Number Theory

content

1	\mathbf{Div}	isibility Theory	3
	1.1	Divisibility	3
	1.2	Greatest Common Divisor(GCD)	3
	1.3	Euclidean Alorithm	4
	1.4	Least Common Mutiple	5
	1.5	Prime Number	5
	1.6	Fundamental Theorem Arithmetic	5
	1.7	Exercise	6
2	Cor	ngruence	8
	2.1	The Difinition and Property of Congruence	8
	2.2	Euler's Totient Function	9
		2.2.1 Euler Theorem	10
		2.2.2 Fermat's Little Theorem	10
	2.3	Exercise:	10
3	Cor	ngruence Equation	11
	3.1	Residue System	11
		3.1.1 Complete Residue System	11
		3.1.2 Reduced Residue System	11
	3.2	Linear Congurence Equation	11
		3.2.1 Linear Congurence Equation	11
		3.2.2 Linear Congurence Equation Set	12
		3.2.3 Chinese Remainder Theorem	13

CONTENT 2

	3.3	Polynomial Congruence Equation	13
	3.4	Wilson Theorem	13
	3.5	Exercise:	14
4	Qua	adratic Residue	15
	4.1	Difinition and Property of Quadratic Residue	15
	4.2	Legendre Symbol	15
		4.2.1 Quadratic Reciprocity Law	16
	4.3	Jacobi Symbol	16
	4.4	Exercise:	17
5	Dis	crete Logarithm	17
	5.1	Index and Primitive Root	17
	5.2	Existence of Primitive Root	18
	5.3	Discrete Logarithm	18

1 Divisibility Theory

1.1 Divisibility

 $\forall a,b \in \mathbb{Z},b\neq 0, \text{if there is a integer q let:}$

$$a = qb$$

then it is called that b can be divided by a or b divides b,marked as b|a,and b is a divisor of ,a is a mutiple of b.Otherwise marked as $b\nmid a$.

Specially, if $a\neq 0$, and a is an integer, then a|0.

Theorem: suppose $a,b,c \in \mathbb{Z}$

- (1)if b|a and a|b,then $a=\pm b$
- (2)if a|b,and b|c,then a|c
- (3)if c|a and c|b,then c|ua+vb,u,v $\in \mathbb{Z}$
- (4)if $c|a_1 \cdots c|a_k$, then $\forall u_1 \cdots u_k \in \mathbb{Z}$, there is $c|(u_1 a_1 \cdots u_k a_k)$
- (5)if $m\neq 0$ and $a|b \Leftrightarrow ma|mb$
- (6)if a=qb+r and $b|a \Leftrightarrow b|r$

Prove:

- (1)(2)(4)(5)(6)skip
- (3) suppose a=qc,b=pc,then ua+vb=uqc+vpc,obviously

1.2 Greatest Common Divisor(GCD)

if $\exists q, a=qr_1, b=qr_2, r_1, r_2 \in \mathbb{Z}$, then q is called a common divisor of a and $b, \mathcal{D}(a_1, \dots, a_k)$ is a set of all common divisors of a_1, \dots, a_k

if $\exists d \in \mathcal{D}(a,b)$ and $\forall d_i \in \mathcal{D}(a,b), d_i | d$, then d is the great common divisor of a and b, marked as d = (a,b) or $d = \gcd(a,b)$

Theorem: $a,b \in \mathbb{Z}$

$$(1)(a,b)=(a,-b)=(-a,b)=(-a,-b)=(|a|,|b|)$$

(2)(0,a)=|a|

(3) if
$$a_i | a_i, j=1 \cdots k, (a_1, \cdots, a_i, \cdots, a_k) = |a_i|$$

Prove:

(1)(2)(3)skip

1.3 Euclidean Alorithm

When a and b is large, to figure out their gcd directly is difficult, Euclidean Alorithml can be used to figure out their gcd

Suppose $a,b \in \mathbb{Z}$, let $r_0 = a, r_1 = b$, then:

$$r_0 = q_1 r_1 + r_2 \quad 0 \le r_2 < r_1$$

$$r_1 = q_2 r_2 + r_3 \quad 0 \le r_3 < r_2$$

$$\vdots$$

$$r_{k-2} = q_{k-1} r_{k-1} + r_k \quad 0 \le r_k < r_{k-1}$$

$$r_{k-1} = q_k r_k$$

Now $r_k = (a,b)$

Prove:

if $\exists r_i$, r_{i-1} , $r_i|r_{i-1}$, then $r_{i-1}=q_ir_i$, otherwise, because $b=r_1>r_2>\cdots>r_k>0$, b is limited, so that $r_i\geq r_{i-1}-1$, and b-i $+1\geq r_i\geq 0$, when b-i+1=1, then i=b, now $r_i=1$, so that $r_{i-1}=q_i$, therefore we can always get the equation $r_{k-1}=q_kr_k$, now

$$\begin{split} r_{k-2} &= q_{k-1}r_{k-1} + r_k = q_{k-1}q_kr_k + r_k \\ r_{k-3} &= q_{k-2}r_{k-2} + r_{k-1} = q_{k-2}(q_{k-1}q_kr_k + r_k) + q_kr_k = r_k(q_{k-2}q_{k-1}q_k + q_{k-2} + q_k) \\ &\vdots \\ b &= r_1 = X_1r_k \\ a &= r_0 = X_2r_k \end{split}$$

How to confirm r_k is greatest?

Construct contradiction

Corollary:

 $\exists u,v \in \mathbb{Z}$, $\forall a,b \in \mathbb{Z}$, let

$$(a,b) = ua + vb$$

1.4 Least Common Mutiple

if $\exists c$, q_1 , $q_2 \in \mathbb{Z}$, for a and b, $c = q_1 a = q_2 b$, then c is a common mutiple of a and b, suppose $\mathcal{L}(a_1 \cdots a_k)$ is a set of all common mutiples of $a_1 \cdots a_k$

if $\exists l \in \mathcal{L}(a,b)$ and $\forall l_i \in \mathcal{L}(a,b)$, $l|l_i$, then l is called least common mutiple, marked as [a,b] or lcm(a,b)

1.5 Prime Number

if $\mathcal{D}(p)=\{1,p\},p$ is called prime number

if (a,b)=1 , it is called a and b are relatively prime and $existsu,v{\in}\mathbb{Z}$, let au+bv=1

Lemma:

$$(a,b)=1 \Leftrightarrow au+bv=1, u,v \in \mathbb{Z}$$

$$(a,p)=1,a=1\cdots 2p-1$$
, p is a prime

1.6 Fundamental Theorem Arithmetic

 $\forall {\bf N}{\in}\mathbb{Z}$ and ${\bf N}{>}1, \exists P_1{\cdots}P_k$, $a_1{\cdots}a_k{\in}\mathbb{Z}$, $\forall P_i{>}1$, $a_i{>}1$, let

$$N = \prod_{i=1}^{k} P_i^{a_i}$$

suppose

$$N_1 = \prod_{i=1}^{k_1} P_{1i}^{a_{1i}}$$

$$N_2 = \prod_{i=1}^{k_2} P_{2i}^{a_{2i}}$$

let

$$S_1 = \{P_{11}, \cdots, P_{1k_1}\}$$

$$S_2 = \{P_{21}, \cdots, P_{2k_2}\}$$

if

$$S_1 \bigcup S2 = \emptyset$$

1 DIVISIBILITY THEORY

6

then

$$(N_1, N_2) = 1$$

 $[N_1, N_2] = N_1 N_2$

if

$$S_1 \bigcup S2 = S$$
$$S = \{P_j, \cdots, P_{j+l}\}$$

then

$$(N_1, N_2) = D = \prod_{i=j}^{j+l} P_i^{a_i} \qquad a_i = \min\{a_{1j}, a_{2j}\}$$

and

$$(\frac{N_1}{D}, \frac{N_2}{D}) = 1$$

therefore

$$[\frac{N_1}{D}, \frac{N_2}{D}] = \frac{N_1 N_2}{D^2}$$

suppose

$$a, b \in \mathbb{Z}, m \neq 0, (a, b) = d$$

$$a = q_1 d, b = q_2 d$$

$$ma = q_1 dm, mb = q_2 dm$$

$$(ma, mb) = dm = (a, b) \times m$$

therefore

$$[D \times \frac{N_1}{D}, D \times \frac{N_2}{D}] = D \times \frac{N_1 N_2}{D^2}$$
$$[N_1, N_2] = \frac{N_1 N_2}{D} = \frac{N_1 N_2}{(N_1, N_2)}$$

1.7 Exercise

- (1) if $(a,b) = 1 \Rightarrow (a^n, b^n) = 1$
- (2) if $a^n \mid b^n \Rightarrow a \mid b$
- (3) if $a \mid n$, $b \mid n \Rightarrow [a, b] \mid n$
- (4) if $a \mid n$ and $b \mid n$, whether $\exists u, v$, let ua + vb = n

- (5) if $2^n 1$ is a prime \Rightarrow n is a prime
- (6) if $\exists \sqrt{m}, \sqrt{n} \in \mathbb{Z}, \forall k \in \{k = x \mid x \text{ is a odd number}\} \Rightarrow k = m n$
- $(7)\frac{n^{5}}{5} + \frac{n^{3}}{3} + \frac{7n}{15} \in \mathbb{Z}$ $(8) \forall x, y \Rightarrow 8 \nmid x^{2} y^{2} 2$
- (9) if $n = c_k \cdot 10^k + \dots + c_1 \cdot 10 + c_0$ and $11 \mid n \Leftrightarrow 11 \mid \sum_{i=0}^k (-1)^i c_{k-i}$ (10) if $m, n \in \mathbb{Z}$ no matter how to choose the $+, -, \sum_{i=0}^n (\pm \frac{1}{m+i}) \notin \mathbb{Z}$

2 CONGRUENCE

8

2 Congruence

2.1 The Difinition and Property of Congruence

suppose a,b,q,r ∈Z , a=bq+r , |r|
b, marked as a(mod b)=r if a(mod p)=b(mod p) , it is called a and b are congruent , marked as a ≡b(mod p)

Theorem:

- $(1)a \equiv b \pmod{p} \Leftrightarrow p \mid \pm (a-b)$
- (2)if $a_1 \equiv b_1 \pmod{p}$ and $a_2 \equiv b_2 \pmod{p} \Leftrightarrow (a_1 \pm a_2) \equiv (b_1 \pm b_2) \pmod{p}$
- (3)if $a_1 \equiv b_1 \pmod{p}$ and $a_2 \equiv b_2 \pmod{p} \Leftrightarrow (a_1 a_2) \equiv (b_1 b_2) \pmod{p}$
- (4)if am \equiv bm(mod p) and (m,p)=1 \Leftrightarrow a \equiv b(mod p)
- (5)if $a \equiv b \pmod{p}$ and $d|p \Leftrightarrow a \equiv b \pmod{d}$

Prove:

- (1)(2)skip
- (3)suppose

$$a_1 = q_{11}p + r_1$$

$$b_1 = q_{12}p + r_1$$

$$a_2 = q_{21}p + r_2$$

$$b_2 = q_{22}p + r_2$$

$$a_1a_2 = q_{11}q_{21}p^2 + q_{21}r_1p + q_11r_2p + r_1r_2$$

$$b_1b_2 = q_{12}q_{22}p^2 + q_{22}r_1p + q_12r_2p + r_1r_2$$

$$\therefore a_1a_2 \equiv b_1b_2(modp)$$

$$\therefore am \equiv bm(modp)$$

$$\therefore p \mid m(a - b)$$

$$\therefore (m, p) = 1$$

$$\therefore p \nmid m$$

$$\therefore p \mid (a - b)$$

$$\therefore a \equiv b(modp)$$

(5)

Theorem:

 $\forall N{\in}\mathbb{Z} \text{ and } p{\geq}2$

$$N = n_d p^d + \dots + n_1 p^1 + n_0$$

$$n_i \in \mathbb{Z}$$
, $|n_i| < p$, $n_d \neq 0$

2.2 Euler's Totient Function

$$\varphi(\mathbf{m}) = |\mathbf{S}|$$
, $\mathbf{S} = \{ \mathbf{a} \mid \mathbf{a} \in \mathbb{Z}, \mathbf{a} < \mathbf{m}, (\mathbf{a}, \mathbf{m}) = 1 \}$

Theorem:

$$\varphi(m) = m \sum_{i=1}^{k} (1 - \frac{1}{p_i}) \qquad m = \prod_{i=1}^{k} p_i^{a_i}$$

Prove:

$$\varphi(m) = |\{1, 2, 3, \dots, m - 2, m - 1\} - \mathcal{D}(m) + \{1\}|$$

$$\varphi(m) = m - |\mathcal{D}(m)|$$

$$\mathcal{D}(m) = \{d|d = \prod_{i=1}^{k'} p_i^{a_i}\} \quad a_i = 0, 1, \dots, a_k \quad k' = k$$

$$|\mathcal{D}(m)| = \prod_{i=1}^{k} (a_k + 1)$$

2.2.1 Euler Theorem

if (a,m)=1, then

$$a^{\varphi(m)} \equiv 1 (mod m)$$

Prove:

2.2.2 Fermat's Little Theorem

if p is a prime , $\forall a \in \mathbb{Z}$

$$a^p \equiv a(modp)$$

Prove:

2.3 Exercise:

(1) if
$$a \equiv b \pmod{m_i}$$
, $i = 1, 2 \cdots n \Rightarrow a \equiv b \pmod{[m_1, \cdots, m_n]}$

(2) if
$$p,q$$
 are prime and $p \neq q \Rightarrow q^{p-1} + p^{q-1} \equiv 1 \pmod{pq}$

(3) if
$$(a, b) = 1, c \neq 0 \Rightarrow \exists n, (a + nb, c) = 1$$

3 Congruence Equation

3.1 Residue System

```
\begin{split} &\forall n{\in}\mathbb{Z}\ ,\ n{\equiv}r(\bmod\ p)\ \Leftrightarrow\ n{=}qp{+}r\ ,\ r{=}0,\pm1,\pm2,\cdots\\ \\ &\overline{0}{=}\{0,\pm p,\pm2p,\cdots\}\\ &\overline{1}{=}\{\pm1,1{\pm}p,1{\pm}2p,\cdots\}\\ &\vdots\\ &\overline{p-1}{=}\{(p{-}1),(p{-}1){\pm}p,(p{-}1){\pm}2p,\cdots\} \end{split}
```

 \bar{i} is a residue class of n mod p

3.1.1 Complete Residue System

choose a number from each residue class to represent its residue class , all these numbers form a set , $\{\ \overline{0},\overline{1},\cdots,\overline{p-1}\ \}$ is a complete residue system of n mod p

3.1.2 Reduced Residue System

$$\begin{split} &\text{if } \{\; 1,j,\cdots,p-1\;\} \subset \{\; \overline{0},\overline{1},\cdots,\overline{p-1}\;\}\;,\, \forall \mathbf{a} \in \{\; 1,j,\cdots,p-1\;\}\;,\, (\mathbf{a},\mathbf{p}) = 1\;,\; \mathbf{b} \in \{\; 1,j,\cdots,p-1\;\}\;,\, (\mathbf{a},\mathbf{p}) = 1\;,\; \mathbf{b} \in \{\; 1,j,\cdots,p-1\;\}\;,\; (\mathbf{a},\mathbf{p}) = 1\;,\; (\mathbf{a},$$

Theorem:

(1)if $\{x_1, x_2, \cdots, x_{\varphi(m)}\}$ is a reduced residue system , (a,m)=1 \Rightarrow $\{ax_1, ax_2, \cdots, ax_{\varphi(m)}\}$ is a reduced residue system

3.2 Linear Congurence Equation

3.2.1 Linear Congurence Equation

ax≡b(mod m) is called linear congurence equation

$$\begin{array}{c} \because ax \equiv b (mod\ m) \\ \hline \therefore m \mid (ax-b) \\ let \quad ax-b=mq \\ \hline \therefore ax=mq+b \\ \hline \therefore x=\frac{m}{a}q+\frac{b}{a} \\ let \quad a'=\frac{a}{(a,m)} \\ \quad m'=\frac{m}{(a,m)} \\ \quad (a',m')=1 \\ if \quad (a,m)\mid b \\ \quad b'=\frac{m}{(a,b)} \\ \quad m'\mid (a'x-b') \\ \quad a'x\equiv b'(mod\ m') \\ \quad x\equiv b'a'^{-1}(mod\ m') \\ \quad x\equiv b'a'^{-1}(mod\ m') \\ \quad x=b'a'_{-1}+km' \qquad k=0,\pm 1,\pm 2,\cdots \\ \hline \because a(\frac{b}{(a,m)}a'^{-1}+km')(mod\ m)=(a'a'^{-1}b+a'km)(mod\ m)=b(mod\ m) \quad k=0,1\cdots(a,m)-1 \\ \hline \therefore x\equiv a'^{-1}\frac{b}{(a,m)}+k\frac{m}{(a,m)} \end{array}$$

Theorem:

(1)ax

$$\equiv$$
 b(mod m),(a,m)| b \Leftrightarrow x
 \equiv $a'^{-1}\frac{b}{(a,m)}+k\frac{m}{(a,m)}$, k=0,1··· (a,m)-1

3.2.2 Linear Congurence Equation Set

$$\begin{cases} x & \equiv b_1 \pmod{m_1} \\ x & \equiv b_2 \pmod{m_0} \\ \vdots \\ x & \equiv b_k \pmod{m_k} \end{cases}$$

it is called linear congurence equation

3.2.3 Chinese Remainder Theorem

When
$$(m_i,m_j)=1$$
, $i\neq j$ and $i,j=1,2\cdots k$
$$x\equiv M_1^{-1}M_1b_1+\cdots+M_k^{-1}M_kb_k$$

$$m=\prod_{i=1}^k m_i \qquad M_i=\frac{m}{m_i} \qquad M_i^{-1}M_i\equiv 1 (modm_i)$$

Prove:

3.3 Polynomial Congruence Equation

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

$$\therefore (x^p - x) \equiv 0 \pmod{p}$$

$$f(x) \equiv (x^p - x)q(x) + r(x) \pmod{p}$$

$$\therefore f(x) \equiv r(x) \pmod{p}$$

/vspace12 pt Theorem: if the numbers of solution of

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

then $f(x)|(x^p-x)$

3.4 Wilson Theorem

suppose p is a prime

$$(p-1)! + 1 \equiv 0 \pmod{p}$$

3.5 Exercise:

$$(1) \ x \equiv 7 (mod \ 10) \quad x \equiv 3 (mod \ 12) \quad x \equiv 12 (mod \ 15)$$

$$(2) \ 3x^{14} + 4x^{13} + 2x^{11} + x^9 + x^6 + x^3 + 12x^2 + x \equiv 0 \pmod{7}$$

4 Quadratic Residue

4.1 Difinition and Property of Quadratic Residue

if p is an odd prime and

$$x^2 \equiv a \pmod{p} \qquad (a, p) = 1$$

has a solution, then a is a quadratic residue of p , otherwise a is quadratic non-residue of p

Theorem:

(1) if p is an odd prime , there are $\frac{p-1}{2}$ quadratic residue and $\frac{p-1}{2}$ quadratic non-residue

(2) if p is an odd prime , (a,p)=1 a is a quadratic residue mod p $\Leftrightarrow a^{\frac{p-1}{2}} \equiv 1 (modp)$ a is a quadratic non-residue mod p $\Leftrightarrow a^{\frac{p-1}{2}} \equiv -1 (modp)$

Prove:

4.2 Legendre Symbol

if a is an odd prime, $a \in \mathbb{Z}$

$$(\frac{a}{p}) = a^{\frac{p-1}{2}} (mod \ p) = \begin{cases} 1 & a \ is \ a \ quadratic \ residue \ mod \ p \\ -1 & a \ is \ not \ a \ quadratic \ residue \ mod \ p \\ 0 & p \mid a \end{cases}$$

Theorem:

$$(1) \quad \left(\frac{1}{p}\right) = 1 \ , \ \left(\frac{-1}{p}\right) = \left(-1\right)^{\left(\frac{p-1}{2}\right)}$$

$$(2) \quad if \quad a \equiv b \pmod{p} \ \Leftrightarrow \ \left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$$

$$(3) \quad \left(\frac{a+p}{p}\right) = \left(\frac{a}{p}\right)$$

$$(4) \quad (a,p) = 1 \ \Leftrightarrow \ \left(\frac{a^2}{p}\right) = 1$$

4 QUADRATIC RESIDUE

16

$$(4)\quad (\frac{a_1a_2\cdots a_n}{p})=(\frac{a_1}{p})(\frac{a_2}{p})\cdots (\frac{a_n}{p})$$

Prove:

Lemma:

$$(1) \quad (\frac{2}{p}) = (-1)^{\frac{p^2 - 1}{8}}$$

4.2.1 Quadratic Reciprocity Law

if p,q are odd prime, (p,q)=1, then

$$(\frac{q}{p}) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}(\frac{p}{q})$$

4.3 Jacobi Symbol

if m is an odd and m>1 , m=p_1p_2\cdots p_r , $p_i{\rm is}$ a prime , then

$$\left(\frac{a}{m}\right) = \left(\frac{a}{p_1}\right)\left(\frac{a}{p_2}\right)\cdots\left(\frac{a}{m_r}\right)$$

 $p_1, p_2 \cdots p_r$ can be duplicate

Theorem:

$$(1) \quad (\frac{1}{m}) = 1$$

$$(2) \quad if \ a \equiv b \pmod{m} \iff (\frac{a}{m}) = (\frac{b}{m})$$

$$(3) \quad if \ (a, m) = 1 \iff (\frac{a^2}{m}) = 1$$

$$(4) \quad (\frac{a+m}{m}) = (\frac{a}{m})$$

$$(5) \quad (\frac{a_1 a_2 \cdots a_n}{m}) = (\frac{a_1}{m})(\frac{a_2}{m}) \cdots (\frac{a_n}{m})$$

$$(6) \quad (\frac{-1}{m}) = (-1)^{\frac{m-1}{2}}$$

$$(7) \quad (\frac{2}{m}) = (-1)^{\frac{m^2-1}{8}}$$

$$(8) \quad if \ m,n>1 \ and \ m \ , \ n \ is \ odd \ prime \ \Rightarrow \ (\frac{n}{m})=(-1)^{\frac{m-1}{2}\frac{n-1}{2}}(\frac{m}{n})$$

Prove:

4.4 Exercise:

(1) if p is an odd prime , $p\equiv 1 (mod~4) \Rightarrow$ in $1,2\cdots \frac{p-1}{2}$, there are $\frac{p-1}{4}$ quadratic residue and non-quadratic residue

5 Discrete Logarithm

5.1 Index and Primitive Root

if d> 0 and d $\in \mathbb{Z}$

$$a^d \equiv 1 \pmod{p}$$

 d_{min} is called index of a mod p, marked as $ord_m(a)$

if

$$ord_m(a) = \varphi(m)$$

then a is a primitive root mod m

Theorem:

(1) if
$$a \equiv b \pmod{m} \Rightarrow ord_m(a) = ord_m(b)$$

(2)
$$a^d \equiv 1 \pmod{m} \Leftrightarrow ord_m(a) \mid d$$

(3)
$$ord_m(a) \mid \varphi(m)$$

(4) if
$$a^{-1}a \equiv 1 \pmod{m} \Rightarrow ord_m(a^{-1}) = ord_m(a)$$

(5)
$$a^d \equiv a^k \pmod{m} \Rightarrow d \equiv k \pmod{ord_m(a)}$$

(6) if
$$k > 0$$
 and $k \in \mathbb{Z} \Rightarrow ord_m(a^k) = \frac{ord_m(a)}{(ord_m(a), k)}$

(7) if there is a primitive root mod m, and there are $\varphi(\varphi(m))$ primitive roots in total

(8)
$$ord_m(ab) = ord_m(a) ord_m(b) \Leftrightarrow (ord_m(a), ord_m(b)) = 1$$

(9) if
$$n \mid m \Rightarrow ord_m(a) \mid ord_m(a)$$

(10) if
$$(m_1, m_2) = 1 \implies ord_{m_1 m_2}(a) = [ord_{m_1}(a), ord_{m_2}(a)]$$

Prove:

5.2 Existence of Primitive Root

Theorem:

- (1) if p is an odd prime, then there are primitive roots mod p
- (2) there are primitive roots mod $m \Leftrightarrow m = 2, 4, p^{\alpha}, 2p^{\alpha}$ p is an odd prime
- (3) suppose the different divisors of $\varphi(\mathbf{m})$ is $q_1, q_2 \cdots q_k$ and $(\mathbf{g}, \mathbf{m}) = 1$, \mathbf{g} is a primitive root $\Leftrightarrow g^{\frac{\varphi(\mathbf{m})}{q_i}} \neq 1 \pmod{p}$, $\mathbf{i} = 1, 2 \cdots \mathbf{k}$

Prove:

5.3 Discrete Logarithm

if g is a primitive root mod m , $\forall a \in \mathbb{Z}$, (a,m)=1

$$a \mid g^{\gamma} \pmod{m}$$
 $0 \le \gamma \le \varphi(m)$

 γ is a discrete logarithm , marked as ind_ga

Theorem:

(1)
$$ind_q 1 = 0, ind_q g = 1$$

(2)
$$ind_q(ab) \mid ind_q a + ind_q b \pmod{\varphi(m)}$$

(3)
$$ind_q a^n \mid n \cdot ind_q a \pmod{\varphi(m)}$$
 $n \ge 1$

(4) if g and g' are primitive roots $mod m \Rightarrow ind_q a \mid ind_{q'} a \cdot ind_q g' \pmod{\varphi(m)}$