Limits Definitions

Precise Definition : We say $\lim_{x\to a} f(x) = L$ if for every $\varepsilon > 0$ there is a $\delta > 0$ such that whenever $0 < |x-a| < \delta$ then $|f(x)-L| < \varepsilon$.

"Working" Definition : We say $\lim_{x \to a} f(x) = L$ if we can make f(x) as close to L as we want by taking x sufficiently close to a (on either side of a) without letting x = a.

Right hand limit : $\lim_{x \to a^+} f(x) = L$. This has the same definition as the limit except it requires x > a.

Left hand limit : $\lim_{x \to a^-} f(x) = L$. This has the same definition as the limit except it requires x < a.

Limit at Infinity : We say $\lim_{x\to\infty}f(x)=L$ if we can make f(x) as close to L as we want by taking x large enough and positive.

There is a similar definition for $\lim_{x\to -\infty} f(x) = L$ except we require x large and negative.

Infinite Limit : We say $\lim_{x \to a} f(x) = \infty$ if we can make f(x) arbitrarily large (and positive) by taking x sufficiently close to a (on either side of a) without letting x = a.

There is a similar definition for $\lim_{x\to a} f(x) = -\infty$ except we make f(x) arbitrarily large and negative.

Relationship between the limit and one-sided limits

$$\lim_{x \to a} f(x) = L \quad \Rightarrow \quad \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L \qquad \qquad \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L \quad \Rightarrow \quad \lim_{x \to a} f(x) = L$$

$$\lim_{x \to a^+} f(x) \neq \lim_{x \to a^-} f(x) \quad \Rightarrow \quad \lim_{x \to a} f(x) \text{Does Not Exist}$$

Properties

Assume $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ both exist and c is any number then,

1.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

2.
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \quad \lim_{x \to a} g(x)$$

4.
$$\lim_{x\to a}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim_{x\to a}f(x)}{\lim_{x\to a}g(x)} \text{ provided } \lim_{x\to a}g(x)\neq 0$$

5.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x) \right]^n$$

6.
$$\lim_{x \to a} \left[\sqrt[n]{f(x)} \right] = \sqrt[n]{\lim_{x \to a} f(x)}$$

Basic Limit Evaluations at $\pm \infty$

1.
$$\lim_{x\to\infty} \mathbf{e}^x = \infty$$
 & $\lim_{x\to-\infty} \mathbf{e}^x = 0$

$$2. \lim_{x \to \infty} \ln(x) = \infty \quad \& \quad \lim_{x \to 0^+} \ln(x) = -\infty$$

3. If
$$r>0$$
 then $\lim_{x\to\infty}\frac{b}{x^r}=0$

4. If
$$r>0$$
 and x^r is real for negative x then $\lim_{x\to -\infty}\frac{b}{x^r}=0$

5.
$$n$$
 even : $\lim_{x \to \pm \infty} x^n = \infty$

6.
$$n$$
 odd : $\lim_{x \to \infty} x^n = \infty$ & $\lim_{x \to -\infty} x^n = -\infty$

7.
$$n$$
 even : $\lim_{x \to \pm \infty} a \, x^n + \dots + b \, x + c = \operatorname{sgn}(a) \infty$

8.
$$n \text{ odd}$$
: $\lim_{n \to \infty} a x^n + \cdots + b x + c = \text{sgn}(a) \infty$

9.
$$n \text{ odd}$$
: $\lim_{x \to -\infty} a x^n + \dots + c x + d = -\operatorname{sgn}(a) \infty$

Note:
$$sgn(a) = 1$$
 if $a > 0$ and $sgn(a) = -1$ if $a < 0$.

Evaluation Techniques

Continuous Functions

If f(x) is continuous at a then $\lim_{x \to a} f(x) = f(a)$

Continuous Functions and Composition

f(x) is continuous at b and $\lim_{x \to a} g(x) = b$ then $\lim_{x \to a} f\left(g(x)\right) = f\left(\lim_{x \to a} g(x)\right) = f\left(b\right)$

Factor and Cancel

$$\lim_{x \to 2} \frac{x^2 + 4x - 12}{x^2 - 2x} = \lim_{x \to 2} \frac{(x - 2)(x + 6)}{x(x - 2)}$$
$$= \lim_{x \to 2} \frac{x + 6}{x} = \frac{8}{2} = 4$$

Rationalize Numerator/Denominator

$$\begin{split} &\lim_{x\to 9} \frac{3-\sqrt{x}}{x^2-81} = \lim_{x\to 9} \frac{3-\sqrt{x}}{x^2-81} \ \frac{3+\sqrt{x}}{3+\sqrt{x}} \\ &= \lim_{x\to 9} \frac{9-x}{(x^2-81)(3+\sqrt{x})} = \lim_{x\to 9} \frac{-1}{(x+9)(3+\sqrt{x})} \\ &= \frac{-1}{(18)(6)} = -\frac{1}{108} \end{split}$$

Combine Rational Expressions

$$\begin{split} \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{x+h} - \frac{1}{x} \right) &= \lim_{h \to 0} \frac{1}{h} \left(\frac{x - (x+h)}{x(x+h)} \right) \\ &= \lim_{h \to 0} \frac{1}{h} \left(\frac{-h}{x(x+h)} \right) = \lim_{h \to 0} \frac{-1}{x(x+h)} = -\frac{1}{x^2} \end{split}$$

L'Hospital's/L'Hôpital's Rule

If
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$$
 or $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\pm \infty}{\pm \infty}$ then,
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}, \text{ a is a number, ∞ or $-\infty$}$$

Polynomials at Infinity

p(x) and q(x) are polynomials. To compute $\lim_{x \to \pm \infty} \frac{p(x)}{q(x)}$ factor largest power of x in q(x) out of

both p(x) and q(x) then compute limit.

$$\lim_{x \to -\infty} \frac{3x^2 - 4}{5x - 2x^2} = \lim_{x \to -\infty} \frac{x^2 \left(3 - \frac{4}{x^2}\right)}{x^2 \left(\frac{5}{x} - 2\right)}$$
$$= \lim_{x \to -\infty} \frac{3 - \frac{4}{x^2}}{\frac{5}{x} - 2} = -\frac{3}{2}$$

Piecewise Function

$$\lim_{x \to -2} g(x) \text{ where } g(x) = \left\{ \begin{array}{ll} x^2 + 5 & \text{if } x < -2 \\ 1 - 3x & \text{if } x \geq -2 \end{array} \right.$$

Compute two one sided limits,

$$\lim_{\substack{x \to -2^- \\ \lim \\ x \to -2^+}} g(x) = \lim_{\substack{x \to -2^- \\ \lim \\ x \to -2^+}} x^2 + 5 = 9$$

One sided limits are different so $\lim_{x \to -2} g(x)$ doesn't exist. If the two one sided limits had been equal then $\lim_{x \to -2} g(x)$ would have existed and had the same value.

Some Continuous Functions

Partial list of continuous functions and the values of x for which they are continuous.

- 1. Polynomials for all x.
- 2. Rational function, except for *x*'s that give division by zero.
- 3. $\sqrt[n]{x}$ (n odd) for all x.
- 4. $\sqrt[n]{x}$ (n even) for all $x \ge 0$.
- 5. e^x for all x.

- 6. ln(x) for x > 0.
- 7. cos(x) and sin(x) for all x.
- 8. tan(x) and sec(x) provided $x \neq \cdots, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \cdots$
- 9. $\cot(x)$ and $\csc(x)$ provided $x \neq \cdots, -2\pi, -\pi, 0, \pi, 2\pi, \cdots$

Intermediate Value Theorem

Suppose that f(x) is continuous on [a,b] and let M be any number between f(a) and f(b). Then there exists a number c such that a < c < b and f(c) = M.

Derivatives Definition and Notation

If y = f(x) then the derivative is defined to be $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$.

If y = f(x) then all of the following are equivalent notations for the derivative.

$$f'(x) = y' = \frac{df}{dx} = \frac{dy}{dx} = \frac{d}{dx}(f(x)) = Df(x)$$

If y = f(x) all of the following are equivalent notations for derivative evaluated at x = a.

$$f'(a) = y'|_{x=a} = \frac{df}{dx}\Big|_{x=a} = \frac{dy}{dx}\Big|_{x=a} = Df(a)$$

Interpretation of the Derivative

If y = f(x) then,

- 1. m = f'(a) is the slope of the tangent line to y = f(x) at x = a and the equation of the tangent line at x = a is given by y = f(a) + f'(a)(x a).
- 2. f'(a) is the instantaneous rate of change of f(x) at x = a.
- 3. If f(t) is the position of an object at time t then f'(a) is the velocity of the object at t=a.

Basic Properties and Formulas

If f(x) and g(x) are differentiable functions (the derivative exists), c and n are any real numbers,

$$1. \ \frac{d}{dx}(c) = 0$$

4.
$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

$$2. \left(c f(x) \right)' = c f'(x)$$

5.
$$\left(f(x)\,g(x)\right)'=f'(x)\,g(x)+f(x)\,g'(x)$$
 - Product Rule

3.
$$\frac{d}{dx}(x^n) = n x^{n-1}$$
 – Power Rule

6.
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)\,g(x) - f(x)\,g'(x)}{\left(g(x)\right)^2}$$
 – Quotient Rule

7.
$$\frac{d}{dx}\Big(f\Big(g(x)\Big)\Big)=f'\Big(g(x)\Big)\,g'(x)$$
 – Chain Rule

Common Derivatives

$$\begin{split} \frac{d}{dx}\Big(x\Big) &= 1 & \frac{d}{dx}\Big(\csc(x)\Big) = -\csc(x)\cot(x) & \frac{d}{dx}\Big(a^x\Big) = a^x\ln(a) \\ \frac{d}{dx}\Big(\sin(x)\Big) &= \cos(x) & \frac{d}{dx}\Big(\cot(x)\Big) = -\csc^2(x) & \frac{d}{dx}\Big(\mathbf{e}^x\Big) = \mathbf{e}^x \\ \frac{d}{dx}\Big(\cos(x)\Big) &= -\sin(x) & \frac{d}{dx}\Big(\sin^{-1}(x)\Big) = \frac{1}{\sqrt{1-x^2}} & \frac{d}{dx}\Big(\ln(x)\Big) = \frac{1}{x}, \quad x > 0 \\ \frac{d}{dx}\Big(\tan(x)\Big) &= \sec^2(x) & \frac{d}{dx}\Big(\cos^{-1}(x)\Big) = -\frac{1}{\sqrt{1-x^2}} & \frac{d}{dx}\Big(\ln|x|\Big) = \frac{1}{x}, \quad x \neq 0 \\ \frac{d}{dx}\Big(\sec(x)\Big) &= \sec(x)\tan(x) & \frac{d}{dx}\Big(\tan^{-1}(x)\Big) = \frac{1}{1+x^2} & \frac{d}{dx}\Big(\log_a(x)\Big) = \frac{1}{x\ln(a)}, \quad x > 0 \end{split}$$

Chain Rule Variants

The chain rule applied to some specific functions.

1.
$$\frac{d}{dx} \left(\left[f(x) \right]^n \right) = n \left[f(x) \right]^{n-1} f'(x)$$

2.
$$\frac{d}{dx}\left(\mathbf{e}^{f(x)}\right) = f'(x)\,\mathbf{e}^{f(x)}$$

3.
$$\frac{d}{dx} \left(\ln \left[f(x) \right] \right) = \frac{f'(x)}{f(x)}$$

4.
$$\frac{d}{dx} \left(\sin \left[f(x) \right] \right) = f'(x) \cos \left[f(x) \right]$$

5.
$$\frac{d}{dx} \left(\cos \left[f(x) \right] \right) = -f'(x) \sin \left[f(x) \right]$$

6.
$$\frac{d}{dx} \left(\tan \left[f(x) \right] \right) = f'(x) \sec^2 \left[f(x) \right]$$

7.
$$\frac{d}{dx} \left(\sec \left[f(x) \right] \right) = f'(x) \sec \left[f(x) \right] \tan \left[f(x) \right]$$

8.
$$\frac{d}{dx} \left(\tan^{-1} \left[f(x) \right] \right) = \frac{f'(x)}{1 + \left[f(x) \right]^2}$$

Higher Order Derivatives

The 2^{nd} Derivative is denoted as

$$f''(x)=f^{(2)}(x)=rac{d^2f}{dx^2}$$
 and is defined as $f''(x)=\left(f'(x)
ight)'$, i.e. the derivative of the first derivative, $f'(x)$.

The n^{th} Derivative is denoted as $f^{(n)}(x)=\frac{d^nf}{dx^n}$ and is defined as $f^{(n)}(x)=\left(f^{(n-1)}(x)\right)'$, i.e. the derivative of the $(n-1)^{st}$ derivative, $f^{(n-1)}(x)$.

Implicit Differentiation

Find y' if $\mathbf{e}^{2x-9y}+x^3y^2=\sin(y)+11x$. Remember y=y(x) here, so products/quotients of x and y will use the product/quotient rule and derivatives of y will use the chain rule. The "trick" is to differentiate as normal and every time you differentiate a y you tack on a y' (from the chain rule). Then solve for y'.

$$\begin{split} \mathbf{e}^{2x-9y}(2-9y') + 3x^2y^2 + 2x^3y \ y' &= \cos(y)y' + 11 \\ 2\mathbf{e}^{2x-9y} - 9y'\mathbf{e}^{2x-9y} + 3x^2y^2 + 2x^3y \ y' &= \cos(y)y' + 11 \\ \left(2x^3y - 9\mathbf{e}^{2x-9y} - \cos(y)\right)y' &= 11 - 2\mathbf{e}^{2x-9y} - 3x^2y^2 \end{split} \\ \Rightarrow y' &= \frac{11 - 2\mathbf{e}^{2x-9y} - 3x^2y^2}{2x^3y - 9\mathbf{e}^{2x-9y} - \cos(y)} + \frac{11}{2x^3y - 9\mathbf{e}$$

Increasing/Decreasing - Concave Up/Concave Down

Critical Points

x = c is a critical point of f(x) provided either

- **1.** f'(c) = 0 or,
- **2.** f'(c) doesn't exist.

Increasing/Decreasing

- 1. If f'(x) > 0 for all x in an interval I then f(x) is increasing on the interval I.
- 2. If f'(x) < 0 for all x in an interval I then f(x) is decreasing on the interval I.
- 3. If f'(x) = 0 for all x in an interval I then f(x) is constant on the interval I.

Concave Up/Concave Down

- 1. If f''(x) > 0 for all x in an interval I then f(x) is concave up on the interval I.
- 2. If f''(x) < 0 for all x in an interval I then f(x) is concave down on the interval I.

Inflection Points

x=c is a inflection point of f(x) if the concavity changes at x=c.

Integrals **Definitions**

Definite Integral: Suppose f(x) is continuous on [a,b]. Divide [a,b] into n subintervals of width Δx and choose x_i^* from each interval. Then

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x.$$

Anti-Derivative: An anti-derivative of f(x) is a function, F(x), such that F'(x) = f(x).

Indefinite Integral : $\int f(x) dx = F(x) + c$ where F(x) is an anti-derivative of f(x).

Fundamental Theorem of Calculus

Part I : If f(x) is continuous on [a,b] then

$$g(x) = \int_a^x f(t) dt$$
 is also continuous on $[a,b]$ and

$$g'(x) = \frac{d}{dx} \int_a^x f(t) dt = f(x).$$

Part II: f(x) is continuous on [a, b], F(x) is an anti-derivative of f(x), i.e. $F(x) = \int f(x) dx$, then

$$\int_a^b f(x) \, dx = F(b) - F(a).$$

Variants of Part I:

$$\frac{d}{dx} \int_{a}^{u(x)} f(t) dt = u'(x) f[u(x)]$$

$$\frac{d}{dx} \int_{v(x)}^{b} f(t) dt = -v'(x) f[v(x)]$$

$$\frac{d}{dx} \int_{v(x)}^{u(x)} f(t) dt = u'(x) f[u(x)] - v'(x) f[v(x)]$$

Properties

$$\int f(x) \pm g(x) \, dx = \int f(x) \, dx \pm \int g(x) \, dx$$

$$\int_a^b f(x) \pm g(x) \, dx = \int_a^b f(x) \, dx \pm \int_a^b g(x) \, dx \qquad \qquad \int_a^b cf(x) \, dx = c \int_a^b f(x) \, dx, \, c \text{ is a constant}$$

$$\int_{a}^{a} f(x) \, dx = 0$$

$$\int_a^b f(x) \, dx = -\int_b^a f(x) \, dx$$

$$\int cf(x) dx = c \int f(x) dx$$
, c is a constant

$$\int_{-b}^{b} cf(x) dx = c \int_{-b}^{b} f(x) dx, c \text{ is a constant}$$

$$\int_{-b}^{b} c \, dx = c(b-a), c \text{ is a constant}$$

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} \left| f(x) \right| dx$$

$$\int_a^b f(x)\,dx = \int_a^c f(x)\,dx + \int_c^b f(x)\,dx \text{ for any value }c.$$

If
$$f(x) \geq g(x)$$
 on $a \leq x \leq b$ then $\int_a^b f(x) \, dx \geq \int_a^b g(x) \, dx$

If
$$f(x) \ge 0$$
 on $a \le x \le b$ then $\int_a^b f(x) \, dx \ge 0$

If
$$m \leq f(x) \leq M$$
 on $a \leq x \leq b$ then $m(b-a) \leq \int_a^b f(x) \, dx \leq M(b-a)$

Common Integrals

$$\int k \, dx = k \, x + c \qquad \qquad \int x^n \, dx = \frac{1}{n+1} x^{n+1} + c, \, n \neq -1 \qquad \int x^{-1} \, dx = \int \frac{1}{x} \, dx = \ln|x| + c$$

$$\int \mathbf{e}^u \, du = \mathbf{e}^u + c \qquad \qquad \int \frac{1}{ax+b} \, dx = \frac{1}{a} \ln|ax+b| + c \qquad \int \ln(u) \, du = u \ln(u) - u + c$$

$$\int \cos(u) \, du = \sin(u) + c \qquad \int \sec(u) \tan(u) \, du = \sec(u) + c \qquad \int \tan(u) \, du = \ln|\sec(u)| + c$$

$$\int \sin(u) \, du = -\cos(u) + c \qquad \int \csc(u) \cot(u) \, du = -\csc(u) + c \qquad \int \tan(u) \, du = -\ln|\cos(u)| + c$$

$$\int \sec^2(u) \, du = \tan(u) + c \qquad \int \sec(u) \, du = \lim_{n \to \infty} \left| \frac{1}{a^2 + u^2} \, du = \frac{1}{a} \tan^{-1} \left(\frac{u}{a} \right) + c$$

$$\int \csc^2(u) \, du = -\cot(u) + c \qquad \int \csc(u) \, du = \lim_{n \to \infty} \left| \frac{1}{\sqrt{a^2 - u^2}} \, du = \sin^{-1} \left(\frac{u}{a} \right) + c$$

$$\int \cot(u) \, du = -\cot(u) + c \qquad \int \csc(u) \, du = \lim_{n \to \infty} \left| \frac{1}{\sqrt{a^2 - u^2}} \, du = \sin^{-1} \left(\frac{u}{a} \right) + c$$

Standard Integration Techniques

 $m{u}$ Substitution : $\int_a^b f(g(x)) \, g'(x) \, dx$ will convert the integral into $\int_a^b f(g(x)) \, g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du$ using the substitution u = g(x) where du = g'(x) dx. For indefinite integrals drop the limits of integration.

Products and (some) Quotients of Trig Functions

For $\int \sin^n(x) \cos^m(x) dx$ we have the following :

- 1. n odd. Strip 1 sine out and convert rest to cosines using $\sin^2(x) = 1 \cos^2(x)$, then use the substitution $u = \cos(x)$.
- 2. m odd. Strip 1 cosine out and convert rest to sines using $\cos^2(x) = 1 \sin^2(x)$, then use the substitution $u = \sin(x)$.
- 3. n and m both odd. Use either 1. or 2.
- 4. *n* and *m* both even. Use double angle and/or half angle formulas to reduce the integral into a form that can be integrated.

For $\int \tan^n(x) \sec^m(x) dx$ we have the following :

- 1. n **odd.** Strip 1 tangent and 1 secant out and convert the rest to secants using $\tan^2(x) = \sec^2(x) 1$, then use the substitution $u = \sec(x)$.
- 2. m even. Strip 2 secants out and convert rest to tangents using $\sec^2(x) = 1 + \tan^2(x)$, then use the substitution $u = \tan(x)$.
- 3. n odd and m even. Use either 1. or 2.
- 4. n even and m odd. Each integral will be dealt with differently.

$$\textit{Trig Formulas}: \sin(2x) = 2\sin(x)\cos(x), \cos^2(x) = \tfrac{1}{2}(1+\cos(2x)), \sin^2(x) = \tfrac{1}{2}(1-\cos(2x))$$