3:20

2019年4月19日

弱准则:

 $\forall n > 2, 2^{n+1} > n^2 + 3$

Let
$$P(n) - 2^{n+1} \ge n^2 + 3$$

Base Step

- (i) Note that for n = 2, $2^{2+1} = 8 \ge 7 = 2^2 + 3 P(2)$
- (ii) Suppose that n > 2 and that $2^n \ge (n-1)^2 + 3$ (*) $2^{n+1} \ge 2(n-1)^2 + 6$ Inductive Hypothesis $= n^2 + 3 + n^2 4n + 4 + 1$ $= n^2 + 3 + (n-2)^2 + 1$ $> n^2 + 3$

Inductive Step

Hence, we've just prove that for n > 2, $P(n-1) \rightarrow P(n)$.

By mathematical induction, $\forall n > 2$, $2^{n+1} \ge n^2 + 3$.

Inductive Conclusion

28

强准则:

- Prove that every positive integer is a power of a prime or the product of powers of primes.
 - \diamond Base Step: 1 is a power of a prime number, $1=2^0$
 - \diamond Inductive Hypothesis: Suppose that every number less than n is a power of a prime or a product of powers of primes.
 - ⋄ Then, if n is not a prime power, it is a product of two smaller numbers, each of which is, by the inductive hypothesis, a power a prime power or a product of powers of primes.
 - ♦ Thus, by the strong principle of mathematical induction, every positive integer is a power of a prime or a product of powers of primes.