TA: Mohammad Afshari and Anas El Fathi

Lab 7

Frequency Domain Identification of Qnet DC Motor

0. Objectives

In this lab, we will use frequency analysis to identify the transfer function of QNET Allied Motion CL40 Series Coreless DC Motor (model 16705).

The lab uses **MATLAB** to interface with the DC Motor. To verify that the hardware is working, run the following (You can ignore the warnings, but you shouldn't have any errors)

```
Motor = QnetDCMotor();
```

Warning: On this platform, notifications more frequent than 20 times per second may not be achievable.

Warning: On this platform, notifications more frequent than 20 times per second may not be achievable.

1. Instructions

Follow carefully step 1, 2 and 4 in the guide QNET DC Motor Quick Start Guide.pdf to make sure your Qnet DC Motor is setup correctly.

You should put the file <code>QnetDCMotor.m</code> in the same folder as this livescript.

All files are available in myCourses Labs.

At the end of the lab, please make a group submission of:

- 1. This LiveScript once completed.
- 2. The PDF report generated from the LiveScript.

2. Frequency Response Analysis

When a cosine wave $\chi(t) = M_{\chi}\cos(\omega t)$ is injected into a linear system, the system will respond with the same frequency ω , a certain magnitude M_{χ} and a certain phase angle relative to the input ϕ . The steady-state system output can be written as $\chi(t) = M_{\chi}\cos(\omega t + \phi)$.

If $G(j\omega)$ is the frequency response of this system, we define the magnitude and phase at ω by:

$$M(\omega) = \frac{M_y}{M_x} = ||G(j\omega)||$$

$$\phi(\omega) = \angle G(j\omega)$$

1.1 Bode plot

The Bode plot presents the magnitude and the phase shift between the input and output at each frequency. It is possible to draw a "point-by-point" Bode plot by injecting a cosine wave with a fixed frequency and measuring the magnitude and phase shift of the output after it reaches its steady-state.

In a bode plot the magnitude is represented in a logarithmic scale in decibels (db).

$$M_{db}(\omega) = 20 \log(M_{\ell}\omega)$$

The phase at each frequency can be found by measuring the temporal delay between the output and the input when the input is a cosine wave. Another way to measure the phase shift is through the Lissajous method. A Lissajous curve (an ellipsoide) is found when we try to plot the output in function of the input (XY plot). In fact, we can show that at a frequency ω

$$\cos(\phi) = \frac{y^*}{M_v}$$

Where y^* is the value of the output y when the input x is at the maximum M_y .

An illustration of using the Lissajous method (taken from Wikipedia) is shown below:

Question 1 (2.5 mark)

• Define the following transfer function in MATLAB

$$G(s) = \frac{s+4}{s^2+s+1}$$

```
syms s;
G = tf([1 4],[1 1 1])
```

Continuous-time transfer function.

Plot the bode graph of this system. (Hint: help bode)

```
figure(1); clf;
bode(G)
grid on
```


• Consider the following signal:

```
rng(datetime('now').Year*GroupeNum)
Freq = round(0.1 + rand(1), 2);
time = 0:0.01:round(10/Freq);
x = cos(2*pi*Freq*time);
```

Using lsim simulate the output y(t) representing the response of the system g to the signal x(t).

```
y = lsim(G,x,time);
figure(2); clf;
title(sprintf('Group %d - Freq %3.2f Hz - Phase %+03d deg - Magnitude %4.2f', GroupeNum, Freq,
hold on
plot(time, x)
plot(time, y)
grid on
legend('x', 'y')
```


• Plot y(t) in function of x(t).

```
figure(3); clf;
plot(x,y)
title(sprintf('Group %d - XY Plot', GroupeNum));
grid on
```


• Find graphically the phase ϕ and magnitude M at the specified frequency.

```
% This code shows you M_y and y*

max_y = max(y(time > round(5/Freq)));

max_x = max(x(time > round(5/Freq)));

min_y = min(y(time > round(5/Freq)));

min_x = min(x(time > round(5/Freq)));

star_y_1 = mean(y(time > round(5/Freq) & abs(x - max_x) < 0.05));

star_y_2 = mean(y(time > round(5/Freq) & abs(x - min_x) < 0.05));

figure(3); hold on; axPos = get(gca, 'Position'); xMinMax = xlim; yMinMax = ylim;

plot([min_x, max_x], [max_y, max_y], '--r', 'linewidth', 2.0)

plot([min_x, max_x], [min_y, min_y], '--r', 'linewidth', 2.0)

annotation('doublearrow', [0.8 0.8], axPos(2) + (([max_y min_y] - yMinMax(1))/(yMinMax(2) - yMinMax(0), yMinMax(1)), yMinMax(1))

plot([min_x, max_x], [star_y_1], '--g', 'linewidth', 2.0)

plot([min_x, max_x], [star_y_2 star_y_2], '--g', 'linewidth', 2.0)

annotation('doublearrow', [0.2 0.2], axPos(2) + (([star_y_1 star_y_2] - yMinMax(1))/(yMinMax(2) + text(-0.8, 0.0, '2 y^*', 'Color', 'green', 'FontSize', 14)
```



```
% Write phase and magnitude here
y_star = (0.1664+0.1693)/2;
My = (0.3448+0.3463)/2;
Mx = 1;
phi = acos(y_star/My)
```

phi = 1.0636

```
M = 20*log10(My/Mx)
```

M = -9.2298

3. Identification of Qnet DC Motor Frequency Response

To avoid the non-linear domain of the DC Motor at low voltage we will stimulate the DC Motor with offsetted cosine waves. We choose the following voltage signal:

$$v(t) = 4 + 2\cos(2\pi f t)$$

To send a cosine wave of frequency f = 0.5 Hz to the Qnet DC Motor we do the following

```
dt = 0.01; % sampling time
T = 15; % simulation duration
time = 0:dt:T; % define the time signal

vAmp = 2; % cosine amplitude
vOffset = 4; % voltage offset
```

Motor.reset;


```
for t = time
  % Generate a cosine wave input at current time
  v = v0ffset + vAmp*cos(2*pi*Freq*t);

% Drive motor for a duration of dt
  Motor.drive(v, t, dt);
end
Motor.off;
```

For frequency analysis we are only interseted at the steady-state response. We can retrieve the resulting angular velocity at steady state by:

```
delay = 5; % Ignore the first 5 seconds of experiment
t = Motor.time(delay, T);
w = Motor.velocity(delay, T);
v = Motor.voltage(delay, T);
```

The following shows a plot of the temporal response.

```
figure(4), clf;
subplot(2,1,1);
plot(t,v, 'r', 'linewidth', 2.0);
legend('Voltage (V)')
grid on
xlim([delay, T])
title(sprintf('Group %d - Voltage and Angular velocity', GroupeNum));
subplot(2,1,2);
plot(t,w, 'b', 'linewidth', 2.0);
```

```
legend('Angular velocity (rad/s)')
grid on
xlim([delay, T])
```


And the following shows the XY plot, and how to find y^* , M_v and M_x .

```
w_filter = medfilt1(w, 10, 'truncate'); % we can filter the noise

figure(5), clf; hold on;
title(sprintf('Group %d - Voltage vs Angular velocity', GroupeNum));
plot(v,w_filter, 'k');
grid on
xlabel('Voltage (V)')
ylabel('Angular velocity (rad/s)')
```


Question 3 (3.0 marks)

Find the magnitude and phase of the transfer function of the Qnet DC Motor for the following frequencies.

```
FreqVect = [0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 2.0, 4.0, 6.0];
% choose a frequency
Freq = 6.0;
% choose a duration
T = 2/Freq + 5;
time = 0:dt:T; % A vector containing all time samples
% stimulate DC motor with the cosine wave
Motor.reset;
```



```
for t = time
    % Generate a cosine wave input at current time
    v = v0ffset + vAmp*cos(2*pi*Freq*t);
    % Drive motor for a duration of dt
    Motor.drive(v, t, dt);
end
Motor.off;
% choose a delay
delay = 5;
t = Motor.time(delay, T);
w = Motor.velocity(delay, T);
w_filter = medfilt1(w, 10, 'truncate');
v = Motor.voltage(delay, T);
% XY Plot
figure(6); clf;
plot(v,w filter)
```



```
% Measure graphically the phase and magnitude and put it here %Magnitude for freq values from 0.05 to 6 MagnitudeDB = 20*log10([27.6, 28.9, 28.2, 27.9, 26.39, 25.6, 24.6 , 23.5 , 21.2 , 14.8, 8.35 ] PhaseDeg = [0 , 0 , -9.83, -20.71 , -34.7 , -45.2 , -52.44, -59.5, -80.9 , -105.4, -114.1];
```

Question 4 (1.0 mark)

Draw the resulting Bode plot (Magnitude (dB) vs Frequency (Hz) on a semilog plot and Phase (deg) vs Frequency (Hz) on a semilog plot). (Hint: help semilogx)

```
omega = 2*pi*FreqVect;
figure(7); clf;
subplot(2,1,1)
%[Draw magnitude here]

semilogx(FreqVect,MagnitudeDB)
title(sprintf('Group %d - Magnitude Plot', GroupeNum));

grid on
subplot(2,1,2)
%[Draw Phase here]

semilogx(FreqVect,PhaseDeg)
title(sprintf('Group %d - Phase Plot', GroupeNum));
grid on
```


Question 5 (1.0 mark)

From the Bode plot, measure the DC gain.

DC gain = 27.6; % we got this value from taking the first point of the magnitude plot.

Question 6 (1.0 mark)

From the Bode plot, measure the cut-off frequency (Frequency at which the magnitude drops by a factor of $-20\log_{10}\left(\frac{1}{\sqrt{2}}\right)$ = -3 (dB) from the DC gain).

w cutoff = 2*pi*0.6; % we found the cutoff frequency from the graph.

Question 7 (1.5 mark)

For a first order system the transfer function is expressed by

$$H = \frac{DC_{gain}}{1 + \frac{S}{W_{cutoff}}}$$

· Write the transfer function of the identified DC Motor.

```
s = tf('s');
H = DC_gain/(1+(s/w_cutoff))
```

```
H =

95.38

-----
s + 3.456
```

Continuous-time transfer function.

• Complete the code to superpose the experimental bode plot with the bode plot of the identified transfer function.

```
H_Freq = squeeze(freqresp(H, omega, 'rad/s'))';

H_MagnitudeDB = 20*log10(abs(H_Freq)); % find magnitude in db
H_PhaseDeg = -angle(H_Freq)*(180/pi); % find phase in degrees

figure(8)
subplot(211)
semilogx(omega, [MagnitudeDB; H_MagnitudeDB])
grid on
subplot(212)
semilogx(omega, [PhaseDeg; H_PhaseDeg])
grid on
```


• How accurate is the point-by-point bode plot for high frequencies? Comment on your results.

% The point by point magnitude bode plot is somewhat accurate because of our DC gain and

% cutoff frequency; with some discrepancy possibly due to artimetic error.

% Moreover, the phase plot seems relatively accurate with some inconsistency.