Sequence models & Attention mechanism

Quiz, 10 questions

9/10 points (90%)

Congratulations! You passed!

Next Item

1/1 point

1.

Consider using this encoder-decoder model for machine translation.

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

True

False

Correct

1/1 point

2

In beam search, if you increase the beam width B, which of the following would you expect to be true? Check all that apply.

Beam search will run more slowly.

Correct

Sequence models & Attention mechanism Quiz, 10 questions

9/10 points (90%)

Correct

Corr	Beam search will generally find better solutions (i.e. do a better job maximizing $P(y x)$) rect
Un-s	Beam search will converge after fewer steps. selected is correct
	1 / 1 point chine translation, if we carry out beam search without using sentence normalization, the algorithm will o output overly short translations.
Corr	True rect
0	False
4.	1 / 1 point

Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to Sequence model is a stimulian band change in the value of y that maximizes P(y) boints (90%) Quiz, 10 questions

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^{-}7$$

$$P(y^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.

Correct

- No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

1/1 point

5.

Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggest you should focus your attention on improving the search algorithm.

True.

Correct

False.

1/1

Sequence models & Attention mechanism

9/10 points (90%)

Quiz, 10 questions 6.

Consider the attention model for machine translation.

Further, here is the formula for $\alpha^{< t, t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_x} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t,t'>}$ are true? Check all that apply.

We expect $\alpha^{< t,t'>}$ to be generally larger for values of $a^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)

Correct

We expect $\alpha^{< t, t'>}$ to be generally larger for values of $a^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)

Un-selected is correct

 $\sum_t lpha^{< t,t'>} = 1$ (Note the summation is over t.)

Un-selected is correct

$\sum_{t'}\alpha^{< t,t'>}=1 \text{ (Note the summation is over }t'.\text{)}$ Sequence models & Attention mechanism Quiz, 10 questions

9/10 points (90%)

Correct

1/1 point

7.

The network learns where to "pay attention" by learning the values $e^{< t, t'>}$, which are computed using a small neural network:

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t'>}$ which in turn depends on $e^{< t,t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet.

True

Correct

False

1/1 point

8.

Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:

The input sequence length T_x is large.

Correct

The input sequence length T_x is small.

0/1 point

9.

Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed.

Sequence models, & Attention maching is mose to?		9/10 points (90%)
Quiz, 10 questions		37 10 points (3070)

_c_oo_o_kkb_oooooookkk				
	cokbok			
	cookbook			
	cook book			
\bigcirc	coookkbooooookkk			

This should not be selected

1/1 point

10.

In trigger word detection, $x^{< t>}$ is:

igcirc Features of the audio (such as spectrogram features) at time t.

Correct

- igcup The t-th input word, represented as either a one-hot vector or a word embedding.
- Whether the trigger word is being said at time t.
- Whether someone has just finished saying the trigger word at time t.

P