Matrix Multiplication Parallel Implementation (A Simple Parallel Algorithm)

Divide A and B among 4 processes(P0, P1, P2, P3):

Total number of steps: sqrt(p)=sqrt(4)=2

Step 1: Find A1 from A by following process:

Find B1 from B by following process:

Up Shift

B1=

3 2	5 7	3 2	2 5	
	_	_	-	
7	5	7	6	
4	5 3	7 6	6 3	

P0 Process:

2 3 * 3 5 = 12 31 9 8 2 7 43 101

P1 Process:

4 5 * 3 2 = 22 33 7 6 2 5 33 44

P2 Process:

P3 Process:

5 4 * 7 6 = 59 42 8 7 6 3 98 69 **C1**=

12 31 22 33

43 101 33 44

26 19 59 42

37 27 98 69

Step 2:

Find A2 from A1 by following process:

A1=

 2 9	3 8	4 7	5 6	← Left Shift
2	3	5	4	
3	3 4	8	7	← Left Shift

A2=

Find B2 from B1 by following process: B1=

B2=

7 4	5 3	7 6	6 3
3	5	3	2
2	7	3 2	5

P0 Process:

P1 Process:

P2 Process:

 $5 \quad 4 \quad * \quad 3 \quad 5 \quad = \quad 23 \quad 53 \\ 8 \quad 7 \quad 2 \quad 7 \quad 38 \quad 89$

P3 Process:

C2=

 48
 35
 32
 21

 73
 53
 111
 78

23 53 12 19

38 89 17 26

Final Result

C = C1 + C2

60 66 54 54 = 31 22 33 + 35 32 21 **12** 48 116 154 144 122 **101** 33 44 **53 43 73** 111 78 49 72 71 61 **19 59 42 53 12 19 26 23 75 116 115 95 37 27 98 69 38 89 17 26**