Empirisch-experimentelle Forschungsmethoden in der Anwendung

Seminar

Themen heute

- Fragen aus der Vorlesung
- Pitch zur Hausaufgabe
- Recherche
- Arbeiten mit R Studio

Pitch zur Hausaufgabe

- Inhalt der Literatur?
- Forschungsfrage?

max. 120 Sekunde pro Gruppe (hartes Limit)

Recherche

Was sind "Publikationen"

- Formen wissenschaftlicher Veröffentlichungen
 - Journal Artikel, Review-Artikel, Editorials, Konferenz-Beiträge, Poster, Monographien, Book-Chapter, Sammelbände, Patente, White-Paper, Industrie-Zeitschriften, Dissertationen, Master-Arbeiten, Gebäude, Kunstwerke
 - Zitierbar nach Thompson Reuters: Article, Review, Proceedings Paper
 - Innerhalb des Web of Science
- Disziplinäre Unterschiede in Bezug auf
 - Was zählt als "Publikation"
 - Welche Bedeutung habe Eigenschaften wie Outlet, Länge, Referenzen, Zitations-Halbwertszeit, # Ko-Autoren
 - Größe von Community, Disziplinen-Kultur, "Härte" einer Disziplin

Beispiel: Psychologie

- Ziel: High Impact Journals (>90% Ablehnungsquote)
 - Alternativ: Buch Kapitel
 - Kaum Monographien (Ausnahme Dissertation)
- Trend: kürzere Artikel, häufigere Publikationen
- 60% Internationale Outlets
- Erstautor: Haupt-Idee, -Beitrag; sonst alphabetisch oder nach Beitrag
- Inhalt: Schwerpunkt Methodologie, Daten-Analyse

Beispiel: Teilchen-Physik

- Ziel: Physical Review, Journal of Physics
 - Alternativ: Electronisch Open-Access, JINST, JHEP
 - Kein Nature/Science (verbieten arXiv -> http://www.sherpa.ac.uk/romeo/)
- Trend: Viele Autoren (>1000)
- Hauptsächlich regionale internationale Outlets
- Autoren in alphabetischer Reihenfolge
- Inhalt: Daten-Analyse

Unterschiede bzgl. Autorenschaft

- **Biologie** viele Autoren (>5), kurze Artikel (11-15p), 14.72 avg. Zitationen, Halbwertszeit (HWZ): 6y
- **Physik** weniger Autoren(2-3), 7.71 avg. Zitationen, HWZ: 5.2y
- Soziologie hauptsächlich Alleinautoren, längere Artikel (41-45p), 3.55 avg. Zitationen, HWZ >10y

Anzahl Autoren		1	2	3	4	5	mehr als 5	Total
Cell 2006	Anzahl Artikel	21	58	39	38	36	177	369
	in % aller Artikel	6 %	16 %	11 %	10 %	10 %	48 %	100 %
Physical Review D 2005	Anzahl Artikel	400	869	592	290	93	212	2456
	in % aller Artikel	16 %	35 %	24 %	12 %	4 %	9 %	100 %
American Journal of Sociology 2006	Anzahl Artikel	19	11	5	2	0	0	37
	in % aller Artikel	51 %	30 %	14 %	5 %	0 %	0 %	100 %

Unterschiede innerhalb von Disziplinen

 Abhängig von Community-Größe, Publikationshäufigkeit, Zitationshäufigkeit

physics subdisciplines as defined by ISI	# papers (2000)	# citations (2000-2006)	# citations per paper
Physics, Applied	24367	171611	7.04
Physics, Atomic, Mol. & Chem.	11097	111893	10.08
Physics, Condensed Matter	21332	155676	7.30
Physics, Fluids & Plasmas	4764	43507	9.13
Physics, Mathematical	6828	47913	7.02
Physics, Nuclear	5799	46190	7.97
Physics, Particles & Fields	7693	81216	10.56
Physics, All Categories			9.05*

ESI (1996-2006) Average Citation Rates - Datum der Suche: 07.04.06

Problem für Quantitative Publikations-Analyse

- Qualität der Daten hängt von Datenbank-Coverage ab
 - (für Engineering z.B. ist Web of Science ca 40%)
- Interpretation von Zitationsdaten ist Disziplinenspezifisch und Community-abhängig
- Individuelle Einflüsse, Arbeitsgruppenzusammensetzung, Wichtigkeit für Institut
- Kleine Stichproben vergrößern den Fehler

Fragen

?

Quantitative Publikationsanalyse – Äpfel und Birnen

- Was messen?
 - Wie viel wird publiziert/zitiert? Wie wird normiert (Disziplin/Autoren/Alter..) ?
- Welche Datenquelle?
 - Scopus/WOS/Scholar/BTH/Research Gate/etc.
- Vergleichbarkeit von Messwerten
 - Statistisch kaum relevant bei kleinen Stichproben (Power-Law-Distribution)
- In Bezug auf "was" messen
 - Personen lassen sich schwer quantitativ erfassen (Stichprobenfehler)
 - Passiert leider doch häufig

Typische Metriken (Journals)

- Impact-Factor (z.B. ISI-WOS)
 - Berechnung: Citatations/Article (3year Window) within ESSI
 - Zweck: Bibliothekarisch "Was abonnieren?"
 - Eigenschaft eines Journals stark disziplinenabhängig
 - NICHT: Qualität einzelner Artikel, Qualität akzeptierter Autoren
 - streut PowerLawDistribution
 - Schlecht/gar nicht geeignet für Bewertung von Autoren
 - Eher Schlecht geeignet für Journal-Auswahl

Typische Metriken (Personen)

- Hirsch-Index
 - Berechnung: Anzahl h Publikationen mit mind. h Zitationen
 - Zweck: Vergleichbarkeit von Autoren
 - Disziplinenabhängig (Koautoren, #Citations)
 - Nicht monotone Funktion bzgl. Parameter Publikationen/Zitationen
 - streut Power-Law-Distribution
 - Altersabhängig

Was wollen wir wissen?

- Überblick über ein völlig neues Fachgebiet
 - Schneller Einstieg
 - Fundierte Wissensbasis
 - Ggfs. Review-Paper schreiben(?)
- Arbeitsschritte:
 - Terminologie-Sammlung (Onenote, Text-Datei etc.)
 - Suchen und Daten extrahieren
 - Daten säubern (Excel oder R)
 - Stalking ☺
 - Visualisieren mit draw.io

Recherche Web of Science

Einführung in R und R Studio

Einstieg in die Programmierung mit R

Syntax, Semantik, Pragmatik, Guter Stil?

Welche Datentypen kennen Sie?

• R ist sehr einsteigerfreundlich...

...aber der Funktionsumfang ist mächtig und kann unübersichtlich wirken

3 wesentliche Konzepte: Datentypen, Variablen und Funktionen

- Die für Sie wichtigsten atomare Datentypen in R
 - numeric, character, logical
 - + diverse komplexe Datentypen: vector, matrix, list, data.frame, factor usw.
- Variablenzuweisungen
 - Daten werden mit einem Namen versehen. In R mit name <- value x <- 5
 name <- "Anna"
 muenzwurf <- TRUE
- Funktionsaufrufe
 - Eine Kurzschreibweise für eine Programmsequenz. In R mit function(arg1, arg2, etc.) class(x)
 mean(c(1, 2, 3))
 t.test(listA, listB)

R Studio

• Live Demo: Environment, Texteditor und Console

Der nächste Termin

• Nächste Woche: 01.11.2018 Fragebogen (Hausaufgabe)

Hausaufgaben über Slack

• Schönen Feiertag ©

