

Documento de Casos de Uso Core-MUSA

Universidade Estadual de Feira de Santana

Build 3

Histórico de Revisões

Date	Descrição	Autor(s)
	Concepção do documento	• bezourokq;
08/10/2014		• wsbittencourt;
		• fmbboaventura;
	Build 2: Novo modelo de caso de uso	• wsbittencourt;
13/10/2014		• jadsonfirmo;
		• fmbboaventura;
16/10/2014	Build 3: Novo modelo de caso de uso	wsbittencourt;
23/10/2014	Revisão	• jadsonfirmo;

SUMÁRIO

Introdu		odução	3
	1.1	Objetivo	3
	1.2	Visão Geral do Documento	3
	1.3	Representação Simbólica	3
	1.4	Definições, Acrônimos e Abreviações	4
2	Ato	res do Sistema	4
3	Cas	os de Usos	4
	3.1	[UC 001] Execução de instruções	4
		3.1.1 Fluxo Principal de Eventos	5
	3.2	[UC 002] BRFL	5
		3.2.1 Fluxo Principal de Eventos	6
	3.3	[UC 003] Instrução LW	6
		3.3.1 Fluxo Principal de Eventos	7
	3.4	[UC 004] Instrução SW	8
		3.4.1 Fluxo Principal de Eventos	8

1. Introdução

Este documento tem como objetivo a especificação dos casos de uso do projeto Core Musa (concepção de um processador simples de propósito geral). O documento detalha cada caso de uso indicando os atores, os eventos (ações) e as condições de cada caso, além dos diagramas de casos de uso.

1.1. Objetivo

1.2. Visão Geral do Documento

- Sessão 2: Lista todos os possíveis atores do sistema.
- Sessão 3: Relata a lista dos casos de uso do projeto.

1.3. Representação Simbólica

A Figura ?? ilustra a simbologia utilizada para representar operações que devem ser realizadas pelo sistema. A Figura 2 ilustra as duas simbologias utilizadas para representar os Atores do sistema. Um ator, dentro do escopo desta descrição, pode ser identificado como um módulo *top level*, ou como um elemento de entrada e saída (botões, sensores, displays, etc).

Figura 1: Exemplo de Caso de Uso.

A simbologia usual para representação de um Ator é apresentada na Figura 2a, no entanto, para representar módulos incorporados que outrora deveriam utilizar a mesma simbologia, utiliza-se a representação ilustrada nas Figuras 2b e 2c, definida por convenção. Este elemento, em geral, está associado aos módulos do sistema, ou IP-cores de terceiros incorporados ao mesmo. Esta simbologia ainda foi divida, tendo em vista representar instâncias únicas (Figura 2c), ou múltiplas (Figura 2b) de um determinado componente.

Figura 2: Simbologia utilizada na implementação dos Casos de Uso.

O projetista responsável por interpretar os diagramas não deve confundir-se no momento de interpretar as simbologias de atores. A representação alternativa, não implica que o módulo será instanciado no subsistema em questão, mas sim que os recursos providos por este *core* são necessários para garantir o seu funcionamento.

1.4. Definições, Acrônimos e Abreviações

Termo	Descrição
UC	Caso de Uso
SB	Sub-fluxo
FS	Fluxo Secundário
NFR	Requisito Não Funcional
FR	Requisito Funcional
ВТ	Botão Direcional

2. Atores do Sistema

Controlador - Unidade que controla a execução das operações.

ALU - Unidade Lógica e Aritmética.

3. Casos de Usos

Esta sessão apresenta o conjunto de UC realizados para a implementação do projeto *Core MUSA* (Núcleo de processamento de instruções do processador de propósito geral MUSA). As sessões a seguir foram divididas e nomeada utilizando a nomenclatura abreviada [UC (NÚMERO DO UC)] seguido de uma breve descrição em forma de título.

3.1. [UC 001] Execução de instruções

O controlador é responsável por decodificar instrução, solicitar operações na ALU e por fim garantir o armazenamento dos resultados de operações no banco registradores.

Atores

Controlador – Unidade que controla a execução das operações.

ALU - Unidade Lógica e Aritmética.

Pré-condições

- Atender aos requisitos funcionais [FR01 e FR02];
- Leitura do PC;
- Realizar operações lógicas e aritméticas na ALU;

Pós-condições

• Os resultados devem ser expressos nos registradores.

Diagrama de Caso de Uso

3.1.1. Fluxo Principal de Eventos

- P1. Acesso ao PC;
- P2. Leitura da instrução apontada por PC;
- P3. Acesso aos respectivos registradores;
- P4. Executa operações;
- P5. Atualiza registradores;
- P6. Atualiza valor do PC;

3.2. [UC 002] BRFL

O Processador tem a capacidade de fazer desvios condicionais através da utilização das flags do sistema.

Atores

Controlador - Unidade que controla a execução das operações.

ALU - Unidade Lógica e Aritmética.

Pré-condições

- Atender ao requisito funcional [FR14];
- Leitura do PC;
- Realizar operações lógicas na ALU;

Pós-condições

• Alteração do PC caso verdadeira.

Diagrama de Caso de Uso

3.2.1. Fluxo Principal de Eventos

- P1. Acesso ao PC;
- P2. Leitura da instrução apontada por PC;
- P3. Identificação e leitura da Flag ativa;
- P4. Executa operação Lógica;
- P5. Atualiza valor do PC;

3.3. [UC 003] Instrução LW

O processador é capaz de carregar dados da memória para o Banco de registradores.

Atores

Controlador – Unidade que controla a execução das operações.

ALU - Unidade Lógica e Aritmética.

Pré-condições

- · Ler instrução da Memória de instrução;
- A instrução ter "opcode"específico para instrução LW;

Pós-condições

• O dado deverá ser salvo no registrador de escrita (RD) do banco de registradores;

Diagrama de Caso de Uso

3.3.1. Fluxo Principal de Eventos

- P1. Decodificação da instrução lida na Memória de Programa;
- P2. Acesso aos respectivos registradores;
- P3. Leitura do endereço base, a partir do registrador RT;
- P4. Extensão do valor de 16 bits lido na instrução para 32 bits;
- **P5.** Operação de soma com os dados de 32 bits, dado lido no registrador, com o valor de 16 bits extendido para 32 bits;
- **P6.** Resultado da operação será lido pela memória de dados, que servirá como endereço de memória para ler o dado;

P7. O dado será enviado para o banco de registradores, e o dado será escrito no registrador de escrita RD;

3.4. [UC 004] Instrução SW

O processador é capaz de escrever dados na memória.

Atores

Controlador - Unidade que controla a execução das operações.

ALU - Unidade Lógica e Aritmética.

Pré-condições

- Ler instrução da Memória de instrução;
- A instrução ter opcode especifico para instrução SW;

Pós-condições

• O dado deverá ser escrito na memória de dados.

Diagrama de Caso de Uso

3.4.1. Fluxo Principal de Eventos

- P1. Decodificação da instrução lida na Memória de Programa;
- P2. Acesso aos respectivos registradores;
- P3. Leitura do endereço base, a partir do registrador RT;

- P4. Leitura do dado a ser escrito no registrador RS;
- P5. Extensão do valor de 16 bits lido na instrução para 32 bits;
- **P6.** Operação de soma com os dados de 32 bits com os seguintes valores, endereço lido do registrador RT e valor 32 bits extendido;
- P7. Resultado da operação será lido pela Memória de Dados, que servirá como endereço de memória para escrever o dado.
- P8. O dado será escrito na Memória de Dados.