TC4006BP 18-STAGE STATIC SHIFT REGISTER

TC4006BP is static shift register of 18 bits maximum which consists of two 4 bit shift registers and two 5 bit shift registers, and the clock is supplied from the common $\overline{\text{CLOCK}}$ input for all the shift registers, Since 5 bit shift register is provided with 4 bit output $D_{\text{n}}+4$ in addition to serial data output $D_{\text{n}}+5$, the shift register with arbitrary number of stages of 4,5,8,9,10,12,13,14,16,17 and 18 can be obtained by the combination of inputs and outputs of 4 bit and 5 bit shift registers.

Each register is shifted by the falling edge of CLOCK.

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT		
DC Supply Voltage	v_{DD}	Vss-0.5~Vss+20	V		
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V		
Output Voltage	VOUT	V _{SS} -0.5 ~ V _{DD} +0.5	v		
DC Input Current	IIN	±10	mA		
Power Dissipation	PD	300	Wm		
Operating Ambient Temperature Range	TA	-40 ~85	°C		
Storage Temperature Range	Tstg	-65 ∼150	°C		
Lead Temp./Time	T _{so1}	260°C · 10sec			

PIN ASSIGMENT

LOGIC DIAGRAM

TRUTH TABLE (SINGLE STAGE)

Dn	CLOCK	D _n +1
L	7_	L
Н	7_	Н
*		$D_{\mathbf{n}}$
* I	on't care	

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	TEST CONDITION	· MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}		3	-	18	v
Input Voltage	VIN		0	_	VDD	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTERICT	SVM.	THE CONDITION		-40°C		25°C			85°C		UNIT	
CHARACTERISTIC BOL	TEST CONDITION	(v)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT		
High-Level Output Voltage		I _{OUT} < 1.4A	5	4.95	-	4.95	5.00	-	4.95	-		
	_e v _{oi}	1	10	9.95	-	9.95	10.00	-	9.95	-		
		V _{IN} =V _{SS} ,V _{DD}	15	14.95	-	14.95	15.00	_	14.95	_] v	
Low-Level Output Voltage		IOUT < LuA	5	-	0.05	-	0.00	0.05	-	0.05]	
	v _{O1}		10	-	0.05	-	0.00	0.05	-	0.05		
		V _{IN} =V _{SS} ,V _{DD}	15	-	0.05	-	0.00	0.05	-	0.05		
		VOH=4.6V	5	-0.61	-	-0.51	-1.0	_	-0.42	-		
		VOH=2.5V	5	-2.5	-	-2.1	-4.0	_	-1.7	-		
Output High Current	IOI	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	-		
		V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	_	-2.8	-		
		V _{IN} =V _{SS} ,V _{DD}									mA	
Output Low		V _{OL} =0.4V	5	0.61	-	0.51	1.5	_	0.42	-		
	101	V _{OL} =0.5V	10	1.5	. –	1.3	3.8	-	1.1	-		
Current	1 20,	V _{OL} =1.5V	15	4.0	_	3.4	15.0	-	2.8	-		
		VIN=VSS, VDD										
		VOUT=0.5V,4.5V	5	3.5	-	3.5	2.75	-	3.5	-		
Input High	VII	V _{OUT} =1.0V,9.0V	10	7.0	-	7.0	5.5	-	7.0	-		
Voltage	1,11	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-		
		$ I_{OUT} < 1\mu A$,				v	
		Vour=0.5V,4.5V	5	-	1.5	-	2.25	1.5	-	1.5		
Input Low	V _I	V _{OUT} =1.0V,9.0V	10	- 1	3.0	-	4.5	3.0	+	3.0		
Voltage	'	V _{OUT} =1.5V,13.5V	15	-	4.0	` -	6.75	4.0	-	4.0		
		I _{OUT} < 1μA										
		VIH=18V	18	-	0.1	-	10-5	0.1	-	1.0	μA	
Current "L" Le	evel II	VIL=OV	18	-	-0.1	-	- 10-5	-0.1	-	-1.0	μπ	
			5	-	5	-	0.005	5	-	150		
Quiescent Devi Current	IDI	V _{IN} =V _{SS} ,V _{DD}	10	_	10	-	0.010	10	-	300	μA	
		*	15	-	20		0.015	20		600		

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

UNIT
ns
115
ns
MHz
ns
μS
ns
ns
pF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.