Prediction-based Resource Allocation

By: Sourabh Zanwar

Date: 28.07.2023

Supervised by: Marco Pegoraro

Agenda

- Introduction
- Motivation
- Next activity and time prediction
- Resource allocation
- Experiments
- Results
- Future Work & Limitations

Introduction

- Predictive Business Process Monitoring and Management
 - Efficient scheduling of activities
 - Efficient allocation of resources
- Use Machine Learning to improve Business Processes
- Assessment of the paper Prediction-based resource allocation [1]

Motivation

- Resource allocation
 - Improved productivity
 - Reduced execution costs
 - Balanced resource usage
- Non-clairvoyant online-over time problem [2]

Example

Work items

Resources

Execution Costs

Baseline

resource	t	t+1	t+2	t+3	t+4	t+5	t+6	$\sum c_i w_i$
r ₁			Wi _{1,1}			Wi	5 , 1	65
r ₂			Wi _{2,2}					5
r ₃	Wi	4,1		Wi3,1				15

Table. Baseline Resource allocation

Next activity & Time prediction

- User one-hot encoded resource and activities as input
- Processing time prediction: numerical value
- Next activity prediction: one-hotencoded activity values

Resource allocation

```
Algorithm 1 Resource Scheduling algorithm
Input: \hat{W}I, \hat{R}
Output: Psuedo-Assignment \hat{M}
Produce source node s, sink node t
for node wi_{i,k} \in WI do
   add edge (s, wi_{i,k}, (0,1))
end for
for node r_j \in \hat{R} \ \overline{\mathbf{do}}
   add edge (r_j, t, (0, 1))
end for
for node wi_{i,k} \in \hat{WI} do
   for node r_i \in \hat{R} do
      c \leftarrow (p_{i,k,j} + max(ri_i, rr_j, 0))/w_i
      add edge (wi_{i,k}, r_j, (c, 1))
   end for
end for
M \leftarrow MinCostMaxFlow(s,t)
```

return M

Cost

- p_{i,k,j}: processing time for work
 item wi_{i,k} by resource r_j
- ri: remaining time for item i
- rr_j : remaining time for resource r_j to be ready
- wi: weight of item i

Resource allocation

resource	t	t+1	t+2	t+3	t+4	$\sum c_i w_i$
r1		Wi	5,1	Wi	2,2	
r2	Wi _{1,1}					
r3	wi	4,1	Wi3,1			

Data

- BPIC'2012 Shared Task: Consumer Loan approvals process
- Filtering: events with valid resource and are carried out manually
- Preprocessing: One-hot encoding of Activities and Resources
- Weights and activity time calculation

Figure. Data Filtering and preprocessing

Experiments

- Replicate original implementation
 - 1. LSTM + Minimum cost maximum flow (MCMF)
- Major concern: performance of prediction model
- Train 3 additional models:
 - 1. BiLSTM + MCMF
 - 2. GRU + MCMF
 - 3. CNN + MCMF

Experiments

Figure. Experimental Setup

Results

	Method	Weighted Completion	Computation Time	Prediction Time
Suggested in	Baseline	2695	60	56
Original paper	LSTM + MCMF	1823	3151	3145
Additional	BiLSTM + MCMF	1928	3194	3189
Prediction Models	GRU + MCMF	1658	3266	3261
	CNN + MCMF	807	3645	3639

Table. Results of our experiments

Results

- CNN capturing spatial patterns from matrix-like data
- challenge conventional assumptions [3]
- suitable approaches for different tasks
- Complex architectures outperformed by simpler architectures like GRU and CNN
- Keeping prediction models simple

	Method	Weighted Completion	% change from baseline
Suggested in Original paper	Baseline	2695	0
	LSTM + MCMF	1823	47%↑
Additional Prediction Models	BiLSTM + MCMF	1928	39%↓
	GRU + MCMF	1658	62%1
	CNN + MCMF	807	233%↑

Table. Results of our experiments

Future Work & Limitations

- Different resource allocation method:
 - Eg. Ant Colony Optimisation
- Using different real-life datasets
- Limitations:
 - CNN performs best, contrary to studies
 - Prediction time

References

- 1. G. Park and M. Song, Prediction-based Resource Allocation using LSTM and Minimum Cost and Maximum Flow Algorithm, 2019 International Conference on Process Mining (ICPM), Aachen, Germany, 2019, pp. 121-128, doi: 10.1109/ICPM.2019.00027.
- 2. M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 3rd ed.Springer Publishing Company, Incorporated, 2008.
- 3. Efrèn Rama-Maneiro, Juan C. Vidal, and Manuel Lama. Deep learning for predictive business process monitoring: Review and benchmark. IEEE Transactions on Services Computing, 16(1):739–756, 2023.

Open to questions!

Thank you!