Exercises

November 20, 2019

Questions marked with (*) can be solved using finite fields.

- 1. Let $X = \{(t, t^2, t^3) \mid t \in \mathbb{C}\} \subset \mathbb{C}^3$, and let I(X) be the ideal of all polynomials vanishing on X. Find generators for X.
- 2. Show that the plane curve $y^2 = x^3 x$ is smooth.
- 3. Show that any algebraic set in \mathbb{C}^n is either finite or has the cardinality of the continuum (Hint: use Chevalley's theorem).
- 4. Let $\ell_1, \ell_2, \ell_3 \subset \mathbb{C}^3$ be three (affine, complex) lines. Show that there is a quadratic polynomial f such that $\ell_1, \ell_2, \ell_3 \subset Z(f)$. (Hint: prove first that every nine points are contained in Z(f), for some quadratic f).
- 5. (a) Find an algebraic set $X \subset \mathbb{C}^2$ whose projection on the x-axis is $\mathbb{C} \setminus \{0, 1, 2\}$.
 - (b) Find an algebraic set $X \subset \mathbb{C}^n$ whose projection to the x, y-plane is $(\mathbb{C}^2 \setminus (0 \times \mathbb{C})) \cup \{(0,0)\}$ (i.e., the plane, minus the y-axis, plus the origin).
- 6. Let $X = Z(x^n y^m) \subset \mathbb{C}^2$. Show that $X \cap B(0, 1/2) \times B(0, 1/2)$ is homeomorphic to a disk if and only if n, m are relatively prime.
- 7. Let $X \subset Mat_{m,n}(\mathbb{C})$ be the set of all matrices of rank at most d. Show that X is an algebraic set in $Mat_{m,n}(\mathbb{C}) = \mathbb{C}^{mn}$.
- 8. Let f be an irreducible polynomial over \mathbb{Q} . We say that a point $p = (a, b) \in Z(f)$ is generic if a is a transcendental number (equivalently, if b is transcendental). Show that, for any two generic points $p, q \in Z(f)$, there is an element $\sigma \in Gal(\mathbb{C}/\mathbb{Q})$ such that $\sigma(p) = q$.
- 9. (*) Let $A \subset M_n(\mathbb{C})$ be an algebraic set of matrices, and suppose that

- (a) Every element of A is invertible.
- (b) If $g, h \in A$, then $gh \in A$.

Show that A is a group (i.e., $g \in A$ implies $g^{-1} \in A$).

- 10. (*) Let $f: \mathbb{C}^n \to \mathbb{C}^n$ be a polynomial map such that $f^3 = Id$.
 - (a) Show that f must have a fixed point.
 - (b) Show that either f has infinitely many fixed points, or the number of fixed points of f is congruent to 1 modulo 3.
- 11. (a) Let $V \subset \mathbb{C}^2$ be a one-dimensional subspace, and suppose that V is invariant under the action of $\operatorname{Gal}(\mathbb{C}/\mathbb{Q})$. Show that V contains a non-zero vector with rational coefficients.
 - (b) Let $V \subset \mathbb{C}^n$ be a vector subspace, and assume that V is invariant under the action of $\operatorname{Gal}(\mathbb{C}/\mathbb{Q})$. Show that V has a basis consisting of vectors in \mathbb{Q}^n . (Hint: induction on n).
 - (c) Let $X \subset \mathbb{C}^n$ be an algebraic set which is invariant under $\operatorname{Gal}(\mathbb{C}/\mathbb{Q})$. Show that there are polynomials f_1, \ldots, f_m with rational coefficients such that X = V(I).