Data Storage

Kristo Raun

Data Engineering 2024 Fall

- Storage technologies
- Storage systems
- Data orientation
- Quiz session

Reading

Chapter VI

Storage type	Data fetch latency	Bandwidth	Price
CPU cache	1 nanosecond	1 TB/s	N/A
RAM	0.1 microseconds	100 GB/s	\$10/GB
SSD	0.1 milliseconds	4 GB/s	\$0.20/GB
HDD	4 milliseconds	300 MB/s	\$0.03/GB
Object storage	100 milliseconds	10 GB/s	\$0.02/GB per month
Archival storage	12 hours	Same as object storage once data is available	\$0.004/GB per month

Table 6-1. A heuristic cache hierarchy displaying storage types with approximate pricing and performance characteristics

- Storage technologies
- Storage systems
- Data orientation
- Quiz session

File storage

- Finite length
 - A file is a finite-length stream of bytes.
- Append operations
 - We can append bytes to the file up to the limits of the host storage system.
- Random access
 - We can read from any location in the file or write updates to any location.

Organized into a directory tree

https://www.techtarget.com/searchstorage/definition/file-syster

Block storage

- Fundamental raw storage
 - Used by HDD, SSD
- Finite size
 - 1 block = 512 bytes historically, now up to 4KB

Most RDBMS also use block storage: ACID compliance

https://www.geeksforgeeks.org/acid-properties-in-dbms/

HDFS (Hadoop Distributed File System)

- Compute & storage on same nodes
 - Namenode & datanodes
- "Blocks"
 - Default 128MB, 3x replication

BASE

- Basically Available
 - Consistency is not guaranteed, but available most of the time
- Soft-state
 - Transaction state is fuzzy
- Eventual consistency
 - At some point, reading data will return consistent values.

Object storage

- Typical state-of-the-art cloud storage mechanism
 - Stores any kind of data
- Key-value store
 - NB! There are no "directories"
- Immutable data
 - Versioning
 - Consistency
- Also BASE

Cache and Memory-Based Storage Systems

- RAM-based storage
 - Serve data with fast latency
- Not durable
- Examples
 - Memcached, Redis

- Storage technologies
- Storage systems
- Data orientation
- Quiz session

Data orientation

- Rows vs columns
 - Rows
 - OLTP
 - Updating single records
 - Access complete record
 - Columns
 - OLAP
 - Many columns
 - Aggregations

Data orientation

- Indexing
 - OLTP
- Partitioning
 - OLAP, divide table into smaller parts
- Clustering
 - OLAP, group and order data within partition

- Storage technologies
- Storage systems
- Data orientation
- Quiz session

Further reading

Chapter VI

• https://medium.com/@ikramzouaoui95/data-storage-a-simple-explanation-of-column-oriented-vs-row-oriented-systems-758340c12f0e