[熊本大]

s>0, t>0とする。複素数平面上の $\alpha=-i$, $\beta=2-2i$, $\gamma=s+ti$ を表す点をそれぞれ A, B, C とする。さらに, 点 D を直線 AC に関して点 B と反対側にとり, \triangle ACD が正三角形になるようにする。点 D の表す複素数を z とするとき, 以下の問いに答えよ。

- (1) $z \in s, t \in H$ いて表せ。
- (2) α , β , γ が等式 $4(\beta-\alpha)^2+(\gamma-\alpha)^2-2(\beta-\alpha)(\gamma-\alpha)=0$ を満たすとき, γ と z をそれぞれ求めよ。
- (3) (2)で求めた γ とz に対して、直線 AC と直線 BD の交点を F とし、 \angle DFC = θ と する。このとき、 $\cos\theta$ の値を求めよ。

[東北大]

 α , β , γ を複素数とし, $zz + \alpha z + \beta z + \gamma = 0$ ·····(*)を満たす複素数 z を考える。以下の問いに答えよ。

- (1) zは、 $(\alpha \beta)z (\alpha \beta)z + \gamma \gamma = 0$ を満たすことを示せ。
- (2) $|\alpha|=|\beta|\neq 0$ を仮定し、また γ は負の実数であると仮定する。このとき、(*)を満たすzがちょうどz 個あるための必要十分条件をz0、z0、z1 を用いて表せ。

[京都大]

w を 0 でない複素数, x, y を $w + \frac{1}{w} = x + yi$ を満たす実数とする。

- (1) 実数 R は R > 1 を満たす定数とする。w が絶対値 R の複素数全体を動くとき、xy 平面上の点(x, y)の軌跡を求めよ。
- (2) 実数 α は $0 < \alpha < \frac{\pi}{2}$ を満たす定数とする。w が偏角 α の複素数全体を動くとき、xy 平面上の点(x, y)の軌跡を求めよ。

[東京大]

複素数平面上の原点以外の点zに対して、 $w=\frac{1}{z}$ とする。

- (1) α を 0 でない複素数とし、点 α と原点 O を結ぶ線分の垂直二等分線を L とする。 点z が直線 L 上を動くとき、点w の軌跡は円から 1 点を除いたものになる。この円の中心と半径を求めよ。
- (2) 1 の 3 乗根のうち、虚部が正であるものを β とする。点 β と点 β ²を結ぶ線分上を点zが動くときの点wの軌跡を求め、複素数平面上に図示せよ。

[北海道大]

複素数平面上に 3 点 O, A, B を頂点とする $\triangle OAB$ がある。ただし,O は原点とする。 $\triangle OAB$ の外心を P とする。3 点 A, B, P が表す複素数を,それぞれ α , β , z とするとき, $\alpha\beta=z$ が成り立つとする。

- (1) 複素数 α の満たすべき条件を求め、点 $A(\alpha)$ が描く図形を複素数平面上に図示せよ。
- (2) 点 P(z) の存在範囲を求め、複素数平面上に図示せよ。

[東京工大]

実数 a, b, c に対して $F(x) = x^4 + ax^3 + bx^2 + ax + 1$, $f(x) = x^2 + cx + 1$ とおく。 また、複素数平面内の単位円周から 2 点 1, -1 を除いたものを T とする。

- (1) f(x) = 0 の解がすべて T上にあるための必要十分条件を c を用いて表せ。
- (2) F(x) = 0 の解がすべて T 上にあるならば, $F(x) = (x^2 + c_1x + 1)(x^2 + c_2x + 1)$ を満たす実数 c_1 , c_2 が存在することを示せ。
- (3) F(x) = 0 の解がすべて T 上にあるための必要十分条件を a, b を用いて表し、それを満たす点(a, b) の範囲を座標平面上に図示せよ。

D(z)

フ

[熊本大]

(1) $\alpha = -i$, $\beta = 2 - 2i$, $\gamma = s + ti$ (s > 0, t > 0) に対し、複素数平面上に $A(\alpha)$, $B(\beta)$, $C(\gamma)$ をとる。

ここで、 $\triangle ACD$ が正三角形で、点 D が直線 AC に関して

B と反対側にあることより、D(z)は $C(\gamma)$ を $A(\alpha)$ のまわりに $\frac{\pi}{3}$ だけ回転した点となり、

$$\begin{array}{c|c}
 & t & C(\gamma) \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

$$z - \alpha = \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)(\gamma - \alpha)$$

$$z = -i + \frac{1}{2}(1 + \sqrt{3}i)\{s + (t+1)i\} = -i + \frac{1}{2}\{s - \sqrt{3}t - \sqrt{3} + (\sqrt{3}s + t + 1)i\}$$
$$= \frac{1}{2}(s - \sqrt{3}t - \sqrt{3}) + \frac{1}{2}(\sqrt{3}s + t - 1)i \cdots (*)$$

(2) 与えられた条件 $4(\beta-\alpha)^2+(\gamma-\alpha)^2-2(\beta-\alpha)(\gamma-\alpha)=0$ より,

$$4 + \left(\frac{\gamma - \alpha}{\beta - \alpha}\right)^2 - 2 \cdot \frac{\gamma - \alpha}{\beta - \alpha} = 0, \quad \frac{\gamma - \alpha}{\beta - \alpha} = 1 \pm \sqrt{3}i$$

ここで、AC はAB を正の向きに回転したものなので、 $\frac{\gamma-\alpha}{\beta-\alpha}=1+\sqrt{3}i$ となり、

$$\gamma = \alpha + (1 + \sqrt{3}i)(\beta - \alpha) = -i + (1 + \sqrt{3}i)(2 - i) = 2 + \sqrt{3} + (-2 + 2\sqrt{3})i$$

すると、
$$s=2+\sqrt{3}$$
、 $t=-2+2\sqrt{3}$ となるので、(*)から、

$$z = \frac{1}{2}(2 + \sqrt{3} + 2\sqrt{3} - 6 - \sqrt{3}) + \frac{1}{2}(2\sqrt{3} + 3 - 2 + 2\sqrt{3} - 1)i$$
$$= -2 + \sqrt{3} + 2\sqrt{3}i$$

(3) まず、xy 平面を対応させて、A(0, -1)、B(2, -2)、 $C(2+\sqrt{3}, -2+2\sqrt{3})$ 、 $D(-2+\sqrt{3}, 2\sqrt{3})$ とおくと、

$$\overrightarrow{AC} = (2 + \sqrt{3}, -1 + 2\sqrt{3}), \overrightarrow{BD} = (-4 + \sqrt{3}, 2 + 2\sqrt{3})$$

すると、 \overrightarrow{AC} と \overrightarrow{BD} のなす角が θ となり、

$$|\overrightarrow{AC}| = \sqrt{(2+\sqrt{3})^2 + (-1+2\sqrt{3})^2} = 2\sqrt{5}$$

$$|\overrightarrow{BD}| = \sqrt{(-4+\sqrt{3})^2 + (2+2\sqrt{3})^2} = \sqrt{35}$$

$$\overrightarrow{AC} \cdot \overrightarrow{BD} = (2 + \sqrt{3})(-4 + \sqrt{3}) + (-1 + 2\sqrt{3})(2 + 2\sqrt{3}) = 5$$

よって,
$$\cos\theta = \frac{5}{2\sqrt{5}\cdot\sqrt{35}} = \frac{1}{2\sqrt{7}} = \frac{\sqrt{7}}{14}$$
 である。

[解 説]

複素数平面に関する標準的な問題です。(3)は慣れ親しんでいる xy 平面を対応させ、ベクトルの内積を利用しています。

[東北大]

- (1) $z\overline{z} + \alpha z + \beta \overline{z} + \gamma = 0$ ……(*)に対して、共役複素数をとると、 $z\overline{z} + \overline{\alpha z} + \overline{\beta z} + \overline{\gamma} = 0$ ………(**)

 (*)と(**)の両辺の差をとると、 $(\alpha \overline{\beta})z (\overline{\alpha} \beta)\overline{z} + \gamma \overline{\gamma} = 0$ ………①
- (2) γ は実数なので $\gamma = \overline{\gamma}$ となり、①より、 $(\alpha \overline{\beta})z (\overline{\alpha} \beta)\overline{z} = 0, \ (\alpha \overline{\beta})z = (\overline{\alpha} \beta)\overline{z} \cdots \cdots ②$ すると、②から $(\alpha \overline{\beta})z = (\overline{\alpha} \overline{\beta})z$ となり、 $(\alpha \overline{\beta})z$ は実数である。

すると、 $(\alpha-\beta)z = (\alpha-\beta)z$ となり、 $(\alpha-\beta)z$ は実数と そこで、k を実数として、 $(\alpha-\beta)z = k$ ……③とおく。

(i) $\alpha - \overline{\beta} = 0$ のとき (*)から、 $z\overline{z} + \overline{\beta}z + \beta\overline{z} + \gamma = 0$ となるので、 $(z+\beta)(\overline{z}+\overline{\beta}) - \beta\overline{\beta} + \gamma = 0$ 、 $|z+\beta|^2 = |\beta|^2 - \gamma$ ここで、 γ は負の実数なので $|\beta|^2 - \gamma > 0$ となり、 $|z+\beta| = \sqrt{|\beta|^2 - \gamma}$ すると、複素数平面上で、点 z は点 $-\beta$ を中心とする半径 $\sqrt{|\beta|^2 - \gamma}$ の円周上の点 となり、無数に存在する。これより、z がちょうど 2 個あることに反する。

(ii) $\alpha - \overline{\beta} \neq 0$ のとき

$$k = \pm \sqrt{-\gamma} \, | \, \alpha - \overline{\beta} \, |$$

そして、この値を $k = k_1$ 、 k_2 ($k_1 < k_2$) とおくと、 $z = \frac{k_1}{\alpha - \overline{\beta}}$ 、 $\frac{k_2}{\alpha - \overline{\beta}}$ となる。

(i)(ii)より, z がちょうど 2 個あるための必要十分条件は $\alpha-\beta \neq 0$ である。

[解 説]

複素数に関する標準的な問題です。(1)で導いた式が(2)へのスムーズな誘導になっています。

[京都大]

(1)
$$w + \frac{1}{w} = x + yi$$
 ……①に対し、 $|w| = R(R > 1)$ のとき、 θ を任意の実数として、 $w = R(\cos\theta + i\sin\theta)$ ……②

①②より,
$$x+yi=R(\cos\theta+i\sin\theta)+\frac{1}{R}\{\cos(-\theta)+i\sin(-\theta)\}$$
 となり,
$$x+yi=\left(R+\frac{1}{R}\right)\cos\theta+i\left(R-\frac{1}{R}\right)\sin\theta$$

$$x=\left(R+\frac{1}{R}\right)\cos\theta\cdots\cdots$$
3, $y=\left(R-\frac{1}{R}\right)\sin\theta\cdots\cdots$ 4

③より
$$\cos\theta = \frac{R}{R^2 + 1} x$$
, ④より $\sin\theta = \frac{R}{R^2 - 1} y$ なので,
$$\left(\frac{R}{R^2 + 1}\right)^2 x^2 + \left(\frac{R}{R^2 - 1}\right)^2 y^2 = 1 \cdots$$
 ⑤

よって、点(x, y)の軌跡は、⑤で表される楕円である。

(2)
$$\arg w = \alpha \left(0 < \alpha < \frac{\pi}{2}\right)$$
のとき、 r を正の実数として、 $w = r(\cos \alpha + i \sin \alpha)$ ………⑥

(1) と同様にすると、①⑥より、
$$x+yi=\left(r+\frac{1}{r}\right)\cos\alpha+i\left(r-\frac{1}{r}\right)\sin\alpha$$
 となり、 $x=\left(r+\frac{1}{r}\right)\cos\alpha$ ………③、 $y=\left(r-\frac{1}{r}\right)\sin\alpha$ ………⑧

すると、⑨⑩より、

$$\left(\frac{x}{\cos\alpha} + \frac{y}{\sin\alpha}\right)\left(\frac{x}{\cos\alpha} - \frac{y}{\sin\alpha}\right) = 4$$
, $\frac{x^2}{4\cos^2\alpha} - \frac{y^2}{4\sin^2\alpha} = 1$ ·······(1)

ここで、
$$r>0$$
 から、 $r+\frac{1}{r}\geq 2\sqrt{r\cdot\frac{1}{r}}=2$ 、また $r-\frac{1}{r}$ は任意の値をとる。

すると、 $\cos\alpha>0$ 、 $\sin\alpha>0$ で、⑦から $x\geq 2\cos\alpha$ 、⑧から y は任意の値をとる。以上より、点(x,y)の軌跡は、⑪で表される双曲線である。ただし、 $x\geq 2\cos\alpha$ の部分である。

[解 説]

複素数と軌跡に関する標準的な問題です。なお、(2)ではxに限界があり、軌跡は双曲線の右の枝になります。

[東京大]

(1) 条件より、 $z \neq 0$ のとき $w = \frac{1}{z}$ から、 $z = \frac{1}{w}$ ($w \neq 0$) ………① さて、点 z が点 α ($\alpha \neq 0$) と原点 0 を結ぶ線分の垂直二等分線 L 上を動くとき、 $|z| = |z - \alpha|$ ………②

①を②に代入すると、
$$\left|\frac{1}{w}\right| = \left|\frac{1}{w} - \alpha\right|$$
、 $\frac{1}{|w|} = \frac{\left|1 - \alpha w\right|}{|w|}$ となり、 $\left|1 - \alpha w\right| = 1$ 、 $\left|-\alpha\right| \left|w - \frac{1}{\alpha}\right| = 1$ 、 $\left|w - \frac{1}{\alpha}\right| = \frac{1}{|\alpha|}$

よって、点 w の軌跡は、中心 $\frac{1}{\alpha}$ で半径 $\frac{1}{|\alpha|}$ の円である。ただし、 $w \neq 0$ より、原点は除く。

(2) $x^3 = 1$ の解は, $(x-1)(x^2 + x + 1) = 0$ より, x = 1, $\frac{-1 \pm \sqrt{3}i}{2}$ である。

すると、条件より、
$$\beta = \frac{-1+\sqrt{3}i}{2}$$
、 $\beta^2 = \frac{-1-\sqrt{3}i}{2}$ となる。

ここで、点 β と点 β^2 を結ぶ直線は、(1)で $\alpha=-1$ として表すことができるので、点z が点 β と点 β^2 を結ぶ線分上を動くとき、

$$\beta$$

$$z$$

$$-1$$

$$\frac{1}{2}$$

$$0$$

$$0$$

$$1$$

$$x$$

$$3$$

$$2$$

$$-\frac{\sqrt{3}}{2}$$

$$|z| = |z+1| \cdots 3, |z| \le 1 \cdots 4$$

①③
$$\sharp \, \emptyset, \, |w+1|=1 \, (w \neq 0) \cdots$$

①④より、
$$\left|\frac{1}{w}\right| \le 1$$
となり、 $\frac{1}{|w|} \le 1$ から、 $|w| \ge 1$ ……⑥

⑤⑥より、点wの軌跡は、点-1を中心とする半径1の円周上で、原点を中心とする半径1の円の外部または周上の部分となる。

図示すると、右図の太線の弧である。ただし、両端点 β 、 β^2 は含む。

「解説]

複素数平面上の変換を題材とした基本的な問題です。直線や円の絶対値による表現 方法が問われています。

[北海道大]

 $B(\beta)$

(1) 原点 O, 点 $A(\alpha)$, 点 $B(\beta)$ を頂点とする \triangle OAB について, $\alpha \neq 0$, $\beta \neq 0$, $\alpha \neq \beta$ ………①

このとき, 点 $\mathbf{P}(z)$ は $\triangle \mathrm{OAB}$ の外心なので, 辺 \mathbf{OA} および辺

OB の垂直二等分線の交点となり,

$$|z| = |z - \alpha| \cdots 2, |z| = |z - \beta| \cdots 3$$

ここで、 $z = \alpha \beta$ を②に代入すると、 $|\alpha \beta| = |\alpha \beta - \alpha|$ となり、①から $|\alpha| \neq 0$ より、 $|\alpha| |\beta| = |\alpha| |\beta - 1|$ 、 $|\beta| = |\beta - 1|$ ……④

同様に、 $z = \alpha \beta$ を③に代入すると、 $|\alpha \beta| = |\alpha \beta - \beta|$ となり、①から $|\beta| \neq 0$ より、 $|\alpha||\beta| = |\alpha - 1||\beta|$ 、 $|\alpha| = |\alpha - 1|$ ……⑤

④⑤より、点 $A(\alpha)$ 、点 $B(\beta)$ は、ともに原点と点1を結ぶ線分の垂直二等分線上にある。ただし、①から $\alpha \neq \beta$ である。以上より、 α の満たすべき条件は $|\alpha|=|\alpha-1|$ であり、点 $A(\alpha)$ の描く図形は右図の直線である。

(2) (1) より、 $\alpha = \frac{1}{2} + ai$ 、 $\beta = \frac{1}{2} + bi$ $(a \neq b)$ とおくことができ、 $z = \alpha\beta = (\frac{1}{2} + ai)(\frac{1}{2} + bi) = (\frac{1}{4} - ab) + \frac{1}{2}(a + b)i$ ここで、z = x + yi とおくと、 $x = \frac{1}{4} - ab$ 、 $y = \frac{1}{2}(a + b)$ となり、 $a + b = 2y \cdots$ ⑥、 $ab = \frac{1}{4} - x \cdots$ ⑦

⑥⑦より、a、 $b(a \neq b)$ は、t についての 2 次方程式 $t^2 - 2yt + \left(\frac{1}{4} - x\right) = 0$ の異なる実数解となり、その条件は、

$$D/4 = y^2 - \left(\frac{1}{4} - x\right) > 0, \quad y^2 > -\left(x - \frac{1}{4}\right)$$

よって、点P(z)の存在範囲を図示すると、右図の網点部となる。ただし、境界は領域に含まない。

[解 説]

複素数と図形に領域が絡んだ問題です。(1)は共役複素数を用いた形で、 $\alpha + \alpha = 1$ を結論としてもよいでしょう。なお、O、A、B が一直線上にないということについては、(1)の結果から満たしていることがわかります。

[東京工大]

(1) $f(x) = x^2 + cx + 1$ (c は実数)に対して、f(x) = 0 の解がすべて T上にある条件は、2 つの解がともに虚数で、しかも絶対値が 1 ということである。

値が 1 といっことである。 そこで,解を $x=\alpha$, α とおくと,解と係数の関係から $\alpha = 1$ ($|\alpha|^2 = 1$) となり, $|\alpha| = 1$ は満たされている。

よって、求める条件は、解が虚数すなわち $D=c^2-4<0$ から-2< c< 2である。

(2) $F(x) = x^4 + ax^3 + bx^2 + ax + 1$ (a, b は実数)に対して,F(x) = 0 の解がすべて T 上にあるとき,4 つの解はすべて虚数で,しかも絶対値が 1 である。これより,解を $x = \alpha$, α , β , β とおき,F(x) の x^4 の係数が 1 であることに注意すると,

$$F(x) = (x - \alpha)(x - \overline{\alpha})(x - \beta)(x - \overline{\beta})$$
$$= \{x^2 - (\alpha + \overline{\alpha})x + \alpha\overline{\alpha}\}\{x^2 - (\beta + \overline{\beta})x + \beta\overline{\beta}\}$$

ここで、 $\alpha \alpha = |\alpha|^2 = 1$ 、 $\beta \beta = |\beta|^2 = 1$ で、また $\alpha + \alpha$ 、 $\beta + \beta$ はともに実数なので、それぞれ $-c_1$ 、 $-c_2$ とおくと、 $F(x) = (x^2 + c_1 x + 1)(x^2 + c_2 x + 1)$ と表せる。

(3) F(x) = 0 の解がすべて T上にあるための必要十分条件は, (1)(2)から,

 $F(x) = (x^2 + c_1x + 1)(x^2 + c_2x + 1) (-2 < c_1 < 2, -2 < c_2 < 2)$

すると、 $F(x) = x^4 + (c_1 + c_2)x^3 + (c_1c_2 + 2)x^2 + (c_1 + c_2)x + 1$ となり、

 $c_1 + c_2 = a \cdots c_1, c_1 c_2 + 2 = b \cdots c_2$

①②より、 c_1 、 c_2 は 2 次方程式 $t^2 - at + (b-2) = 0 \cdots 3$ の 2 つの解となる。

ここで、③の左辺をg(t) とおき変形すると、 $g(t) = \left(x - \frac{a}{2}\right)^2 - \frac{a^2}{4} + b - 2$ となり、

g(t) = 0の解がともに-2 < t < 2から、求める条件は、

$$-\frac{a^2}{4} + b - 2 \le 0 \cdot \dots \cdot (4), -2 < \frac{a}{2} < 2 \cdot \dots \cdot (5), g(-2) = 2 + 2a + b > 0 \cdot \dots \cdot (6)$$

$$g(2) = 2 - 2a + b > 0 \cdot \cdot \cdot \cdot \cdot 7$$

④~⑦をまとめると,
$$b \leq \frac{a^2}{4} + 2$$
, $-4 < a < 4$

$$b > -2a - 2$$
, $b > 2a - 2$

点(a, b)の範囲を図示すると、右図の網点部となる。 ただし、実線の境界線のみ領域に含む。

[解 説]

複素数と方程式の標準的な問題です。丁寧な誘導のため、結論に至る流れはスムーズです。