Случайные процессы

17 января 2014 г.

Содержание

Ι	Случайные процессы		2
	1	Терминология	2
	2	Примеры	3
1	Сл	учайное блуждание на прямой	3
	1	Вопросы	4
	2	Возвращение в ноль	4
	3	Среднее время нахождения в нуле	5
	4	Свойства траекторий	7
2	Ветвящиеся процессы Гальтона-Ватсона		7
	1	Производящие функции	7
	2	Вероятность вырождения процесса	8
3	Ko	нечномерные распределения случайных процесов	10
4	Пр	оцессы с независимыми приращениями	12
5	Гауссовские случайные процессы		13
	1	Процесс броуновского движения (винеровский процесс)	14
	2	Непрерывность траекторий винеровского процесса	15
6	Фи	льтрании и марковские моменты	17

Введение. Историческая справка

Теория вероятностей: математический анализ случайных явлений.

Теория случайных процессов: стохастические модели и фактор времени.

Предпосылки к изучению

- 1827, Р. Броун броуновское движение частиц в воде ⇒ процесс броуновского движения
- 1903, Л. Башелье колебания курсов бумаг на бирже \Rightarrow процесс броуновского движения
- 1906, А.А. Марков анализ комбинаций гласных и согласных в романе «Евгений Онегин» \Rightarrow марковские цепи
- 1903, Ф. Лундберг модель деятельности страховой компании

 пуассоновский процесс
- 1873, Ф. Гальтон, Г. Ватсон анализ вымирания аристократических фамилий в Великобритании \Rightarrow ветвящиеся процессы
- Начало XX века, А. Эрланг изучение загрузки телефонных сетей \Rightarrow теория массового обслуживания

Применения

- Физика (стохастическое исчисление, теория гиббсовских полей)
- Экономика (финансовая математика)
- Биология

Часть І

Случайные процессы

Общие определения

Определение 0.1. Пусть (Ω, F, P) – вероятностное пространство, а (E, \mathcal{E}) – измеримое пространство. Отображение $\xi: \Omega \to E$ называется *случайным элементом*, если оно измеримо, т.е.

$$\forall B \in \mathcal{E} \ \xi^{-1}(B) = \{\omega : \xi(\omega) \in B\} \in F$$

Определение 0.2. Пусть T – некоторое множество и на (Ω, F, P) для $\forall t \in T$ задан случайный элемент X_t . Тогда набор $X = X_t, t \in T$ называется *случайной функцией* на множестве T.

3амечание. Вообще говоря, не предполагается, что все X_t принимают значения в одном и том же пространстве.

Определение 0.3. Пусть $X = (X(t, \omega))$. При фиксированном $\omega = \omega_0$ функция

$$\tilde{X}_{\omega_0}(t) = X_t(\omega)|_{\omega = \omega_0}$$

на T называется mpaexmopueй (или реализацией) случайной функции $X=X_t, t\in T.$

1 Терминология

- Если $T \subset \mathbb{R}$, то случайная функция называется случайным процессом.
- Если $T = [a, b], (a, b), [a, +\infty)$ и т.д., то процесс X называется процессом с непрерывным временем.
- ullet Если $T=\mathbb{N},\mathbb{Z}$ и т. д. то процесс X называется процессом с дискретным временем.
- Если $T \subset \mathbb{R}^d$, то процесс X называется случайным полем.

Замечание. Далее всюду будем использовать термин «случайный процесс».

2 Примеры

- 1. $X_t(\omega) = \xi(\omega) \cdot f(t)$, где $\xi(\omega)$ с.в., f(t) детерминированная функция.
- 2. Пусть $\{\xi_n, n \in \mathbb{N}\}$ независимые случайные векторы, $S_n = \xi_1 + \dots + \xi_n$, $S_0 = 0$. Тогда процесс с дискретным временем $\{S_n, n \in \mathbb{Z}_+\}$ называется случайным блужданием.

Траектория: см. рис. 1

3. Пусть $\{\xi_n, n \in \mathbb{N}\}$ – норсв, $\xi_n >= 0$, $\xi_n \neq const$ п.н., $S_n = \xi_1 + \dots + \xi_n$, $S_0 = 0$. Тогда процесс

$$X_t = \sup\{n : S_n <= t\}, t >= 0$$

называется процессом восстановления.

Траектория: см. рис. 2

Утверждение. Процесс восстановления конечен почти наверное.

Доказательство. Пусть сначала $E\xi_i = a > 0$.

Заметим, что $\{S_k \leqslant t\} \supset \{S_{k+1} \leqslant t\}$.

 $\{X_t = +\infty\} = \{\sup\{n : S_n \leqslant t\} = +\infty\} = \{\forall n : S_n \leqslant t\} = \bigcap_n \{S_n \leqslant t\} \Rightarrow$ |по непрерывности вероятностной меры $|\Rightarrow P(X_t = +\infty) = P(\forall n S_n \leqslant t) = \lim_{n \to \infty} P(S_n \leqslant t) = \lim_{n \to \infty} P(\frac{S_n}{n} \leqslant \frac{t}{n}) \leqslant |$ для больших $|\alpha| \leqslant \lim_{n \to \infty} P(\frac{S_n}{n} < \frac{a}{2}).$

Но по УЗБЧ $S_n \to a \Rightarrow P(S_n \leqslant a/2) \to P(a \leqslant a/2) = 0.$

В силу того, что $X_t\uparrow$ при $t\uparrow$, $P(\exists t:X_t=+\infty)=P(\exists n:x_n=+\infty)\leqslant\sum_{t=0}^{\infty}P(x_n=\infty)=0.$

Если $E\xi_i = +\infty$, то случай сводится к предыдущему: $\exists C > 0 : \tilde{\xi_n} = \min(\xi_n, C), E\tilde{\xi_n} > 0$. Тогда $P(X_t = +\infty) = P(\forall n S_n \leqslant t) \leqslant P(\tilde{S_n} \leqslant t) = 0$ (доказали в случае конечного матожидания).

Откуда может возникнуть процесс восстановления? Физическая модель – «Модель перегорания лампочки». ξ_n – случайная величина, равная времени работы лампочки, X_t – сколько раз пришлось
заменить лампочку в к моменту времени t.

4. Модель страхования Крамера-Лундберга

Пусть есть $\{\xi_n, n \in \mathbb{N}\}, \{\eta_m, m \in \mathbb{N}\}, \xi_n \stackrel{d}{=} \xi_m, \eta_n \stackrel{d}{=} \eta_m, \{\xi_n, \eta_m\}$ независимы, $\xi_n, \eta_n \geqslant 0, \xi_n$ невырождены.

Пусть $\{X_t, t \geqslant 0\}$ – процесс восстановления, построенный по случайным величинам $\{\xi_n, n \in \mathbb{N}\}, y_0, c > 0$. Тогда $Y_t = y_0 + c \cdot t - \sum_{k=1}^{X_t} \eta_k$ – модель страхования Крамера-Лундберга.

Смысл параметров

- y_0 начальный капитал
- ullet с скорость поступления страховых взносов
- $S_k = \xi_1 + \dots + \xi_k$ время k-й выплаты, η_k размер этой выплаты
- X_t число выплат к моменту времени t>0
- $\sum\limits_{k=1}^{X_t}\eta_k$ общий размер выплат к этому моменту времени
- ullet Y_t текущий капитал компании

1 Случайное блуждание на прямой

Определение 1.1. Пусть $\xi_n, n \in \mathbb{N}$ – норсв, $P(\xi_n = 1) = p$, $P(\xi_n = -1) = q = 1 - p$. Тогда процесс $(S_n, n \in \mathbb{Z}_+), S_0 = 0, S_n = \xi_1 + \dots + \xi_n$ называется простейшим случайным блужсанием на прямой. Если $p = q = \frac{1}{2}$, то блуждание называется симметричным.

1 Вопросы

- 1. вероятность возвращения в ноль
- 2. распределение первого момента возвращения в ноль
- 3. среднее время в нуле
- 4. геометрия траектории

Замечание. Последние два вопроса – только для симметричного случая.

2 Возвращение в ноль

 $P(\{S_n, n \in \mathbb{N}\}\$ вернется в ноль) – ?

$$P(s1 \neq 0, s2 \neq 0, \dots, s_{2n-1} \neq 0, s_{2n} = 0) - ?$$

Вероятность каждой траектории, приводящей в 0 в момент времени 2n, одна и та же и равна $(pq)^n$. Каждую траекторию длины 2n можно сопоставить с вектором $\{\varepsilon_1, \ldots, \varepsilon_{2n}\}, \varepsilon_i \in \{-1, 1\}$.

Определение 1.2. Траектория $(\varepsilon_1, \dots, \varepsilon_{2n})$ длины 2n называется *положительной*, если $\forall k < 2n \sum_{j=1}^k \varepsilon_j > 0$ и $\sum_{j=1}^{2n} \varepsilon_j = 0$. Число таких траекторий обозначим через \tilde{C}_n .

Утверждение. Наблюдение: $P(S_1 \neq 0, \dots, S_{2n-1} \neq 0, S_{2n} = 0) = 2 \cdot \tilde{C}_n \cdot (pq)^n$.

Определение 1.3. Траектория $(\varepsilon_1, \dots, \varepsilon_{2n})$ длины 2n называется neompuцаmeльной, если $\forall k < 2n \sum_{j=1}^k \varepsilon_j \geqslant 0$ и $\sum_{j=1}^{2n} \varepsilon_j = 0$. Число таких траекторий обозначим через C_n .

Утверждение. $\tilde{C}_n = C_{n-1}$.

Доказательство. Смотри рисунок 3.

Чтобы получить из положительной траектории неотрицательную, покажем, что в начале стоит 1, в конце -1. Чтобы получить из неотрицательной положительную, добавим в начало 1, а в конец -1. Получили биекцию между положительными траекториями длины 2n и неотрицательными длины 2n-2.

Утверждение. Пусть $C_0=1$. Тогда $C_n=\sum\limits_{k=0}^{n-1}C_k\cdot C_{n-1-k}$.

Доказательство. Смотри рисунок 4.

Пусть 2k — первый момент возвращения траектории в ноль. Ясно, что таких траекторий $\tilde{C}_k \cdot C_{n-k}$. Суммируя по $k=1\dots n$:

$$C_n = \sum_{k=1}^n \tilde{C}_k \cdot C_{n-k} = \sum_{k=0}^{n-1} C_k \cdot C_{n-k-1}$$

Вывод: C_n – это числа Каталана. $C_n = \frac{1}{n+1} \cdot C_{2n}^n$.

Производящая функция: $f(t) = \sum_{n=0}^{\infty} C_n t^n = \frac{1}{2t} (1 - \sqrt{1-4t}), |t| \leqslant \frac{1}{4}.$

Теорема 1.1 (распределение момента возвращения в ноль).

$$P(S_1 \neq 0, \dots, S_{2n-1} \neq 0, S_{2n} = 0) = \frac{1}{2n-1} C_{2n}^n (pq)^n$$

Доказательство.

$$P(S_1 \neq 0, \dots, S_{2n-1} \neq 0, s_{2n} = 0) = 2\tilde{C}_n(pq)^n = | \text{ ytb.1} | = 2C_{n-1}(pq)^n = \frac{2}{n}C_{2n-2}n - 1(pq)^n = \frac{2n}{n \cdot n}C_{2n-2}^{n-1}(pq)^n = \frac{1}{2n-1}C_{2n}^n(pq)^n.$$

Теорема 1.2 (вероятность возвращения в ноль).

$$P(\{S_n, n \ge 1\}$$
 вернется в ноль $) = 1 - |p - q|$

Доказательство.

$$P(\{S_n,n>=1\}$$
вернется в $0)=\sum_{n=1}^{\infty}P(S_1\neq 0,\dots,S_{2n}=0)=\sum_{n=1}^{\infty}2 ilde{C_N}(pq)^n=\sum_{n=1}^{\infty}2C_{n-1}(pq)^n=\sum_{n=0}^{\infty}2C_{n-1}(pq)^n=\sum_{n=0}^{\infty}2C_n(pq)^{n-1}=2pq\cdot f(pq)=2pq\cdot rac{1}{2pq}(1-\sqrt{1-4pq})=|$ т.к. $(p+q)^2=1|=1-\sqrt{(p-q)^2}=1-|p-q|$

Следствие 1.1. Симметричное случайное блуждание на прямой возвратно с вероятностью 1.

3 Среднее время нахождения в нуле

Пусть $(S_n, n \in \mathbb{N})$ – простейшее симметричное случайное блуждание на прямой. Обозначим через $L_n(0)$ число нулей в последовательности $S_k, k = 0 \dots n$. Вопрос: $EL_n(0) \sim$?

Лемма 1.1.

$$EL_n(0) = E|S_{n+1}|$$

Доказательство. Рассмотрим $|S_{n+1}|$.

$$|S_{n+1}| = |S_n + \xi_{n+1}| = \begin{cases} S_n + \xi_{n+1}, & S_n > 0\\ 1, & S_n = 0\\ -(S_n + \xi_{n+1}), & S_n < 0 \end{cases}$$

$$|S_{n+1}| = (S_n + \xi_{n+1})\mathrm{I}\{S_n > 0\} + \mathrm{I}\{S_n = 0\} - (S_n + \xi_{n+1})\mathrm{I}\{S_n < 0\} = \mathrm{I}\{S_n = 0\} + (S_n + \xi_{n+1})\operatorname{sign}(S_n)$$
 Отсюда $|S_{n+1}| = \mathrm{I}\{S_n = 0\} + |S_n| + \xi_{n+1}\operatorname{sign}(S_n) = |\text{индукция}| = \sum_{k=0}^n (\mathrm{I}\{S_k = 0\} + \xi_{k+1}\operatorname{sign}(S_k)) = L_n(0) + \sum_{k=0}^n \xi_{k+1}\operatorname{sign}(S_k).$

Берем матожидание у обеих частей равенства: $E|S_{n+1}| = EL_n(0) + \sum_{k=0}^n E(\xi_{k+1} \operatorname{sign}(S_k)) = EL_n(0) + \sum_{k=0}^n E\xi_{k+1} E \operatorname{sign}(S_k) = EL_n(0).$

Согласно ЦПТ, $\frac{S_n}{\sqrt{n}} \stackrel{d}{\to} \eta \sim \mathcal{N}(0,1)$.

По теореме о наследовании сходимости $\frac{|S_n|}{\sqrt{n}} \stackrel{d}{\to} |\eta| \sim |\mathcal{N}(0,1)|$.

Вопрос: верно ли данное?

$$E\frac{|S_n|}{\sqrt{n}} \to E|\eta| = \int_{\mathbb{R}} \frac{1}{\sqrt{\frac{2}{\pi}}} |x| e^{-\frac{x^2}{2}} dx = \sqrt{\frac{2}{\pi}}$$

Определение 1.4. Множество случайных величин $\{\xi_{\alpha}, \alpha \in \mathfrak{A}\}$ называется равномерно интегрируемым, если

$$\lim_{c \to +\infty} \sup_{\alpha \in \mathfrak{A}} E(|\xi_{\alpha}| \operatorname{I}\{|\xi_{\alpha}| \geqslant c\}) = 0$$

Смысл: «хвосты» распределения равномерно малы.

Теорема 1.3 (б/д). Пусть $\{\xi_n, n \in \mathbb{N}\}$ – c.e., $\xi_n \stackrel{d}{\to} \xi$. Тогда

$$E\xi_n \to E\xi \Leftrightarrow \{\xi_n, n \in \mathbb{N}\}$$
 равномерно интегрируемо

Замечание. Если сходимость $\stackrel{p}{\to}$ или $\stackrel{\text{п.н.}}{\to}$, то равномерная интергрируемость $\Leftrightarrow \xi_n \stackrel{L_1}{\to} \xi_n$

Теорема 1.4 (достаточное условие равномерной интегрируемости). Пусть $\{\xi_n, n \in \mathbb{N}\}$ – c.s., $G(t) \geqslant 0$: $\frac{G(t)}{t} \to +\infty$ при $t \to +\infty$. Если $\sup_n EG(|\xi_n|) < +\infty$, то последовательность равномерно интегрируема.

Доказательство. Положим $M=\sup_n EG(|\xi_n|)$. $\forall \varepsilon>0$ положим $a=\frac{M}{\varepsilon}$. Возьмем c>0 : $\frac{G(t)}{t}>a$ $\forall t>c$. Тогда $\forall t>c$, $\forall n\in\mathbb{N}$

$$E(|\xi_n|\mathcal{I}\{|\xi_n|\geqslant t\})\leqslant E\left(\frac{G(|\xi_n|)}{a}\mathcal{I}\{|\xi_n|>=t\}\right)\leqslant E\frac{G(|\xi_n|)}{a}\leqslant \frac{M}{a}=\varepsilon$$

 $\Leftrightarrow \{\xi_n, n \in \mathbb{N}\}$ равномерно интегрируема.

Теорема 1.5 (среднее время в нуле).

$$EL_n(0) \sim \sqrt{\frac{2n}{\pi}}$$

Доказательство. Согласно лемме, $EL_n(0) = E|S_{n+1}|$. Покажем, что $\{\xi_n = \frac{S_n}{\sqrt{n}}\}$ равномерно интегрируема. Подберем соответствующую функцию G. Попробуем $G(t) = t^2$.

$$EG(|\xi_n|) = E\xi_n^2 = \frac{(E\xi_n^2)}{n} = \frac{DS_n}{n} = \frac{\sum_{k=1}^n D\xi_k}{n} = \frac{n}{n} = 1$$

Согласно достаточному условию, получили, что последовательность $\frac{|S_n|}{\sqrt{n}}$ равномерно интегрируема. Тогда по теореме

$$\frac{E|S_n|}{\sqrt{n}} \to E\eta = \sqrt{\frac{2}{\pi}}(\eta \sim \mathcal{N}(0,1))$$

Отсюда

$$EL_n(0) = E|S_{n+1}| \sim \sqrt{\frac{2(n+1)}{\pi}} \sim \sqrt{\frac{2n}{\pi}}$$

4 Свойства траекторий

Теорема 1.6 (закон повторного логарифма, 6/д).

$$P\left(\overline{\lim_{n\to\infty}}\frac{S_n}{\sqrt{2n\ln\ln n}} = 1\right) = 1$$

Следствие 1.2.

$$P\left(\underline{\lim_{n\to\infty}}\frac{S_n}{\sqrt{2n\ln\ln n}} = -1\right) = -1$$

Доказательство. Рассмотрим $X_n = -S_n$ – симметричное случайное блуждание \Leftrightarrow по ЗПЛ получаем, что

п.н.
$$1 = \overline{\lim_n} \frac{X_n}{\sqrt{2n \ln \ln n}} = -\underline{\lim_n} \frac{S_n}{\sqrt{2n \ln \ln n}}$$

Смысл: — рис.5 —

ЗПЛ означает, что с вероятностью 1 траектория случайного блуждания начиная с некоторого момента лежит внутри между кривыми $\pm (1+\varepsilon)\sqrt{2n\ln\ln n}$ и в то же время бесконечно много раз выходит в обе стороны из области, ограниченной кривыми $\pm (1-\varepsilon)\sqrt{2n\ln\ln n}$.

2 Ветвящиеся процессы Гальтона-Ватсона

 Φ изическая модель: — рис.6 — В каждый следующий момент времени каждая частица распадается на некоторое случайное число таких же частиц.

Мат. модель: Пусть ξ – случайная величина со значениями в \mathbb{Z}_+ . $\{\xi_k^{(n)}, k, n \in \mathbb{N}\}$ – независимые случайные величины с тем же распределением, что и ξ . Положим

$$X_0 = 1, X_1 = \xi_1^{(1)}, X_n = \sum_{k=1}^{X_{n-1}} \xi_k^{(n)}$$

Определение 2.1. $\{X_n, n \in \mathbb{Z}_+\}$ – ветвящийся процесс Гальтона-Ватсона, построенный по с.в. ξ .

- X_n число частиц в n-м поколении
- $\xi_k^{(n)}$ число потомков k-й частицы в n-1-м поколении

Вопрос: какова вероятность вырождения процесса?

1 Производящие функции

Определение 2.2. Пусть ξ – случайная величина. Тогда ее *производящей функцией* называется

$$\varphi_{\xi}(z) = Ez^{\xi}, z \in \mathbb{R}$$

Свойства производящих функций

- 1. $\varphi_{\xi}(1) = 1$
- 2. $\varphi'_{\xi}(1) = E\xi$
- 3. Если ξ и η независимы, то $\varphi_{\xi+\eta}(z)=\varphi_{\xi}(z)\varphi_{\eta}(z)$

Если ξ принимает значения в \mathbb{Z}_+ , то введем $p_k = P(\xi = k), k \in \mathbb{Z}_+$.

4.
$$\varphi_{\xi}(z) = \sum_{k=0}^{\infty} z^k p_k$$

5.
$$\varphi_{\xi}(0) = p_0$$

6.
$$p_k = \frac{f_{\xi}^{(k)}(z)}{k!}$$

7. Ряд для $\varphi_{\xi}(z)$ сходится абсолютно и равномерно в области $\{|z|\leqslant 1\}$

8. $\varphi_{\xi}(z)$ непрерывно дифференцируема бесконечное число раз в области $\{|z|<1\}$

Пусть далее $\{X_n, n \in \mathbb{Z}_+\}$ – ветвящийся процесс Г.-В., построенный по ξ .

Лемма 2.1.

$$\varphi_{X_{n_1}}(z) = \varphi_{X_n}(\varphi_{\xi}(z))$$

Доказательство. $\varphi_{X_{n+1}}(z) = Ez^{X_{n+1}}$

$$E\left(z^{X_{n+1}}|X_n=m\right) = E\left(z^{\sum_{k=1}^{X_n}\xi_k^{(n+1)}}\middle|X_n=m\right) = E\left(z^{\sum_{k=1}^{m}\xi_k^{(n+1)}}\middle|X_n=m\right) = Ez^{\sum_{k=1}^{m}\xi_k^{(n+1)}} = (\varphi_{\xi}(z))^m$$

Значит,

$$\varphi_{X_{n+1}} = Ez^{X_{n+1}} = E(E(z^{X_{n+1}}|X_n)) = E(\varphi_{\xi}(z))^m|_{m=X_n} = \varphi_{X_n}(\varphi_{\xi}(z))$$

Следствие 2.1.

1.
$$\varphi_{X_n}(z) = \underbrace{\varphi_{\xi}(\varphi_{\xi}(\dots \varphi_{\xi}(z)\dots))}_{n \ pas}$$

2.
$$\varphi_{X_{n+1}}(z) = \varphi_{\xi}(\varphi_{X_n}(z))$$

Доказательство. Применяем индуктивно лемму 2.1:

$$\varphi_{X_{n+1}} = \underbrace{\varphi_{\xi}(\varphi_{\xi}(\dots\varphi_{\xi}(z)\dots))}_{n+1 \text{ pas}} = \varphi_{\xi}(\varphi_{X_n}(z))$$

2 Вероятность вырождения процесса

Положим $q_n = P(X_n = 0), q = P(\text{процесс выродился}) = P(\exists n : X_n = 0)$

Лемма 2.2.

$$q_n \leqslant q_{n+1} \ u \ q = \lim_n q_n$$

Доказательство. $\{X_n=0\}\subset \{X_{n+1}=0\}\Rightarrow q_n\leqslant q_{n+1}$

Но $P(\exists n: X_n=0)=P\left(\bigcup_n\{X_n=0\}\right)=$ |по непрерывности вероятностной меры| $=\lim_n P(X_n=0)=\lim_n q_n.$

Пемма 2.3. Вероятность вырождения q является решением уравнения

$$s = \varphi_{\mathcal{E}}(s)$$

Доказательство.

$$q \leftarrow q_n = P(X_n = 0) = \varphi_{X_n}(0) = \varphi_{\mathcal{E}}(\varphi_{X_{n-1}}(0)) = \varphi_{\mathcal{E}}(q_{n-1}) \rightarrow \varphi_{\mathcal{E}}(q)$$

Вопрос: что делать, если на [0,1] решений несколько?

Всегда есть решение s=1.

Теорема 2.1 (о вероятности вырождения). Пусть $\xi \neq 1$ п.н. Пусть $\mu = E\xi$ (м.б. $\mu = +\infty$). Тогда

1. Если $\mu \leq 1$, то уравнение

$$s = \varphi_{\xi}(s)$$

имеет только одно решение s=1 на [0,1]. Тогда q=1.

2. Если $\mu > 1$, то уравнение

$$s = \varphi_{\xi}(s)$$

имеет единственное решение $s_0 \in [0,1)$. В этом случае $q = s_0$.

Доказательство.

1. Рассмотрим производную $\varphi'_{\xi}(s) = \sum\limits_{k=1}^{\infty} k s^{k-1} P(\xi=k)$ для $s \in [0,1]$. Заметим, что эта функция строго возрастает (поскольку каждое слагаемое строго возрастает) и положительна (поскольку есть хоть одна ненулевая вероятность). Действительно, если $\varphi_{\xi}(s) = 0$ для $s > 0 \Rightarrow P(\xi=k) = 0 \ \forall k \geqslant 1$. Но тогда $P(\xi=0) = 1$ и q=1.

Далее считаем производную положительной.

Для $s \in (0,1)$:

$$1 - \varphi_{\xi}(s) = \varphi'_{\xi}(\theta)(1 - s)$$

где $\theta=\theta(s)\in(s,1)$ Но $\varphi_{\xi}'(\theta)<\varphi_{\xi}'(1)=\mu=1$, т.к. производная строго возрастает.

$$\Rightarrow 1 - \varphi_{\mathcal{E}}(s) < 1 - s$$
 при $s \in [0, 1) \Rightarrow s < \varphi_{\mathcal{E}}(s)$

Решений, отличных от 1, нет.

График в этом случае выглядит так: — рис.7 —

2. Рассмотрим

$$arphi_{\xi}''(s) = \sum_{k=2}^{\infty} k(k-1) s^{k-2} P(\xi=k)$$
 для $s \in [0,1)$

Функция строго возрастает и положительна на (0,1).

Действительно, если вдруг $\varphi_{\xi}''(s)=0 \Rightarrow \forall k\geqslant 2 \ P(\xi=k)=0 \Rightarrow \xi<1$ п.н. $\Rightarrow E\xi=\mu\leqslant 1$, что противоречит условию.

Теперь считаем, что $\varphi'_{\varepsilon}(s)$ строго возрастает на [0,1).

 $\Rightarrow 1-arphi_{arepsilon}'(s)$ меняет знак на [0,1) не более одного раза

$$1 - \varphi'_{\xi}(0) = 1 - P(\xi = 1) > 0$$
$$1 - \varphi'_{\xi}(1) = 1 - \mu < 0$$

$$\Rightarrow 1 - arphi_{\xi}'(s)$$
 меняет знак ровно один раз

График выглядит так: — рис.8 —

Пусть $\varphi'_{\xi}(s_1) = 1$. Что можно сказать про $s - \varphi_{\xi}(s)$? При $s < s_1$ возрастает, при $s > s_1$ возрастает.

Если $\varphi_{\xi}(0) = P(\xi = 0) = 0$, то $s - \varphi_{\xi}(s)|_{s=0} = 0$ — рис.9 —, то есть ровно один корень $s = 0 \in [0,1)$. Ясно, что в этом случае q = 0.

Если $\varphi_{\xi}(0) > 0$, то $s - \varphi_{\xi}(s)|_{s=0} < 0 \Rightarrow \exists s_0$ – единственное решение уравнения на [0,1)

Заметим, что при $s < s_0$ $s < \varphi_{\xi}(s)$, а при $s > s_0$ $s > \varphi_{\xi}(s)$.

Ho
$$q_n = \varphi_{\xi}(q_{n-1}) \leqslant |\text{т.к. } q_n \geqslant q_{n-1}| \leqslant \varphi_{\xi}(q_n) \Rightarrow q_n \notin (s_0, 1).$$

Если $q_n=1$, то $q_{n-1}=1$, т.к. $\varphi_{\xi}(s)=1 \Leftrightarrow s=1$. По индукции получаем, что $q_0=1$. Но $q_0=0$, т.к. в нулевой момент времени всегда есть одна частица. Значит, $q\in[0,s_0]$ как предел $q_n\Rightarrow q=s_0$.

График: — рис 11 —

Вывод: вероятность вырождения – это наименьший корень уравнения $s = \varphi_{\xi}(s)$ из отрезка [0,1].

<u>Интерпретация:</u> если среднее число потомков меньше 1, то процесс обречен на вымирание. Иначе есть ненулевая вероятность того, что мы будем живы до бесконечности.

3 Конечномерные распределения случайных процесов

Пусть $(X_t, t \in T)$ – случайный процесс на (Ω, F, P) , и X_t принимает значения в (S_t, \mathcal{B}_t) .

Определение 3.1. Множество $S = \prod_{t \in T} S_t$ называется пространством траекторий случайного процесса.

$$S = \{ y = (y(t), t \in t) : \forall t \in T \ y(t) \in S_t \}$$

Определение 3.2. Для $\forall t \in T$ и $B_t \in \mathcal{B}_t$ введем элементарный цилиндр с основанием B_t :

$$C(t, B_t) = \{ y \in S : y(t) \in B_t \}$$

 $\underline{\text{Смысл:}}$ это все траектории, проходящие через B_t в момент времени t.- рис.12-

Определение 3.3. Минимальная σ -алгебра \mathcal{B}_T , содержащая все эти элементарные цилиндры, называется $uunundpuveckou \sigma$ -алгеброй на S.

$$\mathcal{B}_T = \sigma\{C(t, B_t) : t \in T, B_t \in \mathcal{B}_T\}$$

 (S, \mathcal{B}_T) – измеримое пространство.

Лемма 3.1. $X = (X_t, t \in T)$ является случайным процессом $\Leftrightarrow X : \Omega \to S$ является измеримым относительно цилиндрической σ -алгебры \mathcal{B}_T .

| Напоминание Критерий измеримости отображения |
$$X: \Omega \to E, \ \mathcal{M} \subset \mathcal{E}$$
 т.ч. $\sigma(\mathcal{M}) = \mathcal{E}$. Тогда X – с.в. $\Leftrightarrow \forall B \in \mathcal{M} \ X^{-1}(B) \in \mathcal{F}$

Доказательство. (\Rightarrow) Для $\forall t X_t$ – случайный элемент со значениями в (S_t, \mathcal{B}_t) . Рассмотрим \mathcal{M} – система элементарных цилиндров в \mathcal{B}_T . По определению $\sigma(\mathcal{M}) = \mathcal{B}_T$.

 $\forall C(t, B_t) \in \mathcal{M}$ получаем

$$X^{-1}(C(t, B_t)) = \{\omega : X(\omega) \in C(t, B_t)\} = \{\omega : X_t(\omega) \in B_t\} = \{X_t^{-1}(B_t) \in \mathcal{F}\}$$

т.к. X_t – случайный элемент.

(⇐) По критерию измеримости отображения

$$\forall B \in \mathcal{B}_T \ X^{-1}(B) \in \mathcal{F}$$

Замечание. Лемма устанавливает эквивалентное определение случайного процесса как единого случайного элемента со значениями в пространстве траекторий.

Определение 3.4. Распределением P_X случайного процесса $X = (X_t, t \in T)$ называется вероятностная мера на (S, \mathcal{B}_T) т.ч. $\forall \mathcal{B} \in \mathcal{B}_T$ $P_X(B) = P(X \in B)$.

Это определение удобно только в том случае, когда «время» конечно. Для счетного (или тем более континуального) «времени» это определение очень трудно для понимания.

Определение 3.5. Пусть $X=(X_t,t\in T)$ – случайный процесс, $\forall n\in\mathbb{N}\ \forall t_1,\ldots,t_n\in T$ пусть P_{t_1,\ldots,t_n} обозначает распределение вектора (X_{t_1},\ldots,X_{t_n}) . Тогда набор вероятностных мер $\{P_{t_1,\ldots,t_n}:n\in\mathbb{N},t_i\in T\}$ называется набором конечномерных распределений случайного процесса X, а сами P_{t_1,\ldots,t_n} называются конечномерными распределениями X.

| Напоминание: $P_{..}$ – вер.мера на $(S_{t_1} \times \cdots \times S_{t_n}, \mathcal{B}_{t_1} \otimes \cdots \otimes \mathcal{B}_{t_n})$, определенная по правилу -2—.

Лемма 3.2. Пусть X и Y – случайные процессы c одинаковым временем, имеющие одно u то же пространство траекторий. Тогда $P_X = P_Y \Leftrightarrow cosnadaют$ их конечномерные распределения.

Напоминание:

Единственность продолжения меры

Пусть (E, \mathcal{E}) – измеримое пространство, P, Q – две вероятностные меры на нем. Пусть $\mathcal{M} \subset \mathcal{E}$ – π -система и $\sigma(\mathcal{M}) = \mathcal{E}$. Тогда

$$P|_{\mathcal{M}} = Q|_{\mathcal{M}} \Leftrightarrow P|_{\mathcal{E}} = Q|_{\mathcal{E}}$$

Доказательство. Рассмотрим цилиндры (не элементарные!) в S:

$$\forall b \ \forall t_1 \dots t_n \in T \ \forall B_{t_1}, \dots, B_{t_n}, B_{t_i} \in \mathcal{B}_{t_i}$$
 определим $C(t_1, \dots, t_n, B_{t_1}, \dots, B_{t_n}) = \{y \in S : y(t_i) \in B_{t_i} \forall i = 1..n\}$

Это пересечения каких-то элементарных цилиндров. Фактически, мы фиксируем значение случайного процесса в нескольких моментах времени, а не только в одном, как это делалось в случае элементарного цилиндра.

Пусть \mathcal{M} – множество цилиндров. Заметим, что \mathcal{M} – π -система, причем $\sigma(\mathcal{M}) = \mathcal{B}_T$.

 (\Rightarrow) Пусть $t_1,\ldots,t_n\in T, B_{t_1},\ldots,B_{t_n}, B_{t_i}\in \mathcal{B}_{t_i}.$ Тогда

$$\begin{split} P^{X}_{t_{1},...,t_{n}}(B_{t_{1}}\times\cdots\times B_{t_{n}}) &= & P((X_{t_{1}},...,X_{t_{n}})\in B_{t_{1}}\times\cdots\times B_{t_{n}}) = \\ & & P(X\in C(t_{1},...,t_{n},B_{t_{1}},...,B_{t_{n}})) = \\ & & P_{X}(C(t_{1},...,t_{n},B_{t_{1}},...,B_{t_{n}})) = \\ & & P_{Y}(C(t_{1},...,t_{n},B_{t_{1}},...,B_{t_{n}})) = \\ & & P((Y_{t_{1}},...,Y_{t_{n}})\in B_{t_{1}}\times\cdots\times B_{t_{n}}) = P^{Y}_{t_{1},...,t_{n}}(B_{t_{1}}\times\cdots\times B_{t_{n}}) \end{split}$$

Доказали, что распределения X и Y совпадают на прямоугольниках. Но $B_{t_1} \times \cdots \times B_{t_n}$ – порождающая π -система для $\mathcal{B}_{t_1} \otimes \cdots \otimes \mathcal{B}_{t_n} \Rightarrow$ по единственности продолжения меры $P^x_{t_1...t_n} = P^y_{t_1...t_n}$.

 (\Leftarrow)

$$\begin{split} P_X(C(t_1,\dots,t_n,B_{t_1},\dots,B_{t_n})) &= \\ P_{t_1\dots t_n}^X(B_{t_1}\times\dots\times B_{t_n}) &= \\ P_{t_1\dots t_n}^Y(B_{t_1}\times\dots\times B_{t_n}) &= \\ P_Y(C(t_1,\dots,t_n,B_{t_1},\dots,B_{t_n})) \end{split}$$

Доказали, что P_x и P_Y совпадают на \mathcal{M} . Но \mathcal{M} – порождающая π -система для $\mathcal{B}_T \Rightarrow$ по единствености продолжения меры $P_X = P_Y$.

Пусть $P_{t_1...t_n}$, $n \in \mathbb{N}$, $t_1...t_n \in T$ – конечномерное распределение $(X_t, t \in T)$.

Лемма 3.3. Для $\{P_{t_1...t_n}\}$ выполнены условия симметрии (1) и согласованности (2):

1. $\forall n \ \forall t_1 \dots t_n \in T \ \forall \sigma$ – перестановки $\{1..n\}$ выполнено

$$P_{t_1...t_n}(B_{t_1}\times\cdots\times B_{t_n})=P_{t_{\sigma_1}...t_{\sigma_n}}(B_{t_{\sigma_1}}\times\cdots\times B_{t_{\sigma_n}})$$

2. $\forall n \ \forall t_1 \dots t_n \in T$

$$P_{t_1...t_n}(B_{t_1} \times \cdots \times B_{t_{n-1}} \times S_{t_n}) = P_{t_1...t_{n-1}}(B_{t_1} \times \cdots \times B_{t_{n-1}})$$

Доказательство.

- 1. $P_{t_1...t_n}(B_{t_1} \times \cdots \times B_{t_n}) = P(X_{t_1} \in B_{t_1}, \dots, X_{t_n} \in B_{t_n})$ не зависит от перестановки.
- 2. $\{X_{t_n} \in S_{t_n}\} = \Omega$, поэтому это событие ничего не добавляет в пересечение.

Пусть теперь X – вещественный процесс, т.е. $(S_t, \mathcal{B}_t) = (\mathbb{R}, \mathcal{B}(\mathbb{R})) \ \forall t \in T$.

Теорема 3.1 (Колмогорова о существовании случайного процесса, $6/\pi$). Пусть T – некоторое множество, $\forall n \in \mathbb{N} \ \forall t_1 \dots t_n \in T$ задана вероятностная мера $P_{t_1 \dots t_n}$ на $(\mathbb{R}^n, \mathcal{B}\mathbb{R}^n)$, причем для системы $\{P_{t_1,\dots t_n}\}$ выполнены условия симметрии и согласованности. Тогда \exists вероятностное пространство (Ω, \mathcal{F}, P) и вещественный случайный процесс $(X_t, t \in T)$ т.ч. $\{P_{t_1 \dots t_n}\}$ – это его конечномерные распределения.

Теорема 3.2 (условия симметрии и согласованности для характеристических функций). Пусть T – некоторое множество, $\forall t_1, \ldots, t_n \in T$ задана вер. мера P_{t_1, \ldots, t_n} на $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n) \ c \ x. \phi. \ \varphi_{t_1, \ldots, t_n}$. Тогда $\{P_{t_1, \ldots, t_n}, n \in \mathbb{N}, t_i \in T\}$ обладают условиями симм. и согл. \Leftrightarrow выполнены условия симметрии и согласованности для $x. \phi.$:

1.
$$\varphi_{t_1,\ldots,t_n}(\lambda_1,\ldots,\lambda_n) = \varphi_{t_{\sigma_1},\ldots,t_{\sigma_n}}(\lambda_{\sigma_1},\ldots,\lambda_{\sigma_n})$$

2.
$$\varphi_{t_1,...,t_n}(\lambda_1,...,\lambda_{n-1},0) = \varphi_{t_1,...,t_{n-1}}(\lambda_1,...,\lambda_n)$$

Следствие 3.1. Пусть $T \subset \mathbb{R}$, $\forall n \in \mathbb{N} \ \forall t_1 < \cdots < t_n \in T$ задана $x.\phi.$ φ_{t_1,\ldots,t_n} в \mathbb{R}^n . Тогда

$$\exists (\Omega, \mathcal{F}, P)$$
 и случайный процесс $(X_t, t \in T)$ т.ч. $\varphi_{t_1, \dots, t_n} - x. \phi.$ $(X_{t_1}, \dots, X_{t_n})$

 \Leftrightarrow

$$\forall m \ \varphi_{t_1,\ldots,t_n}(\lambda_1,\ldots,\lambda_n)|_{\lambda_m=0} = \varphi_{t_1,\ldots,t_{m-1},t_{m+1},\ldots,t_n}(\lambda_1,\ldots,\lambda_{m-1},\lambda_{m+1},\ldots,\lambda_n)$$

Доказательство.

 (\Rightarrow) Очевидно из теоремы Колмогорова и теоремы об условиях симметрии и согласованности для хар. функций

 (\Leftarrow) Пусть $s_1, \ldots, s_n \in T, s_i \neq s_j$, рассмотрим $t_1 < \cdots < t_n$ т.ч. $t_i = s_{\sigma_i}$ для некоторой перестановки σ .

Зададим

$$\varphi_{s_1,\ldots,s_n}(\lambda_1,\ldots,\lambda_n) := \varphi_{t_1,\ldots,t_n}(\lambda_{\sigma_1},\ldots,\lambda_{\sigma_n})$$

Проверим условия симметрии и согласованности для таких хар. функций.

Условие симметрии дано по построению. Проверим согласованность.

$$\begin{array}{l} \varphi_{s_1,\dots,s_n}(\lambda_1,\dots,\lambda_n)|_{\lambda_n=0} = \\ |s_n=t_m\Rightarrow\lambda_n=\lambda_{\sigma_m}| = \\ \varphi_{t_1,\dots,t_n}(\lambda_{\sigma_1},\dots,\lambda_{\sigma_n})|_{\lambda_{\sigma_m}=0} = \\ |\text{условие следствия}| = \\ \varphi_{t_1,\dots,t_{m-1},t_{m+1},\dots,t_n}(\lambda_{\sigma_1},\dots,\lambda_{\sigma_{m-1}},\lambda_{\sigma_{m+1}},\dots,\lambda_{\sigma_n}) = \\ |\text{по построению}| = \\ \varphi_{s_1,\dots,s_{n-1}}(\lambda_1,\dots,\lambda_{n-1}) \end{array}$$

Условия симметрии и согласованности проверяются аналогично, если есть совпадающие $s_i = s_j$. По теореме Колмогорова искомый процесс существует.

4 Процессы с независимыми приращениями

Определение 4.1. Пусть $(X_t, t \geqslant 0)$ – действительный процесс. Он называется процессом с независимыми приращениями, если $\forall n \in \mathbb{N} \ \forall \ 0 \leqslant t_1 < \cdots < t_n$ случайные величины $X_{t_1}, X_{t_2-t_1}, \ldots, X_{t_n-t_{n-1}}$ независимы в совокупности.

Теорема 4.1 (о существовании процессов с независимыми приращениями). Пусть Q_0 – вер. мера на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ с $x.\phi$. φ_0 , $u \, \forall s,t$ задана вер. мера $Q_{s,t}$ на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ с $x.\phi$. Тогда процесс с независимыми приращениями

$$(X_t, t \geqslant 0)$$
 т.ч. $X_0 \stackrel{d}{=} Q_0, X_t - X_s \stackrel{d}{=} Q_{s,t}, s < t$

существует тогда и только тогда, когда

$$\forall \ 0 \leqslant s < u < t \ \varphi_{s,t}(\tau) = \varphi_{s,u}(\tau)\varphi_{u,t}(\tau)$$

Доказательство.

$$(\Rightarrow) \exists X_t \Rightarrow \forall \ s < u < tX_t - X_u \text{ и } X_u - X_s \text{ независимы} \Rightarrow \varphi_{s,t}(\tau) = \varphi_{X_t - X_s}(\tau) = \varphi_{X_t - X_u + X_u - X_s}(\tau) = \varphi_{X_t - X_u}(\tau) \varphi_{X_u - X_s}(\tau) = \varphi_{u,t}(\tau) \varphi_{s,u}(\tau).$$

 (\Leftarrow) Пусть X_t существует. Тогда $\forall 0 < t_1 < \dots < t_n$ случайные величины. Компоненты вектора $(X_{t_n} - X_{t_{n-1}}, \dots, X_{t_1} - X_0, X_0)$ независимы. Обозначим этот вектор как ξ .

$$\varphi_{\xi}(\lambda_n,\ldots,\lambda_0)=\varphi_{X_{t_n}-X_{t_{n-1}}}(\lambda_n)\cdot\ldots\cdot\varphi_{X_0}(\lambda_0)=\varphi_{t_n,t_{n-1}}(\ldots)$$

Рассмотрим $\eta = (X_t n, ..., X_0)^t$. Ясно, что $\eta = A\xi$, где

A = -matp.1-

 $\Rightarrow \varphi_{\eta}(\lambda vector) = Ee^{i<\eta,\lambda v>} =$ записи на бумажке

Теперь забудем про то, что процесс существует. $\forall n \forall t_1 < ...t_n$ зададим $\varphi_t 1..t n$ по формуле (*).

5 Гауссовские случайные процессы

Определение 5.1. Случайный вектор $\xi = \xi_1, \dots, \xi_n$ называется гауссовским, если его х.ф. имеет вид

$$\varphi_{\xi}(t) = e^{i\langle a,t\rangle - \frac{1}{2}\langle \Sigma t,t\rangle}$$

где $a \in \mathbb{R}^n$, а $\Sigma \in Mat(n \times n)$ – симметрическая и неотрицательно определенная. В этом случае пишут $\xi \sim N(a, \Sigma)$.

Теорема 5.1 (три эквивалентных определения).

- 1. Вектор (ξ_1,\ldots,ξ_n) гауссовский
- 2. $\xi = A\eta + b$ n.n., $\epsilon \partial e$ $A \in Mat(n \times m)$, $b \in \mathbb{R}^n$, $\eta = (\eta_1, \dots, \eta_n)$, η_i nes. N(0,1)
- 3. $\forall \tau \in \mathbb{R}^n \langle \tau, \xi \rangle$ имеет одномерное нормальное распределение.

Свойства гаусс. векторов

- 1. Смысл параметров: если $\xi \sim N(a, \Sigma)$, то $a = E\xi$, $\Sigma = D\xi$ матрица ковариаций.
- 2. Если ξ гауссовский, то $A\xi$ гауссовский для всех матриц соответствуещего размера (т.е. линейное преобразование гауссовского вектора также является гауссовским вектором).
- 3. Если $\xi=(\xi_1,\ldots,\xi_n)\sim N(a,\Sigma),$ то ξ_1,\ldots,ξ_n нез. в совокупности $\Leftrightarrow \Sigma$ диагональна $\Leftrightarrow \xi_1,\ldots,\xi_n$ некоррелированы.

Определение 5.2. Действительный случайный процесс $(X_t, t \in T)$ называется *гауссовским*, если все его конечномерные распределения гауссовские:

$$\forall n \ \forall t_1, \ldots, t_n \in T$$
 вектор $(X_{t_1}, \ldots, X_{t_n})$ гауссовский

Определение 5.3. Процесс $(X_t, t \in T)$ называется L^2 -процессом, если $\forall t \in TE|X_t^2| < +\infty$.

Функция $a(t) = EX_t$ называется функцией среднего процесса X_t .

Функция $R(s,t) = cov(X_s,X_t)$ называется ковариационной функцией процесса X_t .

Функция $K(s,t) = EX_sX_t$ называется корреляционной функцией процесса X_t .

3амечание. распределение гауссовского вектора однозначно определяется матожиданием и матрицей ковариаций \Rightarrow конечномерные распределения гауссовского процесса определяются функцией среднего и ковариационной функцией.

Определение 5.4. Функция $f(x,y), x,y \in t$ называется неотрицательно определенной на $T \times T$, если

$$\forall n \ \forall t_1, \dots, t_n \in T \ \forall x_1, \dots, x_n \in \mathbb{R} \sum_{i,j=1}^n f(t_i, t_j) x_i x_j \geqslant 0$$

Пемма 5.1. Ковариационная и корреляционная функции случайного процесса симметричны и неотрицательно определены.

Доказательство. Пусть $X_t - L^2$ -процесс, K(s,t) – его корреляционная функция. Тогда $\forall n \ \forall t_1,\ldots,t_n \in T \ \forall x_1,\ldots,x_n \in \mathbb{R}$

$$\sum_{i,j=1}^{n} f(t_i, t_j) x_i x_j \geqslant 0 = \sum_{i,j=1}^{n} (EX_{t_i} X_{t_j}) x_i x_j = E\left(\sum_{i,j=1}^{n} (x_i X_{t_i}) (x_j X_{t_j})\right) = E\left(\sum_{i=1}^{n} x_i X_{t_i}\right)^2 \geqslant 0$$

 $\Rightarrow K(s,t)$ неотрицательно определена.

Теперь заметим, что $R(s,t) = cov(X_s, X_t)$ – это корреляционная функция для $Y_t = X_t - EX_t \Rightarrow$ она тоже неотрицательно определена.

Их симметричность очевидна.

Теорема 5.2 (о существовании гауссовских процессов). Пусть T – некоторое множество, на нем задана функция a(t), u R(s,t) – симметричная u неотрицательно определенная функция на $T \times T$. Тогда существует вероятностное пространство (Ω, \mathcal{F}, P) u гауссовский процесс $(X_t, t \in t)$ m.ч. $a(t) = EX_t$ u $R(s,t) = cov(X_s, X_t)$.

Доказательство. Для $n \in \mathbb{N}, t_1, \dots, t_n \in T$ рассмотрим вектор $a_{t_1, \dots, t_n} = (a(t_1), \dots, a(t_n)), \Sigma_{t_1, \dots, t_n} = \|R(t_i, t_j)\|_{i,j=1}^n.$

Тогда $\Sigma_{t_1,...,t_n}$ неотрицательно определена. Рассмотрим х.ф.

$$\varphi_{t_1,\ldots,t_n}(\lambda_1,\ldots,\lambda_n) = e^{i\langle a_{t_1,\ldots,t_n},\lambda\rangle - \frac{1}{2}\langle \Sigma t_1,\ldots,t_n\lambda,\lambda\rangle}$$

Легко видеть, что такой набор х.ф. обладает свойствами симметрии и согласованности:

$$\langle a_{t_1,\dots,t_n}, \lambda \rangle = \sum_{k=1}^n a(t_k)(\lambda_k) = |\forall \sigma| = \sum_{k=1}^n a(t_{\sigma(k)})(\lambda_{\sigma(k)})$$

$$\langle a_{t_1,\ldots,t_n},(\lambda_1,\ldots,\lambda_n)\rangle|_{\lambda_n=0}=\langle a_{t_1,\ldots,t_{n-1}},(\lambda_1,\ldots,\lambda_{n-1})\rangle$$

Можно проверить, что для ковариационной функции также выполняются подобные равенства.

По теореме Колмогрова это означает, что $\exists (X_t, t \in T)$ т.ч. $\varphi_{t_1, \dots, t_n}$ – х.ф. $(X_{t_1}, \dots, X_{t_n}) \Rightarrow X_t$ – гауссовский процесс и $EX_t = a(t)$, $cov(X_s, X_t) = R(s, t)$.

Процесс броуновского движения (винеровский процесс)

Определение 5.5. Случайный процесс $(W_t, t \in 0)$ называется винеровским, если

- 1. $W_0 = 0$ п.н.
- 2. W_t имеет независимые приращения
- 3. $W_t W_t \sim N(0, t s), t \ge s$

Утверждение. Винеровский процесс существует.

Доказательство. По критерию существования процессов с независимыми приращениями достаточно проверить, что $\forall s \leq u \leq t$ (опускаем аргумент у х.ф.)

$$\varphi_{W_t W_s} = \varphi_{W_t - W_u} \varphi_{W_u - W_s}$$

Ho t.k. $W_t - W_s \sim N(0, t - s)$

$$\varphi_{W_t - W_s}(\tau) = e^{-\frac{1}{2}\tau^2(t-s)}$$

Очевидно, свойство выполнено и процесс существует.

Теорема 5.3 (эквивалентное определение винеровского процесса). Процесс $(W_t, t \geqslant 0)$ является винеровским \Leftrightarrow

1. W_t гауссовский

2.
$$\forall t \geq 0 \ EW_t = 0$$

3.
$$cov(W_s, W_t) = min(s, t)$$

Доказательство.

 $(\Rightarrow) W_t \sim N(0,t) \Rightarrow EW_t = 0$. Посчитаем ковариационную функцию:

$$cov(W_s, W_t) = |t > s| = cov(W_s, W_t - W_s + W_s) = cov(W_s, W_t - W_s) + cov(W_s, W_s) = 0 + DW_s = s = min(s, t)$$

Пусть $0 \geqslant t_1 \geqslant \ldots \geqslant t_n, \xi = (W_{t_1}, \ldots, W_{t_n})$. Вектор $\eta = (W_{t_1}, W_{t_2} - W_{t_1}, \ldots, W_n - W_{n-1})$ имеет независимые нормальные компоненты $\Rightarrow \eta$ – гауссовский вектор. Очевидно, $\xi = A\eta$ (выписать A!), значит, ξ также является гауссовским $\Rightarrow W_t$ – гауссовский процесс.

 (\Leftarrow) Почему такой процесс существует? По теореме достаточно проверить, что min(s,t) – неотрицательно определенная функция. Для этого можно заметить, что min(s,t) – это ковариационная функция для пуассоновского процесса интенсивности 1. Значит, она неотрицательно определена.

$$EW_t = 0, DW_t = min(t, t) = t \Rightarrow DW_0 = 0, EW_0 = 0 \Rightarrow W_0 = 0$$
 п.н.

Пусть $0 \leqslant t_1 < \dots < t_n$ фиксированы. Тогда $(W_{t_1}, \dots, W_{t_n})$ – гаусс. вектор $\Rightarrow \xi = (W_{t_n} - W_{t_{n-1}}, \dots, W_{t_2} - W_{t_1}, W_{t_1})$ – тоже гауссовский как линейное преобразование гауссовского вектора. Значит, для независимости компонент ξ достаточно проверить, что они некоррелированны.

Пусть $i > j, t_0 = 0.$

$$\begin{array}{l} cov(W_{t_i}-W_{t_{i-1}},W_{t_j}-W_{t_{j-1}}) = \\ cov(W_{t_i},W_{t_j}) - cov(W_{t_{i-1}},W_{t_j}) - cov(W_{\cdot}... = \\ t_j - t_j - t_{j-1} + t_{j-1} = 0 \end{array}$$

 $\Rightarrow W_t$ имеет независимые приращения.

 $W_t - W_s \sim N(a, \sigma^2)$.

$$a = E(W_t - W_s) = 0$$

$$\sigma^2 = D(W_t - W_s) = cov(W_t - W_s, W_t - W_s) = cov(W_t, W_t) + cov(W_s, W_s) - 2cov(W_t, W_s) = |t > s| = t - 2s + s = t - s$$

2 Непрерывность траекторий винеровского процесса

Определение 5.6. Процесс $(Y_t, t \in T)$ называется модификацией процесса $(X_t, t \in T)$, если $\forall t \in T$

$$P(Y_t = X_t) = 1$$

Теорема 5.4 (Колмогорова о существании непрерывной модификации, 6/д). Пусть процесс $(X_t, t \in [a, b])$ таков, что для некоторых $C, \alpha, \varepsilon > 0$ выполнено:

$$\forall t, s \in [a, b] \ E|X_t - X_s|^{\alpha} \leqslant C|t - s|^{1+\varepsilon}$$

Tогда у X_t существует модификация Y_t , все траектории которой непрерывны.

Следствие 5.1. У $W_t, t \ge 0$ существует непрерывная модификация.

Доказательство.

$$W_t - W_s \sim N(0, |t - s|) \Rightarrow E(W_t - W_s)^4 = 3(|t - s|)^2$$

Значит, у W_t существует непрерывная модификация на любом конечном отрезке.

Пусть $W_t^{(n)}$ – непрерывная модификация W_t на отрезке $[n,n+1], n \in \mathbb{Z}_+$. Рассмотрим процесс

15

$$X_t(\omega) = \{W_t^{(n)}(\omega), t \in [n, n+1)\}$$

Разрывы траекторий X_t возможны только в целых точках времени, когда $W_{n+1}^{(n)}(\omega) \neq W_{n+1}^{(n+1)}(\omega)$. Но $W_t^{(n)}$ и $W_t^{(n+1)}$ — модификации W_t , значит,

$$P(W_{n+1}^{(n)} = W_{n+1}) = 1 = P(W_{n+1}^{(n+1)} = W_{n+1}) \Rightarrow P(\exists n : W_{n+1}^{(n)} \neq W_{n+1}^{(n+1)}) = 0$$

Теперь рассмотрим

$$ilde{X}_t(\omega)=\left\{egin{array}{ll} X_t(\omega), \ \mathrm{если}\ \forall n\ W_{n+1}^{(n)}(\omega)=W_{n+1}^{(n+1)}(\omega) \\ 0, \ \mathrm{иначe} \end{array}
ight.$$

Это и будет искомая непрерывная модификация.

3амечание. Условие $\varepsilon > 0$ в теореме Колмогорова существенно.

Доказательство. Пусть $(N_t, t \geqslant 0)$ – пуассоновский процесс. Тогда

$$E(N_t - N_t) = \lambda |t - s|$$

Значит, N_t удовлетворяет условию теоремы Колмогорова с $\varepsilon=0$. Но траектории N_t разрывны почти наверное на всем \mathbb{R}_+ и разрывны с положительной вероятностью на любом конечном отрезке.

Замечание. Всюду далее, где это необходимо, считаем, что нам задана непрерывная модификация винеровского процесса.

Теорема 5.5 (Пэли, Зигмунд, Винер, 6/д). C вероятностью 1 траектория винеровского процесса не дифференцируема ни в одной точке \mathbb{R}_+ .

Теорема 5.6 (Закон повторного логарифма).

$$P\left(\limsup_{t \to +\infty} \frac{W_t}{\sqrt{2t \ln \ln t}} = 1\right) = 1$$

$$\left| \limsup_{t \to +\infty} = \lim_{t \to +\infty} \sup_{s \geqslant t} f(s) \right|$$

Следствие 5.2.

$$P\left(\liminf_{t\to+\infty}\frac{W_t}{\sqrt{2t\ln\ln t}}=-1\right)=1$$

Доказательство. Рассмотрим $Y_t = -W_t$ – тоже винеровский процесс.

ЗПЛ означает, что с вероятностью 1, начиная с некоторого момента $t_0 = t_0(\varepsilon, \omega)$ траектория W_t находится внутри области, ограниченной кривыми $\pm (1+\varepsilon)\sqrt{2t\ln\ln t}$. В то же время $\forall > 0$ траектория бесконечно много раз в обе стороны выходит из области, ограниченной кривыми $\pm (1-\varepsilon)\sqrt{2t\ln\ln t}$, после момента времени T.

Следствие 5.3 (локальный ЗПЛ).

$$\lim \sup t \to +0 f(t) = \lim_{t \to +0} \sup_{s \le t} f(s)$$

$$P\left(\limsup_{t\to+0}\frac{W_t}{\sqrt{2}t\ln\ln\frac{1}{t}}=1\right)=1$$

$$P\left(\liminf_{t\to+0}\frac{W_t}{\sqrt{2}t\ln\ln\frac{1}{t}}=-1\right)=1$$

Доказательство. Рассмотрим процесс $B_t=t*W_{\frac{1}{t}}\mathrm{I}\{t>0\}$. Покажем, что B_t – винеровский.

- 1. $\forall t_1, \dots, t_n \geqslant 0$ имеем $(B_{t_1}, \dots, B_{t_n})$ линейное преобразование вектора $(W_{\frac{1}{t_1}}, \dots, W_{\frac{1}{t_n}})$, значит, это гауссовский вектор. Тогда B_t гауссовский процесс.
- 2. $EB_t = 0 \forall t \geq 0$.

3.
$$cov(B_t, B_s) = tscov(W_{\frac{1}{t}}, W_{\frac{1}{s}}) = \frac{ts}{max(t, s)} = min(t, s).$$

Значит, по теореме об эквивалентном определении B_t – винеровский процесс. Тогда

$$\begin{split} & \limsup_{t \to +0} \frac{W_t}{\sqrt{2t \ln \ln \frac{1}{t}}} = |s = \frac{1}{t}| = \\ & \limsup_{s \to +\infty} \frac{W_{\frac{1}{s}}}{\sqrt{2\frac{1}{s} \ln \ln s}} = \\ & \limsup_{s \to +\infty} \frac{s W_{\frac{1}{s}}}{\sqrt{2s \ln \ln s}} = \\ & \limsup_{s \to +\infty} \frac{B_s}{\sqrt{2s \ln \ln s}} = 1 \text{ п.н. по ЗПЛ.} \end{split}$$

Теорема 5.7 (марковское свойство W_t). Пусть $(W_t, t \ge 0)$ – винеровский процесс. Тогда $\forall a > 0$ процесс $X_t = W_{t+a} - W_a$ тоже винеровский.

Вопрос: можно ли заметить а на случайное время?

6 Фильтрации и марковские моменты

В этой главе считаем, что $T \subset R$.

Определение 6.1. Пусть (Ω, \mathcal{F}, P) – вероятностное пространство. Множество σ -алгебр $\mathcal{F} = (\mathcal{F}_t, t \in T)$ называется фильтрацией, или потоком σ -алгебр на (Ω, \mathcal{F}, P) , если $\forall s < t, s, t \in t$

$$\mathcal{F}_s \subset \mathcal{F}_t \subset \mathcal{F}$$

Определение 6.2. Процесс $(X_t, t \in T)$ называется согласованным с $\mathcal{F} = (\mathcal{F}_t, t \in T)$, если $\forall t \in T \ X_t$ является \mathcal{F}_t -измеримым, то есть

$$\sigma(X_t) = \mathcal{F}_{X_t} \subset \mathcal{F}_t$$

 $\mid \xi$ — случайная величина. \mathcal{F}_{ξ} — σ -алгебра, порожденная ξ :

$$\mathcal{F}_{\xi} = \{ \{ \xi \in B \} : B \in \mathcal{B}(\mathbb{R}) \}$$

Определение 6.3 (обозначения). $\{\xi_{\alpha}\}_{{\alpha}\in\mathfrak{A}}$ – множество с.в., $\sigma(\xi_{\alpha},\alpha\in\mathfrak{A})$ – σ -алгебра, порожденная всеми $\xi_a lpha$ - это

formule

минимальная сиг-алгебра, содержащая все $\mathcal{F}_{\xi_a lpha}$.

Определение 6.4. Пусть $(X_t, t \in T)$ – случайный процесс. Его естественной фильтрацией называется $\mathcal{F}^x = (\mathcal{F}^X_t, t \in T)$, где $\mathcal{F}^X_t = \sigma(X_s, s \leqslant t, s \in T)$.

Замечание (наблюдение). Любой процесс согласован со своей естественной фильтрацией.

Определение 6.5. Отображение $\tau: \Omega \to T \cup \{+\infty\}$ называется *марковским моментом* относительно фильтрации $\mathcal{F} = (\mathcal{F}_t, t \in T)$ на (Ω, \mathcal{F}, P) , если $\forall t \in T$ выполнено

$$\{\tau \leqslant t\} \in \mathcal{F}_t$$

au называется *моментом остановки*, если au конечен п.н.

Пример 1. $(X_n, n \in \mathbb{N})$ – действительный процесс. $\forall B \in \mathcal{B}(\mathbb{R})$

$$\tau_B = \min\{n : X_n \in B\}$$

Тогда τ_B – марковский момент отн. \mathcal{F}^X .

Доказательство.

$$\{\tau_B \leqslant n\} = \bigcup_{k=1}^n \{X_k \in B\} \in \mathcal{F}_n^x$$

Неформальный смысл: τ — марковский момент, момент наступления события в процессе, если $\forall t$ можно однозначно сказать, что τ наступило к моменту времени t или еще нет, только по наблюдениям процеса X_s до момента времени t включительно.

Теорема 6.1 (марковское свойство W_t , усиленный вариант). Пусть $(W_t, t \geqslant 0)$ – винеровский процесс. Тогда $\forall a > 0$ процесс X_t $W_{t+a} - W_a$ является винеровским u не зависит от $\mathcal{F}^W_a = \sigma(W_s, s \leqslant a)$.

Определение 6.6. Пусть au – марковский момент отн. на . Тогда сиг-алгеброй эф-тау называется

$$\mathcal{F}_{\tau} = \{ A \in \mathcal{F} : \forall t \in T \{ \tau \leqslant t \} \cap \in \mathcal{F}_t \}$$

- 1. \mathcal{F}_{τ} действительно сиг-алг
- 2. тау изм отн ф тау
- 3. если $\tau = t = const$, то $\mathcal{F}_{\tau} = \mathcal{F}_{t}$

Теорема 6.2 (строго марковское свойство W_t). Пусть $(W_t, t \ge 0)$ – винеровский процесс, а τ – момент остановки относительно \mathcal{F}^W . Тогда процесс $X_t = W_{t_\tau} - W_{\tau}$ является винеровским и не зависит от \mathcal{F}_{τ} .

Лемма 6.1. 1. Пусть ξ, η – случайные векторы. Тогда $\xi \stackrel{d}{=} \eta \Leftrightarrow \forall f$ – непр., огр.

$$Ef(\xi)Ef(\eta)$$

2. Пусть xi – случайный вектор. Тогда ξ независимо c некоторым событием $A \Leftrightarrow \forall f$ – непр огр

$$E(f(\xi)I_a) = Ef(\xi)P(a)$$

Доказательство. 1. (\Rightarrow) очевидно. (\Leftarrow) f(x) = cos(< t, x >) или sin(< t, x >) - огр. непр. функции => хф ξ и η совпадают => $\xi \stackrel{d}{=} \eta$

2. (\Rightarrow) очевидно. (\Leftarrow) xi – нез. с $A \Leftrightarrow \forall B \in \mathcal{B}(\mathbb{R}) \{ \xi \in B \}$ нез. с $A \Leftrightarrow \{ \xi \in B \}$ нез. с A и B замкнуто. $\{ \xi \in B \}, B$ замкнуто – π -система и σ от нее – это $\{ \{ \xi \in B \} : B \in \mathcal{B}(\mathbb{R}) \}$ Для замкнутого B рассмотрим (записи на бумажке)

CMC. 1. Проверим, что W_{τ} – случайная величина. Рассмотрим $\forall n \in N$

Теорема 6.3 (принцип отражения, 6/д). Пусть W_t – винеровский процесс, τ – момент остановки относительно \mathcal{F}^W . Тогда процесс $Z_t = \{W_t, t < \tau; 2W_\tau - W_t, t \geqslant \tau\}$ также является винеровским.

Далее будем изучать $\tau_x = \inf\{t : W_t = x\}$ – первый момент достижения уровня x.

Пемма 6.2. τ_x – момент остановки относительно \mathcal{F}^W .

Доказательство. Считаем, что нам задана непрерывная модификация W_t . Кроме того, x>0 (иначе аналогично).

 $\{ au_x > t\} = |$ непрерывность тракторий $| = \{ \forall s \leqslant tW_s < x \} = \bigcup_{k=1}^{\infty} \{ s \leqslant t : W_s \leqslant x - \frac{1}{k} \} = |$ непр. траект. $| = \bigcup_{k=1}^{\infty} \bigcap_{s \leqslant t, s \in \mathbb{Q}} \{ W_s \leqslant x - 1/k \} \in \mathcal{F}_t^W$. Значит, au_x — действительно марковский момент.

Из ЗПЛ известно, что $\limsup_{t\to\infty}\frac{W_t}{\sqrt{2t\ln\ln t}}=1$ п.н., то есть трактория п.н. растет неограниченно вверх. Тогда в силу непрерывности $\exists t:W_t=x\Rightarrow P(\tau_x<+\infty)=1.$

Вывод: для τ_x выполнены строго марковское свойство и принцип отражения.

Следствие 6.1. $M_t = \max_{0 \leqslant s \leqslant t} W_s$ является с.в. \mathcal{F}_t^W -измеримой, причем $\{\tau_x \leqslant t\} = \{M_t \geqslant x\}, x \geqslant 0$.

Теорема 6.4. $\forall x, y \geqslant 0$

$$P(W_t < y - x, M_t \geqslant y) = P(W_t > y + x)$$

Доказательство. Если y=0, то утверждение тривиально. Если же y>0, то рассмотрим τ_y . Это момент остановки, значит, к нему применим принцип отражения.

 $Z_t = \{W_t, t \leqslant \tau_y; 2W_\tau - W_t, t \geqslant \tau_y\}$ является винеровским.

Обозначим через σ_y первый момент достижения y у Z_t . Тогда $(W_t, \tau_y) \stackrel{d}{=} (Z_t, \sigma_y) \Rightarrow P(W_t < y - x, M_t \geqslant y) = P(W_t < y - x, \tau_y \leqslant t) = P(Z_t < y - x, \sigma_y \leqslant t) = |\sigma_y = \tau_y| = P(Z_t < y - x, \tau_y \leqslant t) = |\text{ no onp. } Z_t| = P(W_\tau - W_t \leqslant y - x, \tau_y \leqslant t) = P(2y - W_t \leqslant y - x, \tau_y \leqslant t) = P(W_t \geqslant y + x, \tau_y \leqslant t) = P(W_t > y + x).$

Следствие 6.2 (теорема Башелье).

$$M_t \stackrel{d}{=} |W_t|$$

Доказательство.
$$P(M_t \geqslant y) = P(M_t \geqslant y, W_t < y) + P(M_t \geqslant y, W_t \geqslant y) = P(W_t > y) + P(M_t \geqslant y, W_t \geqslant y) = P(W_t > y) + P(W_t \geqslant y) = 2P(W_t \geqslant y) = P(|W_t \geqslant y|).$$