UNIVERSIDAD PRIVADA ANTENOR ORREGO FACULTAD DE INGENIERÍA

Escuela Profesional De Ing. De Computación Y Sistemas

PROYECTO DE BUSINESS INTELLIGENCE PARA LOS PROCESOS DE COMPRAS DE LA EMPRESA "M&C ELECTRONICS

• ALUMNO : Lavado Aredo, Joel.

• PROFESOR: Ing. Castillo Robles, Edward

• **CURSO:** Sistemas De Soporte De Decisiones

TRUJILLO – PERÚ 2020 – 10

I. ANÁLISIS DE PROCESOS A MODELAR.

1.1. Descripción del Proceso de Negocio.

En este presente trabajo nos enfocaremos en el proceso de Compras de la empresa "M&C Electronics", la cual tomaremos como referencia los datos del proceso de Ventas, para tener un óptimo control del inventario de productos, puesto que asegurar el stock y flujo de abastecimiento de éstos, disminuiría los problemas para el proceso de Compras y por consecuente al proceso de Ventas.

1.2. Problemas del Proceso de Negocio.

Dentro del proceso de compras, hemos detectado los siguientes problemas:

La compañía está invirtiendo más para la adquisición de productos, en relación con los años anteriores, y teniendo casi las mismas ganancias; cuando lo que debería pasar es que, si se adquieren más productos quiere decir que las ganancias obtenidas en el proceso de ventas deberían aumentar.

- 1.3. Requerimientos de Información para la Toma de Decisiones.
 - ✓ El monto total de las compras hechas al proveedor durante el último año.
 - ✓ Qué empleado solicita más compras durante el último año.
 - ✓ Los productos que son más solicitados por empleado en el último año.
 - ✓ Que sucursal es la que realiza más monto de compras en el último año.

1.4. Análisis de los Requisitos.

1. El monto total de las compras hechas al proveedor durante el último año.

2.- Qué empleado solicita más compras durante el último año.

3.- Los productos que son más solicitados por empleado en el último año.

4. Que sucursal es la que realiza más monto de compras en el último año.

II. MODELADO DIMENSIONAL.

2.1. Identificación de Dimensiones

Dimensiones	Campo				
Proveedor	Raz_Social				
Empleado	Nombre_Empleado				
Sucursal	Direccion				
Producto	Nombre_Producto				
Tiempo	Año, mes, día				

2.2. Identificación de Medidas

Medida	Cálculo				
Monto Compras	SLM(PRECIO_UNTARIO*CANT_PRODUCTO)				
Cantidad de Compras	CANT_PRODUCTO				

2.3. Formar Jerarquías.

Dimensión	Niveles De Jerarquía				
Proveedor	Raz_social				
Empleado	Nombre_Empleado				
Sucursal	Departamento > Provincia > Ciudad > Dirección				
Producto	Categoría > Producto				
Tiempo	Año > Trimestre > Mes > Semana > Día				

2.4. Diagrama DataMart.

III. MODELADO FÍSICO

1. Mapa de Origen-Destino

TABLA	COLUMNA	SISTEMA DE ORIGEN	TABLA DE ORIGEN	COLUMNA DE ORIGEN
Dim_Producto	iddimproducto Cod_Producto Nombre_Producto Categoria	Nuevo OLTP OLTP OLTP	Nuevo PRODUCTO PRODUCTO CATEGORIA	Nuevo Cod_Producto Nombre_Producto Nombre_Categoria
Dim_Empleado	idDimEmpleado Cod_Empleado Nombre_Empleado	Nuevo OLTP OLTP	Nuevo EMPLEADO EMPLEADO	Nuevo Cod_Empleado Nombre_Empleado+ +Apellido_Empleado
Dim_Proveedor	idDimProveedor Cod_Proveedor Raz_Soc_Proveedor Direccion Provincia Departamento	Nuevo OLTP OLTP OLTP OLTP OLTP OLTP	Nuevo PROVEEDOR PROVEEDOR PROVEEDOR PROVEEDOR PROVEEDOR	Nuevo Cod_Proveedor Raz_Soc_Proveedor Direccion_Proveedor Provincia_Proveedor Departamento_Proveedor
Dim_Sucursal	idDimSucursal Cod_Sucursal Nombre Direccion Provincia Departamento	Nuevo OLTP OLTP OLTP OLTP OLTP	Nuevo SUCURSAL SUCURSAL SUCURSAL PROVINCIA DEPARTAMENTO	Nuevo Cod_Sucursal Nombre_Sucursal Direccion_Sucursal Nombre_Provincia Nombre_Departamento
Dim_Tiempo	idDimTiempo Fecha_Compra Día Mes Trimestre Año	Nuevo OLTP Derivado Derivado Derivado Derivado	Nuevo ORDEN_PEDIDO_COMPRA ORDEN_PEDIDO_COMPRA ORDEN_PEDIDO_COMPRA ORDEN_PEDIDO_COMPRA ORDEN_PEDIDO_COMPRA	Nuevo Fecha_Compra Datename (Dw, Fecha_Compra) Datepart (Mm, Fecha_Compra) Datepart (Qq, Fecha_Compra) Datepart (Yy, Fecha_Compra)
Hechos_Compras	idDimProducto idDimProveedor idDimEmpleado idDimSucursal idDimTiempo Monto_Compras Cantidad_Compras	OLAP OLAP OLAP OLAP OLAP OLTP OLTP	Dim_Producto Dim_Proveedor Dim_Empleado Dim_Sucursal Dim_Tiempo DETALLE_PEDIDO_COMPRA DETALLE_PEDIDO_COMPRA	Iddimproducto Iddimproveedor Iddimempleado Iddimsucursal Iddimtiempo Precio_Unitario * Cant_Producto Cant_Producto

2. Diseño Físico

TABLA	COLUMNA	TIPO	LONGITUD	NUL O	CLAVE	IDENTIDAD
Dim_Empleado	idDimEmpleado	Entero	5	No	PK	SI
	Cod_Empleado	Entero	5	No	-	-
	Nombre_Empleado	nchar	102	No	-	-
	idDimProducto	Entero	5	No	PK	SI
	Cod_Producto	Entero	5	No		
Dim_Producto	Nombre Producto	nchar	50	No		
	Categoria	nvarchar	50	No		
	idDimProveedor	Entero	5	No	PK	SI
	Cod_Proveedor	Entero	5	No		
.	Raz_Soc_Proveedor	nvarchar	50	No		
Dim_Proveedor	Direccion	nvarchar	50	No		
	Provincia	nvarchar	50	No		
	Departamento	nvarchar	50	No		
	idDimSucursal	Entero	5	No	PK	SI
	Cod_Sucursal	Entero	5	No		
Dim Comment	Nombre	nchar	50	No		
Dim_Sucursal	Direccion	nchar	50	No		
	Provincia	nchar	50	No		
	Departamento	nchar	50	No		
	idDimTiempo	Entero	5	No	PK	SI
	Fecha_Compra	Datetime	8	No		
Dim Tiamna	Dia	Varchar	9	No		
Dim_Tiempo	Mes	Entero	2	No		
	Trimestre	Entero	1	No		
	Año	Entero	2	no		
	idDimProducto	Entero	5	No	PK, FK	No
	idDimProveedor	Entero	5	No	PK, FK	No
Hechos_Compras	idDimEmpleado	Entero	5	No	PK, FK	No
	idDimSucursal	Entero	5	No	PK, FK	No
	idDimTiempo	Entero	5	No	PK, FK	No
	Monto_Compras	Decimal	18,2	No		
	Cantidad_Compras	Entero	4	No		

3. Código ETL

ETL Limpieza de datos

```
DELETE Hechos_Compras

DELETE Dim_Empleado

DBCC CHECKIDENT('Dim_Empleado', reseed,0)

DELETE Dim_Producto

DBCC CHECKIDENT('Dim_Producto', reseed,0)

DELETE Dim_Proveedor

DBCC CHECKIDENT('Dim_Proveedor', reseed,0)

DELETE Dim_Sucursal

DBCC CHECKIDENT('Dim_Sucursal', reseed,0)

DELETE Dim_Tiempo

DBCC CHECKIDENT('Dim_Tiempo', reseed,0)
```


Poblamiento Dim_Empleado

```
SELECT e.COD_EMPLEADO, e.NOMBRE_EMPLEADO
FROM dbo.EMPLEADO e
```

❖ Poblamiento Dim_Producto

```
SELECT p.COD_PRODUCTO, p.NOMBRE_PRODUCTO, c.NOMBRE_CATEGORIA
FROM PRODUCTO p inner join CATEGORIA c on p.COD_CATEGORIA=c.COD_CATEGORIA
```

Poblamiento Dim_Proveedor

```
SELECT p.COD_PROVEEDOR, p.RAZ_SOC_PROVEEDOR, p.DIRECCION_PROVEEDOR, p.PROVINCIA_PROVEEDOR
FROM PROVEEDOR P
```

❖ Poblamiento Dim_Sucursal

```
SELECT s.COD_SUCURSAL, s.DIRECCION, p.NOMBRE_PROVINCIA, d.NOMBRE_DEPARTAMENTO FROM SUCURSAL s inner join DEPARTAMENTO d on s.COD_DEPARTAMENTO=d.COD_DEPARTAMENTO inner join PROVINCIA p on p.COD_PROVINCIA=d.COD_PROVINCIA
```

Poblamiento Dim_Tiempo

```
SELECT DISTINCT Convert(Date, FC.FECHA_COMPRA) AS FECHA,

DateName(dw, FC.FECHA_COMPRA) AS Dia,

DatePart(mm, FC.FECHA_COMPRA) AS [Mes],

DatePart(qq, FC.FECHA_COMPRA) AS [Trimestre],

DatePart(yy, FC.FECHA_COMPRA) AS [Año]

FROM ORDEN_PEDIDO_COMPRAS FC

WHERE FC.FECHA_COMPRA IS NOT NULL
```

❖ Poblamiento HECHOS_COMPRAS


```
pD.idDimProducto as 'Producto_Key',
            eD.idDimEmpleado as 'Empleado_Key',
    pvD.idDimProveedor as 'Proveedor_Key',
    sD.idDimSucursal as 'Sucursal_Key',
    tD.idDimTiempo as 'Tiempo_Key',

(dcT.PRECIO_UNITARIO * dcT.CANT_PRODUCTO) as 'Monto_Compras',
                         dcT.CANT_PRODUCTO as 'Cantidad_Compras'
FROM MyC.dbo.PRODUCTO pT inner join MyC.dbo.CATEGORIA cT (pT.COD_CATEGORIA=cT.COD_CATEGORIA) inner join MyC.dbo.DETALLE_PEDIDO_COMPRA dcT on
                                                              MyC.dbo.CATEGORIA cT on
(dcT.COD PRODUCTO=pT.COD PRODUCTO)
                         inner join MyC.dbo.ORDEN_PEDIDO_COMPRAS oct on (oct.COD_PEDIDO=dct.COD_PEDIDO)
                         inner join MyC.dbo.PROVEEDOR pvT on (pvT.COD_PROVEEDOR=ocT.COD_PROVEEDOR)
                         inner join MyC.dbo.EMPLEADO eT on (eT.COD_EMPLEADO=ocT.COD_EMPLEADO)
                         inner join MyC.dbo.SUCURSAL sT on (sT.COD_SUCURSAL=eT.COD_SUCURSAL)
                         inner join MyC.dbo.DEPARTAMENTO dT on (dT.COD_DEPARTAMENTO=sT.COD_DEPARTAMENTO)
                         {\tt inner join MyC.dbo.PROVINCIA piT on (piT.COD\_PROVINCIA=dT.COD\_PROVINCIA)}
                         inner join MyC_DataMart.dbo.Dim_Producto pD on (pD.Cod_Producto=pT.COD_PRODUCTO)
INNER JOIN MyC_DataMart.dbo.Dim_Empleado eD on (eD.Cod_Empleado=eT.COD_EMPLEADO)
INNER JOIN MyC_DataMart.dbo.Dim_Proveedor pvD on
(pvD.Cod Proveedor=pvT.COD PROVEEDOR)
                         INNER JOIN MyC DataMart.dbo.Dim Sucursal sD on (sD.Cod Sucursal=sT.COD SUCURSAL)
                         INNER JOIN MyC_DataMart.dbo.Dim_Tiempo tD on (tD.Fecha= ocT.FECHA_COMPRA)
```

ETL

IV. IMPLEMENTACIÓN

1. Implementación del Cubo

2. Reportes gráficos de solución de los requerimientos (DASHBOARD)

R1: El monto total de las compras hechas al proveedor durante el último año.

■ R2: Qué empleado solicita más compras durante el último año.

■ R3: Los productos que son más solicitados por empleado en el último año.

■ R4: Que sucursal es la que realiza más monto de compras en el último año.

V. MINERÍA DE DATOS

1. Comprensión del Negocio

Objetivos de la Minería de datos

Predecir el monto total de las compras del próximo año o hasta 5 años.

- Selección de herramientas y técnicas

• Herramienta:

Weka

• Técnica:

Como el objetivo se trata de predecir un valor, se deduce que se requiere una técnica Predictiva de tipo Regresión.

El algoritmo escogido para hacer la predicción es Regresión Lineal, un algoritmo para modelar la relación entre una variable escalar dependiente "y" y una o más variables explicativas nombradas con "X".

	Descriptivo (no supervisado)			Predictivo (supervisado)	
TECNICA ALGORITMO	Agrupamiento	Asociación	Correlación	Clasificación	Regresión
Redes neuronales	Х			Х	Х
Arboles de Decisión CART				Х	Х
Otros árboles de decisión		Х			
Redes de Kohonen					
Regresión lineal y logarítmica			Х		Х
Regresión logística		Х		Х	
Kmeans	Χ				
Apriori		Χ			
Naive Bayes				Х	
Vecinos más próximos			-	Х	Х
Twostep, Cobweb	Х		-		_
Algoritmos genéticos y evolutivos	Х	Х	Х	Х	Х
Máquinas de vectores soporte	Χ			Χ	Х
CN2 rules (cobertura)		Χ		Χ	
Análisis discriminante multivariante				Χ	

2. Comprensión de los Datos

Selección de datos

- Creación del Dataset

3. Modelado

Construcción del modelo de minería

Se seleccionan los dos atributos necesarios para operar el algoritmo (monto y año). En parámetros, en la parte de "Number of time units to forecast" se coloca el numero de predicciones que se desea realizar, en este caso colocamos para dos años; en "Time stamp" el atributo donde están los años y en "Periocidity" de forma anual. En configuración avanzada seleccionamos el algoritmo y le damos click a Star.

En es la salida de información se presentan las instancias ingresadas donde esta el monto de compras con su respectivo año, seguidamente los montos para los dos años siguientes (marcado con un asterisco).

- Evaluación de los resultados

Se puede ver de forma gráfica como a sido el comportamiento del monto de las compras (rojo) a lo largo de los años (azul), prediciendo a partir de los datos ingresados, los montos de ventas para los próximos dos años.

