

Data Mining: US Census income data

Pol Casacuberta He Chen Eric Hurtado Tommaso Patriti Alexandru-Ilie Popa

Index

- 1. Overview
- 2. Data Mining process
- 3. Descriptive analysis
- 4. Preprocessing
- 5. PCA
- 6. Clustering
- 7. Profiling
- 8. Conclusions

Overview

Goal

 Identify patterns, relationships, and correlations within the data and draw conclusions about the factors that may impact income.

Original Dimension

- 199,523 individuals (rows)
- 42 features (columns)

After Sampling and Data Selection

- 20,000 individuals (rows)
- 28 features (columns)

Data Mining Process

Descriptive Analysis Univariate Analysis

Table 6.40. income frequency and proportion table.

Bivariate analysis

Preprocessing

1. Feature selection

Remove features that do not contribute any information to the topic

2. Prepare and cleaning data

- Convert missing data value
- Categorical value to factors
- Set levels

Preprocessing

3. Missing data: all categorical data

Group	Description	Strategy
1	less than 10%	try to impute or create new category
2	Above 50%	remove

Preprocessing

Group 1: hispanic origin, country of birth self

Group 2: class of worker, major industry code, major occupation code, live in this house 1 year ago ...

Group 3: enrolled in edu inst last wk, member of a labor union, ...

- Similar amount of variance

- 5 components =~ 80%
- We choose 5 PCs to represent our data

- Most important in y-axis:
 - Dividends from stocks
 - Capital gains
- Most important in x-axis:
 - weeks worked in a year
 - number of persons worked for the employer
- Positive correlation between:
 - capital gains, dividends from stocks and age
- Negative correlation y-axis
 - Wage per hour and age

- Most observations are clustered around the center of the plot
- Some outliers

- detailed.household.and.family.stat
- Nonfiler: identifies taxpayers who have not filed a federal or state individual income tax return for the tax year under review

- Centroids for the factors with respect to the principal components
- Widowed: their ages tend to be older
- Capital loses seem to be highly related with higher ages

Clustering

method="ward.D2" metric = "gower"

1	2
9923	10077

Clustering

Cluster 1 = Age: 0-17 -> 65-90

Cluster 2 = Age: 18-64

Clustering

Profiling

Profiling

Final conclusions

- Two distinct clusters: Workers and non-workers
- Dividends from stocks and capital gains
- Some Categorical variables such as industry are predominantly "not considered"
- Income, individuals with greater than \$50,000 present less variability with respect to age
- Individuals who identify as white have a higher wage per hour compared to other races
- The grand majority of individuals have an income of less than \$50.000 a significant amount of them are either in the armed forces or are children