MEMORY DESIGN

- Available Memory chip Size M_{N. W}: N × W
- Required memory size: N¹ × W¹, Where N¹ ≥ N
 and W¹ ≥ W
- Required number of $M_{N, W}$ chips: $p \times q$, Where $p = [N^1/N]$ and $q = [W^1/W]$

There are 3 types of organizations of $N^1 \times W^1$ that can be formed using $N \times W$

- N¹ = N and W¹ > W => increasing the word size of the chip
- N¹ > N and W¹ = W => increasing the number of words in the memory
- $N^1 > N$ and $W^1 > W =>$ increasing both the number of words and number of bits in each word.

There are different types of organization of N¹ x W¹ – memory using N x W –bit chips

How many 1024x 8 RAM chips are needed to provide a memory capacity of 2048 x 8?

Case 1:
If
$$N' > N \& W' = W$$
Increase number of words by the factor of $p = \frac{N'}{N}$

How many 1024x 4 RAM chips are needed to provide a memory capacity of 1024 x 8? Case 2:

If N' = N & W'> W
Increase the word size of a Memory by a factor of
$$q = \frac{W'}{W}$$

How many 1024x 4 RAM chips are needed to provide a memory capacity of 2048 x 8?

Memory design – Increasing the word size

- Problem 1
- Design 128 × 16 bit RAM using 128 × 4 bit RAM
- Solution: p = 128 / 128 = 1; q = 16 / 4 = 4
- Therefore, p × q = 1 × 4 = 4 memory chips of size 128 × 4 are required to construct 128 × 16 bit RAM

S.No	Memory Type	N×W	N ¹ × W ¹	р	q	p * q	x	у	Z	Total
1	RAM	128 × 4	128 × 16	1	4	4	7	0	0	7

x – number of address lines y (p = 2^y) – to select one among the same type of memory z – to select the type of memory

Component	Hexadecim	al address						A	dd	res	s I	Bus	3					
	From	То	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RAM 1.1	0000	007F										•	•	9	•	9	9	9
RAM 1.2	0000	007F										X	X	X	X	X	X	X
RAM 1.3	0000	007F										X	X	x	X	X	X	x
RAM 1.4	0000	007F										X	X	x	X	X	X	x

Substitute 0 in place of x to get 'From' address and 1 to get 'To' address

Memory design – Increasing the word size

Memory Design – Increasing the number of words

- Problem 2
- Design 1024 × 8 bit RAM using 256 × 8 bit RAM
- Solution: p = 1024 / 256 = 4; q = 8 / 8 = 1
- Therefore, p × q = 4 × 1 = 4 memory chips of size 256 × 8 are required to construct 1024 × 8 bit RAM

S.NO	Memory	NxW	$N^1 \times W^1$	P	q	p * q	X	y	Z	Total
1	RAM	256 × 8	1024 × 8	4	1	4	8	2	0	10
2										
3										
4										

Component	Hexadecim	al address						A	dd	res	ss I	Bus	S						
	From	То	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
RAM 1	0000	00FF							0	0	10	1	•	9	•	9	9	9	
RAM 2	0100	01FF							0	1	X	X	X	X	X	X	X	X	
RAM 3	0200	02FF							1	0	X	X	X	x	x	X	X	x	
RAM 4	0300	03FF							1	1	X	X	X	X	X	x	X	X	

Substitute 0 in place of x to get 'From' address and 1 to get 'To' address

Memory Design – Increasing the number of words

Design with gates

- Problem 3
- Design 256 × 16 bit RAM using 128 × 8 bit RAM chips

S.NO	Memory	NxW	$N^1 \times W^1$	P	q	p * q	X	y	Z	Total
1	RAM	128 × 8	256 × 16	2	2	4	7	1	0	8
2										
3										
4										

		_								_					_		_	_	
Component	Hexadecim	al address						A	ıdd	res	ss F	Bus	3						
	From	То	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
RAM 1.1	0000	007F									0	X	X	X	X	X	X	X	
RAM 1.2	0000	007F									0	X	X	X	X	X	X	X	
RAM 2.1	0800	00FF									1	X	X	X	x	X	X	X	
RAM 2.2	0800	00FF									1	X	X	X	x	X	X	X	

- Problem 4
- Design 256 × 16 bit RAM using 256 × 8 bit RAM chips and 256 × 8 – bit ROM using 128 × 8 – bit ROM chips.

- Problem 4
- Design 256 × 16 bit RAM using 256 × 8 bit RAM chips and 256 × 8 – bit ROM using 128 × 8 – bit ROM chips.

- Problem 4
- Design 256 × 16 bit RAM using 256 × 8 bit RAM chips and 256 × 8 – bit ROM using 128 × 8 – bit ROM chips.

S.NO	Memory	NxW	N ¹ x W ¹	P	q	p * q	X	y	Z	Total
1	RAM	256 × 8	256 × 16	1	2	2	8	0	1	9
2	Rom	128 × 8	256 × 8	2	1	2	7	1	1	9
3										
4										

Component	Hexadecim	al address						A	dd	res	ss I	3us	S						
	From	То	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
RAM 1.1	0000	00FF								0	X	X	X	X	X	X	X	X	
RAM 1.2	0000	00FF								0	X	X	X	X	X	X	X	X	
ROM 1	0100	017F								1	0	x	X	X	x	X	X	X	
ROM 2	0180	01FF								1	1	X	x	X	x	X	X	X	

- Problem 5
- A computer employs RAM chips of 128 x 8 and ROM chips of 512 x 8. The computer system needs 256 bytes of RAM, 1024 x 16 of ROM, and two interface units with 256 registers each. A memory mapped I/O configuration is used. The two higher order bits of the address bus are assigned 00 for RAM, 01 for ROM, and 10 for interface registers.
- a. Compute total number of decoders are needed for the above system?
- b. Design a memory-address map for the above system
- c. Show the chip layout for the above design

Requirements

S.NO	Memory	NxW	N ¹ x W ¹	P	q	p * q	X	y	Z	Total
1	RAM	128 × 8	256 × 8	2	1	2	7	1	2	10
2	ROM	512 × 8	1024 × 16	2	2	4	9	1	2	12
3	Interfa ce	256		2	1	2	8	1	2	11
4										

q is 1 always for interfaces.

Number of registers = 2^x

P = number of interfaces

Number of data lines = size of registers

Component	Hexadecima	l Address			Д	d d	res	ss E	3us	S					
	From	То	15 - 12	11	10	9	8	7	6	5	4	3	2	1	0
RAM1	0000	007F		0	0	0	0	0	X	Х	X	X	X	X	Х
RAM2	0200	027F		0	0	1	0	0	X	Х	X	X	X	X	Х
ROM1.1	0400	05FF		0	1	0	X	Х	X	Х	X	X	X	X	Х
ROM1.2	0400	05FF		0	1	0	X	X	X	Х	X	X	X	X	Х
ROM2.1	0600	07FF		0	1	1	X	X	X	Х	X	X	X	X	Х
ROM2.2	0600	07FF		0	1	1	X	X	X	X	X	X	X	X	Х
Interface1	0800	08FF		1	0	0	0	X	X	X	X	X	X	X	Х
Interface2	0A00	0AFF		1	0	1	0	X	X	X	X	X	Х	X	x

Example

A computer employs RAM chips of 1024 x 8 and ROM chips of 2048 x 4. The computer system needs 2K bytes of RAM, and 2K bytes of ROM and an interface unit with 256 registers each. A memory-mapped I/O configuration is used. The two higher -order bits of the address bus are assigned 00 for RAM, 01 for ROM, and 10 for interface.

- a). How many RAM and ROM chips are needed?
- b). How many lines of the address bus must be used to access Computer system memory? How many of these lines will be common to all chips?
- c). How many lines must be decoded for chip select? Specify the size of the decoder
- d). Draw a memory-address map for the system and Give the address range in hexadecimal for RAM, ROM
- e). Develop a chip layout for the above said specifications

Example 2

A computer employs RAM chips of 1024 x 8 and ROM chips of 2048 x 4. The computer system needs 2K x 16 of RAM, and 2K x 16 ROM and an interface unit with 256 registers each. A memory-mapped I/O configuration is used. The two higher -order bits of the address bus are assigned 00 for RAM, 01 for ROM, and 10 for interface..

- a). How many RAM and ROM chips are needed?
- b). How many lines of the address bus must be used to access total memory? How many of these lines will be common to all chips?
- c). How many lines must be decoded for chip select? Specify the size of the decoder
- d). Draw a memory-address map for the system.
- e). Draw a memory-address map for the system and Give the address range in hexadecimal for RAM, ROM
- f). Develop a chip layout for the above said specifications

References

Text Book(s)

- M. M. Mano, Computer System Architecture, Prentice-Hall, 2004
- J. P. Hayes, Computer system architecture, McGraw Hill,2000