Tutorium 2

Funktionentheorie

05. & 06. Mai 2025

¹https://arxiv.org/abs/math/9404236

Aus "On Proof and Progress in Mathematics" von William P. Thurston¹:

¹https://arxiv.org/abs/math/9404236

Aus "On Proof and Progress in Mathematics" von William P. Thurston¹:

(1) Infinitesimal: the ratio of the infinitesimal change in the value of a function to the infinitesimal change in a function.

¹https://arxiv.org/abs/math/9404236

Aus "On Proof and Progress in Mathematics" von William P. Thurston¹:

- (1) Infinitesimal: the ratio of the infinitesimal change in the value of a function to the infinitesimal change in a function.
- (2) Symbolic: the derivative of x^n is nx^{n-1} , the derivative of $\sin(x)$ is $\cos(x)$, the derivative of $f \circ g$ is $f' \circ g \cdot g'$, etc.

¹https://arxiv.org/abs/math/9404236

Aus "On Proof and Progress in Mathematics" von William P. Thurston¹:

- (1) Infinitesimal: the ratio of the infinitesimal change in the value of a function to the infinitesimal change in a function.
- (2) Symbolic: the derivative of x^n is nx^{n-1} , the derivative of $\sin(x)$ is $\cos(x)$, the derivative of $f \circ g$ is $f' \circ g \cdot g'$, etc.
- (3) Logical: f'(x) = d if and only if for every ϵ there is a δ such that when $0 < |\Delta x| < \delta$,

$$\left|\frac{f(x+\Delta x)-f(x)}{\Delta x}-d\right|<\epsilon.$$

Aus "On Proof and Progress in Mathematics" von William P. Thurston¹:

- (1) Infinitesimal: the ratio of the infinitesimal change in the value of a function to the infinitesimal change in a function.
- (2) Symbolic: the derivative of x^n is nx^{n-1} , the derivative of $\sin(x)$ is $\cos(x)$, the derivative of $f \circ g$ is $f' \circ g \cdot g'$, etc.
- (3) Logical: f'(x) = d if and only if for every ϵ there is a δ such that when $0 < |\Delta x| < \delta$,

$$\left|\frac{f(x+\Delta x)-f(x)}{\Delta x}-d\right|<\epsilon.$$

(4) Geometric: the derivative is the slope of a line tangent to the graph of the function if the graph has a tangent.

→ □ ▶ ◆ □ ▶ ◆ 差 ▶ ◆ 差 ■ り へ ○

Aus "On Proof and Progress in Mathematics" von William P. Thurston¹:

- (1) Infinitesimal: the ratio of the infinitesimal change in the value of a function to the infinitesimal change in a function.
- (2) Symbolic: the derivative of x^n is nx^{n-1} , the derivative of $\sin(x)$ is $\cos(x)$, the derivative of $f \circ g$ is $f' \circ g \cdot g'$, etc.
- (3) Logical: f'(x) = d if and only if for every ϵ there is a δ such that when $0 < |\Delta x| < \delta$,

$$\left|\frac{f(x+\Delta x)-f(x)}{\Delta x}-d\right|<\epsilon.$$

- (4) Geometric: the derivative is the slope of a line tangent to the graph of the function if the graph has a tangent.
- (5) Rate: the instantaneous speed of f(t), when t is time.

2/7

https://fdf-uni.github.io/ft Tutorium 2 05. & 06. Mai 2025

Aus "On Proof and Progress in Mathematics" von William P. Thurston¹:

- (1) Infinitesimal: the ratio of the infinitesimal change in the value of a function to the infinitesimal change in a function.
- (2) Symbolic: the derivative of x^n is nx^{n-1} , the derivative of $\sin(x)$ is $\cos(x)$, the derivative of $f \circ g$ is $f' \circ g \cdot g'$, etc.
- (3) Logical: f'(x) = d if and only if for every ϵ there is a δ such that when $0 < |\Delta x| < \delta$,

$$\left|\frac{f(x+\Delta x)-f(x)}{\Delta x}-d\right|<\epsilon.$$

- (4) Geometric: the derivative is the slope of a line tangent to the graph of the function if the graph has a tangent.
- (5) Rate: the instantaneous speed of f(t), when t is time.
- (6) Approximation: The derivative of a function is the best linear approximation to the function near a point.

¹https://arxiv.org/abs/math/9404236

Aus "On Proof and Progress in Mathematics" von William P. Thurston¹:

- (1) Infinitesimal: the ratio of the infinitesimal change in the value of a function to the infinitesimal change in a function.
- (2) Symbolic: the derivative of x^n is nx^{n-1} , the derivative of $\sin(x)$ is $\cos(x)$, the derivative of $f \circ g$ is $f' \circ g \cdot g'$, etc.
- (3) Logical: f'(x) = d if and only if for every ϵ there is a δ such that when $0 < |\Delta x| < \delta$,

$$\left|\frac{f(x+\Delta x)-f(x)}{\Delta x}-d\right|<\epsilon.$$

- (4) Geometric: the derivative is the slope of a line tangent to the graph of the function if the graph has a tangent.
- (5) Rate: the instantaneous speed of f(t), when t is time.
- (6) Approximation: The derivative of a function is the best linear approximation to the function near a point.
- (7) Microscopic: The derivative of a function is the limit of what you get by looking at it under a microscope of higher and higher power.

1https://arxiv.org/abs/math/9404236

Aus "On Proof and Progress in Mathematics" von William P. Thurston¹:

- (1) Infinitesimal: the ratio of the infinitesimal change in the value of a function to the infinitesimal change in a function.
- (2) Symbolic: the derivative of x^n is nx^{n-1} , the derivative of $\sin(x)$ is $\cos(x)$, the derivative of $f \circ g$ is $f' \circ g \cdot g'$, etc.
- (3) Logical: f'(x) = d if and only if for every ϵ there is a δ such that when $0 < |\Delta x| < \delta$,

$$\left|\frac{f(x+\Delta x)-f(x)}{\Delta x}-d\right|<\epsilon.$$

- (4) Geometric: the derivative is the slope of a line tangent to the graph of the function if the graph has a tangent.
- (5) Rate: the instantaneous speed of f(t), when t is time.
- (6) Approximation: The derivative of a function is the best linear approximation to the function near a point.
- (7) Microscopic: The derivative of a function is the limit of what you get by looking at it under a microscope of higher and higher power.

1https://arxiv.org/abs/math/9404236

Aus "On Proof and Progress in Mathematics" von William P. Thurston¹:

- (1) Infinitesimal: the ratio of the infinitesimal change in the value of a function to the infinitesimal change in a function.
- (2) Symbolic: the derivative of x^n is nx^{n-1} , the derivative of $\sin(x)$ is $\cos(x)$, the derivative of $f \circ g$ is $f' \circ g \cdot g'$, etc.
- (3) Logical: f'(x) = d if and only if for every ϵ there is a δ such that when $0 < |\Delta x| < \delta$,

$$\left|\frac{f(x+\Delta x)-f(x)}{\Delta x}-d\right|<\epsilon.$$

- (4) Geometric: the derivative is the slope of a line tangent to the graph of the function if the graph has a tangent.
- (5) Rate: the instantaneous speed of f(t), when t is time.
- (6) Approximation: The derivative of a function is the best linear approximation to the function near a point.
- (7) Microscopic: The derivative of a function is the limit of what you get by looking at it under a microscope of higher and higher power.

1https://arxiv.org/abs/math/9404236

_ _ _ _

- "[...] one person's clear mental image is another person's intimidation:
- (37) The derivative of a real-valued function f in a domain D is the Lagrangian section of the cotangent bundle $T^*(D)$ that gives the connection for for the unique flat connection on the trivial \mathbb{R} -bundle $D \times \mathbb{R}$ for which the graph of f is parallel."

Holomorphe Funktionen

Definition

Sei $\Omega \subset \mathbb{C}$ offen. Eine Funktion

$$f:\Omega\to\mathbb{C}$$

heißt holomorph im Punkt $z_0 \in \Omega$, falls der Grenzwert

$$f'(z_0) = \lim_{\substack{h \to 0 \\ h \in \mathbb{C}}} \frac{f(z_0 + h) - f(z_0)}{h}$$

in \mathbb{C} existiert. Wir nennen $f'(z_0)$ die Ableitung von f im Punkt z_0 .

Die Cauchy-Riemann-Gleichungen

Gegeben $f: \Omega \to \mathbb{C}$ betrachten wir die Funktionen Re $f: \Omega \to \mathbb{R}$ und Im $f: \Omega \to \mathbb{R}$ als Funktionen $u, v: \mathbb{R}^2 \to \mathbb{R}$ indem wir $z = x + \mathrm{i} y \in \Omega$ mit $(x, y) \in \tilde{\Omega} \subset \mathbb{R}^2$ identifizieren.

Die Cauchy-Riemann-Gleichungen

Gegeben $f: \Omega \to \mathbb{C}$ betrachten wir die Funktionen Re $f: \Omega \to \mathbb{R}$ und Im $f: \Omega \to \mathbb{R}$ als Funktionen $u, v: \mathbb{R}^2 \to \mathbb{R}$ indem wir $z = x + \mathrm{i} y \in \Omega$ mit $(x, y) \in \tilde{\Omega} \subset \mathbb{R}^2$ identifizieren.

Hierdurch können wir $f: \Omega \to \mathbb{C}$ mit $F: \tilde{\Omega} \to \mathbb{R}^2$ identifizieren.

Die Cauchy-Riemann-Gleichungen

Gegeben $f: \Omega \to \mathbb{C}$ betrachten wir die Funktionen Re $f: \Omega \to \mathbb{R}$ und Im $f: \Omega \to \mathbb{R}$ als Funktionen $u, v: \mathbb{R}^2 \to \mathbb{R}$ indem wir $z = x + \mathrm{i} y \in \Omega$ mit $(x, y) \in \tilde{\Omega} \subset \mathbb{R}^2$ identifizieren.

Hierdurch können wir $f: \Omega \to \mathbb{C}$ mit $F: \tilde{\Omega} \to \mathbb{R}^2$ identifizieren.

Theorem

Die Funktion f ist genau dann holomorph in z_0 , wenn die mit ihr identifizierte Funktion $F=(u,v)^T$ in z_0 (reell) differenzierbar ist und die partiellen Ableitungen in diesem Punkt die Cauchy-Riemann-Gleichungen erfüllen:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

Interpretation

Erinnern wir uns zu Beginn an Charakterisierung (6) der Ableitung, nämlich als beste lineare Approximation.

Interpretation

Erinnern wir uns zu Beginn an Charakterisierung (6) der Ableitung, nämlich als beste lineare Approximation.

Eine \mathbb{C} -lineare Abbildung $\mathbb{C} \to \mathbb{C}$ ist gegeben durch $z \mapsto az$ für ein $a \in \mathbb{C}$.

\mathbb{C} -(Anti-)Linearität

Im folgenden identifizieren wir oft implizit \mathbb{R}^2 und $\mathbb{C}.$

Im folgenden identifizieren wir oft implizit \mathbb{R}^2 und \mathbb{C} .

- Die *reelle* Ableitung $DF: \mathbb{R}^2 \to \mathbb{R}^2$ von F ist linear – allerdings \mathbb{R} -linear, d.h. $\forall \lambda \in \mathbb{R}: DF(\lambda x) = \lambda DF(x)$.

Im folgenden identifizieren wir oft implizit \mathbb{R}^2 und \mathbb{C} .

- Die *reelle* Ableitung $DF: \mathbb{R}^2 \to \mathbb{R}^2$ von F ist linear – allerdings \mathbb{R} -linear, d.h. $\forall \lambda \in \mathbb{R}: DF(\lambda x) = \lambda DF(x)$.

Diese Gleichheit gilt nicht zwingend $\forall \lambda \in \mathbb{C}!$

Im folgenden identifizieren wir oft implizit \mathbb{R}^2 und \mathbb{C} .

- Die *reelle* Ableitung $DF: \mathbb{R}^2 \to \mathbb{R}^2$ von F ist linear allerdings \mathbb{R} -linear, d.h. $\forall \lambda \in \mathbb{R}: DF(\lambda x) = \lambda DF(x)$. Diese Gleichheit gilt nicht zwingend $\forall \lambda \in \mathbb{C}$!
- Fakt: Die \mathbb{R} -linearen Abbildungen $\mathbb{C} \to \mathbb{C}$ sind direkte Summe \mathbb{C} -linearer und \mathbb{C} -anti-linearer² Abbildungen $\mathbb{C} \to \mathbb{C}$.

²Anti-linear bedeutet, dass $f(\lambda x) = \overline{\lambda}f(x)$.

Im folgenden identifizieren wir oft implizit \mathbb{R}^2 und \mathbb{C} .

- Die *reelle* Ableitung $DF: \mathbb{R}^2 \to \mathbb{R}^2$ von F ist linear allerdings \mathbb{R} -linear, d.h. $\forall \lambda \in \mathbb{R}: DF(\lambda x) = \lambda DF(x)$. Diese Gleichheit gilt nicht zwingend $\forall \lambda \in \mathbb{C}$!
- Fakt: Die \mathbb{R} -linearen Abbildungen $\mathbb{C} \to \mathbb{C}$ sind direkte Summe \mathbb{C} -linearer und \mathbb{C} -anti-linearer 2 Abbildungen $\mathbb{C} \to \mathbb{C}$. In der Tat, eine \mathbb{R} -lineare Abbildung $L \colon \mathbb{C} \to \mathbb{C}$ kann zerlegt werden in
 - $\frac{1}{2}(L(z) iL(iz))$ (C-linear) und $\frac{1}{2}(L(z) + iL(iz))$ (C-anti-linear).

7/7

https://fdf-uni.github.io/ft Tutorium 2 05. & 06. Mai 2025

²Anti-linear bedeutet, dass $f(\lambda x) = \overline{\lambda}f(x)$.

³Dies erinnert eventuell an Funktionen $\mathbb{R} \to \mathbb{R}$ als direkte Summe achsen- und punktsymmetrischer Funktionen. Dies geht natürlich auch ein wenig allgemeiner mittels beliebiger Involutionen, s. beispielsweise https://math.stackexchange.com/questions/4286284.

Im folgenden identifizieren wir oft implizit \mathbb{R}^2 und \mathbb{C} .

- Die *reelle* Ableitung $DF: \mathbb{R}^2 \to \mathbb{R}^2$ von F ist linear allerdings \mathbb{R} -linear, d.h. $\forall \lambda \in \mathbb{R}: DF(\lambda x) = \lambda DF(x)$. Diese Gleichheit gilt nicht zwingend $\forall \lambda \in \mathbb{C}$!
- Fakt: Die $\mathbb R$ -linearen Abbildungen $\mathbb C \to \mathbb C$ sind direkte Summe $\mathbb C$ -linearer und $\mathbb C$ -anti-linearer² Abbildungen $\mathbb C \to \mathbb C$. In der Tat, eine $\mathbb R$ -lineare Abbildung $L\colon \mathbb C \to \mathbb C$ kann zerlegt werden in
 - $\frac{1}{2}(L(z) iL(iz))$ (C-linear) und $\frac{1}{2}(L(z) + iL(iz))$ (C-anti-linear).
- Die Cauchy-Riemann-Gleichungen garantieren, dass die Abbildung DF \mathbb{C} -linear ist, d.h. \mathbb{C} -anti-linearen Teil = 0 hat.

7/7

²Anti-linear bedeutet, dass $f(\lambda x) = \overline{\lambda}f(x)$.

³Dies erinnert eventuell an Funktionen $\mathbb{R} \to \mathbb{R}$ als direkte Summe achsen- und punktsymmetrischer Funktionen. Dies geht natürlich auch ein wenig allgemeiner mittels beliebiger Involutionen, s. beispielsweise https://math.stackexchange.com/questions/4286284.