

NOT FOR PUBLIC RELEASE

RTL8411B-CG RTL8411BN-CG

PCI EXPRESS 10/100/1000M ETHERNET CONTROLLER WITH INTEGRATED 1-LUN CARD READER CONTROLLER

DATASHEET

(CONFIDENTIAL: Development Partners Only)

Rev. 1.5

03 June 2013

Track ID: JATR-8275-15

Realtek Semiconductor Corp.

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan Tel.: +886-3-578-0211. Fax: +886-3-577-6047

www.realtek.com

COPYRIGHT

©2013 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document 'as is', without warranty of any kind. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

LICENSE

This product is covered by one or more of the following patents: US5,307,459, US5,434,872, US5,732,094, US6,570,884, US6,115,776, and US6,327,625.

USING THIS DOCUMENT

This document is intended for the software engineer's reference and provides detailed programming information.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide.

REVISION HISTORY

Revision	Release Date	Summary			
1.0	2012/11/23	First Release.			
1.1	2012/12/28	Revised Figure 1 Pin Assignments (RTL8411BN 64-Pin), page 5.			
		Revised Figure 2 Pin Assignments (RTL8411B 48-Pin), page 6.			
		Revised Table 7 LEDs, page 9.			
		Revised Table 11 Power and Ground, page 11.			
		Revised Table 12 Other Pins, page 11.			
		Revised Section 6.16 LDO Regulator, page 26.			
1.2	2013/01/31	Revised Figure 1 Pin Assignments (RTL8411BN 64-Pin), page 5.			
		Revised Figure 2 Pin Assignments (RTL8411B 48-Pin), page 6.			
		Revised Table 11 Power and Ground, page 11.			
		Revised Table 23 Absolute Maximum Ratings, page 29.			
		Revised Table 24 Recommended Operating Conditions, page 29.			
		Revised Table 29 DC Characteristics, page 31.			
1.3	2013/03/19	Removed OBFF (Optimized Buffer Flush/Fill) data.			
1.4	2013/05/05	Revised RTL8411BN-CG pin 32 from GND to NC.			
1.5	2013/06/03	Added section 8.3 Electrostatic Discharge Performance, page 29.			

Table of Contents

1.	GEN	ERAL DESCRIPTION	1
2.	FEA	TURES	3
3.		ΓΕΜ APPLICATIONS	
4.	PIN .	ASSIGNMENTS	5
	4.1.	RTL8411BN (64-Pin)	5
	4.2.	PACKAGE IDENTIFICATION	
	4.3.	RTL8411B (48-Pin)	6
	4.4.	PACKAGE IDENTIFICATION	6
5.	PIN	DESCRIPTIONS	7
	5.1.	POWER MANAGEMENT/ISOLATION	7
	5.2.	PCI Express Interface	
	5.3.	EEPROM (TWSI, RTL8411BN ONLY)	
	5.4.	TRANSCEIVER INTERFACE.	
	5.5.	CLOCK	
	5.6.	REGULATOR AND REFERENCE	
	5.7.	LEDs	
	5.8.	CARD READER (RTL8411BN)	
	5.9.	CARD READER (RTL8411B)	
	5.10.	GPO PIN	
	5.11.	POWER AND GROUND	11
	5.12.	OTHER PINS	11
6.	FUN	CTIONAL DESCRIPTION	12
	6.1.	PCI Express Bus Interface	
	6.1.1 6.1.2	- T	
	6.2.	LED FUNCTIONS	
		Link Monitor	
	6.2.2		
	6.2.3		
	6.2.4		
	6.2.5		
	6.2.6		
	6.3.	PHY Transceiver	
	6.3.1		
	0.0.1	PHY Receiver	
	6.3.3		
	6.3.4		
	6.4.	EEPROM INTERFACE (RTL8411BN ONLY)	
	6.5.		20
	6.6.	VITAL PRODUCT DATA (VPD) (RTL8411BN ONLY)	
	6.7.	RECEIVE-SIDE SCALING (RSS)	
	6.7.1		
	6.7.2		
	6.7.3		
	6.8.	ENERGY EFFICIENT ETHERNET (EEE)	
	6.9.		25
	6.10.	LAN DISABLE MODE	
	6.11.	LATENCY TOLERANCE REPORTING (LTR)	25

RTL8411B-CG/RTL8411BN-CG Datasheet

6.12. WAKE PACKET DETECTION (WPD)	25
6.13. L1.OFF AND L1.SNOOZE	26
6.14. CARD READER FIRST/ETHERNET FIRST MECHANISM	26
6.15. SWITCHING REGULATOR	26
6.16. LDO REGULATOR	26
7. POWER SEQUENCE	27
7.1. POWER SEQUENCE PARAMETERS	28
8. CHARACTERISTICS	29
8.1. ABSOLUTE MAXIMUM RATINGS	29
8.2. RECOMMENDED OPERATING CONDITIONS	29
8.3. ELECTROSTATIC DISCHARGE PERFORMANCE	29
8.4. Crystal Requirements	30
8.5. OSCILLATOR REQUIREMENTS	30
8.6. Environmental Characteristics	31
8.7. DC CHARACTERISTICS	
8.8. AC CHARACTERISTICS	
8.8.1. Serial EEPROM Interface Timing	
8.9. PCI Express Bus Parameters	
8.9.1. Differential Transmitter Parameters	
8.9.2. Differential Receiver Parameters	
8.9.3. REFCLK Parameters	
8.9.4. Auxiliary Signal Timing Parameters	39
9. MECHANICAL DIMENSIONS	40
9.1. RTL8411BN (64-Pin)	40
9.2. MECHANICAL DIMENSIONS NOTES (64-PIN)	41
9.3. RTL8411B (48-PIN)	42
9.4. MECHANICAL DIMENSIONS NOTES (48-PIN)	43
10. ORDERING INFORMATION	43

List of Tables

TABLE 1.	POWER MANAGEMENT/ISOLATION	7
Table 2.	PCI Express Interface	7
Table 3.	EEPROM (TWSI, RTL8411BN ONLY)	8
Table 4.	Transceiver Interface	8
Table 5.	CLOCK	8
Table 6.	REGULATOR AND REFERENCE	9
Table 7.	LEDs	9
TABLE 8.	CARD READER (RTL8411BN)	10
Table 9.	CARD READER (RTL8411B)	10
TABLE 10.	GPO PIN	11
TABLE 11.	POWER AND GROUND	11
TABLE 12.	OTHER PINS	11
TABLE 13.	LED SELECT (IO REGISTER OFFSET 18H~19H).	15
Table 14.	CUSTOMIZED LEDS	15
Table 15.	FIXED LED MODE	15
TABLE 16.	LED FEATURE CONTROL-1	16
Table 17.	LED FEATURE CONTROL-2	16
TABLE 18.	LED OPTION 1 & OPTION 2 SETTINGS	16
TABLE 19.	LED BLINKING FREQUENCY CONTROL (IO OFFSET 1AH)	17
	TWSI EEPROM INTERFACE	
Table 21.	L1.OFF AND L1.SNOOZE PCIE PORT CIRCUIT ON/OFF	26
Table 22.	POWER SEQUENCE PARAMETERS	27
Table 23.	ABSOLUTE MAXIMUM RATINGS	29
Table 24.	RECOMMENDED OPERATING CONDITIONS	29
Table 25.	ELECTROSTATIC DISCHARGE PERFORMANCE	29
Table 26.	CRYSTAL REQUIREMENTS	30
Table 27.	OSCILLATOR REQUIREMENTS	30
Table 28.	ENVIRONMENTAL CHARACTERISTICS	31
Table 29.	DC CHARACTERISTICS	31
Table 30.	EEPROM Access Timing Parameters	33
TABLE 31.	DIFFERENTIAL TRANSMITTER PARAMETERS	34
Table 32.	DIFFERENTIAL RECEIVER PARAMETERS.	35
Table 33.	REFCLK PARAMETERS	35
	AUXILIARY SIGNAL TIMING PARAMETERS	
Table 35.	Ordering Information	43

List of Figures

FIGURE 1.	PIN ASSIGNMENTS (RTL8411BN 64-PIN)	5
FIGURE 2.	PIN ASSIGNMENTS (RTL8411BN 64-PIN)	6
FIGURE 3.	RX LED	13
FIGURE 4.	TX LED	14
FIGURE 5.	TX/RX LED	14
FIGURE 6.	LED BLINKING FREQUENCY EXAMPLE	17
FIGURE 7.	POWER SEQUENCE	27
FIGURE 8.		
FIGURE 9.	SERIAL EEPROM INTERFACE TIMING-2	32
	SERIAL EEPROM INTERFACE TIMING-3	
FIGURE 11.	SERIAL EEPROM INTERFACE TIMING-4	33
FIGURE 12.	SINGLE-ENDED MEASUREMENT POINTS FOR ABSOLUTE CROSS POINT AND SWING	37
FIGURE 13.	SINGLE-ENDED MEASUREMENT POINTS FOR DELTA CROSS POINT	37
FIGURE 14.	SINGLE-ENDED MEASUREMENT POINTS FOR RISE AND FALL TIME MATCHING	37
FIGURE 15.	DIFFERENTIAL MEASUREMENT POINTS FOR DUTY CYCLE AND PERIOD	38
FIGURE 16.	DIFFERENTIAL MEASUREMENT POINTS FOR RISE AND FALL TIME	38
	DIFFERENTIAL MEASUREMENT POINTS FOR RINGBACK.	
	REFERENCE CLOCK SYSTEM MEASUREMENT POINT AND LOADING	
	AUXILIARY SIGNAL TIMING	

1. General Description

The Realtek RTL8411B-CG/RTL8411BN-CG 10/100/1000M Ethernet controller combines a triple-speed IEEE 802.3 compliant Media Access Controller (MAC) with a triple-speed Ethernet transceiver, PCI Express bus controller, and embedded One-Time-Programmable (OTP) memory. With state-of-the-art DSP technology and mixed-mode signal technology, the RTL8411B/RTL8411BN offers high-speed transmission over CAT 5 UTP cable or CAT 3 UTP (10Mbps only) cable. Functions such as Crossover Detection & Auto-Correction, polarity correction, adaptive equalization, and timing recovery are implemented to provide robust transmission and reception capability at high speeds.

The RTL8411B/RTL8411BN supports the PCI Express 1.1 bus interface for host communications with power management, and is compliant with the IEEE 802.3u specification for 10/100Mbps Ethernet and the IEEE 802.3ab specification for 1000Mbps Ethernet. It also features a built-in PCI Express 1.1 compliant card reader controller; integrating a PCI Express Transceiver, switching regulator, LDO regulator and memory card access units into a single chip.

The RTL8411B/RTL8411BN supports Memory Stick, Memory Stick Pro, Memory Stick PRO-HG Duo, Secure Digital, Secure Digital eXtended Capacity, and MultiMediaCard, in a 1-LUN (Logical Unit Number) configuration (which means only one of these memory cards can be inserted into the RTL8411B/RTL8411BN system at one time). The device also supports an auxiliary power auto-detect function, and will auto-configure related bits of the PCI power management registers in PCI configuration space. The RTL8411B/RTL8411BN features embedded One-Time-Programmable (OTP) memory.

Advanced Configuration Power management Interface (ACPI)—power management for modern operating systems that are capable of Operating System-directed Power Management (OSPM)—is supported to achieve the most efficient power management possible. PCI MSI (Message Signaled Interrupt) and MSI-X are also supported.

In addition to the ACPI feature, AMD Magic Packet and Microsoft Wake-Up Frame are supported in both ACPI and APM (Advanced Power Management) environments. To support WOL from a deep power down state (e.g., D3cold, i.e., main power is off and only auxiliary exists), the auxiliary power source must be able to provide the needed power for the RTL8411B/RTL8411BN. To further reduce power consumption, the RTL8411B/RTL8411BN also supports PCIe L1.Off and L1.Snooze.

The RTL8411B/RTL8411BN supports Protocol offload. It offloads some of the most common protocols to NIC hardware in order to prevent spurious wake-up and further reduce power consumption. The RTL8411B/RTL8411BN can offload ARP (IPv4) and NS (IPv6) protocols while in the D3 power saving state.

The RTL8411B/RTL8411BN supports the ECMA (European Computer Manufacturers Association) proxy for sleeping hosts standard. The standard specifies maintenance of network connectivity and presence via proxies in order to extend the sleep duration of higher-powered hosts. It handles some network tasks on behalf of the host, allowing the host to remain in sleep mode for longer periods. Required and optional behavior of an operating proxy includes generating reply packets, ignoring packets, and waking the host.

The RTL8411B/RTL8411BN supports IEEE 802.3az-2010, also known as Energy Efficient Ethernet (EEE). IEEE 802.3az-2010 operates with the IEEE 802.3 Media Access Control (MAC) Sublayer to

RTL8411B-CG/RTL8411BN-CG Datasheet

support operation in Low Power Idle mode. When the Ethernet network is in low link utilization, EEE allows systems on both sides of the link to save power.

The RTL8411B/RTL8411BN is fully compliant with Microsoft NDIS5, NDIS6 (IPv4, IPv6, TCP, UDP) Checksum and Segmentation Task-offload (Large send and Giant send) features, and supports IEEE 802 IP Layer 2 priority encoding and IEEE 802.1Q Virtual bridged Local Area Network (VLAN). The above features contribute to lowering CPU utilization, especially benefiting performance when in operation on a network server.

The RTL8411B/RTL8411BN supports Receive Side Scaling (RSS) to hash incoming TCP connections and load-balance received data processing across multiple CPUs. RSS improves the number of transactions per second and number of connections per second, for increased network throughput.

The device also features interconnect PCI Express technology. PCI Express is a high-bandwidth, low-pin-count, serial, interconnect technology that offers significant improvements in performance over conventional PCI, and also maintains software compatibility with existing PCI infrastructure. The device embeds an adaptive equalizer in the PCIe PHY for ease of system integration and excellent link quality. The equalizer enables the length of the PCB traces to reach 20 centimeters.

In the RTL8411B/RTL8411BN, the bandwidth of the PCI Express link is shared by the Card Reader and Ethernet Controller. Due to the limited bandwidth on the PCI Express link, a controllable priority selection mechanism is implemented. Board designers can control the system to operate in one of the following modes: Card Reader First mode, Ethernet Controller First mode, or Racing mode.

The RTL8411B/RTL8411BN is suitable for multiple market segments and emerging applications, such as desktop, mobile, workstation, server, communications platforms, and embedded applications.

2. Features

Hardware

- Integrated 10/100/1000M transceiver
- Auto-Negotiation with Next Page capability
- Supports PCI Express 1.1
- Supports 1-Lane 2.5Gbps PCI Express Bus
- Supports pair swap/polarity/skew correction
- Crossover Detection & Auto-Correction
- Wake-On-LAN support
- Supports Two-Wire Serial Interface (TWSI) EEPROM (RTL8411BN only)
- Embedded OTP memory
- Transmit/Receive on-chip buffer support
- Supports hardware ECC (Error Correction Code) function
- Supports hardware CRC (Cyclic Redundancy Check) function
- Customizable LEDs
- Controllable LED Blinking Frequency and Duty Cycle
- Built-in switching regulator

- Built-in LDO regulator
- Supports PCI MSI (Message Signaled Interrupt) and MSI-X
- Supports LTR (Latency Tolerance Reporting)
- Supports 16-set 128-byte Wake-Up Frame pattern exact matching
- Supports Microsoft WPD (Wake Packet Detection)
- Supports PCIe L1.Off and L1.Snooze
- Embeds an adaptive equalizer in PCI Express PHY (PCB traces to reach up to 20cm)
- Supports power down/link down power saving/PHY disable mode/LAN disable mode
- Supports memory card interfaces
 - ◆ Secure Digital (SD v3.0, UHS mode), SDHC (up to 32GB), SDXC (up to 2TB), Mini-SD, Micro-SD (T-flash)
 - MultiMediaCard (MMC v4.2), RS-MMC, Mobile-MMC, MMC-micro, and MMC-plus
 - Memory Stick (MS v1.43), Memory Stick PRO (MS-PRO v1.03), MS Duo, MS-PRO Duo, Micro-MS (M2), MS PRO-HG Duo v1.01 8-bit mode, and MSXC (up to 2TB)
- On-chip MOSFET with 800mA capability for direct power control of all types of memory cards

- 64-pin QFN (RTL8411BN) and 48-pin QFN (RTL8411B) packages (Green package)
- Card Reader First/Ethernet First mechanism to set priority for accessing bandwidth of the PCIe link

Software Offload

- Microsoft NDIS5, NDIS6 Checksum Offload (IPv4, IPv6, TCP, UDP) and Segmentation Task-offload (Large send and Giant send) support
- Supports jumbo frame to 9K bytes
- Supports Quad Core Receive-Side Scaling (RSS)

- Supports EMAC-393 ECMA ProxZzzy Standard for sleeping hosts
- Supports Protocol Offload (ARP & NS)

IEEE

- Fully complies with IEEE 802.3, IEEE 802.3u, IEEE 802.3ab
- Supports Full Duplex flow control (IEEE 802.3x)
- Supports IEEE 802.1P Layer 2 Priority Encoding
- Supports IEEE 802.1Q VLAN tagging
- Supports IEEE 802.3az-2010 (EEE)

3. System Applications

■ PCI Express 10/100/1000M Ethernet on Motherboard, Notebook, or Embedded system

4. Pin Assignments

4.1. RTL8411BN (64-Pin)

Figure 1. Pin Assignments (RTL8411BN 64-Pin)

4.2. Package Identification

Green package is indicated by the 'G' in GXXXV (Figure 1).

4.3. RTL8411B (48-Pin)

Figure 2. Pin Assignments (RTL8411B 48-Pin)

4.4. Package Identification

Green package is indicated by the 'G' in GXXXV (Figure 2).

5. Pin Descriptions

The signal type codes below are used in the following tables:

I: Input O/D: Open Drain

O: Output P: Power

5.1. Power Management/Isolation

Table 1. Power Management/Isolation

G							
Symbol	Type	Pin No	Pin No	Description			
		(48-pin)	(64-pin)				
				Power Management Event: Open drain, active low.			
LANWAKEB	O/D	39	40	Used to reactivate the PCI Express slot's main power rails and			
				reference clocks.			
				Isolate Pin: Active low.			
				Used to isolate the RTL8411B/RTL8411BN from the PCI Express			
ISOLATEB	I	31	38	bus. The RTL8411B/RTL8411BN will not drive its PCI Express			
				outputs (excluding LANWAKEB) and will not sample its PCI			
				Express input as long as the Isolate pin is asserted.			

5.2. PCI Express Interface

Table 2. PCI Express Interface

Symbol	Type	Pin No	Pin No	Description
		(48-pin)	(64-pin)	
REFCLK_P	I	23	27	PCI Express Differential Reference Clock Source: 100MHz ±
REFCLK_N	I	24	28	300ppm.
HSOP	О	25	30	PCI Express Transmit Differential Pair.
HSON	О	26	31	PCI Express Transmit Differential Pail.
HSIP	I	21	25	DCI European Descripto Differential Dair
HSIN	I	22	26	PCI Express Receive Differential Pair.
DEDGTD	ī		27	PCI Express Reset Signal: Active low. When the PERSTB is asserted at power-on state, the
PERSTB	1	30	37	RTL8411B/RTL8411BN returns to a pre-defined reset state and is ready for initialization and configuration after the de-assertion of the PERSTB.
CLKREQB	O/D	29	36	Reference Clock Request Signal. This signal is used by the RTL8411B/RTL8411BN to request starting of the PCI Express reference clock.

5.3. EEPROM (TWSI, RTL8411BN Only)

Table 3. EEPROM (TWSI, RTL8411BN Only)

Symbol	Type	Pin No	Description	
		(64-pin)		
SCL/LED_CR	О	42	SCL: Clock interface for TWSI EEPROM.	
SDA	IO	44	SDA: Data interface for TWSI EEPROM.	

5.4. Transceiver Interface

Table 4. Transceiver Interface

Symbol	Type	Pin No	Pin No	Description
		(48-pin)	(64-pin)	
MDIP0	IO	1	1	In MDI mode, this is the first pair in 1000Base-T, i.e., the BI_DA+/-pair, and is the transmit pair in 10Base-T and 100Base-TX.
MDIN0	IO	2	2	In MDI crossover mode, this pair acts as the BI_DB+/- pair, and is the receive pair in 10Base-T and 100Base-TX.
MDIP1	IO	4	4	In MDI mode, this is the second pair in 1000Base-T, i.e., the BI_DB+/-pair, and is the receive pair in 10Base-T and 100Base-TX.
MDIN1	Ю	5	5	In MDI crossover mode, this pair acts as the BI_DA+/- pair, and is the transmit pair in 10Base-T and 100Base-TX.
MDIP2	IO	6	6	In MDI mode, this is the third pair in 1000Base-T, i.e., the BI_DC+/-
MDIN2	IO	7	7	pair. In MDI crossover mode, this pair acts as the BI_DD+/- pair.
MDIP3	IO	9	9	In MDI mode, this is the fourth pair in 1000Base-T, i.e., the BI_DD+/-
MDIN3	IO	10	10	pair. In MDI crossover mode, this pair acts as the BI_DC+/- pair.

5.5. Clock

Table 5. Clock

Symbol	Type	Pin No	Pin No	Description
		(48-pin)	(64-pin)	
CKXTAL1	I	44	59	Input of 25MHz Clock Reference.
CKXTAL2	Ю	45	60	Input of External Clock Source.
CKATALZ	10	43	00	Output of 25MHz Clock Reference.

5.6. Regulator and Reference

Table 6. Regulator and Reference

Symbol	Type	Pin No	Pin No	Description
		(48-pin)	(64-pin)	
REGOUT	О	36	48	Switching Regulator and LDO Regulator 1.0V Output.
ENSWREG_H	Ι	34	45	3.3V: Enable Switching Regulator 0V: Enable LDO Regulator
VDDREG	P	35	46, 47	Digital 3.3V Power Supply for Switching Regulator and LDO Regulator.
RSET	I	47	62	Reference. External resistor reference.

Note: See section 6.15, page 26 for additional switching regulator information.

5.7. LEDs

Table 7. LEDs

Symbol	Type	Pin No	Pin No	Description
		(48-pin)	(64-pin)	
LED_CR	О	40	42	See section 6.2.5 Customizable LED Configuration, Page 15 for details.
LED0	О	41	51	details.
LED1	О	38	49	
LED3	О	37	43	

Note: In power down mode, the LED signals are logic high.

5.8. Card Reader (RTL8411BN)

Table 8. Card Reader (RTL8411BN)

Symbol	Type	Pin No	Description	
		(64-pin)		
SD_D0/MS_D7	IO	19	SD Data 0 (SD_DAT0) and MS Data 7 (MS_D7).	
SD_D1/MS_CLK	IO	18	SD Data 1 (SD_DAT1) and MS Clock (MS_CLK).	
SD_D2	IO	23	SD Data 2 (SD_DAT2).	
SD_D3/MS_D2	IO	22	SD Data 3 (SD_DAT3) and MS Data 2 (MS_D2).	
SD_D4	IO	17	SD Data 4 (SD_DAT4).	
SD_D5	IO	16	SD Data 5 (SD_DAT5).	
SD_D6/MS_CD#	IO	15	SD Data 6 (SD_DAT6) and MS Card Detect (MS_CD#).	
SD_D7	IO	14	SD Data 7 (SD_DAT7).	
SD_CLK/MS_D3	IO	20	SD Clock (SD_CLK) and MS Data 3 (MS_D3).	
SD_CMD/MS_D6	Ю	21	SD Serial Protocol Command, and Response Signal, MS Data 6 (MS_D6).	
SD_WP/MS_D1	IO	35	SD Write Protect (SD_WP) and MS Data 1 (MS_D1).	
SD_CD#/MS_D5	IO	54	SD Card Detect (SD_CD#) and MS Data 5 (MS_D5).	
MS_BS	IO	34	MS Bus State (MS_BS).	
MS_D4	IO	55	MS Data 4 (MS_D4).	
MS_D0	IO	56	MS Data 0 (MS_D0).	

Note: MMC uses 4 pins more than SD 3.0 (SD_D4~D7).

5.9. Card Reader (RTL8411B)

Table 9. Card Reader (RTL8411B)

Symbol	Type	Pin No	Description	
		(48-pin)		
SD_D0/MS_D1	IO	15	SD Data 0 (SD_DAT0) and MS Data 1 (MS_D1).	
SD_D1	IO	14	SD Data 1 (SD_DAT1).	
SD_D2/MS_CLK	IO	19	SD Data 2 (SD_DAT2) and MS Clock.	
SD_D3/MS_D3	IO	18	SD Data 3 (SD_DAT3) and MS Data 3 (MS_D3).	
SD_CLK/MS_D0	IO	16	SD Clock (SD_CLK) and MS Data 0 (MS_D0).	
SD_CMD/MS_D2	Ю	17	SD Serial Protocol Command, and Response Signal, MS Data 2 (MS_D2).	
SD_WP/MS_BS	IO	28	SD Write Protect (SD_WP) and MS Bus State (MS_BS).	
SD_CD#	IO	42	SD Card Detect (SD_CD#).	
MS_CD#	IO	43	MS Card Detect (MS_CD#).	

5.10. GPO Pin

Table 10. GPO Pin

Symbol	Type	Pin No (48-pin)	Pin No (64-pin)	Description
GPO	IO	38	50	General Purpose IO Pin (Used for Power Saving Feature).

5.11. Power and Ground

Table 11. Power and Ground

Symbol	Type	Pin No	Pin No	Description
		(48-pin)	(64-pin)	
DVDD33	P	32	39	Digital 3.3V Power Supply.
DVDD33_CR	P	12	12	Digital 3.3V Power Supply.
DVDD10	P	33	41	Digital 1.0V Power Supply.
AVDD33	Р	11, 48	11, 58, 63,	Analog 3.3V Power Supply.
AVDD33	1		64	
AVDD10	P	3, 8, 46	3, 8, 61	Analog 1.0V Power Supply.
EVDD10	P	20	29	Analog 1.0V Power Supply.
Card_3V3	P	13	13	3.3V Power for All Cards.
VDD33/18	P	27	33	SD UHS Mode Power Supply.
GND	P	-	24	Ground.
GND	P	49	65	Ground (Exposed Pad).

Note: Refer to the most updated schematic circuit for correct configuration.

5.12. Other Pins

Table 12. Other Pins

Symbol	Type	Pin No (48-pin)	Pin No (64-pin)	Description
NC	-	-	32, 52, 53, 57	Not Connected.

6. Functional Description

6.1. PCI Express Bus Interface

The RTL8411B/RTL8411BN complies with PCI Express Base Specification Revision 1.1, and runs at a 2.5GHz signaling rate with X1 link width, i.e., one transmit and one receive differential pair. The RTL8411B/RTL8411BN supports four types of PCI Express messages: interrupt messages, error messages, power management messages, and hot-plug messages. To ease PCB layout constraints, PCI Express lane polarity reversal is also supported.

6.1.1. PCI Express Transmitter

The RTL8411B/RTL8411BN's PCI Express block receives digital data from the Ethernet interface and performs data scrambling with Linear Feedback Shift Register (LFSR) and 8B/10B coding technology into 10-bit code groups. Data scrambling is used to reduce the possibility of electrical resonance on the link, and 8B/10B coding technology is used to benefit embedded clocking, error detection, and DC balance by adding an overhead to the system through the addition of 2 extra bits. The data code groups are passed through its serializer for packet framing. The generated 2.5Gbps serial data is transmitted onto the PCB trace to its upstream device via a differential driver.

6.1.2. PCI Express Receiver

The RTL8411B/RTL8411BN's PCI Express block receives 2.5Gbps serial data from its upstream device to generate parallel data. The receiver's PLL circuits are re-synchronized to maintain bit and symbol lock. Through 8B/10B decoding technology and data de-scrambling, the original digital data is recovered and passed to the RTL8411B/RTL8411BN's internal Ethernet MAC to be transmitted onto the Ethernet media.

6.2. LED Functions

The RTL8411B/RTL8411BN supports three LED signals in four different configurable operation modes. The SCL pin can be shared with the LED_CR pin for card reader function. The following sections describe the various Ethernet Controller LED actions.

6.2.1. Link Monitor

The Link Monitor senses link integrity, such as LINK₁₀, LINK₁₀₀, LINK₁₀₀₀, LINK₁₀, LINK

6.2.2. RX LED

In 10/100/1000M mode, blinking of the RX LED indicates that receive activity is occurring.

6.2.3. TX LED

In 10/100/1000M mode, blinking of the TX LED indicates that transmit activity is occurring.

Figure 4. TX LED

6.2.4. TX/RX LED

In 10/100/1000M mode, blinking of the TX/RX LED indicates that both transmit and receive activity is occurring.

Figure 5. TX/RX LED

6.2.5. Customizable LED Configuration

The RTL8411B/RTL8411BN supports customizable LED operation modes via IO register offset 18h~19h. Table 13 describes the different LED actions.

Table 13. LED Select (IO Register Offset 18h~19h)

Bit	Symbol	RW	Description
15:12	Feature	RW	LED Feature Control
11:8	LEDSEL3	RW	LED Select for PINLED3
7:4	LEDSEL1	RW	LED Select for PINLED1
3:0	LEDSEL0	RW	LED Select for PINLED0

When implementing customized LEDs:

Configure IO register offset 18h~19h to support your own LED signals. For example, if the value in the IO offset 0x18 is 0x0CA9h (00001100101010101b), the LED actions are:

- LED 0: On only in 10M mode, with blinking during TX/RX
- LED 1: On only in 100M mode, with blinking during TX/RX
- LED 3: On only in 1000M mode, with blinking during TX/RX

Table 14. Customized LEDs

1,000 100 100 100 100 100 100 100 100 10					
Speed			ACT/Full		
	Link 10M	Link 100M	Link 1000M		
LED 0	Bit 0	Bit 1	Bit 2	Bit 3	
LED 1	Bit 4	Bit 5	Bit 6	Bit 7	
LED 3	Bit 8	Bit 9	Bit 10	Bit 11	
Feature Control	Bit 12	Bit 13	Bit 14	Bit 15	

Note: There are two special modes:

LED OFF Mode: Set all bits to 0. All LED pin output become floating (power saving).

Fixed LED Mode: Set Option 1 LED table Mode: LED0=LED1=LED3=1 or 2 (see Table 15).

Table 15. Fixed LED Mode

Bit31~Bit0 Value	LED0	LED1	LED3
1XXX 0001 0001 0001	ACT	LINK	Full Duplex + Collision
1XXX 0010 0010 0010	Transmit	LINK	Receive

Note: 'X' indicates 'irrelevant'.

Table 16. LED Feature Control-1

Feature Control	Bit12	Bit13	Bit14	Bit15
0	LED0 Low Active	LED1 Low Active	LED3 Low Active	Indicates Option 1 of Table 18 is selected
1	LED0 High Active	LED1 High Active	LED3 High Active	Indicates Option 2 of Table 18 is selected

Table 17. LED Feature Control-2

LED Pin	ACT=0	ACT=1
LINK=0	Floating	All Speed ACT
LINK>0	1	Option 1 (see Table 18): Selected Speed LINK+ Selected Speed ACT Option 2 (see Table 18): Selected Speed LINK+ All Speed ACT

Table 18. LED Option 1 & Option 2 Settings

	Link Bit		Active Bit	. LLD Option I d Opt	Description		
10	100	1000		Link	Option 1 LED Activity	Option 2 LED Activity	
0	0	0	0		LED Off		
0	0	0	1	-	Act ₁₀ +Act ₁₀₀ +Act ₁₀₀₀	Act ₁₀ +Act ₁₀₀ +Act ₁₀₀₀	
0	0	1	0	Link ₁₀₀₀	-	-	
0	0	1	1	Link ₁₀₀₀	Act ₁₀₀₀	Act ₁₀ +Act ₁₀₀ +Act ₁₀₀₀	
0	1	0	0	Link ₁₀₀	-	-	
0	1	0	1	Link ₁₀₀	Act ₁₀₀	Act ₁₀ +Act ₁₀₀ +Act ₁₀₀₀	
0	1	1	0	Link ₁₀₀ +Link ₁₀₀₀	-	-	
0	1	1	1	Link ₁₀₀ +Link ₁₀₀₀	Act ₁₀₀ +Act ₁₀₀₀	Act ₁₀ +Act ₁₀₀ +Act ₁₀₀₀	
1	0	0	0	Link ₁₀	-	-	
1	0	0	1	Link ₁₀	Act ₁₀	Act ₁₀ +Act ₁₀₀ +Act ₁₀₀₀	
1	0	1	0	Link ₁₀ +Link ₁₀₀₀	-	-	
1	0	1	1	Link ₁₀ +Link ₁₀₀₀	Act ₁₀ +Act ₁₀₀₀	Act ₁₀ +Act ₁₀₀ +Act ₁₀₀₀	
1	1	0	0	Link ₁₀ +Link ₁₀₀	-	-	
1	1	0	1	Link ₁₀ +Link ₁₀₀	Act ₁₀ +Act ₁₀₀	Act ₁₀ +Act ₁₀₀ +Act ₁₀₀₀	
1	1	1	0	Link ₁₀ +Link ₁₀₀ +Link ₁₀₀₀	-	-	
1	1	1	1	Link ₁₀ +Link ₁₀₀ +Link ₁₀₀₀	Act ₁₀ +Act ₁₀₀ +Act ₁₀₀₀	Act ₁₀ +Act ₁₀₀ +Act ₁₀₀₀	

Note:

 $Act_{10} = LED$ blinking when Ethernet packets transmitted/received at 10Mbps.

 $Act_{100} = LED$ blinking when Ethernet packets transmitted/received at 100Mbps.

 Act_{1000} = LED blinking when Ethernet packets transmitted/received at 1000Mbps.

 $Link_{10} = LED$ lit when Ethernet connection established at 10Mbps.

 $Link_{100} = LED$ lit when Ethernet connection established at 100Mbps.

 $Link_{1000} = LED$ lit when Ethernet connection established at 1000Mbps.

6.2.6. LED Blinking Frequency Control

The RTL8411B/RTL8411BN supports LED blinking frequency control via IO register offset 1Ah to control user's LED blinking frequency and duty cycle (see Table 19). If the IO offset 0x1A is 0x0B (00001011b), the LED blinking frequency is 80ms and the duty cycle is 75%. The LED State is shown in Figure 6.

Table 19. LED Blinking Frequency Control (IO Offset 1Ah)

Bit	RW	Description		
3:2	RW	LED Blinking Frequency		
		0: 240ms		
		1: 160ms (Default)		
		2: 80ms		
		3: Link Speed Dependent		
1:0	RW	LED Blinking Duty Cycle		
		0: 12.5%		
		1: 25%		
		2: 50% (Default)		
		3: 75%		

Note: Assumes the LED is low active.

Figure 6. LED Blinking Frequency Example

6.3. PHY Transceiver

6.3.1. PHY Transmitter

Based on state-of-the-art DSP technology and mixed-mode signal processing technology, the RTL8411B/RTL8411BN operates at 10/100/1000Mbps over standard CAT.5 UTP cable (100/1000Mbps), and CAT.3 UTP cable (10Mbps).

GMII (1000Mbps) Mode

The RTL8411B/RTL8411BN's PCS layer receives data bytes from the MAC through the GMII interface and performs the generation of continuous code-groups through 4D-PAM5 coding technology. These code groups are passed through a waveform-shaping filter to minimize EMI effects, and are transmitted onto the 4-pair CAT5 cable at 125MBaud/s through a D/A converter.

MII (100Mbps) Mode

The transmitted 4-bit nibbles (TXD[3:0]) from the MAC, clocked at 25MHz (TXC), are converted into 5B symbol code through 4B/5B coding technology, then through scrambling and serializing, are converted to 125MHz NRZ and NRZI signals. The NRZI signals are passed to the MLT3 encoder, then to the D/A converter and transmitted onto the media.

MII (10Mbps) Mode

The transmitted 4-bit nibbles (TXD[3:0]) from the MAC, clocked at 2.5MHz (TXC), are serialized into 10Mbps serial data. The 10Mbps serial data is converted into a Manchester-encoded data stream and is transmitted onto the media by the D/A converter.

6.3.2. PHY Receiver

GMII (1000Mbps) Mode

Input signals from the media pass through the sophisticated on-chip hybrid circuit to separate the transmitted signal from the input signal for effective reduction of near-end echo. The received signal is processed with state-of-the-art technology, e.g., adaptive equalization, BLW (Baseline Wander) correction, cross-talk cancellation, echo cancellation, timing recovery, error correction, and 4D-PAM5 decoding. The 8-bit-wide data is recovered and is sent to the GMII interface at a clock speed of 125MHz. The RX MAC retrieves the packet data from the receive MII/GMII interface and sends it to the RX Buffer Manager.

MII (100Mbps) Mode

The MLT3 signal is processed with an ADC, equalizer, BLW (Baseline Wander) correction, timing recovery, MLT3 and NRZI decoder, descrambler, 4B/5B decoder, and is presented to the MII interface in 4-bit-wide nibbles at a clock speed of 25MHz.

MII (10Mbps) Mode

The received differential signal is converted into a Manchester-encoded stream first. The stream is processed with a Manchester decoder and is de-serialized into 4-bit-wide nibbles. The 4-bit nibbles are presented to the MII interface at a clock speed of 2.5MHz.

6.3.3. Link Down Power Saving Mode

The RTL8411B/RTL8411BN implements link-down power saving; greatly cutting power consumption when the network cable is disconnected. The RTL8411B/RTL8411BN automatically enters link down power saving mode ten seconds after the cable is disconnected from it. Once it enters link down power saving mode, it transmits normal link pulses on its TX pins and continues to monitor the RX pins to detect incoming signals. After it detects an incoming signal, it wakes up from link down power saving mode and operates in normal mode according to the result of the connection.

6.3.4. Next Page

If 1000Base-T mode is advertised, three additional Next Pages are automatically exchanged between the two link partners. Users can set PHY Reg4.15 to 1 to manually exchange extra Next Pages via Reg7 and Reg8 as defined in IEEE 802.3ab.

6.4. EEPROM Interface (RTL8411BN Only)

The RTL8411BN can use internal eFUSE memory or an external EEPROM. The Two-Wire Serial Interface (TWSI) EEPROM is a 16K bit EEPROM. The interface permits the RTL8411BN to read from, and write data to, an external serial EEPROM device.

Values in the internal eFUSE memory or external EEPROM allow default fields in PCI configuration space and I/O space to be overridden following a power-on or software EEPROM auto-load command. The RTL8411BN will auto-load values from the eFUSE or EEPROM. If the EEPROM is not present and eFUSE auto-load is bypassed, the RTL8411BN initialization uses default values for the appropriate Configuration and Operational Registers. Software can read and write to the EEPROM using bit-bang accesses via the PCI VPD (Vital Product Data). The TWSI EEPROM interface consists of SCL and SDA.

The correct EEPROM (i.e., TWSI) must be used in order to ensure proper LAN function.

Table 20. TWSI EEPROM Interface

EEPROM	Description
SCL	Serial Clock.
SDA	Serial Data I/O.

6.5. Power Management

The RTL8411B/RTL8411BN is compliant with ACPI (Rev 1.0, 1.0b, 2.0), PCI Power Management (Rev 1.1), PCI Express Active State Power Management (ASPM), and Network Device Class Power Management Reference Specification (V1.0a), such as to support an Operating System-directed Power Management (OSPM) environment.

The RTL8411B/RTL8411BN can monitor the network for a Wake-Up Frame or a Magic Packet, and notify the system via a PCI Express Power Management Event (PME) Message, Beacon, or LANWAKEB pin when such a packet or event occurs so that the system can be restored to a normal state to process incoming jobs.

When the RTL8411B/RTL8411BN is in power down mode (D1~D3):

- The RX state machine is stopped. The RTL8411B/RTL8411BN monitors the network for wake-up events such as a Magic Packet and Wake-Up Frame in order to wake up the system. When in power down mode, the RTL8411B/RTL8411BN will not reflect the status of any incoming packets in the ISR register and will not receive any packets into the RX on-chip buffer.
- The on-chip buffer status and packets that have already been received into the RX on-chip buffer before entering power down mode are held by the RTL8411B/RTL8411BN.
- Transmission is stopped. PCI Express transactions are stopped. The TX on-chip buffer is held.
- After being restored to D0 state, the RTL8411B/RTL8411BN transmits data that was not moved into the TX on-chip buffer during power down mode. Packets that were not transmitted completely last time are re-transmitted.

The D3cold_support_PME bit (bit15, PMC register) and the Aux_I_b2:0 bits (bit8:6, PMC register) in PCI configuration space depend on the existence of Aux power. If aux. power is absent, the above 4 bits are all 0 in binary.

Magic Packet Wake-Up occurs only when the following conditions are met:

- The destination address of the received Magic Packet is acceptable to the RTL8411B/RTL8411BN, e.g., a broadcast, multicast, or unicast packet addressed to the current RTL8411B/RTL8411BN adapter.
- The received Magic Packet does not contain a CRC error.
- The RTL8411B/RTL8411BN driver has set up the needed registers (automatically set), and the corresponding wake-up method (message, beacon, or LANWAKEB) can be asserted in the current power state.
- The Magic Packet pattern matches, i.e., 6 * FFh + MISC (can be none) + 16 * DID (Destination ID) in any part of a valid Ethernet packet.

A Wake-Up Frame event occurs only when the following conditions are met:

- The destination address of the received Wake-Up Frame is acceptable to the RTL8411B/RTL8411BN, e.g., a broadcast, multicast, or unicast address to the current RTL8411B/RTL8411BN adapter.
- The received Wake-Up Frame does not contain a CRC error.
- The RTL8411B/RTL8411BN driver has set up the needed registers (automatically set).
- The 16-bit CRC of the received Wake-Up Frame matches the 16-bit CRC of the sample Wake-Up Frame pattern given by the local machine's OS. Or, the RTL8411B/RTL8411BN is configured to allow direct packet wake-up, e.g., a broadcast, multicast, or unicast network packet.
- The 128 bytes of the received Wake-Up Frame exactly matches the 128 bytes of the sample Wake-Up Frame pattern given by the local machine's OS.

Note 1: 16-bit CRC: The RTL8411B/RTL8411BN supports 16-set 16-bit CRC Wake-Up frames (covering 128 mask bytes from offset 0 to 127 of any incoming network packet). $CRC16 \ polynomial = x16+x12+x5+1$.

Note 2: 128-byte Wake-Up Frame: The RTL8411B/RTL8411BN supports 16-set 128-byte Wake-Up Frames. If enabled, the 16-bit CRC Wake-Up match will be disabled.

The corresponding wake-up method (message, beacon, or LANWAKEB) is asserted only when the following conditions are met:

- The PME En bit (bit8, PMCSR) in PCI Configuration Space is set to 1.
- The RTL8411B/RTL8411BN may assert the corresponding wake-up method (message, beacon, or LANWAKEB) in the current power state or in isolation state, depending on the PME_Support (bit15-11) setting of the PMC register in PCI Configuration Space.
- A Magic Packet, LinkUp, or Wake-Up Frame has been received.
- Writing a 1 to the PME_Status (bit15) of the PMCSR register in the PCI Configuration Space clears this bit and causes the RTL8411B/RTL8411BN to stop asserting the corresponding wake-up method (message, beacon, or LANWAKEB) (if enabled).

When the RTL8411B/RTL8411BN is in power down mode, e.g., D1~D3, the IO and MEM accesses to the RTL8411B/RTL8411BN are disabled. After a PERSTB assertion, the device's power state is restored to D0 automatically if the original power state was D3_{cold}. There is almost no hardware delay at the device's power state transition. When in ACPI mode, the device does not support PME (Power Management Enable) from D0 (this is the Realtek default setting). The setting may be changed from the EEPROM (RTL8411BN only)/eFUSE, if required.

6.6. Vital Product Data (VPD) (RTL8411BN Only)

Bit 31 of the Vital Product Data (VPD) capability structure in the RTL8411BN's PCI Configuration Space is used to issue VPD read/write commands and is also a flag used to indicate whether the transfer of data between the VPD data register and the TWSI has completed or not.

Write VPD register (write data to the EEPROM):

Set the flag bit to 1 at the same time the VPD address is written to write VPD data to EEPROM. When the flag bit is reset to 0 by the RTL8411BN, the VPD data (4 bytes per VPD access) has been transferred from the VPD data register to EEPROM.

Read VPD register (read data from the EEPROM):

Reset the flag bit to 0 at the same time the VPD address is written to retrieve VPD data from EEPROM. When the flag bit is set to 1 by the RTL8411BN, the VPD data (4 bytes per VPD access) has been transferred from EEPROM to the VPD data register.

- *Note 1: Refer to the PCI 2.3 Specifications for further information.*
- Note 2: The VPD address must be a DWORD-aligned address as defined in the PCI 2.3 Specifications. VPD data is always consecutive 4-byte data starting from the VPD address specified.
- Note 3: Realtek reserves offset 60h to 7Fh in EEPROM mainly for VPD data to be stored.
- Note 4: The VPD function of the RTL8411BN is designed to be able to access the full range of the TWSI.

6.7. Receive-Side Scaling (RSS)

The RTL8411B/RTL8411BN is compliant with the Network Driver Interface Specification (NDIS) 6.0 Receive-Side Scaling (RSS) technology for the Microsoft Windows family of operating systems. RSS allows packet receive-processing from a network adapter to be balanced across the number of available computer processors, increasing performance on multi-CPU platforms.

6.7.1. Receive-Side Scaling (RSS) Initialization

During RSS initialization, the Windows operating system will inform the RTL8411B/RTL8411BN to store the following parameters: hash function, hash type, hash bits, indirection table, BaseCPUNumber, and the secret hash key.

Hash Function

The default hash function is the Toeplitz hash function.

Hash Type

The hash types indicate which field of the packet needs to be hashed to get the hash result. There are several combinations of these fields, mainly, TCP/IPv4, IPv4, TCP/IPv6, IPv6, and IPv6 extension headers.

- TCP/IPv4 requires hash calculations over the IPv4 source address, the IPv4 destination address, the source TCP port, and the destination TCP port.
- IPv4 requires hash calculations over the IPv4 source address and the IPv4 destination address.
- TCP/IPv6 requires hash calculations over the IPv6 source address, the IPv6 destination address, the source TCP port, and the destination TCP port.
- IPv6 requires hash calculations over the IPv6 source address and the IPv6 destination address

Hash Bits

Hash bits are used to index the hash result into the indirection table.

Indirection Table

The Indirection Table stores values that are added to the BaseCPUNumber to enable RSS interrupts to be restricted from some CPUs. The OS will update the Indirection Table to rebalance the load.

BaseCPUNumber

The lowest number CPU to use for RSS. BaseCPUNumber is added to the result of the indirection table lookup.

Secret Hash Key

The key used in the Toeplitz function. For different hash types, the key size is different.

6.7.2. Protocol Offload

Protocol offload is a task offload supported by Microsoft Windows 7. It maintains a network presence for a sleeping higher power host. Protocol offload prevents spurious wake-up and further reduces power consumption. It maintains connectivity while hosts are asleep, including receiving requests from other nodes on the network, ignoring packets, generating packets while in the sleep state (e.g., the Ethernet Controller will generate ARP responses if the same MAC and IPv4 address are provided in the configuration data), and intelligently waking up host systems. The RTL8411B/RTL8411BN supports the ECMA (European Computer Manufacturers Association) specification including proxy configuration and management, IPv4 ARP, IPv6 NDP, and wake-up packets. The RTL8411B/RTL8411BN also supports optional ECMA items such as QoS tagged packets and duplicate address detection.

6.7.3. RSS Operation

After the parameters are set, the RTL8411B/RTL8411BN will start hash calculation on each incoming packet and forward each packet to its correct queue according to the hash result. If the incoming packet is not in the hash type, it will be forwarded to the primary queue. The hash result plus the BaseCPUNumber will be indexed into the indirection table to get the correct CPU number. The RTL8411B/RTL8411BN uses three methods to inform the system of incoming packets: inline interrupt, MSI, and MSIX. Periodically the OS will update the indirection table to rebalance the load across the CPUs.

6.8. Energy Efficient Ethernet (EEE)

The RTL8411B/RTL8411BN supports IEEE 802.3az-2010, also known as Energy Efficient Ethernet (EEE), at 10Mbps, 100Mbps, and 1000Mbps. It provides a protocol to coordinate transitions to/from a lower power consumption level (Low Power Idle mode) based on link utilization. When no packets are being transmitted, the system goes to Low Power Idle mode to save power. Once packets need to be transmitted, the system returns to normal mode, and does this without changing the link status and without dropping/corrupting frames.

To save power, when the system is in Low Power Idle mode most of the circuits are disabled, however, the transition time to/from Low Power Idle mode is kept small enough to be transparent to upper layer protocols and applications.

EEE also specifies a negotiation method to enable link partners to determine whether EEE is supported and to select the best set of parameters common to both devices.

Refer to http://www.ieee802.org/3/az/index.html for more details.

6.9. PHY Disable Mode

The RTL8411B/RTL8411BN can power down the PHY using board-level control signals. Refer to the LAN/PHY Disable Application Note for implementation details.

6.10. LAN Disable Mode

The Ethernet controller can be disabled via LAN disable mode. When a PCIe reset is de-asserted, the RTL8411B/RTL8411BN utilizes the GPO signal to disable or enable the Ethernet Controller function. The GPHY does not link and the LAN disappears under this mode. Refer to the LAN/PHY Disable Application Note for details.

6.11. Latency Tolerance Reporting (LTR)

The RTL8411B/RTL8411BN supports PCIe 3.0 LTR (Latency Tolerance Reporting).

The LTR mechanism enables Endpoints to report service latency requirements for Memory Reads/Writes. The CPU utilizes LTR to determine transfers from low power (C7) to high power (C0) mode. See the PCIe 3.0 specification for details.

6.12. Wake Packet Detection (WPD)

The RTL8411B/RTL8411BN supports Microsoft Wake Packet Detection (WPD) to provide Wake-Up Frame information to the OS, e.g., PatternID, OriginalPacketSize, SavedPacketSize, SavedPacketOffset, etc. WPD helps prevent unwanted/unauthorized wake-up of a sleeping computer.

6.13. L1.Off and L1.Snooze

The RTL8411B/RTL8411BN supports PCIe L1.Off and L1.Snooze power management features. L1+CLKREQ# stops (or provides) the REFCLK to a device by toggling the CLKREQB pin to enter L1.Off and L1.Snooze states (saving more power than L1+CLKREQ# only). Table 21 shows the PCIe Port Circuit On/Off states.

Table 21. End and Enditoles Fold for Chicago						
State	PLL	Common Mode Keeper	RX/TX			
L1	On	On	Off/Idle			
L1+CLKREQ#	Off	On	Off/Idle			
L1.Snooze	Off	On	Off			
L1.Off	Off	Off	Off			

Table 21 I 1 Off and I 1 Spooze PCle Port Circuit On/Off

6.14. Card Reader First/Ethernet First Mechanism

The RTL8411B/RTL8411BN implements a Card Reader First/Ethernet First mechanism to set priority for accessing bandwidth of the PCI Express link. Refer to the Card Reader First/Ethernet First Application Note for details.

6.15. Switching Regulator

The RTL8411B/RTL8411BN incorporates a state-of-the-art switching regulator that requires a well-designed PCB layout in order to achieve good power efficiency and lower the output voltage ripple and input overshoot. Note that the switching regulator 1.0V output pin (REGOUT) must be connected only to AVDD10, DVDD10, and EVDD10 (do not provide this power source to other devices).

Note: Refer to the separate RTL8411B/RTL8411BN Layout Guide for details.

6.16. LDO Regulator

The RTL8411B/RTL8411BN incorporates a linear Low-Dropout (LDO) regulator that features high power supply ripple rejection and low output noise. The RTL8411B/RTL8411BN embedded LDO regulator does not require power inductors on the PCB; only a 1.0V output capacitor between its 1.0V output and analog ground for phase compensation, which saves cost and PCB real estate. Use an X5R low-ESR ceramic capacitor to enhance output voltage stability.

The output capacitors (and bypass capacitors) should be placed as close as possible to the power pins (AVDD10, DVDD10, EVDD10) for adequate filtering.

Note 1: The embedded LDO is designed for RTL8411B/RTL8411BN internal use only. Do not provide this power source to other devices.

Note 2: Refer to the separate RTL8411B/RTL8411BN Layout Guide for details.

7. Power Sequence

Figure 7. Power Sequence

Table 22. Power Sequence Parameters

Symbol	Description	Min	Typical	Max	Units
Rt1	3.3V Rise Time	0.5	-	100	ms
Rt2	3.3V Off Time	50	-	-	ms
Rt3	1.0V (REGOUT) Settle Time	-	-	15	ms

Note: See the following section for power sequence requirements.

7.1. Power Sequence Parameters

The RTL8411B/RTL8411BN does not support fast 3.3V rising under normal circumstances. The 3.3V rise time must be controlled over 0.5ms.

Rise Time > 0.5ms

No action to take.

Rise Time 0.1ms~0.5ms

If the rise time is between 0.1ms and 0.5ms, the customer MUST ensure that there is at least three times as much margin for inrush current to the RTL8411B/RTL8411BN so as to be safely under the system's 3.3V OCP threshold.

For example:

- Assume customer supply power rise time of the RTL8411B/RTL8411BN is 0.374ms
- The system 3.3V OCP is 9A
- The inrush current of other 3.3V devices is 5.64A

The inrush current to the RTL8411B/RTL8411BN must be less than 1.12A; otherwise an unanticipated system OCP may be triggered. It can be expressed in the following formula:

Inrush current to the RTL8411B/RTL8411BN < (System 3.3V OCP - inrush current of other 3.3V devices)/3

Rise Time < 0.1ms

If the rise time is less than 0.1ms, there is risk of an unanticipated ESD trigger event, which may cause permanent damage to the RTL8411B/RTL8411BN.

If there is any action that involves consecutive ON/OFF toggling of the switching-regulator source (3.3V), the design must make sure the OFF state of both the switching-regulator source (3.3V) and output (1.0V) reach 0V, and the time period between the consecutive ON/OFF toggling action must be longer than 50ms.

8. Characteristics

8.1. Absolute Maximum Ratings

WARNING: Absolute maximum ratings are limits beyond which permanent damage may be caused to the device, or device reliability will be affected. All voltages are specified reference to GND unless otherwise specified.

Table 23. Absolute Maximum Ratings

Symbol	Description	Minimum	Maximum	Unit
AVDD33, CARD_3V3, DVDD33, DVDD33_CR	Supply Voltage 3.3V	-0.3	3.6	V
AVDD10, DVDD10, EVDD10	Supply Voltage 1.0V	-0.3	1.2	V
3.3V DC Input 3.3V DC Output	Input Voltage Output Voltage	-0.3	3.6	V
1.0V DC Input 1.0V DC Output	Input Voltage Output Voltage	-0.3	1.2	V
N/A	Storage Temperature	-55	+125	°C

Note: Refer to the most updated schematic circuit for correct configuration.

8.2. Recommended Operating Conditions

Table 24. Recommended Operating Conditions

Description	Pins	Minimum	Typical	Maximum	Unit
Supply Voltage VDD	AVDD33, CARD_3V3, DVDD33, DVDD33_CR	3.14	3.3	3.46	V
	AVDD10, DVDD10, EVDD10	0.95	1.0	1.05	V
Ambient Operating Temperature T _A	-	0	-	70	°C
Maximum Junction Temperature	-	-	-	125	°C

Note: Refer to the most updated schematic circuit for correct configuration.

8.3. Electrostatic Discharge Performance

Table 25. Electrostatic Discharge Performance

Test Item	Results
HBM ESD	All Pins: 3.5KV
MM ESD	All Pins: 150V
CDM ESD	All Pins: 1.1KV
Cable ESD*	All MDI Pins: 7KV
Cable ESD.	All Pairs: 16KV
Latch Up (48Pin)	I/O Pins: 150mA
Laten Op (481 III)	Power Pins: 1.5×VDD
Latch Up (64Pin)	I/O Pins: 200mA
Laten Op (041 III)	Power Pins: 1.5×VDD

Note: 'All MDI pins' means the ESD current is introduced to each MDI pin separately. 'All pairs' means the ESD current is introduced to the aggregated MDI pairs.

8.4. Crystal Requirements

Table 26. Crystal Requirements

Symbol	Description/Condition	Minimum	Typical	Maximum	Unit
F _{ref}	Parallel Resonant Crystal Reference Frequency, Fundamental Mode, AT-Cut Type.	-	25	1	MHz
F _{ref} Stability	Parallel Resonant Crystal Frequency Stability, Fundamental Mode, AT-Cut Type. T _a =0°C~70°C.	-30	1	30	ppm
F _{ref} Tolerance	Parallel Resonant Crystal Frequency Tolerance, Fundamental Mode, AT-Cut Type. T _a =25°C.	-50	1	50	ppm
F _{ref} Duty Cycle	Reference Clock Input Duty Cycle.	40	-	60	%
ESR	Equivalent Series Resistance.	-	-	30	Ω
Jitter	Broadband Peak-to-Peak Jitter ²	-	-	200	ps
DL	Drive Level.	-	-	0.3	mW

Note 1: The CLK source can come from other places in the system, but it must accord with the parameters above.

8.5. Oscillator Requirements

Table 27. Oscillator Requirements

Table 27. Oscillator Requirements						
Parameter	Condition	Minimum	Typical	Maximum	Unit	
Frequency	-	-	25	-	MHz	
Frequency Stability	$T_a = 0$ °C \sim 70°C	-30	-	30	ppm	
Frequency Tolerance	$T_a = 25$ °C	-50	-	50	ppm	
Duty Cycle	-	40	-	60	%	
Broadband Peak-to-Peak Jitter ²	-	-	-	200	ps	
Vpeak-to-peak	-	3.15	3.3	3.45	V	
Rise Time	-	-	-	10	ns	
Fall Time	-	-	-	10	ns	
Operation Temp Range	-	0	-	70	°C	

Note 1: The CLK source can come from other places in the system, but it must accord with the parameters above.

Note 2: Broadband RMS=9ps; 25KHz to 25MHz RMS=3ps.

Note 2: Broadband RMS=9ps; 25KHz to 25MHz RMS=3ps.

8.6. Environmental Characteristics

Table 28. Environmental Characteristics

Parameter	Range	Units
Storage Temperature	- 55 ∼ +125	°C
Ambient Operating Temperature	0 ~ 70	°C
Moisture Sensitivity Level (MSL)	Level 3	N/A

8.7. DC Characteristics

Table 29. DC Characteristics

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
AVDD33, CARD_3V3, DVDD33, DVDD33_CR	3.3V Supply Mean Voltage	-	3.14	3.3	3.46	V
AVDD10, DVDD10, EVDD10	1.0V Supply Mean Voltage	-	0.95	1.0	1.05	V
Voh	Minimum High Level Output Voltage	Ioh = -4mA	0.9*VDD33	-	VDD33	V
Vol	Maximum Low Level Output Voltage	Iol = 4mA	0	-	0.1*VDD33	V
Vih	Minimum High Level Input Voltage	-	2.0	-	-	V
Vil	Maximum Low Level Input Voltage	-	-	-	0.8	V
Iin	Input Current	Vin=VDD33 or GND	0	-	0.5	μΑ
Icc33 (See Note 3)	Maximum Operating Supply Current from 3.3V	At 1Gbps with heavy network traffic and with Card Reader R/W operation	-	1400	-	mA
Icc10	Maximum Operating Supply Current from 1.0V	At 1Gbps with heavy network traffic and with Card Reader R/W operation	-	300	-	mA

Note 1: Refer to the latest schematic circuit for correct configuration.

Note 2: All Supply Mean Voltage power noise <±5% of Mean Voltage.

Note 3: When calculating the typical value of Icc33, the maximum current consumption of 800mA for an SD card operating in UHS-104 mode is used. Refer to 'SD Specifications Part 1 Physical Layer Specification', V3.01, Feb. 18, 2010.

8.8. AC Characteristics

8.8.1. Serial EEPROM Interface Timing

Figure 8. Serial EEPROM Interface Timing-1

Figure 9. Serial EEPROM Interface Timing-2

Figure 10. Serial EEPROM Interface Timing-3

Figure 11. Serial EEPROM Interface Timing-4

Table 30. EEPROM Access Timing Parameters

C11	nable 50. ELI NOM Acces			N/I	TI*4
Symbol	Parameter	Min	Typical	Max	Unit
t_{LOW}	Clock Pulse Width Low	494	504	514	ns
t_{HIGH}	Clock Pulse Width High	494	504	514	ns
t_{AA}	Clock Low to DO Valid	494	504	514	ns
$t_{ m BUF}$	Time the Bus Must be Free before a New Transmission Can Start	-	-	-	ns
$t_{HD.STA}$	Start Hold Time	247	252	257	ns
$t_{SU.STA}$	Start Setup Time	247	252	257	ns
$t_{HD.DAT}$	DI Hold Time	247	252	257	ns
$t_{SU.DAT}$	DI Setup Time	247	252	257	ns
t_R	Input Rise Time	-	-	-	ns
$t_{\rm F}$	Input Fall Time	-	-	-	ns
t _{SU.STO}	Stop Setup Time	494	504	514	ns
t_{DH}	DO Hold Time	494	504	514	ns
t_{WR}	Write Cycle Time	5.88	6	6.12	ms

8.9. PCI Express Bus Parameters

8.9.1. Differential Transmitter Parameters

Table 31. Differential Transmitter Parameters

Symbol	Parameter	Min	Typical	Max	Units
UI	Unit Interval	399.88	400	400.12	ps
$V_{TX\text{-DIFFp-p}}$	Differential Peak-to-Peak Output Voltage	0.800	-	1.05	V
V _{TX-DE-RATIO}	De-Emphasized Differential Output Voltage (Ratio)	-3.0	-3.5	-4.0	dB
T _{TX-EYE}	Minimum TX Eye Width	0.75	-	-	UI
T _{TX-EYE-MEDIAN-} to-MAX-JITTER	Maximum Time between the Jitter Median and Maximum Deviation from the Median	1	-	0.125	UI
T _{TX-RISE} , T _{TX-FALL}	D+/D- TX Output Rise/Fall Time	0.125	-	-	UI
V _{TX-CM-ACp}	RMS AC Peak Common Mode Output Voltage	-	-	20	mV
V _{TX-CM-DCACTIVE} -	Absolute Delta of DC Common Mode Voltage During L0 and Electrical Idle	0	-	100	mV
V _{TX-CM-DCLINE} - DELTA	Absolute Delta of DC Common Mode Voltage between D+ and D-	0	-	25	mV
V _{TX-IDLE-DIFFp}	Electrical Idle Differential Peak Output Voltage	0	-	20	mV
V _{TX-RCV-DETECT}	The Amount of Voltage Change Allowed During Receiver Detection		-	600	mV
V _{TX-DC-CM}	The TX DC Common Mode Voltage	0	-	3.6	V
I _{TX-SHORT}	TX Short Circuit Current Limit	-	-	90	mA
T _{TX-IDLE-MIN}	Minimum Time Spent in Electrical Idle	50	-	-	UI
T _{TX-IDLE-} SETTO-IDLE	Maximum Time to Transition to a Valid Electrical Idle after Sending an Electrical Idle Ordered Set	1	-	20	UI
T _{TX-IDLE-TOTO-} DIFF-DATA	Maximum Time to Transition to Valid TX Specifications after Leaving an Electrical Idle Condition		-	20	UI
RL _{TX-DIFF}	Differential Return Loss		-	-	dB
RL _{TX-CM}	Common Mode Return Loss	6	-	-	dB
Z _{TX-DIFF-DC}	DC Differential TX Impedance	80	100	120	Ω
L _{TX-SKEW}	Lane-to-Lane Output Skew	-	-	500+2*UI	ps
C_{TX}	AC Coupling Capacitor	75		200	nF
T _{crosslink}	Crosslink Random Timeout	0	-	1	ms

Note 1: Refer to PCI Express Base Specification, rev.1.1, for correct measurement environment setting of each parameter. Note 2: The data rate can be modulated with an SSC (Spread Spectrum Clock) from +0 to -0.5% of the nominal data rate frequency, at a modulation rate in the range not exceeding 30kHz - 33kHz. The +/-300pm requirement still holds, which requires the two communicating ports be modulated such that they never exceed a total of 600ppm difference.

8.9.2. Differential Receiver Parameters

Table 32. Differential Receiver Parameters

Symbol	Parameter	Min.	Typical	Max.	Units
UI	Unit Interval	399.88	400	400.12	ps
V _{RX-DIFFp-p}	Differential Input Peak-to-Peak Voltage	0.175	-	1.05	V
T _{RX-EYE}	Minimum Receiver Eye Width	0.4	-	-	UI
T _{RX-EYE-MEDIAN-to-}	Maximum Time between the Jitter Median and Maximum	-	-	0.3	UI
MAX-JITTER	Deviation from the Median				
V _{RX-CM-ACp}	AC Peak Common Mode Input Voltage	-	-	150	mV
RL _{RX-DIFF}	Differential Return Loss		-	-	dB
RL _{RX-CM}	Common Mode Return Loss	6	-	-	dB
Z _{RX-DIFF-DC}	DC Differential Input Impedance	80	100	120	Ω
Z _{RXDC}	DC Input Impedance	40	50	60	Ω
Z _{RX-HIGH-IMP-DC}	Powered Down DC Input Impedance	200 k	-	-	Ω
V _{RX-IDLE-DET-DIFFp-p}	Electrical Idle Detect Threshold	65	-	175	mV
T _{RX-IDLE-DET-}	Unexpected Electrical Idle Enter Detect Threshold		-	10	ms
DIFFENTERTIME	Integration Time				
L _{RX-SKEW}	Total Skew	-	-	20	ns

Note: Refer to PCI Express Base Specification, rev.1.1, for correct measurement environment setting of each parameter.

8.9.3. REFCLK Parameters

Table 33. REFCLK Parameters

Symbol	Parameter 100MHz Input		Units	Note	
		Min	Max		
Rise Edge Rate	Rising Edge Rate	0.6	4.0	V/ns	2, 3
Fall Edge Rate	Falling Edge Rate	0.6	4.0	V/ns	2, 3
V_{IH}	Differential Input High Voltage	+150	-	mV	2
V _{IL}	Differential Input Low Voltage	-	-150	mV	2
V _{CROSS}	Absolute Crossing Point Voltage	+250	+550	mV	1, 4, 5
V _{CROSS DELTA}	Variation of V _{CROSS} Over All Rising Clock Edges	-	+140	mV	1, 4, 9
V_{RB}	Ring-Back Voltage Margin	-100	+100	mV	2, 12
T _{STABLE}	Time before V _{RB} is Allowed	500	-	ps	2, 12
T _{PERIOD AVG}	Average Clock Period Accuracy	-300	+2800	ppm	2, 10, 13
T _{PERIOD ABS}	Absolute Period (Including Jitter and Spread Spectrum)	9.847	10.203	ns	2, 6
T _{CCJITTER}	Cycle to Cycle Jitter	-	150	ps	2
V_{MAX}	Absolute Max Input Voltage	-	+1.15	V	1, 7
V _{MIN}	Absolute Min Input Voltage		-0.3	V	1, 8
Duty Cycle	Duty Cycle	40	60	%	2

RTL8411B-CG/RTL8411BN-CG Datasheet

Symbol	Parameter	100MHz Input		Units	Note
		Min	Max		
Rise-Fall Matching	Rising Edge Rate (REFCLK+) to Falling Edge Rate (REFCLK-) Matching	-	20	%	1, 14
$Z_{C\text{-DC}}$	Clock Source DC Impedance	40	60	Ω	1, 11

- Note 1: Measurement taken from single-ended waveform.
- Note 2: Measurement taken from differential waveform.
- Note 3: Measured from -150mV to +150mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero crossing. See Figure 15, page 38.
- Note 4: Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-. See Figure 12, page 37.
- Note 5: Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement. See Figure 12, page 37.
- Note 6: Defines as the absolute minimum or maximum instantaneous period. This includes cycle to cycle jitter, relative ppm tolerance, and spread spectrum modulation. See Figure 14, page 37.
- Note 7: Defined as the maximum instantaneous voltage including overshoot. See Figure 12, page 37.
- Note 8: Defined as the minimum instantaneous voltage including undershoot. See Figure 12, page 37.
- Note 9: Defined as the total variation of all crossing voltages of Rising REFCLK+ and Falling REFCLK-. This is the maximum allowed variance in VCROSS for any particular system. See Figure 12, page 37.
- Note 10: Refer to Section 4.3.2.1 of the PCI Express Base Specification, Revision 1.1 for information regarding ppm considerations.
- Note 11: System board compliance measurements must use the test load card described in Figure 18, page 39. REFCLK+ and REFCLK- are to be measured at the load capacitors CL. Single ended probes must be used for measurements requiring single ended measurements. Either single ended probes with math or differential probe can be used for differential measurements. Test load CL=2pF.
- Note 12: TSTABLE is the time the differential clock must maintain a minimum ± 150 mV differential voltage after rising/falling edges before it is allowed to droop back into the VRB ± 100 mV differential range. See Figure 17, page 38. Note 13: PPM refers to parts per million and is a DC absolute period accuracy specification. 1ppm is 1/1,000,000th of 100.000000MHz exactly, or 100Hz. For 300ppm then we have an error budget of 100Hz/ppm*300ppm=30kHz. The period is to be measured with a frequency counter with measurement window set to 100ms or greater. The ± 300 ppm applies to systems that do not employ Spread Spectrum or that use common clock source. For systems employing Spread Spectrum there is an additional 2500ppm nominal shift in maximum period resulting from the 0.5% down spread resulting in a maximum average period specification of ± 2800 ppm.
- Note 14: Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a $\pm 75 mV$ window centered on the median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of REFCLK+ should be compared to the Fall Edge Rate of REFCLK-; the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 13, page 37.
- Note 15: Refer to PCI Express Card Electromechanical Specification, rev.1.1, for correct measurement environment setting of each parameter.

Figure 12. Single-Ended Measurement Points for Absolute Cross Point and Swing

Figure 13. Single-Ended Measurement Points for Delta Cross Point

Figure 14. Single-Ended Measurement Points for Rise and Fall Time Matching

Figure 15. Differential Measurement Points for Duty Cycle and Period

Figure 16. Differential Measurement Points for Rise and Fall Time

Figure 17. Differential Measurement Points for Ringback

Figure 18. Reference Clock System Measurement Point and Loading

8.9.4. Auxiliary Signal Timing Parameters

Table 34. Auxiliary Signal Timing Parameters

	, , , , , , , , , , , , , , , , , , , ,				
Symbol	Parameter	Min	Max	Units	
T_{PVPERL}	Power Stable to PERSTB Inactive	100	-	ms	
T _{PERST-CLK}	REFCLK Stable before PERSTB Inactive	100	-	μs	
T_{PERST}	PERSTB Active Time	100	-	μs	
T _{PERSTB-RTD}	PERSTB Rising Time Duration	10	-	ms	
T _{FAIL} *	Power Level Invalid to PWRGD Inactive	-	500	ns	
T _{PWRON}	3.3 Vaux Power On Time (Refer to Section 7, Page 27)	-	-	ms	

Note 1: T_{EAIL} means 500 ns (maximum) from the power rail going out of specification (exceeding the specified tolerances by more than 500 mV). Refer to PCI Local Bus Specification rev. 3.0 for further information. T_{EAIL} can be disregarded when implementation and timing of T_{EAIL} will not affect any LAN functions.

Note 2: The ISOLATEB pin should follow the behavior of the 3.3V main power waveform.

Figure 19. Auxiliary Signal Timing

9. Mechanical Dimensions

9.1. RTL8411BN (64-Pin)

9.2. Mechanical Dimensions Notes (64-Pin)

Symbol		Dimension in mi	m	Dimension in inch		
	Min	Nom	Max	Min	Nom	Max
A	-	-	0.90	-	-	0.035
A_1	0.00	0.01	0.05	0.00	0.0004	0.002
A_2	-	0.65	0.70	-	0.026	0.028
A_3		0.20 REF			0.008 REF	
b	0.20	0.25	0.30	0.008	0.010	0.012
D		9.00 BSC			0.354 BSC	
D_1	8.75 BSC			0.344 BSC		
D_2	3.79	3.99	4.19	0.149	0.157	0.165
Е		9.00 BSC			0.354 BSC	
E_1		8.75 BSC			0.344 BSC	
E_2	3.79	3.99	4.19	0.149	0.157	0.165
L	0.30	0.40	0.50	0.012	0.016	0.020
e		0.50 BSC			0.020 BSC	
θ_1	0°	-	12°	0°	-	12°
R	0.10	-	-	0.004	-	-
	Tolerances of Form and Position					
aaa		0.10			0.004	
bbb		0.10			0.004	
ccc		0.05			0.002	

Note 1: CONTROLLING DIMENSION: MILLIMETER (mm).

Note 2: REFERENCE DOCUMENT: JEDEC MO-220.

9.3. RTL8411B (48-Pin)

9.4. Mechanical Dimensions Notes (48-Pin)

Symbol		Dimension in mm			Dimension in inch		
	Min	Nom	Max	Min	Nom	Max	
A	0.75	0.85	1.00	0.030	0.034	0.039	
A_1	0.00	0.02	0.05	0.000	0.001	0.002	
A_3	0.20REF			0.008REF			
b	0.15	0.20	0.25	0.006	0.008	0.010	
D/E		6.00BSC			0.236BSC		
D2/E2	4.15	4.4	4.65	0.163	0.173	0.183	
e		0.40BSC			0.016BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020	

Note 1: CONTROLLING DIMENSION: MILLIMETER (mm).

Note 2: REFERENCE DOCUMENT: JEDEC MO-220.

10. Ordering Information

Table 35. Ordering Information

Part Number	Package	Status
RTL8411B-CG	48-Pin QFN 'Green' Package	-
RTL8411BN-CG	64- Pin QFN 'Green' Package	-

Note: See page 5 for package identification information.

Realtek Semiconductor Corp. Headquarters

No. 2, Innovation Road II