Analysis of SVD Deep Neural Network parametrization

"Da kto takoi etot et al?!" team

Patakin Nikolay, Yermekova Assel, Shushkova Varvara, Ildar Gabdrakhmanov, Pudyakov Yaroslav

Problem

Neural Networks

Time consuming operations!

- 1) Matrix inversion
- 2) Matrix Determinant
- 3) Spectral normalizations

Problem

Neural Networks ——

Time consuming operations

- 1) Matrix inversion
- 2) Matrix Determinant
- 3) Spectral normalizations

SVD decomposition

 Σ - diagonal U, V - orthogonal

$$\Sigma' = \Sigma - \eta
abla_{\Sigma} \ U' = U - \eta
abla_{U}$$

Solution

$$V' = V - \eta
abla_V$$

Problem

Neural Networks -----

Time consuming operations

- 1) Matrix inversion
- 2) Matrix Determinant
- 3) Spectral normalizations

SVD decomposition

Solution

 $W = U\Sigma V^T$

 Σ - diagonal U, V - orthogonal

Problem

Neural Networks ——

Time consuming operations

- 1) Matrix inversion
- 2) Matrix Determinant
- 3) Spectral normalizations

SVD decomposition

$$W = U\Sigma V^T$$

 Σ - diagonal

U, V - orthogonal

What is the problem?

Gradient

Descent Update of Weight Matrix

$$\Sigma' = \Sigma - \eta
abla_{\Sigma}$$

Solution

$$U' = U - \eta
abla_U$$

$$V' = V - \eta
abla_V$$

Loss of orthogonality of U. V matrices

To preserve U, V orthogonality:

Why Householder matrices are good?

U **remains orthogonal** under gradient descent update at *i* step

It allows to perform gradient descent to preserve the SVD of W during gradient descent updates

All products of Householder matrices are orthogonal Any dxd orthogonal matrix can be decomposed as a product of d Householder matrices

Allows to perform gradient descent over orthogonal matrices

What is the FastH algorithm?

Need to calculate:

$$UX = H_1 \cdots (H_{d-1}(H_d \cdot X))$$
 $X \in \mathbb{R}^{d imes m}$

Sequential

$$O(d^2m)$$

O(d) sequential vector-vector operations

What is the FastH algorithm?

Need to calculate:

$$UX = H_1 \cdots (H_{d-1}(H_d \cdot X))$$
 $X \in \mathbb{R}^{d imes m}$

Sequential

$$O(d^2m)$$

O(d) sequential vector-vector operations

ullet FastH $O(d^2m)$

$$O(rac{d}{m}+m)$$
 sequential matrix operations

FastH. Forward Pass

Input: $X \in \mathbb{R}^{d \times m}, \ d > m > 1$

$$H_1, \dots, H_d$$
 , $H_i \in \mathbb{R}^{d imes d}$ - Householder matrices

Want to compute: $A = H_1 \cdots H_d X$

$$H_i = I - rac{2v_iv_i^T}{\left\|v_i
ight\|_2^2} \;\;, \hspace{5mm} P_i = \underbrace{H_{(i-1)\cdot m+1}\cdots H_{i\cdot m}}_{m{m}\, ext{matricies}} \;\; i=1,\ldots,rac{d}{m}$$

Then:
$$A = \underbrace{H_1 \cdots H_d X}_{d \text{ multiplications}} = \underbrace{P_1 \cdots P_{\frac{d}{m}} X}_{\underline{m} \text{ multiplications}}$$

 $P_i X$ takes $O(d^2 m)$ Then compute Atakes $O(d^3)$

Still slow.... :c

Using decomposition of product ~ $O(dm^2)$

$$H_1 \cdots H_m = I - 2WY^T$$
 ~

 $H_1 \cdot \cdot \cdot H_m = I - 2WY^T$ helps us reduce complexity of computation to $O(d^2m)$ and decrease number of matrix multiplication to $O(d^2m)$

FastH. Backwards Propagation

Input:
$$A_1,\ldots,A_{rac{d}{m}+1},P_1,\ldots,P_{rac{d}{m}+1},rac{\partial L}{\partial A_1}$$
 L - loss function

Want to compute:
$$\dfrac{\partial L}{\partial X}, \dfrac{\partial L}{\partial v_1}, \ldots, \dfrac{\partial L}{\partial v_d}$$

The backward pass of FastH has two steps:

$$1. \ \text{Compute} \qquad \frac{\partial L}{\partial A_2}, \frac{\partial L}{\partial A_3}, \dots, \frac{\partial L}{\partial A_{\frac{d}{m}+1}} \quad \text{by} \quad \frac{\partial L}{\partial A_{i+1}} = \left[\frac{\partial A_i}{\partial A_{i+1}}\right]^T \frac{\partial L}{\partial A_i} = P_i^T \frac{\partial L}{\partial A_i} \longrightarrow \text{gradient wrt. } X \text{ since } X = A_{\frac{d}{m}+1}$$

2. Compute
$$\frac{\partial L}{\partial v_j}$$
 for all j — can be split into — can be solved — one subproblem d/m subproblems — in parallel — for each

$$\frac{\partial L}{\partial A_i}$$

Applications

- → Normalization flow models
 - Matrix determinant
 - Inverse matrix
- → Spectral normalization

Normalization flow

What do we want?

By a sequence of invertible and differentiable mappings

Change of variables

$$p_X(\mathrm{x}) = p_Zig(f^{-1}(\mathrm{x})ig) \left| \detigg(rac{\partial f^{-1}(\mathrm{x})}{\partial \mathrm{x}}igg)
ight|$$

For invertible matrix:

$$p_X(\mathrm{x}) = p_Z(\mathrm{z}) igg| \mathrm{det} igg(rac{\partial f(\mathrm{z})}{\partial \mathrm{z}} igg) igg|^{-1}$$

- 1. f(x) has to be invertible
- 2. want fast calculation of determinant of Jacobian matrix

$$det(rac{\partial f^{-1}(x)}{\partial x})$$

Flow-based Generative Models

Normalizing flows are generative models which produce tractable distributions.

The probability density function of the model given a datapoint:

$$\log p_{\theta}(\mathbf{x}) = \log p_{\theta}(\mathbf{z}) + \log |\det(d\mathbf{z}/d\mathbf{x})|$$
$$= \log p_{\theta}(\mathbf{z}) + \sum_{i=1}^{K} \log |\det(d\mathbf{h}_{i}/d\mathbf{h}_{i-1})|$$

The log-determinant is the change in log-density when going from h_{i-1} to h_i under transformation f_i .

Glow: Generative Flow

Generative flow where each step

Glow: Generative Flow

Generative flow where each step

Log-determinant

$$y_{ij} = W x_{ij}$$
 $x_{ij} \in \mathbb{R}^d, W \in \mathbb{R}^{d \times d}$
 $det(\frac{dy}{dx}) = h \cdot w \cdot log|det(W)|$

$$W = PL(U + \mathrm{diag}(s))$$
 or $W = U\Sigma V^T$

Can use FastH(SVD) here

Glow: Generative Flow

Generative flow where each step

Efficient FastH operation: $UX, U \in \mathbb{R}^{d \times d}, X \in \mathbb{R}^{d \times m}$

But! By algorithm formulation $\, m \ll d \,$

For conv 1x1
$$X \in \mathbb{R}^{d \times BHW}$$
 H- height $M \gg d$

B - batch size

Can not be applied straightforwardly!

Alternative: 1) extract weight matrix:

$$W = \left[egin{array}{c} U egin{pmatrix} I_{d/2} \ 0 \ \end{pmatrix} \ U egin{pmatrix} I_{d/2} \ \end{pmatrix}
ight]$$
 using two FastH forwards

2) Apply 2D 1x1 convolution using W matrix

GLOW performance

	Pytorch	FastH
Forward	160 ms	112 ms
Inverse	475 ms	113 ms
Forward+Backward	513 ms	245 ms

~**7.5 min** (out of 15) per epoch reduction! (CIFAR10)

CIFAR-10

Real examples

After 20 epochs

CIFAR-10

$$BPD = \frac{NLL}{3\ln 2 \cdot H \cdot W}$$

- → After 20 epochs: 3.57 bpd
- → For original GLOW should be ~3.48 after 80 epochs

Spectral normalization

$$W \in \mathbb{R}^{C_{out} \times C_{in} \times K \times K} \quad \sigma(W) \to 1$$

Conclusion

→ Practical speed-up can be achieved for GLOW model

BUT:

- → A lot of limitations on parameters choice
- → There is more powerful models (e.g. Neural Splines Flow)
- → The only normalization flow model can be accelerated?

Spectral norms:

→ Slower than power iteration