Estimating velocity using Phase Information

In this script, velocity calculation using FMCW radar is performed.

Two consecutive chirps, spaced at a time interval Tc = 1 us are transmitted. The object is assumed to move a distance d in this time interval. The beat frequency change is practically negligible but the phase change is quite significant.

This phase change is used to estimate the velocity of the object.

Defining Variables

```
fs = 140e9; %Sampling frequency 160 GHz
ts = 1/fs; %Sampling interval
L = 1400000; %Length of sequence
t0 = (0:L-1)*ts; %Time vector (first chirp)
t1 = (L:2*L-1)*ts; %time vector for second chirp
t = [t0,t1]; %Overall time vector
l = length(t0);
f = fs*(0:1/2)/1; %Frequency vector for single-sided spectrum
f_{new} = fs*(-1/2:1/2-1)/1; %Frequency vector for double-sided spectrum
f1 = 60*10^9; %Minimum frequency
f2 = 61*10^9; %Maximum frequency
K = (f2-f1)/((L-1)*ts); %Chirp slope
x0 = 100*\cos(2*pi*f1*t0 + pi*K*t0.^2);
x1 = 100*cos(2*pi*f1*t0 + pi*K*t0.^2);
x = [x0, x1];
c = 3*10^8;
lambda1 = c/f1;
d1 = 5.3; % initial Distance
td1 = 2*d1/c; %Round trip delay for initial distance
d2 = 5.300111; %Final distance
td2 = 2*d2/c; %Round trip delay for final distance
v_o = (d2-d1)/((L-1)*ts) %Original velocity
```

```
v_o = 11.1000

% s0 = 100*cos(2*pi*(f1)*t0 + pi*K*t0.^2);
% s1 = 100*cos(2*pi*(f1)*t0 + pi*K*t0.^2);

%delayed chirps
s0 = (delayseq(x0',td1,fs))';
s1 = (delayseq(x1',td2,fs))';
y = [s0,s1];

figure();
```


figure()
pspectrum(y,fs,'spectrogram','Reassign',true,'FrequencyLimits',[59*10^9,62*10^9],'Reass
title('Recieved chirp');

Dechirping

```
%beat signals
beat_1 = dechirp(s0',x0');
beat_2 = dechirp(s1',x1');
beat_fft_1 = (fftshift(fft(beat_1/l)));
beat_fft_2 = (fftshift(fft(beat_2/1)));
P2_1 = (abs(fft(beat_1/1)));
P1_1 = P2_1(1:1/2+1);
P1_1(2:end-1) = 2*P1_1(2:end-1);
P2_2 = (abs(fft(beat_2/1)));
P1_2 = P2_2(1:1/2+1);
P1_2(2:end-1) = 2*P1_2(2:end-1);
% plot(f,P1_1,f,P1_2);
plot(f_new,abs(beat_fft_1),f_new,abs(beat_fft_2));
xlabel("Frequency");ylabel("Amplitude");
title("Frequency Spectrum of beat signal");
legend("First beat", "Second beat");
xlim([0,1e7]);
```


Finding Phase

```
%z1 = fftshift(fft(E_mod_ssb));
tol = le-4;
% beat_fft_1(abs(beat_fft_1) < tol) = 0;
% beat_fft_2(abs(beat_fft_2) < tol) = 0;
figure()
plot(f_new,angle(beat_fft_1),f_new,angle(beat_fft_2))
xlabel('Frequency');ylabel('Phase');
xlim([0,le7])</pre>
```



```
Estimating Velocity
 [max_val,i] = max(abs(beat_fft_1))
 max_val = 2.0615e+03
 i = 699966
 f_beat = abs(f_new(i))
 f_beat = 3500000
 r = beat2range(f_beat,K,c) %range
 r = 5.2500
 range\_error = (d1+d2)/2 - r
 range\_error = 0.0501
 w1 = (angle(beat_fft_1(i)))
 w1 = -0.6575
 w2 = (angle(beat_fft_2(i)))
 w2 = -0.9394
 w = unwrap([w1,w2])
```

```
w = 1 \times 2
-0.6575
-0.9394
```

```
v_e = lambda1*(w(1)-w(2))/(4*pi*(L-1)*ts)
```

 $v_e = 11.2149$

```
error = abs(abs(v_e)-abs(v_o))
```

error = 0.1149