

Some notes on numerical methods for RH problems

The most common way to treat a RH problem numerically is to first convert it to an equivalent singular integral equation.

The singular integral equation is discretized. See

1110 01116 01111 11110 C1 111 0 QUALIO 11 10 QUALICALIZA OCC

S Olver. A general framework for solving Riemann-Hilbert problems numerically. Numer. Math., 122(2):305–340, 2012

for a Chebyshev collocation method.

See also: T T and S Olver. Riemann-Hilbert Problems, Their Numerical Solution and the Computation of Nonline SIAM, Philadelphia, PA, 2016

This method is general and does not incorporate any oscillatory behavior into the basis functions.

Some notes on numerical methods for RH problems

The most common way to treat a RH problem numerically is to first convert it to an equivalent singular integral equation.

The singular integral equation is discretized. See

S Olver. A general framework for solving Riemann-Hilbert problems numerically. Numer. Math., 122(2):305–340, 2012

for a Chebyshev collocation method.

This method is general and does not incorporate any oscillatory behavior into the basis functions.

See also:

T T and S Olver. Riemann-Hilbert Problems, Their Numerical Solution and the Computation of Nonline SIAM, Philadelphia, PA, 2016

A rational function approach to inverse scattering