

Pokémon Type Classification

Joseph Laurel

What are Pokémon?

 Collectively refers to all 898 'species' of fictional creatures from the franchise of the same name

What are Pokémon?

- In the video game franchise, Pokémon are captured and then subsequently used to battle other individuals (real and computer) with their own Pokémon
 - Battles are generally in teams of 6 (often times unique) Pokémon.
 - Using attacks to defeat your opponent's Pokémon
- Defeating another 'Pokémon trainer' happens when any number of your Pokémon are still standing while their Pokémon are all defeated

Pokémon Types

- Many factors go into Pokémon battle calculations, but one of the most defining factors of Pokémon battles is type advantages
- Allows your attacks to be 2x effective

Pokémon Types

- There are currently 18 types of Pokémon, each with their own strengths and weaknesses
- Pokémon can have up to TWO types!

Project Goal

- Can a model determine the type(s) of a Pokémon from an image?
- Can we then use this model to alert a player who has no knowledge of Pokémon when the opponent's Pokémon is a 'threat'?
- Utilize a convolutional neural network to solve this multi-label classification problem and maximize precision and recall when determining Pokémon type(s)

The Data

- All images hosted on https://pokemondb.net/pokedex/national
- 898 pokemon
- 8360 colored images were scraped off of the website (taken from in-game sprites) and used, along with their names and type labels to create data frame
- Most images were 128x128, a select few 'official artwork' images were larger and not square

Data Processing Pipeline (EDA)

- Images were transparent and converted into numpy arrays by utilizing Pillow (Python Imaging Library)
- Saved into folders corresponding to their appropriate types
- Labels were generated by cross-referencing image names with a dataframe containing Pokémon names and labels
- Labels were one hot encoded before modeling
- Excluded 'shiny' Pokémon in web scraping process as these are purposely colored differently and appear at a 1/8192 chance

	ID	Name	Primary Type	Secondary Type	Image	Additional Images
0	#001	bulbasaur	Grass	Poison	https://img.pokemondb.net/sprites/bank/normal/	['https://img.pokemondb.net/artwork/bulbasaur
1	#002	ivysaur	Grass	Poison	https://img.pokemondb.net/sprites/bank/normal/	['https://img.pokemondb.net/artwork/ivysaur.jp
2	#003	venusaur	Grass	Poison	https://img.pokemondb.net/sprites/bank/normal/	['https://img.pokemondb.net/artwork/venusaur.j
3	#004	charmander	Fire	NaN	https://img.pokemondb.net/sprites/bank/normal/	['https://img.pokemondb.net/artwork/charmander
4	#005	charmeleon	Fire	NaN	https://img.pokemondb.net/sprites/bank/normal/	['https://img.pokemondb.net/artwork/charmeleon

Type Distribution

Water types were most prevalent, while Ice types were least common

Image Distribution

Water types were still most prevalent, while Ice types were still least common

Data Processing Pipeline (EDA)

- Utilized train-test split to split into training, testing and validation set:
 - Training Set: 5350 images
 - Testing Set: 1338 images
 - Validation Set: 1672 images
- These were split and stratified with the same random state, 20% split, and class weights were considered when training

Metric Justification

- Why precision and recall?
 - Goal is to successfully alert a user and advise switching Pokémon when the model recognizes a Pokémon that poses a threat
 - High <u>precision</u> will help determine bad switches, or falsely switching
 Pokémon when there is no threat
 - High <u>recall</u> will help determine bad 'stay-ins' or failing to identify a threat that most likely results in your Pokémon being defeated
 - Recall is VITAL in this model as reviving Pokémon can cost real life currency to a Pokémon GO player

CNN Hyperparameters

- Input Shape: (256,256,3)
- Kernel Size: (3,3)
- Pool Size: (2,2)
- Dropout: 0.25/0.50
- Activation Layer: ReLu
- Final Activation Layer: Sigmoid
- L2 Regularizer: 0.01
- Batch Size: 16
- Class Weights: Calculated based on ratios
- Optimizer: Adam
- Loss: Binary Cross-entropy
- Metrics: (Accuracy), Precision, Recall (Threshold = 0.4)

CNN Structure

Model: "sequential_2"					
Layer (type)	Output Shape	Param #			
conv2d_4 (Conv2D)	(None, 254, 254, 16)	448			
max_pooling2d_4 (MaxPooling2	(None, 127, 127, 16)	0			
dropout_6 (Dropout)	(None, 127, 127, 16)	0			
conv2d_5 (Conv2D)	(None, 125, 125, 32)	4640			
max_pooling2d_5 (MaxPooling2	(None, 62, 62, 32)	0			
dropout_7 (Dropout)	(None, 62, 62, 32)	0			
conv2d_6 (Conv2D)	(None, 60, 60, 64)	18496			
max_pooling2d_6 (MaxPooling2	(None, 30, 30, 64)	0			
dropout_8 (Dropout)	(None, 30, 30, 64)	0			
conv2d_7 (Conv2D)	(None, 28, 28, 64)	36928			
max_pooling2d_7 (MaxPooling2	(None, 14, 14, 64)	0			
dropout_9 (Dropout)	(None, 14, 14, 64)	0			
flatten_1 (Flatten)	(None, 12544)	0			
dense_3 (Dense)	(None, 128)	1605760			
dropout_10 (Dropout)	(None, 128)	0			
dense_4 (Dense)	(None, 64)	8256			
dropout_11 (Dropout)	(None, 64)	0			
dense_5 (Dense)	(None, 18)	1170			

Total params: 1,675,698 Trainable params: 1,675,698 Non-trainable params: 0

- Our model structure is shown to the left:
 - 4 Convolutional Layers
 - Pooling
 - Dropout = 0.25
 - ReLu
 - 3 Dense Layers
 - Dropout = 0.5
 - ReLu and Sigmoid

Model Results

- Baseline predictor
 - Dummy classifier using stratified strategy
- Results:

Model	Precision	Recall
Baseline	11.72%	11.85%
Our CNN Model	83.90%	48.63%

Model Results

Model Performance after 200 epochs:

Data	Precision	Recall
Training Data	99.18%	85.40%
Validation Data	83.50%	45.59%
Testing Data	83.90%	48.63%

The 'Good'

Ghost 88.2% Poison 86.9% Dark 8.46% Dragon 2.26% Grass 1.47%

Ghost

Poison

Dragon

Flying

Dragon 95.9% Flying 95.1% Dark 0.615% Ground 0.387% Water 0.362%

The 'Bad'

Dark

Fighting

Fighting 54.8% Psychic 17.9% Dark 3.51% Fire 3.19% Steel 2.24%

The 'Ugly'

Bug 27.0% Fire 13.3% Psychic 4.12% Normal 3.67%

Flying 85.0%

Water

Steel 46.7% Bug 22.3% Psychic 20.0% Electric 19.4% Water 13.9%

Use Case?

- Pokemon GO application
- Roughly \$0.30 to revive a Pokémon
 - Certain amount of revives are awarded for playing
- If our model can identify threats at 36.78% higher recall than the baseline, we could potentially save a player up to \$0.11 when the opposing Pokémon poses a threat to the user

Additional Steps

- IMPROVE THE MODEL
- Repeat with more images of Pokémon:
 - More images without 'clean' backgrounds
 - Different angles, fan-made drawings
- Look into creating an ROC curve by adjusting thresholds
- Find best/worst performing individual labels
- Apply same modeling pipeline to many other image classification problems
- For Detailed Analysis: https://github.com/jtlaurel/Pokemon-Type-Classifier

Any Questions?

Github: github.com/jtlaurel Email: jtlaurel46@gmail.com

