Triangulación de Delaunay

Matías Bravo V. Curso CC5501-1 Mallas Geométricas Prof. María Cecilia Rivara Z.

Problema

Triangulación restringida de Delaunay

Deben respetarse las aristas entregadas inicialmente

Diagrama clases Main -main() Delaunay -analyze() -print() -inCircle() - splitTriangle() - inTriangle() - legalizeTriangle() getBoundingRectangle()
 deleteBoundingRectangle() Triangle Vertex - Vertexes - Id - Neighbours - x - у DelaunayAnalisis1 DelaunayAnalisis1 Vertexes Vertexes - Triangles - Triangles - analyze() - constraintEdge()

- createPath()

Disposición de las variables

- Vértices en orden [A,B,C]
- Vecinos en orden [c,a,b]

Test del círculo

INCIRCLE
$$(a, b, c, d) =$$

$$\begin{vmatrix} a_x & a_y & a_x^2 + a_y^2 & 1 \\ b_x & b_y & b_x^2 + b_y^2 & 1 \\ c_x & c_y & c_x^2 + c_y^2 & 1 \\ d_x & d_y & d_x^2 + d_y^2 & 1 \end{vmatrix}$$

Si test > 0, entonces existe un círculo que pasa por los puntos (a,b,c,d)

Test interior triángulo

Por cada arista del triángulo, si $v_{k+1}v_k \times v_r$ es mayor o igual a cero. Si alguna es menor a 0, entonces el vértice se encuentra fuera del triángulo.

Respetar la arista: método del punto medio

A medida que se va a respetar una arista, se van agregando recursivamente puntos en el medio hasta crear un camino recto. Cada vez que se agrega un punto, se legaliza igual que en delaunay anterior.

Implementación

Implementación

Visualización con GEOMVIEW

Implementación

Código en vivo...

Aleatorios

 $X = \{-100,99\}$

 $Y = \{-100,99\}$

N = 500 puntos

Aleatorios

 $X = \{-100,99\}$

 $Y = \{-100,99\}$

N = 250 puntos

Grilla

$$X = \{-40,40\}$$

$$Y = \{-20,20\}$$

Aleatorios con aristas a respetar (Forma de M)

 $X = \{-100,99\}$

 $Y = \{-100,99\}$

N = 250 puntos

Logros

- Entender la utilidad de respetar la arista.
- Casos de prueba deben contener situaciones inesperadas para poder ver errores.

Dificultades

- Saber cuando legalizar las las aristas cuando se agrega un punto.
- Manejo de intersecciones de segmentos para determinar dirección en donde actuar con el algoritmo.

Conclusiones

- Se puede ver gráficamente que funciona el algoritmo sobre el conjunto de puntos y aristas entregados.
- Podría existir una mejora al aplicar legalización de aristas a todo el conjunto de triángulos, pero cuesta un tiempo de ejecución mayor.