Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №0

по дисциплине «Моделирование»

Выполнил:

Студент гр. ИВ-622

Свиридов В.О.

Проверила:

Ассистент Кафедры ВС

Петухова Я.В.

СОДЕРЖАНИЕ

ПОСТАНОВКА ЗАДАЧИ	3
ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ	
ГЕНЕРАТОРЫ	
РЕЗУЛЬТАТЫ РАБОТЫ.	
ЗАКЛЮЧЕНИЕ	
ЛИСТИНГ ПРОГРАММЫ	8

ПОСТАНОВКА ЗАДАЧИ

Необходимо взять готовую реализацию трех генераторов псевдослучайных чисел и убедиться в их равномерном распределении, используя такие параметры как критерий Пирсона и автокорреляция.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Генератор псевдослучайных чисел (ГПСЧ, англ. pseudorandom number generator, PRNG) — алгоритм, порождающий последовательность чисел, элементы которой почти независимы друг от друга и подчиняются заданному распределению (обычно равномерному).

• Критерий согласия Пирсона(χ^2)

Критерий согласия Пирсона (χ^2) применяют для проверки гипотезы о соответствии эмпирического распределения предполагаемому теоретическому распределению F(x) при большом объеме выборки ($n \ge 100$). Критерий применим для любых видов функции F(x), даже при неизвестных значениях их параметров, что обычно имеет место при анализе результатов механических испытаний.

Использование критерия χ^2 предусматривает разбиение размаха варьирования выборки на интервалы и определения числа наблюдений (частоты) n_i для каждого из e интервалов.

$$\chi^2 = \frac{1}{N} \sum_{i=1}^k \left(\frac{n_i^2}{p_i} \right) - N$$
, где

N — общее количество сгенерированных чисел

 p_i — теоретическая вероятность попадания чисел в i-ый интервал $(p_i = \frac{1}{k})$

k — общее количество интервалов

 n_i — попадание чисел в каждый интервал

 χ^2 — критерий согласия

Автокорреляция(*R*)

Автокорреляция — это корреляционная зависимость между текущими значениями некоторой переменной и значениями этой же переменной, сдвинутыми на несколько периодов времени назад.

$$a(\tau) = \frac{\sum_{i=1}^{N-\tau} (x_i - Ex)(x_{i+\tau} - Ex)}{(N-\tau) \cdot S^2(x)},$$
 где

 $a(\tau)$ — автокорреляция

$$Ex$$
 — математическое ожидание $Ex = \sum_{i=1}^{N} \frac{x_i}{N}$

$$S^2(x)$$
 — выборочная дисперсия $S^2(x) = \frac{1}{N} \sum_{i=1}^n x_i^2 - (Ex)^2$

 x_i — множество псевдослучайных чисел

т — смещение

ГЕНЕРАТОРЫ

Генератор псевдослучайных чисел:

- 1) Java SplittableRandom высокопроизводительный ГПСЧ, используемый в параллельных вычислениях.
 - 2) Java Random стандартный ГПСЧ языка Java.
- 3) Java SecureRandom высокопроизводительный ГПСЧ, используемый в криптографии.

РЕЗУЛЬТАТЫ РАБОТЫ

Таблица 1. Значения χ^2 для трех генераторов псевдослучайных чисел

Генератор случайных	N = 100000	N = 100000	N = 1000000	N = 1000000
чисел	k = 100	k = 1000	k = 100	k = 1000
Java SplittableRandom	91.964000	959.580000	91.469200	1016.674000
Java SecureRandom	107.910000	1003.460000	102.848400	1061.908000
Java Random	92.338000	979.360000	115.324600	970.898000

```
ГПСЧ: Java SecureRandom
Хи-квадрат: 993.5
τ = 1 autocor = -0,0011561409
τ = 2 autocor = -0,0006299083
τ = 3 autocor = 0,0004996216
τ = 4 autocor = -0,0002795600
τ = 5 autocor = 0,0001082504
τ = 6 autocor = 0,0010906374
τ = 7 autocor = 0,0006964278
τ = 8 autocor = -0,0006189364
τ = 9 autocor = 0,0002909419
τ = 10 autocor = -0,0001193737
τ = 11 autocor = 0,0011182007
τ = 12 autocor = 0,0017373980
τ = 13 autocor = -0,0000690300
τ = 14 autocor = 0,0005945368
τ = 15 autocor = -0,0012548448
```

Рис.1. Результат расчета коэффициента корреляции генератором Java Secure Random при изменении τ . (k=1000, N=1000000)

```
ГПСЧ: Java Random
Хи-квадрат: 966.2280000000028
\tau = 1 \text{ autocor} = -0.0003344771}
\tau = 2 autocor = -0,0011987840
\tau = 3 \text{ autocor} = 0,0017595188
τ = 4 autocor = -0,0017106741
τ = 5 autocor = -0,0015463087
τ = 6 autocor = -0,0011381328
τ = 7 autocor = 0,0002707985
τ = 8 autocor = 0,0016942594
\tau = 9 autocor = 0,0000748677
τ = 10 autocor = -0,0016360602
τ = 11 autocor = 0,0009353068
\tau = 12 autocor = -0,0008365150
\tau = 13 \text{ autocor} = 0,0005444111
\tau = 14 \text{ autocor} = 0,0011588948
\tau = 15 \text{ autocor} = 0,0008193220
```

Рис.2. Результат расчета коэффициента корреляции генератором Java Random при изменении τ . (k=1000, N=1000000)

```
ГПСЧ: Java SplittableRandom
Хи-квадрат: 966.9420000000391
\tau = 1 \text{ autocor} = 0,0003401283
τ = 2 autocor = -0,0010024999
\tau = 3 \text{ autocor} = -0,0005142329
τ = 4 autocor = -0,0011341394
\tau = 5 autocor = 0,0007523568
τ = 6 autocor = -0,0009421463
\tau = 7 autocor = -0,0016964433
τ = 8 autocor = -0,0012602015
\tau = 9 \text{ autocor} = -0,0008777463
τ = 10 autocor = -0,0013814315
τ = 11 autocor = 0,0002281530
τ = 12 autocor = 0,0002845213
\tau = 13 \text{ autocor} = -0,0008593415
τ = 14 autocor = 0,0006416679
\tau = 15 \text{ autocor} = -0,0007935875
```

Рис.3. Результат расчета коэффициента корреляции генератором Java Splittable Random при изменении τ . (k=1000, N=1000000)

ЗАКЛЮЧЕНИЕ

В ходе выполнения лабораторной работы были изучены три генератора псевдослучайных чисел языка Java (Random, SplittableRandom и SecureRandom). Для тестирования работы ГПСЧ были использованы расчеты автокорреляции и критерии согласия Пирсона. Нулевая гипотеза заключается в том, что частоты согласованы, то есть фактические данные не противоречат ожидаемым. Альтернативная гипотеза — отклонения в частотах выходят за рамки случайных колебаний, расхождения статистически значимы.

Значения χ^2 полученные по результатам проделанной работы ($\chi^2_{\text{SplittableRandom}} = 91.964000$, $\chi^2_{\text{SecureRandom}} = 107.910000$, $\chi^2_{\text{Random}} = 92.338000$) не превышают табличного значения ($\chi^2_{\text{табл.}} = 113.1$). Из этого можно сделать вывод, что для всех протестированных генераторов гипотезу о равновероятном распределении нельзя опровергнуть.

Значения автокорреляционной функции для всех ГПСЧ колеблются около 0. Из этого следует, что все протестированные ГПСЧ выдают независимые случайные величины.

ЛИСТИНГ ПРОГРАММЫ

```
import java.security.SecureRandom;
import java.util.Random;
import java.util.SplittableRandom;
import static java.lang.Math.*;
public class Main {
  public static void main(String[] args) {
     int n = 1000000, interval = 1000, tmp = 0;
     double sum = 0, sumSqr = 0;
     double[] randomArr = new double[n], intervalArr = new double[interval];
     for(int i = 0; i < n; i++){
       //Генераторы
       randomArr[i] = new SplittableRandom().nextDouble();
       //randomArr[i] = new Random().nextDouble();
       //randomArr[i] = new SecureRandom().nextDouble();
       sum += randomArr[i];
       sumSqr += randomArr[i] * randomArr[i] ;
       tmp = (int) (randomArr[i] / (1.0/interval));
       intervalArr[tmp]++;
     System.out.println("ΓΠCΨ: Java SplittableRandom");
     System.out.println("N = " + n + ", k = " + interval);
     //Хи-квадрат
     double hiSqr = 0;
     double p = 1.0/interval;
     for(int i = 0; i < interval; i++)
       hiSqr += pow(intervalArr[i],2)/p;
     hiSqr = (hiSqr / n) - n;
     System.out.println("Хи-квадрат: " + hiSqr);
     //Автокорреляция
     double ex, S, autocor = 0.0;
     ex = sum / n;
     S = (sumSqr / n) - (ex * ex);
     for(int offset = 1; offset < 25; offset++)
       for(int i = 0; i < n - offset; i++)
          autocor += (randomArr[i] - ex) * (randomArr[i + offset] - ex);
       autocor = (n - offset) * S;
       System.out.print("\tau = " + offset);
       System.out.printf(" autocor = %.10f\n", autocor);
     }
  }
}
```