MEDIDAS DE POSIÇÃO

Expressam a característica dos dados observados *tenderem* a se *agrupar em torno dos valores centrais*, indicado a *posição* da série em relação ao eixo dos valores assumidos pela variável ou característica em estudo. Em síntese, podemos dizer que as **MEDIDAS DE POSIÇÃO** tentam traduzir a *semelhança* que os *dados estatísticos* referentes à observação de um fenômeno apresentam *entre si*, conforme se pode notar pela observação das séries abaixo.

Série		Valores				Média	Mediana	Moda					
1	1	3	7	10	10	11	15	18	20	35	13	10,5	10
2	12	12	13	13	13	13	13	13	14	14	13	13	13
3	13	13	13	13	13	13	13	13	13	13	13	13	13

A julgar apenas pela **MÉDIA**, teríamos que concluir pela *igualdade* entre as três séries **1**, **2** e **3**. Se estendermos nossa análise, incluindo as medidas **MÉDIA**, **MEDIANA** e **MODA**, teríamos que concluir pela *igualdade* entre as séries **2** e **3**. Mas, como os conjuntos são pequenos, conseguimos observar que eles não são iguais.

SEPARATRIZES

Outras medidas de posição são as **separatrizes**, que englobam:

- a própria mediana;
- os quartis;
- os decis;
- os percentis.

Mediana: divide a série em duas partes iguais.

Quartis: denominamos quartis os valores de uma série que a dividem em quatro partes iguais.

Há, portanto, três quartis:

- O **primeiro quartil** (\mathbf{Q}_1): é o valor situado de tal modo na série que uma quarta parte (25%) dos dados é menor que ele e as três quartas partes restantes (75%) são maiores.
- O segundo quartil (\mathbf{Q}_2): é exatamente o valor da mediana, ou seja, o valor situado de tal modo na série que deixa metade (50%) dos dados a esquerda dele e a outra metade à direita ($\mathbf{Q}_2 = \mathbf{Md}$).
- O **terceiro quartil** (**Q**₃) : é o valor situado de tal modo na série que as três quartas partes (75%) dos dados são menores que ele e uma quarta parte restante (25%) é maior.

FÓRMULA DO QUARTIL PARA DADOS BRUTOS

$$Q_i = x_i \cdot \frac{n}{4}$$

FÓRMULA DO QUARTIL PARA TABELA COM INTERVALO DE CLASSE

$$Q_i = l_i + rac{\left(i.rac{\Sigma f_i}{4} - Fant
ight)}{fi_{
m classe\ considerada}}$$
 . h

 $\frac{\Sigma f_i}{4}$ = somatório das frequências dividido por quatro;

Li = limite inferior da classe do quartil considerado;

Fant = frequência acumulada da classe anterior à classe do quartil considerado;

h = amplitude do intervalo de classe do quartil considerado;

fi = frequência simples da classe do quartil considerado.

Os quartis são valores de um conjunto de dados ordenados, que os dividem em quatro partes iguais. É necessário, portanto, três quartis (Q₁, Q₂ e Q₃) para dividir um conjunto de dados ordenados em quatro partes iguais.

Q₁: deixa 25% dos elementos abaixo dele.

Q₂: deixa 50% dos elementos abaixo dele e coincide com a mediana.

Q₃: deixa 75% dos elementos abaixo dele.

A figura abaixo mostra bem o quartis:

<u>Decis:</u> os decis por sua vez, são os dez valores que dividem a série em 10 partes iguais, onde, cada uma delas contém 10% dos dados.

FÓRMULA DO DECIL PARA DADOS BRUTOS

$$D_i = x_i \cdot \frac{n}{10}$$

FÓRMULA DO DECIL PARA TABELA COM INTERVALO DE CLASSE

$$D_i = l_i + \frac{\left(i.\frac{\sum f_i}{10} - Fant\right)}{fi_{\text{classe considerada}}} . h$$

 $\frac{\Sigma f_i}{10}$ = somatório das frequências dividido por dez;

Li = limite inferior da classe do decil considerado;

Fant = frequência acumulada da classe anterior à classe do decil considerado;

h = amplitude do intervalo de classe do decil considerado;

fi = frequência simples da classe do decil considerado.

<u>Percentis:</u> denominamos percentis os noventa e nove valores que separam uma série em 100 partes iguais, ou seja:

$$P_1, P_2, P_3, \dots, P_{99}$$
, onde $P_{50} = Md = Q_2$, $P_{25} = Q_1 e P_{75} = Q_3$

FÓRMULA DO PERCENTIL PARA DADOS BRUTOS

$$P_i = x_i \cdot \frac{n}{100}$$

FÓRMULA DO PERCENTIL PARA TABELA COM INTERVALO DE CLASSE

$$P_{i} = l_{i} + \frac{\left(i \cdot \frac{\sum f_{i}}{100} - Fant\right)}{f_{i}_{classe \ considerada}} \cdot h$$

 $\frac{\Sigma f_i}{100}$ = somatório das frequências dividido por cem;

Li =limite inferior da classe do percentil considerado;

Fant = frequência acumulada da classe anterior à classe do percentil considerado;

h = amplitude do intervalo de classe do percentil considerado;

fi = frequência simples da classe do percentil considerado.

Sintetizando o modo de encontrar as medidas de posição de acordo com a forma de apresentação dos dados, vemos que as medidas descritas abaixo devem ser obtidas:

Quando os dados se apresentarem em:	Média	Moda	Mediana	Quartis, Decis e Percentis
Rol	$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$	Pela observação dos dados	Pela observação dos dados	Pela observação dos dados
Agrupamento Simples	$\overline{x} = \frac{\sum_{i=1}^{n} x_i \cdot f_i}{\sum f_i}$	Pela observação dos dados	Pela observação dos dados	Pela observação dos dados
Ramo e Folhas	$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$	Pela observação dos dados	Pela observação dos dados	Pela observação dos dados
Agrupamento Em Classes	$\bar{x} = \frac{\sum_{i=1}^{n} x_i \cdot f_i}{\sum f_i}$	Fórmula $\operatorname{Mo} = l_i + \frac{\Delta_1}{\Delta_1 + \Delta_2} . h$	Fórmula $Md = l_i + \frac{\left(\frac{\sum f_i}{2} - Fant\right)}{fmd} . h$	Fórmula $Q_i = l_i + \frac{\left(i.\frac{\Sigma f_i}{4} - Fant\right)}{f_{\text{classe considerada}}}.h$
				$D_i = l_i + rac{\left(i.rac{\Sigma f_i}{10} - Fant ight)}{fi_{ m classe\ considerada}} \ . h$
				$P_i = l_i + rac{\left(i.rac{\Sigma f_i}{100} - Fant ight)}{f_{classe\ considerada}}.h$

Frequentemente, as **MEDIDAS DE TENDÊNCIA CENTRAL** *não são suficientes* para caracterizar completamente uma série numérica, conforme pode ser observado nas séries de dados acima.

O que se constata, é que os *fenômenos* passíveis de análise pelo método estatístico, bem como *os dados estatísticos* a eles referentes, *caracterizam-se* tanto pela sua *semelhança* quanto pela sua *variabilidade*.

MEDIDAS DE DISPERSÃO OU VARIABILIDADE

Vimos que a média a moda e a mediana podiam ser usadas para resumir, num único número, aquilo que é "médio" ou "típico" de um conjunto de dados. Mas a informação contida fornecida pelas medidas de posição necessita em geral ser complementada pelas medidas de dispersão. Estas servem para indicar o quanto os dados se apresentam dispersos em torno da região central. Caracterizam, portanto, o grau de variação existente no conjunto de valores. As medidas de dispersão que nos interessam são:

- a amplitude total;
- o desvio médio;
- a variância;
- o desvio-padrão;
- e o coeficiente de variação;
- Box Plot.

A dispersão mede quão próximos os valores estão uns dos outros no grupo.

(A) Pequena Dispersão

(B) Grande Dispersão

A variabilidade de B é maior que a de A.

Para termos uma boa representação dos dados, temos que ter:

Uma medida de posição (quase sempre a Média) mais uma medida de dispersão (quase sempre o Desvio Padrão).

AMPLITUDE TOTAL

Dados não Agrupados

A amplitude total é a diferença entre o maior e o menor valor observado:

$$A_T = x(m\acute{a}x) - x(m\acute{n})$$

Exemplo: Para os valores: 40, 45, 48, 52, 54, 62 e 70

Temos: AT = 70 - 40 = 30

Quando dizemos que a amplitude total dos valores é 30, estamos afirmando alguma coisa do grau de sua concentração. É evidente que, quanto maior a amplitude total, maior a dispersão ou variabilidade dos valores da variável.

Dados Agrupados

✓ Sem intervalos de classe:

Neste caso, ainda temos: $A_T = x(m\acute{a}x) - x(m\acute{n})$

Exemplo: Considerando a tabela abaixo:

Temos: $A_T = 4 - 0 = 4$

✓ Com intervalos de classe:

Neste caso, a amplitude total é a diferença entre o **limite superior da última** classe e o **limite inferior** da primeira classe: $A_T = L_{sup} (m\acute{a}x) - l_{inf} (m\acute{n})$

Exemplo: Considerando a distribuição abaixo:

i	ESTATURAS (cm)	$\mathbf{f_i}$
1	150 1 − 154	4
2	154 ι— 158	9
3	158 1—162	11
4	162 1−166	8
5	166 1− 170	5
6	170 ι— <mark>174</mark>	3
		$\Sigma = 40$

Temos: $A_T = 174 - 150 = 24$

VARIÂNCIA E DESVIO PADRÃO

Duas medidas de variação que usam todas as entradas de dados são a variância e o desvio padrão. Contudo, antes de aprender essas medidas de variação, você precisa saber qual é o significado do desvio de uma entrada em um conjunto de dados.

Desvio de um entrada x em um conjunto de dados de uma população é diferença entre a entrada e a média μ do conjunto de dados, ou seja, parâmetro que indica o grau de variação de um conjunto de elementos.

Exemplo: Dada a temperatura máxima durante 3 dias em uma cidade A, obteve-se os seguintes valores: 28°, 29° e 30°, a média calculada é de: 29°.

Em outra cidade B, foram coletadas as temperaturas máximas de 22°, 29° e 35°, obtendo de média 29°. Logo as médias das duas cidades tem o mesmo valor. Para podermos diferenciar uma média da outra, foi criada a noção de desvio padrão, que serve para dizer o quanto os valores dos quais se extraiu a média são próximos ou distantes da própria média.

Quanto menor o desvio padrão, mais homogênea é a minha amostra.

DESVIO MÉDIO (D_M): É a média aritmética dos desvios.

Formulação matemática:

DESVIO MÉDIO (DADOS BRUTOS)	DESVIO MÉDIO (DADOS TABELADOS)
$D_m = \frac{\sum_{i=1}^n x_i - \overline{x} }{n}$	$D_m = \frac{\sum_{i=1}^{n} x_i - \overline{x} .f_i}{\sum_{i=1}^{n} f_i}$

Variância (s^2) ou (σ^2)

A **Variância** é uma medida que tem pouca utilidade como estatística descritiva, porém é extremamente importante na inferência estatística. A variância leva em consideração os valores extremos e os valores intermediários, isto é, expressa melhor os resultados obtidos.

Quando a série de dados representa uma **Amostra**, a **Variância** é denotada por s^2 , e quando provém de uma **População**, a **Variância** é denotada por σ^2 (σ = sigma minúsculo, caractere do alfabeto grego, equivalente ao s minúsculo no alfabeto arábico). Observe que há uma *diferença* no método de *cálculo das duas Variâncias*: quando se trata de uma **População**, o denominador da equação de σ^2 representa a quantidade total de elementos na população (N), enquanto no caso de uma **Amostra**, o denominador da equação de s^2 é o total de elementos na amostra menos 1 (n-1).

Formulação matemática:

VARIÂNCIA AMOSTRAL s ²	VARIÂNCIA POPULACIONAL σ ²
$s^{2} = \frac{\sum_{i=1}^{n} x_{i} - \overline{x} ^{2}}{(n-1)}$	$\sigma^2 = \frac{\sum_{i=1}^{N} x_i - \overline{x} ^2}{N}$

Em várias situações, torna-se necessário visualizar como os dados estão dispersos. Tomando como exemplo várias empresas que apresentem salários médios iguais, podemos concluir, então, que a contribuição social (% do salário) será a mesma? Somente com base no salário médio, sim, mas estaríamos chegando a uma conclusão errada. A variação em termos de faixas salariais pode ser diferente, apesar de apresentarem a mesma média.

DESVIO PADRÃO (S) OU (σ)

O desvio-padrão é a medida mais usada na comparação de diferenças entre grupos, por ser mais precisa e estar na mesma medida do conjunto de dados. Ele determina a dispersão dos valores em relação a média. Sua formulação é dada pela raiz quadrada da média aritmética dos quadrados dos desvios, ou seja:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}} = \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n-1}}, \text{ logo temos:}$$

DESVIO PADRÃO AMOSTRAL (S)	DESVIO PADRÃO
AMOSTRAL (3)	POPULACIONAL (σ)
$\mathbf{s} = \sqrt[2]{s^2}$	$\sigma = \sqrt[2]{\sigma^2}$

Importante!

Condição para se usar o desvio-padrão ou variância para comparar a variabilidade entre grupos:

- ✓ mesmo número de observações;
- ✓ mesma unidade:
- ✓ mesma média.

COEFICIENTE DE VARIAÇÃO (CV)

Podemos considerar uma situação na qual se avalia o custo indireto de fabricação (CIF) de um produto em reais e o tempo gasto em uma máquina para fabricação deste produto em segundos.

	\overline{x}	S
CIF	R\$ 175,00	R\$ 5,00
Tempo	68 segundos	2 segundos

A princípio, você poderia concluir que o CIF apresenta maior variabilidade. Entretanto, as condições citadas anteriormente deveriam ser satisfeitas para que pudesse utilizar o desvio padrão para comparar a variabilidade. Como as condições não são satisfeitas, devemos tentar expressar a dispersão dos dados em torno da média, em termos porcentuais. Então, utilizaremos uma medida estatística chamada **de coeficiente de variação**.

O coeficiente de variação (cv) é definido como o quociente entre o desvio-padrão e a média. É expresso em porcentagem.

A grande utilidade do COEFICIENTE DE VARIAÇÃO é permitir a comparação de variabilidade de diferentes conjuntos de dados.

$$cv = \frac{S}{\overline{x}} \times 100, \text{ logo temos:}$$

$$CV_{amostra} = \frac{S}{\overline{x}} \times 100 \quad ou \quad CV_{população} = \frac{\sigma}{\overline{x}} \times 100$$

Para a situação do CIF e Tempo, teremos:

$$CV_{CIF} = \frac{s}{\overline{x}} \times 100 = \frac{5}{175} \times 100 = 2,85\%$$

$$CV_{t} = \frac{s}{\overline{x}} \times 100 = \frac{2}{68} \times 100 = 2,94\%$$

Portanto, neste caso, o tempo de horas da máquina apresenta maior dispersão do que o custo indireto de fabricação (CIF), mudando a conclusão anterior.

O ESQUEMA DOS CINCO NÚMEROS de um conjunto de dados consiste na menor observação, no primeiro quartil, na mediana, no terceiro quartil e na maior observação, escritos do menor para o maior. Sendo representado como:

Min.
$$Q_1$$
 Md Q_3 Max.

Embora as três medidas Q₁, MEDIANA e Q₃ mostrem a forma da distribuição de 50% dos valores ao redor da mediana, a adição dos valores MÍNIMO e MÁXIMO a estas três medidas permite obter um conjunto mais completo de informações sobre a forma da distribuição. O BOX PLOT é a forma gráfica de representar estas cinco medidas estatísticas num único conjunto de resultados conforme ilustrado abaixo.

	Turma 1	Turma 2
Mediana	4,88	4,75
1ºQuartil	3,06	3,5
Máximo	9,5	8
Mínimo	0,5	1,5
3ºQuartil	7,63	6

Notas de duas turmas de matemática.

Na verdade, o gráfico **BOX PLOT** nos fornece informações sobre a posição central, dispersão e assimetria da respectiva distribuição de frequências dos dados.

Se estivermos diante de uma situação na qual essas três medidas apresentam o mesmo valor, tal fato nos informa que a distribuição dos dados é **simétrica**; quando resultam em valores diferentes, porém **muito próximos**, indica que a forma dessa distribuição é **aproximadamente simétrica**. Nesses casos, optaremos por qualquer uma das três: média, moda ou mediana.

OBS: Quartis em dados não agrupados

→ O método mais prático é utilizar o princípio do cálculo da mediana para os 3 quartis. Na realidade serão calculadas "3 medianas" em uma mesma série.

Ex 1: Calcule os quartis da série: { 5, 2, 6, 9, 10, 13, 15 }

- O primeiro passo a ser dado é o da ordenação (crescente ou decrescente) dos valores:

- O valor que divide a série acima em duas partes iguais é igual a 9, logo a Md = 9 que $será = Q_2 = 9$
- Temos agora $\{2, 5, 6\}$ e $\{10, 13, 15\}$ como sendo os dois grupos de valores iguais proporcionados pela mediana $(2^o$ quartil). Para o cálculo do 1^o e 3^o quartis basta calcular as medianas das partes iguais provenientes da verdadeira Mediana da série $(2^o$ quartil).

Logo em $\{2, 5, 6\}$ a mediana $\acute{e}=5$. Ou seja: será o 1^o quarti $l=Q_1=5$ em $\{10, 13, 15\}$ a mediana $\acute{e}=13$. Ou seja: será o 3^o quarti $l=Q_3=13$

<u>Ex 2</u>: Calcule os **quartis** da série: { 1, 1, 2, 3, 5, <mark>5, 6, 7, 9, 9, 10, 13 } </mark>

A série já está ordenada, então calcularemos o 2° Quartil = Md = (5+6)/2 = 5,5

- O 1º quartil será a mediana da série à esquerda de Md: { 1, 1, 2, 3, 5, 5 }

$$Q_1 = (2+3)/2 = 2,5$$

- 0 3º quartil será a mediana da série à direita de Md : {6, 7, 9, 9, 10, 13 }

$$Q_3 = (9+9)/2 = 9$$

Exercícios

- 1-Para as distribuições:
- a)-Calcule D₆, P₆₅, e Q₁

b) Calcule D₂, P₄₃, e Q₃

(resp.
$$D_{2=}$$
 33,6; P_{43} = 42,32 e $Q_{3=}$ 50)

2-Dada a distribuição, determinar os quartis, D_2 , D_6 , D_8 , P_{37} , P_5 , P_{86} , P_{47} e P_{93} . (resp. $Q_1 = 653,33$; $Q_2 = 723$; $Q_3 = 796,76$; $D_{2=} 638,67$; $D_{6=}750,18$; $D_{8=} 814,93$; $P_{37} = 688,53$; $P_5 = 558$; $P_{86} = 837,56$; $P_{47} = 715$, 08 e $P_{93} = 868,93$).

n	Valores	fi	fa
1	525 580	8	
2	580 635	10	
3	635 690	18	
4	690 745	20	
5	745 800	17	
6	800 855	14	
7	855 910	9	
Σ		96	

3- Dada a tabela abaixo calcule: moda, Q_2 , D_7 , e P_{82} . (Mo=75 kg, $Q_2=74$ kg, $D_7=78,909$ kg, e $P_{82}=81,8545$ kg).

Ganho de peso de suínos.			
kg	f_i	fa	
59 63	3		
63 71	14		
71 83	22		
83 90	6		
Σ	45		

4-Os salários de 160 professores estão distribuídos conforme a tabela a seguir; determine o Q_1 , D_4 , e P_{85} . ($Q_{1=4}$, $Q_{4=5}$, 13, e $P_{85=8}$,07)

==,==,==,==,			
Salários mínimos.			
Salário	f_i	f_a	
1 3	20		
3 5	40		
5 7	60		
7 9	30		
9 11	10		
Σ	160		

5- Tomemos os resultados das estaturas e dos pesos de um mesmo grupo de indivíduos:

	\overline{x}	S
Estatura	175 cm	5,0 cm
Peso	68 kg	2,0 kg

Qual das medidas possui maior homogeneidade?

- 6-) Suponha que uma das famílias de Akhiok vá para outra cidade. As idades dos membros da família são 33, 34, 6, 58, 11, 6 e 56. Supondo que eles representam:
 - a) Uma amostra

b) uma população

Calcule as medidas de:

- Posição: média, moda, mediana, 1º quartil, 3º quartil, 10º percentil e 90º percentil;
- > Dispersão: Amplitude total, variância, desvio padrão e coeficiente de variação (CV)
- 7-) Dada a distribuição amostral. Calcular a média, moda, mediana, desvio-padrão, e os quartis. (resp. $\bar{x} = 66,875$; Mo = 41,429; S^2 = 1.021,62; S = 31,96; $Q_1 = 40$; $Mo = Q_2 = 50$; $Q_3 = 90$

Salários (R\$1.000,00)	30 50	50 100	100 150
Empregados	80	50	30

- 8-) Os tempos de reação de um indivíduo a determinados estímulos, medidos por um psicólogo, foram: 0.53 - 0.46 - 0.50 - 0.49 - 0.52 - 0.44 - 0.55 segundos. Determine o tempo médio e o desvio padrão de reação do indivíduo a esses estímulos. ($\bar{x} = 0.50$ seg. $\sigma = 0.036$ s)
- 9-) Dados os conjuntos de números: $A=\{220, 230, 240, 250, 260\}$ e $B=\{20, 30, 40, 50, 60\}$.
 - a) Calcule o desvio padrão do conjunto A; $(\sigma A = 14, 14)$
 - b) Calcule o desvio padrão do conjunto B; $(\sigma B = 14, 14)$
 - c) Que relação existe entre os desvios padrões dos dois conjuntos de números?
- 10-) Tomando-se os pedidos de combustível dos postos de certa região (20 postos) obtiveram-se os 26. Monte a distribuição de frequência e calcule a média, a moda, a mediana, desvio padrão. $(\bar{x} =$ 22,25 mil litros, Mo = 22 mil litros, Md = 22 mil litros
- 11-) A renda média mensal na localidade A é de R\$ 750,00 e na localidade B é de R\$ 500,00.Os desvios padrões são R\$ 100,00 e R\$ 80,00. Faça uma análise comparativa quanto ao grau de homogeneidade da renda nestas duas localidades.
- 12-) O risco de uma ação de uma empresa pode ser devidamente avaliado através da variabilidade dos retornos esperados. Portanto, a comparação das distribuições probabilísticas dos retornos, relativas a cada ação individual, possibilita a quem toma decisões perceber os diferentes graus de risco. Analise os dados estatísticos relativos aos retornos de 5 acões descritas na tabela a seguir e diga qual é a menos arriscada:

Tabela – Avaliação do Risco das Ações – Empresa TECOL – 2010.

rabela – Avanação do Risco das Ações – Empresa TECOL – 2010.							
Discriminação	Ação A	Ação B	Ação C	Ação D	Ação E		
	15%	12%	5%	10%	4%		
Valor esperado							
	6%	6,6%	2,5%	3%	2,6%		
Desvio padrão							
	0,40	0,55	0,50	0,30	0,65		
Coeficiente de Variação							

13-) A tabela a seguir indica as notas de uma turma, na disciplina de Matemática. Calcule o desvio padrão amostral para a média das notas destes alunos. Calcule a moda, mediana e as medidas de separatrizes (Q_1 ; Q_3 , D_5 , P_{10} e P_{90}). ($\bar{x} = \frac{312}{50} = 6,24$ Samostral = 1,4957)

$$Q_3$$
, D_5 , P_{10} e P_{90}). ($\bar{x} = \frac{312}{50} = 6,24$ Samostral = 1,4957)

Avaliação dos alunos da Escola Básica Lauro Bitencurcchi

Notas	3 4	4 5	5 6	6 7	7 8	8 9	9 10
f_i	4	7	9	15	10	3	2

REGRA EMPÍRICA

Para dados com distribuição (simétrica) na forma de sino, o desvio padrão tem as seguintes características. Aproximadamente 68% das medidas (dados) cairão dentro de um desvio padrão da média, 95% cairão dentro de dois desvios padrões, e 99,7% (ou quase 100%) ficam dentro de três desvios padrões. Ver a figura seguinte:

Por exemplo: Seja o peso médio de uma pessoa de 70 kg com um desvio padrão de 3,4 kg. Então, 68% dos pesos ficam entre 66,6 e 73,4 kg, um desvio padrão, ou seja, (média + 1 desvio padrão) = (70 + 3,4) = 73,4, e (média - 1 desvio padrão) = 66,6. Noventa e cinco por cento (95%) dos pesos ficam entre 63,2 e 76,8 kg, dois desvios padrões. Noventa e nove e sete décimos de porcentagem (99.7%) ficam entre 59,8 e 80,2 kg, três desvios padrões. Veja a figura seguinte:

Uma curva em forma de sino simétrica, mostrando as Relações entre o Desvio Padrão e a Média.

ESCORE PADRÃO OU ESCORE ${\mathcal Z}$ OU ${\mathcal Z}$ SCORE

Podemos pegar qualquer ponto no eixo X da figura acima e descobrir quantos desvios padrões acima ou abaixo da média aquele ponto se encontra. Em outras palavras, um Z score representa o número de desvios padrões que uma observação (X) está acima ou abaixo da média. Quanto maior o valor de Z, mais distante o valor estará da média. Note que valores além de três desvios padrões são muito improváveis. Se um Z score for negativo, a observação (X) está abaixo da média. O Z score é encontrado usando a seguinte relação:

$$Z = \frac{(x-\mu)}{\sigma}$$
, onde

 \mathcal{X} = valor dado;

 $\mu = \text{m\'edia};$

 σ = desvio padrão.