Univariate Multiple Regression Statistics for Predicting the WITH Variables from the VAR Variables

	Raw Regression Coefficients				
	O3	PM2.5	PM10	SO2	
VViento	-4.364723232	1.916295072	1.890087026	0.273517844	
HAire10	-0.654912693	-0.245690708	-0.487322827	-0.047988326	
TAire10	2.537471697	1.058130586	1.106247459	-0.143063463	

Canonical Correlation Analysis

	Canonical Adjusted Approximate Squared Canonical Standard Canonical		Eigenvalues of Inv(E)*H = CanRsq/(1-CanRsq)		Test of H0: The canonical correlations in the current row and all that follow are zero								
	Correlation	Correlation	Error	0 1 11	Eigenvalue	Difference	Proportion	Cumulative	Likelihood Ratio	Approximate F Value	Num DF	Den DF	Pr > F
1	0.765894	0.763466	0.018288	0.586594	1.4189	1.3182	0.9205	0.9205	0.36753210	51.21	12	1336.4	<.0001
2	0.302439	0.292702	0.040191	0.091469	0.1007	0.0787	0.0653	0.9858	0.88903362	10.22	6	1012	<.0001
3	0.146492	0.143942	0.043288	0.021460	0.0219		0.0142	1.0000	0.97854000	5.56	2	507	0.0041

Multivari	Multivariate Statistics and F Approximations					
	S=3 M=0 N=251.5					
Statistic	Value	F Value	Num DF	Den DF	Pr > F	
Wilks' Lambda	0.36753210	51.21	12	1336.4	<.0001	
Pillai's Trace	0.69952301	38.54	12	1521	<.0001	
Hotelling-Lawley Trace	1.54153673	64.76	12	879.45	<.0001	
Roy's Greatest Root	1.41892782	179.85	4	507	<.0001	
NOTE: F Statistic	NOTE: F Statistic for Roy's Greatest Root is an upper bound.					

Canonical Correlation Analysis

Raw Canonio	Raw Canonical Coefficients for the VAR Variables			
		V1		
VViento	VViento	-0.473802917		
HAire10	HAire10	-0.149296667		
TAire10	TAire10	0.2217799102		

Raw Canonical Coefficients for the WITH Variables			
		W1	
O3	О3	0.074452377	
PM2.5	PM2.5	-0.308321046	
PM10	PM10	0.2846901934	
SO2	SO2	0.0542050296	

Canonical Correlation Analysis

Standardized Canonical Coefficients for the VAR Variables			
V1			
VViento	VViento	-0.0928	
HAire10	HAire10	-0.7748	
TAire10	TAire10	0.2462	

Standardized Canonical Coefficients for the WITH Variables			
	W1		
О3	О3	0.6997	
PM2.5	PM2.5	-1.6928	
PM10	PM10	2.0237	

Standardized Canonical Coefficients for the WITH Variables				
W1				
SO2	SO2	0.0316		

Canonical Structure

Correlations Between the VAR Variables and Their Canonical Variables				
V1				
VViento	VViento	-0.2680		
HAire10	HAire10	-0.9827		
TAire10	TAire10	0.8679		

Correlations Between the WITH Variables and Their Canonical Variables			
	W1		
O3	O3	0.8356	
PM2.5	PM2.5	0.5165	
PM10	PM10	0.6341	
SO2	SO2	0.2072	

Correlations Between the VAR Variables and the Canonical Variables of the WITH Variables			
W1			
VViento	VViento	-0.2052	
HAire10	HAire10	-0.7527	
TAire10	TAire10	0.6647	

Correlations Between the WITH Variables and the Canonical Variables of the VAR Variables			
	V1		
O3	О3	0.6400	
PM2.5	PM2.5	0.3956	
PM10	PM10	0.4856	
SO2	SO2	0.1587	

Canonical Redundancy Analysis

Raw Variance of the VAR Variables Explained by					
Canonical Variable Number	Their Own Canonical Variables		Canonical	The Opposite Canonical Variables	
	Proportion	Cumulative Proportion	R-Square	Proportion	Cumulative Proportion
1	0.9552	0.9552	0.5866	0.5603	0.5603

	Raw Variance of the WITH Variables Explained by					
Canonical Variable Number	Their Own Canonical Variables		Canonical	The Opposite Canonical Variables		
I	Canonical variable Number	Proportion	Cumulative Proportion	R-Square	Proportion	Cumulative Proportion
I	1	0.5317	0.5317	0.5866	0.3119	0.3119

Canonical Redundancy Analysis

Standardized Variance of the VAR Variables Explained by					
Canonical Variable Number	Their Own Canonical Variables		Canonical	The Opposite Canonical Variables	
	Proportion	Cumulative Proportion	R-Square	Proportion	Cumulative Proportion
1	0.5969	0.5969	0.5866	0.3502	0.3502

Standardized Variance of the WITH Variables Explained by The Opposite Canonical Variables Their Own Canonical Variables Canonical Canonical Variable Number R-Square Cumulative Proportion Cumulative Proportion Proportion Proportion 0.3525 0.3525 0.5866 0.2068 0.2068

Canonical Redundancy Analysis

Squared Multiple Correlations Between the VAR Variables and the First M Canonical Variables of the WITH Variables				
M		1		
VViento	VViento	0.0421		
HAire10	HAire10	0.5665		
TAire10	TAire10	0.4419		

Squared Multiple Correlations Between the WITH Variables and the First M Canonical Variables of the VAR Variables				
M		1		
O3	O3	0.4096		
PM2.5	PM2.5	0.1565		
PM10	PM10	0.2359		
SO2	SO2	0.0252		

