1 Mengen

1.1 Definition:

- 1. Eine Menge ist eine Ansammlung verschiedener Objekte
- 2. Die Objekte in einer Menge heißen Elemente

Notation:

- $a \in M$ heißt a ist Element der Menge M a $\not\in M$ heißt a ist kein Element der Menge M
- 3. Sei M eine Menge. Eine Menge U heißt Teilmenge von M, von der jedes Element von U auch Element von M ist

Notation:

```
U \subseteq M heißt U ist Teilmenge von M
U \not\subseteq M heißt U ist keine Teilmenge von M
```

1.2 Beispiele

1. Sei M die Menge aller Studierenden in L1

W die Menge aller weiblichen Studierenden in L1

F die Menge aller Frauen

Dann gilt: W
$$\subseteq$$
 M, W \subseteq F, M $\not\subseteq$ F, F $\not\subseteq$ M

- 2. Die Menge der natürlichen Zahlen $\mathbb{N} = \{1, 2, 3, 4...\}$ G sei die Menge der geraden natürlichen Zahlen $G := \{n \in \mathbb{N} | \text{n ist gerade}\} = \{2m | m \in \mathbb{N}\} = \{2, 4, 6, 8...\}$ Es gilt $G \subseteq \mathbb{N}, \mathbb{N} \subseteq G$
- 3. Die Menge der ganzen Zahlen $\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \dots\}$
- 4. Die Menge der rationalen Zahlen $\mathbb{Q} = \{a/b | a, b \in \mathbb{Z}, b \neq 0\}$
- 5. Die Menge ohne Element heißt die leere Menge Symbol: $\emptyset = \{\}$

Bemerkung:

- 1. Für jede Menge M gilt $\setminus \subseteq M$
- 2. $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q}$

1.3 Definition: Sei M eine Menge und U,V ⊆ M Teilmengen

- 1. Die Vereinbarung von U und V ist $U \cup V := \{x \in M \mid x \in Uoderx \in V\}$
- 2. Der Durchschnitt von U und V ist $U\cap V:=\{x\in M\mid x\in Uoder x\in V\}$ U und V heißen disjunkt, wenn $U\cap V=\emptyset$
- 3. Die Differenzmenge von U und V ist $U \setminus V := \{x \in U \mid x \in V\}$
- 4. Das Komplement von U ist $U^C = M \setminus U = \{x \in M \mid x \notin U\}$

Bsp: Sei M = N
$$\{1,3\} \cup \{3,5\} = \{1,3,5\} \\ \{1,3\} \cap \{3,5\} = \{3\} \\ \{1,3\} \cap \{2,4,7\} = \emptyset \leftarrow \text{disjunkt} \\ \{1,2,3\} \setminus \{3,4,5\} = \{1,2\} \\ \{1,3,5\}^C = \{2,4,6,7,8,\dots\}$$

1.4 Satz (de Morjensche Regeln)

Sei M eine Menge, $U,V \subseteq M$ Teilmengen Dann:

1.
$$(U \cap V)^C = U^C \cup V^C$$

2.
$$(U \cup V)^C = U^C \cap V^C$$

Beweis:

1. Sei $x \in M$

Es gilt:
$$\mathbf{x} \in (U \cap V)^C \Leftrightarrow x \not\in U \cap V \Leftrightarrow x \not\in U \text{ oder } \mathbf{x} \not\in V \Leftrightarrow x \in U^C \text{ oder } \mathbf{x} \in V^C \Leftrightarrow x \in U^C \cup V^C$$

2. Sei $x \in M$

Es gilt:
$$\mathbf{x} \in (U \cup V)^C \Leftrightarrow x \notin U \cup V \Leftrightarrow x \notin U \text{ und } \mathbf{x} \notin V \Leftrightarrow x \in U^C \text{ und } \mathbf{x} \in V^C \Leftrightarrow x \in U^C \cap V^C$$

1.5 Prinzip der Vollständigen Induktion

Für jedes $n \in \mathbb{N}$ sei eine Aussage A(n) gegeben

Ziel: Beweisen, Dass A(n) für jedes $n \in \mathbb{N}$ mehr ist dafür reicht es zu zeigen

- 1. Induktionsanfang (IA): A(1) ist wahr
- 2. Induktionsschrit (IS): Wenn für ein $n \in \mathbb{N}$ A(n) wahr ist, dann ist auch A(n+1) wahr

1.6 Satz:

Für jede natürliche Zahl n gilt: $1+2+3+4+5+\ldots+n=\frac{n(n+1)}{2}$

Probe:

n	1	2	3	4
1+2+3+n	1	3	6	10
$\frac{n(n+1)}{2}$	1	3	6	10

Beweis des Satzes mit Induktion

Abkürzung: S(n) := 1 + 2 + 3 + ... + n Aussage: A(n): $S(n) = \frac{n(n+1)}{2}$

1. Induktions
anfang (IA): n=1
$$S(1)=1=\frac{1\cdot 2}{2}$$

ok!

2. Induktionsschrit (IS): $n \rightarrow n + 1$

Annahme: A(n) gilt: $S(n) = \frac{n(n+1)}{2}$ Zu zeigen: A(n+1) gilt: $S(n+1) = \frac{(n+1)\cdot(n+2)}{2}$ $S(n+1) = S(n) + n + 1 = \frac{n(n+1)}{2} + \frac{2(n+1)}{2} = \frac{(n+2)(n+1)}{2}$

Das beendet den Beweis

Zur Vereinfachung der Notation:

Seien $a_1, a_2, a_3, ..., a_n$ Zahlen $n \in \mathbb{N}$

Setze:
$$\sum_{k=1}^{n} a_k := a_1 + a_2 + a_3 + \dots + a_n$$

Allgemeiner: Sei $l, m \in \mathbb{N}, l \le m \le n$ $\sum_{k=l}^{m} a_k = a_l + a_{l+1} + \ldots + a_m$

$$\sum_{k=l}^{m} a_k = a_l + a_{l+1} + \dots + a_m$$

Aussage des Satzes:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Kombinatorik (mathematisches Zählen)

1.7 Definition:

Seien A, B Mengen. Das kartesische Produkt von A und B ist definiert als $A \times B := \{(a,b) | a \in A, b \in B\}$ Die Elemente von $A \times B$ heißen geordnete Paare

Bsp.:
$$\{1,7\} \times \{2,3\} = \{(1,2),(1,3),(7,2),(7,3)\}$$

Allgemeiner: Gegeben seien Mengen A_1, \ldots, A_k mit $k \in \mathbb{N}$. Das kartesische Produkt von A_1, \ldots, A_k ist $A_1 \times \ldots \times A_k = \{(a_1, \ldots, a_k) | a \in A, \text{für } i = 1, \ldots, k\}$

Elemente von
$$A_1 \times \ldots \times A_k$$
 heißen k-Tupel

Falls
$$A_1 = A_2 = \dots = A_k = A$$
, schreibe $\underbrace{A \times \dots \times A}_{k-mal} = A^k$

1.8 Definition

Eine Menge A ist endlich, wenn A nur endlich viele Elemente hat. Dann bezeichnet $\#A = \{|A|\}$ die Anzahl der Elemente von A und somit dessen Kardinalität oder Mächtigkeit. Wenn A nicht endlich ist, so schreibe: $\#A = \infty$

Bsp.:
$$\#\emptyset = 0, \#\mathbb{N} = \infty, \#\{1, 3, 5\} = 3$$

1.9 Bemerkung

- 1. Sei A endliche Menge. $U,V\subseteq A$ disjunkte Teilmengen Dann $\#(U\cup V)=\#U+\#V$
- 2. Seien $A_1, ..., A_k$ endliche Mengen $k \in \mathbb{N}$ Dann: $\#(A_1 \times ... \times A_k) = (\#A_1)(\#A_2)...(\#A_k)$

1.10 Definition

- 1. Für $n \in \mathbb{N}$ setze $n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n = \prod_{k=1}^{n} k$ Setze 0! = 1
- 2. Für $k, n \in \mathbb{Z}$ mit $0 \le k \le n$ sei $\binom{n}{k} := \frac{n!}{k! \cdot (n-1)!} \leftarrow$ Binomialkoeffizient $\frac{n \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6}{n! \mid 1 \mid 1 \mid 2 \mid 6 \mid 24 \mid 120 \mid 720}$

Beispiel: