Notas Extensiones Separables AM III

Cristo Daniel Alvarado

Diciembre de 2023

Índice general

4.	Exte	ensiones Separables	2
	4.1.	Resultados preeliminares	2
	4.2.	Extensiones separables	4
	4.3.	Extesiones puramente inseparables	11

Capítulo 4

Extensiones Separables

4.1. Resultados preeliminares

Para enunciar lo que es una extensión separable, se necesitarán demostrar algunos resultados preeliminares para enunciarlo de forma adecuada.

Proposición 4.1.1

Sea F un campo y $f(X) \in F[X]$ un polinomio no constante. Si

- 1. car(F) = 0, entonces $f'(X) \neq 0$.
- 2. car(F) = p > 0, entonces f'(X) = 0 si y sólo si $\exists g(X) \in F[X]$ tal que $f(X) = g(X^p)$.

Demostración:

En ambos casos, para la demostración se requiere de usar el polinomio f'(X). Expresamos

$$f(X) = a_0 + a_1 x + \dots + a_n x^n, \quad n \ge 1, \ a_n \ne 0$$
(4.1)

De (1): Se tiene que

$$f'(X) = \dots + na_n x^{n-1}$$

donde $na_n \neq 0$ ya que car(F) = 0. Por tanto, $f'(X) \neq 0$.

De (2): Se probará el si, sólo si.

 \Leftarrow): Supongamos que $\exists g(X) \in F[X]$ tal que $f(X) = g(X^p)$. Expresamos a $g(X) = b_0 + b_1 x + \cdots + b_m x^m$, donde $b_m \neq 0$. Entonces

$$f(X) = g(X^p)$$

$$= b_0 + b_1 X^p + \dots + b_m X^{pm}$$

$$\Rightarrow f'(X) = pb_1 X^{p-1} + \dots + pmb_m X^{pm-1}$$

$$= 0 \cdot X^{p-1} + \dots + 0 \cdot X^{pm-1}$$

$$= 0$$

 \Rightarrow): Supongamos que f'(X) = 0, donde $f'(X) = \sum_{i=1}^m ia_i x^{i-1}$, entonces $ia_i = 0$, para todo $i = 1, \dots, m$. Si $a_i \neq 0$ para algún i, entonces debe suceder que $i \cdot 1 = i = 0$, por lo cual $\operatorname{car}(F) = p \mid i$. Luego si $a_i \neq 0$, existe $m_i \in \mathbb{N}$ tal que $i = pm_i$. Escribiendo a f(X) con todos sus términos no cero, se tiene que

$$f(X) = a_0 + a_{pm_1} X^{pm_1} + \dots + a_{pm_n} X^{pm_n}$$

= $a_0 + a_{pm_1} (X^p)^{m_1} + \dots + a_{pm_n} (X^p)^{m_n}$
= $g(X^p)$

donde
$$g(X) = a_0 + a_{pm_1}X + \cdots + a_{pm_n}X^{m_n}$$
, siendo $a_{pm_n} \neq 0$, pues $f(X) \neq 0$

De este teorema anterior y de un teorema del capítlo pasado, se deduce de forma inmediata el siguiente corolario:

Corolario 4.1.1

Sea F un campo y $f(X) \in F[X]$ un polinomio irreducible. Si

- 1. car(F) = 0, entonces todas las raíces de f(X) son simples.
- 2. car(F) = p > 0, entonces f(X) tiene una raíz simple si y sólo si, $\exists g(X) \in F[X]$ tal que $f(X) = g(X^p)$.

Demostración:

Es inmediata de la proposición anterior.

El siguiente teorema tiene como objetivo caracterizar las extensiones separables, enunciando un resultado importante para su definición.

Teorema 4.1.1

Sea F un campo con $\operatorname{car}(F) = p > 0$. Sea $f(X) \in F[X]$ un polinomio irreducible, y $e \in \mathbb{N}^*$ tal que $f(X) \in F[x^{p^e}]$, pero $f(X) \notin F[x^{p^{e+1}}]$. Sea $\Psi(X) \in F[X]$ el polinomio tal que $f(X) = \Psi(X^{p^e})$. Entonces

- 1. $\Psi(X)$ es un polinomio irredicible en F[X].
- 2. Todas las raíces de $\Psi(X)$ son simples.
- 3. Todas las raíces de f(X) tienen la misma multiplicidad, a saber, p^e .
- 4. Si $m = \deg(\Psi)$, entonces $\deg(f) = p^e m$.

Demostración:

De (1): Supongamos que $\Psi(X)$ es descomponible, entonces existen $g(X), h(X) \in F[X]$ con grados ≥ 1 tales que

$$\Psi(X) = g(X)h(X)$$

$$\Rightarrow f(X) = g(X^p)h(X^p)$$

$$= g_1(X)h_1(X)$$

donde $g_1(X) = g(X^p)$ y $h_1(X) = h(X^p)$ con grados ≥ 1 , lo cual implicaría que f(X) es reducible. Luego $\Psi(X)$ tiene que ser irredicible.

De (2): Supongamos que $\Psi(X)$ admite una raíz multiple, entonces $\exists g(X) \in F[X]$ tal que $\Psi(X) = g(X^p)$. Así

$$f(X) = \Psi(X^{p^e})$$

$$= g(X^{p^{e+1}})$$

$$\in F[x^{p^{e+1}}]$$

lo cual es una contradicción. Por lo tanto $\Psi(X)$ debe tenera todas sus raíces simples.

De (3): Sea $m = \deg(\Psi)$. Sean $\beta_1, \dots, \beta_m \in \bar{F}$ todas las raíces de $\Psi(X)$ en alguna cerradura algebraica de F. Se tiene entonces que

$$\Psi(X) = a (x - \beta_1) \cdots (x - \beta_m)$$

$$\Rightarrow f(X) = \Psi(X^{p^e})$$

$$= a (x^{p^e} - \beta_1) \cdots (x^{p^e} - \beta_m)$$

Donde $a \in F$ es alguna constante. Ahora, para cada $i = 1, \dots, m$ sea $\alpha_i \in \bar{F}$ una raíz del polinomio $X^{p^e} - \beta_i = 0$, esto es $\beta_i = \alpha^{p^e}$. Notemos que si $i \neq j$, debe suceder que $\alpha_i \neq \alpha_j$. Por tanto

asd

De (4): Es inmediata.

Se deduce de forma inmediata el siguiente corolario.

Corolario 4.1.2

Sea F campo y $f(X) \in F[X]$ un polinomio irredicible. Entonces todas las raíces de f(X) tienen la misma multiplicidad. Si car(F) = 0, la multiplicidad de estas raíces es 1, y si car(F) = p > 0, tienen multiplicidad p^e , para algún $e \in \mathbb{N}^*$ (este e se obtiene del teorema anterior).

4.2. Extensiones separables

Ahora estamos en las condiciones de enunciar la definición de separabilidad.

Definición 4.2.1

De acuerdo con las notaciones del teorema anterior y de su demostracion, tenemos que el número $deg(\Psi)$ es llamado el grado de separabilidad de f, y al entero no negativo e es llamado el grado de inseparabilidad de f.

En otras palabras, podemos ver que el grado de separabilidad de f es el número de raíces distintas de f.

Definición 4.2.2

Sea F un campo y \overline{F} una cerradura algebraica de F. Si $\alpha \in \overline{F}$ y $f(X) = \operatorname{irr}(\alpha, F, X)$, entonces se define **el grado de separabilidad de** α , como el grado de separabilidad de f, y al exponente e de inseparabilidad de f, será el **exponente de inseparabilidad de** α .

En el caso en que car(F) = 0, el exponente y grado de inseparabilidad de f y α no tienen sentido en estar definidos, pues en ambos casos su valor siempre será de 1.

En cualquier caso, si $\alpha \in \bar{F}$ se denota al grado de separabilidad de α como

$$[F(\alpha):F]_s \tag{4.2}$$

En el caso de que car(F) = 0, se tiene que

$$[F(\alpha):F]_s = [F(\alpha):F] = \deg(\operatorname{irr}(\alpha, F, X)) \tag{4.3}$$

y, si car(F) = p > 0, entonces

$$[F(\alpha):F]_s = \frac{[F(\alpha):F]}{p^e} \tag{4.4}$$

Proposición 4.2.1

Sea F un campo, \bar{F} una cerradora algebraica de F y $\alpha \in \bar{F}$. Entonces, $[F(\alpha):F]_s=N$, donde $N \in \mathbb{N}$ es el número de F-homomorfismos de $F(\alpha)$ en \bar{F} .

Demostración:

Sea $f(X) = \operatorname{irr}(\alpha, F, X)$. Tomemos $\alpha_1, \ldots, \alpha_m \in \bar{F}$ las raíces distintas de f(X). Se tiene por definición que

$$m = [F(\alpha) : F]_S$$

Sea $\phi: F(\alpha) \to \overline{(F)}$ un F-homomorfismo. Sabemos que ϕ está completamente determinada por su acción sobre α , teniendo que $\phi(\alpha)$ es raíces de f(X), esto es debe ser que $\phi(\alpha) = \alpha_i$, con $i \in [1, m]$. luego, a lo más tenemos m F-homomorfismos de $F(\alpha)$ en \overline{F} , con lo cual se tiene el resultado.

Definición 4.2.3

Sea E/F una extensión algebraica. Se define **el grado de separabilidad de** E **sobre** F como la cardinalidad del conjunto de F-homomorfismos que van de E en \bar{F} , donde \bar{F} es una cerradura algebraica de F que contiene a E. Tal cardinal es denotado por $[E:F]_s$.

De resultados de capítulo anterior, se deduce de forma inmediata el siguiente teorema.

Teorema 4.2.1

Sea E/F una extensión finita y K un campo intermedio de la extensión E/F. Entonces

$$[E:F]_s = [E:K]_s [K:F]_s$$
(4.5)

Demostración:

Es inmediata de un teorema anterior.

Definición 4.2.4

Sea F un campo y $\alpha \in \bar{F}$. Decimos que α es separable sobre F si $[F(\alpha):F]_s=[F(\alpha):F]$. Si E/F es una extensión algebraica, entonces se dice que E/F es separable o E es separable sobre F, si todo elemento de E es separable sobre F.

Veremos ahora algunas caracterizaciones de las extensiones separables.

Observación 4.2.1

Sea F camop y F cerradura algebraica de F.

- 1. Si $\alpha \in \overline{F}$, entonces α es separable sobre F si y sólo si $f(X) = \operatorname{irr}(\alpha, F, X)$ es tal que todas sus raíces son simples. Cuando esto ocurra decimos que f(X) es separable sobre F.
- 2. Si $g(X) \in F[X]$, decimos que g(X) es separable sobre F si todos sus factores irreducibles son separables sobre F.

Proposición 4.2.2

Sea E/F una extensión finita con car(F) = p > 0. Entonces existe un elemento $t \in \mathbb{N}^*$ tal que

$$[E:F] = p^t [E:F]_s$$
 (4.6)

En particular, si $p \nmid [E:F]$, enotnces $[E:F] = [E:F]_s$.

Sean $\alpha_1, \ldots, \alpha_n \in E$ tales que $E = F(\alpha_1, \ldots, \alpha_n)$. Consideraremos la torre de campos $F \subseteq F(\alpha_1) \subseteq \cdots \subseteq F(\alpha_1, \ldots, \alpha_{n-1}) \subseteq F(\alpha_1, \ldots, \alpha_n)$. Sea e^i es exponente de inseparabilidad de α_i sobre $F(\alpha_1, \ldots, \alpha_{i-1})$, con $i \in [2, n]$ y e_1 el grado de inseparabilidad de α_1 sobre F. Entonces

$$[E:F]_{s} = [F(\alpha_{1}, \dots, \alpha_{n}) : F(\alpha_{1}, \dots, \alpha_{n-1})]_{s} \cdot \dots \cdot [F(\alpha_{1}) : F]_{s}$$

$$= \frac{1}{p^{e_{n}}} [F(\alpha_{1}, \dots, \alpha_{n}) : F(\alpha_{1}, \dots, \alpha_{n-1})] \cdot \dots \cdot \frac{1}{p^{e_{1}}} [F(\alpha_{1}) : F]$$

$$\Rightarrow [E:F] = p^{e_{1} + e_{2} + \dots + e_{n}} [E:F]_{s}$$

tomando $t = e_1 + \cdots + e_n \in \mathbb{Z}_{>0}$ se sigue el resultado.

Observación 4.2.2

Si E/F es una extensión finita y car(F) = 0, entonces $[E:F] = [E:F]_s$.

Proposición 4.2.3

Sea E/F una extension de campos con $\operatorname{car}(F) = p > 0$ y $\alpha \in E$ algebraico sobre F. Sea e el exponente de inseparabilidad de α sobre F. Entonces

- 1. α^{p^e} es separable sobre F.
- 2. Las siguientes condiciones son equivalentes:
 - I) α es separable sobre F.
 - II) $[F(\alpha) : F]_s = [F(\alpha) : F].$
 - III) e = 0.
 - IV) $F(\alpha) = F(\alpha^p)$.

Demostración:

De (1): Sea $f(X) = \operatorname{irr}(\alpha, F, X)$ y $\psi(x) \in F[X]$ tal que $\psi(X^{p^e}) = f(X)$, pero $f(X) \notin F[X^{p^{e+1}}]$. Sabemos que $\psi(X)$ es irreducible sobre F y que todas sus raíces son simples, donde

$$0 = f(\alpha) = \psi(\alpha^{p^e})$$

esto es, α^{p^e} es raíz de $\psi(X)$, por lo cual $\psi(X) = \operatorname{irr}(\alpha^{p^e}, F, X)$. Por tanto, α^{p^e} es separable sobre F.

De (2): Es claro que I) \Longleftrightarrow II) \Longleftrightarrow III). Probaremos que I) \Longleftrightarrow IV). Antes, notemos que

$$F \subseteq F(\alpha^p) \subseteq F(\alpha)$$

I) \Rightarrow IV): Sea $f(X) = \operatorname{irr}(\alpha, F, X)$. Tenemos que $g(X) = X^p - \alpha^p \in F(\alpha^p)[X]$ y α es raíz de g(X). Por lo cual $\operatorname{irr}(\alpha, F(\alpha^p), X) \mid g(X)$ y $\operatorname{irr}(\alpha, F(\alpha^p), X) \mid f(X)$ en $F(\alpha^p)[X]$.

Entonces, como todas las raíces de f(X) son simples, las raíces de $h(X) = \operatorname{irr}(\alpha, F(\alpha^p), X)$ también lo son; además $h(X) \mid X^p - \alpha^p = (X - \alpha)^p \Rightarrow h(X) = (x - \alpha) \Rightarrow \alpha \in F(\alpha^p)$. Por tanto, $F(\alpha) = F(\alpha^p)$.

IV) \Rightarrow I): Recíprocamente, supongamos que $F(\alpha) = F(\alpha^p)$ pero α no es separable sobre F. Siendo $f(X) = \operatorname{irr}(\alpha, F, X)$, tenemos que $f(X) \in F[X^p]$, esto es, existe $g(X) \in F[X]$ tal que $f(X) = g(X^p)$ donde $\deg(f) = p \cdot \deg(g) > \deg(g)$.

Notemos que g(X) tiene por raíz a α^p , pues $g(\alpha^p) = f(\alpha) = 0$, de esta forma $\operatorname{irr}(\alpha^p, F, X) \mid g(X) \Rightarrow [F(\alpha^p) : F] = \operatorname{deg}(\operatorname{irr}(\alpha^p, F, X)) = \operatorname{deg}(g) < \operatorname{deg}(f) = [F(\alpha) : F]$, luego $F(\alpha^p) \subsetneq F(\alpha)$, lo cual es una contradicción. Por tanto, α es separable sobre F.

Proposición 4.2.4

Sea E/F una extensión finita. Entonces E/F es separable si y sólo si $[E:F]_s=[E:F]$.

Demostración:

 \Rightarrow): Suponga que E/F es separable. Sean $\alpha_1, \ldots, \alpha_n \in E$ tales que $F(\alpha_1, \ldots, \alpha_n) = E$. Consideremos la torre de campos:

$$F \subsetneq F(\alpha_1) \subsetneq \cdots \subsetneq F(\alpha_1, \dots, \alpha_n) = E$$

para cada $i \in [2, n]$, tenemos que α_i es separable y, por ende, lo es sobre $F(\alpha_1, \dots, \alpha_{i-1})$. Luego,

$$[E:F]_s = [F(\alpha_1, \dots, \alpha_n) : F(\alpha_1, \dots, \alpha_{n-1})]_s \cdot \dots \cdot [F(\alpha_1) : F]_s$$
$$= [F(\alpha_1, \dots, \alpha_n) : F(\alpha_1, \dots, \alpha_{n-1})] \cdot \dots \cdot [F(\alpha_1) : F]$$
$$= [E:F]$$

 \Leftarrow): Sea $\alpha \in E$ arbitrario. Tenemos lo siguiente:

$$[E:F(\alpha)]_s \cdot [F(\alpha):F]_s = [E:F]_s$$
$$= [E:F]$$
$$= [E:F(\alpha)] \cdot [F(\alpha):F]$$

donde $[E:F(\alpha)]_s \leq [E:F(\alpha)]$ y $[F(\alpha):F]_s \leq [F(\alpha):F]$. Por la igualdad anterior debe suceder que

$$[F(\alpha):F] = [F(\alpha):F]$$

esto es, que α es separable sobre F. Como el α fue arbitrario, entonces se sigue que la extensión E/F es una extensión separable.

Observación 4.2.3

Sea $F \subseteq K \subseteq E$ una torre de campos y $\alpha \in E$ separable sobre F. Entonces α es separable sobre K. Más generalmente, sean E/F y K/F extensiones de campos y $\alpha \in E$ separable sobre F. Si α es elemento de un campo L extensión de K, entonces α es separable sobre K.

Proposición 4.2.5

Sea E/F una extensión de campos y $S \subseteq E$ tal que E = F(S). Sea.

$$K = \{ \alpha \in E | \alpha \text{ es separable sobre } F \}$$
 (4.7)

Entonces

- 1. K es un subcampo intermedio de la extensión E/F.
- 2. E/F es separable si y sólo si α es separable sobre F, para todo $\alpha \in S$.

Demostración:

De (1): Probaremos que K es campo y que $F \subseteq K \subseteq E$. En efecto, sea $\alpha \in F$, se tiene que α es algebraico sobre F, con polinomio irreducible $f(X) = X - \alpha$, el cual tiene todas sus raíces distintas, por lo cual α es separable sobre F. Entonces $F \subseteq K \subseteq E$. Sean ahora $\alpha, \beta \in K \neq \emptyset$, pues $F \subseteq K$. Consideremos el campo intermedio de la extensión E/F, $F(\alpha, \beta)$. Se tiene entonces la torre de campos

$$F \subseteq F(\alpha) \subseteq F(\alpha, \beta) \subseteq E$$

Como β es separable sobre F, lo es sobre $F(\alpha)$, luego como el grado de separabilidad es multiplicativo, se tiene que

$$\begin{split} [F(\alpha,\beta):F]_s &= [F(\alpha,\beta):F(\alpha)]_s \, [F(\alpha):F]_s \\ &= [F(\alpha,\beta):F(\alpha)] \, [F(\alpha):F] \\ &= [F(\alpha,\beta):F] \end{split}$$

por lo cual, la extensión $F(\alpha, \beta)/F$ es separable, luego los elementos $\alpha - \beta, \alpha\beta, \alpha^{-1} \in F(\alpha, \beta)$ son separables sobre F. Por tanto, K es campo y por lo anterior, es subcampo intermedio de la extensión E/F.

De (2): Veamos que

- \Rightarrow): Es inmediata, pues si E/F es separable todo elemento de E es separable sobre F. En particular todo elemento de S es separable sobre F.
- \Leftarrow): Supongamos que α es separable sobre F, para todo $\alpha \in S$. Por (1) se tiene que $S \subseteq K$ y $F \subseteq K$, pero como K es subcampo de E, se tiene que $F(S) \subseteq K$, por lo cual F(S) = E = K. Así, todos los elementos de E son separables sobre F, es decir E/F es una extensión separable.

Definición 4.2.5

El campo K de la definición (4.7) es llamado la cerradura separable o de la extensión E/F o simplemente de E/F, o de F en E.

Si consideramos la extensión \bar{F}/F , entonces la cerradura separable de F en \bar{F} simplemente se dice es la **cerradura separable de F**.

Observación 4.2.4

Si E/F es una extensión algebraica de tal manera que $E \subseteq \bar{F}$, entonces la cerradura separable de F en E, K, es la intersección de la cerradura separable de F con E.

Observación 4.2.5

En la literatura no existe notación establecida para referirse a la cerradura normal. En este momento nosotros acordaremos la siguiente. Sobre la extensión E/F, se denotará a la cerradura separable de F en E por:

$$F_{S,E/F}$$
 o $F_{S,F}^{E}$

Cuando la extensión es \bar{F}/F será

$$F_S$$

y a veces a la cerradura algebraica se le denota por $\bar{F} = F^a$.

Proposición 4.2.6

Sea E/F una extensión normal & F_S la cerrradura separable de E/F. Entonces, la extensión F_S/F es normal.

Demostración:

Sea $\alpha \in F_S$ con $f(X) = \operatorname{irr}(\alpha, F, X)$, y $\beta \in \overline{F}$ tal que α y β son F-conjugados, es decir que ambos son raíces del polinomio f(X). Como la extensión E/F es normal, entonces $\beta \in E$, donde $\operatorname{irr}(\beta, F, X) = f(X)$ es separable sobre F, pues α es separable sobre F, es decir, β es separable sobre F. Luego $\beta \in F_S$. Por tanto, la extensión F_S/F es normal.

Observación 4.2.6

Si F es campo, la extensión \bar{F}/F es normal, por lo cual las extensiones \bar{F}/F_S y F_S/F son ambas normales (siendo F_S la cerradura separable de F).

Proposición 4.2.7

Sea E/F una extensión finita. y F_S la cerradura separable de F en E. Entonces,

$$[F_S:F] = [E:F]_s$$
 (4.8)

Demostración:

Tenemos dos casos:

• Si car(F) = 0, entonces la extensión E/F es separable y por tanto $F_S = E$. Por tanto

$$[F_S:F] = [E:F]$$
$$= [E:F]_s$$

• Si car(F) = p > 0. Tenemos que

$$[E:F]_S = [E:F_S]_S [F_S:F]_S$$

= $[E:F_S]_S [F_S:F]$

Para probar el resultado, basta con probar que $[E:F_S]_S=1$. Recordemos que $[E:F_S]_S$ es el cardinal de F_S -homomorfismos de E en $\bar{F}=\bar{F}_S$. Sea entonces $f:E\to \bar{F}$ un F_S -homomorfismo. Sea $\alpha\in E$. Si $\alpha\in F_S$ m entonces $f(\alpha)=\alpha$. Si $\alpha\notin F_S$, se tiene por definción de F_S que α no es separable sobre F.

Sea $f(X) = \operatorname{irr}(\alpha, F, X)$, y tomemos $e \in \mathbb{N}^*$ su exponente de inseparabilidad. Por un resultado anterior sucede que α^{p^e} es separable sobre F, es decir $\alpha^{p^e} \in F_S$. Luego,

$$f(\alpha^{p^e}) = \alpha^{p^e}$$

$$\Rightarrow (\alpha - f(\alpha))^{p^e} = \alpha^{p^e} - f(\alpha)^{p^e}$$

$$= 0$$

$$\Rightarrow f(\alpha) - \alpha = 0$$

$$\Rightarrow f(\alpha) = \alpha$$

Es decir, $f = id_E$. Por tanto $[E : F_S] = 1$. Así por la ecuación anterior

$$[E:F]_S[F_S:F]$$

Teorema 4.2.2

La clase de extensiones separables es una clase distinguida.

Demostración:

De (a): Sea $F \subseteq K \subseteq E$ una torre de campos. Probaremos que E/F es separable si, y sólo si E/K y K/F son separables.

 \Rightarrow): Supongamos que E/F es separable. Sabemos ya que E/K es separable. Pero, por otro lado, es claro que la extensión K/F es separable.

 \Leftarrow): Supongamos que las extensiones E/K y K/F son separables. Sea $\alpha \in E$ arbitrario y tomemos $f(X) = \operatorname{irr}(\alpha, K, X)$, digamos

$$f(X) = a_0 + a_1 X + \dots + a_{m-1} X^{m-1} + X^m \in K[X]$$

Tenemos que f(X) es separable sobre K, es decir todas las raíces de f(X) son simples. Consideremos la torre de campos:

$$F \subseteq F(a_0, a_1, \dots, a_{m-1}) \subseteq F(a_0, a_1, \dots, a_{m-1}, \alpha)$$

donde $F(a_0, a_1, \ldots, a_{m-1})/F$ es finita y separable, al igual que $F(a_0, a_1, \ldots, a_{m-1}, \alpha)/F(a_0, a_1, \ldots, a_{m-1})$. Notemos que $f(X) = \operatorname{irr}(\alpha, F(a_0, a_1, \ldots, a_{m-1}), X)$. Entonces

$$[F(a_0, a_1, \dots, a_{m-1}, \alpha) : F] = [F(a_0, a_1, \dots, a_{m-1}, \alpha) : Fa_0, a_1, \dots, a_{m-1}] [F(a_0, a_1, \dots, a_{m-1}) : F]$$

$$= [F(a_0, a_1, \dots, a_{m-1}, \alpha) : Fa_0, a_1, \dots, a_{m-1}]_s [F(a_0, a_1, \dots, a_{m-1}) : F]_s$$

$$= [F(a_0, a_1, \dots, a_{m-1}, \alpha) : F]_s$$

es decir, $F(a_0, a_1, \ldots, a_{m-1}, \alpha)/F$ es una extensión separable, en particular se tiene que α es separable sobre F. Por ser el α arbitrario en E, se sigue que E/F es una extensión separable.

De (b): Sean E/F y K/F extensiones separables, dónde E/F es separable y, E y K subcampos de un campo común E. Como E0 entonce basta ver que los elementos de E3 son separables sobre E1, lo cual ya se tiene.

Entonces, KE/F es una extensión separable.

Corolario 4.2.1

Sean E/F y K/F extensiones separables, con E y K subcamopos de un campo común L. Entonces, KE/F es separable.

Demostración:

Es inmediato de la proposición teorema.

Definición 4.2.6

Sea F un campo. Se dice que F es perfecto si toda extensión algebraica de F es separable.

Observación 4.2.7

Todo campo de característica 0 es perfecto (ya que toda extensión algebraica de un campo con característica 0 sigue teniendo característica 0, es decir que la extensión siempre va a ser separable).

Definición 4.2.7

Sea F campo de caracerística p > 0. Sea $n \in \mathbb{N}$. Se define la función $\phi_n : F \to F$, $\alpha \mapsto \alpha^{p^n}$.

Se tiene que ϕ_n es un homomorfismo, llamado el homomorfismo de Fröbenius de grado n. Para n=1 se dice simplemente que ϕ_1 es el homomorfismo de Fröbenius, y se denota por ϕ .

Teorema 4.2.3

Sea F un campo de caracterísitca p > 0. Las siguientes condiciones son equivalentes:

- 1. F es perfecto.
- 2. Toda extensión finita de F es separable.
- 3. Todo polinomio irreducible sobre F es separable.
- 4. Todo polinomio sobre F es separable.

- $(1) \Rightarrow (2)$: Es inmediato.
- $(2) \Rightarrow (3)$: Sea $f(X) \in F[X] \setminus F$ irreducible y sea $\alpha \in \overline{F}$ una raíz de f(X). Por hipótesis, $F(\alpha)$ es una extensión separable de F, luego α es separable sobre F. Como f(X) es asociado con $\operatorname{irr}(\alpha, F, X)$, entonces f es separable sobre F.
 - $(3) \iff (4)$: Es inmediato.
- $(4) \Rightarrow (5)$: Es claro que $\phi : F \to F$ es un monorfismo. Sea $\alpha \in F$ y considérese $f(X) = X^p \alpha \in F[X]$. Sea $\beta \in \overline{F}$ una raíz de f(X) y sea $g(X) = \operatorname{irr}(\beta, F, X)$, el cual es separable y divide a f(X). Pero $f(X) = X^p \alpha^p = (X \alpha)^p$, así β es la única raíz de f(X), por lo que también lo es de g(X). Por tanto, $g(X) = X \beta \in F[X]$.

Luego, $\beta \in F$. Así pues, ϕ es suprayectiva, luego es un automorfismo de F.

 $(5) \Rightarrow (1)$: Sea E/F una extensión algebraica. Sean $\alpha \in E$ y $f(X) = \operatorname{irr}(\alpha, F, X)$, cuyas raíces tienen multiplicidad p^e , con $e \in \mathbb{Z}_{\geq 0}$, siendo e el exponente de inseparabilidad de α . Suponiendo que $e \geq 1$, entonces α es raíz múltiple de f(X), por lo que existe $g(x) \in F[X]$ tal que $f(X) = g(X^p)$. Sea

$$g(X) = b_0 + b_1 X + \dots + b_m X^m$$

Por hipótesis, para todo $i \in \{0, \dots, m\}$ existe $c_i \in F$ tal que $b_i = c_i^p$. Pero, esto implica que

$$f(X) = c_0^p + c_0^p X^p + \dots + c_m^p X^{mp} = (c_0 + c_1 X + \dots + c_m X^m)^p$$

lo cual contradice el hecho de que f(X) sea irredicible. Por tanto, e = 0, luego α es separable sobre sobre F y, en consecuencia, E/F es una extensión separable.

Teorema 4.2.4

Todo campo finito es perfecto.

Demostración:

Considerando el homomorfismo de Fröbenius $\phi: F \to F$, se tiene que ϕ es inyectivo, por lo cual $|\phi(F)| = |F|$. Pero, como F es finito, entonces $\phi(F) = F$, luego ϕ es automorfismo de F. Así pues, F es perfecto.

Definición 4.2.8

Sea E/F una extensión de campos y α inseparable sobre F. Entonces $f(X) = \operatorname{irr}(\alpha, F, X)$ es de la forma $f(X) = (X - \alpha_1)^{p^e} \cdot \ldots \cdot (X - \alpha_m)^{p^e}$ con $e \ge 1$, Se dice que α es **puramente inseparable sobre** F si y sólo si existe $t \in \mathbb{Z}_{>0}$ tal que $\alpha^{p^t} \in F$.

4.3. Extesiones puramente inseparables

Definición 4.3.1

Sea E/F una extensión de campos con $\operatorname{car}(F) = p > 0$ y $\alpha \in E$. Decimos que α es puramente inseparable si existe $t \in \mathbb{Z}$, $t \geq 0$ tal que $\alpha^{p^t} \in F$. La extensión E/F es p.i. si todo elemento de E es p.i. sobre F.

Observación 4.3.1

Si E/F es una extensión de campos, entonces todos los elementos de F son p.i. (separables) sobre F

Proposición 4.3.1

Sea E/F una extensión de campos con car(F) = p > 0. Sea

 $K := \{ \alpha \in E | \alpha \text{ es puramente inseparable sobre } F \}$

(por la observación anterior, $K \neq \emptyset$). Entonces, K es subcampo de E que contiene a F.

Demostración:

Es claro que $K \neq \emptyset$ y $F \subseteq K \subseteq E$. Sean $\alpha, \beta \in K$, y $t_1, t_2 \in \mathbb{Z}_{>0}$ tales que

$$\alpha^{p_1^t}, \beta^{p_2^t} \in F$$

Sea $t = \max\{t_1, t_2\}$. Por lo cual $\alpha^{p^t}, \beta^{p^t} \in F$, así

$$(\alpha - \beta)^{p^t} = \alpha^{p^t} - \beta^{p^t} \in F$$
$$(\alpha \beta)^{p^t} = \alpha^{p^t} \beta^{p^t} \in F$$
$$(\alpha^{-1})^{p^t} = (\alpha^{p^t})^{-1} \in F \text{ donde } \alpha \neq 0$$

por lo cual K es campo intermedio de la extensión E/F.

Proposición 4.3.2

Sea E/F una extensión algebraica, con $\operatorname{car}(F) = p > 0$. Sea $S \subseteq E$ tal que E = F(S). Entonces, las siguientes condiciones son equivalentes:

- 1. E/F es puramente inseparable.
- 2. Todo elemento de S es puramente inseparable sobre F.
- 3. Los elementos de E que son puramente inseparables y separables sobre F son exactamente los de F.
- 4. Si $\phi: E \to \bar{F}$ es un F-homomorfismo, entonces $\phi(\alpha) = \alpha$, para todo $\alpha \in E$.

Demostración:

- $(1) \Rightarrow (2)$: Es inmediato.
- $(2) \Rightarrow (3)$: Sea $\alpha \in E$ tal que es puramente inseparable sobre F y separable sobre F, y $e \in \mathbb{Z}_{\geq 0}$ el exponente de inseparablilidad de α sobre F.

Tenemos que α^{p^e} es separable sobre F (por una proposición anterior). Por otro lado, sea $t \in \mathbb{Z}_{\geq 0}$ tal que $\alpha^{p^e} \in F$. Podemos suponer que $t \geq e$. Luego, α es raíz del polinomio $g(X) = X^{p^t} - \alpha^{p^t} = (X - \alpha)^{p^t}$, por lo cual f(X)|g(X), donde $f(X) = \operatorname{irr}(\alpha, F, X)$.

Así $f(x) = (X - \alpha)^{p^t}$. Como α es separable sobre F, se tiene que e = 0, es decir que $f(X) = X - \alpha \in F[X]$, en particular, $\alpha \in F$.

 $(3) \Rightarrow (4)$: Sea $\phi : E \to \overline{F}$ un F-homomorfismo arbitrario, y $\alpha \in E$, con $e \in \mathbb{Z}_{\geq 0}$ su exponente de inseparabilidad. Sabemos que α^{p^e} es separable sobre F. Por hipótesis, $\alpha^{p^e} \in F$. Por lo cual

$$\phi(\alpha^{p^e}) = \alpha^{p^e}$$

$$\Rightarrow (\phi(\alpha) - \alpha)^{p^e} = (\phi\alpha^{p^e}) - \alpha^{p^e} = 0$$

$$\Rightarrow \phi(\alpha) = \alpha$$

 $(4) \Rightarrow (1)$: sea $\alpha \in E$ arbitrario. Probaremos que existe $t \in \mathbb{Z}_{\geq 0}$ tal que $\alpha^{p^t} \in F$. Sea $\beta \in \bar{F}$ un F-conjugado de α . Sabemos que existe un F-isomorfismo $\psi : F(\alpha) \to F(\beta)$ tal que $\psi(\alpha) = \beta$. Extendemos ψ a un F-homomorfismo $\phi : E \to \bar{F}$. Por hipótesis, se tiene que $\phi(\gamma) = \gamma$, para todo $\gamma \in E$, en particular $\beta = \psi(\alpha) = \phi(\alpha) = \alpha$. Luego, si $e \in \mathbb{Z}_{\geq 0}$ es el exponente de inseparabilidad de α , entonces

$$f(X) = \operatorname{irr}(\alpha, F, X)$$
$$= (X - \alpha)^{p^e}$$
$$= X^{p^e} - \alpha^{p^e} \in F[X]$$

por tanto $\alpha^{p^e} \in F$. Luego α es p.i. sobre F.

Definición 4.3.2

Si E/F es una extensión algebraica con $\operatorname{car}(F) = p > 0$, entonces la **cerradura puramente** inseparable de la extensión E/F o de E en F, es el campo intermedio de todos los elementos $\alpha \in R$ tal que son puramente inseparables sobre F.

Observación 4.3.2

Si E/F es finita, entonces E/F es p.i. \iff $[E:F]_S=1$.

Observación 4.3.3

Sea E/F una extensión algebraica la cual es p.i. y separable. Entonces, tenemos que E=F.

Teorema 4.3.1

La clase de extensiones p.i. forman una clase distinguida.

Demostración:

(a): Sea $F \subseteq K \subseteq E$ una torre de campos con $\operatorname{car}(F) = p > 0$. Supóngase que E/F es puramente inseparable. Sea $\alpha \in E$, entonces existe $t \in \mathbb{R}_{\geq 0}$ tal que $\alpha^{p^t} \in F \subseteq K$, por tanto E/K es puramente inseparable.

Por otro lado, es claro que todos los elementos de K son p.i. sobre F, por lo cual K/F es puramente inseparable.

Recíprocamente, suponga que E/K y K/F son p.i. Sea $\alpha \in E$,entonces existe $r \in \mathbb{Z}_{\geq 0}$ tal que $\alpha^{p^r} \in K$. Pero para este elemento existe $s \in \mathbb{Z}_{\geq 0}$ tal que $(\alpha^{p^r})^{p^s} \in F$, es decir $\alpha^{p^{r+s}} \in F$. Por tanto, E/F es puramente inseparable.

(b): Sean E/F y K/F extensiones de campos con car(F) = p > 0, donde E y K son subcampos de un campo común E. Supóngase que la extensión E/F es p.i. Probaremos que la extensión E/K es p.i.

Tenemos que EK = K(E). Si $\alpha \in E$, entonces existe $t \in \mathbb{Z}_{\geq 0}$ tal que $\alpha^{p^t} \in F \subseteq K$. Por tanto, EK/K es p.i.

Por (a) y (b), se sigue que la clase de extensiones p.i. es una clase distinguida.

Corolario 4.3.1

Sean E/F y K/F extensiones de campos tales que car(F) = p > 0, donde K y E son subcampos de un campo común L. Si E/F y K/F son p.i., entonces EK/F es p.i.

Es inmediato del teorema anterior.

Sea E/F una extensión algebraica con car(F) = p > 0, y sean F_i y F_s las cerraduras p.i. y separables, respectivamente. Entonces tenemos el siguiente diagrama:

donde $F_i \cap F_s = F$.

Proposición 4.3.3

En las condiciones de las notaciones anteriores, tenemos lo siguiente

- 1. E/F_s es p.i.
- 2. E/F_i es separable si y sólo si $E=F_iF_s$.

Demostración:

De (1): Sea $\alpha \in E$, y $e \in \mathbb{Z}_{\geq 0}$ su expontente de inseparabilidad sobre F. Sabemos que α^{p^e} es separable sobre F, por lo cual $\alpha \in F_s$. De esta forma, E/F_s es puramente inseparable.

De (2):

- \Rightarrow): Supóngase que E/F_i es separable, entonces E/F_iF_s es separable y p.i., por lo cual $E=F_iF_s$.
- \Leftarrow): Es inmediata.

Proposición 4.3.4

Sea F un campo cualquiera tal que car(F) = p > 0. Sea (F) su cerradura algebraica y F_i la cerradura p.i. de F en \overline{F} . Tenemos lo siguiente

- 1. El campo F_i es perfecto.
- 2. $F_i \cap F_s = F$ y $F_i F_s = \overline{F}$, dónde F_s es la cerradura separable de F en \overline{F} .
- 3. Si K es un campo perfecto tal que $F \subseteq K$, con $K \subseteq \bar{F}$, entonces $F_i \subseteq K$.

Demostración:

De (1): Probemos que $F_i^p = F_i$, donde

$$F_i^p = \{\alpha^p | \alpha \in F_i\}$$

ya se tiene que $F_i^p \subseteq F_i$. Sea $\alpha \in F_i$, y $\beta \in \bar{F}$ tal que $\alpha = \beta^p$. Luego, existe $t \in \mathbb{Z}_{\geq 0}$ tal que $\beta^{p^{t+1}} = \alpha^{p^t} \in F$, por lo cual $\beta \in F_i$. Asi $\alpha = \beta^p \in F_i$.

Por tanto, $F_i = F_i^p$. Luego, F_i es un campo perfecto.

- De (2): Ya sabemos que $F_i \cap F_s = F$. Para la otra igualdad, como F_i es un campo perfecto, entonces la extensión \bar{F}/F_i es separable, lo cual implica que $F_iF_s = \bar{F}$.
- De (3): Sea K un campo intermedio de la extensión \bar{F}/F el cual es perfecto. Probemos que $F_i \subseteq K$. Sea $\alpha \in F_i$. Consideremos la extensión $K(\alpha)/K$, esta extensión es separable; por otro lado, existe un elemento $t \in \mathbb{Z}_{\geq 0}$ tal que $\alpha^{p^t} \in F \subseteq K$, luego la extensión $K(\alpha)/K$ es p.i., así $K(\alpha) = K$ lo cual implica que $\alpha \in K$.

Por ende,
$$F_i \subseteq K$$
.

Corolario 4.3.2

Sea F un campo con car(F) = p > 0. Entonces, la intersección de cualquier familia de subcampos

Es inmediata.

Definición 4.3.3

Sea E/F una extensión finita arbitraria. Se define **el grado de inseparabilidad de la extensión** E/F como:

$$[E:F]_i := \frac{[E:F]}{[E:F]_s}$$

Notemos que si car(F) = 0, entonces $[E : F]_i = 1$. Si car(F) = p > 0, entonces $[E : F]_i = p^t$, para algún $t \in \mathbb{Z}_{>0}$.

Observación 4.3.4

Sea E/F una extensión finita. Si K es un campo intermedio de la extensión E/F, entonces

$$[E:F]_i = [E:K]_i \cdot [K:F]_i$$

Si E/F es una extensión finita con car(F) = p > 0, entonces E/F es p.i. si y sólo si $[E : F] = [E : F]_i$.

Observación 4.3.5

Sea E/F una extensión finita con $\operatorname{car}(F) = p > 0$. Si $p \nmid [E : F]$ entonces $[E : F]_i = 1$, es decir la extensión E/F es separable.

Proposición 4.3.5

Sea F un campo, $\alpha_1, ..., \alpha_n, \beta \in \overline{F}$ tales que $\alpha_1, ..., \alpha_n$ son separables sobre F. Si F es infinito entonces, existe $\theta \in F(\alpha_1, ..., \alpha_n, \beta)$ tal que:

$$F(\alpha_1, ..., \alpha_n, \beta) = F(\theta)$$

Demostración:

Procederemos por inducción sobre n. Para n=1, suponemos que tenemos la extensión $F(\alpha_1, \beta)/F$ donde α_1 es separable sobre F y β simplemente es algebraico sobre F. Denotemos por $f(X) = \operatorname{irr}(\alpha_1, F, X)$ y $g(X) = \operatorname{irr}(\beta, F, X)$, con $m = \deg f$ y $k = \deg g$.

Sean $\delta_1, ..., \delta_m$ y $\beta_1, ..., \beta_r$ las raíces distintas de f(X) y g(X), respectivamente, donde $r \leq k$. Consideremos las ecuaciones lineales siguientes:

$$\delta_1 X + \beta_1 = \delta_i X + \beta_i$$

con $i \in [2, m]$ y $j \in [1, r]$. Si δ_1 fuera la única raíz de f(X), esto es m = 1, entonces $f(X) = X - \delta_1 \in F[X]$, luego $\alpha_1 = \delta_1 = \in F$. Por ende, $F(\alpha_1, \beta) = F(\beta)$. Así, basta tomar $\theta = \beta$.

Supongamos que δ_1 no es la única raíz de f(X), es decir que $m \geq 2$. Hacemos $\delta_1 = \alpha_1$ y $\beta_1 = \beta$. Se tiene que las ecuaciones anteriores están bien determinadas.

Elegimos un elemento $a \in F$ tal que

$$a\delta_1 + \beta_1 \neq a\delta_i + \beta_j$$

$$\Rightarrow a\alpha_1 + \beta \neq a\delta_i + \beta_j$$

para todo $i \in [1, m]$ y para todo $j \in [1, r]$. Tal elemento existe ya que F es infinito. Definimos

$$\theta = a\delta_1 + \beta \in F(\alpha_1, \beta)$$

probemos que $F(\alpha_1, \beta) = F(\theta)$. Por lo de arriba se sigue que $F(\theta) \subseteq F(\alpha_1, \beta)$. Basta probar que $\alpha_1, \beta \in F(\theta)$. Para ello, consideremos el polinomio $h(X) = g(\theta - aX) \in F(\theta)[X]$.

Notemos que $h(\alpha_1) = g(a\alpha_1 + \beta_1 - a\alpha_1) = g(\beta) = 0$ y,

$$h(\delta_i) = g(\theta - a\delta_i)$$

= $g((a\delta_1 + \beta_1) - a\delta_i)$
 $\neq 0, \quad \forall i \in [2, m]$

pues, $(a\delta_1 + \beta_1) - a\delta = \beta_j$ para todo $j \in [1, m]$, es decir que nunca puede ser alguna raíz de g. Así pues, $h \neq f$ tienen solamente una raíz en común, a saber, α_1 , donde $h(X), f(X) \in F(\theta)[X]$.

Sea $d(X) \in F(\theta)[X]$ el máximo común divisor de h(X) y f(X) (el cual existe pues este anillo es dominio euclideano), donde

$$d(X) = l(X)h(X) + t(X)f(X)$$

siendo $l(X), t(X) \in F(\theta)[X]$. Notemos de la ecuación anterior que

$$d(\alpha_1) = 0$$

y, toda raíz de d(X) es raíz de f(X) y h(X) (pues es el M.C.D.) pero, como f(X) y h(X) tienen a α_1 como única raíz, entonces d(X) solo tiene como raíz a α_1 . Por ende,

$$d(X) = X - \alpha_1$$

(el coeficiente lider es 1 ya que f(X) es separable y $d(X) \mid f(X)$). Por tanto,

$$X - \alpha_1 = l(X)h(X) + t(X)f(X) \in F(\theta)[X]$$

por tanto, $\alpha_1 \in F(\theta)$. En particular, como $a \in F$ entonces $a\alpha \in F(\theta)$, luego

$$\beta = (a\alpha + \beta) - a\alpha = \theta - a\alpha \in F(\theta)$$

por tanto, $\alpha_1, \beta \in F(\theta)$. Finalmente se tiene que

$$F(\theta) = F(\alpha_1, \beta)$$

De aquí que la proposición se cumple para n=1. Suponga que se cumple para algún $n\in\mathbb{N}$, probaremos que se cumple para n+1. En efecto, sean $\alpha_1,...,\alpha_{n+1}\in\bar{F}$ separables sobre F y $\beta\in\bar{F}$ algebraico.

Por hipótesis de inducción, existe $\theta_1 \in F(\alpha_1, ..., \alpha_n, \beta)$ tal que

$$F(\theta_1) = F(\alpha_1, ..., \alpha_n, \beta)$$

y, por el caso n=1 existe $\theta \in F(\alpha_1,...,\alpha_{n+1},\beta)$ tal que

$$F(\theta) = F(\alpha_{n+1}, \theta_1)$$

luego,

$$F(\theta) = F(\alpha_{n+1}, \theta_1)$$

$$= F(\theta_1)(\alpha_{n+1})$$

$$= F(\alpha_1, ..., \alpha_n, \beta)(\alpha_{n+1})$$

$$= F(\alpha_1, ..., \alpha_{n+1}, \beta)$$

$$\Rightarrow F(\theta) = F(\alpha_1, ..., \alpha_{n+1}, \beta)$$

lo que prueba el caso n+1.

Corolario 4.3.3

Sea F un campo perfecto. Entonces, toda extensión E/F finita es simple.

Demostración:

Es inmediata.

Corolario 4.3.4

Si F es un campo de característica cero, entonces toda extensión E/F finita es simple.

Demostración:

Todo campo de característica cero es perfecto.

Ejemplo 4.3.1

Toda extensión E/\mathbb{Q} finita es simple. En particular, $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$. En este caso, $\alpha_1 = \sqrt{2}$ y $\beta = \sqrt{3}$ (en realidad da igual cual elijamos ya que cualquiera de estos dos elementos son separables sobre \mathbb{Q} por ser este de característica cero). Así,

$$\alpha_1 = \delta_1 = \sqrt{2}$$
 y $\delta_2 = -\sqrt{2}$

además,

$$\beta = \beta_1 = \sqrt{3}$$
 y $\beta_2 = -\sqrt{3}$

uno de los posibles $a \in \mathbb{Q}$ que nos sirven es a = 1, ya que las ecuaciones que tenemos son:

$$\begin{cases} \sqrt{2}X + \sqrt{3} &= -\sqrt{2}X + \sqrt{3} \\ \sqrt{2}X + \sqrt{3} &= -\sqrt{2}X - \sqrt{3} \end{cases}$$

siendo X=a=1 el que hace que no se cumpla la ecuación. Luego es por ello que tomamos $\theta=1\cdot\sqrt{2}+\sqrt{3}=\sqrt{2}+\sqrt{3}$.

Lema 4.3.1

Para $n \in \mathbb{N}$:

$$n = \sum_{d \mid n \text{ y } d \ge 1} \varphi(d)$$

donde φ es la función de Euler.

Demostración:

Ejercicio.

Lema 4.3.2

Sea G un grupo abeliano finito y multiplicativo tal que la ecuación $X^m = e$ tiene a lo más m soluciones en G. Entonces, G es grupo cíclico.

Demostración:

Ejercicio.

Proposición 4.3.6

Si F es un campo, entonces F^* es un grupo multiplicativo y cada subgrupo finito de F^* es cíclico.

Se sigue del lema anterior.

Teorema 4.3.2 (Teorema del elemento primitivo)

Toda extensión finita y separable de campos es simple.

Demostración:

Sea E/F una extensión finita y separable. Si F es un campo infinito, tenemos que E/F es f.g. con elementos separables y F finito. Por tanto, E/F es simple.

Si F es finito, E también es finito. Más aún,

$$|E| = n|F|$$

entonces, E^* es grupo multiplicativo abeliano y finito. Luego por una proposición anterior, es cíclico (visto como grup multiplicativo). Sea $\theta \in E^*$ tal que

$$E^* = \langle \theta \rangle$$
$$= \left\{ \theta^t \middle| t \in \mathbb{N} \right\}$$

luego, $E = F(\theta)$. Así, la extensión E/F es simple.

Observación 4.3.6

El θ de la proposición anterior es llamado **elemento primitivo**.