Package

March 25, 2019

Type Package										
Title What the Package Does (Title Case) Version 0.1.0 Author Who wrote it										
					Maintainer The package maintainer <yourself@somewhere.net></yourself@somewhere.net>					
					Description More about what it does (maybe more than one line) Use four spaces when indenting paragraphs within the Description.					
License What license is it und	er?									
Encoding UTF-8										
LazyData true										
find_lammax	d:									
Index	10									
	A R Package to estimate Local Markov Network for Count data with zero-inflated and overdispersion.									

Description

A R Package to estimate Local Markov Network for Count data with zero-inflated and overdispersion.

2 find_lammax

Details

Package: ZILGM
Type: Package
Version: 1.0

Date: 2019-03-25 License: GPL-2

Author(s)

Park Beomjin,

Maintainer: Park Beomjin

bbeomjin@gmail.com>

References

Network analysis for Count data with excess zero

Examples

library(devtools)
install_github(bbeomjin/ZILGM)
library(ZILGM)

find_lammax

Compute the maximum lambda

Description

Compute the maximum lambda

Usage

 $find_lammax(X)$

Arguments

Χ

A $n \times p$ data matrix.

Details

Zero-inflated local graphical model

Value

An S3 object with the following slots

lammax

a maximum lambda from data matrix

network_gen 3

Author(s)

Park Beomjin,

References

Network analysis for Count data with excess zero

Examples

Not yet

network_gen

Generate random graph structure

Description

Generate random graph structure

Usage

```
generate_network(node, prob)
```

Arguments

node The number of nodes to generate graph.

prob The probability of appearing edges.

Details

For simulated data

Value

networkmat

Adjacency matrix for random graph.

Author(s)

Park Beomjin,

References

Network analysis for Count data with excess zeros

See Also

zilgm

Examples

require(ZILGM)

4 zilgm

zilgm	Zero-inflated Local Graphical Model
O	J

Description

Zero-inflated Local Graphical Model

Usage

Arguments

٤	guments			
	X	A $n \times p$ data matrix, where n is the number of observations and p is the number of variables or nodes.		
	lambda	A sequence of regularization parameter to control a level of $l_{-}I$ -penalty.		
	nlambda	The number of regularization parameter.		
	family	Types of node-conditional distribution to be assumed among zero-inflated distributions.		
	update_type	Algorithm for estimating edge coefficients.		
	sym	Symmetrize the output graphs. If $sym = "AND"$, the edge between node i and node j is selected only when both node i and node j are selected as neighbors for each other. If $sym = "OR"$, the edge is selected when either node i or node j is selected as the neighbor for each other.		
	thresh	Threshold value for the estimated edge coefficients.		
	weights_mat	A $n \times p$ matrix containing weights for observations in each node		
	penalty_mat	A p x p matrix containing weights for each edge coefficients		

boot_num The number of iteration for StARS.

beta Threshold value on sparsity of the network.

lambda_min_ratio

do_boot

The smallest value for lambda, as a fraction of the *lambda*^max of the regular-

A logical. Whether to use Stability Apprach to Regularization Selection (StARS).

ization parameter.

nCores The number of cores to use for parallel computing.

Other arguments that can be passed to neighborhood selection function(zilgm_poisson, zilgm_neg

Details

Zero-inflated local graphical model

zilgm_negbin 5

Value

An S3 object with the following slots

network a list of $p \times p$ matrices of estimated networks along the regularization path. coef_network a array of $p \times p \times p$ nlambda of estimated edge coefficients matrix along the regu-

larization path.

lambda vector used for regularization path.

v vector of network variability measured for each regularization level.

opt_lambda The lambda that gives the optimal network.

Author(s)

Park Beomjin,

References

Network analysis for Count data with excess zero

Examples

Not yet

zilgm_negbin Neiborhood selection under the zero-inflated negative binomial distribution for Zero-inflated Local Graphical Model

Description

Zero-inflated negative binomial regression with l_1 -regularization.

Usage

Arguments

y A response y.
x A design matrix x.

lambda A regularization parameter to control a level of l_1 -penalty.

weights Weights vector for observations update_type Algorithm for estimating coefficients

penalty.factor Weights vector for coefficients of each variable.

thresh Threshold value for the estimated coefficients.

EM_tol Convergence tolerance for EM algorithm.

EM_iter Maximum number of EM algorithm iterations.

tol Convergence tolerance for coordinate descent.

maxit Maximum number of coordinate descent iterations.

fixed_theta A logical. Whether to estimate dispersion parameter theta.

6 zilgm_negbin2

Details

Zero-inflated local graphical model

Value

An S3 object with the following slots

beta Estimated coefficients vector.

theta Estimated dispersion parameter theta.

prob Estimated probability of structural zero.

pos_zero Indices of zero values.

iteration Iteration numbers until convergence.

 l_l -penalized negative log-likelihood value.

call The mathced call.

Author(s)

Park Beomjin,

References

Network analysis for Count data with excess zero

zilgm_negbin2 Neiborhood selection under the zero-inflated negative binomial II dis-

 $tribution\ for\ Zero\text{-}inflated\ Local\ Graphical\ Model$

Description

Zero-inflated negative binomial regression with l_1 -regularization.

Usage

Arguments

y A response y.
x A design matrix x.

lambda A regularization parameter to control a level of l_1 -penalty.

weights Weights vector for observations update_type Algorithm for estimating coefficients

penalty.factor Weights vector for coefficients of each variable.

thresh Threshold value for the estimated coefficients.

EM_tol Convergence tolerance for EM algorithm.

EM_iter Maximum number of EM algorithm iterations.

tol Convergence tolerance for coordinate descent.

maxit Maximum number of coordinate descent iterations.

fixed_sigma A logical. Whether to estimate dispersion parameter sigma.

zilgm_poisson 7

Details

Zero-inflated local graphical model

Value

An S3 object with the following slots

beta Estimated coefficients vector.

sigma Estimated dispersion parameter sigma.

prob Estimated probability of structural zero.

pos_zero Indices of zero values.

iteration Iteration numbers until convergence.

loglik l_l -penalized negative log-likelihood value.

call The mathced call.

Author(s)

Park Beomjin,

References

Network analysis for Count data with excess zero

Examples

Not yet.

zilgm_poisson	Neiborhood selection under the zero-inflated Poisson distribution for
	Zero-inflated Local Graphical Model

Description

Zero-inflated Poisson regression with l_1 -regularization.

Usage

```
\label{eq:condition} zilgm\_poisson(y, x, lambda, weights = NULL, update\_type = c("IRLS", "MM"), penalty.factor = NULL, \\ thresh = 1e-6, EM\_tol = 1e-6, EM\_iter = 500, tol = 1e-6, maxit = 1e+3)
```

Arguments

y A response y.
x A design matrix x.

lambda A regularization parameter to control a level of l_l -penalty.

weights Weights vector for observations update_type Algorithm for estimating coefficients

penalty.factor Weights vector for coefficients of each variable.

8 zilgm_sim

thresh	Threshold value for the estimated coefficients.
EM_tol	Convergence tolerance for EM algorithm.
EM_iter	Maximum number of EM algorithm iterations.
tol	Convergence tolerance for coordinate descent.
maxit	Maximum number of coordinate descent iterations.

Details

Zero-inflated local graphical model

Value

An S3 object with the following slots

beta Estimated coefficients vector.

prob Estimated probability of structural zero.

pos_zero Indices of zero values.

iteration Iteration numbers until convergence.

loglik l_l -penalized negative log-likelihood value.

z Estimated latent variable.

call The mathced call.

Author(s)

Park Beomjin,

References

Network analysis for Count data with excess zero

Examples

Not yet

zilgm_sim Generate simulation data for zilgm

Description

Generate simulation data for zilgm

Usage

zilgm_sim 9

Arguments

A $p \times p$ adjacency matrix

n The number of observation to generate simulated data.

p The number of variables or nodes to generate simulated data.

zlvs The probability of structural zero for each variable.

family The distribution to draw samples.

signal The location parameter for distribution.

theta The dispersion parameter for negative binomial distribution.

noise The location parameter for noise distribution.
is.symm A logical. wheter to generate symmetric matrix.

Details

For simulated data

Value

X $n \times p$ simulated data.

Author(s)

Park Beomjin,

References

Network analysis for Count data with excess zeros

See Also

zilgm

Examples

require(ZILGM)

Index

```
find_lammax, 2
network_gen, 3
zilgm, 3, 4, 9
ZILGM-package, 1
zilgm_negbin, 5
zilgm_negbin2, 6
zilgm_poisson, 7
zilgm_sim, 8
```