

aⁿbⁿcⁿ no es libre de contexto

Como sólo se tiene una pila, al vaciarse las a's con las b's, ya no hay modo de contar las c's.

Máquina de Turing

- En 1936 propuso su máquina
- Era una forma de materializar la idea de algoritmo

Caricatura de una MT

Operación de la MT

- Lee un caracter de la cinta.
- Efectúa una transición de estado.
- Realiza una acción en la cinta:
 - Escribir un símbolo.
 - Mover cabeza lectora a la izquierda o derecha.

Fin de "ejecución"

- Estado de paro ("halt")
 - o detiene la operación.
 - o acepta la palabra.
- Ciclo infinito o colgar la máquina
 - ejecución nunca termina o no puede continuar.
 - o la palabra es rechazada.

Notación gráfica

Ejemplo: MT que acepta palabras en {a,b} que comienzan con 'a'

Formalmente...

Una MT es un quíntuplo $(K, \Sigma, \Gamma, \delta, s)$ donde:

- K es un conjunto de estados tal que $h \in K$;
- Σ es el alfabeto de entrada, donde $\sqcup \notin \Sigma$;
- Γ es el alfabeto de la cinta, donde $\sqcup \in \Gamma$ y $\Sigma \subseteq \Gamma$
- $s \in K$ es el estado inicial;
- $\delta: (K \{h\} \times \Gamma) \to K \times (\Gamma \cup \{L, R\})$ es la función de transición.

Conversión diagrama / formal

Pasar a notación formal el diagrama de MT

Diseño de MT

- No hay métodos sistemáticos de diseño de MT
- Empezar con un caso típico y luego atender las excepciones

Corrección, completez

- Una MT es correcta cuando las palabras que acepta pertenecen al lenguaje deseado
 - o Con las demás se cicla
- Una MT es completa cuando acepta todas las palabras que debe

Ejemplo: MT palabras en {a,b} que terminan con 'a'

Ejercicio: a*b*

- Debe aceptar (llegar a halt) con ε, a, b, aa, ab, aab, etc.
- Debe ciclarse con ba, abba, etc.

En JFLAP:

- La palabra va al inicio de cinta (nosotros ponemos "_")
- Se puede escribir y mover a la vez (nosotros si escribimos hacemos 'S')
- La cinta es infinita a ambos lados (nosotros no vamos a la izq. de "_")
- Hay estados finales (nuestro halt no tiene flechas de salida)

Ejercicio

- MT que acepte {aⁿbⁿ}
- Ideas:
 - Con estados recordar la parte de la palabra en que estamos
 - En la cinta cambiar por "*" una "a" y una "b", hasta que ambas se acaben

Ejercicio

MT que acepte E, en el alfabeto {a,b}