Design and implementation of a test environment for a MPPCs reader multi-channel ASIC

Mauricio Montanares. Universidad del Bío-Bío

March 5, 2022

About this work

▶ This work present the design and implementation of a testing platform for an ASIC (application specific integrated circuit).

About this work

- ► This work present the design and implementation of a testing platform for an ASIC (application specific integrated circuit).
- ► The chip/ASIC was manufactured and needs to be tested, for do this, it is necessary to design, develop and implement a custom platform that allows the last.

About this work

- ► This work present the design and implementation of a testing platform for an ASIC (application specific integrated circuit).
- ► The chip/ASIC was manufactured and needs to be tested, for do this, it is necessary to design, develop and implement a custom platform that allows the last.
- Testing environment/platform = Custom PCB + FPGA(custom digital logic).

Overview of the design flow of the Integrated Circuits

- On pre-silicon design verification its not possible to detect all design bugs.
- Several interactions between a design and the electrical state of a system are becoming significant (electrical bugs i.e signal integrity).

Introduction

Chip overview and objectives

Ths chip/ASIC was disigned for be capable of read 4 SiPM (Silicon Photomultiplier, SiPM, Multi-Pixel Photon Counters, MPPC) in parallel and process these signals.

The objectives of the chip are:

- Be capable to read four MPPC, processed the inputs and convert this signals for estimate the number of arrived photons.
- Measure the time when the photons arrived.

Overview of the MPPC/SiMP detectors What are SiMP/MPPCs?

 SiMP(Silicon Photomultiplier) = MPPC(Multi-Pixel Photon Counters)

- SiMP(Silicon Photomultiplier) = MPPC(Multi-Pixel Photon Counters)
- They are detectors consisting of multiple p-n silicon junctions that, when polarized with voltages close to their breakdown voltage, can detect individual photons incident on their surface.

- SiMP(Silicon Photomultiplier) = MPPC(Multi-Pixel Photon Counters)
- They are detectors consisting of multiple p-n silicon junctions that, when polarized with voltages close to their breakdown voltage, can detect individual photons incident on their surface.
- The primary elements of the SiMP/MPPC are called pixels(photodiodes).

Overview of the MPPC/SiMP detectors

What are SiMP/MPPCs?

These devices are formed of a large number (hundreds or thousands) of microcells (independent between them).

Figure: (a) Simplified circuit schematic of SiMP. (b) Single cell, simplified circuit schematic. SiMP Sensor. (On Semiconductors - 2021)

Overview of the MPPC/SiMP detectors

Operation mode

When a photon arrives at the detector, activate some pixels, and if a pixel is activated, the pixel produces a signal out.

Overview of the MPPC/SiMP detectors

Operation mode

- When a photon arrives at the detector, activate some pixels, and if a pixel is activated, the pixel produces a signal out.
- When more than one photon arrives at the same time, the amplitude of the MPPC output will be the sum of the individual signals.

Figure: A high-level view of MPPC, arrived photons and pixel's outs (HAM, 2021)

Operation mode

Figure: A high-level view of MPPC, arrived photons and pixel's outs (HAM, 2021)

Chip Features

- 4 Analog Channels based on transimpedance amplifiers (TIA)
- Every channel have three output VOUT-TIA, VOUT-INT, VOUT-DISC
- On chip DAC for precision adjust of polarization voltage (limmited to 1.8V)
- ▶ The chip (in theory) is capable to read from 1 to 3000 photons

Chip Outputs

Description

We have 3 outputs for every channel, 12 outs in totally.

The outs are:

- VOUT-TIA: Direct out of TIA. This out is used to identify a number greater than hundreds of triggered pixels
- ➤ VOUT-INT: Differntial output of the integrator. This output is used to identify few triggered pixels.
- VOUT-DISC: Output from the discriminator circuit. It is used to identify the moment when a signal arrives from the SiPM (and can be used for estimate the number of arrived photons)

Figure: 1 of 4 channel of the chip. Image by R. Barraza

Post Layout simulations

For 1 photon

Renzo Barraza did some post layout simulations on his Master Thesis.

For simulate the arrived of one photon to the detectors, was used a current pulse of 0.1ns of duration and 4mA of amplitude.

For the arrived of one photon

Figure: TIA voltage output. Image by R. Barraza

For the arrived of one photon

Figure: Integrator differential voltage output. Image by R. Barraza

Post Layout simulation Discriminator

For the arrived of one photon

Figure: Discriminator voltage output. Image by R. Barraza

Multi-pixel trigger response

Multiple arrived photons

For simulate the arrived of more than 1 photon, the amplitude of input signal was linearly scaled.

- ▶ 1 photon: 0.1*ns* of duration and 4*mA* of amplitude.
- ▶ 2 photons: 0.1*ns* of duration and 8*mA* of amplitude.
- ▶ 10 photons: 0.1*ns* of duration and 40*mA* of amplitude.
- ▶ 300 photons: 0.1*ns* of duration and 1200*mA* of amplitude.
- **.**..

Note:

We can make a table to have the equivalence between charge[q]and number of photons based on the conditions of the experiments described by R.B

The problems

Description of some of the problems

Verify the functionality of the chip.

Stimulus inputs and read the outputs of the chip. A post-silicon verification. For these objectives, we need to be capable of doing two things:

- Stimulus the inputs
- Read the outputs
- (and implement these last two things on real hardware with additional considerations for correct operation of the device)*

How read the outputs of TIA and Integrator?

Methodologies described for R. Barraza

R. barraza in his Thesis proposes two methodologies:

- Peaking Time
- Max Amplitude

Figure: Peaking Time methodology. Image by R. Barraza

Max Amplitude

Figure: Max amplitude methodology. Image by R. Barraza

Número de pixeles dis- parados	Duración de pulso del discriminador
1 pixel	11,4 ns
2 pixeles	17,68 ns
3 pixeles	21,24 ns
7 pixeles	31,65 ns
11 pixeles	38,07 ns
29 pixeles	54,88 ns
47 pixeles	65,88 ns
199 pixeles	> 100 ns

Figure: Time over threshold methodology. Table by R. Barraza

Methodologies comparison

Figure: TIA Methodologies comparison. Image by R. Barraza

Multi-pixel trigger Integrator response

Methodologies comparison

Figure: Integrator Methodologies comparison. Image by R. Barraza

Current pulse generator

It's possible to implement a circuit that permits to the user control the input of charge to apply to the chip?

- ► How generate a current pulse? $I = C \frac{dVi}{dt}$
- ▶ What elements we can control of the above equation? maybe both..
- (how many levels of control we would like to have?)*

Current pulse generator

1 charge option implementation

► For one option of charge

Figure: 1 Option charge generator

Current pulse generator simulation

1 option of current pulse simulation

Simulation on LTspice

Figure: Simulation of 1 option current pulse generator

Current pulse generator

Multi-Option current pulse generator implementation

► For Multi-Option of current pulse

Figure: Multi-Option current pulse generator

Current pulse generator

Multi-Option current pulse generator simulation

Simulation on LTspice

Figure: Multi-Option current pulse generator simulation

Current pulse generator. Simplified circuit

Multi-Option current pulse generator

Figure: Multi-Option current pulse generator. Simplified circuit

- $ightharpoonup \frac{dVi}{dt}$ depends of the time on value of the transistor
- It's not possible to generate pulses with the characteristics described in the thesis experiments
- But we can generate pulses where the equivalent area corresponds to the areas of the pulses described in the thesis. Equivalent charge.

TIA and Integrator output

The outputs TIA and INT (peak events) of the circuit are fast (ns). For implement the second method (Max amplitude*) we can do:

- Peak detector
- Brute force (High speed ADC > 1GSPS)
- Dinamic comparator

Selected option

I propose the use of a Dinamic Comparator for estimate the peak of the signal out of TIA and Integrator.

- Relationship between charge[q] and number of photons
- It's possible control the charge changing the value of C
- We know the values of the output voltage of TIA and Integrator for some specific quantities of photons
- We know the duration of Discriminator pulse for some specific quantities of photons

Discriminator ouput

The output of Discriminator is more easy to measure using only a GPIO pin.

► FPGA GPIO (resolution of the rising or falling edge events is limited by the clock of the system)

Read out circuit

General block diagram

Figure: General block diagram of the system

Read out circuit

Conditioning and Processing

Figure: Conditioning and processing block diagram

Some Reference of the Read out circuit design

[1]. Orita, T., et al. "The current mode Time-over-Threshold ASIC for a MPPC module in a TOF-PET system." NIMA (2017) https://doi.org/10.1016/j.nima.2017.11.097 [2]. Orita, T., K. Shimazoe, and H. Takahashi. "The dynamic time-over-threshold method for multi-channel APD based gamma-ray detectors." NIMA (2015): 154-161

