



# Predicting Subsequent Memory Performance For Auditory and Visual Encoding



M. V. Mollison<sup>1</sup>, G. Herzmann<sup>1</sup>, E. Noh<sup>2</sup>, V. de Sa<sup>2</sup>, T. Curran<sup>1</sup>

Department of Psychology and Neuroscience, University of Colorado at Boulder
Department of Cognitive Science, University of California, San Diego

#### Introduction

#### **Summary**

• We attempted to predict whether a subject would later recall studied words presented either visually or aurally based on EEG activity recorded during study. Encoding period EEG was decomposed into 6 oscillatory bands (4–64 Hz). Memory success was defined by recalling words in a free recall period.

#### Oscillations during encoding

• Theta (4–8 Hz) and gamma (28–100+ Hz) are found while encoding new information (Klimesch, Doppelmayr, Russegger, & Pachinger, 1996; Sederberg et al., 2006).

#### **Questions and Hypotheses**

- Because particular frequency bands have been associated with successful encoding of memories, it might be possible to predict subsequent memory performance based on encoding period band power.
- -Successful encoding might have different oscillatory signatures for different stimulus modalities (auditory and visual).
- Oscillatory band activity during early and late portions of the encoding period might differentiate based on subsequent memory.
- If these are true:
- We should be able to train multivariate pattern classifiers to distinguish successful from unsuccessful encoding.

## Experiment

- 20 blocks of 16 intermixed auditory and visual stimuli.
- 1000 ms stimulus presentation, preceded by a modality cue.
- Distractor period: count backwards by 3s.
- Free recall of encoded stimuli. Recall was used to define successful encoding.



# Classifier Details

- Balanced trial counts within modalities
- Z-transformed time—frequency data
- L1 regularized logistic regression
- $-\alpha = 1$
- $-\lambda$  (regularization parameter) = 0.1
- 10-fold cross-validation

## Behavioral Results

- 10 right-handed adults
- Two trials from the start and end of encoding blocks were excluded to eliminate primacy and recency.
- Trial counts before balancing conditions within modality:

| Subject                    | S03 | S05 | S06 | S07 | S08 | S09 | S12 | S13 | S14 | S15 | Average |
|----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------|
| Auditory: Recalled trials  | 35  | 52  | 32  | 32  | 25  | 59  | 42  | 37  | 28  | 34  | 37.6    |
| Auditory: Forgotten trials | 58  | 58  | 85  | 32  | 30  | 41  | 72  | 75  | 53  | 34  | 57.5    |
| Visual: Recalled trials    | 38  | 23  | 37  | 20  | 20  | 61  | 23  | 37  | 18  | 19  | 29.6    |
| Visual: Forgotten trials   | 54  | 89  | 72  | 63  | 44  | 38  | 92  | 73  | 61  | 85  | 67.1    |

• Accuracy before balancing conditions within modality:

| Subject                                     | S03  | S05  | S06  | S07  | S08  | S09  | S12  | S13  | S14  | S15  | Average |  |
|---------------------------------------------|------|------|------|------|------|------|------|------|------|------|---------|--|
| Auditory: accuracy                          | 37.6 | 47.3 | 27.4 | 50.0 | 45.5 | 59.0 | 36.8 | 33.0 | 34.6 | 32.4 | 40.4    |  |
| Visual: accuracy                            | 41.3 | 20.5 | 33.9 | 24.1 | 31.3 | 61.6 | 20.0 | 33.6 | 22.8 | 18.3 | 30.7    |  |
| - Auditory $>$ Visual [ $t(9)=2.49,p<.05$ ] |      |      |      |      |      |      |      |      |      |      |         |  |

#### Classification Results

Auditory: Early time window

|   | Subject  | S03  | S05  | S06  | S07  | S08  | S09  | S12  | S13  | S14  | S15  | Average |
|---|----------|------|------|------|------|------|------|------|------|------|------|---------|
| _ | 4–8 Hz   | 40.0 | 51.9 | 60.9 | 48.4 | 56.0 | 35.4 | 45.2 | 40.5 | 37.5 | 47.1 | 46.3    |
|   | 8–14 Hz  | 68.6 | 49.0 | 53.1 | 45.3 | 58.0 | 63.4 | 47.6 | 48.6 | 55.4 | 52.9 | 54.2    |
|   | 14–21 Hz | 60.0 | 54.8 | 53.1 | 32.8 | 48.0 | 56.1 | 56.0 | 54.1 | 57.1 | 41.2 | 51.3    |
|   | 21–28 Hz | 51.4 | 72.1 | 68.8 | 51.6 | 58.0 | 51.2 | 35.7 | 50.0 | 53.6 | 55.9 | 54.8    |
|   | 28–42 Hz | 55.7 | 59.6 | 56.2 | 59.4 | 48.0 | 47.6 | 47.6 | 58.1 | 41.1 | 70.6 | 54.4    |
| _ | 28–64 Hz | 61.4 | 52.9 | 59.4 | 28.1 | 40.0 | 58.5 | 44.0 | 54.1 | 41.1 | 47.1 | 48.7    |

Auditory: Late time window

| Subject  | S03  | S05  | S06  | S07  | S08  | S09  | S12  | S13  | S14  | S15  | Average |
|----------|------|------|------|------|------|------|------|------|------|------|---------|
| 4–8 Hz   | 32.9 | 42.3 | 53.1 | 57.8 | 42.0 | 48.8 | 44.0 | 41.9 | 37.5 | 47.1 | 44.7    |
| 8–14 Hz  | 47.1 | 56.7 | 62.5 | 59.4 | 40.0 | 46.3 | 64.3 | 50.0 | 35.7 | 39.7 | 50.2    |
| 14–21 Hz | 50.0 | 61.5 | 51.6 | 64.1 | 68.0 | 42.7 | 53.6 | 52.7 | 44.6 | 55.9 | 54.5    |
| 21–28 Hz | 45.7 | 52.9 | 34.4 | 39.1 | 40.0 | 54.9 | 57.1 | 47.3 | 67.9 | 39.7 | 47.9    |
| 28–42 Hz | 50.0 | 42.3 | 50.0 | 35.9 | 28.0 | 53.7 | 50.0 | 52.7 | 41.1 | 51.5 | 45.5    |
| 28–64 Hz | 52.9 | 46.2 | 48.4 | 35.9 | 52.0 | 43.9 | 48.8 | 56.8 | 37.5 | 63.2 | 48.6    |

Visual: Early time window

| Subject  | S03  | S05  | S06  | S07  | S08  | S09  | S12  | S13  | S14  | S15  | Average |
|----------|------|------|------|------|------|------|------|------|------|------|---------|
| 4–8 Hz   | 43.4 | 58.7 | 44.6 | 57.5 | 40.0 | 52.6 | 47.8 | 40.5 | 41.7 | 39.5 | 46.6    |
| 8–14 Hz  | 60.5 | 60.9 | 32.4 | 52.5 | 60.0 | 48.7 | 47.8 | 43.2 | 55.6 | 36.8 | 49.8    |
| 14–21 Hz | 46.1 | 47.8 | 58.1 | 45.0 | 50.0 | 53.9 | 60.9 | 44.6 | 50.0 | 31.6 | 48.8    |
| 21–28 Hz | 52.6 | 71.7 | 47.3 | 52.5 | 42.5 | 48.7 | 43.5 | 45.9 | 36.1 | 42.1 | 48.3    |
| 28–42 Hz | 46.1 | 45.7 | 54.1 | 65.0 | 37.5 | 52.6 | 37.0 | 44.6 | 44.4 | 42.1 | 46.9    |
| 28–64 Hz | 55.3 | 56.5 | 50.0 | 40.0 | 82.5 | 44.7 | 73.9 | 37.8 | 55.6 | 63.2 | 55.9    |

Visual: Late time window

| Subject  | S03  | S05  | S06  | S07  | S08  | S09  | S12  | S13  | S14  | S15  | Average |
|----------|------|------|------|------|------|------|------|------|------|------|---------|
| 4–8 Hz   | 47.4 | 41.3 | 41.9 | 50.0 | 35.0 | 50.0 | 39.1 | 44.6 | 38.9 | 57.9 | 44.6    |
| 8–14 Hz  | 52.6 | 30.4 | 52.7 | 35.0 | 55.0 | 51.3 | 32.6 | 56.8 | 66.7 | 39.5 | 47.3    |
| 14–21 Hz | 55.3 | 60.9 | 41.9 | 37.5 | 55.0 | 42.1 | 65.2 | 62.2 | 55.6 | 39.5 | 51.5    |
| 21–28 Hz | 47.4 | 58.7 | 44.6 | 57.5 | 42.5 | 61.8 | 76.1 | 50.0 | 72.2 | 50.0 | 56.1    |
| 28–42 Hz | 52.6 | 52.2 | 51.4 | 40.0 | 37.5 | 36.8 | 50.0 | 56.8 | 69.4 | 50.0 | 49.7    |
| 28–64 Hz | 57.9 | 52.2 | 59.5 | 45.0 | 60.0 | 40.8 | 69.6 | 50.0 | 33.3 | 60.5 | 52.9    |

Significance:

Light gray p < .1Dark gray p < .05

#### Scalp EEG

- 128-channel 500-Hz EGI scalp EEG system; 200 MΩ high-impedance amplifier; EEG preprocessed; average reference.
- EEG preprocessing:
- ICA-based eye blink artifact correction
- Artifact rejection
- -Average rereference; baseline correction (-300-0 ms pre-stimulus)
- 91 central channels sub-selected
- 6 frequency bands:

Band  $\theta$   $\alpha$  Low  $\beta$  High  $\beta$  Low  $\gamma$  High  $\gamma$  Hertz 4–8 8–14 14–21 21–28 28–42 42–64

 EEG divided into early (0–500 ms) and late (500–1000 ms) windows

## Summary of Results

#### **Behavioral**

- More items were forgotten than recalled.
- More accurate for auditory than visual stimuli.

#### Classification

- Qualitatively, auditory stimuli differentiate in lower oscillatory bands while visual stimuli differentiate in higher oscillatory bands.
- Across subjects, no bands are different from chance.
- During exploration of classifier options, some subjects were fit better by particular classifiers (e.g., elastic net, L1, L2, SVM).

# Next Steps

- Better exploration of classifiers and their parameters.
- Include primacy and recency items for analysis of oscillatory dynamics as influenced by serial position (Sederberg et al., 2006).

#### References

Klimesch, W., Doppelmayr, M., Russegger, H., & Pachinger, T. (1996). Theta band power in the human scalp eeg and the encoding of new information. *Neuroreport*, 7(7), 1235–1240.

Sederberg, P. B., Gauthier, L. V., Terushkin, V., Miller, J. F., Barnathan, J. A., & Kahana, M. J. (2006). Oscillatory correlates of the primacy effect in episodic memory. *Neuroimage*, *32*(3), 1422–1431.

# Acknowledgments

- Work sponsored by NSF grant #SBE-0542013 to the Temporal Dynamics of Learning Center (an NSF Science of Learning Center), and NIMH grant MH64812.
- Contact: matthew.mollison@colorado.edu / http://psych.colorado.edu/~mollison
- ullet This poster was typeset in LATEX  $2_{\mathcal{E}}$  using the tboxen style and TikZ.