Алгоритм — это конечная последовательность действий, направленная на решение некоторой задачи:

$$X \to A_1 \to A_2 \to A_3 \to \dots \to A_n \to Y,\tag{1}$$

X — исходные данные, Y — решение, A_j — элементарное j-тое действие.

Определение. Протокол (protocol) — описание последовательности алгоритмов, в процессе выполнения которой два или более участников последовательно исполняют эти алгоритмы и обмениваются сообщениями с целью решения некоторой поставленной перед ними задачи.

В качестве участников (субъектов, сторон) протокола могут выступать не только пользователи или абоненты, но и клиентские и серверные приложения.

Пусть A_j^i — это элементарное j-тое действие выполняемое i-тым субъектом, X — исходные данные, необходимые для решения некоторой задачи, Y — её решение. Тогда конечная последовательность действий:

$$X \to A_1^1 \to A_2^1 \dots \to A_{j_1}^1 \to A_1^2 \to \dots \to A_{j_2}^2 \to A_1^{i_3} \to \dots \to A_{j_3}^{i_3} \dots$$
$$\dots \to A_1^{i_n} \to \dots \to A_{j_n}^{i_n} \to Y, \tag{2}$$

направленная на получение Y, называется npomokonom. При этом n — число npoxodob протокола. Для любого s $(3 \le s \le n)$ $i_s \in \{1, 2, ..., k\}$ является индексом участника протокола, где k — число участников протокола с обязательным условием $k \ge 2$.

Наконец, $\sum_{t=1}^{n} j_{t}$ — число *шагов* протокола.

Криптографическим протоколом (cryptographic protocol) называется любой протокол, в котором используются криптографические системы и криптографические алгоритмы.

Шаг протокола (*step of protocol*, *protocol action*) — это элементарное законченное действие в протоколе с точки зрения его описания. Например, шагами могут быть: вычисление значения функции, генерация случайного числа, сравнение двух чисел, отправка сообщения.

Проход (цикл или раунд) протокола (pass of cryptographic protocol, round,) — это максимальная последовательность шагов протокола, непрерывно выполняемая одной из сторон. Проход заканчивается передачей активности другому участнику протокола, что, как правило, выражается формированием и отправкой сообщения другой стороне.

Ceaнc (*session*) — это конкретная реализация протокола с конкретными участниками.

Роль – это функция, которую выполняет одна из сторон протокола в процессе выполнения сеанса. Таким образом, ролей не больше числа участников протокола, поскольку одну и ту же роль могут выполнять несколько участников. Например, всегда у кого-то есть роль *инициатора*, а у кого-то роль *ответчика*.

Роли и действующие лица криптографических протоколов естественно возникли в ходе их описания. В дальнейшем для облегчения описания и восприятия работы протоколов за участвующими сторонами протоколов закрепили определенные имена сначала в порядке латинского алфавита, далее по ролевым характеристикам.

- 1) Основные действующие лица:
 - A: Алиса (Alice) как правило исполняет роль инициатора протокола;
 - В: Боб (Bob) отвечает на инициативу Алисы.
- 2) Если протокол требует участия третьей или четвертой стороны, в игру вступают:
 - С: Кэрол (Carol) участница в трёх- или четырёхсторонних протоколах в качестве третьей стороны;
 - D: Дэйв (Dave) участник четырехсторонних протоколов в качестве четвертой стороны.

- 3) Остальные участники играют специальные вспомогательные роли (претендентов, противников и контролеров) и появляются по мере надобности:
 - E: Ева (Eve) перехватчица сообщений (пассивная);
 - М: Мэллори (Mallory) злонамеренная активная взломщица;
 - Т: Трент (Trent) доверенный посредник;
 - W: Уолтер (Walter) надзиратель, в некоторых протоколах стережёт Алису и Боба;
 - Р: Пегги (Peggy) претендентка, пытается доказать что-то;
 - V: Виктор (Victor) верификатор, проверяет Пегги.

Основными характеристиками криптографического протокола являются:

- Прозрачность. Каждый участник протокола должен знать протокол и всю последовательность его действий.
- Однозначность. Действие каждого участника в протоколе должно быть однозначно определено.
- *Полнота*. Протокол должен быть полным в нем должны быть указаны точные действия в любой возможной ситуации.

Основные задачи криптографических протоколов:

- ✓ Конфиденциальность (секретность какой-либо части информации);
- ✓ Аутентичность (подтверждение целостности или авторства);
- ✓ Неотслеживаемость предметов и субъектов протокола.

Основное требование к криптографическому протоколу гласит, чтобы невозможно было сделать или узнать больше, чем определено протоколом.

Простейшим протоколом является ПРОТОКОЛ СЕКРЕТНОЙ СВЯЗИ, описываемый следующими шагами:

- Шаг 1. Алиса шифрует сообщение M с помощью своего ключа E, получает криптограмму Y = E(M).
- Шаг 2. Алиса отправляет криптограмму У Бобу.
- Шаг 3. Боб принимает сообщение *Y*.
- Шаг 4. Боб расшифровывается полученное сообщение с помощью своего ключа D, получает открытое сообщение M = D(Y).

Это однопроходный протокол, схематическая запись которого имеет следующий вид.

- 1. $A \to B$: Y = E(M), (Алиса вычисляет криптограмму E(M) и отправляет её Бобу).
- 2. *B*: M = D(Y), (Боб принимает и расшифровывает криптограмму *Y* Алисы).

В дальнейшем будем использовать краткую схематическую запись протоколов, если она не нарушает однозначного прочтения всех шагов протокола. Краткая схематическая запись, как правило, ограничивается указанием содержания проходов протокола.

В простейшей форме протокола (Рис. 1) очень трудно заметить, что сама последовательность шагов, может решить совершенно новую задачу, лежащую за пределами используемых алгоритмов в шагах протокола. Поэтому появление собственной теории криптографических протоколов связывают с появлением протокола распределения ключей Диффи и Хеллмана (Whitfield Diffie, Martin Hellman) в 1976 году.

Бейли Уи́тфилд Ди́фф и (англ. Bailey Whitfield 'Whit' Diffie; родился <u>5 июня</u> 1944, Куинс, <u>Нью-Йорк</u>, <u>США</u>) — один из самых известных американских криптографов, заслуживший мировую известность за концепцию криптографии с открытым ключом.

Ма́ртин Э́двард Хе́ллма н (англ. Martin Edward Hellman; род. 2 октября 1945, штат Нью-Йорк) — американский криптограф. Получил известность благодаря разработке первой асимметричной криптосистемы в соавторстве с Уитфилдом Диффи и Ральфом Мерклем (1976). Один из активных сторонников либерализации в сфере криптографии.

Классификация по степени развития

- 1) Минимальные протоколы, т.е. такие протоколы, в которых уже не удается выделить никакого собственного подпротокола, называют элементарными или основными, или примитивными. Их также называют криптографическими примитивами.
- 2) Иногда в протоколе удается выделить подпротокол, т.е. такую непрерывную подпоследовательность действий, которая решает некоторую промежуточную задачу, не являющуюся конечной задачей никакого прикладного протокола. Такие протоколы называются промежуточными.
- 3) Протоколы, состоящие из нескольких примитивных или промежуточных, называют развитыми. Также их часто называют просто прикладными протоколами, поскольку они решают практические задачи обеспечения безопасности и, как правило, сразу же по нескольким функциям.

Классификация по степени участия незаинтересованных сторон

- 1) Протоколы с посредником, т.е. такие протоколы, в которых прописано обязательное участие третьей незаинтересованной стороны (адвокатов, нотариусов, независимого центра распределения, центрального сервера и т.п.). Ясно, что эта сторона должна иметь высокий уровень надёжности и доверия. В первую очередь именно на этом факте держится устойчивость таких протоколов.
- 2) Протоколы с арбитром, т.е. такие протоколы, в которых третья незаинтересованная сторона вступает в действие только в некоторых сценариях исполнения протокола для полного его завершения. Как правила это связано с возникновением какого-либо конфликта в момент исполнения протокола.
- 3) Самодостаточные протоколы, т.е. такие протоколы, в которых третья незаинтересованная сторона отсутствует, и при этом протокол всегда проводится до конца по одному из своих сценариев.

Классификация по числу проходов

- 1) Неинтерактивные, т.е. такие протоколы, в которых осуществляется только одна передача данных.
- 2) *Интерактивные*, т.е. такие протоколы, в которых осуществляется несколько передач данных. Среди них также иногда выделяют: *двухпроходные*, *техпроходные* и т.д.

Классификация по числу участников

- 1) Двухсторонние.
- 2) Трёхсторонние, и т.д.
- 3) Многосторонние.

Классификация по типу используемой системы шифрования

- 1) На основе симметричных криптосистем.
- 2) На основе асимметричных криптосистем.
- 3) Смешанные.

Классификация по типу решаемой задачи

- 1) Протоколы распределения ключей.
- 2) Протоколы (схемы) цифровой подписи.
- 3) Протоколы (схемы) аутентификации.
- 4) Протоколы (схемы) разделения секрета.
- 5) Протоколы конфиденциальной передачи.
- 6) Игровые протоколы: протоколы подбрасывания монеты по телефону, протоколы игры в покер, и т.п.
- 7) Протоколы электронного голосования.
- 8) *Протоколы оборота электронных денег.* И т.д.

Осталось заметить, что некоторые протоколы, которые решают особенно удивительные задачи, которые на первый взгляд противоречивы в своей постановке, иногда называют *изотерическими*. К ним в частности относят протоколы безопасных выборов, протоколы безопасных вычислений с несколькими участниками, протоколы анонимной широковещательной передачи сообщений, протоколы электронных наличных.