Tema nr. 1

1. Să se găsească cel mai mic număr pozitiv u > 0, de forma $u = 10^{-m}$, unde $m \in \mathbb{N}$, care satisface proprietatea:

$$1 + u \neq 1$$

unde prin $+_c$ am notat operația de adunare efectuată de calculator. Numărul u se numește *precizia mașină*.

2. Operația $+_c$ este *neasociativă*: fie numerele x=1.0, y=u/10, z=u/10, unde u este precizia mașină calculată anterior (acea valoare pentru care $1+_c u \neq 1$ și $1+_c u/10=1$). Să se verifice că operația de adunare efectuată de calculator este neasociativă:

$$(x +_{c} y) +_{c} z \neq x +_{c} (y +_{c} z).$$

Să se găsească un exemplu pentru care operația de înmulțire \times_c este neasociativă.

3. Aproximări polinomiale ale funcției sin

Fie polinoamele:

$$P_{1}(x) = x - c_{1}x^{3} + c_{2}x^{5}$$

$$P_{2}(x) = x - c_{1}x^{3} + c_{2}x^{5} - c_{3}x^{7}$$

$$P_{3}(x) = x - c_{1}x^{3} + c_{2}x^{5} - c_{3}x^{7} + c_{4}x^{9}$$

$$P_{4}(x) = x - 0.166x^{3} + 0.00833x^{5} - c_{3}x^{7} + c_{4}x^{9}$$

$$P_{5}(x) = x - 0.1666x^{3} + 0.008333x^{5} - c_{3}x^{7} + c_{4}x^{9}$$

$$P_{6}(x) = x - 0.16666x^{3} + 0.0083333x^{5} - c_{3}x^{7} + c_{4}x^{9}$$

$$P_{7}(x) = x - c_{1}x^{3} + c_{2}x^{5} - c_{3}x^{7} + c_{4}x^{9} - c_{5}x^{11}$$

$$P_{8}(x) = x - c_{1}x^{3} + c_{2}x^{5} - c_{3}x^{7} + c_{4}x^{9} - c_{5}x^{11} + c_{6}x^{13}$$

unde constantele c_i au următoarele valori:

Toate polinoamele de mai sus sunt aproximări ale funcției *sin* pentru $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$\sin(x) \approx P_i(x)$$
 , $\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Să se genereze 10.000 de numere aleatoare din intervalul $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ și să se

calculeze valorile celor 8 polinoame de mai sus în aceste puncte. Se consideră că valoarea funcției sin calculată de biblioteca matematică a programului cu care lucrați (Math.sin – Java , Math.Sin – C#, math.sin - Python) este valoarea exactă a funcției sin.

$$v_{exact} = \sin(x) = Math.\sin(x)$$
.

Pentru fiecare din cele 10.000 de numere generate să se memoreze cele trei polinoame care au furnizat cele mai bune aproximări (acele polinoame care furnizează cele mai mici erori).

$$eroare_i(x) = /P_i(x) - v_{exact}/.$$

În funcție de aceste rezultate, să se facă o ierarhie a celor 8 polinoame.

Să se implementeze modul de calcul al celor 8 polinoame astfel încât să se facă un număr minim/cât mai mic de operații elementare (adunări, scăderi, înmulțiri, împărțiri). De exemplu, pentru polinomul P_2 putem folosi următoarea grupare a termenilor:

$$P_2(x) = x(1 + y(-c_1 + y(c_2 - c_3y)))$$
 unde $y = x^2$

Cele 6 constante c_i vor fi declarate ca atare în program, fie vor fi calculate o singură dată.

Bonus 5pt: să se calculeze timpul de calcul pentru fiecare din cele 8 polinoame folosind aceleași 10.000 de valori din $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Să se afișeze în ordine crescătoare acești 8 timpi de lucru (și numărul polinomului care a produs timpul de lucru).