Design and Analysis of Algorithms

Master Method Spring 2022

National University of Computer and Emerging Sciences, Islamabad

Methods to solve recurrence

- Iteration method
- Recursion tree method
- Master Theorem

The master method

The master method applies to recurrences of the form

$$T(n) = a T(n/b) + f(n) ,$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

Compare f(n) with $n^{\log_b a}$:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log ba}$

(by an n^{ε} factor).

Solution: $T(n) = \Theta(n^{\log_b a})$.

Three common cases (cont.)

Compare f(n) with $n^{\log_b a}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ϵ} factor),

and f(n) satisfies the regularity condition that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

- 2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$.
 - f(n) and $n^{\log_{ba}}$ grow at similar rates.

Solution:
$$T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$$
.

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log ba}$ (by an n^{ϵ} factor).

Solution:
$$T(n) = \Theta(n^{\log_b a})$$
.

- 2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$.
 - f(n) and $n^{\log_b a}$ grow at similar rates.

Solution:
$$T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$$
.

Three common cases (cont.)

Compare f(n) with $n^{\log ba}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log ba}$ (by an n^{ϵ} factor),

and f(n) satisfies the regularity condition that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

Ex1.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2$

$$\Rightarrow n^{\log_b a} = n^2;$$

$$f(n) = n$$
.

Compare $n^{\log_{b}a}$ and f(n)

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log ba}$ (by an n^{ϵ} factor).

```
Solution: T(n) = \Theta(n^{\log_b a}).
```


Ex1.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log ba} = n^2;$
 $f(n) = n.$

• Case 1: f(n) grows polynomially slower than $n^{\log b^a}$ (by an n^{ϵ} factor).

$$f(n) = O(n^{2-\varepsilon})$$
 for $\varepsilon = 1$.

$$\therefore T(n) = \Theta(n^2)$$

EX2.

$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2$

$$\Rightarrow n^{\log_b a} = n^2;$$

$$f(n) = n^2.$$

$$f(n) = \Theta(n^{\log_b a} \lg^k n)$$

Compare $n^{\log_{b}a}$ and f(n)

- 2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$.
 - f(n) and $n^{\log_b a}$ grow at similar rates.

Solution:
$$T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$$
.

EX2.

$$T(n) = 4T(n/2) + n^{2}$$

 $a = 4, b = 2 \Rightarrow n^{\log ba} = n^{2};$
 $f(n) = n^{2}.$
CASE 2:

$$f(n) = \Theta(n^2 \lg^0 n)$$
, that is, $k = 0$.

$$\therefore T(n) = \Theta(n^2 \lg n)$$

Ex3.

$$T(n) = 4T(n/2) + n^3$$

$$a = 4, b = 2$$

$$\Rightarrow n^{\log b^a} = n^2;$$

$$f(n) = n^3.$$

Compare $n^{\log_b a}$ and f(n)

Three common cases (cont.)

Compare f(n) with $n^{\log_b a}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log ba}$ (by an n^{ϵ} factor),

and f(n) satisfies the regularity condition that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

Examples Ex3.

$$T(n) = 4T(n/2) + n^{3}$$

$$a = 4, b = 2$$

$$\Rightarrow n^{\log b^{a}} = n^{2}; f(n) = n^{3}.$$

CASE 3:
$$f(n) = \Omega(n^{2+\epsilon})$$
 for $\epsilon = 1$
and $4(n/2)^3 \le cn^3$ (reg. cond.) for $c = 1/2$.

$$\therefore T(n) = \Theta(n^3).$$

Reference

- Introduction to Algorithms
- 4.1,4.2, 4.3, 4.4, 4.5
 - Chapter # 4
 - Thomas H. Cormen
 - 3rd Edition