predictive analytics

import pandas as pd

import numpy as num

import matplotlib.pyplot as mp

import seaborn as sn

df=pd.read_csv("https://github.com/YBI-foundation/Dataset/raw/main/MPG.csv")

df.head()

₽		mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin
	0	18.0	8	307.0	130.0	3504	12.0	70	usa
	1	15.0	8	350.0	165.0	3693	11.5	70	usa
	4							_	>

df.tail()

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin
393	27.0	4	140.0	86.0	2790	15.6	82	usa
394	44.0	4	97.0	52.0	2130	24.6	82	europe
395	32.0	4	135.0	84.0	2295	11.6	82	usa

df.nunique()

mpg	129
cylinders	5
displacement	82
horsepower	93
weight	351

acceleration 95 model_year 13 origin 3 name 305

dtype: int64

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	mpg	398 non-null	float64
1	cylinders	398 non-null	int64
2	displacement	398 non-null	float64
3	horsepower	392 non-null	float64
4	weight	398 non-null	int64
5	acceleration	398 non-null	float64
6	model_year	398 non-null	int64
7	origin	398 non-null	object
8	name	398 non-null	object
1.	(7 (64/4)		1 (2)

dtypes: float64(4), int64(3), object(2)

memory usage: 28.1+ KB

df.describe()

	mpg	cylinders	displacement	horsepower	weight	acceleration	mode]
cour	nt 398.000000	398.000000	398.000000	392.000000	398.000000	398.000000	398.0
mea	n 23.514573	5.454774	193.425879	104.469388	2970.424623	15.568090	76.0
std	7.815984	1.701004	104.269838	38.491160	846.841774	2.757689	3.6
min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	70.0
25%	17.500000	4.000000	104.250000	75.000000	2223.750000	13.825000	73.0
50%	23.000000	4.000000	148.500000	93.500000	2803.500000	15.500000	76.0
75%	29.000000	8.000000	262.000000	126.000000	3608.000000	17.175000	79.0
max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000	82.0
4							•

df.corr()

	mpg	cylinders	displacement	horsepower	weight	acceleration	mo
mpg	1.000000	-0.775396	-0.804203	-0.778427	-0.831741	0.420289	
cylinders	-0.775396	1.000000	0.950721	0.842983	0.896017	-0.505419	
displacement	-0.804203	0.950721	1.000000	0.897257	0.932824	-0.543684	
horeanowar	_∩ 770/127	U 843083	N 807257	1 000000	በ ያይለፍንያ	_೧ 620106	-

df=df.dropna()

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 392 entries, 0 to 397
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	mpg	392 non-null	float64
1	cylinders	392 non-null	int64
2	displacement	392 non-null	float64
3	horsepower	392 non-null	float64
4	weight	392 non-null	int64
5	acceleration	392 non-null	float64
6	model_year	392 non-null	int64
7	origin	392 non-null	object
8	name	392 non-null	object

dtypes: float64(4), int64(3), object(2)

memory usage: 30.6+ KB

sn.pairplot(df,x_vars=['displacement','horsepower','weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f0c8eef9e10>

df.columns

```
y=df['mpg']
```

y.shape

(392,)

```
x=df[['displacement','weight','acceleration']]
```

x.shape

(392, 3)

from sklearn.preprocessing import StandardScaler

ss=StandardScaler()

x=ss.fit transform(x)

Χ

pd.DataFrame(x).describe()

```
0
                                                      2
                                       1
              3.920000e+02
                            3.920000e+02
                                           3.920000e+02
      count
             -2.537653e-16
      mean
                             5.607759e-17
                                           6.117555e-16
                                           1.001278e+00
       std
              1.001278e+00
                            1.001278e+00
       min
             -1.209563e+00 -1.608575e+00 -2.736983e+00
       25%
             -8.555316e-01
                            -8.868535e-01
                                           -6.410551e-01
       50%
             -4.153842e-01
                            -2.052109e-01
                                           -1.499869e-02
      75%
              7.782764e-01
                             7.510927e-01
                                           5.384714e-01
             2.493416e+00
                           2.549061e+00
                                           3.360262e+00
       max
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.7,random_state=2535)
x_train.shape,x_test.shape,y_train.shape,y_test.shape
     ((274, 3), (118, 3), (274,), (118,))
from sklearn.linear model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
     LinearRegression()
lr.intercept_
     23.481757374918818
lr.coef
     array([-0.3969492 , -5.81652961, 0.84382013])
y pred=lr.predict(x test)
```

y_pred

```
array([27.0950622 , 24.86846697, 25.46608867, 20.18920635, 31.58350197,
            31.07258189, 25.8960753 , 20.05161656, 14.19571234, 28.80613919,
            25.41127903, 11.52775544, 28.85413497, 20.1402067, 19.92816833,
            15.46828926, 15.18457187, 18.64192416, 28.15641361, 14.88968591,
            14.47829349, 20.56365413, 20.64130953, 23.37278745, 32.21165547,
            18.17166849, 13.7990552, 11.86580018, 30.78406874, 32.56912928,
            24.00456213, 29.42837442, 25.558358 , 13.21581137, 21.1979567 ,
            26.89621049, 31.36274567, 28.55664204, 29.46346568, 30.81338038,
            26.16361613, 29.24905037, 23.45861862, 30.65157817, 33.26899217,
            11.93439594, 18.8961787 , 27.11860968, 13.9210924 , 21.54222525,
            11.94238978, 26.00051733, 27.12174109, 16.78845349, 12.60957108,
            27.76932967, 29.71535153, 27.71270789, 23.26653444, 18.82533404,
            14.21400151, 21.57102879, 21.06774658, 15.00213014, 31.22018153,
            23.85502572, 17.20993611, 26.27905746, 15.47922728, 25.31382302,
            24.44682056, 9.49115678, 18.29693791, 30.14639531, 10.58013426,
            23.24593446, 24.84436754, 29.40520557, 26.75682528, 8.54723467,
            32.78899625, 14.62408239, 15.45600422, 29.3864358, 23.71451515,
            25.06107848, 21.01760441, 29.1670417, 21.03359794, 29.34433562,
            30.45713615, 30.60236054, 19.30241702, 6.7896799, 15.94287186,
            12.39166433, 17.10206798, 26.27292266, 24.1721167, 12.22118426,
            15.69647721, 17.10525464, 31.64640977, 20.11024545, 26.62598022,
            34.05599176, 12.75776101, 30.64782582, 24.3743673, 26.02748605,
            25.05729718, 28.32368724, 24.46624597, 26.67891839, 31.32791246,
            27.32951181, 29.34477957, 30.31335789])
from sklearn.metrics import mean absolute error, mean absolute percentage error, r2 score
mean absolute error(y test,y pred)
     3.2445387480016987
mean_absolute_percentage_error(y_test,y_pred)
    0.14972398521815397
r2_score(y_test,y_pred)
    0.7088621831979525
from sklearn.preprocessing import PolynomialFeatures
poly=PolynomialFeatures(degree=2,interaction only=True,include bias=False,order='c')
x train2=poly.fit transform(x train)
x_test2=poly.fit_transform(x_test)
```

```
lr.fit(x_train2,y_train)
    LinearRegression()
lr.intercept
    21.76889066826468
lr.coef
    array([-1.9108918 , -5.28015114, 1.01166591, 1.67884703, -0.80744566,
            0.80323871])
y pred poly=lr.predict(x test2)
r2_score(y_test,y_pred_poly)
    0.7490061639178867
from sklearn.datasets import load_digits
df=load_digits()
df.images.shape
    (1797, 8, 8)
df.images[0].shape
    (8, 8)
df.images[0]
    array([[ 0., 0., 5., 13., 9., 1., 0., 0.],
           [ 0., 0., 13., 15., 10., 15., 5., 0.],
           [ 0., 3., 15., 2., 0., 11., 8.,
           [0., 4., 12., 0., 0., 8., 8., 0.],
           [ 0., 5., 8., 0., 0., 9., 8.,
           [0., 4., 11., 0., 1., 12., 7., 0.],
           [0., 2., 14., 5., 10., 12., 0., 0.],
           [0., 0., 6., 13., 10., 0., 0., 0.]
n samples=len(df.images)
data=df.images.reshape((n_samples,-1))
```

```
hands on project - Colaboratory
data[0]
    array([ 0., 0., 5., 13., 9., 1., 0., 0., 0., 13., 15., 10.,
          15., 5., 0., 0., 3., 15., 2.,
                                           0., 11., 8., 0., 0.,
          12., 0., 0., 8., 8., 0., 0., 5., 8., 0., 0., 9., 8.,
           0., 0., 4., 11., 0., 1., 12., 7., 0., 0., 2., 14.,
           10., 12., 0., 0., 0., 6., 13., 10., 0., 0., 0.])
data.shape
    (1797, 64)
data[0].shape
    (64,)
data.min()
    0.0
data.max()
    16.0
data[0]
    array([ 0., 0., 5., 13., 9., 1., 0., 0., 0., 13., 15., 10.,
          15., 5., 0., 0., 3., 15., 2., 0., 11., 8., 0., 0., 4.,
          12., 0., 0., 8., 8., 0., 0., 5., 8., 0., 0., 9., 8.,
                0., 4., 11., 0., 1., 12., 7., 0., 0., 2., 14.,
           10., 12., 0., 0., 0., 0., 6., 13., 10., 0., 0., 0.])
from sklearn.ensemble import RandomForestClassifier
rf=RandomForestClassifier()
from sklearn.metrics import confusion matrix, classification report
len(df.images)
```

car price prediction

1797

df1=pd.read_csv("https://github.com/YBI-foundation/Dataset/raw/main/Car%20Price.csv")

df1.head()

	Brand	Model	Year	Selling_Price	KM_Driven	Fuel	Seller_Type	Transmission
0	Maruti	Maruti 800 AC	2007	60000	70000	Petrol	Individual	Manual
1	Maruti	Maruti Wagon R LXI Minor	2007	135000	50000	Petrol	Individual	Manual
4		TIVIIIII						+

df1.tail()

	Brand	Model	Year	Selling_Price	KM_Driven	Fuel	Seller_Type	Transmission
4335	Hyundai	Hyundai i20 Magna 1.4 CRDi (Diesel)	2014	409999	80000	Diesel	Individual	Manua
		Hyundai						
4								•

df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4340 entries, 0 to 4339
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Brand	4340 non-null	object
1	Model	4340 non-null	object
2	Year	4340 non-null	int64
3	Selling_Price	4340 non-null	int64
4	KM_Driven	4340 non-null	int64
5	Fuel	4340 non-null	object
6	Seller_Type	4340 non-null	object
7	Transmission	4340 non-null	object
8	Owner	4340 non-null	object

memory usage: 305.3+ KB

dtypes: int64(3), object(6)

df1.describe()

	Year	Selling_Price	KM_Driven
count	4340.000000	4.340000e+03	4340.000000
mean	2013.090783	5.041273e+05	66215.777419
std	4.215344	5.785487e+05	46644.102194
min	1992.000000	2.000000e+04	1.000000
25%	2011.000000	2.087498e+05	35000.000000
50%	2014.000000	3.500000e+05	60000.000000
75%	2016.000000	6.000000e+05	90000.000000

df1[['Brand']].value_counts()

Brand	
Maruti	1280
Hyundai	821
Mahindra	365
Tata	361
Honda	252
Ford	238
Toyota	206
Chevrolet	188
Renault	146
Volkswagen	107
Skoda	68
Nissan	64
Audi	60
BMW	39
Fiat	37
Datsun	37
Mercedes-Benz	35
Mitsubishi	6
Jaguar	6
Land	5
Ambassador	4
Volvo	4
Јеер	3
OpelCorsa	2
MG	2
Isuzu -	1
Force	1
Daewoo	1
Kia	1
dtype: int64	

df1[['Fuel']].value_counts()

Fuel

Diesel 2153 Petrol 2123

```
40
     CNG
     LPG
                   23
     Electric
                    1
     dtype: int64
df1[['Model']].value counts()
     Model
     Maruti Swift Dzire VDI
                                              69
     Maruti Alto 800 LXI
                                              59
     Maruti Alto LXi
                                              47
     Hyundai EON Era Plus
                                              35
     Maruti Alto LX
                                              35
     Mahindra KUV 100 G80 K4 Plus
                                               1
     Mahindra KUV 100 mFALCON D75 K8
                                               1
     Mahindra KUV 100 mFALCON D75 K8 AW
                                               1
     Mahindra KUV 100 mFALCON G80 K2 Plus
                                               1
     Volvo XC60 D5 Inscription
                                               1
     Length: 1491, dtype: int64
df1.columns
     Index(['Brand', 'Model', 'Year', 'Selling_Price', 'KM_Driven', 'Fuel',
             'Seller_Type', 'Transmission', 'Owner'],
           dtype='object')
df1.shape
     (4340, 9)
df1.replace({'Transmission':{'Manual':0,'Automatic':1}},inplace=True)
y=df1['Selling Price']
y.shape
     (4340,)
x=df1[['Year','Transmission']]
x.shape
     (4340, 2)
Χ
```

	Year	Transmission
0	2007	0
1	2007	0
2	2012	0
3	2017	0
4	2014	0
4335	2014	0
4336	2014	0
4337	2009	0
4338	2016	0
4339	2016	0

4340 rows × 2 columns

```
from sklearn.model_selection import train_test_split
```

```
x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.5,random_state=2539)
```

x_train.shape,x_test.shape,y_train.shape,y_test.shape

from sklearn.linear_model import LinearRegression

lr=LinearRegression()

lr.fit(x_train,y_train)

LinearRegression()

У

0	60000
1	135000
2	600000
3	250000
4	450000
	• • •
4335	409999
4336	409999

```
4337
             110000
     4338
             865000
     4339
             225000
     Name: Selling_Price, Length: 4340, dtype: int64
y pred=lr.predict(x test)
y_pred.shape
     (2170,)
y_pred
     array([504237.05512911, 357265.74335442, 259284.86883798, ...,
            357265.74335442, 308275.3060962, 455246.61787088])
from sklearn.metrics import mean_absolute_error,mean_absolute_percentage_error,r2_score,mean_
mean_absolute_error(y_test,y_pred)
     240430.41301709128
r2_score(y_test,y_pred)
     0.36870936179375813
mean squared error(y test,y pred)
     215527527203.4092
mean_absolute_percentage_error(y_test,y_pred)
     0.6914047191678929
mp.scatter(y_test,y_pred)
mp.title('Actual prices vs Predicted prices')
mp.show()
```


	Br	rand	Model	Year	Selling_Price	KM_Driven	Fuel	Seller_Type	Transmission	C
			Tata							
4										•

df_new.shape

(1, 9)

bike price prediction

df2=pd.read_csv("https://github.com/YBI-foundation/Dataset/raw/main/Bike%20Prices.csv")
df2.head()

	Brand	Model	Selling_Price	Year	Seller_Type	Owner	KM_Driven	Ex_Showroom_Pric
0	TVS	TVS XL 100	30000	2017	Individual	1st owner	8000	30490.
1	Bajaj	Bajaj ct 100	18000	2017	Individual	1st owner	35000	32000.
2	Yo	Yo Style	20000	2011	Individual	1st owner	10000	37675.
4								•

df2.tail()

Brand Model Selling_Price Year Seller_Type Owner KM_Driven Ex_Showroom_Pr

df2.describe()

	Selling_Price	Year	KM_Driven	Ex_Showroom_Price
count	1061.000000	1061.000000	1061.000000	6.260000e+02
mean	59638.151744	2013.867107	34359.833176	8.795871e+04
std	56304.291973	4.301191	51623.152702	7.749659e+04
min	5000.000000	1988.000000	350.000000	3.049000e+04
25%	28000.000000	2011.000000	13500.000000	5.485200e+04
50%	45000.000000	2015.000000	25000.000000	7.275250e+04
75%	70000.000000	2017.000000	43000.000000	8.703150e+04
max	760000.000000	2020.000000	880000.000000	1.278000e+06

df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1061 entries, 0 to 1060
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Brand	1061 non-null	object
1	Model	1061 non-null	object
2	Selling_Price	1061 non-null	int64
3	Year	1061 non-null	int64
4	Seller_Type	1061 non-null	object
5	Owner	1061 non-null	object
6	KM_Driven	1061 non-null	int64
7	Ex_Showroom_Price	626 non-null	float64

dtypes: float64(1), int64(3), object(4)

memory usage: 66.4+ KB

df2=df2.dropna()

df2[['Brand']].value_counts()

Brand Honda 170 Bajaj 143 Hero 108 94 Yamaha Royal 40 TVS 23 Suzuki 18 KTM

```
Mahindra
                   6
     Kawasaki
                   4
     UM
                   3
                   3
     Activa
                   2
     Harley
                   2
     Vespa
                   1
     BMW
                   1
     Hyosung
     Benelli
                   1
     Yo
                   1
     dtype: int64
df2[['Owner']].value_counts()
     Owner
     1st owner
                  556
     2nd owner
                   66
     3rd owner
                    3
     4th owner
                    1
     dtype: int64
df2['Model'].value counts()
     Honda Activa [2000-2015]
                                    23
     Honda CB Hornet 160R
                                    22
     Bajaj Pulsar 180
                                    20
     Bajaj Discover 125
                                    16
     Yamaha FZ S V 2.0
                                    16
                                    . .
     TVS Radeon
                                     1
     Hero Ignitor Disc
                                     1
     Bajaj V12
                                     1
     Yamaha Cygnus Ray ZR
                                     1
     Harley-Davidson Street Bob
                                     1
     Name: Model, Length: 183, dtype: int64
df2.columns
     Index(['Brand', 'Model', 'Selling_Price', 'Year', 'Seller_Type', 'Owner',
             'KM Driven', 'Ex Showroom Price'],
           dtype='object')
df2.shape
     (626, 8)
df2.replace({'Seller_Type':{'Individual':0,'Dealer':1}},inplace=True)
y=df2["Selling_Price"]
```

```
У
```

0	30000					
1	18000					
2	20000					
3	25000					
4	24999					
621	330000					
622	300000					
623	425000					
624	760000					
625	750000					
Name:	Selling_F	rice,	Length:	626,	dtype:	int64

x=df2[["Year","Seller_Type"]]

x.shape

(626, 2)

Х

	Year	Seller_Type
0	2017	0
1	2017	0
2	2011	0
3	2010	0
4	2012	0
621	2014	0
622	2011	0
623	2017	0
624	2019	0
625	2013	0

626 rows × 2 columns

from sklearn.model_selection import train_test_split

```
x train.shape,x test.shape,y train.shape,y test.shape
     ((375, 2), (251, 2), (375,), (251,))
from sklearn.linear model import LinearRegression
lr=LinearRegression()
lr.fit(x train,y train)
     LinearRegression()
У
     0
             30000
     1
             18000
     2
             20000
     3
             25000
     4
             24999
     621
            330000
     622
            300000
     623
            425000
     624
            760000
     625
            750000
     Name: Selling_Price, Length: 626, dtype: int64
y_pred=lr.predict(x_test)
y.shape
     (626,)
y_pred
     array([ 62064.35694737,
                               47153.40893919,
                                                 76975.30495554,
                                                                   39697.9349351 ,
             69519.83095145,
                               76975.30495554,
                                                 69519.83095145,
                                                                    9876.03891874,
             39697.9349351,
                               54608.88294328,
                                                 62064.35694737,
                                                                   69519.83095145,
             84430.77895963,
                               62064.35694737,
                                                 76975.30495554,
                                                                   84430.77895963,
             84430.77895963,
                               69519.83095145,
                                                 62064.35694737, -12490.38309353,
             76975.30495554,
                                                 69519.83095145,
                               62064.35694737,
                                                                   62064.35694737,
                                                                   47153.40893919,
             47153.40893919,
                               84430.77895963,
                                                 69519.83095145,
             62064.35694737,
                               69519.83095145,
                                                 69519.83095145,
                                                                   76975.30495554,
             84430.77895963,
                               47153.40893919,
                                                 47153.40893919,
                                                                   91886.25296372,
             -19945.85709762,
                               69519.83095145,
                                                 91886.25296372,
                                                                   62064.35694737,
             62064.35694737,
                               39697.9349351,
                                                 47153.40893919,
                                                                   76975.30495554,
                                                 69519.83095145,
                                                                   62064.35694737,
             62064.35694737,
                               62064.35694737,
```

```
76975.30495554,
62064.35694737,
                                    62064.35694737,
                                                      69519.83095145,
47153.40893919,
                  62064.35694737,
                                    76975.30495554,
                                                      84430.77895963,
39697.9349351,
                  47153.40893919,
                                    91886.25296372,
                                                      84430.77895963,
84430.77895963,
                  69519.83095145,
                                    69519.83095145,
                                                      84430.77895963,
69519.83095145,
                  76975.30495554,
                                    47153.40893919,
                                                      32242.46093101,
62064.35694737,
                  17331.51292283,
                                    76975.30495554,
                                                      39697.9349351 ,
24786.98692692,
                  39697.9349351 ,
                                    54608.88294328,
                                                      76975.30495554,
54608.88294328,
                  84430.77895963,
                                    84430.77895963,
                                                      54608.88294328,
39697.9349351 ,
                  69519.83095145,
                                    39697.9349351 ,
                                                      17331.51292283,
62064.35694737,
                  76975.30495554,
                                    54608.88294328,
                                                      39697.9349351 ,
76975.30495554,
                  76975.30495554,
                                    84430.77895963,
                                                      24786.98692692,
54608.88294328,
                  69519.83095145,
                                    47153.40893919,
                                                      62064.35694737,
62064.35694737,
                  62064.35694737,
                                    54608.88294328,
                                                      69519.83095145,
91886.25296372,
                  39697.9349351 ,
                                    69519.83095145,
                                                      24786.98692692,
                  91886.25296372,
                                    69519.83095145,
24786.98692692,
                                                      54608.88294328,
62064.35694737,
                  84430.77895963,
                                    84430.77895963,
                                                      54608.88294328,
76975.30495554,
                  54608.88294328,
                                    54608.88294328,
                                                       9876.03891874,
                                    47153.40893919,
84430.77895963,
                  76975.30495554,
                                                      32242.46093101,
69519.83095145,
                  17331.51292283,
                                    76975.30495554,
                                                      76975.30495554,
24786.98692692,
                  91886.25296372,
                                    62064.35694737,
                                                      84430.77895963,
69519.83095145,
                  62064.35694737,
                                    84430.77895963,
                                                      69519.83095145,
39697.9349351 ,
                  84430.77895963,
                                    76975.30495554,
                                                      69519.83095145,
47153.40893919,
                  24786.98692692,
                                    32242.46093101,
                                                      47153.40893919,
84430.77895963,
                  84430.77895963,
                                    62064.35694737,
                                                      47153.40893919,
47153.40893919,
                  76975.30495554,
                                    69519.83095145,
                                                      76975.30495554,
62064.35694737,
                   2420.56491465,
                                    39697.9349351 ,
                                                      39697.9349351 ,
84430.77895963,
                  32242.46093101,
                                    62064.35694737,
                                                      62064.35694737,
84430.77895963,
                  54608.88294328,
                                    54608.88294328,
                                                      32242.46093101,
                  84430.77895963,
39697.9349351 ,
                                    69519.83095145,
                                                      -5034.90908944,
32242.46093101,
                  84430.77895963,
                                    47153.40893919,
                                                       2420.56491465,
76975.30495554,
                  62064.35694737,
                                    47153.40893919,
                                                      54608.88294328,
69519.83095145,
                  32242.46093101,
                                                      76975.30495554,
                                    62064.35694737,
91886.25296372,
                                    54608.88294328,
                                                      54608.88294328,
                  91886.25296372,
84430.77895963,
                  76975.30495554,
                                    32242.46093101,
                                                      54608.88294328,
91886.25296372,
                  62064.35694737,
                                    62064.35694737,
                                                      47153.40893919,
62064.35694737,
                  62064.35694737,
                                    76975.30495554,
                                                      54608.88294328,
                                    47153.40893919,
54608.88294328,
                  84430.77895963,
                                                      15633.57798773,
91886.25296372,
                  69519.83095145,
                                    24786.98692692,
                                                      62064.35694737,
24786.98692692,
                  62064.35694737,
                                    24786.98692692,
                                                      91886.25296372,
76975.30495554,
                  39697.9349351 ,
                                    76975.30495554,
                                                      84430.77895963,
                  84430.77895963,
69519.83095145,
                                    69519.83095145,
                                                      69519.83095145,
76975.30495554,
                                                      24786.98692692,
                   2420.56491465,
                                    17331.51292283,
84430.77895963,
                  62064.35694737,
                                    39697.9349351 ,
                                                      39697.9349351 ,
91886.25296372,
                  54608.88294328,
                                    62064.35694737,
                                                      54608.88294328,
69519.83095145,
                  69519.83095145,
                                    84430.77895963,
                                                      54608.88294328,
54608.88294328.
                  69519.83095145.
                                    76975.30495554.
                                                      54608.88294328.
```

```
y_pred.shape
```

(251,)

from sklearn.metrics import mean absolute error, mean absolute percentage error, r2 score, mean

```
mean absolute error(y test, y pred)
```

```
28689.77223478409
```

```
r2_score(y_test,y_pred)
0.06731083195243104
```

mean_squared_error(y_test,y_pred)

3701406312.046656

mean_absolute_percentage_error(y_test,y_pred)

0.5629069619670382

```
mp.scatter(y_test,y_pred)
mp.title('Actual prices vs Predicted prices')
mp.show()
```


df1_new=df2.sample(1)

df1_new.shape

(1, 8)

finamcial market news

df3=pd.read_csv(r'https://raw.githubusercontent.com/YBI-Foundation/Dataset/main/Financial%20M
df3.head()

	Date	Label	News 1	News 2	News 3	News 4	News 5	News 6	News
0	01- 01- 2010	0	McIlroy's men catch cold from Gudjonsson	Obituary: Brian Walsh	Workplace blues leave employers in the red	Classical review: Rattle	Dance review: Merce Cunningham	Genetic tests to be used in setting premiums	Opo review: Bohè
1	02- 01- 2010	0	Warning from history points to crash	Investors flee to dollar haven	Banks and tobacco in favour	Review: Llama Farmers	War jitters lead to sell- off	Your not- so-secret history	Revie T Northe Sinfo
2	03- 01- 2010	0	Comment: Why Israel's peaceniks feel betrayed	Court deals blow to seizure of drug assets	An ideal target for spooks	World steps between two sides intent on war	What the region's papers say	Comment: Fear and rage in Palestine	Pove e resentm fu Palestin f
3	04- 01- 2010	1	£750,000- a-goal Weah aims parting shot	Newcastle pay for Fletcher years	Brown sent to the stands for Scotland qualifier	Tourists wary of breaking new ground	Canary Wharf climbs into the FTSE 100	Review: Bill Bailey	Revie Classi
4	05- 01- 2010	1	Leeds arrive in Turkey to the silence of the fans	One woman's vision offers loan lifeline	Working Lives: How world leaders worked	Working Lives: Tricks of the trade	Working Lives: six- hour days, long lunches and	Pop review: We Love UK	Wc mu revie Mar Mo

5 rows × 27 columns

df3.tail()

	Date	Label	News 1	News 2	News 3	News 4	News 5	News 6
4096	20- 03- 2021	0	Barclays and RBS shares suspended from trading	Pope says Church should ask forgiveness from g	Poland 'shocked' by xenophobic abuse of Poles	There will be no second referendum, cabinet ag	Scotland welcome to join EU, Merkel ally says	Sterling dips below Friday's 31- year low amid
4097	21- 03- 2021	1	2,500 Scientists To Australia: If You Want To	The personal details of 112,000 French police	S&P cuts United Kingdom sovereign credit r	Huge helium deposit found in Africa	CEO of the South African state broadcaster qui	Brexit cost investors \$2 trillion, the worst o
4098	22- 03- 2021	1	Explosion At Airport In Istanbul	Yemeni former president: Terrorism is the offs	UK must accept freedom of movement to access E	Devastated: scientists too late to captive bre	British Labor Party leader Jeremy Corbyn loses	A Muslim Shop in the UK Was Just Firebombed Wh
4099	23- 03- 2021	1	Jamaica proposes marijuana dispensers for tour	Stephen Hawking says pollution and 'stupidity'	Boris Johnson says he will not run for Tory pa	Six gay men in Ivory Coast were abused and for	Switzerland denies citizenship to Muslim immig	Palestinian terrorist stabs israeli teen girl
			A 117-	IMF chief	The			

df3.describe()

	Label
count	4101.000000
mean	0.528164
std	0.499267
min	0.000000
25%	0.000000
50%	1.000000
75%	1.000000
max	1.000000

df3.info()

df3.index

```
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 4101 entries, 0 to 4100
     Data columns (total 27 columns):
          Column
                   Non-Null Count Dtype
     - - -
          ____
                   -----
      0
          Date
                   4101 non-null
                                   object
                                   int64
      1
          Label
                   4101 non-null
      2
          News 1
                   4101 non-null
                                   object
      3
          News 2
                  4101 non-null
                                   object
      4
          News 3
                   4101 non-null
                                   object
      5
          News 4
                  4101 non-null
                                   object
      6
          News 5
                  4101 non-null
                                   object
      7
          News 6
                  4101 non-null
                                   object
      8
          News 7
                  4101 non-null
                                   object
      9
          News 8
                  4101 non-null
                                   object
      10
         News 9
                   4101 non-null
                                   object
      11
         News 10 4101 non-null
                                   object
         News 11 4101 non-null
                                   object
      12
      13
         News 12 4101 non-null
                                   object
         News 13 4101 non-null
                                   object
      14
      15
          News 14 4101 non-null
                                   object
         News 15 4101 non-null
                                   object
      16
      17
         News 16 4101 non-null
                                   object
      18
         News 17 4101 non-null
                                   object
      19
         News 18 4101 non-null
                                   object
      20
         News 19 4101 non-null
                                   object
                                   object
         News 20 4101 non-null
      21
      22 News 21 4101 non-null
                                   object
      23
         News 22 4101 non-null
                                   object
      24
         News 23 4100 non-null
                                   object
      25
         News 24 4098 non-null
                                   object
      26 News 25 4098 non-null
                                   object
     dtypes: int64(1), object(26)
     memory usage: 865.2+ KB
df3.shape
     (4101, 27)
df3.columns
     Index(['Date', 'Label', 'News 1', 'News 2', 'News 3', 'News 4', 'News 5',
            'News 6', 'News 7', 'News 8', 'News 9', 'News 10', 'News 11', 'News 12',
            'News 13', 'News 14', 'News 15', 'News 16', 'News 17', 'News 18',
            'News 19', 'News 20', 'News 21', 'News 22', 'News 23', 'News 24',
            'News 25'],
           dtvpe='object')
```

```
RangeIndex(start=0, stop=4101, step=1)
len(df3.index)
     4101
news=[]
for row in range(0,len(df3.index)):
  news.append(' '.join(str(x) for x in df3.iloc[row,2:27]))
type(news)
     list
news[0]
     'McIlroy's men catch cold from Gudjonsson Obituary: Brian Walsh Workplace blues leave e
     mployers in the red Classical review: Rattle Dance review: Merce Cunningham Genetic tes
     ts to be used in setting premiums Opera review: La Bohème Pop review: Britney Spears Th
     eatre review: The Circle Wales face a fraught night Under-21 round-up Smith off to blo
     t his copybook Finns taking the mickey Praise wasted as Brown studies injury options Ir
     eland warv of minnows Finland 0 - 0 England Healv a marked man Hanny hirthday Harners &
x=news
type(x)
     list
from sklearn.feature_extraction.text import CountVectorizer
cv=CountVectorizer(lowercase=True,ngram range=(1,1))
x=cv.fit_transform(x)
x.shape
     (4101, 48527)
y=df3['Label']
y.shape
```

```
(4101,)
```

from sklearn.model selection import train test split

x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.4,stratify=y,random_state=252

from sklearn.ensemble import RandomForestClassifier

rf=RandomForestClassifier(n estimators=200)

rf.fit(x train,y train)

RandomForestClassifier(n_estimators=200)

y_pred=rf.predict(x_test)

from sklearn.metrics import classification_report,confusion_matrix,accuracy_score

confusion_matrix(y_test,y_pred)

array([[310, 851], [316, 984]])

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0	0.50	0.27	0.35	1161
1	0.54	0.76	0.63	1300
accuracy			0.53	2461
macro avg	0.52	0.51	0.49	2461
weighted avg	0.52	0.53	0.50	2461

df4=pd.read_csv(r"https://raw.githubusercontent.com/YBI-Foundation/Dataset/main/Movies%20Reco
df4.head()

	Movie_ID	Movie_Title	Movie_Genre	Movie_Language	Movie_Budget	Movie_Popularity	I
0	1	Four Rooms	Crime Comedy	en	4000000	22.876230	
1	2	Star Wars	Adventure Action Science Fiction	en	11000000	126.393695	
2	3	Finding Nemo	Animation Family	en	94000000	85.688789	
3	2 3 Finding Nemo 2 3 Finding Nemo 3 4 Forrest Gump 4 5 American 5 American 6 Colass 'pandas.core.frame.Date 7 RangeIndex: 4760 entries, 0 to 8 Colata columns (total 21 columns) 8 Column 9 Movie_ID 1 Movie_Title 1 Movie_Title 2 Movie_Genre 3 Movie_Language 4 Movie_Budget 5 Movie_Budget 5 Movie_Popularity 6 Movie_Release_Date 7 Movie_Revenue 8 Movie_Runtime		Comedy Drama Romance	en	55000000	138.133331	
4 df4.inf		American	Drama	en	15000000	80 878605	
Ra	ngeIndex: 4	4760 entries,	0 to 4759				
	Column		Non-Null	. Count Dtype			
0 1 2 3 4 5 6 7 8 9	Movie_II Movie_Ge Movie_La Movie_Be Movie_Re Movie_Re Movie_Re Movie_Re Movie_Re Movie_Ve	itle enre anguage udget opularity elease_Date evenue untime ote_Count	4760 nor 4760 nor	n-null object n-null object n-null object n-null int64 n-null float64 n-null int64 n-null int64 n-null float64 n-null float64 n-null float64 n-null int64			
1 1	2 Movie_Ke 3 Movie_Ov 4 Movie_Pr	eywords	4373 nor 4757 nor se 4760 nor	n-null object n-null object n-null object			

object

15 Movie_Production_Country 4760 non-null

```
4760 non-null
      16 Movie Spoken Language
                                                    object
      17 Movie_Tagline
                                    3942 non-null
                                                    object
      18 Movie Cast
                                    4733 non-null
                                                    object
      19 Movie Crew
                                    4760 non-null
                                                    object
      20 Movie Director
                                    4738 non-null
                                                    object
     dtypes: float64(3), int64(4), object(14)
     memory usage: 781.1+ KB
df4.shape
     (4760, 21)
df4.columns
     Index(['Movie_ID', 'Movie_Title', 'Movie_Genre', 'Movie_Language',
            'Movie_Budget', 'Movie_Popularity', 'Movie_Release_Date',
            'Movie_Revenue', 'Movie_Runtime', 'Movie_Vote', 'Movie_Vote_Count',
            'Movie_Homepage', 'Movie_Keywords', 'Movie_Overview',
            'Movie_Production_House', 'Movie_Production_Country',
            'Movie Spoken Language', 'Movie Tagline', 'Movie Cast', 'Movie Crew',
            'Movie Director'],
           dtype='object')
df features=df4[['Movie ID', 'Movie Title', 'Movie Genre', 'Movie Language']].fillna('')
df_features.shape
     (4760, 4)
df features
```

```
Movie ID
                                  Movie Title
                                                                Movie Genre Movie Language
       0
                   1
                                   Four Rooms
                                                               Crime Comedy
                                                                                         en
x=df_features['Movie_Genre']+' '+df_features['Movie_Title']+' '+df_features['Movie_Language']
       2
                   3
                                  Finding Nemo
                                                             ∆nimation Family
                                                                                          ρn
Х
     0
                                 Crime Comedy Four Rooms en
     1
             Adventure Action Science Fiction Star Wars en
     2
                           Animation Family Finding Nemo en
     3
                      Comedy Drama Romance Forrest Gump en
     4
                                   Drama American Beauty en
     4755
                                 Horror Midnight Cabaret en
     4756
                   Comedy Family Drama Growing Up Smith en
     4757
                                   Thriller Drama 8 Days en
     4758
                                  Family Running Forever en
     4759
                Documentary To Be Frank, Sinatra at 100 en
     Length: 4760, dtype: object
     4760 rows × 4 columns
x.shape
     (4760,)
from sklearn.feature_extraction.text import TfidfVectorizer
tf=TfidfVectorizer()
x=tf.fit_transform(x)
x.shape
     (4760, 4678)
print(x)
       (0, 1367)
                     0.09007714202335212
       (0, 3486)
                     0.7429127511854295
       (0, 1613)
                     0.5912191932404761
       (0, 869)
                     0.1708587827138408
       (0, 976)
                     0.24745483330221305
       (1, 4487)
                     0.6508001682997612
       (1, 3902)
                     0.550439231907864
       (1, 1509)
                     0.2814439744740556
       (1, 3582)
                     0.2817769790975338
       (1, 86)
                     0.21313740258007258
       (1, 102)
                     0.2462864718546055
```

0.09371359348263858

(1, 1367)

SS

(2, 2862)

0.6732410589493643

```
(2, 1523)
                     0.6200613847496372
       (2, 1467)
                     0.24661415234213488
       (2, 208)
                     0.30787730152862025
       (2, 1367)
                     0.08162954584662571
       (3, 1850)
                     0.6742499796285102
       (3, 1602)
                     0.6742499796285102
       (3, 3475)
                     0.2057784569495271
       (3, 1238)
                     0.13304095730802998
       (3, 1367)
                     0.08175187608144899
       (3, 869)
                     0.15506737578583457
       (4, 401)
                     0.7754819374908652
       (4, 177)
                     0.5986761264571135
       (4755, 2027) 0.2706809764473197
       (4755, 1367) 0.08948840682655666
       (4756, 1833)
                     0.6172310324083766
       (4756, 4359)
                     0.4518371988005941
       (4756, 3790)
                     0.5684756204008815
       (4756, 1238)
                     0.121790151891555
       (4756, 1467)
                     0.2260971844085065
       (4756, 1367)
                     0.07483840771174535
       (4756, 869)
                     0.14195387369812426
       (4757, 1072)
                     0.8961993131347343
       (4757, 4150)
                    0.3345007373814785
       (4757, 1238)
                     0.2483049922847849
       (4757, 1367)
                     0.15258007286186046
       (4758, 3518)
                     0.6750368818728584
       (4758, 1597)
                     0.6750368818728584
       (4758, 1467)
                     0.28266019908870965
       (4758, 1367)
                     0.09356082553006834
       (4759, 2)
                     0.4622024356803555
       (4759, 3737)
                     0.4622024356803555
       (4759, 1622) 0.44084567731400226
       (4759, 389)
                     0.36782643816611105
       (4759, 1185)
                     0.25065051674667876
       (4759, 289)
                     0.335899903341829
       (4759, 4187)
                    0.2535775056782416
       (4759, 1367) 0.05604140509889691
from sklearn.metrics.pairwise import cosine similarity
ss=cosine similarity(x)
                       , 0.00844145, 0.00735296, ..., 0.01374398, 0.00842769,
     array([[1.
             0.00504805],
                                   , 0.0076498 , ..., 0.01429883, 0.00876792,
            [0.00844145, 1.
             0.00525184],
            [0.00735296, 0.0076498, 1.
                                        , ..., 0.01245504, 0.07734533,
             0.00457463],
```

```
. . . ,
           [0.01374398, 0.01429883, 0.01245504, ..., 1.
                                                             , 0.01427552,
            0.0085508 ],
           [0.00842769, 0.00876792, 0.07734533, ..., 0.01427552, 1.
            0.00524328],
           [0.00504805, 0.00525184, 0.00457463, ..., 0.0085508, 0.00524328,
                      11)
ss.shape
    (4760, 4760)
favourite movie name=input('enter movie name:')
    enter movie name:avatar
movie_title_list=df4['Movie_Title'].tolist()
import difflib
movie_recommendation=difflib.get_close_matches(favourite_movie_name,movie_title_list)
print(movie recommendation)
    ['Avatar']
index of close matchmovie=df4['Movie ID'].values[0]
print(index_of_close_matchmovie)
    1
recommended score=list(enumerate(ss[index of close matchmovie]))
print(recommended score)
    len(recommended score)
    4760
sorted_similar_movies=sorted(recommended_score,key=lambda x:x[1],reverse=True)
print(sorted_similar_movies)
    [(1, 1.000000000000000), (4676, 0.7418973411852932), (601, 0.6207065009413768), (2233, 0.7418973411852932)]
print('top 10 suggested movies : \n')
```

i=1

for movie in sorted_similar_movies:

index=movie[0]

title_from_index=df4[df4.index==index]['Movie_Title'].values[0]

if(i<=10):

print(i,')', title_from_index)

i+=1

top 10 suggested movies :

- 1) Star Wars
- 2) Star Wars: Clone Wars: Volume 1
- 3) Star Wars: Episode I The Phantom Menace
- 4) Star Trek
- 5) Star Wars: Episode III Revenge of the Sith
- 6) Star Wars: Episode II Attack of the Clones
- 7) U.F.O.
- 8) Star Trek Beyond
- 9) Star Trek: Generations
- 10) Star Trek: Insurrection

df5=pd.read_csv("https://github.com/YBI-foundation/Dataset/raw/main/WhiteWineQuality.csv",sep
df5.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulp
0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	
1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	
2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	
3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	•

df5.tail()

		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide		density	рН	s
4	1893	6.2	0.21	0.29	1.6	0.039	24.0	92.0	0.99114	3.27	
4	1894	6.6	0.32	0.36	8.0	0.047	57.0	168.0	0.99490	3.15	
4	1895	6.5	0.24	0.19	1.2	0.041	30.0	111.0	0.99254	2.99	
4	1896	5.5	0.29	0.30	1.1	0.022	20.0	110.0	0.98869	3.34	
4											

df5.describe()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	d
count	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.
mean	6.854788	0.278241	0.334192	6.391415	0.045772	35.308085	138.
std	0.843868	0.100795	0.121020	5.072058	0.021848	17.007137	42.
min	3.800000	0.080000	0.000000	0.600000	0.009000	2.000000	9.
25%	6.300000	0.210000	0.270000	1.700000	0.036000	23.000000	108.
50%	6.800000	0.260000	0.320000	5.200000	0.043000	34.000000	134.
75%	7.300000	0.320000	0.390000	9.900000	0.050000	46.000000	167.
4							•

df5.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4898 entries, 0 to 4897
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	4898 non-null	float64
1	volatile acidity	4898 non-null	float64
2	citric acid	4898 non-null	float64
3	residual sugar	4898 non-null	float64
4	chlorides	4898 non-null	float64
5	free sulfur dioxide	4898 non-null	float64
6	total sulfur dioxide	4898 non-null	float64
7	density	4898 non-null	float64
8	рН	4898 non-null	float64
9	sulphates	4898 non-null	float64
10	alcohol	4898 non-null	float64
11	quality	4898 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 459.3 KB

df5.columns

df5.shape

(4898, 12)

```
df5['quality'].value_counts()
     6
          2198
     5
          1457
     7
           880
     8
           175
     4
           163
     3
            20
              5
     Name: quality, dtype: int64
df5.groupby('quality').mean()
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	densi ¹
quality								
3	7.600000	0.333250	0.336000	6.392500	0.054300	53.325000	170.600000	0.99488
4	7.129448	0.381227	0.304233	4.628221	0.050098	23.358896	125.279141	0.99427
5	6.933974	0.302011	0.337653	7.334969	0.051546	36.432052	150.904598	0.99526
6	6.837671	0.260564	0.338025	6.441606	0.045217	35.650591	137.047316	0.99396
7	6.734716	0.262767	0.325625	5.186477	0.038191	34.125568	125.114773	0.9924
8	6.657143	0.277400	0.326514	5.671429	0.038314	36.720000	126.165714	0.99220
_								

```
y=df5['quality']
y.shape
     (4898,)
У
     0
              6
              6
     1
     2
              6
     3
              6
     4
              6
     4893
              6
     4894
              5
     4895
              6
     4896
              7
     4897
     Name: quality, Length: 4898, dtype: int64
```

Х

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	S
0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.00100	3.00	
1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.99400	3.30	
2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.99510	3.26	
3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	
4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	
4893	6.2	0.21	0.29	1.6	0.039	24.0	92.0	0.99114	3.27	
4894	6.6	0.32	0.36	8.0	0.047	57.0	168.0	0.99490	3.15	
4895	6.5	0.24	0.19	1.2	0.041	30.0	111.0	0.99254	2.99	
4896	5.5	0.29	0.30	1.1	0.022	20.0	110.0	0.98869	3.34	
4897	6.0	0.21	0.38	0.8	0.020	22.0	98.0	0.98941	3.26	>

from sklearn.preprocessing import StandardScaler

```
4.75101984e-01, -4.36815783e-01, -3.36667007e-01],
            [-4.20473102e-01, -3.79435433e-01, -1.19159198e+00, ...,
             -1.31315295e+00, -2.61552731e-01, -9.05543789e-01],
            [-1.60561323e+00, 1.16673788e-01, -2.82557040e-01, ...,
              1.00495530e+00, -9.62604939e-01, 1.85757201e+00],
            [-1.01304317e+00, -6.77100966e-01, 3.78559282e-01, ...,
              4.75101984e-01, -1.48839409e+00, 1.04489089e+00]])
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.4,random_state=2529)
x_train.shape,x_test.shape,y_train.shape,y_test.shape
     ((1959, 11), (2939, 11), (1959,), (2939,))
from sklearn.svm import SVC
svc=SVC()
svc.fit(x train,y train)
     SVC()
y_pred=svc.predict(x_test)
y_pred.shape
     (2939,)
y pred
     array([6, 5, 6, ..., 6, 6, 5])
from sklearn.metrics import confusion matrix, classification report
print(confusion matrix(y test,y pred))
     ГΓ
                 6
                     6
                                 01
             1 62
                   34
                         4
                                 0]
             0 499 350
                                 0]
             0 273 982 61
                                 0]
                23 389 132
                                 0]
                    83
                        28
                                 0]
         0
             0
                 1
                             0
         0
                 0
                     0
                         1
                             0
                                 0]]
```

```
print(classification_report(y_test,y_pred))
```

```
precision
                                 recall f1-score
                                                     support
                3
                         0.00
                                   0.00
                                             0.00
                                                          12
                4
                         1.00
                                   0.01
                                             0.02
                                                         101
                5
                         0.58
                                   0.58
                                             0.58
                                                         853
                6
                         0.53
                                   0.75
                                             0.62
                                                        1316
                7
                         0.57
                                   0.24
                                             0.34
                                                         544
                8
                         0.00
                                   0.00
                                             0.00
                                                         112
                9
                         0.00
                                   0.00
                                             0.00
                                                           1
                                             0.55
                                                        2939
         accuracy
        macro avg
                         0.38
                                   0.23
                                             0.22
                                                        2939
                                             0.51
                                                        2939
     weighted avg
                         0.55
                                   0.55
     /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine
       warn prf(average, modifier, msg start, len(result))
     /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine
       _warn_prf(average, modifier, msg_start, len(result))
     /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine
       _warn_prf(average, modifier, msg_start, len(result))
y=df5['quality'].apply(lambda y value: 1 if y value>=10 else 0)
y.value_counts()
          4898
     Name: quality, dtype: int64
df2 new=df5.sample(1)
df2 new
                                                                 free
                                                                         total
              fixed volatile citric
                                        residual
                                                  chlorides
                                                               sulfur
                                                                        sulfur
                                                                                density
            acidity
                      acidity
                                  acid
                                           sugar
                                                             dioxide dioxide
df2 new.shape
     (1, 12)
x_new=df2_new.drop(['quality'],axis=1)
x_new=ss.fit_transform(x_new)
```

y_pred_new=svc.predict(x_new)
y_pred_new
array([6])

big sales prediction

df6=pd.read_csv(r"https://raw.githubusercontent.com/YBI-Foundation/Dataset/main/Big%20Sales%2
df6.head()

	Item_Identifier	Item_Weight	<pre>Item_Fat_Content</pre>	<pre>Item_Visibility</pre>	<pre>Item_Type</pre>	Item_MRP
0	FDT36	12.3	Low Fat	0.111448	Baking Goods	33.4874
1	FDT36	12.3	Low Fat	0.111904	Baking Goods	33.9874
2	FDT36	12.3	LF	0.111728	Baking Goods	33.9874
3	FDT36	12.3	Low Fat	0.000000	Baking Goods	34.3874
4	FDP12	9.8	Regular	0.045523	Baking Goods	35.0874
4						>

df6.tail()

Item_Identifier Item_Weight Item_Fat_Content Item_Visibility Item_Type Item

Starchy

df6.describe()

	Item_Weight	<pre>Item_Visibility</pre>	<pre>Item_MRP</pre>	Outlet_Establishment_Year	<pre>Item_Out1</pre>
count	11815.000000	14204.000000	14204.000000	14204.000000	1420
mean	12.788355	0.065953	141.004977	1997.830681	218
std	4.654126	0.051459	62.086938	8.371664	182
min	4.555000	0.000000	31.290000	1985.000000	:
25%	8.710000	0.027036	94.012000	1987.000000	92
50%	12.500000	0.054021	142.247000	1999.000000	176
75%	16.750000	0.094037	185.855600	2004.000000	298
max	30.000000	0.328391	266.888400	2009.000000	3122
4					>

df6.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14204 entries, 0 to 14203
Data columns (total 12 columns):
```

#	Column	Non-Null Count	Dtype
0	Item_Identifier	14204 non-null	object
1	Item_Weight	11815 non-null	float64
2	<pre>Item_Fat_Content</pre>	14204 non-null	object
3	<pre>Item_Visibility</pre>	14204 non-null	float64
4	<pre>Item_Type</pre>	14204 non-null	object
5	Item_MRP	14204 non-null	float64
6	Outlet_Identifier	14204 non-null	object
7	Outlet_Establishment_Year	14204 non-null	int64
8	Outlet_Size	14204 non-null	object
9	Outlet_Location_Type	14204 non-null	object
10	Outlet_Type	14204 non-null	object
11	<pre>Item_Outlet_Sales</pre>	14204 non-null	float64

dtypes: float64(4), int64(1), object(7)

memory usage: 1.3+ MB

df6.shape

(14204, 12)

df6.columns

```
'Outlet_Establishment_Year', 'Outlet_Size', 'Outlet_Location_Type', 'Outlet_Type', 'Item_Outlet_Sales'], dtype='object')
```

df6['Item_Weight'].fillna(df6.groupby(['Item_Type'])['Item_Weight'].transform('mean'),inplace
df6.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14204 entries, 0 to 14203
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	<pre>Item_Identifier</pre>	14204 non-null	object
1	Item_Weight	14204 non-null	float64
2	<pre>Item_Fat_Content</pre>	14204 non-null	object
3	<pre>Item_Visibility</pre>	14204 non-null	float64
4	<pre>Item_Type</pre>	14204 non-null	object
5	Item_MRP	14204 non-null	float64
6	Outlet_Identifier	14204 non-null	object
7	Outlet_Establishment_Year	14204 non-null	int64
8	Outlet_Size	14204 non-null	object
9	Outlet_Location_Type	14204 non-null	object
10	Outlet_Type	14204 non-null	object
11	<pre>Item_Outlet_Sales</pre>	14204 non-null	float64
	67 (64/4) 1 (64/4)	/ - \	

dtypes: float64(4), int64(1), object(7)

memory usage: 1.3+ MB

df6.describe()

	Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishment_Year	Item_Outl
count	14204.000000	14204.000000	14204.000000	14204.000000	1420
mean	12.790642	0.065953	141.004977	1997.830681	218
std	4.251186	0.051459	62.086938	8.371664	182
min	4.555000	0.000000	31.290000	1985.000000	(
25%	9.300000	0.027036	94.012000	1987.000000	92
50%	12.800000	0.054021	142.247000	1999.000000	176
75%	16.000000	0.094037	185.855600	2004.000000	29
max	30.000000	0.328391	266.888400	2009.000000	3122
4					•

sn.pairplot(df6)

df6['Item_Weight'].value_counts()

13.194406 346

12.867687 335

13.332012 261

```
12.566713
                  250
     13.238358
                  195
                    7
     5.860000
     7.850000
                     6
     9.035000
                     6
                     6
     4.615000
     30.000000
                     1
     Name: Item Weight, Length: 432, dtype: int64
df6['Item_Fat_Content'].value_counts()
     Low Fat
                8485
     Regular
                4824
     LF
                 522
                 195
     reg
     low fat
                 178
     Name: Item_Fat_Content, dtype: int64
df6.replace({'Item Fat Content':{'Low Fat':0,'Regular':1}},inplace=True)
df6['Item Fat Content'].value counts()
     0
                8485
     1
                4824
     LF
                 522
                 195
     reg
                 178
     low fat
     Name: Item_Fat_Content, dtype: int64
df6['Item_Type'].value_counts()
     Fruits and Vegetables
                               2013
     Snack Foods
                               1989
     Household
                               1548
     Frozen Foods
                               1426
     Dairy
                               1136
     Baking Goods
                               1086
     Canned
                               1084
                                858
     Health and Hygiene
     Meat
                                736
     Soft Drinks
                                726
     Breads
                                416
     Hard Drinks
                                362
     Others
                                280
     Starchy Foods
                                269
     Breakfast
                                186
     Seafood
     Name: Item_Type, dtype: int64
df6.head()
```

	Item_Identifier	Item_Weight	<pre>Item_Fat_Content</pre>	<pre>Item_Visibility</pre>	<pre>Item_Type</pre>	Item_MRP
0	FDT36	12.3	0	0.111448	Baking Goods	33.4874
1	FDT36	12.3	0	0.111904	Baking Goods	33.9874
2	FDT36	12.3	LF	0.111728	Baking Goods	33.9874
3	FDT36	12.3	0	0.000000	Baking Goods	34.3874
4	FDP12	9.8	1	0.045523	Baking Goods	35.0874
4						>

```
y=df6['Item_Outlet_Sales']
У
     0
               436.608721
     1
               443.127721
     2
               564.598400
     3
              1719.370000
               352.874000
     14199
              4984.178800
     14200
              2885.577200
     14201
              2885.577200
     14202
              3803.676434
     14203
              3644.354765
     Name: Item_Outlet_Sales, Length: 14204, dtype: float64
y.shape
     (14204,)
x=df6[['Item_Type','Item_Weight','Item_MRP',"Outlet_Size",'Outlet_Type']]
x=df6.drop(['Item_Identifier'],axis=1)
x.shape
     (14204, 11)
Χ
```

x_std

	Item_Weight	<pre>Item_Fat_Content</pre>	Item_Visibility	Item_Type	Item_MRP	Outlet_Iden			
0	12.300000	0	0.111448	Baking Goods	33.4874	С			
1	12.300000	0	0.111904	Baking Goods	33.9874	С			
2	12.300000	LF	0.111728	Baking Goods	33.9874	С			
3	12.300000	0	0.000000	Baking Goods	34.3874	С			
4	9.800000	1	0.045523	Baking Goods	35.0874	С			
14199	12.800000	0	0.069606	Starchy Foods	261.9252	C			
14200	12.800000	0	0.070013	Starchy Foods	262.8252	C			
14201	12.800000	0	0.069561	Starchy Foods	263.0252	С			
14202	13.659758	0	0.069282	Starchy Foods	263.5252	С			
14203	12.800000	0	0.069727	Starchy Foods	263.6252	С			
14204 rows × 11 columns									

from sklearn.preprocessing import StandardScaler

sc=StandardScaler()

x_std=df6[['Item_Weight','Item_MRP','Item_Visibility']]

x_std=sc.fit_transform(x_std)

from sklearn.model_selection import train_test_split

```
...,
[ 0.00220132, 1.96538148, 0.07011952],
[ 0.20444792, 1.97343499, 0.06469366],
[ 0.00220132, 1.97504569, 0.07334891]])
```

 $x[['Item_Weight','Item_MRP','Item_Visibility']] = pd.DataFrame(x_std,columns = [['Item_Weight','It$

Х

	Item_Weight	<pre>Item_Fat_Content</pre>	Item_Visibility	<pre>Item_Type</pre>	Item_MRP	Outlet_Iden	
0	-0.115417	0	0.884136	Baking Goods	-1.731787	(
1	-0.115417	0	0.893006	Baking Goods	-1.723734	(
2	-0.115417	LF	0.889583	Baking Goods	-1.723734	(
3	-0.115417	0	-1.281712	Baking Goods	-1.717291	(
4	-0.703509	1	-0.397031	Baking Goods	-1.706016	(
14199	0.002201	0	0.070990	Starchy Foods	1.947664	(
14200	0.002201	0	0.078898	Starchy Foods	1.962160	(
14201	0.002201	0	0.070120	Starchy Foods	1.965381	(
14202	0.204448	0	0.064694	Starchy Foods	1.973435	(
14203	0.002201	0	0.073349	Starchy Foods	1.975046	(
14204 rows × 11 columns							
4						>	

from sklearn.model_selection import train_test_split

```
x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.2,random_state=2529)
```

```
from sklearn.linear_model import LogisticRegression
lr=LogisticRegression()
lr.fit(x_train,y_train)
     LogisticRegression()
y_pred=lr.predict(x_test)
from sklearn.svm import SVC
sc=SVC()
from sklearn.metrics import mean_squared_error,mean_absolute_error,r2_score
mean_absolute_error(y_test,y_pred)
     0.42438130155820347
mean_squared_error(y_test,y_pred)
     0.42438130155820347
r2_score(y_test,y_pred)
     -0.6975266323890179
mp.scatter(y_test,y_pred)
mp.title('Actual prices vs Predicted prices')
mp.show()
```

Actual prices vs Predicted prices

10

hill and valley prediction

df7=pd.read_csv("https://github.com/YBI-foundation/Dataset/raw/main/Hill%20Valley%20Dataset.c

df7.head()

	V1	V2	V3	V4	V5	V6	V7	V8	V9
0	39.02	36.49	38.20	38.85	39.38	39.74	37.02	39.53	38.81
1	1.83	1.71	1.77	1.77	1.68	1.78	1.80	1.70	1.75
2	68177.69	66138.42	72981.88	74304.33	67549.66	69367.34	69169.41	73268.61	74465.84
3	44889.06	39191.86	40728.46	38576.36	45876.06	47034.00	46611.43	37668.32	40980.89
4	5.70	5.40	5.28	5.38	5.27	5.61	6.00	5.38	5.34

5 rows × 101 columns

df7.tail()

	V1	V2	V3	V4	V5	V6	V7	V8	V9	
1207	13.00	12.87	13.27	13.04	13.19	12.53	14.31	13.33	13.63	
1208	48.66	50.11	48.55	50.43	50.09	49.67	48.95	48.65	48.63	
1209	10160.65	9048.63	8994.94	9514.39	9814.74	10195.24	10031.47	10202.28	9152.99	!
1210	34.81	35.07	34.98	32.37	34.16	34.03	33.31	32.48	35.63	
1211	8489.43	7672.98	9132.14	7985.73	8226.85	8554.28	8838.87	8967.24	8635.14	{

5 rows × 101 columns

df7.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1212 entries, 0 to 1211
Columns: 101 entries, V1 to Class
dtypes: float64(100), int64(1)

memory usage: 956.5 KB

df7.describe()

	V1	V2	V3	V4	V5	
count	1212.000000	1212.000000	1212.000000	1212.000000	1212.000000	1212.0
mean	8169.091881	8144.306262	8192.653738	8176.868738	8128.297211	8173.0
std	17974.950461	17881.049734	18087.938901	17991.903982	17846.757963	17927.1
min	0.920000	0.900000	0.850000	0.890000	0.880000	8.0
25%	19.602500	19.595000	18.925000	19.277500	19.210000	19.5
50%	301.425000	295.205000	297.260000	299.720000	295.115000	294.3
75%	5358.795000	5417.847500	5393.367500	5388.482500	5321.987500	5328.0
max	117807.870000	108896.480000	119031.350000	110212.590000	113000.470000	116848.3
_						

8 rows × 101 columns

print(df7.columns.tolist())

['V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11', 'V12', 'V13', 'V14

df7.shape

(1212, 101)

df7['Class'].value_counts()

0 606

1 606

Name: Class, dtype: int64

df7.groupby('Class').mean()

		V1	V2	V3	V4	V5	V6	
	Class							
	0	7913.333251	7825.339967	7902.497294	7857.032079	7775.610198	7875.436337	7804.
	1	8424.850512	8463.272558	8482.810182	8496.705396	8480.984224	8470.623680	8572.
2	2 rows ×	100 columns						

```
y.shape
     (1212,)
У
     0
             0
     1
             1
     2
             1
     3
             0
     4
             0
     1207
             1
     1208
             0
     1209
             1
     1210
             1
     1211
     Name: Class, Length: 1212, dtype: int64
x=df7[['V1','V2','V3','V4','V5','V6','V7',"V8","V9","V10"]]
x=df7.drop('Class',axis=1)
x.shape
     (1212, 100)
Х
```

	V1	V2	V3	V4	V5	V6	V7	V8	
0	39.02	36.49	38.20	38.85	39.38	39.74	37.02	39.53	38
1	1.83	1.71	1.77	1.77	1.68	1.78	1.80	1.70	,

mp.plot(x.iloc[0,:])
mp.title('valley')

Text(0.5, 1.0, 'valley')

mp.plot(x.iloc[1,:])
mp.title('Hill')

Text(0.5, 1.0, 'Hill')

from sklearn.preprocessing import StandardScaler

sc=StandardScaler()

x=sc.fit_transform(x)

```
Χ
     array([[-0.45248681, -0.45361784, -0.45100881, ..., -0.45609618,
             -0.45164274, -0.45545496],
            [-0.45455665, -0.45556372, -0.45302369, ..., -0.45821768,
             -0.45362255, -0.45755405],
            [ 3.33983504, 3.24466709, 3.58338069, ..., 3.5427869 ,
              3.27907378, 3.74616847],
            [0.11084204, 0.0505953, 0.04437307, ..., 0.12533312,
              0.04456025, 0.06450317],
            [-0.45272112, -0.45369729, -0.45118691, ..., -0.45648861,
             -0.45190136, -0.45569511],
            [0.01782872, -0.02636986, 0.05196137, \ldots, 0.03036056,
              0.01087365, 0.03123129]])
x.shape
     (1212, 100)
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.1,stratify=y,random_state=253
x_train.shape,x_test.shape,y_train.shape,y_test.shape
     ((121, 100), (1091, 100), (121,), (1091,))
from sklearn.linear model import LogisticRegression
lr=LogisticRegression()
lr.fit(x_train,y_train )
     LogisticRegression()
y pred=lr.predict(x test)
y pred.shape
     (1091,)
y_pred
     array([1, 1, 1, ..., 1, 1, 1])
```

```
lr.predict_proba(x_test)
    array([[0.49339312, 0.50660688],
        [0.49226548, 0.50773452],
        [0.49340597, 0.50659403],
        ...,
        [0.49339979, 0.50660021],
        [0.49342196, 0.50657804],
        [0.49339765, 0.50660235]])

from sklearn.metrics import confusion_matrix,classification_report
    print(confusion_matrix(y_test,y_pred))
```

[[101 445] [18 527]]

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support	
0	0.85	0.18	0.30	546	
1	0.54	0.97	0.69	545	
accuracy			0.58	1091	
macro avg	0.70	0.58	0.50	1091	
weighted avg	0.70	0.58	0.50	1091	

x1_new=df7.sample(2)

x1_new

	V1	V2	V3	V4	V5	V6	V7	V8	V 9	V10	• • •	
1202	1.86	1.93	1.91	1.90	1.97	1.89	2.02	1.87	2.02	2.03		
612	409.53	393.75	388.72	388.45	413.10	406.14	415.73	413.29	411.99	411.11		41
2 rows × 101 columns											•	

x1_new.shape

(2, 101)

x1_new=x1_new.drop('Class',axis=1)

x1_new

```
V1
                   V2
                           V3
                                   V4
                                            V5
                                                    V6
                                                            V7
                                                                    V8
                                                                            V9
                                                                                   V10
 1202
          1.86
                  1.93
                          1.91
                                  1.90
                                          1.97
                                                  1.89
                                                          2.02
                                                                  1.87
                                                                          2.02
                                                                                  2.03
 612
                       388.72 388.45 413.10 406.14 415.73 413.29 411.99
       409.53 393.75
                                                                                411.11
                                                                                              38
2 rows × 100 columns
```

x1_new

```
V1
                   V2
                                                                                   V10
                           V3
                                    V4
                                            V5
                                                    V6
                                                            ٧7
                                                                    V8
                                                                            V9
 1202
          1.86
                  1.93
                          1.91
                                  1.90
                                          1.97
                                                  1.89
                                                           2.02
                                                                                   2.03
                                                                   1.87
                                                                           2.02
                                                                                           ...
 612
       409.53 393.75 388.72 388.45 413.10 406.14 415.73 413.29 411.99 411.11
                                                                                              38
2 rows × 100 columns
```

```
x1_new=ss.fit_transform(x1_new)

y_pred_new=lr.predict(x1_new)

y_pred_new
    array([1, 1, 1, ..., 1, 1, 1])

lr.predict_proba(x1_new)
    array([[0.49299481, 0.50700519],
        [0.49193574, 0.50806426],
        [0.49300773, 0.50699227],
```

[0.49300159, 0.50699841], [0.49302497, 0.50697503], [0.49299931, 0.50700069]])