A Non-Negative Bilinear DFEM Scheme for S_N **Transport**

Peter Maginot Jean Ragusa and Jim Morel

Texas A&M University- Department of Nuclear Engineering

M&C 2015 April 20, 2015

Outline

- Motivation
- BCSZ Method
- BCSZ Numerical Challenges
- Initial Results

Discontinuous finite element (DFEM) spatial discretizations of

$$\vec{\Omega}_d \cdot \nabla \psi_d(x, y) + \sigma_t(x, y) \psi_d(x, y) = S_d(x, y)$$

can generate negative, non-physical solutions

- Desire: More accurate methods for multi-D radiative transfer
 - Requires bilinear DFEM, if mesh consists of quadrilaterals
- Past: Non-linear, non-negative DFEM scheme for linear (1, x, y) on rectangles
- Question: Is there a tractable non-negative scheme for BLD?

Solution representation, $\widetilde{\psi}_{BCSZ}(s,t)$:

$$\widetilde{\psi}_{BCSZ}(s,t) = \begin{cases} \widehat{\psi}_{BCSZ}(s,t) & \widehat{\psi}_{BCSZ}(s,t) > 0\\ 0 & \text{otherwise} \end{cases} . \tag{1}$$

Bilinear function, $\widehat{\psi}_{BCSZ}$, to search for,

$$\widehat{\psi}_{BCSZ}(s,t) = \sum_{i=0}^{3} \psi_{i,BCSZ} B_i(s,t), \qquad (2)$$

DFEM moment equations will need to integrate quantities like this on cell edges:

$$(\vec{\Omega}_d \cdot \vec{n}_\alpha) \int_{\alpha} B_i(s, -1) \widetilde{\psi}_{BCSZ} ds$$

- Check vertices for negativity
- ② By definition of $\widetilde{\psi}_{BCSZ}$, integrate $\widehat{\psi}_{BCSZ}$ only over portion of the interval where $\widehat{\psi}_{BCSZ} \geq 0$

$$s_{z} = \frac{\psi_{L} + \psi_{R}}{\psi_{L} - \psi_{R}}$$

Must integrate terms like, $B_i \widetilde{\psi}_{BCSZ} |J|$, over areas like these:

Enabling Idea

Along every integration area curve:

$$\widehat{\psi}_{BCSZ}(s,t) = 0$$

Transform interpolatory $\widehat{\psi}_{BCSZ}$ to moment based f(s,t):

$$f(s,t) = f_c + sf_s + tf_t + stf_{st}$$
(3)

$$\begin{bmatrix} 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} f_c \\ f_s \\ f_t \\ f_{ct} \end{bmatrix} = \vec{\psi}_{BCSZ}$$
 (4)

Enabling Idea- 2

Along each integration area defined by a curve, f(s,t) = 0, and

$$\hat{l}_t = -\frac{f_c + f_s s}{f_t + f_{st} s}, \tag{5}$$

enabling the use of variable limits of integration.

Consider integration over the domain, R_+ , where $\widehat{\psi}_{BCSZ} > 0$:

$$\int \int_{R_{+}} M(s,t) = \int_{-1}^{1} ds \int_{\hat{l}_{t}}^{1} dt \ M(s,t)$$

Isn't MATLAB Right?

Initial thinking:

- Must respect curved boundary of integration regions
 - Only possible with analytic integration via variable limits of integration.
- MATLAB gives a solution, that solution must be right
 - Boldly [blindly] assumes we live in an analytic, not finite precision world

This results in:

- Occasional trouble with non-linear iteration
 - Predominantly with nearly zero solutions
- Maybe blindly trusting MATLAB is bad?

Quadrature integrate $\psi_{i,M}$

$$\int\int_{R^+} |\mathbf{J}| \, B_i \widehat{\psi}_{BCSZ} \, \, ds dt$$

$$E_{i} = \frac{|\psi_{i,sym} - \psi_{i,num}|}{|\psi_{i,sym}|}$$

$$\widehat{E}_{i} = \frac{|\psi_{i,MAX} - \psi_{i,num}|}{|\psi_{i,MAX}|}$$

Figure: Quadrature layout with i = 4

Evidence of Numerical Precision Issues

Figure: E_i for quadrature test.

Figure: \widehat{E}_i for quadrature test.

Modification: Adaptive Gauss-Kronrod quadrature to evaluate cell integrals

Solve for local unknowns (1 solve per cell, direction, group, sweep)

- Newton iteration with finite difference formed Jacobian
- Damping with restart based on iteration count
- $\bullet \ \widehat{\psi}_{BCSZ}^{(0)} = \widetilde{\psi}_{UBLD}$
- Search for scaled $\widehat{\psi}_{BCSZ}$. Scale using $\widehat{\psi}_{BCSZ}^{(0)}$
- $\epsilon = \epsilon_{rel} R^{(0)} + \epsilon_{abs} \| RHS \|_{L_2}$
- \bullet $\epsilon_{rel} = 10^{-10}, \ \epsilon_{abs} = 10^{-12}$
- Usually 7-10 Newton iterations per solve

Implementation in PDT

- PDT assumes unknowns live at cell vertices, and all methods are linear (not non-linear)
 - But, BCSZ is obviously non-linear
- Work around required
 - Add if statement in sweep. Affects all methods
 - 2 Multiply $\psi_{i,M}$ of converged ψ_{BCSZ} by inverse mass matrix
 - ullet Gives a bilinear function with same cell $\psi_{i,M}$ moments as ψ_{BCSZ}
 - Prepare outflow for downwind cells
 - Calculate linear/nodal values necessary to yield BCSZ edge moments
- Exact BCSZ solution representation cannot be recreated without sweeping again
 - Cell average BCSZ flux retained with work around
 - Spatial moments preserved, does not affect physics coupling

Computational Results

Methods to Compare

- UBLD: Unlumped Bilinear DFEM- Galerkin DFEM, no explanation necessary
- SCB/FLBLD: Subcell Corner Balance- On rectangles, Equivalent to UBLD with mass matrix lumping, surface matrix lumping, and other manipulations
- BCSZ: Bilinear consistent set-to-zero- Non-linear. Petrov-Galerkin DFEM, satisfies all bilinear spatial moments of the transport equation

- 10[cm] × 10[cm] square void
 Vacuum BC on left, top, right edges
- Incident flux of 1 $[n/(cm^2 sec ster)]$ in one direction on bottom edge
 - $\mu = 0.868890300722, \ \eta = 0.35002117452$
- L² like norm of cell average scalar flux

$$E_{\phi_A} = \sqrt{\sum_{c=1}^{N_{cells}} \Delta x_c \Delta y_c (\widetilde{\phi}_A - \phi_{A,exact})^2},$$

Orthogonal Mesh

625 square mesh cells

Convergence

Distorted Mesh

25×25 cells, with distorted interior vertices

Conclusions and Future Work

Conclusions

Motivation

- BCSZ is strictly non-negative
- BCSZ is more accurate than UBLD or SCB for a glancing void
- BCSZ can be applied to non-orthogonal meshes
- BCSZ requires significant local computation, but is computationally feasible

Future Work

- Develop a problem large/complex enough that timing can be performed
- Move non-linear iteration out of individual cells to enable preconditioning / DSA
- Consider removing case selection statement in favor of applying GK quad to entire cell
 - Could enable Q^N trial space discretizations

Thanks for your time! Portions of this work were funded by the

Department of Energy CSGF program, administered by the Krell Institute, under grant DE-FG02-97ER25308.

Additional support was provided by the Department of Energy, National Nuclear Security Administration, under Award Number(s) DE-NA0002376.

