

Réseau de transport

- Graphe orienté pondéré *G*=(*X*, *U*, *c*)
 - -X: ensemble de sommets,
 - − *U* : ensemble d'arcs
 - -c(u) poids de l'arc u, $\forall u$ ∈U
 - -c(u)≥0 appelé **capacité de l'arc** u.
- Il a 2 sommets particuliers:
 - -e: **entrée du graphe** (source $d_G(e)=0$)
 - -s: **sortie du graphe** (puits $d_G^*(s)=0$)

Enseignant : Dr. H. BENKAOUHA

Réseau de transport : Exemple

Flux d'un arc

- Soit *G*=(*X*, *U*, *c*) un réseau de transport.
- A chaque arc u, une autre valeur $f(u) \in R$.
- f(u) est appelé le flux de l'arc u.
- f(u) est dit réalisable ssi $0 \le f(u) \le c(u)$

x 1/2 y

• En vert la valeur du flot de l'arc (x, y) qui est réalisable.

Enseignant : Dr. H. BENKAOUHA

Flot dans un réseau de transport

- Soit *G*=(*X*, *U*, *c*) un réseau de transport
- |U| = m.
- Un flot dans *G*:
 - -vecteur f de m composantes ∈R.
- La jème composante correspond au :
 - -flux de l'arc u_i : $f(u_i)$

Enseignant : Dr. H. BENKAOUHA

Flot compatible

- Soit *G*=(*X*, *U*, *c*) un réseau de transport
- Un flot f est dit compatible ssi
 - Chaque flux est réalisable : $\forall u \in U$, 0≤f(u)≤c(u)
 - Loi de *Kirchhoff*: $\forall x \in X \{e, s\}, \sum_{u \in o^{-}(\{x\})} f(u) \sum_{u \in o^{-}(\{x\})} f(u) = 0$
 - $\omega^{+}(\{x\})$ est l'ensemble des arcs sortants de x
 - $\omega^{-}(\{x\})$ est l'ensemble des arcs entrants vers x
- On dit aussi flot réalisable

Enseignant : Dr. H. BENKAOUHA Faculté d'Informatqiue - USTHB)

Arc saturé par un flot

- Soit G=(X, U, c) un réseau de transport
- Soit un arc $u \in U$
- u est dit saturé par un flot compatible f ssi : f(u)=c(u).

(Faculté d'Informatgiue - USTHB)

Flot complet

- Soit G=(X, U, c) un réseau de transport.
- *e ∈X* est l'entrée de *G*
- $s \in X$ est la sortie de G
- Soit *f* un flot compatible dans *G*.
- f est dit $\underline{\text{complet}}$ ssi :
- Tout chemin de *e* vers *s* passe par un arc saturé.

(Faculté d'Informatque - USTHB)

Coupe

- Soit *G*=(*X*, *U*, *c*) un réseau de transport.
- e et $s \in X$ respectivement : entrée et sortie de G.
- Un flot compatible f.
- Une coupe est un ensemble d'arcs C
 - Déconnectant e de s.
 - \Rightarrow Aucun chemin de *e* vers *s*.

Enseignant : Dr. H. BENKAOUHA (Faculté d'Informatque - USTHB)

Flot maximal (Définition 1.)

- Soit *G*=(*X*, *U*, *c*) un réseau de transport.
- e et $s \in X$ respectivement : entrée et sortie de G.
- Un flot compatible *f*.
- f est dit maximal dans G si et seulement si
- $\sum_{x \in X} f(e, x) = \sum_{x \in X} f(x, s)$ est de valeur maximale.

Enseignant : Dr. H. BENKAOUHA (Faculté d'Informatque - USTHB)

Flot maximal (Définition 2.)

- Soit *G*=(*X*, *U*, *c*) un réseau de transport.
- e et $s \in X$ respectivement : entrée et sortie de G.
- Un flot compatible *f*.
- f est dit maximal dans G si et seulement si
- Il existe une coupe *C* dont tous les arcs sont saturés appelée **coupe minimale**.
- Remarque : Un flot maximal est complet

(Faculté d'Informatque - USTHB

Graphe résiduel

- Soit G=(X, U, c) un réseau de transport.
- Un flot compatible f.
- On peut construire un réseau résiduel
 G_f=(X, U_f, c_f) comme suit :
 - Pour tout arc u=(x, y) de capacité c(u) et flux f(u) dans G, on a dans G_f :
 - Un arc (x, y) de poids c(u)-f(u) ssi c(u)-f(u)>0
 - Un arc (y, x) de poids f(u) ssi f(u)>0

Enseignant : Dr. H. BENKAOUHA

Graphe résiduel : Algorithme $\begin{array}{c} \mathbb{U}_{r} \leftarrow \varnothing \; ; \\ \text{Pour tout arc } \mathbf{u} = (\mathbf{x}, \mathbf{y}) \in \mathbb{U} \\ \text{Faire} \\ \text{Si } (\mathbf{f}(\mathbf{u}) \neq \mathbf{0}) \\ \text{Alors} \qquad \mathbb{U}_{r} \leftarrow \mathbb{U}_{r} \cup \{(\mathbf{y}, \mathbf{x})\} \; ; \\ \mathbf{c}_{r}(\mathbf{y}, \mathbf{x}) \leftarrow \mathbf{f}(\mathbf{u}) \; ; \\ \text{fSi} \\ \text{Si } (\mathbf{c}(\mathbf{u}) - \mathbf{f}(\mathbf{u}) \neq \mathbf{0}) \\ \text{Alors} \qquad \mathbb{U}_{r} \leftarrow \mathbb{U}_{r} \cup \{(\mathbf{x}, \mathbf{y})\} \; ; \\ \mathbf{c}_{r}(\mathbf{x}, \mathbf{y}) \leftarrow \mathbf{c}(\mathbf{u}) - \mathbf{f}(\mathbf{u}) \; ; \\ \text{fSi} \\ \text{Fait} \\ \\ \text{Installed d'Informatique - LISTHB} \end{array}$

Chemin d'augmentation

- *G=(X, U, c)* réseau de transport
- e et $s \in X$ respectivement : entrée et sortie de G.
- *f* un flot compatible
- $G_f = (X, U_f, c_f)$ le réseau résiduel de G associé à f.
- Tout chemin γ dans G_f de e vers s est un chemin d'augmentation de capacité $c(\gamma)$ où

$$c(\gamma) = \min_{u \in \gamma} (c_f(u))$$

aculté d'Informatqiue - USTHB)

Flot maximal (Re-Définition)

- G=(X, U, c) réseau de transport
- *e* et *s∈X* sont respectivement les entrée et sortie de *G*.
- ullet f un flot compatible
- $G_f=(X, U_f, c_f)$ le réseau résiduel de G associé à f.
- f est <u>maximal</u>, s'il n'existe <u>aucun chemin</u> d'augmentation dans le réseau graphe G_f

nseignant : Dr. H. BENKAOUHA aculté d'Informatqiue - USTHB)

Algorithme de Ford-Fulkerson

- Principe:
 - 1. Réseau de transport en entrée
 - 2. Un flot initial compatible (Sinon 0)
 - 3. Calculer le graphe résiduel
 - 4. Trouver un chemin d'augmentation γ de capacité $c(\gamma)$ si pas de chemin FIN.
 - Incrémenter les flux des arcs de G dans le même sens que γ de c(γ)
 - 6. Décrémenter les flux des arcs de G dans le même sens que γ de $c(\gamma)$ et revenir à (3).

Faculté d'Informatque - USTHB)

2.5

Algorithme de Ford-Fulkerson

```
\begin{split} G_f &\leftarrow \text{Graphe\_Residuel}\left(G,\ f\right) \\ \text{Tant Que } (\exists \gamma \text{ chemin d'augmentation dans } G_f) \\ &\quad \text{Faire} \\ &\quad \text{Pour tout } (u=(x,y)\in \gamma) \\ &\quad \text{Faire} \\ &\quad \text{Si } (u\in U) \quad \text{Alors } f(u) \leftarrow f(u)+c(\gamma) \\ &\quad \text{Sinon } f(y,x) \leftarrow f(y,x)-c(\gamma) \\ &\quad \text{fSi} \\ &\quad \text{Fait} \\ &\quad G_f \leftarrow \text{Graphe\_Residuel}\left(G,\ f\right) \\ &\quad \text{Fait} \end{split}
```

(Faculté d'Informatqiue - USTHB

Remarque (1/2)

- Si le graphe initial contient plusieurs sources $(s_1, s_2, ..., s_p)$:
- On ajoute un nouveau sommet e
- *e* sera la nouvelle unique source (entrée du réseau).
- Pour chaque ancienne source s_k , on ajoute un arc (e, s_k) de capacité $c(e, s_k) = \sum_{x \in X} c(s_k, x)$

Enseignant : Dr. H. BENKAUUH. (Faculté d'Informatqiue - USTHI 27

Remarque (2/2)

- Si le graphe initial contient plusieurs puits $(p_1, p_2, ..., p_q)$:
- On ajoute un nouveau sommet s
- *s* sera le nouveau unique puits (sortie du réseau).
- Pour chaque ancien puits p_k , on ajoute un arc (p_k, s) de capacité $c(p_k, s) = \sum_{x \in X} c(x, p_k)$

(Faculté d'Informatque - USTHE

21

Exemple Général (1/10)

• On a le réseau de transport suivant. Sur chaque arc, nous avons le flux de l'arc / capacité de l'arc

Exemple Général (2/10)

- Le flot est compatible (réalisable) :
 - Chaque flux est réalisable
 - Vérification loi de Kirchhoff à chaque sommet

Enseignant : Dr. H. BENKAOUHA (Faculté d'Informatque - USTHB)

Exemple Général (3/10) • Recherche du flot maximal: – On applique l'algorithme de Ford-Fulkerson – On démarre de ce flot compatible

