Part B: Multiple Choice

INSTRUCTIONS: Choose the best answer to each of the following questions. Fill in the appropriate circle on the scantron sheet with a pencil AND circle your answer in the booklet. You may keep this booklet when the exam concludes. There are 13 multiple choice problems.

1. Evaluate the following limit:

$$\lim_{x \to 7} \frac{-x - 7}{\left(x - 7\right)^2}.$$

- (a) ∞
- (b) $\frac{1}{14}$
- (c) 14
- (d) $-\infty$ ***
- (e) 0

- 2. For which value(s) of the constant k will the function $f(x) = \frac{(x+8)(x-k)}{(x-9)(x+2)^2}$ have **exactly one** vertical asymptote (i.e., infinite discontinuity)?
 - (a) There are no such values of k.
 - (b) k = -8 only
 - (c) k = -2 only
 - (d) k = 9 or k = -2
 - (e) k = 9 only ***

3. Evaluate the following limit:

$$\lim_{x \to -2} \frac{|-2x - 8| - 4}{x + 2}.$$

- (a) 0
- (b) -4
- (c) 2 ***
- (d) $\frac{3}{2}$
- (e) ∞

- 4. Which of the following statements is **FALSE**?
 - (a) $\lim_{x \to \infty} \frac{1}{x^2} = 0$
 - (b) $\lim_{x \to -\infty} \frac{1}{(x-4)^3} = 0$
 - (c) $\lim_{x \to \infty} \frac{1}{(x-4)^6} = 0$
 - (d) $\lim_{x \to -\infty} \frac{-x}{\sqrt{9x^2 + 4}} = \frac{1}{3}$
 - (e) $\lim_{x \to \infty} \frac{-x}{\sqrt{9x^2 + 4}} = \frac{1}{3} ***$

- 5. Consider $h(x) = \frac{1}{2}\sin(2x) + \frac{2}{x}$. Which of the following is equal to h'(x)?
 - (a) $\cos(2x) 2$
 - (b) $2x\cos(x^2) \frac{2}{x^2}$
 - (c) $2\cos(2x) + \frac{2-x}{x^2}$
 - (d) $2\cos(x) + 2\ln(x)$
 - (e) $\cos(2x) \frac{2}{x^2}$ ***

6. Let

$$f(x) = \frac{\ln(x)}{e^x}.$$

Which of the following equals f'(x)?

- (a) $e^x \ln(x) + \frac{e^x}{x}$
- (b) $\frac{\frac{e^x}{x} \ln(x)e^x}{e^{2x}}$ ***
- (c) xe^x
- (d) $\frac{e^x}{x} + xe^{x-1}\ln(x)$
- (e) $\frac{e^x}{x} xe^{x-1}\ln(x)$

- 7. Let f(x) be a function that is differentiable for all values of x. The equation of the tangent line of f at the point x=2 is y=5x-4. Which of the following statements is **TRUE**?
 - (a) f(2) = 5 and f'(2) = 6
 - (b) f(2) = -4 and f'(2) = 5
 - (c) f(2) = 5 and f'(2) = -4
 - (d) f(2) = 6 and f'(2) = 5 ***
 - (e) There is not enough information given to determine the values of f(2) and f'(2).

8. Suppose f(x) is continuous for all values of x and

$$f(1) = 1$$
, $f(3) = 4$, $f(5) = 6$, and $f(7) = -1$.

On which of the following intervals does the Intermediate Value Theorem guarantee that there exists a number c such that f(c)=0?

- (a) (1,6)
- (b) (-1,6)
- (c) (1,4)
- (d) (3,5)
- (e) (5,7) ***

9. Let a be a constant and let f(x) be a function with domain $(-\infty, \infty)$. Assume that f satisfies

$$\lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x - 2} = 4 + a, \quad \text{and} \quad \lim_{x \to 2^{+}} \frac{f(x) - f(2)}{x - 2} = 9.$$
 (1)

Which of the following statements is TRUE?

- (a) $f'(2) = \frac{a+4}{9}$.
- (b) If $a \neq 5$, then f is not continuous at x = 2.
- (c) If a = 5, then f'(2) = 9.***
- (d) If a = 5, then f'(x) = 9 for all values of x.
- (e) f'(2) does not exist for all values of a.

10. Consider the function

$$f(x) = \begin{cases} \frac{(x+2)(x+3)}{(x-2)(x+1)} & \text{if } x \ge -3\\ 5 & \text{if } x < -3. \end{cases}$$

Which of the following statements is FALSE?

- (a) f has a removable discontinuity at x=-1
- (b) f has an infinite discontinuity at x=2
- (c) f is continuous at x = 3
- (d) f has a jump discontinuity at x = -3
- (e) For every number N such that f(1) < N < f(0), there exists a number c in the interval (0,1) such that f(c) = N.

- 11. What is the slope of the tangent line to the curve $x^3 + 4xy + 2y^2 = 17$ at the point (1,2)?
 - (a) $-\frac{11}{12}$ ***
 - (b) $\frac{9}{14}$
 - (c) $\frac{11}{15}$
 - (d) 0
 - (e) $-\frac{15}{14}$

- 12. Let $f(x) = e^3 + x^2 + x^3 + 3^x$. Which of the following is the derivative of f(x)?
 - (a) $3e^2 + \ln(3)3^x + 3x^2 + xx^{x-1}$
 - (b) $3^x \ln(3) + 3x^2 + x^x (\ln(x) + 1)$ ***
 - (c) $3^x + 3x^2 + \ln(x)x^x + x^x$
 - (d) $3^x + 3x^2 + \ln(x)x^x$
 - (e) $e^3 + \ln(3)3^x + 3x^2 + x^x$

- 13. Consider $f(x) = e^{x^2}$ on the domain $[0, \infty)$. Which of the following is equal to $(f^{-1})'(e^{16})$?
 - (a) $\frac{1}{4e^4}$
 - (b) $4e^4$
 - (c) $\frac{1}{(e^{-16})(2xe^{x^2})}$
 - (d) $\frac{1}{8e^{16}}$ ***
 - (e) $(f^{-1})'(e^{16})$ does not exist.

Extra page for rough work. This page will not be graded.

Extra page for rough work. This page will not be graded.