

MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES CODING WORKSHOP

Presents

RNAseq data analysis

INSTRUCTED BY

Jessy Slota

INFORMATION FOR PARTICIPANTS

All workshops are being recorded and posted to the MMID Coding Workshop - YouTube

Question and Answer period will not be recorded.

LEARNING OBJECTIVES

- 1. Raw read count processing (Script 1)
- 2. Normalization with DESeq2 (Script 2)
- 3. Differential expression analysis with DESeq2 (Script 3)
- 4. Functional enrichment analysis with Enrichr (Script 4)
- 5. Common data visualizations (Script 5)

What is RNAseq and why use it?

Haas, B., Zody, M. Advancing RNA-Seq analysis. *Nat Biotechnol* **28**, 421–423 (2010). https://doi-org.uml.idm.oclc.org/10.1038/nbt0510-421

Principles of RNAseq analysis

1. Pre-processing sequencing fastq data (not covered)

 Taking raw fastq files from sequencing run and processing into read counts for each transcript

2. Normalization

 Adjusting read count values for proper statistical analysis and data visualizations

3. Differential expression analysis

Identify transcripts with altered abundance

4. Functional enrichment

 Identify pathways or groups of related genes that are enriched with altered transcripts

Tutorial: Setting up the analysis directory

Download/unzip from github

https://github.com/MMID-coding-workshop/2022-03-09-RNA-seq-data-analysis-in-R

Don't forget to set working directory to "analysis directory"!

Tutorial: Setting up the analysis directory

```
R version 4.1.2 (2021-11-01) -- "Bird Hippie"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> setwd("C:/Users/jslota/OneDrive - University of Manitoba/Misc/Bioinformatics lessons/MMID coding workshop/RNAseq analysis director
y")
> |
```

Don't forget to set working directory to "analysis directory"!

The tutorial dataset

PLOS PATHOGENS

RNAseq data on brain tissue (hippocampus) from mice infected with prions

Timecourse study... evaluating gene expression at multiple timepoints

https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1008653

Raw read count files

Name	Status	Date modified	
DE results	•	2022-03-02 2:01	PM
Enrichr results	•	2022-03-02 2:20	PM
raw data	0	2022-03-02 1:51	PM
raw read count files	0	2022-03-02 12:4	8 PM
scripts markdown RNAseq ana markdown-RNAseq-ana sample_info.csv	 Available on this		7 PM PM PM PM

Name		u ×
SRR11017791.tabular	File Edit Format	View Help
SRR11017792.tabular	RP23-271017.1	0 ^
SRR11017793.tabular	Gm26206 0	
SRR11017794.tabular	Xkr4 343	_
SRR11017795.tabular	RP23-317L18.1	0
SRR11017796.tabular	RP23-317L18.4	9
SRR11017797.tabular	RP23-317L18.3 RP23-115T1.6	2
SRR11017798.tabular	RP23-11511.0	0
SRR11017799.tabular	RP23-115I1.5	ø l
SRR11017800.tabular	RP23-115I1.2	7
	RP23-115I1.3	4
SRR11017801.tabular	RP23-122M2.3	63
SRR11017802.tabular	RP23-122M2.2	8
SRR11017803.tabular	RP23-122M2.1	0
SRR11017804.tabular	Gm27396 0	_
SRR11017805.tabular	RP23-333I7.1	0
SRR11017806.tabular	Rp1 16	0
SRR11017807.tabular	RP23-177A20.1 RP23-391E12.2	0
SRR11017808.tabular	Sox17 118	U
SRR11017809.tabular	RP23-285G23.2	2
SRR11017810.tabular	RP23-285G23.3	0

Pre-processing pipeline (in Galaxy... not covered here)

Script 1: Raw Read count processing

```
10
   ###Collect all raw read count files and merge into one matrix
11
   data_files <- Sys.glob("raw read count files/*.tabular") #store paths for all ra
   tmp <- list() #create an empty list to store each file
13
14 - for (i in data_files) { #for loop to load each individual read count file
     X <- gsub(".tabular.*", "", gsub(".*raw read count files/", "", i)) #extract s
15
     tmp[[X]] <- read.delim(i, row.names = 1, header = FALSE) #load read count file</pre>
16
     colnames(tmp[[x]]) <- x #rename column with sample name
17
     print(x) #print sample name to track progress in console
18
19 - }
   read_counts <- do.call(cbind, tmp) #do.call function collapses all objects withi
21
22
   #Clean up read count file
   read_counts <- read_counts[rowMeans(read_counts)>0,] # remove all transcripts th
23
   read_counts <- read_counts[order(rowMeans(read_counts), decreasing = TRUE),] # -
24
25
26
   #Save files for further analysis
   27
   write.csv(read_counts, "raw data/raw_read_counts.csv")
```

Script 1: Raw Read count processing

^	SRR11017791 [‡]	SRR11017792 [‡]	SRR11017793 [‡]	SRR11017794 [‡]	SRR11017795 [‡]	SRR11017796 [‡]	SRR11017797 [‡]	SRR11017798 ‡
mt-Co1	638684	664499	976518	919394	924200	683345	845559	715354
mt-Cytb	185981	274826	363407	281813	364756	235279	311545	276096
Camk2a	171063	178796	311863	219557	264300	164263	388728	229171
mt-Nd1	166391	190562	258089	244864	262878	190919	248941	212294
SIc1a2	126540	126114	182746	157137	153271	130549	152264	131832
mt-Nd5	54220	138239	177209	89367	170449	84789	154445	172270
mt-Nd2	68586	139209	179154	112238	197984	116208	167213	159174
mt-Rnr2	86533	142229	155507	93848	197622	121925	140359	142927
Atp1a3	73864	77605	158591	103131	125274	73056	197820	151542
Kif5a	119507	101976	148837	143190	124609	139305	140241	143170
mt-Nd4	78632	131552	174437	117015	179092	108953	143368	130490
Сре	98846	90106	165564	106653	131403	101327	134521	112817
Ncdn	54591	66568	128647	90430	102257	53974	197582	112443
Snhg11	74382	86111	128310	84504	136110	95268	119266	126592
Calm1	96670	92803	146995	116109	123161	92017	132319	102127

Raw read count matrix

^	SRR11017791 ÷	SRR11017792 ‡	SRR11017793 ‡	SRR11017794 ÷	SRR11017795 [‡]	SRR11017796 [‡]	SRR11017797 ÷	SRR11017798 [‡]
mt-Co1	638684	664499	976518	919394	924200	683345	845559	715354
mt-Cytb	185981	274826	363407	281813	364756	235279	311545	276096
Camk2a	171063	178796	311863	219557	264300	164263	388728	229171
mt-Nd1	166391	190562	258089	244864	262878	190919	248941	212294
Slc1a2	126540	126114	182746	157137	153271	130549	152264	131832
mt-Nd5	54220	138239	177209	89367	170449	84789	154445	172270
mt-Nd2	68586	139209	179154	112238	197984	116208	167213	159174
mt-Rnr2	86533	142229	155507	93848	197622	121925	140359	142927
Atp1a3	73864	77605	158591	103131	125274	73056	197820	151542
Kif5a	119507	101976	148837	143190	124609	139305	140241	143170
mt-Nd4	78632	131552	174437	117015	179092	108953	143368	130490
Сре	98846	90106	165564	106653	131403	101327	134521	112817
Ncdn	54591	66568	128647	90430	102257	53974	197582	112443
Snhg11	74382	86111	128310	84504	136110	95268	119266	126592
Calm1	96670	92803	146995	116109	123161	92017	132319	102127

Sample info matrix

	timepoint *	treatment *
SRR11017791	4_wpi	Mock
SRR11017792	4_wpi	Mock
SRR11017793	4_wpi	Mock
SRR11017794	4_wpi	RML
SRR11017795	4_wpi	RML
SRR11017796	4_wpi	RML
SRR11017797	8_wpi	Mock
SRR11017798	8_wpi	Mock
SRR11017799	8_wpi	Mock
SRR11017800	8_wpi	RML
SRR11017801	8_wpi	RML
SRR11017802	8_wpi	RML
SRR11017803	12_wpi	Mock
SRR11017804	12_wpi	Mock
SRR11017805	12_wpi	Mock
SRR11017806	12_wpi	RML
SRR11017807	12_wpi	RML
SRR11017808	12_wpi	RML

```
11 library(DESeq2)
12 library(ggplot2)
   library(RColorBrewer)
14
   #load raw data
15
   read_counts <- read.csv("raw data/raw_read_counts.csv", row.names = 1)#load read count files
    sample_info <- read.csv("sample_info.csv", row.names = 2, stringsAsFactors = TRUE)[,-1]#load sample info and</pre>
18
   summary(colnames(read_counts)==rownames(sample_info))#make sure samples are in order
20
21 #make DEseq data object
   dds <- DESegDataSetFromMatrix(countData = read_counts, colData = sample_info, design = ~treatment+timepoint)
   dds <- DESeq(dds)
23
24
   #plot dispersion estimates to examine normalization
   plotDispEsts(dds)
```



```
#Get normalized counts and make PCA plots
    norm_counts <- vst(dds)#extract normalized read counts</pre>
    plotPCA(norm_counts, intgroup=c("treatment", "timepoint"))#make a basic PCA plot
30
31
32
    #make a custom PCA plot with ggplot
    pcaData <- plotPCA(norm_counts, intgroup=c("treatment", "timepoint"), returnData=TRUE)</pre>
    percentVar <- round(100 * attr(pcaData, "percentVar"))</pre>
34
    ggplot(pcaData, aes(PC1, PC2, color=timepoint, shape=treatment)) +
35
      qeom_point(size=3) +
36
      xlab(paste0("PC1: ",percentVar[1],"% variance")) +
37
      ylab(paste0("PC2: ",percentVar[2],"% variance")) +
38
      scale_color_manual(values = brewer.pal(8, "Dark2")) +
39
40
      coord_fixed() +
41
      theme_classic()
42
    #Save normalized read counts for visualization later
    write.csv(assay(norm_counts), "raw data/normalized_read_counts.csv")
```


Script 3: Differential expression analysis with DESeq2

```
#load raw data
   read_counts <- read.csv("raw data/raw_read_counts.csv", row.names = 1)#load read count files
   sample_info <- read.csv("sample_info.csv", row.names = 2, stringsAsFactors = TRUE)[,-1]#load sample info and set rownam</pre>
    #Only keep samples from terminal timepoint
   samples <- rownames(sample_info[sample_info$timepoint=="terminal",])</pre>
19
   #make DEseg data object
   dds <- DESegDataSetFromMatrix(countData = read_counts[,samples], colData = sample_info[samples,], design = ~treatment)
   dds <- DESeq(dds)
   #get differential expression results
   resultsNames(dds)
   res <- results(object = dds, contrast = c("treatment", "RML", "Mock"))#Contrast = RML vs Mock samples
28 #clean up results file
  res <- res[order(res$padj),]
30 res <- na.omit(res)</pre>
   res <-as.data.frame(res)
   summary(res$padi < 0.05)#Get summary of statistical significance
   #Save differential expression results
   if (dir.exists("DE results")==FALSE) { dir.create("DE results") }
   write.csv(res, "DE results/RML_terminal_DE_results.csv")
```

Script 3: Differential expression analysis with DESeq2

	baseMean =	log2FoldChange	IfcSE ₹	stat ₹	pvalue [∓]	padj ∓
Gfap	200962.23942	4.099226	0.1888948	21.701103	2.003008e-104	4.306066e-100
A2m	5075.56640	5.196894	0.2398370	21.668442	4.073058e-104	4.378130e-100
Aspg	1164.66046	3.983006	0.1998751	19.927471	2.351501e-88	1.685086e-84
Serpina3n	29093.05234	4.210916	0.2163325	19.465017	2.174211e-84	1.168530e-80
Cybrd1	1074.94323	2.961314	0.1606106	18.437851	6.528469e-76	2.806981e-72
Fcgr2b	1682.84134	4.089544	0.2227112	18.362541	2.620517e-75	9.389312e-72
Lag3	3152.78748	4.092816	0.2322295	17.624013	1.611569e-69	4.949359e-66
Endou	393.06778	3.691634	0.2147660	17.189096	3.204899e-66	8.612364e-63
Serpinf2	702.87876	5.279462	0.3079804	17.142200	7.187929e-66	1.716957e-62
Cxcl10	300.30221	5.717513	0.3371839	16.956657	1.718462e-64	3.694350e-61
Osmr	2540.90090	3.622764	0.2258078	16.043570	6.340280e-58	1.239121e-54
Socs3	429.11333	3.480601	0.2242750	15.519342	2.566694e-54	4.598232e-51
Tlr2	792.08125	4.667687	0.3018894	15.461581	6.303187e-54	1.042353e-50
S1pr3	3022.45898	3.550258	0.2299564	15.438827	8.971651e-54	1.377661e-50
Slc43a3	901.33985	4.933819	0.3220339	15.320805	5.552526e-53	7.957880e-50

Script 3: Differential expression analysis with DESeq2

```
#Advanced - For loop that tests every comparison
40 v for (i in unique(sample_info$timepoint)) {
      #qet samples
41
      samples <- rownames(sample_info[sample_info$timepoint==i,])</pre>
42
43
      #make DEseg data object
      dds <- DESeqDataSetFromMatrix(countData = read_counts[,samples], colData = sample_info[samples,], design = ~treatment)
44
      dds <- DESeq(dds)
45
46
47
      #get differential expression results
48
      resultsNames(dds)
      res <- results(object = dds, contrast = c("treatment", "RML", "Mock"))</pre>
49
50
51
      #clean up results file
52
      res <- res[order(res$padj),]
      res <- na.omit(res)</pre>
53
      res <-as.data.frame(res)
54
      write.csv(res, paste0("DE results/RML_", i, "_DE_results.csv"))
      print(pasteO("saving file... ", "DE results/RML_", i, "_DE_results.csv"))
56
57 ▲ }
```

```
10
11 library(enrichR)
12 library(dplyr)
13
14 #Identify DE genes
15 res <- read.csv("DE results/RML_terminal_DE_results.csv")
16
17 #Get some genes to test in enrichr
18 res %>% filter(padj < 0.05, log2FoldChange > 0.85, baseMean > 15)%>%
19 pull(X) %>%
19 vriteClipboard()#copies to clipboard... paste at https://maayanlab.cloud/Enrichr/
21
```


Script 4: Functional enrichment with

enrichR Enrichr

Login | Register

Transcription Pathways Ontologies Diseases/Drugs Cell Types Misc Legacy Crowd

Description No description available (1407 genes)


```
#Make list of databases you are interested in
   dbs <- c("WikiPathway_2021_Human", "GO_Cellular_Component_2021", "PanglaoDB_Augmented_2021")</pre>
24
   #Genes with increased abundance
   genes <- res %>% filter(padj < 0.05, log2FoldChange > 0.85, baseMean > 15) %>% pull(x)
26
27
28
   #Run Enrichr
   enrch <- enrichr(genes, dbs)
30
   #convert results from list to data frame
32 - for (i in dbs) {
      enrch[[i]]$database <- i
34 △ }
35 enrch <- do.call(rbind, enrch)
```

^	Term	Overlap ‡	P.value ‡	Adjusted.P.value ‡
WikiPathway_2021_Human.1	TYROBP causal network in microglia WP3945	41/61	4.934306e-33	2.486890e-30
WikiPathway_2021_Human.2	Microglia Pathogen Phagocytosis Pathway WP3937	23/40	7.160984e-17	1.804568e-14
WikiPathway_2021_Human.3	Interactions between immune cells and microRNAs in tumor	18/28	1.068639e-14	1.795314e-12
WikiPathway_2021_Human.4	Regulation of toll-like receptor signaling pathway WP1449	39/139	3.377230e-14	4.255310e-12
WikiPathway_2021_Human.5	Toll-like Receptor Signaling Pathway WP75	32/103	3.059690e-13	3.084168e-11
WikiPathway_2021_Human.6	Type I interferon induction and signaling during SARS-CoV	17/31	2.371525e-12	1.992081e-10
WikiPathway_2021_Human.7	Toll-like Receptor Signaling related to MyD88 WP3858	16/31	3.619922e-11	2.606344e-09
WikiPathway_2021_Human.8	miRNAs involvement in the immune response in sepsis WP4	17/37	9.474346e-11	5.968838e-09
WikiPathway_2021_Human.9	Type II interferon signaling (IFNG) WP619	16/37	1.034479e-09	5.793081e-08
WikiPathway_2021_Human.10	SARS-CoV-2 innate immunity evasion and cell-specific imm	21/66	2.218446e-09	1.118097e-07
WikiPathway_2021_Human.11	Fibrin Complement Receptor 3 Signaling Pathway WP4136	15/41	5.258592e-08	2.409391e-06

```
#Make list of databases you are interested in
 dbs <- c("WikiPathway_2021_Human", "GO_Cellular_Component_2021", "PanglaoDB_Augmented_2021")</pre>
 #Make empty list for full results
 full_enrch_results <- list()
 #Loop through every list of genes
 sample_info <- read.csv("sample_info.csv", row.names = 2)[,-1]</pre>
v for (i in unique(sample_info$timepoint))
   res <- read.csv(paste0("DE results/RML_", i, "_DE_results.csv"))</pre>
   ##Genes with increased abundance
   genes \leftarrow res %>% filter(padj < 0.05, log2FoldChange > 0.85, baseMean > 15) %>% pull(x)
  if (length(genes) > 0) {
     enrch <- enrichr(genes, dbs)
     for (j in dbs) {
       enrch[[j]]$timepoint <- i
       enrch[[j]]$direction <- "up"
       enrch[[j]]$database <- j
     enrch <- do.call(rbind, enrch)#convert from list to data frame</pre>
     full_enrch_results[[pasteO(i, "_up")]] <- enrch
     print(paste0("analysis complete... ", i, "_up"))
```

Script 5: Common data visualizations (volcano plot)

```
11 library(ggplot2)
12 library(RColorBrewer)
   library(pheatmap)
   library(dplyr)
15
16 #The volcano plot
17 #Load differential expression results from terminal timepoint
    res <- read.csv("DE results/RML_terminal_DE_results.csv")
19
    #a basic volcano plot
    ggplot(res, aes(x=log2FoldChange, y=-log10(padj))) +
      geom_point()
22
23
   #a nicer volcano plot
    ggplot(res, aes(x=log2FoldChange, y=-log10(padj), color=stat)) +
      geom_point() +
26
      geom_hline(yintercept = -log10(0.05), linetype="dashed", color="grey50") +
27
      geom_vline(xintercept = 0.85, linetype="dashed", color="grey50") +
28
      geom_vline(xintercept = -0.85, linetype="dashed", color="grey50") +
29
      scale_color_gradient2(low = "navy", high = "firebrick", mid="grey95", midpoint = 0) +
30
      theme_classic()
```

Script 5: Common data visualizations (volcano

plot)

Script 5: Common data visualizations (plot n DE genes)

```
#Plotting number of DE genes at each timepoint
   res <- data.frame(timepoint=factor(c("4_wpi","4_wpi","8_wpi","8_wpi","12_wpi","12_wpi","14_wpi","14_
                                        levels = c("4_wpi","8_wpi","12_wpi","14_wpi","16_wpi","18_wpi","2
35
36
                      direction=rep(c("up", "down"), 8),
37
                      ngenes=NA)
38 - for (i in c("4_wpi","8_wpi","12_wpi","14_wpi","16_wpi","18_wpi","20_wpi","terminal")) {
     tmp <- read.csv(paste0("DE results/RML_", i, "_DE_results.csv"))</pre>
     res[res$timepoint==i&res$direction=="up",]$ngenes <- tmp %>% filter(padj < 0.05, log2FoldChange >
40
     res[res$timepoint==i&res$direction=="down",]$ngenes <- tmp %>% filter(padj < 0.05, log2FoldChange
41
42
     rm(tmp)
43 4 }
44
   #a basic plot
   ggplot(res, aes(x=timepoint, y=ngenes, color=direction, shape=direction)) +
47
     geom_point()
48
   #a nicer plot
   ggplot(res, aes(x=timepoint, y=ngenes, color=direction, shape=direction, label=ngenes)) +
     geom_point() +
51
52
     geom_text(nudge_y = 50) +
     scale_color_manual(values=c("navy", "firebrick")) +
54
     theme_classic()
```

Script 5: Common data visualizations (plot n

Script 5: Common data visualizations (heatmap)

```
#The heatmap
57 #we will use DE genes at terminal timepoint
   genes <- read.csv("DE results/RML_terminal_DE_results.csv") %>% filter(padj < 0.05, abs(log2FoldChange) > 0.85, baseMear
59
60 #we will use normalized read-counts to calculate z-scores
61 zscores <- read.csv("raw data/normalized_read_counts.csv", row.names = 1)
62 zscores <- as.matrix(zscores[genes,])
   zscores <- (zscores-rowMeans(zscores))/matrixStats::rowSds(zscores)
64
    #basic heatmap with hierarchical clustering
    pheatmap(zscores)
67
   #nicer heatmap
   #specify additional variables required by pheatmap
   plot_colors <- rev(colorRampPalette(brewer.pal(11,"PuOr"))(100))#colors for mapping to z-scores
71 column_annotation <- read.csv("sample_info.csv", row.names = 2)[,-1]#annotation for samples
   cls <- brewer.pal(8, "Dark2")#colors for qualitative categorization of samples
    annotation_colors <- list(`treatment`=c(`RML`="firebrick", `Mock`="navy"),#this list sets the colors for the annotation
                              `timepoint`=c(`4_wpi`=cls[1],`8_wpi`=cls[2],`12_wpi`=cls[3],`14_wpi`=cls[4],
74
                                             `16_wpi`=cls[5], `18_wpi`=cls[6], `20_wpi`=cls[7], `terminal`=cls[8]))
    pheatmap(zscores, color = plot_colors, annotation_col = column_annotation, annotation_colors = annotation_colors,
             show_rownames = FALSE, show_colnames = FALSE, treeheight_row = 25, treeheight_col = 25)
```

Script 5: Common data visualizations

(heatmap)

Script 5: Common data visualizations (plot enriched gene sets)

```
#Plotting the enrichment results
erch <- read.csv("Enrichr results/full_enrichment_results.csv") #load full enrichment results</pre>
res <- erch %>% #filter to top 10 enriched WikiPathways increased at terminal timepoint
  filter(timepoint=="terminal", direction=="up", database == "WikiPathway_2021_Human") %>%
  arrange(Adjusted.P.value) %>%
  dplyr::slice(1:10)
#basic enrichment plot
ggplot(res, aes(x=-log10(Adjusted.P.value), y=Term)) +
  geom_point()
#nicer plot
#order Terms based on P-value by converting to a factor
res$Term <- factor(res$Term, levels = res$Term)</pre>
ggplot(res, aes(x=-log10(Adjusted.P.value), y=Term, color=Combined.Score, label=Overlap)) +
  geom_point(size=3, alpha=0.5) +
  geom_text(nudge_x = 0.5, hjust=0) +
  scale_color_gradientn(colors=brewer.pal(8, "Oranges")[3:8]) +
  theme_classic()
```

Script 5: Common data visualizations (plot enriched gene sets)

Summary

- 1. Raw read count processing (Script 1)
- 2. Normalization with DESeq2 (Script 2)
- 3. Differential expression analysis with DESeq2 (Script 3)
- 4. Functional enrichment analysis with Enrichr (Script 4)
- 5. Common data visualizations (Script 5)

HELPFUL RESOURCES

```
http://bioconductor.org/packages/devel/bioc/vignett
es/DESeq2/inst/doc/DESeq2.html
https://amp.pharm.mssm.edu/Enrichr/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC609
6346/
```


THANK YOU FOR ATTENDING! The Q&A Session will now begin.

Please make sure to fill out the Exit Survey
We value your feedback!

More questions? Please email us at mmid.coding.workshop@gmail.com or post them to the workshop slack channel

