Middlebury Stereo Evaluation - Version 2

New features and main differences to the old table. **Evaluate your own results**.

Open a new window for each link

Submit your results to the permanent table

-											_						
Error Threshold	5	Sort by	nonoc	c		Sort	Sort by	disc									
Error Threshold.	🗘			V	Ι	<u>▼</u>							, ▼				
Algorithm	Avg.		Tsukuba ground truth			enus	<u>n</u>		eddy und truth	<u>1</u>	_	ones und truth	Average Percent Bad Pixels				
	Rank	nonocc	all	disc	nonocc	<u>all</u>	disc	nonocc	all	disc	nonocc	all	<u>disc</u>				
IGSM [157]	10.2	<u>0.93</u> 10	1.37	5.05 12	<u>0.07</u> з	0.17 5	1.04 з	<u>4.08</u> 20	5.98 8	11.4 21	<u>2.14</u> 8	6.97 14	6.27		3.79		
TSGO [142]	12.7	0.87 4	1.13 1	4.66 6	<u>0.11</u> 10	0.24	1.47 13	<u>5.61</u> 44	8.09 19	13.8 37	<u>1.67</u> 2	6.16 2	4.95 2		4.06		
LCU [155]	12.8	<u>1.06</u> 20	1.34 8	5.50 17	<u>0.07</u> 2	0.26	1.03 2	<u>3.68</u> 17	9.95 38	10.4 16	<u>1.63</u> 1	6.87 12	4.82		3.89		
JSOSP+GCP [150]	14.5	<u>0.74</u> 1	1.34 9	3.98 1	0.08 4	0.16 1	1.15 4	<u>3.96</u> 18	10.1 39	11.8	<u>2.28</u> 18	7.91 36	6.74 21		4.18		
SSCBP [159]	17.0	<u>1.05</u> 18	1.39	5.57 19	<u>0.10</u> 7	0.16 2	1.39	<u>3.44</u> 13	8.32 24	9.95	<u>2.60</u> 33	7.13 18	7.23 32		4.03		
ADCensus [82]	17.7	1.07 23	1.48 21	5.73 26	<u>0.09</u> 5	0.25 16	1.15 4	<u>4.10</u> 21	6.22 9	10.9 18	<u>2.42</u> 24	7.25 20	6.95 25		3.97		
CoopRegion [39]	21.5	0.87 6	1.16 2	4.61 5	<u>0.11</u> 9	0.21 8	1.54 17	<u>5.16</u> 36	8.31 23	13.0 31	<u>2.79</u> 47	7.18 19	8.01 55		4.41		
AdaptingBP [16]	21.7	<u>1.11</u> 26	1.37	5.79 28	<u>0.10</u> 8	0.21	1.44	<u>4.22</u> 23	7.06 17	11.8 23	<u>2.48</u> 28	7.92 38	7.32 35		4.23		
CCRADAR [151]	26.2	<u>1.15</u> 28	1.42	6.23	<u>0.15</u> 22	0.27	1.89	<u>5.39</u> 39	10.6	14.7 48	<u>2.01</u> 3	7.37	5.88 3		4.75		
RDP [87]	28.0	0.97 12	1.39 15	5.00 11	<u>0.21</u> 45	0.38	1.89 27	<u>4.84</u> 28	9.94 37	12.6 28	<u>2.53</u> 32	7.69 28	7.38 36		4.57		
MultiRBF [129]	28.0	<u>1.33</u> 53	1.56 27	6.02	<u>0.13</u> 15	0.17 4	1.84	<u>5.09</u> 34	6.36	13.4 35	<u>2.90</u> 57	6.76 10	7.10 30		4.39		
DoubleBP [34]	28.2	<u>0.88</u> 8	1.29 6	4.76 9	<u>0.13</u> 16	0.45 55	1.87 26	<u>3.53</u> 16	8.30 22	9.63	<u>2.90</u> 56	8.78 67	7.79 47		4.19		
OutlierConf [40]	29.2	0.88 7	1.43 19	4.74 8	<u>0.18</u> 34	0.26	2.40	<u>5.01</u> 30	9.12	12.8 30	<u>2.78</u> 46	8.57 57	6.99 26		4.60		
SegAggr [145]	29.4	<u>1.99</u> 98	2.39	8.59 96	<u>0.12</u> 11	0.21	1.68 19	<u>2.19</u> ₂	3.73	7.02	<u>2.16</u> 10	6.52 5	6.37		3.58		
CVW-RM [147]	29.8	<u>1.12</u> 27	1.42 17	5.99 36	<u>0.16</u> 29	0.36 35	1.40	<u>4.70</u> 27	6.94 15	12.1 24	<u>2.96</u> 62	7.71 30	7.72 44		4.38		
GC+LocalExp [160]	31.3	<u>1.48</u> 68	1.88	6.95 66	<u>0.13</u> 14	0.25	1.52 16	<u>3.33</u> 11	4.88	8.87	<u>2.72</u> 40	7.42 23	7.94 51		3.95		
SOS [135]	34.2	<u>1.45</u> 64	1.63	7.83 84	<u>0.21</u> 43	0.32	2.29 43	<u>3.13</u> 10	8.45 26	9.74 11	<u>2.43</u> 25	7.10 17	7.02 27		4.30		
SubPixSearch [109]	34.8	<u>2.04</u> 102	2.48 92	6.40 47	<u>0.14</u> 20	0.40	1.74 21	<u>4.00</u> 19	6.39	11.0 19	<u>2.24</u> 15	6.87	6.50 15		4.18		
AdaptiveGF [127]	34.8	<u>1.04</u> 17	1.53 23	5.62 21	<u>0.17</u> 32	0.41 45	1.98 31	<u>5.71</u> 48	11.3 55	14.3 44	<u>2.44</u> 26	8.22 46	7.05 29		4.98		
SurfaceStereo [71]	36.2	<u>1.28</u> 46	1.65 36	6.78 57	<u>0.19</u> 36	0.28	2.61 59	<u>3.12</u> 9	5.10 5	8.65 5	<u>2.89</u> 54	7.95 41	8.26 66		4.06		
SubPixDoubleBP [29]	36.4	<u>1.24</u> 37	1.76	5.98 35	<u>0.12</u> 13	0.46	1.74	<u>3.45</u> 15	8.38 25	10.0	<u>2.93</u> 59	8.73	7.91 49		4.39		

.5.5.2015					Wilder	boury bu	creo Eva	uation - vc	151011 2					
LLR [117]	38.8	<u>1.05</u> 19	1.65 35	5.64 22	0.29 75	0.81	3.07 74	<u>4.56</u> 24	9.81 35	12.2 25	<u>2.17</u> 11	8.02 42	6.42 13	4.64
PM-GCP [162]	39.4	<u>1.93</u> 93	2.19	10.1	<u>0.17</u> 33	0.21 9	2.41 46	<u>2.72</u> 4	3.11 1	7.43 3	<u>2.89</u> 55	4.32 1	7.32 34	3.73
WarpMat [50]	40.6	<u>1.16</u> 29	1.35	6.04	<u>0.18</u> 35	0.24	2.44 49	<u>5.02</u> 31	9.30	13.0 33	<u>3.49</u> 78	8.47 55	9.01	4.98
MultiAgg [139]	40.7	<u>1.52</u> 71	1.82 51	8.20 92	<u>0.16</u> 25	0.39	2.03	<u>5.09</u> 33	10.5 43	13.8 38	<u>2.27</u> 16	7.49 24	6.71 19	5.00
ObjectStereo [84]	41.2	1.22 36	1.62	6.36 44	<u>0.59</u> 103	0.69	4.61 103	<u>4.13</u> 22	7.59 18	11.2	<u>2.20</u> 13	6.99 15	6.36	4.46
PM-PM [154]	41.2	<u>2.94</u> 126	3.23	9.34	<u>0.16</u> 29	0.30	2.08	3.00 7	8.27 21	9.88	<u>2.18</u> 12	6.43 4	6.37	4.52
SGF [161]	42.3	<u>1.21</u> 35	1.47	6.54 50	<u>0.24</u> 57	0.31	3.42 88	<u>4.57</u> 25	9.84 36	12.4 27	<u>2.83</u> 50	7.60 26	8.44 69	4.91
TreeFilter [148]	43.2	1.02 16	1.54 25	5.52 18	<u>0.24</u> 55	0.41	2.86 67	<u>5.86</u> 50	11.2 53	13.6 36	<u>3.00</u> 64	7.00 16	8.49 72	5.06
PMF [119]	43.7	<u>1.74</u> 84	2.04	8.07 90	<u>0.33</u> 81	0.49 61	4.16 96	<u>2.52</u> 3	5.87 7	8.30	<u>2.13</u> 7	6.80	6.32	4.06
LM3C [134]	43.7	<u>2.10</u> 105	2.44 89	8.01 89	0.12 12	0.39	1.23 6	<u>5.46</u> 41	10.9 48	14.9 56	<u>2.12</u> 6	7.59 25	6.14 5	5.12
FastNLGC [138]	44.6	<u>1.28</u> 45	1.57 28	6.79 58	<u>0.09</u> 6	0.17 6	1.24 8	<u>5.28</u> 37	6.64	13.9 40	<u>4.23</u> 108	9.06	11.4 108	5.13
TF ASW [130]	44.8	<u>1.65</u> 78	1.96 64	5.90 32	<u>0.14</u> 19	0.31	1.51 15	<u>6.25</u> 66	11.8 73	15.1 58	<u>2.49</u> 30	8.32 49	7.02 28	5.21
LAMC-DSM [123]	45.2	<u>1.61</u> 76	2.18 79	5.86 30	<u>0.24</u> 57	0.60 71	3.12 75	<u>4.63</u> 26	10.4 42	12.7 29	<u>2.09</u> 5	8.31 48	6.10 4	4.83
HybridTree [149]	45.8	<u>1.29</u> 48	1.71 40	6.95 67	<u>0.15</u> 23	0.30	1.23 6	<u>6.12</u> 59	11.4 59	15.8 67	<u>2.82</u> 49	8.68 63	7.76 45	5.35
SegmentTree [126]	46.4	<u>1.25</u> 38	1.68 39	6.69 53	<u>0.20</u> 37	0.30	1.77 23	<u>6.00</u> 54	11.9 74	15.0 57	<u>2.77</u> 42	8.82 70	7.81 48	5.35
PatchMatch [96]	46.7	<u>2.09</u> 104	2.33 85	9.31	<u>0.21</u> 42	0.39	2.62 60	<u>2.99</u> 6	8.16 20	9.62 9	<u>2.47</u> 27	7.80 32	7.11 31	4.59
RelativeGrad [128]	46.8	<u>1.18</u> 31	1.27 4	5.91 33	0.23 52	0.24	1.28 9	<u>6.89</u> 88	12.3 86	16.0 69	<u>3.31</u> 74	7.94 40	8.24 63	5.40
PM-Huber [125]	47.8	3.49 137	4.09 125	9.12	<u>0.22</u> 46	0.43 ₅₀	2.50 51	3.38 12	5.56 6	10.7 17	<u>2.15</u> 9	6.69 8	6.40	4.56
HEBF [105]	48.2	<u>1.10</u> 25	1.38	5.74 27	0.22 48	0.33	2.41 46	<u>6.54</u> 76	11.8 69	15.2 59	<u>2.78</u> 45	9.28 81	8.10 58	5.41
PMBP [113]	48.2	<u>1.96</u> 96	2.21	9.22	<u>0.30</u> 76	0.49 59	3.57 90	<u>2.88</u> 5	8.57 27	8.99 7	<u>2.22</u> 14	6.64 6	6.48	4.46
RealtimeEDP [152]	48.2	<u>1.29</u> 50	2.12 78	5.88 31	<u>0.25</u> 67	0.54 67	2.84 64	<u>5.67</u> 45	10.9 49	14.7 51	<u>2.27</u> 16	8.03 43	6.70 18	5.10
HistoAggr2 [122]	48.3	<u>1.93</u> 94	2.30 84	6.39 45	<u>0.16</u> 26	0.46 58	2.22 39	<u>5.88</u> 51	11.3 56	14.7 49	<u>2.41</u> 23	7.78 31	6.89 24	5.20
imprNLCA [121]	48.8	<u>1.38</u> 56	1.83 54	7.38 74	<u>0.21</u> 44	0.41 46	2.26 41	<u>5.99</u> 52	11.5 61	14.3 45	<u>2.85</u> 52	6.68 7	7.98 54	5.23
CrossLMF [108]	50.6	<u>2.46</u> 115	2.78 101	6.26 43	0.27 69	0.38	2.15 36	<u>5.50</u> 42	10.6 45	14.2 41	<u>2.34</u> 20	7.82 34	6.80 23	5.13
SSMP [140]	51.4	<u>1.60</u> 75	1.97 66	6.44 48	<u>0.20</u> 40	0.38	2.51 53	<u>6.15</u> 60	11.5 62	15.8 66	<u>2.60</u> 34	7.92 37	7.48 38	5.38
GC+LSL [136]	52.1	<u>2.43</u> 114	2.73 99	10.6 121	<u>0.25</u> 63	0.36 34	2.89 69	<u>2.02</u> 1	3.77 3	6.99 1	<u>2.77</u> 43	7.37 21	8.05 56	4.19
DTAggr-P [120]	53.2	<u>1.75</u> 86	2.10 75	7.09 69	<u>0.24</u> 60	0.45 53	2.59 55	<u>5.70</u> 47	11.5 60	13.9 39	<u>2.49</u> 29	7.82 33	7.30 33	5.24
CrossTrees+SP [153]	54.5	<u>1.68</u> 79	1.99 67	7.82 83	0.22 50	0.32 27	2.84 64	<u>6.23</u> 65	11.7 68	14.8 52	<u>2.52</u> 31	7.71 29	7.50 39	5.44
CostFilter [83]	55.4	<u>1.51</u> 70	1.85 57	7.61 79	<u>0.20</u> 40	0.39 41	2.42 48	<u>6.16</u> 61	11.8 71	16.0 70	<u>2.71</u> 39	8.24 47	7.66 42	5.55
AdaptOvrSegBP [32]	56.2	<u>1.69</u> 80	2.04 73	5.64 22	<u>0.14</u> 18	0.20 7	1.47	<u>7.04</u> 91	11.1 52	16.4 81	<u>3.60</u> 84	8.96 75	8.84 78	5.59
ARAP [143]	56.3	<u>3.07</u> 129	3.55	11.8	<u>0.38</u> 89	0.53	4.86	<u>3.01</u> 8	6.47	9.51	<u>2.08</u> 4	6.73 9	6.17	4.85

5.5.2015								uation - vc						
			115	127		64	105		12	8			6	
InfoPermeable [93]	56.6	<u>1.06</u> 22	1.53 24	5.64 22	<u>0.32</u> 78	0.88 96	4.15 95	<u>5.60</u> 43	13.0 93	14.5 46	<u>2.65</u> 38	9.16 79	7.69 43	5.51
GlobalGCP [89]	58.2	<u>0.87</u> 5	2.54 95	4.69 7	<u>0.16</u> 28	0.53 65	2.22	<u>6.44</u> 70	11.5 63	16.2 74	<u>3.59</u> 82	9.49	8.95 81	5.60
SymBP+occ [7]	58.7	<u>0.97</u> 12	1.75 45	5.09 14	<u>0.16</u> 24	0.33	2.19 38	<u>6.47</u> 72	10.7 47	17.0 89	<u>4.79</u> 118	10.7 110	10.9 105	5.92
NonLocalFilter [112]	59.2	<u>1.47</u> 67	1.85 57	7.88 86	<u>0.25</u> 65	0.42 48	2.60 57	<u>6.01</u> 55	11.6 66	14.3 43	<u>2.87</u> 53	8.45 54	8.10 59	5.48
CSM [102]	59.4	<u>0.82</u> 2	1.20 3	4.39 3	<u>0.34</u> 82	0.61 72	2.55 54	<u>7.67</u> 102	12.4 89	17.2 94	<u>3.33</u> 75	9.35 85	7.96 52	5.65
PlaneFitBP [31]	59.9	<u>0.97</u> 14	1.83 52	5.26 15	<u>0.17</u> 31	0.51 63	1.71 20	<u>6.65</u> 77	12.1 83	14.7 50	<u>4.17</u> 106	10.7 108	10.6 100	5.78
HistAggrSlant [103]	60.0	<u>2.25</u> 108	2.50 93	9.77 110	0.29 74	0.37 36	3.30 81	<u>3.44</u> 14	8.82 29	9.77	<u>2.90</u> 58	8.40 52	7.97 53	4.98
GeoSup [57]	60.1	<u>1.45</u> 62	1.83 55	7.71 81	<u>0.14</u> 21	0.26	1.90 29	<u>6.88</u> 86	13.2 97	16.1 72	<u>2.94</u> 60	8.89 73	8.32 68	5.80
HOL [144]	60.2	<u>1.31</u> 52	1.79 49	6.81 59	0.28 71	0.67 78	3.35 83	<u>6.81</u> 84	11.9 77	16.3 77	<u>2.30</u> 19	8.57 56	6.66 17	5.56
ArtisticGC [137]	60.8	<u>1.26</u> 40	1.55 26	6.69 53	<u>0.07</u> 1	0.16 2	1.02 1	<u>7.70</u> 103	8.59 28	20.3	<u>4.67</u> 116	10.6 107	12.8 125	6.29
HCFilter [133]	60.9	<u>1.56</u> 72	1.78 48	8.07 91	0.22 47	0.34	2.96 70	<u>6.18</u> 63	11.5 64	16.1 73	3.02 65	8.07 44	8.19 61	5.67
P-LinearS [85]	61.4	<u>1.10</u> 24	1.67 37	5.92 34	0.53 99	0.89 98	5.71 109	<u>6.69</u> 79	12.0 81	15.9 68	<u>2.60</u> 35	8.44 53	6.71 20	5.68
GAOH [118]	61.9	<u>1.26</u> 41	1.76 46	4.31 2	0.20 38	0.42	2.03	<u>7.52</u> 98	12.3 87	18.1 106	3.94 99	8.59 59	9.32 85	5.81
BSM [106]	63.6	3.08 130	3.38	7.80 82	0.26 68	0.70 83	2.40	<u>5.74</u> 49	8.95 31	14.8 55	<u>2.34</u> 21	8.79 68	6.80	5.42
AdaptDispCalib [35]	65.6	<u>1.19</u> 33	1.42 16	6.15 40	0.23 53	0.34	2.50 51	<u>7.80</u> 104	13.6 103	17.3 97	3.62 85	9.33	9.72 90	6.10
AdaptLocalSeg [107]	65.7	<u>1.33</u> 54	1.82 50	7.19 71	<u>0.32</u> 79	0.79 87	4.50 99	<u>5.32</u> 38	11.9 79	14.5 47	<u>2.73</u> 41	9.69 93	7.91 ₅₀	5.67
RandomVote [78]	65.8	<u>4.85</u> 153	5.54 145	17.7 149	<u>0.13</u> 17	0.45 55	1.86 25	<u>5.40</u> 40	9.54 34	14.8 54	<u>2.62</u> 37	7.93 39	7.54 41	6.53
Segm+visib [4]	66.0	<u>1.30</u> 51	1.57 29	6.92 ₆₅	<u>0.79</u> 111	1.06 105	6.76 117	<u>5.00</u> 29	6.54 13	12.3 ₂₆	<u>3.72</u> 89	8.62 62	10.2 95	5.40
GeoDif [88]	67.4	<u>1.88</u> 91	2.35 87	7.64 80	<u>0.38</u> 88	0.82 91	3.02 73	<u>5.99</u> 53	11.3 54	13.3 34	<u>2.84</u> 51	8.33 ₅₀	8.09 57	5.49
ConfSuppWin [97]	67.8	<u>1.28</u> 47	1.83 52	6.65 51	0.28 72	0.65 77	3.29 80	<u>6.88</u> 86	11.4 58	15.4 61	<u>3.64</u> 86	8.60 ₆₀	9.09 83	5.75
IterAdaptWgt [90]	70.0	<u>0.85</u> 3	1.28 5	4.59 4	<u>0.35</u> 85	0.86 93	4.53 101	<u>7.60</u> 99	14.5 122	17.3 99	<u>3.20</u> 72	9.36 86	8.49 71	6.08
C-SemiGlob [18]	70.1	<u>2.61</u> 118	3.29 109	9.89 112	<u>0.25</u> 64	0.57 68	3.24 77	<u>5.14</u> 35	11.8 70	13.0 31	<u>2.77</u> 44	8.35 51	8.20 62	5.76
MultiResGC [46]	70.6	<u>0.90</u> 9	1.32 7	4.82 10	<u>0.45</u> 95	0.84 92	3.32 82	<u>6.46</u> 71	11.8 72	17.0 90	<u>4.34</u> 111	10.5 106	10.7 102	6.04
MVSegBP [59]	70.6	<u>1.06</u> 21	2.78 101	5.57 19	0.20 39	0.61 73	2.02	<u>6.53</u> 74	11.3 57	14.8 53	<u>5.29</u> 127	11.3 115	14.5 136	6.34
SCoBeP [114]	71.7	<u>1.47</u> 66	2.01 70	7.92 88	<u>0.24</u> 54	0.62 74	3.28 78	<u>6.22</u> 64	11.7 67	15.7 64	<u>3.49</u> 78	8.84 71	9.32 86	5.90
SO+borders [28]	71.9	<u>1.29</u> 48	1.71 41	6.83 61	<u>0.25</u> 66	0.53 66	2.26 41	<u>7.02</u> 90	12.2 84	16.3 78	<u>3.90</u> 95	9.85 97	10.2 96	6.03
RecursiveBF [104]	72.7	<u>1.85</u> 90	2.51 94	7.45 76	<u>0.35</u> 84	0.88 97	3.01 71	<u>6.28</u> 68	12.1 82	14.3 42	<u>2.80</u> 48	8.91 74	7.79 46	5.68
LocallyConsist [62]	74.2	<u>1.70</u> 82	2.21 81	5.67 25	<u>0.16</u> 27	0.32 28	1.63 18	<u>8.68</u> 125	13.9 109	17.0 88	<u>4.19</u> 107	10.8 111	9.72 89	6.33
MSWLinRegr [110]	74.2	<u>1.46</u> 65	1.72 42	7.89 87	0.57 102	0.92 100	6.71 115	<u>6.11</u> 58	11.0 50	15.6 62	<u>3.12</u> 70	8.76 66	8.52 73	6.04
<u>CurveletSupWgt</u>	74.6	<u>1.40</u> 60	1.84	7.42	<u>1.00</u> 118	1.11	4.42	<u>7.85</u> 105	8.84	16.8	<u>3.82</u> 92	6.22 3	8.24	5.75
[66]			56	75		108	98		30	87			63	

					_	J		- ve						
DistinctSM [26]	75.7	<u>1.21</u> 34	1.75 44	6.39 45	<u>0.35</u> 86	0.69 81	2.63 61	<u>7.45</u> 96	13.0 94	18.1 105	<u>3.91</u> 96	9.91 99	8.32 67	6.14
<u>iFBS [99]</u>	75.8	<u>1.78</u> 89	2.10	7.57	<u>0.31</u> 77	0.50	2.17	<u>7.94</u> 108	12.8 91	17.1 92	<u>3.07</u> 67	8.73 65	8.46	6.05
SegmentSupport [27]	77.8	<u>1.25</u> 38	1.62	6.68	<u>0.25</u> 61	0.64	2.59	<u>8.43</u> 120	14.2	18.2	<u>3.77</u> 90	9.87	9.77	6.44
RegionTreeDP	78.2	<u>1.39</u> 59	1.64	6.85	<u>0.22</u> 51	0.57	1.93	<u>7.42</u> 95	11.9	16.8	<u>6.31</u> 140	11.9	11.8	6.56
OverSegmBP [25]	80.6	1.69 81	1.97	8.47 95	<u>0.51</u> 98	0.68	4.69	<u>6.74</u> 81	11.9	15.8 65	<u>3.19</u> 71	8.81	8.89	6.11
SNCC+AM [101]	81.8	<u>3.21</u> 132	3.57	13.6	0.22 49	0.45	3.01	<u>6.41</u> 69	10.4	17.7 102	<u>3.11</u> 69	8.61	9.27	6.63
CostAggr+occ [37]	81.8	1.38 57	1.96	7.14	<u>0.44</u> 94	1.13	4.87	6.80 83	11.9	17.3	3.60 83	8.57	9.36	6.20
RTAdaptWgt [98]	82.2	1.45 63	1.99	7.59	<u>0.40</u> 91	0.81	3.38	<u>7.65</u> 101	13.3	16.2	3.48 77	9.34	8.81	6.20
EnhancedBP [23]	84.4	0.94 11	1.74	78 5.05 12	<u>0.35</u> 87	0.86 94	4.34 97	<u>8.11</u> 114	100 13.3 99	75 18.5	<u>5.09</u> 125	11.1 114	11.0	6.69
<u>VSW [92]</u>	84.4	1.62 77	1.88	6.98	0.47 97	0.81	3.40	<u>8.67</u> 124	13.3	111 18.0 103	<u>3.37</u> 76	8.85	8.12 60	6.29
RealtimeHD [116]	87.0	<u>2.16</u> 106	2.46	10.1	0.24 56	0.44	3.40	6.27 67	10.7	16.6 84	<u>4.70</u> 117	10.1	12.8	6.66
PUTv3 [56]	87.6	<u>1.77</u> 88	3.86	9.42	<u>0.42</u> 93	0.95	5.72	7.02 89	14.2	18.3	<u>2.40</u> 22	9.11	6.56	6.64
SMPF [158]	88.4	<u>0.98</u> 15	1.53	5.31	0.25 62	0.69	2.60	<u>9.93</u> 137	114	22.6	<u>6.51</u> 142	78 13.1	14.8	7.73
GradAdaptWgt	88.6	<u>2.26</u> 111	2.63	8.99	<u>0.99</u> 116	1.39	4.92	<u>8.00</u> 110	13.1	137	<u>2.61</u> 36	7.67	7.43	6.55
[53] RT-ColorAW [91]	90.2	<u>1.40</u> 60	3.08	5.81 29	<u>0.72</u> 108	1.71	3.80 93	6.69 78	96	113 15.3 60	<u>4.03</u> 102	11.9	37 10.2 94	6.55
AdaptWeight [12]	90.8	1.38 57	106 1.85 59	6.90	<u>0.71</u> 107	1.19	6.13	<u>7.88</u> 106	13.3	18.6	3.97 ₁₀₀	9.79 95	8.26 65	6.67
SegTreeDP [21]	90.9	<u>2.21</u> 107	2.76	10.3	<u>0.46</u> 96	0.60	2.44	9.58 129	101 15.2 129	18.4	3.23 73	7.86 35	8.83	6.82
InteriorPtLP [33]	91.0	1.27 43	1.62	6.82	<u>1.15</u> 124		12.7 136	<u>8.07</u> 112		18.7	3.92 98	9.68	9.62	7.26
<u>TwoStep [141]</u>	96.1	<u>2.91</u> 125	3.68	13.3	0.27 69	0.45	2.63	<u>7.42</u> 94	12.6	18.0	<u>4.09</u> 103	10.1	10.3	7.14
ImproveSubPix [24]	96.7	3.00 127	3.61	10.9	<u>0.88</u> 113	1.47	7.10	7.12 92	12.4	16.6 83	2.96 62	8.22	8.55 74	6.90
BP+DirectedDiff	96.8	<u>2.90</u> 122	4.47	15.1	<u>0.65</u> 106	1.20	4.52	<u>5.07</u> 32	14.7	15.7	<u>2.94</u> 61	12.6 128	7.50	7.29
[54] RealTimeABW [73]	96.9	<u>1.26</u> 42	132 1.67 38	6.83 61	0.33 80	0.65 76	3.56 89	<u>10.7</u> 142	124 18.3 146	23.3 140	<u>4.81</u> 119	12.6 127	10.7	7.90
SemiGlob [6]	100.8	3.26 133	3.96	12.8	<u>1.00</u> 117	1.57	11.3	6.02 56	12.2	16.3	<u>3.06</u> 66	9.75	8.90	7.50
SDDS [115]	102.3	3.31 134	3.62	10.4	0.39 90	0.76	2.85	<u>7.65</u> 100	13.0	19.4	3.99 ₁₀₁	10.00		7.19
FastBilateral [61]	102.8	<u>2.38</u> 113	2.80	10.4	<u>0.34</u> 83	0.92	4.55	<u>9.83</u> 135	15.3	20.3	<u>3.10</u> 68	9.31	8.59	7.31
20P+occ [36]	105.2	<u>2.91</u> 123	3.56	7.33	0.24 57	0.49	2.76	<u>10.9</u> 144	15.4	20.6	<u>5.42</u> 131	10.8	12.5	7.75
RealtimeBFV [58]	105.3	<u>1.71</u> 83	2.22 83	73 6.74 55	<u>0.55</u> 101	0.87	2.88	<u>9.90</u> 136	15.0	19.5 119	<u>6.66</u> 145	113 12.3 124	123 13.4 129	7.65
BitPlaneNLF [132]	105.4	<u>1.76</u> 87	2.33	8.83 97	3.82 155	4.16 150	5.65	<u>8.30</u> 117	13.6	17.1	3.68 87	9.68	9.91	7.40
PlaneFitSGM [75]	105.5	<u>3.13</u> 131	4.20	14.9	<u>1.08</u> 121	1.87	14.6	<u>5.68</u> 46	11.6	17.1	<u>3.79</u> 91	9.26	11.3	8.21
HistoAggr [95]	105.6	<u>2.47</u> 116	2.71	11.1	<u>0.74</u> 109	0.97	3.28	<u>8.31</u> 118	13.8	21.0	3.86 93	9.47	10.4	7.33
<u>VariableCross</u>	107.9	<u>1.99</u> 99			<u>0.62</u> 105			9.75 130			<u>6.28</u> 138			7.60

3.3.2013					Wilddie	oury ou	DICO LVA	iuation - ve	2131011 2					
[42]			97	56		103	76		127	108		130	126	
CostRelaxAW [52]	108.1	<u>2.91</u> 124	3.49 113	11.4 125	<u>0.60</u> 104	1.11 107	6.45 114	<u>7.92</u> 107	13.7 105	20.9	<u>3.59</u> 81	9.43 87	10.3 98	7.66
RealtimeBP [20]	108.2	<u>1.49</u> 69	3.40	7.87 85	<u>0.77</u> 110	1.90 126	9.00 125	<u>8.72</u> 126	13.2 98	17.2 95	<u>4.61</u> 113	11.6 118	12.4 122	7.69
BPcompressed [51]	109.4	2.68 119	3.63	9.59	1.33 129	1.89	9.09	<u>8.36</u> 119	13.9 110	16.4 80	<u>3.71</u> 88	9.85 96	9.92 93	7.53
FastAggreg [43]	109.8	<u>1.16</u> 30	2.11	6.06 39	<u>4.03</u> 156	4.75 153	6.43	<u>9.04</u> 127	15.2 128	20.2	<u>5.37</u> 130	12.6 126	11.9 115	8.24
GC+occ [2]	110.2	<u>1.19</u> 32	2.01	6.24	<u>1.64</u> 138	2.19	6.75 116	<u>11.2</u> 148	17.4 143	19.8 121	<u>5.36</u> 129	12.4 125	13.0 127	8.26
CCH+SegAggr [45]	110.4	<u>1.74</u> 84	2.11	9.23	<u>0.41</u> 92	0.94	3.97 94	<u>8.08</u> 113	14.3	19.8	<u>7.07</u> 147	12.9	16.3 145	8.07
MultiCamGC [3]	110.7	<u>1.27</u> 44	1.99	6.48	<u>2.79</u> 148	3.13	3.60	<u>12.0</u> 150	17.6	22.0	<u>4.89</u> 120	11.8	12.1	8.31
VarMSOH [49]	113.2	<u>3.97</u> 143	5.23	14.9	0.28 72	0.76	3.78	<u>9.34</u> 128	440	20.0	<u>4.14</u> 105	9.91	11.4	8.17
AdaptAggrDP [156]	113.8	1.57 ₇₃	3.50	8.27	<u>1.53</u> 136	2.69	12.4	6.79 82	14.3	16.2	<u>5.53</u> 133	13.2	14.8	8.40
Unsupervised [67]	114.0	<u>3.89</u> 142	4.39	18.8	<u>1.01</u> 119	1.14	11.3	6.72 80	6.98	16.1	<u>9.93</u> 154	10.7	22.5	9.45
Layered [5]	114.3	1.57 ₇₃	1.87	8.28 94	<u>1.34</u> 130	1.85	6.85	<u>8.64</u> 123	14.3	18.5	<u>6.59</u> 144	14.7	14.4	8.24
SNCC [70]	115.9	<u>5.17</u> 158	6.08	21.7	<u>0.95</u> 115	1.73	12.0	<u>8.04</u> 111	119	22.9	3.59 ₈₀	9.02	10.7	9.41
ESAW [76]	116.9	1.92 92	2.45	9.66	1.03 120	1.65	6.89	<u>8.48</u> 121	14.2	138	6.56 143	12.7	14.4	8.21
<u>AdaptPolygon</u>	119.2	<u>2.29</u> 112	2.88	8.94	0.80 112	117 1.11	3.41	<u>10.5</u> 140	15.9	21.3	6.13 137	13.2	13.3	8.32
[41] OptimizedDP [63]	119.5	1.97 97	3.78	99 9.80	3.33 151	4.74	13.0	6.53 75	136 13.9	134 16.6	<u>5.17</u> 126	135 13.7	13.4	8.83
RealtimeVar [65]	119.9	3.33 135	5.48	16.8	1.15 125	2.35	12.8	6.18 62	13.1	17.3	<u>4.66</u> 115	139	130	9.05
StereoSONN [64]	120.2	4.04 144	4.74	18.1	0.53 100	0.75	6.21	8.53 ₁₂₂	13.7	20.2	5.07 123	10.8	131	8.89
ConvexTV [44]		3.61 139	5.72	18.0	1.16 126	2.50	112	6.10 57	15.7	16.8	3.88 94	112	132 11.5	9.30
SGMDDW [124]		<u>2.26</u> 110	4.40	150 11.8	1.22 127	2.72	135 16.8	6.52 73	133	17.5	<u>5.59</u> 134	142	14.8	9.36
GenModel [19]		<u>2.57</u> 117	4.74	13.0	<u>1.72</u> 140	3.08	16.9	6.86 85	15.0	100	<u>4.64</u> 114	14.9	138	9.50
Differential [131]		<u>4.74</u> 149	6.77	132	1.69 139	2.62	20.4	<u>8.29</u> 116	10.1	23.3	4.25 109	10.3	109	10.3
TensorVoting [9]		3.79 141	4.79	8.86	1.23 128	1.88	153 11.5	9.76 131	17.0	24.0	4.38 112	105	118	9.25
ReliabilityDP [13]		1.36 55	3.39	98 7.25	2.35 145	3.48	130	9.82 134	16.0	146 19.5	12.9 160	116	120 19.7	10.7
RealTimeGPU		2.05 103	4.22	72 10.6	1.92 143	148 2.98	133 20.3	7.23 93	139	120 17.6	6.41 141	159 13.7	151 16.5	9.82
[14] RTCensus [47]		5.08 157	129 6.25	122 19.2	1.58 137	139 2.42	151 14.2	7.96 109	120 13.8	101 20.3	4.10 104	138 9.54	147 12.2	9.73
TwoWin [80]		2.25 108	153 3.08	153 11.6	0.92 114	1.31	7.53	10.7 143	108 15.0	127 23.6	8.25 150	90 13.5	119 16.6	9.59
			107 4.79	126 16.8		113 2.72	121 17.3		135 15.8	143 20.8		136 13.7	148	
HRMBIL [81]		3.60 138	135 6.08	20.3	1.38 132	138 2.48	145 18.5	7.48 97	134	131 23.8	4.29 110	137 10.2	116 11.8	10.0
CostRelax [11]		4.76 151	152 2.84	156 9.96	<u>1.41</u> 134	133	149 7.74	8.18 115	137	144 27.1	3.91 97	104	114	10.6
TreeDP [8]		1.99 100	104 4.12	113	<u>1.41</u> 133	129	122	<u>15.9</u> 157	159	154 24.9	<u>10.0</u> 155	155	150 15.3	11.7
GC [1d]	137.5	1.94 95	126	106	<u>1.79</u> 142	147	124	<u>16.5</u> 158	161	147	<u>7.70</u> 148	154	142	11.4
														_

5.5.2015					Middle	bury Su	ereo Eva	uation - ve	ISIOII Z					
<u>CSBP [74]</u>	138.1	<u>2.00</u> 101	4.17 127	10.5 120	<u>1.48</u> 135	3.11	17.7 147	<u>11.1</u> 147	20.2	27.5 156	<u>5.98</u> 136	16.5 151	16.0 144	11.4
DCBGrid [77]	139.2	<u>5.90</u> 161	7.26 161	21.0 157	<u>1.35</u> 131	1.91 127	11.2 127	<u>10.5</u> 139	17.2 141	22.2 136	<u>5.34</u> 128	11.9 123	14.9 140	10.9
BioPsyASW [72]	139.3	<u>3.62</u> 140	5.52 144	14.6 138	<u>3.15</u> 149	4.20 151	20.4	<u>11.5</u> 149	18.2 145	23.2 139	4.93 121	13.0 132	11.7 112	11.2
RINCensus [146]	139.8	<u>4.78</u> 152	6.00 150	14.4 136	<u>1.11</u> 122	1.76 121	7.91 123	<u>9.76</u> 132	17.3 142	26.1 151	<u>8.09</u> 149	16.2 150	17.6 149	10.9
HBpStereoGpu [86]	140.2	<u>3.37</u> 136	5.34 142	13.6 135	<u>1.12</u> 123	2.06	14.1 139	<u>12.2</u> 151	19.0 149	27.2 155	<u>6.29</u> 139	14.2 140	16.4 146	11.2
BP+MLH [38]	140.8	<u>4.17</u> 146	6.34 154	14.6 139	<u>1.96</u> 144	3.31 145	16.8 143	<u>10.2</u> 138	18.9 148	24.0 145	4.93 122	15.5 145	12.3 121	11.1
H-Cut [69]	140.9	<u>2.85</u> 120	4.86 138	14.4 137	<u>1.73</u> 141	3.14	20.2	<u>10.7</u> 141	19.5 150	25.8 150	<u>5.46</u> 132	15.6 146	15.7 143	11.7
SAD-IGMCT [48]	143.9	<u>5.81</u> 160	7.14 159	22.6 160	<u>2.61</u> 147	3.33	25.3 159	<u>9.79</u> 133	15.5 132	25.7 149	<u>5.08</u> 124	11.5 117	15.0 141	12.5
FLTG-DDE [79]	145.2	3.03 128	5.28 141	15.0 142	<u>3.39</u> 152	5.02 155	25.0 158	<u>11.0</u> 145	19.5 151	26.3 153	<u>5.78</u> 135	16.0 149	14.2 133	12.5
2DPOC [94]	149.2	2.88 121	4.80 137	10.5 119	<u>6.55</u> 159	7.82 159	17.4 146	<u>14.4</u> 154	22.1 155	27.9 157	<u>15.2</u> 163	22.7 162	24.5 159	14.7
DP [1b]	149.8	<u>4.12</u> 145	5.04 139	12.0 129	<u>10.1</u> 164	11.0 164	21.0 154	<u>14.0</u> 153	21.6 154	20.6	<u>10.5</u> 156	19.1 157	21.1 154	14.2
DPVI [60]	149.8	<u>4.76</u> 150	5.83 147	16.6 146	<u>4.89</u> 158	5.66 158	22.9 156	<u>11.0</u> 146	16.2 138	23.4	9.64 152	15.6 147	23.5 158	13.3
PhaseBased [30]	154.9	<u>4.26</u> 147	6.53 155	15.4 144	<u>6.71</u> 160	8.16 160	26.4 161	<u>14.5</u> 155	23.1 156	25.5 148	10.8 158	20.5	21.2 155	15.3
<u>IMCT [55]</u>	155.3	<u>4.54</u> 148	5.90 149	19.8 155	<u>3.16</u> 150	3.83 149	23.2 157	<u>18.0</u> 161	23.1	35.3 161	<u>12.7</u> 159	18.5 156	27.9 162	16.3
FW-DLR [111]	155.6	<u>4.87</u> 154	5.89 148	22.9 161	<u>2.50</u> 146	3.22 144	18.3 148	18.2 162	18.7 147	37.2 162	<u>24.2</u> 165	27.9 164	42.1 166	18.8
SSD+MF [1a]	156.0	<u>5.23</u> 159	7.07 157	24.1 162	<u>3.74</u> 154	5.16 156	11.9 131	<u>16.5</u> 159	24.8 160	32.9 ₁₅₉	<u>10.6</u> 157	19.8 158	26.3 160	15.7
BioDEM [100]	156.0	<u>6.57</u> 163	8.43 163	28.1 165	<u>3.61</u> 153	4.80 154	33.7 163	<u>13.2</u> 152	21.3 153	34.5 160	<u>6.84</u> 146	16.0 148	19.8 152	16.4
SO [1c]	157.2	<u>5.08</u> 156	7.22 160	12.2 130	9.44 163	10.9 163	21.9 155	<u>19.9</u> 163	28.2 165	26.3 152	13.0 161	22.8 163	22.3 156	16.6
PhaseDiff [22]	159.8	<u>4.89</u> 155	7.11 158	16.3 145	<u>8.34</u> 162	9.76 162	26.0 160	<u>20.0</u> 164	28.0 164	29.0 158	<u>19.8</u> 164	28.5 165	27.5 161	18.8
LCDM+AdaptWgt [68]	160.5	<u>5.98</u> 162	7.84 162	22.2 159	<u>14.5</u> 165	15.4 165	35.9 165	<u>20.8</u> 165	27.3 163	38.3 164	<u>8.90</u> 151	17.2 152	20.0 153	19.5
STICA [15]	160.6	<u>7.70</u> 164	9.63 165	27.8 164	<u>8.19</u> 161	9.58 161	40.3 166	<u>15.8</u> 156	23.2 158	37.7 163	<u>9.80</u> 153	17.8 153	28.7 163	19.7
Infection [10]	162.2	<u>7.95</u> 165	9.54 164	28.9 166	<u>4.41</u> 157	5.53 157	31.7 162	<u>17.7</u> 160	25.1 162	44.4 166	<u>14.3</u> 162	21.3 161	38.0 165	20.7
YOUR METHOD	165.3	<u>31.0</u> 166	32.4 166	27.3 163	<u>38.2</u> 166	39.3 166	35.0 164	<u>34.6</u> 166	41.3 166	39.5 165	<u>26.8</u> 166	35.0 166	33.6 164	34.5

- [1] D. Scharstein and R. Szeliski. <u>A taxonomy and evaluation of dense two-frame stereo correspondence algorithms</u>. IJCV 2002
 - <u>a</u> SSD + min-filter (i.e., shiftable windows), window size = 21
 - <u>b</u> Dynamic programming, similar to Bobick and Intille (IJCV 1999)
 - **<u>c</u>** Scanline optimization (1D optimization using horizontal smoothness terms)
 - <u>d</u> Graph cuts using alpha-beta swaps (Boykov, Veksler, and Zabih, PAMI 2001)
- [2] V. Kolmogorov and R. Zabih. Computing visual correspondence with occlusions using graph cuts. ICCV 2001.
- [3] V. Kolmogorov and R. Zabih. Multi-camera scene reconstruction via graph cuts. ECCV 2002.
- [4] M. Bleyer and M. Gelautz. A layered stereo algorithm using image segmentation and global visibility constraints. ICIP 2004.
- [5] L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. <u>High-quality video view interpolation using a layered representation</u>. SIGGRAPH 2004.
- [6] H. Hirschmüller. Accurate and efficient stereo processing by semi-global matching and mutual information. CVPR 2005,

PAMI 30(2):328-341, 2008.

- [7] J. Sun, Y. Li, S.B. Kang, and H.-Y. Shum. Symmetric stereo matching for occlusion handling. CVPR 2005.
- [8] O. Veksler. Stereo correspondence by dynamic programming on a tree. CVPR 2005.
- [9] P. Mordohai and G. Medioni. Stereo using monocular cues within the tensor voting framework. PAMI 28(6):968-982, 2006.
- [10] G. Olague, F. Fernández, C. Pérez, and E. Lutton. The infection algorithm: an artificial epidemic approach for dense stereo correspondence. Artificial Life, 2006.
- [11] R. Brockers, M. Hund, and B. Mertsching. <u>Stereo vision using cost-relaxation with 3D support regions</u>. Image and Vision Computing New Zealand (IVCNZ), 2005.
- [12] K.-J. Yoon and I.-S. Kweon. Adaptive support-weight approach for correspondence search. PAMI 28(4):650-656, 2006.
- [13] M. Gong and Y.-H. Yang. Near real-time reliable stereo matching using programmable graphics hardware. CVPR 2005.
- [14] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nistér. <u>High-quality real-time stereo using adaptive cost aggregation and dynamic programming</u>. 3DPVT 2006.
- [15] H. Audirac, A. Beloiarov, F. Núñez, and J. Villegas. Dense disparity map based on STICA algorithm. Expo Forestal, Mexico, 2005.
- [16] A. Klaus, M. Sormann and K. Karner. <u>Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure</u>. ICPR 2006.
- [17] C. Lei, J. Selzer, and Y. Yang. Region-tree based stereo using dynamic programming optimization. CVPR 2006.
- [18] H. Hirschmüller. <u>Stereo vision in structured environments by consistent semi-global matching</u>. CVPR 2006, PAMI 30(2):328-341, 2008.
- [19] C. Strecha, R. Fransens, and L. Van Gool. Combined depth and outlier estimation in multi-view stereo. CVPR 2006.
- [20] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nistér. Real-time global stereo matching using hierarchical belief propagation. BMVC 2006.
- [21] Y. Deng and X. Lin. A fast line segment based dense stereo algorithm using tree dynamic programming. ECCV 2006.
- [22] S. El-Etriby, A. Al-Hamadi, and B. Michaelis. Dense depth map reconstruction by phase difference-based algorithm under influence of perspective distortion. ICCVG 2006 / J. Machine Graphics and Vision.
- [23] S. Larsen, P. Mordohai, M. Pollefeys, and H. Fuchs. <u>Temporally consistent reconstruction from multiple video streams using enhanced belief propagation</u>. ICCV 2007.
- [24] S. Gehrig and U. Franke. Improving sub-pixel accuracy for long range stereo. ICCV VRML workshop 2007.
- [25] L. Zitnick and S.B. Kang. Stereo for image-based rendering using image over-segmentation. IJCV 2007.
- [26] K.-J. Yoon and I. S. Kweon. Stereo matching with the distinctive similarity measure. ICCV 2007.
- [27] F. Tombari, S. Mattoccia, and L. Di Stefano. <u>Segmentation-based adaptive support for accurate stereo correspondence</u>. PSIVT 2007.
- [28] S. Mattoccia, F. Tombari, and L. Di Stefano. <u>Stereo vision enabling precise border localization within a scanline optimization framework</u>. ACCV 2007.
- [29] Q. Yang, R. Yang, J. Davis, and D. Nistér. Spatial-depth super resolution for range images. CVPR 2007.
- [30] S. El-Etriby, A. Al-Hamadi, and B. Michaelis. Dense stereo correspondence with slanted surface using phase-based algorithm. IEEE ISIE 2007.
- [31] Q. Yang, C. Engels, and A. Akbarzadeh. Near real-time stereo for weakly-textured scenes. BMVC 2008.
- [32] Y. Taguchi, B. Wilburn, and L. Zitnick. <u>Stereo reconstruction with mixed pixels using adaptive over-segmentation</u>. CVPR 2008.
- [33] A. Bhusnurmath and C.J. Taylor. Solving stereo matching problems using interior point methods. 3DPVT 2008.
- [34] Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nistér. <u>Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handling</u>. PAMI 2008.
- [35] Z.Gu, X.Su, Y.Liu, and Q.Zhang. Local stereo matching with adaptive support-weight, rank transform and disparity calibration. Pattern Recognition Letters, 2008.
- [36] O. Woodford, P. Torr, I. Reid, and A. Fitzgibbon. Global stereo reconstruction under second order smoothness priors. CVPR 2008.
- [37] D. Min and K. Sohn. Cost aggregation and occlusion handling with WLS in stereo matching. IEEE TIP 2008.
- [38] O. Stankiewicz and K. Wegner. Depth map estimation software version 2. ISO/IEC MPEG meeting M15338, 2008.
- [39] Z. Wang and Z. Zheng. A region based stereo matching algorithm using cooperative optimization. CVPR 2008.
- [40] L. Xu and J. Jia. Stereo matching: an outlier confidence approach. ECCV 2008.
- [41] J. Lu, G. Lafruit, and F. Catthoor. Anisotropic local high-confidence voting for accurate stereo correspondence. Proc. SPIE, vol. 6812, 2008.
- [42] K. Zhang, J. Lu, and G. Lafruit. <u>Cross-based local stereo matching using orthogonal integral images</u>. IEEE TCSVT 2009.
- [43] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda. Near real-time stereo based on effective cost aggregation. ICPR 2008.
- [44] T. Pock, T. Schoenemann, G. Graber, H. Bischof, and D. Cremers. <u>A convex formulation of continuous multilabel problems</u>. ECCV 2008.

- [45] T. Liu, P. Zhang, and L. Luo. <u>Dense stereo correspondence with contrast context histogram, segmentation-based two-pass aggregation and occlusion handling.</u> PSIVT 2009.
- [46] N. Papadakis and V. Caselles. Multi-label depth estimation for graph cuts stereo problems. JMIV 38(1):70-82, 2010.
- [47] M. Humenberger, C. Zinner, M. Weber, W. Kubinger, and M. Vincze. <u>A fast stereo matching algorithm suitable for embedded real-time systems</u>. CVIU 2010.
- [48] K. Ambrosch and W. Kubinger. <u>Accurate hardware-based stereo vision</u>. CVIU 2010.
- [49] R. Ben-Ari and N. Sochen. <u>Stereo matching with Mumford-Shah regularization and occlusion handling</u>. PAMI 32(11): 2071-2084, 2010.
- [50] M. Bleyer, M. Gelautz, C. Rother, and C. Rhemann. <u>A stereo approach that handles the matting problem via image warping</u>. CVPR 2009.
- [51] T. Yu, R.-S. Lin, B. Super, and B. Tang. Efficient message representations for belief propagation. ICCV 2007.
- [52] R. Brockers. Cooperative stereo matching with color-based adaptive local support. CAIP 2009.
- [53] L. De-Maeztu, A. Villanueva, and R. Cabeza. <u>Stereo matching using gradient similarity and locally adaptive support-weight</u>. Pattern Recognition Letters 32(13): 1643-1651, 2011.
- [54] A. Banno and K. Ikeuchi. <u>Disparity map refinement and 3D surface smoothing via directed anisotropic diffusion</u>. 3DIM 2009.
- [<u>55</u>] I. Cabezas. An iterative disparity estimation technique: on computing an initial map. Technical report 2009, Laboratorio Multimedia y Vision, Universidad del Valle, Cali Colombia.
- [56] O. Stankiewicz and K. Wegner. Depth map estimation software version 3. ISO/IEC MPEG meeting M15540, 2008.
- [57] A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann. Local stereo matching using geodesic support weights. ICIP 2009.
- [58] K. Zhang, J. Lu, G. Lafruit, R. Lauwereins, and L. Van Gool. Real-time accurate stereo with bitwise fast voting on CUDA. ICCVW 2009.
- [59] T. Montserrat, J. Civit, O. Escoda, and J.-L. Landabaso. Depth estimation based on multiview matching with depth/color segmentation and memory efficient belief propagation. ICIP 2009.
- [60] V. González and I. Cabezas. Estimación de puntos correspondientes mediante programación dinámica. Congreso Multimedia 2009.
- [61] S. Mattoccia, S. Giardino, and A. Gambini. <u>Accurate and efficient cost aggregation strategy for stereo correspondence based on approximated joint bilateral filtering</u>. ACCV 2009.
- [62] S. Mattoccia. A locally global approach to stereo correspondence. 3DIM 2009.
- [63] J. Salmen, M. Schlipsing, J. Edelbrunner, S. Hegemann, and S. Lueke. <u>Real-time stereo vision: making more out of dynamic programming</u>. CAIP 2009.
- [64] M. Vanetti, I. Gallo, and E. Binaghi. <u>Dense two-frame stereo correspondence by self-organizing neural network</u>. ICIAP 2009.
- [65] S. Kosov, T. Thormählen, and H.-P. Seidel. Accurate real-time disparity estimation with variational methods. ISVC 2009.
- [66] D. Mukherjee, G. Wang, and J. Wu. Stereo matching algorithm based on curvelet decomposition and modified support weights. ICASSP 2010.
- [67] H. Trinh and D. McAllester. <u>Unsupervised learning of stereo vision with monocular cues</u>. BMVC 2009.
- [68] L. Nalpantidis and A. Gasteratos. <u>Stereo vision for robotic applications in the presence of non-ideal lighting conditions</u>. Image and Vision Computing 2010.
- [69] D. Miyazaki, Y. Matsushita, and K. Ikeuchi. <u>Interactive shadow removal from a single image using hierarchical graph cut</u>. ACCV 2009.
- [70] N. Einecke and J. Eggert. A two-stage correlation method for stereoscopic depth estimation. DICTA 2010.
- [71] M. Bleyer, C. Rother, and P. Kohli. Surface stereo with soft segmentation. CVPR 2010.
- [72] L. Nalpantidis and A. Gasteratos. <u>Biologically and psychophysically inspired adaptive support weights algorithm for stereo correspondence</u>. Robotics and Autonomous Systems 2010.
- [73] R. Gupta and S.-Y. Cho. Real-time stereo matching using adaptive binary window. 3DPVT 2010.
- [74] Q. Yang, L. Wang, and N. Ahuja. A constant-space belief propagation algorithm for stereo matching. CVPR 2010.
- [75] M. Humenberger, T. Engelke, and W. Kubinger. <u>A census-based stereo vision algorithm using modified semi-global matching and plane-fitting to improve matching quality</u>. CVPR ECV workshop 2010.
- [76] W. Yu, T. Chen, F. Franchetti, and J. Hoe. <u>High performance stereo vision designed for massively data parallel platforms</u>. IEEE TCSVT 2010.
- [77] C. Richardt, D. Orr, I. Davies, A. Criminisi, and N. Dodgson. <u>Real-time spatiotemporal stereo matching using the dual-cross-bilateral grid</u>. ECCV 2010.
- [78] G. Gales, A. Crouzil, and S. Chambon. A region-based randomized voting scheme for stereo matching. ISVC 2010.
- [79] C. Cassisa. Local vs global energy minimization methods: application to stereo matching. PIC 2010.
- [80] R. Gupta and S.-Y. Cho. A correlation-based approach for real-time stereo matching. ISVC 2010.
- [81] S. Röhl, S. Speidel, D. Gonzalez-Aguirre, S. Suwelack, H. Kenngott, T. Asfour, B. Müller-Stich, and R. Dillmann. From stereo image sequences to smooth and robust surface models using temporal information and bilateral postprocessing. ROBIO 2011.

- [82] X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and X. Zhang. On building an accurate stereo matching system on graphics hardware. GPUCV 2011.
- [83] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. <u>Fast cost-volume filtering for visual correspondence and beyond</u>. CVPR 2011.
- [84] M. Bleyer, C. Rother, P. Kohli, D. Scharstein, and S. Sinha. <u>Object stereo joint stereo matching and object segmentation</u>. CVPR 2011.
- [85] L. De-Maeztu, S. Mattoccia, A. Villanueva, and R. Cabeza. Linear stereo matching. ICCV 2011.
- [86] S. Grauer-Gray and C. Kambhamettu. <u>Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation</u>. WACV 2009.
- [87] X. Sun, X. Mei, S. Jiao, M. Zhou, and H. Wang. Stereo matching with reliable disparity propagation. 3DIMPVT 2011.
- [88] L. De-Maeztu, A. Villanueva, and R. Cabeza. Near real-time stereo matching using geodesic diffusion. PAMI 34(2):410-416, 2012.
- [89] L. Wang and R. Yang. Global stereo matching leveraged by sparse ground control points. CVPR 2011.
- [90] E. Psota, J. Kowalczuk, J. Carlson, and L. Pérez. <u>A local iterative refinement method for adaptive support-weight stereo</u> matching. IPCV 2011.
- [91] X. Chang, Z. Zhou, L. Wang, Y. Shi, and Q. Zhao. Real-time accurate stereo matching using modified two-pass aggregation and winner-take-all guided dynamic programming. 3DIMPVT 2011.
- [92] W. Hu, K. Zhang, L. Sun, J. Li, Y. Li, and S. Yang. Virtual support window for adaptive-weight stereo matching. VCIP 2011.
- [93] C. Cigla and A. Alatan. Information permeability for stereo matching. Signal Processing: Image Communication, 2013.
- [94] F. Hawi and M. Sawan. Phase-based passive stereovision systems dedicated to cortical visual stimulators. ICCD 2012.
- [95] D. Min, J. Lu, and M. Do. A revisit to cost aggregation in stereo matching: how far can we reduce its computational redundancy? ICCV 2011.
- [96] M. Bleyer, C. Rhemann, and C. Rother. PatchMatch stereo stereo matching with slanted support windows. BMVC 2011
- [97] C. Shi, G. Wang, X. Pei, B. He, and X. Lin. Stereo matching using local plane fitting in confidence-based support window. IEICE Trans. 95-D(2):699-702, 2012.
- [98] J. Kowalczuk, E. Psota, and L. Pérez. <u>Real-time stereo matching on CUDA using an iterative refinement method for</u> adaptive support-weight correspondences. IEEE TCSVT 23(1):94-104, 2013.
- [99] L. De-Maeztu, S. Mattoccia, A. Villanueva, and R. Cabeza. <u>Efficient aggregation via iterative block-based adapting support-weights</u>. IC3D 2011.
- [100] J. Martins, J. Rodrigues, and J. du Buf. Disparity energy model using a trained neuronal population. ISSPIT 2011.
- [101] N. Einecke and J. Eggert. Anisotropic median filtering for stereo disparity map refinement. VISAPP 2013.
- [102] I. Jung, T. Chung, J. Sim, and C. Kim. Consistent stereo matching under varying radiometric conditions. IEEE Transactions on Multimedia 2013.
- [103] M. Antunes and J. Barreto. Efficient stereo matching using histogram aggregation with multiple slant hypothesis. IbPRIA 2013.
- [104] Q. Yang. Recursive bilateral filtering. ECCV 2012.
- [105] Q. Yang. Hardware-efficient bilateral filtering for stereo matching. PAMI 2013.
- [106] K. Zhang, J. Li, Y. Li, W. Hu, L. Sun, and S. Yang. Binary stereo matching. ICPR 2012.
- [107] S. Damjanovic, F. van der Heijden, and L. Spreeuwers. Local stereo matching using adaptive local segmentation. ISRN Machine Vision 2012.
- [108] J. Lu, K. Shi, D. Min, L. Lin, and M. Do. Cross-based local multipoint filtering. CVPR 2012.
- [109] Y. Mizukami, K. Okada, A. Nomura, S. Nakanishi, and K. Tadamura. Sub-pixel disparity search for binocular stereo vision. ICPR 2012.
- [110] T. Liu, X. Dai, Z. Huo, X. Zhu, and L. Luo. A cost construction via MSW and linear regression for stereo matching. ICPR 2012
- [111] N. Manap and J. Soraghan. Disparity refinement based on depth image layers separation for stereo matching algorithms. J Telecom., Elec. Comp. Eng. 4(1), 2012.
- [112] Q. Yang. A non-local cost aggregation method for stereo matching. CVPR 2012.
- [113] F. Besse, C. Rother, A. Fitzgibbon, and J. Kautz. <u>PMBP: PatchMatch belief propagation for correspondence field estimation</u>. BMVC 2012.
- [114] N. Barzigar, A. Roozgard, S. Cheng, and P. Verma. <u>SCoBeP: Dense image registration using sparse coding and belief propagation</u>. JVIS 2012.
- [115] Y. Wang, E. Dunn, and J.-M. Frahm. <u>Increasing the efficiency of local stereo by leveraging smoothness constraints</u>. 3DIMPVT2012.
- [116] V. Drazic and N. Sabater. A precise real-time stereo algorithm. IVCNZ 2012.
- [117] S. Zhu, L. Zhang, and H. Jin. A locally linear regression model for boundary preserving regularization in stereo matching. ECCV 2012.
- [118] A. Arranz, M. Alvar, J. Boal, A. Sanchez-Miralles, and A. de la Escalera. Genetic algorithm for stereo correspondence with a novel fitness function and occlusion handling. IVAPP 2013.

- [119] J. Lu, H. Yang, D. Min, and M. Do. <u>PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation</u>. CVPR 2013.
- [120] C. Pham and J. Jeon. <u>Domain transformation-based efficient cost aggregation for local stereo matching</u>. IEEE TCSVT 2012
- [121] D. Chen, M. Ardabilian, X Wang, and L. Chen. An improved non-local cost aggregation method for stereo matching based on color and boundary cue. ICME 2013.
- [122] D. Min, J. Lu, and M. Do. Joint histogram based cost aggregation for stereo matching. PAMI 2013.
- [123] C. Stentoumis, L. Grammatikopoulos, I. Kalisperakis, E. Petsa, and G. Karras. <u>A local adaptive approach for dense stereo matching in architectural scene reconstruction</u>. ISPRS 3D-ARCH 2013.
- [124] M. Michael, J. Salmen, J. Stallkamp, and M. Schlipsing. Real-time stereo vision: optimizing semi-global matching. IV 2013.
- [125] P. Heise, S. Klose, B. Jensen, and A. Knoll. PatchMatch with Huber regularization for stereo matching. ICCV 2013.
- [126] X. Mei, X. Sun, W. Dong, H. Wang, and X. Zhang. Segment-tree based cost aggregation for stereo matching. CVPR 2013.
- [127] Q. Yang, P. Ji, D. Li, S. Yao, and M. Zhang. Near real-time stereo matching using adaptive guided filtering. Submitted to Image and Vision Computing 2013.
- [128] X. Zhou and P. Boulanger. Radiometric invariant stereo matching based on relative gradients. ICIP, pp. 2989-2992, 2012.
- [129] X. Zhou and P. Boulanger. New eye contact correction using radial basis function for wide baseline videoconference system. Pacific-Rim Conference on Multimedia (PCM), pp. 68-79, 2012.
- [130] D. Chen, L. Chen, and M. Ardabilian. A novel trilateral filter based adaptive support weight method for stereo matching. BMVC 2013.
- [131] Anonymous. A new fast and robust stereo matching algorithm for robotic systems. Submitted to IC2IT 2013.
- [132] C.-C. Kao and H.-Y. Lin. Stereo matching bit-plane slicing. Technical Report, 2013.
- [133] Y. Lin, N. Lu, X. Lou, F. Zou, Y. Yao, and Z. Du. <u>Matching cost filtering for dense stereo correspondence</u>. Mathematical Problems in Engineering, 2013.
- [134] Z. Lee, J. Juang, and T. Nguyen. <u>Local disparity estimation with three-moded cross census and advanced support weight</u>. IEEE Transactions on Multimedia 2013.
- [135] Y. Wang, K. Wang, E. Dunn, and J.-M. Frahm. Stereo under sequential optimal sampling: a statistical analysis framework for search space reduction. CVPR 2014.
- [136] T. Taniai, Y. Matsushita, and T. Naemura. Graph cut based continuous stereo matching using locally shared labels. CVPR 2014.
- [137] D. Altantawy, M. Obbaya, and S. Kishk. An artistic segment-based disparity map estimation method using gradient similarity and graph cuts. Submitted to CVIU 2013.
- [138] D. Altantawy, M. Obbaya, and S. Kishk. A fast non-local based stereo matching algorithm using graph cuts. Submitted to IMAVIS 2013.
- [139] X. Tan, C. Sun, D. Wang, Y. Guo, and T. Pham. Soft cost aggregation with multi-resolution fusion. ECCV 2014.
- [140] B. Ham, D. Min, C. Oh, M. Do, and K. Sohn. Probability-based rendering for view synthesis. IEEE TIP 2014.
- [141] L. Wang, Z. Liu, and Z. Zhang. <u>Feature based stereo matching using two-step expansion</u>. Mathematical Problems in Engineering, 2014.
- [142] M. Mozerov and J. van Weijer. Accurate stereo matching by two step global optimization. To appear in TIP 2015.
- [143] C. Zhang, Z. Li, R. Cai, H. Chao, and Y. Rui. As-rigid-as-possible stereo under second order smoothness priors. ECCV 2014
- [144] H. Jung, H. Park, I. Park, K. Lee, and S. Lee. Stereo reconstruction using high-order likelihoods. Submitted to CVIU 2014.
- [145] V. Muninder, U. Soumik, and A. Krishna. Robust segment-based stereo using cost aggregation. BMVC 2014.
- [146] L. Ma. Modified census transform based on the related information of neighborhood for stereo matching algorithm. Submitted to Computer Engineering and Applications 2014.
- [147] X. Tan, C. Sun, X. Sirault, R. Furbank, and T. Pham. Stereo matching using cost volume watershed and region merging. Submitted to Signal Processing: Image Communication, 2014.
- [148] Q. Yang. Stereo matching using tree filtering. PAMI, preprint, 2014.
- [149] D. Vu, B. Chidester, H. Yang, M. Do, and J. Lu. Efficient hybrid tree-based stereo matching with applications to postcapture image refocusing. IEEE TIP 2014.
- [150] J. Liu, C. Li, F. Mei, and Z. Wang. 3D entity-based stereo matching with ground control points and joint second order smoothness prior. To appear in Visual Computer, 2014.
- [151] J. Jiao, R. Wang, W. Wang, S. Dong, Z. Wang, and W. Gao. Local stereo matching with improved matching cost and disparity refinement. IEEE Multimedia 2014. (An earlier version appeared at ICME 2014.)
- [152] X. Sun, X. Mei, S. Jiao, M. Zhou, Z. Liu, and H. Wang. Real-time local stereo via edge-aware disparity propagation. Pattern Recognition Letters, 2014.
- [153] F. Cheng, H. Zhang, M. Sun, and D. Yuan. Cross-trees, edge and superpixel priors-based cost aggregation for stereo matching. Submitted to PR 2014.
- [154] S. Xu, F. Zhang, X. He, X. Shen, and X. Zhang. <u>PM-PM: PatchMatch with Potts model for object segmentation and stereo matching</u>. TIP 2015.

- [155] Anonymous. Using local cues to improve dense stereo matching. CVPR 2015 submission 973.
- [156] L. Wang, R. Yang, M. Gong, and M. Liao. Real-time stereo using approximated joint bilateral filtering and dynamic programming. Journal of Real-Time Image Processing 9(3):447-461, 2014.
- [157] Y. Zhan, Y. Gu, K. Huang, C. Zhang, and K. Hu. Accurate image-guided stereo matching with efficient matching cost and disparity refinement. Submitted to IEEE TCSVT, 2015.
- [158] S. Ploumpis, A. Amanatiadis, and A. Gasteratos. A stereo matching approach based on particle filters and scattered control landmarks. To appear in Image and Vision Computing 2015.
- [159] Y. Peng, G. Li, R. Wang, and W. Wang. <u>Stereo matching with space-constrained cost aggregation and segmentation-based disparity refinement</u>. 3DIPM 2015.
- [160] T. Taniai, Y. Matsushita, Y. Sato, and T. Naemura. Continuous stereo matching using local expansion moves. Submitted to PAMI 2015.
- [161] Anonymous. Segment graph based image filtering: fast structure-preserving smoothing. ICCV 2015 submission 492.
- [162] X. Huang, C. Yuan, and J. Zhang. Graph cuts stereo matching based on Patch-Match and ground control points constraint. Submitted to PCM 2015.

This page was designed by Daniel Scharstein and Anna Blasiak. Please send feedback and bug reports to schar@middlebury.edu. Support for this work was provided in part by NSF grant 0413169. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.