Neuron Segmentation

Team Wright

- Vamsi Nadella
- Vinay Kumar Bingi

Approaches

- Nonnegative Matrix Factorization
- Dense Neural Networks

NMF

- The images are read into a single large matrix V, of dimensions (R*C, N) where R is # of rows, C is # of columns, N is # of images
- This matrix is factorized into W (features) and H (coefficients) matrices such that V - W*H ≈ 0
- Regions of interest are extracted over feature matrix where pixels exceed an overlap threshold and are looked in k-nearest neighbors

Dense Neural Network

- Data Preprocessing
 - Three dimensional data transformed to two dimensional data.

Dense Neural Network

• Labels from the JSON to two dimensional matrix.

Pix 1 0 or 1	Pix 2 0 or 1	 	Pix 512 0 or 1
Pix 2 0 or 1			
•			
•			
Pix 512			Pix
0 or 1			512 x 512 0 or 1

Dense Neural Network

- Dense neural network for binary classification.
- Predicts whether a pixel is neuron or not.
- Apply Laplacian Filter to give the surroundings of the neurons.
- OpenCV contours for blob detection to a list.
- List to JSON

Questions?

ThanQ

What worked well => PyCharm

What did not work well => Our code in PyCharm.