Master's degree in Computer Engineering for Robotics and Smart Industry

Advanced control systems

Course assignments

Enrico Bonoldi - VR502852February 2025

Contents

1	Intr	roduction	3
2	Rob	oot structure and kinematics	3
	2.1	DH table	3
	2.2	Direct kinematics	4
	2.3	Inverse kinematics	4
	2.4	Jacobian matrices	4
3	Mai	nipulator dynamics	4
	3.1	Potential energy	4
	3.2	Kinetic energy	5
	3.3	Dynamic model	5
	3.4	RNE formulation	6
	3.5	Dynamic model in the operational space	6
	3.6	Bonus: Parameters estimation	8
4	Con	ntrol schemes	11
	4.1	Joint Space PD control law with gravity compensation	11
	4.2	Joint Space Inverse Dynamics control law	16
	4.3	Operations Space PD control law with gravity compensation	19

1 Introduction

This techical report is about the assignments of the **Advanced control systems** course.

The code is available at Github.

2 Robot structure and kinematics

Figure 1: Robot visualization

$$\delta_{b-0} = 0.15 \tag{1}$$

$$\delta_{0-1} = 0.4 \tag{2}$$

$$\delta_{1-2} = 0.3 \tag{3}$$

$$\delta_{2-3} = 0.16 \tag{4}$$

2.1 DH table

a	α	d	θ
0	$\frac{\pi}{2}$	δ_{b-0}	0
δ_{0-1}	0	0	q_1
0	$-\frac{\pi}{2}$	$\delta_{1-2} + q_2$	0
δ_{2-3}	0	0	q_3

To have the same alignment at the end-effector as the one in from the robotic toolbox we must rotate around the y axis (of the frame σ_3) by $\frac{\pi}{2}$ rad.

2.2Direct kinematics

$$T_i^{i-1} = \begin{bmatrix} \cos(\theta) & -\sin(\theta)\cos(\alpha) & \sin(\theta)\sin(\alpha) & a\cos(\theta) \\ \sin(\theta) & \cos(\theta)\cos(\alpha) & -\cos(\theta)\sin(\alpha) & a\sin(\theta) \\ 0 & \sin(\alpha) & \cos(\alpha) & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (5)

2.3 Inverse kinematics

A closed for solution of the inverse kinematics problem can be found by considering only the cartesian coordinates of the end-effector (since we have only 3 DoF).

$$x_{ee} = 0.4 \cos(q_1) + 0.16 \cos(q_1) \cos(q_3) \tag{6}$$

$$y_{ee} = 0.16\sin(q_3) - q_2 - 0.3\tag{7}$$

$$z_{ee} = 0.4 \sin(q_1) + 0.16 \cos(q_3) \sin(q_1) + 0.15$$
(8)

TODO: calculations?

$$q_{1} = \arctan\left(\frac{z_{ee} - 0.15}{x_{ee}}\right)$$

$$q_{3} = \arccos\left(\frac{z_{ee} - 0.15 - 0.4\sin q_{1}}{0.16\sin(q_{1})}\right)$$
(9)

$$q_3 = \arccos\left(\frac{z_{ee} - 0.15 - 0.4\sin q_1}{0.16\sin(q_1)}\right) \tag{10}$$

$$q_2 = 0.16 \sin(q_3) - 0.3 - y_{ee} \tag{11}$$

Figure (2) shows the case in which multiple valid solutions exists.

2.4 Jacobian matrices

The Euler angles sequence chosen for the analytical Jacobian matrix is ZYZ.

3 Manipulator dynamics

3.1Potential energy

$$\mathcal{U}(q) = g\sin(q_1) + 0.7848\cos(q_3)\sin(q_1) + 4.4145 \tag{12}$$

Where g is the gravitational acceleration.

Figure 2: Inverse kinematics solutions

3.2 Kinetic energy

$$\mathcal{T}(q, \dot{q}) = 0.0063 \, \dot{q_1}^2 \cos(q_3)^2 + 0.0320 \, \dot{q_1}^2 \cos(q_3) + 0.2653 \, \dot{q_1}^2 + \dot{q_2}^2 - 0.0800 \, \dot{q_2} \, \dot{q_3} \cos(q_3) + 0.0128 \, \dot{q_3}^2$$
(13)

3.3 Dynamic model

$$B(q) = \begin{bmatrix} 0.064 \cos(q_3) + 0.0126 \cos(q_3)^2 + 0.5305 & 0 & 0 \\ 0 & 2 & -0.08 \cos(q_3) \\ 0 & -0.08 \cos(q_3) & 0.0256 \end{bmatrix}$$
(14)

$$g(q) = \begin{bmatrix} 0.3924 \cos(q_1) (2 \cos(q_3) + 25) \\ 0 \\ -0.7848 \sin(q_1) \sin(q_3) \end{bmatrix}$$
 (16)

$$B(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau \tag{17}$$

Equation(17) is a set of 3 nonlinear second-order differential equations.

3.4 RNE formulation

Using the Newton–Euler equations it is possible to set up an algorithm composed by a **forward recursion** step in which we propagate the links velocity and acceleration from the base link to the EE and a **backward recursion** step in which we propagate the forces from the EE to the base link.

TODO: add B,C*qdot,g matrices from the newton-euler approach

3.5 Dynamic model in the operational space

TODO: add just matrices T and J or all of them? ask the others

3.6 Bonus: Parameters estimation

Figure 3: Parameters estimation different simulation steps amount are taken into account

Figure 4: Parameters estimation error different simulation steps amount are taken into account

Property Link #	Mass	Inertia tensor (w.r.t. CoM)
		0.0002 0 0
1	1	0 0.0800 0
		0 0 0.0800
	1	0.0076 0 0
2		0 0.0150 0
		0 0 0.0076
	1	0.0002 0 0
3		0 0.0128 0

Table 1: Real robot parameters

Property Link #	Mass	Inertia tensor (w.r.t. CoM)
1	1	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0.0406 \end{bmatrix}$
2	1	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0.0406 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
3	1	$\begin{bmatrix} 0.0140 & 0 & 0 \\ 0 & 0.0266 & 0 \\ 0 & 0 & 0.0128 \end{bmatrix}$

Table 2: Estimated robot parameters

4 Control schemes

4.1 Joint Space PD control law with gravity compensation

Figure 5: Joint Space PD control law with gravity compensation control scheme

Figure 6: Joint Space PD control law with gravity compensation

Figure 7: Joint Space PD control law with gravity compensation compensated gravity term is $g^\prime(q)$

Figure 8: Joint Space PD control law with gravity compensation compensated gravity term is $g(q_d)$

Figure 9: Joint Space PD control law with gravity compensation tracking task

4.2 Joint Space Inverse Dynamics control law

Figure 10: Joint Space Inverse Dynamics control law control scheme

Figure 11: Joint Space Inverse Dynamics control law

Figure 12: Joint Space Inverse Dynamics control law dynamics matrices are off

4.3 Operations Space PD control law with gravity compensation

Figure 13: Operational Space PD control law with gravity compensation scheme $\,$

Figure 14: Operational Space PD control law with gravity compensation