

# A Statistical Analysis of Bowling Balls

Daniel Magro (484497M)

**Bachelor of Science in Information Technology (Honours) (Artificial Intelligence)** 

**SOR1231 - Hypothesis Testing and Modelling using SPSS** 

**Lecturer: Mark A. Caruana** 

| 1. Introduction                                                             | 3          |
|-----------------------------------------------------------------------------|------------|
| 2. Aims and Objectives                                                      | 5          |
| 3. Descriptive Statistics & Illustrations                                   | 6          |
| 3.1 Descriptive Statistics                                                  | 6          |
| 3.1.1 Measures of Location                                                  | 6          |
| 3.1.2 Measures of Dispersion                                                | 6          |
| 3.2 Illustrations                                                           | 8          |
| 4. Parametric/Non-Parametric Tests                                          | 12         |
| 4.1 Tests of Normality                                                      | 12         |
| 4.2 Kruskal-Wallis Test                                                     | 13         |
| 4.2.1 Does the Brand affect the PerfectScale of a Bowling Ball?             | 13         |
| 4.2.2 Does Performance affect the Price of a Bowling Ball?                  | 13         |
| 4.3 Chi-Squared Test                                                        | 15         |
| 4.3.1 Does The Finish affect the intended Lane Condition of a Bowling Ball? | 15         |
| 4.4 Pearson Correlation                                                     | 16         |
|                                                                             | 18         |
| 5. Regression                                                               |            |
| Regression                                                                  |            |
|                                                                             | 18         |
| 5.1 Simple Linear Regression                                                | 18<br>18   |
| 5.1 Simple Linear Regression                                                | 18<br>18   |
| 5.1 Simple Linear Regression                                                | 18<br>22   |
| 5.1 Simple Linear Regression                                                | 182222     |
| 5.1 Simple Linear Regression                                                | 18222227   |
| 5.1 Simple Linear Regression                                                | 18222727   |
| 5.1 Simple Linear Regression                                                | 1822272727 |

# 1. Introduction

# 1.1 Why this data set was chosen

This data set was chosen because of my interest in Ten Pin Bowling, I also believe it would be very interesting to show how the many features and specifications of different bowling balls affect the way it performs, i.e. its potential to hook.

The data set was compiled using the specifications page of 47 different bowling balls from <a href="http://www.bowlingball.com/shop/all/bowling-balls/">http://www.bowlingball.com/shop/all/bowling-balls/</a>. This data set only includes data regarding 'strike balls', 'spare balls' were not included with the data since they are usually all identical, regardless of Brand, no interesting results would have been obtained and because they would have skewed the data.

### 1.2 Variables

The Fixed Factors used were the Brand, Finish, Lane Condition, Performance and Core Type.

The Covariates used were the Differential, Mass Bias Diff, RG and Year

The Dependent Variables were the Price and Perfectscale® (Perfectscale® measurement was used with permission from <a href="http://www.bowlingball.com/">http://www.bowlingball.com/</a>).

Brand – Fixed Factor – The Brand of the bowling ball – Ranges from 1-7, Selected brands were DV8, Columbia 300, Hammer, Brunswick, Ebonite, Storm and Track.

Finish – Fixed Factor – The finish of the bowling ball's surface/coverstock – Ranges from 1-4: High Polish, Polished, Matte and Sanded.

Lane Condition – Fixed Factor – The amount of oil on the lane the ball is designed for – Ranges from 1-5: Dry, MediumDry, Medium, MediumHeavy and Heavy.

Differential – Covariate – The difference in the Radius of Gyration or RG on the x-axis and the y-axis. RG differential indicates the amount of flare potential of a bowling ball – Range <0.06"

Mass Bias Differential – Covariate – A measure of the 'Asymmetry' of a bowling ball – Ranges from 0.008"-0.037"

Performance – Fixed Factor – A measure of how 'reactive' a bowling ball is – Ranges from 1-5: Entry, Performance, Advanced, High, Pro.

Radius of Gyration (RG) – Covariate – A measure of the distribution of mass inside the bowling ball – Ranges from 2.46"-2.8"

Core Type – Fixed Factor – Whether the core of a bowling ball is symmetric or asymmetric – Ranges from 1-2: Symmetric and Asymmetric.

Year – Covariate – The year in which the bowling ball was released.

Price – Covariate – Dependent Variable – The MSRP of the bowling ball in \$.

PerfectScale® – Covariate – Dependent Variable – A measure of a bowling ball's 'Hook Potential' – Ranges from 0-300

# 2. Aims and Objectives

In Chapter 3 – Descriptive Statistics & Illustrations, I will display Descriptive Statistics: Measures of Location and Measures of Dispersion of the data set, such as the Mean, Median and Mode, as well as Standard Deviation, Variance, Skewness and Kurtosis. I will also present various Illustrations - graphical properties of the data set through Bar Charts, Pie Charts, Clustered Bar Graphs, Histograms, Scatter Diagrams and Box Plots.

In Chapter 4 – Parametric/Non-Parametric Tests, I will come up with several Hypothesis and make use of several Tests to come up with conclusions about the Data Set. Examples of such tests may be Tests of Normality, Tests of effect of Fixed Factors on Dependent Variables (Covariates), Tests of association between two Fixed Factors and Tests of association between multiple Covariates, amongst others.

In Chapter 5 – Regression, I will try to relate the Dependent Variables to Covariates in the form of models (similar to 'equations') through Linear Regression.

In Chapter 6 – General Linear Model, I will relate the Dependent Variables to multiple Fixed Factors (n-way ANOVA) and the Dependent Variables to both Fixed Factors and Covariates (ANCOVA) to acquire models which describe the data set better (Dependent Variables in terms of Independent Variables).

# 3. Descriptive Statistics & Illustrations

# 3.1 Descriptive Statistics

#### 3.1.1 Measures of Location

From Table 3.1.1.1, The Mean of the Price was found to be \$181.62, whereas the Median Price was found to be 179.99. The difference between the mean and the median is very small, which suggests that there might be skewness in the data.

From Table 3.1.1.1, it was also found that the Mean Perfect Scale was 187, whereas the Median was 200.2. This difference between the mean and the median might again suggest some skewness in the data.

Table 3.1.1.1

|       |         | Price    | PerfectScale |
|-------|---------|----------|--------------|
| N     | Valid   | 47       | 47           |
|       | Missing | 0        | 0            |
| Mean  |         | 181.6283 | 187.049      |
| Media | n       | 179.9900 | 200.200      |

# 3.1.2 Measures of Dispersion

Table 3.1.2.1 shows a collection of measures of dispersion of the dependent variables in the data set. As suggested in Section 3.1.1, both dependent variables show a degree of negative skewness. It can also be seen that both dependent variables have a negative kurtosis (platykurtic).

**Table 3.1.2.1** 

|          |                | Price    | PerfectScale |
|----------|----------------|----------|--------------|
| N        | Valid          | 47       | 47           |
|          | Missing        | 0        | 0            |
| Std. De  | viation        | 63.21682 | 46.6749      |
| Variance |                | 3996.366 | 2178.547     |
| Skewne   | ess            | 132      | 940          |
| Std. Err | or of Skewness | .347     | .347         |
| Kurtosis |                | -1.206   | 167          |
| Std. Err | or of Kurtosis | .681     | .681         |
| Range    |                | 232.00   | 159.6        |

Table 3.1.3.1 shows a collection of descriptive statistics regarding all the covariates in the data set.

**Table 3.1.3.1** 

|                 |          | Differential | MassBiasDiff | RG      | Year    | Price    | PerfectScale |
|-----------------|----------|--------------|--------------|---------|---------|----------|--------------|
| N Valid         |          | 47           | 47           | 47      | 47      | 47       | 47           |
|                 | Missing  | 0            | 0            | 0       | 0       | 0        | 0            |
| Mean            |          | .04223       | .00572       | 2.53009 | 2014.62 | 181.6283 | 187.049      |
| Median          |          | .04600       | .00000       | 2.50000 | 2015.00 | 179.9900 | 200.200      |
| Std. Deviation  | 1        | .014424      | .007362      | .061736 | 2.280   | 63.21682 | 46.6749      |
| Variance        |          | .000         | .000         | .004    | 5.198   | 3996.366 | 2178.547     |
| Skewness        |          | 935          | .794         | 1.237   | -2.021  | 132      | 940          |
| Std. Error of S | Skewness | .347         | .347         | .347    | .347    | .347     | .347         |
| Kurtosis        |          | 117          | 849          | .541    | 4.266   | -1.206   | 167          |
| Std. Error of k | Kurtosis | .681         | .681         | .681    | .681    | .681     | .681         |
| Range           |          | .052         | .024         | .230    | 10      | 232.00   | 159.6        |
| Percentiles     | 25       | .03200       | .00000       | 2.48100 | 2014.00 | 119.9900 | 150.500      |
|                 | 50       | .04600       | .00000       | 2.50000 | 2015.00 | 179.9900 | 200.200      |
|                 | 75       | .05400       | .01300       | 2.57000 | 2016.00 | 239.9900 | 230.200      |

Table 3.1.3.2 shows the mode of all the fixed factors in the data set.

Table 3.1.3.2

|      |         | Brand | Finish | LaneCondition | Performance | CoreType |
|------|---------|-------|--------|---------------|-------------|----------|
| N    | Valid   | 47    | 47     | 47            | 47          | 47       |
|      | Missing | 0     | 0      | 0             | 0           | 0        |
| Mode |         | 3.00  | 2.00   | 4.00          | 5.00        | 1.00     |

## 3.2 Illustrations

The Bar Graph in Figure 3.2.1 shows the amount of balls that fall under each performance category. It can be seen that in the sample chosen for the data set most balls fall under the 'Pro Performance' category. In recent years bowling balls are becoming 'stronger' which is why more 'Pro' balls are present (The Year variable is negatively skewed which means more balls from recent years are present in the data set than older balls). This claim will be further substantiated in Figure 3.2.5.



Figure 3.2.1: Bar Graph showing the amount of bowling balls per performance category

The Pie Chart in Figure 3.2.2 shows what percentage of bowling balls have a symmetric vs. asymmetric core.



Figure 3.2.2: Pie Chart showing the percentage of bowling balls that have a symmetric vs asymmetric core

The Clustered Bar Graph in Figure 3.2.3 shows how bowling balls are distributed under performance categories, grouped by their core type. From this graph, one can observe that higher performing bowling balls are more likely to have an asymmetric core, i.e. bowling balls that have an asymmetric core usually perform better than bowling balls with symmetric cores.



Figure 3.2.3: Clustered Bar Graph showing bowling ball Performance, clustered by Core Type

The Histograms in Figures 3.2.4a and 3.2.4b substantiate the claims made in section 3.1.2 regarding the negative skewness of both independent variables.



Figures 3.2.4a and 3.2.4b: Histogram for each independent variable (Price and PerfectScale respectively) fitted with the normal distribution

The Scatter Diagram in Figure 3.2.5 shows how the PerfectScale of a bowling ball relates to the Year in which it was released. It is instantly clear that bowling balls released in more recent years have a higher PerfectScale than those released in earlier years. The Linear Fit Line suggests that every year, the PerfectScale has increased by an average of 14.6.

This suggested Correlation will be further discussed in Section 4.4: Pearson Correlation and in Section 5.1: Simple Linear Regression.



Figure 3.2.5: Scatter Diagram showing PerfectScale in relation to Year of ball production

The Box Plot in Figure 3.2.6 depicts the descriptives of the PerfectScale grouped by the ball's Finish graphically. It can be clearly seen that the Median PerfectScale of bowling balls with Matte or Sanded surfaces is noticeably higher than those with High Polish or Polished surfaces.



Figure 3.2.6: Box Plot showing the Perfect Scale of bowling balls grouped by their Finish

# 4. Parametric/Non-Parametric Tests

# 4.1 Tests of Normality

In order to determine whether we can use Parametric or Non-Parametric tests, we test the normality assumption by checking whether both dependent variables are Normally Distributed or not. This will be accomplished with the Kolmogorov-Smirnov and the Shapiro-Wilk tests.

H<sub>0</sub>: Price is Normally Distributed

H<sub>1</sub>: Price is not Normally Distributed

**Tests of Normality** 

|       |           |              | COLO OI INOIII   | lancy        |    |      |  |
|-------|-----------|--------------|------------------|--------------|----|------|--|
|       | Koln      | nogorov-Smir | nov <sup>a</sup> | Shapiro-Wilk |    |      |  |
|       | Statistic | df           | Sig.             | Statistic    | df | Sig. |  |
| Price | .141      | 47           | .020             | .945         | 47 | .028 |  |

a. Lilliefors Significance Correction

Table 4.1.1: Test for Normality - Price

As can be seen in Table 4.1.1, the p-value was found to be 0.28, which is less than 0.05. Thus, with a 95% degree of confidence,  $H_0$  can be rejected and  $H_1$  is accepted. i.e. Price is not normally distributed.

H<sub>0</sub>: PerfectScale is Normally Distributed

H<sub>1</sub>: PerfectScale is not Normally Distributed

**Tests of Normality** 

|              | Kolm      | nogorov-Smir | 'nov <sup>a</sup> | Shapiro-Wilk |    |      |
|--------------|-----------|--------------|-------------------|--------------|----|------|
|              | Statistic | df           | Sig.              | Statistic    | df | Sig. |
| PerfectScale | .155      | 47           | .007              | .871         | 47 | .000 |

a. Lilliefors Significance Correction

Table 4.1.2: Test for Normality - PerfectScale

As can be seen in Table 4.1.2, the p-value was found to be  $9.5x10^{-5}$ , which is less than 0.05. Thus, with a 95% degree of confidence,  $H_0$  can be rejected and  $H_1$  is accepted. i.e. PerfectScale is not normally distributed.

## 4.2 Kruskal-Wallis Test

Since the data was determined not to be normally distributed, the Kruskal-Wallis Test was deemed suitable to study further this data set. The Kruskal-Wallis Test will help determine whether certain Fixed Factors significantly affect the dependent variables.

# 4.2.1 Does the Brand affect the PerfectScale of a Bowling Ball?

H<sub>0</sub>: All Brands produce the same PerfectScale bowling balls.

H<sub>1</sub>: Some Brands produce higher PerfectScale bowling balls.

Test Statistics<sup>a,b</sup>

PerfectScale

Chi-Square 4.643

df 6

Asymp. Sig. .590

a. Kruskal Wallis Test

b. Grouping Variable: Brand

Table 4.2.1: Kruskall-Wallis Test on PerfectScale vs Brand

As can be seen in Table 4.2.1, since the p-value 0.590 > 0.05,  $H_0$  is accepted and thus, with a 95% degree of confidence it can be said that all Brands produce bowling balls with similar PerfectScale (i.e. Brand is not a significant factor in the PerfectScale of a bowling ball).

## 4.2.2 Does Performance affect the Price of a Bowling Ball?

H<sub>0</sub>: Bowling Balls from All Performance classes have the same Price.

H<sub>1</sub>: Bowling Balls from Some Performance classes have a higher Price.

| Test Statistics <sup>a,b</sup> |        |  |  |  |  |
|--------------------------------|--------|--|--|--|--|
|                                | Price  |  |  |  |  |
| Chi-Square                     | 34.559 |  |  |  |  |
| df                             | 4      |  |  |  |  |
| Asymp. Sig.                    | .000   |  |  |  |  |

a. Kruskal Wallis Test

b. Grouping Variable:

Performance

Table 4.2.2.1: Kruskall-Wallis Test on Price vs Performance

As can be seen in Table 4.2.2.1, since the p-value  $5.72 \times 10^{-7} < 0.05$ ,  $H_0$  is rejected and  $H_1$  is accepted, and thus, with a 95% degree of confidence it can be said that Bowling Balls from some Performance classes have a higher Price.

With this result in mind, the Pairwise Comparisons were generated, as shown in Figure 4.2.2.2. The Pairwise Comparisons suggest that there is a significant change in Price when comparing Entry and High, Entry and Pro, and Performance and Pro categories of Performance bowling balls.

## Pairwise Comparisons of Performance



Each node shows the sample average rank of Performance.

| Sample1-Sample2      | Test<br>Statistic | Std.<br>Error | Std. Test<br>Statistic | Sig. | Adj.Sig. |
|----------------------|-------------------|---------------|------------------------|------|----------|
| Entry-Performance    | -10.229           | 6.645         | -1.539                 | .124 | 1.000    |
| Entry-Advanced       | -14.146           | 7.385         | -1.915                 | .055 | .554     |
| Entry-High           | -23.500           | 6.838         | -3.437                 | .001 | .006     |
| Entry-Pro            | -31.719           | 5.922         | -5.357                 | .000 | .000     |
| Performance-Advanced | -3.917            | 7.207         | 543                    | .587 | 1.000    |
| Performance-High     | -13.271           | 6.645         | -1.997                 | .046 | .458     |
| Performance-Pro      | -21.490           | 5.698         | -3.771                 | .000 | .002     |
| Advanced-High        | -9.354            | 7.385         | -1.267                 | .205 | 1.000    |
| Advanced-Pro         | -17.573           | 6.546         | -2.684                 | .007 | .073     |
| High-Pro             | -8.219            | 5.922         | -1.388                 | .165 | 1.000    |

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same.

Asymptotic significances (2-sided tests) are displayed. The significance level is . 05.

Figure 4.2.2.2: Pairwise Comparisons of Performance

# 4.3 Chi-Squared Test

# 4.3.1 Does The Finish affect the intended Lane Condition of a Bowling Ball?

The Chi-Squared Test was deemed to be yet another suitable test to further analyse this data set. The Chi-Squared Test helps in determining whether an association exists between two fixed factors.

H<sub>0</sub>: There is no association between Finish and Lane Condition

H<sub>1</sub>: There is an association between Finish and Lane Condition

| Chi-Square Tests             |         |    |                  |  |  |  |  |  |
|------------------------------|---------|----|------------------|--|--|--|--|--|
|                              |         |    | Asymptotic       |  |  |  |  |  |
|                              |         |    | Significance (2- |  |  |  |  |  |
|                              | Value   | df | sided)           |  |  |  |  |  |
| Pearson Chi-Square           | 21.803ª | 12 | .040             |  |  |  |  |  |
| Likelihood Ratio             | 26.458  | 12 | .009             |  |  |  |  |  |
| Linear-by-Linear Association | 3.725   | 1  | .054             |  |  |  |  |  |
| N of Valid Cases             | 47      |    |                  |  |  |  |  |  |

a. 19 cells (95.0%) have expected count less than 5. The minimum expected count is .51.

Table 4.3.1: Chi-Squared Test on Lane Condition vs Finish

As can be seen in Table 4.3.1, since the p-value 0.04 < 0.05,  $H_0$  is rejected and  $H_1$  is accepted, and thus, with a 95% degree of confidence it can be said that the Finish of a Bowling Ball does affect what Lane Condition a Bowling Ball is designed for (ie. There is an association between the two Fixed Factors).

## **4.4 Pearson Correlation**

The Pearson Correlation Test was deemed to be a suitable test to further analyse this data set. The Pearson Correlation Matrix helps in determining whether any 2 covariates are related/correlated.

H<sub>0</sub>: The Correlation between the 2 variables is 0

H<sub>1</sub>: There is a Significant Correlation between the 2 variables

#### Correlations

| Contentions  |                     |                    |                   |       |                   |        |              |
|--------------|---------------------|--------------------|-------------------|-------|-------------------|--------|--------------|
|              |                     | Differential       | MassBiasDiff      | RG    | Year              | Price  | PerfectScale |
| Differential | Pearson Correlation | 1                  | .614**            | 777** | .358 <sup>*</sup> | .681** | .791**       |
|              | Sig. (2-tailed)     |                    | .000              | .000  | .014              | .000   | .000         |
|              | N                   | 47                 | 47                | 47    | 47                | 47     | 47           |
| MassBiasDiff | Pearson Correlation | .614 <sup>**</sup> | 1                 | 528** | .348 <sup>*</sup> | .682** | .671**       |
|              | Sig. (2-tailed)     | .000               |                   | .000  | .016              | .000   | .000         |
|              | N                   | 47                 | 47                | 47    | 47                | 47     | 47           |
| RG           | Pearson Correlation | 777**              | 528 <sup>**</sup> | 1     | 546**             | 594**  | 793**        |
|              | Sig. (2-tailed)     | .000               | .000              |       | .000              | .000   | .000         |
|              | N                   | 47                 | 47                | 47    | 47                | 47     | 47           |
| Year         | Pearson Correlation | .358 <sup>*</sup>  | .348*             | 546** | 1                 | .670** | .715**       |
|              | Sig. (2-tailed)     | .014               | .016              | .000  |                   | .000   | .000         |
|              | N                   | 47                 | 47                | 47    | 47                | 47     | 47           |
| Price        | Pearson Correlation | .681**             | .682**            | 594** | .670**            | 1      | .842**       |
|              | Sig. (2-tailed)     | .000               | .000              | .000  | .000              |        | .000         |
|              | N                   | 47                 | 47                | 47    | 47                | 47     | 47           |
| PerfectScale | Pearson Correlation | .791**             | .671**            | 793** | .715**            | .842** | 1            |
|              | Sig. (2-tailed)     | .000               | .000              | .000  | .000              | .000   |              |
|              | N                   | 47                 | 47                | 47    | 47                | 47     | 47           |

<sup>\*\*.</sup> Correlation is significant at the 0.01 level (2-tailed).

Table 4.4: Pearson Correlation Matrix of all Covariate Variables

From Table 4.4, the following significant (non-zero) correlations can be extracted:

With a 95% degree of confidence:

 $Differential \stackrel{+}{\leftrightarrow} Year$ 

 $MassBiasDiff \stackrel{+}{\leftrightarrow} Year$ 

<sup>\*.</sup> Correlation is significant at the 0.05 level (2-tailed).

With a 99% degree of confidence:

Differential 
$$\stackrel{+}{\leftrightarrow}$$
 MassBiasDiff

Differential  $\stackrel{+}{\leftrightarrow}$  Price

MassBiasDiff  $\stackrel{+}{\leftrightarrow}$  Price

RG  $\stackrel{+}{\leftrightarrow}$  Year

RG  $\stackrel{+}{\leftrightarrow}$  PerfectScale

Year  $\stackrel{+}{\leftrightarrow}$  PerfectScale

 $Differential \stackrel{
ightharpoonup}{
ightharpoonup} RG$   $Differential \stackrel{
ightharpoonup}{
ightharpoonup} PerfectScale$   $MassBiasDiff \stackrel{
ightharpoonup}{
ightharpoonup} PerfectScale$   $RG \stackrel{
ightharpoonup}{
ightharpoonup} Price \stackrel{
ightharpoonup}{
ightharpoonup} PerfectScale$ 

Some correlations that stand out are the following:

The positive correlation between the Differential, MassBiasDiff and the Year, and the negative correlation between the RG and the Year; and the same correlation of each variable with the PerfectScale; further prove the strength of the positive correlation between the Year and PerfectScale, which was also suggested in an earlier Scatter Diagram (Figure 3.2.5). This means that over the years, further research and development by competitive companies in the industry has developed stronger and more reactive bowling balls.

The positive correlation between the Price and PerfectScale also suggests that the stronger a bowling ball (higher PerfectScale) is, the more expensive it is.

The above correlations shall be used in Chapter 5 for regression analysis.

# 5. Regression

# 5.1 Simple Linear Regression

#### 5.1.1 SLR of PerfectScale vs Year

From Table 5.1.1.1 and the Scatter Diagram in Chapter 3 (Figure 3.2.5), the  $R^2$  coefficient of determination is found to be 0.511, meaning the regression line explains 51.1% of the variability of the data set.

 Model Summary<sup>b</sup>

 Model
 R
 R Square
 Adjusted R Square
 Std. Error of the Estimate

 1
 .715<sup>a</sup>
 .511
 .500
 32.9910

- a. Predictors: (Constant), Year
- b. Dependent Variable: PerfectScale

Table 5.1.1.1: Model Summary of PerfectScale vs Year

 $H_0$ : The model  $PerfectScale = b_0$  is appropriate for this data set

 $H_1$ : The model  $PerfectScale = b_0 + b_1 Year$  fits the data set better than the constant model

| ANOVAª |            |                |    |             |        |                   |  |  |  |
|--------|------------|----------------|----|-------------|--------|-------------------|--|--|--|
| Model  |            | Sum of Squares | df | Mean Square | F      | Sig.              |  |  |  |
| 1      | Regression | 51234.793      | 1  | 51234.793   | 47.073 | .000 <sup>b</sup> |  |  |  |
|        | Residual   | 48978.365      | 45 | 1088.408    |        |                   |  |  |  |
|        | Total      | 100213.157     | 46 |             |        |                   |  |  |  |

- a. Dependent Variable: PerfectScale
- b. Predictors: (Constant), Year

Table 5.1.1.2: ANOVA of PerfectScale vs Year

As can be seen in Table 5.1.1.2, since the p-value 1.64x10<sup>-8</sup> < 0.05,  $H_0$  is rejected and  $H_1$  is accepted, and thus, with a 95% degree of confidence it can be said that the model  $PerfectScale = b_0 + b_1 Year$  fits the data set better than the constant model.

From Table 5.1.1.3,  $b_0$  and  $b_1$  can be found to be -29303.266 and 14.638 respectively. This makes the model:

 $Expected\ PerfectScale = -29303.266 + 14.368 * Year$ 

#### Coefficientsa

|       |            | Unstandardize | ed Coefficients | Standardized<br>Coefficients |        |      |
|-------|------------|---------------|-----------------|------------------------------|--------|------|
| Model |            | В             | Std. Error      | Beta                         | t      | Sig. |
| 1     | (Constant) | -29303.266    | 4298.264        |                              | -6.817 | .000 |
|       | Year       | 14.638        | 2.134           | .715                         | 6.861  | .000 |

a. Dependent Variable: PerfectScale

Table 5.1.1.3: Coefficients of PefecstScale vs Year

By looking at the Studentized Residuals for every entry in the data set, it is discovered that there are 2 cases which are outliers - Balls 24 and 33 ( $\because$  Studentized Residuals  $\notin$  [-2,2]).

Next, the Centered Leverage Values are examined, but first, the cut-off point must be calculated using the formula  $\frac{2p}{n}$ ; where p is the number of parameters and n is the sample size. Using p=2 and n=47 the cut-off point is found to be  $\frac{2*2}{47}=0.085$ . When looking through the data set for which cases had a Centered Leverage Value higher than the cut-off point (0.085), 3 outliers were found, these being cases 34, 36 and 39.

Finally, by examining the Cook's Distance for all the cases, 1 outlier was found to have an abnormally high distance, that being case 36.

The Normality of the Unstandardized Residuals was checked using the Kolmogorov-Smirnov and Shapiro-Wilk tests. As can be seen in Table 5.1.1.4, the p-value was found to be 0.007<0.05. Thus, with a 95% degree of confidence it is concluded that the Unstandardized Residuals are not normally distributed, and it can hence be stated that this model should not be applied to this data set.

H<sub>0</sub>: Residuals are Normally Distributed

H<sub>1</sub>: Residuals are not Normally Distributed

**Tests of Normality** 

|       | Kolm      | nogorov-Smir | nov <sup>a</sup> | Shapiro-Wilk |    |      |
|-------|-----------|--------------|------------------|--------------|----|------|
|       | Statistic | df           | Sig.             | Statistic    | df | Sig. |
| RES_1 | .134      | 47           | .034             | .929         | 47 | .007 |

a. Lilliefors Significance Correction

Table 5.1.1.4: Test for Normality – Unstandardized Residuals

| #  | Unstandardized  | Unstandardized | Studentized | Cook's   | Centered       |
|----|-----------------|----------------|-------------|----------|----------------|
|    | Predicted Value | Residual       | Residual    | Distance | Leverage Value |
| 1  | 207.2932        | 24.70678       | 0.7601      | 0.00871  | 0.008          |
| 2  | 207.2932        | 25.60678       | 0.78779     | 0.00936  | 0.008          |
| 3  | 178.0169        | 46.28313       | 1.41922     | 0.02357  | 0.00159        |
| 4  | 192.6551        | -42.1551       | -1.29199    | 0.01868  | 0.00061        |
| 5  | 192.6551        | -25.4551       | -0.78016    | 0.00681  | 0.00061        |
| 6  | 207.2932        | -7.79322       | -0.23976    | 0.00087  | 0.008          |
| 7  | 207.2932        | 7.10678        | 0.21864     | 0.00072  | 0.008          |
| 8  | 207.2932        | 22.90678       | 0.70473     | 0.00749  | 0.008          |
| 9  | 134.1024        | -10.0024       | -0.3154     | 0.00409  | 0.05472        |
| 10 | 207.2932        | -26.7932       | -0.82429    | 0.01025  | 0.008          |
| 11 | 192.6551        | -23.3551       | -0.7158     | 0.00573  | 0.00061        |
| 12 | 207.2932        | 6.00678        | 0.1848      | 0.00051  | 0.008          |
| 13 | 178.0169        | -49.3169       | -1.51225    | 0.02676  | 0.00159        |
| 14 | 207.2932        | 23.60678       | 0.72626     | 0.00795  | 0.008          |
| 15 | 207.2932        | 24.80678       | 0.76318     | 0.00878  | 0.008          |
| 16 | 178.0169        | -59.5169       | -1.82502    | 0.03898  | 0.00159        |
| 17 | 207.2932        | 4.90678        | 0.15096     | 0.00034  | 0.008          |
| 18 | 163.3787        | 25.2213        | 0.77711     | 0.01005  | 0.01094        |
| 19 | 221.9314        | -7.83139       | -0.24291    | 0.00139  | 0.02375        |
| 20 | 221.9314        | 11.46861       | 0.35573     | 0.00298  | 0.02375        |
| 21 | 207.2932        | -7.09322       | -0.21822    | 0.00072  | 0.008          |
| 22 | 192.6551        | 41.74495       | 1.27942     | 0.01832  | 0.00061        |
| 23 | 163.3787        | -62.4787       | -1.92507    | 0.06167  | 0.01094        |
| 24 | 207.2932        | -66.6932       | -2.05181    | 0.06348  | 0.008          |
| 25 | 192.6551        | -1.75505       | -0.05379    | 0.00003  | 0.00061        |
| 26 | 192.6551        | 39.74495       | 1.21813     | 0.0166   | 0.00061        |
| 27 | 207.2932        | -2.09322       | -0.0644     | 0.00006  | 0.008          |
| 28 | 221.9314        | 12.56861       | 0.38985     | 0.00358  | 0.02375        |
| 29 | 178.0169        | 5.78313        | 0.17733     | 0.00037  | 0.00159        |
| 30 | 178.0169        | 30.88313       | 0.947       | 0.01049  | 0.00159        |
| 31 | 192.6551        | 2.04495        | 0.06267     | 0.00004  | 0.00061        |
| 32 | 163.3787        | 48.5213        | 1.49502     | 0.0372   | 0.01094        |
| 33 | 163.3787        | -81.3787       | -2.50741    | 0.10463  | 0.01094        |
| 34 | 75.54965        | -0.64965       | -0.02295    | 0.00009  | 0.24265        |
| 35 | 192.6551        | 34.74495       | 1.06488     | 0.01269  | 0.00061        |
| 36 | 104.826         | 38.274         | 1.26074     | 0.14381  | 0.13195        |
| 37 | 207.2932        | 24.50678       | 0.75395     | 0.00857  | 0.008          |
| 38 | 148.7405        | -23.7405       | -0.73827    | 0.01432  | 0.02864        |
| 39 | 75.54965        | 9.45035        | 0.33388     | 0.01999  | 0.24265        |
| 40 | 207.2932        | 24.20678       | 0.74472     | 0.00836  | 0.008          |
| 41 | 163.3787        | 16.3213        | 0.50289     | 0.00421  | 0.01094        |
| 42 | 207.2932        | -37.6932       | -1.15963    | 0.02028  | 0.008          |
| 43 | 207.2932        | 13.60678       | 0.41861     | 0.00264  | 0.008          |

|   | 44 | 207.2932 | -64.3932 | -1.98105 | 0.05918 | 0.008   |
|---|----|----------|----------|----------|---------|---------|
| ľ | 45 | 192.6551 | 1.64495  | 0.05042  | 0.00003 | 0.00061 |
|   | 46 | 207.2932 | 7.90678  | 0.24325  | 0.00089 | 0.008   |
| ľ | 47 | 207.2932 | 25.60678 | 0.78779  | 0.00936 | 0.008   |

Table 5.1.1.5: Residuals and Distances – Used for checking Normality and Finding Outliers

# 5.2 Multiple Linear Regression

#### 5.2.1 MLR of Price with all correlated covariates

(It was already discovered in Section 4.1 that Price is not normally distributed, this technically invalidates the validity of this model)

It has already been shown that all the covariates are correlated with the dependent variable, Price, in Section 4.4 using the Pearson Correlation test.

Thus, the Linear Regression is calculated using SPSS with Price as the dependent and all the other covariates as independents.

 $H_0$ : The model  $Expected\ Price = b_0$  is appropriate for this data set

H<sub>1</sub>: The model  $Expected\ Price = b_0 + b_1 Differential + b_2 Mass Bias Diff + b_3 RG + b_4 Year$  fits the data set better than the constant model.

| ANOVA <sup>a</sup> |            |                |    |             |        |                   |  |  |  |  |
|--------------------|------------|----------------|----|-------------|--------|-------------------|--|--|--|--|
| Model              |            | Sum of Squares | df | Mean Square | F      | Sig.              |  |  |  |  |
| 1                  | Regression | 138733.683     | 4  | 34683.421   | 32.300 | .000 <sup>b</sup> |  |  |  |  |
|                    | Residual   | 45099.169      | 42 | 1073.790    |        |                   |  |  |  |  |
|                    | Total      | 183832.851     | 46 |             |        |                   |  |  |  |  |

a. Dependent Variable: Price

As can be seen in Table 5.2.1.1, since the p-value  $2.58 \times 10^{-12} < 0.05$ ,  $H_0$  is rejected and  $H_1$  is accepted, and thus, with a 95% degree of confidence it can be said that the model  $Price = b_0 + b_1 Differential + b_2 Mass Bias Diff + b_3 RG + b_4 Year$  fits the data set better than the constant model.

|      | Coefficients <sup>a</sup> |               |                 |                              |        |      |  |  |  |
|------|---------------------------|---------------|-----------------|------------------------------|--------|------|--|--|--|
|      |                           | Unstandardize | ed Coefficients | Standardized<br>Coefficients |        |      |  |  |  |
| Mode | I                         | В             | Std. Error      | Beta                         | t      | Sig. |  |  |  |
| 1    | (Constant)                | -28774.369    | 5360.405        |                              | -5.368 | .000 |  |  |  |
|      | Differential              | 2034.789      | 583.534         | .464                         | 3.487  | .001 |  |  |  |
|      | MassBiasDiff              | 2896.558      | 844.319         | .337                         | 3.431  | .001 |  |  |  |
|      | RG                        | 225.555       | 139.547         | .220                         | 1.616  | .114 |  |  |  |
|      | Year                      | 14.039        | 2.576           | .506                         | 5.451  | .000 |  |  |  |

a. Dependent Variable: Price

Table 5.2.1.2: Coefficients of Price vs Covariates

b. Predictors: (Constant), Year, MassBiasDiff, Differential, RG

Table 5.2.1.1: ANOVA of Price vs Covariates

As can be seen in Table 5.2.1.2, since the p-value is  $0.114>0.05 H_0$  is accepted and thus, with a 95% degree of confidence, it can be said that the RG of a Bowling Ball does not affect its Price (i.e. it is insignificant).

Thus, RG is removed from the list of Covariates, and the Coefficients are re-calculated.

| _  |      |      |     | _  |
|----|------|------|-----|----|
| Ca | etti | ICIE | 'n۱ | Sa |

|       |              | Unstandardized Coefficients |            | Standardized<br>Coefficients |        |      |
|-------|--------------|-----------------------------|------------|------------------------------|--------|------|
| Model |              | В                           | Std. Error | Beta                         | t      | Sig. |
| 1     | (Constant)   | -24433.321                  | 4725.239   |                              | -5.171 | .000 |
|       | Differential | 1401.502                    | 440.472    | .320                         | 3.182  | .003 |
|       | MassBiasDiff | 2860.377                    | 859.702    | .333                         | 3.327  | .002 |
|       | Year         | 12.181                      | 2.348      | .439                         | 5.188  | .000 |

a. Dependent Variable: Price

Table 5.2.1.3: Coefficients of Price vs Covariates

In Table 5.2.1.3, all listed Covariates are significant (all p-values < 0.05). Thus, the model becomes  $Expected\ Price = b_0 + b_1 Differential + b_2 Mass Bias Diff + b_3 Year$ 

From Table 5.2.1.3, the values of  $b_0$ ,  $b_1$ ,  $b_2$ ,  $b_3$  and  $b_4$  can be found. This makes the model:

Expected Price

$$= -24433.321 + 1401.502 * Differential + 2860.377 * MassBiasDiff + 12.181 * Year$$

From Table 5.2.1.4, the R<sup>2</sup> coefficient of determination is found to be 0.721, meaning the regression line explains 72.1% of the variability of the data set.

| Model | Summarv |
|-------|---------|
| woaei | Summarv |

|       |       |          | Adjusted R | Std. Error of the |
|-------|-------|----------|------------|-------------------|
| Model | R     | R Square | Square     | Estimate          |
| 1     | .860ª | .739     | .721       | 33.37751          |

a. Predictors: (Constant), Year, MassBiasDiff, Differential *Table 5.2.1.4: Model Summary of Price vs Covariates* 

By looking at the Studentized Residuals for every entry in the data set, it is discovered that there are 3 cases which are outliers - Balls 5, 37 and 39 ( $\because$  Studentized Residuals  $\notin [-2,2]$ ).

Next, the Centered Leverage Values are examined, but first, the cut-off point must be calculated using the formula  $\frac{2p}{n}$ ; where p is the number of parameters and n is the sample size. Using p=4 and n=47 the cut-off point is found to be  $\frac{2*4}{47}=0.17$ . When looking through the data set for which cases had a Centered Leverage Value higher than the cut-off point (0.17), 2 outliers were found, these being cases 34 and 39. (Note that Case 39 was already pointed out to be an outlier by the Studentized Residuals)

Finally, by examining the Cook's Distance for all the cases, 2 outliers were found to have an abnormally high distance, these being cases 37 and 39. (Note that both cases were already pointed out to be outliers by previous tests)

The Normality of the Unstandardized Residuals was checked using the Kolmogorov-Smirnov and Shapiro-Wilk tests. As can be seen in Table 5.2.1.5, the p-value was found to be 0.165>0.05. Thus,  $H_0$  is accepted, and with a 95% degree of confidence it is concluded that the Unstandardized Residuals are normally distributed, and can hence state that this model is correct for this data set.

H<sub>0</sub>: Residuals are Normally Distributed

H<sub>1</sub>: Residuals are not Normally Distributed

**Tests of Normality** 

|                         | Kolmogorov-Smirnov <sup>a</sup> |    | Shapiro-Wilk |           |    |      |
|-------------------------|---------------------------------|----|--------------|-----------|----|------|
|                         | Statistic                       | df | Sig.         | Statistic | df | Sig. |
| Unstandardized Residual | .098                            | 47 | .200*        | .965      | 47 | .165 |

<sup>\*.</sup> This is a lower bound of the true significance.

Table 5.2.1.5: Test for Normality – Unstandardized Residuals

a. Lilliefors Significance Correction

| #  | Unstandardized<br>Predicted Value | Unstandardized<br>Residual | Studentized<br>Residual | Cook's<br>Distance | Centered<br>Leverage Value |
|----|-----------------------------------|----------------------------|-------------------------|--------------------|----------------------------|
| 1  | 241.4411                          | 8.54889                    | 0.26303                 | 0.00094            | 0.03052                    |
| 2  | 235.7777                          | 24.21227                   | 0.74238                 | 0.00653            | 0.02394                    |
| 3  | 203.1795                          | 16.81051                   | 0.53033                 | 0.00765            | 0.07683                    |
| 4  | 131.7536                          | 28.23643                   | 0.90123                 | 0.02739            | 0.0976                     |
| 5  | 185.0107                          | -65.0207                   | -2.03898                | 0.09931            | 0.06594                    |
| 6  | 180.3733                          | -0.3833                    | -0.01182                | 0                  | 0.03441                    |
| 7  | 249.9649                          | -9.97487                   | -0.30918                | 0.00168            | 0.04442                    |
| 8  | 227.3687                          | 12.62128                   | 0.38724                 | 0.00183            | 0.02519                    |
| 9  | 106.8564                          | 23.13358                   | 0.72152                 | 0.0109             | 0.05597                    |
| 10 | 164.9568                          | -44.9668                   | -1.39183                | 0.0326             | 0.0418                     |
| 11 | 169.5941                          | -19.6041                   | -0.60092                | 0.00422            | 0.02338                    |
| 12 | 198.5928                          | -48.6028                   | -1.53602                | 0.06647            | 0.08001                    |
| 13 | 143.3984                          | -33.4084                   | -1.01964                | 0.00981            | 0.0151                     |
| 14 | 232.86                            | -12.87                     | -0.39418                | 0.00175            | 0.02186                    |
| 15 | 247.1619                          | 2.82813                    | 0.08759                 | 0.00013            | 0.04294                    |
| 16 | 111.1639                          | -1.17389                   | -0.03827                | 0.00007            | 0.1341                     |
| 17 | 194.3883                          | 25.60168                   | 0.80211                 | 0.01505            | 0.06426                    |
| 18 | 150.8388                          | 29.1512                    | 0.90223                 | 0.01367            | 0.04166                    |
| 19 | 210.7735                          | 29.2165                    | 0.93274                 | 0.02946            | 0.09802                    |
| 20 | 269.3825                          | -19.3925                   | -0.61629                | 0.01188            | 0.08996                    |
| 21 | 190.1838                          | -20.1938                   | -0.62836                | 0.00776            | 0.05165                    |
| 22 | 237.8989                          | 2.09106                    | 0.06555                 | 0.0001             | 0.06537                    |
| 23 | 94.77871                          | -4.78871                   | -0.15832                | 0.00136            | 0.15755                    |
| 24 | 153.7448                          | 26.24524                   | 0.82652                 | 0.01791            | 0.07365                    |
| 25 | 163.9881                          | 16.00188                   | 0.48921                 | 0.00247            | 0.01835                    |
| 26 | 233.5223                          | 26.46768                   | 0.81823                 | 0.01083            | 0.03949                    |
| 27 | 203.1989                          | 26.79106                   | 0.81501                 | 0.00514            | 0.00877                    |
| 28 | 239.492                           | 40.49799                   | 1.24573                 | 0.021              | 0.03007                    |
| 29 | 140.5954                          | -30.6054                   | -0.93557                | 0.00898            | 0.01813                    |
| 30 | 219.8828                          | 20.10723                   | 0.62438                 | 0.00723            | 0.04782                    |
| 31 | 178.29                            | -28.3                      | -0.85871                | 0.00474            | 0.00379                    |
| 32 | 183.475                           | -43.485                    | -1.34825                | 0.03224            | 0.04497                    |
| 33 | 114.3997                          | -24.4097                   | -0.76034                | 0.0117             | 0.0536                     |
| 34 | 70.74726                          | -2.75726                   | -0.0985                 | 0.00102            | 0.27535                    |
| 35 | 230.7767                          | -30.7867                   | -0.95454                | 0.01616            | 0.04498                    |
| 36 | 96.5101                           | -5.5201                    | -0.18239                | 0.0018             | 0.15649                    |
| 37 | 197.1913                          | 102.7987                   | 3.23873                 | 0.27748            | 0.07441                    |
| 38 | 130.2491                          | -37.2591                   | -1.15217                | 0.02168            | 0.04003                    |
| 39 | 41.31571                          | 58.67429                   | 2.07032                 | 0.41474            | 0.25776                    |
| 40 | 241.4411                          | 8.54889                    | 0.26303                 | 0.00094            | 0.03052                    |
| 41 | 125.6118                          | -50.6218                   | -1.55288                | 0.02915            | 0.02484                    |
| 42 | 163.5553                          | -13.5653                   | -0.4205                 | 0.00312            | 0.04456                    |
| 43 | 215.8125                          | 34.17754                   | 1.04383                 | 0.01067            | 0.01642                    |

| 44 | 143.9342 | 16.05576 | 0.51904  | 0.01106 | 0.1198  |
|----|----------|----------|----------|---------|---------|
| 45 | 170.9956 | 28.99437 | 0.88974  | 0.00971 | 0.02551 |
| 46 | 231.4585 | -31.4685 | -0.96276 | 0.00991 | 0.01974 |
| 47 | 268.6434 | -28.6534 | -0.94214 | 0.04537 | 0.14847 |

Table 5.2.1.6: Residuals and Distances – Used for checking Normality and Finding Outliers

# 6. General Linear Model

# 6.1 5-Way ANOVA

The ANOVA test requires the normality assumption, however neither of the two dependent variables of this data set are normally distributed.

H<sub>0</sub>: The Brand of a Bowling Ball does not affect its Price

H<sub>1</sub>: The Brand of a Bowling Ball affects its Price

### **Tests of Between-Subjects Effects**

Dependent Variable: Price

|                 | Type III Sum of |    |             |         |      |
|-----------------|-----------------|----|-------------|---------|------|
| Source          | Squares         | df | Mean Square | F       | Sig. |
| Corrected Model | 12440.351a      | 6  | 2073.392    | .484    | .816 |
| Intercept       | 1500883.597     | 1  | 1500883.597 | 350.280 | .000 |
| Brand           | 12440.351       | 6  | 2073.392    | .484    | .816 |
| Error           | 171392.500      | 40 | 4284.813    |         |      |
| Total           | 1734308.265     | 47 |             |         |      |
| Corrected Total | 183832.851      | 46 |             |         |      |

a. R Squared = .068 (Adjusted R Squared = -.072)

Table 6.1.1: Effects of Bowling Ball Brand on Price

As can be seen in Table 6.1.1, since the p-value is  $0.816>0.05 H_0$  is accepted and thus, with a 95% degree of confidence, it can be said that the Brand of a Bowling Ball does not affect its Price (i.e. it is insignificant).

Thus, Brand is removed from the list of Fixed Factors, and the significance of the Finish is checked.

H<sub>0</sub>: The Finish of a Bowling Ball does not affect its Price

H<sub>1</sub>: The Finish of a Bowling Ball affects its Price

#### **Tests of Between-Subjects Effects**

Dependent Variable: Price

|                 | Type III Sum of |    |             |         |      |
|-----------------|-----------------|----|-------------|---------|------|
| Source          | Squares         | df | Mean Square | F       | Sig. |
| Corrected Model | 25617.930a      | 3  | 8539.310    | 2.321   | .089 |
| Intercept       | 967406.471      | 1  | 967406.471  | 262.924 | .000 |
| Finish          | 25617.930       | 3  | 8539.310    | 2.321   | .089 |
| Error           | 158214.921      | 43 | 3679.417    |         |      |
| Total           | 1734308.265     | 47 |             |         |      |
| Corrected Total | 183832.851      | 46 |             |         |      |

a. R Squared = .139 (Adjusted R Squared = .079)

Table 6.1.2: Effects of Bowling Ball Finish on Price

As can be seen in Table 6.1.2, since the p-value is  $0.089>0.05 H_0$  is accepted and thus, with a 95% degree of confidence, it can be said that the Finish of a Bowling Ball does not affect its Price (i.e. it is insignificant).

Thus, Finish is removed from the list of Fixed Factors, and the significance of the LaneCondition is checked.

H<sub>0</sub>: The LaneCondition of a Bowling Ball does not affect its Price

H<sub>1</sub>: The LaneCondition of a Bowling Ball affects its Price

# **Tests of Between-Subjects Effects**

Dependent Variable: Price

| Source          | Type III Sum of Squares | df | Mean Square | F       | Sig. |
|-----------------|-------------------------|----|-------------|---------|------|
| Corrected Model | 106304.314ª             | 4  | 26576.079   | 14.397  | .000 |
| Intercept       | 1331159.326             | 1  | 1331159.326 | 721.137 | .000 |
| LaneCondition   | 106304.314              | 4  | 26576.079   | 14.397  | .000 |
| Error           | 77528.537               | 42 | 1845.918    |         |      |
| Total           | 1734308.265             | 47 |             |         |      |
| Corrected Total | 183832.851              | 46 |             |         |      |

a. R Squared = .578 (Adjusted R Squared = .538)

Table 6.1.3: Effects of Bowling Ball LaneCondition on Price

As can be seen in Table 6.1.3, since the p-value is  $1.76 \times 10^{-7} < 0.05 \text{ H}_0$  is rejected and H<sub>1</sub> is accepted and thus, with a 95% degree of confidence, it can be said that the LaneCondition of a Bowling Ball affects its Price (i.e. it is significant).

Thus, LaneCondition is kept in the list of Fixed Factors, and the significance of the Performance is checked.

H<sub>0</sub>: The Performance of a Bowling Ball does not affect its Price

H<sub>1</sub>: The Performance of a Bowling Ball affects its Price

### **Tests of Between-Subjects Effects**

Dependent Variable: Price

| Source          | Type III Sum of Squares | df | Mean Square | F        | Sig. |
|-----------------|-------------------------|----|-------------|----------|------|
| Corrected Model | 144951.639ª             | 8  | 18118.955   | 17.708   | .000 |
| Intercept       | 1109577.779             | 1  | 1109577.779 | 1084.430 | .000 |
| LaneCondition   | 4431.372                | 4  | 1107.843    | 1.083    | .379 |
| Performance     | 38647.325               | 4  | 9661.831    | 9.443    | .000 |
| Error           | 38881.212               | 38 | 1023.190    |          |      |
| Total           | 1734308.265             | 47 |             |          |      |
| Corrected Total | 183832.851              | 46 |             |          |      |

a. R Squared = .788 (Adjusted R Squared = .744)

Table 6.1.4: Effects of Bowling Ball LaneCondition and Performance on Price

As can be seen in Table 6.1.4, when the effects of Lane Condition and Performance together on Price are tested, the significance of LaneCondition becomes 0.379>0.05, which would imply that it is insignificant. This suggests that there is an interaction between LaneCondition and Performance. To choose whether to leave LaneCondition or Performance as a Fixed Factor, we first test the effects of Performance alone on Price.

### **Tests of Between-Subjects Effects**

Dependent Variable: Price

|                 | Type III Sum of |    |             |          |      |
|-----------------|-----------------|----|-------------|----------|------|
| Source          | Squares         | df | Mean Square | F        | Sig. |
| Corrected Model | 140520.268ª     | 4  | 35130.067   | 34.065   | .000 |
| Intercept       | 1222536.438     | 1  | 1222536.438 | 1185.488 | .000 |
| Performance     | 140520.268      | 4  | 35130.067   | 34.065   | .000 |
| Error           | 43312.583       | 42 | 1031.252    |          |      |
| Total           | 1734308.265     | 47 |             |          |      |
| Corrected Total | 183832.851      | 46 |             |          |      |

a. R Squared = .764 (Adjusted R Squared = .742)

Table 6.1.5: Effects of Bowling Ball Performance on Price

From Table 6.1.5, The adjusted R squared value of Performance on Price is 0.742 and from Table 6.1.3 the adjusted R squared value of LaneCondition on Price is 0.538. Therefore, Performance is chosen from the 2 Fixed Factors since it has a higher R Squared value, meaning it fits the model better.

Lastly, the significance of the CoreType is checked.

H<sub>0</sub>: The CoreType of a Bowling Ball does not affect its Price

H<sub>1</sub>: The CoreType of a Bowling Ball affects its Price

### **Tests of Between-Subjects Effects**

Dependent Variable: Price

| 0               | Type III Sum of | -16 | Ma 0        | ר       | O:   |
|-----------------|-----------------|-----|-------------|---------|------|
| Source          | Squares         | df  | Mean Square | F       | Sig. |
| Corrected Model | 140522.213ª     | 5   | 28104.443   | 26.605  | .000 |
| Intercept       | 897202.462      | 1   | 897202.462  | 849.336 | .000 |
| Performance     | 57403.029       | 4   | 14350.757   | 13.585  | .000 |
| CoreType        | 1.945           | 1   | 1.945       | .002    | .966 |
| Error           | 43310.638       | 41  | 1056.357    |         |      |
| Total           | 1734308.265     | 47  |             |         |      |
| Corrected Total | 183832.851      | 46  |             |         |      |

a. R Squared = .764 (Adjusted R Squared = .736)

Table 6.1.6: Effects of Bowling Ball Performance and CoreType on Price

From Table 6.1.6, since the p-value of CoreType is 0.966>0.5,  $H_0$  is accepted and thus, with a 95% degree of confidence, it can be said that the CoreType of a Bowling Ball does not affect its Price (i.e. it is insignificant).

Thus, as can be seen in Table 6.1.7, the final model will be based on the following Fixed Factors, i.e. Performance only.

# **Tests of Between-Subjects Effects**

Dependent Variable: Price

| Source          | Type III Sum of Squares | df | Mean Square | F        | Sig. |
|-----------------|-------------------------|----|-------------|----------|------|
| Corrected Model | 140520.268ª             | 4  | 35130.067   | 34.065   | .000 |
| Intercept       | 1222536.438             | 1  | 1222536.438 | 1185.488 | .000 |
| Performance     | 140520.268              | 4  | 35130.067   | 34.065   | .000 |
| Error           | 43312.583               | 42 | 1031.252    |          |      |
| Total           | 1734308.265             | 47 |             |          |      |
| Corrected Total | 183832.851              | 46 |             |          |      |

a. R Squared = .764 (Adjusted R Squared = .742)

Table 6.1.7: Effects of Bowling Ball Performance and CoreType on Price

From the Adjusted R Squared value, it is found that the model explains 74% of the variability of the data set.

From table 6.1.8, the model for Price becomes:

Expected Price 
$$= 240.6 - 147.4(Entry) - 98.3(Performance) - 77.292(Advanced) - 30.625(High)$$

#### **Parameter Estimates**

Dependent Variable: Price

|                    |                |            |         |      | 95% Confidence Interval |             |
|--------------------|----------------|------------|---------|------|-------------------------|-------------|
| Parameter          | В              | Std. Error | t       | Sig. | Lower Bound             | Upper Bound |
| Intercept          | 240.615        | 8.028      | 29.971  | .000 | 224.413                 | 256.817     |
| [Performance=1.00] | -147.375       | 13.905     | -10.598 | .000 | -175.437                | -119.313    |
| [Performance=2.00] | -98.292        | 13.380     | -7.346  | .000 | -125.295                | -71.289     |
| [Performance=3.00] | -77.292        | 15.373     | -5.028  | .000 | -108.316                | -46.268     |
| [Performance=4.00] | -30.625        | 13.905     | -2.202  | .033 | -58.687                 | -2.563      |
| [Performance=5.00] | 0 <sup>a</sup> |            |         |      |                         |             |

a. This parameter is set to zero because it is redundant.

Table 6.1.8: Parameter Estimates of Price vs Performance

By looking at the Studentized Residuals for every entry in the data set, it is discovered that there are 2 cases which are outliers - Balls 13 and 32 (:  $Studentized Residuals \notin [-2,2]$ ).

Next, the Centered Leverage Values are examined, but first, the cut-off point must be calculated using the formula  $\frac{2p}{n}$ ; where p is the number of parameters and n is the sample size. Using p=5 and n=47 the cut-off point is found to be  $\frac{2*5}{47}=0.213$ . When looking through the data set for which cases had a Centered Leverage Value higher than the cut-off point (0.213), no outliers were found, as all cases had a Centered Leverage Value lower than the cut-off point.

Finally, by examining the Cook's Distance for all the cases, 1 outlier was found to have an abnormally high distance, that being case 13. (Note that case 13 was already pointed out to be an outlier by the Studentized Residuals.)

The Normality of the Unstandardized Residuals was checked using the Kolmogorov-Smirnov and Shapiro-Wilk tests. As can be seen in Table 6.1.9, the p-value was found to be 0.0005<0.05 (from the Shapiro-Wilk test). Thus, with a 95% degree of confidence it is concluded that the Unstandardized Residuals are not normally distributed, and it can hence be stated that this model should not be applied to this data set.

H<sub>0</sub>: Residuals are Normally Distributed

H<sub>1</sub>: Residuals are not Normally Distributed

**Tests of Normality** 

|                    | Kolmogorov-Smirnov <sup>a</sup> |    |      | Shapiro-Wilk |    |      |
|--------------------|---------------------------------|----|------|--------------|----|------|
|                    | Statistic                       | df | Sig. | Statistic    | df | Sig. |
| Residual for Price | .119                            | 47 | .092 | .894         | 47 | .000 |

a. Lilliefors Significance Correction

Table 6.1.9: Test for Normality — Unstandardized Residuals

| #  | Unstandardized  | Unstandardized | Studentized | Cook's   | Centered       |
|----|-----------------|----------------|-------------|----------|----------------|
|    | Predicted Value | Residual       | Residual    | Distance | Leverage Value |
| 1  | 240.61          | 9.38           | 0.3         | 0        | 0.06           |
| 2  | 240.61          | 19.38          | 0.62        | 0.01     | 0.06           |
| 3  | 240.61          | -20.62         | -0.66       | 0.01     | 0.06           |
| 4  | 142.32          | 17.67          | 0.58        | 0.01     | 0.11           |
| 5  | 142.32          | -22.33         | -0.74       | 0.01     | 0.11           |
| 6  | 163.32          | 16.67          | 0.57        | 0.01     | 0.17           |
| 7  | 209.99          | 30             | 1           | 0.03     | 0.13           |
| 8  | 240.61          | -0.62          | -0.02       | 0        | 0.06           |
| 9  | 142.32          | -12.33         | -0.41       | 0        | 0.11           |
| 10 | 93.24           | 26.75          | 0.89        | 0.02     | 0.13           |
| 11 | 163.32          | -13.33         | -0.45       | 0.01     | 0.17           |
| 12 | 163.32          | -13.33         | -0.45       | 0.01     | 0.17           |
| 13 | 209.99          | -100           | -3.33       | 0.32     | 0.13           |
| 14 | 240.61          | -20.62         | -0.66       | 0.01     | 0.06           |
| 15 | 240.61          | 9.38           | 0.3         | 0        | 0.06           |
| 16 | 93.24           | 16.75          | 0.56        | 0.01     | 0.13           |
| 17 | 209.99          | 10             | 0.33        | 0        | 0.13           |
| 18 | 163.32          | 16.67          | 0.57        | 0.01     | 0.17           |
| 19 | 209.99          | 30             | 1           | 0.03     | 0.13           |
| 20 | 240.61          | 9.38           | 0.3         | 0        | 0.06           |
| 21 | 163.32          | 6.67           | 0.23        | 0        | 0.17           |
| 22 | 240.61          | -0.62          | -0.02       | 0        | 0.06           |
| 23 | 93.24           | -3.25          | -0.11       | 0        | 0.13           |
| 24 | 142.32          | 37.67          | 1.24        | 0.04     | 0.11           |
| 25 | 142.32          | 37.67          | 1.24        | 0.04     | 0.11           |
| 26 | 240.61          | 19.38          | 0.62        | 0.01     | 0.06           |
| 27 | 209.99          | 20             | 0.67        | 0.01     | 0.13           |
| 28 | 240.61          | 39.38          | 1.27        | 0.02     | 0.06           |
| 29 | 142.32          | -32.33         | -1.07       | 0.03     | 0.11           |
| 30 | 209.99          | 30             | 1           | 0.03     | 0.13           |
| 31 | 163.32          | -13.33         | -0.45       | 0.01     | 0.17           |
| 32 | 240.61          | -100.62        | -3.24       | 0.14     | 0.06           |
| 33 | 93.24           | -3.25          | -0.11       | 0        | 0.13           |
| 34 | 93.24           | -25.25         | -0.84       | 0.02     | 0.13           |

| 35 | 240.61 | -40.62 | -1.31 | 0.02 | 0.06 |
|----|--------|--------|-------|------|------|
| 36 | 142.32 | -51.33 | -1.7  | 0.07 | 0.11 |
| 37 | 240.61 | 59.38  | 1.91  | 0.05 | 0.06 |
| 38 | 93.24  | -0.25  | -0.01 | 0    | 0.13 |
| 39 | 93.24  | 6.75   | 0.22  | 0    | 0.13 |
| 40 | 240.61 | 9.38   | 0.3   | 0    | 0.06 |
| 41 | 93.24  | -18.25 | -0.61 | 0.01 | 0.13 |
| 42 | 142.32 | 7.67   | 0.25  | 0    | 0.11 |
| 43 | 240.61 | 9.38   | 0.3   | 0    | 0.06 |
| 44 | 142.32 | 17.67  | 0.58  | 0.01 | 0.11 |
| 45 | 209.99 | -10    | -0.33 | 0    | 0.13 |
| 46 | 209.99 | -10    | -0.33 | 0    | 0.13 |
| 47 | 240.61 | -0.62  | -0.02 | 0    | 0.06 |

Table 6.1.10: Residuals and Distances – Used for checking Normality and Finding Outliers

### **6.2 ANCOVA**

### **PerfectScale vs All Significant Fixed Factors and Covariates**

The ANCOVA test requires the normality assumption, however neither of the two dependent variables of this data set are normally distributed.

First, it is required to check the significance of all the Fixed Factors. This is done one Fixed Factor at a time, starting with the Brand.

H<sub>0</sub>: The Brand of a Bowling Ball does not affect its PerfectScale

H<sub>1</sub>: The Brand of a Bowling Ball affects its PerfectScale

### **Tests of Between-Subjects Effects**

Dependent Variable: PerfectScale

|                 | Type III Sum of |    |             |         |      |
|-----------------|-----------------|----|-------------|---------|------|
| Source          | Squares         | df | Mean Square | F       | Sig. |
| Corrected Model | 10544.107ª      | 6  | 1757.351    | .784    | .588 |
| Intercept       | 1623734.973     | 1  | 1623734.973 | 724.323 | .000 |
| Brand           | 10544.107       | 6  | 1757.351    | .784    | .588 |
| Error           | 89669.051       | 40 | 2241.726    |         |      |
| Total           | 1744616.470     | 47 |             |         |      |
| Corrected Total | 100213.157      | 46 |             |         |      |

a. R Squared = .105 (Adjusted R Squared = -.029)

Table 6.2.1: Effects of Bowling Ball Brand on PerfectScale

As can be seen in Table 6.2.1, since the p-value is  $0.588>0.05 H_0$  is accepted and thus, with a 95% degree of confidence, it can be said that the Brand of a Bowling Ball does not affect its PerfectScale (i.e. it is insignificant).

Thus, Brand is removed from the list of Fixed Factors, and the significance of the Finish is checked.

H<sub>0</sub>: The Finish of a Bowling Ball does not affect its PerfectScale

H<sub>1</sub>: The Finish of a Bowling Ball affects its PerfectScale

#### **Tests of Between-Subjects Effects**

Dependent Variable: PerfectScale

|                 | Type III Sum of |    |             |         |      |
|-----------------|-----------------|----|-------------|---------|------|
| Source          | Squares         | df | Mean Square | F       | Sig. |
| Corrected Model | 5265.338ª       | 3  | 1755.113    | .795    | .504 |
| Intercept       | 1075836.391     | 1  | 1075836.391 | 487.225 | .000 |
| Finish          | 5265.338        | 3  | 1755.113    | .795    | .504 |
| Error           | 94947.819       | 43 | 2208.089    |         |      |
| Total           | 1744616.470     | 47 |             |         |      |
| Corrected Total | 100213.157      | 46 |             |         |      |

a. R Squared = .053 (Adjusted R Squared = -.014)

Table 6.2.2: Effects of Bowling Ball Finish on PerfectScale

As can be seen in Table 6.2.2, since the p-value is  $0.504>0.05 H_0$  is accepted and thus, with a 95% degree of confidence, it can be said that the Finish of a Bowling Ball does not affect its PerfectScale (i.e. it is insignificant).

Thus, Finish is removed from the list of Fixed Factors, and the significance of the LaneCondition is checked.

H<sub>0</sub>: The LaneCondition of a Bowling Ball does not affect its PerfectScale

H<sub>1</sub>: The LaneCondition of a Bowling Ball affects its PerfectScale

### **Tests of Between-Subjects Effects**

Dependent Variable: PerfectScale

|                 | Type III Sum of | ., |             | 1        | O:   |
|-----------------|-----------------|----|-------------|----------|------|
| Source          | Squares         | df | Mean Square | F        | Sig. |
| Corrected Model | 64148.213ª      | 4  | 16037.053   | 18.676   | .000 |
| Intercept       | 1423443.412     | 1  | 1423443.412 | 1657.693 | .000 |
| LaneCondition   | 64148.213       | 4  | 16037.053   | 18.676   | .000 |
| Error           | 36064.945       | 42 | 858.689     |          |      |
| Total           | 1744616.470     | 47 |             |          |      |
| Corrected Total | 100213.157      | 46 |             |          |      |

a. R Squared = .640 (Adjusted R Squared = .606)

Table 6.2.3: Effects of Bowling Ball LaneCondition on PerfectScale

As can be seen in Table 6.2.3, since the p-value is  $6.9x10^{-9}$ <0.05 H<sub>0</sub> is rejected and H<sub>1</sub> is accepted and thus, with a 95% degree of confidence, it can be said that the LaneCondition of a Bowling Ball affects its PerfectScale (i.e. it is significant).

Thus, LaneCondition is kept in the list of Fixed Factors, and the significance of the Performance is checked.

H<sub>0</sub>: The Performance of a Bowling Ball does not affect its PerfectScale

H<sub>1</sub>: The Performance of a Bowling Ball affects its PerfectScale

### **Tests of Between-Subjects Effects**

Dependent Variable: PerfectScale

|                 | Type III Sum of |    |             | _        |      |
|-----------------|-----------------|----|-------------|----------|------|
| Source          | Squares         | df | Mean Square | F        | Sig. |
| Corrected Model | 85369.455ª      | 8  | 10671.182   | 27.318   | .000 |
| Intercept       | 1216775.256     | 1  | 1216775.256 | 3114.955 | .000 |
| LaneCondition   | 8987.184        | 4  | 2246.796    | 5.752    | .001 |
| Performance     | 21221.242       | 4  | 5305.310    | 13.582   | .000 |
| Error           | 14843.703       | 38 | 390.624     |          |      |
| Total           | 1744616.470     | 47 |             |          |      |
| Corrected Total | 100213.157      | 46 |             |          |      |

a. R Squared = .852 (Adjusted R Squared = .821)

Table 6.2.4: Effects of Bowling Ball LaneCondition and Performance on PerfectScale

As can be seen in Table 6.2.4, when the effects of Lane Condition and Performance together on PerfectScale are tested, the significance of LaneCondition changes, this suggests that there is an interaction between LaneCondition and Performance. However, since both Fixed Factors have a p-value<0.05, we can consider both to be significant.

Lastly, the significance of the CoreType is checked.

H<sub>0</sub>: The CoreType of a Bowling Ball does not affect its PerfectScale

H<sub>1</sub>: The CoreType of a Bowling Ball affects its PerfectScale

#### **Tests of Between-Subjects Effects**

Dependent Variable: PerfectScale

|                 | Type III Sum of |    |             |          |      |
|-----------------|-----------------|----|-------------|----------|------|
| Source          | Squares         | df | Mean Square | F        | Sig. |
| Corrected Model | 85927.328ª      | 9  | 9547.481    | 24.728   | .000 |
| Intercept       | 894218.575      | 1  | 894218.575  | 2316.007 | .000 |
| LaneCondition   | 8997.799        | 4  | 2249.450    | 5.826    | .001 |
| Performance     | 14973.734       | 4  | 3743.434    | 9.695    | .000 |
| CoreType        | 557.873         | 1  | 557.873     | 1.445    | .237 |
| Error           | 14285.830       | 37 | 386.104     |          |      |
| Total           | 1744616.470     | 47 |             |          |      |
| Corrected Total | 100213.157      | 46 |             |          |      |

a. R Squared = .857 (Adjusted R Squared = .823)

Table 6.2.5: Effects of Bowling Ball LaneCondition, Performance and CoreType on PerfectScale

From Table 6.2.5, since the p-value of CoreType is 0.237>0.05, H<sub>0</sub> is accepted and thus, with a 95% degree of confidence, it can be said that the CoreType of a Bowling Ball does not affect its PerfectScale (i.e. it is insignificant).

Therefore, the Fixed Factors which affect (are significant) the PerfectScale of a Bowling Ball are the LaneCondition and the Performance.

Next, the significance of the Covariates on the PerfectScale are checked. First, the significance of the Differential is checked.

H<sub>0</sub>: The Differential of a Bowling Ball does not affect its PerfectScale

H<sub>1</sub>: The Differential of a Bowling Ball affects its PerfectScale

#### **Tests of Between-Subjects Effects**

Dependent Variable: PerfectScale

| Source          | Type III Sum of Squares | Df | Mean Square | F       | Sig. |
|-----------------|-------------------------|----|-------------|---------|------|
| Corrected Model | 89726.849ª              | 9  | 9969.650    | 35.177  | .000 |
| Intercept       | 30002.131               | 1  | 30002.131   | 105.860 | .000 |
| LaneCondition   | 10341.869               | 4  | 2585.467    | 9.123   | .000 |
| Performance     | 15826.696               | 4  | 3956.674    | 13.961  | .000 |
| Differential    | 4357.395                | 1  | 4357.395    | 15.375  | .000 |
| Error           | 10486.308               | 37 | 283.414     |         |      |
| Total           | 1744616.470             | 47 |             |         |      |
| Corrected Total | 100213.157              | 46 |             |         |      |

a. R Squared = .895 (Adjusted R Squared = .870)

Table 6.2.6: Effects of Bowling Ball LaneCondition, Performance and Differential on PerfectScale

From Table 6.2.6, since the p-value of Differential is  $3.68 \times 10^{-4} < 0.05$ ,  $H_1$  is accepted and thus, with a 95% degree of confidence, it can be said that the Differential of a Bowling Ball affects its PerfectScale (i.e. it is significant).

Thus, Differential is kept in the list of significant Covariates, and the significance of the MassBiasDiff is checked.

H<sub>0</sub>: The MassBiasDiff of a Bowling Ball does not affect its PerfectScale

H<sub>1</sub>: The MassBiasDiff of a Bowling Ball affects its PerfectScale

#### **Tests of Between-Subjects Effects**

Dependent Variable: PerfectScale

| Source          | Type III Sum of Squares | df | Mean Square | F       | Sig. |
|-----------------|-------------------------|----|-------------|---------|------|
| Corrected Model | 89952.596ª              | 10 | 8995.260    | 31.561  | .000 |
| Intercept       | 29952.646               | 1  | 29952.646   | 105.091 | .000 |
| LaneCondition   | 10183.937               | 4  | 2545.984    | 8.933   | .000 |
| Performance     | 13305.370               | 4  | 3326.343    | 11.671  | .000 |
| Differential    | 3855.349                | 1  | 3855.349    | 13.527  | .001 |
| MassBiasDiff    | 225.747                 | 1  | 225.747     | .792    | .379 |
| Error           | 10260.561               | 36 | 285.016     |         |      |
| Total           | 1744616.470             | 47 |             |         |      |
| Corrected Total | 100213.157              | 46 |             |         |      |

a. R Squared = .898 (Adjusted R Squared = .869)

Table 6.2.7: Effects of Bowling Ball LaneCondition, Performance and Differential and MassBiasDiff on PerfectScale

From Table 6.2.7, since the p-value of MassBiasDiff is 0.379>0.05,  $H_0$  is accepted and thus, with a 95% degree of confidence, it can be said that the MassBiasDiff of a Bowling Ball does not affect its PerfectScale (i.e. it is insignificant).

Thus, MassBiasDiff is removed from the list of significant Covariates, and the significance of the RG is checked.

H<sub>0</sub>: The RG of a Bowling Ball does not affect its PerfectScale

H<sub>1</sub>: The RG of a Bowling Ball affects its PerfectScale

### **Tests of Between-Subjects Effects**

Dependent Variable: PerfectScale

|                 | Type III Sum of        |    |             |        |      |  |
|-----------------|------------------------|----|-------------|--------|------|--|
| Source          | Squares                | df | Mean Square | F      | Sig. |  |
| Corrected Model | 90413.300 <sup>a</sup> | 10 | 9041.330    | 33.214 | .000 |  |
| Intercept       | 1369.414               | 1  | 1369.414    | 5.031  | .031 |  |
| LaneCondition   | 6362.903               | 4  | 1590.726    | 5.844  | .001 |  |
| Performance     | 11321.067              | 4  | 2830.267    | 10.397 | .000 |  |
| Differential    | 1308.688               | 1  | 1308.688    | 4.807  | .035 |  |
| RG              | 686.451                | 1  | 686.451     | 2.522  | .121 |  |
| Error           | 9799.857               | 36 | 272.218     |        |      |  |
| Total           | 1744616.470            | 47 |             |        |      |  |
| Corrected Total | 100213.157             | 46 |             |        |      |  |

a. R Squared = .902 (Adjusted R Squared = .875)

Table 6.2.8: Effects of Bowling Ball LaneCondition, Performance and Differential and RG on PerfectScale

As can be seen in Table 6.2.8, when the effects of Differential and RG together on PerfectScale are tested, the significance of Differential becomes 0.035, and that of RG 0.121 which would imply that it is insignificant. This suggests that there is an interaction between Differential and RG. When tested individually, both Covariates are found to be significant. However, Differential has an adjusted R<sup>2</sup> value of 0.87, while RG has an adjusted R<sup>2</sup> value of 0.862. Since having Differential as a significant Covariate fits the model better, it is kept in the list of significant Covariates and RG is removed.

Next, the significance of Year is checked.

H<sub>0</sub>: The RG of a Bowling Ball does not affect its PerfectScale

H<sub>1</sub>: The RG of a Bowling Ball affects its PerfectScale

#### **Tests of Between-Subjects Effects**

Dependent Variable: PerfectScale

| Dependent variable. | Type III Sum of |    |             |        |      |
|---------------------|-----------------|----|-------------|--------|------|
| Source              | Squares         | df | Mean Square | F      | Sig. |
| Corrected Model     | 91518.278ª      | 10 | 9151.828    | 37.892 | .000 |
| Intercept           | 1744.118        | 1  | 1744.118    | 7.221  | .011 |
| LaneCondition       | 2411.254        | 4  | 602.813     | 2.496  | .060 |
| Performance         | 4864.496        | 4  | 1216.124    | 5.035  | .003 |
| Differential        | 4455.097        | 1  | 4455.097    | 18.446 | .000 |
| Year                | 1791.429        | 1  | 1791.429    | 7.417  | .010 |
| Error               | 8694.879        | 36 | 241.524     |        |      |
| Total               | 1744616.470     | 47 |             |        |      |
| Corrected Total     | 100213.157      | 46 |             |        |      |

a. R Squared = .913 (Adjusted R Squared = .889)

Table 6.2.9: Effects of Bowling Ball LaneCondition, Performance and Differential and Year on PerfectScale

From Table 6.2.9, since the p-value of Year is 0.01<0.05,  $H_0$  is rejected and  $H_1$  is accepted and thus, with a 95% degree of confidence, it can be said that the Year of a Bowling Ball affects its PerfectScale (i.e. it is significant).

Lastly, the significance of the Price is checked.

H<sub>0</sub>: The Price of a Bowling Ball does not affect its PerfectScale

H<sub>1</sub>: The Price of a Bowling Ball affects its PerfectScale

#### **Tests of Between-Subjects Effects**

Dependent Variable: PerfectScale

| Source          | Type III Sum of Squares | df | Mean Square | F      | Sig. |
|-----------------|-------------------------|----|-------------|--------|------|
| Corrected Model | 91974.539ª              | 11 | 8361.322    | 35.521 | .000 |
| Intercept       | 861.632                 | 1  | 861.632     | 3.660  | .064 |
| LaneCondition   | 2631.759                | 4  | 657.940     | 2.795  | .041 |
| Performance     | 3270.916                | 4  | 817.729     | 3.474  | .017 |
| Differential    | 3960.111                | 1  | 3960.111    | 16.824 | .000 |
| Year            | 885.277                 | 1  | 885.277     | 3.761  | .061 |
| Price           | 456.261                 | 1  | 456.261     | 1.938  | .173 |
| Error           | 8238.619                | 35 | 235.389     |        |      |
| Total           | 1744616.470             | 47 |             |        |      |
| Corrected Total | 100213.157              | 46 |             |        |      |

a. R Squared = .918 (Adjusted R Squared = .892)

Table 6.2.10: Effects of Bowling Ball LaneCondition, Performance and Differential, Year and Price on PerfectScale

As can be seen in Table 6.2.10, when the effects of Year and Price together on PerfectScale are tested, the significance of Differential becomes 0.061, and that of RG 0.173 which would imply that it is insignificant. This suggests that there is an interaction between Year and Price. When tested individually, both Covariates are found to be significant. However, Year has an adjusted R<sup>2</sup> value of 0.889, while Price has an adjusted R<sup>2</sup> value of 0.884. Since having Year as a significant Covariate fits the model better, it is kept in the list of significant Covariates and Price is removed.

Finally, the significance of 2-Way Interactions between Fixed Factors is checked

H<sub>0</sub>: The LaneCondition\*Performance of a Bowling Ball does not affect its PerfectScale

H<sub>1</sub>: The LaneCondition\*Performance of a Bowling Ball affects its PerfectScale

#### **Tests of Between-Subjects Effects**

Dependent Variable: PerfectScale

| Source                      | Type III Sum of Squares | df | Mean Square | F      | Sig. |
|-----------------------------|-------------------------|----|-------------|--------|------|
| Corrected Model             | 93731.877ª              | 14 | 6695.134    | 33.056 | .000 |
| Intercept                   | 1329.376                | 1  | 1329.376    | 6.564  | .015 |
| LaneCondition               | 2994.270                | 4  | 748.568     | 3.696  | .014 |
| Performance                 | 3814.225                | 4  | 953.556     | 4.708  | .004 |
| Differential                | 5307.479                | 1  | 5307.479    | 26.205 | .000 |
| Year                        | 1367.546                | 1  | 1367.546    | 6.752  | .014 |
| LaneCondition * Performance | 2213.599                | 4  | 553.400     | 2.732  | .046 |
| Error                       | 6481.280                | 32 | 202.540     |        |      |
| Total                       | 1744616.470             | 47 |             |        |      |
| Corrected Total             | 100213.157              | 46 |             |        |      |

a. R Squared = .935 (Adjusted R Squared = .907)

Table 6.2.11: Effects of Bowling Ball LaneCondition, Performance and Differential, Year and LaneCondition\*Performance on PerfectScale

From Table 6.2.11, since the p-value of Year is 0.046<0.05,  $H_0$  is rejected and  $H_1$  is accepted and thus, with a 95% degree of confidence, it can be said that the LaneCondition\*Performance of a Bowling Ball affects its PerfectScale (i.e. it is significant).

Therefore, as can be seen in Table 6.2.11, the final model will be based on the following Fixed Factors and Interactions (i.e. Lane Condition, Performance and LaneCondition\*Performance) and Covariates (i.e. Differential and Year).

From the Adjusted R Squared value, it is found that the model explains 90.7% of the variability of the data set.

From Table 6.2.12, the model for PerfectScale becomes:

Expected PerfectScale

- = -8579.969 8.295(Dry) + 7.458(MediumDry) 4.822(Medium)
- -1.982(MediumHeavy) 96.805(Entry) 38.660(Performance)
- -18.149(Advanced) 18.435(High) + 35.394(Dry)(Entry)
- +66.463(MediumDry)(Entry) + 10.147(Medium)(High)
- -10.671(MediumHeavy)(High) +1385.536(Differential)
- +4.335(Year)

## **Parameter Estimates**

Dependent Variable: PerfectScale

| Dependent Variable: PerfectS | cale           |            |        |       | 95% Confide | ence Interval |
|------------------------------|----------------|------------|--------|-------|-------------|---------------|
| Parameter                    | В              | Std. Error | t      | Sig.  | Lower Bound | Upper Bound   |
| Intercept                    | -8579.969      | 3363.105   | -2.551 | .016  | -15430.390  | -1729.548     |
| [LaneCondition=1.00]         | -8.295         | 24.660     | 336    | .739  | -58.526     | 41.936        |
| [LaneCondition=2.00]         | 7.458          | 24.031     | .310   | .758  | -41.493     | 56.408        |
| [LaneCondition=3.00]         | -4.822         | 15.243     | 316    | .754  | -35.870     | 26.226        |
| [LaneCondition=4.00]         | -1.982         | 7.475      | 265    | .793  | -17.208     | 13.245        |
| [LaneCondition=5.00]         | 0 <sup>a</sup> |            |        |       |             |               |
| [Performance=1.00]           | -96.805        | 25.442     | -3.805 | .001  | -148.628    | -44.982       |
| [Performance=2.00]           | -38.660        | 23.580     | -1.640 | .111  | -86.691     | 9.371         |
| [Performance=3.00]           | -18.149        | 15.728     | -1.154 | .257  | -50.187     | 13.889        |
| [Performance=4.00]           | -18.435        | 11.540     | -1.597 | .120  | -41.942     | 5.072         |
| [Performance=5.00]           | 0 <sup>a</sup> |            |        |       |             |               |
| Differential                 | 1385.536       | 270.663    | 5.119  | .000  | 834.213     | 1936.859      |
| Year                         | 4.335          | 1.668      | 2.598  | .014  | .937        | 7.733         |
| [LaneCondition=1.00] *       | 05.004         | 00.000     | 4 400  | 4.4.4 | 40.000      | 00.470        |
| [Performance=1.00]           | 35.394         | 23.606     | 1.499  | .144  | -12.689     | 83.478        |
| [LaneCondition=1.00] *       | 0 <sup>a</sup> |            |        |       |             |               |
| [Performance=2.00]           | Uª             | •          |        |       | •           |               |
| [LaneCondition=2.00] *       | 00.400         | 00.005     | 0.000  | 000   | 00.055      | 440.074       |
| [Performance=1.00]           | 66.463         | 22.685     | 2.930  | .006  | 20.255      | 112.671       |
| [LaneCondition=2.00] *       | 0 <sup>a</sup> |            |        |       |             |               |
| [Performance=2.00]           | 0"             | •          | •      |       | •           |               |
| [LaneCondition=3.00] *       | 0 <sup>a</sup> |            |        |       |             |               |
| [Performance=1.00]           | 0*             |            |        |       | •           |               |
| [LaneCondition=3.00] *       | 0 <sup>a</sup> |            |        |       |             |               |
| [Performance=2.00]           | 0*             |            |        |       | •           |               |
| [LaneCondition=3.00] *       | 0 <sup>a</sup> |            |        |       |             |               |
| [Performance=3.00]           | 0*             |            |        |       | •           |               |
| [LaneCondition=3.00] *       | 10.147         | 23.238     | .437   | .665  | -37.188     | 57.481        |
| [Performance=4.00]           | 10.147         | 25.250     | .437   | .005  | -37.100     | 37.401        |
| [LaneCondition=3.00] *       | 0 <sup>a</sup> |            |        |       |             |               |
| [Performance=5.00]           | 0*             |            |        |       | •           |               |
| [LaneCondition=4.00] *       | -10.671        | 14.075     | 758    | .454  | -39.340     | 17.998        |
| [Performance=4.00]           | -10.071        | 14.075     | 736    | .434  | -39.340     | 17.990        |
| [LaneCondition=4.00] *       | 0 <sup>a</sup> |            |        |       |             |               |
| [Performance=5.00]           | U              |            |        |       | •           |               |
| [LaneCondition=5.00] *       | 0 <sup>a</sup> |            |        |       |             |               |
| [Performance=4.00]           | 0"             | •          | •      | •     | •           | •             |
| [LaneCondition=5.00] *       | 0 <sup>a</sup> |            |        |       |             |               |
| [Performance=5.00]           | U              | •          | •      |       | •           | •             |

a. This parameter is set to zero because it is redundant.

Table 6.2.12: Parameter Estimates of PerfectScale

By looking at the Studentized Residuals for every entry in the data set, it is discovered that there are 2 cases which are outliers - Balls 5 and 13 ( $\because$  Studentized Residuals  $\notin [-2,2]$ ).

Next, the Centered Leverage Values are examined, but first, the cut-off point must be calculated using the formula  $\frac{2p}{n}$ ; where p is the number of parameters and n is the sample size. Using p=15 and n=47 the cut-off point is found to be  $\frac{2*15}{47}=0.638$ . When looking through the data set for which cases had a Centered Leverage Value higher than the cut-off point (0.638), 4 outliers were found, these being cases 27, 34, 36 and 40.

Finally, by examining the Cook's Distance for all the cases, 2 outliers were found to have an abnormally high distance, these being cases 5 and 13. (Note that both cases were already pointed out to be outliers by the Studentized Residuals.)

The Normality of the Unstandardized Residuals was checked using the Kolmogorov-Smirnov and Shapiro-Wilk tests. As can be seen in Table 6.2.13, the p-value was found to be 0.012<0.05 (from the Shapiro-Wilk test). Thus, with a 95% degree of confidence it is concluded that the Unstandardized Residuals are not normally distributed, and it can hence be stated that this model should not be applied to this data set.

H<sub>0</sub>: Residuals are Normally Distributed

H<sub>1</sub>: Residuals are not Normally Distributed

**Tests of Normality** 

|                           | Kolm      | nogorov-Smir | nov <sup>a</sup> | Shapiro-Wilk      |    |      |  |
|---------------------------|-----------|--------------|------------------|-------------------|----|------|--|
|                           | Statistic | df           | Sig.             | Statistic df Sig. |    |      |  |
| Residual for PerfectScale | .167      | 47           | .002             | .936              | 47 | .012 |  |

a. Lilliefors Significance Correction

Table 6.2.13: Test for Normality – Unstandardized Residuals

| #  | Unstandardized Predicted Value | Unstandardized<br>Residual | Studentized<br>Residual | Cook's<br>Distance | Centered<br>Leverage Value |
|----|--------------------------------|----------------------------|-------------------------|--------------------|----------------------------|
| 1  | 234.34                         | -2.34                      | -0.18                   | 0                  | 0.14                       |
| 2  | 233.55                         | -0.65                      | -0.05                   | 0                  | 0.14                       |
| 3  | 208.25                         | 16.05                      | 1.29                    | 0.03               | 0.24                       |
| 4  | 143.98                         | 6.52                       | 0.53                    | 0.01               | 0.26                       |
| 5  | 196.63                         | -29.43                     | -2.54                   | 0.22               | 0.34                       |
| 6  | 192.57                         | 6.93                       | 0.54                    | 0                  | 0.18                       |
| 7  | 208.01                         | 6.39                       | 0.51                    | 0                  | 0.22                       |
| 8  | 223.26                         | 6.94                       | 0.53                    | 0                  | 0.14                       |
| 9  | 134.44                         | -10.34                     | -1.17                   | 0.14               | 0.61                       |
| 10 | 177.41                         | 3.09                       | 0.28                    | 0                  | 0.39                       |
| 11 | 189.62                         | -20.32                     | -1.57                   | 0.03               | 0.17                       |
| 12 | 210.58                         | 2.72                       | 0.21                    | 0                  | 0.21                       |
| 13 | 163.31                         | -34.61                     | -3.05                   | 0.35               | 0.36                       |
| 14 | 236.32                         | -5.42                      | -0.41                   | 0                  | 0.15                       |
| 15 | 236.32                         | -4.22                      | -0.32                   | 0                  | 0.15                       |
| 16 | 139.65                         | -21.15                     | -1.92                   | 0.16               | 0.4                        |
| 17 | 210.96                         | 1.24                       | 0.12                    | 0                  | 0.51                       |
| 18 | 186.49                         | 2.11                       | 0.17                    | 0                  | 0.23                       |
| 19 | 206.8                          | 7.3                        | 0.59                    | 0.01               | 0.24                       |
| 20 | 239.27                         | -5.87                      | -0.45                   | 0                  | 0.16                       |
| 21 | 202.27                         | -2.07                      | -0.16                   | 0                  | 0.18                       |
| 22 | 227.23                         | 7.17                       | 0.54                    | 0                  | 0.13                       |
| 23 | 84.33                          | 16.57                      | 1.48                    | 0.09               | 0.38                       |
| 24 | 158.01                         | -17.41                     | -1.37                   | 0.03               | 0.21                       |
| 25 | 175.85                         | 15.05                      | 1.17                    | 0.02               | 0.18                       |
| 26 | 231.39                         | 1.01                       | 0.08                    | 0                  | 0.13                       |
| 27 | 205.2                          | 0                          |                         |                    | 1                          |
| 28 | 232.34                         | 2.16                       | 0.17                    | 0                  | 0.16                       |
| 29 | 160.43                         | 23.37                      | 1.82                    | 0.05               | 0.19                       |
| 30 | 199.34                         | 9.56                       | 0.77                    | 0.01               | 0.24                       |
| 31 | 184.08                         | 10.62                      | 0.83                    | 0.01               | 0.18                       |
| 32 | 219.95                         | -8.05                      | -0.63                   | 0.01               | 0.2                        |
| 33 | 103.73                         | -21.73                     | -1.82                   | 0.09               | 0.29                       |
| 34 | 74.9                           | 0                          |                         |                    | 1                          |
| 35 | 225.85                         | 1.55                       | 0.12                    | 0                  | 0.13                       |
| 36 | 143.1                          | 0                          |                         |                    | 1                          |
| 37 | 230.18                         | 1.62                       | 0.12                    | 0                  | 0.13                       |
| 38 | 127.11                         | -2.11                      | -0.19                   | 0                  | 0.38                       |
| 39 | 77.72                          | 7.28                       | 0.72                    | 0.03               | 0.5                        |
| 40 | 231.5                          | 0                          |                         |                    | 1                          |
| 41 | 161.64                         | 18.06                      | 1.6                     | 0.1                | 0.37                       |
| 42 | 167.71                         | 1.89                       | 0.15                    | 0                  | 0.18                       |
| 43 | 228.8                          | -7.9                       | -0.6                    | 0                  | 0.13                       |

| 44 | 132.56 | 10.34 | 1.17  | 0.14 | 0.61 |
|----|--------|-------|-------|------|------|
| 45 | 195.54 | -1.24 | -0.12 | 0    | 0.51 |
| 46 | 203.85 | 11.35 | 0.9   | 0.01 | 0.21 |
| 47 | 234.94 | -2.04 | -0.15 | 0    | 0.14 |

Table 6.2.14: Residuals and Distances – Used for checking Normality and Finding Outliers

# 7. Conclusion

Throughout this assignment, for each test done on the Data Set some very interesting results and outcomes were discovered.

In Section 4.2.1 it was discovered that the Brand does not really influence the PerfectScale of a bowling ball, and in Section 4.2.2 it was shown that a higher Performance normally implies a higher Price. In Section 4.3 it was concluded that the Finish of a bowling ball affects what Lane Conditions it is meant to be played on. In Section 4.4 the relation between every pair of Covariates was displayed; one notable result was the positive correlation between Price and PerfectScale, which means that the more expensive a ball is, the better its overall Hook Potential. Section 4.4 was also needed for Regression in Chapter 5.

In Section 5.1, a model for PerfectScale in terms of a covariate (Year) was produced. The model suggested that as the Years have gone by, PerfectScale has always been increasing. This was also shown in Section 3.2 by a Scatter Diagram (Figure 3.2.5). This is due to the fact that over the years further research and product development has been done which allows for the production of better performing bowling balls.

Similarly, In Section 5.2, a model for Price in terms of several covariates was produced. This model suggested that Differential, MassBiasDiff and Year were all positively correlated with Price (already shown in Section 4.4). However, since Balls of CoreType 1 (Symmetric) always have a MassBiasDiff of 0 (zero), we can elicit that Bowling Balls with a symmetric Core are generally cheaper.

In Section 6.1, a model for Price in terms of Fixed Factors was produced. This model showed that with higher Performance categories, the Price increases.

In Section 6.2, a model for PerfectScale against both Covariates and Fixed Factors was produced. In this model, PerfectScale was modelled on LaneCondition, Performance, LaneCondition\*Performance, Differential and Year. From the model it was evident that the most significant variable was the Differential,

Two limitations, or areas of improvement, of this study are the following:

Firstly, a bigger sample size can result in more accurate and insightful results.

Secondly, the data set includes specifications of undrilled, or 'raw' bowling balls. Using measurements taken from bowling balls which are drilled would result in more realistic results. That being said, it would be very costly and time consuming to take a multitude of measurements (Hand Span, PAP, Pitch, BowlingStyle, ...) of different drilling layouts of

multiple bowling balls from different bowlers, and the current measurements have proven to be descriptive enough to give a potential buyer a decent idea of what to expect.

# 8. Appendix – The Data Set

|    | Brand | Finish | Lane<br>Condi<br>tion | Differ<br>ential | Mass<br>Bias<br>Diff | Perfo<br>rman<br>ce | RG    | Core<br>Type | Year | Price  | PerfectS<br>cale |
|----|-------|--------|-----------------------|------------------|----------------------|---------------------|-------|--------------|------|--------|------------------|
| 1  | 1     | 1      | 4                     | 0.056            | 0.014                | 5                   | 2.49  | 2            | 2016 | 249.99 | 232              |
| 2  | 4     | 3      | 5                     | 0.054            | 0.013                | 5                   | 2.477 | 2            | 2016 | 259.99 | 232.9            |
| 3  | 2     | 2      | 5                     | 0.042            | 0.016                | 5                   | 2.5   | 2            | 2014 | 219.99 | 224.3            |
| 4  | 3     | 4      | 2                     | 0.015            | 0                    | 2                   | 2.65  | 1            | 2015 | 159.99 | 150.5            |
| 5  | 5     | 2      | 2                     | 0.053            | 0                    | 2                   | 2.53  | 1            | 2015 | 119.99 | 167.2            |
| 6  | 2     | 2      | 3                     | 0.041            | 0                    | 3                   | 2.5   | 1            | 2016 | 179.99 | 199.5            |
| 7  | 3     | 2      | 4                     | 0.058            | 0.016                | 4                   | 2.5   | 2            | 2016 | 239.99 | 214.4            |
| 8  | 4     | 3      | 4                     | 0.048            | 0.013                | 5                   | 2.504 | 2            | 2016 | 239.99 | 230.2            |
| 9  | 3     | 3      | 1                     | 0.032            | 0                    | 2                   | 2.57  | 1            | 2011 | 129.99 | 124.1            |
| 10 | 4     | 2      | 2                     | 0.03             | 0                    | 1                   | 2.539 | 1            | 2016 | 119.99 | 180.5            |
| 11 | 3     | 2      | 3                     | 0.042            | 0                    | 3                   | 2.51  | 1            | 2015 | 149.99 | 169.3            |
| 12 | 1     | 4      | 3                     | 0.054            | 0                    | 3                   | 2.481 | 1            | 2016 | 149.99 | 213.3            |
| 13 | 3     | 4      | 4                     | 0.032            | 0                    | 4                   | 2.57  | 1            | 2014 | 109.99 | 128.7            |
| 14 | 2     | 3      | 5                     | 0.056            | 0.011                | 5                   | 2.48  | 2            | 2016 | 219.99 | 230.9            |
| 15 | 5     | 3      | 5                     | 0.056            | 0.016                | 5                   | 2.48  | 2            | 2016 | 249.99 | 232.1            |
| 16 | 6     | 1      | 2                     | 0.009            | 0                    | 1                   | 2.57  | 1            | 2014 | 109.99 | 118.5            |
| 17 | 6     | 3      | 5                     | 0.051            | 0                    | 4                   | 2.48  | 1            | 2016 | 219.99 | 212.2            |
| 18 | 6     | 2      | 3                     | 0.046            | 0                    | 3                   | 2.57  | 1            | 2013 | 179.99 | 188.6            |
| 19 | 3     | 2      | 4                     | 0.054            | 0                    | 4                   | 2.49  | 1            | 2017 | 239.99 | 214.1            |
| 20 | 1     | 4      | 5                     | 0.055            | 0.02                 | 5                   | 2.486 | 2            | 2017 | 249.99 | 233.4            |
| 21 | 5     | 2      | 3                     | 0.048            | 0                    | 3                   | 2.48  | 1            | 2016 | 169.99 | 200.2            |
| 22 | 6     | 3      | 4                     | 0.054            | 0.018                | 5                   | 2.48  | 2            | 2015 | 239.99 | 234.4            |
| 23 | 6     | 2      | 1                     | 0.006            | 0                    | 1                   | 2.69  | 1            | 2013 | 89.99  | 100.9            |
| 24 | 6     | 3      | 2                     | 0.022            | 0                    | 2                   | 2.57  | 1            | 2016 | 179.99 | 140.6            |
| 25 | 7     | 2      | 2                     | 0.038            | 0                    | 2                   | 2.5   | 1            | 2015 | 179.99 | 190.9            |
| 26 | 7     | 3      | 4                     | 0.057            | 0.015                | 5                   | 2.48  | 2            | 2015 | 259.99 | 232.4            |
| 27 | 7     | 2      | 3                     | 0.043            | 0.007                | 4                   | 2.48  | 2            | 2016 | 229.99 | 205.2            |
| 28 | 3     | 3      | 5                     | 0.05             | 0.012                | 5                   | 2.51  | 2            | 2017 | 279.99 | 234.5            |
| 29 | 1     | 2      | 2                     | 0.03             | 0                    | 2                   | 2.562 | 1            | 2014 | 109.99 | 183.8            |
| 30 | 3     | 2      | 4                     | 0.058            | 0.014                | 4                   | 2.5   | 2            | 2014 | 239.99 | 208.9            |
| 31 | 7     | 2      | 3                     | 0.038            | 0.005                | 3                   | 2.49  | 2            | 2015 | 149.99 | 194.7            |
| 32 | 5     | 1      | 4                     | 0.055            | 0.007                | 5                   | 2.5   | 2            | 2013 | 139.99 | 211.9            |
| 33 | 2     | 2      | 1                     | 0.02             | 0                    | 1                   | 2.65  | 1            | 2013 | 89.99  | 82               |
| 34 | 4     | 2      | 3                     | 0.041            | 0                    | 1                   | 2.684 | 1            | 2007 | 67.99  | 74.9             |
| 35 | 7     | 2      | 4                     | 0.053            | 0.016                | 5                   | 2.49  | 2            | 2015 | 199.99 | 227.4            |
| 36 | 5     | 2      | 3                     | 0.042            | 0                    | 2                   | 2.54  | 1            | 2009 | 90.99  | 143.1            |
| 37 | 4     | 4      | 4                     | 0.053            | 0                    | 5                   | 2.584 | 1            | 2016 | 299.99 | 231.8            |
| 38 | 2     | 3      | 1                     | 0.04             | 0                    | 1                   | 2.46  | 1            | 2012 | 92.99  | 125              |
| 39 | 5     | 2      | 1                     | 0.02             | 0                    | 1                   | 2.65  | 1            | 2007 | 99.99  | 85               |

| 40 | 1 | 2 | 3 | 0.056 | 0.014 | 5 | 2.49  | 2 | 2016 | 249.99 | 231.5 |
|----|---|---|---|-------|-------|---|-------|---|------|--------|-------|
| 41 | 4 | 1 | 2 | 0.028 | 0     | 1 | 2.578 | 1 | 2013 | 74.99  | 179.7 |
| 42 | 7 | 2 | 2 | 0.029 | 0     | 2 | 2.57  | 1 | 2016 | 149.99 | 169.6 |
| 43 | 2 | 2 | 4 | 0.052 | 0.007 | 5 | 2.47  | 2 | 2016 | 249.99 | 220.9 |
| 44 | 3 | 3 | 1 | 0.015 | 0     | 2 | 2.65  | 1 | 2016 | 159.99 | 142.9 |
| 45 | 6 | 4 | 5 | 0.043 | 0     | 4 | 2.5   | 1 | 2015 | 199.99 | 194.3 |
| 46 | 1 | 3 | 4 | 0.055 | 0.011 | 4 | 2.499 | 2 | 2016 | 199.99 | 215.2 |
| 47 | 6 | 3 | 5 | 0.055 | 0.024 | 5 | 2.48  | 2 | 2016 | 239.99 | 232.9 |

# 9. References

- 1. Data Set compiled from Product Pages of Bowling Balls from: http://www.bowlingball.com/shop/all/bowling-balls/
- 2. Explanation of some bowling ball specifications taken from (used mostly in Chapter 1): <a href="https://www.bowlingthismonth.com/bowling-balls/">https://www.bowlingthismonth.com/bowling-balls/</a>
- 3. More in depth explanation of what Differential, RG and Mass Bias Diff are: <a href="http://www.bowlingball.com/BowlVersity/bowlingball-com-differential-of-rg-specifications">http://www.bowlingball.com/BowlVersity/bowlingball-com-differential-of-rg-specifications</a>