Domannich pasoma.

Bagana 4. $y \neq 0$ 0 = 0 (x)

1) Sum $(x, 0) = I_3(x, 0, Sum) = x$ y+1=5(y) $\int y=0$ Sum (x,y11) = S (Sum (x,y)) 2) $Mul(x,0) = I_3^2(x,0, Mul(x,0)) = 0$ Konga Mul(x,y) = Sum(x, Mul(x,y)) y=03) $E_{\times p}(x, 0) = I_3^2(x, 5(0), E_{\times p}(x, 0)) = 5(6) = 1$

X+1=5(x)

 $E \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times p \left(\times , y \right) \right)$ $Y \times p \left(\times , y + 1 \right) = Mul \left(\times , E \times$

TFTR $(x, y+1) = E \times p(x, TETR(x, y)) - Manya (5)$ 5) Fac $(0) = 5(I_{*}(0, Fac(0))) = 5(0) = 1$

 $Fac(S(0)) = I_2^1(S_0) Fac(0) = S(0) = 1$

Fac(x+1) = Mul(x+1, Fac(x))

 $Pved(x) = \begin{cases} x-1, & x \ge 1 \\ 0, & x < 1 \end{cases}$

Pred (0) =
$$I_{1}^{1}(0, Pred(0)) = 0$$

Pred (x+1) = $S(S(..., (Pred(0))) \times > 1$.
 $\times pag$
7) (D; FF(\times , y) = $\times - y$ ($\times > y$)
 V D; FF(\times , y) = V ($\times \leq y$)
 V D; FF(\times , y) = V D; FF(V , v) = V D; V , v) = V D; FF(V , v) = V D; V , V D; V

10) antisg =
$$\begin{cases} 0, \times > 0 \\ 1 \times \leq 0 \end{cases}$$

antisg = $\begin{cases} (S(0)) = PreV(I_{2}^{1}(S(0)), antisg(S(0))) = PreV(S(0)) = 0 \end{cases}$

antisg (x) = antisg(PreV(x)), $\times > 0$.

11) $\times \leq y$
 $PreV(S(0)) = PreV(S(0), antisg(S(0))) = PreV(S(0)) = 0$
 $PreV(S(0)) = PreV(S(0), antisg(S(0)) = 0$
 $PreV(S(0))$

×>y

$$x-y=x-1=y=1+x-y=1$$
 $x-y=x-1=y=1+x-y=1$
 $x-y=x-1=y=1$
 $x-y=x-1=$