试卷

- 一、是非题(判断下列叙述是否正确,正确的在括号中画 √,错误的画 ×)(本大题分 20 小题,共 20 分)
- 1. 已知 K \$\frac{1}{2} (ZnCO_3) = 1. 4×10^{-11} , K \$\frac{1}{2} (Zn(OH)_2) = 1. 2×10^{-17} , 则在 2×10^{-17} \$\text{ \text{Zn}} (OH)_2 饱和溶液中的 $c(Zn^{2+})$ 小于 2×10^{-17} \$\text{ \text{Qn}} \text{ \text{Cn}} \text
- 2. 元素的电负性是指原子在分子中吸引电子的能力。某元素的电负性 越大,表明其原子在分子中吸引电子的能力越强。
- 3. 晶体场理论认为,在八面体配合物中,中心离子五重简并的 d轨道 受配体的排斥作用,将分裂成能量不同的两组,一组为能量较高的 $dr(e_g)$ 轨道,一组为能量较低的 $d\varepsilon(t_{2g})$ 轨道。
- **4.** $A1^{3+}$ 与 EDTA(乙二胺四乙酸的二钠盐溶液)反应生成配离子, 可 使溶液的 pH 值变小。
- 5. 金属离子 A^{3+} 、 B^{2+} 可分别形成 $[A(NH_3)_6]^{3+}$ 和 $[B(NH_3)_6]^{2+}$,它们的稳定常数依次为 4×10^5 和 2×10^{10} ,则相同浓度的 $[A(NH_3)_6]^{3+}$ 和 $[B(NH_3)_6]^{2+}$ 溶液中, A^{3+} 和 B^{2+} 的浓度关系是 $c(A^{3+})>c(B^{2+})$ 。
 - 6. 凡是配位数为 4 的分子,其中心原子均采用 sp^3 杂化轨道成键。
 - 7. Ca^{2+} 与 EDTA 形成配位数为 6 的螯合物。
- 8. 高碘酸有强氧化性,必须在碱性条件下,氯气才能将碘酸盐氧化 为高碘酸盐。
 - **9.** 当 H₂0 的温度升高时,*K* ₩ 增大 。

- 10. 己知 E^{\oplus} (Ag⁺/Ag)=0.771V, E^{\oplus} ([Ag (NH₃) 2]⁺/Ag)=0.373V,则 E^{\oplus} ([Ag (CN) 2]⁻/Ag)>0.373V。
- 11. 具有 d^5 电子构型的中心离子,在形成八面体配合物时,其晶体场稳定化能(CFSE)必定为零。
 - 12. 碱金属氧化物的稳定性次序为: Li₂0>Na₂0>K₂0>Rb₂0>Cs₂0。
 - 13. Mn (OH) 2 能被空气中的氧氧化。
 - **14.** Hg²⁺的氧化性强于 Hg2²⁺。
- 15. 中和等体积、同浓度的一元酸所需的碱量是相等的,所以同浓度的一元酸溶液中的 H⁺浓度基本上也是相等的。
- 17. 配离子在水溶液中解离反应的标准平衡常数称为不稳定常数,可用 *K*鲁表示。
 - 18. 水溶液中[Co(NCS)4]²⁻很稳定,不易发生解离。
 - 19. 配合物 $H_2[PtC1_6]$ 应命名为六氯合铂(IV) 酸。
- **20.** Na₂CO₃ 比 NaHCO₃ 的溶解度大,同理,CaCO₃ 比 Ca(HCO₃)₂ 的溶解度也大。
- 二、选择题(在下列各题中,选择出符合题意的答案,将其代号填入括号内)(本大题分20小题,共30分)
 - 1. 已知在 1123K 时,反应 $C(s) + CO_2(g) \Longrightarrow 2CO(g) R_1^{\Theta} = 1.3 \times 10^{14}$ $CO(g) + C1_2(g) \Longrightarrow COC1_2(g) R_2^{\Theta} = 6.0 \times 10^{-3}$

则反应 $2COC1_2(g)$ \rightleftharpoons $C(s) + CO_2(g) + 2C1_2(g)$ 的 $K^{\Theta} =$ (B) 2. 1×10^{-10} : (A) 4. 8×10^9 : (C) 3.6×10^{-5} ; (D) 1.3×10^{-12} 2. 在 927℃时,2Cu0(s)⇌Cu20(s)+½02(g),已知 K ⊖=1.73,此时 02 的平衡分压为 (A) 175. 0kPa; (B) 299kPa; (C) 131kPa; (D) 13. 1kPa. 3. 已知 *K* \$ (BaSO₄) = 1.1×10⁻¹⁰, *K* \$ (AgC1) = 1.8×10⁻¹⁰, 等体积的 $0.002 \text{mo} 1 \cdot \text{L}^{-1} \text{Ag}_{2} \text{S}_{04} = 2.0 \times 10^{-5} \text{mo} 1 \cdot \text{L}^{-1} \text{BaC}_{12}$ 溶液混合,会出现 (A) 仅有 BaSO4 沉淀; (B) 仅有 AgC1 沉淀; (C) AgC1 与 BaSO4 共沉淀; (D) 无沉淀。 **4.** 己知 E ⊕ (Ag⁺/Ag) = 0.799V, K \$ (AgBr) = 5.0×10⁻¹³, 在标准银电 极溶液中加入固体NaBr,使平衡后 $c(Br^-)=0.50$ mol ℓ^{-1} ,此时 $E(Ag^+/Ag)$ 是 (A) 0. 78V (B) 0. 071V (C) 0. 799V (D) 0. 088V 5. 已知反应[Ag(NH₃)₂]⁺+2CN → [Ag(CN)₂] -+2NH₃ 的标准平衡常数 为 K[⊕], [Ag (NH₃)₂] ⁺的稳定常数为 K [₱],则[Ag (CN)₂] ⁻的稳定常数 K[₱]为 (A) $K \stackrel{\Theta}{2} = K \stackrel{\Theta}{1} \bullet K \stackrel{\Theta}{\circ};$ (B) $K \stackrel{\Theta}{2} = K \stackrel{\Theta}{1} / K \stackrel{\Theta}{\circ};$ (C) $K \stackrel{\Theta}{=} = K \stackrel{\Theta}{/} K \stackrel{\Theta}{=} ;$ (D) $K \stackrel{\Theta}{=} = 1/(K \stackrel{\Theta}{\bullet} \bullet K \stackrel{\Theta}{\bullet})$. 6. 下列各组元素中第一电离能依次减小的是 (A) H, Li, Na, K; (B) Na, Mg, Al, Si; (C) I, Br, C1, F; (D) F, 0, N, C.

7. 已知 K \$\hfrac{1}{2}\$ (A₂X₃),则在其饱和水溶液中, c (A³⁺)=

(A) $(\mathbf{A}_{\mathbf{p}}^{\mathbf{e}})^{1/2}$	$mol \cdot L^{-1}$;	(B) $\left(\frac{2}{3}k_{\rm sp}^{\Theta}\right)$	$1/2 \text{ mol} \cdot \text{L}^{-1}$;	
(C) $(\frac{8}{27} K_{\text{sp}}^{\Theta})^{1}$	$1/5 \text{ mol} \cdot \text{L}^{-1}$;	(D) $(\frac{3}{5} K_{\rm sp}^{\Theta})^{1/5}$	$mo1 \cdot L^{-1}$	
8. AB_{III} 型分子中, $II=6$,中心原子采取 sp^3d^2 杂化方式,则分子的空				
间几何构型是				
(A) 平面正方形	½ ;	(B) 四方锥;		
(C)T形;		(D)八面体。		
9. 下列物质中存在	氢键的是			
(A) HC1;	(B) H3B03;	(C) CH3F;	(D) C ₂ H ₆ .	
10. n 为 AB_m 分子(或离子)中 A 的价电子的主量子数时,下列有关杂				
化轨道的叙述中正确的	7是			
(A) n=1, 可形成 sp 杂化轨道;				
(B) $n=2$,可形成 sp^3d^2 杂化轨道;				
(C) n=2, 只能形成 sp 杂化轨道;				
(D) $n=3$,可形成 $sp \times sp^2 \times sp^3 \times sp^3 d$ 等杂化轨道。				
11. 金属钙具有面心立方结构,在每个单位晶胞中含有 Ca 原子的个数				
为				
(A) 1; (B))2 ; (C)3;	(4)4°		
12. 按照分子轨道理论, 02^{2-} 中电子占有的能量最高的轨道是				
(A) σ_{2p} ;	(B) $\sigma_2 p^*$; (C)	π_{2p} ; (D) π_{2}	p*°	
13. 下列对八面体面	己合物的有关叙述	中,正确的是		
(A) P>△o 时形成低自旋配合物,磁矩大;				
(B) №△o 时形成低自旋配合物,磁矩小;				
$(C) P > \triangle_O \mathbb{H}$	寸形成高自旋配合	物,磁矩小;		

	(D) \mathbb{M} \triangle_0 时形成高自旋配合物,磁矩大。			
14.	下列配离子中具有平面正方形空间构型的是			
	(A) $[\text{Ni} (\text{NH}_3)_4]^{2+}$, μ =3. 2B. M.; (B) $[\text{CuCl}_4]^{2-}$, μ =2. 0B. M.;			
	(C) $[\text{Zn}(\text{NH}_3)_4]^{2+}$, μ =0B. M.; (D) $[\text{Ni}(\text{CN})_4]^{2-}$, μ =0B. M. \circ			
15.	下列实验可以用来区别 NaBr (aq)和 NaI (aq)的是			
	(A) 分别通入 CO ₂ ; (B) 分别通入 C1 ₂ ;			
	(C)分别加入 NaNO3(aq); (D)分别加入 K(s)。			
16.	已知 298 K 时,反应 2HgO(s) → 2Hg (g) + O ₂ (g)的			
$\triangle_{\mathtt{r}} S^{\scriptscriptstyle{\Theta}}_{\mathtt{m}}$	$K = 414.1 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}, \triangle_{\text{r}} H \stackrel{\Theta}{\text{m}} = 304.3 \text{ kJ} \cdot \text{mol}^{-1}, \text{ ∭ HgO}$			
的最低	氏分解温度约为			
	(A) 735 K; (B) 462 K; (C) 1008 K; (D) 231 K			
17. 下列叙述中,错误的是				
	(A) SnC1 ₂ 比 PbC1 ₂ 易溶于水;			
	(B) SnCl ₂ 和 PbCl ₂ 都能被 Hg ²⁺ 氧化;			
	(C) SnC1 ₂ 和 PbC1 ₂ 都可以与 C1 ⁻ 形成配合物;			
	(D) SnC14 遇水强烈水解。			
18.	在含有下列离子的溶液中,分别通入 H ₂ S,有沉淀生成的是			
	(A) Cr^{3+} ; (B) Mn^{2+} ; (C) Fe^{3+} ; (D) Co^{2+} .			
10	下列物质不能溶于氨水中的有			

(A) $CuC1_2$; (B) CuS; (C) $Cu(OH)_2$; (D) $Cu_2[Fe(CN)_6]$.

20. 按价层电子对互斥理论推测,下列分子或离子中几何形状不是三
角锥形的是
(A) PBr_3 ; (B) CH_3^- ; (C) SO_3 (D) H_3O^+ .
三、填充题(根据题意,在下列各题的横线处,填上正确的文字,符号
或数值)
(本大题分 14 小题, 共 40 分)
1. 298K 时,反应 N ₂ (g)+3H ₂ (g) ➡2NH ₃ (g) 的△ _r H ∰<0, 若升高温度,
则反应的 $\triangle_{\mathbf{r}}G_{\mathbf{m}}^{\mathbf{e}}$ 将 $\underline{\mathbf{A}}, \underline{\mathbf{A}}, \underline{\mathbf{B}}$ 。
2. 在 AgC1、CaC03、Fe (OH) 3、MgF2 等物质中,溶解度不随溶液 pH 值
而变的是A, Mg(OH)2 在稀盐酸溶液中溶解的离子方程式为
3. 原电池(-)Pt H ₂ (p [⊕]) H ⁺ (c [⊕]) # C1 ⁻ (c [⊕]) AgC1(s) Ag(+) 在 25 ^o C
时测得 $E^{\Theta}>0V$, 在外电路中电子流动方向是从A极到B极;
电池反应方程式是C
n(AgC1) (物质的量)将变D。
4. $E(\text{MnO4}^{-}/\text{Mn}^{2+})$ 随溶液 pH 值增大而A,当溶液中 H^{+} 离子
浓度增大时, MnO_4 的氧化性_B。 $\it E(C1_2/C1)$ 随 $\it c(C1)$ 增大而
C,随 p(C12)增大而D。
5. 比较下列电极电势的相对大小:
$E^{\Theta} \left(\operatorname{Hg}^{2+} / \operatorname{Hg} \right) \underline{\hspace{0.5cm}} A \underline{\hspace{0.5cm}} E^{\Theta} \left(\left[\operatorname{HgI}_{4} \right]^{2-} / \operatorname{Hg} \right)$
$E^{\oplus} (Cu^{2+}/Cu^{+}) \B _E^{\oplus} (Cu^{2+}/[CuI_2]^{-});$
E^{Θ} (Fe ²⁺ /Fe)C E^{Θ} ([Fe(CN)6] ⁴⁻ /Fe);

E^{Θ} ([PtC14] ²⁻ /Pt)D E^{Θ} (Pt ²⁺ /Pt) .
6. CH4 的极化率比 C2H6 的A, CO2 的极化率比 CO 的B。
7. 在下列晶体 SiF ₄ 、SiC、SiO ₂ 、CS ₂ 、KF、K ₂ O、Ag 中,破坏晶体时
必须破坏共价键的有A
散力的有B。
8. H ₂ SO ₄ 、HC1O ₄ 、H ₃ PO ₄ 的酸性增强的顺序为A
其原因是B
9. P4010 具有强A性,可以用作B剂,它与硫酸反应生
成C_和D。
10. 硫酸盐能形成两种类型的复盐,可用通式表示为
A
11. 按照价层电子对互斥理论,计算中心原子价层电子对数时,对于分
子而言, 价层电子对数等于A的价电子数与
BB供的价电子数之和的C。对于离子则还应
考虑离子的D。
12. 己知 /第 (Ag ₂ CrO ₄)=1.1×10 ⁻¹² , /第 (PbCrO ₄)=2.8×10 ⁻¹³ ,
K 昴(BaCr04)=1.2×10 ^{−10} , K 昴(SrCr04)=2.2×10 ^{−5} ,某溶液中含有 Ag ⁺ 、
Pb ²⁺ 、Ba ²⁺ 、Sr ²⁺ ,各离子浓度均为 0.10mol•L ⁻¹ 。若滴加 K ₂ CrO ₄ 溶
液,沉淀顺序为A、B、、C、
D。
13. 浓磷酸有较大的粘度,这是由于 H ₃ PO ₄ 分子间存在着A,
H ₂ O ₂ 浓溶液也有一定粘度,主要也是由于B存在。
14. 对于下列分子的有关性质:

- (1) NH3 分子的空间构型; (2) CH4 分子中 H-C-H 的键角;
- (3)02 分子的磁性; (4)H20 分子的极性;

可以用杂化轨道理论予以说明的有______A___, 不能用杂化轨道理论说明的有______B。(可用1、2、3、4填写)

四、根据题目要求,解答下列各题(本大题共4小题,总计40分)

- 1. 取向力只存在于极性分子之间。色散力只存在于非极性分子之间。 这两句话是否正确?试解释之。
- 2. 根据价层电子对互斥理论,预测下列分子或离子的构型(如有孤对电子,请注明位置和数目)。

BeCl₂ XeF₂ NH₃ C1F₃ AsF₅

- 3. 将硫磺在空气中燃烧生成气体 A, 把 A 溶于水得溶液 B, 向 B 中滴入 溴水; 溴水褪色, B 变 C, 在 C 溶液中加入 Na₂S₂ 产生气体 D 和沉淀 E 若把 D 通入 B 溶液中也得到沉淀 E。试判断 A、B、C、D、E 各为何物, 并写出相应的反应方程式。
- 4. 何谓镧系收缩?对第六周期元素的性质有何影响?

五、根据题目要求,解答下列各题(本大题共2小题,总计20分)

- 1. 欲配制 500. 0mLpH=9.00, $c(NH_4^+)=1.0mo1 \cdot L^{-1}$ 的 $NH_3 \cdot H_2O-NH_4C1$ 缓冲溶液,需密度为 $0.904g \cdot mL^{-1}$,含 $NH_326\%$ 的浓 $NH_3 \cdot H_2O$ 多少毫升? 固体 NH_4C1 多少克? $(K_8^{\bullet}(NH_3 \cdot H_2O)=1.8 \times 10^{-5}$,相对原子质量: N: 14, C1: 35. 5)
- 2. 已知: E^{\oplus} (Ag⁺/Ag)=0.799V, K_{\bullet}^{\Box} (AgC1)=1.8×10⁻¹⁰。若在半电池 Ag \mid Ag⁺(1.0mo1 L⁻¹) 中加入 KC1,生成 AgC1 沉淀后,使得

 $c(\text{KC1})=1.0\text{mol} \cdot \text{L}^{-1}$,则其电极电势将增加或降低多少?如果生成 AgC1 沉淀后, $c(\text{C1}^-)=0.10\text{mol} \cdot \text{L}^{-1}$ 则 $E(\text{Ag}^+/\text{Ag})$ 、E(AgC1/Ag) 各为多少?