# PH6232: Machine Learning for Physics applications



# Supervised Learning



- Supervised learning: Training on labeled data
- Network uses labels to assess the training and feedbacks are propagated

But the labels(or true identification) may not be available in many problems

So far in the course...

- Learns from dataset without labels
- It can find patterns and structure in the dataset

Let the algorithm learns whatever is meaningful





These are different kinds of table and chairs you spotted at IISERP Physics dept!

- Learns from dataset without labels
- It can find patterns and structure in the dataset

  Let the algorithm learns whatever is meaningful





These are different kinds of table and chairs you spotted at IISERP Physics dept!

#### 1) Clustering analysis

- grouping based on similarities in features



- Kmeans
- DBSCAN, OPTICS and many more

#### 1) Clustering analysis

- grouping based on similarities in features
- Kmeans, DBSCAN, OPTICS and many more algorithms

#### 2) Data Compression

- you are a smart person and you note down many features of the chair and tables

- 1. No of legs
- 2. Connection between legs
- 3. Height from ground
- 4. Color
- 5. Back rest
- 6. Drawers
- 7. Geometry of the flat surface
- 8. Faculty or student or admin or library

- One can perform clustering analysis in this multidimensional space
- But many features are abundant or not really matters to find the intrinsic patters of the dataset
- All features or dimensions are not necessary. They don't bring any new substantial information
  - we can either remove them manually or compress them in low dimensional space
- Dimension Reduction algorithms:
  - PCA, TSNE, UMAP etc
  - Easy to visualize, they can form cluster as well!
  - Saves computing power, storage

#### 1) Clustering analysis

- grouping based on similarities in features
- Kmeans, DBSCAN, OPTICS and many more algorithms

- 1. Recommending system( such as what Post should come in your insta, fb feed, Netflix movie suggestion etc.)
- 2. Cluster energetic deposits or hits of particles

#### 2) Data Compression

- High dimensional space to low dimensional space (Latent space)
- PCA, TSNE, UMAP

#### 3) Anomaly or Outlier Detection

- Detect any data points that is different from the bulk of the dataset
- Many algorithms such as Autoencoders, KNN etc
- Autoencoders will be discussed next week

1. Detecting fraud bank transaction

.....

2. Discovering new physics beyond Standard Model

- Standard dataset from sklearn library: Iris Dataset
- Three species of flower: Setosa, virginica and versicolor
- Four features: Sepal width, sepal length, petal width and petal length

Let's assume that we don't know the label



#### KMeans algorithm



df irisdata.head(5)

|     | sepal_length | sepal_width | petal_length | type |
|-----|--------------|-------------|--------------|------|
| 36  | 5.5          | 3.5         | 0.2          | 0    |
| 34  | 4.9          | 3.1         | 0.2          | 0    |
| 51  | 6.4          | 3.2         | 1.5          | 1    |
| 104 | 6.5          | 3.0         | 2.2          | 2    |
| 107 | 7.3          | 2.9         | 1.8          | 2    |

1. choose the number of cluster k

- lets pick 2

How many groups we can see?

- Standard dataset from sklearn library: Iris Dataset
- Three species of flower: Setosa, virginica and versicolor
- Four features: Sepal width, sepal length, petal width and petal length

Let's assume that we don't know the label



#### KMeans algorithm



df irisdata.head(5)

|     | sepal_length | sepal_width | petal_length | type |
|-----|--------------|-------------|--------------|------|
| 36  | 5.5          | 3.5         | 0.2          | 0    |
| 34  | 4.9          | 3.1         | 0.2          | 0    |
| 51  | 6.4          | 3.2         | 1.5          | 1    |
| 104 | 6.5          | 3.0         | 2.2          | 2    |
| 107 | 7.3          | 2.9         | 1.8          | 2    |

- 1. choose the number of cluster k
- 2. Take 'k' random point as a centroid to starts with
  - calculate distance of each point from these centroids
  - assign them to the closest centroid

How many groups we can see?

- Standard dataset from sklearn library: Iris Dataset
- Three species of flower: Setosa, virginica and versicolor
- Four features: Sepal width, sepal length, petal width and petal length

Let's assume that we don't know the label



#### KMeans algorithm



df irisdata.head(5)

|     | sepal_length | sepal_width | petal_length | type |
|-----|--------------|-------------|--------------|------|
| 36  | 5.5          | 3.5         | 0.2          | 0    |
| 34  | 4.9          | 3.1         | 0.2          | 0    |
| 51  | 6.4          | 3.2         | 1.5          | 1    |
| 104 | 6.5          | 3.0         | 2.2          | 2    |
| 107 | 7.3          | 2.9         | 1.8          | 2    |
|     |              |             |              |      |

- 1. choose the number of cluster k
- 2. Take 'k' random point as a centroid to starts with
- 3. Calcuate distance of all points from the centroid and assign those points to the closest centroid

Repeat

How many groups we can see?

- Standard dataset from sklearn library: Iris Dataset
- Three species of flower: Setosa, virginica and versicolor
- Four features: Sepal width, sepal length, petal width and petal length

Let's assume that we don't know the label



How many groups we can see?

# KMeans algorithm



df irisdata.head(5)

|     | sepal_length | sepal_width | petal_length | type |
|-----|--------------|-------------|--------------|------|
| 36  | 5.5          | 3.5         | 0.2          | 0    |
| 34  | 4.9          | 3.1         | 0.2          | 0    |
| 51  | 6.4          | 3.2         | 1.5          | 1    |
| 104 | 6.5          | 3.0         | 2.2          | 2    |
| 107 | 7.3          | 2.9         | 1.8          | 2    |

- 1. choose the number of cluster k
- 2. Take 'k' random point as a centroid to starts with
- 3. Calcuate distance of all points from the centroid and assign those points to the closest centroid

#### Repeat

#### Stop when,

- centroids of new clusters do not change
- Points remain in the same cluster
- Reaches maximum number of iterations

- Standard dataset from sklearn library: Iris Dataset
- Three species of flower: Setosa, virginica and versicolor
- Four features: Sepal width, sepal length, petal width and petal length

Standard dataset from skiearn indiary: 1118 Dataset

df\_irisdata.head(5)

|     | sepal_length | sepal_width | petal_length | type |
|-----|--------------|-------------|--------------|------|
| 36  | 5.5          | 3.5         | 0.2          | 0    |
| 34  | 4.9          | 3.1         | 0.2          | 0    |
| 51  | 6.4          | 3.2         | 1.5          | 1    |
| 104 | 6.5          | 3.0         | 2.2          | 2    |
| 107 | 7.3          | 2.9         | 1.8          | 2    |

#### Result on the Iris Dataset



Unsupervised

If we knew the true labels!

Disadvantage: poor performance on closely spaced points (where density is large)

# Clustering Analysis Code

from sklearn.cluster import KMeans

This Easy!

But wait, how do you choose 3 cluster to begin with?

#### Elbow method!



- Run for different no of cluster
- Metric is Total Intertia
- Interia: Sum of distances of all the points from centroid of that cluster
- Optimum no of cluster can be chosen where the elbow is

# Applying on the HEP Problem

• Dataset contains no of particles on the eta-phi plane



Applying KMean on this problem to find clusters



- Fails to find sensible clusters
- Centroid based algorithm:
  - works really bad when densisty of points are varying
  - fail in creating clusters of arbitrary shapes

# Applying on the HEP Problem

• Dataset contains no of particles on the eta-phi plane



Applying DBSCAN on this problem to find clusters



• This looks reasonable!

So, what is this algorithm?

# DBSCAN algorithm

- Density based algorithm (KMeans is centroid based)
- DBSCAN: Density-based spatial clustering of applications with noise (paper\_link)
- Based on assumption: clusters are dense regions in space separated by regions of lower density
- It depends on two parameters,

Epsilon(£)= how close points should be to be considered a part of a cluster

No of minimum points: min points required to form a cluster



- It scans over each point once
- A point within it's radius =  $\varepsilon$ ,
  - min no of points: core point
  - at least one core points but <min points: Border point
  - <min no of points: Noise</li>

# Applying on the HEP Problem



```
\epsilon=0.4
Min points=10
```



Change the parameters and check how many cluster you are getting

#### Optimal Value of $\epsilon$

- Calculate nearest neighbour distances between points
- Scan over all the points
- Choose the distances where distance between two neighbours shoots up( max curvaure)



Domain knowledge is important to decide what is best!

# Dimensionality Reduction

• Let's understand the multidimensionality in terms of WZ vs ZZ problem

WZdf.sample(5)

|       | Pt0        | Pt1        | Pt2       | NBJet | Met        | MaxDphi_LMet | MaxDphi_LL | MinDphi_LL | LLPairPt   | MtO        | Mt1        | Mt2        |
|-------|------------|------------|-----------|-------|------------|--------------|------------|------------|------------|------------|------------|------------|
| 17214 | 111.297340 | 102.368149 | 47.637390 | 0.0   | 154.852325 | 1.836663     | 2.034217   | 0.733969   | 199.464005 | 26.927629  | 68.607086  | 122.485924 |
| 44517 | 37.767117  | 28.361715  | 24.503748 | 0.0   | 26.111670  | 2.606581     | 2.687385   | 0.069427   | 19.067734  | 36.326527  | 52.360256  | 71.318069  |
| 45233 | 71.864754  | 46.848637  | 13.040688 | 0.0   | 141.715164 | 2.608019     | 1.346833   | 0.209067   | 100.920181 | 238.325439 | 248.843155 | 176.257858 |
| 97152 | 113.258553 | 53.547009  | 24.209955 | 0.0   | 136.390152 | 2.920245     | 1.979958   | 0.627200   | 159.735931 | 293.612030 | 292.050507 | 177.513947 |
| 21023 | 102.099800 | 30.666338  | 25.705837 | 0.0   | 137.357666 | 2.977186     | 2.134700   | 0.231808   | 96.556755  | 229.760086 | 256.071320 | 112.581902 |



• If we only plot each event in pto-pt1 plane, we can identify each event by two numbers (pto,pt1): Two Dimensional (2D)

# Dimensionality Reduction

• Let's understand the multidimensionality in terms of WZ vs ZZ problem

WZdf.sample(5)

|       | Pt0        | Pt1        | Pt2       | NBJet | Met        | MaxDphi_LMet | MaxDphi_LL | MinDphi_LL | LLPairPt   | Mt0        | Mt1        | Mt2        |
|-------|------------|------------|-----------|-------|------------|--------------|------------|------------|------------|------------|------------|------------|
| 17214 | 111.297340 | 102.368149 | 47.637390 | 0.0   | 154.852325 | 1.836663     | 2.034217   | 0.733969   | 199.464005 | 26.927629  | 68.607086  | 122.485924 |
| 44517 | 37.767117  | 28.361715  | 24.503748 | 0.0   | 26.111670  | 2.606581     | 2.687385   | 0.069427   | 19.067734  | 36.326527  | 52.360256  | 71.318069  |
| 45233 | 71.864754  | 46.848637  | 13.040688 | 0.0   | 141.715164 | 2.608019     | 1.346833   | 0.209067   | 100.920181 | 238.325439 | 248.843155 | 176.257858 |
| 97152 | 113.258553 | 53.547009  | 24.209955 | 0.0   | 136.390152 | 2.920245     | 1.979958   | 0.627200   | 159.735931 | 293.612030 | 292.050507 | 177.513947 |
| 21023 | 102.099800 | 30.666338  | 25.705837 | 0.0   | 137.357666 | 2.977186     | 2.134700   | 0.231808   | 96.556755  | 229.760086 | 256.071320 | 112.581902 |

• 12 variables to describe an WZ event



- If we only plot each event in pto-pt1 plane, we can identify each event by two numbers (pto,pt1): Two Dimensional (2D)
- I can also imagine a 12 Dimensional hyperspace where each WZ event can be identified by 12 numbers: (pto,pt1......Mt2)
  - hard to imagine even!

# Dimensionality Reduction

• Let's understand the multidimensionality in terms of WZ vs ZZ problem

| W7df  | sample   | (5) |
|-------|----------|-----|
| WZUI. | · Sampre | (0) |

|       | Pt0        | Pt1        | Pt2       | NBJet | Met        | MaxDphi_LMet | MaxDphi_LL | MinDphi_LL | LLPairPt   | MtO        | Mt1        | Mt2        |
|-------|------------|------------|-----------|-------|------------|--------------|------------|------------|------------|------------|------------|------------|
| 17214 | 111.297340 | 102.368149 | 47.637390 | 0.0   | 154.852325 | 1.836663     | 2.034217   | 0.733969   | 199.464005 | 26.927629  | 68.607086  | 122.485924 |
| 44517 | 37.767117  | 28.361715  | 24.503748 | 0.0   | 26.111670  | 2.606581     | 2.687385   | 0.069427   | 19.067734  | 36.326527  | 52.360256  | 71.318069  |
| 45233 | 71.864754  | 46.848637  | 13.040688 | 0.0   | 141.715164 | 2.608019     | 1.346833   | 0.209067   | 100.920181 | 238.325439 | 248.843155 | 176.257858 |
| 97152 | 113.258553 | 53.547009  | 24.209955 | 0.0   | 136.390152 | 2.920245     | 1.979958   | 0.627200   | 159.735931 | 293.612030 | 292.050507 | 177.513947 |
| 21023 | 102.099800 | 30.666338  | 25.705837 | 0.0   | 137.357666 | 2.977186     | 2.134700   | 0.231808   | 96.556755  | 229.760086 | 256.071320 | 112.581902 |

• 12 variables to describe an WZ event



- If we only plot each event in pto-pt1 plane, we can identify each event by two numbers (pto,pt1): Two Dimensional (2D)
- I can also imagine a 12 Dimensional hyperspace where each WZ event can be identified by 12 numbers: (pto,pt1......Mt2)
  - hard to imagine even!
- We can compress the information of 12 variables in just 2 variables (with some information loss): Dimension Reduction
- Easy to visualize and in the process we may find some patterns!
  - compressed space are called latent space

# Credit: UMAP Documentation

# Dimensionality Reduction Algorithms

Linear method to reduce dimension



#### **PCA**

- Covariance Matrix O
- $Q = rac{1}{n-1} \sum_{i=1}^n (x_i ar{x})(x_i ar{x})^T$

- Use covariance matrix
- Eigenvectors of this matrix become the new basis to represent old data
- Component with largest eigenvalue => Principal component
- Keep the variance in data as much as possible in fewer components





#### **UMAP**

- Uniform Manifold Approximation & Projection
- Create high dimensional graph based on some similarity measure
- Then make a low dimensional graph that is "closer" to the high dimensional graph
- Check how "similar class" clustered in this low dimensional latent space

# WZ and ZZ in Latent Space



```
from sklearn.decomposition import PCA

####PCA
model_pca=PCA(n_components=2)
model_pca.fit(X_train)
x_pca = model_pca.transform(X_train)
```



n\_neighbours, min\_dist, n\_components, metric are all the knobs you can play with

# Neural Network training on latent variables



