Algorithm Foundations of Data Science and Engineering Welcome Tutorial :-) Tutorial 10

GAO Ming

DaSE @ ECNU

27 May, 2019

Tutorial 10

1. Write the following condition as integer programming constraints. At least one of the following two inequalities hold:

$$x_1 + x_2 + x_3 + x_4 \le 4, 3x_1 - x_2 - x_3 + x_4 \le 3$$

Write the equivalent IP constraints and define any new variables. Assume that $x_j \ge 0$ for each j = 1 to 4, and that each variable is required to be integer.

2. Let

$$f(x) = \begin{cases} 10x, & \text{if } 0 \le x \le 50, \\ 500, & \text{if } 51 \le x \le 100, \\ 5x, & \text{if } x \ge 101, \end{cases}$$

Rewrite the following non-linear programming problem as an integer program.

Tutorial 10 Cont'd

- 3. If x and y are integers,
 - a. How would ensure that $x+y \le 3$, $2x+5y \le 12$, or both are satisfied by x and y?
 - b. How would ensure when $x \le 2$, then $y \le 3$?
- 4. Given the following IP problem

IP(1)

Maximize: $10x_1 + 4x_2 + 9x_3$

Subject to:
$$5x_1 + 4x_2 + 3x_3 \le 9$$

 $0 \le x_i \le 1$ and $x_i \in Z$ for $i = 1$ to 3

- a. Write down the LP relaxation of IP(1);
- b. If $x_1 = 1$, please find the upper bound of the corresponding IP;
- c. Please use the Branch and Bound algorithm to solve IP(1), and determine how many nodes are pruned.

Tutorial 10 Cont'd

5. The set packing problem is the problem of selecting the maximum cost sub-collection of sets, no two of which share a common element.

Input: Universe set
$$U = \{u_1, u_2, \dots, u_n\}$$

Subsets $S = \{s_i | s_i \subset U, 1 \le i \le m\}$
Costs $C = \{c_1, c_2, \dots, c_m\}$

Please formulate the set packing problem as an IP problem.

6. Given the following IP problem

Minimize:
$$z = 3x_1 + x_2$$

Subject to:
$$2x_1 - x_2 \le 6$$

 $x_1 + x_2 \le 4$
 $0 \le x_i$ and $x_i \in Z$ for $i = 1$ to 2

- a. Please find two valid inequalities of the IP;
- b. Determine the feasible region of the IP:
- c. Determine the convex hull of the IP;
- c. Please use LP to solve the IP.