4. Probabilités conditionnelles

Définition 1

Soit A un événement de probabilité non nulle.

On appelle probabilité conditionnelle relative à A, la probabilité définie par :

Pour tout
$$B \in \Omega$$
, $P_A(B) = \frac{P(A \cap B)}{P(A)}$.

 $P_A(B)$ se note aussi P(B/A).

On lit : « la probabilité de B sachant A » ou « la probabilité de B si A », c'est-à-dire : la probabilité que B se réalise sachant que A est réalisé.

À savoir

• Formule pratique : $P(A \cap B) = P(A) \times P_A(B) = P(B) \times P_B(A)$.

Exercice résolu

Les individus d'une population peuvent être atteints de deux maladies a et b. On choisit un individu au hasard dans la population.

On note A l'événement « L'individu est atteint de la maladie a » et B l'événement « L'individu est atteint de la maladie b ».

On donne P(A) = 0.02; P(B) = 0.03 et $P(A \cap B) = 0.015$.

Calculer $P_R(A)$ et $P_A(B)$.

$$P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{0.015}{0.03} = 0.5$$

$$P_A(B) = \frac{P(A \cap B)}{P(A)} = \frac{0,015}{0,02} = 0,75$$

Comment construire et utiliser un arbre pour résoudre un problème faisant intervenir des probabilités conditionnelles ?

L'objectif est de traduire l'énoncé en terme de probabilités, puis de construire un arbre figurant les cas possibles.

Exemple

Dans un atelier, deux machines M_1 et M_2 , fonctionnant de manière indépendante, produisent des pièces de même type. La machine M_1 fournit les 80 % de la production, la machine M_2 en fournit 20%.

Parmi ces pièces, certaines sont défectueuses : c'est le cas pour 5 % des pièces produites par M_1 et pour 4 % des pièces produites par M_2 .

On prélève au hasard une pièce dans la production de l'atelier.

- 1. Démontrer que la probabilité que cette pièce soit défectueuse est 0,048.
- 2. Sachant que cette pièce est défectueuse, déterminer la probabilité qu'elle ait été fabriquée par la machine M, .
- 1. Traduisons l'énoncé en terme de probabilités. Notons :
- M, l'événement : « La pièce a été produite par la machine M, » ;
- − M₂ l'événement : « La pièce a été produite par la machine M₂ » ;
- D l'événement : « La pièce est défectueuse ».

La machine M, fournit les 80 % de la production se traduit par : $p(M_1) = 0.8$.

De même on a : $p(M_2) = 0.2$.

5 % des pièces produites par M, sont défectueuses se traduit par :

la probabilité de D sachant M, est 0,05, soit $p_{M_1}(D) = 0,05$.

De même on a : $p_{M_2}(D) = 0.04$,

On obtient l'arbre suivant :

$$0.05 \qquad D \longrightarrow p(D \cap M_1) = 0.8 \times 0.05$$

$$0.8 \qquad M_1 \qquad 0.95 \qquad \overline{D} \qquad \cdots$$

$$0.04 \qquad D \longrightarrow p(D \cap M_2) = 0.2 \times 0.04$$

$$0.96 \qquad \overline{D} \qquad \cdots$$

Règle 1 : la somme des probabilités sur les branches partant d'un même nœud est égal à 1. Règle 2 : sur les branches secondaires on indique la probabilité conditionnelle de l'événement qui se trouve à son extrémité sachant que le trajet menant à son origine a été réalisé.

Règle 3 : la probabilité d'un trajet est le produit des probabilités le constituant.

$$d'o\dot{u}\; p(D) = p(D\cap M_1) + p(D\cap M_2) = p_{M_2}(D) \times p(M_1) + p_{M_2}(D) \times p(M_2).$$

$$p(D) = 0.8 \times 0.05 + 0.2 \times 0.04 = 0.04 + 0.008 = 0.048.$$

2.
$$p_D(M_1) = \frac{p(D \cap M_1)}{p(D)} = \frac{0.04}{0.048} = 0.833.$$

Probabilités conditionnelles

8 \bigcirc À l'atelier de coupe, deux machines M_1 et M_2 découpent les pièces, puis celles-ci sont stockées sans distinction de provenance.

La machine M_1 découpe 60 % des pièces et 5 % de ces pièces sont défectueuses.

La machine M_2 découpe 40 % des pièces et 2,5 % de ces pièces sont défectueuses.

On notera E_1 l'événement « La pièce a été découpée par la machine M_1 ».

On notera E_2 l'événement « La pièce a été découpée par la machine M_2 ».

On notera D l'événement « La pièce est défectueuse ».

1. On prélève au hasard une pièce de la production totale.

Calculer les probabilités $p(E_1 \cap D), p(E_2 \cap D)$ et p(D).

2. Déterminer les probabilités conditionnelles $p_D(E_1)$ et $p_D(E_2)$.

9 Une usine fabrique deux types de pièces, notées *a* et *b*, pour du matériel électrique.

Les pièces sont réalisées dans deux matériaux différents, métal-et céramique.

Dans ce qui suit, sauf indication contraire, tous les résultats approchés sont à arrondir à 10^{-2} .

On admet que, dans un stock de 10 000 pièces :

- $-\,40~\%$ des pièces fabriquées sont en céramique ;
- -30 % des pièces en céramique sont de type a;
- dans les pièces de type b, il y a autant de pièces métalliques que de pièces en céramique.
- **1.** Compléter, après l'avoir reproduit, le tableau ci-dessous à l'aide des informations précédentes.

	Nombre de pièces de type <i>a</i>	Nombre de pièces de type <i>b</i>	Total
Nombre de pièces métalliques			
Nombre de pièces en céramique			
Total			10 000

2. On prélève une pièce au hasard dans le stock de 10 000 pièces.

Toutes les pièces ont la même probabilité d'être choisies. On désigne par :

- A l'événement « La pièce est de type a » ;
- B l'événement « La pièce est de type b » ;
- *M* l'événement « La pièce est en métal » ;
- C l'événement « La pièce est en céramique ».

- **a)** Calculer $p(A \cap C)$.
- **b)** Calculer la probabilité que la pièce soit de type *a* ou en céramique.
- **c)** On note $p_A(C) = p(C/A)$ la probabilité de l'événement C sachant que l'événement A est réalisé. Calculer $p_A(C)$.
- d) Calculer la probabilité qu'une pièce soit en métal sachant qu'elle est de type *b*.

10 R Deux machines *A* et *B* fabriquent des disques. La machine *A* produit 1 500 disques par jour; la machine *B* produit 3 000 disques par jour. La probabilité pour qu'un disque ait un défaut est de 0,02 sachant qu'il est produit par la machine *A* et de 0,035 sachant qu'il est produit par la machine *B*.

On tire au hasard un disque dans la production du jour.

- **1.** Calculer la probabilité des événements suivants : **a)** *A* : « Le disque est produit par la machine *A* » ;
- **b)** B: « Le disque est produit par machine B »; **c)** D: « Le disque a un défaut ».
- 2. Le disque prélevé a un défaut.

Quelle est la probabilité pour qu'il ait été produit par machine *A* ? par la machine *B* ?

Sur un VTT, on considère que les probabilités de crevaison des pneus avant et arrière pour un parcours donné sont respectivement 3×10^{-3} et 7×10^{-3} .

On suppose de plus que la probabilité de crevaison du pneu arrière, sachant que le pneu avant est crevé, est de 0,5.

- 1. Calculer la probabilité :
- a) d'avoir les deux pneus crevés ;
- b) d'avoir au plus un pneu crevé.
- 2. Calculer la probabilité :
- a) d'avoir un seul pneu crevé;
- b) de ne pas avoir de crevaison.

12 R Une entreprise vend des calculatrices d'une certaine marque.

Le service après-vente s'est aperçu qu'elles pouvaient présenter deux types de défaut, l'un lié au clavier et l'autre lié à l'affichage. Des études statistiques ont permis à l'entreprise d'utiliser la modélisation suivante.

- La probabilité pour une calculatrice tirée au hasard de présenter un défaut de clavier est égale à 0.04
- En présence du défaut de clavier, la probabilité que la calculatrice soit en panne d'affichage est de 0,03.
- En l'absence de défaut de clavier, la probabilité de ne pas présenter de défaut d'affichage est de 0,94.

On note C l'événement « La calculatrice présente un défaut de clavier » et A l'événement « La calculatrice présente un défaut d'affichage ».

On notera p(E) la probabilité de l'événement E. L'événement contraire de E sera noté \overline{E} .

 $p_{\scriptscriptstyle F}(E)$ désignera la probabilité conditionnelle de l'événement E sachant que l'événement F est réalisé.

Dans cet exercice, les probabilités seront écrites sous forme de nombres décimaux arrondis au millième.

- **1. a)** Préciser <u>à</u> l'aide de l'énoncé les probabilités suivantes $p_{\overline{C}}(\overline{A})$, $p_{C}(A)$ et p(C).
- b) Construire un arbre pondéré décrivant cette situation
- **2.** On choisit une calculatrice de cette marque au hasard.
- **a)** Calculer la probabilité pour que la calculatrice présente les deux défauts.
- **b)** Calculer la probabilité pour que la calculatrice présente le défaut d'affichage mais pas le défaut de clavier.
- **c)** En déduire p(A).
- d) Montrer que la probabilité de l'événement « La calculatrice ne présente aucun défaut » arrondie au millième est égale à 0,902.

13 Une société de produits pharmaceutiques fabrique en très grande quantité un type de comprimés.

Un comprimé est conforme si sa masse exprimée en grammes appartient à l'intervalle [1,2;1,3]. La probabilité qu'un comprimé soit conforme est 0,98.

On note:

− A l'événement : « Un comprimé est conforme » ;

− B l'événement : « Un comprimé est refusé ».

On contrôle tous les comprimés. Le mécanisme de contrôle est tel que :

- un comprimé conforme est accepté avec une probabilité de 0,98 ;
- un comprimé qui n'est pas conforme est refusé avec une probabilité de 0,99.

On connaît donc P(A) = 0.98, $P_A(\overline{B}) = 0.98$ et $P_{\overline{A}}(B) = 0.99$.

- **1.** Déterminer $P_A(B)$, puis $P(B \cap A)$ et $P(B \cap \overline{A})$.
- 2. Calculer:
- a) la probabilité qu'un comprimé soit refusé;
- **b)** la probabilité qu'un comprimé soit conforme, sachant qu'il est refusé.
- 14 Au rayon « image et son » d'un grand magasin, un téléviseur et un lecteur de DVD sont en promotion pendant une semaine.

Une personne se présente :

- la probabilité qu'elle achète le téléviseur est $\frac{3}{5}$;
- la probabilité qu'elle achète le lecteur de DVD si elle achète le téléviseur est $\frac{7}{10}$;
- la probabilité qu'elle achète le lecteur de DVD si elle n'achète pas le téléviseur est $\frac{1}{10}$.

On désigne par *T* l'événement : « La personne achète le téléviseur » et par *L* l'événement : « La personne achète le lecteur de DVD ».

On notera \overline{T} et \overline{L} les événements contraires respectifs de T et de L.

- **1.** Traduire les données de l'énoncé à l'aide d'un arbre pondéré.
- 2. Déterminer les probabilités des événements suivants (les résultats seront donnés sous forme de fractions).
- a) « La personne achète les deux appareils ».
- b) « La personne achète le lecteur de DVD ».
- c) « La personne n'achète aucun des deux appareils ».

- 3. Montrer que, si la personne achète le lecteur de DVD, la probabilité qu'elle achète aussi le téléviseur est $\frac{21}{23}$.
- 15 Une entreprise a fabriqué en un mois 900 chaudières à cheminée et 600 chaudières à ventouse. Dans ce lot, 1 % des chaudières à cheminée sont défectueuses et 5 % des chaudières à ventouse sont défectueuses.

On prélève au hasard une chaudière dans la production de ce mois. Toutes les chaudières ont la même probabilité d'être prélevées.

On considère les événements suivants :

A: « la chaudière est à cheminée »;

B: « la chaudière est à ventouse » ;

D: « la chaudière présente un défaut ».

- **1.** Déterminer P(A) et P(B).
- **2.** Calculer $P(D \cap A)$ et $P(D \cap B)$.
- **3.** En remarquant que $D=(D\cap A)\cup (D\cap B)$ et que les événements $D\cap A$ et $D\cap B$ sont incompatibles, calculer P(D) et $P(\overline{D})$.
- 16 On arrondira les probabilités au millième. Dans un lycée, le foyer des lycéens a dénombré les élèves utilisant l'internet mobile.

La répartition de ces élèves est donnée dans le tableau suivant.

	Filles	Garçons	Total
Utilisent l'Internet mobile	148	171	319
N'utilisent pas l'Internet mobile	81	50	131
Total	229	221	450

On prélève au hasard une fiche dans le fichier des élèves du lycée. On admettra que toutes les fiches ont la même probabilité d'être prélevées. On note:

- − *G* l'évènement : « la fiche prélevée est celle d'un garçon » ;
- *M* l'évènement : « la fiche prélevée est celle d'un élève utilisant l'Internet mobile ».
- **1.** Calculer la probabilité de prélever la fiche d'un garçon.
- 2. Montrer que la probabilité de prélever la fiche d'un garçon utilisant l'Internet mobile est égale à 0.38.
- **3.** Calculer la probabilité de prélever la fiche d'une fille, sachant que l'élève correspondant n'utilise pas l'Internet mobile.
- **4.** Calculer la probabilité $P_M(G)$ et interpréter le résultat.