IX. You used constant $\ell=\mu r^2\dot{\theta}$ to eliminate $\dot{\theta}$ in constant E=T+U= $\frac{1}{2}\mu\left(\dot{r}^2+r^2\dot{\theta}^2\right)+U(r)$ & got E= $\frac{1}{2}\mu\,\dot{r}^2+\frac{\ell^2}{2\mu r^2}+U(r)$. a) Must allowed r values have $E\geq\frac{\ell^2}{2\mu r^2}+U(r)$? Yes or no? We set $\frac{\ell^2}{2\mu r^2}+U(r)\equiv U_{eff}(r)$ and plot for nonzero ℓ -- qualitative shape is general.

Consider $U(r)=rac{-k}{r}$ (shown as dashed curve below its U_{eff} in plot). Know $r=|\vec{r}_1-\vec{r}_2|$ b) Should $U_{eff}=rac{\ell^2}{2\mu r^2}-rac{k}{r}$ approach the dashed $\mbox{U=}-rac{k}{r}$ curve as $r\to\infty$? Y / N

Term from centrifugal effects is called $U_{cf}=\frac{\ell^2}{2ur^2}$ in picture; it goes to ∞ as $r\to 0$.

c) Does
$$U_{eff}=rac{\ell^2}{2\mu r^2}-rac{k}{r}$$
 go to $+\infty$ as $r o 0$?

d) Can separation
between m1 and m2
go to zero in ℓ ≠ 0
gravity case? Y / N

- e) What is the $r \to \infty$ limit of $U_{eff} = \frac{\ell^2}{2\mu r^2} \frac{k}{r}$?
- f) What is minimum E for separation to reach ∞ ?
- g) If E= value of U_{eff} where $\frac{dU_{eff}}{dr}=0$ what can r do? (r value with $\frac{dU_{eff}}{dr}=0$ is c below.)
- h) For "one possible negative E value" indicated on the energy axis, make marks on the plot indicating the approximate min and max values of r (separation) allowed for that E value.

Exact solution has
$$c=\frac{\ell^2}{\mu k}$$
 $r=\frac{c}{1+\varepsilon \cos\theta}$ $\varepsilon=\sqrt{1+\frac{2E\ell^2}{\mu k^2}}$ i) We plugged into $\frac{2c}{1-\varepsilon^2}$ and got $\frac{-k}{E}$. Relate $\frac{2c}{1-\varepsilon^2}$ to $r_{min}+r_{max}$.

j) You observe round asteroids of mass M and 2M in elliptic orbits around their COM origin and find their min separation=D and max separation=2D. How much energy would have to be added **in the COM frame** (bang!) to allow them to go infinitely far apart eventually?

k) Homework 9 found $m_1\vec{r}_1=-m_2\vec{r}_2$ meant $\vec{r}\left(\frac{-m_1}{m_1+m_2}\right)=\vec{r}_2$ $\vec{r}\left(\frac{m_2}{m_2+m_1}\right)=\vec{r}_1$ How long is the long axis of the elliptic orbit that JUST m1=M travels around the COM? [Below is picture for circular orbit case. Bottom ellipse is fake μ orbit.]

I) If m1 << m2 approximate $\vec{r}_1 = \vec{r} \left(\frac{m_2}{m_2 + m_1} \right)$

m) If m1 << m2 roughly where is the origin (i.e. the COM)?

n) If m1 << m2 is the m1 orbit like the orbit of the fake particle of mass $\mu=\frac{m_1m_2}{m_2+m_1}$ at \vec{r} ? Y or N