

planetmath.org

Math for the people, by the people.

essential supremum

Canonical name EssentialSupremum Date of creation 2013-03-22 12:21:29 Last modified on 2013-03-22 12:21:29

Owner gel (22282) Last modified by gel (22282)

Numerical id 9

Author gel (22282)
Entry type Definition
Classification msc 28C20
Synonym ess-sup
Synonym ess sup
Related topic Supremum
Related topic LpSpace

Related topic ExistenceOfTheEssentialSupremum

Defines essential infimum

Defines ess-inf
Defines ess inf

Essential supremum of a function

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let f be a Borel measurable function from Ω to the extended real numbers \mathbb{R} . The essential supremum of f is the smallest number $a \in \mathbb{R}$ for which f only exceeds a on a set of measure zero. This allows us to generalize the maximum of a function in a useful way.

More formally, we define ess sup f as follows. Let $a \in \mathbb{R}$, and define

$$M_a = \{x : f(x) > a\},\$$

the subset of X where f(x) is greater than a. Then let

$$A_0 = \{ a \in \mathbb{R} : \mu(M_a) = 0 \},\$$

the set of real numbers for which M_a has measure zero. The essential supremum of f is

$$\operatorname{ess\,sup} f := \inf A_0.$$

The supremum is taken in the set of extended real numbers so, ess sup $f = \infty$ if $A_0 = \emptyset$ and ess sup $f = -\infty$ if $A_0 = \mathbb{R}$.

Essential supremum of a collection of functions

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and \mathcal{S} be a collection of measurable functions $f \colon \Omega \to \overline{\mathbb{R}}$. The Borel σ -algebra on $\overline{\mathbb{R}}$ is used.

If S is countable then we can define the pointwise supremum of the functions in S, which will itself be measurable. However, if S is uncountable then this is often not useful, and does not even have to be measurable. Instead, the *essential supremum* can be used.

The essential supremum of S, written as ess $\sup S$, if it exists, is a measurable function $f: \Omega \to \overline{\mathbb{R}}$ satisfying the following.

- $f \geq g$, μ -http://planetmath.org/AlmostSurelyalmost everywhere, for any $q \in \mathcal{S}$.
- if $g: \Omega \to \overline{\mathbb{R}}$ is measurable and $g \geq h$ (μ -a.e.) for every $h \in \mathcal{S}$, then $g \geq f$ (μ -a.e.).

Similarly, the *essential infimum*, ess $\inf S$ is defined by replacing the inequalities ' \geq ' by ' \leq ' in the above definition.

Note that if f is the essential supremum and $g \colon \Omega \to \mathbb{R}$ is equal to f μ -almost everywhere, then g is also an essential supremum. Conversely, if f, g are both essential supremums then, from the above definition, $f \leq g$ and $g \leq f$, so f = g (μ -a.e.). So, the essential supremum (and the essential infimum), if it exists, is only defined almost everywhere.

It can be shown that, for a σ -finite measure μ , the http://planetmath.org/ExistenceOfTheEs supremum and essential infimum always exist. Furthermore, they are always equal to the supremum or infimum of some countable subset of \mathcal{S} .