Assignment 2 Ruizhi Zhang 8230108665

Link:

https://github.com/ruizhiz/-EE-599_Ruizhi_Zhang_8230108665.git

Barrel Shifter

The attached files include: tb.v, top.v, barrel_shifter.v, stage.v, shift.v. tb.v is used to do simulation test. barrel_shifter.v is our IP core. However, it has too many input and output pins, and cannot be implemented on FPGA directly. So, top.v is used to help to do implementation. So, only in implementation part, top.v is included in our schematics.

Picture 1: the overview of whole waveform

Picture 2: the first part of waveform

Picture 3: the second part of waveform

In our testbench, both input element a in and shifter are generated by \$urandom.

As we can see from the waveform, the input elements a in are:

4317_ceaa_4855_6cb5_5a1f_c7d2_37cc_0d2a, c1e9_4561_c4de_5de3_52bc_5c1c_a411_7b39, e60c_78a5_a729_16e2_9a52_a232_eae3_b6b6, e781_8ad2_e13e_1995_c4ad_0677_510d_dfa3, 6151_5afd_987b_451b_86d4_fa42_9c8a_73ce.

and the corresponding shifter are: e, e, 3, b, 0.

The outputs are:

Od2a_4317_ceaa_4855_6cb5_5a1f_c7d2_37cc, 7b39_c1e9_4561_c4de_5de3_52bc_5c1c_a411, a5a7_2916_e29a_52a2_32ea_e3b6_b6e6_0c78, 7751_0ddf_a3e7_818a_d2e1_3e19_95c4_ad06, 6151_5afd_987b_451b_86d4_fa42_9c8a_73ce.

That is what we expected. So, the result is right.

Part 1: 16 elements

1. Elaborated design

Picture 1: 16-element 8-bit barrel shifter

Barrel shifter includes 4 stage.

Picture 2: stage

1 stage include 16shifter and one 128-bit FF.

Picture 3: shifter unit

2. Synthesis and estimation

Picture 1: the synthesis schematic

Picture 2: the schematics of single stage

Picture 3: resource estimation

Design Timing Summary

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	5.607 ns	Worst Hold Slack (WHS):	0.156 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	679	Total Number of Endpoints:	679	Total Number of Endpoints:	667
All user specified timing constra	ints are m	et			

Picture 4: timing estimation

Part 2: 64 element barrel shifter

1. Elaborated design

Picture 1: 64-element 8-bit barrel shifter

Barrel shifter includes 6 stage.

Picture 2: stage

1 stage include 64 shifters and one 512-bit FF.

Picture 3: shifter unit

2. Synthesis and estimation

Picture 1: the synthesis schematic

Picture 2: resource estimation

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	3.976 ns	Worst Hold Slack (WHS):	0.043 ns	Worst Pulse Width Slack (WPWS):	4.146 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	3649	Total Number of Endpoints:	3649	Total Number of Endpoints:	3639

Picture 3: timing estimation

systolic array

the attached file include: adder.v, multi.v, tb.v, top.v, unit.v. tb.v is used to do simulation test for 16 * 16 matrices. Top.v is systolic array. Unit.v is processing elements.

Picture 1: the overview of whole waveform

The out signal will output one row (16 elements) per cycle, and is valid when en_out is high.

Picture 2: the first part of waveform

Picture 3: the second part of waveform

Picture 4: the third part of waveform

Picture 5: the fourth part of waveform

Picture 6: part 5 of the waveform

Picture 7: part 6 of the waveform

The above are input signals. The following are output signals.

Picture 8: part 1 of output waveform

Picture 9: part 2 of output waveform

Picture 10: part 3 of output waveform

Picture 11: part 4 of output waveform

Based on the waveform, we could know our circuits is correct.

Part 1: 16 * 16 elements

1. Elaborate design

Picture 1: schematics of Systolic array

It includes 16*16 PEs.

Picture 2: schematics of PE

It includes 1 adder and 1 multiply module.

Picture 3: adder module

Picture 4: multiply module

2. Synthesis design

Picture 1: the schematics of whole design

Picture 2: the synthesized schematics of PE

Picture 3: the schematics of multiply module

Picture 4: the schematics of adder module

3. Estimation

Picture 1: resource estimation

Picture 2: power estimation

tup		Hold		Pulse Width		
Worst Negative Slack (WNS):	4.151 ns	Worst Hold Slack (WHS):	0.061 ns	Worst Pulse Width Slack (WPWS):	4.500 ns	
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns	
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints:	6282	Total Number of Endpoints:	6282	Total Number of Endpoints:	6234	

Picture 3: timing estimation

Part 1: 32 * 32 elements

1. Elaborate design

Picture 1: schematics of Systolic array

It includes 32*32 PEs.

Picture 2: schematics of PE

It includes 1 adder and 1 multiply module.

Picture 3: adder module

Picture 4: multiply module

2. Synthesis design

Picture 1: the schematics of whole design

Picture 2: the synthesized schematics of PE

Picture 3: the schematics of multiply module

Picture 4: the schematics of adder module

3. Estimation

Picture 1: resource estimation

Because the circuit has over-utilized the FPGA resource, the implementation is failed, so, there is no power or timing estimation.