

SWE4001 – System Programming Module 3: Assembler Lesson 6 of 9: Machine independent features of Assembler

Outline

- Machine Independent Assembler Features
 - Literals
 - Symbol Defining Statements
 - Expressions
 - Program Blocks
 - Control Sections and Program Linking

Literals

- Design idea
 - Let programmers write the value of a <u>constant</u> operand as a part of the instruction that uses it
 - Avoid having to define the constant elsewhere in the program and make up a label for it
- Example (Fig. 2.10)

```
45 001A ENDFIL LDA =C'EOF'
215 1062 WLOOP TD =X'05'
```


4 A literal is identified with the prefix =

45 001A

ENDFIL

LDA = C'EOF'

032010

 Specifies a 3-byte operand whose value is the character string EOF.

215 1062

WLOOP

TD

=X'05'

E32011

Specifies a 1-byte literal with the hexadecimal value 05

5	COPY	START	0
10	FIRST	STL	RETADR
13		LDB	#LENGTH
14		BASE	LENGTH
15	CLOOP	+JSUB	RDREC
20		LDA	LENGTH
25		COMP	#0
30		JEQ	ENDFIL
35		+JSUB	WRREC
40		J	CLOOP
45	ENDFIL	LDA	=C'EOF'
50		STA	BUFFER
55		LDA	#3
60		STA	LENGTH
65		+JSUB	WRREC
70		J	@RETADR
93		LTORG	
95	RETADR	RESW	1
100	LENGTH	RESW	1
105	BUFFER	RESB	4096
106	BUFEND	EQU	*
107	MAXLEN		BUFEND - BUFFER

115	. READ REC	ORD INTO BUFFER
120	•	
125	RDREC CLEAR	X
130	CLEAR	A
132	CLEAR	S
133	+LDT	MAXLEN
135	RLOOP TD	INPUT
140	JEQ	RLOOP
145	RD	INPUT
150	COMPR	A,S
155	JEQ	EXIT
160	STCH	BUFFER, X
165	TIXR	T
170	JLT	RLOOP
175	EXIT STX	LENGTH
180	RSUB	
185	INPUT BYTE	X'F1'

```
195
200
               WRITE RECORD FROM BUFFER
205
210
         WRREC
                  CLEAR X
212
                  LDT
                          LENGTH
215
         WLOOP
                  TD
                        = x' 05'
220
                  JEQ
                          WLOOP
225
                  LDCH
                          BUFFER, X
230
                        = x' 05'
                  WD
235
                  TIXR
                          T
                  JLT
240
                          WLOOP
245
                  RSUB
255
                          FIRST
                  END
```

- The difference between literal operands and immediate operands
 - ⊚ =, #
 - Immediate addressing, the operand value is assembled as part of the machine instruction, no memory reference.
 - With a literal, the assembler generates the specified value as a constant at some other memory location. The address of this generated constant is used as the TA for the machine instruction, using PC-relative or base-relative addressing with memory reference.

Literal - Implementation

- Literal pools
 - Normally literals are placed into a pool at the end of the program
 - See Fig. 2.10 (END statement)
 - In some cases, it is desirable to place literals into a pool at some other location in object program
 - Use assembler directive LTORG: create a literal pool that contains all of the literal operands used since the previous LTROG, and place it where LTORG was encountered
 - Reason: keep literal operand close to the instruction

5	0000	COPY	START	0	
10	0000	FIRST	STL	RETADR	17202D
13	0003		LDB	#LENGTH	69202D
14			BASE	LENGTH	
15	0006	CLOOP	+JSUB	RDREC	4B101036
20	A 000		LDA	LENGTH	032026
25	000D		COMP	#0	290000
30	0010		JEQ	ENDFIL	332007
35	0013		+JSUB	WRREC	4B10105D
40	0017		J	CLOOP	3F2FEC
45	001A	ENDFIL	LDA	=C'EOF'	032010
50	001D		STA	BUFFER	0F2016
55	0020		LDA	#3	010003
60	0023		STA	LENGTH	0F200D
65	0026		+JSUB	WRREC	4B10105D
70	002A		J	@RETADR	3E2003
93			LTORG		
	002D	*	=C'EOF'	•	454F46
95	0030	RETADR	RESW	1	
100	0033	LENGTH	RESW	1	
105	0036	BUFFER	RESB	4096	
106	1036	BUFEND	EQU	*	
107	1000	MAXLEN	EQU	BUFEND -	BUFFER

115	•	READ :	RECORD	INTO	BUFFER	
120	•					
125 1036	RDREC	CLEA	R X		B4	10
130 1038		CLEA	R A		B4	100
132 103A	•	CLEA	R S		B4	40
133 103C		+LDT	#MAX	LEN	75	5101000
135 1040	RLOOP	TD	INP	UT	E3	32019
140 1043		JEQ	RLO	OP	33	32FFA
145 1046		RD	INP	UT	DE	32013
150 1049		COMP	$\mathbf{R} \mathbf{A}, \mathbf{S}$	3	AC	04
155 104B		JEQ	EXI	T	33	32008
160 104E		STCH	BUI	FER,	s 57	C003
165 1051		TIXR	T		В8	350
170 1053		JLT	RLO	OP	3E	32FEA
175 1056	EXIT	STX	LEN	GTH	13	34000
180 1059		RSUB			41	0000
185 105C	INPUT	BYTE	X'F1	L <i>'</i>	F1	

```
195
200
              WRITE RECORD FROM BUFFER
205
210 105D WRREC CLEAR X
                                  B410
212 105F
                LDT
                        LENGTH
                                  774000
                                  E32011
215 1062 WLOOP
                TD = X' 05'
220 1065
                JEQ
                                  332FFA
                        WLOOP
                        BUFFER, X 53C003
225 1068
                LDCH
230 106B
                      = x' 05'
                                  DF2008
                WD
235 106E
                                  B850
                TIXR
                        T
240 1070
                        WLOOP
                                  3B2FEF
                JLT
245 1073
                                  4F0000
                RSUB
255
                END
                        FIRST
    1076 *
               = x' 05'
                                  05
```

- When to use LTORG
 - The literal operand would be placed too far away from the instruction referencing.
 - © Cannot use PC-relative addressing or Base-relative addressing to generate Object Program.
- Most assemblers recognize duplicate literals.
 - By comparison of the character strings defining them.
 - =C'EOF' and =X'454F46'

- Allow literals that refer to the current value of the location counter.
 - Such literals are sometimes useful for loading base registers.

```
LDB =*
```

- ; register B=beginning address of statement=current LOC BASE *
- ; for base relative addressing
- If a literal =* appeared on line 13 or 55
 - Specify an operand with value 0003 (Loc) or 0020 (Loc).

4 Literal table (LITTAB)

- © Contains the literal name (=C'EOF'), the operand value (454F46) and length (3), and the address (002D).
- Organized as a hash table.
- Pass 1, the assembler creates or searches LITTAB for the specified literal name.
- Pass 1 encounters a LTORG statement or the end of the program, the assembler makes a scan of the literal table.
- Pass 2, the operand address for use in generating OC is obtained by searching LITTAB.

- Users can define labels on instructions or data areas
 - The value of a label is the address assigned to the statement
- Users can also define symbols with values
 symbol EQU value
 - value can be constants, other symbols, expressions
 - Making source program easier to understand
 - No forward reference

Example 1:

	MAXLEN	EQU		4096	
133		+LDT		#MAXLE	:N
Example	e 2:			+LDT	#4096
	BASE	EQU	R1		
	COUNT	EQU	R2		
	INDEX	EQU	R3		

Example 3:

MAXLEN EQU BUFEND-BUFFER

- Allow the programmer to define symbols and specify their values.
 - Assembler directive EQU.
 - Improved readability in place of numeric values.

```
+LDT #4096

MAXLEN EQU BUFEND-BUFFER (4096)

+LDT #MAXLEN
```

- Use EQU in defining mnemonic names for registers.
 - Registers A, X, L can be used by numbers 0, 1, 2.

```
RMO 0, 1 A EQU 0

RMO A, X X EQU 1

L EQU 2
```

The standard names reflect the usage of the registers.

```
BASE EQU R1
COUNT EQU R2
INDEX EQU R3
```

- 4 Assembler directive ORG
 - Use to indirectly assign values to symbols.

ORG value

- The assembler resets its LOCCTR to the specified value.
- ORG can be useful in label definition.

All terms used to specify the value of the new symbol --- must have been defined previously in the program.

BETA EQU ALPHA

ALPHA RESW 1

Need 2 passes

 All symbols used to specify new location counter value must have been previously defined.

Forward reference

ALPHA EQU BETA

BETA EQU DELTA

DELTA RESW 1

Need 3 passes

2.3.3 Expressions

- 4 Allow arithmetic expressions formed
 - $_{\odot}$ Using the operators +, -, \times , /.
 - Division is usually defined to produce an integer result.
 - Expression may be constants, user-defined symbols, or special terms.
 - 106 1036 BUFEND EQU *
 - Gives BUFEND a value that is the address of the next byte after the buffer area.
- 4 Absolute expressions or relative expressions
 - A relative term or expression represents some value
 (S+r), S: starting address, r: the relative value.

2.3.3 Expressions

107 1000 MAXLEN EQU BUFEND-BUFFER

- Both BUFEND and BUFFER are relative terms.
- The expression represents absolute value: the difference between the two addresses.
- 9 Loc =1000 (Hex)
- The value that is associated with the symbol that appears in the source statement.
- BUFEND+BUFFER, 100-BUFFER, 3*BUFFER represent neither absolute values nor locations.

Symbol tables entries

Symbol	Туре	Value	
RETADR	R	0030	
BUFFER	R	0036	
BUFEND	R	1036	
MAXLEN	A	1000	

SYMTAB

Name	Value
COPY	0
FIRST	0
CLOOP	6
ENDFIL	1A
RETADR	30
LENGTH	33
BUFFER	36
BUFEND	1036
MAXLEN	1000
RDREC	1036
RLOOP	1040
EXIT	1056
INPUT	105C
WREC	105D
WLOOP	1062

LITTAB

C'EOF	454F46	3	002D
X'05'	05	1	1076

- The source program logically contained main, subroutines, data areas.
- In a single block of object code.
- More flexible (Different blocks)
 - Generate machine instructions (codes) and data in a different order from the corresponding source statements.

Program blocks

Refer to segments of code that are rearranged within a single object program unit.

4 Control sections

Refer to segments of code that are translated into independent object program units.

- Three blocks, Figure 2.11
 - Default (USE), CDATA (USE CDATA), CBLKS (USE CBLKS).
 - Assembler directive USE
 - Indicates which portions of the source program blocks.
 - At the beginning of the program, statements are
 assumed to be part of the default block.
 - Lines 92, 103, 123, 183, 208, 252.
- Each program block may contain several separate segments.
 - The assembler will rearrange these segments to gather together the pieces of each block.

Line	Source	statement	t
5	COPY	START	0
10	FIRST	STL	RETADR
15	CLOOP	JSUB	RDREC
20		LDA	LENGTH
25		COMP	#0
30		JEQ	ENDFIL
35		JSUB	WRREC
40		J	CLOOP
45	3 blocks: FIL	LDA	=C'EOF'
50	Default (0)	STA	BUFFER
55	CDATA (1)	LDA	#3
60	CBLKS (2)	STA	LENGTH
65		JSUB	WRREC
70		A /	@RETADR
92		USE	CDATA
95	RETADR	RESW	1 (Figure 2.11)
100	LENGTH	RESW	1 (119410 2.11)
103		USE	CBLKS
105	BUFFER	RESB	4096
106	BUFEND	EQU	*
107	MAXLEN	EQU	BUFEND - BUFFER

115 .	READ RECORD INTO BUFFER
120 .	
123	USE
125	RDREC CLEAR X
130	CLEAR A
132	CLEAR S
133	+LDT #MAXLEN
135	RLOOP TD INPUT
140	JEQ RLOOP
145	RD INPUT
150	COMPR A,S
155	JEQ EXIT
160	STCH BUFFER, X
165	TIXR T
170	JLT RLOOP
175	EXIT STX LENGTH
180	RSUB
183	USE CDATA
185	INPUT BYTE X'F1'

195	•		
200	. WRITE	RECORD	FROM BUFFER
205	•		
208		USE	
210	WRREC	CLEAR	X
212		LDT	LENGTH
215	WLOOP	TD	=X'05'
220		JEQ	WLOOP
225		LDCH	BUFFER, X
230		WD	=X'05'
235		TIXR	T
240		JLT	WLOOP
245		RSUB	
252		USE	CDATA
253		LTORG	
255	END	FIRS	ST

- Pass 1, Figure 2.12
 - The block number is started form 0.
 - A separate location counter for each program block.
 - The location counter for a block is initialized to 0 when the block is first begun.
 - Assign each block a starting address in the object program (location 0).
 - Labels, block name or block number, relative addr.
 - Working table is generated

Block name	e Block number	Address	s End	Length	1
default	0	0000	0065	0066	(0~0065)
CDATA	1	0066	0070	000B	(0~000A)
CBLKS	2	0071	1070	1000	(0~0FFF)

Line	Loc/B	lock	Sou	Object code		
5 10 15 20	0000 0000 0003 0006	0 0 0	COPY FIRST CLOOP	START STL JSUB LDA	0 RETADR RDREC LENGTH	17 <mark>2</mark> 063 4E2 021 032060
25 30 35 40	0009 000C 000F 0012	0 0 0		COMP JEQ JSUB J	#0 ENDFIL WRREC CLOOP	29 <mark>0</mark> 000 33 <mark>2</mark> 006 4B203B 3F2FEE
45 50 55 60	0015 0018 001B	0 0 0	ENDFIL	LDA STA LDA	=C'EOF' BUFFER #3	03 <mark>2</mark> 055 0F2 <mark>056</mark> 01 <mark>0</mark> 003
65 70 92	001E 0021 0024 0000	0 0 0 1		STA JSUB J USE	LENGTH WRREC @RETADR CDATA	0F2048 4B2029 3E203F
95 100 103	0000 0000	1 1 2	RETADR LENGTH	RESW RESW USE	1 1 CBLKS	
105 106 107	0000 1000 1000	2	BUFFER BUFEND MAXLEN	RESB EQU EQU	4096 * BUFEND-BUFFER	

110			··			AT T 1717/
110			•			
115				SUBROUT	INE TO READ	RECORD INTO BUFFER
120						
123	0027	0		USE		
125	0027	0	RDREC	CLEAR	X	B410
130	0029	0		CLEAR	A	B400
132	002B	0		CLEAR	S	B440
133	002D	0		+LDT	#MAXLEN	75 <mark>4</mark> 01000
135	0031	0	RLOOP	TD	INPUT	E32038
140	0034	0		JEQ	RLOOP	332FFA
145	0037	0		RD^{\sim}	INPUT	DB <mark>2</mark> 032
150	003A	0		COMPR	A,S	A004
155	003C	0		JEQ	EXIT	332008
160	003F	0		STCH	BUFFER, X	57 <mark>A</mark> 02F
165	0042	0		TIXR	T	B8 <mark>5</mark> 0
170	0044	0		JLT	RLOOP	3B2FEA
175	0047	0	EXIT	STX	LENGTH	13201F
180	004A	0		RSUB		4F0000
183	0006	1		USE	CDATA	11 0000
185	0006	1	INPUT	BYTE	X'F1'	F1
105						——————————————————————————————————————

195 200 205			•	SUBROUTI	NE TO WRITE	RECORD FROM BUFFER
208	004D	0		USE		
210	004D	0	WRREC	CLEAR	X	B410
212	004F	0		LDT	LENGTH	772017
215	0052	0	WLOOP	TD	=X'05'	E3201B
220	0055	0		JEQ	WLOOP	332FFA
225	0058	0		LDCH	BUFFER, X	53A016
230	005B	0		WD	=X'05'	DF2012
235	005E	0		TIXR	T	B850
240	0060	0		JLT	WLOOP	3B2FEF
245	0063	0		RSUB		4F0000
252	0007	1		USE	CDATA	11 0000
253				LTORG		
	0007	1	*	=C'EOF		454F46
	000A	1	*	=X'05'		05
255				END	FIRST	

Figure 2.12 Program from Fig. 2.11 with object code.

- Pass 2, Figure 2.12
 - The assembler needs the address for each symbol relative to the start of the object program.
 - Loc shows the relative address and block number.
 - Notice that the value of the symbol MAXLEN (line 70) is shown without a block number.

```
20 0006 0 LDA LENGTH 032060 0003(CDATA) +0066 =0069 =TA using program-counter relative addressing TA - (PC) =0069-0009 =0060 =disp
```

- Separation of the program into blocks.
 - Because the large buffer (CBLKS) is moved to the end of the object program.
 - No longer need extended format, base register, simply a
 LTORG statement.
- No need Modification records.
 - Improve program readability.
 - Figure 2.13
 - Reflect the starting address of the block as well as the relative location of the code within the block.
- Figure 2.14
 - Loader simply loads the object code from each record at the dictated.
 - © CDATA(1) & CBLKS(1) are not actually present in OP.

Figure 2.13 Object program corresponding to Fig. 2.11.

Figure 2.14 Program blocks from Fig. 2.11 traced through the assembly and loading processes.

4 Control section

- Handling of programs that consist of multiple control sections.
- © Each control section is a part of the program.
- © Can be assembled, loaded and relocated independently.
- [®] Different control sections are most often used for subroutines or other logical subdivisions of a program.
- The programmer can assemble, load, and manipulate each of these control sections separately.
- More Flexibility then the previous.
- [®] Linking control sections together.

- External references (external symbol references)
 - Instructions in one control section might need to refer to instructions or data located in another section.
- Figure 2.15, multiple control sections.
 - Three sections, main COPY, RDREC, WRREC.
 - Assembler directive CSECT.
 - Assembler directives EXTDEF and EXTREF for external symbols.
 - The order of symbols is not significant.

External Definition and References

External definition

- EXTDEF name [, name]
- EXTDEF names symbols that are defined in this control section and may be used by other sections

External reference

- EXTREF name [,name]
- EXTREF names symbols that are used in this control section and are defined elsewhere

COPY	START	0
	EXTDEF	BUFFER, BUFEND, LENGTH
	EXTREF	RDREC, WRREC (symbol name)

Line Source	statement
-------------	-----------

5 6 7	COPY	START EXTDEF EXTREF	0 BUFFER, BUFEND, I RDREC, WRREC	COPY FILE FROM INPUT TO OUTPUT LENGTH
10	FIRST	STL	RETADR	SAVE RETURN ADDRESS
15	CLOOP	+JSUB	RDREC	READ INPUT RECORD
20		LDA	LENGTH	TEST FOR EOF (LENGTH = 0)
25		COMP	#0	
30		JFQ	FNDFIL	EXIT IF EOF FOUND
35		+JSUB	WRREC	WRITE OUTPUT RECORD
40		J	CLOOP	LOOP
45	ENDFIL	LDA	=C'EOF'	INSERT END OF FILE MARKER
50		STA	BUFFER	
55		LDA	#3	SET LENGTH = 3
60		STA	LENGTH	
65		+JSUB	WRREC	WRITE EOF
70		J	@RETADR	RETURN TO CALLER
95	RETADR	RESW	1	
100	LENGTH	RESW	1	LENGTH OF RECORD
103		LTORG		
105	BUFFER	RESB	4096	4096-BYTE BUFFER AREA
106	BUFEND	EQU	*	
107	MAXLEN	EQU	BUFEND-BUFFER	

109	RDREC	CSECT		
110	•			
115		SUBROUTINE	E TO READ RECORD	INTO BUFFER
120				
122		EXTREF	BUFFER, LENGTH,	BUFEND
125		CLEAR	X	CLEAR LOOP COUNTER
130		CLEAR	A	CLEAR A TO ZERO
132		CLEAR	S	CLEAR S TO ZERO
133		LDT	MAXLEN	
135	RLOOP	TD	INPUT	TEST INPUT DEVICE
140		JEQ	RLOOP	LOOP UNTIL READY
145		RD	INPUT	READ CHARACTER INTO REGISTER A
150		COMPR	A,S	TEST FOR END OF RECORD (X'00')
155		JEO	EXIT	EXIT LOOP IF EOR
160		+STCH	BUFFER, X	STORE CHARACTER IN BUFFER
165		TIXR	T	LOOP UNLESS MAX LENGTH
170		JLT	RLOOP	HAS BEEN REACHED
175	EXIT	+STX	LENGTH	SAVE RECORD LENGTH
180		RSUB		RETURN TO CALLER
185	INPUT	RYTE	X'F1'	CODE FOR INPUT DEVICE
190	MAXLEN	WORD	BUFEND-BUFFER	
		ONE CONTRACTOR	70.000	

193	WRREC	CSECT		
195	•			
200		SUBROUTI	NE TO WRITE RECOR	RD FROM BUFFER
205				
207		EXTREF	LENGTH, BUFFER	
210		CLEAR	X	CLEAR LOOP COUNTER
212		+LDT	LENGTH	
215	WLOOP	TD	=X'05'	TEST OUTPUT DEVICE
220		JEQ	WLOOP	LOOP UNTIL READY
225		+LDCH	BUFFER, X	GET CHARACTER FROM BUFFER
230		WD	=X'05'	WRITE CHARACTER
235		TIXR	T	LOOP UNTIL ALL CHARACTERS
240		JLT	WLOOP	HAVE BEEN WRITTEN
245		RSUB		RETURN TO CALLER
255		END	FIRST	

Figure 2.15 Illustration of control sections and program linking.

Figure 2.16, the generated object code.

```
15 0003 CLOOP +JSUB RDREC 4B100000
160 0017 +STCH BUFFER,X 57900000
```

- The LOC of all control section is started form 0
- RDREC is an external reference.
- The assembler has no idea where the control section containing RDREC will be loaded, so it cannot assemble the address.
- The proper address to be inserted at load time.
- Must use extended format instruction for external reference (M records are needed).

190 0028 MAXLEN WORD BUFEND-BUFFER

An expression involving two external references.

Line	Loc	So	urce staten	ient	Object code
5	0000	COPY	START	0	
6			EXTDEF	BUFFER, BUFEND, L	ENGTH
7			EXTREE	RDREC, WRREC	
10	0000	FIRST	STL	RETADR	172027
15	0003	CLOOP	+JSUB	RDREC	4B <mark>1</mark> 00000
20	0007		LDA	LENGTH	03 <mark>2</mark> 023
25	000A		COMP	#0	29 <mark>0</mark> 000
30	000D		JEQ	ENDFIL	33 <mark>2</mark> 007
35	0010		+JSUB	WRREC	4B <mark>1</mark> 00000
40	0014		J	CLOOP	3F2FEC
45	0017	ENDFIL	LDA	=C'EOF'	03 <mark>2</mark> 016
50	001A		STA	BUFFER	0F <mark>2</mark> 016
55	001D		LDA	#3	010003
60	0020		STA	LENGTH	0F200A
65	0023		+JSUB	WRREC	4B <mark>1</mark> 00000
70	0027		J	@RETADR	3E <mark>2</mark> 000
95	002A	RETADR	RESW	1	
100	002D	LENGTH	RESW	1	
103			LTORG		
	0030	*	=C'EOF'		454F46
105	0033	BUFFER	RESB	4096	
106	1033	BUFEND	EQU	*	
107	1000	MAXLEN	EQU	BUFEND-BUFFER	

109	0000	RDREC	CSECT		
110					
115		9.	SUBROUT	INE TO READ RECOR	D INTO BUFFER
120		7 <u>4</u>			
122			EXTREF	BUFFER, LENGTH, BU	JFEND
125	0000		CLEAR	Х	B410
130	0002		CLEAR	· A	B400
132	0004		CLEAR	S	B440
133	0006		CLDT	MAXLEN	77 <mark>2</mark> 01F
135	0009	RLOOP	TD	INPUT	E3 <mark>2</mark> 01B
140	000C		JEQ	RLOOP	33 <mark>2</mark> FFA
145	000F		RD	INPUT	DB <mark>2</mark> 015
150	0012		COMPR	A,S	A0 <mark>0</mark> 4
155	0014		JEQ	EXIT	33 <mark>2</mark> 009
160	0017		+STCH	BUFFER, X	57 <mark>9</mark> 00000
165	001B		TIXR	T	B8 <mark>5</mark> 0
170	001D		JLT	RLOOP	3B <mark>2</mark> FE9
175	0020	EXIT	+STX	LENGTH	13 <mark>1</mark> 00000
180	0024		RSUB	12-3-34-3-11-34-34-3-3-3-3-3-3-3-3-3-3-3-3	4F <mark>0</mark> 000
185	0027	INPUT	BYTE	X'F1'	F1
190	0028	MAXLEN	WORD	BUFEND-BUFFER	000000

193	0000	WRREC	CSECT		
195 200 205			SUBROUT	INE TO WRITE RECORD	FROM BUFFER
207			EXTREF	LENGTH, BUFFER	
210	0000		CLEAR	X	B410
212	0002		+LDT	LENGTH	77 <mark>1</mark> 00000
215	0006	WLOOP	TD	=X'05'	E3 <mark>2</mark> 012
220	0009		JEQ	WLOOP	33 <mark>2</mark> FFA
225	000C		+LDCH	BUFFER, X	53 <mark>9</mark> 00000
230	0010		WD	=X'05'	DF <mark>2</mark> 008
235	0013		TIXR	T	в8 <mark>5</mark> 0
240	0015		JLT	WLOOP	3B <mark>2</mark> FEE
245	0018		RSUB		4F <mark>0</mark> 000
255			END	FIRST	11
	001B	*	=X'05'		05

Figure 2.16 Program from Fig. 2.15 with object code.

- The loader will add to this data area with the address of BUFEND and subtract from it the address of BUFFER. (COPY and RDREC for MAXLEN)
- § Line 190 and 107, in 107, the symbols BUFEND and
 BUFFER are defined in the same section.
- The assembler must remember in which control section a symbol is defined.
- The assembler allows the same symbol to be used in different control sections, lines 107 and 190.
- Figure 2.17, two new records.
 - Defined record for EXTDEF, relative address.
 - Refer record for EXTREF.

Define record:	
Col. 1	D
Col. 2-7	Name of external symbol defined in this control section
Col. 8–13	Relative address of symbol within this control section (hexadecimal)
Col. 14-73	Repeat information in Col. 2–13 for other external symbols
Refer record:	
Col. 1	R
Col. 2-7	Name of external symbol referred to in this control section
Col. 8-73	Names of other external reference symbols

The other information needed for program linking is added to the Modification record type. The new format is as follows.

Modification record (revised):

Col. 1	M
Col. 2-7	Starting address of the field to be modified, relative to the beginning of the control section (hexadecimal)
Col. 8-9	Length of the field to be modified, in half-bytes (hexa- decimal)
Col. 10	Modification flag (+ or -)
Col. 11-16	External symbol whose value is to be added to or sub-
	tracted from the indicated field

- Modification record
 - 9 M
 - Starting address of the field to be modified, relative to the beginning of the control section (Hex).
 - Length of the field to be modified, in half-bytes.
 - Modification flag (+ or -).
 - External symbol.

M^000004^05+RDREC

M^000028^06+BUFEND

M^000028^06-BUFFER

M00000705 M00001405

M00002705

to

M00001405+COPY

M00002705+COPY

M00000705+COPY

Use Figure 2.8 for program relocation.

```
HCOPY
       000000001033
DBUFFER,000033BUFEND,001033LENGTH,00002D
RRDREC WRREC
T,000000,1D,172027,4B100000,032023,290000,332007,4B100000,3F2FEC,032016,0F2016
T,00001 D,0D,010003,0F200A,4B100000,3E2000
T,00003003454F46
MO00004,05,+RDREC
M00001105+WRREC
M00002405,+WRREC
E000000
ERDREC 000000000002B
RBUFFERLENGTHBUFEND
T,000000,1D,B410,B400,B440,77201F,E3201B,332FFA,DB2015,A004,332009,57900000,B850
T,00001 D,0E3B2FE9,13100000,4F0000,F1,000000
MO0001805+BUFFER
M00002105+LENGTH
MO0002806+BUFEND
M00002806-BUFFER
```

```
HWRREC 00000000001C

RLENGTHBUFFER

T0000001CB41077100000E32012332FFA53900000DF2008B8503B2FEE4F000005

M00000305+LENGTH

M000000D05+BUFFER

E
```

Figure 2.17 Object program corresponding to Fig. 2.15.