重庆大学

学生实验报告

实验课程名称_			名称	数学实验				-
开课实验室			室	DS1407				
学				<u>计算机学院</u> 年级 计卓2班,计科2班				
				文红兵				
学	生	姓	名	张奎元	_学	号_	20214358	_
学	生	姓	名	高志朋	_学	号_	20214141	
开	课	时	间	至至2023	_学年	第 <u>:</u>	二_学期	

总成绩

数统学院制

开课学院、实验室: DS1407 实验时间: 2023 年 4月 9日

课程	数学实验	实验	 :项目	回归模型		实验	项目多	と型	
名称	数于关视 	名	称	四归佚主	验证	演示	综合	设计	其他
指导	肖剑	成	绩				4		
教师									

题目

汽车销售商认为汽车销售量与汽油价格、贷款利率有关,两种类型汽车(普通型和豪华型)18个月的调查资料如下表,其中 y₁ 是普通型汽车销售量(千辆), y₂ 是豪华型汽车销售量(千辆), x₁ 是汽油价格(美元/加仑), x₂ 是贷款利率(%)

序号	<i>y</i> ,	y ₂	*1	x_i
1	22. 1	7. 2	1.89	6. 1
2	15.4	5. 4	1.94	6. 2
			1	1/15
18	44.3	15.6	1. 68	2./3

(1) 对普通型和豪华型汽车分别建立如下模型:

$$y_1 = \beta_0^{(1)} + \beta_1^{(1)} x_1 + \beta_2^{(1)} x_2, \quad y_2 = \beta_0^{(2)} + \beta_1^{(2)} x_1 + \beta_2^{(2)} x_2$$

给出 β 的估计值和置信区间,决定系数 R^2 ,F值及剩余方差等.

- (2) 用 x_1 = 0, 1 表示汽车类型,建立统一模型: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$,给出 β 的估计值和置信区间,决定系数 R^2 , F 值及剩余方差等.以 x_3 = 0, 1 代入统一模型,将结果与(1)的两个模型的结果比较,解释二者的区别.
- (3) 对统一模型就每种类型汽车分别作 x_1 和 x_2 与残差的散点图,有什么现象,说明模型有何缺陷?
 - (4) 对统一模型增加二次项和交互项,考察结果有什么改进.

完整数据如下表:

序号	<i>y</i> ₁	<i>y</i> ₂	x 1	x 2
1	22.1	7.2	1.89	6.1
2	15.4	5.4	1.94	6.2
3	11.7	7.6	1.95	6.3
4	10.3	2.5	1.82	8.2
5	11.4	2.4	1.85	9.8
6	7.5	1.7	1.78	10.3
7	13	4.3	1.76	10.5
8	12.8	3.7	1.76	8.7
9	14.6	3.9	1.75	7.4
10	18.9	7	1.74	6.9
11	19.3	6.8	1.7	5.2
12	30.1	10.1	1.7	4.9
13	28.2	9.4	1.68	4.3
14	25.6	7.9	1.6	3.7
15	37.5	14.1	1.61	3.6
16	36.1	14.5	1.64	3.1
17	39.8	14.9	1.67	1.8
18	44.3	15.6	1.68	2.3

第一小问

模型 1.1

$$y_1 = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

程序 1.1

```
clc; clear;
y1=[22.1,15.4,11.7,10.3,11.4,7.5,13,12.8,14.6,18.9,19.3,30.1,28.2,25.6,37.5,36.1,39.8,44.3]';
y2=[7.2,5.4,7.6,2.5,2.4,1.7,4.3,3.7,3.9,7,6.8,10.1,9.4,7.9,14.1,14.5,14.9,15.6]';
x1=[1.89,1.94,1.95,1.82,1.85,1.78,1.76,1.76,1.75,1.74,1.7,1.7,1.68,1.6,1.61,1.64,1.67,1.68]';
x2=[6.1,6.2,6.3,8.2,9.8,10.3,10.5,8.7,7.4,6.9,5.2,4.9,4.3,3.7,3.6,3.1,1.8,2.3]';
X = [ones(size(x1)) x1 x2];
[b,bint,r,rint,stats] = regress(y1,X);
rcoplot(r,rint); % 残差图
```

%去除反常数据后代码

```
clc; clear;
y1=[22.1,15.4,11.7,10.3,11.4,7.5,13,12.8,14.6,18.9,30.1,28.2,37.5,36.1,39.8]';
x1=[1.89,1.94,1.95,1.82,1.85,1.78,1.76,1.76,1.75,1.74,1.7,1.68,1.61,1.64,1.67]';
x2=[6.1,6.2,6.3,8.2,9.8,10.3,10.5,8.7,7.4,6.9,4.9,4.3,3.6,3.1,1.8]';
X = [ones(size(x1)) x1 x2];
[b,bint,r,rint,stats] = regress(y1,X);
rcoplot(r,rint); % 残差图
```

结果 1.1

原始数据

参数估计结果

	估计值	置信区间
β1	90.1814	[46.1971 ,134.1656]
β_2	-27.6588	[-54.5542 ,-0.7634]
β3	-3.2283	[-4.2747 ,-2.1819]

显著性分析

	估计值
R ²	0.8593
F	45.7992
σ^2	20.7910
Р	0.0000

残差图

<mark>剔除反常数据后</mark>

参数估计结果

	估计值	置信区间
eta_1	107.5601	[75.3160,139.8042]
β ₂	-37.9283	[-57.2842,-18.5723]
β ₃	-3.0314	[-3.7862,-2.2767]

显著性分析

	估计值
R ²	0.9334
F	84.0758
σ^2	9.2746
Р	0.0000

残差图

分析 1.1

通过对已知数据进行线性回归分析,对参数进行估计得到的结果如上述表格所示 其中 R 方的值为 0.8593,解释程度较高,F 估计值为 45.7992,远大于所设定置信度下的目标值,p 为 0,模型与被解释变量相关性较大。且参数置信区间中不含零点,因此该回归模型合适。

模型 1.2

$$y_2 = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

程序 1.2

```
clc; clear ;%导入数据

y2=[7.2,5.4,7.6,2.5,2.4,1.7,4.3,3.7,3.9,7,6.8,10.1,9.4,7.9,14.1,14.5,14.9,15.6]';
x1=[1.89,1.94,1.95,1.82,1.85,1.78,1.76,1.76,1.75,1.74,1.7,1.7,1.68,1.6,1.61,1.64,1.67,1.68]';
x2=[6.1,6.2,6.3,8.2,9.8,10.3,10.5,8.7,7.4,6.9,5.2,4.9,4.3,3.7,3.6,3.1,1.8,2.3]';
X = [ones(size(x1)) x1 x2];
[b,bint,r,rint,stats] = regress(y2,X);
rcoplot(r,rint); % 残差图
```

```
% 剔除反常数据后
clc; clear;
y2=[7.2,5.4,7.6,2.5,2.4,1.7,3.7,3.9,7,10.1,9.4,14.
1,14.5,14.9,15.6]';
x1=[1.89,1.94,1.95,1.82,1.85,1.78,1.76,1.75,1.74,1
.7,1.68,1.61,1.64,1.67,1.68]';
x2=[6.1,6.2,6.3,8.2,9.8,10.3,8.7,7.4,6.9,4.9,4.3,3
.6,3.1,1.8,2.3]';
X = [ones(size(x1)) x1 x2];
[b,bint,r,rint,stats] = regress(y2,X);
rcoplot(r,rint); % 残差图
```

结果 1.2

原始数据

参数估计

	估计值	置信区间				
β_1	24.5471	[5.9501,43.1740]				
β2	-4.6285	[-16.0184,6.7615]				
β3	-1.4360	[-1.8792,-0.9929]				

显著性分析

	估计值
R ²	0.8402
F	39.4474
σ^2	3.7288
Р	0.0000

残差图

10

个案编号

12

14

16

18

<mark>剔除反常数据后</mark>

2

参数估计结果:

	估计值	置信区间			
β1	29.7583	[16.2864,43.2303]			
β ₂	-6.7738	[-14.9774 ,1.4299]			
β3	-1.6367	[-1.9680 ,-1.3054]			

6

显著性分析结果:

	估计值
R ²	0.9450
F	103.1152
σ^2	1.5413
Р	0.0000

残差图:

分析 1.2

通过对已知数据进行线性回归分析,对参数进行估计得到的结果如上述表格所示

其中 R 方的值为 0.8402,解释程度较高, F 估计值为 39.4474, 远大于所设定置信度下的目标值, p 为 0, 模型与被解释变量相关性较大。且参数置信区间中不含零点, 因此该回归模型合适。

第二小问

模型 2

$$y_2 = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

程序2

```
clc ; clear ;
n = 18;
%开始插入数据
y=[22.1,15.4,11.7,10.3,11.4,7.5,13,12.8,14.6,18.9,19.3,3]
0.1,28.2,25.6,37.5,36.1,39.8,44.3,7.2,5.4,7.6,2.5,2.4,1.
7,4.3,3.7,3.9,7,6.8,10.1,9.4,7.9,14.1,14.5,14.9,15.6]';
x1 =
[1.89, 1.94, 1.95, 1.82, 1.85, 1.78, 1.76, 1.76, 1.75, 1.74, 1.7, 1.7]
.7,1.68,1.6,1.61,1.64,1.67,1.68,1.89,1.94,1.95,1.82,1.85
,1.78,1.76,1.76,1.75,1.74,1.7,1.7,1.68,1.6,1.61,1.64,1.6
7,1.68]';
x2 =
[6.1,6.2,6.3,8.2,9.8,10.3,10.5,8.7,7.4,6.9,5.2,4.9,4.3,3]
.7,3.6,3.1,1.8,2.3,6.1,6.2,6.3,8.2,9.8,10.3,10.5,8.7,7.4
,6.9,5.2,4.9,4.3,3.7,3.6,3.1,1.8,2.3]';
x3 = [zeros(1,n) ones(1,n)]';
X = [ones(size(x1)) x1 x2 x3];
[b,bint,r,rint,stats] = regress(y,X);
rcoplot(r,rint);% 残差图
```

结果 2

参数估计:

	估计值	置信区间
eta_1	64.5753	[33.5007,95.6499]
β2	-16.1436	[-35.1193 ,2.8320]
β3	-2.3322	[-3.0705 ,-1.5939]
β4	-14.4222	[-17.6546,-11.1898]

显著性分析:

	估计值
R ²	0.8366
F	54.6111

σ^2	22.6642
Р	0.0000

残差图

残差个案次序图 20 15 10 5 残差 -5 -10 -15 5 10 15 20 25 30 35 个案编号

分析 2

显著性分析: R 方的值为 0.8366,解释程度较高,F 估计值为 54.6111,远大于所设定置信度下的目标值,p 为 0,模型与被解释变量相关性较大。但参数置信区间中 x2 参数区间中含有零点,这也为后面对交互项的分析留下原因,但是总体而言该回归模型相对合适。

加入 x3 变量后,线性回归得到的结果与原独立模型下结果并不一致。统一模型中的参数估计接近原独立模型中参数的平均值。分析原因如下

- 1、基于分析问题的不同,独立模型使用数据集中样本数为18,统一模型数据集中样本数则为36,且样本维度不同,因此结果会有较大的差异。
- 2、回归分析的原理是基于最小的误差平方和,从宏观上来看统一模型所用的正是两个独立模型的平均 式,因此 x1 与 x2 的系数在统一模型中会相互接近。
- 3、回归分析的结果本身是一个随机变量,因此在自变量相同的情况下,问题不同,所得到的模型就不会 完全相同。

第三小问

程序3

```
clc; clear ;
n = 18;
%数据的导入
y=[22.1,15.4,11.7,10.3,11.4,7.5,13,12.8,14.6,18.9,19.3,30.1,28.
2, 25.6, 37.5, 36.1, 39.8, 44.3, 7.2, 5.4, 7.6, 2.5, 2.4, 1.7, 4.3, 3.7, 3.9,
7,6.8,10.1,9.4,7.9,14.1,14.5,14.9,15.6]';
x1 =
[1.89, 1.94, 1.95, 1.82, 1.85, 1.78, 1.76, 1.76, 1.75, 1.74, 1.7, 1.7, 1.68]
,1.6,1.61,1.64,1.67,1.68,1.89,1.94,1.95,1.82,1.85,1.78,1.76,1.7
6,1.75,1.74,1.7,1.7,1.68,1.6,1.61,1.64,1.67,1.68];
x2 =
[6.1,6.2,6.3,8.2,9.8,10.3,10.5,8.7,7.4,6.9,5.2,4.9,4.3,3.7,3.6,
3.1,1.8,2.3,6.1,6.2,6.3,8.2,9.8,10.3,10.5,8.7,7.4,6.9,5.2,4.9,4
.3,3.7,3.6,3.1,1.8,2.3]';
x3 = [zeros(1,n) ones(1,n)]';
X = [ones(size(x1)) x1 x2 x3];
[b,bint,r,rint,stats] = regress(y,X);
figure(1);%普通汽车残差图像
title('普通汽车');
subplot(1,2,1); z = 0 * x1;
plot(x1(1:18), r(1:18), '+', x1, z, 'LineWidth', 1.5);
xlabel('x1'); ylabel('r');
subplot(1,2,2);
plot(x2(1:18), r(1:18), '+', x2, z, 'LineWidth', 1.5);
xlabel('x2'); ylabel('r');
figure(2);%豪华汽车残差图像
title('豪华汽车');
subplot(1,2,1) ; z = 0 * x1 ;
plot(x1(19:36), r(19:36), '+', x1, z, 'LineWidth', 1.5);
xlabel('x1'); ylabel('r');
subplot(1,2,2);
plot(x2(19:36), r(19:36), '+', x2, z, 'LineWidth', 1.5);
xlabel('x2'); ylabel('r');
```


普通车残差图像:

豪华车残差图像:

分析 3

理想情况下的残差分析应该服从均值为零的同方差正态分布。残差点应该比较均匀的分布在 y=0 直线两侧,且数值接近 0 的点应该占据多数。而得到的独立模型结果却与理想假设差别较大。利用统一模型做出的结果同样不够理想,说明原假设 x1 与 x2 独立对 y 作用是不合适的,两个变量之间存在相互作用,且在 x1 与 x2 固定的情况下,x3 取值的不同也会得到不一样的残差结果,这同样说明汽车类型对油价,贷款利率等有相互作用。

第四小问

模型 4

$$y = -1.099x_1 - 5.8579x_2 - 10.5396x_3 + 5.6288x_2x_3 + 3.0815x_2^2$$

程序 4

```
clc; clear;
n = 18;
y =
[22.1,15.4,11.7,10.3,11.4,7.5,13,12.8,14.6,18.9,19.3,30.1,
28.2, 25.6, 37.5, 36.1, 39.8, 44.3, 7.2, 5.4, 7.6, 2.5, 2.4, 1.7, 4.3,
3.7,3.9,7,6.8,10.1,9.4,7.9,14.1,14.5,14.9,15.6];
x1 =
[1.89, 1.94, 1.95, 1.82, 1.85, 1.78, 1.76, 1.76, 1.75, 1.74, 1.7, 1.7]
,1.68,1.6,1.61,1.64,1.67,1.68,1.89,1.94,1.95,1.82,1.85,1.7
8,1.76,1.76,1.75,1.74,1.7,1.7,1.68,1.6,1.61,1.64,1.67,1.68
]';
x2 =
[6.1,6.2,6.3,8.2,9.8,10.3,10.5,8.7,7.4,6.9,5.2,4.9,4.3,3.7
,3.6,3.1,1.8,2.3,6.1,6.2,6.3,8.2,9.8,10.3,10.5,8.7,7.4,6.9
,5.2,4.9,4.3,3.7,3.6,3.1,1.8,2.3]';
x3 = [zeros(1,n) ones(1,n)]';
x4 = x1 .* x2 ;
x5 = x1 .* x3 ;
x6 = x2 .* x3 ;
x7 = x1 .^2;
x8 = x2 .^2 ;
X = [x1 \ x2 \ x3 \ x4 \ x5 \ x6 \ x7 \ x8];
stepwise(X, y, [1,2,3]) % [1,2,3]表示 x1 x2 x3 均保留在模型中
```

结果 4

分析 4

在保留 x1 x2 x3 的情况下通过调整变量的加入和清除使得 F 的值变大, p 变小以得到非劣解的情况下最终得到的回归方程是: $y=-1.099x_1-5.8579x_2-10.5396x_3+5.6288x_2x_3+3.0815x_2^2$

相比于没有加入交互项和二次项后 F 值为 81.1202, p 值为 0, 相比于独立模型和原统一模型均有所优化, 方差减小, 模型的精度得以显著提高。因此对交互项和二次项的分析和调整是有必要的。