

# Ministry of Higher Education and Research Higher School of Computer Science 08 May 1945 - Sidi Bel Abbes

Second Year Second Cycle - Artificial Intelligence and Data Science

Lab 02 & 03: Feature Extraction & Word embedding

Presented By: FELLAH Abdelnour.

Date: April 26, 2024

#### 1 Introduction

In this report we will explore and discuss the results of different feature extraction and word embedding techniques on the task of text classification more specifically, **author recognition** task on the **spooky dataset**, we will as well discuss our attempts to improve the obtained results.

# 2 Lab 02: Feature extraction & word embedding

In this section of the report we're going to go through all what we tried in lab 02 and discuss the results we've got.

#### 2.1 TEXT PREPROCESSING

For the preprossessing of the dataset we applies the following normalization steps:

- Removing repetitive characters and misspelled words.
- Normalizing unicode characters.
- handle special entries (emails,html tags and urls).
- Captilization: the text was transformed to lower case.
- Removing punctuations.
- Stop words removal.
- Stemming.

## 2.2 TOKENIZATION & VECTORIZATION TECHNIQUES

We tried all the combinations of the following tokenization techniques:

- · Space based.
- Rule based.
- Word piece.

and the following vectorization methods:

- Bag of words.
- Tf-Idf.
- · Binary Bag of words.

#### 2.3 RESULTS OF DIFFERENT TOKENIZATION & VECTORIZATION METHODS

To compare the different preprocessing techniques, we trained a Multi layer perceptron with one hidden layer of size 8 and a **relu** activation function using Adam optimizer with learning rate equals to 0.01 and weight decay equals to 0.5, the results of the validation set are presented in the following table:

| Tokenization | Vectorization       | Accuracy | F1 score | Precision | Recall |
|--------------|---------------------|----------|----------|-----------|--------|
| Space Based  | Bag of words        | 0.794    | 0.792    | 0.798     | 0.788  |
| Space Based  | Tf-Idf              | 0.807    | 0.805    | 0.811     | 0.801  |
| Space Based  | Binary Bag of words | 0.791    | 0.789    | 0.796     | 0.786  |
| Word Piece   | Bag of words        | 0.769    | 0.768    | 0.774     | 0.764  |
| Word Piece   | Tf-Idf              | 0.777    | 0.775    | 0.788     | 0.768  |
| Word Piece   | Binary Bag of words | 0.775    | 0.773    | 0.778     | 0.770  |
| Rule based   | Bag of words        | 0.791    | 0.789    | 0.799     | 0.783  |
| Rule based   | Tf-Idf              | 0.799    | 0.798    | 0.800     | 0.798  |
| Rule based   | Binary Bag of words | 0.789    | 0.786    | 0.798     | 0.780  |

Table 1: The results of applying different tokenization and vectorization techniques

We notice that Tf-Idf with space based tokenization gave the best results across all the metrics.

### 2.4 RESULTS OF WORD EMBEDDING TECHNIQUES

In this section we will presents the results of four different word embedding techniques that were used to calculate a sentence embedding for each document in the dataset then this embedding were used to train an MLP classifier with a one hidden layer of size 32 and relu activation function

| Method                  | Accuracy | F1 score | Precision | Recall |
|-------------------------|----------|----------|-----------|--------|
| Continuous Bag Of Words | 0.536    | 0.531    | 0.532     | 0.530  |
| Skip n-grams            | 0.694    | 0.694    | 0.694     | 0.694  |
| Glove                   | 0.403    | 0.191    | 0.134     | 0.333  |
| Fast Text               | 0.595    | 0.584    | 0.600     | 0.581  |

Table 2: The results of using different word embedding methods

The results are generally very poor, but skip-gram gave better results than the rest of the word embedding methods.

#### 3 Lab 03: Improving the results

To improve the results we kept the same preprocessing steps and used space based tokenization, however instead of relaying on ready-to-use embedding vectors or some feature extraction technique we used an embedding layer to learn the representation of the words in our vocabulary as we're training the model, also the a dropout layer was added after the mean layer, and its value was tuned manually.



Figure 1: The model's visual representation

### 3.1 Model's parameters

| Learning rate       | 0.001 |
|---------------------|-------|
| Epochs              | 100   |
| Embedding dimension | 64    |
| Batch size          | 256   |
| Dropout rate        | 0.35  |

Table 3: Hyper-parameters

#### 3.2 LEARNING GRAPHS



#### 3.3 RESULTS

The values of the different metrics using the weights on the epoch with best validation accuracy gave the following results :

| Accuracy | F1 score | Precision | Recall |
|----------|----------|-----------|--------|
| 0.822    | 0.821    | 0.826     | 0.818  |

Table 4: The results of new architecture.

We notice that the results for all the metrics are better than the results obtained in the previous lab.

### 4 CONCLUSION

In this tow labs we explored the main feature extraction and word embedding techniques as well as the importance of experimenting with them, and how can a deep learning model act as a feature extractor and classifier at the same time and how can these problem-oriented features help in improving the performance on a given task.