

Learning a Disease Embedding using Generalized Word2Vec Approaches.

Milan van der Meer

Thesis submitted for the degree of Master of Science in Engineering: Computer Science, specialisation Artificial Intelligence

Thesis supervisor:

Prof. dr. Roel Wuyts

Assessors:

Ir. Kn. Owsmuch K. Nowsrest

Mentors:

Ir. An Assistent S. Dhooghe

© Copyright KU Leuven

Without written permission of the thesis supervisor and the author it is forbidden to reproduce or adapt in any form or by any means any part of this publication. Requests for obtaining the right to reproduce or utilize parts of this publication should be addressed to the Departement Computerwetenschappen, Celestijnenlaan 200A bus 2402, B-3001 Heverlee, +32-16-327700 or by email info@cs.kuleuven.be.

A written permission of the thesis supervisor is also required to use the methods, products, schematics and programs described in this work for industrial or commercial use, and for submitting this publication in scientific contests.

Preface

I would like to thank everybody who kept me busy the last year, especially my promotor and my assistants. I would also like to thank the jury for reading the text. My sincere gratitude also goes to my wive and the rest of my family.

Milan van der Meer

Contents

Pr	eface	9	i
Al	ostra	$\operatorname{\mathbf{ct}}$	iv
Lis	st of	Figures and Tables	\mathbf{v}
Lis	st of	Abbreviations and Symbols	vi
1	Intr 1.1 1.2	oduction Lorem Ipsum 4–5	1 1 1
2	Con 2.1 2.2 2.3 2.4	Introduction	3 3 4 5
3	Back 3.1 3.2 3.3 3.4 3.5	kground Introduction	7 7 7 11 13 14
4	Futu 4.1 4.2 4.3 4.4 4.5	Introduction	15 15 15 15 15 20
5	Con	clusion	23
A	A.1	First Appendix More Lorem	27 27 28
В	B.1	Last Appendix Lorem 20-24	29 29 30

	\sim						
- (O.	Νr	ΓI	7.1	VП	ΓS

Bibliography 31

Abstract

The abstract environment contains a more extensive overview of the work. But it should be limited to one page.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

List of Figures and Tables

List of Figures

2.1	An example of an EHR transformed into a matrix structure	4
2.2	A cerebrovascular disease trajectory cluster for the Danish population	5
3.1	A simple presentation of a perceptron	8
3.2	A more complex network made by connecting multiple perceptrons	8
3.3	General vocabulary for a multilayer network	9
3.4	A small change on the weights, only has a small impact on the output	9
3.5	Visual representation of the terminology for a neural network	10
3.6	Explanation of n-gram	12
3.7	Overview of the DeepWalk algorithm	14
4.1	Overview of the data structure for medical data with a time aspect	16
4.2	A general structure of a neural network	17
4.3	An unrolled recurrent neural network	17
4.4	An unrolled recurrent neural network with a single tanh layer	18
4.5	An unrolled LSTM network where each network has 4 layers	18
4.6	Representation of the cell state for a LSTM network	18
4.7	The forget layer of a LSTM network	19
4.8	The input layer of a LSTM network	19
4.9	Update process of the cell state of a LSTM network	19
4.10	Decide the output of a LSTM network	20

List of Tables

List of Abbreviations and Symbols

Abbreviations

LoG Laplacian-of-Gaussian MSE Mean Square error

PSNR Peak Signal-to-Noise ratio

Symbols

42 "The Answer to the Ultimate Question of Life, the Universe, and Everything" according to [1]

c Speed of light

E Energy m Mass

 π The number pi

Chapter 1

Introduction

The first contains a general introduction to the work. The goals are defined and the modus operandi is explained.

1.1 Lorem Ipsum 4–5

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

1.2 Lorem Ipsum 6–7

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

1. Introduction

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Chapter 2

Context

2.1 Introduction

In this chapter

Context: Depends on chosen problem (Extracting knowledge from EHR)

Problem: info out of EHR State of the art:

Explain Disease codes DiseaseProgression Explain Danish paper, Matrix group

America (recommender), Querying

2.2 Electronic Health Records

An electronic health records (EHR) is a collection of data about a patient at a certain point in time. It is stored digitally and thus can be part of a large number of patients over a long time period.

2.2.1 Disease Codes

An important part of EHRs is applying methods which are uniform and well documented. This makes it easy to store and extract data from large-scale databases of EHRs. A part of an EHR consists of the diagnosis of the patient. It provides information about the disease trajectory of the patient and allows analysis on the health situation of a patient. With a uniform system for classifying diseases, it is possible to provide a general picture on health situations of populations.

ICD-10

The International Statistical Classification if Diseases and Related Health Problems (ICD) is a medical classification list made by the World Health Organization (WHO). The ICD contains more than 14,400 codes about diseases, disorders, injuries, and other related health conditions. It also provides hierarchical categories for those codes to allow a more general overview of diseases.

MedDRA

The Medical Dictionary for Regulatory Activities (MedDRA) provides medical terminology in the form of disease codes. It doesn't provide hierarchical categories.

2.3 EHR Analytics

EHRs provide a massive amount of data which could be used to create useful insights. Those insights can be offered on an individual level, which means a right intervention to the right patient at the right time. EHR analytics can be used to have a personalized care for patients and benefits the healthcare system by cutting costs and improved outcomes.

In the following sections we talk about current EHR analytic methods.

2.3.1 Querying

Analytics on EHRs is still done through querying a database. A specialist can have a certain idea about correlations between conditions or patients. He can support this idea by finding cases in EHRs for example.

This method is based on the knowledge and experience of a specialist. The information has to be actively be sought after and thus a lot of other information is never found. Also complex relations aren't easily found and maybe too subtle to be found by a querying language.

2.3.2 Recommender Systems

An EHR of a patient can be transformed into a matrix structure, see figure 2.1. On these matrix structures, feature extraction methods can be applied similar to recommender systems. This can, for example, be done by defining patient similarities. So when a patient is similar to a previous patient, his treatment can be based on previous experiences.

FIGURE 2.1: An example of an EHR transformed into a matrix structure.

2.3.3 Statistical Analysis

A combination of statistical methods and graph clustering are applied to obtain disease trajectories. To have any significance using those methods, a large set of EHRs need to be used.

These techniques have been applied to Danish EHRs. The study identifies temporal correlations between pairs of diagnoses. The pairs are further clustered into larger disease trajectories based on the diagnoses they shared. Based on the clusters, patients can be categorized into certain trajectories and retrieve a more personal care. An example of a cluster graph can be found in figure 2.2.

FIGURE 2.2: A cerebrovascular disease trajectory cluster for the Danish population.

http://www.who.int/classifications/icd/en/

http://arxiv.org/pdf/1112.1668v1.pdf

https://en.wikipedia.org/wiki/Electronic health record#Technical features

file:///media/milan/Data/Chrome%20Downloads/EHRAnalytics_Stateoftheart%20(1).pdf

http://www.meddra.org/

https://www.siam.org/meetings/sdm13/sun.pdf

Jimeng Sun, Fei Wang, Jianying Hu, Shahram Edabollahi: Supervised patient similarity measure of heterogeneous patient records. SIGKDD Explorations 14(1): 16-24 (2012)

AM3VVXy_n-&sig=epPrp87M_ZixVmikVJKto8IvyIM& hl=nl&sa=X&ved=0ahUKEwjQ3MzouPrLAhXFhQ D5I4ChDoAQgbMAA#v=onepage&q=querying %20ehr&f=false

Towards Heterograph and Clinical Event Pattern Disagraphy A Convolu

https://books.google.co.uk/books?id=eZmjIVtVtucC&pg=PA96&lpg=PA96&dq=querying+ehr&source=

Towards Heterogeneous Temporal Clinical Event Pattern Discovery: A Convolutional Approach

http://www.nature.com/ncomms/2014/140617/ncomms5022/pdf/ncomms5022.pdf

2.4 Conclusion

The final section of the chapter gives an overview of the important results of this chapter. This implies that the introductory chapter and the concluding chapter don't need a conclusion.

Chapter 3

Background

3.1 Introduction

In this chapter

3.2 Background Knowledge

We assume a basic knowledge of general computer science concepts as algorithms, statistics, time complexity, linear algebra, basic graph theory, optimization, and heuristics.

3.2.1 Machine Learning

Machine learning is a data driven approach with as goal to build a model which can be used to make predictions or decisions. This task is done by algorithms which are able to learn models based on examples given by the designer. In machine learning there are 3 types of problems, namely supervised learning, unsupervised learning, and reinforcement learning.

Supervised learning is concerned with the learning task where there are examples given with their corresponding label. Unsupervised learning is similar to supervised learning only no labels are given. We won't go into reinforcement learning.

We can also classify to problems according to the desired output of our model. Those main tasks consist of classification, regression, clustering, and dimension reduction.

3.2.2 Time Series Analysis

A time series consists of data points over a certain time period. We refer to this as a sequence of states. Where a state represents a data point and can differ from a single value to more complex representations like pictures.

The domain of time series analysis handles around extracting information or relations from a time series. It can have different goals like forecasting, classification, or exploratory.

3.2.3 Neural Networks

A neural network is a machine learning approach based on biological neural networks.

Perceptron

The basic component of a neural network is a perceptron. A perceptron take multiple binary inputs and has a single binary output (see figure 3.1). Each input has a corresponding real numbered weight. The output is decided on the following equation:

$$output = \begin{cases} 0 & \text{if } \sum_{j} w_{j} x_{j} \leq \text{ threshold} \\ 1 & \text{if if } \sum_{j} w_{j} x_{j} > \text{ threshold} \end{cases}$$
(3.1)

FIGURE 3.1: A simple presentation of a perceptron.

We can build a network by connecting multiple perceptrons (see figure 3.2. By building these networks, more complex decisions can be made.

FIGURE 3.2: A more complex network made by connecting multiple perceptrons.

Now we have seen how a general network is constructed, we look at some vocabulary.

In figure 3.3, we see a four-layer network. As mentioned on the figure, we call the first layer the input layer, the last layer the output layer, and the layers in between are called hidden layers. Sometime multiple layer networks are referred to as multilayer perceptrons or MLPs.

FIGURE 3.3: General vocabulary for a multilayer network.

Training a network

To train a neural network, we input an example with a known label. The network will have a certain output based on the current weights. When this output is incorrect, it should be possible to adjust the weights with as effect that the network now has as output the correct label. Of course, this change in weights, should only effect the output by a small bit (see figure 3.4). The reason for this is that otherwise all the previous images could now be labeled incorrectly. So, the concept of training a neural network means, adjusting the weights in a way that the behavior of the network doesn't change completely on the previous seen pictures but that the current picture is labeled correctly.

FIGURE 3.4: A small change on the weights, only has a small impact on the output.

To achieve this effect, we change our known perceptrons to sigmoid neurons. A sigmoid neuron has the same basics as a perceptron. It still has inputs but now it also has a bias b. The inputs still have weights but the weights can now range between 0 and 1. The output is now calculate with $\sigma(w*x+b)$ where σ is the sigmoid function. This results in the following formula:

$$\frac{1}{1 + exp(-\sum_{j} w_{j}x_{j} - b)} \tag{3.2}$$

The sigmoid function makes it possible to calculate the gradient and makes the output a linear combination of Δw_j and Δb as $\Delta output$ is approximated by

$$\Delta output \approx \sum_{j} \frac{\partial output}{\partial w_{j}} \Delta w_{j} + \frac{\partial output}{\partial b} \Delta b$$
 (3.3)

Because of the linearity, it is now possible to choose changes for the weights and biases to achieve a correct output. By adjusting the weights, we will train our network to achieve a higher accuracy.

3.2.4 Backpropagation

Backpropagation is an algorithm which is used to train neural networks. It calculates the gradient of a chosen loss function with respect to the individual weights. With the gradient, the weights are updated and the loss function is minimized.

Terminology

We use w_{jk}^l to denote the weight corresponding to the connection between the k^{th} node in the $(l-1)^{th}$ layer to the j^{th} node in the l^{th} layer. We use b_j^l for the bias of the j^{th} node in the l^{th} layer and a_j^l for the activation of the j^{th} node in the l^{th} layer. See figure 3.5.

FIGURE 3.5: Visual representation of the terminology for a neural network.

We can now convert these notation to a vector representation. We remove the indexes for the node numbers which results in the following:

$$a^l = \sigma(w^l a^{l-1} + b^l) \tag{3.4}$$

Cost function

AS mentioned before, backpropagation has as goal to calculate the partial derivatives of the cost function C with respect to each weight and bias.

The cost function has to fulfill certain criteria. The first one is that it needs to be possible to write it as a summation over cost functions for individual training examples. Secondly, it needs to be derivable. And lastly, the cost function is a function of the activations of the last layer.

Fundamental equations

Backpropagation has 4 equations. They allow us to calculate the error for each node and adjust the weights based on the gradient descent.

First we calculate the error of each node which is based on how much the cost function is influenced by each activation and on how much the activation function is influenced by z_i^L :

$$\delta_j^L = \frac{\partial C}{\partial a_j^L} \sigma'(z_j^L) \text{ with } z_j^L = \sum_k w_{jk}^L a_k^{L-1} + b_j^L$$
 (3.5)

This can be written as a neat vector equation:

$$\delta^L = (a^L - y) \circ \sigma'(z_i^L) \tag{3.6}$$

The next equation explains why the algorithm is called backpropagation. The equation calculates each layers error vector based on the layer after it, it propagates the error back over the layers:

$$\delta^l = ((w^{l+1})^T \delta^{l+1}) \circ \sigma'(z_i^L) \tag{3.7}$$

With those 2 equations we calculate the error in each layer of the neural network. Those errors can be used to calculate the derivatives of the cost function with respect to the weights and the biases:

$$\frac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l. \tag{3.8}$$

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l. \tag{3.9}$$

When the derivatives are calculated, we can apply the gradient descent and update the weights and biases accordingly. This process represents the learning of a neural network.

http://neuralnetworksanddeeplearning.com/chap1.html

3.3 Word2Vec

3.3.1 Motivation

In natural language processing tasks, a good representation of words helps learning algorithms perform better. A representation is learned which maps words to vectors in a low-dimensional space compared to the vocabulary size. In this representation, we try to map context-similar words close to each other in the new vector space. We could say in an informal way: a linguistic background is made which the learning algorithm can use.

3.3.2 Skip-gram

One way of learning a word2vec representation of a corpus Text, is by using the skip-gram model.

Based on given words w and their contexts c, we set the parameter θ of $p(c|w;\theta)$ to maximize:

$$\arg\max_{\theta} \prod_{(w,c\in D)} p(c|w;\theta) \tag{3.10}$$

with D the set of all word and context pairs we extract from the corpus.

Finding word-context pairs

Given a sequence of words, we define their context based on n-gram. In figure 3.6, n-gram is explained on the sentence "This is a sentence".

Figure 3.6: Explanation of n-gram.

For the Skip-gram model, we define the context of a word w_t as w_{t+j} with j between -c and c. A larger c results in more training examples and thus can lead to a higher accuracy but will have a longer training time.

Parameterization

We start with rewriting the conditional probability using soft-max:

$$p(c|w;\theta) = \frac{e^{v_x * v_w}}{\sum_{c' \in C} e^{v_{c'} * v_w}}$$
(3.11)

where v_c and v_w are vector representations for c and w, and C is the set of all available contexts. This means that the parameters θ are v_{c_i} and v_{w_i} . Computing the optimal parameters is very expensive because you need to calculate this over all contexts c'. We also switch from product to sum by taking the logs:

$$\arg\max_{\theta} \sum_{(w,c)\in D} \log p(c|w;\theta) = \sum_{(w,c)\in D} (\log e^{v_c*v_w} - \log \sum_{c'} e^{v_{c'}*v_w})$$
(3.12)

3.3.3 Negative Sampling

To compute the vectors using the Skip-gram model more efficiently, we introduce negative sampling.

Instead of calculating $\sum_{c' \in C} e^{v_{c'}*v_w}$ over all contexts, we make a set D' which consists of randomly sampled word-context pairs. With this new set, we remove the costly term $\sum_{c' \in C} e^{v_{c'}*v_w}$ and replace it with $\sum_{(w,c) \in D'} e^{v_{c'}*v_w}$.

In a less formal way: we are not making sure that if words appear in the same context, their vectors are more similar than all the other word vectors, but only of several vectors chosen randomly. This makes the Skip-gram model usable in terms of speed.

3.3.4 Neural Networks

When the word2vec algorithm is trained using the Skip-gram model, one will have a lookup table. This table contains the mapping of words to their vector representation. This lookup table can be found by training a 2-layer neural network with as goal function the function described in the previous section. The training can be done with Gradient Descent for example.

The trained 2-layer neural network can be placed in front of another neural network. It will convert the words to their vector representation and feed into the next neural network. It is empirically shown that this can improve the results of the neural network by putting the lookup table in front of it. As mentioned before, in a way, you offer background knowledge to the neural network.

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

http://arxiv.org/pdf/1402.3722v1.pdf

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

http://homepages.inf.ed.ac.uk/ballison/pdf/lrec_skipgrams.pdf

http://recognize-speech.com/images/Antonio/Unigram.png

http://stackoverflow.com/questions/27860652/word2vec-negative-sampling-in-layman-term

3.4 DeepWalk

DeepWalk is an approach where graph structured data is transformed into sequences of vertices. Word2vec is then applied on those sequences to learn a good vector representation for the vertices.

In figure 3.7, we see an overview of the DeepWalk algorithm. It exist of two parts.

```
Algorithm 1 DeepWalk(G, w, d, \gamma, t)
Input: graph G(V, E)
    window size w
    embedding size \boldsymbol{d}
    walks per vertex \gamma
    walk length t
Output: matrix of vertex representations \Phi \in \mathbb{R}^{|V| \times d}

    Initialization: Sample Φ from U<sup>|V|×d</sup>

 2: Build a binary Tree T from V
 3: for i = 0 to \gamma do
       \mathcal{O} = \text{Shuffle}(V)
 4:
       for each v_i \in \mathcal{O} do
          W_{v_i} = RandomWalk(G, v_i, t)
          SkipGram(\Phi, W_{v_i}, w)
       end for
 9: end for
```

FIGURE 3.7: Overview of the DeepWalk algorithm.

First a random walk generator. For each vertex v_i of the graph G, it will generate a random walk of length t. It will do this γ times but the order to which the vertices are traversed, is randomly ordered each pass. With those walks, a sequence of vertices is generated.

Secondly, those vertices are used for word2vec. This process is explained in section 3.3.

http://arxiv.org/pdf/1403.6652v2.pdf

3.5 Conclusion

The final section of the chapter gives an overview of the important results of this chapter. This implies that the introductory chapter and the concluding chapter don't need a conclusion.

Chapter 4

Future Work

4.1 Introduction

In this chapter

Normalization Mapping Disease Codes Distributed RNN

4.2 Generalization

Normalization Mapping Disease Codes

4.3 Distributed Word2Vec

MapReduce

4.4 Patient Classification

As mentioned in section 3.3, a trained 2-layer neural network can be placed before another neural network and function as a lookup table. In this section, we discuss a possible neural network which allows us to further investigate the effectiveness of our word2vec approach to classify patients. More concrete: we should check if a better accuracy is acquired with the lookup table in front of the neural network or without.

4.4.1 Problem Definition

The medical history of a patient is seen as a time series with as datapoints an EHR. Based on the time series, we want to classify it into different disease trajectories. A patient who is classified into a specific disease trajectory, can be treated more specifically.

The medical data of multiple patients is a 3 dimensional tensor, see figure 4.1. This data structure is the input structure for a neural network.

FIGURE 4.1: Overview of the data structure for medical data with a time aspect.

Medical data has some problems which we will discuss.

It often consists of long time periods. This means there could be a long range of dependencies between events. In the context of training neural networks, this can cause a problem known as the vanishing gradient problem.

Patients don't have regular intervals in their medical data. The irregular intervals need to be transformed to regular intervals otherwise the time aspect won't be consistent throughout the data.

The standardization of the attributes needs to be taken into account. Preferably some sort of normalization should be applied as well.

Medical data has a high dimensionality. A lot of parameters need to be taken into account to retrieve accurate results. This causes the well known problem: Curse of Dimensionality. It causes the data to be sparse and therefore, more data is needed. Especially in medical data where outliers are important.

4.4.2 Approach

Vanishing gradient padding Word2Vec standardization Recurrent -> high dimension

4.4.3 Neural Network

We mentioned the reasons on why we choose a Long Short Term Memory (LSTM) approach as a recurrent neural network solution. In this section we explain in more detail why LSTM handles the vanishing problem and long-term dependencies.

First we shortly repeat the structure of a neural network in figure 4.2. We see the input, different layers with their perceptrons, and σ as the activation function.

FIGURE 4.2: A general structure of a neural network.

Recurrent Neural Network

A standard neural network don't have any persistence. They will classify their input but when they get a stream of inputs (ex. speech), they will classify each word independently of each other and without any regards of the previous words. A recurrent neural network (RNN) addresses this problem by introducing networks with loops. This way, the output of a previous input has effect on the next input. In figure 4.3, we transform those loops into multiple copies of the same network which makes it easier to reason about.

FIGURE 4.3: An unrolled recurrent neural network.

The problem with RNNs is mainly that they have troubles learning long-term dependencies which is often essential in time series.

Long Short Term Memory

A LSMT network is a specific RNN which is capable of learning long-term dependencies. We will explain the difference with a standard RNN and why a LSTM can

learn these long-term dependencies.

A recurrent network is, as we said, a chain of connected neural networks. Those networks can have a simple structure as a single tanh layer, see figure 4.4.

FIGURE 4.4: An unrolled recurrent neural network with a single tanh layer.

It is important to see the difference with a LSTM. The repeating network doesn't have a single neural network layer, but has 4 layers which each fulfills a specific goal, see figure 4.5.

FIGURE 4.5: An unrolled LSTM network where each network has 4 layers.

The main idea behind LSTM is that each repeated network has its own cell state. It functions as a memory which can be updated with each new input. On figure 4.6, you can see the cell state C through time. It can be compared with a conveyor belt which interacts with the input at certain gates. This way the state is updated throughout several inputs.

FIGURE 4.6: Representation of the cell state for a LSTM network.

In the following figures, we show the different gates and their functions in changing the cell state depending on the input and the output of the previous network. Next to each figure the formulas are shown on how the cell state is updated. There

should be no surprises as they are not much different than the standard formulas of neural networks.

We start with the forget gate layer of a LSTM. Based on x_t and h_{t-1} , it outputs a number between 0 and 1 for each number in the cell state C_{t-1} . This is shown in figure 4.7.

FIGURE 4.7: The forget layer of a LSTM network.

Next we look to the input gate layer. This gate decides which values will be updated in the cell state and outputs those in i_t . It is then combined with the vector \tilde{C}_t , which contains the new candidate values based on the input x_t and h_{t-1} . This is shown in figure 4.8.

FIGURE 4.8: The input layer of a LSTM network.

We can now combine the previous results and adjust the cell state. We multiply the old state with f_t so we forget the needed elements. Then we add $i_t * \widetilde{C}_t$ which are the new candidate values multiplied by the amount on how much we want to update each state value. See figure 4.9.

FIGURE 4.9: Update process of the cell state of a LSTM network.

Finally, we need to output h_t to the next network. This is based on the input and the cell state C_t . See figure 4.10.

FIGURE 4.10: Decide the output of a LSTM network.

Variants Long Short Term Memory

In [LSTM: SEARCH SPACE ODESEY], research is done between different variant of LSTM networks. It was concluded that the forget gate and the activation function is the most important. Other variants don't have a large influence and mainly add a lot of extra complexity.

http://www-dsi.ing.unifi.it/paolo/ps/tnn-94-gradient.pdf

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://deeplearning4j.org/usingrnns

Supervised Sequence Labelling with Recurrent Neural Networks

Phenotyping of Clinical Time Series with LSTM Recurrent Neural Networks

IMEC Technical talk by Jaak Simm

Missing covariate data in medical research: To impute is better than to ignore

Recurrent Neural Networks for Missing or Asynchronous Data

Development of a Database of Health Insurance Claims: Standardization of Disease Classifications and Anonymous Record Linkage

Machine Learning Based Missing Value Imputation Method for Clinical Dataset Modeling Temporal Dependencies in High- Dimensional Sequences: Application to Polyphonic Music Generation and Transcription

Long short-term memory neural network for traffic speed prediction using remote microwave sensor data

Noisy Time Series Prediction using a Recurrent Neural Network and Grammatical Inference

Neural Networks for Time Series Processing Constructing a Non-Linear Model with Neural Networks for Workload Characterization

http://colah.github.io/posts/2015-08-Understanding-LSTMs

A Critical Review of Recurrent Neural Networks for Sequence Learning

Bidirectional Recurrent Neural Networks Optimization of Hidden Markov Models and Neural Networks

LONG SHORT-TERM MEMORY

LSTM: A Search Space Odyssey

4.5 Conclusion

The final section of the chapter gives an overview of the important results of this chapter. This implies that the introductory chapter and the concluding chapter don't

need a conclusion.

Chapter 5

Conclusion

The final chapter contains the overall conclusion. It also contains suggestions for future work and industrial applications.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In

hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Appendices

Appendix A

The First Appendix

Appendices hold useful data which is not essential to understand the work done in the master thesis. An example is a (program) source. An appendix can also have sections as well as figures and references[1].

A.1 More Lorem

Quisque facilisis auctor sapien. Pellentesque gravida hendrerit lectus. Mauris rutrum sodales sapien. Fusce hendrerit sem vel lorem. Integer pellentesque massa vel augue. Integer elit tortor, feugiat quis, sagittis et, ornare non, lacus. Vestibulum posuere pellentesque eros. Quisque venenatis ipsum dictum nulla. Aliquam quis quam non metus eleifend interdum. Nam eget sapien ac mauris malesuada adipiscing. Etiam eleifend neque sed quam. Nulla facilisi. Proin a ligula. Sed id dui eu nibh egestas tincidunt. Suspendisse arcu.

A.1.1 Lorem 15-17

Nulla in ipsum. Praesent eros nulla, congue vitae, euismod ut, commodo a, wisi. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Aenean nonummy magna non leo. Sed felis erat, ullamcorper in, dictum non, ultricies ut, lectus. Proin vel arcu a odio lobortis euismod. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Proin ut est. Aliquam odio. Pellentesque massa turpis, cursus eu, euismod nec, tempor congue, nulla. Duis viverra gravida mauris. Cras tincidunt. Curabitur eros ligula, varius ut, pulvinar in, cursus faucibus, augue.

Nulla mattis luctus nulla. Duis commodo velit at leo. Aliquam vulputate magna et leo. Nam vestibulum ullamcorper leo. Vestibulum condimentum rutrum mauris. Donec id mauris. Morbi molestie justo et pede. Vivamus eget turpis sed nisl cursus tempor. Curabitur mollis sapien condimentum nunc. In wisi nisl, malesuada at, dignissim sit amet, lobortis in, odio. Aenean consequat arcu a ante. Pellentesque porta elit sit amet orci. Etiam at turpis nec elit ultricies imperdiet. Nulla facilisi.

In hac habitasse platea dictumst. Suspendisse viverra aliquam risus. Nullam pede justo, molestie nonummy, scelerisque eu, facilisis vel, arcu.

Curabitur tellus magna, porttitor a, commodo a, commodo in, tortor. Donec interdum. Praesent scelerisque. Maecenas posuere sodales odio. Vivamus metus lacus, varius quis, imperdiet quis, rhoncus a, turpis. Etiam ligula arcu, elementum a, venenatis quis, sollicitudin sed, metus. Donec nunc pede, tincidunt in, venenatis vitae, faucibus vel, nibh. Pellentesque wisi. Nullam malesuada. Morbi ut tellus ut pede tincidunt porta. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam congue neque id dolor.

A.1.2 Lorem 18–19

Donec et nisl at wisi luctus bibendum. Nam interdum tellus ac libero. Sed sem justo, laoreet vitae, fringilla at, adipiscing ut, nibh. Maecenas non sem quis tortor eleifend fermentum. Etiam id tortor ac mauris porta vulputate. Integer porta neque vitae massa. Maecenas tempus libero a libero posuere dictum. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aenean quis mauris sed elit commodo placerat. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Vivamus rhoncus tincidunt libero. Etiam elementum pretium justo. Vivamus est. Morbi a tellus eget pede tristique commodo. Nulla nisl. Vestibulum sed nisl eu sapien cursus rutrum.

Nulla non mauris vitae wisi posuere convallis. Sed eu nulla nec eros scelerisque pharetra. Nullam varius. Etiam dignissim elementum metus. Vestibulum faucibus, metus sit amet mattis rhoncus, sapien dui laoreet odio, nec ultricies nibh augue a enim. Fusce in ligula. Quisque at magna et nulla commodo consequat. Proin accumsan imperdiet sem. Nunc porta. Donec feugiat mi at justo. Phasellus facilisis ipsum quis ante. In ac elit eget ipsum pharetra faucibus. Maecenas viverra nulla in massa.

A.2 Lorem 51

Maecenas dui. Aliquam volutpat auctor lorem. Cras placerat est vitae lectus. Curabitur massa lectus, rutrum euismod, dignissim ut, dapibus a, odio. Ut eros erat, vulputate ut, interdum non, porta eu, erat. Cras fermentum, felis in porta congue, velit leo facilisis odio, vitae consectetuer lorem quam vitae orci. Sed ultrices, pede eu placerat auctor, ante ligula rutrum tellus, vel posuere nibh lacus nec nibh. Maecenas laoreet dolor at enim. Donec molestie dolor nec metus. Vestibulum libero. Sed quis erat. Sed tristique. Duis pede leo, fermentum quis, consectetuer eget, vulputate sit amet, erat.

Appendix B

The Last Appendix

Appendices are numbered with letters, but the sections and subsections use arabic numerals, as can be seen below.

B.1 Lorem 20-24

Nulla ac nisl. Nullam urna nulla, ullamcorper in, interdum sit amet, gravida ut, risus. Aenean ac enim. In luctus. Phasellus eu quam vitae turpis viverra pellentesque. Duis feugiat felis ut enim. Phasellus pharetra, sem id porttitor sodales, magna nunc aliquet nibh, nec blandit nisl mauris at pede. Suspendisse risus risus, lobortis eget, semper at, imperdiet sit amet, quam. Quisque scelerisque dapibus nibh. Nam enim. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nunc ut metus. Ut metus justo, auctor at, ultrices eu, sagittis ut, purus. Aliquam aliquam.

Etiam pede massa, dapibus vitae, rhoncus in, placerat posuere, odio. Vestibulum luctus commodo lacus. Morbi lacus dui, tempor sed, euismod eget, condimentum at, tortor. Phasellus aliquet odio ac lacus tempor faucibus. Praesent sed sem. Praesent iaculis. Cras rhoncus tellus sed justo ullamcorper sagittis. Donec quis orci. Sed ut tortor quis tellus euismod tincidunt. Suspendisse congue nisl eu elit. Aliquam tortor diam, tempus id, tristique eget, sodales vel, nulla. Praesent tellus mi, condimentum sed, viverra at, consectetuer quis, lectus. In auctor vehicula orci. Sed pede sapien, euismod in, suscipit in, pharetra placerat, metus. Vivamus commodo dui non odio. Donec et felis.

Etiam suscipit aliquam arcu. Aliquam sit amet est ac purus bibendum congue. Sed in eros. Morbi non orci. Pellentesque mattis lacinia elit. Fusce molestie velit in ligula. Nullam et orci vitae nibh vulputate auctor. Aliquam eget purus. Nulla auctor wisi sed ipsum. Morbi porttitor tellus ac enim. Fusce ornare. Proin ipsum enim, tincidunt in, ornare venenatis, molestie a, augue. Donec vel pede in lacus sagittis porta. Sed hendrerit ipsum quis nisl. Suspendisse quis massa ac nibh pretium cursus. Sed sodales. Nam eu neque quis pede dignissim ornare. Maecenas eu purus ac urna tincidunt congue.

Donec et nisl id sapien blandit mattis. Aenean dictum odio sit amet risus. Morbi purus. Nulla a est sit amet purus venenatis iaculis. Vivamus viverra purus vel

magna. Donec in justo sed odio malesuada dapibus. Nunc ultrices aliquam nunc. Vivamus facilisis pellentesque velit. Nulla nunc velit, vulputate dapibus, vulputate id, mattis ac, justo. Nam mattis elit dapibus purus. Quisque enim risus, congue non, elementum ut, mattis quis, sem. Quisque elit.

Maecenas non massa. Vestibulum pharetra nulla at lorem. Duis quis quam id lacus dapibus interdum. Nulla lorem. Donec ut ante quis dolor bibendum condimentum. Etiam egestas tortor vitae lacus. Praesent cursus. Mauris bibendum pede at elit. Morbi et felis a lectus interdum facilisis. Sed suscipit gravida turpis. Nulla at lectus. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Praesent nonummy luctus nibh. Proin turpis nunc, congue eu, egestas ut, fringilla at, tellus. In hac habitasse platea dictumst.

B.2 Lorem 25-27

Vivamus eu tellus sed tellus consequat suscipit. Nam orci orci, malesuada id, gravida nec, ultricies vitae, erat. Donec risus turpis, luctus sit amet, interdum quis, porta sed, ipsum. Suspendisse condimentum, tortor at egestas posuere, neque metus tempor orci, et tincidunt urna nunc a purus. Sed facilisis blandit tellus. Nunc risus sem, suscipit nec, eleifend quis, cursus quis, libero. Curabitur et dolor. Sed vitae sem. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Maecenas ante. Duis ullamcorper enim. Donec tristique enim eu leo. Nullam molestie elit eu dolor. Nullam bibendum, turpis vitae tristique gravida, quam sapien tempor lectus, quis pretium tellus purus ac quam. Nulla facilisi.

Duis aliquet dui in est. Donec eget est. Nunc lectus odio, varius at, fermentum in, accumsan non, enim. Aliquam erat volutpat. Proin sit amet nulla ut eros consectetuer cursus. Phasellus dapibus aliquam justo. Nunc laoreet. Donec consequat placerat magna. Duis pretium tincidunt justo. Sed sollicitudin vestibulum quam. Nam quis ligula. Vivamus at metus. Etiam imperdiet imperdiet pede. Aenean turpis. Fusce augue velit, scelerisque sollicitudin, dictum vitae, tempor et, pede. Donec wisi sapien, feugiat in, fermentum ut, sollicitudin adipiscing, metus.

Donec vel nibh ut felis consectetuer laoreet. Donec pede. Sed id quam id wisi laoreet suscipit. Nulla lectus dolor, aliquam ac, fringilla eget, mollis ut, orci. In pellentesque justo in ligula. Maecenas turpis. Donec eleifend leo at felis tincidunt consequat. Aenean turpis metus, malesuada sed, condimentum sit amet, auctor a, wisi. Pellentesque sapien elit, bibendum ac, posuere et, congue eu, felis. Vestibulum mattis libero quis metus scelerisque ultrices. Sed purus.

Bibliography

[1] D. Adams. The Hitchhiker's Guide to the Galaxy. Del Rey (reprint), 1995. ISBN-13: 978-0345391803.

Master thesis filing card

Student: Milan van der Meer

Title: Learning a Disease Embedding using Generalized Word2Vec Approaches.

UDC: 621.3

Abstract:

Here comes a very short abstract, containing no more than 500 words. LATEX commands can be used here. Blank lines (or the command \par) are not allowed!

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Thesis submitted for the degree of Master of Science in Engineering: Computer Science, specialisation Artificial Intelligence

Thesis supervisor: Prof. dr. Roel Wuyts

Assessors: Ir. Kn. Owsmuch K. Nowsrest

Mentors: Ir. An Assistent S. Dhooghe