

Previously in Game Theory

Previously in *Game Theory*

- decision makers:
 - choices
 - preferences

Previously in Game Theory

- decision makers:
 - choices
 - preferences
- solution concepts:
 - best response
 - Nash equilibrium

Rock, paper, scissors

Rock, paper, scissors

	R	P	S
R	0,0	-1, 1	1,-1
P	1, -1	0, 0	-1, 1
S	-1, 1	1, -1	0,0

Learning in games

Learning in games

Repeated games

Learning in

games

1. Guess what the opponent(s) will play

- 1. Guess what the opponent(s) will play
- 2. Play a Best Response to that guess

- 1. Guess what the opponent(s) will play
- 2. Play a Best Response to that guess
- 3. Observe the play

- 1. Guess what the opponent(s) will play
- 2. Play a Best Response to that guess
- 3. Observe the play
- 4. Update the guess

Guess = last action played

Guess = last action played

	C	D
C	2,2	-1, 3
D	3, -1	$0, \overline{0}$

0, 0

Guess = last action played

$$\begin{array}{c|cccc} C & 2,2 & -1,3 \\ D & 3,-1 & 0,0 \\ \hline & R & P & S \\ R & 0,0 & -1,1 & 1,-1 \\ P & 1,-1 & 0,0 & -1,1 \\ \end{array}$$

-1, 1

Guess = empirical distribution of play

 ${\sf Guess} = {\sf empirical} \ {\sf distribution} \ {\sf of} \ {\sf play}$

	R	P	S
R	0,0	-1, 1	1,-1
P	1,-1	0,0	-1,1
S	-1, 1	1, -1	0,0

 ${\sf Guess} = {\sf empirical} \ {\sf distribution} \ {\sf of} \ {\sf play}$

	R	F)	S	
R	0, 0	-1	, 1	1, -1	
P	1, -1	0,	0	-1, 1	
S	-1, 1	1, -	-1	0,0	
	L	C	R	2	
U	0,0	0, 1	1,	0	
M	1,0	0,0	0,	1	
D	0, 1	1,0	0,	0	

Evolutionary learning

Evolutionary learning

Action set: A

Utility function: \boldsymbol{u}

Evolutionary learning

Action set: A Utility function: u

$$\begin{aligned} p &\in \Delta(A), k \in A \\ \dot{p_k} &= p_k \left(u(k, p) - u(p, p) \right) \end{aligned}$$

Battle of the Sexes

Battle of the Sexes

		F'
O	3, 2	0,0
F	0,0	2,3

 $a^* \in A = \prod_i A_i$ is a NE:

$$\forall i, \forall a'_i, u_i(a_i^*, a_{-i}^*) \ge u_i(a'_i, a_{-i}^*)$$

 $a^* \in A = \prod_i A_i$ is a NE:

$$\forall i, \forall a'_i, u_i(a_i^*, a_{-i}^*) \ge u_i(a'_i, a_{-i}^*)$$

$$\alpha \in \prod_i \Delta(A_i)$$
 is a NE: $\forall i, \forall a_i, \forall a_i'$

$$\sum_{a_{-i}} u_i(a_i, a_{-i}) \alpha(a) \ge \sum_{a_{-i}} u_i(a_i', a_{-i}) \alpha(a)$$

 $a^* \in A = \prod_i A_i$ is a NE:

$$\forall i, \forall a'_i, u_i(a_i^*, a_{-i}^*) \ge u_i(a'_i, a_{-i}^*)$$

$$\alpha \in \prod_i \Delta(A_i)$$
 is a NE: $\forall i, \forall a_i, \forall a'_i$,

$$\sum_{a_{-i}} u_i(a_i, a_{-i})\alpha(a) \ge \sum_{a_{-i}} u_i(a_i', a_{-i})\alpha(a)$$

$$\pi \in \Delta(A)$$
 is a CE: $\forall i, \forall a_i, \forall a'_i,$

$$\sum_{a=1}^{n} u_i(a_i, a_{-i})\pi(a) \ge \sum_{a=1}^{n} u_i(a_i', a_{-i})\pi(a)$$

$$u_i(k, a_{-i}) - u_i(j, a_{-i})$$

$$u_i(k, a_{-i}) - u_i(j, a_{-i})$$

$$R_{jk}^{i}(t) = \sum_{\tau=0:a_{i}(\tau)=j}^{t} u_{i}(k, a_{-i}(\tau)) - u_{i}(j, a_{-i}(\tau))$$

$$u_i(k, a_{-i}) - u_i(j, a_{-i})$$

$$R_{jk}^{i}(t) = \sum_{\tau=0: a_{i}(\tau)=i}^{s} u_{i}(k, a_{-i}(\tau)) - u_{i}(j, a_{-i}(\tau))$$

Regret matching converges to the correlated equilibria set.

Best response

- Best response
- Replicator dynamics

- Best response
- Replicator dynamics
- No regret

Markov Decision Process (MDP)

Markov Decision Process (MDP)

```
state space X action space U transition P: X \times U \to \Delta(X) reward r: X \times U \to \mathbb{R} discount factor \delta \in [0,1]
```

Markov Decision Process (MDP)

state space X action space U transition $P: X \times U \to \Delta(X)$ reward $r: X \times U \to \mathbb{R}$ discount factor $\delta \in [0,1]$

$$U(x(\cdot), u(\cdot)) = \sum_{t=0}^{+\infty} \delta^t r(x(t), u(t))$$

MDP (continued)

history $\mathcal{H} \in \prod(X, U)$ policy $\pi : \mathcal{H} \to \Delta(U)$

MDP (continued)

history
$$\mathcal{H} \in \prod(X, U)$$

policy $\pi: \mathcal{H} \to \Delta(U)$
 $V^{\pi}(x_0) = \mathbb{E}_{\pi} \left[U(x(\cdot), u(\cdot)) \right]$

MDP (continued)

history
$$\mathcal{H} \in \prod(X,U)$$

policy $\pi: \mathcal{H} \to \Delta(U)$
 $V^{\pi}(x_0) = \mathbb{E}_{\pi} \left[U(x(\cdot),u(\cdot)) \right]$

$$V(x_0) = \max_{\pi} V^{\pi}(x_0)$$

Principle of Optimality

Bellman's equation:

$$V(x_0) = \max_{u_0} \left[r(x_0, u_0) + \delta V(P(x_0, u_0)) \right]$$

Dynamic Programming

Solving the MDP:

Dynamic Programming

Solving the MDP:

▶ knowing *P*: value iteration

Dynamic Programming

Solving the MDP:

- ▶ knowing P: value iteration
- ▶ not knowing *P*: online learning

Game $(\mathcal{I}, \prod_i A_i, \prod_i u_i)$

Game $(\mathcal{I}, \prod_i A_i, \prod_i u_i)$ Discount factor δ

$$U_i(a(\cdot)) = \sum_{i=1}^{\infty} \delta^t u_i(a(t))$$

Game $(\mathcal{I}, \prod_i A_i, \prod_i u_i)$ Discount factor δ

$$U_i(a(\cdot)) = \sum_{t=0}^{+\infty} \delta^t u_i(a(t))$$

Strategy $\sigma: \mathcal{H} \to \prod_i \Delta(A_i x)$

$$V_i(\sigma) = \mathbb{E}_{\sigma} \left[U_i(a(\cdot)) \right]$$

Nash equilibrium

Player *i*:

- choices σ_i
- ightharpoonup utility V_i

Nash equilibrium

Player *i*:

- ightharpoonup choices σ_i
- ightharpoonup utility V_i

Nash equilibrium is not strong enough! (Explanation on the whiteboard \Longrightarrow)

Information structure

Information structure

- perfect
- imperfect

Information structure

- perfect
- imperfect
- public
- private (beliefs)

Folk theorem

Any feasible, strictly individually rational payoff can be sustained by a sequentially rational equilibrium.

Folk theorem

Any feasible, strictly individually rational payoff can be sustained by a sequentially rational equilibrium.

Holy grail for repeated games.

Weakly belief-free equilibria

Characterization of repeated games with correlated equilibria.

Dynamic programming

- Dynamic programming
- Repeated games

- Dynamic programming
- Repeated games
- ► Folk theorem

Learning in games Repeated games

Questions, Comments