Learning from Data 1. Overview

© Prakash Ishwar Spring 2017

Machine Learning

- Era of "BIG" data deluge:
 - Almost 1 trillion websites
 - 1 hour of video uploaded to YouTube every second
 - Walmart handles 1 million transactions per hour
 - Genomes of 1000s people sequenced, each 3.8 billion base pairs long...
- Need automated methods of data analysis
- Machine Learning = set of methods that can:
 - automatically learn regularities in observed data and
 - use them to make accurate decisions about unobserved data

Applications

- Detection: spam, fraud (credit card), network intrusion, face (in images), motion (in video),...
- Recognition: characters, speech, face, actions,...
- Prediction: weather conditions, stock prices, target position, drug-response, missing values,...
- Clustering: image segmentation (medicine/ astronomy), gene families, communities in social networks,...

Connections

Skill Set

- Probability
- Optimization
 - Linear Algebra
 - Multivariate Calculus
- Algorithms
- Software

Main classes of learning problems

- Supervised (preditive) learning: given examples with labels, predict labels for all unseen examples
 - Classification: label = category
 - Regression: label = quantity (real value)
 - Ranking: label = order (relative position)

 \mathbf{x} = facial geometry features y = gender label

Main classes of learning problems

- Unsupervised (descriptive) learning: given unlabeled examples, find hidden structure
 - (Probability) Density Estimation
 - Clustering: partition examples into groups that are intrinsically similar and extrinsically dissimilar

Dimensionality Reduction:
 decrease the number of
 variables used to represent
 examples while preserving
 some properties of the
 original representation

Other learning scenarios

- Semi-supervised learning: given both labeled and unlabeled examples, predict labels for all unseen examples
- Transductive inference: similar to semi-supervised, but only need to predict labels for seen unlabeled examples, not all unseen examples
- Active learning: sequentially choose unlabeled examples for labeling to accurately and quickly predict labels for all unseen examples

Other learning scenarios

Online learning: multiple rounds of learning and decision making: receive unlabeled example → predict label → receive true label → incur loss → receive unlabeled example →...

Goal: minimize cumulative loss

- Reinforcement learning: multi-round learning like online, but:
 - no long-term reward (only immediate reward)
 - decisions can change environment
 - e.g., search a terrain or the internet and learn as much new information as possible: explore vs exploit tradeoff

Toy binary classification example

Training sample	Feature vector: $\mathbf{x}_i = (\text{color}, \text{shape}, \text{size})^T$	Label (Yes → 1,No → 0)
	\mathbf{x}_1 = (blue, rectangle, 10) ^T	$y_1 = 1$
	\mathbf{x}_2 = (red, ellipse, 2.4) ^T	$y_2 = 1$
	\mathbf{x}_3 = (red, ellipse, 20.7) ^T	$y_3 = 0$

Test sample	Feature vector: $\mathbf{x} = (\text{color}, \text{shape}, \text{size})^T$	Label (Yes → 1,No → 0)
	$x = (blue, crescent, 17)^T$	y = 1
	$x = (yellow, ring, 8)^T$	<i>y</i> = ?
	$x = (blue, arrow, 11)^T$	<i>y</i> = ?

- Real-world example: character recognition
 - MNIST dataset: document image preprocessed to isolate and center individual handwritten characters into 28 x 28 grayscale images (grayscale value = integer in 0-255)
 - 60,000 training and 10,000 test images of digits 0-9 with ground-truth labels

- More real-world examples
 - Medicine:
 - \mathbf{x} = symptoms, y = disease-type
 - x = EEG signal, y = seizure / no-seizure
 - Social Networks:
 - x = profile-pair, y = friend / not friend
 - Image/Video Analysis, Computer Vision:
 - x = image/video snippet, y = object-category, activity, etc.

Need for Probability

- Inductive reasoning:
 - going from particular instances to broader generalizations, e.g., 1→2, 2→4, 3→?
 - inherently uncertain: allows for the possibility of the conclusion to be false even if all premises are true
- Randomness (variability/complexity/uncertainty) inherent in most real-world data, e.g.,

3 3 3 3

Examples, features, and labels → random variables

- Examples
- Features: $x \in \mathcal{X}$ (feature/input space)
- Labels: $y \in \mathcal{Y}$ (label/output space)
- Training-samples: $\mathcal{D} = \{\mathbf{z}_1, \dots, \mathbf{z}_n\}, \quad \mathbf{z}_i = (\mathbf{x}_i, y_i)$
- Validation-samples
- Test-samples
- Hypothesis set: $\mathcal{H} = \{h : \mathcal{X} \to \mathcal{Y}\}$
- Loss function: $\ell(\mathbf{x}, y, h) : \mathcal{X} \times \mathcal{Y} \times \mathcal{H} \to \mathbb{R}_+ = [0, \infty)$

Examples:

- data used for training or evaluation
- e.g., email messages in Spam Detection

Features:

- set of attributes, represented as vector $\mathbf{x} \in \mathcal{X}$ (in some feature/input space, e.g., \mathbb{R}^d), associated to example
- e.g., message length, name of sender, presence of keywords in subject/body, etc., in Spam Detection

Features:

- 3 types:
 - Categorical/Nominal: no intrinsic value or ordering, just a listing, e.g., gender, blood-type, shape, etc.
 - Quantitative: has intrinsic numerical value, e.g., physical measurements (space, time, mass, charge, etc.); can be discrete (counts) or continuous; represented by real numbers
 - Ordinal: has intrinsic ordering, but no numeric value, e.g., economic-bracket: ∈ {poor, middle-class, rich}
- Euclidean-space embedding: convert categorical/ ordinal variable into a real-valued vector.
 - Categorical: e.g., for blood-type $\in \{A,B,AB,O\}$, $A \rightarrow (1,0,0,0)^T$, $B \rightarrow (0,1,0,0)^T$, $AB \rightarrow (0,0,1,0)^T$, $O \rightarrow (0,0,0,1)^T$
 - Ordinal: e.g., $\{low \rightarrow \frac{1}{3}, medium \rightarrow \frac{2}{3}, high \rightarrow 1\}$

- Labels: categories, values, or ordering in output/ label space assigned to examples
 - Classification: label $\mathbf{y} \in \mathcal{Y} = \{1, \dots, m\}$, m = number of classes
 - Regression: label $\mathbf{y} \in \mathcal{Y} = \mathbb{R}$, a real value
- Training-samples: $\mathcal{D} = \{\mathbf{z}_1, \dots, \mathbf{z}_n\}, \quad \mathbf{z}_j = (\mathbf{x}_j, y_j)$
 - examples (features + labels) used to train a learning algorithm
- Validation-samples:
 - examples used to tune parameters of learning algorithm,
 e.g., polynomial degree in regression (as opposed to the polynomial coefficients which are learned during training)

Test-samples:

- examples (features + labels) used to evaluate performance of learning algorithm
- must be kept separate from training and validation samples and not made available in the learning stage
- predictions on test-sample features compared against test-sample labels to measure performance
- Hypothesis set: $\mathcal{H} = \{h : \mathcal{X} \to \mathcal{Y}\}$
 - set of functions or decision rules mapping feature vectors to labels
 - e.g., if $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, +1\}$ (binary classification), a hyperplane classifier is described by: $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^\top \mathbf{x} + b)$
 - may have additional tuning parameters α , e.g. poly deg.

- Loss function: $\ell(\mathbf{x}, y, h) : \mathcal{X} \times \mathcal{Y} \times \mathcal{H} \to \mathbb{R}_+ = [0, \infty)$
 - function that quantifies the degree of disagreement between the predicted and true label
 - 0-1 loss (classification): $\ell(\mathbf{x}, y, h) = 1(h(\mathbf{x}) \neq y)$
 - squared loss (regression): $\ell(\mathbf{x}, y, h) = (h(\mathbf{x}) y)^2$
 - Note: the loss function is really only a function of y and $h(\mathbf{x})$: $\ell(\mathbf{x}, y, h) \equiv \ell(y, h(\mathbf{x}))$

- Data-partitioning→Training, validation, testing sets
- Pre-processing and Feature Selection→ Black Art
- Training
- Validation
- Testing

- Data-partitioning→Training, validation, testing sets
 - available data randomly partitioned into training, validation, and testing sets
 - # validation samples → # parameters to be tuned
 - # training samples > # testing samples when total number of labeled samples is small
 - must ensure that all 3 have similar composition, e.g.,
 similar proportion of all classes in a classification problem
- Pre-processing and Feature Selection
 - leverages prior domain knowledge/beliefs
 - often "messy", heuristic
 - critical step: can dramatically effect performance, positively or negatively

Pre-processing

- Missing data: either discard or "fill-in" with most frequently seen values from similar samples
- Imbalanced data: replicate/re-sample/increase weight of underrepresented populations or discard/down-sample/decrease weight over-represented ones
- Outliers: detect samples most inconsistent with bulk of samples.
 Either remove them or design a robust loss function that is insensitive to outliers.
- Prefiltering: reduce effects of noise, aliasing, quantization, misalignments
- Normalization: compensate for unequal dynamic ranges of variables,
 e.g., mean-variance equalization, known nonlinearities in sensors
- Data augmentation: make dataset richer by incorporating desirable invariances, e.g., color, position, orientation of objects in images.

Feature selection

- Identify most relevant subsets or functions of input variables
- Unsupervised learning, specifically, clustering and dimensionality reduction play important roles

- Training
 - Given training set: $\mathcal{D} = \{\mathbf{z}_1, \dots, \mathbf{z}_n\}, \quad \mathbf{z}_j = (\mathbf{x}_j, y_j)$
 - fix tuning parameters α and select best decision rule
 - Structural Risk Minimization (SRM) Principle:

$$\mathcal{L}_{\text{train}}(h, \alpha, \lambda) = \left[\underbrace{\frac{1}{n} \sum_{j=1}^{n} \ell(\mathbf{x}_{j}, y_{j}, h)}_{\text{Empirical Risk} \atop (\text{data term})} + \underbrace{\frac{\lambda}{n} \text{ complexity}(h)}_{\text{Structure Penalty} \atop (\text{prior beliefs})}\right]$$

$$h^{\text{SRM}}(\alpha, \lambda) = \arg\min_{h \in \mathcal{H}} \mathcal{L}_{\text{train}}(h, \alpha, \lambda)$$

Training

- Empirical Risk Minimization (ERM): special case of SRM with λ =0. Corresponds to minimizing only 1st term of $\mathcal{L}_{\text{train}}(h,\alpha,\lambda)$.
- Overfitting: if n << # free parameters in h (complex model), solution based on ERM will be too noisy (will have high variance)→model starts "memorizing" training data instead of learning to generalize from trend
- Complexity regularization (2nd term of $\mathcal{L}_{train}(h,\alpha,\lambda)$): mitigates overfitting by biasing solutions to be faithful to prior beliefs

Bias-Variance tradeoff

- $\lambda = 0$: Prior beliefs completely ignored. Complex solutions have low bias, but high variance
- $\lambda >> 1$: Prior beliefs dominate. Solutions have low variance, but high bias

Validation

- Learn best values of α , λ using validation samples
- Best α_* , λ_* minimizes the validation error:

$$\mathcal{L}_{\text{valid}}(\alpha, \lambda) = \frac{1}{|\text{validation set}|} \sum_{\substack{(\mathbf{x}, y) \in \text{validation} \\ \text{set}}} \ell(\mathbf{x}, y, h^{\text{SRM}}(\alpha, \lambda))$$
$$(\alpha_*, \lambda_*) = \arg\min_{\alpha, \lambda} \mathcal{L}_{\text{valid}}(\alpha, \lambda)$$

Testing

- Evaluate performance using test samples
- Test error:

$$\mathcal{L}_{\text{test}}(\alpha_*, \lambda_*) = \frac{1}{|\text{test set}|} \sum_{\substack{(\mathbf{x}, y) \in \frac{\text{test}}{\text{set}}}} \ell(\mathbf{x}, y, h^{\text{SRM}}(\alpha_*, \lambda_*))$$

Testing

- Performance metrics other than the loss function used for training and validation may be used for evaluation:
 - Correct Classification Rate (CCR)
 - Confusion Matrix
 - Prob. of False Alarm, Missed Detection, Precision, Recall,
 Sensitivity, Specificity, F-score, Area Under the ROC Curve, etc.
 - Mean Square Error (MSE), Mean Absolute Error (MAE),
 - Predictive log-probability
- Small training error ⇒ Small validation or test error
 - Memorization vs Generalization (Overfitting)

Training-Validation-Testing summary

- Training: given α , λ , \mathcal{D} find best $h^{SRM}(\alpha, \lambda)$ in \mathcal{H} by minimizing structural risk
- Validation: given validation samples, find best α_* , λ_* by minimizing validation error of $h^{\text{SRM}}(\alpha, \lambda)$ over choices of α , λ
 - In practice, the search for the best α , λ is typically done via a greedy coarse-to-fine grid search

• Testing: use α_* , λ_* , $h^{\text{SRM}}(\alpha_*, \lambda_*)$ to evaluate performance on test samples

Training-Validation-Testing summary

- Validation: given validation samples, find best α_* , λ_* by minimizing validation error of $h^{SRM}(\alpha, \lambda)$ over choices of α , λ
- Testing: use α_* , λ_* , $h^{\text{SRM}}(\alpha_*, \lambda_*)$ to evaluate performance on test samples

Example: polynomial regression

- ullet $\mathcal{X} = \mathcal{Y} = \mathbb{R},$
- $\mathcal{H} = \{h(x) = \sum_{k=0}^{\alpha} h_k x^k\},\$
- $\ell(x, y, h) = (y h(x))^2$
- $\mathcal{L}_{\text{train}}(h, \alpha, \lambda) = \frac{1}{n} \sum_{j=1}^{n} \left(y_j \sum_{k=0}^{\alpha} h_k x_j^k \right)^2 + \lambda \sum_{k=0}^{\alpha} |h_k|$
- $(h_0^{\text{SRM}}(\alpha, \lambda), \dots, h_{\alpha}^{\text{SRM}}(\alpha, \lambda)) = \arg\min_{h_0, \dots, h_{\alpha}} \mathcal{L}_{\text{train}}(h_0, \dots, h_{\alpha}, \alpha, \lambda)$
- $\mathcal{L}_{\text{valid}}(\alpha, \lambda) = \frac{1}{|\text{validation set}|} \sum_{\substack{(x,y) \in \text{validation} \\ \text{set}}} \left(y \sum_{k=0}^{\alpha} h_k^{\text{SRM}}(\alpha, \lambda) x^k \right)^2$
- $(\alpha_*, \lambda_*) = \arg\min_{\alpha, \lambda} \mathcal{L}_{\text{valid}}(\alpha, \lambda)$
- $\mathcal{L}_{\text{test}}(\alpha_*, \lambda_*) = \frac{1}{|\text{test set}|} \sum_{(x,y) \in \text{set}} \left(y \sum_{k=0}^{\alpha_*} h_k^{\text{SRM}}(\alpha_*, \lambda_*) x^k \right)^2$

Cross-Validation

- Not enough labeled data for creating separate validation samples
- Idea: cycle samples through training and validation
- Can also do this for testing (if needed)
- How? Many approaches: bootstrap, exhaustive methods,...focus on k-fold cross-validaton

Cross-Validation

- Then train on all n samples with α_* , λ_* to obtain $h^{\text{SRM}}(\alpha_*, \lambda_*)$
- Then evaluate performance on test samples
- Holdout cross-validation: k=2
- Leave-one-out-cross-validation (LOOCV): k = n
- Typical choices for number of folds: k = 5, 10

Next: Probabilistic framework

- Optimum decision rule: MAP, ML
- Generative vs Discriminative Learning
- Frequentist vs Bayesian
- Parametric vs Non-parametric models
- Asymptotic consistency, sample complexity, computational complexity (time, storage)