

Lower Miocene *vide* Maplestone (1904, 11) and add Quarry on Thompson's Creek $\frac{1}{4}$ ml E of Toorquay Road

Adeonellopsis australis Macgillivray, 1886*Adeonellopsis australis* Macgillivray, 1886, p. 134, pl. II, figs. 2, 3

Observations—This species occurs abundantly in the deposit as abraded bilaminate fragments. The upwardly-directed avicularium and the three or four stellate ascopores are typical of the species.

Distribution—Recent Port Phillip Heads (Macgillivray).

Lower Pliocene Macdonald's

Vittaticella elegans (Busk, 1852)*Catenicella elegans* Busk, 1852, I, p. 361, pl. I, fig. 2*Vittaticella elegans* (Busk), Stach, 1934, II, p. 19, pl. III, figs. 1-4

Distribution—Recent *vide* Stach (1934, II)

Lower Pliocene Macdonald's

Lower Miocene Forsyth's (below remanié nodule bed) on Grange Burn (Hamilton)

Vittaticella gracilenta (Macgillivray, 1885)

(Pl. XII, Figs. 8, 9)

Catenicella gracilenta Macgillivray, 1885, p. 106, pl. I, fig. 3*Vittaticella gracilenta* (Macgillivray), Mapleson, 1901, p. 202

Description—Zooecium elongate, subrectangular, tapering slightly at base, greatest width, at level of scapular compartments, equals one-third length of zooecium.

Proximal 1 mm, equalling more than one-half width of zooecium, situated one-fifth of distance proximally from distal connecting-tube aperture. Aperture subcircular, transverse, extends two-thirds distance from proximal 1 mm to distal connecting-tube aperture.

Scapular compartments, at level of distal half of aperture, face obliquely laterally, infrascapular compartments situated at level of proximal half of aperture, suprascapular compartments face obliquely forward and upward. The narrow vittae equalling four-fifths length of zooecium, face entirely laterally and have a single row of about twelve septulae.

Dorsal surface regularly convex. Axis of daughter zooecium inclined at about 35° to that of mother zooecium. Macgillivray (1885) notes that the ovicell has a central, smooth, longitudinally-elongate quadrate area.

Dimensions—Zooecium from Macdonald's. Zooecium, length 0.75 mm, width 0.32, aperture, diameter 0.13, vittae, length 0.45. Recent zooecium from off Shoalhaven. Zooecium, length 0.87, width 0.30, aperture, diameter 0.14, vittae, length 0.51.

Observations.—The single fossil zooecium found has a portion of the proximal end broken off, thus accounting for the difference in the dimensions of the two zooecia recorded above.

No additional record of this species is known since 1885. It is readily distinguished by its extreme slenderness and long lateral vittae. The zoarium, seen macroscopically, has an etiolated appearance quite distinct from zoaria of the majority of the Catenicellidae. It may here be noted that the angle between the axes of the zooecia of a geminate pair is a fairly constant character of most species of the Catenicellidae and rarely varies more than 10° . It often gives a characteristic macroscopic feature enabling zoaria to be fairly accurately sorted specifically from bulk samples.

Distribution.—Recent Port Phillip Heads (Macgillivray), Western Port (Vic.), off Eden and off Shoalhaven (N S W) (J. Gabriel coll.)

Lower Pliocene Macdonald's

VITTATICELLA HANNAFORDI (Macgillivray, 1869)

- *Catenicella hannafordei* Macgillivray, 1869, p 127
- *Vittaticella hannafordei* (Macgillivray), Stach, 1933, p 97

Distribution.—*Vide* Stach (1933) and add., Lower Pliocene Macdonald's

CORNUTICELLA PERFORATA (Busk, 1852)

- Catenicella perforata* Busk, 1852, n, p 10, pl viii, figs 1, 2
- Vittaticella perforata* (Busk), Maplestone, 1901, p 202
- Catenaria perforata* (Busk), Levinson, 1909, p 219

Description.—Zooecium elongate-oval in outline; greatest width, at level of scapular compartments, equals about one-half length of zooecium.

Proximal rim, one-third width of zooecium in length, situated one-third distance proximally from distal connecting-tube aperture. The aperture is longitudinally oval, extending two-thirds of distance from proximal rim to distal connecting-tube aperture.

Scapular compartments, extending from level of proximal rim almost to summit of zooecium, face directly laterally and have one or more rounded uncalcified areas at their bases, infrascapular compartments reduced in extent, suprascapular compartments face upward. The narrow vittae, with a single row of seven to ten septulae, face directly laterally and equal two-thirds length of zooecium. The frontal has sparsely-scattered fine perforations.

Dorsal surface regularly convex, depressed behind scapular compartments. Axis of daughter zooecium inclined at about 45° to that of mother zooecium.

The smooth terminal ovicell, pertaining to the mother zooecium of a geminate pair, is pyriform and has a median longitudinal raised ridge.

Dimensions—Recent zoocarium from Torquay (Vic.) Zoocarium, length 0.42 mm., width 0.26, aperture, diameter 0.09; vittae, length 0.23. Zoocarium from Macdonald's Zoocarium, length 0.40, width 0.22, aperture, diameter 0.09, vittae, length 0.21.

Observations—The position of the ovicell, noted by many authors, places this species in the genus *Cornuticella* Canu and Bassler, 1927, which appears to be further characterized by the laterally-directed vittae.

This species is readily recognized, in the absence of the ovicell, by the uncalsified areas at the bases of the scapular compartments and the narrow, laterally-directed vittae with a single row of seven to ten septulae.

C. perforata is abundant on the Victorian coast and this constitutes its initial record as a fossil.

Distribution—Recent Port Phillip Heads, Western Port, Torquay, Apollo Bay (Vic.), off Launceston and Devonport, Circular Head (Tas.), off Montagu Is. 50 fathms (NSW) (Aust Mus coll.), St Vincent Gulf (Sth Aust Mus coll.), 10 mls off Cape van Diemen at 50 fathms, Three Kings' Is. at 65 fathms (New Zealand) (Livingstone).

Lower Pliocene Macdonald's

PTEROCELLA ALATA (Wyville-Thomson, 1858).

Catenicella alata Wyville-Thomson, 1858, p. 137, pl. xiii, fig. 4

Pterocella alata (Wyv.-Th.), Levinson, 1909, p. 246, pl. xii, figs. 6 a-b, pl. xxi, fig. 4A. Stach, 1934, i, p. 17, text-figs. 1 a-c.

Distribution—Recent Western Port, Torquay, Lakes Entrance, Warrnambool, Queenscliff (Vic.); New Plymouth at 8 fathms (New Zealand), off Launceston and Devonport (Tas.) (Aust Mus. coll.).

Lower Pliocene. Macdonald's

Lower Miocene *vide* Maplestone (1904, n.) and add. Glencoe No 7 bore 580 ft., 650 ft., 790 ft., under railway bridge over Glenelg River at Dartmoor, Altona Bay coal shaft, Flinders, Nth. side of Armstrong's Ck. 10 chms E. of Torquay Road, beach cliff at Ocean Grove, Batesford Tunnel mail, Piowsé's marl pit (2 mls. W of Mt Moriac), Cochran's marl pit (near Ceres), Hamilton bore 80 ft.-85 ft.

CLAVIPORELLA AURITA (Busk, 1852)

Catenicella aurita Busk, 1852, n. p. 8, pl. iv, figs. 1-3

Claviporella aurita (Busk), Levinson, 1909, p. 243, pl. xx, figs. 10 a-b.

Distribution—Recent Apollo Bay, Torquay, Lakes Entrance, Port Phillip Heads, Lorne, Western Port (Vic.), Encounter Bay, Port Elliot (South Aust. Mus. coll.), off Cape Maria van Diemen (New Zealand).

Lower Pliocene Macdonald's

References

- BUSK, G., 1852, I Appendix to *Voyage of the Rattlesnake* by J Macgillivray, vol I, pp 343-402, pls 1
- , 1852, II Catalogue of Marine Polyzoa in the British Museum Part I, pp 1-54, pls 1-68
- , 1854 *Ibid*, pt II, pp 55-120, pls 69-124
- , 1884 *Challenge Reports, Zoology*, vol x, pt v, pp 1-216, pls 1-36
- CANU, F., and BASSLER, R., 1920 North American Early Tertiary Bryozoa *United States Nat Mus Bull* No 106, pp 1-879, pls 1-162
- , 1929 Bryozoa of the Philippine Region *Ibid*, No 100, vol ix, pp 1-685, pls 1-94
- CHAPMAN, F., 1916 Cainozoic Geology of the Mallee and other Victorian Bore *Rec Geol. Surv Vic*, iii (4), pp 327-430, pls 63-78
- , 1928 The Soortento Bore, Mornington Peninsula *Ibid*, v (1), pp 1-195, pls 1-12
- DARTEVELLE, E., 1933 Bryozoaires fossiles de l'Éocène de la Belgique *Ann Soc Roy Zool Belg*, lxiii, pp 55-116, pls 2-4
- HINCKS, T., 1881 Contributions towards History of Marine Polyzoa. *Ann Mag Nat Hist* (ser 5), viii, pp 122-136, pls i-v
- , 1882 Contributions, etc *Ibid* (ser 5), x, pp 160-169, pls viii, viii
- , 1884 Contributions, etc *Ibid* (ser 5), xiv, pp 276-285, pls viii, ix
- LAMOURoux, J., 1816 Histoire des Polypiers Coralligènes flexibles Caen, 1816, pp 1-560, pls 1-xix
- LEVINSEN, G M R., 1909 Morphological and Systematic Studies on the Cheilostomatous Bryozoa Kjøbenhavn—Nationale Forfatteres Forlag, pp 1-431, pls 1-xxvii
- LIVINGSTONE, A A., 1924 Studies in Australian Bryozoa, Part 1 *Rec Aust Mus*, xiv (3), pp 189-212, pls xxiii-xxvi
- , 1928 Bryozoa from South Australia *Rec S Aust Mus.*, iv (1), pp 111-124, text-figs 31-35
- MACGILLIVRAY P H., 1869 Descriptions of some new Genera and Species of Australian Polyzoa *Trans Proc Roy Soc Vic*, ix., pp. 126-148
- , 1879-1890 Bryozoa in *Prodromus of the Zoology of Victoria*, by McCoy, decades 1-xx, Melbourne
- , 1883 Descriptions of New, or Little Known, Polyzoa Part II *Trans Proc Roy Soc Vic*, xix, pp 130-138, pls 1-iii
- , 1885 *Idem*, Part VIII *Ibid*, xxii, pp 106-119, pls 1-v
- , 1886 *Idem*, Part IX *Ibid*, xxii, pp 128-139, pls 1-iii
- , 1887 *Idem*, Part XI *Ibid*, xxiii, pp 64-72, pls 1-iii
- , 1895 Monograph of the Tertiary Polyzoa of Victoria *Trans Roy Soc Vic*, iv, pp 1-166, pls 1-xvii
- MAPLESTONE, C M., 1901 On a new name *Vittatucella* for the polyzoan genus *Caloporella* Macgillivray *Proc Roy Soc Vic* (n.s.), xiii (2), pp 201-203
- , 1902 Further Descriptions of the Tertiary Polyzoa of Victoria Part VII *Ibid* (n.s.), xiv (2), pp 65-74, pls vi-viii
- , 1904, 1 Notes on the Victorian Fossil Selenaridae *Ibid* (n.s.), xvi. (2), pp 207-217, pls xxiv, xxv.

Lower Pliocene Bryozoa.

- MARPLESTONE, C. M., 1904, in Tabulated List of Victorian Tertiary Chelostomatous Polyzoa *Ibid* (n.s.), xvii (1), pp 182-219
- PERGINS, E., 1887 Contributions à l'Historie des Bryozoaires et des Hydrozoaires récents *Bull. Soc. Roy. Malacol. Belg.*, xxii, pp. 85-90
- SIECH, I. W., 1933 Victorian Tertiary Catenicellidae Part I *Proc. Roy. Soc. Vict.* (n.s.), xlvi (2), pp 85-98, pl viii
- -- --, 1934, i Zoocellar Variation within Species of the Catenicellidae *Ibid* (n.s.), xlvi (1), pp 14-17, text-figs 1-9
- -- --, 1934, ii Victorian Tertiary Catenicellidae Part II *Ibid* (n.s.), xlvi (1), pp 18-53, pl iii
- TENISON-WOODS, J. F., 1880 On some Recent and Fossil Species of Scleractinidae *Trans. Proc. Roy. Soc. Vict.*, iii, pp 1-12, pls 1, ii
- WATERS, A. W., 1881 On fossil Chilostomatous Bryozoa from south-west Victoria, Australia *Quart. Journ. Geol. Soc.*, xxxvii, pp 309-347, pls xiv-xviii
- WYVILLE THOMSON, T. C., 1858 On new Genera and Species of Polyzoa in the Collection of Prof. Harvey Part I *Natural History Review*, vol v, Proceedings of Societies, pp 134-147, pls x-xiii, xv

Explanation of Plate XII.

- Fig. 1 *Ottionella grandipora*, sp. nov. Frontal view of holotype $\times 20$
Macdonald's Nat. Mus. Coll., No 14002
- Fig. 2 *O. grandipora* sp. nov. View of inner face of holotype $\times 20$
Macdonald's Nat. Mus. Coll., No 14002
- Fig. 3 *Caberea grandis* Hincks Dorsal view of plesiotype $\times 20$
Macdonald's Nat. Mus. Coll., No 14003
- Fig. 4 *Schizoporella conservata* Waters Frontal view of plesiotype $\times 20$
Macdonald's Nat. Mus. Coll., No 14004
- Fig. 5 *Parmularia obliqua* (MacG.) Frontal view of plesiotype $\times 20$
Macdonald's Nat. Mus. Coll., No 14005
- Fig. 6 *Tubucellaria hirsuta* (Lamx.) Fragment of internode showing zoocial detail $\times 20$ Macdonald's Nat. Mus. Coll., 14006.
- Fig. 7 *Tubucellaria circinoides gracilis* Canu and Bassler Fragment of internode showing zoocial detail $\times 20$ Macdonald's Nat. Mus. Coll., No 14007
- Fig. 8. *Vittatucella gracilenta* (MacG.) Frontal view of single zoocellum $\times 10$ Macdonald's Nat. Mus. Coll., No 14008
- Fig. 9 *V. gracilenta* (MacG.) Frontal view of single recent zoocellum $\times 10$ Off Shoalhaven (N.S.W.)

[PROC ROY SOC VICTORIA 47 (N S), Pt II, 1935]

ART XIX—*An Account of the Cultural and Cytological Characteristics of a New Species of Mycogala*

By KATHLEEN M CROOKS, M.Sc.

[Read 8th November, 1934, issued separately, 8th May, 1935]

I. Introduction.

During the isolation of several fungi from Jaiyah (*Eucalyptus marginata*) timber, particular interest was taken in one form which appeared to be rather unusual. On investigation, this proved to be a species of *Mycogala*. Its characters did not agree with those of any previously described members of this genus, so that it has been given the specific name, *Mycogala marginata*. An account is given here of the main cultural and structural characteristics, including the development of the peritheciun, from the observations made.

II. The Fungus in Culture.

The fungus grows readily on most of the media in ordinary use. On the solid media used an important characteristic of this form is the very pronounced colour change brought about in the medium by the fungus. Generally, the growth is mainly submerged with little superficial development. The optimum temperature for growth is about 19°C.

1. Malt Agar

(a) *Macroscopic*—The fungus grows quickly, but aerial growth is scanty, and is usually represented by only a small amount of white, flaky mycelium at the upper end of the malt slope. With the growth of the fungus over the agar, the latter changes in colour to a light yellowish-brown which soon deepens to a reddish-brown, and, in an old culture, the medium appears almost black. Perithecia are abundantly developed on the surface of the medium, and when mature are dark and carbonaceous in appearance, and easily visible to the naked eye.

(b) *Microscopic*—The hyphae of the mycelium are generally uniform in size, and contain abundant oil. Septa are developed, although usually at fairly wide intervals (Fig 1).

Fig 1 Hypha of *Mycogala marginata* $\times 545$ (a) vacuole, (b) nucleus, (c) septum

After about four days' growth, one type of asexual spore is found to be very abundant in the culture. These are formed on short branches of the aerial hyphae, and the branches appear

to be transformed into closely septate, cylindrical, hyaline elements, which tend to break up into shorter elements—one or more septate (Fig 2). The free cells appear, therefore, to be of the nature of "oidia" rather than of conidia, and will be discussed later.

Another type of asexual spore is soon apparent, namely chlamydospores. These may occur solitary or in chains and are formed in both intercalary and terminal positions in the hyphae (Fig 3). At first these bodies are hyaline and appear as swollen cells, which are more closely septate than the ordinary cells of the hyphae, and they contain abundant oil globules, as shown by the red colour with Sudan III. As they mature, they increase in size, become dark brown in colour, and a thick wall is developed. They are approximately spherical in shape, and have a range in diameter of 6-18 μ .

Fig. 2 Spores of oidia type, formed on aerial hyphae
 $\times 260$ (a) aerial branch showing early stage in
 spore formation, (b) free spores Fig. 3, Chlamydospores formed in an intercalary or terminal position
 in the hyphae. $\times 260$ (a) chlamydospore, (b)
 hyphae, (c) oil globules

After about five or six days at 19°C., the mycelium shows the first indications of sexual reproductive structures in the form of peritherium initials, and ripe perithecia are visible in three to four-weeks-old cultures. The fruiting-bodies are developed superficially on the medium, and may be solitary or two or three massed together. They are spherical in shape, with a range in diameter of 50-150 μ , and are dark coloured when mature. No ostiole is developed, but the fruiting-body deliquesces by an irregular splitting of the wall.

If the perithecia are crushed before they are quite ripe, colourless ascii containing eight ascospores are apparent. The ascii are sub-spherical and very delicate, and as they appear to rupture when the spores are ripe, one rarely sees ascii on crushing the mature perithecium.

The ascospores are spherical, smooth and hyaline, with a diameter of 2-4 μ . They are often seen massed together, when their shape is slightly modified, and they tend to be hexagonal in outline.

2 Oatmeal Agar

The fungus causes a colour change in the medium similar to that noted on malt agar, and little aerial growth occurs. The microscopic characters of the fungus also agree with those already noted but the perithecia appear to mature somewhat more quickly.

3 Mace-meal Agar

Growth is not as vigorous as on the previous media. At the end of three weeks oidia and chlamydospores were abundant in the culture, but perithecia were few and immature. Later on, these fruiting-bodies were more abundant, but not as plentiful as on malt or oatmeal agar.

4 Dov's Agar

Very little mycelial development is found, and no colour change is brought about by the fungus. Neither asexual nor sexual spores develop in this case.

5 Prune Juice

Growth is very sparse, and although a fine white mycelium develops, it does not form a dense mat as in turnip juice. Oidia and chlamydospores develop to a very limited extent. Perithecia are occasionally found and are easily visible as dark carbonaceous objects in the white mycelium.

6 Turnip Juice.

After a few days, a dense mat of hyphae is formed below the surface. Oidia are found but are not as abundant as on previous media. Chlamydospores were noted after some days. Perithecia do not seem to develop consistently in this medium, as in some cases only very few are developed, while in other instances, they are numerous.

III. Comparison with Related Forms.

From a study of the characters of the fungus, particularly from the nature of the perithecium with its asci and ascospores, it seems to be most closely allied to *Mycogala*, a genus of the Eurotiaceae. It differs largely, however, in its characteristics and habitat, from the species previously described. It is interesting to note that no other species of *Mycogala* has yet been recorded on *Eucalyptus*.

The main characters of the known species of *Mycogala* are given in the following table —

SPORES	PERITHECIA Diameter	ASCOSPORES	HABITAT AND LOCALITY.
<i>M. parvulum</i> (Schrad.) Sacc.	—	Globose, rough, 10-12 μ diameter	Decaying wood in Britain, Germany, Lipland, Italy
<i>M. minimum</i> (Fr.) Karst	1 mm	10-12 μ dia- meter	—
<i>M. firmum</i> Karst 1896	0.3 mm	3-4 μ diameter	Leaves of living Palms, Leningrad, Russia
<i>M. insigne</i> Pat 1900	3-6 mm	Rough, 6 μ diameter	Dead trunks of <i>Daniellia</i> (Leguminosae) West Africa
<i>M. guadalupense</i> Pat 1902	4-6 mm	Ovoid or sub- globose 6-7 x 4.5 μ	Associated with <i>Lycopodium Epidendrum</i> on decaying wood
<i>M. macrospora</i> Jaap 1910	0.5-1 mm	18-25 μ dia- meter	—
<i>M. muscicola</i> Jaap 1912	—	7-8 μ diameter	Linglitz, (Jaap) Germany
<i>M. fumeti</i> 1912	200-300 μ	8-10 x 6 μ dia- meter	Hamburg (Jaap) Dessau (Staritz)
<i>Mycogala</i> <i>Eucalyptus</i>	from 50-150 μ	2-4.5 μ dia- meter	<i>Eucalyptus marginata</i> Melbourne, Australia

This table shows that *Mycogala firmum* is the only species approximating to the fungus in question, and it is with this form that a further comparison becomes necessary.

The size of the ascospores is approximately similar in both cases, but there is a wider variation in the Australian form, and the spores of the latter are hyaline, while those of *Mycogala firmum* are pale yellow. In addition the host and size of perithecia are different in the two forms. These points are considered sufficient to separate it from *Mycogala firmum*, and the name *Mycogala marginata* is proposed for it.

The asexual spores borne on the aerial branches of *Mycogala marginata* may be compared with the so-called "endo-conidia" of *Thielavia basicola* Zopf. According to Brierley (3), the conidia of *Thielavia basicola* Zopf are endospores not formed by free cell division within an endo-conidial cell, but are "acrogenously abstricted from the conidiophore." The first conidium is liberated by the differentiation of its walls, into an inner wall

and a sheath, and by the rupture of the latter at its apex. The later conidia grow out through the sheath of the first, and are set free by the splitting of their basal walls. The formation of the transverse walls is brought about by the ingrowth of a ring of cell-wall substance, which finally closes in the centre.

In *Mycogala marginata*, the method of spore-formation appears to be different. It was not possible in any instance to detect the sheath through which the conidia push their way out to the exterior—a feature which is readily observed in *Thielavia basicola*. The branches, however, seem themselves to break up into shorter elements—one or more septate—so these free cells appear to be of the nature of “oidia” rather than of conidia.

Thielavia basicola Zopf is a well-known parasite chiefly on tobacco, violet, and many Leguminosae. It was invariably placed in the Ascomycetes on the assumption that the chlamydospores, “endo-conidia,” and perithecia belonged to the same fungus. McCormick (20) in 1924, obtained the perithecia in culture, and proved conclusively that all three spore stages belonged to the same form—*Thielavia basicola* Zopf.

It is interesting to note that *Mycogala marginata* also has three types of spores—chlamydospores, oidia—superficially resembling the endo-conidia of *Thielavia basicola* Zopf—and ascospores.

IV. Development of the Perithecium.

The ascospores germinate within twenty-four hours when incubated at 19°C and soon produce abundant mycelium. After three or four days, the first signs of sexual reproductive organs are visible. The perithecium initial is a coiled septate hypha, the degree of coiling varying widely (Fig 4).

Fig. 4 Young ascogonial coils, representing initial stages in development of perithecia. Fig. 5 Ascogonial coil, showing saccular tip. Fig. 6 Young ascogonial coils. Note two hyphae intertwining. $\times 560$

Sometimes the coiling occurs at the apex of the filament (Fig 4), while in some cases, it is found near the middle or base of the hypha, and the distal end may remain free (Fig 5). When

the distal end of the hypha is free, dichotomous branching frequently occurs (Fig. 8c), a feature also recorded in some members of the Ascobolaceae, where it has been compared to the branching trichogyne of *Lachnea cretea* (12). In *Lachnea cretea*, however, this terminal portion of the archicarp is constantly found protruding from the other coils, and it is so distinct as to be regarded morphologically as a trichogyne, and it is even suggested that the contents of the trichogyne may discharge themselves into the central part of the archicarp, and thus a form of pseudo-pogamy may replace fertilization. In *Mycogala marginata*, this free terminal portion is not such a constant feature. In *Lachnea cretea*, the terminal part consists of about eight or nine cells, but the cross-walls become broken down, so that a free passage occurs from cell to cell.

Fig. 7. Later stages in development of coils. B, D, and E show lateral branching at base of ascogonium. G shows long free tip.
X 400

Septa have not been observed in the free portion of the archicarp of *Mycogala marginata*. An antheridium is not developed, but hyphae grow out laterally from the stalk region of the ascogonium, and these often have the appearance of antheridial branches (Figs. 7B, D, E, 8E). Similar branching has been recorded by Gwynne-Vaughan and Williamson (16) in some members of the Ascobolaceae, and is regarded by them as contributing to the formation of the sheath.

Another feature shared by some members of the Ascobolaceae, e.g., *Saccobolus depauperatus* (16), is the fact that two coils are often found together (Fig. 6), suggesting that more than one may be concerned in the formation of an ascocarp.

Gwynne-Vaughan in discussing the Ascobolaceae describes the cells of the archicarp as being multi-nucleate. Fraser (12) describes the archicarp of *Lachnea cretea* as a multi-nucleate structure, and there is no evidence either when the ascogenous hyphae are first formed, or, at a later stage, of an arrangement in regular pairs. In *Mycogala marginata* the segments of the

ascogonial coil are at first multi-nucleate, but later uninucleate segments are found (Fig 8). In many cases, binucleate segments are observed, and these would represent a stage before the uninucleate condition is reached

Fig 8 Ascogonial coils in varying stages of development. In Figs A and B, note multi-nucleate segment at tip of coil, and nuclei showing a tendency to associate in pairs. In Figs B and E, note bi-nucleate and uninucleate segments. Figs C and D show branching at tip of coil, and Fig E shows a branch at base of coil. Fig A $\times 200$, Figs B, C, D, E $\times 480$

As previously mentioned, the formation of the sheath is brought about by lateral branches given off from the stalk, but it is likely that the surrounding hyphae also contribute to its formation, as branches from the mycelium have been observed to pass up into the fruiting-body. The original ascogonium is visible in the young ascocarp, when cut in section, as large usually uninucleate segments only faintly stained and sometimes branched (Figs 9, 10)

Fig 9 Section of very young ascocarp $\times 420$ (a) original ascogonial coil, (b) ascogenous hyphae, deeply stained, (c) "nurse hyphae". Fig 10 Section of ascocarp, at a slightly later stage $\times 420$. (a) segments of original ascogonial coil, (b) ascogenous hyphae, deeply stained—note recurved branches at b¹, (c) "nurse hyphae"

From the ascogonium, ascogenous hyphae arise and are visible as a mass of deeply stained hyphae, situated generally at about the centre of the ascocarp. These hyphae are very irregular in form and the branches are rather short. In many cases they are sharply recurved, resembling the crooks of a crozier system (Figs. 10, 11, 13). Asci arise from the ascogenous hyphae and appear to come from the penultimate cell of a crozier (Fig. 13), thus resembling *Thielavia terricola* (11). It was not possible to observe the nuclear detail of the ascogenous hyphae.

In the young ascocarp, one finds also a system of fine hyphae much branched and intertwined, nuclei are visible in these hyphae, but septa cannot be distinguished. They develop from the ascogenous hyphae and often seem to come from the cells

Fig. 11. Section of young perithecium, showing beginning of ascus formation. $\times 485$. (a) segments of original coil, (b) ascogenous hyphae, (c) "nurse hyphae," (d) asci.

Fig. 12. Section of mature perithecium, showing cavity filled with spores. $\times 300$ w—perithecium wall, e—ascospores.

Fig. 13. (a) Ascogenous hyphae, showing recurved tips, (b), (c) recurved branches of ascogenous hyphae, showing asci arising from penultimate cell of crozier. $\times 485$.

of the ascogonial coil itself. They appear to correspond to Biefeld's digestive hyphae, although Dodge has shown that this is not their sole function, and he states that "the fine hyphae probably take no greater part in the digestion of the stromatic tissue than do the other elements occupying the cavity." Dodge found that these asci themselves frequently bear asci directly, and it was noted in one or two cases in *Mycogala marginata*

As the ascocarp matures, the contents of the interior disorganize and eventually the centre of the cavity is occupied by the darkly-stained mass of ascogenous hyphae, accompanied by the finer hyphae. In a ripe perithecium, the entire cavity is filled with ascospores (Fig. 12).

It is interesting to note the similarity that exists between *Penicillium Brefeldianum* and *Mycogala marginata* in the nature of the hyphae occupying the central region of the young ascocarp. In the latter, asci arise from a crosier system, but in *Penicillium Brefeldianum* Dodge (7) states that the asci arise as "short-side or terminal swellings from the thick primary ascogenous hyphae, and are formed in the same position as a branch"; and he believes that the formation of a crosier system may not be an impossibility in this case.

A striking resemblance also occurs between the young coils of *Mycogala marginata* and those of some members of the Ascobolaceae, which is rather surprising between such widely separated members of the Ascomycetes. Similarities also occur in the method of formation of the sheath in our species and in the Ascobolaceae.

V. Discussion.

The genus *Mycogala* is grouped in the family Aspergillaceae of the Plectascales on account of the nature of its sexual apparatus. Gaumann Dodge has traced out the development of the peritheciun in the Aspergillaceae, and has classified the various members into five groups —

(1) *Penicillium "crustaceum"* Group, and occasionally also in *Aspergillus nidulans*

Two equal copulation branches are formed which coil around one another helically, come into communication, and the contents of one migrate into the other, after which the copulation branches are surrounded by a dense hyphal knot. Thus here, there is no distinction between the antheridium and ascogonium, a feature also found in the lowest family of the Plectascales—Gymnoascaceae.

(2) *Penicillium vermiculatum* Group.

This includes as yet only one species. This group differs from the previous one in the fact that both copulation branches are differentiated morphologically into antheridium and ascogonium, but the antheridium does not appear until a long time after the formation of the ascogonium, after the latter has become uninucleate. Although the antheridium comes into communication with the ascogonium, according to Dangeard's observation, its single nucleus is functionless. The ascogonium divides into numerous binucleate cells, each of which may develop ascogenous hyphae.

(3) *Aspergillus herbariorum-repens* Group

There is developed a coiled, one or more septate ascogonium. The cells are multi-nucleate, the terminal one usually the longest. Before or after septation of the ascogonium, the antheridium

arises and climbs along the ascogonial helix from either a different hypha, or a coil—usually the basal one of the ascogonium. The antheridium appears to be functionless, as it often does not grow to its full length, or may be entirely absent. In all cases, with or without antheridium, the ascogonium develops parthenogenetically, and divides into binucleate cells, some of which grown into ascogenous hyphae.

Thus here we get functional degeneration of the antheridium which forms often when the ascogonium has reached the stage when fertilization would occur.

(4) *Aspergillus flavus*, *A. fumigatus*, and *A. Fischeri*

A coiled ascogonium is developed which divides into binucleate cells and develops ascogenous hyphae in the usual way, without any formation of an antheridium.

(5) *Penicillioopsis clavariaeformis*

The formation of the fructification is no longer introduced by the formation of an ascogonium. Conidiophoric coenidia radiate laterally or terminally without apparent reason, and change into perithecia in a still unknown manner.

Thus in these five groups, according to Gaumann Dodge, there is a gradual degeneration of sexuality, because of the retardation in the formation of the antheridium.

Mycogala marginata falls into the fourth group of this series, since an antheridium is not developed, but the ascogonium produce ascogenous hyphae from which asci are developed. A striking resemblance to *Thielavia* has already been noted both in the sexual apparatus, the development of the perithecium, which is of the same type as in *Thielavia terricola*, and also in the well-developed conidial apparatus.

Although *Mycogala* is a member of the Plectomycetes, it is interesting to note the resemblances found between this genus and some of the higher Discomycetous forms—namely, the Ascomolaceae—indicating that in spite of the different nature of the fructifications, the sexual apparatus is very similar in these widely separated groups.

VI. Latin Description.

Mycogala marginata—Perithecia solitaria, vel bina, vel terna, in superficie sita, atro-rufa aut nigra quando matura sunt, non ostiolata, scissuris irregularibus dehiscentia; diametro a 50 ad 150 μ . Asci subsphaerici, hyalini, tenerrimi, sporas octonas continentes. Ascospores sphaericae, lenes, hyalinae, diametro a 2 ad 4.5 μ , saepe conglomeratae.

Duo typi sporiarum sine sexu —

- (a) Hyphae praebent chlamydosporas aut solitarias aut catenatas, atrorufas, parietibus crassis, situ aut intercalatio aut terminali, forma prope sphaerica, diametro a 6 ad 8μ
- (b) Ramu aeni producunt elementa spisse saeptata, cylindrica, hyalina, quae in elementa minora separantur, quorum unum aut plura saeptata sunt. Haec naturam oidiiorum habere videntur.

VII. Summary.

1 A new species of *Mycogala* was obtained from Jairah (*Eucalyptus marginata*) timber, and is described as *Mycogala marginata*

2 The fungus was grown on various culture media, and the cultural characteristics are outlined

3 There are two types of asexual spores —

- (a) Chlamydospores, occurring either singly or in chains, may be formed in either a terminal or intercalary position in the hyphae. They are approximately spherical in shape, 6-18 μ diameter, and dark brown in colour with a thick wall when mature
- (b) Spores of the nature of "oidia" are formed by the transformation of aerial branches into cylindrical, hyaline elements, which again break up into smaller segments one or more septate

4 Comparison is made between these oidia and the so-called endo-conidia of *Thielavia basicola* Zopf, and the method of formation of the spores in the two cases is found to be different

5 The peritheciun initial is a coiled septate ascogonium, composed of segments at first multi-nucleate, but later becoming uninucleate. An antheridium is not developed

6 The wall of the peritheciun is formed from lateral branches arising from the basal part of the ascogonium. The surrounding hyphae are also considered to contribute towards the formation of the sheath

7 The young ascocarp contains three kinds of hyphae:—

- (a) Large, faintly staining hyphae, composed of uninucleate cells, which represent the ascogonial coil, and disappear as the ascocarp matures
- (b) Darkly-stained ascogenous hyphae, which arise from the ascogonium and branch irregularly, the branches being short and often recurved at the tips

(e) Fine hyphae much branched, which correspond to the digestive hyphae of Biefeld, and arise from the ascogenous hyphae and also from the ascogonium itself. Occasionally they have been found to bear asci directly.

8 Asci arise from the ascogenous hyphae, and appear to come from the penultimate cell of a crosier, thus resembling *Thielavia terricola* (11). Ripe asci contain eight spores.

9 A mature fruiting body contains only ascospores, freed by rupture of the walls of the asci.

Acknowledgments.

Thanks are due to Professor Ewart of the Melbourne University Botanical Department for his helpful interest, and to Dr. McLennan for her help and guidance throughout.

References.

- 1 BARKER, B. T. P. Morphology and Development of the Ascocarp in *Monascus*. *Ann. Bot.*, xii, 1903, pp 167-236
- 2 BREFFELD, O. Botanische Untersuchungen über Schimmelpilze II. *Penicillium. Die Entwicklungsgeschichte von Penicillium.* 1874, pp 1-98. Felix, Leipzig
- 3 BRÜLFY, W. The Endoconidia of *Thielavia basicola* Zopf. *Ann. Bot.*, xxix, 1915, pp. 483-493
- 4 COLSON, BARBARA. Cytology and Morphology of *Neurospora tetrasperma* Dodge. *Ibid.*, xlvi, 1934, pp 211-224
- 5 DAIF, E. Observations on the Gymnoascaceae. *Ibid.*, xvii, 1903, pp 571-596.
- 6 DANGEARD, P. Recherches sur le développement du périthèce chez les Ascomycetes. *Le Botaniste*, x., 1907, pp 86-97
- 7 DODGE, B. O. Penithecium and Ascus of *Penicillium*. *Mycologia*, xxv, 1933, pp 90-104
- 8 DOMARADSKY, M. Zur Fruchtkörperentwicklung von *Aspergillus Fischeri* Wehmer. *Ber. deutsch. bot. Ges.*, xxvi, 1908, pp 14-16
- 9 EIDAM, E. Zur Kenntnis der Entwicklung beideren Ascomyceten. *Beiträge Biol. Pflanzen*, iii, 1883, pp 377-433.
- 10 EMMONS, C. W. *Coniothyrium terricola* proves to be a species of *Thielavia*. *Bull. Torrey Bot. Club*, 57, 1930, pp 123-126
- 11 EMMONS, C. W. The Development of the Ascocarp in two species of *Thielavia*. *Bull. Torrey Club* 59, 1932, pp 415-422
- 12 FRASER (Gwynne-Vaughan), H. C. I. The development of the Ascocarp in *Lachnea cretea*. *Ann. Bot.*, xxvi, 1913, pp 553-561
- 13 FRASER, H. C. I., and CHAMBERS, H. S. Morphology of *Aspergillus herbariorum*. *Ann. Myc.*, v, 1907, pp 418-431
- 14 FRASER, H. C. I., and WELSFORD, E. J. Further Contributions to the Cytology of the Ascus. *Ann. Bot.*, xxii, 1908, pp 465-477.
- 15 Gwynne-Vaughan, H. C. I., and WILLIAMSON, H. S. The Cytology and Development of *Ascobolus magnificus*. *Ibid.*, xlvi, 1932, pp 653-670.

16. Gwynne-Vaughan, H C I, and Williamson, H S Notes on the Ascobolaceae *Trans Brit Mycol Soc*, xviii (2), 1933, pp 127-134
- 17 Gwynne-Vaughan, H C I, and Williamson, H S The Ascii of Lachnea Scutellata *Ann Bot*, xlvi, 1933, pp 375-381
- 18 Kuyper, H P De Peritheciump Omtwikkeling van Monascus purpureus Barkeri Dangeard in Verband met de phylogenie der Ascomyceten 1904, pp 1-148
- 19 Kuyper, H P Die Perithecienentwicklung von Monascus purpureus Went und Monascus purpureus Dangeard, sowie die systematische Stellung dieser Pilze *Ann Myc*, iii, 1905, pp 32-81
- 20 McCormick, Florence Perithecia of Thielavia basicola Zopf, and the Stimulation of their Production by Extracts from other Fungi 4th Rept of Conn Agric Expt Stat 1924

[PROC ROY. SOC VICTORIA 47 (N S), PT II, 1935]

ART XX.—*A Powdery Mildew of Boronia megastigma Nees*

By KATHLEEN M CROOKS, M Sc

(With Plate XIII)

[Read 8th November, 1934, issued separately, 8th May, 1935.]

Introduction.

In September and October, 1933, *Boronia* grown at Healesville was found to be diseased. On investigation, it was found that the disease symptoms were caused by a species of *Oidium*.

In the family Rutaceae, to which *Boronia* belongs, there are a few members which are attacked by species of *Oidium*, namely—

- (1) *Ruta Buxbaumi* attacked by *Oidium Haplophylli*
- (2) *Citrus spec* attacked by *Oidium fasciculatum*
- (3) *Citrus Aurantium* attacked by *Oidium Citri Aurantis* and *Oidium fasciculatum*
- (4) *Citrus limonum* attacked by *Oidium fasciculatum*.

Three other fungi have been recorded on *Boronia* spp., but, up to date, the forms described do not include any species of *Oidium*. It is proposed to give the fungus in question the specific name *Oidium Boroniae*, n sp.

Symptoms.

A noticeable feature of the disease was that the symptoms were confined to the petals only, while the stem and leaves appeared to be quite normal. The outer surface of the petals, which in the healthy plant is black, was found to be covered with a white felt of mycelium and was rather wrinkled and dry—cf. smooth surface of petals of healthy flowers—giving to the whole plant a withered appearance.

Description of *Oidium Boroniae*, n.sp.

The mycelium forms a white, dense network on the surface of the petals, and from the vegetative mycelium, aerial branches arise. At the apices of the fertile branches, oidia are constricted. The oidia are usually ovoid in shape, with an average size of $28\mu \times 13\mu$ and a range of $19\text{--}38\mu \times 11\text{--}18\mu$. The fertile hyphae are unbranched and from $6\frac{1}{2}\text{--}9\mu$ in diameter.

OIDIUM BORONIAE, n. sp.

Mycelium vegetale album, ex hyphis ramosis formatum
 Hyphae fertiles erectae, sine ramis, diametro a 6.5 ad 9 μ .
 Conidia plurimque ovalia, mensura a 19 ad 38 x 11 ad 18 μ ,
 mensura media 28 x 13 μ .

Oidium Boroniae—Formation of Oidia—(a) Oidia
 $\times 625$ (b) Aerial hypha bearing oidia (c) Vegetative hyphae $\times 625$ (d) Epidermis of petals

Discussion.

In the case of the other members of Rutaceae, which are attacked by species of *Oidium*, the leaves or fruit were affected, while in the case under discussion, the attack was confined to the petals.

Comparing *Oidium Boroniae*, n.sp., with these other species, it is noted that *Oidium Haplophylli* has very elongated spores (60 \times 13 μ), *Oidium fasciculatum* has ovoid or globose oidia, while in *Oidium Citri Auranti*, they may be globose (12 μ diameter), ovoid (12-13 μ \times 9-9½ μ), or cylindrical (14½ \times 7 μ)

Since these oidia do not correspond with those of the fungus on *Boronia*, in the absence of a perfect stage, this form may be described as a new species—*Oidium Boroniae*

**Boronia megastigma affected with
Powdery Mildew**

Note that the fungus affects the petals only

[PROC ROY. SOC. VICTORIA 47 (N.S.), PT II, 1935]

ART. XXI—*An Account of Sclerote-forming Fungi causing Diseases in Matthiola, Primula, and Delphinium in Victoria*

By ILMA G. BALFE, M.Sc.

(Government Research Scholar)

[Read 8th November, 1934, issued separately, 8th May, 1935]

THE RHIZOCTONIA SOLANI ON MATTHIOLA SEEDLINGS

Introduction.

Duggar (4) and Peltier (9) reviewed the early literature concerning diseases caused by *Rhizoctonia*, and the former made an extensive study of the genus, the outcome of which was the reduction of a large number of species to be included under either *Rhizoctonia solani* Kuhn (*Corticium vagum* B and C) or *R. crocorum* (Pers.) DC. He also listed the synonyms of the two species. Different types of growth may occur on the same media even when the isolations are made from the same host. Thus macroscopic differences exist in culture, but microscopic differences are so slight as not to warrant the formation of new species.

Since 1915 several other species of parasitic *Rhizoctonias* have been described. Matz (5) reported several from Porto Rico. These are *R. alba*, *R. dimorpha*, *R. ferruginea*, *R. grisea*, *R. macrosclerotia*, *R. melongena*, *R. microsclerotia*, and *R. pallida*. K. S. Thomas (13) came to the conclusion that *R. microsclerotia* was synonymous with *R. solani*, and Britton-Jones (2) considered that the variations in different strains of *Rhizoctonia solani* and also in a single strain on different media were no greater than the differences between the species of *Rhizoctonia* created by Matz (5). As noted by Braun (1), in strains belonging to the species *R. solani* it is especially difficult to distinguish what we have to take as species, because in most cases they are sterile mycelia. Their classification is really more or less based on their vegetative growth, and it is possible that on the discovery of the perfect stage, closely related forms may be given far distant positions in the system. The disputed question as to whether we have to do with different species or only races therefore seems useless as long as the perfect fruiting stage is not obtained.

Recently a trinomial system of nomenclature in which the host name is indicated e.g., *R. solani* Kühn *Brassicaceae* II, has been suggested by K. S. Thomas (13).

Records of Rhizoctonia solani in Australia.

In Victoria *R. solani* was first described on potato in 1903, and on turnips in 1911. In 1911 McAlpine (6) reported the fungus as occurring on potato in all the States of Australia. In an unpublished census of Australian fungi compiled by Mr. C. C. Brittlebank, formerly Biologist to the Department of Agriculture, Victoria, there are records of *R. solani* occurring on various hosts in Victoria. Among these are two Cruciferous hosts, Wallflower and Cabbage. In Western Australia W. M. Carne (3) records foot rot of *Lathyrus odoratus* due to *Corticium vagum*, also *Rhizoctonia* scab of potato. In South Australia Samuel and Garrett (12) record the attack of cereals in the Mallee district by *R. solani*.

Rhizoctonia solani from Matthiola incana in Victoria.

Stock seedlings in the seedling beds of the Footscray Gardens showed "damping off" symptoms in 1932 and 1933. The diseased plants appeared in patches which gradually spread out to larger circles. The young stock seeds germinated quite normally at first and showed no pathological symptoms until the first pair of true leaves were produced. At this stage "damping off" occurred as the pathogen caused a collar rot, and the plants collapsed and died.

In some cases, usually in older and stronger plants, lesions were formed higher up on the stem but below the cotyledons. Microscopic examination showed the presence of numerous thin brown distributive hyphae in the lower stem and upper root regions of the diseased stocks, occurring as a web on the outside of the host tissue. Sections indicated that the fungus grew first in the cortical tissue of the stem near the ground and killed the cells as it proceeded. The cortical tissue was invaded and destroyed by the hyphae, the vascular strand remaining free from the fungus. Hyphae were not found extending into the roots. The weakening of the stem finally caused collapse, and when the soil was kept very moist the fungus formed a mat over the surface of the ground and covered the whole seedling. Lesions were brown in colour and in section were seen to be pocket-like cavities in the cortex, containing a compact mass of hyphae approximating to the density of a sclerote.

Malt agar plates were inoculated with portions of diseased tissue and *R. solani* was repeatedly isolated. *R. solani* has been recorded by Peltier (9) as causing "damping off" of greenhouse seedlings of *Matthiola incana* in Illinois in 1914.

Eight stock seedlings were grown in sterilized soil until the first pair of true leaves appeared. The fungus grown on agar was then introduced into the soil. After a few days "damping

"off" symptoms were noticeable and re-isolation of the fungus from diseased tissue was possible. Some weeks later fresh seedlings were transplanted to these same pots and showed disease symptoms in a few days.

Many seeds were also planted in soil obtained from the Footscray Garden seedling beds. The young plants were quite healthy until the first true leaves appeared, when many began to show "damping off" symptoms. The stronger plants all showed brown lesions on the lower stem region.

The discovery by Rolfs (11) of the perfect sporing stage shows that *R. solani* is a Basidiomycete, but what position the fungus occupies within this group is still a disputed question. The form found by Rolfs agreed with the fruiting layer of *Corticium vagum* B. and C., but owing to the appearance of the sporing mass and the parasitic life habit, he held it advisable to make it a variety of this fungus—*Corticium vagum* var. *solani*. Rolfs further estimated that it approached *Hypochnus solani* P. and D. and may prove to be identical with it. The *Corticium* stage, though common in nature, seems strictly parasitic, and has never been produced in artificial culture except perhaps by K. O. Müller (8).

The strain isolated from stock seedlings, and three others which will be referred to later, were subjected to the methods used by him to produce the basidial stage, but without success.

Comparison of Four Strains of *Rhizoctonia solani* K.

A culture of the strain parasitic on cereals in South Australia was obtained, so that it was possible for a comparison to be made between that form and the strain isolated from *Matthiola* in Victoria. Two cultures were also obtained from Baarn, Holland; *Rhizoctonia solani* Kühn from *Solanum tuberosum* sent to Baarn by Porte, and *R. solani* Kühn *Brassicae II* sent by K. S. Thomas.

The four strains were grown in triplicate on malt agar plates at various temperatures. The depth of the agar in the plates was equal, and care was taken to try to obtain similar sizes in the amount of inoculum used in each case. The cultures used were all of the same age and had been grown under the same conditions. For the sake of convenience the four strains will be referred to as follows.—

- R1 From cereal, South Australia.
- R2 *R. solani* Kühn, Holland.
- R3 .. *R. solani* Kühn *Brassicae II*, Holland.
- S11 .. From *Matthiola incana*, Victoria

The experiments were conducted at 19°C, 22-26°C*, 26-28°C*, 30-32°C, and increases in the radii of the colonies were measured daily.

The figures in Table I represent the area (in sq. cm.) covered by three days' growth. The first day's growth was not used because in all cases the fungus was slow in starting to grow.

TABLE I—AREA OF GROWTH OF THE FOUR STRAINS IN
SQUARE CM.

—	19°C	22°C-25°C	26°C-28°C	30.5°C-31°C
S11	33.0	30.2	10.4	1.2
R1	11.9	12.6	17.1	2.0
R2	22.4	28.3	34.2	30.2
R3	13.3	8.0	5.0	0.14

The relation of temperature to increase in radius of the culture is represented graphically in Figs 1-4. The optimum growth of S11 and R3 occurs at about 19°C, and that of R1 and R2 at 26-28°C. The growth of R3 at 30.5°-32°C practically ceased.

From these results it appears that the isolations of *R. solani* from Cruciferous hosts have a lower optimum temperature than those from cereals and potato. At all temperatures tried the strain from potato had a greater growth rate than that from cereals. This is contrary to the results recorded by Monteith and Dahl (7), who dealt with strains from grasses and potato.

Variations in the Growth Characters of the Forms Studied.

S11—A thick fluffy aerial mycelium with distinct concentric zonations was formed. At all temperatures tried except 30-32°C. a compact ring of sclerotes developed towards the outside of the plate, and sometimes an inner circle. The agar was discoloured to yellow ochre (Ridgway (10)) below the sclerotes. Scattered sclerotes also occurred mostly towards the centre, and these turned Sudan brown and stained the agar beneath them.

R1—The aerial mycelium was not as dense as in S11 but concentric zonations were very distinct. Scattered sclerotes were

* These experiments were conducted in an incubating room where the temperature was not absolutely constant. The temperature recorded each morning has been indicated on the graphs.

formed, and after three weeks the agar showed a sudan brown discolouration with graduations to pale shades, giving a zoned effect.

R2—The aerial mycelium was thick and fluffy but with no distinct concentric zonations. At 26–28°C and 30–32°C numerous scattered sclerotes were formed, but not at lower temperatures. The agar later showed a yellow ochre discolouration.

R3—The aerial mycelium differs in being more compact and is mostly short and appressed to the surface of the medium. Concentric zonation is absent and the agar becomes discoloured a uniform sudan brown. Sclerotes were not formed at any temperature tried, and in this respect it differs markedly from

the other three strains. This distinct macroscopic appearance is coupled with a difference in the width of the hyphae, which is 2μ less in R3 than in the other strains (Table II).

TABLE II

Strain.	Average width of Hyphae on Malt Agar.
S11 . . .	9.3 μ
R1 . . .	9.0
R2 . . .	9.2
R3 . . .	7.3

Summary.

Although *R. solani* is an extremely widespread parasite, published accounts of its occurrence in Victoria are restricted to records on potato and turnip (McAlpine (6)).

The fungus flourishes with excess of moisture and has proved troublesome by causing "damping off" of *Matthiola* seedlings in the seedling beds at the Footscray Gardens.

Comparisons are made between the strain isolated from stocks with the cereal form from South Australia and *R. solani* Kuhn and *R. solani* Kuhn *Brassicae II* from Holland. Growth rates at different temperatures are represented graphically.

References.

- 1 BRAUN, H. Der Wurzelrot der Kartoffel *Rhizoctonia solani* Kuhn. Monographie zum Pflanzenschutz, 1930
- 2 BRITON-JONES, H. R. Strains of *Rhizoctonia solani* Kuhn (*Corticium vagum* B. and C). *Trans Brit Myc Soc.*, ix, 1924
- 3 CARNE, W. M. Foot-rot of *Lathyrus odoratus* (*Corticium vagum*). *Journ Roy Soc W Aust*, xiv, 1927
- 4 DUGGAR, B. M. *Rhizoctonia crocorum* (Pers.) DC. and *R. solani* Kuhn (*Corticium vagum* B and C) with notes on other species. *Ann. Missouri Bot. Gard.* ii (2), 1915
- 5 MATZ, J. Rhizoctonias of Porto Rico. Dept Agr. Porto Rico, 1921. (Ref *Rev App Myc.*, i., 1922)
- 6 McALPINE, D. *Potato diseases in Australia*. Dept. Agr. Vic., p. 60, 1911
7. MONTEITH, J. and DAHL, A. A comparison of some strains of *Rhizoctonia solani* in culture. *Journ Agr. Res.*, xxxvi, 1928
- 8 MÜLLER, K. O. Über die Beziehungen zwischen *Rhizoctonia solani* Kuhn und *Hypochnus solani* P. and D. *Arb. Biol. Reichanst für Land und Forstwirtsch.*, xi (4), 1923 (Abstracted in *Rev App. Myc.*, i, 1923)
9. PEUTIER, G. L. Parasitic Rhizoctonias in America. *Univ. Ill Agr. Exper. Stat Bull.*, 189, 1916.
10. RIDGWAY, R. *Colour standards and Colour Nomenclature*. Washington, D.C. 1912
11. ROLFS, F. M. *Corticium vagum* B and C var *solani* Burt. A fruiting stage of *Rhizoctonia solani*. *Science* (n.s.), xviii, 1903, p. 729.
12. SAMUEL, G. and GARRETT, S. D. *Rhizoctonia solani* on cereals in South Australia. *Phytopath.*, xxii., 1932
13. THOMAS, K. S. Onderzoeken over Rhizoctonia Electr-Druk. "De Industrie," J. van Diuten, Utrecht 1925 (not seen).

II. SCLEROTINIA MINOR ON PRIMULA.

Introduction.

Sclerotinia minor Jagg., a fungus similar to *Sclerotinia libertiana* Fuckel but with smaller sclerotes, was first separated from the latter as a distinct species by Jagger (3) in 1920.

The fungus was isolated by him from lettuce in America, but has since been found on other hosts and in other localities, although not recorded for Australia.

Sclerotina minor from Primula in Victoria.

Primula plants in the Footscray Gardens, Victoria, were attacked in the collar region and soon collapsed and died. Small black sclerotes were found to be present at the bases of diseased plants and the pathogen was isolated and brought into pure culture on malt agar.

The appearance of the fungus in culture conforms with the description of *S. minor* given by Jagger (3). In the early stages of growth, abundant Roman green (Ridgway (6)) appressoria are formed where the mycelium comes into contact with the

Fig. 5. Roman green appressoria of *S. minor* ($\times 500$). (a) Palisade arrangement of outer cells of the hyphae. (b) Anastomosis between hyphae. (v) Vacuole. (p) Granular protoplasm. From culture on malt agar.

glass. These are very conspicuous and fan-like in appearance. Under the microscope the outer cells show a palisade arrangement (Fig. 5). Appressoria are only rarely seen on oatmeal agar.

Jagger (3) in his original description of the species mentions the presence of abundant appressoria, but does not mention their conspicuous green colour, whereas Ramsey in his description of *Sclerotinia intermedia*, n sp., a form intermediate in characters between *S. libertiana* and *S. minor*, describes the fungus as forming Roman green appressoria when coming in contact with foreign bodies.

The size of the sclerotes varies, decreasing with lower temperatures, which is in contrast to *Sclerotinia intermedia* which Ramsey (4) and Chivers (1) describe as showing an increase in size of sclerotes with decreasing temperatures.

The fungus was grown in sterile distilled water and on plain agar to induce the formation of microconidia which were not seen on malt nor oatmeal agars. After ten days a few microconidia were produced and after a month they became more abundant on plain agar. They were similar to those described by Jagger (3) for *S. minor*, being spherical and hyaline, and varying from $3\text{--}4.2\mu$. They were borne apically in series or clumps on short obclavate conidiophores (Fig. 6).

Fig. 6 Microconidia of *Sclerotinia minor* ($\times 300$).
A, B, C Microconidia produced in distilled water. D
Microconidia produced on plain agar after oatmeal agar
(a) conidiophores, (b) conidia, (v) vacuole, (p) protoplasm

As experiments for the development of apothecia were being conducted, large numbers of sclerotes were needed, and for this purpose the fungus was often grown on oatmeal agar, where sclerotial development was most prolific. It was observed that a culture on an oatmeal plate at 19°C showed no development of sclerotes even after six weeks, the surface of the medium being covered with appressed white powdery patches, which is the characteristic appearance of the cultures just before sclerotes are developed. The powdery mycelium was examined under the microscope, and seen to bear numerous microconidia varying from $3\text{--}4.5\mu$, with an average diameter slightly higher than was found in water and on plain agar, which is to be expected on a richer medium. The inoculum used in this culture was a

month-old sclerote taken from oatmeal agar, the previous transfer having been from malt agar. This appearance of abundant microconidia on oatmeal agar was unusual, as previous to this no microconidia had been observed on the oatmeal and malt plates, where only sclerotes were formed.

Transfers from this plate were made to malt, oatmeal and plain plates and slopes, and kept at 19°C. After five days characteristic green appressoria and numerous white clumps appeared. These powdery patches of appressed mycelium, in contrast to those produced on cultures where the transfers were from a colony bearing sclerotes, were more concentrated around the inoculum itself at first, and later spread out from that centre.

These tufts showed few microconidia after five days, but they increased in number and by the tenth day were very numerous, while no sclerotes developed even after three months.

Again three months later, a culture on an oatmeal slope at room temperature (about 23°C) was seen to have produced no sclerotes. The inoculum was again a sclerote from a culture which had been on oatmeal agar for a considerable time. In this case the mycelium was short, light buff in colour and much denser in texture. Under the microscope the microconidia were seen to be extremely abundant.

Several malt and oatmeal slopes were inoculated from this tube, and after five days showed cottony aerial mycelium which soon disappeared. Green appressoria were present and powdery tufts around the inoculum. The whole surface of the medium was soon densely covered with powdery appressed mycelium.

A soil agar plate was also inoculated, and after seven days showed a rather sparse cottony aerial mycelium with no powdery white patches but fairly numerous microconidia around the inoculum. After two weeks the aerial mycelium bore numerous microconidia. A colony from a sclerotial culture on soil agar had a similar macroscopic appearance and the mycelia in both cases were the same, but after a week tiny black sclerotes were formed and no microconidia were present.

Ramsey (5) noticed that the formation of microconidia seemed to depend on a poor nutrient supply. He conducted experiments with *S. libertiana* and *S. intermedia* to determine whether there was any tendency to change from the normal. No change in the number of sclerotes nor in microconidial production was, however, observed.

Godfrey (2) working with *Sclerotina ricini* found that sometimes a culture produced numerous conidia (Botrytis stage) but no sclerotes. There was, however, a normal development of sclerotes if transfers from such cultures were put on oatmeal agar.

In the case of *Sclerotinia minor* saltation evidently occurs on rich media, and some inherent differences in the sclerotes cause some to produce mycelium with sclerotes, others with microconidia only. Transfers for several generations on to various media from these microconidial cultures have so far yielded no colonies producing sclerotes. Many workers have experimented with the microconidia of *Sclerotinia*s and various functions have been suggested.

Unsuccessful attempts were made to germinate the microconidia of *S. minor* in sterile water and turnip juice.

Experiments for Apothecial Production.

An attempt was made to produce apothecia from the small sclerotes of *S. minor*. The methods employed were those used by Ramsey (5). Small porous pots were filled with pure sterile sand and placed in halves of petri dishes containing sterile distilled water. Some were placed under bell jars in strong diffuse light, others were covered with circular glass plates.

Sclerotes were also planted in pots containing sterilized garden soil. Various methods were tried to try and induce germination. Sclerotes of ages varying between twelve months and two weeks were used, and planted during different months of the year. Some were from cultures on malt, others from oatmeal agar. They were planted at different levels in the sand from the surface to as deep as 1 cm.

Some sclerotes were specially treated before planting. They were subjected to—

- (1) Ether vapour for various periods between a half and two hours.
- (2) Cold. Sclerotes in refrigerator for one week before planting.
- (3) Water. Sclerotes soaked in sterile distilled water for one week.
- (4) Drying. Sclerotes in desiccator from four days to one and a half months. Sclerotes were also allowed to remain on dry sand for two and three months before watering. This latter method was used by Jagger (3) for developing apothecia from sclerotes of *S. minor*.
- (5) Heat. Sclerotes kept dry at 30°C. for three months.

RESULTS.

Only two results have so far been obtained from these experiments. One of the month-old sclerotes from malt agar which was subjected to ether vapour for one hour before putting on

the surface of sterile sand, germinated, producing a pale yellowish, slightly curved, slender cylindrical body about $\frac{1}{4}$ -in. long. When examined with a lens it was seen that the surface was not smooth but slightly roughened and had a frosted appearance.

The pot had been well watered and covered with a ground glass plate. The sclerote was planted in November, and germination occurred three months later in January, after three days of hot weather when the temperature had been over 100°F. During the next four weeks this structure was watched closely to see if a disc-shaped apothecium would develop. The tip, which was at first attenuated, broadened a little and seemed to indicate that an apothecium was forming. There was also a slight elongation in length and a deepening of colour, especially near the base. As light is necessary for the expansion of the apothecium, this was increased by replacing the ground glass with a bell jar, which also provided a greater humidity.

Godsley (2) in his experiments with germinating sclerotes of *S. rufum* remarked on the necessity for high humidity and a warm temperature for the development of apothecia. Ramsey (5), however, found that more apothecia were produced between January and April, the summer months being unfavorable. Germination occurred between 18° and 22°C but not between 22° and 30°C.

In February, four months after planting, a sclerote from a similar culture, which had been subjected to the same conditions, but in a different pot and with a plain glass cover, germinated, producing a short greyish cylindrical body with a lighter-coloured translucent tip. Germination again occurred after a spell of very hot weather. The glass plate was replaced with a bell jar and growth in length was noticeable within a few days.

From these results it seems that a high temperature is necessary to induce germination of sclerotes and as in both cases they had been subjected for one hour to ether vapour, the latter may have had some stimulatory effect. Both of the sclerotes which germinated were relatively large and anastomosing with others.

Summary.

(1) *Sclerotinia minor* Jagg. is recorded as causing a collar rot of *Primula malacoides* in Victoria.

(2) Saltation is found to occur on oatmeal agar so that sometimes a sclerote may produce a colony bearing microconidia only, instead of the usual development of abundant sclerotia.

Transfers were made from such cultures (and these were again transferred for several generations) on to various agars but no production of sclerotia followed.

(3) Experiments were carried out for the production of apothecia, and in two cases sclerotes germinated producing horn-like outgrowths. Development proceeded to a swollen tip.

References.

- 1 CHIVERS, A. H. A comparison of *Sclerotinia minor* and *S. intermedia*. *Phytopath.*, xix, 1929
- 2 GODFREY, G. H. Gray mold of Castor Bean. *Journ Agr Res.*, xxiii, 1923
3. JAGGER, I. C. *Sclerotinia minor*, n sp, the cause of a decay of lettuce, celery and other crops. *Ibid.*, xx, 1920
- 4 RAMSEY, G. B. *Sclerotinia intermedia*, n sp. A cause of decay of salsify and carrots. *Phytopath.*, xiv, 1924
- 5 RAMSEY, G. B. Sclerotinia species causing decay of vegetables under transit and market conditions. *Journ Agr Res.*, xxxi, 1925.
- 6 RIDGWAY, R. *Colour standards and colour nomenclature*. Washington, D. C., 1912

III CORTICIUM CENTRIFUGUM ATTACKING DELPHINIUMS

Introduction.

Sclerotium rolfsii has a wide distribution, occurring in most tropical and sub-tropical countries and causing the greatest damage during the wet seasons. The fungus is capable of attacking a large number of plants, the usual hosts being succulent annuals, although sometimes, under favorable conditions, it may cause disease in woody perennials. Weber (6) listed 189 host plants, including two species of *Delphinium*. Fajardo (4) reported a stem and root disease of annual *Delphiniums* due to *S. rolfsii* in the Philippine Islands. Birmingham (1) reported *S. rolfsii* from several hosts in New South Wales including a *Delphinium* plant from Goulburn.

Delphinium plants at Essendon, Victoria, were attacked by a fungus which caused yellowing and wilting of the leaves and finally drying up and death due to the rotting of root and collar regions. White mycelium with small brown sclerotia encircled these parts.

The pathogen was isolated by placing pieces of diseased tissue, mycelium and sclerotia on malt agar, and pure cultures were obtained.

Description of the Pathogen in Culture.

On malt agar the fungus grows in a fan-like manner and produces a dense fluffy mass of aerial mycelium. After about four days sclerotes begin to form, usually at the margin of the plate, and gradually extend inwards towards the inoculum. They generally arise singly in the aerial mycelium and appear first as irregular white knots of hyphae (Fig. 7c), which soon become compact and rounded, and a definite cortical layer develops (Fig. 8). They are uniform in size and almost quite globose. The colour gradually changes from white, through light buff, warm buff, cinnamon brown, and finally when old and dry, to clove brown (Ridgway (5)). Liquid is often exuded in droplets from the surface of the sclerotes and at first is colourless but later amber-coloured.

As the sclerotes mature the aerial mycelium collapses, and the sclerotes, which were formerly suspended, are left on the surface of the agar. Sclerotes produced by the mycelium on oatmeal, potato dextrose and malt agars show no significant differences in size but are more numerous and massed together on oatmeal. They vary in size from 0.5 to 2 mm. but are usually about 1.2 mm.

If an abundance of agar is not present the size and number of sclerotes are appreciably less. On malt agar the width of the septated hyphae varies from 2 to 12μ (generally 3 or 7μ), the narrower threads being more crooked. Anastomoses between hyphae are numerous, and clamp connexions are present (Fig 7).

Fig 7. Mycelium produced on malt agar $\times 300$. A B. Hyphae of *C. centrifugum* showing variation in width (a) Narrow crooked threads. C Irregular hyphae from very young sclerote D Anastomosis between 2 hyphae E F Clamp connections in aerial hyphae (v) vacuole (p) granular protoplasm.

Comparison with two other sclerotial forms.

The fungus isolated from Delphiniums in Victoria (D2) was compared with Whetzel's strain of *Sclerotium Delphinii* (SCI) obtained from Centraal-Bureau voor Schimmelcultures, Baarn, Holland. Comparison was made on malt agar, and microscopically the mycelium was quite similar except that in SCI there was sometimes a development of rounded irregular bodies occurring in an intercalary position on the hyphae (Fig. 9).

Macroscopic differences were, however, much greater. In D2 a dense fluffy aerial mycelium was produced. The numerous small sclerotes (0.5–2 mm average 1.2 mm.) were formed first near the margin of the plate and gradually spread inwards. The liquid exuded from the sclerotes was amber-coloured. The final colour of the sclerotes was clove brown, and in section the outer brownish cortex (up to 50μ wide) was composed of compacted hyphae giving a parenchymatous appearance. The inner medullary region is composed of short and elongated colourless hyphae with numerous intercellular spaces (Fig. 8).

In SCI the aerial mycelium showed a more dendritic type of growth but greatest distinction was seen in the size, shape, number and colour of the sclerotes. The sclerotes were few and larger (1–6 mm average 3.4 mm) and in contrast to those

Fig. 8 Hand cut TS of portion of a mature sclerote of *Corticium centrifugum* ($\times 200$) from malt agar. (a) Outer rind of compact cortex Deep brown in colour. (b) Cortical tissue composed of false parenchyma and light brown in colour. (c) Inner lacunar medullary region composed of long and short irregular hyphae.

of D2 were often found coalescing. They were irregular in shape, but convex or flattened above, and usually concave on the lower surface, where they were often attenuated into a stalk-like region. Sclerotes one week old were a conspicuous

Fig. 9 A, B, C Rounded chlamydospore like bodies on the hyphae at the junction of SCI and D2 colonies ($\times 300$). D. Irregular swellings on hyphae in the same region ($\times 300$) Culture on malt agar

orange cinnamon colour and the final stage was warm sepia. At all stages they showed a more reddish tinge than those of D2. The colourless liquid was exuded from darker depressed

spots. Sections of sclerotes showed that the cortex was if anything slightly wider but composed of smaller hyphae, while hyphae of the medullary region were distinctly wider than in D2. SCI also showed a development of felted white appressed mycelium around the inoculum.

This comparison indicates that the fungus isolated from *Delphiniums* in Victoria cannot be considered identical with *Sclerotium Delphinii*.

Comparison was also made with Wolf's strain of *Sclerotium rolfsii* which is known now as *Corticium centrifugum* (CI) obtained from Baarn, Holland.

CI on malt agar produced mycelium similar to that of D2 and the sclerotes were numerous and small (0.3-2 mm. average 1 mm.) but more irregular in shape and varied more in size than those of D2. Also in contrast to the initial marginal formation of sclerotes in the latter, they formed at first near the central inoculum (where masses of sclerotes were often found), and gradually spread out to the margin of the plate. The liquid exuded was colourless, but the colour changes of the developing sclerotes was practically the same as in D2, and the final colour again clove brown. Sections of sclerotes were very similar to those of D2. A felted white appressed mycelium was often developed around the inoculum. This was not seen in D2. The microscopic appearance of the hyphae of D2 and CI was identical.

D2, SCI and CI were plated against each other to determine whether any antagonising action existed between them. In each case there was a distinct line at the junction of the two colonies, and it was found that D2 was the fastest and SCI the slowest grower. If two colonies of one strain were started on the same plate there was free intermingling of the hyphae.

It was evident that a greater antagonistic action existed between SCI and D2, and between SCI and CI, than between D2 and CI, the agar in the two former cases being slightly stained along the junction. SCI developed numerous sclerotes along the line of junction, but this was not apparent with CI and D2. On microscopic examination it was found that there was a considerable development of rounded or irregular bodies up to 25μ diameter occurring in an intercalary position on the hyphae of SCI near the junction with CI and D2 (Fig. 9). It was evident that D2 was much more closely related to CI and the slight differences present could not be considered as specific.

Attempts were made to produce the fruiting stage by growing the three forms on various media (potato dextrose, malt, oatmeal, soil and plain agars) and on a solution of 1% Witte peptone + 5% potato starch + 50 cc distilled water (CI and D2 formed thick conglomerated masses of sclerotes on the latter medium, but it was unsuitable for SCI) at 30°C, 19°C and room temperature. No basidia or spores were observed although they were examined constantly.

Discussion.

Curzi (2) in Italy compared a sclerotial fungus isolated from aster with one from potato. Differences were found to exist in vegetative characters, the former producing a flocculent mycelium while in the latter the mycelium was arranged in strands and numerous stromata were present. The two were mutually antagonistic.

The aster fungus produced a loose aerial hymenium showing affinities with *Corticium centrifugum*, while the potato fungus had a dense crust-like hymenium which he considered was not identical with any known Basidiomycete. He named it *Corticium rolfsii*, n. comb., as he considered this latter fungus to correspond with that from which Saccardo described *Sclerotium rolfsii*. Wolf's strain, which is usually regarded as a typical strain of *Sclerotium rolfsii*, also has a loose hymenial stage similar to the aster *Corticium* and undoubtedly corresponds with it. Since *Corticium centrifugum* cannot be regarded as the perfect stage of the true *S. rolfsii*, it should be considered as a distinct species.

The study of various isolations of *S. rolfsii* therefore indicates that the name includes more than one species whose systematic positions should be determined by attempts to discover the perfect stage, or an accurate examination of the vegetative organs under various conditions.

Curzi (3) made three distinct groups for the strains examined by him —

- (1) Sclerotial stage of *Corticium rolfsii* (Sacc.) Curzi.
- (2) Sclerotial stage of *Corticium centrifugum* (= *S. centrifugum* n. comb.)
- (3) *Sclerotium Delphinii* Welch

The perfect stage of the strain isolated from *Delphinium* was not obtained, but the vegetative characters under various external conditions showed a close resemblance to Wolf's *Corticium centrifugum* and Curzi's description of his aster strain, while the distinctive characters of his potato strain were not present.

Summary.

- (1) *Corticium centrifugum* is recorded as causing a root and collar rot of Delphiniums in Victoria
- (2) A description of the pathogen in culture is given.
- (3) Comparisons are made between the strain isolated from Delphinium, Wolf's strain of *Corticium centrifugum* and Whetzel's *Sclerotium Delphini* (Welch)

Acknowledgments.

The writer wishes to express her gratitude for the helpful interest shown by Professor Ewart and also to thank Dr. McLennan, under whose direction the work was conducted, for her helpful criticism and suggestions.

References.

- 1 BIRMINGHAM, W. A. A fungus and some of its host plants. *Agric. Gaz., N.S.W.*, xxxv (6), 1924
- 2 CURZI, M. Studio sur le *Sclerotium rolfsii*. *Boll. R. Staz. Pat. Veg.*, N.S. 114, 1932
- 3 CURZI, M. Contributo alla conoscenza della biologia e della sistematica degli stipiti dello *Sclerotium rolfsii*. *Rendic. R. Acad. Lincei* (6), xv, 1932
- 4 FAJARDO, T. G. Sclerotium stem rot of Delphinium and other ornamental plants in Trinidad Valley, Mountain Province, Philippine Islands. *Philipp. Journ. of Sci.*, li (4), 1933, pp. 447-453
- 5 RIDGWAY, R. *Colour standards and colour nomenclature*. Washington, D.C., 1912
- 6 WEBER, G. F. Blight of carrots caused by *Sclerotium rolfsii* with geographical distribution and host range of the fungus. *Phytopath.* xxi, 1931

[PROC ROY SOC VICTORIA 47 (N S), PT II , 1935]

ART XXII—"Sooty Mould" of the Tree-Fern *Dicksoma*

By EILEEN E FISHER, M Sc

[Read 8th November, 1934, issued separately, 8th May, 1935]

The fronds of a *Dicksoma* plant, growing in a fernery at Doncaster (approximately 11 miles east-north-east of Melbourne), were found covered by a dense black film, which so far as could be revealed by microscopic examination, was due entirely to the fungus *Teichospora salicina* (Mont) Gau

The perithecia, present in abundance, are dark, glabrous, roughly spherical bodies, of approximately 112μ in diameter. They contain ascospores which are brown in colour, narrowly septated with usually three transverse septa, and characteristically constricted in the median region. These fruit-bodies are in every way similar to those previously described in connexion with "sooty mould" of *Bursaria spinosa* (3), although the spores are slightly larger, measuring on an average $19.5\mu \times 9.5\mu$

On the fronds examined by me, the imperfect stage of this fungus was not found occurring so commonly as the perithecial, but some dark, elongated, linear pycnidia, approximately 224μ long and averaging 32μ in width, were seen

The pycnospores, which are very like the ascospores, differ, however, in certain points of detail; they are not waisted in shape, and also the longitudinal septa are frequently missing. The average dimensions of these spores may be given as $16.5\mu \times 8.2\mu$. Surrounding the pycnidium-mouth a fringe was visible in some cases, but otherwise this pycnidial form is identical with that already described and illustrated for *Teichospora salicina* constituent in "sooty mould" of *Bursaria spinosa* (3, fig. 4).

In 1892 Gaillard found *Meliola tortuosa* Wint., f. infecting plants of *Dicksonia* L'Her. in Brazil (4) and (6). Apparently the only other record of a "sooty fungus" occurring on any of the tree-fern genera was made in 1890 (2) when *Asterina* (*Asterella*) *Alsophilae* Cke and Mass was found growing on fronds of *Alsophila rebecca* F. Muell, collected by Mueller in north-eastern Queensland, Australia.

Both of the above mentioned fungi are ectoparasitic forms, penetrating the tissues of their host by means of haustoria, and it seems that no prior record has been made of a true "sooty mould," which as clearly defined by Neger (5), is characteristic ally epiphytic in nature.

Within the limits of the writer's experience "sooty mould" has never been found attacking tree-ferns growing in their natural habitat, and its development on this particular specimen is possibly due to the rather confined atmospheric conditions of the fern-house, which, however, it should be noted, was not artificially heated in any way. *Teichospora salicina*, which is responsible for the sooty condition in this instance, is a normal constituent of "sooty moulds" in temperate climates. On the other hand, the observations of Neger (5) and van Beyma Thoe Kingma (1) show that the "sooty mould" of European hot-house plants is almost invariably due to the fungus *Caldariumyces fumago* Wor (*Fumago vagans* Pers), a form which is adapted to high temperature conditions.

References.

- (1) VAN BEYMA THOE KINGMA. *Verh der Koninkl. Akad. van Wetensch te Amsterdam Afd. Natuurk* (Tweede Sectie) Deel xxix, No. 2
- (2) COOKE, M. C. *Grev* xviii, p 81, 1890.
- (3) FISHER, E. E. *Proc Roy Soc Vic* (n.s.), xliv (2), 1933, pp. 171-202.
- (4) GAILLARD, A. *Le Genre Mehola* Thèse (Paris), 1892, p 67, tab 21, fig 2
- (5) NEGER, F. W. *Flora N. F.* Bd, x, pp. 67-139, 1918.
- (6) SACCARDO, P. A. *Syll Fung* xi, p 263

[PROC ROY SOC VICTORIA 47 (N S), PR II, 1935]

ART XXIII.—*The Genera of Catenicellidae*

By LEO W STACH

[Read 13th December, 1934, issued separately, 8th May, 1935.]

Introduction.

The preparatory work on a revision of the Recent species of Catenicellidae has shown the necessity for a survey of the status of the generic names which have been used in connexion with the group. The conclusions arrived at are summarized below, and a systematic synopsis is appended in which new sub-families and genera are described.

Discussion of Genera.

ALYSIDIUM Busk, 1852, 2, p 13 Busk (1852) placed this genus, comprising two species, in the Catenicellidae. One (*A. lafontii*) was later transferred to "*Catenaria*" by Busk (1884) and made the type of that genus, in which d'Orbigny (1851) had also included the species. *A. parasituum* became the type by elimination of the Anascan genus *Alysidium*, thus removing the genus from the Catenicellidae.

CALPORELLA Macgillivray, 1895, p 18 Synonym of *Vittatella*. This genus was erected for vittate species, no type being selected. Preoccupied by Ulrich (1882, *Journ Cincinnati Soc Nat Hist*, vol v, p 154) and replaced by *Vittaticella* Mapleson, 1901.

CALPIDIUM Busk, 1852, p. 364 Monotypical genus with *C. ornatum* Busk, 1852 as type

CARINATOCELLA, gen nov. Erected for the Catenicelliniid *Catenicella carinata* Busk, 1852 Characters as for *Pterocella*, but the suprascapular compartments are not calcified

CATENARIA Authors Levinson uses this name for vittate species, claiming that Savigny's figure establishes the genus (1909, p 213, foot-note), but this is contrary to the definition of "indication" as applied to genera (Opinion 1, Inter Rules Zool. Nomen.) *Catenaria* was regularized by d'Orbigny (1851) and included *Eucratca lafontii* Audouin, 1826, while *E. contei* was placed in *Catenicella*. The name *Catenaria* is, however, preoccupied by Zeder, 1800 and Strand (*Zool Rec*, vol lxv., p 37) has replaced it with *Catenariella*, but this name is invalidated by *Savignyella* (Levinson, 1909) with the same genotype, *E. lafontii*. Thus *Catenaria* was removed from the Catenicellidae by d'Orbigny and has, as its type, *E. lafontii*, but *Catenaria* being preoccupied, the next synonym, *Savignyella*, replaces it. *Catenaria* Levinson is a synonym of *Vittaticella*.

CATENICELLA Blainville, 1834, p. 462 Blainville erected this genus for *Hippothoa dvaricata* Lamouroux, 1821, and *Catenicella savignyi* (1834) which is a synonym of *Eucratca conteri* Aud., 1826. The meagre description and its apparent application solely to *H. dvaricata* would seem to place it as a synonym of *Hippothoa* Lamx., 1821, but *Catenicella* was regularized and well-described by d'Orbigny (1851) and included *C. conteri* which, by the selection of *H. dvaricata* as type of *Hippothoa*, becomes type of *Catenicella* Blainville. D'Orbigny (1851) furnished the first adequate description of the genus. *Catenicella* Blainville is a restricted Catenicellinid genus with the single species *C. conteri*, which is an aberrant form distinguished from other vittate species by its ovicell which pertains to the mother zooecium of a triglobulus. The name *Catenicella* (*sensu lato*, i.e. in the manner of subsequent authors) may also be used as a group name for species of uncertain affinity in the same manner as *Lunulites* and others are employed (Canu and Bassler, 1929; Harmer, 1933, Stach, 1933).

CATENICELLOPSIS Wilson, 1880, p. 64. Based on an unusual mode of branching which, however, is found in many widely-separated species (*Vittaticella* spp., *Claviporella* spp.) and constitutes a minor secondary character of little systematic value. Two species, *C. delicatula* and *C. pusilla*, were included, the former being referred to *Catenicella* (vittatae) by Macgillivray (1887, 2) and the latter to *Claviporella* by Levinsen (1909), thus eliminating the genus. The systematic value of the feature proposed by Canu and Bassler (1929) as a distinction between *Vittaticella* and *Catenicellopsis* is doubtful and *C. delicatula* is at present regarded by the author as belonging to the former genus.

CLAVIPORELLA Macgillivray, 1887, p. 65. One of the Catenicellinid genera with aberrant sternal structures and clithridiate aperture.

CORNUTICELLA Canu and Bassler, 1927, p. 9. Proposed for the reception of vittate species with the ovicell pertaining to a terminal mother zooecium of a geminate pair.

CORNUTICELLINA, gen. nov. Established for "Pterocella" matthewsi Bale, 1922 which has an ovicell of the Cornuticellinid type, but a sternal area similar to *Cribricellina*.

COSTATICELLA Maplestone, 1899, p. 9. Erected by Maplestone for *Catenicella lineata* MacG., 1895, and *Costaticella escharoides* Mapl., 1899, which have been shown to be conspecific (Stach, 1934). Levinsen's later genus *Costicella* with type *Catenicella hastata* Busk, 1852, has been merged with *Costaticella* by Canu and Bassler (1927, p. 21) and the author (1934).

COSTATICELLINA Stach, 1934, p. 39. Subgenus of *Costaticella* erected for *Catenicella latifrons* MacG., 1895, which has uncalcified suprascapular compartments.

COSTICELLA Levinsen, 1909, p. 233. Synonym of *Costatucella*. Erected by Levinsen, who apparently did not know of Maplestone's *Costaticella*, since he suggests that *C. luncata* MacG., 1895, and *C. latifrons* belong to his genus.

COTHURNICELLA Thomson, 1858, p. 141. Synonym of the Anascan genus *Chlidonia* Lamouroux, 1824. Thomson erected this genus for the reception of *Cothurnicella daedala*, which he placed in the Catenicellidae. Macgillivray regards *C. daedala* as a synonym of *Chlidoma cordieri* (Audouin, 1826) which Harmer (1923, p. 305) has shown to be synonymous with *Chlidoma pyriformis* (Bertolini, 1810).

CRIBRICELLA Levinsen, 1909, p. 238. Synonym of *Cribricellina*. Levinsen's name is preoccupied by Canu (1904).

CRIBRICELLINA Canu and Bassler, 1927, p. 9. One of the Scuticellinid genera, replacing the preoccupied *Cribricella* Levinsen.

DIGENOPORA Maplestone, 1899, p. 6. Monotypical Scuticellinid genus erected for *D. compla* Mapl., 1899, which is, however, a synonym of *Catemicella retroversa* MacG., 1895.

DITAXIPORA Macgillivray, 1895, p. 22. Monotypical genus erected for *Catenicella internodia* Water, 1881. Multizooecial internodes.

DITAXIPORINA, gen. nov. Erected for *Catenicella septentrionalis* Waters, 1891, which has multizooecial internodes, but lacks the longitudinal median band of *Ditaxipora*.

EUCRATEA Lamouroux, 1812, p. 183. Audouin (1826) referred both *Savignyella lafonti* and *Catenicella contei* to this genus. Its status is discussed by Harmer (1923, p. 307).

EUNICEA Desmarest and Lesueur MS., 1829. This MS. generic name was given to twelve illustrated species which have been referred to species of the Catenicellidae by Pergens (1887).

HINCKSIELLA Levinsen, 1909, p. 241. Synonym of *Strongylopora*. Levinsen was apparently ignorant of the existence of the Catenicellinid genus *Strongylopora* since he describes the single species *Catenicella pulchella* which is taken as the type.

MICROSTOMARIA Macgillivray, 1895, p. 18. An examination of two partly-damaged specimens of the single species, *M. tubulifera*, from the type locality and from below the remanié nodule bed at Forsyth's on the Grange Burn Creek, Hamilton (Lower Miocene), suggests that the species is a member of the cyclostomatous family Crisiidae. The development of the calcareous layer is characteristically cyclostomatous, in that wavy lines of deposition cross the zooecia at right angles to the long axis, giving the typical undulose appearance particularly well seen in such genera as *Entalophora* and *Tubulipora*, but absent from the Cheilostomata. The characters of the pores are those of the

Crisinidae, while the circular aperture is produced into a peristome with an unthickened edge. The smaller apertures are the apertures of the connecting tubes of the articulated colony. The longitudinal ridge represented in Macgillivray's figure is merely an edge produced by the sides of the zoocia meeting at a very obtuse angle; no trace of thickening can be observed. The generic affinity cannot be established without further specimens. Canu and Bassler (1927, p. 21) regarded *Murostomaria* as a sub-genus of *Strophipora*.

PTEROCELLA Levinsen, 1909, p. 246. One of the Catenicellinid genera characterized by its calcified suprascapular compartments and fenestrate sternal area.

SCUTICELLA Levinsen, 1909, p. 221. Type of the sub-family Scuticellinae Stach, 1934.

STENOSTOMARIA Macgillivray, 1895, p. 16. Ovicell of the Catenicellinid type and thus distinct from the Scuticellinid genus *Strophipora* of which Canu and Bassler (1927, p. 21) regarded it as a subgenus.

STRONGYLOPORA Maplestone, 1899, p. 4. Levinsen (1909) unknowingly duplicated this genus by describing the type as the sole species of his genus *Hincksella*.

STROPHIPORA Macgillivray, 1895, p. 17. Monotypical genus with ovicell of the Scuticellinid type, sternal area represented by a thickened longitudinal ridge.

VITTATICELLA Maplestone, 1901, p. 201. Introduced to replace the preoccupied *Caloporella*.

Systematic Synopsis.

Family CATENICELLIDAE

Sub-family CATENICELLINAE, sub-fam. nov

Description.—Internodes of a single zoecium or a geminate pair; in ovicelligerous internodes, where the ovicell pertains to the mother zoecium of a geminate pair, a trizooecial internode is formed by the adherence of the ovicell to the distal zoecium.

Genus **Catenicella** Blainville, 1834 (*sensu stricto*)

Type (by elimination) *C. (Eucrataea) contei* (Audouin, 1826).

Description.—Ovicell pertains to mother zoecium of a triglobulus. Zooecia vittate with small scattered frontal pores; suprascapular compartments uncalcified.

Genus **Pterocella** Levinsen, 1909.

Type (by subsequent designation, Canu and Bassler, 1929) *P. (Catenicella) alata* (Thomson, 1858).

Genus **Carinatocella**, gen. nov.

Type *C. harmeri*, nom. nov. (for *Catenicella carnata* Busk, 1852)

Description.—Ovicell pertains to mother zoecium of a triglobulus. Sternal area ornamented with oval fenestrae; suprascapular compartments uncalcified.

Observations.—D'Orbigny has described a species *Catenicella carnata* (1851, p. 44), but no figure is given. In the description, he states that the "cellules" are "non enlargées en arrière," and therefore the species is certainly not the *C. carnata* of Busk (1852). D'Orbigny's species must be regarded as a *nomen nudum* and Busk's trivial name is here replaced by "*harmeri*" in appreciation of the great assistance rendered by Sir Sidney F. Harmer in my study of the Recent Catenicellidae.

Genus **Claviporella** Macgillivray, 1887

Type (by subsequent designation, Canu and Bassler, 1929) *C. (Catenicella) geminata* (Thomson, 1858)

Genus **Strongyloporella** Maplestone, 1899

Type (by subsequent designation, Canu and Bassler, 1929) *S. (Catenicella) pulchella* (Maplestone, 1880)

Genus **Stenostomaria** Macgillivray, 1895

Type (by monotypy) *S. (Catenicella) solida* (Waters, 1881).

Sub-family VITTATICELLINAE Stach, 1933

Genus **Vittaticella** Maplestone, 1901

Type (here designated). *V. (Catenicella) elegans* (Busk, 1852).

Observations.—Canu and Bassler (1929, p. 438) have selected *Liucratea contei* Audouin, 1826, as the type of the genus, but since this form is not included in Maplestone's list of species of the genus (1901), the choice is not valid. *Vittaticella elegans* is here selected because of its abundance and extraordinarily wide distribution.

Sub-family CORNUTICELLINAE, sub-fam. nov.

Description.—Internodes of a single zoecium or a geminate pair. The ovicell pertains to a terminal mother zoecium of a geminate pair. Suprascapular compartments not calcified.

Genus **Cornuticella** Canu and Bassler, 1927

Type (by original designation) *C. (Catenicella) cornuta* (Busk, 1852)

Genus **Cornuticellina**, gen. nov.

Type *C (Pterocella) matheresi* (Bale, 1922).

Description.—Sternal area perforated by numerous large pores as in *Cribricellina*, with short radiating fissures. Scapular compartments in the form of long, narrow, lateral projections at the level of the aperture.

Sub-family SCUTICELLINAE Stach, 1934

Genus **Scuticella** Levinsen, 1909

Type (by subsequent designation, Canu and Bassler, 1929) : *S (Catenicella) plagiostoma* (Busk, 1852).

Genus **Cribricellina** Canu and Bassler, 1927

Type (by subsequent designation, Canu and Bassler, 1927) : *C (Catenicella) rufa* (Macgillivray, 1868).

Genus **Costaticella** Maplestone, 1899.

Type (by subsequent designation, Canu and Bassler, 1929) : *C (Catenicella) lineata* (Macgillivray, 1895).

Sub-genus **Costaticellina** Stach, 1934

Type (by original designation) *Costaticella (Costaticellina) latifrons* (Macgillivray, 1895) (= *Catenicella* do.).

Genus **Strophipora** Macgillivray, 1895.

Type (by monotypy) : *S (Catenicella) harveyi* (Thomson, 1858).

Genus **Calpidium** Busk, 1852.

Type (by monotypy) : *Calpidium ornatum* Busk, 1852.

Genus **Digenopora** Maplestone, 1899.

Type (by monotypy) : *D (Catenicella) retroversa* (Macgillivray, 1895) (*vnde* Stach, 1934).

Sub-family DITAXIPORINAE, sub-fam. nov.

Description.—Multizooecial internodes with ovicells adherent to the zooecium distal to the ovicelligerous zooecium. Avicularia at one or both of the upper angles of the zooecia. Sternal area with longitudinal median band or with scattered pores.

Genus **Ditaxipora** Macgillivray, 1895.

Type (by monotypy) : *D (Catenicella) internodia* (Waters, 1881).

Observations.—Waters' Italian Tertiary species, *Catenicella continua* Waters, 1891, is included here.

Genus **Ditaxiporina**, gen. nov

Type *D.* (*Catenicella*) *septentrionalis* (Waters, 1891)

Description—Multizooecial internodes, the sternal area with scattered pores.

Observations—*Catenicella subseptentrionalis* Canu and Bassler, 1920, also appears to belong to this genus

References.

- AUDOUIN, V., 1826. "Explication sommaire des planches de Polypes de l'Egypte et de la Syrie," in Savigny's *Description de l'Egypte*, vol. i, pt. 4
- BALE, W. M., 1922. Two New Species of Bryozoa *Proc Roy. Soc Vic* (n.s.), xxxv (1), pp 108-113, pl viii.
- BLAINVILLIE, H. M. D. de, 1834. Manuel d'Actinologie
- BUSK, G., 1852. Appendix to *Voyage of the Rattlesnake*, by J. Macgillivray, i., pp 343-402, pl i
- _____, 1852, 2 Catalogue of Marine Polyzoa in the Collection of the British Museum, Cheilostomata, Part I, pp 1-54, 68 plates.
- _____, 1884. *Challenger Reports, Zoology*, vol x, pt xxx, pp. 1-216, 36 plates
- CANU, F., 1904. Étude des Bryozoaires tertiaires recueillis en 1885 par M. Ph. Thomas dans la région sud de la Tunisie *Explor. Sci de la Tunisie*, pp 1-37, 3 plates
- _____, and BASSLER, R., 1920. North American Early Tertiary Bryozoa. *United States Nat Mus Bull*, No 106, pp. 1-879, 162 plates
- _____, 1927. Classification of the Cheilostomatous Bryozoa *Proc. United States Nat Mus.*, lxix, Art. 14, pp 1-42, plate i
- _____, 1929. Bryozoa of the Philippine Region *United States Nat Mus. Bull*, No 100, vol. ix., pp 1-567, 94 plates
- HARMER, S. F., 1923. On Cellulariae and other Polyzoa *Journ Linn. Soc., Zool.*, xxxv, pp 293-361, 4 plates.
- _____, 1933. The Genera of Reteporidae *Proc Zool Soc London*, for 1933, pt 3, pp. 615-627
- LEVINSEN, G. M. R., 1909. Morphological and Systematic Studies on the Cheilostomatous Bryozoa, pp 1-431, 27 plates Kjbenhavn.
- MACGILLIVRAY, P. H., 1887. Descriptions of New or Little Known Polyzoa Part XI. *Trans. Proc. Roy. Soc. Vic.*, xxiii, pp 64-72, 3 plates
- _____, 1887, 2. Catalogue of the Marine Polyzoa of Victoria *Ibid.*, xxiii, pp. 187-224.
- _____, 1895. A Monograph of the Tertiary Polyzoa of Victoria. *Trans. Roy. Soc. Vic.*, iv, pp. 1-166, 22 plates
- MAPLESTONE, C. M., 1899. Further Descriptions of the Tertiary Polyzoa of Victoria Part II *Proc. Roy. Soc. Vic.* (n.s.), xii. (1), pp 1-13, 2 plates
- _____, 1901. On a New Name *Vittaticella* for the Polyzoan Genus *Caloporella* Macgillivray *Ibid.* (n.s.), xiii (2), pp 201-203
- ORBIGNY, A. d', 1851-54. Paléontologie Française, Terrains Cretacés, v, pp 1-1192, 200 plates

- PERGENS, E., 1887 Contributions à l'Histoire des Bryozoaires et des Hydrozoaires récents *Bull. Soc. Roy. Malacol. Belg.*, xxii., pp 85-90
- STACH, L. W., 1933 Victorian Tertiary Catenicellidae Part I *Proc. Roy. Soc. Vic.* (n.s.), xlvi (2), pp 85-98, plate viii
- , 1934 *Idem* Part II *Ibid.* (n.s.), xlvi. (1), pp. 18-53, text-figs 1-9, plate iii
- THOMSON, T. C. W., 1858 On New Genera and Species of Polyzoa in the Collection of W. H. Harvey *Nat. Hist. Rev.*, v, Proc of Societies, pp 134-147, 4 plates
- WATERS, A. W., 1881 On Fossil Chilosomatous Bryozoa from south-west Victoria *Quart. Journ. Geol. Soc.*, xxxvii, pp 309-347, 5 plates
- , 1891 North-Italian Bryozoa *Ibid.*, xlvii, pp 1-34, 4 plates
- WILSON, J. B., 1880 On a New Genus of Polyzoa. *Journ. Micro. Soc. Vic.*, 1, Nos 2 and 3, pp 64, 65, plate iii
-

Royal Society of Victoria

1934

Patron

HIS EXCELLENCY THE RIGHT HON. LORD HUNTINGFIELD, K.C.M.G.

President

Assoc PROF W. J. YOUNG, D.Sc.

Vice-Presidents

N. A. ESSERMAN, B.Sc., A Inst P
PROF. S. M. WADIAM, M.A., Agr Dip

Hon. Treasurer

F. J. RAE, B.A., B.Sc., B Agr Sc.

Hon. Librarian

F. A. CUDMORE.

Hon. Secretary

F. L. STILLWELL, D.Sc.

Council:

PROF. W. E. AGAR, M.A., D.Sc.,
F.R.S.

PROF. W. A. OSBORNE, M.B.,
B.Ch., D.Sc.

ASSOC. PROF. H. S. SUMMERS,
D.Sc.

J. M. BALDWIN, M.A., D.Sc.

J. A. KERSHAW, F.E.S.

J. SHEPHARD.

PROF. A. J. EWART, D.Sc., Ph.D.,
F.R.S., F.L.S.

PROF. E. W. SKEATS, D.Sc.,
A.R.C.Sc., F.G.S.

F. CHAPMAN, A.L.S., F.G.S.

D. J. MAHONY, M.Sc.

CAPT. J. K. DAVIS

J. S. ROGERS, B.A., M.Sc.

Committees of the Council

Publication Committee.

THE PRESIDENT
THE HON TREASURER
THE HON SECRETARY.

Honorary Auditors

ASSOC PROF W. N KERNOT.
J. SHEPHARD

Honorary Architect:

W. A M BLACKETT.

Trustees:

J. A KERSHAW, F E S
PROF. E. W SKEATS, D Sc A R.C.Sc., F.G.S.

1934.

LIST OF MEMBERS

WITH THEIR YEAR OF JOINING

{Members and Associates are requested to send immediate notice of any change of address to the Hon Secretary }

PATRON

His Excellency the Right Hon Lord Huntingfield, KCMG

LIFE MEMBLRS

Chapman, F, A L S, Hon F R M S, F G S, National Museum, Melbourne, C.1	1902
Ewart, Prof A. J, D Sc, Ph D, F R S, F L S, University, Carlton, N 3	1906
Kennot, Assoc Prof W N, B C E, M Mech E, M. Inst C E., University, Carlton, N 3	1906
Kershaw, J. A, F R E S, 11 Wrexham-road, Pialligoo, S 1	1900
Mahony, D J, M Sc, National Museum, Russell-street, Melbourne, C 1	1904
Pratt, Ambrose, M A, 376 Flinders-lane, Melbourne, C 1 ..	1918
Selby, G W, Glenbrook-avenue, Malvern, S E 5 ..	1889
Sweet, Georgina, D.Sc, "Queongo," 64 Mont Albert-road, Canterbury, E 7	1906
Skeats, Prof E. W, D Sc, A R C Sc, F G S, University, Carlton, N 3	1905
Walcott, R. H, Technological Museum, Melbourne, C.1 ..	1897

ORDINARY MEMBERS

Agar, Prof W E, M A, D Sc, F R S, University, Carlton, N 3	1920
Anderson, George, M A, LL M, M Com, 36 Lansell-road, Toorak, S.E 2	1924
Baldwin, J M, M A, D Sc, F Inst.P., Observatory, South Yarra, S.E.1	1915
Bale, W. M , F.R.M S, 83 Walpole-street, Kew, E 4 ..	1887
Balfour, Lewis J., B.A., M B, B S, 62 Hopetoun-road, Toorak, S E 2	1892
Baragwanath, W, Geological Survey Department, Treasury Gardens, East Melbourne, C 2	1922
Barrett, A O, 25 Orrong-road, Armadale, S E.3 ..	1908
Barrett, Sir J. W, K.B.E, C M.G, M.D, M.S., 105 Collins-street, Melbourne, C 1	1910
Casey, Dermot A, c/o Melbourne Club, Collins-street, Melbourne, C 1	1932
Cherry, Prof T M, B A, Ph.D, University, Carlton, N 3	1930
Clark, G. Lindsay, M C, B Sc, M M E, c/o Gold Mines of Australia Ltd, P O Box 856K, Melbourne, C 1	1931
Cudmore, F A, 12 Valley View-road, East Malvern, S E 6 ..	1920
Davis, Captain John King, 35 Wills-street, Melbourne, C 1 ..	1920

Dunn, E J, F G S, "Roseneath," Pakington-street, Kew, E 4 . .	1893
Dvason, E C, B Sc, B M.E, 92 Queen-street, Melbourne, C 1 . .	1913
Esserman, N A, B Sc, A Inst P, Research Laboratories, Maibyinong, W 3	1923
Gault, E L, M A, M B, B S, 4 Collins-street, Melbourne, C.1 ..	1899
Gepp, Sir Herbert W, c/o P W Powell, Temple Court, Collins-street, Melbourne, C 1	1926
Guth, J A, D.V Sc, M R C V.S, F R S E, 7 Clowes-street, South Yarra, S E 1	1909
Grimwade, W Russell, B Sc, 420 Flinders-lane, Melbourne, C 1 .	1912
Hartung, Prof E J., D Sc, University, Carlton, N 3 . .	1923
Jack, R Lockhart, B.E, D Sc, F G S, c/o Broken Hill Pty Ltd, 422 Little Collins-street, Melbourne, C 1	1931
Jones, Wood, Prof. F, D Sc, M B, B S, M.R.C.S., L.R.C.P., F.R.S., F Z S, University, Carlton, N 3	1930
Jutson, J T, B Sc, LL B., "Darlington," 9 Ivanhoe-parade, Ivanhoe, N 21	1902
Kebble, R A, National Museum, Melbourne, C.1	1911
Laby, Prof T H, M A, Sc D., F R S, University, Carlton, N 3	1915
Lewis, J. M., D.D Sc, "Whitelhorns," Boundary-road, Burwood, E 13	1921
Lyle, Prof Sir Thos R, M A, D Sc, F.R.S., Irving-road, Toorak, S E 2	1889
MacCallum, Prof Peter, M C, M A., M Sc, M B., Ch B., D P.H., University, Carlton, N 3	1925
Masson, Prof Sir David Orme, K B E., M A., D.Sc., F R S.E., F.R.S., 14 William-street, South Yarra, S E 1	1887
Merfield, Z A, F R A S, 406 Toorak-road, Burwood, E 13 . .	1923
Michell, J H, M A, F.R.S., 52 Prospect Hill-road, Camberwell, E 6	1900
Millen, Senator J D, 90 William-street, Melbourne, C 1 .	1920
Miller, Leo F, "Moonga," Power-avenue, Malvern, S E 4	1920
Miller, E Studley, 396 Flinders-lane, Melbourne, C 1	1921
Newton, H A. S, M B, M S., F R C S, 85 Spring-street, Melbourne, C 1	1931
Nicholas, A M, Harcourt-street, Auburn, E.3	1934
Nicholas, Geo R, 48 Lansell-road, Toorak, S E 2	1934
Orr, Dr W F, 8 Collins-street, Melbourne, C.1	1932
Osborne, Prof. W A, M B., B Ch., D.Sc., University, Carlton, N.3	1910
Patton, R T, D Sc, M.F., Hartley-avenue, Caulfield, E 8 . .	1922
Penfold, Dr W. J, M B, Alfred Hospital, Commercial-road, Prahran, S 1	1923
Piesse, E. L, 43 Sackville-street, Kew, E 4	1921
Quayle, E T, B A., 27 Collins-street, Essendon, W 5 . .	1920
Rae, F J, B A, B Sc, B.Ag Sc, Botanic Gardens, South Yarra, S.E 1	1927
Reid, J S, 498 Punt-road, South Yarra, S E 1	1924
Rigg, Gilbert, 20 Finch-street, Malvern, S E.5	1931
Rivett, Dr. A C D, M.A., D Sc., Council for Scientific and Industrial Research, 314 Albert-street, East Melbourne, C 2	1911
Rogers, J Stanley, B A, M Sc, University, Carlton, N.3 ..	1924
Schlapp, H H, 31 Queen-street, Melbourne, C.1	1906
Shephard, John, "Norwood," South-road, Brighton Beach, S.5	1894
Singleton, F. A, M Sc, University, Carlton, N 3 ..	1917

Stillwell, F. L., D.Sc., 44 Elphinstone-grove, Hawthorn, E.2	1910
Summers, Associate Prof H. S., D.Sc., University, Carlton, N.3	1902
Thirkell, Geo. Lancelot, B.Sc., 4 Grace-street, Malvern, S.E.4	1922
Thomas, D. E., c/o Geological Survey, Mines Dept., C.2	1929
Thomas, Dr. D. J., M.D., 12 Collins-street, Melbourne, C.1	1924
Tiegs, O. W., D.Sc., University, Carlton, N.3	1925
Wadham, Prof. S. M., M.A., Agr. Dip., University, Carlton, N.3	1932
Woodruff, Prof. H. A., M.R.C.S., L.R.C.P., M.R.C.V.S., University, Carlton, N.3	1913
Young, Assoc. Prof. W. J., D.Sc., University, Carlton, N.3	1923

COUNTRY MEMBERS

Caddy, Dr. Arnold, "Chandpara," Tylden, Vic.	1924
Caldwell, J. J., Geological Survey Office, Dunolly, Vic.	1930
Cox, H. M. S., Wombat Park, Daylesford	1931
Crawford, W., Gisborne, Vic.	1926
Dievermann, A. C., Dookie Agricultural College, Dookie, Vic.	1914
Faston, J. G., "Kiewa," Murphy-street, Bannisdale, Vic.	1913
Farnham, P., Lota, Vic.	1932
Harris, W. J., B.A., D.Sc., High School, Echuca, Vic.	1914
Hart, T. S., M.A., B.C.E., 9 Black-street, Brighton, S.5	1894
Hope, G. B., B.M.E., "Canallic," Hermitage-road, Newtown, Geelong, Vic.	1918
James, A., B.A., M.Sc., High School, Colac, Vic.	1917
Kitson, Sir Albert E., C.M.G., C.B.E., F.G.S., "Benalta," Leby-crescent, Beaconsfield, Bucks, England	1894
Lawrence, A. O., B.Sc., Dip For., 509 Ligur-street, Ballarat	1931
Mackenzie, H. P., Engr. Commr., R.N. (Ret.), Trawalla, Vic.	1924
Mann, S. F., Caranup, Vic.	1922
Tribulock, Captain R. E., M.C., Wellington-street, Kei-ang, Vic.	1921
White, R. A., B.Sc., School of Mines, Bendigo, Vic.	1918

CORRESPONDING MEMBER

Lucas, A. H. S., M.A., B.Sc., Sydney Grammar School, Sydney, N.S.W.	1895
---	------

ASSOCIATES.

Abraham, W. S., Geological Survey Museum, Gisborne-street, East Melbourne, C.2	1929
Alliston, H. E., M.V.Sc., Veterinary School, Parkville, N.2	1925
Allen, Miss N. C. B., B.Sc., University, Carlton, N.3	1918
Atkinson, Miss Nancy, M.Sc., Bacteriological Department, University, Carlton, N.3	1933
Bage, Miss F., M.Sc., Women's College, Kangaroo Point, Brisbane, Qld	1906
Barkley, H., Meteorological Bureau, cr Victoria and Drummond streets, Carlton, N.3	1910
Blake, A. S., 19 Rose-street, Ivanhoe, N.21	1929
Bordeaux, E. F. J., D.V.Sc., B. ès L., Mangalore-street, Flemington, W.2	1913

Brazenor, C W, National Museum, Russell-street, Melbourne, C 1	1931
Breidahl, H, M Sc, M B, B S, 23 Chatsworth-avenue, North Brighton, S 5	1911
Broadhurst, E, M Sc, 457 St Kilda-road, Melbourne, S C 2	1930
Buchanan, Gwyneth, D Sc., University, Carlton, N.3	1921
Butler, L S G, 173 Barkly-street, St Kilda, S 2	1929
Campbell, J D, B Sc, B M E., Llewellyn-street, Beaumaris, S.10	1932
Carter, A A C, "Fairholm," Threadneedle-street, Balwyn, E 8	1927
Cavanagh, B A, M A . D.Sc, Chemistry School, University, Carlton, N 3	1931
Chapman, Miss F, Threadneedle-street, Balwyn, E 8	1930
Chapman, W D, M.C.E., "Hellas," Heidelberg-road, Clifton Hill, N 8	1927
Chapple, Rev E H, The Manse, Waiingal-road, Oakleigh, S.E.12	1919
Clark, J, F L S, National Museum, Melbourne, C 1	1929
Clinton, H F, Produce Office, 605 Flinders-street, Melbourne, C 1	1920
Collins, A C, Public Works Department, Treasury Gardens, East Melbourne, C.2	1928
Colliver, F S, 14 McCarron-parade, Essendon, W 5	1933
Cook, G A, M Sc, B M E., 58 Kooyongkoot-road, Hawthorn, E 2	1919
Cookson, Miss I C, B Sc, 154 Power-street, Hawthorn, E 2	1916
Coulson, A M Sc, 65 Aberfeldie-street, Moonee Ponds, W 4	.. 1929
Coulson, A L, D Sc, D I C, F G S, Geological Survey of India, 27 Chowringhee, Calcutta	1919
Cox E H, Literary Staff, <i>The Argus</i> , Elizabeth-street, Melbourne, C 1	1924
Crespin, Miss I, B A, 29 Alfred-street, Kew, E 4	1919
Croll, I C H, 4 Derby-street, Camberwell, E 6	.. 1934
Cudmore, Mrs F A, B A, B Sc, Dip Ed., 12 Valley View-road, East Malvern, S.E.6	1929
Deane, Cedric, "Cloyne," State-street, Malvern, S.E.4	.. 1923
Dummond, F H, University, Carlton, N 3	.. 1933
Eckersley, Miss A M, 13 Haveibrack-avenue, Malvern, S.E.4	1933
Edwards, A B, B Sc, Ph D, Geology School, University, Carlton, N 3	1930
Elford, F G, B Sc, High School, Ballarat, Vic 1929
Elford, H S, B. E, c/o Tait Publishing Co., 39 Queen street, Melbourne, C 1	1934
Fenner, C, D Sc, Education Department, Flinders-street, Adelaide, S.A	1913
Ferguson, W H, 37 Brinsley-road, E Camberwell, E 6	1894
Finney, J M, "Armidale," 387 Springvale-road, Forest Hill, Timstall	1925
Fisher, Miss E E., M Sc, 1 Balwyn-road, Canterbury, E 7	.. 1930
Fraser, Colin K., B C E, 136 Wellington-street, Kew, E.4 ..	1934
Frostick, A C., 9 Pentland-street, N Williamstown, W.16	.. 1933
Gabriel, C J, 293 Victoria-street, Abbotsford, C 1	1922
Grieve, Brian J, B Sc, 194 Osborne-street, Williamstown, W 16	.. 1929
Hanks, W, 10 Holroyd-street, Coburg, N 13	.. 1930
Hardy, A D, Forests Department, Melbourne, C 2	.. 1903
Hauser, H B, M.Sc, Geology School, University, Carlton, N 3	.. 1919

Head, W C E, 22 The Esplanade, Williamstown, W 16	1931
Hill, Gerald F, Council for Scientific and Industrial Research, Box 109, Canberra City, Canberra, F.C.T	1924
Hills, E S, M Sc, Ph D, Geology School, University, Carlton, N 3	1928
Hoette, Miss Shirley, M Sc, 23 Moorhouse-street, Armadale, S.E.3	1934
Holland, R. A., 126 Kooyong-road, Caulfield, S.E.7	.. 1931
Holmes, W M, M.A., B.Sc., Observatory, South Yarra, S.E.1	1913
Homan, C S, B.M.F., 3 Fairy-street, Ivanhoe, N.21	1934
Howitz, A M, Department of Mines, Treasury Gardens, East Melbourne, C.2	1910
Huelin, F E., University, Carlton, N 3	. 1933
Jack, A K, M Sc, 49 Aroona-road, Caulfield, S.E.7	. 1913
Jessep, A W, B.Sc., M Ag Sc, Dip Ed, Horticultural Gardens, Burnley, E 1	1927
Jona, J Leon, M.D., M.S., D.Sc., Lester House, 61 Collins-street, Melbourne, C.1	1914
Keatland, Miss B, M.Sc., Cramer-street, Preston, N 18	1919
Kilvington, Miss T B, 95 Kooyongkoot-road, Hawthorn, E 2	1929
Kuhale, J C, 167 Power-street, Hawthorn, E 2	1929
Lambert, C A, Culyon's Hotel, Spencer street, Melbourne, C 1	1919
Leiper, G W, M.Sc., Chemistry School, University, Carlton, N 3	1931
Lilly, W H, Esplanade, Altona, Vic	1896
McCance, D, M.Sc., 144 Gatehouse-street, Parkville, N 2	1931
MacDonald, B. E., "The Heights," 127 Banksia-street, Heidelberg, N 22	1920
McLennan, Assoc Prof. Ethel, D.Sc., University, Carlton, N.3	1915
Melhuish, T D'A, M.Sc., Adelaide Chemical and Fertilizer Co, Box 7, Port Adelaide, S.A.	1919
Mollison, Miss E, M.Sc., Royal-Crescent, Camberwell, E 6	. 1915
Moon, A, Ramsay, c/o Murex Welding Processes, Feirystane, Walthamstow, England	1929
Moore, F. E, O.B.E, Chief Electrical Engineer's Branch, P.M.G.'s Department, Treasury Gardens, East Melbourne, C.2	1920
Morris, P. F, National Herbarium, South Yarra, S.E.1	1922
Newman, B. W., Meteorological Bureau, Adelaide, S.A.	1927
Nicholls, Miss A, B.Sc., 633 Inkerman-road, Caulfield, S.E.7	1929
Nye, L. E., College of Pharmacy, 360 Swanston-street, Melbourne, C.1	1932
Nye, Rev Edward, B.A., Wesley College, St Kilda-road, Prahran, S.1	1934
Oke, C, 4 Raleigh-street, Prahran, S 1	1922
Orr, D, B.Sc., 860 Mount Alexander-road, Essendon, W 5 ..	1927
Osborne, N, 3 Dean-street, East Malvern, S.E.5	. 1930
Patt, W. J., 17 Bokhara-road, Caulfield, S.E.8	1927
Paterson, Miss Helen T, 19 Power-street, Hawthorn, E 2	1933
Petersen, Miss K., B.Sc., 56 Berkeley-street, Hawthorn, E 2	1919
Phillipson, Miss L. J., M.Sc., 78 Glyndon-road, Camberwell, E 6	1930
Pretty, R. B., M.Sc., Technical School, Wonthaggi, Vic.	1922
Raff, Miss J. W., M.Sc., F.R.E.S., University, Carlton, N 3	1910
Rayment, Tarlton, Bath-street, Sandringham, S 8	. 1929
Richardson, Sidney C., 2 Geelong-road, Footscray, W.11	1923
Ripper, Miss E. A., 8 Mitchell-street, St Kilda, S 2	. 1930

Rosenthal, Newman H , B A , B Sc , 10 Qulton-street, Caulfield, S E.7	1921
Sayce, E L , B Sc , A Inst P , Research Laboratories, Malibyrnong, W 3	1924
Scott, T R , 7 Garden-avenue, Hawthorn, E 3	1934
Shaw, Dr C. Gordon, 75 Clendon-road, Toorak, S.E 2	1931
Shaw, F H , M Sc , 41 Prospect Hill-road, Camberwell, E 6	1933
Sheppard, Mrs H M , M Sc , 43 Robertson-road, Centennial Park, N S W	1918
Smith, J A , 25 Collins-place, Melbourne, C 1	. 1905
Stach, L W , 78 Herbert-street, Albert Park, S C 6	1932
Stickland, John, 433 Brunswick-street, Fitzroy, N 6	. 1922
Sutherland, Miss Jean L , M Sc , Zoology Dept , University, N.3	1934
Thomas, L A , B Sc , c/o Council for Scientific and Industrial Research, Stanthorpe, Queensland	1930
Traill, J C , B A , B C E , 630 St Kilda-road, Melbourne, S C.3	1903
Trudinger, W , 27 Gerald-street, Mullumbeena, S E 9	1918
Turner, A H , M Sc , Natural Philosophy Dept , University, Carlton, N 3	1927
Turner, A W , D V Sc , Animal Health Research Institute, Oonamba, via Townsville, Queensland	1925
Wilcock, A A , 294 The Avenue, Parkville, N 2	. 1934
Wilcock, E L , B Sc , University High School, Parkville, N 2	1925
Wilson, F E , F E S , 22 Ferncroft-avenue, E. Malvern, S E 5	. 1921
Wilson, Major H W , O B E , M C , C de G , B Sc ., 630 Inkerman-road, Caulfield, S E 7	1923
Withers, R B , B Sc , Dip. Ed , Higher Elementary School, Yallourn, Vic	1926
Wood, Assoc Prof G L , M A , Litt D , University, Carlton, N.3	1933
Woodburn, Mrs Fenton 21 Bayview-crescent, Black Rock, S 9	1930

INDEX.

The names of new genera and species are printed in italics

- Adeonellopsis australis, 345
- Agamaster *grevilleae*, 207
- Algae in Victorian soils, 202
- Alysodium, 389
- Ammobacillites sp., 188 ; pseudosphaialis, 188
- Ammodiscus ovalis, 186 ; *planocostatus*, 186
- Ammonium sulphate on oats, 78
- Amplexograptus *confertus*, 300 ; *diffractus*, 301 ; *modiculus*, 300
- Anabaena minutissima, 207 ; *variabilis*, 208
- Ankistrodesmus *falcatus*, 273
- Archaeopora *acanthoceras*, 340 ; *terminata*, 340
- Archoteleomopsis *wroughtoni*, 5
- Balf, Ilma G., 309
- Bendigo East, graptolites and zoning, 314
- Boronia megastigma, mildew of, 365
- Botrydopsis araliae, 281
- Bottle-shafts, Palaeozoon, 106
- Bryozoa, Lower Pliocene, 338
- Bumilleria exilis, 281
- Caberea grandis, 342
- Calcaritella stephensi, 187
- Calesia *dentifera*, 310
- Caloporella, 389
- Calotetras *inularis*, 5
- Cupidinum, 389, 391
- Cardiograptus *crawfordi*, 306
- Carinatocella, 389, 393
- Castlemaine area, geology, 213
- Catenaria, 389
- Catenicella, 390, 392
- Catenicellidae, genera of, 380 ; Victorian Tertiary, 18 ; zoological variation, 11
- Catenicellinae, 392
- Catenicellopsis, 390
- Cauliflower disease of, 96
- Cellaria australis, 312 ; *setigera*, 342
- Cereals, manganese deficiency in, 225
- Chapman, F., 173, 190
- Chlamydomonas *communis*, 271 ; *grandis*, 271 ; *gracilis*, 271
- Chlorella vulgaris, 273
- Chloroclosterus minor, 282
- Chlorococcum humicola, 271
- Claviporella, 390, 393 ; amita, 10, 347
- Copiotetras *flavus*, 6
- Coronulaea, 390, 393 ; *perforata*, 346
- Cornicellinae, 390, 394
- Cornuticellinae, 390, 393
- Corticium centrifugum, 381
- Corticium, 35, 390, 394 ; *benecostatum*, 38 ; *californicum*, 37 ; *hidien*, 98 ; *lathyrion*, 30 ; *linaria*, 36 ; *sordidum*, 10
- Corticellina, 39, 390, 391
- Corticella, 391
- Cothurnicella, 391
- Cryptosoma *kinglakeana*, 200
- Cribriocella, 391
- Cribriocellina, 42, 391, 394 ; *cribraria*, 42 ; *rufa*, 18
- Crook, Kathleen M., 352, 365
- Cryptograptus *schaferi*, 304
- Delphiniium, *Corticium centrifugum* on, 381
- Dentalina bradyi, 184
- Dicksonia, sooty mould of, 387
- Didymograptus *cognatus*, 291 ; *compressus*, 293 ; *cuspitatus*, 293 ; *distinctus*, 292 ; *dubitatus*, 294 ; *nodosus*, 295
- Digenopora, 40, 391, 394 ; *retroversa*, 41
- Diplograptus *austrodentatus*, 295 ; *contortus*, 300 ; *decoratus*, 298 ; *diffractus*, 301 ; *euglyphus*, 297 ; *intervexus*, 296 ; *modiculus*, 300
- Ditaxiphora, 391, 391
- Ditaxipora, 391, 395
- Ditaxiporinae, 391
- Dunes, ecology of, 135
- Ecological studies, 135
- Edwards, A. B., 112
- Eospondylus *teius* sp., 206
- Eucalyptus marginata, fungus on, 352
- Eucrata, 391
- Eunicea, 391
- Eutermes, 2 ; *dixoni*, 2 ; *extensus*, 2
- Fisher, Eileen E., 387
- Foraminifera, 175
- Fungal diseases of plants in Victoria, 369
- Fuscoster *bakeri*, 204 ; *kilmoreensis*, 205 ; *leptosporoides*, 206
- Gemmizina, 177 ; *triangularis*, 181
- Geneta of Catenicellidae, 389
- Geology of Guildford area, 213, 214 of South Gippsland, 112
- Gippsland, South, 112
- Globivalvula *bulloides*, 188
- Glossopterium *concentricum*, 96
- Glossograptus *acanthus*, 302 ; *crinus*, 303 ; *crinus* var. *gigasporiferus*, 301
- Glyptograptus *austrodentatus*, 295 ; *euglyphus*, 297 ; *intervexus*, 296
- Gongiosira *australis*, 270
- Graptolites, 288, 311
- Gregoriura spryi, 197
- Guildford-Strangways area, geology, 213
- Hallaster *parvus*, 203
- Hallograptus *proteus*, 305
- Halsey, Frances I., 96
- Hantzschia amphioxys, 284
- Haplophragmoides *neovonimus*, 187
- Hartlaub, W. J., 288, 314
- Heteroleucosia *vulgaris*, 283
- Hills, E. S., 158
- Himcksella, 391
- Histology of termites, 1
- Hornildium *flaccidum*, 278
- Howlin, W., 175
- Ichneumonidae, 54, 67
- Iron, availability in soil, 255
- Kehle, R. A., 100
- Lapworthura *nulltoni*, 201 ; *pulcherrima*, 201
- Laslograptus *chevalieri*, 300 ; *protoe*, 305
- Lecanoclinus *breviarticulatus*, 100
- Leeper, G. W., 225
- Lingulina *darwini*, 185
- List of members, 390
- Manganese, availability in soil, 237 ; deficiency disease, 225
- Mastotermes darwiniensis, 5
- Mathioliella incana, Rhizoctonia solani on, 369
- Members, List of, 390
- Mesograptus *decoratus*, 298
- Microstomaria, 391
- Mildew, powdery, on Boronia, 365
- Monogenerina, 170
- Mould, sooty, 387

- Muckleford Fault, 212
Murella austroba, 276
Mycogala marginata 352
- Navicula mutica*, 284
 Nitrogen in soil, 82 etc
Nodosaria antiqua, 185, *nunivensis*, 184, *pyramidalis*, 185
Noctes muscorum, 207, *pallidostomum*, 206.
- Oat crops, influence of sulphate of ammonia, 78
Oidium Boroniae, 365
Oocystis solitaria terrestris, 274
Ophidioceras gibbum, 192
Ophiochyrum terrestre, 281
Otionella grandipora, 339
Ourocoetus bleaudatus, 273
- Palaeozoic brittle-stars, 196
 Parasites of saw-fly, 54
Parvularia obliqua, 343
 Parr, W. J., 175
 Paxton, R. T., 135
Perga, 54, dorsalis, 57, nemoralis, 57, polita, 58
Permian foraminifera, 175, 183
 Phillipson, Jean, 202
Phormidium austrole, 270, autumnale, 269, *foveolatum*, 268, *subterraneum*, 270, *tenuum*, 268
 Physiography of Victoria, 158
 Phocene bryozoa, 388
 Poriferous grandis, 6
Primula, *Sclerotinia minor* on, 375
Protococcus viridis, 275
Pterocella, 392, albata, 16, 317
Pterographus incertus, 289
- Raff, Janet W., 54
Retepora porcellana, 344
 Revised names of toramnitaria, 183
Rhizotoma solani, 389
Ruditaxis rhaetica, 188
- Sand dunes, ecology, 135
 Saw-flies, 54
Schizoporella conservata, 343
Sclerotinia minor on *Primula*, 375
Scuticella, 21, 302, 394; *ampla*, 26, *auricula*, 21, *uppstadiana*, 25, *intermedia*, 33, *lata*, 32, *lorica* 16, 23, *marginata*, 28, *plagiostoma*, 16, *urnula*, 16, 22, *ventricosa*, 16, 31
- Selerotinia maculata*, 341, *punctata*, 341
 Silurian of Yass, 190
 Soils algae in, 202, availability of manganese in, 225
 Sooty mould, 387
 South Gippsland, geology, 112
Spandelia, 179
Spandelinidae, 179
 Stach, L. W., 14, 18, 389
Steganoportella marginata, 341
Stenostomaria, 392, 393
Stictococcus bacillaris, 278
Stolotermes vietoriensis, 6
Strongylapora, 392, 393
Strophiptera (3, 302, 394); excavata, 16, harveyi, 16, 44, lata, 17
 Sturt's-tasher off Mitchell, 202
Styracina Brislingoides, 198
 Sutherland, Jean L., 1
- Tachinidae, 54, 69
Taeniola perrugina, 199
Telechiospora salicis, 387
 Termites, histology 1
 Terrianus dykes, 112; *Catenicellidae*, 18
Tetragraptus defensus, 291
 Thomas, D. B., 243, 288
Thysanograptus elbeldigen, 300
Toiyammina vagans, 186
 Tree-felt, sooty mould of, 387
Tillograptus monodus, 290
Trigonidium, 54, 64
Trochamminidae *anceps*, 187
Trochiscida lirata, 271
Tubularia cercoides *gracilis*, 344, *hirsuta*, 344
 ~
Ulothrix aequans, 278, *subtilissima*, 277, variabilis, 276
- Vaucheria haemata, 281
 Victorian gnatholithes, 288, 311; phylography 158
Vittatella, 392, 393; *elegans*, 19, 316, *gradienta*, 345, *hamatoidi*, 316, *speciosa*, 20
 Volcanic necks, 112
- Wark, D. O., 78.
 Withers, R. B., 196.
 Yass, Silurian, 190.
 Zoocelial variation, 14

**INDIAN AGRICULTURAL RESEARCH
INSTITUTE LIBRARY, NEW DELHI**

GIPNLK-H-40 I.A.R.I.-29-4- 5-15,000