

⁰²O Principio de Pascal e Lei de Stevin

João Medeiros UFRN/DFTE

Estrutura da aula

Objetivos
Principio de Pascal
Lei de Stevin
Experimento

Objetivos

- Verificação do princípio de Pascal e da Lei de Stevin.
- Determinação da densidade de líquidos imiscíveis.

Princípio de Pascal

"A pressão aplicada sobre a superfície de um fluido fechado é transmitida sem diminuição a todos os pontos do fluido".

(3) Atuando sobre um pistão de área ampla, a pressão cria uma força capaz de sustentar um carro. (1) Uma pequena força é aplicada a um pistão F. com uma área pequena. PA_2 PA_1 (2) A pressão P tem o mesmo valor em todos os pontos à mesma altura no interior do fluido (lei de Pascal).

Figura 14.8 O elevador hidráulico é uma aplicação da lei de Pascal. Para maior clareza, o tamanho do recipiente que contém o fluido está exagerado.

Lei de Stevin

"A diferença de pressão entre dois pontos 1 e 2 em um fluido em repouso, de densidade uniforme ρ , é proporcional à diferença entre as alturas y_1 e y_2 ".

$$P_2 - P_1 = -\rho g(y_2 - y_1)$$

A uma profundidade h, a pressão P é igual à pressão de superfície P_0 mais a pressão ρgh devido ao fluido sobreposto:

 $P = P_0 + \rho g h.$

A diferença de pressão entre os níveis 1 e 2: $P_2 - P_1 = -\rho g(y_2 - y_1)$

A pressão é maior no nível mais baixo.

Figura 14.6 Como a pressão varia com a profundidade em um fluido com densidade uniforme.

Lei de Stevin

Podemos então dizer que a diferença de pressão entre dois pontos de uma coluna líquida é diretamente proporcional ao desnível, isto é, a altura entre esses pontos.

$$P_2 - P_1 = -\rho g(y_2 - y_1)$$

A pressão no topo de cada coluna de líquido é a pressão atmosférica, P₀.

A pressão na base de cada coluna de líquido possui o mesmo valor P.

A diferença entre P e P₀ é ρgh, onde h é a distância do topo à base da coluna de líquido. Logo, todas as colunas apresentam a mesma altura.

Figura 14.7 Todas as colunas de fluido apresentam a mesma altura, independentemente de sua forma.

Atividade 01

 a) Determine a alturas da colunas de óleo e água.

$$h_a(\mathsf{cm}) = ; h_o(\mathsf{cm}) =$$

b) Aplique a Lei de Stevin nos dois lados do tubo em U para mostrar que:

$$\frac{d_o}{d_a} = \frac{h_a}{h_o}.$$

c) Determine a densidade absoluta do óleo d_o .

DEPOIS ANTES fles La Agua