

Description

The VSM90N06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

• V_{DS} =69V, I_D =90A $R_{DS(ON)} < 7.0$ mΩ @ V_{GS} =10V (Typ:5.7mΩ)

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM90N06-TC	VSM90N06	TO-220C	-	-	-

Absolute Maximum Ratings (T_c=25 ℃ unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	69	V
Gate-Source Voltage	V _{GS}	±20	V
Drain Current-Continuous	I _D	90	А
Drain Current-Continuous(TC=100℃)	I _{D (100℃)}	62	Α
Pulsed Drain Current	I _{DM}	310	Α
Maximum Power Dissipation	P _D	160	W
Derating factor		1.1	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	450	mJ
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-55 To 175	$^{\circ}$

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{0JC}	0.9	°C/W
Thermal Resistance,Junction-to-Ambient ^(Note 2)	R _{θJA}	60	°C/W

Electrical Characteristics (T_C=25℃unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	•		•	•		•
Drain-Source Breakdown Voltage	B _{VDSS}	V _{GS} =0V I _D =250μA	70	73	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =69V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	•		•	•		•
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =VGS,I _D =250μA	2	2.9	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =30A	-	5.7	7.0	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =100A	25	-	-	S
Dynamic Characteristics (Note4)				•		
Input Capacitance	C _{lss}	V _{DS} =25V,V _{GS} =0V,	-	3400	-	PF
Output Capacitance	C _{oss}		-	310	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	221	-	PF
Switching Characteristics (Note 4)	•		•	•		•
Turn-on Delay Time	t _{d(on)}		-	15	-	nS
Turn-on Rise Time	t _r	V_{DD} =30 V , I_{D} =2 A , R_{L} =15 Ω	-	11	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =2.5 Ω	-	52	-	nS
Turn-Off Fall Time	t _f		-	13	-	nS
Total Gate Charge	Qg	V _{DS} =30V,I _D =30A,	-	94	-	nC
Gate-Source Charge	Q _{gs}		-	16	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	24	-	nC
Drain-Source Diode Characteristics	•		•			•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =90A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	90	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F =90A	-	33		nS
Reverse Recovery Charge	Q _{rr}	di/dt = 100A/µs ^(Note3)	-	54		nC
Forward Turn-On Time	ton	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition:Tj=25 $^{\circ}\text{C},V_{DD}\text{=}35V,V_{G}\text{=}10V,L\text{=}0.5\text{mH},Rg\text{=}25\Omega$

Test Circuit

1) EAS test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 Current vs Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance