Introduction to Digital Computing

Homework 12 - flip flops, counters, shift registers, and pulse

Instructions:

• Show all work to receive full credit.

Reference

Fur	Function Table – NOR S-R Flip flop									
Inp	Inputs		puts	Commonts						
S	R	Q	Q~	Comments						
0	0	Q	Q~	No Change						
0	1	0	1	Reset						
1	0	1	0	Set						
1	1	Invalid								

Fur	Function Table – J-K Flip flop								
Inp	uts	Outputs		Commonts					
J	K	Q	Q~	Comments					
0	0	Q	Q~	No Change					
0	1	0	1	Reset					
1	0	1	0	Set					
1	1	Q~	Q	Toggle, invert the previous state					

Fur	Function Table – D Flip flop									
Inp	ut	Outputs		Commonts						
D	Clock	Q	Q~	Comments						
0	0	Q	Q~	No Change						
0	1	0	1	Reset						
1	0	Q	Q~	No Change						
1	1	1	0	Set						

Transition at output	PRESENT State Q(N)	NEXT State Q(N+1)	J	К
0 → 0	0	0	0	x
0 → 1	0	1	1	х
1 → 0	1	0	х	1
1 -> 1	1	1	х	0
	J-K FF	excitation table	•	•

555 Timer

$$T_{HI} = 0.693*(R1+R2)*C1$$

$$T_{LO} = 0.693(R2)*C1$$

$$Duty\ cycle = (T_{HI}\ /\ Period)*100\%$$

$$Period = T = T_{HI} + T_{LO} \label{eq:period}$$

Question 1) For a given S-R FF, find the output Q and Q^{\sim} assuming that $Q_{initial} = 1$

Clock								
	0	1	2	3	4	5	6	7
S								
	0	1	2	3	4	5	6	7
R								
	0	1	2	3	4	5	6	7
Q								
	0	1	2	3	4	5	6	7
Q~								
	0	1	2	3	4	5	6	7

Question 2) For the following D-FF, sketch output Q assuming Qinitial = 0

Clock								
	0	1	2	3	4	5	6	7
D								
	0	1	2	3	4	5	6	7
Q								
	0	1	2	3	4	5	6	7
Q~								
	0	1	2	3	4	5	6	7

Question 3) For the following J-K-FF, sketch output Q assuming Qinitial = 1

Clock									
	0	1	2	3	4	5	6	7	8
J									
	0	1	2	3	4	5	6	7	8
K									
	0	1	2	3	4	5	6	7	8
Q									
	0	1	2	3	4	5	6	7	8
Q~									
	0	1	2	3	4	5	6	7	8

Question 4) For the following J-K-FF, sketch output Q assuming Qinitial = 0

Clock									
	0	1	2	3	4	5	6	7	8
J									
	0	1	2	3	4	5	6	7	8
K									
	0	1	2	3	4	5	6	7	8
Q									
	0	1	2	3	4	5	6	7	8
Q~									
	0	1	2	3	4	5	6	7	8

Question 5) For the following pulse, find:

a. Period

c. Duty cycle

Question 6) For the following 555 timer, R1 = 3.6 Ω , R2 = 2 Ω , and C1 = 0.25 F, find:

a. Period

b. Frequency

c. Duty cycle

Question 7) Give the proper name for the following shift registers as: (3 points)

- Series IN / Series OUT
- Series IN / Parallel OUT
- Parallel IN / Series OUT
- Parallel IN / Parallel OUT
- Rotate left
- Rotate right

Question 8) Design a synchronous counter that will display odd number as the following:

1→3→5→6 repeats (COUNTER SEQUENCE)

Step 1: Write and sketch the sequence of the synchronous counter (3 points)

Step 2: Determine the number of flip flops that you need and the module number (3 points)

Step 3 and 4: Construct a truth table of the transition state with the PRESENT state and the NEXT state, and complete the J-K input for each flip flop using sequence diagram from Step 1.

	PRE	ESENT S	state	ı	NEXT stat	е			J-K S	tate		
Decimal	С	В	Α	С	В	Α	Jc	Kc	J _B	K _B	JA	K _A
0	0	0	0									
1	0	0	1									
2	0	1	0									
3	0	1	1									
4	1	0	0									
5	1	0	1									
6	1	1	0									
7	1	1	1									
		Circuit excitation table for sequence 1,3,5,6										

Step 5: Create a k-map table for each J and K input and find the SOP equation of each.

	J _B	J _A
\overline{c} c	\overline{c} c	<u></u> <u></u> <u>C</u> C
$\overline{A}\overline{B}$	$\overline{A}\overline{B}$	$\overline{A}\overline{B}$
ĀB	ĀB	ĀB
AB	AB	AB
$A\overline{B}$	$A\overline{B}$	$A\overline{B}$
	<u> </u>	
SOP:	SOP:	SOP:
Kc	K _B	K _A
\overline{c} c	$ \overline{c} c$	<u> </u>
ĀB	$\overline{A}\overline{B}$	$\overline{A}\overline{B}$
ĀB	ĀB	ĀB
AB	AB	AB
$A\overline{B}$	$A\overline{B}$	$A\overline{B}$
SOP:	SOP:	SOP:

Step 6 : Complete and sketch the counter circuit using the SOP equation found in step 5
Homework Ends Here
HOHIEWOLK LIND HELE