1)

9) for a Stationary AP(1)

$$z(t) = a_0 + a_1 \times (t-1) + \xi_1$$

for $1 > = 2$
 $ACF(1) = Correlation (x(t), x(t-1))$
 $= a_1$
 $ACF(2) = Correlation (x(t), x(t-2))$
 $= a_1^2$
 $z(t) = a_0 + a_1 \times (t-1) + a_2 \times (t-2)$
 $z(t) = a_0 + a_1 (a_0 + a_1 \times (t-2)) + a_2 \times (t-2)$
 $z(t) = a_0 + a_1 (a_0 + a_1 \times (t-2)) + a_2 \times (t-2)$
 $z(t) = a_0 + a_1 a_0 + a_1^2 \times (t-2) + a_2 \times (t-2)$
 $ACF(2) = Correlation (x(t), x(t-2))$
 $= a_1^2$
 $ACF(2) = a_1^3$
 $ACF(3) = a_1^3$

(b) MA (q) is greates than O till q, after q Everything becomes 2000. .. False, there will be no cliff for MA(1) after L>1, MA(1)=1 for L=1

MATLAB Commands Used:

Time series for Q2 is imported to MATLAB. Timeseries is imported as a table, which needs to be converted into an array.

B = table2array(EE627AHW2Q2); plot(B)

B is imported to Econometric toolbox to plot PACF and ACF.

Following which a model is created.

The models I created are given below with residual auto correlation:

ii) AR(20)

iii) MA(3)

iv) ARMA(3,3)

The time series is non – stationary thus, convert into stationary by taking difference. Using **diff(xt)** in MATLAB.

The Un-stationary signal is converted to Stationary Signal.

i) PACF

ii) ACF

Models:

i) AR(3)

ii) MA(3)

