

Aula 5: Experimentos e amostragem de dados

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br

Tópicos a serem abordados

- Planejamento de experimentos
- Avaliação de desempenho de algoritmos/modelos
- Desempenho preditivo
- Partição dos dados
- Amostragem
- Reamostragem

Desempenho preditivo

- Principal objetivo em tarefas de classificação:
 - Classificação correta de novos exemplos
 - Errar o mínimo possível
 - Minimizar taxa de erro para novos exemplos
- Geralmente não é possível medir com exatidão essa taxa de erro para novos exemplos
 - o Deve ser estimada utilizando duas amostras do conjunto de dados original
 - Uma amostra A (treinamento) para Induzir um modelo
 - Uma amostra B (teste), que simula situação em que novos exemplos, nuca vistos, devem ser classificados

Partição de dados

- Permite melhor estimativa do desempenho de um modelo ou algoritmo
 - o Treinamento (validação) e teste
- Procedimentos
 - o Amostragem única
 - Hold-out
 - Várias amostragens
 - Re-amostragem

Hold out

- Geralmente 50% para treino e 50% para teste
- Outras divisões também são usadas
 - o 66,6% e 33,3%
 - o 75% e 25%

Hold out

Hold out

- Amostragem única é pouco confiável
 - o Sorte (ou azar) na definição das amostras
- Para ter um resultado mais confiável, gerar várias partições para conjuntos de treinamento (validação) e teste
 - Reamostragem
 - Random subsampling
 - K-fold Cross-validation
 - Leave-one-out
 - Bootstrap (ou Bootstrapping)

Random subsampling

4-fold cross-validation

Partição 1 Partição 2 Partição 3 Partição 4

4-fold cross-validation

4-fold cross-validation

4-fold cross-validation com dados de validação

4-fold cross-validation com dados de validação

Leave-one-out

- Tende à estimar taxa de erro verdadeira
- Custo computacionalmente elevado para conjuntos de dados grandes
 - o Geralmente utilizado para pequenos conjuntos de dados
 - o 10-fold cross validation aproxima leave-one-out
- Resultado é a média de N experimentos
- Variância tende a ser elevada

Bootstrap

- Estocástico, com diversas variações
 - o Alguns objetos podem não participar do processo de treinamento
- Variação mais simples:
 - Amostragem com reposição
 - Cada partição é uma amostra aleatória com reposição do conjunto total de exemplos
 - Conjunto de treinamento têm o mesmo número de exemplos do conjunto total
 - Exemplos que restarem são utilizados para teste

Considerações Finais

- Estimativa de desempenho de modelos preditivos
 - Para dados novos
- Não é possível predizer
- Mas é possível estimar
 - Simulando dados de teste
 - o Particionando o conjunto de dados
 - Várias alternativas
 - Custo computacional e proximidade da estimativa

Final da

Spresentação

