Assignment

1.5: 2(bdfg), 11, 15; 1.6: 20, 24, 31; 2.1: 6, 12, 14; 2.2: 2(bcg), 8, 11

Work

1.5

2. Determine whether the following sets are linearly dependent or linearly independent.

(b)
$$\left\{ \begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix}, \begin{pmatrix} -2 & 6 \\ 4 & -8 \end{pmatrix} \right\} \text{ in } \mathsf{M}_{2\times 2}(\mathbb{R})$$

(d)
$$\{x^3 - 2x^2 + 4 - 2x^3 + 3x^2 + 2x + 6\}$$
 in $P_3(\mathbb{R})$

(f)
$$\{(1,-1,2),(1,-2,1),(1,1,4)\}$$
 in \mathbb{R}^3

(g)
$$\left\{ \begin{pmatrix} 1 & 0 \\ -2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ -4 & 4 \end{pmatrix} \right\} \text{ in } \mathsf{M}_{2\times 2}(\mathbb{R})$$

- 11. Let $S = \{u_1, u_2, \dots, u_n\}$ be a linearly independent subset of a vector space V over the field Z_2 . How many vectors are there in span(S)? Justify your answer.
- 15. Let $S = \{u_1, u_2, \dots, u_n\}$ be a finite set of vectors. Prove that S is linearly dependent if and only if $u_1 = 0$ or $u_{k+1} \in \text{span}(\{u_1, u_2, \dots, u_k\})$ for some $k (1 \le k < n)$.

1.6

- 20. Let V be a vector space having dimension n, and let S be a subset of V that generates V .
 - (a) Prove that there is subset of S that is a basis for V. (Be careful not to assume that S is finite.)
 - (b) Prove that S contains at least n vectors.
- 24. Let f(x) be a polynomial of degree n in $P_n(\mathbb{R})$. Prove that for any $g(x) \in P_n(\mathbb{R})$ there exist scalars c_0, c_1, \ldots, c_n such that

$$q(x) = c_0 f(x) + c_1 f'(x) + c_2 f''(x) + \dots + c_n f^{(n)}(x)$$

where $f^{(n)}(x)$ denotes nth derivative of f(x).

31. Let W_1 and W_2 are subspaces of V, and find the dimensions of $W_1, W_2, W_1 + W_2$, and $W_1 \cap W_2$.

2.1

6. T: $\mathsf{M}_{n\times n}(F)\to F$ defined by $\mathsf{T}(A)=\mathrm{tr}(A)$. Recall (Example 4, Section 1.3) that

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ij}$$

- 12. Is there a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that $\mathsf{T}(1,0,3) = (1,1)$ and $\mathsf{T}(-2,0,-6) = (2,1)$?
- 14. Let V and W be vector spaces and T: $V \to W$ be linear.
 - (a) Prove that T is one-to-one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W.
 - (b) Suppose that T is one-to-one and that S is a subset of V. Prove that S is linearly independent if and only if T(S) is linearly independent.
 - (c) Suppose $\beta = \{v_1, v_2, \dots, v_n\}$ is a basis for V and T is one-to-one and onto. Prove that $\mathsf{T}(\beta) = \{\mathsf{T}(v_1), \mathsf{T}(v_2), \dots, \mathsf{T}(v_n)\}$ is a basis for W.

2.2

- 2. Let β and γ be the standard ordered bases for \mathbb{R}^n and \mathbb{R}^m respectively. For each linear transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$, compute $[\mathbb{R}]^{\gamma}_{\beta}$.
 - (b) T: $\mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(a_1, a_2, a_3) = (2a_1 + 3a_2 a_3, a_1 + a_3)$
 - (c) $T: \mathbb{R}$ defined by $T(a_1, a_2, a_3) = 2a_1 + a_2 3a_3$
 - (g) $T: \mathbb{R}^n \to \mathbb{R}$ defined by $T(a_1, a_2, \dots, a_n) = a_1 + a_n$
- 8. Let V be an *n*-dimensional vector space with an ordered basis β . Define T: V \rightarrow Fⁿ by $\mathsf{T}(x) = [x]_{\beta}$. Prove that T is linear.
- 11. Let V be an n-dimensional vector space, and let $T: V \to V$ be a linear transformation. Suppose that W is a T-invariant subspace of V (see the exercises of Section 2.1) having dimension k. Show that there is a basis β for V such that $[T]_{\beta}$ has the form

$$\begin{pmatrix} A & B \\ O & C \end{pmatrix}$$

where A is a $k \times k$ matrix and O is the $(n-k) \times k$ zero matrix.