Lecture 8: CNN Architectures

Two (non-partisan) reminders

2020 Census

All US residents, including non-citizens and international students, can participate in the 2020 Census:

https://2020census.gov/

Voter Registration

Turn Up Turnout at the University of Michigan

Introduction

- Civic engagement is part of the University of Michigan experience, and we are part of the Big Ten Voting Challenge for 2020.
- The challenge worked!
- Voter turnout went from 14% to 41% among Michigan students between 2014 and 2018.
- This is a non-partisan, student-led voter registration, education, and turnout effort on our campus.
- We want to help all eligible students to register and turn out to vote safely during the COVID-19 pandemic.
- If you aren't eligible to vote, help encourage others to vote.
- If you want to get involved in leading this, email ltwoods@umich.edu or contact Mariah Fiumara in CoE Office of Student Affairs,
 mariahmo@umich.edu

Registration Facts

- Students who are U.S. citizens may register at either their student address or their permanent (or home) address. It's your choice.
- Depending on the state where you want to vote, you can either register online or by paper.
- Only those with MI driver's license or MI ID may register online to vote in Michigan. You also need the last 4 digits of your Social Security Number.
- If you think you are already registered to vote, be sure to check:
 - https://www.nass.org/can-l-vote/voter-registration-status

Get Registered to Vote Online

- To register online in Michigan, go to https://mi.gov/vote
- Remember to enter your voting address.
- You can register online in all states except
- Arkansas, Maine, Mississippi, Montana New Hampshire, New Jersey, North Carolina, Oklahoma, South Dakota, Texas, and Wyoming.
- To register to vote in states other than Michigan, use the following link: https://umich.turbovote.org/
- Stop by 143 Chrysler to utilize our experts and our registration resources. Please check our website to confirm office hours for Fall 2020.

Register to Vote on Paper

- If you want to vote in Michigan, use the MI form. Otherwise, use the federal form.
- Remember, if you don't have a Michigan driver's license or personal ID, but want to vote in Michigan, registration by paper is your only option other than going in person to the clerk's office.
- Access the MI form at: https://mi.gov/VoterRegistration
- Access the Federal form at https://govote.umich.edu/reg-forms
- The Ginsberg Center has stamps and envelopes or fill out this google form: https://bit.ly/stamprequest and they'll send them to you.
- 143 Chrysler Center will also be offering stamps and envelopes on North Campus. Please check the OSA website for Fall 2020 hours.

Absentee Voting

- To obtain an absentee ballot, you may request one by mail or by going to the clerk's office where you want to vote.
- In Michigan, anyone eligible to vote may vote by absentee ballot.
- There are paper absentee ballot request forms at the front that you can use in Michigan. To download an absentee voter application in Michigan, go to http:bit.ly/mi-absenteevoting.

If you still have questions or would like more assistance, you may:

- Visit govote.umich.edu
- •Text "umvote" to (833)4-UMVOTE = (833) 486-8683
- Email voterregquestions@umich.edu
- Contact your local election official.

Voting in Michigan – Key Dates

- October 7, 2020 It is recommended that a request for an absentee ballot should be done in person at the clerk's office or a satellite location rather than by mail after October 7, 2020.
- October 15, 2020 If you plan on requesting an absentee ballot after October 15, you should plan on returning it in person to be sure that it counts.
- October 19, 2020 Registration deadlines- by mail or online
- October 30, 2020 Recommended deadline to request a Michigan Absentee Ballot. Submit the request to your local election office. You should request your ballot as far in advance of the election as possible. The deadline to request a ballot by mail is (received by) Friday, October 30, 2020.
- **November 3, 2020** Presidential Primary in Michigan: Absentee ballots must be received by the clerk's office by 8 pm. You can still register and vote on the day of the Election by visiting your Clerk of Courts office.

Assignment 3

Assignment 3 is released! It covers:

- Fully-connected networks
- Dropout
- Update rules: SGD+Momentum, RMSprop, Adam
- Convolutional networks
- Batch normalization

Due Friday October 9, 11:59pm

(Website originally said 10/16 – this was a typo!)

Last Time: Components of Convolutional Networks

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

ImageNet Classification Challenge

ImageNet Classification Challenge

227 x 227 inputs5 Convolutional layersMax pooling3 fully-connected layersReLU nonlinearities

227 x 227 inputs5 Convolutional layersMax pooling3 fully-connected layersReLU nonlinearities

Used "Local response normalization"; Not used anymore

Trained on two GTX 580 GPUs – only 3GB of memory each! Model split over two GPUs

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

AlexNet Citations per year (As of 9/27/2020)

Total Citations: 69,763

AlexNet Citations per year (As of 9/27/2020)

Total Citations: 69,763

Citation Counts

Darwin, "On the origin of species", 1859: 54,348

Shannon, "A mathematical theory of communication", 1948: **76,910**

Watson and Crick, "Molecular Structure of Nucleic Acids", 1953: **14,295**

ATLAS Collaboration, "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC", 2012: **16,563**

		Input	t size	9		L	aye	er				Outp	out	size	5
Layer	С		H /	W	filters	kernel		stride		pad	С		Η /	/ V	V
conv1		3	•	227	64		11		4	2	2	?			

	In	put si	ze		La	aye	er			Outp	outs	size
Layer	С	Н	/ W	filters	kernel		stride	pac	b	С	H /	W
conv1		3	227	64		11	4	1	2	64		?

Recall: Output channels = number of filters

		Input	size		La	yε	er				Outp	ut	size
Layer	C		H / W	filters	kernel		stride		pad	C		Н	/ W
conv1		3	227	64		11		4	2		64		56

Recall: W' =
$$(W - K + 2P) / S + 1$$

= $227 - 11 + 2*2) / 4 + 1$
= $220/4 + 1 = 56$

		Inpu	t s	siz	e		La	aye	er			C	Output s	size	
Layer	C		Н	/	W	filters	kernel		stride	pac	ł	С	H /	W	memory (KB)
conv1		3			227	64		11	4	Ļ	2		64	56	

		Inpu	t s	iz	е		Lay	er				Outp	out s	size	
Layer	C		Н	/	W	filters	kernel	stri	de	pad	C	•	H /	' W	memory (KB)
conv1		3			227	64	1:	1	4		2	64		56	784

Number of output elements =
$$C * H' * W'$$

= $64*56*56 = 200,704$

Bytes per element = 4 (for 32-bit floating point)

KB = (number of elements) * (bytes per elem) / 1024 = 200704 * 4 / 1024

= 784

		Inpu	t s	ize	e		Laye	er			Output size		
Layer	C		Н	/	W	filters	kernel	stride	pad	C	H / W	memory (KB)	params (k)
conv1		3			227	64	11		1 2	2	64	56 78 ₄	4 ?

		Inpu	ıt si	ze		Laye	er		O	utp	ut size		
Layer	C		Н	/ W	filters	kernel	stride	pad	С		H / W	memory (KB)	params (k)
conv1		3	3	227	⁷ 64	. 11	. 4	. 2		64	56	784	23

Weight shape =
$$C_{out} \times C_{in} \times K \times K$$

= $64 \times 3 \times 11 \times 11$
Bias shape = $C_{out} = 64$
Number of weights = $64*3*11*11 + 64$
= $23,296$

		Input	size			La	Ŋέ	er			C	utp	ut s	ize			
Layer	C	F	1 / I	V	filters	kernel		stride	pad		С		H /	W	memory (KB)	params (k)	flop (M)
conv1		3	2	27	64		11		ŀ	2		64		56	784	23	?

		Input	t siz	е		Lay	er			Outp	ut size			
Layer	С		H /	W	filters	kernel	stride	pad	С		H / W	memory (KB)	params (k)	flop (M)
conv1		3		227	64	11		1 :	2	64	56	784	23	73

Number of floating point operations (multiply+add)

- = (number of output elements) * (ops per output elem)
- $= (C_{out} \times H' \times W') * (C_{in} \times K \times K)$
- = (64 * 56 * 56) * (3 * 11 * 11)
- = 200,704 * 363
- = 72,855,552

		Inpu	t size		Laye	er			Outpu	ıt size			
Layer	C		H / W	filters	kernel	stride	pad	С	ŀ	1 / W	memory (KB)	params (k)	flop (M)
conv1		3	22	<mark>7</mark> 64	11	. 4	1 2	2	64	56	784	23	73
pool1		64	. 5	6	3	3	2 (C		?			

		Inpu	t si	ze		Lay	er			Outp	ut size			
Layer	C		Η.	/ W	filters	kernel	stride	pad	C		H / W	memory (KB)	params (k)	flop (M)
conv1		3		227	64	13	L 4	1 :	2	64	56	784	23	73
pool1		64		56		3	3 2	2 (0	64	27			

For pooling layer:

#output channels = #input channels = 64

		Inpu	t si	ize		Lay	er			Outp	ut size			
Layer	С		Н	/ W	filters	kernel	stride	pad	C		H / W	memory (KB)	params (k)	flop (M)
conv1		3		227	64	11	. 4	1 2	2	64	56	784	23	73
pool1		64		56		3	3 2	2 (0	64	27	182	?	

#output elems =
$$C_{out} \times H' \times W'$$

Bytes per elem = 4
KB = $C_{out} * H' * W' * 4 / 1024$
= 64 * 27 * 27 * 4 / 1024
= **182.25**

		Input size			Layer					Outp	ut size			
Layer	C		Н	/ W	filters	kernel	stride	pad	С		H / W	memory (KB)	params (k)	flop (M)
conv1		3		227	64	11	4	. 2	2	64	56	784	23	73
pool1		64		56		3	2	. ()	64	27	182	C	?

Pooling layers have no learnable parameters!

	Input size			ize	Layer					Outp	ut size			
Layer	С		Н	/ W	filters	kernel	stride	pad	C		H / W	memory (KB)	params (k)	flop (M)
conv1		3		227	64	11	. 4		2	64	56	784	23	73
pool1		64		56		3	2	(0	64	27	182	C	0

Floating-point ops for pooling layer

- = (number of output positions) * (flops per output position)
- $= (C_{out} * H' * W') * (K * K)$
- = (64 * 27 * 27) * (3 * 3)
- = 419,904
- **= 0.4 MFLOP**

	Input size			Layer				Outp	ut size			
Layer	С		H/W	filters	kernel	stride	pad	С	H / W	memory (KB)	params (k)	flop (M)
conv1		3	227	64	11	4	2	64	56	784	23	73
pool1		64	56		3	2	C	64	27	182	O	0
conv2		64	27	192	5	1	. 2	192	27	547	307	224
pool2	-	192	27		3	2	C	192	13	127	O	0
conv3	-	192	13	384	3	1	. 1	384	13	254	664	112
conv4	3	384	13	256	3	1	. 1	256	13	169	885	145
conv5		256	13	256	3	1	. 1	256	13	169	590	100
pool5		256	13		3	2	C	256	6	36	O	0
flatten	2	256	6					9216		36	0	0

Flatten output size =
$$C_{in} \times H \times W$$

= 256 * 6 * 6
= **9216**

	Inpu	ıt size		Laye	er		Outp	ut size			
Layer	С	H / W	filters	kernel	stride	pad	С	H / W	memory (KB)	params (k)	flop (M)
conv1	3	3 227	64	11	4	2	64	56	784	23	73
pool1	64	4 56		3	2	0	64	27	182	C	0
conv2	64	1 27	192	5	1	2	192	27	547	307	224
pool2	192	2 27		3	2	0	192	13	127	C	0
conv3	192	2 13	384	3	1	1	384	13	254	664	112
conv4	384	13	256	3	1	1	256	13	169	885	145
conv5	256	5 13	256	3	1	1	256	13	169	590	100
pool5	256	5 13		3	2	0	256	6	36	C	0
flatten	256	6					9216		36	C	0
fc6	9216	õ	4096				4096		16	37,749	38

FC params = $C_{in} * C_{out} + C_{out}$ FC flops = $C_{in} * C_{out}$ = 9216 * 4096 + 4096 = 9216 * 4096 = 37,725,832 = 37,748,736

								3 46			
	Inpu	Input size		Laye	er		Outp	ut size			
Layer	С	H / W	filters	kernel	stride	pad	С	H / W	memory (KB)	params (k)	flop (M)
conv1	3	3 227	64	11	4	2	64	56	784	23	73
pool1	64	56		3	2	C	64	27	182	O	0
conv2	64	1 27	192	5	1	2	192	27	547	307	224
pool2	192	2 27		3	2	C	192	13	127	O	0
conv3	192	2 13	384	3	1	1	384	13	254	664	112
conv4	384	13	256	3	1	1	256	13	169	885	145
conv5	256	5 13	256	3	1	1	256	13	169	590	100
pool5	256	5 13		3	2	C	256	6	36	O	0
flatten	256	6					9216		36	C	0
fc6	9216	5	4096				4096		16	37,749	38
fc7	4096	5	4096				4096		16	16,777	17
fc8	4096	5	1000				1000		4	4,096	4

How to choose this? Trial and error =(

		Input	t size		Laye	er		Outp	ut size			
Layer	C		H / W	filters	kernel	stride	pad	С	H / W	memory (KB)	params (k)	flop (M)
conv1		3	227	64	11	4	2	64	56	784	23	73
pool1		64	56		3	2	0	64	27	182	C	0
conv2		64	27	192	5	1	2	192	27	547	307	224
pool2		192	27		3	2	0	192	13	127	C	0
conv3		192	13	384	3	1	1	384	13	254	664	112
conv4		384	13	256	3	1	1	256	13	169	885	145
conv5		256	13	256	3	1	1	256	13	169	590	100
pool5		256	13		3	2	0	256	6	36	C	0
flatten		256	6					9216		36	C	0
fc6		9216		4096				4096		16	37,749	38
fc7		4096		4096				4096		16	16,777	17
fc8		4096		1000				1000		4	4,096	5 4

Interesting trends here!

	Inpu	t size		Laye	er		Outp	ut size			
Layer	C	H/W	filters	kernel	stride	pad	C	H/W	memory (KB)	params (k)	flop (M)
conv1	3	227	64	11	4	2	64	56	784	23	73
pool1	64	56		3	2	0	64	27	182	C	0
conv2	64	27	192	5	1	2	192	27	547	307	224
pool2	192	. 27		3	2	0	192	13	127	C	0
conv3	192	. 13	384	3	1	1	384	13	254	664	112
conv4	384	13	256	3	1	1	256	13	169	885	145
conv5	256	13	256	3	1	1	256	13	169	590	100
pool5	256	13		3	2	0	256	6	36	C	0
flatten	256	6					9216		36	C	0
fc6	9216		4096				4096		16	37,749	38
fc7	4096		4096				4096		16	16,777	17
fc8	4096		1000				1000		4	4,096	4

Most of the **memory** usage is in the early convolution layers

Memory (KB)

Nearly all parameters are in

Most **floating-point** ops occur in the convolution layers

pooling

pooling

ZFNet: A Bigger AlexNet

ImageNet top 5 error: 16.4% -> 11.7%

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

More trial and error =(

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

FC 1000 Softmax FC 4096 FC 1000 FC 4096 FC 4096 Pool FC 4096 Pool Pool Pool Pool Pool Pool Pool Pool Pool Input

Softmax

VGG16 VGG19

VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Network has 5 convolutional **stages**:

Stage 1: conv-conv-pool

Stage 2: conv-conv-pool

Stage 3: conv-conv-pool

Stage 4: conv-conv-conv-[conv]-pool

Stage 5: conv-conv-conv-[conv]-pool

(VGG-19 has 4 conv in stages 4 and 5)

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

AlexNet

FC 1000 FC 4096 FC 4096 Pool FC 4096 Pool Pool Pool Pool Pool Pool Pool Pool VGG16 VGG19

Softmax

Softmax

FC 1000

FC 4096

VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Option 1:

 $Conv(5x5, C \rightarrow C)$

Params: 25C²

FLOPs: 25C²HW

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

AlexNet

FC 4096 Pool Pool Pool Pool Pool Pool Pool Pool Pool Input Input VGG16 VGG19

Softmax

FC 1000

FC 4096

Softmax

FC 1000

FC 4096

FC 4096

Pool

VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Option 1: Option 2:

Conv(5x5, C -> C) Conv(3x3, C -> C)

 $Conv(3x3, C \rightarrow C)$

Params: 25C² Params: 18C²

FLOPs: 25C²HW FLOPs: 18C²HW

FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256

Softmax

AlexNet

Input

FC 1000 Softmax FC 4096 FC 1000 FC 4096 FC 4096 Pool FC 4096 Pool Pool Pool Pool Pool Pool Pool Pool Pool

Softmax

VGG16 VGG19

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels Two 3x3 conv has same receptive field as a single 5x5 conv, but has fewer parameters and takes less computation!

Option 1:

Option 2:

Conv(5x5, C -> C)

 $Conv(3x3, C \rightarrow C)$

 $Conv(3x3, C \rightarrow C)$

Params: 25C²

Params: 18C²

FLOPs: 25C²HW

FLOPs: 18C²HW

FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384

Softmax FC 1000

Pool

Pool

5x5 conv, 256

Input

AlexNet

Softmax FC 1000

FC 4096

FC 4096

Pool
3x3 conv. 512

0x0 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

Pool _

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

VGG16

x3 conv, 512 x3 conv, 512 x3 conv, 512 Pool

3x3 conv, 256

Softmax

FC 1000

FC 4096

FC 4096

Pool

Pool

3x3 conv, 256

Pool

3x3 conv. 128

Pool

3x3 conv, 64

3x3 conv, 64

VGG19

VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Input: C x 2H x 2W

Layer: Conv(3x3, C->C)

Memory: 4HWC

Params: 9C²

FLOPs: 36HWC²

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

Softmax

AlexNet VGG16 VGG19

Softmax

FC 1000

FC 4096

FC 4096

Pool

Pool

Pool

Pool

Softmax

FC 1000

FC 4096

FC 4096

Pool

Pool

Pool

Pool

Pool

VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Input: C x 2H x 2W Input: 2C x H x W

Layer: Conv(3x3, C->C) Conv(3x3, 2C->2C)

Memory: 4HWC Memory: 2HWC

Params: 9C² Params: 36C²

FLOPs: 36HWC² FLOPs: 36HWC²

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

3x3 conv, 384

Pool

Softmax

AlexNet

Input

FC 1000 Softmax FC 4096 FC 1000 FC 4096 FC 4096 Pool FC 4096 Pool Pool Pool Pool Pool Pool Pool Pool Pool

Softmax

VGG16 VGG19

VGG Design rules:

All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Conv layers at each spatial resolution take the same amount of computation!

Input: C x 2H x 2W

Layer: Conv(3x3, C->C)

Memory: 4HWC

Params: 9C²

FLOPs: 36HWC²

Input: 2C x H x W

Conv(3x3, 2C -> 2C)

Memory: 2HWC

Params: 36C²

FLOPs: 36HWC²

FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
11x11 conv, 26

Softmax

AlexNet

Input

FC 1000 Softmax FC 4096 FC 1000 FC 4096 FC 4096 Pool FC 4096 Pool Pool Pool Pool Pool Pool Pool

Softmax

VGG16

VGG19

AlexNet vs VGG-16: Much bigger network!

AlexNet total: 1.9 MB

VGG-16 total: 48.6 MB (25x)

AlexNet total: 61M

VGG-16 total: 138M (2.3x)

AlexNet total: 0.7 GFLOP

VGG-16 total: 13.6 GFLOP (19.4x)

GoogLeNet: Focus on Efficiency

Many innovations for efficiency: reduce parameter count, memory usage, and computation

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

	Inp	ut size	Layer				Outp	ut size			
Layer	С	H / W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (K)	flop (M)
conv	3	224	64	7	2	. 3	64	112	3136	9	118
max-pool	64	112		3	2	. 1	64	56	784	. 0	2
conv	64	56	64	1	1	. 0	64	56	784	. 4	13
conv	64	56	192	3	1	. 1	192	2 56	2352	111	347
max-pool	192	56		3	2	. 1	192	28	588	0	1

Total from 224 to 28 spatial resolution:

Memory: 7.5 MB

Params: 124K

MFLOP: 418

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

	Inp	ut size	Layer				Outp	ut size			
Layer	С	H / W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (K)	flop (M)
conv	3	224	64	7	2	3	64	112	3136	9	118
max-pool	64	112		3	2	1	. 64	1 56	784	. 0	2
conv	64	56	64	1	1	0	64	1 56	784	. 4	13
conv	64	56	192	3	1	1	192	2 56	2352	111	347
max-pool	192	56		3	2	1	192	2 28	588	0	1

Total from 224 to 28 spatial resolution:

Memory: 7.5 MB

Params: 124K

MFLOP: 418

Compare VGG-16:

Memory: 42.9 MB (5.7x)

Params: 1.1M (8.9x)

MFLOP: 7485 (17.8x)

GoogLeNet: Inception Module

Inception module

Local unit with parallel branches

Local structure repeated many times throughout the network

GoogLeNet: Inception Module

Inception module

Local unit with parallel branches

Local structure repeated many times throughout the network

Uses 1x1 "Bottleneck" layers to reduce channel dimension before expensive conv (we will revisit this with ResNet!)

GoogLeNet: Global Average Pooling

No large FC layers at the end! Instead uses **global average pooling** to collapse spatial dimensions, and one linear layer to produce class scores (Recall VGG-16: Most parameters were in the FC layers!)

	Input size		Layer			Outpu	ıt size				
Layer	С	H/W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (k)	flop (M)
avg-pool	1024	. 7		7	1	0	1024	- 1	4	. 0	0
fc	1024		1000				1000		0	1025	1

GoogLeNet: Global Average Pooling

No large FC layers at the end! Instead uses "global average pooling" to collapse spatial dimensions, and one linear layer to produce class scores (Recall VGG-16: Most parameters were in the FC layers!)

	Input	size		Lay	er		Outpu	t size			
Layer	С	H/W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (k)	flop (M)
avg-pool	1024	7		7	1	0	1024	1	4	. 0	0
fc	1024		1000				1000		0	1025	1

Compare with VGG-16:

Layer	С	H/W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (K)	flop (M)
flatten	512	7					25088		98		
fc6	25088			4096			4096		16	102760	103
fc7	4096			4096			4096		16	16777	17
fc8	4096			1000			1000		4	4096	4

GoogLeNet: Auxiliary Classifiers

Training using loss at the end of the network didn't work well: Network is too deep, gradients don't propagate cleanly

As a hack, attach "auxiliary classifiers" at several intermediate points in the network that also try to classify the image and receive loss

GoogLeNet was before batch normalization! With BatchNorm no longer need to use this trick

Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?

Deeper model does worse than shallow model!

Initial guess: Deep model is **overfitting** since it is much bigger than the other model

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?

In fact the deep model seems to be **underfitting** since it also performs worse than the shallow model on the training set! It is actually **underfitting**

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

A deeper model can <u>emulate</u> a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow models

Hypothesis: This is an <u>optimization</u> problem. Deeper models are harder to optimize, and in particular don't learn identity functions to emulate shallow models

A deeper model can <u>emulate</u> a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow models

Hypothesis: This is an <u>optimization</u> problem. Deeper models are harder to optimize, and in particular don't learn identity functions to emulate shallow models

Solution: Change the network so learning identity functions with extra layers is easy!

Solution: Change the network so learning identity functions with extra layers is easy!

Residual Block

Solution: Change the network so learning identity functions with extra layers is easy!

A residual network is a stack of many residual blocks

Regular design, like VGG: each residual block has two 3x3 conv

Network is divided into **stages**: the first block of each stage halves the resolution (with stride-2 conv) and doubles the number of channels

Uses the same aggressive **stem** as GoogleNet to downsample the input 4x before applying residual blocks:

	lr	put					Οι	itput				
size			Layer				S	ize				
										params	flo	ор
Layer	С	H/W	filters	kernel	stride	pad	С	H/W	memory (KB)	(k)	(1)	√ 1)
conv	3	224	64	7	2	3	64	112	3136	9) [118
max-pool	64	112		3	2	1	64	56	784)	2

Like GoogLeNet, no big fully-connected-layers: instead use **global average pooling** and a single linear layer at the end

ResNet-18:

Stem: 1 conv layer

Stage 1 (C=64): 2 res. block = 4 conv

Stage 2 (C=128): 2 res. block = 4 conv

Stage 3 (C=256): 2 res. block = 4 conv

Stage 4 (C=512): 2 res. block = 4 conv

Linear

ImageNet top-5 error: 10.92

GFLOP: 1.8

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by torchvision

ResNet-18:

Stem: 1 conv layer

Stage 1 (C=64): 2 res. block = 4 conv

Stage 2 (C=128): 2 res. block = 4 conv

Stage 3 (C=256): 2 res. block = 4 conv

Stage 4 (C=512): 2 res. block = 4 conv

Linear

ImageNet top-5 error: 10.92

GFLOP: 1.8

ResNet-34:

Stem: 1 conv layer

Stage 1: 3 res. block = 6 conv

Stage 2: 4 res. block = 8 conv

Stage 3: 6 res. block = 12 conv

Stage 4: 3 res. block = 6 conv

Linear

ImageNet top-5 error: 8.58

GFLOP: 3.6

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by torchvision

ResNet-18:

Stem: 1 conv layer

Stage 1 (C=64): 2 res. block = 4 conv

Stage 2 (C=128): 2 res. block = 4 conv

Stage 3 (C=256): 2 res. block = 4 conv

Stage 4 (C=512): 2 res. block = 4 conv

Linear

ImageNet top-5 error: 10.92

GFLOP: 1.8

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by <u>torchvision</u>

ResNet-34:

Stem: 1 conv layer

Stage 1: 3 res. block = 6 conv

Stage 2: 4 res. block = 8 conv

Stage 3: 6 res. block = 12 conv

Stage 4: 3 res. block = 6 conv

Linear

ImageNet top-5 error: 8.58

GFLOP: 3.6

VGG-16:

ImageNet top-5 error: 9.62

GFLOP: 13.6

Residual Networks: Basic Block

"Basic" Residual block

Residual Networks: Basic Block

Residual Networks: Bottleneck Block

Conv(1x1, C->4C) Conv(3x3, C->C)Conv(1x1, 4C->C) "Bottleneck"

Residual block

Residual Networks: Bottleneck Block

			Stag	ge 1	Sta	ge 2	Stage 3		Stage 4				
	Block	Stem									FC		ImageNet
	type	layers	Blocks	Layers	Blocks	Layers	Blocks	Layers	Blocks	Layers	layers	GFLOP	top-5 error
ResNet-18	Basic	1	2	4	2	4	- 2	4	2	4	. 1	1.8	10.92
ResNet-34	Basic	1	3	6	4	8	6	12	3	6	1	3.6	8.58

FC 1000 Pool 3x3 conv, 512 3x3 conv, 512, /2 3x3 conv, 128 3x3 conv. 128 3x3 conv, 64 3x3 conv. 64 3x3 conv. 64 3x3 conv. 64 3x3 conv, 64 3x3 conv. 64 Input

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by torchvision

ResNet-50 is the same as ResNet-34, but replaces Basic blocks with Bottleneck Blocks. This is a great baseline architecture for many tasks even today!

			Stag	ge 1	Stage 2		Stage 3		Stage 4				
Bloc		Stem									FC		ImageNet
	type	layers	Blocks	Layers	Blocks	Layers	Blocks	Layers	Blocks	Layers	layers	GFLOP	top-5 error
ResNet-18	Basic	1	2	4	2	4	2	4	2	4	1	1.8	10.92
ResNet-34	Basic	1	3	6	4	8	6	12	3	6	1	3.6	8.58
ResNet-50	Bottle	1	3	9	4	12	6	18	3	9	1	3.8	7.13

FC 1000 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv. 512 3x3 conv, 512 3x3 conv, 512, /2 3x3 conv. 128 3x3 conv. 64 Pool Input

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by <u>torchvision</u>

Deeper ResNet-101 and ResNet-152 models are more accurate, but also more computationally heavy

			Stag	ge 1	Stage 2		Stage 3		Stage 4				
	Block	Stem									FC		ImageNet
	type	layers	Blocks	Layers	Blocks	Layers	Blocks	Layers	Blocks	Layers	layers	GFLOP	top-5 error
ResNet-18	Basic	1	2	4	2	4	2	4	. 2	4	. 1	1.8	10.92
ResNet-34	Basic	1	3	6	4	8	6	12	. 3	6	1	3.6	8.58
ResNet-50	Bottle	1	3	9	4	12	6	18	3	9	1	. 3.8	7.13
ResNet-101	Bottle	1	3	9	4	12	23	69	3	9	1	7.6	6.44
ResNet-152	Bottle	1	3	9	8	24	36	108	3	9	1	. 11.3	5.94

FC 1000 3x3 conv, 512 3x3 conv, 512, /2 3x3 conv, 128 3x3 conv. 64 Input

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by <u>torchvision</u>

- Able to train very deep networks
- Deeper networks do better than shallow networks (as expected)
- Swept 1st place in all ILSVRC and COCO 2015 competitions
- Still widely used today!

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

Improving Residual Networks: Block Design

Original ResNet block

"Pre-Activation" ResNet Block

Note ReLU after residual:

Cannot actually learn identity function since outputs are nonnegative!

Note ReLU **inside** residual:

Can learn true identity function by setting Conv weights to zero!

He et al, "Identity mappings in deep residual networks", ECCV 2016

Improving Residual Networks: Block Design

Original ResNet block

"Pre-Activation" ResNet Block

Slight improvement in accuracy (ImageNet top-1 error)

ResNet-152: 21.3 vs **21.1**

ResNet-200: 21.8 vs **20.7**

Not actually used that much in practice

He et al, "Identity mappings in deep residual networks", ECCV 2016

Inception-v4: Resnet + Inception!

VGG: Highest memory, most operations

Top-1 accuracy [%] 55 AlexNet NIN ENET 18 16 19 34 50 101 152 NA GOODRESNET VGG VGG SNET SNET SNET SNET STEPTION VA

GoogLeNet: Very efficient!

AlexNet: Low compute, lots of parameters

ImageNet Classification Challenge

ImageNet Classification Challenge

ImageNet 2016 winner: Model Ensembles

Multi-scale ensemble of Inception, Inception-Resnet, Resnet, Wide Resnet models

	Inception- v3	Inception- v4 Inception- Resnet-v2			Wrn-68-3	Fusion (Val.)	Fusion (Test)	
Err. (%)	4.20	4.01	3.52	4.26	4.65	2.92 (-0.6)	2.99	

Improving ResNets

Xie et al, "Aggregated residual transformations for deep neural networks", CVPR 2017

Xie et al, "Aggregated residual transformations for deep neural networks", CVPR 2017

Improving ResNets: ResNeXt

G parallel pathways

FLOPs: Conv(1x1, C->4C) 4HWC² FLOPs: Conv(3x3, C->C)9HWC² FLOPs: Conv(1x1, 4C->C) 4HWC² "Bottleneck"

Total FLOPs: 17HWC²

Xie et al, "Aggregated residual transformations for deep neural networks", CVPR 2017

Residual block

 $9Gc^2 + 8GCc - 17C^2 = 0$

Example: C=64, G=4, c=24; C=64, G=32, c=4

Convolution with groups=1:

Normal convolution

Input: C_{in} x H x W

Weight: C_{out} x C_{in} x K x K

Output: Cout x H' x W'

FLOPs: C_{out}C_{in}K²HW

All convolutional kernels touch all C_{in} channels of the input

Convolution with groups=1:

Normal convolution

Input: C_{in} x H x W

Weight: C_{out} x C_{in} x K x K

Output: Cout x H' x W'

FLOPs: C_{out}C_{in}K²HW

All convolutional kernels touch all C_{in} channels of the input

Convolution with groups=2: One parallel convolution layers that

Two parallel convolution layers that work on half the channels

Convolution with groups=1:

Normal convolution

Input: C_{in} x H x W

Weight: C_{out} x C_{in} x K x K

Output: Cout x H' x W'

FLOPs: C_{out}C_{in}K²HW

All convolutional kernels touch all C_{in} channels of the input

Convolution with groups=G:

G parallel conv layers; each "sees" C_{in}/G input channels and produces C_{out}/G output channels

Input: C_{in} x H x W

Split to $G \times [(C_{in}/G) \times H \times W]$

Weight: $G \times (C_{out} / G) \times (C_{in} \times G) \times K \times K$

G parallel convolutions

Output: $G \times [(C_{out}/G) \times H' \times W']$

Concat to C_{out} x H' x W'

FLOPs: C_{out}C_{in}K²HW/G

Convolution with groups=1:

Normal convolution

Input: C_{in} x H x W

Weight: C_{out} x C_{in} x K x K

Output: Cout x H' x W'

FLOPs: C_{out}C_{in}K²HW

All convolutional kernels touch all C_{in} channels of the input

Depthwise Convolution

Special case: $G=C_{in}$, $C_{out} = nC_{in}$ Each input channel is convolved with n different K x K filters to produce n output channels

Convolution with groups=G:

G parallel conv layers; each "sees" C_{in}/G input channels and produces C_{out}/G output channels

Input: C_{in} x H x W

Split to $G \times [(C_{in}/G) \times H \times W]$

Weight: $G \times (C_{out} / G) \times (C_{in} \times G) \times K \times K$

G parallel convolutions

Output: $G \times [(C_{out}/G) \times H' \times W']$

Concat to Cout x H' x W'

FLOPs: C_{out}C_{in}K²HW/G

Grouped Convolution in PyTorch

PyTorch convolution gives an option for groups!

Conv2d

Improving ResNets: ResNeXt

with grouped convolution Conv(1x1, Gc->4C) Conv(3x3, Gc->Gc, groups=G Conv(1x1, 4C->Gc)

ResNeXt block: Grouped convolution

G parallel pathways **Equivalent formulation** Conv(1x1, c->4C)Conv(1x1, c->4C)4HWCc 9HWc² Conv(3x3, c->c)Conv(3x3, c->c)Conv(1x1, 4C->c) Conv(1x1, 4C->c) 4HWCc **Total FLOPs:** Equal cost when $(8Cc + 9c^2)*HWG$ $9Gc^2 + 8GCc - 17C^2 = 0$

Example: C=64, G=4, c=24; C=64, G=32, c=4

Xie et al, "Aggregated residual transformations for deep neural networks", CVPR 2017

ResNeXt: Maintain computation by adding groups!

Model	Groups	Group width	Top-1 Error
ResNet-50	1	64	23.9
ResNeXt-50	2	40	23
ResNeXt-50	4	24	22.6
ResNeXt-50	8	14	22.3
ResNeXt-50	32	4	22.2

Model	Groups	Group width	Top-1 Error
ResNet-101	1	64	22.0
ResNeXt-101	2	40	21.7
ResNeXt-101	4	24	21.4
ResNeXt-101	8	14	21.3
ResNeXt-101	32	4	21.2

Adding groups improves performance with same computational complexity!

Xie et al, "Aggregated residual transformations for deep neural networks", CVPR 2017

ImageNet Classification Challenge

Squeeze-and-Excitation Networks

Adds a "Squeeze-and-excite" branch to each residual block that performs global pooling, full-connected layers, and multiplies back onto feature map

Adds **global context** to each residual block!

Won ILSVRC 2017 with ResNeXt-152-SE

SE-ResNet Module

Hu et al, "Squeeze-and-Excitation networks", CVPR 2018

ImageNet Classification Challenge

Densely Connected Neural Networks

Dense blocks where each layer is connected to every other layer in feedforward fashion

Alleviates vanishing gradient, strengthens feature propagation, encourages feature reuse

Huang et al, "Densely connected neural networks", CVPR 2017

MobileNets: Tiny Networks (For Mobile Devices)

Standard Convolution Block

Total cost: 9C²HW

Speedup =
$$9C^2/(9C+C^2)$$

= $9C/(9+C)$
=> 9 (as C->inf)

Depthwise Separable Convolution

Total cost: $(9C + C^2)HW$

Howard et al, "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications", 2017

MobileNets: Tiny Networks (For Mobile Devices)

Depthwise Separable Convolution

Total cost: $(9C + C^2)HW$

Also related:

ShuffleNet: Zhang et al, CVPR 2018

MobileNetV2: Sandler et al, CVPR 2018

ShuffleNetV2: Ma et al, ECCV 2018

Howard et al, "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications", 2017

Neural Architecture Search

Designing neural network architectures is hard – let's automate it!

- One network (controller) outputs network architectures
- Sample child networks from controller and train them
- After training a batch of child networks, make a gradient step on controller network (Using **policy gradient**)
- Over time, controller learns to output good architectures!

Zoph and Le, "Neural Architecture Search with Reinforcement Learning", ICLR 2017

Neural Architecture Search

Designing neural network architectures is hard – let's automate it!

- One network (controller) outputs network architectures
- Sample child networks from controller and train them
- After training a batch of child networks, make a gradient step on controller network (Using policy gradient)
- Over time, controller learns to output good architectures!
- VERY EXPENSIVE!! Each gradient step on controller requires training a batch of child models!
- Original paper trained on 800 GPUs for 28 days!
- Followup work has focused on efficient search

Zoph and Le, "Neural Architecture Search with Reinforcement Learning", ICLR 2017

Neural Architecture Search

Neural architecture search can be used to find efficient CNN architectures!

Zoph et al, "Learning Transferable Architectures for Scalable Image Recognition", CVPR 2018

CNN Architectures Summary

Early work (AlexNet -> ZFNet -> VGG) shows that bigger networks work better

GoogLeNet one of the first to focus on **efficiency** (aggressive stem, 1x1 bottleneck convolutions, global avg pool instead of FC layers)

ResNet showed us how to train extremely deep networks – limited only by GPU memory! Started to show diminishing returns as networks got bigger

After ResNet: **Efficient networks** became central: how can we improve the accuracy without increasing the complexity?

Lots of tiny networks aimed at mobile devices: MobileNet, ShuffleNet, etc

Neural Architecture Search promises to automate architecture design

Which Architecture should I use?

Don't be a hero. For most problems you should use an off-the-shelf architecture; don't try to design your own!

If you just care about accuracy, ResNet-50 or ResNet-101 are great choices

If you want an efficient network (real-time, run on mobile, etc) try **MobileNets** and **ShuffleNets**

Next Time: Deep Learning Hardware and Software