$$g \bullet \% \bullet \bullet \} \% \bullet \{ \% \langle \check{Z} h^{-} \ddagger \} \check{Z}$$

g • ‰ ... † y Ž p (Î y Ž

j}... }‡‡x •..."

j}... }‡‡x •..."

j}... } ‡ ‡ x • ... "

j}... }‡‡x •..."

j}... }‡‡x •... "

g ™ † ‡ ⟨Ž ⟨‡ y

```
g^{\mathsf{TM}} \uparrow \downarrow \langle \check{\mathsf{Z}} \langle \% \langle \hat{\mathsf{x}}, \bullet \bullet \rangle \dots \langle \bullet \bullet \bullet \hat{\mathsf{n}} \bullet \bullet \bullet \dots \uparrow \tilde{\mathsf{Z}} \bullet \tilde{\mathsf{CE}} \langle \check{\mathsf{Z}} \bullet \bullet \% \bullet f \hat{\mathsf{n}} \bullet \mathsf{CE} \dots \mathsf{CE} \mathsf{y} \in \langle \hat{\mathsf{Z}} \bullet \bullet \hat{\mathsf{m}} \bullet f \hat{\mathsf{n}} \bullet \mathsf{CE} \dots \mathsf{CE} \mathsf{y} \in \langle \hat{\mathsf{Z}} \bullet \bullet \hat{\mathsf{m}} \bullet f \hat{\mathsf{n}} \bullet \mathsf{CE} \dots \mathsf{CE} \mathsf{y} \in \langle \hat{\mathsf{Z}} \bullet \bullet \hat{\mathsf{m}} \bullet f \hat{\mathsf{n}} \bullet \mathsf{CE} \wedge \mathsf{CE} \wedge
```

$m x^{\bullet}$

p... } ' • ~ z • } % "

$m x^{\bullet}$

'7' ° (7(° {°

$m x^{\bullet}$

p... } '•~ z•} % "

l i ⟨‰ } € ... } { ⟨ Ž

p ... y ^ • ... ‰ • "

f € ... ~• f •• Ž † ™ † ‡ ‹ '

```
} † • { % }
p < + v % • • < • < ' + TM + ‡ < ' OE < ' < • { , • • •} f. . • { QE ° { % } ... • <
p ⟨ } CE ~ • • f ^ } • { ‰ } ... ^ • • ⟨ † x " • • ⟨ • f Ž " ⟨ • € z Ž
p ( † y ‰ • • ( ) CE y " • ... ) CE ~ • f ‰ • ' ) CE • ~ ^ • ‰ f ~ • ( f ) †
W \% \} \bullet f \bullet \{ \langle \bullet \{ \% \} \dots y \check{S} \bullet \land y \bullet \} Z \} \% Z \dagger \bullet \dots \bullet \} \%
a™(†™†‡(...^••}Š™•('Ž
a ™ † ‡ ⟨Ž † } ... • ' " • { }
```

```
d \bullet ' \} OE \bullet ( ^\circ y \% f \bullet ( ^\circ \bullet \bullet y \% ) \bullet f ^\bullet \{ ( \bullet \{ \% \} ... \bullet | x \bullet, \{ \bullet \bullet f \bullet \} ) \}
} † • { % }
p ⟨ } CE ~ • • f ^ } • { ‰ } ... ^ • • ⟨ † x " • • ⟨ • f Ž " ⟨ • € z Ž
p ( † y ‰ • • ( ) CE y " • ... ) CE ~ • f ‰ • ' ) CE • ~ ^ • ‰ f ~ • ( f ) †
W \% \} \bullet f ^{\bullet} \{ ( \bullet \{ \% \} ... \lor \check{S} \bullet ^{\bullet} \lor \bullet \} z \} \% z + \bullet ... ^{\bullet} \} \%
a™(†™†‡(...^••}Š™•('Ž
a ™ + ± ⟨Ž + } ... • ' ... • { }
```

```
d \bullet ' \} OE \bullet ( ^\circ y \% f \bullet ( ^\circ \bullet \bullet y \% ) \bullet f ^\bullet \{ ( \bullet \{ \% \} ... \bullet | x \bullet, \{ \bullet \bullet f \bullet \} ) \}
 } + • { % }
 p \in CE^{\bullet} \bullet f^{\bullet} \bullet
 p < † y ‰ • • < } OE y " • ... } OE ~ • f ‰ • ' } OE • ~ ^ • ‰ f ~ • < f } †
W \% \} \bullet f ^{\bullet} \{ ( \bullet \{ \% \} ... \lor \check{S} \bullet ^{\bullet} \lor \bullet \} z \} \% z + \bullet ... ^{\bullet} \} \%
 a™(†™†‡(...^••}Š™•('Ž
 a ™ + ± ⟨Ž + } ... • ' ... • { }
```

```
d \bullet ' \} OE \bullet ( ^\circ y \% f \bullet ( ^\circ \bullet \bullet y \% ) \bullet f ^\bullet \{ ( \bullet \{ \% \} ... \bullet | x \bullet, \{ \bullet \bullet f \bullet \} ) \}
} + • { % }
\mathsf{D} \leftarrow \mathsf{T} \lor \mathsf{W} \bullet \bullet \leftarrow \mathsf{C} \leftarrow \mathsf{C} \leftarrow \mathsf{T} \mathsf{M} + \mathsf{T} \leftarrow \mathsf{CE} \leftarrow \mathsf{
p \in CE^{\bullet} \bullet f^{\bullet} \bullet
p < † y ‰ • • < } OE y " • ... } OE ~ • f ‰ • ' } OE • ~ ^ • ‰ f ~ • < f } †
W \% \} \bullet f ^{\bullet} \{ \langle \bullet \{ \% \} ... \ \forall \mathring{S} \bullet ^{\bullet} \lor \bullet \} \ z \ \} \% z + \bullet ... ^{\bullet} \} \%
a™(†™†‡(...^••}Š™•('Ž
a ™ + ± ⟨Ž + } ... • ' ... • { }
```

```
d \bullet ' \} OE \bullet ( ^\circ y \% f \bullet ( ^\circ \bullet \bullet y \% ) \bullet f ^\bullet \{ ( \bullet \{ \% \} ... \bullet | x \bullet, \{ \bullet \bullet f \bullet \} ) \}
} + • { % }
\mathsf{D} \leftarrow \mathsf{T} \lor \mathsf{W} \bullet \bullet \leftarrow \mathsf{C} \leftarrow \mathsf{C} \leftarrow \mathsf{T} \mathsf{M} + \mathsf{T} \leftarrow \mathsf{CE} \leftarrow \mathsf{
p \in CE^{\bullet} \bullet f^{\bullet} \bullet
p < † y ‰ • • < } OE y " • ... } OE ~ • f ‰ • ' } OE • ~ ^ • ‰ f ~ • < f } †
W \% \} \bullet f ^{\bullet} \{ \langle \bullet \{ \% \} \dots \vee \check{S} \bullet ^{\bullet} \vee \bullet \} z \} \% z \dagger \bullet \dots ^{\sim} \} \%
a^{TM} \leftarrow \uparrow^{TM} \uparrow \downarrow^{\downarrow} \leftarrow \dots \uparrow^{\bullet \bullet} \rbrace \check{S}^{TM} \bullet \leftarrow \check{Z}
a ™ + ± ⟨Ž + } ... • ' ... • { }
```

f € ... ~• f •• Ž † ™ † ‡ ‹ '

```
d \bullet ' \} OE \bullet ( ^\circ y \% f \bullet ( ^\circ \bullet \bullet y \% ) \bullet f ^\bullet \{ ( \bullet \{ \% \} ... \bullet | x \bullet, \{ \bullet \bullet f \bullet \} ) \}
} + • { % }
\mathsf{D} \leftarrow \mathsf{T} \lor \mathsf{W} \bullet \bullet \leftarrow \mathsf{C} \leftarrow \mathsf{C} \leftarrow \mathsf{T} \mathsf{M} + \mathsf{T} \leftarrow \mathsf{CE} \leftarrow \mathsf{
p \in CE^{\bullet} \bullet f^{\bullet} \bullet
p < † y ‰ • • < } OE y " • ... } OE ~ • f ‰ • ' } OE • ~ ^ • ‰ f ~ • < f } †
W \% \} \bullet f \bullet \{ \langle \bullet \{ \% \} \dots \lor \check{S} \bullet \land \lor \bullet \} z \} \% z \dagger \bullet \dots \bullet \} \%
a^{TM} \leftarrow \uparrow^{TM} \uparrow \downarrow \leftarrow \dots \uparrow^{\bullet \bullet} \end{cases} \check{S}^{TM} \bullet \leftarrow \check{Z}
a ™ † ± ⟨Ž † } ... • ' .. • { }
```

```
d \bullet'} OE \bullet \land \land \lor \% f \bullet \land \land \bullet \lor \lor \% \rbrace \bullet f \land \bullet \lbrace \land \bullet \land \lor \% \rbrace \dots + \uparrow \land , \lbrace \bullet \bullet f \bullet \lor \land \lor \lor \% \rbrace 
} + • { % }
\mathsf{D} \leftarrow \mathsf{T} \lor \mathsf{W} \bullet \bullet \leftarrow \mathsf{C} \leftarrow \mathsf{C} \leftarrow \mathsf{T} \mathsf{M} + \mathsf{T} \leftarrow \mathsf{CE} \leftarrow \mathsf{
p \in CE^{\bullet} \bullet f^{\bullet} \bullet
p < † y ‰ • • < } OE y " • ... } OE ~ • f ‰ • ' } OE • ~ ^ • ‰ f ~ • < f } †
W \% \} \bullet f \bullet \{ \langle \bullet \{ \% \} \dots \lor \check{S} \bullet \land \lor \bullet \} z \} \% z \dagger \bullet \dots \bullet \} \%
a ^{\text{TM}} ( ^{\text{TM}} ^{\text{TM}} ^{\text{TM}} ^{\text{O}} ... ^{\text{O}} ^{\text{O}} ^{\text{O}} ^{\text{O}} ^{\text{O}} ^{\text{O}}
a ™ + ± ⟨Ž + } ... • ' .. • { }
```

```
d \bullet'} OE \bullet \land \land \lor \% f \bullet \land \land \bullet \lor \lor \% \rbrace \bullet f \land \bullet \lbrace \land \bullet \land \lor \% \rbrace \dots + \uparrow \land , \lbrace \bullet \bullet f \bullet \lor \land \lor \lor \% \rbrace 
} + • { % }
\mathsf{D} \leftarrow \mathsf{T} \lor \mathsf{W} \bullet \bullet \leftarrow \mathsf{C} \leftarrow \mathsf{C} \leftarrow \mathsf{T} \mathsf{M} + \mathsf{T} \leftarrow \mathsf{CE} \leftarrow \mathsf{
p \in CE^{\bullet} \bullet f^{\bullet} \bullet
p < † y ‰ • • < } OE y " • ... } OE ~ • f ‰ • ' } OE • ~ ^ • ‰ f ~ • < f } †
W \% \} \bullet f \bullet \{ \langle \bullet \{ \% \} \dots \lor \check{S} \bullet \land \lor \bullet \} z \} \% z \dagger \bullet \dots \bullet \} \%
a ^{\text{TM}} ( ^{\text{TM}} ^{\text{TM}} ^{\text{TM}} ^{\text{O}} ... ^{\text{O}} ^{\text{O}} ^{\text{O}} ^{\text{O}} ^{\text{O}} ^{\text{O}}
a ™ + ± ⟨Ž + } ... • ' .. • { }
```

b'}Υ~^•‰ f

^ Œ~€•.

$$Z$$
 "... $OE x ‰ •$ } • • $f ‰ y • < ... ^f ^ < • 'z$

^OE~ۥ.A.\$

b Š x • † f • f

```
j} ~••{•••f ‰ •Š{•••f •‹' † ™ Œ‡ { 'y " • ... † y ‰ ••· ⟨ • f ‰ 
••‰ } Š~‰•‰ † } ...
y " • ... } † • { ‰ }
€ ... y • " • • } ... } Œ~ • ⟨ • f7^ • { ⟨ 
• ' × Œ ••• } ... • f Ž • 'f, • ℚ } Ž ( 7
```

b Š x • † f • f

```
j } ~••{•••f ‰ •Š{•••f •‹'+ ™ Œ‡''y"•...+y‰••··•f ‰
••‰ } Š~‰•‰+}...
y"•...}+•{‰}
€...y•"••}...} Œ~•‹•ff^•{‹
```

Δίνονται οι κύκλοι

$$C_1: x^2 + y^2 + 2x + 6y + 1 = 0$$

και

$$C_2: x^2 + y^2 - 4x - 2y + 1 = 0$$

- Να δείξετε ότι οι κύκλοι C_1 και C_2 εφάπτονται εξωτερικά
- Να βρείτε το σημείο επαφής των δύο κύκλων
- Βρείτε την κοινή εσωτερική εφαπτόμενη των κύκλων

Λόλας Κύκλος 30/41

Δίνεται η οικογένεια κύκλων

$$C_{\lambda}: x^2 + y^2 - 4\lambda x + 2\lambda y - 5 = 0, \lambda \in \mathbb{R}$$

- Να δείξετε ότι όλοι οι κύκλοι που ορίζονται από την εξίσωση, διέρχονται από δύο σταθερά σημεία
- ² Να βρείτε την κοινή χορδή όλων των κύκλων που ορίζονται από την εξίσωση

Λόλας Κύκλος 31/41

Δίνεται η οικογένεια κύκλων

$$C_{\lambda}: x^2 + y^2 - 4\lambda x + 2\lambda y - 5 = 0, \lambda \in \mathbb{R}$$

- Να δείξετε ότι όλοι οι κύκλοι που ορίζονται από την εξίσωση, διέρχονται από δύο σταθερά σημεία
- 2 Να βρείτε την κοινή χορδή όλων των κύκλων που ορίζονται από την εξίσωση

Λόλας Κύκλος 31/41

Δίνεται η εξίσωση $x^2+y^2-2\lambda x-2\lambda y+4\lambda-2=0, \lambda\in\mathbb{R}$

- ¹ Να βρείτε τις τιμές του λ , για τις οποίες η εξίσωση παριστάνει κύκλο
- 2 Να δείξετε ότι όλοι οι παραπάνω κύκλοι διέρχονται από ένα σταθερό σημείο, το οποίο και να βρείτε

Λόλας Κύκλος 32/41

Δίνεται η εξίσωση $x^2+y^2-2\lambda x-2\lambda y+4\lambda-2=0, \lambda\in\mathbb{R}$

- ¹ Να βρείτε τις τιμές του λ , για τις οποίες η εξίσωση παριστάνει κύκλο
- 2 Να δείξετε ότι όλοι οι παραπάνω κύκλοι διέρχονται από ένα σταθερό σημείο, το οποίο και να βρείτε

Λόλας Κύκλος 32/41

Να βρείτε την εξίσωση του κύκλου C, όταν ισχύουν:

η ευθεία $\varepsilon:y=-2x$ τέμνει τον κύκλο στα σημεία ${\rm A}(3,1)$ και ${\rm B}$ ο κύκλος C διέρχεται από το σημείο ${\rm \Gamma}(-1,0)$ $\overline{{\rm \Gamma} {\rm A}}\cdot\overline{{\rm \Gamma} {\rm B}}=0$

Λόλας Κύκλος 33/41

Δίνεται ο κύκλος $C:(x-2)^2+(y-1)^2=9$. Να βρείτε την εξίσωση της χορδής του κύκλου που διέρχεται από το σημείο ${\rm A}(4,2)$ και έχει μήκος $2\sqrt{5}$

Λόλας Κύκλος 34/41

Να δείξετε ότι οι εφαπτόμενες που φέρνουμε στον κύκλο $C: x^2+y^2=5$ από το σημείο $\mathrm{A}(1,3)$ είναι κάθετες

Λόλας Κύκλος 35/41

Δίνονται τα σημεία A(2,0) και B(-2,4). Να βρείτε το γεωμετρικό τόπο των σημείων M, για τα οποία ισχύει:

- ¹ $\overrightarrow{\text{MA}} \perp \overrightarrow{\text{MB}}$
- 2 $\widehat{AMB} = 90^{\circ}$

Λόλας Κύκλος 36/41

Δίνονται τα σημεία A(2,0) και B(-2,4). Να βρείτε το γεωμετρικό τόπο των σημείων M, για τα οποία ισχύει:

- ¹ $\overrightarrow{MA} \perp \overrightarrow{MB}$
- 2 $\widehat{AMB} = 90^{\circ}$

Λόλας Κύκλος 36/41

Να βρείτε το γεωμετρικό τόπο των σημείων \mathbf{M} , των οποίων το τετράγωνο της απόστασης από το σημείο $\mathbf{A}(0,1)$ είναι ίσο με το διπλάσιο της απόστασης από την ευθεία $\varepsilon:y=\frac{3}{2}$

Λόλας Κύκλος 37/41

Να βρείτε που κινείται το σημείο $\mathrm{M}(3+2\eta\mu\theta,1+2\sigma\upsilon\nu\theta)$, $\theta\in[0,2\pi)$

Λόλας Κύκλος 38/41

Δίνεται ο κύκλος $C:(x-1)^2+y^2=4$. Αν το σημείο $\mathbf A$ κινείται στον κύκλο C με κέντρο το $\mathbf K$, να βρείτε που κινείται το σημείο $\mathbf M$, για το οποίο ισχύει:

$$\overrightarrow{MA}=3\overrightarrow{KA}$$

Λόλας Κύκλος 39/41

Δίνεται ο κύκλος $C:(x-2)^2+(y-1)^2=9$

- 1 Να βρείτε τη μέγιστη απόσταση που μπορούν να απέχουν δύο σημεία του κύκλου ${\cal C}$
- ² Να βρείτε τη σχετική θέση του σημείου A(1,2) ως προς τον κύκλο και μετά τη μέγιστη και την ελάχιστη απόσταση του σημείου A από ένα σημείο του κύκλου
- ³ Να βρείτε τη σχετική θέση της ευθείας $\varepsilon: 3x + 4y + 18 = 0$ ως προς τον κύκλο C και μετά τη μέγιστη και την ελάχιστη απόσταση ενός σημείου του κύκλου C από την ευθεία ε

Λόλας Κύκλος 40/

Δίνεται ο κύκλος $C:(x-2)^2+(y-1)^2=9$

- $^{\mbox{\tiny 1}}$ Να βρείτε τη μέγιστη απόσταση που μπορούν να απέχουν δύο σημεία του κύκλου C
- 2 Να βρείτε τη σχετική θέση του σημείου A(1,2) ως προς τον κύκλο και μετά τη μέγιστη και την ελάχιστη απόσταση του σημείου A από ένα σημείο του κύκλου
- 3 Να βρείτε τη σχετική θέση της ευθείας $\varepsilon: 3x+4y+18=0$ ως προς τον κύκλο C και μετά τη μέγιστη και την ελάχιστη απόσταση ενός σημείου του κύκλου C από την ευθεία ε

Λόλας Κύκλος 40/

Δίνεται ο κύκλος $C:(x-2)^2+(y-1)^2=9$

- $^{\mbox{\tiny 1}}$ Να βρείτε τη μέγιστη απόσταση που μπορούν να απέχουν δύο σημεία του κύκλου C
- 2 Να βρείτε τη σχετική θέση του σημείου A(1,2) ως προς τον κύκλο και μετά τη μέγιστη και την ελάχιστη απόσταση του σημείου A από ένα σημείο του κύκλου
- ³ Να βρείτε τη σχετική θέση της ευθείας $\varepsilon: 3x+4y+18=0$ ως προς τον κύκλο C και μετά τη μέγιστη και την ελάχιστη απόσταση ενός σημείου του κύκλου C από την ευθεία ε

Λόλας Κύκλος 40/41

Εξάσκηση 30

Δίνονται οι κύκλοι:

$$C_1: (x-1)^2 + (y-2)^2 = 4$$

$$C_2:(x-7)^2+(y-10)^2=9$$

και

$$C_3: (x-3)^2 + (y-7)^2 = 64$$

- ¹ Να βρείτε τη σχετική θέση των κύκλων C_1 και C_2 και μετά να βρείτε τη μέγιστη και την ελάχιστη απόσταση που απέχει ένα σημείο του C_1 από ένα σημείο του C_2
- ² Να βρείτε τη σχετική θέση των κύκλων C_2 και C_3 και μετά να βρείτε τη μέγιστη απόσταση ποτ απέχει ένα σημείο του C_2 από ένα σημείο του C_3

Εξάσκηση 30

Δίνονται οι κύκλοι:

$$C_1: (x-1)^2 + (y-2)^2 = 4$$

$$C_2: (x-7)^2 + (y-10)^2 = 9$$

και

$$C_3: (x-3)^2 + (y-7)^2 = 64$$

- Nα βρείτε τη σχετική θέση των κύκλων C_1 και C_2 και μετά να βρείτε τη μέγιστη και την ελάχιστη απόσταση που απέχει ένα σημείο του C_1 από ένα σημείο του C_2
- Να βρείτε τη σχετική θέση των κύκλων C_2 και C_3 και μετά να βρείτε τη μέγιστη απόσταση ποτ απέχει ένα σημείο του C_2 από ένα σημείο του C_3

Λόλας Κύκλος 41/41 Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

Ο κύκλος με κέντρο ${\rm K}(x_0,y_0)$ και ακτίνα ρ έχει εξίσωση $(x-x_0)^2+(y-y_0)^2=\rho^2$ και έστω το σημείο του ${\rm M}(x_1,y_1)$. Έστω ${\rm A}(x,y)$ τυχαίο σημείο της εφαπτόμενης Θα ισχύει ${\rm MA}\perp{\rm KM}$

$$(x - x_1, y - y_1) \perp (x_1 - x_0, y_1 - y_0)$$

$$(x - x_1, y - y_1) \cdot (x_1 - x_0, y_1 - y_0) = 0$$

$$(x - x_1)(x_1 - x_0) + (y - y_1)(y_1 - y_0) = 0$$

$$(x - x_0 + x_0 - x_1)(x_1 - x_0) + (y - y_1 + y_1 - y_0)(y_1 - y_0) = 0$$

$$(x - x_0)(x_1 - x_0) - (x_1 - x_0)^2 + (y - y_0)(y_1 - y_0) - (y_1 - y_0)^2 = 0$$

$$(x - x_0)(x_1 - x_0) + (y - y_0)(y_1 - y_0) - \rho^2 = 0$$

$$(x - x_0)(x_1 - x_0) + (y - y_0)(y_1 - y_0) = \rho^2$$

Πίσω στη θεωρία

Ο κύκλος με κέντρο ${\rm K}(x_0,y_0)$ και ακτίνα ρ έχει εξίσωση $(x-x_0)^2+(y-y_0)^2=\rho^2$ και έστω το σημείο του ${\rm M}(x_1,y_1)$. Έστω ${\rm A}(x,y)$ τυχαίο σημείο της εφαπτόμενης Θα ισχύει ${\rm MA}\perp{\rm KM}$

$$(x-x_1,y-y_1) \perp (x_1-x_0,y_1-y_0)$$

$$(x-x_1,y-y_1) \cdot (x_1-x_0,y_1-y_0) = 0$$

$$(x-x_1)(x_1-x_0) + (y-y_1)(y_1-y_0) = 0$$

$$(x-x_0+x_0-x_1)(x_1-x_0) + (y-y_1+y_1-y_0)(y_1-y_0) = 0$$

$$(x-x_0)(x_1-x_0) - (x_1-x_0)^2 + (y-y_0)(y_1-y_0) - (y_1-y_0)^2 = 0$$

$$(x-x_0)(x_1-x_0) + (y-y_0)(y_1-y_0) - \rho^2 = 0$$

$$(x-x_0)(x_1-x_0) + (y-y_0)(y_1-y_0) = \rho^2$$

Πίσω στη θεωρία

Ο κύκλος με κέντρο ${\rm K}(x_0,y_0)$ και ακτίνα ρ έχει εξίσωση $(x-x_0)^2+(y-y_0)^2=\rho^2$ και έστω το σημείο του ${\rm M}(x_1,y_1)$. Έστω ${\rm A}(x,y)$ τυχαίο σημείο της εφαπτόμενης Θα ισχύει ${\rm MA}\perp{\rm KM}$

$$\begin{split} (x-x_1,y-y_1) \perp (x_1-x_0,y_1-y_0) \\ (x-x_1,y-y_1) \cdot (x_1-x_0,y_1-y_0) &= 0 \\ (x-x_1)(x_1-x_0) + (y-y_1)(y_1-y_0) &= 0 \\ (x-x_0+x_0-x_1)(x_1-x_0) + (y-y_1+y_1-y_0)(y_1-y_0) &= 0 \\ (x-x_0)(x_1-x_0) - (x_1-x_0)^2 + (y-y_0)(y_1-y_0) - (y_1-y_0)^2 &= 0 \\ (x-x_0)(x_1-x_0) + (y-y_0)(y_1-y_0) - \rho^2 &= 0 \\ (x-x_0)(x_1-x_0) + (y-y_0)(y_1-y_0) &= \rho^2 \end{split}$$

Πίσω στη θεωρία

Ο κύκλος με κέντρο ${\rm K}(x_0,y_0)$ και ακτίνα ρ έχει εξίσωση $(x-x_0)^2+(y-y_0)^2=\rho^2$ και έστω το σημείο του ${\rm M}(x_1,y_1)$. Έστω ${\rm A}(x,y)$ τυχαίο σημείο της εφαπτόμενης Θα ισχύει ${\rm MA}\perp{\rm KM}$

$$\begin{split} (x-x_1,y-y_1) \perp (x_1-x_0,y_1-y_0) \\ (x-x_1,y-y_1) \cdot (x_1-x_0,y_1-y_0) &= 0 \\ (x-x_1)(x_1-x_0) + (y-y_1)(y_1-y_0) &= 0 \\ (x-x_0+x_0-x_1)(x_1-x_0) + (y-y_1+y_1-y_0)(y_1-y_0) &= 0 \\ (x-x_0)(x_1-x_0) - (x_1-x_0)^2 + (y-y_0)(y_1-y_0) - (y_1-y_0)^2 &= 0 \\ (x-x_0)(x_1-x_0) + (y-y_0)(y_1-y_0) - \rho^2 &= 0 \\ (x-x_0)(x_1-x_0) + (y-y_0)(y_1-y_0) &= \rho^2 \end{split}$$

Πίσω στη θεωρία

Ο κύκλος με κέντρο ${\rm K}(x_0,y_0)$ και ακτίνα ρ έχει εξίσωση $(x-x_0)^2+(y-y_0)^2=\rho^2$ και έστω το σημείο του ${\rm M}(x_1,y_1)$. Έστω ${\rm A}(x,y)$ τυχαίο σημείο της εφαπτόμενης Θα ισχύει ${\rm MA}\perp{\rm KM}$

$$\begin{split} (x-x_1,y-y_1) \perp (x_1-x_0,y_1-y_0) \\ (x-x_1,y-y_1) \cdot (x_1-x_0,y_1-y_0) &= 0 \\ (x-x_1)(x_1-x_0) + (y-y_1)(y_1-y_0) &= 0 \\ (x-x_0+x_0-x_1)(x_1-x_0) + (y-y_1+y_1-y_0)(y_1-y_0) &= 0 \\ (x-x_0)(x_1-x_0) - (x_1-x_0)^2 + (y-y_0)(y_1-y_0) - (y_1-y_0)^2 &= 0 \\ (x-x_0)(x_1-x_0) + (y-y_0)(y_1-y_0) - \rho^2 &= 0 \\ (x-x_0)(x_1-x_0) + (y-y_0)(y_1-y_0) &= \rho^2 \end{split}$$

Πίσω στη θεωρία

Ο κύκλος με κέντρο ${\rm K}(x_0,y_0)$ και ακτίνα ρ έχει εξίσωση $(x-x_0)^2+(y-y_0)^2=\rho^2$ και έστω το σημείο του ${\rm M}(x_1,y_1)$. Έστω ${\rm A}(x,y)$ τυχαίο σημείο της εφαπτόμενης Θα ισχύει ${\rm MA}\perp{\rm KM}$

$$\begin{split} (x-x_1,y-y_1) \perp (x_1-x_0,y_1-y_0) \\ (x-x_1,y-y_1) \cdot (x_1-x_0,y_1-y_0) &= 0 \\ (x-x_1)(x_1-x_0) + (y-y_1)(y_1-y_0) &= 0 \\ (x-x_0+x_0-x_1)(x_1-x_0) + (y-y_1+y_1-y_0)(y_1-y_0) &= 0 \\ (x-x_0)(x_1-x_0) - (x_1-x_0)^2 + (y-y_0)(y_1-y_0) - (y_1-y_0)^2 &= 0 \\ (x-x_0)(x_1-x_0) + (y-y_0)(y_1-y_0) - \rho^2 &= 0 \\ (x-x_0)(x_1-x_0) + (y-y_0)(y_1-y_0) &= \rho^2 \end{split}$$

Πίσω στη θεωρία

Ο κύκλος με κέντρο ${\rm K}(x_0,y_0)$ και ακτίνα ρ έχει εξίσωση $(x-x_0)^2+(y-y_0)^2=\rho^2$ και έστω το σημείο του ${\rm M}(x_1,y_1)$. Έστω ${\rm A}(x,y)$ τυχαίο σημείο της εφαπτόμενης Θα ισχύει ${\rm MA}\perp{\rm KM}$

$$\begin{split} (x-x_1,y-y_1) \perp (x_1-x_0,y_1-y_0) \\ (x-x_1,y-y_1) \cdot (x_1-x_0,y_1-y_0) &= 0 \\ (x-x_1)(x_1-x_0) + (y-y_1)(y_1-y_0) &= 0 \\ (x-x_0+x_0-x_1)(x_1-x_0) + (y-y_1+y_1-y_0)(y_1-y_0) &= 0 \\ (x-x_0)(x_1-x_0) - (x_1-x_0)^2 + (y-y_0)(y_1-y_0) - (y_1-y_0)^2 &= 0 \\ (x-x_0)(x_1-x_0) + (y-y_0)(y_1-y_0) - \rho^2 &= 0 \\ (x-x_0)(x_1-x_0) + (y-y_0)(y_1-y_0) &= \rho^2 \end{split}$$

Πίσω στη θεωρία

$$x^2 + y^2 + \mathbf{A}x + \mathbf{B}y + \Gamma = 0$$

$$\begin{split} (x-x_0)^2 + (y-y_0)^2 &= \rho^2 \\ x^2 - 2xx_0 + x_0^2 + y^2 - 2yy_0 + y_0^2 - \rho^2 &= 0 \\ x^2 + y^2 - 2xx_0 - 2yy_0 + x_0^2 + y_0^2 - \rho^2 &= 0 \end{split}$$

Αρα
$$A = -2x_0$$
, $B = -2y_0$ και $\Gamma = x_0^2 + y_0^2 - \rho^2$

$$x^2 + y^2 + Ax + By + \Gamma = 0$$

$$(x - x_0)^2 + (y - y_0)^2 = \rho^2$$

$$x^2 - 2xx_0 + x_0^2 + y^2 - 2yy_0 + y_0^2 - \rho^2 = 0$$

$$x^2 + y^2 - 2xx_0 - 2yy_0 + x_0^2 + y_0^2 - \rho^2 = 0$$

Αρα
$$A = -2x_0$$
, $B = -2y_0$ και $\Gamma = x_0^2 + y_0^2 - \rho^2$

$$x^2 + y^2 + Ax + By + \Gamma = 0$$

$$\begin{split} (x-x_0)^2 + (y-y_0)^2 &= \rho^2 \\ x^2 - 2xx_0 + x_0^2 + y^2 - 2yy_0 + y_0^2 - \rho^2 &= 0 \\ x^2 + y^2 - 2xx_0 - 2yy_0 + x_0^2 + y_0^2 - \rho^2 &= 0 \end{split}$$

$$Aρα A = -2x_0$$
, $B = -2y_0$ και $\Gamma = x_0^2 + y_0^2 - \rho^2$

$$x^2 + y^2 + Ax + By + \Gamma = 0$$

$$\begin{split} (x-x_0)^2 + (y-y_0)^2 &= \rho^2 \\ x^2 - 2xx_0 + x_0^2 + y^2 - 2yy_0 + y_0^2 - \rho^2 &= 0 \\ x^2 + y^2 - 2xx_0 - 2yy_0 + x_0^2 + y_0^2 - \rho^2 &= 0 \end{split}$$

Αρα A =
$$-2x_0$$
, B = $-2y_0$ και $\Gamma=x_0^2+y_0^2-\rho^2$

$$x^2 + y^2 + Ax + By + \Gamma = 0$$

$$\begin{split} (x-x_0)^2 + (y-y_0)^2 &= \rho^2 \\ x^2 - 2xx_0 + x_0^2 + y^2 - 2yy_0 + y_0^2 - \rho^2 &= 0 \\ x^2 + y^2 - 2xx_0 - 2yy_0 + x_0^2 + y_0^2 - \rho^2 &= 0 \end{split}$$

Άρα
$$\mathbf{A}=-2x_0$$
, $\mathbf{B}=-2y_0$ και $\mathbf{\Gamma}=x_0^2+y_0^2-\rho^2$

Πίσω στη θεωρία

$$(x-x_0)^2+(y-y_0)^2=\rho^2$$

$$x^{2} + y^{2} + Ax + By + \Gamma = 0$$

$$x^{2} + Ax + y^{2} + By + \Gamma = 0$$

$$x^{2} + Ax + \frac{A^{2}}{4} + y^{2} + By + \frac{B^{2}}{4} = \frac{A^{2}}{4} + \frac{A^{2}}{4} - \Gamma$$

$$(x - \frac{A}{2})^{2} + (y - \frac{B}{2})^{2} = \frac{A^{2} + B^{2} - 4\Gamma}{4}$$

Αρα
$$x_0 = -\frac{A}{2}$$
, $y_0 = -\frac{B}{2}$, $\rho = \frac{\sqrt{A^2 + B^2 - 4\Gamma}}{2}$

$$(x-x_0)^2+(y-y_0)^2=\rho^2$$

$$x^{2} + y^{2} + Ax + By + \Gamma = 0$$

$$x^{2} + Ax + y^{2} + By + \Gamma = 0$$

$$x^{2} + Ax + \frac{A^{2}}{4} + y^{2} + By + \frac{B^{2}}{4} = \frac{A^{2}}{4} + \frac{A^{2}}{4} - \Gamma$$

$$(x - \frac{A}{2})^{2} + (y - \frac{B}{2})^{2} = \frac{A^{2} + B^{2} - 4\Gamma}{4}$$

Αρα
$$x_0=-\frac{\mathrm{A}}{2}$$
, $y_0=-\frac{\mathrm{B}}{2}$, $\rho=\frac{\sqrt{\mathrm{A}^2+\mathrm{B}^2-4\Gamma}}{2}$

$$(x-x_0)^2+(y-y_0)^2=\rho^2$$

$$x^{2} + y^{2} + Ax + By + \Gamma = 0$$

$$x^{2} + Ax + y^{2} + By + \Gamma = 0$$

$$x^{2} + Ax + \frac{A^{2}}{4} + y^{2} + By + \frac{B^{2}}{4} = \frac{A^{2}}{4} + \frac{A^{2}}{4} - By + \frac{A^{2}}{4} + \frac{A^{2}}{4} + \frac{A^{2}}{4} - By + \frac{A^{2}}{4} + \frac{A^{2}}{4} + \frac{A^{2}}{4} - By + \frac{A^{2}}{4} + \frac{$$

Αρα
$$x_0=-\frac{\mathrm{A}}{2}$$
, $y_0=-\frac{\mathrm{B}}{2}$, $\rho=\frac{\sqrt{\mathrm{A}^2+\mathrm{B}^2-4\Gamma}}{2}$

$$(x-x_0)^2+(y-y_0)^2=\rho^2$$

$$x^{2} + y^{2} + Ax + By + \Gamma = 0$$

$$x^{2} + Ax + y^{2} + By + \Gamma = 0$$

$$x^{2} + Ax + \frac{A^{2}}{4} + y^{2} + By + \frac{B^{2}}{4} = \frac{A^{2}}{4} + \frac{A^{2}}{4} - \Gamma$$

$$(x - \frac{A}{2})^{2} + (y - \frac{B}{2})^{2} = \frac{A^{2} + B^{2} - 4\Gamma}{4}$$

Αρα
$$x_0=-\frac{\mathrm{A}}{2}$$
, $y_0=-\frac{\mathrm{B}}{2}$, $\rho=\frac{\sqrt{\mathrm{A}^2+\mathrm{B}^2-4\Gamma}}{2}$

$$(x-x_0)^2+(y-y_0)^2=\rho^2$$

$$x^{2} + y^{2} + Ax + By + \Gamma = 0$$

$$x^{2} + Ax + y^{2} + By + \Gamma = 0$$

$$x^{2} + Ax + \frac{A^{2}}{4} + y^{2} + By + \frac{B^{2}}{4} = \frac{A^{2}}{4} + \frac{A^{2}}{4} - \Gamma$$

$$(x - \frac{A}{2})^{2} + (y - \frac{B}{2})^{2} = \frac{A^{2} + B^{2} - 4\Gamma}{4}$$

$$Aρα x_0 = -\frac{A}{2}$$
, $y_0 = -\frac{B}{2}$, $ρ = \frac{\sqrt{A^2 + B^2 - 4Γ}}{2}$

Λόλας Κύκλος

4/4

$$(x-x_0)^2+(y-y_0)^2=\rho^2$$

$$x^{2} + y^{2} + Ax + By + \Gamma = 0$$

$$x^{2} + Ax + y^{2} + By + \Gamma = 0$$

$$x^{2} + Ax + \frac{A^{2}}{4} + y^{2} + By + \frac{B^{2}}{4} = \frac{A^{2}}{4} + \frac{A^{2}}{4} - \Gamma$$

$$(x - \frac{A}{2})^{2} + (y - \frac{B}{2})^{2} = \frac{A^{2} + B^{2} - 4\Gamma}{4}$$

Ara
$$x_0=-rac{\mathrm{A}}{2}$$
, $y_0=-rac{\mathrm{B}}{2}$, $ho=rac{\sqrt{\mathrm{A}^2+\mathrm{B}^2-4\Gamma}}{2}$

Πίσω στη θεωρία