ACL2020

A Frame-based Sentence Representation for Machine Reading Comprehension

Shaoru Guo¹, Ru Li ^{1,2*}, Hongye Tan^{1,2}, Xiaoli Li³, Yong Guan¹, Hongyan Zhao¹ and Yueping Zhang¹

- 1. School of Computer and Information Technology, Shanxi University, Taiyuan, China
- 2. Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan, China
 - 3. Institute for Infocomm Research, A*Star, Singapore

{guoshaoru0928, guanyong0130,13233587117}@163.com {liru,tanhongye}@sxu.edu.cn,xlli@ntu.edu.sg hongyanzhao@tyust.edu.cn

Main Work

 We propose novel attention-based frame representation models, which take full advantage of LUs and F-to-F relations to model frames with attention schema

• We propose a new **Frame-based Sentence Representation** (FSR) method that integrates multi-frame semantic information to obtain richer semantic aggregation for better sentence representation

• Our experimental results demonstrate our proposed frame-based sentence representation (FSR) method is **very effective on Machine Reading Comprehension (MRC) task**.

FrameNet

F	Commerce_buy
FEs	Buyer, Goods,
LUs	buy.v, buy.n, buyer.n, purchase.n,
Т	$[Katie]_{Buyer}$ bought _{Commerce_buy} $[some\ chocolate\ cookies]_{Goods}$
F-to-F	Commerce_buy—-Shopping— Seeking—Locating

Table 1: Example of F, FEs, LUs, T and F-to-F.

Task

Doccooo	Vatio want to the store Sha looked		
Passage	Katie went to the storeShe looked		
	around for the <i>flowers</i> . She want-		
	ed cookies not <i>chips</i> . She found		
	some <i>chocolate cookies</i> . Katie then		
	looked for a bow		
Question	What snack did Katie buy?		
Ontion	A) Chips B) Chocolate cookies		
Option	C) Flowers D) Bows		
Answer	В		
	$\{Chips, Chocolate cookies\} \in Food$		
Frame	{Flowers , Bows}∉Food		
Semantic	Found and Buy have relations, as		
their frames are connected.			

Frame Representation

Lexical Units Aggregation Model (LUA)

$$F_m = \frac{1}{N} \sum_{U^{F_m}} u_n^{F_m}$$

Lexical Units Attention Model (TLUA)

$$F_m = t^{F_m} + \sum_{\widetilde{U}^{F_m}} att(u_n^{F_m}) \cdot u_n^{F_m}$$

$$att(u_n^{F_m}) = \frac{exp(t^{F_m} \cdot u_n^{F_m})}{\sum_{u_k^{F_m} \in \widetilde{U}^{F_m}} exp(t^{F_m} \cdot u_k^{F_m})}$$

• Frame Relation Attention Model (FRA)

Frame Representation

Frame Relation Attention Model (FRA)

$$F_m^* = F_m + \sum_{w=1}^{W} att(F_{m,w}) \cdot F_{m,w}$$

$$att(F_{m,w}) = \frac{exp(F_m \cdot F_{m,w})}{\sum_{k=1}^{W} exp(F_m \cdot F_{m,k})}$$

Figure 2: Frame Relation Attention Model.

Frame-based Sentence Representation

 define a frame semantic quadruple

$$c_k = \langle T_k, F_k, FE_{kn}, P_{kn} \rangle$$

Figure 3: A sentence of FrameNet annotations.

The sentence *s* in Figure 3 has three quadruples:

- 1. c_1 = <box| conmerce_buy, [Buyer, Goods], [Katie, chocolate cookies]>
- 2. c_2 = < some, $Proportional_quantity$, [Denot-ed_quantity], [some]>
- 3. c_3 = <chocolate cookies, *Food*, [Food], [chocolate cookies]>

Frame-based Sentence Representation

The sentence *s* in Figure 3 has three quadruples:

- 1. c_1 = <box>
 bought, Commerce_buy, [Buyer, Goods], [Katie, chocolate cookies]>
- 2. c_2 = < some, $Proportional_quantity$, [Denot-ed_quantity], [some]>
- 3. c_3 = <chocolate cookies, *Food*, [Food], [chocolate cookies]>

3.2 Frame Integration Representation

In Figure 4, c_k (k=1, 2, 3) is the input. We first compute its matrix representation c_k^t , with columns denoting different semantic information. Then, we formalize sentence representation as follows:

$$c^s = \mathcal{N}(c^t) \tag{6}$$

$$c^{t} = \phi(c_{k}^{t}, P_{k}) \quad (k = 1, \dots, K)$$
 (7)

Where K represents the total number of quadruples in the sentence. $\phi(c_k^t, P_k)$ is aggregate operation, used to form frame set representation c^t based on the information of P and T in the sequence. Finally, we encode sentence information by neural network models.

Figure 4: Frame Integration Representation Model.

Models for MRC

- we construct the input :
 - the passage as sequence A, and the concatenation of question and one choice of answer as sequence B

- train stragey:
 - we apply a linear layer and a softmax layer on the final hidden state, and maximize thelog-probability of correct labels during training.

Result

Method	MCTest-160 (%)	MCTest-500 (%)
Richardson et al. (2013)	69.16	63.33
Wang et al. (2015)	75.27	69.94
Li et al. (2018)	74.58	72.67
Attentive Reader (Hermann et al., 2015)	46.3	41.9
Neural Reasoner (Peng et al., 2015)	47.6	45.6
Parallel-Hierarchical (Trischler et al., 2016)	74.58	71.00
Reading Strategies (Sun et al., 2018)	81.7	82.0
Bert (Zhang et al., 2019)	73.8	80.4
BERT+DCMN+ (Zhang et al., 2019)	85.0	86.5
FSR	86.1	84.2

Table 2: The Performance Comparison of 10 Different Models on Two MCTest Datasets.

Result

Method	160 (%)	500 (%)
Bert (Zhang et al., 2019)	73.8	80.4
Bert (Our implementation)	82.5	80.9
Bert+LUA	82.7	79.5
Bert+TLUA	84.6	82.7
Bert+FRA	86.1	84.2
bi-LSTM	54.2	49.5
bi-LSTM+LUA	59.4	57.5
bi-LSTM+TLUA	61.5	58.2
bi-LSTM+FRA	62.7	59.6

Table 3: Performance Comparison with Three Different Frame Representation Models.