Assignment 3 solutions

Sol. 1) Let, x_1 = Number of model-1

 x_2 = Number of model-2

Objective function:

Maximize $Z=30x_1+40 x_2$

Subject to:

 $2x_1 + 3x_2 \le 1200$

 $2x_1 + x_2 \le 1000$

 $4x_2 \le 800$

 $x_1 \ge 0, x_2 \ge 0$

Augmented problem: -

Maximize $Z=30x_1+40 x_2+0S_1+0S_2+0S_3$

S.T:

 $2x_1 + 3x_2 + S_1 = 1200$

 $2x_1 + x_2 + S_2 = 1000$

 $4x_2 + S_3 = 800$

 $x_i \ge 0 \ V i = 1...5.$

Iteration 0

		C_{j}	30	40	0	0	0
C_{j}	Basis	Value	x_1	x_2	S_{I}	S_2	S_3
0	S_{I}	1200	2	3	1	0	0
0	S_2	1000	2	1	0	1	0
0	S_3	800	0	4	0	0	1
		C_i - Z_i	30	40	0	0	0

Iteration 1

		C_{j}	30	40	0	0	0
$C_{\rm j}$	Basis	Value	x_1	x_2	S_{I}	S_2	S_3
0	S_{I}	600	2	0	1	0	-3/4
0	S_2	800	2	0	0	1	-1/4
40	x_2	200	0	1	0	0	1/4
		C _j -Z _j	30	0	0	0	-10

Iteration 2

		C_{j}	30	40	0	0	0
C_{j}	Basis	Value	x_{I}	x_2	S_I	S_2	S_3
30	x_1	450	1	0	-1/4	3/4	0
0	S_2	400	0	0	-2	2	1
40	x_2	100	0	1	1/2	-1/2	0
		C_i - Z_i	0	0	-25/2	-5/2	0

Optimal solution:
$$x_1^* = 450$$
; $x_2^* = 100$; $Z = 17,500$

(b) Basis matrix (B): - This is the matrix formed by the variables in the basis of the final table. Its values, however, will be obtained from the initial table.

$$\mathbf{B} = \begin{bmatrix} 2 & 0 & 3 \\ 2 & 0 & 1 \\ 0 & 1 & 4 \end{bmatrix}$$

Inverse of the basis matrix (B⁻¹): This matrix is formed by the variables in the basis of initial table and values from final table.

$$\mathbf{B}^{-1} = \begin{bmatrix} -1/4 & 3/4 & 0 \\ -2 & 2 & 1 \\ 1/2 & -1/2 & 0 \end{bmatrix}$$

Resource (b₁) of milling machine changes from 1200 to 1300.

Changes in resource matrix affect the optimal solution. Therefore, new optimal solution will be: -

$$B^{-1}b = \begin{bmatrix} -1/4 & 3/4 & 0 \\ -2 & 2 & 1 \\ 1/2 & -1/2 & 0 \end{bmatrix} \begin{bmatrix} 1300 \\ 1000 \\ 800 \end{bmatrix} = \begin{bmatrix} 425 \\ 200 \\ 150 \end{bmatrix}$$

$$x_1^* = 425$$
; $x_2^* = 150$; Z=18,750

(C) Here, Resource (b₂) of Grinding machine changes from 800 to 350

$$B^{-1}b = \begin{bmatrix} -1/4 & 3/4 & 0 \\ -2 & 2 & 1 \\ 1/2 & -1/2 & 0 \end{bmatrix} \begin{bmatrix} 1200 \\ 1000 \\ 350 \end{bmatrix} = \begin{bmatrix} 450 \\ -50 \\ 100 \end{bmatrix}$$

No, we cannot determine the new optimal solution directly from the given information. Because $S_3 \le 0$ i.e. infeasible.

Sol 2) Dual problem

Minimize
$$z = 5y_1 + 3y_2 + 8y_3$$

Subject to
$$y_1$$
- y_2 +4 y_3 =5
2 y_1 +5 y_2 +7 y_3 \geq 6

$$y_1$$
 unrestricted, $y_2 \le 0$, $y_3 \ge 0$

Sol 3) Maximize $2x_1+x_2$

subject to
$$x_1 \le 0$$

let,
$$x_1 = -x_1$$
; $x_2 = x_2^+ - x_2^-$

Now the problem transforms into:

Maximize
$$-2x_1^{'} + x_2^{+} - x_2^{-}$$

Subject to:
$$x_1 \ge 0$$

$$x_2^+ \ge 0$$

$$x_2^- \ge 0$$

- (a) The dual form does not exist.
- (b) Dual solution is infeasible.
- (c) Primal optimal solution cannot be obtained because dual form is infeasible.

Sol 4) From the table, the starting primal variable x_4 and R uniquely correspond to the dual variables y_1 and y_2 , respectively. Thus, we determine the optimum dual solution as follows:

Staring primal basic variables	<i>X</i> 4	R
Z- equation coefficients	29/5	-2/5+M
Original objective coefficient	0	-M
Dual variables	y_1	<i>y</i> ₂
Optimal dual values	29/5+0=29/5	-2/5+M+(-M) = -2/5

74	I	2	0	1	500	500	_
(Aj-cj)	-80	-60	0	0	0	E E	
of.	11	1/2	1/2	0	:300	600	
74	0	3/2	-12	1	200	400/3	
(7g-(g)	1	-20	40	0	240	00	
71		0	213	5		700/3.	
7:	6	7	-1/3		2/3	400/3	
-	1	- Ô	100	13	40/3	80000/3	

$$X_1 = \frac{700}{3}$$
, $Y_2 = \frac{400}{3}$, $W_2 = \frac{80,000}{3}$.

6) Minimize
$$Z = a_1 + 2a_2 + 3a_3$$
 Anal:
Sit. $3a_1 + 4a_2 \le 5$ Maximize $W = 5y_1 + 7y_2 + 2y_3$
 $5a_1 + a_2 + 6a_3 = 7$ St., $3y_1 + 5y_2 + 8y_3 > 1$
 $8a_1 + 9a_3 > 2$ $4y_1 + y_2 = 2$
 $a_1, a_2, a_3 > 0$ $6y_2 + 9y_3 \le 3$.

Final:

Maximixe
$$W = 5y_1 + 7y_2 + 2y_3$$

St., $3y_1 + 5y_2 + 8y_3 > 1$
 $4y_1 + y_2 = 2$
 $6y_2 + 9y_3 \leq 3$

¥5 B1 152	0 3 4	7 ₂ 6 5	9	14 75 0 1 -1 0	\$1 \delta 2 0 0 1 0 0 1	3 1 2	ratio 73 1/8
Z,	-5	-7	-2 -8	0 0		0 -3	
7	-7	- 6	-0	1 0	0 0		
\$5	0	6	9	5	0 0	3	-
16)	5/3	8/3		0 1/3 0	1/3 2/3	- 1/
12	0	-17/3	-32/3	4/3 (0 -4/3 1	5/3	1/2
Z	0	4/3	34/3	-5/3	0 5/3 0		
7'	0	17/3	32/3	-4/3	0 4/3 0	10	1/.
75	0	6	9	0	0 0 1/4	1 . 1	γ ₂ 2
91	1	1/4	0	0	0 0 1/4		-
74	0	-17/4	-8	1	-		
Z	0	-234	-2	0	0 0 2/	9 0	y = 3/8
Z!	0	0	0	0	16	1/2	Ma 0 1/2
72 71	0	0	3/2 -3/8	0	-1/24	3/8	Ju = 10
31	0	0	-13/8	1	17/24	21/8	W 243/8
Zu Z	0	0	53/8	0	23/24	143/8	