통계학 (강좌) 기말고사 (16:00~18:00)

※ 답안지에 소속, 학번, 이름을 빠짐없이 기록하였는지 확인 후, 다음 물음에 대한 정답을 반드시 풀이 과정과 함께 잘 정리하여 제출하세요. 부정행위 (계산기 부정사용 포함) 적발 시 즉시 퇴실 조치할 것입니다.

- * 적절한 풀이과정이 없는 경우에는 정답으로 인정하지 않습니다.
- ※ 소수점 셋째자리까지 쓰세요.
- 1. (총 10점, 각 2점) 다음 명제에 대하여 맞으면 O, 틀리면 X로 답하시오.
- (1) 확률변수 e_i (i=1,...,n)가 정규 모집단의 랜덤표본일 때 확률변수 $\sum_{i=1}^n e_i$ 은 정규분포를 따른다.
- (2) Cov(Y,X)=0 또는 Cor(Y,X)=0이면, Y와 X사이에 아무런 관계가 없다고 결론 지을 수 있다.
- (3) 동일한 자료와 동일한 귀무가설 하에서 유의확률은 대립가설의 형태에 따라 달라진다.
- (4) 회귀분석의 잔차 제곱합(SSE)은 오차분산에 대한 불편 추정량이다.
- (5) 모평균에 대한 95% 신뢰구간을 구했을 때, 신뢰구간이 모평균 μ_0 를 포함한다면 유의수준 5% 의 양측 검정에서 귀무가설 $H_0: \mu = \mu_0$ 를 기각할 수 없다.

(풀이) (1) O (2) X (3) O (4) X (5) O

2. (총 17점) 다음의 절편이 없는 단순 선형 회귀모형에 대하여 다음을 답하여라.

$$Y_i = \beta x_i + e_i$$
, iid
 $e_i \sim (0, \sigma^2), i = 1, \dots, n.$

(1) (4점) 최소제곱법에 의한 모수 eta에 대한 추정량(LSE) \hat{eta} 를 구하시오.

$$(\Xi\circ])$$
 $\hat{\beta} = \operatorname{argmin}_{\beta} \sum_{i=1}^{n} (Y_i - \beta x_i)^2$

Let
$$S = \sum_{i=1}^{n} (Y_i - \beta x_i)^2$$
.

$$\Rightarrow \hat{\beta} : \frac{\partial S}{\partial \beta} = -2\sum_{i=1}^{n} x_i (Y_i - \hat{\beta} x_i) = 0 \Rightarrow \hat{\beta} = \frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^2}$$

(2) (4점) 최소제곱 추정량 $\hat{\beta}$ 에 대하여 $E(\hat{\beta})$, $Var(\hat{\beta})$ 를 구하시오.

$$\begin{split} &(\stackrel{\underline{\underline{\pi}}}{\underline{\underline{\sigma}}} \circ]) \implies \hat{\beta} = \frac{\displaystyle\sum_{i=1}^n x_i Y_i}{\displaystyle\sum_{i=1}^n x_i^2} = \displaystyle\sum_{i=1}^n \frac{x_i}{\displaystyle\sum x_i^2} Y_i \\ \implies &E(\hat{\beta}) = \displaystyle\sum_{i=1}^n E\left(\frac{x_i}{\displaystyle\sum x_j^2} Y_i\right) = \displaystyle\sum_{i=1}^n \left(\frac{x_i}{\displaystyle\sum x_j^2}\right) E(Y_i) = \displaystyle\sum_{i=1}^n \left(\frac{x_i}{\displaystyle\sum x_j^2}\right) (\beta x_i) = \beta \displaystyle\sum_{i=1}^n \left(\frac{x_i^2}{\displaystyle\sum x_j^2}\right) = \beta \displaystyle\frac{\displaystyle\sum x_i^2}{\displaystyle\sum x_j^2} = \beta \end{split}$$

$$Var(\hat{\beta}) = \displaystyle\sum_{i=1}^n Var\left(\frac{x_i}{\displaystyle\sum x_i^2} Y_i\right) = \displaystyle\sum_{i=1}^n \left(\frac{x_i^2}{\displaystyle(\sum x_i^2)^2}\right) Var(Y_i) = \sigma^2 \displaystyle\frac{\displaystyle\sum x_i^2}{\displaystyle(\sum x_i^2)^2} = \frac{\sigma^2}{\displaystyle\sum x_i^2} \end{split}$$

(3) (9점) 최소제곱법에 의해 얻어진 잔차 $\hat{e_i} = Y_i - \hat{Y_i}$ 에 대하여, $Var(\hat{e_i}) = \left(1 - \frac{x_i^2}{\sum_j x_j^2}\right) \sigma^2$ 임을 보이시오.

$$\begin{split} (\stackrel{\Xi}{\stackrel{\triangle}{=}} \circ)) \quad Var(\hat{Y}_i) &= Var(\hat{\beta} x_i) = Var \Biggl(\sum_{k=1}^n \Biggl(\frac{x_i x_k}{\sum_j x_j^2} \Biggr) Y_k \Biggr) \\ &= \sum_{k=1}^n \Biggl(\frac{x_i x_k}{\sum_j x_j^2} \Biggr)^2 Var(Y_k) = x_i^2 \frac{\sum_k x_k^2}{(\sum_j x_j^2)^2} \sigma^2 = \frac{x_i^2}{\sum_j x_j^2} \sigma^2 \\ &Cov(Y_i, \hat{Y}_i) = Cov(Y_i, \hat{\beta} x_i) = Cov \Biggl(Y_i, \sum_{k=1}^n \Biggl(\frac{x_i x_k}{\sum_j x_j^2} \Biggr) Y_k \Biggr) \\ &= Cov \Biggl(Y_i, \frac{x_i^2}{\sum_j x_j^2} Y_i \Biggr) = \frac{x_i^2}{\sum_j x_j^2} Cov(Y_i, Y_i) = \frac{x_i^2}{\sum_j x_j^2} \sigma^2 \\ &Var(\hat{e}_i) = Var(Y_i - \hat{Y}_i) = Var(Y_i) - 2Cov(Y_i, \hat{Y}_i) + Var(\hat{Y}_i) \\ &= \sigma^2 - 2 \frac{x_i^2}{\sum_j x_j^2} \sigma^2 + \frac{x_i^2}{\sum_j x_j^2} \sigma^2 = \Biggl(1 - \frac{x_i^2}{\sum_j x_j^2} \Biggr) \sigma^2 \end{split}$$

- 3. (총 10점) n개의 자료 $(x_1,y_1), \dots, (x_n,y_n)$ 을 이용하여 최소제곱회귀직선 $\hat{y}=\hat{\alpha_1}+\hat{\beta_1}x$ 를 구하였다. 이들 n개 자료의 표본평균을 (\bar{x}_n,\bar{y}_n) 이라 하자. 이들 n개의 자료에 추가로 관측된 n+1번째 자료 (x_{n+1},y_{n+1}) 를 포함하여 새롭게 최소제곱회귀직선을 추정하여 $\hat{y}=\hat{\alpha_2}+\hat{\beta_2}x$ 를 구하였다. 다음 물음에 답하시오.
- (1) (5점) n+1번째 자료의 설명변수 x_{n+1} 이 n번째 자료까지의 표본평균 x_n 와 일치 $(x_{n+1}=x_n)$ 할 때 $\hat{\beta}_1=\hat{\beta}_2$ 임을 보이시오.
- (풀이) n+1개 자료의 표본평균을 $(\overline{x_{n+1}},\,\overline{y_{n+1}})$ 이라 하자. $x_{n+1}=\overline{x_n} \text{ 이므로 } \overline{x_{n+1}}=\overline{x_n} \text{ 이다.}$

따라서
$$\sum_{i=1}^{n+1}(x_i-\overline{x_{n+1}})^2=\sum_{i=1}^n(x_i-\overline{x_n})^2+(x_{n+1}-\overline{x_n})^2=\sum_{i=1}^n(x_i-\overline{x_n})^2\circ |\overline{x}|,$$

$$\sum_{i=1}^{n+1}(x_i-\overline{x_{n+1}})(y_i-\overline{y_{n+1}})=\sum_{i=1}^n(x_i-\overline{x_n})(y_i-\overline{y_{n+1}})+(x_{n+1}-\overline{x_n})(y_{n+1}-\overline{y_{n+1}})$$

$$=\sum_{i=1}^n(x_i-\overline{x_n})(y_i-\overline{y_n}+\overline{y_n}-\overline{y_{n+1}})=\sum_{i=1}^n(x_i-\overline{x_n})(y_i-\overline{y_n})+(\overline{y_n}-\overline{y_{n+1}})\sum_{i=1}^n(x_i-\overline{x_n})=\sum_{i=1}^n(x_i-\overline{x_n})(y_i-\overline{y_n})\circ |\overline{x}|$$

$$\therefore \hat{\beta}_{2} = \frac{\sum_{i=1}^{n+1} (x_{i} - \overline{x_{n+1}})(y_{i} - \overline{y_{n+1}})}{\sum_{i=1}^{n+1} (x_{i} - \overline{x_{n+1}})^{2}} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x_{n}})(y_{i} - \overline{y_{n}})}{\sum_{i=1}^{n} (x_{i} - \overline{x_{n}})^{2}} = \hat{\beta}_{1}$$

- (2) (5점) n+1번째 자료의 설명변수 x_{n+1} 이 n번째 자료까지의 표본평균 x_n 와 일치 $(x_{n+1}=x_n)$ 하고 n+1번째 반응변수의 관측값 y_{n+1} 이 n번째 자료까지의 표본평균 y_n 와 일치 $(y_{n+1}=y_n)$ 할 때 $\hat{\alpha}_1=\hat{\alpha}_2$ 임을 보이시오.
- (풀이) α 의 최소제곱추정량 $\hat{\alpha} = y \hat{\beta} \overline{x}$ 이다. n+1번째 자료의 설명변수 x_{n+1} 이 n번째 자료까지의 표본평균 \overline{x}_n 와 일치 $(x_{n+1} = \overline{x}_n)$ 할 때, $\hat{\beta}_1 = \hat{\beta}_2$ 임을 보였으므로 $\hat{\alpha}_2 = \overline{y}_{n+1} \hat{\beta}_2 \overline{x}_{n+1} = \overline{y}_{n+1} \hat{\beta}_1 \overline{x}_{n+1}$ 임을 알 수 있다. 또, (1)에서와 마찬가지로 $x_{n+1} = \overline{x}_n$, $y_{n+1} = \overline{y}_n$ 이므로 $\overline{x}_{n+1} = \overline{x}_n$, $\overline{y}_{n+1} = y_n$ 이므로 $\hat{\alpha}_0 = \overline{y}_{n+1} - \hat{\beta}_1 \overline{y}_{n+1} = y_n$ 이므로
- 4. (총 10점) 식품회사가 두 가지 종류의 새로운 통조림을 개발하였다. 두 가지 통조림에 대한 선호도가 지역적으로 차이가 있는지를 알아보기 위하여 A지역에서 160명, B지역에서 140명을 랜덤하게 추출하여 선호도를 조사한 결과 다음과 같다.

	참치 통조림 고등어 통조				
A 지역	95	65			
B 지역	81	59			

- (1) (5점) 두 지역에서 참치통조림에 대한 선호도가 다르다고 할 수 있는지 두 모집단의 비율 검정(Z-검정 통계량 이용)을 이용하여 유의수준 5%에서 검정하여라.
- (풀이) p_1 을 A지역에서의 참치 통조림 선호비율이라 하고 p_2 를 B지역에서의 참치 통조림 선호비율이라고 하면 검정하고자 하는 가설은 다음과 같다.

$$H_0: p_1 = p_2 \ vs \ H_1: p_1 \neq p_2$$

 $\hat{p_1}$ =95/160=0.594, $\hat{p_2}$ =81/140=0.579, \hat{p} =(95+81)/(160+140)=0.587 이므로 귀무가설 하에서 $n_1\hat{p}\geq 5,\; n_1(1-\hat{p})\geq 5,\; n_2\hat{p}\geq 5,\; n_2(1-\hat{p})\geq 5$ 의 조건을 만족하고 검정통계량의

관측값은 다음과 같다.

$$\frac{\hat{p_1} - \hat{p_2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \approx 0.2632$$

유의수준 5%에서 기각역은 $|Z| \ge z_{0.025} = 1.96$ 이므로 귀무가설을 기각할 수 없다. 따라서 지역에 따른 참치 통조림의 선호도는 다르다고 말할 수 없다.

(2) (5점) 두 지역에서 참치통조림에 대한 선호도가 다르다고 할 수 있는지 카이제곱 통계량을 이용하여 검정하고, (1)번 결과와 비교하여라.

(풀이)

 H_0 : 두 지역의 참치 통조림에 대한 선호도는 동일하다 Vs H_1 :Not H_0

귀무가설 하에서 검정통계량은 다음과 같다.

$$\sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} \sim \chi^{2}(1)$$

검정통계량의 관측값은

$$\chi^{2} = \frac{(95 - 93.867)^{2}}{93.867} + \frac{(65 - 66.133)^{2}}{66.133} + \frac{(81 - 82.133)^{2}}{82.133} + \frac{(59 - 57.867)^{2}}{57.867}$$

$$= 0.071$$

이고 유의수준 5%에서 기각역은 $\chi^2 \ge \chi^2_{005} = 3.84$ 이므로 귀무가설을 기각할 수 없다. (1)번의 결과와 동일한 결론을 내릴 수 있다.

5. (총 10점) 전구생산업체인 A회사는 기존 제품에 비해 평균 수명이 2배 넘게 늘어난 새로운 전구를 개발하였다고 광고하고 있다. 이 회사의 주장이 타당한지 검증하기 위해 각각 11개씩의 전구를 랜덤추출한 후 수명을 측정하여 아래 표와 같은 결과를 얻었다.

번호	1	2	3	4	5	6	7	8	9	10	11	평균
기존전구의 수명(X_i)	3	5	6	4	4	4	3	3	5	4	3	4
새전구의 수명(Y_i)	11	12	12	9	7	9	11	13	9	7	10	10

 X_i 와 Y_i 들이 각각 서로 독립이고 평균이 μ_1 , μ_2 , 분산이 σ^2 , $4\sigma^2$ 인 정규분포를 따른다고 가정할 때 가설 $H_0: \mu_2 = 2\mu_1$ vs $H_1: \mu_2 > 2\mu_1$ 을 검정하려 한다. 아래 물음에 답하시오.

(1) (5점) σ^2 이 알려져 있다고 가정할 때 이 가설은 $\overline{Y}-2\overline{X}$ 의 분포를 이용하여 검정할 수 있다. 귀무가설 하에서 $\overline{Y}-2\overline{X}$ 의 분포를 구하시오. (풀이과정을 명시하고 μ_1 , μ_2 , σ^2 을 이용하여 나타내시오.)

(풀이)
$$\overline{X} \sim N(\mu_1, \ \sigma^2/n_1)$$
, $\overline{Y} \sim N(\mu_2, \ 4\sigma^2/n_2)$ 이고 서로 독립이므로
$$\overline{Y} - 2\overline{X} \sim N(\mu_2 - 2\mu_1, \ 4\sigma^2/n_1 + 4\sigma^2/n_2)$$
 이다.

귀무가설 하에서 $\mu_2 - 2\mu_1 = 0$ 이므로 $\overline{Y} - 2\overline{X} \sim N(0, 4\sigma^2/n_1 + 4\sigma^2/n_2)$.

(2) (5점) $\sigma^2 = 1.1$ 이라는 사실이 알려져 있는 경우, 유의수준 $\alpha = 0.05$ 에서 가설을 검정하시오.

검정통계량
$$Z = \frac{(\overline{Y} - 2\overline{X}) - (\mu_2 - 2\mu_1)}{\sqrt{4\sigma^2/n_1 + 4\sigma^2/n_2}}.$$

귀무가설 하에서 $\mu_2 - 2\mu_1 = 0$ 이므로

$$Z \! = \! \frac{(\overline{Y} \! - \! 2\overline{X}) \! - \! (\mu_2 \! - \! 2\mu_1)}{\sqrt{4\sigma^2/n_1 \! + \! 4\sigma^2/n_2}} \! = \! \frac{\overline{Y} \! - \! 2\overline{X}}{\sqrt{4\sigma^2/n_1 \! + \! 4\sigma^2/n_2}} \sim N(0,1) \text{ ord.}$$

$$n_1 = n_2 = 11$$
, $\sigma^2 = 1.1$, $y = 10$, $x = 4$ 을 대입하면

$$Z=rac{\sqrt{5}}{2}(10-2 imes4)=\sqrt{5}$$
이고 유의수준 5%에서 기각역은 $z>z_{005}=1.645$ 이므로

검정통계량은 기각역안에 속한다. 따라서 귀무가설을 기각한다.

(또는 p-value=0.0127이므로 귀무가설을 기각한다.)

즉, 새로운 전구의 수명이 기존 전구에 비해 두 배 넘게 늘어났다고 할 수 있다.

6. (총 28점) A 마트에서는 빵을 판매하고 있다. 빵을 전시하는 면적과 전시된 선반의 높이가 빵의 매출에 영향을 줄 수 있을 것이라 판단하였다. 전시면적(대,소)과 선반높이(상,중,하)를 달리 하며 총 6가지의 경우에서, 하루 동안 판매된 빵의 개수를 두 번씩 반복하여 관측하였다.

전시면적 선반높이	대	소
상	30 28	31 35
중	57 51	56 60
ठं}	36 32	35 29

(1) (3점) 이 자료에 대한 적절한 분산분석 모형을 제시하고 그에 따른 가정사항을 기술하시오.

(풀이) (모형) 반복이 있는 이원배치 모형

$$Y_{ijk} = \mu + \alpha_{\!\!i} + \beta_{\!\!j} + \gamma_{\!\!ij} + \epsilon_{ijk} \,, \qquad i \!=\! 1, 2 \,, \ j \!=\! 1, \!2, \!3 \;, \ k \!=\! 1, 2.$$

μ : 총모평균

 $lpha_i$: 전시면적의 i번째 수준의 효과로서 $\sum \! lpha_i = 0$

 eta_j : 선반높이의 j번째 수준의 효과로서 $\sum eta_j = 0$

 γ_{ii} : 전시면적의 i 번째 수준과 선반높이의 j 번째 수준의 교호작용

$$\sum_{i} \gamma_{ij} = \sum_{i} \gamma_{ij} = 0$$

 ϵ_{iik} : 오차항으로 서로 독립인 $N(0,\sigma^2)$ 확률변수

(2) (15점) 분산분석표를 작성하고 (10점). (1)의 모형에서 교호작용의 유의성을 유의수준 5% 에서 검정하여라.

(풀이) 인자 A를 선반의 높이, 인자 B를 전시 면적이라고 하면 다음과 같이 계산하다.

$$p=2, \ q=3, \ r=2, \ SS_A = qr \sum_{i=1}^p (y_i \dots - y_i)^2, \ SS_B = pr \sum_{j=1}^q (y_j \dots - y_j)^2,$$

$$SS_{A \times B} = r \sum_{i=1}^p \sum_{j=1}^q (y_{ij} \dots - y_{i} \dots - y_{ij} \dots + y_{ij})^2, \ SSE = \sum_{i=1}^p \sum_{j=1}^q \sum_{k=1}^r (y_{ijk} - y_{ij})^2,$$

$$SST = SS_A + SS_B + SS_{A \times B} + SSE, \ MS_A = \frac{SS_A}{p-1}, \ MS_B = \frac{SS_B}{q-1},$$

$$MS_{A \times B} = \frac{SS_{A \times B}}{(p-1)(r-1)}, \ MSE = \frac{SSE}{pq(r-1)}, \ f_1 = \frac{MS_A}{MSE}, \ f_2 = \frac{MS_B}{MSE},$$

$$f_3 = \frac{MS_{A \times B}}{MSE}$$

요인	제곱합	자유도	평균제곱	F값	기각역
인자 A	12	1	12	1.162	$f_1 \ge F_{0.05}(1.6) = 5.9874$
인자 B	1544	2	772	74.71	$f_2 \ge F_{0.05}(2.6) = 5.1433$
교호작용	24	2	12	1.162	$f_3 \ge F_{0.05}(2.6) = 5.1433$
잔차	62	6	10.333		
계	1642	11			

분산분석표를 이용한 가설 검정의 절차는 다음과 같다.

가설1 (교호작용의 영향) : $H_0: \gamma_{ij} = 0$ for i=1,2,j=1,2,3 vs $H_1:$ Not H_0

: 검정통계량의 값은 1.162이고 기각역은 $F \ge F_{0.05}(2,6) = 5.1433$ 이므로 귀무가설을 기각할 수 없다. 따라서 두 인자에 대한 교호작용은 존재하지 않는다고 말할 수 있다.

(3) (10점) (2)의 검정 결과에 따라 설정하게 되는 새로운 모형을 나타내고 (2점), 그 모형에서 의 새로운 분산분석표를 작성하시오 (5점). 작성된 분산분석표를 이용하여 적절한 가설을 제시 하고 유의수준 5%에서 검정하여라 (3점).

(풀이)

새로운 모형: (2)의 결과로부터 교호작용이 없는 다음 모형을 적용할 수 있다.

$$y_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}, i = 1, 2, j = 1, 2, 3, k = 1, 2, 3$$

 $\epsilon_{ijk} \sim N(0, \sigma^2)$ 이고 서로 독립

$$\sum_{i=1}^{2} \alpha_i = 0, \sum_{j=1}^{3} \beta_j = 0$$

분산분석표 : 새롭게 설정된 모형에서 인자들의 유의성 검정을 위한 분산분석표의 값들은

앞의 (2)의 표에서 <u>교호작용의 제곱합과 잔차의 제곱합을 합하여</u> 새로운 모형에서 잔차의 제곱합을 구하여 위와 같이 구할 수 있다.

요인	제곱합	자유도	평균제곱	Fa]	기각역
인자 A	12	1	12	1.1162	$f_1 \ge F_{0.05}(1,8) = 5.318$
인자 B	1544	2	772	71.8139	$f_2 \ge F_{0.05}(2,8) = 4.459$
잔차	86	8	10.75		
계	1642	11			

가설2(전시면적의 영향) : H_0 : $\alpha_1 = \alpha_2 = 0$ vs H_1 : Not H_0

: 검정통계량의 값은 1.1162 이고 기각역은 $f_1 \geq F_{0.05}(1,8) = 5.318$ 이므로 귀무가설을 기각할 수 없다. 따라서 전시면적에 따른 효과는 존재하지 않는다.

가설3(선반높이의 영향) : $H_0: \beta_1 = \beta_2 = \beta_3 = 0$ vs $H_1: Not H_0$

: 검정통계량의 값은 71.8139이고 기각역은 $f_2 \ge F_{0.05}(2.8) = 4.459$ 이므로 귀무가설을 기각할 수 있다. 따라서 선반 높이에 따른 효과는 존재한다.

7. (총 25점) A업체는 기능공들의 작업 속도를 향상시키기 위해 새로운 연수 프로그램을 개발하였다. 숙련도가 유사한 8명의 기능공를 랜덤추출하여 연수를 받도록 한 후 작업시간을 측정하여 다음과 같은 결과를 얻었다.

기능공	А	В	С	D	Е	F	G	Н	평균
작업시간(분)	9	10	6	10	8	9	15	13	10

- (1) (5점) 연수를 받은 기능공들의 작업시간의 기댓값(모평균 μ)을 추정하려 한다. <u>적절한 가정</u>을 기술하고 μ 에 대한 95% 신뢰구간을 구하시오.
- (풀이) 가정: 각 기능공들의 작업시간은 서로 독립이고 평균 (μ) 과 분산 (σ^2) 이 동일한 정규분포를 따른다. $(Y_i \sim N(\mu, \sigma^2) \ iid)$

 $Y_i \sim N(\mu,\sigma^2)$ $\ddot{u}d$ 이므로 $\overline{Y} \sim N(\mu,\sigma^2/n)$ 이고,

모분산(σ^2)을 모르므로 모분산의 추정치 $s^2=\frac{1}{n-1}\sum(y_i-\bar{y})^2$ 을 사용하면 $t=\frac{\bar{y}-\mu}{s/\sqrt{n}}\sim t(n-1)$ 임을 알 수 있다.

자료의 관측값 y=10, $\sum y_i^2=856$ 이므로 $s^2=8$ 이고 $t=10-\mu\sim t(7)$ 이다. 따라서 μ 에 대한 95% 신뢰구간은 $x\pm t_{0.025}(7)=10\pm 2\cdot 365=(7\cdot 635\cdot 12\cdot 365)$ 이다. (2) (10점) 연수프로그램 개발자는 기능공들의 연수 프로그램 이수 시간이 아래 표와 같이 차이가 있으며 연수 프로그램 이수시간과 작업시간 사이에는 유의한 선형관계가 있다고 주장하고 있다. 연수프로그램 개발자의 주장을 <u>수식으로 표현</u>하고 <u>적절한 가정</u>을 서술한 후 이 주장이 타당한지 유의수준 5%에서 *F* 분포를 이용하여 검정하시오.

기능공	А	В	С	D	Е	F	G	Н	평균
연수시간(x_i ,시간)	13	9	20	6	16	11	1	4	10
작업시간(Y_i ,분)	9	10	6	10	8	9	15	13	10

(필요한 경우
$$\sum x_i^2 = 1080$$
, $\sum y_i^2 = 856$, $\sum x_i y_i = 681$ 을 이용하시오.)

(풀이) 선형모형: $Y_i = \alpha + \beta x_i + e_i$

가정: $e_i \sim N(0,\sigma^2)$ (오차항이 서로 독립이고 평균 0, 분산 σ^2 인 정규분포를 따른다)

가설: $H_0:\beta=0$ vs $H_1:\beta\neq 0$

검정:
$$SST = \sum (y_i - \bar{y})^2 = \sum y_i^2 - n\bar{y}^2 = 856 - 800 = 56$$

$$SSR = S_{(xy)}^2 / S_{(xx)} = (\sum x_i y_i - n\bar{x}\bar{y})^2 / (\sum x_i^2 - n\bar{x}^2) = 50.575$$
이므로
$$SSE = SST - SSR = 5.425$$
임을 알 수 있다.

분산분석표를 작성하면 (분산분석표는 반드시 작성하지 않아도 됩니다)

요인	제곱합	자유도	평균제곱합	F값
회귀	SSR=50.575	1	MSR=50.575	f=55.935
잔차	SSE=5.425	8-2=6	MSE=5.425/6=0.904	1=55.935
	SST=56	8-1=7		

기각역 : $F > F_{0.05}(1,6) = 5.987$ 이므로 검정통계량은 기각역 안에 속한다. 따라서 귀무가설을 기각한다. 즉, 연수개발자의 주장이 타당하다.

- (3) (5점) 연수시간이 1시간 늘어나면 작업시간은 β 분 변한다고 할 때 β 의 95% 신뢰구간을 구하시오.
- (풀이) 문제에서 β 는 모회귀계수 중 기울기에 해당함을 알 수 있다.

오차항의 정규성을 가정하면 $\hat{eta} \sim N(eta, \sigma^2/S_{(xx)})$ 이고

$$S_{(xx)} = \sum x_i^2 - n\overline{x^2} = 1080 - 800 = 280$$
, σ^2 의 추정치는 MSE 이므로
$$t = \frac{\hat{\beta} - \beta}{\sqrt{MSE/S_{(xx)}}} \sim t(6)$$
이다.

따라서 95% 신뢰구간은 $\beta = -0.425 \pm t_{0.025}(6) \sqrt{MSE/S_{(xx)}}$ 이고

관측값 $\hat{\beta}=S_{(xy)}/S_{(xx)}=-119/280=-17/40=-0.425$

MSE=5.425/6, $S_{(rr)}$ =280을 대입하면

신뢰구간은 $-0.425\pm2.447*0.057=-0.425\pm0.139=(-0.564,-0.286)$ 이다.

- (4) (5점) 10시간 연수를 받은 기능공의 평균작업시간($E[Y|x=10]=\alpha+10\beta$)이 11분보다 짧다고 할 수 있는지($H_0:\alpha+10\beta=11$ vs $H_1:\alpha+10\beta<11$) 유의수준 5%에서 검정하시오.
- (풀이) x시간 연수를 받은 기능공의 평균작업시간은 $\hat{y} = \hat{\alpha} + \hat{\beta}x$ 로 추정되고

$$\hat{y} = \hat{\alpha} + \hat{\beta}x \sim N \left(\alpha + \beta x, \sigma^2 \left(\frac{1}{n} + \frac{(x - \bar{x})^2}{S_{(xx)}} \right) \right) \circ] \, \vec{y}$$

x=10일 때는 $\hat{y}=\hat{\alpha}+10\hat{\beta}\sim N(\alpha+\beta x,\frac{\sigma^2}{n})$ 임을 알 수 있다.

 σ^2 대신 추정치 $\hat{\sigma^2}=MSE$ 를 사용하면 귀무가설 $H_0: \alpha+10\beta=11$ 이 참일 때 $t=\frac{(\hat{\alpha}+10\hat{\beta})-11}{\sqrt{MSE/8}}\sim t(6)$ 이다.

 $\hat{y}=14\cdot25-0\cdot425x$ 이므로 x=10일 때 $\hat{y}=\hat{\alpha}+10\hat{\beta}=10$ 이다. 따라서 귀무가설 $\mu_0=11$ 하에서 검정통계량 $t=\frac{10-11}{\sqrt{MSE/8}}=\frac{-\sqrt{8}}{\sqrt{MSE}}=-2.974 < t_{0.95}(6)=-1.943$ 이 되어 귀무가설을 기각한다. 즉, 작업시간이 11분보다 짧다고 말할 수 있다.

8. (총 10점) 다음은 단순선형회귀모형을 적합시켜 구한 잔차의 산점도이다. 그림을 이용하여 아래 물음에 답하시오.

(1) (5점) 단순 선형 회귀모형을 적합하기 위해 필요한 오차항의 세 가지 가정을 기술하시오. (풀이) ① 선형성 : 오차항 e_i $(i=1,\cdots n)$ 들의 평균은 모두 0이다.

$$E[e_i] = 0 \quad \forall i = 1, \dots, n$$

② 등분산성 : 오차항 e_i $(i=1,\cdots n)$ 들의 분산은 모두 동일하다.

$$Var[e_i] = \sigma^2 \ \forall i = 1, \dots n$$

- ③ 독립성 : 오차항 e_i $(i=1,\cdots n)$ 들이 서로 독립이다.
- (2) (5점) (a)~(d)의 잔차도에 대하여 (1)에서 기술한 가정들을 만족한다고 할 수 있는지 답하고 그 이유를 간략하게 서술하시오.

- (a) 선형성 가정에 위배된다. / 독립성 가정에 위배된다.
 - ∵ 오차항의 평균이 2차식 형태를 나타낸다.
- (b) 독립성 가정에 위배된다.
 - : 오차항들이 서로 연관되어 있다.
- (c) 세 가지 가정을 다 만족한다.
 - · 오차항들이 특별한 형태가 없이 고르게 분포되어 있다.
- (d) 등분산성 가정에 위배된다.
 - · 오차항들의 크기가 점점 커진다.
- 9. (총 20점) 휘발유 종류별로 연비에 차이가 있는지 확인하기 위해 동일한 차종의 차량 18대를 휘발유 종류별로 각각 6대씩 완전 랜덤화 계획에 따라 배치하여 아래 표와 같은 연비측정값의 통계량을 얻었다. 다음 물음에 답하시오.

	휘발유1	휘발유2	휘발유3	
표본평균	14	13	15	전체평균 : 14
제곱합($\sum x_i^2$)	1180	1024	1360	총제곱합 3564

(문제 (1)~(2)) 먼저 휘발유1과 휘발유2의 연비 차이가 있는지 확인해 보고자 한다.

(1) (5점) 휘발유1과 휘발유2를 사용한 차들의 연비에 대한 검정을 실시하기에 앞서 분산이 동일하다고 말할 수 있는지 $(H_0: \sigma_1^2 = \sigma_2^2 \text{ vs } H_1: \text{not } H_0)$ 검정하고자 한다. 측정된 연비가 정규분포를 따른다고 가정할 때 이를 유의수준 5%에서 검정하시오.

(풀이) 표본분산
$$S_1^2 = \frac{1}{n_1-1} \sum_{i=1}^{n_i} (x_{1i} - \overline{x_1})^2$$
, $S_2^2 = \frac{1}{n_2-1} \sum_{i=1}^{n_2} (x_{2i} - \overline{x_2})^2$ 이라 할 때
$$n_1 = n_2 = 6$$
이므로 검정통계량 $F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(5,5)$ 이고

귀무가설하에서
$$F = \frac{S_1^2}{S_2^2} \sim F(5,5)$$
이다.

$$S_1^2 = \frac{1}{5} \sum (x_{1i}^2 - 6(\overline{x_1})^2) = 4/5 = 0.8, \quad S_2^2 = \frac{1}{5} \sum (x_{2i}^2 - 6(\overline{x_2})^2) = 10/5 = 20 \text{ for } 1/5 = 20 \text{ fo$$

검정통계량의 관측치 f=0.8/2=0.4이다.

유의수준 5%에서 기각역은

$$F\!>\!F_{0.025}(5,5)=\!7.15\ \pm\ \ F\!<\!F_{0.975}(5,5)=\!\frac{1}{F_{0.025}(5,5)}=\!\frac{1}{7.15}=\!0.1398$$

이므로 검정통계량은 기각역 안에 속하지 않는다. 따라서 귀무가설을 기각할 수 없다. 즉, 두 모분산은 동일하다고 말할 수 있다. (2) (5점) 휘발유1과 휘발유2를 사용한 차들의 연비에 차이가 있는지 $(H_0: \mu_1 = \mu_2 \text{ vs} H_1: \text{not } H_0)$ 유의수준 5%에서 검정하시오. (1)에서의 검정 결과에 따라 필요한 경우다음과 같은 t 분포의 근사자유도를 사용하시오.

$$df\!=\!\frac{(S_1^2/n_1\!+\!S_2^2/n_2)^2}{\frac{1}{n_1-1}(S_1^2/n_1)^2\!+\!\frac{1}{n_2-1}(S_2^2/n_2)^2}$$

(풀이) 이분산성에 대한 검정 결과, 분산이 동일하다는 가설을 기각할 수 없으므로 공통분산을 갖는 이표본 검정을 실시한다.

검정통계량은
$$T=\frac{(\overline{X_1}-\overline{X_2})-(\mu_1-\mu_2)}{S_p\sqrt{1/n_1+1/n_2}}\sim t(n_1+n_2-2)$$
이고 $n_1=n_2=6$,
$$S_p^2=\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}=1.4$$
이므로

검정통계량의 관측값 $t=\frac{1}{\sqrt{1.4*2/6}}=1.464 < t_{0.025(12-2)}=2.228$ 이 되어 귀무가설을 기각하지 못한다. 즉, 두 휘발유 1과 2의 연비는 동일하다고 할 수 있다.

(문제 (3)~(4)) 이번에는 세 종류의 휘발유에 대해 연비 차이가 있는지 확인해 보고자 한다.

(3) (3점) 주어진 자료에 대한 일원배치법 모형과 필요한 가정을 함께 제시하시오.

(풀이) 일원배치법 모형 : $Y_{ij} = \mu + \alpha_i + e_{ij}$,

가정 :
$$\sum \alpha_i = 0$$

$$e_{ij} \sim N(0, \sigma^2), \ \ \emph{iid}$$

(4) (7점) 분산분석표를 작성하고(5점) 휘발유 종류별로 연비 차이가 있는지 $(H_0: \mu_1 = \mu_2 = \mu_3)$ vs $H_1: not H_0$ 유의수준 5%에서 검정하시오.(2점)

(풀이)
$$SST = \sum_{i=1}^{3} (y_{ij} - \overline{y}_{..})^2 = \sum_{i=1}^{3} y_{ij}^2 - n \overline{y}_{..}^2 = 3564 - 18*14^2 = 36$$

$$SS_{tr} = \sum_{i=1}^{3} 6 (\overline{y}_{i} - \overline{y}_{..})^2 = 6(1+1) = 12$$
이므로

 $SSE = SST - SS_{tr} = 24$ 임을 알 수 있다.

분산분석표는 다음과 같다.

요인	제곱합	자유도	평균제곱합	F값
회귀	SSR= 12	3-1= 2	MSR= 6	f_2 7E
잔차	SSE= 24	18-3= 15	MSE= 1.6	f=3.75
	SST= 36	18-1= 17		

검정통계량은 F(2,15)의 분포를 따르고 유의수준 5%에서의 기각역은 $F>F_{0.05}(2,15)=3.682$ 이므로 귀무가설을 기각한다. 즉, 휘발유 종류별로 연비의 차이가 있다고 할 수 있다.

표준 정규 분포표 $P(Z \le z)$

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

 $t 분포표 \chi^2 분포표 \\ t_\alpha\colon P(T\ge t_\alpha) = \alpha, \ T\sim t(df) \chi_\alpha^2 \ \colon P(\chi^2\ge \chi_\alpha^2) = \alpha, \ \chi^2\sim \chi^2(df)$

16.\	0.10	0.05	0.005	0.01	16)	0.00-	0.05		0.10	0.05	0.005
df \ α	0.10	0.05	0.025	0.01	df \ α	0.975	0.95	0.90	0.10	0.05	0.025
1	3.078	6.31	12.71	31.82	1	0.00	0.00	0.02	2.71	3.84	5.02
2	1.886	2.920	4.303	6.965	2	0.05	0.10	0.21	4.61	5.99	7.38
3	1.638	2.353	3.182	4.541	3	0.22	0.35	0.58	6.25	7.81	9.35
4	1.533	2.132	2.776	3.747	4	0.48	0.71	1.06	7.78	9.49	11.14
5	1.476	2.015	2.571	3.365	5	0.83	1.15	1.61	9.24	11.07	12.83
6	1.440	1.943	2.447	3.143	6	1.24	1.64	2.20	10.64	12.59	14.45
7	1.415	1.895	2.365	2.998	7	1.69	2.17	2.83	12.02	14.07	16.01
8	1.397	1.860	2.306	2.896	8	2.18	2.73	3.49	13.36	15.51	17.53
9	1.383	1.833	2.262	2.821	9	2.70	3.33	4.17	14.68	16.92	19.02
10	1.372	1.812	2.228	2.764	10	3.25	3.94	4.87	15.99	18.31	20.48
11	1.363	1.796	2.201	2.718	11	3.82	4.57	5.58	17.28	19.68	21.92
12	1.356	1.782	2.179	2.681	12	4.40	5.23	6.30	18.55	21.03	23.34
13	1.350	1.771	2.160	2.650	13	5.01	5.89	7.04	19.81	22.36	24.74
14	1.345	1.761	2.145	2.624	14	5.63	6.57	7.79	21.06	23.68	26.12
15	1.341	1.753	2.131	2.602	15	6.26	7.26	8.55	22.31	25.00	27.49
16	1.337	1.746	2.120	2.583	16	6.91	7.96	9.31	23.54	26.30	28.85
17	1.333	1.740	2.110	2.567	17	7.56	8.67	10.09	24.77	27.59	30.19
18	1.330	1.734	2.101	2.552	18	8.23	9.39	10.86	25.99	28.87	31.53
19	1.328	1.729	2.093	2.539	19	8.91	10.12	11.65	27.02	30.14	32.85
20	1.325	1.725	2.086	2.528	20	9.59	10.85	12.44	28.41	31.41	34.17
21	1.323	1.721	2.080	2.518	21	10.28	11.59	13.24	29.62	32.67	35.48
22	1.321	1.717	2.074	2.508	22	10.98	12.34	14.04	30.81	33.92	36.78
23	1.319	1.714	2.069	2.500	23	11.69	13.09	14.85	32.01	35.17	38.08
24	1.318	1.711	2.064	2.492	24	12.40	13.85	15.66	33.20	36.42	39.36
25	1.316	1.708	2.060	2.485	25	13.12	14.61	16.47	34.38	37.65	40.65

F 是至표 $F_{0.05}:\ P(F\!\ge\!F_{0.05})\!=\!0.05,\, F\!\sim\!F(df_1,\!df_2)$

	df_1												
df_2	1	2	3	4	5	6	7	8	9	10	11	12	13
1	161.4	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	242.98	243.91	244.69
2	18.51	19.000	19.164	19.247	19.296	19.330	19.353	19.371	19.385	19.396	19.405	19.413	19.419
3	10.12	9.552	9.277	9.117	9.013	8.941	8.887	8.845	8.812	8.786	8.763	8.745	8.729
4	7.709	6.944	6.591	6.388	6.256	6.163	6.094	6.041	5.999	5.964	5.936	5.912	5.891
5	6.608	5.786	5.409	5.192	5.050	4.950	4.876	4.818	4.772	4.735	4.704	4.678	4.655
6	5.987	5.143	4.757	4.534	4.387	4.284	4.207	4.147	4.099	4.060	4.027	4.000	3.976
7	5.591	4.737	4.347	4.120	3.972	3.866	3.787	3.726	3.677	3.637	3.603	3.575	3.550
8	5.318	4.459	4.066	3.838	3.687	3.581	3.500	3.438	3.388	3.347	3.313	3.284	3.259
9	5.117	4.256	3.863	3.633	3.482	3.374	3.293	3.230	3.179	3.137	3.102	3.073	3.048
10	4.965	4.103	3.708	3.478	3.326	3.217	3.135	3.072	3.020	2.978	2.943	2.913	2.887
11	4.844	3.982	3.587	3.357	3.204	3.095	3.012	2.948	2.896	2.854	2.818	2.788	2.761
12	4.747	3.885	3.490	3.259	3.106	2.996	2.913	2.849	2.796	2.753	2.717	2.687	2.660
13	4.667	3.806	3.411	3.179	3.025	2.915	2.832	2.767	2.714	2.671	2.635	2.604	2.577

14	4.600	3.739	3.344	3.112	2.958	2.848	2.764	2.699	2.646	2.602	2.565	2.534	2.507
15	4.543	3.682	3.287	3.056	2.901	2.790	2.707	2.641	2.588	2.544	2.507	2.475	2.448
16	4.494	3.634	3.239	3.007	2.852	2.741	2.657	2.591	2.538	2.494	2.456	2.425	2.397
17	4.451	3.592	3.197	2.965	2.810	2.699	2.614	2.548	2.494	2.450	2.413	2.381	2.353
18	4.414	3.555	3.160	2.928	2.773	2.661	2.577	2.510	2.456	2.412	2.374	2.342	2.314
19	4.381	3.522	3.127	2.895	2.740	2.628	2.544	2.477	2.423	2.378	2.340	2.308	2.280

F 분포표 $F_{0.025}:\ P(F\!\ge\!F_{0.025})\!=\!0.025,\,F\!\sim\!F(df_1,df_2)$

		df_1											
df_2	1	2	3	4	5	6	7	8	9	10	11	12	13
1	647.7	799.50	864.16	899.58	921.84	937.11	948.21	956.65	963.28	968.62	973.02	976.70	979.83
2	38.50	39.000	39.165	39.248	39.298	39.331	39.355	39.373	39.387	39.398	39.407	39.415	39.421
3	17.44	16.044	15.439	15.101	14.885	14.735	14.624	14.540	14.473	14.419	14.374	14.337	14.304
4	12.21	10.649	9.979	9.605	9.364	9.197	9.074	8.980	8.905	8.844	8.794	8.751	8.715
5	10.00	8.434	7.764	7.388	7.146	6.978	6.853	6.757	6.681	6.619	6.568	6.525	6.488
6	8.813	7.260	6.599	6.227	5.988	5.820	5.695	5.600	5.523	5.461	5.410	5.366	5.329
7	8.073	6.542	5.890	5.523	5.285	5.119	4.995	4.899	4.823	4.761	4.709	4.666	4.628
8	7.571	6.059	5.416	5.053	4.817	4.652	4.529	4.433	4.357	4.295	4.243	4.200	4.162
9	7.209	5.715	5.078	4.718	4.484	4.320	4.197	4.102	4.026	3.964	3.912	3.868	3.831
10	6.937	5.456	4.826	4.468	4.236	4.072	3.950	3.855	3.779	3.717	3,665	3.621	3.583
11	6.724	5.256	4.630	4.275	4.044	3.881	3.759	3.664	3.588	3.526	3.474	3.430	3.392
12	6.554	5.096	4.474	4.121	3.891	3.728	3.607	3.512	3.436	3.374	3.321	3.277	3.239
13	6.414	4.965	4.347	3.996	3.767	3.604	3.483	3.388	3.312	3.250	3.197	3.153	3.115
14	6.298	4.857	4.242	3.892	3.663	3.501	3.380	3.285	3.209	3.147	3.095	3.050	3.012
15	6.200	4.765	4.153	3.804	3.576	3.415	3.293	3.199	3.123	3.060	3.008	2.963	2.925
16	6.115	4.687	4.077	3.729	3.502	3.341	3.219	3.125	3.049	2.986	2.934	2.889	2.851
17	6.042	4.619	4.011	3.665	3.438	3.277	3.156	3.061	2.985	2.922	2.870	2.825	2.786
18	5.978	4.560	3.954	3.608	3.382	3.221	3.100	3.005	2.929	2.866	2.814	2.769	2.730
19	5.922	4.508	3.903	3.559	3.333	3.172	3.051	2.956	2.880	2.817	2.765	2.720	2.681
20	5.871	4.461	3.859	3.515	3.289	3.128	3.007	2.913	2.837	2.774	2.721	2.676	2.637
21	5.827	4.420	3.819	3.475	3.250	3.090	2.969	2.874	2.798	2.735	2.682	2.637	2.598
22	5.786	4.383	3.783	3.440	3.215	3.055	2.934	2.839	2.763	2.700	2.647	2.602	2.563
23	5.750	4.349	3.750	3.408	3.183	3.023	2.902	2.808	2.731	2.668	2.615	2.570	2.531
24	5.717	4.319	3.721	3.379	3.155	2.995	2.874	2.779	2.703	2.640	2.586	2.541	2.502
25	5.686	4.291	3.694	3.353	3.129	2.969	2.848	2.753	2.677	2.613	2.560	2.515	2.476
26	5.659	4.265	3.670	3.329	3.105	2.945	2.824	2.729	2.653	2.590	2.536	2.491	2.451
27	5.633	4.242	3.647	3.307	3.083	2.923	2.802	2.707	2.631	2.568	2.514	2.469	2.429
28	5.610	4.221	3.626	3.286	3.063	2.903	2.782	2.687	2.611	2.547	2.494	2.448	2.409
29	5.588	4.201	3.607	3.267	3.044	2.884	2.763	2.669	2.592	2.529	2.475	2.430	2.390
30	5.568	4.182	3.589	3.250	3.026	2.867	2.746	2.651	2.575	2.511	2.458	2.412	2.372