Matière :

Physique Chimie

Niveau:

Tronc Commun

Exemples d'action mécaniques

I Forces intérieures et forces extérieurs :

Activité:

On considère une boite "B" posée sur un livre "C" et le tous sur une table "T"

- 1) Le système étudié est { livre "C" } donner le bilan des forces qui agissent sur le système en spécifiant le type : Forces intérieures ou forces extérieurs
- 2) Le système étudié est { livre "C" + table "T" } donner le bilan des forces qui agissent sur le système en spécifiant le type : *Forces intérieures ou forces extérieurs*
- 1) Le système étudié : { livre "C" } le bilan des forces :

P : poids du système " Force extérieur"

T : action de la table " Force extérieur"

R : action de la boite" Force extérieur"

2) Le système étudié : { livre "C" + table "T" } le bilan des forces :

P : poids du système " Force extérieur"

R : action de la boite "Force extérieur"

 \vec{T}_2 : action de la table sur le Livre " *Force intérieure*"

•••••

Définitions:

Une *force extérieure* est une force qui s'applique sur un système par un corps qui n'appartient pas au système.

Une *force intérieure*, qui est une force faisant partie d'un système donné (comme, par exemple, les forces de cohésion des atomes et des molécules).

II <u>Caractéristiques d'une force et caractéristiques du vecteur force :</u>

<u>Caractéristiques d'une force :</u>	<u>Caractéristiques du vecteur force</u>
le point d'application	Le centre :
La droite d'action	La direction
Le sens	Le sens
L'intensité	La norme

ARemarque :

pour représenter le vecteur force on cherche d'abord ses caractéristiques : Le centre ; La direction; le sens et norme.

III L'Action d'un plan sur un solide :

1) Cas d'un plan horizontal :

Activité :

On tire un morceau de boit (S) par un fil inextensible lié à un dynamomètre (Voir Schéma ci-dessous)

Le morceau de boit commence à bouger lorsque F = 4 N avant cette valeur il est immobile

F (N)	0	1	2	3	4	5	6
Mouvement de (S)	il est Immobile			Il bouge			

- 1) Le système étudié est { le solide (S) } donner le bilan des forces qui agissent sur le système
- 2) Explique pour quoi le solide (S) ne bouge que lorsque $F \ge 5N$
- 3) Représenter les forces extérieures qui agissent sur le système avec l'échelle : 1 cm → 4N

On donne: m = 800 g; $g = 10 \text{ N.kg}^{-1}$

1) Le système étudié : { le solide (S) }

le bilan des forces:

P : poids du système

R : l'action du plan horizontal

F: l'action du fil

2) le solide (S) ne bouge que lorsque $F \ge 4N$ c'est à cause des frottements f

Les caractéristiques de la force du aux frottements :

b le point d'application :

centre de la surface de contact.

♦ La droite d'action :

la droite représentant la direction du mouvement

♦ Le sens:

le sens contraire au mouvement

♥ L'intensité :

f = 4 N " on la calcule dans certains cas"

Remarque:

Le plan agit sur le solide (S) par 2 forces : R_N la composante normale "perpendiculaire au plan" et f la force de frottement "si elle existe"

♣ La force exercer par Le plan à 2 composantes :

$$\vec{R} = \vec{R}_{N} + \vec{f}$$

La composante normale (N)

Force de frottement (N)

$$\vec{\mathbf{R}} = \vec{\mathbf{R}}_{\mathbf{N}} + \vec{\mathbf{f}}$$

1^{er} Cas: Les frottements sont négligeable:

$$f = 0$$
; $k = 0$ et $\varphi = 0^{\bullet} \Rightarrow \vec{R} = \vec{R}_N$; $R = R_N$

Le plan agit sur le solide (S) par une seule force : \vec{R}_N la composante normale

2^{eme} Cas: Les frottements ne sont pas négligeable:

$$f \quad 0 \; ; \; k \quad 0 \; et \; \phi \qquad 0^{\bullet} \Rightarrow \; \vec{R} \; = \; \vec{R}_{N} \; + \; \vec{f}$$

$$k = \tan(\{) = \frac{f}{R_{N}}$$

Coefficient de frottement (sans unite)

Angle de frottement

Avec frottement

sans frottement

2) Cas d'un plan incliné:

Activité :

On prend 2 planches; la première à une surface lisse et l'autre à une surface rugueuse on incline les 2 planches avec le même angle α par rapport à l'horizontal (*Voir Schéma ci-dessous*)

Surface lisse: le solide glisse

Surface rugueuse: le solide reste immobile

Figure N°2

Figure N°1

- 1) Le système étudié est { le solide (S) } donner le bilan des forces qui agissent sur le système dans les 2 cas
- 2) Représenter les forces extérieures qui agissent sur le système avec l'échelle : 1 cm → 4N dans les 2 cas
- 1) Le système étudié : { le solide "S" } le bilan des forces dans les 2 cas :

P : le poids du système

R : l'action du plan incliné

1 cas : Surface lisse " pas de frottement "

2 cas : Surface rugueuse " Avec frottement "

2) Représenter les forces extérieures

Le solide glisse sans frottement

$$\vec{P} \begin{cases} P_x = + p \cdot \sin(\alpha) \\ P_y = - p \cdot \cos(\alpha) \end{cases}$$

Le solide glisse Avec frottement

$$\begin{cases} R_x = -f \\ R_y = + R_N \end{cases}$$

$$R_y = + R_N$$

$$P_x = + p \cdot \sin(\alpha)$$

$$\vec{P} \begin{cases} P_x = + p \cdot \sin(\alpha) \\ P_y = - p \cdot \cos(\alpha) \end{cases}$$

 \square Calculons l'angle \hat{x} entre \vec{P} et \vec{P}_y :

Dans le triangle ABC rectangle en B:

u1<1r1N1JAÊ1

Dans le triangle DBC rectangle en D:

$$x + u = 90^{\circ}$$

donc $\mathbf{x} = \Gamma$

IV <u>la Force pressantes et notion de pression</u>

Définitions.

Lorsqu'une force n'est pas appliquée en un point mais répartie sur une surface, on dit que la force est une *force pressante*

Activité:

Expérience N°1:

on pose un solide de masse m sur une éponge. On obtient la déformation x_1 et lorsqu'on pose un 2eme solide de même masse on obtient la déformation x_2 ; lorsqu'on pose un 3eme solide de même masse m on obtient la déformation x_3

Expérience N°2:

on pose un solide de masse m' sur une éponge puis on change la surface de contact en tre l'éponge et le solide.

Ouestions:

- 1) Comment varie la déformation de l'éponge lorsque la force pressante varie dans l'expérience N°1
- 2) Donner les caractéristiques de la force pressante dans l'expérience N°1
- 3) Comment varie la pression sur l'éponge dans l'expérience N°2
- 4) Retrouve la relation entre la pression et la surface de contact

Réponses:

1) Plus l'intensité de la force F augmente plus la déformation augmente

Remarque: la pression P et la force pressante F sont proportionnelle

2) les caractéristiques de la force pressante :

Caractéristiques d'une force pressante:		
le point d'application	A : centre de la surface de contact	
La droite d'action	La droite passant par A et à la surface de contact	
Le sens	Du haut vers le bas	
L'intensité	$F = P = m \times g = 1 \times 9.8 = 9.8 \text{ N}$	

Plus la surface de contact S diminue intensité plus la pression augmente 3)

Remarque :

la pression P et la surface de contact S sont inversement proportionnelle

4) Définitions:

La pression P est le rapport de l'intensité de la force pressante F sur la surface de contact S

Pression en Pa
$$P = \frac{F}{S}$$
Force pressante en N
$$Surface de contact en m^2$$

Une force pressante produit sur la surface pressée un effet d'autant *plus petit* que l'aire de la surface est grande.

Unités.

L'unité légale (SI) de la pression est le *pascal* (*Pa*). C'est une unité très petite. En pratique, on mesure les pressions usuelles à l'aide d'un multiple du Pascal, le bar :

1 bar =
$$100\ 000\ Pa = 10^5\ Pa$$

1 Pa =
$$10^{-5}$$
 bar
1 atm = $1,013.10^{5}$ Pa
1 Bar = 10^{5} Pa = 760 mmHg
1 hPa = 100 Pa