Отчёт по лабораторной работе N 5.2.2 и N 5.2.3. Изучение спектров атома водорода и молекулы йода.

Плюскова Н.А. Б04-004

27 января 2023 г.

1. Аннотация

В работе будут исследованы сериальные закономерности в оптическом спектре водорода и спектр поглощения паров йода в видимой области.

С помощью информации о спектральных линиях неона и ртути будет проградуирован спектрометр и построен соответствующий график.

Мы получим длины волн линий $H_{\alpha}, H_{\beta}, H_{\gamma}$ и H_{δ} серии Бальмера, вычислим постоянную Ридберга.

Получим длины волн, соответствующие некоторым электронно-колебательным переходам из основного состояния в возбуждённое. Вычислим энергию колебательного кванта возбуждённого состояния молекулы, энергию электронного перехода и энергию диссоциации молекулы в основном и в возбуждённом состояниях.

2. Теоретические сведения

Длины волн спектральных линий водородоподобного атома описываются формулой

$$\frac{1}{\lambda_{mn}} = RZ^2(\frac{1}{n^2} - \frac{1}{m^2}),\tag{1}$$

где R - постоянная Ридберга, а m, n - целые числа.

Использование постулатов Бора с учётом кулоновского взаимодействия между ядром и электроном позволяет легко определить возможные энергетические состояния водородоподобного атома. Если считать ядро неподвижным, то эти энергетические состояния определяются выражением

$$E_n = -\frac{2\pi^2 m_e e^4 Z^2}{h^2} \frac{1}{n^2} \tag{2}$$

Рис. 1: Уровни энергии атома водорода и образование спектральных серий

Знание энергетических состояний атома позволяет в соответствии с формулой (2) определить возможные частоты его излучения и объяснить наблюдаемые закономерности.

В данной работе изучается серия Бальмера, линии которой лежат в видимой области, и изотопический сдвиг между линиями водорода. Для серии Бальмера в формуле (1) n=2. Величина m для первых четырёх линий этой серии принимает значение $3,\,4,\,5,\,6$.

Боровский радиус (радиус первой орбиты) для электрона в поле ядра с зарядом Z:

$$r_B = \frac{\hbar^2}{Zm_e e^2} \tag{3}$$

Энергия основного состояния:

$$E = -\frac{m_e e^4}{2\hbar^2} Z^2 = -RZ^2 \tag{4}$$

Аналогичным образом могут быть найдены энергии возбуждённых состояний. Дискретные значения энергии электрона в атоме получаются из того условия, что на длине орбиты, по которой движется электрон, должно укладываться целое число волн де Бройля. Если радиус орбиты равен r, то n-му состоянию электрона соответствует условие

$$2\pi r = \lambda n(n \in \mathbb{N}); m_e v_n = \frac{nh}{2\pi r}$$
(5)

Аналогично пп. (3)-(4):

$$r_B = \frac{n^2 \hbar^2}{Z m_e e^2} \tag{6}$$

$$E = -\frac{m_e e^4}{2\hbar^2} \frac{1}{n^2} Z^2 = -R \frac{Z^2}{n^2}$$
 (7)

3. Экспериментальная установка

Для измерения длин волн спектральных линий в работе используется стеклянно-призменный монохроматор-спектрометр УМ-2, предназначенный для спектральных исследований в диапазоне от 0.38 до 1 мкм

Рис. 2: Устройство монохроматора УМ-12

Спектрометр нуждается в дополнительной градуировке, проводящейся по спектру ртутной лампы с известными длинами волн спектральных линий.

Для наблюдения спектра водорода используется установка, изображённая на Рис. 2А. Источником света для наблюдения служит водородная трубка H-образной формы, в состав газа которой добавлены водные пары для увеличения яркости интересующих наслиний. Источник Л помещается на оптическую скамью вместе с конденсером K, так что свет концентрируется на входной щели 1. Далее через коллиматорный объектив 2 свет попадает на сложную спектральную призму, состояющую из призм Π_1 , Π_2 и Π_3 . Первые две призмы обладают большой дисперсией, а промежуточная Π_3 поворачивает лучи — такое устройство позволяет складывать дисперии Π_1 и Π_2 . После прохождения призмы свет попадает в зрительную трубу 4-5, объектив которой даёт изображение входной щели различных цветов. На Рис. 2Б изображена схема установки, используемой для наблюдения

Рис. 3: Установки для наблюдения линий А. водорода; Б. йода.

спектра йода. Спектр поглощения паров йода наблюдается визуально на фоне сплошного спектра лампы накаливания 1, питаемой от блока питания 2. Кювета 3 с кристаллами йода подогревается нихромовой спиралью, подключённой вместе с лампой накаливания к блоку питания. Линза 4 используется как конденсор. В результате подогрева кристаллы йода частично возгоняются, образуя пары с лёгкой фиолетовой окраской. Спектрометр 5 позволяет визуально наблюдать линии поглощения молекул йода на фоне сплошного спектра излучения лампы накаливания видимой области.

4. Ход работы

Проградуируем спектрометр по спектру неона и ртути:

Ртуть				
λ, A^o	$\theta,^{o}$	σ_{θ} , o		
6907	2919			
6234	2687			
5791	2481			
5770	2470	1		
5461	2292	1		
4916	1868			
4358	1206			
4047	651			

Таблица 1: Градуировка спектрометра по спектру ртути

Неон				
λ, A^o	$\theta,^{o}$	σ_{θ} , o		
7032	2956			
6929	2926			
6717	2860			
6678	2848			
6599	2820			
6533	2798			
6507	2790			
6402	2752			
6383	2745			
6334	2727			
6305	2715			
6267	2699			
6217	2679	1		
6164	2658			
6143	2647			
6096	2630			
6074	2618			
6030	2596			
5976	2574			
5945	2560			
5882	2529			
5852	2514			
5401	2250			
5341	2210			
5331	2202			

Таблица 2: Градуировка спектрометра по спектру неона

По полученным данным построим градуировочную кривую:

Рис. 4: Градуировочная кривая $\lambda(\theta)$

Получаем нелинейную градуировку, которую аппроксимируем полиномом 5 степени:

$$y = A + Bx + Cx^2 + Dx^3 + Ex^4$$

$$A = 4228; B = -1.1; C = 1.7 * 10^{-3}; D = -7.2 * 10^{-7}; E = 1.3 * 10^{-10}$$

Измерим положения линий $H_{\alpha}, H_{\beta}, H_{\gamma}, H_{\delta}$ водорода и с помощью градуировочной кривой найдем длины волн этих линий:

	$\theta,^{o}$	λ, A^o	σ_{λ}, A^{o}
H_{α}	2808	6684,4	2,9
H_{β}	1816	4938,6	1,1
H_{γ}	1170	4358,6	0,8
H_{δ}	762	4102,2	0,5

Таблица 3: Положение линий водорода и их длины волн

Воспользуемся формулой (1), чтобы найти постоянную Ридберга для спектральных линий водорода:

$$R = \frac{1}{\lambda_{mn} Z^2 (\frac{1}{n^2} - \frac{1}{m^2})}$$

	$R * 10^6, m^{-1}$	$\sigma_R * 10^6, m^{-1}$
H_{α}	10,84	0,04
H_{β}	10,8	0,02
H_{γ}	10,93	0,02
H_{δ}	10,97	0,01

Получим $R \approx (10.89 \pm 0.04) * 10^6 m^{-1}$, что в пределах 2σ сходится с табличным значением $R = 10.97 * 10^6 m^{-1}$

Погрешность измерения постоянной Ридберга считалась по формуле:

$$\sigma_R = \frac{\sigma_{\lambda_{mn}}}{\lambda_{mn}^2 Z^2 \left(\frac{1}{n^2} - \frac{1}{m^2}\right)}$$

Для йода найдем длину волны одной из самых длинноволновых хорошо видимых линий поглощения, шестую длинноволновую линию от нее и границы схождения спектра:

	$\theta,^{o}$	λ, A^o	σ_{λ}	$h\nu$, эВ	$\sigma_{h\nu}$, эВ
$h\nu_{(1,0)}$	2658	6282,8	2,5	1,977	0,081
$h\nu_{(1,5)}$	2552	6039,7	2,2	2,057	0,073
$h\nu_{gr}$	2054	5215,4	1,3	2,382	0,068

Вычислим энергию колебательного кванта возмущенного состояния молекулы йода по формуле:

$$h\nu_2 = \frac{h\nu_{1,5} - h\nu_{1,0}}{5} = (0.016 \pm 0.002) \text{ 9B}$$

Погрешность измерения энергии колебательного кванта возмущенного состояния посчитали следующим образом:

Зная, что $h\nu_1=0.027$ эВ - энергия колебательного кванта основного состояния, а $E_A=0.94$ эВ - энергия возмущения атома, а также следующие соотношения:

$$\begin{cases} D_1 + E_A = h\nu_{gr}, \\ h\nu_{gr} = D_2 + h\nu_{el}, \\ h\nu_{1,0} = h\nu_{el} + h\nu_2 - \frac{3}{2}h\nu_1, \\ h\nu_{1,5} = h\nu_{el} + \frac{11}{2}h\nu_2 - \frac{3}{2}h\nu_1. \end{cases}$$

Найдем $h\nu_{el}$ - энергию электронного перехода, D_1 - энергию диссоциации молекулы в основном состоянии, D_2 - энергию диссоциации молекулы в возбужденном состоянии. Решая систему уравнений, получим:

$$\nu_{el} = (2.006 \pm 0.008) \text{ 9B}, \ D_1 = (1.442 \pm 0.006) \text{ 9B}, \ D_2 = (0.376 \pm 0.013) \text{ 9B}$$

5. Выводы

В работе был исследован спектр водорода и спектр поглощения паров йода, по которым была построена градуировочная кривая.

Мы получили длины волн спектральных линий водорода из серии Бальмера и вычислили постоянную Ридберга $R\approx (10.89\pm 0.04)*10^6m^{-1}$, которая в пределах 2σ сходится с табличным значением $R=10.97*10^6m^{-1}$

Получены длины волн, соответствующие некоторым электронно-колебательным переходам из основного состояния в возбуждённое. Вычислены энергия колебательного кванта возбуждённого состояния молекулы, энергия электронного перехода, энергии диссоциации молекулы в основном и в возбуждённом состояниях:

$$h\nu_{el} = (2.006 \pm 0.008) \text{ 9B}, \ D_1 = (1.442 \pm 0.006) \text{ 9B}, \ D_2 = (0.376 \pm 0.013) \text{ 9B}$$

$$h\nu_{1,0}=(1.977\pm0.081)$$
 эВ, $h\nu_{1,5}=(2.057\pm0.073)$ эВ, $h\nu_{gr}=(2.382\pm0.068)$ эВ