Only for the personal use of students registered in CS 671, Fall 2020 at Rutgers University. Redistribution out of this class without the Instructor's permission is not permitted.

CS 671: Graph Streaming Algorithms and Lower Bounds

Problem set 4

Rutgers: Fall 2020

Due: 11:59PM, October 6, 2020

Problem 1. Consider a hypergraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ of rank r s.t. each hyperedge $e = (u_1, \dots, u_r) \in \mathcal{E}$ connects exactly r vertices $u_1, \dots, u_r \in \mathcal{V}$ together (a hypergraph of rank 2 is a simple graph). A hypermatching \mathcal{M} in \mathcal{G} is a collection of hyperedges that do not share any vertices. In the semi-streaming setting for hypergraphs, we again assume $\mathcal{V} := [n]$ and each hyperedge e in \mathcal{E} arrives in the stream; we require the algorithm to use space $O(n \cdot \operatorname{polylog}(n))$ as before—note that this space is in particular enough to write down all edges of a hypermatching as its size can only be O(n/r) and each can be represented in O(r) space.

- (i) Design a semi-streaming r-approximation algorithm for the problem of finding a maximum cardinality hypermatching.
- (ii) Design a semi-streaming $O(r^2)$ -approximation algorithm for the problem of finding a maximum weight hypermatching.
- (iii) Design a semi-streaming $(1+\varepsilon)r$ -approximation algorithm for the problem of finding a maximum weight hypermatching.

Note: If you solved the last part (even if it is an O(r)-approximation algorithm) you do not need to solve either of the previous two parts. Also, you may assume that the weights of edges are poly(n)-bounded.