Uncertainty-Aware Boosted Ensembling in Multi-Modal Settings

Utkarsh Sarawgi* Rishab Khincha*, Wazeer Zulfikar*, Satrajit Ghosh, Pattie Maes

Massachusetts Institute of Technology, BITS Pilani Goa {utkarshs, rkhincha, wazeer, satra, pattie} @mit.edu

International Joint Conference on Neural Network (IJCNN 2021)

Summary of Contributions

- We propose and formulate an 'uncertainty-aware ensemble'
- We evaluate our method on multi-modal speech and text datasets on healthcare tasks using different ML models and uncertainty estimation techniques
- We perform further analyses to highlight the significance of introducing uncertainty-awareness into the ensemble

ML Models when training

ML Models in deployment

Introduction

- Reliability crucial in safety-critical applications
- Confidently incorrect predictions
- Poor performance during deployment due to distribution shifts

Uncertainty Estimation

- Predict a distribution rather than a single value
- Aleotoric Uncertainty in the data
- Epistemic Uncertainty in the model
- Distribution shifts quite common

Note: Uncertainty = Aleotoric uncertainty (for this presentation)

Ensembling Techniques

- Combining decisions from multiple models
- Bagging: Parallely training with different training sets
- Boosting: Sequentially training by iteratively re-weighting training examples

Multi-modal Ensembling - Setup

- Given multi-modal data x¹, x², x³ ... x^k with k modalities
- Given base learners h¹, h², h³ ... h^k for each modality
- Final prediction y which is a function of y_{h1}, y_{h2}, y_{h3} ... y_{hk}

Vanilla Ensembling

Boosting done using loss values!

Uncertainty-Aware Ensembles

Boosting done using uncertainty estimates!

UA Ensemble Predictions

- UA Ensemble: y = average(y_{h1}, y_{h2}, y_{h3} ... y_{hk})
- UA Ensemble weighted: Weigh each of the prediction with the inverse of the predictive uncertainty for the particular modality

$$\hat{y}(\mathbf{x}_n) = \frac{\sum_{j=1}^k \frac{1}{\sigma_{hj}(\mathbf{x}_n)} \hat{y}_{hj}(\mathbf{x}_n)}{\sum_{j=1}^k \frac{1}{\sigma_{hj}(\mathbf{x}_n)}}$$

UA Ensembles - Note

- Sequentially boost across base learners, each of the corresponding to a different input modality
- Base learners need not be weak learners!

DementiaBank Pitt

- Speech recordings and transcripts
- 242 samples from 99 control healthy subjects and 255 samples from 168 AD subjects
- MMSE scores, ranging from 0 to 30

Dementia - Feature Sets

- Disfluency: Word, intervention, and different kinds of pause rates reflecting upon impediments like slurring and stuttering
- Acoustic: ComParE 2013 acoustic feature set (6,373 features) normalized and with dimensionality reduction using PCA
- Interventions: Sequence of speakers from the transcripts categorizing it as subject or the interviewer

Multimodal Inductive Transfer Learning for Detection of Alzheimer's Dementia and its Severity. Sarawgi et. al. https://arxiv.org/abs/2009.00700

Parkinson's Telemonitoring

- Biomedical voice measurements
- 5875 samples collected from 42 subjects with early stage PD
- UPDRS scores, ranging from 0 to 199.

Parkinson's - Feature Sets

- Amplitude: Shimmer, Shimmer(dB), Shimmer:APQ3,
 Shimmer:APQ5, Shimmer:APQ11, Shimmer:DDA, NHR,
 HNR, RPDE, DFA
- Frequency: Jitter(%), Jitter(Abs), Jitter:RAP, Jitter:PPQ5, Jitter:DDP, PPE

DementiaBank - Results

TABLE I

COMPARISON OF INDIVIDUAL MODALITIES I.E. BASE LEARNERS AND
ENSEMBLE METHODS ON TEST SET RESULTS OF THE ADRESS DATASET.

Model	RMSE	
Disfluency	5.71 ± 0.39	
Interventions	6.41 ± 0.53	
Acoustic	6.66 ± 0.30	
Vanilla Ensemble	5.17 ± 0.27	
UA Ensemble	5.05 ± 0.53	
UA Ensemble (weighted)	4.96 ± 0.49	

TABLE II

COMPARISON OF UNCERTAINTY-AWARE ENSEMBLE METHODS WITH
STATE-OF-THE-ART RESULTS ON THE ADRESS TEST SET.

Model	RMSE	
Pappagari et al. [55]	5.37	
Luz et al. [50]	5.20	
Sarawgi et al. [15]	4.60	
Searle et al [56]	4 58	
Balagopalan et al. [57]	4.56	
Rohanian et al. [58]	4.54	
Sarawgi et al. [17]	4.37	
UA Ensemble	4.35	
UA Ensemble (weighted)	3.93	

Multimodal Inductive Transfer Learning for Detection of Alzheimer's Dementia and its Severity. *Sarawgi et. al.* https://arxiv.org/abs/2009.00700
Simple and scalable predictive uncertainty estimation using deep ensembles. *Lakshminarayanan et. al.* https://arxiv.org/abs/1612.01474

Massachusetts Institute of Technology

DementiaBank - Results

TABLE III

COMPARISON OF INDIVIDUAL MODALITIES I.E. BASE LEARNERS AND ENSEMBLE METHODS ON TEST SET RESULTS OF THE ADRESS DATASET.

Model	Modality	MPIW	PICP (%)		
			$\Delta = 1\sigma$	$\Delta=2\sigma$	$\Delta = 3\sigma$
Vanilla Ensemble	Disfluency	4.47 ± 0.39	61.66 ± 8.29	95.83 ± 2.63	97.50 ± 0.83
	Interventions	7.27 ± 0.58	87.50 ± 5.43	99.17 ± 1.02	100.00 ± 1.18
	Acoustic	4.50 ± 0.73	59.58 ± 12.54	94.58 ± 2.12	98.75 ± 1.02
UA Ensemble	Disfluency	6.29 ± 0.81	82.91 ± 6.37	97.91 ± 1.31	100.00 ± 0.00
	Interventions	5.46 ± 1.57	73.75 ± 14.47	93.33 ± 5.17	97.91 ± 1.86
	Acoustic	5.31 ± 1.30	75.41 ± 11.21	96.25 ± 3.06	99.16 ± 1.02
UA Ensemble (weighted)	Disfluency	6.29 ± 0.81	83.33 ± 6.58	97.91 ± 1.31	100.00 ± 0.00
	Interventions	5.46 ± 1.57	76.25 ± 13.85	92.50 ± 5.98	96.66 ± 3.11
	Acoustic	5.31 ± 1.30	75.83 ± 10.59	95.00 ± 3.86	99.16 ± 1.02

DementiaBank - Calibration

Fig. 1. Calibration curves for the ensemble techniques on the ADReSS dataset.

DementiaBank - Entropy Plots

Fig. 2. Entropy analysis, using kernel density estimation plots, of the base learners in a vanilla ensemble (left) and UA ensemble (right).

Parkinson's - Results

TABLE IV

COMPARISON OF INDIVIDUAL MODALITIES I.E. BASE LEARNERS AND ENSEMBLE METHODS ON 5-FOLD CROSS VALIDATION RESULTS OF THE PARKINSON'S TELEMONITORING DATASET.

Model	RMSE		
Amplitude	3.21 ± 0.06		
Frequency	3.32 ± 0.10		
Vanilla Ensemble	3.18 ± 0.05		
UA Ensemble	3.04 ± 0.04		
UA Ensemble (weighted)	3.05 ± 0.05		

Confidence Intervals for Random Forests: The Jackknife and the Infinitesimal Jackknife. Wager et. al. https://jmlr.org/papers/v15/wager14a.html

Parkinson's - Results

TABLE V

COMPARISON OF INDIVIDUAL MODALITIES I.E. BASE LEARNERS AND ENSEMBLE METHODS ON 5-FOLD CROSS VALIDATION RESULTS OF THE PARKINSON'S TELEMONITORING DATASET.

Model	Modality	MPIW	PICP (%)		
			$\Delta = 1\sigma$	$\Delta = 2\sigma$	$\Delta = 3\sigma$
Vanilla Ensemble	Amplitude Frequency	6.79 ± 1.28 8.69 ± 0.59	84.56 ± 1.46 74.17 ± 8.25	98.51 ± 0.58 94.28 ± 3.37	99.89 ± 0.12 98.60 ± 1.18
UA Ensemble	Amplitude Frequency	6.50 ± 1.76 6.91 ± 0.85	74.09 ± 9.15 77.90 ± 5.28	93.70 ± 4.11 95.64 ± 2.40	98.23 ± 1.47 99.33 ± 0.51
UA Ensemble (weighted)	Amplitude Frequency	6.50 ± 1.76 6.91 ± 0.85	74.24 ± 8.59 77.65 \pm 5.67	93.71 ± 4.13 95.45 ± 2.56	97.97 ± 1.66 99.18 ± 0.70

Parkinson's - Calibration Curves

Fig. 3. Calibration curves for the ensemble techniques on the Parkinson's Telemonitoring dataset.

Discussion

- Outperform state-of-the-art methods
- Reduce the overall entropy of the system
- Well calibrated predictions with high quality prediction intervals

Future Work

- Account for uncertainty as well as loss values when boosting
- Experiment with other ML models and architectures
- Experiment with other uncertainty estimation methods
- Actively learn from the uncertainty estimates at deployment time

Meet the team!

Rishab Khincha

Utkarsh Sarawgi

Wazeer Zulfikar

Satrajit Ghosh

Pattie Maes

Questions?

Code

