MAT157: Analysis I — Tutorial 14

Topics: FTC, Logs and Exponentials.

Question 1. Let $f(x) = \int_1^{5x^3} \sin(t^3) dt$. Compute $\frac{d}{dx} \left[\int_{f(x^2)}^{157} \frac{1}{1+t^7} dt \right]$. *Hint:* Write this as a composition of functions and use the chain rule.

Question 2. Consider the logarithm function $f:(0,\infty)\to\mathbb{R}$ defined by $f(x)=\log(x)=\int_1^x\frac{1}{t}\,\mathrm{d}t$.

- (a) Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable at $a \in \mathbb{R}$ with f(a) > 0. Find an expression for the derivative of $\log(f(x))$ at x = a.
- (b) Determine all continuously differentiable functions $f: \mathbb{R} \to \mathbb{R}$ for which

$$(f(x))^{2} - 157 = \int_{0}^{x} ((f(t))^{2} + (f'(t))^{2}) dt$$

for all $x \in \mathbb{R}$. *Hint:* Differentiate both sides.

Question 3. Consider the exponential function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = e^x$.

- (a) For a fixed $n \in \mathbb{N}$, determine the n^{th} order Taylor polynomial $p_{n,0}(x)$ for f centered at 0.
- (b) Determine an expression for $\int_0^x p_{n,0}(t) dt$ for $n \in \mathbb{N}$ and x > 0.
- (c) Let $r_{n,0}$ denote the remainder of the approximation from part (a), namely $r_{n,0}(x) = f(x) p_{n,0}(x)$. Prove that $r_{1,0}(x) > 0$ for x > 0.
- (d) Use parts (b) and (c) to conclude that $r_{n,0}(x) > 0$ for all x > 0 and $n \in \mathbb{N}$. Hint: Induction.

Note: The statement in (d) result holds for all $x \in \mathbb{R}$, try to adapt the results for x < 0.

Bonus Problem. Suppose $f:[a,b] \to \mathbb{R}$ is an integrable function, is it true that e^f is integrable on [a,b]? Prove the result or provide a counterexample.