Bayesian demography 250 years after Bayes *Population Studies 70 (1) 2016: 1–19.*

Jakub Bijak & John Bryant

Contents

- 1. Introduction
- 2. Bayesian demography
 - a) Forecasting
 - b) Limited data
 - c) Highly-structured and complex models
- 3. Future perspectives

Preliminaries

```
p\left(\text{Unknowns} \mid \text{Data}\right) \\ = \frac{p\left(\text{Data} \mid \text{Unknowns}\right) \times p\left(\text{Unknowns}\right)}{p\left(\text{Data}\right)}
```

- Thomas Bayes (1763†) special case (binomial)
- Pierre-Simon de Laplace (1812) general case

Different philosophical premises than frequentist (likelihood-based) statistics

Source: https://bayesian.org/bayes

http://laplaceinsights.com/about-laplace/

Bayesian controversies?

- Subjectivity vs 'objectivity'
- Prior vs data trade-offs
- Potential for expert knowledge

- Output: More than point estimates
- Transparent treatment of uncertainty
- A more general framework for other approaches

Trends

Bayesian statistics and Bayesian demography

Uncertainty in demography

- Recognised since 1970s, current momentum
- Forecasts as one of key demographic products
- Small-area estimates with inevitable errors
- New challenges: big data, complex models...

Forecasts

Fig. 2. Regional population projections (in millions) with median projections and 80% prediction intervals. Projections including probabilistic migration projections shown in red, and projections with deterministic migration projections in blue.

Forecasts

Fig. 3. (Left) Population (in millions) of France, Germany, and the United Kingdom, with median projection and 80% prediction interval. (Center) Projected probabilities of being the largest of the current European Union (EU) member states. (Right) Net migration (5-year count, millions of migrants) for Germany. From 2020 to 2100, median (solid line) and 80% prediction interval (shaded area). Dashed line is the median net migration among trajectories that match the upper bound of the 80% prediction interval for Germany's population shown as dashed line in (Left).

Forecasts

Limited data

Hierarchical and structured models

Raymer et al. (2013) JASA 108, p804 & 811.

Complex models

Calibration Uncertainty Analysis Sensitivity Analysis

Perspectives

- Risk and uncertainty
- Complex modelling
- •Big Data
- Decisions

Decisions

Examples of optimal statistical decisions

Bijak (2010), p226

Challenges

- Training
- Computation
- Communication

Thank you!

See also:
https://www.youtube.com/watch?v=
<a href="https://www.youtube.com/watch?v="ws.youtube.com/wat

Jakub Bijak & John Bryant