3. Types of Power, R-C Circuit, LCR Circuit

01 March 2024 09:01

Types of Power

- Power circulates from source to load and vice versa, is not consumed. Reactive hower
- · Inductor, capacitor -> reactive elements Q= VI sin \$
- · Denoted by Q, units: VAR
- · Product & RMS value & voltage & current apparent power
- · Denoted by S, units: VA

Resiston: Power absorbed is consumed

Reactive houser = 0

Inductor/Copaciton: Power consumed is zero

Active hower = 0

Active Power

Power consumed by the load, denoted by P, units: Walts

POWER FACTOR

Ratio of active hower to apparent hours - hower factors

SERIES R-C CIRCUIT RESPONSE

$$\overline{V} = \overline{V_R} + \overline{V_C}$$

$$V = \sqrt{(IR)^2 + (Ix_c)^2}$$

$$V = \sqrt{R^2 + X_c^2}$$

$$Z = R^2 + X_c^2$$

SERIES LCR CIRCUIT RESPONSE

POWER EXPRESSIONS : SUMMARY

Element/Network	Phase Angle	Active Power P=VI cos \$\phi\$	Reactive Power g = VI sin \$\phi\$	Apparent Power S=VI
R	0°	VI	0	Vt
L	960	0	VI	VI
c	-90°	0	-VI	V
Jeries RL Cincuit	ton' (X)	V1 cos 0	VI sin \$ (+ve)	VI
Series RC Cincuit	$-tan^{-1}\left(\frac{X_c}{R}\right)$	VI cos d	VI sin \$ (-ve)	VΙ

NUMERICALS

- Desires RL circuit is connected to a sinusoidal voltage source $v(t) = 100 \sin(\omega t) V$. It draws a current of 10 sin ($\omega t 60^{\circ}$) A. Determine:
- (i) Active, reactive, apparent power
- (ii) Power factor of the circuit

$$\frac{\text{Soln:}}{12} \quad V = \frac{V_{\text{m}}}{12} = \frac{100}{12} \text{ V}$$

$$1 = \frac{1}{12} = \frac{10}{12} \text{ V}$$

$$\frac{1}{12} = \frac{10}{12} \text{ V}$$

$$P = VI \cos \phi = 1000 = 250 W$$