Chapitre 1: Suites de Cauchy

I Rappels sur les suites

A Définitions générales

On ne rappelera que ce qui n'est pas "évident" dans le cours de L1.

Définition: Une sous-suite (ou suite extraite) d'une suite (u_n) est une suite (v_n) : $\exists \varphi: \mathbb{N} \to \mathbb{N}$, strictement croissante tq $v_n = u_{\varphi(n)}$

 \bigcirc Vocabulaire : Une sous-suite de (u_n) est aussi notée (u_{n_k}) .

Définition : Une suite (u_n) converge vers $l \in \mathbb{R}$ si : $\forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N}, \forall n \geq N_\varepsilon, |u_n - l| < \varepsilon$

Vocabulaire : Si elle ne converge pas on dit qu'elle diverge.

Attention: une suite peut diverger mais avoir une limite (une suite qui tend vers l'infini).

Propriété: Bornes (admise)

Si une suite (u_n) converge, alors elle est bornée : $\exists M > 0, \forall n \in \mathbb{N}, |u_n| \leq M$.

Propriété: Convergence des sous-suites (admise)

Si une suite (u_n) converge vers l, alors toute sous-suite (u_{n_k}) converge aussi vers l.

B Propriétés et théorèmes fondamentaux

Propriété: Espace-vectoriel (admise)

L'ensemble des suites réelles convergeantes est un ℝ-espace vectoriel.

Théorème: Suites adjacentes (admis)

Deux suites (u_n) et (v_n) sont dites adjacentes si :

- (u_n) est croissante et (v_n) est décroissante
- $u_n \le v_n, \forall n \in \mathbb{N}$
- $v_n u_n \xrightarrow[n \to \infty]{} 0$

Si deux suites sont adjacentes, alors elles convergent vers la même limite.

Théorème : Bolzano-Weierstrass (admis)

Toute suite réelle bornée admet une sous-suite convergente.

II Suites de Cauchy

Définition : Une suite (u_n) est une suite de Cauchy si : $\forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N}, \forall p,q \geq N_\varepsilon, |u_p - u_q| < \varepsilon$

Propriété : Convergence

Toute suite convergente est une suite de Cauchy.

Preuve:

Proposition: Bornes

Toute suite de Cauchy est bornée.

Preuve:

Théorème:

Toute suite de Cauchy dans \mathbb{R} converge dans \mathbb{R} .

Preuve:

 $oldsymbol{0}$ Remarque : On dit que $\mathbb R$ est complet.

Définition : On dit que $(\mathbb{R}, |\cdot|)$ est complet.

© Exemple : Notion de complétude

 $(\mathbb{Q},|\cdot|)$ n'est pas complet : la suite définie par $u_n=$ la partie décimale de $\sqrt{2}$ à la n-ième décimale est une suite de Cauchy dans \mathbb{Q} qui ne converge pas dans \mathbb{Q} (car $\sqrt{2}\notin\mathbb{Q}$).

Par contre, elle converge dans \mathbb{R} .