Nom Prénom

Université d'Avignon - Faculté des sciences L3-S5 Algèbre générale 1

Année 2019-2020

Contrôle continu n° 2

$Dur\'ee~1h20$	
QCM. (2p) Cocher les bonnes réporfaux). Soit A et A' deux anneaux commorphisme d'anneaux. 1. Soit J un idéal de A' . Alors $f^{-1}(J)$ \square un sous-anneau de A \square un idéal de A	nmutatifs non nuls, et $f:A\to A'$ un est
2. L(es) endomorphisme(s) de l'anneau \square l'application nulle sur $\mathbb R$ \square les homothéties de $\mathbb R$	1 $\mathbb R$ est (sont) : \square l'application identité de $\mathbb R$ \square l'application constante 1 sur $\mathbb R$.
3. Soit I un idéal de A . Alors $f(I)$ est \square un sous-anneau de A' \square un idéal de A'	□ un sous-groupe de $(A', +)$ $□$ sans structure particulière.
Exercice 1. 1. Déterminer le pgcd de 189 et 255 dans l'anneau \mathbb{Z} . (1,5p) 2. Résoudre dans \mathbb{Z} l'équation diophantienne : $189x + 255y = 3$. (2p)	
Exercice 2. Soit $\mathbb{Z}[X]$ l'ensemble des polynôme que $(\mathbb{Z}[X], +, \times)$ est un anneau. On dé formé des polynômes $P \in \mathbb{Z}[X]$ tels qu	
$\mathcal{I} = \{ P \in A; P(0) = 0 \}.$	

- 1. Pour tout entier naturel k, décrire l'idéal de $\mathbb{Z}[X]$ engendré par X^k . (0,5p)
- 2. Montrer que A est un sous-anneau de $\mathbb{Z}[X]$. (2p)
- 3. Montrer que \mathcal{I} est un idéal de A mais qui n'est pas principal. $(\mathbf{1p}+\mathbf{2p})$

Tournez S.V.P. ===>

Exercice 3.

Soient I et J deux idéaux de l'anneau commutatif A. On définit le radical de I par :

$$\sqrt{I} = \{ x \in A; \exists n \in \mathbb{N}^*, x^n \in I \}.$$

- 1. Montrer que \sqrt{I} est un idéal contenant I. (2p)
- 2. Si $A=\mathbb{Z},\ I=2\mathbb{Z},8\mathbb{Z},18\mathbb{Z},$ que vaut \sqrt{I} ? Plus généralement, si p_1,\ldots,p_n sont des nombres premiers non associés et α_1,\ldots,α_n sont dans \mathbb{N}^* , chercher $\sqrt{(p_1^{\alpha_1}\ldots p_n^{\alpha_n})\mathbb{Z}}$. $(\mathbf{1,5p+1,5p})$
- 3. Montrer que $\sqrt{\sqrt{I}} = \sqrt{I}$. (1p)
- 4. Soit IJ l'ensemble des sommes finies de produits d'un élément de I par un élément de J. Montrer que IJ est un idéal. (1p)
- 5. Montrer que $\sqrt{IJ} = \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$. (2p)