SC2001/CX2101 Algorithm Design and Analysis

Tutorial 3: Analysis Techniques

School of Computer Science and Engineering

Nanyang Technological University

This tutorial helps you develop skills in the learning outcome of the course: "Able to conduct complexity analysis of recursive algorithms: solve recurrences using the substitution method, the iteration method, the master theorem, the characteristic equation."

- 1. Solve the following recurrences by the iteration method
 - 1) T(1) = 1, and for $n \ge 2$, T(n) = 3T(n-1) + 2
 - 2) T(1) = 1, and for $n \ge 2$, a power of 2, T(n) = 2T(n/2) + 6n
- 2. Solve the recurrences in Question 1 by the substitution method.
- 3. Solve the following recurrences by the master method.
 - 1) W(n) = W(n/3) + 5
 - 2) T(n) = 2T(n/2) + n/4
 - 3) $W(n) = 2W(n/4) + \sqrt{n^3}$
- 4. Determine which of the following are linear homogeneous recurrence relations with constant coefficients. Also find the degree of those that are.
 - 1) $a_n = 4a_{n-2} + 5a_{n-3}$
 - 2) $a_n = 2na_{n-1} + a_{n-2}$
 - 3) $a_n = a_{n-1} + a_{n-4}$
 - 4) $a_n = a_{n-1}^2 + a_{n-2}$
 - 5) $a_n = a_{n-2} + n$
- 5. Solve the following recurrence relations together with the initial conditions given. (Due to time constraints, we may not cover every part in the tutorial class.)

1)
$$a_n = 7a_{n-1} - 10a_{n-2}$$
 for $n > 2$, $a_0 = 1$, $a_1 = 0$

2)
$$a_n = 4a_{n-2}$$
 for $n \ge 2$, $a_0 = 6$, $a_1 = 8$

3)
$$a_n = 2a_{n-1} - a_{n-2}$$
 for all $n \ge 2$, $a_0 = 1$, $a_1 = 3$