One Wave To Explain Them All: A Unifying Perspective On Feature Attribution

Gabriel Kasmi [1,2], Amandine Brunetto [1], Thomas Fel [3], Jayneel Parekh [4] [1] Mines Paris - PSL University [2] RTE France [3] Kempner Institute, Harvard University [4] ISIR, Sorbonne Université, France

Background and Motivation

Feature attribution projects an explanation as a pixel-based heatmap.

Two main limitations:

- Ill-suited for **non-image modalities**
- Overlooks structural information of the input

Surprisingly, only a handful of works explored feature attribution in alternative domains than the input domain.

Multiscale decompositions

Contact: gabriel.kasmi@minesparis.psl.eu

Wavelets [1] decompose an input into structural components which are localized in space and scale. From an explainability perspective, one can view wavelet coefficients as low-level features.

Target Audio

Proposed approach

 $oldsymbol{\gamma}_{ ext{SG}}(oldsymbol{z}) = rac{1}{m} \sum_{oldsymbol{z}}^{n}
abla_{ ilde{oldsymbol{z}}} oldsymbol{f}(\mathcal{W}^{-1}(ilde{oldsymbol{z}}))$

Compute the gradients with respect to the wavelet coefficients of the input modality

2. Aggregate gradients

Path integration: highlights the inter-scale dependencies **Smoothing**: focuses on intra-scale importance

Project page

Audio

 $oldsymbol{\gamma}_{ ext{IG}} = (oldsymbol{z} - oldsymbol{z}_0) \cdot \int^1 rac{\partial oldsymbol{f}_c \left(\mathcal{W}^{-1} \left(oldsymbol{z}_0 + lpha (oldsymbol{z} - oldsymbol{z}_0)
ight)}{\Omega} \mathrm{d} lpha$

Interpretation audio spectrograms

Multiscale heatmap decomposition

Attribution **on voxels**

Interpretation Audio (Wavelet)

Reconstruction from **noisy** audio (also works for audio

Assessment of a model's robustness WAM highlights the **reliance** on frequency and therefore ranges bridges gap frequency-centric perspectives on

model robustness [2]

Scale (expressed as 2^j pixels in the frequency spectrum)

(The smaller the scale, the higher the frequency)

Importance of the Frequency Components

[1] Mallat, S. (1999). A wavelet tour of signal

[2] Chen, Y., Ren, Q., & Yan, J. (2022). Rethinking and Improving Robustness of Convolutional Neural Networks: a Shapley Value-Based Approach in Frequency Domain. Advances in neural information processing systems, 35, 324-337.

Emphasis on key audio parts

Identification of **minimal images**

Decomposition across scales

WAM performs consistently across a wide range of **metrics**, **model** topologies and in additional evaluation settings. It passes the randomization check.

200		Audio Model ResNet Dataset ESC-50			Images EfficientNet ImageNet			Volumes 3D Former AdrenalMNIST3D		
•										
		Ins (†)	Del (↓)	Faith (†)	Ins(†)	Del (↓)	Faith (†)	Ins (†)	Del (↓)	Faith (†)
	Integrated Gradients	0.267	0.047	0.264	0.113	0.113	0.000	0.666	0.743	-0.077
	SmoothGrad	0.251	0.067	0.184	0.129	0.119	0.010	0.680	0.731	-0.051
	GradCAM	0.274	0.201	0.072	0.364	0.303	0.061	0.689	0.744	-0.055
	Saliency	0.220	0.154	0.066	0.148	0.140	0.008	0.751	0.742	0.009
	WAM_{IG} (ours)	0.436	0.260	0.176	0.447	0.049	0.370	0.719	0.621	0.098
	WAM_{SG} (ours)	0.449	0.252	0.197	<u>0.419</u>	0.097	0.350	<u>0.718</u>	0.648	<u>0.070</u>

components.

Meaningful perturbations

meets the wavelet domain

biases

Extract the **most important**

components (and not only

location) to highlight texture

Fine scales

Intermediate scales

Vanilla ResNet

ADV-Free

ADV-Fast

ADV

Coarse scales

Applications

overlaps) processing. Elsevier.