You are taking "Final Exam" as a timed exam. The timer on the right shows the time remaining in the exam.

Final Exam

Timed Exam

②

▶ Welcome! Final Exam Instructions About this course 1. Time allowed: **1 hour** 2. Attempts per question: Module 1 -Introduction to One attempt - For True/False questions **TensorFlow** • Two attempts - For any question other than True/False ▶ Module 2 -3. Clicking the "Final Check" button when it appears, means your: Convolutional You will **NOT** be able to resubmit your answer for that question Networks IMPORTANT: Do not let the time run out and expect the system Module 3 automatically. You must explicitly submit your answers, othe Recurrent Neural marked as incomplete. Network ▶ Module 4 -QUESTION 1 (1/1 point) Unsupervised Learning Why use a Data Flow graph to solve Mathematical expressions? Module 5 -• To create a pipeline of operations and its corresponding valu **Autoencoders** To represent the expression in a human-readable form Course Summary To show the expression in a GUI Appendix ▼ Final Exam Because it is only way to solve mathematical expressions in a Instructions None of the above

► Course Survey

OUESTION 2 (1/1 point)

_	
Vhat i	is an Activation Function
O A	All of the above
O A	A function that models a phenomenon or process
• <i>F</i>	A function that triggers a neuron and generate the outputs
O A	A function to normalize the output
0	None of the above
You h	nave used 2 of 2 submissions
	eave used 2 of 2 submissions ESTION 3 (1/1 point)
QU	
QU Why To	ESTION 3 (1/1 point)
QU Why To	ESTION 3 (1/1 point) SensorFlor is considered fast and suitable for Deep Learning?
QU Why To	ESTION 3 (1/1 point) TensorFlor is considered fast and suitable for Deep Learning? t is suitable to operate over large and multidimensional tens

runs on GPU

You have used 2 of 2 submissions

QUESTION 4 (1 point possible)

TensorFlow can replace Numpy?

- None of the above
- No, whatsoever
- Only with bumpy, we can't solve Deep Learning problems, the required
- Yes, completely
- O Partially for some operations on tensors, such as minimization

You have used 2 of 2 submissions

QUESTION 5 (1 point possible)

What is FALSE about Convolution Neural Networks(CNN)

Fully connects to all neurons in all the layers
● connects only to neurons in local region(kernel size) of inpu
O builds feature maps hierarchically in every layer
O Inspired by human visual system
O None of the above
You have used 2 of 2 submissions
QUESTION 6 (1/1 point) What does "Strides" in Maxpooling Mean O The number of pixels, kernel should add.
What does "Strides" in Maxpooling Mean O The number of pixels, kernel should add.
What does "Strides" in Maxpooling Mean O The number of pixels, kernel should add. ■ The number of pixels, kernel should be moved.
What does "Strides" in Maxpooling Mean O The number of pixels, kernel should add.
What does "Strides" in Maxpooling Mean O The number of pixels, kernel should add. ■ The number of pixels, kernel should be moved.

QUESTION / (1 point possible) What is TRUE about "Padding" in Convolution
What is those about Tadamig in convolution
o size of Input Image is reduced for "VALID" padding.
O Size of Input Image is reduced for "SAME" padding.
Size of Input Image is Increased for "SAME" padding.
O Size of input image is increased for "VALID" padding.
All of the above
You have used 2 of 2 submissions
QUESTION 8 (1/1 point)
Which of the following best describes Relu Function
O (-1,1)
o (0,5)
● (0, Max) ✓

O (-inf,inf)

You have used 2 of 2 submissions

$QUESTION \ 9 \ \ {\tiny (1/1\ point)}$

Which ones are types of Recurrent Neural Networks?

- Hopfield Network
- Elman Networks and Jordan Networks
- Recursive Neural Network

- Deep Belief Network
- LSTM

You have used 2 of 2 submissions

$QUESTION \ 10 \ \ (1/1 \ point)$

What is TRUE about RNNs

You are taking "Final Exam" as a timed exam. The timer on the right shows the time remaining in the exam.

O R	RNNs can predict the future
• R	NNs are VERY suitable for sequential data
O R	RNNs are NOT suitable for sequential data
0 R	NNs are ONLY suitable for sequential data
O A	all of the above
	ave used 2 of 2 submissions
QUI	ESTION 11 (1/1 point)
What is	s the problem with RNNs and gradients?
0 N	Numerical computation of gradients can drive into instabilitie
0 0	Gradients can quickly drop and stabilize at near zero
0 P	Propagation of errors due to the recurrent characteristic
0 0	Gradients can grow exponentially
	dl of the above ✓

$QUESTION~12~{\tiny (1/1~point)}$

What type of RNN would you use in a NLP project to predict the ne (only one is correct)

Bi-directional RNN
 Neural history compressor
 Long Short Term Memory ✓
 Echo state network
 None of the above

You have used 2 of 2 submissions

QUESTION 13 (1/1 point)

How RBM can reduce the number of features?

By transforming the features using a kernel function
O By randomly filtering out a few features then checking if the regenerated
O By minimizing the difference between inputs and outputs, w features in the
O By cutting of features with less variance
All of the above
You have used 2 of 2 submissions

QUESTION	14	(1/1 point)
----------	----	-------------

QUESTION IT (1/1 point)
How Autoencoders compares to K-means?
O Autoencoders are always faster than k-means
O Both are based on Neural Networks
K-Means is always better than Autoencoders
Both can cluster the data
O None of the Above
You have used 2 of 2 submissions
QUESTION 15 (1/1 point)
Select all possible uses of Autoencoders and RBM (select all that a
Predict data in time series
Pattern Recognition
Dimensionality Reduction
 Clustering

You have used 2 of 2 submissions

$QUESTION~16~{\scriptsize (1/1\,point)}$

What is TRUE about Collaborative Filtering

● it is a technique used by Recommender Systems ✔
O None of the Above
 It makes automatic predictions for a user by collecting informusers
RBM can be used to implement a collaborative filter
O It is Deep Neural Network

You have used 2 of 2 submissions

$QUESTION~17~{\tiny (1/1~point)}$

Which of the statements is TRUE for training Autoencoders:

O The Size of Last Layer must atleast be 10% of Input layer DIm
The size of input and Last Layers must be of Same dimensior
O The Last Layer must be Double the size of Input Layer Dimen
O The Last Layer must be half the size of Input Layer Dimension
O None of the Above.
You have used 2 of 2 submissions QUESTION 18 (1/1 point)
To Design a Deep Autoencoder Architecture, what factors are to be
 The Size of centre most layer has to be close to number of Im be extracted.
O The Centre most Layer should have smallest size compared to
The Network should have odd number of Layers
O All the layers must be symmetrical with respect to centre mos
All of the Above

QUESTION 19 (1/1 point)
With is True about Backpropogation:
O Can be used to train LSTM
O Can be used to train CNN
O Can be used to train RBM
Can be used to train Autoencoders
All of the Above
You have used 2 of 2 submissions
QUESTION 20 (1/1 point)
How Autoencoder can be Improved to handle Higly nonlinear Dat
Use Genetic Algorithms
Add more Hidden Layers to the Network
Use Higher initial Weight Values
Use lower initial weight Values

You are taking "Final Exam" as a timed exam. The timer on the right shows the time remaining in the exam.

End My Exam

0:54:47

You have used 2 of 2 submissions