NAME: Markus Afonso Set: C

MATH 1350 **Statistics for Information Technology**

Lab # 6 – Continuous Probability Distributions Answer/Grading Sheet

Question:	Answer	Mark	
1	a)		/4
	> pnorm(2.52) [1] 0.9941323		
	b)		
	> pnorm(2.14) - pnorm(-1.06) [1] 0.8392503		
	c)		
	> pnorm(-0.72) [1] 0.2357625		
	d)		
	> 1 - pnorm(-2.03) [1] 0.9788217		
2	a)		/4
	> pnorm(90,97.27,10.84) [1] 0.2512172		
	b) > pnorm(120,97.27,10.84) - pnorm(100,97.27,10.84)		
	[1] 0.3825776		
	c) = 0		
	d)		
	> 1 - pnorm(95,97.27,10.84) [1] 0.5829357		
3	a) $0.06731862 \le pnorm(x,44.9, 1.27) \le 0.9926756$		/2
	b)		/2
	> (1 - (pnorm(48,44.9, 1.27) - pnorm(43,44.9, 1.27))) * 100		/2
	[1] 7.464307%		
4			/4
	> qnorm(.02, 5570, 237) [1] 5083.262		
	About 5000 of the first pages should be under warranty		
5	a)		/2
	> sqrt(sqrt(o1)+ sqrt(o2))		
	[1] 2.440742 b)		/2
	> o12 <- sqrt(sqrt(o1)+ sqrt(o2))		
	> 1- pnorm(120, (u1 +u2), o12)		
	[1] 0.07347648		

Question:	Answer	Mark	
6	a)		/2
	<pre>> pnorm(log(115)/log(2.7182818284590452353602874713527),</pre>		
	5.168, 1.23)		/2
	[1] 0.3654391		
	<u>b</u>)		
	> 1 - pnorm(log(180,2.7182818284590452353602874713527),		
	5.168, 1.23)		
	[1] 0.491906		L

R script /6

Paste your R script here. It should contain all the commands you used to find the probabilities in the questions 1-6 above.

```
# lab 6
# markus afonso
library(mosaic)
#1
pnorm(2.52)
pnorm(2.14) - pnorm(-1.06)
pnorm(-0.72)
1 - pnorm(-2.03)
pnorm(90,97.27,10.84)
pnorm(120,97.27,10.84) - pnorm(100,97.27,10.84)
1 - pnorm(95,97.27,10.84)
#3
pnorm(x,44.9, 1.27)
pnorm(x,44.9, 1.27)
(qnorm(pnorm(48,44.9, 1.27),44.9, 1.27) + qnorm(pnorm(43,44.9, 1.27),44.9, 1.27))
(1 - (pnorm(48,44.9, 1.27) - pnorm(43,44.9, 1.27))) * 100
#4
qnorm(.02, 5570, 237)
#5
qnorm(.99,65.24, 7.42)
pnorm(60,51.22, 10.67)
u1 < -65.24
o1 <-7.24
u2 <-51.22
```

NAME & Set:

```
      Question:
      Answer
      Mark

      o2 <-10.67</td>
      #Question 5
      #a

      sqrt(sqrt(o1)+ sqrt(o2))
      o12 <- sqrt(sqrt(o1)+ sqrt(o2))</td>
      1- pnorm(120, (u1 +u2), o12)

      #b
      pnorm(100, (bat1_mean +bat2_mean), comb_sd)

      #6
      pnorm(5.168, 5.168, 1.23)

      pnorm(log(115)/log(2.7182818284590452353602874713527), 5.168, 1.23)

      1 - pnorm(log(180,2.7182818284590452353602874713527), 5.168, 1.23)
```