实验四 插值与拟合

1 实验目的

- 1. 深入熟悉掌握 MATLAB 的插值函数: interp1, pchip, spline; 拟合函数: polyfit, regress, nlinfit;
- 2. 学习化工领域经验模型的参数拟合方法;

2 MATLAB 语法要点

2.1 插值函数的使用

MATLAB 中的函数 **interp1** 可实现各种一维插值运算。该指令调用格式为: yi = interp1(x, y, xi, 'method')

功能:根据已知的输入离散数据 x、y、xi,用 method 方法进行插值,然后输出 xi 对应的值 yi 。

其中:

- 1) x、y为样本点, yi 为未知点自变量值 xi 对应的函数值。
- 2) 字符串 method 是用来选择插值算法的,它可以取:

nearst 最近插值,插值函数值与最近节点的函数值相等;

linear 即分段线性插值,当省略 method 时,默认为 linear 线性插值;

pchip 即分段三次埃米特插值,插值函数的函数值和一阶导数值连续;

spline 即分段三次样条插值,插值函数的函数值、一阶和二阶导数值均

连续。

除了通用的一维插值函数 interp1,对于分段埃米特插值和样条插值,MATLAB 还提供了 pchip 和 spline 两个函数。两个函数均有两种使用方法:

yi=pchip(x,y,xi) yi=spline(x,y,xi) pp=pchip(x,y) pp=spline(x,y) 可以通过以下例题对各种插值方法进行比较

```
x = [0:5:20];
y = x.^3;
xx = 1:0.1:20;
y1 = interp1(x, y, xx, 'nearst');
y2 = interp1(x, y, xx, 'linear');
y3 = interp1(x, y, xx, 'pchip');
y4 = pchip(x, y, xx);
y5 = spline(x, y, xx);
plot(x,y,'o',xx,[y1;y2;y3;y4;y5])
legend('Orignal data', 'nearst', 'linear', 'pchip', 'pchip', 'spline')
```

2.2 拟合函数的使用

polyfit: 在 MATLAB 中有专用的最小二乘法拟合函数, polyfit 是多项式函数 拟合命令,它只能拟合一元多项式。调用格式: p = polyfit(x,y,n)。函数 polyval 常常与 polyfit 联合使用,计算拟合多项式在指定点的值。其调用格式为: y=polyval(p,x)。

regress: 使用命令 regress 可以实现多元线性拟合,多元线性关系式

$$y = b_1 x_1 + b_2 x_2 + \dots + b_n x_n = \sum_{i=1}^{n} b_i x_i$$

其中,bi 为待定系数,当有 m 组自变量 x 和因变量 y 的数据时,可以得到 m 个方程组成的方程组,写成矩阵形式 Y = X*B。

可以通过 B=regress(Y, X)来拟合系数 B,其中 X 为 $m\times n$ 的自变量矩阵,Y 为 $m\times 1$ 的因变量向量。如果多元线性关系式中包含常数项 bk,则令 xk=1 即可,通常令 x1=1,则 b1 为常数项。

nlinfit: nlinfit 函数的简单调用格式为:

beta = nlinfit(x,y,fun,beta0)

这里输入数据 x, y 分别为 m×n 矩阵和 m 维列向量,表示自变量数量为 n 个,因变量为 m 个 (m 次实验结果)。beta0 是回归系数的初值, beta 是估计出的回归系数。fun 是函数句柄,该函数定义的待拟合的非线性函数,其声明语句具有如下形式:

function y=fun(b,x)

其中返回值 y 为在 x 处的计算值,b 表示待回归参数的向量,b 的初始值为 beta0,x 为自变量。

3 实验内容

3.1 Wilson 方程参数的计算

下表是甲醇(1)和甲乙酮(2)体系的一组数据,用此数据求算 Wilson 方程的参数。

x1	γ1
0.076	1.6225
0. 197	1. 4959
0.356	1.3470
0. 498	1. 2313
0.622	1. 1447
0. 747	1.0733
0.829	1.0369
0. 936	1.0060

Wilson 方程如下:

$$\ln \gamma_1 = -\ln \left(x_1 + \Lambda_{12}x_2\right) + x_2 \left(\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{x_2 + \Lambda_{21}x_1}\right)$$

$$\ln \gamma_2 = -\ln \left(x_2 + \Lambda_{21}x_1\right) + x_1 \left(\frac{\Lambda_{21}}{x_2 + \Lambda_{21}x_1} - \frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2}\right)$$

3.2 Margules 方程参数的计算

两参数Margules方程表达式如下:

$$\ln \gamma_1 = (A_{12} + 2(A_{21} - A_{12})x_1)x_2^2$$

$$\ln \gamma_2 = (A_{21} + 2(A_{12} - A_{21})x_2)x_1^2$$

根据汽-液平衡数据可以计算出方程参数。

活度系数系数可通过 $\gamma_i = \frac{y_i P}{x_i P_i^s}$ 来计算,其中P为系统总压, P_i^s 为组分i的饱和蒸汽压,

可通过Antoine公式 $\lg P_i^s = A - \frac{B}{t+C}$ 计算。

3.2.1 直接进行非线性最小二乘拟合

已知丙酮(1)-水(2)体系的相关数据如下:

Antoine常数	Α	В	С
丙酮(1)	7.11714	1210.595	229.664
水 (2)	8.07131	1730.630	233.426

25℃下的汽-液平衡数据:

P, mmHg	X1	Y1
23.70	0.0	0.0
50.10	0.0194	0.5234
61.80	0.0289	0.6212
81.30	0.0449	0.7168
91.10	0.0556	0.7591
126.10	0.0939	0.8351
126.60	0.0951	0.8416
144.30	0.1310	0.8618
150.60	0.1470	0.8768
159.80	0.1791	0.8782
176.10	0.2654	0.8856
184.40	0.3538	0.8954
199.10	0.5808	0.9158
213.50	0.7852	0.9421
229.60	1.0000	1.0000

试根据以上数据拟合Margules方程中的参数A₁₂和A₂₁。

3.2.2 直接拟合与线性化之后进行拟合的对比

Margules方程进行线性化之后的表达式如下:

$$\frac{\ln \gamma_1}{x_2^2} = A_{12} + 2(A_{21} - A_{12})x_1$$

$$\frac{\ln \gamma_2}{x_1^2} = A_{21} + 2(A_{12} - A_{21})x_2$$

甲醇(1)与水(2)混合物在 101.3kPa 总压下的汽-液平衡数据见附表。且 知甲醇的饱和蒸汽压可按 $p_l^s = \exp(16.5723-3626.55/(T-34.29))$ 计算, 水的饱和

蒸汽压可按 $p_2^s = \exp(16.2884 - 3816.44/(T - 46.13))$ 计算,式中 p^s 单位为 kPa;温度 T 单位为 K。试确定该物系的 Margules 方程参数。

t/℃	摩尔分数 x1	摩尔分数 y1
96.4	0.02	0.134
93.5	0.04	0.230
91.2	0.06	0.304
89.3	0.08	0.365
87.7	0.10	0.418
84.4	0.15	0.517
81.7	0.20	0.579
78.0	0.30	0.665
75.3	0.40	0.729
73.1	0.50	0.779
71.2	0.60	0.825
69.3	0.70	0.870
67.5	0.80	0.915
66.0	0.90	0.958
65.0	0.95	0.979