

Presentazione del dataset

date	season	temp	feeltemp	humidity	wind_speed	weather	is_holiday	is_weekend	is_restday	total
04/01/2015	winter	2.5	0.6	94.3	7.5	cloudy	0	1	1	9234
05/01/2015	winter	8	6.7	80.3	8.9	cloudy	0	0	0	20372
06/01/2015	winter	7.9	5.3	78.9	16	clear	0	0	0	20613
07/01/2015	winter	7.5	4.5	78.1	19.8	clear	0	0	0	21064
08/01/2015	winter	9.8	7.8	79.3	20.5	rain	0	0	0	15601
09/01/2015	winter	12.7	12.3	74.9	32.9	cloudy	0	0	0	22104
10/01/2015	winter	10.5	8.7	66.1	34.3	cloudy	0	1	1	14709
11/01/2015	winter	6.6	2.5	67.6	26.6	clear	0	1	1	14575
12/01/2015	winter	11.1	9.8	76.6	28.2	rain	0	0	0	17199
13/01/2015	winter	8.6	6.1	75.8	21.2	rain	0	0	0	24697
14/01/2015	winter	6.5	2.5	67.1	25.8	clear	0	0	0	23565

728 misurazioni

date	season	temp	feeltemp	humidity	wind_speed	weather	is_holiday	is_weekend	is_restday	total
Length:728	winter:177	Min. : 1.30	Min. :-2.400	Min. :46.90	Min. : 2.80	clear :438	Min. :0.00000	Min. :0.0000	Min. :0.0000	Min. : 4869
Class :character	spring:186	1st Qu.: 8.60	1st Qu.: 6.475	1st Qu.:65.50	1st Qu.:11.20	cloudy:203	1st Qu.:0.00000	1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:21922
Mode :character	summer:185	Median :12.50	Median :12.400	Median :72.55	Median :15.20	rain : 87	Median :0.00000	Median :0.0000	Median :0.0000	Median :26968
	autumn:180	Mean :12.47	Mean :11.516	Mean :72.35	Mean :15.96		Mean :0.02198	Mean :0.2871	Mean :0.3091	Mean :27157
		3rd Qu.:16.20	3rd Qu.:16.200	3rd Qu.:79.22	3rd Qu.:19.90		3rd Qu.:0.00000	3rd Qu.:1.0000	3rd Qu.:1.0000	3rd Qu.:33362
		Max. :27.40	Max. :27.400	Max. :98.70	Max. :41.90		Max. :1.00000	Max. :1.0000	Max. :1.0000	Max. :46021

Struttura della presentazione

- Analisi qualitativa del dataset
- Costruzione di un modello lineare predittivo
- Verifica delle ipotesi di normalità ed eliminazione dei punti critici
- Verifica della bontà del modello
- Test ANOVA sul numero di noleggi tra le diverse stagioni

Analisi qualitativa del dataset

Analisi qualitativa del dataset

Modello lineare

Dividiamo il dataset in due parti in modo random: train-set con 600 osservazioni e test-set con 128 osservazioni.

Generiamo il primo modello lineare sul train-set

```
> g = lm(total ~ temp + humidity + wind speed + is restday + weather, data = train)
> summary(g)
Call:
lm(formula = total ~ temp + humidity + wind speed + is restday +
   weather, data = train)
Residuals:
             1Q Median
    Min
                               3Q
                                      Max
-19247.8 -2317.3
                   127.3
                          2411.7 19202.8
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
            45421.13
                     1897.55 23.937 < 2e-16 ***
(Intercept)
              893.23
                     33.31 26.813 < 2e-16 ***
temp
humidity
             -296.08 22.25 -13.309 < 2e-16 ***
wind speed
             -352.69
                         26.53 -13.294 < 2e-16 ***
is restday
             -5398.56 346.49 -15.581 < 2e-16 ***
weathercloudy -459.66
                         417.34 -1.101
                                          0.271
                         566.37 -8.297 7.19e-16 ***
weatherrain -4699.37
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3841 on 593 degrees of freedom
Multiple R-squared: 0.7817,
                                    Adjusted R-squared: 0.7795
F-statistic: 353.9 on 6 and 593 DF, p-value: < 2.2e-16
```

Notiamo che

- Il P-value dell'F-test è 2.2e-16, quindi c'è almeno una covariata significatica
- $R_{adj}^2 = 0.7795$
- La covariata dummy weathercloudy è l'unica variabile non significativa
- Tutte le altre covariate sembrerebbero essere significative

Modello lineare

Generiamo quindi un altro modello lineare escludendo la covariata weathercloudy

```
> train$weatherrain = ifelse(train$weather == "rain",1,0)
> g = lm(total ~ temp + humidity + wind speed + is restday + weatherrain, data = train)
> summary(g)
Call:
lm(formula = total ~ temp + humidity + wind_speed + is_restday +
   weatherrain, data = train)
Residuals:
    Min
             1Q Median
                                     Max
-19203.8 -2293.3 80.4 2411.8 19059.5
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 46279.05 1730.61 26.741 <2e-16 ***
            888.66
                     33.06 26.880 <2e-16 ***
temp
humidity
          -308.20
                     19.34 -15.939 <2e-16 ***
wind_speed -357.21
                     26.22 -13.626 <2e-16 ***
                     345.52 -15.710 <2e-16 ***
is_restday -5427.98
weatherrain -4442.19
                     516.09 -8.607 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 3841 on 594 degrees of freedom
Multiple R-squared: 0.7812, Adjusted R-squared: 0.7794
F-statistic: 424.3 on 5 and 594 DF, p-value: < 2.2e-16
```

Notiamo che

- $R_{adj}^2 = 0.7794$ (rimane praticamente uguale)
- Tutte le covariate rimanenti sono molto significative

Verifichiamo la normalità dei residui

Eseguendo lo Shapiro test sui residui del modello lineare si ottiene un p-value di 8.899e-09

Eliminiamo i punti critici

I residui standardizzati e i residui studentizzati coincidono

Eliminiamo i punti critici

Criteri utilizzati	AIC	R _{adj}	
Dataset completo	11614.97	0.779	
Punti leva	11333.14	0.772	
Residui standardizzati	10923.21	0.840	
Distanza di Cook	10611.24	0.842	
Punti leva + residui standardizzati	10643.85	0.835	
Residui standardizzati + distanza di Cook	10472.59	0.852	
Punti leva + distanza di Cook	10193.02	0.836	
Punti leva + residui standardizzati + distanza di Cook	10213.75	0.847	

Il modello migliore risulta essere quello in cui sono stati eliminati i punti leva e i punti critici secondo la distanza di Cook

Verifichiamo di nuovo la normalità dei residui

Eliminando i punti leva e i punti critici secondo la distanza di Cook, rigeneriamo il modello e otteniamo un p-value per lo Shapiro test di 0.1387 quindi non rifiutiamo l'ipotesi di normalità.

Interpretazione del modello

	Intercetta	temp	humidity	wind_speed	is_restday	weatherrain
Coefficienti eta	43241	916.2	-275.5	-325.7	-5801.6	-4995.1
Coefficienti eta trasformati	30503	21713	-14269	-10160.4	-5801.6	-4995.1

Trasformazione applicata alle covariate: —

 $\frac{x - \min x}{\max x - \min x}$

Verifica della bontà del modello

Per verificare la bontà del nostro modello predittivo, lo abbiamo validato sul test-set che avevamo creato all'inizio.

I punti rossi rappresentano le misurazioni che cadono al di fuori dell'intervallo di confidenza al 90%.

$$R_{testset}^2 = 0.8027$$

$$\rho_{real,pred} = 0.896$$

Percentuale dati nell'IC: 84%

P-value per lo Shapiro test: 0.3371

ANOVA

Osservando i boxplot divisi per stagione ci chiediamo se vi sia evidenza statistica per affermare che vi è differenza nella media delle bici noleggiate in ogni stagione. Lavoriamo sull'intero dataset.

Limitiamo la nostra analisi alle stagioni Spring, Summer e Autumn. La media per Winter è visibilmente inferiore rispetto alle altre. Inoltre, la distribuzione di total per winter non si presta a tale analisi.

Controlliamo le ipotesi

Eseguendo lo Shapiro test sulla variabile total divisa per stagioni otteniamo

e quindi rifiutiamo l'ipotesi di normalità.

Trasformazione Box-Cox

Proviamo ad applicare una trasformazione Box-Cox per ottenere la normalità di total nelle diverse stagioni

Otteniamo $\lambda = 1.52$

Eseguendo lo Shapiro test dopo la trasformazione otteniamo

```
> tapply( (dataset$total^best_lambda-1)/best_lambda,
dataset$season, function( x ) ( shapiro.test( x )$p ) )
spring    summer    autumn
0.81151870 0.07278747 0.10100644
```

Inoltre, eseguendo il Bartlett test e il Levene test otteniamo

ANOVA

Dato che sono rispettate le ipotesi di normalità e omoschedasticità possiamo eseguire il test ANOVA sui gruppi

Rifiutiamo l'ipotesi che le medie dei 3 gruppi siano uguali poiché il p-value è molto basso.

Infine, eseguiamo dei t-test per verificare che vi è differenza nella media delle bici noleggiate in ogni stagione

> t.test((datasetSp\$total^best lambda-

t = -3.4691, df = 359, p-value = 0.0005858