

Inhaltsverzeichnis

1. Einführung und Ziele
1.1. Aufgabenstellung
1.2. Qualitätsziele
1.3. Stakeholder
2. Randbedingungen
2.1. Technische Randbedingungen
2.2. Organisatorische Randbedingungen
2.3. Konventionen
3. Kontextabgrenzung
3.1. Fachlicher Kontext
3.2. Technischer Kontext
4. Lösungsstrategie
5. Bausteinsicht
5.1. Whitebox Gesamtsystem
5.2. Ebene 2
5.3. Ebene 3
6. Laufzeitsicht
7. Verteilungssicht
7.1. Infrastruktur Ebene 1
7.2. Infrastruktur Ebene 2
8. Querschnittliche Konzepte
8.1. <i><konzept 1=""></konzept></i> 10
8.2. <i><konzept 2=""></konzept></i>
8.3. <i><konzept n=""></konzept></i> 10
9. Entwurfsentscheidungen
10. Qualitätsanforderungen
10.1. Qualitätsbaum
10.2. Qualitätsszenarien

11. Risiken und technische Schulden	19
12. Glossar	20
13. Anhang	21
13.1. Apollo	21
13.2. Arc42	21
13.3. docToolChain	21

Über arc42

arc42, das Template zur Dokumentation von Software- und Systemarchitekturen.

Erstellt von Dr. Gernot Starke, Dr. Peter Hruschka und Mitwirkenden.

Template Revision: 7.0 DE (asciidoc-based), January 2017

© We acknowledge that this document uses material from the arc42 architecture template, http://www.arc42.de. Created by Dr. Peter Hruschka & Dr. Gernot Starke.

Diese Version des Templates enthält Hilfen und Erläuterungen. Sie dient der Einarbeitung in arc42 sowie dem Verständnis der Konzepte. Für die Dokumentation eigener System verwenden Sie besser die *plain* Version.

1. Einführung und Ziele

Dieser Abschnitt führt in die Aufgabenstellung ein und skizziert die Ziele, die Apollo Auto verfolgt.

1.1. Aufgabenstellung

1.1.1. Was ist Apollo Auto?

Apollo ist eine hochleistungsfähige, flexible Architektur, die die Entwicklung, das Testen und den Einsatz von autonomen Fahrzeugen beschleunigt. Apollo Auto bietet unter Andrem Lösungen für Valet Parking, V2X-Kommunikation und intelligente Lichtsignalanlagen.

1.1.2. Wesentliche Features:

- Valet Parking
 - Software- und Hardware-Integrationslösung. Multifusionslösung bestand aus Fahrzeug, Cloud, HD-Karte und Parkplätzen
 - Bietet hochwertige Dienstleistungen, wie automatische Parkplatzerkennung und autonomes Parken, für Kunden.
- V2X-Kommunikation
 - Interaktionslösung für intelligente Fahrzeuginfrastruktur
 - Apollo V2X umfasst ein intelligentes Transportsystem für Fahrzeug Straßendatenerfassung und intelligente Verarbeitungsanalyse, Verkehrssicherheit und -effizienz
 - Wahrnehmung aller Verkehrsteilnehmer im Sichtfeld und die bereitgestellten straßenseitigen Sensorinformationen können für die Entscheidungsfindung beim autonomen Fahren auf hohem Niveau verwendet werden
 - Wahrnehmung von Verkehrteilnehmern ausserhalb des Sichtfeldes

- Bietet einen vollständigen, kontinuierlichen, multimodalen Datendienst mit niedriger Latenz für L4-Autopilot-Fahrzeuge, die in mehreren Szenarien getestet wurden
- Durch die permanente dynamische Erfassung von Verkehrsinformationen und die Cloud-Integration, wird eine weltweite optimale kollaborative Steuerungsfunktionen für Verkehrsteilnehmer und Verkehrsmanagement erreicht
 - Smart Traffic Signals
- Holographisches Wahrnehmen und Verstehen, basierend auf dem holografischen Wahrnehmungs- und Erkennungssystem
- Status von Fußgängern und Fahrzeugen auf jeder Fahrspur genau erkennen und die Leistung des aktuellen Verkehrsflusses wie Volumen, Warteschlangenlänge, Verspätungen usw.
- Vollständige raum-zeitliche Ableitung und Entscheidungsfindung
- Echtzeitsteuerung der gesamten Szene
- Reduzierung der durchschnittlichen Wartezeit um 20-30% während der Rush Hour
 - Robotaxi
- Die Robotaxis, die aus Chinas erstem werkseitig installierten L4-Passagier-Fahrzeug sind zur Zeit auf öffentlichen Straßen im Testbetrieb
- Sie werden in Kooperation von Baido und FAW an einer gemeinsamen Produktionsline hergstellt
 - Minibus
- Die Minibusse ermöglichen ebenfalls autonomes Fahren der Stufe 4
- Funktionen sind unter Anderem Hinderniserkennung und -vermeidung, zu einem Zielort Fahren und Kreuzungen überqueren

1.2. Qualitätsziele

Die folgende Tabelle beschreibt die zentralen Qualitätsziele von DokChess, wobei die Reihenfolge eine grobe Orientierung bezüglich der Wichtigkeit vorgibt.

Qualitätsziel	Motivation und Erläuterung
Zugängliches Beispiel	Apollo Auto ist eine offene Plattform, daher ist es wichtig, dass
(Analysierbarkeit)	sich neue Entwickler möglichst schnell in die Architektur,
	Entwurf und Implementierung einarbeiten können
Echzeitsteuerung von	Apollo Auto übernimmt zuverlässig und sicher die autonome
einzelnen Fahrzeugen und	Steuerung von Fashrzeugen auf Level 4
Verkehrströmen	
Echtzeit Umfelderkennung	Für die Steuerung von Fahrzeugen wird ein Modell des
	Umfelds benötigt. Aus den Sensoprdaten wird ein digitales
	Abbild des Fahrweges, von beweglichen und unbeweglichen
	Hindernissen und von Signalen geschaffen
Prediction	Um die Fahrsicherheit weiter zu erhöhen, wird auf die Sensor-
	und Zustandsdaten von anderen Verkehrsteilnehmern in
	Echtzeit zugegriffen

1.3. Stakeholder

Die folgende Tabelle stellt die Stakeholder von Apollo Auto und ihre jeweilige Intention dar.

Rolle	Interesse, Bezug
Softwarearchitekten	Wollen ein Gefühl bekommen, wie Architekturdokumentation für ein konkretes System aussehen kann. Möchten sich Dinge (z.B. Form, Notation) für Ihre tägliche Arbeit abgucken. Gewinnen Sicherheit für Ihre eigenen Projekte.
Entwickler	Nehmen Architekturaufgaben im Team wahr. Brauchen ein generelles Verständnis für die Architektur.
OEM & Lieferanten	Entwickeln neue Produkte auf Grundlage von Apollo Auto. Wollen Anregungen für eigene Produkte finden.
Gesetzgeber & Genehmigungsbehörden	Entwickeln einen gesetzlichen Rahmen zur Zulassung von fahrerlosen Fahrzeugen im öffentlichen Straßenverkehr. Etablieren Prüfvorschriften und Tests für Genehmigungsverfahren.
Universitäten	Entwickeln eigene Forschungsprojekte auf Grundlage von Apollo Auto. Wollen Anregungen für weitere Forschungsprojekte und studentische Arbeiten finden.
Studenten	Interessieren sich aufgrund ihres Studiums für die verschiedenen Aspekte einer Architekturdokumentation. Setzen eigene Projekte (z.B. Masterarbeit) zum Thema autonomes Fahren mit Apollo Auto um. Schreiben eine Architekturdokumentation zu Apollo Auto.

2. Randbedingungen

Beim Einsatz von Apollo sind verschiedene Randbedingungen zu beachten. Dieser Abschnitt stellt sie dar und erklärt auch – wo nötig – deren Motivation.

2.1. Technische Randbedingungen

- Für den Einsatz von Apollo Auto wird eine anspruchsvolle
 Hardwareausstattung benötigt. Eine Umsetzung mit einem marktüblichen
 Standard-Notebook allein ist nicht möglich.
- Es wird ein Fahrzeug benötigt, dass mit By-Wire-Systemen ausgestattet ist, zum Beispiel Brake-by-Wire, Steering-by-Wire, Throttle-by-Wire oder Shift-by-Wire (Apollo wird derzeit auf Lincoln MKZ getestet).
- Ein Rechner mit einem 4-Kern-Prozessor und mindestens 8 GB Speicher (16 GB für Apollo 3.5 und höher)
- Ubuntu 18.04
- Zusätzlich wird eine umfangreiche Sensorik benötigt die Bild- und Abstandsinformationen aus dem Umfeld aufnehmen
- Arbeitskenntnisse über Docker

2.2. Organisatorische Randbedingungen

Randbedingung	Erläuterungen, Hintergrund
github	Quellcode ist über github verfügbar.
Bereitstellung von Daten	Alle Daten müssen in einem Format hochgeladen werden, das den Apollo-Datenspezifikationen entspricht.
Speicherung von Daten	Daten, die in China gesammelt wurden, dürfen nur auf Servern in China gespeichert werden. Daten, die in anderen Ländern und Regionen erhoben werden, unterliegen den Beschränkungen der Datenspeicherung, die durch die Gesetze der jeweiligen Länder festgelegt sind.

Randbedingung	Erläuterungen, Hintergrund
Bereitstellung von Daten	Als Initiator dieser Plattform stellt Baidu die Ausgangsdaten für
	diese Plattform bereit. Die Daten stehen allen Partnern dieser
	Plattform offen. Das Prinzip der fairen Daten stellt sicher, dass
	Partner mit größeren eigenen Beiträgen mehr Daten und
	Dienste von dieser Plattform erhalten.
Datenschutz	Jeder Partner kann seine eigenen Daten anzeigen und die
	Datenschutzeigenschaften der Daten als privat oder öffentlich
	festlegen. Die von Partnern hochgeladenen Daten gelten
	standardmäßig als privat.
Endscheidungsführung	Grundsätzlich handelt es sich bei Apollo Auto um eine offene
	Plattform. Allerdings wirde Baidu um die architektonische
	Integrität, die Systemzuverlässigkeit und die schnelle
	Entwicklung von Apollo zu gewährleisten, bei Bedarf wichtige
	Entscheidungen treffen, während die aktive Beteiligung der
	breiteren Gemeinschaft erhalten bleibt.

2.3. Konventionen

Konvention	Erläuterungen, Hintergrund
Dokumentation	Terminologie und Gliederung nach dem deutschen arc42- Template in der Version 6.0
Kodierrichtlinien für C++	C++ Coding Conventions von Sun/Oracle, geprüft mit Hilfe von CheckStyle
Kodierrichtlinien für Python	Python Coding Conventions von Sun/Oracle, geprüft mit Hilfe von CheckStyle
Spezifische Datenformate und Frameworks für autonomes Fahren	Verwendung etablierter Standards für autonomes Fahren. zum Beispiel sind alle Softwaremodule als ROS(Robot Operating System)-Knoten zu behandeln.

3. Kontextabgrenzung

Dieser Abschnitt beschreibt das Umfeld von Apollo Auto. Für welche Benutzer ist es da, und mit welchen Fremdsystemen interagiert es?

3.1. Fachlicher Kontext

Abbildung 1. Benutzer und Benutzergruppen von VENOM

3.2. Technischer Kontext

Abbildung 2. Technischer Kontext von Apollo Auto

4. Lösungsstrategie

Dieser Abschnitt enthält einen stark verdichteten Architekturu□berblick. Eine Gegenu□berstellung der wichtigsten Ziele und Lo□sungsansa□tze.

5. Bausteinsicht

5.1. Whitebox Gesamtsystem

DokChess zerfällt wie in Bild unten dargestellt in vier Subsysteme. Die gestrichelten Pfeile stellen fachliche Abhängigkeiten der Subsysteme untereinander dar (" $x \rightarrow y$ " für "x ist abhängig von y"). Die Kästchen auf der Membran des Systems sind Interaktionspunkte mit Außenstehenden (\rightarrow 3.2 Kontextabgrenzung).

Subsystem Kurzbeschreibung XBoard-Protokoll Realisiert die Kommunikation mit einem Client mit Hilfe des XBoard-Protokolls. Spielregeln Beinhaltet die Schachregeln und kann z.B. zu einer Stellung alle gültigen Züge ermitteln. Engine Beinhaltet die Ermittlung eines nächsten Zuges ausgehend von einer Spielsituation. Eröffnung Stellt Züge aus der Eröffnungsliteratur zu einer Spielsituation bereit. Tabelle: Überblick über Subsysteme von DokChess

<Übersichtsdiagramm>

Begründung

<Erläuternder Text>

Enthaltene Bausteine

<Beschreibung der enthaltenen Bausteine (Blackboxen)>

Wichtige Schnittstellen

<Beschreibung wichtiger Schnittstellen>

5.1.1. < Name Blackbox 1>

<Zweck/Verantwortung>

<Schnittstelle(n)>

<(Optional) Qualitäts-/Leistungsmerkmale>

<(Optional) Ablageort/Datei(en)>

<(Optional) Erfüllte Anforderungen>

<(optional) Offene Punkte/Probleme/Risiken>

5.1.2. <Name Blackbox 2>

<Blackbox-Template>

5.1.3. <Name Blackbox n>

<Blackbox-Template>

5.1.4. <Name Schnittstelle 1>

...

5.1.5. <Name Schnittstelle m>

5.2. Ebene 2

```
5.2.1. Whitebox <Baustein 1>
<Whitebox-Template>
5.2.2. Whitebox <Baustein 2>
<Whitebox-Template>
5.2.3. Whitebox <Baustein m>
<Whitebox-Template>
5.3. Ebene 3
5.3.1. Whitebox <_Baustein x.1_>
<Whitebox-Template>
5.3.2. Whitebox <_Baustein x.2_>
<Whitebox-Template>
5.3.3. Whitebox <_Baustein y.1_>
```

<Whitebox-Template>

6. Laufzeitsicht

Diese Sicht visualisiert im Gegensatz zur statischen Bausteinsicht dynamische Aspekte. Wie spielen die Teile zusammen?

7. Verteilungssicht

7.1. Infrastruktur Ebene 1

<Übersichtsdiagramm>

Begründung

<Erläuternder Text>

Qualitäts- und/oder Leistungsmerkmale

<Erläuternder Text>

Zuordnung von Bausteinen zu Infrastruktur

<Beschreibung der Zuordnung>

7.2. Infrastruktur Ebene 2

7.2.1. *<Infrastrukturelement 1>*

<Diagramm + Erläuterungen>

7.2.2. < Infrastrukturelement 2>

<Diagramm + Erläuterungen>

. . .

7.2.3. *<Infrastrukturelement n>*

<Diagramm + Erläuterungen>

8. Querschnittliche Konzepte

Dieser Abschnitt beschreibt allgemeine Strukturen und Aspekte, die systemweit gelten. Darüber hinaus stellt er verschiedene technische Lösungskonzepte vor.

8.1. <*Konzept 1>* <Erklärung> **8.2.** <*Konzept 2*> <Erklärung> **8.3.** *<Konzept n>* <Erklärung>

9. Entwurfsentscheidungen

10. Qualitätsanforderungen

Dieser Abschnitt beinhaltet konkrete Qualitätsszenarien, welche die zentralen Qualitätsziele, aber auch andere geforderte Qualitätseigenschaften besser fassen. Sie ermöglichen es, Entscheidungsoptionen zu bewerten.

10.1. Qualitätsbaum

Das folgende Bild gibt einen Überblick über die relevanten Qualitätsmerkmale und den ihnen jeweils zugeordneten Szenarien.

10.2. Qualitätsszenarien

11. Risiken und technische Schulden

Die folgenden Risiken wurden zu Beginn des Vorhabens identifiziert. Sie beeinflussten die Planung der ersten drei Iterationen maßgeblich. Seit Abschluss der dritten Iteration werden sie beherrscht. Dieser Architekturüberblick zeigt die Risiken inklusive der damaligen Eventualfallplanung weiterhin, wegen ihres großen Einflusses auf die Lösung.

Inhalt

Eine nach Prioritäten geordnete Liste der erkannten Architekturrisiken und/oder technischen Schulden.

Motivation

Risikomanagement ist Projektmanagement für Erwachsene.

— Tim Lister, Atlantic Systems Guild

Unter diesem Motto sollten Sie Architekturrisiken und/oder technische Schulden gezielt ermitteln, bewerten und Ihren Management-Stakeholdern (z.B. Projektleitung, Product-Owner) transparent machen.

Form

Liste oder Tabelle von Risiken und/oder technischen Schulden, eventuell mit vorgeschlagenen Maßnahmen zur Risikovermeidung, Risikominimierung oder dem Abbau der technischen Schulden.

12. Glossar

Das folgende Glossar erklärt Begriffe aus dem Bereich Autonomes Fahren.

Begriff	Definition
By-Wire	Bezeichnung für (zumindest partielles) Fahren oder
	Steuern von Fahrzeugen ohne mechanische
	Kraftübertragung der Bedienelemente zu den
	entsprechenden Stellelementen wie etwa
	Drosselklappen. Das By-Wire-Konzept umfasst dabei
	zumindest zwei oder mehr der "X-by-Wire"- Systeme
	wie etwa Brake-by-Wire (Bremssteuerung) und Steer-
	by-Wire (Lenkung)
LIDAR	ist eine dem Radar verwandte Methode zur optischen
	Abstands- und Geschwindigkeitsmessung sowie zur
	Fernmessung. Statt der Radiowellen wie beim Radar
	werden Laserstrahlen verwendet.
RADAR	ist die Bezeichnung für verschiedene Erkennungs-
	und Ortungsverfahren und -geräte auf der Basis
	elektromagnetischer Wellen im
	Radiofrequenzbereich (Funkwellen).

13. Anhang

13.1. Apollo

13.2. Arc42

- die Dokumentation muss bereits zu Beginn der Arbeiten an der Architektur/am Quellcode erfolgen um stets den aktuellen Stand abbilden zu können.
- die Dokumentation soll mit dem Projekt wachsen!
- die nachträgliche Dokumentation ist eine Sysiphusarbeit
 - Beispiel:
 - Diagramme in der Laufzeitsicht sind effizienter zu gestalten während ein Modul im Entstehen ist. Änderungen können mit jeder Entwicklungsstufe eingepflegt werden.
 - Ein fertiges Modul in ein Diagramm zu überführen erfordert viel Zeit, da alle beteiligten Module und deren Funktionsweise erst identifiziert werden müssen.

13.3. docToolChain

- plantUML ist zwar bei sehr einfachen Diagrammen eine Erleichterung, kommt aber an beispielsweise draw.io oder tikz (in Latex) nicht heran wenn es um komplexe und detailierte Diagramme geht
 - teilweise werden bei der inline-Erstellung bei plantUML
 Diagrammeinstellungen nicht übernommen
- Schriftgrößen sind nicht einstellbar, was an manchen Stellen z.B Tabellen nötig gewesen wäre
- Ansonsten ist docToolChain eine interessante Alternative, besonders in Bezug auf den CI-Task in github.
 - · damit nicht bei jedem Commit die Dokumentation neu erstellt wird,

bietet github die Möglichkeit über Commitnachrichten, z.B "[no ci]" oder "[skip ci]" den CI-Task auszusetzen. Hier wäre es sinnvoller über Commitnachrichten explizit die Generierung zu starten.