Emmaüs OP WEG	Emmaüsinstituut Sint-Gerolflaan 20 9880 Aalter
	Dhr. Van Avermaet J.
Leerkrachten:	

Titel:

Verslag: Karakteristieken kooiankermotor	
Kooirotor	

Vak:	REMP Elektriciteit		
Klas:	6EM6		
Naam &	Anthony Tacquet		
Klasnummer:	9		
Schooljaar:	2020-2021		
Begin- en einddatum:	05/05/21 - 10/05/21		

De vaardigheden: /10pt

Het verslag: /10pt

Het totaal: /20pt

	Leerling	Leerkracht
Bestekmapje en voorblad		
Controle van het schema of opstellingstekening		
Metingen of waarnemingen		
Grafieken		
Besluiten		
Beoordeling van je eigen werk op 10pt.	7/10	

1 Doel van de oefening

- -De lijnstroom, het toegevoerde vermogen, de arbeidsfactor en de rotorsnelheid meten in functie van het geleverde motorkoppel voor zowel ster- als driehoek schakeling;
- de relatieve slip en het rendement bepalen in functie van het geleverde motor koppel voor zowel ster- als driehoekschakeling;
- de koppel-snelheidskarakteristiek en stroom-snelheidskarakterisitiek opnemen.

2 Schakeling

3 Benodigdheden

Anthony Tacquet 2020-2021 Emmaüs instituut

-

Ampèremeters

Voltmeters

Wattmeters

Tachometer

Driepolige schakelaar

Ster-driehoekschakelaar

Labosnoeren

4 Uitvoering

4.1 Opnemen van de elektrische en mechanische grootheden in functie van het geleverde motorkoppel

4.1.1 Motor in ster geschakeld

A.d.h.v. bijgeleverde karakteristieken vul je onderstaande tabel aan.

 $U_L = 380V$; $n_s = 1500 tr/s$.

Instellen	Meten of berekenen						
I _L (A)	Pt(W)	r(tr/s)	Tas(Nm)	s(%)	соsф	Pn(W)	η (%)
Nullast I∟=4.41	423	23.785	2	4.86	0.145	296.1	70
IL=0,7.In=15.96	9415	22.32	59.5	10.72	0.89	8341.7	88.6
IL=0,8.In=18.24	11025	22	69.82	11.9	0.918	9657.9	87.6
IL=0,9.In=20.52	12245	21.84	76.1	12.6	0.9	10641	86.9
IL=1.In=22.8	13385	21.45	88.28	14.16	0.892	11417	85.3
IL=1,1.In=25.08	14910	21.26	94.17	14.96	0.892	12584	84.4

4.1.2 Motor in driehoek geschakeld

A.d.h.v. bijgeleverde karakteristieken vul je onderstaande tabel aan.

 $U_L = ; n_s =$ _.

Instellen	Meten of berekenen						
IL(A)	Pt(W)	r(tr/s)	Tas(Nm)	s(%)	соsф	Pn(W)	η (%)
Nullast I∟=							
IL= 0,7.In=							
IL= 0,8.In=							
IL= 0,9.In=							
IL= 1.In=							
IL= 1,1.In=							

Anthony Tacquet

Teken de rendements-koppel karakteristiek.

Teken de slip-koppel karakteristiek.

Teken de toerental-koppel karakteristiek.

Teken de cosφ-koppel karakteristiek.

Teken de stroom-koppel karakteristiek.

Teken de vermogens-koppel karakteristiek.

4.2 Opnemen van de koppel-snelheids- en stroom-snelheids-karakteristiek

A.d.h.v. bijgeleverde karakteristieken vul je onderstaande tabel aan.

Instellen	Instellen Meten of berekenen					
	In ster geso	hakeld	In driehoek geschakeld			
n _r (tr/min)	Ι _L (A)	Tas (Nm)	Ι (A)	Tas (Nm)		
0,9. n _s =						
0,8. n _s =						
0,7. ns=						
0,6. n _s =						
0,5. n _s =						
0,4. ns =						
0,3. ns=						
0,2. ns=						
0,1. ns=						
0. n _s =						

Teken de koppel-toerental karakteristieken van ster en driehoek.

Teken de stroom-toerental karakteristieken van ster en driehoek.

5 Opgaven

5.1 Hoe zal de stroomsterkte in de lijndraden van de motor veranderen als je				
de ster-driehoekschakelaar van sterstand naar driehoekstand schakelt? $0~\sqrt{3}$				
keer verkleinen				
$0\sqrt{3}$ keer vergroten				
0 3 keer verkleinen				
0 3 keer vergroten				
5.2 Welke grootheden zullen toenemen bij stijgende belasting?				
0 het schijnbaar vermogen				
0 de rotorsnelheid				
0 het actief vermogen				
0 de arbeidsfactor				
0 de lijnstroom				
0 het rendement				
5.3 De arbeidsfactor zal bij eenzelfde belasting in ster t.o.v. driehoek				
stijgen / constant blijven / dalen.				
5.4 Bij welke belasting zijn de elektrische eigenschappen van een motor het				
beste?				
5.5 Hoe verhoudt het motorkoppel in ster zich t.o.v. driehoek bij eenzelfde				
snelheid?				

Anthony Tacquet 2020-2021 Emmaüs instituut

5.6 Hoe verhoudt de stroomsterkte in de motorwikkeling in ster zich t.o.v.

driehoek bij eenzelfde snelheid? $0\sqrt{3}$ keer kleiner 03 keer kleiner $0\sqrt{3}$ keer groter 0 3 keer groter 5.7 Waarom moet het lastkoppel voor elke snelheid, kleiner, zijn dan het maximaal askoppel dat de motor bij die snelheid kan leveren? 5.8 Omschrijf het begrip relatieve slip voor een asynchrone motor. 5.9 Je sluit een tweepolige driefasige asynchrone motor aan op een net met frequentie 50 Hz. Bij nominale belasting is de rotorsnelheid van de motor **2950** tr/min. Bereken, bij deze belasting, de slip van de motor. Gegeven: f = 50 Hz; n_r= 2950 tr/min; p=1 Gevraagd: s =? Oplossing:

Anthony Tacquet

· 10 Fam duiafasina asumahyana matau lawant asu askampal wan 40 Nm hii asu
5.10 Een driefasige asynchrone motor levert een askoppel van 40 Nm bij een
rotor-snelheid van 20 tr/s. Het vermogen dat opgenomen wordt uit het
net, bepaal je met de tweewattmetermethode. Een wattmeter duidt
4010W en de andere 2990W aan. Hoe groot is het rendement van de
motor bij de gegeven belasting?
Gegeven: $T_{as} = 40 \text{ Nm}$; $n_r = 20 \text{ tr/s}$; $P_{W1} = 4010 \text{ W}$; $P_{W2} = 2990 \text{ W}$ Gevraagd: $\eta = ?$
Oplossing:
5.11 Bereken de arbeidsfactor van de motor uit voorgaande opgave indien je
een stroomsterkte van 24 A meet door de lijndraden en de lijnspanning
van het net 230 V is.
Gegeven:IL = 24 A; UL = 230 V
Gevraagd: cos φ =?
Oplossing:

6 Besluiten

Berekening van de grootheden

- Je bepaalt de gemiddelde lijnstroom I∟als volgt:
- je meet met de ampèremeters IL1 en IL3;
- de gemiddelde lijnstroom I∟kan je als volgt berekenen:

$$I_L = (I_{L1} + I_{L2})/2$$

ullet Met de aronschakeling of de tweewattmetermethode bepaal je het toegevoerde vermogen P_t .

$$P_t = P_{W1} + P_{W2}$$

• De arbeidsfactor cos ϕ bereken je met behulp van de berekende gemiddelde lijnstroom I_L , de gemeten lijnspanning U_L en het berekende totale vermogen P_L .

$$\cos \Phi = P_t/(\sqrt{3.U_L.I_L})$$

• Je berekent de relatieve slip s met behulp van de snelheid van het stator-draaiveld van de motor, ook synchrone motorsnelheid n_s genoemd, en de rotorsnelheid van de motor n_r . De synchrone motorsnelheid n_s kan je afleiden uit de gegevens op de kenplaat van de motor. De rotorsnelheid van de motor n_r meet je met de tachometer.

$$s = (n_s - n_r)/n_s$$

• Het askoppel van de motor T_{as} meet je met de koppelmeter van de rem of bereken je met behulp van de kracht F die je afleest op de wijzerplaat van de rem (zie aanvulling);

$$T_{as} = \mathbf{F} \cdot \mathbf{a}$$

• Het nuttig vermogen P_n bereken je met het askoppel T_{as} en de rotorhoek-snelheid van de motor ω_r .

$$P_n = T_{as}$$
. $\omega_r = T_{as}$. 2. π . n_r

• Het motorrendement bereken je met het toegevoerde P_t en het nuttige vermogen P_n .

$$\eta = Pn/Pt = (T_{as}. 2. \pi. n_r)/(\sqrt{3.U_L.I_L.cos} \phi)$$

Begin met de ster-schakeling.

Vul de tabel in: Meet Pt, nr en Tas.

Bereken s, $\cos \varphi$, Pn en η .

Vul nu de tabel voor driehoek in.

Pt en Tas vermenigvuldigen met $\sqrt{3}$

Het toerental blijft behouden.

Bereken s, $\cos \varphi$, P_n en η .

Voor de koppel-snelheids- en de stroom-snelheids-karakteristiek. Meet eerst de waarden voor de sterschakeling.

Vermenigvuldig dan zowel de stroom als het koppel met 3 voor de driehoekwaarden.

Het schema van de proef Spanningsregeling ST 15A/25A/50A - 5A 15A -> 5A L2 ST 15A/25A/50A - 5A 15A -> 5A L3 N Net Voltech Kooirotor 2 % % Begin 50 Voltech Einde 1 % % Stap 5 En W .427,09 Tr/min Koppelmeting 2 Nm 0381 V 01,47 A 0348W Ompoling

Anthony Tacquet 2020-2021 Emmaüs instituut

Kooirotormachines, gebruikt bij de laboratoria

Naam: Kooirotor 2

Specificaties:

Nominale spanning: 380 V Y
Nominale stroom: 22.8 A Y
Nominaal vermogen: 11000 VA
Nominaal toerental: 1430 Tr/min

Poolpaartal: 2

Gelijkstroomweerstanden:

Weerstand van de stator:

 $0.072\,\Omega$

Anthony Tacquet 2020-2021 Emmaüs instituut

11