2005 年研究生期末试题 (120 分钟)

《图论及其应用》

- 一、填空 (15分,每空1分)
- 1、 已知图 **G** 有 10 条边, 4 个度数为 3 的顶点,其余顶点的度数均小于 2,则 **G** 中至少有 ___8 __ 个顶点 .
- **2**、 **m** 条边的简单图 **G** 中所有不同的生成子图 (包括 **G** 和空图)的个数为 2^m .
- 3、 4个顶点的非同构的简单图有 __11___ 个.
- 4、 图 G₁的最小生成树各边权值之和为 ___28 ___.

- 5、若 W是图 G中一条包含所有边的闭通道,则 W在这样的闭通道中具有最短长度的充要条件是:
 - (1) 每一条边最多重复经过 _1_ 次;
 - (2) 在 G的每一个圈上, 重复经过的边的数目不超过圈的长度的 __一半 ___.
- **6**、**5** 阶度极大非哈密尔顿图族有 $_{--}^{5}$ $_{--}^{5}$ $_{--}$ **.**
- 7、在图 G₂ 中,图的度序列为 (44443322),频序列为 (422),独立数为 3, 团数为 4,点色数为 4,边色数为 4,直径为 3.

- 二、选择 (15分)
 - (1)下列序列中,能成为某简单图的度序列的是 (C)
 - (A) (54221) (B) (6654332) (C) (332222)
- (2)已知图 G 有 13 条边, 2 个 5 度顶点, 4 个 3 度顶点,其余顶点的的度数为2,则图 G 有(A)个 2 度点。

- (A) 2 (B) 4 (C) 8
- (3) 图 G 如(a)所示,与 G 同构的图是(C)

(4) 下列图中为欧拉图的是 (B),为 H图的是 (AB),为偶图的是 (BC).

5.下列图中可 1-因子分解的是(B)

三、设 Δ 和 δ 分别是 (n, m) 图 **G** 的最大度与最小度,求证: $\delta \leq \frac{2m}{n} \leq \Delta$ (10 分).

证明: $n\delta \le 2m = \sum_{v \in V(G)} d(v) \le n\Delta \Rightarrow \delta \le \frac{2m}{n} \le \Delta$.

四、正整数序列 (d_1, d_2, \cdots, d_n) 是一棵树的度序列的充分必要条件是 $\sum_{i=1}^{n} d_i = 2(n-1)$ **(10** 分**).**

· 证明: "⇒" 结论显然

"⇐" 设正整数序列 $(d_1, d_2, ", d_n)$ 满足 $\sum_{i=1}^n d_i = 2(n-1)$, 易知它是度序列。

设 **G** 是这个度序列的图族中连通分支最少的一个图,知 **m=** |E(G)| = n - 1. 假设 **G** 不连通,则 ω(G) ≥ 2,且至少有一个分支 G,含有圈 **C**,否则,**G** 是森林,

有 $\mathbf{m} = |E(G)| = n - \omega < n - 1$ 矛盾! 从 \mathbf{C} 中任意取出一条边 $e_1 = u_1 v_1$ 。并在另一分支 e_2 中任意取出一条边 $e_2 = u_2 v_2$,作图

$$G' = G - \{u_1v_1, u_2v_2\} + \{u_1v_2, u_2v_1\}$$

则 G'的度序列仍然为 (d_1, d_2, \cdots, d_n) 且 ω (G') = ω (G) -1 , 这与 **G** 的选取矛盾!所以

G 是连通的 , **G** 是树。即 (d_1,d_2,\cdots,d_n) 一棵树的度序列。

五、求证:在简单连通平面图 G中,至少存在一个度数小于或等于 5的顶点 (10分).

证明:若不然 , 2m = ∑ d(v) ≥6n > 6n −12⇒ m > 3n − 6, 这与 **G** 是简单连通平 v●(G)

面图矛盾。

六、证明: (1) 若 G 恰有两个奇度点 u 与 v,则 u 与 v 必连通;

(2) 一棵树至多只有一个完美匹配 (10 分).

证明;(1) 因为任意一个图的奇度点个数必然为偶数个, 若 G 恰有两个奇度点 u 与 v,且它们不连通,那么就会得出一个连通图只有一个奇度点的矛盾结论。所以若 G 恰有两个奇度点 u 与 v ,则 u 与 v 必连通。

(2) 若树 T 有两个相异的完美匹配 $M_1, M_2, M_1 \triangle M_2 \neq \Phi$ 且 T [$M_1 \triangle M_2$] 中的每个顶点的度数为 **2**,则 T 中包含圈,这与 T 是数矛盾!

七、求图 **G** 的色多项式 $P_k(G)$ (15 分).

解:图 G 的补图如图 G ,则

$$h(H_1,x)=r_1x+r_2x^2+r_3x^3+r_4x^4$$
 , 其中 , $r_1=N_1(H_1)=0$, $r_2=N_2(H_1)=2$
$$r_3=N_3(H_1)=4$$
 , $r_4=N_4(H_1)=1$;

$$h(H_2, x) = r_1 x + r_2 x^2$$
, $\sharp + r_2 x^2$, $\sharp + r_2 x^2$, $\sharp + r_2 x^2 = r_1 x + r_2 x +$

$$P_k(G) = (x + x^2)(2x^2 + 4x^3 + x^4) = [k]_6 + 5[k]_4 + 6[k]_4 + 2[k]_3$$

八、求图 G中a到b的最短路(15分).

图 G

解 1.
$$A_1 = \{a\}$$
, $t(a) = 0$, $T_1 =$

2.
$$b_1^{(1)} = V_3$$

3.
$$m_1 = 1$$
, $a_2 = v_3$, $t(v_3) = t(a) + l(av_3) = 1 (最小)$, $T_2 = \{av_3\}$

2.
$$A_2 = \{ a, v_3 \}, b_1^{(2)} = v_1, b_2^{(2)} = v_2$$

3.
$$m_2=1$$
, $a_3=v_1$, $t(v_1)=t(a)+I(av_1)=2(最小)$,
$$T_3=\{\ av_3,\ av_1\}$$

2. A₃ ={ a, v₃, v₁},
$$b_1^{(3)} = v_2, b_2^{(3)} = v_2, b_3^{(3)} = v_4$$

3.
$$m_3 = 3$$
, $a_4 = v_4$, $t(v_4) = t(v_1) + I(v_1v_4) = 3 (最小),$

$$T_4 = \{ av_3, av_1, v_1v_4 \}$$

2.
$$A_4 = \{ a, v_3, v_1, v_4 \}$$
, $b_1^{(4)} = v_2$, $b_2^{(4)} = v_2$, $b_3^{(4)} = v_2$, $b_4^{(4)} = v_5$

3.
$$m_4 = 4$$
, $a_5 = v_5$, $t(v_5) = t(v_4) + I(v_4v_5) = 6 (最小),$

$$T_5 = \{ av_3, av_1, v_1v_4, v_4v_5 \}$$

$$2. \ A_5 = \{ \ a, \ v_3, \ v_1, \ v_4, \ v_5 \} \ \ , \ \ b_1^{(5)} \ = v_2 \ , \ b_2^{(5)} \ = v_2 \ , \ b_3^{(5)} \ = v_2 \ , \ b_4^{(5)} \ = v_2 \ , \ b_5^{(5)} \ = v_5 \ , \ b_5^{(5)} \ = v_5^{(5)} \ , \ b_5^{(5)} \ , \ b_5^{(5)} \ = v_5^{(5)} \ , \ b_5^{(5)} \ , \ b_5^{(5)} \ = v_5^{(5)} \ , \ b_5^{(5)} \ , \ b_5^{(5)} \ = v_5^{(5)} \$$

3.
$$m_5 = 4$$
, $t(v_2) = t(v_4) + I(v_4v_2) = 7 (最小)$,

$$T_6 = \{ av_3, av_1, v_1v_4, v_4v_5, v_4v_2 \}$$

2.
$$A_6 = \{ a, v_3, v_1, v_4, v_5, v_2 \}, b_2^{(6)} = v_6, b_4^{(6)} = b, b_5^{(6)} = v_6, b_6^{(6)} = v_6$$

3.
$$m_6 = 6$$
, $a_7 = v_6$, $t(v_6) = t(v_2) + l(v_2v_6) = 9 (最小) ,$

$$T_7 = \{ av_3, av_1, v_1v_4, v_4v_5, v_4v_2, v_2v_6 \}$$

2. A₇= { a, v₃, v₁, v₄, v₅, v₂, v₆},
$$b_4^{(7)} = b$$
, $b_5^{(7)} = b$, $b_7^{(7)} = b$

3.
$$m_7 = 7$$
, $a_8 = b$, $t(b) = t(v_6) + l(v_6b) = 11 (最小)$,

 $T_8 = \{ av_3, av_1, v_1v_4, v_4v_5, v_4v_2, v_2v_6, v_6b \}$

于是知 a 与 b 的距离

$$d(a, b) = t(b) = 11$$

由 T_8 导出的树中 a 到 b 路 $av_1v_4v_2v_6b$ 就是最短路。