Proceso **Poisson** (t, k, λ)

> V.A. Poisson

Probabilidad de obtener una cantidad de eventos en una longitud de continuo dada a una tasa de eventos conocida.

$$P\binom{K=k}{t;\lambda} = e^{-\lambda \cdot t} \cdot \frac{(\lambda \cdot t)^k}{k!}$$

$$k \in \{0,1,2,\ldots\}$$

$$\mu_K = \lambda \cdot t \; ; \; \sigma_K = \sqrt{\lambda \cdot t}$$

> V.A. Exponencial negativa

Densidad de probabilidad de necesitar una longitud de continuo hasta el primer evento a una tasa de eventos $\frac{1}{2} \frac{1}{2} \frac{1}{2}$

evento a una tasa de eventos.

> V.A. Gamma

Densidad de probabilidad de necesitar una longitud de continuo hasta el k-ésimo evento a una tasa de eventos dada.

$$f^{T}\left(\frac{t}{k}, \lambda\right) = \frac{(\lambda \cdot t)^{k-1}}{(k-1)!} \cdot \lambda \cdot e^{-\lambda \cdot t}$$

$$t \in (0; +\infty)$$

$$\mu_{T} = \frac{k}{\lambda} \quad ; \quad \sigma_{T} = \frac{\sqrt{k}}{\lambda}$$

t: Longitud del continuo ; k: Cantidad de eventos ; λ : Tasa de eventos

- Poisson como condicional: Si se sabe que en un processo Poisson ocurrieron k eventos en un intervalo de longitud t, entonces las V.A.s: $T_1; T_2; \ldots; T_k$: posición en el continuo en que apareció en evento i tienen cada una distribución $T_i {\sim} U[0;t]$.
- La suma de V.A.s independientes tipo Poisson resulta una V.A. tipo Poisson.
- Si μ >30 la V.A. Poisson puede aproximarse por la V.A. Normal salvando la discontinuidad.
- Definición alternativa: Densidad de probabilidad de la longitud de continuo entre dos eventos sucesivos en un proceso Poisson.
- La suma de *k* V.A.s I.I.D.s tipo Exponencial Negativa resulta una V.A. tipo Gamma.
- La V.A. $T_{min} = min(T_1; T_2; ...; T_k)$ de V.A.s independientes tipo ExpNeg de parámetros $[\lambda_1; \lambda_2; ...; \lambda_k]$ resulta en una V.A. tipo ExpNeg de parámetro $\lambda_{min} = \lambda_1 + \lambda_2 + ... + \lambda_k$.
- El cambio de V.A. $U=\alpha\cdot T$ sobre una V.A. T ExpNeg de parámetro λ resulta en una V.A. tipo ExpNeg de parámetro $\lambda_U=\lambda/\alpha$.
- Definición alternativa: Densidad de probabilidad de la longitud de continuo existente entre (k+1) eventos sucesivos en un proceso Poisson.
- Para valores de k>30 , la V.A. Gamma puede aproximarse por la V.A. Normal.
- En algunas bibliografías se usan las nomenclaturas $\alpha = k$ y $\beta = 1/\lambda$ o $\theta = 1/\lambda$.
- Con mucha menos frecuencia suele usarse la nomenclatura β = λ (como en la app <u>Probability Distributions</u>).

V. A. Poisson

En algunos casos la longitud de continuo puede suponerse la unidad (t=1) como cuando se enuncia "cantidad de eventos en una semana de trabajo" y solo se utiliza como parámetro λ :

$$P^{K} \begin{pmatrix} K = k \\ / t = 1; \lambda \end{pmatrix} = \frac{\lambda^{k} \cdot e^{-\lambda}}{k!}$$

$$k \in \{0, 1, 2, \dots\}$$

$$\mu_{K} = \lambda \; ; \; \sigma_{K} = \sqrt{\lambda}$$

Para otros casos no se da una longitud de continuo y todo se modeliza en función de la media

$$P^{K}\left(K=\frac{k}{\mu}\right) = \frac{\mu^{k} \cdot e^{-\mu}}{k!}$$

$$k \in \{0,1,2,\dots\}$$

$$\mu_{K} = \mu \; ; \; \sigma_{K} = \sqrt{\mu}$$

Cuando se utiliza la nomenclatura β =1/ λ la función de probabilidad :

$$P^{K} \binom{K=k}{t;\beta} = \frac{(t/\beta)^{k}}{k!} \cdot e^{-t/\beta}$$

$$k \in \{0,1,2,\ldots\}$$

$$\mu_{K} = t/\beta \; ; \; \sigma_{K} = \sqrt{t/\beta}$$

- El proceso Poisson no tiene memoria, no aprende, no se desgasta, no es influido por la historia pasada ni influye en la historia futura.
- El proceso Poisson no tiene un final definido, aunque la V.A. Poisson observe solamente una longitud de continuo definida.
- Un proceso Poisson puede ser adelgazado (filtrado; coloreado) en un nuevo proceso Poisson.
- Un conjunto de procesos Poisson que ocurren en simultaneo pueden ser superpuestos (composición; competencia) en un único proceso Poisson.