Complex Analysis Homework 3

Colin Williams

September 17, 2020

Question 2

Question.

Suppose that $f(z_0) = g(z_0) = 0$ and that $f'(z_0)$ and $g'(z_0)$ exist where $g'(z_0) \neq 0$. Show that

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}$$

Proof.

First, I will examine the left hand side of this equation without the limit:

$$\frac{f(z)}{g(z)} = \frac{f(z) - f(z_0)}{g(z) - g(z_0)}$$

$$= \frac{f(z) - f(z_0)}{g(z) - g(z_0)} \cdot \frac{\frac{1}{z - z_0}}{\frac{1}{z - z_0}}$$
since $f(z_0) = g(z_0) = 0$

$$= \frac{\frac{f(z) - f(z_0)}{g(z) - g(z_0)}}{\frac{z - z_0}{z - z_0}}$$

Next, I will make use of the following theorem:

Theorem 1.

Suppose that $\lim_{z\to z_0} f(z) = f_0$ and $\lim_{z\to z_0} g(z) = g_0$ with $g_0 \neq 0$, then

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f_0}{g_0}$$

I will now take the appropriate limit of $\frac{f(z)}{g(z)}$ as follows:

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{\frac{f(z) - f(z_0)}{z - z_0}}{\frac{g(z) - g(z_0)}{z - z_0}}$$
 by the above calculation.
$$= \frac{\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}}{\lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0}}$$
 by Theorem 1 and since $\lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} = g'(z_0) \neq 0$ by assumption.
$$= \frac{f'(z_0)}{g'(z_0)}$$
 since we assumed that $f'(z_0)$ and $g'(z_0)$ exist.

Therefore, we have proven the desired statement.