

What is Seaborn?

Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics.

IMPORTING THE LIBRARIES

import matplotlib.pyplot as plt import seaborn as sns

IMPORTING DATA

sns.get_dataset_names() #returns the data sets that seaborn provides. •planets_ds = sns·load_dataset('planets') penguins_ds = sns.load_dataset('penguins')

#loading the data sets that seaborn provides

PLOTS

		Plane	ets Dataset			
	method	number	orbital_period	mass	distance	year
0	Radial Velocity	1	269.300000	7.10	77.40	2006
1	Radial Velocity	1	874.774000	2.21	56.95	2008
2	Radial Velocity	1	763.000000	2.60	19.84	2011
3	Radial Velocity	1	326.030000	19.40	110.62	2007
4	Radial Velocity	1	516.220000	10.50	119.47	2009
1030	Transit	1	3.941507	NaN	172.00	2006
1031	Transit	1	2.615864	NaN	148.00	2007
1032	Transit	1	3.191524	NaN	174.00	2007
1033	Transit	1	4.125083	NaN	293.00	2008
1034	Transit	1	4.187757	NaN	260.00	2008

Histogram Plot

sns.histplot(data=planets_ds,#creating the plot x='mass',#qiving the x value to plot bins=40¬#arranging the bin size kde=True, #enabling kernel density #estimate color='orange')#arranging the color

Scatter Plot

sns.scatterplot(data=planets_ds_#creating plot x='year', #giving x value y='orbital_period',#giving y value hue='mass')#color mapping

Joint Plot

sns.jointplot(data=planets_ds,#creating the plot x='mass'¬#qiving the x value to plot y='year'ı#qiving the y value color='green'#arranging the color kind='kde')#changing the kind to #kernel density #estimate - kde

Bar Plot

sns.barplot(data=planets_ds_#creating the plot x='year', #giving the x value y='mass')#giving the y value

OTHER PLOTS

```
y="total_bill",
            hue="smoker",
            palette=["m", "g"],
            data=tips)
sns.catplot(x="time";
            y="pulse" -
            hue="kind",#color mapping
            col="diet",#column
            palette="YlGnBu_d",#color palette
            height=b¬#changing figure size
            aspect=.75,#changing figure size
            kind="point",#changing plot kind
            data=df)
•sns.countplot(data=planets_ds1
              x='year')
•sns.distplot(data.yı
             kde=False-
             color="b")
```

sns.boxplot(x="day";

•sns·dogplot()#shows a cute face of a dog:)

•sns.ecdfplot(data=planets_ds_ x='orbital_period')

•sns.factorplot(data=planets_ds1 x='year' y='mass')

sns.kdeplot(data=planets ds1 x='mass')

•sns·lineplot(data=penguin_ds₁ x='body_mass_g' v='flipper_length_mm')

•sns.pairplot(planets_ds)

•sns.palplot(sns.color_palette("hls"₁ ₺))

•sns.pointplot(data=planets_ds x='year' y='orbital_period' markers=["^"₁"o"]₁ linestyles=["-","--"])

•sns·regplot(data=planets_ds x='mass'

y='orbital_period') •sns·relplot(data=planets_ds1

> x='mass', y='orbital_period')

•sns.rugplot(data=planets_ds1 x='mass')

sns.stripplot(x="value"; v="measurement", hue="species" data=iris. dodge=True,

alpha=.25,

zorder=1)

OTHER PLOTS

```
sns.swarmplot(data=dfa
               x="body_mass_g",
               v="sex";
               hue="species")
•sns.violinplot(data=planets_ds1
                x='year',
                y='mass')
```

```
HEAT MAP
#Load the example flights dataset and convert
#to long-form
flights_long = sns.load_dataset("flights")
flights = flights_long.pivot("month";
                               "year"₁
                              "passengers")
sns.heatmap(flights
            annot=True, #If True, write the data
                        #value in each cell.
            linewidths=.5,
            ax=ax)
            126 150 180 196 188 233
            141 178 193 236 235 267
```

CLUSTER MAP

```
sns.clustermap(df.corr();
              center=0,
              cmap="vlag",
              row_colors=network_colors=
              col_colors=network_colors¬
              dendrogram_ratio=(.1, .2),
              #Proportion of the figure size
              #devoted to the two marginal
              #elements.
              cbar_pos=(.02, .32, .03, .2),
              #Position of the colorbar axes
              #in the figure.
              linewidths=.75,
              figsize=(12, 13))
```


STYLING

```
•sns·set_style('darkgrid')
#changing the plot style
•sns·set_context('paper';
                  font_scale=1.47
                  rc={"grid·linewidth": 0.6})
#to change the labels, font scales, line width
#of the grid = etc.
#context can have 3 options besides
#paper(talk-poster)
•sns.despine(left=False<sub>1</sub>
             bottom=False)
#manages the right, left, top and bottom axes,
#looks.
•sns.set_palette("husl",3)
#Define the color palette
•my_cpalette=E"#ED1C24",
              "#006837" -
              "#FCEE21"-
             בייברעכאאיי
sns.set_palette(my_cpalette)
```

Categorical Plots

#we can use our own color palette by giving

#hexadecimal numbers in a list

```
•Scatter Plot
•Bar Chart
•Count Plot
Point Plot
Box Plot
•Violin Plot
```

Show or Save the Plot

•plt·show()#show the plot •plt·savefig("gimli·jpg")#save the plot •plt-savefig("ahsoka.jpg"transparent=True)#save transparent #figure

Close and Clear

•plt.cla()#clear an axis •plt.clf()#clear an entire figure •plt·close()#close a window

STUDENT

FURKAN ÖZTÜRK 200315002