

CHEM F111: General Chemistry Semester II: AY 2017-18

Lecture-27, 26-03-2018

Notice

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

II Semester, 2017-2018

Course No.: CHEM F111 Course Title: General Chemistry

Seating arrangement for Assignment-02 Test

Date: 28-03-2018 Time: 17.30 hrs.

Tutorial Section	Room No	Instructor
T-1	2221	Dr. Anil Kumar
T-2	2207	Dr. Paritosh Shukla
T-3	2222	Dr. Paritosh Shukla
T-4	3248	Dr. Inamur R. Laskar
T-5	2204	Dr. Rajeev Sakhuja
T-6	2212	Dr. Madhushree Sarkar
T-7	3247	Dr. Bibhash R. Sarkar
T-8	3203	Dr. Surojeet Pande
T-9	2235	Dr. Subit K. Saha
T-10	2206	Dr. Saumi Ray
T-11	3158	Dr. Bibhash R. Sarkar
T-12	2203	Dr. Ajay K. Sah

Syllabus: L-17 to L-27 of Handout

Summary of lecture 26

The energy gap between the e_g and t_{2g} orbitals, Δ_0 , (the crystal field splitting) equals the energy of a photon:

$$\Delta_0 = h\nu = \Delta E$$

As Δ_0 , varies, hv will also vary and the color of the compound will change

Absorption of a photon causes a jump from a t_{2g} to an e_g orbital

Summary of lecture 26

Absorption at 520 nm gives the complex its purple color

A more resolved absorption spectrum of the complex has a shoulder

Ground state term for dⁿ config.

Ground terms for d¹-d¹⁰ configurations

Configuration	Example	Ground term	m_l	M_L	S
the only permi	ned transin	if is the pured:	2 1 0 -1 -2	evel w	
d ¹	Ti ³⁺	^{2}D	1	2	1 2
$-d^2$	V ³⁺	✓ ³ F	111	3	1
d ³ bh	Cr ³⁺	⁴ F	1111	3	$1\frac{1}{2}$
d ⁴ medua a tudi s	Cr ²⁺	natural ⁵ D of each	1111	2	2
d^5	Mn ₂ +.	°S	1 1 1 1 1	0	$2\frac{1}{2}$
d^6	Fe ²⁺	5D 2M	11111	2	2
d^7	Co ²⁺	4F		3	11/2
d [×]		latidae3 _F	$\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow$	3	1
d ⁹		2D		2	1/2

d¹, d⁴, d⁶ and d⁹ usually have one absorption, though a side "hump"

Electronic spectroscopy of Oh com.

Absorption bands in electronic spectra are usually broad, and occur much more rapidly than molecular vibrations

The spectra represent a "snapshot" of molecules in various vibrational and rotational states

Extinction coefficients will range from <1 up to 50,000 M⁻¹cm⁻¹ depending upon the type of electronic transition and whether it is permitted based on selection rules

Interpretation of Electronic Spec.

<u>repulsion</u>, which is split into states by <u>spin-orbit coupling</u>, which is further split into microstates by <u>magnetic field</u>:

Fine structure for np n'p configuration

All the transitions are allowed?

Slide taken from Lecture 10, slide # 26

Selection Rules for Electronic transition

- **A** Laporte 'orbital' selection rule: Transitions which involve a change in the subsidiary quantum number $\Delta l = \pm 1$ are "Laporte allowed" and therefore have a high absorbance.
- \clubsuit d-d transitions are "Laporte forbidden" and ' ε ' is less.

However, in complexes, d-d transitions are taking place in electronic spectra and they not only give important clues about the structure of the complex but also proof for the <u>theories</u> of bonding in complexes.

Transition metal ion forms a complex and surrounded by ligands, mixing of d and p orbitals: breakdown of Laporte selection rule

Selection Rules for Electronic transition

Spin selection rule: During transitions between energy levels, an electron does not change its spin, i.e., $\Delta S = 0$

There should not be any change in the spin of the states and their multiplicities should be the same during the transition of electrons. That is, singlet-singlet and triplet-triplet transitions are allowed, while singlet-triplet and vice-versa transitions are not allowed.

Why Mn²⁺ high spin complexes are off white or pale flesh colored?

Splitting of dⁿ terms

Each of these free ion terms will be affected by the ligands in a complex and this will depend upon the geometry of the complex

D terms will also be split into T_{2g} and E_g terms in an octahedral complex Similarly, other terms will split as follows in an octahedral field:

Transforming spectroscopic terms into Mulliken symbols

Free ion	Splitting in an octahedral	Splitting in a tetrahedral
S	A_{1g}	A_1
P	T_{1g}	T_1
D	$E_g + T_{2g}$	$E+T_2$
F	$A_{2g} + T_{1g} + T_{2g}$	$A_2+T_1+T_2$

dⁿ and d¹⁰⁻ⁿ systems

The ground state terms obtained from d¹ and d² configurations are split by octahedral field and the resulting energy diagrams are shown below:

Spectra of d¹ ions

 $[TiCl_6]^{3-}$, $[Ti(H_2O)_6]^{3+}$, $[TiF_6]^{3-}$, and $[Ti(CN)_6]^{3-}$

Splitting of energy levels for d¹ in octahedral field

HOLE Formulation

When a subshell is more than half full, it is simpler and more convenient to work out the terms by considering the 'HOLES' – that is the vacancies in the various orbitals – rather than the larger number of electrons actually present.

In a similar way, by considering 'HOLES', the terms which arise for pairs of atoms with d^n and d^{10-n} arrangement, give rise to identical terms.

HOLE Formulation cont.

A d⁹ system can be considered as the inverted d¹ system as far as energy levels can be considered because d⁹ system has an electron vacancy, which is called a 'hole'.

An inverted energy level relationship exists between d^n and d^{10-n} systems.

$$d^9 = d^{10-1} = inverted d^1 system$$

$$d^8 = d^{10-2} = inverted d^2 system$$

Spectra of d⁹ ions

 $[Cu(H_2O)_6]^{2+}$

Splitting of energy levels for d⁹ configuration in octahedral field

 d^9 system: Promotion of an electron as the transfer of a hole from $e_{\rm g}$ to $t_{\rm 2g}$

Spectra of d¹ and d⁹ ions

An inverse relation exists between dⁿ and d¹⁰⁻ⁿ systems (hole formalism) and also between octahedral and tetrahedral symmetries.

Spectra of d¹ and d⁹ Oh and Td ions

d¹ octahedral

Spectra of d¹ and d⁹ Oh and Td ions

d¹ octahedral

d⁹ octahedral

Spectra of d¹ and d⁹ Oh and Td ions

d¹ tetrahedral

d⁹ tetrahedral

Spectra of d⁴ and d⁶ Oh and Td ions

d⁶ octahedral

d⁴ octahedral

Spectra of d⁴ and d⁶ Oh and Td ions

d⁶ tetrahedral

d⁴ tetrahedral

Splitting of d², d³, d⁷, and d⁸ ions

d², d³, d⁷ and d⁸ usually have 3 absorptions

Not in syllabus

Discussed topics.....

- ✓ Electronic spectroscopy of octahedral complexes
- ✓ Interpretation of electronic spectroscopy
- ✓ Splitting of dⁿ terms, hole formulation
- ✓ Selection rule for electronic transition
- ✓ Spectra of d¹ and d⁰ ions

Question

Q. How many band (s) is/are expected theoretically in electronic spectrum based on the ground state term in $[CrF_6]^{4-}$ complex? Assign the electronic transition arising from ground state term.

Ans. Based on the ground state term only one band is expected.

Cr²⁺ is a d⁴ system and it's ground state term is ⁵D. Therefore, ⁵D will be splitted into 5E_g and ${}^5T_{2g}$ under ligand filled. So, the electronic transition is 5E_g to ${}^5T_{2g}$.