

Unified Deep Supervised Domain Adaptation and Generalization

Saeid Motiian, Marco Piccirilli, Donald A. Adjeroh, Gianfranco Doretto

Introduction

Problem: Improving visual recognition performance when source and target distributions are different for two scenarios:

- Domain Adaptation: When very few labeled target samples are available in training.
- Domain Generalization: When no information about target domain is available in training

Why: There is always covariate shift between training and testing distributions. How: By exploiting Siamese structure and Semantic Alignment loss

Covariate shift

and **Separation loss** together with **pointwise** surrogates.

Visualization of Digits in Feature Space

- Training LeNet using MNIST dataset.
- Testing on the USPS and MNIST datasets.
- Accuracy: MNIST = %95 and USPS = %65
- 2D visualization of samples in the feature space:

- Samples from the same class but different distributions lie far from each other.
- Samples from the same class and same distribution lie close to each other.

Existing Supervised Domain Adaptation Methods

SDA assumes that few target samples per class are available in training.

[2] E. Tzeng, et all. Simultaneous deep transfer across

[3] P. Koniusz, et all. Domain adaptation by mixture of

alignments of second-or higher-order scatter tensors. In

CVPR, 2017.

[1] E. Tzeng, et all. Deep domain confusion: Maximizing for domain invariance. arXiv, 2014.

SDA tries to minimize the distance between corresponding classes.

(MMD).

• Mean between two distributions.

• Maximum Mean Discrepancy

• Second-or higher-order scatter

Our Approach to Solve Domain Adaptation

- Minimizing the distance between corresponding classes in the embedding space.
- Maximizing the distance between different classes and distributions in the embed-
- Using **pointwise surrogates** instead of distribution distances.

 $d(g(x_i^s), g(x_j^t)) = \frac{1}{2} ||g(x_i^s) - g(x_j^t)||^2$

Penalty when two samples do not embed into the same point.

Separation Loss for Negative Pairs

$$\mathcal{L}_{S}(g) = \sum_{a,b|a \neq b} k(p(g(X_{a}^{s})), p(g(X_{b}^{t}))) = \sum_{i,j} k(g(x_{i}^{s}), g(x_{j}^{t}))$$

 $k(g(x_i^s), g(x_j^t)) = \frac{1}{2} \max(0, m - \|g(x_i^s) - g(x_j^t)\|)^2$

Penalty when the distance between two samples is less than a threshold.

Total Loss $\mathcal{L}_{CCSA}(f) = \mathcal{L}_{C}(h \circ g) + \mathcal{L}_{SA}(g) + \mathcal{L}_{S}(g)$

Note. $\mathcal{L}_{SA}(g)$ and $\mathcal{L}_{S}(g)$ can be defined in many ways. Here we only discussed one possible choice.

- This allows a target sample to be paired with all the source samples independently from other target samples.
- Even one target sample per class can **significantly** increase performance.
- Separation loss makes the the embedding space more separable (makes everything easy for the classifier).
- Easy to implement & is consistent with mini-batch learning.

Extension to Domain Generalization

- Domain generalization is looking for finding a domain invariant embedding function g.
- Our proposed method pulls together samples from the same class and different distributions.
- Our proposed method pushes apart samples from the different classes and distributions.
- We can use the same network structure and the same losses.

Domain Adaptation Results

Office Dataset

- Source: 20 samples per class for A. 8 samples per class for the \mathcal{D} and \mathcal{W} and 3 target samples per class.
- Prediction function h: An fc layer with softmax activation.
- Embedding function g: Convolutional layers of VGG-16 followed by 2 fc layers with size of 1024 and 128.

	Lower Bound	[1]	[2]	CCSA
$\mathcal{A} o \mathcal{D}$	62.3 ± 0.8	86.1 ± 1.2	86.3 ± 0.8	89.0 ± 1.2
$\mathcal{A} o \mathcal{W}$	61.2 ± 0.9	82.7 ± 0.8	84.5 ± 1.7	88.2 ± 1.0
$\mathcal{W} o \mathcal{A}$	51.6 ± 0.9	65.0 ± 0.5	65.7 ± 1.7	72.1 ± 1.0
$\mathcal{W} o \mathcal{D}$	95.6 ± 0.7	97.6 ± 0.2	97.5 ± 0.7	97.6 ± 0.4
$\mathcal{D} o \mathcal{A}$	58.5 ± 0.8	66.2 ± 0.3	66.5 ± 1.0	$\textbf{71.8}\pm\textbf{0.5}$
$\mathcal{D} o \mathcal{W}$	80.1 ± 0.6	95.7 ± 0.5	95.5 ± 0.6	96.4 ± 0.8
Average	68.2	82.21	82.68	85.8

[1] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Simultaneous deep transfer across domains and tasks. In ICCV, 2015. [2] P. Koniusz, Y. Tas, and F. Porikli. Domain adaptation by mixture of alignments of second-or higher-order scatter tensors. In CVPR, 2017. [3] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative domain adaptation. In CVPR, 2017. [4] M.Y. Liu and O. Tuzel. Coupled generative adversarial networks. In Advances in NIPS,

MNIST (\mathcal{M})

Digits Datasets

CoGAN [4

Domain Generalization Results

VLCS Dataset

 $VOC2007 (\mathcal{V})$

Caltech-101 (\mathcal{C})

SUN09 (S)

• 5 shared object categories (bird, car, chair, dog, and person)

- Pairs: For each source sample, we randomly selected 5 samples from each remaining source.
- In order to compare our results with the state-of-the-art, we used DeCaF-fc6 features and repeated the experiments 20 times.
- Embedding function g: 2 fc layers with size of 1024 and 128 with ReLU activation.
- Prediction function h: An fc layer with softmax activation.

[5] C. Fang, Y. Xu, and D. N. Rockmore. Unbiased metric learning: On the utilization of multiple datasets and web images for softening bias. In International Conference on Computer [6] Z. Xu, W. Li, L. Niu, and D. Xu. Exploiting low-rank structure from latent domains for

domain generalization. In ECCV, pages 628643, 2014. [7] M. Ghifary, D. Balduzzi, W. B. Kleijn, and M. Zhang. Scatter component analysis: A unified

framework for domain adaptation and domain generalization. TPAMI, 2017.