

TMA4230 Functional

Analysis

Spring 2017

Norwegian University of Science and Technology Department of Mathematical Sciences

Exercise set 6

- 1 Show that the following operators are closed.
 - a) On the space of continuously differentiable functions $C^1[0,1]$ on [0,1] we define the differentiation operator Tf(x) = f'(x).
 - **b)** On the space $\{x \in \ell^1 : \sum_{n=1}^{\infty} n|x_n| < \infty\}$ look at the multiplication operator $Tx = (nx_n)$.
- 2 Let X be a Banach space and T a bounded linear operator on X.
 - a) Show that the following are equivalent:
 - T is invertible.
 - The range of T is dense in X and their exists a C > 0 such that $||Tx|| \ge C||x||$ for all $x \in X$.
 - **b)** Use the result in the first part to formulate a criterion for the non-invertibility of a linear operator on a Banach space.
- $\fbox{3}$ Let T_a be the multiplication operator on ℓ^2 defined by a bounded sequence $a=(a_n)$.
 - a) If $\inf\{|a_n|: n=1,2,...\}>0$, show that T_a is invertible on ℓ^2 and find its inverse.
 - b) Show that T_a is not invertible on ℓ^2 for a=(1/n).
 - c) If λ is not in the closure of $\{a_n : n = 1, 2, ...\}$, then show that $T_a \lambda I$ is invertible on ℓ^2 .
- 4 Suppose T is an open mapping between Banach spaces X and Y. Show that the preimage of a dense subset in Y is dense in X.
- 5 Let X be a Banach space and T a (bounded) linear operator on X with domain D(T). Show that if there exists a sequence $(x_n) \in D(T)$ such that $||x_n|| = 1$ and $Tx_n \to 0$, then T does not have a bounded inverse.