Categorical Data Analysis Lecture 5 & 6

Graduate School of Advanced Science and Engineering Rei Monden

2024.12.19

Contents of this lecture

Today's contents

- ► Generalized Linear Models (GLM)
 - Components of a GLM
 - ► GLMs for binary data
 - GLMs for counts and rates
- Statistical inference and model checking
 - ► The deviance of a GLM
 - (Nested) Models comparison using the deviance

Generalized linear models

Generalized linear models

Generalized linear models (GLMs) encompass a large family of statistical models, including:

- ► Multiple linear regression
- ► ANOVA
- Logistic (also nominal, ordinal) regression
- Poisson regression
- Loglinear models
- ..

Today we go through some basics of GLMs.

Of course, we will focus on GLMs for categorical response variables.

Components of a GLM

Components of a GLM

GLMs have 3 components:

1. Random component:

Probability distribution of Y, the response variable.

For example:

- Y = # successes in a fixed number of trials: *Binomial* dist.
- ightharpoonup Y= counts per time period: *Poisson* or *negative binomial* dists.

2. Linear predictor:

Specifies the p predictors linearly:

$$\alpha + \beta_1 x_1 + \dots + \beta_p x_p.$$

Components of a GLM

3. Link function:

Function relating $\mu=E(Y)$ to the linear predictor:

$$\underline{g(\mu)} = \alpha + \beta_1 x_1 + \dots + \beta_p x_p.$$

For example:

- ▶ Ordinary linear regression: $g(\mu) = \mu$ (identity link function).
- ▶ Logistic regression: $g(\mu) = \log\left(\frac{\mu}{1-\mu}\right)$ (logit link function).
- ▶ Poisson regression: $g(\mu) = \log(\mu)$ (log link function).

GLMs for binary data

GLMs for binary data

- Assume Y is dichotomous: 1 = success, 0 = failure.
- ▶ Denote:
 - \blacktriangleright $\pi = P(Y = 1)$: Probability of success
 - \blacktriangleright $1-\pi=P(Y=0)$: Probability of failure

Let's entertain two possible GLMs:

1. Linear probability model: Using the identity link function:

$$\underset{\mu}{\underline{\pi}} = \alpha + \beta_1 x_1 + \dots + \beta_p x_p.$$

2. Logistic regression model: Using the logit linear function:

$$\underbrace{\log\left(\frac{\pi}{1-\pi}\right)}_{\mathsf{logit}(\mu)} = \alpha + \beta_1 x_1 + \dots + \beta_p x_p.$$

Linear probability model

$$\pi = \alpha + \beta_1 x_1 + \dots + \beta_p x_p.$$

This is a GLM with binomial random component and identity link function.

Interpretation of regression coefficient β_i :

For each unit increase in x_i , π is expected to change by β_i , while controlling for the remaining predictors.

Major problem of this model:

Depending on the values of the predictors, it can predict success probabilities π below 0 or above 1.

Such predictions are uninterpretable.

Linear probability model

Logistic regression model

$$\log\left(\frac{\pi}{1-\pi}\right) = \alpha + \beta_1 x_1 + \dots + \beta_p x_p.$$

This is a GLM with binomial random component and logit link function.

Solving the equation above with respect to π gives

$$\pi = \frac{\exp(\alpha + \beta_1 x_1 + \dots + \beta_p x_p)}{1 + \exp(\alpha + \beta_1 x_1 + \dots + \beta_p x_p)}$$

Clearly, no predictions outside the $\left[0,1\right]$ interval are now possible. In this respect, this model outperforms the linear probability model.

Logistic regression model

$$\pi = \frac{\exp(\alpha + \beta x)}{1 + \exp(\alpha + \beta x)}$$

This is a non-linear, S-shaped, model.

GLMs for binary data – Example in R

Heart Disease			
Snoring	Yes	No	Total
Never	24	1355	1379
Occasional	35	603	638
Nearly every night	21	192	213
Every night	30	224	254
			2484

Predictor: Snoring, categorical variable with 4 levels.

Outcome: Heart Disease, binary variable.

GLMs for binary data - Example in R

Output:

```
        Yes
        No x

        Never
        24 1355 0

        Occasional
        35 603 2

        Nearly every night
        21 192 4

        Every night
        30 224 5
```

GLMs for binary data - Example in R

```
# Fit the linear probability model:
glm(cbind(Yes, No) ~ x,
    family = binomial(link = "identity"),
    data = HD.df
)
```

Output:

```
Coefficients:
(Intercept) x
0.01725 0.01978
```

GLMs for binary data - Example in R

```
# Fit logistic regression model:
glm(cbind(Yes, No) ~ x,
   family = binomial(link = "logit"),
   data = HD.df
)
```

Output:

```
Coefficients:
(Intercept) x
-3.8662 0.3973
```

GLMs for binary data – Example in R

Exercise 5-1

Describe the purpose of the link function of a GLM. Define the identity link and explain why it is not often used with a binomial parameter.

Exercise 5-2

Use the table presented on the slide 14.

- (a) Re-fit the logistic regression model using the scores (i) (0, 2, 4, 6), (ii) (0, 1, 2, 3), (iii). (1, 2, 3, 4). Compare the model parameter estimates under the three choices. What can you conclude about the effect of linear transformations of scores that preserve the relative size of the spacing between scores?
- (b) Fit the logistic regression model using the scores (0, 2, 6, 7), approximating the number of days in a week that the subject snores. Compare the fitted values to those with the scores (0, 2, 4, 5) used in the text example. Do results seem to be sensitive to the choice of scores?

GLMs for counts and rates

GLMs for counts and rates

For counts, a commonly used random component is the Poisson distribution:

$$P(y) = \frac{e^{-\mu}\mu^y}{y!}, \text{ for } y = 0, 1, 2, \dots$$

Property:

$$E(Y) = \mathrm{var}(Y) = \mu.$$

Poisson loglinear model

The Poisson loglinear model combines the Poisson random component with the *log* link. For example, using only one predictor:

$$\log(\mu) = \alpha + \beta x.$$

Solving the equation with respect to μ we have that

$$\mu = \exp(\alpha + \beta x) = e^{\alpha} (e^{\beta})^{x}.$$

Interpretation

A one-unit increase in x either:

 \blacktriangleright Changes the logarithm of the expected value by eta

or

ightharpoonup Multiplies the expected value by e^{β} .

GLMs for counts and rates – Example in R

Width	Satellites	
28.3	8	
22.5	0	
26.0	9	
÷	:	
28.0	0	
27.0	0	
24.5	0	
173 rows in total		

1/3 rows in total.

Predictor: Width, shell width (continuous variable).

Outcome: Satellites, count variable.

```
# Import data frame from file:
crab.df <- read.table("Crabs.dat", header = TRUE)</pre>
```

GLMs for counts and rates - Example in R

```
# Fit poisson loglinear model:
glm(sat ~ width,
   family = poisson(link = "log"),
   data = crab.df
)
```

Output:

```
Coefficients:
(Intercept) width
-3.305 0.164
```

GLMs for counts and rates - Example in R

Statistical inference and model checking

Statistical inference and model checking

Maximum likelihood (ML) estimation is the method used to fit a GLM to data.

Here's one cool property:

The same algorithm applies to all GLMs!!

What we now discuss is various ways of performing inference and model checking.

And, because of the unified algorithm alluded to above, these techniques apply to all GLMs we will learn.

Likelihood function

The secret for all tests available – Wald, score, and likelihood ratio – is the (log-)likelihood function.

Assuming a random component $f(y;\beta)$ and assuming that the data $\{y_1,\dots,y_n\}$ are independent, then the likelihood function is

$$l(\beta; y) = \prod_{i=1}^{n} f(y; \beta).$$

The log-likelihood is

$$L(\beta; y) = \log(l(\beta; y)) = \sum_{i=1}^{n} \log(f(y; \beta)).$$

For simplicity, let's think of β as a single parameter to be estimated.

Likelihood function

Test:

$$\mathcal{H}_0: \beta = 0 \qquad \text{ versus } \qquad \mathcal{H}_1: \beta \neq 0.$$

The various tests statistics - Wald, score, and likelihood ratio - use the following elements:

Score function	Hessian function	Information function
$U = \frac{\partial L}{\partial \beta}$	$H = \frac{\partial^2 L}{\partial \beta^2}$	$I=-\mathbb{E}(H)$

- $\hat{\beta} = \mathsf{MLE}$ of β : The value of β that maximizes $L(\beta;y)$.
- $\begin{aligned} \mathbf{\triangleright} & \operatorname{var}(\hat{\beta}) = I(\hat{\beta})^{-1}. \\ & SE(\hat{\beta}) = \sqrt{\operatorname{var}(\hat{\beta})} = \sqrt{I(\hat{\beta})^{-1}}. \end{aligned}$
- $lackbox{ Maximized log-likelihoods under \mathcal{H}_0 and \mathcal{H}_1:}$

$$L_0=L(0;y)\quad,\quad L_1=L(\hat{\beta};y)$$

Likelihood function - Wald statistic

Wald test statistic:

$$z_W = \frac{\hat{\beta}}{SE(\hat{\beta})} \underset{\mathcal{H}_0}{\sim} \mathcal{N}(0, 1)$$

Based on the log-likelihood function evaluated only at the MLE, $\hat{\beta}$.

Likelihood function - Score statistic

Score test statistic:

$$z_S = \frac{U(0)}{\sqrt{I(0)}} \underset{\mathcal{H}_0}{\sim} \mathcal{N}(0, 1)$$

Based on the *slope* of the tangent to $L(\beta=0;y)$ (i.e., under \mathcal{H}_0).

Likelihood function - Likelihood ratio statistic

Likelihood ratio test statistic (asymptotic sampling distribution):

$$\boxed{z_{LR}^2 = 2\log\left(\frac{l_1}{l_0}\right) = 2\left[\log(l_1) - \log(l_0)\right] = 2(L_1 - L_0) \underset{\mathcal{H}_0}{\sim} \chi^2(1)}$$

Based on the log-likelihood function evaluated both at 0 and the MLE, $\hat{\beta}$.

Wald, score, and likelihood ratio tests

$$z_W = \frac{\hat{\beta}}{SE(\hat{\beta})}, \quad z_S = \frac{U(0)}{\sqrt{I(0)}}, \quad z_{LR} = \sqrt{2(L_1 - L_0)}.$$

All test statistics are asymptotically $\mathcal{N}(0,1)$ distributed.

Equivalently,

$$z_W^2 = \left(\frac{\hat{\beta}}{SE(\hat{\beta})}\right)^2, \quad z_S^2 = \frac{U(0)^2}{I(0)}, \quad z_{LR}^2 = 2(L_1 - L_0)$$

are all asymptotically $\chi^2(1)$ distributed.

Confidence intervals – Wald, score, and likelihood ratio

Each test statistic has an associated $100(1-\alpha)\%$ CI.

The simplest to present is Wald's $100(1-\alpha)\%$ CI:

$$\hat{\beta} \pm z_{\alpha/2} \times SE(\hat{\beta}).$$

For all CIs we will rely on R for the computations.

Note:

The likelihood-ratio test-based CI for β is called a profile likelihood CI.

Wald, score, and likelihood ratio methods

Which of the three methods is preferable?

- For large samples, they are all similar.
- Wald test is very simple and widely available in software.
- But, likelihood-ratio tests are better for small sample of very large effects.
- Score tests are not widely available, but work rather well too.

	Evol		
Ideology	Yes	No	Total
1 = Extremely conservative	11	37	48
2 = Conservative	46	104	150
3 = Slightly conservative	70	72	142
4 = Moderate	241	214	455
$5 = Slightly\ liberal$	78	36	114
6 = Liberal	89	24	113
7 = Extremely liberal	36	6	42
			1064

Predictor: (Political) *Ideology*, categorical variable with 7 levels, here treated as continuous.

Outcome: Evolution, binary variable.

```
# Create data frame:
evol.df <- data.frame(
 Ideology = 1:7,
 Yes = c(11, 46, 70, 241, 78, 89, 36),
 No = c(37, 104, 72, 214, 36, 24, 6)
rownames(evol.df) <- c("Extremely conservative", "Conservative",</pre>
                       "Slightly conservative", "Moderate",
                       "Slightly liberal". "Liberal".
                       "Extremely liberal"
evol.df
```

Output:

Output:

```
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.75658  0.20500 -8.569 <2e-16 ***

Ideology  0.49422  0.05092  9.706 <2e-16 ***
```

Output:

```
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.75658  0.20500 -8.569  <2e-16 ***

Ideology  0.49422  0.05092  9.706  <2e-16 ***
```

Some results:

- $\hat{\beta}_{\mathsf{Ideology}} = 0.49$

```
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.75658  0.20500 -8.569  <2e-16 ***

Ideology  0.49422  0.05092  9.706  <2e-16 ***
```

Wald test:

$$\frac{\mathbf{z}_W}{SE(\hat{\beta}_{\text{Ideology}})} = \frac{0.49422}{0.05092} = 9.71.$$

Since p < .05, at significance level $\alpha = .05$, we reject the null hypothesis that $\beta_{\rm Ideology} = 0$.

Wald 95% CI:

```
confint.default(evol.fit)
```

Output:

```
2.5 % 97.5 % (Intercept) -2.1583654 -1.3547930 Ideology 0.3944219 0.5940161
```

Score test:

Output:

```
10.20299 # z.S = the score test statistic
0 # pvalue.S = the corresponding p-value (< .001)
```

Since p < .05, at significance level $\alpha = .05$, we reject the null hypothesis that $\beta_{\rm Ideology} = 0$.

Score CI:

```
library(glmtoolbox)
confint2(evol.fit, test = "score")
```

Output:

```
Lower limit Upper limit
(Intercept) -2.15771 -1.35551
Ideology 0.39459 0.59386
```

Likelihood-ratio test:

```
drop1(evol.fit, test = "LRT")
```

Output:

```
Df Deviance AIC LRT Pr(>Chi)
Ideology 1 113.20 149.815 109.48 < 2.2e-16 ***
```

$$\chi^2(1) = 109.48, p < .001$$
:

At significance level $\alpha=.05$, we reject the null hypothesis that $\beta_{\rm Ideology}=0$.

```
Likelihood-ratio CI, i.e., profile likelihood CI:
```

```
confint(evol.fit)
```

Output:

```
2.5 % 97.5 %
(Intercept) -2.165294 -1.3609733
Ideology 0.396166 0.5959414
```

Exercise 5-3

An experiment analyzes imperfection rates for two processes used to fabricate silicon wafers for computer chips. For treatment A applied to 10 wafers, the numbers of imperfections are 8, 7, 6, 6, 3, 4, 7, 2, 3, 4. Treatment B applied to 10 other wafers has 9, 9, 8, 14, 8, 13, 11, 5, 7, 6 imperfections. Treat the counts as independent Poisson variates having means μ_A and μ_B . Consider the model $log\mu=\alpha+\beta x$, where x=1 for treatment B and x=0 for treatment A.

- (a) Show that $\beta=log\mu_B-log\mu_A=log(\frac{\mu_B}{\mu_A})$ and $e^\beta=\frac{\mu_B}{\mu_A}.$
- (b) Fit the model (recall slide 25). Report the prediction equation and interpret $\hat{\beta}$.
- (c) Use Wald's test to compare the hypotheses $H_0: \mu_A = \mu_B$ versus $H_1: \mu_A \neq \mu_B$. Show how to compute Wald's test statistic using the fitted model from question (b). Interpret the result of the test (use significance level $\alpha=5\%$).

The deviance of a GLM

The deviance of a GLM

Notation:

M = our model of interest. From the previous example, it could be

$$logit(\pi) = \alpha + \beta \times ldeology.$$

➤ S = saturated model: This model has one parameter per Ideology group (7 in total), so it fits data perfectly. In fact, this is an over fit.

From the previous example, that is

$$\mathsf{logit}(\pi) = \beta_1 \times (\mathsf{Ideology}{=}1) + \dots + \beta_7 \times (\mathsf{Ideology}{=}7).$$

The deviance of a GLM

The deviance, D, of model M is

$$D = 2(L_S - L_M),$$

where L refers to the log-likelihood.

Result:

If model M fits well enough (i.e., similarly to the saturated model S), then

$$D \sim \chi^2(n-k),$$

where

ightharpoonup n = number of parameters in model <math>S;

ightharpoonup k = number of parameters in model <math>M.

The deviance can therefore be used for comparing our model to the saturated model.

The deviance of a GLM - Example in R

Model M:

$$logit(\pi) = \alpha + \beta \times ldeology$$

Output:

```
'log Lik.' -19.16594 (df=2)
```

Therefore:

- $L_M = -19.166.$
- \blacktriangleright k=2, corresponding to the two regression coefficients (α, β) .

The deviance of a GLM - Example in R

Model S:

```
\mathsf{logit}(\pi) = \beta_1 \times (\mathsf{Ideology}{=}1) + \dots + \beta_7 \times (\mathsf{Ideology}{=}7)
```

Output:

```
'log Lik.' -17.30594 (df=7)
```

Therefore:

- $L_S = -17.306.$
- ightharpoonup n=7, corresponding to the total number of Ideology groups.

The deviance of a GLM - Example in R

$$D = 2(L_S - L_M)$$

= 2 [-17.306 - (-19.166)]
= 3.72

lacktriangle Assuming that model M fits as well as the saturated model, then

$$D \sim \chi^2(7-2) = \chi^2(5).$$

ightharpoonup p-value = P(D > 3.72) = .59.

Conclusion:

There is no evidence that model M fits worse than the saturated model. We therefore retain model M (= desirable outcome).

The deviance can be used to compare any model of interest to the saturated model.

But we are often interested in directly comparing two models of interest, say, M_0 and M_1 .

We can use deviances for this, as long as M_0 and M_1 are nested (say, M_0 is nested within M_1).

This means that the models have:

- the same random component;
- the same link function;
- lacktriangle the linear component of M_0 is a constrained version of that of M_1 .

For example:

- $M_0: \operatorname{logit}(\pi) = \alpha$ (i.e., the intercept-only model, with no predictors).
- $\blacktriangleright \ M_1: \mathsf{logit}(\pi) = \alpha + \beta \times \mathsf{Ideology}$

The linear component of M_0 , α , is equal to $\alpha+0\times {\sf Ideology}$, which is a constrained version of the linear component of M_1 .

In this case, M_0 is nested within M_1 .

Assume that the more complex model M_1 fits the data well enough.

Q: Why?

A: If M_1 does not fit well, then M_0 (a constrained version of M_1) will also not fit well, and we have nothing much to talk about.

Therefore... Assuming M_1 fits well, then we know that

$$D_1 = 2(L_S - L_1) \sim \chi^2(n - k_1),$$

where k_1 is the number of parameters in model ${\cal M}_1.$

The question is now whether M_0 , a constrained (simpler!) version of M_1 , also fits the data well enough.

If yes, then

$$D_0 = 2(L_S - L_0) \sim \chi^2(n - k_0)$$

where k_0 is the number of parameters of M_0 , and

$$\begin{split} D_0 - D_1 &= 2(L_S - L_0) - 2(L_S - L_1) \\ &= 2(L_1 - L_0) \sim \chi^2(k_1 - k_0). \end{split}$$

lf not, then D_0-D_1 will be bigger than expected from $\chi^2(k_1-k_0)$.

In summary:

To compare ${\cal M}_0$ (nested within ${\cal M}_1$) to ${\cal M}_1$ we use null hypothesis significance testing.

Assume a Type I error rate α (e.g., 5%).

Procedure:

► Compute the test statistic:

$$D_0 - D_1 = 2(L_1 - L_0).$$

- Assume that M_0 fits well (the null hypothesis). In this case, $D_0 D_1 \sim \chi^2(k_1 k_0)$.
- $\qquad \qquad \textbf{ Compute the p-value: } p = p(\chi^2_{k_1-k_0} > (D_0-D_1)).$
 - If $p < \alpha$ then we reject M_0 and accept M_1 .
 - If $p > \alpha$ then we fail to reject M_0 . This means that there is not evidence against the simpler model M_0 and we retain it.

Model M_1 :

$$logit(\pi) = \alpha + \beta \times ldeology$$

Output:

```
'log Lik.' -19.16594 (df=2)
```

Therefore:

- $L_1 = -19.166.$
- $ightharpoonup k_1=2$, corresponding to the two regression coefficients $(\alpha,\,\beta)$.

$\mathsf{Model}\ M_0:$

```
logit(\pi) = \alpha
```

Output:

```
'log Lik.' -73.90733 (df=1)
```

Therefore:

- $L_0 = -73.907.$
- $ightharpoonup k_0 = 1$, corresponding to intercept α .

 $\blacktriangleright \ M_0: \mathsf{logit}(\pi) = \alpha$

 $\blacktriangleright \ M_1: \mathsf{logit}(\pi) = \alpha + \beta \times \mathsf{Ideology}$

Assume that M_0 fits the data well enough (i.e., as well as M_1).

Then,

$$\begin{split} D_0 - D_1 &= 2(L_1 - L_0) \\ &= 2 \left[-19.166 - (-73.907) \right] \\ &= 109.48 \sim \chi^2(2-1) = \chi^2(1) \end{split}$$

and

$$p$$
-value = $P(D_0 - D_1 > 109.48) < .001$.

Conclusion:

 M_0 , albeit simpler, fits significantly worse than M_1 . We therefore reject M_0 and accept M_1 .

We actually had already seen this test result before today...

Recall:

This relation between likelihood ratio tests and comparison of nested models is quite general.

Exercise 5-4

Use the same data from Exercise 5-3.

- (a) Fit the model $log\mu = \alpha$. That is, fit a Poisson model with no predictors.
- (b) Observe that the intercept-only model from question (a) is *nested* within the model that you fitted in Exercise 5-3(b). Using R, compare both models using the deviance. Interpret the test result (use $\alpha=5\%$).

In the next lecture

We are mainly going through Chapter 4, but the following sections will not be covered.

4.1.4, 4.3.3, 4.4.3, 4.6.1, 4.6.3.