Importing libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer #considers how common the word occur in the email
from sklearn.naive_bayes import GaussianNB, MultinomialNB #algorithms for classification tasks
from sklearn.metrics import classification_report, confusion_matrix
```

Reading data

```
df = pd.read_csv('/content/spam_ham_dataset.csv')
df.head()
```

₹		Unnamed: 0	label	text	label_num
	0	605	ham	Subject: enron methanol ; meter # : 988291\r\n	0
	1	2349	ham	Subject: hpl nom for january 9 , 2001\r\n(see	0
	2	3624	ham	Subject: neon retreat\r\nho ho ho , we ' re ar	0
	3	4685	spam	Subject: photoshop , windows , office . cheap	1
	4	2030	ham	Subject: re : indian springs\r\nthis deal is t	0

Added name to the first column as "ID"

```
df.rename(columns = {'Unnamed: 0': 'ID'},inplace = True)
```

df.head()

₹		ID	label	text	label_num
	0	605	ham	Subject: enron methanol ; meter # : 988291\r\n	0
	1	2349	ham	Subject: hpl nom for january 9 , 2001\r\n(see	0
	2	3624	ham	Subject: neon retreat\r\nho ho ho , we ' re ar	0
	3	4685	spam	Subject: photoshop , windows , office . cheap	1
	4	2030	ham	Subject: re : indian springs\r\nthis deal is t	0

Generating Profile Report

```
Pipi install ydata_profiling

Collecting ydata_profiling

Downloading ydata_profiling-4.8.3-py2.py3-none-any.whl (359 kB)

359.5/359.5 kB 4.2 MB/s eta 0:00:00

Requirement already satisfied: scipy<1.14,>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from ydata_profiling) (1.11.4)

Requirement already satisfied: pandas!=1.4.0,<3,>1.1 in /usr/local/lib/python3.10/dist-packages (from ydata_profiling) (2.0.3)

Requirement already satisfied: matplotlib<3.9,>=3.2 in /usr/local/lib/python3.10/dist-packages (from ydata_profiling) (3.7.1)

Requirement already satisfied: pydantic>=2 in /usr/local/lib/python3.10/dist-packages (from ydata_profiling) (2.7.1)

Requirement already satisfied: pyYAML<6.1,>=5.0.0 in /usr/local/lib/python3.10/dist-packages (from ydata_profiling) (6.0.1)

Requirement already satisfied: jinja2<3.2,>=2.11.1 in /usr/local/lib/python3.10/dist-packages (from ydata_profiling) (3.1.4)

Collecting visions[type_image_path]<0.7.7,>=0.7.5 (from ydata_profiling)

Downloading visions-0.7.6-py3-none-any.whl (104 kB)

104.8/104.8 kB 4.6 MB/s eta 0:00:00

Requirement already satisfied: numpy<2,>=1.16.0 in /usr/local/lib/python3.10/dist-packages (from ydata_profiling) (1.25.2)

Collecting htmlmin==0.1.12 (from ydata_profiling)
```

```
Downloading htmlmin-0.1.12.tar.gz (19 kB)
 Preparing metadata (setup.py) ... done
Collecting phik<0.13,>=0.11.1 (from ydata_profiling)
 Downloading phik-0.12.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (686 kB)
                                             - 686.1/686.1 kB 7.2 MB/s eta 0:00:00
Requirement already satisfied: requests<3,>=2.24.0 in /usr/local/lib/python3.10/dist-packages (from ydata_profiling) (2.31.0)
Requirement already satisfied: tqdm<5,>=4.48.2 in /usr/local/lib/python3.10/dist-packages (from ydata_profiling) (4.66.4)
Requirement already satisfied: seaborn<0.14,>=0.10.1 in /usr/local/lib/python3.10/dist-packages (from ydata profiling) (0.13.1)
Collecting multimethod<2,>=1.4 (from ydata_profiling)
 Downloading multimethod-1.11.2-py3-none-any.whl (10 kB)
Requirement already satisfied: statsmodels<1,>=0.13.2 in /usr/local/lib/python3.10/dist-packages (from ydata_profiling) (0.14.2)
Collecting typeguard<5,>=3 (from ydata_profiling)
 Downloading typeguard-4.2.1-py3-none-any.whl (34 kB)
Collecting imagehash==4.3.1 (from ydata_profiling)
 Downloading ImageHash-4.3.1-py2.py3-none-any.whl (296 kB)
                                            - 296.5/296.5 kB 4.8 MB/s eta 0:00:00
Requirement already satisfied: wordcloud>=1.9.1 in /usr/local/lib/python3.10/dist-packages (from ydata_profiling) (1.9.3)
Collecting dacite>=1.8 (from ydata_profiling)
 Downloading dacite-1.8.1-py3-none-any.whl (14 kB)
Requirement already satisfied: numba<1,>=0.56.0 in /usr/local/lib/python3.10/dist-packages (from ydata_profiling) (0.58.1)
Requirement already satisfied: PyWavelets in /usr/local/lib/python3.10/dist-packages (from imagehash==4.3.1->ydata profiling) (1.6.0)
Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (from imagehash==4.3.1->ydata profiling) (9.4.0)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2<3.2,>=2.11.1->ydata_profiling)
Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.9,>=3.2->ydata_profili
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.9,>=3.2->ydata_profiling)
Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.9,>=3.2->ydata_profili
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.9,>=3.2->ydata_profili
Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.9,>=3.2->ydata_profiling
Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.9,>=3.2->ydata_profilir
Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.9,>=3.2->ydata prod
Requirement already satisfied: llvmlite<0.42,>=0.41.0dev0 in /usr/local/lib/python3.10/dist-packages (from numba<1,>=0.56.0->ydata_pr
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas!=1.4.0,<3,>1.1->ydata_profiling)
Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas!=1.4.0,<3,>1.1->ydata_profiling
Requirement already satisfied: joblib>=0.14.1 in /usr/local/lib/python3.10/dist-packages (from phik<0.13,>=0.11.1->ydata_profiling)
Requirement already satisfied: annotated-types>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->ydata_profiling)
Requirement already satisfied: pydantic-core==2.18.2 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->ydata profiling)
Requirement already satisfied: typing-extensions>=4.6.1 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->ydata_profilin@
Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.24.0->ydata_r
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.24.0->ydata_profiling)
Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.24.0->ydata profil:
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.24.0->ydata_profili
Requirement already satisfied: patsy>=0.5.6 in /usr/local/lib/python3.10/dist-packages (from statsmodels<1,>=0.13.2->ydata_profiling)
```

Profile Report

from ydata_profiling import ProfileReport
ProfileReport = ProfileReport(df)
ProfileReport

From the data report, we came to know the following things: – Data has no missing values – Each column is highly correlated to with each other. – The number of ham(3672) emails is more than the spam(1499)

Data Statistics

df.describe()

→▼		ID	label_num
	count	5171.000000	5171.000000
	mean	2585.000000	0.289886
	std	1492.883452	0.453753
	min	0.000000	0.000000
	25%	1292.500000	0.000000
	50%	2585.000000	0.000000
	75%	3877.500000	1.000000
	max	5170.000000	1.000000

```
df.shape
# 5171 rows and 4 columns

→ (5171, 4)
```

Finding Nunique values

```
df.nunique()

→ ID 5171
label 2
text 4993
label_num 2
dtype: int64
```

Adding a column length to check the length of messages

```
df['length'] = df['text'].apply(len)
df.head()
```

$\overline{\Rightarrow}$		ID	label	text	label_num	length
	0	605	ham	Subject: enron methanol ; meter # : 988291\r\n	0	327
	1	2349	ham	Subject: hpl nom for january 9 , 2001\r\n(see	0	97
	2	3624	ham	Subject: neon retreat\r\nho ho ho , we ' re ar	0	2524
	3	4685	spam	Subject: photoshop , windows , office . cheap	1	414
	4	2030	ham	Subject: re : indian springs\r\nthis deal is t	0	336

Distribution on column length to check which text has highest length

```
plt.figure(figsize = (10,5))
hist_graph = df['length'].plot(kind = 'hist')
hist_graph.set_xlabel("Length")
hist_graph.set_ylabel("Count")
```


The graph elaborates that there are some messages who length is above 4000 or upto 5000

With data statistics we are going to find the longest message in this dataset

```
df.length.describe()
→ count
               5171.000000
     mean
               1048.390447
     std
              1528.514135
     min
                11.000000
     25%
                244,000000
     50%
               540.000000
     75%
              1237.000000
             32258.000000
     max
     Name: length, dtype: float64
```

The highest message length is 32258 which clearly explains that it is a spam, because spam messages tend to have more text than ham data.

Pre Processing

Removing Punctuations

```
import string
text = df['text']
translator = str.maketrans('', '', string.punctuation)
## using maketrans method to gather punctuations
df['text'] = text.apply(lambda x: x.translate(translator))
#applying translate() to remove punctuations
df.head()
```

$\overline{\Rightarrow}$		ID	label	text	label_num	length	
	0	605	ham	Subject enron methanol meter 988291\r\nthis	0	327	
	1	2349	ham	Subject hpl nom for january 9 2001\r\n see at	0	97	
	2	3624	ham	Subject neon retreat\r\nho ho ho we re aroun	0	2524	
	3	4685	spam	Subject photoshop windows office cheap mai	1	414	
	4	2030	ham	Subject re indian springs\r\nthis deal is to	0	336	

Data Test and Train split

```
X_train, X_test, y_train, y_test = train_test_split(df['text'], df['label'], test_size=0.3, random_state=42)
# 30% data for testing and 70% for training
```

Vectorization

```
cv = CountVectorizer() # converts the words into tokenization, converts raw text into numerical representation that machine learning underst X_{train} = cv.fit_{transform}(X_{train}) X_{test} = cv.transform(X_{test})
```

→ TF-IDF

```
tfidf_transformer = TfidfTransformer()
X_train = tfidf_transformer.fit_transform(X_train)
X_test = tfidf_transformer.transform(X_test)
# training and transforming the training dataset into TF-IDF
```

Training model on Naive Bayes

```
Gnb = GaussianNB() #ensures that the probability calculated is normal
Mnb = MultinomialNB()
Gnb_model = Gnb.fit(X_train.toarray(), y_train) #The toarray() method is used on sparse matrices((when there are many 0s in model) in scikit
Mnb_model = Mnb.fit(X_train.toarray(), y_train)
```

Prediction

```
print("Prediction for Gaussian Naive Bayes:", Gnb_model.predict(X_test.toarray()))

Predicted: ['ham' 'spam' 'ham' ... 'ham' 'spam' 'ham']

print("Prediction for Multinomial Naive Bayes:", Mnb_model.predict(X_test.toarray()))

Prediction for Multinomial Naive Bayes: ['ham' 'spam' 'ham' ... 'ham' 'ham' 'ham']
```

Classification Report

Gaussian Naivr Bayes

print(classification_report(y_test, Gnb_model.predict(X_test.toarray())))

\Rightarrow	precision	recall	f1-score	support
ham spam	0.96 0.92	0.97 0.90	0.97 0.91	1121 431
accuracy macro avg weighted avg	0.94 0.95	0.94 0.95	0.95 0.94 0.95	1552 1552 1552

Multinomial Algorithm

print(classification_report(y_test, Mnb_model.predict(X_test.toarray())))

\Rightarrow	precision	recall	f1-score	support
ham spam	0.85 1.00	1.00 0.52	0.92 0.69	1121 431
accuracy macro avg weighted avg	0.92 0.89	0.76 0.87	0.87 0.80 0.85	1552 1552 1552

Overall the accuracy of Gaussian Naive Bayes is more than Multinomial Bayes i.e 95% but we cannot rely on accuracy only so moving forward to analyze th confusion matrix

Confusion Matrix for Gnb

Plotting Confusion matrix

```
plt.figure(figsize = ( 8,4))
sns.heatmap(confusion_matrix(y_test, Gnb_model.predict(X_test.toarray())), annot = True, fmt = 'd', cmap = 'Greens')
plt.xlabel('Predicted Labels')
plt.ylabel('Actual Labels')
plt.title('Confusion Matrix for Gaussian Naive Bayes')
plt.show()
```


- 1088 instances are correctly classified as "Ham"(True Negative)
- 33 instances were incorrectly classified as "Ham (False Positive)
- 41 were incorrectly classified "Spam"
- 390 were correctly classified "Spam"

Confusion matrix for multinomial bayes

Plotting

```
plt.figure(figsize= (8,4))
sns.heatmap(confusion_matrix(y_test, Mnb_model.predict(X_test.toarray())), annot = True, fmt = 'd', cmap = 'Blues')
plt.xlabel('Predicted Labels')
plt.ylabel('Actual Labels')
plt.title('Confusion Matrix for Multinomial Naive Bayes')
plt.show()
```

