МАШИНОСТРОЕНИЕ И МАШИНОВЕДЕНИЕ

УДК 681.5.015

ПЛАНИРОВАНИЕ ТРАЕКТОРИЙ РОБОТОВ-МАНИПУЛЯТОРОВ В ТЕХНОЛОГИЧЕСКОМ ПРОЦЕССЕ ТОЧЕЧНОЙ КОНТАКТНОЙ СВАРКИ

М. М. КОЖЕВНИКОВ, И. Э. ИЛЮШИН, А. В. СТАРОВОЙТОВ, В. Н. КОСЫРЕВ

Учреждение образования «Могилевский государственный университет продовольствия», Республика Беларусь

Ввеление

Задача планирования траектории промышленных роботов-манипуляторов с учетом сложной геометрии рабочего пространства и технологических ограничений возникает при создании современных роботизированных технологических комплексов (РТК) точечной контактной сварки (ТКС). Решение такой задачи позволит повысить эффективность эксплуатации действующих РТК точечной контактной сварки, а также сократить сроки технического переоснащения и переналадки оборудования на предприятиях машиностроительной отрасли.

В известных работах предложен ряд алгоритмов планирования траекторий антропоморфных роботов-манипуляторов, позволяющих эффективно обойти как проблему
размерности конфигурационного пространства, так и учесть сложную геометрию препятствий в рабочем пространстве. Подробный обзор и анализ таких алгоритмов представлен в фундаментальных работах [1], [2]. Эти алгоритмы основаны на дискретной
модели конфигурационного пространства робота, формируемой путем поиска свободных от столкновения положений робота и локальных участков траекторий между локальными положениями. Далее эта модель используется для глобального поиска траектории между заданным начальным и конечным положением робота. В частности,
в работе [3] предложен вероятностный алгоритм планирования траектории, который
ведет поиск нескольких решений, что увеличивает вероятность получения результата
за фиксированное время. В работах [4], [5] представлены алгоритмы планирования,
которые для решения задачи планирования используют концепцию мультиграфа задачи движения (taskmotion multigraph, TMM).

Необходимо отметить, что использование таких алгоритмов при планировании траектории сварочных роботов-манипуляторов существенно осложняется тем, что они используют нерегулярную структуру соседних элементов мультиграфа для описания конфигурационного пространства робота [6]–[12], соответственно, траектория робота может быть найдена за конечное время лишь с определенной вероятностью, также практически невозможно учесть технологические ограничения на положение и ориентацию сварочных клещей.

Целью данной работы является разработка нового метода планирования траекторий роботов-манипуляторов, основанного на детерминистической дискретизации пространства углов ориентации клещей ТКС относительно шва. В отличие от известных этот метод эффективно учитывает технологические ограничения на ориентацию сварочных клещей и сложную форму препятствий, характерную для РТК точечной контактной сварки.

Метод планирования траектории сварочного робота-манипулятора

Рассмотрим типичную компоновку РТК точечной контактной сварки (рис. 1, a), включающую в себя робот-манипулятор, оснащенный клещами, и свариваемую конструкцию, закрепленную на кондукторной плите с помощью прижимов. На поверхности конструкции определена модель сварного шва в виде множества точек $\{p_i\}_{i=1}^N$, декартовы координаты которых определяются множеством векторов $\{x_i\}_{i=1}^N$. Ориентация электродов сварочных клещей в каждой точке шва p_i определяется двумя углами α и β (рис. 1, δ). Первый задает угол наклона плоскости движения электрода, второй – угол наклона электрода к линии шва. Величина углов α и β в технологическом процессе точечной контактной сварки может изменятся в допустимом диапазоне $\pm 10^\circ$. Угол γ определяет совместно с α и β ориентацию сварочных клещей и может принимать произвольные значения в диапазоне $\pm 180^\circ$ [13].

 $Puc.\ 1.$ Роботизированный технологический комплекс точечной контактной сварки и ориентация сварочных клещей:

a — позиционирование технологического инструмента в точке p_i ; δ — углы ориентации технологического инструмента в точке p_i

С учетом этого зададим допустимые диапазоны изменения углов ориентации сварочных клещей в виде:

$$\alpha_{\min} \le \alpha \le \alpha_{\max}; \ \beta_{\min} \le \beta \le \beta_{\max}; \ \gamma_{\min} \le \gamma \le \gamma_{\max}.$$
 (1)

Разобьем допустимые диапазоны изменения углов ориентации с параметром дискретизации n и сформируем таким образом следующие множества значений:

$$\{\alpha_j\}_{i=1}^n; \ \{\beta_j\}_{i=1}^n; \ \{\gamma_j\}_{i=1}^n,$$
 (2)

где
$$\alpha_1=\alpha_{\min}$$
; $\alpha_n=\alpha_{\max}$; $\beta_1=\beta_{\min}$; $\beta_n=\beta_{\max}$; $\gamma_1=\gamma_{\min}$; $\gamma_n=\gamma_{\max}$.

Тогда дискретное пространство углов ориентации сварочных клещей, помещенных в точку шва p_i , будет содержать $N_0 = n^3$ точек с координатами, определяемыми

множеством векторов $\left[\alpha_{j}^{i},\beta_{j}^{i},\gamma_{j}^{i}\right]^{T}$, $j=1,...,N_{0}$. Применение такого подхода к представлению углов ориентации основано на результатах, полученных в работах [2], [3], и используется в предлагаемом методе планирования траектории роботов с целью учета ограничений на ориентацию сварочных клещей. Наглядно такой подход к дискретизации пространства углов ориентации показан на рис. 2.

Рис. 2. Дискретное пространство углов ориентации сварочных клещей

Вектор, описывающий углы в сочленениях робота-манипулятора, обеспечивающие позиционирование сварочных клещей в точку шва p_i с координатами x_i и ориентацией клещей $\left[\alpha_j^i,\beta_j^i,\gamma_j^i\right]^T$, может быть определен следующим образом:

$$\mathbf{q}_{j}^{i} = ikin\left(\left[\alpha_{j}^{i}, \beta_{j}^{i}, \gamma_{j}^{i}\right]^{T}, x_{i}, conf\right), \tag{3}$$

где $ikin(\bullet)$ — функция вычисления обратного кинематического преобразования; conf — индикатор конфигурации робота-манипулятора.

Необходимо отметить, что в данной работе рассматривается класс промышленных роботов-манипуляторов, без кинематической избыточности, для которых при заданном значении индикатора конфигурации *conf* решение (3) единственно. Методы решения (3) подробно исследованы в работах [6], [13]. Определим в конфигурационном пространстве робота-манипулятора множество конфигураций, соответствующих точке шва p_i и множеству допустимых в этой точке дискретных значений углов ориентации $\left[\alpha_i^i, \beta_i^i, \gamma_i^i\right]^T$, $j = 1, ..., N_0$ следующим образом:

$$\mathbf{q}^{i} = \left\{ ikin\left(\left[\alpha_{j}^{i}, \beta_{j}^{i}, \gamma_{j}^{i}\right]^{T}, x_{i}, conf \right) \right\}_{i=1}^{N_{0}} \cap \mathbf{C}\mathbf{f},$$

$$\tag{4}$$

где Cf – множество векторов, определяющее свободное от столкновений с препятствиями конфигурационное пространство робота-манипулятора:

$$Cf = \{q | M(q) \cap B = \emptyset \}, \tag{5}$$

где M(q) — геометрическая модель робота-манипулятора в конфигурации; $q_{\min} \le q \le q_{\max}$, q_{\min} , q_{\max} — векторы, определяющие нижнее и верхнее конструктивные ограничения на изменение углов в сочленениях робота-манипулятора; B — множество препятствий.

Решение задачи моделирования свободного от столкновений конфигурационного пространства Cf (5) выполнено с использованием алгоритмов, предложенных в предыдущих авторских работах [14], [15]. Программные реализации этих алгоритмов уже успешно интегрированы в САПР Robomax [15], в которой проводилось тестирование предложенного метода.

Необходимо отметить, что в качестве препятствий в РТК точечной контактной рассматриваются все его элементы, находящиеся в рабочей зоне робота и препятствующие его движению по перемещению клещей, а именно: свариваемая конструкция, прижимные приспособления, кондукторная плита, ограждение РТК и т. д. В качестве критерия качества траектории движения робота манипулятора при сварке шва предлагается использовать суммарное время перемещения сварочных клещей по точкам шва:

$$\tau = N\Delta t + \rho / \nu, \tag{6}$$

где Δt — время сварки одной точки; ρ — длина пути сварочных клещей при их движении в направлении от начальной к конечной точке сварки; ν — скорость движения сварочных клещей.

Тогда задача планирования траектории движения робота-манипулятора по перемещению сварочных клещей по точкам шва p_i может быть сформулирована следующим образом: среди всех траекторий, последовательно соединяющих конфигурации робота-манипулятора, входящие в множества $q_1, q_2, ..., q_N$ и определяемые выражением (4), найти траекторию с минимальным суммарным временем перемещения сварочных клещей по точкам шва (6).

Для ее решения поставленной задачи разработана процедура, включающая следующие этапы.

1. Формируется модель свободного конфигурационного пространства робота (5) в виде неориентированного графа:

$$DCf = (V, E). (7)$$

Вершины $V \subset Cf$ этого графа представляют собой множество свободных от столкновений конфигураций робота. Формирование множества V осуществляется следующим образом: генерируется конфигурация робота-манипулятора и выполняется тест столкновения робота с препятствиями. Если столкновений нет, то конфигурация добавляется в множество V, в противном случае она отбрасывается. Ребрам E графа ставятся в соответствие «простые» (прямолинейные) участки траекторий сварочных клещей между свободными от столкновений конфигурациями робота из множества V.

2. Выполняется поиск «простых» траекторий между элементами множеств q^i и q^{i+1} , вычисляемых по (4). Если таковых не существует (не существует прямолинейной траектории сварочных клещей между точками сварного шва p_i и p_{i+1}), то выполняется поиск «простых» траекторий между конфигурациями из множеств q^i и q^{i+1} и конфигурациями из множества E, лежащих в окрестности q^i и q^{i+1} . Если таковые существуют, то соответствующее ребро добавляется в множество V, а конфигурации q^i

и q^{i+1} добавляются в множество E. Весовой коэффициент каждого ребра вычисляется следующим образом: $\tau_r = \rho_r / \nu$, где $\rho_r -$ длина «простого» пути сварочных клещей между элементами множества E.

- 3. Шаги 1–2 повторяются для всех точек свариваемого шва $\{p_i\}_{i=1}^n$. Повторение этих шагов позволяет сформировать неориентированный граф $\mathbf{\textit{DCf}}$, который включает как конфигурации робота, соответствующие точкам свариваемого шва, так и дополнительные (промежуточные) конфигурации, необходимые для обхода препятствий, а также «простые» участки траекторий между этими конфигурациями.
- 4. Выполняется поиск множества кратчайших путей на графе DCf от элементов множества q^{I} до элементов множества q^{N} . Из полученного таким образом множества путей выбирается такой путь, при перемещении робота-манипулятора по «простым» участкам траектории которого суммарное время передвижения сварочных клещей (6) будет минимальным.

DETECTION AND D	_
Исходные данные: Геометрическая модель РТК ТКС – $M(q)$, B ;	
Γ еометрическая модель шва $-\{m{x}_i\}_{i=1}^N,\ \{f_i\}_{i=1}^N.$	
1: $i \leftarrow 1; V \leftarrow \varnothing; E \leftarrow \varnothing;$	
2: повторять	
3: $Gen(q^i)$;	
4: если $M(q) \cap B = \emptyset$	
5: $\mathbf{To}\ V \leftarrow q^i;$	
6: $E \leftarrow Lin(q^i, E)$;	
7: $i \leftarrow i + 1$;	
8: до тех пор пока $i \leq N_d$;	
9: $i \leftarrow 1$;	
10: повторять	
11: $q^i \leftarrow search(\alpha^i, \beta^i, \gamma^i, x^i, conf);$	
12: $q^{i+l} \leftarrow search(\alpha^{i+1}, \beta^{i+1}, \gamma^{i+1}, x^{i+1}, conf);$	
13: Если $Lin(q^i, q^{i+1}) \neq \emptyset$	
14: $\operatorname{To} V \leftarrow (q^{i}, q^{i+1}), E \leftarrow (\operatorname{Lin}(q^{i}, E), \operatorname{Lin}(q^{i+1}, E)), \tau \leftarrow (\operatorname{weight}(\operatorname{Lin}(q^{i}, E), \operatorname{Lin}(q^{i}, E))), \tau \leftarrow (\operatorname{weight}(\operatorname{Lin}(q^{i}, E), \operatorname{Lin}(q^{i}, E), \operatorname{Lin}(q^{i}, E))), \tau \leftarrow (\operatorname{weight}(\operatorname{Lin}(q^{i}, E), \operatorname{Lin}(q^{i}, E), \operatorname{Lin}(q^{i}, E))), \tau \leftarrow (\operatorname{Lin}(q^{i}, E), \operatorname{Lin}(q^{i}, E), \operatorname{Lin}(q^{i}, E), \operatorname{Lin}(q^{i}, E))), \tau \leftarrow (\operatorname{Lin}(q^{i}, E), \operatorname{Lin}(q^{i}, E), \operatorname{Lin}(q^{i}, E)))$	$Lin(\boldsymbol{q}^{i+1}, \boldsymbol{E}));$
15: $i \leftarrow i + 1$;	
16: до тех пор пока $i \le N$;	
17: $Trag \leftarrow Graph \ Search \ (V, E, \tau, q^1, q^N);$	
18: $path \leftarrow OptTrag(Trag)$.	

Алгоритм планирования траектории для РТК ТКС

С учетом специфики и возможностей геометрического моделирования роботовманипуляторов в современных CAD-системах на основе предложенного метода разработан алгоритм планирования траектории, ориентированный на интеграцию в модуль автономного программирования РТК точечной контактной сварки, приведенный в табл. 1. Алгоритм использует следующие обозначения: $\{f_i\}_{i=1}^N$ — множество векторов, определяющих направление подхода сварочных клещей к точкам свариваемого шва p_i ; $Gen(q^i)$ — функция генерации некоторой конфигурации роботаманипулятора q^i ; $Lin(q^i, E)$ — функция генерации линейного («простого») участка траектории между конфигурацией q^i и конфигурациями, входящими в множество E; N_d — количество вершин графа DCf; $search(\alpha^i, \beta^i, \gamma^i, x^i, conf)$ — функция поиска сво-

бодных от столкновений конфигураций робота в точке свариваемого шва p_i ; $weight(e_1, e_2)$ — функция вычисления весовой функции τ_r для ребер графа e_1 и e_2 ; $GraphSearch(V, E, \tau, q^1, q^N)$ — функция поиска кратчайших путей на графе DCf — элементов множества q^1 до элементов множества q^N ; OptTrag(Trag) — функция поиска оптимального в смысле критерия (3) пути path из множества путей Trag.

Puc.~3. Моделирование траектории движения робота IR161 в процессе ТКС: a — позиционирование технологического инструмента в точке p_2 ; δ — позиционирование технологического инструмента в точке p_3 ; ϵ — вид сверху на РТК с позиционированием технологического инструмента в точке p_2 ; ε — вид сверху на РТК с позиционированием технологического инструмента в точке p_3

Исследование эффективности метода

Исследование эффективности предложенного метода выполнялось в среде САПР ROBOMAX. Разработанный алгоритм планирования траектории реализован на языке программирования C++ в виде автономного модуля и интегрирован в данную САПР. В качестве объекта использовалась роботизированная ячейка, включающая роботманипулятор IR161, оснащенный клещами для точечной контактной сварки, свариваемую деталь (деталь кабины автомобиля ГАЗель), кондукторную плиту и технологическую оснастку (рис. 3). Свариваемый шов, а также фрагменты траекторий движения сварочных клещей при обходе прижимов показаны на рисунках утолщенной линией. В качестве препятствий в данном случае рассматриваются сварная конструкция, технологическая оснастка (прижимы), а также кондукторная плита. На рис. 3, a и b показана полученная на основе разработанного алгоритма последовательность движений робота — манипулятора и сварочных клещей. Электрод клещей движется от точки b1 к точке b2 по прямолинейной траектории, далее посредством двух промежуточных точек b2, b3, b4. Аналогиченной прижима и выход на точку сварного шва b6 (рис. 3, a, b7). Аналогиченной траектории и выход на точку сварного шва b8 (рис. 3, a8, b7). Аналогиченной прижима и выход на точку сварного шва b8 (рис. 3, a8, b7). Аналогиченной траектории движения и выход на точку сварного шва b8 (рис. 3, a8, b7). Аналогиченной прижима и выход на точку сварного шва b8 (рис. 3, a8, b7). Аналогиченной прижима и выход на точку сварного шва b8 (рис. 3, a8, a8). Аналогиченной прижима и выход на точку сварного шва b8 (рис. 3, a8). Аналогиченной прижима и выход на точку сварного шва b9 (рис. 3, a8). Аналогиченной прижима и выход на точку сварного шва b9 (рис. 3, a9). Аналогиченной прижима и выход на точку сварного шва b9 (рис. 3, a9). Аналогиченной прижима и выход на точку сварного шва b9 (рис. 3, a9).

ным образом сварочные клещи перемещаются по остальным 13 точкам сварного шва с автоматическим обходом второго прижима через промежуточные точки pp111, pp112 (рис. 3, δ). Во всех 13 точках сварного шва ориентация сварочных клещей остается в допустимых пределах: $\alpha = \pm 10^{\circ}$ и $\beta = \pm 10^{\circ}$.

Важно отметить, что в приведенном примере реализации каждому частному положению сварочных клещей соответствует по 8 возможных решений обратной задачи кинематики робота-манипулятора IR161 для каждой тройки дискретных углов ориентации (2) из области их допустимых значений (1). Таким образом, одна и та же траектория движения рабочей точки сварочных клещей может быть реализована путем движения робота-манипулятора IR161 через различные конфигурации из допустимого множества (4). Соответственно, реализованный алгоритм планирования траектории выполняет как поиск траекторий робота, проходящих через различные конфигурации из допустимого множества (4), так и выбор оптимальной траектории, обеспечивающей минимальное суммарное время перемещения сварочных клещей.

Tаблица 2 Время генерации траектории обхода прижима при различных значениях параметра дискретизации N_d

Параметр дискретизации N_d	Количество тестов столкновения	Время поиска траектории по обходу прижима, с
20	8000	0,3
50	25000	22,3
100	1000000	122,2

Для различных значений параметра дискретизации конфигурационного пространства N_d экспериментально было определено количество тестов столкновений и приблизительное время вычислений (табл. 2) по формированию участка траектории для автоматического обхода прижима. Эксперименты проводились на ЭВМ с тактовой частотой процессора 3 ГГц. Из табл. 2 видно, что алгоритм сходится за приемлемое для практики время.

На основе полученной траектории сформирована технологическая программа на языке программирования робота SRCL (Siemens Robot Control Language). Тестирование этой программы в подсистеме off-line программирования САПР ROBOMAX показало, что она обеспечивает свободное от столкновения движение манипулятора и требуемую ориентацию сварочных клещей. Таким образом, анализ результатов данных экспериментов позволяет сделать вывод о том, что предлагаемый подход эффективен при планировании траекторий в РТК точечной контактной сварки.

Заключение

В данной работе предложен новый метод планирования траектории промышленных роботов-манипуляторов для процесса точечной контактной сварки, который в отличие от известных позволяет эффективно учесть технологические ограничения на ориентацию сварочных клещей, а также сложную форму элементов роботизированного комплекса. Предложенный подход основан на детерминистической дискретизации пространства углов ориентации клещей ТКС относительно шва и их отображении в конфигурационное пространство робота.

Эффективность предложенного метода планирования подтверждается результатами тестирования в среде САПР ROBOMAX.

Литература

- 1. Principles of Robot Motion: Theory, Algorithms, and Implementations / H. Choset [et al.]. Boston: MIT Press, 2005. 680 p.
- 2. LaValle, S. M. Planning Algorithms / S. M. LaValle. Cambridge University Press, Cambridge, U.K., 2006. 1023 p.
- 3. Lahijanian, M. A. Sampling-Based Strategy Planner for Nondeterministic Hybrid Systems / M. A. Lahijanian, L. E. Kavraki, M. Y. Vardi // International Conference on Robotics and Automation, Hong Kong, China, 2014. P. 3005–3012.
- 4. Iterative Temporal Motion Planning for Hybrid Systems in Partially Unknown Environments / M. R. Maly [et al.] // ACM International Conference on Hybrid Systems: Computation and Control (HSCC), Philadelphia, PA, USA, ACM, 2013. P. 353–362.
- 5. Sucan, I. A. Accounting for Uncertainty in Simultaneous Task and Motion Planning Using Task Motion Multigraphs / I. A. Sucan, L. E. Kavraki // IEEE International Conference on Robotics and Automation. St. Paul. 2012. P. 4822–4828.
- 6. Kavraki, L. E. Motion planning / L. E. Kavraki, S. M. LaValle. // Springer Handbook of Robotics; editors: B. Siciliano and O. Khatib. Springer-Verlag, 2008. 1628 p.
- 7. Geraerts, R. J. A comparative study of probabilistic roadmap planners / R. J. Geraerts, M. H. Overmars // Algorithmic Foundations of Robotics V. Berlin: Springer-Verlag, 2003. P. 43–58.
- 8. Geraerts, G. J. Reachability-based Analysis for Probabilistic Roadmap Planners / G. J. Geraerts, M. H. Overmars // Journal of Robotics and Autonomous Systems. 2007. № 55. P. 824–836.
- 9. Geraerts, R. J. Sampling and Node Adding in Probabilistic Roadmap Planners / R. J. Geraerts, M. H. Overmars // Journal of Robotics and Autonomous Systems. 2006. № 54. P. 165–173.
- 10. LaValle, S. M. On the relationship between classical grid search and probabilistic roadmaps / S. M. LaValle, M. Branicky, S. R. Lindemann // International Journal of Robotic Research. − 2004. − № 23 (7/8). − P. 673–692.
- 11. Quasi-randomized path planning / M. Branicky [et al.] // International Conference on Robotic and Automation, Seoul, Korea, 2001. P. 1481–1487.
- 12. Yershova, A. Improving motion planning algorithms by efficient nearest-neighbor searching / A. Yershova, S. M. LaValle // IEEE Transactions on Robotics. − 2007. − № 23 (1). − P. 151–157.
- 13. Пашкевич, А. П. Автоматизированное проектирование промышленных роботов и робототехнологических комплексов для сборочно-сварочных производств / А. П. Пашкевич. Минск : БГУИР, 1996. 107 с.
- 14. Пашкевич, А. П. Синтез конфигурационного пространства роботов-манипуляторов на основе нейронных сетей / А. П. Пашкевич, М. М. Кожевников // Докл. БГУИР. Минск, 2003. Т. 1, № 2. С. 121–128.
- 15. Пашкевич, А. П. Нейросетевая модель для синтеза конфигурационного пространства манипуляторов / А. П. Пашкевич, М. М. Кожевников // Нейрокомпьютеры: Разработка и применение. − 2004. № 1. С. 40–50.