L8_1 Floating-Point Arithmetic

EECS 370 – Introduction to Computer Organization – Fall 2020 Add We Char powcoder

Learning Objectives

• To understand the algorithm for arithmetic operations using IEEE 754 floating-point values.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Floating Point Representation

Problem: What is the value (in decimal) of the following IEEE 754 floating point encoded number?

1 10000101 010110010000000000000000

Assignment Project Exam Help

sign bit

1

- (negative)

https://powcoder.com

exponent

10000101

133 – 127 = 6 (biased by 127) Add WeChat poweoder

significand

010110010000000000000000

add implicit 1

 -1.01011001×2^{6}

shift radix point 6 places

-1010110.01

$$-1010110.01 = -(2^6 + 2^4 + 2^2 + 2^1 + 2^{-2}) = -(64 + 16 + 4 + 2 + \frac{1}{2}) = -86.25_{10}$$


```
10.625 <sub>10</sub>
```

10

10

Algorithm:

- 1. Cossignmenti Project Exam Help
- 2. Convert binary numbers to IEEE 754 floating-point
- 3. Multiply
 - 1. Signal it We Chat powcoder
 - 2. Add exponents mind the bias! (127)
 - 3. Multiply significands

Floating Point Multiply - Example

Add WeChat po voo ookan 1010100

10101001000000000000000

$$1101010.01_{2} = 106.25_{10}$$

- More complicated than floating point multiplication!
- If exponents are unequal, must shift the significand of the smaller number to the right so an are the right of an area of the right of the
- Once numbers are aligned simple addition (could be subtraction, if one of the numbers is negative)

 Add WeChat powcoder

 • Renormalize (shift to get back into proper "scientific notation")
- Added complication: rounding to the correct number of bits to store could denormalize the number, and require one more step

Floating Point Addition

1. Shift smaller exponent right to match larger.

2.Add significands

3. Normalize and update exponent

4.Check for "out of range"

Normalize: shift significand

(mantissa) for integer part

to be 1 and remaining bits

are fractions

Example: 1010.101, Normalized is 1.010101×2^3

Problem: Add two numbers using IEEE floating point addition: 101.125 + 13.75

- 1.Convert to IEEE 754 format
- 2.Shift smaller exponentiagment Project Exam Help match larger.

 https://powcoder.com
- 3.Add significands
- 4. Normalize and update exponent Add WeChat powcoder
- 5. Check for "out of range"

Problem: Add two numbers using IEEE floating point addition: 101.125 + 13.75

Sum Significands

1100101001 +0001101110 1110010111

Sum didn't overflow, so no re-normalization needed

11001011100000000000000

$$= 1.110010111_2 \times 2^6 = 114.875_{10}$$

10000101

- We have described IEEE-754 binary32 floating point format, commonly known as "single precision" ("float" in C/C++)
 - 24 bits precision; equivalente to taboute to the transfer of the table to table
 - 3.4 * 10³⁸ maximum value
 - Good enough for many but not all calculations
- IEEE-754 also defines a Aard Wb Chary 64 formulat, "double precision" (double data type in C/C++)
 - 53 bits precision, equivalent to about 16 decimal digits
 - 1.8 * 10³⁰⁸ maximum value
 - Most accurate physical values currently known only to about 47 bits precision, about 14 decimal digits

Logistics

- There are 3 videos for lecture 8
 - L8_1 IEEE_Floating-Point_Arithmetic
 - L8_2 Basic-Electronsics nogion General Exam Help

- L8_3 Combinational-Logic
 https://powcoder.com
 There is one worksheet for lecture 8
 - 1. Logic gates complete at the end at all 3 we deter.

Assignment Project Exam Help L8_2 Basic-Electronics_Logic-Gates

EECS 370 – Introduction to Computer Organization – Fall 2020 Add We Chat powcoder

Office Hours

- Drop by office hours, ask questions, say 'hi'

Group office hoursAdd WeChat powcoder

Tuesdays 4pm to 4:30 pm

Thursdays 9:45 am to 10:15 am

Thursdays 2:30 pm to 3:00 pm

https://umich.zoom.us/j/92153246345

Learning Objectives

- To identify logic gates used in combinational logic circuits and describe their operations.
- Be able to create the figure of the NOR gate, (and therefore, the nor instruction in LC-2K).

Add WeChat powcoder

Levels of Abstraction

- Quantum level, solid state physics
- Conductors, Insulators, Semiconductors
- Doping silicon to makeighodent and jectnessaurs Help
- Simple gates, Boolean logic, and truth tables https://powcoder.com
- Combinational logic: muxes, decoders
- Clocks Add WeChat powcoder
- Sequential logic: latches, memory
- State machines
- Processor Control: Machine instructions
- Computer Architecture: Defining a set of instructions

Start with the Materials: Conductors and Insulators

- Conductor: a material that permits electrical current to flow easily. (low resistance to current flow)
 - Lattice of atoms with free electrons Assignment Project Exam Help
- Insulator: a material that is types / ponductdep felactrical current (High resistance to current flow)
 - Lattice of atoms with strongly de Welchantspowcoder
- Semi-conductor: a material that can switch between an (okay) conductor and an (okay) insulator
 - Controlled via an external voltage
 - Basis for "logical switches" that make up digital circuits

Making a Transistor

Our first level of abstraction is the transistor (basically 2 diodes sitting

back-to-back)

• Electrical engineers use a symbol like this:

Recent Pictures and the Near Future

90nm technology 65nm technology 45nm technology 32nm technology 14nm technology 7nm technology 5nm technology 2003 2005 2008 2010 2014 2018 2020

Transistor Count

2020 - NVIDIA RTX 3090 28 Billion Transistors

Present and Future Problems

Area is the least of them

• Power density – Watts/mmnent Project Exam Help

Leakage current

• Reliability (faults)

sity (W/cm2)

Testing burn-in

rocket nozzle

nuclear reactor

Process variation (not all transistors are equal)

As for power: Cooking-aware Computing

Source: The New York Times, 25 June 2002

Liquid Nitrogen Cooling

CS abstractionlogic function

Truth Table

l	0
0	1
1	0

Schematic symbol (CS/EE)

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Truth Table

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

Assignment Project Exam Help

Basic Gates: AND, OR, XOR

AND

OR

XOR

Y Assignment Project Exam Help

Truth Table

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

https://powcoder.com Truth Table

Add WeChat powcoder

A	B	POW
0	0	0
0	1	1
1	0	1
1	1	1

Truth Table

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

NOR

Assignment Project Exam Help

https://powcoder.com Truth Table

WeChat powcoder

A	d WeCha B	A B	der Y
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Logic Gate Exercise

- NOR is logically complete
 - This means that all gates can be implemented using only NORs
 - All gates can be in Apple in the interpretation to the interpretation of the interpret
 - NAND is also logically complete

https://powcoder.com

- Exercise:
 - Implement INV using only INV gethat powcoder
 - Implement AND using only NOR gates
 - Implement OR using only NOR gates
 - Hint Demorgan's Law:
 - A | | B = !(!A && !B)
 - $!(A \mid | B) = !A \&\& !B$

Logic Gate Exercise – INV (!) using NOR

NOR

https://pawtader.com

Add V	VeChat p	owcoder
0	0	1
0	1	0
1	0	0
1	1	0

Truth Table

I	0
0	1
1	0

Logic Gate Exercise – AND using NOR

$$!(A | | B) = !A \&\& !B = A NOR B$$

!A NOR !B = A && Bsubstitute A NOR A for !A substitute B NOR B for !B

Assignment Project Exam Help

https://powcodeB.com Add WeChat po

A && B = (A NOR A) NOR (B NOR B)

owcoder	В	A && B	Υ
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Logic Gate Exercise – OR using NOR

NOR

OR

Truth Table

https://powcoder.com

Α	В	A B	Υ	AddyWo	Chat powcoder
0	0	0	1	0	
0	1	1	0	1	
1	0	1	0	1	
1	1	1	0	1	

Logistics

- There are 3 videos for lecture 8
 - L8_1 IEEE_Floating-Point_Arithmetic
 - L8_2 Basic-Electronsics nogion General Exam Help

- L8_3 Combinational-Logic
 https://powcoder.com
 There is one worksheet for lecture 8
 - 1. Logic gates complete at the end at all 3 we deter.

Assignment Project Exam Help L8_3 Combinational-Logic

EECS 370 – Introduction to Computer Organization – Fall 2020 Add We Chat powcoder

Learning Objectives

To create circuits using combinations of basic gates.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Building Complexity: Addition (1)

GOAL: We want to design a circuit that performs binary addition

Let us start by adding two bits

- Design a circuit that takes two bits as input (A and B) Assignment Project
- Generates a sum and carry bit (S and C)
- 1. Make a truth table
- 2. Design a circuit

Building Complexity: Addition (1)

- Now we can add two bits, but how do we deal with carry bits?
 - We must design a circuit that can add three bits
 - Inputs: A, B, Cin
 Outputs: S, Cout Ssignment Project Exam I
 - 1. Design a truth table
 - 2. Circuit
 - How do we combine these?

https://powcoder.com

Cin	А	В	Cout	S
Help	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Unfortunately, this has a very large propagation time for 32 or 64 bit adds

Building Complexity: Selecting

 We want to design a circuit that can select between two inputs - Let us start with a one-bit version

А	В	S	С
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

1. Draw a truth table Assignment Project Exam Help

Multiplexer - Example

Problem: Build a 4x1 mux using only 2x1 muxes

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Multiplexer - Example

Problem: Build a 4x1 mux using only 2x1 muxes

S1	SØ	Out
0	0	Α
0	1	В
1	0	С
1	1	D

SO

Building Complexity: Decoding

- Another common device is a decoder
 - Input: N-bit binary number
 - Output: 2^N bits, exactly one of which will be high Help

https://powcoder.com

Add WeChat powcoder

Decoder

Combinational Circuits Implement Boolean Expressions

- Output is determined exclusively by the input
- No memory: Output is valid only as long as input is
 Adder is the basic gate growth ALD (Piece Frame Help)

 - Decoder is the basic gate of indexing oder.com
 - MUX is the basic gate controlling data movement

Half-Adder

Add WeChat powcoder
Decoder

Mux

Logistics

- There are 3 videos for lecture 8
 - L8_1 IEEE_Floating-Point_Arithmetic
 - L8_2 Basic-Electronsics nogion General Exam Help

- L8_3 Combinational-Logic
 https://powcoder.com
 There is one worksheet for lecture 8
 - 1. Logic gates complete at the end at all 3 we deter.