$20240917 \ \mathrm{MATH} 3301 \ \mathrm{NOTE} \ 3[1]$

Author: Be $\sqrt{-1}$ maginative, and nothing will be $\frac{d}{dx}$ ifficult!

Email: u3612704@connect.hku.hk;

Phone: +852 5693 2134; +86 19921823546;

Contents

1	Intr	roduction	3
2	Well-ordering Principle		3
	2.1	Writing Proofs with Well-ordering Principle	3
	2.2	Division Algorithm	4
	2.3	Greatest Common Divisor and Least Common Multiple	5
	2.4	Principal Ideal Property	7
3	$Th\epsilon$	$oldsymbol{a}$ Additive Group of Integers Modulo b	11
	3.1	Congruence Relation	11
	3.2	The Order of \mathbb{Z}_b	12
	3.3	The Order of a Subgroup of \mathbb{Z}_b	13

1 Introduction

This note aims at the additive group of integers modulo b.

- (1) First, we assume **Well-ordering Principle** and show its consequences.
- (2) Second, we construct \mathbb{Z}_b and study the order of it and its subgroups.

2 Well-ordering Principle

2.1 Writing Proofs with Well-ordering Principle

Principle 2.1. (Well-ordering Principle)

Let Q be a subset of \mathbb{Z} .

- (1) If Q is nonempty and bounded below, then Q has a unique minimum q_{\min} ;
- (2) If Q is nonempty and bounded above, then Q has a unique maximum q_{max} .

Proposition 2.2. If $n \in \mathbb{N}$ is not a perfect square, then $\sqrt{n} \notin \mathbb{Q}$.[2]

Proof. Assume to the contrary that $\sqrt{n} \in \mathbb{Q}$.

Step 1: Construct the following subset M of \mathbb{Z} .

$$M = \{ m \in \mathbb{Z} : m^2 \le n \}$$

As $1^2 = 1 \le n \implies 1 \in M, M \ne \emptyset$.

As $m > n \ge 1 \implies m^2 > n^2 \ge n \implies m \notin M$, M has an upper bound n.

Hence, according to **Principle 2.1.**, M has a unique maximum m_0 .

As n is not a perfect square, $m_0^2 < n < (m_0 + 1)^2$.

Step 2: Construct the following subset R pf \mathbb{Z} .

$$R = \left\{ p^2 + q^2 \in \mathbb{Z} : p, q \in \mathbb{Z} \text{ and } q \neq 0 \text{ and } \sqrt{n} = \frac{p}{q} \right\}$$

As $\sqrt{n} \in \mathbb{Q} \implies \left[\exists p, q \in \mathbb{Z} \text{ with } q \neq 0, \sqrt{n} = \frac{p}{q} \right] \implies p^2 + q^2 \in R, R \neq \emptyset.$

As $\forall p, q \in \mathbb{Z}$ with $q \neq 0, p^2 + q^2 \geq 1$, R has a lower bound 1.

Hence, according to **Principle 2.1.**, R has a unique minimum $p_0^2 + q_0^2$.

Without loss of generality, we may assume that $p_0, q_0 > 0$, so:

$$\sqrt{n} = \frac{p_0}{q_0} > 0$$
 and $m_0 < \sqrt{n} < m_0 + 1$

Step 3: Construct the following $p_1, q_1 \in \mathbb{Z}$ with $q_1 \neq 0$.

$$(p_1, q_1) = ((\sqrt{n} - m_0)p_0, (\sqrt{n} - m_0)q_0) = (nq_0 - m_0p_0, p_0 - m_0q_0)$$

As
$$p_1^2 + q_1^2 = (\sqrt{n} - m_0)^2 (p_0^2 + q_0^2) < p_0^2 + q_0^2, \ p_1^2 + q_1^2 \notin R$$
.
As $\sqrt{n} = \frac{p_0}{q_0} = \frac{(\sqrt{n} - m_0)p_0}{(\sqrt{n} - m_0)q_0} = \frac{p_1}{q_1}, \ p_1^2 + q_1^2 \in R$.

Hence, we arrive at a contradiction.

To conclude, our assumption is false, and we've proven $\sqrt{n} \notin \mathbb{Q}$.

Quod. Erat. Demonstrandum.

Proposition 2.3.

If $m \in \mathbb{Z}_{>5}$, then no $(c_k)_{k=1}^m$ in $\mathbb{Z}[i]$ generates a regular polygon.[3]

Proof. Assume to the contrary that some $(c_k)_{k=1}^m$ in $\mathbb{Z}[i]$ generates a regular polygon.

Step 1: Construct the following subset R of \mathbb{Z} .

$$R = \{|c_2 - c_1|^2 \in \mathbb{Z} : (c_k)_{k=1}^m \text{ generates a regular polygon}\}$$

As assumed, $R \neq \emptyset$.

As $\forall (c_k)_{k=1}^m$ in $\mathbb{Z}[i], |c_2 - c_1|^2 \geq 1$, R has a lower bound 1.

Hence, according to **Principle 2.1.**, R has a unique minimum $|c_{02} - c_{01}|^2$.

Without loss of generality, assume that $(c_{0k})_{k=1}^m$ is in anticlockwise orientation.

Step 2: Construct the following $(c_{1k})_{k=1}^m$ in $\mathbb{Z}[i]$.

$$c_{1k} = \begin{cases} c_{01} + i(c_{01} - c_{0m}) & \text{if } k = 1; \\ c_{0k} + i(c_{0k} - c_{0(k-1)}) & \text{if } k \neq 1; \end{cases}$$

As $|c_{12}-c_{11}|^2 = \left[1-4\sin\frac{\pi}{m}\left(\cos\frac{\pi}{m}-\sin\frac{\pi}{m}\right)\right]|c_{02}-c_{01}|^2 < |c_{02}-c_{01}|^2, |c_{12}-c_{11}|^2 \notin R$. As $(c_{1k})_{k=1}^m$ generates a regular polygon, $|c_{12}-c_{11}|^2 \in R$.

Hence, we arrive at a contradiction.

To conclude, our assumption is false, and we've proven that no $(c_k)_{k=1}^m$ in $\mathbb{Z}[i]$ generates a regular polygon. Quod. Erat. Demonstrandum.

2.2 Division Algorithm

Theorem 2.4. (Division Algorithm)

Let a, b be two integers with $b \neq 0$.

There exists a unique pair of integers (q, r) with $0 \le r < |b|$, such that a = qb + r.

Proof. Without loss of generality, assume that $b \geq 1$.

We may divide our proof into two parts.

Part 1: In this part, we prove the existence of (q, r).

Construct the following subset Q of \mathbb{Z} .

$$Q = \{ q \in \mathbb{Z} : a - qb \ge 0 \}$$

If $a \ge 0$, then $a - 0b = a \ge 0$, so $0 \in Q$, which implies $Q \ne \emptyset$;

If a < 0, then $a - ab = (-a)(b - 1) \ge 0$, so $a \in Q$, which implies $Q \ne \emptyset$.

As $\forall q \in \mathbb{Z}, q > a \implies a - qb < a - ab = a(1 - b) \le 0 \implies q \notin Q$, Q has an upper

bound a. Hence, according to **Principle 2.1.**, Q has a unique maximum q_0 , so:

$$q_0 \in Q$$
 and $q_0 + 1 \notin Q \implies 0 < a - q_0 b < b$

To conclude, such pair of integers $(q, r) = (q_0, a - q_0 b)$ exists.

Part 2: In this part, we prove the uniqueness of (q, r).

For all such pairs of integers $(q_1, r_1), (q_2, r_2)$:

$$a = q_1b + r_1$$
 and $a = q_2b + r_2 \implies b$ divides $(q_1 - q_2)b = r_2 - r_1 \in (-b, b)$
 $\implies (q_1 - q_2)b = r_2 - r_1 = 0 \implies (q_1, r_1) = (q_2, r_2)$

To conclude, such pair of integers $(q,r) = (q_1,r_1) = (q_2,r_2)$ is unique.

Combine the two parts above, we've proven the theorem.

Quod. Erat. Demonstrandum.

2.3 Greatest Common Divisor and Least Common Multiple

Definition 2.5. (Divisibility Relation)

Let a, b be two integers.

If there exists integer q, such that a = qb, then b divides a.

Definition 2.6. (Association Relation)

Let a_1, a_2 be two integers.

If a_1 divides a_2 and a_2 divides a_1 , then a_1, a_2 are associated.

Definition 2.7. (Common Divisor)

Let A be a nonempty subset of \mathbb{Z} , and b be an integer.

If b divides all integer in A, then b is a common divisor of A.

Definition 2.8. (Common Multiple)

Let A be a nonempty subset of \mathbb{Z} , and b be an integer.

If all integer in A divides b, then b is a common multiple of A.

Definition 2.9. (Greatest Common Divisor)

Let A be a nonempty subset of \mathbb{Z} , and b be an integer. If:

- 1. b is a common divisor of A;
- 2. All common divisor b' of A divides b,

then b is a greatest common divisor of A.

Definition 2.10. (Least Common Multiple)

Let A be a nonempty subset of \mathbb{Z} , and b be an integer. If:

- 1. b is a common multiple of A;
- 2. b divides all common multiple b' of A,

then b is a least common multiple of A.

Proposition 2.11. Let $(a_k)_{k=1}^m$ be a finite list of integers.

- (1) There exists a least common multiple b of $(a_k)_{k=1}^m$;
- (2) For all least common multiples b_1, b_2 of $(a_k)_{k=1}^m, b_1, b_2$ are associated.

Proof. Without loss of generality, assume that each a_k is nonzero.

We may divide our proof into three parts.

Part 1: Construct the following subset B of \mathbb{Z} .

$$B = \{b \in \mathbb{N} : b \text{ is a common multiple of } (a_k)_{k=1}^m \}$$

As $\prod_{k=1}^{m} a_k$ is a common multiple of $(a_k)_{k=1}^m \implies \prod_{k=1}^{m} a_k \in B, B \neq \emptyset$.

As $\forall b \in \mathbb{N}, b \geq 1$, B has a lower bound 1.

Hence, according to **Principle 2.1.**, B has a unique minimum b_0 .

Part 2: Assume to the contrary that b_0 doesn't divide some $b \in B$.

According to **Theorem 2.4.**, there exists a unique pair of integers (q, r) with $1 \le r < b_0$, such that $b = qb_0 + r$. This implies $r = b - qb_0 \in B$, a contradiction.

Hence, our assumption is false, and we've proven that b_0 divides every $b \in B$.

Part 3: For all least common multiples b_1, b_2 of $(a_k)_{k=1}^m$:

 b_1 is a common multiple of $(a_k)_{k=1}^m \implies b_2$ divides b_1 b_2 is a common multiple of $(a_k)_{k=1}^m \implies b_1$ divides b_2

Hence, b_1, b_2 are associated.

Combine the three parts above, we've proven the proposition.

Quod. Erat. Demonstrandum.

Proposition 2.12. Let $(a_{\mu})_{{\mu}\in J}$ be an indexed family of integers.

- (1) There exists a greatest common divisor b of $(a_{\mu})_{\mu \in J}$;
- (2) For all greatest common divisors b_1, b_2 of $(a_{\mu})_{{\mu} \in J}, b_1, b_2$ are associated.

Proof. Without loss of generality, assume that each a_{μ} is nonzero.

We may divide our proof into three parts.

Part 1: Construct the following subset B of \mathbb{Z} .

$$B = \{b \in \mathbb{Z} : b \text{ is a common divisor of } (a_{\mu})_{\mu \in J}\}$$

The quotient set of B under association relation is finite, so according to **Proposition**

2.11., there exists a least common multiple b_0 of B. Each $b \in B$ divides b_0 .

Part 2: For all $\mu \in J$, each $b \in B$ divides a_{μ} , so a_{μ} is a common multiple of B.

According to **Definition 2.10.**, b_0 divides each a_{μ} .

According to **Definition 2.9.**, b_0 is indeed a common divisor of $(a_\mu)_{\mu \in J}$.

Part 3: For all greatest common divisors b_1, b_2 of $(a_{\mu})_{{\mu} \in J}$:

 b_1 is a common divisor of $(a_{\mu})_{\mu \in J} \implies b_1$ divides b_2 b_2 is a common divisor of $(a_{\mu})_{\mu \in J} \implies b_2$ divides b_1

Hence, b_1, b_2 are associated.

Combine the three parts above, we've proven the proposition.

Quod. Erat. Demonstrandum.

Remark: Chen gives this collection of proofs, which circumvents the use of ideal.

Proposition 2.13. Let $(a_k)_{k=1}^m$ be a finite list of nonzero integers, A be the product of each a_k , and g be a greatest common divisor of $(A/a_k)_{k=1}^m$. A/g is a least common multiple of $(a_k)_{k=1}^m$.

Proof. We may divide our proof into two parts.

Part 1: For each a_k , as g divides A/a_k , there exists an integer λ_k , such that $A/a_k = \lambda_k g$, i.e., $A/g = \lambda_k a_k$, so a_k divides A/g. Hence, A/g is a common multiple of $(a_k)_{k=1}^m$.

Part 2: For all common divisor b of $(a_k)_{k=1}^m$, A divides all greatest common divisor of $(bA/a_k)_{k=1}^m$, and bg is one of them. Hence, A/g divides b.

Combine the two parts above, we've proven that A/g is a least common multiple of $(a_k)_{k=1}^m$. Quod. Erat. Demonstrandum.

2.4 Principal Ideal Property

Definition 2.14. (Ideal)

Let I be a subset of \mathbb{Z} . If:

- $(1) \ 0 \in I;$
- (2) $\forall r_1, r_2 \in I, r_1 + r_2 \in I;$
- (3) $\forall \lambda \in \mathbb{Z} \text{ and } r \in I, \lambda r \in I$,

then I is an ideal of \mathbb{Z} .

Definition 2.15. (Set-generated Ideal)

Let A be a nonempty subset of \mathbb{Z} . Define:

gen
$$A = \left\{ \sum_{k=1}^{m} \lambda_k a_k \in \mathbb{Z} : (\lambda_k)_{k=1}^m \text{ in } \mathbb{Z} \text{ and } (a_k)_{k=1}^m \in A \right\}$$

as the ideal generated by A.

Proposition 2.16. Let A be a nonempty subset of \mathbb{Z} .

The ideal generated by A is indeed an ideal of \mathbb{Z} .

Proof. We may divide our proof into three parts.

Part 1: $0 = \sum_{k=1}^{1} 0a$ for some $(0)_{k=1}^{1}$ in \mathbb{Z} and $(a)_{k=1}^{1}$ in A, so $0 \in \text{gen } A$.

Part 2: For all $r_1, r_2 \in \text{gen } A$, without loss of generality, assume that:

$$r_1 = \sum_{k=1}^m \lambda_{1k} a_k, r_2 = \sum_{k=1}^m \lambda_{2k} a_k$$
 for some $(\lambda_{1k})_{k=1}^m, (\lambda_{1k})_{k=1}^m$ in \mathbb{Z} and $(a_k)_{k=1}^m$ in A

This implies $r_1 + r_2 = \sum_{k=1}^{m} (\lambda_{1k} + \lambda_{2k}) a_k \in \text{gen } A$.

Part 3: For all $\lambda \in \mathbb{Z}$ and $r \in \text{gen } A$, assume that:

$$r = \sum_{k=1}^{m} \lambda_k a_k$$
 for some $(\lambda_k)_{k=1}^m$ in \mathbb{Z} and $(a_k)_{k=1}^m$ in A

This implies $\lambda r = \sum_{k=1}^{m} (\lambda \lambda_k) a_k \in \text{gen } A$.

Combine the three parts above, we've proven that gen A is an ideal.

Quod. Erat. Demonstrandum.

Definition 2.17. (Principal Ideal)

Let I be an ideal of \mathbb{Z} .

If some (a) in \mathbb{Z} generates I, then I is principal.

Proposition 2.18. Every ideal I of \mathbb{Z} is principal.

Proof. Without loss of generality, assume that I contains a positive integer.

Assume to the contrary that I is not principal.

Step 1: Construct a subset $B = \mathbb{N} \cap I$ of \mathbb{Z} .

As assumed, $B \neq \emptyset$.

As $\forall r \in \mathbb{N}, r \geq 1$, B has a lower bound 1.

Hence, according to **Principle 2.1.**, B has a unique minimum b_0 .

Step 2: As (b_0) in \mathbb{Z} doesn't generate I, there exists $r \in I$, such that $r \notin \text{gen } (b_0)$.

According to **Theorem 2.4.**, there exists a unique pair of integers (q, r) with $0 \le r < b_0$, such that $r = a + (-q)b_0 \in I$, a contradiction.

Hence, our assumption is false, and we've proven that I is principal.

Quod. Erat. Demonstrandum.

Definition 2.19. (Sum of an Indexed Family of Ideals)

Let $(I_{\mu})_{\mu \in J}$ be an indexed family of ideals of \mathbb{Z} . Define:

$$\sum_{\mu \in J} I_{\mu} = \left\{ \sum_{k=1}^{m} r_{\mu_k} : \text{Each } r_{\mu_k} \text{ in } I_{\mu_k} \right\}$$

as the sum of $(I_{\mu})_{\mu \in J}$.

Proposition 2.20. Let $(I_{\mu})_{{\mu}\in J}$ be an indexed family of ideals of \mathbb{Z} . $\sum_{{\mu}\in J}I_{\mu}$ is indeed an ideal of \mathbb{Z} .

Proof. We may divide our proof into three parts.

Part 1: $0 = \sum_{k=1}^{1} 0 \in \sum_{\mu \in J} I_{\mu}$, where some I_{μ_1} contains 0.

Part 2: For all $r_1, r_2 \in \sum_{\mu \in J} I_{\mu}$, without loss of generality, assume that:

$$r_1 = \sum_{k=1}^m r_{1\mu_k}, r_2 = \sum_{k=1}^m r_{2\mu_k}, \text{ where each } r_{1\mu_k}, r_{2\mu_k} \in I_{\mu_k}$$

This implies $r_1 + r_2 = \sum_{k=1}^{m} (r_{1\mu_k} + r_{2\mu_k}) \in \sum_{\mu \in J} I_{\mu}$.

Part 3: For all $\lambda \in \mathbb{Z}$ and $r \in \sum_{\mu \in J} I_{\mu}$, assume that:

$$r = \sum_{k=1}^{m} r_{\mu_k}$$
, where each $r_{\mu_k} \in I_{\mu_k}$

This implies $\lambda r = \sum_{k=1}^{m} (\lambda r_{\mu_k}) \in \sum_{\mu \in J} I_{\mu}$.

Combine the three parts above, we've proven that $\sum_{\mu \in J} I_{\mu}$ is an ideal of \mathbb{Z} .

Quod. Erat. Demonstrandum.

Proposition 2.21. Let $(a_{\mu})_{{\mu}\in J}$ be an indexed family of integers.

For all $b \in \mathbb{Z}$, the following two statements are logically equivalent:

- (1) (b) generates $\sum_{\mu \in J} \text{gen } (a_{\mu});$
- (2) b is a greatest common divisor of $(a_{\mu})_{{\mu}\in J}$.

Proof. We may divide our proof into two parts.

(1) \Longrightarrow (2): Assume that (b) generates $\sum_{\mu \in J} \text{gen } (a_{\mu})$.

Step 1: b divides each $a_{\mu} \in \text{gen } (b)$, so b is a common divisor of $(a_{\mu})_{\mu \in J}$.

Step 2: For all common divisor b' of $(a_{\mu})_{{\mu}\in J}$, b' divides $\sum_{k=1}^{m} \lambda_{\mu_k} a_{\mu_k} = b$.

The two steps above shows b is a greatest common divisor of $(a_{\mu})_{\mu \in J}$.

(2) \implies (1): Assume that b is a greatest common divisor of $(a_{\mu})_{\mu \in J}$.

Assume that $\sum_{\mu \in J} \text{gen } (a_{\mu}) = \text{gen } (b')$. We've already shown b' is a greatest common divisor of $(a_{\mu})_{\mu \in J}$, so b, b' are associated, which implies (b) generates $\sum_{\mu \in J} \text{gen } (a_{\mu})$.

Combine the two parts above, we've proven the logical equivalence.

Quod. Erat. Demonstrandum.

Definition 2.22. (Intersection of a Finite List of Ideals)

Let $(I_k)_{k=1}^m$ be a finite list of ideals of \mathbb{Z} . Define:

$$\bigcap_{k=1}^{m} I_k = \{r : r \text{ in each } I_k\}$$

as the product of $(I_k)_{k=1}^m$.

Proposition 2.23. Let $(I_k)_{k=1}^m$ be a finite list of ideals of \mathbb{Z} . $\bigcap_{k=1}^m I_k$ is indeed an ideal of \mathbb{Z} .

Proof. We may divide our proof into three parts.

Part 1: $0 \in \bigcap_{k=1}^{m} I_k$, where 0 in each I_k .

Part 2: For all $r_1, r_2 \in \bigcap_{k=1}^m I_k$, each I_k contains r_1, r_2 ,

so each I_k contains $r_1 + r_2$, which implies $r_1 + r_2 \in \bigcap_{k=1}^m I_k$.

Part 3: For all $\lambda \in \mathbb{Z}$ and $r \in \bigcap_{k=1}^{m} I_k$, each I_k contains r,

so each I_k contains λr , which implies $\lambda r = \in \bigcap_{k=1}^m I_k$.

Combine the three parts above, we've proven that $\bigcap_{k=1}^{m} I_k$ is an ideal of \mathbb{Z} .

Quod. Erat. Demonstrandum.

Proposition 2.24. Let $(a_k)_{k=1}^m$ be a finite list of integers.

For all $b \in \mathbb{Z}$, the following two statements are logically equivalent:

- (1) (b) generates $\bigcap_{k=1}^{m}$ gen (a_k) ;
- (2) b is a least common multiple of $(a_k)_{k=1}^m$.

Proof. We may divide our proof into two parts.

(1) \implies (2): Assume that (b) generates $\bigcap_{k=1}^{m}$ gen (a_k) .

Step 1: Each a_k divides $b \in \text{gen } (a_k)$, so b is a common multiple of $(a_k)_{k=1}^m$.

Step 2: For all common multiple b' of $(a_k)_{k=1}^m$, b divides $b' \in \text{gen } (b)$.

The two steps above shows b is a least common multiple of $(a_k)_{k=1}^m$.

(2) \Longrightarrow (1): Assume that b is a least common multiple of $(a_k)_{k=1}^m$.

Assume that $\bigcap_{k=1}^{m} \text{gen } (a_{\mu}) = \text{gen } (b')$. We've already shown b' is a least common multiple of $(a_k)_{k=1}^{m}$, so b, b' are associated, which implies (b) generates $\bigcap_{k=1}^{m} \text{gen } (a_{\mu})$.

Combine the two parts above, we've proven the logical equivalence.

Quod. Erat. Demonstrandum.

3 The Additive Group of Integers Modulo b

3.1 Congruence Relation

Definition 3.1. (Congruence Relation)

Let a_1, a_2, b be three integers.

If b divides $a_1 - a_2$, then a_1 is congruent to a_2 modulo b.

Proposition 3.2. Let b be an integer.

 $\equiv \pmod{b}$ is an equivalence relation on \mathbb{Z} .

Proof. We may divide our proof into three parts.

Part 1: For all $a \in \mathbb{Z}$:

$$b ext{ divides } a - a \implies a \equiv a \pmod{b}$$

Part 2: For all $a_1, a_2 \in \mathbb{Z}$:

$$a_1 \equiv a_2 \pmod{b} \implies b \text{ divides } a_1 - a_2$$

 $\implies b \text{ divides } a_2 - a_1 \implies a_2 \equiv a_1 \pmod{b}$

Part 3: For all $a_1, a_2, a_3 \in \mathbb{Z}$:

$$a_1 \equiv a_2 \pmod{b}$$
 and $a_2 \equiv a_3 \pmod{b} \implies b$ divides $a_1 - a_2, a_2 - a_3 \implies b$ divides $a_1 - a_3 \implies a_1 \equiv a_3 \pmod{b}$

Combine the three parts together, we've proven that $\equiv \pmod{b}$ is an equivalence relation on \mathbb{Z} . Quod. Erat. Demonstrandum.

Definition 3.3. (Congruence Class)

Let a, b be two integers. Define:

$$[a]_b = \{a' \in \mathbb{Z} : a' \equiv a \pmod{b}\}\$$

as the congruence class of a modulo b

Definition 3.4. (The Additive Group of Integers Modulo b)

Let b be an integer.

The set \mathbb{Z}_b of all congruence classes modulo b forms a group under:

$$+: \mathbb{Z}_b \times \mathbb{Z}_b \to \mathbb{Z}_b, [a_1]_b + [a_2]_b = [a_1 + a_2]_b$$

Define this group as the additive group of integers modulo b.

Proof. We may divide our proof into four parts.

Part 1: For all inputs $([a_1]_b, [a_2]_b), ([a'_1]_b, [a'_2]_b) \in \mathbb{Z}_b \times \mathbb{Z}_b$:

$$([a_1]_b, [a_2]_b) = ([a'_1]_b, [a'_2]_b) \implies a_1 \equiv a'_1 \pmod{b} \text{ and } a_2 \equiv a'_2 \pmod{b}$$

$$\implies a_1 + a_2 \equiv a'_1 + a'_2 \pmod{b} \implies [a_1 + a_2]_b = [a'_1 + a'_2]_b$$

Hence, + is a well-defined binary operation on \mathbb{Z}_b .

Part 2: For all $[a_1]_b, [a_2]_b, [a_3]_b \in \mathbb{Z}_b$:

$$([a_1]_b + [a_2]_b) + [a_3]_b = [a_1 + a_2]_b + [a_3]_b$$

$$= [(a_1 + a_2) + a_3]_b$$

$$= [a_1 + (a_2 + a_3)]_b$$

$$= [a_1]_b + [a_2 + a_3]_b = [a_1]_b + ([a_2]_b + [a_3]_b)$$

Hence, + is associative.

Part 3: There exists $[0]_b \in \mathbb{Z}_b$, such that for all $[a]_b \in \mathbb{Z}_b$:

$$[0]_b + [a]_b = [0 + a]_b = [a]_b$$

 $[a]_b + [0]_b = [a + 0]_b = [a]_b$

Hence, $[0]_b$ is an identity under +.

Part 4: For all $[a]_b \in \mathbb{Z}_b$, there exists $[-a]_b \in \mathbb{Z}_b$, such that:

$$[-a]_b + [a]_b = [(-a) + a]_b = [0]_b$$
$$[a]_b + [-a]_b = [a + (-a)]_b = [0]_b$$

Hence, each $[a]_b$ has an inverse $[-a]_b$ under +.

Combine the four parts above, we've proven that \mathbb{Z}_b forms a group under +.

Quod. Erat. Demonstrandum.

3.2 The Order of \mathbb{Z}_b

Proposition 3.5. Let b be a positive integer.

$$\mathbb{Z}_b = \{ [r]_b \}_{r=0}^{b-1}$$

Proof. It suffices to prove " \subseteq " inclusion.

For all $[a]_b \in \mathbb{Z}_b$, according to **Theorem 2.4.**, there exists a unique pair of integers (q,r) with $0 \le r < b$, such that a-r=qb, so $a \equiv r \pmod{b}$, which implies $[a]_b = [r]_b \in \{[r]_b\}_{r=0}^{b-1}$. Hence, $\mathbb{Z}_b \subseteq \{[r]_b\}_{r=0}^{b-1}$. Quod. Erat. Demonstrandum.

Proposition 3.6. Let b be a positive integer.

$$|\mathbb{Z}_b| = b$$

Proof. For all $[r_1]_b, [r_2]_b$ with $0 \le r_1, r_2 < b$:

$$[r_1]_b = [r_2]_b \implies r_1 \equiv r_2 \pmod{b}$$

 $\implies b \text{ divides } r_1 - r_2 \in (-b, b) \implies r_1 = r_2$

Hence, $|\mathbb{Z}_b| = |\{[r]_b\}_{r=0}^{b-1}| = b$. Quod. Erat. Demonstrandum.

3.3 The Order of a Subgroup of \mathbb{Z}_b

Proposition 3.7. Let b be a positive integer.

For all subgroup H of \mathbb{Z}_b , there exists $c \in \mathbb{N}$, such that $H = \{[qc]_b\}_{q \in \mathbb{Z}}$.

Proof. It suffices to prove " \subseteq inclusion".

Without loss of generality, assume that there exists $c \in \mathbb{N}$, such that $[c]_b \in H$.

Step 1: Construct the following subset C of \mathbb{Z} .

$$C = \{c \in \mathbb{N} : [c]_b \in H\}$$

As assumed, $C \neq \emptyset$.

As $\forall c \in \mathbb{N}, c > 1$, C has a lower bound 1.

Hence, according to **Principle 2.1.**, C has a unique minimum c_0 .

Step 2: Assume to the contrary that some $[a]_b \in H$ is not in $\{[qc_0]_b\}_{a \in \mathbb{Z}}$.

A direct consequence is the equation $xb + yc_0 = a$ has no integral solution (x, y).

This means $a \notin \text{gen } (b, c_0) = \text{gen } (g)$, where $g \leq c_0$ is a positive greatest common divisor of (b, c_0) . According to **Theorem 2.4.**, there exists a unique pair of integers (q, r) with $0 \leq r < g \leq c_0$, such that a = qg + r.

As $g = xb + yc_0$ for some $x, y \in \mathbb{Z} \implies [g]_b = y[c_0]_b \in H$, $[r]_b = [a]_b + (-q)[g]_b \in H$.

As $1 \le r < c_0$, $[r]_b \notin H$, a contradiction.

Hence, our assumption is false, and we've proven that all $[a]_b \in H$ is in $\{[qc_0]_b\}_{q \in \mathbb{Z}}$. Quod. Erat. Demonstrandum.

Proposition 3.8. Let b be a positive integer.

For all subgroup H of \mathbb{Z}_b , there exists $c \in \mathbb{N}$, such that $H = \{[qc]_b\}_{q=0}^{b/g-1}$, where g is a greatest common divisor of (b, c).

Proof. It suffices to prove " \subseteq inclusion".

According to **Proposition 4.1.**, there exists $c \in \mathbb{N}$, such that $H = \{[qc]_b\}_{q \in \mathbb{Z}}$.

For all $[qc]_b \in H$, according to **Theorem 2.4.**, there exists a unique pair of integers (q',c') with $0 \le c' < b/g$, such that $q = \lambda b/g + q'$.

This implies $[qc]_b = [q'c + b\lambda c/g]_b = [q'c]_b \in \{[qc]_b\}_{q=0}^{b/g-1}$. Hence, $H \subseteq \{[qc]_b\}_{q=0}^{b/g-1}$. Quod. Erat. Demonstrandum.

Proposition 3.9. Let b, c be a positive integers. The order of the subgroup $\{[qc]_b\}_{q=0}^{b/g-1}$ of \mathbb{Z}_b is b/g, where g is a greatest common divisor of (b, c).

Proof. For all $[q_1c]_b, [q_2c]_b$ with $0 \le q_1, q_2 < b/g$:

$$[q_1c]_b = [q_2c]_b \implies q_1c \equiv q_2c \pmod{b}$$

$$\implies q_1c - q_2c = (q_1 - q_2)c \in (-bc/g, bc/g) \text{ is a common multiple of } (b, c)$$

$$\implies q_1 = q_2$$

Hence, $|\{[qc]_b\}_{q=0}^{b/g-1}| = b/g$. Quod. Erat. Demonstrandum.

References

- [1] H. Ren, "Template for math notes," 2021.
- [2] 常庚哲 and 史济怀, 中科大数学分析教程第 3 版. 中国科学技术大学出版社, 2021.
- [3] 德安城, "如何证明平面内任意 $n(n \in \mathbb{Z}_{\geq 5})$ 个整点都不能组成正 n 边形? ," 2023. [Online]. Available: https://www.zhihu.com/question/25304120?sort=created