Features Groups - Inverted

Import

```
In [1]: import pandas as pd
from pycaret.classification import *
import numpy as np
```

Functions and Constants

```
In [2]: # set target feature
        target label = 'tuple'
        # test imfuance over rf will satesfy
        learning models = ['rf']
        # define numeric features which pycaret did not recognized
        num_features = ['min_packet_size', 'min_fpkt', 'min_bpkt']
        # set up features groups
        SSL_features = ['fSSL_session_id_len', 'fSSL_num_extensions', 'fcipher_suites'
        , 'ssl_v', ]
        size_features = ['size_histogram_1','size_histogram_2','size_histogram_3',
                          'size_histogram_4','size_histogram_5','size_histogram_6'
                          'size_histogram_7','size_histogram_8','size_histogram_9', 'si
        ze_histogram_10']
        peak_features = ['fpeak_features_1','fpeak_features_2','fpeak_features_3',
                          'fpeak_features_4', 'fpeak_features_5', 'fpeak_features 6',
                          'fpeak_features_7', 'fpeak_features_8', 'fpeak_features_9',
                          'bpeak_features_1', 'bpeak_features_2', 'bpeak_features_3',
                          'bpeak_features_4', 'bpeak_features_5', 'bpeak_features_6',
                          'bpeak_features_7', 'bpeak_features_8', 'bpeak_features_9']
        TCP_features = ['SYN_tcp_scale', 'SYN_tcp_winsize']
        common_features = ['packet_count', 'fpackets', 'bpackets', 'fbytes', 'bbytes',
        'num_keep_alive', 'mean_fttl']
        stat_features = ['min_packet_size', 'max_packet_size', 'mean_packet_size',
                          'sizevar', 'std_fiat', # 'min_fiat', 'min_biat',
                         'max_fiat','max_biat','std_biat','mean_fiat','mean_biat',
                         'min_fpkt','min_bpkt','max_fpkt','max_bpkt','std_fpkt','std_bp
        kt','mean_fpkt','mean_bpkt']
        time features = []
        forward features = ['fpeak features 1','fpeak features 2','fpeak features 3',
         'fpeak_features_4',
                             'fpeak features_5', 'fpeak_features_6', 'fpeak_features_7',
         'fpeak_features_8',
                             'fpeak features_9','std_fiat','fpackets','fbytes','max_fia
        t', #'min_fiat'
                             'mean fiat', 'min fpkt', 'max fpkt', 'std fpkt', 'mean fpkt',
         'fcipher_suites','ssl_v','mean_fttl']
        backward_features = ['bpeak_features_1','bpeak_features_2','bpeak_features_3',
                             'bpeak_features_4','bpeak_features_5','bpeak_features_6',
                              'bpeak features 7', 'bpeak features 8', 'bpeak features 9',
                              'bpackets', 'bbytes', 'max_biat', 'std_biat', 'mean_biat',
        #'min_biat'
                              'min_bpkt','max_bpkt','std_bpkt','mean_bpkt']
        both_features = ['fSSL_session_id_len','fSSL_num_extensions','SYN_tcp_scale',
                          'SYN_tcp_winsize', 'size_histogram_1', 'size_histogram_2',
                          'size_histogram_3','size_histogram_4','size_histogram_5',
                          'size_histogram_6','size_histogram_7','size_histogram_8',
                          'size_histogram_9','size_histogram_10','packet_count',
                          'min_packet_size','max_packet_size','mean_packet_size','sizev
        ar','num_keep_alive']
```

Read Data

Setup Classifier and Compare

	Model		Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
	0	Random Forest Classifier	0.9724	0.0000	0.8674	0.9721	0.9713	0.9677	0.9678	5.1242
Out[4]:	0,		jobs=-1)	RandomF	ForestC	lassif	ccp cla cri max max max mir mir mir mir n_e oob rar ver	o_alpha ass_wei aterion a_depth a_featu a_leaf_ a_sampl a_impur a_sampl a_sampl a_sampl	=0.0, ght=Nor ='gini' =None, res='au nodes=N es=None ity_dec ity_spi es_lead es_split _fract ors=10, =False, ate=209	uto', None, e, crease=0. Lit=None, f=1, it=2, cion_leaf , n_jobs=
		n_								

Create new column for any features

```
In [5]: invert_features_len = len(forward_features)
    for i in range(0,invert_features_len-3):
        data[forward_features[i]] = data[forward_features[i]] - data[backward_feat
        ures[i]]
    for i in peak_features:
        data = data.drop(i, axis=1)
    for i in backward_features:
        if i in data.columns:
            data = data.drop(i, axis=1)
```

_	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)	
-	Random Forest Classifier	0.9693	0.0000	0.8626	0.9688	0.9678	0.9641	0.9641	4.5093	

```
Out[6]: OneVsRestClassifier(estimator=RandomForestClassifier(bootstrap=True,
                                                                ccp_alpha=0.0,
                                                                class_weight=None,
                                                                criterion='gini',
                                                               max depth=None,
                                                               max features='auto',
                                                               max leaf nodes=None,
                                                               max samples=None,
                                                               min_impurity_decrease=0.
        0,
                                                               min impurity split=None,
                                                               min_samples_leaf=1,
                                                               min samples split=2,
                                                               min weight fraction leaf
        =0.0,
                                                                n_estimators=10, n_jobs=
         -1,
                                                                oob score=False,
                                                                random state=1066,
                                                                verbose=0,
                                                               warm_start=False),
                             n_{jobs=-1}
```

```
In [ ]:
```