Отчет о выполнении лабораторной работы 3.2.5

Свободные и вынужденные колебания в электрическом контуре

Шубин Владислав, Байбулатов Амир 16 декабря 2023 г.

1 Аннотация

В работе исследуется параллельный колебательный контур: определяется зависимость периода свободных колебаний контура от емкости; определяется зависимость логарифмического декремента затухания от сопротивления; исследуется построение резонансных кривых колебательного контура: АЧХ и ФЧХ.

2 Теоретические сведения

Рис. 1: Схема RLC контура

Для RLC контура 1 применим 2 правило Кирхгофа:

$$RI + U_C + L\frac{dI}{dt} = 0. (1)$$

Подставив в уравнение (1) выражение для тока через 1-ое правило Кирхгофа, и разделив обе части уравнения на CL, получим:

$$\frac{d^2U_C}{dt^2} + \frac{R}{L}\frac{dU_C}{dt} + \frac{U_C}{CL}.$$
 (2)

Произведём замены $\gamma = \frac{R}{2L}$ — коэффициент затухания, $\omega_0^2 = \frac{1}{LC}$ — собственная круговая частота, $T_0 = \frac{2\pi}{\omega_0} = 2\pi\sqrt{LC}$ — период собственных колебаний. Тогда уравнение (2) примет вид:

$$\ddot{U_C} + 2\gamma \dot{U_C} + \omega_0^2 U_C = 0, \tag{3}$$

где точкой обозначено дифференцирование по времени. Будем искать решение данного дифференциального уравнения в классе функций следующего вида:

$$U_C(t) = U(t)e^{-\gamma t}$$
.

Получим:

$$\ddot{U} + \omega_1^2 U = 0$$
, где $\omega_1^2 = \omega_0^2 - \gamma^2$ (4)

Для случая $\gamma < \omega_0$ в силу того, что $\omega_1 > 0$, получим:

$$U_C(t) = U_0 \cdot e^{-\gamma t} \cos(\omega_1 t + \varphi_0). \tag{5}$$

Для получения фазовой траектории представим формулу (6) в другом виде:

$$U_C(t) = e^{-\gamma t} (a\cos\omega_1 t + b\sin\omega_1 t), \tag{6}$$

где *а* и *b* получаются по формулам:

$$a = U_0 \cos \varphi_0,$$
 $b = -U_0 \sin \varphi_0.$

В более удобном виде запишем выражения для напряжения на конденсаторе и токе через катушку:

$$U_C(t) = U_{C0} \cdot e^{-\gamma t} (\cos \omega_1 t + \frac{\gamma}{\omega_1} \sin \omega_1 t), \tag{7}$$

$$I(t) = C\dot{U}_C = -\frac{U_{C0}}{\rho} \frac{\omega_0}{\omega_1} e^{-\gamma t} \sin \omega_1 t. \tag{8}$$

Введём некоторые характеристики колебательного движения:

$$\tau = \frac{1}{\gamma} = \frac{2L}{R},\tag{9}$$

где τ – время затухания (время, за которое амплитуда колебаний уменьшается в e раз).

$$\Theta = \ln \frac{U_k}{U_{k+1}} = \gamma T_1 = \frac{1}{N_\tau} = \frac{1}{n} \ln \frac{U_k}{U_{k+n}},\tag{10}$$

где Θ – логарифмический декремент затухания, U_k и U_{k+1} – два последовательных максимальных отклонения величины в одну сторону, N_{τ} – число полных колебаний за время затухания τ .

Теперь рассмотрим случай *вынужденных колебаний* под действием внешней внешнего синусоидального источника. Для этого воспользуемся методом *комплексных амплитуд* для схемы на рис.1:

$$\ddot{I} + 2\gamma \dot{I} + \omega^2 I = -\varepsilon \frac{\Omega}{L} e^{i\Omega t}.$$
 (11)

Решая данное дифференциальное уравнение получим решение:

$$I = B \cdot e^{-\gamma t} \sin(\omega t - \Theta) + \frac{\varepsilon_0 \Omega}{L \omega_0} \sin(\Omega t - \varphi). \tag{12}$$

Нетрудно видеть, что частота резонанса будет определяться формулой:

$$\omega_0 = \frac{1}{2\pi\sqrt{LC}}. (13)$$

3 Оборудование и инструментальные погрешности

Оборудование: осциллограф АКТАКОМ ADS-6142H, генератор сигналов специальной формы АКИП-3409/4, магазин сопротивления МСР-60, магазин емкости Р5025, магазин индуктивности Р567 типа МИСП, соединительная коробка с шунтирующей емкостью, соединительные одножильные и коаксиальные провода.

4 Результаты измерений и обработка данных

4.1 Описание экспериментальной установки

Схема установки для исследования колебаний приведена на рис.2. Колебательный контур состоит из постоянной индуктивности L с активным сопротивлением R_L , переменной емкости C и сопротивления R. Картина колебаний напряжения на емкости наблюдается на экране двух-канального осциллографа. Для возбуждения затухающих колебаний используется генератор сигналов специальной формы. Сигнал с генератора поступает через конденсатор C_1 на вход колебательного контура. Данная емкость необходима чтобы выходной импеданс генератора был много меньше импеданса колебательного контура и не влиял на процессы, проходящие в контуре.

Рис. 2: Схема установки для исследования вынужденных колебаний

Установка предназначена для исследования не только возбужденных, но и свободных колебаний в электрической цепи.

Рис. 3: Схема установки для исследования АЧХ и ФЧХ

4.2 Характеристики системы

 $L = 100 \text{ м}\Gamma\text{H}$ R = 0.001 Om

4.3 Предварительные расчеты:

$$C_0 = 7.6 * 10^{-10} \Phi (14)$$

$$R_{\rm cr} = 8165 \, \text{Om}$$
 (15)

4.4 Практическая часть

No	С, мкф	$T_{\text{теор}}$, мкс	$T_{\rm практ}$, мкс
1	0.002	88.8	88.2
2	0.003	108.8	100.1
3	0.004	125.6	115.1
4	0.005	140.4	130.3
5	0.006	153.8	140.1

Таблица 1: Результаты измерений

Рис. 4: График зависимости периода собственных колебаний от корня из ёмкости системы

No	R, Ом	U_1 , мВ	U_2 , мВ	θ
1	408.2	176.0	260	0.39
2	458.2	216.0	332.0	0.43
3	688.2	112.0	204.0	0.6
4	988.2	106.0	248.0	0.85
5	1488.2	124.0	423.0	1.23
5	1888.2	75.0	338.0	1.51

Таблица 2: Результаты измерений декрементов

5 Заключение

- 1. В ходе сравнения зависимости с теоретической была обнаружена некоторая небольшая ёмкость колебательной системы (исключая магазин ёмкостей), которая смещает зависимость T(C) на некоторую константу, однако, достаточно мала, чтобы изменить характер зависимости (изменений установить не удалось).
- 2. Удалось снять зависимость логарифмического декремента затухания от активного сопротивления цепи (погрешность составила порядка 5%), основной причиной такой погрешности послужили наводки, которые «размазывали сигнал», особенно на пиках амплитуд, делая невозможным поддерживать точность на уровне точности приборов. График данной зависимости в линеализирующих координатах:
- 3. Определили критическое сопротивление, при котором характер колебаний меняется на апериодический, тремя способами: теоретическим $R_{\rm kp}=8,16\pm0,12$ кОм, по наклону графика зависимости логарифмического декремента затухания от сопротивления цепи $R_{\rm kp}=6,2\pm0,4$ кОм, с помощью наблюдением за картиной колебаний $R_{\rm kp}=3$ кОм. Как видим, значения довольно сильно отличаются, это связано с неточностью $R_{\rm kp}$ по своей природе.
- 4. Были сняты АЧХ и ФЧХ для вынужденных колебаний в цепи, проведена аппроксимация соответствующих теоретических зависимостей к экспериментальным точкам, функции из теории хорошо ложатся на точки, однако при этих измерениях возникли ещё большие наводки, сделали случайную погрешность кратно больше системной ($\sigma_{\text{случ}} \sim 7\sigma_{\text{сист}}$), однако из-за аппроксимации они не имею большого вклада в итоговые результаты.
- 5. Удалось определить логарифмические декременты затухания по установлению и затуханию вынужденных колебаний, получены значения декремента для двух значений сопротивления магазина:

```
при R=140 Ом \Theta_{\rm затух}=0.19\pm0.015; \Theta_{\rm устан}=0.179\pm0.01, при R=280 Ом \Theta_{\rm затух}=0.293\pm0.013; \Theta_{\rm устан}=0.29\pm0.03.
```

Как видим, значения хорошо совпадают в пределах погрешностей.