"WHAT LIES BEHIND YOU AND WHAT LIES IN FRONT OF YOU, PALES IN COMPARISON TO WHAT LIES INSIDE OF YOU."

- RALPH WALDO EMERSON

BAYESIAN STATISTICS

CLASS 2

WHAT DID WE LEARN FROM CLASS 1?

- Terminology: Prior, Sampling distribution, Posterior
- How to define problem (decide sampling distribution of data, define priors for parameters, use pymc to generate posterior distribution of parameters)
- How to use posterior to answer questions about the parameter
- How data (sample size) and prior contribute to the posterior
- Why prior is VERY important when sample size is small

GOALS FOR TODAY

- MCMC Markov Chain Monte Carlo
 - What it is
 - Has it converged
 - Options to help convergence
- Options in running MCMC to get posterior distribution
- Another in-class example

SIMULATING A DISTRIBUTION

ANOTHER DISTRIBUTION

- > y=rbinom(2000,100,0.3)
- > hist(y)
- > plot(y,type='l')

SKEWED DISTRIBUTION

- > y=rbeta(2000,2,50)
- > hist(y)
- > plot(y,type='l')

pymc uses the Hamiltonian Monte Carlo method for its Markov Chain and its adaptive variant called the no U-turn sampler (NUTS). For an interesting read, see https://towardsdatascience.com/python-hamiltonian-monte-carlo-from-scratch-955dba96a42d/

Stan also uses NUTS.

MCMC

Posterior distribution

CONVERGENCE

NONCONVERGENCE

FIXES

- Improper posterior or bad prior
 - Fix: New prior distribution
- Hasn't converged yet
 - Let the chain run longer
- Too much autocorrelation in chain
 - Thin the chain

OPTIONS FOR PYMC CODE

```
n = 100
y = 40
# Model
with pm.Model () as binom model:
    p = pm.Beta ("p", alpha=1, beta=1) ### Prior distribution
    y_obs = pm.Binomial("y_obs", n=n, p=p, observed=y) ### Sampling distribution
    trace = pm.sample (draws=3000, # samples after burn-in
    tune=3000, # Warmup iterations
    chains=4, # Number of Markov chains
    thin=3, # Thinning factor (really doesn't work)
    random seed=98763,
    return inferencedata=True ) ### specify information
az.summary(trace) ### Summary
p1 = trace.posterior["p"].values.flatten()
thin val=3
p_post = p1[::thin_val] ### would use this for inference
```

Creates four chains; each chain has 3000 values (it automatically throws away burn-in), thin does not work.... Need to thin after you pull off values (if autocorrelation is an issue)

p1 has 12000 observations (3000x4) and p_post has 4000 observations (after thinning)

TRACEPLOT OF FOUR CHAINS

Code

```
import seaborn as sns
```

```
df_p = az.extract(trace, var_names=["p"]).to_dataframe()
```

```
sns.set(style="whitegrid")
```

```
plt.figure(figsize=(10, 6))
```

```
sns.lineplot(data=df_p, x="draw", y="p", hue="chain",
alpha=0.8)
```

```
plt.xlabel("Draw")
```

```
plt.ylabel("p")
```

plt.title("Traceplot for p")

plt.legend(title="Chain")

plt.show()

Traceplot

DIAGNOSTICS

az.summary(trace)

					mcse_mean				
p	0.403	0.048	0.313	0.491	0.001	0.0	5323.0	8853.0	(1.0)

Want this to be close to 1 (this means convergence); if greater than 1.1, then there could potentially be a problem

DIAGNOSTICS

az.summary(trace)

:	mean	sd	hdi_3%	hdi_97%	mcse_mean	mcse_sd	ess_bulk_	ess tail	r_hat
р	0.403	0.048	0.313	0.491	0.001	0.0	5323.0	8853.0	1).0

Effective sample size...bigger is better. If either of these are small, then there is a potential issue with independence of samples (ess_bulk looks at the middle range of your posterior values while ess_tail looks at the tails of the distribution). FIX if these are small: consider thinning.

ANOTHER POTENTIAL WARNING

Divergences after tuning: if your chains are diverging after tuning, you can try to increase target_accept, increase burn-in period or try changing prior distributions.

VALUE AT RISK (VAR)

ESTIMATE VALUE AT RISK

- Recall from Simulation and Risk calculating Value at Risk (VaR)
- Say we are interested in estimating $VaR_{0.01}$ for Apple stock (AAPL) in Rate of Change (ROC) for one day
- If we assume Rate of Change (R_t) follows a Normal distribution with mean μ and standard deviation σ
- We then need to assign a distribution to μ and σ^2
 - Assume μ is distributed as Normal(0,100)
 - Assume σ^2 is distributed as Inv-Gamma(0.001,0.001)
- Once we get posterior for μ and σ^2 , we can use this to get the 1st quantile

```
import pandas as pd
import yfinance as yf
import math
# Define the ticker symbol
ticker = 'AAPL'
# Download stock data
data = yf.download(ticker, start='2024-01-01')
# Calculate returns
data['aapl r'] = data['Close'].pct change()
# Select last 200 rows of Close and aapl r columns
stocks = data[['Close', 'aapl r']].tail(200)
```

```
import scipy.stats as stats
# Define the data
n = len(stocks)
y = stocks['aapl_r'].values
```


Looks like we have convergence

az.summary(trace)

]:		mean	sd	hdi_3%	hdi_97%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
	mu	0.001	0.001	-0.001	0.003	0.0	0.0	4486.0	2875.0	1.0
	sigma2	0.000	0.000	0.000	0.000	0.0	0.0	4080.0	3166.0	1.0

USING POSTERIOR INFORMATION:

Posterior samples

USING POSTERIOR INFORMATION:

Posterior samples

[31]:		mu	sigma2
	0	-0.001192	0.000179
	1	-0.000943	0.000188
	2	-0.001685	0.000180
	3	-0.001862	0.000179
	4	-0.002084	0.000178

Posterior distribution of VaR0.01

```
posterior_mu = trace.posterior["mu"].values.flatten()
posterior_sigma2= trace.posterior["sigma2"].values.flatten()
# Calculate 1% quantile
one_per = stats.norm.ppf(0.01, loc=posterior_mu,
scale=np.sqrt(posterior_sigma2))
# Plot histogram of 1% quantile
plt.hist(one_per, bins=30, density=False, alpha=0.5)
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.title('Histogram of 1% Quantile')
plt.grid(True)
plt.show()
```


USE THIS INFO FOR IN-CLASS ASSIGNMENT