progress1

April 21, 2022

```
[]: import sys
     import numpy as np
     import pandas as pd
     import os
     import seaborn as sns
     import matplotlib.pyplot as plt
     import statsmodels.formula.api as sm
     from sklearn import linear_model
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.metrics import classification_report
     from sklearn.model_selection import train_test_split
[]: data = pd.read_excel(r"../../data/Rice_MSC_Dataset.xlsx")
     data.to_csv("../../data/rice_msc_dataset.csv", index=False)
[]:
     data.head()
[]:
        AREA
             PERIMETER MAJOR_AXIS MINOR_AXIS
                                                  ECCENTRICITY
                                                                  EQDIASQ
                                                                           SOLIDITY
     0 7805
                437.915
                           209.8215
                                         48.0221
                                                        0.9735
                                                                  99.6877
                                                                             0.9775
     1 7503
                340.757
                           138.3361
                                         69.8417
                                                        0.8632
                                                                  97.7400
                                                                             0.9660
     2 5124
                314.617
                           141.9803
                                         46.5784
                                                        0.9447
                                                                  80.7718
                                                                             0.9721
                           201.4386
                                                                 100.8622
     3 7990
                437.085
                                                        0.9671
                                         51.2245
                                                                             0.9659
     4 7433
                342.893
                           140.3350
                                         68.3927
                                                        0.8732
                                                                  97.2830
                                                                             0.9831
        CONVEX_AREA
                     EXTENT
                             ASPECT_RATIO
                                               ALLdaub4L
                                                          ALLdaub4a
                                                                     ALLdaub4b
     0
               7985
                     0.3547
                                    4.3693
                                                113.9924
                                                             65.0610
                                                                        59.5989
     1
               7767
                    0.6637
                                    1.9807
                                                105.7055
                                                             64.3685
                                                                        62.2084
     2
                                    3.0482 ...
               5271 0.4760
                                                109.7155
                                                             62.6423
                                                                        58.7439
     3
               8272
                     0.6274
                                    3.9325
                                                116.5405
                                                             64.9069
                                                                        60.2562
     4
               7561 0.6006
                                                107.7502
                                                             64.7071
                                                                        61.3549
                                    2.0519 ...
                   ALLdaub4Cb ALLdaub4Cr ALLdaub4XX ALLdaub4YY ALLdaub4ZZ
        ALLdaub4Y
     0
         104.8552
                      67.8779
                                   63.0828
                                                0.3673
                                                             0.3793
                                                                         0.4733
     1
          96.8375
                      65.5371
                                   63.5832
                                                0.3014
                                                            0.3144
                                                                         0.3641
     2
         100.2352
                                                0.3233
                                                            0.3445
                                                                         0.4448
                      68.9753
                                   59.8342
         107.2560
                      67.3298
                                   63.2237
                                                0.3880
                                                            0.4020
                                                                         0.4904
```

```
4
                     66.2048
         98.8704
                                  63.5378
                                               0.3184
                                                           0.3303
                                                                       0.3928
         CLASS
     0 Basmati
     1 Arborio
     2 Jasmine
     3 Basmati
     4 Arborio
     [5 rows x 107 columns]
[]: # Sprawdzamy czy są jakieś missing values
     data.isnull().values.any() # Sq.
     ile_brakuje = data.isnull().sum()
     print(ile_brakuje)
    AREA
                    0
    PERIMETER
                    0
    MAJOR_AXIS
                    0
    MINOR_AXIS
                    0
    ECCENTRICITY
                    0
    ALLdaub4Cr
                    0
    ALLdaub4XX
    ALLdaub4YY
                    0
    ALLdaub4ZZ
                    0
    CLASS
                    0
    Length: 107, dtype: int64
[]: ile_brakuje[ile_brakuje > 0]
[]: skewB
                   6
    kurtosisB
                   6
     skewCb
                   3
     skewCr
    kurtosisCb
                  3
    kurtosisCr
     dtype: int64
[]: # Usunę wiersze z brakującymi wartosciami.
     data2 = data.dropna() # Nowe dane
     len(data.index) - len(
        data2.index
     ) # Czyli było 8 wierszy z brakującymi zmiennymi
     data2 = data2.reset_index()
```



```
20000 - 17500 - 15000 - 10000 - 7500 - 10000 - 7500 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 -
```

[]: ax2 = sns.boxplot(x="CLASS", y="AREA", data=Ipsala, color="#99c2a2")

[]: ax = sns.boxplot(x="CLASS", y="AREA", data=data_powierzchnia, color="#99c2a2")

Boxplot stworzony dla wszystkich typów ryżu wskazuje na to, że są istotneu

różnice w powierzchni jeżeli chodzi o Ipsala, Karacadag, Jasmine,

natomiast zbadanie powierzchni nie odróżni nam od siebie Basmati i Arborio.


```
[]: data_trwalosc = data2[["SOLIDITY", "CLASS"]]

box_trwalosc = sns.boxplot(
    x="CLASS", y="SOLIDITY", data=data_trwalosc, color="#99c2a2"
)
```


	precision	recall	f1-score	support
Arborio	0.48	0.49	0.48	1525
Basmati	0.52	0.51	0.52	1506
Ipsala	0.98	0.98	0.98	1432
Jasmine	0.82	0.83	0.82	1460
Karacadag	0.73	0.71	0.72	1577
accuracy			0.70	7500
macro avg	0.70	0.70	0.70	7500
weighted avg	0.70	0.70	0.70	7500