МИНОБРНАУКИ РОССИИ

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Элементы функционального анализа» Тема: Норма элемента

Студентка гр. 1384	Усачева Д. В.
Преподаватель	Коточигов А.М.

Задание.

Вариант 17.

В R^3 задан многогранник W и две точки x и y. Требуется вычислить норму Минковского для $\|\mathbf{x}\|$, $\|\mathbf{y}\|$ и $\|\mathbf{x}+\mathbf{y}\|$. Способ задания W: в условии даны шесть точек (вершины в первом октанте) {{7, 11, 0}, {10, 0, 8}, {0, 9, 12}, {13, 0, 0}, {0, 13, 0}, {0, 0, 13}}

Основные теоретические положения.

<u>Выпуклость</u>. Выпуклым телом называется выпуклое множество W, в котором существует такая точка w, что для любого $x \in X$ найдется число $\varepsilon(x) > 0$ такое, что множество W содержит отрезок w + tx, при всех $t \in (-\varepsilon(x); \varepsilon(x))$.

Норма Минковского. Пусть W — выпуклое множество и 0 является его внутренней точкой. Нормой Минковского, порожденной множеством W, называется:

$$||\mathbf{x}|| = \inf \{ \lambda : \mathbf{x}/\lambda \in \mathbf{W}, \lambda > 0 \}, \mathbf{x} \in \mathbf{W} = \mathbf{x} \in \mathbf{W}.$$

<u>Теорема Минковского</u>. Если W — выпуклое ограниченное тело и 0 является его внутренней точкой, то выражение $||x|| = \inf \{ \lambda : x/\lambda \in W, \lambda > 0 \}$ задает норму в пространстве X.

<u>Биортогональный базис.</u> Это набор векторов в линейном пространстве, для которого каждый вектор ортогонален всем остальным векторам в этом наборе, за исключением самого себя, и все они нормированы (имеют единичную длину).

Выполнение работы.

Для построения многогранника нужно трижды отразить координаты относительно координатных плоскостей.

Для выполнения Теоремы Минковского требуется выполнение свойств:

- 1. Нулевой элемент является внутренней точкой множества многогранника (верно по условию задания)
- 2. $x \in W = -x \in W$ (верно, тк многогранник симметричен)
- 3. Выпуклость многогранника (верно)

Заданы следующие точки в первом октанте:

	X	Y	Z
D	7	11	0
Е	10	0	8
G	0	9	12
A	13	0	0
K2	0	13	0
С	0	0	13

Остальные вершины получаются зеркальным отражением относительно координатных плоскостей (если v = (x, y, z) вершина, то и u = (+-x, +-y, +-z) тоже вершина). Всего 18 вершин. Полученный многогранник представлен на рисунке 1.

Рис. 1. многогранник.

Уравнения плоскостей для граней в первом октанте:

- ADE: 88*x + 48*y + 33*z 1144 = 0
- CEG: 45*x + 10*y + 90*z 1170 = 0
- K2DG: -24*x 84*y 28*z + 1092 = 0
- DEG: -116*x 92*y 83*z + 1824 = 0

Проверим, является ли многогранник выпуклым множеством. Для этого воспользуемся следующим условием выпуклости многогранника: для любой

плоскости грани все вершины лежат в одном полупространстве. У W 32 грани, но в силу симметрии, достаточно проверить грани в первом квадранте.

Вершины:

Вершины/Плоскости	ADE	CEG	K2DG	DEG
1. (-13, 0, 0)	_	-	+	+
2. (-10, 0, -8)	-	-	+	+
3. (-10, 0, 8)	-	-	+	+
4. (-7, -11, 0)	-	-	+	+
5. (-7, 11, 0)	-	-	+	+
6. (0, -13, 0)	-	-	+	+
7. (0, -9, -12)	-	-	+	+
8. (0, -9, 12)	-	-	+	+
9. (0, 0, -13)	-	-	+	+
10. (0, 0, 13)	-	0	+	+
11. (0, 9, -12)	-	-	+	+
12. (0, 9, 12)	-	0	0	0
13. (0, 13, 0)	-	-	0	+
14. (7, -11, 0)	-	-	+	+
15. (7, 11, 0)	0	-	0	0
16. (10, 0, -8)	_	-	+	+
17. (10, 0, 8)	0	0	+	0
18. (13, 0, 0)	0	-	+	+

Все знаки совпадают.

Многогранник выпуклый, то есть условия теоремы Минковского выполнены. Найдем биортогональный базис для каждой из граней в первом октанте:

1) Конус OADE. Найдем биортогональный базис для OA, OE, OD:

$$OA' = (1 / (OA1, OA)) * OA1 = (0.0769, -0.0489, -0.0961), OA1 = OE \times OD$$

$$OE' = (1 / (OE1, OE)) * OE1 = (0, 0, 0.125), OE1 = OA \times OD$$

$$OD^* = (1 / (OD1, OD)) * OD1 = (0, 0.0909, 0), OD1 = OA \times OE$$

2) Конус ОСЕ . Найдем биортогональный базис для ОС, ОЕ, ОС:

$$OD' = (1 / (OD1, OD)) * OD1 = (0.0656, 0.0492, -0.0820), OD1 = OE \times OG$$

$$OE' = (1 / (OE1, OE)) * OE1 = (0.0541, -0.0344, 0.0574), OE1 = OG \times OD$$

$$OG' = (1 / (OG1, OG)) * OG1 = (-0.0481, 0.0306, 0.0601), OG1 = OD \times OE$$

3) Конус OK2DG. Найдем биортогональный базис для OB, OG, OD:

$$OB' = (1/(OB1, OB)) * OB1 = (-0.1209, 0.0769, -0.1282), OB1 = OD \times OG$$

$$OD^* = (1 / (OD1, OD)) * OD1 = (0.1429, 0, 0), OD1 = OG \times OB$$

$$OG^{\cdot} = (1 / (OG1, OG)) * OG1 = (0, 0, 0.1111), OG1 = OD \times OB$$

4) Конус ODEG. Найдем биортогональный базис для OE, OG, OD:

$$OC^* = (1 / (OC1, OC)) * OC1 = (-0.0615, -0.0462, 0.0769), OC1 = OE \times OG$$

$$OE' = (1 / (OE1, OE)) * OE1 = (0.1, 0, 0), OE1 = OG \times OC$$

$$OG' = (1 / (OG1, OG)) * OG1 = (0, 0.0667, 0,), OG1 = OE \times OC$$

Зададим векторы, для которых необходимо вычислить норму.

$$X = -A_{1}(1, 1) * A_{1} + E_{1}(1, 3) * E_{1} = [89 \ 0 \ 64]$$

$$Y = C_{1}(1, 3) * C_{1} - D_{1}(1, 2) * D_{1} = [77 121 169]$$

Найдем коэффициенты разложения и норму для каждой точки по каждому базису:

1) Следовательно, раскладываем векторы по базису ОА, ОЕ, ОD:

$$0X = k1 * 0A + k2 * 0E + k3 * 0D$$

$$k1 = (0X, 0A), k2 = (0X, 0E), k3 = (0X, 0D)$$

$$||X|| = k1 + k2 + k3 = 3.6923076923$$

$$0Y = k1 * 0 K1 + k2 * 0E + k3 * 0D$$

$$k1 = (0Y, 0K1), k2 = (0Y, 0E), k3 = (0Y, 0D)$$

$$||Y|| = k1 + k2 + k3 = 11.790209790199999$$

$$0Z = 0X + 0Y = k1 * 0 K1 + k2 * 0E + k3 * 0D$$

$$k1 = (0Z, 0 K1), k2 = (0Z, 0E), k3 = (0Z, 0D)$$

$$||Z|| = k1 + k2 + k3 = 15.482517482500004$$

Точка	k1	k2	k3	W = k1 + k2 + k3
X	0.692	8	0	8.692
Y	-16.25	21.125	11.0	16.875
X+Y=Z	-15.557	29.125	11.0	24.568

Далее все считается аналогичным образом.

2) По базису OE, OG, OD

Точка	k1	k2	k3	W = k1 + k2 + k3
X	0.590	8.487	-0.433	-1.624
Y	-2.852	9.697	10.158	17.694
X+Y=Z	-2.262	18.184	9.726	25.648

3) по базису OB, OG, OD:

Точка	k1	k2	k3	W = k1 + k2 + k3
X	-18.963	12.714	7.111	1.862
Y	-21.667	11.000	18.778	8.111
X+Y=Z	-40.630	23.714	25.889	9.973

4) по базису ОС, ОЕ, ОС:

Точка	k1	k2	k3	W = k1 + k2 + k3
X	-0.554	8.900	-0.433	7.913
Y	2.677	7.700	8.067	18.444
X+Y=Z	2.123	16.600	8.067	26.790