Фізичний факультет

Звіт

По лабораторній роботі 3 курсу «Основи електроніки»

Складання якоїсь фігні

Роботу виконав: Максимук В.С. Група: 5-Б Викладачі: Єрмоленко Р.В. Мягченко Ю.О.

Укладач: Максимук В.С.

I-72 Звіт. Походження сигналів через пасивні лінійні чотириполюсники / укл. Максимук В.С.

-К: КНУ ім. Т. Шевченка, 2021. - с. (Укр. мов.)

Наведено загальний звіт виконання роботи з моделювання електронних схем у програмі $Ni\ Multisim^{TM}$.

Зміст

- 1. Вступ
- 2. Теоретичні відомості
- 3. Хід роботи
 - 1. Встановити ПЗ Arduino IDE. Blink.
 - 2. Розібратися зі схемою підключення RGB діода.
 - 3. Виконати підключення лінійного індикатора SHB5R. Написати програму керування.
 - 4. Зібрати схему подільника напруги з фоторезистором та подати з нього сигнал на аналоговий вхід плати контролера. Написати програму, котра буде зчитувати значення напруги з подільника та надсилати отримані значення в термінал. Додати до схеми підключення лінійного індикатору таким чином, щоб індикатор демонстрував рівень освітленості фоторезистора.
 - 5. Замінити фоторезистор термістором таким чином, щоб лінійний індикатор був чутливий до температури термістора.
 - 6. Зібрати схему з датчиком Холла. В якості індикатора рівня магнітного поля використати лінійний індикатор SHB5R.
- 4. Висновки

Вступ

Мета роботи: вивчення функцій роботи з платою Arduino, її властивостей, методики застосування для аматорського конструювання

Прилади: макетна плата, плата Arduino Uno, Multi-function Shield, термістор, резистори, фоторезистор, датчик Холла, RGB діод, датчик температури, лінійний індикатор.

Теоретичні відомості

Макетна плата — універсальна друкована плата для складання і моделювання прототипів електронних пристроїв.

Плата Arduino Uno - паратна обчислювальна платформа для аматорського конструювання, основними компонентами якої ϵ плата мікроконтролера з елементами вводу/виводу та середовище розробки Processing/Wiring на мові програмування, що ϵ спрощеною підмножиною C/C++.

RGB Діод

Назва RGB пов'язано з першими буквами трьох кольорів в англійському алфавіті: R - червоний, G - зелений, B - синій.

Головною особливістю RGB-світлодіодів виступає оптичний принцип формування будь-якого відомого кольору за допомогою трьох базових кольорів. Управління кожним кольором дає можливість отримувати різноманітні кольори.

Лінійний індикатор - це кілька незалежних світлодіодів в одному корпусі, викладених у формі шкали. Світлодіодні шкальні індикатори випускаються на різну кількість елементів індикації, в залежності від призначення.

Терморезистор, термістор — напівпровідниковий резистор, активний електричний опір якого залежить від температури.

Фоторезистор — фотоелектричний напівпровідниковий приймач +- випромінювання, принцип дії якого грунтується на ефекті фотопровідності — явищі зменшення опору напівпровідника у разі збудження носіїв заряду світлом. Характеризується однаковою провідністю незалежно від напрямку протікання струму.

Датчик Холла -це датчик, що працює на ефекті Холла, суть якого полягає в тому, що при при переміщенні в магнітне поле деякого провідника з постійним струмом, в цьому провіднику виникає поперечна різниця потенціалів.

Резистор — пасивний елемент електричного кола, призначений для використання його електричного опору. Основною характеристикою резистора є величина його електричного опору. Для випадку лінійної характеристики, значення електричного струму крізь резистор в залежності від електричної напруги, описується законом Ома.

Хід роботи

1.Blink

ПЗ встановлено. Blink виконано.

Відео присутнє.

2. *RGB Діод*

Виконано.

Присутній фото результат.

Відео немає.

3.Лінійного індикатора SHB5R

Виконано.

Результат присутній на відео.

4.Фоторезистор

Виконано.

Результат присутній на відео.

5. Термістор

Виконано.

Результат присутній на відео.

6. Датчик Холла

Виконано.

Результат присутній на відео.

Висновок

Виконавши цю лабораторну роботи ми навчились працювати з ПЗ Arduino IDE, різними датчиками: термістор, фоторезистор, датчик Холла.

Також ми розібралися з роботою лінійного індикатора та іншого обладнання яке представлено в теоретичних відомостях.

ДЯКУЮ ЗА НАБОРЧИК!!!