CALCUL LITTÉRAL E01C

EXERCICE N°1 On applique (Le corrigé)

Développer et réduire les expressions suivantes :

1)
$$(2x+3)^2$$

 $(2x+3)^2$
= $(2x)^2 + 2 \times 2x \times 3 + 3^2$
= $4x^2 + 12x + 9$

La ligne intermédiaire n'est pas obligatoire.

4)
$$(1,5x-4)^2$$

 $(1,5x-4)^2$
= $(1,5x)^2 - 2 \times 1,5x \times 4 + 4^2$
= $2,25x^2 - 12x + 16$

7)
$$(3x-2)(3x+2)$$

 $(3x-2)(3x+2)$
 $= (3x)^2-2^2$
 $= 9x^2-4$

2)
$$(4+3x)^2$$

 $(4+3x)^2$
= $4^2+2\times4\times3x+(3x)^2$
= $16+24x+9x^2$
= $9x^2+24x+16$

La 2^e ligne n'est pas obligatoire...

On pense à ordonner selon les puissances décroissantes de l'inconnue sur la dernière ligne.

5)
$$(7-3x)^2$$

 $(7-3x)^2$
= ...
= $49-42x+9x^2$
= $9x^2-42x+49$

8)
$$(7-3x)(7+3x)$$

 $(7-3x)(7+3x)$
 $= 7^2-(3x)^2$
 $= 49-9x^2$
 $= -9x^2+49$

On pense à ordonner selon les puissances décroissantes de l'inconnue sur la dernière ligne.

3)
$$(3x+2y)^2$$

 $= (3x)^2 + 2 \times 3x \times 2y + (2y)^2$
 $= 9x^2 + 12xy + 4y^2$

La ligne intermédiaire n'est pas obligatoire... Cette remarque reste valable dans toute la suite.

6)
$$(3x-2y)^2$$

 $= (3x+2y)^2$
 $= (3x)^2 - 2 \times 3x \times 2y + (2y)^2$
 $= 9x^2 - 12xy + 4y^2$

9)
$$(5+4x)(4x-5)$$

Ici, attention à bien identifier a et b : pour cela, on utilise le facteur comprenant la différence: $4x-5$
 $a=4x$ et $b=5$
 $(5+4x)(4x-5)$
 $=(4x)^2-5^2$

 $= 16x^2 - 25$

CALCUL LITTÉRAL E01C

EXERCICE N°2 On complique (Le corrigé)

Développer et réduire les expressions suivantes :

Ici, on va utiliser plusieurs identités remarquables « en même temps ».

On va développer chaque terme de l'expression.

Dans $(3x+7)^2+(2x-3)^2$, qui est une somme, il y a deux termes $(3x+7)^2$ et $(2x-3)^2$. Il se trouve que ces deux termes sont des produits que l'on va pouvoir développer...

1)
$$(3x+7)^2+(2x-3)^2$$

2)
$$(3x-5)^2-(6-5x)^2$$

3)
$$(4x-1)^2-(2x-3)(5+7x)$$

1)

$$(3x+7)^{2}+(2x-3)^{2}$$
= $[9x^{2}+42x+49] + [4x^{2}-12x+9]$
= $9x^{2}+42x+49 + 4x^{2}-12x+9$
= $13x^{2}+30x+58$

La deuxième n'est pas à écrire, mais elle nous rappelle qu'il peut y avoir des changements de signes à ne pas oublier.

2)

$$(3x-5)^{2}-(6-5x)^{2}$$

$$= [9x^{2}-30x+25] - [36-60x+25x^{2}]$$

$$= 9x^{2}-30x+25-36+60x-25x^{2}$$

$$= -16x^{2}+30x-11$$

Un moins devant des parenthèses...

3)

$$(4x-1)^{2}-(2x-3)(5+7x)$$

$$= [16x^{2}-8x+1] - [10x+14x^{2}-15-21x]$$

$$= [16x^{2}-8x+1] - [14x^{2}-11x-15]$$

$$= 16x^{2}-8x+1-14x^{2}+11x+15$$

$$= 2x^{2}+3x+16$$

CALCUL LITTÉRAL E01C

EXERCICE N°3 On panique (ou pas) (Le corrigé)

Développer et réduire les expressions suivantes :

1)
$$(a+b)^3$$

2)
$$(a-b)^3$$

3)
$$(a+b+c)^2$$

1)

$$(a+b)^{3}$$

$$= (a+b)(a+b)^{2}$$

$$= a(a+b)^{2} + b(a+b)^{2} = a(a^{2}+2ab+b^{2}) + b(a^{2}+2ab+b^{2})$$

$$= a^{3} + 2a^{2}b + ab^{2} + ba^{2} + 2ab^{2} + b^{3}$$

$$= a^{3} + 2a^{2}b + ba^{2} + 2ab^{2} + ab^{2} + b^{3}$$

$$= a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

On se ramène à ce que l'on sait faire...

2)

$$(a-b)^{3}$$

$$= (a-b)(a-b)^{2}$$

$$= a(a-b)^{2} - b(a-b)^{2} = a(a^{2}-2ab+b^{2}) - b(a^{2}-2ab+b^{2})$$

$$= a^{3}-2a^{2}b+ab^{2} - ba^{2}+2ab^{2}-b^{3}$$

$$= a^{3}-2a^{2}b-ba^{2}+2ab^{2}+ab^{2}-b^{3}$$

$$= a^{3}-3a^{2}b+3ab^{2}-b^{3}$$

On fait bien attention aux signes.

3)
$$(a+b+c)^{2} \qquad (=(A+B)^{2})$$

$$= (a+(b+c))^{2}$$

$$= a^{2} + 2a(b+c) + (b+c)^{2}$$

$$= a^{2} + 2ab + 2ac + b^{2} + 2bc + c^{2}$$

$$= a^{2} + b^{2} + c^{2} + 2ab + 2ac + 2bc$$

On remarque que l'on peut utiliser « une triple distributivité » :

$$(a+b+c)^2 = (a+b+c)(a+b+c)$$