Efficient Software Implementation of Point Multiplication on Elliptic Curves

Kenny C.K. Fong

Centre for Applied Cryptographic Research University of Waterloo

July 25, 2001

Motivation: ECDSA

- ECDSA stands for the Elliptic Curve Digital Signature Algorithm (Vanstone, 1992).
- ECDSA has been accepted as ISO, ANSI and IEEE standards.
- The security of ECDSA is based on the computational intractability of the *elliptic curve discrete logarithm problem* (ECDLP), which appears to be significantly harder than the discrete logarithm problem (used by DSA) and integer factorization problem (used by RSA).

Background: Finite Fields

- There are two kinds of finite fields (up to isomorphism): $\mathbb{F}_p = GF(p)$, where p is prime; and $\mathbb{F}_{p^m} = GF(p^m)$, where p is prime and m > 1 is an integer.
- $\mathbb{F}_p \cong \mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$
- $\mathbb{F}_{p^m} \cong \mathbb{Z}_p[x]/(f(x)) = \{a_0 + a_1x + a_2x^2 + \dots + a_{m-1}x^{m-1} : a_0, \dots, a_{m-1} \in \mathbb{Z}_p\}$, where f(x) is an irreducible polynomial over \mathbb{Z}_p of degree m

Background: Elliptic Curves

• An elliptic curve E over \mathbb{F}_p (p > 3) is defined by an equation of the form

$$y^2 = x^3 + ax + b \tag{1}$$

where $a, b \in \mathbb{F}_p$, and $4a^3 + 27b^2 \not\equiv 0 \pmod{p}$.

- The set $E(\mathbb{F}_p)$ consists of all points $(x, y), x, y \in \mathbb{F}_p$, which satisfy equation (1), together with a special point \mathcal{O} called the point at infinity.
- $E(\mathbb{F}_p)$ forms an (additive) **abelian group**.

Basic Curve Operations

Let $P = (x_1, y_1) \in E(\mathbb{F}_p)$ and $Q = (x_2, y_2) \in E(\mathbb{F}_p)$.

- (Point negation) $-P = (x_1, -y_1)$.
- (Point addition) Assume $P \neq \pm Q$. Then $P + Q = (x_3, y_3)$, where

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2, \quad y_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x_1 - x_3) - y_1.$$

• (Point doubling) Assume $P \neq -P$. Then $2P = (x_4, y_4)$, where

$$x_4 = \left(\frac{3x_1^2 + a}{2y_1}\right)^2 - 2x_1, \quad y_4 = \left(\frac{3x_1^2 + a}{2y_1}\right)(x_1 - x_3) - y_1.$$

ECDSA: Domain Parameters

- a finite field $\mathbb{F}_q = GF(q)$ of order q
- an elliptic curve E over \mathbb{F}_q
- a base point $G \in E(\mathbb{F}_q)$ of prime order n, where $n > 2^{160}$ and $n > 4\sqrt{q}$ ($< G >= \{kG : k \in \mathbb{Z}\}$ is a cyclic subgroup of $E(\mathbb{F}_q)$ of order n)

Most standards restrict the underlying finite field \mathbb{F}_q to be a *prime* field (q = p where p > 3 is prime) or a binary field $(q = 2^m \text{ where } m > 1 \text{ is an integer})$.

ECDSA: Signature Generation

Let (d, Q) be the key pair, where the private key $d \in [1, n)$ is a (pseudo)random integer pre-selected and Q = dG is the public key. Let m be the message to be signed.

- 1. Select a (pseudo)random integer $k \in [1, n)$.
- 2. Compute $\mathbf{kG} = (x_1, y_1)$ and convert x_1 to an integer \bar{x}_1 .
- 3. Compute $r = \bar{x}_1 \mod n$. If r = 0 then go to step 1.
- 4. Compute $k^{-1} \mod n$.
- 5. Compute SHA-1(m) and convert this bit string to an integer e.
- 6. Compute $s = k^{-1}(e + dr) \mod n$. If s = 0 then go to step 1.
- 7. The signature for the message m is (r, s).

ECDSA: Signature Verification

- 1. Verify that r and s are integers in the interval [1, n).
- 2. Compute SHA-1(m) and convert this bit string to an integer e.
- 3. Compute $w = s^{-1} \mod n$.
- 4. Compute $u_1 = ew \mod n$ and $u_2 = rw \mod n$.
- 5. Compute $X = (x_2, y_2) = \mathbf{u_1} \mathbf{G} + \mathbf{u_2} \mathbf{Q}$.
- 6. If $X = \mathcal{O}$, then reject the signature. Otherwise, convert x_2 to an integer \bar{x}_2 , and compute $v = \bar{x}_2 \mod n$.
- 7. Accept the signature if and only if v = r.

Prime Field Operations: Reduction

Let $\mathbb{F}_p = \{0, 1, 2, \dots, p-1\}$ be a prime field where p is an n-bit prime, $n \geq 160$ (i.e. $p \geq 2^{159}$). Let c be an integer where $0 \leq c \leq (p-1)^2$ (so c can be 2n-bit long). Find a number $r \in \mathbb{F}_p$ such that $c \equiv r \pmod{p}$.

- Barrett reduction and Montgomery reduction
- Mersenne primes or Mersenne-like primes

e.g. Mersenne prime
$$p = 2^{521} - 1$$
, $n = 521$
 $2^{521} \equiv 1 \pmod{p}$
 $c = c_1 2^{521} + c_0 \equiv c_0 + c_1 \pmod{p}$
 $(c_0 \text{ and } c_1 \text{ are 521-bit long})$

Fast Reduction: Example

Consider the NIST-recommended prime $p_{192} = 2^{192} - 2^{64} - 1$.

INPUT: integer $c = (c_5, c_4, c_3, c_2, c_1, c_0) = \sum_{i=0}^{5} c_i 2^{64i}$ where each c_i is a 64-bit word, and $0 \le c \le (p_{192} - 1)^2$.

OUTPUT: $c \mod p_{192}$.

- 1. Define 192-bit integers: $s_1 = (c_2, c_1, c_0), s_2 = (0, c_3, c_3),$ $s_3 = (c_4, c_4, 0), s_4 = (c_5, c_5, c_5).$
- 2. Return $(s_1 + s_2 + s_3 + s_4) \mod p_{192}$.

Fast Reduction: Arithmetic

Note:
$$p_{192} = 2^{192} - 2^{64} - 1 \implies 2^{192} \equiv 2^{64} + 1 \pmod{p_{192}}$$

$$c = (c_5, c_4, c_3, c_2, c_1, c_0)$$

$$\equiv (c_5, c_4, c_3)2^{192} + (c_2, c_1, c_0)$$

$$\equiv (c_52^{128} + c_42^{64} + c_3)(2^{64} + 1) + s_1$$

$$\equiv c_52^{128}(2^{64} + 1) + c_42^{64}(2^{64} + 1) + c_3(2^{64} + 1) + s_1$$

$$\equiv c_5(2^{192} + 2^{128}) + c_4(2^{128} + 2^{64}) + c_3(2^{64} + 1) + s_1$$

$$\equiv c_5(2^{128} + 2^{64} + 1) + (c_4, c_4, 0) + (0, c_3, c_3) + s_1$$

$$\equiv (c_5, c_5, c_5) + s_3 + s_2 + s_1$$

$$\equiv s_1 + s_2 + s_3 + s_4 \pmod{p_{192}}$$

Point Multiplication: Binary Method

INPUT: $k = (k_{m-1}, \ldots, k_1, k_0)_2, P \in E(\mathbb{F}_p)$. OUTPUT: kP.

- 1. $Q \leftarrow \mathcal{O}$.
- 2. For i from m-1 downto 0 do
 - $\bullet \ Q \longleftarrow 2Q.$
 - If $k_i = 1$ then $Q \longleftarrow Q + P$.
- 3. Return Q.

e.g.
$$k = 13 = 1101_2$$

 $13P = P + 2(\mathcal{O} + 2(P + 2(P + \mathcal{O})))$
 $Q: \mathcal{O} \rightarrow P \rightarrow 2P \rightarrow 3P \rightarrow 6P \rightarrow 12P \rightarrow 13P$

Point Multiplication: Gallant Method

Suppose that $P \in E(\mathbb{F}_p)$ is not known a priori.

- The larger the value of k, the longer it takes to calculate kP.
- A new technique (Gallant, Lambert, Vanstone, 2000) has been proposed which speeds up point multiplication of elliptic curves having an efficiently-computable endomorphism.
- The approach calculates kP by decomposing k into two *smaller* scalars k_1 and k_2 , and applies just one application of the endomorphism.
- A speedup of up to 50% is expected over the best general methods for point multiplication.

Endomorphisms

Let E be an elliptic curve defined over \mathbb{F}_q .

- An endomorphism of E defined over \mathbb{F}_q is a map $\phi: E(\mathbb{F}_q) \to E(\mathbb{F}_q)$ satisfying $\phi(\mathcal{O}) = \mathcal{O}$.
- ϕ is a group homomorphism of $E(\mathbb{F}_q)$.
- Example. For each $m \in \mathbb{Z}$, the multiplication by m map $[m]: E(\mathbb{F}_q) \to E(\mathbb{F}_q)$ defined by $P \mapsto mP$ is an endomorphism defined over \mathbb{F}_q .

Point Multiplication and Endomorphism

Suppose that the point P has prime order n, and the characteristic polynomial of ϕ has a root λ modulo n. Then $\phi(Q) = \lambda Q$ for all $Q \in P >$.

Example. Consider the elliptic curve

$$E: y^2 = x^3 + b \tag{2}$$

defined over \mathbb{F}_p , where $p \equiv 1 \pmod{3}$ is a prime.

Efficient Endomorphism: Example

- \mathbb{F}_p has an element β of order 3 ($\beta^3 \equiv 1 \pmod{p}$).
- The map $\phi : E(\mathbb{F}_p) \to E(\mathbb{F}_p)$ defined by $(x, y) \mapsto (\beta x, y)$ and $\mathcal{O} \mapsto \mathcal{O}$ is an endomorphism defined over \mathbb{F}_p .
- Suppose that $P \in E(\mathbb{F}_p)$ is a point of prime order n.
- There exists an integer λ satisfying $\lambda^2 + \lambda + 1 \equiv 0 \pmod{n}$.
- $\phi(Q) = \lambda Q$ for all $Q \in \langle P \rangle$.
- $\phi(Q)$ can be computed using only one field multiplication.

Using the Endomorphism

- Since n is the order of the point P, $nP = \mathcal{O}$.
- Suppose that we can efficiently write $k \equiv k_1 + k_2 \lambda \pmod{n}$, where $k_1, k_2 \in [0, \lfloor \sqrt{n} \rfloor]$. Then $k = k_1 + k_2 \lambda + nq$ for some $q \in \mathbb{Z}$.
- It follows that

$$kP = (k_1 + k_2\lambda + nq)P$$

$$= k_1P + k_2\lambda P + nqP$$

$$= k_1P + k_2(\lambda P) + q(nP)$$

$$= k_1P + k_2\phi(P) + \mathcal{O}$$

$$= k_1P + k_2\phi(P).$$

Point Multiplication: Interleaving Method

INPUT: $u = (u_{m-1}, \dots, u_0)_2, v = (v_{m-1}, \dots, v_0)_2, P \in E(\mathbb{F}_p).$ OUTPUT: kP.

- 1. $Q \longleftarrow \phi(P)$.
- $2. A \longleftarrow \mathcal{O}.$
- 3. For i from m-1 downto 0 do
 - \bullet $A \longleftarrow 2A$.
 - If $u_i = 1$ then $A \longleftarrow A + P$.
 - If $v_i = 1$ then $A \longleftarrow A + Q$.
- 4. Return A.

Interleaving Method: Analysis

- Suppose that k is t-bit long.
- $k_1, k_2 \in [0, \lfloor \sqrt{n} \rfloor]$ means that k_1 and k_2 are (t/2)-bit long, i.e. k_1 and k_2 are small.
- The interleaving method processes the i-th bit of both k_1 and k_2 together in the i-th iteration, hence it saves half of the point doublings.

Decomposing k: Formulation

- Consider the homomorphism $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}_n$ defined by $(i,j) \mapsto (i+\lambda j) \mod n$.
- Let $k \in [1, n)$. We wish to find *small* integers $k_1, k_2 \in [0, \lfloor \sqrt{n} \rfloor]$ such that $k \equiv k_1 + k_2 \lambda \pmod{n}$.
- Equivalently, we wish to find a vector $\vec{v} = (k_1, k_2) \in \mathbb{Z} \times \mathbb{Z}$ of small Euclidean norm such that $f(\vec{v}) = k$.
- Clearly, f((k, 0)) = k.

Decomposing k: Algorithm

Precomputation:

Find linearly independent vectors $\vec{v}_1, \vec{v}_2 \in \mathbb{Z} \times \mathbb{Z}$ of small Euclidean norm such that $f(\vec{v}_1) = f(\vec{v}_2) = 0$.

- 1. Find a vector $\vec{u} = l_1 \vec{v}_1 + l_2 \vec{v}_2$ $(l_1, l_2 \in \mathbb{Z})$ in the integer lattice generated by \vec{v}_1 and \vec{v}_2 that is close to (k, 0).
 - Write $(k,0) = \beta_1 \vec{v}_1 + \beta_2 \vec{v}_2, \, \beta_1, \beta_2 \in \mathbb{Q}$.
 - Set $\vec{u} = l_1 \vec{v}_1 + l_2 \vec{v}_2$, where $l_1 = \lfloor \beta_1 \rfloor$ and $l_2 = \lfloor \beta_2 \rfloor$.
- 2. Set $\vec{v} = (k_1, k_2) = (k, 0) \vec{u}$.

Decomposing k: Analysis

• Notice that

$$f(\vec{v}) = f((k,0) - \vec{u})$$

$$= f((k,0)) - f(\vec{u})$$

$$= k - f(l_1\vec{v}_1 + l_2\vec{v}_2)$$

$$= k - l_1f(\vec{v}_1) - l_2f(\vec{v}_2)$$

$$= k - l_1(0) - l_2(0)$$

$$= k.$$

• The vector \vec{v} is indeed short. One can show that $\|\vec{v}\| \leq \max\{\|\vec{v}_1\|, \|\vec{v}_2\|\}.$

Decomposing k: Precomputation

• The two linearly independent short vectors \vec{v}_1 and \vec{v}_2 , where $f(\vec{v}_1) = f(\vec{v}_2) = 0$, can be found using the *Extended Euclidean Algorithm*.

$$s_0 \lambda + t_0 n = r_0$$

$$s_1 \lambda + t_1 n = r_1$$

$$\vdots$$

$$s_i \lambda + t_i n = r_i \approx \sqrt{n}$$

$$\vdots$$

$$s_l \lambda + t_l n = 1$$

Decomposing k: Technicalities

Denote $A = [\vec{v}_1 | \vec{v}_2]$.

$$(k,0) = \beta_1 \vec{v}_1 + \beta_2 \vec{v}_2$$

$$A \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} k \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = A^{-1} \begin{bmatrix} k \\ 0 \end{bmatrix}$$