Topology for the Impatient

Nir Elber

Fall 2022

Abstract

This document collects a variety of definitions and results from point-set topology.

Contents

Contents		1	
1	Pefinitions Period Programme Program	2	
	.1 Metric Spaces	2	
	.2 Basic Topology	3	
	.3 Some Topologies	4	
	.4 Adjectives for Spaces	Ē	
2	emmas and Results	6	
	.1 Metric Spaces	6	
	.2 Building Functions	6	
	.3 Running Checks		

1 Definitions

1.1 Metric Spaces

Definition 1 (Metric). A metric d on a set X is a function $d: X \times X \to \mathbb{R}_{\geq 0}$ satisfying the following rules for any $x, y, z \in X$.

- (a) Zero: d(x, x) = 0.
- (b) Zero: d(x, y) = 0 implies x = y.
- (c) Symmetry: d(x, y) = d(y, x).
- (d) Triangle inequality: $d(x,y) + d(y,z) \ge d(x,z)$.

We call (X, d) a metric space.

Definition 2 (Norm). Fix a vector space V over $\mathbb R$ or $\mathbb C$. A norm $\|\cdot\| \colon V \to \mathbb R_{\geq 0}$ is a function satisfying the following, for any $r \in \mathbb R$ and $v, w \in V$.

- (a) Zero: ||v|| = 0 if and only if v = 0.
- (b) Scaling: $||rv|| = |r| \cdot ||v||$.
- (c) Triangle inequality: $||v + w|| \le ||v|| + ||w||$.

Definition 3 (Converge). Fix a metric space (X,d). A sequence of points $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ converges to $x\in X$ if and only if, for any $\varepsilon>0$, we can find N>0 such that

$$n > N \implies d(x_n, x) < \varepsilon.$$

We might write this as " $x_n \to x$ as $n \to \infty$ " or " $\lim_{n \to \infty} x_n = x$." In this event, we may say that the sequence $\{x_n\}_{n \in \mathbb{N}}$ converges, and its limit is x.

Definition 4 (Cauchy). Fix a metric space (X, d). A sequence of points $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ is a Cauchy sequence if and only if, for any $\varepsilon>0$, we can find N>0 such that

$$n, m > N \implies d(x_n, x_m) < \varepsilon.$$

Definition 5 (Complete). A metric space (X, d) is *complete* if and only if every Cauchy sequence in X converges to a point in X.

Definition 6 (Bounded). Fix a metric space (X,d) and a nonempty set A. A subset $A \subseteq X$ is bounded if and only if there is an open ball B(x,r) containing A. More generally, a function $f \colon A \to X$ is bounded if and only if $\operatorname{im} f \subseteq X$ is bounded, and we let B(A,X) denote the set of all bounded functions $f \colon A \to X$.

Definition 7 (Totally bounded). Fix a metric space (X, d). A subset $A \subseteq X$ is totally bounded if and only if any $\varepsilon > 0$ has a finite set $\{x_i\}_{i=1}^n \subseteq A$ for which

$$A \subseteq \bigcup_{i=1}^{n} B(x_i, \varepsilon).$$

If X is totally bounded, we say that (X, d) is totally bounded.

Definition 8 (Pointwise totally bounded). Fix topological spaces (X, \mathcal{T}_X) and a metric space (M, d), and let \mathcal{F} be a family of continuous functions $f \colon X \to M$. Then \mathcal{F} is pointwise totally bounded if and only if any $x \in \mathcal{F}$ makes the set

$$\{f(x): f \in \mathcal{F}\}$$

totally bounded.

Definition 9 (Equicontinuous). Fix topological spaces (X, \mathcal{T}_X) and a metric space (M, d), and let \mathcal{F} be a family of continuous functions $f \colon X \to M$. We say that the family \mathcal{F} is equicontinuous at some $x \in X$ if and only if any $\varepsilon > 0$ has some open subset $U \subseteq X$ such that $y \in U$ has

$$d(f(y), f(x)) < \varepsilon$$

for all $f \in \mathcal{F}$. The entire family \mathcal{F} is equicontinuous if any only if it is equicontinuous at all $x \in X$.

1.2 Basic Topology

Definition 10 (Topology). Fix a set X. Then a *topology* \mathcal{T} on X is a collection of subsets $\mathcal{T} \subseteq \mathcal{P}(X)$ satisfying the following.

- (a) We have $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$.
- (b) Arbitrary union: given a collection $\mathcal{U} \subseteq \mathcal{T}$, the arbitrary union $\bigcup_{U \in \mathcal{U}} U$ lives in \mathcal{T} .
- (c) Finite intersection: given a finite collection $\{U_1,\ldots,U_n\}\subseteq\mathcal{T}$, the intersection $\bigcap_{i=1}^n U_i$ lives in \mathcal{T} .

We will say that the ordered pair (X, \mathcal{T}) is a topological space. We say that the sets in \mathcal{T} are open.

Definition 11 (Continuous). Fix topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) . Then a function $f \colon X \to Y$ is continuous if and only if, for any $U_Y \in \mathcal{T}_Y$, we have $f^{-1}(U_Y) \in \mathcal{T}_X$.

Definition 12 (Sub-base). Let (X, \mathcal{T}) be a topological space. A collection $S \subseteq \mathcal{T}$ is a *sub-base* for \mathcal{T} if and only if the following hold.

- (a) S covers X, in that $X = \bigcup_{U \in S} U$.
- (b) \mathcal{T} is generated by \mathcal{S} .

Definition 13 (Base). Fix a set X. A collection $\mathcal{B} \subseteq \mathcal{P}(X)$ is a base (for a topology on X) if and only if the collection of arbitrary unions of \mathcal{B} form a topology on X.

Proposition 14. Fix a set X and a collection $\mathcal{B} \subseteq \mathcal{P}(X)$. Then \mathcal{B} is a base if and only if

- (a) $X = \bigcup_{B \in \mathcal{B}} B$, and
- (b) any $B_1, B_2 \in \mathcal{B}$ has some collection $\mathcal{U} \subseteq \mathcal{B}$ such that

$$B_1 \cap B_2 = \bigcup_{B \in \mathcal{U}} B.$$

Definition 15 (Closed). Fix a topological space (X, \mathcal{T}) . A subset $V \subseteq X$ is closed if and only if $(X \setminus V) \in \mathcal{T}$.

Definition 16 (Closure). Fix a topological space (X, \mathcal{T}) . Given a subset $S \subseteq X$, we define the closure as

$$\overline{S} \coloneqq \bigcap_{\substack{V \supseteq S \\ V \text{ closed}}} V.$$

This is a closed set. In other words, the closure \overline{S} is the unique smallest closed set containing S.

Definition 17 (Dense). Fix a topological space (X, \mathcal{T}) . Given subsets $A \subseteq B$, we say A is dense in B if and only if $B \subseteq \overline{A}$.

Definition 18 (Homeomorphism). A function $f \colon X \to Y$ between topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) is a *homeomorphism* if and only if f is continuous and has a continuous inverse. Formally, we require a continuous map $g \colon Y \to X$ such that

$$f \circ g = \mathrm{id}_Y$$
 and $g \circ f = \mathrm{id}_X$.

Definition 19 (Cluster point). Fix a topological space (X, \mathcal{T}) and a net $\{x_{\alpha}\}_{{\alpha} \in \Lambda}$. Then $x \in X$ is a *cluster point* if and only if, for any open subset U containing x and $\alpha \in \Lambda$, there is some $\alpha' > \alpha$ for which $x_{\alpha'} \in U$.

1.3 Some Topologies

Definition 20 (Initial topology). Fix a set X and a collection of topologies $\{(Y_{\alpha}, \mathcal{T}_{\alpha})\}_{\alpha \in \lambda}$ with some functions $f_{\alpha} \colon X \to Y_{\alpha}$ for each $\alpha \in \lambda$. Then

$$\bigcup_{\alpha \in \lambda} \left\{ f_{\alpha}^{-1}(U_{\alpha}) : U_{\alpha} \in \mathcal{T}_{\alpha} \right\}$$

is a sub-base for an initial topology.

Definition 21 (Relative topology). Fix (Y, \mathcal{T}) a topological space. Then the *relative topology* for a subset $X \subseteq Y$ is the topology initial for the natural embedding $\iota \colon X \hookrightarrow Y$.

Lemma 22. Fix (Y, \mathcal{T}_Y) a topological space. Then the relative topology for a subset $X \subseteq Y$ consists of the subsets

$$\{X \cap U : U \in \mathcal{T}_Y\}$$
.

Definition 23 (Product topology). Fix a collection of topological spaces $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}_{\alpha \in \lambda}$. Then the *product topology* on $X \coloneqq \prod_{\alpha \in \lambda} X_{\alpha}$ is initial topoloy for the canonical projection maps

$$\pi_{\alpha} \colon X \to X_{\alpha}$$
.

Lemma 24. Fix a collection of topological spaces $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}_{\alpha \in \lambda}$. Then the product topology on $X := \prod_{\alpha \in \lambda} X_{\alpha}$ has a base

$$\mathcal{B} := \Bigg\{ \prod_{\alpha \in \lambda} U_\alpha : U_\alpha \in \mathcal{T}_\alpha, U_\alpha = X_\alpha \text{ for all but finitely many } \alpha \Bigg\}.$$

Definition 25 (Final topology). Fix a set Y and some topological spaces $\{(X_\alpha, \mathcal{T}_\alpha)\}_{\alpha \in \lambda}$. Given functions $f_\alpha \colon X_\alpha \to Y$, we define the *final topology* on Y to be the "strongest" (i.e., with the most open sets) making the f_α continuous.

Definition 26 (Quotient topology). Fix an equivalence relation \sim on a set X with a topology \mathcal{T} . Then the quotient topology on X/\sim is the final topology for the natural projection $X \twoheadrightarrow X/\sim$.

1.4 Adjectives for Spaces

Definition 27 (Hausdroff). Fix a topological space (X, \mathcal{T}) . Then (X, \mathcal{T}) is *Hausdorff* if and only if, for any two distinct points $x, x' \in X$, there are disjoint open sets U and U' such that $x \in U$ and $x' \in U'$.

Definition 28 (Regular). A topological space (X, \mathcal{T}) is *regular* if and only if each closed subset $A \subseteq X$ and $x \notin A$ have disjoint open subsets U and V with $A \subseteq U$ and $X \in V$.

Definition 29 (Normal). Fix a topological space (X, \mathcal{T}) . Then (X, \mathcal{T}) is *Hausdorff* if and only if, for any two disjoint closed sets $V, V' \subseteq X$, there are disjoint open sets U and U' such that $V \in U$ and $V' \in U'$.

Definition 30 (Open cover). Fix a topological space (X, \mathcal{T}) . An *open cover* of X is a collection $\mathcal{U} \subseteq \mathcal{T}$ of open sets such that

$$X = \bigcup_{U \in \mathcal{U}} U.$$

Definition 31 (Compact). Fix a topological space (X, \mathcal{T}) . We say that (X, \mathcal{T}) is *compact* if and only if every open cover of X has a finite subcover.

Definition 32 (Locally compact). A topological space (X, \mathcal{T}) is *locally compact* if and only if each point $x \in X$ has some open subset $U \in \mathcal{T}$ containing x such that \overline{U} is compact.

Proposition 33. Fix a locally compact Hausdorff space (X, \mathcal{T}) and some compact subset $C \subseteq X$. Then any open subset U containing C has some open subset U_C containing C such that $\overline{U_C}$ is compact and $\overline{U_C} \subseteq U$.

2 Lemmas and Results

2.1 Metric Spaces

Lemma 34. Fix a metric space (X, d) and $V \subseteq X$. The following are equivalent.

- (a) V is closed.
- (b) Any sequence $\{x_n\}_{n\in\mathbb{N}}$ in V which converges to a point $x\in X$ actually converges to $x\in V$.

Corollary 35. Fix a complete metric space (X, d). Then a closed subset $V \subseteq X$ given the restricted metric is also complete.

Proposition 36. Fix a topological space (X, \mathcal{T}) and a metric space (Y, d). Let $B_c(X, Y) \subseteq B(X, Y)$ denote the metric subspace of bounded continuous functions $f \colon X \to Y$. Then $B_c(X, Y)$ is a closed subspace of B(X, Y). In particular, if (Y, d) is complete, then $B_c(X, Y)$ is also complete.

Theorem 37. Fix a metric space (X, d). If X is complete and totally bounded, then X is compact.

Corollary 38. Fix a complete metric space (X,d). Then a subset $A\subseteq X$ is compact if and only if A is closed and totally bounded.

Theorem 39 (Arzelá–Ascoli). Fix a compact topological space (X, \mathcal{T}) and a metric space (M, d) so that we can give the space of bounded continuous functions $B_c(X, M)$ the uniform metric d_u . Then any family $\mathcal{F} \subseteq B_c(X, M)$ is totally bounded if and only if it is equicontinuous and pointwise totally bounded family.

2.2 Building Functions

Proposition 40. Fix a collection of topological spaces $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}_{\alpha \in \lambda}$. Give the product $X \coloneqq \prod_{\alpha \in \lambda} X_{\alpha}$ the projections $\pi_{\alpha} \colon X \to X_{\alpha}$ and the product topology \mathcal{T} . Given a topological space (Y, \mathcal{T}_Y) , a function $f \colon Y \to X$ is continuous if and only if the compositions $\pi_{\alpha} \circ f$ are continuous.

Proposition 41. Fix an equivalence relation \sim on a set X with a topology \mathcal{T} ; let $\pi\colon X\twoheadrightarrow (X/\sim)$ be the natural projection. Then, for any continuous map $f\colon X\to Z$ such that any $x\sim x'$ has f(x)=f(x'), there is a unique continuous map $\overline{f}\colon (X/\sim)\to Z$ such that

$$f=\overline{f}\circ\pi.$$

Theorem 42 (Urysohn's lemma). Fix a topological space (X, \mathcal{T}) . If (X, \mathcal{T}) is normal, then for any disjoint closed subsets $V_0, V_1 \subseteq X$, there is a continuous function $f \colon X \to [0,1]$ such that $f(V_0) = \{0\}$ and $f(V_1) = \{1\}$.

Theorem 43 (Tietze extension). Fix a normal topological space (X,\mathcal{T}) , and give some closed subset $A\subseteq X$ the relative topology from X. Given a continuous function $f\colon A\to\mathbb{R}$, there exists a continuous function $\widetilde{f}\colon X\to\mathbb{R}$ such that $\widetilde{f}|_A=f$. In fact, if $\operatorname{im} f\subseteq [a,b]$, then we may enforce $\operatorname{im} \widetilde{f}\subseteq [a,b]$ as well.

2.3 Running Checks

Lemma 44. Fix a topological space (X, \mathcal{T}) and a subset $A \subseteq X$. Then $x \in \overline{A}$ if and only if every open subset $U \subseteq X$ containing x has $U \cap A \neq \emptyset$.

Lemma 45. Fix a compact topological space (X, \mathcal{T}) . Then any closed subset $A \subseteq X$ is compact.

Lemma 46. Fix a Hausdorff topological space (X, \mathcal{T}) , and let $A \subseteq X$ be compact. Then A is closed.

Proposition 47. Fix a compact Hausdorff space (X, \mathcal{T}) . Then (X, \mathcal{T}) is normal.

Lemma 48. Fix a continuous map $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$. If (X,\mathcal{T}_X) is compact, then $\operatorname{im} f\subseteq Y$ is also compact.

Proposition 49. Fix a compact topological space (X, \mathcal{T}_X) and a Hausdorff topological space (Y, \mathcal{T}_Y) . Then any continuous bijection $f: X \to Y$ is a homeomorphism.

Proposition 50. Fix a topological space (X, \mathcal{T}) . Then (X, \mathcal{T}) is compact if and only if any collection \mathcal{V} of closed subsets with the finite intersection property has

$$\bigcap_{V\in\mathcal{V}}V\neq\varnothing.$$

Theorem 51 (Tychonoff). Fix a collection $\{(X_\alpha, \mathcal{T}_\alpha)\}_{\alpha \in \lambda}$ of compact topological spaces, and give the product space $X \coloneqq \prod_{\alpha \in \lambda} X_\alpha$ the product topology. Then X is compact.