

Mark Scheme (Results)

Summer 2024

Pearson Edexcel International Advanced Level In Statistics S2 (WST02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2024
Question Paper Log Number P76184A
Publications Code WST02_01_2406_MS
All the material in this publication is copyright
© Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

•	bod	benefit of doubt
•	ft	follow through
		\circ the symbol $$ will be used for correct ft
•	cao	correct answer only
•	CSO	correct solution only.
		 There must be no errors in this part of the
		question to obtain this mark
•	isw	ignore subsequent working
•	awrt	answers which round to
•	SC	special case
•	oe	or equivalent (and appropriate)
•	d or dep	dependent
•	indep	independent
•	dp	decimal places
•	sf	significant figures
•	<u>*</u>	The answer is printed on the paper or ag- answer given
•	∟ or d	The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

 Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.

For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question		Scheme	Marks
1(a)	The random variable M is such that $M \sim Po(2)$ awrt 0.857		
(i)	[P(<i>M</i>	B1	
(ii)	(ii) $P(M6) = 1 - P(M, 5)$		
		= 0.0166 (calc 0.016563) awrt 0.0166	A1
(1.)			(3) M1
(b)	$Q \sim \text{Po}(6)$		
	P(4, Q, 7) = P(Q, 7) - P(Q, 3) = 0.5928		
	$X \sim B(20, \text{``}0.5928\text{''}) \text{ and } P(X = 15) \underbrace{\text{or}}_{20} C_{15} (\text{``}0.5928\text{''})^{15} (1 - \text{``}0.5928\text{''})^5$		
		= 0.06809 awrt 0.068	A1
			(4)
(c)	H ₀ : λ	$=2$ H_1 : $\lambda > 2$	B1
	<i>R</i> ~ I	$P_0(5)$: $P(R10)$ or $1-P(R,, 9)$	M1
		= 0.0318 <u>or</u> CR: $R 10$	A1
		t H ₀ or Significant or in the critical region	M1
		is evidence to support the manager's belief /	A1
	rate of	f customers arriving at the garage has increased	(5)
(d)	(d) The number of tyres bought is likely not to occur singly/tyres are not sold independently.		B1
(u)			DI
İ	ure ne	t sord independently.	(1)
	are ne		(1)
(a)	B1	Notes awrt 0.857	(1) Total 13
(a)	B1	Notes	
(a)		Notes awrt 0.857	
	B1 M1 A1	Notes awrt 0.857 for $1-P(M_{,,}, 5)$ or $1-0.9834$ Do not allow $1-P(M<6)$ unless $1-P(M_{,,}, 5)$ is used awrt 0.0166 correct answer scores 2 out of 2	
(a) (b)	B1 M1	Notes awrt 0.857 for $1 - P(M_{,,} 5)$ or $1 - 0.9834$ Do not allow $1 - P(M < 6)$ unless $1 - P(M_{,,} 5)$ is used	
	B1 M1 A1 M1	Notes awrt 0.857 for $1-P(M_{,,}, 5)$ or $1-0.9834$ Do not allow $1-P(M<6)$ unless $1-P(M_{,,}, 5)$ is used awrt 0.0166 correct answer scores 2 out of 2	
	B1 M1 A1 M1	Notes awrt 0.857 for $1-P(M_{,,} 5)$ or $1-0.9834$ Do not allow $1-P(M<6)$ unless $1-P(M_{,,} 5)$ is used awrt 0.0166 correct answer scores 2 out of 2 for writing or using Po(6) for $P(Q_{,,} 7)-P(Q_{,,} 3)$ or 0.7440 – 0.1512 or awrt 0.593	Total 13
	B1 M1 A1 M1	Notes awrt 0.857 for $1-P(M_{,,} 5)$ or $1-0.9834$ Do not allow $1-P(M<6)$ unless $1-P(M_{,,} 5)$ is used awrt 0.0166 correct answer scores 2 out of 2 for writing or using $Po(6)$	Total 13
	B1 M1 A1 M1 M1 M1	Notes awrt 0.857 for $1-P(M_{,,} 5)$ or $1-0.9834$ Do not allow $1-P(M<6)$ unless $1-P(M_{,,} 5)$ is used awrt 0.0166 correct answer scores 2 out of 2 for writing or using Po(6) for $P(Q_{,,} 7)-P(Q_{,,} 3)$ or $0.7440-0.1512$ or awrt 0.593 For B(20, "0.5928") and $P(X=15)$ or ${}^{20}C_{15}(p)^{15}(1-p)^5$ (implied by awrt 0.068 for correct hypotheses in terms of λ or μ Allow 5 instead of 2.	Total 13
(b)	B1 M1 A1 M1 M1 A1 A1	Notes awrt 0.857 for $1-P(M_{,,} 5)$ or $1-0.9834$ Do not allow $1-P(M<6)$ unless $1-P(M_{,,} 5)$ is used awrt 0.0166 correct answer scores 2 out of 2 for writing or using Po(6) for $P(Q_{,,} 7)-P(Q_{,,} 3)$ or $0.7440-0.1512$ or awrt 0.593 For B(20, "0.5928") and $P(X=15)$ or ${}^{20}C_{15}(p)^{15}(1-p)^{5}$ (implied by awrt 0.068 for correct hypotheses in terms of λ or μ Allow 5 instead of 2. These must be attached to H_{0} and H_{1} correctly	Total 13
(b)	B1 M1 A1 M1 M1 A1 A1	Notes awrt 0.857 for $1-P(M, 5)$ or $1-0.9834$ Do not allow $1-P(M<6)$ unless $1-P(M, 5)$ is used awrt 0.0166 correct answer scores 2 out of 2 for writing or using Po(6) for $P(Q, 7)-P(Q, 3)$ or $0.7440-0.1512$ or awrt 0.593 For B(20, "0.5928") and $P(X = 15)$ or $P(X$	Total 13
(b)	B1 M1 A1 M1 M1 A1 M1 M1 M1	Notes awrt 0.857 for $1-P(M, 5)$ or $1-0.9834$ Do not allow $1-P(M<6)$ unless $1-P(M, 5)$ is used awrt 0.0166 correct answer scores 2 out of 2 for writing or using Po(6) for $P(Q, 7)-P(Q, 3)$ or $0.7440-0.1512$ or awrt 0.593 For B(20, "0.5928") and $P(X = 15)$ or $^{20}C_{15}(p)^{15}(1-p)^5$ (implied by awrt 0.068 for correct hypotheses in terms of λ or μ Allow 5 instead of 2. These must be attached to H_0 and H_1 correctly for writing or using $P_0(5)$ and $P(R10)$ or $1-P(R, 9)$ (may be implied by awrt 0.0318 or correct CR)	awrt 0.068)
(b)	B1 M1 A1 M1 M1 A1 A1 A1 A1 A1	Notes awrt 0.857 for $1-P(M, 5)$ or $1-0.9834$ Do not allow $1-P(M < 6)$ unless $1-P(M, 5)$ is used awrt 0.0166 correct answer scores 2 out of 2 for writing or using Po(6) for $P(Q, 7)-P(Q, 3)$ or $0.7440-0.1512$ or awrt 0.593 For B(20, "0.5928") and $P(X = 15)$ or $^{20}C_{15}(p)^{15}(1-p)^5$ (implied by awrt 0.068 for correct hypotheses in terms of λ or μ Allow 5 instead of 2. These must be attached to H_0 and H_1 correctly for writing or using $P_0(5)$ and $P(R10)$ or $1-P(R, 9)$ (may be implied by awrt 0.0318 or correct CR) awrt 0.0318 allow CR: $[R]10$ allow any letter or no letter for CR for a correct ft statement consistent with their p -value and 0.05 or with P	awrt 0.068)
(b)	B1 M1 A1 M1 M1 A1 M1 M1 M1	Notes awrt 0.857 for $1-P(M, 5)$ or $1-0.9834$ Do not allow $1-P(M < 6)$ unless $1-P(M, 5)$ is used awrt 0.0166 correct answer scores 2 out of 2 for writing or using Po(6) for $P(Q, 7)-P(Q, 3)$ or $0.7440-0.1512$ or awrt 0.593 For $P(Q, 7)-P(Q, 3)$ and $P(X = 15)$ or	awrt 0.068) 0 and their CR al comments
(b)	B1 M1 A1 M1 M1 A1 A1 A1 A1	Notes awrt 0.857 for $1-P(M, 5)$ or $1-0.9834$ Do not allow $1-P(M < 6)$ unless $1-P(M, 5)$ is used awrt 0.0166 correct answer scores 2 out of 2 for writing or using Po(6) for $P(Q, 7)-P(Q, 3)$ or $0.7440-0.1512$ or awrt 0.593 For B(20, "0.5928") and $P(X = 15)$ or P	awrt 0.068) 0 and their CR al comments
(b)	B1 M1 A1 M1 M1 A1 B1 A1 B1 M1 A1 B1	Notes awrt 0.857 for $1-P(M, 5)$ or $1-0.9834$ Do not allow $1-P(M < 6)$ unless $1-P(M, 5)$ is used awrt 0.0166 correct answer scores 2 out of 2 for writing or using Po(6) for $P(Q, 7)-P(Q, 3)$ or $0.7440-0.1512$ or awrt 0.593 For $P(Q, 7)-P(Q, 3)$ and $P(X = 15)$ or	awrt 0.068) 0 and their CR al comments rejecting H ₀

Question		Scheme Marks			
2(a)	$\frac{3}{10}d - \frac{1}{75}d^2 - \frac{2}{3} = 1$				
	$45d - 2d^2 - 100 = 150 \text{ or } \frac{3}{10}d - \frac{1}{75}d^2 - \frac{5}{3} = 0 \rightarrow 2d^2 - 45d + 250 = 0$		A1*		
	10 /3 3		(2)		
(b)	$P(1 < H < 4.5) = \left(\frac{4.5}{6} - \frac{1}{3}\right) - \left(\frac{1}{48}\right) \left[= \frac{19}{48} \text{ or } 0.39583 \right]$				
	$P(1 < H < 1.5) \left[= \left(\frac{1.5^2}{48}\right) - \left(\frac{1}{48}\right) = \frac{5}{192} \text{ or } 0.02604 \right]$				
	$P(H < 1.5 1 < H < 4.5) = \frac{"0.02604"}{"0.3958"}$				
		$=\frac{5}{76}$ or 0.06578 awrt 0.0658	A1		
			(4)		
		$= \begin{cases} \frac{h}{24} & 0 < h,, 4 \\ \frac{1}{6} & 4 < h,, 5 \\ \frac{3}{10} - \frac{2}{75}h & 5 < h,, d \end{cases}$			
	FC (1)	$\frac{1}{2}$ $4 < h_{,,}$ 5	M1		
(c)	[f(h)]	=]{ 6	M1		
		$\left \frac{3}{10} - \frac{2}{75}h \right 5 < h,, d$	A1		
		0 otherwise			
			(3)		
	Notes Total 9		Total 9		
(a)	M1	for $\frac{3}{10}d - \frac{1}{75}d^2 - \frac{2}{3} = 1$			
	A1*	cso at least one step seen before given answer e.g. removing the denominator or correct 3 term quadratic = 0			
(b)	M1	48			
	M1 for writing or finding P(1 < H < 1.5) implied by $\frac{5}{192}$ or awrt 0.026				
	M1	for $\frac{p}{"0.3958"}$ where 0			
	A1 awrt 0.0658				
(c)	M1	M1 for one of row 1, 2 or 3 correct. Allow any letters. Condone missing/incorrect range			
	M1	for any two rows correct with ranges. Allow any letters and < for >> signs			
	A1	Fully correct. all the same letter in rows 1 to 3 Allow < for \Rightarrow signs condone $d = 10$ but not $d = 12.5$			

Question	Scheme Marks		
3(a)	A list of	all the shops	B1
(1.)	/TP1 1		(1)
(b)	The shop	DS	B1 (1)
(c)	Advanta	ge - A sample is quicker/ cheaper / easier to process	B1
(c)		ntage – less accurate/ may be biased / may not be representative	B1
	2150010	nungo 1000 uccoruno, may co ciusco, may not co representante	(2)
(d)	$P(X, or X \dots 1)$	6) = 0.0172 or $P(X18) = 0.0212$ or $P(X ,, 17) = 0.9788$ or $X ,, 6$	M1
	P(X,	6) $= 0.0172 \text{ and } [P(X18)] = 0.0212$	A1
	CR: [0,,	$X_{1}, 6, 18, X_{2}, 30$	A1
			(3)
(e)	20 is in t	the critical region therefore there is evidence that <u>Jian's</u> belief is incorrect	B1ft
(6)			(1)
(f)	$H_0: p =$	0.4 $H_1: p < 0.4$	B1
	$J \sim B(1$	$50,0.4) \Rightarrow \approx N(60,36)$	M1A1
	5(-	(n+0.5)-60	M1
	P(J,, 4)	$ 47\rangle \approx P\left(Z_{,,,} \frac{47.5 - 60}{6} \left[= -2.08333 \right] \right) \left(\frac{(n+0.5) - 60}{6} = -1.6449\right)$	M1
		= 0.0188 (calc 0.018610) CR: $J < awrt 49.6$	A1
	There is	sufficient evidence to suggest that the proportion of shops where the	
		ing system is being used incorrectly is less than 0.4/decreased	A1
			(7)
(-)	D1	Notes	Total 15
(a) (b)	B1	for the idea of a list/database(oe) of all shops list of all stocktaking system for allow shop or store(s)	IIS IS BU
(0)	B1	the number of shops is B0 the stocktaking systems at each shop is B0	
(c)	B1	for a correct advantage for a sample oe eg allow census take longer than a s	ample
		e.g. 'a sample is more uncertain' on its own is B0	_
	B1 for a correct disadvantage for a sample oe eg a census is more accurate than a sample		a sample
	If there is no reference to sample or census assume referring to sample.		
(d)	Ignore extraneous non-contradictory comments for one of these probability statements correct or awrt 0.017 or awrt 0.021 or awrt 0.98 M1		or awrt 0.98
	A1	or one correct CR for both probabilities awrt 0.0172 and awrt 0.0212	
	for both CR correct one gray $X < 7$ $X > 17$ ignore any symbol used between the two		the two
	A1	CR tails allow any or no letter (do not allow CR stated as probabi	
(e)	for stating 20 is in the CR <u>and</u> give correct statement. Allow the belief in words.		
(6)		Only ft if their CR is in the form $X_1, C_1 \cup X C_2$ (allow as probability stat	ements)
(f)	B1	for both hypotheses correct, using p or π . Must be attached to H_0 and H_1	
	M1	for writing or using $N(60,)$	
	A1	for writing or using N(60, 36) for standardising (allow \pm) using their "60" and "6" with either 46.5, 47 or 4	17.5
	M1	for CR method n , $n + 0.5$ or $n - 0.5$ and equate to -1.6449 or better	r1.J
	M1	for using the correct continuity correction 47.5 or $(n + 0.5)$	
	A1	for awrt 0.019 <u>or</u> CR: $J < \text{awrt } 49.6$ or $J + 0.5 < \text{awrt } 50.1$	
	A1	Exact binomial gives 0.01756and scores M0A0M0M0A0	
	dep on previous A1 for a correct conclusion in context using bold word (oe) Do not allow 'number' for 'proportion')

Question		Scheme Marks		
4(a)	$\frac{10}{50}$ ×	$\frac{9}{9} \times \frac{9}{49} \left[= \frac{9}{245} \right]$ B1cso		
		mber of counters numbered $4 = 10$ numbered $7 = 15$ numbered $10 = 25$ N		
(b)	number of counters numbered $4 = 10$ numbered $7 = 15$ numbered $10 = 25$			
	M = 0	4, 5.5, 7, 8.5, 10	B1	
	P(M	$(1 = 5.5) = 2 \times \frac{10}{50} \times \frac{15}{49} = \frac{6}{49}$	M1	
	P(M	$(1 = 7) = 2 \times \frac{10}{50} \times \frac{25}{49} + \frac{15}{50} \times \frac{14}{49} = \frac{71}{245}$	M1	
	P(<i>M</i>	$(1 = 8.5) = 2 \times \frac{15}{50} \times \frac{25}{49} = \frac{15}{49}$	M1	
	P(M	$(1 = 10) = \frac{25}{50} \times \frac{24}{49} \left[= \frac{12}{49} \right]$		
	m	4 5.5 7 8.5 10		
	P($M = m$ $\frac{9}{245}$ $\frac{6}{49}$ $\frac{71}{245}$ $\frac{15}{49}$ $\frac{12}{49}$	Λ1	
	'	9 245 49 245 49 49	A1	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		$\left[\begin{array}{c c} 0.037 \end{array} \right] \left[\begin{array}{c c} 0.122 \end{array} \right] \left[\begin{array}{c c} 0.290 \end{array} \right] \left[\begin{array}{c c} 0.306 \end{array} \right] \left[\begin{array}{c c} 0.245 \end{array} \right]$		
			(6)	
(c)	(1	$\left(1 - \frac{9}{245}\right)^n < 0.15$ M1		
	n=5	50.689 $\underline{\text{or}} \ n = 50 \text{ is } 0.1539 \underline{\text{or}} \ n = 51 \text{ is } 0.148 \underline{\text{or}} \ [n >] \frac{\log 0.15}{\log(1 - \frac{9}{245})}$		
	n = 5			
		(3)		
		Notes Total 10		
(a)	B1	A correct equivalent expression		
(b)		For 10, 15 and 25 - may be seen in (a) or may be seen in probability expressions		
	B1 M1	all means correct with no incorrect extra unless they have a probability of 0		
	M1	One correct probability (not including 9/245) Two correct probabilities (not including 9/245)		
	M1	Three correct probabilities (not including 9/245)		
		fully correct. need not be in a table but must have correct probability associated with		
	A1	correct mean		
	sc	With replacement using probabilities $\frac{10}{50}, \frac{15}{50}, \frac{25}{50}$ gives $\frac{3}{25}, \frac{29}{100}, \frac{3}{10}, \frac{1}{4}$		
	3.51	can score maximum M1B1M1(two correct)M1(four correct)M0A0		
(c)	M1	Setting up a correct inequality (allow any inequality or equal sign here)		
	M1	for a value $n = \text{awrt } 50.7 \text{ or awrt } 0.154 \text{ or awrt } 0.148$		
	A 1	$\underline{\text{or}}$ correct log expression for n 51 cao do not allow $n \dots 51$		
	A1	51 cao do not allow $n \dots 51$		

Question	Scheme			
5(a)	$D \sim B(8, 0.05)$			
	P(D	$2) = 1 - P(D_{,,} 1)$	M1	
	1 (D.	= 0.0572 (calc 0.057244) awrt 0.0572	A1	
			(3)	
(b)				
	P(E	$(-45) = \frac{e^{-50} \times 50^{45}}{45!}$	M1	
		= 0.0458262 awrt 0.0458	A1	
			(3)	
(c)	P(T>	$(-16) = \frac{50-16}{50-10}$ or $1 - \frac{16-10}{50-10}$	M1	
		= 0.85	A1	
			(2)	
(d)	P(T <	(40) = 0.75	M1	
	$F = n\iota$	umber of customers ringing in the next 40 seconds has $F \sim Po(4)$		
		$=0)[=e^{-4}=$ awrt 0.0183]	M1	
	D(lia r	reaches the correct department and $F = 0$) = $0.75 \times 0.95 \times e^{-4}$	dM1	
	1 (Jia i	= 0.013049 awrt 0.013	A1	
	- 0.013047 awit <u>0.013</u>		(4)	
		Notes T		
(a)	M1 for writing or using B(8, 0.05)			
	M1	for writing or using $1 - P(D_{,,} 1)$		
	A1	awrt 0.0572		
(b)	M1	for writing or using Po(50)		
	M1	for $\frac{e^{-\lambda} \times \lambda^{45}}{45!}$ with any value of λ (may be implied by awrt 0.046)		
	A1	awrt 0.0458		
(c)	M1	for a correct method to find $P(T>16)$		
	A1	for 0.85 oe correct answer scores 2 out of 2		
(d)	M1	for 0.75 oe	· · · · · · · · · · · · · · · · · · ·	
	M1	for attempting $P(F = 0)$ from Po (λ) allow any λ		
	dM1 dep on previous M1"0.75"×0.95×"e ⁻⁴ "			
	A1	awrt 0.013		

Question	Scheme	Marks
6(a)	$\int_{-1}^{3} (a+bx) dx = 1$ trapezium drawn	M1
	$\left[ax + \frac{bx^2}{2}\right]_{-1}^{3} [=1] \text{ oe } \underline{\text{or}} \qquad \frac{3-(-1)}{2} ((a-b)+(a+3b)) [=1]$	A1
		A1*
(b)(i)		(3)
(b)(i)	$\int_{-1}^{3} ax^{2} + bx^{3} dx = \left[\frac{ax^{3}}{3} + \frac{bx^{4}}{4} \right]_{-1}^{3}$	M1A1
	$\left\lceil \frac{27a}{3} + \frac{81b}{4} \right\rceil - \left\lceil -\frac{a}{3} + \frac{b}{4} \right\rceil = \frac{17}{5}$	dM1
	$\frac{28}{3}a + 20\left(\frac{1-4a}{4}\right) = \frac{17}{5}$	M1 A1
	22 9	(5)
(ii)	$-\frac{32}{3}a = -\frac{8}{5} \text{ oe} \qquad \frac{28}{3} \left(\frac{1-4b}{4}\right) + 20b = \frac{17}{5}$	M1
	$b = \frac{1 - 4 \times 0.15}{4} \Longrightarrow b = 0.1^*$	A1*
		(2)
(c)	0.45	M1 A1
		(2)
(d)	$\begin{bmatrix} "0.15"k + \frac{0.1k^2}{2} \end{bmatrix} - \begin{bmatrix} -"0.15" + \frac{0.1}{2} \end{bmatrix} = 0.2 \begin{bmatrix} 0.45 + \frac{0.9}{2} \end{bmatrix} - \begin{bmatrix} "0.15"k + \frac{0.1k^2}{2} \end{bmatrix} = 0.8$ $\frac{\text{or}}{2}(k+1)(0.05+0.1k+0.15) = 0.2 \frac{0}{2}(3-k)(0.15+0.1k+0.45) = 0.8$	M1
	$0.05k^2 + 0.15k - 0.1 = 0$	A1
	$k = \frac{-0.15 \pm \sqrt{0.15^2 - 4 \times 0.05 \times (-0.1)}}{}$	M1
	$2 \times 0.05 = 0.56155 $ awrt 0.562	A1
	uwit old uwit	(4)
		Total 16

	Notes		
(a)	M1	for an attempt to integrate $a + bx$ with either $a \rightarrow ax$ or $x \rightarrow x^2$ ignore limits or for trapezium drawn with parallel sides correct in terms of a and b (may be implied by correct area of trapezium)	
	A1	correct integration or correct area of trapezium	
	A1*	cso (correct limits seen substituted or correct area) equated to 1 which leads to final given answer	
		Mark b(i) and b(ii) together	
(b)(i)	M1	for an attempt to integrate $ax^2 + bx^3$ with either $x^2 \to x^3$ or $x^3 \to x^4$ ignore limits	
	A1	correct integration ignore limits	
	dM1	dep on previous M1. Substituting in correct limits and equating to 17/5	
	M1	substituting $4b = 1 - 4a$ oe	
	A1	a correct equation	
(ii)	M1	solving their equation in a in the form $na = c$ where $n \neq 1$ or a correct equation in terms of b M0 for $a = 0.15$ without working or for using $b = 0.1$ in $4a + 4b = 1$ to find a	
	A1*	for a correct un-simplified expression for b leading to given answer $b = 0.1$ * which must come from correct working	
(c)	M1	correct shape (straight line with positive gradient) must be above x-axis and must be between -1 and 3 ignore graph before -1 and after 3	
	A1	correct with both correct x axis labels 1 and 3 and at least 1 correct y axis label from	
(d)	M1	for a correct equation using integration or area need not be simplified. use of limit $k + 1$ instead of k in integration is M0	
	A1	correct 3 term quadratic (oe)	
	M1	correct method seen to solve their 3 term quadratic <u>or</u> awrt 0.562 <u>or</u> awrt – 3.56	
	A1	awrt 0.562 with other solutions eliminated if given Allow $\frac{\sqrt{17}-3}{2}$	