HW4 (6 points)

Tools:

• iperf: https://iperf.fr/iperf-doc.php

Setup:

1) Setup a CORE scenario as shown below

Part 1: Analyzing impact of delay on TCP (3 points)

1) Set the delay of the link from n1 to n2 to 100ms as shown below

2) Run the CORE scenario

- 3) Use iperf to run a TCP server on port 8080 on n2
 - a. Iperf -s -p 8080
- 4) Use iperf to run a TCP client connecting to n1. Use bandwidth of 1Mbps
 - a. Iperf -c 10.0.0.21 -p 8080 -b 1000000
- 5) Report the bandwidth you got as reported at the server
 - a. 944 Kbits/sec

- 6) Repeat 4-5 for link delay values 200ms, 400ms, 800ms, 1600ms
 - a. 200
 - i. 822
 - b. 400
 - i. 772
 - c. 800
 - i. 554
 - d. 1600
 - i. 283
- 7) Create a bar chart that has delay value in x-axis starting at (100ms to 1600ms) and bandwidth in Kbps in the y-axis

8) Create another bar chart that has delay value in x-axis starting at (100ms to 1600ms) and ratio of available bandwidth used by TCP in the y-axis

- 9) Comment on the effect of delay on TCP performance. Explain how TCP is affected by increase in delay.
 - a. Higher delay causes lower ratio of bandwidth used by TCP. The higher delay is, the lower TCP performs. And there's a significant drop of ratio between 400ms and 800ms.
 - b. When delay is high, the sender will need to wait more time before a ack is received. And the TCP window will be used up more often in higher delays. So given a rather small TCP window size and a higher target bandwidth, the higher the delay is, the more time sender will remain idle. Thus the lower the use ratio of bandwidth will be.

Part 2: Analyzing impact of delay and loss on TCP (3 points)

Repeat part 1 but add a 10% loss to the link for all delay values

- 1) Repeat 4-5 for link delay values 100ms, 200ms, 400ms, 800ms, 1600ms
 - a. 100
 - i. 304
 - b. 200
 - i. 103
 - c. 400
 - i. 105
 - d. 800
 - i. 51.4
 - e. 1600
- 2) Create a bar chart that has delay value in x-axis starting at (100ms to 1600ms) and bandwidth in Kbps in the y-axis

3) Create another bar chart that has delay value in x-axis starting at (100ms to 1600ms) and ratio of available bandwidth used by TCP in the y-axis

- 4) Comment on the effect of delay on TCP performance. Explain how TCP is affected by increase in delay.
 - a. Introduction of loss causes worse performance of TCP
 - b. This should be the case of congestion control. When loss occurs, the congestion control in TCP drops it's window size by half. So in a high loss rate environment, the TCP tend to have a bad performance due to it's default congestion control policy