

Electron efficiencies at the ATLAS detector.

Search for flavor-changing neutral currents in t->Hq

(q=u,c) decays with the ATLAS detector

Grigore Tarna

Supervisors: Calin Alexa(IFIN-HH), Pascal Pralavorio(CPPM)

Introduction

- Joint PhD 2016-2019: University of Bucharest and Aix-Marseille University
- Labs: IFIN-HH (DFPE) and CPPM
- ATLAS collaboration (~3000 physicists, 183 institutions, 38 countries)
- Become ATLAS author -> authorship qualification task: "Electron reconstruction efficiency measurement with $Z \rightarrow ee$ Tag and Probe method"
- Physics analysis for the thesis:
 "Search for flavor-changing neutral currents in t->Hq (q=u,c) decays with the ATLAS detector"

LHC and ATLAS

- The Large Hadron Collider (LHC):
 - proton-proton accelerator, $\sqrt{s} = 14^{**}$ TeV
- Linac2 \rightarrow Booster \rightarrow PS \rightarrow SPS \rightarrow LHC

Run #	Period	\sqrt{s} [TeV]	integrated luminosity $[fb^{-1}]$
Run 1	2010-2011	7	6.1
	2012-2013	8	23.3
Run 2*	2015	13	4.22
	2016	13	38.9
	2017	13	50.4

^{*2015-2018,} integrated luminosity $\sim 100 \text{ fb}^{-1}$ **designed

LHC and ATLAS: Data taking in 2017

- A great year for the LHC:
 - Expected 45 fb^{-1} , delivered >50 fb^{-1}
 - Reached x2 designed luminosity
- My contribution to detector operation and Data Quality(DQ):
 - **7 weeks** of LAr DQ shifts
 - after a run ends, 48h for DQ assessment (calibration loop)
 - mask noise before the bulk of data is processed

- What is an electron in the ATLAS detector? (reconstruction level)
 - Track in Inner Detector

+

Shower in EMC

How well are electrons reconstructed?

- We want our simulations to reproduce detector performance as well as possible
- Electron reconstruction efficiency is measured in both Data and MC: $arepsilon_{reco}^{Data}$, $arepsilon_{reco}^{MC}$
- To take into account the differences a scale factor is introduced

$$sf = \frac{\varepsilon_{reco}^{Data}}{\varepsilon_{reco}^{MC}}$$
, such that $MC_{scaled} = sf \cdot MC$

- ε_{reco} uncertainty for precision measurements has non negligible impact (Ex: W/Z cross-section, W mass)

hadronic calorimeter

third layer

Tag and Probe Method

- Need an enriched, clean sample of electrons: $Z \rightarrow ee$
 - Signal: $Z \rightarrow ee$
 - Background: jets faking e, photon conversion, e from heavy flavor decay ...

- > Tight cuts
- > pT>25 GeV
- > Out of "crack" region $(1.37 < |\eta| < 1.52)$
- ➤ Mee in Z mass window
- > pT>15 GeV

- Only the "probes" used in the measurement
- Reco efficiency

$$\varepsilon_{reco} = \frac{N_{passTrackQ}}{N_{passTrackQ} + N_{failTrackQ} + N_{noTrack}}$$

 SFs are provided to physics analysis as "recommendations" by the Egamma CP group

Results: dependency on $E_T \times \eta$

MC16(red) vs MC17(blue)

- Each E_T bin contains 20 η bins [-2.47,2.47]
- High efficiency for both Data and MC
- Drop in efficiency in the "crack" region
- SFs generally close to 1 (within 2% for extreme cases)
- SF uncertainty typically at per-mile level (\sim 2% at low E_T)

Results: dependency on pileup

More than one p-p collision happens in the same bunch crossing → pileup

- Slight increase in efficiency with pileup (higher chance of random track-cluster match)
- Minimal dependency on pileup for the SFs

Electron reconstruction efficiency *Results:*

- Poster at EPS-HEP 2017 on "Electron identification with the ATLAS detector" (with proceedings)
- All previous results were presented at the Egamma workshop (5-9 Nov 2017)
- I am editor of Internal Note for the electron reconstruction efficiency part
 - **paper** in preparation
- important efforts were dedicated to a software transition (Athena rel20.7->rel21)

Qualified as ATLAS author as of 10 sept 2017!

Will continue to work on the topic

Isolation efficiency

- Some physics analysis with low cross-section suffer of significant non-prompt lepton background (ex. ttH→ multileptons)
- Cut based isolation not efficient enough -> multivariate analysis (MVA)

$$\varepsilon_{\text{total}} = \varepsilon_{\text{reconstruction}} \times \varepsilon_{\text{identification}} \times \varepsilon_{\text{isolation}} \times \varepsilon_{\text{trigger}}$$

- I adapted the official framework for efficiencies of measurements to measure the efficiency of this non-standard isolation working point
- Detailed talk given in the Egamma workshop
- CONF note already public and paper draft is in the final stage of approval inside ATLAS

Data / MC

Electron p_{T} [GeV]

$t\bar{t}H$ production

Important(!):

- precision measurement of Top Yukawa coupling (y_t) will allow to check if the Higgs particle is the SM one
- comparison with indirect measurements can give hints about New Physics

Process	ttH	ggF
σ(8 TeV) [pb]	0.13	19.3
σ(13 TeV)[pb]	0.51	43.9

ggF ~90% H production

The *signal strength* is measured:

$$\mu_{t\bar{t}H} = \frac{\sigma_m(pp \to t\bar{t}H)}{\sigma_{SM}(pp \to t\bar{t}H)}$$

The fit is performed on: $data = \mu \cdot signal + background$

$$y_t^2 \sim \mu_{t\bar{t}H}$$

Latest ttH results

2016:

- Cut and count
- 13.2 fb

Statistical significance: **1.6** σ

Statistical significance: **2.9** σ

Statistical significance: **4.2** σ

2017:

- MVAs based
- More channels
- 36.1 fb (x2.7)
- Evidence!

Hope to reach $\mathbf{5}\boldsymbol{\sigma}$ by end of Run 2

Flavor-changing neutral currents (FCNC)

 FCNC forbidden at tree level and strongly suppressed at higher order in SM

 $t \rightarrow Xq$, q=u,c and X neutral boson

Some beyond standard model (BSM) predict non-negligible branching ratios for top FCNC that could be probed at LHC

• In this analysis $(t \to Hq)$ we exploit the similarity of the final states with the ttH (multilepton) process and use the complex developments fully validated and approved for the ttH analysis

Flavor-changing neutral currents (FCNC)

Signal ttH vs top FCNC

$$t\bar{t}H \rightarrow 4W + 2b \rightarrow 6j$$
 (inc. 2b) +2 ℓ SS + E_T^{miss} or 4j (inc. 2b)+3 ℓ + E_T^{miss}

$$t\bar{t} \to WbHq \to 3W + b + q \to 4j$$
 (inc. 1b) $+2\ell SS + E_T^{miss}$ or $2j$ (inc. 1b) $+3\ell + E_T^{miss}$

- Backgrounds are the same
 - ttH becomes background for top FCNC search
- 95% CL Upper Limit on B(t→Hu)

- Pre-approval presentation for t->Hq FCNC analysis this Thursday
- Aim for publication with 36.1 fb (2015+2016 data)

Run 1 Simple ttHML reinterpretation H-> yy tHu*

0.54% 0.29% 0.20% ~0.15%

^{*} Preliminary results. Work in progress

Results summary

- Authorship qualification task completed successfully
- Paper for electron efficiencies in preparation
- CONF note publicly available and **paper** draft in final stage of final approval for $t\bar{t}H$ analysis
- Top FCNC analysis in good shape, aim for a paper until spring
- Poster at EPS-HEP2017 and talk at Egamma workshop
- More than 20 internal presentation in CERN groups

backup

SM

 The Standard Model – the best theory for particle physics up to date

scalar

fermion

coupling

- Yukawa coupling: $\mathcal{L}_{Yukawa}(\phi, \psi) = -y\bar{\psi}\phi\psi$
- t quark (heaviest fermion) \rightarrow largest coupling

• y_t direct measurement possible via ttH production

$$v_t = \frac{\sqrt{2}m_t}{v} \sim 1$$

Top and Higgs

Top quark:

- Discovered: 1995 (Tevatron)
- Mass: 173 GeV
- $\tau \approx 5 \cdot 10^{-25} \, s$
- Does not hadronize
- Decays to W+b (99.8%)

Higgs boson:

- Discovered: 2012 (CERN)
- Mass: 125 GeV
- $\tau \approx 1.6 \cdot 10^{-22} \, s$
- Decays directly to pairs of massive particle-antiparticle

Tag and Probe Method: Backgrounds

$$\varepsilon_{reco} = \frac{N_{pass}^{sig}}{N_{pass}^{sig} + N_{fail}^{sig}} = \frac{N^{QT} - B^{QT}}{(N^{QT} - B^{QT}) + (N^{NoQ} - B^{NoQ}) + (N^{NoT} - B^{NoT})}$$

Background *e* with track:

- Build template by inverting cuts and Iso
- Normalize template in signal free region

Background e with no track:

- 1. Fit the tag-probe invariant mass with a 3rd order polynomial
- 2. Fit only in side bands

Tag and Probe Method: systematic uncertainties

-Statistical uncertainty

Statistical uncertainty is calculated by error propagation

-Systematical uncertainty

Sources of systematic uncertainties:

- Background shape
- Background origin
- Signal contamination
- ...

- Tag identifications: 3
- Z mass window: 3
- Electron background template: 2
- Sideband for ey mass fit: 4

Total: 3x3x2x4 = 72 variations (for MC only 9)

Tag identification variations	Z mass peak windows	Electron background template	Sideband for ey mass fit
Tight LH]80, 100[GeV	Variation 1]70, 80[U]100, 110[GeV
Tight LH & TopoE _T cone40 < 5 GeV]75, 105[GeV	Variation 2]60, 80[U]100, 120[GeV
Medium LH & TopoE _⊤ cone40 < 5 GeV]85, 95[GeV]50, 80[U]100, 130[GeV
]55, 70[U]110, 125[GeV

Template	Cuts	p _T < 30 GeV	p _T >= 30 GeV
Variation 1	fail at least 2 loose+ + cuts		topoE _T cone40/p _T > 0.05 120 < m_{ee} < 250 GeV
Variation 2		$topoE_{T}^{cone30}/p_{T} > 0.02$ $60 < m_{ee} < 70 \text{ GeV}$	topoE _T ^{cone40} /p _T > 0.20 120 < m_{ee} < 250 GeV

Tag and Probe Method: Deliverables

- 2D maps with scale factors are delivered to the physics analyses (+ stat and syst uncertainties)

For each bin:

$$arepsilon^{centrVal} = rac{\sum_{i}^{N} arepsilon_{i}^{centrVal}}{N}$$

$$\Delta arepsilon^{stat} = rac{\sum_{i}^{N} arepsilon_{i}^{stat}}{N}$$

$$\Delta arepsilon^{syst} = \sqrt{rac{\sum_{i}^{N} \left(arepsilon_{i}^{stat} - arepsilon^{centrVal}
ight)^{2}}{N}}$$

In parallel, I am working on bringing improvements to the current methodology

Reco SF uncertainty (2017)

Two lepton same sign channel

• $t\bar{t}H$ final states depends on H decay

	Higgs boson decay mode			
Category	WW^*	au au	ZZ^*	Other
2ℓss	77%	17%	3%	3%

- low backgrounds and relatively well controlled
- high efficiency lepton triggering
- e low production $(1 \% \text{ of } t\bar{t}H, \sim 5 \text{ events}/fb^{-1})$

Signal signature:

- 2 leptons of same sign
- 6 jets in total
 - 2 b-jets
 - 4 non b-jets
- missing transverse energy (neutrinos are not detected)

up to date results: ICHEP 2016

The *signal strength* is measured:

$$\mu_{t\bar{t}H} = \frac{\sigma_m(pp \to t\bar{t}H)}{\sigma_{SM}(pp \to t\bar{t}H)}$$

The fit is performed on: $data = \mu \cdot signal + background$

Statistical significance: **1.6** σ

Statistical significance(13TeV): **2.9** σ