哈尔滨工程大学本科生 2023-2024 第二学期 期中考试答题卡

课程编号: 201912400202 课程名称: 工科数学分析(二) B 卷

	学号填涂区									
姓 名:		0	0	0	0	0	0	0	0	▣
		1	1		1	1	1	1	1	
10c €.	2	2	2	2	2	2	2	2	2	2
院 系:	3	3	3	3	3	3	3	3	3	3
	4	4	4	4	4	4	4	4	4	4
班 级:	5	5	5	5	5	5	5	5	5	5
, <u></u>	6	6	6	6	6	6	6	6	6	6
V.0. =	7	7	7	7	7	7	7	7	7	7
座位号:	8	8	8	8	8	8	8	8	8	8
	9	9	9	9	9	9	9	9	9	9

注意事项:

- 1. 所有选择题必须使用 2B 铅笔填涂在本答题卡中选择题 填涂区域内, 答在其他位置无效。
- 2. 所有填空题必须答在本答题卡中填空题解答区域内, 答在其他位置无效。
- 3. 选择题答案如有修改, 需用先用橡皮擦干净。
- 4. 保持答题卡纸面清洁, 不要折叠、不要弄皱。

选择题填涂区域

一、单项选择题(每题1分,共10分)

1	Α	В	С	D
2	Α	В	C	D
3	Α	В	C	D
4	Α	В	C	D
5	Α	В	C	D
6	Α	В	C	D
7	Α	В	C	D
8	Α	В	C	D
9	Α	В	C	D
10	Α	В	C	D
10				

填空题答题区域

	、填空题(每题1分,共10分)
1.	
2.	
3.	
4.	
5.	

一、单项选择题(每题7分,共70分)

- 1. 下列命题正确的是 .
- (A) 函数 $z = \ln(x^2 + y^2)$, 则其全微分 $dz|_{(2,2)} = 1dx + 1dy$;
- (B) 函数 $f(x,y) = \sqrt{x^2 + y^2}$ 在点(0,0)处沿 $\vec{\tau} = (1,-2)$ 的方向导数不存 在:
- (C) 连续函数 f(x, y) 满足 $\lim_{x\to 0} \frac{f(x, y)}{|x|+y^2} = -3$,则点 (0,0) 是 f(x, y) 的极

大值点:

(D) 在点(0,1,1)的某个邻域内, 方程 $xy-z\ln y+e^{xz}=1$ 只能确定一个 具有连续偏导数的单值函数 y = y(x,z).

第1页共2页

- 2. 二元函数 $f(x, y) = e^{\sqrt{x^2 + y^2}}$ 在点 (0.0) 处
- (A) 不连续, 偏导数存在;
- (B) 不连续, 偏导数不存在;
- (C) 连续, 偏导数存在;
- (D) 连续, 偏导数不存在.
- 3. 设函数 z = z(x, y) 是由方程 F(ax+z,by+z) = 0 所确定的函数, 其 中F(u,v)具有连续偏导数,则必有
- (A) $b \frac{\partial z}{\partial x} a \frac{\partial z}{\partial y} = -ab$; (B) $a \frac{\partial z}{\partial x} b \frac{\partial z}{\partial y} = -ab$;
- (C) $a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = -ab$; (D) $b\frac{\partial z}{\partial x} + a\frac{\partial z}{\partial y} = -ab$.
- 4. 设M(x,y,z)为平面2x-y+z=2上一点,且点M到两定点 (0,0,0),(1,0,2) 距离的平方之和为最小,则点M 的坐标为___
- (A) (1,0,0); (B) $(\frac{1}{2},0,1)$; (C) (0,-1,1); (D) $(\frac{1}{2},-1,0)$.

- 5. 设积分 $I_1 = \iint \sqrt{x + y} dx dy$, $I_2 = \iint (x + y) dx dy$, $I_3 = \iint (x + y)^{\frac{3}{2}} dx dy$,

其中积分区域 $D = \{(x,y) | 1 \le x + y \le 2, x \ge 0, y \ge 0\}$,则下列关系式成 立的是

- (A) $I_1 < I_2 < I_3$; (B) $I_2 > I_1 > I_3$; (C) $I_1 > I_2 > I_3$; (D) $I_2 < I_1 < I_3$.
- 6. 设区域 $D: x^2 + y^2 \le 4$, 则二重积分 $\iint (x^2 + y^2)^{\frac{3}{4}} dx dy$ 的值

- (A) $\frac{16}{5}\sqrt{2}\pi$; (B) $\frac{32}{7}\sqrt{2}\pi$; (C) $\frac{16}{7}\pi$; (D) 32π .

- 7. 设区域 Ω 为 $|x|+|y|+|z|\leq 1, z\geq 0$, Ω_1 为 Ω 在第一卦限的部分,

则下列等式正确的是

- (A) $\iiint_{\Omega} \cos(xyz) dV = 4 \iiint_{\Omega} \cos(xyz) dV;$
- (B) $\iiint xy \cos(xyz) dV = 2 \iiint xy \cos(xyz) dV;$
- (C) $\iiint_{\Omega} z \sin(xyz) dV = 4 \iiint_{\Omega} z \sin(xyz) dV ;$

1

(D)
$$\iiint_{\Omega} \cos(xyz) dV = 0.$$

8. 设函数 f(x,y,z) 在 Ω 内连续, 其中 Ω 是由曲面 $\Sigma_1: x^2+y^2+z^2=2z$

和 $\Sigma_1: z = \sqrt{x^2 + y^2}$ 围成的不含 z 轴的部分,则三重积分 $\iiint\limits_{\Omega} f(x, y, z) dV = \underline{\qquad}.$

- (A) $\int_0^{2\pi} d\theta \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin\varphi d\varphi \int_0^2 f(r\sin\varphi\cos\theta, r\sin\varphi\sin\theta, r\cos\varphi) r^2 dr;$
- (B) $\int_0^{2\pi} d\theta \int_0^{\frac{\pi}{4}} \sin\varphi d\varphi \int_0^2 f(r\sin\varphi\cos\theta, r\sin\varphi\sin\theta, r\cos\varphi) r^2 dr;$
- (C) $\int_0^{2\pi} d\theta \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin\varphi d\varphi \int_0^{2\cos\varphi} f(r\sin\varphi\cos\theta, r\sin\varphi\sin\theta, r\cos\varphi) r^2 dr;$
- (D) $\int_0^{2\pi} d\theta \int_0^{\frac{\pi}{4}} \sin\varphi d\varphi \int_0^{2\cos\varphi} f(r\sin\varphi\cos\theta, r\sin\varphi\sin\theta, r\cos\varphi) r^2 dr.$
- 9. 设曲线 $L: x^2 + y^2 = -2y$, 则 $\oint_L \sqrt{x^2 + y^2} ds = _____$.
- (A) 4;
- (B) 8;
- (C) −4;
- (D) -8.

10. 在力场 $\vec{F} = xy^2\vec{i} + yx^2\vec{j}$ 的作用下,单位质点沿光滑曲线段 $L: x^4 + y^4 = 1 (x \ge 0)$ 从点 A(0, -1) 运动到点 B(0, 1),则力 \vec{F} 所作的功

- (A) $\frac{1}{2}$; (B) 1; (C) $\frac{3}{2}$; (D) 0.

二、填空题(每题6分,共30分)

1. 设函数 z = f(x, xy), 其中 f(u, v) 具有二阶连续偏导数,则

$$\frac{\partial^2 z}{\partial x \partial y} = \underline{\hspace{1cm}}$$

- 2. 曲面 $z = y + \ln \frac{x}{z}$ 在点 (1,1,1) 处的切平面方程是_____.
- 3. 函数 $u = y^2 \cos(x+3z)$ 在点 (0,-2,0) 处方向导数的最大值为_____.
- 4. 二次积分 $\int_0^1 dy \int_y^1 \frac{\cos x}{x} dx$ 的值为______.

5. 设曲线 L 为圆周 $\begin{cases} x^2 + y^2 + z^2 = 9 \\ x + y + z = 0 \end{cases}$, 则曲线积分 $\oint_L xz ds$ 的值