EE5175: Image Signal Processing

Lab-9

- 1. Assume a Markov-1 process with covariance matrix R of size 8×8 and $\rho = 0.91$. Compute the Energy Packing Efficiency and De-correlation Efficiency of the Walsh-Haddamard Transform and Discrete Cosine Transform for the above process. What is your observation about the eigenvectors of R in relation to the DCT basis?
- 2. Find $\beta^2 R^{-1}$, where $\beta^2 = \frac{1-\rho^2}{1+\rho^2}$. Does $\beta^2 R^{-1}$ have a tridiagonal structure?. Is it close to the tridiagonal matrix Q given by,

$$\mathbf{Q} = \begin{bmatrix} 1 - \alpha & -\alpha & 0 & 0 & 0 & 0 & 0 & 0 \\ -\alpha & 1 & -\alpha & 0 & 0 & 0 & 0 & 0 \\ 0 & -\alpha & 1 & -\alpha & 0 & 0 & 0 & 0 \\ 0 & 0 & -\alpha & 1 & -\alpha & 0 & 0 & 0 \\ 0 & 0 & 0 & -\alpha & 1 & -\alpha & 0 & 0 \\ 0 & 0 & 0 & 0 & -\alpha & 1 & -\alpha & 0 \\ 0 & 0 & 0 & 0 & 0 & -\alpha & 1 & -\alpha \\ 0 & 0 & 0 & 0 & 0 & 0 & -\alpha & 1 - \alpha \end{bmatrix}$$

where $\alpha = \frac{\rho}{1 + \rho^2}$

Try diagonalizing $\beta^2 R^{-1}$ and Q using the DCT matrix. What is your observation.?

- 3. Compute SVD for the given 8 × 8 image g (provided in imageFile.mat and also given below) using the following steps:
 - (a) Perform eigen-value decomposition of $\mathbf{g}^T \mathbf{g}$ and $\mathbf{g} \mathbf{g}^T$.
 - (b) Find the singular value matrix Σ .
 - (c) Reconstruct the image using Σ and the eigen-vector matrices.
- 4. Remove one singular value at a time from Σ and reconstruct the image $(\widehat{\mathbf{g}_k})$. Compute $\|\mathbf{g} \widehat{\mathbf{g}_k}\|^2$ and compare it with the sum of the squares of the first k singular values.

Image $\mathbf{g} =$	207	244	107	173	70	111	180	244
	230	246	233	193	11	97	192	86
	3	40	202	189	24	195	70	149
	232	247	244	100	209	202	173	57
	161	244	167	167	177	47	167	191
	24	123	9	43	80	124	41	65
	71	204	216	180	242	113	30	129
	139	36	238	8	8	164	127	178

 $-\mathrm{end}-$