Attention, Saliency, Grouping

Thomas Breuel

EYE MOVEMENTS

eye

what you think you see

what you actually see

foveation

eye tracking in user interfaces

Eye Tracking - Volkswagen - 2013 Super Bowl Commercial

DANS, KÖNOCH JAGPROJEKT

På jakt efter ungdomars kroppsspråk och den "synkretiska dansen", en sammansmältning av olika kulturers dans har jag i mitt fältarbete under hösten rört mig på olika arenor inom skolans vårld. Nordiska, afrikanska, syd- och östeuropeiska ungdomar gör sina röster hörda genom sång musik skrik skratt och gestaltar känslor och uttryck med hjälp av kroppsspråk och dans.

Den individuella estetiken franträder i kläder, frisyrer och symboliska tecken som forstärker ungdomarnas "jagprojekt" där också den egna stilen (kroppsrörelserna spelar en betydande roll) i identitetsprövningen. Uppehållsrummet fungerar som offentlig arena där ungdomarna spelar upp sina performance/iknande kroppssower

eye movements

saccades

eyes scan the scene to bring different parts into the fovea (sharp, color vision)

perception is masked during saccade

microsaccades

retinal cells only respond to change microsaccades are tiny movements about 60/second

SEARCH AND SALIENCY

serial vs parallel search

sample tasks

- "find an object with property X"
- "find an object that differs from the objects around it"

execution

- does search time depend on # objects?
- serial search linear dependence on # objects
- parallel search constant in # objects

http://www.scholarpedia.org/article/Visual_salience

foveation vs attention

different concepts

foveation: sensory

attention: neural / psychological

differences

you can't attend to what you can't see you may not pay attention even to things you look at

why two mechanisms?

attentional / saliency mechanisms

- fast, requires no eye movements
- can solve some tasks directly
- used to choose targets for further saccades

eye movement

- finer / more detailed analysis
- target of eye movement needs to be precomputed

attentional mechanism exist in other sensory modalities

- cocktail party effect
- smell
- touch

cocktail party effect

attention deficit disorder in kids

- easily distracted, miss details, forgetful
- trouble maintaining focus on a task
- become bored quickly
- daydreaming
- less good at fast, accurate information processing
- doesn't follow instructions

attention deficit disorder?

- "attention" to tasks is important for effective learning and normal functioning
- neural basis is not well understood, but strong genetic component
- may be a deficit in high-level control of attentional mechanisms, or thresholds for saliency

PERCEPTUAL ORGANIZATION

gestalt laws of grouping

closure

proximity

similarity

symmetry

symmetry

reflection

rotation

translation

perceptual organization

grouping

 given a scene element, find others that are probably part of the same object

segmentation

 divide the scene into regions that are likely part of the same object (oversegmentation: allow segmentation to be parts)

saliency

 find locations in the image that are likely part of interesting / important objects

WHY?

parallel feed-forward architecture

... no eye movement, but eyes bigger than brains

(actually, just uses head movements instead of eye movements)

components of the visual system

attentional subsystem

why?

hardware cost

tradeoff – for object recognition

- speed of visual processing and recognition
- amount of neural hardware
- foveation allows a small amount of hardware to cover a large field of view

object recognition is only one of many tasks

- sub-cortical vision
- pre-attentive processing in the cortex

computational reasons

 without segmentation, error rates would be higher

without grouping, computational complexity would be higher

COMPUTATIONAL CONSIDERATIONS

correspondence problem

Figure 2-1: A formalization of the recognition problem with bounded error: Find the largest subset of points m_i on the left such that there exists a transformation T (translation, rotation, scale) of the plane that maps the points into the error bounds $B_j = b_j + E_j$ given by image points b_j together with error bounds given as sets E_j on the right.

complexity

RANSAC algorithm

- model, image: collection of feature points
- pick 3 model, 3 image points
- compute transformation
- evaluate remaining points

consider algorithm in presence of clutter

probability that image points are all from object

signal vs noise

Cluttered Scene Feature Vector

error rate

consider simple binary features

two kinds of features

- binary features derived from object give information about the object
- binary features derived from other objects, background random, no information about the object

consider extreme case

- very cluttered, most binary features will be "on" most of the time
- detection of feature from object doesn't give a lot of additional information

CONCEPTS

common approaches to attention

sliding window methods

- primarily used with classifiers
- move rectangular windows across the input image
- treat the background between outline and window as noise

statistical grouping methods

- primarily used with feature-based recognition
- identify feature points / line segments
- compute statistics of which segments likely belong together
- deal with multiple possibilities through sampling

approaches to saliency

saliency computations

- manually constructed or learned "saliency detector"
- evaluate across the entire image
- find salient regions within the saliency map
- apply object recognition method to salient region

STATISTICAL GROUPING

MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1177 November 1989

GROUPING FOR RECOGNITION

David W. Jacobs

Abstract: This paper presents a new method of grouping edges in order to recognize objects. This grouping method succeeds on images of both two- and three-dimensional objects. So that the recognition system can consider first the collections of edges most likely to lead to the correct recognition of objects, we order groups of edges based on the likelihood that a single object produced them. The grouping module estimates this likelihood using the distance that separates edges and their relative orientation. This ordering greatly reduces the amount of computation required to locate objects. Surprisingly, in some circumstances grouping can also improve the accuracy of a recognition system. We test the grouping system in two ways. First, we use it in a recognition system that handles libraries of two-dimensional, polygonal objects. Second, we show comparable performance of the grouping system on images of two- and three-dimensional objects. This provides evidence that the grouping system could produce significant improvements in the performance of a three-dimensional recognition system.

object recognition

framework

- object recognition based on outlines
- outlines may be broken, overlapping
- outlines represented as line segments
- many objects present in images

Figure 13: The perimeters of the objects used in tests. The first set of tests used objects 3, 4, 8, 9, 10, and 14. The second and third sets of tests used all sixteen objects.

Figure 15: An image from the third set of tests. Again, the picture on the lower left shows the objects GROPER found, and the picture in the lower right shows SEARCHER's finds. Three hypotheses are overlaid where SEARCHER found three models that explained the same edges. 50% of each object was accounted for, with maximum errors of 3 pixels and $sin\frac{\pi}{15}$ radians.

Figure 17: On the left, an hypothetical scene. In the middle, dashed lines show an incorrect hypothesis that accounts for most of a square's perimeter. On the right, an hypothesis that seems more likely to be correct.

The details of edge relationships matter...

approach

- find convex sequences of edge segments
- take pairs of convex groups
- parameterize their relationship
- compute densities for the parameters
- perform a best-first search guided by probability

Figure 12: Two edges are in bold. Five parameters describe their relationship.

$$P(type_i|adj, d, l_1, l_2, a_1, a_2, O_1 = O_2)$$

$$=\frac{P(type_{i}|adj,d,l_{1},l_{2},a_{1},a_{2},O_{1}\neq O_{2})}{P(type_{1}|adj,d,l_{1},l_{2},a_{1},a_{2},O_{1}\neq O_{2})+P(type_{2}|adj,d,l_{1},l_{2},a_{1},a_{2},O_{1}\neq O_{2})}$$

Figure 5: Left: some straight lines. Right: the convex groups they form, circled, and offset slightly from their original position.

non-accidental properties

- randomly placed line segments always have some kind of relationship (angle, distance)
- line segments that come from the same object have a different distribution of angles and distances

categorize by types of relationships

Figure 10: A and B have a $type_1$ relationship, and seem more likely to come from the same object than A and C, which are the same, but have a $type_2$ relationship. These go better together than A and D, which have a $type_3$ orientation.

distributions for types of relationships

Figure 6: The four graphs on the left show the lengths of occlusions that occur from randomly intersecting random objects. On the right is the distribution resulting from randomly intersecting circles.

GROPER

form simple groups

- close line segment endpoints
- collection of line segments is convex

form complex groups

 take simple groups and join together if it is likely that they came from the same object

recognition with GROPER

- compute line segment approximation to img
- form simple convex groups
- form all pairs of simple groups
- order pairs by P(same object)
- match pairs of groups against model database

NEURAL MODELS

REVIEWS

COMPUTATIONAL MODELLING OF VISUAL ATTENTION

Laurent Itti* and Christof Koch‡

We review recent work on computational models of focal visual attention, with emphasis on the bottom-up, image-based control of attentional deployment. We highlight five important trends that have emerged from the computational literature. First, the perceptual saliency of stimuli critically depends on the surrounding context. Second, a unique 'saliency map' that topographically encodes for stimulus conspicuity over the visual scene has proved to be an efficient and plausible bottom-up control strategy. Third, inhibition-of-return, the process by which the currently attended location is prevented from being attended again, is a crucial element of attentional deployment. Fourth, attention and eye movements tightly interplay, posing computational challenges with respect to the coordinate system used to control attention. And last, scene understanding and object recognition strongly constrain the selection of attended

model of visual attention

components

- saccades, fixations
- modulation of neural responses
- control of modulation
- integration in working memory

(Knudsen, 2007, Ann. Rev. Neuroscience)

saliency and attention

saliency

- direct gaze to new locations
- direct attentional mechanisms without shifting gaze
- saliency is task-independent
- computed bottom-up
- takes 25-50ms per item

volitional attention

- task dependent
- deliberate control ("find red, horizontal bars")

both mechanisms operate in parallel

computational model

• Koch & Ullmann, 1995

- saliency map
- topographic map where intensity represents saliency

only models bottom-up component

top-down attention separate concern

saliency map

- extract features across visual field
- similar to HMAX model
- find features that are statistically unusual via competition and inhibition
- combine different sources into a single map

attentional selection

- find the highest value in the saliency map
- attend to that location, process visual input
- inhibit the location in the saliency map
- repeat

"inhibition of return" – widely observed in experiments

attention in recognition

MORSEL model

- connectionist word recognition model
- attention selection one word at a time
- the attended word is then recognized as a whole

object recognition

• (already discussed)

neural feedback

 attention modifies low-level perceptual processes

attention...

- three-fold increase in orientation sensitivity
- 20% increase in contrast discrimination

explanation

 activation of winner-take-all mechanisms within columns (regions)

attention

- attention improves both error rates and speed of recognition processes
- pre-attentive and top-down mechanisms
- components
 - saliency map via statistics, symmetry
 - grouping, segmentation via gestalt principles, statistics
 - task driven (not well understood yet)
- when building visual recognition systems
 - consider implementing saliency, grouping
 - sliding window is simple form of this