数理解析特論レポート

米田亮介

2019年1月24日

1 Darboux 変換

1. 差分演算子 L,B をそれぞれ $L=e^{\partial/\partial n}+u_ne^{-\partial/\partial n}, B=-u_nu_{n-1}e^{-2\partial/\partial n}$ で定める。このとき、関数 $\varphi_n(t)$ に対する線形方程式

$$L\varphi_n(t) = (\lambda + 1/\lambda)\varphi_n(t), \quad \frac{d}{dt}\varphi_n(t) = B\varphi_n(t)$$
 (1)

の両立条件から、無限格子上の連続時間発展方程式である Lotka-Voltera(LV) 方程式

$$\frac{d}{dt}u_n = u_n(u_{n+1} - u_{n-1}) (2)$$

が導かれることを示せ。ここで、 $\lambda+1/\lambda$ は L の固有値を与える定数。

2. LV 方程式の自明な解 u=1 を seed(種) として、Darboux 変換を k 回適用することで得られる差分作 用素を $L^{(k)}=e^{\partial/\partial n}+u_n^{(k)}e^{-\partial/\partial n}$ で表す。このとき、 $u_n^{(1)}$ および $u_n^{(2)}$ を求めよ。