Linear Methods for Regression

Zed

March 14, 2017

1 Ordinary Least Squares

We write the linear regression model

$$f(X) = \beta_0 + \sum_{i=1}^p X_i \beta_i = X^{\top} \beta$$

where $\beta = (\beta_0, \beta_1..., \beta_p)^{\top}$. $X = (1, X_1, ..., X_p)^{\top}$ is a p+1 column vector, with the inputs X_j being quantitative, factor variables $(X_j = \mathbb{1}_{\{G = \mathcal{G}_j\}})$, transformation of quantitative (say $\sin X_j$, $\log X_j$), basis expansions $(X_2 = X_1^2, X_3 = X_1^3, ...)$ or cross terms $(X_3 = X_2X_1)$. We have a quick review of the familiar OLS estimator before proceeding to new concepts and models.

1.1 Algebraic Properties

Def. Least Squares Estimator: We choose squared error as loss function, and solve

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} (y_i - \boldsymbol{x}_i^{\top} \beta)^2 = \underset{\beta}{\operatorname{argmin}} (\boldsymbol{y} - \boldsymbol{X} \beta)^{\top} (\boldsymbol{y} - \boldsymbol{X} \beta)$$

by the familiar method of moments, and get $\hat{\beta} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$;

the prediction for training set is $\hat{\boldsymbol{y}} = \boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$, which is, geometrically, an orthogonal projection of \boldsymbol{y} onto the column space of \boldsymbol{X} , i.e. $\mathcal{C}(\boldsymbol{X}) = \operatorname{span}\{\operatorname{Cols}(\boldsymbol{X})\}$. A few recap and highlights:

- · (Orthogonal Projection) $\hat{\boldsymbol{y}}$ is within $\mathcal{C}(\boldsymbol{X})$, since $\hat{\boldsymbol{y}} = \boldsymbol{X}\hat{\boldsymbol{\beta}}$, a linear combination of the columns of \boldsymbol{X} . The residual $\boldsymbol{y} \hat{\boldsymbol{y}}$ is orthogonal to the subspace $\mathcal{C}(\boldsymbol{X})$, since $\boldsymbol{X}^{\top}(\boldsymbol{y} \hat{\boldsymbol{y}}) = \boldsymbol{X}^{\top}(\boldsymbol{y} \boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}) = 0$.
- · (Orthogonal Complement) Our sample $\boldsymbol{y} \in \mathbb{R}^N$, which can always be decomposed as $\mathbb{R}^N = V \oplus V^{\perp}$, where V is a subspace, V^{\perp} is the orthogonal complement of V. We already have the column space $\mathcal{C}(\boldsymbol{X})$, and we can show that $\mathcal{C}(\boldsymbol{X})^{\perp} = \mathcal{N}(\boldsymbol{X}^{\top})$, the null space of \boldsymbol{X}^{\top} , which has dimension N p 1.

Proof. Suppose $\mathbf{z} \in \mathcal{C}(\mathbf{X})^{\perp}$, then $\mathbf{z}^{\top} \mathbf{X} \boldsymbol{\beta} = 0$ for all linear combination parameter $\boldsymbol{\beta} \neq 0$. Hence the only way is $\mathbf{z}^{\top} \mathbf{X} = \mathbf{0}$, i.e. $\mathbf{X}^{\top} \mathbf{z} = \mathbf{0}$. \square

· (Hat Matrix) The matrix $H_X := X(X^\top X)^{-1}X^\top$ is called the "hat" matrix, which maps a vector to its orthogonal projection on $\mathcal{C}(X)$. (symmetric, idempotent, and maps columns of X to itself.) A curious object is the trace of this matrix:

$$\operatorname{tr}(\boldsymbol{H}_{\boldsymbol{X}}) = \operatorname{tr}(\boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}) = \operatorname{tr}(\boldsymbol{I}_{p+1}) = p+1$$

· (Residual) We are also interested in the error of the estimator within the training set, i.e. define $\hat{\boldsymbol{u}} = \boldsymbol{y} - \hat{\boldsymbol{y}}$ as the residual term. It follows immediately that the residual sum of square $RSS = \hat{\boldsymbol{u}}^{\top}\hat{\boldsymbol{u}}$. And apply the hat matrix we see $\hat{\boldsymbol{u}} = (\boldsymbol{I}_N - \boldsymbol{H}_{\boldsymbol{X}})\boldsymbol{y}$. The object in between is also symmetric, idempotent, due to these property of $\boldsymbol{H}_{\boldsymbol{X}}$; consider

$$(I - H_X)(I - H_X) = I - 2H_X + H_X$$

· (When $\mathbf{X}^{\top}\mathbf{X}$ is Singular) When columns of \mathbf{X} are linearly dependent, $\mathbf{X}^{\top}\mathbf{X}$ becomes singular, and $\hat{\beta}$ is not uniquely defined. But $\hat{\mathbf{y}}$ is still the orthogonal projection onto $\mathcal{C}(\mathbf{X})$, just with more than one way to do the projection.

1.2 Statistical Properties

(**Linear Assumptions**) To discuss statistical properties of $\hat{\beta}$, we assume that the linear model is the true model for the mean, i.e. the conditional expectation of Y is $X\beta$, and that the devation of Y from the mean is additive, distributed as $\epsilon \sim \mathcal{N}(0, \sigma^2)$. That is

$$Y = \mathbb{E}\left[Y|X\right] + \epsilon = X\beta + \epsilon$$

We further assume that the inputs X in the training set are fixed (non-random).

Under these assumptions, a few other highlights on statistical properties of OLS estimator:

- · $(Expectation \ of \ \hat{\beta}) \ \mathbb{E}(\hat{\beta}) = \mathbb{E}\left[(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}(\boldsymbol{X}\beta + \epsilon)\right] = \beta$, i.e. it is an unbiased estimator.
- · (Variance of $\hat{\beta}$) $\mathbb{V}ar(\hat{\beta}) = \mathbb{E}\left[(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\top}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X} \right] = \sigma^{2}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}$. That is, the estimator $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^{2}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1})$
- · (Residual Revisited) With the assumption of the real model of \boldsymbol{y} , we can further write $\hat{\boldsymbol{u}} = (\boldsymbol{I} \boldsymbol{H}_{\boldsymbol{X}})\boldsymbol{y} = (\boldsymbol{I} \boldsymbol{H}_{\boldsymbol{X}})(\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}) = (\boldsymbol{I} \boldsymbol{H}_{\boldsymbol{X}})\boldsymbol{\epsilon}$. It is easy to see that $\mathbb{E}[\hat{\boldsymbol{u}}] = \mathbb{E}[\boldsymbol{X}(\boldsymbol{\beta} \hat{\boldsymbol{\beta}}) + \boldsymbol{\epsilon}] = 0$. And therefore

$$\mathbb{V}\mathrm{ar}\left[\hat{\boldsymbol{u}}\right] = \mathbb{E}[\hat{\boldsymbol{u}}\hat{\boldsymbol{u}}^\top] = \mathbb{E}\left[(\boldsymbol{I} - \boldsymbol{H}_{\boldsymbol{X}})\boldsymbol{\epsilon}\boldsymbol{\epsilon}^\top(\boldsymbol{I} - \boldsymbol{H}_{\boldsymbol{X}})\right] = \sigma^2(\boldsymbol{I} - \boldsymbol{H}_{\boldsymbol{X}})$$

So, although the errors ϵ are i.i.d., residuals \hat{u} are correlated.

· (Individual Residual Term) Pick any individual residual \hat{u}_i , \mathbb{V} ar $[\hat{u}_i] = \sigma^2(1 - h_i)$, where h_i is the i-th diagonal entry of $\mathbf{H}_{\mathbf{X}}$. Furthermore \mathbb{C} ov $[\hat{u}_i, \hat{u}_j] = \sigma^2 h_{ij}$, $i \neq j$, h_{ij} is the row i, column j entry in $\mathbf{H}_{\mathbf{X}}$.

An unbiased estimator of residual variance (square of residual standard error: RSE^2) is

$$\hat{\sigma}^2 = \frac{RSS}{N - p - 1} = \frac{\hat{\boldsymbol{u}}^\top \hat{\boldsymbol{u}}}{N - p - 1}$$

Prop. $\mathbb{E}(\hat{\sigma}^2) = \sigma^2$. We present two proofs. *Proof* (1).

$$\mathbb{E}\left[\hat{\boldsymbol{u}}^{\top}\hat{\boldsymbol{u}}\right] = \mathbb{E}\left[\sum_{i=1}^{N}\hat{u}_{i}^{2}\right] = \sum_{i=1}^{N}\mathbb{V}\operatorname{ar}\left[\hat{u}_{i}\right] = \sum_{i=1}^{N}\sigma^{2}(1-h_{i})$$
(1)

By the trace formula we have discussed, $\sum h_i = \operatorname{tr}(\boldsymbol{H}_{\boldsymbol{X}}) = p+1$. Hence $(2) = \sigma^2(N-p-1)$. We conclude that

$$(N-p-1)\mathbb{E}(\hat{\sigma}^2) = \mathbb{E}\left[\boldsymbol{\epsilon}^{\top}(\boldsymbol{I}-\boldsymbol{H}_{\boldsymbol{X}})\boldsymbol{\epsilon}\right] = (N-p-1)\sigma^2$$

Before the second proof, we present a lemma.

Lemma. (Distribution of Quadratic Form)

- · If an *n*-vector \boldsymbol{x} is distributed as $\mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma})$, then the quadratic form $\boldsymbol{x}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{x} \sim \chi^{2}(n)$.
- · If an n-vector \boldsymbol{x} is standard multivariate normal: $\mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$, and $\boldsymbol{H}_{\boldsymbol{Z}}$ is a projection matrix onto the column space of \boldsymbol{Z} , which has dimension r (i.e. consider \boldsymbol{Z} is a $n \times r$ matrix, and \boldsymbol{Z} and $\boldsymbol{H}_{\boldsymbol{Z}}$ both have rank r); then the quadratic form $\boldsymbol{x}^{\top}\boldsymbol{H}_{\boldsymbol{Z}}\boldsymbol{x} \sim \chi^2(r)$.

Proof of lemma. (First Part) Since Σ is symmetric positive definite, we have Cholesky decomposition $\Sigma = QQ^{\top}$, where Q is $n \times n$ lower triangular.

$$\boldsymbol{x}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{x} = \boldsymbol{x}^{\top}\boldsymbol{Q}^{-\top}\boldsymbol{Q}^{-1}\boldsymbol{x} = (\boldsymbol{Q}^{-1}\boldsymbol{x})^{\top}(\boldsymbol{Q}^{-1}\boldsymbol{x}) = \boldsymbol{z}^{\top}\boldsymbol{z}$$

in which we let $z := Q^{-1}x$. It is clear that $\mathbb{E}[z] = Q^{-1}\mathbb{E}[x] = 0$. And

$$\mathbb{V}\mathrm{ar}\left[\boldsymbol{z}\right] = \mathbb{E}\left[\boldsymbol{Q}^{-1}\boldsymbol{x}(\boldsymbol{Q}^{-1}\boldsymbol{x})^{\top}\right] = \boldsymbol{Q}^{-1}\mathbb{E}[\boldsymbol{x}\boldsymbol{x}^{\top}]\boldsymbol{Q}^{-\top} = \boldsymbol{Q}^{-1}\mathbb{V}\mathrm{ar}\left[\boldsymbol{x}\right]\boldsymbol{Q}^{-\top} = \boldsymbol{Q}^{-1}\boldsymbol{\Sigma}\boldsymbol{Q}^{-\top} = \boldsymbol{I}$$

which indicates that $z \sim \mathcal{N}(\mathbf{0}, I_n)$ is an *n*-variate standard normal. It follows that $z^\top z \sim \chi^2(n)$. \square (Second Part)

$$\boldsymbol{x}^{\top}\boldsymbol{H}_{\boldsymbol{Z}}\boldsymbol{x} = \boldsymbol{x}^{\top}\boldsymbol{Z}(\boldsymbol{Z}^{\top}\boldsymbol{Z})^{-1}\boldsymbol{Z}^{\top}\boldsymbol{x} = \boldsymbol{y}^{\top}\boldsymbol{\Omega}^{-1}\boldsymbol{y}$$

in which we let $\boldsymbol{y} := \boldsymbol{Z}^{\top} \boldsymbol{x}$ (an $r \times 1$ vector), and $\boldsymbol{\Omega} := \boldsymbol{Z}^{\top} \boldsymbol{Z}$ (an $r \times r$ matrix). This is exactly the form in part 1. And the linear transform of n-variate normal: $\boldsymbol{Z}^{\top} \boldsymbol{x}$ is distributed as r-variate normal $\mathcal{N}(\boldsymbol{0}, \boldsymbol{Z}^{\top} \boldsymbol{Z})$. By the result of part $1 \Rightarrow \boldsymbol{x}^{\top} \boldsymbol{H}_{\boldsymbol{Z}} \boldsymbol{x} \sim \chi^{2}(r)$.

Proof(2).

$$(N - p - 1)\hat{\sigma}^2 = \hat{\boldsymbol{u}}^{\top}\hat{\boldsymbol{u}} = \boldsymbol{y}^{\top}(\boldsymbol{I} - \boldsymbol{H}_{\boldsymbol{X}})^{\top}(\boldsymbol{I} - \boldsymbol{H}_{\boldsymbol{X}})\boldsymbol{y}$$
$$= \boldsymbol{\epsilon}^{\top}(\boldsymbol{I} - \boldsymbol{H}_{\boldsymbol{X}})\boldsymbol{\epsilon} = \boldsymbol{\epsilon}^{\top}\boldsymbol{H}_{\boldsymbol{Z}}\boldsymbol{\epsilon}$$
 (2)

in which we let $\boldsymbol{H}_{\boldsymbol{Z}} := \boldsymbol{I} - \boldsymbol{H}_{\boldsymbol{X}}$. By previous result, this is also symmetric, idempotent, and projects any vector to the null space of \boldsymbol{X}^{\top} , the orthogonal complement of $\mathcal{C}(\boldsymbol{X})$. We can always compose a matrix \boldsymbol{Z} whose columns are the general solutions of $\boldsymbol{X}^{\top}\boldsymbol{z} = 0$. Clearly it has N-p-1 columns, since the orthogonal complement has dimension N-p-1. Hence $\boldsymbol{H}_{\boldsymbol{Z}}$ has (N-p-1) rank. Morever, $\boldsymbol{\epsilon}^{\top}\boldsymbol{H}_{\boldsymbol{Z}}\boldsymbol{\epsilon} = \boldsymbol{\epsilon}^{\top}\boldsymbol{Z}(\boldsymbol{Z}^{\top}\boldsymbol{Z})^{-1}\boldsymbol{Z}^{\top}\boldsymbol{\epsilon}$, and $\boldsymbol{Z}^{\top}\boldsymbol{Z}$ is of $(N-p-1)\times(N-p-1)$. By lemma, and multiply a normalization factor $\Rightarrow \boldsymbol{Z}^{\top}\boldsymbol{\epsilon}/\sigma \sim \mathcal{N}(\boldsymbol{0},(\boldsymbol{Z}^{\top}\boldsymbol{Z})), \ \frac{1}{\sigma^2}\boldsymbol{\epsilon}^{\top}\boldsymbol{H}_{\boldsymbol{Z}}\boldsymbol{\epsilon} \sim \chi^2(N-p-1)$. So:

$$\mathbb{E}\left[\boldsymbol{\epsilon}^{\top}\boldsymbol{H}_{\boldsymbol{Z}}\boldsymbol{\epsilon}\right] = \sigma^{2}(N-p-1) \quad \Box$$

Proof (2) gives us a stronger result:

Prop. (Distribution of Sample Estimator of Variance) The residual sum of square is Chi squared distributed with degree of freedom (N - p - 1).

$$(N - p - 1)\hat{\sigma}^2 = RSS \sim \sigma^2 \chi^2 (N - p - 1)$$

In addition, $\hat{\beta}$ and $\hat{\sigma}$ are independent.

1.3 Hypothesis Tests

(**t Statistic**) The t(n) distribution is defined as $t(n) \sim \frac{\mathcal{N}(0,1)}{\sqrt{\chi^2(n)/n}}$. To test hypothesis that a particular coefficient $\beta_j = 0$, we formulate the statistic

$$t_j = \frac{\hat{\beta}_j/\operatorname{se}(\hat{\beta}_j)}{\sqrt{(N-p-1)\hat{\sigma}^2/(N-p-1)\sigma^2}} = \frac{\hat{\beta}_j}{\hat{\sigma} \cdot \operatorname{se}(\hat{\beta}_j)/\sigma} = \frac{\hat{\beta}_j}{\hat{\sigma}\sqrt{v_j}}$$

where $\hat{\sigma} = \sqrt{RSS/(N-p-1)}$, $\sqrt{v_j}$ is the *j*-th diagonal element of $(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}$. And we know that $\hat{\beta}_j/\text{se}(\hat{\beta}_j) \sim \mathcal{N}(\beta_j/\text{se}(\hat{\beta}_j), 1)$ and that $\sqrt{(N-p-1)\hat{\sigma}^2/(N-p-1)\sigma^2} \sim \sqrt{\chi_{N-p-1}^2/(N-p-1)}$. Under the null hypothesis $\beta_j = 0$, $\hat{\beta}_j/\text{se}(\hat{\beta}_j) \sim \mathcal{N}(0, 1)$. We have $t_j \sim t(N-p-1)$. If we know σ before hand, we just use it instead of $\hat{\sigma}$. And t_j reduces to $\hat{\beta}_j/\text{se}(\hat{\beta}_j) \sim \mathcal{N}(0, 1)$. Where $\text{se}(\hat{\beta}_j) = \sigma \sqrt{v_j}$.

(**F Statistic**) The $\mathcal{F}(n_1, n_2)$ distribution is defined as $\mathcal{F}(n_1, n_2) \sim \frac{\chi^2(n_1)/n_1}{\chi^2(n_2)/n_2}$. To test hypothesis that k coefficients $\beta_{[1]} = \ldots = \beta_{[k]} = 0$ simultaneously, we formulate the statistic

$$F = \frac{(RSS_0 - RSS_1)/p_1 - p_0}{RSS_1/(N - p_1 - 1)}$$

Where the bigger model 1 has $p_1 + 1$ parameters, the smaller model 0 (corresponds to null hypothesis H_0) has $p_0 + 1$ parameters, $p_1 - p_0 = k$. We have $F \sim \mathcal{F}(p_1 - p_0, N - p_1 - 1)$ under the null hypothesis.

(Confidence Interval) We can isolate β_j to form a $1-2\alpha$ confidence interval

$$\beta_j \in (\hat{\beta}_j - z_{(1-\alpha)}\sqrt{v_j}\hat{\sigma}, \hat{\beta}_j + z_{(1-\alpha)}\sqrt{v_j}\hat{\sigma})$$

Proof. We know that $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1})$, a multivariate normal. So isolating $\hat{\beta}_j$, we have $\hat{\beta}_j \sim \mathcal{N}(\beta_j, \sigma^2 v_j)$, where, as before, v_j is the j-th diagonal element of the covariance matrix of $\hat{\beta}$. se $(\hat{\beta}_j) = \sigma \sqrt{v_j}$. And hence $\frac{\hat{\beta}_j - \beta_j}{\sigma \sqrt{v_j}} \sim \mathcal{N}(0, 1)$.

$$1 - 2\alpha = \mathbb{P}\left(\left|\frac{\hat{\beta}_j - \beta_j}{\sigma\sqrt{v_j}}\right| > z_{(1-\alpha)}\right) = \mathbb{P}\left(\hat{\beta}_j - z_{(1-\alpha)}\sqrt{v_j}\sigma < \beta_j < \hat{\beta}_j + z_{(1-\alpha)}\sqrt{v_j}\sigma\right)$$

And substitute σ with the estimate $\hat{\sigma}$, yields the result. \square

(Confidence Region) We also obtain a confidence set for the entire parameter vector β ,

$$\beta \in C_{\beta} = \{ (\hat{\beta} - \beta)^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} (\hat{\beta} - \beta) \leq \hat{\sigma}^{2} \chi_{p+1,(1-\alpha)}^{2} \}$$

Proof. We know $\hat{\beta} - \beta \sim \mathcal{N}(\mathbf{0}, \sigma^2(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1})$, by lemma (Dist of quadratic form) part 1, $(\hat{\beta} - \beta)^{\top} \frac{1}{\sigma^2} (\boldsymbol{X}^{\top}\boldsymbol{X})(\hat{\beta} - \beta) \sim \chi^2(p+1)$. Hence

$$1 - \alpha = \mathbb{P}\left((\hat{\beta} - \beta)^{\top} \frac{1}{\sigma^2} (\boldsymbol{X}^{\top} \boldsymbol{X}) (\hat{\beta} - \beta) \leq \chi^2_{p+1,(1-\alpha)}\right) = \mathbb{P}\left((\hat{\beta} - \beta)^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X}) (\hat{\beta} - \beta) \leq \sigma^2 \chi^2_{p+1,(1-\alpha)}\right)$$

And substitute σ with the estimate $\hat{\sigma}$, yields the result. \square

1.4 Gauss Markov Theorem

Thm. (Gauss-Markov) the least squares estimator has smallest variance among all linear unbiased estimates.

Proof. Let $\tilde{\beta}$ be an unbiased linear estimator other than $\hat{\beta}$, which is the ols estimator. By linearity: $\tilde{\beta} = Ay$, where A is some (non-random) matrix. Hence we may decompose $\tilde{\beta} = ((X^{\top}X)^{-1}X^{\top} + C)y = \hat{\beta} + Cy$, where we let $C := A - (X^{\top}X)^{-1}X^{\top}$.

By unbiasedness: $\beta = \mathbb{E}[\tilde{\beta}] = \mathbb{E}[Ay] = \mathbb{E}[A(X\beta + \epsilon)] = AX\beta + A\mathbb{E}[\epsilon]$. Since the last

term has mean 0, this requires $AX = I \Rightarrow CX = O$. Hence $Cy = C(X\beta + \epsilon) = C\epsilon$. Therefore

$$\operatorname{Cov}[\hat{\beta}, \boldsymbol{C}\boldsymbol{y}] = \operatorname{Cov}[\hat{\beta}, \boldsymbol{C}\boldsymbol{\epsilon}] = \operatorname{\mathbb{E}}[(\hat{\beta} - \operatorname{\mathbb{E}}\hat{\beta})(\boldsymbol{C}\boldsymbol{\epsilon} - \boldsymbol{C}\operatorname{\mathbb{E}}\boldsymbol{\epsilon})^{\top}] = \operatorname{\mathbb{E}}[(\hat{\beta} - \beta)\boldsymbol{\epsilon}^{\top}\boldsymbol{C}^{\top}]$$
$$= \operatorname{\mathbb{E}}[(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\top}\boldsymbol{C}^{\top}] = \sigma^{2}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}(\boldsymbol{C}\boldsymbol{X})^{\top} = \boldsymbol{O}$$
(3)

So:

$$\operatorname{Var}[\tilde{\beta}] = \operatorname{Var}[\hat{\beta} + Cy] = \operatorname{Var}[\hat{\beta} + C\epsilon] = \operatorname{Var}[\hat{\beta}] + \sigma^2 CC^{\top}$$

1.5 Algorithm for Multiple Regression

For the univariate regression (with no intercept), we calculate ols estimator as:

$$\hat{eta}_1 = (oldsymbol{x}^ op oldsymbol{x})^{-1} oldsymbol{x}^ op oldsymbol{y} = rac{\langle oldsymbol{x}, oldsymbol{x}
angle}{\langle oldsymbol{x}, oldsymbol{y}
angle}$$

And the residual $\mathbf{r} = \mathbf{y} - \mathbf{x}\hat{\beta}$. Suppose $\langle \mathbf{x}_i, \mathbf{x}_j \rangle = 0$, i.e. \mathbf{X} is an orthogonal matrix, then $\hat{\beta}_j = \langle \mathbf{x}_j, \mathbf{y} \rangle / \langle \mathbf{x}_j, \mathbf{x}_j \rangle$, just write down $(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$ and use the fact that \mathbf{X} is orthogonal we can easily get the result. This implies that when the inputs are orthogonal, they have no effect on each other's parameter estimates in the model.

For non-orthogonal X, we perform the Gram-Schmidt orthogonalization procedure:

Algo. (Gram-Schmidt) Suppose $X = (1, x_1, ..., x_p)$.

- 1. Let $z_0 \leftarrow x_0 \leftarrow 1$.
- 2. For j = 1:p: Regress x_j on $z_0, ..., z_{j-1}$ respectively to produce coefficients $\hat{\gamma}_{ij} \leftarrow \langle z_i, x_j \rangle / \langle z_i, z_i \rangle$, i = 0, 1, ..., j-1; $\hat{\gamma}_{jj} \leftarrow 1$.
- 3. Calculate residual $z_j \leftarrow x_j \sum_{i=0}^{j-1} \hat{\gamma}_{ij} z_i$
- 4. Regress \boldsymbol{y} on the residual \boldsymbol{z}_i to produce $\hat{\beta}_i \leftarrow \langle \boldsymbol{z}_i, \boldsymbol{y} \rangle / \langle \boldsymbol{z}_i, \boldsymbol{z}_i \rangle$

Prop. $\mathbf{Z} = (\mathbf{z}_0, \mathbf{z}_1 ..., \mathbf{z}_p)$ is orthogonal.

Proof. We show by induction proof. Firstly, it is easy to see that

$$\langle \boldsymbol{z}_0, \boldsymbol{z}_1 \rangle = \langle \boldsymbol{z}_0, \boldsymbol{x}_1 - \frac{\langle \boldsymbol{z}_0, \boldsymbol{x}_1 \rangle}{\langle \boldsymbol{z}_0, \boldsymbol{z}_0 \rangle} \boldsymbol{z}_0 \rangle = \langle \boldsymbol{z}_0, \boldsymbol{x}_1 \rangle - \langle \boldsymbol{z}_0, \boldsymbol{x}_1 \rangle = 0$$

We assume $\langle \boldsymbol{z}_0, \boldsymbol{z}_k \rangle = 0$ for all $1 < k \le j < p$. Then for k = j + 1:

$$\langle \boldsymbol{z}_0, \boldsymbol{z}_{j+1} \rangle = \langle \boldsymbol{z}_0, \boldsymbol{x}_{j+1} - \sum_{l=0}^{j} \frac{\langle \boldsymbol{z}_l, \boldsymbol{x}_{j+1} \rangle}{\langle \boldsymbol{z}_l, \boldsymbol{z}_l \rangle} \boldsymbol{z}_l \rangle = \langle \boldsymbol{z}_0, \boldsymbol{x}_{j+1} \rangle - \langle \boldsymbol{z}_0, \frac{\langle \boldsymbol{z}_0, \boldsymbol{x}_{j+1} \rangle}{\langle \boldsymbol{z}_0, \boldsymbol{z}_0 \rangle} \boldsymbol{z}_0 \rangle = 0$$

So we conclude that $\langle z_0, z_j \rangle = 0$ for j = 1, 2, ..., p. Do the same induction for z_1 as follows:

· Base case, using the fact (what we already known): $\langle z_0, z_1 \rangle = 0$

$$\langle oldsymbol{z}_1, oldsymbol{z}_2
angle = \langle oldsymbol{z}_1, oldsymbol{x}_2 - rac{\langle oldsymbol{z}_0, oldsymbol{x}_2
angle}{\langle oldsymbol{z}_0, oldsymbol{z}_0
angle} oldsymbol{z}_0 - rac{\langle oldsymbol{z}_1, oldsymbol{x}_2
angle}{\langle oldsymbol{z}_1, oldsymbol{z}_1
angle} oldsymbol{z}_1
angle = \langle oldsymbol{z}_1, oldsymbol{x}_2
angle - \langle oldsymbol{z}_1, oldsymbol{x}_2
angle = \langle oldsymbol{z}_1, oldsymbol{x}_2
angle - \langle oldsymbol{z}_1, oldsymbol{z}_2
angle = \langle oldsymbol{z}_1, oldsymbol{z}_2
angle - \langle oldsymbol{z}_1, oldsymbol{z}_2
angle = \langle oldsymbol{z}_1, oldsymbol{z}_2
angle - \langle oldsymbol{z}_2, ol$$

· The induction, assume $\langle z_1, z_k \rangle = 0$ for all $2 < k \le j < p$. Then for k = j + 1:

$$\langle oldsymbol{z}_1, oldsymbol{z}_{j+1}
angle = \langle oldsymbol{z}_1, oldsymbol{x}_{j+1} - \sum_{l=0}^j rac{\langle oldsymbol{z}_l, oldsymbol{x}_{j+1}
angle}{\langle oldsymbol{z}_l, oldsymbol{z}_l
angle} oldsymbol{z}_l
angle = \langle oldsymbol{z}_1, oldsymbol{x}_{j+1}
angle - \langle oldsymbol{z}_1, oldsymbol{z}_{j+1}
angle - \langle oldsymbol{z}_1, oldsymbol{z}_2, oldsymbol{z}_{j+1}
angle - \langle oldsymbol{z}_1, oldsymbol{z}_2, oldsy$$

So we conclude that $\langle \mathbf{z}_1, \mathbf{z}_j \rangle = 0$ for j = 2, ..., p. And the induction for \mathbf{z}_i , i = 2, 3, ..., p - 1 in the same fashion, we have \mathbf{Z} is orthogonal. \square

Another observation is that x_j is a linear combination of z_k , for $k \leq j$. Hence Z is a orthogonal basis for the column space of X. Let $D = \text{diag}(||z_j||)$, then ZD^{-1} gives the *orthonormal basis* of column sapce of X. We denote $Q := ZD^{-1}$, which is also an orthogonal matrix.

By writing the algo in a matrix form, we denote $\Gamma = {\hat{\gamma}_{ij}}$, which is an upper triangular matrix with main diagonal entries being 1s. And hence we have

$$X = Z\Gamma = ZD^{-1}D\Gamma =: QR$$

And the ols estimator given by

$$\hat{eta} = (oldsymbol{X}^ op oldsymbol{X})^{-1} oldsymbol{X}^ op oldsymbol{y} = (oldsymbol{R}^ op oldsymbol{Q} oldsymbol{Q} oldsymbol{P} oldsymbol{Q} = oldsymbol{R}^ op oldsymbol{Q} oldsymbol{Q} oldsymbol{Q} oldsymbol{Z} oldsymbol{Q} = oldsymbol{Q} oldsymbol{R} oldsymbol{Q}^ op oldsymbol{Q} oldsymbol{Z} oldsymbol{Y} = oldsymbol{Q} oldsymbol{R} oldsymbol{Z}^ op oldsymbol{Q} oldsymbol{Z} oldsymbol{Y} oldsymbol{y} = oldsymbol{Q} oldsymbol{R} oldsymbol{Z} oldsymbol{Q} oldsymbol{Z} oldsymbol{Y} oldsymbol{Y} = oldsymbol{Q} oldsymbol{Z} oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} oldsymbol{Z} o$$

2 Subset Selection

- · (Best-Subset Selection) Look at all possible models at every given number (k) of variables chosen. (computationally expensive, becomes infeasible for p much larger than 30-40 or so)
- · (Forward-Stepwise Selection) Rather than search through all possible subsets, we want to seek a path through them. FSS proceeds by sequentially adds into the model the predictor that most improves the fit. This is charactered as a greedy algorithm, which must produce a nested sequence of models, i.e. it may not find the best model, when, for example, the best subset of size 2 does not include that of size 1 (which may happen). However, it has lower variance compared with best-subset.
- · (Backward-Stepwise Selection) Starts with the full model, and sequentially deletes the predictors that has the least impact on the fit. Can only be used for N > p.
- · (Forward-Stagewise (FS) Selection) Start as the forward-stepwise, with intercept \bar{y} , and centered predictors with coefficients initially set as 0. Then at each step, choose the variable that are most correlated with the current residual, then compute simple regression param γ of residual on this varible, add this to the current β_j , i.e. $\beta_j \leftarrow \beta_j + \gamma$. Continues until none are correlated with the residual. The convergence of this algorithm can be slow, but it has good performance for problems with high dimensionality.

Subset selection is a *discrete* process, we either include a variable or exclude it. As a result it often exhibits high variance. Shrinkage methods are more continuous, and do not suffer from high variability.

3 Shrinkage Methods

The motivation of various shrinkage methods is to overcome the *combinatorial explosion* of the number of possible subsets (when p large) by converting the discrete problem to a continuous one, which turn out to be simpler to solve.

3.1 Ridge Regression

The ridge regression shrinks the regression coefs by imposing a penalty on the magnitudes of these coefficients. Denote the ridge estimator $\hat{\beta}^{ridge}$, it minimizes a penalized sum of squares:

$$\hat{\beta}^{ridge} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$
 (*)

where λ is a hyperparameter (complexity parameter) that controls the amount of shrink. The solution of (*) are not equivalent under the scaling of inputs. Hence we usually standardize the input before solving (*). In addition, we don't penalize the magnitude β_0

The standardization procedure is done as: calculate the centered inputs as $x_{ij} - \bar{x}_j$, (in the following text we assume $\{X\}_{ij}$ is this, has p columns without 1), and estimate $\hat{\beta}_0$ by $\sum_{1}^{N} y_i/N$.

Def. Ridge Regression Estimator: We minimize loss function with penalization:

$$\hat{\beta}^{ridge} = \operatorname*{argmin}_{\beta} \{ (\boldsymbol{y} - \boldsymbol{X}\beta)^{\top} (\boldsymbol{y} - \boldsymbol{X}\beta) + \lambda \beta^{\top} \beta \}$$

We have
$$\partial RSS(\lambda)/\partial \beta = 2\mathbf{X}^{\top}(\mathbf{y} - \mathbf{X}\beta) + 2\lambda\beta = 0 \Rightarrow \hat{\beta}^{ridge} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_p)^{-1}\mathbf{X}^{\top}\mathbf{y}$$