A Macroeconomic Model for Dynamic Scoring of Tax Policy *

Richard W. Evans[†]

Evan Magnusson[‡]
Isaac Swift[¶]

Kerk L. Phillips§

July 2014 (version 14.07.b)

Abstract

Put abstract here.

keywords: Put keywords here.

JEL classification: Put JEL codes here.

^{*}Put thanks here.

 $^{^\}dagger Brigham$ Young University, Department of Economics, 167 FOB, Provo, Utah 84602, (801) 422-8303, revans@byu.edu.

[‡]Brigham Young University, Department of Economics, 163 FOB, Provo, Utah 84602, evan-mag42@gmail.com.

[§]Brigham Young University, Department of Economics, 166 FOB, Provo, Utah 84602, (801) 422-5928, kerk_phillips@byu.edu.

[¶]Brigham Young University, Department of Economics, 163 FOB, Provo, Utah 84602, isaacdswift@gmail.com.

1 Introduction

Put introduction here.

2 Model

Model intro here.

2.1 Individual problem

A measure 1/S of individuals with heterogeneous working ability $e \in \mathcal{E} \subset \mathbb{R}_{++}$ is born in each period t and live for $S \geq 3$ periods. Their working ability evolves over their lifetime according to an age-dependent deterministic process. At birth, a fraction 1/J of the 1/S measure of new agents are randomly assigned to one of J ability types indexed by j = 1, 2, ...J. Once ability type is determined, that measure 1/(SJ) of individuals' ability evolves deterministically according to $e_j(s)$. We calibrate the matrix of lifetime ability paths $e_j(s)$ for all types j using CPS hourly wage by age distribution data.¹

Individuals are endowed with a measure of time in each period t that they supply inelastically to the labor market. Let s represent the periods that an individual has been alive. The fixed labor supply in each period t by each age-s individual is denoted by l(s).

At time t, all generation s agents with ability $e_j(s)$ know the real wage rate w_t and know the one-period real net interest rate r_t on bond holdings $b_{j,s,t}$ that mature at the beginning of period t. In each period t, age-s agents with working ability e choose how much to consume $c_{j,s,t}$ and how much to save for the next period by loaning capital to firms in the form of a one-period bond $b_{j,s+1,t+1}$ in order to maximize expected

¹Appendix A-1 gives a detailed description of the calibration of the deterministic ability process by age s and type j, as well as alternative specifications and calibrations.

lifetime utility of the following form,

$$U_{j,s,t} = \sum_{v=0}^{S-s} \beta^{u} u \left(c_{j,s+u,t+u} \right) \quad \text{where} \quad u \left(c_{j,s,t} \right) = \frac{\left(c_{j,s,t} \right)^{1-\sigma} - 1}{1-\sigma} \quad \forall j, s, t$$
 (1)

where u(c) is a constant relative risk aversion utility function, $\sigma \geq 1$ is the coefficient of relative risk aversion, and $\beta \in (0,1)$ is the agent's discount factor.

Because agents are born without any bonds maturing and because they purchase no bonds in the last period of life s = S, the per-period budget constraints for each agent normalized by the price of consumption are the following.

$$w_t e_j(s) l(s) \ge c_{j,s,t} + b_{j,s+1,t+1}$$
 for $s = 1$ $\forall j, t$ (2)

$$(1 + r_t) b_{j,s,t} + w_t e_j(s) l(s) \ge c_{j,s,t} + b_{j,s+1,t+1}$$
 for $2 \le s \le S - 1$ $\forall j, t$ (3)
 $(1 + r_t) b_{j,s,t} + w_t e_j(s) l(s) \ge c_{j,s,t}$ for $s = S$ $\forall j, t$ (4)

$$(1+r_t)b_{j,s,t} + w_t e_j(s)l(s) \ge c_{j,s,t} \qquad \text{for} \quad s = S \qquad \forall j, t \qquad (4)$$

Note that the price of consumption is normalized to one, so w_t is the real wage and r_t is the real net interest rate.

In addition to the budget constraints in each period, the utility function imposes nonnegative consumption through inifinite marginal utility. We allow the possibility for individual agents to borrow $b_{j,s,t} < 0$ for some j and s in period t. However, the borrowing must satisfy a series of individual feasibility constraints as well as a strict constraint that the aggregate capital stock $K_t > 0$ be positive in every period.²

We next describe the Euler equations that govern the choices of consumption $c_{j,s,t}$ and savings $b_{j,s+1,t+1}$ by household of age s and ability $e_j(s)$ in each period t. We work backward from the last period of life s = S. Because households do not save in the last period of life $b_{j,s+1,t+1} = 0$ due to our assumption of no bequest motive, the household's final-period maximization problem is given by the following.

$$\max_{c_{j,S,t}} \frac{(c_{j,S,t})^{1-\sigma} - 1}{1-\sigma} \quad \text{s.t.} \quad (1+r_t) \, b_{j,S,t} + w_t e_j(S) l(S) \ge c_{j,S,t} \quad \forall t$$
 (5)

²We describe these constraints in detail in Appendix A-2.

Because u(c) is monotonically increasing in c, the s=S problem (5) is simply to choose the maximum amount of consumption possible. The household trivially consumes all of its income in the last period of life.

$$c_{j,S,t} = (1 + r_t) b_{j,S,t} + w_t e_j(S) l(S) \quad \forall t$$
 (6)

In general, maximizing (1) with respect to (2), (3), (4), and the implied individual and aggregate borrowing constraints gives the following set of S-1 intertemporal Euler equations.

$$(c_{j,s,t})^{-\sigma} = \beta (1 + r_{t+1}) (c_{j,s+1,t+1})^{-\sigma}$$

for $1 < s < S - 1, \ \forall t$ (7)

Note from (3) that $c_{j,s,t}$ in (7) depends on the household's age s, his ability $e_j(s)$, and the initial wealth with which the household entered the period $b_{j,s,t}$.

2.2 Firm problem

A unit measure of identical, perfectly competitive firms exist in this economy. The representative firm is characterized by the following Cobb-Douglas production technology,

$$Y_t = AK_t^{\alpha} L_t^{1-\alpha} \quad \forall t \tag{8}$$

where A is the fixed technology process and $\alpha \in (0,1)$ and L_t is measured in efficiency units of labor. The interest rate r_t in the cost function is a net real interest rate because depreciation δ is paid by the firms. The real wage is w_t . The real profit function of the firm is the following.

Real Profits =
$$AK_t^{\alpha}L_t^{1-\alpha} - (r_t + \delta)K_t - w_tL_t$$
 (9)

As in the budget constraints (2), (3), and (4), note that the price of the good has been normalized to one.

Profit maximization results in the real wage w_t and the real rental rate of capital r_t being determined by the marginal products of labor and capital, respectively.

$$w_t = (1 - \alpha) \frac{Y_t}{L_t} \quad \forall t \tag{10}$$

$$r_t = \alpha \frac{Y_t}{K_t} - \delta \qquad \forall t \tag{11}$$

2.3 Market clearing and equilibrium

Labor market clearing requires that aggregate labor demand L_t measured in efficiency units equal the sum of individual efficiency labor supplied $e_j sl(s)$. The supply side of market clearing in the labor market is trivial because household labor is supplied inelastically. Capital market clearing requires that aggregate capital demand K_t equal the sum of capital investment by households $b_{j,s,t}$. Aggregate consumption C_t is defined as the sum of all individual consumptions, and investment is defined by the standard Y = C + I constraint as shown in (14).

$$L_{t} = \frac{1}{SJ} \sum_{s=1}^{S} \sum_{j=1}^{J} e_{j}(s)l(s) \qquad \forall t$$
 (12)

$$K_t = \frac{1}{SJ} \sum_{s=1}^{S} \sum_{j=1}^{J} b_{j,s,t}$$
 $\forall t$ (13)

$$Y_t = C_t + K_{t+1} - (1 - \delta)K_t \quad \forall t$$
where $C_t \equiv \frac{1}{SJ} \sum_{s=1}^{S} \sum_{j=1}^{J} c_{j,s,t}$ (14)

The steady-state equilibrium for this economy is defined as follows.

Definition 1 (Steady-state equilibrium). A non-autarkic steady-state equilibrium in the overlapping generations model with S-period lived agents and heterogeneous ability $e_j(s)$ is defined as constant allocations $c_{j,s,t} = \bar{c}_{j,s}$ and $b_{j,s+1,t+1} = \bar{b}_{j,s+1}$ and constant prices $w_t = \bar{w}$ and $r_t = \bar{r}$ for all j, s, and t such that the following conditions hold:

- i. households optimize according to (5), (6) and (7),
- ii. firms optimize according to (10) and (11), and

The steady-state equilibrium is characterized by the system of $J \times (S-1)$ equations and $J \times (S-1)$ unknowns $\bar{b}_{j,s+1}$ along with the individual borrowing constraints and aggregate borrowing constraint described in Appendix A-2.

$$(\bar{c}_{j,s})^{-\sigma} = \beta (1+\bar{r}) (\bar{c}_{j,s+1})^{-\sigma}, \quad 1 \le s \le S-1$$
or
$$\left([1+\bar{r}]\bar{b}_{j,s} + \bar{w}e_{j}(s)l(s) - \bar{b}_{j,s+1} \right)^{-\sigma} =$$

$$\beta (1+\bar{r}) \left([1+\bar{r}]\bar{b}_{j,s+1} + \bar{w}e_{j}(s+1)l(s+1) - \bar{b}_{j,s+2} \right)^{-\sigma},$$
for $1 \le s \le S-1$, where $\bar{b}_{j,1}, \bar{b}_{j,S+1} = 0 \quad \forall j$

In equilibrium, the steady-state real wage \bar{w} and the steady-state real rental rate \bar{r} are simply functions of the steady-state distribution of capital $\bar{b}_{j,s+1}$. This is clear from the steady-state version of the capital market clearing condition (13) and the fact that aggregate labor supply is a function of the sum of exogenous efficiency units of labor in the labor market clearing condition (12). And the two firm first order conditions for the real wage w_t (10) and real rental rate r_t (11) are only functions of the aggregate capital stock K_t and aggregate labor L_t . Appendix A-3 details how to solve for the steady-state equilibrium.

The definition of the non-steady-state equilibrium is similar to Definition 1, with the steady-state equilibrium definition being a special case of the non-steady-state equilibrium.

Definition 2 (Non-steady-state equilibrium). A non-autarkic non-steady-state equilibrium in the overlapping generations model with S-period lived agents and heterogeneous ability $e_j(s)$ is defined as allocations $c_{j,s,t}$ and $b_{j,s+1,t+1}$ and prices w_t and r_t for all j, s, and t such that the following conditions hold:

- i. households optimize according to (5), (6) and (7),
- ii. firms optimize according to (10) and (11), and

The household saving decision in the last period of life shows that the optimal saving for age s = S is a function of individual holdings of savings and prices this period and next $b_{j,S,t+1} = \psi(b_{j,S-1,t}, w_t, r_t, w_{t+1}, r_{t+1})$. This decision is characterized by the final period Euler equation.

$$\left([1 + r_t] b_{j,S-1,t} + w_t e_j(S-1) l(S-1) - b_{j,S,t+1} \right)^{-\sigma} = \beta (1 + r_{t+1}) \left([1 + r_{t+1}] b_{j,S,t+1} + w_{t+1} e_j(S) l(S) \right)^{-\sigma} \quad \forall j, t \tag{16}$$

If we substitute in the solution $\psi(b_{j,S-1,t}, w_t, r_t, w_{t+1}, r_{t+1})$ to (16) to the previous period's problem of how much to save for the second-to-last period of life, we see that the optimal saving decision is the following function,

$$\left([1 + r_{t-1}] b_{j,S-2,t-1} + w_{t-1} e_j(S-2) l(S-2) - b_{j,S-1,t} \right)^{-\sigma} =
\beta (1 + r_t) \left([1 + r_t] b_{j,S-1,t} + w_t e_j(S-1) l(S-1) - \psi_{j,S,t+1} \right)^{-\sigma} \quad \forall j, t$$
(17)

where $\psi_{j,S,t+1}$ is short hand notation for $b_{j,S,t+1} = \psi(b_{j,S-1,t}, w_t, r_t, w_{t+1}, r_{t+1})$. Equation (17), in conjunction with (16), show that the optimal household decision in the third-to-last period of life of how much to save for the second-to-last period of life is a function of current savings and the remaining lifetime series of prices $b_{j,S-1,t} = \psi(b_{j,S-2,t-1}, (w_v, r_v)_{v=t-1}^{t+1})$. By backward induction, we can show that the solution to the households saving decision in any period is a function of their current holdings of savings and the series of prices over the rest of their life.

$$b_{j,s+1,t+1} = \psi \left(b_{j,s,t}, (w_v, r_v)_{v=t}^{t+S-s} \right) \quad \forall j, t \quad \text{and} \quad 1 \le s \le S - 1$$
 (18)

Each optimal saving decision for each household requires knowledge of at least todays prices and tomorrows prices and at most S periods of prices. In equilibrium, one can see that the prices (w_t, r_t) in each period t are functions of the entire distribution of savings $b_{j,s,t}$ for all j and s. This is clear from the steady-state version of

the capital market clearing condition (13) and the fact that aggregate labor supply is a function of the sum of exogenous efficiency units of labor in the labor market clearing condition (12). And the two firm first order conditions for the real wage w_t (10) and real rental rate r_t (11) are only functions of the aggregate capital stock K_t and aggregate labor L_t . The requirement that individuals be able to forecast prices with perfect foresight over their lifetimes implies that each individual has correct information and beliefs about all the other individuals optimization problems and information. It also implies that the equilibrium allocations and prices are really just functions of the entire distribution of savings at a particular period, as well as a law of motion for that distribution of savings.

To solve for any non-steady-state equilibrium time path of the economy from an arbitrary current state to the steady state, we follow the time path iteration (TPI) method of Auerbach and Kotlikoff (1987). Appendix A-4 details how to solve for the non-steady-state equilibrium time path using the TPI method.

APPENDIX

A-1 Calibration of ability process

The calibration of the ability process $e_j(s)$ is as follows. First, the ability types themselves must be calibrated. For each age group $s \in S$, the hourly wage rates are sorted into J percentile groups. The ability type for each percentile group is the median wage for the percentile group, divided by the average wage of all individuals in the data set.

The data used to calibrate the ability types were obtained from the Current Population Survey.³ Individuals younger than 20 and older than 79 are dropped from the data. This is due to the extremely small amount of observations for ages outside of those bounds. The data was truncated to allow for either method. Due to a limited number of observations in the survey who included their hourly wage, data was taken from the months of January, February, March, April, and May 2014. The ability types were then calculated for each month, and then an average was taken of the five calibrations of the ability types in order to produce a final calibration to be used in the model.

The ability types evolve according to a Markov process, which is altered depending on the specifications of the model. An individual in period s and of ability type j faces a distribution which will determine in which ability type they fall in the period s+1. In this paper, individuals are assigned ability types at the beginning of their life, and cannot change types later on. This Markov process is simply an identity matrix for each age group.

However, the model will readily accept a more complex Markov process. The data used to create the Markov process comes from the Panel Study of Income Dynamics (PSID) for 1999 and 2001. ⁴ Again, since S=60, only individuals with ages 20 through 79 are included. Wages in 1999 are multiplied by 1.06303 to convert them to 2001 wages. Individuals without wage information in both years are dropped. Due to the low number of observations per age group, one Markov process is generated which is applied to all age groups in the model. Nishiyama (2003) noted that this Markov transition matrix was reasonably consistent across age cohorts, and so using the same process for all cohorts should not present a problem in the model.

To generate the transition matrix, the 1999 and 2001 wages are sorted into J percentile groups. For each percentile group in 2001, the number of individuals that came from each of the percentile groups in 1999 are counted. This generates J**2 summations of individuals, J for each percentile group. Then, the J summations for

 $^{^{3}}$ U.S. Census Bureau, Dataferret, Current Population Survey, 2014. The variables PRTAGE and PTERNHLY were used for the age and hourly wage rate of individuals, respectively.

 $^{^4}$ Panel Study of Income Dynamics, public use dataset. Produced and distributed by the Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI (2014). The variables for age and wage in 1999 and age and wage in 2001 are ER33504, ER33537O, ER33604, and ER33628O, respectively.

the first percentile group in 2001 are divided by the count of individuals in the first percentile group in 1999. Next, the J summations for the second percentile group in 2001 are divided by the count of individuals in the second percentile group in 1999. This continues through the J^{th} percentile group. We then have a $J \times J$ matrix of probabilities, where the first row is the probability of being in the first percentile group, given that one is in the j^{th} percentile group before (where j indicates the column of the matrix), and so on.

Because this Markov transitional matrix represents the probabilities of changing abilities types after two years, we must take the "square root" of the matrix. This process is described in the Python code for the model, and involves diagonalizing the matrix and taking the square root of the diagonalized matrix. Finally, the Markov matrix is then raised to the 60/S power, denoting the number of years that separate each age cohort.

A-2 Constraints on individual borrowing

As described in Section 2.1, individuals are allowed to borrow $b_{j,s,t}$ for some j and s in period t. However, two constraints must hold. First, the individual must be able to pay back the balance with interest r_{t+1} in the next period without driving consumption in the next period $c_{j,s+1,t+1}$ to be nonpositive. Let $\bar{b}_{j,s,t}$ be the minimum value of savings in a period.

$$b_{j,s,t} \ge \bar{b}_{j,s,t} \quad \forall j, s, t \tag{A.2.1}$$

Rearranging the bugdet constraints in (2), (3), and (4) and using backward induction gives the following expressions for $\bar{b}_{j,s,t}$,

$$\bar{b}_{j,S,t} = \frac{\varepsilon - w_t e_j(S) l(S)}{1 + r_t}$$

$$\bar{b}_{j,S-1,t-1} = \frac{\varepsilon + \bar{b}_{j,S,t} - w_{t-1} e_j(S-1) l(S-1)}{1 + r_{t-1}}$$

$$\vdots$$

$$\bar{b}_{j,2,t-S+2} = \frac{\varepsilon + \bar{b}_{j,3,t-S+3} - w_{t-S+2} e_j(2) l(2)}{1 + r_{t-S+2}}$$
(A.2.2)

In addition to the individual borrowing constraint (A.2.1), a strict aggregate borrowing constraint must be met. That is, the aggregate capital stock must be strictly positive.

$$K_t > 0 \quad \forall t$$
 (A.2.3)

A-3 Solving for steady-state equilibrium

This section describes the solution method for the steady-state equilibrium described in Definition 1.

- i. Choose an initial guess for the steady-state distribution of capital $\bar{b}_{j,s+1}$ for all j and s = 1, 2, ... S 1.
 - choose some small positive number that is strictly less that is small enough to be less than the minimum income that an individual might have $\bar{w}e_j(s)l(s)$.
- ii. Perform an unconstrained root finder that chooses $\bar{b}_{j,s+1}$ that solves the $J \times (S-1)$ steady-state Euler equations (15).
- iii. Make sure none of the implied steady-state consumptions $\bar{c}_{j,s,t}$ is less-than-or-equal-to zero.
 - If one consumption is less-than-or-equal-to zero $\bar{c}_{j,s} \leq 0$, then try different starting values.
 - If that does not work, then we must perform the root finding operation as a constrained minimization problem that puts a maximum value on $\bar{b}_{i,s+1}$.
- iv. Make sure that none of the Euler errors is too large in absolute value. A steady-state Euler error is the following, which is supposed to be close to zero for all j and s = 1, 2, ... S 1:

$$\frac{\beta (1+\bar{r}) (\bar{c}_{j,s+1})^{-\sigma}}{(\bar{c}_{j,s})^{-\sigma}} - 1 \tag{A.3.1}$$

- v. Make sure that the unconstrained solution satisfies the individual borrowing constraints in (A.2.1) and (A.2.2).
 - If any individual's borrowing constraint is not satisfied using the unconstrained root finding operation, rerun the root finding operation in step (ii) as a constrained minimization problem with the borrowing constraints imposed on those individuals.
 - Repeat steps (ii) through (v) until all the individual borrowing constraints are met.
- vi. Make sure that the solution satisfies the aggregate borrowing constraint (A.2.3).
 - If it does not, what is the least distortionary upward adjustment to individual steady-state savings $\bar{b}_{j,s+1}$?

A-4 Solving for non-steady-state equilibrium by time path iteration

This section outlines the benchmark time path iteration (TPI) method of Auerbach and Kotlikoff (1987) for solving the non-steady-state equilibrium transition path of the distribution of savings. TPI finds a fixed point for the transition path of the distribution of capital for a given initial state of the distribution of capital. The idea is that the economy is infinitely lived, even though the agents that make up the economy are not. Rather than recursively solving for equilibrium policy functions by iterating on individual value functions, one must recursively solve for the policy functions by iterating on the entire transition path of the endogenous objects in the economy (see Stokey and Lucas (1989, ch. 17)).

The key assumption is that the economy will reach the steady-state equilibrium described in Definition 1 in a finite number of periods $T < \infty$ regardless of the initial state. Let Γ_t represent the distribution of savings at time t.

$$\Gamma_t \equiv \{b_{j,s,t}\}_{j=1,s=1}^{J,S} \quad \forall t \tag{A.4.1}$$

In Section 2.3, we described how the equilibrium non-steady-state time path of allocations and price is described by functions of the state Γ_t and its law of motion. TPI starts the economy at any initial distribution of savings Γ_0 and solves for its equilibrium time path over T periods to the steady-state distribution $\bar{\Gamma}_T$.

The first step is to assume an initial transition path for aggregate capital $\mathbf{K}^i = \{K_1^i, K_2^i, ... K_T^i\}$ such that T is sufficiently large to ensure that $\Gamma_T = \bar{\Gamma}$ and $K_T^i(\Gamma_T) = \bar{K}(\bar{\Gamma})$. The superscript i is an index for the iteration number. The transition path for aggregate capital determines the transition path for both the real wage $\mathbf{w}^i = \{w_1^i, w_2^i, ... w_T^i\}$ and the real return on investment $\mathbf{r}^i = \{r_1^i, r_2^i, ... r_T^i\}$. The exact initial distribution of capital in the first period Γ_1 can be arbitrarily chosen as long as it satisfies $K_1^i = \frac{1}{SJ} \sum_{s=1}^S \sum_{j=1}^J b_{j,s,t}$ according to market clearing condition (13). One could also first choose the initial distribution of savings Γ_1 and then choose an initial aggregate capital stock K_1^i that corresponds to that distribution. As mentioned earlier, the only other restriction on the initial transition path for aggregate capital is that it equal the steady-state level $K_T^i = \bar{K}(\bar{\Gamma})$ by period T. Evans and Phillips (2014) have shown that the aggregate capital stocks K_t^i for periods 1 < t < T can take on almost any positive values.

Given the initial capital distribution Γ_1 and the transition paths of aggregate capital $\mathbf{K}^i = \{K_1^i, K_2^i, ...K_T^i\}$, the real wage $\mathbf{w}^i = \{w_1^i, w_2^i, ...w_T^i\}$, and the real return to investment $\mathbf{r}^i = \{r_1^i, r_2^i, ...r_T^i\}$, one can solve for the optimal savings policy rule for each type j of S-1-aged agent for the last period of his life $b_{j,S,2} = \psi_{j,S-1}(b_{j,S-1,1}, \{w_t, r_t\}_{t=1}^2)$ using his one intertemporal Euler equation (A.4.2), where the "j,S-1" subscript on ψ represents the function for type j in age s = S-1 savings decision.

$$\left([1 + r_1^i] b_{j,S-1,1} + w_1^i e_j(S-1) l(S-1) - b_{j,S,2} \right)^{-\sigma} = \beta (1 + r_2^i) \left([1 + r_2^i] b_{j,S,2} + w_2^i e_j(S) l(S) \right)^{-\sigma} \quad \forall j$$
(A.4.2)

The final two savings decisions of each type j of S-2-aged household in period 1, $b_{j,S-1,2}$ and $b_{j,S,3}$, are characterized by the following two intertemporal Euler equations.

$$\begin{aligned}
&\left([1+r_1^i]b_{j,S-2,1}+w_1^ie_j(S-2)l(S-2)-b_{j,S-1,2}\right)^{-\sigma} = \\
&\beta(1+r_2^i)\left([1+r_2^i]b_{j,S-1,2}+w_2^ie_j(S-1)l(S-1)-b_{j,S,3}\right)^{-\sigma}, \\
&\left([1+r_2^i]b_{j,S-1,2}+w_2^ie_j(S-1)l(S-1)-b_{j,S,3}\right)^{-\sigma} = \\
&\beta(1+r_3^i)\left([1+r_3^i]b_{j,S,3}+w_3^ie_j(S)l(S)\right)^{-\sigma}
\end{aligned} (A.4.3)$$

This process is repeated for every age of household alive in t = 1 down to the age s = 1 household at time t = 1. Each of these households j solve the full set of S - 1 savings decisions characterized by the following equations.

$$\left(w_1^i e_j(1)l(1) - b_{j,2,2}\right)^{-\sigma} = \dots$$

$$\beta \left(1 + r_2^i\right) \left(\left[1 + r_2^i\right] b_{j,2,2} + w_2^i e_j(2)l(2) - b_{j,3,3}\right)^{-\sigma}$$

$$\left(\left[1 + r_2^i\right] b_{j,2,2} + w_2^i e_j(2)l(2) - b_{j,3,3}\right)^{-\sigma} = \dots$$

$$\beta \left(1 + r_3^i\right) \left(\left[1 + r_3^i\right] b_{j,3,3} + w_3^i e_j(3)l(3) - b_{j,4,4}\right)^{-\sigma} \quad \forall j$$

$$\vdots$$

$$\left(\left[1 + r_{S-1}^i\right] b_{j,S-1,S-1} + w_{S-1}^i e_j(S-1)l(S-1) - b_{S,S}\right)^{-\sigma} = \dots$$

$$\beta \left(1 + r_S^i\right) \left(\left[1 + r_S^i\right] b_{j,S,S} + w_S^i e_j(S)l(S)\right)^{-\sigma}$$

References

- Auerbach, Alan J. and Lawrence J. Kotlikoff, Dynamic Fiscal Policy, Cambridge University Press, 1987.
- **Evans, Richard W. and Kerk L. Phillips**, "OLG Life Cycle Model Transition Paths: Alternate Model Forecast Method," *Computational Economics*, January 2014, 43 (1), 105–131.
- Nishiyama, S., "Analyzing Tax Policy Changes Using a Stochastic OLG Model with Heterogeneous Households," Technical Paper Series 2003-12, Congressional Budget Office December 2003.
- Stokey, Nancy L. and Robert E. Lucas Jr., Recursive Methods in Economic Dynamics, Harvard University Press, 1989.

TECHNICAL APPENDIX

T-1 Structures to add to the model and order

- 1. Endogenize labor
- 2. Make sure bond holdings are correct
- 3. Add demographics
- 4. Add household tax structures
- 5. Add firm structures

T-2 Comments and Notes

• We don't need to put the PSID acknowledgment text in our thanks on the title page. We just cite in our ability calibration appendix that we used any PSID data.