Meow meow meow

A THESIS PRESENTED
BY
RUSHIL MALLARAPU
TO
THE DEPARTMENT OF STATISTICS

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
BACHELOR OF ARTS (HONORS)
IN THE SUBJECT OF
STATISTICS

Harvard University Cambridge, Massachusetts April 2025 © 2025 – Rushil Mallarapu All Rights reserved.

Thesis advisor: Subhabrata Sen

Meow

Abstract

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem quibusdam et.Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem quibusdam et.Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur. Quod idem licet transferre in

iii

Thesis advisor: Subhabrata Sen

voluptatem, ut postea variari voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem quibusdam et.Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem quibusdam et.Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem quibusdam et. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et

iv

Thesis advisor: Subhabrata Sen

infinitum impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem quibusdam et.

v

Content

1	Introduction	1
1.1	Hello	1
2	Beginnings	3
2.1	Meow	3
3	CHAPTER 1: INTRODUCTION	4
3.1	Physical Interpretations	4
3.2	STATISTICAL-TO-COMPUTATIONAL GAP	4
A	Hello	5
В	Meow meow	6
Вів	SLIOGRAPHY	6

1 Introduction

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem quibusdam et.

1.1 Hello

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem quibusdam et.

In Section 1

2 Beginnings

In Section 2 we prove Equation 1.

$$a^2 + b^2 = c^2 (1)$$

Hello [1].

2.1 Meow

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem quibusdam et.

Chapter 1: Introduction

Overview of number partitioning problem.

Application: randomized control trials.

Other applications.

• Circuit design, etc.

Importance as a basic NP-complete problem.

Two questions of interest:

- 1. What is optimal solution.
- 2. How to find optimal solution.
- 3.1 Physical Interpretations
- 3.2 Statistical-to-Computational Gap

B Meow meow

Bibliography

- [1] H. Bauke, S. Franz, and S. Mertens, "Number Partitioning as a Random Energy Model," *Journal of Statistical Mechanics: Theory and Experiment*, vol. 2004, no. 4, p. P4003, Apr. 2004, doi: 10.1088/1742-5468/2004/04/P04003.
- [2] D. Achlioptas and A. Coja-Oghlan, "Algorithmic Barriers from Phase Transitions," in 2008 49th Annual IEEE Symposium on Foundations of Computer Science, Oct. 2008, pp. 793–802. doi: 10.1109/FOCS.2008.11.
- [3] D. Achlioptas and F. Ricci-Tersenghi, "On the Solution-Space Geometry of Random Constraint Satisfaction Problems." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/cs/0611052
- [4] L. Addario-Berry, L. Devroye, G. Lugosi, and R. I. Oliveira, "Local Optima of the Sherrington-Kirkpatrick Hamiltonian." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1712.07775
- [5] B. Alidaee, F. Glover, G. A. Kochenberger, and C. Rego, "A New Modeling and Solution Approach for the Number Partitioning Problem," *Journal of Applied Mathematics and Decision Sciences*, vol. 2005, no. 2, pp. 113–121, Jan. 2005, doi: 10.1155/JAMDS.2005.113.
- [6] M. F. Argüello, T. A. Feo, and O. Goldschmidt, "Randomized Methods for the Number Partitioning Problem," *Computers & Operations*

- Research, vol. 23, no. 2, pp. 103–111, Feb. 1996, doi: 10.1016/0305-0548(95)E0020-L.
- [7] L. Asproni, D. Caputo, B. Silva, G. Fazzi, and M. Magagnini, "Accuracy and Minor Embedding in Subqubo Decomposition with Fully Connected Large Problems: A Case Study about the Number Partitioning Problem," *Quantum Machine Intelligence*, vol. 2, no. 1, p. 4, Jun. 2020, doi: 10.1007/s42484-020-00014-w.
- [8] B. Aubin, W. Perkins, and L. Zdeborová, "Storage Capacity in Symmetric Binary Perceptrons," *Journal of Physics A: Mathematical and Theoretical*, vol. 52, no. 29, p. 294003, Jul. 2019, doi: 10.1088/1751-8121/ab227a.
- [9] A. S. Bandeira, A. Perry, and A. S. Wein, "Notes on Computational-to-Statistical Gaps: Predictions Using Statistical Physics." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1803.11132
- [10] N. Bansal, "Constructive Algorithms for Discrepancy Minimization." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/ 1002.2259
- [11] B. Barak, S. B. Hopkins, J. Kelner, P. K. Kothari, A. Moitra, and A. Potechin, "A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1604.03084
- [12] M. Bayati, D. Gamarnik, and P. Tetali, "Combinatorial Approach to the Interpolation Method and Scaling Limits in Sparse Random Graphs," *The Annals of Probability*, vol. 41, no. 6, Nov. 2013, doi: 10.1214/12-AOP816.
- [13] Q. Berthet and P. Rigollet, "Computational Lower Bounds for Sparse PCA." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1304.0828
- [14] S. Boettcher and S. Mertens, "Analysis of the Karmarkar-Karp Differencing Algorithm," *The European Physical Journal B*, vol. 65, no. 1, pp. 131–140, Sep. 2008, doi: 10.1140/epjb/e2008-00320-9.
- [15] C. Borgs, J. Chayes, and B. Pittel, "Phase Transition and Finite-size Scaling for the Integer Partitioning Problem," *Random Structures & Algorithms*, vol. 19, no. 3–4, pp. 247–288, Oct. 2001, doi: 10.1002/rsa.10004.
- [16] M. Brennan and G. Bresler, "Optimal Average-Case Reductions to Sparse PCA: From Weak Assumptions to Strong Hardness." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1902.07380

- [17] M. Brennan, G. Bresler, and W. Huleihel, "Reducibility and Computational Lower Bounds for Problems with Planted Sparse Structure." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1806.07508
- [18] K. Chandrasekaran and S. Vempala, "Integer Feasibility of Random Polytopes." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1111.4649
- [19] W.-K. Chen, D. Gamarnik, D. Panchenko, and M. Rahman, "Suboptimality of Local Algorithms for a Class of Max-Cut Problems," *The Annals of Probability*, vol. 47, no. 3, May 2019, doi: 10.1214/18-AOP1291.
- [20] E. G. Coffman Jr., M. R. Garey, and D. S. Johnson, "An Application of Bin-Packing to Multiprocessor Scheduling," *SIAM Journal on Computing*, vol. 7, no. 1, pp. 1–17, Feb. 1978, doi: 10.1137/0207001.
- [21] E. G. Coffman and G. S. Lueker, *Probabilistic Analysis of Packing and Partitioning Algorithms*. in Wiley-Interscience Series in Discrete Mathematics and Optimization. New York: J. Wiley & sons, 1991.
- [22] A. Coja-Oghlan and C. Efthymiou, "On Independent Sets in Random Graphs," *Random Structures & Algorithms*, vol. 47, no. 3, pp. 436–486, Oct. 2015, doi: 10.1002/rsa.20550.
- [23] D. Corus, P. S. Oliveto, and D. Yazdani, "Artificial Immune Systems Can Find Arbitrarily Good Approximations for the NP-hard Number Partitioning Problem," *Artificial Intelligence*, vol. 274, pp. 180–196, Sep. 2019, doi: 10.1016/j.artint.2019.03.001.
- [24] I. Cultura, I. Gent, and T. Walsh, "Phase Transitions and Annealed Theories: Number Partitioning as a Case Study," Jun. 2000.
- [25] Y. Deshpande and A. Montanari, "Improved Sum-of-Squares Lower Bounds for Hidden Clique and Hidden Submatrix Problems." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1502. 06590
- [26] I. Diakonikolas, D. M. Kane, and A. Stewart, "Statistical Query Lower Bounds for Robust Estimation of High-dimensional Gaussians and Gaussian Mixtures." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1611.03473
- [27] V. Feldman, E. Grigorescu, L. Reyzin, S. Vempala, and Y. Xiao, "Statistical Algorithms and a Lower Bound for Detecting Planted Clique." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/ abs/1201.1214

- [28] F. F. Ferreira and J. F. Fontanari, "Probabilistic Analysis of the Number Partitioning Problem," *Journal of Physics A: Mathematical and General*, vol. 31, no. 15, p. 3417, Apr. 1998, doi: 10.1088/0305-4470/31/15/007.
- [29] D. Gamarnik and E. C. Kızıldağ, "Algorithmic Obstructions in the Random Number Partitioning Problem." Accessed: Mar. 15, 2025. [Online]. Available: http://arxiv.org/abs/2103.01369
- [30] D. Gamarnik, E. C. Kızıldağ, W. Perkins, and C. Xu, "Algorithms and Barriers in the Symmetric Binary Perceptron Model." Accessed: Mar. 15, 2025. [Online]. Available: http://arxiv.org/abs/2203.15667
- [31] D. Gamarnik and E. Kizildag, "Computing the Partition Function of the Sherrington-Kirkpatrick Model Is Hard on Average," *The Annals of Applied Probability*, vol. 31, no. 3, Jun. 2021, doi: 10.1214/20-AAP1625.
- [32] D. Gamarnik, A. Jagannath, and A. S. Wein, "Hardness of Random Optimization Problems for Boolean Circuits, Low-Degree Polynomials, and Langevin Dynamics." Accessed: Mar. 15, 2025. [Online]. Available: http://arxiv.org/abs/2004.12063
- [33] D. Gamarnik and I. Zadik, "High-Dimensional Regression with Binary Coefficients. Estimating Squared Error and a Phase Transition."

 Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1701.

 04455
- [34] D. Gamarnik and I. Zadik, "The Landscape of the Planted Clique Problem: Dense Subgraphs and the Overlap Gap Property." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1904.07174
- [35] D. Gamarnik and M. Sudan, "Limits of Local Algorithms over Sparse Random Graphs." Accessed: Mar. 15, 2025. [Online]. Available: http://arxiv.org/abs/1304.1831
- [36] D. Gamarnik and A. Jagannath, "The Overlap Gap Property and Approximate Message Passing Algorithms for \$p\$-Spin Models." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1911. 06943
- [37] D. Gamarnik, "The Overlap Gap Property: A Geometric Barrier to Optimizing over Random Structures," *Proceedings of the National Academy of Sciences*, vol. 118, no. 41, p. e2108492118, Oct. 2021, doi: 10.1073/pnas.2108492118.
- [38] D. Gamarnik, A. Jagannath, and S. Sen, "The Overlap Gap Property in Principal Submatrix Recovery," *Probability Theory and Related Fields*, vol. 181, no. 4, pp. 757–814, Dec. 2021, doi: 10.1007/s00440-021-01089-7.

- [39] D. Gamarnik and M. Sudan, "Performance of Sequential Local Algorithms for the Random NAE-\$K\$-SAT Problem," *SIAM Journal on Computing*, vol. 46, no. 2, pp. 590–619, Jan. 2017, doi: 10.1137/140989728.
- [40] D. Gamarnik and I. Zadik, "Sparse High-Dimensional Linear Regression. Algorithmic Barriers and a Local Search Algorithm." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1711. 04952
- [41] M. R. Garey and D. S. Johnson, *Computers and Intractability: A Guide to the Theory of NP-Completeness*. in A Series of Books in the Mathematical Sciences. New York: W. H. Freeman, 1979.
- [42] I. P. Gent and T. Walsh, "Analysis of Heuristics for Number Partitioning," *Computational Intelligence*, vol. 14, no. 3, pp. 430–451, 1998, doi: 10.1111/0824-7935.00069.
- [43] C. Harshaw, F. Sävje, D. Spielman, and P. Zhang, "Balancing Covariates in Randomized Experiments with the Gram-Schmidt Walk Design." Accessed: Mar. 15, 2025. [Online]. Available: http://arxiv.org/abs/1911.03071
- [44] T. Hastie, R. Tibshirani, and J. Friedman, *The Elements of Statistical Learning*. in Springer Series in Statistics. New York, NY: Springer New York, 2009. doi: 10.1007/978-0-387-84858-7.
- [45] H. Hatami, L. Lovász, and B. Szegedy, "Limits of Locally-Globally Convergent Graph Sequences," *Geometric and Functional Analysis*, vol. 24, no. 1, pp. 269–296, Feb. 2014, doi: 10.1007/s00039-014-0258-7.
- [46] R. Hoberg, H. Ramadas, T. Rothvoss, and X. Yang, "Number Balancing Is as Hard as Minkowski's Theorem and Shortest Vector." Accessed: Mar. 15, 2025. [Online]. Available: http://arxiv.org/abs/1611.08757
- [47] S. B. Hopkins, P. K. Kothari, A. Potechin, P. Raghavendra, T. Schramm, and D. Steurer, "The Power of Sum-of-Squares for Detecting Hidden Structures." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1710.05017
- [48] S. Hopkins, "Statistical Inference and the Sum of Squares Method," 2018.
- [49] S. B. Hopkins, J. Shi, and D. Steurer, "Tensor Principal Component Analysis via Sum-of-Squares Proofs." Accessed: Mar. 16, 2025.

 [Online]. Available: http://arxiv.org/abs/1507.03269
- [50] B. Huang and M. Sellke, "Strong Low Degree Hardness for Stable Local Optima in Spin Glasses." Accessed: Jan. 30, 2025. [Online]. Available: http://arxiv.org/abs/2501.06427

- [51] M. Jerrum, "Large Cliques Elude the Metropolis Process," *Random Structures & Algorithms*, vol. 3, no. 4, pp. 347–359, Jan. 1992, doi: 10.1002/rsa.3240030402.
- [52] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, "Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning," *Operations Research*, vol. 37, no. 6, pp. 865–892, 1989, Accessed: Mar. 15, 2025. [Online]. Available: http://www.jstor.org/stable/171470
- [53] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, "Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning," *Operations Research*, vol. 39, no. 3, pp. 378–406, 1991, Accessed: Mar. 15, 2025. [Online]. Available: http://www.jstor.org/stable/171393
- [54] N. Karmarkar, R. M. Karp, G. S. Lueker, and A. M. Odlyzko, "Probabilistic Analysis of Optimum Partitioning," *Journal of Applied Probability*, vol. 23, no. 3, pp. 626–645, 1986, doi: 10.2307/3214002.
- [55] N. Karmarker and R. M. Karp, "The Differencing Method of Set Partitioning," 1983. Accessed: Mar. 15, 2025. [Online]. Available: https://www2.eecs.berkeley.edu/Pubs/TechRpts/1983/6353.html
- [56] M. Kearns, "Efficient Noise-Tolerant Learning from Statistical Queries," *Journal of the ACM*, vol. 45, no. 6, pp. 983–1006, Nov. 1998, doi: 10.1145/293347.293351.
- [57] E. C. Kızıldağ, "Planted Random Number Partitioning Problem." Accessed: Mar. 15, 2025. [Online]. Available: http://arxiv.org/abs/2309.15115
- [58] J. Kojić, "Integer Linear Programming Model for Multidimensional Two-Way Number Partitioning Problem," *Computers & Mathematics with Applications*, vol. 60, no. 8, pp. 2302–2308, Oct. 2010, doi: 10.1016/j.camwa.2010.08.024.
- [59] R. E. Korf, "From Approximate to Optimal Solutions: A Case Study of Number Partitioning," in Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 1, in IJCAI'95. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Aug. 1995, pp. 266–272.
- [60] R. E. Korf, "A Complete Anytime Algorithm for Number Partitioning," Artificial Intelligence, vol. 106, no. 2, pp. 181–203, Dec. 1998, doi: 10.1016/S0004-3702(98)00086-1.
- [61] R. E. Korf, "Multi-Way Number Partitioning," in *Proceedings of the 21st International Joint Conference on Artificial Intelligence*, in IJCAI'09. San

- Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Jul. 2009, pp. 538–543.
- [62] P. K. Kothari, R. Mori, R. O'Donnell, and D. Witmer, "Sum of Squares Lower Bounds for Refuting Any CSP." Accessed: Mar. 16, 2025.

 [Online]. Available: http://arxiv.org/abs/1701.04521
- [63] J. Kratica, J. Kojić, and A. Savić, "Two Metaheuristic Approaches for Solving Multidimensional Two-Way Number Partitioning Problem," *Computers & Operations Research*, vol. 46, pp. 59–68, Jun. 2014, doi: 10.1016/j.cor.2014.01.003.
- [64] A. M. Krieger, D. Azriel, and A. Kapelner, "Nearly Random Designs with Greatly Improved Balance," *Biometrika*, vol. 106, no. 3, pp. 695–701, Sep. 2019, doi: 10.1093/biomet/asz026.
- [65] D. Kunisky, A. S. Wein, and A. S. Bandeira, "Notes on Computational Hardness of Hypothesis Testing: Predictions Using the Low-Degree Likelihood Ratio." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1907.11636
- [66] J. Lauer and N. Wormald, "Large Independent Sets in Regular Graphs of Large Girth," *Journal of Combinatorial Theory, Series B*, vol. 97, no. 6, pp. 999–1009, Nov. 2007, doi: 10.1016/j.jctb.2007.02.006.
- [67] A. Levy, H. Ramadas, and T. Rothvoss, "Deterministic Discrepancy Minimization via the Multiplicative Weight Update Method." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1611. 08752
- [68] S. Lovett and R. Meka, "Constructive Discrepancy Minimization by Walking on The Edges." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1203.5747
- [69] G. S. Lueker, "A Note on the Average-Case Behavior of a Simple Differencing Method for Partitioning," *Operations Research Letters*, vol. 6, no. 6, pp. 285–287, Dec. 1987, doi: 10.1016/0167-6377(87)90044-7.
- [70] R. Meka, A. Potechin, and A. Wigderson, "Sum-of-Squares Lower Bounds for Planted Clique," in *Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing*, Portland Oregon USA: ACM, Jun. 2015, pp. 87–96. doi: 10.1145/2746539.2746600.
- [71] R. Merkle and M. Hellman, "Hiding Information and Signatures in Trapdoor Knapsacks," *IEEE Transactions on Information Theory*, vol. 24, no. 5, pp. 525–530, Sep. 1978, doi: 10.1109/TIT.1978.1055927.
- [72] S. Mertens, "The Easiest Hard Problem: Number Partitioning." Accessed: Mar. 15, 2025. [Online]. Available: http://arxiv.org/abs/cond-mat/0310317

- [73] S. Mertens, "A Physicist's Approach to Number Partitioning," Theoretical Computer Science, vol. 265, no. 1, pp. 79–108, Aug. 2001, doi: 10.1016/S0304-3975(01)00153-0.
- [74] M. Mézard, T. Mora, and R. Zecchina, "Clustering of Solutions in the Random Satisfiability Problem," *Physical Review Letters*, vol. 94, no. 19, p. 197205, May 2005, doi: 10.1103/PhysRevLett.94.197205.
- [75] W. Michiels, J. Korst, E. Aarts, and J. Van Leeuwen, "Performance Ratios for the Differencing Method Applied to the Balanced Number Partitioning Problem," STACS 2003, vol. 2607. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 583–595, 2003. doi: 10.1007/3-540-36494-3_51.
- [76] R. O'Donnell, "Analysis of Boolean Functions." Accessed: Mar. 15, 2025. [Online]. Available: http://arxiv.org/abs/2105.10386
- [77] P. Raghavendra, T. Schramm, and D. Steurer, "High-Dimensional Estimation via Sum-of-Squares Proofs." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1807.11419
- [78] M. Rahman and B. Virag, "Local Algorithms for Independent Sets Are Half-Optimal," *The Annals of Probability*, vol. 45, no. 3, May 2017, doi: 10.1214/16-AOP1094.
- [79] T. Rothvoss, "Constructive Discrepancy Minimization for Convex Sets." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/1404.0339
- [80] V. Santucci, M. Baioletti, and G. Di Bari, "An Improved Memetic Algebraic Differential Evolution for Solving the Multidimensional Two-Way Number Partitioning Problem," *Expert Systems with Applications*, vol. 178, p. 114938, Sep. 2021, doi: 10.1016/j.eswa.2021.114938.
- [81] R. H. Storer, S. W. Flanders, and S. David Wu, "Problem Space Local Search for Number Partitioning," *Annals of Operations Research*, vol. 63, no. 4, pp. 463–487, Aug. 1996, doi: 10.1007/BF02156630.
- [82] L.-H. Tsai, "Asymptotic Analysis of an Algorithm for Balanced Parallel Processor Scheduling," *SIAM Journal on Computing*, vol. 21, no. 1, pp. 59–64, Feb. 1992, doi: 10.1137/0221007.
- [83] P. Turner, R. Meka, and P. Rigollet, "Balancing Gaussian Vectors in High Dimension." Accessed: Mar. 16, 2025. [Online]. Available: http:// arxiv.org/abs/1910.13972
- [84] M. J. Wainwright, *High-Dimensional Statistics: A Non-Asymptotic Viewpoint*. in Cambridge Series in Statistical and Probabilistic

- Mathematics. Cambridge: Cambridge University Press, 2019. doi: 10.1017/9781108627771.
- [85] A. S. Wein, "Optimal Low-Degree Hardness of Maximum Independent Set." Accessed: Mar. 16, 2025. [Online]. Available: http://arxiv.org/abs/2010.06563
- [86] J. Wen *et al.*, "Optical Experimental Solution for the Multiway Number Partitioning Problem and Its Application to Computing Power Scheduling," *Science China Physics, Mechanics & Astronomy*, vol. 66, no. 9, p. 290313, Sep. 2023, doi: 10.1007/s11433-023-2147-3.
- [87] B. Yakir, "The Differencing Algorithm LDM for Partitioning: A Proof of a Conjecture of Karmarkar and Karp," *Mathematics of Operations Research*, vol. 21, no. 1, pp. 85–99, Feb. 1996, doi: 10.1287/moor.21.1.85.
- [88] L. Zdeborová and F. Krzakala, "Statistical Physics of Inference: Thresholds and Algorithms," *Advances in Physics*, vol. 65, no. 5, pp. 453–552, Sep. 2016, doi: 10.1080/00018732.2016.1211393.