The rat2 data

January 28, 2011

```
The data:
0 0 10 12
1 3 10 9
2 4 10 6
3 6 10 10
4 8 10 11
5 9 10 14
The SAS code and output:
options linesize=80;
data rat;
  infile "rat2.dat";
  input dose deaths trials;
proc print;
proc logistic;
 model deaths/trials = dose;
 output out=rat2 pred=pred lower=lcl upper=ucl;
proc print data=rat2;
run;
Obs
      dose
              deaths
                        trials
       0
               0
1
                          10
                3
 2
                          10
        1
 3
        2
                 4
                          10
 4
               6
                          10
        3
 5
        4
                 8
                          10
 6
        5
                 9
                          10
```

The LOGISTIC Procedure

Model Information

M = 3 = 3			1. / 7 .
${\tt Response}$	Variable	(Trials)	trials
${\tt Response}$	Variable	(Events)	deaths
Data Set			WORK.RAT

Model binary logit Optimization Technique Fisher's scoring

Number of Observations Read 6
Number of Observations Used 6
Sum of Frequencies Read 60
Sum of Frequencies Used 60

Response Profile

$\tt Ordered$	${ t Binary}$	Total
Value	Outcome	Frequency
1	Event	30
2	Nonevent	30

Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

		Intercept
	Intercept	and
Criterion	\mathtt{Only}	Covariates
AIC	85.178	62.122
SC	87.272	66.310
-2 Log L	83.178	58.122

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	25.0562	1	<.0001
Score	21.9657	1	<.0001
Wald	16.1449	1	<.0001

Analysis of Maximum Likelihood Estimates

			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	-2.3619	0.6719	12.3585	0.0004
dose	1	0.9448	0.2351	16.1449	<.0001

The LOGISTIC Procedure

Odds Ratio Estimates

Point 95% Wald Effect Estimate Confidence Limits dose 2.572 1.622 4.078

Association of Predicted Probabilities and Observed Responses							
Percent Concordant		79.2 Somers' D		0.689			
Percent Discordant		10.3 Gamma		0.769			
Percent Tied		10.4 Tau-a		0.350			
Pairs			900	С		0.844	
Obs	dose	deaths	trial	ls p	red	lcl	ucl
1	0	0	10	0.0	8612	0.02463	0.26017
2	1	3	10	0.19	9511	0.08646	0.38304
3	2	4	10	0.3	8405	0.24041	0.55124
4	3	6	10	0.6	1595	0.44876	0.75959
5	4	8	10	0.8	0489	0.61696	0.91354
6	5	9	10	0.9	1388	0.73983	0.97537