

Project Management for Managers

Lec – 10 Methods of Project Selection (MCDM – I)

Dr. M.K. Barua

Department of Management Indian Institute of Technology Roorkee

MCDM

- 1) Multi-Attribute Utility Theory,
- 2) Analytic Hierarchy Process,
- 3) Fuzzy Set Theory,
- 4) Case-based Reasoning,
- 5) Data Envelopment Analysis,
- 6) SMART (Simple Multi-Attribute Rating Technique),
- 7) Goal Programming,
- 8) ELECTRE (ELimination and Choice Translating Reality),
- 9) PROMETHEE (Preference ranking organization method for enrichment evaluation
- 10) Simple Additive Weighting, and
- 11) TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution)

Goal programming??:

In LP, only one dimension of (Z), organizations often have several objectives (conflicting) and not measured in same units.

GP asks mgt to rank objectives.

GP tries to minimize deviations from the targets.

This is a single goal (profit) problem. Let

Du = Amount by which profit goal is underachieved.

Do = Amount by which profit goal is overachieved.

 $\overline{\text{Minimize } Z} = \text{Du (underachievement of profit goal)}$

ST
$$120x1 + 90x2 + Du - Do = 2100$$

$$6x1 + 3x2 <= 90$$

$$3x1 + 6x2 <= 72$$

$$x1,x2,Du,Do >= 0$$

$$6x1 + 3x2 + s1 = 90$$

$$3x1+6x2+s2=72$$

$$x1,x2,s1,s2>=0$$

This is a single goal (profit) problem. Let

Du = Amount by which profit goal is underachieved.

Do = Amount by which profit goal is overachieved.

 $\overline{\text{Minimize } Z} = \text{Du (underachievement of profit goal)}$

ST
$$120x1 + 90x2 + Du - Do = 2100$$

After using simplex method, x1=12, x2=6, Du =120, Means actual profit earned is Rs= 2100-120=1980, underachieved by Rs 120.

Ex: If the company sets two equally ranked goals, one to reach a profit of Rs 1500 and the other to meet the mobile goal of 10 units, find the optimal solution.????????

Solution:

Dup= Amount by which profit goal is underachieved

Dop= Amount by which profit goal is overachieved

Dum= Amount by which mobile goal is underachieved

Dom= Amount by which mobile goal is overachieved

Minimize Z = Dup+Dum

ST
$$120x1 + 90x2 + Dup-Dop = 1500$$

$$x1+Dum-Dom = 10$$

$$6x1 + 3x2 < = 90$$

$$0X1+3X2 < -90$$

$$3x1 + 6x2 < = 72$$

x1,x2,Dup,Dop,Dum,Dom >= 0

Solution: Dup= Amount by which profit goal is underachieved Dop= Amount by which profit goal is overachieved Dum= Amount by which mobile goal is underachieved Dom= Amount by which mobile goal is overachieved Minimize Z = Dup+Dum

After using simplex method, x1=25/2, Dom = 5/2, Means profit goal of Rs= 1500 achieved, since both Dup and Dop do not appear in final table.

Analytic Hierarchy Process (AHP)

- Analytic Hierarchy Process is a multi-criteria decision making (MCDM) technique was developed by **Saaty** in 2000 year.
- The analytic hierarchy process (AHP) is also a structured technique for helping people deal with organizing and analyzing **complex decisions**.
- AHP is also a measurement theory that priorities the hierarchy and **consistency of judgmental data** provided by a group of decision makers.
- The AHP provides a **comprehensive and rational** framework **for structuring a problem**, for representing and quantifying its elements, for relating those elements to overall goals, and for evaluating alternative solutions

i. Establish the hierarchy structure

ii. Various hierarchies' elements weight computation

- ✓ Establishment of pair-wise comparison matrix
 - ✓ The relative importance of two elements is rated using a scale with the values 1, 3, 5, 7, and 9.

Equally Preferred	Moderately Preferred	Strongly Preferred	Extremely Preferred	Absolutely Preferred
1	3	5	7	9

✓ 2, 4, 6, and 8 indicate intermediate value.

$$A = [a_{ij}] = \begin{bmatrix} C_1 & C_2 & C_n \\ C_1 & a_{12} & \cdots & a_{1n} \\ C_2 & 1 & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ C_n & 1/a_{1n} & 1/a_{2n} & \cdots & 1 \end{bmatrix}$$

Where
$$a_{ij} = 1$$
 and $a_{ij} = 1/a_{ji} = 1, 2, \dots n$.

$$A = [a_{ij}] = \begin{bmatrix} C_1 & C_2 & C_n \\ w_1/w_1 & w_1/w_2 & \cdots & w_1/w_n \\ w_2/w_1 & w_2/w_2 & \cdots & w_2/w_1 \\ \vdots & \vdots & & \vdots \\ w_n/w_1 & w_n/w_2 & \cdots & w_n/w_n \end{bmatrix}$$

Where
$$W_i / W_i = a_{ii}$$

• Eigen value and eigen vector calculation

$$\lambda_{max} = \sum_{j=1}^{n} a_{ij} \frac{W_j}{W_i}$$

Consistency test

$$\frac{\lambda \max - n}{n-1}$$

 \checkmark Random index values were already given by Saaty where

n=1	n=2	n=3	n=4	n=5	n=6	n=7	n=8
RI=0	RI=0	RI=0.52	RI=0.89	RI=1.11	RI=1.25	RI=1.35	RI=1.4

iii. Overall hierarchy weight computation

Figure: Hierarchical structure to evaluate the supply chain performance evaluation of automotive industries

	Quality	Delivery	Cost	Flexibility	Innovation
Quality	1	3	1	1/3	9
Delivery		1	1/3	1/5	6
Cost			1	1/4	7
Flexibility				1	8
Innovation					1

Pair-wise comparison matrix of respondents (Either consensus or highest frequency) for all criteria.

Respondents	CI	CR	Respondents	CI	CR
R_1	0.07749	0.06918	R_9	0.08364	0.07467
R_2	0.07986	0.07131	R ₁₀	0.06853	0.06119
R_3	0.06862	0.06127	R ₁₁	0.03277	0.02926
R_4	0.09214	0.08227	R ₁₂	0.08052	0.07189
R_5	0.08884	0.07933	R ₁₃	0.10024	0.08950
R_6	0.09095	0.08120	R ₁₄	0.08556	0.07640
R ₇	0.11118	0.09927	R ₁₅	0.04887	0.04363
R_8	0.10366	0.09255	R ₁₆	0.09692	0.08653

Table: Consistency index (CI) and consistency ratio (CR) of all respondents

Criteria	Weights of Criteria	Rank
Quality = C_1	0.2937	2
Delivery = C_2	0.1995	3
$Cost = C_3$	0.1533	4
Flexibility = C_4	0.3036	1
Innovation = C_5	0.0499	5

Table: Relative weights of the criteria and global priority

