Digital Transformation of Healthcare

Evaluating Predictions & Data Quality

Michoel Snow, MD PhD, Glen Ferguson, PhD

Center for Health Data Innovations

Objectives

After this lecture students will be able to

- Calculate common classification and regression metrics
- Describe the role of simple classification metrics
- Evaluate the implementation of metrics for a study
- Articulate the information underlying common compound classification metrics
- Classify regression metrics
- Connect regression metric outcomes to facets of the associated models
- Identify transition points which can affect data quality
- Discuss methods for measuring and evaluating data quality

1

Metrics for Evaluation of

Classification Models

Terms and Questions

Terms

- Accuracy
- Specificity
- Sensitivity
- Positive Predictive Value
- Negative Predictive Value
- Likelihood Ratio
- ROC & AUC
- F1 Score

Questions

Terms and Questions

Terms

- Accuracy
- Specificity
- Sensitivity
- Positive Predictive Value
- Negative Predictive Value
- Likelihood Ratio
- ROC & AUC
- F1 Score

Questions

- Is accuracy a useful metric?
- What information is conveyed by sensitivity vs specificity?
- What information do the PPV and NPV add?
- Intuitively, how do sensitivity, specificity, likelihood ratios and ROC connect?
- Is the F1 score a more robust metric than the ROC and AUC?

Clinical Cases

- Low dose CT for detecting lung cancer (LDCT)¹
- Ultrasound detection of abdominal aortic aneurysms (AAA)²
- Blood pressure monitoring in adolescents using home machines (HTN)³
- Detecting suicidality among adolescent outpatients by clinicians versus trained raters using the Kiddie Schedule for Affective Disorders and Schizophrenia (K-SADS-PL)

 $^{^1}$ National Lung Screening Trial Research Team. (2011). Reduced lung-cancer mortality with low-dose computed tomographic screening. New England Journal of Medicine, 365(5), 395-409.

²Thompson, S. G., Ashton, H. A., Gao, L., Buxton, M. J., Scott, R. A. P., & Multicentre Aneurysm Screening Study (MASS) Group. (2012). Final followup of the Multicentre Aneurysm Screening Study (MASS) randomized trial of abdominal aortic aneurysm screening. British Journal of Surgery, 99(12), 1649-1656.

³Stergiou, G. S., Nasothimiou, E., Giovas, P., Kapoyiannis, A., & Vazeou, A. (2008). Diagnosis of hypertension in children and adolescents based on home versus ambulatory blood pressure monitoring. Journal of hypertension, 26(8), 1556-1562.

⁴Holi, M. M., Pelkonen, M., Karlsson, L., Tuisku, V., Kiviruusu, O., Ruuttu, T., & Marttunen, M. (2008). Detecting suicidality among adolescent outpatients: evaluation of trained clinicians' suicidality assessment against a structured diagnostic assessment made by trained raters. BMC psychiatry, 8(1), 97.

• What is the accuracy of these tests?

- What is the accuracy of these tests?
- Are these good screening tests and/or diagnostic tests?

- What is the accuracy of these tests?
- Are these good screening tests and/or diagnostic tests?
- How does the PPV and NPV affect your opinion of their utility?

- What is the accuracy of these tests?
- Are these good screening tests and/or diagnostic tests?
- How does the PPV and NPV affect your opinion of their utility?
- When are sensitivity, specificity, PPV and NPV appropriate tests?

- What is the accuracy of these tests?
- Are these good screening tests and/or diagnostic tests?
- How does the PPV and NPV affect your opinion of their utility?
- When are sensitivity, specificity, PPV and NPV appropriate tests?
- How are sensitivity, specificity, PPV and NPV affected by prevalence?

Digital Transformation of Healthcare Metrics for Evaluation of Classification Models

Confusion Matrix

Lung Canser	AAA	HTN	K-SADS-PL
5 600 17,007 0 5,510 69,700	600 734 61 25,600	M 12 6 62	8 2 23 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

What is the accuracy of these tests?
 Are these good screening tests and/or diagnostic tests?

- Are these good screening tests and/or diagnostic tests?
 How does the PPV and NPV affect your opinion of their utility?
- When are sensitivity, specificity, PPV and NPV appropriate tests?
- How are sensitivity, specificity, PPV and NPV affected by prevalence?

Parameter	Interpretation	Appropriate for
Accuracy	Overall proximity of test to reality	Balanced sample sizes
Sensitivity	Chance of a false negative	Cheap testing/Severe disease
Specificity	Chance of a false positive	Expensive testing/Mild disease
PPV	Sensitivity diagnostic utility	Balanced prevalence
NPV	Specificity diagnostic utility	Balanced prevalence

Case	TP	FP	TN	FN	Sens	Spec	PPV	NPV	Acc	F1
LDCT	649	17,497	49,792	5,532	10	74	4	90	69	6
AAA	600	734	25,480	61	91	97	45	100	97	60
HTN	17	6	65	14	55	92	74	82	80	63
KSADS	32	23	133	30	52	85	58	82	76	55

Combined Statistics

• What are 4 'sensible' pairings of the base stats

Combined Statistics

- What are 4 'sensible' pairings of the base stats
- What are the different ways to combine the base stats into summary statistics (hint: what are the basic ways to combine any numbers)?
 - Work through each of the four clinical cases

Combined Statistics

- What are 4 'sensible' pairings of the base stats
- What are the different ways to combine the base stats into summary statistics (hint: what are the basic ways to combine any numbers)?
 - Work through each of the four clinical cases
- What determines the split of positive cases into TP vs FN and negative cases into TN vs FP?

Digital Transformation of Healthcare Metrics for Evaluation of Classification Models

Combined Statistics

- What are 4 'sensible' pairings of the base stats

 What are the different ways to combine the base stats into summary statistics (hint: what are the basic ways to combine any numbers)?

Combined Statistics

- Work through each of the four clinical cases
 What determines the split of positive cases into TP vs FN and
- negative cases into TN vs FP?

- sens/spec, PPV/NPV, sens/PPV, spec/NPV
- the 4 basic operations are add, subtract, multiply and divide add Ex
- Add adding just gives you the numbers themselves without an idea of how they each
 contribute. averaging sens/spec or ppv/npv is a good summary of how they perform.
 Averaging sens/ppv tells you how well you can predict TP taking into account the reliability
 of the test and the prevalence of the disease, and specifically ignoring the effects of TN.
- Subtract Not really a helpful metric as the difference between values doesn't tell you much
 about the values themselves. F1 score combines the typical mean and the difference
 between the values
- multiply Similar to averaging and F1 but punishes if both lower values
- divide dividing two probabilities gives you an odds ratio, i.e., how much more likely the numerator is to happen than the denominator.

Digital Transformation of Healthcare

Metrics for Evaluation of Classification Models

Combined Statistics

| NAME |

What are 4 'sensible' pairings of the base stats
 What are the different ways to combine the base stats into summary

Combined Statistics

- statistics (hint: what are the basic ways to combine any numbers)?

 Work through each of the four clinical cause.
- What determines the split of positive cases into TP vs FN and negative cases into TN vs FP?

$$LR + = \frac{sensitivity}{1 - specificity} = \frac{P\left(T + \mid D +\right)}{P\left(T + \mid D -\right)} \qquad \qquad LR - = \frac{1 - sensitivity}{specificity} = \frac{P\left(T - \mid D +\right)}{P\left(T - \mid D -\right)}$$

Likelihood Ratio	Approximate Change in Probability(%)
0.1	-45
0.2	-30
0.5	-15
1	0
2	+15
5	+30
10	+45

Change in post test probability $\approx 0.2 imes ln LR$

McGee, Steven. "Simplifying likelihood ratios." Journal of general internal medicine 17.8 (2002): 647-650. APA

Hypothesis Testing

Digital Transformation of Healthcare

Metrics for Evaluation of Classification Models

└─Hypothesis Testing

- these two curves represent the positive and negative cases
- As the threshold parameter from right to left, your sensitivity increases but you specificity decreases
- In order to calculate specific values we need to know what the areas under the curve are, for different thresholds

Hypothesis Testing

Digital Transformation of Healthcare Metrics for Evaluation of Classification Models

—Hypothesis Testing

• Let's calculate the odds ratio for various points along the curve

N/P	Sens	Spec	Odds	PPV	NPV	F1
0.16/002	0.98	0.16	1.17	0.54	0.89	0.70
0.5/0.08	0.92	0.50	1.84	0.65	0.86	0.76
0.84/0.24	0.76	0.84	4.78	0.83	0.78	0.79
0.98/0.5	0.50	0.98	26.32	0.96	0.66	0.66
1.0/0.76	0.24	1.00	∞	1	0.57	0.39

N/P	PPV-25%P	NPV-25%P	PPV-75%P	NPV-75%P	f1-25%P	f1-75%P
0.16/002	0.28	0.96	0.78	0.73	0.44	0.87
0.5/0.08	0.38	0.95	0.85	0.68	0.54	0.88
0.84/0.24	0.61	0.91	0.93	0.54	0.68	0.84
0.98/0.5	0.89	0.86	0.99	0.40	0.64	0.66
1.0/0.76	1	0.80	1.00	1	0.31	0.39

• both of these curves have an area of 1, so we need to multiply each metric by the percentage of patients to see how prevalence affects the outcome

Receiver Operating Characteristic

Digital Transformation of Healthcare

Metrics for Evaluation of Classification Models

-Receiver Operating Characteristic

- 1. What does the Area Under the Curve (AUC) correspond to? Given a positive test result what are the chances that the subject is truly positive irrespective of prevalence?
- 2. What does the diagonal correspond to? equal probabilities
- 3.
- 4. PPV is threshold dependent, while AUC is threshold independent but variable dependent

Receiver Operating Characteristic

Metrics for Evaluation of

Regression Models

Regression Metrics

- What aspects of a model's predictions should I care about?
- What aspects of the model's predictions can I evaluate?

Regression Metrics

- Accuracy (bias), precision (variance)
 - Average distance of errors
 - Worst case error
 - Do large errors matter more than small errors
 - Maximal distance of errors
 - Difference between my model and some standard model
- difference, squared difference, min/max, variance of predictions, relative difference (percentage error)

Regression Metrics

Equal weighting of	MAE	$\frac{1}{n}\sum_{i=0}^{n-1} y_i-\hat{y}_i $		
errors	MAPE	$\frac{100}{n} \sum_{i=0}^{n-1} \frac{ y_i - \hat{y}_i }{y_i}$		
Unequal weighting of	MSE	$\frac{1}{n}\sum_{i=0}^{n-1}\left(y_i-\hat{y}_i\right)^2$		
errors	RMSE	$\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}\left(y_i-\hat{y}_i\right)^2}$		
	MSLE	$\frac{1}{n}\sum_{i=0}^{n-1}\left(\ln\left(1=y_i\right)-\ln\left(1+\hat{y}_i\right)\right)^2$		
Data Variance	R ²	$1 - \frac{\sum_{i=0}^{n-1} (y_i - \hat{y}_i)^2}{\sum_{i=0}^{n-1} (y_i - \bar{y}_i)^2}$		
	Explained Var	$1 - \frac{Var(y - \hat{y})}{Var(y)}$		

Data Quality

Factors Which Affect Data Quality

Analysis is only ever as good as the data its built upon.

Factors Which Affect Data Quality

Analysis is only ever as good as the data its built upon.

- Data Definition
- Data Collection
- Data Processing
- Data Representation

How Can Data Be Wrong

- Incomplete
- Inconsistent
- Inaccurate

Processes to Assure Data Quality

- Data Provenance
- Sanity Checks
- Exploratory Data Analysis

Old Slides

Clinical Cases

Case	TP	FP	TN	FN
LDCT	649	17,497	49,792	5,532
AAA	600	734	25,480	61
HTN	17	6	65	14

Clinical Cases

Case	TP	FP	TN	FN
LDCT	649	17,497	49,792	5,532
AAA	600	734	25,480	61
HTN	17	6	65	14

- Are these *good* tests?
- In what contexts are they useful?
- For which metrics are they misleading?

Clinical Cases

Case	TP	FP	TN	FN	Sens	Spec	PPV	NPV
LDCT	649	17,497	49,792	5,532	10	74	4	90
AAA	600	734	25,480	61	91	97	45	100
HTN	17	6	65	14	55	92	74	82

	actual o	outcome	
	р	n	
predicted outcome u d	TP	FP	$PPV = p(p \mid p')$
pred outc	FN	TN	$NPV = p(n \mid n')$
	$Sens = p(\mathbf{p}' \mid \mathbf{p})$	$Spec = p\left(n' \mid n\right)$	Acc = p(TP + TN)

Case	TP	FP	TN	FN	Sens	Spec	PPV	NPV	Acc
LDCT	649	17,497	49,792	5,532					
AAA	600	734	25,480	61					
HTN	17	6	65	14					

Estimate if you think the value will be low, medium or high

	actual	outcome	
	р	n	
predicted outcome	TP	FP	$PPV = p\left(\mathbf{p} \mid \mathbf{p}'\right)$
pred outc	' FN	TN	$NPV = p(n \mid n')$
	$Sens = p(\mathbf{p}' \mid \mathbf{p})$	$Spec = p\left(n' \mid n\right)$	$Acc = p(\mathit{TP} + \mathit{TN})$

Case	TP	FP	TN	FN	Sens	Spec	PPV	NPV	Acc
LDCT	649	17,497	49,792	5,532	10	74	4	90	69
AAA	600	734	25,480	61	91	97	45	100	97
HTN	17	6	65	14	55	92	74	82	80

actual outcome

Case	TP	FP	TN	FN	Sens	Spec	PPV	NPV	Acc
LDCT	649	17,497	49,792	5,532	10	74	4	90	69
AAA	600	734	25,480	61	91	97	45	100	97
HTN	17	6	65	14	55	92	74	82	80

Parameter	Interpretation	Appropriate for
Accuracy	Overall proximity of test to reality	Balanced sample sizes
Sensitivity		
Specificity		
PPV		
NPV		

actual outcome

	р	n	
predicted outcome	TP	FP	$PPV = p(\mathbf{p} \mid \mathbf{p}')$
pred outc	FN	TN	$NPV = p(n \mid n')$
	$Sens = p\left(\mathbf{p}'\mid\mathbf{p}\right)$	$Spec = p(n' \mid n)$	Acc = p(TP + TN)

Case	TP	FP	TN	FN	Sens	Spec	PPV	NPV	Acc
LDCT	649	17,497	49,792	5,532	10	74	4	90	69
AAA	600	734	25,480	61	91	97	45	100	97
HTN	17	6	65	14	55	92	74	82	80

Parameter	Interpretation	Appropriate for
Accuracy	Overall proximity of test to reality	Balanced sample sizes
Sensitivity	Chance of a false negative	Cheap testing/Severe disease
Specificity	Chance of a false positive	Expensive testing/Mild disease
PPV	Sensitivity diagnostic utility	Balanced prevalence
NPV	Specificity diagnostic utility	Balanced prevalence

Condition	Stats	Example
High Sensitivity, Low Specificity	p' >> n'	test is always positive
Low Sensitivity, High Specificity	n' >> p'	test is always negative
High PPV, Low NPV	p >> n	high disease prevalence
Low PPV, High NPV	n >> p	low disease prevalence
High PPV, Low Sensitivity	FN >> FP	say they are negative most of the time for a high preva
High Sensitivity, Low NPV		
High Specificity, Low NPV		
High PPV, Low Specificity		

Combined Statistics

Function of	Metric	Formula
Sensitivity, Specificity	Positive Likelihood Ratio/ROC	$rac{ extit{sensitivity}}{1- extit{specificity}}$
Sensitivity, Specificity	Negative Likelihood Ratio	$rac{1-\mathit{sensitivity}}{\mathit{specificity}}$
Sensitivity, PPV	F1 score	$\frac{2}{\frac{1}{\textit{sensitivity}} + \frac{1}{\textit{PPV}}}$
TP, TN, FP, FN	Matthews correlation coefficient	$\frac{\mathit{TP} \times \mathit{TN} - \mathit{FP} \times \mathit{FN}}{\sqrt{\left(\mathit{TP} + \mathit{FP}\right)\left(\mathit{TP} + \mathit{FN}\right)\left(\mathit{TN} + \mathit{FP}\right)\left(\mathit{TN} + \mathit{FN}\right)}}$

Combined Statistics

Function of	Metric	Formula
Sensitivity, Specificity	Positive Likelihood Ratio/ROC	$rac{ extit{sensitivity}}{1- extit{specificity}}$
Sensitivity, Specificity	Negative Likelihood Ratio	$\frac{1-\textit{sensitivity}}{\textit{specificity}}$
Sensitivity, PPV	F1 score	$\frac{2}{\frac{1}{\textit{sensitivity}} + \frac{1}{\textit{PPV}}}$
TP, TN, FP, FN	Matthews correlation coefficient	$\frac{\mathit{TP} \times \mathit{TN} - \mathit{FP} \times \mathit{FN}}{\sqrt{\left(\mathit{TP} + \mathit{FP}\right)\left(\mathit{TP} + \mathit{FN}\right)\left(\mathit{TN} + \mathit{FP}\right)\left(\mathit{TN} + \mathit{FN}\right)}}$

Likelihood Ratios

$$LR + = \frac{\text{sensitivity}}{1 - \text{specificity}} = \frac{P(T + |D+)}{P(T + |D-)}$$

$$LR - = \frac{1 - \text{sensitivity}}{\text{specificity}} = \frac{P(T - |D+)}{P(T - |D-)}$$

Likelihood Ratios

$$LR + = \frac{sensitivity}{1 - specificity} = \frac{P(T + | D +)}{P(T + | D -)}$$

$$LR - = \frac{1 - sensitivity}{specificity} = \frac{P(T - | D +)}{P(T - | D -)}$$

Does a test result change the probability that a person has a certain condition?

Likelihood Ratios

Likelihood Ratio	Approximate Change in Probability(%)
0.1	-45
0.2	-30
0.5	-15
1	0
2	+15
5	+30
10	+45

Change in post test probability $\approx 0.2 \times ln\, LR^{5}$

 $^{^{5}}$ McGee, Steven. "Simplifying likelihood ratios." Journal of general internal medicine 17.8 (2002): 647-650. APA

Discrimination Thresholds

F1 Score

$$F1 = \frac{2}{\frac{1}{\textit{sensitivity}} + \frac{1}{\textit{PPV}}} = 2 \times \frac{\textit{PPV} \cdot \textit{sensitivity}}{\textit{PPV} + \textit{sensitivity}}$$

How does F1 differ from AUC?

 F1 is sensitivity modified by prevalence. So a low prevalence will hurt your F1 score but might not affect your AUC. F1 is threshold specific and corresponds to a point on the ROC curve

2.