ЛАБОРАТОРНАЯ РАБОТА № П1 ОПРЕДЕЛЕНИЕ ЭЛЕКТРОДВИЖУЩЕЙ СИЛЫ ИСТОЧНИКА ТОКА МЕТОДОМ КОМПЕНСАЦИИ

Цель работы: изучение компенсационного метода измерений и определение электродвижущей силы источника тока.

Оборудование: источник тока, резистор, нормальный элемент, исследуемый источник тока, реохорд, ключ, переключатель, гальванометр.

Краткие теоретические сведения

Ток в проводнике существует при наличии свободных зарядов и электрического поля. В замкнутой цепи постоянный ток существует при наличии, помимо кулоновских, так называемых сторонних сил.

Физическая природа сторонних сил различна. В гальванических элементах - это силы межмолекулярного взаимодействия. Разделение зарядов происходит в результате химических реакций. В фотоэлементах возникновение электродвижущей силы (ЭДС) происходит вследствие взаимодействия света с веществом. В электрогенераторах — за счет электромагнитной индукции. Термо-ЭДС возникает по причине различия температурных зависимостей положения уровней Ферми двух контактирующих металлов.

При наличии сторонних сил дифференциальная форма закона Ома имеет вид:

$$\vec{j} = \sigma \cdot \left(\vec{E}_{K} + \vec{E}_{CT}\right), \tag{1}$$

где \vec{j} — плотность тока, σ — удельная электропроводность, $\vec{E}_{\rm K}$ — напряженность поля кулоновских сил, $\vec{E}_{\rm CT}$ — напряженность поля сторонних сил.

Рассмотрим участок 1-2 замкнутой цепи L , на котором находится источник тока, например, гальванический элемент (рис. 1). Выделим на этом участке малый элемент dl такой, чтобы можно было считать площадь поперечного сечения элемента S неизменной, а напряженности и плотность тока однородными и направленными вдоль него. Умножим левую и правую части равенства (1) на dl и, учитывая, что j=I/S , где I — сила тока, и $\sigma=1/\rho$, где ρ — удельное сопротивление, запишем его в скалярном виде:

Рис. 1.

$$\frac{I}{S}dl = \frac{1}{\rho} (E_{\kappa} + E_{cT})dl$$

Или

$$I\frac{\rho}{S}dl = E_{\kappa}dl + E_{\rm cr}dl.$$

Интегрируя последнее выражение, получим

$$IR_{12} = \int_{1}^{2} E_{K} dl + \int_{1}^{2} E_{CT} dl,$$
 (2)

где величина $R_{12} = \int\limits_{1}^{2} \frac{\rho}{S} dl$ представляет сопротивление участка 1-2.

Первое слагаемое в правой части (2) равно убыли потенциала на участке 1-2

$$\int_{1}^{2} E_{\kappa} dl = -\int_{1}^{2} d\varphi = \varphi_{1} - \varphi_{2}, \qquad (3)$$

второе слагаемое есть ЭДС - величина, численно равная работе сторонних сил по перемещению единичного положительного заряда

$$\int_{1}^{2} E_{\rm cr} dl = \mathcal{E} \,. \tag{4}$$

Таким образом, закон Ома для неоднородного участка электрической цепи запишется в виде

$$IR_{12} = (\varphi_1 - \varphi_2) + \mathcal{E}.$$
 (5)

Если перемещать точку 2 вдоль проводника, то она в итоге совпадет с точкой 1. В этом случае $\phi_1 - \phi_2 = 0$ и, следовательно, для замкнутой цепи закон Ома принимает вид

$$I = \frac{\mathcal{E}}{r + R} \,\,, \tag{6}$$

где (r+R) — полное сопротивление замкнутой цепи, равное сумме внутреннего сопротивления источника тока r и внешнего сопротивления цепи R.

Компенсационный метод

На практике для определения ЭДС источника тока часто используют приближенный метод. Он состоит в том, что к клеммам источника тока присоединяют вольтметр с внутренним сопротивлением R_V . Показание прибора приближенно совпадает со значением ЭДС. Действительно, падение напряжения во внешней цепи (показание вольтметра)

$$U_V = IR_V = \mathcal{E} \frac{R_V}{r + R_V}$$

Так как во многих случаях $R_V\gg r$, то $U_Vpprox {\cal E}$. Недостатком этого метода является необходимость применять для измерения ЭДС вольтметр с большим внутренним сопротивлением.

Для более точного измерения ЭДС можно применить компенсационный метод, суть которого в данном случае заключается в компенсации измеряемой ЭДС известной разностью потенциалов.

Из (5) имеем, что при $I=0,\ \phi_2-\phi_1=\mathcal{E}$. Поэтому отсутствие тока в цепи гальванометра (рис. 2) свидетельствует о том, что ЭДС исследуемого элемента компенсирована разностью потенциалов (падением напряжения) $\Delta \phi = \phi_A - \phi_C$

на участке AC. Точность измерений по данному методу ограничивается в основном точностью значения эталонной ЭДС и точностью установки 0 на гальванометре.

Рис. 2.

Описание экспериментальной установки

Рассмотрим электрическую цепь, состоящую из трех участков (рис. 2), один из которых содержит источник тока с измеряемой ЭДС \mathcal{E}_{X} или эталонной ЭДС \mathcal{E}_{H} , гальванометр и подвижный контакт C. Второй участок AB представляет собой реохорд — струну (стальная проволока) с полным сопротивлением R. Третий содержит вспомогательный источник тока с ЭДС \mathcal{E} .

Рассмотрим работу электрической цепи при условии, что $\mathcal{E} > \mathcal{E}_{_{X}}$ и $\mathcal{E} > \mathcal{E}_{_{H}}$. Для определенности будем считать, что в цепь включен сначала испытуемый элемент $\mathcal{E}_{_{X}}$. Существует такое положение подвижного контакта реохорда $C_{_{1}}$, при котором ток в гальванометре отсутствует. Это означает, что разность потенциалов $\Delta \phi_{CA}$ между точками C и A на реохорде равна $\mathcal{E}_{_{X}}$:

$$\Delta \varphi_{CA} = \varphi_C - \varphi_A = \mathcal{E}_{\gamma}. \tag{7}$$

С другой стороны падение напряжение на участке CA $\Delta \phi_{CA} = IR_1$. Ток I через реохорд в момент компенсации ($I_{\Gamma} = 0$) рассчитывается по закону Ома:

$$I = \frac{\mathcal{E}}{R + r},\tag{8}$$

где r — внутреннее сопротивление источника тока \mathcal{E} , R — сопротивление реохорда, R_1 — сопротивление участка реохорда AC_1 .

Из (7) и (8) находим, что

$$\mathbf{\mathcal{E}}_{\mathbf{X}} = \mathbf{\mathcal{E}} \frac{R_1}{R+r}.$$
 (9)

С помощью переключателя K_2 вместо \mathcal{E}_{X} включим в цепь эталонный источник \mathcal{E}_{H} . Проведя рассуждения, аналогичные вышеизложенным, получим

$$\mathcal{E}_{\mathrm{H}} = \mathcal{E} \frac{R_2}{R + r} \,, \tag{10}$$

где R_2 — сопротивление участка AC_2 . Из (9) и (10) находим, что

$$\mathcal{E}_{x} = \mathcal{E}_{H} \frac{R_{1}}{R_{2}}$$
 (11)

Так как струна реохорда однородна, то ее сопротивление

$$R = \rho \frac{L}{S},$$

где ρ — удельное сопротивление струны, L — длина струны, S — площадь поперечного сечения струны. Следовательно, отношение сопротивлений равно отношению длин участков струны

$$\frac{R_1}{R_2} = \frac{L_1}{L_2},\tag{12}$$

где L_1 – длина участка струны AC_1 , L_2 – длина участка AC_2 . Подставляя (12) в (11), получим

$$\mathcal{E}_{X} = \mathcal{E}_{H} \frac{L_{1}}{L_{2}}.$$
 (13)

Формула (13) позволяет определить ЭДС исследуемого элемента.

Порядок выполнения работы

- 1. Собрать электрическую цепь согласно рис. 2. Включить ключ K_1 .
- 2. Переключателем K_2 включить исследуемый источник тока с электродвижущей силой \mathcal{E}_{X} . Перемещением подвижного контакта реохорда C найти положение C_1 , при котором ток в гальванометре отсутствует. Длину участка струны $L_1 = AC_1$ записать в табл. 1.

Таблица 1

	L_1			L_2		
i	L_{1i} ,cm	$L_{1i} - \langle L_1 \rangle$	$(L_{1i} - \langle L_1 \rangle)^2$	L_{2i} ,cm	$L_{2i} - \langle L_2 \rangle$	$(L_{2i} - \langle L_2 \rangle)^2$
1 2 3						
	$\langle L_1 \rangle$		$\Sigma(L_{1i}-\langle L_1\rangle)^2$	$\langle L_2 \rangle$		$\Sigma(L_{2i}-\langle L_2\rangle)^2$

- 3. Переключателем K_2 подключить к цепи нормальный элемент с ЭДС \mathcal{E}_{H} . Найти положение подвижного контакта реохорда C_2 , при котором ток в гальванометре равен нулю. Результат измерения $L_2 = AC_2$ записать в табл. 1.
 - 4. Провести измерения последовательно по п.2 и п.3 три раза.
 - 5. Вычислить \mathcal{E}_{X} по формуле $\mathcal{E}_{\mathrm{X}} = \mathcal{E}_{\mathrm{H}} \frac{\left\langle L_{\mathrm{I}} \right\rangle}{\left\langle L_{\mathrm{2}} \right\rangle}$.
 - 6. Вычислить ΔL_1^2 по формуле

$$\Delta L_1^2 = \frac{t_{\alpha}^2(N)}{N(N-1)} \sum_{i=1}^{N} \left(L_{1i} - \langle L_1 \rangle \right)^2, \tag{14}$$

где $t_{\alpha}(N)$ — коэффициент Стьюдента (для надежности α = 0,95 и числа измерений N = 3 он равен 4,3).

- 7. Вычислить ΔL_2^2 по формуле, аналогичной (14).
- 8. Найти относительную ошибку є по формуле

$$\boldsymbol{\varepsilon} = \sqrt{\left(\frac{\Delta L_1}{\left\langle L_1 \right\rangle}\right)^2 + \left(\frac{\Delta L_2}{\left\langle L_2 \right\rangle}\right)^2 + \left(\frac{\Delta \boldsymbol{\mathcal{E}}_{_{\mathrm{H}}}}{\boldsymbol{\mathcal{E}}_{_{\mathrm{H}}}}\right)^2} \;,$$

где значение отношения $\Delta \mathcal{E}_{\rm H}/\mathcal{E}_{\rm H}$ (относительная ошибка) и значение $\mathcal{E}_{\rm H}$ указаны на лабораторном стенде.

- 9. Определить абсолютную ошибку $\Delta \mathcal{E}_{\mathbf{x}} = \epsilon \mathcal{E}_{\mathbf{x}}$.
- 10. Окончательные результаты измерений представить в виде

$$\mathcal{E}_{\mathbf{X}} = \langle \mathcal{E}_{\mathbf{X}} \rangle \pm \Delta \mathcal{E}_{\mathbf{X}}$$
.

Контрольные вопросы

- 1. Что называется электрическим током? Каковы условия существования тока? Дайте определение силы и плотности тока.
- 2. Вывести закон Ома для замкнутой цепи. Дать определение ЭДС. Какова природа сторонних сил?
 - 3. Почему метод измерения называется компенсационным?
 - 4. От чего зависит сопротивление проводника?
 - 5. Укажите условия отсутствия тока в гальванометре.

Библиографический список

- 1. Курс физики: Учебник для вузов: В 2 т. Т. 1./ ред. В. Н. Лозовский. СПб.: Лань, 2007. § 2.28, 2.30, 2.33, 2.34
- 2. Савельев, И.В. Курс общей физики в 3-х т. Т. 2 / И. В. Савельев. М.: Наука, 2005. § 31, 33, 34, 36.
- 3. Трофимова, Т.И. Курс физики / Т.И. Трофимова. М.: Высш. шк., 2001. § 96, 98, 101.