

DATASET: DRY BEAN

BRENDA BARROS ALVES DA SILVA
FREDERICO DE MORAES BEZERRA
FABIANA SILVA DE OLIVEIRA
WLADIMIR FARIAS TENÓRIO FILHO
YGOR PAES ALCANTARA

BREVE DESCRIÇÃO DO PROBLEMA

Contexto: 13.611 feijões foram coletados e a partir de um sistema visão computacional foram extraídas 16 características e o atributo de tipagem do feijão .

Problema: A partir das características como devemos classificar de modo automático os tipos de feijão.

Benefícios da solução: Garantir o padrão de qualidade do feijão por seu tipo.

BREVE DESCRIÇÃO DO PROBLEMA

Problema: Como classificar e avaliar sementes de feijão seco.

13.611 feijões foram catalogados de acordo com suas características de forma, cor e tipo. Imagens destes grãos foram registradas por meio de câmeras de alta resolução e foram catalogadas 16 características, tais como: área, perímetro, comprimento do eixo maior, comprimento do eixo menor, etc.

A problematização central do artigo detém-se em fornecer um método para a obtenção de variedades de sementes uniformes a fim de evitar que estas não sejam classificadas /certificadas como uma única variedade.

O banco disponibilizado não apresentou valores ausentes nos 17 atributos, no entanto foram verificados dados duplicados (redundância).

PARTES INTERESSADAS

Parte Interessada	Interesse	Influência	Classificação
Fazendeiro (Dono da Empresa)	ALTA	ALTA	PROMOTORES
Biólogos/Agrônomo	ALTA	BAIXA	DEFENSORES
Consumidor	BAIXA	ALTA	LATENTES
Distribuidoras de Fertilizante de Solo	ALTA	BAIXA	DEFENSORES
Empresas de Agrotóxicos e Pesticida	ALTA	BAIXA	DEFENSORES
Empresas de Tecnologias na Área de Plantio	ALTA	BAIXA	DEFENSORES
Empresas de Monitoramento de Pragas na Lavoura	ALTA	BAIXA	DEFENSORES

PARTES INTERESSADAS

- Fazendeiro (Dono da Empresa)
- Biólogos/Agrônomo
- Consumidor
- Distribuidoras de Fertilizante de Solo
- Empresas de Agrotóxicos e Pesticida
- Empresas de Tecnologias na Área de Plantio
- Empresas de Monitoramento de Pragas na Lavoura
- Empresas de Business e Marketing

BASES DE DADOS RELACIONADAS

BASES NACIONAIS	FONTE
Dados Climáticos (Umidade do Ar, precipitação e temperatura)	CPTEC -INPE
Dados de Solo (Concentração de nutrientes no solo)	IBGE
Dados de estrategia de marketing para comercialização de feijão	EPAGRI
Dados relacionados a adubação e fertilização de feijão	EMBRAPA
Dados sobre importação e exportação de feijão	MAPA-GOV

BASE INTERNACIONAL	FONTE
Dados anuais de produção, área plantada e rendimento por	Agriculture Organization of the
área plantada de feijão	United Nations (FAO)

BASES DE DADOS RELACIONADAS

- Dados Climáticos (Umidade do Ar, precipitação e temperatura)
 - Fonte: CPTEC INPE (Instituto Nacional de Pesquisas Espaciais)
- Dados de Solo (Concentração de nutrientes no solo)
 - Fonte: IBGE Dados de área plantada;
- Dados de estratégia de marketing para comercialização de feijão. Fonte: Empresa de Pesquisa
 Agropecuária e Extensão Rural de Santa Catarina (Epagri);
- Dados relacionados a adubação e fertilização de feijão. Fonte: Agência Emprapa de Informação
 Tecnológica
- Dados anuais de produção, área plantada e rendimento por área plantada de feijão. Fonte:
 Agriculture Organization of the United Nations (FAO)
- Dados sobre importação e exportação de feijão. Fonte: Ministério da Agricultura, Pecuária e
 Abastecimento (Mapa) e Instituto Brasileiro do Feijão e Pulses (Ibrafe);
- Base de Dados da Pesquisa Agropecuária (BDPA);

DESCOBERTAS ANTERIORES

DEZESSEIS

PAPER: Multiclass classification of dry beans using computer vision and Compactness => 0.728 machine learning techniques Dermason ompactness < 0.852 Compactness => 0.852 finorAxisLength < 313.8 MinorAxisLength => 313 ACHADO: UTILIZANDO A ÁRVORE DE Compactness < 0.784 Compactness => 0.784 DECISÃO O Nº MÁXIMO DE PARTIÇÕES É

DESCOBERTAS ANTERIORES

PAPER: Dry Beans Classification Using Machine

Learning Grzegorz Słowiński

Δ	CH	A 1	DO	2

ALGORITMO	PRECISÃO
RANDON FORREST	93,61%
ARVORE DE DECISÃO	88,35%
NAIVE-BAYERS	64,30%

DESCOBERTAS ANTERIORES

- Importância do Uso de Ureia Enriquecida com Selênio em Biofortificação de Dry Beans. NAMORATO, Felipe. 2019. LAVRAS- MG.
- Importância da Classificação de Dry Beans Utilizando Técnicas de Machine Learning e Computer Vision. KOKLU, M. and OZKAN, I.A., (2020)
- THE ECONOMIC IMPACT OF THE SOUTH AFRICAN AGRICULTURAL RESEARCH COUNCIL'S DRY BEANS BREEDING PROGRAM. Cambridge University, 2017.
- Impacto Ambiental do Plantio de Dry Beans, análise do impacto em solo e água.
 Agencia Embrapa de Informação Tecnologica (AGEITEC).

DICIONÁRIO DOS DADOS

Campo	Descrição	Tipo	Tamanho	Valores permitidos
Area	área geométrica (m2)	Inteiro	5	
Perimeter	perímetro (m)	Real	7	
MajorAxisLength	comprimento (cm)	Real	15	
MinorAxisLength	comprimento (cm)	Real	15	
AspectRation	relação entre comprimento maior e menor	Real	12	
Eccentricity	relação entre distâncias de focos na elipse	Real	11	
ConvexArea	número de pixels no menor polígono	Inteiro	6	
EquivDiameter	diâmetro equivalente em um círculo	Real	20	

DICIONÁRIO DOS DADOS

Campo	Descrição	Tipo	Tamanho Valores permitidos
Extent	razão de pixels na área	Real	17
Solidity	proporção dos pixels na concha convexa	Real	17
roundness	calculado por (4piA)/(P^2)	Real	17
Compactness	arredodamento do objeto	Real	17
ShapeFactor1	fator 1 da forma	Real	20
ShapeFactor2	fator 2 da forma	Real	17
ShapeFactor3	fator 3 da forma	Real	17
ShapeFactor4	fator 4 da forma	Real	17
Class	7 classes de feijão	Caractere	SEKER, BARBUNYA, BOMBAY, CALI, HOROZ, SIRA, 8 DERMASON

PRINCIPAIS ATRIBUTOS

Foram 16 atributos: 14 atributos de Dimensão (métricas ou derivações de métricas) e 04 atributos de forma (não especificado com o termo: fator de forma 01 a 04)

Total	Atributos	Informações de atributos:						
1	Area	Área (A): zona de feijão e o número de pixels dentro de seus limites.						
2	Perimeter	Perímetro (P): circunferência / comprimento de sua borda						
3	Majoraxislength	Comprimento do eixo principal (L): A distância / extremidades mais longa do feijão						
4	Minoraxislength	slength Comprimento do eixo menor (I): A linha mais longa extraída/desenhada do feijão em perpendicular ao eixo principal.						
5	Aspectration	Proporção (K): define a relação entre L e I. (L/i)						
6	Eccentricity	Excentricidade (ce): excentricidade da elipse tendo os mesmos momentos que a região.						
7	Convexarea	Área convexa (C): número de pixels no menor polígono convexo que pode conter a área de uma semente de feijão.						
8	Equivdiameter	Diâmetro equivalente (ed): diâmetro de um círculo com a mesma área que uma área de semente de feijão.						
9	Extent	Extensão (ex): A proporção dos pixels na caixa delimitadora para a área do feijão						
10	Solidity	Solidez (S): convexidade. A proporção dos pixels na concha convexa em relação aos encontrados em feijões.						
11	Roundness	Arredondamento (R): calculado com a seguinte fórmula: (4PIA)/(P^2)						
12	Compactness	Compactação (CO): mede o arredondamento de um objeto: ed/L						

PRINCIPAIS ATRIBUTOS

Total	Atributos	Informações de atributos:
13	Shapefactor1	É um atributo com rotulagem de: "fator de forma 1" não especificado em artigo.
14	Shapefactor2	É um atributo com rotulagem de: fator de forma 2" não especificado em artigo
15	Shapefactor3	É um atributo com rotulagem de: fator de forma 3" não especificado em artigo
16	Shapefactor4	É um atributo com rotulagem de: "fator de forma 4" não especificado em artigo
17	Class	É um atributo que classifica o feijão em 07 tipos: seker, barbunya, bombay, cali, dermosan, horoz e sira

..

1 - REDUÇÃO: REMOÇÃO DE REDUNDÂNCIA

```
[144] df.shape
(13611, 17)
```

[148] df_duplicates.shape (13543, 17) Diferença de 68 itens. Menos de 0,05% de diferença.

Mantivemos amostragem inicial.

••

2 - REDUÇÃO: EXCLUSÃO / DIMENSIONAMENTO

	Area	Perimeter	MajorAxisLength	MinorAxisLength	AspectRation	Eccentricity	ConvexArea	EquivDiameter	Extent	Solidity	roundness	Compactness
0	28395	610.291	208.178117	173.888747	1.197191	0.549812	28715	190.141097	0.763923	0.988856	0.958027	0.913358
1	28734	638.018	200.524796	182.734419	1.097356	0.411785	29172	191.272750	0.783968	0.984986	0.887034	0.953861
2	29380	624.110	212.826130	175.931143	1.209713	0.562727	29690	193.410904	0.778113	0.989559	0.947849	0.908774
3	30008	645.884	210.557999	182.516516	1.153638	0.498616	30724	195.467062	0.782681	0.976696	0.903936	0.928329
4	30140	620.134	201.847882	190.279279	1.060798	0.333680	30417	195.896503	0.773098	0.990893	0.984877	0.970516
	***	6.000	1000	(inter)	***	***	***		***	***		***
13606	42097	759.696	288.721612	185.944705	1.552728	0.765002	42508	231.515799	0.714574	0.990331	0.916603	0.801865
13607	42101	757.499	281.576392	190.713136	1.476439	0.735702	42494	231.526798	0.799943	0.990752	0.922015	0.822252
13608	42139	759.321	281.539928	191.187979	1.472582	0.734065	42569	231.631261	0.729932	0.989899	0.918424	0.822730
13609	42147	763.779	283.382636	190.275731	1.489326	0.741055	42667	231.653248	0.705389	0.987813	0.907906	0.817457
13610	42159	772.237	295.142741	182.204716	1.619841	0.786693	42600	231.686223	0.788962	0.989648	0.888380	0.784997

1 - REDUÇÃO: REMOÇÃO DE REDUNCIA

```
(13611, 17)
```

```
[148] df_duplicates.shape
(13543, 17)
```

2 - REDUÇÃO: REDUÇÃO POR SEGMENTAÇÃO: FILTRO TAMANHO*

```
[156] #Segmentação do conjunto de dados pelo atributo "MajorAxisLength"

df = df[df['MajorAxisLength'] > 183]

df = df[df['MajorAxisLength'] < 739]

df.shape

(548, 17)
</pre>
```

3 - REDUÇÃO: EXCLUSÃO / DIMENSIONAMENTO

	Area	Perimeter	MajorAxisLength	MinorAxisLength	Eccentricity	Class
3344	100846.0	1297.770	469.285655	274.423910	0.811200	BARBUNYA
3345	102015.0	1271.970	456.791895	286.894421	0.778162	BARBUNYA
3346	102379.0	1296.377	456.722068	286.557574	0.778679	BARBUNYA
3347	105542.0	1265.623	466.135980	288.999342	0.784610	BARBUNYA
3348	115967.0	1359.763	449.454969	331.305270	0.675755	BARBUNYA
	1575	27.5	8773	977		(tr)
5496	106806.0	1263.899	494.727002	276.176469	0.829679	CALI
5497	107911.0	1298.822	498.597779	279.350337	0.828309	CALI
5498	114858.0	1300.819	512.736642	287.561719	0.827926	CALI
5499	115608.0	1298.623	500.298310	296.898826	0.804876	CALI
5500	116272.0	1326.583	534.484404	279.783414	0.852048	CALI

* Majoraxislength - extremidades mais longa do feijão

4 - REDUÇÃO: AMOSTRAGEM DOS DADOS

dfsample = df.sample(n=10, replace=False, random state=123) dfsample Area Perimeter MajorAxisLength MinorAxisLength AspectRation 3824 205358.0 1737.704 653.993204 404.064330 1.618537 3787 197245.0 1702.646 642.077245 396.085390 1.621058 3767 191584.0 1634.627 580.635582 421.028013 1.379090 3654 176570.0 1601.037 610.491266 369.668142 1.651458 1.623716 3788 197598.0 1687.798 641.680640 395.192761 3437 151014.0 1456.767 532.740751 362.552358 1.469417 3516 161579.0 1502.815 558.604121 368.791025 1.514690 3499 159369.0 1510.578 358.579133 1.590027 570.150632 3540 164596.0 1550.902 583.920422 360.617230 1.619225 3768 191756.0 1699,140 659.992234 373.001008 1.769411

5 - REDUÇÃO: AMOSTRAGEM COM FILTRO

```
[159] df resample = resample(
           df[df['MajorAxisLength'] > 500],
            replace=True,
            n samples= 10)
        df resample
                  Area Perimeter
                                   MajorAxisLength
                                                     MinorAxisLength Aspec
        3861 226806.0
                         1812.548
                                         679.975387
                                                           428.680341
        3399 144083.0
                          1416.894
                                         508.239887
                                                           362.822978
         3848 217182.0
                                         704.304209
                                                          396.825746
                          1811.572
        3828 206702.0
                         1735.169
                                         663.537080
                                                          401.759941
        3422 148325.0
                                         549.733694
                                                          344.949850
                          1454.931
         3649 176276.0
                                         621.159964
                                                          365.522552
                          1616.130
        3622 172941.0
                          1635.318
                                         643.132308
                                                          347.714665
         3822 204635.0
                                         635.126287
                                                          412.663916
                          1706.370
        3816 203677.0
                                                          393.518855
                         1728.486
                                         662,550897
         3692 181877.0
                          1596.933
                                         596.673548
                                                          389.934948
```


PRÉ-PROCESSAMENTO: TRANSFORMAÇÃO

1 – TRANSFORMAÇÃO POR CODIFICAÇÃO - LETRA / NÚMERO

C+		Area	Perimeter	MajorAxisLength	MinorAxisLength	Class
	3344	100846.0	1297.770	469.285655	274.423910	BARBUNYA
	3345	102015.0	1271.970	456.791895	286.894421	BARBUNYA
	3346	102379.0	1296.377	456.722068	286.557574	BARBUNYA
	3347	105542.0	1265.623	466.135980	288.999342	BARBUNYA
	3348	115967.0	1359.763	449.454969	331.305270	BARBUNYA

		laced = di laced.head		leanup_nums)		
		Area	Perimeter	MajorAxisLength	MinorAxisLength	Class
	3344	100846.0	1297.770	469.285655	274.423910	2
	3345	102015.0	1271.970	456.791895	286.894421	2
	3346	102379.0	1296.377	456.722068	286.557574	2
	3347	105542.0	1265.623	466.135980	288.999342	2
8	3348	115967.0	1359.763	449.454969	331.305270	2

PRÉ-PROCESSAMENTO: TRANSFORMAÇÃO

2 – TRANSFORMAÇÃO POR NORMALIZAÇÃO – 1 (VALOR MÁX) 0 (VALOR MÍN)

	Area	Perimeter	MajorAxisLength	MinorAxisLength	AspectRation	Eccentricity	ConvexArea	EquivDiameter	Extent	Solidity	roundness	Compactness	Clas
0	1.000000	1.000000	1.000000	0.962154	0.445781	0.833037	1.000000	1.000000	0.734794	0.635223	0.642855	0.375037	0.33333
1	0.925934	0.956399	0.998711	0.859998	0.542710	0.880821	0.906875	0.951641	0.735976	0.883221	0.634208	0.300075	0.33333
2	0.986405	0.955155	0.964459	0.972542	0.405501	0.808740	0.975942	0.991250	0.680203	0.761928	0.733619	0.421705	0.33333
3	0.943236	0.938773	0.977512	0.902784	0.480112	0.851510	0.921913	0.963092	0.854055	0.907939	0.706537	0.353433	0.33333
4	0.973561	0.930980	0.957124	0.958083	0.411426	0.812510	0.949793	0.982932	0.811315	0.930219	0.777089	0.420938	0.33333

PRÉ-PROCESSAMENTO: LIMPEZA**

1 - LIMPEZA: INSERIR MÉDIA

df fill = df.fillna(df.mean()) df fill Area Perimeter MajorAxisLength 3344 100846.0 1297.770 469.285655 102015.0 1271 970 456.791895 102379.0 1296.377 456.722068 3347 105542.0 1265.623 466.135980 115967.0 449.454969 1359.763 106806.0 1263.899 494.727002 107911.0 1298.822 498.597779 5497 5498 114858 0 1300.819 512.736642 115608.0 1298.623 500.298310 5500 116272.0 1326.583 534.484404 548 rows × 17 columns

2 - LIMPEZA: INSERIR MEDIANA

```
df fill = df.fillna(df.median())
 df fill
                Perimeter MajorAxisLength
3344 100846.0
                  1297 770
                                 469.285655
      102015.0
                  1271 970
                                 456.791895
      102379.0
                  1296.377
                                 456.722068
3347 105542 0
                  1265 623
                                 466 135980
3348 115967.0
                  1359.763
                                 449.454969
5496 106806.0
                  1263.899
                                 494.727002
      107911.0
                  1298.822
                                 498.597779
      114858.0
                  1300.819
                                 512.736642
      115608.0
                  1298,623
                                 500.298310
                                 534.484404
5500 116272.0
                  1326.583
548 rows × 17 columns
```

2 - LIMPEZA: INSERIR MODA

```
df['MajorAxisLength'] = df['MajorAxisLength'].
fillna(df['MajorAxisLength'].mode()[0])
df['MajorAxisLength']
        469.285655
3344
3345
        456.791895
        456.722068
3346
        466.135980
3347
        449.454969
3348
        494.727002
5496
        498.597779
5497
        512.736642
5498
5499
        500.298310
        534.484404
5500
Name: MajorAxisLength Length: 548, dtyce: float64
```

** NOTA:: A base não apresenta dados Ausentes para substituição neste processo de limpeza

PRÉ-PROCESSAMENTO: TRANSFORMAÇÃO

3 – TRANSFORMAÇÃO POR PARTIÇÃO: DIVIDIR O DATA SET EM BASE DE TREINO (70%) E BASE DE TESTE (30%

ATRIBUTOS DE ANÁLISE: NUMÉRICO E NOMINAL

TAMANHO POR VARIEDADES

TAMANHO DO GRÃO: MajorAxisLength -distância / extremidades mais longa do feijão

VARIEDADES DO GRÃO: Class – Tipos: Seker, Barbunya, Bombayer, Cali, Horoz, Sira, Dermason

.

ATRIBUTO	MAJORAXISLENGTH	CONTRUÇÃO DA ESCALA - TAM	MANHO DO FEIJÃO	
Valor Mínimo -Vmin	183,6	Amplitude Total (At = Vmax - Vmin)	555,3	
Valor Máximo - Vmax	738,9	Amplitude do intervalo - (Ai = At / Tc) ESCALA: total de classes: Tc=05	111,06	
		CLASSE 1	183,6	294,7
		CLASSE 2	294,7	405,7
		CLASSE 3	405,7	516,8
		CLASSE 4	516,8	627,8
		CLASSE 5	627,8	738,9

ATRIBUTOS DE ANÁLISE: NUMÉRICO E NOMINAL

ACHADOS: A Quantidade de feijão, nesta base, é inversamente proporcional ao tamanho da área.

VARIEDADE	TOTAL	TAMANHO MÁX
BOMBAY	522	738,1445017
CALI	1.630	534,4844042
BARBUNYA	1.322	483,6912557
HOROZ	1.928	456,7581544
SIRA	2.636	400,9314668
SEKER	2.027	339,931533
DERMASON	3.546	308,2623358
TOTAL	13.611	

DISTRIBUIÇÃO DE FREQUÊNCIA:

	frq_absoluta	frq_acumulada
627.84 - 738.9	140	1.028580
516.78 - 627.84	348	3.585335
405.72 - 516.78	1339	13.422967
294.66 - 405.72	5121	51.046947
183.6 - 294.66	6663	100.000000

```
fig, ax = plt.subplots()
    ax.bar(df2.index, df2["frq absoluta"], color="blue")
    ax2 = ax.twinx()
    ax2.plot(df2.index, df2| frq acumulada |, color= red , marker= "D", ms=/)
    ax2.yaxis.set major formatter(PercentFormatter())
    ax.tick params(axis="y", colors="navy")
    ax2.tick params(axis="y", colors="tomato")
    plt.show()
C+
     6000
                                                                          90%
     5000
                                                                          80%
     4000
      3000
                                                                          7096
      2000
                                                                          60%
      1000
                        294.66 - 405.72 405.72 - 516.78 516.78 - 627.84
```


HISTOGRAMA

```
plt.figure(figsize=(10,6))

df[df['Class'] == 'SEKER']['MajorAxisLength'].hist(alpha=0.5, color= 'blue', bins= 30, label='SEKER')

df[df['Class'] == 'BARBUNYA']['MajorAxisLength'].hist(alpha=0.7, color= 'red', bins= 30, label='BARBUNYA')

df[df['Class'] == 'BOMBAY']['MajorAxisLength'].hist(alpha=0.7, color= 'orange', bins= 30, label='BOMBAY')

df[df['Class'] == 'CALI']['MajorAxisLength'].hist(alpha=0.7, color= 'pink', bins= 30, label='CALI')

df[df['Class'] == 'HOROZ']['MajorAxisLength'].hist(alpha=0.7, color= 'yellow', bins= 30, label='HOROZ')

df[df['Class'] == 'SIRA']['MajorAxisLength'].hist(alpha=0.7, color= 'purple', bins= 30, label='SIRA')

df[df['Class'] == 'DERMASON']['MajorAxisLength'].hist(alpha=0.7, color= 'gray', bins= 30, label='DERMASON')

plt.legend()

plt.xlabel('"Tamanho do Feijão Seco"')

plt.ylabel('Quantidade')

plt.show()
```


GRÁFICO DE DISPERSÃO

BOX-PLOT

```
sns.boxplot(x='Class', y='MajorAxisLength', data=df_filter)
<matplotlib.axes._subplots.AxesSubplot at 0x7fabcfe68550>
   700
   600
MajorAxisLength
   500
   400
   300
   200
        SEKER BARBUNYABOMBAY
                               CALI
                                     HOROZ
                                              SIRA DERMASON
                               Class
```

ÁRVORE DA DECISÃO

```
[35] # Fazendo a predição nos dados de treino
    resultado_dtc = dtc.predict(X_test)
    print(classification_report(y_test, resultado_dtc))
```

	precision	recall	f1-score	support
BARBUNYA	0.87	0.88	0.88	918
BOMBAY	1.00	0.99	1.00	361
CALI	0.92	0.89	0.90	1136
DERMASON	0.89	0.89	0.89	2463
HOROZ	0.93	0.94	0.93	1365
SEKER	0.92	0.93	0.92	1428
SIRA	0.81	0.82	0.81	1857
accuracy			0.89	9528
macro avg	0.91	0.91	0.91	9528
weighted avg	0.89	0.89	0.89	9528

ÁRVORE DA DECISÃO

ÁRVORE DA DECISÃO:

https://colab.research.google.com/drive/1CFVkdD2yIA6nh_ledNCV0nsvfVToVgbe#scrollTo=lsnDwUtMF_nl&line=9&unigifier=1

Matriz de Confusão/Distribuição

CURVA ROC

SENDO UM
PROBLEMA DE
CLASSIFICAÇÃO
MULTICLASSE,

A CURVA ROC
PRECISA SER
PLOTADA
INDIVIDUALMENTE
PARA CADA CLASSE

Rates:

- True Positive Rate(TPR): True Positive/positive
- False Positive Rate(FPR): False Positive / Negative
- False Negative Rate(FNR): False Negative/Positive
- True Negative Rate(TNR): True Negative/Negative

K-MEANS

```
[19] kmeans7 = KMeans(n clusters=7)
       y kmeans7 = kmeans7.fit predict(x)
        kmeans7.cluster centers
       array([[4.15570952e+04, 7.61283100e+02, 2.79874388e+02, 1.90443634e+02,
               1.48216596e+00, 7.11944507e-01, 4.20311027e+04, 2.29867264e+02,
                7.54582116e-01, 9.88761020e-01, 9.02347101e-01, 8.26315711e-01,
               6.74175728e-03, 1.96447684e-03, 6.86268051e-01, 9.96459105e-01],
               [1.58100865e+05, 1.51061199e+03, 5.60876066e+02, 3.61467658e+02,
               1.55381552e+00, 7.60222957e-01, 1.60104604e+05, 4.48313187e+02,
               7.74875450e-01, 9.87531935e-01, 8.70088000e-01, 8.00794597e-01,
                3.55500985e-03, 9.06147431e-04, 6.42120054e-01, 9.92639035e-01],
               [6.87912919e+04, 1.02778059e+03, 3.86775741e+02, 2.28648939e+02,
               1.70374056e+00, 7.99149376e-01, 6.98985037e+04, 2.95803281e+02,
               7.47615068e-01, 9.84181433e-01, 8.19131931e-01, 7.67204793e-01,
               5.63706586e-03, 1.21176116e-03, 5.90613367e-01, 9.92712898e-01],
               [5.30644814e+04, 8.97870134e+02, 3.50255008e+02, 1.95049036e+02,
               1.81399124e+00, 8.17325544e-01, 5.38060571e+04, 2.59755781e+02,
                7.25142220e-01, 9.86305895e-01, 8.29396384e-01, 7.46709024e-01,
               6.60813491e-03, 1.28792897e-03, 5.61094190e-01, 9.93589683e-01],
               [3.11087556e+04, 6.53246146e+02, 2.38915361e+02, 1.66112622e+02,
               1.44696415e+00, 7.07957435e-01, 3.14769148e+04, 1.98674684e+02,
               7.56656441e-01. 9.88234586e-01. 9.13756823e-01. 8.33169509e-01.
               7.74352460e-03, 2.30787745e-03, 6.95961660e-01, 9.97080409e-01],
               [8.37442648e+04, 1.12862881e+03, 4.24804140e+02, 2.53110534e+02,
               1.68377023e+00, 7.98498739e-01, 8.50762987e+04, 3.26303794e+02,
               7.55360680e-01, 9.84354483e-01, 8.26630305e-01, 7.69610221e-01,
               5.08600340e-03, 1.10538992e-03, 5.93441555e-01, 9.92025950e-01],
               [1.95500465e+05, 1.69323707e+03, 6.39643548e+02, 3.92683714e+02,
```

K-MEANS

```
[21] plt.scatter(x[:, 0], x[:, 1], c=y_kmeans7, cmap='rainbow')
        plt.title('Clusters (k=7)')
        plt.xlabel('Exccentricity')
        plt.ylabel('Area')
        Text(0, 0.5, 'Area')
                                          Clusters (k=7)
           2000
           1800
           1600
           1400
         1200
           1000
            800
            600
                                                 150000
                        50000
                                    100000
                                                             200000
                                                                          250000
                                            Exceentricity
```

Silhouette K-MEANS

REFERÊNCIAS

Distributed Learning on Image Classification of Beans in TensorFlow. Disponível em:

https://towardsdatascience.com/distributed-learning-on-image-classification-of-beans-in-tensorflow-5a8-5e6c3eb71 Acesso: 24/03/2022.

Download do conjunto de dados do Dry Bean. Disponível em:

https://archive.ics.uci.edu/ml/datasets/Dry+Bean+Dataset Acesso em: 24/03/2022.

KOKLU, Murat; OZKAN, Ilker Ali. Multiclass classification of dry beans using computer vision and machine learning techniques. Computers and Electronics in Agriculture, v. 174, p. 105507, 2020.

LONG, Yunfei et al. Bean split ratio for dry bean canning quality and variety analysis. In: arxiv.org. Disponível em: < https://arxiv.org/pdf/1905.00336.pdf > Acesso em: 24/03/2022.

M. M. Hasan, M. U. Islam and M. J. Sadeq, "A Deep Neural Network for Multi-class Dry Beans Classification," 2021 24th International Conference on Computer and Information Technology (ICCIT), 2021, pp. 1-5, doi: 10.1109/ICCIT54785.2021.9689905.

SLOWIŃSKI, Grzegorz .Dry Beans Classification Using Machine Learning .In:CEUR Workshop Proceedings. Disponível em: < http://ceur-ws.org/Vol-2951/paper3.pdf > Acesso em: 24/03/2022.

