

- Not a data model, but a processing/programming model
- Focus: the abstraction/model and how to use it
- Original Google paper
 - http://research.google.com/archive/mapreduce.
 html
- A great textbook available on-line
 - http://lintool.github.io/MapReduceAlgorithms/ ed1n.html

- Programming model introduced by Google (2004)
- Not really a new concept
 - Dates back to ideas from functional programming
- Very useful for processing large datasets
- ❖ Infrastructure
 - Hadoop, Amazon Elastic Map Reduce,...
- Also treated as a programming pattern
 - MongoDB and other systems support it

What is Map Reduce?

- A programming model and infrastructure for parallel programming
- Doing very large-scale data processing requires parallelization

What is Map Reduce?

- Not trivial to parallelize arbitrary task:
 - What are the subproblems?
 - How do we get the data to/from the workers working on each subproblem?
 - How do we synchronize and share results as needed between workers?

Example

- You get a job at Google
- Your boss says: hey, we have a large corpus of documents
 - All the pages on the Web
- We need some statistics a list of word frequency occurrences across the whole corpus
- ❖ We need the results fast, so don't do it all on one machine.
- What do you do?

Typical Workflow

- Iterate over a large number of records
- Extract something of interest from each
- Bring together intermediate results
- ❖ Aggregate intermediate results
- Generate final output
- Most of the real "computation" occurs in the two blue phases

- (Or map-reduce, mapreduce, etc.)
- * A general framework for writing parallel programs that follow the workflow we saw
- Idea:
 - You write the code for the two blue phases
 - ◆ Because that's what is unique to your computation
 - System takes care of the rest

Typical Workflow

- Iterate over a large number of records
- Map: Extract something of interest from each
- Bring together intermediate results
 - In some standardized way
- Reduce: Aggregate intermediate results
- Generate final output

Understanding Map Reduce

- * Key to understanding Map Reduce is the third point in workflow
 - How are intermediate results brought together?
 - The framework does it for you, so you have to understand how it does it

Understanding Map Reduce

- Fundamental idea: key-value model
 - This is the data model for Map Reduce jobs
 - Helps provide a unified interface for bringing results together

MR and key-value model

- Key-value is simple data model
- Map-Reduce uses that as input and output format
- Map function takes one key-value pair as input and outputs a set of key-value pairs
 - The input and output keys can be different

Example: Word Count

```
map(String key, String value):
    // key: document id
    // value: document contents
    for each word w in value:
        EmitIntermediate(w, "1");
```

A mapper utility can apply this in parallel to a whole lot of documents

Now what?

- Have a whole lot of key-value pairs after the map
- Need to bring them together and aggregate
- Would like to bucketize/ GROUP BY something so can compute in parallel again
 - What to bucketize by?
 - ◆ The English word (i.e. the output key of the mapper)

Example: Word Count

```
reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
    Emit(key, AsString(result));
```

Can also run this in parallel

So what do we have so far?

- See how to write map and reduce functions
 - Work on a key-value model
- Believe that both map and reduce functions can be executed in parallel
- But what about the middle step?
 - Bucketize output of mapper based on value of output key...
- Fortunately, the exact same middle step is useful for a lot of other problems
 - So map reduce frameworks have it built-in!
 - You don't need to write this logic yourself

You only need to specify two functions:

map
$$(k, v) \rightarrow [(k', v')]$$

reduce $(k', [v']) \rightarrow [(k'', v'')]$

- [...] denotes a list

- Framework takes care of the actual execution:
 - Applies your map function to every initial (k,v)
 - Reshuffles the output of the map to group by k'
 - Applies your reduce function

The Big Picture Data Store Initial kv pairs Initial kv pairs Initial kv pairs Initial kv pairs map map map map k₁, values... k₃, values... k₁, values... k₁, values... k₁, values... es... k₃, values... k₃, values... k₃, values... k₂, values... k₂, values... k₂, values... k₂, values... Barrier: aggregate values by keys k₁, values... k₂, values... k₃, values... reduce reduce reduce

final k₂ values

final k3 values

final k₁ values

Example: Word Count

```
map (String key, String value):
     // key: document id
     // value: document contents
     for each word w in value:
           EmitIntermediate(w, "1");
reduce (String key, Iterator values):
     // key: a word
     // values: a list of counts
     int result = 0;
     for each v in values:
           result += ParseInt(v);
     Emit(key, AsString(result));
```

Map and Reduce Functions

- Do not have to be purely functional
- Can keep internal state across multiple inputs
- Can also have external side effects
 - E.g. write to files
- Should be careful about using external resources
 - E.g. if have multiple mappers and/or reducers contending for same database, could become a bottleneck

Map and Reduce Functions

- Possible to have programs without a reduce
 - Mappers just apply some computation in parallel to a dataset
- Impossible to have programs without a map
 - But map could be identity function
 - Use framework to re-sort and re-group key-value pairs before feeding to reducers
- Could have reducer identity function too
 - Computation occurs in map phase
 - Framework used to re-sort and re-group output of mapper
- Could even have both mapper and reducer as identity functions

Map Reduce Frameworks

- Various frameworks to support this programming pattern
 - Google's own internal implementation, Hadoop, Amazon EMR
 - Also supported in MongoDB

Map Reduce Frameworks

- Implementations vary a bit in what exact functionality they allow/support
 - E.g. whether reducer input and output keys must be the same
 - Or whether they support additional functions like partitioners and combiners
 - Or what happens in corner cases (e.g. MongoDB won't run reducer if there is only one value for a reducer input key)

Programming in Map Reduce

- Powerful abstraction, but requires different way of thinking about programming
- Things to figure out:
 - How to impose key-value structure on problem?
 - What can be parallelized?
 - How to deal with the fact that there is no "global state" anymore (or at least that you should avoid using global state?)
- Next: a few examples to get you more comfortable with doing things in MR

Inverted Index

- * How to use Map Reduce to build an <u>inverted</u> <u>index</u>?
- Given a set of documents as input
- Want as output a set of entries of the form: <word, list of documents it appears in>
- May assume documents have unique ids
- Very useful in practice e.g. in search engines

Inverted Index

```
map(String docid, String contents):
    for each word w in contents:
         EmitIntermediate(w, docid);
reduce(String word, Iterator docids):
    List result = new ArrayList();
    for each d in docids:
         result.add(d);
    Emit(word, result);
```

Inverted Index

- Easy to modify this to make it more fancy
 - Keep track of word positions within documents
 - Etc...

Example 2: Joins

- Have two large datasets representing two large relations
 - In some reasonable format, e.g. with one line per row
- * Need to peform a join on a particular column
- How to do it with Map Reduce??

Example: Join

Iterative Map Reduce

- You are not limited to a single MR run
- Output of one MR job can serve as input to the next one
 - MR pipelines
 - Need to make sure your formats are compatible!
- Iterative algorithms also possible and useful
- First case study: graph processing

Representing Graphs

	n ₁	n ₂	n ₃	n ₄	n ₅
n ₁	0	1	0	1	0
n ₂	0	0	1	0	1
n_3	0	0	0	1	0
n ₄	0	0	0	0	1
n ₅	1	1	1	0	0

adjacency matrix

 $n_1 [n_2, n_4]$

 $n_2 [n_3, n_5]$

 n_3 $[n_4]$

 $n_4 [n_5]$

 $n_5 [n_1, n_2, n_3]$

adjacency lists

Single Source Shortest Path

- Problem: find shortest path from a source node to one or more target nodes
- Single processor machine: Dijkstra's Algorithm
- MapReduce: parallel Breadth-First Search (BFS)

SSSP

Dijkstra's Algorithm Review

```
Dijkstra(G, w, s)
        d[s] \leftarrow 0
 2:
        for all vertex v \in V do
 3:
            d[v] \leftarrow \infty
 4:
 5: Q \leftarrow \{V\}
        while Q \neq \emptyset do
 6:
             u \leftarrow \text{ExtractMin}(Q)
 7:
             for all vertex v \in u. Adjacency List do
 8:
                 if d[v] > d[u] + w(u, v) then
 9:
                      d[v] \leftarrow d[u] + w(u, v)
10:
```

Dijkstra's Algorithm Example

What about Map Reduce?

- Suppose we have a very, very, very big graph
- And would like to compute this information quickly and in parallel
 - Using the magic of Map Reduce
- Definitely can't run Dijkstra's algorithm directly
 - Can't have a global queue!

SSSP in Map Reduce

- Can't run Dijkstra's algorithm directly
 - Can't have a global queue!
- Another way to do it: Parallel BFS
- Start by assuming all edge weights are equal
 - Will relax this later

Finding the Shortest Path

- Intuition: process all nodes at each step
- Some nodes have no information (distance = infinity)
 - So can't do much
- But other nodes do know something
 - E.g. source knows it is at distance 0
 - So can pass this fact on to its out-neighbors
 - Who now know they are at distance 1!
 - At the next iteration, these neighbors know they're at distance 1
 - ◆ So can tell *their* out-neighbors they're at distance 2.

Parallel BFS

From Intuition to Algorithm

- A map task receives
 - Key: node *n*
 - Value: D (distance from start), points-to (list of nodes reachable from n)
- ❖ $\forall p \in \text{points-to: emit } (p, D+1)$
- ❖ The reduce task gathers possible distances to a given p and selects the minimum one
- Possible through the magic of the "sort and shuffle" between Map and Reduce
 - Map processes node and updates distances of out-neighbors
 - Reduce processes node based on info from its in-neighbors

Multiple Iterations Needed

- Each Map Reduce task advances the "known frontier" by one hop
 - Subsequent iterations include more reachable nodes as frontier advances
 - Multiple iterations are needed to explore entire graph
 - Feed output back into the same MapReduce task

Multiple Iterations Needed

- Passing along the graph structure:
 - Next iteration of Map needs points-to list again
 - So need to "carry" it with us as we run the algorithm


```
class Mapper

method Map(nid n, node N)

d \leftarrow N.\text{Distance}

Emit(nid n, N)

for all nodeid m \in N.\text{AdjacencyList do}

Emit(nid m, d + 1)
```

Reduce

```
class Reducer
    method Reduce(nid m, [d_1, d_2, ...])
         d_{min} \leftarrow \infty
         M \leftarrow \emptyset
         for all d \in \text{counts } [d_1, d_2, \ldots] do
              if IsNode(d) then
                   M \leftarrow d
              else if d < d_{min} then
                   d_{min} \leftarrow d
         M.Distance \leftarrow d_{min}
         Eміт(nid m, node M)
```

Termination

- Eventually, all nodes will be discovered, all edges will be considered (in a connected graph)
- Stop when there are no nodes with a distance of infinity
 - Can be checked by the driver/harness/program that runs the outer loop and schedules each Map Reduce job

Weighted Edges

- Now add positive weights to the edges
- * Simple change: points-to list in map task includes a weight *w* for each pointed-to node
 - emit $(p, D+w_p)$ instead of (p, D+1) for each node p
- Termination behavior different
 - Just because we've reached a node doesn't mean we've found the shortest path to it!

Node Exploration Process

Node Exploration Process

Termination

 When distances have not changed during an iteration, safe to stop

Comparison to Dijkstra

- Dijkstra's algorithm is more efficient
 - At any step it only pursues edges from the minimum-cost path inside the frontier
 - Only processes each node once
- MapReduce explores all paths in parallel
 - Does a lot of recomputation
 - Not a bug, need it to handle situations where the "shortest" path contains more edges than another available path
 - But can be done in parallel

General Approach

- Graph algorithms with MapReduce:
 - Each map task receives a node and its outlinks
 - Map task compute some function of the link structure, emits value with target as the key
 - Reduce task collects keys (target nodes) and aggregates
- Iterate multiple MapReduce cycles until some termination condition

PageRank

- Google's famous algorithm for ranking Web Pages
 - A measure of "quality reputation" of a page
 - Useful for ranking/ordering search results

Random Surfer Model

- Intuition for PageRank
- Imagine a surfer who starts on a randomly chosen page and then follows outgoing links at random
 - Markov process
- PageRank is probability that user will arrive at a given page during this random walk

A little more complex!

- Model assumes that surfer doesn't always follow a link, but sometimes e.g. bookmarks instead.
- Before each move, surfer flips a coin
 - With probability 1-lpha , follows an out-link
 - With probability lpha , teleports to a (uniformly chosen) random page

PageRank Example

Computing PageRank

- Let's start with some simplifying assumptions
 - Assume all nodes have at least one outlink
 - And surfer never does a random restart using bookmarks
- Will talk about how to lift these assumptions soon

Simplified PageRank Intuition

- PageRank of a page is based on the PageRank of the pages which link to it
- A page divides its PageRank equally among all its outgoing links

Somewhat more formally

$$P(n) = \sum_{m \in L(n)} \frac{P(m)}{C(m)}$$

L(n) is the set of pages that link to n and C(m) is the number of out-neighbors of page m

Iterative computation of SPR

- How do we compute this?
- Various methods, but we are interested in Map Reduce
- Idea:
 - Initialize everything to the same PageRank (1/number of nodes)
 - "pass around" PageRank contributions from nodes to their out-neighbors

Example

Example


```
class Mapper

method Map(nid n, node N)

p \leftarrow N.PageRank/|N.AdjacencyList|

Emit(nid n, N) \triangleright Pass along graph structure

for all nodeid m \in N.AdjacencyList do

Emit(nid m, p) \triangleright Pass PageRank mass to neighbors
```

Reduce

```
class Reducer  \begin{array}{l} \textbf{method} \ \text{Reduce}(\text{nid} \ m, [p_1, p_2, \ldots]) \\ M \leftarrow \emptyset \\ \textbf{for all} \ p \in \text{counts} \ [p_1, p_2, \ldots] \ \textbf{do} \\ \textbf{if} \ \text{IsNode}(p) \ \textbf{then} \\ M \leftarrow p \\ \textbf{else} \\ s \leftarrow s + p \\ \text{Sum incoming PageRank contributions} \\ M. \text{PageRank} \leftarrow s \\ \text{Emit}(\text{nid} \ m, \text{node} \ M) \end{array}
```

Iterate

- Full algorithm is iterative
- Initialize the nodes to uniform distribution
- Run the two MR jobs described iteratively
- Until convergence (no change)

Now, back to dangling nodes

- If any PageRank is lost due to nodes with no out-neighbors, redistribute that PageRank uniformly throughout the graph for next iteration
- In the Map Reduce model: keep track of any lost PageRank
 - E.g. by using a special reserved intermediate key, or using a counter (i.e. storing it somewhere)

Solution

- After the MR task is done, do a cleanup pass
- Deal both with "missing mass" and with random restart factor

Cleanup pass

Adjust the PageRank of each node to be

$$p' = \alpha \left(\frac{1}{|G|}\right) + (1 - \alpha) \left(\frac{m}{|G|} + p\right)$$

- ❖ Where *p* is the current PageRank, *m* is the mass lost due to sinks, and |*G*| is the number of nodes in the graph
- This can be done using a map job (no reduce)

The full PageRank Algorithm

- Initialize the nodes to uniform distribution
- Run the two MR jobs described iteratively
- Until convergence (no change)