

CSED233: Data Structure and Algorithm

Final Exam.

Dec. 18, 2003

- 1. (20 pts) A binary search tree (BST) can be used to sort n elements. Describe briefly the steps of sorting based on BST.
- 2. (20 pts) A complete binary tree can be represented by an array of n elements. Assume that n = 10 and the priority of the elements in A[1:10] is [20, 12, 35, 15, 10, 80, 30, 17, 2, 1]. Heapify (make into a Max Heap) the complete binary tree. Draw its resulting Max Heap and also give the reconstructing steps used to arrive the Max Heap.
- 3. (20 pts) List the order in which the edges of the graph below are visited when running Kruskal's MST (Minimum-Cost Spanning Tree) algorithm.

4. (20 pts) A sorting algorithm is said to be <u>stable</u> if the original ordering for duplicate keys is preserved. For example, consider a list of ordered pairs $L := \{(A,3), (B,5), (C,2), (D,5), (E,4)\}$. If a stable sorting algorithm sorts L on the second value in each pair, then the result is guaranteed to be $\{(C,2), (A,3), (E,4), (B,5), (D,5)\}$. However, if an algorithm is not stable, then it is possible that (D,5) may come before (B,5) in the sorted output. Of the sorting algorithms

5. (24 pts) For a given directed graph below, show the computation steps of Dijkstra's algorithm to determine the cheapest path from node 1 to every other node.

The progress should be of the following form:

Iteration	S	D[2]	D[3]	D[4]	D[5]	D[6]	D[7]	D[8]
initial	{1}							
1								
••••								

----- End of Exam -----