Seeing the trees in the forest

Diagnosing individual performance in likelihood ratio based forensic voice comparison

Evaluating LR-based system performance

Global, system-level metrics

- EER
- *C*_{llr} (Brümmer, et al., 2006)
- **↓** EER, $C_{\text{llr}} = ↑$ system performance

Graphical means of evaluation

- ROC, DET curves
- Tippett plots ↓

Limitations

- Variation between individual speakers?
- Nature of errors?
- >> Individual-level analysis

Biometric menagerie

- Classifies speakers into animal groups based on individual performance (Doddington, et al., 1998)
- Additional **relational groups** identify subsets of speakers with relatively outlying performance
 - Dove: Best-performing (good SS, good DS)
 - Worm: Worst-performing (poor SS, poor DS)
 - Phantom: Most difficult to match with any speaker (poor SS, good DS)
 - Chameleon: Most easily matched with any speaker (good SS, poor DS)

Visualised in zooplots

SS: stronger →

DS: stronger †

(Dunstone and Yager, 2009)

Biometric menagerie

Zooplot applied to ASR

- Impact of **technical factors** (e.g. SNR) on individual performance
- Potential link between animal groups and **voice quality** (VPA)

(Alexander, et al., 2014; Nash, 2019)

- >> How effective is zooplot analysis when applied outside ASR?
- >> Direct connection between animal groups and the input data?

Current study

- Zooplot analysis in LR-based FVC outside ASR context
- Explore connection between individual LR performance and underlying speech data
- Focus on individuals (trees) rather than overall performance (forest)
- Variable: Long-term formant distributions (LTFDs) (Nolan and Grigoras, 2005)
 - Collection of formant estimates from all vowels

- Captures overall articulatory habit and filter behaviour of vocal tract
- Underlying data readily available for direct comparison

Methodology

Data preparation

- **Materials**: HQ En recordings from 60 male Canadian En-Fr speakers (RCMP, 2010-2016)
- **Read speech**: Phonetically balanced short sentences (+ passage)
- **Segmentation**: Automatic forced alignment (manually checked) (McAuliffe, et al., 2017)
- **F1-F4 estimates** extracted every 10ms from all vowels (+ /j w/) in Praat (Boersma and Weenink, 2016)
- Fixed formant settings (based on preliminary testing):
 - Max 6 formants up to 5500 Hz
 - Window length: 25 ms

LR testing

5 systems tested: individual LTF1-LTF4 + all combined

- Speakers divided into test (20), training (20) and background (20) sets
- LTFDs modelled and compared for all speaker-pairs using **GMM-UBM** (Becker, et al., 2008; Reynolds, et al., 2000)
- Log₁₀LRs from logistic regression calibration
- 100 repetitions of partitioning and testing
 - Minimise effects of random speaker sampling
 - Ensure all pairs of speakers compared

Individual-level analysis

Zooplots

- Mean LLR in different-speaker (DS) comparisons plotted against mean LLR in same-speaker (SS) comparisons
- From all comparisons across 100 repetitions involving that speaker
- Animal groups defined in accordance with Dunstone and Yager (2009)

DS \ SS	Best 25%	Worst 25%
Best 25%	Doves 💘	Phantoms 🕱
Worst 25%	Chameleons 🗲	Worms 🦠

• + identify *near*-animals: SS and DS between best/worst 25% and 30%

Acoustic comparison for all individual speakers

• Particular focus on members of animal groups

Results & Discussion

Global metrics

- LTF1234 combined performs better than individual LTFs
- Individual LTFs perform on similar levels

- Narrow ranges of mean LLR
 - SS: -0.4 to 2.66
 DS: -0.48 to -1.47
 - Dense cluster around(SS, DS) = (0.5, -0.7)
- SS and DS performance strongly correlated
- 10 doves, 5 worms

- Relatively poor DS performance
- Negative mean SS-LLRs of greater magnitude
- Weaker correlation between SS and DS performance
- 9 doves, 3 worms, 3 phantoms
- Only system with phantoms

- 12 doves, 8 worms
- Doves with stronger SS and DS performance
- Worms and near-worms clustered near SS = 0

- Overall distribution similar to LTF3 but less clustered
- More extreme distribution: Higher no. of doves and worms
 - 11 doves, 13 worms

- Better SS and DS performance
- Less clustered distribution: Variation not driven by individual outliers

Zooplot: Summary

• Each LTF captures a very different group of outlying speakers

 Evidence of complementary speaker-specific information on individual level

Zooplot: Summary

- Across all LTFs:
 - Only 3 speakers (5%) always in/near groups: 119, 441, 470

• 5 (8%) speakers **not** in/near any group: 038, 217, 218, 225, 397

Acoustic comparisons

F3

F4

F1

F2

Thank you!

Questions?

y @justinjhlo **≥** JL2355@york.ac.uk

Many thanks to:

- Paul Foulkes and Vincent Hughes for guidance and feedback
- Royal Canadian Mounted Police for use of the *Voice ID Database*

Zooplot: Summary

• 21 speakers (35%) in/near the same group for more than one F vs 13 speakers (22%) in/near both doves and worms at least once

Zooplot: Summary

• All speakers in/near a group for LTF1234 also in/near same group for at least one of LTF1-LTF4

- Most in common with LTF4
- Exception: 217