

FIGURE 1

GGACTAATCTGTGGGAGCAGTTATTCCAGTATCACCCAGGGTGCAGCCACACCAGGACTGT
GTTGAAGGGTGTCCCCCTAAATGTAATACCTCCTCATCTTCTTACACAGTG
TCTGAGAACATTTACATTATAGATAAGTAGTACATGGTGGATAACTCTACTTTAGGAGGA
CTACTCTTCTGACAGTCCTAGACTGGTCTTCTACACTAAGACACCATGAAGGAGTATGTG
CTCCTATTATTCTGGCTTGTGCTGCCAACCCCTCTTAGCCCTCACACATCGCACT
GAAGAATATGATGCTGAAGGATATGGAAGACACAGATGATGATGATGATGATGATG
ATGATGATGATGAGGACAACCTCTTTCCAACAAGAGAGCCAAGAACCCATT
TTTGATCTGTTCCAATGTGTCCATTGGATGTCAGTGCTATTCAAGGTTGACATTGCTC
AGATTTAGGTTGACCTCAGTCCAAACCAACATTCAATTGATACTGAATGCTGATCTC
AAAACAATAAAATTAGGAAATCAAAGAAAATGATTTAAAGGACTCACTTCACTTATGGT
CTGATCCTGAACAACAACAGCTAACGAAGATTACCCAAAAGCCTTCTAACACAAAGAA
GTTGCGAAGGCTGTATCTGCCCACAATCAACTAAGTGAATACCACTTAATCTCCC
CATTAGCAGAACTCAGAATTCAATGAAAATAAGTTAAGAAAATACAAAAGGACACATT
GGAATGAATGCTTACACGTTGGAAATGAGTGCAAACCCCTTGTATAATGGGATAGA
GCCAGGGCATTGAGGGTGCAGGTGTTCCATATCAGAATTGCGAGAACAACTGACCT
CAGTTCTAAAGGCTTACCAACTTATTGGAGCTCAGTATTATAAAATTCA
ACAGTGGAACTTGAGGATTTAAACGATAACAAGAAACTACAAAGGCTGGCCTAGGAAACAA
CAAATCACAGATATCGAAAATGGGAGTCTGCTAACATACCACGTGAGAGAAATACATT
TGGAAAACAATAAACTAAAAAAATCCCTCAGGATTACCAAGAGTTGAAATACCTCCAGATA
ATCTTCCTCATTCTAATTCAATTGCAAGAGTGGAGTAAATGACTCTGTCCAACAGTGCC
AAAGATGAAGAAATCTTATACAGTGAATAAGTTATTCAACAAACCGGTGAAATACTGGG
AAATGCAACCTGCAACATTGTTGTTGAGCAGAATGAGTGTTCAGCTGGAAACTT
GGAATGTAATAATTAGTAATTGTAATGTCATTAAATATAAGATTCAAAATCC
TGGAAACTTGAACCTATTGTTGAGAGAAACAGCATCTATTGAGCTTCTTGTGAAATGAT
CTTACATAAAATCTCATGCTGACCATTCTTCTTCATAACAAAAAGTAAGATATT
TTAACACTTGTATCAAGCACATTAAAAGAACTGTACTGTAATGGAATGCTTGA
TAGCAAAATTGCTCTTCATTGCTGTTAGAAAAACAGAATTAAACAAAGACAGTAATGT
GAAGAGTGCATTACACTATTCTTATTCTTAGTAACCTGGTAGTACTGTAATATT
CATCTTAAAGTATGATTGATATAATCTTATTGAAATTACCTTATCATGCTTAGAGCC
CTTATGTTAAAACATTCTTAAAGCCTCAGTAAATGTTATTACCAACTTGA
TAAATGCTACTCATAAGAGCTGGTTGGGCTATAGCATATGCTTTTTTTAATTATT
ACCTGATTAAAATCTGTAAAAACGTAGTGTTCATAAAATCTGTAACCTGCATT
AATGATCCGCTATTATAAGCTTTAATAGCATGAAAATTGTTAGGCTATATAACATT
TTCAACTCTAAGGAATATTGAGATATCCCTTGGAAAGACCTGCTTGGAAAGAGCCTGGA
CACTAACAAATTCTACACCAATTGCTCTTCAAATACGTATGGACTGGATAACTCT
CACATCTAGTATAACTGAATAAGCAGAGCATCAAATTAAACAGACAGAAACCG
TATAAAATGCTCAGAGTTCTTATGTATTGCTTATTGGCATTCAACATATG
ACAGGGAAATTTCATTAAAATATTGGTTGAAAT

FIGURE 2

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA34392
<subunit 1 of 1, 379 aa, 1 stop
<MW: 43302, pi: 7.30, NX(S/T): 1
MKEYVLLLFLALCSAKPFFSPSHIALKNMMLKDMEDTDDDDDDDDDDDEDNSLFPTREPR
SHFFPFDLFPMCPFGCQCYSRVVHCSDLGLTSVPTNIPFDTRMLDLQNNKIKEIKENDFKGL
TSLYGLILNNNKLTKIHPKAFLTTKLRRLYLSHNQLSEIPLNLPKSLAELRIHENKVKKIQ
KDTFKGMNALHVLEMSANPLDNNGIEPGAFEGVTVFHIRIAEAKLTSVPKGLPPTLLELHLD
YNKISTVELEDFKRYKELQRLGLGNNKITDIENGLANIPRVREIHLENNKLKKIPSGLPEL
KYLQIIIFLHSNSIARVGVNDFCPTVPKMKSLSAISLFNNPVKYWEMQPATFRCVLSRMSV
QLGNFGM
```

Signal sequence.

amino acids 1-15

N-glycosylation site.

amino acids 281-285

N-myristoylation sites.

amino acids 129-135, 210-216, 214-220, 237-243, 270-276, 282-288

Leucine zipper pattern.

amino acids 154-176

FIGURE 3

CGGACGCGTGGCGGACGCGTGGGCCGCGCACCGCCCCGGCCCTCCGCCCTCGCACTCGGCCCTCC
CTCCCTCCGCCGCTCCCGCCTCCCTCCCTCCCTCCCTCCCTCCAGCTGTCCCCTCGCGTCATGCCGAGCCTCCC
GGCCCCGCCGCCCGCTGCTGCTCCTCGGCTGCTGCTCGCTCCGCCGGCCGGCCGCCGCCAGA
GCCCGCCCGTGCTGCCCATCGCTCTGAGAAGGAGCCGCTGCCGTTGGGAGCGGCAGGCTGCACCTCGCG
GAAGGTCTATGCCCTGGACGAGACGTGGCACCCGGACCTAGGGCAGCCATTGGGTGATGCCTGCGTGTG
CGCCTGCGAGGCGCCTCAGTGGGTGCGCTACCAGGGGCCCTGGCAGGGTCAAGTCAAGAACATCAAACAGA
GTGCCCAACCCGGCTGTGGCAGCCGCCAGCTGCCGGACACTGCTGCCAGACCTGCCAGGAGCGCAG
CAGTCGGAGCGCAGCCGAGCCGCCAGTCCAGTATCCCGGGACCCGGAGCATCGCAGTTAGCGACCG
CGGGGAGCCAGGCGCTGAGGAGCCGCCAGTGGTACGCCACACGGACTTCGTGGCGCTGCTGACAGGGCCGAG
GTCGCAAGCGGTGGCACGAGCCGAGTCTCGCTGCGCTAGCCTCCGCTTCTATCTCCTACAGGCGGCT
GGACGCCCTACCGATCCGCTCTCAGACTCCAATGGCAGTGTCTGTTGAGCACCTGCAGCCCCACCCA
AGATGGCCTGGTCTGTTGGGTGAGGCCAGTGCCTCGGTTCTGCGGCTCCTTAGGGCAGAACAGCTGCA
TGTGGCACTTGTGACACTCACTCACCCCTCAGGGGAGGTCTGGGGCCTCTCATCCGGCACGGGCCCTGGCTG
AGAGACCTTCAGTGCATCCTGACTCTAGAAGGCCCCCACAGCAGGGCGTAGGGGCATCACCTGCTCACTCT
CAGTGAACACAGAGGACTCCTGATTTTGCTGCTCTTCCGAGGGCTGCTGGAACCCAGGAGTGGGGACTAAC
CCAGGTTCCCTTGAGGCTCCAGATTCTACACCAGGGCAGCTACTGCGAGAACCTCAGGCCAATGTCTCAGCCA
GGAACCAAGGCTTGCTGAGGTGCTGCCAACCTGACAGTCCAGGAGATGACTGGCTGGTCTGGGGAGCTGCA
GATGGCCCTGGAGTGGCAGGCCAGGGCTGCCATCAGTGGACACATTGCTGCCAGGAAGAGCTGGCACGT
CTGCAAAGTGTCTTGTGGGCTGATGCCCTGATCCCAGTCCAGCAGGGCTGCCAGGCCACT
GCTGCTAGGAAATGGCTCCCTGATCTATCAGGTGCAAGTGGTAGGGACAAGCAGTGGAGTGGTGGCCATGACACT
GGAGACCAAGCCTCAGCGGAGGGATCAGGCCACTGCTCTGTGCCACATGGCTGGACTCCAGCAGGAGGACACAC
GGCCGTGGGTATCTGCCCTGGCTGGCGAGGGCTCATATGCTGCTGCAGAACGGTCTTCCCTGAACGT
GGGCACCAAGGACTTCCAGACGGAGAGCTCGGGGACGTGGCTGCCCTACTGTGGCATAGGCCCG
CCATGACACGCTGCCGTGCCCTAGCAGGAGCCCTGGTCTACCCCTGTGAAGAGCCAAGCAGCAGGGCACGC
CTGGCTTCCCTGGATACCCACTGTCACCTGCACTATGAAGTGTGCTGGCTGGCTGGTGGCTCAGAACAGG
CACTGTCACTGCCACCTCCTGGCCTCTGGAACGCCAGGGCTCGGGCTGCTGAAGGGATTCTATGGCTC
AGAGGCCAGGGTGGTGAAGGACCTGGAGCCGAAGTCTGGGAGCTCCAGGGCAGGTGCAACATAGCCAACCAATGTGAGGTTGGCG
GATCACCACCAAGGGTAGCCCCAGAGGGGAGCTCCAGGGCAGGTGCAACATAGCCAACCAATGTGAGGTTGGCG
ACTGCCCTGGAGGCCGGCGAGGGGTGCGGGCTGGGGCTCCGATAACGCCCTGCTGCC
TGTGGTCCTGGTCTCCGGCCCTAGGCCCGCAAACCTGGTCTGGGCGGCCAGAACCCAAACATG
CTTCTCGAGGGGACGAGCAGCCCCACGGGCTCGCTGGGCCAACTACGACCCGCTCTGCTCACTTGAC
CTGCCAGAGACGAACGGTGATCTGTGACCCGGTGGTGTGCCACCGCCAGCTGCCACACCCGGTGCAGGCTCC
CGACCAGTGTGCCCTGTTGCCCTGAGAAACAAGATGTCAAGAGACTTGCAGGGCTGCCAAGGAGCCGGACCC
AGGAGAGGGCTGCTATTTGATGGTGACCGGAGCTGGGGAGCTGGGGAGCGGGTACGGGTGGCACCCGTTGTGCC
CTTGCTTAATTAAAGTGTGCTGTGACCTGCAAGGGGGCACTGGAGAGGTGCACTGTGAGAACGGTGCAGTG
TCCCCGGCTGGCCTGTGCCAGCCCTGTGCTGCAACCCACCGACTGCTGCCAAACAGTGTCCAGTGGGTC
GGCCACCCCAAGCTGGGGACCCATGCAAGGCTGATGGGCCGGCTGCCGTTTGCTGGCAGTGGTCCC
AGAGAGTCAGAGCTGGCACCCCTCAGTCCCCCTTTGGAGAGATGAGCTGTATACCTGCAAGATGTGGGCAAG
GGTGCCTCACTGTGAGCGGGATGACTGTTCACTGCCACTGCTCTGTGGCTGGGGAAAGGAGAGTCGATGTT
CCGCTGCACGGCCCACCGCGGGCCCCAGAGACCAGAACTGATGCCAGAGCTGGAGAAAGAACGGCAAGGCTTTA
GGGAGCAGCCAGAGGGCCAAGTGAACCAAGAGGATGGGCTGAGCTGGGGAGGGGTGGCATCGAGGACCTT
GCATTCTCTGTGGGAAGGCCAGTGCCTTGTCTCTGCTCTACTCCCACCCCAACTACCTCTGGAA
CCACAGCTCCACAAGGGGAGAGGCAGCTGGGCCAGACCGAGGTCAAGGCCACTCCAAGTCTGCC
TCGGCCTCTGTCTGGAAAGCCCCACCCCTTCTCTGTACATAATGTCACTGGCTGTTGGATTTTAATT
CTTCACTCAGCACCAAGGGCCCCGACACTCCACTCTGCTGCCCTGAGCTGAGCAGAGTCATTATTGGAGAG
TTTGTATTATTAAAACATTCTTTCAAGTCAAAAAAAAAAAAAAA

FIGURE 4

><subunit 1 of 1, 954 aa, 1 stop

><MW: 101960, pI: 8.21, NX(S/T): 5

MPSLPAPPAPLLLGLLLGSRPARGAGPEPPVLPIRSEKEPLPVRAAGCTFGGKVYALDE
TWHPDLGQPFGVMRCVLCACEAPQWGRRTRGPGRVSCKNIKPECPTPACGQPRQLPGHCCQT
CPQERSSSERQPSGLSFEYPRDPEHRSYSDRGEPGAERARGDGHTDFVALLTGPRSQAVAR
ARVSSLRSSLRFSISYRRLDRPTRIRFSDSNGSVLFEHPAAPTQDGLVCGWRAVPRLSLRL
LRAEQLHVALVTLTHPSGEVGPLIRHRALAAETFSAILTLEGPPQQGVGGITLLTLSDTED
SLHFLLLFRGLLEPRSGGLTQVPLRLQILHQQLLRELQANVSAQEPGFAEVLPNLTQEMD
WLVLGELQMALEWAGRPGRLISGHIAARKSCDVLQSVLCGADALIPVQTGAAGSASLTLLGN
GSLIYQVQVVGTSSEVVAMTLETKPQRDQRTVLCHMAGLQPGGHTAVGICPGLGARGAHML
LQNELFLNVGKDFPDGELRGHVAALPYCGHSARHDTPVPLAGALVPPVKSQAAGHAWLS
LDTHCHLHYEVLLAGLGGSEQGTVTAHLLGPPGTPGPRRLLKGFYSEAQGVVKDLEPELLR
HLAKGMASLMITTKGSPRGELRGQVHIANQCEVGLRLEAAGAEVRALGAPDTASAAPPVV
PGLPALAPAKPGGPGRPRDPNTCFEGQQRPHGARWAPNYDPLCSLCTCQRTVICDPVVCP
PPSCPQVQAPDQCCPVCPEKQDVRDLPGLPRS RDGEGCYFDGDRSWRAAGTRWHPVVPPF
GLIKCAVCTCKGGTGEVHCEKVQCPRLACAQPVRVNPTDCKQCPVSGAHPQLGDPMQADG
PRGCRFAGQWFPEQSWSHPSVPPFGEMSCITCRCGAGVPHCERDDCSLPLSCSGKESRCCS
RCTAHRPPETRTDPELEKEAEGS

Signal sequence.

amino acids 1-23

N-glycosylation sites.

amino acids 217-221, 351-355, 365-369, 434-438

Tyrosine kinase phosphorylation sites.

amino acids 145-153, 778-786

N-myristoylation sites.

amino acids 20-26, 47-53, 50-56, 69-75, 73-79, 232-238, 236-242,
390-396, 422-428, 473-479, 477-483, 483-489, 489-495, 573-579,
576-582, 580-586, 635-641, 670-676, 773-779, 807-813, 871-877,
905-911

Amidation site.

amino acids 87-91

Cell attachment sequence.

amino acids 165-168

Leucine zipper pattern.

amino acids 315-337

FIGURE 5

GGCGGAGGCCCTAGCCGCCACCGTCGCTCTCGCAGCTCTCGTGCCTGCCACCGCCGCCGCGACTGCG
TCTGGCTCCGGCTCCCGGCCCTCCCGGCCGGCATGCAGCCCCGCCGCGCCCAGGCGCCCGGTGCGCAGCTGC
TGCCCGCGCTGGCCCTGCTGCTGCTGCTGGAGCGGGGCCCGAGGCAGCTCCCTGGCAACCCGGTGC
CCGGCCCTTGTCTGCGCCCCGGCCGTGCGCCGGCAGCCCTGCCGAATGGGGTGTGCACTCGGCCCTG
AGCCGGACCGCAGCACCCGGCCCCGGCAGGCCCTGGCTACAGCTGCACCTGCCCGGGATCTCGGCC
CCAAGTGCAGCTGTTGCAAGATCCTTGCCAGCAACCCCTGTCACCATGGCAACTGCAGCAGCAGCAGCA
GCAGCAGCGATGGCTACCTCTGCAATTGCAATGAAGGCTATGAAGGCTTCAACTGTGAACAGGCACTCCCAGTC
TCCCAGCCACTGGCTGGACCGAATCCATGGCACCCGACAGCTTCAGCCTGCTACTCAGGAGCCTGACA
AAATCCTGCCCTCGCTCTCAGGCAACGGTACACTGCCTACCTGGCAGCGAAAACAGGGCAGAAAGTGTAGAAA
TGAAAATGGGATCAAGTGGAGGTGATCCCAGATATTGCTGTGGGAATGCCAGTTCTAACAGCTCTGGGGTGGCC
GCCTGGTATCCTTGAAGTGCCACAGAACACCTCAGTCAGAAGATTGGCAAGATGCCACTGCCACTGATTG
TCTGGAAGGTCAAGGCCACAGGATTCCAACAGTGCTCCCTCATAGATGGACGAAGTGTGACCCCCCTCAGGCTT
CAGGGGGACTGGTCTCTGGAGGAGATGCTGCCCTGGGAATAATCACTTTATTGGTTTGTGAATGATTCTG
TGACTAAGTCTATTGTCGGCTTGCGCTTAACCTGGTGGTGAAGGTACGCACCTGTGTGCCGGGGAGAGTCAGC
CAAATGACTTGGAGTGTTCAGGAAAAGGAAAATGCACCACGAAGCCGTACAGGCAACTTTTCTGTACCTGTC
AGGAGCAGTACGTGGGTACTTCTGTGAAGAATACGATGCTGCCAGAGGAAACCTGCCAAACACGCGAGCT
GTATTGATGCAAATGAAAAGCAAGATGGAGCAATTTCACCTGTGTTGCCCTGGTTACTGGAGAGCTTT
GCCAGTCCAAGATTGATTACTGCATCCTAGACCCATGCAGAAATGGAGCAACATGCATTCCAGTCTCAGTGGAT
TCACCTGCCAGTGTCCAGAAGGATACTTCGGATCTGCTTGAGAAAAGGTGGACCCCTGCGCCTGCTCCGT
GCCAGAACAACGGCACCTGCTATGTGGACGGGTACACTTACCTGCAACTGCAGCCGGCTTCACAGGGCCGA
CCTGTGCCAGCTTATTGACTTCTGTGCCCTCAGCCCTGTGCTCATGGCACGTGCCAGCGTGGGACCAGCT
ACAATGCCCTGTGATCCAGGTTACCATGGCTCTACTGTGAGGGAGGAATAATGAGTGCCTCTCCGCTCCAT
GCCCTGAATGCAGGCCACCTGCAGGGACCTGTTAATGGCTATGAGTGTGTCGCCCTGGCAGAAATACAAGGAACAC
ACTGTGAATTGTACAAGGATCCCTGCGCTAACGTCAGCTGTGAACGGAGCCACCTGTGACAGCGACGGCTGA
ATGGCACGTGCATCTGTGCACTGGGTTACAGGTGAAGAGTGCACATTGACATAATGAATGTGACAGTAACC
CCTGCCACCATGGTGGGAGCTGCCCTGGACCCAGCCAATGGTTATAACTGCCACTGCCCATGGTTGGTGGAG
CAAACTGTGAGATCCACCTCAATGGAAGTCCGGCACATGGCGAGAGCCTACCAACATGCCACGGACTCCC
TCTACATCATCATTGGAGCCCTTGCGTGGCTTCATCCTTATGCTGATCATCTGATCGTGGGATTGCCGCA
TCAGCCGATTGAATACCAGGGTTCTCCAGGCCAGCCTATGAGGAGTCTACAACGTGCCAGCATCGACAGCG
AGTTCAAGCAATGCCATTGCACTCCATCCGGATGCCAGGTTGGAAAGAAATCCGGCTGCAATGTATGATGTGA
GCCCATCGCCTATGAAGATTACAGTCTGATGACAAACCTGGTACACTGATTAAAACAAAGATTGTAAT
CTTTTTGGATTATTTCAAAAGATGAGATACTACACTCATTAAATATTTAAGAAAATAAAAGCTTAA
GAAATTAAAATGCTAGCTGCTCAAGAGTTTCAGTAGAAATTTAAGAACTAATTCTGAGCTTTAGTTG
AAAAAAATTTAAAAACAAATTGTGAAACCTATAGACGATTTAATGTACCTTCAGCTCTAAACTGT
GTGCTTCACTAGTGTGCTTTCACTGTAGACACTATCACGAGACCCAGATTAATTCTGTTGTTACA
GAATAAGTCTAATCAAGGAGAAGTTCTGTTGACGTTGAGTGCCTTCTGAGTAGAGTTAGGAAACAC
GTAACGTAGCATATGATGTATAATAGAGTATACCGTTACTTAAAGAAGTCTGAAATGTTGTTGTGAA
AGAAAATAGTTAAATTACTATTCTAACCGAATGAAATTAGCCTTGCCTTCTGTCATGGGTAAGTAAC
TTATTCTGCACTGTTGTGAACTTGTGGAAACATTCTTCGAGTTGTTTGTCAATTCTGTAACAGTCG
TCGAACTAGGCCTCAAAACATACGTAACGAAAGGCCAGCGAGGCAAATTCTGATTGATTGAATCTATATT
TTCTTAAAAAGTCAAGGGTTCTATATTGTGAGTAAATTACATTGAGTTGTTGCTAAGAGGTTAG
TAAATGTAAGAGAGTACTGGTTCTTCAGTAGTGTGAGTATTCTCATAGTGCAGCTTATTATCTCCAGGATGTT
TTTGTGGCTGTATTGATTGATATGTGCTTCTGATTCTGCTAATTCCAACCATATTGAATAATGTGATC
AAAGTCA

FIGURE 6

><subunit 1 of 1, 737 aa, 1 stop

><MW: 78475, pI: 5.09, NX(S/T): 11

MQPRRAQAPGAQQLPALLLLLLGGAGPRGSSLANPVPAAPLSAPGPCAAQPCRNGGVCTSR
PEPDHQHAPAPAGEPGYSCTCPAGISGANCQLVADPCASNPCHHNCSSSSSSDGYLCICN
EGYEGPNCEQALPSLPATGWTESMAPRQLQPVPATQEPDKILPRSQATVTLPTWQPKTGQKV
VEMKWDQVEVIPDIACGNASSNSSAGGRLVSFEVPQNTSVKIRQDATASLILLWKVTATGFQ
QCSLIDGRSVTPLQASGGVLLEEMLALGNNHFIFGVNDSVTKSIVALRTLTVVKVSTCVPG
ESHANDLECSGKGKCTKPSEATFSCTCEEQYVGTCEEYDACQRKPCQNNASCIDANEKQD
GSNFTCVCLPGYTGEELCQSKIDYCILDPCRNGATCISSLSGFTCQCPEGYFGSACEEKVDPC
ASSPCQNNGTCYVDGVHFTCNCSPGFTGPTCAQLIDFCALSPCAHGTCRSVGTSYKCLCDPG
YHGLYCEEYNECLSAPCLNAATCRDLVNGYECVCLAELYKDPCANVSCLNGATC
DSDGLNGTCICAPGFTGEEDIDINECDSNPCHGGSCLDQPNGYNCHCPHWVGANCEIHL
QWKSGHMAESLTNMPRHSLYIIIGALCVAFILMLIILIVGICRISRIEYQGSSRPAYEEFYN
CRSIDSEFSNAIASIRHARFGKKSRPAMYDVSPIAYEDYSPDDKPLVTLIKTKDL

Signal sequence.

amino acids 1-28

Transmembrane domain.

amino acids 641-660

N-glycosylation sites.

amino acids 107-111, 204-208, 208-212, 223-227, 286-290, 361-365,
375-379, 442-446, 549-553, 564-568

Glycosaminoglycan attachment site.

amino acids 320-324

Tyrosine kinase phosphorylation sites.

amino acids 490-498, 674-682

N-myristoylation sites.

amino acids 30-36, 56-62, 57-63, 85-91, 106-112, 203-209,
373-379, 449-455, 480-486, 562-568, 565-571

Amidation site.

amino acids 702-706

Aspartic acid and asparagine hydroxylation site.

amino acids 520-532, 596-608

EGF-like domain cysteine pattern signatures.

amino acids 80-92, 121-133, 336-348, 378-390, 416-428, 454-466,
491-503, 529-541, 567-579, 605-617

FIGURE 7

CTCTGGAAGGTACGGCCACAGGATTCCAACAGTGCTCCCTCATAGATGGACGAAAGTGTGA
CCCCCCTTCAGGCTTCAGGGGGACTGGTCCTGGAGGAGATGCTCGCCTGGGAATA
ATCACTTATTGGTTTGTGAATGATTCTGTGACTAAGTCTATTGTGGCTTGCCTTAAC
CTGGTGGTGAAGGTACGCACCTGTGTGCCGGGGAGAGTCACGCAAATGACTGGAGTGTTC
AGGAAAAGGAAAATGCACCACGAAGCCGTACAGAGCAACTTTCTGTACCTGTGAGGAGC
AGTACGTGGTACTTCTGTGAAGAATACGATGCTGCCAGAGGAAACCTGCCAAAACAAC
GCGAGCTGTATTGATGCAAATGAAAAGCAAGATGGGAGCAATTACCTGTGTTGCCTTCC
TGGTTATACTGGAGAGCTTGCCAACCGAACTGAGATTGGAGCGAACGACCTACACCGAACT
GAGATAGGGGAG

05/14/2013 3:30 PM

FIGURE 8

CTCTGGAAGGTACGGCCACAGGATTCCAACAGTGCTCCCTCATAGATGGACGAAAGTGTGA
CCCCCCTTCAGGCTTCAGGGGACTGGTCCTCCTGGAGGAGATGCTCGCCTGGGAATA
ATCACTTATTGGTTTGTGAATGATTCTGTGACTAAGTCTATTGTGGCTTGCGCTTAAC
CTGGTGGTGAAGGTACGCACCTGTGTGCCGGGGAGAGTCACGCAAATGACTGGAGTGTTC
AGGAAAAGGAAAATGCACCACGAAGCCGTACAGAGGAACTTTCTGTACCTGTGAGGAGC
AGTACGTGGTACTTCTGTGAAGAACGATGCTGCCAGAGGAAACCTGCCAAACAAAC
GCGAGCTGTATTGATGCAAATGAAAAGCAAGATGGGAGCAATTCACCTGTGTTGCCTCC
TGGTTATACTGGAGAGCTTGCCAACCGAACTGAGATTGGAGCGAACGACCTACACCGAACT
GAGATAGGGAG

FIGURE 9

GCTGAGTCTGCTGCTCCTGCTGCTGCTCCAGCCTGTAACCTGTGCCTACACCACGCCAG
GCCCCCCCAGAGCCCTACACCACGCTGGCGCCCCAGAGCCCACACC**ATG**CCGGGCACCTAC
GCTCCCTCGACCACACTCAGTAGTCCCAGCACCCAGGGCCTGCAAGAGCAGGCACGGCCCT
GATGCGGGACTTCCCCTCGTGGACGGCCACAACGACCTGCCCCTGGCTTAAGGCAGGTTT
ACCAGAAAGGGCTACAGGATGTTAACCTGCGCAATTTCAGCTACGCCAGACCAGCCTGGAC
AGGCTTAGAGATGCCCTCGTGGCGCCAGTTCTGGTCAGCCTATGCCATGCCAGACCCA
GGACCGGGATGCCCTCGCCTCACCCCTGGAGCAGATTGACCTCATGCCGATGTGTGCCT
CCTATTCTGAGCTGGAGCTTGACCTCGCTAAAGCTCTGAACGACACTCAGAAATTGGCC
TGCCTCATCGGTAGAGGGTGGCCACTCGCTGGACAATAGCCTCTCCATCTTACGTACCTT
CTACATGCTGGAGTGCCTACCTGACGCTACCCACACCTGCAACACACCCCTGGCAGAGA
GCTCCGCTAAGGGGTCCACTCCTCTACAACAAACATCAGCGGGCTGACTGACTTTGGTAG
AAGGTGGTGGCAGAAATGAACCGCCTGGCATGATGGTAGACTTATCCATGTCTCAGATGC
TGTGGCACGGCGGGCCCTGGAAGTGTACAGGCACCTGTGATCTCTCCCACCGCTGCC
GGGGTGTGTGCAACAGTGCTCGGAATGTTCTGATGACATCCTGAGCTTCTGAAGAAGAAC
GGTGGCGTCGTGATGGTGTCTTGCCATGGAGTAATAACAGTCAACCCATCAGCCAATGT
GTCCACTGTGGCAGATCACTCGACCACATCAAGGCTGTCATTGGATCCAAGTTCATGGGA
TTGGTGGAGATTATGATGGGCCGGCAAATTCCCTCAGGGCTGGAAGACGTGTCCACATAC
CCGGTCCTGATAGAGGAGTTGCTGAGTCGTGGCTGGAGTGAGGAAGAGCTTCAGGGTGTCC
TCGTGGAAACCTGCTCGGGCTTCAGACAAGTGGAAAAGGTACAGGAAGAAAACAAATGGC
AAAGCCCCCTGGAGGACAAGTCCGGATGAGCAGCTGAGCAGTTCTGCCACTCCGACCTC
TCACGTCTCGCTCAGAGACAGAGTCTGACTTCAGGCCAGGAACACTGAGATTCCATACA
CTGGACAGCCAAGTTACCAAGCCAAGTGGTCAGTCTCAGAGTCCTCCCCCAGATGGCCCCAG
TCCTTGAGTTGTGGCACCTTCCCAGTCCTTATTCTGTGGCT**TGAT**GACCCAGTTAGTCC
TGCCAGATGTCACTGTAGCAAGCCACAGACACCCACAAAGTTCCCTGTTGTGCAGGCACA
AATATTCTGAAATAATGTTGGACATAG

FIGURE 10

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA35595  
<subunit 1 of 1, 433 aa, 1 stop  
<MW: 47787, PI: 6.11, NX(S/T): 5  
MPGTYAPSTTLSSPSTQGLQEQRALMRDFPLVDGHNDLPLVLRQVYQKGLQDVNLRNFSYG  
QTSLDRLRDGLVGAQFWSAYVPCQTQDRDALRLTLEQIDLIRRMCAASYSELELVTSAKALND  
TQKLACLIGVEGGHSLDNSLSILRTFYMLGVRYLTHTCNPWAESSAKGVHSFYNNISGL  
TDFGEKVVAEMNRLGMMVDSLHVSDAVARRALEVSQAPVIFSHSAARGVCNSARNVPDDILQ  
LLKKNGGVMVSLSMGVIQCNPSANVSTVADHFDHIKAVIGSKFIGIGGYDGAGKFPQGLE  
DVSTYPVLIIEELLSRGWSEEELQGVLRGNLLRVFRQVEKVQEENKWQSPLEDKFPDEQLSSS  
CHSDLRQLRQSLTSGQELTEIPIHWTAKLPAKWSVSESSPHMAPVLAFFPVVLILWL
```

N-glycosylation sites.

amino acids 58-62, 123-127, 182-186, 273-277

N-myristoylation sites.

amino acids 72-78, 133-139, 234-240, 264-270, 334-340, 389-395

Renal dipeptidase active site.

amino acids 134-157

FIGURE 11

AAAACCTATAATATTCCGGATTATTCATACCGTCCCACCATGGGCGCGGATCCGCGGCCG
CGAATTCTAAACCAACATGCCGGGCACCTACGCTCCCTCGACCACACTCAGTAGTCCCAGCA
CCCAGGGCCTGCAAGAGCAGGCACGGGCCTGATGCGGGACTTCCGCTCGTGGACGGCCAC
AACGACCTGCCCTGGTCCTAAGGCAGGTTACCAGAAAGGGCTACAGGATGTTAACCTGCG
CAATTTCAGCTACGGCCAGACCAGCCTGGACAGGCTTAGAGATGGCCTCGTGGCGCCAGT
TCTGGTCAGCCTATGTGCCATGCCAGACCCAGGACCGGGATGCCCTGCGCTCACCTGGAG
CAGATTGACCTCATGCCGATGTGCTCCTATTCTGAGCTGGAGCTTGTGACCTCGGC
TAAAGCTCTGAACGACACTCAGAAATTGGCCTGCCTCATCGGTGTAGAGGGTGGCCACTCGC
TGGACAATAGCCTCTCCATCTTACGTACCTCTACATGCTGGGAGTGCCTACCTGACGCTC
ACCCACACCTGCAACACACCCCTGGCAGAGAGCTCCGCTAAGGGCTCCACTCCTTACAA
AACATCAGCGGGCTGACTGACTTGGTGAGAAGGTGGCAGAAATGAACCGCCTGGCA
TGATGGTAGACTTATCCCATGTCTCAGATGCTGTGGCACGGCGGGCCCTGGAAGTGTACAG
GCACCTGTGATCTCTCCACTCGGCTGCCGGGGTGTGCAACAGTGCCTGGAAATGTTCC
TGATGACATCCTGCAGCTCTGAAGAAGAACGGTGGCGTCGTGATGGTGTCTTGTCCATGG
GAGTAATAACAGTGCAACCCATCAGCCAATGTGTCCACTGTGGCAGATCACTCGACCACATC
AAGGCTGTCATTGGATCCAAGTTCATCGGGATTGGTGGAGATTATGATGGGCCGGCAAATT
CCCTCAGGGGCTGGAAGACGTGTCCACATACCCGGCCTGATAGAGGAGTTGCTGAGTCGTG
GCTGGAGTGAGGAAGAGCTTCAGGGTGTCTCGTGGAAACCTGCTGGGTCTTCAGACAA
GTGGAAAAGGTACAGGAAGAAAACAAATGGCAAAGCCCCTGGAGGACAAGTTCCCGATGA
GCAGCTGAGCAGTCCCTGCCACTCCGACCTCTCACGTCTCGTCAGAGACAGAGTCTGACTT
CAGGCCAGGAACACTCACTGAGATTCCCACACTGGACAGCCAAGTTACCAGCCAAGTGGTCA
GTCTCAGAGTCCTCCCCCACCCTGACAAAACTCACACATGCCACCGTGCCAGCACCTGA
ACTCCTGGGGGACCGTCAGTCTTCCCTTCCCCCAAAACCCAAGGACACC

FIGURE 12

```
></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA35872
><subunit 1 of 1, 446 aa, 0 stop
><NX(S/T): 5
MPGTYAPSTTLSSPSTQGLQEQRALMRDFPLVDGHNDLPLVLRQVYQKGLQDVNLRNFSYG
QTSLDRLRDGLVGAQFWSAYVPCQTQDRDALRLTLEQIDLIRRMCASYSELELVTSAKALND
TQKLACLIGVEGGHSLDNSLSILRTFYMLGVRYLTLLHTCNPWAESSAKGVHSFYNNISGL
TDFGEKVVAEMNRLGMMVDSLHVSDAVARRALEVSQAPVIFSHSAARGVCNSARNVPDDILQ
LLKKNGGVMVSLSMGVIQCNPSANVSTVADHFDHIKAVIGSKFIGIGGDYDGAGKFPQGLE
DVSTYPVLIEELLSRGWSEEELQGVLRGNLLRVFRQVEKVQEENKWQSPLEDKFPDEQLSSS
CHSDLRSRLRQRQSLTSGQELTEIPIHWTAKLPAKWSVSESSPHDKTHTCPPCPAPELLGGP
SVFLFPPPKPKDT
```

2003-08-06 09:56:00

FIGURE 13

CGCCCAGCGACGTGCGGGCGGCCTGGCCCCGCGCCCTCCCGCGCCCGGCCCTGCGTCCC CGCGCC
CTGCGCCACCGCCGCCGAGCCGCAGCCCGCCGCCGCGCCCCCGGCAGCGCCGCCGCCATGCCC
GCCGGCCGCCGGGGCCCCGCCGCCAATCCGCGCGGCCGCCGCGCCGTTGCTGCCCTGCT
GCTGCTGCTCTGCGTCCTCGGGGCCGCCGAGCCGGATCAGGAGCCACACAGCTGTGATCA
GTCCCCAGGATCCCACGCTTCTCATCGGCTCCTCCCTGCTGGCCACCTGCTCAGTGCACGGA
GACCCACCAGGAGCCACCGCCGAGGGCCTACTGGACCCCTAACGGCGCCGCTGCC
TGAGCTCTCCCGTGTACTCAACGCCCTCACCTGGCTCTGCCCTGGCAACCTCAATGGGT
CCAGGCAGCGGTGGGGACAACCTCGTGTGCCACGCCGTGACGGCAGCATCCTGGCTGGC
TCCTGCCTCTATGTTGGCCTGCCCTAGAGAAACCGTCAACATCAGCTGCTGGTCCAAGAA
CATGAAGGACTTGACCTGCCGCTGGACGCCAGGGGCCACGGGAGACCTCCTCCACACCA
ACTACTCCCTCAAGTACAAGCTTAGGTGGTATGCCAGGACAACACATGTGAGGAGTACCA
ACAGTGGGGCCCCACTCCTGCCACATCCCCAAGGACCTGGCTCTTTACGCCCTATGAGAT
CTGGGTGGAGGCCACCAACCGCCTGGCTCTGCCCTCCGATGTACTCACGCTGGATATCC
TGGATGTGGTGACCACGGACCCCCCGCCGACGTGACGTGAGCCGGTGGCTGGAG
GACCAGCTGAGCGTGCCTGGGTGTCGCCACCCGCCCTCAAGGATTCCCTCTTCAAGCAA
ATACCAGATCCGCTACCGAGTGGAGGACAGTGTGGACTGGAAGGTGGACGATGTGAGCA
ACCAGACCTCCTGCCGCTGGCCGGCTGAAACCCGGCACCGTGTACTCGTCAAGTGC
TGCAACCCCTTGGCATCTATGGCTCCAAGAAAGCCGGATCTGGAGTGAGTGGAGCCACCC
CACAGCCGCTCCACTCCCCGAGCTGGGGCCGGTGGCGCGAGCTCAAGCAGTCCGGCTGGCTC
GGGGCGGAGAGCCGAGCTGGGGCCGGTGGCGCGAGCTCAAGCAGTCCGGCTGGCTC
AAGAAGCACCGTACTGCTCCAACCTCAGCTTCCGCCCTACGACCAAGTGGCGAGCCTGGAT
GCAGAAGTCGACAAGACCCGCAACCAGGACGAGGGATCCTGCCCTGGGCAGACGGGCA
CGCGAGAGGTCCCTGCCAGATAAGCTGTAGGGCTCAGGCCACCCCTGCCACGTGGAGA
CGCAGAGGCCAACCCAAACTGGGCCACCTCTGTACCCCTCACTCAGGCCACCTGAGCCAC
CCTCAGCAGGAGCTGGGTGGCCCTGAGCTCCAACGCCATAACAGCTCTGACTCCACGT
GAGGCCACCTTGGGTGACCCAGTGGGTGTGTGTGAGGGTTGGTTGAGTTGC
CTAGAACCCCTGCCAGGGCTGGGGTGAGAAGGGAGTCATTACTCCCCATTACCTAGGGCC
CCTCCAAAAGAGTCCTTAAATAATGAGCTATTAGGTGCTGTGATTGTGAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAA

FIGURE 14

><ss.DNA38113

><subunit 1 of 1, 422 aa, 1 stop

><MW: 46302, pI: 9.42, NX(S/T): 6

MPAGRRGPAAQSARRPPPLPLLLLLCVLGAPRAGSGAHTAVISPQDPTLLIGSSLLATCSV
HGDPPGATAEGLYWTLNNGRRLPPELSRVLNASTLALALANLNGSRQRSGDNLVCHARDGSIL
AGSCLYVGLPPEKPVNISCWSKNMKDLTCRTPGAHGETFLHTNYSLKRYKLRWYGQDNTCEE
YHTVGPHSCHIPKDLALFTPYEIWVEATNRGSAVDVLTLIDILDVVTTDPPPDVHVSRVGG
LEDQLSVRWVSPPALKDFLFQAKYQIRYRVEDSDWKVVDDVSNQTSCRLAGLKPGTVYFVQ
VRCNPFGIYGSKKAGIWSEWSHPTAASTPRSERPGPGGGACEPRGGEPPSSGPVRRELKQFLG
WLKKHAYCSNLSFRLYDQWRAWMQSHKTRNQDEGILPSGRRGTARGPAR

Signal sequence.

amino acids 1-30

Transmembrane domain.

amino acids 44-61

N-glycosylation sites.

amino acids 92-96, 104-108, 140-144, 168-172, 292-296, 382-386

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 413-417

N-myristoylation sites.

amino acids 30-36, 37-43, 73-79, 121-127, 179-185, 218-224,
300-306, 317-323, 320-326, 347-353, 355-361, 407-413

Amidation site.

amino acids 3-7, 79-83, 411-415

Growth factor and cytokines receptors family signature 2.

amino acids 325-331

FIGURE 15

CCACGCGTCCGCTGGTGTAGATCGAGCAACCCTCTAAAAGCAGTTAGAGTGGTAAAAAA
AAAAAAAAAACACACCAAACGCTCGCAGCCACAAAGGGATGAAATTCTTCTGGACATCCTC
CTGCTTCTCCCGTTACTGATCGTCTGCTCCCTAGAGTCCTCGTGAAGCTTTTATTCCCTAA
GAGGAGAAAATCAGTCACCGGCAGAATCGTGCTGATTACAGGAGCTGGCATGGAATTGGGA
GACTCGACTGCCTATGAATTGCTAAACTTAAAGCAAGCTGGTCTCTGGATATAAATAAG
CATGGACTGGAGGAAACAGCTGCCAAATGCAAGGGACTGGTGCCAAGGTCATACTTGT
GGTAGACTGCAGCAACCGAGAAGATATTACAGCTCTGCAAAGAAGGTGAAGGCAGAAATTG
GAGATGTTAGTATTAGTAAATAATGCTGGTAGTCTATACATCAGATTGTTGCTACA
CAAGATCCTCAGATTGAAAAGACTTTGAAGTTAATGTACTTGCACATTCTGGACTACAAA
GGCATTTCCTGCAATGACGAAGAATAACCAGGCCATTGTCAGTGTGGCTTCGGCAG
CTGGACATGTCTCGTCCCCCTTACTGGCTTACTGTTCAAGCAAGTTGCTGCTGTTGGA
TTTCATAAAACTTGACAGATGAACTGGCTGCCTACAAATAACTGGAGTCAAAACACATG
TCTGTGTCCTAATTGTAACACTGGCTTCATCAAAATCCAAGTACAAGTTGGACCCA
CTCTGGAACCTGAGGAAGTGGTAAACAGGCTGATGCATGGATTCTGACTGAGCAGAAGATG
ATTTTATTCCATCTTCTATAGCTTTTAACAACATTGGAAAGGATCCTCCTGAGCGTT
CCTGGCAGTTAAAAGAAAAACTCAGTGTAAAGTTGATGCAGTTATTGGATATAAAATGA
AAGCGCAAAGCACCTAGTTCTGAAAACTGATTACCAAGGTTAGGTTAGTCATCTA
ATAGTGCAGAATTAAATGTTGAACTTCTGTTTTCTAATTATCCCCATTCTCAATA
TCATTGGAGGCTTGGCAGTCTCATTACTACCACCTGTTCTTAGC_{AAAAGCTGATT}
ACATATGATATAAACAGAGAAACCTTACAGGTTGACTTTAAGGAAATGAAGAAAAAGAA
CCAAATGACTTTATTAAAATAATTCCAAGATTATTGTGGCTCACCTGAAGGCTTGCAA
AATTGTACCATAACCGTTATTAAACATATATTATTATTGATTGACTAAATTGTTG
ATAATTGTTCTTCTTCTGTTCTACATAAAATCAGAAACTCAAGCTCTAAATAAAA
TGAAGGACTATCTAGGGTATTCACAATGAATATCATGAACTCTCAATGGTAGGTTTC
ATCCTACCCATTGCCACTCTGTTCTGAGAGATAACCTCACATTCCAATGCCAAACATTCT
GCACAGGGAAGCTAGAGGTGGATACACGTGTTGCAAGTATAAAAGCATCACTGGATTAA
GAGAATTGAGAGAATGTACCCACAAATGGCAGCAATAATAATGGATCACACTTAA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 16

</usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA34436

<subunit 1 of 1, 300 aa, 1 stop

<MW: 32964, PI: 9.52, NX(S/T): 1

MKFLLDILLPLLIVCSLESFVKLFIPKRRKSVTGEIVLITGAGHIGRLTAYEFAKLKSK
LVLWDINKHGLEETAAKCKGLGAKVHTFVVDCSNREDIYSSAKKVAEIGDVSILVNNAGVV
YTSDLFATQDPQIEKTFEVNVLAHFWTTKAFLPAMTKNNHGHIVTVASAAGHVSVFLLAYC
SSKFAAVGFHKTLTDELAALQITGVKTTCLCPNFVNTGFIKNPSTSLGPTLEPEEVVNRLMH
GILTEQKMIFIPSSIAFLTTLERILPERFLAVLKRKISVKFDAVIGYKMKAQ

Signal sequence.

amino acids 1-19

Transmembrane domain.

amino acids 170-187

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 30-34, 283-287

N-myristylation sites.

amino acids 43-49, 72-78, 122-128, 210-216

FIGURE 17

GAAGTCTCTGGAGTCTGGAGGAGGAAAGCGGAGCCGGCAGGGAGCGAACCAAGGACTG
GGGTGACGGCAGGGCAGGGGGCGCTGGCCGGGAGAAGCGCGGGGCTGGAGCACCAAA
CTGGAGGGTCCGGAGTAGCGAGCGCCCCGAAGGAGGCCATCGGGAGCCGGAGGGGGACT
GCGAGAGGACCCCGCGTCCGGCTCCCGGTGCCAGCGCTATGAGGCCACTCCTCGTCTGC
TGCTCCTGGCCTGGCGGGCTCGCCCCACTGGACGACAACAAGATCCCAGCCTCTGC
CCGGGGCACCCGGCCTTCCAGGCACGCCGGCCACCATGGCAGCCAGGGCTGCCGGCG
CGATGGCCCGACGGCCCGACGGCGCCGGCTCCGGGAGAGAAAGGCGAGGGCGGG
GCCGGGACTGCCGGGACCTCGAGGGGACCCGGCCGCGAGGAGAGGCCGGACCCGCGGG
CCCACCGGGCTGCCGGGAGTGCTCGGTGCCTCCCGATCCGCCTCAGGCCAAGCGCTC
CGAGAGCCGGTGCCTCCCGTCTGACGCACCCCTGCCCTCGACCGCGTGGTGAACG
AGCAGGGACATTACGACGCCGTACCGCAAGTTCACCTGCCAGGTGCCTGGGTCTACTAC
TTCGCCGTCCATGCCACCGTCTACCGGCCAGCCTGCAGTTGATCTGGTAAGAATGGCGA
ATCCATTGCCCTTTCTTCCAGTTTCGGGGGTGGCCAAGGCCAGCCTCGCTCTGGGG
GGGCATGGTGAGGCTGGAGCCTGAGGACCAAGTGTGGGTGCAGGTGGTGTGGTGAAC
ATTGGCATCTATGCCAGCATCAAGACAGACAGCACCTCTCCGGATTCTGGTACTCCGA
CTGGCACAGCTCCCCAGTCTTGCTTAGTGCCCAGTCAGCAAAGTGAGCTATGCTCTCACTCC
TAGAAGGAGGGTGTGAGGCTGACAACCAGGTATCCAGGAGGGCTGGCCCCCTGGAATATT
GTGAATGACTAGGGAGGTGGGTAGAGCACTCTCCGTCTGCTGGCAAGGAATGGAAC
AGTGGCTGTCTGCAGGTCTGGCAGCATGGGCAGTGCTGGATTTCTGCCAAGACCA
GAGGAGTGTGCTGTGCTGGCAAGTGTAAAGTCCCCAGTTGCTCTGGCCAGGAGCCCACGGT
GGGGTGCTCTTCCCTGGCCTCTGCTCTGGATCCTCCCCACCCCTGCTCCTGG
GCCGGCCCTTTCTCAGAGATCACTCAATAAACCTAAGAACCTCATAAAAAAAAAAAA
AAAAAAAAAAAAA

FIGURE 18

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA40592

><subunit 1 of 1, 243 aa, 1 stop

><MW: 25298, pI: 6.44, NX(S/T): 0

MRPLLVLLLLGLAAGSPPPLDDNKPSSLCPGHPGLPGTPGHGSQGLPGRDGRDGRDGAPGAP
GEKGEGRGPGLPGPRGDPGPRGEAGPAGPTGPAGECSVPPRSAFSAKRSESRVPPPSDAPLP
FDRV LVNEQGHYDAVTGKFTCQVPGVYYFAVHATVYRASLQFDLVKNGESIASFFQFFGGWP
KPASLSGGAMVRLEPEDQWVQVGVDYIGIYASI KTDSTFSGFLVYSDWHSSPVFA

Signal sequence.

amino acids 1-15

N-myristoylation sites.

amino acids 11-17, 68-74, 216-222

Cell attachment sequence.

amino acids 77-80

09041112 2 2004

FIGURE 19

CTCTTTGTCCACCAGCCCAGCCTGACTCCTGGAGATTGTGAATAGCTCCATCCAGCCTGAG
AAACAAGCCGGTGGCTGAGCCAGGCTGTGCACGGAGCACCTGACGGGCCAACAGACCCAT
GCTGCATCCAGAGACCTCCCCTGGCCGGGGCATCTCCTGGCTGTGCTCCTGGCCCTCCTG
GCACCACCTGGCAGAGGTGTGGCCACCCCAGCTGCAGGAGCAGGCTCCGATGGCCGGAGCC
CTGAACAGGAAGGAGAGTTCTTGCCTCCCTGCACAACCGCCTGCGCAGCTGGTCCA
GCCCCCTGCGGCTGACATGCGGAGGCTGGACTGGAGTGACAGCCTGGCCAACTGGCTCAAG
CCAGGGCAGCCCTCTGTGAATCCCAACCCGAGCCTGGCATCCGGCTGTGGCGCACCCCTG
CAAGTGGGCTGGAACATGCAGCTGCTGCCCGGGCTTGGCGTCCTTGTGAAGTGGTCAG
CCTATGGTTGCAGAGGGCAGCGGTACAGCCACGCGCAGGAGAGTGTGCTCGCAACGCCA
CCTGCACCCACTACACGCAGCTCGTGTGGCCACCTCAAGCCAGCTGGCTGTGGCGGCAC
CTGTGCTCTGCAGGCCAGACAGCGATAGAACGCTTGTCTGCTACTCCCCGGAGGCAA
CTGGGAGGTCAACGGGAAGACAATCATCCCTATAAGAAGGGTGCCTGGTGTGCTCTGCA
CAGCCAGTGTCTCAGGCTGCTCAAAGCCTGGACCATGCAGGGGGCTGTGAGGTCCCC
AGGAATCCTTGTGCGATGAGCTGCCAGAACCATGGACGTCTAACATCAGCACCTGCCACTG
CCACTGTCCCCCTGGCTACACGGCAGATACTGCCAAGTGAGGTGCAGCCTGCAGTGTGTC
ACGGCCGGTTCCGGGAGGAGGTGCTCGTGTGACATCGCTACGGGAGGCCAG
TGTGCCACCAAGGTGCATTTCCCTCCACACCTGTGACCTGAGGATCGACGGAGACTGCTT
CATGGTGTCTTCAGAGGCAGACACCTATTACAGAGCCAGGATGAAATGTCAGAGGAAAGGCG
GGGTGCTGGCCCAGATCAAGAGCCAGAAAGTGCAGGACATCCTGCCCTATCTGGCCGC
CTGGAGACCACCAACGAGGTGACTGACAGTGACTTCGAGACCAGGAACCTCTGGATGGGCT
CACCTACAAGACCAGCAAGGACTCCTCCGCTGGGCCACAGGGAGCACCAGGCCCTCACCA
GTTTGCCCTTGGCAGCCTGACAACCACGGCTGGTGTGGCTGAGTGCTGCCATGGGTTT
GGCAACTGCGTGGAGCTGCAGGCTTCAGCTGCCCTCAACTGGAACGACCAGCGCTGCAAAAC
CCGAAACCGTTACATCTGCCAGTTGCCAGGAGCACATCTCCGGTGGGCCAGGGCCT
GAGGCCTGACCACATGGCTCCCTGCCCTGGGAGCAGGCTCTGCTTACCTGTCTGC
CCACCTGTCTGGAACAAGGGCAGGTTAAGACCACATGCCCTATGTCAAAGAGGTCTCAGA
CCTTGCACAATGCCAGAAGTTGGGAGAGAGAGGGCAGGGAGGCCAGTGAGGGCCAGGGAGTG
AGTGTAGAAGAAGCTGGGCCCTCGCCTGCTTTGATTGGGAAGATGGCCTCAATTAGA
TGGCGAAGGAGAGGACACCGCCAGTGGTCAAAAAGGCTGCTCTTCCACCTGGCCAGAC
CCTGTGGGCAGCGGAGCTCCCTGTGGCATGAACCCACGGGTATTAAATTATGAATCAG
CTGAAAAAAAAAAAAAA

FIGURE 20

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44176

<subunit 1 of 1, 455 aa, 1 stop

<MW: 50478, PI: 8.44, NX(S/T): 2

MLHPETSPGRGHLLAVLLALLGTTWAEVWPPQLQEQQAPMAGALNRKESFLLLHNRSLRSWV
QPPAADMRRLDWSDSLQAQARAALCGIPTPSLASGLWRTLQVGWNMQLLPAGLASFVEVV
SLWFAEGQRYSHAAGECARNATCTHYTQLVWATSSQLGCRHLCAGQTAIEAFVCAYSPGG
NWEVNGKTIIPYKKGAWSLCTASVSGCFKAWDHAGGLCEVPRNPCRMSQNHGRLNISTCH
CHCPCPGYTGRYCQVRCSLQCVHGRFREEECSCVCDIGYGGAAQCATKVHFPFHTCDLRIDGDC
FMVSSEADTYYRARMKCQRKGVLAQIKSQKVQDILAFYLGRLETTNEVTDSDFETRNFWIG
LTYKTAKDSFRWATGEHQAFTSFAFGQPDNHGLVWLSAAMFGNCVELQASAAFNWNDQRCK
TRNRYICQFAQEHISRWPGBS

Signal sequence.

amino acids 1-26

Transmembrane domain.

amino acids 110-124

N-glycosylation sites.

amino acids 144-148, 243-247

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 45-49

N-myristoylation sites.

amino acids 22-28, 99-105, 131-137, 201-207, 213-219, 287-293,
288-294, 331-337, 398-404

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 204-215

EGF-like domain cysteine pattern signature.

amino acids 249-261, 280-292

C-type lectin domain signature.

amino acids 417-442

FIGURE 21

CGGACGCGTGGGCTGGCGCTGCAAAGCGTGTCCGCCGGTCCCCGAGCGTCCCAGC
CGCCCCGCC**ATG**CCTGCTGCTGGGCTGTGCCTGGGCTGTCCCTGTGTGGGTCGCA
GGAAGAGGCCAGAGCTGGGCCACTCTTCGGAGCAGGATGGACTCAGGGTCCGAGGCAAG
TCAGACTGTTGCAGAGGCTGAAAACCAACCTTGATGACAGAATTCTCAGTGAAGTCTACC
ATCATTCCCGTTATGCCTCACTACGGTTCTGCAGAATGCTGAACAGAGCTTCTGAAGA
CCAGGACATTGAGTTCCAGATGCAGATTCCAGCTGCAGCTTCATCACCAACTTCACTATGC
TTATTGGAGACAAGGTGTATCAGGGCGAAATTACAGAGAGAAAAGAAGAGTGGTGTAGG
GTAAAAGAGAAAAGGAATAAAACACAGAAGAAAATGGAGAGAAGGGACTGAAATATTCAG
AGCTTCTGCAGTGATTCCCAGCAAGGACAAGGCCCTTTCTGAGTTATGAGGAGCTC
TGCAGAGGCCCTGGCAAGTACGAGCACAGCATCAGCTGCCGCCAGCAGCTGCC
AGGCTGAGCGTGGACGTGAATATCCTGGAGAGCGCGGGCATCGATCCCTGGAGGTGCTGCC
GCTTCACAAACAGCAGGCAGAGGGCAGTGGCGCGGGAAAGATGATTCTGGCCCTCCCCAT
CTACTGTCATTAACCAAAATGAAACATTGCCAACATAATTAAACCTACTGTAGTACAA
CAAGCCAGGATTGCCAGAAATGAAATTGGAGACTTTATCATTAGATATGACGTCAATAG
AGAACAGAGCATTGGGACATCCAGGTTCTAAATGGCTATTGTGCACTACTTGCTCCTA
AAGACCTCCTCCTTACCCAAAGAATGTGGTATTGTGCTTGACAGCAGTGCTTCTATGGT
GGAACCAAACCTCCGGCAGACCAAGGATGCCCTCTCACAAATTCTCATGACCTCCGACCCCA
GGACCGTTTCAGTATCATTGGATTTCACCGGATCAAAGTATGGAAGGACCACTTGATAT
CAGTCACTCCAGACAGCATCAGGGATGGAAAGTGTACATTACCATATGTCACCCACTGGA
GGCACAGACATCAACGGGCCCTGCAGAGGGCATCAGGCTCCTCACAAAGTACGTGGCCCA
CAGTGGCATTGGAGACGGAGCGTGTCCCTCATCGTCTTGTGACGGATGGAGGCCACGG
TCGGGAGACGCACACCCCTCAAGATCCTCAACAAACACCCGAGAGGCCCGAGGCCAAGTC
TGCATCTTCACCATTGGCATCGGAAACGACGTGGACTTCAGGCTGCTGGAGAAACTGTCGCT
GGAGAACTGTGGCCTCACACGGCGGTGCAAGGAGGAGGACGAGGCTCGCAGCTCATCG
GGTTCTACGATGAAATCAGGACCCGCTCTCTGACATCCGATCGATTATCCCCCAGC
TCAGTGGTGCAGGCCACCAAGACCCCTGTTCCCAACTACTTCAACGGCTGGAGATCATCAT
TGCGGGAAAGCTGGTGACAGGAAGCTGGATCACCTGCACGTGGAGGTGACCCAGCAACA
GTAAGAAATTCATCATCCTGAAGACAGATGTGCCTGTGCGGCCCTCAGAAGGCAGGGAAAGAT
GTCACAGGAAGCCCCAGGCCCTGGAGGGCGATGGAGAGGGGACACCAACCACATCGAGCGTCT
CTGGAGCTACCTCACCACAAAGGAGCTGCTGAGCTCTGGCTGCAAAGTACGATGAAACGG
AGAAGGAGCGGCTGGCGAGCGGGCCAGGCCCTGGCTGTGAGCTACCGCTTCTCACTCCC
TTCACCTCCATGAAGCTGAGGGGCCGGTCCCACGCATGGATGGCCTGGAGGAGGCCACGG
CATGTCGGCTGCCATGGACCCGAACCGGTGGTGCAGAGCGTGCAGGAGCTGGCACGCAGC
CAGGACCTTGCTCAAGAACCAACTCCGTCAAAAAAAACAAAACAAAACAAAAAAGA
CATGGGAGAGATGGTGTGTTCTCCACCACCTGGGATACGA**TGA**GAAGATGGCCACCT
GCAAGCCAGGAAGACGCCCTCACAGACACCATGTCTGCTGGCACCTGATCTGGACCTC
CCAGCCTCCAGAACACTGTGAGAAATAATGTGTTTAAAGCTAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

FIGURE 22

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44192

<subunit 1 of 1, 694 aa, 1 stop

<MW: 77400, PI: 9.54, NX(S/T): 6

MLLGLCLGLSLCVGSQEEAQSWGHSSEQDGLRVPRQVRLQLKTKPLMTEFSVKSTIIS
RYAFTTVSCRMLNRASEDQDIEFQMQIPAAAFITNFTMLIGDKVYQGEITEREKSGDRVKE
KRNKTTENGEKGTEIFRASAVIPSVDKAFFLSYEELLQRRLGKYEHSISVRPQQLSGRSL
VDVNILESAGIASLEVLPLHNSRQRGSGRGEDDSGPPPSTVINQNETFANIIFKPTVVQQAR
IAQNGILGDFIIRYDVNREQSIGDIQVLNGYFVHYFAPKDLPLPKNVVFVLDSSASMVGTK
LRQTKDALFTILHDLRPQDRFSIIGFSNRIKVWKDHЛИSVPDSIRDGKVIHHMSPTGGTD
INGALQRAIRLLNKVAHSGIGDRSVSLIVFLTDGKPTVGETHTLKILNNNTREAARGQVCIF
TIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLIGFYDEIRTPLLSDIRIDYPSSVV
QATKTLFPNYFNGSEIIIAGKLVDRKLDHLHVEVTASNKKFIILKTDVPVRPQKAGKDVTG
SPRPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERLRQRAQALAVSYRFLTPFTS
MKLRGPVPRMDGLEEAHMSAAMGPEPVVQSVRGAGTQPGPLLKKPNSVKKQNKTKRHGR
DGVFPLHHLGIR

Signal sequence.

amino acids 1-14

N-glycosylation sites.

amino acids 97-101, 127-131, 231-235, 421-425, 508-512, 674-678

Glycosaminoglycan attachment sites.

amino acids 213-217, 391-395

N-myristoylation sites.

amino acids 6-12, 10-16, 212-218, 370-376, 632-638, 638-644

FIGURE 23

CGGACGCGTGCGGTGCCGACATGGCGAGTGTAGTGCTGCCGAGCGGATCCCAGTGTGCGGC
GGCAGCGCGCGCGCGCGCCTCCCGGGCTCCGGCTTGCTGTTGCTCTTCTCCGCCGCGG
CACTGATCCCCACAGGTGATGGCAGAATCTGTTACGAAAGACGTGACAGTGATCGAGGGA
GAGGTTGCGACCATCAGTTGCCAAGTCAATAAGAGTGACGACTCTGTGATTCAAGCTACTGAA
TCCCAACAGGCAGACCATTATTCAGGGACTTCAGGCCTTGAAGGCAGCAGGTTTCAGT
TGCTGAATTTCTAGCAGTGAACCAAAGTATCATTGACAAACGTCTCAATTCTGATGAA
GGAAGATACTTTGCCAGCTCTACCGATCCCCACAGGAAAGTTACACCAACCATCACAGT
CCTGGTCCCACCACGTAATCTGATGATCGATATCCAGAAAGACACTGCGGTGGAAGGTGAGG
AGATTGAAGTCAACTGCACTGCTATGCCAGCAAGCCAGCCACGACTATCAGGTGGTCAA
GGGAACACAGAGCTAAAGGCAAATCGGAGGTGGAAGAGTGGTCAGACATGTACACTGTGAC
CAGTCAGCTGATGCTGAAGGTGCACAAGGAGGACGATGGGTCCCAGTGATCTGCCAGGTGG
AGCACCCCTGCGGTCACTGGAAACCTGCAGACCCAGCGGTATCTAGAAGTACAGTATAAGCCT
CAAGTGCACATTAGATGACTTATCCTCTACAAGGCTTAACCCGGAAAGGGACGCGCTTGA
GTTAACATGTGAAGCCATCGGGAAAGCCCCAGCCTGTGATGGTAACTTGGTGAGAGTCGATG
ATGAAATGCCTCAACACGCCGTACTGTCTGGGCCAACCTGTTCATCAATAACCTAAACAAA
ACAGATAATGGTACATACCGCTGTGAAGCTTCAAACATAGTGGGAAAGCTCACTCGGATTA
TATGCTGTATGTATACGATCCCCCACAACATCCCTCCTCCCACAACAACCACCA
CCACCACCACCACCAACCACCATCCTTACCATCATCACAGATTCCGAGCAGGTGAAGAAGGC
TCGATCAGGGCAGTGGATCATGCCGTGATCGGTGGCGTGGCGGTGGTGGTGGTGGTGGTGGTGG
GCTGTGCTTGCTCATCATTCTGGGCGCTATTTGCCAGACATAAGGTACATACTTCACTC
ATGAAGCCAAGGAGCCGATGACCCAGCAGACGGAGACACAGCTATAATCAATGCAGAAGGA
GGACAGAACAACTCCGAAGAAAAGAAAGAGTACTTCATCTAGATCAGCCTTTGTTCAAT
GAGGTGTCCTTAACTGGCCCTATTAGATGATAAAGAGACAGTGATATTGG

FIGURE 24

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA39518
<subunit 1 of 1, 440 aa, 1 stop
<MW: 48240, pi: 4.93, NX(S/T): 7
MASVVLPSGSQCAAAAAAAAPPGLLLLLFSAAALIPTGDGQNLFTKDVTVIEGEVATISC
QVNKSDDSVIQLLNPNRQTIYFRDFRPLKDSRFQLLNFSSSELKVSLTNVSISDEGRYFCQL
YTDPPQESYTTITVLVPPRNLMIDIQKDTAVEGEEIEVNCTAMASKPATTIRWFKGNTTELKG
KSEVEEWSDMYTSQLMLKVHKEDDGVPVICQVEHPAVTGQLQTQRYLEVQYKPQVHIQMT
YPLQGLTREGDALELTCEAIGKPQPVMVTWVRVDDEMPQHAVLSGPNLFINNLNKTNGTYR
CEASNIVGKAHSDYMLYVYDPPTTIPPPTTTTTTTTTILTIITDSRAGEEGSIRAVDH
AVIGGVVAVVFAMLCLLIILGRYFARHKGYFTHEAKGADDAADADTAIINAEGGQNNSEE
KKEYFI

Signal sequence.

amino acids 1-36

Transmembrane domain.

amino acids 372-393

N-glycosylation sites.

amino acids 65-69, 99-103, 111-115, 163-167, 302-306, 306-310,
430-434

Tyrosine kinase phosphorylation sites.

amino acids 233-240, 319-328

N-myristoylation sites.

amino acids 9-15, 227-233, 307-313, 365-371, 376-382, 402-408,
411-417, 427-433, 428-432

FIGURE 25

GGGGCGGGTGGACGCGACTCGAACGCAGTTGCTTCGGGACCCAGGACCCCCTGGGCCGA
CCCGCCAGGAAAGACTGAGGCCGGCCTGCCCGCCGGCTCCCTGCGCCGCCGCCCTC
CCGGGACAGAAGATGTGCTCCAGGGTCCCTCTGCTGCTGCCGCTGCTCCTGCTACTGCCCT
GGGGCCTGGGTGCAAGGGTCCCCATCCGGCTGCCAGTGAGCCAGCCACAGACAGTCTTCT
GCACTGCCGCCAGGGACCACGGTGCCCCGAGACGTGCCACCCGACACGGTGGGCTGTAC
GTCTTGAGAACGGCATCACCATGCTGACGCAAGCAGCTTGCAGGCCCTGCCGGCTGCA
GCTCCTGGACCTGTCACAGAACCGAGATGCCAGGCCCTGCCCTGCCGGCATCCTGGACACTGCCAACGTGGAG
ACCTCAGGCCACAACAGCCTGCCCTGGGCCCTGGAGGCCAGCAGCTGGAGGCCACCTGTGATCCGAG
GCGCTGCCGGCTGGCTGGCTGGGCTGCCAGCAGCTGGAGCGAGTGCCACCTGTGATCCGAG
AACCTCCACGACCTGGATGTGTCGACAACCAGCTGGAGCGAGTGCCACCTGTGATCCGAG
GCCCTCCGGGCCTGACGCCCTGCCGGCTGCCGGCAACACCCGATTGCCAGCTGCCGG
GAGGACCTGCCGCCCTGGCTGCCCTGCCAGGAGCTGGATGTGAGCAACCTAACGCCCTGCC
CCTGCCCTGGCGACCTCTGGGCCCTTCCCCGCCCTGCCGGCTGCTGCCAGCTGCCGCCAAC
CCTTCAACTGCGTGTGCCCTGAGCTGGTTGGCCCTGGGTGCCAGAGGCCACGTCA
CTGGCCAGCCCTGAGGAGACGCCGCTGCCACTTCCGCCAACAGCAGCTGCCGGCTGCTCCT
GGAGCTTGAACACGCCACTTGGCTGCCAGCCACCCACAGCCACAGTGCCACCCA
CGAGGCCCGTGGTGCAGGGAGCCCACAGCCTGTCTTAGCTTGGCTCCTACCTGGCTTAGC
CCCACAGGCCGCCACTGAGGCCAGGCCCTCCACTGCCAACCGACTGTAGGGCC
TGTCCCCCAGCCCCAGGACTGCCACCGTCCACCTGCCCTAATGGGGCACATGCCACCTGG
GGACACGGCACCACTGGCGTGTGCCCCGAAGGCTCACGGGCCCTGTACTGTGAGAGC
CAGATGGGGCAGGGGACACGCCAGGCCACACCAGTCAGCCGAGGCCACCGTCC
GACCCCTGGCATCGAGCCGTGAGCCCCACCTCCCTGCCGTGGGCTGCCAGCGCTACCTCC
AGGGGAGCTCCGTGCACTCAGGAGCCTCCGTCTCACCTATGCAACCTATGGGCCCTGAT
AAGCGGCTGGTACGCTGCCACTGCCCTCGCTGAGTACACGGTACCCAGCTGCG
GCCCAACGCCACTTACTCCGTCTGTGTCATGCCCTTGGGGCCGGCGGGTGCCGGAGGGCG
AGGAGGCCTGCCGGAGGCCATACACCCCAAGCCGTCCACTCCAACCACGCCAGTCACC
CAGGCCCGAGGGCAACCTGCCCTCATTGCCGCCCTGCCGCCGGTGTCCCTGG
CGCGCTGGCTGCCGTGGGAGGCCACTGTGAGGAGCTGGGCGGGGGCCATGCCAGCAGCG
CTCAGGACAAAGGGCAGGTGGGGCAGGGCTGGGCCCTGGAACACTGGAGGGAGTGAAGGTC
CCCTTGGAGCCAGGCCGAAGGCAACAGAGGGCGGTGGAGAGGCCCTGCCAGCGGGCTGA
GTGTGAGGTGCCACTCATGGCTTCCAGGGCTGCCCTCCAGTCACCCCTCACGCAAAGC
CCTACATCTAAAGCCAGAGAGAGACAGGGCAGCTGGGCCGGCTCTCAGCCAGTGAGATGGC
CAGCCCCCTCCGTGCCACACCAAGTAAGTTCTCAGTCCCAACCTCGGGATGTGCA
CAGGGCTGTGACCAAGCTGGGCCCTGTTCCCTGTGACCTCGGTCTCTCATCTGTGAG
ATGCTGTGGCCCAGCTGACGAGGCCATAACGTCCCCAGAACCGAGTGCCATGAGGACAGTGT
CCGCCCTGCCCTCCGCAACGTGCACTCCCTGGCACGGCGGGCCCTGCCATGTGCTGGTAAC
GCATGCCCTGGGCCCTGCTGGCTCTCCACTCCAGGCCAGGCCCTGGGGCCAGTGAAGGAAG
CTCCCGGAAAGAGCAGAGGGAGAGCGGGTAGGCGGCTGTGACTCTAGTCTGGCC
AAGCGAAGGAACAAAAGAAACTGGAAAGGAAGATGCTTAGGAACATGTTTGCTTTAA
AATATATATATTTATAAGAGATCCTTCCATTATTCTGGAAAGATGTTTCAAAC
AGAGACAAGGACTTGGTTTGTAAAGACAAACGATGATGATGAAGGCCTTTGTAAGAAAAA
ATAAAAAAAAAA

FIGURE 26

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44804

<subunit 1 of 1, 598 aa, 1 stop

<MW: 63030, pi: 7.24, NX(S/T): 3

MCSRVPLLPPLLLALGPGVQGCPSCQCSPQTVFCTARQGTTVPRDVPPDTVGLYVFEN
GITMLDASSFAGLPGQLLDSLQNQIASLRLPRLLLLDLSHNSLLALEPGIILDTANVEALRL
AGLGLQQLEGLFSRLRNHLHLDVSDNQLERVPPVIRGLRGLTRLRLAGNTRIAQLRPEDLA
GLAALQELDVSNLSQLAPGDLSGLFPRLRLLAAARNPFNCVCPLSWFGPWVRESHVTLASP
EETRCHFPPKNAGRLLLELDYADFGCPATTTATVPTTRPVVREPTALSSSLAPTWLSPTAP
ATEAPSPPSTAPPTVGPVPQPQDCPPSTCLNGGTCHLGTRHHHLACLCPEGFTGLYCESQMGQ
GTRPSPTPVTPRPPRSLTGIEPVSPTRLVGLQRYLQGSSVQLRSRLTYRNLSGPDKRLV
TLRLPASLAEYTVTQLRPNATYSVCVMPLGPGRVPEGEEACEAHTPPAVHSNHAPVTQARE
GNLPLLIAPALAAVLLAALAAVGAAVCVRGRAMAAAQDKGQVGPAGPLELEGVKVPLEP
GPKATEGGEALPSGSECEVPLMGPFGPGLQSPLHAKPYI

Signal sequence.

amino acids 1-23

Transmembrane domain.

amino acids 501-522

N-glycosylation sites.

amino acids 198-202, 425-429, 453-457

Tyrosine kinase phosphorylation site.

amino acids 262-270

N-myristoylation sites.

amino acids 23-29, 27-33, 112-118, 273-279, 519-525, 565-571

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

EGF-like domain cysteine pattern signature.

amino acids 355-367

Leucine zipper pattern.

amino acids 122-144, 194-216

FIGURE 27

GGCACTAGGACAACCTTCTTCCCTCTGACCACGCCGTACCCCTACCGCCCCGCCACC
TCCTTGCTACCCACTCTGAAACCACAGCTGTTGGCAGGGTCCCCAGCT**CATGCC**AGCCTC
ATCTCCTTCTGCTAGCCCCAAAGGCCTCCAGGCAACATGGGGGCCAGTCAGAGAGC
CGGCACACTCTCAGTTGCCCTGTTGAGTTGGGGCAGCTCTGGGGCCGTGGCTTGCC
ATGGCTCTGCTGACCCAAACAAACAGAGCTGCAGAGCCTCAGGAGAGAGGTGAGCCGGCTGCA
GGGGACAGGAGGCCCTCCCAGAATGGGAAGGGTATCCCTGGCAGAGTCTCCGGAGCAGA
GTTCCGATGCCCTGGAAGCCTGGGAGAATGGGAGAGATCCCGAAAAGGAGAGCAGTGCTC
ACCCAAAAACAGAAGAACAGCACTCTGTCCTGCACCTGGTCCCATTACGCCACCTCAA
GGATGACTCCGATGTGACAGAGGTGATGTGGCAACCAGCTTAGCGTGGAGAGGCCTAC
AGGCCAAGGATATGGTGTCCGAATCCAGGATGCTGGAGTTATCTGCTGTAGCCAGGTC
CTGTTCAAGACGTGACTTCACCATGGTCAGGTGGTCTCGAGAAGGCCAAGGAAGGCA
GGAGACTCTATTCCGATGTATAAGAAGTATGCCCTCCCACCCGGACCGGGCTACAACAGCT
GCTATAGCGCAGGTGTCTCCATTACACCAAGGGATATTCTGAGTGTCAATAATCCCCGG
GCAAGGGCGAAACTTAACCTCTCCACATGGAACCTTCTGGGTTGTGAAACTG**TGA**TT
GTGTTATAAAAGTGGCTCCAGCTTGGAAAGACCAGGGTGGTACATACTGGAGACAGCCAA
GAGCTGAGTATAAAGGAGAGGAAATGTGCAGGAACAGAGGCATCTTCTGGGTTGGCTC
CCCGTTCTCACTTTCCCTTTCATTCCCACCCCTAGACTTGTATTACGGATATCTTG
CTTCTGTTCCCCATGGAGCTCCG

FIGURE 28

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52722

<subunit 1 of 1, 250 aa, 1 stop

<MW: 27433, PI: 9.85, NX(S/T): 2

MPASSPFL LAPKGPPGNMGGPVREPALSVALWLSWGAALGAVACAMALLTQQTELQSLRREV
SRLQGTGGPSQN GEGYPWQSLPEQSSDALEAWENGERSRKRRAVLTQKQKKQHSQLHLVPIN
ATSKDDSDVTEVMWQPALRRGRGLQAQGYGVRIQDAGVYLLYSQVLFQDVTFMGQVVSREG
QGRQETLFRCIRSMPSHPDRAYNSCYSAGVFHLHQGDILSVII PRARAKLNLSPHGTFLGFVKL

Signal sequence.

amino acids 1-40

N-glycosylation site.

amino acids 124-128

Tyrosine kinase phosphorylation site.

amino acids 156-164

N-myristoylation site.

amino acids 36-42, 40-46, 179-185, 242-248

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 34-45

FIGURE 29

CACTTCTCCCTCTTCCTTACTTCGAGAAACCGCGCTCCGCTCTGGTCGCAGAGAC
CTCGGAGACCGCGCCGGGAGACGGAGGTGCTGTGGTGGGGGACCTGTGGCTGCTCGTA
CCGCCCCCCCACCCTCCTCTGCACTGCCGTCCGGAAAGACCTTTCCCCTGCTCTGTT
TCCTTCACCGAGTCTGTGCATGCCCGGACCTGGCGGGAGGAGGCTTGGCGGGGGAGA
TGCTCTAGGGCGCGGGAGGAGCGGCCGGAGGAGGGCCGGCAGGAAGAAG**ATGGC**
TCCCGTGGACAGGGACTCTGCTGGCGTACTGCCTGCTCCTGCCTTGCCCTTGCCTGG
CCTGAGTCGTGTGCCCATGTCAGGGGAACAGCAGGAGTGGGAGGGACTGAGGAGCTGC
CGTCGCCTCCGGACCAGGCCATGCCGAGAGGGCTGAAGAACAAACATGAAAATACAGGCCAGTCAG
GACCAGGGCTCCCTGCTTCCCGTGCTGCGCTGCTGTGACCCGGTACCTCCATGTACCC
GGCGACGCCGTGCCCATGCAACATCACTATCTGAAAGGGAGAAGGGTGACCGCGGAG
ATCGAGGCCTCCAAGGGAAATATGGCAAAACAGGCTCAGCAGGGCCAGGGCCACACTGGA
CCCAAAGGGCAGAAGGGCTCCATGGGGCCCTGGGGAGCGGTGCAAGAGCCACTACGCCGC
CTTTTCGGTGGGCCGAAGAACGCCATGCAACAGCAACCACTACTACCAGACGGTGTACCG
ACACGGAGTTCGTGAACCTCTACGACCACTCAACATGTTCACCGGCAAGTCTACTGCTAC
GTGCCCGGCCTCTACTTCTCAGCCTCAACGTGACACCTGGAACCCAGAAGGAGACCTACCT
GCACATCATGAAGAACGAGGAGGAGGTGGTGTACCGGCAGGTGGGACCGCAGCA
TCATGCAAAGCCAGGCCATGCTGGAGCTGCGAGAGCAGGACCAAGGTGTGGTACGCC
TACAAGGGCGAACGTGAGAACGCCATCTCAGCGAGGAGCTGGACACCTACATCAC
TGGCTACCTGGTCAAGCACGCCACCGAGCCCT**TAG**CTGGCCGCCACCTCCTTCTCGCC
ACCTTCCACCCCTGCGCTGTGCTGACCCACCGCCTTCCCCGATCCCTGGACTCCGACTC
CCTGGCTTGGCATTCACTGAGACGCCATGCAACACAGAAAGCCAAGCGATCGGTGCTCC
CAGATCCCGCAGCCTCTGGAGAGAGCTGACGGCAGATGAAATCACCAAGGGCGGGCACCCGC
GAGAACCCCTGGGACCTTCCCGGCCCTCTGCAACACATCCTCAAGTGAACCCGCACGGC
GAGACGCCGGTGGCGCAGGGCGTCCAGGGTGGCACCACGGCTCCAGTCCTGGAAATA
ATTAGGCAAATTCTAAAGGTCTAAAAGGAGCAAAGTAAACCGTGGAGGACAAAGAAAAGGG
TTGTTATTTGTCTTCCAGCCAGCCTGCTGGCTCCAAGAGAGAGGGCTTTCAAGTTGAG
ACTCTGCTTAAGAGAACATCCAAAGTTAAAGCTCTGGGTCAAGGGAGGGCCGGGGCAGG
AAACTACCTCTGGCTTAATTCTTTAAGCCACGTAGGAACCTTCTGAGGGATAGGTGGACC
CTGACATCCCTGTGGCCTGCCAAGGGCTCTGCTGGTCTTCTGAGTCACAGCTGCGAGGT
GATGGGGCTGGGCCAGGGCGTCAGCCTCCCAGAGGGACAGCTGAGCCCCCTGCCTTGGC
TCCAGGTTGGTAGAACGCCAGGGCTCCTGACAGTGGCCAGGGACCCCTGGTCCCCCA
GCCCTGCAGATGTTCTATGAGGGCAGAGCTCCTGGTACATCCATGTTGCTGCTCTGCTCC
ACCCCTGTGCCACCCAGAGCCCTGGGGGTGGTCTCCATGCCCTGGCACCCTGGCATCGGCT
TTCTGTGCCGCCCTCCACACAAATCAGCCCCAGAAGGCCCCGGGCTTGGCTTCTGTTTT
TATAAAACACCTCAAGCAGCACTGCAGTCTCCATCTCCTCGTGGCTAAGCATACCGCTT
CCACGTGTGTTGGTGGCAGCAAGGCTGATCCAGACCCCTCTGCCCTACTGCCCT
CATCCAGGCCTCTGACCAAGTAGCCTGAGAGGGCTTTCTAGGCTTCAGAGCAGGGAGAG
CTGGAAGGGCTAGAAAGCTCCGCTTGTCTGTTCTCAGGCTCTGTGAGCCTCAGTCCTG
AGACCAGAGTCAAGAGGAAGTACACGTCCAAATACCCGTGTCAGGATTCACTCTCAGGAGC
TGGGTGGCAGGAGAGGCAATAGCCCCCTGTGGCAATTGCAAGGACAGCTGGAGCAGGGTGTGCG
GTGTCTCCACGGTGTCTCGCCCTGCCATGCCACCCAGACTCTGATCTCAGGAACCCC
ATAGCCCCCTCTCCACCTCACCCATGTTGATGCCAGGGTCACTCTGCTACCCGCTGGGCC
CCCAAACCCCCGCTGCCCTCTTCCCTCCCCCATCCCCACCTGGTTTGACTAATCCTGC
TTCCCTCTGGGCTGGCTGCCGGATCTGGGTCCCTAAGTCCCTCTCTTAAAGAACCTT
CTGCGGGTCAGACTCTGAAGCCAGTTGCTGTGGCGTGCCGGAAGCAGAGGCCACACTC
GCTGCTTAAGCTCCCCAGCTCTTCCAGAAAACATTAAACTCAGAATTGTGTTTCAA

FIGURE 30

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA41234

><subunit 1 of 1, 281 aa, 1 stop

><MW: 31743, pI: 6.83, NX(S/T): 1

MGSRGQGLLLAYCLLLAFASGLVLSRVPHVQGEQQEWEGTEELPSPPDHAERAEEQHEKYRP
SQDQGLPASRCLRCCDPGTSMYPATAVPQINITILKGEKGDRGDRGLQGKYGKTGSAGARGH
TGPKGQKGSMGAPGERCKSHYAAFSGRKKPMHSNHYYQTVIFDTEFVNLYDHFNMF TGKFY
CYVPGLYFFSLNVHTWNQKETYLHIMKNNEEVVILFAQVGDRSIMQSQSLMELREQDQVWV
RLYKGERENAIFSEELDTYITFSGYLVKHATEP

Signal sequence.

amino acids 1-25

N-glycosylation site.

amino acids 93-97

N-myristoylation sites.

amino acids 7-13, 21-27, 67-73, 117-123, 129-135

Amidation site.

amino acids 150-154

Cell attachment sequence.

amino acids 104-107

FIGURE 31

GCGGAGCATCCGCTCGGGTCCTCGCCGAGACCCCCCGCGGGATTGCCGGTCTTCCCGCG
GCGCGACAGAGCTGCCTCGCACCTGGATGGCAGCAGGGCGCCGGGTCTCTGACGCCA
GAGAGAAATCTCATCATCTGTGCAGCCTCTAAAGCAAACATAAGACCAAGAGGGAGGATTAT
CCTTGACCTTGAAAGACCAAAACTAAACTGAAATTAAAATGTTCTCGGGGGAGAAGGGAG
CTTGACTTACACTTGTAATAATTGCTCCTGACACTAAGGCTGTCTAGTCAGAATT
GCCTCAAAAAGAGTCTAGAAGATGTTGTCATTGACATCCAGTCATCTCTTCTAAGGGAATC
AGAGGCAATGAGCCC GTATATACTCAACTCAAGAAGACTGCATTAATTCTGCTGTTCAAC
AAAAAACATATCAGGGACAAAGCATGTAACTTGATGATCTCGACACTCGAAAAACAGCTA
GACAACCCAAC TGCTACCTATTTCTGTCCAACGAGGAAGCCTGTCATTGAAACCAGCA
AAAGGACTTATGAGTTACAGGATAATTACAGATTTCATCTTCAAGCAGGAAATTGCCAAG
CCAAGAGTTACCCCAGGAAGATTCTCTTACATGGCAATTTCACAAGCAGTCACCCCC
TAGCCC ATCATCACACAGATTATTCAAAGCCCACCGATATCTCATGGAGAGACACACTTTCT
CAGAAGTTGGATCCTCAGATCACCTGGAGAAACTATTAAAGATGGATGAAGCAAGTGCCA
GCTCCTTGCTTATAAGGAAAAGGCCATTCTCAGAGTTACAATTTCCTCTGATCAAGAAA
TAGCTCATCTGCTGCC GAAAATGTGAGTGCGCTCCAGCTACGGTGGCAGTGCTTCTCCA
CATACCACCTCGGCTACTCCAAAGCCCGCCACCCTCTACCCACCAATGCTCAGTGACACC
TTCTGGACTTCCCAGCCACAGCTGGCCACCACAGCTCCACCTGTAACCAGTCACCTCTC
AGCCTCCCAGACCCTCATTCTACAGTTTACACGGGCTGCGGCTACACTCCAAGCAATG
GCTACAACAGCAGTTCTGACTACCACCTTCAGGCACCTACGGACTCGAAAGGCAGCTAGA
AACCATACCGTTACAGAAATCTCAA CTTAACTTTGAACACAGGGAAATGTGTATAACCCTA
CTGCACTTCTATGTCAAATGTGGAGTCTTCCACTATGAATAAAACTGCTTCTGGGAGGT
AGGGAGGCCAGTCCAGGCAGTTCTCCAGGGCAGTGTCCAGAAAATCAGTACGGCCTTCC
ATTGAAAAATGGCTTCTTATCGGGTCCCTGCTTTGGTGTCTGTTCTGGTGTAGGCC
TCGTCCCTCTGGGTAGAATCCTTCGGAATCACTCCGCAAGGAAACGTTACTCAAGACTGGAT
TATTTGATCAATGGGATCTATGTGGACATCTAAGGATGGA ACTCGGTGTCTCTTAATTCTT
TAGTAACCAGAAGCCAAATGCAATGAGTTCTGCTGACTTGCTAGCTTAGCAGGAGGTTG
TATTTGAAGACAGGAAATGCCCTCTGCTTTCTTGTGTTCTTTGGAGACAGAGTCTT
GCTCTGTTGCCAGGCTGGAGTGCAGTAGCACGATCTGGCTCTCACCGAACCTCCGTCTC
CTGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCTAAGTATCTGGGATTACAGGCATGTGCCA
CCACACCTGGGTGATTTGTATTTAGTAGAGACGGGTTTACCATGTTGGTCAGGCTG
GTCTCAAACCTGACCTAGTGATCCACCCCTCTGGCCTCCAAAGTGCTGGGATTACAGG
CATGAGCCACCACAGCTGGCCCCCTCTGTTTATGTTGGTTTGAGAAGGAATGAAGTG
GGAACCAAATTAGTAATTGGGTAATCTGTCTAAATATTAGCTAAAACAAAGCTCT
ATGTAAAGTAATAAAAGTATAATTGCCATATAAAATTCAAACCTGGCTTTATGC
GAAACAGGTTAGGACATCTAGGTTCCAATTCAATTCACTTCTGGTCCAGATAAAATCAAC
TGTTTATATCAATTCTAATGGATTGCTTTCTTTATATGGATTCCCTTAAACTTATT
CCAGATGTAGTTCTCCAATTAAATATTGAATAATCTTTGTTACTCAA

FIGURE 32

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45410

><subunit 1 of 1, 431 aa, 1 stop

><MW: 46810, pI: 6.45, NX(S/T): 6

MFFGEGSLTYTLVIICFLTLRLSASQNCLKSLEDVVIDIQSSLKGIRGNEPVYTSTQED
CINSCCSTKNISGDKACNLMIFDTRKTARQPNCYLFFCPNEEACPLPAKGLMSYRIITDFP
SLTRNLPSQELPQEDSLLHGQFSQAVTPLAHHTDYSKPTDISWRDTLSQKFGSSDHLEKLF
KMDEASAQLLAYKEKGHSQSSQFSSDQEIAHLLPENVSALPATVAVASPHTTSATPKPATLL
PTNASVTPSGTSQPQLATTAPPVTTVTSQPPTTLISTVFTRAATLQAMATTAVLTTTFQAP
TDSKGSLETIPFTEISNLTLNTGNVYNPTALSMSNVESSTMNKASWEGREASPGSSSQGSV
PENQYGLPFEKWLLIGSLLFGVLFLVIGLVLLGRILSESLRRKRYSRLDYILINGIYVDI

Signal sequence.

amino acids 1-25

Transmembrane domain.

amino acids 384-405

N-glycosylation sites.

amino acids 72-76, 222-226, 251-255, 327-331, 352-356

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 415-419

Tyrosine kinase phosphorylation site.

amino acids 50-57

N-myristoylation sites.

amino acids 4-10, 48-54, 315-321

FIGURE 33

GGGGCACCTGGAAGATGCGCCCATTGGCTGGTGGCCTGCTCAAGGTGGTGGTGGTCTTC
GCCTCCTTGTGTGCCCTGGTATTCGGGGTACCTGCTCGCAGAGCTCATTCCAGATGCACCCCT
GTCCAGTGCTGCCTATAGCATCCGCAGCAGTCGGGAGAGGCCTGCCTCAAAGCTCCAGTCC
CCAAAAGGCAAAATGTGACCACTGGACTCCCTGCCATCTGACACCTATGCCTACAGGTTA
CTCAGCGGAGGTGGCAGAACAGCAAGTACGCCAAATCTGCTTGAGGATAACCTACTTATGGG
AGAACAGCTGGAAATGTTGCCAGAGGAATAAACATTGCCATTGTCAACTATGTAACTGGGA
ATGTGACAGCAACACGATGTTGATATGTATGAAGGCGATAACTCTGGACCGATGACAAAG
TTTATTCAAGAGTGCTGCCAAATCCCTGCTCTCATGGTACCTATGACGACGGAAGCAC
AAGACTGAATAACGATGCCAAGAACGCCATAGAACGACTTGGAAAGTAAAGAAATCAGGAACA
TGAAATTCAAGGTCTAGCTGGTATTTATTGCAGCAAAAGGCTTGGAACTCCCTCCGAAATT
CAGAGAGAAAAGATCAACCACCTGATGCTAAGAACACAGATATTCTGGCTGGCCTGCAGA
GATCCAGATAGAACGGCTGCATACCCAAAGAACGAAGCTGACACTGCAGGGCCTGAGTAAAT
GTGTTCTGTATAACAAATGCAGCTGGAATCGCTCAAGAATCTTATTGCTAAATCCAACA
GCCCATATTGATGAGTATTTGGTTGTTGAAACCAATGAACATTGCTAGTTGTATCA
AATCTTGGTACGCAGTATTTATACCAAGTATTTATGTTAGTGAAGATGTCAATTAGCAGGA
AACTAAAATGAATGGAAATTCTAAAAAAAAAAAAA

DRAFT - 09/09/2014

FIGURE 34

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA46777

><subunit 1 of 1, 235 aa, 1 stop

><MW: 25982, pI: 9.09, NX(S/T): 2

MRPLAGGLLKVVFVVFASLCAWYSGYLLAELIPDAPLSSAAYSIRSIGERPVLKAPVPKRQK
CDHWTPCPSDTYAYRLLSGGGRSKYAKICFEDNLLMGEQLGNVARGINIAIVNYVTGNVTAT
RCFDMDYEGDNSGPMTKFIQSAAPKSLLFMVTYDDGSTRLNNDAKNAIEALGSKEIRNMKFRS
SWVFIAAKGLELPSEIQREKINHSDAKNNRYSGWPAEIQIEGCIPKERS

Signal sequence.

amino acids 1-20

N-glycosylation sites.

amino acids 120-124, 208-212

Glycosaminoglycan attachment site.

amino acids 80-84

N-myristoylation sites.

amino acids 81-87, 108-114, 119-125