Análisis complejo

Taller 11

Convergencia de funciones holomorfas.

Fecha de entrega: 31 de octubre de 2024

Sea X un espacio métrico. Una sucesión $(f_n)_{n\in\mathbb{N}}$ de funciones $U\to\mathbb{C}$ se llama continuamente convergente si para toda sucesión $(x_n)_{n\in\mathbb{N}}\subset X$ convergente el límite $\lim_{n\to\infty} f_n(x_n)$ existe.

- 1. Sea $U \subseteq \mathbb{C}$ abierto y $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones holomorfas $U \to \mathbb{C}$. Suponga que $f_n \to f$ compactamente y que f no es constante. Demuestre que para todo $z_0 \in U$ existe una sucesión $(z_n)_{n \in \mathbb{N}} \subset U$ y un $N_0 \in \mathbb{N}$ con $\lim_{n \to \infty} z_n = z_0$ y $f_n(z_n) = f(z_0)$ para todo $n \geq N_0$.
- 2. Sea $U \subseteq \mathbb{C}$ abierto y $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones holomorfas $U \to \mathbb{C}$. Suponga que $f_n \to f$ compactamente y que f no es constante. Demuestre:
 - (a) Si existe $W \subset \mathbb{C}$ tal que $f_n(U) \subseteq W$ para todo $n \in \mathbb{N}$, entonces también $f(U) \subseteq W$.
 - (b) Si todas f_n son inyectivas, f también es inyectiva.
 - (c) Si todas f_n son localmente biholomorfas, f también es localmente biholomorfa.
- 3. (a) Sea R>1 y $f:B_R(0)\to\mathbb{C}$ una función holomorfa con serie de Taylor $f(z)=\sum_{n=0}^\infty c_n z^n$. Suponga que $\|f\|_{B_1(0)}^2:=\int_{B_1(0)}|f(z)|^2\mathrm{d}z=M<\infty$. Demuestre que para todo 0< r<1

$$||f||_{B_r(0)}^2 = \pi \sum_{n=0}^{\infty} \frac{|c_n|^2}{n+1} r^{2n+2}$$
 $y \quad |f(0)| \le \frac{||f||_{B_1(0)}}{\sqrt{\pi r}}.$

(b) Sea $U \subseteq \mathbb{C}$ una región acotada y sea $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones holomorfas $U \to C$. Suponga que existe C > 0 tal que

$$||f_n||_U < C, \qquad n \in \mathbb{N}.$$

Demuestre que la sucesión $(f_n)_{n\in\mathbb{N}}$ es localmente acotada. Concluya que contiene una subsucesión que converge uniformemente subconjuntos compactos de U.

4. Sea $U \subseteq \mathbb{C}$ abierto y conexo y sea $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones holomorfas y localmente acotadas $U \to \mathbb{C}$. Suponga que existe un $z_0 \in U$ tal que para todo $k \in \mathbb{N}_0$ la sucesión $\left(f_n^{(k)}(z_0)\right)_{n \in \mathbb{N}}$ converge. Demuestre que $(f_n)_{n \in \mathbb{N}}$ converge compactamente.