Functional Geometry Description of Escher's Fish

Milton Mazzarri

Feb 1, 2017

Houston Elixir Meetup

Introduction

Square Limit

Figure 1: M.C. Escher's Square Limit

Source: https://www.wikiart.org/en/m-c-escher/square-limit

Functional Geometry

Functional Geometry is a paper by Peter Henderson[1, 2], which deconstructs the M.C. Escher woodcut "Square Limit".

A picture is an example of a complex object that can be described in terms of its parts. Yet a picture needs to be rendered on a printer or a screen by a device that expects to be given a sequence of commands. Programming that sequence of commands directly is much harder than having an application generate the commands automatically from the simpler, denotational description.

Basic Operations

Note

The image it is located within a frame, but we do not consider the frame to be part of the picture.

Figure 2: The value f denotes the picture of the letter F

Basic operations on pictures

- rot(picture) :: picture
- flip(picture) :: picture
- rot45(picture) :: picture
- above(picture, picture) :: picture
- beside(picture, picture) :: picture
- over(picture, picture) :: picture

Rotation

Rotates a picture 90° anticlockwise.

Figure 3: rot(f)

Flip

Flip a picture through its vertical centre axis.

Figure 4: flip(f)

Rotation and Flip

Figure 5: rot(flip(f))

Rotation 45°

Rotates a picture about its top left corner, through 45° anticlockwise.

Figure 6: rot45(f)

Above

Figure 7: above(f, f)

Beside

Figure 8: beside(f, f)

above/beside combination

Figure 9: above(beside(f, f) f)

Superposition

Figure 10: over(f, flip(f))

Laws

Laws (Unit Test)

$$rot(rot(rot(rot(p)))) = p$$
 $rot(above(p, q)) = beside(rot(p), rot(q))$
 $rot(beside(p, q)) = above(rot(q), rot(p))$
 $flip(beside(p, q)) = beside(flip(q), flip(p))$

Square Limit

Basic patterns: p, q

Figure 11: p

Figure 12: q

Basic patterns: r, s

Figure 13: r

Figure 14: s

Figure 15: t = quartet(p, q, r, s)

Figure 16: u = cycle(rot(q))

Figure 17: side1 = quartet(blank, blank, rot(t), t)

Figure 18: side2 = quartet(side1, side1, rot(t), t)

corner1

Figure 19: corner1 = quartet(blank, blank, blank, u)

corner2

Figure 20: corner2 = quartet(corner1, side1, rot(side1), u)

pseudocorner

Figure 21: pseudocorner = quartet(corner2, side2, rot(side2), rot(t))

pseudolimit

Figure 22: pseudolimit = cycle(pseudocorner)

Figure 23: corner

squarelimit

Figure 24: squarelimit

Implementation

Vectors

Figure 25: Basic vectors

Implementation

$$\mathit{over}(p,q)(a,b,c) = \mathit{p}(a,b,c) \cup \mathit{q}(a,b,c)$$

$$blank(a, b, c) = \{\}$$

beside
$$(p, q)(a, b, c) = p(a, \frac{b}{2}, c) \cup q(a + \frac{b}{2}, \frac{b}{2}, c)$$

$$above(p,q)(a,b,c) = p(a,b,\frac{c}{2}) \cup q(a+\frac{c}{2},b,\frac{c}{2})$$

Implementation

$$rot(p)(a,b,c) = p(a+b,c,-b)$$

$$flip(p)(a,b,c) = p(a+b,-b,c)$$

$$rot45(p)(a, b, c) = p(a + \frac{b+c}{2}, \frac{b+c}{2}, \frac{c-b}{2})$$

Future

- Add support for SVG Path.
- Escher's "Circuit Limit III" picture.

Circuit Limit III

Figure 26: Circuit Limit III

Source: http://mathstat.slu.edu/escher/upload/9/90/Circle-Limit-III.jpg

://github.	com/milm	azz/func
, , 6	· · · · · · · · · · · · · · · · · · ·	

_geo

Thanks!

https

References I

P. Henderson.

Functional geometry, 1982.

P. Henderson.

Functional geometry, 2002.