Tutorial 6: Refactoring R Code

Introduction

In this tutorial, you will refactor the code into separate scripts corresponding to each section. The dataset we will use comes from the palmerpenguins package, which contains measurements of penguins from three species. The results are displayed in

Load Libraries and Data

```
-- Attaching packages ----- tidyverse 1.3.2 --
v ggplot2 3.5.2
             v purrr
                       1.0.4
v tibble 3.2.1
                v dplyr
                       1.1.4
      1.3.1
                v stringr 1.5.1
v tidyr
       2.1.3
v readr
                v forcats 0.5.2
-- Conflicts ----- tidyverse conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
              masks stats::lag()
Rows: 333 Columns: 8
-- Column specification ------
Delimiter: ","
chr (3): species, island, sex
dbl (5): bill_length_mm, bill_depth_mm, flipper_length_mm, body_mass_g, year
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

Table 1: Intial penguins dataset.

species	island	bill_length_mmill	_depth_m fli p	per_length_mbody	_mass	sex	year
Adelie	Torgersen	39.1	18.7	181	3750	male	2007

species	island	bill_length_mmhi	ll_depth_m fli pper	_length_mb	ody_mass_sex	year
Adelie	Torgersen	39.5	17.4	186	3800 female	2007
Adelie	Torgersen	40.3	18.0	195	3250 female	2007
Adelie	Torgersen	36.7	19.3	193	3450 female	2007
Adelie	Torgersen	39.3	20.6	190	3650 male	2007
Adelie	Torgersen	38.9	17.8	181	3625 female	2007

Methods

In this section, we perform exploratory data analysis (EDA) and prepare the data for modeling.

```
Rows: 333
Columns: 8
$ species
                    <chr> "Adelie", "Adelie", "Adelie", "Adelie", "Adelie", "A-
                    <chr> "Torgersen", "Torgersen", "Torgersen", "Torgersen", ~
$ island
$ bill_length_mm
                    <dbl> 39.1, 39.5, 40.3, 36.7, 39.3, 38.9, 39.2, 41.1, 38.6~
                    <dbl> 18.7, 17.4, 18.0, 19.3, 20.6, 17.8, 19.6, 17.6, 21.2~
$ bill_depth_mm
$ flipper_length_mm <dbl> 181, 186, 195, 193, 190, 181, 195, 182, 191, 198, 18~
$ body_mass_g
                    <dbl> 3750, 3800, 3250, 3450, 3650, 3625, 4675, 3200, 3800~
$ sex
                    <chr> "male", "female", "female", "female", "male", "femala"
                    <dbl> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007
$ year
```

Rows: 1 Columns: 4

-- Column specification ------

Delimiter: ","

dbl (4): mean_bill_length, mean_bill_depth, mean_flipper_length, mean_body_mass

- i Use `spec()` to retrieve the full column specification for this data.
- i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Table 2: Summary statistics in base dataset.

$mean_bill_length$	${\rm mean_bill_depth}$	$mean_flipper_length$	$mean_body_mass$
43.99279	17.16486	200.967	4207.057

Figure 1: Boxplot of Bill Length against Species

Rows: 333 Columns: 5

-- Column specification -----

Delimiter: ","
chr (1): species

dbl (4): bill_length_mm, bill_depth_mm, flipper_length_mm, body_mass_g

i Use `spec()` to retrieve the full column specification for this data.

i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Table 3: Cleaned penguins dataset.

species	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
Adelie	39.1	18.7	181	3750
Adelie	39.5	17.4	186	3800
Adelie	40.3	18.0	195	3250
Adelie	36.7	19.3	193	3450
Adelie	39.3	20.6	190	3650
Adelie	38.9	17.8	181	3625

Model

We will fit a classification model using tidymodels to predict the species of a penguin based on its physical characteristics.

Table 4: Classification model.

	Length	Class	Mode
pre	3	stage_pre	list
fit	2	$stage_fit$	list
post	1	$stage_post$	list
trained	1	-none-	logical

Results

We evaluate the performance of the model using the test dataset.

Table 5: Model performance.

	Adelie	Chinstrap	Gentoo
Adelie	36	0	0
Chinstrap	1	17	0
Gentoo	0	0	30

Package Installation

We test out the output of the package regexcite20250416.

```
Rows: 3 Columns: 2
```

-- Column specification ------

Delimiter: ","
chr (1): Function
dbl (1): Output

- i Use `spec()` to retrieve the full column specification for this data.
- i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Table 6: Package usage.

Function	Output
regexcite20250416::is_leap(2000)	1
regexcite20250416::is_leap(1900)	0
$regexcite 20250416 :: temp_conv(41, `F', `C')$	5

Conclusion

In this tutorial, we:

- Loaded and cleaned the palmerpenguins dataset.
- Performed exploratory data analysis.
- Built a k-Nearest Neighbors classification model using tidymodels.
- Evaluated the model's performance.