INTRO TO DATA SCIENCE BAYESIAN A/B TESTING

I. REVIEW BAYES THEOREM:

MONTY HALL PROBLEM

II. A/B HEADLINE TESTING: PROBLEM STATEMENT

FREQUENTIST APPROACH

BAYESIAN APPROACH

CERTAINTY OF CONCLUSION

HEADLINE TESTING

I. REVIEW BAYES THEOREM

BAYES THEOREM: MONTY HALL PROBLEM

The Monty Hall Problem:

BAYES THEOREM: MONTY HALL PROBLEM

The Monty Hall Problem:

- Suppose you're on the game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats.
- You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat.
- He then says to you, "Do you want to pick door No. 2?"

Is it to your advantage to switch your choice?

BAYES THEOREM

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

HEADLINE TESTING

I. PROBLEM STATEMENT

WHAT IS A/B HEADLINE TESTING?

JOAN D. EDITOR

WINNER

WHAT IS A/B HEADLINE TESTING?

Headline A: "What Harbaugh regrets about Super Bowl" (3.06% CTR)

Headline B: "John Harbaugh explains Super Bowl tirade" (4.93% CTR)

Headlines may be on the front page for a short time

- Headlines may be on the front page for a short time
- The number of readers varies greatly per front page

- Headlines may be on the front page for a short time
- The number of readers varies greatly per front page
- The CTR of a headline depends on frontpage position

- Headlines may be on the front page for a short time
- The number of readers varies greatly per front page
- The CTR of a headline depends on frontpage position
- Front pages are dynamic, so headlines can change position

HEADLINE TESTING

II. FREQUENTIST APPROACH

FREQUENTIST APPROACH

- The parameter-of-interest is CTR
- Null hypothesis testing: assume that there are true-butunknown CTRs for A and B
 - the goal is to figure out if they are different or not

STATISTICAL SIGNIFICANCE

- Probability that an effect is not due to just chance alone
- Must define in advance the probability of a sampling error
- Sample size is an important component

STATISTICAL SIGNIFICANCE

- Probability that an effect is not due to just chance alone
- Must define in advance the probability of a sampling error
- Sample size is an important component

AN EXAMPLE

	Scenario 1	Scenario 2	Scenario 3	Scenario 4
After 200 observations	Insignificant	Insignificant	Significant	Significant
After 500 observations	Insignificant	Significant	Insignificant	Significant
End of experiment	Insignificant	Significant	Insignificant	Significant

AN EXAMPLE

	Scenario 1	Scenario 2	Scenario 3	Scenario 4
After 200 observations	Insignificant	Insignificant	Significant	Significant
After 500 observations	Insignificant	Significant	test stopped	test stopped
End of experiment	Insignificant	Significant	Significant!	Significant

HEADLINE TESTING

III. BAYESIAN APPROACH

FREQUENTIST VS. BAYESIAN

Recall:

- *Frequentist*: probability measures a proportion of outcomes
- Bayesian: probability measures a degree of belief

BAYESIAN APPROACH

- CTR_A and CTR_B are no longer fixed numbers, but probability distributions.
- We model CTR_A and CTR_B with the Beta Distribution
- Now the question becomes:
 What is the probability that CTR_A is larger than CTR_B given the data from the experiment?

$$P(CTR_A > CTR_B \mid data)$$

BAYES THEOREM

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

RECALL...

- Prior a distribution that encodes your prior belief about the parameter-of-interest
- Likelihood a function that encodes how likely your data is given a range of possible parameters
- Posterior a distribution of the parameter-of-interest given your data, combining the prior and likelihood

BAYES THEOREM: PROPORTIONAL

$$P(A|B) \propto P(B|A)P(A)$$

CONJUGATE PRIOR

- Prior a distribution that encodes your prior belief about the parameter-of-interest
- <u>Conjugate Prior</u> for certain choices of the *prior*, the *posterior*has the same algebraic form as the *prior* (generally with different
 parameter values)

BETA DISTRIBUTION

- Represents a distribution of probabilities-
 - That is, it represents all the possible values of a probability when we don't know what that probability is
- The domain of the Beta distribution is (0, 1), just like a probability
- Parameterization: Beta(alpha+hits, beta+misses)
 - note: mean = alpha / (alpha + beta)

BETA DISTRIBUTION

β (alpha, beta)

- Beta Distribution on Wikipedia
- Beta Distribution Notebook

β (alpha, beta)

- alpha = views * CTR,
- these are the *hits*beta = views * (1 CTR),
- these are the *misses*

BETA DISTRIBUTION

β (alpha, beta)

- Before we observe any clicks we assume all headlines are equally likely to be clicked on
- That is, we start with a uniform prior distribution
- A uniform distribution is the same as a β(1, 1) distribution

BETA DISTRIBUTION

β (alpha, beta)

Prior: $CTR_{A} = \beta(1, 1),$ $CTR_{B} = \beta(1, 1)$

BETA DISTRIBUTION: UNIFORM PRIOR

BETA DISTRIBUTION: COMPARING TWO

ANSCOMBE BOUNDARY

$$|y| > \phi^{-1} \left(\frac{n}{(k+2n)} \right) \sqrt{n}$$

y = absolute difference between clicks for both headlinesn = number of page views so fark = number of future readers (i.e. page views) who will be

exposed to test, given a maximum time

ANSCOMBE BOUNDARY

ANSCOMBE BOUNDARY

HEADLINE TESTING

IV. CERTAINTY OF CONCLUSION

METHOD TO CHECK CERTAINTY OF CONCLUSION

```
def percent_better(a_views, b_views, a_ctr, b_ctr, size):
    ra = beta.rvs(a_views*a_ctr, a_views*(1-a_ctr), size=(size))
    rb = beta.rvs(b_views*b_ctr, b_views*(1-b_ctr), size=(size))
    return sum(ra >= rb) / (1.0*size)
```

```
[12]: fig = figure(figsize=(10,5))
demonstrate(100,200, 0.04969, 0.13287, size=1000000)
```


BETA DISTRIBUTION

