#### 1 Introduction

biblio? checker Bernstein.

#### **Notations**

- M(n) polynomial arithmetic and I(n) multiprecision integer arithmetic.
- We denote resp. by (a rem p) and (a quo p) the remainder and quotient of the Euclidean division of  $a \in \mathbb{Z}$  by  $p \in \mathbb{N}$  where  $0 \leq (a \text{ rem } b) < b$ .
- For any a = n/d with d coprime to p, we let  $[a]_p$  be the unique representative in  $\{0, ..., p-1\}$  of a modulo p.
- We call informally a pseudo-reduction of a modulo p the computation of b such that  $a = b \mod p$  and b "not too big" compared to p. In practice, we often will have that  $b = \mathcal{O}(p^2)$ .
- Say that our complexity model is bit complexity.
- Should we take  $\beta$  as a constant and simplify complexity?
- Only give costs for the typical case  $p_i \simeq \beta$ ,  $s \simeq B$ ,  $r \gg s$  because of  $\beta^B < p_1 \cdots p_s$ , which implies that B < s?

**Bibliography** Bibliography on reductions and pseudo-reductions. Recall Barett, Montgomery results?

Cost of  $a \mod p$  when :

- 1.  $\log(a) = \Theta(\log(p))$ . \*\*Cas classique, on en a vraiment besoin  $\mathcal{O}(I(\log(p)))$ ? \*\*
- 2.  $\log(a) \gg \Theta(\log(p))$  \*\*Servira à prouver l'algo naïf de multi-réduction  $\mathcal{O}(\log(a) / \log(p) \, \mathsf{I}(\log(p)))$  ?\*\*
- 3.  $\log(a/p) \ll \Theta(\log(p))$  \*\*Sert à montrer que la finalisation des pseudos-réductions est peu couteuse\*\*
  - \*\*Polynomial analog suggests  $\mathcal{O}(\mathsf{I}(c)\log(p)/c)$  where  $c := \log(a/p)$ . Maybe we don't need to be so specific\*\*

# 2 Conversions with Residue Number System

#### 2.1 Residue Number System

#### 2.2 Naive approach

In order to convert an integer a to a residue number system  $(m_1, ..., m_k)$ , one can of course apply an Euclidean division of a by  $m_i$  for  $i \in \{1, ..., k\}$ .

In this section, we want to reduce the integers  $n \in \mathbb{Z}$  modulo each of the positive integers  $p_1, ..., p_s \in \mathbb{N}$ . Let us assume that  $p_1, ..., p_s < \beta$  and that  $n_i < \beta^B$ . In practice,  $\beta$  will be related to a certain number of machine words.

# Algorithm 1

```
Input: n = \sum_{j=0}^{B-1} c_j \beta^j, p
Output: n \mod p

Algo:
c = c_{B-1}
for i = B - 2...0 do
r = c \beta \mod p
c = r + c_i
return c \mod p
```

The bit complexity for computing  $n \mod p$  is  $\mathcal{O}(B \mid (\log \beta))$ . The conversion to the RNS thus costs  $\mathcal{O}(s \mid B \mid (\log \beta))$ . \*\* $\mathcal{O}(s^2 \mid (\log \beta))$ \*\*

\*\*Mention Barett/Montgomery optimizations? Precomputation of floating number  $\beta/p$ ?\*\*

2 Section 3

#### 2.3 Quasi-linear approach

Classic binary tree approach. Precomputation of binary tree :  $\mathcal{O}(I(s \log \beta) \log s)$ . [MCA, 3rd edition, Th 9.17

Cost in typical case :  $\mathcal{O}(\mathsf{I}(s\log\beta)\log s)$ 

#### Simultaneous RNS conversions

#### 3.1 Straighforward

Advantage of simultaneous reductions with naive algorithm: can benefit from (SIMD) vectorized instructions. \*\* $\mathcal{O}(r s^2 \mathsf{I}(\log \beta))$ \*\*.

Straighforward simultaneous reduction using quasi-linear approach :  $\mathcal{O}(r \mid (s \mid \log \beta) \mid \log s)$ . However, do not benefit from SIMD.

# 3.2 Linear Algebra

#### 3.2.1 Linear algebra reductions

Simultaneous pseudo-reductions In this section, we want to simultaneously reduce the integers  $n_1, ..., n_r \in \mathbb{Z}$  modulo each of the positive integers  $p_1, ..., p_s \in \mathbb{N}$ .

Let us assume that  $p_1, ..., p_s < \beta$  and that  $n_i < \beta^B$ . In practice,  $\beta$  will be related to a certain number of machine words.

The first thing to do is to write the expansion in base  $\beta$  of

$$n_i = \sum_{j=0}^{B-1} c_{i,j} \beta^j$$

for  $1 \leqslant i \leqslant r$ . Let's precompute the values  $r_{i,j} := \beta^i \operatorname{rem} p_j$  for  $0 \leqslant i < B$  and  $1 \leqslant j \leqslant s$ . Let  $n_{i,\ell} := \sum_{j=0}^{B-1} c_{i,j} r_{j,\ell}$  then we have  $n_i = n_{i,\ell} \operatorname{mod} p_\ell$ . The value  $n_{i,\ell}$  is bounded by  $B \beta^2$ , whereas  $n_i$  was of size  $\beta^B$ . We say that  $n_{i,\ell}$  is a pseudo-reduction of  $n_i$  modulo  $p_{\ell}$ .

The values  $n_{i,\ell}$  can be computed by linear algebra :  $(n_{i,\ell}) \in \mathcal{M}_{r \times s}(k)$  is the product of  $(c_{i,j}) \in$  $\mathcal{M}_{r\times B}(k)$  and  $(r_{i,\ell})\in\mathcal{M}_{B\times s}(k)$ .

Cost. In the case where we want to represent our integers in the RNS representation, we will choose  $p_1, ..., p_s$  such that  $\beta^B < p_1 \cdots p_s$ , which implies that B < s. Then the matrix product to compute  $(n_{i,\ell})$  can be done in bit complexity  $\mathcal{O}(r/s \cdot s^{\omega} | (\log(\beta))) = \mathcal{O}(r \cdot s^{\omega-1} | (\log(\beta)))$ . The precomputation of the residues  $(r_{i,j})$  costs  $\mathcal{O}(s^2 \mathsf{I}(\log(\beta)))$ .

**Simultaneous reductions** Now the cost of computing the remainder  $(a \operatorname{rem} p)$  when  $a < B \beta^2$ and  $p < \beta$  is  $\mathcal{O}(\mathsf{I}(\log(\beta B)))$ . Therefore, our final step to compute our simultenous reductions costs  $\mathcal{O}(r s \mathsf{I}(\log(\beta B))).$ 

#### 3.2.2 Linear algebra reconstructions

Hypothesis for the reconstruction :  $p_1, ..., p_s$  are pairwise coprime.

Simultaneous pseudo-reconstructions Let  $P = p_1 \cdots p_s$ ,  $P_i = P / p_i$  for  $1 \le i \le s$ . Let  $l_i := \sum_{j=1}^s n_{i,j} P_j [P_j^{-1}]_{p_j}$  so that  $n_i = l_i \mod P$  with  $l_i < P\beta$ . Then  $l_i$  are pseudo-reconstructions of  $(n_{i,\ell})$  modulo  $p_1, ..., p_s$ .

Once again, we perform the computation of  $l_i$  using linear algebra. Let  $P_i$   $[P_i^{-1}]_{p_i} =$  $\sum_{k=0}^{s-1} e_{j,k} \beta^k$  be the expansion in base  $\beta$  of  $P_{\ell}[P_{\ell}^{-1}]_{p_{\ell}}$ . Put together, we have

$$l_i := \sum_{j=1}^{s} n_{i,j} P_j [P_j^{-1}]_{p_j} = \sum_{j=1}^{s} n_{i,j} \sum_{k=0}^{s-1} e_{j,k} \beta^k = \sum_{k=0}^{s-1} \left( \sum_{j=1}^{s} n_{i,j} \cdot e_{j,k} \right) \beta^k.$$

Benchmarks 3

Let  $(d_{i,j}) \in \mathcal{M}_{r \times s}$  be the product of the matrices  $(n_{i,j}) \in \mathcal{M}_{r \times s}$  and  $(e_{j,k}) \in \mathcal{M}_{s \times s}$ . Then  $l_i = \sum_{k=0}^{s-1} d_{i,j} \beta^k$ .

Note that  $(d_{i,j})$  are not the exact coefficients of the  $\beta$ -expansion of  $l_i$  since  $d_{i,j} \leq s \beta^2$ . But the correction's cost is  $\mathcal{O}(s \mid (\log \beta))$ .

\*\*say something about  $d_{i,j}$  not being the  $\beta$ -expansion, but close\*\*.

**Cost.** The matrix product to compute  $(d_{i,j})$  can be done in bit complexity  $\mathcal{O}(r/s \cdot s^{\omega} \mathsf{I}(\log(\beta))) = \mathcal{O}(r s^{\omega-1} \mathsf{I}(\log(\beta)))$ . Precomputation of  $(e_{j,k})$  costs  $\mathcal{O}(s \mathsf{I}(s \log \beta))$ .

**Simultaneous reconstructions** The final step of the reconstruction consists in reducing  $l_i$  modulo P. This step is relatively cheap since  $l_i$  is almost reduced.

Using the reduction when  $\log(a/p) \ll \Theta(\log(p))$  in our case  $l_i = \mathcal{O}(s \beta^{s+1})$  and  $P = \mathcal{O}(\beta^s)$ , the last reduction step costs  $??\mathcal{O}(s \log(\beta) | (\log(s b)) / \log(s b))^{**}$  per  $l_i$ . Thus a total cost of  $\tilde{\mathcal{O}}(r s \log \beta)$ .

# 3.3 Hybrid approach?

\*\*Linear algebra up to intermediate sizes. Asymptotic complexity (binary tree) equivalent (not even a change of the constant).\*\*



Figure 1.

# 4 Matrix Multiplication with multi-precision integer coefficients

# 5 Implementation

- 5.1 Reduction to word-size matrix multiplication
- 5.2 Kronecker substitution
- 5.2.1 From integer to  $\beta$ -adic
- 5.3 Linear storage for multi-modular matrix

# 6 Benchmarks

# 6.1 Conversion to and from the residue number system