T o p o l o g í a Característica	Tensión en Serie	Corriente en Serie	Corriente en Pararelo	Tensión en Paralelo
Señal de Realimentación Xf	Tensión	Tensión	Corriente	Corriente
Señal muestreada X0	Tensión	Corriente	Corriente	Tensión
Para hallar el lazo de entrada, fijar *	Vo = 0	Io = 0	Io = 0	Vo = 0
Para hallar el lazo de salida, fijar *	Ii = 0	Ii = 0	Vi = 0	Vi = 0
Fuente de señal	Thevenin	Thevenin	Norton	Norton
$\beta = \frac{Xf}{X0}$	Vf /Vo	Vf /Io	If /Io	If /Vo
$A = \frac{Xo}{Xi}$	AV = VO/Vi	GM = Io/Vi	AI = Io/Ii	RM = Vo/Ii
$D = 1 + \beta.A$	$D = 1 + \beta. AV$	$D = 1 + \beta.GM$	D = 1 + β . AI	$D = 1 + \beta$. RM
Af	AV/D	GM/D	AI/D	RM/D
Rif	Rif.D	Rif.D	Rif /D	Rif /D
Rof	$\frac{Ro}{1 + \beta . Av}$	Ro. $(1+\beta.Gm)$	Ro. $(1+\beta.Ai)$	$\frac{Ro}{1+\beta.Rm}$
$R'of = Rof // RL \qquad$	R'0/D	$\frac{R'o.(1+\beta Gm)}{D}$	$\frac{R'o.(1+\beta Ai)}{D}$	R'0/D

^{*} Este procedimiento da el circuito del Amplificador Básico sin realimentación, pero teniendo en cuenta la carga de β , RL y Rs