Data simulation and calculation of betas

```
library(knitr)
library(kableExtra)
library(cowplot)
library(ggforce)
## Loading required package: ggplot2
library(latex2exp)
library(reshape2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:kableExtra':
##
       group_rows
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
knitr::opts_chunk$set(cache = FALSE, warning = FALSE, message = FALSE, cache.lazy = FALSE)
```

Simulation data

```
K <- 10 # Nombre de groupe
nK <- 50 # Nombre d'observations par groupe
N <- K * nK # Nombre total d'observation
G <- factor(rep(1:K, each = nK))
intercept <- 2
fixefEffect <- .5
aleaEffect <- rnorm(K, sd = .5)
bias <- rnorm(N, sd = .25)
X <- rbinom(N, size=1, prob = .5)
# X_gauss <- rnorm(N, 1, 2)</pre>
```

```
Y_{withoutAlea} \leftarrow intercept + fixefEffect * X + bias
\# Y\_G \leftarrow intercept + fixefEffect * X\_gauss + aleaEffect[G] + bias
Y <- intercept + fixefEffect * X + aleaEffect[G] + bias
dfWith <- data.frame(X, Y, G)</pre>
dfWithout <- data.frame(X, Y=Y_withoutAlea, G)</pre>
HO <- formula(Y ~ X)
H1 \leftarrow formula(Y \sim X + (1|G))
dataPlot = cbind.data.frame(X=rep(factor(X),2), Y = c(Y, Y_withoutAlea),
                              G = factor(c(G,X), levels = 0:10),
                              Effect = factor(rep(c("gamma != 1", "gamma == 0"),
                                                   each=length(X))))
ggplot(dataPlot) +
  geom_boxplot(aes(x=X, y=Y, fill = G)) +
  scale_x_discrete(expand = c(0, 0.5)) +
  theme_bw()+
  ggforce::facet_row(vars(Effect), scales = 'free', space = 'free',
                      labeller = "label_parsed")
```


Linear model with lm function

```
options(warn=-1)
X_prime <- cbind(1, X)</pre>
```

```
# With Random Effect
lmModel <- lm(HO, data = dfWith)</pre>
Sigm <- sqrt(((summary(lmModel)$sigma)**2)*solve(t(X) %*% X))</pre>
betaLm <- lmModel$coefficients</pre>
SE <- (betaLm[-1] - confint(lmModel)[-1,][1])/1.96</pre>
A <- ggplot(dfWith, aes(x = X, y = Y, color = G) ) +
     geom point() +
     geom_smooth(formula = as.formula(y ~ x), method = "lm",aes(fill = G))+
  theme_bw()+theme(legend.position="none")+
  annotate(geom='text', label=TeX("$\\gamma \\neq 0$"), y=3.7, x=.5)
# Without Random Effect
lmModel <- lm(HO, data = dfWithout)</pre>
Sigm.1 <- sqrt(((summary(lmModel)$sigma)**2)*solve(t(X) %*% X))</pre>
betaLm.1 <- lmModel$coefficients</pre>
SE.1 \leftarrow (betaLm.1[-1] - confint(lmModel)[-1,][1])/1.96
B \leftarrow ggplot(dfWithout, aes(x = X, y = Y)) +
     geom_point() +
     geom_smooth(formula = as.formula(y ~ x), method = "lm")+
  theme_bw()+theme(axis.title.y = element_blank())+
  annotate(geom='text', label=TeX("$\\gamma=0$"), y=3, x=.5)
cowplot::plot_grid(A, B, labels = c('',''))
```


Table 1: Linear regression estimates with lm()

	\hat{eta}	$SE(\hat{\beta})$	$\sigma(\hat{eta})$
$\gamma \neq 0$	0.6119	0.051	0.0351
$\gamma = 0$	0.5244	0.0224	0.0154

Mixed model with lmer function

```
# With Random Effect
lmerModel <- lme4::lmer(H1, data=dfWith)</pre>
betaLmer <- lme4::fixef(lmerModel)</pre>
SE <- sqrt(diag(as.matrix(vcov(lmerModel))))[-1]</pre>
Sigm <- sqrt(stats::var(as.vector(betaLmer %*% t(X))))</pre>
A <- ggplot(dfWith, aes(x=X, y=Y, colour=G)) +
    geom_point(size=1.5) +
    geom_line(aes(y=predict(lmerModel), group=G), size=1.3) +
      theme_bw()+theme(legend.position="none")+
  annotate(geom='text', label=TeX("$\\gamma \\neq 0$"), y=3.7, x=.5)
# Without Random Effect
lmerModel.1 <- lme4::lmer(H1, data=dfWithout)</pre>
betaLmer.1 <- lme4::fixef(lmerModel.1)</pre>
SE.1 <- sqrt(diag(as.matrix(vcov(lmerModel.1))))[-1]
Sigm.1 <- sqrt(stats::var(as.vector(betaLmer.1 %*% t(X))))</pre>
B <- ggplot(dfWithout, aes(x=X, y=Y, colour=G)) +
    geom_point(size=1.5) +
    geom_line(aes(y=predict(lmerModel.1), group=G), size=1.3) +
  theme_bw()+theme(axis.title.y = element_blank())+
  annotate(geom='text', label=TeX("$\\gamma=0$"), y=3, x=.5)
cowplot::plot_grid(A, B, labels = c('',''))
```


Table 2: Mixed Model estimates with lmer()

	\hat{eta}	$SE(\hat{\beta})$	$\sigma(\hat{eta})$
$\gamma \neq 0$	0.5281	0.0226	0.8507
$\gamma = 0$	0.5244	0.0224	0.825

OLS

```
OLS <- function(Y, X){
  modelmat <- model.matrix(~.,cbind.data.frame(X=X))
  indexes_X <- which(substring(colnames(modelmat), 1, 1) == "X")
  modX_OLS <- modelmat[, c(1, indexes_X), drop = FALSE]
  Y <- as.numeric(Y)
  betaOLS <- solve(crossprod(modX_OLS))%*%(t(modX_OLS)%*%Y)
  k <- ncol(modX_OLS)
  n <- nrow(modX_OLS)

residuals <- as.matrix(Y - (betaOLS[1, , drop=FALSE]) - X * betaOLS[indexes_X, , drop=FALSE])
  RSS <- as.numeric(t(residuals)%*%residuals)
  Sigma2 <- as.numeric(RSS/(n-k))</pre>
```

```
Vb <- Sigma2*solve(t(X)%*% X)
Sigm <- sqrt(Vb)
OLSCOV <- 1/(n-k) * as.numeric(t(residuals)%*%residuals) * solve(t(modX_OLS)%*%modX_OLS)
SE <- sqrt(diag(OLSCOV))[-1]
return(list('betaOLS'=betaOLS[indexes_X, ,drop=FALSE], 'SE'=SE, 'Sigm'=Sigm))
}
options(warn=-1)
# With Random Effect
res <- OLS(dfWith$Y,X)
# Without Random Effect
res.1 <- OLS(dfWithout$Y,X)</pre>
```

Table 3: OLS estimates

	\hat{eta}	$SE(\hat{\beta})$	$\sigma(\hat{eta})$
$\gamma \neq 0$	0.6119	0.0508	0.8507
$\gamma = 0$	0.5244	0.0224	0.825

Monte Carlo

Simulating data

The following represents a simulate a random intercepts model obtenaid 500 Monte-Carlo replicates. The method follows the following simulation framework from gaussian distributions with or without the presence of random effects:

$$Y = \beta_0 + \beta X + \gamma G + \epsilon \tag{1}$$

with $\beta_0 = 2$, $\beta \in \{0.5, 2, 5, 10\}$ the fixed effect of $X \sim \mathcal{B}\binom{n}{0.5}$ with n = 500 the number total of samples, $\epsilon \sim \mathcal{N}(0, 0.25)$ the bias associated, the random effect of group $\gamma \sim \mathcal{N}(0, \sigma_{\gamma})$ if simulated with random effect with $\sigma_{\gamma} \in \{0.5, 5, 10, 20\}$) and $\gamma = 0$ if not random effect and the group $G \in \{1, \ldots, K\}$ with K = 10.

Running the Models

```
resOLS.1 <- resOLS.2 <- resMM <- matrix(0, sims, 3)
      y0lsWith <- y0lsWithout <- matrix(0, 500, sims)</pre>
      for(i in 1:sims){
        options(warn=-1)
        bias \leftarrow rnorm(n, sd = .25)
        Y_with <- intercept + fixefEffect * X + aleaEffect[G] + bias
        Y_without <- intercept + fixefEffect * X + bias</pre>
        modOLS.1 <- OLS(Y with, X)</pre>
        modOLS.2 <- OLS(Y_without,X)</pre>
        resOLS.1[i,] <- c(modOLS.1$betaOLS, modOLS.1$SE, modOLS.1$Sigm)
        resOLS.2[i,] <- c(modOLS.2$betaOLS, modOLS.2$SE, modOLS.2$Sigm)
        lmerModel.1 <- try({ lme4::lmer(Y_with ~ X + (1|G), REML = TRUE)}, silent = T)</pre>
        beta <- lme4::fixef(lmerModel.1)[-1]</pre>
        SE_b <- sqrt(diag(as.matrix(vcov(lmerModel.1))))[-1]</pre>
        Sigm <- sqrt(stats::var(as.vector(beta %*% t(X))))</pre>
        resMM[i,] <- c(beta, SE_b,Sigm)</pre>
        estimateAll[k,] <- c(fixefEffect, modOLS.1$betaOLS,modOLS.2$betaOLS,beta,</pre>
                           modOLS.1$SE,modOLS.2$SE,SE_b,
                           modOLS.1$Sigm,modOLS.2$Sigm,Sigm,sdUnit,i)
        yOlsWith[,i] <- Y_with; yOlsWithout[,i] <- Y_without</pre>
        k <- k+1
      yWithSimMean[,kk] <- rowMeans(yOlsWith)</pre>
      yWithoutSimMean[,kk] <- rowMeans(yOlsWithout)</pre>
      kk <- kk + 1
      M <- apply(resOLS.1, 2, mean)</pre>
      S <- apply(resOLS.1, 2, sd)
      H_{ols.1} \leftarrow matrix(c(M[1], S[1], M[2], S[2], M[3], S[3]), ncol = 2, byrow = TRUE)
      M <- apply(resOLS.2, 2, mean)</pre>
      S <- apply(resOLS.2, 2, sd)
      H_{ols.2} \leftarrow matrix(c(M[1], S[1], M[2], S[2], M[3], S[3]), ncol = 2, byrow = TRUE)
      M <- apply(resMM, 2, mean)</pre>
      S <- apply(resMM, 2, sd)
      H_m < -matrix(c(M[1], S[1], M[2], S[2], M[3], S[3]), ncol = 2, byrow = TRUE)
      dimnames(H_ols.1) <- dimnames(H_mm) <-</pre>
        dimnames(H_ols.2) <- list( c('Beta', 'Standard Error', 'Sigm'), c('mean', 'se'))
      resAllOLS.1[[as.character(paste0(fixefEffect,"_",sdUnit))]] <- H_ols.1
      resAllOLS.2[[as.character(pasteO(fixefEffect, " ",sdUnit))]] <- H ols.2</pre>
      resAllMM.1[[as.character(pasteO(fixefEffect,"_",sdUnit))]] <- H_mm
  }
}
estimateAll <- as.data.frame(estimateAll)</pre>
yWithSimMean <- as.data.frame(yWithSimMean)</pre>
yWithoutSimMean <- as.data.frame(yWithoutSimMean)</pre>
yWithSimMean <- cbind.data.frame(X,G,yWithSimMean)</pre>
yWithoutSimMean <- cbind.data.frame(X,G,yWithoutSimMean)</pre>
colnames(estimateAll) = c('fixefEffect','betaOLS.1','betaOLS.2','betaMM',
                            'seOLS.1', 'seOLS.2', 'seMM', 'sigmOLS.1',
```

Results

Plot estimation of β

```
dataPLOT$Bias = (rep(resSim$estimateAll[[1]],3)-dataPLOT$betaEs)/rep(resSim$estimateAll[[1]],3)
dataPLOT$betas \leftarrow gsub(0.5, "beta == 0.5",
                                   gsub(2, "beta == 2",
                                   gsub(10, "beta == 10",dataPLOT$betas)))
dataPLOT[dataPLOT$betas==5,'betas']="beta == 5"
dataPLOT$betas = factor(dataPLOT$betas, levels = c("beta == 0.5", "beta == 2",
                                                                                                                                                                 "beta == 5", "beta == 10"))
dataPLOT$Sigm <- gsub(0.5, "Sigma == 0.5",</pre>
                                   gsub(10, "Sigma == 10",
                                   gsub(20, "Sigma == 20",dataPLOT$Sigm)))
dataPLOT[dataPLOT$Sigm==5,'Sigm']="Sigma == 5"
dataPLOT$Sigm = factor(dataPLOT$Sigm, levels = c("Sigma == 0.5", "Sigma == 5",
                                                                                                                                                          "Sigma == 10", "Sigma == 20"))
ggplot(dataPLOT, aes(Method,betaEs))+
geom boxplot(position="dodge",aes(fill=Sigm))+
facet_wrap(~betas, scales = "free_y",labeller = label_parsed,ncol = 4)+
      ylab(TeX("$\\hat{\\beta}$"))+
      scale_x_discrete(labels=c(TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0},TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX("$ols_{\\gamma^0}),TeX
                                                                                         TeX("$mm_{\langle \gamma \neq 0}$"))+
      theme(strip.text.x = element text(size=12, face="bold"),
                         strip.text.y = element_text(size=12, face="bold",)) +
      scale_fill_discrete(name=TeX("$values\\ of\\ \\Sigma$"),
                                                                                labels=c(TeX("$\\Sigma=.5$"),TeX("$\\Sigma=5$"),
                                                                                         TeX("$\\Sigma=10$"),TeX("$\\Sigma=20$")))
```


Plot bias of etimates β

Table 4: OLS and Mixed Model estimates with 500 Monte-Carlo replicates

				$\Sigma=0.5$		$\Sigma=5$		$\Sigma=10$		$\Sigma=20$	
β	Model	γ	Estimate	μ	SE	μ	SE	μ	SE	μ	SE
eta=0.5	OLS	$\gamma \neq 0$	$egin{array}{c} \hat{eta} \ SE(\hat{eta}) \ \sigma(\hat{eta}) \end{array}$	0.5034 0.0525 0.036	0.0231 9×10^{-4} 6×10^{-4}	0.19 0.3673 0.2518	$0.0222 \\ 0.001 \\ 7 \times 10^{-4}$	0.3556 0.5655 0.3877	0.0216 0.001 7×10^{-4}	1.0861 1.0782 0.7392	$0.0212 \\ 0.001 \\ 7 \times 10^{-4}$
		$\gamma = 0$	$egin{array}{c} \hat{eta} \ SE(\hat{eta}) \ \sigma(\hat{eta}) \end{array}$	0.4974 0.0224 0.0153	0.0231 7×10^{-4} 5×10^{-4}	0.5006 0.0224 0.0153	$0.0222 \\ 7 \times 10^{-4} \\ 5 \times 10^{-4}$	0.4991 0.0224 0.0154	0.0216 7×10^{-4} 5×10^{-4}	0.5 0.0224 0.0154	$0.0212 \\ 7 \times 10^{-4} \\ 5 \times 10^{-4}$
	MM	$\gamma \neq 0$	$egin{array}{c} \hat{eta} \ SE(\hat{eta}) \ \sigma(\hat{eta}) \end{array}$	0.4974 0.0224 0.2485	$0.0232 \\ 7 \times 10^{-4} \\ 0.0116$	0.5007 0.0225 0.2501	$0.0224 \\ 7 \times 10^{-4} \\ 0.0112$	0.4992 0.0225 0.2494	$0.0218 \\ 7 \times 10^{-4} \\ 0.0109$	0.5 0.0225 0.2498	$0.0214 \\ 7 \times 10^{-4} \\ 0.0107$
eta=2	OLS	$\gamma eq 0$	$egin{array}{c} \hat{eta} \ SE(\hat{eta}) \ \sigma(\hat{eta}) \end{array}$	1.944 0.0543 0.0373	0.0223 9×10^{-4} 6×10^{-4}	2.2818 0.4712 0.323	$0.0221 \\ 0.001 \\ 7 \times 10^{-4}$	2.7538 0.8782 0.602	0.0218 0.001 7×10^{-4}	1.1556 1.8609 1.2758	0.022 0.001 7×10^{-4}
		$\gamma = 0$	$egin{array}{c} \hat{eta} \ SE(\hat{eta}) \ \sigma(\hat{eta}) \end{array}$	2.0002 0.0224 0.0154	0.0223 7×10^{-4} 5×10^{-4}	1.9999 0.0224 0.0154	$0.0221 \\ 7 \times 10^{-4} \\ 5 \times 10^{-4}$	2.0006 0.0224 0.0154	$0.0218 7 \times 10^{-4} 5 \times 10^{-4}$	2.0013 0.0224 0.0153	$0.022 \\ 7 \times 10^{-4} \\ 5 \times 10^{-4}$
	MM	$\gamma \neq 0$	$egin{array}{c} \hat{eta} \ SE(\hat{eta}) \ \sigma(\hat{eta}) \end{array}$	2 0.0225 0.9992	$0.0225 \\ 7 \times 10^{-4} \\ 0.0112$	1.9999 0.0225 0.9992	$0.0222 \\ 7 \times 10^{-4} \\ 0.0111$	2.0007 0.0225 0.9995	$0.0218 \\ 7 \times 10^{-4} \\ 0.0109$	2.0011 0.0225 0.9998	$0.0219 \\ 7 \times 10^{-4} \\ 0.011$
$\beta = 5$	OLS	$\gamma \neq 0$	$egin{array}{c} \hat{eta} \ SE(\hat{eta}) \ \sigma(\hat{eta}) \end{array}$	4.9873 0.05 0.0342	0.0218 9×10^{-4} 6×10^{-4}	5.1666 0.3746 0.2568	$0.0221 \\ 0.001 \\ 7 \times 10^{-4}$	4.5111 1.1093 0.7605	$0.0236 \\ 0.0011 \\ 7 \times 10^{-4}$	5.4662 1.9867 1.362	$0.0213 \\ 0.001 \\ 7 \times 10^{-4}$
		$\gamma = 0$	$egin{array}{c} \hat{eta} \ SE(\hat{eta}) \ \sigma(\hat{eta}) \end{array}$	5.0004 0.0224 0.0153	0.0218 7×10^{-4} 5×10^{-4}	4.9988 0.0224 0.0154	0.0221 7×10^{-4} 5×10^{-4}	4.9993 0.0224 0.0154	0.0236 7×10^{-4} 5×10^{-4}	5.0011 0.0224 0.0154	0.0213 7×10^{-4} 5×10^{-4}
	MM	$\gamma \neq 0$	$egin{array}{c} \hat{eta} \ SE(\hat{eta}) \ \sigma(\hat{eta}) \end{array}$	5.0003 0.0225 2.4981	$0.022 \\ 7 \times 10^{-4} \\ 0.011$	4.9987 0.0225 2.4973	$0.0221 \\ 7 \times 10^{-4} \\ 0.011$	4.9993 0.0225 2.4976	$0.0235 \\ 7 \times 10^{-4} \\ 0.0117$	5.0012 0.0225 2.4986	$0.0212 \\ 7 \times 10^{-4} \\ 0.0106$
$\beta=10$	OLS	$\gamma eq 0$	$egin{array}{c} \hat{eta} \ SE(\hat{eta}) \ \sigma(\hat{eta}) \end{array}$	9.9712 0.0543 0.0372	$0.0223 \\ 0.001 \\ 7 \times 10^{-4}$	10.7226 0.5342 0.3663	0.022 0.001 7×10^{-4}	9.7348 0.608 0.4168	$0.0218 \\ 0.001 \\ 7 \times 10^{-4}$	10.1691 1.4896 1.0212	$0.0225 \\ 0.001 \\ 7 \times 10^{-4}$
		$\gamma = 0$	$egin{array}{c} \hat{eta} \ SE(\hat{eta}) \ \sigma(\hat{eta}) \end{array}$	9.9982 0.0225 0.0154	0.0223 7×10^{-4} 5×10^{-4}	10.0012 0.0224 0.0153	0.022 7×10^{-4} 5×10^{-4}	9.9999 0.0224 0.0154	0.0218 7×10^{-4} 5×10^{-4}	9.9998 0.0224 0.0153	0.0225 7×10^{-4} 5×10^{-4}
	MM	$\gamma eq 0$	$egin{array}{c} \hat{eta} \ SE(\hat{eta}) \ \sigma(\hat{eta}) \end{array}$	9.9981 0.0226 4.9951	$0.0223 \\ 7 \times 10^{-4} \\ 0.0111$	10.0012 0.0225 4.9966	$0.0221 \\ 7 \times 10^{-4} \\ 0.011$	9.9999 0.0225 4.996	$0.0219 \\ 7 \times 10^{-4} \\ 0.0109$	9.9999 0.0225 4.9959	$0.0225 \\ 7 \times 10^{-4} \\ 0.0112$

Running models on the average of the simulations

```
options(warn=-1)
colnames(resSim$yWithSimMean) <- colnames(resSim$yWithoutSimMean)<-c('X','G',</pre>
                                                                           names(resSim$resAllOLS))
resMeanSim <- matrix(0, nrow = length(colnames(resSim$yWithSimMean[,-c(1:2)])),9)
X <- resSim$yWithSimMean$X</pre>
G <- resSim$yWithSimMean$G</pre>
k=1
for (i in colnames(resSim$yWithSimMean[,-c(1:2)])) {
  lmerModel <- try({ lme4::lmer(H1,</pre>
                                  data = cbind.data.frame(Y=resSim$yWithSimMean[,i],
                                                             X=X,
                                                             G=G),
                                  REML = TRUE)}, silent = T)
  beta <- lme4::fixef(lmerModel)[-1]</pre>
  SE <- sqrt(diag(as.matrix(vcov(lmerModel))))[-1]</pre>
  Sigm <- sqrt(stats::var(as.vector(beta %*% t(X))))</pre>
  resMeanSim[k,] <- c(unlist(OLS(resSim$yWithSimMean[,i], X)),</pre>
                        unlist(OLS(resSim$yWithoutSimMean[,i], X)),
                        beta, SE, Sigm)
  k <- k+1
}
resMeanSim <- as.data.frame(resMeanSim)</pre>
```

Table 5: OLS and Mixed Model estimates with average 500 Monte-Carlo replicates

		$OLS_{\gamma eq 0}$				$OLS_{\gamma=0}$		$MM_{\gamma eq 0}$		
β	Σ	Â	$SE(\hat{eta})$	$\sigma(\hat{eta})$	\hat{eta}	$SE(\hat{eta})$	$\sigma(\hat{eta})$	\hat{eta}	$SE(\hat{eta})$	$\sigma(\hat{eta})$
$\beta = 0.5$	$\Sigma = 0.5$	0.5034	0.0475	0.0326	0.4974	0.001	7×10^{-4}	0.4974	0.001	0.2485
	$\Sigma = 5$	0.19	0.3666	0.2513	0.5006	0.001	7×10^{-4}	0.5007	0.001	0.2501
	$\Sigma = 10$	0.3556	0.565	0.3874	0.4991	0.001	7×10^{-4}	0.4992	0.001	0.2494
	$\Sigma = 20$	1.0861	1.0779	0.739	0.5	0.001	7×10^{-4}	0.5	0.001	0.2498
$\beta = 2$	$\Sigma = 0.5$	1.944	0.0495	0.0339	2.0002	0.001	7×10^{-4}	2.0002	0.001	0.9993
	$\Sigma = 5$	2.2818	0.4707	0.3227	1.9999	0.0011	7×10^{-4}	1.9999	0.0011	0.9992
	$\Sigma = 10$	2.7538	0.8779	0.6018	2.0006	0.001	7×10^{-4}	2.0007	0.001	0.9995
	$\Sigma = 20$	1.1556	1.8608	1.2757	2.0013	0.001	7×10^{-4}	2.0011	0.001	0.9998
$\beta = 5$	$\Sigma = 0.5$	4.9873	0.0447	0.0306	5.0004	0.001	7×10^{-4}	5.0003	0.001	2.4982
	$\Sigma = 5$	5.1666	0.3739	0.2563	4.9988	0.0011	7×10^{-4}	4.9987	0.0011	2.4973
	$\Sigma = 10$	4.5111	1.109	0.7603	4.9993	0.0011	7×10^{-4}	4.9993	0.0011	2.4976
	$\Sigma = 20$	5.4662	1.9866	1.3619	5.0011	0.001	7×10^{-4}	5.0012	0.001	2.4986
$\beta = 10$	$\Sigma = 0.5$	9.9712	0.0495	0.0339	9.9982	0.001	7×10^{-4}	9.9982	0.001	4.9951
	$\Sigma = 5$	10.7226	0.5338	0.3659	10.0012	0.001	7×10^{-4}	10.0012	0.001	4.9966
	$\Sigma = 10$	9.7348	0.6076	0.4165	9.9999	0.001	7×10^{-4}	9.9999	0.001	4.996
	$\Sigma = 20$	10.1691	1.4894	1.0211	9.9998	0.001	7×10^{-4}	9.9999	0.001	4.9959

Visualization of the models

```
dataMod <- melt(resSim$yWithSimMean, id.vars=c("X","G"),value.name = "Y")</pre>
dataMod$variable = recode_factor(dataMod$variable,
              "0.5_0.5" = "beta = 0.5 ~ ';' ~ Sigma == 0.5",
              "0.5 5"="beta == 0.5 ~ ';' ~ Sigma == 5","0.5 10"="beta == 0.5 ~ ';' ~ Sigma == 10",
              "0.5_20"="beta == 0.5 ~ ';' ~ Sigma == 20",
              "2_0.5"="beta == 2 ~ ';' ~ Sigma == 0.5", "2_5"="beta == 2 ~ ';' ~ Sigma == 5",
              "2_10"="beta == 2 ~ ';' ~ Sigma == 10",
              "2_20"="beta == 2 ~ ';' ~ Sigma == 20","5_0.5"="beta == 5 ~ ';' ~ Sigma == 0.5",
              "5 5"="beta == 5 ~ ';' ~ Sigma == 5","5 10"="beta == 5 ~ ';' ~ Sigma == 10",
              5_{20} = beta == 5 ~ ; ~ Sigma == 20,
              "10_0.5"="beta == 10 ~ ';' ~ Sigma == 0.5",
              "10_5"="beta == 10 ~ ';' ~ Sigma == 5","10_10"="beta == 10 ~ ';' ~ Sigma == 10",
              "10 20"="beta == 10 ~ ';' ~ Sigma == 20")
ggplot(data = dataMod, aes(x = X, y = Y)) +
   geom_point(aes(X, Y), alpha = 0.3) +
     geom_smooth(formula = as.formula(y~x), aes(x = X, y = Y),
                method = "lm", colour="#FC4E07", fullrange = TRUE, se = TRUE)+
  ggpmisc::stat_poly_eq(formula = as.formula(y~x),
             aes(label=paste(..eq.label.., ..rr.label.., sep = "~~~")),
             parse = TRUE, label.x.npc = "center", size = 3.45)+
 theme(strip.text.x = element_text(size=12, face="bold"),
strip.text.y = element_text(size=12, face="bold",))+theme_bw()+
 facet_wrap(~ variable, ncol=4, scales = "free_y",labeller = label_parsed)
```



```
dataMod <- melt(resSim$yWithoutSimMean, id.vars=c("X","G"),value.name = "Y")</pre>
dataMod$variable <- recode factor(dataMod$variable,
              "0.5_0.5"="beta == 0.5 ~ ';' ~ Sigma == 0.5",
              "0.5_5"="beta == 0.5 ~ ';' ~ Sigma == 5","0.5_10"="beta == 0.5 ~ ';' ~ Sigma == 10",
              "0.5_20"="beta == 0.5 ~ ';' ~ Sigma == 20",
              "2_0.5"="beta == 2 ~ ';' ~ Sigma == 0.5", "2_5"="beta == 2 ~ ';' ~ Sigma == 5",
              "2_10"="beta == 2 ~ ';' ~ Sigma == 10",
              "2_20"="beta == 2 ~ ';' ~ Sigma == 20","5_0.5"="beta == 5 ~ ';' ~ Sigma == 0.5",
              "5_5"="beta == 5 ~ ';' ~ Sigma == 5","5_10"="beta == 5 ~ ';' ~ Sigma == 10",
              "5_20"="beta == 5 ~ ';' ~ Sigma == 20",
              "10_0.5" = "beta == 10 ~ ';' ~ Sigma == 0.5",
              "10_5"="beta == 10 ~ ';' ~ Sigma == 5","10_10"="beta == 10 ~ ';' ~ Sigma == 10",
              "10_20"="beta == 10 ~ ';' ~ Sigma == 20")
ggplot(data = dataMod, aes(x = X, y = Y)) +
   geom_point(aes(X, Y), alpha = 0.3)+
     geom_smooth(formula = as.formula(y~x), aes(x = X, y = Y),
                method = "lm", colour="#FC4E07", fullrange = TRUE, se = TRUE)+
  ggpmisc::stat_poly_eq(formula = as.formula(y~x),
             aes(label=paste(..eq.label.., ..rr.label.., sep = "~~~")),
```

```
parse = TRUE, label.x.npc = "center", size = 3.45)+
theme(strip.text.x = element_text(size=12, face="bold"),
strip.text.y = element_text(size=12, face="bold",))+theme_bw()+
facet_wrap(~ variable, ncol=4, scales = "free_y",labeller = label_parsed)
```



```
colnames(resSim$yWithSimMean)[10] <- "Y"
lmerModel <- lme4::lmer(H1, data=resSim$yWithSimMean)
ab_lines <- coef(lmerModel)[["G"]] %>%
    tibble::rownames_to_column("G") %>%
    rename(intercept = `(Intercept)`)
ab_lines$G <- factor(ab_lines$G, levels=1:K)
ggplot(resSim$yWithSimMean,aes(x = X, y = Y, colour=G)) +
    geom_point() +
    geom_line(aes(y=predict(lmerModel), group=G)) +
    geom_line(colour="red",aes(y=predict(lmerModel,re.form=NA),group=G))+
    theme_bw()+theme(legend.position="none")</pre>
```


CCDF application

Code

```
n_Y_all <- length(Y)</pre>
Y <- as.numeric(Y)
if (space_y){
  y \leftarrow seq(ifelse(length(which(Y==0))==0,min(Y),min(Y[-which(Y==0)])),max(Y[-which.max(Y)]),length.org.)
else{
  y <- sort(unique(Y))
}
n_y_unique <- length(y)</pre>
ind_X <- which(substring(colnames(modelmat),1,1)=="X")</pre>
betaOLS <- matrix(NA,10,p_X)</pre>
betaMM <- matrix(NA,10,p_X)</pre>
seuils <- matrix(NA,10,p_X)</pre>
SEsOLS <- matrix(NA,10,p_X)</pre>
SEsMM <- matrix(NA,10,p_X)</pre>
indi_pi <- matrix(NA,n_Y_all,(n_y_unique-1))</pre>
H1 <- as.formula("Y ~ X + (1|groups)")</pre>
dataPlots = c()
if (length(y)==11){
  for (i in 1:(n_y_unique-1)){
    seuils[i,] <- y[i]</pre>
    indi_Y <- 1*(Y<=y[i])
    indi_pi[,i] <- indi_Y</pre>
    reg <- OLS(indi_Y,modelmat[,-1])</pre>
    betaOLS[i,] <- round(reg$betaOLS,4)</pre>
    SEsOLS[i,] <- round(reg$SE,4)</pre>
    dataMix <- cbind.data.frame(X=X$X1,groups=sample_group)</pre>
```

```
dataGlm <- cbind.data.frame(Y = indi_Y, dataMix)</pre>
    glm1 <- try({ lme4::lmer(H1, data = dataGlm, REML = TRUE)}, silent = T)</pre>
    if(class(glm1) != "try-error") {
      betaMM[i,] <- round(lme4::fixef(glm1)[ind_X],4)</pre>
      SEsMM[i,] <- round(sqrt(diag(as.matrix(vcov(glm1))))[-1],4)</pre>
    }
    if(plt){
      if(i%in%c(1,7,8,9)){
      dataPlots <- append(dataPlots,dataGlm$Y)</pre>
      }
    }
  }
  betaOLS <- as.vector(betaOLS)</pre>
  betaMM <- as.vector(betaMM)</pre>
  SEsOLS <- as.vector(SEsOLS)</pre>
  SEsMM <- as.vector(SEsMM)</pre>
  if(plt)
    dataPlots <- cbind.data.frame(Y = dataPlots, X=rep(X$X1,4), G=rep(sample_group,4), Ind=rep(rep(c(1,7
    plts <- ggplot(dataPlots) +</pre>
        geom_boxplot(aes(x=X, y=Y, fill = G)) +
        scale_x_discrete(expand = c(0, 0.5)) +
        theme_bw()+
      facet_wrap(~Ind,scales = 'free_y',ncol = 4)
    print(plts)
  return(c(betaOLS,betaMM,SEsOLS,SEsMM))
}
```

With alea effect

```
Y <- dfWith$Y
X <- data.frame(X=dfWith$X)
G <- data.frame(G = dfWith$G)

res <- CCDF(Y, X, sample_group = G,number_y = 11,space_y = TRUE,plt = TRUE)</pre>
```


Without alea effect

```
Y <- dfWithout$Y

X <- data.frame(X=dfWithout$X)

G <- data.frame(G = dfWithout$G)

res <- CCDF(Y, X, sample_group = G,number_y = 11,space_y = TRUE)

ccdfRes <- data.frame(indBeta=factor(rep(1:10,2)),Estimate=res[1:20],Model=factor(rep(c("OLS","MM"),eacd

ggplot(ccdfRes, aes(indBeta, Estimate, group=Model, colour=Model)) +

    geom_line(aes(linetype=Model), size=1) +

geom_point(aes(shape=Model),size=4)+

scale_x_discrete(limits=1:10)+

labs(x = TeX("$W$"),y=TeX("$\\hat{\\beta}\"))+

theme(strip.text.x = element_text(size=12, face="bold"),

    strip.text.y = element_text(size=12, face="bold"))+

theme_bw()
```


CCDF with Monte carlo with alea effect

```
simCCDF \leftarrow function (intercept=2, fixefEffects = c(.5,2,5,10), sds = c(.5,5,10,20),
                     K=10, nK=50, sims=5000){
  estimateAll <- matrix(NA, length(fixefEffects)*length(sds)*sims, 42)</pre>
  resCCDFprime <- list()</pre>
  yWithSimMean <- yWithoutSimMean <- matrix(NA, 500, length(fixefEffects)*length(sds))
  n <- K * nK
 G \leftarrow rep(1:K, each = nK)
  X <- rbinom(n,size=1,prob = .5)</pre>
  k = 1
  kk = 1
  for (fixefEffect in fixefEffects) {
    for (sdUnit in sds) {
        aleaEffect <- rnorm(K, sd = sdUnit)</pre>
        resCCDF <- matrix(0, sims, 20)</pre>
        y0lsWith <- y0lsWithout <- matrix(0, 500, sims)</pre>
        for(i in 1:sims){
```

```
options(warn=-1)
        bias \leftarrow rnorm(n, sd = .25)
        Y_with <- intercept + fixefEffect * X + aleaEffect[G] + bias</pre>
        Y_without <- intercept + fixefEffect * X + bias</pre>
        CCDFRES.1 <- CCDF(Y = Y_with, X = data.frame(X=factor(X,levels = 0:1)),</pre>
                            sample_group = data.frame(G=factor(G,levels = 1:10)),number_y = 11,space_y
        \# CCDFRES.2 <- CCDF(Y = Y_without, X = data.frame(X=factor(X,levels = 0:1)),
                              sample\_group = data.frame(G=factor(G, levels = 1:10)), number\_y = 11, space\_
        if(any(is.na(CCDFRES.1[1:20])))
          next
        resCCDF[i,] = CCDFRES.1[1:20]
        estimateAll[k,] <- c(CCDFRES.1,sdUnit,i)</pre>
        yOlsWith[,i] <- Y_with; yOlsWithout[,i] <- Y_without</pre>
        k <- k+1
      }
      resCCDF <- resCCDF[stats::complete.cases(resCCDF),]</pre>
      yWithSimMean[,kk] <- rowMeans(yOlsWith)</pre>
      yWithoutSimMean[,kk] <- rowMeans(yOlsWithout)</pre>
      kk <- kk + 1
      M <- apply(resCCDF, 2, mean)</pre>
      S <- apply(resCCDF, 2, sd)
      resCCDFprime[[as.character(paste0(fixefEffect,"_",sdUnit))]] <- M</pre>
  }
}
estimateAll <- as.data.frame(estimateAll)</pre>
yWithSimMean <- as.data.frame(yWithSimMean)</pre>
yWithoutSimMean <- as.data.frame(yWithoutSimMean)</pre>
yWithSimMean <- cbind.data.frame(X,G,yWithSimMean)</pre>
yWithoutSimMean <- cbind.data.frame(X,G,yWithoutSimMean)</pre>
return (list("estimateAll"= estimateAll[stats::complete.cases(estimateAll),],
              "resCCDFprime"= resCCDFprime,
```

```
"yWithSimMean" = yWithSimMean[stats::complete.cases(yWithSimMean),],
               'yWithoutSimMean'= yWithoutSimMean[stats::complete.cases(yWithoutSimMean),]))
}
resSimCCDF <- simCCDF(sims = 500)</pre>
dataPlot <- data.frame(indBeta=factor(rep(rep(1:10,2),length(names(resSimCCDF$resCCDFprime)))),</pre>
                       Values=unlist(resSimCCDF$resCCDFprime, use.names =FALSE), Parms=rep(names(resSimCC
                      Meth = rep(rep(c("OLS","MM"),each=10),length(names(resSimCCDF$resCCDFprime))))
dataPlot$Parms <- recode_factor(dataPlot$Parms,</pre>
              "0.5_0.5" = "beta == 0.5 ~ ';' ~ Sigma == 0.5",
              "0.5_5"="beta == 0.5 ~ ';' ~ Sigma == 5","0.5_10"="beta == 0.5 ~ ';' ~ Sigma == 10",
              "0.5_20"="beta == 0.5 ~ ';' ~ Sigma == 20",
              "2 0.5"="beta == 2 ~ ';' ~ Sigma == 0.5", "2 5"="beta == 2 ~ ';' ~ Sigma == 5",
              "2_10"="beta == 2 ~ ';' ~ Sigma == 10",
              "2 20"="beta == 2 ~ ';' ~ Sigma == 20","5 0.5"="beta == 5 ~ ';' ~ Sigma == 0.5",
              "5 5"="beta == 5 ~ ';' ~ Sigma == 5","5 10"="beta == 5 ~ ';' ~ Sigma == 10",
              "5_20"="beta == 5 ~ ';' ~ Sigma == 20",
              "10 0.5"="beta == 10 \sim ';' \sim Sigma == 0.5",
              "10_5"="beta == 10 ~ ';' ~ Sigma == 5","10_10"="beta == 10 ~ ';' ~ Sigma == 10",
              "10_20"="beta == 10 ~ ';' ~ Sigma == 20")
 ggplot(dataPlot, aes(indBeta, Values, group=Meth, colour=Meth)) +
     geom_line(aes(linetype=Meth), size=1) +
  geom_point(aes(shape=Meth), size=4)+
   scale_x_discrete(limits=1:10)+
  labs(x = TeX("$W$"), y=TeX("$\\hat{\}"))+
  theme(strip.text.x = element_text(size=12, face="bold"),
        strip.text.y = element_text(size=12, face="bold"))+
  theme_bw()+
  facet_wrap(~Parms,scales = 'free_y',ncol = 4,labeller = label_parsed)
```

