Insper

Aula 1 – Organização Básica de Computadores

"A verdadeira viagem de descoberta não consiste em buscar novas paisagens, mas em ter um novos olhos." "Le véritable voyage de découverte ne consiste pas à chercher de nouveaux paysages, mais à avoir de nouveaux yeux."

Marcel Proust (1871–1922) escritor francês apud Nisan, N. & Schocken, S. 2005. Elements of Computing Systems

Aula 1

- Conhecer a organização básica de computadores;
- Refletir sobre o impacto da computação na sociedade;

Atividades:

- Montar grupos
- mural
- laboratório 1

Conteúdos: Organização de Computadores;

2021-1

Rafael Corsi rafael.corsi@insper.edu.br

Lab. Arquitetura de Computadores

3s : Elementos de Sistemas

5s : Computação Embarcada

• Eletiva: SoC e Linux Embarcado

Eduardo Marossi Prof. Auxiliar

• 3s: Elementos de Sistemas

• 5s: Computação Embarcada

7s: Cloud

Arnaldo Viana Jr.

Laboratório Informática

3s : Elementos de Sistemas

3s : Robótica Computacional

4s: Camada Física da Computação

Lícia Sales

Laboratório Informática

3s : Elementos de Sistemas3s : Robórica Computacional

Marco Melo

Laboratório de Arquitetura de Computadores

3s : Elementos de Sistemas

5s : Computação Embarcada

6s : Design de Computadores

Evolução da Computação

Intel 4004 @ 0,1 MIPS (1971) primeiro microprocessador comercial

Fortran (1957) primeira linguagem largamente usada

US Department of Energy and IBM @ 200 petaflops (2019) supercomputador mais rápido no mundo

Em cerca de meio século evoluímos muito

Ideia inicial do curso

Tem online de graça e oficial (até a metade do livro)

Histórico

Curso idealizado e desenvolvido pelo Prof. Luciano Soares que ministrou as aulas em 2016 e 2017-a

<u>lpsoares@insper.edu.br</u>

Usuário

Os usuários veem as aplicações, porém esse é um resultado de uma série de desenvolvimentos.

E vocês como engenheiros de computação, serão capazes de compreender e produzir sistemas computacionais

Snake

Pong

Insper

Hardware e Software

HW

Desenvolvimento da CPU

Ferramentas de SW para programar a CPU

Ferramental

git + github

- Todo o desenvolvimento do projeto deve ser entregue pelo github.
 - trabalho em equipe
 - dúvidas
 - avaliação
 - •

github - projects

Muito git!

Site da disciplina

https://insper.github.io/Z01.1/

- Teoria
- Exercícios
- Laboratórios
- Projetos
- Simulados
- E muito mais!

Repositório da disciplina

http://github.com/insper/Z01.1

Projetos (fonte)

ms teams

Iremos usar para aulas, projetos, atendimentos e muito mais!

Livros de referência

The Elements of Computing SystemsNoam Nisan
Shimon Schocken

Computer Organization and Design

David A. Patterson John L. Hennessy

SSD Insper

- Robótica e Elementos De Sistemas
- Retirar no Insper/ receber em casa (enviamos por e-mail!)
- Marcar com Arnaldo/Licia para testar no computador de vocês (ideal já usar nas aulas)
- Atividade complementar
 - Iremos publicar a data.

Entregas

Aproximadamente uma por semana

em grupo

duas notas: grupo e individual

Hardware

DE0-CV

Para quem for nas aulas presenciais

2021-2

Duas opções:

```
Quarta - 7h30 (presencial) + Sexta - 7h30 (online)
Quarta - 13h30 (online) + Sexta - 7h30 (online)
```

Atendimento

- Segunda @ 11h45

Objetivos

Objetivos do curso

ESSENCIAIS

- Implementar um computador digital em dispositivos lógicos programáveis.
- Desenvolver e integrar as camadas de software moderno de um computador digital.
- Trabalhar de forma colaborativa no desenvolvimento de um sistema computacional.

COMPLEMENTARES

Compreender a evolução da informática.

Plano de ensino

Verificar o plano de aprendizagem no Blackboard. Lá você encontrará mais informações de:

- Rubricas;
- Avaliações;
- Cronograma das atividades;
- Horário de atendimento;
- Bibliografia.

https://insper.blackboard.com/

Começando

visão geral

https://prezi.com/view/InQMPs4wjxMtznUGIW6L/

Camadas de abstração

Muitas vezes usamos algo sem saber como funciona:

- Não temos tempo de estudar;
- Não temos interesse de compreender;
- Não temos conhecimento básico para entender;
- Não temos acesso ao mecanismos interno;

Assim abstraímos o funcionamento de algo e simplesmente usamos. Falamos que é uma caixa preta (black box).

Se as interfaces entre as camadas de abstração forem bem definidas, podemos futuramente mudar uma camada e mesmo assim tudo continuar funcionando.

Camadas de rede

TCP/IP model	Protocols and services	OSI model
Application	HTTP, FTTP, Telnet, NTP, DHCP, PING	Application
		Presentation
		Session
Transport	TCP, UDP (Transport
Network) IP, ARP, ICMP, IGMP (Network
Network Interface	Ethernet	Data Link
		Physical

Camadas OpenGL (gráfico)

Game / 3D Software

DirectX

OpenGL

Device Driver

Hardware Abstraction Layer (HAL)

Graphics Card / Chipset

Camadas de um computador

????

Parte 1

Ordene os filetes no mural de forma que as camadas de abstrações mais básicas estejam na base e as mais complexas na parte superior.

Caso não saiba, pesquise na Internet do que se trata.

Parte 2

Com os filetes montados, atribua a cada um ao menos uma das aplicações reais recebidas.

Caso não saiba, pesquise na Internet do que se trata.

Parte 3

Responda em grupo as seguintes perguntas:

- 1. De forma geral, quais dos níveis de abstração vocês acham que mais mudaram/evoluíram nos últimos 50 anos.
- 2. O que mais influenciou e viabilizou mudanças no tema que você escolheu, a evolução do Hardware ou do Software?
- 3. O que mais impactou a mudança no tema que você escolheu, os grandes servidores ou a computação móvel?
- 4. As pessoas levam menos tempo para fazer algo, ou não fazem mais, ou começaram a fazer algo?
- 5. Quais seriam as próximas mudanças que vocês visualizam para os próximos 50 anos?

Montar grupos

Criar grupos de: 5/6 pessoas

- cada grupo em um canal (A, B, C, D,)
 - criar uma chama de vídeo!
- os grupos ficam até o final do semestre
- realizar a atividade de forma colaborativa!

Realizar a atividade (filets/ mural)

Níveis de Abstração

Software

Hardware

Arquitetura de Computador

Hollerith

O senso dos Estados Unidos de 1880 levou 7,5 anos. A automatização era claramente necessária. Foi quando Herman Hollerith, propôs o uso de sua máquina de tabular para os cálculos.

A empresa do Hollerith viria a se transforma na:

Tabulador Eletrônico de Hollerith, 1902 (www.census.gov)

Formato do curso

Insper

Estudo prévio

Vocês deveram estudar a teoria por conta, antes das aulas!

- Leitura/Teoria
- Vídeos
- Livros

Projetos / APS

- No final vocês terão desenvolvido um computador do ZERO (hardware e software)
- 11 APS no total
- APS em grupo (6 alunos)
 - Cada aluno será avaliado individualmente
- Desenvolvimento colaborativo/ágil
 - Cada aluno terá seu papel no grupo
 - Facilitador/ Desenvolvedor

Avaliações

- 4 Individuais (2 em Aula + AI + AF)
 - acumular 60 pontos de HW
 - acumular 60 pontos de SW

Mescla de Teoria e prática

- Projetos
 - Duas notas: Grupo e Individual
 - Grupo só pode ter um projeto < C
 - Individual no máximo 2 < C

Reflexão

Alguns fundamentos dificilmente mudam

As implementações normalmente evoluem

O estilo de vida das pessoas pode mudar

Próxima Aula

• Estudar Teoria Álgebra Booleana (site da disciplina)

Laboratório 1

Voltar para os grupos

Realizar o laboratório 1 (preparar github)

uma pessoa irá realizar, os demais acompanham e ajudam..

Insper

www.insper.edu.br