Environment Setting

Setting	Info(Server)	Info(Client)
Operating System	Windows	Windows
Wireless Channel	Intel(R) Wi-Fi 6 AX201	
Wired Channel	LRealtek USB GbE Family Controller	Intel(R) I210 Gigabit Network

1 Throughput

1.1 Throughput comparison case : different interface

1.1.1 Throughput setting

Setting	Info(Serv	ver) Inf	o(Client)						
location	Harbor	Cai	mpus						
Interface	wired	wir	wired						
IP	10.240.13	6.29 10.	68.75.53						
command	.\iperf3.e>	ĸe -s .∖ip	erf3.exe -c	10.240.136	.29 -O 1 -t	20			
	1s	3s	5s	7s	9s	12s	15s	20s	AVG
Bandwidth	517 Mbits/s	510 Mbits/s	509 Mbits/s	494 Mbits/s	511 Mbits/s	522 Mbits/s	426 Mbits/s	446 Mbits/s	495 Mbits/s

1.1.2 Throughput setting

Setting	Info(Serv	ver)		Info(Cli	Info(Client)				
location	Harbor			Campus	;				
Interface	wireless			wired	wired				
IP	10.185.17	9.41		10.68.75	10.68.75.53				
command	.\iperf3.ex	\iperf3.exe -s -B 10.185.179.41		.\iperf3.	.\iperf3.exe -c 10.185.179.41 -O 1 -t 20		O 1 -t 20		
	1s	3s	5s	7s	9s	12s	15s	20s	AVG
Bandwidth	91.7	95.1	81.9	96.5	96.8	95.9	86.8	92.3	92.7
Danawiatii	Mbits/s	Mbits/s	Mbits/s	Mbits/s	Mbits/s	Mbits/s	Mbits/s	Mbits/s	Mbits/s

It's easy to understand that wired channel has better bandwidth due to the worse noisy for wirless signal as well as the multiple user for icampus WIFI.

Throughput comparsion case: buffer length

Throughput comparison case: different location

In this case, I test several public Iperf servers from https://iperf.fr/iperf-servers.php.

Servers Info:

Hosting		Location		Speed	IP			Port	
Serverius Dat	aCenter2	Netherlands		10 Gbit	10 Gbit/s speedtest2.serverius.net		rius.net	5002	
Serverius Dat	aCenter3	Netherlar	nds	10 Gbit	/s speed	ltest3.serve	rius.net	5002	
Uztelecom		Uzbekista	n Tashkent	10 Gbit	/s speed	ltest.uztele	com.uz	5200	
	1s	3s	5s	7s	9s	12s	15s	20s	AVG
Bandwidth- sp2	20.8 Mbits/s	27.5 Mbits/s	27.5 Mbits/s	27.0 Mbits/s	27.0 Mbits/s	27.0 Mbits/s	27.0 Mbits/s	27.1 Mbits/s	27.0 Mbits/s
Bandwidth- sp3	16.5 Mbits/s	27.1 Mbits/s	27.0 Mbits/s	29.4 Mbits/s	27.5 Mbits/s	25.4 Mbits/s	25.0 Mbits/s	27.1 Mbits/s	26.0 Mbits/s
Bandwidth- uz	3.12 Mbits/s	12.5 Mbits/s	12.5 Mbits/s	12.5 Mbits/s	12.5 Mbits/s	13.5 Mbits/s	12.5 Mbits/s	12.5 Mbits/s	12.0 Mbits/s

Throughput over time

Analysis: With respect to speedtest2 and speedtest3, the difference is caused by the data traffic of there two data center. We can find the data traffic at https://speedtest2.serverius.net/. Then we can notice data center3 has havier traffic which maight cause the smaller bandwidth during my test. With repect to **Uztelecom**, the very small bandwidth might be raised by some router nodes in in the path even though these three servers have the same claimed bandwidth. Epecially, we can use **Tracert** to test the router along the path. The result implies there might be some bottleneck in the path.

```
PS C:\Users\LID0E\source\Tools\iperf3.1.3_64> Tracert -d speedtest.uztelecom.uz
Tracing route to speedtest.uztelecom.uz [195.69.189.215]
over a maximum of 30 hops:
                <1 ms
                                 10.68.74.126
  1
       <1 ms
  2
                                 10.126.145.66
       <1 ms
                 <1 ms
                          <1 ms
  3
       <1 ms
                          <1 ms
                                 10.126.145.66
                 <1 ms
  4
                                 10.126.146.5
       <1 ms
                 <1 ms
                          <1 ms
  5
        1 ms
                 1 ms
                                 10.126.146.9
                           1 ms
                                 10.126.145.5
  6
        1 ms
                  1 ms
                           1 ms
  7
                                 192.168.11.14
        1 ms
                  1 ms
                           1 ms
  8
                                 Request timed out.
  9
                                 171.75.8.17
       95 ms
                95 ms
                          95 ms
 10
      166 ms
                166 ms
                         166 ms
                                 213.249.107.18
      165 ms
                165 ms
                                 195.69.189.44
 11
                         165 ms
                                 195.69.189.32
 12
      166 ms
                165 ms
                         165 ms
 13
      165 ms
                166 ms
                         165 ms
                                 195.69.189.215
```

Trace complete.

Througput comparsion case: different buffer len

	1s	3s	5s	7s	9s	12s	15s	20s	AVG
Bandwidth-	441.0	546.0	629.0	615.0	667.0	681.0	574.0	683.0	618.0
64K	Mbits/s								
Bandwidth-	642.0	674.0	674.0	677.0	668.0	638.0	675.0	639.0	669.0
128K	Mbits/s								
Bandwidth-	646.0	668.0	669.0	675.0	674.0	675.0	674.0	675.0	668.0
256K	Mbits/s								
Bandwidth-	669.0	682.0	677.0	675.0	678.0	680.0	678.0	678.0	677.0
512K	Mbits/s								
Bandwidth-	659.0	672.0	674.0	675.0	674.0	671.0	677.0	671.0	672.0
1024K	Mbits/s								

Throughput change over time

analysis:Smaller buffers increase system overhead and cause throughput fluctuations, while larger buffers reduce system calls, improving throughput stability and efficiency, especially in high-bandwidth networks.

Assumption:

- Every time TCP send the longest packet in the ethernet.
- The transfer data in Iperf includes the cost of all network layer

Let's take:

- Ethernet header cost: 14 Bytes
- IP header cost(IPv4): 20 Bytes
- TCP header cost: 20 Bytes Ethernet longest frame: 1500 Bytes.

TCP useful data=1500-20-20=1460Bytes,

To send 1460 Bytes, we need 14+1500=1514Bytes data.

In other words, the percentage of good put=1460/1514=96.4%

Consider the throuput and goodput over different interface

Analysis: Here we just rougly calculate the goodput. If we want to have a more precise number, we need to known more details about the packet.

2 Owamp Test

Packet delay: case 1

Info Server Client	
--------------------	--

Info	Server	Client
IP Address	10.240.28.81	10.68.75.202
OS	Ubuntu 14.04	Ubuntu 14.04
location	Harbor	Campus
interface	AX88179(wired)	Wired

	1s	3s	5s	7s	9s	12s	15s	20s
delay -	0.0558	0.0739	0.0348	0.0477	0.0372	0.0429	0.041	0.0434
localhost	Mbits/s							
delay(c-	-30.3	-30.9	-29.5	-29.7	-30.4	-29.7	-30.3	-30.4
>s,err=1.55ms)	Mbits/s							
delay(s-	32.7	32.4	32.5	32.6	32.6	32.5	32.6	32.5
>c,err=1.55ms)	Mbits/s							

Packet delay: case 2

Info	Server	Client
IP Address	10.240.28.81	10.68.75.202
OS	Ubuntu 14.04	Ubuntu 14.04
location	Harbor	Campus
interface	LRealtek(wired)	Wired

	1s	3s	5s	7s	9s	12s	15s	20s
delay(c-	-29.4	-30.0	-29.4	-30.2	-29.7	-30.1	-29.1	-30.0
s,err=12.6ms)	Mbits/s							
delay(s-	33.2	33.2	33.1	33.1	33.1	33.0	33.3	33.1
c,err=12.6ms)	Mbits/s							

Packet delay: case 3 Here we plot the delay under different interface. Here I only plot the delay from server to client.

Link speed Hops		One-way delay min/median/max (sending)	One-way delay min/median/max (receiving)	Jitter (sending)	Jitter(receiving)	
1000Mbps(Ugreen)	2	-30.9/-30.4/-15.9 ms, (err=1.55 ms)	32.3/32.6/32.7 ms, (err=1.55 ms)	0.8 ms (P95-P50)	0.1 ms (P95-P50)	
1000Mbps(LRealtek)	2	-30.2/-29.7/-27 ms, (err=12.6 ms)	32.8/33.2/33.5 ms, (err=12.6 ms)	0.7 ms (P95-P50)	0.2 ms (P95-P50)	

analysis: These two cards both can access to ethernet and the link speed both can reach the l000Mbps. But they have different delay performace. Apart from the testing time(few minutes difference), I guess the most important reason is the process speed of these two hardware(Ugreen is much more expensive than LRealtek card.)