Custom Acceleration with FPGAs

```
CS5222 - Project 2
```

SHEN JIAMIN (A0209166A)

In this project, I'm going to port the lab to **PYNQ 2.7** and **Vivado/Vitis 2020.2**. The experiment is done on ASUS RS500-E8-PS4 V2, with operating system Ubuntu 20.04.4 LTS (GNU/Linux 5.4.0-100-generic x86_64).

1 MATRIX MULTIPLICATION PIPELINE OPTIMIZATION IN HLS

1.1 A. Understanding the baseline matrix multiply (background)

The report generated by HLS (as in Figure 1) shows that some pipelining has already been done automatically by Vitis. In order to prepare for the next part, I disabled the pipelining.

```
--- hls.tcl 2022-03-03 21:17:24.651417872 +0800
+++ hls_nopipe.tcl 2022-03-03 21:33:53.435003340 +0800
@@ -7,6 +7,7 @@
open_solution "solution0" -flow_target vivado
set_part {xc7z020clg484-1}
create_clock -period 10 -name default
+config_compile -pipeline_loops 0
csim_design -clean
csynth_design
close_project
```

The new report is as Figure 2. It turns out that the overall performance is a little bit worse than documented. This is because every iteration in L3 loop takes 11 cycles and thus 2816 cycles in total to perform a single inner product.

1.2 B. Pipelining in HLS (8 marks)

Report

- (1) the design latency in cycles,
- (2) the overall device utilization (as Total per Resource),
- (3) the number of floating point adders and multipliers (you can find this information under the Instance section of the synthesis report) and
- (4) the Initiation Interval of the loops you pipelined.

1.3 C. Increasing Pipeline Parallelism by Repartitioning Memories (8 marks)

Report

- (1) the design latency in cycles,
- (2) the overall device utilization (as Total per Resource),
- (3) the number of floating point adders and multipliers (you can find this information under the Instance section of the synthesis report) and
- (4) the Initiation Interval of the loops you pipelined.

(a) Performance Estimates

*	Summary:
---	----------

+-	+	+		+	+	+	++
1	Latency	(cycles)	Latency	(absolute)	Inte	erval	Pipeline
1				•		•	Type
1	•					•	none

+ Detail:

* Instance: N/A

* Loop:

 Loop Name		min	max	Latency	Initiation achieved	target	Count	Pipelined
- LOAD_OFF_1 - LOAD_W_1_LOAD_W_2 - LOAD_I_1_LOAD_I_2 - L1_L2 - L1_L2 - L3 - STORE_O_1_STORE_O_2	.	5 1280 1024 82800 1031 42	5 1280 1024 82800 1031	1 2 2 1035	1 1 1 - 4 1	1 1 1 - 1 1	5 1280 1024 80 256 40	yes yes yes no yes yes

(b) Utilization Estimates

* Summary:

+	+	+	+	+	+
Name	BRAM_18K	DSP	FF	LUT	URAM
DSP	+ -	 -	 -	 -	
Expression	-1	-	0	712	-
FIFO	-1	-	-1	-	-
Instance	0	5	384	751	-
Memory	13	-	64	5	-
Multiplexer	-1	-	-1	494	-
Register	- [- [703	96	-1
Total	13	5	1151	2058	0
Available	280	220	106400	53200	0
Utilization (%)	4	2	1	3	0

+ Detail:

* Instance:

Instance	Module	++ BRAM_18K ++	DSP	FF	LUT	URAM
	CONTROL_BUS_s_axi fadd_32ns_32ns_32_5_full_dsp_1 fmul_32ns_32ns_32_4_max_dsp_1	0 0	0 2 3	36 205 143	40 390 321	0 0 0
Total	 	0	5	384	751	0

Fig. 1. HLS Report in default condition

1.4 D. Amortizing Iteration Latency with Batching (8 marks)

Report

(1) the design latency in cycles, and

(a) Performance Estimates

* Summary:

Latency (cycles) min max	Latency (min	(absolute) max	Inte	erval max	Pipeline Type
228022 228022					

+ Detail:

* Instance: N/A

* Loop:

+	+	++	+	+		+	+
	Latency	(cycles)	Iteration	Initiation	Interval	Trip	I
Loop Name	min	max	Latency	achieved	target	Count	Pipelined
+	+	++	+	+		+	+
- LOAD_OFF_1	5	5	1	-1	-1	5	no
- LOAD_W_1	1300	1300	130	-	-	10	no
+ LOAD_W_2	128	128	1	-1	-1	128	no
- LOAD_I_1	1040	1040	130	-1	-1	8	no
+ LOAD_I_2	128	128	1	-1	-1	128	no
- L1	225536	225536	28192	-1	-1	8	no
+ L2	28190	28190	2819	-	-1	10	no
++ L3	2816	2816	11	-	-1	256	no
- STORE_0_1	136	136	17	-	-1	8	no
+ STORE_0_2	15	15	3	-1	-1	5	no
+	+	++	+	+		+	+

(b) Utilization Estimates

* Summary:

+	+	+	+	+	+
Name	BRAM_18K	DSP	FF	LUT	URAM
+		+	+	+	+
DSP	-	-	-	-	-
Expression	-	-	0	503	-
FIFO	-	-	-	-	-
Instance	0	5	384	751	-
Memory	14	-1	64	5	-
Multiplexer	-	-1	-	376	-
Register	-1	-	369	-	-
+		+	+	+	+
Total	14	5	817	1635	0
+	+	+	+	+	+
Available	280	220	106400	53200	0
+	+	+	+	+	+
Utilization (%)	5	2	~0	3	0
+	++	+	+	+	+

+ Detail:

* Instance:

Instance	Module	Ì	+ BRAM_18K +	DSP	FF	LUT	URAM
CONTROL_BUS_s_axi_U fadd_32ns_32ns_32_5_full_dsp_1_U1 fmul_32ns_32ns_32_4_max_dsp_1_U2	CONTROL_BUS_s_axi fadd_32ns_32ns_32_5_full_dsp_1 fmul_32ns_32ns_32_4_max_dsp_1	1	0 0 0	0 2 3	36 205 143	40 390 321	0 0 0
Total	<u> </u>	-+ !	0	5	384	751	0

Fig. 2. HLS Report with pipelining explicitly disabled

(2) the overall device utilization (as Total per Resource).

1.5 E. Extending Batch Size with Tiling (8 marks)

Report

- (1) the design latency in cycles, and
- (2) the overall device utilization (as Total per Resource).

1.6 F. Hardware compilation and FPGA testing on the PYNQ (8 marks)

Report

- (1) the measured speedup and
- (2) measured classification accuracy.

2 PART 2: FIXED-POINT OPTIMIZATIONS (30 MARKS)

- (1) the fixed-point validation accuracy reported by mnist.py after you've tweaked the SCALE factor.
- (2) the design latency in cycles
- (3) the overall device utilization (as Total per Resource).
- (4) your measured system speedup over the fixed-point CPU implementation
- (5) your measured classification accuracy on the 8k MNIST test sample
- (6) how many multipliers are instantiated in your desing?
- (7) report the initiation interval of the matrix multiplication loop that you pipelined
- (8) given the number of multipliers in your design and input throughput via the AXI port, is the design bandwidthor compute-limited?

3 PART 3: OPEN-ENDED DESIGN OPTIMIZATION (30 MARKS)

Vitis High-Level Synthesis User Guide