VIETNAM UNIVERSITY – HO CHI MINH CITY UNIVERSITY OF SCIENCE FACULTY OF INFORMATION TECHNOLOGY

----- 8 W -----

ARTIFICIAL INTELLIGENCE LAB 02: PL RESOLUTION

Lecturer: Bùi Tiến Lên, Trần Quốc Huy, Phạm Trọng Nghĩa

Name: Ngô Quốc Quý

ID: 21127679

Class: 21CLC08

TABLE OF CONTENTS

I.	Checklist:	3
II.	Brief description:	3
a.	. handle_input:	3
b.	. handle_output:	3
c.	negate_literal:	4
d.	. check_negation_literal:	4
e.	. CNF:	4
f.	PL_resolve:	4
g.	. PL_resolution:	4
h.	. main:	5
III.	Evaluation:	5
IV.	References:	5

I. Checklist:

No.	Specifications	Complete	Finish
1	Read the input data and successfully store it in some data	10%	Done
	structures.		
2	The output file strictly follows the lab specifications.	10%	Done
3	Implement the propositional resolution algorithm.	20%	Done
4	Provide a complete set of clauses and exact conclusion.	30%	Done
5	Five test cases: both input and output files.	10%	Done
6	Discussion on the algorithm's efficiency and suggestions.	20%	Done
	Total	100%	

II. Brief description:

The lab02 follow the PL-resolution algorithm to implement if a given knowledge base (KB) entails a query (alpha). There are 5 files input test cases (input_1.txt, input_2.txt,...) will solve and write 5 files output corresponding to input files which are followed the output requirements of the lab.

a. handle_input:

- Input: filename (string)
- Output: query (list), KB (list)
- Description:
 - + Function handle_input gets a string value names filename then reads the file with the path corresponding to filename which are transmit in and follows the rules of input requirement.
 - + Get the query and KB by splitting the input file, then return

b. handle_output:

- Input: is_success (bool), clauses (list)
- Output: None
- Description:
 - + Check if the is_success is true or false to get YES or NO string to write to output file.
 - + Get the values in clauses (list) then write it to output file.

c. negate_literal:

- Input: clause (list)
- Output: new_clause (list)
- Description:
 - + Iterate over each element in clause (list) using two for loops, check if it has "-" then negate it by delete the "-" of that string.
 - + Return a new list contains the literals after negation.

d. check_negation_literal:

- Input: 11 (list), 12 (list)
- Output: True or False
- Description:
 - + Comparing two literal 11 and 12, then check if they're opposite then return True, otherwise if they're equal then return False.
 - + The function get the boolean value to check opposite two literal which can be delete when PL-resolve.

e. CNF:

- Input: query (list), KB (list)
- Output: KB + negation of query (list)
- Description:
 - + Use negate_literal function to negate the query.
 - + After negating the query, merge it with the KB then return.

f. PL_resolve:

- Input: c1 (list), c2 (list)
- Output: resolvents (list or None or [])
- Description:
 - + Use two for loops to iterate clause 1 and clause 2, use check_negation_literal to check if clause 1 and clause 2 has opposite value then save that elements into 2 temp list.
 - + Remove the elements in temp list then merge two clause into resolvents.
 - + If the resolvents is none then return None, otherwise, if the resolvents has the values, I sort it alphabetical order then return.

g. PL_resolution:

- Input: query (list), KB (list)
- Output: True/False, new_clause (list)

- Description:

- + Apply the PL-resolution algorithm by using while loops.
- + Create a temp new clause to store the new after using PL-resolve to get resolvents from the pair C1 and C2, check if the resolvents are [] then append to main new_clause and return true, new_clause.
- + Check if the main clauses not contains the resolvents then append the resolvents into temp new clause.
 - + Check if the temp new clause is [] then return False and main new clause.
- + In every loops while will append the temp new clause to main new clause, and similar to main clauses.

h. main:

- Input: None

Output: None

- Description:
 - + Call handle_input to handle the input file.
 - + Get is_success and clauses when implement the PL-resolution
 - + Call handle_output to write the output into output file.

III. Evaluation:

- The ways to apply the algorithm maybe get lots of mistakes and not optimization.
- Dealing with negative clauses is cumbersome and requires many steps, cause the algorithm is not handling in an optimization.
- Use too much loops then may be make the algorithm becomes lower and quite waste of times.
- The code style hasn't clean yet.

IV. References:

Neso Academy: (1) The Resolution Principle (Preliminaries) - YouTube

kieuconghau's github: <u>kieuconghau/pl-resolution: HCMUS - Artificial Intelligence - Lab</u> 2: Popositional Logic - Resolution (github.com)

HCMUS – moodle, slides, videos.