- 1) Suppose $X = \mathbb{R}^k_+$, for some $k \geq 2$, and define $x = (x_1, ..., x_k) \succeq y = (y_1, ..., y_k)$ if $x \geq y$; i.e., if for each $i = 1, ..., k, x_i \geq y_i$. (This is known as the *Pareto ordering* on \mathbb{R}^k_+ .)
 - a) Show that \succeq is transitive but not complete.
 - b) Characterize \succ defined from \succeq in the usual fashion; i.e. $x \succ y$ if $x \succeq y$ and not $y \succeq x$. Is \succ reflexive? transitive? symmetric? Prove your assertions.
 - c) Characterize \sim from \succeq in the usual fashion; i.e. $x \sim y$ if $x \succeq y$ and $y \succeq x$. Is \sim reflexive? transitive? symmetric? Prove your assertions.
- 2) MWG 1.D.5
- 3) Let \succeq be some complete, transitive preference on a non-empty convex set $X \subseteq \mathbb{R}^L$. We say that preferences are strictly convex when \succeq is convex and for all x, y, z such that $y \succeq x$ and $z \succeq x$ and $y \neq z$, we have that for $\alpha \in (0, 1)$:

$$\alpha y + (1 - \alpha)z \succ x$$

a) Let $X^* \subseteq X$ be the set of maximal bundles of X:

$$X^* = \{x \in X : x \succeq y \text{ for all } y \in X\}.$$

Show if that \succeq is complete, transitive, and convex, then X^* is convex.

- b) Suppose that preferences are also strictly convex. Show that X^* has at most one element.
- c) Suppose that \succeq is strictly monotone and that $X \subseteq \mathbb{R}^L$ is an open set. Show that \succeq is also locally non-satiated
- d) Suppose that X is a non-empty compact set and that \succeq is complete, transitive, and continuous (but not necessarily convex). Prove that preferences cannot be locally non-satiated (Hint: show $X^* \neq \emptyset$). What does this imply about the relationship between monotonicity and local non-satiation?