

Department of Mathematics

VECTOR CALCULUS, LAPLACE TRANSFORM & NUMERICAL METHODS (MA221TA) <u>UNIT-II</u>

VECTOR INTEGRATION

TUTORIAL SHEET

- 1. Find the total work done by the force represented by $\vec{F} = 3xy\hat{\imath} y\hat{\jmath} + 2zx\hat{k}$ in moving a particle round the circle $x^2 + y^2 = 4$, $x = 2\cos\theta$, $y = 2\sin\theta$ & z = 0, $0 \le \theta \le 2\pi$.
- 2. Evaluate $\int_C y^2 dx 2x^2 dy$ along the parabola $y = x^2$ from (0,0) to (2,4).
- 3. Evaluate the line integral $\int_C (x^2 + xy)dx + (x^2 + y^2)dy$, where $C: square: x = \pm 1$, $y = \pm 1$ Ans: 0
- 4. Verify Green's theorem for $\int_C (e^{-x} \sin y) dx + (e^{-x} \cos y) dy$, where C is the rectangle, whose vertices are $(0,0), (\pi,0), \left(\pi,\frac{\pi}{2}\right)$ and $\left(0,\frac{\pi}{2}\right)$. Ans: $\left[2(e^{-\pi}-1)\right]$
- 5. Using Green's theorem, evaluate $\oint_C (x^2 \cosh y \, dx + (y + \sin x) \, dy)$ where C is the boundary of the rectangle $0 \le x \le \pi$, $0 \le y \le 1$. Ans: $\pi(\cosh 1 1)$
- 6. Using the Green's theorem, find the area enclosed between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$
- 7. If *S* is the surface of the sphere $x^2 + y^2 + z^2 = d^2$ and $\vec{A} = ax\hat{\imath} + by\hat{\jmath} + cz\hat{k}$, evaluate $\iint_S \vec{A} \cdot \hat{n} \, ds$. $Ans: \frac{2\pi d^3}{3} (a + b + c)$
- 8. If $\vec{F} = 2y\hat{\imath} 3\hat{\jmath} + x^2\hat{k}$ and S is the surface of the parabolic cylinder $y^2 = 8x$ in the first octant bounded by the planes y = 4 and z = 6, show that $\iint_S \vec{F} \cdot \hat{n} \, ds = 132$.
- 9. Find the surface integral over the parallelepiped x = 0, y = 0, x = 1, y = 2, z = 3 when $\vec{A} = 2xy\hat{\imath} + yz^2\hat{\jmath} + xz\hat{k}$ Ans: 33.
- 10. Using divergence theorem, evaluate $\iint_S \vec{r} \cdot \hat{n} \, ds$ where S is the surface of the sphere $x^2 + y^2 + z^2 = 9$. Ans: 108π
- 11. Verify divergence theorem for $\vec{F} = 4xz\hat{\imath} y^2\hat{\jmath} + yz\,\hat{k}$ taken over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
- 12. Using divergence theorem, evaluate $\iint_S \vec{F} \cdot \hat{n} \, ds$ over the entire surface S of the region above xy plane bounded by the cone $x^2 + y^2 = z^2$ the plane z = 4 where $\vec{F} = 4xz\hat{\imath} xyz^2\hat{\jmath} + 3z\,\hat{k}$ Ans: 704π
- 13. Verify Stokes's theorem where $\vec{A} = (2x y)\hat{\imath} yz^2\hat{\jmath} y^2z\,\hat{k}$ and S: upper half of the surface of the sphere $x^2 + y^2 + z^2 = 1$ Ans: π
- 14. Evaluate $\oint_C xy \, dx + xy^2 \, dy$ by Stoke's theorem where C is the square in the xy plane with vertices (1,0) (-1,0) (0,1) (0,-1).
- 15. Evaluate $\oint_C 4z \, dx 2x \, dy + 2x \, dz$ by Stoke's theorem where C is the ellipse $x^2 + y^2 = 1$, z = y + 1. Ans: -4π