Dr. Shashi Ranjan Kumar

Assistant Professor

Department of Aerospace Engineering Indian Institute of Technology Bombay Powai, Mumbai, 400076 India

Navigation Systems

- **Navigation**: Science of directing a vehicle to the destination by determining its position from observation of landmarks, celestial bodies, or radio beams.
- Inertial Navigation Systems:
 - ☐ Self-contained determination of the instantaneous position and other parameters of motion of a vehicle ☐ Using measuring specific force, angular velocity, and time in a selecter
 - ☐ Using measuring specific force, angular velocity, and time in a selected coordinate system.
 - Velocity and position are determined through real-time integration of the governing differential equations, with measured specific force as an input.
- Errors in INS
 - Initial condition errors
 - ☐ Gravitational mass attraction compensation errors
 - □ Coordinate frame transformation errors
 - \square Sensor errors such as accelerometers, gyroscopes, and external navigation aids
- Complicated error equations due to the different coordinate frames involved and the many error sources inherent in the instruments.

General Relative Motion Equations

- Consider a rigid body fixed at point O
 of fixed Cartesian coordinate system
 XYZ, called as I-frame.
- Assume a point in body with position r and velocity \dot{r} relative to origin O.

$$r = XI + YJ + ZK$$

 $\dot{r} = \frac{dr}{dt} = \dot{X}I + \dot{Y}J + \dot{Z}K$

• For a rigid body with fixed point,

$$\dot{r} = \omega \times r$$

where, angular velocity ω is given by

$$\boldsymbol{\omega} = \Omega_X \boldsymbol{I} + \Omega_Y \boldsymbol{J} + \Omega_Z \boldsymbol{K}$$

General Relative Motion Equations

Components of velocity vector in fixed frame

$$\boldsymbol{\omega} \times \boldsymbol{r} = \begin{vmatrix} \boldsymbol{I} & \boldsymbol{J} & \boldsymbol{K} \\ \Omega_X & \Omega_Y & \Omega_Z \\ X & Y & Z \end{vmatrix}$$
$$= \underbrace{(\Omega_Y Z - \Omega_Z Y)}_{v_X} \boldsymbol{I} + \underbrace{(\Omega_Z X - \Omega_X Z)}_{v_Y} \boldsymbol{J} + \underbrace{(\Omega_X Y - \Omega_Y X)}_{v_Z} \boldsymbol{K}$$

- Assume a second coordinate system R-frame.
- Consider P at any point in the body and O the origin of space axes.
- ullet Velocity of any point Q in the body w.r.t. space axes at O is given by

$$oldsymbol{v}_Q = oldsymbol{v}_P + oldsymbol{\omega} imes oldsymbol{r}_{Q/P}$$

where, $r_{Q/P}$ is the relative distance of Q w.r.t. P.

ullet Relative velocity of Q w.r.t. P is defined as

$$v_{Q/P} = v_Q - v_P = \boldsymbol{\omega} \times r_{Q/P}$$

General Relative Motion Equations

ullet Vector function $oldsymbol{A}(t)$ can be expressed in two coordinate frames as

$$\mathbf{A}(t) = A_X \mathbf{I} + A_Y \mathbf{J} + A_Z \mathbf{K} = A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}$$

• Its derivatives are given by

$$\dot{\boldsymbol{A}}(t) = \frac{d\boldsymbol{A}(t)}{dt} = \dot{\boldsymbol{A}}_{\boldsymbol{X}}\boldsymbol{I} + \dot{\boldsymbol{A}}_{\boldsymbol{Y}}\boldsymbol{J} + \dot{\boldsymbol{A}}_{\boldsymbol{Z}}\boldsymbol{K}$$

$$= \dot{\boldsymbol{A}}_{\boldsymbol{x}}\boldsymbol{i} + \dot{\boldsymbol{A}}_{\boldsymbol{y}}\boldsymbol{j} + \dot{\boldsymbol{A}}_{\boldsymbol{z}}\boldsymbol{k} + \boldsymbol{A}_{\boldsymbol{x}}\dot{\boldsymbol{i}} + \boldsymbol{A}_{\boldsymbol{y}}\dot{\boldsymbol{j}} + \boldsymbol{A}_{\boldsymbol{z}}\dot{\boldsymbol{k}}$$

$$= \frac{\delta\boldsymbol{A}}{\delta t} + \boldsymbol{A}_{\boldsymbol{x}}\dot{\boldsymbol{i}} + \boldsymbol{A}_{\boldsymbol{y}}\dot{\boldsymbol{j}} + \boldsymbol{A}_{\boldsymbol{z}}\dot{\boldsymbol{k}}$$

Derivative of unit vector in fixed frame

$$\boxed{\frac{d\boldsymbol{i}}{dt} = \boldsymbol{\omega} \times \boldsymbol{i}, \quad \frac{d\boldsymbol{j}}{dt} = \boldsymbol{\omega} \times \boldsymbol{j}, \quad \frac{d\boldsymbol{k}}{dt} = \boldsymbol{\omega} \times \boldsymbol{k}}$$

where, ω is the angular velocity of coordinate axes.

General Relative Motion Equations

• Derivative of a vector in two frames XYZ and xyz are related as

$$\left[rac{dm{A}(t)}{dt}
ight]_{XYZ} = rac{dm{A}(t)}{dt} = rac{\deltam{A}}{\delta t} + m{\omega} imes m{A}$$

$$\left[\frac{d\mathbf{A}(t)}{dt} \right]_{XYZ} = \left[\frac{d\mathbf{A}(t)}{dt} \right]_{xyz} + \boldsymbol{\omega} \times \mathbf{A}$$

where, ω is the angular velocity of xyz w.r.t. XYZ.

Alternatively,

$$\frac{\delta \mathbf{A}}{\delta t} = \frac{d\mathbf{A}(t)}{dt} - \boldsymbol{\omega} \times \mathbf{A} = \frac{d\mathbf{A}(t)}{dt} + (-\boldsymbol{\omega}) \times \mathbf{A}$$

where, $(-\omega)$ is the angular velocity of XYZ w.r.t. xyz.

 From a kinematic point of view, it makes no difference which system is considered as fixed and which one as rotating.

General Relative Motion Equations

- Consider two points P and Q with position vectors denoted by \mathbf{R} and \mathbf{r} , respectively, w.r.t. the point O.
- Relative position of Q w.r.t. P is denoted by p.
- Relative equation of motion

$$oxed{r=R+p,\ \dot{r}=\dot{R}+\dot{p},\ \ddot{r}=\ddot{R}+\ddot{p}}$$

- Let XYZ with origin at O be fixed and xyz with origin at P is moving with the angular velocity ω .
- ullet Derivative of relative position vector $oldsymbol{p}$

$$\dot{\boldsymbol{p}} = \frac{d\boldsymbol{p}}{dt} = \frac{\delta \boldsymbol{p}}{\delta t} + \boldsymbol{\omega} \times \boldsymbol{p}$$

$$\ddot{\boldsymbol{p}} = \frac{d\dot{\boldsymbol{p}}}{dt} = \frac{\delta\dot{\boldsymbol{p}}}{\delta t} + \boldsymbol{\omega} \times \dot{\boldsymbol{p}} = \frac{\delta^2 \boldsymbol{p}}{\delta t^2} + \frac{\delta(\boldsymbol{\omega} \times \boldsymbol{p})}{\delta t} + \boldsymbol{\omega} \times \left(\frac{\delta \boldsymbol{p}}{\delta t} + \boldsymbol{\omega} \times \boldsymbol{p}\right)$$
$$= \frac{\delta^2 \boldsymbol{p}}{\delta t^2} + \frac{\delta \boldsymbol{\omega}}{\delta t} \times \boldsymbol{p} + 2\boldsymbol{\omega} \times \frac{\delta \boldsymbol{p}}{\delta t} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \boldsymbol{p})$$

General Relative Motion Equations

$$ullet$$
 As $rac{doldsymbol{\omega}}{dt}=rac{\deltaoldsymbol{\omega}}{\delta t}=\dot{oldsymbol{\omega}}$, we have

$$\ddot{\boldsymbol{p}} = \frac{\delta^2 \boldsymbol{p}}{\delta t^2} + \dot{\boldsymbol{\omega}} \times \boldsymbol{p} + 2\boldsymbol{\omega} \times \frac{\delta \boldsymbol{p}}{\delta t} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \boldsymbol{p})$$

Complete relative equation of motion

$$\begin{split} \boldsymbol{r} &= \boldsymbol{R} + \boldsymbol{p} \\ \frac{d\boldsymbol{r}}{dt} &= \frac{d\boldsymbol{R}}{dt} + \frac{\delta\boldsymbol{p}}{\delta t} + \boldsymbol{\omega} \times \boldsymbol{p} \\ \frac{d^2\boldsymbol{r}}{dt^2} &= \underbrace{\frac{d^2\boldsymbol{R}}{dt^2} + \frac{\delta^2\boldsymbol{p}}{\delta t^2}}_{\text{Linear acceleration terms}} + \underbrace{\boldsymbol{\dot{\omega}} \times \boldsymbol{p}}_{\text{Tangential component due to } \boldsymbol{\dot{\omega}}} + \underbrace{2\boldsymbol{\omega} \times \frac{\delta\boldsymbol{p}}{\delta t}}_{\text{Coriolis acceleration}} \end{split}$$

centripetal acceleration

 $+ \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \boldsymbol{p})$

General Navigation Equations

 Differential equation of motion of inertial navigation of vehicle relative to inertial frame

$$egin{aligned} \dot{m{R}} = ~~ m{\mathcal{V}} \ rac{dm{\mathcal{V}}}{dt}igg|_I = ~~ m{A} + m{g}_m(m{R}) \end{aligned}$$

where.

 $oldsymbol{R}=\mathsf{Geocentric}$ position vector

 ${oldsymbol {\cal V}}=$ Velocity of the vehicle relative to the inertial frame

 $oldsymbol{A}=\mathsf{Non} ext{-}\mathsf{gravitational}$ specific force

 $m{g}_m(m{R}) =$ Gravitational acceleration due to mass attraction, considered positive toward the center of the Earth

Gravity effect of Moon, Sun, and other stars are neglected.

General Navigation Equations

We can rewrite previous equation as

$$\boxed{ \boldsymbol{A} = \left. \begin{array}{cc} \frac{d^2 \boldsymbol{R}}{dt^2} \right|_I - \boldsymbol{g}_m(\boldsymbol{R}) }$$

- ullet Specific force (accelerometer's output) $oldsymbol{A}$ is proportional to the inertial acceleration of the system due to all forces, except gravity.
- Since the Earth is rotating and moving w.r.t. inertial space, a transformation is necessary to relate measurements taken in inertial space to observations of position, velocity, and acceleration in a moving vehicle.
- An ideal accelerometer measures the specific force, that is, the difference between the inertial acceleration and gravitational acceleration.
- For Earth-centered inertial (ECI) system,

$$oldsymbol{A}^P = oldsymbol{C}_I^P \left[\ddot{oldsymbol{R}}^I - oldsymbol{g}_m^I(oldsymbol{R})
ight]$$

where $oldsymbol{C}_I^P$ is the transformation matrix from inertial to platform coordinates.

 Earth-centered inertial (ECI) acceleration in terms of specific force and gravity can be written as

$$egin{bmatrix} \ddot{oldsymbol{R}}^I = & oldsymbol{C}_P^I oldsymbol{A}^P + oldsymbol{g}_m^I(oldsymbol{R}) \end{bmatrix}$$

where $oldsymbol{C}_P^I$ is the transformation matrix from platform to inertial coordinates.

Block diagram representation

- For navigation at or near the surface of the earth, the position and velocity of vehicle should be referred in an ECEF coordinate system.
- From the Law of Coriolis, the expression relating ECI and ECEF velocities,

$$\left[rac{doldsymbol{R}}{dt}
ight]_{I}=\left[rac{doldsymbol{R}}{dt}
ight]_{E}+oldsymbol{\Omega} imesoldsymbol{R}=oldsymbol{V}+oldsymbol{\Omega} imesoldsymbol{R}$$

where, Ω is the angular rate of Earth relative to the inertial frame, and V is true velocity of vehicle w.r.t. the Earth.

- As angular rate of earth is constant, we have $d\Omega/dt = 0$.
- Differentiating w.r.t. inertial coordinates,

$$\left[\frac{d^2\mathbf{R}}{dt^2}\right]_I = \left[\frac{d\mathbf{V}}{dt}\right]_I + \mathbf{\Omega} \times \left[\frac{d\mathbf{R}}{dt}\right]_I$$

General Navigation Equations

 \bullet On substituting for $[d{\boldsymbol R}/dt]_I$,

$$\left[\frac{d^2 \boldsymbol{R}}{dt^2}\right]_I = \left[\frac{d\boldsymbol{V}}{dt}\right]_I + \boldsymbol{\Omega} \times \boldsymbol{V} + \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \boldsymbol{R})$$

- As output of accelerometer gives measurements in platform frame, differentiation and integration need to be carried out in same frame.
- ullet Relation between derivatives of V w.r.t. platform and inertial space is

$$\left[\frac{d\boldsymbol{V}}{dt}\right]_{I} = \left[\frac{d\boldsymbol{V}}{dt}\right]_{P} + \boldsymbol{\omega} \times \boldsymbol{V}$$

where ω is the angular rate of platform w.r.t. inertial space (spatial rate).

$$\left[\frac{d^2 \boldsymbol{R}}{dt^2}\right]_I = \left[\frac{d\boldsymbol{V}}{dt}\right]_P + (\boldsymbol{\Omega} + \boldsymbol{\omega}) \times \boldsymbol{V} + \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \boldsymbol{R})$$

General Navigation Equations

Finally, we have

$$\boldsymbol{A} = \left[\frac{d\boldsymbol{V}}{dt}\right]_P + (\boldsymbol{\Omega} + \boldsymbol{\omega}) \times \boldsymbol{V} + \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \boldsymbol{R}) - \boldsymbol{g}_m(\boldsymbol{R})$$

 As the centripetal acceleration of Earth is a function of position of Earth only, it can be combined with gravity term.

$$\boldsymbol{g}(\boldsymbol{R}) = \boldsymbol{g}_m(\boldsymbol{R}) - \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \boldsymbol{R}) = \omega_s^2 \boldsymbol{R}$$

where $\omega_s = \sqrt{g(R)/R}$ is the Schuler angular frequency.

- ullet g(R) is dominant feedback term for principal mode of behavior of INS.
- Generalized mechanization equation

$$oldsymbol{A} = \left[rac{doldsymbol{V}}{dt}
ight]_P + (oldsymbol{\Omega} + oldsymbol{\omega}) imes oldsymbol{V} - oldsymbol{g}(oldsymbol{R})$$

• It does not refer to any particular type of system coordinate frame.

- Locally level platform coordinate frame: spatial rate being equal to sum of Earth rate and vehicle (or platform) angular rate ρ w.r.t. Earth-fixed frame.
- ullet Term ho is called as transport rate and mathematically, $\omega=
 ho+\Omega$.
- On rearranging, we get

$$\left[\frac{d\boldsymbol{V}}{dt}\right]_{P} = \boldsymbol{A} - (\boldsymbol{\rho} + 2\boldsymbol{\Omega}) \times \boldsymbol{V} + \boldsymbol{g}(\boldsymbol{R})$$

- Generalized navigation equation of a vehicle, expressed in the platform or computational frame, which is referenced to the Earth.
- On expanding this equation,

$$\begin{split} \dot{V}_{x} = & A_{x} - (\rho_{y} + 2\Omega_{y})V_{z} + (\rho_{z} + 2\Omega_{z})V_{y} + g_{x} \\ \dot{V}_{y} = & A_{y} - (\rho_{z} + 2\Omega_{z})V_{x} + (\rho_{x} + 2\Omega_{x})V_{z} + g_{y} \\ \dot{V}_{z} = & A_{z} - (\rho_{x} + 2\Omega_{x})V_{y} + (\rho_{y} + 2\Omega_{y})V_{x} + g_{z} \end{split}$$

Gravitational Model

- Gravitational model is based on a spherical harmonic expansion of the gravitational potential.
- Two commonly used expansions of the gravitational potential
 - Spherical or zonal harmonics: depend on the geocentric latitude only.
 Tesseral and sectoral harmonics: depend on both latitude and longitude.
- Tesseral and sectoral harmonics
 - ☐ Indicate deviations from rotational symmetry
 - ☐ Can be neglected without compromising system performance or accuracy
- Derivation of the gravitational potential is based on the reference ellipsoid.
- Assumptions
 - ☐ Earth's mass distribution is symmetric about the polar axis.
 - $\hfill \Box$ Gravitational potential $U(R,\phi)$ in ECEF is at distance R from Earth's center, independent of longitude.

Gravitational Model

• Gravitational potential in ECEF frame in terms of spherical harmonics

$$U(R,\phi) = -\frac{\mu}{R} \left[1 - \sum_{n=2}^{\infty} J_n \left(\frac{a}{R} \right)^n P_n(\sin \phi) \right]$$

 $\mu = \text{Earth's gravitational constant}$

a = Mean equatorial radius of the Earth (or semimajor axis)

R = Magnitude of the geocentric position vector

 $\phi = \text{Geocentric latitude}$

 $J_n = \text{Coefficients of zonal harmonics of the Earth potential function}$

 $P_n(\sin\phi)=$ Associated Legendre polynomials of the first kind as functions of ϕ and degree n

- $\frac{\mu}{R}$ denotes mean value and is simplified gravitational potential of the Earth.
- It is due to spherically mass symmetric body.
- Remaining terms account for asymmetricity of the Earth.
- **Second harmonics** J_2 : Earth flattening, the meridional cross-section being an ellipse rather than a circle
- Third harmonics J_3 : tendency toward a triangular shape
- Fourth harmonics J_4 : tendency toward a square shape
- If the symmetry w.r.t. equator is assumed then

$$J_1 = J_3 = J_5 \cdots = 0$$

ullet As R is very large, all the terms within the are small as compared with unity.

Gravitational Model

• Gravitation vector is given as the gradient of gravitational potential as

$$\boldsymbol{g}(\boldsymbol{R}) = [g_x \ g_y \ g_z]^T, \ g_x = \frac{\partial U}{\partial x} \ g_y = \frac{\partial U}{\partial y} \ g_z = \frac{\partial U}{\partial z}$$

ullet Assumptions: Direction of the gravity vector ullet ullet the reference ellipsoid, positive in the downward direction.

$$g(R) = -g_z \mathbf{1}_z$$

- For a spherical Earth model, $g(R) = -\mu R/R^3$ and $R = [x \ y \ z]^T$.
- Components of the apparent gravity vector along the platform $x,\ y$ axes can be neglected because their magnitude is less than $10^{-5}\ g$.

$$m{g}(m{R}) = \left[egin{array}{c} 0 \\ 0 \\ g_z \end{array}
ight], \; m{R} = \left[egin{array}{c} 0 \\ 0 \\ z \end{array}
ight]$$

- Navigation in ECI coordinates involves integration of a simple set of differential equations driven by the measured specific force A.
- For most terrestrial applications, it is more convenient to refer the position and velocity of the vehicle to ECEF, which rotates with the earth.
- Equations of motion must account for the rotation of the coordinate frame.
- In north-east-up (NEU) coordinate system,

$$oldsymbol{\Omega} = \underbrace{0}_{\Omega_x,\Omega_E} oldsymbol{i} + \underbrace{\Omega\cos\phi}_{\Omega_y,\Omega_N} oldsymbol{j} + \underbrace{\Omega\sin\phi}_{\Omega_z,\Omega_U} oldsymbol{k}$$

By using gravity and angular rate components,

$$\begin{split} \dot{V}_x = & A_x - (\rho_y + 2\Omega_y)V_z + (\rho_z + 2\Omega_z)V_y \\ \dot{V}_y = & A_y - (\rho_z + 2\Omega_z)V_x + \rho_xV_z \\ \dot{V}_z = & A_z - \rho_xV_y + (\rho_y + 2\Omega_y)V_x - g_z \end{split}$$

Latitude-Longitude Mechanization

Latitude-Longitude Mechanization

Gyroscope torquing rate w.r.t inertial space

$$\omega_x = \omega_E = \rho_E$$

$$\omega_y = \omega_N = \rho_N + \Omega \cos \phi$$

$$\omega_z = \omega_z = \rho_z + \Omega \sin \phi$$

- \bullet ω_x, ω_y : level angular rates of platform required to maintain platform level
- \bullet ω_z : platform azimuth rate to maintain platform orientation to north
- To maintain platform level, gimbal axes must have

$$\dot{\phi} = -\rho_E, \ \dot{\lambda}\cos\phi = \rho_N$$

Generalized mechanization equation

$$egin{aligned} oldsymbol{A} &= \left[rac{doldsymbol{V}}{dt}
ight]_P + (oldsymbol{\Omega} + oldsymbol{\omega}) imes oldsymbol{V} - oldsymbol{g}(oldsymbol{R}) \ &\Rightarrow \left[rac{doldsymbol{V}}{dt}
ight]_P = oldsymbol{A} - (oldsymbol{\Omega} + oldsymbol{\omega}) imes oldsymbol{V} + oldsymbol{g}(oldsymbol{R}) \end{aligned}$$

Latitude-Longitude Mechanization

Level and vertical velocity equations

$$\begin{split} \dot{V}_E &= A_E - (\omega_N + \Omega\cos\phi)V_z + (\omega_z + \Omega\sin\phi)V_N \\ \dot{V}_N &= A_N - (\omega_z + \Omega\sin\phi)V_E + \omega_E V_z \\ \dot{V}_z &= A_z - \omega_E V_N + (\omega_N + \Omega\sin\phi)V_E - g_z + K_2(h_B - h) \end{split}$$

where, $\dot{h} = V_z + K_1(h_B - h)$ and h_B is barometric altitude.

• For a spherical Earth model,

$$\begin{split} &\omega_x = &\omega_E = -\dot{\phi} \\ &\omega_y = &\omega_N = \dot{\lambda}\cos\phi + \Omega\cos\phi = \frac{V_x}{R} + \Omega\cos\phi \\ &\omega_z = &\omega_z = \dot{\lambda}\sin\phi + \Omega\sin\phi = \frac{V_x}{R}\tan\phi + \Omega\sin\phi \end{split}$$

• To maintain platform level, longitude and latitude gimbal axes rates

$$\dot{\phi} = \frac{V_y}{R} = \frac{V_N}{R}, \quad \dot{\lambda} = \frac{V_x}{R\cos\phi} = \frac{V_E}{R}\sec\phi$$

Latitude-Longitude Mechanization

Longitude and latitude computations

$$\phi = \phi(0) + \frac{V_y}{R}t, \quad \lambda = \lambda(0) + \int_0^t \dot{\lambda} dt$$

Now torquing rate becomes

$$\begin{split} & \omega_x = -\frac{V_y}{R} \\ & \omega_y = & \frac{V_x}{R} + \Omega \cos \left(\phi(0) + \frac{V_y}{R} t \right) \\ & \omega_z = & \frac{V_x}{R} \tan \left(\phi(0) + \frac{V_y}{R} t \right) + \Omega \sin \left(\phi(0) + \frac{V_y}{R} t \right) \end{split}$$

ullet Platform rotation rate relative to Earth, $oldsymbol{
ho}=oldsymbol{\omega}-oldsymbol{\Omega}$

$$\rho_x = -\frac{V_y}{R} \ \rho_y = \frac{V_x}{R}, \ \rho_z = \frac{V_x}{R} \tan \left(\phi(0) + \frac{V_y}{R} t \right)$$

Reference

- G. M. Siouris, *Aerospace Avionics Systems: A Modern Synthesis*, Academic Press, Inc. 1993.
- ② D. H. Titterton and J. L. Weston, *Strapdown Inertial Navigation Technology*, Progress in Astronautics and Aeronautics, Vol. 207, ed. 2, ch. 4.

Thank you for your attention !!!