支墩稳定性计算程序使用说明

(1.0版)

中国电力工程顾问集团华东电力设计院有限公司 工程设计综合资质甲级 A131000025 工程勘察综合类甲级 B131000025 2019 年 6 月 上海

支墩稳定性计算程序使用说明 (1.0版)

目录

— ,	编制	依据	1
	1. 1	软件开发任务书	1
	1.2	依据规程	1
	1.3	运行环境	1
	1.4	适用条件	1
	1.5	初始配置参数	2
	1.6	软件概述	2
	1.7	软件安装和使用方法	2
_,	滑动	支墩计算说明	7
	2. 1	计算模型	7
	2.2	计算参数	7
	2.3	计算过程	8
	2.4	计算示例	9
三、	固定	支墩计算说明	. 11
	3. 1	计算模型	. 11
	3.2	计算参数	. 11
	3.3	计算过程	.12
	3.4	计算示例	.17
四、	转角	支墩计算说明	.19
	4. 1	计算模型	.19
		计算参数	
	4.3	计算过程	.20
	4.4	计算示例	.22

一、编制依据

1.1 软件开发任务书

项目名称"支墩稳定性计算程序",项目编号: 30-K2018-S01。

1.2 依据规程

《混凝土结构设计规范》GB 50010-2010 (2015 版)

《建筑地基基础设计规范》GB 50001-2011

《建筑结构荷载规范》GB 50009-2012

《建筑结构可靠度设计统一标准》GB 50068-2018

《建筑边坡工程技术规范》GB 50330-2013

《火力发电厂水工设计规范》DL/T 5339-2018

《给水排水工程构筑物结构设计规范》GB 50069-2002

1.3 运行环境

- 1) 硬件配置: 目前主流计算机配置
- 2) 软件配置: WIN7、WIN8、WIN10 64 位操作系统
- 3) 软件大小: 24.7MB, 占用空间 26.0MB

1.4 适用条件

本软件适用于天然地基条件下灰管、补给水管及循环水管等水管支墩的稳定性计算。

1.5 初始配置参数

素混凝土容重 γ_c: 24kN/m³

钢筋混凝土容重 γ : 25kN/m³

灰管支墩抗滑稳定性安全系数 K_s: 1.05

灰管支墩抗倾覆稳定性安全系数 Ka: 1.10

水管支墩抗滑稳定性安全系数 K_s : 1.30

水管支墩抗倾覆稳定性安全系数 Ka: 1.50

被动土压力折减系数 β_n : 0.3

以上参数为软件初始默认参数,经过修改保存后再次打开软件将采用用户修改后的值。

1.6 软件概述

目前,水管支墩、灰管支墩等的承载力计算、抗滑稳定性和抗倾覆稳定性计算均为人工手算,速度较慢、效率较低,且计算书格式编制不统一。为提高设计效率,进一步实施标准化,编制本支墩稳定性计算程序。

软件计算项目包括三种类型的支墩:滑动支墩、固定支墩和转角支墩。针对每种支墩,均可进行地基承载力验算、抗滑稳定性验算和抗倾覆稳定性验算,最后生成格式统一的计算书。

1.7 软件安装和使用方法

解压后双击文件夹中的"支墩稳定性计算程序.exe"程序即可运行软件。桌面快捷方式建立的方法为:选中"支墩稳定性计算程序.exe"并右键,选择发送到->桌面快捷方式。

tcl	2018/11/23 16:38	文件夹	
			62 KB
_bz2.pyd	2014/3/16 19:25	PYD 文件	
	2014/3/16 19:25	PYD 文件	105 KB
hashlib.pyd	2014/3/16 19:25	PYD 文件	1,120 KB
	2014/3/16 19:25	PYD 文件	133 KB
socket.pyd	2014/3/16 19:25	PYD 文件	51 KB
ssl.pyd	2014/3/16 19:25	PYD 文件	1,685 KB
tkinter.pyd	2014/3/16 19:25	PYD 文件	40 KB
win32sysloader.pyd	2018/11/27 14:31	PYD 文件	8 KB
a.gif	2018/12/26 9:33	GIF 文件	4 KB
a.ico	2019/1/10 11:25	ICO 文件	134 KB
■ b.gif	2018/12/26 9:32	GIF文件	5 KB
c.gif	2018/12/26 9:32	GIF 文件	5 KB
pyexpat.pyd	2014/3/16 19:25	PYD 文件	166 KB
PyStability.log	2018/12/26 9:51	文本文档	1 KB
python34.dll	2018/12/26 9:50	应用程序扩展	3,950 KB
pywintypes34.dll	2018/11/27 14:31	应用程序扩展	127 KB
select.pyd	2014/3/16 19:25	PYD 文件	11 KB
d tcl86t.dll	2013/11/24 19:13	应用程序扩展	1,555 KB
tk86t.dll	2013/11/24 19:14	应用程序扩展	1,898 KB
unicodedata.pyd	2014/3/16 19:25	PYD 文件	745 KB
win32api.pyd	2018/11/27 14:31	PYD 文件	122 KB
支墩稳定性计算程序.exe	2018/12/26 9:50	应用程序	3,893 KB
🗾 支墩稳定性计算程序使用说明.pdf	2019/1/9 9:50	Adobe Acrobat	263 KB

软件采用图形用户界面,进入程序后在第一个选项卡"基础参数"中选择支墩类型,根据不同的计算模式输入不同的参数。可以根据界面左侧的参数名称以及右侧的图形示意输入数据。在第二个选项卡"材料与土层参数"中输入混凝土、水管材料与土层相关的参数。首先通过下拉列表选择混凝土材料和管道材料,然后根据需要输入土层的数量,按"回车"或界面上的"确认"确认土层数量。为了能够方便地进行地基承载力修正计算,避免输入过多参数,土层类型需要人为判断后选择相应类型。考虑某些工况无需进行地基承载力修正,在"土层类型"中提供一个"不进行地基承载力修正"的选项。最后点击右下方的"支墩稳定性计算"按钮进行计算,计算结束后自动弹出计算结果。

第4页

盐 支墩稳定性计算 \times 文件 整助 基础参数 材料及土层参数 ● 滑动支墩 ○ 固定支墩 ○ 转角支墩 (暫无抗倾覆验算) 地面标高hs(m) 0.0 基础顶标高hf(m) 0.05 地下水位埋深dw(m) 1.0 基础长1(m) 4.3 基础宽b(m) 1.5 基础高h(m) 0.65 孔洞长hl(m) 4.3 孔洞宽hb(m) 孔洞高hh(m) 0.2 0.3 基础与土摩擦系数 L 支墩竖向荷载(不含自重)Fv(kN) 0.3 30 支墩水平荷载Fh(kN) 10 管道中心到支墩顶面距离hc(m) 0.18 打开 保存 另存为 关闭 支墩稳定性计算

对于 1.5 节中的基本参数, 可通过菜单栏->帮助->参数配置进行修改。

第6页

软件支持常规的打开、保存和另存为操作,可以保存数据以供重复打开使用。

二、滑动支墩计算说明

2.1 计算模型

2.2 计算参数

h_s-地面标高 (m);

 h_f -基础顶标高 (m);

 d_{w} -地下水位埋深 (m);

l-支墩长 (m);

b-支墩宽 (m):;

h-支墩高 (m);

*h*₁-孔洞长 (m);

h, -孔洞宽 (m);

 h_h -孔洞高 (m);

μ-基础与土层摩擦系数;

 h_c -管道中心到支墩顶面距离(m);

 $F_{\rm w}$ -支墩竖向荷载 (kN);

 F_h -支墩水平荷载 (kN);

γ-土层重度 (kN/m3);

 f_{ak} -地基土承载力特征值 (kPa);

 f_a -修正后的地基承载力特征值(kPa);

2.3 计算过程

滑动支墩计算时不考虑主被动土压力, 地基承载力修正考虑设计地下水位的影响, 所以支墩自重也考虑地下水浮力。

(1) 支墩自重 G 的计算:

混凝土容重为火,见1.5节

工况一: 当地下水位高于基底时, 即 $h_s - d_w > h_f - h$,:

①当地下水位高于基础顶面,即 $h \le h + h_s - h_f - d_w$:

 $G = (\gamma_c - 10) \times 1 \times b \times h - \gamma_c \times h_l \times h_b \times h_h$

②当地下水位低于基础顶面,即 $h>h+h_s-h_f-d_w$:

 $G = \gamma_c \times 1 \times b \times (d_w + h_f - h_s) - \gamma_c \times h_l \times h_b \times h_h + (\gamma_c - 10) \times 1 \times b \times (h_s - d_w - h_f + h)$

工况二: 当地下水位低于基底, 即 $h_s - d_w \le h_f - h$:

$$G = \gamma_c \times (1 \times b \times h - h_l \times h_b \times h_h)$$

(2) 基底压力 p_k , p_{kmax} 的计算:

$$p_{k} = \frac{G_{1} + F_{v}}{l \times b}$$
, $p_{k \text{max}} = \frac{G_{1} + F_{v}}{l \times b} + \frac{6 \times F_{h} \times (\text{h} + \text{h}_{c})}{l \times b^{2}}$

(3) 侧向抵抗土压力 Fs 的计算:

因为滑动支墩不考虑主被动土压力, 所以 Fs=0,

(4) 抗滑移稳定性安全系数 K。的计算:

$$K_{\rm s} = \frac{G \times \mu}{F_{\rm h} - F_{\rm S}}$$

(5) 抗倾覆稳定性安全系数 K_0 的计算:

$$K_{\rm o} = \frac{G \times b/2}{F_{\rm h} \times (h_{\rm c} + h)}$$

(6) 地基承载力修正计算:

根据《建筑地基基础设计规范》GB500007-2010 第 5.2.4 条进行计算。

2.4 计算示例

支墩稳定性计算程序 V1.0

支墩形式:滑动支墩-素混凝土灰管支墩

地面标高 hs: 0.0m, 基础顶标高 hf: 0.05m, 地下水位埋深 dw: 1.0m,

支墩长 1: 4.3m, 支墩宽 b: 1.5m, 支墩高 h: 0.65m,

孔洞长 h1: 4.3m, 孔洞宽 hb: 0.2m, 孔洞高 hh: 0.3m,

基础与土层摩擦系数 µ: 0.3, 管道中心到支墩顶面距离 hc: 0.18m,

支墩竖向荷载 Fv: 30.0kN, 支墩水平荷载 Fh: 10.0kN,

土层信息

土层序号 土层名称 土层厚度(m) 土层重度(kN/m3) 地基土承载力(kPa)

1 人工填土、e 或 IL 大于等于 0.85 的黏性土 2.0 20.0 80.0

第 10 页

2 红黏土 aw<=0.8

2.0 20.0 80.0

3 人工填土、e 或 IL 大于等于 0.85 的黏性土

2.0 20.0

80.0

支墩自重:

G=24x (4. 3x1. 5x0. 65-4. 3x0. 2x0. 3)=94. 43kN,

基底压力:

pk = (G+Fv)/(1xb) = (94.43+30.0)/(4.3x1.5)=19.29kPa

pmax = (G+Fv)/(1xb)+[6xFhx(h+hc)]/(1xbxb)=(94.43+30.0)/(4.3x1.5)+

(6x10.0x(0.65+0.18))/(4.3x1.5x1.5)=24.44kPa

基底土层为人工填土、e 或 IL 大于等于 0.85 的黏性土,因此 n b 为 0, n d 为 1,

rm = (0.6x20.0) / (0.6) = 20.0kN/m3

修正后的地基承载力:

fa=fak+ η b γ (b-3)+ η d γ m(d-0.5)=80.0+0x20.0x(3-3)+1x20.00x(0.6-0.5)=82.00kPa,

修正后的地基承载力满足要求!

因为不考虑主被动土压力,因此 Fs=0,

抗滑移稳定性验算:

Ks=G μ / (Fh-Fs) =94. 43x0. 3/(10. 0-0. 00) =2. 83>1. 05, 满足要求!

抗倾覆稳定性验算:

Ko=(Gb/2)/(Fh(hc+h))=(94.43x1.5/2)/(10.0x(0.18+0.65))=8.53>1.1, 满足要求!

三、固定支墩计算说明

3.1 计算模型

3.2 计算参数

 h_s -地面标高 (m);

 h_f -基础顶标高 (m);

 d_{w} -地下水位埋深 (m);

l-支墩长 (m);

b-支墩宽 (m);;

h-支墩高 (m);

 h_l -孔洞长 (m);

h, -孔洞宽 (m);

 h_h -孔洞高(m);

 γ 。一回填土重度;

 φ -回填土内摩擦角

 μ -基础与土层摩擦系数;

 h_c -管道中心到支墩顶面距离(m);

 $F_{\rm w}$ -支墩竖向荷载 (kN);

 F_k -支墩水平荷载 (kN);

 F_s -侧向抵抗土压力 (kN);

γ-土层重度 (kN/m3);

 f_{ak} -地基土承载力特征值 (kPa);

 f_a -修正后的地基承载力特征值 (kPa);

 k_a -主动土压力系数;

 k_n -被动土压力系数;

3.3 计算过程

(1) 主被动土压力系数 k_a , k_n 的计算:

$$k_a = tg^2 (45^{\circ} - \frac{\varphi}{2}), \quad k_p = tg^2 (45^{\circ} + \frac{\varphi}{2}) \times \beta_p, \quad \beta_p$$
的取值详见 1. 4 节

(2) 侧向抵抗土压力 Fs 的计算:

采用水土分算,水压力相互抵消,地下水位以下土重度取 10kN/m³· 工况一: 当支墩顶面标高高于地面标高时:

① 当地下水位高于基底时,即 $h_f \ge h_s$, $d_w < h - h_f + h_s$:

$$\sigma_1 = P_{p1} - P_{a1} = 0$$

$$\sigma_2 = P_{p2} - P_{a2} = \gamma_s \times d_w \times (k_p - k_a)$$

$$\sigma_3 = P_{p3} - P_{a3} = \gamma_s \times d_w \times (k_p - k_a) + 10 \times (h - dw - h_f + h_s) \times (k_p - k_a)$$

$$F_s = \frac{1}{2} \times (\sigma_1 + \sigma_2) \times l \times d_w + \frac{1}{2} \times (\sigma_2 + \sigma_3) \times l \times (h - d_w - h_f + h_s)$$

②当地下水位低于基底时,即 $h_f \ge h_s$, $d_w \ge h - h_f + h_s$:

$$\sigma_1 = P_{p1} - P_{a1} = 0$$

$$\sigma_2 = P_{p2} - P_{a2} = 0\gamma_s \times (h - h_f + h_s) \times (k_p - k_a)$$

$$F_s = \frac{1}{2} \times (\sigma_1 + \sigma_2) \times l \times (h - h_f + h_s)$$

工况二: 当支墩顶面标高低于地面标高时:

① 当地下水位高于基础顶,即 $h_f < h_s$, $d_w \le h_s - h_f$:

$$\sigma_1 = P_{p1} - P_{a1} = \gamma_s \times d_w \times (k_p - k_a)$$

$$\sigma_2 = P_{p2} - P_{a2} = \gamma_s \times d_w \times (k_p - k_a) + 10 \times (h_s - d_w - h_f) \times (k_p - k_a)$$

$$\sigma_3 = P_{p3} - P_{a3} = \gamma_s \times d_w \times (k_p - k_a) + 10 \times (h_s - d_w - h_f + h) \times (k_p - k_a)$$

合力为

$$F_s = \frac{1}{2} \times (\sigma_2 + \sigma_3) \times l \times h$$

② 当地下水位低于基础顶面但高于基底时,即 $h_f < h_s$, $h + h_s - h_f > d_w > h_s - h_f$.

$$\sigma_1 = P_{p1} - P_{a1} = \gamma_s \times (h_s - h_f) \times (k_p - k_a)$$

$$\sigma_2 = P_{p2} - P_{a2} = \gamma_s \times d_w \times (k_p - k_a)$$

$$\sigma_3 = P_{p3} - P_{a3} = \gamma_s \times d_w \times (k_p - k_a) + 10 \times (h_s - h_f + h - dw) \times (k_p - k_a)$$

$$F_s = \frac{1}{2} \times (\sigma_1 + \sigma_2) \times l \times (d_w - h_s + h_f) + \frac{1}{2} \times (\sigma_2 + \sigma_3) \times l \times (h - d_w + h_s - h_f)$$

③ 当地下水位低于基底时,即 $h_f < h_s$, $d_w \ge h + h_s - h_f$:

$$\sigma_1 = P_{p1} - P_{a1} = \gamma_s \times (h_s - h_f) \times (k_p - k_a)$$

$$\sigma_2 = P_{p2} - P_{a2} = \gamma_s \times (h + h_s - h_f) \times (k_p - k_a)$$

$$F_s = \frac{1}{2} \times (\sigma_1 + \sigma_2) \times l \times h$$

(3) 支墩自重 G 的计算:

混凝土容重为 γ_c ,见 1. 5 节。因地基承载力修正考虑了地下水位的影响,因此支墩自重 G 计算时也考虑地下水浮力的影响,

工况一: 当地下水位高于基底时, 即 $h_s - d_w > h_f - h$:

①当地下水位高于基础顶面时,即 $h \le h + h_s - h_f - d_w$:

$$G = (\gamma_c - 10) \times 1 \times b \times h - \gamma_c \times h_l \times h_b \times h_h$$

②当下水位低于基础顶面时,即 $^{h>h+h_s-h_f-d_w}$:

$$G = \gamma_c \times 1 \times b \times (d_w + h_f - h_s) - \gamma_c \times h_l \times h_b \times h_h + (\gamma_c - 10) \times 1 \times b \times (h_s - d_w - h_f + h)$$

工况二: 当地下水位低于基底时, 即 $h_s - d_w \le h_f - h$:

$$G = \gamma_c \times (1 \times b \times h - h_l \times h_b \times h_h)$$

(4) 基底压力 p_k , p_{kmax} 的计算:

$$p_{k} = \frac{G + F_{v}}{l \times b}$$
, $p_{k \max} = \frac{G + F_{v}}{l \times b} + \frac{6 \times F_{h} \times (h + h_{c})}{l \times b^{2}}$

(5) 抗滑移稳定性安全系数K。的计算:

$$K_{\rm s} = \frac{G \times \mu}{F_{\rm h} - F_{\rm s}}$$

(6) 抗倾覆稳定性安全系数 K_0 的计算:

计算时不考虑被动土压力的有利影响 $K_o = \frac{G \times b/2}{F_b \times (h_c + h)}$

(7) 地基承载力修正:

根据《建筑地基基础设计规范》GB500007-2010第5.2.4条进行计算。

3.4 计算示例

支墩稳定性计算程序 V1.0

支墩形式: 固定支墩-素混凝土灰管支墩

地面标高 hs: 2.22m, 基础顶标高 hf: 2.043m, 地下水位埋深 dw: 1.0m,

支墩长 1: 9.5m, 支墩宽 b: 9.5m, 支墩高 h: 3.5m,

孔洞长 h1: 0.0m, 孔洞宽 hb: 0.0m, 孔洞高 hh: 0.0m,

回填土重度 rs: 18.0(kN/m3),回填土内摩擦角 ϕ : 20.0,基础与土层摩擦系数 μ : 0.35,

支墩竖向荷载 Fv: 0.0kN, 支墩水平荷载 Fh: 1810.0kN, 管道中心到支墩顶面距 离 hc: 0.235m,

土层信息

土层序号 土层名称 土层厚度(m) 土层重度(kN/m3) 地基土承载力(kPa)

1 人工填土、e 或 IL 大于等于 0.85 的黏性土 2.0 20.0 80.0

2 人工填土、e 或 IL 大于等于 0.85 的黏性土 2.0 20.0 80.0

3 人工填土、e 或 IL 大于等于 0.85 的黏性土

2.0

20.0

80.0

支墩自重:

G=24x[9.5x9.5x(3.5+1.0-3.677)-0.0x0.0x0.0]+(24-10)x9.5x9.5x(3.677-1.0)=5165.01kN,

基底压力:

pk = (G+Fv)/(1xb) = (5165.01+0.0)/(9.5x9.5) = 57.23kPa

pmax = (G+Fv)/(1xb)+[6xFhx(h+hc)]/(1xbxb)=(5165.01+0.0)/(9.5x9.5)+

(6x1810.0x(3.5+0.235))/(9.5x9.5x9.5)=104.54kPa

基底土层为人工填土、e 或 IL 大于等于 0.85 的黏性土,因此 n b 为 0, n d 为 1,

rm=(1.0x20.0+1.0x10.0+1.68x10.0)/(1.0+1.0+1.68)=12.72kN/m3

修正后的地基承载力:

fa=fak+ η b γ (b-3)+ η d γ m(d-0.5)=80.0+0x10.0x(6-3)+1x12.72x(3.677-0.5)=120.41kPa,

修正后的地基承载力满足要求!

ka = tan2 (45-20.0/2) = 0.49

kp=0.3xtan2(45+20.0/2)=0.61,

kp-ka=0.61-0.49=0.12,

hf<hs 并且 hs - hf<dw<h+ hs-hf,

 σ 1=18. 0x (2. 22-2. 043) x0. 12=0. 39kPa,

 σ 2=18. 0x1. 0x0. 12=2. 19kPa,

 σ 3=18. 0x1. 0x0. 12+10x (2. 22-2. 043+3. 5-1. 0) x0. 12=5. 44kPa,

Fs=0.5x(0.39+2.19)x9.5x(1.0-2.22+2.043)+0.5x(2.19+5.44)x9.5x(3.5-

1. 0+2. 22-2. 043)=107. 12kN,

抗滑移稳定性验算:

 $Ks=G\mu/(Fh-Fs)=5165.01x0.35/(1810.0-107.12)=1.06>1.05$,满足要求! 抗倾覆稳定性验算:

Ko=(Gb/2)/(Fh(hc+h))=(5165.01x9.5/2)/(1810.0x(0.235+3.5))=3.63>1.1,满足要求!

四、转角支墩计算说明

4.1 计算模型

4.2 计算参数

*h*_s-地面标高 (m);

 h_f -基础顶标高 (m);

 d_{w} -地下水位埋深 (m);

l-支墩长 (m);

b-支墩宽 (m):;

h-支墩高 (m);

h₁ -孔洞长 (m);

h_b-孔洞宽 (m);

 h_h -孔洞高(m);

 γ_s -回填土重度;

 φ -回填土内摩擦角

 μ -基础与土层摩擦系数:

 h_c -管道中心到支墩顶面距离(m);

 F_v -支墩竖向荷载 (kN);

 F_{hx} -支墩 x 向水平荷载 (kN);

 F_{hv} -支墩 y 向水平荷载 (kN);

 F_{sx} -x 向侧向抵抗土压力 (kN);

 $F_{\rm sv}$ -y 向侧向抵抗土压力 (kN);

γ-土层重度 (kN/m3);

 f_{ak} -地基土承载力特征值 (kPa);

 f_a -修正后的地基承载力特征值 (kPa);

 k_a -主动土压力系数;

 k_n -被动土压力系数;

4.3 计算过程

转角支墩承受来自 x,y 两个方向的水平力 F_{hx} 和 F_{hy} ,且合力方向不垂直于任何支墩的一条边。其计算过程中:主被动土压力系数 k_a 和 k_p 、侧向抵抗土压力 F_{sx} 和 F_{sy} 、支墩自重 G、基底压力 p_k 、地基承载力修正值 f_a 的计算均与固定支墩相同,详见 3. 3 节。

(1) 基底压力 p_{kmax} 的计算:

$$p_{k \max} = \frac{G + F_{v}}{l \times b} + \frac{6 \times F_{hx} \times (h + h_{c})}{l \times b^{2}} + \frac{6 \times F_{hy} \times (h + h_{c})}{b \times l^{2}}$$

(2) 抗滑移稳定性安全系数 K_s 的计算:

转角支墩承受的合力:
$$F_h = \sqrt{F_{hx}^2 + F_{hy}^2}$$

与基础宽度 b 方向的夹角为 $\alpha = \arctan(F_{hy} / F_{hx})$

侧向抵抗土压力合力 $F_s = F_{sy} \sin \alpha + F_{sx} \cos \alpha$

抗滑移稳定性安全系数
$$K_s = \frac{G \times \mu}{F_h - F_s}$$

(6) 抗倾覆稳定性安全系数 K_0 的计算:

转角支墩由于承受来自两个方向的水平力, 抗倾覆计算较为复杂, 因此软件 不考虑转角支墩的抗倾覆计算。

4.4 计算示例

支墩稳定性计算程序 V1.0

支墩形式:转角支墩-钢筋混凝土水管支墩

地面标高 hs: 2.22m, 基础顶标高 hf: 2.043m, 地下水位埋深 dw: 1.0m,

支墩长 1: 9.5m, 支墩宽 b: 9.5m, 支墩高 h: 3.5m,

孔洞长 h1: 0.0m, 孔洞宽 hb: 0.0m, 孔洞高 hh: 0.0m,

回填土重度 rs: 18.0(kN/m3), 回填土内摩擦角 ϕ : 20.0, 基础与土层摩擦系数 μ : 0.35,

支墩竖向荷载 Fv: 50.0kN, 支墩 x 向水平荷载 Fhx: 810.0kN, 支墩 y 向水平荷载 Fhy: 1000.0kN, 管道中心到支墩顶面距离 hc: 0.235m,

土层信息

土层序号 土层名称 土层厚度(m) 土层重度(kN/m3) 地基土承载力(kPa)

1 不讲行地基承载力修正

2.0 20.0 80.0

2 不进行地基承载力修正

2.0 20.0 80.0

支墩自重:

G=25x[9.5x9.5x(3.5+1.0-3.677)-0.0x0.0x0.0]+(25-10)x9.5x9.5x(3.677-1.0)=5480.88kN

基底压力:

pk = (G+Fv)/(1xb) = (5480.88+50.0)/(9.5x9.5)=61.28kPa

pmax = (G+Fv)/(1xb)+[6xFhxx(h+hc)]/(1xbxb)+[6xFhyx(h+hc)]/(bx1x1)

=(5480.88+50.0)/(9.5x9.5)+(6x810.0x(3.5+0.235))/(9.5x9.5x9.5)+(6x1000)

.0x(3.5+0.235))/(9.5x9.5x9.5)=108.59kPa

基底土层为不进行地基承载力修正,因此ηb为0,ηd为0,

rm=(1.0x20.0+1.0x10.0+1.68x10.0)/(1.0+1.0+1.68)=12.72kN/m3

修正后的地基承载力:

fa=fak+ η b γ (b-3)+ η d γ m(d-0.5)=80.0+0x10.0x(6-3)+0x12.72x(3.677-0.5)=80.00kPa,

pkmax>1.2fa,

工程检索号: 30-K2018-S01

修正后的地基承载力不满足要求!

ka = tan2 (45-20.0/2) = 0.49

kp=0.3xtan2(45+20.0/2)=0.61,

kp-ka=0.61-0.49=0.12,

x 向侧向抵抗土压力:

hf<hs 并且 hs - hf<dw<h+ hs-hf,

- σ 1=18. 0x (2. 22-2. 043) x0. 12=0. 39kPa,
- σ 2=18, 0x1, 0x0, 12=2, 19kPa,
- σ 3=18. 0x1. 0x0. 12+10x (2. 22-2. 043+3. 5-1. 0) x0. 12=5. 44kPa,

 $F_{s}=0.5 \times (0.39+2.19) \times 9.5 \times (1.0-2.22+2.043) + 0.5 \times (2.19+5.44) \times 9.5 \times (3.5-19+3.44) \times 9.5 \times (3.5-19+3$

1. 0+2. 22-2. 043) = 107. 12kN,

y 向侧向抵抗土压力:

hf<hs 并且 hs - hf<dw<h+ hs-hf,

- σ 1=18. 0x (2. 22-2. 043) x0. 12=0. 39kPa,
- σ 2=18. 0x1. 0x0. 12=2. 19kPa,
- σ 3=18. 0x1. 0x0. 12+10x (2, 22-2, 043+3, 5-1, 0) x0. 12=5, 44kPa,

Fs=0.5x(0.39+2.19)x9.5x(1.0-2.22+2.043)+0.5x(2.19+5.44)x9.5x(3.5-

1. 0+2. 22-2. 043) = 107. 12kN,

x, y 方向水平力的合力 Fh=(810.00x810.00+1000.00x1000.00) ^0.5=1286.90kN $\sin \alpha = Fhy/Fh = 1000.0/1286.90 = 0.78$

 $\cos \alpha = Fhx/Fh = 810.0/1286.90 = 0.63$

侧 向 抵 抗 土 压 力 的 合 力 为 Fs=Fsvsin a +Fsxcos =107. 12x0. 78+107. 12x0. 63=150. 66kN

抗滑移稳定性验算:

Ks=G μ/(Fh-Fs)=5480.88x0.35/(1286.9-150.66)=1.69>1.3, 满足要求!