

同等学力国考管理科学与工程综合

统计学

主讲老师: 刘老师

第一章 数据的整理与图形表示

第二章 随机变量以及抽样分布

第三章 参数估计

第四章 假设检验

第五章 线性回归分析

第六章 时间序列分析

读研教育 www.duyan.com

- 一、各章重难点
- 二、 常见题型、解答策略

第一章 经济学导论——考点总结

序号	考点	<u> </u>
1	图形的适用	选择、简答
2	频数分布表的绘制 (等距分组)	分析计算题
N. duyan. S	数据的描述性指标的比较、计算	选择、简答、分析计算

考点1: 各种图形的适用

小贴士: *数据也有级别高低之分。定类→定序→定量;

*高级的数据适用低级数据的方法,反之不然。

考点2: 频数分布表的绘制

绘制直方图,要先编制频数分布表 编制 级 距 数 列 的 步骤

排序,确定最大值、最小值,计算全距(也叫极差)

确定组距数列类型。等距OR不等距?

确定组数和组距。

确定组限和组限表示方法。同限OR异限?

计算频数、频率,编制统计表

序号	考点		题型
集中	众数的优缺点		
趋势 指标	中位数的计算、优缺点均值的计算,优缺点	选择、	简答
灣中	极差		
趋势 指标	标准差		55° 35°

<u> </u>			
成绩 (分)	人数 (人)	组中值	每组总成绩 (分)
ian.com	f	\mathcal{X}	xf
60-70	10	65	650
70-80	20	75	1500
80-90	15	85	1275
90以上	5	95	475
合计	50	_	3900

$$\frac{-}{x} = \frac{\sum xf}{\sum f}$$

$$x = \sum x \cdot \frac{f}{\sum f}$$

• 算术平均数:

- 易受极端值影响(使用了全部数据)
- 数学性质优良,主要用于数值型数据
- 数据对称分布或接近对称分布时应用

• 中位数:

- 不受极端值影响
- 数据分布偏斜程度较大时应用;主要用于顺序数据

众数:

- 不受极端值影响
- 数据分布偏斜程度较大时应用;主要用于分类数据

考点3:数据的描述性指标的比较、计算

总体标准差与样本标准差

有	总体方差	样本方差
未分组 数据	$\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \overline{X})^2}{N}$	$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$
分组数 据	$\sigma^2 = \frac{\sum_{i=1}^K (X_i - \overline{X})^2 f_i}{\sum_{i=1}^K f_i}$	$s^{2} = \frac{\sum_{i=1}^{k} (x_{i} - \overline{x})^{2} f_{i}}{\sum_{i=1}^{k} f_{i} - 1}$

- ★能综合反映全部单位标志值的实际差异程度;
- ★用平方的方法消除各标志值与算术平均数离差的正负值问题,可方便地用于数学处理和统计分析运算.
- ★标准差越大,说明数据越离散,数据之前的差异越大。

第二章 随机变量及抽样分布

	415.50	4312 AV.	
序号	考点	题型	
Wan 1	正态分布的性质、概率计算	简答、分析计算	
2 二项分布总体均值与标准差		简答	
3	四种抽样方法的特点	选择、简答	
4	样本均值的分布	是抽样推断的基础知 识	

考点1: 正态分布函数的性质、概率计算

正态总体的函数表示式

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad x \in (-\infty, +\infty)$$

$$x \in (-\infty, +\infty)$$

$$f(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^2}{2}}$$

标准正态曲线

μ=0

考点1: 正态分布函数的性质、概率计算

	正态分布函数的性质				
类型	表达式	图形	性质		
正态分布	$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	y T	1 曲线在 <i>x</i> 轴的上方,与 <i>x</i> 轴不相交.		
标准正态分	,2	μ=0	2 曲线是单峰的,它关于直线 x=µ对称.		
FF F	$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x}{2}}$	σ=1	曲线在x=µ处达到峰值(最 3 高点)		
THE WAY		-3 -2 -1 0 1 2 3 x	曲线与 <i>x</i> 轴之间的面积为1		
性质	5	当 x<µ时,曲线上升;当x>µ时,曲线下降.并且当曲线向左、右 两边无限延伸时,以x轴为渐近线,向它无限靠近.			
THE FORM	6 The state of the	当μ一定时,曲线的形状由σ确定 .σ越大,曲线越"矮胖",表示总体的分布越分散;σ越小,曲线越"瘦高",表示总体的分布越集中.			

考点1: 正态分布函数的性质、概率计算

首先,将随机变量 x 标准化,令
$$Z = \frac{x - \mu}{\sigma}$$
 ,

定理: X~N
$$(\mu, \sigma^2)$$
,则Z~N $(0,1)$

再查表求概率

1. (15 分)假设某饮料罐装生产线罐装后饮料重量服从正态分布,均值为 10,标准差为 4。现随机从该生产线抽取一瓶测量重量,请计算该瓶重量小于 8 的概率。

根据题意有,
$$X \sim N (10, 4^2)$$
,则 $P (x < 8) = p (\frac{x - 10}{4} < \frac{8 - 10}{4})$ $= p(z < -0.5) = \phi(-0.5) = 1 - \phi(0.5)$ 因为 $\phi(0.5) = 0.6915$,

二项分布的总体平均数:
$$\mu_x = n p$$

• 二项分布的总体标准差
$$\sigma_x = \sqrt{npq}$$

- 二项成数(百分数)分布的总体平均数: $\mu_p = p$
- 二项成数 (百分数) 分布的总体标准差: $\sigma_p = \sqrt{\frac{pq}{n}}$

成数的分布:在推断统计里的合格率的推断统计会用到

考点3: 四种抽样方法的特点

人物	抽样过程	特点
简单随机抽 样	从总体//个单位(元素)中随机地抽取//个单位作为样本,使得总体中每一个元素都有相同的机会(概率)被抽中	总体中每一个元素都有相同的机会(概率)被抽中
分层抽样	先分层,再从每一层中随机抽	每层中的每个元素被抽的概 率相同
整群抽样	先分群(组),再随机抽群	被抽到的群中所有元素被调 查
系统抽样	先从数字1到 k之间随机抽取一个数字 r作为初始单位,以后依次取 r+k,r+2k…等单位	距离内的元素被抽的概率相同
常见题型	选择题。根据给定情形,判断适用那种抽样方流简答题。	去 Thunduyan.com

考点4: 样本均值的分布

这是做抽样推断分析计算题必用的知识点

洋本均值	\overline{x} =	$=\frac{\sum_{i=1}^{n}x_{i}}{n}$

样本方差

样本标准差

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}}$$

$$\overline{x} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \longrightarrow \frac{\overline{x} - \mu}{\sigma/\sqrt{n}} \sim N(0.1)$$

$$E(\overline{x}) = \mu \qquad \sigma_{\overline{x}}^2 = \frac{\sigma^2}{n}$$

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \qquad \qquad \hat{\sigma}_{\bar{x}} = \frac{s}{\sqrt{n}}$$

考点4: 样本均值的分布

服从自由度为 df = n - 1 的 t 分布。即:

$$t = \frac{\overline{x} - \mu}{s_{\overline{x}}} = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

 $S_{\overline{x}}$

为样本平均数的标准误, 其计算公

式为:

$$s_{\overline{x}} = \frac{s}{\sqrt{n}}$$

第三章 参数估计

序号	考点	<u></u> 题型
1	区间估计的求法	分析计算
2	样本容量的确定	选择、简答

样本均值±分位数值×样本均值的标准误差

第一步,观察总体是否服从正态分布

第二步, 计算样本均值、样本标准差

第三步,找置信水平1-a

第四步, 计算抽样极限误差

区间估计需要用到抽样极限误差

抽样平均误差 (重复抽样)

抽样极限误差

$$\sigma_{\bar{x}} = \sqrt{\frac{\sigma^2}{n}} = \frac{\sigma}{\sqrt{n}}$$

$$\Delta_{\bar{x}} = Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$\sigma_p = \sqrt{\frac{p(1-p)}{n}} \qquad \qquad \Delta_{\bar{x}} = Z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

总体均值在置信水平下的置信区间可一般性地表达为 : 样本均值±分位数值×样本均值的标准误差

Z分布:
$$Z = \frac{\overline{X} - \mu}{\sigma_{\overline{X}}}$$
 置信区间: $(\overline{x} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{x} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}})$

样本比例±分位数值×样本比例的标准误差

$$p \pm z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

总体参数	符号表示	样本统计量
均值差	$\mu_1 - \mu_2$	$\overline{x}_1 - \overline{x}_2$
比例差	$\pi_1 - \pi_2$	$p_{1} - p_{2}$
方差比	σ_1^2/σ_2^2	s_1^2/s_2^2

两个总体均值之差(μ_1 - μ_2)在置信水平下的置信区间可一般性地表达为

$$(x_1 - x_2)$$
 ± 分位数值×标准误差

考点2: 样本容量的确定

估计总体均值必须的样本量

在 $1-\alpha$ 的置信度下估计总体均值的允许误差为 $\Delta_{\bar{x}}$ 则必要的样本量为:

•重复抽样下:

$$n = \frac{Z_{\alpha/2}^2 \sigma^2}{\left(\Delta_{\overline{x}}\right)^2}$$

选择题、简答题。样本容量的确定方法:

- (1) 写出抽样极限误差的公式
- (2)变形,观察变形后的公式就可以选出答案或计算出确切的容量。

注:关于增加还减少样本容量的选择题,之间根据右边的公式就可观察出二则的关系

$$\Delta_{\bar{x}} = Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

第四章 假设检验

	3000	
序号	考点	<u></u> 题型
1	假设检验中的两类错误	简答
2	假设检验步骤、分析计算	简答、分析计算
3	假设检验与区间估计的关系	简答

- ★ 第 I 类错误(α错误): 弃真错误
 - ■原假设为正确时拒绝原假设
 - 第 I 类错误的概率记为 , 被称为显著性水平
- **★**第Ⅱ类错误(β错误):取伪错误
 - ■原假设为错误时未拒绝原假设
 - 第工类错误的概率记为 (Beta)

考点2: 假设检验步骤、分析计算

	熟练假设	检验的步骤,并会做计算题	J. W. duyan.com	
1	提出假设	原假设H _{0:} 想反对的	, ≥, ≤	
I FA duyar	Vivini.	备择假设H ₁ 想支持的	≠, <,>	
2	给定显著性水平a以及样本	单侧检验	$oldsymbol{Z}_{lpha}$, $oldsymbol{t}_{lpha}$	
	容量n,确定临界值	双侧检验	$Z_{\alpha_{/2}}$, $t_{\alpha_{/2}}$	
3	计算统计量	Z统计量	$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$	
		 t 统计量(正态总体小样本,方 差未 知)	$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} \sim t(n - 1)$	
4	比较,并做决策	统计量 > 临界值	拒绝份	

考点2: 假设检验步骤、分析计算

举例: 小样本, 方差 已知

【例】某市历年来对7岁男孩的统计资料表明,他们的身高服从均值为1.32米、标准差为0.12米的正态分布。现从各个学校随机抽取25个7岁男学生,测得他们平均身高1.36米,若已知今年全市7岁男孩身高的标准差仍为0.12米,问与历年7岁男孩的身高相比是否有显著差异(取 α = 0.05)。

解: 从题意可知, $\frac{1}{X}=1.36$ 米, $\mu=1.32$ 米, $\sigma=0.12$ 米。

- (1) 建立假设: H_0 : $\mu = 1.32$, H_1 : $\mu \neq 1.32$
- (2)确定统计量:

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{1.36 - 1.32}{0.12 / \sqrt{25}} = 1.67$$

(3) 比较统计量 $\alpha = 0.05$, $Z_{\infty_{/2}}$ =1.96, Z = 1.67 < 1.96, 不拒绝原假设。表明没有证据表明今年7岁男孩平均身高与历年7岁男孩平均身高有显著差异

考点3: 假设检验与区间估计的关系

区间估计

总体均值 μ 在1- α 置信水平下的置信区间为

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
 或 $\bar{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}} (\sigma$ 未知)

假设检验

|统计量| > 临界值, 拒绝/6

接受域

$$\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \left\langle \mu_0 \left\langle \bar{x} + z_{\alpha/2} \frac{s}{\sqrt{n}} \right\rangle \right\rangle$$

可以写出区间估计的一般表达式,结合表达式来说明二者的关系

序号	考点	<u></u> 题型
Nan.com 1	相关关系与回归	选择
2	解读回归估计结果	分析计算题
3 方差分析		分析计算题

考点1: 相关关系与回归关系

相	关关系 $-1 \leq r \leq 1$,	相关关系 ≠ 因果关	系
类型	r值	图形	三型 有开
完全相关	r =1	y 🛕	y The second of
不相关	r=0		
存在一定相关性	<0.3 弱相关 0.3~0.5 低度相关	, Commidae	
	0.5~0.8 显著相关 0.8~1 高度相关	正相关	负相关

考点2:解读回归估计结果

x市城镇居民人均可支配收入和人均消费性支出之间依存关系的线性 回归方程:

$$\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i = 525.8662 + 0.7083 X_i$$

$$\hat{\beta}_2 = 0.7083$$
 表明,当居民人均可支配收入增加1元时,人均消费性支出将平均增长 0.7083 元

考点3: 方差分析

有交互效应的方差分析表, 会填表

	9			
变异来源	离差平方 和SS	自由度 df	均方 MS	F值
A因素	SSA	a-1	MSA=SSA/(a-1)	F _A =MSA/MSE
B因素	SSB	b-1	MSB=SSB/(b-1)	F _B =MSB/MSE
AB交互 作用	SSAB	(a-1)(b-1)	MSAB=SSAB/(a-1)(b-1)	F _{AB} =MSAB/MSE
误差	SSE	ab(<i>m</i> -1)	MSE=SSE/rs(m-1)	_ %E
合计	SST	n-1		THE TOTAL STATE OF THE PARTY OF

考点3: 方差分析

无交互效应的方差分析表

变差	离差平方和	自由度	均方	F值
来源	SS	df	MS	
A因素	SSA	a-1	MSA=SSA/(b-1)	F _A =MSA/MSE
B因素	SSB	b-1	MSB=SSB/(b-1)	$F_B = MSB/MSE$
误差	SSE	n-a-b+1	MSE=SSE/(n-a-b+1)	
合计	SST	n-1	The state of the s	THE CONTRACTOR OF THE PARTY OF

2010年分析计算题

1. (15 分) 一家鞋店零售商进行了一项研究,以确定该鞋店每天的销售量是否随方圆 1 公里范围内竞争者的数量及商店的地理位置不同而异。该公司选择了三种类型的商店:单独位于郊区的商店、位于购物中心的商店、城内的商店。这些商店方圆 1 公里内的竞争者数量不同,可以被分成四类:没有竞争者、有1个竞争者、有2个竞争者、有3 个及以上竞争者。对其调查数据进行方差分析,得到结果如表 1 所示。请从长格补充完整(10分),并在 0.05的 显著性水平下说明你的分析结论(5分)。

变异来源	离差平方 和SS	自由度 df	均方 MS	F值
A因素	SSA	a-1	MSA=SSA/(a-1)	F _A =MSA/MSE
B因素	SSB	b-1	MSB=SSB/(b-1)	F _B =MSB/MSE
AB交互 作用	SSAB	(a-1)(b-1)	MSAB=SSAB/(a-1)(b-1)	F _{AB} =MSAB/MSE
误差	SSE	ab(<i>m</i> -1)	MSE=SSE/rs(<i>m</i> -1)	
合 计	SST	n-1	Tan.	

表1 方 差分析表

因变量: 鞋日销量

误差来源	平方和B	自由度	均方和MS	F	显著性
竞争者数	1128.032		376.011	14.910	0.000
商店位置	1619.452			32.108	0.000
竞争者数与商店位置		6	75.953	3.012	0.024
误差		24	25.219	om	
总计	3808.458	35	197 Man	.0	

1	平方和	a g	均方和 MS	F	显著性
	1128. 032	3	376. 011	14. 910	0.000
1	1619. 452	2	809. 726	32. 108	0.000
T	455. 718	6	75. 953	3. 012	0.024
T	605. 256	24	25. 219	1	
Ť	3808. 458	35	16	118	

序号	考点	题型
Man com 1	趋势预测	分析计算
2	季节因素测定	分析计算

滑动平均法(又叫滑动平均法)
$$F_{t+1} = \overline{Y}_t = \frac{Y_{t-k+1} + Y_{t-k+2} + \dots + Y_{t-1} + Y_t}{k}$$

指数平滑预测

$$F_{t+1} = \alpha Y_t + (1 - \alpha) F_t$$

最小二乘法——直线趋势的测定 $\hat{Y}_t = b_0 + b_1 t$

$$\hat{Y}_t = b_0 + b_1 t$$

季节调整

在原时序数列中消除季节因素之影响,计算公式为

$$\frac{T \times S \times C \times I}{S} = T \times C \times I$$