Esame di Fisica Nucleare e Subnucleare 1 - AA 2015/2016

Febbraio 2017

NOME E COGNOME:	CANALE:

1. I mesoni K^+ possono essere fotoprodotti attraverso la reazione

$$\gamma + p \to K^+ + \Sigma^0$$

- a. Calcolare l'energia minima E_{min} che deve avere il fotone nel laboratorio, dove il protone è a riposo, affinché la reazione abbia luogo.
- b. Se si considera il moto del protone nel nucleo (moto di Fermi), la reazione può aver luogo con una energia inferiore a E_{min} . Calcolare l'energia minima E_{min}^{FERMI} che deve avere il fotone nel laboratorio affinché la reazione abbia luogo, assumendo che l'impulso del protone nel nucleo abbia un modulo di 200 MeV/c.

Si cosideri ora il decadimento della Σ^0 in $p \in \pi^-$:

$$\Sigma^0 \to p + \pi^-$$

se la velocità della Σ^0 é 0.8 c, determinare nel riferimento del laboratorio:

- c. il massimo impulso, $|\vec{p}^{max}|$, che può avere il π^- ;
- d. il massimo valore, $(p_{\pi^-})_{\perp}^{max}$, che può assumere la componente dell'impulso del π^- ortogonale alla linea di volo della Σ^0 che decade.
- 2. Un fascio di protoni e di particelle α di energia pari a 6.00 GeV viene fatto passare in uno spettrometro di massa, in cui le particelle incontrano un campo magnetico da 2 T, coprendo una traiettoria pari a un quarto di una circonferenza, come in figura. Protoni e particelle α così selezionati attraversano due scintillatori di NaI(Tl) (ioduro di sodio drogato al tallio, Z/A=0.45, ρ =3.67 g/cm³, I=452 eV, X_0 =2.59 cm) spessi 2 cm, posti a 5 m l'uno dall'altro.
 - a. Calcolare la lunghezza minima dei due scintillatori necessaria a coprire i due fasci separati.
 - b. Calcolare l'energia depositata negli scintillatori da protoni e particelle α .
 - c. Calcolare il tempo di volo dei due tipi di particelle fra i due scintillatori.

Utilizzare ove necessario la formula di Bethe-Bloch approssimata come:

$$\frac{dE}{dx} = C\rho \frac{Z}{A} \frac{z^2}{\beta^2} \left(\ln \frac{2m_e c^2 \beta^2 \gamma^2}{I} - \beta^2 \right)$$

[C=0.307 MeV $g^{-1}cm^{-2}$; $m_p = 0.938 \text{ GeV}$; $m_\alpha = 3.727 \text{ GeV}$]

3. Stabilire quali reazioni e quali decadimenti delle seguenti liste sono permessi e quali sono proibiti, indicando per quelli permessi l'interazione responsabile e per quelli proibiti tutti i numeri quantici che sono violati

a.
$$\pi^- + n \rightarrow \Xi^- + \overline{K}^0$$

b.
$$\overline{p} + p \to \pi^0$$

c.
$$K^- + n \rightarrow \Lambda \pi^-$$

d.
$$\overline{\nu}_{\mu} + e^{-} \rightarrow \nu_{e} + \mu^{+}$$

e.
$$\mu^- + n \rightarrow \overline{\nu}_{\mu} + \pi^0$$

f.
$$K^0 \to \pi^+\pi^-\gamma$$

g.
$$\eta \to e^+ \mu^-$$

h.
$$\Omega^- \to \Sigma^0 + \pi^0$$

i.
$$\Xi^0 \to \Lambda + \pi^0$$

j.
$$\mu^- \to e^- + \overline{\nu}_\mu + \nu_e$$