Analitical results: Coaxial setup with differents materials

Introduction

In order to analyze the variation of the permittivity of a coaxial cell culture inside when applied to a microwave beam must first determine if our network analyzer have sufficient sensitivity. To obtain the sensitivity to be measured, the S parameters of the coaxial have been analyzed when the interior has different medium. The mediums that will be analyzed are the following:

- Vacuum
- Distilled water
- Sea water
- Cultivation water
- Cell culture (P = 0.1)

Experiment

//Cal definir els parametres de matlab

Expressions

Expressions only valid for $arepsilon_r'' \ll arepsilon_r''$

$$\varepsilon_r'' = \frac{\sigma}{\omega \varepsilon_0}$$

$$\alpha = 60\pi \frac{\sigma}{\sqrt{\varepsilon_r'}}$$

$$\beta = \frac{2\pi \sqrt{\varepsilon_r'}}{\lambda_0}$$

$$|S_{21}| = e^{-j\alpha\Delta z}$$

$$\emptyset_{S_{21}} = -\beta \Delta z$$

$$\varepsilon_0 = 8.854 \cdot 10^{-12}$$

In general

$$\alpha = \frac{2\pi}{\lambda_0} \left[\frac{1}{2} \, \varepsilon' \left(\sqrt{1 + \left(\frac{\varepsilon''}{\varepsilon'} \right)^2} - 1 \right) \right]^{1/2}$$

ResultsScattering parameters for differents mediums

S21 Culture Medium with 0.1% Cells

S21 Distilled Water

S21 Sea Water

Para poder definir el medio de cultivo (para distintas concentraciones de células) en HFSS utilizaremos el modelo de Debye:

Р	Frequency		Relative Permittivity (Real)		Loss tangent		Conducti vity (at DC)	S ₂₁ (f= 1GHx)	S ₂₁ (f= 1.5GH
	L	U	L	U	L	U			x)
0.1	1x1 0 ⁴	3x1 0 ⁹	335.2 686	80.50 64	1.501 8e3	0.02 54	0.2968	0.97561 2 - 0.10722 8dB	0.961 974
0.05	1x1 0 ⁴	3x1 0 ⁹	225.5 160	80.75 30	2.572 4e3	0.02 56	0.3227	0.97518 5 - 0.10912 9dB	0.961 555
0.02 5	1x1 0 ⁴	3x1 0 ⁹	115.2 145	80.87 64	3.893 3e3	0.02 58	0.3362	0.97581 1 - 0.10634 2dB	0.962 153
0.01 25	1x1 0 ⁴	3x1 0 ⁹	118.6 111	80.93 82	5.198 8e3	0.02 58	0.3430	0.97581 7 - 0.10631 6dB	0.962 158

r								
Materi	ε_r'	σ	$arepsilon_r^{\prime\prime}$	α	β	$ S_{21} $	$\emptyset_{S_{21}}$	tg∂
al								$=rac{arepsilon_{r}^{\prime\prime}}{arepsilon_{r}^{\prime}}$
(1GHz,								$-{arepsilon_{r}^{\prime}}$
Δz=3								
mm)								
Distill	8	0.00	0.02	0.0042	188	0.99998	-	2.8395x1
ed	1	02	3		.5	740	32.4	0 ⁻⁴
Water						-	01°	
						0.00011		
						dB		
Fresh	8	0.03	3.67	0.6807	188	0.99795	-	0.04532
Water	1	25	1		.5	998	32.4	09
						-0.0177	01°	
Sea	8	4.0	451.	83.78	188	0.77775	_	5.57740
Water	1	4.0	77	(287.9	.5	789	32.4	7407
water	_		' '	218	ر. ا	-2.1831	01°	7407
						-2.1651 dB	01	
				exact)		ив -7.5025		
College	0	0.25	20.5	7.22	100	dB		0.40003
Cultur	8	0.35	39.5	7.33	188	0.97825	-	0.48802
е	1		3		.5	002	32.4	46
Liquid						-0.1910	01°	
						dB		

Simulation results in HFSS

