$ au_1^{\#2}$	0	0	0	$\frac{2l}{k(1+2k^2)(r_1+r_5)}$	$\frac{i\sqrt{2} (3k^2 (r_1 + r_5) + 2t_3)}{k(1 + 2k^2)^2 (r_1 + r_5)t_3}$	0	$\frac{6k^2(r_1+r_5)+4t_3}{(1+2k^2)^2(r_1+r_5)t_3}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{k^2 (1+2k^2) (r_1+r_5)}$	$\frac{3k^2(r_1+r_5)+2t_3}{(k+2k^3)^2(r_1+r_5)t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_1+r_5)+2t_3)}{k(1+2k^2)^2(r_1+r_5)t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 \left(r_1 + r_5\right)}$	$\frac{\sqrt{2}}{k^2 (1+2 k^2) (r_1+r_5)}$	0	$-\frac{2i}{k(1+2k^2)(r_1+r_5)}$
$\tau_{1}^{\#1}\!$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta} \tau_{1}^{\#1}{}_{\alpha\beta}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 \left(2 r_1 + r_5\right)}$	0	0	0	0	0	0
	$\sigma_1^{\#1} + \alpha^{eta}$	$\sigma_1^{\#2} + ^{\alpha\beta}$	$\tau_1^{\#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#_{1}} + ^{lpha}$	$\sigma_1^{\#2} + \alpha$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

$f_{1}^{\#2}$	0	0	0	$-\frac{2}{3}ikt_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	٤ 3	0	$-\frac{1}{3}i\sqrt{2}kt_3$
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$k^2 (r_1 + r_5) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	<u>2ikt3</u> 3
$f_{1}^{\#1}\alpha\beta$	0	0	0	0	0	0	0
$\omega_1^{\#2}{}_+\alpha_\beta$	0	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{+}\alpha\beta$	$k^2 (2 r_1 + r_5)$	0	0	0	0	0	0
	$\omega_1^{\#1} +^{\alpha\beta}$	$\omega_1^{\#_+^2} +^{\alpha\beta}$	$f_1^{\#_1} + ^{\alpha\beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{#2} + \alpha$

grangian density	$3 \omega_{\kappa}^{\alpha\prime} \omega_{\kappa\alpha}^{\kappa} + f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}^{} - r_5 \partial_{\iota} \omega^{\kappa\lambda}_{\kappa} \partial^{\iota} \omega_{\lambda}^{\alpha} - \frac{2}{3} r_1 \partial^{\beta} \omega^{\theta\alpha}_{\kappa} \partial_{\theta} \omega_{\kappa}^{}$	$^{'1}\partial_{\theta}\omega_{\alpha\beta}^{}{}^{\prime}\partial_{\kappa}\omega^{\alpha\beta\theta} + rac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\thetalphaeta} - r_{5}\partial_{lpha}\omega_{\lambda}^{lpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} +$	$\partial_{\theta}\omega_{\lambda}{}^{\alpha}{}_{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda}$ - $r_{5}\partial_{\alpha}\omega_{\lambda}{}^{\alpha}{}_{\theta}\partial_{\kappa}\omega^{\kappa\lambda\theta}$ + $2r_{5}\partial_{\theta}\omega_{\lambda}{}^{\alpha}{}_{\alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta}$ - $\frac{2}{3}t_{3}\omega_{\kappa\alpha}{}^{\alpha}\partial^{\kappa}f'_{\prime}$ -	$3 \omega_{k\lambda}^{\ \ \lambda} \partial^{\kappa} f'_{\ \ \prime} - \frac{4}{3} t_3 \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f'_{\ \ \prime} + \frac{2}{3} t_3 \partial_{\kappa} f^{\lambda}_{\ \ \lambda} \partial^{\kappa} f'_{\ \ \prime} + \frac{2}{3} t_3 \ \omega_{\alpha}^{\ \ \alpha} \partial^{\kappa} f'_{\ \ \kappa} +$	$3 \omega_{\lambda}^{\lambda} \partial^{\kappa} f'_{\kappa} + \frac{2}{3} t_{3} \partial^{\alpha} f^{\lambda}_{\alpha} \partial^{\kappa} f_{\lambda \kappa} + \frac{2}{3} r_{1} \partial_{\kappa} \omega^{\alpha \beta \theta} \partial^{\kappa} \omega_{\alpha \beta \theta} - \frac{2}{3} r_{1} \partial_{\kappa} \omega^{\theta \alpha \beta} \partial^{\kappa} \omega_{\alpha \beta}$	$\gamma_1 \partial^{eta} \omega_{\mu}^{\ \ lpha \lambda} \partial_{\lambda} \omega_{lpha eta}^{\ \ \ \prime} - rac{8}{3} r_1 \partial^{eta} \omega_{\lambda}^{\ \ \lambda lpha} \partial_{\lambda} \omega_{lpha eta}^{\ \ \prime} + r_5 \partial_{lpha} \omega_{\lambda}^{\ \ lpha} \partial_{\lambda} \omega_{\lambda}^{\ \ lpha} \partial^{\lambda} \omega_{lpha}^{\ \ \ lpha} \partial^{\lambda} \omega_{lpha}^{\ \ \ lpha} \partial^{\lambda} \omega_{lpha}^{\ \ \ \ lpha} \partial^{\lambda} \omega_{lpha}^{\ \ \ \ \ lpha} \partial^{\lambda} \omega_{lpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
gra	ლ	19	$g_{ heta}$, m	, ₁ 9	

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^+\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\sharp 1} \dagger^{\alpha \beta}$	0	0	0
$f_{2}^{#1}\dagger^{\alpha\beta}$	0	0	0
$\omega_{2}^{\#1}\dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1$

	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	t_3	$-i\sqrt{2} kt_3$	0	0
$f_{0}^{\#1}\dagger$	$i\sqrt{2}kt_3$	$2k^2t_3$	0	0
$f_{0}^{\#2}\dagger$	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	0

$\sigma_{0}^{\#1}$	0	0	0	0
$\tau_0^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_0^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_0^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$

	#	1]	1	3	3	3	3	2	2	25
Source constraints	SO(3) irreps	$\sigma_{0}^{#1} == 0$	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2 i k \sigma_{1}^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha\beta} == 0$	$\sigma_{1+}^{\#2}\alpha\beta==0$	$\tau_{2+}^{\#1}\alpha\beta==0$	$\sigma_{2+}^{\#1}\alpha\beta==0$	Total #:

? /	Quadratic pole	<u>.</u>
$\xrightarrow{k^{\mu}} \bigcirc -?$	Pole residue:	$\left -\frac{1}{r_1 (r_1 + r_5) (2 r_1 + r_5) p^2} > 0 \right $
?	Polarisations:	2

(No massive particles)

Unitarity conditions

 $r_1 < 0 \&\& (r_5 < -r_1 || r_5 > -2 r_1) || r_1 > 0 \&\& -2 r_1 < r_5 < -r_1$