Assignment 4 CS374

Harsh Patel(201701021) Viraj Patel(201701439)

Assigned by:

Prof. Arnab Kumar

September 19, 2019

Contents

1	Par	$\mathbf{t} \mathbf{A}$	4	4
	1.1	Equat	ion	4
	1.2	Graph	1	4
		1.2.1	First Root	5
		1.2.2	Second Root	6
2	Par	t B		7
	2.1	Quest	$\mathrm{ion}\ 1\ \ldots\ \ldots\ \ldots\ \ldots\ ,$	7
		2.1.1	$(A) \ldots \ldots$	7
		2.1.2	(B)	9
		2.1.3	(C)	1
		2.1.4	(D)	3
		2.1.5	È	5
		2.1.6	(F)	3
		2.1.7	(G))
	2.2	Quest	$\stackrel{\circ}{\text{ion}}\stackrel{'}{2}\ldots\ldots\ldots\ldots\ldots$	3
		2.2.1	Equation:	3
		2.2.2	Graph:	
	2.3	Quest	ion 3	
		2.3.1	Equation:	
		2.3.2	Graph:	
	2.4	_	$ion 4 \dots $	
		2.4.1	Equation:	
		2.4.2	Graph:	
		2.4.3	Smallest positive real root	
		2.4.4	Positive real root near $x = 100$	
	2.5		$ion 5 \dots $	
	۷.0	2.5.1	Equation:	
		2.5.1 $2.5.2$	1	
	2.6		1	
	2.6	Quest	$ion 6 \dots \dots 3!$)

2.6.1	Equation:											35
2.6.2	Graph:											35

1 Part A

1.1 Equation

$$y = x^6 - x - 1 \tag{1}$$

1.2 Graph

• So, from the above graph we can observe that there are two real roots of these equations.

1.2.1 First Root

- Above shown plot is of convergence of first root vs iterations
- Value of first root is 1.1347.
- Root value is obtained in 9 iterations while it took 14 iterations using Bisection method.

Count	x_n	f(x)	f'(x)	x_n+1	Error
1	2	61	191	1.68063	0.319372
2	1.68063	19.8529	79.4469	1.43074	0.249889
3	1.43074	6.1468	34.9711	1.25497	0.175768
4	1.25497	1.65166	17.6775	1.16154	0.0934325
5	1.16154	0.29431	11.6858	1.13635	0.0251852
6	1.13635	0.0168261	10.3689	1.13473	0.00162275
7	1.13473	6.57384e-05	10.2879	1.13472	6.38984e-06
8	1.13472	1.01541e-09	10.2876	1.13472	9.87017e-11
9	1.13472	-8.88178e-16	10.2876	1.13472	0

1.2.2 Second Root

- Above shown plot is of convergence of second root vs iterations.
- Value of second root is -0.7781.
- Root value is obtained in 9 iterations while using Bisection method took 14 iterations.

Count	x_n	f(x)	f'(x)	x_n+1	Error
1	0	-1	-1	-1	1
2	-1	1	-7	-0.857143	-0.142857
3	-0.857143	0.253712	-3.77599	-0.789952	-0.067191
4	-0.789952	0.0329504	-2.84567	-0.778373	-0.0115791
5	-0.778373	0.000768014	-2.71431	-0.77809	-0.00028295
6	-0.77809	4.40606e-07	-2.7112	-0.77809	-1.62514e-07
7	-0.77809	1.45217e-13	-2.71119	-0.77809	-5.35127e-14
8	-0.77809	2.22045e-16	-2.71119	-0.77809	-1.11022e-16
9	-0.77809	-1.11022e-16	-2.71119	-0.77809	0

2 Part B

2.1 Question 1

2.1.1 (A)

Equation:

$$y = x^3 - x^2 - x - 1 (2)$$

Graph:

• So, from the above graph we can observe that there is one real root of these equation.

- Above shown plot is of convergence of first root vs iterations.
- Value of first root is 1.8393.
- Root value is obtained in 6 iterations while it took 14 iterations in Bisection method.

	Count	x_n	f(x)	f'(x)	x_n+1	Error
0	1	2	1	7	1.85714	0.142857
1	2	1.85714	0.0991254	5.63265	1.83954	0.0175983
2	3	1.83954	0.00141033	5.47268	1.83929	0.000257703
3	4	1.83929	3.0007e-07	5.47035	1.83929	5.48539e-08
4	5	1.83929	1.37668e-14	5.47035	1.83929	2.44249e-15
5	6	1.83929	2.22045e-16	5.47035	1.83929	0

2.1.2 (B)

Equation:

$$x = 1 + (0.3)\cos x\tag{3}$$

Graph:

• So, from the above graph we can observe that there is one real root of these equation between 1 and 2 as both curves intersect between these two points.

- Above shown plot is of convergence of first root vs iterations.
- Value of first root is 1.1284.
- Root value is obtained in 4 iterations while Bisection method took 14 iterations.

Count	x_n	f(x)	f'(x)	x_n+1	Error
1	2	1.12484	1.27279	1.11624	0.883763
2	1.11624	-0.015483	1.26954	1.12843	-0.0121958
3	1.12843	9.71417e-06	1.27112	1.12843	7.64219e-06
4	1.12843	3.75017e-12	1.27112	1.12843	2.95031e-12

2.1.3 (C)

Equation:

$$\cos x = 0.5 + \sin x \tag{4}$$

Graph:

• So, from the above graph we can observe that there is one positive real root i.e the smallest positive root of these equation between 0 and 1 as both curves intersect between these two points.

Root Between : a = 0 and b = 1

- Above shown plot is of convergence of first root vs iterations.
- Value of first root is 0.4240.
- Root value is obtained in 4 iterations while Bisection method took 14 iterations.

Count	x_n	f(x)	f'(x)	x_n+1	Error
1	1	-0.801169	-1.38177	0.420188	0.579812
2	0.420188	0.0050801	-1.32094	0.424034	-0.00384581
3	0.424034	-3.72261e-06	-1.32288	0.424031	2.81403e-06
4	0.424031	-1.97969e-12	-1.32288	0.424031	1.49653e-12

2.1.4 (D)

Equation:

$$x = e^{-x} \tag{5}$$

Graph:

• So, from the above graph we can observe that there is one real root of these equation between 0 and 1 as both curves intersect between these two points.

- Above shown plot is of convergence of first root vs iterations.
- Value of the root is 0.5671.
- Root value is obtained in 14 iterations in Bisection method while it is obtained in 4 iterations using Newton Raphson method.

Count	x_n	f(x)	f'(x)	x_n+1	Error
1	1	0.632121	1.36788	0.537883	0.462117
2	0.537883	-0.0461005	1.58398	0.566987	-0.0291041
3	0.566987	-0.00024495	1.56723	0.567143	-0.000156295
4	0.567143	-6.92781e-09	1.56714	0.567143	-4.42066e-09

2.1.5 (E)

Equation:

$$e^{-x} = \sin(x) \tag{6}$$

Graph:

• So, from the above graph we can observe that the two smallest real roots of these equation lie between 0 and 1 and another one between 3 and 4.

First Root(Between 0 and 1)

- Above shown plot is of convergence of first root vs iterations.
- Value of first root is 0.5885.
- Root value is obtained in 5 iterations while Bisection method took 14 iterations.

Count	x_n	f(x)	f(x).1	x_n+1	Error
1	1	0.473592	0.908182	0.478528	0.521472
2	0.478528	-0.159222	1.50737	0.584157	-0.105629
3	0.584157	-0.00607931	1.39175	0.588525	-0.00436809
4	0.588525	-1.05845e-05	1.38691	0.588533	-7.63175e-06
5	0.588533	-3.23334e-11	1.3869	0.588533	-2.33135e-11

First Root(Between 3 and 4)

- Above shown plot is of convergence of first root vs iterations.
- Value of second root is 3.0964.
- Root value is obtained in 14 iterations with $\epsilon = 0.0001$.

Count	x_n	f(x)	f'(x)	x_n+1	Error
1	4	-0.775118	-0.635328	2.77997	1.22003
2	2.77997	0.291751	-0.873284	3.11406	-0.334084
3	3.11406	-0.0168872	-0.9552	3.09638	0.0176792
4	3.09638	-1.22063e-05	-0.953765	3.09636	1.2798e-05
5	3.09636	-7.40472e-12	-0.953764	3.09636	7.76357e-12

2.1.6 (F)

Equation:

$$y = x^3 - 2x - 2 (7)$$

Graph:

• So, from the above graph we can observe that there is one real root of these equation between 1 and 2.

- Above shown plot is of convergence of first root vs iterations.
- Value of first root is 1.7693.
- Root value is obtained in 8 iterations while Bisection method took 14 iterations.

Count	x_n	f(x)	f'(x)	x_n+1	Error
1	1	-3	1	4	-3
2	4	54	46	2.82609	1.17391
3	2.82609	14.9191	21.9603	2.14672	0.679368
4	2.14672	3.59951	11.8252	1.84233	0.304393
5	1.84233	0.568509	8.1825	1.77285	0.0694786
6	1.77285	0.0263449	7.42897	1.7693	0.00354624
7	1.7693	6.68404e-05	7.39128	1.76929	9.04314e-06
8	1.76929	4.34071e-10	7.39119	1.76929	5.87281e-11

2.1.7 (G)

Equation:

$$y = x^4 - x - 1 \tag{8}$$

Graph:

 \bullet So, from the above graph we can observe that there are two real roots of this equation between (-1,0) and (1,2).

Root Between a = 1 and b = 1.5

- Above shown plot is of convergence of positive root vs iterations.
- Value of first root is 1.2207.
- Root value is obtained in 6 iterations while Bisection method took 13 iterations.

Count	x_n	f(x)	f'(x)	x_n+1	Error
1	1	-1	3	1.33333	-0.333333
2	1.33333	0.82716	8.48148	1.23581	0.0975255
3	1.23581	0.0965963	6.54941	1.22106	0.0147489
4	1.22106	0.00197748	6.28232	1.22074	0.000314769
5	1.22074	8.86202e-07	6.27669	1.22074	1.41189e-07
6	1.22074	1.78968e-13	6.27669	1.22074	2.84217e-14

- Above shown plot is of convergence of negative root vs iterations.
- Value of first root is -0.7245.
- Root value is obtained in 5 iterations while Bisection method took 13 iterations.

Count	x_n	f(x)	f'(x)	x_n+1	Error
1	-1	1	-5	-0.8	-0.2
2	-0.8	0.2096	-3.048	-0.731234	-0.0687664
3	-0.731234	0.0171404	-2.56397	-0.724548	-0.00668512
4	-0.724548	0.000142506	-2.52147	-0.724492	-5.6517e-05
5	-0.724492	1.00606e-08	-2.52111	-0.724492	-3.99053e-09

2.2 Question 2

2.2.1 Equation:

$$y = e^x - x - 2 \tag{9}$$

2.2.2 Graph:

 \bullet So, from the above graph we can observe that there are two real roots of this equation between (-2,-1) and (1,2).

Root between : a = 1 and b = 1.5

- Above shown plot is of convergence of first root vs iterations.
- Value of positive root is 1.1462.
- Root value is obtained in 6 iterations while Bisection method took 14 iterations.

Count	x_n	f(x)	f'(x)	x_n+1	Error
1	2	3.38906	6.38906	1.46955	0.530447
2	1.46955	0.877738	3.34729	1.20733	0.262223
3	1.20733	0.137212	2.34454	1.14881	0.0585239
4	1.14881	0.00561748	2.15442	1.1462	0.00260742
5	1.1462	1.07135e-05	2.14621	1.14619	4.99185e-06
6	1.14619	3.91989e-11	2.14619	1.14619	1.82643e-11

- Above shown plot is of convergence of first root vs iterations.
- Value of negative root is -1.8414.
- Root value is obtained in 4 iterations while Bisection method took 14 iterations.

Count	x_n	f(x)	f'(x)	x_n+1	Error
1	-2	0.135335	-0.864665	-1.84348	-0.156518
2	-1.84348	0.00174769	-0.841735	-1.84141	-0.00207629
3	-1.84141	3.41376e-07	-0.841406	-1.84141	-4.05721e-07
4	-1.84141	1.28786e-14	-0.841406	-1.84141	-1.53211e-14

2.3 Question 3

2.3.1 Equation:

$$y = 1 - x + \sin(x) \tag{10}$$

2.3.2 Graph:

• So, from the above graph we can observe that there is one real root of these equation between 1 and 3.

Root Between: a = 1.8 and b = 2.1

- Above shown plot is of convergence of first root vs iterations.
- Value of smallest positive root is 1.9346.
- Root value is obtained in 4 iterations while Bisection method took 12 iterations.

Count	x_n	f(x)	f'(x)	x_n+1	Error
1	1.8	0.173848	-1.2272	1.94166	-0.141662
2	1.94166	-0.00964774	-1.36242	1.93458	0.00708132
3	1.93458	-2.33893e-05	-1.35581	1.93456	1.72511e-05
4	1.93456	-1.39063e-10	-1.3558	1.93456	1.02569e-10

2.4 Question 4

2.4.1 Equation:

$$y = tan(x) - x \tag{11}$$

2.4.2 Graph:

• So, from the above graph we can observe that there are infinitely many positive real roots possible for this equation, smallest of which lies between 4 and 5.

2.4.3 Smallest positive real root

Assumed values : a = 4 and b = 4.5

- Above shown plot is of convergence of first root vs iterations.
- Value of smallest positive root is 4.4934.
- Root value is obtained in 4 iterations while Bisection method took 13 iterations.

Count	x_n	f(x)	f'(x)	x_n+1	Error
1	4.5	0.137332	21.5048	4.49361	0.0063861
2	4.49361	0.00413187	20.2297	4.49341	0.000204248
3	4.49341	3.97968e-06	20.1908	4.49341	1.97104e-07
4	4.49341	3.69482e-12	20.1907	4.49341	1.82965e-13

2.4.4 Positive real root near x = 100

Assumed values : a = 98.5 and b = 99.5

• Above shown plot is of convergence of approximate root vs iterations.

- The value of tan(x) is infinite at 97.38 which is in the range of assumed values hence we can't find the exact root using Bisection method.
- Root value is obtained only if we take $x_n = 98.95$. in the first iteration itself else it is not obtained due to derivative being ∞ .

2.5 Question 5

2.5.1 Equation:

$$y = ax(1-x)$$
 where a=1,-1 (12)

2.5.2 Graph:

• So, from the above graph we can observe that there are two real roots at x = 0 and x = 1.

For Root x = 0

- Function f(x) has turning points at x = 0.5. So if we take the initial value greater than x = 0.5, Newton Raphson method converges x = 1 root instead of x = 0.
- So, for all the given initial conditions, Newton Raphson method will give the root x = 1 instead of x = 0 as shown in the graph above and below table.

• For a = -1, similar behaviour is observed with just changes in sign of f(x) and f'(x).

Count	x_n	f(x)	f'(x)	x_n+1	Error
1	0.5001	0.25	-0.0002	1250.5	-1250
2	1250.5	-1.5625e+06	-2500	625.5	625
3	625.5	-390625	-1250	313	312.5
4	313	-97656.2	-625.001	156.751	156.25
5	156.751	-24414	-312.501	78.6261	78.1245
6	78.6261	-6103.43	-156.252	39.5646	39.0614
7	39.5646	-1525.8	-78.1293	20.0355	19.5291
8	20.0355	-381.386	-39.071	10.2742	9.76136
9	10.2742	-95.2841	-19.5483	5.39987	4.87429
10	5.39987	-23.7587	-9.79973	2.97544	2.42442
11	2.97544	-5.87783	-4.95089	1.78822	1.18723
12	1.78822	-1.40951	-2.57644	1.24114	0.547076
13	1.24114	-0.299292	-1.48228	1.03923	0.201913
14	1.03923	-0.0407687	-1.07846	1.00143	0.0378027
15	1.00143	-0.00142905	-1.00285	1	0.00142498
16	1	-2.03057e-06	-1	1	2.03056e-06
17	1	-4.12315e-12	-1	1	4.12315e-12
18	1	0	-1	1	0

For Root x = 1

• Function f(x) has turning points at x = 0.5. So if we take the initial value less than x = 0.5, Newton Raphson method converges x = 0 root instead of x = 1.

- So, for all the given initial conditions, Newton Raphson method will give the root x = 0 instead of x = 1 as shown in the graph above and below table.
- For a = -1, similar behaviour is observed with just changes in sign of f(x) and f'(x).

Count	x_n	f(x)	f'(x)	x_n+1	Error
1	0.4999	0.25	0.0002	-1249.5	1250
2	-1249.5	-1.5625e+06	2500	-624.5	-625
3	-624.5	-390625	1250	-312	-312.5
4	-312	-97656.2	625.001	-155.751	-156.25
5	-155.751	-24414	312.501	-77.6261	-78.1245
6	-77.6261	-6103.43	156.252	-38.5646	-39.0614
7	-38.5646	-1525.8	78.1293	-19.0355	-19.5291
8	-19.0355	-381.386	39.071	-9.27416	-9.76136
9	-9.27416	-95.2841	19.5483	-4.39987	-4.87429
10	-4.39987	-23.7587	9.79973	-1.97544	-2.42442
11	-1.97544	-5.87783	4.95089	-0.788218	-1.18723
12	-0.788218	-1.40951	2.57644	-0.241142	-0.547076
13	-0.241142	-0.299292	1.48228	-0.0392297	-0.201913
14	-0.0392297	-0.0407687	1.07846	-0.00142701	-0.0378027
15	-0.00142701	-0.00142905	1.00285	-2.03056e-06	-0.00142498
16	-2.03056e-06	-2.03057e-06	1	-4.12316e-12	-2.03056e-06
17	-4.12316e-12	-4.12316e-12	1	-1.70008e-23	-4.12316e-12
18	-1.70008e-23	-1.70008e-23	1	0	-1.70008e-23
19	0	0	1	0	0

2.6 Question 6

2.6.1 Equation:

$$y = a + x(x - 1)^2$$
 where $0 \le a \le 0.1$ (13)

2.6.2 Graph:

- For all the values except a = 0, there is turning point between the negative real root and the initial point considered, thus we won't be able to find the root using Newton Raphson method.
- For a = 0, also Newton Raphson method won't converge to negative real root due to the turning point but will converge to x = 1.

For a = 0; Initial value x = 1.01

Convergence towards root x = 1

Count	x_n	f(x)	f'(x)	x_n+1	Error
1	1.01	0.000101	0.0203	1.00502	0.00497537
2	1.00502	2.53738e-05	0.010125	1.00252	0.00250605
3	1.00252	6.35922e-06	0.00505619	1.00126	0.00125771
4	1.00126	1.5918e-06	0.00252651	1.00063	0.000630038
5	1.00063	3.982e-07	0.00126286	1.00032	0.000315316
6	1.00032	9.95812e-08	0.000631329	1.00016	0.000157733
7	1.00016	2.48992e-08	0.00031564	1.00008	7.8885e-05
8	1.00008	6.2253e-09	0.000157814	1.00004	3.94472e-05
9	1.00004	1.55639e-09	7.89052e-05	1.00002	1.97248e-05
10	1.00002	3.89104e-10	3.94522e-05	1.00001	9.86267e-06

For a = 0; Initial value x = 0.99

Convergence towards root x = 1

Count	x_n	f(x)	f'(x)	x_n+1	Error
1	0.99	9.9e-05	-0.0197	0.995025	-0.00502538
2	0.995025	2.46237e-05	-0.009875	0.997519	-0.00249354
3	0.997519	6.14047e-06	-0.00494369	0.998761	-0.00124208
4	0.998761	1.5332e-06	-0.00247338	0.999381	-0.000619881
5	0.999381	3.83063e-07	-0.00123707	0.999691	-0.000309652
6	0.999691	9.5736e-08	-0.000618633	0.999845	-0.000154754
7	0.999845	2.39303e-08	-0.000309341	0.999923	-7.73591e-05
8	0.999923	5.98211e-09	-0.000154676	0.999961	-3.8675e-05
9	0.999961	1.49547e-09	-7.73396e-05	0.999981	-1.93364e-05
10	0.999981	3.7386e-10	-3.86702e-05	0.99999	-9.66792e-06
11	0.99999	9.34641e-11	-1.93352e-05	0.999995	-4.83389e-06
12	0.999995	2.33659e-11	-9.66762e-06	0.999998	-2.41693e-06
13	0.999998	5.84147e-12	-4.83381e-06	0.999999	-1.20846e-06
14	0.999999	1.46036e-12	-2.41691e-06	0.999999	-6.04229e-07