10.3.2. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ n -го ПОРЯДКА

ОПРЕДЕЛЕНИЕ. Линейным дифференциальным уравнением n-го порядка называется уравнение вида

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + ... + a_{n-1}(x)y' + a_n(x)y = f(x),$$

где $a_0(x) \neq 0 \ \forall x \in [a,b].$

Если $f(x) \neq 0$, то уравнение называется линейным неоднородным дифференциальным уравнением, если же $f(x) \equiv 0$, то уравнение называется линейным однородным.

примеры.

- а) $x^2 y''' + x y'' + 2y' = x^2 2x + 3$ линейное неоднородное дифференциальное уравнение третьего порядка с переменными коэффициентами;
- б) y'' + 2y' 3y = 0 линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами;
- в) $yy'' + 3y' = \sin 2x$ нелинейное дифференциальное уравнение второго порядка.

Рассмотрим линейное неоднородное дифференциальное уравнение второго порядка

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = f(x),$$
 (10.11)

$$a_0(x) \neq 0 \ \forall \ x \in [a, b].$$

Уравнение

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = 0 (10.12)$$

называется однородным дифференциальным уравнением, соответствующим линейному неоднородному уравнению (10.11). Это уравнение имеет решение $y(x) \equiv 0$, которое называется нулевым или тривиальным.

TEOPEMA 1 (о линейной комбинации решений линейного однородного дифференциального уравнения). Пусть $y = y_1(x)$, $y = y_2(x)$ — два решения линейного однородного дифференциального уравнения (10.12). Тогда для любых постоянных C_1, C_2 линейная комбинация $y = C_1 y_1 + C_2 y_2$ также является решением (10.12).

Доказать самостоятельно.