Discrete Tree-seed Algorithm for Solving Symmetric Traveling Salesman Problem

Felix Beese, Jens Lohmann Universität Hamburg Dept. Informatik – Knowledge Technology, WTM

http://www.informatik.uni-hamburg.de/WTM/

- Motivation and Question
- Basics and Definition
- Approach
- Results
- Conclusion

- Motivation and Question
- Basics and Definition
- Approach
- Results
- Conclusion

Motivation and Question

- Discrete Tree-Seed Algorithm uses concept of trees and seeds
- Genetic Algorithms use concept of evolution
- Seems like they work in a quite similar way
 - Is the DTSA a Genetic algorithm in disguise?
 - What are the main differences?
- Investigated by the Traveling Salesman Problem

- Motivation and Question
- Basics and Definition
- Approach
- Results
- Conclusion

Traveling Salesman Problem

- Salesman has to visit many cities
- Wants to know the shortest tour
- Goal: find shortest Hamiltonian circle
- NP-hard problem
- Heuristic algorithms but also exact ones

Figure: Example for a solved TSP.

Discrete Tree-Seed Algorithm

- Iterative, heuristic algorithm
- Uses concept of trees and seeds (=possible solutions)
 - get modified by operations
- One tree as nearest neighbor tour
- Optimization of best result by 2-opt algorithm

Figure: Figure by Kiran 2015

Operations

Operations used in algorithms:

- swap(i,j) = change cities at position i and j
- shift(i,j) = move path[i+1:j] one to the left and place overwritten city at j
- symmetry(i,j) = change direction of (sub)path[i:j]

Tree=	1	2	3	4	5	6
	swap(2,5)					
Seed=	1	5	3	4	2	6
Tree=	1	2	3	4	5	6
	shift(3,5)					
Seed=	1	2	4	5	3	6
Tree=	1	2	3	4	5	6
symmetry((2,3),(4,5))						
Seed=	1	5	4	3	2	6

Genetic Algorithms

Genetic Algorithms are inspired by the concept of evolution

- Solutions represented as chromosomes (=linear representation)
- Working with generations (batches)
- Mutation and Crossover operations to create new solutions
- Selection step to choose the strongest/best solutions

- Motivation and Question
- Basics and Definition
- Approach
- Results
- Conclusion

Proceeding

- Implemented two algorithms
 - Discrete Tree-Seed Algorithm
 - Genetic Algorithm
- Each algorithm run 90 times
 - Six problem instances were taken from tsplib95 berlin52, st70, kroA100, eil101, ch150, tsp225
- Compared the results
 - By computing statistical metrics
 - And using different visualization methods
 - Goal: Finding similarities and differences of DTSA and GA

DTSA - Main Procedure

- create k-1 random trees, one by NN-tour
- repeat until stopping criterion is met
 - loop over all trees/paths (current tree)
 - choose random to create 3 seeds by operations on best tree or current tree
 - create 3 seeds by operations on random tree
 - get best tree out of those 6+1 trees for next iteration
 - k new trees were chosen
 - check if stopping criterion is met
- return overall best tree optimized by 2-opt

Genetic Algorithm - Main Procedure

GTSPA = Genetic Traveling Salesman Problem Algorithm

- create k-1 random trees, one by NN-tour
- repeat until stopping criterion is met
 - loop over all trees/paths (current tree)
 - create 3 seeds by operations on current tree
 - get best k trees out of those $4 \cdot k$ trees for next iteration
 - k new trees were chosen
 - check if stopping criterion is met
- return overall best tree optimized by 2-opt

Crossover for Trees

- Not working with paths every time
- Often gives a useless result
- Not needed for asexual reproduction

Genetic Algorithm - why three versions?

- Three different versions were tested
- They differ in their order of mutation and selection
 - GTSPA-SM
 - GTSPA-MS
 - GTSPA-SMS
- The same effects could be achieved by using different population sizes instead

- Motivation and Question
- Basics and Definition
- Approach
- Results
- Conclusion

Path length over steps

Figure: eil101

Figure: tsp225

Final path lengths (berlin52 & tsp225)

Figure: berlin52

Figure: tsp225

DTSA (3995)

GTSPA-MS (4038)

GTSPA-SMS (4039)

GTSPA-SM (3987)

Optimal (3919)

- Motivation and Question
- Basics and Definition
- Approach
- Results
- Conclusion

Comparison of DTSA and GA

Similarities:

- Concept of evolution with generations, mutations and, selection
- Same operations (swap, shift, symmetry)
- Give results of same magnitude

Differences:

- DTSA has different groups which evolve almost independently from each other
- DTSA converges a little bit faster
- DTSA gives a little worser overall results

Open questions

What can be done now to explore further:

- Test statistical parameters for significance (t-Test, ...)
- Try different parameters and investigate performance
- Implement a classical crossover operation
- Have a look at asymmetric TSP

The End

"The DTSA is a Genetic Algorithm with small adjustments."

Thank you for your attention.

Any question?

Literature:

 Ahmet Cevahir Cinar, Sedat Korkmaz, and Mustafa Servet Kiran. A discrete tree-seed algorithm for solving traveling salesman problem. In: Engineering Science and Technology, 2020

Final path lengths

dataset	algorithm	mean	std. dev.	best	worst	RE(%)
berlin52	DTSA	7868.18	185.5	7542	8405	4.32
	GTSPA-SM	7867.68	193.33	7542	8301	4.32
	GTSPA-MS	7790.32	175.78	7542	8263	3.29
	GTSPA-SMS	7798.98	192.88	7542	8281	3.41
st70	DTSA	700.57	16.09	683	738	3.79
	GTSPA-SM	698.26	15.3	680	747	3.45
	GTSPA-MS	695.41	13.09	682	737	3.02
	GTSPA-SMS	695.47	12.2	682	741	3.03

Final path lengths

dataset	algorithm	mean	std. dev.	best	worst	RE(%)
kroA100	DTSA	21831.69	382.83	21282	23009	2.58
	GTSPA-SM	21754.38	355.07	21282	23136	2.22
	GTSPA-MS	21588.57	348.82	21282	23096	1.44
	GTSPA-SMS	21719.31	351.1	21282	23224	2.05
eil101	DTSA	647.76	8.45	629	671	2.98
	GTSPA-SM	648.99	8.66	630	671	3.18
	GTSPA-MS	645.92	7.22	631	665	2.69
	GTSPA-SMS	646.9	8.26	630	669	2.85

Final path lengths

dataset	algorithm	mean	std. dev.	best	worst	RE(%)
ch150	DTSA	6688.03	85.32	6549	6922	2.45
	GTSPA-SM	6683.87	88.31	6549	6898	2.39
	GTSPA-MS	6665.89	86.8	6552	6913	2.11
	GTSPA-SMS	6661.59	77.5	6544	6839	2.05
tsp225	DTSA	4132.73	64.11	3995	4365	5.45
	GTSPA-SM	4121.48	57.02	3987	4307	5.17
	GTSPA-MS	4188.68	55.87	4038	4350	6.88
	GTSPA-SMS	4156.21	54.31	4039	4330	6.05

Final path lengths (berlin52 & st70)

Figure: berlin52

Figure: st70

Final path lengths (kroA100 & eil101)

Figure: kroA100 Figure: eil101

Final path lengths (ch150 & tsp225)

Figure: ch150

Figure: tsp225

DTSA

GTSPA-MS

GTSPA-SMS

GTSPA-SM

Optimal

