LAB. 2. Analiza systemów statycznych.

Wybór zmiennych objaśniających metodą Hellwiga

Z wstępnie określonego (licznego) zbioru zmiennych objaśniających należy wybrać te, które w sposób optymalny opisują modelowane zjawisko.

W modelu powinny znaleźć się zmienne objaśniające silnie skorelowane ze zmienną objaśnianą i jednocześnie stosunkowo słabo skorelowane między sobą.

Z pierwotnego zbioru zmiennych objaśniających należy dokonać wyboru tych, które w efekcie końcowym wniosą najwięcej informacji o modelowanym zjawisku.

Metoda Hellwiga

- 1. Utworzenie zbioru, którego elementami są zestawy zmiennych objaśniających otrzymane w wyniku kombinacji zbioru początkowego. Liczba elementów zbioru: 2^n-1 , gdzie n to początkowa liczba zmiennych objaśniających.
- 2. Dla każdej zmiennej w każdej kombinacji obliczenie indywidualnej pojemności nośnika informacji h_{kj} :

$$h_{kj} = \frac{r_{0j}^2}{\sum |r_{kj}|},$$

gdzie:

 r_{0j} — współczynnik korelacji j-tej zmiennej objaśniającej ze zmienną objaśnianą, r_{kj} — współczynnik korelacji j-tej zmiennej objaśniającej z pozostałymi zmiennymi objaśniającymi występującymi w k-tej kombinacji.

3. Obliczenie integralnej pojemności nośników informacji H_k dla k-tej kombinacji zmiennych objaśniających:

$$H_k = \sum h_{kj}.$$

4. Zmiennymi objaśniającymi do modelu będą zmienne tej kombinacji, której integralna pojemność nośnika w informacji ma wartość maksymalną.

Przykład

Pierwotny zbiór zmiennych objaśniających (n = 2):

$$X = \{x_1, x_2\}.$$

Na podstawie zebranych wcześniej danych mogą zostać wyznaczone współczynniki korelacji między zmiennymi objaśniającymi R oraz wektor R_0 , który przedstawia stopień skorelowania zmiennej objaśnianej ze zmiennymi objaśniającymi:

$$R = \begin{pmatrix} 1 & 0.6 \\ 0.6 & 1 \end{pmatrix} \qquad R_0 = \begin{pmatrix} 0.8 \\ -0.2 \end{pmatrix}$$

Liczba kombinacji zmiennych objaśniających wynosi $2^n - 1 = 2^2 - 1 = 3$:

$$K_1 = \{x_1\},$$

$$K_2 = \{x_2\},$$

$$K_3 = \{x_1, x_2\}.$$

Obliczenie indywidualnej pojemność nośnika informacji dla każdej ze zmiennej j występującej w poszczególnych kombinacjach.

→ Kombinacja
$$K_1 = \{x_1\}$$
:
 $r_{01} = 0.8, r_{11} = 1,$
 $h_{11} = \frac{0.8^2}{1} = 0.64,$
 $H_1 = \mathbf{0.64}.$
→ Kombinacja $K_2 = \{x_2\}$:
 $r_{02} = -0.2, r_{22} = 1,$
 $h_{22} = \frac{(-0.2)^2}{1} = 0.04,$
 $H_2 = \mathbf{0.04}.$
→ Kombinacja $K_3 = \{x_1, x_2\}$:
 $r_{01} = 0.8, r_{02} = -0.2,$
 $h_{31} = \frac{0.8^2}{1+0.6} = 0.4,$
 $h_{32} = \frac{(-0.2)^2}{1+0.6} = 0.025,$
 $H_3 = h_{31} + h_{32} = 0.4 + 0.025 = \mathbf{0.425}$

Największą wartość pojemności integralnej ma kombinacja $K_1 = \{x_1\}$ i wynosi $H_1 = 0.64$. Oznacza to, że pierwotny zbiór zmiennych objaśniających $X_{\{x_1, x_2\}}$ został zredukowany do $X = \{x_1\}$.

Zadanie

Wyznacz zredukowaną liczbę zmiennych objaśniających dla poniższych danych pomiarowych.

x_1	x_2	x_3	x_4	y
6	0.4	15	70	14
14	0.6	13	40	17
17	0.4	15	80	14.5
14.5	0.7	11	50	20
20	1	10	40	21.6
21.6	1.2	10	50	23
23	1	7	80	24.5
24.5	1.5	6	100	28
28	1.5	8	110	26.4
26.4	1.7	5	80	29

1. (1 punkt) Wyznacz R oraz R_0 wykorzystując funkcje corrcoef.

2. (2 punkty) Narysuj wykresy punktowe (w jednym oknie - funkcja subplot) poszczególnych zmiennych objaśniających między sobą $(x_1, x_2), (x_1, x_3) \dots$ oraz między zmienną objaśnianą $(x_1, y), (x_2, y) \dots$ W podpisie wykresu wstaw wartość współczynnika korelacji (funkcja title).

subplot(3,4,i)

i=1	i=2	i=3	i=4
i=5	i=6	•••	

np. aby narysować i podpisać wykres przedstawiający (x_1, x_2) :

```
subplot(3,4,1)
plot(X(:,1), X(:,2), '*r')
title(['Korelacja x1 z x2 wynosi: ' num2str(R(1,2))])
```

- 3. (6 punktów) Zapisz wszystkie możliwe kombinacje zmiennych objaśniających i wyznacz indywidualne i integralne pojemności nośników informacji. np. aby wyznaczyć indywidualne pojemności i integralną pojemność dla kombinacji piątej (k=5) zmiennych (x_1,x_2) należy:
 - obliczyć indywidualną pojemność h_{51} :

$$h_{51} = \frac{r_{0,x1}^2}{|r_{x1,x1}| + |r_{x1,x2}|}$$

MATLAB: $h_51 = (R0(1)^2)/(abs(R(1,1))+abs(R(1,2)))$

 \bullet obliczyć indywidualną pojemność h_{52} ,

$$h_{52} = \frac{r_{0,x2}^2}{|r_{x2,x1}| + |r_{x2,x2}|}$$

MATLAB:
$$h_52 = (R0(2)^2)/(abs(R(2,1))+abs(R(2,2)))$$

 $\bullet\,$ obliczyć integralną pojemność $H_5,$

$$H_5 = h_{51} + h_{52}$$

$$MATLAB: H_5 = h_51 + h_52$$

4. (1 punkt) Określ ostateczny zbiór zmiennych objaśniających (wyszukanie kombinacji o maksymalnej pojemności integralnej).