

- $P_{111}: a \wedge b \wedge c$
- $P_{112}: a \wedge b \wedge \neg c$
 - $\rightarrow G_{11}: a \wedge b$
- $P_{121}: c \wedge d \wedge f$
- $P_{122}: c \wedge d \wedge \neg f$
 - $\rightarrow G_{12}: c \wedge d$
- $P_{131}: e \vee f$

choices are made.

- P_{132} : $\neg e \wedge \neg f$
 - \rightarrow G_{11} : \top
 - $\rightarrow P_1: a \land b \land c \land d$

- P_{211} : $\neg a \land \neg d \land (b \lor c)$ P_{331} : $(\neg b \lor (b \land \neg a) \lor (b \land \neg d)) \land (c \lor e \lor f)$
- P_{212} : $\neg a \land \neg d \land (\neg b \lor \neg c)$

• P_{332} : $(\neg b \lor (b \land \neg a) \lor (b \land \neg d)) \land (\neg c)$

 $\Rightarrow G_{31}: \neg(a \wedge b \wedge d)$ $\Rightarrow P_3: \neg(a \wedge b \wedge d)$

- $\rightarrow G_{21}: \neg a \wedge \neg d$
- $P_{221}: e$
- P_{222} : $\neg e$
 - $\rightarrow G_{21}: \top$
- $P_{231}: \neg a \land \neg d \land (b \land f)$
- P_{232} : $\neg a \land \neg d \land (\neg b \lor \neg f)$
 - $\rightarrow G_{31}: \neg a \wedge \neg d$
 - $\rightarrow P_2: \neg a \wedge \neg d$
- P_1 : P_1 can succeed when the initial state satisfies $a \wedge b \wedge c \wedge d$ and the right choices are made. I believe I made a mistake for the postcondition of a_{111} , probably I wanted c to be set to true for a_{112} , so that c is always true for the goal G_{12} when G_{11} succeeded. Because of that P_1 succeeds when the initial state is $a \wedge b \wedge d$ and the right
- P_2 : P_2 succeeds when $\neg a \land \neg d$ and the right choices are made.
- P_3 : It seems that the expression $(\neg b \lor (b \lor \neg a) \lor (b \land \neg d))$ is equal to $\neg (a \land b \land d)$ to treat cases not handled by P_1 .