Amendments to the Claims:

- (Original) A method of operating a communication circuit, comprising the steps of:
 receiving a plurality of signals from a plurality of remote transmitters;
 determining which of the plurality of remote transmitters use transmit diversity;
 calculating a signal strength of each respective signal of the plurality of signals; and
 selecting one of the remote transmitters in response to the steps of determining and
 calculating.
- 2. (Original) A method as in claim 1, wherein the step of calculating the signal strength comprises calculating a signal-to-interference ratio.
- 3. (Original) A method as in claim 2, wherein the step of selecting comprises selecting a remote transmitter having the greatest signal-to-interference ratio of the plurality of remote transmitters.
- 4. (Original) A method as in claim 1, wherein the plurality of signals from the plurality of remote transmitters comprises pilot symbols.
- 5. (Original) A method as in claim 1, further comprising the step of transmitting an identity of said one of the remote transmitters to a remote receiver.
- 6. (Original) A method as in claim 5, further comprising the step of receiving a plurality of data signals from said one of the remote transmitters in response to the step of transmitting.
- 7. (Original) A method as in claim 1, wherein the transmit diversity is space-time transmit diversity.

- 8. (Previously amended) A method as in claim 1, further comprising the step of comparing a reference value to a difference between signal strengths of the plurality of remote transmitters, wherein the step of selecting further comprises the step of comparing.
- 9. (Currently amended) A method of operating a communication circuit, comprising the steps of:

transmitting a plurality of signals from a respective plurality of transmitters, each transmitter of the respective plurality of transmitters having transmit diversity;

receiving an identity of a selected transmitter of the plurality of transmitters in response to transmit diversity and signal strength of each respective transmitter; and

transmitting from the selected transmitter and not transmitting at least one signal from at least another transmitter in response to the step of receiving.

- 10. (Original) A method as in claim 9, wherein the plurality of signals comprises pilot symbols.
- 11. (Original) A method as in claim 9, wherein the transmit diversity is space-time transmit diversity.
- 12. (Original) A method as in claim 9, wherein the signal strength is a signal-to-interference ratio.
- 13. (Original) A method as in claim 9, wherein the step of transmitting from the selected transmitter comprises transmitting data symbols, and wherein not transmitting at least one signal comprises not transmitting at least one data symbol.
- 14. (Previously amended) A method as in claim 9, further comprising transmitting a list of active transmitters from the respective plurality of transmitters.

PAGE 5/17 * RCVD AT 7/29/2004 4:19:38 PM [Eastern Daylight Time] * SVR:USPTO-EFXRF-1/2 * DNIS:8729306 * CSID:7197830990 * DURATION (mm-ss):08-10

- 15. (Previously added) A method of operating a communication circuit, comprising the steps of: receiving a plurality of signals from each of a plurality of remote transmitters; determining which of the plurality of remote transmitters use transmit diversity; calculating a signal strength of each respective signal of the plurality of signals; and selecting one of the remote transmitters in response to the steps of determining and calculating.
- 16. (Previously added) A method as in claim 15, wherein the step of calculating the signal strength comprises calculating a signal-to-interference ratio.
- 17. (Previously added) A method as in claim 16, wherein the step of selecting comprises selecting a remote transmitter having the greatest signal-to-interference ratio of the plurality of remote transmitters.
- 18. (Previously added) A method as in claim 15, wherein the plurality of signals from the plurality of remote transmitters comprises pilot symbols.
- 19. (Previously added) A method as in claim 15, further comprising the step of transmitting an identity of said one of the remote transmitters to a remote receiver.
- 20. (Previously added) A method as in claim 19, further comprising the step of receiving a plurality of data signals from said one of the remote transmitters in response to the step of transmitting.
- 21. (Previously added) A method as in claim 15, wherein the transmit diversity is space-time transmit diversity.

PAGE 6117 * RCVD AT 7129/2004 4:19:38 PM [Eastern Daylight Time] * SVR: USPTO-EFXRF-112 * DNIS:8729306 * CSID: 7197830990 * DURATION (mm-ss):08-10

22. (Previously added) A method as in claim 15, further comprising the step of comparing a

reference value to a difference between signal strengths of the plurality of remote transmitters,

wherein the step of selecting further comprises the step of comparing.

23. (Currently amended) A method of operating a communication circuit, comprising the steps

of:

transmitting a plurality of signals from each of a respective plurality of transmitters, each

transmitter of the respective plurality of transmitters having transmit diversity;

receiving an identity of a selected transmitter of the plurality of transmitters in response to

transmit diversity and signal strength of each respective transmitter, and

transmitting from the selected transmitter and not transmitting at least one signal from at

least another transmitter in response to the step of receiving.

24. (Previously added) A method as in claim 23, wherein the plurality of signals comprises pilot

symbols.

25. (Previously added) A method as in claim 23, wherein the transmit diversity is space-time

transmit diversity.

26. (Previously added) A method as in claim 23, wherein the signal strength is a signal-to-

interference ratio.

27. (Previously added) A method as in claim 23, wherein the step of transmitting from the

selected transmitter comprises transmitting data symbols, and wherein not transmitting at least one

signal comprises not transmitting at least one data symbol.

28. (Previously added) A method as in claim 23, further comprising transmitting a list of active

transmitters from the respective plurality of transmitters.

29. (Previously added) A method of operating a communication circuit, comprising the steps of receiving a plurality of signals from a plurality of remote transmitters, the plurality of signals having a common code;

determining which of the plurality of remote transmitters use transmit diversity;

calculating a signal strength of each respective signal of the plurality of signals; and
selecting one of the remote transmitters in response to the steps of determining and
calculating.

- 30. (Previously added) A method as in claim 29, wherein the step of calculating the signal strength comprises calculating a signal-to-interference ratio.
- 31. (Previously added) A method as in claim 30, wherein the step of selecting comprises selecting a remote transmitter having the greatest signal-to-interference ratio of the plurality of remote transmitters.
- 32. (Previously added) A method as in claim 29, wherein the plurality of signals from the plurality of remote transmitters comprises pilot symbols.
- 33. (Previously added) A method as in claim 29, further comprising the step of transmitting an identity of said one of the remote transmitters to a remote receiver.
- 34. (Previously added) A method as in claim 33, further comprising the step of receiving a plurality of data signals from said one of the remote transmitters in response to the step of transmitting.
- 35. (Previously added) A method as in claim 29, wherein the transmit diversity is space-time transmit diversity.

36. (Previously added) A method as in claim 29, further comprising the step of comparing a reference value to a difference between signal strengths of the plurality of remote transmitters, wherein the step of selecting further comprises the step of comparing.

37. (Currently amended) A method of operating a communication circuit, comprising the steps of:

transmitting a plurality of signals from a respective plurality of transmitters, the plurality of signals having a common code and each transmitter of the respective plurality of transmitters having transmit diversity;

receiving an identity of a selected transmitter of the plurality of transmitters in response to transmit diversity and signal strength of each respective transmitter; and

transmitting from the selected transmitter and not transmitting at least one signal from at least another transmitter in response to the step of receiving.

- 38. (Previously added) A method as in claim 37, wherein the plurality of signals comprises pilot symbols.
- 39. (Previously added) A method as in claim 37, wherein the transmit diversity is space-time transmit diversity.
- 40. (Previously added) A method as in claim 37, wherein the signal strength is a signal-to-interference ratio.
- 41. (Previously added) A method as in claim 37, wherein the step of transmitting from the selected transmitter comprises transmitting data symbols, and wherein not transmitting at least one signal comprises not transmitting at least one data symbol.
- 42. (Previously added) A method as in claim 37, further comprising transmitting a list of active transmitters from the respective plurality of transmitters.

PAGE 917 * RCVD AT 7/29/2004 4:19:38 PM (Eastern Daylight Time) * SVR:USPTO-EFXRF-1/2 * DNIS:8729306 * CSID:7197830990 * DURATION (mm-ss):08-10

43. (Previously added) A method of operating a communication circuit, comprising the steps of: receiving a plurality of signals from a plurality of remote base stations; determining which of the plurality of remote base stations use transmit diversity; calculating a signal strength of each respective signal of the plurality of signals; and selecting one of the remote base stations in response to the steps of determining and calculating.

- 44. (Previously added) A method as in claim 43, wherein the step of calculating the signal strength comprises calculating a signal-to-interference ratio.
- 45. (Previously added) A method as in claim 44, wherein the step of selecting comprises selecting a remote base station having the greatest signal-to-interference ratio of the plurality of remote base stations.
- 46. (Previously added) A method as in claim 43, wherein the plurality of signals from the plurality of remote base stations comprises pilot symbols.
- 47. (Previously added) A method as in claim 43, further comprising the step of transmitting an identity of said one of the remote base stations to a remote receiver.
- 48. (Previously added) A method as in claim 47, further comprising the step of receiving a plurality of data signals from said one of the remote base stations in response to the step of transmitting.
- 49. (Previously added) A method as in claim 43, wherein the transmit diversity is space-time transmit diversity.

- 50. (Previously added) A method as in claim 43, further comprising the step of comparing a reference value to a difference between signal strengths of the plurality of remote base stations, wherein the step of selecting further comprises the step of comparing.
- 51. (Previously added) A method of operating a communication circuit, comprising the steps of: transmitting a plurality of signals from a respective plurality of base stations;

receiving an identity of a selected base station of the plurality of base stations in response to transmit diversity and signal strength of each respective base station; and

transmitting from the selected base station and not transmitting at least one signal from at least another base station in response to the step of receiving.

- 52. (Previously added) A method as in claim 51, wherein the plurality of signals comprises pilot symbols.
- 53. (Previously added) A method as in claim 51, wherein the transmit diversity is space-time transmit diversity.
- 54. (Previously added) A method as in claim 51, wherein the signal strength is a signal-to-interference ratio.
- 55. (Previously added) A method as in claim 51, wherein the step of transmitting from the selected base station comprises transmitting data symbols, and wherein not transmitting at least one signal comprises not transmitting at least one data symbol.
- 56. (Previously added) A method as in claim 55, further comprising transmitting a list of active base stations from the respective plurality of base stations.

57. (Previously added) A method of operating a communication circuit, comprising the steps of: receiving a plurality of signals from a plurality of remote transmitters, the plurality of signals having common data;

determining which of the plurality of remote transmitters use transmit diversity;
calculating a signal strength of each respective signal of the plurality of signals; and
selecting one of the remote transmitters in response to the steps of determining and
calculating.

- 58. (Previously added) A method as in claim 57, wherein the step of calculating the signal strength comprises calculating a signal-to-interference ratio.
- 59. (Previously added) A method as in claim 58, wherein the step of selecting comprises selecting a remote transmitter having the greatest signal-to-interference ratio of the plurality of remote transmitters.
- 60. (Previously added) A method as in claim 57, wherein the plurality of signals from the plurality of remote transmitters comprises pilot symbols.
- 61. (Previously added) A method as in claim 57, further comprising the step of transmitting an identity of said one of the remote transmitters to a remote receiver.
- 62. (Previously added) A method as in claim 61, further comprising the step of receiving a plurality of data signals from said one of the remote transmitters in response to the step of transmitting.
- 63. (Previously added) A method as in claim 57, wherein the transmit diversity is space-time transmit diversity.

PACE 12/17 RCVD AT 7129/2004 4:19:38 PM [Eastern Daylight Time] SVR:USPTO-EFXRF-1/2 DNIS:8729306 CSID:7197830990 DURATION (mm-ss):08-10

64. (Previously added) A method as in claim 57, further comprising the step of comparing a reference value to a difference between signal strengths of the plurality of remote transmitters, wherein the step of selecting further comprises the step of comparing.

65. (Currently amended) A method of operating a communication circuit, comprising the steps of:

transmitting a plurality of signals from a respective plurality of transmitters, the plurality of signals having common data and each transmitter of the respective plurality of transmitters having transmit diversity;

receiving an identity of a selected transmitter of the plurality of transmitters in response to transmit diversity and signal strength of each respective transmitter; and

transmitting from the selected transmitter and not transmitting at least one signal from at least another transmitter in response to the step of receiving.

- 66. (Previously added) A method as in claim 65, wherein the plurality of signals comprises pilot symbols.
- 67. (Previously added) A method as in claim 65, wherein the transmit diversity is space-time transmit diversity.
- 68. (Previously added) A method as in claim 65, wherein the signal strength is a signal-to-interference ratio.
- 69. (Previously added) A method as in claim 65, wherein the step of transmitting from the selected transmitter comprises transmitting data symbols, and wherein not transmitting at least one signal comprises not transmitting at least one data symbol.
- 70. (Previously added) A method as in claim 65, further comprising transmitting a list of active transmitters from the respective plurality of transmitters.