

本科课程考试试题

参考答案及评分标准

开课单位: 数学与统计学院

学生所在学院:

(2019~2020年 秋 季学期)

课程编号	C17000104015	学分/学时	5/5	试 卷	■A 卷	□B 卷
课程名称	《线性代数与概率统计I》		课程类别	■公共课	□基础课	□专业课
专业/年级			修读方式	■必修	□选修	
出题教师	粘成志		考试方式	■闭卷	□开卷	□其他

一、(18分)

1.
$$A$$
; 2. B ; 3. B ; 4. C ; 5. $-\frac{1}{2}$ 6. -3

二、(8分)

解: $|A| = -4 \neq 0$,矩阵可逆

4分

$$A^{-1} = -\frac{1}{4} \begin{pmatrix} 0 & -2 & 2 \\ -2 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

4分

三、(8分)

解:
$$(A, b) = \begin{pmatrix} 1 & 2 & 2 & 1 \\ 1 & 3 & 0 & 0 \\ 2 & 7 & -2 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 6 & 3 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

通解
$$x = \begin{pmatrix} -6c + 3 \\ 2c - 1 \\ c \end{pmatrix}$$
 或 $x = c \begin{pmatrix} -6 \\ 2 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}$,其中 c 为任意常数。 4 分

四、(10分)

解: 二次型的矩阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$

2分

特征多项式
$$|A - \lambda E| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 2 \\ 0 & 2 & 3 - \lambda \end{vmatrix} = -(\lambda - 1)(\lambda - 2)(\lambda - 5),$$

特征值为 λ=1,2,5

6分

对应的特征向量
$$p_1 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$
 $p_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ $p_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$,所求正交矩阵 $P = \begin{pmatrix} 0 & 1 & 0 \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \end{pmatrix}$ 4分

五、(6分)

证明: 令
$$\lambda_1(a_1 + 2a_2 + 3a_3) + \lambda_2(2a_1 + 2a_2 + 4a_3) + \lambda_3(3a_1 + a_2 + 3a_3) = 0$$
 2 分

整理: (
$$\lambda_1 + 2\lambda_2 + 3\lambda_3$$
) $a_1 + (2\lambda_1 + 2\lambda_2 + \lambda_3)$ $a_2 + (3\lambda_1 + 4\lambda_2 + 3\lambda_3) = 0$

因为 a_1 , a_2 , a_3 线性无关,

得:
$$\begin{cases} \lambda_1 + 2 \ \lambda_2 + 3 \ \lambda_3 = 0 \\ 2 \ \lambda_1 + 2 \ \lambda_2 + \ \lambda_3 = 0 \end{cases}, \ \ \text{解得} \ \ \lambda_1 = \ \lambda_2 = \ \lambda_3 = 0 , \\ 3 \ \lambda_1 + 4 \ \lambda_2 + 3 \ \lambda_3 = 0 \end{cases}$$

故向量组线性无关。

六(18分)

1, A 2, D 3, B 4, D 5, N(1,14) 6, 2

4分

4分

七、(10分)

解: (1)
$$F_{x}(x) = \begin{cases} 0, & x \le -1 \\ \frac{1}{2} + \frac{1}{\pi} \arcsin x, -1 < x < 1 \\ 1, & x \ge 1 \end{cases}$$
 6分

$$(2) EX = 0$$

八、(12分)

解(1) a=1

(2)
$$f_{X}(x) = \begin{cases} 2x, 0 < x < 1 \\ 0, \text{ 其他} \end{cases}$$
; $f_{Y}(y) = \begin{cases} \frac{y}{2}, 0 < y < 2 \\ 0, \text{ 其他} \end{cases}$

(3)
$$P\{X \ge Y\} = \frac{1}{8}$$

九(10 分)解:(1)似然函数 $L(\theta) = \frac{1}{\theta'} e^{-\frac{\sum\limits_{i=1}^{n} x_i}{\theta}}$,最大似然估计量为 $\hat{\theta} = \overline{X}$

(2)
$$E^{\theta} = E\overline{X} = \theta$$
, 故 θ 是无偏估计量。

注: 出题教师负责制订课程考试试题参考答案及评分标准(列出答案要点即可),不够可另附页。