EE1005 – Digital Logic Design

Assignment 5 (Solution)

Spring 2023

Maximum Marks: 70 Due Date: 02 May 2023

Instructions:

- Partially or fully copied assignments will be marked as zero.
- Only **handwritten** solution on **A4 page** will be accepted.
- Late submissions are not allowed.
- Clearly indicate all the calculations in your solution. No points will be awarded in case of missing calculations.

Question Number 1 [10 Marks]

Construct a SR latch by using NOR gates. The latch must have an enable input. Also compute the state table of the latch stating all possible combinations of enable input and S, R inputs.

 $[2.5 \times 4 = 10 \text{ Marks}]$

Question Number 2

Write the output Y and Q for the following four cases with proper calculations/reasons. The latches are constructed with NAND gates.

- When clock = 0
- When clock is changing from 0 to 1
- When clock = 1
- When clock is changing from 1 to 0

- 1) When clock = 0
 - o Master latch is enable
 - o Slave latch is disable
 - \circ Y = D
 - o Q is unchanged
- 2) When clock is changing from 0 to 1
 - Master latch is disabled
 - o Slave latch is enable
 - \circ Q = Y (the value of D will appear at Q at positive edge of clock)
- 3) When clock = 1
 - o Master latch is disabled
 - o Slave latch is enable
 - o Change in D will not affect Q
- 4) When clock is changing from 1 to 0
 - o Master latch is enable
 - Slave latch is disable
 - Change in D will not affect Q

It is a positive edge trigger D flip flop

 $[2.5 \times 4 = 10 \text{ Marks}]$

Write the output of each gate for the following four cases with proper reasons/calculations.

- When clock = 0
- When clock is changing from 0 to 1
- When clock = 1
- When clock is changing from 1 to 0

- 1) When clock = 0
 - G2 = (0.G1)' = 1
 - G3 = (0.G2.G4)' = 1
 - S = R = 1
 - \bullet D = X
 - No change in state
- 2) When clock is changing from 0 to 1
 - $\mathbf{D} = \mathbf{0}$
 - $G1 = (1.0)^{\circ} = 1$
 - S = G2 = (1.1)' = 0
 - R = G3 = (1.0.G4)' = 1
 - G4 = (1.1)' = 0
 - Q = 1 (Set State)
- 3) When clock is changing from 0 to 1
 - **D** = 1
 - G1 = (1.1)' = 0
 - S = G2 = (1.0)' = 1
 - G4 = (0.1)' = 1
 - R = G3 = (1.1.1)' = 0
 - Q = 0 (Reset State)
- 4) When clock = 1
 - No further change in state as discussed in above two cases
- 5) When clock is changing from 1 to 0
 - G2 = (0.G1)' = 1
 - G3 = (0.G2.G4) = 1
 - S = R = 1
 - \bullet D = X
 - No change in state

It is a positive edge trigger D flip flop

[4+4+2=10 Marks]

Analyze the following combinational circuit to find its

- i) State equation(s)
- ii) State table
- iii) State diagram

From circuit diagram

$$J_B = x K_B = (x \oplus A)'$$

For JK Flop flop we have Q(t + 1) = JQ' + K'Q

For Flip Flop A

A = x'BA' + (xB)'A

For Flip Flop A

$$B = xB' + (x \oplus A)B$$

Present State		Input					Next	State
A	В	X	x'BA'	(xB)'A	xB'	$(x \oplus A)B$	A	В
0	0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0	1
0	1	0	1	0	0	0	1	0
0	1	1	0	0	0	1	0	1
1	0	0	0	1	0	0	1	0
1	0	1	0	1	1	0	1	1
1	1	0	0	1	0	1	1	1
1	1	1	0	0	0	0	0	0

[4+4+2=10 Marks]

Analyze the following combinational circuit to find its

- i) State equation(s)
- ii) State table
- iii) State diagram

From circuit diagram

$$T_A = AB$$

$$T_B = A ^{\prime}\! B$$

For T Flop flop we have

$$Q(t+1) = T \oplus Q$$

For Flip Flop A

$$A = AB \oplus A$$

For Flip Flop B

$$B = A'B \oplus B$$

Presen	t State			Next	State
A	В	A'B	AB	A	В
0	0	0	0	0	0
0	1	1	0	0	0
1	0	0	0	1	0
1	1	0	1	0	1

[4 + 4 + 2 = 10 Marks]

A sequential circuit with two D flip-flops A and B, two inputs, x and y; and one output z is specified by the following next-state and output equations.

$$A(t + 1) = xy' + xB$$

$$B(t + 1) = xA + xB'$$

$$z = A$$

- Draw the logic diagram of the circuit
- List the state table for the sequential circuit
- Draw the corresponding state diagram

Present State		Inputs						Next	State	Output	
	A	В	X	y	xy'	хB	xA	xB'	A	В	Z
	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	0	0	0	0	0
	0	0	1	0	1	0	0	1	1	1	1
	0	0	1	1	0	0	0	1	0	1	0
	0	1	0	0	0	0	0	0	0	0	0
	0	1	0	1	0	0	0	0	0	0	0
	00	1	1	0	1	1	0	0	1	0	1
	0	1	1	1	0	1	0	0	1	0	1
	1	0	0	0	0	0	0	0	0	0	0
	1	0	0	1	0	0	0	0	0	0	0
	1	0	1	0	1	0	1	1	1	1	1
	1	0	1	1	0	0	1	1	0	1	0
	1	1	0	0	0	0	0	0	0	0	0
	1	1	0	1	0	0	0	0	0	0	0
	1	1	1	0	1	1	1	0	1	1	1
	1	1	1	1	0	1	1	0	1	1	1

Question Number 7 [5 + 5 = 10 Marks]

A sequential circuit has one flip-flop Q, two inputs x and y, and one output S. It consists of a full-adder circuit connected to a D flip-flop, as shown in figure below.

Derive the:

- State table and
- State diagram

of the sequential circuit.

Present S	tate	Inp	outs	Output		Next State
Q	2	X	y	S	C	Q
0	()	0	0	0	0
0)	1	1	0	0
0	1		0	1	0	0
0			1	0	1	1
1)	0	1	0	0
1)	1	0	1	1
1	1		0	0	1	1
1		l	1	1	1	1

