Λογική Σχεδίαση

Εργαστηριακή Άσκηση 5

Όνοματεπώνυμο: Πασχάλης Μοσχογιάννης

Αριθμός Μητρώου: 2114026

A1.

111.				
X	Y	Z	F	
0	0	0	0	
0	0	1	1	1
0	1	0	0	
0	1	1	1	3
1	0	0	1	4
1	0	1	1	5
1	1	0	0	
1	1	1	0	

a)

Αν τις μεταβλητές Υ,Ζ χρησιμοποιηθούν ως επιλογέ του πολυπλέκτη S1=Y, S0=Z και η συνάρτηση αποτελεί την έξοδο του Πολυπλέκτη Y=F τότε σύμφωνα με τον πίνακας υλοποίησης του Πολυπλέκτη έχουμε: F(I0) =X F(I1)=1 F(I2)=0 F(I3)=X'

Ενναλακτικός τρόπος επίλυσης

	10	I1	I2	I3
X'	0	1	2	3
X	4	5	6	7
	X	1	0	X'

b) Αν τις μεταβλητές Χ,Υ χρησιμοποιηθούν ως επιλογέ του πολυπλέκτη S1=X, S0=Y και η συνάρτηση αποτελεί την έξοδο του Πολυπλέκτη Y=F τότε σύμφωνα με τον πίνακας υλοποίησης του Πολυπλέκτη έχουμε:F(I0) =Z F(I1) =Z F(I2) =1 F(I3) =0

Ενναλακτικός τρόπος επίλυσης

Ενναλακτικός τρολ	10	I1	I2	13
Z'	0	2	4	6
Z	1	3	5	7
	Z	Z	1	0

A2. α) AEM:211**026**

A	В	С	SUM	b3	b2	b1	b0		a	b	С	d	e	f	g
0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0
0	0	1	6	0	0	0	1	1	0	1	0	0	0	0	0
0	1	0	2	0	0	1	0	2	1	1	1	1	1	0	1
0	1	1	8	0	0	1	1	3	1	1	1	1	0	0	1
1	0	0	0	0	1	0	0	4	0	1	0	0	0	1	1
1	0	1	6	0	1	0	1	5	1	0	1	1	0	1	1
1	1	0	2	0	1	1	0	6	1	0	1	1	1	1	1
1	1	1	8	0	1	1	1	7	1	1	0	0	0	0	0
						0	0	8	1	1	1	1	1	1	1
				1	0	0	1	9	1	1	1	1	0	1	1

B.

Για την έξοδο χ ο χάρτης Karnaugh είναι:

DOD1\D2D	00	01	11	10
00	X	1	1	1
01				
11				
10				

X=D0'D1'(D2+D3)

Για την έξοδο Y ο χάρτης Karnaugh είναι:

DOD1\D2D	00	01	11	10
3				
00	X	1		
01	1	1	1	1
11				
10				

Y=D0'(D1+D2'D3)

Για την έξοδος z είναι η συνάρτηση OR όλων των μεταβλητών, Z=D0+D1+D2+D3

C. 1a)

Πληρη αθροιστή με έναν αποκωδικοποιητή και 2 πύλες `Η`

	tilbil grobototil pre	CTOIT OUTCOILES O CILOTES	ti ti itali = italics		_
A	В	Cin	S	Со	
0	0	0	0	0	10
0	0	1	1	0	I1
0	1	0	1	0	I2
0	1	1	0	1	I3
1	0	0	1	0	I4
1	0	1	0	1	I5
1	1	0	0	1	I6
1	1	1	1	1	Ī17

 $Fs=\Sigma(I1,I2,I4,I7) = A'B'Cin+A'BC'in+AB'C'in+ABCin$

 $Fco=\Sigma(I3,I5,I6,I7) = A'Bcin+AB'Cin+ABC'in+ABCin$

C1.

Αποκωδικοποιητής 4Χ16 με χρήση 3Χ8 αποκ/των (ο.κ 74138)

Αποκωσικοποιητής 4Χ10 με χρήση 5Χο αποκ/των (σ.κ. 7415σ)																				
Είσοδοι Δεκ													Έξο	οδοι						
W	X	Y	Z	αρ	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
0	0	0	0	0	0															
0	0	0	1	1		0														
0	0	1	0	2			0													
0	0	1	1	3				0												
0	1	0	0	4					0											
0	1	0	1	5						0										
0	1	1	0	6							0									
0	1	1	1	7								0								
1	0	0	0	8									0							
1	0	0	1	9										0						
1	0	1	0	10											0					
1	0	1	1	11												0				
1	1	0	0	12													0			
1	1	0	1	13														0		
1	1	1	0	14															0	
1	1	1	1	15																0

C1.

C2.

Οι συναρτήσεις εξόδου μπορούν να πάρουν την αρχική τους μορφή, δηλαδή πριν την απλοποίηση και να γραφτούν ως εξής:

F1=xy+x'y'z'=xyz+xyz'+x'y'z'

F2=x'y+xy'z=x'yz+x'yz'+xy'z

F3=y'z+x'yz=xy'z+x'y'z+x'yz

	X	y	Z	F1	F2	F3
0	0	0	0	1	0	0
1	0	0	1	0	0	1
2	0	1	0	0	1	0
3	0	1	1	0	1	1
4	1	0	0	0	0	0
5	1	0	1	0	1	1
6	1	1	0	1	0	0
7	1	1	1	1	0	0

Επομένως, για να υλοποιηθεί η έξοδος F1 θα οδηγήσουμε τις εξόδους 0,6 και 7 του αποκωδικοποιητή σε μια πύλη NAND.

Για να υλοποιηθεί η έξοδος F2 θα οδηγήσουμε τις εξόδους 2,3 και 5 του αποκωδικοποιητή σε μια πύλη NAND.

Για να υλοποιηθεί η έξοδος F3 θα οδηγήσουμε τις εξόδους 1,3 και 5 του αποκωδικοποιητή σε μια πύλη NAND.

