6.1 Vecteurs de l'espace

6.1.1 Définition d'un vecteur de l'espace

Définition 1.6.

Soient A et B deux points de l'espace.

On associe le $vecteur \overrightarrow{AB}$ à la translation qui transforme A en B.

Deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux si et seulement si ______ est un parallélogramme (éventuellement aplati).

- ▶ Note 1.6.
 - Deux vecteurs sont égaux s'ils ont même _
 - Lorsque A et B sont **confondus**, on dit que le vecteur \overrightarrow{AB} est _____ et on le note $\overrightarrow{0}$.

Théorème 1.6. admis

Soient \overrightarrow{u} et A un point de l'espace. Il existe un unique point M tel que $\overrightarrow{AM} = \overrightarrow{u}$ et on dit que \overrightarrow{AM} est le représentant de \overrightarrow{u} d'origine A.

Application 1.6.

On considère le cube ABCDEFGH représenté ci-dessous. Construire les points M et N tels que :

•
$$\overrightarrow{AM} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AE} + \frac{1}{2}\overrightarrow{EH}$$
.

•
$$\overrightarrow{AN} = \overrightarrow{AE} + \overrightarrow{AC} + \overrightarrow{HE}$$
.

6.1.2 Opérations sur les vecteurs de l'espace

Définition 2.6.

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace de représentants respectifs $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{AC}$. La somme des vecteurs \overrightarrow{u} et \overrightarrow{v} est le vecteur noté $\overrightarrow{u} + \overrightarrow{v}$ de représentant \overrightarrow{AD} tel que \overrightarrow{ABDC} soit un parallélogramme.

Propriété 1.6. Relation de Chasles

Pour tous points A, B et C de l'espace, $\overrightarrow{AB} + \underline{\hspace{1cm}} = \overrightarrow{AC}$.

Propriétés 1.6.

- Soit \overrightarrow{u} un vecteur non nul. Le vecteur $k\overrightarrow{u}$ est le vecteur qui a :
 - la $m\hat{e}me$ direction que le vecteur \overrightarrow{u} ;
 - le $m\hat{e}me\ sens\ que\ \overrightarrow{u}\ si\ k>0$, le $sens\ contraire\ de\ \overrightarrow{u}\ si\ k<0$;
 - pour norme $|k| \times \|\overrightarrow{u}\|$.
- Pour tout vecteur \overrightarrow{u} et pour tout réel k, $0\overrightarrow{u} = k\overrightarrow{0} = \overrightarrow{0}$.

Propriétés 2.6.

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace et k et k' deux réels.

- $k\overrightarrow{u} = \overrightarrow{0} \iff k = 0$ ou $\overrightarrow{u} = \overrightarrow{0}$.
- $k(k'\overrightarrow{u}) = kk'\overrightarrow{u}$.
- $(k+k')\overrightarrow{u} = k\overrightarrow{u} + k'\overrightarrow{u}$.
- $k(\overrightarrow{u} + \overrightarrow{v}) = k\overrightarrow{u} + k\overrightarrow{v}$.

Définition 3.6.

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace.

On dit que \overrightarrow{u} et \overrightarrow{v} sont *colinéaires* s'il existe un réel k tel que $\overrightarrow{u} = 0$ ou $\overrightarrow{v} = 0$

▶ Note 2.6.

- Deux vecteurs non nuls sont colinéaires si et seulement si
- Le vecteur nul est colinéaire à tout vecteur.

Application 2.6.

On considère le tétraèdre ABCD représenté ci-dessous.

- 1. Construire les points M et N tels que $\overrightarrow{BM} = \frac{1}{3}\overrightarrow{BA}$ et $\overrightarrow{CN} = 2\overrightarrow{BC}$.
- 2. Démontrer que les vecteurs \overrightarrow{MC} et \overrightarrow{AN} sont colinéaires.

6.2 Droites et plans de l'espace

6.2.1 Caractérisation vectorielle d'une droite

Définition 4.6.

Soient A et B deux points distincts de l'espace. La droite (AB) est l'ensemble des points M tels que les vecteurs \overrightarrow{AM} et \overrightarrow{AB} sont ________ : on a donc $\overrightarrow{AM} = k\overrightarrow{AB}$ où $k \in \mathbb{R}$ et le vecteur \overrightarrow{AB} est un vecteur _______ de la droite (AB).

6.2.2 Caractérisation vectorielle d'un plan

Définition 5.6.

Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs de l'espace tels que \overrightarrow{u} et \overrightarrow{v} ne sont \overrightarrow{pas} colinéaires. \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont $\overrightarrow{coplanaires}$ lorsqu'il existe deux réels x et y tels que : $\overrightarrow{w} = x\overrightarrow{u} + y\overrightarrow{v}$. On dit alors que le vecteur \overrightarrow{w} est une **combinaison linéaire** des vecteurs \overrightarrow{u} et \overrightarrow{v} .

Définitions 1.6.

- On dit que des points sont coplanaires s'il existe un plan qui contient ces plans. Soient A, B et C trois points $non\ align\'es$ de l'espace.
- Le plan (ABC) est l'ensemble des points M tels que $\overrightarrow{AM} = x\overrightarrow{AB} + y\overrightarrow{AC}$, où $x \in \mathbb{R}$ et $y \in \mathbb{R}$.
- Les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont des vecteurs directeurs du plan (ABC). $(\overrightarrow{AB}, \overrightarrow{AC})$ est une base de ce plan et $(A; \overrightarrow{AB}, \overrightarrow{AC})$ est un repère de ce plan.

▶ Note 3.6.

Trois points sont toujours coplanaires.

Propriété 2.6.

Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs de l'espace tels que $\overrightarrow{u} = \overrightarrow{AB}$, $\overrightarrow{v} = \overrightarrow{AC}$ et $\overrightarrow{w} = \overrightarrow{AD}$. \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires si et seulement si les points A, B, C et D sont coplanaires.

6.3 Positions relatives de droites et de plans

6.3.1 Positions relatives de deux droites

Définitions 2.6.

Soit d une droite de vecteur directeur \overrightarrow{u} et d' une droite de vecteur directeur $\overrightarrow{u'}$.

- d et d' sont parallèles lorsque \overrightarrow{u} et $\overrightarrow{u'}$ sont ______
- d et d' sont *coplanaires* lorsqu'il existe un plan qui contient d et d' et non coplanaires sinon.

Propriétés 3.6.

Soient A, B, C et D quatre points distincts de l'espace.

- Les droites (AB) et (CD) sont *coplanaires* si les points A, B, C et D sont *coplanaires*, c'est-à-dire s'il existe un plan contenant les quatre points A, B, C et D.
- Deux droites sont coplanaires si et seulement si elles sont sécantes ou parallèles.
- Si deux droites sont non coplanaires, alors leur intersection est vide.

Exemple 1.6.

6.3.2 Positions relatives d'une droite et d'un plan

Propriétés 4.6.

- \bullet Une droite est parallèle à un plan lorsqu'elle admet un vecteur directeur colinéaire à un vecteur directeur de ce plan.
- Si une droite n'est pas parallèle à un plan, alors elle coupe ce plan en un _____

Exemple 2.6.

6.3.3 Positions relatives de deux plans

Propriétés 5.6.

- Deux plans sont *parallèles* lorsqu'ils admettent un même couple de vecteurs directeurs non colinéaires.
- Deux plans non parallèles sont sécants suivant une droite.
- Lorsque deux plans sont parallèles, tout plan coupant l'un coupe l'autre et les droites d'intersection sont parallèles.

▶ Note 4.6.

Ces propriétés seront très utiles pour les sections de solides.

Théorème 2.6. Théorème du toit

Soit d une droite parallèle à deux plans \mathscr{P} et \mathscr{P}' sécants en une droite Δ . Alors d est parallèle à Δ .

Repères de l'espace

Base de l'espace

Définition 6.6.

Une base de l'espace est formée d'un triplet de vecteurs $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ non coplanaires.

Propriété 3.6.

Soit $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ une base de l'espace. Pour tout vecteur \overrightarrow{u} de l'espace, il existe un unique triplet (x; y; z) tel que $\overrightarrow{u} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$.

 $(x\,;\,y\,;\,z)$ sont les coordonn'ees de \overrightarrow{u} dans cette base et on note \overrightarrow{u}

6.4.2 Repère de l'espace

Définition 7.6.

Un repère de l'espace est formé d'un point donné O et d'une base $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On note $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ un tel repère où O est l'origine du repère.

Propriété 4.6.

Soit $(O; \overrightarrow{i}; \overrightarrow{j}; \overrightarrow{k})$ un repère de l'espace. Pour tout point M de l'espace, il existe un unique triplet $(x\,;\,y\,;\,z)$ tel que $\overrightarrow{OM}\,=\,x\,\overrightarrow{i}\,+\,y\,\overrightarrow{j}\,+\,z\,\overrightarrow{k}\,,$ ce triplet $(x\,;\,y\,;\,z)$ ou encore coordonnées du point M dans le repère $(O; \overrightarrow{i}; \overrightarrow{j}; \overrightarrow{k})$ et z est appelée la cote de M.

Propriétés 6.6.

On se place dans un repère $(O; \overrightarrow{i}; \overrightarrow{j}; \overrightarrow{k})$ de l'espace.

1. Pour deux points
$$A \begin{pmatrix} x_A \\ y_A \\ z_A \end{pmatrix}$$
 et $B \begin{pmatrix} x_B \\ y_B \\ z_B \end{pmatrix}$ on a : $\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$

2. Coordonnées de K
 milieu de [AB] :
$$\left(\begin{array}{c} 2 \\ \underline{y_B + y_A} \\ 2 \\ \underline{z_B + z_A} \\ 2 \end{array} \right)$$

3. Si
$$\overrightarrow{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ alors $\overrightarrow{u} + \overrightarrow{v} \begin{pmatrix} x + x' \\ y + y' \\ z + z' \end{pmatrix}$ et pour tout réel λ on a $\lambda \overrightarrow{u} \begin{pmatrix} \lambda x \\ \lambda y \\ \lambda z \end{pmatrix}$

6.4.3 Caractérisations d'une droite de l'espace

Définition 8.6.

Soient $A(x_A, y_A, z_A)$ un point et $\overrightarrow{u}(a; b; c)$ un vecteur non nul. La droite \mathscr{D} passant par A de vecteur directeur \overrightarrow{u} est l'ensemble des points M de l'espace tels qu'il existe un réel λ tel que :

$$\overrightarrow{AM} = \lambda \overrightarrow{u}$$

▶ Note 5.6.

Conséquence immédiate : la droite \mathscr{D} peut être représentée par un système paramétrique.

Propriété 5.6.

Un point M(x, y, z) appartient à la droite \mathscr{D} passant par A et de vecteur directeur $\overrightarrow{u}(a; b; c)$ si, et seulement si, il existe un réel t tel que

$$\begin{cases} x = x_A + at \\ y = y_A + bt \\ z = z_A + ct \end{cases}$$

Ce système est une représentation paramétrique de la droite \mathcal{D} dont le paramètre est t.

▶ Note 6.6.

Il n'existe pas d'équation cartésienne de droite dans l'espace!

▶ Application 3.6. Donner une représentation paramétrique de la droite passant par les points :

$$A\begin{pmatrix} -1\\ -5\\ 3 \end{pmatrix} \text{ et } B\begin{pmatrix} 2\\ -5\\ 6 \end{pmatrix}$$

ightharpoonup Application 4.6. Soit une droite d de représentation paramétrique :

$$\begin{cases} x = 5+3t \\ y = -1+4t, \ t \in \mathbb{R} \\ z = 1-t \end{cases}$$

- 1. Donner les coordonnées d'un vecteur directeur de cette droite d.
- 2. Donner les coordonnées de deux points de cette droite.
- 3. Le point T(-1; -9; 3) appartient-il à d?

6.4.4 Représentation paramétrique d'un plan

Propriété 6.6.

Un point M(x, y, z) appartient au plan \mathscr{P} passant par A et de vecteurs directeurs $\overrightarrow{u}(a, b, c)$ et $\overrightarrow{u}(\alpha, \beta, \gamma)$ si, et seulement si, il existe deux réels t et t' tels que

$$\begin{cases} x = x_A + at + \alpha t' \\ y = y_A + bt + \beta t' \\ z = z_A + ct + \gamma t' \end{cases}$$

Ce système est une représentation paramétrique du plan \mathscr{P} de paramètres est t et t'.

$D\'{e}monstration.$	

- ightharpoonup Application 5.6. Dans un repère de l'espace, on considère les points A(3;3;0), B(5;4;-2) et C(6;2;1).
 - 1. Démontrer que les trois points A, B et C définissent un plan $\mathscr P$ de l'espace.
 - 2. Déterminer une représentation paramétrique de ce plan.