大规模稀疏矩阵迭代解法研究报告

郭文韬, 刘志强

2021 年 1 月 13 号

摘要

我们探讨了多级低秩修正预条件子 (MLR),基于舒尔补的区域分解预条件子 (SLR),以及图稀疏化预条件子 (feGRASS 预条件子)。对于对称正定稀疏矩阵,我们初步比较了 MLR, SLR, feGRASS, IChol,块 Jacobi,以及区域分解预条件子在 PCG 上的性能差异,我们发现MLR 和 SLR 一般可以减少迭代步数,但 MLR 不一定能减少迭代时间。在更加稀疏的矩阵下,图稀疏化预条件子迭代速度会明显高于其他预条件子,除此之外图稀疏化预条件子的填入元是最少的。对于非对称稀疏矩阵,我们比较了 ILU 和图稀疏化预条件子在 GMRES 上的性能差异。我们发现图稀疏化预条件子在迭代步数/时间和填入元方面都明显优于 ILU 预条件子,但是也存在着稀疏化以后矩阵接近奇异的问题。

关键词: 预条件子, 多级低秩修正, 舒尔补, 区域分解, 图稀疏化, 图切割

引言

矩阵的求解(Ax = b)一般分为直接解法和迭代解法。对于小规模的矩阵,人们一般采用 LU 分解(当然也有选主元等增加算法稳定性的方法),Choleskey 分解(对于对称正定矩阵)等方法。迭代解法更适用于大规模的稀疏矩阵。常用的迭代解法有 Jacobi 迭代,高斯-赛德尔迭代,逐次超松弛法(SOR 方法,以及用于对称矩阵的 SSOR),预处理共轭梯度(PCG)等方法 [6]。迭代解法的收敛速度一般难以确保,所以经常需要人为添加"预条件子"来加快收敛速度和解的准确性。常见的预条件子可以被分为三大类[5]:

$$M^{-1}Ax = M^{-1}b (1)$$

$$AM^{-1}u = b, \ x = M^{-1}u \tag{2}$$

$$M_L^{-1}AM_R^{-1}u = M_L^{-1}b, \ x = M_R^{-1}u$$
 (3)

预条件子 M 需要尽可能做到 $M^{-1} \approx A^{-1}$ 来降低迭代矩阵的 2-条件数来提高迭代的收敛速度和解的准确性,在实际运用中经常可以和 PCG,GMRES 等方法有效结合。

传统的预条件子有 (块) Jacobi 预条件子,高斯-赛德尔预条件子,SOR(SSOR) 预条件子,也有给不完全 Choleskey 分解/不完全 LU 分解的预条件子。在迭代算法中,块 Jacobi 迭代适合于并行的实现,但其他的迭代算法未必适合。类似地,我们也希望预条件子的计算也尽可能支持并行。

Y. Saad [5] 提到一些工业界支持并行的预条件子有 Schwarz 预条件子,基于舒尔补的,以及多级 ILU 类的预条件子。在本次 project,我们主要探讨了基于舒尔补的预条件子和多级低秩修正的 ILU/IC 预条件子。我们也采用了区域分解技术 [3] 对矩阵进行划分边界/内部节点然后使用 metis包做图切割。我们最后也采用了 W.Yu, Z.Liu 和 Z.Fen 提出的 feGRASS 图稀疏化技术 [7] 来处理非对称稀疏矩阵。

1 多级低秩修正 (MLR) 预条件子方法

1.1 图分割

我们知道块 Jacobi 预条件子 $M={
m diag}(A_{11},\dots,A_{nn})$ 易于并行,但假如对对角块做完全分解则消耗内存大,假如做不完全分解迭代步数还是会很高。但我们可以对于 $A=\begin{bmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{bmatrix}$,我们可以选 $B=\begin{bmatrix}A_{11}\\A_{22}\end{bmatrix}$,然后做一个低秩近似使得 $M^{-1}=B^{-1}+LRC$ 。

Figure 1: 图分割-以边切割 [3]

我们先对稀疏矩阵 A 用 Metis[2] 进行图切割(以边切割¹),然后将 A 重排序并转换成(4)的形式 [3]。

设 m_i (i=1,2) 为区域 Ω_i 的边界节点的数量。

¹以边切割是指图切割的时候按边界节点连接的边来划分,如上图所示

其中 $\hat{B_i}$ 和 C_i 对应区域 Ω_i 的内部/边界节点, $\hat{F_i}$ 对应内部-边界节点的连接边, $W \in \mathbb{R}^{m_1 \times m_2}$ 对应区域 1 和区域 2 边界节点的连接边。

我们分解 W, 使得 $W = X_1 X_2$, 然后引入 $E = [0; X_1; 0; X_2^T] \in \mathbb{R}^{n \times m_1}$ 。

我们此时可以把 A 改写成以下形式 [3]。

$$A = B - EE^T, B = \begin{pmatrix} B_1 & \\ & B_2 \end{pmatrix}, B_i = \begin{pmatrix} \hat{B}_i & \hat{F}_i \\ \hat{F}_i^T & C_i + D_i \end{pmatrix}$$
 (5)

其中, $D_1 = X_1 X_1^T$, $D_2 = X_2^T X_2^T$

然后根据 Sherman-Morrison 公式, 我们可以得到以下等式:

$$A^{-1} = B^{-1} + B^{-1} E \underbrace{(I - E^T B^{-1} E)}_{X}^{-1} E^T B^{-1} \equiv B^{-1} + B^{-1} E X^{-1} E^T B^{-1}$$
(6)

我们可以对 $B^{-1}E$ 进行 SVD 分解 (rank-k) 截断) 来低秩近似 [3]。

$$B^{-1}E \approx U_k V_k^T$$
 rank-k 低秩近似

最后,从(6),(rank-k 低秩近似)我们可以写出以下预条件子2。

$$M^{-1} = B^{-1} + U_k H_k U_k^T, \ H_k = (I - U_k^T E V_k)^{-1}$$
 低秩修正预条件子

1.2 多级方法

我们可以进一步扩展低秩修正预条件子到多级的情况。首先,我们可以将对角块 A_i 写成 $B_i - E_i E_i^T$, $B = \begin{pmatrix} B_{i_1} \\ B_{i_2} \end{pmatrix}$ 。我们可以进一步递归展开 A_i^{-1} 来得到 M_i^{-1} 。

$$M_{i}^{-1} \equiv A_{i}^{-1} = \begin{pmatrix} A_{i_{1}}^{-1} \\ A_{i_{2}}^{-1} \end{pmatrix} + U_{i}H_{i}U_{i}^{T}$$

$$\approx B_{i}^{-1} + U_{i}H_{i}U_{i}^{T}$$

$$\approx \begin{pmatrix} M_{i_{1}}^{-1} \\ M_{i_{2}}^{-1} \end{pmatrix} + U_{i}H_{i}U_{i}^{T}$$
(7)

我们最后可以得到以下多级递推式 (MLR)[3]:

$$M_i^{-1} = \begin{cases} \binom{M_{i_1}^{-1}}{M_{i_2}^{-1}} + U_i H_i U_i^T & \text{假如 i 不是叶子节点} \\ L_i^{-T} L_i^{-1} \to L_i^{-T} D_i^{-1} L_i^{-1} & \text{i 是叶子节点,做 IC/ILU 分解} \\ & \text{MLR 预条件子递归式} \end{cases}$$

²详细推导过程过程请见 [3] 第 2.2 和第 3 节

2 基于舒尔补的低秩修正 (SLR) 预条件子

对于矩阵 A,我们可以图切割(用 metis 做图切割-对边划分,方法和上面 MLR 的方法一样),并按图切割的结果来重排序。

Figure 2: SLR-按边划分矩阵 [4]

构造边界方程并求解:

$$A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix} \quad A = \begin{bmatrix} B & E \\ F & C \end{bmatrix} \tag{8}$$

(9)

其中
$$B=\begin{bmatrix}B_1&&&\\&\ddots&&\\&&B_p\end{bmatrix}$$
 代表区域 $1...p$ 的内部节点, $F=[F_1\cdots F_p],\ E=$

 $[E_1; \cdots; E_p]$ 代表区域 1...p 的内部-边界节点连接边,C 代表边界节点 我们知道

$$\begin{cases} x = B^{-1}(f - Ey) \\ (C - FB^{-1}E)y = g - FB^{-1}f \end{cases}$$
 (10)

然后构造舒尔补 $S = C - FB^{-1}E$ 需要求解 s 次 B。我们此时需要构造一个 \hat{S} 来近似 S,然后得到预条件子:

$$M = \begin{pmatrix} I \\ FB^{-1} & I \end{pmatrix} \begin{pmatrix} B & E \\ & \hat{S} \end{pmatrix}$$
 (SLR 预条件子)

假如我们用 C^{-1} 来近似 S^{-13} ,我们可以得到区域分解(DD)的预条件子,此时预条件子求解仅需求解 2 次 B。另一种做法是对 S 做低秩近似 [4]:

$$S^{-1} \approx C^{-1} + LRC \tag{11}$$

这时我们可以引入矩阵 H 做谱分解 [4]。

^{3[4]} 的第 5 节有更详细的探讨

设一个矩阵 H 满足:

$$H = L^{-1}E^TB^{-1}EL^{-T} = UDU^T$$
, U 为酉矩阵, $D = \text{diag}(\lambda_1, \dots, \lambda_s)$ (12)

则 S 满足 [4]

$$S = L(I - H)L^{T} \tag{13}$$

然后我们可以近似 $S^{-1}[4]$ 。

$$S^{-1} = L^{-T}(I - H)^{-1}L^{-1}$$

$$= L^{-T}U(I - D)^{-1}U^{T}L^{-1}$$

$$\approx L^{-T}U(I - \tilde{D})^{-1}U^{T}L^{-1}, \quad \tilde{D} = \operatorname{diag}(\tilde{\lambda}_{1}, \dots, \tilde{\lambda}_{s})$$

$$\approx C^{-1} + L^{-T}U[(I - \tilde{D})^{-1} - I]U^{T}L^{-1}$$
(14)

R. Li, Y. Xi 和 Y. Saad 中提出 [4] 了以下几种近似谱分解算法, 不同的近似谱分解算法所带来的 $S\tilde{S}^{-1}$ 的谱范数不同以及所带来的收敛性 也不同。

$$\tilde{\lambda}_i = \begin{cases} \lambda_i & \text{假如} i \leq k \\ 0 & \text{其他情况} \end{cases}$$

$$\tilde{\lambda}_i = \begin{cases} 1 - (1 - \lambda_i)/\epsilon & \text{假如} i \leq k \\ 0 & \text{其他情况} \end{cases}$$

$$\tilde{\lambda}_i = \begin{cases} 1 & \text{假如} i \leq k \\ 1 - \lambda_i & \text{其他情况} \end{cases}$$

$$\tilde{\lambda_i} = \begin{cases} 1 & \text{假如} i \le k \\ 1 - \lambda_i & \text{其他情况} \end{cases}$$

但是我们最后采用的是用 Matlab 中 eigs 命令直接取 S 的前 k 个 最大的特征值(我们测试用的 k 是 20)。

基于图稀疏化技术(feGRASS)的预条件子 3

我们知道矩阵 A 可以分成对角矩阵 D,上对角,下对角矩阵 L、U。

$$A = D + L + U \tag{15}$$

我们可以将 L 和 U 分别看成两个无向图 \tilde{L} 、 \tilde{U} ,然后分别采用无向图 稀疏化技术 [7]。 对于负数边,我们将其权值处理为一个极小的正数。 我 们可以得到以下预条件子图稀疏化预条件子。

$$M = D + \tilde{L} + \tilde{U}$$
 (图稀疏化预条件子)

实验与讨论

因为不同的预条件子使用条件不同,我们分开用对称正定矩阵和一般非对称矩阵进行了测试,测试样例可以在SuiteSparse Matrix Collection可以找到[1]。

1 对称正定矩阵

我们用对称正定矩阵作为输入,用 PCG 求解速度/每行填入数量测试了六种预条件子方法 Ichol、feGRASS、Block Jacobi、DD type、MLR、 SLR^4 。

2-条件数 矩阵名字 size NNZ (百分比) Dubcova2 65025 * 65025 1030225 (.024%) 1.04e + 04 $36366\overline{43} \ (.017\%)$ Dubcova3 1.15e + 04146689 * 146689 Ecology2 999999 * 999999 4995991 (.0005%) 6.66e + 07Thermal1 82654 * 82654 574458 (.0084%) 4.96e + 05Thermal2 1228045 * 1228045 8580313 (.00057%) 7.48e + 064817870 (.00094%) Apache2 715176 * 715176 5.32e + 06

Table 1: 测试(对称正定)矩阵参数

Figure 3: 对称正定矩阵实验结果

	IChol		feGRASS		BlockJacobi		DDPre		MLR		SLR	
	Fills	Iter(Itime)	Fills	Iter(Itime)	Fills	Iter(Itime)	Fills	Iter(Itim e)	Fills	Iter(Itime)	Fills	Iter(Itime)
Dubco va2	10.7	38(0.27)	5.33	164(0.99)	9.37	53(0.39)	9.19	37(0.42)	9.35	58(0.65)	9.19	35(0.39)
Dubco va3	10.7	40(0.63)	7.96	140(2.09)	8.84	53(0.85)	8.94	38(0.89)	8.85	56(1.83)	8.94	35(0.81)
Ecolog y2	13.9	212(19.1)	6.32	70(5.73)	12.2	373(42.4)	12.2	263(39.2)	12.2	330(46.7)	12.2	229(34.0)
Therm al1	14.6	59(0.61)	4.76	47(0.31)	13.5	120(1.15)	13.2	88(1.46)	13.5	63(1.03)	13.2	50(0.74)
Therm al2	14.9	217(35.1)	6.16	57(5.29)	14.3	337(48.0)	14.3	234(54.0)	14.3	265(58.6)	14.3	212(49.9)
Apach e2	13.0	126(8.39)	12.1	79(5.48)	13.4	206(14.0)	13.2	155(17.3)	13.3	170(18.5)	13.2	152(17.2)

经过测试 5, 我们可以发现

- 相比于块-Jacobi 预条件子,低秩修正预条件子确实能降低迭代步数,但 MLR 是否能缩短迭代时间存疑。

⁴Block Jacobi、DD type、MLR、SLR 方法都划分为 8 个子区域,子区域内部使用 Ichol ⁵测试结果中 Fill 是指平均每行的填入元

- SLR 一般比 MLR 迭代速度要更快,但填入元 SLR 和 MLR 没有很明显的差异。
- 对于相对稠密的矩阵 (Dubcova2/Dubcova3), feGRASS 技术迭代步数会显著高于其他预条件子,但对于更加稀疏的矩阵,feGRASS 技术的迭代步数/速度会明显快于其他预条件子。
- feGRASS 的填充元是上面 6 种预条件子中最少的。

2 一般非对称矩阵

对于 ILU、feGRASS 方法,我们使用一般非对称矩阵作为输入源并使用 GMRES 求解 (restart = 10)。

		ILU				GraphSparsification				
Cases	Size	Ptime	Itime	Iters	Fill	Ptime	Itime	Iters	Fill	
rajat31	4.7E6(2.0E7)	Zero diag	onal			16.8	1.95	2	2.11	
freescale1	3.4E6(1.7E7)	0.44	92.4	281	2.99	18.4	141	439	2.27	
Asic_680k	6.8E5(2.6E6)	Zero diagonal				0.93	0.87	15	1.32	
dc1	1.2E5(7.7E5)	7.52	0.84	102	3.78	2.43	0.17	19	2.06	
dc2	1.2E5(7.7E5)	7.48	0.85	103	3.78	2.29	0.18	19	1.97	
dc3	1.2E5(7.7E5)	7.43	-	-	3.78	2.38	4.13	568	2.02	
trans4	1.2E5(7.5E5)	7.64	0.25	29	3.71	2.45	0.12	10	1.93	
trans5	1.2E5(7.5E5)	7.50	2.42	300	3.71	2.60	0.17	18	1.94	
transient	1.8E5(9.6E5)	Zero diagonal				1.82	6.03	508	2.12	
memchip	2.7E6(1.3E7)	Zero diagonal				9.00	6.82	22	2.15	
mc2depi	5.3E5(2.1E6)		_	-			-	-		

Figure 4: 一般非对称矩阵实验结果

经过测试, 我们可以发现

- 非对称矩阵稀疏化 (feGRASS) 方法迭代时间/步数一般优于 ILU, 且每行填入元明显少于 ILU, 但是也存在着稀疏化以后 矩阵接近奇异的问题。
- Matlab ILU 命令可能无法得到分解结果。

总结

我们这一次期末 project 主要学习并比较了几种预条件子。针对对称正定矩阵的预条件子,我们编程实现了 MLR 预条件子,SLR 预条件子以及基于图稀疏化技术的预条件子,然后我们也对其性能做了一个初步的研究比较,但目前我们的实现还比较原始,未能实现完全并行计算。在对称正定矩阵上,feGRASS 的填入元可以明显减少,但图稀疏化预条件子的迭代时间/步数依赖于原始矩阵的稠密性。SLR 在迭代时间/步数一般优于 MLR,但在填入元上 MLR 和 SLR 结果相近。MLR 在迭代步数上一般优于 feGRASS,

但 MLR 不一定能缩短迭代时间。针对非对称矩阵,我们发现图稀疏化方法在迭代时间/步数上一般优于 ILU,但是也存在着稀疏化以后矩阵接近奇异的问题。 未来我们会关注于 MLR 和 SLR 的并行化实现并尝试针对较为稠密的矩阵进一步优化图稀疏化技术。

参考文献

- [1] T.A. Davis and Y. Hu. The university of florida sparse matrix collection. *ACM Transactions on Mathematical Software*, 38(1), 2011.
- [2] G. Karypis. Metis serial graph partitioning and fill-reducing matrix ordering. https://github.com/KarypisLab/METIS.
- [3] R. Li and Y. Saad. Divide and conquer low-rank preconditioners for symmetric matrices. SIAM Journal on Scientific Computing, 35(4):A2069–A2095, 2013.
- [4] Y.Xi R. Li and Y. Saad. Schur complement-based domain decomposition preconditioners with low-rank corrections. *Numerical Linear Algebra with Applications*, 26:706–729, 2016.
- [5] Y. Saad. A short course on: Preconditioned krylov subspace methods. https://www-users.cs.umn.edu/~saad/Calais/PREC.pdf.
- [6] Y. Saad. *Iterative Methods for Sparse Linear Systems*. Society for Industrial and Applied Mathematics, 2003.
- [7] W. Yu Z. Liu and Z.Feng. fegrass: Fast and effective graph spectral sparsification for scalable power grid analysis. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*.