Detección de defectos con Deep Learning en imágenes industriales tomadas con rayos X

TFG, Ingeniería Electrónica de Comunicaciones

 $\begin{array}{c} {\rm Pablo~Su\'{a}rez^{1,2}} \\ {\rm ^1Universidad~Complutense~de~Madrid} \\ {\rm ^2Facultad~de~Ciencias~F\'{s}icas,~^3DACyA} \end{array}$

Supervisores: Maria José Gómez Silva^{1,2,3} y Jesús Chacón Sombría^{1,2,3}

21 de abril de 2024

Índice

- Introducción
- 2 Motivación, objetivos y procedimiento
- 3 Deep Learning y redes neuronales
- 4 Diferencia entre objetos y defectos
- Faster R-CNN
- 6 Resultados
- Conclusiones y trabajo a futuro

1. Introducción

¿Finalidad de este TFG?

■ Detección de defectos → ¿dónde? → en imágenes de radiografías de piezas industriales.

¿Cómo?

■ Con la ayuda del *Deep Learning*.

Herramientas:

■ Python → pandas, numpy, torchvision, PIL, matplotlib, TensorFlow y Keras.

¿Por qué es relevante?

- Puede ahorrar tiempo y dinero.
- Rapidez.
- Precisión.

2. Motivación, objetivos y procedimiento

3.1. El Deep Learning para la detección de defectos

1. ¿Qué es el Deep Learning?

- Técnica de IA que utiliza redes neuronales → analizar imágenes y localizar defectos/objetos.
- Deep Learning ⊂ Machine Learning.
- ¿Cómo aprende? → reconociendo patrones y características en las imágenes.

2. Cualidades del Deep Learning:

- Herramienta óptima para → TAREAS REITERATIVAS.
- Tras un largo entrenamiento con muchos datos → precisión.

3.2. Redes neuronales convolucionales

- Varios tipos de redes neuronales.
- ¿Por qué una red convolucional? → extracción de su MAPA DE CARACTERÍSTICAS.
 - ¿Cómo? con la convolución $\to p(x) = \mathbf{w} * \mathbf{X} = \sum_{a=-s}^s \mathbf{w}(a) \mathbf{X}(x-a)$
 - $\mathbf{X} \in \mathbb{R}^{n \times m}$ representa la imagen de entrada, $\mathbf{w} \in \mathbb{R}^i$ representa los pesos y s viene determinada por el tamaño del filtro y representa el *stride*

4. Diferencia entre objetos y defectos.

Objetos

- Grandes proporciones, $\frac{\text{size(objeto)}}{\text{size(imagen)}} \in (0,4-1)$
- Siluetas o formas características.
- Policromáticos.
- Gran variedad de modelos pre-entrenados y bases de datos.

Defectos

- \blacksquare Suelen ser pequeños, $\frac{\mathtt{size(objeto)}}{\mathtt{size(imagen)}} \in (0.01-0.15)$
- Amorfos.
- Monocromáticos.
- Pocos modelos y pocas bases de datos.
- Clasificación BINARIA.

Similitudes: ambas tareas de detección → COMPLEJAS ∴ esto requiere de estructuras de red MÁS COMPLEJAS.

5.1. Faster R-CNN, introducción

¿Qué implica extraer características y proponer regiones?

- Debido a su complejidad → dividir la tarea en capas.
- (\uparrow capas) \rightarrow (\uparrow complejidad de la arquitectura) \rightarrow más control.
- ¿Solución? → Faster R-CNN

¿Por qué la Faster R-CNN?

- Arquitectura orientada a la detección de objetos → MUY COMÚN.
- En [RHGS15] \rightarrow mAP \in (75 99) [%]
- Mayor η respecto a la R-CNN y a la Fast R-CNN.
- Esta arquitectura extrae características y propone regiones.

5.2. Componentes de la Faster R-CNN

La arquitectura de la Faster R-CNN es la siguiente:

5.3. El backbone: la VGG-16

- Es el corazón de la Faster R-CNN → VGG-16.
- ¿Por qué la VGG-16? $\rightarrow \varepsilon_{cls} = 7,32\%$ y $\varepsilon_{loc} = 25,32\%$.
- stride = 16.
- Encuadrada dentro de la RPN.
- Función **principal** → extracción del mapa de características.
- ¿Cómo? \to $(\mathbb{R}^{300\times400}*\mathbb{R}_i^{3\times3})|_{i=(1,\dots,512)}\to$ característica de menor dimensión.
- M.C $\in \mathbb{R}^{18 \times 25 \times 512}$

5.3. Anchors

- Disposición de anchors para cada punto del mapa de características.
- ¿Para qué? \rightarrow Para saber si hay o no defectos.
- $\blacksquare \uparrow \text{stride} \rightarrow \#_{anchors} \downarrow$
- Si pos \in M.C \mid pos \in $\mathbb{R}^{18 \times 25 \times 9} \rightarrow 4050$ anchors en total.
- Inicialmente → anchors negativos.
- Dependiendo de la **loU**:
 - anchor negativo.
 - anchor positivo.
 - anchor descartado.

Figura: Dinámica de disposición de los anchors.

Arquitectura de la Faster R-CNN

5.4. Propuesta de regiones (RPN)

- 1. Una vez se tienen:
 - El mapa de características.
 - Los anchors posicionados.
- 2. Cada **posición** de la ventana móvil → PROPUESTAS DE REGIONES
- 3. La red se desplaza por cada **píxel** del $M.C o defecto \checkmark$ o defecto \times
- 4. ¿Cómo se comprueba? \rightarrow IoU = J(**A**,**B**) = $\frac{|\mathbf{A} \cap \mathbf{B}|}{|\mathbf{A} \cup \mathbf{B}|}$
- 5. Capas de **reg** y **cls**:
 - Etapa reg → perfecciona las coordenadas.
 - $\mathbf{y}_{rpn_regr} \in \mathbb{R}^{1 \times 18 \times 25 \times 72}$.
 - Etapa cls → Prob(defecto √)
 - $\mathbf{v}_{rpn_cls} \in \mathbb{R}^{1 \times 18 \times 25 \times 18}$.

Arquitectura de la Faster R-CNN

5.5. ROI pooling

- Una vez se tiene:
 - Propuesta de regiones √
 - Probabilidades correspondientes √
- ¿Siguiente paso? → transformar las **propuestas de regiones** en **ROIs**.
- ¿Para qué? → de los ROIs → elementos representables → bounding boxes.
- ¿Cómo? → rpn_to_roi
 - Re-escalado de anchors.
 - Regresión.
- ROlpooling
 - Procesa ROIs → tamaño específico, con → max pooling.
 - Etapa cls → tamaño fijo.
 - coordenadas \in M.C \rightarrow coordenadas \in img
 - ¡Salida? → clases y mejores coordenadas.

5.6. Entrenamiento

- ¿Conjunto muestral? → repositorio GDXray → 2727 imágenes.
- Parámetros más influyentes:

```
• \uparrowprofundidad de la red \rightarrow \downarrow resolución M.C.
```

 $\uparrow \#_{im\acute{a}genes} \rightarrow \downarrow \text{ sobre-ajuste.}$

• $\uparrow \#_{rois}$ $\rightarrow \uparrow$ desbalance.

 $\uparrow \#_{max,BB} \rightarrow \downarrow \text{filtrado.}$

↑resolución
→ ↑ representación de defectos.

Métricas

- 4 funciones de pérdidas.
 - loss_rpn_cls → resultado de clasificación del modelo RPN.
 - loss_rpn_regr → resultado de la regresión del modelo RPN.
 - loss_class_cls → resultado de clasificación del modelo clasificador.
 - loss_class_regr → resultado de regresión del modelo clasificador.
- mAP:
 - → ¿Cuánta precisión? → loU
 - ightharpoonup mAP = cmp(umbral(loU), loU).

6.1. Resultados del entrenamiento

Figura: Resultados del primer entrenamiento.

6.1. Resultados del entrenamiento

Figura: Resultados del cuarto entrenamiento.

■ $\mathbf{mAP} = 0$ \forall entrenamientos.

6.2. Regiones propuestas por la red

Figura: Algunas propuestas de regiones para algunas imágenes

7.1. Conclusiones

- Una baja profundidad → asegura TODOS LOS DEFECTOS.
- Tarea de naturaleza desbalanceada \rightarrow reg(\times defectos) > reg(\checkmark defectos)
- La red COLAPSA → NO APRENDE.
- **Comprensión** al detalle → causas de un mal aprendizaje.
- En RPN, los parámetros más importantes → escalas, resoluciones.
- Buen entrenamiento si:
 - Buen mapa de características.
 - Conjunto muestral grande.
 - Determinismo

7.2. Trabajo a futuro

- ↑ Resolución y ↑ conjunto muestral.
- Transfer Learning → reciclar modelos pre-entrenados.
- Mask R-CNN \rightarrow (+1) capa de segmentación \rightarrow +PRECISIÓN.
- FPN → múltiples mapas de características.

Figura: Dinámica de la FPN.

Gracias por su atención.

¿Preguntas?

Pablo Suárez Reyero

pasuar03@ucm.es

https://github.com/jcsombria/tfg-psr

Propuesta de regiones (RPN)

- 1. Una vez se tienen:
 - El mapa de características.
 - Los anchors posicionados.
- 2. Cada **posición** de la ventana móvil \rightarrow PROPUESTAS DE REGIONES
- 3. La red se desplaza por cada **píxel** del $M.C o defecto \checkmark$ o defecto \times
- 4. ¿Cómo se comprueba? \rightarrow loU = J(A,B) = $\frac{|\mathbf{A} \cap \mathbf{B}|}{|\mathbf{A} \cup \mathbf{B}|}$
- 5. Inicialmente \rightarrow anchors negativos.
 - Si $IoU < 0.3 \rightarrow$ anchor negativo.
 - Si $IoU > 0.7 \rightarrow$ anchor positivo.
 - Si $0.3 < loU < 0.7 \rightarrow anchor descartado$.
- 6. Capas de reg y cls:
 - Etapa reg → perfecciona las coordenadas.
 - Etapa cls → Prob(defecto ✓)

Mean Average Precision (mAP)

mAP:

- ¿Cuánta precisión? → **loU**
- lacktriangle umbral(lacktriangle) < lacktriangle lacktriangle UDU \rightarrow TP \rightarrow mAP
- lacktriangle umbral(IoU) > IoU \rightarrow FP \rightarrow mAP
- $\blacksquare \uparrow \mathsf{umbral}(\mathsf{IoU}) \to \mathsf{FP}{\downarrow} \to \mathsf{precisi\acute{o}n}{\uparrow} \to \mathsf{recall}{\downarrow} \ (\mathsf{se} \ \mathsf{pierden} \ \mathsf{detecciones})$
- lacktriangledown \downarrow umbral(IoU) \rightarrow FP \uparrow \rightarrow precisión \downarrow

$$Recall = \frac{TP}{TP + FN}$$