MSCIT 5210: Knowledge Discovery and Data Mining

Acknowledgement: Slides modified by Dr. Lei Chen based on the slides provided by Jiawei Han, Micheline Kamber, and Jian Pei

©2012 Han, Kamber & Pei. All rights reserved.

1

Chapter 9. Classification: Advanced Methods

Classification by Backpropagation

- Support Vector Machines
- Additional Topics Regarding Classification
- Summary

Biological Neural Systems

- Neuron switching time : > 10⁻³ secs
- Number of neurons in the human brain: ~10¹⁰
- Connections (synapses) per neuron : ~10⁴−10⁵
- Face recognition : 0.1 secs
- High degree of distributed and parallel computation
 - Highly fault tolerent
 - Highly efficient
 - Learning is key

Excerpt from Russell and Norvig

Brains

 10^{11} neurons of > 20 types, 10^{14} synapses, 1ms–10ms cycle time Signals are noisy "spike trains" of electrical potential

http://faculty.washington.edu/chudler/cells.html

Modeling A Neuron on Computer

Computation:

 input signals → input function(linear) → activation function(nonlinear) → output signal

Part 1. Perceptrons: Simple NN

inputs

To be learned: W_i and θ

Converting θ To W_0

$$\sum_{i=1}^{N} W_i * X_i \ge \theta \tag{1}$$

$$\Leftrightarrow \sum_{i=1}^{N} W_i * X_i - \theta \ge 0$$
 (2)

$$\Leftrightarrow \sum_{i=1}^{N} W_i * X_i + (\theta) * (-1) \ge 0$$
(3)

$$\Leftrightarrow \sum_{i=1}^{N} W_i * X_i + W_0 * X_0 \ge 0 \tag{4}$$

$$\Leftrightarrow \sum_{i=0}^{N} W_i * X_i \ge 0 \tag{5}$$

Threshold as Weight: W₀

Linear Separability

a=	$\sum_{i=0}^{n} n$	W_i	Xi
----	--------------------	-------	----

X ₁	X ₂	а	У
0	0	-1.5	0
0	1	-0.5	0
1	0	-0.5	0
1	1	0.5	1

t	y=	1
0		
0		

0

1 if
$$a \ge 0$$

$$0 \text{ if } a < 0$$

XOR cannot be separated!

Logical XOR

X ₁	X ₂	t	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Thus, one level neural network can only learn linear functions (straight lines)

Training the Perceptron

- Training set S of examples {x,t}
 - x is an input vector and
 - T the desired target vector (Teacher)
 - Example: Logical And
- Iterative process
 - Present a training example x , compute network output y , compare output y with target t, adjust weights and thresholds
- Learning rule
 - Specifies how to change the weights W of the network as a function of the inputs x, output Y and target t.

X ₁	X ₂	t
0	0	0
0	1	0
1	0	0
1	1	1

Perceptron Learning Rule

$$W_i := W_i + \Delta W_i = W_i + \alpha (t-y) X_i \quad (i=1..n)$$

- The parameter α is called the *learning rate*.
 - In Han's book it is lower case L
 - It determines the magnitude of weight updates ΔW_i .
- If the output is correct (t=y) the weights are not changed $(\Delta w_i = 0)$.
- If the output is incorrect (t ≠ y) the weights w_i are changed such that the output of the Perceptron for the new weights w'_i is closer/further to the input x_i.

Perceptron Training Algorithm

```
Repeat
   for each training vector pair (x,t)
        evaluate the output y when x is the input
        if y≠t then
                form a new weight vector w' according
                         to \mathbf{w'} = \mathbf{w} + \alpha \text{ (t-y) } \mathbf{x}
        else
                     \alpha: set by the user; typically = 0.01
          do nothing
        end if
  end for
Until fixed number of iterations; or error less than a
   predefined value
```

Function: Step 1.

	X ₁	X ₂	t
→	0	0	0
	0	1	0
	1	0	0
	1	1	1

W_0	W_1	W ₂
0.5	0.5	0.5

a=(-1)*0.5+0*0.5+0*0.5=-0.5, Thus, y=0. Correct. No need to change W

 α : = 0.1

Function: Step 2.

X_1	X ₂	t
0	0	0
0	1	0
1	0	0
1	1	1

$$\alpha$$
: = 0.1

W_0	W_1	W_2
0.5	0.5	0.5

a=(-1)*0.5+0*0.5 + 1*0.5=0,
Thus, y=1. t=0, Wrong.

$$\Delta W_0 = 0.1*(0-1)*(-1)=0.1,$$

 $\Delta W_1 = 0.1*(0-1)*(0)=0$
 $\Delta W_2 = 0.1*(0-1)*(1)=-0.1$

$$W_0=0.5+0.1=0.6$$

 $W_1=0.5+0=0.5$
 $W_2=0.5-0.1=0.4$

Function: Step 3.

X_1	X ₂	t
0	0	0
0	1	0
1	0	0
1	1	1

W_0	W_1	W ₂
0.6	0.5	0.4

a=(-1)*0.6+1*0.5 + 0*0.4=-0.1, Thus, y=0. t=0, Correct!

 α : = 0.1

Function: Step 2.

X ₁	X ₂	t
0	0	0
0	1	0
1	0	0
1	1	1

W_0	W_1	W ₂			
0.6	0.5	0.4			

$$a=(-1)*0.6+1*0.5 + 1*0.4=0.3$$
, Thus, y=1. t=1, Correct

 α : = 0.1

Final Solution:

x_1	X ₂
0	0
0	1
1	0
1	1

a=
$$0.5x_1 + 0.4*x_2 - 0.6$$

1 if a ≥ 0
y= $\begin{cases} 0 \text{ if a } < 0 \end{cases}$

Perceptron Convergence Theorem

- The algorithm converges to the correct classification
 - if the training data is linearly separable
 - and learning rate is sufficiently small (Rosenblatt 1962).
- The final weights in the solution w is not unique: there are many possible lines to separate the two classes.

Experiments

Perceptron learning contd.

Perceptron learning rule converges to a consistent function for any linearly separable data set

Handwritten Recognition Example

Handwritten digit recognition

3-nearest-neighbor = 2.4% error 400–300–10 unit MLP = 1.6% error LeNet: 768–192–30–10 unit MLP = 0.9%

Each letter → one output unit y

Multiple Output Perceptrons

- Handwritten alphabetic character recognition
 - 26 classes : A,B,C...,Z
 - First output unit distinguishes between "A"s and "non-A"s, second output unit between "B"s and "non-B"s etc.

w_{ii} connects x_i with y_i

$$w'_{ji} = w_{ji} + \alpha (t_j - y_j) x_i$$

Part 2. Multi Layer Networks

Output vector

Output nodes

Hidden nodes

Input nodes

Input vector

Sigmoid-Function for Continuous Output

inputs

Output between 0 and 1 (when a = negative infinity, O = 0; when a = positive infinity, O = 1.

Gradient Descent Learning Rule

- For each training example X,
 - Let O be the output (bewteen 0 and 1)
 - Let T be the correct target value
- Continuous output O
 - \bullet a= $W_1 X_1 + ... + W_n X_n + \theta$
 - $O = 1/(1 + e^{-a})$
- Train the w_i's such that they minimize the squared error
 - $E[w_1,...,w_n] = \frac{1}{2} \sum_{k \in D} (T_k O_k)^2$ where D is the set of training examples

Explanation: Gradient Descent Learning Rule

Figure 9.5)

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - For each training example $\langle (x_1,...x_n),t \rangle$ Do
 - Input the instance $(x_1,...,x_n)$ to the network and compute the network outputs O_k
 - For each output unit k

•
$$Err_k = O_k(1-O_k)(t_k-O_k)$$

For each hidden unit h

•
$$Err_h = O_h(1-O_h) \sum_k w_{h,k} Err_k$$

- For each network weight w_{i,i} Do
- $w_{i,j} = w_{i,j} + \Delta w_{i,j}$ where $\Delta w_{i,j} = \alpha \operatorname{Err}_{j*} O_{i,j}$
- $\theta_j = \theta_j + \Delta \theta_j$ where $\Delta \theta_j = \alpha \operatorname{Err}_{j,}$

 α : is learning rate, set by the user;

Example 6.9 (HK book, page 333)

Training example:

x1	x2	x3	t
1	0	1	1

Learning rate: =0.9

assigned (HK: Tables 7.3, 7.4)

x1	x2	х3	w14	w15	w24	w25	w34	w35	w46	w56	θ4	θ5	θ 6
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

Net input at unit 4:

$$X_1 * W_{14} + X_2 * W_{24} + X_3 * W_{34} + \theta_4 =$$

$$1*(0.2) + 0*0.4 + 1*(-0.5) + (-0.4) = -0.7$$

Output at unit 4:

$$\frac{1}{1+e^{0.7}} = 0.332$$

Feed Forward: (Table 7.4)

- Continuing for units 5, 6 we get:
 - Output at unit 6 = 0.474

Calculating the error (Tables 7.5)

- Error at Unit 6: (t-y)=(1-0.474)
- Error to be backpropagated from unit 6:

$$y(1-y)(t-y) = (0.474)(1-0.474)(1-0.474) = 0.1311$$

Weight update :

$$\Delta w_{46} = (l)Err_6 y_4 = 0.9*(0.1311)(0.332)$$

$$w_{46} = w_{46} + (l)Err_6 y_4 = -0.3 + 0.9*(0.1311)(0.332)$$

$$= -0.261$$

Weight update (Table 7.6)

Thus, new weights after training with $\{(1, 0, 1), t=1\}$:

w14	w15	w24	w25	w34	w35	w46	w56	04	θ5	θ6
0.192	-0.306	0.4	0.1	-0.506	0.194	-0.261	-0.138	-0.408	0.194	0.218

- •If there are more training examples, the same procedure is followed as above.
- •Repeat the rest of the procedures.

Classification by Backpropagation

- Backpropagation: A neural network learning algorithm
- Started by psychologists and neurobiologists to develop and test computational analogues of neurons
- A neural network: A set of connected input/output units where each connection has a weight associated with it
- During the learning phase, the network learns by adjusting the weights so as to be able to predict the correct class label of the input tuples
- Also referred to as connectionist learning due to the connections between units

Neuron: A Hidden/Output Layer Unit

- An n-dimensional input vector x is mapped into variable y by means of the scalar product and a nonlinear function mapping
- The inputs to unit are outputs from the previous layer. They are multiplied by their corresponding weights to form a weighted sum, which is added to the bias associated with unit. Then a nonlinear activation function is applied to it.

How A Multi-Layer Neural Network Works

- The inputs to the network correspond to the attributes measured for each training tuple
- Inputs are fed simultaneously into the units making up the input
 layer
- They are then weighted and fed simultaneously to a hidden layer
- The number of hidden layers is arbitrary, although usually only one
- The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction
- The network is feed-forward: None of the weights cycles back to an input unit or to an output unit of a previous layer
- From a statistical point of view, networks perform nonlinear regression: Given enough hidden units and enough training samples, they can closely approximate any function

Defining a Network Topology

- Decide the **network topology:** Specify # of units in the input layer, # of hidden layers (if > 1), # of units in each hidden layer, and # of units in the output layer
- Normalize the input values for each attribute measured in the training tuples to [0.0—1.0]
- One input unit per domain value, each initialized to 0
- Output, if for classification and more than two classes, one output unit per class is used
- Once a network has been trained and its accuracy is unacceptable, repeat the training process with a different network topology or a different set of initial weights

A Multi-Layer Feed-Forward Neural Network

Backpropagation

- Iteratively process a set of training tuples & compare the network's prediction with the actual known target value
- For each training tuple, the weights are modified to minimize the mean squared error between the network's prediction and the actual target value
- Modifications are made in the "backwards" direction: from the output layer, through each hidden layer down to the first hidden layer, hence "backpropagation"
- Steps
 - Initialize weights to small random numbers, associated with biases
 - Propagate the inputs forward (by applying activation function)
 - Backpropagate the error (by updating weights and biases)
 - Terminating condition (when error is very small, etc.)

Efficiency and Interpretability

- Efficiency of backpropagation: Each epoch (one iteration through the training set) takes O(|D| * w), with |D| tuples and w weights, but # of epochs can be exponential to n, the number of inputs, in worst case
- For easier comprehension: Rule extraction by network pruning
 - Simplify the network structure by removing weighted links that have the least effect on the trained network
 - Then perform link, unit, or activation value clustering
 - The set of input and activation values are studied to derive rules describing the relationship between the input and hidden unit layers
- Sensitivity analysis: assess the impact that a given input variable has on a network output. The knowledge gained from this analysis can be represented in rules

Neural Network as a Classifier

Weakness

- Long training time
- Require a number of parameters typically best determined empirically, e.g., the network topology or "structure."
- Poor interpretability: Difficult to interpret the symbolic meaning behind the learned weights and of "hidden units" in the network

Strength

- High tolerance to noisy data
- Ability to classify untrained patterns
- Well-suited for continuous-valued inputs and outputs
- Successful on an array of real-world data, e.g., hand-written letters
- Algorithms are inherently parallel
- Techniques have recently been developed for the extraction of rules from trained neural networks

Chapter 9. Classification: Advanced Methods

- Classification by Backpropagation
- Support Vector Machines

- Additional Topics Regarding Classification
- Summary

Classification: A Mathematical Mapping

- Classification: predicts categorical class labels
 - E.g., Personal homepage classification
 - $\mathbf{x}_{i} = (\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, ...), \mathbf{y}_{i} = +1 \text{ or } -1$
 - x₁: # of word "homepage"
 - x₂: # of word "welcome"
- Mathematically, $x \in X = \Re^n$, $y \in Y = \{+1, -1\}$
 - We want to derive a function f: X → Y
- Linear Classification
 - Binary Classification problem
 - Data above the red line belongs to class 'x'
 - Data below red line belongs to class 'o'
 - Examples: SVM, Perceptron, Probabilistic Classifiers

Discriminative Classifiers

- Advantages
 - Prediction accuracy is generally high
 - As compared to Bayesian methods in general
 - Robust, works when training examples contain errors
 - Fast evaluation of the learned target function
 - Bayesian networks are normally slow
- Criticism
 - Long training time
 - Difficult to understand the learned function (weights)
 - Bayesian networks can be used easily for pattern discovery
 - Not easy to incorporate domain knowledge
 - Easy in the form of priors on the data or distributions

SVM—Support Vector Machines

- A relatively new classification method for both <u>linear and</u> nonlinear data
- It uses a <u>nonlinear mapping</u> to transform the original training data into a higher dimension
- With the new dimension, it searches for the linear optimal separating hyperplane (i.e., "decision boundary")
- With an appropriate nonlinear mapping to a sufficiently high dimension, data from two classes can always be separated by a hyperplane
- SVM finds this hyperplane using support vectors
 ("essential" training tuples) and margins (defined by the support vectors)

SVM—History and Applications

- Vapnik and colleagues (1992)—groundwork from Vapnik
 & Chervonenkis' statistical learning theory in 1960s
- <u>Features</u>: training can be slow but accuracy is high owing to their ability to model complex nonlinear decision boundaries (margin maximization)
- Used for: classification and numeric prediction
- Applications:
 - handwritten digit recognition, object recognition, speaker identification, benchmarking time-series prediction tests

SVM—General Philosophy

SVM—Margins and Support Vectors

SVM—When Data Is Linearly Separable

Let data D be (\mathbf{X}_1, y_1) , ..., $(\mathbf{X}_{|D|}, y_{|D|})$, where \mathbf{X}_i is the set of training tuples associated with the class labels y_i

There are infinite lines (<u>hyperplanes</u>) separating the two classes but we want to <u>find the best one</u> (the one that minimizes classification error on unseen data)

SVM searches for the hyperplane with the largest margin, i.e., maximum marginal hyperplane (MMH)

SVM—Linearly Separable

A separating hyperplane can be written as

$$W - X + b = 0$$

where $\mathbf{W} = \{w_1, w_2, ..., w_n\}$ is a weight vector and b a scalar (bias)

For 2-D it can be written as

$$W_0 + W_1 X_1 + W_2 X_2 = 0$$

The hyperplane defining the sides of the margin:

H₁:
$$w_0 + w_1 x_1 + w_2 x_2 \ge 1$$
 for $y_i = +1$, and
H₂: $w_0 + w_1 x_1 + w_2 x_2 \le -1$ for $y_i = -1$

- Any training tuples that fall on hyperplanes H₁ or H₂ (i.e., the sides defining the margin) are support vectors
- This becomes a constrained (convex) quadratic optimization problem: Quadratic objective function and linear constraints → Quadratic Programming (QP) → Lagrangian multipliers

Why Is SVM Effective on High Dimensional Data?

- The complexity of trained classifier is characterized by the # of support vectors rather than the dimensionality of the data
- The support vectors are the essential or critical training examples —
 they lie closest to the decision boundary (MMH)
- If all other training examples are removed and the training is repeated,
 the same separating hyperplane would be found
- The number of support vectors found can be used to compute an (upper) bound on the expected error rate of the SVM classifier, which is independent of the data dimensionality
- Thus, an SVM with a small number of support vectors can have good generalization, even when the dimensionality of the data is high

SVM—Linearly Inseparable

Example 6.8 Nonlinear transformation of original input data into a higher dimensional space. Consider the following example. A 3D input vector $\mathbf{X} = (x_1, x_2, x_3)$ is mapped into a 6D space Z using the mappings $\phi_1(X) = x_1, \phi_2(X) = x_2, \phi_3(X) = x_3, \phi_4(X) = (x_1)^2, \phi_5(X) = x_1x_2$, and $\phi_6(X) = x_1x_3$. A decision hyperplane in the new space is $d(\mathbf{Z}) = \mathbf{WZ} + b$, where \mathbf{W} and \mathbf{Z} are vectors. This is linear. We solve for \mathbf{W} and \mathbf{b} and then substitute back so that we see that the linear decision hyperplane in the new (\mathbf{Z}) space corresponds to a nonlinear second order polynomial in the original 3-D input space,

$$d(Z) = w_1x_1 + w_2x_2 + w_3x_3 + w_4(x_1)^2 + w_5x_1x_2 + w_6x_1x_3 + b$$

= $w_1z_1 + w_2z_2 + w_3z_3 + w_4z_4 + w_5z_5 + w_6z_6 + b$

Search for a linear separating hyperplane in the new space

SVM: Different Kernel functions

- Instead of computing the dot product on the transformed data, it is math. equivalent to applying a kernel function K(X_i, X_j) to the original data, i.e., K(X_i, X_j) = Φ(X_i) Φ(X_j)
- Typical Kernel Functions

Polynomial kernel of degree
$$h: K(X_i, X_j) = (X_i \cdot X_j + 1)^h$$

Gaussian radial basis function kernel: $K(X_i, X_i) = e^{-\|X_i - X_j\|^2/2\sigma^2}$

Sigmoid kernel:
$$K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$$

 SVM can also be used for classifying multiple (> 2) classes and for regression analysis (with additional parameters)

Consider the following data points. Please use SVM to train a classifier, and then classify these data points. Points with a_i=1 means this point is **support vector**. For example, point 1 (1,2) is the support vector, but point 5 (5,9) is not the support vector.

Training data:

ID	ai	x1	x2	У
1	1	1	2	1
2	1	2	1	-1
3	1	0	1	1
4	0	1	-2	-1
5	0	5	9	1
6	0	6	2	-1
7	0	3	9	1
8	0	7	1	-1

Testing data:

ID	x1	x2	У
9	2	5	
10	7	2	

• Question:

- (a) Find the decision boundary, show detail calculation process.
- (b) Use the decision boundary you found to classify the Testing data. Show all calculation process in detail, including the intermediate result and the formula you used.

- Answer:
- a) As the picture shows, P1, P2, P3 are support vectors.

- Suppose w is (w_1, w_2) . Since both P1(1,2) and P3(0,1) have y = 1, while P2(2,1) has y = -1:
 - $w_1*1+w_2*2+b=1$
 - $w_1*0+w_2*1+b=1$
 - $w_1*2+w_2*1+b=-1$

$$\Rightarrow$$
 w₁ = -1, w₂ = 1, b = 0

then, the decision boundary is:

- $w_1 * x_1 + w_2 * x_2 + b = 0$
- \Rightarrow -x1+x2 = 0

Showed in the picture next page.

- b) Use the decision boundary to classify the testing data:
 - For the point P9 (2,5)

$$-x_1+x_2 = -2+5 = 3 >= 1$$

So we choose y = 1

For the point P10 (7,2)

$$-x_1+x_2 = -7+2 = -5 <= -1$$

So we choose y = -1

Showed in the picture next page.

SVM vs. Neural Network

SVM

- Deterministic algorithm
- Nice generalization properties
- Hard to learn learned in batch mode using quadratic programming techniques
- Using kernels can learn very complex functions

Neural Network

- Nondeterministic algorithm
- Generalizes well but doesn't have strong mathematical foundation
- Can easily be learned in incremental fashion
- To learn complex functions—use multilayer perceptron (nontrivial)

SVM Related Links

- SVM Website: http://www.kernel-machines.org/
- Representative implementations
 - **LIBSVM**: an efficient implementation of SVM, multiclass classifications, nu-SVM, one-class SVM, including also various interfaces with java, python, etc.
 - SVM-light: simpler but performance is not better than LIBSVM, support only binary classification and only in C
 - SVM-torch: another recent implementation also written in C

Chapter 9. Classification: Advanced Methods

- Classification by Backpropagation
- Support Vector Machines
- Additional Topics Regarding Classification

Summary

Multiclass Classification

- Classification involving more than two classes (i.e., > 2 Classes)
- Method 1. One-vs.-all (OVA): Learn a classifier one at a time
 - Given m classes, train m classifiers: one for each class
 - Classifier j: treat tuples in class j as positive & all others as negative
 - To classify a tuple X, the set of classifiers vote as an ensemble
- Method 2. All-vs.-all (AVA): Learn a classifier for each pair of classes
 - Given m classes, construct m(m-1)/2 binary classifiers
 - A classifier is trained using tuples of the two classes
 - To classify a tuple X, each classifier votes. X is assigned to the class with maximal vote
- Comparison
 - All-vs.-all tends to be superior to one-vs.-all
 - Problem: Binary classifier is sensitive to errors, and errors affect vote count

Error-Correcting Codes for Multiclass Classification

 Originally designed to correct errors during data transmission for communication tasks by exploring data redundancy

Class	Error-Corr. Codeword						
C_1	1	1	1	1	1	1	1
C_2	0	0	0	0	1	1	1
C_3	0	0	1	1	0	0	1
C ₄	0	1	0	1	0	1	0

- Example
 - A 7-bit codeword associated with classes 1-4
 - Given a unknown tuple X, the 7-trained classifiers output: 0001010
 - Hamming distance: # of different bits between two codewords
 - $H(X, C_1) = 5$, by checking # of bits between [1111111] & [0001010]
 - $H(X, C_2) = 3$, $H(X, C_3) = 3$, $H(X, C_4) = 1$, thus C_4 as the label for X
- Error-correcting codes can correct up to (h-1)/h 1-bit error, where h is the minimum Hamming distance between any two codewords
- If we use 1-bit per class, it is equiv. to one-vs.-all approach, the code are insufficient to self-correct
- When selecting error-correcting codes, there should be good row-wise and col.-wise separation between the codewords

Semi-Supervised Classification

- Semi-supervised: Uses labeled and unlabeled data to build a classifier
- Self-training:
 - Build a classifier using the labeled data
 - Use it to label the unlabeled data, and those with the most confident label prediction are added to the set of labeled data
 - Repeat the above process
 - Adv: easy to understand; disadv: may reinforce errors
- Co-training: Use two or more classifiers to teach each other
 - Each learner uses a mutually independent set of features of each tuple to train a good classifier, say f₁
 - Then f₁ and f₂ are used to predict the class label for unlabeled data
 X
 - Teach each other: The tuple having the most confident prediction from f₁ is added to the set of labeled data for f₂, & vice versa
- Other methods, e.g., joint probability distribution of features and labels

Active Learning

- Class labels are expensive to obtain
- Active learner: query human (oracle) for labels
- Pool-based approach: Uses a pool of unlabeled data
 - L: a small subset of D is labeled, U: a pool of unlabeled data in D
 - Use a query function to carefully select one or more tuples from U and request labels from an oracle (a human annotator)
 - The newly labeled samples are added to L, and learn a model
 - Goal: Achieve high accuracy using as few labeled data as possible
- Evaluated using learning curves: Accuracy as a function of the number of instances queried (# of tuples to be queried should be small)
- Research issue: How to choose the data tuples to be queried?
 - Uncertainty sampling: choose the least certain ones
 - Reduce version space, the subset of hypotheses consistent w. the training data
 - Reduce expected entropy over U: Find the greatest reduction in the total number of incorrect predictions

Transfer Learning: Conceptual Framework

- Transfer learning: Extract knowledge from one or more source tasks and apply the knowledge to a target task
- Traditional learning: Build a new classifier for each new task
- Transfer learning: Build new classifier by applying existing knowledge learned from source tasks

Transfer Learning: Methods and Applications

- Applications: Especially useful when data is outdated or distribution changes, e.g., Web document classification, e-mail spam filtering
- Instance-based transfer learning: Reweight some of the data from source tasks and use it to learn the target task
- TrAdaBoost (Transfer AdaBoost)
 - Assume source and target data each described by the same set of attributes (features) & class labels, but rather diff. distributions
 - Require only labeling a small amount of target data
 - Use source data in training: When a source tuple is misclassified, reduce the weight of such tupels so that they will have less effect on the subsequent classifier
- Research issues
 - Negative transfer: When it performs worse than no transfer at all
 - Heterogeneous transfer learning: Transfer knowledge from different feature space or multiple source domains
 - Large-scale transfer learning

Chapter 9. Classification: Advanced Methods

- Classification by Backpropagation
- Support Vector Machines
- Additional Topics Regarding Classification
- Summary

Summary

- Effective and advanced classification methods
 - Bayesian belief network (probabilistic networks)
 - Backpropagation (Neural networks)
 - Support Vector Machine (SVM)
 - Pattern-based classification
 - Other classification methods: lazy learners (KNN, case-based reasoning), genetic algorithms, rough set and fuzzy set approaches
- Additional Topics on Classification
 - Multiclass classification
 - Semi-supervised classification
 - Active learning
 - Transfer learning

SVM—Introductory Literature

- "Statistical Learning Theory" by Vapnik: extremely hard to understand, containing many errors too.
- C. J. C. Burges. <u>A Tutorial on Support Vector Machines for Pattern</u> <u>Recognition</u>. *Knowledge Discovery and Data Mining*, 2(2), 1998.
 - Better than the Vapnik's book, but still written too hard for introduction, and the examples are so not-intuitive
- The book "An Introduction to Support Vector Machines" by N.
 Cristianini and J. Shawe-Taylor
 - Also written hard for introduction, but the explanation about the mercer's theorem is better than above literatures
- The neural network book by Haykins
 - Contains one nice chapter of SVM introduction

Notes about SVM— Introductory Literature

- "Statistical Learning Theory" by Vapnik: difficult to understand, containing many errors.
- C. J. C. Burges. <u>A Tutorial on Support Vector Machines for Pattern</u> <u>Recognition</u>. *Knowledge Discovery and Data Mining*, 2(2), 1998.
 - Easier than Vapnik's book, but still not introductory level; the examples are not so intuitive
- The book <u>An Introduction to Support Vector Machines</u> by **Cristianini** and Shawe-Taylor
 - Not introductory level, but the explanation about Mercer's
 Theorem is better than above literatures
- Neural Networks and Learning Machines by Haykin
 - Contains a nice chapter on SVM introduction

Associative Classification Can Achieve High Accuracy and Efficiency (Cong et al. SIGMOD05)

Dataset	RCBT	CBA	IRG Classifier	C4.5 family			SVM
				single tree	bagging	boosting	
AML/ALL (ALL)	91.18%	91.18%	64.71%	91.18%	91.18%	91.18%	97.06%
Lung Cancer(LC)	97.99%	81.88%	89.93%	81.88%	96.64%	81.88%	96.64%
Ovarian Cancer(OC)	97.67%	93.02%	-	97.67%	97.67%	97.67%	97.67%
Prostate Cancer(PC)	97.06%	82.35%	88.24%	26.47%	26.47%	26.47%	79.41%
Average Accuracy	95.98%	87.11%	80.96%	74.3%	77.99%	74.3%	92.70%

Table 2: Classification Results

A Closer Look at CMAR

- CMAR (Classification based on Multiple Association Rules: Li, Han, Pei, ICDM'01)
- <u>Efficiency</u>: Uses an enhanced FP-tree that maintains the distribution of class labels among tuples satisfying each frequent itemset
- Rule pruning whenever a rule is inserted into the tree
 - Given two rules, R_1 and R_2 , if the antecedent of R_1 is more general than that of R_2 and conf(R_1) \geq conf(R_2), then prune R_2
 - Prunes rules for which the rule antecedent and class are not positively correlated, based on a χ^2 test of statistical significance
- Classification based on generated/pruned rules
 - If only one rule satisfies tuple X, assign the class label of the rule
 - If a rule set S satisfies X, CMAR
 - divides S into groups according to class labels
 - uses a weighted χ^2 measure to find the strongest group of rules, based on the statistical correlation of rules within a group
 - assigns X the class label of the strongest group