# The ElGamal Cryptosystem Gianluca Dini Dept. of Ingegneria dell'Informazione University of Pisa Email: gianluca.dini@.unipi.it Version: 2024-04-04

1

The ElGamal Cryptosystem

#### **INTRODUCTION**

Apr-24

The ElGamal Cryptosystem

2

#### Introduction



- Taher ElGamal, 1985
- An "extension" of Diffie-Hellman Key Exchange
- One-way function: Discrete Logarithm
- Appliable in any cyclic group where DLP and DHP are intractable
- We consider  $\mathbb{Z}_p^*$

Apr-24

The ElGamal Cryptosystem

3

# From DHKE to ElGamal encryption



#### From DHKE to ElGamal encryption



- On parameters and keys
- Domain parameters: Large p and primitive element  $\alpha$
- Keys
  - The public-private pair  $(d, \beta)$  does not change
  - The public-private pair (i, k<sub>E</sub>) is generated for every new message
  - k<sub>F</sub> is called *ephemeral key*
  - k<sub>M</sub> is called the masking key

Apr-24

The ElGamal Cryptosystem

5

5

# From DHKE to ElGamal encryption



- Intuition
  - One property of cyclic groups is that, given  $k_M \in \mathbb{Z}_p^*$ , every message x maps to another ciphertext y if the two values are multiplied
  - If every  $k_M$  is randomly chosen from  $\mathbb{Z}_p^*$  then every y in  $\{1, 2, ..., p-1\}$  is equally likely
- Remark
  - In the ElGamal encryption scheme we do not need a TTP which generates p and  $\boldsymbol{\alpha}$

Apr-24

The ElGamal Cryptosystem

U

The ElGamal encryption scheme

#### THE ELGAMAL ENCRYPTION SCHEME

Apr-24

The ElGamal Cryptosystem

7

/

# From DHKE to ElGamal encryption



```
Alice Bob  \text{choose large prime p} \\ \text{choose primitive element } \alpha \text{ of (a} \\ \text{subgroup of) Zp*} \\ \text{choose d = privK}_{\text{B}} \in \{2,...,\,p-2\}
```

compute  $\beta$  = pubK<sub>B</sub>  $\equiv \alpha^d \mod p$ 

<----- pub $K_B$ = (p,  $\alpha$  ,  $\beta$ ) ------

choose a new  $i \in \{2,...,p-2\}$  compute ephemeral key:  $k_{\scriptscriptstyle F} \equiv \alpha^i \ \text{mod} \ p$ 

compute masking key:  $k_M \equiv \beta^i \mod p$ 

encrypt  $x \in Z_p^*$ :  $y \equiv x \cdot k_M \mod p$ 

Apr-24 The ElGamal Cryptosystem

8

# Consistency



- Consistency proof consists in proving that:
  - $x \equiv y \cdot k_M^{-1} \mod p$ 
    - 1.  $y \cdot k_M^{-1} \equiv (x \cdot k_M) \cdot (k_E^d)^{-1} \equiv (x \cdot (\alpha^d)^i) \cdot ((\alpha^i)^d)^{-1} \equiv$
  - 2.  $x \cdot \alpha^{d \cdot i d \cdot i} \equiv x \mod p$

Apr-24

The ElGamal Cryptosystem

9

9

# ElGamal is probabilistic



- ElGamal encryption scheme is probabilistic
  - Encrypting two identical messages  $x_1$  and  $x_2$  with the same public key pubK<sub>B</sub>= (p,  $\alpha$ ,  $\beta$ ) results in two different ciphertext  $y_1$  and  $y_2$  (with high probability)
  - Masking key k<sub>M</sub> is chosen at random for every new message
  - Brute force against x is avoided a priori

Apr-24

The ElGamal Cryptosystem

10

#### Performance issues



- · Communication issues
  - Cyphertext expansion factor is 2
    - The bit size of  $(y, k_E)$  is twice as the bit size of x
- Computational issues
  - Key Generation
    - Generation of large prime p (at least 1024 bits)
    - · privK is generated by a RBG
    - pubK requires a modular exponentiation

Apr-24

The ElGamal Cryptosystem

11

11

#### Performance issues



- Computational issues
  - Encryption
    - · Two modular exponentiations and a modular multiplication
      - Exponentiations are independent of plaintext
      - Pre-computation of  $k_E$  and  $k_M$
  - Decryption
    - A modular exponentiation, a modular inverse and a modular multiplication
      - EEA can be used for modular inverse, or
      - We may combine exponentiation and inverse together, so we just need an exponentiation and a multiplication (→)

Apr-24

The ElGamal Cryptosystem

12

# Computational issues



- How to combine exponentiation and inverse together
  - Proof
    - · Recall Fermat's Little Theorem
      - Let a be an integer and p be a prime,  $a^{p-1} \equiv 1 \mod p$
    - Merge the two steps of decryption

$$- k_M^{-1} \equiv (k_E^d)^{-1} \equiv (k_E^d)^{-1} k_E^{p-1} \equiv k_E^{p-d-1} \mod p$$

Apr-24

The ElGamal Cryptosystem

13

13

ElGamal Cryptosystem

#### **SECURITY ISSUES**

Apr-24

The ElGamal Cryptosystem

14

#### Security issues – passive attacks



- The ElGamal problem
  - Recovering x from (p, α, β) and (y,  $k_E$ ) where β ≡ α<sup>d</sup> mod p;  $k_E = \alpha^i \mod p$ , and  $y = x \cdot \beta^i \mod p$
- The ElGamal Problem relies on the hardness of DHP
  - Currently there is no other known method for solving the DHP than solving the DLP
  - The adversary needs to compute Bob's secret exponent d or Alice's secret random exponent i
  - The Index-calculus method can be applied  $\rightarrow$  |p| = 1024+

Apr-24

The ElGamal Cryptosystem

15

15

### Security issues – active attacks



- Active attacks
  - Bob's public key must be authentic
  - Secret exponent i must be not reused (→)
  - ElGamal is malleable (→)

Apr-24

The ElGamal Cryptosystem

#### Security issues - active attacks



- · On reusing the secret exponent i
  - Alice uses the same i for  $x_1$  and  $x_2$ , then
    - both the masking keys and the ephemeral keys would be the same
      - $k_E = \alpha^i \equiv \text{mod } p$
      - $k_M = \beta^i \equiv \text{mod } p$
    - She transmits  $(y_1, k_E)$  and  $(y_2, k_E)$
  - The adversary
    - Can easily identify the reuse of i
    - If (s)he can guess/know  $x_1$ , then (s)he can compute  $x_2 \equiv y_2 \cdot k_M^{-1} \mod p$  with  $k_M \equiv y_1 \cdot x_1^{-1} \mod p$

Apr-24

The ElGamal Cryptosystem

17

17

# Security issues - active attacks



- On malleability
  - The adversary replaces ( $k_E$ , y) by ( $k_E$ , s·y)
  - The receiver decrypts  $x' \equiv x \cdot s \mod p$
  - Schoolbook ElGamal is often not used in practice, but some padding is introduced

Apr-24

The ElGamal Cryptosystem

18

