Rachunek prawdopodobieństwa i statystyka

Uwaga do wykładu z 16 marca

Poniżej – objaśnienie (chaotycznego) fragmentu wykładu.

	Zmienna losowa	MGF
	X	$M_X(t)$
(W1)	Y = X + b $T = aX$	$M_Y(t) = e^{tb} M_X(t)$
(W2)	T = aX	$M_X(at)$

Zastosowanie. Załóżmy że $X \sim N(\mu, \sigma^2)$. Pytamy, jaki jest rozkład $\frac{X - \mu}{\sigma}$, to znaczy rozkład zmiennej $\frac{X}{\sigma} - \frac{\mu}{\sigma}$.

Zmienna losowa	MGF
X	$M_X(t) = \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)$
$Y = \frac{X}{\sigma}$	$M_Y(t) \stackrel{\mathrm{W2}}{=} \dots$ $M_Z(t) \stackrel{\mathrm{W1}}{=} \dots$
$Z = \overset{o}{Y} - \frac{\mu}{\sigma}$	$M_Z(t) \stackrel{\mathrm{W1}}{=} \dots$

Witold Karczewski