Operational Amplifiers

Diego Trapero

Table of contents

1	Ope	Operational Amplifiers 2		
	1.1	The O	Operational Amplifier	2
		1.1.1	Ideal Operational Amplifier	2
	1.2	Op-an	np configurations	3
		1.2.1	Comparator	3
		1.2.2	Voltage follower	3
		1.2.3	Inverting amplifier	3
		1.2.4	Noninverting amplifier	4
		1.2.5	Differential amplifier	5
		1.2.6	Integrator	5
		1.2.7	Differentiator	5
		1.2.8	Inverting amplifier with offset adjustment	5
		1.2.9	Summing amplifier	6
	1.3	Op Ar	mp table	7

1 Operational Amplifiers

1 The Operational Amplifier

Op-amp terminals The terminals of an op-amp are

- $\bullet\,$ Positive terminal, +, non-inverting terminal.
- Negative terminal, -, inverting terminal
- Positive power supply, V_{S+}
- Negative power supply, V_{S-}
- Output terminal, v_o

Op-amp equivalent circuit Some of the non-ideal resistive characteristics of an op-amp can be modelled by the following circuit

1 Ideal Operational Amplifier

The ideal operational amplifier is a model of the real amplifier, where the equivalent circuit has

- Infinite open-loop gain, $G \to \infty$.
- Zero output impedance, $R_{out} = 0$.
- Infinite input impedance, $R_{in} \to \infty$.
- None of the other non-ideal behaviours: CMRR, noise, offset, bandwith...

Ideal op-amp transfer function, op-amp formula. With the simplifications of the ideal op-amp mode, the output voltage is

$$v_o = G(v_+ - v_-)$$

where G is a very large number, and can be considered infinite. Nevertheless, we should take into account saturation, so v_o must be in the following interval:

$$v_o \in [v_{S-}, v_{S+}]$$

Ideal op-amp golden rules

- 1. In a negative feedback configuration, the output attempts to do whatever is necessary to make the voltage difference between the inputs zero.
- 2. The inputs draw no current.

[The Art of Electronics, page 177]

1 Op-amp configurations

1 Comparator

$$v_o = \begin{cases} v_{S+} & \text{if } v_+ > v_- \\ v_{S-} & \text{if } v_- > v_+ \end{cases}$$

1 Voltage follower

$$v_o = v_i$$

Circuit analysis

a) With the op-amp formula

$$\begin{split} v_o &= G(v_i - v_o) \\ v_o &= Gv_i - Gv_o \\ v_o + Gv_o &= Gv_i \\ \\ \frac{v_o}{G} + v_o &= v_i \xrightarrow{G \to \infty} v_o = v_i \end{split}$$

b) With the golden rules: Since it is a feedback configuration, we can apply the first rule. We obtain that $v_+ = v_-$, or $v_i = v_o$, which is the transfer function of the voltage follower.

1 Inverting amplifier

Circuit analysis

a) With the golden rules

a.1) From the golden rules we know

- * \$i_{opamp} = 0\$
- $* $v_- = v_+ = 0$$
- a.2) KCL in the negative terminal

$$\begin{aligned} i_i &= i_o \\ \frac{v_i - v_-}{R_i} &= \frac{v_- - v_o}{R_f} \end{aligned}$$

a.3) $v_{-} = 0$

 $\frac{v_i}{R_i} = -\frac{v_o}{R_f}$

a.4) Obtain v_o

 $v_o = -\frac{R_f}{R_i} v_i$

1 Noninverting amplifier

Circuit analysis

- a) With the op-amp formula
 - a.1) Op-amp formula

$$v_o = G(v_i - v_-)$$

a.2) Calculate v_{-} with the voltage divider formula:

$$v_{-} = \frac{R_i}{R_i + R_f} v_o$$

a.3) Substitute v_{-} in the op-amp formula

$$v_o = G(v_i - \frac{R_i}{R_i + R_f}v_o)$$

a.4) Take all v_o to the left

$$v_o + G \frac{R_i}{R_i + R_f} v_o = G v_i$$

a.5) Divide all by G and take the limit when G tends to infinity

$$\frac{v_o}{G} + \frac{R_i}{R_i + R_f} v_o = v_i \xrightarrow{G \to \infty} \frac{R_i}{R_i + R_f} v_o = v_i$$

a.6) The transfer function is

$$v_o = \frac{R_i + R_f}{R_i} v_i$$

$$v_o = (1 + \frac{R_f}{R_i})v_i$$

4

Noninverting amplifier circuit analysis with the golden rules

1 Differential amplifier

$$v_o = \frac{R_4}{R_3 + R_4} (1 + \frac{R_2}{R_1}) v_2 - \frac{R_2}{R_1} v_1$$

1 Integrator

1 Differentiator

1 Inverting amplifier with offset adjustment

$$v_o = \left(1 + \frac{R_2}{R_1}\right)v_2 - \frac{R_2}{R_1}v_1$$

Circuit analysis

- a) Using the differential amplifier formula
 - a.1) The differential amplifier formula is

$$v_o = \frac{R_4}{R_3 + R_4} \left(1 + \frac{R_2}{R_1} \right) v_2 - \frac{R_2}{R_1} v_1$$

a.2) This op-amp circuit is a special case where $R_4 \to \infty$

if
$$R_4 \to \infty$$
: $v_o = R_4 - 1 \over R_3 + R_4 (1 + \frac{R_2}{R_1}) v_2 - \frac{R_2}{R_1} v_1$

$$v_o = \left(1 + \frac{R_2}{R_1}\right) v_2 - \frac{R_2}{R_1} v_1$$

b) Using superposition

1 Summing amplifier

$$v_o = -\frac{R_f}{R_1}v_1 - \frac{R_f}{R_2}v_2 - \dots - \frac{R_f}{R_n}v_n$$

$$v_o = -R_f \sum_i \frac{v_i}{R_i}$$

1 Op Amp table

Op Amp	Circuit	Formula
Comparator	v v_+ v_o	$v_{o} = \begin{cases} v_{S+} & \text{if } v_{+} > v_{-} \\ v_{S-} & \text{if } v_{-} > v_{+} \end{cases}$
Voltage follower		$v_o = v_i$
Inverting amplifier	R_i	$v_o = -\frac{R_f}{R_i} v_i$
Non-inverting amplifier	R_i $v_i \circ -+$ v_o	$v_o = (1 + \frac{R_f}{R_i})v_i$
Differential amplifier	R_1 R_2 R_3 R_4	$v_o = \frac{R_4}{R_3 + R_4} (1 + \frac{R_2}{R_1})v_2 - \frac{R_2}{R_1}v_1$
Integrator		?
Differentiator	C $+$ R_f	?
Inverting amplifier with offset adjustment	$v_1 \circ \longrightarrow V_2 \circ \longrightarrow V_0$	$v_o = \left(1 + \frac{R_2}{R_1}\right)v_2 - \frac{R_2}{R_1}v_1$

