Co-ordinate bond

SL AL

- (a) It is a covalent bond in which the shared electron pair come from one atom is called coordinate bond.
- (b) Necessary conditions for the formation of co-ordinate bond are -
 - (i) Octet of donor atom should be complete and should have atleast one lone pair of electron.
 - (ii) Acceptor atom should have a defficiency of at least one pair of electron.
- (c) Atom which provide electron pair for shairing is called donor.
- (d) Other atom which accepts electron pair is called acceptor. That is why it is called donor-acceptor or dative bond.

BF₃ is electron defficient compound.

2. Metal complex

Metal co-ordinate compounds -

$$[Cu(NH_3)_4]^{+2} \Rightarrow$$

Ex.
$$NH_4^+$$
; $H_3N + H^+ \longrightarrow$ (Lowry-Bronsted acid) (e⁻ acceptor)

Protonation

4.

$$H_3O^+$$
; H O : H H^+ H

$$0: \longrightarrow H^{+}$$

$$N_2O$$
;

$$N \equiv N : \rightarrow O$$

Draw structure of following compounds.

1. Co2

0 = 0 = 0;

2. H20

2) H H

3. OF2

(3) :F

4. OCl2

6. CF4

5. SF2

7. SIF4

(3) S

G C F:

Till Sill Sill Fi

	+
8.	PF4

13. SF6

, U:		
ð		
0		

6 0

14. COCl2	;O: 14
15. NH2Cl	:C1
16. NOCL	
	15) N - Ü;
	(16) N

Draw structure of the following compound: practice problem

2.(d) B(CH3)3	$2 \cdot (d) \overset{CH_3}{\mapsto} \qquad \qquad$	- R (alkyl group) () - CH3 free
	H_3C CH_3 $H_{-}C$ C C C C C C C C C	Valency - C ₂ H ₅
2. (e) B(C2H5)3	2 (e) 1 ² H ₅	- C3H7
	B C H S	example X - CH2
2(f) NH3	H ₅ C ₂ C ₂ T ₅	:X - CH3 methyl halide
	2(f) N H H	
2(g) N(CH3)3	2(g') N CH ₃	
	ri3 CH3	

3. K4 [Fe(CN)6]

cation anion

Calcium hydride

Sodium hydride

$$\frac{H}{H} - C - C = N$$

11. N ₂ O ₃	(I) ; 0; N - N,	Oxidation
		number (IS) 11
	o i o i o i o o o o o o o o o o o o o o	P
12. H2S04	no of H' it can donate = 2 (dibosic) baseicity of an acid.	M D N
	H-0 0-H	
13.H3P04		
	H-0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
14. H3P03	10: (14) 11	
	P-4 no of H it can donate = 2	
15. H3P02		