Algèbre Linéaire

Semestre d'automne 2018

Bronstein Huruguen

Corrigé 1

Langage Ensembliste: exercice 1

Si nécessaire, donner un référentiel et écrire l'ensemble sous la forme :

$$A = \{ x \in R \mid x \text{ vérifie la propriété } P \}$$

• $A = \{ n \mid n \in \mathbb{N} \text{ et } 2n + 1 < 16 \}$

Un élément de A est un entier positif ou nul qui vérifie l'inéquation :

$$2n+1 < 16$$
 donc $n < \frac{15}{2}$ et $n \in \mathbb{N}$.

 $D'où : A = \{0, 1, 2, 3, 4, 5, 6, 7\}$

Le référentiel manque dans l'énoncé.

On peut choisir $\mathbb R$ comme référentiel : $A=\{n\in\mathbb R\mid n\in\mathbb N\ \text{ et }2n+1<16\}$ ou

on peut choisir \mathbb{N} comme référentiel, alors la propriété " $n \in \mathbb{N}$ " devient inutile :

$$A = \{ n \in \mathbb{N} \mid 2n + 1 < 16 \}$$

• $B = \{ n \in \mathbb{N} \mid n^3 \text{ est impair } \}$

B est l'ensemble des entiers n positifs ou nul tels que la propriété " n^3 est impair" est vérifiée.

On énumère les éléments du référentiel N et on vérifie si leur cube est impair :

```
si n = 0 alors 0^3 = 0 donc 0 \notin B
si n = 1 alors 1^3 = 1 donc 1 \in B
```

si n = 2 alors $2^3 = 8$ donc $2 \notin B$

si n=3 alors $3^3=27$ donc $3 \in B$ etc

$${\rm D'o\grave{u}}: B \ = \ \{1, \, 3, \, 5, \, 7, \, \dots \, \}$$

On peut aussi écrire : $B = \{ n \in \mathbb{N} \mid \text{il existe } k \in \mathbb{N}, n^3 = 2k+1 \}$

Remarque: on montrera au chapitre suivant: n^3 est impair si et seulement si n est impair.

 $\bullet \ C = \{ 3y + 1 \mid y \in \mathbb{N} \}$

C est l'ensemble des éléments x qui s'écrivent comme $3y+1\,,\ y$ étant un entier positif ou nul.

Il suffit donc d'énumérer quelques un de ces éléments x:

```
pour y = 0, on obtient x = 1
```

pour
$$y = 1$$
, on obtient $x = 4$

pour
$$y=2$$
, on obtient $x=7$

pour y = 3, on obtient x = 10 etc

 $D'où : C = \{1, 4, 7, 10, \dots\}$

Il manque un référentiel et une propriété à vérifier. On peut choisir $\mathbb N$ comme référentiel, d'où :

$$C = \{ n \in \mathbb{N} \mid n = 3y + 1, y \in \mathbb{N} \}$$

• $D = \{ a \in \mathbb{Z}^* \mid \text{le produit de } a \text{ par 6 est un élément de } \mathbb{Z}^* \}$

Un élément a de \mathbb{Z}^* appartient à D si, lorqu'il est multiplié par 6, il est encore dans \mathbb{Z}^* .

Il est évident que tout élément de \mathbb{Z}^* vérifie cette propriété, donc $D = \mathbb{Z}^*$.

La propriété peut être écrite d'une manière plus "mathématique" :

$$D = \{ a \in \mathbb{Z}^* \mid 6a \in \mathbb{Z}^* \}$$

 $\bullet \ E = \{ 4y \mid y \in \mathbb{Z} \}$

E est l'ensemble des éléments x qui s'écrivent comme 4y, y étant dans \mathbb{Z} . On énumère donc quelques éléments x:

pour y = -2, on obtient x = -8

pour y = -1, on obtient x = -4

pour y = 0, on obtient x = 0

pour y=1, on obtient x=4

pour y = 2, on obtient x = 8

pour y = 3, on obtient x = 12 etc

$$D'où : E = \{ \dots -8, -4, 0, 4, 8, 12 \dots \}$$

Il manque un référentiel et une propriété à vérifier. On peut choisir \mathbb{Z} comme référentiel, d'où : $E = \{ n \in \mathbb{Z} \mid \text{il existe } y \in \mathbb{Z}, n = 4y \}$

• $F = \{ x \mid x \in \mathbb{Q} \text{ et } x^2 - 2 = 0 \}$

F est l'ensemble des rationnels qui vérifient l'équation $x^2 - 2 = 0$.

Cette équation a pour solutions $x = \pm \sqrt{2}$. Or $\sqrt{2}$ est irrationnel donc $F = \emptyset$. Il manque un référentiel. On peut choisir $\mathbb Q$ comme référentiel, alors la propriété " $x \in \mathbb Q$ " devient inutile :

$$F = \{ x \in \mathbb{Q} \mid x^2 - 2 = 0 \}$$

(On pourrait choisir $\mathbb R$ comme référentiel : $F = \{ x \in \mathbb R \mid x^2 - 2 = 0 \text{ et } x \in \mathbb Q \}$)

• $G = \{ n \mid n \in \mathbb{N} \text{ et } 2 < 3n + 1 < 20 \}$

G est l'ensemble des entiers n positifs ou nul qui vérifient : 2 < 3n + 1 < 20. Il faut donc résoudre dans \mathbb{N} le système d'inéquations suivant :

$$\left\{\begin{array}{ccc} 2 & < & 3n+1 \\ 3n+1 & < & 20 \end{array}\right. \Rightarrow \left\{\begin{array}{ccc} \frac{1}{3} & < & n \\ n & < & \frac{19}{3} \end{array}\right.$$

D'où : $G = \{1, 2, 3, 4, 5, 6\}$

Il manque un référentiel. On peut choisir $\mathbb N$ comme référentiel, alors la propriété

" $n \in \mathbb{N}$ " devient inutile : $G = \{ n \in \mathbb{N} \mid 2 < 3n + 1 < 20 \}$

•
$$H = \{ x \in \mathbb{R} \mid -5 < x - 3 < 5 \text{ et } x > 2 \}$$

Remarque:

 $H = \{ x \in \mathbb{R} \mid (x \text{ vérifie la propriété } P) \text{ } et \text{ } (x \text{ vérifie la propriété } Q) \}$ Ecrire H comme l'intersection de deux ensembles définis par les propriétés P et $Q: H = H_1 \cap H_2$

On pose:

$$H_1 = \{ x \in \mathbb{R} \mid -5 < x - 3 < 5 \}$$

$$H_2 = \{ x \in \mathbb{R} \mid x > 2 \}$$

d'où :
$$H = H_1 \cap H_2$$

 H_1 est l'ensemble des réels qui vérifient -5 < x - 3 < 5

On résout dans \mathbb{R} le système d'inéquations suivant :

$$\begin{cases} -5 < x-3 \\ x-3 < 5 \end{cases} \Rightarrow \begin{cases} -2 < x \\ x < 8 \end{cases} \text{ d'où } H_1 =]-2; 8[$$

$$H_2 =]2; +\infty[$$

Ainsi:
$$H =]-2; 8[\cap]2; +\infty[=]2; 8[$$

•
$$I = \{ x \in \mathbb{R} \mid x+5 > 4 \text{ ou } x+5 < -4 \}$$

Remarque:

 $I=\{\ x\in\mathbb{R}\mid (x \text{ vérifie la propriété }P)\ ou\ (x \text{ vérifie la propriété }Q)\ \}$ Ecrire I comme la réunion de deux ensembles définis par les propriétés P et Q: $I=I_1\cup I_2$

On pose:

$$I_{1} = \{ x \in \mathbb{R} \mid x+5>4 \} = \{ x \in \mathbb{R} \mid x>-1 \} =]-1; +\infty[$$

$$I_{2} = \{ x \in \mathbb{R} \mid x+5<-4 \} = \{ x \in \mathbb{R} \mid x<-9 \} =]-\infty; -9[$$
d'où : $I = I_{1} \cup I_{2} =]-\infty; -9[\cup]-1; +\infty[$

• $J = \{ x \in \mathbb{R} \mid 3x^2 - 14x + 8 = 0 \text{ et } x \notin \mathbb{N} \}$

On pose

$$J_1 = \{ x \in \mathbb{R} \mid 3x^2 - 14x + 8 = 0 \} = \{ \frac{2}{3}; 4 \}$$

$$J_2 = \{ x \in \mathbb{R} \mid x \notin \mathbb{N} \}$$

d'où :
$$J = J_1 \cap J_2 = \{\frac{2}{3}\}$$

•
$$K = \{ x \in \mathbb{Z} \mid x^2 - 3x - 10 = 0 \text{ ou } x \in \mathbb{N}^* \}$$

On pose:

$$K_1 = \{ x \in \mathbb{Z} \mid x^2 - 3x - 10 = 0 \} = \{ -2; 5 \}$$

$$K_2 = \{ x \in \mathbb{Z} \mid x \in \mathbb{N}^* \} = \mathbb{N}^* = \{ 1, 2, 3, 4, \dots \}$$

d'où :
$$K = K_1 \cup K_2 = \{-2, 1, 2, 3, 4, \dots\}$$

• $L = \{ M \in \mathcal{E} \mid \text{distance de } U \text{ à } M = \text{distance de } V \text{ à } M \}$ L est l'ensemble des points de la médiatrice m du segment UV.

 $\mathrm{distance}\ (U\,,\,M)\ =\ \mathrm{distance}\ (V\,,\,M)$

• $N = \{ M \in \mathcal{E} \mid \text{distance de } U \text{ à } M \text{ est inférieure à 2} \}$

N est l'ensemble des points du disque $\,{\cal D}\,$ de centre $\,U\,$ et rayon $2\,,$ frontière non comprise.

distance (U, M) < 2

• $P = \{ M \in \mathcal{E} \mid \text{l'angle saillant entre } MU \text{ et } MV \text{ est droit} \}$ $P \text{ est l'ensemble des points du cercle de Thalès } \gamma \text{ du segment } UV \text{ (les points } U \text{ et } V \text{ non compris}).$

angle $(MU, MV) = \frac{\pi}{2}$

Langage Ensembliste: exercice 3

- (a) $\sqrt{4} \notin \mathbb{N}$: $\sqrt{4}$ n'appartient pas à \mathbb{N} Faux car $\sqrt{4} = 2$ et 2 est un élément de \mathbb{N} . Donc $\sqrt{4}$ appartient à \mathbb{N} : $\sqrt{4} \in \mathbb{N}$
- Juste car le signe ⊂ relie deux ensembles.

 Remarque : on utilise parfois la notation ⊆ qui signifie "inclus ou égal".

l'ensemble $\mathbb N$ est inclus ou égal à $\mathbb N$

(c) $\mathbb{Q} \in \mathbb{Q}$: l'ensemble \mathbb{Q} est un élément de \mathbb{Q} Faux car \mathbb{Q} est un ensemble et le signe \in relie un élément à un ensemble. Donc \mathbb{Q} est inclus dans \mathbb{Q} : $\mathbb{Q} \subset \mathbb{Q}$

(d) $2 \in \emptyset$: 2 appartient à l'ensemble vide.

Faux car quelque soit x, $x \notin \emptyset$, donc 2 n'appartient pas à cet ensemble.

Donc: $2 \notin \emptyset$

(b) $\mathbb{N} \subset \mathbb{N}$:

Remarque : le signe \emptyset représente un ensemble et non un élément.

- (e) $\{1\} \in \{1; 4; 5\}$: l'ensemble $\{1\}$ appartient à l'ensemble $\{1; 4; 5\}$. Faux car $\{1\}$ est un sous-ensemble de $\{1; 4; 5\}$ et le signe \in relie un élément à un ensemble. Donc $\{1\}$ est inclus dans $\{1; 4; 5\}$: $\{1\} \subset \{1; 4; 5\}$
- (f) $\{1; 4\} \supset \{4\}$: l'ensemble $\{1; 4\}$ contient $\{4\}$ ou $\{4\}$ est inclus dans $\{1; 4\}$ Juste car $\{4\}$ est un sous-ensemble de $\{1; 4\}$ et le signe \subset relie deux ensembles.
- (g) $\emptyset \subset \mathbb{R}$: l'ensemble vide est inclus dans \mathbb{R} . Juste car d'une part le signe \emptyset représente un ensemble et non un élément. De plus, l'ensemble vide est un sous-ensemble de tout ensemble et le signe \subset relie deux ensembles.
- (h) $\{2; 5\} \not\subset \{2; 4; 6\}$: $\{2; 5\}$ n'est pas un sous-ensemble de $\{2; 4; 6\}$. Juste car 5 n'appartient pas à l'ensemble $\{2; 4; 6\}$.

Langage Ensembliste: exercice 5

Dans chaque cas, il suffit d'expliciter les ensembles.

- (a) \bullet $A = \{ n \in \mathbb{Z} \mid n^2 \le 4 \} = \{ -2; -1; 0; 1; 2 \}$
 - $B = \{x \in \mathbb{R} \mid x^2 3x + 2 = 0\} = \{1; 2\}$

Donc: $A \neq B$

- (b) $\bullet A = \{x \in \mathbb{R} \mid x^2 = -1\} = \emptyset$
 - $\bullet \ B = \{x \in \mathbb{Q} \mid x^2 = 2\} = \emptyset$

Donc: A = B

(c) \bullet $A = \{x \in \mathbb{Z} \mid x^2 \le 1\} = \{-1; 0; 1\}$

• $B = \{x \in \mathbb{R} \mid x^3 = x\} = \{-1; 0; 1\}$

Donc: A = B

Langage Ensembliste: exercice 7

Déterminer si on a une relation entre un élément et un ensemble ou une relation entre deux ensembles.

(a) $A = \{a; b\}$

 $\{a\} \subset A$: juste car a est est élément de A, donc $\{a\}$ est un sous-ensemble de à A.

(b) $A = \{a; b\}$

 $\{a\} \in A$: faux car relativement à A, $\{a\}$ est un sous-ensemble donc $\{a\} \subset A$.

(c) $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

 $\{a\} \in \mathcal{P}(A)$: juste car relativement à $\mathcal{P}(A)$, $\{a\}$ est un élément.

(d) $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

 $\{\{a;b\}\}=A:$ faux car relativement à $\mathcal{P}(A)$, $\{a;b\}$ est un élément, donc $\{\{a;b\}\}=\{A\}$ est un sous-ensemble de $\mathcal{P}(A)$.

On doit écrire : $\{\{a;b\}\}\subset \mathcal{P}(A)$ ou de manière équivalente $\{A\}\subset \mathcal{P}(A)$.

- (e) $A \in A$: faux car relativement à A, A est un sous-ensemble. Donc : $A \subset A$.
- (f) $A \supset A$: juste. Cette notation est équivalente à $A \subset A$

(g) $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\} \}$

 $A \in \mathcal{P}(A)$: juste car relativement à $\mathcal{P}(A), \{a; b\} = A$ est un élément.

(h) $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

 $\{\{a\}; \{b\}\} = \mathcal{P}(A)$: faux relativement à $\mathcal{P}(A)$, $\{\{a\}; \{b\}\}$ est un sous-ensemble contenant les deux éléments $\{a\}$ et $\{b\}$.

Pour être égal à $\mathcal{P}(A)$, il faut encore ajouter les éléments $\{a, b\}$ et \emptyset .

On doit écrire : $\{\{a\}; \{b\}\} \subset \mathcal{P}(A)$

Langage Ensembliste: exercice 11

$$n\mathbb{Z} = \{x \in \mathbb{Z} \mid x = k\, n\,, \ k \in \mathbb{Z}\} = \{\ ...; \ -2n\,; \ -n\,; \ 0\,; \ n\,; \ 2n\,; \ ... \ \}$$

$$m\mathbb{Z} = \{x \in \mathbb{Z} \mid x = k \, m \, , \ k \in \mathbb{Z}\} = \{ \ldots; -2m; -m; 0; m; 2m; \ldots \}$$

 $n\mathbb{Z} \cap m\mathbb{Z} = \text{ensembles des multiples de } n \text{ et } m$

On peut donc déterminer directement les éléments de l'intersection de $n\mathbb{Z}$ et $m\mathbb{Z}$: ils appartiennent à $k\mathbb{Z}$ où k est le ppmc de n et m.

(ppcm = plus petit multiple commun)

• $6\mathbb{Z} \cap 4\mathbb{Z}$ = ensembles des multiples de 6 et 4 = { ...; -24; -12; 0; 12; ... } = ensembles des multiples de 12 = 12 \mathbb{Z} 12 = ppmc de 6 et 4

- $7\mathbb{Z} \cap 2\mathbb{Z}$ = ensembles des multiples de 6 et 4 = { ...; -28; -14; 0; 14; ... } = ensembles des multiples de 14 = 14 \mathbb{Z} 14 = ppmc de 7 et 2
- $3\mathbb{Z} \cap 5\mathbb{Z}$ = ensembles des multiples de 3 et 5 = { ...; -30; -15; 0; 15; ... } = ensembles des multiples de 15 = 15 \mathbb{Z} 15 = ppmc de 3 et 5

Langage Ensembliste: exercice 12

Expliciter les ensembles A, B et C et les représenter sur un axe horizontal.

$$A = \{x \in \mathbb{R} \mid -x^2 + x + 12 > 0\} = \{x \in \mathbb{R} \mid -(x+3)(x-4) > 0\} =] - 3; 4[$$

$$B = \{x \in \mathbb{R}_+ \mid (x-1)^2 > 0\} = \mathbb{R}_+ - \{1\}$$

$$C = \{x \in \mathbb{R} \mid x^2 - 25 \le 0\} = [-5; 5]$$

$$A =]-3; 4[$$
 $B = \mathbb{R}_{+} - \{1\}$ $C = [-5; 5]$

- (a) $A \cap B = [0; 1[\cup]1; 4[$
- (b) $A \cup B =]-3; +\infty[$
- (c) $B \cap C = [0; 1[\cup]1; 5]$ d'où $A \cup (B \cap C) =] 3; 5]$
- (d) $B \cup C \ = \ [-5\,;\, +\infty[\ \ d\mbox{'où} \ \ A \cap (B \cup C) \ =] 3\,; 4[$

(e)
$$A \cap B = [0; 1[\cup]1; 4[\text{ d'où } C_C(A \cap B) = [-5; 0[\cup \{1\} \cup [4; 5]$$

(f)
$$C_C A = [-5; -3] \cup [4; 5]$$
 d'où $(C_C A) \cup B = [-5; -3] \cup [0; 1] \cup [1; +\infty]$

(g)
$$(A \cap B) \cup (A \cap C) = A \cap (B \cup C)$$

Langage Ensembliste: exercice 13

Rappel:

$$A \times B = \{ (x, y) \mid x \in A \text{ et } y \in B \}.$$

On représente l'ensemble A sur l'axe horizontal et l'ensemble B sur l'axe vertical.

$$* A = \{ n \in \mathbb{Z} \mid 1 \le n < 4 \} = \{ 1, 2, 3 \},\$$

*
$$B = \{ n \in \mathbb{Z} \mid -2 \le n \le 3 \} = \{ -2, -1, 0, 1, 2, 3 \}.$$

Représentation graphique de $A \times B$.

$$A \times B = \{ (x, y) \in \mathbb{Z}^2 \mid 1 \le x < 4 \text{ et } -2 \le y \le 3 \}.$$

Si A_1 est un sous-ensemble de A et si B_1 est un sous-ensemble de B, alors l'ensemble produit $A_1 \times B_1$ est un sous-ensemble de $A \times B$.

Soit
$$H_1 = A_1 \times B_1$$
 avec $A_1 = \{2\}$ et $B_1 = \{-1, 0, 1\}$

$$H_1 = \{ (2, y) \in \mathbb{Z}^2 \mid y \in \{-1, 0, 1\} \}$$

 H_1 est un ensemble produit et un sous-ensemble de $A \times B$.

Représentation graphique de H_1 .

Il suffit de choisir un sous-ensemble de $A \times B$ qui n'a pas une apparence de "rectangle". Soit H_2 le sous-ensemble de $A \times B$ décrit ci-dessous.

Représentation graphique de H_2 .

Le sous-ensemble H_2 n'est pas un ensemble produit, mais peut être décrit comme la réunion de deux ensembles produits.

Par exemple : $H_2 = \{1\} \times \{-1, 0, 1, 2\} \cup \{2, 3\} \times \{1, 2\}$.