Mouse Project

Final Results

Agenda — what we did

Identify research subjects: Zero_Maze experiment

Mouse 409 w/ 25 neurons and all neurons All mice w/ all neurons

Apply different models

Logistic Model with PCA, Simple Neural Network, RNN, Bidirectional LSTM

Outputs

Confusion Matrix for each model and Accuracy Comparison plot

Conclusions

- Split train / test in chunks instead of randomly selected to ensure the sequence of time series
- Take all neurons into consideration to improve the predicted accuracy
- Try different lags, and it turns out that past events / neuron activity
 may not influence current outcome
- Shift the behavior to explore the causal relationship between neuron activation and behaviors

Results —— what we found

Model Comparisons with Mouse 409

• Zero Rule

Accuracy =

Selecting the most

common class

Goal =
 Model Accuracy >
 Zero Rule Accuracy

Accuracy

Model Accuracy
Zero Rule Accuracy

Train/Test Split of Data

Random - learns a little bit of everything but loose sequence

Chunked - preserves sequence

Does a neuron convey the same information throughout the trial?

Bidirectional LSTM (Long Short Term Memory)

LSTM Overview

Memory

Model that retains prior sequence information

Bidirectional

Two directions

Information from before and after time point of interest

Results —— what we found

Logistic Model for all mice—— other model we tried (1)

- Select neurons (predictors) with PCA=25, make confusion matrix and ROC lines.
- Accuracy is around 71%

Simple Neural Network —— other model we tried (2)

- Features: not take into account the time series predicts the current location based on the current state of the neurons
- Shift the behavior (Y)
 with 1 to 5 position forward

Accuracy = 75%

RNN — other model we tried (3)

Sequential RNN

Accuracy: 77%

Thank you

Appendix

Randomly Selected vs. Sequential RNN

Mouse Project

Final Results - Flipgrid Presentation

Agenda — what we did

Identify research subjects

Zero Maze with Mouse 409 (25 neurons and all neurons)

Apply different models

Logistic Model with PCA, Simple Neural Network, RNN, Bidirectional LSTM

Detailed Updated

Train/test splitting matters

Model Comparisons with Mouse 409

Zero Rule Accuracy = Selecting the most common class

Goal =

Model Accuracy > Zero
Rule Accuracy

Results — what we found

Accuracy of Test
 Data with
 Bidirectional LSTM

All Mice w/ all neurons

Model Accuracy

Zero Rule Accuracy

Conclusions

- Split train / test in chunks
- Take all neurons into consideration
- Try different lags

Key Questions:

Does a neuron carry the same information throughout the 10 minute trial?

Does behavior influence neural activity? OR Does neural activity influence behavior?

Mouse Project

Simple RNN(Based on Mouse 409 in Zero-Maze)

Rose, Jessie, Shuting

Input Data

Cells 1-25 Lag 1 Cells 1-25 Lag 2 Cells 1-25 Lag 3 Cells 1-25 Lag 4 Cells 1-25 Lag 5

Subsample of 25 neurons with 5 time lags. Total Rows = 6179 (70% training; 30% testing)

Output Data

Total Rows = 6179

Mouse Location 0 or 1

Model Details

- Three layers
- Activation Function: ReLu, Sigmoid
- Loss Function: Cross-entropy

Result

Next Steps:

- Shuffle the neurons for the RNN model to get a more general result.
 - Try neural network with PCA.
 - Try add some noise (more neurons).
- Try different "windows": 10 seconds, 25 seconds, etc.
- Make ROC lines for every mouse and try the different number of components for PCA.
- Explore the correlated neurons according to the consistency of correlated and PCA plots. Are they distributed in a cluster or randomly (space or distant)?

Mouse Project

Baseline Model (Based on Mouse 409 in Zero-Maze)

Rose, Jessie, Shuting

Logistic Regression

"The **logistic regression** was trained and tested using an increasing interval of randomly selected cells with 1000 repetitions for each number of cells"

Johnson et al. (2022)

Logistic Regression Considerations

Does not account for time and autocorrelation

Correlation between neurons

Unbalanced data (In total: 1 = 4647 rows; 0 = 153)

```
Reference
Prediction 1 0
1 2137 207
0 144 606
```

Accuracy: 0.8866

Deal with Correlation between Neurons (PCA)

Correlation Plot

Logistic Regression and PCA

Eigenvalue & Contribution Format

*	eigenvalue =	variance.percent	cumulative.variance.percent
Dim.1	22.90938441	20.63908506	20.63909
Dim.2	8.13994788	7.33328637	27.97237
Dim.3	5.94709912	5.35774695	33.33012
Dim.4	4.75210760	4.28117802	37.61130
Dim.5	3.56853359	3.21489513	40.82619
Dim.6	2.89839073	2.61116282	43.43735
Dim.7	2.63542867	2.37426007	45.81161
Dim.8	2.45687416	2.21340015	48.02501
Dim.9	2.03942374	1.83731868	49.86233
Dim.10	1.87910008	1.69288296	51.55522
Dim.11	1.84050439	1.65811207	53.21333
Dim.12	1.71331261	1.54352488	54.75685
Dim.13	1.59762885	1.43930527	56.19616
Dim.14	1.50689683	1.35756472	57.55372

Result when we choose first 40 principal components:

```
Call:
glm(formula = open ~ ., family = binomial("logit"), data = training)
Deviance Residuals:
     Min
                     Median
                                  30
                                           Max
-3.07276 -0.06894
                    0.24742
                             0.52941
                                       2.66530
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.951235
                      0.062801 31.070 < 2e-16 ***
Dim.1
           -0.031187
                      0.010739 -2.904 0.003683 **
Dim.2
            0.046791 0.018421
                                2.540 0.011083 *
Dim. 3
           -0.611384 0.027581 -22.167 < 2e-16 ***
Dim.4
            0.324319
                      0.024087 13.465 < 2e-16 ***
Dim.5
                      0.029219 13.969 < 2e-16 ***
            0.408173
Dim.6
           -0.133940
                      0.033148 -4.041 5.33e-05 ***
                      0.033419
Dim.7
            0.152302
                                 4.557 5.18e-06 ***
Dim.8
           -0.423454
                     0.035565 -11.907 < 2e-16 ***
Dim.9
           -0.006772
                      0.033604 -0.202 0.840291
Dim 10
            0 291025
                       0 036563
                                7 959 1 730-15 ***
```

```
error_rate
[1] 0.1657235
```

Error Rate VS. Number of PC

Deal with Unbalanced Data (ROC Curve)

 The AUC of our logistic model (number of components = 40) is 0.886, which means this classifier performs good even in unbalanced data

Mouse Project

EDA

Rose, Jessie, Shuting

Background

- Objective: decoding neural performance to analyse mice's social behavior
- Method: use machine learning skills to predict mouses' behavior based on their neural recordings
- This Week: use mouse 251 in Zero_Maze experiment as example, to do exploratory data analysis
- Next Steps: Continue EDA. Understand "Machine Learning for Neural Decoding" paper. Consider potential models.

Open = 1, Closed = 0

Time series plot of z-score

Density plot of z-score

open

