

UNIVERSITÉ DE SHERBROOKE

Faculté de génie Département de génie électrique et génie informatique

ÉLÉMENTS DE STATIQUE ET DE DYNAMIQUE APP 1

Présenté à :

Μ.

 $\operatorname{Pr\acute{e}sent\acute{e}}$ par :

Hubert Dubé - dubh3401 Marc Sirois - sirm2508 Gabriel Lavoie - lavg2007

Sherbrooke
4 septembre 2019

Table des matières

1	Introduction				
2	Cinématique				
	2.1	Mouvement de A dans le cas général	1		
	2.2	Mouvement horizontal de A	1		
	2.3	Mouvement vertical de A	2		
	2.4	Analyse avec Matlab	3		
3	Statique et dynamique				
	3.1	Statique	3		
	3.2	Dynamique	4		
	3.3	Analyse avec Matlab	4		
4	Cor	nclusion	4		

Table des figures

	\mathbf{a}	Position initiale	1	
	b	Position finale	1	
1	Positio	on du mouvement horizontale	1	
2	Comp	osantes en fonction de $ heta$	2	
	a	Position initiale	2	
	b	Position finale	2	
3	Positio	on du mouvement vertical	2	
4	Composantes en fonction de θ			
5	couple statique en fonction de θ			
6	couple	dynamique en fonction de θ	4	

1 Introduction

2 Cinématique

2.1 Mouvement de A dans le cas général

Le positionnement de \overrightarrow{OA} peut être exprimé par l'addition :

$$\overrightarrow{OA} = \overrightarrow{OB} + \overrightarrow{BA}$$

$$\overrightarrow{OA_x} = l_1 cos(\theta) + l_2 cos(\phi)$$

$$\overrightarrow{OA_y} = l_1 sin(\theta) + l_2 sin(\phi)$$
(1)

la vitesse étant la dérivée de la position :

$$\overrightarrow{V_A} = \frac{d\overrightarrow{OA}}{dt} \tag{2}$$

$$\overrightarrow{V_{A}x} = \frac{d(\overrightarrow{OA_x})}{dt} = \frac{d(l_1cos(\theta) + l_2cos(\phi))}{dt}$$

$$\overrightarrow{V_{A}x} = -l_1sin(\theta)\dot{\theta} - l_2sin(\phi)\dot{\phi}$$

$$\overrightarrow{V_{A}y} = \frac{d(\overrightarrow{OA_y})}{dt} = \frac{d(l_1sin(\theta) + l_2sin(\phi))}{dt}$$

$$\overrightarrow{V_{A}x} = l_1cos(\theta)\dot{\theta} - l_2cos(\phi)\dot{\phi}$$

La même stratégie peut être utilisé pour obtenir l'accélération :

$$\overrightarrow{a_A} = \frac{d\overrightarrow{V_A}}{dt}$$

$$\overrightarrow{a_A x} = \frac{d\overrightarrow{OA_x}}{dt} = \frac{d(l_1 cos(\theta) + l_2 cos(\phi))}{dt}$$

$$\overrightarrow{a_A y} = \frac{d\overrightarrow{OA_y}}{dt} = \frac{d(l_1 cos(\theta) + l_2 cos(\phi))}{dt}$$

$$\overrightarrow{a_A y} = \frac{d\overrightarrow{OA_y}}{dt} = \frac{d(l_1 cos(\theta) + l_2 cos(\phi))}{dt}$$
(3)

2.2 Mouvement horizontal de A

Figure 1 – Position du mouvement horizontale

FIGURE 2 – Composantes en fonction de θ

2.3 Mouvement vertical de A

FIGURE 3 – Position du mouvement vertical

FIGURE 4 – Composantes en fonction de θ

2.4 Analyse avec Matlab

3 Statique et dynamique

3.1 Statique

FIGURE 5 – couple statique en fonction de θ

3.2 Dynamique

Figure 6 – couple dynamique en fonction de θ

3.3 Analyse avec Matlab

4 Conclusion