Ungleichungen von Kraft & McMillan Proseminar Informationstheorie

Phil Pützstück

November 21, 2018

Zeige: $\mathcal C$ sofort dekodierbar \Longrightarrow Ungleichung gilt für Parameter

Zeige: $\mathcal C$ sofort dekodierbar \Longrightarrow Ungleichung gilt für Parameter

$$L_i := \{ v \in V(\mathcal{T}_r^h) \mid v_{w_i} \le v \land height(v) = h \}$$

Zeige: $\mathcal C$ sofort dekodierbar \Longrightarrow Ungleichung gilt für Parameter

$$L_i := \{ v \in V(\mathcal{T}_r^h) \mid v_{w_i} \leq v \land height(v) = h \}$$

▶ Für
$$i,j \in [1,q] : i \neq j \implies L_i \cap L_j = \emptyset$$

Anzahl dieser Blätter?

▶ Anzahl dieser Blätter? $|L_i| = r^{h-\ell_i}$

- $ightharpoonup L_i \cap L_j = \emptyset$ für $i \neq j$.
- $|L_i| = r^{h-\ell_i}$

$$r^h \geq \left| \bigcup_{i \in [1,q]} L_i \right|$$

$$ightharpoonup L_i \cap L_i = \emptyset$$
 für $i \neq j$.

$$|L_i| = r^{h-\ell_i}$$

$$r^{h} \geq \left| \bigcup_{i \in [1,q]} L_{i} \right| = \sum_{i=1}^{q} |L_{i}| = \sum_{i=1}^{q} r^{h-\ell_{i}} = r^{h} \sum_{i=1}^{q} \frac{1}{r^{\ell_{i}}}$$

Ungleichung von Kraft: " \Leftarrow "

- $ightharpoonup L_i \cap L_i = \emptyset$ für $i \neq j$.
- $|L_i| = r^{h-\ell_i}$

$$r^h \geq \left| \bigcup_{i \in [1,q]} L_i \right| = \sum_{i=1}^q |L_i| = \sum_{i=1}^q r^{h-\ell_i} = r^h \sum_{i=1}^q \frac{1}{r^{\ell_i}}$$
 $\iff \sum_{i=1}^q \frac{1}{r^{\ell_i}} \leq 1$

Ungleichung von Kraft

Seien $q, r \in \mathbb{N}, \ell \in \mathbb{N}^q$. Dann existiert ein r-ärer sofort dekodierbarer Code \mathcal{C} mit Wortlängen ℓ genau dann, wenn

$$\sum_{k=1}^{q} \frac{1}{r^{l_k}} \le 1$$

- Beweis konstruktiv
- Untere Schranke für Wortlänge, Alphabetgröße

Ungleichung von Kraft

Seien $q, r \in \mathbb{N}, \ell \in \mathbb{N}^q$. Dann existiert ein r-ärer sofort dekodierbarer Code \mathcal{C} mit Wortlängen ℓ genau dann, wenn

$$\sum_{k=1}^{q} \frac{1}{r^{l_k}} \le 1$$

- Beweis konstruktiv
- Untere Schranke für Wortlänge, Alphabetgröße

- ▶ Bekannt: sofort dekodierbar ⇒ eindeutig dekodierbar
- Schwächere Kriterien?

Ungleichung von McMillan

Seien $q, r \in \mathbb{N}, \ell \in \mathbb{N}^q$. Dann existiert ein r-ärer eindeutig dekodierbarer Code \mathcal{C} mit Wortlängen ℓ genau dann, wenn

$$K := \sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \le 1 \tag{1}$$

Ungleichung von McMillan

Seien $q,r\in\mathbb{N},\ell\in\mathbb{N}^q$. Dann existiert ein r-ärer eindeutig dekodierbarer Code $\mathcal C$ mit Wortlängen ℓ genau dann, wenn

$$K := \sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \le 1 \tag{1}$$

Richtung " $(1) \Longrightarrow \mathcal{C}$ existiert" durch Kraft.

Ungleichung von McMillan: Beweisidee

- ightharpoonup Zu zeigen: $K = \sum_{k=1}^q \frac{1}{r^{\ell_k}} \le 1$
- ▶ Betrachte K^n abhängig von Wortlängen für beliebiges $n \in \mathbb{N}$.
- Finde aus Form von Kⁿ konstante obere Schranke
- ▶ Dann muss $K \le 1$, da sonst K^n für geeignetes n größer als jede Konstante

Zu zeigen: $K \leq 1$, wobei $K = \sum_{k=1}^q \frac{1}{r^{\ell_k}}$.

Zu zeigen:
$$K \leq 1$$
, wobei $K = \sum_{k=1}^q \frac{1}{r^{\ell_k}}$.

Für $n \in \mathbb{N}$ ist:

$$K^n = \left(\sum_{k=1}^q \frac{1}{r^{\ell_k}}\right)^n$$

Zu zeigen: $K \le 1$, wobei $K = \sum_{i=1}^{q} \frac{1}{r^{\ell_k}}$.

Für $n \in \mathbb{N}$ ist:

$$K^n = \left(\sum_{k=1}^q \frac{1}{r^{\ell_k}}\right)^n = \sum_{i \in [1,q]^n} \prod_{k=1}^n \frac{1}{r^{\ell_{i_k}}}$$

Zu zeigen: $K \leq 1$, wobei $K = \sum_{i=1}^{q} \frac{1}{r^{\ell_k}}$.

Für $n \in \mathbb{N}$ ist:

$$K^{n} = \left(\sum_{k=1}^{q} \frac{1}{r^{\ell_{k}}}\right)^{n} = \sum_{i \in [1,q]^{n}} \prod_{k=1}^{n} \frac{1}{r^{\ell_{i_{k}}}} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}}$$

Zu zeigen: $K \leq 1$, wobei $K = \sum_{i=1}^{q} \frac{1}{r^{\ell_k}}$.

Für $n \in \mathbb{N}$ ist:

$$K^{n} = \left(\sum_{k=1}^{q} \frac{1}{r^{\ell_{k}}}\right)^{n} = \sum_{i \in [1,q]^{n}} \prod_{k=1}^{n} \frac{1}{r^{\ell_{i_{k}}}} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}}$$

Dann für jedes $i \in [1, q]^n$:

$$n \cdot \ell_{min} \le \sum_{k=1}^{n} \ell_{i_k} \le n \cdot \ell_{max}$$

Zu zeigen: $K \leq 1$, wobei $K = \sum_{r=1}^{q} \frac{1}{r^{\ell_k}}$.

Für $n \in \mathbb{N}$ ist:

$$K^{n} = \left(\sum_{k=1}^{q} \frac{1}{r^{\ell_{k}}}\right)^{n} = \sum_{i \in [1,q]^{n}} \prod_{k=1}^{n} \frac{1}{r^{\ell_{i_{k}}}} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}}$$

Dann für jedes $i \in [1, q]^n$:

$$n \cdot \ell_{min} \le \sum_{k=1}^{n} \ell_{i_k} \le n \cdot \ell_{max}$$

Wir Wollen schreiben:

$$K^n = \sum_{j=n\cdot\ell_{min}}^{n\cdot\ell_{max}} N_j \cdot r^{-j}$$

Ziel: K^n abschätzen durch Koeffizient $N_i \in \mathbb{N}_0$, wobei

$$K^{n} = \sum_{i \in [1, a]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}} = \sum_{j=n \cdot \ell_{min}}^{n \cdot \ell_{max}} N_{j} \cdot r^{-j}$$

Ziel: K^n abschätzen durch Koeffizient $N_i \in \mathbb{N}_0$, wobei

$$\mathcal{K}^n = \sum_{i \in [1,q]^n} r^{-\sum_{k=1}^n \ell_{i_k}} = \sum_{j=n \cdot \ell_{min}}^{n \cdot \ell_{max}} \mathbf{N}_j \cdot r^{-j}$$

lacksquare N_j Anzahl $i \in [1,q]^n$ mit Wortlängensumme j

Ziel: K^n abschätzen durch Koeffizient $N_i \in \mathbb{N}_0$, wobei

$$\mathcal{K}^n = \sum_{i \in [1,q]^n} r^{-\sum_{k=1}^n \ell_{i_k}} = \sum_{j=n \cdot \ell_{min}}^{n \cdot \ell_{max}} \mathbf{N}_j \cdot r^{-j}$$

- $ightharpoonup N_j$ Anzahl $i \in [1,q]^n$ mit Wortlängensumme j
- Aquivalent: Anzahl $i \in [1, q]^n$ mit $|w_{i_1} w_{i_2} \dots w_{i_n}| = j$

Ziel: K^n abschätzen durch Koeffizient $N_j \in \mathbb{N}_0$, wobei

$$\mathcal{K}^n = \sum_{i \in [1,q]^n} r^{-\sum_{k=1}^n \ell_{i_k}} = \sum_{j=n \cdot \ell_{min}}^{n \cdot \ell_{max}} \mathbf{N}_j \cdot r^{-j}$$

- $ightharpoonup N_j$ Anzahl $i \in [1,q]^n$ mit Wortlängensumme j
- ightharpoonup Äquivalent: Anzahl $i \in [1,q]^n$ mit $|w_{i_1}w_{i_2}\dots w_{i_n}|=j$
- $ightharpoonup \mathcal{C}$ eindeutig dekodierbar \Longrightarrow Jede Code-Sequenz aus eindeutiger Auswahl $i \in [1,q]^n$

Ziel: K^n abschätzen durch Koeffizient $N_j \in \mathbb{N}_0$, wobei

$$\mathcal{K}^n = \sum_{i \in [1,q]^n} r^{-\sum_{k=1}^n \ell_{i_k}} = \sum_{j=n \cdot \ell_{min}}^{n \cdot \ell_{max}} \frac{\mathsf{N}_j \cdot r^{-j}}{\mathsf{N}_j \cdot r^{-j}}$$

- ▶ N_j Anzahl $i \in [1, q]^n$ mit Wortlängensumme j
- ightharpoonup Äquivalent: Anzahl $i \in [1,q]^n$ mit $|w_{i_1}w_{i_2}\dots w_{i_n}|=j$
- $ightharpoonup \mathcal{C}$ eindeutig dekodierbar \Longrightarrow Jede Code-Sequenz aus eindeutiger Auswahl $i \in [1,q]^n$
- $ightharpoonup r^j$ Wörter mit Länge j, nicht alles Code-Sequenzen von $\mathcal C$
- ▶ Für jedes max. ein $i \in [1, q]^n \implies N_j \le r^j$

Mit $N_i \leq r^j$ folgt:

$$K^{n} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}} = \sum_{j=nm}^{nM} N_{j} r^{-j} = \sum_{j=nm}^{nM} \frac{N_{j}}{r^{j}}$$

Mit $N_i \leq r^j$ folgt:

$$K^{n} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}} = \sum_{j=nm}^{nM} N_{j} r^{-j} = \sum_{j=nm}^{nM} \frac{N_{j}}{r^{j}}$$

$$\leq \sum^{mm} 1 = (M-m)n+1$$

Mit $N_i \leq r^j$ folgt:

$$K^{n} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}} = \sum_{j=nm}^{nM} N_{j} r^{-j} = \sum_{j=nm}^{nM} \frac{N_{j}}{r^{j}}$$

$$\leq \sum_{j=nm}^{mm} 1 = (M-m)n+1$$

$$\implies \frac{K^n}{n} \leq (M-m)+1$$

$$\frac{K^n}{n} \leq (M-m)+1$$

- ▶ Code C gegeben; q = |C|, Alphabetgröße r, Wortlängen ℓ fix.
- ▶ Damit auch m, M, K fix.

$$\frac{K^n}{n} \leq (M-m)+1$$

- ▶ Code C gegeben; q = |C|, Alphabetgröße r, Wortlängen ℓ fix.
- ▶ Damit auch *m*, *M*, *K* fix.
- ▶ $n \in \mathbb{N}$ beliebig; Ungleichung muss für alle $n \in \mathbb{N}$ gelten.

$$\frac{K^n}{n} \leq (M-m)+1$$

- ▶ Code C gegeben; q = |C|, Alphabetgröße r, Wortlängen ℓ fix.
- ▶ Damit auch m, M, K fix.
- ▶ $n \in \mathbb{N}$ beliebig; Ungleichung muss für alle $n \in \mathbb{N}$ gelten.
- Nach Analysis bekannt: nur möglich für $K \leq 1$.

$$\implies \sum_{i=1}^q \frac{1}{r^{\ell_i}} = K \le 1$$