Presentación final CD2201-16

Centro, Radios lagrangianos y Energía de un Cluster

M. González, M. Maturana, E. Reyes y C. Riquelme

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Plan Común Ingenería U

10 de diciembre de 2024

Contenidos

- Introducción y Motivaciones
- Objetivos
- Metodología, Marco Teórico y Base de Datos
- Resultados
- Conclusiones

Introducción y Motivaciones

Definición

Clusters Estelares: Agrupaciones de estrellas que se formaron a partir de una misma nube molecular y, generalmente, comparten la misma composición química y edad.

Su estudio es fundamental en astronomía y astrofísica por varias razones clave como por ejemplo.

- Comprender la formación y evolución estelar.
- Dinámica y evolución de sistemas gravitacionales (Colisión y relajación).
- Catálisis de eventos extremos (Agujeros negros y estrellas de neutrones).

(a) Cluster

(b) Primera Imágen del James Webb

Figura 1: Imágenes del James Webb

Objetivos

Estudio de un cluster

Esta simulación buscaba estudiar la evolución de un cluster estelar y como afecta al mismo la evolución de sus miembros.

Trackeo centro del Cluster y Radios Lagrangianos

Buscamos analizar la trayectoria del centro del cluster \vec{r}_{cc} y definimos r_{ξ} como el radio (centrado en el \vec{r}_{cc}) al que se encuentra el ξ % de la masa total.

Trackeo de la Energía y Colisiones

Se busca estudiar la evolución el sistema mirando su energía potencial y cinética. Del mismo modo se analizó los tiempos de relajación y colisiones de una estrella en particular.

Métodología

Nuestra base de datos de la simulación fue proporcionado por Boris Cuevas ¹ la cual constaba de un dataset HDF5 que contenía los parámetros dinámicos principales del sistema.

Figura 2: Módelo de HDF5

Las principales dificultades fueron:

- 1. Tamaño del archivo.
- Formato y lectura.
- 3. Tiempos de cómputo.

boris.cuevas@ug.uchile.cl

Métodología

Métodos Computacionales utilizados:

- · Multiproccessing para optimización.
- · Amuse framework.
- · Librerías Numpy y Matplotlib.

Figura 3: Diferencias entre multiprocessing y multithreading

Marco teórico

El proyecto estuvo basado principalmente en la definición que da Makino & Sugimoto (1987) junto con el trabajo de Andrés Escala. ²

Definición

Centro del Cluster:

$$ec{r}_{cc} := rac{\sum\limits_{i=1}^{N}rac{ec{r_{i}}}{r_{6i}^{3}}}{\sum\limits_{i=1}^{N}rac{1}{r_{6i}^{3}}}$$

Definición

Radios Lagrangianos:

$$r_{\xi} = \|\vec{r} - \vec{r}_{cc}\|$$

tal que \vec{r} es el radio al que se encuentra el ξ % de la masa.

Definición

Tiempo de relajación:

$$T_{relax} = \frac{N}{6 \ln N} t_{cr}$$
 $t_{cr} \equiv \frac{R}{v}$

2 Effect of suprathermal particles on gravothermal oscillation.

Bases de Datos

- · 2.000 estrellas
- 25.817 tiempos distintos
- Energía

- Velocidades
- Posiciones
- Masas

A	В	С	D	E	F	G	Н
datasets	RL 60%	RL 70%	RL 80%	MMx	ММу	MMz	Relax time
Stars_0	0.004685145449	0.005842143191	0.007403544889	-0.002410268636	-0.001644780824	-0.003781376537	6.34E+12
Stars_1	0.004677512222	0.005830360039	0.007400126153	-0.002546928591	0.003298739312	0.00171880446	2.61E+12
Stars_2	0.004580095138	0.005764582142	0.007390317037	-0.004670100503	-0.001656752813	0.003349928855	3.54E+12
Stars_3	0.004545274283	0.005740229513	0.00737074045	-0.004805805067	-0.003794133016	0.00130105469	3.12E+12
Stars_4	0.004512980945	0.00568483469	0.007369430256	0.00227215204	0.006658071648	0.002518233184	3.10E+12
Stars_5	0.00448212461	0.005651686436	0.007358853985	-0.0004632142715	0.001441666542	0.0001401985232	930736637819
Stars_6	0.004111768244	0.005362937199	0.007197269997	0.004605932939	-0.001555950223	-0.001213914055	1.60E+12
Stars_7	0.004097702294	0.005358198002	0.007199707058	-0.001614970005	-0.004474811615	0.001173381811	1.74E+12
Stars_8	0.004064644715	0.005344497051	0.007154022732	0.0001457460937	0.000171420042	0.0001074173665	241086633976

Figura 4: CSV

Códigos

Código 1: Código esencial en $ec{r}_{cc}$ y r_{ξ}

```
#Función para poder encontrar las 6 estrellas más cercanas
def closest_neighbours(x1,y1,z1,x,y,z):
     #centramos
     #trasladamos el origen
     xcenter = x.value in(units.pc) -x1.value in(units.pc)
5
     ycenter = y.value_in(units.pc)-y1.value_in(units.pc)
     zcenter = z.value_in(units.pc)-z1.value_in(units.pc)
     #distancia
     r = np.sqrt(xcenter**2 + ycenter**2 + zcenter**2)
9
     #ordenaos
10
     r.sort()
11
     return r[6]
12
```

Códigos

Código 2: Código esencial en $ec{r}_{cc}$ y r_{ξ}

```
#Ordenar distancias

r = np.sqrt(distancia_x + distancia_y + distancia_z)

indices=np.argsort(r,kind='quicksort')

r_ordenado=r[indices]

massordenado=mass[indices]

acumulated_mass=np.cumsum(mass_ordenado)

acumulated_mass_porcentaje=acumulated_mass/totalmass

indice_i=np.where(acumulated_mass_porcentaje>=0.i)[0][0]

radio i=r ordenado[indice i]
```

Travectoria del centro del cluster y centro de masa

(a) Trayectoria

Most massive track

(b) Trayectoria

Figura 7: Tiempo de relajación

Figura 8: Comparación momento inicial y final

Conclusiones

Comportamiento del centro

Como pudimos apreciar en los gráficos la simulación es consecuente con la física ya que el objeto más masivo se mantiene cerca del centro, y en efecto el centro es el centro del cluster.

Radios lagrangianos y energía

Podemos interpretar ambos datos como medidas de la separación del cluster los cuales se complementan entre si.

Tiempos de relajación

El cluster en un inicio es muy compacto y caótico mientras que al final se acerca al equilibrio.

Etapa final e inicial del cluster

Tal como habíamos predicho gracias a los gráficos de energía y radios lagrangianos.

Esto fue profeta galáctico