实验 A12 自组双透镜光学系统

[实验前思考题]

- 1. 光学实验中常用的光学元器件有哪些? 主要起什么作用?
- 2. 光学实验中常用的调节装置有哪些? 主要起什么作用?
- 3. 光路调节主要分几个步骤?有什么要求? 1. 光闭;利用光的直线传播和仍到原设设计师成,作用是对光波的临唐行 相位进约1月节

德光片与光学窗口:防塞城光强,被变光谱成分,限生振动面, 分光等, 反射线, 利用光的折射原程表改变光线传播方向 查镜:利用光的折射原理来超到汇聚和发扬的作用, 偏据元件:使光线发生偏振仪必要偏振光的偏振状态.

- 2. 底座与2作台:安放各种光管孔件和1岁节装置。 118节架,同于国宝和118节光学元件位置。 支杆与播杆:连播底座与光学器件,用于118节高底。
- 3. ① 安徽国建成座与光学平台, 注意各年台间距离恰当.
 - ②自治国生光学礼件:注意不要国生过紧以防严怀无器件
 - ③安岩点壳光源:光路应在的丰座线上
 - ④ 观察并做旧各元件任置
 - ①1岁999、成进行失驻.

(请自行加页)

| 实验目的 |

- 1. 掌握望远镜和显微镜的光学结构。
- 2. 掌握显微镜和望远镜放大率的测量方法。

[仪器用具]

(清点设备,在已有设备对应的备注栏中打"✓")

类别	序号	名称	型号	数量	备注
	1	物镜 Loi	T-GSZ-A06. f_o =45 mm	1	V
	2	物镜 Lo2	T-GSZ-A11. $f_o = 225 \text{ mm}$	1	V
镜片类	3	目镜 L _E	GSZ-2B-02, $f_E = 29 \text{ mm}$	1	V
	4	1/10mm 微尺 M ₁	T-GSZ-A27, ±4mm, 最小刻度 0.1mm	1	V
	5	正像棱镜系统	SZ-30	1	✓
	1	三维平移底座	SZ-01	1	J
	2	二维平移底座	SZ-02	3	✓
	3	升降调整座	SZ-03	2	\checkmark
调节架	4	二维调节架	SZ-07	2	\checkmark
MIN	5	双棱镜架	SZ-41	1	V
	6	透镜架	SZ-08	2	\checkmark
	7	干板架	SZ-12	1	V
	.8	45°玻璃架	SZ-45	1	✓
	1	钠灯	GY-5B	1	\checkmark
其他	2	毫米尺 M ₂	T-GSZ-A22, 30mm, 最小刻度 1mm	1	\ /
NIE.	3	白光源	GY-6, 溴钨灯, 亮度可调	1	V
	4	标尺	SZ-33	1	J

[原理概述]

1. 显微镜

物理实验中常用的移测显微镜(读数显微镜)是一个由目镜和物镜组成的共轴光学系统,它通常由 4 片以上透镜组成,可以简化为两个凸透镜组成的放大光路。如图 1 所示,被观察的物体 AB 放在物镜 Lo 的物方焦点 Fo 的外侧附近,先经过 Lo 成放大实

像 A₁B₁于目镜物方焦点 F_e内侧附近,再经目镜 L_e成放大虚像 A'B'于明视距离以外。

图 1 显微镜光路图

显微镜的角放大率定义为

$$M = \omega'/\omega \tag{1}$$

其中 ω 为物 AB 在明视距离处所张的视角,即 $\omega=y/s_0$, ω' 为放大的虚像 A'B'所张视角,与 A_1B_1 所张视角一样,故

$$M = \frac{y_1/f_e}{y/s_0} = \frac{y_1}{y} \cdot \frac{s_0}{f_e} \tag{2}$$

式中 $y_1/y = V_0$ 为物镜的横向放大率; $s_0/f_e = M_e$ 。经过变换, 当光学间距远大于物镜焦距时, 可得显微镜视角放大率为

$$M = -\frac{s_{0\Delta}}{f_0 f_0} \tag{3}$$

负号表示显微镜所成的像是倒立的。

2. 望远镜

望远镜也是一个由物镜和目镜组成的共轴光学系统,物镜的焦距大于目镜的焦距, 其特点是两个透镜的光学间隔几乎为零,即两个透镜的焦点位置重叠。透射式望远镜有 两种典型的光路,如图 2 所示的开普勒望远镜,其目镜为凸透镜;如图 3 所示的伽利略 望远镜,其目镜为凹透镜。在角放大率相同的情况下,伽利略望远镜的体积更小,但开 普勒望远镜可以在两透镜的焦点重叠处设置分划板,便于进行测量。

图 2 开普勒望远镜

图 3 伽利略望远镜

以图 2 所示的开普勒望远镜为例,望远镜的角放大率定义为

$$M = \omega'/\omega = -f_o/f_e \tag{4}$$

测量望远镜的放大倍数时,可以将被测标尺放在无穷远处,本实验中需大于 3m, 先测出标尺中未经望远镜放大的两标志线之间的距离 d_1 (5cm),调节光路后再测量经放大后的标志线间距 d_2 ,则望远镜的放大率为

$$M = -d_2/d_1 \tag{5}$$

式(4)和(5)中的负号表示开普勒望远镜所成的像是倒立的。

[安全注意事项]

- 1. 显微镜的放大率测量实验中, 读数刻度要成像清晰, 但由于光学反射面的缘故, 刻度有重影现象, 实验中要注意辨别。
 - 2. 在用一只眼观察望远镜镜筒调节视野清晰的同时,需要另一只眼在实物空间配合。

[实验内容及步骤]

- 1. 自组显微镜
- (1) 实验装置: 光路如图 4 所示, 实验装置如图 5 所示。。

图 4 自组显微镜光路图

图 5 自组显微镜装置图

(请写出自组显微镜实验装置各部分的名称)

	am man in our said.	EL H HE / S H S H 14- /		
	1.低压机灯5	2. 干版架	3. 始尺M.(右wm)4. = (往驶
	5. 好的转 Lo (fo=45	nsh) =维铜宪	7. 二维润尔朵	8. 月號 Le (fe=29mm).
ĺ	9. 45°玻璃柴	10. 升降1肉中座	11. 双棱镜架	12. 毫米尺M2(L=30mn)
	13. 三维稀陌座	14. 三维辛格底座	15. 升降假室	16. 通用成座.

(2) 调节与观察

- ① 参照图 5 和图 4 布置各器件,调等高同轴。
- ② 将透镜 L_o 与 L_e 的距离 d_1 定为约 24 cm;该距离决定了光学间隔 Δ 的大小,进而决定了显微镜的放大倍数。
- ③ 在 L_e 之后安装一块与光轴成 45° 角的玻璃平板,距此玻璃板 d_2 处放一毫米尺 M_2 , 并用白光源从毫米尺背部进行照明, d_2 约为25cm。
 - ④ 沿光路移动微尺 M₁, 从显微镜系统中观察到微尺的放大像。

- - ⑤ 微移微尺 M₁,使得 M₁尺的像和 M₂尺重叠且无视差。用 M₂毫米尺测出 M₁尺 的像a个格子对应的长度I。则显微镜的实测放大率为M=10I/a。
 - ⑥ 注意:上式的系数 10 是因为 1/10 分划板最小刻度为 0.1mm, 而毫米尺的最小 刻度为 lmm。
 - ② 显微镜的理论放大率为 $M' = d_2\Delta/(f_of_e)$ 。
 - ® 要求测量多次以降低 A 类不确定度。计算实测放大率M的平均值及不确定度, 并与理论放大率M'值对比。

2 自组望远镜

(1) 实验装置: 如图 6

图 6 自组望远镜装置图

(请写出自组望远镜实验装置各部分的名称)

2. 好的親 lo(fo=2 sum) =维用智 4. 目镜Le(fe=45mm) = 1511国节架 6. 三维年移底座 7. 二维年移底座

(2) 实验步骤

- ① 按图 6 组成开普勒望远镜,微移两透镜之间的距离,向放置在约 3m 远处的标 尺聚焦焦,使标尺像清晰。移动标尺上的两个红色指针对准一个"E"字的上下两边, 红色指针间的距离 $d_1 = 50.0$ mm。
- ② 一只眼从望远镜观察标尺的放大像,用另一只眼睛直接注视标尺,经适应性练 习,可观察到被望远镜放大的标尺像和未放大标尺相叠加的现象。
 - ③ 由站在标尺旁边的同学协助,移动红色指针的位置,使得两红色指针与放大像

中的"E"字上下两边对齐,读出标尺上两指针之间的距离 d_2 ,则望远镜的实测放大率的绝对值为 $M=d_2/d_1$ 。

- ④ 由于两眼同一时间分别观察不同物体,使指针与放大像中"E"两边对齐存在较大的人为误差,需要进行多次测量以降低 A 类不确定度。
 - ⑤ 用激光测距仪测量望远镜物镜与标尺之间的距离 s。
- ⑥ 计算实测放大率M的平均值和不确定度, 并与式(4)和式(5)计算得到的理论放大率对比。

注: 当标尺放在有限远距离 s 处(即距离望远镜的距离不足 3m 时,望远镜放大率 M'可做如下修正: $M'=Ms/(s+f_o)$ 。当 $s>100\,f_o$ 时,修正量 $s/(s+f_o)\approx 1$ 。

|数据记录及处理|

(请自拟数据记录表格并处理实验数据)。

实验一.自四星级镜勘垢记む。

次数	ľ	Σ	3	4	5
d./cm	20 22	22	24-22	举 22	¥ 22
a	2	۷	3	1	2
ι	12	1)	16.5	1.1	11.6
м′	28.0	28.0	28.0	28.0	28.0
N	30.0	27.5	27.5	27.5	29.0

吴轻二. 自组望远镜 数据话

	1.02	7.2 1	170	. , ,	/.		
收数	1	2	3	4	7	6	7
d./om	5	Z	٤	5	7	2	1/
S/m	3.034	3.034	3.054	3.034	3.034	3.0	3
Ol2/100mm	237.5	248	267	255	244		
M	4.75	4.96	5.34	5.10	4.88.		

A美不确定的
$$S_A = \sqrt{\frac{1}{14}} \frac{5}{5} (Mi-M)^2 = 0.515$$

B美不确定的
$$M = -\frac{d_2(d_1 - f_0 - f_e)}{f_0 f_e}$$

$$S_{B} = \sqrt{\left(\frac{\partial M}{\partial d_{1}} \cdot \frac{o.o1}{\overline{13}}\right)^{2} + \left(\frac{\partial M}{\partial d_{2}} \cdot \frac{o.o1}{\overline{13}}\right)^{2}}$$

$$= 1.29$$

合成不确定度
$$S = \sqrt{S_A^2 + S_B^2} = 1.38$$

$$V = \frac{S^4}{\frac{S_0^4}{V_0} + \frac{S_0^4}{V_0}} = 1.34$$

$$\Delta N = tpS = b.0$$

$$M = 28.3 \pm 6.0$$

$$A$$
 其不确定的 $\overline{d_2} = \frac{1}{7} \sum_{i=1}^{5} d_{2i} = 25.03 cm$

$$Ud_{2} = I - 1 = 4$$

$$\therefore Sd_{2} = \sqrt{\frac{1}{I \times 4}} \sum_{i=1}^{S} (d_{2i} - \overline{d}_{2})^{2} = 0.505$$

$$S_{A} = \sqrt{\left(\frac{\partial f}{\partial d_{2}} S_{d_{1}}\right)^{2} + \left(\frac{\partial f}{\partial d_{1}} S_{d_{1}}\right)^{2}} = \frac{\partial f}{\partial d_{2}} S_{d_{2}} = \frac{1}{d_{1}} S_{d_{2}} = 0.101$$

B美不确語

$$S_{\mathcal{B}} = \frac{o.1}{13} = o.058$$

有效自由陷
$$V = \frac{S^4}{\frac{S^4}{V_0} + \frac{S^4}{V_0}} = 1.337$$

取
$$V = 2$$
. $P = 0.95$ 查得 $tp = 4.303$ $\Delta M = Tp'S = 0.501$

[实验后思考题]

- 1. 通过数值计算,探讨显微镜两透镜的焦距和两透镜之间的距离对显微镜放大率 的影响,并作理论曲线加以说明。
 - 2. 通过数值计算,探讨望远镜两透镜的焦距对望远镜放大率的影响,并作理论曲

线加以识明。

$$M = \frac{d_2(d_1 - f_0 - f_e)}{f_0 f_e}$$

fo=4.5cm. fe=2.9cm. M与d,已相差.

(2). fo = 4.5 cm. d. = 24 cm. M5 fe isimbet. (3). fe = 29 cm. d. = 24 cm. M5 fo isimbet.

fe=2.9cm. M与fe 时期光. 12)fo=4.5cm. M与fe成级比.

中山大学物理学院物理实验教学中心编制,仅用于教学。未经