高维概率

High-Dimensional Probability

七、随机向量Concentration

@滕佳烨

- 上节课说了啥
 - 1. 什么是次高斯随机向量? ----用低维定义高维和任意普通向量的内积都是次高斯
 - 2. 一些随机向量的例子

Gaussian, Spherical, Symmetric Bernoulli,
Coordinate, Isotropic Convex

*Isotropic? Sub-Gaussian? Independent coordinate?

• 这节课要说啥

各种情况下随机向量的Concentration

• 各种情况?

Coordinate-wise RV Sub-Gaussian RV

• Concentration?

一维变量 $\rightarrow P(|X| \ge t) \le u$ 高维变量 $\rightarrow P(||X|| \ge t) \le u$ • Coordinate-wise concentration(1)

Theorem 3.1.1 (Concentration of the norm). Let $X = (X_1, ..., X_n) \in \mathbb{R}^n$ be a random vector with independent, sub-gaussian coordinates X_i that satisfy $\mathbb{E}[X_i^2 = 1]$. Then

$$\| \|X\|_2 - \sqrt{n} \|_{\psi_2} \le CK^2,$$

where $K = \max_i ||X_i||_{\psi_2}$ and C is an absolute constant.

• Coordinate!!!

注意到Coordinate-wise次高斯是次高斯随机向量的**子集** 我们之前提到的**高斯≈球壳**就是它的一个特例嘛! Coordinate-wise concentration(1)

Theorem 3.1.1 (Concentration of the norm). Let $X = (X_1, ..., X_n) \in \mathbb{R}^n$ be a random vector with independent, sub-gaussian coordinates X_i that satisfy $\mathbb{E}[X_i^2 = 1]$. Then

$$\| \|X\|_2 - \sqrt{n} \|_{\psi_2} \le CK^2,$$

where $K = \max_i ||X_i||_{\psi_2}$ and C is an absolute constant.¹

- Hint
- 1. 由于 X_i 是次高斯, X_i^2 就是次指数,就能找到 $||X||^2$ 的bound
- 2. 如果 $z \ge 0$, $|z-1| \ge \delta \rightarrow |z^2-1| \ge \max(\delta, \delta^2)$,逆否

@滕佳烨 高大學 Bilibili 哔哩哔哩

Coordinate-wise concentration(2)

Theorem 6.3.2 (Concentration of random vectors). Let B be an $m \times n$ matrix, and let $X = (X_1, \ldots, X_n) \in \mathbb{R}^n$ be a random vector with independent, mean zero, unit variance, sub-gaussian coordinates. Then

$$\left\| \|BX\|_2 - \|B\|_F \right\|_{\psi_2} \le CK^2 \|B\|,$$

where $K = \max_i ||X_i||_{\psi_2}$.

- 若B=I, 就是之前的定理!
- 仍然是Coordinate-wise
- ***那么对于一个一般的次高斯随机向量,是否也有类似的结果呢?很遗憾,没有。但是我们有下一页给出的定理

@滕佳烨 Bilibili 哔哩哔哩

Sub-Gaussian Concentration*

Exercise 6.3.5 (Tails of sub-gaussian random vectors). $\blacksquare \blacksquare$ Let B be an $m \times n$ matrix, and let X be a mean zero, sub-gaussian random vector in \mathbb{R}^n with $\|X\|_{\psi_2} \leq K$. Prove that for any $t \geq 0$, we have

$$\mathbb{P}\left\{\|BX\|_{2} \ge CK\|B\|_{F} + t\right\} \le \exp\left(-\frac{ct^{2}}{K^{2}\|B\|^{2}}\right).$$

• 注意到这里只有一个下界结果,与之对比的, coordinate 还有对应的上界结果

1. Coordinate-wise sub-Gaussian向量有Concentration结果 $\|X\| \approx \sqrt{n}$ $\|BX\| \approx \|B\|_F$

2. 普通的次高斯向量只有下界没上界

谢谢!

@滕佳烨