Sprawozdanie

Projekt specjalnościowy ARR

Modelowanie obiektu manipulatora 2R (EDDA)

Marcin Bober, 249426

Prowadzący: Dr inż. Mirela Kaczmarek

Katedra Cybernetyki i Robotyki Wydziału Elektroniki, Fotoniki i Mikrosystemów Politechniki Wrocławskiej

Spis treści

1	Cel ćwiczenia		
2 Algorytm Qui Dorsey'a			
	2.1 Opis		
	2.2 Wyniki		
	2.3 Wnioski		
3	11.8017 0111 0111100117 111100117		
	3.1 Opis		
	3.2 Zależność od nastaw KP		
	3.3 Zależność od nastaw KD		
	3.4 Zależność od wartości początkowej		
	3.5 Wnioski		
1	Podsumowanie		

1 Cel ćwiczenia

Celem ćwiczenia jest zbadanie zachowania dwóch algorytmów sterowania sprzężonych z manipulatorem 2R. Mają one zrealizować zadanie śledzenia zadanej trajektorii.

2 Algorytm Qui Dorsey'a

2.1 Opis

Algorytm Qui Dorsey'a jest algorytmem globalnym. Jego zasada działania jest tożsama z działaniem liniowego regulatora PD. Z powodu liniowej natury algorytmu i nieliniowego charakteru obiektu, sterowanie obiektem nie będzie proste. W celu zbadania właściwości nastaw regulatora na błąd śledzenia trajektorii (uchyb) został przeprowadzony szereg symulacji. Przetestowane nastawy wraz z rzędem błędu sterowania zostały podane w tabeli 1.

2.2 Wyniki

W tabeli 1 znajduje się zestaw sześciu par nastaw dla KP i KD regulatora. W kolejnych kolumnach został umieszczony rząd błędu sterowania odpowiadający podany parametrom.

P	D	e_1	e_2
10	1	10^{-1}	10^{-1}
100	10	10^{-1}	10^{-2}
1000	100	10^{-2}	10^{-3}
10000	1000	10^{-3}	10^{-4}
100000	10000	10^{-4}	10^{-5}
1000000	100000	10^{-5}	10^{-6}
10000000	1000000	10^{-6}	10^{-7}

Tabela 1: Nastawy PD i odpowiadający im rząd błędu

Dziesięciokrotny wzrost wzmocnienia skutkuje dziesięciokrotnym spadkiem błędu. Błędy drugiego przegubu są niższe niż dla pierwszego. Dla nastaw dążących do nieskończoności, błąd śledzenia zmierza do zera.

Rysunek 1: KP = 10, KD = 1

Niewielkie nastawy sprawiają że obiekt ma znaczne problemy ze śledzeniem zadanej trajektorii. Błąd śledzenia dla KP = 10 i KD = 1 w zależności do czasu został zaprezentowany na rysunku 1.

Rysunek 2: KP = 100, KD = 10

Konsekwentne zwiększanie nastaw regulatora przynosi wymierne efekty w postaci malejącego błędu. Można je zaobserwować porównująć wykresy 3 oraz 4.

Rysunek 3: KP = 1000, KD = 100

Rysunek 4: KP = 10000, KD = 1000

Pomimo malejącego błedu należy zaznaczyć że uzyskane przbiegi w każdej iteracji posiadają charakter niegasnących oscylacji.

Rysunek 5: KP = 100000, KD = 10000

Rysunek 6: KP = 1000000, KD = 100000

Stosowanie coraz to większych parametrów regulatora PD powoduje znaczący wzrost złożoności obliczeniowej.

2.3 Wnioski

Symulacje wykazały że algorytm realizuje cel minimalizacji błędu śledzenia dokładnej w przypadku zastosowania większych nastaw. Jednakże osiągnięcie zerowego błędu nie jest możliwe ponieważ wymagałoby ono nieskończonej wartości nastaw. W każdym zbadanym przypadku przebiegi błędów mają charakter niegasnących oscylacji.

3 Algorytm dokładnej linearyzacji

3.1 Opis

Algorym dokładnej linearyzacji może być zastosowany jedynie dla obiektów z pełni znanych. Pierwszym etapem jest przeprowadzenie linearyzacji statycznej w celu otrzymania układu liniowego podówjego integratora.

3.2 Zależność od nastaw KP

Symulacje przeprowadzono przy stałym wzmocnieniu KD wynoszącym 1 oraz zmianie parametru KP według tabeli 2.

Rysunek 7: stałe KD = 1, zmienne KP

KP	Przesterowanie e_1 [rad]	Przesterowanie e_2 [rad]
1	0.16	0.33
10	1.08	21.36
20	1.66	49.91

Tabela 2: Przesterowanie przebiegów w zależności od KP

KP	Czas wygaszania e_1 [s]	Czas wygaszania e_2 [s]
1	8	7
10	15	13
20	20	15

Tabela 3: Czas wygaszania prebiegów w zależności od KP

Na wykresach 7 zaobserwowano znaczny wzrost przesterowania oraz czasu wygaszania wraz ze wzrostem wzmocnienia KP.

3.3 Zależność od nastaw KD

Symulacje przeprowadzono przy stałym wzmocnieniu KP wynoszącym 1 oraz zmianie parametru KD według tabeli 3.

Rysunek 8: stałe KP = 1, zmienne KD

- 3.4 Zależność od wartości początkowej
- 3.5 Wnioski
- 4 Podsumowanie