Demostracions de Matemàtiques I

Grafs i àlgebra lineal

(5) F. M. Lasaca

Quadrimestre primavera 2016

1 Grafs

1. Doneu la definició de la matriu d'incidència d'un graf.

Sigui
$$G = (V, A)$$
 un graf amb $V = \{v_1, v_2, ..., v_n\}$ i $A = \{a_1, a_2, ..., a_m\}$.

La *matriu d'incidència* és la matriu $M_I = M_I(G)$ de tipus $n \times m$ tal que, l'element b_{ij} de la fila i i columna j és:

$$b_{ij} = \begin{cases} 1, & \text{si } v_i \text{ i } a_j \text{ són incidents} \\ 0, & \text{altrament} \end{cases}$$

2. Enuncieu i demostreu el Lema de les encaixades.

Sigui G = (V, A) un graf, on $V = \{v_1, v_2, ..., v_n\}$, $A = \{a_1, a_2, ..., a_m\}$ amb $n \ge 1$.

- Enunciat: $\sum_{v \in V} g(v) = 2|A|$
- Demostració.
 - Si $m=0 \implies \forall v \in V$, g(v)=0. La fórmula és certa.
 - Si $m \geq 1$, sigui $M_I(G) = (b_{ij})$ la matriu d'incidència de G de tipus $n \times m$, on

$$b_{ij} = \begin{cases} 1, & \text{si } v_i \text{ i } a_j \text{ són incidents} \\ 0, & \text{altrament} \end{cases}$$

Corol·laris. A partir de la definició de $M_I(G)$, tenim:

- *a*. Si fixem una fila k tal que $1 \le k \le n$, llavors $\sum_{j=1}^{n} b_{kj} = g(v_k)$.
- *b*. Si fixem una columna ℓ tal que $1 \le \ell \le m$, llavors $\sum_{\ell=1}^m b_{i\ell} = 2$.

Demostració:

$$\sum_{v \in V} g(v) = \sum_{i=1}^{n} g(v_i) \stackrel{a}{=} \sum_{i=1}^{n} \left(\sum_{j=1}^{m} b_{ij}\right) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} b_{ij}\right) \stackrel{b}{=} \sum_{j=1}^{m} 2 = 2 \cdot m = 2|A| \quad \Box$$

$$\sup_{v \in V} g(v) = \sum_{i=1}^{n} g(v_i) \stackrel{a}{=} \sum_{i=1}^{n} \left(\sum_{j=1}^{m} b_{ij}\right) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} b_{ij}\right) \stackrel{b}{=} \sum_{j=1}^{m} 2 = 2 \cdot m = 2|A| \quad \Box$$

3. Siguin u i v vèrtexs diferents d'un graf G. Demostreu que si G conté un u-v recorregut de longitud k, aleshores conté un u-v camí de longitud com a molt k.

1

(5) F. M. Lasaca 1 GRAFS

Fem una demostració per inducció completa sobre $k \ge 1$.

Denotem P(k) per "A G, hi ha un u - v camí de longitud $\leq k$ ".

- Cas base: k = 1. Si hi ha un u v recorregut de longitud 1, això és una aresta; és a dir: un camí de longitud $1 \implies$ es verifica P(1).
- Pas inductiu.

Fixem un graf G que té dos vèrtexs diferents $u, v \in V$ i suposem que hi ha un u - v recorregut de longitud k > 1.

- *Hipòtesis d'inducció*. Es verifica $P(\ell)$ per tot $\ell \in [1, k-1]$.
- *Tesi*. Es verifica P(k).
- *Demostració*. Considerem el recorregut u v:

$$R: (u = u_0) \ u_1 \ u_2 \ \cdots \ u_{k-1} \ (u_k = v)$$

Estudiem per casos:

- * Tots els vèrtexs de R són diferents \implies R és un camí de longitud k \implies P(k) és cert.
- * Altrament: $\exists i, j \text{ amb } 0 \le i < j \le k \text{ tal que } u_i = u_j$. Per tant, podem reescriure R així:

$$R: (u = u_0) \ u_1 \cdots u_i \underbrace{u_{i+1} \cdots u_{j-1} u_j}_{S} u_{j+1} \cdots u_{k-1} (u_k = v)$$

Si eliminem *S* de *R*, tenim

$$R': (u = u_0) \ u_1 \ \cdots \ u_i \ u_{j+1} \ u_{j+2} \ \cdots \ (u_k = v)$$

R' és un u-v recorregut (perquè $u_i \sim u_{j+1}$) i de longitud $\ell < k$, ja que, almenys, hem tret una aresta \implies (per H.I.) hi ha un u-v camí de longitud $< \ell < k$.

Per tant, la proposició és certa.

4. Demostreu que si un graf connex té ordre n i mida m, aleshores $m \ge n - 1$.

V. dem que, si *G* és un graf connex d'ordre \geq 1, aleshores mida *G* \geq ordre *G* − 1.

Ho fem per inducció sobre $n \ge 1$.

Definim P(n) := "si un graf connex té grau n, aleshores mida $G \ge \operatorname{ordre} G - 1$ ".

- Cas base. Si n = 1, llavors necessàriament m = 0. Per tant, es verifica P(1).
- *Pas inductiu*. Suposem P(n). Volem demostrar P(n + 1).

Sigui G un graf d'ordre n+1 i connex. Volem veure que mida $G \ge \operatorname{ordre} G - 1 = (n+1) - 1 = n$.

Pot passar:

- Que tot vèrtex tingui grau ≥ 2 . Si $\forall v \in V$, $g(v) \geq 2$, llavors

mida
$$G = \frac{1}{2} \sum_{v \in V} g(v) \ge \frac{1}{2} \sum_{v \in V} 2 = \frac{1}{2} \cdot 2 \cdot (n+1) \ge n$$

F. M. Lasaca 1 GRAFS

− Que hi hagi algun vèrtex $u \in V$ amb grau 1.

Considerem G' = G - u. Tenim:

- * ordre G' = ordre G 1 = (n+1) 1 = n.
- * mida G' = mida G g(u) = mida G 1 = n.

Sabem que G és connex. Volem demostrar que G' és connex. És a dir, per tot parell de vèrtexs diferents $x, y \in V - \{u\}, \exists x - y \text{ camí.}$

Si el x-y camí no passa per u, llavors és un camí a G'. Però, que passi per u és impossible, perquè g(u) = 1, i $x \neq y \neq u$. Per tant G' és connex.

Per H.I., mida $G' \ge \text{ordre } G' - 1$.

$$\operatorname{mida} G' \ge \operatorname{ordre} G' - 1 \quad \stackrel{+1}{\Longrightarrow} \quad (\operatorname{mida} G' + 1) \ge (\operatorname{ordre} G' + 1) - 1$$

Comparant ordres i mides de G i G', llavors mida $G \ge \text{ordre } G - 1$.

5. *Doneu la definició de vèrtex de tall.*

Un vèrtex $v \in V$ de G(V, A) és de tall $\iff G - v$ té més components connexos que G.

6. Enuncieu i demostreu la caracterització dels vèrtexs de tall.

Sigui G = (V, A) un graf **connex**.

$$u$$
 és vèrtex de tall $\iff \exists x, y \in V - \{u\}$ tal que tot $x - y$ camí passa per u

u és un vèrtex de tall $\implies G - u$ és no-connex $\implies G - u$ té, almenys, dos c.c. Siguin x, y dos vèrtex de G - u que són a c.c.s diferent \implies a G - u no hi ha x - ycamins, però a G sí, perquè G és connex (hipò.) $\implies \forall x - y$ camí a G passa per u.

 $\exists x, y \in V - \{u\}$ tals que $\forall x - y$ camí a G passa per $u \implies$ a G - u no hi ha un x - ycamí $\implies G - u$ NO és connex $\land G$ connex $\implies u$ és un vèrtex de tall.

7. Enuncieu els teoremes d'Ore i de Dirac sobre grafs hamiltonians. Per a cadascun d'ells, doneu un exemple que mostri que la condició del teorema no és necessària i un exemple que mostri que la desigualtat que apareix en la condició del teorema no es pot millorar.

Teorema d'Ore. G = (V, A) graf d'ordre $n \ge 3$ tal que per a tot $u, v \in V$ diferents i no adjacents es té $g(u) + g(v) \ge n$. Aleshores, G és un graf hamiltonià.

Teorema de Dirac. G = (V, A) graf d'ordre $n \ge 3$ tal que $g(u) \ge n/2$ per a tot $u \in V$. Aleshores, *G* és hamiltonià.

Veiem que:

- No són necessàries. Sigui T_3 hamiltonià d'ordre n=3. Ore falla: $1 \sim 3$, però g(1)+1 $g(3) = 1 + 1 = 2 \ge n = 3$. Dirac falla: $g(1) = 1 \ge n/2 = 3/2$.
- Són les millors fites possibles.
 - Teorema d'Ore. Sigui G
 d'ordre n=4 de la figura. Veiem que 2
 $\nsim 4~\wedge~g(2)+$ g(4) = 2 + 1 = 3 = n - 1 i G no és hamiltonià: té el vèrtex de tall 1.

- Teorema de Dirac. Sigui $G \approx T_3$. Veiem que g(1) = 1, però $g(1) = 1 < n/2 = \frac{3}{2}$, però *G* no és hamiltonià perquè té el vèrtex de tall 2.
- **8.** Doneu la definició de senderó i de senderó eulerià.

Senderó. Recorregut obert que no repeteix arestes.

Senderó eulerià. Senderó que passa per totes les arestes d'un graf.

9. Demostreu que un graf connex conté un senderó eulerià si i només si té exactament dos vèrtexs de grau senar.

Hipòtesi comuna: *G* graf connex.

G conté un senderó eulerià \iff G té exactament dos vèrtexs de grau senar

Hipòtesi: G conté un senderó eulerià

G conté un senderó eulerià $S: x_0 x_1 \cdots x_m$, on m = |A|.

S passa per totes les arestes, no les repeteix i passa per tots els vèrtexs, ja que G és connex (hipò.).

- Si $x \in V \{x_0, x_m\}$, aleshores: $g(x) = 2 \# \{ \text{vegades que } x \text{ apareix a } S \}$, parell.
- $-g(x_0) = 1 + 2 \# \{ \text{vegades que } x_0 \text{ apareix a l'interior de } S \}, \text{ senar.}$
- Anàlogament, $g(x_m)$ és senar.

Per tant, G té exactament 2 vèrtexs de grau senar $(x_0 i x_m)$.

 \leftarrow Hipòtesi: \bigcirc G té exactament dos vèrtexs de grau senar \bigcirc . Diguem-ne: x i y.

Definim un nou graf per $G' = (V \cup \{z\}, A \cup \{zx, zy\})$, amb $z \notin V$.

Sabem que:

- G' és connex \Leftarrow $z \sim x$ ∧ G és connex.
- Tots els vèrtexs de G' tenen grau parell:

$$g_{G'}(z) = 2$$

$$g_{G'}(x) = 1 + g_G(x) = (hipò.) 1 + senar = parell$$

$$g_{G'}(y) = \text{parell, anàlogament.}$$

G' connex \land tot vèrtex de G' té grau parell (hipò.) \Longrightarrow (T. de caracterització de grafs eulerians) G és un graf eulerià.

Trobem el circuit eulerià $S: z \times x_1 \cdots x_r y z$ a G', ja que passa per totes les arestes de G. Per tant, $x x_1 \cdots x_r y$ passa per totes les arestes de G, amb $x \neq y \implies$ G conté el senderó eulerià S

10. *Doneu la definició d'arbre.*

Un arbre és un graf connex ($\forall u, v \in V$, $\exists u - v$ camí) i acíclic (no té cicles).

(5) F. M. Lasaca GRAFS

11. Demostreu que un graf T és un arbre si i només si per a cada parell de vèrtexs u, v hi ha un únic u-v camí a T.

Graf T = (V, A) arbre $\iff \forall u, v \in V$, hi ha un únic u - v camí a T.

 $u,v \in V$ vèrtexs qualsevol. T és un arbre $\implies T$ és connex $\implies \exists u-v$ camí a T.

Aquest camí és únic perquè si n'existissin dos de diferents, aleshores existiria almenys un cicle al graf (teorema) i aixó és impossible perquè T és acíclic (arbre).

 $\forall u,v \in V$, hi ha un únic u-v camí a $T \Longrightarrow T$ connex).

Suposem que T té algun cicle $(u = u_0) \cdots (u_k = v) u$ entre els vèrtexs u i $v \implies$ hi ha dos u-v camins diferents: $(u=u_0) \cdots (u_k=v)$ i l'aresta u v. Contradicció: (*hipo*: només hi ha un u - v camí) $\Longrightarrow [T \text{ és acíclic}].$

 $T \text{ connex } \wedge T \text{ acíclic } \Longrightarrow T \text{ és un arbre.}$

12. Enuncieu el teorema de caracterització d'arbres.

Sigui T = (V, A) un graf d'ordre n i mida m. Són equivalents:

- (a) *T* és un arbre.
- (b) T és acíclic i m = n 1.
- (c) T és connex i m = n 1.
- (d) *T* és connex i tota aresta és pont.
- (e) $\forall u, v \in V$, \exists un únic u v camí a T.
- (f) *T* és acíclic i l'addició d'una aresta crea exactament un cicle.
- **13.** Demostreu que tot arbre d'ordre $n \ge 2$ té almenys dues fulles.

Sigui T = (V, A) l'arbre, d'ordre $n \ge 2$ i mida m = n - 1 (arbre). Sigui n_F el número de fulles (vèrtexs de *V* de grau 1).

Apliquem el *Lema de les Encaixades*. Siguin v vèrtexs de V:

$$2m = 2(n-1) = \underbrace{\sum_{g(v)=1}^{n_F} g(v)}_{g(v)=1} + \sum_{g(v)\geq 2} g(v) \geq n_F + \sum_{g(v)\geq 2} 2 \geq n_F + 2(n-n_F)$$

Per tant,

$$2(n-1) \ge n_F + 2(n-n_F) \implies n_F \ge 2$$

2 Àlgebra lineal

1. Doneu la definició de subespai vectorial.

Sigui E un espai vectorial. $S \subseteq E$ és un subespai vectorial si es verifica:

- (a) $S \neq \emptyset$
- (b) $\forall u, v \in S, u + v \in S$.
- (c) $\forall u \in S \ i \ \forall \lambda \in \mathbb{K}, \lambda u \in S$.
- **2.** Siguin S i S' subespais vectorials d' un espai vectorial E. Demostreu que $S \cap S'$ és subespai vectorial de E i doneu un exemple que mostri que $S \cup S'$ no és necessàriament un subespai vectorial.
 - LA INTERSECCIÓ ÉS UN SEV

Volem demostrar que $T = S \cap S'$ és un SEV. És a dir:

(a) $T \neq \emptyset$

$$S \text{ i } S' \text{ són SEV's } \Longrightarrow 0_E \in S \text{ i } 0_E \in S' \Longrightarrow 0_E \in T \Longrightarrow T \neq \emptyset.$$

(b) $\forall u, v \in T, u + v \in T$.

$$u,v \in T \implies \begin{cases} u,v \in S \\ u,v \in S' \end{cases}$$
 $S \text{ i } S' \text{ són SEV's } \implies \begin{cases} u+v \in S \\ u+v \in S' \end{cases} \implies u+v \in T.$

(c) $\forall u \in T \text{ i } \forall \lambda \in \mathbb{K}, \lambda u \in T.$ Fixem una $\lambda \in \mathbb{K}$ qualsevol.

$$u \in T \implies \begin{cases} u \in S \\ u \in S' \end{cases}$$
 $S \text{ i } S' \text{ són SEV's } \implies \begin{cases} \lambda u \in S \\ \lambda u \in S' \end{cases} \implies \lambda u \in T.$

Per tant, $S \cap S'$ és un SEV.

- LA UNIÓ NO NECESSÀRIAMENT ÉS UN SEV

$$S = \left\{ \begin{pmatrix} x \\ x \end{pmatrix} : x \in \mathbb{R} \right\} \text{ i } S' = \left\{ \begin{pmatrix} x \\ -x \end{pmatrix} : x \in \mathbb{R} \right\}, \text{ d'on } \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \end{pmatrix} \notin S \cup S'$$

3. Doneu la definició de combinació lineal i d'independència lineal.

Siguin $u_1, \ldots, u_k \in E$; E és un \mathbb{K} -espai vectorial; $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$.

— COMBINACIÓ LINEAL. Una combinació lineal de u_1, \ldots, u_k és una expressió del tipus

$$\lambda_1 u_1 + \cdots + \lambda_k u_k$$

— INDEPENDÈNCIA LINEAL. Els vectors u_1, \dots, u_k són linealment independents \iff l'única solució de l'equació

$$\lambda_1 u_1 + \cdots + \lambda_k u_k = 0_E$$

és
$$\lambda_1 = \cdots = \lambda_k = 0$$
.

4. Siguin u_1, \ldots, u_k vectors d'un espai vectorial E i suposeu que u_1 és combinació lineal de u_2, \ldots, u_k . Demostreu que $\langle u_1, u_2, \ldots, u_k \rangle = \langle u_2, \ldots, u_k \rangle$.

Ho demostrem per "double inclusió":

П

Veiem que $\langle u_2, \dots, u_k \rangle \subseteq \langle u_1, u_2, \dots, u_k \rangle$, ja que $\{u_2, \dots, u_k\} \subseteq \{u_1, u_2, \dots, u_k\}$.

Hem de veure que $\forall x \in \langle u_1, \dots, u_k \rangle$, $x \in \langle u_2, \dots, u_k \rangle$. Sigui $x \in \langle u_1, \dots, u_k \rangle$.

(I) Per hipòtesi, x és combinació lineal de $u_1, u_2, \ldots, u_k \implies \exists \alpha_1, \ldots, \alpha_k \in \mathbb{K}$ tal que

$$x = \alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_k u_k$$

(II) Per hipòtesi, $u_1 \in \langle u_2, \dots, u_k \rangle \implies \exists \lambda_2, \lambda_3, \dots, \lambda_k \in \mathbb{K}$ tal que

$$u_1 = \lambda_2 u_2 + \lambda_3 u_3 + \cdots + \lambda_k u_k$$

Aleshores,

$$x = \alpha_1(\lambda_2 u_2 + \dots + \lambda_k u_k) + \alpha_2 u_2 + \dots + \alpha_k u_k$$

= $(\alpha_1 \lambda_2 + \alpha_2) u_2 + (\alpha_1 \lambda_3 + \alpha_3) u_3 + \dots + (\alpha_1 \lambda_k + \alpha_k) u_k$

Per tant, $x \in \langle u_2, \ldots, u_k \rangle$.

5. Demostreu que un conjunt de vectors és linealment dependent si i només si algun d'ells es pot escriure com a combinació lineal dels altres.

Sigui $S = \{u_1, \dots, u_k\} \subseteq E$ un conjunt de vectors. E és un \mathbb{K} -espai vectorial.

- HIPÒTESI. *S* és linealment dependent.
- TESI. $\exists u_i$ tal que u_i és combinació lineal de la resta de vectors.

S és linealment dependent. $\Longrightarrow \exists \lambda_1, \ldots, \lambda_k \in \mathbb{K}$ tal que algun és $\neq 0$ i

$$\lambda_1 u_1 + \cdots + \lambda_k u_k = 0_E$$

Suposem, sense pèrdua de generalitat, que $\lambda_1 \neq 0$.

Com que $\lambda_1 \neq 0$, existeix λ_1^{-1} :

$$u_1 = -\frac{\lambda_2}{\lambda_1} u_2 - \dots - \frac{\lambda_k}{\lambda_1} u_k$$

Per tant, $u_1 \in \langle u_2, u_3, \dots, u_k \rangle$.

 $\exists u_i$ tal que u_i és combinació lineal de la resta de vectors. Suposem que u_1 és, sense pèrdua de generalitat, combinació lineal de u_2, \ldots, u_k .

Per tant, $\exists \alpha_2, \alpha_3, \dots, \alpha_k \in \mathbb{K}$ tal que

$$u_1 = \alpha_2 u_2 + \alpha_3 u_3 + \dots + \alpha_k u_k \implies -u_1 + \alpha_2 u_2 + \alpha_3 u_3 + \dots + \alpha_k u_k = 0_E$$

Això és una combinació lineal de u_1, \ldots, u_k que dóna 0_E i tal que l'escalar que multiplica el u_1 és $\neq 0$ (és -1). $\Longrightarrow S$ és linealment dependent.

6. Doneu la definició de base d'un espai vectorial.

E és un \mathbb{K} -espai vectorial. Un conjunt de vectors $B = \{b_1, \dots, b_n\}$ és una base de *E* si:

- (a) *B* és linealment independent.
- (b) $E = \langle b_1, \dots, b_n \rangle$, és a dir, b_1, \dots, b_n generen E.
- **7.** Sigui $B = \{b_1, \ldots, b_n\}$ una base d'un espai vectorial E. Demostreu que tot vector de E es pot expressar de manera única com a combinació lineal dels elements de B.

Sigui $u \in E$. B és una base de $E \implies E = \langle b_1, \dots, b_n \rangle \implies \exists \alpha_1, \dots, \alpha_n \in \mathbb{K}$ tals que $u = \alpha_1 b_1 + \dots + \alpha_n b_n$

Ja hem demostrat que es pot expressar com a combinació lineal dels elements de B. Demostrem que aquesta expressió és única. Suposem que $\exists \lambda_1, \dots, \lambda_n \in \mathbb{K}$ tals que

$$u = \lambda_1 b_1 + \cdots + \lambda_n b_n$$

Restant les dues equacions, tenim:

$$(\alpha_1 - \lambda_1)b_1 + \cdots + (\alpha_n - \lambda_n)b_n = 0_E$$

Però, com que B és una base i, $\forall i \ (\alpha_i - \lambda_i \in \mathbb{K})$, l'única solució d'aquesta equació és $\forall i \ (\alpha_i - \lambda_i = 0) \implies \forall i \ (\alpha_i = \lambda_i) \implies \text{la combinació lineal és } \text{\'unica}.$

- **8.** Siguin E i F dos espais vectorials i $f: E \to F$ una aplicació.
 - Digueu què ha de satisfer f per tal de ser una aplicació lineal.

S'han de satisfer dues condicions:

- (a) $\forall u, v \in E, f(u+v) = f(u) + f(v).$
- (b) $\forall u \in E \text{ i } \forall \lambda \in \mathbb{K}, f(\lambda u) = \lambda f(u).$
- Demostreu que, si U és un subespai vectorial de E i f es una aplicació lineal, aleshores f(U) és un subespai vectorial de F.

Cal veure:

SEV1) $f(U) \neq \emptyset$

$$U \text{ és un SEV } \Longrightarrow 0_E \in U \Longrightarrow f(0_E) = 0_F \in f(U) \Longrightarrow f(U) \neq \emptyset.$$

SEV2) $\forall u, v \in f(U), u + v \in f(U)$.

 $u, v \in f(U) \implies \exists x, y \in U \text{ tals que } f(x) = u \text{ i } f(y) = v. \text{ Aplicant } f \text{ lineal:}$

$$u + v = f(x) + f(y) = f(x + y)$$

Ara, com que U és un SEV $\implies x + y \in U \implies u + v \in f(U)$.

SEV3) $\forall u \in f(U) \ \forall \lambda \in \mathbb{K}, \ \lambda u \in f(U).$

$$u \in f(U) \implies \exists x \in U \text{ tal que } f(x) = u.$$

$$\lambda u = \lambda f(x) = f(\lambda x) \in f(U)$$

Hem aplicat que f és lineal i que $\lambda x \in U$.

Per tant, f(U) és un SEV de F.

• Proveu que f està univocament determinada per la imatge d'una base qualsevol $\{b_1, \ldots, b_n\}$ de E.

Volem conèixer f(u), per tot $u \in E$.

Sigui $u \in E \implies \exists \alpha_1, \dots, \alpha_n \in \mathbb{K}$ tal que $u = \alpha_1 b_1 + \dots + \alpha_n b_n$. Com que f és una aplicació lineal, $f(u) = \alpha_1 f(b_1) + \dots + \alpha_n f(b_n)$. Aquest valor és únic, ja que les coordenades són úniques i coneixem $f(\{b_1, \dots, b_n\})$, és a dir, $f(b_1), \dots, f(b_n)$.

- **9.** Sigui $f: E \to F$ una aplicació lineal entre espais vectorials.
 - Doneu la definició de la matriu de f en unes bases $B = \{b_1, \ldots, b_n\}$ i $W = \{w_1, \ldots, w_m\}$ de E i F, respectivament.

La matriu associada a f en les bases B i W és una matriu de $\mathcal{M}_{m \times n}(\mathbb{K})$ que té, per columnes, les coordenades en la base W les imatges dels vectors de la base B, i és

$$M_W^B(f) = \begin{pmatrix} \vdots & \vdots & & \vdots \\ f(b_1)_W & f(b_2)_W & \cdots & f(b_n)_W \\ \vdots & \vdots & & \vdots \end{pmatrix}$$

• Escriviu i expliqueu la fórmula que relaciona les matrius de f en bases diferents de E, F.

Sigui $f: E \to F$ una aplicació lineal, B i B' matrius bases de E, i W i W' bases de F. Tenim:

$$f = I_F \circ f \circ I_E$$

$$M_{W'}^{B'}(f) = P_{W'}^W \cdot M_W^B(f) \cdot P_B^{B'}$$

$$E_{B} \xrightarrow{f} F_{W}$$

$$I_{E} \uparrow P_{B}^{B'} \qquad P_{W'}^{W} \downarrow I_{F}$$

$$E_{B'} \xrightarrow{f} F_{W'}$$

- **10.** Sigui $f: E \to F$ un endomorfisme d'un espai vectorial E.
 - *Definiu* valor propi *de f i* vector propi *de f de valor propi* λ .
 - VALOR PROPI. Un escalar $\lambda \in \mathbb{K}$ és un valor propi de f si existeix algun $v \in E$, $v \neq 0_E$ tal que $f(v) = \lambda v$.
 - Vector propi de f de valor propi λ : els vectors $v \in E$, $v \neq 0_E$ tals que $f(v) = \lambda v$.
 - Demostreu que $E_{\lambda} = \{u \in E : f(u) = \lambda u\}$ és un subespai vectorial de E. Cal veure:

SEV1) $E_{\lambda} \neq \emptyset$. Cert, ja que, $\forall \lambda$, $f(0_E) = 0_E = \lambda 0_E$.

SEV2) $\forall u,v \in E_{\lambda} \implies u+v \in E_{\lambda}$. Siguin u i v vectors qualssevol de E:

$$f(u+v) = f(u) + f(v) = \lambda u + \lambda v = \lambda(u+v)$$

Apliquem: f és lineal; u, v són VEPs de VAP λ ; propietat dels escalars.

SEV3) $\forall \alpha \in \mathbb{K}, v \in E_{\lambda} \implies \alpha v \in E_{\lambda}$. Siguin λ, v qualssevol:

$$f(\alpha v) = \alpha f(v) = \alpha \lambda v = \lambda(\alpha v) \iff f(\alpha v) = \lambda(\alpha v) \iff \alpha v \in E_{\lambda}$$

Apliquem: f és lineal; v és un VEP de VAP λ ; producte d'escalars.

Per tant, E_{λ} és un SEV de E.