Линейно-алгебраический метод

- **1.** Обозначим через $\binom{n}{k}$ количество k-мерных линейных подпространств в \mathbb{Z}_2^n .

 - (a) Найдите $\binom{n}{k}$ для n=2,3 и всех возможных k, (b) Проверьте, что $\binom{n}{0}=\binom{n}{n}=1,$ $\binom{n}{1}=\binom{n}{n-1}=2^n-1,$ $\binom{n}{k}=\binom{n}{n-k}$, (c) Докажите, что $\binom{n+1}{k+1}=\binom{n}{k+1}+2^{n-k}\binom{n}{k}$,

 - (d) Вычислите $\binom{n}{k}$.
- **2.** Докажите, что наибольшее число точек в \mathbb{R}^n с равными попарными расстояниями равно n + 1. Указание: рассмотрите скалярные произведения соответствующих векто-

ров.

3. Докажите, что среди любых 327 попарно пересекающихся 9-элементных подмножеств 25-элементного множества найдутся два подмножества, в пересечении которых ровно 3 или ровно 6 элементов.

Указание: рассмотрите пространство

$$V_{25,9} = \{(x_1, \dots, x_{25}) \in \{0, 1\} \mid \sum x_i = 9\}$$

и докажите два вспомогательных утверждения:

(a) Для каждого $a \in V_{25,9}$ рассмотрим многочлен

$$F_a(x) = (\langle a, x \rangle - 1)(\langle a, x \rangle - 2) \in \mathbb{R}[x_1, \dots, x_{25}]/(x_1^2 - 1, \dots, x_{25}^2 - 1),$$
 где $x = (x_1, \dots, x_{25})$, то есть в котором для каждого i заменили $x_i^2 \mapsto 1$. Тогда для любого набора векторов a_1, \dots, a_s , если их попарные скадярные произведения не делятся на 3, то многочлены F

- скалярные произведения не делятся на 3, то многочлены F_{a_1}, \ldots, F_{a_s} линейно независимы.
- (b) Среди любых 327 точек в $V_{25.9}$ есть две, расстояние между которыми кратно трём.
- **4.** Докажите, что среди любых k пятиэлементных подмножеств 14-элементного множества найдутся два подмножества, в пересечении которых ровно 2 элемента, где
 - (a) k = 107
 - (b) k = 92
- **5.** Если множество рёбер графа K_n является объединением множеств рёбер s полных двудольных графов, не пересекающихся по рёбрам, то $s \geqslant n-1$. Указание: Для каждого двудольного подграфа выпишите его матрицу инцидентности и рассмотрите ранг суммы.