### **Importing Necessary Liabrary**

#### In [67]:

```
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt
from sklearn.preprocessing import LabelEncoder
from mlxtend.plotting import plot_decision_regions
from sklearn.preprocessing import StandardScaler
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import confusion_matrix
from matplotlib.colors import ListedColormap
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
from sklearn.linear model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import cross_val_predict
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
```

# **Business problem**

Prepare a model on salary data using Naive bayes algorithm

# Data collection and description

# Importing dataset

```
In [14]:
```

```
train data = pd.read csv("SalaryData Train.csv")
test_data = pd.read_csv("SalaryData_Test.csv")
```

# In [15]:

train\_data.head()

# Out[15]:

|   | age | workclass            | education | educationno                        | onno maritalstatus occupation relations |                       | ducationno maritalstatus occupation relationship |       | ducationno maritalstatus occupation relationship |  | relationship | race | s |
|---|-----|----------------------|-----------|------------------------------------|-----------------------------------------|-----------------------|--------------------------------------------------|-------|--------------------------------------------------|--|--------------|------|---|
| 0 | 39  | State-gov            | Bachelors | 13                                 | Never-<br>married                       | Adm-<br>clerical      | Not-in-family                                    | White | Ma                                               |  |              |      |   |
| 1 | 50  | Self-emp-<br>not-inc | Bachelors | achelors 13 Married-civ-<br>spouse |                                         | Exec-<br>managerial   | Husband                                          | White | Ma                                               |  |              |      |   |
| 2 | 38  | Private              | HS-grad   | 9                                  | Divorced                                | Handlers-<br>cleaners | Not-in-family                                    | White | Ma                                               |  |              |      |   |
| 3 | 53  | Private              | 11th      | 7                                  | Married-civ-<br>spouse                  | Handlers-<br>cleaners | Husband                                          | Black | Ma                                               |  |              |      |   |
| 4 | 28  | Private              | Bachelors | 13                                 | Married-civ-<br>spouse                  | Prof-<br>specialty    | Wife                                             | Black | Fema                                             |  |              |      |   |
| 4 |     |                      |           |                                    |                                         |                       |                                                  |       | •                                                |  |              |      |   |

# In [16]:

test\_data.head()

# Out[16]:

|   | age | workclass | education        | educationno | maritalstatus          | occupation            | relationship  | race  | sex  |
|---|-----|-----------|------------------|-------------|------------------------|-----------------------|---------------|-------|------|
| 0 | 25  | Private   | 11th             | 7           | Never-<br>married      | Machine-<br>op-inspct | Own-child     | Black | Male |
| 1 | 38  | Private   | HS-grad          | 9           | Married-civ-<br>spouse | Farming-<br>fishing   | Husband       | White | Male |
| 2 | 28  | Local-gov | Assoc-<br>acdm   | 12          | Married-civ-<br>spouse | Protective-<br>serv   | Husband       | White | Male |
| 3 | 44  | Private   | Some-<br>college | 10          | Married-civ-<br>spouse | Machine-<br>op-inspct | Husband       | Black | Male |
| 4 | 34  | Private   | 10th             | 6           | Never-<br>married      | Other-<br>service     | Not-in-family | White | Male |
| 4 |     |           |                  |             |                        |                       |               |       | •    |

# In [17]:

category = ["workclass","education","maritalstatus","occupation","relationship","race","sex

# In [18]:

encoder = LabelEncoder()

```
In [19]:
```

```
for i in category:
    train_data[i]= encoder.fit_transform(train_data[i])
   test_data[i]=encoder.fit_transform(test_data[i])
```

### In [20]:

```
train_data.head()
```

### Out[20]:

|   | age | workclass | education | educationno | maritalstatus | occupation | relationship | race | sex |
|---|-----|-----------|-----------|-------------|---------------|------------|--------------|------|-----|
| 0 | 39  | 5         | 9         | 13          | 4             | 0          | 1            | 4    | 1   |
| 1 | 50  | 4         | 9         | 13          | 2             | 3          | 0            | 4    | 1   |
| 2 | 38  | 2         | 11        | 9           | 0             | 5          | 1            | 4    | 1   |
| 3 | 53  | 2         | 1         | 7           | 2             | 5          | 0            | 2    | 1   |
| 4 | 28  | 2         | 9         | 13          | 2             | 9          | 5            | 2    | 0   |
| 4 |     |           |           |             |               |            |              |      | •   |

# In [21]:

```
mapping = {' >50K': 1, ' <=50K': 0}
```

### In [22]:

```
train_data = train_data.replace({'Salary': mapping})
test_data = test_data.replace({'Salary': mapping})
```

### In [23]:

```
salary_df = train_data.append(test_data)
```

### In [24]:

```
salary_df.head()
```

### Out[24]:

|   | age | workclass | education | educationno | maritalstatus | occupation | relationship | race | sex |  |
|---|-----|-----------|-----------|-------------|---------------|------------|--------------|------|-----|--|
| 0 | 39  | 5         | 9         | 13          | 4             | 0          | 1            | 4    | 1   |  |
| 1 | 50  | 4         | 9         | 13          | 2             | 3          | 0            | 4    | 1   |  |
| 2 | 38  | 2         | 11        | 9           | 0             | 5          | 1            | 4    | 1   |  |
| 3 | 53  | 2         | 1         | 7           | 2             | 5          | 0            | 2    | 1   |  |
| 4 | 28  | 2         | 9         | 13          | 2             | 9          | 5            | 2    | 0   |  |
| 4 |     |           |           |             |               |            |              |      | •   |  |

# **Initial Analysis**

#### In [25]:

```
salary_df.dtypes
```

## Out[25]:

int64 age workclass int32 education int32 educationno int64 maritalstatus int32 occupation int32 relationship int32 race int32 int32 sex capitalgain int64 capitalloss int64 hoursperweek int64 native int32 Salary int64 dtype: object

# In [26]:

salary\_df.isna().sum()

# Out[26]:

0 age 0 workclass education 0 educationno 0 maritalstatus 0 0 occupation relationship 0 0 race sex 0 capitalgain 0 capitalloss 0 hoursperweek 0 0 native Salary dtype: int64

# In [31]:

salary\_df.describe().T

# Out[31]:

|               | count   | mean        | std         | min  | 25%  | 50%  | 75%  | max     |
|---------------|---------|-------------|-------------|------|------|------|------|---------|
| age           | 45221.0 | 38.548086   | 13.217981   | 17.0 | 28.0 | 37.0 | 47.0 | 90.0    |
| workclass     | 45221.0 | 2.204507    | 0.958132    | 0.0  | 2.0  | 2.0  | 2.0  | 6.0     |
| education     | 45221.0 | 10.313217   | 3.816992    | 0.0  | 9.0  | 11.0 | 12.0 | 15.0    |
| educationno   | 45221.0 | 10.118463   | 2.552909    | 1.0  | 9.0  | 10.0 | 13.0 | 16.0    |
| maritalstatus | 45221.0 | 2.585148    | 1.500460    | 0.0  | 2.0  | 2.0  | 4.0  | 6.0     |
| occupation    | 45221.0 | 5.969572    | 4.026444    | 0.0  | 2.0  | 6.0  | 9.0  | 13.0    |
| relationship  | 45221.0 | 1.412684    | 1.597242    | 0.0  | 0.0  | 1.0  | 3.0  | 5.0     |
| race          | 45221.0 | 3.680281    | 0.832361    | 0.0  | 4.0  | 4.0  | 4.0  | 4.0     |
| sex           | 45221.0 | 0.675062    | 0.468357    | 0.0  | 0.0  | 1.0  | 1.0  | 1.0     |
| capitalgain   | 45221.0 | 1101.454700 | 7506.511295 | 0.0  | 0.0  | 0.0  | 0.0  | 99999.0 |
| capitalloss   | 45221.0 | 88.548617   | 404.838249  | 0.0  | 0.0  | 0.0  | 0.0  | 4356.0  |
| hoursperweek  | 45221.0 | 40.938038   | 12.007640   | 1.0  | 40.0 | 40.0 | 45.0 | 99.0    |
| native        | 45221.0 | 35.431503   | 5.931380    | 0.0  | 37.0 | 37.0 | 37.0 | 39.0    |
| Salary        | 45221.0 | 0.247849    | 0.431769    | 0.0  | 0.0  | 0.0  | 0.0  | 1.0     |

# In [27]:

salary\_df.shape

# Out[27]:

(45221, 14)

# **Finding correlation**

# In [35]:

corr = salary\_df.corr()

#### In [39]:

```
plt.figure(figsize=(10,6))
sns.heatmap(corr,annot=True)
```

### Out[39]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x22149f87f48>



#### In [40]:

```
plt.figure(figsize=(16,5))
print("Skew: {}".format(salary_df['educationno'].skew()))
print("Kurtosis: {}".format(salary_df['educationno'].kurtosis()))
ax = sns.kdeplot(salary_df['educationno'], shade=True, color='g')
plt.xticks([i for i in range(0,20,1)])
plt.show()
```

Skew: -0.31062061074424 Kurtosis: 0.6350448194491634



# The data is negatively skewed and has low kurtosis value

## Most of the people have educationno is 8-11

### In [45]:

```
sns.countplot(x='workclass',data=salary_df)
```

#### Out[45]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x2214a52f708>



#### In [47]:

```
sns.countplot(x='sex',data=salary_df)
```

### Out[47]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x2214ad042c8>



# The majority of workclass is Private sector denoted by 2

The majority of sex is Male.

# Model Training | Model Testing | Model Evlauation

# **Naive Bayes**

```
In [49]:
```

```
X_train = train_data.iloc[:,0:13]
y_train = train_data.iloc[:,13]
X_test = test_data.iloc[:,0:13]
y_test = test_data.iloc[:,13]
```

# **Gausian NB**

```
In [50]:
clsfrgnb = GaussianNB()
clsfrgnb.fit(X_train,y_train)
Out[50]:
GaussianNB(priors=None, var_smoothing=1e-09)
In [51]:
y_pred_test=clsfrgnb.predict(X_test)
In [52]:
print(confusion_matrix(y_test,y_pred_test))
[[10759
          601]
 [ 2491 1209]]
In [53]:
pd.crosstab(y_test.values.flatten(),clsfrgnb)
Out[53]:
 col_0 GaussianNB(priors=None, var_smoothing=1e-09)
row_0
                                         11360
                                         3700
In [54]:
print ("Accuracy",np.mean(y_pred_test==y_test.values.flatten()))
Accuracy 0.7946879150066402
Multinomial NB
In [56]:
clsfrmnb1 = MultinomialNB()
In [57]:
clsfrmnb1.fit(X_train,y_train)
Out[57]:
MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
In [60]:
y_pred_test1=clsfrmnb1.predict(X_test)
```

```
In [61]:
```

```
print(confusion_matrix(y_test,y_pred_test1))
[[10891
          469]
[ 2920
          780]]
In [62]:
pd.crosstab(y_test.values.flatten(),clsfrmnb1)
Out[62]:
```

#### col\_0 MultinomialNB(alpha=1.0, class\_prior=None, fit\_prior=True)

| row_0 |       |
|-------|-------|
| 0     | 11360 |
| 1     | 3700  |

#### In [63]:

```
print ("Accuracy",np.mean(y_pred_test1==y_test.values.flatten()))
```

Accuracy 0.7749667994687915

### In [76]:

```
pd.DataFrame([y_test,y_pred_test])
```

# Out[76]:

|              | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | <br>15050 | 15051 | 15052 | 15053 | 15054 | 15055 | 15056 |
|--------------|---|---|---|---|---|---|---|---|---|---|-----------|-------|-------|-------|-------|-------|-------|
| Salary       | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | <br>0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Unnamed<br>0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | <br>0     | 0     | 0     | 0     | 0     | 0     | 0     |

## 2 rows × 15060 columns



# **Cross validation**

Thus Gaussian NB has better accuracy hence we used Gaussian NB classifier

We also cross validate to know which algorithm is best suited for it.

#### In [71]:

```
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('RF', RandomForestClassifier()))
models.append(('NB', GaussianNB()))
```

### In [72]:

```
results = []
names = []
scoring = 'accuracy'
```

#### In [73]:

```
for name, model in models:
    kfold = model_selection.KFold(n_splits=7, random_state=21)
    cv_results = model_selection.cross_val_score(model, X_train, y_train, cv=kfold, scoring
    results.append(cv_results)
    names.append(name)
    msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
    print(msg)
```

LR: 0.818806 (0.003710) LDA: 0.810782 (0.005039) KNN: 0.834422 (0.003710) CART: 0.809191 (0.006279) RF: 0.840456 (0.006901) NB: 0.795431 (0.003456)

#### In [74]:

```
fig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
```

#### Algorithm Comparison



The above stated boxplot, we got the best RandomForest classification is best algorithm.

>>>>>>The End!!