Ellisse

definizione

L'ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi F_1 e F_2 detti fuochi è costante, cioè: $PF_1 + PF_2 = costante$

ellisse di centro l'origine e fuochi sull'asse delle x

$$\overline{PF_1} + \overline{PF_2} = 2a$$

ellisse di centro l'origine e fuochi sull'asse delle y

$$\overline{PF_1} + \overline{PF_2} = 2b$$

equazione canonica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

a > b

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

a < b

lunghezza asse maggiore, lunghezza asse minore e distanza focale

2*a*

2*b*

2*c*

2*b*

2a

2*c*

relazione tra i parametri a, b, c

$$a^2 = b^2 + c^2$$

$$b^{2} = a^{2} - c^{2}$$

$$c^{2} = a^{2} - b^{2}$$

$$b^2 = a^2 + c^2$$

$$a^2 = b^2 - c^2$$
$$c^2 = b^2 - a^2$$

coordinate dei fuochi

 $F_1(-c; 0)$

 $F_2(c; 0)$

 $F_1(0; -c)$

 $F_2(0;c)$

eccentricità

$$e=\frac{c}{a}$$

0 < *e* < 1

 $e=\frac{c}{b}$

0 < e < 1

se a=b l'ellisse degenera in una circonferenza di centro l'origine e raggio a di equazione $x^2+y^2=a^2$

ricerca dell'equazione di una ellisse

equazione dell'ellisse noti i fuochi ed il semiasse maggiore $PF_1 + PF_2 = 2a$ • si applica la definizione di ellisse ricordando che la costante è uguale a 2a $\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a$ • si calcolano le due distanze PF_1 e PF_2 $(x+c)^2 + y^2 = \left(2a - \sqrt{(x-c)^2 + y^2}\right)^2$ • si isola il primo radicale e si elevano al quadrato entrambi i membri $\left[a\sqrt{x^2 - 2cx + c^2 + y^2}\right]^2 = (a^2 - cx)^2$ • si sviluppano i calcoli isolando il radicale rimasto e di nuovo si elevano al quadrato entrambi i membri $b^2x^2 + a^2y^2 = a^2b^2$ • si sviluppano i calcoli e si ottiene l'equazione dell'ellisse in forma non canonica

equazione dell'ellisse passante per due punti $A(x_1, y_1)$ e $B(x_2, y_2)$		
$\alpha x^2 + \beta y^2 = 1$	• nell'equazione dell'ellisse in forma canonica si sostituiscono $\frac{1}{a^2} = \alpha$ e $\frac{1}{b^2} = \beta$	
$\alpha x_1^2 + \beta y_1^2 = 1$ passaggio per A $\alpha x_2^2 + \beta y_2^2 = 1$ passaggio per B	si sostituiscono uno alla volta le coordinate dei punti nell'equazione precedente	
$\begin{cases} \alpha x_1^2 + \beta y_1^2 = 1\\ \alpha x_2^2 + \beta y_2^2 = 1 \end{cases}$	• si risolve il sistema di primo grado nelle incognite α e β	
$\alpha x^2 + \beta y^2 = 1$	si sostituiscono i valori ottenuti nell'equazione iniziale ottenendo così l'equazione richiesta	

in generale

per trovare l'equazione di una ellisse è necessario:

- avere due condizioni (scelte tra: fuoco, semiassi, passaggio per un punto, eccentricità, retta tangente)
- trasformare ogni condizione in una equazione
- ottenere il sistema delle due equazioni nelle incognite $a^2 e b^2$
- risolvere il sistema e trovare i valori di $a^2 e b^2$
- sostituire i valori ottenuti nell'equazione dell'ellisse, ottenendo l'equazione cercata

nota che nella ricerca dell'equazione dell'ellisse:

- o le incognite sono a^2 e b^2 **e non** a e b
- conviene imporre le condizioni date a partire dall'equazione dell'ellisse in forma non canonica $b^2x^2+a^2y^2=a^2b^2$

ricerca delle equazioni delle rette tangenti all'ellisse

equazioni delle rette tangenti condotte da un punto $P_0(x_0,y_0)$ esterno all'ellisse	
$y - y_0 = m(x - x_0)$	• si scrive l'equazione del fascio di rette proprio di centro $P_0(x_0,y_0)$
$y = y_0 + m(x - x_0)$	si ricava la y dell'equazione del fascio
$b^2x^2 + a^2[y_0 + m(x - x_0)]^2 = a^2b^2$	• si sostituisce la y nell'equazione dell'ellisse in forma non canonica $b^2x^2 + a^2y^2 = a^2b^2$
	• si sviluppano i calcoli e si ordina l'equazione rispetto alla \boldsymbol{x}
$y - y_0 = m_1(x - x_0)$	• si ricava il Δ e lo si impone uguale a 0 (condizione di tangenza tra retta ed ellisse)
$y - y_0 = m_1(x - x_0)$ $y - y_0 = m_2(x - x_0)$	• si risolve l'equazione di secondo grado nell'incognita m ricavando i valori m_1 ed m_2
	• si sostituiscono m_1 ed m_2 nell'equazione del fascio ottenendo le equazioni delle rette tangenti

equazione della retta tangente nel punto $P_0(x_0,y_0)$ dell'ellisse: formula di sdoppiamento	
$b^2x^2 + a^2y^2 = a^2b^2$	 si scrive l'equazione dell'ellisse in forma non canonica si pone x² = x₀ · x e y² = y₀ · y
$b^2 x_0 x + a^2 y_0 y = a^2 b^2$	 si sostituiscono le incognite sdoppiate nella equazione dell'ellisse sviluppando i calcoli si ottiene l'equazione della retta
	tangente nel punto $P_0(x_0, y_0)$

equazione delle rette tangenti di coefficiente angolare m assegnato		
y = mx + q	si scrive l'equazione del fascio di rette improprio con m assegnato	
$b^2x^2 + a^2[mx + q]^2 = a^2b^2$	• si sostituisce la y nell'equazione dell'ellisse in forma non canonica $b^2x^2 + a^2y^2 = a^2b^2$	
$y = mx + q_1$ $y = mx + q_2$	• si sviluppano i calcoli e si ordina l'equazione rispetto alla \boldsymbol{x}	
	• si ricava il Δ e lo si impone uguale a 0 (condizione di tangenza tra retta ed ellisse)	
	• si risolve l'equazione di secondo grado nell'incognita q ricavando i valori di q_1 e q_2	
	• si sostituiscono q_1 e q_2 nell'equazione iniziale del fascio ottenendo le equazioni delle rette tangenti	

in alcuni problemi *m* si ricava nota la retta parallela o perpendicolare alla retta tangente

ellisse traslata

l'ellisse si dice traslata se gli assi X e Y del suo sistema di riferimento sono paralleli agli assi cartesiani x e y

coordinate del centro dell'ellisse

$$\frac{(x-\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} = 1$$

equazione dell'ellisse riferita al sistema XOY

ricerca dell'equazione dell'ellisse traslata note le coordinate del centro $O(\alpha, \beta)$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

• data l'equazione dell'ellisse in forma canonica

$$\frac{(x-\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} = 1$$

• si sostituisce a $x \to x - \alpha$ e a $y \to y - \beta$ (traslazione di centro $O(\alpha, \beta)$)

si sviluppano i calcoli e si ottiene l'equazione dell'ellisse traslata

area e lunghezza di una ellisse

misura dell'area

$$A = \pi a b$$

osserva che se a=b l'ellisse diventa una circonferenza e la formula si riduce a quella dell'area del cerchio $\mathcal{A}=\pi r^2$

misura della lunghezza

$$l = \pi \left[3(a+b) - \sqrt{(3a+b)(a+3b)} \right]$$

osserva che la lunghezza si calcola solo come sviluppo in serie di un integrale curvilineo.

Un buon valore approssimato è dato dalla formula qui riportata del matematico indiano Ramanujan