計算数学 I 課題 幾何学 I 講義ノート

安達 充慶

1 逆写像定理と Euclid 空間の部分多様体

まず,微分同相について復習する. $n,m,l\in\mathbb{Z}_{\geq 0}$ とする. この講義では \mathbb{R}^n は原則として縦ベクトルの空間とし,Euclid ノルム

$$||x|| = \sqrt{\sum_{i=1}^n x_i^2}$$

によって位相が定まっているものとする。 $M(n,m;\mathbb{R})$ で (m,n) 型の行列全体の集合を表すことにする。 これを \mathbb{R}^{mn} と同一視することにより $M(n,m;\mathbb{R})$ にノルム空間の構造を与える。 このとき, $A\in M(n,m;\mathbb{R})$ と $x\in\mathbb{R}^n$ について

$$||Ax|| \le ||A|| ||x||$$

が成立する.

定義 1.1. $r=0,1,2,\ldots\infty$ とする. $O^in\mathbb{R}^n$ を開集合とする. $F\colon O\to\mathbb{R}^m$ が C^r 級写像であるとは, F を成分表示して

$$F(p) = (f_1(p), \dots, f_m(p))$$

と書いたとき,各 $f_i \colon O \to \mathbb{R}$ が C^r 級関数であることと定める.

以下, $r \ge 1$ であるとする. C^r 級写像 F に対してその Jacobi 行列 $JF: O \to M(n, m; \mathbb{R})$ を

$$(JF)_p = (\frac{\partial f_i}{\partial x_j}(p))_{1 \le i \le m, 1 \le j \le n}$$

で定める. $u \in \mathbb{R}^n$ に対して

$$(JF)_{p}u = \left. \frac{d}{dt} \right|_{t=0} F(p+tu)$$

であることに注意する.

- 補題 1.2. (1) $A \in M(n,m;\mathbb{R})$ を自然に \mathbb{R}^n から \mathbb{R}^m への線型写像とみなすと,すべての $p \in \mathbb{R}^n$ で $(JF)_p = A$ が成立する.特に, $(J1_{\mathbb{R}^n})_p = I$ である.
 - (2) O を \mathbb{R}^n の,O' を \mathbb{R}^m の開集合とする. さらに $F: O \to \mathbb{R}^m$, $F': O' \to \mathbb{R}^s$ を C^r 級写像とすると $F' \circ F: F^{-1}(O') \to \mathbb{R}^s$ は C^r 級写像であって,すべての $p \in F^{-1}(O)$ に対して

$$(JF' \circ JF)_p = (JF')_{F(p)}(JF)_p$$

が成立する.

定義 1.3. O を \mathbb{R}^n の, O' を \mathbb{R}^m の開集合とする. $F: O \to O'$ が C^r 級微分同相写像であるとは, F が C^r 級の全単射であり, さらに逆写像 $G: O' \to O$ が C^r 級写像であることである. また, このとき O と O' は微分同相であるという.

例 1.4. 恒等写像, Euclid 空間における平行移動や線型変換は微分同相写像である.

補題 1.5. 定義 1.3 の状況で, $(JF)_p$ は $(JG)_{F(p)}$ を逆行列に持つ.特に O が空集合でないとき,n=m である.

証明. 補題 1.2 より

$$(JG)_{F(p)}(JF)_p = I_n, (JF)_p(JG)_{F(p)} = I_m$$

が成立する.

この補題は大域的には成立しない (複素数に拡張された指数関数を考えよ). しかし,局所的には逆が成立する.

定理 1.6 (逆写像定理). O を \mathbb{R}^n の開集合とする. C^r 級写像 F: $O \to \mathbb{R}^n$ の $p_0 \in O$ での Jacobi 行列が正則ならば,O に含まれる p の近傍 U と F(p) の近傍 V が存在して,F(U) = V かつ F: $U \to V$ は微分同相写像となる.

この定理を認めていくつかの結果を証明する. 以下では $r=\infty$ であるとする. O を \mathbb{R}^n の開集合, $F\colon O\to\mathbb{R}^m$ を C^∞ 写像とする.

定義 1.7. n=m とする. 任意の $p\in O$ に対してその開近傍 U_p と F(p) の開近傍 V_p が存在して $F(U_p)=V_p$ かつ $F\colon U_p\to V_p$ が微分同相写像であるとき,F は局所微分同相であるという.

定理 1.8 (陰関数定理). $0 \le m \le n$, $0 \in O$ とする. さらに F(0) = 0 で $(JF)_0$ の階数は m であるとする. このとき,0 の開近傍 $U \in O$ と V および微分同相写像 $\varphi \colon U \to V$ が存在して, $\varphi(0) = 0$, $F \circ \varphi^{-1}(y_1, y_2, \ldots, y_n) = (y_1, y_2, \ldots, y_m)$ をみたす.

証明. F を成分表示して

$$F = \begin{pmatrix} f_1 \\ \vdots \\ f_m \end{pmatrix}$$

と表示する. 仮定より, $1 \le k_1 < k_2 < \cdots < k_m \le n$ が存在して,

$$\det\left(\frac{\partial f_i}{\partial x_{k_i}}\right) \neq 0$$

をみたす. 適当な線型変換により, $k_1=1$, $k_2=2$, $k_m=m$ であるとしてよい. $\hat{F}: O \to \mathbb{R}^n$ を

$$\hat{F} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} F(x) \\ x_{m+1} \\ \vdots \\ x_n \end{pmatrix}$$

とおくと, $(J\hat{F})_0$ は正則行列である.したがって逆写像定理により 0 の開近傍 $U\in O$ と V が存在して $\hat{F}\colon U\to V$ は微分同相写像になる.そこで $\varphi=$ を \hat{F} の U への制限とする.あとは $F\circ\varphi^{-1}$ を計算すればよ

いが,

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \\ y_{m+1} \\ \vdots \\ y_n \end{pmatrix} = \hat{F} \circ \varphi^{-1} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} F \circ \varphi^{-1} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \\ * \end{pmatrix}$$

なので $F \circ \varphi^{-1}(y_1, \ldots, y_n) = (y_1, \ldots, y_m)$ である.

定義 1.9. $0 \le l \le m$, $M \subset \mathbb{R}^n$ とする. 各 $p \in M$ について開近傍 U と $0 \in \mathbb{R}^n$ の開近傍 V, 微分同相写像 $\varphi \colon U \to V$ が存在して

$$M \cap U = \varphi^{-1}(\{0\} \times \mathbb{R}^l)$$

が成立するとき,M は \mathbb{R}^n の l 次元 C^∞ 級部分多様体であるという.

系 1.10. $0 \le m \le n$, $O \subset \mathbb{R}^n$ を開集合, $q_0 \in \mathbb{R}^m$ とする. $f \colon O \to \mathbb{R}^m$ について, すべての $p \in F^{-1}(q_0)$ で $(JF)_p$ の階数が m ならば $F^{-1}(q_0)$ は \mathbb{R}^n の (n-m) 次元 C^∞ 級部分多様体である.

例 1.11. *n* 次元球面

$$S^n = \{ x \in \mathbb{R}^{n+1} \mid ||x|| = 1 \}$$

は \mathbb{R}^{n+1} の n 次元 C^{∞} 級部分多様体である. 実際、 $f: \mathbb{R}^{n+1} \to \mathbb{R}$ を

$$f(x) = ||x||$$

で定めると $S^n=f^{-1}(1)$ であり, $(JF)_x$ の階数が 1 にならないのは x=0 のときだけなので系 1.10 が使える.