Présentation de ...

One-bit Compressed Sensing by Linear Programming
Yaniv Plan & Roman Vershynin (CPAM, 2013)

Théodor Lemerle & Théophile Cantelobre Master M2A – Sorbonne Université 11 mars 2021

Sommaire

Motivation

Garanties théoriques

Expériences

Résumé & Conclusion

Motivation

Motivation : traitement du signal & CS idéal

- CS permet de reconstruire complètement le signal à partir de mesures... sans atteindre la fréquence de Nyquist-Shannon.
- Hypothèse : $f(t) \in \mathbb{R}$... précision infinie!

Motivation : traitement du signal & CS avec quantization

- Quantization comme bruit : CS permet de le corriger!
- Deux approches pour traiter le bruit de discrétisation : même nombre de bits!
 - Augmenter le nombre de bits par mesure : hardware lent.
 - Augmenter le nombre de mesures : hardware rapide.

Quantization extrême: 1-bit compressed sensing

Poussé à l'extrême : mesures avec 1-bit (signes).

Perte de l'amplitude

$$\forall \lambda > 0$$
, $\operatorname{sign}(A\lambda x) = \operatorname{sign}(Ax)$

Problème de dégénérescence (BP)

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{x}\|_1 \tag{1}$$

s.t.
$$sign(Ax) = y$$
 (2)

...decrease objective by multiplying admissible iterate by $\lambda \to 0^+.$

Garanties théoriques

Principal résultat

Theorem (Théorème 1.1)

Soient n, m, et s>0. Soit A une **matrice gaussienne** de taille $m\times n$. Soit $\delta>0$ dépendant de s, m et n. Alors, avec une probabilité au moins $1-C\exp(-c\delta m)$, on a **uniformément** sur tout $x\in\mathbb{R}^n$ qui sont **essentiellement parcimonieux** d'ordre $s:siy=\operatorname{sign}(Ax)$. Alors, la solution \hat{x} du problème (\mathfrak{P}_{1-bit}) vérifie :

$$\left\| \frac{\hat{x}}{\|\hat{x}\|_2} - \frac{x}{\|x\|_2} \right\|_2 \le \delta.$$

Situation par rapport au cours

Points communs	Différences
Garanties uniformes.	Essentiellement parcimonieux.
Matrice de mesure gaussienne.	Reconstruction inexacte.

Remarque: essentiellement parcimonieux

Essentiellement parcimonieux

$$ES(x) = \frac{\|x\|_1^2}{\|x\|_2^2} \le s$$

Expérience numérique

Pour des vecteurs s-parcimonieux aléatoires, ES(x) estime bien $\|x\|_0$:

$$0.6s \lesssim ES(x) \lesssim 0.75s$$

Stratégie de la preuve

1. Géométrie de la reconstruction à partir du signe.

Outils principaux : random tesselations & ε -nets.

Résultat objectif : pour *m* bien choisi, w.h.p. si sign(Ax) = sign(Ax') alors $||x - x'||_2 \le \delta$.

2. Vecteurs essentiellement parcimonieux

Outils principaux : concentration de la mesure.

Résultat objectif : Une solution de notre problème d'optimisation préserve la parcimonie essentielle du signal d'intérêt :

$$ES(\hat{x}) \leq ES(x) \cdot C\sqrt{\log(2n/m + 2m/n)}$$

→ Mise en commun

 \hat{x} vérifie 2, donc 1 tient pour x et \hat{x} en particulier.

Esquisse de la preuve : partie 1/2

Idée générale

Quantifier combien de mesures gaussiennes de 1-bit il faut pour séparer tous les signaux possibles :

avec h.p. uniformément sur les x,y, si $\|x-y\|_2 > \delta$, il existe $\Omega(m)$ hyperplans qui séparent x et y.

1. Contrôles des têtes et des queues

- 1. Séparer x (et y) en : $x = \underbrace{x_0}_{\epsilon \text{ ant}} + \epsilon x'$.
- 2. S'assurer que les x_0 et y_0 sont séparés par $\Omega(m)$ hyperplans.
- 3. S'assurer que les x' et y' le sont par $\Omega(m) o(m)$ hyperplans.
- 4. Tout mettre ensemble.

2. Plus petit ε -net possible.

$$\log N(K_{n,s},\varepsilon) \leq \frac{Cs}{\varepsilon^2} \log \left(\frac{2n}{s}\right)$$

Esquisse de la preuve : partie 2/2

On veut montrer : $\frac{\|\hat{x}\|_2^2}{\|\hat{x}\|_1^2} \le \frac{\|x\|_2^2}{\|x\|_1^2} \cdot C\sqrt{\log(2n/m + 2m/n)}$

Un résultat de concentration uniforme sur la déviation moyenne.

$$\frac{1}{m} \|Ax\|_1 \ge \frac{\|x\|_2}{2}$$
 avec proba. au moins $1 - C \exp(-cm)$

La preuve reprend les grandes idées de la preuve de la propriété RIP pour les matrices à entrées gaussiennes.

Une borne inférieure sur $\|\hat{x}\|_2$

$$\|\hat{x}\|_2 \geq c/\sqrt{\log(2n/m + 2m/n)}$$

Mis bout à bout :

$$\frac{\|\hat{x}\|_{1}}{\|\hat{x}\|_{2}} \leq \frac{\|x\|_{1}}{\|Ax\|_{1} \|\hat{x}\|_{2}} \leq \frac{2 \|x\|_{1}}{\|\hat{x}\|_{2} \|x\|_{2}} \leq \frac{\|x\|_{2}^{2}}{\|x\|_{1}^{2}} \cdot C\sqrt{\log(2n/m + 2m/n)}$$

9

Résumé : un programme linéaire (LP) à résoudre

$$\min_{x \in \mathbb{R}^n} \|x\|_1$$
s.t. $\operatorname{sign}(Ax) = y$

$$\|Ax\|_1 \ge m$$

Résumé : un programme linéaire (LP) à résoudre

$$\min_{x \in \mathbb{R}^n} \|x\|_1$$
s.t. $\operatorname{sign}(Ax) = y$

$$\|Ax\|_1 \ge m$$

$$\min_{u \in \mathbb{R}^n} \mathbf{1}^T u$$
s.t. $\forall i, -u_i \leq y_i \leq u_i$
 $\forall i, u_i \geq 0$
 $\forall i, y_i \langle A_i, x \rangle = 1$
 $\langle y, Ax \rangle \geq m$

Expériences

Méthodologie expérimentale

Protocole expérimental

- 1. Générer un signal parcimonieux (dans une certaine base) : x.
- 2. Tirer une matrice $A \sim \mathcal{N}(0,1)$.
- 3. Observer y = sign(Ax).
- 4. Résoudre (\mathcal{P}_{1-bit}) : \hat{x} .

... répéter N_{trials} fois.

Méthodologie expérimentale

Protocole expérimental

- 1. Générer un signal parcimonieux (dans une certaine base) : x.
- 2. Tirer une matrice $A \sim \mathcal{N}(0,1)$.
- 3. Observer y = sign(Ax).
- 4. Résoudre $(\mathcal{P}_{1-bit}): \hat{x}$.

... répéter N_{trials} fois.

Métriques : comment évaluer une reconstruction ? voir [18]

- Erreur angulaire : $\epsilon(x,\hat{x}) = \frac{1}{\pi} \arccos\langle x,\hat{x}\rangle$
- Signal-to-Noise ratio : $SNR(x,\hat{x}) = 20 \log_{10} \frac{\|x\|_2}{\|x-\hat{x}\|_2}$
- (Distance de Hamming : $d_H(y, \hat{y}) = \frac{1}{m} \sum_{i=1}^m \text{XOR}(\text{sign}(Ay), \text{sign}(A\hat{y}))$)

Méthodes comparées : Basis pursuit, BIHT... and 1-bit LP

Basis pursuit (avec seuillage)

Programmation linéaire puis seuillage :

$$\min_{x \in \mathbb{R}^n} \|x\|_1$$

s.t. $Ax = y$

Binary Iterative Hard Thresholding [18]

Descente de gradient projetée (pour $\left\|\cdot\right\|_0=$ Hard Thresholding) :

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|_2^2$$

s.t.
$$\|x\|_0 = s$$

Reconstruction de signaux parcimonieux synthétiques (1/2)

Reconstruction de signaux parcimonieux synthétiques (2/2)

Performance moyenne (10 essais) avec écart type.

À gauche : SNR. À droite : erreur angulaire. En abscisse : m/n.

Eye candy: MNIST

Résumé & Conclusion

Résumé & Conclusion

1-bit compressed sensing with LP

- Reconstruction approximative du signal d'intérêt sur \mathbb{S}^{n-1} .
- Garanties uniformes sur les signaux essentiellement parcimonieux $(\Sigma_s \subset K_{n,s})$.
- Programme linéaire.

CS indissociable du mode d'acquisition

- Problématique hardware : vitesse d'échantillonnage vs qualité.
- Voir aussi choix du BOS, tomographie, ...

Bibliographie essentielle

- [0]: One-bit Compressed Sensing by Linear Programming, Plan & Vershynin (2013)
- [6]: 1-bit compressive sensing, Boufounous & Baraniuk (2008)
- [18]: Robust 1-bit compressive sensing via binary stable embeddings of sparse embeddings, Jacques et al. (2011)