Table 1. Chemical Compositions of Alloys

	7					7	٦		1	1	Т		1		1		T	\neg		T		
Zr	%	•	1	'	'	'	1	0.01	'			0.01										
Be	%	0.0003	0.0004	0.0003		,	0.0004						0.0003		~;	60000	.	0.0008	0.0009	-000	0.0007	0.0004
ō	%	0.0005	0.0014	0.0012	0.0011	0.0011	0.0008	0.0011	0.0016	0.0014	0.0017	0.0012	0.000	0.0011	0.0021	6000.0		0.0008	0.0011		0.0012	0.0015
Z	%	0.0007	0.0006	0.0002	0.0005	0.0008	0.0007	0.0009	0.0008	0.000	0.0008	0.0000	0.0010	0.0008	0.0008	0.0007		0.0008	0.0006		0.0008	0.0009
Fe	%	0.003	0.003	0.003	0.001	0.001	0.001	0.001	0.002	0.001	0.002	0.001	0.00	0.001	0.001	0.003		0.003	0.003		0.002	0.003
S	%	0.01	10.0	10.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	10.0	0.01	0.01	0.01	0.01		0.01	0.01		0.01	0.01
RE	%	80.0	0.10	0.20	0.49	0.15	0.18	0.12	0.16	0.03	80.0	0.24	0.75	0.05	90.0	٠		2.4	0.25		0.05	0.12
S	%	1.35	080	06.0	1.18	0.46	0.48	0.52	0.55	0.51	0.25	0.15	50.0	0.28	0.55			1	0.1		0.45	0.85
చ	%	0.25	0.20	0.20	0.22	0.53	0.52	99.0	89.0	0.85	0.95	0.85	9.0	1.05	08.0	,			1.4		1.3	8.0
Zu	%	0.15	0.10	0.40	0.35	0.14	0.62	0.12	0.64	0.11	0.72	0.15	0.48	0.05	09.0	0.74		0.01	0.05		0.54	0.15
Mn	%	0.26	0.30	0.25	0.30	0.32	0.28	0.12	0.31	0.24	0.28	0.07	0.18	0.22	0.22	0.23		0.29	0.31		0.19	0.24
Į	%	4.8	5.3	6.1	5.3	7.0	6.9	7.9	7.9	8.8	8.5	8.7	8.9	8.4	9.1	8.9		4.3	4.4		9.4	8.1
Allov	-	Example	Example 2	Example 3	Example4	Example5	Example 6	Example7	Example8	Example9	Example 10	Example 11	Example 12	Example 13	Example 14	Comparative	Example	Comparative Example2	Comparative	Examples	Comparative Example4	Comparative Evample 5

Ę.

The state of the s

Table 2. Intermetallic Phases in New Alloys

Alloy	Phase Composition
Example 1	Mg-Al _{si} , Al ₂ (Sr, Ca) ₁ , Al _x (Mn, RE) _y
Example 2	Mg-Al _{si} , Al ₂ (Sr,Ca) ₁ , Al ₃ (Mn,RE) ₃
Example 3	Mg-Al _{ss} , Al ₂ (Sr,Ca) ₁ , Al ₄ (Mn,RE) ₂
Example 4	Mg-Al _{ss} , Al ₂ (Sr,Ca) ₁ , Al ₂ (Sr,Ca,RE ₁), Al ₃ (Mn,RE) ₃
Example 5	Mg-Al _{ss} , Mg ₁₇ (Al,Ca,Sr) ₁₂ , Al ₂ Ca _{0.5} Sr _{0.5} , Al ₈ (Mn,RE) ₅
Example 6	Mg-Alss, Mg ₁₇ (Al,Ca,Sr,Zn) ₁₂ , Als (Mn,RE) ₅ , (Al, Zn) ₂ Ca _{0,5} Si _{0,5}
Example 7	Mg-Alss, Mg ₁₇ Al ₉ Ca ₉ Sr, Al ₂ Ca _{0.5} Sr _{0.5} , Al ₈ (Mri,RE) ₅
Example 8	Mg-Alss, Mg ₁₇ (Al,Ca,Sr,Zn) ₁₂ , Al ₈ (Mn,RE) ₅ (Al, Zn) ₂ Ca _{0,5} Sr _{0,5}
Example 9	Mg-Al _{ss} , Mg ₁₇ Al ₉ Ca ₂ Sr, Al ₂ Ca _{0,5} Sr _{0,5} , Al ₈ (Mn,RE) ₅
Example 10	Mg-Al _{ss} , Mg ₁₇ (Al,Ca,Sr,Zn) ₁₂ , Al ₈ (Mn,RE) ₅ , (Al, Zn) ₂ Ca _{0.8} Sr _{0.2}
Example 11	Mg-Al _{ss} , Mg ₁₇ (Al,Ca,SI) ₁₂ , Al ₂ Ca _{0,8} Sī _{0,2} , Al ₈ (Mn,RE) ₅
Example 12	Mg-Al _{ss} , Mg ₁₇ (Al,Ca ₃ Sr ₂ Zn) ₁₂ , Al ₂ (Ca ₃ RE) ₂ , Al ₈ (Mn,RE) ₅
Example 13	Mg-Al _{ss} , Mg ₁₇ (Al,Ca,Sr,Zn) ₁₂ , Al ₈ (Mn,RE) ₅ , (Al, Zn) ₂ (Ca, Sr) ₁
Example 14	Mg-Alss. Mg17 (Al,Ca,Sr,Zn)12, Als (Mn,RE)3, (Al, Zn)2 Cao, Sro, S
Comparative example 1	Comparative example 1 Mg-Als, Mg ₁₇ (Al,Zn) ₁₂ , AlsMns
Comparative example 2	Comparative example 2 Mg-Alss, Alıı RBs, Alıı RBs Mn
Comparative example 3	Comparative example 3 Mg-Als, Al ₂ (Ca,Sr), Al ₂ (Mn,RE),
Comparative example 4	Comparative example 4 Mg-Alss, Mg ₁₇ (Al,Ca,Sr,Zn) ₁₂ , Als (Mn,RE) ₅ , (Al, Zn) ₂ (Ca, Sr) ₁
Comparative example 5	Comparative example 5 Mg-Als, Mg17 (Al,Ca,St) ₁₂ , Al ₂ (Ca,St) ₁ , Al ₈ (Mn,RE) ₅

Fig. 2

Table 3. <u>Die Castability Properties</u>

Alloy	Casting temperature [°C]	Oxidation Resistance	Fluidity	Die Sticking	Rank
Example 1	690	9.5	9	8.5	88
Example 2	690	9.5	9	9	91
Example 3	680	10	10	9.5	96
Example 4	690	9.5	9	9	92
Example 5	680	10	10	10	100
Example 6	660	10	8.5	9	91
Example 7	670	10	10	10	100
Example 8	660	10	9	9.5	95
Example 9	670	10	10	10	100
Example 10	680	10	10	9	93
Example 11	670	10	10	9.5	97
Example 12	670	10	10	9	93
Example 13	670	10	10	9	90
Example 14	660	10	9	9	92
Comparative Example 1	670	9.5	10	10	99
Comparative Example 2	690	8	. 8	9	80
Comparative Example 3	700	8	8	6	67
Comparative Example 4	670	10	10	7	80
Comparative Example 5	660	10	10	7	80

Fig. 3

Table 4. Mechanical Properties and Creep Behavior

Allov	TYS	TYS [MPa]	UTS	E%	CVS	CYS [MPa]	MCR.	MCR. 10' [S ⁻¹]	CR mg/cm²/day
		0001	Mra	2000	20°C	150°C	135°C	150°C	
	20°C	၁ ကြ) }	3			85 MPa	50 MPa	
		5	250	2	144	112	1.8	-:-	1.48
Example 1	145	711	000	1	147	105	1.9	1.2	1.45
Example 2	145	108	##7	2	150	118	13.6	3.2	1.40
Byample 3	153	116	749	,	701	133	1.4	1.1	0.86
Example 7	153	130	253	×	CCI	126	0 7	-	1.24
Example	166	135	275	01	167	150	0,1		1.27
Example 2	164	125	272	∞	165	125	5.9	1.0	
Example 6	172	140	275	∞	171	138	7.1	Ci S	1.01
Example 7	7/1	130	272	9	174	130	9.8	7.7	1.12
Example 8	CI	061	000	4	178	140	6.9		0.93
Example 9	178	147	707	,	VL1	172	89	2.7	1.21
Evample 10	175	120	700		1/1	200	0.4	2.5	86.0
Evalupie 10	174	121	259	2	1/4	771	1.5		108
Example 11		115	252	9	166	112	1.7.1	6.7	1.00
Example 12	104	CIT	0,00	-	177	122	7.2	1.9	0.95
Example 13	178	133	7007	-	181	138	11.5	2.5	1.03
Example 14	182	122	007	. 4	191	105	305	19	1.31
Comparative Example 1	160	102	7007	2	301	100	12.4	2.2	1.62
Comparative Example 2	135	100	740	2	6	001	7.8	2.2	1.56
Comparative Example 3	143	108	235	0	747	201	12.2	23	1.41
Comparation Commiss A	182	138	238	-	181	151	1	-	1 43
Comparative Examine 4	001	141	232	_	179	142	8.3	7.7	2.1

Fig. 4

Fig. 5A

Fig. 5B

Fig. 6A

Fig. 6B