

Instituto politécnico da Guarda Escola Superior de Tecnologia e Gestão

Relatório

Trabalho Prático 2 – Algoritmos Genéticos

Inteligência Artificial 2020 - 21 Dário Ribeiro 1012208

ABSTRACT

A ilusão do poder computacional ilimitado não ficou confinada aos programas de resolução de problemas. As primeiras experiências de evolução automática (denominados de algoritmos genéticos) baseavam-se na convicção sem dúvida correta de que, realizando-se uma série apropriada de pequenas mutações num programa em código máquina, seria possível gerar um programa com bom desempenho para qualquer tarefa simples.

Então, a ideia era experimentar mutações aleatórias com um processo de seleção para preservar mutações que parecessem úteis. Apesar de milhares de horas de tempo de CPU, quase nenhum progresso foi demonstrado. Os algoritmos genéticos modernos utilizam representações melhores e têm mais sucesso.

Este Relatório visa explicar o funcionamento de um algoritmo genético através da demonstração de um trabalho prático.

Adicionalmente foi efetuado um script para agilizar o processo.

Palavras Chaves: Algoritmo Genético – Mutação – Recombinação – Resolução de Problemas

CONTEUDO

ABSTRACT	1
INTRODUÇÃO	3
Algoritmo Genético	3
Procura Estocástica	3
Análise Teórica	3
ANÁLISE PRÁTICA	5
Dados	5
Algoritmo	9
EXPERIÊNCIA	20
1ª Geração	20
2º Geração	20
3ª Geração	25
CONCLUSÕES	29
Sistema R com Package GA	30

INTRODUÇÃO

Algoritmo Genético

Um algoritmo genético (ou AG) é um método de procura do tipo estocástico na qual os indivíduos sucessores são gerados pela combinação de dois indivíduos pais, em vez de serem gerados pela modificação de um único indivíduo. A analogia em relação à seleção natural é a mesma que se dá neste método sendo ele com o tipo de reprodução sexuada tal como ocorre na natureza, podemos então usando uma analogia, concluir que é uma ferramenta para estudar o fenómeno da adaptação dos seres vivos.

Os AG provaram ser ferramentas poderosas quando aplicados à classe de problemas referidos

- Escalonamento
- Controlo Adaptativo
- Jogos
- Otimização de Funções Matemáticas
- Otimização Combinatória

Procura Estocástica

Um método de procura otimizado que em vez de escolher o melhor k a partir do conjunto de sucessores candidatos, a procura estocástica escolhe k sucessores de forma aleatória, com a probabilidade de escolher um determinado sucessor que seja uma função crescente de seu valor.

A procura estocástica guarda alguma semelhança com o processo de seleção natural, pelo qual os "sucessores" (descendência) de um "indivíduo" (organismo) ocupam a próxima geração de acordo com o seu "valor" (avaliação)

Análise Teórica

Os Algoritmos Genéticos começam com um conjunto de k indivíduos gerados aleatoriamente, chamado população.

Cada indivíduo, é representado como uma cadeia sobre um alfabeto finito — muito frequentemente, uma cadeia de valores 0 e 1, denominamos a essa cadeia usando a analogia do processo natural, cromossoma.

O processo de reprodução consiste na troca de informação entre os progenitores e é designado por recombinação

Os novos indivíduos assim gerados podem ser alterados de forma localizada através dos efeitos de outro operador, conhecido por mutação

Estes 2 operadores genéticos (recombinação e mutação) permitem manter a diversidade da população e evitar que o AG convirja prematuramente para um máximo local

Figura 1 - Funcionamento do AG

O Algoritmo genético, ilustrado na Figura 1 por sequências de dígitos que representam os indivíduos tem uma população inicial em (a) é classificada pela função de avaliação em (b), resultando em pares de correspondência em (c). Eles produzem descendentes em (d) através da recombinação e são sujeitos à mutação em (e).

A produção da próxima geração de indivíduos é mostrada na Figura 1, desde (b) até (e).

Em (b), cada estado é avaliado pela função de avaliação ou (na terminologia do AG) pela função de adaptação. Uma função de avaliação deve retornar valores mais altos para indivíduos melhores

Nesta variante específica do algoritmo genético, a probabilidade de um indivíduo ser escolhido para reprodução é diretamente proporcional ao valor da função de avaliação, e as percentagens são mostradas, caracterizando-se assim pela probabilidade de ser selecionada.

Em (c), dois pares escolhidos aleatoriamente são selecionados para reprodução, de acordo com as probabilidades mostradas em (b).

De notar que um indivíduo é selecionado duas vezes, e um indivíduo não é selecionado de modo algum.

Para cada par a ser cruzado, é escolhido ao acaso um ponto de cruzamento dentre as posições no cromossoma. Na Figura 1, os pontos de cruzamento estão depois do terceiro dígito no primeiro par e depois do quinto dígito no segundo par.

Em (d), os próprios descendentes são criados por cruzamento dos cromossomas pais no ponto de crossover (recombinação).

Por exemplo, o primeiro filho do primeiro par recebe os três primeiros dígitos do primeiro pai e os dígitos restantes do segundo pai, enquanto o segundo filho recebe os três primeiros dígitos do segundo pai e o restante do primeiro pai.

Finalmente, em (e), cada posição está sujeita à mutação aleatória com uma pequena probabilidade independente. Um dígito sofreu mutação no primeiro, no terceiro e no quarto descendente.

Depois da Mutação efetuada o algoritmo está completo, caso se queira efetuar gerações até que o valor da função de avaliação esteja dentro de parâmetros aceitáveis, os cromossomas que foram mutados, tornam-se assim a população da próxima geração.

ANÁLISE PRÁTICA

Para o exercício e aprendizagem deste algoritmo genético foi-se proposto o seguinte problema.

```
Indique o valor máximo da função matemática f(x) definida por f(x) = (x - 15)^2 com 1 \leq x \leq 25.
```

- 2.1. Caracterize todos os elementos do AG implementado e justifique as opções tomadas.
- 2.2. Analise os resultados obtidos com as primeiras 3 gerações.
- 2.3. Apresente, adicionalmente, uma simulação recorrendo ao Sistema R (com a Package 'GA').

Figura 2 - Exercício Prático

Dados

Através do problema exposto na Figura 2 podemos observar que nos é dado uma função matemática f(x), pelo que vai ser caracterizada como a nossa função de avaliação.

$$f(x) = (x - 15)^2$$
, $1 \le x \le 25$

Equação 1 - Função de Avaliação

Portanto dado a nossa função de avaliação, é preciso determinar o tamanho dos cromossomas, que é baseado no domínio do X.

Começamos por contar a amplitude do intervalo

$$Amplitude = 25 - 1$$

Equação 2 - Amplitude de um intervalo

A nossa amplitude vai ser então 24, caso seja difícil efetuar as contas com um intervalo de diferentes valores a Figura 3 mostra de forma visual como podemos determinar o tamanho do domínio.

Figura 3 - Referencial Cartesiano com contagem do domínio

Depois de determinada a nossa amplitude precisamos de definir a precisão dos valores da função de avaliação, pois a precisão influência na medida que precisamos de determinar o tamanho do cromossoma em binário. Neste exercício prático vamos definir uma precisão de 4 casas decimais

É necessário dividir a variável x em partes iguais por todo o domínio, portanto primeiro determina-se o tamanho total de x

Equação 3 - Número de Partes

Aplicando os dados reunidos acima fica então:

$$24 * 10^4 = 240\ 000\ (partes\ iguais)$$

Equação 4 - Número de partes com os dados

É necessário saber o número de bits para os cromossomas e para isso temos de descobrir onde fica compreendido o valor 240 000 na nossa base binária (Base 2).

Se:

$$2^{1} = 2$$

$$2^{2} = 4$$

$$2^{3} = 8$$

Então tentamos mais ou menos de forma aproximada descobrir onde fica compreendido o valor 240 000.

Se:
$$2^{17} = 131072$$
 e $2^{18} = 262144$

Então:
$$2^{17} \le 240\,000 \le 2^{18}$$

Neste algoritmo genético em termos de intervalo, escolhe-se o valor superior, fazendo com que então o nosso cromossoma seja representado com 18 bits de comprimento.

É também preciso determinar o tamanho da população e por regra geral e de bom senso, para se obter bons resultados com uma boa precisão e eficácia, no mínimo 10 indivíduos são precisos. Neste trabalho prático vai ser usado uma população consistida por 20 indivíduos.

Outros dados importantes a considerar é o caso da seleção para a recombinação, ou seja, é necessário definir um valor em percentagem que defina o limite entre o que é aceitável e o que tem que ser melhorado, e aquando a função de avaliação, o individuo pode não ser selecionado para a recombinação caso tenha o valor acima do limite.

Na Figura 1 pode-se observar que um individuo não foi selecionado, isto porque o cálculo em percentagem da probabilidade de ser selecionado para a recombinação foi baixo (cerca de 14%), os restantes indivíduos foram selecionados porque o resultado do cálculo foi acima de 14%, portanto pode-se concluir que existe um valor que limita os que podem ser selecionados.

O algoritmo da Figura 1 visa trabalhar numa combinação de jogadas no xadrez portanto a maneira como o algoritmo foi definida é diferente do que vai ser feito neste relatório, ou seja nós visamos otimizar a função portanto funcionamos ao contrario do que está na figura.

No próximo subcapítulo vai ser explicado com mais detalhe o cálculo da seleção para determinar que indivíduos podem ser recombinados.

Para o Trabalho em questão vai ser usado como valor de seleção, 65%, ou seja, acima de 65% os indivíduos não vão ser recombinados

A ideia consiste em tentar melhorar o valor da função de avaliação, de forma a aperfeiçoar o algoritmo, fazendo uma analogia humana, é como se certos indivíduos não tivessem capacidade de aprendizagem escolar igual à maioria da população e necessitassem de umas vitaminas para poderem melhorar a performance escolar, essas vitaminas, são o operador de recombinação.

Tal como acontece para a recombinação, existe um operador na mutação, através de um cálculo que vai ser demonstrado no próximo subcapítulo, precisamos de definir o número de mutações que também vai ser o número de cromossomas que vão sofrer de tal.

Como a Figura 1 demonstra em (e), nem todos os indivíduos sofreram mutação.

Para o Trabalho em questão vai ser usado como valor para o operador de mutação, 0.5%, ou seja, da população total, apenas vai haver 0.5% mutações.

Dado que temos o tamanho do cromossoma, tamanho da população, a fórmula para determinar o número de indivíduos a sofrerem mutação é a seguinte

 n^{Ω} mutações = percentagem * tamanho população * tamanho cromossoma

Equação 5 - Número de Mutações

Para uma visualização mais leiga, a ideia consiste em imaginar uma matriz com os cromossomas como demonstra a Figura 4

Figura 4 - Cromossomas

Dentro dessa matriz imaginária, é preciso de forma aleatória determinar quantos vão sofrer mutação, e quantas mutações se vão realizar. Estas duas variáveis a serem determinadas são diretamente proporcionais, quer isto dizer que se por exemplo do cálculo resulta 4 mutações, quer então dizer que serão 4 indivíduos que vão sofrer mutação.

Figura 5 - Cromossomas Selecionados

Podemos então concluir os seguintes dados para a elaboração do trabalho:

Tamanho População: 20

Precisão em casas decimais: 4

Tamanho Cromossoma: 18 bits

Valor da seleção para recombinação: 65%

Valor da seleção para mutação: 0.5%

Algoritmo

1º Passo – Indivíduos

Para a geração inicial, é necessário gerar de forma aleatória os indivíduos para se ter uma base ou ponto de partida com que se possa trabalhar.

Em Microsoft Excel existe uma fórmula de gerar aleatoriamente os indivíduos.

A1		- i 7	× •	fx	=ALEATÓRIO	ENTRE(0;2^18)
	Α	В	С	D	E	F
1	99314					
2	259841					
3	105328					
4	187346					
5	3140					
6	206600					
7	94912					
8	187002					
9	133220					
10	152202					
11	74629					
12	181820					
13	230901					
14	97043					
15	152740					
16	172664					
17	114558					
18	118001					
19	146063					
20	220061					
21						
22						

Figura 6 - Função Aleatório Excel

O Excel possui duas funções ligadas ao aleatório, existe o aleatório simples que retorna um número aleatório sem qualquer especificação de intervalo tanto pode dar 0 como 9999999 e existe o aleatório entre que permite especificar um intervalo onde vai gerar aleatoriamente, como o próprio nome indica.

Portanto como definimos um tamanho de 18 bits em binário, se gerarmos aleatoriamente um valor sem qualquer especificação, por exemplo 789403:

$789403_{10} = 11000000101110011011_2$

Equação 6 - Conversão Decimal para Binário

Se contarmos os bits pode-se verificar que são 20, e necessitamos apenas de 18, portanto é necessário usar a função *aleatórioentre* ao invés da função *aleatório*.

Ao usarmos a função aleatório entre temos de especificar o intervalo pelo que 0 é o nosso número mínimo, e o 262 144 ou (2 elevado a 18) o nosso máximo.

0 = 00000000000000000000000 (cromossoma mínimo)

262 144 = 111111111111111111 (cromossoma máximo)

Depois de definirmos a função de forma aleatória, pode-se converter para binário usando a função base que aceita 3 parâmetros por ordem:

- Número decimal a ser convertido
- Base de conversão
- Tamanho do número em base que queremos converter

B1	*	: >	< 4	fx	=BASE(A1	;2;18)
4	Α		В		С	D
1	159784	1001110	0000001	01000		
2	181751	1011000	0101111:	10111		
3	115643	0111000	0011101	11011		
4	197711	1100000	0100010	01111		
5	174533	1010101	1001110	00101		
6	223166	1101100	0111101	11110		
7	195076	1011111	1010000	00100		
8	223378	110110	1000100	10010		
9	15828	0000111	1101110	10100		
10	159819	1001110	00000100	01011		
11	144927	1000110	0110000	11111		
12	37645	0010010	00110000	01101		
13	16078	0000113	1110110	01110		
14	60003	0011101	10100110	00011		
15	114104	0110111	1101101:	11000		
16	234103	1110010	0010011	10111		
17	78527	0100110	0010101	11111		
18	241900	1110110	00001110	01100		
19	52511	0011001	1101000	11111		
20	32909	0010000	00001000	01101		
21					=	

Figura 7 - Função Base em Excel

Como queremos os cromossomas de tamanho 18, queremos base 2, são esses os dois parâmetros que se pode verificar na Figura 7 na barra de fórmulas.

2º Passo – Função de avaliação

Observando a Função de avaliação podemos verificar que tudo indica que poderíamos usar o número decimal como o nosso x, mas é necessário calcular o valor real do número, tanto seja binário ou decimal e daí parte então a nossa variável x.

$$f(x) = (x - 15)^2$$
, $1 \le x \le 25$

Equação 7 - Função de Avaliação

A fórmula para calcular o valor real de um dado número é a seguinte.

$$x = LimitEsqDom + x' * \frac{Tamanho Dominio}{2^{n^2 bits} - 1}$$

Equação 8 - Função de Cálculo do Valor Real

Exemplificando para o valor decimal da primeira linha da tabela presente na Figura 7 o valor real será:

$$x = 1 + 159784 * \frac{24}{2^{18} - 1} <=> 13,78813472$$

Equação 9 - Cálculo do Valor Real com os dados

Aplicando para a Tabela fica então o seguinte:

_							
C1	*	1 7	× 🗸	fx	=1+A1*(24/(2^	18-1))
	Α		В		C		D
1		011111	11000101	0011	12.012	90422	U
					12,913		
2			10001100		2,7054		
3	62952	001111	01011110	1000	-	44972	
4	45582	001011	00100000	1110	5,1731	72658	
5	48948	001011	11110011	10100	5,4813	40337	
6	47053	001011	01111100	1101	5,3078	47244	
7	106278	011001	11110010	0110	10,730	07862	
8	120178	011101	01010111	0010	12,002	66648	
9	110500	011010	11111010	00100	11,116	61574	
10	209763	110011	00110110	00011	20,204	44948	
11	39169	001001	10010000	00001	4,5860	42732	
12	39369	001001	10011100	1001	4,6043	53349	
13	120328	011101	01100000	1000	12,016	39945	
14	104521	011001	10000100	1001	10,569	21985	
15	155645	100101	11111111	1101	15,24	97797	
16	18145	000100	01101110	00001	2,6612	30702	
17	44518	001010	11011110	00110	5,0757	60177	
18	53258	001101	00000000	1010	5,8759	34128	
19	77519	010010	11101100	1111	8,0971	03489	
20	155595	100101	11111100	1011	15,245	20205	
21							

Figura 8 - Tabela em Excel com o valor real

Dado que agora se sabe o valor real de cada indivíduo, pode se então efetuar o cálculo da função de avaliação para cada indivíduo, a equação abaixo demonstra para a primeira linha do Excel.

$$f(x) = (13,2574 - 15)^2 <=> 3,0366$$

Na Tabela fica então:

Figura 9 - Tabela Com a função de Avaliação

3º Passo - Roleta

Dado que agora temos a função de avaliação, para a recombinação vão ser usado dois métodos de seleção.

Método Elitista - (Seleciona o melhor individuo com base no valor da função de avaliação)

Método da Roleta - (cada individuo vai ser colocado numa "roleta" baseado na probabilidade de ser selecionado)

A razão pela qual se estão a usar dois métodos ao invés de um é porque o método elitista está a ser usado como um complemento do método da roleta, e estamos a usar um complemento para garantirmos que os melhores indivíduos da função de avaliação não se percam ao longo da geração, porque o AG é um algoritmo de otimização que procura sempre aperfeiçoar, sem este complemento, pode haver o risco de se perder indivíduos com boa qualidade.

No método elitista escolhe -se os dois melhores indivíduos com base no valor resultante da função de avaliação, ou seja, já passaram para a próxima geração. Os restantes indivíduos serão escolhidos pelo método da roleta, para sofrerem uma recombinação.

O método da roleta, consiste em dois cálculos importantes, é preciso calcular a probabilidade de um individuo ser selecionado, e depois "integrar" no segmento da roleta correspondente, quer isto dizer o quê.

Figura 10 - Exemplificação rudimentar da roleta

Na Figura 10 pode se verificar a roleta, e a ideia não é nada mais do que calcular a probabilidade de ser selecionado, e categorizar de forma ordenada dentro da roleta, cada individuo, para depois de forma aleatória escolher um segmento da roleta e obter o indivíduo, tal como funciona a roda da sorte ou fortuna nos concursos de *game show*.

A fórmula para calcular a probabilidade de ser selecionado é a seguinte

Probabilidade Seleção =
$$\frac{f(x_i)}{\sum_{i=1}^n f(x_i)}$$

Equação 10 - Probabilidade de Seleção

Para o primeiro valor da tabela temos então:

$$\frac{3,0366}{900,3003} = 0,0034$$

Para o resto da tabela temos:

E1		-	\times	~	f_x	=D1/\$[)\$22		
4	Α		В				С	D	Е
1	133883	100000	101011	11110	11	13,2	25740149	3,03665	0,0034
2	1118	000000	010001	10111	10	1,10	02356347	193,1445	0,2145
3	249578	111100	11101	11010	10	23	,8496355	78,31605	0,0870
4	100064	011000	011011	11000	00	10,1	16116776	23,4143	0,0260
5	128853	011111	01110	10101	01	12,7	79688948	4,853696	0,0054
6	56326	001101	110000	00001	10	6,15	56818988	78,20185	0,0869
7	192750	101111	000011	11011	10	18,6	54685687	13,29957	0,0148
8	149469	100100	011111	10111	01	14,6	58434786	0,099636	0,0001
9	138360	100001	110001	11110	00	13,6	56728465	1,77613	0,0020
10	231145	111000	011011	11010	01	22,	16203751	51,29478	0,0570
11	18534	000100	100001	11001	10	2,69	96844852	151,3676	0,1681
12	148934	100100	010111	10001	10	14,6	53536696	0,132957	0,0001
13	143328	100010	111111	11000	00	14,1	12212037	0,770673	0,0009
14	169480	101001	011000	00010	00	16,5	51641661	2,299519	0,0026
15	87490	010101	010111	10000	10	9,00	09979286	35,88035	0,0399
16	41610	001010	001010	00010	10	4,8	30952381	103,8458	0,1153
17	250735	111101	001101	11011	11	23,9	95556242	80,2021	0,0891
18	190791	101110	10010	10001	11	18,4	46750438	12,02359	0,0134
19	241879	111011	000011	10101	11	23,1	14476831	66,33725	0,0737
20	152293	100101	00101	11001	01	14,9	94289376	0,003261	0,0000
21									
22						SOMA		900,3003	

Figura 11 - Probabilidade de Seleção

De notar que na barra de fórmulas do Excel pode-se notar que existe a célula que representa o f(xi) a dividir com outra célula com o caractere monetário Dólar, isto é para que para todas as linhas da coluna atual, divida o valor da coluna anterior com a soma dessa dita coluna anterior, representada na célula D22.

Dado que temos a probabilidade de cada individuo ser selecionado, é altura de categorizar num segmento da roleta e para tal usamos um outro cálculo.

A ideia de segmentar na roleta é para que de forma aleatória possamos escolher um individuo para recombinação

Figura 12 - Relação Valor aleatório com o Segmento de Roleta

Como se pode ver na Figura 12, quando geramos um valor aleatório, vamos à roleta, procurar a "fatia" a que corresponde, e nessa fatia escolhemos o valor mais alto, quer isto dizer que para o caso do valor aleatório (0,20) o valor do intervalo que vamos definir para ir buscar o indivíduo é o (0,2271), depois é perceber a que indivíduo corresponde o valor do segmento.

F2		- : × ~ fx	=F1+E2				
	Α	В	С	D	Е	F	
1	110905	011011000100111001	11,15369474	14,79406	0,0162	0,0162	
2	232921	111000110111011001	22,32463579	53,65029	0,0588	0,0750	001445
3	126015	011110110000111111	12,53706183	6,066064	0,0066		SOMAR
4	44705	001010111010100001	5,092880603	98,15101	0,1076		
5	237445	1110011111110000101	22,73882194	59,88937	0,0656		
6	80040	010011100010101000	8,327908813	44,5168	0,0488		
7	140992	100010011011000000	13,90825237	1,191913	0,0013		
8	30110	000111010110011110	3,756663348	126,4126	0,1385		
9	5408	000001010100100000	1,495119076	182,3818	0,1999		
10	141003	100010011011001011	13,90925945	1,189715	0,0013		
11	236225	111001101011000001	22,62712718	58,17307	0,0638		
12	129053	011111100000011101	12,8152001	4,773351	0,0052		
13	120903	011101100001000111	12,06904247	8,590512	0,0094		
14	35482	001000101010011010	4,248486513	115,595	0,1267		
15	105201	011001101011110001	10,63147595	19,084	0,0209		
16	74953	010010010011001001	7,862178277	50,9485	0,0558		
17	165916	101000100000011100	16,19012142	1,416389	0,0016		
18	66464	010000001110100000	7,08498415	62,64748	0,0687		
19	164572	101000001011011100	16,06707408	1,138647	0,0012		
20	167996	101001000000111100	16,38055184	1,905923	0,0021		
21							
22			SOMA	912,5166			
23							
24							

Figura 13- Forma de atribuir o segmento da roleta

Para calcular o segmento a que atribuir na roleta basta somar o valor da linha anterior com a atual probabilidade de ser selecionada, como demonstra a figura 13

Depois de atribuir o segmento da roleta procede-se à geração de números aleatórios entre 0 e 1, isto porque se continuamente efetuarmos a operação de atribuir o segmento da roleta, o último valor vai ser 1.

Figura 14 - Segmento de Roleta e valor aleatório

A fórmula no Excel para gerar um valor aleatório entre 0 e 1 é a seguinte.

$$= 0 + 1 * ALEATÓRIO()$$

Equação 11 - Função Aleatório no Excel

Após ser gerado o valor aleatório, a ideia consiste em descobrir onde se situa o valor aleatório tal como demonstra a Figura 12.

A Figura 15 representa os Pais selecionados e os respetivos cromossomas em binário, para que assim em pares se possa fazer a recombinação.

Figura 15 -Tabela Após Seleção aleatória

F	G	Н	1
Segmento da Roleta	Aleatório Roleta	Pai Selecionado	Cromossoma em BIN
0,02	0	i9	000001010111011010
0,02	0	i16	001011000100010101
0,03	0,142	i7	010011010111110001
0,13	0,647	i15	110000111111000000
0,13	0,821	i17	1110100101001011100
0,19	0,41	i9	000001010111011010
0,27	0,543	i14	111101110100001011
0,49	0,161	i7	010011010111110001
0,50	0,186	i7	010011010111110001
0,51	0,264	i8	1110111111011010010
0,51	0,429	i9	000001010111011010
0,54	0,403	i9	000001010111011010
0,64	0,953	i21	001011001101111100
0,66	0,284	i9	000001010111011010
0,77	0,401	i9	000001010111011010
0,85	0,358	i9	000001010111011010
0,87	0,937	i21	001011001101111100
0,87	0,028	i4	101101101101011001
0,89	0,245	i8	1110111111011010010
1,00	0,622	i14	111101110100001011

Figura 16 - Conjunto de Pais na tabela

Depois de selecionados os pais e agrupado em conjuntos, é necessário gerar mais valores aleatórios para desta vez verificar se passam pela taxa de recombinação, caso o valor aleatório novo gerado seja inferior ou igual a 65%, os pais selecionados são recombinados.

Pai Selecionado	Cromossoma em BIN	Probabilidade de Recombinação
i9	000001010111011010	0
i16	001011000100010101	0
i7	010011010111110001	0,66
i15	110000111111000000	0,66
i17	111010010100101100	0,05
i9	000001010111011010	0,05
i14	111101110100001011	0,7
i7	0100110101111110001	0.7
i7	010011010111110001	0,42
i8	1110111111011010010	0,42
i9	000001010111011010	0,03
i9	000001010111011010	0,03
i21	001011001101111100	0,26
i9	000001010111011010	0,26
i9	000001010111011010	0,64
i9	000001010111011010	0,64
i21	001011001101111100	0,68
i4	101101101101011001	0.68
i8	1110111111011010010	0,31
i14	111101110100001011	0,31

Figura 17 - Valor aleatório para Recombinação

Como se pode verificar pela figura 17, foi adicionado uma nova coluna com números aleatórios que representa a probabilidade de recombinação, de notar que os dois primeiros indivíduos têm um valor 0 devido a serem os melhores indivíduos que foram selecionados por elitismo.

Na figura 17 também está delimitado a vermelho os indivíduos que tem uma taxa maior que 65%, pelo qual não vão ser recombinados, enquanto que o resto, que está delimitado a verde, vai ser recombinado.

Para a fase da recombinação, escolheu-se o método de recombinação com apenas um ponto de corte, quer isto dizer que o cromossoma vai ser apenas dividido em duas partes.

Para cada conjunto de indivíduos a serem recombinados foi gerado um ponto de corte de forma aleatória dentro do tamanho do cromossoma, quer isto dizer que se o cromossoma tem um tamanho de 18 bits, não vamos definir um ponto de corte = 20 dado que está fora do tamanho do cromossoma.

É importante que o ponto de corte esteja compreendido dentro do tamanho do cromossoma, pois esse ponto de corte é a posição onde o cromossoma vai ser "cortado" a meio.

Analisemos o primeiro caso a verde da Figura 17

Figura 18 - Método de Recombinação

Portanto como demonstra a figura 18, foi efetuado uma recombinação no ponto de corte aleatório 8 apresentando assim os descendentes, que de seguida vão sofrer uma mutação.

Aplicando a Recombinação para Tabela no Excel ficamos com as seguintes recombinações

Figura 19 - Recombinação da Primeira Geração

Depois de recombinado os indivíduos selecionados, procedemos então à mutação.

Dado os dados já pré-definidos iremos então efetuar a mutação em dois indivíduos aleatórios, em posições aleatórias.

1ª Mutação:

Individuo aleatório: 9Posição aleatória: 9

2ª Mutação:

Individuo aleatório: 16Posição aleatória: 3

Na Figura 20 é demonstrado a mutação na tabela do Excel.

Н	I	J	K	L	M
Pai Selecionado	Cromossoma em BIN	Probabilidade de Recombinação	Ponto de Corte Aleatório	Recombinação	Mutação
i9	000001010111011010	0	11	000001010111011010	000001010111011010
i16	001011000100010101	0	11	001011000100010101	001011000100010101
i7	010011010111110001	0,66	4	0100110101111110001	010011010111110001
i15	110000111111000000	0,66	4	110000111111000000	110000111111000000
i17	111010010100101100	0,05	8	111010010111011010	111010010111011010
i9	000001010111011010	0,05	8	000001010100101100	000001010100101100
i14	111101110100001011	0,7	8	111101110100001011	111101110100001011
i7	010011010111110001	0,7	8	0100110101111110001	010011010111110001
i7	010011010111110001	0,42	12	01001101 <mark>1</mark> 111010010	01001101 <mark>0</mark> 111010010
i8	111011111011010010	0,42	12	111011111011110001	111011111011110001
i9	000001010111011010	0,03	12	000001010111011010	000001010111011010
i9	000001010111011010	0,03	12	000001010111011010	000001010111011010
i21	001011001101111100	0,26	6	001011010111011010	001011010111011010
i9	000001010111011010	0,26	6	000001001101111100	000001001101111100
i9	000001010111011010	0,64	6	000001010111011010	000001010111011010
i9	000001010111011010	0,64	6	00 <mark>1</mark> 001010111011010	000001010111011010
i21	001011001101111100	0,68	15	001011001101111100	001011001101111100
i4	101101101101011001	0,68	15	101101101101011001	101101101101011001
i8	1110111111011010010	0,31	13	111011111011001011	111011111011001011
i14	111101110100001011	0,31	13	111101110100010010	111101110100010010

Figura 20 - Mutação na Tabela do Excel

Concluída assim a mutação, os cromossomas serão então os indivíduos da próxima geração

EXPERIÊNCIA

1ª Geração

Dado que no capítulo anterior procedeu-se à iteração da primeira geração os seguintes dados podem ser concluídos:

Média da Função de Avaliação: 42,2922

Valor Melhor Indivíduo: 181,9234

2º Geração

Dado que a Mutação da geração anterior será a nova população, teremos de procurar o valor decimal correspondente que servirá para calcular o valor real e, por conseguinte, o valor da função de avaliação.

Estes parâmetros estão tabelados na Figura 21.

Decimal	Binário	Valor Real	Função Avaliação
5594	000001010111011010	1,5121	181,9234
45333	001011000100010101	5,1504	97,0146
79345	0100110101111110001	8,2643	45,3697
200640	110000111111000000	19,3692	19,0899
239066	111010010111011010	22,8872	62,2079
5420	000001010100101100	1,4962	182,3526
253195	111101110100001011	24,1808	84,2871
79345	0100110101111110001	8,2643	45,3697
79314	010011010111010010	8,2614	45,4087
245489	111011111011110001	23,4753	71,8307
5594	000001010111011010	1,5121	181,9234
5594	000001010111011010	1,5121	181,9234
46554	001011010111011010	5,2622	94,8247
4988	000001001101111100	1,4567	183,421
5594	000001010111011010	1,5121	181,9234
5594	000001010111011010	1,5121	181,9234
45948	001011001101111100	5,2067	95,9087
187225	101101101101011001	18,141	9,8659
245451	111011111011001011	23,4718	71,7714
253202	111101110100010010	24,1814	84,2981

Figura 21 - Segunda Geração

A Segmentação da Roleta será:

Binário	Valor Real	Função Avaliação	Probabilidade de ser Sele	Segmento da Roleta	Aleatório Roleta	Pai Selecionado	Cromossoma em BIN
000001010111011010	1,5121	181,9234	0,0865	0,0865	0	i15	000001001101111100
001011000100010101	5,1504	97,0146	0,0461	0,1326	0	i7	000001010100101100
0100110101111110001	8,2643	45,3697	0,0216	0,1542	0,221	i7	000001010100101100
110000111111000000	19,3692	19,0899	0,0091	0,1633	0,849	i17	000001010111011010
111010010111011010	22,8872	62,2079	0,0296	0,1929	0,758	i16	000001010111011010
000001010100101100	1,4962	182,3526	0,0867	0,2796	0,551	i13	000001010111011010
111101110100001011	24,1808	84,2871	0,0401	0,3197	0,062	i2	000001010111011010
0100110101111110001	8,2643	45,3697	0,0216	0,3413	0,934	i20	1110111111011001011
010011010111010010	8,2614	45,4087	0,0216	0,3629	0,526	i13	000001010111011010
1110111111011110001	23,4753	71,8307	0,0342	0,3971	0,121	i3	001011000100010101
000001010111011010	1,5121	181,9234	0,0865	0,4836	0,384	i11	1110111111011110001
000001010111011010	1,5121	181,9234	0,0865	0,5701	0,706	i16	000001010111011010
001011010111011010	5,2622	94,8247	0,0451	0,6152	0,345	i10	010011010111010010
000001001101111100	1,4567	183,421	0,0872	0,7024	0,802	i17	000001010111011010
000001010111011010	1,5121	181,9234	0,0865	0,7889	0,277	i7	000001010100101100
000001010111011010	1,5121	181,9234	0,0865	0,8754	0,034	i2	000001010111011010
001011001101111100	5,2067	95,9087	0,0456	0,9210	0,034	i2	000001010111011010
101101101101011001	18,141	9,8659	0,0047	0,9257	0,663	i15	000001001101111100
1110111111011001011	23,4718	71,7714	0,0341	0,9598	0,594	i14	001011010111011010
111101110100010010	24,1814	84,2981	0,0401	0,9999	0,707	i16	000001010111011010

Figura 22 - Segmentação da Roleta

Dado que sabemos agora a segmentação da roleta vamos proceder à recombinação

Pai Selecionado	Cromossoma em BIN	Probabilidade de Recomb	Ponto de Corte Aleatório	Recombinação
i15	000001001101111100	0	3	000001001101111100
7	000001010100101100	0	3	000001010100101100
i 7	000001010100101100	0,32	13	100001010100111010
17	000001010111011010	0.32	13	000001010111001100
i16	000001010111011010	0,56	6	000001010111011010
i13	000001010111011010	0,56	6	000001010111011010
i2	000001010111011010	0,63	14	000001010111011011
i20	1110111111011001011	0,63	14	111011111011001010
i13	000001010111011010	0,25	1	001011000100010101
i3	001011000100010101	0,25	1	000001010111011010
i11	111011111011110001	0,68	16	111011111011110001
i16	000001010111011010	0,68	16	000001010111011010
i10	010011010111010010	0,47	1	000001010111011010
i17	000001010111011010	0,47	1	010011010111010010
i7	000001010100101100	0,85	16	000001010100101100
i2	000001010111011010	0.85	16	000001010111011110
i2	000001010111011010	0,53	0	000001001101111100
i15	000001001101111100	0,53	0	000001010111011010
i14	001011010111011010	0,11	16	001011010111011010
i16	000001010111011010	0,11	16	000001010111011010

Figura 23 - Taxa de Recombinação 2ª Geração

Dado verificarmos a taxa de recombinação, a recombinação é então a seguinte:

Figura 24 - Recombinação 2º Geração

Dado os dados já pré-definidos iremos então efetuar a mutação em dois indivíduos aleatórios, em posições aleatórias.

1ª Mutação:

Individuo aleatório: 3Posição aleatória: 1

2ª Mutação:

Individuo aleatório: 16Posição aleatória: 16

Pai Selecionado	Cromossoma em BIN	Probabilidade de Recom	Ponto de Corte Aleatório	Recombinação	Mutação
15	000001001101111100	0		000001001101111100	000001001101111100
7	000001010100101100	0	3	000001010100101100	000001010100101100
7	000001010100101100	0,32	13	100001010100111010	000001010100111010
17	000001010111011010	0,32	13	000001010111001100	000001010111001100
16	000001010111011010	0,56	6	000001010111011010	000001010111011010
13	000001010111011010	0,56	6	000001010111011010	000001010111011010
2	000001010111011010	0,63	14	000001010111011011	000001010111011011
20	111011111011001011	0,63	14	111011111011001010	1110111111011001010
13	000001010111011010	0,25	1	001011000100010101	001011000100010101
3	001011000100010101	0,25	1	000001010111011010	000001010111011010
11	111011111011110001	0,68	16	111011111011110001	1110111111011110001
16	000001010111011010	0,68	16	000001010111011010	000001010111011010
10	010011010111010010	0,47	1	000001010111011010	000001010111011010
17	000001010111011010	0,47	1	010011010111010010	010011010111010010
7	000001010100101100	0,85	16	000001010100101100	000001010100101100
2	000001010111011010	0,85	16	000001010111011110	000001010111011010
2	000001010111011010	0,53	0	000001001101111100	000001001101111100
15	000001001101111100	0,53	0	000001010111011010	000001010111011010
14	001011010111011010	0,11	16	001011010111011010	001011010111011010
16	000001010111011010	0,11	16	000001010111011010	000001010111011010

Figura 25 - Mutação da 2ª Geração

Média da Função de Avaliação: 105,1319

Valor Melhor Indivíduo: 183,421

3ª Geração

Dado que a Mutação da 2ª Geração será a nova população, teremos de procurar o valor decimal correspondente que servirá para calcular o valor real e, por conseguinte, o valor da função de avaliação.

Estes parâmetros estão tabelados na Figura 26.

	Α	В	С	D
1	Decimal	Binário	Valor Real	Função Avaliação
2	4988	000001001101111100	1,4567	183,421
3	5420	000001010100101100	1,4962	182,3526
4	5434	000001010100111010	1,4975	182,3175
5	5580	000001010111001100	1,5109	181,9558
6	5594	000001010111011010	1,5121	181,9234
7	5594	000001010111011010	1,5121	181,9234
8	5595	000001010111011011	1,5122	181,9207
9	245450	111011111011001010	23,4717	71,7697
10	45333	001011000100010101	5,1504	97,0146
11	5594	000001010111011010	1,5121	181,9234
12	245489	111011111011110001	23,4753	71,8307
13	5594	000001010111011010	1,5121	181,9234
14	5594	000001010111011010	1,5121	181,9234
15	79314	010011010111010010	8,2614	45,4087
16	5420	000001010100101100	1,4962	182,3526
17	5594	000001010111011010	1,5121	181,9234
18	4988	000001001101111100	1,4567	183,421
19	5594	000001010111011010	1,5121	181,9234
20	46554	001011010111011010	5,2622	94,8247
21	5594	000001010111011010	1,5121	181,9234

Figura 26 - Valores 3ª Geração

Segmentação da Roleta:

Pai Selecionado	Selecionado Cromossoma em BIN Probabilidade de Recomt Ponto de Corte Aleat		Ponto de Corte Aleatório Recombinação
i2	000001001101111100	0	4 000001001101111100
i18	000001001101111100	0	4 000001001101111100
i2	000001001101111100	0,71	4 000001001101111100
i18	000001001101111100	0,71	4 000001001101111100
i11	000001010111011010	0,31	10 000001010111011010
i11	000001010111011010	0,31	10 000001010111011010
i13	000001010111011010	0,87	8 000001010111011010
i2	000001001101111100	0,87	8 000001001101111100
i20	001011010111011010	0,57	8 011011010111011010
i13	000001010111011010	0,57	8 000001010111011010
i17	000001010111011010	0,43	1 000001010111011010
i14	000001010111011010	0,43	1 000001010111011010
i21	000001010111011010	0,51	8 000001010111011011
i8	000001010111011011	0,51	8 000001010111011010
i13	000001010111011010	0,02	13 000001010111011010
²⁷ i21	000001010111011010	0,02	13 000001010111011010
i10	001011000100010101	0,29	9 001011000111011010
i11	000001010111011010	0,29	9 000001010100010101
i15	010011010111010010	0,81	5 010011010111010010
i17	000001010111011010	0,81	5 000000010111011010

A Taxa de recombinação será:

4	А	В	С	D	Е	F	G	Н
1	Decimal	Binário	Valor Real	Função Avaliação	Probabilidade de ser Sele	Segmento da Roleta	Aleatório Roleta	Pai Selecionado
2	4988	000001001101111100	1,4567	183,421	0,0589	0,0589	0	i2
3	5420	000001010100101100	1,4962	182,3526	0,0586	0,1175	0	i18
4	5434	000001010100111010	1,4975	182,3175	0,0585	0,176	0,499	i2
5	5580	000001010111001100	1,5109	181,9558	0,0584	0,2344	0,465	i18
6	5594	000001010111011010	1,5121	181,9234	0,0584	0,2928	0,59	i11
7	5594	000001010111011010	1,5121	181,9234	0,0584	0,3512	0,022	i11
8	5595	000001010111011011	1,5122	181,9207	0,0584	0,4096	0,919	i13
9	245450	111011111011001010	23,4717	71,7697	0,023	0,4326	0,591	i2
10	45333	001011000100010101	5,1504	97,0146	0,0312	0,4638	0,77	i20
11	5594	000001010111011010	1,5121	181,9234	0,0584	0,5222	0,618	i13
12	245489	1110111111011110001	23,4753	71,8307	0,0231	0,5453	0,971	i17
13	5594	000001010111011010	1,5121	181,9234	0,0584	0,6037	0,368	i14
14	5594	000001010111011010	1,5121	181,9234	0,0584	0,6621	0,556	i21
15	79314	010011010111010010	8,2614	45,4087	0,0146	0,6767	0,992	i8
16	5420	000001010100101100	1,4962	182,3526	0,0586	0,7353	0,45	i13
17	5594	000001010111011010	1,5121	181,9234	0,0584	0,7937	0,466	i21
18	4988	000001001101111100	1,4567	183,421	0,0589	0,8526	0,663	i10
19	5594	000001010111011010	1,5121	181,9234	0,0584	0,911	0,747	i11
20	46554	001011010111011010	5,2622	94,8247	0,0305	0,9415	0,581	i15
21	5594	000001010111011010	1,5121	181,9234	0,0584	0,9999	0,756	i17

Figura 28 - Taxa de Recombinação 3ª Geração

Recombinação dos indivíduos:

Figura 29 - Recombinação da 3ª Geração

Dado os dados já pré-definidos iremos então efetuar a mutação em dois indivíduos aleatórios, em posições aleatórias.

1ª Mutação:

Individuo aleatório: 9Posição aleatória: 2

2ª Mutação:

Individuo aleatório: 20Posição aleatória: 6

Pai Selecionado	Cromossoma em BIN	Probabilidade de Recomb	Ponto de Corte Aleatório	Recombinação	Mutação
i2	000001001101111100	0	4	000001001101111100	000001001101111100
i18	000001001101111100	0	4	000001001101111100	000001001101111100
i2	000001001101111100	0,71	4	000001001101111100	000001001101111100
i18	000001001101111100	0,71	4	000001001101111100	000001001101111100
i11	000001010111011010	0,31	10	000001010111011010	000001010111011010
i11	000001010111011010	0,31	10	000001010111011010	000001010111011010
i13	000001010111011010	0,87	8	000001010111011010	000001010111011010
i2	000001001101111100	0,87	8	000001001101111100	000001001101111100
i20	001011010111011010	0,57	8	0 <mark>1</mark> 1011010111011010	0 <mark>0</mark> 1011010111011010
i13	000001010111011010	0,57	8	000001010111011010	000001010111011010
i17	000001010111011010	0,43	1	000001010111011010	000001010111011010
i14	000001010111011010	0,43	1	000001010111011010	000001010111011010
i21	000001010111011010	0,51	8	000001010111011011	000001010111011011
i8	000001010111011011	0,51	8	000001010111011010	000001010111011010
i13	000001010111011010	0,02	13	000001010111011010	000001010111011010
i21	000001010111011010	0,02	13	000001010111011010	000001010111011010
i10	001011000100010101	0,29	9	001011000111011010	001011000111011010
i11	000001010111011010	0,29	9	000001010100010101	000001010100010101
i15	010011010111010010	0,81	5	010011010111010010	010011010111010010
i17	000001010111011010	0,81	5	00000 <mark>0</mark> 010111011010	00000 <mark>1</mark> 010111011010

Figura 30 - Mutação da 3ª Geração

Média da Função de Avaliação: 155,6988

Valor Melhor Indivíduo: 183,421

CONCLUSÕES

1ª Geração

Média da Função de Avaliação: 42,2922

Valor Melhor Indivíduo: 181,9234

2ª Geração

Média da Função de Avaliação: 105,1319

Valor Melhor Indivíduo: 183,421

3ª Geração

Média da Função de Avaliação: 155,6988

Valor Melhor Indivíduo: 183,421

Observando os dados acima, pode-se concluir que houve uma melhoria da média da função de avaliação, que se deve ao fato de fazermos a seleção elitista para preservar os melhores indivíduos da geração anterior, dado que o resto das operações usa qualquer tipo de valor aleatório, seja qual ele for, nota-se uma melhoria na média.

O Valor do melhor individuo pelo contrário, estabilizou podendo ou não o fato de termos escolhido apenas uma precisão de 4 casas decimais ser influência, ou seja, pode a cada geração estar a melhorar em algumas casas decimais, apenas não é notado logo nas primeiras casas decimais.

Isto tudo comprova que o operador de recombinação e de mutação tem influência na medida que o algoritmo tenta sempre melhorar, e não fica estagnado logo nas primeiras gerações.

Adicionalmente parte do trabalho 3, foi elaborado um script em Python em que basta inserir alguns parâmetros que estão na Secção dos Dados, a partir desse script pode-se observar a evolução do algoritmo ao longo de n gerações que forem introduzidas.

De Realçar que foi com esse script Python que se procedeu à obtenção dos dados utilizados para este relatório, à exceção de demonstrações de funções em Excel.

Sistema R com Package GA

No enunciado do trabalho prático presente na Figura 2 é adicionalmente pedido para apresentarmos uma simulação através de um Software denominado de Sistema R

Definir a Função de Avaliação e o seu respetivo Intervalo.

```
package 'assertthat' successfully unpacked and MD5 sums checked
package 'glue' successfully unpacked and MD5 sums checked
package 'fansi' successfully unpacked and MD5 sums checked
package 'foreach' successfully unpacked and MD5 sums checked
package 'iterators' successfully unpacked and MD5 sums checked
package 'cli' successfully unpacked and MD5 sums checked
package 'crayon' successfully unpacked and MD5 sums checked
package 'Ropp' successfully unpacked and MD5 sums checked
package 'RoppArmadillo' successfully unpacked and MD5 sums checked
package 'RoppArmadillo' successfully unpacked and MD5 sums checked
package 'GA' successfully unpacked and MD5 sums checked

The downloaded binary packages are in

C:\Users\Dário Ribeiro\AppData\Local\Temp\Rtmp67tThm\downloaded_packages

> funcao <- function(x) (x-15)^2

> curve(funcao,1,25)
```

Figura 31 - Sistema R com a função de Avaliação

De notar que os comandos introduzidos pelo utilizador estão presentes a vermelho, e que pode ver a azul, vários pacotes instalados, inclusive o Package "GA".

O Gráfico da função dentro do intervalo estipulado em "curve()" é demonstrado na Figura 32.

Figura 32 - Gráfico da Função

O próximo passo no Sistema R é definirmos os outros dados que podem ser revistos na Seção de **Dados** no capítulo **Análise Prática.**

É definido os seguintes parâmetros:

Tipo de Valor → type="real-valued"

Fitness do Algoritmo → fitness=função

Número de Bits → nBits=18

Número de iterações → maxiter=20

Tamanho da População → popSize=20

Probabilidade de Recombinação → pcrossover=0.65

Probabilidade de Mutação → pmutation=0.005

Intervalo da Função → min=1, max=25

A Figura 33 mostra o comando no Sistema R:

```
Genetic
                  Algorithms
                  version 3.2
     citation("GA")' for citing this R package in publications.
Attaching package: 'GA'
The following object is masked from 'package:utils':
 GA <- ga(type="real-valued", fitness=funcao, nBits=18, maxiter=20, popSize=20, pcrossover=0.65, pmutation=0.005, min=1, max=25
GA | iter = 1 | Mean = 55.61581 | Best = 181.99641
GA | iter = 2 | Mean = 46.45664 | Best = 181.99641
   | iter = 3 | Mean = 55.83246 | Best = 181.99641
   | iter = 4 | Mean = 75.81888 | Best = 181.99641
GΑ
   | iter = 5 | Mean = 83.08101 | Best = 181.99641
GΔ
  | iter = 6 | Mean = 108.2902 | Best = 181.9964
GΑ
GA | iter = 7 | Mean = 132.4699 | Best = 181.9964
GA | iter = 8 | Mean = 152.5975 | Best = 181.9964
   | iter = 9 | Mean = 159.8848 | Best = 181.9964
GΑ
GA | iter = 10 | Mean = 171.6047 | Best = 181.9964
GA | iter = 11 | Mean = 179.0058 | Best = 181.9964
   | iter = 12 | Mean = 180.6639 | Best = 181.9964
GΑ
   | iter = 13 | Mean = 181.7304 | Best = 181.9964
GA | iter = 14 | Mean = 176.8586 | Best = 181.9964
GA | iter = 15 | Mean = 181.9824 | Best = 181.9964
  | iter = 16 | Mean = 181.9964 | Best = 181.9964
GΑ
GA | iter = 17 | Mean = 181.9964 | Best = 181.9964
GA | iter = 18 | Mean = 181.9964 | Best = 181.9964
GA | iter = 19 | Mean = 181.9964 | Best = 181.9964
GA | iter = 20 | Mean = 181.9964 | Best = 181.9964
Warning messages:
1: In ga(type = "real-valued", fitness = funcao, nBits = 18, maxiter = 20,
 'min' arg is deprecated. Use 'lower' instead.
2: In ga(type = "real-valued", fitness = funcao, nBits = 18, maxiter = 20,
  'max' arg is deprecated. Use 'upper' instead.
```

Figura 33 - Comando no Sistema R

Agora o Sumário do Algoritmo Genético, que é representado pelo comando Summary(GA).

```
R Console
> summary (GA)
-- Genetic Algorithm ------
GA settings:
Type
                    = real-valued
Population size = 20
Number of generations = 20
Crossover probability = 0.65
Mutation probability = 0.005
Search domain =
     x1
lower 1
upper 25
GA results:
                    = 20
Iterations
Fitness function value = 181.9964
Solution =
          x1
[1,] 1.509395
```

Figura 34 - Sumário da Função GA

De notar que dados os parâmetros, o valor de fitness é aproximado do valor do melhor individuo da resolução do exercício prático apresentado anteriormente neste relatório.

```
181,9964 contra 183,4210
```

Não se esquecer do fato que no Sistema R, foram feitas 20 iterações, enquanto da outra forma foi elaborado de forma "manual", com recurso a Python.

Visualização do gráfico através do comando "plot(GA)".

Figura 35 - Gráfico da Evolução das Gerações

Através do Gráfico podemos tirar várias observações, tais como a segunda geração ter piorado em termos de fitness em vez de melhorar, e que a penúltima também teve um decréscimo, mas de forma geral pode se concluir através da curva que gradualmente a cada geração que se iterou, o fitness tem sido mais alto , lentamente estabilizando na casa dos 180 sendo que provavelmente mais umas iterações teríamos já um valor estável sem oscilações, assim como aconteceu na Segunda e Terceira geração da outra forma de resolução do trabalho prático.