Inversion Problems 1998/Molange (HMt: Use inversion)

- 1) Three congruent circles are concurrent at H. They also intersect in pairs at A, B, C. Show that H is the orthogentar of DA
- The circles S, and S2 are tangent at the point A. A straight line I through A intersects S, and S2 at the points C, and C2 respectively. A circle S, which contains C, and C3, neets S, and S2 at points B, and B2 respectively. Let X be the circumscribed circle of the triangle AB, B2. The circle k tangent to X at the point A neets C, and C2 at the points D, and D2 respectively. Prove that:
 - a) The points C_1, C_2, D_1, D_2 are concircular or Collinear. b) The points B_1, B_2, D_1, D_2 are concircular if and only if AC_1 and AC_2 are diameters of C_1 and C_2 .
- 3) Two circles intersect at A and O. The tangents to the circles at A are drawn, and they intersect the circles again at B and C. Prove that BO.AC=AO.AB

Two circles C, and C are externally tangent at A, and the line list tangent to both of them as shown. A circle with center 0 and radius r is tangent to S, C, and C a. Prove that AO = 3r

5)

Two circles intersect at A and D.

As shown, Ef is a common tangent and

C a line drawn through *Dnintersects the

circles at B,C. Show that the circumcirc

of DBDF and DCDE intersect again on AD.

b) D A B

Four circles C_1 , C_2 , C_3 and C_4 are concurrent at a point O, with pairs C_1 , C_3 and C_2 , C_4 externally tangent at O. The circles intersect again at A, B, C, O as shown. Show that AB.OD.OC = CD.OA.OB

7) Given a convex quadrilateral ABCO, Show that there exists a circle which is tangent to AB extended, AD extended, and the circumcircles of DABC and DACO if and only if

AC-AO+AB-CO=AB-AC+BC-AD

Two circles (1, C2 intersect at A. A chard BC of C, is parallel to the tangent at A of C2. AB and AC intersect C2 at D and E. Prove that BCED is cyclic.