INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

CS60050 – Machine Learning

Assignment 1 Decision Trees

Submitted by:
Jothi Prakash (19EC39023)
Tushar Kishore Bokade (19CS30011)

Theory

A tree has many analogies in real life, and turns out that it has influenced a wide area of machine learning, covering both classification and regression. In decision analysis, a decision tree can be used to visually and explicitly represent decisions and decision making. As the name goes, it uses a tree-like model of decisions. Though a commonly used tool in data mining for deriving a strategy to reach a particular goal, its also widely used in machine learning

Important Aspects of a Decision Tree -

Recursive Binary Splitting

In this procedure all the features are considered and different split points are tried and tested using a cost function. The split with the best cost (or lowest cost) is selected.

Cost of a split

Regression: $sum(y - prediction)^2$

Classification: G = sum(pk * (1 - pk))

Pruning

The performance of a tree can be further increased by pruning. It involves removing the branches that make use of features having low importance. This way, we reduce the complexity of tree, and thus increasing its predictive power by reducing overfitting.

Experimental Procedure

Imported 3 libraries – Numpy, Pandas and Matplotlib

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

- Read the data

	Restaurant	Extra	Cheeze	Extra Mushroom	Size by Inch	Extra Spicy	Price	
0	Α		yes	yes	12	no	650	
1	В		no	yes	15	yes	800	
2	C		no	no	9	no	500	
3	D		yes	no	12	yes	700	
4	E		yes	no	12	yes	750	
5	F		no	yes	15	yes	900	
6	G		yes	no	9	no	600	
7	Н		yes	no	9	yes	700	
8	I		no	yes	15	no	750	
9	J		no	yes	15	no	700	
10	K		yes	yes	8	no	600	
11	L		no	no	12	yes	700	
12	М		yes	yes	8	no	550	
13	N		yes	yes	12	yes	900	
14			yes	no	12	no	700	
15			yes	yes	12	no	750	
16			no	yes	15	yes	1000	
17			no	no	9	no	650	
18			yes	yes	12	yes	950	
19	Т		yes	no	9	no	700	

- Renaming the columns and the data for ease of use

					_		
	restaurant	cheese	mushroom	inch	spicy	price	
0	Α	1	1	12	0	650	
1	В	0	1	15	1	800	
2	С	0	0	9	0	500	
3	D	1	0	12	1	700	
4	E	1	0	12	1	750	
5	F	0	1	15	1	900	
6	G	1	0	9	0	600	
7	Н	1	0	9	1	700	
8	I	0	1	15	0	750	
9	J	0	1	15	0	700	
10	K	1	1	8	0	600	
11	L	0	0	12	1	700	
12	М	1	1	8	0	550	
13	N	1	1	12	1	900	
14	. 0	1	0	12	0	700	
15	Р	1	1	12	0	750	
16	Q	0	1	15	1	1000	
17		0	0	9	0	650	
18	S	1	1	12	1	950	
19		1	0	9	0	700	

- Splitting the data as 70% train and 30% test over multiple iterations

Root Mean Squared Error Over Multiple Iterations

- Best Tree obtained is

```
---- Best Obtained Tree ----
Min Error Obtained in the Best Tree : 13.608276348795403
Depth of the Best Tree Obtained: 3
```

Performing Rule based pruning while changing the depth of the decision tree

```
Depth of Tree 3
 ---feature_4 < 1
         ---feature_3 < 12
                 ---feature 0 < R
                        |--- Mean Value
                  --feature_0 >= R
                        |--- Mean Value
           -feature_3 >= 12
                 ---feature_0 < 0
                        |--- Mean Value
                  --feature_0 >= 0
                         |--- Mean Value
   -feature_4 >= 1
         ---feature_2 < 1
                |--- Mean Value
          --feature 2 >= 1
                 ---feature 0 < Q
                        |--- Mean Value
                   --feature_0 >= Q
                         --- Mean Value
```

Variation of Error with Depth of Tree

Results

- The obtained Root Mean Squared Error fluctuates between 10 140 over different train and test split of the data
- The best tree gave a Root Mean Squared Error of 13.60 and had a depth of 3
- The best tree gave the best Mean Squared Error of 30.30 on the dataset
- With increasing depth of the tree it always performs better, this maybe due to the very limited availability of data of just 21 entries