Fundamentals of Optimization Notes

Anthony Catterwell

September 29, 2019

Contents

Contents		
1	1.1 1.2 1.3 1.4	ture 1 LP Formulation
2	Lect 2.1 2.2	ture 2 Convexity
1 Lecture 1		
1.	1 L	P Formulation
1.	2 (Graphs & Directed Graphs
1.	3 N	Network Flow Problem
1.	4 (Quadratic Programming
2 Lecture 2		
2.	1 (Convexity
		efinition Convexity set $C \subset \mathbb{R}^n$ is convex $\iff \forall x, y \in C, \forall \lambda \in [0,1] \ f(\lambda x + (1-\lambda)) \leq \lambda f(x) + (1-\lambda)f(y)$
	T	efinition Epigraph he epigraph of a function is the set lying above the function. i.e. If C is a subset of \mathbb{R}^n , and notion $f: C \to \mathbb{R}$, then the epigraph of f is
		$\operatorname{epi}(f) = \{(x, z) x \in C, z \ge f(x)\} \in \mathbb{R}^{n+1}$
		efinition $Convex$ set

A set $C \subset \mathbb{R}^n$ is convex

$$\iff \forall x,y \in C, \forall \lambda \in [0,1], \quad \exists z = \lambda x + (1-\lambda)y \in C$$

• **Definition** Function $f: C \mapsto \mathbb{R}$ is *convex* if and only if

$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y), \ \forall x,y \in C, \forall \lambda \in [0,1]$$

• **Definition** Function $f: C \mapsto \mathbb{R}$ is *concave* if and only if

$$f(\lambda x + (1-\lambda)y) \geq \lambda f(x) + (1-\lambda)f(y), \ \forall x,y \in C, \forall \lambda \in [0,1]$$

• **Definition** Function $f: C \mapsto \mathbb{R}$ is *strictly convex* if and only if

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y), \ \forall x, y \in C, \forall \lambda \in [0, 1]$$

• **Definition** Function $f: C \mapsto \mathbb{R}$ is *strictly concave* if and only if

$$f(\lambda x + (1 - \lambda)y) > \lambda f(x) + (1 - \lambda)f(y), \ \forall x, y \in C, \forall \lambda \in [0, 1]$$

• **Definition** A vector \vec{x} is a **local** minimum of f if

$$\exists \epsilon > 0 \text{ such that } f(\vec{x}) \leq f(x), \forall x | x - \vec{x} | < \epsilon$$

• **Definition** A vector \vec{x} is a **global** minimum of f if

$$f(\vec{x}) \le f(x), \ \forall x \in X$$

- If X is a convex set and $f: X \mapsto \mathbb{R}$ is a convex function, then the minimization problem is said to be *convex*.
- Lemma In a convex minimization problem a local minimum is a global minimum.
- **Definition** A linear map $L: \mathbb{R}^n \to \mathbb{R}^m$ satisfies
 - 1. L(x + y) = L(x) + L(y)
 - 2. $\alpha L(x) = L(\alpha x)$ for scalar α .
- **Definition** An affine map is a linear map *plus* a shift of the origin. It takes the form F(x) = d + Mx, where $d \in \mathbb{R}^m$.
- Lemma An affine function (and hence also a linear function) is both convex and concave.

2.2 Properties of Convex Sets and Functions

- 1. For any collection $\{C_i|i\in I\}$ of convex sets, the intersection $\cap_{i\in I}C_i$ is convex.
- 2. The vector sum $\{x_1 + x_2 | x_1 \in C_1, x_2 \in C_2\}$ of two convex sets C_1 and C_2 is convex.
- 3. The image of a convex set under a linear map is convex. i.e. If C is a convex set and L a linear map $\{L(x)|x\in C\}$ is convex. (True also for affine map.)
- 4. For C a convex set, $f: C \mapsto \mathbb{R}$ a convex function and $L: C \mapsto \mathbb{R}$ and affine function, the **level** sets $\{x \in C | f(x) \leq \alpha\}$ and $\{x \in C | L(x) = \alpha\}$ are convex for all scalars α .
- 5. For C a convex set and any collection $f_i: C \mapsto \mathbb{R} | i \in I$ of convex functions, a non-negative weighted sum, i.e. $f = \sum_{i \in I} w_f f_i: C \mapsto \mathbb{R}$, where $w_i \geq 0$, $i \in I$, is convex.
- 6. For I a (finite) index set, C a convex set, and $f_i: C \mapsto \mathbb{R}$ a convex function $\forall i \in I$, the function $h: C \mapsto \mathbb{R}$ defined by $h(x) = \max_{i \in I} f_i(x)$ is convex.
- 7. For C a convex set, $f: C \mapsto \mathbb{R}$ a convex function, and $g: \mathbb{R} \mapsto \mathbb{R}$ a convex and non-decreasing function, the function $h: C \mapsto \mathbb{R}$ defined by h(x) = g(f(x)) is convex.
- 8. Let $C \subseteq \mathbb{R}^n$ be a convex set and $f: C \mapsto \mathbb{R}$ be differentiable over C.
 - (a) The function f is convex if and only if

$$f(y) > f(x) + \nabla^T f(x)(y - x), \quad \forall x, y \in C$$

(b) if the inequality is strict $\forall x \neq y$, then f is strictly convex.

- 9. Let $C \subseteq \mathbb{R}^n$ be a convex set and $f: C \mapsto \mathbb{R}$ be twice continuously differentiable over C.
 - (a) If f is convex in C and C has an interior (i.e. a point not on its boundary), then $\nabla^2 f(x)$ is positive semi-definite at all $x \in C$.
 - (b) If $\nabla^2 f(x)$ is positive semi-definite for all $x \in C$, then f is convex in C.
 - (c) If $\nabla^2 f(x)$ is positive definite for all $x \in C$, then f is strictly convex.
- 10. Let H be a square symmetric matrix and let $f(x) = x^T Hx$ (so f is a quadratic function).
 - (a) f is convex if and only if H is positive semi-definite.
 - (b) f is strictly convex if and only if H is positive definite.