```
1.
```

```
((lambda(x)
((lambda(y)
((lambda(z) e) v3)) v2)) v1)
```

2.

$$(((\lambda \times [x])(\lambda \times 1))(\lambda y \cdot y))$$

$$= ((\lambda \times [x])(\lambda y \cdot y))$$

$$= 1$$

```
((\lambda + . [((\lambda y . 2) ((\lambda x . (\times x)) (\lambda x . (\times x)))]) 5)
= ((\lambda y . [s]) ((\lambda x . (\times x)) (\lambda x . (\times x))))
= 5
2)
```

For 1), it does not have other orders to apply beta reduction

However, for 2) if we choose to apply beta reduction on $((\lambda x. (x x))(\lambda x. (x x)))$ first, it will never end because it will give same one(which is $((\lambda x. (x x))(\lambda x. (x x)))$) after do beta reduction.

3.

2) XOR = $(\lambda x. \lambda y. ((x ((y false) true)) y))$

Х	У	(λx. λy. (x ((y false) true) y))
true	True	((true ((true false) true)) true)
		= ((true false) true)
		= false (✓)
True	False	((true ((false false) true)) false)
		= ((true true) false)
		= true (✓)
False	True	((false ((true false) true)) true)
		= ((false false) true)
		= true (✓)
false	false	((false ((false false) true)) false)
		= ((false true) false)
		= false (✓)

4.

((S K) K)

 $= (((\lambda xyz.((xz)(yz)))(\lambda xy.x)) K)$

= $((\lambda yz. ((\lambda xy.x)z)(yz)))K)$

= $((\lambda yz.((\lambda y.z)(yz)))K)$

 $= ((\lambda y z.z) K)$

 $= (\lambda z.z)$

= |