**Long Live the Sum Score** 

#### Intrinsic cognitive load (Krieglstein et al., 2022)

Die Lerninhalte waren schwer zu verstehen

Die Erklärungen des Lerninhalts waren schwer nachvollziehbar

Die Lerninhalte waren komplex

Die Lerninhalte enthielten viele komplexe Informationen

- 1 trifft gar nicht zu
- 9 trifft vollständig zu



Ermittlung der Anzahl benötigter Quellen gemeinsamer Varianz (Faktoren),

um Interkorrelationen zwischen Items zu erklären/modellieren

# Option 1: Summenscore/ Mittelwert Intervention/PräPost Veränderung



Item 3

Item 4

Ermittlung der Anzahl benötigter Quellen gemeinsamer Varianz (Faktoren),

Item 2

um Interkorrelationen zwischen Items zu erklären/modellieren

Item 1

Schätzung der Stärke, mit welcher die gemeinsame Varianz In jedes Item eingeht (Faktorladung  $\lambda_1$ - $\lambda_4$ )



Items, die mit den anderen Items hohe Interkorrelationen aufweisen, Erhalten hohe Faktorladungen (starke Indikatoren des g. Konstruktes)

Schätzung der Stärke, mit welcher die gemeinsame Varianz In jedes Item eingeht (Faktorladung  $\lambda_1$ - $\lambda_4$ )

# Option 1: Summenscore/ Mittelwert Intervention/PräPost Veränderung



Als Messmodell:

Untersuchen, ob *die theoretisch erwartete Faktorenstruktur* (Anzahl & Ladungen) vorliegt

Als Skalierungsmodell:

Aus dem Messmodell werden geschätzte Messwerte gebildet

#### Option 1:



#### Option 2:



#### Faktorscore:

Nach Faktorladung gewichteter Wert aus allen Items

#### Option 1:

Summenscore/ Mittelwert



#### Abstract

A common way to form scores from multiple-item scales is to sum responses of all items. Though sum scoring is often contrasted with factor analysis as a competing method, we review how factor analysis and sum scoring both fall under the larger umbrella of latent variable models, with sum scoring being a constrained version of a factor analysis. Despite similarities, reporting of psychometric properties for sum scored or factor analyzed scales are quite different. Further, if researchers use factor analysis to validate a scale but subsequently sum score the scale, this employs a model that differs from validation model. By framing sum scoring within a latent variable framework, our goal is to raise awareness that (a) sum scoring requires rather strict constraints, (b) imposing these constraints requires the same type of justification as any other latent variable model, and (c) sum scoring corresponds to a statistical model and is not a model-free arithmetic calculation. We discuss how unjustified sum scoring can have adverse effects on validity, reliability, and qualitative classification from sum score cut-offs. We also discuss considerations for how to use scale scores in subsequent analyses and how these choices can alter conclusions. The general goal is to encourage researchers to more critically evaluate how they obtain, justify, and use multiple-item scales cover.

Kritik des *Sum* + *Alpha* (+ Faktorenanalyse) - Ansatzes



Faktorscore:
Nach Faktorladung gewichteter
Wert aus allen Items

#### Option 1:

Summenscore/ Mittelwert



The sum score is a *constrained version* of factor analysis (McNeish & Wolf, 2020)



## Faktorscore: Nach Faktorladung gewichteter Wert aus allen Items



The sum score is a *constrained version* of factor analysis (McNeish & Wolf, 2020)

Alle Items werden *gleich gewichtet* 

Faktorscore:
Nach Faktorladung gewichteter
Wert aus allen Items

Entspricht implizit der Annahme gleicher (std.) Faktorladungen



Summe = 1\*Item 1 + 1\*Item 2 + 1\*Item 3 + 1\*Item 4

Mittelwert = (1\*Item 1 + 1\*Item 2 + 1\*Item 3 + 1\*Item 4)

/ Anzahl Items

- 0. Summenscore entspricht der Annahme gleicher Faktorladungen
- 1. Diese Annahme ist überprüfbar mittels Faktorenanalyse
- 2. Empirisch hält die Annahme (fast) nie
- The sum score is a *constrained version* of factor analysis (McNeish & Wolf, 2020)

Alle Items werden *gleich gewichtet* 

3. Schlussfolgerung: Anstatt Summenscores/Mittelwerten sollten Faktorscores oder SEM verwendet werden (IRT/Personenschätzer)

Entspricht implizit der Annahme gleicher (std.) Faktorladungen

Was denkt ihr?

Sollten wir anstatt Summenscores/Mittelwerte lieber generell

Faktorscores/Struckturgleichungsmodellierung/Item Response Theorie-Schätzer verwenden?



bit.ly/Faktorscores

- 0. Summenscore entspricht der Annahme gleicher Faktorladungen
- 1. Diese Annahme ist überprüfbar mittels Faktorenanalyse
- 2. Empirisch hält die Annahme (fast) nie
- 3. Schlussfolgerung:

  Anstatt Summenscores/Mittelwerten sollten
  Faktorscores oder SEM verwendet werden

#### Das sag ich



Das sag ich 0. Summenscore entspricht der Annahme eines latenten Faktormodells mit gleichen Faktorladungen



Das sag ich 0. Summenscore entspricht der Annahme eines latenten Faktormodells mit gleichen Faktorladungen





**Höhere Extraversion**: Erwartete Mittelwerte in Richtung zustimmender Antworten erhöhren sich linear (& proportional zu Faktorladung)



Unterschiedliche Profile von Extraversion: Erwartete Mittelwerte in Richtung zustimmender Antworten unterscheiden sich zwischen Profilen

#### Das sag ich 0. Summenscore entspricht der Annahme eines latenten Faktormodells mit gleichen Faktorladungen



Ich lerne gerne viele neue Leute

kennen

Das sag ich 0. Summenscore entspricht der Annahme eines latenten Faktormodells mit gleichen Faktorladungen



Das sag ich 0. Summenscore entspricht der Annahme eines latenten Faktormodells mit gleichen Faktorladungen



Das sag ich

 Summenscore entspricht der Annahme eines latenten Faktormodells mit gleichen Faktorladungen

und die Empirie?

0. Es gibt unterschiedliche Meta-Theorien. Man sollte immer diejenige wählen, die aus theoretischer Sicht (Austauschbarkeit, latente Eigenschaft vs. direkte Dynamiken) am besten die Eigenschaften des modellierten



Das sag ich 0. Latentes Faktormodell mit homogenen Faktorladungen



Affirmation der Konsequenz

Umkehrfehler



Bedeutet das im Umkehrschluss, dass ich immer, wenn ich einen Summenscore verwende, die Annahme mache, dass mein Test Rasch-homogen ist?



Wenn das **Rasch Modell** gilt, dann sind Summenscores **suffiziente Statistiken** 



Äh... well... Ja, das ist korrekt! :D



Faktorscores anstatt Summenscores zu verwenden entspricht nach naturwissenschaftlicher Messung der Einmodellierung von Messfehler (Abweichung von Rasch Modell)

#### Das sag ich

- 0. Der Summenscore entspricht der Annahme des theoretisch plausiblen Modells
- 1. Dieses Modell kann man (deskriptiv) überprüfen, oder einfach (normativ) vorgeben
- 2. Empirisch hält die Annahme (fast) nie
- 3. Schlussfolgerung: Scorebildung ist sinnvoll, wenn sie der Theorie oder dem Forschungsziel entspricht

Beispiel:

Inhaltswissen

Hohe interne Konsistenz von Tests wird häufig gewünscht

z.B. Cronbach's Alpha (oder Omega)

Taber 2018 (& Stadler et al., 2021)

Für Wissenstests inadäquat

Theoretische Annahme: Heterogen und Mehrdimensional





Beispiel:

Inhaltswissen

#### Meta-Analyse:

## Mittlere Interkorrelation Wissensitems r = .22





|                                           | СТТ | Rasch | IRT | CFA | EFA | G-Theory | Netz-<br>werk | Mokken | LCA/<br>LPA     |                                                                                   |
|-------------------------------------------|-----|-------|-----|-----|-----|----------|---------------|--------|-----------------|-----------------------------------------------------------------------------------|
| Reliabilität<br>sschätzung                | +   | ~     | ~   | ?   | 1   | +        | -             | ~      | ?               |                                                                                   |
| Dimension<br>alitätsprüf<br>ung           | ı   | ~     | ~   | +   | +   | -        | ~             | +      | 2               | MDS, hurstonian caling, caling, nowledge pace Theory, ognitive liagnosis nodeling |
| Globaler<br>Fit                           | 1   | ?     | ?   | +   | 1   | -        | 1             | 1      | Т               |                                                                                   |
| Item-<br>/Personenf<br>it                 |     | +     | 1   | ?   |     | -        | 1             |        | - F6<br>S6<br>K |                                                                                   |
| Bivariate<br>Abhängigk<br>eiten           |     |       | ~   | ?   | ~   |          | +             |        | C<br>d          |                                                                                   |
| Nicht-<br>Linearitäte<br>n/Subgrup<br>pen |     |       |     |     |     |          |               | ?      | +               |                                                                                   |
| Annahmen verletzung                       |     |       |     |     |     |          |               | +      |                 |                                                                                   |

### Danke

A model and its fit lie in the eye of the beholder: Long live the sum score

Peter Adriaan Edelsbrunner\*

Department of Humanities, Social and Political Sciences, ETH Zurich, Zurich, Switzerland

https://www.frontiersin.org/articles/10.3389/fpsyg .2022.986767/pdf This is a manuscript preprint currently under peer review.

The Cronbach's Alpha of Domain-Specific Knowledge Tests Before and After

Learning: A Meta-Analysis of Published Studies

Peter A. Edelsbrunner<sup>1,2</sup>, Bianca A. Simonsmeier<sup>3</sup>, Michael Schneider<sup>3</sup>

<sup>1</sup>ETH Zurich

<sup>2</sup>LMU Munich

<sup>3</sup>University of Trier

https://osf.io/m8d7t/download

Zieht euch diese Präse:

bit.ly/PeterE\_presentations



# Check for updates

#### Thinking twice about sum scores

Daniel McNeish<sup>1</sup> • Melissa Gordon Wolf<sup>2</sup>

Published online: 22 April 2020

© The Psychonomic Society, Inc. 2020

#### **Abstract**

A common way to form scores from multiple-item scales is to sum responses of all items. Though sum scoring is often contrasted with factor analysis as a competing method, we review how factor analysis and sum scoring both fall under the larger umbrella of latent variable models, with sum scoring being a constrained version of a factor analysis. Despite similarities, reporting of psychometric properties for sum scored or factor analyzed scales are quite different. Further, if researchers use factor analysis to validate a scale but subsequently sum score the scale, this employs a model that differs from validation model. By framing sum scoring within a latent variable framework, our goal is to raise awareness that (a) sum scoring requires rather strict constraints, (b) imposing these constraints requires the same type of justification as any other latent variable model, and (c) sum scoring corresponds to a statistical model and is not a model-free arithmetic calculation. We discuss how unjustified sum scoring can have adverse effects on validity, reliability, and qualitative classification from sum score cut-offs. We also discuss considerations for how to use scale scores in subsequent analyses and how these choices can alter conclusions. The general goal is to encourage researchers to more critically evaluate how they obtain, justify, and use multiple-item scale scores.



The sum score is a *constrained version* of factor analysis (McNeish & Wolf, 2020)

Alle Items werden *gleich gewichtet* 

Faktorscore:
Nach Faktorladung gewichteter
Wert aus allen Items

Entspricht implizit Faktorenanalyse mit gleichen Faktorladungen



The sum score is a *constrained version* of factor analysis (McNeish & Wolf, 2020)

Alle Items werden *gleich gewichtet* 

Faktorscore:
Nach Faktorladung gewichteter
Wert aus allen Items

Entspricht implizit der Annahme gleicher Faktorladungen



Alle Items werden *gleich gewichtet* 

Faktorscore:

Nach Faktorladung gewichteter

Entspricht implizit der Annahme gleicher Faktorladungwert aus allen Items

Diese Annahme ist überprüfbar mittels Faktorenanalyse

Empirisch hält die Annahme nicht (fast nie)

#### Das sag ich



#### Das sagen die Kommentare

- 0. Summenscore entspricht der Annahme gleicher Faktorladungen
- 1. Diese Annahme ist überprüfbar mittels Faktorenanalyse
- 2. Empirisch hält die Annahme (fast) nie
- 3. Schlussfolgerung:

  Anstatt Summenscores/Mittelwerten sollten
  Faktorscores oder SEM verwendet werden

### Rasch





Bedeutet das im Umkehrschluss, dass ich immer, wenn ich einen Summenscore verwende, die Annahme mache, dass mein Test Rasch-homogen ist?



well...
Ja, das ist korrekt!

