

Input: An unsorted array of lingth 1

ortput: top k values in the array (k(n))

Constraint: you cannot use any addition of
memory!

Find an alg. that sums in
the o (n/g/k)

Min heap of sege k Construct a Min heap of Sizek insi S. The array O(k) - so there The rest of n-k elements The array of you find on el. that is bigger then the rost demant. The sleman heap then replace the root at my this new al. (n-k) &k overall cost = 0(k)+0(n-k) & k = 0 ((n-k) / k)

Background material

Def. A binomia tree By is an ordered

Tree define recursively

Binomia tree Bo Consists of

Sinomia tree By consists of

2 binomia trees of Bk-, that

are linked to gether such that

root of one is the leftmost

20f. A binomical Heap H is a set
of binomical trees that satisfies.

The following properties:

1- Each binomical trees, in H

Sheys the Min heap property

2- For any non-negative integer

k, there is at most one

binomical tree in H whose

root has degree k.

All operations except for construction
All operations except for construction take O(lgu) time in a binomin heep

Amortized cost of multi-pop =
$\frac{O(n)}{n} = O(1)$
N

Fibonacci peops are loosely
based on binomia heaps.
FH is a collection of min-heap trees
FH is a collection of min-heap trees similar to Binomial treeps
However, trees: FHs are not constrainted to be binomial
constrainted to be binomed
Also, unlike binomien heaps. Trees
in FHs are not ordered

in FHs are not ordered.
insert in a FH takes O(1)
Find el. of Minkey takes O(1)
decrease-lean O(1)
merge 0(1)

Find-Mi	Binary Heap Worst case	Benomial Hay Worst Case S(Gn)	Fib. Heap	_
extract_Mi delete	5(lgn) 5(lgn) 5(lgn)		0(1) 0(lgn) 0(lgn)	Amotis / Cost
merge	0(94) O(n) O(n)	O(n)	O(1) O(1) O(n)	
	_			