

PowerFactory 2021

Technical Reference

Sample and Hold

ElmSamp

Publisher:

DIgSILENT GmbH Heinrich-Hertz-Straße 9 72810 Gomaringen / Germany Tel.: +49 (0) 7072-9168-0 Fax: +49 (0) 7072-9168-88

info@digsilent.de

Please visit our homepage at: https://www.digsilent.de

Copyright © 2020 DIgSILENT GmbH

All rights reserved. No part of this publication may be reproduced or distributed in any form without written permission of DIgSILENT GmbH.

December 1, 2020 PowerFactory 2021 Revision 1

Contents

1	General Description	1
2	Dynamic Simulation	1
3	Example Configuration	2
Α	Parameter Definitions	5
В	Signal Definitions	5
Lis	st of Figures	6
Lis	et of Tables	7

1 General Description

Analog signals can not be connected to digital signal processing modules directly. The analog signal must be sampled first. Usually a sample and hold module is setting the output at the rising edge of the clock signal. The output value is constant up to the next clock pulse. The Sample and Hold model of PowerFactory is providing exactly this functionality. In the following S&H denotes Sample and Hold.

In *PowerFactory* the S&H model will produce the following output.

Figure 1.1: Plot Sample & Hold Output

In the example given in 1.1 the clock period is 100 ms. The upper plot shows the input signal of the clock. The plot on the bottom shows the output signal. At every rising edge of the clock pulse the input of the S&H model is read and written to the output. The intersection point between the vertical bars in the upper plot and the curve show the sampled value. The output of the S&H model is constant up to the next rising edge of the clock.

2 Dynamic Simulation

The input signals *input* and *cl* must always be connected for using the model in the simulation. *input_A*, *input_B* and *input_C* need not to be connected. Input values not connected are set to 0.

Figure 2.1: Input/Output Definitions

3 Example Configuration

Figure 3.1 shows a typical configuration for the use of the S&H model. An analog signal is connected to the input of the S&H model. The output of the S&H is the connected to the input of a register (*ElmReg*). The size of the register is one. Both, the register and the S&H model are connected to the same clock source. The plots show input and output of the S&H model and the output of the register.

Due to the register size of one there is a delay of one clock period between the input and the output of the register.

Figure 3.1: Block Diagram

Table 3.1: Example settings

Element	Classname	Variable	Value
Initial Conditions	ComInc	iopt_sim	RMS values (Electromechanical Transients)
		iopt_net	Balanced, Positive Sequence
		dtgrd and dtout	0.05 ms
		tstart	0.05 ms
Clock	ElmClock	cFreq	0.01 kHz
		Тр	100 ms
		tonTp	0.5
Sample & Hold	ElmSamp	nphase	1
Register	ElmReg	nphase	1
		nsamp	1
		iopt_mod	Register

Figure 3.2: Example plots

A Parameter Definitions

Table A.1: Sample and Hold Parameters

Parameter	Description	Unit
loc_name outserv nphase	Name Out of service Number of phases	

B Signal Definitions

Table B.1: Input/Output signals

Name	Description	Unit	Туре	Model
input_A	Input		IN	RMS, EMT
input_B	Input		IN	RMS, EMT
input_C	Input		IN	RMS, EMT
input	Input signal		IN	RMS, EMT
cl	Clock signal		IN	RMS, EMT
output_A	Output		OUT	RMS, EMT
output_B	Output		OUT	RMS, EMT
output₋C	Output		OUT	RMS, EMT
output	Output signal		OUT	RMS, EMT

List of Figures

1.1	Plot Sample & Hold Output	1
2.1	Input/Output Definitions	2
3.1	Block Diagram	2
3.2	Example plots	4

List of Tables

3.1	Example settings	3
A.1	Sample and Hold Parameters	5
B.1	Input/Output signals	5