ASDS Statistics, YSU, Fall 2020 Lecture 23

Michael Poghosyan

21 Nov 2020

Contents

- Fisher Information
- Cramer-Rao Lower Bound (Cramer-Rao Inequality)
- ► MVUE
- The Method of Moments
- ▶ The Method of Maximum Likelihood Estimation

Fisher Information

Assume we have a parametric family of distributions \mathcal{F}_{θ} , $\theta \in \Theta \subset \mathbb{R}$, and $f(x|\theta)$ is the PD(M)F of \mathcal{F}_{θ} .

Fisher Information

Assume we have a parametric family of distributions \mathcal{F}_{θ} , $\theta \in \Theta \subset \mathbb{R}$, and $f(x|\theta)$ is the PD(M)F of \mathcal{F}_{θ} .

Definition: The following quantity is called **the Fisher Information** of the parametric family \mathcal{F}_{θ} :

$$I(\theta) = -\mathbb{E}\left(\frac{\partial^2}{\partial \theta^2} \ln f(X|\theta)\right) = \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \ln f(X|\theta)\right)^2\right],$$

where $X \sim \mathcal{F}_{\theta}$.

Example: Calculate the Fisher Information for the Bernoulli(p)

family

Solution: OTB

Example: Calculate the Fisher Information for the Bernoulli(p)

family

Solution: OTB

Example: Calculate the Fisher Information for the $Exp(\lambda)$ family

Solution: OTB

Example: Calculate the Fisher Information for the Bernoulli(p)

family

Solution: OTB

Example: Calculate the Fisher Information for the $Exp(\lambda)$ family

Solution: OTB

Example: Calculate the Fisher Information for the $\mathcal{N}(\mu, \sigma^2)$ family

(separately for the Parameter μ and σ^2)

Solution: OTB

Another interpretation of the Fisher Information is the following.

Another interpretation of the Fisher Information is the following.

It is easy to see that (under the regularity conditions)

$$\mathbb{E}\left(rac{\partial}{\partial heta} \ln f(X| heta)
ight) = 0.$$

Another interpretation of the Fisher Information is the following.

It is easy to see that (under the regularity conditions)

$$\mathbb{E}\left(\frac{\partial}{\partial \theta} \ln f(X|\theta)\right) = 0.$$

Then,

$$I(\theta) = \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \ln f(X|\theta)\right)^2\right] = Var\left(\frac{\partial}{\partial \theta} \ln f(X|\theta)\right).$$

Another interpretation of the Fisher Information is the following.

It is easy to see that (under the regularity conditions)

$$\mathbb{E}\left(\frac{\partial}{\partial \theta}\ln f(X|\theta)\right) = 0.$$

Then,

$$I(\theta) = \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \ln f(X|\theta)\right)^2\right] = Var\left(\frac{\partial}{\partial \theta} \ln f(X|\theta)\right).$$

So the Fisher Information is the Variance of the Score function

$$\frac{\partial}{\partial \theta} \ln f(X|\theta).$$

Fisher Information in the Multidimensional case

Now assume that the parameter θ is d-dimensional. Then the Fisher Information Matrix is defined as

$$I(heta) = \mathbb{E}\left[\left(
abla_{ heta} \ln f(X| heta)
ight) \cdot \left(
abla_{ heta} \ln f(X| heta)
ight)^T
ight],$$

where $\nabla_{\theta} g(\theta)$ denotes the Gradient of $g(\theta)$ w.r.t θ .

Cramer-Rao Inequality, C-R Lower Bound

CR LB is a remarkable inequality, giving a lower bound for the Variance of an Unbiased Estimator.

Cramer-Rao Inequality, C-R Lower Bound

CR LB is a remarkable inequality, giving a lower bound for the Variance of an Unbiased Estimator. Under some regularity conditions on the family of Distributions \mathcal{F}_{θ} , the following holds:

Cramer-Rao Inequality, C-R Lower Bound

CR LB is a remarkable inequality, giving a lower bound for the Variance of an Unbiased Estimator. Under some regularity conditions on the family of Distributions \mathcal{F}_{θ} , the following holds:

Theorem (Cramer-Rao, Unbiased Case): Assume we have a Random Sample

$$X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{F}_{\theta}$$

and the Fisher Information for the family \mathcal{F}_{θ} is $I(\theta)$. Assume also that $\hat{\theta}$ is an unbiased estimator for θ obtained from our Random Sample. Then, under the above mentioned regularity conditions,

$$Var(\hat{\theta}) \geq \frac{1}{n \cdot I(\theta)}.$$

Cramer-Rao Inequality, C-R Lower Bound, Biased Case

There is a version of C-R Inequality for the general (not necessarily UnBiased) case.

Cramer-Rao Inequality, C-R Lower Bound, Biased Case

There is a version of C-R Inequality for the general (not necessarily UnBiased) case.

Theorem (Cramer-Rao, General Case): Assume we have a Random Sample

$$X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta},$$

and we are using an Estimator $\hat{\theta}$ with the Expectation $k(\theta) = \mathbb{E}(\hat{\theta})$. Then

$$Var(\hat{\theta}) \geq \frac{[k'(\theta)]^2}{n \cdot I(\theta)}.$$

Cramer-Rao Inequality, C-R Lower Bound, Biased Case

There is a version of C-R Inequality for the general (not necessarily UnBiased) case.

Theorem (Cramer-Rao, General Case): Assume we have a Random Sample

$$X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta},$$

and we are using an Estimator $\hat{\theta}$ with the Expectation $k(\theta) = \mathbb{E}(\hat{\theta})$. Then

$$Var(\hat{\theta}) \geq \frac{[k'(\theta)]^2}{n \cdot I(\theta)}.$$

In particular, if $\hat{\theta}$ is unbiased, then $k(\theta) = \theta$, so we will obtain the previous C-R Inequality.

Recall that for an Unbiased Estimator $\hat{\theta}$,

$$MSE(\hat{\theta}, \theta) = Var(\hat{\theta}).$$

Recall that for an Unbiased Estimator $\hat{\theta}$,

$$MSE(\hat{\theta}, \theta) = Var(\hat{\theta}).$$

So the C-R LB gives us

$$MSE(\hat{\theta}, \theta) \geq \frac{1}{n \cdot I(\theta)}.$$

Recall that for an Unbiased Estimator $\hat{\theta}$,

$$MSE(\hat{\theta}, \theta) = Var(\hat{\theta}).$$

So the C-R LB gives us

$$MSE(\hat{\theta}, \theta) \geq \frac{1}{n \cdot I(\theta)}.$$

And this is a fundamental restriction on the MSE: you cannot do better when estimating θ than the Estimator with

$$MSE(\hat{\theta}, \theta) = \frac{1}{n \cdot I(\theta)},$$

you cannot obtain smaller MSE using Unbiased Estimators!

Recall that for an Unbiased Estimator $\hat{\theta}$,

$$MSE(\hat{\theta}, \theta) = Var(\hat{\theta}).$$

So the C-R LB gives us

$$MSE(\hat{\theta}, \theta) \geq \frac{1}{n \cdot I(\theta)}$$
.

And this is a fundamental restriction on the MSE: you cannot do better when estimating θ than the Estimator with

$$MSE(\hat{\theta}, \theta) = \frac{1}{n \cdot I(\theta)},$$

you cannot obtain smaller MSE using Unbiased Estimators!

And if there exists an Unbiased Estimator $\hat{\theta}$ with

$$MSE(\hat{\theta}, \theta) = \frac{1}{n \cdot I(\theta)},$$

we call $\hat{\theta}$ an **Efficient Estimator** for θ , and that Estimator is a MVUE for θ .

Notes

Note: Not always there exists an Unbiased Estimator with

$$MSE(\hat{\theta}, \theta) = Var(\hat{\theta}) = \frac{1}{n \cdot I(\theta)}.$$

Notes

Note: Not always there exists an Unbiased Estimator with

$$MSE(\hat{\theta}, \theta) = Var(\hat{\theta}) = \frac{1}{n \cdot I(\theta)}.$$

But even in that cases we can have MVUE (and, in that case, the minimum of the Variance will be $> \frac{1}{n \cdot I(\theta)}$).

Notes

Note: Not always there exists an Unbiased Estimator with

$$MSE(\hat{\theta}, \theta) = Var(\hat{\theta}) = \frac{1}{n \cdot I(\theta)}.$$

But even in that cases we can have MVUE (and, in that case, the minimum of the Variance will be $> \frac{1}{n \cdot I(\theta)}$).

Note: Sometimes, in different Textbooks, an Unbiased Estimator with Minimum Variance (not necessarily with $Var(\hat{\theta}) = \frac{1}{n \cdot I(\theta)}$) is called an **Efficient Estimator** for θ .

Example: Show that in the Bernoulli Model, with a Random Sample

$$X_1, X_2, ..., X_n \sim Bernoulli(p), \qquad p \in [0, 1],$$

the Estimator

$$\hat{p} = \overline{X}$$

is the MVUE of p.

Example: Show that in the Bernoulli Model, with a Random Sample

$$X_1, X_2, ..., X_n \sim Bernoulli(p), \qquad p \in [0, 1],$$

the Estimator

$$\hat{p} = \overline{X}$$

is the MVUE of p.

Example: Show that in the Poisson Model, with a Random Sample

$$X_1, X_2, ..., X_n \sim Pois(\lambda), \qquad \lambda > 0,$$

the Estimator

$$\hat{\lambda} = \overline{X}$$

is the MVUE of λ .