Prime Fibonacci Numbers

THE CHALLENGE

Write a function that finds all of the prime numbers among the first *n* terms of the Fibonacci sequence.

More Details

The well-known Fibonacci sequence starts like this:

Fibonacci[Range[10]]

```
Out[1] = \{1, 1, 2, 3, 5, 8, 13, 21, 34, 55\}
```

Each number after the first two 1s is the sum of the two before. For example, 13 = 5 + 8. In that list, these numbers are prime: 2, 3, 5, 13.

What Your Function Should Do

Write a function FibonacciPrimes that takes as input a positive integer n and finds all prime numbers among the first n Fibonacci numbers.

FibonacciPrimes[10]

```
Out[2] = \{2, 3, 5, 13\}
```

More Examples

FibonacciPrimes[15]

```
Out[3] = \{2, 3, 5, 13, 89, 233\}
```

FibonacciPrimes[25]

```
Out[4] = \{2, 3, 5, 13, 89, 233, 1597, 28657\}
```

Things You May Find Useful

The built-in function **Fibonacci** can compute the n^{th} Fibonacci number:

Fibonacci[1000]

417 949 051 890 403 879 840 079 255 169 295 922 593 080 322 634 775 209 689 623 239 873 322 $471\,161\,642\,996\,440\,906\,533\,187\,938\,298\,969\,649\,928\,516\,003\,704\,476\,137\,795\,166\,849\,228\,875$

Learn about Fibonacci numbers:

Fibonacci Number »

SCRATCH AREA

Select[Fibonacci[Range[10]], PrimeQ]

 $Out[\bullet] = \{2, 3, 5, 13\}$

ENTER YOUR CODE HERE

In[@]:= FibonacciPrimes[n_Integer?Positive] := Select[Fibonacci[Range[n]], PrimeQ]

Submit