DIGITAL AUDIO MOSFET

IRF7665S2TRPbFIRF7665S2TR1PbF

Features

- Key parameters optimized for Class-D audio amplifier applications
- Low R_{DS(on)} for improved efficiency
- Low Qq for better THD and improved efficiency
- Low Q_{rr} for better THD and lower EMI
- Low package stray inductance for reduced ringing and lower FMI
- \bullet Can deliver up to 100W per channel into 8Ω with no heatsink 0
- Dual sided cooling compatible
- Compatible with existing surface mount technologies
- RoHS compliant containing no lead or bromide
- Lead-Free (Qualified up to 260°C Reflow)
- Industrial Qualified

Key Parameters						
V_{DS}	100	V				
$R_{DS(on)}$ typ. @ $V_{GS} = 10V$	51	mΩ				
Q _g typ.	8.3	nC				
R _{G(int)} typ.	3.5	Ω				

Applicable DirectFET Outline and Substrate Outline (see p. 6, 7 for details)

SB SC		M2	M4	L4	L6	L8	
92					-		

Description

This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, gate charge, body-diode reverse recovery and internal gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD, and EMI.

The IRF7665S2TR/TR1PbF device utilizes DirectFET™ packaging technology. DirectFET™ packaging technology offers lower parasitic inductance and resistance when compared to conventional wirebonded SOIC packaging. Lower inductance improves EMI performance by reducing the voltage ringing that accompanies fast current transients. The DirectFET™ package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing method and processes. The DirectFET™ package also allows dual sided cooling to maximize thermal transfer in power systems, improving thermal resistance and power dissipation. These features combine to make this MOSFET a highly efficient, robust and reliable device for Class-D audio amplifier applications.

Absolute Maximum Ratings

·	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	100	V
V_{GS}	Gate-to-Source Voltage	± 20	v
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	14.4	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	10.2	A
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	4.1	^
I _{DM}	Pulsed Drain Current ①	58	
P _D @T _C = 25°C	Maximum Power Dissipation	30	
P _D @T _C = 100°C	Power Dissipation ®	15	W
P _D @T _A = 25°C	Power Dissipation ®	2.4	
	Linear Derating Factor ®	0.2	W/°C
T_J	Operating Junction and	-55 to + 175	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

The final free feature						
	Parameter	Тур.	Max.	Units		
$R_{\theta JA}$	Junction-to-Ambient ③		63			
$R_{\theta JA}$	Junction-to-Ambient ©	12.5				
$R_{\theta JA}$	Junction-to-Ambient ⑦	20		°C/W		
R _{0J-Can}	Junction-to-Can ® ®		5.0			
R _{e,J-PCB}	Junction-to-PCB Mounted	1.4				

Static @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.10		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		51	62	mΩ	V _{GS} = 10V, I _D = 8.9A ⊕
$V_{GS(th)}$	Gate Threshold Voltage	3.0	4.0	5.0	V	$V_{DS} = V_{GS}$, $I_D = 25\mu A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	V _{DS} = 100V, V _{GS} = 0V
				250		$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
R _{G(int)}	Internal Gate Resistance		3.5	5.0	Ω	

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	8.8			S	$V_{DS} = 25V, I_D = 8.9A$
Q_g	Total Gate Charge		8.3	13		$V_{DS} = 50V$
Q _{gs1}	Pre-Vth Gate-to-Source Charge		1.9			$V_{GS} = 10V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		0.77			$I_D = 8.9A$
Q_{gd}	Gate-to-Drain Charge		3.2		nC	See Fig. 6 and 17
Q_godr	Gate Charge Overdrive		2.4			
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		4.0			
t _{d(on)}	Turn-On Delay Time		3.8			$V_{DD} = 50V$
t _r	Rise Time		6.4			$I_{D} = 8.9A$
t _{d(off)}	Turn-Off Delay Time		7.1		ns	$R_G = 6.8\Omega$
t _f	Fall Time		3.6			V _{GS} = 10V ④
C _{iss}	Input Capacitance	_	515			$V_{GS} = 0V$
C _{oss}	Output Capacitance		112			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		30		рF	f = 1.0MHz
C _{oss}	Output Capacitance		533			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		67			$V_{GS} = 0V, V_{DS} = 80V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		115			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 80V $

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		37	mJ
I _{AR}	Avalanche Current ①		8.9	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			14.4		MOSFET symbol
	(Body Diode)			14.4	Α	showing the
I _{SM}	Pulsed Source Current			58		integral reverse
	(Body Diode) ①			56		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 8.9A$, $V_{GS} = 0V$ @
t _{rr}	Reverse Recovery Time		33		ns	$T_J = 25$ °C, $I_F = 8.9$ A, $V_{DD} = 25$ V
Q _{rr}	Reverse Recovery Charge		38		nC	di/dt = 100A/μs ④

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- 3 Surface mounted on 1 in. square Cu board.
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- © Used double sided cooling , mounting pad.
- Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- T_C measured with thermal couple mounted to top (Drain) of part.
- $\ \, {\rm \ \, }$ ${\rm \ \, }$ ${\rm \ \, R}_{\theta}$ is measured at T_J of approximately 90°C.
- @ Based on testing done using a typical device & evaluation board at Vbus=±45V, f_SW=400KHz, and T_A=25°C. The delta case temperature ΔT_C is 55°C.

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

V_{DS}, Drain-to-Source Voltage (V) **Fig 5.** Typical Capacitance vs.Drain-to-Source Voltage www.irf.com

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage

3

International IOR Rectifier

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 3

International

IOR Rectifier

Fig 12. On-Resistance vs. Gate Voltage

Fig 15a. Unclamped Inductive Test Circuit

Fig 15b. Unclamped Inductive Waveforms

Fig 16a. Switching Time Test Circuit www.irf.com

IRF7665S2TR/TR1PbF

Fig 13. On-Resistance vs. Drain Current

Fig 14. Maximum Avalanche Energy vs. Drain Current

Fig 16b. Switching Time Waveforms

Fig 17a. Gate Charge Test Circuit

Fig 17b. Gate Charge Waveform

Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs

DirectFET Auto™ Board Footprint, SB (Small Size Can).

Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations

DirectFET Auto™ Outline Dimension, SB Outline (Small Size Can).

Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations

DirectFET™ Part Marking

DirectFET™ Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts.IRF7665S2PbF

REEL DIMENSIONS								
S.	STANDARD OPTION (QTY 4800)							
	ME	TRIC	IMP	ERIAL				
CODE	MIN	MAX	MIN	MAX				
Α	330.0	N.C	12.992	N.C				
В	20.2	N.C	0.795	N.C				
С	12.8	13.2	0.504	0.520				
D	1.5	N.C	0.059	N.C				
Е	100.0	N.C	3.937	N.C				
F	N.C	18.4	N.C	0.724				
G	12.4	14.4	0.488	0.567				
Н	11.9	15.4	0.469	0.606				

NOTE: CONTROLLING DIMENSIONS IN MM

DIMENSIONS						
	ME	TRIC	IMPERIAL			
CODE	MIN	MAX	MIN	MAX		
Α	7.90	8.10	0.311	0.319		
В	3.90	4.10	0.154	0.161		
С	11.90	12.30	0.469	0.484		
D	5.45	5.55	0.215	0.219		
Е	4.00	4.20	0.158	0.165		
F	5.00	5.20	0.197	0.205		
G	1.50	N.C	0.059	N.C		
Н	1.50	1.60	0.059	0.063		

Data and specifications subject to change without notice.

This product has been designed and qualified to MSL1 rating for the Industrial market.

Additional storage requirement details for DirectFET products can be found in application note AN1035 on IR's Web site.

Qualification Standards can be found on IR's Web site.

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.