

HOUSE PRICES BY REGRESSION

Master M1 – 2023/2024

Hands-On Machine Learning: Scikit-Learn

Pablo Mollá, Chen Junjie and Pavlo Poliuha

AGENDA

- 1. INTRODUCTION
- 2. DATA ANALYSIS
- 3. DATA PREPROCESSING
- 4. DATASET SPLIT
- 5. MODELS + IMPLEMENTATION
- 6. METRIC'S EVALUATION
- 7. RESULTS

AMES HOUSING DATASET: AMERICAN STATISTICAL ASSOCIATION

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape			
0	1	60/	RL)	65.0	8450	Pave	NaN	Reg			
1	2	20/	RI	80.0	9600	Pave	NaN	Reg			
2	3	60)	RL	68.0	11250	Pave	NaN	IR1			
3	4	70	RL	60.0	9550	Pave	NaN) IR1			
4	5	60	RL	84.0	14260	Pave	NaN	IR1			
5	6	50	RL	85.0	14115	Pave	NaN	iR1			
6	7	20	RL	75.0	10084	Pave	NaN	Reg			
7	8	60	RL	NaN	10382	Pave	NaN	IR1			
8	9	50	RM	51.0	6120	Pave	NaN	Reg			
9	10	190	RL	50.0	7420	Pave	NaN	Reg			
10 rows × 81 columns											

MACHINE LEARNING ALGORITHMS:

- 1. LINEAR REGRESSION
- 2. POLYNOMIAL REGRESSION
- 3. RIDGE REGRESSION
- 4. LASSO REGRESSION
- RANDOM FOREST
- 6. SUPPORT VECTOR MACHINE (SVM)

DATA CLEANING

NUMERICAL FEATURE
SELECTION
DROPPING NAN VALUES

DATA ANALYSIS

Complete Correlation Matrix

SNS + MATPLOTLIB

Probability Plot of SalePrice & GrvLivArea

Top 15 Correlated Features with Target Value

Graph Analysis Top 5 Correlated Features with Target Value Histogram of SalePrice & GrvLivArea

CORRELATION MATRIX OF THE NUMERICAL VAI UFS

MOST CORRELATED FEATURES WITH "SALEPRICE"

TOP 15 CORRELATED FEATURES:

- Overall Quall
- GrLivArea

- 0.8

- 0.2

- TotRmsAbvGrd
- GarageCars
- GarageArea
- FullBath
- 1stFlrSF

- TotalBsmtSF
- YearBuilt
- MasVnrArea
- Fireplaces
- YearRemodAdd
- LotArea
- BsmtFinSF1

GRAPH ANALYSIS:

TOP 5 MOST CORRELATED FEATURES WITH SALEPRICE

DATA PREPROCESSING

STANDARDIZATION

LOGARITHM APPLICATION

LOGARITHM APPLICATION

Before / After

LOGARITHM APPLICATION

TRAINING / TEST SPLIT

Train Dataset

896 instances

Test Dataset

225 instances

Cross Validation K=5 Folds

RANDOM FOREST FEATURE SELECTION

By iteratively screening different features, I found that when removing the feature with the least importance, the performance of the model increased through R2 analysis.

METRICS EVALUATION

$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(X_i - \hat{X}_i)^2} \qquad \qquad R^2 = 1 - \frac{SS_{res}}{SS_{tot}} = 1 - \frac{\sum_{i=1}^{n}(X_i - \hat{X}_i)^2}{\sum_{i=1}^{n}(X_i - \bar{X})^2}$$

$$R^2 = 1 - rac{SS_{res}}{SS_{tot}} = 1 - rac{\sum_{i=1}^{n}(X_i - X_i)^2}{\sum_{i=1}^{n}(X_i - ar{X})^2}$$

	Linear	Polynomial	Ridge	Lasso	Random Forrest	SVM
Train RMSE	0.1595	0.1205	0.1604	0.1597	0.0565	0.1080
Test RMSE	0.1548	0.1628	0.1539	0.1539	0.1493	0.1400
Train R2	0.8346	0.9094	0.8393	0.8407	0.9800	0.9272
Test R2	0.8412	0.8169	0.8365	0.8365	0.8460	0.8616

MODELS PERFORMANCE

SUMMARY

In conclusion, the project was performed by following a checklist of steps for implementing an ML task. We chose several regression models and evaluated their metrics. As a result, the close R2 scores between training and testing sets indicate strong predictive performance across models, particularly the SVM, which demonstrates notable generalization

