Sortowanie bitoniczne

Opis algorytmu

Sortowanie bitoniczne nie było żadnym z zadań na kursach ASD. Urzekło mnie ono swoim wzorem wywołań, naprzemiennie obserwujemy wywołania bitSortUp i bitSortDown. Dodatkowo należy do klasy algorytmów niepomnych - każde wywołanie dotyka tych samych komórek pamięci. Łącząc niepomność z brakiem konfliktów odczytu i zapisu otrzymujemy, wydaje się, prawie idealny algorytm sortujący do zrównoleglenia.

Spójrzmy na sam algorytm:

```
void bit_merge(
                                           void bit_sort(
 long long* ar,
                                             long long* ar,
 size_t left,
                                             size_t left,
 size_t right,
                                             size_t right,
 size_t n,
                                             size_t n,
  int dir)
                                              int dir)
{
  if (n == 1) return;
                                             if (n == 1) return;
  size_t mid = (left + right) / 2;
                                             size_t mid = (left + right) / 2;
  size_t half = n / 2;
                                             bit_sort(ar, left, mid, n/2, ASC);
  for (size_t i = 0; i < half; ++i)</pre>
                                             bit_sort(ar, mid, right, n/2, DESC);
    bitonic_swap(
                                             bit_merge(ar, left, right, n, dir);
        ar,
        left + i,
        mid + i,
        dir);
 bit_merge(ar, left, mid, n/2, dir);
  bit_merge(ar, mid, right, n/2, dir);
}
```

Sortowanie bitoniczne ma jedną wadę, długość tablicy wejściowej musi być postaci 2^k . Łatwo można sobie z tym poradzić dopełniając tablicę do najbliższej potęgi 2 wartością ∞ (na przykład LONG LONG MAX), a potem ucinając nadmiarowy koniec posortowanej zmodyfikowanej tablicy.

Złożoności

Klasyczny algorytm w wersji 1 wątkowej ma złożoność czasową: $\mathcal{O}(n \ln^2(n))$, co otrzymujemy wprost z Twierdzania o rekursji uniwersalnej.

Złożoność pamięciowa: $\mathcal{O}(\ln^2(n))$ przez rekursję, samo sortowanie następuje w miejscu.

Model PRAM

Jeśli zrównoleg
limy pętlę for i wszystkie podwywołania w rekursji to otrzymamy:
 $T(n)=\mathcal{O}(\ln^2(n))$

 $\hat{W}(n) = \hat{\mathcal{O}}(n \ln^2(n))$

Brak konfliktów odczytu i zapisu, więc jesteśmy w klasie EREW.

Optymalizacje

Zawsze dobrym pomysłem jest uciąć rekursję w porę, więc od pewnego rozmiaru podzadania zamiast zagłębiać się rekurencyjnie wywołuję insertionSort.

Rysunek 1: klasyczny bitonicSort vs bitonicSortWithInsertion

Nie poprawiło to wydajności, tak jakbym się spodziewał. Lepsze wyniki osiągnelibyśmy zastępując bitMerge scalaniem podobnym jak w mergeSort, ale wtedy algorytm wykorzystywałby dodatkową pamięć, czego nie chciałem.

OpenMP

Bibliotekę **OpenMP** wykorzystałem do zrównoleglenia rekurencyjnych podzadań bitSort. Utworzyłem pojedynczą grupę wątków nad korzeniem rekursji i pozwoliłem bibliotece zarządzać wątkami w podzadaniach. Przed bitMerge zsynchronizowałem wątki. Próba zrównoleglenia również pętli for w bitMerge zakończyła się niepowodzeniem, wątki zaczynały walczyć o zasoby i czas wykonania się diametralnie wydłużał.

Watki systemowe

Tutaj zasada zrównoleglenia jest bardzo podobna. Ustaliłem granicę, powyżej której funkcja będzie wielowątkowa. Poniżej tego poziomu nakład zarządzania wątkami może przekroczyć czas działania wersji 1 wątkowej. Załóżmy, że dane są odpowiednio duże.

- 1. Najpierw ustalona przeze mnie liczba wątków podzieli się tablicą z danymi. Każdy wątek będzie odpowiedzialny za swój blok.
- 2. Wątki sortują bloki wywołując bitSort na bloku.
- 3. Synchronizacja.
- 4. Dwukrotnie maleje liczba wątków, dwukrotnie zwiększa się rozmiar bloku. Jesteśmy teraz w momencie, kiedy klasyczny bitSort wchodzi do góry od liści wykonując tylko bitMerge.
- 5. Wątki scalają bloki wywołując bitMerge.
- 6. Synchronizacja.
- 7. Zmniejszenie liczby wątków, zwiększenie rozmiarów bloków.
- 8. ... aż rozmiar bloku, będzie równy rozmiarowi tablicy wejściowej.

```
Z moich obliczeń wynika, że: T(n) = \mathcal{O}(n \ln(n)) W(n) = \mathcal{O}(n \ln^2(n)) bez zmian
```

Pomiary czasowe

Lokalne pomiary przeprowadziłem na procesorze z 16 rdzeniami. Raz scheduler tak ułożył wątki, że moje sortowanie bitoniczne na wątkach systemowych wyprzedziło sort z STL o 300ms. To się już nigdy nie powtórzyło.

Rysunek 2: Pomiary lokalne

Rysunek 3: Pomiary na serwerze student

Rysunek 4: Pomiary na serwerze miracle

Jak widać na powyższych wykresach:

- 1. Nie udało mi się pokonać sorta z STL.
- 2. OpenMP działa zauważalnie gorzej na studencie.
- 3. Sukcesem jest, że lepiej zarządzam wątkami niż robi to biblioteka OpenMP

Podsumowanie

Mojej implementacji jest daleko od idealnej sieci sortującej. Wyniki pokazują również, jak bardzo dopracowany jest sort z STL. Być może na CUDA udałoby się pokonać sort z STL.

CUDA (aktualizacja po czasie)

W końcu udało mi się zebrać do implementacji sortowania bitonicznego na CUDA i wyniki są bardzo zadowalające. sort z STL został pokonany ;).

Testowane na karcie NVIDIA RTX A4000.

Rysunek 5: STL vs CUDA

Kilka słów o implementacji:

- 1. Całość opiera się o 2 pętle for. Jedna przebiega po rozmiarze podzadania w sortowaniu bitonicznym, a druga udaje mergowanie.
- 2. Równoległość osiągnięta z pomocą biblioteki modernypu (powodem jest tylko i wyłącznie moja wygoda, żeby samemu nie pisać kerneli).