Working with CLIMCAPS trapezoids

How to calculate coarse-layer AKs on fine-layer RTA grid

Nadia Smith

6 September 2023

nadias@stcnet.com

Acronyms

- fn = file name
- AK = averaging kernel
- nL = number of retrieval (fine) layers above surface pressure at target scene
- nj = number of trapezoidal (coarse) layers above surface pressure at target scene
- **ifoot** = index of retrieval footprint along scanline. Each CLIMCAPS granule has 30 footprints in each scanline
- iscan = index of footprint across scanline. Each CLIMCAPS granule has 45 footprints across the scanlines
- *func* = trapezoidal basis function

STEP 1: Read file and extract relevant fields then plot arrays using

calc_trapezoids_fmatrix.pro

- Sample files
 - fn1='~/data/SNDR.J1.CRIMSS.20201230T2248.m06.g229.L2_CLIMCAPS_RE T.std.v02_28.G.210203073025.nc'
 - fn2='~/data/SNDR.J1.CRIMSS.20190901T0336.m06.g037.L2_CLIMCAPS_RE T.std.v02_28.G.200214174949.nc'
- Ifoot=4, iscan=32 (target field-of-regard)
- Read these fields for CO₂:
 - co2_func_htop = 0
 - co2_func_hbot = 0
 - co2_func_indxs = [1, 22, 44, 55, 63, 69, 75, 85, 100] = 9 values depicting boundaries of coarse pressure layers for trapezoid basis functions
 - co2_ave_kern(*,*,ifoot,iscan) = [8 x 8]
 - Prior_surf_pres/100. -> fn1 = 1019.00 hPa, fn2 = 840.207 hPa

STEP 2: Adjust vertical grids according to surface pressure at target scene [ifoot,iscan]

- ak_nlev_scene = 9
- co2_func_indxs after surface adjustment
 - fn1 = [1 22 44 55 63 69 75 85 98]
 - fn2 = [1 22 44 55 63 69 75 85 91]

STEP 3: Calculate transformation matrix (f_matrix) and its pseudo inverse

calc_trapezoids_fmatrix.pro calls
calc_finv_mp.pro, which depends on slb2fin.pro

Averaging Kernels (AKs) on coarse grid

Func_matrix and its inverse for fn1

Func_matrix and its inverse for fn2

Effective Averaging Kernels (fine levels)

Similar to left panels in Figure 4 of Maddy & Barnet 2008 – Effective Averaging Kernels = func matrix # (coarse AKs) # func inv

Smoothing Kernels (fine layers)

Similar to right panels in Figure 4 of Maddy & Barnet 2008 – Smoothing Kernels = func_matrix # func_inv

Smoothing Kernels (F#F+) Psurf=1019hPa Smoothing Kernels (F#F+) Psurf=840hPa

