Terms and conditions

Previously you have seen how to blur an image, represented as an $m \times n$ pixel intensity matrix X, through multiplying by a matrix on each side:

$$Z = VXH, (1)$$

where $V = (B_m)^k$, $H = (B_n)^k$, B_i is the $i \times i$ matrix made by your function blurmatrix, and k is a positive integer. You have also seen that deblurring can be accomplished by multiplying by matrix inverses on each side of Z (as computed equivalently by solving linear systems). However, while the restoration seems perfect for k = 1, it fails completely for larger k.

Matrix condition numbers explain these observations. The blurred matrix Z is perturbed by an amount comparable to machine precision. For k=1, the condition numbers of V and H are not large enough to amplify this error up to the same order of magnitude as X itself, so the noise is not perceived. But at some k>1, the condition numbers are so large that the noise is amplified enough to overwhelm the expected result.

Let x be a single column of X. For the case of vertical blurring only, we have z = Vx as a column of Z. We solve Vy = z for y, which is mathematically the same as x. Due to machine precision, though, the perturbation to z causes an error satisfying

$$\frac{\|y - x\|}{\|x\|} \le \kappa(V)\varepsilon_{\text{mach}},\tag{2}$$

with κ being the matrix condition number.

Preparation

Read Section 2.8. Make sure your working blurmatrix.m is available.

Goals

You will compute condition numbers of blur matrix powers and compare them to the errors of repeated blur/deblur operations.

Procedure

- 1. The condition number of a matrix has two factors, ||A|| and $||A^{-1}||$. First you will show that the ||A|| term makes no trouble. For n = 50, 100, 150, ..., 800, plot $||B_n||$ versus n.
- 2. For the same n as in step 1, plot $\kappa(\mathbf{B}_n)$ versus n. You should use a log-log scale for this graph and get essentially a straight line. This implies that $\log \kappa \approx a \log n + b$, or $\kappa \approx C n^p$.
- 3. Let $V = B_{100}$. For k = 1, 2, ..., 8, plot $\kappa(V^k)$ as a function of k. This time the graph is straight on a semi-log scale, which implies $\kappa \approx Cq^k$.
- 4. Let x be a random vector of length 100. For k = 1, 2, ..., 8, let z = Vx and then solve Vy = z for y. Record the relative error in the result. Then make a table showing both sides of the inequality (2).