- 1. What does 'good' look like?
 - 1.Data type of all columns in the "customers" table.

Query:

Select column_name, data_type from `Business_case_Study.INFORMATION_SCHEMA.COLUMNS` where table_name = 'Customers'

Output:

2.Get the time range between which the orders were placed.

Query:

Select min(order_purchase_timestamp) First_order_datetime, max(order_purchase_timestamp) last_order_datetime from `Business_case_Study.Orders`

3. Count the Cities & States of customers who ordered during the given period.

Query:

```
Select count(distinct customer_city) as Unique_city_count,
count(distinct customer_state) as Unique_state_count
from `Business_case_Study.Orders` as O
left join `Business_case_Study.Customers` as CC
on O.customer_id = CC.customer_id
```

Row //	Unique_city_count 🔻	Unique_state_count
1	4119	27

2. In-depth Exploration:

1.Is there a growing trend in the no. of orders placed over the past years?

Query:

```
Select extract(year from order_purchase_timestamp) Year_,
format_datetime("%B",order_purchase_timestamp) as
month_name ,
count(*) as Total_order
from `Business_case_Study.Orders`
group by year_, month_name, extract(month from
order_purchase_timestamp)
order by year_, extract(month from order_purchase_timestamp)

Or

Select format_date("%Y-%B",order_purchase_timestamp) as
Year_month,
count(*) as Total_order
from `Business_case_Study.Orders`
```

GROUP BY year_month, extract(month from
order_purchase_timestamp),extract(year from
order_purchase_timestamp)
order by extract(year from order_purchase_timestamp),
extract(month from order_purchase_timestamp)

Output:

Row //	Year_ ▼	month_name ▼	Total_order ▼
1	2016	September	4
2	2016	October	324
3	2016	December	1
4	2017	January	800
5	2017	February	1780
6	2017	March	2682
7	2017	April	2404
8	2017	May	3700
9	2017	June	3245
10	2017	July	4026
11	2017	August	4331
12	2017	September	4285
13	2017	October	4631
14	2017	November	7544
15	2017	December	5673

Or

Row //	Year_month ▼	Total_order ▼
1	2016-September	4
2	2016-October	324
3	2016-December	1
4	2017-January	800
5	2017-February	1780
6	2017-March	2682
7	2017-April	2404
8	2017-May	3700
9	2017-June	3245
10	2017-July	4026
11	2017-August	4331
12	2017-September	4285
13	2017-October	4631
14	2017-November	7544

2.Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

Query:

```
With Monthly_orders as (
Select format_date("%B",order_purchase_timestamp ) as
Year_month,
count(*) as Total_order
from `Business_case_Study.Orders`
GROUP BY year_month
order by total_order desc)

Select year_month, monthly_orders.Total_order,
Sum(monthly_orders.Total_order)
over(order by monthly_orders.Total_order desc) Running_Orders,
Round(Sum(monthly_orders.Total_order)
```

over(order by monthly_orders.Total_order desc)/(select
sum(monthly_orders.Total_order) from monthly_orders)*100,2)
Running_order_percentage,
from monthly_orders
order by monthly_orders.Total_order desc

Row //	year_month ▼	Total_order ▼	running_Orders ▼ //	Running_order_pe
1	August	10843	10843	10.9
2	May	10573	21416	21.54
3	July	10318	31734	31.91
4	March	9893	41627	41.86
5	June	9412	51039	51.33
6	April	9343	60382	60.72
7	February	8508	68890	69.28
8	January	8069	76959	77.39
9	November	7544	84503	84.98
10	December	5674	90177	90.68
11	October	4959	95136	95.67
12	September	4305	99441	100.0

Note: Clearly, 80% of the Orders fall in the month of January-August bracket.

Later months September, October, November and December have the lowest impact as compared to other months

3. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

0-6 hours: Dawn

7-12 hours: Mornings 13-18 hours: Afternoon

19-23 hours: Night

Query:

```
Select case
when extract(hour from order_purchase_timestamp)>=0 and
extract(hour from order purchase timestamp)<=6 then "Dawn"</pre>
when extract(hour from order purchase timestamp)>6 and
extract(hour from order purchase timestamp) <= 12 then</pre>
"Mornings"
when extract(hour from order purchase timestamp)>12 and
extract(hour from order purchase timestamp) <= 18 then</pre>
"Afternoon"
when extract(hour from order_purchase_timestamp)>18 and
extract(hour from order_purchase_timestamp)<=23 then "Night"</pre>
end as Time of the day,
count(order purchase timestamp) total orders
 from `Business_case_Study.Orders`
 group by Time of the day
 order by total orders desc
```

Row //	Time_of_the_day ▼	total_orders	~
1	Afternoon		38135
2	Night		28331
3	Mornings		27733
4	Dawn		5242

- 3. Evolution of E-commerce orders in the Brazil region:
- 1.Get the month on month no. of orders placed in each state.

Query:

```
Select customer_state,
extract(Year from order_purchase_timestamp) year_,
format_datetime("%B", order_purchase_timestamp) as month_name,
count(order_id) as Total_order
  from `Business_case_Study.Orders` as o
left join `Business_case_Study.Customers` as cc
on o.customer_id = cc.customer_id
group by year_,customer_state,month_name,extract(Month from
order_purchase_timestamp)
order by customer_state,year_,extract(Month from
order_purchase_timestamp)
```

Row //	customer_state 🔨	year_ ▼//	month_name ▼ //	Total_order	\ //
1	AC	2017	January		2
2	AC	2017	February		3
3	AC	2017	March		2
4	AC	2017	April		5
5	AC	2017	May		8
6	AC	2017	June		4
7	AC	2017	July		5
8	AC	2017	August		4
9	AC	2017	September		5
10	AC	2017	October		6
11	AC	2017	November		5
12	AC	2017	December		5
13	AC	2018	January		6
14	AC	2018	February		3
15	AC	2018	March		2
16	AC	2018	April		4
17	AC	2018	May		2
18	AC	2018	June		3

2. How are the customers distributed across all the states?

Query:

```
Select customer_state ,count(distinct customer_unique_id)
Customer_count
from `Business_case_Study.Customers`
group by customer_state
order by customer_count desc
```

OR

```
Select customer_state ,count(distinct customer_id)
Customer_count
from `Business_case_Study.Customers`
group by customer_state
order by customer_count desc
```

Row //	customer_state ▼	Customer_count ▼//
1	SP	40302
2	RJ	12384
3	MG	11259
4	RS	5277
5	PR	4882
6	SC	3534
7	BA	3277
8	DF	2075
9	ES	1964
10	GO	1952
11	PE	1609
12	CE	1313
13	PA	949
14	MT	876
15	MA	726
16	MS	694
17	РВ	519
18	PI	482

Row	customer_state ▼ //	Customer_count ▼//
1	SP	41746
2	RJ	12852
3	MG	11635
4	RS	5466
5	PR	5045
6	SC	3637
7	BA	3380
8	DF	2140
9	ES	2033
10	GO	2020
11	PE	1652
12	CE	1336
13	PA	975
14	MT	907
15	MA	747
16	MS	715
17	РВ	536
18	PI	495

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
- 1. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only). You can use the "payment_value" column in the payments table to get the cost of orders.

Query:

```
Select year_,cost_of_order,
Round(((lead(cost_of_order,1) over(order by cost_of_order)-
cost_of_order)/cost_of_order)*100,2)Percentage_increase
from (
Select extract(year from order_purchase_timestamp) year_,
Round(sum(pp.payment_value),0) as cost_of_order
from `Business_case_Study.Orders` as 00
left join `Business_case_Study.Payments` as pp
on 00.order_id = pp.order_id
where extract(month from order_purchase_timestamp) in
(1,2,3,4,5,6,7,8)
group by year_
) as z
order by z.year_
```

Output:

Row //	year_ ▼	cost_of_order ▼ //	Percentage_incre
1	2017	3669022.0	136.98
2	2018	8694734.0	null

Insight:

137% increase in the cost of order from 2017 to 2018.

2. Calculate the Total & Average value of order price for each state.

Query:

```
Select cc.customer_state , Round(sum(price),2) Total_price ,
Round(sum(price)/count(distinct oo.order_id),2)as
Average_price
  from `Business_case_Study.Orders` as oo
left join `Business_case_Study.Customers` as cc

on oo.customer_id = cc.customer_id
left join `Business_case_Study.Order_items` as oi
on oo.order_id = oi.order_id
group by cc.customer_state
order by Total_price desc
```

Row	customer_state ▼	Total_price ▼	Average_price ▼
1	SP	5202955.05	124.63
2	RJ	1824092.67	141.93
3	MG	1585308.03	136.25
4	RS	750304.02	137.27
5	PR	683083.76	135.4
6	SC	520553.34	143.13
7	BA	511349.99	151.29
8	DF	302603.94	141.4
9	GO	294591.95	145.84
10	ES	275037.31	135.29
11	PE	262788.03	159.07
12	CE	227254.71	170.1
13	PA	178947.81	183.54
14	MT	156453.53	172.5
15	MA	119648.22	160.17
16	MS	116812.64	163.37
17	РВ	115268.08	215.05
18	PI	86914.08	175.58

3. Calculate the Total and Average value of order freight for each state.

Query:

```
Select cc.customer_state , Round(sum(freight_value),2)
Total_Freight ,
Round(sum(freight_value)/count(distinct oo.order_id),2)as
Average_Freight

from `Business_case_Study.Orders` as oo
left join `Business_case_Study.Customers` as cc
on oo.customer_id = cc.customer_id
left join `Business_case_Study.Order_items` as oi
on oo.order_id = oi.order_id
group by cc.customer_state
order by Total_Freight desc
```

Output:

Row /	customer_state ▼	Total_Freight ▼	Average_Freight ▼
1	SP	718723.07	17.22
2	RJ	305589.31	23.78
3	MG	270853.46	23.28
4	RS	135522.74	24.79
5	PR	117851.68	23.36
6	BA	100156.68	29.63
7	SC	89660.26	24.65
8	PE	59449.66	35.99
9	GO	53114.98	26.29
10	DF	50625.5	23.66
11	ES	49764.6	24.48
12	CE	48351.59	36.19
13	PA	38699.3	39.69
14	MA	31523.77	42.2
15	MT	29715.43	32.76
16	PB	25719.73	47.98
17	PI	21218.2	42.87
18	MS	19144.03	26.77

5. Analysis based on sales, freight and delivery time

 Find the no. of days taken to deliver each order from the order's purchase date as delivery time.
 Also, calculate the difference (in days) between the estimated & actual delivery date of an order.
 Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

- time_to_deliver = order_delivered_customer_date order purchase timestamp
- diff_estimated_delivery = order_delivered_customer_date order_estimated_delivery_date

```
Select order_id, date_diff(order_delivered_customer_date,
order_purchase_timestamp, Day) as time_to_deliver,
date_diff(order_delivered_customer_date,
order_estimated_delivery_date, Day) as diff_estimated_delivery
from `Business_case_Study.Orders`
order by time_to_deliver desc
```

Row //	order_id ▼	time_to_deliver ▼ //	diff_estimated_de
1	ca07593549f1816d26a572e06d	209	181
2	1b3190b2dfa9d789e1f14c05b6	208	188
3	440d0d17af552815d15a9e41a	195	165
4	285ab9426d6982034523a855f	194	166
5	0f4519c5f1c541ddec9f21b3bd	194	161
6	2fb597c2f772eca01b1f5c561bf	194	155
7	47b40429ed8cce3aee9199792	191	175
8	2fe324febf907e3ea3f2aa96508	189	167
9	2d7561026d542c8dbd8f0daead	188	159
10	c27815f7e3dd0b926b58552628	187	162
11	437222e3fd1b07396f1d9ba8c1	187	144
12	dfe5f68118c2576143240b8d78	186	153
13	6e82dcfb5eada6283dba34f164	182	155
14	2ba1366baecad3c3536f27546d	181	152

2. Find out the top 5 states with the highest & lowest average freight value

```
with Avg value as (
Select customer state, Avg(freight value) as Avg freight value
from `Business_case_Study.Orders` as o
left join `Business_case_Study.Order_items` as oi
on o.order id = oi.order id
left join `Business_case_Study.Customers` as cc
on o.customer id = cc.customer id
group by customer_state),
Ranked_states as (
select customer_state, Avg_freight_value,
row_number() over(order by Avg_freight_value desc) as
desc rank,
row number() over(order by Avg freight value asc) as asc rank
from Avg value
Select customer_state, Avg_freight_value from Ranked_states
where desc_rank <=5 or asc_rank <=5</pre>
ORDER BY avg_freight_value asc;
```

Row //	customer_state ▼	Avg_freight_value 🕌
1	SP	15.14727539041
2	PR	20.53165156794
3	MG	20.63016680630
4	RJ	20.96092393168
5	DF	21.04135494596
6	PI	39.14797047970
7	AC	40.0733695652174
8	RO	41.06971223021
9	РВ	42.72380398671
10	RR	42.98442307692

3. Find out the top 5 states with the highest & lowest average delivery time.

```
With Avg_value as (
Select customer_state,
Avg(date_diff(order_delivered_customer_date,
order purchase timestamp, Day)) as Avg delivery time
from `Business_case_Study.Orders` as o
left join `Business case Study.Customers` as cc
on o.customer id = cc.customer id
group by customer_state),
ranked states as (
select customer_state, Avg_delivery_time,
row_number() over(order by Avg_delivery_time desc) as
desc rank,
row number() over(order by Avg delivery time asc) as asc rank
from Avg value
Select customer_state, Avg_delivery_time from ranked_states
where desc_rank <=5 or asc_rank <=5</pre>
ORDER BY Avg_delivery_time
```

Row //	customer_state ▼ //	Avg_delivery_time 🔨
1	SP	8.298061489072
2	PR	11.52671135486
3	MG	11.54381329810
4	DF	12.50913461538
5	SC	14.47956019171
6	PA	23.31606765327
7	AL	24.04030226700
8	AM	25.98620689655
9	AP	26.73134328358
10	RR	28.97560975609

4. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery. You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

```
Select customer_state,
Avg(date_diff(order_delivered_customer_date,order_purchase_tim
estamp, DAY))-
Avg(date_diff(order_delivered_customer_date,order_estimated_de
livery_date, DAY))
from `Business_case_Study.Orders` as oo
left join `Business_case_Study.Customers` as cc
on oo.customer_id = cc.customer_id
where order_delivered_customer_date is not null
group by customer_state
```

- 6. Analysis based on the payments
- 1. Find the month on month no. of orders placed using different payment types.

```
Select extract(Year from order_purchase_timestamp) year_,
format_datetime("%B",order_purchase_timestamp)) as month_name,
payment_type, count(*) as Total_orders
from `Business_case_Study.Orders` as 00
left join `Business_case_Study.Payments` as p
on oo.order_id = p.order_id
group by year_, month_name, payment_type, extract(month from
order_purchase_timestamp)
order by year_, extract(month from order_purchase_timestamp)
```

Row //	year_ ▼	month_name ▼	payment_type ▼	Total_orders ▼
1	2016	September	credit_card	3
2	2016	September	null	1
3	2016	October	voucher	23
4	2016	October	credit_card	254
5	2016	October	UPI	63
6	2016	October	debit_card	2
7	2016	December	credit_card	1
8	2017	January	credit_card	583
9	2017	January	UPI	197
10	2017	January	debit_card	9
11	2017	January	voucher	61
12	2017	February	credit_card	1356
13	2017	February	UPI	398
14	2017	February	voucher	119

2. Find the no. of orders placed on the basis of the payment installments that have been paid.

```
Select payment_installments, Count(*) as Total_orders
from `Business_case_Study.Orders` as 00
left join `Business_case_Study.Payments` as pp
on oo.order_id = pp.order_id
where payment_installments is not null and
payment_installments <> 0
group by payment_installments
order by Total_orders desc
```

Row	payment_installm	Total_orders ▼ //
1	1	52546
2	2	12413
3	3	10461
4	4	7098
5	10	5328
6	5	5239
7	8	4268
8	6	3920
9	7	1626
10	9	644
11	12	133
12	15	74
13	18	27
14	11	23
15	24	18
16	20	17
17	13	16
18	14	15