МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М. В. ЛОМОНОСОВА

Механико-математический факультет

Численное решение одномерного уравнения Навъе-Стокса с использованием схемы с центральными разностями Плотность-Скорость (последовательный вариант).

Ковальков Максим, 404 группа

Содержание

1.	Постановка задачи.	2
2.	Описание схемы	2
3.	Координатная запись уравнений	3
4.	Заполнение матриц.	3
	4.1. Матрица плотности	
	4.2. Матрица скорости	4
5.	Расчет гладкого решения.	5
	5.1. Таблицы ошибок	5
	5.2. Выводы о работе схемы при гладких условиях	
6.	Разрывное решение.	15
	6.1. Первая разрывная задача.	15
	6.1.1. Графики для первой задачи	
	6.1.2. Физическая интерпретация.	
	6.2. Вторая разрывная задача	
	6.2.1. Графики для второй задачи	

	6.2.2.	Физич	еская	инт	гері	пре	таі	ция	А.	 ٠				 ٠				32
6.3.	Прило	жение.																32

Дата компиляции: 10.12.2018

1. Постановка задачи.

Приведем систему уравнений, описывающую нестационарное одномерное движение вязкого баротропного газа:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0\\ \rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} + \frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial x^2} + \rho f\\ p = p(\rho) \end{cases}$$

Через μ обозначен коэффициент вязкости газа, которую будем считать известной неотрицательной величиной ($\mu=0.1$). Неизвестные функции: плотность ρ и скорость u являются функциями переменных Эйлера $(t,x)\in [0,T]\times [0,X]$. В уравнения также входят две известные функции: давление газа $p=C\rho$, где C=1,10,100 и вектор внешних сил f, являющейся функцией переменных Эйлера.

В начальный момент времени задаются функции, значениями которых являются плотность и скорость газа в точках отрезка [0, X]:

$$(\rho, u)|_{t=0} = (\rho_0, u_0), x \in [0, X].$$

Простейшими граничными условиями являютя условия непротекания:

$$u(t,0) = u(t,X) = 0, t \in [0,T].$$

2. Описание схемы

Для поиска численного решения задачи можно использовать разностную схему, в которой при апроксимации конвективных членов используются центральные разности, а уравнения решаются методом "прогонки".

$$\begin{cases} H_{t,0} + 0.5((V\stackrel{\wedge}{H})_{x,0} + H_0Vx, 0) - 0.5h((HV)_{x,\overline{x},1} - 0.5(HV)_{x,\overline{x},2} + H_0(V_{x,\overline{x},1} - 0.5V_{x,\overline{x},2})) = 0 \\ H_t + 0.5(V\stackrel{\wedge}{H}_0 + (V\stackrel{\wedge}{H})_0 + HV\stackrel{0}{x}) = 0, x \in \omega_h \\ H_{t,M} + 0.5((V\stackrel{\wedge}{H})_{\overline{x},M} + H_MV\overline{x}, M) - 0.5h((HV)_{x,\overline{x},M-1} - 0.5(HV)_{x,\overline{x},M-2} + H_M(V_{x,\overline{x},M-1} - 0.5V_{x,\overline{x},M-2})) = 0 \\ V_t + \frac{1}{3}(V\stackrel{\wedge}{V}_0 + (V\stackrel{\wedge}{V})_0) + \frac{p(\stackrel{\wedge}{H})_0}{\stackrel{\wedge}{H}} = \stackrel{\sim}{\mu} \stackrel{\wedge}{V}_{x\overline{x}} - (\stackrel{\sim}{\mu} - \frac{\mu}{\mathring{H}})V_{x\overline{x}} + f, x \in \omega_h \end{cases}$$

Под ω_h понимаются внутренние узлы отрезка [0,X], а $\widetilde{\mu}=\max_{m}\frac{\mu}{\widehat{h}}$

3. Координатная запись уравнений

$$\begin{cases} \frac{H_0^{n+1} - H_0^n}{t} + \frac{1}{2} \left(\frac{V_1^n H_1^{n+1} - V_0^n H_0^{n+1}}{h} + H_0^n \frac{V_1^n - V_0^n}{h} \right) - \\ - \frac{h}{2} \left(\frac{H_2^n V_2^n - 2H_1^n V_1^n + H_0^n V_0^n}{h^2} - \frac{1}{2} \frac{H_3^n V_3^n - 2H_2^n V_2^n + H_1^n V_1^n}{h^2} + H_0^n \left(\frac{V_2^n - 2V_1^n + V_0^n}{h^2} - \frac{V_3^n - 2V_2^n + V_1^n}{2h^2} \right) \right) = 0 \end{cases}$$

$$\begin{cases} \frac{H_0^{n+1} - H_0^n}{h^2} + \frac{1}{2} \left(\frac{V_1^n H_{m+1}^{n+1} - H_{m-1}^{n+1}}{2h} + \frac{V_{m+1}^n H_{m+1}^{n+1} - V_{m-1}^n H_{m-1}^{n+1}}{2h} + H_m^n \frac{V_{m+1}^n - V_{m-1}^n}{2h} \right) = 0 \end{cases}$$

$$\begin{cases} \frac{H_0^{n+1} - H_0^n}{t} + \frac{1}{2} \left(\frac{V_1^n H_0^{n+1} - V_{m-1}^n H_{m-1}^{n+1}}{2h} + \frac{V_{m+1}^n H_{m+1}^{n+1} - V_{m-1}^n H_{m-1}^{n+1}}{2h} + H_m^n \frac{V_{m-1}^n - V_{m-1}^n}{2h} \right) - \frac{h}{2} \left(\frac{H_0^n V_0^n - 2H_0^n - - 2H$$

Выделив коэффициенты при H_m^{n+1} из первых трех уравнений системы, получим трехдиагональную матрицу. Решим её методом "прогонки" (суть-урезанный метод Гаусса, учитывающий строение матрицы).

После этого выделим из четвертого уравнения системы коэфициенты при V_m^{n+1} . Вновь получим трехдиагональную матрицу. Решаем её методом прогонки и переходим к следующему n+2-му шагу алгоритма.

4. Заполнение матриц.

Напишем, в явном виде, формулы заполнения трехдиагональных матриц плотности и скорости.

4.1. Матрица плотности.

Преобразуем, например, 2-е уравнение системы-т.е. "некраевой"случай для плотности:

$$H_{m-1}^{n+1}\underbrace{[-\frac{V_{m-1}^n+V_m^n}{4h}]}_{a_{mm-1}} + H_m^{n+1}\underbrace{[\frac{1}{t}]}_{a_{mm}} + H_{m+1}^{n+1}\underbrace{[\frac{V_m^n+V_{m+1}^n}{4h}]}_{a_{mm+1}} = \underbrace{-H_m^n(\frac{V_{m+1}^n-V_{m-1}^n}{4h}) + \frac{H_m^n}{t}}_{b_m}$$

Здесь А- искомая трехдиагональная матрица плотности.

$$\begin{pmatrix} a_{00} & a_{01} & 0 & 0 & \dots \\ a_{10} & a_{11} & a_{12} & 0 & \dots \\ 0 & a_{21} & a_{22} & a_{23} & \dots \\ \vdots & \ddots & \ddots & \ddots \\ 0 & \dots & 0 & a_{M,M-1} & a_{M,M} \end{pmatrix}$$

Храним эту матрицу, в виде трех векторов, которые соотвествуют трем диагоналям матрицы.

Приведем фрагмент кода, заполняющего матрицу плотности:

```
a[0+M+1]=1./t;
a[0]=V[i*(M+1)+1]/(2.0*h);
  b[0] = -H[i*(M+1)+0]*V[i*(M+1)+1]/(2.0*h)+(1/(2.0*h))*(H[i*(M+1)+2]*V[i*(M+1)+2]
-2*H[i*(M+1)+1]*V[i*(M+1)+1]+H[i*(M+1)+0]*V[i*(M+1)+0]
-0.5*(H[i*(M+1)+3]*V[i*(M+1)+3]-2*H[i*(M+1)+2]*V[i*(M+1)+2]+H[i*(M+1)+1]*V[i*(M+1)+1])
+H[i*(M+1)+0]*(V[i*(M+1)+2]-2*V[i*(M+1)+1]+V[i*(M+1)+0]-0.5*(V[i*(M+1)+3]-1)
2*V[i*(M+1)+2]+V[i*(M+1)+1]))+H[i*(M+1)+0]/t+f0(i,0,t,h);
for(int j=1;j<M;j++)</pre>
{
a[i+2*(M+1)]=-(1./(4.*h))*(V[i*(M+1)+j-1]+V[i*(M+1)+j]);
a[j+M+1]=1./t;
a[i]=(1./(4.*h))*(V[i*(M+1)+i+1]+V[i*(M+1)+i]);
b[j]=f0(i,j,t,h)-H[i*(M+1)+j]*(V[i*(M+1)+j+1]-V[i*(M+1)+j-1])/(4.*h)+H[i*(M+1)+j]/t;
}
a[M+2*(M+1)]=-0.5*V[i*(M+1)+M-1]/h;
a[M+(M+1)]=1./t+0.5*V[i*(M+1)+M]/h;
  b[M] = H[i*(M+1)+M]/t-0.5*H[i*(M+1)+M]*(V[i*(M+1)+M]-V[i*(M+1)+M-1])/h-
0.5*h*((H[i*(M+1)+M]*V[i*(M+1)+M]-
2.*H[i*(M+1)+M-1]*V[i*(M+1)+M-1]+H[i*(M+1)+M-2]*V[i*(M+1)+M-2])/(h*h)-
0.5*(H[i*(M+1)+M-1]*V[i*(M+1)+M-1]-2.*H[i*(M+1)+M-2]*V[i*(M+1)+M-2]+V[i*(M+1)+M-2]+V[i*(M+1)+M-2]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M-1]+V[i*(M+1)+M
H[i*(M+1)+M-3]*V[i*(M+1)+M-3])/(h*h)+
H[i*(M+1)+M]*((V[i*(M+1)+M]-2*V[i*(M+1)+M-1]+V[i*(M+1)+M-2])/(h*h)-M
0.5*(V[i*(M+1)+M-1]-2*V[i*(M+1)+M-2]+V[i*(M+1)+M-3])/(h*h)))+f0(i,M,t,h);
```

<u>Замечание:</u> Для повышения точности вычислений при малых t и h можно умножить уравнения системы на th.

4.2. Матрица скорости.

Для заполнения матрицы скорости проводятся совершенно аналогичные размышления и преобразования. Она имеет практически такой же вид (кроме $a_{00} = a_{01} = a_{10} = a_{M,M-1} = a_{M,M} = a_{M-1,M} = 0$) Получаем следующий фрагмент кода:

```
for(int j=1;j<M;j++)
{
a[j+2*(M+1)]=-(V[i*(M+1)+j]+V[i*(M+1)+j-1])/(6*h)-max/(h*h);
a[j+M+1]=1./t+2.*max/(h*h);
a[j]=(V[i*(M+1)+j]+V[i*(M+1)+j+1])/(6*h)-max/(h*h);
b[j]=V[i*(M+1)+j]/t-(p(H[(i+1)*(M+1)+j+1])-
p(H[(i+1)*(M+1)+j-1]))/(2.*h*H[(i+1)*(M+1)+j])-
(max-mu/H[(i+1)*(M+1)+j])*(V[i*(M+1)+j+1]-</pre>
```

$$2*V[i*(M+1)+j]+V[i*(M+1)+j-1])/(h*h)+f(i,j,t,h,mu);$$

<u>Замечание:</u> Для повышения точности вычислений при малых t и h можно умножить уравнения системы на th.

5. Расчет гладкого решения.

Зададим функции:

$$\widetilde{\rho} = e^t(\cos(\frac{\pi x}{10}) + 1.5), \ \widetilde{u} = \cos(2\pi t)\sin(\pi \frac{x^2}{100})$$

Определим функции f_0 и f так, чтобы они удовлетворяли системе:

$$\begin{cases} \frac{\partial \widetilde{\rho}}{\partial t} + \frac{\partial \widetilde{\rho}\widetilde{u}}{\partial x} = f_0 \\ \widetilde{\rho} \frac{\partial \widetilde{u}}{\partial t} + \widetilde{\rho}\widetilde{u} \frac{\partial \widetilde{u}}{\partial x} + \frac{\partial \widetilde{p}}{\partial x} = \mu \frac{\partial^2 \widetilde{u}}{\partial x^2} + \widetilde{\rho}f \\ p = p(\widetilde{\rho}) \end{cases}$$

Проведя подстановку и соответствующие вычисления найдем эти функции:

$$\begin{cases} f_0(t,x) = e^t(\cos(\frac{\pi x}{10}) + 1.5) + e^t\cos(2\pi t)(-\frac{\pi}{10}sin(\frac{\pi x}{10})sin(\frac{\pi x^2}{100}) + \frac{\pi x}{50}cos(\frac{\pi x^2}{100})(cos(\frac{\pi x}{10}) + 1.5) \\ f(t,x) = (-e^t(\cos(\frac{\pi x}{10}) + 1.5)2\pi sin(2\pi t)sin(\frac{\pi x^2}{100}) + \frac{\pi t}{50}e^t(\cos(\frac{\pi x}{10}) + 1.5)(cos(2\pi t))^2sin(\frac{\pi x^2}{100})cos(\frac{\pi x^2}{100}) - (-p(\frac{\pi}{10})e^tsin(\frac{\pi x}{10}) - \frac{\mu\pi}{50}cos(2\pi t)(cos(\frac{\pi x^2}{100}) - \frac{x^2\pi}{50}sin((\frac{\pi x^2}{100}))))/(e^t(\cos(\frac{\pi x}{10}) + 1.5)) \end{cases}$$

Таким образом, имеется дифференциальная задача для системы с начальными и граничными условиями:

$$\begin{cases} \widetilde{\rho}(0,x) = \cos(\frac{\pi x}{10}) + 1.5, x \in [0,10] \\ \widetilde{u}(0,x) = \sin(\pi \frac{x^2}{100}), x \in [0,10] \\ \widetilde{u}(t,0) = \widetilde{u}(t,10) = 0, t \in [0,1] \end{cases}$$

Она имеет гладкое точное решение в области $[0,1] \times [0,10]$.

Запустим программу и составим таблицы ошибок численного решения с теоретическим для плотности и скорости в нормах $||\ ||_{C_h},\ ||\ ||_{L_2},\ ||\ ||_W$ при различных значениях C=1,10,100 и $\mu=0.1,0.01,0.001$.

5.1. Таблицы ошибок

Table for V with $\mu = 0.1$ and C=1 in C-norma

$N \setminus M$	10	100	1000	10000
10	3.441369e-01	3.426284e-01	3.426710 e-01	3.426709e-01
100	3.745403e- 02	3.189667e-02	3.188804e-02	3.188801e-02
1000	1.858140 e-02	3.180920e-03	3.174504e-03	3.174490e-03
10000	1.857666e-02	3.844864e-04	3.177242e-04	3.177069e-04

Table for V with $\mu = 0.1$ and C=1 in L2-norma

$N \setminus M$	10	100	1000	10000
10	4.829117e-02	3.130615e-02	3.114474e-02	3.114311e-02
100	2.242029e-02	9.003929e-04	7.806271e-04	7.796684e-04
1000	2.215130e-02	2.515039e-04	7.340313e-05	7.302617e-05
10000	2.214510e-02	2.310424e-04	7.920594e-06	7.310454e-06

Table for V with $\mu=0.1$ and C=1 in W-norma

$N \setminus M$	10	100	1000	10000
10	6.618726 e-02	4.198577e-02	4.175203e- 02	4.174977e-02
100	3.288140e-02	1.123326e-03	9.404108e-04	9.390428e-04
1000	3.264930e-02	3.749499e-04	8.731594e-05	8.698987e-05
10000	3.265416e-02	3.593887e-04	9.546803e- 06	8.716572e-06

Table for H with $\mu=0.1$ and C=1 in C-norma

	$N \setminus M$	10	100	1000	10000
ĺ	10	2.152697e-01	2.263904 e - 01	2.252581e-01	2.252476e- 01
	100	2.964518e-02	2.222073e-02	2.229066e-02	2.229076e- 02
Ì	1000	2.317732e-02	2.192289e-03	2.225758e-03	2.226046e- 03
Ì	10000	2.252601e-02	2.623136e-04	2.222661e-04	2.225707e-04

Table for H with $\mu=0.1$ and C=1 in L2-norma

	$N \setminus M$	10	100	1000	10000
	10	4.419044e-01	4.391503e-01	4.390963e- 01	4.390962e-01
Ì	100	4.723918e-02	4.298757e-02	4.300249e-02	4.300263e-02
Ì	1000	2.016515e- 02	4.281146e-03	4.293386e-03	4.293547e-03
Ì	10000	1.980081e-02	4.514181e-04	4.291299e-04	4.292884e-04

Table for H with $\mu=0.1$ and C=1 in W-norma

$N \setminus M$	10	100	1000	10000
10	4.463785e-01	4.436258e-01	4.435222e-01	4.435228e-01
100	5.208353e- 02	4.331925e-02	4.334296e-02	4.334317e-02
1000	2.999367e-02	4.315818e-03	4.327256e-03	4.327462e-03
1000	2.981948e-02	5.029273e-04	4.324820e-04	4.326792e-04

Table for V with $\mu=0.1$ and C=10 in C-norma

$N \setminus M$	10	100	1000	10000
10	3.753695 e-01	$1.708556\mathrm{e}{+00}$	3.780247e + 01	5.234304e-01
100	6.600941e- 02	3.689140e- 02	3.659140e-02	3.658840e-02
1000	3.726058e-02	3.979819e-03	3.677881e-03	3.674874e-03
10000	3.670124e-02	6.805346 e-04	3.706909e-04	3.676775e-04

Table for V with $\mu=0.1$ and C=10 in L2-norma

$N \setminus M$	10	100	1000	10000
10	1.747233e-01	5.990320 e-01	5.382139e+00	6.177082e-01
100	8.368677e-02	7.647631e-03	6.912502e-03	6.905180e-03
1000	7.798487e-02	1.417846e-03	6.635987e-04	6.561995 e-04
10000	7.744721e-02	8.378827e-04	7.277669 e-05	6.534503e-05

Table for V with $\mu = 0.1$ and C=10 in W-norma

$N \setminus M$	10	100	1000	10000
10	1.909412e-01	$7.575732\mathrm{e}{+00}$	$1.732669\mathrm{e}{+01}$	$1.993223\mathrm{e}{+00}$
100	9.003188e-02	8.540501 e-03	7.770652e-03	7.763000e-03
1000	8.390558e-02	1.545742e-03	7.454313e-04	7.376816e-04
10000	8.333088e-02	9.015869e-04	8.125705 e-05	7.345473e-05

Table for H with $\mu=0.1$ and C=10 in C-norma

$N \setminus M$	10	100	1000	10000
10	2.515210e-01	9.565794 e - 01	$4.661606\mathrm{e}{+00}$	$5.821116\mathrm{e}{+01}$
100	2.740903e-02	2.366791e-02	2.383363e-02	2.383526e-02
1000	1.956120 e-02	2.202380e-03	2.367910e-03	2.369561e-03
10000	2.130836e-02	2.572323e-04	2.351462e-04	2.367993e-04

Table for H with $\mu = 0.1$ and C=10 in L2-norma

$N \setminus M$	10	100	1000	10000
10	4.331490e-01	5.151738e-01	2.908224e+00	2.034394e+00
100	4.644123e-02	4.301098e-02	4.310590e-02	4.310686e-02
1000	3.346196e-02	4.224116e-03	4.305536e-03	4.306469e-03
10000	3.443016e-02	4.630316e-04	4.296778e-04	4.305970e-04

Table for H with $\mu = 0.1$ and C=10 in W-norma

$N \setminus M$	10	100	1000	10000
10	4.390504e-01	$4.032415\mathrm{e}{+00}$	$2.501152\mathrm{e}{+01}$	$1.130685\mathrm{e}{+03}$
100	4.718649e-02	4.371932e-02	4.382870e-02	4.382980e-02
1000	3.579573e-02	4.284740e-03	4.377669e-03	4.378728e-03
10000	3.690329e-02	4.710373e-04	4.367785 e-04	4.378210e-04

Table for V with $\mu=0.1$ and C=100 in C-norma

$N \setminus M$	10	100	1000	10000
10	6.248939e-01	$5.224021\mathrm{e}{+03}$	$1.007603\mathrm{e}\!+\!03$	$1.288542\mathrm{e}{+01}$
100	1.709682e-01	5.093932e-02	$7.069820\mathrm{e}{+04}$	$1.846890\mathrm{e}{+06}$
1000	1.270639e-01	6.169044e-03	4.973406e-03	4.961476e-03
10000	1.233556e-01	1.715816e-03	5.080710e-04	4.961330e-04

Table for V with $\mu=0.1$ and C=100 in L2-norma

$N \setminus M$	10	100	1000	10000
10	4.375626e-01	$2.555995\mathrm{e}{+02}$	$1.703468\mathrm{e}\!+\!02$	$1.682970\mathrm{e}{+01}$
100	6.411658e-02	5.793826e-02	$4.879723\mathrm{e}{+02}$	$2.323700\mathrm{e}{+03}$
1000	9.068681e-02	5.343723e-03	5.928355 e-03	5.934497e-03
10000	9.444016e-02	5.833745e-04	5.880940e-04	5.941780e-04

Table for V with $\mu=0.1$ and C=100 in W-norma

$N \setminus M$	10	100	1000	10000
10	5.130171e-01	$1.933226\mathrm{e}{+03}$	$1.092601\mathrm{e}{+03}$	$5.816025 e{+01}$
100	6.934156e-02	6.843589 e-02	$6.093142 \mathrm{e}{+04}$	$3.604445\mathrm{e}{+06}$
1000	9.833931e-02	6.359232e-03	6.990970 e-03	6.997570e-03
10000	1.026223e-01	6.309000e-04	6.940321e-04	7.005495e-04

Table for H with $\mu=0.1$ and C=100 in C-norma

	$N \setminus M$	10	100	1000	10000
	10	1.844883e-01	$6.342896\mathrm{e}{+04}$	$3.215197\mathrm{e}{+04}$	$3.574025\mathrm{e}{+02}$
ĺ	100	6.314174e-02	1.633178e-02	$9.214580\mathrm{e}{+52}$	$1.770164\mathrm{e}{+81}$
Ì	1000	6.995734 e-02	1.727623e-03	1.659253e- 03	1.660207e-03
Ì	10000	7.065563e-02	6.422418e-04	1.653622 e-04	1.661982e-04

Table for H with $\mu = 0.1$ and C=100 in L2-norma

$N \setminus M$	10	100	1000	10000
10	4.477348e-01	$6.061555\mathrm{e}{+04}$	$7.074040\mathrm{e}\!+\!03$	$2.383978\mathrm{e}{+01}$
100	1.474105e-01	4.169256e-02	$1.548044\mathrm{e}\!+\!52$	$1.339123\mathrm{e}{+80}$
1000	1.397630e-01	4.459680e-03	4.163856e- 03	4.163030e-03
10000	1.395490e-01	1.457592e-03	4.173838e-04	4.163640e-04

Table for H with $\mu=0.1$ and C=100 in W-norma

$N \setminus M$	10	100	1000	10000
10	4.519250 e-01	$1.099265\mathrm{e}{+06}$	$1.053872\mathrm{e}{+06}$	$4.452770\mathrm{e}{+04}$
100	1.546407e-01	4.211197e-02	$2.214911\mathrm{e}{+54}$	2.041687e + 83
1000	1.469140e-01	4.537079e-03	4.207201e-03	4.206216e-03
10000	1.466721e-01	1.528534e-03	4.219125e-04	4.207150e-04

Table for V with $\mu = 0.01$ and C=1 in C-norma

$N \setminus M$	10	100	1000	10000
10	3.421696e-01	3.405299e-01	9.066573e- 01	3.405798e-01
100	3.774829e-02	3.174868e-02	3.175014e-02	3.175014e-02
1000	1.959094e-02	3.205446e-03	3.201039 e-03	3.201048e-03
10000	1.958207e-02	3.891733e-04	3.203633e- 04	3.203666e- 04

Table for V with $\mu=0.01$ and C=1 in L2-norma

$N \setminus M$	10	100	1000	10000
10	4.994870e-02	3.220832e-02	2.108300 e-01	5.536766e- 02
100	2.341596e-02	1.102171e-03	9.958977e-04	9.950666e- 04
1000	2.310145e-02	2.714518e-04	9.531217e-05	9.496401e- 05
10000	2.309122e-02	2.432983e-04	1.005093e- 05	9.495557e-06

Table for V with $\mu = 0.01$ and C=1 in W-norma

$N \setminus M$	10	100	1000	10000
10	6.840052 e-02	4.291738e-02	$8.366237\mathrm{e}{+00}$	$4.041218\mathrm{e}{+00}$
100	3.446766e- 02	1.323929e-03	1.169754e-03	1.168700e-03
1000	3.421400e-02	3.991845e-04	1.113760e-04	1.112452e-04
10000	3.421724e-02	3.818741e-04	1.173589e-05	1.113615e-05

Table for H with $\mu=0.01$ and C=1 in C-norma

$N \setminus M$	10	100	1000	10000
10	2.212647e-01	2.263868e-01	$1.956192e{+00}$	$2.709859\mathrm{e}{+00}$
100	3.142872e-02	2.245303e-02	2.246931e-02	2.246957e-02
1000	2.482367e-02	2.213686e-03	2.244468e-03	2.244770e-03
10000	2.415879e-02	2.929521e-04	2.241462e-04	2.244516e-04

Table for H with $\mu = 0.01$ and C=1 in L2-norma

	$N \setminus M$	10	100	1000	10000
ĺ	10	4.428151e-01	4.392132e-01	5.293730 e-01	4.755724e-01
ĺ	100	4.786372e-02	4.302249e-02	4.303813e-02	4.303829 e-02
Ì	1000	2.127418e-02	4.284601e-03	4.297227e-03	4.297396e-03
Ì	10000	2.091750e-02	4.550180e-04	4.295095e-04	4.296761e-04

Table for H with $\mu=0.01$ and C=1 in W-norma

$N \setminus M$	10	100	1000	10000
10	4.475199e-01	4.435719e-01	$4.094170\mathrm{e}{+01}$	$5.623614\mathrm{e}{+01}$
100	5.329415e-02	4.336876e-02	4.339100e-02	4.339122e-02
1000	3.185870e- 02	4.321297e-03	4.332519e-03	4.332743e-03
10000	3.169456e- 02	5.171906e-04	4.329971e-04	4.332119e-04

Table for V with $\mu=0.01$ and C=10 in C-norma

$N \setminus M$	10	100	1000	10000
10	3.766870e-01	$2.117059e{+03}$	$1.687781\mathrm{e}{+01}$	$9.056135\mathrm{e}{+00}$
100	6.619429e-02	3.703867e-02	$3.371134 \mathrm{e}{+04}$	$4.315121\mathrm{e}{+03}$
1000	3.737069e-02	3.997217e-03	3.692594 e-03	3.689550e-03
10000	3.682553e-02	6.850500e-04	3.721883e- 04	3.691466e-04

Table for V with $\mu = 0.01$ and C=10 in L2-norma

$N \setminus M$	10	100	1000	10000
10	1.743762e-01	$6.996370\mathrm{e}{+02}$	$1.577799e{+01}$	$6.853712 \mathrm{e}{+00}$
100	8.393400e-02	7.597069e-03	1.151499e + 02	$6.834627\mathrm{e}{+01}$
1000	7.824325e-02	1.416749e-03	6.585898e-04	6.511378e-04
10000	7.770639e-02	8.402207e-04	7.232662e- 05	6.484503 e-05

Table for V with $\mu=0.01$ and C=10 in W-norma

$N \setminus M$	10	100	1000	10000
10	1.904150e-01	$1.076541\mathrm{e}{+04}$	$1.792980\mathrm{e}{+02}$	1.138111e+02
100	9.030127e-02	8.472403e-03	$1.534461\mathrm{e}\!+\!04$	$6.840069\mathrm{e}{+04}$
1000	8.420600e-02	1.542928e-03	7.387854e-04	7.309928e-04
10000	8.363417e-02	9.041614e-04	8.063658 e - 05	7.279250e-05

Table for H with $\mu = 0.01$ and C=10 in C-norma

	$N \setminus M$	10	100	1000	10000
ĺ	10	2.524918e-01	$1.045021\mathrm{e}{+04}$	$2.549031\mathrm{e}{+02}$	$7.702280\mathrm{e}{+02}$
ĺ	100	2.747181e-02	2.369872e-02	5.034822e + 29	$7.380300\mathrm{e}{+34}$
Ì	1000	1.957615e-02	2.205360e-03	2.370923e-03	2.372577e-03
Ì	10000	2.134193e-02	2.593398e-04	2.354473e-04	2.371008e-04

Table for H with $\mu = 0.01$ and C=10 in L2-norma

	$N \setminus M$	10	100	1000	10000
ſ	10	4.334104e-01	$5.256848\mathrm{e}{+03}$	$4.155778\mathrm{e}{+01}$	$6.272309\mathrm{e}{+01}$
ſ	100	4.649146e-02	4.306720e-02	$1.463916\mathrm{e}{+29}$	$6.380329\mathrm{e}{+34}$
ſ	1000	3.351083e-02	4.229880e-03	4.311096e-03	4.312027e-03
ĺ	10000	3.447509e-02	4.641414e-04	4.302347e-04	4.311521e-04

Table for H with $\mu=0.01$ and C=10 in W-norma

$N \setminus M$	10	100	1000	10000
10	4.394694e-01	$9.781724 \mathrm{e}{+04}$	$3.168343 \mathrm{e}{+03}$	$8.232560 \mathrm{e}{+04}$
100	4.724404e-02	4.380775e-02	$2.811652\mathrm{e}{+31}$	1.275415e + 38
1000	3.585155e-02	4.293536e-03	4.386481e-03	4.387540e-03
10000	3.695566e-02	4.724853e-04	4.376584 e-04	4.387015e-04

Table for V with $\mu = 0.01$ and C=100 in C-norma

	$N \setminus M$	10	100	1000	10000
Ī	10	6.225028 e-01	$1.163399e{+04}$	$6.453951 \mathrm{e}{+04}$	$6.231264\mathrm{e}{+02}$
Ī	100	1.709267e-01	5.077255e-02	2.477228e + 06	$1.632252\mathrm{e}{+07}$
ĺ	1000	1.271934e-01	6.152716e-03	4.956240e-03	$5.435402\mathrm{e}{+06}$
ĺ	10000	1.237083e-01	1.714890e-03	5.063633e-04	4.944152e-04

Table for V with $\mu = 0.01$ and C=100 in L2-norma

$N \setminus M$	10	100	1000	10000
10	4.435850e-01	$6.341585 \mathrm{e}{+02}$	$4.071066\mathrm{e}{+03}$	$3.206888e{+02}$
100	6.402420e-02	5.829679e-02	$6.871526\mathrm{e}{+03}$	$5.283309\mathrm{e}{+03}$
1000	9.082143e-02	5.376519e-03	5.962294 e-03	-nan
10000	9.460853e-02	5.821508e-04	5.914602e- 04	5.975541e-04

Table for V with $\mu = 0.01$ and C=100 in W-norma

$N \setminus M$	10	100	1000	10000
10	5.202799e-01	$1.029990\mathrm{e}{+04}$	$4.270296\mathrm{e}{+05}$	$2.610825\mathrm{e}{+03}$
100	6.934961e-02	6.888171e-02	$7.443420\mathrm{e}\!+\!05$	$7.968305\mathrm{e}{+06}$
1000	9.861408e-02	6.400203e-03	7.032879e-03	-nan
10000	1.029358e-01	6.300024 e-04	6.981898e-04	7.047151e-04

Table for H with $\mu=0.01$ and C=100 in C-norma

	$N \setminus M$	10	100	1000	10000
	10	1.841240e-01	$2.986684\mathrm{e}{+07}$	$4.714171\mathrm{e}\!+\!08$	$5.847202 \mathrm{e}{+04}$
	100	6.326127e-02	1.643474e-02	$7.930984\mathrm{e}\!+\!70$	$2.483980\mathrm{e}{+106}$
Ī	1000	7.011649e-02	1.734248e-03	1.669100e-03	inf
Γ	10000	7.079909e-02	6.427447e-04	1.663595 e-04	1.671784e-04

Table for H with $\mu = 0.01$ and C=100 in L2-norma

$N \setminus M$	10	100	1000	10000
10	4.483773e-01	$1.212502\mathrm{e}{+07}$	$1.177740\mathrm{e}\!+\!08$	$8.912573\mathrm{e}{+03}$
100	1.476911e-01	4.174671e-02	$1.722010\mathrm{e}\!+\!70$	$1.376778\mathrm{e}\!+\!105$
1000	1.399703e-01	4.467552e-03	4.169101e-03	nan
10000	1.397491e-01	1.460142e-03	4.179319e-04	4.168869e-04

Table for H with $\mu=0.01$ and C=100 in W-norma

$N \setminus M$	10	100	1000	10000
10	4.527488e-01	$1.861140\mathrm{e}{+08}$	$2.235101\mathrm{e}\!+\!10$	$1.108204\mathrm{e}{+07}$
100	1.549486e-01	4.218782e-02	$2.385212\mathrm{e}\!+\!72$	$2.088877\mathrm{e}{+108}$
1000	1.471323e-01	4.547539e-03	4.214593e-03	nan
10000	1.468822e-01	1.531407e-03	4.226806 e-04	4.214522e-04

Table for V with $\mu = 0.001$ and C=1 in C-norma

$N \setminus M$	10	100	1000	10000
10	3.419729e-01	3.403252e-01	$2.512961\mathrm{e}{+02}$	$1.405116\mathrm{e}{+01}$
100	3.777784e-02	3.177531e-02	3.177697e-02	$1.399104\mathrm{e}{+03}$
1000	1.969975e-02	3.207940e-03	3.203747e-03	3.203758e-03
10000	1.969037e-02	3.896910e-04	3.206325e-04	3.206378e-04

Table for V with $\mu = 0.001$ and C=1 in L2-norma

	$N \setminus M$	10	100	1000	10000
	10	5.013280 e-02	3.231473e-02	$2.627428\mathrm{e}{+01}$	4.806957e + 00
	100	2.352298e-02	1.124465e-03	1.019163e-03	$2.182635\mathrm{e}{+01}$
	1000	2.320283e-02	2.737602e-04	9.766761e-05	9.731955e-05
Ì	10000	2.319209 e-02	2.446654e-04	1.028348e-05	9.730385e-06

Table for V with $\mu = 0.001$ and C=1 in W-norma

$N \setminus M$	10	100	1000	10000
10	6.864914 e-02	4.303980e-02	$3.521789\mathrm{e}{+02}$	$3.325995\mathrm{e}{+02}$
100	3.463936 e-02	1.349801e-03	1.198259e-03	3.767537e + 03
1000	3.438205 e-02	4.030827e-04	1.143231e-04	1.142060e-04
10000	3.438498e-02	3.854373e-04	1.201492e-05	1.143154e-05

Table for H with $\mu = 0.001$ and C=1 in C-norma

$N \setminus M$	10	100	1000	10000
10	2.218875e-01	2.261788e-01	$1.529436\mathrm{e}{+04}$	$1.703592\mathrm{e}{+05}$
100	3.162555e- 02	2.245921e-02	2.248782e-02	$1.245123\mathrm{e}{+43}$
1000	2.500499e-02	2.215425e-03	2.246375e-03	2.246679e-03
10000	2.433857e-02	3.042393e-04	2.243375e-04	2.246431e-04

Table for H with $\mu = 0.001$ and C=1 in L2-norma

$N \setminus M$	10	100	1000	10000
10	4.429178e-01	4.392228e-01	$2.808950\mathrm{e}{+03}$	$1.051880\mathrm{e}{+04}$
100	4.793441e-02	4.302638e-02	4.304229e-02	$5.508440\mathrm{e}{+41}$
1000	2.139615e-02	4.285062e-03	4.297672e-03	4.297842e-03
10000	2.104003e-02	4.556348e-04	4.295536e-04	4.297210e-04

Table for H with $\mu = 0.001$ and C=1 in W-norma

$N \setminus M$	10	100	1000	10000
10	4.476519e-01	4.436030e-01	$5.082982\mathrm{e}{+05}$	$1.440213\mathrm{e}{+07}$
100	5.343188e-02	4.337632e-02	4.339888e-02	$1.964507\mathrm{e}{+44}$
1000	3.206457e-02	4.322675e-03	4.333353e-03	4.333580e-03
10000	3.190117e-02	5.233605 e-04	4.330795 e-04	4.332960e-04

Table for V with $\mu = 0.001$ and C=10 in C-norma

$N \setminus M$	10	100	1000	10000
10	3.768226e-01	$1.583359\mathrm{e}{+02}$	$1.710936\mathrm{e}{+03}$	$2.306479\mathrm{e}{+02}$
100	6.621309 e-02	3.705383e-02	$3.102606\mathrm{e}{+04}$	$1.285495\mathrm{e}{+06}$
1000	3.738169e-02	3.999016e-03	3.694111e-03	$8.752565 \mathrm{e}{+05}$
10000	3.683789e-02	6.855323 e-04	3.723428e-04	3.692986e-04

Table for V with $\mu = 0.001$ and C=10 in L2-norma

$N \setminus M$	10	100	1000	10000
10	1.743443e-01	$4.392523\mathrm{e}{+01}$	$1.636642\mathrm{e}\!+\!02$	$1.284399\mathrm{e}{+02}$
100	8.395887e-02	7.592545e-03	$3.538808\mathrm{e}{+02}$	$4.997918\mathrm{e}{+02}$
1000	7.826898e-02	1.416684e-03	6.581468e-04	-nan
10000	7.773218e-02	8.404618e-04	7.228717e-05	6.480088e-05

Table for V with $\mu = 0.001$ and C=10 in W-norma

$N \setminus M$	10	100	1000	10000
10	1.903657e-01	$6.167742\mathrm{e}{+02}$	$1.400301\mathrm{e}{+04}$	$2.101790\mathrm{e}{+03}$
100	9.032824e-02	8.466269 e-03	$4.647688\mathrm{e}{+04}$	$6.540513\mathrm{e}{+05}$
1000	8.423582e-02	1.542715e-03	7.381958e-04	-nan
10000	8.366426e-02	9.044598e-04	8.058158e-05	7.273386e-05

Table for H with $\mu = 0.001$ and C=10 in C-norma

	$N \setminus M$	10	100	1000	10000
ĺ	10	2.525820 e-01	$4.686866\mathrm{e}{+03}$	$1.016235\mathrm{e}{+06}$	$5.311644 \mathrm{e}{+07}$
	100	2.747632e-02	2.370113e-02	$1.012010\mathrm{e}\!+\!44$	$2.271840\mathrm{e}{+71}$
Ì	1000	1.957591e-02	2.205616e-03	2.371229e-03	inf
Ì	10000	2.134526e-02	2.589457e-04	2.354779e-04	2.371315e-04

Table for H with $\mu = 0.001$ and C=10 in L2-norma

ſ	$N \setminus M$	10	100	1000	10000
ĺ	10	4.334361e-01	$1.542249\mathrm{e}{+03}$	$1.943500\mathrm{e}\!+\!05$	$4.016181\mathrm{e}{+06}$
ĺ	100	4.649622e-02	4.307304e-02	$2.191672\mathrm{e}{+43}$	$9.000197\mathrm{e}{+69}$
Ì	1000	3.351533e-02	4.230474e-03	4.311675e-03	nan
Ì	10000	3.447922e-02	4.642444e-04	4.302926e-04	4.312099e-04

Table for H with $\mu = 0.001$ and C=10 in W-norma

$N \setminus M$	10	100	1000	10000
10	4.395108e-01	$2.777445\mathrm{e}{+04}$	$2.310920\mathrm{e}{+07}$	$4.076619\mathrm{e}{+09}$
100	4.724952e-02	4.381697e-02	$4.298116\mathrm{e}{+45}$	$1.483107\mathrm{e}{+73}$
1000	3.585663e- 02	4.294450e-03	4.387400e-03	nan
10000	3.696042e-02	4.726341e-04	4.377502e-04	4.387934e-04

Table for V with $\mu = 0.001$ and C=100 in C-norma

$N \setminus M$	10	100	1000	10000
10	6.222596 e-01	$4.740038\mathrm{e}{+03}$	$1.533870\mathrm{e}{+04}$	$1.635475 e{+04}$
100	1.709229e-01	5.075577e-02	$1.078903\mathrm{e}{+05}$	$1.184759e{+06}$
1000	1.272068e-01	6.151046e-03	4.954532e-03	$5.397498\mathrm{e}{+06}$
10000	1.237442e-01	1.714861e-03	5.061924e-04	4.942434e-04

Table for V with $\mu = 0.001$ and C=100 in L2-norma

	$N \setminus M$	10	100	1000	10000
Γ	10	4.441936e-01	$4.982436\mathrm{e}{+02}$	$3.667656 \mathrm{e} \! + \! 03$	$4.198718\mathrm{e}{+03}$
ſ	100	6.401590 e-02	5.833289e-02	$8.898469\mathrm{e}{+02}$	$4.043158\mathrm{e}{+04}$
ſ	1000	9.083621 e-02	5.379825e-03	5.965712e-03	-nan
ſ	10000	9.462670e-02	5.820322e-04	5.917993e-04	5.978942e-04

Table for V with $\mu = 0.001$ and C=100 in W-norma

$N \setminus M$	10	100	1000	10000
10	5.210165e-01	$6.688912\mathrm{e}{+03}$	5.427973e + 05	$2.173028\mathrm{e}{+06}$
100	6.935243e-02	6.892662 e-02	1.505257e + 05	$6.024049\mathrm{e}{+07}$
1000	9.864410e-02	6.404336e-03	7.037101e-03	-nan
10000	1.029697e-01	6.299253 e-04	6.986087e-04	7.051348e-04

Table for H with $\mu=0.001$ and C=100 in C-norma

$N \setminus M$	10	100	1000	10000
10	1.840870e-01	$2.514009\mathrm{e}{+08}$	$1.611635\mathrm{e}{+09}$	$4.269110\mathrm{e}{+08}$
100	6.327377e-02	1.644509e-02	$3.496179\mathrm{e}\!+\!71$	$7.344464\mathrm{e}{+97}$
1000	7.013243e-02	1.734938e-03	1.670089e-03	2.749842e + 304
10000	7.081346e-02	6.428448e-04	1.664596e-04	1.672770e-04

Table for H with $\mu = 0.001$ and C=100 in L2-norma

$N \setminus M$	10	100	1000	10000
10	4.484438e-01	$2.005862\mathrm{e}{+08}$	$7.303502\mathrm{e}{+08}$	6.972262e+07
100	1.477195e-01	4.175223e-02	$6.322256 \mathrm{e} \! + \! 70$	$8.512804\mathrm{e}{+96}$
1000	1.399911e-01	4.468351e-03	4.169636e-03	nan
10000	1.397693e-01	1.460400e-03	4.179877e-04	4.169402e-04

Table for H with $\mu = 0.001$ and C=100 in W-norma

	$N \setminus M$	10	100	1000	10000
	10	4.528341e-01	$3.175068\mathrm{e}{+09}$	$6.980419\mathrm{e}\!+\!10$	$9.099767 \mathrm{e}{+10}$
ĺ	100	1.549797e-01	4.219555e-02	$9.600376\mathrm{e}\!+\!72$	9.213535e + 99
ĺ	1000	1.471544e-01	4.548602e-03	4.215346e-03	nan
	10000	1.469034e-01	1.531700e-03	4.227588e-04	4.215274e-04

5.2. Выводы о работе схемы при гладких условиях.

Анализируя таблицы ошибок, можно сделать вывод о том, что система является расходящейся. Причём сходимость задачи зависит от параметров μ и C. Так, при $\mu=0.1,\ C=1$ система сходится при любом отношении $\frac{N}{M}$, однако при росте C и убывании μ задача начинает расходиться при $\frac{N}{M}<1$. Если же M не превосходит N, то наблюдается сходимость в любой из примененных норм.

Из приведенных таблиц также видно, что, в большинстве случаев, программа выдает наименьшую ошибку (в каждой строке) при N=M, причём значения ошибки на диагонали-уменьшаются при росте N и достигают своего минимума при N=10000-это значение является минимумом всей таблицы (чаще всего). Однако часто наилучший результат (по строкам) достигается при N=10M. Из чего можно сделать вывод о том, что наиболее оптимальное отношение $\frac{N}{M} \in [1,10]$.

6. Разрывное решение.

Посмотрим, как себя ведет наш метод на разрывных задачах. Рассотрим две такие задачи.

6.1. Первая разрывная задача.

Зададим начально-краевую задачу, начальные и граничные условия которой определяются следующим образом:

$$\begin{cases} \rho_0(x) = \begin{bmatrix} 1, \ x < 4.5 \text{ или } x > 5.5 \\ 2, \ x \in [4.5, 5.5] \end{bmatrix} \\ u_0(x) \equiv 0, \ x \in [0, 10] \\ u(t, 0) = u(t, 10) = 0, \ t \in [0, 1] \end{cases}$$

Предварительно запустим программу с фиксированным параметром N и изменяющимся M=32,64,128,256,512,1024. То есть измельчаем деление оси х. Сравним значения полученных скорости и плотности на последнем слое на каждых двух соседних запусках и занесем полученные данные в таблицы:

Ratio Table for H with $\mu = 0.1$ and C=1

$M \setminus N$	10	100	1000
32 vs 64	3.827200 e-01	3.661910e-01	3.645200 e - 01
64 vs 128	1.434630e-01	1.439410e-01	1.426740e-01
128 vs 256	1.010800e-01	8.562200 e-02	8.628300 e-02
256 vs 512	7.671500 e-02	8.522100e-02	8.676500 e-02
512 vs 1024	6.226000e- 02	7.626500 e-02	7.698500 e-02

Ratio Table for V with $\mu = 0.1$ and C=1

$M \setminus N$	10	100	1000
32 vs 64	2.004398e-01	2.156259 e-01	2.174038e-01
64 vs 128	8.435720e-02	8.374180e-02	8.583450e-02
128 vs 256	5.232190e-02	4.614960 e-02	4.552640 e-02
256 vs 512	2.406250e-02	1.978180e-02	1.942220e-02
512 vs 1024	6.791800 e-03	8.823000 e-03	8.053800 e-03

Ratio Table for H with $\mu=0.1$ and C=10

$M \setminus N$	10	100	1000
32 vs 64	1.829780e-01	2.392800e-01	2.455830e-01
64 vs 128	1.618710e-01	1.976170e-01	2.180710e-01
128 vs 256	5.898784e-01	8.803000e-02	1.022060e-01
256 vs 512	$1.012480\mathrm{e}{+00}$	4.918200e-02	4.824770e-02
512 vs 1024	$4.506004\mathrm{e}{+01}$	3.272660 e-02	3.123610e-02

Ratio Table for V with $\mu=0.1$ and C=10

$M \setminus N$	10	100	1000
32 vs 64	8.757279e-01	8.132517e-01	8.069928e-01
64 vs 128	3.812384e-01	4.311222e-01	4.746920e-01
128 vs 256	$1.821305\mathrm{e}{+00}$	1.952856e-01	2.221614e-01
256 vs 512	$1.360102\mathrm{e}{+01}$	6.879200 e-02	9.514600e- 02
512 vs 1024	$1.605932\mathrm{e}{+01}$	5.807080e-02	7.169890 e-02

Ratio Table for H with $\mu=0.1$ and C=100

$M \setminus N$	10	100	1000
32 vs 64	$1.985758\mathrm{e}{+01}$	2.785970e-01	3.314290e-01
64 vs 128	4.804379e + 04	3.033160e-01	3.664950e-01
128 vs 256	$5.706160 \mathrm{e}{+04}$	1.628060e-01	3.195010e-01
256 vs 512	7.858564e + 02	$6.185104\mathrm{e}{+24}$	1.290540e-01
512 vs 1024	$4.966690\mathrm{e}{+01}$	$6.185104\mathrm{e}{+24}$	7.217800e-02

Ratio Table for V with $\mu = 0.1$ and C=100

$M \setminus N$	10	100	1000
32 vs 64	$7.019045\mathrm{e}{+01}$	$1.502606\mathrm{e}{+00}$	$2.130573\mathrm{e}{+00}$
64 vs 128	$5.514305\mathrm{e}{+01}$	9.648620 e-01	$2.189221\mathrm{e}{+00}$
128 vs 256	$7.248200\mathrm{e}{+01}$	4.365547e-01	$1.644276\mathrm{e}{+00}$
256 vs 512	$3.433740\mathrm{e}{+02}$	$2.719725\mathrm{e}{+03}$	9.935520 e-01
512 vs 1024	3.651797e + 02	$2.695962\mathrm{e}{+03}$	5.262690 e-01

Ratio Table for H with $\mu = 0.01$ and C=1

$M \setminus N$	10	100	1000
32 vs 64	2.569880e-01	2.309860e- 01	2.284110e-01
64 vs 128	4.297200e-01	4.560170e-01	4.602560e-01
128 vs 256	2.605740e-01	2.646090e-01	2.658440e-01
256 vs 512	6.053772e-01	1.338680 e-01	1.665920e-01
512 vs 1024	8.500037e-01	9.081600e- 02	1.076450e-01

Ratio Table for V with $\mu = 0.01$ and C=1

$M \setminus N$	10	100	1000
32 vs 64	3.325737e-01	3.411951e-01	3.424362e-01
64 vs 128	1.909395e-01	1.549147e-01	1.568895e-01
128 vs 256	2.653650 e - 01	1.699555e-01	1.826055e- 01
256 vs 512	4.234780e-01	8.946010e-02	1.101241e-01
512 vs 1024	$1.471269\mathrm{e}{+00}$	6.085300 e-02	8.632980 e-02

Ratio Table for H with $\mu=0.01$ and C=10

$M \setminus N$	10	100	1000
32 vs 64	3.190580e-01	3.268510e-01	3.350710e-01
64 vs 128	$2.231241\mathrm{e}{+00}$	2.845230e-01	3.304290 e-01
128 vs 256	$1.022216\mathrm{e}{+01}$	2.076780e-01	3.340370e-01
256 vs 512	$1.844838\mathrm{e}{+03}$	1.155580e-01	3.204670e- 01
512 vs 1024	$1.837574\mathrm{e}{+03}$	1.453488e-01	2.122090e-01

Ratio Table for V with $\mu = 0.01$ and C=10

$M \setminus N$	10	100	1000
32 vs 64	$1.177526\mathrm{e}{+00}$	$1.119865\mathrm{e}{+00}$	$1.129885\mathrm{e}{+00}$
64 vs 128	$7.675063\mathrm{e}{+00}$	6.494875e-01	7.351474e-01
128 vs 256	$2.188629\mathrm{e}{+01}$	4.174725e-01	7.690130e-01
256 vs 512	$5.577004\mathrm{e}{+01}$	2.213432e-01	7.046222e-01
512 vs 1024	$3.231511\mathrm{e}{+01}$	4.841176e-01	4.348466e-01

Ratio Table for H with $\mu = 0.01$ and C=100

$M \setminus N$	10	100	1000
32 vs 64	$2.817807 \mathrm{e}{+02}$	3.192313e-01	3.611110e-01
64 vs 128	1.113953e + 04	5.151460 e-01	5.447340e-01
128 vs 256	$3.064431\mathrm{e}{+05}$	$3.011254\mathrm{e}{+00}$	5.618300 e-01
256 vs 512	$1.573120\mathrm{e}{+06}$	$8.309034\mathrm{e}{+33}$	2.411590e-01
512 vs 1024	$6.514632\mathrm{e}\!+\!05$	$4.046458\mathrm{e}{+63}$	1.446250e-01

Ratio Table for V with $\mu=0.01$ and C=100

$M \setminus N$	10	100	1000
32 vs 64	$4.194034\mathrm{e}{+01}$	$2.169609\mathrm{e}{+00}$	$2.419776\mathrm{e}{+00}$
64 vs 128	5.149813e+02	2.144788e + 00	$3.692981\mathrm{e}{+00}$
128 vs 256	$1.110041\mathrm{e}{+03}$	$3.688059\mathrm{e}{+01}$	$3.278170\mathrm{e}{+00}$
256 vs 512	$1.245055\mathrm{e}{+03}$	$9.809243\mathrm{e}{+02}$	$1.987404\mathrm{e}{+00}$
512 vs 1024	$9.909578\mathrm{e}{+03}$	$1.318299\mathrm{e}{+03}$	$1.466866\mathrm{e}{+00}$

Ratio Table for H with $\mu = 0.001$ and C=1

$M \setminus N$	10	100	1000
32 vs 64	2.299930e-01	2.048000e-01	2.023050e-01
64 vs 128	5.097040e-01	5.343150e-01	5.389730e-01
128 vs 256	3.835699e-01	3.729750e-01	3.766420 e-01
256 vs 512	$5.739219e{+01}$	2.838320e-01	3.546420 e - 01
512 vs 1024	$2.230125\mathrm{e}{+04}$	2.110230e-01	3.534170e-01

Ratio Table for V with $\mu = 0.001$ and C=1

$M \setminus N$	10	100	1000
32 vs 64	3.599391e-01	3.653029e-01	3.662516e-01
64 vs 128	2.127317e-01	1.833411e-01	1.860099e-01
128 vs 256	4.213193e-01	2.910511e-01	3.067219e-01
256 vs 512	$2.070388\mathrm{e}{+01}$	1.858449e-01	2.194186e-01
512 vs 1024	$4.169862\mathrm{e}{+01}$	1.580425e-01	2.420345e-01

Ratio Table for H with $\mu = 0.001$ and C=10

$M \setminus N$	10	100	1000
32 vs 64	3.445545e-01	3.441910e-01	3.520648e-01
64 vs 128	$2.351699\mathrm{e}{+00}$	2.956600e-01	3.456780e-01
128 vs 256	$2.590270\mathrm{e}{+02}$	2.352380e-01	3.868370e-01
256 vs 512	$4.986489\mathrm{e}{+04}$	2.123653e-01	4.417040e-01
512 vs 1024	$5.841064 \mathrm{e}{+05}$	$6.805635\mathrm{e}{+09}$	3.528190e-01

Ratio Table for V with $\mu = 0.001$ and C=10

$M \setminus N$	10	100	1000
32 vs 64	$1.246821\mathrm{e}{+00}$	$1.182440\mathrm{e}{+00}$	$1.192807\mathrm{e}{+00}$
64 vs 128	$9.379221\mathrm{e}{+00}$	6.676848 e-01	7.610697e-01
128 vs 256	$3.419816\mathrm{e}{+01}$	5.365559e-01	9.160966e-01
256 vs 512	2.287822 e + 02	7.797586e-01	9.806032e-01
512 vs 1024	$1.221036\mathrm{e}{+03}$	$8.443019e{+01}$	7.875043e-01

Ratio Table for H with $\mu=0.001$ and C=100

$M \setminus N$	10	100	1000
32 vs 64	$6.360169\mathrm{e}{+01}$	3.564239 e-01	3.632220e-01
64 vs 128	$6.925940\mathrm{e}{+04}$	5.790390e-01	5.923620 e-01
128 vs 256	$1.401019\mathrm{e}{+06}$	$1.244955\mathrm{e}\!+\!13$	6.247340e-01
256 vs 512	$2.124317\mathrm{e}\!+\!12$	$1.028354\mathrm{e}\!+\!46$	3.031380e-01
512 vs 1024	$2.201740\mathrm{e}{+13}$	$1.579856\mathrm{e}{+56}$	$1.019971\mathrm{e}{+12}$

Ratio Table for V with $\mu = 0.001$ and C=100

$M \setminus N$	10	100	1000
32 vs 64	1.759418e+02	$2.288894\mathrm{e}{+00}$	$2.471955\mathrm{e}{+00}$
64 vs 128	$3.442911\mathrm{e}{+02}$	2.311421e+00	$3.892763\mathrm{e}{+00}$
128 vs 256	4.497572e+03	$9.827077e\!+\!01$	$3.917244 \mathrm{e}{+00}$
256 vs 512	$9.897100\mathrm{e}{+05}$	$3.373400\mathrm{e}{+02}$	$2.667698\mathrm{e}{+00}$
512 vs 1024	$9.897103\mathrm{e}{+05}$	8.028323 e + 03	$1.217198\mathrm{e}{+02}$

6.1.1. Графики для первой задачи.

6.1.2. Физическая интерпретация.

Предварительно заметим, что при большинстве значений параметров C и μ для решения выполняется закон сохранения массы (массы, в момент времени T подписаны под соответствующими данному моменту времени рисунками), что согласуется с физической картиной задачи, а именно: масса газа не претерпивает изменений. Причем, можно заметить, что с прошествием времени масса плотности "растекается" по всей оси абсцисс, в то время, как в начальный момент она была сконцентрирована на одном отрезке.

Опишим физическую картину процесса в зависимости от времени: Изначальный сгусток (участок с повышенной плотностью) распадается на два сгустка, которые движутся в разные стороны (их скорости противоположны, что можно видеть из графиков скорости), при этом, как уже было сказано, плотность "растекается" по оси абсцисс, то есть максимум значения плотности падает, а отрезок, на котором она состредоточена-расширяется.

Также следует отметить, что при некоторых значениях μ и C, например, при $\mu = 0.001, C = 100$ движение сгустков столь быстро, что они, за указанный промежуток времени, успевают дойти до границ отрезка, отразиться от них и пойти навстречу друг другу, пока не консолидируются в центре отрезка.

6.2. Вторая разрывная задача.

Зададим начально-краевую задачу, начальные и граничные условия которой определяются следующим образом:

$$\begin{cases} u_0(x) = \begin{bmatrix} 0, \ x < 4.5 \text{ или } x > 5.5 \\ 1, \ x \in [4.5, 5.5] \end{cases} \\ \rho_0(x) \equiv 1, \ x \in [0, 10] \\ u(t, 0) = u(t, 10) = 0, \ t \in [0, 1] \end{cases}$$

Предварительно запустим программу с фиксированным параметром N и изменяющимся M=32,64,128,256,512,1024. То есть измельчаем деление оси x. Сравним значения полученных скорости и плотности на последнем слое на каждых двух соседних запусках и занесем полученные данные в таблицы:

Ratio Table for H with $\mu = 0.1$ and C=1

$M \setminus N$	10	100	1000
32 vs 64	3.090880e-01	3.576330e-01	3.630590 e-01
64 vs 128	1.938330e-01	2.252730e-01	2.382060e- 01
128 vs 256	4.919658e-01	8.827820e-02	8.246500 e-02
256 vs 512	$1.269559\mathrm{e}{+00}$	6.461710e-02	4.348980e-02
512vs1024	$7.664900 \mathrm{e}{+00}$	1.113982e-01	2.321020e-02

Ratio Table for V with $\mu = 0.1$ and C=1

$M \setminus N$	10	100	1000
32 vs 64	2.826786e-01	2.658918e-01	2.643309e-01
64 vs 128	1.484441e-01	1.663687e-01	1.671559e-01
128 vs 256	2.442627e-01	5.868860 e-02	5.617170e-02
256 vs 512	$3.422649\mathrm{e}{+00}$	2.634910e-02	2.511040e-02
512 vs 1024	$6.875024 \mathrm{e}{+00}$	4.708000e-03	1.497180e-02

Ratio Table for H with $\mu = 0.1$ and C=10

$M \setminus N$	10	100	1000
32 vs 64	1.257775e-01	1.110742e-01	1.115416e-01
64 vs 128	8.694060e-02	6.661900e-02	7.010400 e-02
128 vs 256	4.926446e-01	2.941740e-02	2.909130e-02
256 vs 512	$1.124066\mathrm{e}{+00}$	1.165220 e-02	1.151180e-02
512 vs 1024	$1.240863\mathrm{e}{+02}$	6.759900e-03	6.275000 e-03

Ratio Table for V with $\mu=0.1$ and C=10

$M \setminus N$	10	100	1000
32 vs 64	2.474652e-01	2.551040e-01	2.605657e-01
64 vs 128	2.345077e-01	1.621499e-01	1.736133e-01
128 vs 256	$1.182499\mathrm{e}{+00}$	9.204230e-02	9.172380e-02
256 vs 512	$2.585569\mathrm{e}{+00}$	3.829880e-02	3.762290 e-02
512 vs 1024	$1.134154\mathrm{e}{+01}$	1.024450e-02	1.791060e-02

Ratio Table for H with $\mu = 0.1$ and C=100

$M \setminus N$	10	100	1000
32 vs 64	$1.262016\mathrm{e}{+01}$	3.647310e-02	3.608030e-02
64 vs 128	$3.993725 \mathrm{e} \! + \! 04$	2.214380e-02	2.133230e-02
128 vs 256	$5.015535 \mathrm{e}{+04}$	1.891810e-02	1.695990e-02
256 vs 512	$1.474416\mathrm{e}\!+\!04$	$1.176480\mathrm{e}{+11}$	8.418500e-03
512 vs 1024	$3.268485\mathrm{e}{+02}$	$1.176480\mathrm{e}{+11}$	3.522800 e-03

Ratio Table for V with $\mu=0.1$ and C=100

$M \setminus N$	10	100	1000
32 vs 64	$1.465732\mathrm{e}{+02}$	4.588670 e - 01	4.692604 e - 01
64 vs 128	$6.123634\mathrm{e}\!+\!02$	3.545237e-01	3.561369e-01
128 vs 256	$6.408392 \mathrm{e}{+02}$	2.368313e-01	2.189122e-01
256 vs 512	1.378392e+02	$1.012239\mathrm{e}{+03}$	8.360360e-02
512 vs 1024	$1.381849\mathrm{e}{+02}$	$1.012433\mathrm{e}{+03}$	2.573580e-02

Ratio Table for H with $\mu = 0.01$ and C=1

$M \setminus N$	10	100	1000
32 vs 64	4.680040e-01	5.272020e-01	5.349290 e-01
64 vs 128	3.538070e-01	3.761100e-01	3.988560e- 01
128 vs 256	3.871989e-01	3.021030e-01	2.929170e-01
256 vs 512	8.711104e-01	2.685150e-01	2.962860e- 01
512 vs 1024	$1.936493\mathrm{e}{+00}$	1.587200e-01	2.609310e-01

Ratio Table for V with $\mu = 0.01$ and C=1

$M \setminus N$	10	100	1000
32 vs 64	4.799729e-01	4.580313e-01	4.564108e-01
64 vs 128	4.628195 e - 01	4.592583e-01	4.616897e-01
128 vs 256	3.723803e-01	3.845543e-01	4.012722e- 01
256 vs 512	$9.770049\mathrm{e}{+00}$	1.867579e-01	1.719743e-01
512 vs 1024	$4.948632\mathrm{e}{+01}$	8.976510 e-02	1.581561e-01

Ratio Table for H with $\mu = 0.01$ and C=10

$M \setminus N$	10	100	1000
32 vs 64	1.739940e-01	1.529029e-01	1.534209 e-01
64 vs 128	9.219944e-01	1.245160e-01	1.318260e-01
128 vs 256	$4.481584 \mathrm{e}{+02}$	7.633600 e-02	8.042900 e-02
256 vs 512	$4.482156\mathrm{e}{+02}$	8.602670 e-02	8.255300 e-02
512 vs 1024	$4.804062\mathrm{e}{+01}$	4.510830e-02	6.321400e-02

Ratio Table for V with $\mu=0.01$ and C=10

$M \setminus N$	10	100	1000
32 vs 64	3.652539e-01	2.693385e-01	2.791077e-01
64 vs 128	$1.392704\mathrm{e}{+01}$	3.777142e-01	3.828573e- 01
128 vs 256	$2.287249\mathrm{e}{+01}$	2.866716e-01	2.757297e-01
256 vs 512	$4.320102\mathrm{e}{+01}$	2.451635e-01	2.398775e-01
512 vs 1024	4.271214e+01	1.550951e-01	1.676360 e - 01

Ratio Table for H with $\mu=0.01$ and C=100

$M \setminus N$	10	100	1000
32 vs 64	$2.372829\mathrm{e}{+03}$	4.719970e-02	4.659930e-02
64 vs 128	$2.852597\mathrm{e}{+03}$	4.623200e-02	4.075640e-02
128 vs 256	$4.831122\mathrm{e}{+05}$	3.771540e-02	3.333590e-02
256 vs 512	$4.854039\mathrm{e}\!+\!05$	$2.225575\mathrm{e}{+22}$	2.916110e-02
512 vs 1024	3.339467e + 04	$9.036351\mathrm{e}{+39}$	2.304690e-02

Ratio Table for V with $\mu = 0.01$ and C=100

$M \setminus N$	10	100	1000
32 vs 64	$6.164940 \mathrm{e} + 02$	6.235399e-01	6.024805 e-01
64 vs 128	1.705171e + 02	5.118700e-01	5.848277e-01
128vs256	$9.506235\mathrm{e}{+02}$	4.553811e-01	4.388243e-01
256 vs 512	1.172325e+03	$4.973691\mathrm{e}{+03}$	2.794725e-01
512 vs 102	4 9.708211e + 02	$3.395929\mathrm{e}{+03}$	2.578164e-01

Ratio Table for H with $\mu = 0.001$ and C=1

$M \setminus N$	10	100	1000
32 vs 64	4.963150e-01	5.553550e-01	5.631110e-01
64 vs 128	3.698060e-01	4.109310e-01	4.321130e-01
128 vs 256	5.118725e-01	3.986710e-01	4.051270e-01
256 vs 512	$1.599491\mathrm{e}{+01}$	4.779210e-01	5.300630 e-01
512 vs 1024	$1.731700\mathrm{e}{+01}$	3.450810e-01	7.662620 e-01

Ratio Table for V with $\mu=0.001$ and C=1

$M \setminus N$	10	100	1000
32 vs 64	4.943098e-01	4.647798e-01	4.625275e-01
64 vs 128	5.454855e-01	5.549751e-01	5.589061e-01
128 vs 256	$1.040134\mathrm{e}{+00}$	7.162545e-01	7.253100e-01
256 vs 512	$1.066912\mathrm{e}{+01}$	4.793064e-01	4.503406e-01
512 vs 1024	$2.113953\mathrm{e}{+01}$	3.560953e-01	4.619769e-01

Ratio Table for H with $\mu = 0.001$ and C=10

$M \setminus N$	10	100	1000
32 vs 64	1.826896 e - 01	1.570865e-01	1.574989e-01
64 vs 128	$3.970486\mathrm{e}{+01}$	1.429500 e - 01	1.503240e-01
128 vs 256	$7.095604\mathrm{e}{+03}$	1.132310e-01	1.191260e-01
256 vs 512	$2.538009\mathrm{e}{+04}$	2.163450e-01	1.492420e-01
512 vs 1024	$3.333116\mathrm{e}{+04}$	$9.069444\mathrm{e}{+06}$	1.592610e-01

Ratio Table for V with $\mu=0.001$ and C=10

$M \setminus N$	10	100	1000
32 vs 64	3.969681e-01	2.987408e-01	3.100836e-01
64 vs 128	$1.503458\mathrm{e}{+01}$	4.526225 e-01	4.590452e-01
128 vs 256	$9.457721e{+02}$	3.844440e-01	3.909358e-01
256 vs 512	$9.418521e{+02}$	6.226616e-01	4.337250e-01
512 vs 1024	$5.695716\mathrm{e}{+02}$	$9.530975\mathrm{e}{+01}$	4.801451e-01

Ratio Table for H with $\mu = 0.001$ and C=100

$M \setminus N$	10	100	1000
32 vs 64	$9.294043\mathrm{e}{+02}$	4.834330e-02	4.775990e-02
64 vs 128	$2.413986\mathrm{e}{+08}$	5.407520e-02	4.859810e-02
128 vs 256	5.999777e + 08	4.078010e-02	3.743500e-02
256 vs 512	$1.057315\mathrm{e}\!+\!11$	$1.545071\mathrm{e}{+51}$	4.284640e-02
512 vs 1024	$1.665180\mathrm{e}\!+\!11$	$1.545071\mathrm{e}{+51}$	5.195100e-02

Ratio Table for V with $\mu = 0.001$ and C=100

$M \setminus N$	10	100	1000
32 vs 64	$1.371786\mathrm{e}{+02}$	6.449375 e - 01	6.187007e-01
64 vs 128	$4.249389\mathrm{e}{+03}$	4.745770e-01	5.983323e-01
128 vs 256	1.653114e + 05	5.763103e-01	5.700874e-01
256 vs 512	$2.391479\mathrm{e}{+06}$	$7.470460\mathrm{e}{+02}$	4.377662e-01
512 vs 1024	2.391721e+06	8.131193e+02	5.035135e-01

6.2.1. Графики для второй задачи.

6.2.2. Физическая интерпретация.

Предварительно заметим, что при большинстве значений параметров C и μ для решения выполняется закон сохранения массы (массы, в момент времени T подписаны под соответствующими данному моменту времени рисунками), что согласуется с физической картиной задачи, а именно: масса газа не претерпивает изменений. Причем, можно заметить, что с прошествием времени "масса" скорости "растекается" по всей оси абсцисс, в то время, как в начальный момент она была сконцентрирована на одном отрезке.

Опишим физическую картину процесса в зависимости от времени: Изначально плотность была распределена равномерно, однако у центрального участка была положительная скорость, что приводит к формированию сгустка справа и "ямы" (т.е проседания по плотности, т.к. оттуда истекает газ) слева. В дальнейшем скорость распадается на два положительных "холма которые движутся в противоположные стороны. Действительно, в образовавшиюся "яму "устремляется (из-за разницы в давлении) газ слева от нее, а сгусток придает скорость газу справа от себя (по направлению движения). Таким образом "яма "движется влево, а сгусток-вправо.

6.3. Приложение.

Посмотреть на изменение графиков по времени для разрывных задач можно в папках 0 и 1. Там собраны сгенерированные gif-файлы соответственно для 1 и второй задач.

Список литературы

- [1] А. В. Попов: Численное моделирование нестационарного одномерного течения газа с использованием неявных разностных схем. 2017.
- [2] А. В. Попов: Численное моделирование нестационарного течения газа с использованием неявных разностных схем. 2018.
- [3] А. В. Попов: GNUPLOT и его приложения . Издательство попечительского совета механико-математического факультета МГУ. 2015.
- [4] К. Ю. Богачев: Практикум на ЭВМ.Методы решения линейных систем и нахождения значений. Издатальство Механико-Математического факультета МГУ. 1998.