Nombres complexes

Rappels et généralités

1.1. Définitions

 $\mathbb{C}=\left\{z=a+ib,(a,b)\in\mathbb{R}^2
ight\}, \ \text{où le complexe}\ i \ \text{vérifie}\ i^2=-1$

a) Condition d'égalité : pour a, a', b, b' réels, on a $a' = a' + ib' \Leftrightarrow (a = a' \text{ et } b = b')$

Cela signifie que l'écriture d'un complexe z sous la forme z = a + ib est unique

Les nombres **réels** Re(z) = a et Im(z) = b sont donc uniques, et définissent parfaitement z, de sorte que :

$$z = \operatorname{Re}(z) + i\operatorname{Im}(z).$$

Ce résultat permet ainsi d'identifier parties réelles et parties imaginaires en cas d'égalité de deux complexes.

- **Remarque:** sous ensembles de \mathbb{C} : \bullet <u>les réels</u>: on a: $z \in \mathbb{R} \iff \operatorname{Im} z = 0 \iff z = \operatorname{Re} z$
 - les imaginaires purs : on a $z \in i\mathbb{R} \iff \exists x \in \mathbb{R} \ / \ z = ix \iff \operatorname{Re} z = 0$

Exercice: soient $(x,y) \in \mathbb{R}^2$, z = x + iy et $n \in \mathbb{N}$. Calculer $\operatorname{Re}(z^n)$ et $\operatorname{Im}(z^n)$ en fonction de x et y.

- **b)** Opérations : soient z = a + ib et z' = a' + ib' deux nombres complexes (a, a', b, b') réels)
 - (i) Addition : la somme de z et z' est définie par z + z' = (a + a') + i(b + b')
 - (ii) <u>Multiplication</u>: le produit de z et z' est défini par zz' = (aa' bb') + i(ab' + a'b)
 - (iii) <u>Inverse</u>: si z est non nul, il admet l'inverse $\left| \frac{1}{z} = \frac{a ib}{a^2 + b^2} \right|$

Remarque 1: ces opérations coïncident avec l'addition, la multiplication et l'inversion sur \mathbb{R} .

Remarque 2: une factorisation importante: $\forall (z, z') \in \mathbb{C}^2$, $z^2 + z'^2 = (z + iz')(z - iz')$

Attention: on évitera, dans les démonstrations, d'écrire systématiquement un complexe z sous sa forme algébrique a + ib, ce qui alourdit souvent les calculs.

1.2. Conjugaison

- a) <u>Définition</u>: si z = a + ib, où $(a, b) \in \mathbb{R}^2$, on note $\overline{z} = a ib$, de sorte que $\overline{z} = \operatorname{Re} z i \operatorname{Im} z$
- b) Propriétés élémentaires : si z et z' sont deux complexes, alors :
- $\overline{z+z'} = \overline{z} + \overline{z'}$ (ii) $\overline{z.z'} = \overline{z}.\overline{z'}$ (iv) $\overline{(z^n)} = \overline{z}^n$ pour tout entier n $z \in \mathbb{R} \iff \overline{z} = z$ (vi) $z \in i\mathbb{R} \iff \overline{z} = -z$

1

c) Formules importantes: de $\left\{ \begin{array}{l} z = \operatorname{Re} z + i \operatorname{Im} z \\ \overline{z} = \operatorname{Re} z - i \operatorname{Im} z \end{array} \right., \quad \text{on tire} \quad \left\{ \begin{array}{l} \operatorname{Re} z = \frac{z + \overline{z}}{2} \\ \operatorname{Im} z = \frac{z - \overline{z}}{2i} \end{array} \right.$

1.3. Module

a) <u>Définition</u>: si z = a + ib, alors $z \overline{z} = (a + ib)(a - ib) = a^2 + b^2$ est un réel positif. On pose

$$|z| = \sqrt{z\,\overline{z}} = \sqrt{a^2 + b^2} \in \mathbb{R}_+$$

Le module coı̈ncide avec la valeur absolue sur $\mathbb R$

b) Propriétés élémentaires : si z et z' sont deux complexes, alors

(i)
$$|z|=0 \Longleftrightarrow z=0$$

(ii)
$$|-z| = |\overline{z}| = |z|$$

(iii)
$$|zz'| = |z||z'|$$

(iv)
$$\left| \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|} \right|$$
 (si $z' \neq 0$)

(v)
$$|\operatorname{Re} z| \leq |z|$$
 et $|\operatorname{Im} z| \leq |z|$

A RETENIR : $|z|^2=z\,\overline{z}$ qui permet de travailler avec les modules sans passer par la forme algébrique

$$\textit{Remarque}: \text{si } z \in \mathbb{C}^*, \text{ alors} \quad \frac{1}{z} = \frac{\bar{z}}{z\,\bar{z}} = \frac{\bar{z}}{|z|^2} \qquad \left(\text{cf. } \frac{1}{a+ib} = \frac{a-ib}{a^2+b^2}\right)$$

$$\left(\mathbf{cf.} \ \frac{1}{a+ib} = \frac{a-ib}{a^2+b^2}\right)$$

c) Inégalité triangulaire : soient z et z' deux nombres complexes. Alors

$$|z + z'| \leqslant |z| + |z'|$$

Avec **égalité** si et seulement si les vecteurs d'affixes z et z' sont colinéaires de même sens, c'est-à-dire :

$$\exists k \in \mathbb{R}_+ \ / \ z' = kz$$

Attention: en changeant z' en -z', on obtient $|z-z'| \le |z| + |z'|$

$$|z - z'| \leqslant |z| + |z'|$$

 $2^{\grave{e}me}$ inégalité triangulaire : on a la minoration : $|z-z'|\geqslant ||z|-|z'||$

$$: \boxed{|z-z'| \geqslant ||z|-|z'||}$$

1.4. Représentation des complexes

le plan \mathcal{P} est rapporté au repère orthonormé $(O, \vec{\imath}, \vec{\jmath})$.

a) Complexes et vecteurs/points du plan : soient a et b deux réels.

- Au complexe z = a + ib, on associe le vecteur $\vec{v} = a\vec{i} + b\vec{j}$ appelé vecteur image de z. Inversement, au vecteur $\vec{v}\binom{a}{b}$ on associe le complexe z=a+ib, appelé **affixe** de \vec{v} , et noté $\mathrm{aff}(\vec{v})$.
- De la même manière au complexe z=a+ib, on associe le point $A\binom{a}{b}$, appelé **point image** de z. Inversement, au point $A\binom{a}{b}$ on associe le complexe z=a+ib, appelé **affixe** de A, et noté $\mathrm{aff}(A)$.

Remarque 1: on notera souvent $\vec{v}(z)$ (resp. A(z)) pour : " \vec{v} (resp. A) ayant pour affixe z"

Remarque 2 : l'affixe de A est aussi l'affixe de \overrightarrow{OA}

Propriété 1 : pour tous vecteurs \vec{u} et \vec{v} , et pour tous <u>réels</u> λ et μ , $\operatorname{aff}(\lambda \vec{u} + \mu \vec{v}) = \lambda \operatorname{aff}(\vec{u}) + \mu \operatorname{aff}(\vec{v})$

2

Propriété 2: si $A(z_A)$ et $B(z_B)$, alors $\operatorname{aff}(\overrightarrow{AB}) = z_B - z_A$

Remarque 3 : si A(z), le point image de \bar{z} est le symétrique de A par rapport à la droite (Ox).

- **b)** Module: soit z = a + ib un complexe $((a, b) \in \mathbb{R}^2)$.
 - Si \vec{v} est le vecteur d'affixe z, alors $|z| = \sqrt{a^2 + b^2} = ||\vec{v}||$
 - Si A est le point d'affixe z, alors |z| = OA
 - On en déduit que si $A(z_A)$ et $B(z_B)$ sont deux points alors $AB = |z_B z_A| = \|\overrightarrow{AB}\|$

A RETENIR: on interprète toujours les modules comme des normes et des distances.

Remarque : l'inégalité triangulaire $|z+z'| \leq |z| + |z'|$ s'interprète alors comme :

La norme de la somme de deux vecteurs est inférieure à la somme de leurs normes

Plus géométriquement, "un côté d'un triangle est inférieur à la somme des deux autres", et plus banalement, "le plus court chemin entre deux point est la ligne droite".

2. Exponentielle complexe

2.1. Notation $e^{i\theta}$

a) **<u>Définition</u>** : si $\theta \in \mathbb{R}$, on pose

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Exemples: A SAVOIR $\heartsuit \heartsuit \heartsuit \heartsuit$

$$e^{i\pi/4} = \frac{1+i}{\sqrt{2}} \quad e^{i\pi/3} = \frac{1+\sqrt{3}i}{2} \quad e^{i\pi/6} = \frac{\sqrt{3}+i}{2} \quad e^{2i\pi/3} = \frac{-1+\sqrt{3}i}{2}$$

Remarque: on a $e^{i\theta}=1\Longleftrightarrow \theta=0$ $[2\pi]$

b) Complexes de module 1: on note \mathbb{U} l'ensemble des complexes de module 1, soit

$$\mathbb{U} = \{z \in \mathbb{C} \ / \ |z| = 1\}$$

Géométriquement, \mathbb{U} correspond au **cercle trigonométrique** $\mathcal{C}(O,1)$.

- Pour tout réel θ , $e^{i\theta}$ est de module 1, c'est-à-dire $e^{i\theta} \in \mathbb{U}$
- Inversement, tout complexe z de module 1 peut s'écrire sous la forme $e^{i\theta}$, avec $\theta \in \mathbb{R}$. Ainsi :

 \mathbb{U} , ensemble des complexes de module 1, est aussi l'ensemble des complexes de la forme $e^{i\theta}, \theta \in \mathbb{R}$

Remarque: on a: $z \in \mathbb{U} \Leftrightarrow \bar{z} = \frac{1}{z}$

2.2. Propriétés de l'exponentielle

On fixe θ et θ' dans \mathbb{R} .

a) Propriété fondamentale : $e^{i\left(\theta+\theta'\right)}=e^{i\theta}e^{i\theta'}$ Cas particuliers : $e^{i\left(\theta+\pi\right)}=-e^{i\theta}$ et $e^{i\left(\theta+\frac{\pi}{2}\right)}=ie^{i\theta}$ (Cf. formules d'angles associés).

b) Formule de de Moivre \heartsuit : $\forall n \in \mathbb{N} \left[(e^{i\theta})^n = e^{ni\theta} \right]$ c'est-à-dire :

$$\left(\cos\theta + i\sin\theta\right)^n = \cos n\theta + i\sin n\theta$$

- Conjugaison: $\overline{(e^{i\theta})} = e^{-i\theta} = \frac{1}{e^{i\theta}}$
- d) Formules d'Euler \heartsuit : $\begin{cases} \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \\ \sin \theta = \frac{e^{i\theta} e^{-i\theta}}{2} \end{cases}$

2.3. Forme trigonométrique d'un complexe non nul

a) Théorème:

Tout complexe z non nul peut s'écrire sous la forme :

$$z = \rho e^{i\theta}$$
, avec $\left\{ egin{array}{l}
ho > 0 \\ heta \in \mathbb{R} \end{array} \right.$

Nécessairement $\rho=|z|$ et $\theta=\arg z=\widehat{(\vec{i},\vec{v})}$ $[2\pi]$ où \vec{v} est le vecteur image de z.

b) <u>Unicité</u>: soient ρ et ρ' deux réels **strictement positifs** et θ , θ' deux réels. Alors

$$\rho e^{i\theta} = \rho' e^{i\theta'} \Longleftrightarrow \left\{ \begin{array}{l} \rho = \rho' \\ \theta = \theta' \end{array} [2\pi] \right.$$

Remarque 1: l'unique valeur d'arg z dans $]-\pi,\pi]$ est appelé argument principal, parfois noté Arg z.

Remarque 2 : la forme trigonométrique est une forme factorisée :

$$\underbrace{\rho}_{\in \mathbb{R}^+} \underbrace{e^{i\theta}}_{\in \mathbb{U}}$$

Exemples: mettre sous forme trigonométrique les complexes $1+i, -1+\sqrt{3}i$ et -3.

c) Liens avec la forme algébrique : soit $z \in \mathbb{C}^*$, x = Re z, y = Im z, $\rho = |z|$, $\theta = \text{arg } z$ [2 π]. Alors

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \quad \text{donc}$$

$$\begin{bmatrix} x = \rho \cos \theta \\ y = \rho \sin \theta \end{bmatrix} \quad \text{donc}$$

$$\cos \theta = \frac{\operatorname{Re} z}{|z|} = \frac{x}{\sqrt{x^2 + y^2}}$$

$$\sin \theta = \frac{\operatorname{Im} z}{|z|} = \frac{y}{\sqrt{x^2 + y^2}}$$

$$\tan \theta = \frac{\operatorname{Im} z}{\operatorname{Re} z} = \frac{y}{x} \text{ (si } x \neq 0)$$

$$\tan \theta = \frac{\operatorname{Im} z}{\operatorname{Re} z} = \frac{y}{x} \text{ (si } x \neq 0)$$

Exercice: soit $x \in \mathbb{R}$. Donner l'argument principal de z = -1 + ix à l'aide des fonctions $\begin{cases} \arccos \\ \arcsin \end{cases}$

2.4. Angles et arguments

a) Propriétés de l'argument : soient $(z, z') \in \mathbb{C}^{*2}$

(i)
$$\arg(zz') = \arg z + \arg z'$$
 $[2\pi]$ (ii) $\arg\left(\frac{1}{z}\right) = -\arg z = \arg(\bar{z})$ $[2\pi]$ (iii) $\arg\left(\frac{z'}{z}\right) = \arg z' - \arg z$ $[2\pi]$ (iv) $\forall n \in \mathbb{Z}$, $\arg(z^n) = n \arg z$ $[2\pi]$

Remarque: $arg(-z) = arg z + \pi [2\pi]$

Morale : la forme trigonométrique est mieux adaptée aux produits dans $\mathbb C$ que la forme algébrique :

 $\left\{\begin{array}{l} zz'=\rho\rho'e^{i\left(\theta+\theta'\right)} \text{ : on multiplie les modules et on ajoute les arguments.} \\ \frac{z'}{z}=\frac{\rho'}{\rho}e^{i\left(\theta'-\theta\right)} \text{ : on divise les modules et on retranche les arguments.} \end{array}\right.$

Angles de deux vecteurs :

- (i) Soient $\vec{v}(z)$, et $\vec{v}'(z')$ deux vecteurs non nuls). On a $\widehat{(\vec{v},\vec{v'})} = \arg\left(\frac{z'}{z}\right)[2\pi]$
- (ii) Soient A(a), B(b), C(c), D(d) quatre points distincts. Alors $\left| (\overrightarrow{AB}, \overrightarrow{CD}) \right| = \arg \left(\frac{d-c}{b-a} \right)$ $[2\pi]$ En particulier

$$\widehat{\left(\overrightarrow{AB},\overrightarrow{AC}\right)} = \arg\left(\frac{c-a}{b-a}\right) [2\pi]$$

Exemple: on donne A(1+i), B(2+4i), C(-1+5i): calculer $(\overrightarrow{AB}, \overrightarrow{AC})$

2.5. Applications à la trigonométrie

a) Module et argument de
$$1+e^{i\theta}$$
, pour $\theta\in]-\pi,\pi[$
(i) Idée: factoriser par $e^{i\frac{\theta}{2}}$: $1+e^{i\theta}=e^{i\frac{\theta}{2}}\left(e^{-i\frac{\theta}{2}}+e^{i\frac{\theta}{2}}\right)$, d'où

$$1 + e^{i\theta} = 2\cos\left(\frac{\theta}{2}\right)e^{i\frac{\theta}{2}}$$

Interprétation : angle moitié

- (ii) Cas général : même question si $\theta \in \mathbb{R}$ est quelconque
- (iii) On a de même:

$$1 - e^{i\theta} = -2i\sin\left(\frac{\theta}{2}\right)e^{i\frac{\theta}{2}}$$

5

Exercice: calculer le module et un argument de $1-e^{i\theta}$ et de $1-e^{2i\theta}$

Sommes trigonométriques: soit $x \in \mathbb{R}$. Calculer $C_n = \sum_{k=0}^n \cos(kx)$ et $S_n = \sum_{k=0}^n \sin(kx)$.

c) <u>Linéarisation</u>: le binôme de Newton appliqué à la formule d'Euler permet d'écrire $\cos^n(\theta)$ et $\sin^n(\theta)$ comme combinaison linéaire des $\cos{(k\theta)}$ pour $k \in [0, n]$. On écrit donc :

$$\cos^{n}(\theta) = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^{n}$$
 et $\sin^{n}(\theta) = \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^{n}$

Exemples : linéarisations de $\sin^4(\theta)$ et $\sin^5(\theta)$

Remarque: applications très nombreuses, notamment pour le calcul des primitives.

d) Polynômes de Tchébychev:

(i) La formule de Moivre $e^{ni\theta} = (e^{i\theta})^n$ s'écrit : $\cos(n\theta) + i\sin(n\theta) = (\cos\theta + i\sin\theta)^n$

En développant grâce au binôme de Newton et en identifiant parties réelles et imaginaires, cela permet d'obtenir $\cos(n\theta)$ et $\sin(n\theta)$ à l'aide de $\cos\theta$ et $\sin\theta$.

Exemple: calcul de $\cos(4\theta)$ et $\sin(4\theta)$ en fonction de $\cos\theta$ et $\sin\theta$.

(ii) Ainsi $\cos{(n\theta)}$ est un "polynôme en $\cos{\theta}$ ". Cela signifie qu'il existe un polynôme T_n vérifiant

$$\forall \theta \in \mathbb{R}, \cos(n\theta) = T_n(\cos\theta)$$

On montrera plus tard que le n-ième polynôme de Tchébychev T_n est unique.

Exemple: calculer T_1, T_2, T_3 et T_4 .

Exercice : calculer une formule générale de $T_n(x)$.

2.6. Exponentielle d'un nombre complexe

a) Définition:

(i) soit $z=a+ib\in\mathbb{C}$ (a et b réels). On pose $extbf{e} e^z=e^ae^{ib}=e^a(\cos b+i\sin b)$

Autrement dit,

$$\operatorname{Re}(e^{a+ib}) = e^a \cos b$$
 et $\operatorname{Im}(e^{a+ib}) = e^a \sin b$

Autrement dit, $\operatorname{Re}(e^{a+ib}) = e^a \cos b \quad \text{et} \quad \operatorname{Im}(e^{a+ib}) = e^a \sin b$ (ii) L'écriture $\underbrace{e^a \quad e^{ib}}_{\in \mathbb{R}^+ \ \in \mathbb{U}}$ est trigonométrique; donc $|e^z| = e^a = e^{\operatorname{Re} z} \quad \text{et} \quad \operatorname{arg}(e^z) = b = \operatorname{Im} z \left[\pi\right].$

$$\left| \left| e^z \right| = e^a = e^{\operatorname{Re} z} \right| \quad \text{et} \quad \left[\operatorname{arg}(e^z) = b = \operatorname{Im} z \left[\pi \right] \right]$$

Exemple: z = 1 + 2i et $t \in \mathbb{R}$: calculer $\operatorname{Re}(e^{zt})$, $\operatorname{Im}(e^{zt})$, $|e^{zt}|$ et $\operatorname{arg}(e^{zt})$

(iii) Les propriétés algébriques courantes de l'exponentielle restent vraies sur \mathbb{C} : pour tous z, z' complexes:

1.
$$e^{z+z'} = e^z e^{z'}$$
 2. $e^{-z} = \frac{1}{e^z}$ 3. $e^{z-z'} = \frac{e^z}{e^{z'}}$ 4. $e^{z} = e^{nz}$ $e^{z} = e^{nz}$

b) Existence d'un logarithme complexe :

Tout complexe A **non nul** peut s'écrire sous la forme $A = e^z$, avec z complexe.

Attention : il n'y a pas unicité du complexe z ("logarithme complexe de A").

Tous les $z_k = \ln \rho + i \left(\theta + 2k\pi\right)$ conviennent aussi, ce qui interdit la notation \ln dans \mathbb{C} .

Exemples: calculer les logarithmes complexes de 1+i et de -2

3. Racines des nombres complexes

Si A est un complexe A, on appelle racine carrée de A toute solution complexe de l'équation $z^2 = A$ On appelle de même racine cubique de A toute solution complexe de l'équation $z^3 = A$

Exemples: 1+2i est une racine carrée de A=-3+4i, et $e^{i\pi/3}$ une racine cubique de -1

3.1. Racines carrées

a) Théorème:

Tout complexe A non nul admet exactement deux racines carrées opposées

L'une d'elle est obtenue en prenant la racine carrée du module, et la moitié d'un argument

Exemples : racines carrées de $A=1+i\sqrt{3}$. Racines carrées de i

 $\it Remarque$: racines carrées de -1

Attention : LA NOTATION \sqrt{A} N A AUCUN SENS LORSQUE A EST COMPLEXE :

En effet il faudrait faire un choix sur l'une des deux racines carrées.

On s'en tiendra impérativement à : "soit a une racine carrée de A".

b) **Méthode algébrique :** (lorsque la forme trigonométrique de A n'est pas "simple")

En écrivant A=a+ib et z=x+iy (a,b,x,y réels) on peut chercher les racines carrées de A de la manière suivante :

$$z^2 = A \Leftrightarrow \left\{ \begin{array}{l} x^2 - y^2 + 2ixy = a + ib \\ |z|^2 = |A| \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x^2 - y^2 = a \\ x^2 + y^2 = |A| \\ 2xy = b \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x^2 = \frac{1}{2}(|A| + a) \\ y^2 = \frac{1}{2}(|A| - a) \\ 2xy = b \end{array} \right.$$

La dernière équation détermine si x et y ont même signe, ce qui donne, vu les deux premières équations, deux couples de solutions opposées.

Exemple: racines carrées de A = 3 - 4i.

c) Equation du second degré à coefficients complexes :

L'équation (E) $az^2+bz+c=0$, où $(a,b,c)\in\mathbb{C}^3$ et $a\neq 0$ admet deux solutions complexes :

$$\frac{-b-\delta}{2a}$$
 et $\frac{-b+\delta}{2a}$

où δ est une racine carrée (complexe) du discriminant (complexe) $\Delta = b^2 - 4ac$

Exemple : résoudre $z^2 + iz + 1 + 3i = 0$

Remarque 1: dans le cas où $\Delta = 0$, on trouve une unique solution double.

Remarque 2: dans le cas où $(a,b,c) \in \mathbb{R}^3$, alors $\Delta \in \mathbb{R}$, et on retrouve les formules de terminale:

7

 $-\underline{\text{Si }\Delta>0}$: on peut prendre $\delta=\sqrt{\Delta}$ et on a les solutions : $\frac{-b\pm\sqrt{\Delta}}{2a}$.

- <u>Si</u> $\Delta < 0$: on peut prendre $\delta = i\sqrt{-\Delta}$ et on a les solutions : $\frac{-b\pm i\sqrt{-\Delta}}{2a}$

3.2. Racines cubiques des nombres complexes

a) Les racines cubiques de l'unité et le nombre j: on pose

$$j = e^{2i\pi/3} = \frac{-1 + i\sqrt{3}}{2} \in \mathbb{U}$$

(i) j vérifie la propriété fondamentale $\boxed{j^3=1}$ De plus

$$\overline{j} = e^{-2i\pi/3} = e^{4i\pi/3} = \frac{-1 - i\sqrt{3}}{2}$$

donc

$$\overline{j}=j^2$$
 et $\overline{j}^3=1$

On dit que j et \overline{j} sont des racines cubiques de l'unité.

- (ii) Les solutions complexes de l'équation $z^3=1$ sont 1,j et \overline{j} . Autrement dit 1,j et j^2 sont les seules racines cubiques de l'unité
- (iii) Comme $z^3 1 = (z 1)(z^2 + z + 1)$, on en déduit

$$1 + j + j^2 = 0$$

Remarque : les solutions de $z^2+z+1=0$ sont bien $\frac{-1\pm i\sqrt{3}}{2}$

b) Cas général:

Tout complexe non nul A admet exactement trois racines cubiques

Plus précisément si la forme trigonométrique de A est $A=re^{i\alpha}$ (r>0), alors ses racines cubiques sont obtenues en prenant la racine cubique $\sqrt[3]{r}$ du module et le tiers $\frac{\alpha}{3}$ de l'argument MODULO $\frac{2\pi}{3}$, soit

$$\boxed{ \sqrt[3]{r}e^{i\frac{\alpha}{3}}, \quad \sqrt[3]{r}e^{i\left(\frac{\alpha}{3}+\frac{2\pi}{3}\right)} \quad \text{et} \quad \sqrt[3]{r}e^{i\left(\frac{\alpha}{3}-\frac{2\pi}{3}\right)} }$$

Enfin,

si z_0 est une racine cubique quelconque de A, les deux autres sont jz_0 et j^2z_0

Remarque: 0 admet l'unique racine cubique 0

Exemple 1: racines cubiques de -2 + 2i

Exemple 2: racines cubiques de -1 ($-1 = e^{i\pi}$ ou $-1 = e^{3i\pi}$?)

c) Egalité des cubes dans \mathbb{C} : pour a et b complexes, on a l'équivalence

$$a^3 = b^3 \Longleftrightarrow \left\{ \begin{array}{l} a = b \text{ ou} \\ a = jb \text{ ou} \\ a = j^2b \end{array} \right.$$

On fera donc extrêmement attention dans les équations complexes de degré 3 à ne pas oublier les deux tiers des solutions!!

8

3.3. Racines n-ièmes des complexes

a) Racines n-ièmes de l'unité :

(i) Définition:

Soit $n \in \mathbb{N}^*$. Une racine n-ième de l'unité est un nombre complexe z vérifiant $z^n = 1$

On note \mathbb{U}_n l'ensemble des racines n-ièmes de l'unité. Par exemple $\mathbb{U}_2=\{1,-1\}$

(ii) Description : il y a exactement n racines n-ièmes de l'unité, données par l'expression

$$z_k = e^{2ik\pi/n}, k \text{ parcourant } \llbracket 0, n-1
rbracket$$

L'ensemble [[0, n-1]] peut être remplacé par n'importe quel ensemble <u>de n entiers consécutifs</u>.

Géométriquement, l'ensemble des points d'affixes z_0, \ldots, z_{n-1} forme un polygone régulier à n côtés inscrit dans le cercle trigonométrique.

(iii) Suite géométrique périodique : on pose

$$\omega = e^{2i\pi/n} \in \mathbb{U}_n$$

Alors

$$\mathbb{U}_n = \left\{ \omega^0, \omega^1, \omega^2, \dots, \omega^{n-1} \right\}$$

 $\mathbb{U}_n = \left\{\omega^0, \omega^1, \omega^2, \dots, \omega^{n-1}\right\}$ La suite $\left(\omega^k\right)_{k\in\mathbb{Z}}$ est **périodique de période** n, i.e.

$$\boxed{\forall k \in \mathbb{Z}, \ \omega^{k+n} = \omega^k}$$

De plus on a

$$\boxed{\frac{1}{\omega^k} = \omega^{n-k} = \overline{\omega^k}}$$

(iv) Somme des racines de l'unité : la somme des racines n-ièmes de l'unité est nulle , soit

$$1 + \omega + \omega^2 + \dots + \omega^{n-1} = 0$$

b) Racines d'un nombre complexe non nul :

(i) <u>Définition</u>: soit $A = Re^{i\alpha} \in \mathbb{C}^*$.

On appelle racine n-ième de A toute solution de l'équation $z^n=A$

(ii) Description : tout complexe **non nul** $A=Re^{i\alpha}$ admet exactement n racines n-ièmes, données par

$$z_k = \sqrt[n]{R}e^{i(\alpha/n + 2k\pi/n)}$$

où k parcourt un ensemble de n entiers consécutifs. En particulier UNE racine n-ième de A est

$$z_0 = \sqrt[n]{R}e^{i\alpha/n}$$

(iii) Lien avec \mathbb{U}_n : soit a une racine n-ième de A (quelconque, dite "particulière") : alors

les autres racines n-ièmes de A s'obtiennent en multipliant a par les racines n-ièmes de l'**unité**

Les racines n-ièmes de A sont donc alors, en posant toujours $\omega=e^{2i\pi/n}$:

$$a, a\omega, \ldots, a\omega^{n-1}$$

(iv) Egalité de puissances : soient a et b des complexes. Alors

$$\boxed{a^n = b^n \Longleftrightarrow \exists k \in [[0, n-1]] \ / \ a = \omega^k b}$$

c) Exemples:

(i) Racines cubiques de l'unité :

 $\mathbb{U}_3 = \left\{1, e^{2i\pi/3}, e^{4i\pi/3}\right\} = \left\{1, e^{2i\pi/3}, e^{-2i\pi/3}\right\} = \left\{1, j, j^2\right\}$

avec

 $j^3 = 1$ et $1 + j + j^2 = 0$

Pour tout $k \in \mathbb{Z}$

$$j^{3k} = 1$$
, $j^{3k+1} = j$, $j^{3k+2} = j^2$

et

$$a^{3} = b^{3} \Longleftrightarrow \begin{cases} a = b \\ a = jb \\ a = j^{2}b \end{cases}$$

(ii) Racines quatrièmes de l'unité :

$$\mathbb{U}_4 = \{1, i, -1, -i\}$$

Pour tout $k \in \mathbb{Z}$

$$i^{2k} = (-1)^k$$
, $i^{2k+1} = (-1)^k i$

ët

$$a^{4} = b^{4} \Longleftrightarrow \begin{cases} a = b \\ a = -b \\ a = ib \\ a = -ib \end{cases}$$

(iii) Racines cinquièmes de l'unité :

$$\mathbb{U}_5 = \left\{1, e^{2i\pi/5}, e^{4i\pi/5}, e^{-2i\pi/5}, e^{-4i\pi/5}\right\} = \left\{1, \omega, \omega^2, \omega^3, \omega^4\right\} \quad \text{avec} \quad \omega = e^{2i\pi/5}$$

$$\omega^5 = 1$$

$$1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$$

$$\omega^3 = \overline{\omega^2}$$
 et $\omega^4 = \overline{\omega}$