Heat Transfer

Boundary Layer Equation

- Forced Convection

Prof. Dr.-Ing. Reinhold Kneer Dr.-Ing. Dr. rer. pol. Wilko Rohlfs Prof. dr. ir. Kees Venner

Learning Goals

- Boundary layer in forced convection
 - Understanding the boundary layer concept on a flat plate in a constant laminar flow.
 - Similarity of velocity and temperature profiles in the boundary layer, and the resulting relation between the heat transfer coefficient and the shear stress for this case

What is a Boundary Layer?

pure Heat Conduction

Heat Conduction + Convection

- The "temperature boundary layer" ends where the temperature has approached 99% of the ambient difference temperature.
- Convection increases the heat transfer.
- ⇒ steeper temperature gradient ⇒ higher heat transfer

Slide 3

Velocity Boundary Layer (Review Fluid Mechanics)

Definition

The thickness of the "Velocity Boundary Layer" δ_u is defined as the location where 99% of the value of the ambient velocity is reached: $u(y = \delta_u) = 0.99u_{\infty}$

Lecture Heat Transfer: Boundary Layer Forced Convection

Temperature Boundary Layer

Definition (Analogously)

The "Temperature Boundary Layer" thickness δ_T is where the value of 99% of the ambient temperature **difference** is reached : $T(y = \delta_T) - T_\infty = 0.99(T_W - T_\infty)$

Review: Conservation equations (2D, steady state, incompressible)

Continuity equation

Mass Flow

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$\delta \ll L$$
, $u \gg v \rightarrow \frac{\partial}{\partial x} \ll \frac{\partial}{\partial y}$

- In the direction of flow, absolute velocity predominates.
- Perpendicular to the surface (normal direction), gradients dominate.

Review: Conservation equations (2D, steady state, incompressible)

Continuity equation

Mass Flows

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \qquad u \gg v \to \frac{\partial}{\partial x} \ll \frac{\partial}{\partial y}$$

Momentum equation

Energy

Slide 7

equation

Momentum Flow Pressure Shear stresses

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial y}{\partial x} + v\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial y} + v\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$

No pressure variation accross boundary layer

$$\frac{\partial p}{\partial y} \ll \frac{\partial p}{\partial x} \approx 0$$

Enthalpy Flow

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} =$$

Heat Conduction

If Pr = 1, the momentum and energy equations are identical.

Prandtl number

Continuity equation

Momentum equation

Energy equation

Reminder: Prandtl number

$$Pr = \frac{v}{a} = \frac{\text{Diffusive Momentum transport}}{\text{Diffusive Heat transport}} \xrightarrow{u \text{ relevant}} T \text{ relevant}$$

$$Pr = 1$$

Identity between the viscous and the thermal boundary layer (Thickness $\delta_u = \delta_T$, Gradient $\frac{\partial u}{\partial y}\Big|_{v=0} = \frac{\partial T}{\partial y}\Big|_{v=0}$ etc.)

Comprehension Questions

What is the difference between the Nusselt and Biot numbers?

What is the relevance of the Prandtl number for Boundary Layer theory?

Determination of Velocity and Temperature profile in the Boundary Layer

UNIVERSITY OF TWENTE

Dimensionless wall shear stress (local at x, or average over L)

$$\tau_w = Function(\rho, x \text{ or } L, u_\infty, \eta, \lambda, c_p)$$

Dimensionless heat transfer coefficient (local at x or average L)

$$\alpha = Function(\rho, x \text{ or } L, u_{\infty}, \eta, \lambda, c_p)$$

Note, also h is used widely in the literature for the heat transfer coefficient.

This is what engineers need to predict friction and heat transfer for design In pratical applications! Generally given in Dimensionless Form!

Conservation equations (2D, steady state, incompressible, plane boundary layer)

Continuity equation

Mass Flow

$$\frac{\partial u^*}{\partial x^*} + \frac{\partial v^*}{\partial y^*} = 0$$

$$Re_L = \frac{\rho u_{\infty} L}{\eta}$$

Momentum equation

Momentum Flow

Shear stresses

$$u^* \frac{\partial u^*}{\partial x^*} + v^* \frac{\partial u^*}{\partial y^*} = \frac{1}{Re_L} \frac{\partial^2 u^*}{\partial y^{*2}}$$

Energy equation

Enthalpy Flow

Heat Conduction

$$u^* \frac{\partial \Theta^*}{\partial x^*} + v^* \frac{\partial \Theta^*}{\partial y^*} = \underbrace{\frac{1}{Re_L Pr} \frac{\partial^2 \Theta^*}{\partial y^{*2}}}_{Pe}$$

Scaling dimensionless variables

$$x^* = \frac{x}{L}$$

$$y^* = \frac{y}{L}$$

$$u^* = \frac{u}{u_{\infty}}$$

$$v^* = \frac{v}{u_{\infty}}$$

$$\Theta^* = \frac{T - T_{\infty}}{T_W - T_{\infty}}$$

Solutions – Result for application (correlations)

Dimensionless wall shear stress (local at x, or average over L)

$$\frac{c_f}{2} = \frac{\tau_W}{\rho u_{\infty}^2} = F (Re, Pr)$$

Dimensionless heat transfer coefficient (local at x or average L)

$$Nu = \frac{\alpha L}{\lambda} = G(Re, Pr)$$

These "correlations" are what engineers use to predict friction and heat transfer for design In pratical applications! Different flow problem, different correlation!!! (Here we look at the case of the flat plate in a laminar uniform flow that can be solved analytically)

Exact Solutions (laminar) – Momentum equation (not relevant to the exam)

Momentum Flow

Shear Stresses

Momentum equation

$$u^* \frac{\partial u^*}{\partial x^*} + v^* \frac{\partial u^*}{\partial y^*} = \frac{1}{Re_L} \frac{\partial^2 u^*}{\partial y^{*2}}$$

Dimensionless wall distance

$$\xi^* = y \left(\frac{\rho u_{\infty}}{\eta x}\right)^{\frac{1}{2}} = \frac{y}{x} R e_x^{\frac{1}{2}}$$

Stream Function ψ

$$u = \frac{\partial \psi}{\partial y}$$
 , $v = -\frac{\partial \psi}{\partial x}$

Dimensionless Stream Function *f*

$$f = \psi \left(\frac{\rho}{\eta u_{\infty} x}\right)^{\frac{1}{2}}, \qquad f' = \frac{df}{d\xi^*} = \frac{\partial \psi}{\partial \xi^*} \left(\frac{\rho}{\eta u_{\infty} x}\right)^{\frac{1}{2}}$$

hence

$$u = \frac{\partial \psi}{\partial y} = \frac{\partial \psi}{\partial \xi^*} \cdot \frac{\partial \xi^*}{\partial y} = \frac{\partial \psi}{\partial \xi^*} \cdot \left(\frac{\rho u_{\infty}}{\eta x}\right)^{\frac{1}{2}} \qquad \Rightarrow f' = \frac{u}{u_{\infty}}$$

Transformation

$$2f^{\prime\prime\prime} + f^{\prime\prime} \cdot f = 0$$

Solution Approach

 $f(\xi^*) \Rightarrow \text{Velocity Profile } f' \Rightarrow \text{Reverse transformation } \frac{\partial u}{\partial y}\Big|_{y=0} \Rightarrow \text{Wall shear stress } \tau_W$

Exact Solutions – Momentum equation

Dimensionless local wall shear stress

$$\frac{c_f}{2} = \frac{\tau_W}{\rho u_\infty^2} = \frac{\eta \left. \frac{\partial u}{\partial y} \right|_{y=0}}{\rho u_\infty^2} = \frac{\eta}{\rho u_\infty} \left(\frac{\rho u_\infty}{\eta x} \right)^{\frac{1}{2}} \frac{\partial f'}{\partial \xi^*} \bigg|_{\xi^*=0} = Re_x^{-\frac{1}{2}} f''(\xi^* = 0)$$

UNIVERSITY OF TWENTE.

Exact Solutions – Energy equation (not relevant to the exam)

Enthalpy Flows

Heat Conduction

Energy equation

$$u^* \frac{\partial \Theta^*}{\partial x^*} + v^* \frac{\partial \Theta^*}{\partial y^*} = \underbrace{\frac{1}{RePr} \frac{\partial^2 \Theta^*}{\partial y^{*2}}}_{Pe}$$

Following a similar procedure as for the Momentum equation

Transformation

$$\Theta^{*''} + \Theta^{*'} \cdot Pr \cdot f = 0$$

Solution Approach

Temperature Profile $\Theta^* \Rightarrow$ Reverse transformation $\frac{\partial T}{\partial y}\Big|_{y=0}$ \Rightarrow Heat transfer coefficient α

Exact Solutions – Energy equation

Dimensionless local heat transfer coefficient

$$Nu_{x} = \frac{\alpha x}{\lambda} = \frac{\left(\lambda \frac{\partial T}{\partial y}\Big|_{y=0}\right) x}{\lambda} = x \left(\frac{\rho u_{\infty}}{\eta x}\right)^{\frac{1}{2}} \frac{\partial \Theta^{*}}{\partial \xi^{*}}\Big|_{\xi^{*}=0} = Re_{x}^{\frac{1}{2}} \Theta^{*}'(\xi^{*}=0)$$

UNIVERSITY OF TWENTE

Exact Solutions (laminar flow)

Dimensionless velocity and temperature profiles are identical

$$\left. \frac{\partial f'}{\partial y} \right|_{y=0} = \left. \frac{\partial \Theta^*}{\partial y} \right|_{y=0} \text{ if } Pr = 1$$

Approximation (local)

$$Nu = \underbrace{0.332}_{\frac{c_f}{2}Re^{\frac{1}{2}}} Re^{\frac{1}{2}} Pr^{\frac{1}{3}} \Rightarrow Nu = Nu(Re, Pr)$$
, and related to friction as: $Nu = \frac{c_f}{2} RePr^{\frac{1}{3}}$
Reynolds based on x!

Local and average heat transfer coefficient

Along the entire Plate
$$\bar{\alpha} = \frac{1}{L} \int_0^L \alpha(x) dx$$

$$\overline{Nu} = \frac{\overline{\alpha}L}{\lambda} = 0.664 Re_L^{\frac{1}{2}} Pr^{\frac{1}{3}}$$

Reynolds based on L

Slide 18

Names to remember:

Ludwig Prandtl

(Paul Richard) Heinrich Blasius

1875-1953

Die Rechte dieses Bildes liegen beim Deutschen Zentrum für Luft- und Raumfahrt (DLR)."

1883-1970

UMP Institutional Repository

UNIVERSITY OF TWENTE.

Comprehension Questions

What is the difference between the Nusselt and Biot numbers?

What is the relevance of the Prandtl number for Boundary Layer theory?

If there is an identity between the thickness of the Flow Boundary Layer and the Temperature Boundary Layer ($\delta_u = \delta_T$), what is the relationship for the Nusselt number? (not relevant to the exam)

$$Pr = 1 \longrightarrow Nu = \frac{c_f}{2} RePr^{\frac{1}{3}} \sim Re \sim u_{\infty}$$

(In the case described, the Nusselt number is directly proportional to the Reynolds number and, by extension, to the flow velocity.)

