Package 'LACE'

March 28, 2020

Watch 26, 2020
Version 1.0.0
Date 2020-03-28
Title Longitudinal Analysis of Cancer Evolution (LACE)
Maintainer Daniele Ramazzotti <daniele.ramazzotti@yahoo.com></daniele.ramazzotti@yahoo.com>
Depends R (>= $3.6.0$)
Imports graphics, grDevices, igraph, parallel, RColorBrewer, Rfast, stats, utils
Suggests BiocGenerics, BiocStyle, testthat, knitr
Name LACE: an R package for the inference of longitudinal cancer evolution models
Description LACE is an algorithmic framework that processes single-cell somatic mutation profiles from cancer samples collected at different time points and in distinct experimental settings, to produce longitudinal models of cancer evolution. The approach solves a Boolean Matrix Factorization problem with phylogenetic constraints, by maximizing a weighed likelihood function computed on multiple time points.
Encoding UTF-8
LazyData TRUE
License file LICENSE
<pre>URL https://github.com/BIMIB-DISCo/LACE</pre>
BugReports https://github.com/BIMIB-DISCo/LACE
biocViews BiomedicalInformatics
RoxygenNote 7.0.2
VignetteBuilder knitr
NeedsCompilation no
Author Daniele Ramazzotti [cre, aut], Fabrizio Angaroni [aut], Davide Maspero [aut], Alex Graudenzi [aut]
R topics documented:
data

2 inference

Index 7

data

mutation data from Rambow, Florian, et al. "Toward minimal residual disease-directed therapy in melanoma." Cell 174.4 (2018): 843-855.

Description

mutation data from Rambow, Florian, et al. "Toward minimal residual disease-directed therapy in melanoma." Cell 174.4 (2018): 843-855.

Usage

data(data)

Format

list of mutation data for four time points

Value

list of mutational data for a total of 475 single cells

Source

Rambow, Florian, et al. "Toward minimal residual disease-directed therapy in melanoma." Cell 174.4 (2018): 843-855.

inference

results obtained with the function LACE on the provided input data from Rambow, Florian, et al. "Toward minimal residual disease-directed therapy in melanoma." Cell 174.4 (2018): 843-855.

Description

results obtained with the function LACE on the provided input data from Rambow, Florian, et al. "Toward minimal residual disease-directed therapy in melanoma." Cell 174.4 (2018): 843-855.

Usage

data(inference)

Format

results obtained with the function LACE on the provided input data

Value

results obtained with the function LACE on the provided input data

LACE 3

LACE LACE

Description

Perform inference of the maximum likelihood clonal tree from longitudinal data.

Usage

```
LACE(
  D,
  lik_w = NULL,
  alpha = NULL,
  beta = NULL,
  initialization = NULL,
  keep_equivalent = TRUE,
  check_indistinguishable = TRUE,
  num_rs = 50,
  num_iter = 10000,
  n_{try_bs} = 500,
  learning_rate = 1,
  marginalize = FALSE,
  num_processes = Inf,
  seed = NULL,
  verbose = TRUE,
  log_file = ""
)
```

Arguments

D

lik_w	Weight for each data point. If not provided, weights to correct for sample sizes are used.
alpha	False positive error rate provided as list of elements; if a vector of alpha (and beta) is provided, the inference is performed for multiple values and the solution at maximum-likelihood is returned.
beta	False negative error rate provided as list of elements; if a vector of beta (and alpha) is provided, the inference is performed for multiple values and the solution

Mutation data from multiple experiments for a list of driver genes.

at maximum-likelihood is returned.

initialization Starting point of the mcmc; if not provided, a random starting point is used.

keep_equivalent

Boolean. Shall I return results (B and C) at equivalent likelihood with the best returned solution?

check_indistinguishable

Boolean. Shall I remove any indistinguishable event from input data prior inference?

num_rs Number of restarts during mcmc inference.

num_iter Maximum number of mcmc steps to be performed during the inference.

4 longitudinal.tree.plot

n_try_bs Number of steps without change in likelihood of best solution after which to

stop the mcmc.

learning_rate Parameter to tune the probability of accepting solutions at lower values during

mcmc. Value of learning_rate = 1 (default), set a probability proportional to the difference in likelihood; values of learning_rate greater than 1 inclease the chance of accepting solutions at lower likelihood during mcmc while values

lower than 1 decrease such probability.

marginalize Boolean. Shall I marginalize C when computing likelihood?

num_processes Number of processes to be used during parallel execution. To execute in single

process mode, this parameter needs to be set to either NA or NULL.

seed Seed for reproducibility.

verbose Boolean. Shall I print to screen information messages during the execution?

log_file log file where to print outputs when using parallel. If parallel execution is dis-

abled, this parameter is ignored.

Value

A list of 9 elements: B, C, clones_prevalence, relative_likelihoods, joint_likelihood, clones_summary and error_rates. Here, B returns the maximum likelihood longitudinal clonal tree, C the attachment of cells to clones, corrected_genotypes the corrected genotypes and clones_prevalence clones' prevalence; relative_likelihoods and joint_likelihood are respectively the likelihood of the solutions at each individual time points and the joint likelihood; clones_summary provide a summary of association of mutations to clones. In equivalent_solutions, solutions (B and C) with likelihood equivalent to the best solution are returned. Finally error_rates provides the best values of alpha and beta among the considered ones.

Examples

longitudinal.tree.plot

longitudinal.tree.plot

Description

Plot a longitudinal tree inferred by LACE.

longitudinal.tree.plot 5

Usage

```
longitudinal.tree.plot(
  inference,
  labels = "mutations",
  clone_labels = NULL,
  label.cex = 1,
  iter_max = 100,
  size = 500,
  size2 = NULL,
  tk_plot = FALSE,
  tp_mark = TRUE,
  tp_mark_alpha = 0.5,
  legend = TRUE,
  legend_position = "topleft",
  legend_cex = 0.8
)
```

Arguments

inference	Results	of the	inference	hy I.	ACE
Till el elice	resums	or the	IIII EI EIICE	vy L	ACL.

labels Specify which type of label should be placed on the tree; options are, "muta-

tions": parental edges are labeled with the acquired mutation between the two nodes (genotypes); "clones": nodes (genotypes) are labeled with their last acquired mutation; "both": either nodes and edges are labeled as specified above;

"none": no labels will show on the longitudinal tree.

clone_labels Character vector that specifies the name of the nodes (genotypes). If it is NULL

(default), nodes will be labeled as specified by "label" parameter.

label.cex Specify the size of the labels.

iter_max Maximum number of iteration to be used to remove intersecting edges.

size Specify size of the nodes. The final area is proportional with the node preva-

lence.

size2 Specify the size of the second dimension of the nodes. If NULL (default), it is

set equal to "size".

tk_plot If TRUE, uses tkplot function from igraph library to plot an interactive tree.

Default is FALSE.

tp_mark If TRUE (defaul) the function draws different colored area under the nodes in

different time points.

tp_mark_alpha Specify the alpha value of the area drawed when tp_mark = TRUE.

legend If TRUE (default) a legend will be displayed on the plot.

legend_position

Specify the legend position.

legend_cex Specify size of the legend text.

Examples

6 longitudinal.tree.plot

clone_labels = clone_labels,
legend_position = "topright")

Index

```
data, 2
inference, 2

LACE, 3
longitudinal.tree.plot, 4
```