

$$\int_{E_{1}}^{E_{2}} \frac{1}{48} \left(\log (y(s)) \right) ds = -\lambda \left(E - E_{0} \right)$$

$$\log \left(y(t) \right) - \log \left(y(t) \right) = -\lambda \left(E - E_{0} \right)$$

$$\log \left(y(t) \right) - \log \left(y(t) \right) = -\lambda \left(E - E_{0} \right)$$

$$\log \left(y(t) \right) = -\lambda \left(E - E_{0} \right)$$

$$y(t) = y_{0} e^{-\lambda (E - E_{0})}$$

$$y(t) = y_{0} e^{-\lambda (E - E_{0})}$$

$$y_{0} = -\lambda (E - E_{0})$$

$$y_{0} = -\lambda (E - E_{0$$

CONSISTENCY COURCERROR Ennor y (+1) = y + st y (+1) + 012 y ((() + O () + y (+*)=y (++00+)= y2+00+y1(+2)+010+11 Y*= Y + 8 St F (y) = y (t*) + 3 (M²) Yn+1 = Y + AT 20 -1 F (Y) + F (Y) 7 = Y^+ Ot [20-1 F(y) +] (F(y) +] (y) OSTF() = y^+ 17 (ym) + 20 At 2 T(y(t)) = P(y1) + St2 d y1(p) y (t) + st2, 1 (t) = y (t) + 0 (st3) D GLOBAL ERROR O(DE2) RUNGE-KUTTA S STACES A EN SXS $A = (\alpha_{KJ})_{KJ=1}$ c, ben y(K) = yn + Dt = a, F(t + stcs, y(3)) K= 1, S 5 by F(t) + otc, y (7) ynt = y + st

Stages Experient RX

$$S^2 + 3S - 2$$
 $S^2 + 3S - 2$
 $S^2 + 3$

$$y^{(1)} \{ \{ y(t^{(1)}) \} = y'' + \int_{E}^{t^{(1)}} F(s, y^{(1)}) ds$$

$$\Rightarrow y'' + \int_{E}^{t^{(1)}} \sum_{j=1}^{2} g_{j}(s) . F(t^{(2)}, y^{(2)}) ds$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$y^{(1)} = y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y'' + \sum_{j=1}^{2} \int_{E}^{t^{(2)}} g_{j}(s) ds F(t^{(2)}, y^{(2)})$$

$$= y''$$

$$\frac{4-24}{2} \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}$$

ACCURACY CONSISTENCY EXPLOR Y ({ n) } + \(\frac{1}{2} \) \(\frac{1}{2} \ Tayon exp 14 (2) $= y(t^{n+1}) + \sum_{j=1}^{k} a_j \sum_{\ell=0}^{p} (-j \Delta t)^{\ell} y(\ell)(t^{n+1})$ - At \(\begin{align*} & \begin{align*} y (+ n+1) [1 + 2 2] + 1 = 0 | 1 = 0 FOR ORDERP 12 Z = 0 $\forall \ell = 1, -p$ $(\ell = 1, -p)$ $(\ell =$ ADANS- BASHFEKTH VALUES THE THE YA-KHI) y((~1)) = y(+) + Str = y (+1) + (+1+1) P (+) 1+ P(t)-J+1) = F(f)-J+1) \\ \frac{1}{7} = 1, \\ \]

