Code ▼

Hide

Hide

Hide

MATH2349 Semester 2, 2018

Assignment 2

Meg Cuddihy (sxxxxxx), Sam Holt (s3381728), Verity Miles (s3644459)

Setup

Install and load the necessary packages to reproduce the report here:

Loading all the required packages
library(readr)
library(tidyr)
library(dplyr)
library(Hmisc)
library(outliers)
library(DescTools)
library(kableExtra)
library(mosaic)

Import the WHO data

who <- read_csv("Who.csv")
kable(head(who[,1:5])) %>%
 kable_styling(bootstrap_options = c("striped", "hover"))

country	iso2	iso3	year	new_sp_m014
Afghanistan	AF	AFG	1980	NA
Afghanistan	AF	AFG	1981	NA
Afghanistan	AF	AFG	1982	NA
Afghanistan	AF	AFG	1983	NA
Afghanistan	AF	AFG	1984	NA
Afghanistan	AF	AFG	1985	NA

Note: all code the same

Tidy Task 1:

Use tidyr functions to reshape/ gather the WHO data

```
who_tidy1 <- who %>% gather(code, value, 5:length(who))
kable(head(who_tidy1)) %>%
  kable_styling(bootstrap_options = c("striped", "hover"))
```

country	iso2	iso3	year code	value
Afghanistan	AF	AFG	1980 new_sp_m014	NA
Afghanistan	AF	AFG	1981 new_sp_m014	NA
Afghanistan	AF	AFG	1982 new_sp_m014	NA
Afghanistan	AF	AFG	1983 new_sp_m014	NA
Afghanistan	AF	AFG	1984 new_sp_m014	NA
Afghanistan	AF	AFG	1985 new_sp_m014	NA

Note: Sam's code

Tidy Task 2:

Splitting/ separating the code column to get closer to tidy data

who_tidy2 <- who_tidy1 %>% separate(code, c("new", "var", "sex"), sep = "_") %>% separate(sex, c("sex", "age"), sep = 1) kable(head(who_tidy2)) %>% kable_styling(bootstrap_options = c("striped", "hover"))

Hide

Hide

country	iso2	iso3	year new	var	sex	age	value
Afghanistan	AF	AFG	1980 new	sp	m	014	NA
Afghanistan	AF	AFG	1981 new	sp	m	014	NA
Afghanistan	AF	AFG	1982 new	sp	m	014	NA
Afghanistan	AF	AFG	1983 new	sp	m	014	NA
Afghanistan	AF	AFG	1984 new	sp	m	014	NA
Afghanistan	AF	AFG	1985 new	sp	m	014	NA

Note: Verity's code

Tidy Task 3:

Spreading the data to get it into a tidy format

who tidv3 <- who tidv2 %>% spread(var. value)

<pre>kable(head(who_tidy3)) %>% kable_styling(bootstrap_options = c("striped", "hover"))</pre>

country	iso2	iso3	year new	sex	age	ер	rel	sn	sp
Afghanistan	AF	AFG	1980 new	m	014	NA	NA	NA	NA

country	iso2	iso3	year new	sex	age	ер	rel	sn	sp
Afghanistan	AF	AFG	1981 new	m	014	NA	NA	NA	NA
Afghanistan	AF	AFG	1982 new	m	014	NA	NA	NA	NA
Afghanistan	AF	AFG	1983 new	m	014	NA	NA	NA	NA
Afghanistan	AF	AFG	1984 new	m	014	NA	NA	NA	NA
Afghanistan	AF	AFG	1985 new	m	014	NA	NA	NA	NA

Note: all code the same

Tidy Task 4:

Mutating and factorising variables

Hide

country	iso2	iso3	year new	sex	age	ер	rel	sn	sp
Afghanistan	AF	AFG	1980 new	m	<15	NA	NA	NA	NA
Afghanistan	AF	AFG	1981 new	m	<15	NA	NA	NA	NA
Afghanistan	AF	AFG	1982 new	m	<15	NA	NA	NA	NA
Afghanistan	AF	AFG	1983 new	m	<15	NA	NA	NA	NA
Afghanistan	AF	AFG	1984 new	m	<15	NA	NA	NA	NA
Afghanistan	AF	AFG	1985 new	m	<15	NA	NA	NA	NA

Note: Meg's code

Task 5: Filter & Select

Filtering and selecting the WHO data

Hide

```
countries <- c("Fiji", "Germany", "Korea")
who_subset <- who_tidy4 %>% select(-c(2, 5)) %>%
  filter(country %in% countries)
kable(head(who_subset)) %>%
  kable_styling(bootstrap_options = c("striped", "hover"))
```

country iso3 year sex age ep rel sn sp

country	iso3	year	sex age	ер	rel	sn	sp
Fiji	FJI	1980	m <15	NA	NA	NA	NA
Fiji	FJI	1981	m <15	NA	NA	NA	NA
Fiji	FJI	1982	m <15	NA	NA	NA	NA
Fiji	FJI	1983	m <15	NA	NA	NA	NA
Fiji	FJI	1984	m <15	NA	NA	NA	NA
Fiji	FJI	1985	m <15	NA	NA	NA	NA

Note: Verity's code

Read Species and Surveys data sets

Importing the species and surveys data

```
surveys <- read_csv("surveys.csv")
species <- read_csv("species.csv")
kable(head(surveys)) %>%
  kable_styling(bootstrap_options = c("striped", "hover"))
```

record_id	month	day	year	species_id	sex	hindfoot_length	weight
1	7	16	1977	NL	M	32	NA
2	7	16	1977	NL	M	33	NA
3	7	16	1977	DM	F	37	NA
4	7	16	1977	DM	M	36	NA
5	7	16	1977	DM	M	35	NA
6	7	16	1977	PF	М	14	NA

```
kable(head(species)) %>%
kable_styling(bootstrap_options = c("striped", "hover"))
```

species_id	genus	species	taxa
AB	Amphispiza	bilineata	Bird
AH	Ammospermophilus	harrisi	Rodent
AS	Ammodramus	savannarum	Bird
ВА	Baiomys	taylori	Rodent
СВ	Campylorhynchus	brunneicapillus	Bird

species_id	genus	species	taxa
CM	Calamospiza	melanocorys	Bird

Note: all code the same

Task 6: Join

Join the species and surveys data

```
Hide
```

```
surveys_combined <- surveys %>% left_join(species[, c("species_id", "genus", "species", "taxa")], by =
   "species_id")
kable(head(surveys_combined)) %>%
   kable_styling(bootstrap_options = c("striped", "hover"))
```

record_id	month	day	year	species_id	sex	hindfoot_length	weight	genus	species	taxa
1	7	16	1977	NL	М	32	NA	Neotoma	albigula	Rodent
2	7	16	1977	NL	М	33	NA	Neotoma	albigula	Rodent
3	7	16	1977	DM	F	37	NA	Dipodomys	merriami	Rodent
4	7	16	1977	DM	М	36	NA	Dipodomys	merriami	Rodent
5	7	16	1977	DM	М	35	NA	Dipodomys	merriami	Rodent
6	7	16	1977	PF	М	14	NA	Perognathus	flavus	Rodent

Note: Verity's code

Task 7: Calculate

Calculating mean weight and hindfoot lengths

month	mean_weights	mean_foot
1	48.22222	26.77778
2	56.50000	25.75000
3	58.00000	28.66667
4	50.50000	21.00000
5	54.66667	26.00000

mean_foot	mean_weights	month
23.00000	38.50000	6

Note: mainly Meg's code Anyone have strong feelings about which species we use???

Task 8: Missing Values

Dealing with missing values through imputing

surveys_combined_year <- surveys_combined %>% filter(year == "1990")
surveys_combined_year %>% group_by(species) %>% summarise(Missing = sum(is.na(weight)))

```
species
                                                                                                           Missing
<chr>
                                                                                                              <int>
                                                                                                                  0
albigula
bilineata
                                                                                                                27
chlorurus
                                                                                                                  8
eremicus
                                                                                                                  2
flavus
                                                                                                                  0
fulvescens
                                                                                                                  0
fulviventer
                                                                                                                  0
gramineus
                                                                                                                  4
harrisi
                                                                                                                22
hispidus
                                                                                                                  0
1-10 of 21 rows
                                                                                      Previous
                                                                                                      2
                                                                                                           3
                                                                                                              Next
                                                                                                1
```

surveys_weight_imputed <- surveys_combined_year %>% group_by(species) %>% mutate(weight = ifelse(is.n
a(weight), mean(weight, na.rm = TRUE), weight))

Note: Sam's code Mean year of birth

There are still missing values as there are some entire species that only have NA values for weight in 1990. The means of these species is NaN.

Task 9: Inconsistencies or Special Values

Checking for inconsistencies in the weight data and explaining why they have occurred.

```
Hide sum(is.nan(surveys_weight_imputed$weight))
```

[1] 82

Hide

Hide

```
is.special <- function(x){
if (is.numeric(x)) !is.finite(x) else is.na(x)
}
any(sapply(surveys_weight_imputed$weight, is.special))</pre>
```

```
[1] TRUE
```

Hide

surveys_weight_imputed %>% group_by(species) %>% summarise(Missing = sum(is.na(weight)), Mean = mean(weight))

species <chr></chr>	Missing <int></int>	Mean <dbl></dbl>
albigula	0	154.275862
bilineata	27	NaN
chlorurus	8	NaN
eremicus	0	21.671233
flavus	0	7.117647
fulvescens	0	12.916667
fulviventer	0	52.611111
gramineus	4	NaN
harrisi	22	NaN
hispidus	0	56.875000
1-10 of 21 rows		Previous 1 2 3 Next

Note: combination of code

Explanation: Some species in the data frame have no values available for weight for any observation of that species. When calculating the mean by species, we have excluded NAs so any species with no weight values recorded will have no valid numbers available for calculation. Therefore, the final output includes NaN (not a number) results for the weights of species with no valid weight observation.

Task 10: Outliers

Checking for outliers in the hindfoot length data

```
hist(surveys_combined$hindfoot_length, breaks = 30,
    main = "Histogram of Hind Foot Length",
    xlab = "Hind Foot Length") #does not seem to be normally distributed
```

Histogram of Hind Foot Length

Hide

Hind Foot Length

Hide

x\$out

[1] 70 64

```
IQR(surveys_combined$hindfoot_length, na.rm = TRUE) * 3
```

[1] 45

Hide

Winsorising the outliers as they don't follow a normal distribution nor are they extreme (neither ex ceed 3*IQR) # Winsorising with the Winsorize() function from the DescTools Package surveys_combined_capped <- Winsorize(surveys_combined\$hindfoot_length, na.rm = TRUE) summary(surveys_combined_capped)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
16.00 21.00 32.00 29.24 36.00 49.00 4111
```

Hide

```
boxplot(surveys_combined_capped,
    main = 'Hindfoot Length After Winsorising',
    ylab = 'Hindfoot Length')
```


Note: Sam's code

The hindfoot length data is not normally distributed. The Tukey method was used to transform the data. We chose to winsorise the outliers as they don't follow a normal distribution nor are they very extreme.