Zadanie 1.

Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci:

•
$$U_n = u + c \cdot n - S_n$$
, $n = 0,1,2,...$, $S_n = W_1 + W_2 + ... + W_n$,

gdzie zmienne $W_1, W_2, W_3,...$ są niezależne i mają ten sam rozkład wykładniczy z wartością oczekiwaną równą jeden.

Niech dla każdej liczby naturalnej n:

•
$$\Psi_n(u) = \Pr(U_0 < 0 \lor U_1 < 0 \lor U_2 < 0 \lor ... \lor U_n < 0 | U_0 = u)$$

oznacza funkcję (zmiennej rzeczywistej *u*) prawdopodobieństwa ruiny w ciągu *n* pierwszych okresów czasu. Jasne jest, że:

•
$$\Psi_1(u) = \exp(-(u+c))$$
.

Stosując odpowiedni wzór rekurencyjny wyznaczono następne 2 wyrazy ciągu funkcji, które dla $u \ge 0$ okazały się mieć postać:

•
$$\Psi_2(u) = \exp(-(u+c)) + (u+c)\exp(-(u+2c))$$

•
$$\Psi_3(u) = \exp(-(u+c)) + (u+c)\exp(-(u+2c)) + \frac{(u+c)(u+3c)}{2}\exp(-(u+3c))$$

Znajdź postać funkcji $\Psi_4(u)$.

Przy założeniu, że c = 1, jej wartość w punkcie u = 1 wynosi:

(A)
$$\Psi_4(1) = \exp(-2) + 2\exp(-3) + 4\exp(-4) + \frac{25}{3}\exp(-5)$$

(B)
$$\Psi_4(1) = \exp(-2) + 2 \exp(-3) + 4 \exp(-4) + \frac{8}{3} \exp(-5)$$

(C)
$$\Psi_4(1) = \exp(-2) + 2 \exp(-3) + 4 \exp(-4) + \frac{24}{3} \exp(-5)$$

(D)
$$\Psi_4(1) = \exp(-2) + 2\exp(-3) + 4\exp(-4) + \frac{28}{3}\exp(-5)$$

(E)
$$\Psi_4(1) = \exp(-2) + 2 \exp(-3) + 4 \exp(-4) + \frac{16}{3} \exp(-5)$$

Zadanie 2.

Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci:

 $\bullet \quad U_n = u + c \cdot n - S_n \,, \qquad n = 0, 1, 2, \dots, \qquad S_n = W_1 + W_2 + \dots + W_n \,,$

gdzie zmienne $W_1,W_2,W_3,...$ są niezależne i mają ten sam rozkład wykładniczy z wartością oczekiwaną równą jeden.

Jeśli parametry procesu wynoszą:

- $c = 2 \ln 2$
- $u = 6 \ln 2$

to prawdopodobieństwo ruiny w nieskończonym horyzoncie czasu wynosi:

- (A) $\frac{1}{8}$
- (B) $\frac{1}{8\sqrt{2}}$
- (C) $\frac{1}{16}$
- (D) $\frac{1}{16\sqrt{2}}$
- (E) $\frac{1}{32}$

Zadanie 3.

Rozważamy klasyczny proces nadwyżki z zerową nadwyżką początkową $U(t)=ct-S_{N(t)}$, gdzie:

- *ct* jest sumą składek zgromadzonych do momentu *t*,
- N(t) jest procesem Poissona z parametrem intensywności λ ,
- $S_n = \sum_{i=1}^n Y_i$ jest sumą wartości *n* pierwszych szkód
- wartości szkód $Y_1, Y_2, Y_3,...$ są i.i.d, niezależne od procesu N(t)

O rozkładzie wartości pojedynczej szkody wiemy tylko tyle, że:

$$Pr(Y_1 \in [0,1]) = 1$$

•
$$E(Y_1) = 1/5$$

Wobec tego wartość oczekiwana deficytu w momencie ruiny (pod warunkiem że do ruiny dojdzie) może przyjmować różne wartości. **Przedział**, który zawiera wszystkie te wartości (i nic ponadto) **jest postaci**:

(A)
$$\left[\frac{1}{10}, \frac{1}{5}\right]$$

(B)
$$\left[\frac{1}{15}, \frac{1}{3}\right]$$

(C)
$$\left[\frac{1}{5}, \frac{1}{2}\right]$$

(D)
$$\left[\frac{1}{15}, \frac{1}{5}\right]$$

(E)
$$\left[\frac{1}{10}, \frac{1}{2}\right]$$

Zadanie 4.

Niech dla kierowcy posiadającego roczne ubezpieczenie OC oraz AC:

- N oznacza liczbę wypadków skutkujących w szkodach z obu ubezpieczeń,
- N_O oznacza liczbę wypadków skutkujących w szkodach tylko z OC,
- N_A oznacza liczbę wypadków skutkujących w szkodach tylko z AC.

Przy danej wartości parametrów ryzyka (Λ, Θ) charakteryzujących kierowcę zmienne te są warunkowo niezależnymi zmiennymi losowymi o rozkładach Poissona z wartościami oczekiwanymi równymi odpowiednio:

•
$$E(N|\Lambda,\Theta) = \Lambda$$

$$\bullet \quad \mathrm{E}(N_o \big| \Lambda, \Theta) = \frac{1}{4} \Lambda$$

•
$$E(N_A|\Lambda,\Theta) = \frac{1}{3}\Lambda + \Theta$$

Rozkład parametrów ryzyka (Λ, Θ) w populacji kierowców posiadających roczne ubezpieczenie OC oraz AC charakteryzuje się tym, że:

•
$$(\Lambda, \Theta)$$
 są niezależne

•
$$E(\Lambda) = \frac{1}{20}$$
, $Var(\Lambda) = \frac{1}{500}$

•
$$E(\Theta) = \frac{1}{40}$$
, $Var(\Theta) = \frac{1}{1000}$

Kowariancja liczby wypadków z OC z liczbą wypadków z AC:

$$Cov(N+N_O, N+N_A)$$

wynosi:

(A)
$$\frac{1}{300}$$

(B)
$$\frac{307}{6000}$$

(C)
$$\frac{26}{500}$$

(D)
$$\frac{319}{6000}$$

(E)
$$\frac{4}{75}$$

Zadanie 5.

Proces pojawiania się szkód w czasie N(t) jest procesem o przyrostach niezależnych, o rozkładzie ujemnym dwumianowym danym dla każdego nieujemnego t oraz dodatniego s wzorem:

$$\Pr(N(t+s)-N(t)=k) = \frac{\Gamma(r \cdot s+k)}{k!\Gamma(r \cdot s)} \cdot (1-q)^{r \cdot s} \cdot q^{k}, \qquad k=0,1,...$$

gdzie r = 5 oraz $q = \frac{1}{2}$ to parametry procesu.

Oblicz granicę prawdopodobieństw warunkowych:

$$\lim_{s \to 0} \Pr(N(t+s) - N(t) = 1 | N(t+s) - N(t) > 0)$$

- (A) 1
- (B) $\frac{1}{5}$
- (C) ln2
- $(D) \qquad \frac{1}{2 \ln 2}$
- (E) $\frac{1}{5 \ln 2}$

Uwaga: Intuicyjnie - pytanie dotyczy prawdopodobieństwa, iż w momencie, w którym dojdzie do przyrostu procesu, wystąpi równocześnie więcej niż jedna szkoda

Zadanie 6.

Ryzyko X wyceniamy zgodnie z formułą:

$$\Pi_{y}(X) = y + E[(X - y)_{+}],$$

gdzie $y = F_X^{-1}(1-\varepsilon)$ jest kwantylem rzędu $(1-\varepsilon)$ rozkładu zmiennej X.

Przyjmijmy dla uproszczenia, że zmienna X ma rozkład normalny o zerowej wartości oczekiwanej i jednostkowej wariancji. Dla $\varepsilon = 0.05$ przeprowadziliśmy obliczenia, i w wyniku otrzymaliśmy:

$$\Pi_{1.645}(X) = 1.6659$$

Wobec tego $\Pi_{1.545}(X)$ z dobrym przybliżeniem **wynosi**:

- (A) 1.5690
- (B) 1.5715
- (C) 1.5740
- (D) 1.5765
- (E) 1.5790

Wskazówka: aproksymacja liniowa z wykorzystaniem pierwszej pochodnej obarczona jest błędem na tyle małym, że pozwoli na wskazanie prawidłowej odpowiedzi

Zadanie 7.

Zmienna losowa:

$$X = Y_1 + \dots + Y_N$$

ma złożony rozkład Poissona o wartości oczekiwanej $\lambda = 1$. W tabeli poniżej podano rozkład prawdopodobieństwa składnika Y. W tejże tabeli podano także obliczone dla k = 0,1,...,4 prawdopodobieństwa $\Pr(X = k)$.

k	$\Pr(Y=k)$	$\Pr(X=k)$
0	0	0.36788
1	0.2	0.07358
2	0.4	0.15451
3	0.1	0.06671
4	0.1	0.07654
5	0.2	

Wobec tego Pr(X = 5) z dobrym przybliżeniem **wynosi**:

- (A) 0.0925
- (B) 0.0950
- (C) 0.0975
- (D) 0.1000
- (E) 0.1025

Zadanie 8.

W pewnym ubezpieczeniu mamy do czynienia z ciągłym, liniowym wzrostem liczby ryzyk w portfelu, co wyraża założenie, iż zmienna $T_1 \in (0,1)$ wyrażająca moment zajścia losowo wybranej szkody z tego portfela w ciągu roku (o ile oczywiście do szkody dojdzie) ma rozkład dany gęstością:

•
$$f_1(t) = \frac{8}{10} + \frac{4}{10}t$$
.

Niech T_2 oznacza odstęp w czasie od momentu zajścia szkody do jej likwidacji. Zmienna ta ma rozkład wykładniczy z wartością oczekiwaną równą dwa (lata).

Zakładamy że zmienne losowe T_1 oraz T_2 są niezależne. **Prawdopodobieństwo**, iż szkoda, do której doszło w ciągu roku, pozostanie nie-zlikwidowana na koniec tego roku, z dobrym przybliżeniem **wynosi**:

- (A) 0.74
- (B) 0.76
- (C) 0.78
- (D) 0.80
- (E) 0.82

Zadanie 9.

Łączna wartość szkód z polisy wynosi:

$$X = Y_1 + ... + Y_N$$
, (zero, jeśli $N = 0$).

Przy danej wartości parametru ryzyka Λ zmienna X ma rozkład złożony Poissona:

- z oczekiwaną liczbą szkód równą $E(N|\Lambda) = \Lambda$
- i rozkładem pojedynczej szkody gamma o gęstości $f_{Y|\Lambda}(y) = \Lambda y \exp(-\sqrt{\Lambda}y)$.

Zróżnicowanie parametru ryzyka Λ w populacji ubezpieczonych opisuje rozkład Gamma o parametrach (2,10), tzn. o gęstości na półosi dodatniej danej wzorem: $f_{\Lambda}(\lambda) = 10^2 \cdot \lambda \cdot e^{-10 \cdot \lambda}$.

Wartość oczekiwana (bezwarunkowa) zmiennej X wynosi:

$$(A) \qquad \frac{3\sqrt{\pi}}{2\sqrt{10}}$$

(B)
$$\frac{\sqrt{10\pi}}{4}$$

(C)
$$\frac{\sqrt{10\pi}}{2}$$

(D)
$$\sqrt{10\pi}$$

(E)
$$\frac{\sqrt{10\pi}}{3}$$

Wskazówka:
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

Zadanie 10. (poprawione po egzaminie)

Oznaczmy przez X_t łączną wartość szkód zaistniałych w roku t, przez $X_{t,0}$ tę jej część, która dotyczy szkód zlikwidowanych przed końcem roku t, zaś przez $X_{t,1}$ część pozostałą. Warunkowe momenty tych zmiennych (przy danej wartości parametru ryzyka μ_t) spełniają założenia:

- $\bullet \quad E(X_{t,0}|\mu_t) = \mu_t p$
- $\bullet \quad E(X_{t,1}|\mu_t) = \mu_t(1-p)$
- $Var(X_{t,0}|\mu_t) = \mu_t pb^2$
- $Var(X_{t,1}|\mu_t) = \mu_t(1-p)b^2$
- $Cov(X_{t,0}, X_{t,1}|\mu_t) = 0$,

zaś rozkład parametru ryzyka μ_t spełnia założenia:

- $E(\mu_t) = \mu$
- $Var(\mu_t) = a^2$

Najlepszy nieobciążony liniowy predyktor zmiennej μ_t oparty na informacji o zmiennej $X_{t,0}$ oraz znanych wartościach parametrów (p,b^2,μ,a^2) jest postaci:

$$\bullet \quad BLUP(\mu_t | X_{t,0}) = cX_{t,0} + d$$

Współczynnik c występujący w powyższym wzorze jest postaci:

(A)
$$c = \frac{a^2}{p(\mu b^2 + a^2)}$$

(B)
$$c = \frac{pa^2}{\mu b^2 + p^2 a^2}$$

(C)
$$c = \frac{a^2}{\mu b^2 + pa^2}$$

(D)
$$c = \frac{a^2}{b^2 + pa^2}$$

(E)
$$c = \frac{pa^2}{b^2 + p^2 a^2}$$

Egzamin dla Aktuariuszy z 9 października 2006 r.

Matematyka ubezpieczeń majątkowych

Arkusz odpowiedzi*

Imię i nazwisko .	K L U C Z	ODPOWIEDZI.	
Decel			

Zadanie nr	Odpowiedź	Punktacja⁴
1	A	
2	С	
3	Е	
4	Е	
5	D	
6	В	
7	Е	
8	D	
9	A	
10	С	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.