Lecture 5: Σ-protocols from DLOG

Zero-knowledge proofs

263-4665-00L

Lecturer: Jonathan Bootle

Announcements

- Exercise sheet 5 posted on Moodle
- Graded, 10% of final grade
- Submit through Moodle on or before 23:59, 20/10/2023
- Please email if you think you've found a typo or mistake

• 20/10/2023 exercise session used for optional/starred exercises

Last time

- Composition methods for Σ -protocols \checkmark
- Σ -protocols from MPC in the Head \checkmark
- The Fiat-Shamir Transformation

• Making Σ -protocols zero-knowledge against malicious verifiers

Agenda

ullet Making Σ -protocols zero-knowledge against malicious verifiers

Sigma protocols from DLOG

Intro level: Schnorr and homomorphisms

Medium level: multiplicative relations

Advanced level: low-degree circuit proofs

Similar techniques when we construct arguments with short proof sizes

Coin flip protocol

Forces honest V by generating challenges together

 $\mathcal C$ a group

Compiling Σ -protocols to fully ZK protocols

Variant where (P, V) have opposite roles in coin flip protocol

First assume $\mathcal C$ is polynomially bounded

$$pp \leftarrow_{\$} \text{Setup}(1^{\lambda})$$

$$P^{ZK}(pp,x,w;\rho,c)$$

$$a \leftarrow_{\$} P_{1}(x,w;\rho)$$

$$c \leftarrow_{\$} C$$

$$(C,d) \leftarrow_{\$} Commit(pp,c)$$

$$c'' \coloneqq c + c'$$

$$z \leftarrow_{\$} P_{2}(x,w,a,c'';\rho)$$

$$Q^{ZK}(pp,x;c')$$

$$a,C$$

$$c' \leftarrow_{\$} C$$

$$c'' \coloneqq c + c'$$

$$Output V(x,a,c'',z)$$

$$\wedge Verify(pp,C,d,c) == 1$$

Theorem:

Against malicious verifiers

 (P^{ZK}, V^{ZK}) has completeness, k-special soundness and zero-knowledge.

Completeness and special soundness analysis

Completeness:

• Follows from the completeness of the Σ -protocol and correctness of the commitment scheme.

Special Soundness:

Zero-knowledge analysis

a, c, z from Σ -protocol

What is the verifier's view? c' sampled by

- ((a,C),c',(z,c,d))
- V(x, a, c + c', z) = 1
- Verify(pp, C, d, c) = 1.
- Commit
- c' is independent of c or we could break hiding.
- Hence c + c' is uniformly random.

Why is the simulator valid? (efficient, indistinguishable)

- \mathcal{C} is polynomially bounded and we clear Step 5 in $|\mathcal{C}|$ tries
- SHVZK of the Σ -protocol means (a, z) distributions indistinguishable

verifier

Commit, decommit

distributions from

```
S^{ZK}(pp,x)
                                  V^{ZK,*}(pp,x)
1. c'', c \leftarrow_{\$} C.
2. (a,z) \leftarrow_{\$} S(x,c'').
```

- 3. $(C, d) \leftarrow_{\$} Commit(pp, c)$.
- 4. $c' \leftarrow_{\$} V^{ZK,*}(pp,x,C,a)$
- 5. If $c + c' \neq c''$ go back to 1.
- 6. Output ((a, C), c', (z, c, d)).

We could have made this ZK without commits using guessing strategy

Compiling Σ -protocols to fully ZK protocols

Large \mathcal{C} e.g. $\{0,1\}^{\lambda}$ for simplicity

Compiling Σ -protocols to fully ZK protocols

$$pp \leftarrow_{\$} \text{Setup}(1^{\lambda})$$

Theorem:

Against malicious verifiers

 (P^{ZK}, V^{ZK}) has completeness, knowledge-soundness and ZK.

Completeness and knowledge soundness sketch

Completeness:

• Follows from the completeness of the base Σ -protocol and correctness of the commitment scheme.

Knowledge Soundness:

- The theorem that shows special soundness ⇒ knowledge soundness has an extractor that gathers trees of accepting transcripts
- Use the same extractor but rewind the whole challenge selection procedure as one block
- Then apply the special soundness extractor

Zero-knowledge sketch

a, c'', z from Σ -protocol

What is the verifier's view?

•
$$\left(a, \left(C_i, c'_i, d_i, c_i\right)_{i=1}^{\lambda}, z\right)$$

 c_i' sampled by verifier

- V(x, a, c'', z) = 1
- Verify $(pp, C_i, d_i, c_i) = 1, i \in [\lambda]$.
- c_i 's are independent of c_i s or we could break hiding.
- Hence $c'' \coloneqq (c_1 \oplus c'_1, ..., c_{\lambda} \oplus c'_{\lambda})$ is uniformly random.

Why is the simulator valid? (efficient, indistinguishable)

- For each i, we clear Step 6i in 2 tries.
- SHVZK of the Σ -protocol means (a,z) distributions indistinguishable 12

```
S^{ZK}(pp,x)
                                         V^{ZK,*}(pp,x)
1. c'' \leftarrow_{\$} \{0,1\}^{\lambda}.
2. (a,z) \leftarrow_{\$} S(x,c'').
For i = 1, ..., \lambda:
3i. c_i \leftarrow_{\$} \{0,1\}.
4i. (C_i, d_i) \leftarrow_{\$} Commit(pp, c_i).
5i. c_i' \leftarrow_{\$} V^{ZK,*}(pp, x, ..., C_i,)
6i. If c_i \oplus c_i' \neq c_i'' go back to 3i.
7. Output \left(a, \left(C_i, c_i', d_i, c_i\right)_{i=1}^{\lambda}, z\right).
```

Hard to guess and simulate bitwise without the commitments

Agenda

• Making Σ -protocols zero-knowledge against malicious verifiers \checkmark

Sigma protocols from DLOG

Intro level: Schnorr and homomorphisms

Medium level: multiplicative relations

Advanced level: low-degree circuit proofs

Similar techniques when we construct arguments with short proof sizes

Schnorr protocol

Changed notation, used capitals for group elements

• $\mathcal{R}_{DLOG} \coloneqq \{((\mathbb{G}, G, A, p), a) : G, A \in \mathbb{G}, \ a \in \mathbb{Z}_p, A = a \cdot G\}.$ Trivial language

$$p \approx 2^{\lambda}$$

Guessing strategy for full ZK will not work

Success probability $^{1}/_{p} \approx 0$

Idea: (P, V) randomize the instance P solves it, just like GI

Completeness: and 2-soundness analysis Completeness:

• z = xa + b so $z \cdot G = (xa + b) \cdot G = xa \cdot G + b \cdot G = x \cdot A + B$

• This is exactly the verifier's check.

2-special soundness:

- Consider a 2-tree of accepting transcripts.
- Subtracting, $(z'-z)\cdot G=(x'-x)\cdot A$.
- Dividing, $A = \frac{z'-z}{x'-x} \cdot G$, so $\alpha = \frac{z'-z}{x'-x}$ is a witness.
- The extractor returns $a \in \mathbb{Z}_p$.
- ullet Clearly, a can be computed efficiently.

$$z \cdot G = x \cdot A + B$$

$$z' \cdot G = x' \cdot A + B$$

Used $x \neq x'$

Linear algebra view of 2-soundness analysis Completeness:

- z = xa + b so $z \cdot G = (xa + b) \cdot G = xa \cdot G + b \cdot G = x \cdot H + H'$
- This is exactly the verifier's check.

2-special soundness:

• Consider a 2-tree of accepting transcripts.

•
$$Q(x,x') \coloneqq \begin{pmatrix} x & 1 \\ x' & 1 \end{pmatrix}$$
 is invertible. $Q^{-1} = \frac{1}{x-x'} \begin{pmatrix} 1 & -1 \\ -x' & x \end{pmatrix}$

• Inverting,
$$\begin{pmatrix} A \\ B \end{pmatrix} = \frac{1}{x - x'} \begin{pmatrix} 1 & -1 \\ -x' & x \end{pmatrix} \begin{pmatrix} z \\ z' \end{pmatrix} \cdot G$$

• The extractor returns
$$a \coloneqq \frac{z'-z}{x'-x} \in \mathbb{Z}_p$$
.

 $\begin{pmatrix} Z \\ Z' \end{pmatrix} \cdot G = \begin{pmatrix} \chi & 1 \\ \chi' & 1 \end{pmatrix} \cdot \begin{pmatrix} A \\ B \end{pmatrix}$

SHVZK analysis

Note: H does not hide x but SHVZK means the protocol doesn't make it easier to compute x

What is the verifier's view?

- (B, x, z) with $z \cdot G = x \cdot A + B$.
- $b \leftarrow_{\$} \mathbb{Z}_p$ so z = xa + b is uniform in \mathbb{Z}_p .
- $B = z \cdot G x \cdot A$ is uniquely determined.

$$S(\mathbb{G}, G, A, p, x)$$

$$1. z \leftarrow_{\$} \mathbb{Z}_p.$$

$$2. B \coloneqq z \cdot G - x \cdot A.$$

3. Output (B, x, z).

Why is the simulator valid? (efficient, indistinguishable)

- Clearly, the simulator is efficient.
- z and B have identical distributions to the real protocol.
- We simply simulated in reverse order.

Same DLOG protocol

Non-trivial language

$$\bullet \ \mathcal{R}_{=DLOG} := \left\{ \left((\mathbb{G}, G, A, \mathbf{U}, \mathbf{V}, p), a \right) : \begin{matrix} G, A, \mathbf{U}, \mathbf{V} \in \mathbb{G}, \ a \in \mathbb{Z}_p, \\ A = a \cdot G, \ \mathbf{V} = a \cdot \mathbf{U} \end{matrix} \right\}.$$

Idea: run two Schnorr protocols with the same witness and randomness

Different from AND composition

Completeness and 2-soundness analysis

Completeness:

•
$$z = xa + b$$
 so $z \cdot G = (xa + b) \cdot G = xa \cdot G + b \cdot G = x \cdot A + B$

- Similarly, $z \cdot U = (xa + b) \cdot U = xa \cdot U + b \cdot U = x \cdot V + W$
- These are exactly the verifier's checks.

2-special soundness:

- Consider a 2-tree of accepting transcripts.
- $Q(x, x') \coloneqq \begin{pmatrix} x & 1 \\ x' & 1 \end{pmatrix}$ is invertible.

• Inverting,
$$\begin{pmatrix} A & V \\ B & W \end{pmatrix} = Q^{-1} \begin{pmatrix} Z \\ Z' \end{pmatrix} \cdot (G, U) := \begin{pmatrix} a \\ b \end{pmatrix} \cdot (G, U) = \begin{pmatrix} x & 1 \\ x' & 1 \end{pmatrix} \cdot \begin{pmatrix} A & V \\ B & W \end{pmatrix}$$

• The extractor returns $a \in \mathbb{Z}_p$.

 $\Rightarrow a$ a witness

B, W

SHVZK analysis

$S(\mathbb{G}, G, A, U, V, p, x)$

- 1. $z \leftarrow_{\$} \mathbb{Z}_p$.
- $2. B \coloneqq z \cdot G x \cdot A.$
- 3. $W := z \cdot U x \cdot V$.
- 4. Output (B, W, x, z).

What is the verifier's view?

- (B, W, x, z) with $z \cdot G = x \cdot A + B$ and $z \cdot U = x \cdot V + W$.
- $b \leftarrow_{\$} \mathbb{Z}_p$ so z = xa + b is uniform in \mathbb{Z}_p .
- $B = z \cdot G x \cdot A$ and $W = z \cdot U x \cdot V$ are uniquely determined.

Why is the simulator valid? (efficient, indistinguishable)

- Clearly, the simulator is efficient.
- z and B, W have identical distributions to the real protocol.
- We simply simulated in reverse order.

Application: mix-networks

Encryption mix networks shuffle encrypted messages

Ciphertexts

Proof guarantees that P_i rerandomized and shuffled correctly (but maybe not very randomly)

 \exists honest player \Rightarrow Z_i properly rerandomized and shuffled

Proving correct rerandomisation

Rerandomising Elgamal ciphertexts:

$$\bullet (C_1, C_2) = (M + r \cdot H, r \cdot G).$$

•
$$(C_1, C_2) + (r' \cdot H, r' \cdot G)$$
 Add an encryption of $0_{\mathbb{G}}$
= $(M + (r + r') \cdot H, (r + r') \cdot G) \coloneqq (C'_1, C'_2).$

•
$$(C_1', C_2') \sim_{rerand} (C_1, C_2) \Leftrightarrow (C_1' - C_1, C_2' - C_2)$$
 have same DLOG.

Shuffling and rerandomising two ciphertexts

We want to prove

$$(C_1, C_2) \longrightarrow (C'_1, C'_2)$$

 $(D_1, D_2) \longrightarrow (D'_1, D'_2)$

$$(C_1, C_2) \sim_{rerand} (C'_1, C'_2) \text{ AND } (D_1, D_2) \sim_{rerand} (D'_1, D'_2)$$

OR

$$(C_1, C_2) \sim_{rerand} (D'_1, D'_2) \text{ AND } (D_1, D_2) \sim_{rerand} (C'_1, C'_2)$$

We can use the protocol for $\mathcal{R}_{=DLOG}$ with AND, OR composition.

Extending to many ciphertexts

Use a permutation network.

Informal Theorem:

For any permutation $\sigma \in \Sigma_n$, there is an efficient algorithm computing settings for the S_2 boxes to produce σ .

Give a proof for every box, AND compose

 $\log n$ layers, $O(n \log n)$ boxes

Proof size, prover, verifier complexity $O(n \log n)$

Pedersen protocol

Trivial language

•
$$\mathcal{R}_{Ped} \coloneqq \left\{ \left((\mathbb{G}, G, H, A, p), a, r \right) : \begin{matrix} G, H, A \in \mathbb{G}, \ a, r \in \mathbb{Z}_p, \\ A = a \cdot G + r \cdot H \end{matrix} \right\}.$$

Idea: (P, V) randomize the instance P solves it

Completeness and 2-soundness analysis

Completeness:

- z = xa + b and t = xr + s.
- So $z \cdot G + t \cdot H = (xa + b) \cdot G + (xr + s) \cdot H = x \cdot A + B$.
- This is exactly the verifier's check.

2-special soundness:

- Consider a 2-tree of accepting transcripts.
- Q(x, x') is invertible.

• Inverting,
$$\binom{A}{B} = Q^{-1} \binom{Z}{Z'} \cdot G + Q^{-1} \binom{t}{t'} \cdot H \coloneqq \binom{a}{b} \cdot G + \binom{r}{S} \cdot H.$$

• The extractor returns $a, r \in \mathbb{Z}_p$.

$$x \neq x' \qquad \begin{pmatrix} z \\ z' \end{pmatrix} \cdot G + \begin{pmatrix} t \\ t' \end{pmatrix} \cdot H$$

$$= \begin{pmatrix} x & 1 \\ x' & 1 \end{pmatrix} \cdot \begin{pmatrix} A \\ B \end{pmatrix}$$

$$z', t'$$

 $\Rightarrow a$ a witness

SHVZK analysis

What is the verifier's view?

- (B, x, z, t) with $z \cdot G + t \cdot H = x \cdot A + B$.
- $b \leftarrow_{\$} \mathbb{Z}_p$ so z = xa + b is uniform in \mathbb{Z}_p .
- $s \leftarrow_{\$} \mathbb{Z}_p$ so t = xr + s is uniform in \mathbb{Z}_p .
- $B = z \cdot G + t \cdot H x \cdot A$ is uniquely determined.

Why is the simulator valid? (efficient, indistinguishable)

- Clearly, the simulator is efficient.
- z, t and B have identical distributions to the real protocol.

$$S(\mathbb{G}, G, H, C, p, x)$$

- 1. z, $t \leftarrow_{\$} \mathbb{Z}_p$.
- $2.B \coloneqq z \cdot G + t \cdot H x \cdot A.$
- 3. Output (B, x, z, t).

Homomorphisms

Definition:

A function $f: A \to B$ is a group homomorphism if A, B are groups and $\forall a_1, a_2 \in A, f(a_1) + f(a_2) = f(a_1 + a_2).$

```
Note: if f: \mathbb{Z}_p^m \to \mathbb{G}^n is a group homomorphism,
then \forall x \in \mathbb{Z}_p, \vec{a} \in \mathbb{Z}_p^m : f(x \cdot \vec{a}) = x \cdot f(\vec{a})
```

Definition:

A commitment scheme is homomorphic if $\forall pp \in \text{Setup}(1^{\lambda})$, for all $m_1, m_2 \in \mathfrak{M}, r_1, r_2 \in \mathfrak{R}$, $\text{Commit}(pp,\cdot,\cdot) : \mathfrak{M} \times \mathfrak{R} \to \mathfrak{C}$ is a group homomorphism i.e.

 $Commit(pp, m_1, r_1) + Commit(pp, m_2, r_2) = Commit(pp, m_1 + m_2, r_1 + r_2)$

Examples: Pedersen and Elgamal.

Homomorphism preimage protocol

Let $f: \mathbb{Z}_p^m \to \mathbb{G}^n$ be a group homomorphism.

Trivial relation if
$$Im(f) = \mathbb{G}^n$$

•
$$\mathcal{R}_{Hom} \coloneqq \left\{ \left(\left(\mathbb{G}, f, \vec{A}, p \right), \vec{a} \right) : \vec{a} \in \mathbb{Z}_p^m, \vec{A} \in Im(f), f(\vec{a}) = \vec{A} \right\}.$$

Idea: (P, V) randomize the instance P solves it

Generalisation of Schnorr protocol

Proof and instantiations: optional exercise

Commitments to 0 and linear relations

•
$$\mathcal{R}_{Ped} := \left\{ \left((\mathbb{G}, G, H, A, p), a, r \right) : \begin{matrix} G, H, A \in \mathbb{G}, \ a, r \in \mathbb{Z}_p, \\ A = a \cdot G + r \cdot H \end{matrix} \right\}.$$

- If a=0 then $A=r\cdot H$ so $\left((\mathbb{G},H,A,p),r\right)\in\mathcal{R}_{DLOG}$.
- Use Schnorr protocol to prove A is a commitment to zero.

- To prove e.g. $a_1+a_2=a_3$, run Pedersen proofs on A_1,A_2,A_3 and prove that $A_1+A_2-A_3$ is a commitment to zero.
- Include constants using commitments without randomness e.g. $c \cdot G$.

Agenda

• Making Σ -protocols zero-knowledge against malicious verifiers \checkmark

Sigma protocols from DLOG

• Intro level: Schnorr and homomorphisms \checkmark

Medium level: multiplicative relations

Advanced level: low-degree circuit proofs

Similar techniques when we construct arguments with short proof sizes

Multiplication relation

Masked response
$$z = xa + b$$
 Challenge Mask

$$\bullet \; \mathcal{R}_{Mult} \coloneqq \begin{cases} \text{Instance } \mathbb{X} & \textit{G}, \textit{H}, \textit{A}_1, \textit{A}_2, \textit{A}_3 \in \mathbb{G}, \\ \left\{ (\mathbb{G}, \textit{G}, \textit{H}, \{\textit{A}_i\}_{i \in [3]}, \textit{p} \; \right), & : a_1, a_2, a_3, r_1, r_2, r_3 \in \mathbb{Z}_p, \\ \left\{ (a_i, r_i) \right\}_{i \in [3]} & : a_1 \cdot a_2 = a_i \cdot \textit{G} + r_i \cdot \textit{H} \; \forall i \\ & u_1 \cdot a_2 = a_3 \end{cases} \end{cases}.$$

Technique: computing on masked secrets

- Pedersen protocols for C_1 , C_2 give masked z_1 , z_2 with a_1 , a_2 'inside'.
- Compute $a_3 = a_1 \cdot a_2$ but use z_i instead of a_i .
- $z_1 z_2 = x^2 a_1 a_2 + x(a_1 b_2 + a_2 b_1) + b_1 b_2 := x^2 a_3 + x \cdot m_1 + m_0$.
- P commits to m_1, m_2 before seeing x.
- V checks this equation using the homomorphic commitments.

Multiplication proof

