EE7401 Probability and Random Processes RA 3 Solutions

Note that there can be many possible solutions. This is just one possible approach.

1.

(a) Let $N = \sum_{i=1}^{1000} X_i$. We want to find $\mathbb{E}[N]$. We have

$$\mathbb{E}[N] = \sum_{i=1}^{1000} \mathbb{E}[X_i]$$
$$= \sum_{i=1}^{1000} 10^{-8}$$
$$= 10^{-5}.$$

(b) By the Markov inequality,

$$\mathbb{P}(N \ge 10) \le \frac{1}{10} \mathbb{E}[N]$$
$$= 10^{-6}.$$

2.

(a) We have

$$p_{Y|X}(y \mid x) = p_{Z|X}(y - x \mid x)$$

$$= \begin{cases} \frac{1}{4} & -2 \le y - x \le 2, \\ 0 & \text{otherwise} \end{cases}$$

$$(1)$$

and

$$\begin{split} p_Y(y) &= \frac{1}{2} p_{Y|X}(y \mid 1) + \frac{1}{2} p_{Y|X}(y \mid -1) \\ &= \begin{cases} \frac{1}{4} & -1 \leq y \leq 1, \\ \frac{1}{8} & -3 \leq y < -1, \ 1 < y \leq 3, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

1

Using

$$p_{X|Y}(x \mid y) = \frac{p_{Y|X}(y \mid x)p_X(x)}{p_Y(y)},$$

we have

$$p_{X|Y}(1 \mid y) = \begin{cases} 0 & -3 \le y < -1, \\ \frac{1}{2} & -1 \le y \le 1, \\ 1 & 1 < y \le 3, \end{cases}$$

$$p_{X|Y}(-1 \mid y) = \begin{cases} 1 & -3 \le y < -1, \\ \frac{1}{2} & -1 \le y \le 1, \\ 0 & 1 < y \le 3. \end{cases}$$

$$(2)$$

The MMSE estimate of X given Y is

$$\mathbb{E}[X \mid Y = y] = 1 \cdot p_{X|Y}(1 \mid y) + (-1) \cdot p_{X|Y}(-1 \mid y)$$

$$= \begin{cases} -1 & -3 \le y < -1, \\ 0 & -1 \le y \le 1, \\ 1 & 1 < y \le 3, \end{cases}$$

and its MSE is

$$\mathbb{E}[\operatorname{var}(X \mid Y)] = \mathbb{E}\left[\mathbb{E}\left[X^2 \mid Y\right] - \mathbb{E}[X \mid Y]^2\right]$$
$$= 1 - \mathbb{E}\left[\mathbb{E}[X \mid Y]^2\right]$$
$$= 1 - \int_{-3}^{-1} \frac{1}{8} \, \mathrm{d}y - \int_{1}^{3} \frac{1}{8} \, \mathrm{d}y$$
$$= \frac{1}{2}.$$

(b) Let the MAP decoder be D(y). It takes value 1 if $p_{X|Y}(1 \mid y) \ge p_{X|Y}(-1 \mid y)$ and -1 otherwise. From (2), we have

$$D(y) = \begin{cases} 1 & -1 \le y \le 3, \\ -1 & -3 \le y < -1. \end{cases}$$

The error probability is

$$\mathbb{P}(D(Y) \neq X) = \mathbb{P}(-3 \le Y < -1 \mid X = 1)p_X(1) + \mathbb{P}(-1 \le Y \le 3 \mid X = -1)p_X(-1)$$
$$= \frac{1}{4},$$

where we have made use of (1). Considering the MAP decoder as an estimator, its MSE is

$$\begin{split} \mathbb{E}\big[(D(Y)-X)^2\big] \\ &= \mathbb{E}\big[(D(Y)-X)^2\,\big|\,D(Y)=X\big]\mathbb{P}(D(Y)=X) \\ &\quad + \mathbb{E}\big[(D(Y)-X)^2\,\big|\,D(Y)\neq X\big]\mathbb{P}(D(Y)\neq X) \\ &= 4\cdot\frac{1}{4} \\ &= 1. \end{split}$$

As expected, the MSE of the MAP decoder is greater than the MMSE found in (a).

Remark 1. Note that when defining the MAP decoder D(y), it does not matter which value we set D(y) to be in the case where $p_{X|Y}(1 \mid y) = p_{X|Y}(-1 \mid y)$. To see this, recall that we want to minimize the probability of error, which is equivalent to maximizing

$$\mathbb{P}(D(Y) = X) = \int_{-\infty}^{\infty} p_{X|Y}(D(y) \mid y) p_Y(y) \, \mathrm{d}y. \tag{3}$$

For each y, we choose D(y) such that $p_{X|Y}(D(y) \mid y)$ is maximized. From (3), the maximum probability is

$$\mathbb{P}(D(Y) = X) = \int_{A} p_{X|Y}(1 \mid y) p_{Y}(y) \, dy + \int_{B} p_{X|Y}(-1 \mid y) p_{Y}(y) \, dy + \int_{C} p_{X|Y}(D(y) \mid y) p_{Y}(y) \, dy,$$

where

- $A = \{y : p_{X|Y}(1 \mid y) > p_{X|Y}(-1 \mid y)\},$
- $B = \{y : p_{X|Y}(1 \mid y) < p_{X|Y}(-1 \mid y)\}$ and
- $C = \{y : p_{X|Y}(1 \mid y) = p_{X|Y}(-1 \mid y)\}$. The error probability does not change regardless of how we choose D(y) on C.

This is true in general for any Bayesian inference problem: Find a function $D(\cdot)$ of an observed Y to infer X based on minimizing $\mathbb{E}[\ell(D(Y),X)]$, where $\ell(\cdot,\cdot)$ is a non-negative risk function. From

$$\mathbb{E}[\ell(D(Y), X)] = \mathbb{E}[\mathbb{E}[\ell(D(Y), X) \mid Y]],$$

this is equivalent to minimizing $\mathbb{E}[\ell(D(y),X) \mid Y=y]$ for each y. If $\arg\min_{D(\cdot)}\mathbb{E}[\ell(D(y),X) \mid Y=y]$ is non-unique, we are choose any of the minimizers as they all give the same $\mathbb{E}[\ell(D(y),X) \mid Y=y]$ value.