PROJECT: INVESTIGATING NETFLIX MOVIES

Netflix! What started in 1997 as a DVD rental service has since exploded into one of the largest entertainment and media companies.

Given the large number of movies and series available on the platform, it is a perfect opportunity to flex your exploratory data analysis skills and dive into the entertainment industry.

You work for a production company that specializes in nostalgic styles. You want to do some research on movies released in the 1990's. You'll delve into Netflix data and perform exploratory data analysis to better understand this awesome movie decade!

You have been supplied with the dataset netflix_data.csv, along with the following table detailing the column names and descriptions. Feel free to experiment further after submitting!

The data

netflix data.csv

Column	Description
show_id	The ID of the show
type	Type of show
title	Title of the show
director	Director of the show
cast	Cast of the show
country	Country of origin
date_added	Date added to Netflix
release_year	Year of Netflix release
duration	Duration of the show in minutes
description	Description of the show
genre	Show genre

```
# Importing pandas and matplotlib
import pandas as pd
import matplotlib.pyplot as plt

# Read in the Netflix CSV as a DataFrame
netflix_df = pd.read_csv("netflix_data.csv")
```

```
# Start coding here! Use as many cells as you like
```

```
movies = netflix_df[netflix_df['type']=='Movie']
print(movies)
years90s = movies[(movies['release_year']>1989) & (movies['release_year']<2000)]</pre>
     show_id
              . . .
                            genre
0
          s2
                           Dramas
              . . .
1
             ... Horror Movies
          s3
2
                           Action
          s4
             . . .
3
          s5
                           Dramas
              . . .
5
          s7
             ... Horror Movies
4807
       s7779 ...
                         Comedies
4808
       s7781 ...
                           Dramas
4809
       s7782 ...
                         Children
4810
       s7783 ...
                           Dramas
4811
       s7784 ...
                           Dramas
[4677 rows x 11 columns]
```

```
import matplotlib.pyplot as plt
plt.hist(years90s['duration'], bins=200)
0., 0., 0., 0., 0., 0., 0., 0., 2., 0., 0., 0., 0., 0., 0., 1.,
       0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 2., 0.,
       1., 0., 1., 0., 0., 2., 0., 1., 1., 0., 1., 0., 3., 2., 1., 0., 1.,
       2., 0., 1., 3., 0., 4., 2., 2., 0., 5., 0., 7., 5., 5., 1., 1., 0.,
       1., 0., 6., 3., 4., 0., 3., 3., 2., 5., 0., 1., 2., 2., 4., 2.,
       2., 0., 0., 3., 2., 3., 4., 0., 1., 2., 2., 0., 2., 0., 1., 2., 1.,
       2., 0., 0., 2., 1., 0., 2., 0., 0., 1., 3., 0., 1., 2., 0., 0., 1.,
       2., 1., 0., 0., 1., 0., 0., 2., 1., 0., 0., 2., 0., 0., 4., 0., 1.,
       0., 0., 0., 0., 1., 2., 0., 3., 1., 0., 2., 2., 0., 1., 0., 0.,
       1., 0., 0., 2., 1., 0., 0., 2., 2., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 1., 0., 1., 0., 1., 0., 0., 1., 0., 1., 0., 1.]
array([ 28. , 28.835, 29.67 , 30.505, 31.34 , 32.175,
                                                           33.01 ,
                34.68 , 35.515 , 36.35 , 37.185 ,
                                                   38.02 ,
        33.845,
                                                            38.855,
        39.69 ,
                40.525,
                         41.36 , 42.195 , 43.03 ,
                                                   43.865,
                                                            44.7 ,
        45.535,
                46.37 , 47.205, 48.04 ,
                                          48.875,
                                                   49.71 ,
                                                            50.545,
        51.38 ,
                52.215,
                         53.05 , 53.885 , 54.72 ,
                                                   55.555,
                                                            56.39 ,
        57.225,
                58.06 ,
                         58.895, 59.73, 60.565,
                                                   61.4 ,
                                                            62.235,
                63.905, 64.74, 65.575, 66.41,
        63.07 ,
                                                   67.245,
                                                            68.08 ,
                69.75 ,
                         70.585, 71.42, 72.255,
                                                   73.09 ,
        68.915,
                                                            73.925,
        74.76 ,
                75.595,
                         76.43 , 77.265,
                                          78.1 ,
                                                   78.935,
                                                            79.77 ,
                81.44 , 82.275 , 83.11 , 83.945 ,
                                                   84.78 ,
        80.605,
                                                            85.615,
                 87.285, 88.12, 88.955, 89.79,
                                                   90.625,
        86.45 ,
                                                            91.46 ,
                93.13 , 93.965, 94.8 , 95.635,
                                                   96.47 ,
        92.295,
                                                           97.305,
                 98.975, 99.81, 100.645, 101.48, 102.315, 103.15,
        98.14 ,
       103.985, 104.82 , 105.655, 106.49 , 107.325, 108.16 , 108.995,
       109.83 , 110.665 , 111.5 , 112.335 , 113.17 , 114.005 , 114.84 ,
       115.675, 116.51, 117.345, 118.18, 119.015, 119.85, 120.685,
       121.52 , 122.355 , 123.19 , 124.025 , 124.86 , 125.695 , 126.53 ,
       127.365, 128.2 , 129.035, 129.87 , 130.705, 131.54 , 132.375,
       133.21 , 134.045 , 134.88 , 135.715 , 136.55 , 137.385 , 138.22 ,
       139.055, 139.89 , 140.725, 141.56 , 142.395, 143.23 , 144.065,
       144.9 , 145.735, 146.57 , 147.405, 148.24 , 149.075, 149.91 ,
       150.745, 151.58 , 152.415, 153.25 , 154.085, 154.92 , 155.755,
       156.59 , 157.425 , 158.26 , 159.095 , 159.93 , 160.765 , 161.6 ,
       162.435, 163.27 , 164.105, 164.94 , 165.775, 166.61 , 167.445,
       168.28 , 169.115 , 169.95 , 170.785 , 171.62 , 172.455 , 173.29 ,
       174.125, 174.96, 175.795, 176.63, 177.465, 178.3, 179.135,
       179.97 , 180.805, 181.64 , 182.475, 183.31 , 184.145, 184.98 ,
       185.815, 186.65 , 187.485, 188.32 , 189.155, 189.99 , 190.825,
```

```
191.66 , 192.495, 193.33 , 194.165, 195. ]), <BarContainer object of 200 artists>)
```


years90s	['duratior
1	1
6	119
118	101
145	82
167	108
194	154
240	174
315	122
320	119
333	75
334	75
352	160
410	139
428	49
430	90
431	95
468	119
Rows: 183	


```
short_movie_count = 0
for movie in action:
    if isinstance(movie, dict) and "duration" in movie:
        if movie["duration"] < 90:
            short_movie_count += 1
print(short_movie_count)</pre>
```

```
short_movie_count = 0
for i in action["duration"]:
    i=int(i)
    if i < 90:</pre>
        short_movie_count += 1
        print(i)
    else:
        short_movie_count += 0
print(short_movie_count)
69
89
88
84
89
83
87
7
```