Spam Classification

Jasmine Dogu, Christos Chen, Brian Wimmer

Meet the Team

Christos Chen

Jasmine Dogu

Brian Wimmer

Table of Contents

Background

Importance of SPAM Classification in Text and Data Topology

Hypotheses

Hypotheses Formation and Goals

Modeling

SVM Model with and without SMOTE Algorithm

Value

Organizational Benefit and Future Work

Background

General Questions

- Is there a Distinct

 Separation Between the
 Topics Found in Spam and
 Ham Text Messages?
- Can we Predict whether a

 Text will be Considered

 Spam or Ham?

Data Set Information

Kaggle

"Spam Text Message Classification"

Label

Spam vs. Ham (Non-Spam)

Observations

5157 unique messages

Base Rate

13% spam 87% non-spam

Location

Singapore and UK

Columns

2 columns: category and message

Background Information

Hypotheses

- **Null Hyp:** The variation between spam and non-spam messages within the LDA Topic Model Gamma will not be statistically significant (alpha of 0.05)
- **Alt Hyp:** The variation between spam and non-spam messages within the LDA Topic Model Gamma will be statistically significant (alpha of 0.05)

**Will be utilizing a two sample t-test

- **Null Hyp:** A SVM Kernel Model will classify spam messages with at a 0.9 recall rate or less.
- **Alt Hyp:** A SVM Kernel Model will classify spam messages with a recall rate greater than 0.9.

Modeling

a) Topic Modeling

Topic Modeling

Latent Dirichlet Allocation

- Unsupervised machine learning algorithm, similar to clustering

Gamma

 Estimated proportion of words from a topic

Beta

Density of words within a topic

Topic Modeling

Key Insight

Top Beta-valued words between the topics did not reveal an obvious classification of models

Topic 1

- More Structured
- Time, places, locations

Topic 2

- More Conversational
- Slightly more slang

Two Sample T-Test

Assumptions

Independence

Randomly Sampled from Population

Data is Continuous

Normal Distribution & Equal Variance

Welch Two Sample t-test

data: gammaValsStatsTopic1\$gamma and gammaValsStatsTopic2\$gamma
t = -0.072668, df = 60, p-value = 0.9423
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.005216226 0.004850516
sample estimates:

mean of x mean of y 0.4999086 0.5000914

P-Value = 0.9423

We Fail to Reject our **Primary**Null Hypothesis

The results are insignificant at p > 0.05

Modeling

b) Classification

Feature Engineering Steps

Feature Engineering Results

- Symbol 1921
- Reply_Yes 1815
- Call 634
- Digits 634
- Link 567
- Free 330
- Won_Win 320
- Mobile_Phone 291
- Currency_Symbol 273
- Please 137
- **Eighteen 132**
- XXX 63
- FreeMsg 14

SMOTE - Synthetic Minority Oversampling Technique

Radial Support Vector Machines

M.Rubin Julis, S.Alagesan. INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020, Spam Detection In Sms Using Machine Learning Through Text Mining: p. 498-503

Support Vector Machine

ORIGINAL

SMOTE-KNN

SMOTE-SVM

Model - SVM	Recall/Sensitivity	Accuracy	Карра
Untuned Model	.9947	.9743	.8824
Tuned Model Gamma: 0.5, Cost: 4	.9950	.9815	.9172
Untuned Model	.9768	.9619	.9169
Tuned Model Gamma: 1, Cost: 4	.9840	.9712	.9371
Untuned Model	.9746	.9102	.8205
Tuned Model Gamma: 1, Cost: 4	.9832	.9140	.8281

^{**}Tuned models based on lowest error rate

Optimal Classifier - Tuned SMOTE KNN

- **Null Hyp:** A SVM Kernel Model will classify spam messages with a recall of 0.9 or less.
- **Alt Hyp:** A SVM Kernel Model will classify spam messages with a recall rate greater than 0.9.

TUNED, SMOTE-KNN Support Vector Machine

Recall value of 98.40%

We reject the secondary null hypothesis.

Value

\$624 million

In Cost Savings to Americans/year if a large cellular service provider began implementation

Cost Breakdown

Assumptions

- U.S. loss of \$10.5 billion in 2018 from cellular-related spam messages
 - Average American lost \$32.01/ year
- A message will be blocked by the cellular provider if it is believed to be spam
- Outreach 133 M American customers/year given that top 3 cellular service providers have an average of 133 M coverage/year
- Data is representative of current population

Cost Matrix

Actual

Yes Scam
Predictions Ham

Yes Scam		Ham	
\$	-	\$	-
\$	32.00	\$	=

Population Matrix

Assuming population reach of Actual

Yes Scam Ham

Yes Scam 19526753 1794630

Predictions Ham 1064128 110614489

People
SMOTE Base Rate

20,590,881 112,409,1190.15 0.85

Geographic Boundaries

Data from UK and Singapore. Text messages have variation around the world in syntax, morphology, slang, etc.

Generalizability

SMOTE Methods increases the likelihood of overfitting as it replicates the minority class events.

Time Sensitive

Spam messages, like all other scams, vary in common approaches over time.

SMOTE Documentation

Unclear documentation of how the SMOTE algorithm utilizing SVM works in R

Future Analysis

THANK YOU!

Citations

http://www.ijstr.org/final-print/feb2020/Spam-Detection-In-Sms-Using-Machine-Learning-Through-Text-Mining.pdf

https://rstudio.github.io/reticulate/articles/calling_python.html

https://escholarship.org/content/gt99x0w9w0/gt99x0w9w0 noSplash 6386a738c0e8b3d02aa47b6a4cda0b3f.pdf

https://hmjianggatech.github.io/files/BHAMProject/SentimentAnalysis.pdf

https://medium.com/analytics-vidhya/re-sampling-imbalanced-training-corpus-for-sentiment-analysis-c9dc97f9eae1

https://medium.com/analytics-vidhya/re-sampling-imbalanced-training-corpus-for-sentiment-analysis-c9dc97f9eae1

https://www.researchgate.net/publication/224600045 MASS A Malay language LVCSR corpus resource

https://towardsdatascience.com/how-to-handle-smote-data-in-imbalanced-classification-problems-cf4b86e8c6a1

https://www.securitymagazine.com/articles/90146-phone-scams-cause-americans-to-lose-105-billion-in-2018

https://www.ctia.org/news/protecting-consumers-by-stopping-text-messaging-spam

^{**}Other Sources Used and Listed in R-Markdown

Appendix A

Cost Matrix

Actual

	Yes Scam	\$	
redictions	Ham	\$	

Yes Scam		Ham	нат	
	\$	-	\$	-
	\$	32.00	0 \$	-

Population Matrix

Assuming population reach of 133,000,000 /year

			Actual		
	Yes Scam		Ham		
	Yes Scam	19526753	1794630		
Predictions	Ham	1064128	110614489		

People	20,590,881	112,409,119
SMOTE Base Rate.	0.15	0.8

SUM 20590881 112409119

Positive Pred Rates		Actual
	Yes Scam	Ham
Yes Scam	0.94832041	3 0.01596517
Predictions Ham	0.05167958	7 0.98403483

1

Confusion Matrix

	Yes Scam		Ham
es Scam		367	11
lam		20	678

SUM 387 689

COST SAVINGS

\$ 624,856,084 / year

Cost Matrix relative to Status Quo = No model*

Actual

		Yes	Scam	Ham		
	Yes Scam	\$	(32.00)	\$	-	
Predictions	Ham	\$	-	\$	-	

Confusion Matrix and Statistics

Reference

Prediction 0 1
0 367 11

1 20 678

Accuracy: 0.9712 95% CI: (0.9594, 0.9803)

No Information Rate : 0.6403 P-Value [Acc > NIR] : <2e-16

Kappa : 0.9371

Mcnemar's Test P-Value : 0.1508

Sensitivity : 0.9840 Specificity : 0.9483 Pos Pred Value : 0.9713 Neg Pred Value : 0.9709 Prevalence : 0.6403 Detection Rate : 0.6301

Balanced Accuracy : 0.9662

'Positive' Class : 1

29