Techniques like Code refactoring can enhance readability. Techniques like Code refactoring can enhance readability. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. It is usually easier to code in "high-level" languages than in "low-level" ones. Scripting and breakpointing is also part of this process. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Following a consistent programming style often helps readability. The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. Code-breaking algorithms have also existed for centuries. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. It is usually easier to code in "high-level" languages than in "low-level" ones. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers.