README

Miguel Molinos Pérez

May 28, 2019

Contents

_	0 0	02200	
1	Phy	vsical problem	1
	1.1	Balance of momentum (Equilibrium)	1
	1.2	Compatibility	
	1.3		
2	Ma	terial Point Method	2
3	Pro	posed tests	2
	3.1	Simple propagation of a shock wave in a 1D media	2
	3.2	Simple propagation of a shock wave in a 1D elastic media	
		using the formulation σ - v \ldots	2
4	List	t of new items	2
	This	s is a simple MPM code write in C, the main purpose of this code	is
to	unde	erstand the basics concepts of a MPM code. I also write this lines	to
ke	ep so	me order in my ideas during this crazy years.	
	Mig	uel Molinos Pérez, PhD candidate. Madrid 28-5-2019	
1	P	hysical problem	

1.1 Balance of momentum (Equilibrium)

$$\rho \cdot \partial_t \; v + \partial_x \; \sigma = \rho \cdot b$$

- Compatibility
- Constitutive response

$$\sigma = 2 \mathrm{GE} + \lambda \ \mathrm{tr}(\mathrm{E}) \ \mathrm{I}$$

2 Material Point Method

3 Proposed tests

3.1 Simple propagation of a shock wave in a 1D media

Here we solve the transport equation with a time integrator called Two-Step Taylor-Galerkin that stabilize the solution avoiding the formation of spurious oscillations during the transport. For the spatial discretization will be used 1D li

$$\partial_t \; u + c \cdot \partial_x \; u = 0$$

The algorithm is as follows:

- 1. Transfer information to the Gauss-Points : $u_{\mathrm{GP}}^n = \sum_{i=0}^N N(x_i) \, \cdot \, u_i^n$
- 2. Get the solution in the Gauss-Points for t=n+1/2 : $u_{GP}^{n+1/2}=u_{GP}^n$ $\Delta~t/2\cdot\sum_{i=0}^N~\partial~N(x_i)\cdot u_i^n$
- 3. Get the solution in the nodes for t=n+1:

3.2 Simple propagation of a shock wave in a 1D elastic media using the formulation σ - v

4 List of new items