Sk. Sohel 21BCE9462 sohel.21bce9462@vitapstudent.ac.in VIT-AP

1. IMPORT THE LIBRARIES

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
```

2. IMPORT THE DATASET

```
In [ ]: df=pd.read_csv("Titanic-Dataset.csv")
In [ ]: df
```

		218625402_01_0011EE_, 1001g1111011E_0							10741			
Ca	Fare	Ticket	Parch	SibSp	Age	Sex	Name	Pclass	Survived	PassengerId		[]:
N	7.2500	A/5 21171	0	1	22.0	male	Braund, Mr. Owen Harris	3	0	1	0	
(71.2833	PC 17599	0	1	38.0	female	Cumings, Mrs. John Bradley (Florence Briggs Th	1	1	2	1	
N	7.9250	STON/O2. 3101282	0	0	26.0	female	Heikkinen, Miss. Laina	3	1	3	2	
C.	53.1000	113803	0	1	35.0	female	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	1	4	3	
N	8.0500	373450	0	0	35.0	male	Allen, Mr. William Henry	3	0	5	4	
											•••	
N	13.0000	211536	0	0	27.0	male	Montvila, Rev. Juozas	2	0	887	886	
F	30.0000	112053	0	0	19.0	female	Graham, Miss. Margaret Edith	1	1	888	887	
N	23.4500	W./C. 6607	2	1	NaN	female	Johnston, Miss. Catherine Helen "Carrie"	3	0	889	888	
C.	30.0000	111369	0	0	26.0	male	Behr, Mr. Karl Howell	1	1	890	889	
N	7.7500	370376	0	0	32.0	male	Dooley, Mr. Patrick	3	0	891	890	

891 rows × 12 columns

→

In []: df.head()

O, 10.1074W					210000	2_0._0\	/· · L/ ·	looigiiiiioi	0			
Out[]:	Passenger	ld :	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN
4												•
In []:	df.tail()											
Out[]:	Passeng	jerld	Survived	l Pclas	s Name	Sex	Age	SibSp	Parch	n Ticket	Fare (Cabin I
	886	887	C) 2	Montvila, 2 Rev. Juozas	male	27.0	0	(211536	13.00	NaN
	887	888	. 1		Graham, Miss. Margaret Edith	female	19.0	0	() 112053	30.00	B42
	888	889	C) 3	Johnston, Miss. 3 Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45	NaN
	889	890	1		Behr, Mr. 1 Karl Howell	male	26.0	0	() 111369	30.00	C148
	890	891	C) [Dooley, 3 Mr. Patrick	male	32.0	0	(370376	7.75	NaN
4												•
In []:	df.shape											
Out[]:	(891, 12)											
In []:	df.info()											
~ =												

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtyp	es: float64(2), int64(5), obj	ect(5)

memory usage: 83.7+ KB

In []: df.describe()

]:		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In []: corr=df.corr()
corr

<ipython-input-13-7d5195e2bf4d>:1: FutureWarning: The default value of numeric_onl
y in DataFrame.corr is deprecated. In a future version, it will default to False.
Select only valid columns or specify the value of numeric_only to silence this war
ning.

corr=df.corr()

Out[]:		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
	PassengerId	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
	Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
	Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
	Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
	SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
	Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
	Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000

```
In [ ]: plt.subplots(figsize=(15,10))
    sns.heatmap(corr,annot=True)
```

Out[]: <Axes: >


```
In []: df.Survived.value_counts()
Out[]: 0 549
1 342
Name: Survived, dtype: int64
```

In []: df.Sex.value_counts()

Out[]: male 577 female 314

Name: Sex, dtype: int64

In []: df.Embarked.value_counts()

Out[]: S 644 C 168 Q 77

Name: Embarked, dtype: int64

3. CHECK FOR NULL VALUES

```
In [ ]: df.isnull().any()
```

```
False
        PassengerId
Out[ ]:
        Survived
                        False
        Pclass
                        False
        Name
                        False
        Sex
                        False
        Age
                        True
        SibSp
                        False
        Parch
                       False
        Ticket
                        False
        Fare
                        False
        Cabin
                        True
         Embarked
                         True
        dtype: bool
In [ ]: df.isnull().sum()
        PassengerId
                          0
Out[ ]:
        Survived
                          0
        Pclass
                          0
        Name
                          0
        Sex
                          0
        Age
                        177
        SibSp
                          0
        Parch
                          0
        Ticket
                          0
                          0
        Fare
        Cabin
                        687
        Embarked
        dtype: int64
        Fill null values in the 'Age' column with the mean age
         mean_age = df['Age'].mean()
In [ ]:
         df['Age'].fillna(mean_age, inplace=True)
         Fill null values in the 'Embarked' column with the most common value
In [ ]: most_common_embarked = df['Embarked'].mode()[0]
         df['Embarked'].fillna(most common embarked, inplace=True)
         df.drop(['Cabin'],axis=1, inplace=True)
In [ ]:
         df.drop(['Ticket'],axis=1, inplace=True)
In [ ]:
        df.drop(['Name'],axis=1,inplace=True)
In [ ]:
In [ ]: | print(df.isnull().sum())
        PassengerId
                        0
                        0
        Survived
        Pclass
                        0
                        0
        Sex
                        0
        Age
        SibSp
                        0
        Parch
                        0
                        0
        Fare
         Embarked
        dtype: int64
```

4. Data Visualization

```
In [ ]: # Visualize the distribution of the 'Survived' column (0 = Not Survived, 1 = Surviv
sns.countplot(data=df, x='Survived')
plt.title('Survival Count')
plt.xlabel('Survived')
plt.ylabel('Count')
plt.show()
```

Survival Count


```
In []: #Visualize the distribution of the 'Age' column
    sns.histplot(data=df, x='Age', bins=20, kde=True)
    plt.title('Age Distribution')
    plt.xlabel('Age')
    plt.ylabel('Count')
    plt.show()
```


In []: #Visualize the distribution of the 'Fare' column and detect outliers we will handle
sns.boxplot(data=df, x='Fare')
plt.title('Fare Distribution')
plt.xlabel('Fare')
plt.show()

Fare Distribution


```
In []: #Pair plot for selected numerical columns
    sns.pairplot(data=df[['Fare', 'SibSp', 'Parch']])
    plt.title('Pair Plot')
    plt.show()
```



```
In [ ]: corr_matrix = df.corr()
    sns.heatmap(corr_matrix, annot=True,cmap='coolwarm')
    plt.title('Correlation Heatmap')
    plt.show()
```

<ipython-input-30-8dcbd071fff3>:1: FutureWarning: The default value of numeric_onl
y in DataFrame.corr is deprecated. In a future version, it will default to False.
Select only valid columns or specify the value of numeric_only to silence this war
ning.

corr_matrix = df.corr()

5. Detect and Handle Outliers

```
In [ ]:
        z scores = np.abs(stats.zscore(df['Age']))
         max threshold=3
         outliers = df['Age'][z_scores > max_threshold]
         # Print and visualize the outliers
         print("Outliers detected using Z-Score:")
         print(outliers)
        Outliers detected using Z-Score:
        96
               71.0
               70.5
        116
               71.0
        493
               80.0
        630
        672
               70.0
        745
               70.0
        851
               74.0
        Name: Age, dtype: float64
In [ ]:
        z scores = np.abs(stats.zscore(df['Fare']))
         max_threshold=3
         outliers = df['Fare'][z_scores > max_threshold]
         # Print and visualize the outliers
         print("Outliers detected using Z-Score:")
         print(outliers)
```

```
Outliers detected using Z-Score:
               263.0000
        88
               263.0000
        118
               247.5208
        258
               512.3292
        299
               247.5208
        311
               262.3750
        341
               263.0000
        377
               211.5000
        380
               227.5250
        438
               263.0000
        527
               221.7792
        557
               227.5250
        679
               512.3292
        689
               211.3375
        700
               227.5250
        716
               227.5250
        730
               211.3375
        737
               512.3292
        742
               262.3750
        779
               211.3375
        Name: Fare, dtype: float64
In [ ]: | column_name = 'Fare'
         # Calculate the first quartile (Q1) and third quartile (Q3)
         Q1 = df[column_name].quantile(0.25)
        Q3 = df[column_name].quantile(0.75)
         # Calculate the IQR
         IQR = Q3 - Q1
         # Define the lower and upper bounds for outliers
         lower_bound = Q1 - 1.5 * IQR
         upper_bound = Q3 + 1.5 * IQR
         # Filter rows with values outside the IQR bounds
         df_cleaned = df[(df[column_name] > lower_bound) & (df[column_name] < upper_bound)]</pre>
         # Display the original and cleaned DataFrame sizes
         print(f"Original DataFrame size: {df.shape}")
         print(f"Cleaned DataFrame size: {df_cleaned.shape}")
         df cleaned
        Original DataFrame size: (891, 9)
        Cleaned DataFrame size: (775, 9)
```

localhost:8888/nbconvert/html/Documents/smart internship AI ML/21BCE9462_SK_SOHEL_Assignment_3.ipynb?download=false

Out[

]:		PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	1	0	3	male	22.000000	1	0	7.2500	S
	2	3	1	3	female	26.000000	0	0	7.9250	S
	3	4	1	1	female	35.000000	1	0	53.1000	S
	4	5	0	3	male	35.000000	0	0	8.0500	S
	5	6	0	3	male	29.699118	0	0	8.4583	Q
	•••									
	886	887	0	2	male	27.000000	0	0	13.0000	S
	887	888	1	1	female	19.000000	0	0	30.0000	S
	888	889	0	3	female	29.699118	1	2	23.4500	S
	889	890	1	1	male	26.000000	0	0	30.0000	С
	890	891	0	3	male	32.000000	0	0	7.7500	Q

775 rows × 9 columns

```
In [ ]: sns.boxplot(df_cleaned)
Out[ ]: <Axes: >
```



```
In [ ]: df=df_cleaned
In [ ]: x=df.drop('Survived', axis=1)
y=df['Survived']
In [ ]: x.head()
```

Out[]:		Passengerld	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	1	3	male	22.000000	1	0	7.2500	S
	2	3	3	female	26.000000	0	0	7.9250	S
	3	4	1	female	35.000000	1	0	53.1000	S
	4	5	3	male	35.000000	0	0	8.0500	S
	5	6	3	male	29.699118	0	0	8.4583	Q

```
In []: y.head()
Out[]: 0     0
2     1
3     1
4     0
5     0
Name: Survived, dtype: int64
```

7. Perform Encoding

```
In [ ]:
          en = LabelEncoder()
          x['Sex'] = en.fit_transform(x['Sex'])
In [ ]:
         x.head()
             PassengerId Pclass Sex
                                           Age SibSp Parch
                                                                 Fare Embarked
Out[]:
          0
                                      22.000000
                                                                               S
                      1
                              3
                                                           0
                                                               7.2500
          2
                                      26.000000
                                                               7.9250
                                                                               S
          3
                      4
                              1
                                   0 35.000000
                                                              53.1000
                                                                               S
                                                           0
                                      35.000000
                                                               8.0500
                                                                               S
          5
                      6
                              3
                                      29.699118
                                                    0
                                                           0
                                                                              Q
                                                               8.4583
          x = pd.get_dummies(x,columns=['Embarked'])
In [ ]:
          x.head()
Out[]:
             PassengerId
                         Pclass
                                Sex
                                                SibSp Parch
                                                                       Embarked_C Embarked_Q Embarked
                                           Age
                                                                 Fare
          0
                      1
                              3
                                      22.000000
                                                               7.2500
                                                                                 0
                                                                                              0
          2
                              3
                                                                                              0
                      3
                                      26.000000
                                                    0
                                                           0
                                                               7.9250
          3
                      4
                              1
                                      35.000000
                                                              53.1000
                                                                                 0
                                                                                              0
                                                                                              0
                                      35.000000
                                                               8.0500
                                                                                 0
                      6
          5
                              3
                                                               8.4583
                                                                                 0
                                                                                              1
                                      29.699118
```

8. Feature Scaling

```
scale = StandardScaler()
         x[['Age', 'Fare']] = scale.fit_transform(x[['Age', 'Fare']])
         x.head()
In [ ]:
Out[]:
            PassengerId Pclass Sex
                                         Age SibSp Parch
                                                                Fare Embarked_C Embarked_Q Embar
         0
                      1
                             3
                                  1 -0.556219
                                                         0 -0.779117
                                                                               0
                                                                                            0
         2
                                 0 -0.243027
                                                         0 -0.729373
                                                                               0
                                                                                            0
         3
                      4
                             1
                                     0.461654
                                                            2.599828
                                                                               0
                                                         0 -0.720161
                                                                               0
                                     0.461654
                                                  0
         5
                             3
                                     0.046606
                                                         0 -0.690071
                                                                               0
                                                                                            1
                                                                                                  •
```

9. Splitting the data into Train and Test

```
In [ ]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_sta
In [ ]: print(x_train.shape)
    print(x_test.shape)
    print(y_train.shape)
    print(y_test.shape)

(620, 10)
    (155, 10)
    (620,)
    (155,)
```