Why does RooFit put asymmetric errors on data points?

Ivo van Vulpen (UvA/Nikhef)

10 slides on a 'too easy' topic that I hope confuse, but do not irritate you

http://www.nikhef.nl/~ivov/Statistics/PoissonError/BobCousins_Poisson.pdf

- Summarize measurement
- Make statement on underlying true value

I'll present 5 options. You tell me which one you prefer

Known λ (Poisson)

Binomial with $n \rightarrow \infty$, $p \rightarrow 0$ en $np = \lambda$

$$P(n \mid \lambda) = \frac{\lambda^n e^{-\lambda}}{n!}$$

Probability to observe n events when λ are expected

Poisson distribution

Known λ (Poisson)

Binomial with $n \rightarrow \infty$, $p \rightarrow 0$ en $np = \lambda$

$$P(n \mid \lambda) = \frac{\lambda^n e^{-\lambda}}{n!}$$

Probability to observe n events when λ are expected

Poisson distribution

the famous √N

properties

- (1) Mean: $\langle n \rangle = \lambda$
- (2) Variance: $\langle (n \langle n \rangle)^2 \rangle = \lambda$
- (3) Most likely: first integer $\leq \lambda$

Option 1: Poisson spread for fixed λ

Treating it like a normal measurement

construct Likelihood
λ as free parameter

2) Find value of λ that maximizes Likelihood

3) Determine error interval: $\Delta(-2\text{Log}(\text{lik})) = +1$

Likelihood (ratio)

$$L(n \mid \lambda) = \frac{\lambda^n e^{-\lambda}}{n!}$$

Probability to observe n events when λ are expected

Likelihood

$$P(4|10) = 0.00000$$

$$P(4|2) = 0.09022$$

$$P(4|4) = 0.19537$$

$$P(4|6) = 0.13385$$

#observed

λ hypothesis

fixed

varying

Note: normally you use -2log(Lik)

Option 2: likelihood (ratio)

Bayesian: statement on true value of λ

$$P(\lambda \mid N_{obs}) = P(N_{obs} \mid \lambda)P(\lambda)$$

Likelihood: Poisson distribution

"what can I say about the **measurement** (number of observed events) given a theory expectation?"

Posterior pdf for λ :

"what can I say about the underlying **theory** (true value of λ) given that I have observed of 4 events?"

Bayesian: statement on true value of λ

 $P(\lambda \mid N_{obs}) = P(N_{obs} \mid \lambda)P(\lambda)$

Choice of prior $P(\lambda)$: Assume all values for λ are equally likely ("I know nothing")

Posterior PDF for λ

→ Integrate to get confidence interval

Option 3 and 4: Bayesian

Option 4: Frequentist

If λ < 7.16 then probability to observe 4 events (or less) <16%

largest λ fow which $P(n \ge n_{obs} | \lambda) = 0.159$

Note: also using data that you did **not** observe

-1.91

The options

Δλ:

4.00

4.32

4.11

5.07

4.03

-			
IVO	van	$\Lambda I I I$	nan
TAO	vali	vu	ווסכוו

Think about it and discuss with your colleagues tonight

I'll give the answer tomorrow

The options

Δλ:

4.00

4.03

4.32

4.11

5.07

Conclusion:

- Now you know what RooFit uses
- Hope you are a bit confused

http://www.nikhef.nl/~ivov/Statistics/PoissonError/

BobCousins_Poisson.pdf → Paper with details

PoissonError.C

→ Implementation options shown here

Ivo_Analytic_Poisson.pdf → Analytic properties (inverted) Poisson