Introduction to analog design with open source tools

Using the SkyWater PDK and Efabless platform

Tim Edwards
SVP Analog & Platform

efabless.com

Open Circuit Design opencircuitdesign.com

Google Cloud google.com

SkyWater sky130 open PDK skywatertechnology.com

NYDesign

June 28-29, 2022

The SkyWater Open PDK

Public repository

Documentation

https://skywater-pdk--136.org.readthedocs.build

Efabless design respositories

https://github.com/efabless/caravel

https://github.com/efabless/caravel_user_project_analog

→ Community

https://join.skywater.tools

```
#analog-design
#xschem
#magic
```

"Caravan" analog project harness

- These pads on the top have been repuposed for analog (11 pads)
- → GPIO for the rest (27 pads)
 - –analog signals can be connected to the GPIO pads (except lower 7)
 - -additional 3.3V digital GPIO inputs available to the user area.
 - No digital power rings; project connects directly to wrapper pins
- Same RISC-V managment SoC and support circuitry as Caravel

Tools Currently Supported by the open PDK

Xschem

https://github.com/StefanSchippers/xschem

Tools Currently Supported by the open PDK

Ngspice

https://ngspice.sourceforge.net

Tools Currently Supported by the open PDK

Magic

http://opencircuitdesign.com/magic

Tools Currently Supported by the open PDK

Klayout

https://www.klayout.de

```
# The MCell declaration for the circle
class StarPCell < PCellDeclarationHelper
  include REA
  def initialize
   # Important: initialize the super class
   # declare the parameters
   paramiti, TypeLayer, 'Layer', mefault Lawerland news.
   param(:rl, TypeOouble, "Inner radius", idefault | ], inst | jump
                                                                                        · 医克里里克里里里里里里里里里里
   paramitr2, TypeDouble, "Outer radius", default - 1
   paramiin, TypeInt, "Number of rays", idefault - 11)
   parantida, TypeInt, "May angle", idefault - 1, iunit - 'mig'
  def display text impl
   # Provide a descriptive test for the cell
   def produce impl.
   # This is the main part of the implementations pound the in-
                                                                                                                                                            metal1.drawing - 45/252
   a compute the ray parts and produce the pullypus
                                                                                                                                                            metalt label - 45/237
  d - Math - PI - da - 0.5 / 188.0
  8 = 9.0
  n, times do 1
      DPoint new[r] * Math.cos[a - d], r] * Math.aimid | d]]
      DPoint : new[r] = Math.cos(a = d), r1 = Math.sis(a = d)].
                                                                                      THE RESERVE THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER.
      DPoint: new(r2 = Rath.cos(a = d), r2 = Rath.sin(a = d)
      proint new(r2 = Math.cos(a - d), r2 = Math.gim(s - d))
    cell.shapes({ layer).insert(OPelygom.obw(Spck))
    a -- Math | PI = 2 / H
   end
end
```

Tools Currently Supported by the open PDK

Netgen

http://opencircuitdesign.com/netgen

```
tkcon 2.3 Main
 File Console Edit Interp Prefs History Help
  Class: VDDPADEC
                               instances
                                instances
  Class: axtoc02_3v3
Class: raven soc
                               instances
                               instances
                                instances
  Class: BT4F
                               instances
                               instances:
  Class: arcoc01_3v3
                                instances
  Class: acsoc04 1v8
                               instances:
  Class: CORNERESDF
                               instances:
  Class: DFRX2
                               instances
  Class: apllc03 1v8
                               instances
  Class: LOGIC1 3V
Class: adacc01 3v3
Class: GNDORPADF
                                instances:
                               instances
                               instances:
  Class: BBCUD4F
                                instances:
  Class: aadcc01 3v3
                               instances:
  Class: VDDPADF
                               instances:
  Class: atmpc01_3v3
Class: AMUX4_3V
                               instances
                               instances:
  Class: LOGICO_3V
Class: BBC4F
                               instances
                               instances:
                                instances
  Class: abgpc01_3v3
                               instances
                               instances:
  Class: raven_spi
                                instances:
  Class: dn
                               instances
  Class: VDDORPADF
                                instances:
  Class: POWERCLITYDD3EC
                               instances
                               instances:
  Class: acsoc02 3v3
                                instances:
  Class: acsoc01 3v3
                               instances
  Class: AMUX2_3V
                               instances:
                               instances:
 Circuit contains 1616 nets.
Circuit 1 contains 542 devices, Circuit 2 contains 536 devices. *** MISMATCH ***
Result: Netlists do not match
Logging to file "comp.out" disabled
LVS Done.
```

```
mrxvt
                                                                                       X ?
BT4FC (1)
 aadcc01_3v3 (2)
                                             |aadcc01_3v3 (2)
 aopac01_3v3 (1)
                                             |aopac01_3v3 (1)
 acsoc02_3v3 (1)
                                             |acsoc02_3v3 (1)
 LOGIC1_3V (4)
                                             LOGIC1 3V (4)
 XSPRAMBLP_1024X32_M8P (1)
                                             |XSPRAMBLP_1024X32_M8P (1)
 adacc01_3v3 (1)
                                             |adacc01_3v3 (1)
 raven_soc (1)
                                             |raven_soc (1)
 LOGICO_3V (13)
                                             |LOGICO_3V (13)
                                             DFRX2 (3)
 DFRX2 (3)
 IN_3VX2 (1)
                                             IN_3VX2 (1)
 abgpc01_3v3 (1)
                                             abgpc01_3v3 (1)
 dn3 (1)
                                             |dn3 (1)
                                             acsoc01_3v3 (1)
 acsoc01_3v3 (1)
 aporc02_3v3 (1)
                                             |aporc02_3v3 (1)
 AMUX4_3V (4)
                                             IAMUX4 3V (4)
 acmpc01_3v3 (1)
                                             |acmpc01_3v3 (1)
 arcoc01 3v3 (1)
                                             |arcoc01 3v3 (1)
 Number of devices: 542 **Mismatch**
                                             |Number of devices: 536 **Mismatch**
 Number of nets: 1615 **Mismatch**
                                             Number of nets: 1616 **Mismatch**
 NET mismatches: Class fragments follow (with fanout counts):
 Circuit 1: raven
                                             |Circuit 2: raven
 Net: VDD3V3
  raven_spi/vdd3 = 1
                                               raven_soc/overtemp_ena = 1
   cmm5t/1 = 160
                                                LS 3VX2/A = 1
   LS_3VX2/VDD3V3 = 6
```

SkyWater SKY130 Libraries

1. Digital standard cells

```
sky130_fd_sc_hd sky130_fd_sc_hdll sky130_fd_sc_hs sky130_fd_sc_ms sky130_fd_sc_ls sky130_fd_sc_lp sky130_fd_sc_hvl
```

2. Primitive devices / analog

```
sky130_fd_pr
```

- 3. I/O cells sky130 fd io
- 4. 3rd-party libraries

```
sky130_ml_xx_hd
sky130_sram_macros
```

Understanding the SkyWater PDK

Libraries

primitive devices and models

MOSFET transistors (1.8V and 3.3–5.0V)
Bipolar transistors
Resistors
Capacitors
Diodes
Varactors

SkyWater SKY130 Installed Filesystem Structure

Open PDKs Project Filesystem Structure

cloned git repository

xschem/ spice/ mag/ openlane/ verilog/

A simple manual design flow

Schematic

xschem

netlist (SPICE format)

A simple manual design flow

Layout

Parameterized devices in magic

A simple manual design flow

Parameterized devices in magic

A simple manual design flow

Parameterized devices in magic

parameter selection window

A simple manual design flow

Example initial layout of devices in magic, imported from schematic

A simple manual design flow

Analog example layout work in progress in magic

A simple manual design flow

Analog design flow summary

- 1. xschem Create a schematic, netlist extraction
- 2. ngspice Simulation validation
- 3. magic Layout, netlist extraction, DRC validation
- 4. netgen LVS validation