Аналіз часу виконання

1.1 Операції з множиною рядків

• Операція + (додавання рядка):

Додавання рядка в unordered_set виконується в середньому за час O(1) завдяки хешуванню. Однак у найгіршому випадку (при колізіях) операція може зайняти O(n), де n — кількість рядків у множині.

• Операції – та ? аналогічно.

Таким чином, виконання всіх операцій на множині рядків (додавання, видалення, перевірка) має середню складність:

- Середній час виконання всіх операцій: O(k), де k кількість операцій.
- **У** найгіршому випадку: $O(k \times n)$.

1.2 Пошук паліндромів

Пошук паліндромів використовує поліноміальне хешування, що дозволяє перевіряти підрядок на паліндром за O(1). Однак перебір усіх можливих підрядків вимагає часу:

- Для кожного рядка довжиною l, пошук усіх підрядків, які можуть бути паліндромами, займе $O(1^2)$.
- Якщо у нас N рядків, де кожен рядок має максимальну довжину l, то загальна складність алгоритму пошуку паліндромів буде O(N×1^2), де N — кількість рядків, а l — максимальна довжина рядка (в цьому випадку l≤15).

2. Оцінка ймовірності колізій

Для оцінки ймовірності колізій використовується парадокс днів народження. Відповідно до формули, ймовірність колізії для поліноміального хешування можна оцінити як $p=1-\exp(n^2/2m)$, де:

- п кількість рядків,
- m модуль, за яким обчислюється хеш (у нашому випадку $m=10^9+9$).

Ймовірність колізії для поліноміального хешування при $n = 10^6$ і модулі $m=10^9 + 9$ становить практично 1. Це означає, що для такого великого числа рядків колізії майже гарантовані.