This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

					PI			-85	
			* · *	÷ ,	*				
				. 6					
	a. 								
					** 1				w 500g
				4 -					
		u ^a e					* : •		
			÷	, , , , , , , , , , , , , , , , , , ,			•		
								٠	
		- X -	· · · · · · · · · · · · · · · · · · ·			: \$2 			
		* * *						}	
	•		3					r r	
	* *							. *	

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 96/13264 (11) International Publication Number: (51) International Patent Classification 6: A1 A61K 31/42, C07D 263/30 9 May 1996 (09.05.96) (43) International Publication Date:

(74) Agent: LAMMERT, Steven, R.; Barnes & Thornburg, 1313 (21) International Application Number: PCT/US95/14100 Merchants Bank Building, 11 South Meridian Street, Indianapolis, IN 46204 (US). 31 October 1995 (31.10.95) (22) International Filing Date:

(81) Designated States: AL, AM, AT, AU, BB, BG, BR, BY, CA, (30) Priority Data: CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, US 1 November 1994 (01.11.94) 08/332,667 KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ, VN, European (60) Parent Application or Grant patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, (63) Related by Continuation MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, 08/332,667 (CON) US GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, 1 November 1994 (01.11.94)

(71) Applicant (for all designated States except US): ELI LILLY AND COMPANY [US/US]; Lilly Corporate Center, Indianapolis, IN 46285 (US).

(72) Inventors; and (75) Inventors/Applicants (for US only): DOMINIANNI, Samuel, James [US/US]; 6010 East 56th Street, Indianapolis, IN 46226 (US). FITCH, Lora, Louise [US/US]; 5720 Susan Drive, East, Indianapolis, IN 46250 (US). SCHMIEGEL, Klaus, Kurt [US/US]; 4507 Staughton Drive, Indianapolis, IN 46226 (US).

Published

With international search report.

LS, MW, SD, SZ, UG).

(54) Title: ORAL HYPOGLYCEMIC AGENTS

(57) Abstract

Filed on

Antihyperglycemic compounds selected from the group consisting of C-substituted pentacycloazoles and N-alkyl-substituted pentacycloazoles.

QR132R441 | 1

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

• -					
AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
_	Burkina Faso	HU	Hungary	NO	Norway
BF		IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT .	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic	K.F	of Korea	SE	Sweden
CG	Coago	150		SI	Slovenia
CH	Switzerland	KR	Republic of Korea	SK	Slovakia
CI	Côte d'Ivoire	KZ	Kazakhstan	SN	Senegal
CM	Cameroon	u	Liechtenstein		
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Larvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA.	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UŽ	Uzbekistan
	France	MN	Mongolia	VN	Viet Nam
FR	-		_		
GA	Gabon				

SERVID -WO GRISSRAAT I

-1-

Title

ORAL HYPOGLYCEMIC AGENTS

Background of the Invention

This invention relates to C-substituted pentacycloazoles containing heteroatoms in the 2, 3 and 5 positions of the pentacycloazole ring and N-substituted pentacycloazoles containing nitrogen atoms in either the 2 and 4 positions or in the 3 position of the pentacycloazole ring.

Vol. 36, pages 2485-2493 (1993), which is hereby incorporated by reference, that drugs currently available for the control of the hyperglycemia associated with type 2 (non-insulin dependent) diabetes mellitus possess significant liabilities or efficacy limitations and that considerable effort has been directed toward the development of novel, orally active antihyperglycemic drugs. They also state that many of these new compounds incorporate a relatively acidic heterocycle which serves as the pharmacophore responsible for antihyperglycemic activity, such as thiazolidine-2,4-dione, tetrazole and oxazolidine-2,4-dione rings. In an earlier paper, J. Med. Chem. Vol. 35, pages 1176-1183 (1992), which is hereby incorporated by reference, Ellingboe et al.

30

25

5

10

15

20

35

described a number of antihyperglycemic agents, which contain an acidic 3H-1,2,3,5-oxathiadiazole 2-oxide ring, appended via a methylene bridge to numerous aromatic systems. Kangi et al. E.P. 177, 353, which is hereby incorporated by reference, disclose antihyperglycemic thiazolidine pharmacophore appended via a methylene bridge to suitable aromatic systems.

The general object of this invention is to provide

The general object of this invention is to provide new antihyperglycemic compounds based on new pharmacophores. Other objects appear hereinafter.

In one aspect, this invention is an antihyperglycemic compound selected from the group consisting C-substituted pentacycloazole pharmacophore containing heteroatoms in the 2.3 and 5 position of the pentacycloazole ring and N-substituted pentacycloazole pharmacophore containing nitrogen atoms in a position selected from the group consisting of the 2 and 4 positions of the pentacycloazole ring.

In a second aspect, this invention is an

antihyperglycemic composition comprising a pharmaceutically acceptable carrier, diluent or excipient and an effective amount of an antihyperglycemic compound selected from the group consisting C-substituted pentacycloazole pharmacophore containing heteroatoms in the 2.3 and 5 position of the

pentacycloazole ring and N-alkyl substituted pentacycloazole pharmacophore containing nitrogen or other hetero atoms in a position selected from the group consisting of the 2 and 4 positions of the pentacycloazole ring and the 3 position of the pentacycloazole ring.

In a third aspect, this invention is a method of reducing the hyperglycemia associated with non-insulin dependent diabetes mellitus which method comprises orally administering to a mammal, such as a human, a therapeutic

dose of an antihyperglycemic compound selected from the group consisting C-substituted pentacycloazole pharmacophore containing heteroatoms in the 2.3 and 5 position of the pentacycloazole ring and N-substituted pentacycloazole pharmacophore containing nitrogen atoms in a position selected from the group consisting of the 2 and 4 positions of the pentacycloazole ring and the 3 position of the pentacycloazole ring.

We have now found that the objects of this invention can be attained with antihyperglycemic compounds 10 having a C-substituted pentacycloazole pharmacophore containing heteroatoms in the 2. 3 and 5 position of the pentacycloazole ring or an N-alkyl-substituted pentacycloazole pharmacophore (where the alkyl group has 1 to 12 carbon atoms; containing nitrogen atoms in both the 2 and 15 4 positions or in the 3 position of the pentacycloazole ring wherein the pentacycloazole ring is linked to a suitable aromatic system utilized with pharmacophores responsible for antihyperglycemic activity by an aliphatic group of 1 to 2 carbon atoms and a carbon atom of said aliphatic group is 20 bonded directly to the pentacycloazole ring. Our studies have shown that other things being equal, many other compounds containing different pentacycloazole moieties, lack the antihyperglycemic activity of the compounds of this invention. Further, it appears that if the pentacycloazole 25 moiety is linked to the same aromatic system by an isomeric aliphatic group having no carbon atom bonded to the pentarycloazole ring, the compound lacks antihyperglycemic activity. For example, when a -CH2-5- linker was employed, the compound was inactive when the "S-" part of the linker 30 was bonded to a C-pentacycloazole moiety and active when the "CH2-" part of the linker was bonded to a C-pentacycloazole moiety. Likewise, when the pharmacophore was bonded directly

to the aromatic moiety without an aliphatic linking group, the compounds were inactive.

While Mullican et al. in the I. Med. Chem.,

- Vol. 36, pages 1090-1099 (1993) disclose a C-substituted
 2.3.5-triazole linked through methylene to a 4-hydroxy-3,5dibutylphenyl moiety at page 1091 and Boschelli et al. in J.

 Med. Chem., Vol. 36, pages 1802 to 1810 (1993) disclose a Csubstituted pentacycloazole containing heteroatoms in the 2,3
 and 5 position linked through methylene to a
- dichlorophenylaminophenyl group moiety at page 1804, neither article describes or suggests that the compounds have antihyperglycemic activity. Further, to the best of our knowledge neither the 4-hydroxy-3,5-dibutylphenyl moiety nor the dichlorophenylaminophenyl group have been used with pharmacophores responsible for antihyperglycemic activity.
 - The compounds of this invention can be represented by the structure

$$Ar-(G)_{n-1}-(CH_2)_{m-1}-CH_2Z$$

20

The bond of attachment to Z is assigned number 1 as described in the following schematic structure formula (I):

25

where each Q is independently C, N, O, or S as described in the following definition of Z.

10

Z is a C-substituted pentacycloazole containing heteroatoms in the 2, 3 and 5 positions of the pentacycloazole ring or an N-substituted (N at position 1) pentacycloazole containing N atoms in either the 2 and 4 positions or in the 3 position of the pentacycloazole ring; G is oxygen or sulfur; m and n are whole numbers ranging from 1 to 2; and Ar is a suitable aromatic system.

In somewhat greater detail, Z can have any of the structures inclusive of double bond tautomeric forms as follows:

5

10

15

wherein X_1 is O or S; X_2 is -SR; and each R is independently selected from H, methyl, ethyl, propyl and butyl.

Ar can be any suitable aromatic system utilized with other pharmacophores responsible for antihyperglycemic activity such as those disclosed in the aforesaid Ellingboe et al. articles; the aforesaid Kangi et al. E.P. 177, 353; Momose et al. in Chem. Pharm. Pull., Vol. 39, No. 6 at pages 1440 to 1445 (1991); Cantello et al. E.P. 415605; Clark et al. U.S. 4,791,125; Kees U.S. 5,183,825; Goldstein et al. WO 93/00343; Hindley E.P. 306,228 all of which are hereby incorporated by reference. Accordingly, the aromatic systems can range from simple dihydronaphthalene moieties in U.S. 5,183,825 to aromatic rings linked to heterocylic rings.

The preferred aromatic systems can be represented by the structure:

wherein Ar' is a divalent arylene moiety, such as phenylene, methyl substituted phenylene, chlorophenylene, etc.; G' is O or S; and Y is a cycloalkyl ring, such as methylcyclohexyl, a substituted or unsubstituted aryl group or a heterocyclic such as 2-phenyl-4-oxazolyl; p is a number from 1 to 6. An illustrative Ar' group is shown in formula (II):

10

As is demonstrated in the Examples, the various C-substituted pentacycloazole compounds of this invention can be prepared by routine techniques. For example, C-substituted 2.3.5-triazoles can be prepared by reacting

15

(1) ArCH₂C --- CH₃ +

hydrazine hydrate followed by cyclization with an isocyanate or

(2) ArCH₂C — C— CH₃

3-alkyl semicarbazide methane sulfonic acid salt or

(3) ArOH

PrCH2COCH2 followed by
hydrazine hydrate and then
cyclized with an isocyanate or

(4) ArOH

N,N-dimethyl thiocarbamyl chloride

thermally rearranged, hydrolyzed, followed by BrCH_COCH; and then cyclization with an isocyanate, or

(5) ArCH2CH2COCH3

hydrazine hydrate followed by cyclization with an isocyanate, etc.

A C-substituted 2.3-diazole can be prepared by reacting $ArCH_2CO_2R$ + Hydrazine hydrate followed by cyclization with CS₂.

5

5

15

20

A C-substituted 2.5-diazole can be prepared by reacting ArCH2CN + CH3OH + HCl to form ArC(=NH2)OCH3+Cl-followed by Na in CH3OH to form an amidoxime and then treating with carbonyldiimidazole.

A C-substituted-1,3,4-oxathiazolin-5-one can be prepared by converting

10 to the amide followed by cyclication with chlorocarbonylsulfenyl chloride.

A C-substituted 1.2.4-thiadiazolin-5-one can be prepared by reacting $ArC(=NH_2)OCH_3+Cl^-$ described above with sodium hydride and cyclizing with chlorocarbonylsulfenyl chloride.

A N-substituted azole can be prepared either by reaction route (1) or (2) below:

- (1) Reacting ArCHO with semicarbazide hydrochloride followed by reduction with boron hydride and cyclizing with carbonyldiimidazole or:
- (2) Reacting ArCH₂NH₂ with sodium cyanate and cyclizing with diethyl oxylate.
- 25 The compounds of this invention and salts thereof exhibit excellent blood-glucose and blood-lipid lowering actions in mammals (e.g., mouse, rat, dog, cat, monkey, horse, and human beings), and show a low degree of toxicity in terms of both acute and subacute toxicities. Therefore, the compounds and salts thereof are of value to human beings

for the treatment of hyperlipemia, diabetes and their complications.

The compounds of this invention are generally compounded with "pharmaceutically acceptable" carriers, 5 diluents or excipients, which are compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. The specific dose of a compound administered according to this invention to obtain therapeutic or prophylactic effects will, of course, be 10 determined by the particular circumstances surrounding the case, including, for example, the compound administered, the route of administration and the condition being treated. Typical daily doses will contain a non-toxic dosage level of from about 0.01 mg/kg to about 50 mg/kg of body weight of an 15 active compound of this invention. Preferably the pharmaceutical formulation is in unit dosage form. dosage form can be a capsule or tablet itself, or the appropriate number of any of these. The quantity of active ingredient in a unit dose of composition may be varied or 20 adjusted from about 0.1 to about 1000 milligrams or more according to the particular treatment involved. It may be appreciated that it may be necessary to make routine variations to the dosage depending on the age and condition of the patient. The dosage will also depend on the route of administration. The compound can be administered by a variety 25 of routes although oral is greatly preferred.

Pharmaceutical formulations of the invention are prepared by combining (e.g., mixing) a therapeutically effective amount of the compounds of the invention together with a pharmaceutically acceptable carrier or diluent therefor. In making the compositions of the present invention, the active ingredient will usually be admixed with a carrier, or diluted by a carrier, or enclosed within a

carrier which may be in the form of a capsule, sachet, paper or other container. When the carrier serves as a diluent, it may be a solid, semi-solid or liquid material which acts as a vehicle, or can be in the form of tablets, pills, powders, lozenges, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), or ointment. containing, for example, up to 10% by weight of the active compound. The compounds of the present invention are preferably formulated prior to administration. For the pharmaceutical formulations any suitable carrier known in the 10 art can be used. In such a formulation, the carrier may be a solid. liquid. or mixture of a solid and a liquid. Solid form formulations include powders, tablets and capsules. A solid carrier can be one or more substances which may also act as flavoring agents, lubricants, solubilisers, suspending 15 agents, binders, tablet disintegrating agents and encapsulating material.

Tablets for oral administration may contain suitable excipients such as calcium carbonate, sodium 20 carbonate, lactose, calcium phosphate, together with disintegrating agents, such as maize, starch, or alginic acid, and/or binding agents, for example, gelatin or acacia. and lubricating agents such as magnesium stearate, stearic acid, or talc. In powders the carrier is a finely divided solid which is in admixture with the finely divided active 25 ingredient. In tablets the active ingredient is mixed with a carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired. powders and tablets preferably contain from about 1 to about 99 weight percent of the active ingredient which is novel compound of this invention. Suitable solid carriers are magnesium carbonate, magnesium stearate, talc, sugar lactose, pectin, dextrin, starch, gelatin, tragacanth, methyl

10

cellulose, sodium carboxymethyl cellulose, low melting waxes, and cocoa butter. Sterile liquid form formulations include suspensions, emulsions, syrups and elixirs. The active ingredient can be dissolved or suspended in a pharmaceutically acceptable carrier, such as sterile water, sterile organic solvent or a mixture of both.

The active ingredient can also be dissolved in a suitable organic solvent, for instance aqueous propylene glycol. Other compositions can be made by dispersing the finely divided active ingredient in aqueous starch or sodium carboxymethyl cellulose solution or in a suitable oil.

The following Examples illustrate the preparation of compounds of the invention (unless otherwise indicated).

-13-

EXAMPLES

General Experimental Method:

Melting points are uncorrected. Thin Layer

5 Chromatography was performed on silica plates. Reactions were conducted under an atmosphere of nitrogen. NMR spectra were obtained in CDCl3 unless noted otherwise. Flash column chromatographies were performed over SiO2.

2-(2-Phenyl-4-oxazolyl)ethanol was prepared as 10 described in Example 12 Part A.

Example 1

Preparation of:

4-Methyl-5-{4-!(2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)-

15 methyl)1,2,4-triazolin-3-one.

Part A

20 Preparation of:

Methyl 4-[2-(2-phenyl-4-oxazolyl)ethoxyl]phenyl acetate.

$$\mathsf{Ph} = \mathsf{CH}_2 \mathsf{CH}_2 \mathsf{CH}_2 \mathsf{CH}_3$$

A stirred solution of 9.46 g 2-/2-phenyl-4-oxazolyl)ethanol, 8.34 g methyl /4-hydroxyphenyl)acetate, 13.10 g. triphenyl phosphine and T5 mL anhydrous THF (tetrahydrofuran) was treated dropwise with 7.9 mL diethyl azodicarboxylate over 15 minutes, allowing the temperature to rise spontaneously to 40-50°C. The reaction was stirred at ambient temperature for 48 hours, treated with 2 mL of 30% H₂O₂, and evaporated in vacuo. The residue was extracted with boiling Et₂O (ethyl ether), contacted with 75 mL of brine and dried over MgSO₄. After removal of the drying agent, the solvent was evaporated, the residue chromatographed, eluting with ethyl acetate-hexane. The product crystallized from ethylacetate-hexane to provide 14.8 g (88%), of a white solid mp 47-48°C.

15 Anal. Cal. for $C_{20}H_{19}NO_4$: C, 71.20; H, 5.68; N, 4.15; Found: C, 71.43; H, 5.66; N, 4.07. IR 1734 cm⁻¹; NMR δ 3.15 (t, 2H), 3.6 (s, 3H), 3.7 (s, 2H), 4.3 (t, 2H), 6.9 (d, 2H, (7.2 (d, 2H), 7.5 (m, 4H), 7.8 (s, 1H); MS:m/e 337.

20 Part P

Preparation of:

4-[2-202-pnenyl-4-oxazolyl)-ethoxy/phenyl acetyl hydrazine.

25

A stirred solution of 3.3 gm of methyl 4-{2-{2phenyl-4-oxazolyl}ethoxy}phenyl acetate and 30 mL of MeOH was treated with 3.4 mL of 80% hydrazine hydrate, 0.5 gm of NaOMe and heated to reflux for 0.5 hour, during which time a copious precipitate formed. The cooled mixture was filtered and the white solid washed with MeOH and dried to provide 2.86 gm (86%) of product mp 163-165°C.

Anal. Cal. for C₁₉H₁₉N₃O₃: C, 67.64; H, 5.68; N, 5.46. Found: IR 1648 cm⁻¹. MS/m/e 338. MMP. 1.6 delta (broad m, 2H), 3.1 (t, 2H), 3.5 (s, 2H), 4.3 (t, 2H), 6.9 (d, 2H), 7.2 (d, 2H), 7.5 (m, 4H, 7.8 (s, 1H).

Part C

Preparation of: 4-Methyl-5-[4-((2-(2-phenyl-4-oxazolyl)stnoxy)phenyl)methyl]-1,2,4-triazolin-3-one.

The intermediate prepared in Example 1 Part B was suspended in 30 mL of THF (tetrahydrofuran., treated with 0.4 mL of methyl isocyanate and the stirred mixture heated to reflux for 2 hours. The mixture was cooled, diluted with Et20 and filtered. The resulting white powder (0.97 gm, mp 191-194°C) was added to a solution prepared from 0.5 gm of Na metal and 25 mL of MeOH. The resulting solution was heated to reflux under an atmosphere of nitrogen for 5 hours, cooled and acidified with 1N HCl. The resulting precipitate was collected by filtration, washed with H20 and dried.

Recrystallization from THF-iPrOH provided 0.82 gm (86%) of

product, mp 164-167°C.

Anal. Cal. for C₂₁H₂₀N₄O₃: C, 67.01; H, 5.36; N, 14.88. Found: C, 66.75; H, 5.19; N, 14.63. Ir: 3302, 3072, 2933, 2854, 1691 cm⁻¹. Ms: m/e 376. NMR 1.7 (broad s, 1H, exchanges with D2O), 3.1 (s, 3H), 3.15 (t, 2H), 3.85 (s, 2H), 4.3 (t, 2H), 6.9 (d, 2H), 7.2 (d, 2H), 7.5 (m, 4H), 7.8 (s, 1H).

-15-

Example 2

Preparation of:

4-Ethyl-5-[4-((2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)-methyl-1,2,4-triazolin-3-one.

5

Method 1

A suspension of 1.5 ym of the intermediate prepared 10 as in Example 1 Part E was suspended in 30 mL of THF, treated with 0.4 mL of ethyl isocyanate and refluxed for 2 hours. The mixture was cooled, diluted with Et₂O and filtered. The white solid was collected, washed with Et2O and added to a solution prepared from 1.4 gm of 85% KOH and 100 mL of MeOH. 15 The resulting solution was heated to reflux for 24 hours, at which time TLC (thin layer chromatography) showed complete consumption of starting material. The cooled solution was acidified with 1N HCl and the resulting precipitate collected by filtration. Recrystallization from ETOAc (ethyl acetate) 20 provided 0.89 gm (51%) of product as white needles mm 139-140°C.

Anal. Cal. for $C_{22}H_{22}N_4O_3$: C, 67.68; H, 5.68; N, 12.29. Found: C, 67.40; H, 5.78; H, 14.46. Ir: 1690cm⁻¹. MS: m/e 390. NMR: delta 1.05 (t, 3H), 3.1 (t, 2H), 3.5 (1, 2H), 3.85 (s, 2H), 4.3 (t, 2H), 6.9 (d, 2H), 7.2 (d, 2H), 7.5 (m, 4H, 7.8 (s, 1H).

-17-

Method 2

Part A. Preparation of:

3-Ethyl semicarbazide methanesulfonic acid salt.

A stirred solution of 25 gm tert-butyl carbazate in 200 mL CHCl3 under nitrogen was treated dropwise over 0.5 hours with 16.5 mL ethyl isocyanate. The solution was stirred at room temperature 17 hours, treated with HoO and the layers were separated. The aqueous layer was extracted with three 100 mL portions of CHCl3 and the combined extracts were washed with brine. dried with Na₂SO₄, and filtered. 10 Removal of the solvent in vacuo was followed by dissolution of the residue in 250 mL of dry THF. The resulting solution was treated dropwise with 22 mL of methane sulfonic acid over 0.5 hour. The resulting mixture was stirred at ambient temperature for 36 hours, during which time a precipitate 15 formed. The solid was filtered and washed with THF and Et₂O to provide 24.2 gm (86%) of the salt mp 115-118°C. NMR: delta 1.04 (t, 3H), 2.37 (s, 3H), 3.10 (q,

NMR: delta 1.04 (t, 3H), 2.37 (s, 3H), 3.10 (q, 2h), 7.08 (t, 1H), 3.59 (s, 1H), 9.76 (broad s, 2H) > MS: m/e 103 (= M - CH3SO3H).

Part P

20

To a solution prepared from 6.32 gm of Ma metal and 200 mL of MeOH were added 2.95 gm of the salt from Method 2

Example 2 Part A and 5 gm of the intermediate prepared as in Example 1. Part A. The resulting mixture was refluxed for 100 hr. cooled and evaporated in vacuo. The residue was treated with 200 mL 2N HCl and extracted with three 100 mL portions of ETOAc. The combined extracts were washed with H2O, brine, dried with Na₂SO₄, filtered, and the solvent removed in vacuo. Chromatography of the residue over silica produced 1.5 gm (26%) of product identical to the material prepared in Method 1.

-18-

Example 3

Preparation of:

4-n-Butyl-5-[4-((2-(2-pnenyl-4-oxazolyl)ethoxy)pnenyl)-methyl]1,2,4-triazolin-3-one.

A suspension of 1.6 gm of the intermediate prepared as in Example 1 Part B in 40 mL of THF was treated with 0.8 mL of n-butyl isocyanate and heated to reflux for 2 hours. The cooled mixture was diluted with Et₂O and filtered. The white powder (1.9 gm, mp 172-175°C) was added to a solution prepared from 3.8 gm 85% KOH and 30 mL of MeOH and the resulting solution refluxed for a total of 48 hours. The cooled solution was acidified with 1N HCl and the soft white powder collected by filtration, washed with H₂O and dried. Recrystallization from 1-PrOH-Hexane provided 1.01 gm (51%) of product mp 120-122°C.

20 Anal.: Cal. for C₂₄H₂₆N₄O₃. C, 68.88; H, 6.26; N, 13.39. Found: C, 68.63; H, 6.42; N, 12.82. MS: m/e 418. IR: 3401, 3063, 3063, 1702 cm⁻¹. NMR: 0.9 (t, 3H), 1.3 (m, m, 2H), 1.45 (m, 2H), 1.7 (broad s, 1H, exchanges with D₂O), 3.1 (t, 2H), 3.5 (t, 2H), 3.85 (s, 2H), 4.3 (t, 2H), 6.9 (d, 25 2H), 7.2 (d, 2H), 7.5 (m, 4H), 7.8 (s, 1H).

Example 4

Preparation of:

4-Methy1-5-[4-((2-(2-pheny1-4-

oxazolyl)ethoxy.phenyl)methyl]1.2.4-triazolin-3-thione.

5

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

Method 1

The intermediate prepared as in Example 1 Part 1 (2.48 gm) and 0.30 gm of 4-methyl thiosemicarbazide were added to a solution prepared from 0.72 gm of Na metal and 20 mL of MeOH. The resulting yellow solution was refluxed for 2 hours, cooled and acidified with 1N HCl. The resulting white precipitate was collected, washed with H2O and dried.

Recrystallization from THF-H₂O and from EtOAc provided 0.82 gm (28%) of 4-methyl-5-{4-((2-phenyl-4-oxazolyl/ethoxy/phenyl/-methyl)-1.2.4-triazolin-3-thione.mp 189-190°C.

Anal.: Cal. for C₂₁H₂₀N₄O₂S: C, 64.27; H, 5.14; 20 H, 14.27. Found: C, 64.41; H, 5.22; N, 14.00. IR: 3099, 3042, 2939, 2878, 1574 cm⁻¹. MS: m/e 392. NMR: delta 3.1 (t, 2H), 3.35 (s, 3H), 4.0 (s, 2H), 4.3 (t, 2H), 6.9 (d, 2H), 7.2 (d, 2H), 7.5 (m, 4H), 7.8 (s, 1H).

35 Method 2

A stirred suspension of 1.35 gm of the intermediate prepared as in Example 1 Part B in 30 mL of THF was treated

5

10

with 0.7 gm of methyl isothiocyanate and heated to reflux for 1 hour. The precipitate which formed on cooling was filtered and washed with ether. This solid (1.44 gm, mp 175-177°C) was added to a solution prepared from 0.8 gm of Na metal and 25 mL of MeOH and the resulting solution refluxed for 2 hours. The cooled solution was acidified with 1 N HCl and the resulting precipitate collected. Recrystallization from ETOAc provided 1.2 gm (76%) of 4-methyl-5-[4-((2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)methyl]-1,2,4-triazolin-3-thione. mp. 189-190°C, identical to that prepared in Example 4 Method 1.

Example 5

Preparation of:

1(3)H-5-[4-((2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)-

15 methyl]1,2,4-triazolin-3-thione

Thiosemicarbazide (1.90 gm) and 2.0 gm of the intermediate prepared as in Example 1 part A were added to a solution prepared from 0.6 gm of Na metal and 20 mL of 1-PrOH. The resulting mixture was heated to reflux for 3 hours and kept at room temperature overnight. The cooled mixture was acidified with 1N HCl and the solid filtered.

25 Recrystallization from THF-MeOH provided 1:2 gm (53%) of product as a white solid mp 228-230°C.

Anal.: Cal. for C20H18N4O2S: C, 63.47; H, 4.79; N, 14.8C. Found: C, 63.73; H, 4.85; M, 14.78. IR: 3096, 3029, 2928, 2877, 1609 cm⁻¹. MS: m/e 378. NMR: delta 3.1 (t, 2H), 4.0 :broad s, 2H exchanges with D2O), 4.3 (t, 2H), 6.9 (d, 2H), 7.2 (d, 2H), 7.5 (m, 4H), 7.8 (s, 1H).

Example 6

Preparation of:

3-Methylthio-4-methyl-5-[4-((2-(2-phenyl-4-oxazolyl)ethoxy:phenyl)methyl]1.2.4-triazoline.

A stirred suspension of 2.42 gm of the intermediate prepared as in Example 1 Part B in 40 mL THF was treated with 15 2.1 gm of methyl isothiccyanate and refluxed for 3 hours. The reaction mixture was cooled and the solid filtered and washed with EtgC. This solid was then added to a solution prepared from 1.5 gm of Na metal and 80 mL of MeOH and the resulting solution refluxed for 2 hours. The solution was 20 allowed to cool with protection from atmospheric oxygen and treated with 5 mL of CH3I. The resulting mixture was kept at room temperature overnight, treated with H2O and extracted with three 125 mL portions of EtOAc. The combined extracts were washed with ${\rm H}_2{\rm O}$, brine, dried over MgSO4 and evaporated 25 to provide an cil which solidified on standing. Crystallization from EtOAc-hexane with the aid of

decolorizing carbon provided 1.62 gm (56%) of the product as glittering flakes mp 110-112°C.

Anal.: Cal. for $C_{22}H_{22}N_4O_2S$: C. 65.00 H. 5.45; N. 13.78. Found: C. 64.61; H. 5.44; N. 13.59. IR: 2914, 1550 cm⁻¹. MS: m/e 406. NMP: delta 2.7 (s, 3H), 2.1 (t, 2H), 3.3 (s. 3H), 4.15 (s. 2H), 4.3 (t, 2H), 6.9 (d, 2H), 7.2 (d, 2H), 7.5 (m, 4H), 7.8 (s, 1H).

Example 7

10 Preparation of:

4-Methyl-5-(4-(2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)2-oxaethyl]1,2,4-triazolin-3-one.

15

Dart 1.

Preparation of:

5-[(2-(2-Phenyl-4-omazolyl)-ethomyphenyl)] benzyl ether

20

A stirred solution of 38.7 gm 4-benzyloxyphenol, 37.4 gm triphenyl phosphine, 27.4 gm 2-(2-phenyl-4-

SUBSTITUTE SHEET (RULE 26)

oxazolyl)ethanol and 200 mL THF was treated dropwise with 25 gm of diethyl azodicarboxylate over .DS hours, allowing the temperature to rise spontaneously to 50-60°C. The solution was kept at room temperature for 72 hours, treated with 2 mL of 30% H₂O₂ and the solvent removed in vacuo. The solid residual mass was dissolved in 350 mL of boiling EtOH and allowed to cool slowly. The white crystals which precipitated were filtered and washed with small portions of EtOH to provide 39.1 gm (75%) of needles mp 108-112°C.

10 Anal: Cal. for C₂₄H₂₁NO₃; C, 77.61; H, 5.70; N, 3.77. Found: T, T7.35; H, 5.75; N, 3.50.MS: m/e 371.

Part E.

Preparation of:

15 4-[2-12-phenyl-4-oxazolyl)ethoxy] phenol.

A solution of the intermediate prepared in Example 7 Part A in 240 mL ETOH/280 mL THF was hydrogenated with 4 gm of 5% Pd/C at room temperature overnight with an initial hydrogen pressure of 60 psi (413.7 KPa). After removal of the catalyst by filtration, the solvents were removed in vacuo and the residue crystallized from i-PrOH to provide 24.7 gm (83%) mp 171-176°C.

Anal.: Cal. for C₁₇H₁₅NC₃: C. TC.58; H. 5.38; N. 4.98. Found: C. 72.31; H. 5.40; N. 5.01. MS: m/e 281.

Part C

20

25

Preparation of:

Methyl 0-4-{2-(2-phenyl-4-oxazolyl)ethoxy)phenylglycclic acid hydrazide.

A stirred solution of 5.40 gm of the intermediate from Example 7 Part B in 75 mL of methyl ethyl ketone was treated with 4 mL of methyl bromoacetate. 1.2 gm powdered KI. 11.1 gm powdered K2CO3 and heated to reflux for 4 hours. The

cooled mixture was diluted with H2O, brine, dried over MgSO4, filtered, and evaporated to provide an cil which solidified on trituration with hexane, mp 62-66°C. A solution of 2.36 gm of this solid in 25 mL MeOH was treated with 2 mL of 85% hydrazine hydrate, 8.2 gm of NaOMe and refluxed 1 hour, during which time a thick precipitate formed. The cooled mixture was filtered and the solid washed with MeOH and Et2O to provide 2.20 gm (93%) of white powder mp 151-154°.

Anal.: Cal. for C19H19N3O4: 2, 64.58; H, 5.42; N,

10 11.89. Found: 0. 64.71; H. 5.64; N. 11.70. MS: m/e 353.

Part I

A stirred suspension of 1.46 gm of the intermediate from Example 7 Part C in 20 mL THF was treated with 1 mL methyl isocyanate and refluxed for 1 hour. The cooled mixture was diluted with Et20 and filtered. The fine white powder was washed with Et20; mp 120-182°C. This solid was added to a solution prepared from 3.9 gm of 85% KOH/30 mL MeOH and the resulting solution refluxed 4 hours. An additional 1.9 gm of 85% KOH was added and the mixture refluxed an additional 3 hours, kept at room temperature overnight and acidified with 2% HCl. The solid optained by filtration was washed with H2O and dried to provide 0.94 gm (58%) of 4-methyl-5-{4-((2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)2-oxaethyl)1,2,4-triazolin-3-one mp 137-140°C. 25 Anal.: Cal. for C21H20N4O4: C, 64.28; H, 5.14; N, 14.27. Found: C, 64.48; H, 5.27; N, 14.04. MS: m/e 392. IR:1712, 1685 cm⁻¹. NMP: delta 3.1 (t, 2H), 3.35 (s, 3H), 4.3 (t, 2H), 4.9 (s, 2H), 6.9 (d, 2H), 7.2 (d, 2H), 7.5 (m. 4H), 7.9 (s. 1H), 9.5 (broad s. 1H. exchanges with D20). 30

Example 8

-25-

Preparation of:

4-Methyl-5-[4-((2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)2-thiaethyl]1.2.4-triazolin-3-one.

Part 1

5

Preparation of:

N, N-Dimerhyl 4-[2-(2-phenyl-4-oxazolyl)ethoxy]-

10 phenylthionocarbamate.

A stirred mixture of 15.5 gm of the intermediate prepared as in Example 7 Part B and 50 mL DMF was treated with 2.8 gm of 60% NaH/oil. Gas evolution occurred and was allowed to proceed at autogenous temperature for 0.25 hours.

The resulting dark mixture was treated with 7.0 gm N,N-Dimethyl thiocarbamoyl chloride and stirred for 3 hours. The mixture was treated with ice and the thick curdy solid filtered. The solid was washed with H₂O, hexane and recrystallized from CH₂Cl₂-hexane (decolorizing carbon) to

20 provide 13.3 gm (90%) of white flakes mp 111-113°C.

Anal.: Cal. for C20H20N2O3S: C. 65.20; H. 5.47;

N, 7.60. Found: C, 65.26; H, 5.50; N, 7.59. MS: m/e 368.

25

Part B

Preparation of: N.N-Dimethyl 4-[2-(2-phenyl-4-oxazolyl)ethoxy]phenylthiolcarbamate.

A stirred mixture of 4.15 gm of the intermediate from Example 8 Part A and 15 mL of tetraglyme was heated to reflux for a total of 17 hours and cooled. The dark solid mass was treated with hexane, heated to boiling, cooled and filtered. The tan flakes were washed thoroughly with hexane and dried to provide 3.58 gm (88%), mp 128-132°C.

10 Anal.: Cal. for C₂₀H₂₀N₂O₃S: C, 65.20; H, 5.47; N, T.60. Found: C 64.97; H, 5.50; N, T.52.

Part C

Preparation of:

Methyl S-4-(2-(2-phenyl-4-oxazolyl)ethoxy)phenylthioglycolic acid hydrazide.

A stirred mixture of 3.4 gm of the intermediate prepared in Example 9 Part B, 50 mL MeOH and 15 mL 2N NaOH was refluxed for 6 hours, cooled and acidified to pH4 with 20 HOAc. The mixture was extracted with three 125 mL portions of EtOAc. The extracts were washed with H2O, brine, dried over MgSO4, filtered, and evaporated. The residual cil was dissolved in 30 mL of methyl ethyl ketone, the solution treated with 1.5 mL of methyl bromoacetate, 4.5 gm powdered 25 KoCCo, 0.5 gm powdered HI and refluxed 2 hours. The cooled mixture was diluted with HoO and extracted with three 50 mL portions of EtOAC. The extracts were washed with HoO, brine, dried over MgSO4, filtered, and evaporated to provide 4.5 gm of a semi-solid oil. A solution of 2.7 gm of this oil in 25 30 mL MeOH was treated with 2 mL 85% hydrazine hydrate, 0.1 cm NaOMe and refluxed 1 hour. The solution was kept at room temperature overnight, diluted with H2O and the resulting precipitate filtered. The solid was washed with HoO, dried

and recrystallized from i-PrOH-hexane to provide 2.93 gm (69% overall) of nearly white powder mp 113-121°C.

Anal.: Cal. for C19H19N3C3S: C, 61.77; H, 5.18; N, 11.37. Found: C, 61.71; H, 5.20; N, 11.18. MS: m/e 369.

Part D

5

10

20

25

A stirred suspension of 1.2 gm of the intermediate from Example 8, Part C in 20 mL THF was treated with 1 mL of methyl isocyanate and the resulting solution stirred at ambient temperature for 2 hours. The solvent was removed by evaporation and the residue dissolved in 25 mL MeOH. The solution was treated with 2.8 gm of 85% HOH and heated to reflux for 7 hours. The mixture was kept at room temperature 15 overnight, heated just to boiling to redissolve a small amount of solid and acidified with 5H HCl. The hot mixture \mathbf{w}_{0} s treated with ice, diluted with $\mathbf{H}_{2}\mathbf{O}$ and the resulting solid filtered. The solid was washed with ${\rm H}_2{\rm O}$ and recrystallized from i-PrOH-hexane to provide 0.47 gm (35%) of 4-methy1-5-[(2-(2-pheny1-4-oxazoly1)ethoxypheny1)2thiaethyl]1,2,4-triazolin-3-one mp 130-132°C. Anal.: Cal. for $C_{21}H_{20}N_4O_3S$: C, ϵ 1.75; H, 4.94; M. 13.72. Found: C. 61.99; H. 5.00; H. 13.42. MS: m/e 408. IR: $1725 \ 1577 \ cm^{-1}$. NMR: delta 3.1 (t, 2H), 3.3 (s, 3H), 3.8 (s, 2H), 4.3 (t, 2H), 6.9 (d, 2H), 7.2 (d, 2H), 7.5 (m, 4H), 7.8 (s. 1H), 8.7 (broad s. 1H, exchanges with D_2O).

Example 8A

This Example prepares a compound outside the scope of the invention (contrast to compound prepared in Example 8, 30 supra.).

SUBSTITUTE SHEET (RULE 26)

Preparation of:

4-Methyl-5-[4-((2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)-1-thiaethyl]1,2,4-triazolin-3-thione

5

10

15

Part A:

Preparation of:

Methyl 4-[2-(2-phenyl-4-omazolyl)-ethomy]benzoate.

A stirred sclution of 14.2 g 2-(2-phenyl-4-oxazolyl)ethanol, 11.45 g methyl 4-hydroxybenzoate, 19.67 g triphenylphosphine and 150 mL THF was treated dropwise with diethyl azodicarboxylate (11.8 mL) over .5 hours allowing the temperature to rise spontaneously to 50-60°C. The reaction mixture was stirred at ambient temperature 24 hours, treated with 3 mL cf 30% H2C2 and evaporated in vacuo. The residue was dissolved in 250 mL EtOAc, the solution was successively treated with 2N NaOH, H2O, brine, dried over MgSC4, and filtered. After removal of the solvent the residue was chromatographed over silica. The product was recrystallized from THF/hexane to provide 23.66 g (97%) of white flakes mp 100-102°C.

Anal.: Cal. for C19H17NO4: C, 70.58; H, 5.30; N, 4.33. Found: C, 70.83; H, 5.33; N, 4.49.IR: 1707 cm⁻¹. (t, 2H0), 6.9 (d, 2h), 7.5 (m, 4H), 7.8 (s, 1h), 8.0 (m, 3H).

25

20

Part B:

Preparation of:

4-[2-(2-Phenyl-4-oxazolyl)-ethoxy]phenylmethanol.

A solution of 4.4 g of the intermediate prepared as in Example 8A, Part A in 50 mL THF was added dropwise to a stirred suspension of 2.7 g LiAlH4 in 50 mL THF over 1 hour. The mixture was stirred an additional 1 hour and treated dropwise with 2 mL H2O/8 mL THF, 4 mL %N NaOH, 8 mL H2O, stirred and filtered. The white powder was washed with THF. The combined filtrate and washings were dried with K2CO3 and the solvent evaporated to provide an cil which solidified on scratching. Recrystallization from THF-hexame produced 4.02 g (98%) of fluffy powder mp 96-99°C.

Anal.: Cal. for C₁₈H₁₇NO₃: C. T3.20; H. 5.80; N, 4.74. Found: C. 73.01; H. 5.82; N. 4.51. IR: 3526, 2881cm⁻¹. MS: m/e 295.

Part C

10

15

20

25

A stirred mixture of 1.40 g of the intermediate prepared as in Example 8A, Part B, 1.30 g 1-methyl-1,3,4-triazole-2,5-dithione and 30 mL i-PrOH was treated with 2.4 mL 48% HBr and heated to reflux for 3 hours. The cooled mixture was diluted with H2O and filtered. The resulting white powder was washed with H2O and filtered. The resulting white powder was washed with H2O and recrystallized from THF/i-PrOH to provide 1.65 g (82%) of 4-Methyl-5-[4-((2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)-1-thiaethyl]1,2,4-triazolin-3-thione mp 173-175°C as fluffy white needles.

Anal.: Cal. for C21H20N4O2S2: C, 59.41; H, 4.75; N, 13.20; S, 15.10. Found: C, 59.59; H, 4.80; N, 13.22; S, 14.81. MS: m/e 424. NMR: (DMSO-d6): delta 3.1 (t, 2H), 3.35 (s, 3H), 4.3 (t, 2H), 4.35 (s, 2H), 6.9 (d, 2H), 7.2 (d, 2H), 7.5 (m, 3H), 7.6 (s, 1H), 8.0 (m, 2H).

-30-

Example 9

Preparation of:

4-Methyl-5-((2-(2-phenyl-4-oxazolyl)ethoxylphenyl)-2ethyl]1,2,4-triazolin-3-one.

5

Part &

Preparation of:

10 4-[2-(2-Phenyl-4-oxazolyl)ethoxy]phenyl-3-propanoic acid hydrazide.

A stirred solution of 15.15 gm 2-(2-phenyl-4oxazolyl)ethanol. 14.42 gm methyl 4-hydroxydihydrocinnamate, 20.98 gm triphenyl phosphine and 200 mL anhydrous THF was treated dropwise with 12.6 mL diethyl azodicarboxylate over 15 15 minutes, allowing the temperature to rise spontaneously to 50-60°C. The solution was stirred at ambient temperature for 48 hours, treated with 2 mL 30% H2O2 and evaporated in vacuo. The residue was dissolved in 250 mL of EtOAC and the solution washed successively with 2M NaOH, H2O, brine and dried over 20 MgSO4. After removal of solvent the residue was chromatographed over silica to provide 21.93 gm (78%) of ester mp 47-48°C. A solution of 3.51 gm of ester in 25 mL of MeOH was treated with 4 mL 85% hydrazine hydrate, 0.1 gm 25 NaOMe and refluxed 2 hours. The cooled mixture was diluted with ${\rm H}_2{\rm O}$ and the solid filtered. The solid was washed with

-31-

 H_2O and dried to provide 3.4 gm (97%) of product mp 144-145°C.

Anal.: Cal. for C20H21N3O3: C, 68.36; H, 6.02; N, 11.96. Found: C, 68.40; H, 6.06; N. 11.84. MS: m/e 351.

Part B

5

A sample of 4.04 gm of the hydrazide prepared in Example 9 Part A was suspended in 40 mL THF and treated with 0.6 mL of methyl isocyanate. The mixture was refluxed 1 hour, tooled, diluted with EtgO and filtered. The white solid 13.5 gm, mp 166-168°C was added to a solution prepared from 1.6 gm of Na metal and 25 mL of MeOH and the resulting solution refluxed for 6 hours. The cooled solution was acidified with 2N HCl and the resulting white solid filtered, washed with HgO and dried. Recrystallization from i-PrOH provided 1.7 gm (50%) of 4-methyl-5-[4-((2-(2-phenyl-4-oxazolyl)ethoxy)-phenyl)-2-ethyl]1.2.4-triazolin-3-one mp 127-129°C.

20 Anal.: Cal. for C22H24N4O3: C. 67.68; H. 5.68; N. 14.35. Found: C. 67.56; H. 5.69; N. 14.5T. MS: m/e 390. NMR: delta 2.75 t. 2H), 2.95 t. 2H), 3.05 s. 3H), 3.1 (t. 2H), 4.3 t. 2H), 6.9 d. 2H), 7.2 (d. 2H), 7.5 (m. 4H), 7.8 (s. 1H), 9.3 (broad s. 1H, exchanges with D2O).

25

Example 9A

This Example prepares a compound outside the scope of the invention (contrast to compound prepared in Example 9, supra.).

Preparation of:

4-Methyl-5-[4-(2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)1,3,4triazolin-3-thione.

Part a:

Preparation of:

5 4-[2-(2-Phenyl-4-oxazolyl)ethoxy]benzoylhydrazine.

A stirred solution of 3.23 g of the intermediate prepared as in Example 2A. Part A in 40 mL MeCH was treated with 5 mL of 80% hydrazine hydrate, 0.1 g NaOMe and heated to reflux for 3 hours. The cooled mixture was diluted with $\rm H_{2O}$ and filtered. The white solid was washed with $\rm H_{2O}$ and dried to provide 3.00 g (97%) of hydrazide mp 157-159°C.

Part B

10

A stirred mixture of 1.89 g of the intermediate prepared as in Example 9A Part A in 40 mL THF was treated 15 with 1.06 g methyl isothiocyanate and heated to reflux for 1 hour. the resulting solution was kept at room temperature 12 nours and evaporated in vacuo. The residue was boiled with EtOH, cooled and filtered. The white solid was washed with Et20 and added to a solution prepared from 0.64 g Na metal/25 20 mL MeOH. The resulting mixture was heated to reflux 3 hours, cooled and treated with 100 mL 2N HCl. The resulting precipitate was filtered, washed with H2O and recrystallized from THF/i-PrOH to provide 2.12 g (91%) of 4-Methyl-5-[4-(2-(2-phenyl-4-oxazclyl)ethoxy/phenyl]1,3,4-triazclin-3-thione 25 mp 138-190°.

5

Anal.: Cal. for C20H18N4O2S: C. 63.47; H. 4.79; N. 14.80. Found: C. 63.45; H. 4.88; N. 14.79. IR: 3120. 1610 cm⁻¹. MS: m/e 378. MMP: delta 3.1 (t. 2H), 3.7 (s. 3H, 4.4 (t. 2H, 7.1 (d. 2H), 7.5 (m. 3H), 7.6 (d. 2H), 7.65 (s. 1H), 8.0 (m. 2H).

Example 10

Preparation of:

4-Methyl-5-{4-((2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)-2-ethyl]1.2.4-triazolin-3-thione.

A suspension of 1.75 gm of the intermediate 15 prepared as in Example 9 Part A and 25 mL THF was treated with 0.3 gm methyl isothiocyanate and refluxed 1 hour. The resulting solution was kept at room temperature 12 hours, and diluted with hexane. The resulting solid was filtered. washed with hexane and recrystallized from EtOH to give 1.34 om of white powder mp 142-144°C. This powder was added to a 20 solution prepared from 0.7 gm Na metal and 20 mL MeOH and refluxed for 2 hours. The cooled solution was acidified with 2N HCl, diluted with H2O and stirred at room temperature overnight. The solid was filtered, washed with HoO, dried and recrystallized from THF-i-PrOH to provide 1.14 gm (56%) 25 of 4-methyl-5-(4-((2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)-2ethyl] 1,2,4-triazolin-3-thione mp 152-154°C.

5

Anal.: Cal. for $C_{22}H_{22}N_4O_2S$: C. 65.00; H. 5.45; N. 13.78. Found: C. 64.71; H. 5.44; N. 13.65. MS: m/e 406. NMR: delta 2.75 (t. 2H), 2.9 (t. 2H), 3.0 (t. 2H), 3.1 (t. 2H), 3.4 (s. 3H), 4.9 (s. 1H. exchanges with D_2O), 6.9 (d. 2H), 7.2 (d. 2H), 7.5 (m. 4H), 7.8 (s. 1H).

Example 11

Preparation of:

5-[4-((2-(2-phenyl-4-oxazolyl)-ethoxy)phenyl)methyl]1,2,410 oxadiazolin-3-thione.

A stirred suspension of 3.37 gm of the intermediate prepared as in Example 1 Part B, 0.84 gm 85% KOH and 30 mL EtCH was treated with 0.6 mL CS2 and heated to reflux 8 hours. The mixture was kept at room temperature overnight, the solvent evaporated in vacuo and the residue treated with 1N HC1. The white solid was filtered, washed with H2O and dried. Chromatography over silica followed by several recrystallizations from THF-hexane provided 1.07 gm (28% of product mp 194-197°C.

Anal.: Cal. for $C_{20}H_{17}N_{3}O_{3}S$: C, 63.31; H, 4.52; N, 11.07. Found: C, 63.60; H, 4.82; N, 1080. MS: m/e 379. IR: 1625 cm⁻¹. NMR: delta 3.1 (t, 2H), 4.05 (s, 2H), 4.3 (t, 2H), 6.9 (d, 2H), 7.2 (d, 2H), 7.5 (m, 4H), 7.8 (s, 1H).

Example 11A

This Example prepares a compound outside the scope of the invention (contrast to compound prepared in Example 11, supra.).

Preparation of:

5-{4-(2-(2-Phenyl-4-oxazolyl)-ethoxy)phenyl-1,3,4-oxadiazole-2-thione.

10

25

A stirred mixture of 4.05 g of the intermediate prepared as in Example 9A, Part A and 75 mL MeOH was treated with 1 mL carbon disulfide, 4.0 g of KOH and heated to reflux for 12 hours. An additional 1 mL carbon disulfide was added and refluxing continued for an additional 24 hours. The mixture was stirred at ambient temperature for 36 hours, neutralized with HOAc and concentrated. The residue was chromatographed to provide 1.73 g (38% of white powder mp 229-231°C).

Anal.: Cal. for C19H15N3O3S: C, 62.45; H, 4.12; N, 11.50. Found: C, 62.66; H, 4.41; N, 11.23. IR: 2878, 1614 cm⁻¹. MS: m/e 365. NMR: delta 3.1 (t, 2H), 3.4 (broad s, 1H, exchanges with D2O), 4.4 (t, 2HO, 7.15 (d, 2H), 7.5 (m, 3H), 7.8 (d, 2H), 8.0 (m, 2H), 8.1 (s, 1H).

-36-

Example 12

Preparation of:

5-[(4-(2-(2-Phenyi-4-oxazolyl)ethoxy:phenyi)methyl]1,2,4-triazolin-3-one.

5

2=== 1

Preparation of:

10

To an ice-cooled suspension of 5.87 g (0.155 mol) of LiAlH4 in 700 mL of Et20 was added a solution of 35.53 g 15 (0.154 mol) of ethyl 2-phenyl-4-oxazoleacetate in 300 mL of Et20 over a 1.5 hour period. The temperature of the reaction during the addition was kept below 15°C. After stirring for 1 hours at 1510 the reaction was decomposed by the addition of 15 mL of EtOAc and 33.5 mL of H₂O. The mixture was 20 filtered through anhydrous Na₂SO₄ and concentrated in vacuo to leave 28.1 g of oil. Distillation of the crude oil gave 2-(2-phenyl-4-oxazolyl)ethanol (23.52 g, 81%, bp 120-122°C/.05-.06 mm) as an oil which solidified on standing. Elemental analysis for $C_{11}H_{11}NO_2$, Calcd.: C, 69.83; H, 5.86; 25 N, 7.40. Found: C, 69.78; H, 5.90; N, 7.49.

• •

-37-

Part P

Preparation of:

5

To a solution of 5.15 g (.0272 mol) of product of Example 12 Part A, 4.83 g (.0363 mol) p-hydroxybenzyl nitrile and 8.23 g ..0313 mol) triphenylphosphine in 85 mL of freshly distilled THF at 0.0 was added 4.70 mL diethyl

azodicarpoxylate over a 15 minute period. The reaction mixture was stirred at 25°C for 16 hours and then treated with 1.5 mL of 30% $\rm H_2O_2$ followed by 100 mL of $\rm Et_2C$. The organic layer was washed successively with 1N NaOH and $\rm H_2O$. After drying over anhydrous $\rm Na_2SO_4$ and filtering the solvent

was removed. Addition of Et₂O precipitated triphenylphosphine oxide which was removed by filtration. The residue after removal of the solvent was chromatographed on silica. Elution with CH₂Cl₂ gave 4-[2-(2-phenylexacelyl)ethoxy]phenyl-acetonitrile (5.46 g, 66%, mp

20 91-83°C).

Elemental analysis for $C_{19}H_{16}N_{2}O_{2}$. Calcd.: C, 74.98; H, 5.30; N, 9.20. Found: C, 75.08; H, 5.38; N, 8.98.

Part C

25 Preparation of:

139

Method 1:

A solution of 1.0 g (3.29 mmol) of product of Example 12 Part 3 and 0.146 mL of anhydrous MeOH in 10 mL of CH2Cl2 at 0°C was saturated with gaseous HCl and kept for 20 hours in the cold. The reaction mixture was evaporated to dryness in vacuo to leave 1.2 g of 4-{2-(2-phenyl-4-oxazolyl)ethoxy}benzeneethanimidic acid methyl ester hydrochloride as a white solid, mp 132-184°C.

10 NMR CDCl3:: delta 3.327 (t, 2H), 4.000 (s, 2H), 4.257 s.3H;, 4.387 t, 2H), 6.911 (d, 2H), 7.359 (d, 2H), 7.543-7.649 m, 2H;, 7.759 (c, 1H), 8.329 (d, 2H), 11.790 (br.s. 1H), 12.783 (br.s., 1H).

15 Method 1:

A stirred mixture of 7.8 g of nitrile from Example 12 Part 5 and 80 mL of MeOH was cooled to 0°C and gaseous HCl was introduced for 1 hour until dissolution occurred. Anhydrous Et₂C (700 mL) was added and the resultant oil was 20 washed with Et₂O and solidified on standing leaving crude 4-[2-(2-phenyl-4-oxazolyl)ethoxy]-benzeneethanimidic acid methyl ester hydrochloride.

Dare T

- 25 Preparation of Example 12:
 - A mixture of 5.8 g of iminoether product of Example 12 Part 2 Method 1, 1.75 g of semicarbazide HCl, 100 mL of Py (pyridine) and 100 mL of DMF (dimethyl formamide) was refluxed for 5 hours. After cooling, H2O was added and the
- mixture was evaporated in vacuo and crystallized from a mixture of MeOH-H2O and washed with CH2Cl2 leaving 1.21 g of 5-[(4-/2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)methyl]-1,2,4-triazolin-3-one as a white solid (20%, mp 222-229°C).

Elemental analysis for C20H18N4O3, Calcd.:

C, 66.29; H, 5.01; N, 15.46. Found: C, 66.14; H, 5.11; N, 15.41. FD-MS m/e 362; NMR (DMSO-d6): delta 2.944 (t, 2H), 3.585 (s, 2H), 4.195 (t, 2H), 6.870 (d, 2H), 7.113 (d, 2H), 7.464-7.482 (m, 3H), 7.898 - 7.928 (m, 2H), 7.983 (s, 1H), 11.104 (s, 1H), 11.198 (s, 1H).

Example 13

Preparation cf:

5-[(4-(2-/2-Phenyl-4-oxazolyl)ethoxy:phenyl)methyl]2,3,4oxadiazolin-3-one.

15 A solution of 1.4 mL of phenyl chloroformate in 20 mL of CH2Cl2 was added to a stirred mixture of 3.45 g of hydrazide from Example 1 Part B, 1.5 mL of Py and 800 ml of CHoClo at 15°C. After stirring for two days at 25°C, 630 mL of solvent was removed and the mixture was stirred for another five days. Methylene chloride was added to bring the total volume to 500 mL and the reaction was washed successively with aqueous NaHCO3, aqueous 5% citric acid, H2O and dried over annydrous NagSO4. Evaporation of the solvent after filtration left 4.9 g of residue which was 25 chromatographed on 120 g of silica. Elution with 1-2% MeOH in CH2Cl2 gave 1.9 g of a mixture of intermediate phenoxycarbonyl hydrazide and product 1,3,4-oxadiazol-2-one. Further elution with 3% MeOH in CH2Cl2 provided 1.3 g of recovered starting hydrazide.

The 1.9 g of the above mixture was dissolved in 175 mL of EtOH and treated with 30 ml of 1N HaOH for 2.5 hours at 25°C. After acidification with aqueous HCl, the solvent was removed and the residue was dissolved in CHCl₃, washed with H2O and brine and dried over anhydrous Na₂SO₄. Removal of the solvent left 2.0 g of white solid which was recrystallized from 50 mL of MeOH to give 1.3 g of 5-[(4-(2-(2-phenyl-4-oxazolyl)-ethoxy)phenyl)methyl]1,3,4-oxadiazolin-

Elemental analysis for C₂₀H₁₇N₃O₄, Calcd.: C, 65.11, H, 4.72, N, 11.56. Found: C, 65.84, H, 4.90, N, 11.34. FD-MS: mie 363; NMF (DMSO-d6): delta (t, 2H), 3.799 (s, 2H), 4.209 (t, 3H), 6.903 (d, 2H), 7.155 (d, 2H), 7.463-7.483 (m, 3H), 7.905 - 7.931 (m, 2H), 7.988 (s, 1H), 12.072 (br.s, 1H).

Example 14

Preparation of:

2-one (56%, mp 142-144°C).

3-[(4-(2-(2-Phenyl-4-oxazolyl)ethoxy)phenyl)methyl]1,2,4-oxadiazolin-5-one.

Part A

20

25 Preparation of:

To a cooled (0°C) solution of 0.88 g of Na in 80 mL of anhydrous MeOH was added 2.67 g cf NH2OH HCl followed by a solution of the iminoether of Example 12 Part C Method 2 in 100 mL of annydrous MeOH. The reaction mixture was allowed to warm to 25°C and was stirred for 18 hours. The residue. after removal of solvent, was partitioned between 200 mL of HoO and 700 mL of EtOAc. The solid was removed by filtration and washed with HoO and EtOAc. The combined organic phases were washed with HoO and combined with the solid. After 10 removal of the solvent, the residue was recrystallized from MeOH. The filtrate was diluted with EtgO and the resulting solid was filtered to give 4.14 g of crude N-hydroxy-4-[2-(2phenyl-4-oxazolyl)ethoxy)benzeneethanimidamide. FD-MS: m/e 15 337.

Part B

Preparation of Example 14:

A mixture of 4.06 g of the amidoxime from Example

14 Part A. 150 mL of THF and 1.98 g of carbonyldiimidazole
was heated at reflux for 7 hours, cooled to 25°C, and stirred
another 16 hours. The solvent was removed in vacuo. The
residue was dissolved in 600 mL of EtOAc, washed with H₂O and
dried over annydrous Na₂SO4. The residue, obtained after

25 filtration and evaporation of the solvent, was recrystallized
from EtOH to give 3.11 g of 3-[(4-(2-(2-phenyl-4oxazolyl)ethoxylphenyl)-methyl]1.2,4-oxadiazolin-5-one (71%,
mp 154.5-157.5°C).

Elemental analysis for C20H17N3O4, Calcd.:

30 C, 66.11; H, 4.72; N, 11.56. Found: C, 66.32; H, 4.77; N, 11.34. IMR (IMSO-d6): delta (t, 2H), 3.747 (s, 2H), 4.210 (t, 2H), 6.906 (d, 2H), 7.167 (d, 2H), 7.464-7.483 (m, 3H), 7.905-7.929 (m, 2H), 7.988 (s, 1H), 12.232 (br.s, 1H).

-42-

Example 15

Preparation of:

5-[(4-(2-(2-phenyl-4-oxazolyl)ethoxy/phenyl)methyl]1,3,4-oxathiazolin-2-one

Parr 1

10 Preparation of:

A solution of 0.5 g of methyl ester of Example 1 Part A, 50 mL of MeOH, 0.2 g of NH4Cl and 40 mL of NH4CH was stirred at 25°C for 48 hours with brief, intermittent warming at 50°C. The MeOH was partially removed, and the reaction mixture was diluted with H2C. The solid precipitate was filtered, washed with H2C and dried to give 4-(2-(2-phenyl-4-oxazolyl)ethoxy)-phenylacetamide (0.39 g, 82%, mp 180-183.5°C).

Elemental analysis for C₁₉H₁₈N₂O₃, Calcd.: C, 70.79; H. 5.63; N. 8.69. Found: C, 70.54; H, 5.72; N. 8.50. FD-MS: m/e 322; MMR (DMSO-d6): delta 2.968 (t, 2H), 3.250 (s, 2H), 4.214 (t, 2H), 6.788 (br.s, 1H), 6.865 (d, 2H),

25 7.350 (d. 2H), 7.354 (br.s. 1H), 7.493-7.504 (m. 3H), 7.928-7.954 (m. 2H), 8.008 (d. 1H).

-43-

Part P

Preparation of Example 15:

To a stirred mixture of 3.6 g of amide of Example 15 Part A and 200 mL of toluene at 82°C was added dropwise 1.05 mL of chlorocarbonylsulfenyl chloride. The reaction was heated for 7 hours at 82°C and stirred an additional 18 hours at 25°C. The volatiles were removed in vacuo, and the residue was partitioned between CHCl3 and H2C. The layers were separated and the aqueous layer was extracted with CHCl3. The combined organic layers were evaporated and chromatographed on 5°C g of silica. Elution with 0.5% MeOH in CH2Cl2 gave 1.7°C solid which was recrystallized from a mixture of acetone and Et2O to give 1.4 g of 5-[(4-(2-(2-phenyl-4-oxazolyl-ethoxy)phenyl/methyl)1,3,4-oxathiazolin-2-one (29%, mp 103-105°C).

Elemental analysis for C2OH16N2O4S, Calcd.: C.

Elemental analysis for C20H16N2O4S, Calcd.: C, 63.15; H, 4.24; N, 7.36. Found: C, 63.01; H, 4.28; N, 7.31. FD-MS: m/e 380; NMR (CDCl3): delta 2.962 (t, 2H), 3.938 (s, 2H), 4.223 (t, 2H), 6.918 (d, 2H), 7.203 (d, 2H), 7.459-20 7.503 (m, 3H), 7.909-7.938 (m, 2H), 7.998 (s, 1H).

Example 16

Preparation of:

3-[(4-(2-(2-pnenyl-4-oxazolyl)ethoxy)phenyl)methyl]1,2,4-25 thiadiazolin-5-one.

-44-

Part A

Preparation of:

5

To a mixture of 4-(2-(2-phenyl-4-

oxazolyl)ethoxy)benzene-ethanimidic acid methyl ester hydrochicride of Example 12 Part C. obtained from 20.0 g of nitrile Example 12 Part B. 3.6 g of NH4Cl and 200 mL of anhydrous MeOH was added 100 mL of anhydrous NH4OH saturated

- with NH3. The reaction mixture was stoppered and stirred at 25°C for 16 hours. The volatiles were removed in vacuo and the solid was treated with H2O and with MeCN and dried to leave 21.4 g of 4-(2-(2-phenyl-4-oxazolyl)-
- ethoxy/benzeneethanimidamide hydrochloride, mp 127-194°C. A 4.94 g portion of solid was dissolved in 50 mL of refluxing MeOH, filtered, and diluted with 80 mL of MeCH. Most of the MeOH was evaporated and the solution was cooled and allowed to crystallize. Filtration gave 4.45 g of 4-(2-/2-pheny)-4-
- oxazolyl ethogy:benzeneethanimidamide hydrochloride as a white solid after washing with EtgO, mp 191-193°C.

Elemental analysis for $C_{19}H_{19}N_3O_2$, Calcd.: C. 63.77; H. 5.63; N. 11.74. Found: C. 63.49; H. 5.72; N. 11.71.

25

Part B

Preparation of Example 16:

To a stirred suspension of 1.9 g of 60% NaH in mineral cil and 440 mL of freshly distilled THF was added 17.0 g of solid crude imidamide hydrochloride of Example 16

Part A. The mixture was stirred for 2.5 hours at 25°C and 25.0 g of diisopropylethyl amine was added followed by 3.70 mL of chlorocarbonylsulfenyl chloride. After stirring for 18 hours, the reaction mixture was poured into H₂O and extracted with EtOAc. The EtOAc layer was washed with H₂O, brine and dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvent, the dark cil was chromatographed on 220 g of silica. Elution with 1% MeOH in CH₂Cl₂ afforded 8.2 g of solid which was recrystallized twice from a mixture of CH₂Cl₂ and hexanes to give 7.40 g of 3-{(4-(2-(2-phenyl-4-oxazolyl ethoxy/phenyl -methyl)1.2.4-thiadiazolin-5-one 41%, mp 160-163°C:

Elemental analysis for C20H17N3O3S, Calcd.: C, 63.31, H, 4.52, N, 11.07. Found: C, 63.10; H, 4.61; N, 11.07. FD-MS: m/e 379; NMR (DMSO-d6): delta 2.991 (t, 2H), 3.746 (9s. 2H), 4.223 (t, 2H), 5.908 (d, 2H), 7.172 (d, 2H), 7.924-7.967 (m, 3H), 8.002 (s, 1H), 12.823 (br.s., 1H).

Example 17

20 Preparation of:

1-[(4-(2-(2-Phenyl-4-oxazolyl)ethoxy)phenyl)methyl]1,2,4-triazolidin-3.5-dione.

-46-

Part A

Preparation of:

5

> To a solution of 72.7 g of alcohol product of Example 9A. Part A. 47.9 of 4-hydroxybenzaldehyde, 104 g triphenyiphosphine and 450 mL of anhydrous THF at -5°C was added 75 g of dietnyl azodicarboxylate over a 20 minute period. The temperature was maintained at 0°C. The cooling bath was removed and the reaction mixture was stirred for 20 hours at 25°C. After the addition of 5 mL of 30% $\rm H_{2}O_{2}$ the reaction mixture was diluted with 1.2 L of Et₂O, washed with 1 N NaOH and H2O and dried over Na2SO4. The solvent was removed and the residue was dissolved in 1 L of Et₂O and 15 cooled to 0°C. The solid which precipitated (Ph3PO) was removed by filtration and the filtrate was concentrated to 600 mL and cooled to 0°C. The precipitate was filtered and recrystallized twice from acetone/H2O to give 4-(2-(2-phenyl-4-oxazolyi)etnoxy:-benzaldenyde (28.9 g, mp 92-97°C). An additional 32.6 of product (total yield 61.5 g, 54%) was obtained from filtrates.

Elemental analysis for C₁₈H₁₅NO₃, Calcd.: C, 73.71; H, 5.15; N, 4.77. Found: C, 73.84; H, 5.34; N, 5.02. FD-MS: m/e 293. NMR (DMSO-d6): delta 3.006 (t, 2H), 4.354 (t, 2H), 7.120 (d, 2H), 7.453-7.485 (m.3H), 7.817 (d, 2H), 7.902-7.932 (m, 2H), 8.018 (s, 1H), 9.820 (s, 1H).

30

-47-

Part P:

Part A. 8.29 g of semicarbazide hydrochloride, 8.14 g of NaOAc and 150 mL of H₂O was heated for 0.75 hours at 100°C with occasional swirling. The heterogenous mixture was diluted with 150 mL of MeOH and allowed to stand at 25°C for 64 hours. The solid was filtered and washed with H₂O, refluxed with 500 mL of MeOH and filtered hot leaving 21.3 g of 4-(2-(2-phenyl-4-oxazolyl)ethoxy)benzaldehyde semicarbazone (89%, m.p. 221-226°C).

Elemental analysis for C₁₉H₁₈N₄O₃, Calcd.: C. 65.13; H. 5.18; N. 15.99. Found: C. 64.91; H. 5.20; N. 15.73.

Part C

Preparation of:

20

15

A mixture of 26.1 g of semicarbazone of Example 17
Part B in 500 mL of THF was treated with 298 mL of a 1N BH3
25 in THF solution. After stirring for 14 hours at 25°C the solution was slowly poured into 600 mL of MeOH. The reaction mixture was evaporated in vacuo to dryness. The solid was

treated twice with 600 mL of MeOH by refluxing and evaporating the volatiles. The residue was then diluted with 400 mL of MeOH, cooled to G.S and filtered leaving 22.4 g Nl [4-(2-(2-phenyi-4-oxazolyl)ethoxy; phenyi]methylsemicarbazide (85%, mp 192-196°C).

Elemental analysis for C₁₉H₂₀N₄O₃, Calcd.: C, 64.76; H, 5.72; N, 15.90. Found: C, 64.58; H, 5.67; N, 15.64. NMR (DMSO-d6): delta 2.951 :t, 2H), 3.655 (d, 2H), 4.203 (t, 2H), 4.823 (br.s. 1H), 5.732 (br.s. 2H), 6.856 (d, 2H), 7.207 d, 2H), 7.468-7.485 :m, 3H), 7.902-7.932 (m, 2H), 7.993 s, 1H).

Part D

Preparation of Example 17:

- A mixture of 11.9 g of semicarbazide from Example 17 Part C. 9.10 g of carbonyldiimidazole. 0.5 mL of triethylamine and 400 mL of anhydrous DMF was stirred at 25°C for 4 days, diluted with 1 L of H₂O and filtered. The filtrate was evaporated. The residue was treated with 100 mL of MeOH and the solid was filtered and dried to give 3.43 g of 1-[(4-(2-(2-pnenyl-4-oxazolyl)ethoxy)phenyl)methyl]1.2.4-triazolidin-3.5-dione (27%, mp 223.5-230°C).
- Elemental analysis for C20H18N4, Calcd.: C, 63.49; H, 4.80; N, 14.81. Found: C, 63.24; H, 4.87; N, 14.80. FD-MS: m/e 378; NMR (DMSO-d6): delta 2.975 (t, 2H), 4.235 (t, 2H), 4.418 :s, 2H), 6.928 (d, 2h), 7.151 (d, 2h0, 7.488-7.504 (m, 3H), 7.926-7.951 (m, 2H), 10.2 (br.s, 1H), 10.9 (br.s, 1H).

30 Example 18

Preparation of:

1-[(4-(2-(2-Phenyl-4-oxazolyl)ethoxy)phenyl)methyl]1,3-diazolidin-2,4,5-trione.

Part A

5 Preparation of:

To a 12.89 g of 60% dispersion of NaH in mineral cil, washed 10 three times with hexanes, was added 100 mL of annydrous DMF The stirred suspension was cooled to 10°C and a solution of 52.1 g of alcohol from Example 9A Part A in 150 mL of anhydrous DMF was added dropwise. One hour after the completion of the addition, a solution of 37.59 g of parafluoro-benzonitrile in 100 mL of anhydrous DMF 15 (dimethylformamide) was added slowly while keeping the reaction mixture at 15-20°C. The reaction temperature was increased to 40°C while the mixture stirred for 4 hours. After the third hour, an additional 1.05 g of 60% NaH 20 dispersion was added. The reaction was allowed to stay at 25°C for 16 hours and was then diluted slowly with 880 mL of H2O. The precipitate which formed was filtered, washed with 1 L of H2O followed by 1 L of hexanes and dried to give 71.8 g of 4-(2-:2-phenyl-4-oxazolyl)ethoxy)benzonitrile (90%, mp 25 114.6-115°C).

WO 96/13264 PCT/US95/14100

-50-

Part 3

Preparation of:

5

A solution of 12.34 g of nitrile from Example 18 Part A in 80 mL of annydrous THF was added to a stirred suspension of 1.70 g of lithium aluminum hydride in 110 mL of annydrous THF cooled to 10°C over a 5 min period. Stirring at 10°C was continued for 1.5 hours and then at 25°C for 20 10 hours. The reaction mixture was decomposed by the sequential addition of 1.8 mL of H2O, 1.3 mL of 5N NaOH and 6.3 ml of The slurry was filtered and the solid was washed with The combined filtrates were evaporated and the residue THF. 15 was dissolved in 500 mL of EtOAc. The solution was washed with H2O and brine, dried over anhydrous Na2SO4, and filtered. Evaporation of the solvent left 12.4 g of amine which was taken up in MeOH and converted to the HCl salt by treatment with a solution of HC1 in Et2C. The residue, after evaporation of the volatiles, was crystallized from a mixture 20 of 60 mL of MeOH and 350 mL of EtOAc. After filtration, the solid was washed with EtOAc and dried to give 11.4 g of 4-[(2-(2-phenyl-4-oxazolyl)ethoxy)-benzene]methyl amine hydrochloride (90%, mp 198-206°C).

25 FD-MS: m/e 294; NMR (DMSO-d6): delta 2.963 (t, 2H), 3.879 (d, 2H), 4.239 (t, 2H), 6.958 (d, 2H), 7.360 (d, 2H), 7.468-7.488 (m, 3H), 7.905-7.930 (m, 2H), 7.997 (s, 1h), 8.271 (br.s., 3H).

30

-51-

Part C

Preparation of:

5

10

A mixture of 10.3 g of free amine of example 18 Part B, 120 mL of H₂O, 120 mL of MeOH and 7.0 mL of 5N HCl was stirred until the amine dissolved and 2.27 g of sodium tyanate was added. The reaction mixture was warmed to 50°C and then allowed to cool to 25°C. After 2.5 hours, the mixture was cooled in an ice bath and filtered. The solid was washed with H₂O and recrystallized from 260 mL of EtOH and 350 mL of H₂O to give 6.05 g of N-4-(2-(2-phenyl-4-oxazolyl)ethoxy)-benzenemethyl urea (61%, mp 191-196°C).

Elemental analysis for C19H19N3O3, Calcd.: C, 67.64; H, 5.68; N, 12.45. Found: C, 67.59; H, 5.75; N, 12.16. FD-MS: m/e 337; NMR (DMSO-d6): delta 2.946 (t, 2H), 4.040 (d, 2h), 4.195 (t, 2H), 5.425 (s, 2H), 6.261 (t, 1H), 6.862 (d, 2H), 7.113 (d, 2HO, 7.464-7.485 (m, 3H), 7.902-

Part D

Preparation of Example 18:

To a solution of 0.38 g of Na in 100 mL of
anhydrous MeOH at 0°C was added 4.5 g of the substituted urea
of Example 19 Part C. After several minutes of stirring, 2.0
mL of diethyl oxalate was added. The cooling bath was
removed and the reaction mixture was stirred for four days.
After the addition of 3 mL of 3N HCl and H2C, the mixture was
filtered. The solid was washed with H2O and recrystallized

form 65 mL of THF and 75 mL of H₂O to give 3.28 g of 1-[(4-(2-phenyl-4-oxazolyl)ethoxy:-phenyl)methyl]1,3-diazolidin-2.4,5-5-trione (63%, mp 217-223°C).

Elemental analysis for C21H17N3O5, Calcd.: C, 64.45; H, 4.38; M, 10.74. Found: C, 64.72; H, 4.52; N, 10.59. NMR (DMSO-d6): delta 2.946 (t, 2H), 4.216 (t, 2H), 4.510 (d, 2H), 5.882 (d, 2HO, 7.209 (d, 2H), 7.464-7.482 (m, 3H), 7.898-7.927 (m, 2H), 7.984 (s, 1H), 12.011 (s, 1H).

10

Example 19

Preparation of:

4-Isopropyl-5-(4-0.2-(2-phenyl-4-oxazolyl)ethoxy(phenyl)methyl; 1.2,4-triazolin-3-one.

15

20

25

A suspension of 4.0 gm of the intermediate prepared as in Example 1 Part B was suspended in 30 mL of THF, treated with 1.3 g of iso-propyl isocyanate and refluxed for 2 hours. The mixture was cooled, diluted with Et20 and filtered. The white solid (3.1g) was collected, washed with Et20 and added to a solution prepared from 4.19 gm of 85% KOH and 100 mL of MeOH. The resulting solution was heated to reflux for 7 days, at which time TLC showed complete consumption of starting material. The cooled solution was acidified with 1N HCl and the resulting precipitate collected by filtration. Purification was effected by sequential chromatography on

silica gel columns, eluting with EtOAc and 30:1 CHCl3/MeOH, respectively to provide 1.5 g (52%) of 4-isopropyl-5-[4-((2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)methyl] 1,2,4-triazolin-3-one as white needles, mp 140-143°C.

Anal. Cal. for C23H24N4O3: C, 68.30; H, 5.98; N, 13.85. Found: C, 68.31; H, 6.10; N, 13.88. IR: 1685cm⁻¹. MS: m/e 404. NMR: 1.3 (d, 2H), 3.09 (t, 2H), 3.84 (s, 2H), 4.01 (septet. 1H), 4.28 (t, 2H), 6.9 (d, 2H), 7.12 (m, 3H), 7.57 (s, 1H), 8.03 (m, 2H), 9.35 (s, 1H, exchanges with D2O).

10

5

Example 20

Preparation of:

4-n-Propyi-5-[4-((2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)-methyl]1.2.4-triazolin-3-one.

15

as in Example 1 Part B was suspended in 30 mL of THF, treated with 1.01 g of n-propyl isocyanate and refluxed for 2 hours. The mixture was cooled, diluted with Et20 and filtered. The white solid (3.3 g) was collected, washed with Et20 and added to a solution prepared from 4.38 gm of 85% KOH and 100 mL of MeOH. The resulting solution was heated to reflux for 48 hours, at which time TLC showed complete consumption of starting material. The cooled solution was acidified with 1% HCl and the resulting precipitate collected by filtration.

Purification was effected by chromatography on silica gel, eluting with CHCl₃ to provide 2.3 g (73%) of 4-n-propyl-5-[4-(-(2-(2-phenyl-4-oxazolyl-ethoxy)phenyl)methyl)1,2,4-triazolin-3-one as white needles, mp 131-132°C.

5 Anal. Cal. for C23H24N4O3: C. 68.30; H. 5.98; N. 13.85. Found: C. 68.25; H. 6.13; N. 13.87. IR: 1694cm⁻¹. MS: m/e 404. NMR: 0.72 (t. 3H), 1.31 (m. 2H), 3.0 (t. 2H), 3.34 (m. 4H), 3.84 (s. 2H), 4.25 (t. 2H), 6.92 (d. 2H), 7.17 (d. 2H), T.54 (m. 3H), 7.97 (m. 2H), 8.02 (s. 1H), 11.45 (s. 1H), exchanges with D2O).

Example 21

Preparation of:

2-Methyl-4-ethyl-5-[4-((2-(2-phenyl-4-

oxazolyl)ethoxy(phenyl)methyl)1.2.4-triazolin-3-one.

A stirred solution of 1.0 gm of the intermediate prepared in Example 2, Part A in 75 mL of DMF under M2 was treated in one portion with .06 gm of 60% of NaH/oil and the resulting mixture allowed to react for 15 minutes. After addition of 0.54 gm of CH3I, the mixture was kept at ambient temperature for 1 hour, poured onto ice and extracted with 100 mL EtOAc. The EtOAc solution was washed with H2O, dried with Ma2SC4 and evaporated. The solid residue was chromatographed over silica (elution with 2% MeOH in CHCl3)

to provide 0.7 gm (67%) of 2-methyl-4-ethyl-5-[4-((2-(2-phenyl-4-oxazolyl)ethoxy/phenyl/methyl)1.2.4-triazolin-3-one as colorless needles, mp 128-130°C.

Anal.: Cal. for C23H24N4O3: C, 68.30; H, 5.98; N, 5 13.85. Found: C, 68.09; H,m 5.88; N, 14.00. Ms: m/e 404. IR: 1690cm⁻¹. NMR: delta 1.0 (t, 3H), 3.07 (t, 2H), 3.25 (s, 3H), 3.3 (q, 2H), 4.26 (t, 2H), 6.88) d, 2h), 7.12 (d, 2H), 7.43 (m, 3H), 7.55 (s, 1H), 3.02 (m, 2H).

10

Example 21A

This Example prepares a compound outside the scope of the invention contrast to compound prepared in Example 21, supra...

15 Preparation of:

4-Phenyl-5-[4-((2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)-methyl]1,2,4-triazolin-3-one.

20

25

A suspension of 3.0 gm of the intermediate prepared as in Example 1 Part B was suspended in 30 mL of THF, treated with 1.4 g of phenyl isocyanate and refluxed for 2 hours. The mixture was cooled, diluted with Et₂O and filtered. The white solid (2.8 g) was collected, washed with Et₂O and added to a solution prepared from 3.87 gm of 85% KOH and 100 mL of MeOH. The resulting solution was heated to reflux for 7

WO 96/13264 PCT/US95/14100

-56-

days, at which time TLC showed complete consumption of starting material. The cooled solution was acidified with 1N HCl and the resulting precipitate collected by filtration.

Purification was effected by recrystallization from MeOH to provide 1.3 g (43%) of product as white needles, mp 179-181°C.

Anal. Cal. for C26H22N4O3: C, 71.22; H, 5.06; N, 12.78. Found: C, 71.11; H, 5.14; N, 12.97. IR: 1719cm⁻¹. M5: m/e 438. IMR: 2.97 (t, 2H), 3.73 (s, 2H), 4.19 (t, 2H), 6.78 (d, 2h), 6.85 (d, 2h), 7.22 (dd, 2H), 7.44 (m, 3H), 7.53 m, 3H, 7.97 (m, 2H), 3.02 (s, 1h), 11.71 (s, 1H, exchanges with D2O).

Testing Methods and Pesults

15

20

25

Compounds were tested for antihyperglycemic activity according to the protocol described in A.M. Gill and T.T. Yen, "Effects of Ciglitazone on Endogenous Plasma Islet Amyloid Polypeptide and Insulin Sensitivity in Obese-Diabetic Viable Yellow Mice" Life Sciences 48, 703-710 (1991). The mice used in these tests were obese-diabetic viable yellow mice form the indeed Lilly colony. They were housed in transparent plastic tages with bedding. Purina Formula Chow 5008 (product of Purina Mills Inc., 717 South Hickory St., Fond Du Lac, WI 54935-5517 USA) and water were available ad libitum. The ambient temperature of the animal room was 25°C and lights were on from 0600 to 1800.

To study the effects of the candidate compounds, twelve male obese-diabetic viable yellow (VY) mice were divided into two groups for each candidate compound. One group was fed mesh or repelletized Purina 5008 Chow and one group was fed the same chow (mammal food) containing the indicated amount of candidate compound as set forth below in

the Table. Body weight and food consumption were monitored and blood samples collected before the experiment was initiated and after 14 days of treatment. In the Table, the blood glucose levels of mice given the test compounds are reported as a percentage of the initial value as compared to untreated controls on day 14 of treatment. Reductions of the initial values by less than 20% are regarded as inactive. The dose is the percent of compound incorporated into the feed mesh or repelletized. The corresponding data for ciglitazone are included for comparison.

-58-

TABLE

Example No.	Dose	BG [₹]	
1	. 05	46%	
2	.03	438	
3	. 23	59	
4	. 05	49.5%	
5	. 03	27.4%	
6	. 05	39.5%	
7	.03	33 <i>ĕ</i>	
c	. 53	70.5%	
8A*	.03	97.6%	
ò	03	55%	
9A*	. 05	82%	
10	.05	46.13	
11	.05	51%	
11A*	. 05	109%	
12	.03	43%	
13	.03	40.7%	
14	. 05	34.73	
15	. 03	40%	
16	. 03	478	
17	. 05	41.8%	
18	. 03	57%	
19	. 03	54.4%	
20	.03	28.2%	
21	. 03	53%	
21A*	.03	òò :2 å	
Ciplicazone**	0.1	64 8	

are comparative Examples to show criticality of structure control experiment

We claim:

- the group consisting of C-substituted pentacycloazole

 pharmacophore containing heteroatoms in the 2.3 and 5

 positions of the pentacycloazole ring and N-alkyl-substituted pentacycloazole pharmacophore containing nitrogen or other hetero atoms in positions selected from the group consisting of the 2 and 4 positions of the pentacycloazole ring and the 3 position of the pentacycloazole ring.
 - I. The compound of Claim I, wherein the antihyperglycemic compound is a C-substituted pentacycloazole pharmacophore.

15

- 3. The compound of Claim 2, wherein the C-substituted pentacycloazole is a 2,3,5-triazole.
- 4. The compound of Claim 2, wherein the C-20 substituted pentacycloazole is a 2,3-diazole.
 - 5. The compound of Claim 2, wherein the C-substituted pentacycloazole is a 2.5-diazole.
- 25 6. The compound of Claim 1, wherein the C-substituted pentacycloazole is a 1,3,4-oxathiazolin-5-one.
 - 7. The compound of Claim 2, wherein the C-substituted pentacycloazole is a 1,2,4-thiodiazolin-5-one.
- 30
- 8. The compound of Claim 1, wherein the antihyperglycemic compound is a N-alkyl-substituted pentacycloazole pharmacophore.

9. A C-substituted pentacycloazole pharmacophore containing heteroatoms in the 1.5 and 5 positions of the pentacycloazole ring having the structure $Ar-(G)_{n-1}-(CH_2)_{m-1}-CH_2Z$ wherein Z is the C-substituted pentacycloazole ring containing heteroatoms in the 2, 3 and 5 positions of the pentacycloazole ring, G is oxygen or sulfur, m and n are whole numbers ranging from 1 to 2 and Ar is a suitable aromatic system.

10

5

10. A C-substituted pentacycloazole pharmacophore of Claim 3, where Ar has the structure

15

wherein Ar' is a divalent arylene molety, G' is oxygen or sulfur. Y is selected from the group consisting of substituted or unsubstituted aryl, cycloalkyl and heterocyclic and p is a number from 1 to 6.

20

- 11. The C-substituted pentacycloazole of Claim 10, wherein p is 1. 3' is oxygen, Ar' is p-phenylene, m and m are 1 and Y is 1-phenyl-4-oxazoly1.
- 25 12. The compound of Claim 11. wherein C-substituted pentacycloazole is a 2,3,5-triazole.
 - 13. The compound of Claim 11, wherein C-substituted pentacycloazole is a 2,3-diazole.

30

14. The compound of Claim 11, wherein C-substituted pentacycloazole is a 2,5-diazole.

- 15. The compound of Claim II, wherein C-substituted pentacycloazole is a 1,3,4-oxathiazolin-5-one
- 16. The compound of Claim 11, wherein C5 substituted pentacycloazole is a 1,2,4-thiadiazolin-5-one.
- pharmacophore containing nitrogen atoms in positions selected from the group consisting of the 2 and 4 positions of the pentacycloazole ring and the 3-position of the pentacycloazole ring having the structure Ar-(G)_{n-1}-(CH₂)_{m-1}-CH₂2 wherein 2 is the M-substituted pentacycloazole ring, G is oxygen or sulfur, m and n are whole numbers ranging from 1 to 2 and Ar is a suitable aromatic system.

15

20

- 18. The N-substituted pentacycloazole pharmacophore of Claim 17, wherein Ar has the structure y- (CH2)p-(G')-Ar'- wherein Ar' is a divalent arylene moiety, G' is oxygen or sulfur, Y is selected for the group consisting of substituted or unsubstituted aryl, cycloalkyl and heterocyclic and p is a number from 1 to 6.
- 19. The M-substituted pentacycloazole of Claim 18, wherein p is 2. G' is oxygen, Ar' is p-phenylene, m and n are 25 l and Y is 2-phenyl-4-oxazolyl.
 - 20. A compound selected from the group consisting of (A) thru (T);
- 30 (A) 4-Methyl-5-[4-((2-(2-pnenyl-4oxazolyl:ethoxy:pnenyl:methyl]]],2,4-triazolin-3-one;
 (B) 4-n-Butyl-5-[4-((2-(2-pnenyl-4oxazolyl)ethoxy:phenyl:methyl]]],2,4-triazolin-3-one;

```
(C)
                4-Methy1-5-[4-((2-(2-pheny1-4-
      oxazclyl)ethoxy/phenyl)methyl]1,2,4-triazolin-3-thione;
      (D) 1(3)H=5=i4=(:2=(2=pnenyl=4=
      oxazolyl)ethoxy/phenyl)methyl]1,2,4-triazolin-3-thione;
  5
                3-Methylthio-4-methyl-5-[4-((2-(2-phenyl-4-
      oxazolyl)ethoxy/phenyl)methyl]1,2;4-triazoline;
                4-Methy1-5-[4-((2-(2-pheny1-4-
      oxazolyl)ethoxy)phenyl)2-oxaethyl]1,2,4-triazolin-3-one;
                4-Methyl-5-((2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)-
      (G)
 10
      1-ethyl]1.2.4-triazolin-3-one;
                4-Methyl-5-[4-][2-]2-phenyl-4-
     oxazolyl ethomyphenyl.-2-ethyl)l,l,4-triazolin-3-thione;
     (I)
               5-[4-((3-(2-phenyl-4-oxazolyl)-
     ethomy(pneryl)methyl]1,2,4-oxadiazolin-3-thione:
15
               5-[(4-(2-(2-Phenyl-4-
     oxazolyl)ethoxy)phenyl)methyl]1,2,4-triazolin-3-one;
               5-[(4-(2-{2-Phenyl-4-
     oxazolyl:ethoxy)phenyl)methyl)2,3,4-oxadiazolin-2-one;
               3-[(4-(2-(2-Phenyl-4-
20
     oxazolyllethoxy/phenyl/methyl]1,2,4-oxadiazolin-5-one;
               5-{(4-(2-(2-pheny1-4-
     oxazolyl.etnomy:phenyl/methyl)l,3,4-oxathlazolin-2-one;
              3-[(4-(2-(2-pheny1-4-
    oxazolyl)ethoxy)phenyl)methyl]1,2,4-thiadiazolin-5-one;
25
              1-[(4-(2-(2-Pheny1-4-
    oxazolyl:ethoxy)phenyl)methyl]1,2,4-triazolidin-3,5-dione:
              1-{(4-(2-(2-Phenyl-4-
    oxazolyl ethoxy/phenyl:methyl]1,3-diazolidin-2,4,5-trione:
              4-Isopropy1-5-{4-({2-{2-pheny1-4-
30
    oxazolyl.ethoxy/phenyl/methyl] 1.2.4-triazolin-3-one;
    (R)
              4-n-Propyl-5-[4-((2-(2-phenyl-4-
    oxazolyl.ethomy:phenyl)methyl)1,2,4-triazolin-3-one; and
```

- (S) 2-Methyl-4-ethyl-5-[4-((2-(2-phenyl-4-oxazolyl)ethoxy/phenyl)methyl]1,2,4-triazolin-3-one; and
- (T) 4-Ethyl-5-[4-((2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)methyl] 1,2,4-triazolin-3-one.

5

- 21. The compound (T) of Claim 20: 4-Ethyl-5-[4-((2-(2-phenyl-4-oxazolyl)ethoxy)phenyl)methyl] 1.2,4-triazolin-3-one.
- pharmaceutically acceptable carrier, diluent or excipient and an effective amount of an antihyperglycemic compound selected from the group consisting C-substituted pentacycloazole pharmacophore containing heteroatoms in the 2.3 and 5 position of the pentacycloazole ring and N-substituted pentacycloazole pharmacophore containing nitrogen atoms in positions selected from the group consisting of the 2 and 4 positions of the pentacycloazole ring and the 3 position of the pentacycloazole ring.

20

- 23. The composition of Claim 22, wherein the antihyperglycemic compound is a C-substituted pentacycloazole pharmacophore.
- 25 24. The composition of Claim 13, wherein the C-substituted pentacycloazole is a 2,3,5-triazole.
- 25. The composition of Claim 22, wherein the antihyperglycemic compound comprises from 1 to 99 weight percent of the composition.
 - 26. A method of reducing the hyperglycemia associated with non-insulin dependent diabetes mellitus which

-64-

method comprises orally administering to a mammal a therapeutic dose of a antihyperglycemic compound selected from the group consisting C-substituted pentacycloazole pharmacophore containing heteroatoms in the 2,3 and 5 position of the pentacycloazole ring and N-substituted pentacycloazole pharmacophore containing nitrogen atoms in position selected from the group consisting of the 2 and 4 positions of the pentacycloazole ring the 3 position of the pentacycloazole ring.

10

5

27. The process of Claim 16, wherein the mammal is a human.

International application No. PCT/US95/14100

	SSIFICATION OF SUBJECT MATTER			
1PC(6)	:A61K 31/42; C07D 263/30 :514/374, 548/235, 237, 239			
US CL According	to International Patent Classification (IPC) or to both	national classification and IPC		
<u> </u>	LDS SEARCHED			
Minimum d	ocumentation searched (classification system followed	by classification symbols)		
U.S. :	514/374, 548/235, 237, 239; A61K 31/420			
Documenta	tion searched other than minimum documentation to the	extent that such documents are included	in the fields searched	
		·		
Electronic o	tata base consulted during the international search (na	me of data base and, where practicable	, search tenns used)	
CAS On	ine structure search			
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.	
X Y	US, A, 5,334,604 (GOLDSTEIN et al.) 02 August 1994, see abstract, example 2 (column 9, lines 14-column 10, line 3)		1, 2, 8, 9-11, 17-19, 22-23, 25-27	
			3-7, 12-14, 21, 26	
Υ	US, A, 4,763,956 (SCHNUR) 28 J 4, 5.	June 1988, see claims 1,	1, 2, 8	
X	US, A, 5,066,662 (HOBBS et al.) abstract, column 3, lines 10-42 and 11, 12, 25-32, 51-63; column 8, l	d 61; column 7, lines 7, 8,	1, 2, 4-6, 8-10, 14, 15, 17, 22- 23, 25	
×	US, A, 5,185,353 (TURNBULL et See column 2, table 2, compounds 32-33.		1, 28, 22-23, 25	
X Funt	ner documents are listed in the continuation of Box C.	See patent family annex.		
A. do	* Special categories of cited documents: *T* *Interpolation of cited documents of cited documents: *A* *A* *A* *Comment defining the general state of the art which is not considered to be of particular relevance *A* *Comment published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention			
.E. co	rlier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be conside when the document is taken alone	e claimed invention cannot be red to involve an inventive step	
cit spe	ecial reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive	step when the document is	
me	cument referring to an oral disclosure, use, exhibition or other	combined with one or more other such being obvious to a person skilled in th	e art	
the	priority date claimed	*& document member of the same patent	-	
Date of the actual completion of the international search 28 DECEMBER 1996 Date of mailing of the international search report 01 FEB 1996				
Name and r Commissio Box PCT	Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Authorized officer D.G. BAUS jd			
_	Washington, D.C. 20231 Facsimile No. (703) 305-3230 Telephone No. (703) 308-1235			
	SA/210 (second sheet)(July 1992)*	7		

International application No. PCT/US95/14100

		·		
C (Continuat	tion). DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropriate, of the relevant passages US, A, 5,254,576 (ROMINE et al.) 19 October 1993, see entire document. US, A, 5,239,080 (SOHDA et al.) 24 August 1993. See column		Relevant to claim No.	
4			1-27 1-5, 9-14, 22-26	
x				
Y	2, lines 55-57, 62-63, 66-67 and column 1, lines 45-47	7.	8, 17-21	
	•			
		•		
			12.0	

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

1000010 -14/0 061336441 I

International application No. PCT/US95/14100

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)				
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:				
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)				
This International Searching Authority found multiple inventions in this international application, as follows:				
Please See Extra Sheet.				
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.				
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.				
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:				
No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-11, 17-19, 22-27 (part of each), and 12-14, 21				
Remark on Protest				
No protest accompanied the payment of additional search fees.				

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*

International application No. PCT/US95/14100

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claim(s) 1-11, 17-19, and 22-27 (part of each), 12-14, and 21, drawn to pentacyclazoles (PCA) where one is oxazole and the other (if present) is 1,2,3-triazole or 1,2,4-triazole.

Group II, claim(s) 1-11, 17-20, and 22-27 (part of each), drawn to one PCA is oxathiazoline.

Group III, claim(s) 1-11, 17-19, and 22-27 (part of each), drawn to one of the PCA's is 1,2,3 thiadiazole.

Group IV, claim(s) 1-11, 17-20, and 22-27 (part of each), 15, drawn to one of the PCA's is 1,2,4 thiadiazole and the other isn't II.

Group V, claim(s) 1-11, 17-20, and 22-27 (part of each), drawn to one PCA is 1,2,4 oxadiazoles and the other isn't II-IV

Group VI, claims 1-11, 17-19 (part of each), drawn to one of the PCA's is 1,2,5 thiadiazoles and the other isn't II-V.

Group VII, claims 1-11, 17-20, and 22-27 (part of each), drawn to one of the PCA's is 1,3,4 thiadiazoles and the other isn't II-VI.

Group VIII, claims 1-11, 17-20, and 22-27 (part of each), and 14, drawn to one of the PCA's is 1,3,4 oxadiazoles and the other is not II-VII.

Group IX, claims 1-11, 17-19, 22-27 (part of each), drawn to one of the PCA's is thiazole and the other isn't II-VIII.Group X, claims 1-11, 17-19, and 22-27 (part of each), drawn to PCA is 1,2,3 triazole and not in II-IX.

Group XI, claims 1-11, 17-19, and 22-27 (part of each), drawn to PCA is 1,2,4 triazole and not in II-X.

Group XII, claims 1-11, 17-19, and 22-27 (part of each), drawn to PCA is 1,3 diazole (imidazoles) and not in II to XI.

Group XIII, claims 1-11, 17-19, and 22-27 (part of each), drawn to PCA is 1,2 diazole (pyrazole) and not in II to XIII.

Group XIV, claims 1-11, 17-19, and 22-27 (part of each), drawn to PCA's not provided above.

The inventions listed as Groups I-XIV do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: They do not have a common "special technical feature" not shared with Goldstein (see abstract) or Sohda. Indeed some claims (eg. 1) are so obscure it appeared there is no common technical feature, i.e. either drawn a C substituted PCA or a N alkyl substituted PCA, not having a technical feature at all common to claim 1. The heteroatoms aren't even recited, other than N in the N alkyl substituted PCA. The claim is literally impossible of complete search in the PTO search files.