Documentation of the C code used to calculate the path persistent homology (aka pph) up to diagrams of dimension 0 and 1

Rafael Polli Carneiro

Contents

1	Init	iall Observations	1
2	Hov	w The Program is structured	1
3	Hea	nders	2
	3.1	definitions.h	2
		3.1.1 Data types	2
		3.1.2 Functions	3
	3.2	basis_of_vector_space.h	4
		3.2.1 Data Types	5
		3.2.2 Functions	6
	3.3	Tp.h	9
		3.3.1 Data Types	9
		3.3.2 Functions	10

1 Initiall Observations

Be warned that henceforth we will admit the following conventions:

- i) Whenever talking about vector spaces, namelly V, we have that the field acting onto V is going to be \mathbb{Z}_2 ;
- ii) Every vector space here has finite dimension;

2 How The Program is structured

Everything here, concerning the C code, is splitted into the two folders: headers, src. Inside headers one can find the data types which are used to perform the main algorithm, as well the respectively functions that operate with these data types. Now, src is merely the C implementation of such

functions, or methods if someone prefers to call them. The C code called main.c, runs the algorithm desired to be calculated.

3 Headers

The folder Headers has the following tree structure:

```
headers

definitions.h
basis_of_vector_space.h
persistent_path_homology.h
Tp.h
```

Figure 1: tree headers.

Now let's describe each file contained at headers.

3.1 definitions.h

Here, basic, yet fundamental data types are defined. To begin with, we have the following constants:

- TRUE or FALSE;
- MARKED or NOT_MARKED. Here, these flags address whether or not an
 element of a vector space, more precisely, an element of its basis, is
 marked of not.
- EMPTY or NOT_EMPTY. We say that the ith element of an array can be empty or not, meaning that nothing has been allocated at its memomery space, if it is empty, and the contrary otherwise;
- SORTED or NOT_SORTED. ???;

3.1.1 Data types

The data types are:

- boolean = TRUE or FALSE;
- vertex_index = 0, 1, 2, ..., N. Given a graph (G, V), each vertex (or node if you prefer to call it), will be enumerated by integers ≥ 0 ;
- base_index. Let V be a vector space. Then, considering $\beta \subseteq V$ as its base, with $\beta = \{v_0, v_1, \dots, v_N\}$, we say that $0, 1, 2, \dots$ will be elements of the base_index;

Figure 2: Representation of a regular path w = [0, 3, 7, 3, 9, 5, 7, 10].

- vector_index. Given a enumeration of vectors, vector_index stores the indexes of such enumeration. For instance, let the vectors v_0, v_1, v_2, \ldots Then the indexes $0, 1, 2, \ldots$ are elements of vector_index.
- dim_path. Let (G, A) be a graph. Then $w = [a_0, a_1, \ldots, a_N]$ is called a regular path in G if $\forall i \in \{0, 1, \ldots, N\}$ the following holds

$$a_i \in G$$
 and $(a_0, a_1), (a_1, a_2), \dots, (a_{N-1}, a_N)$ are edges of the graph.

The regular path w, in this case, is said to have dimension N. Consequently, $\dim_{\mathbf{path}}$ will be the data type responsible of representing all dimension of possible regular paths being used in the future;

- dim_vector_space. The meaning of this data type can be understood immeadiately;
- regular_path. A regular path is exactly what was described up above, that is, $w = [a_0, a_1, \ldots, a_N]$ is a regular path when each a_i is a node, forall i, and every pair $(a_0, a_1), (a_1, a_2), \ldots, (a_{N-1}, a_N)$ is an edge. It is natural to represent a regular path as an array and, in fact, that is the way they will be represented in here. Thus, the type regular_path is, as expected, a pointer to vertex_index types. See Figure 2 for a visual explanation.
- vector. Considering V a vector space with basis $\beta \subseteq V$, then any element of V can be seen as its coordinates. For instance, let $w = (0,0,0,0,1,1,0) \in V$. The data type vector is, as regular_path, a pointer to boolean, which are elements of \mathbb{Z}_2 . For large graphs, and due to the fact that the array vector is filled with many zeros (in my analysis), this data type is not the best to be used. I WILL CHANGE IT FOR A LIST!!!

3.1.2 Functions

Finnaly, the following functions, down below, will implement some routines over the data types defined into definitions.h. They are:

are these regular paths the same

Parameters: regular_path, regular_path, dim_path.

Objective: Check if two regular paths w_1, w_2 are equal. In case positive it returns TRUE, and FALSE otherwise.

Return: boolean.

is_this_path_a_regular_path

Parameters : regular_path, dim_path.

Objective: It checks if an the array $w = [a_0, a_1, \ldots, a_N]$ is a regular path, that is, the pairs $(a_0, a_1), (a_1, a_2), \ldots, (a_{N-1}, a_N)$ are, indeed, edges of the graph. This function is important specially when taking a border operator of a regular path which, in most cases, the outcome can incorporate non regular paths. It returns TRUE if w is a regular path, and FALSE otherwise.

Return: boolean.

is_this_vector_zero

Parameters : vector, dim_vector_space.

Objective: It checks if a vector v of a vector space is zero, returning TRUE if positive and FALSE otherwise

Return: boolean.

sum_these_vectors

Parameters: vector, vector, dim_vector_space.

Objective: Let w_1, w_2 two elements of a vector space. Then this function returns a vector with the value equal to the sum $w_1 + w_2$.

Return : vector.

3.2 basis_of_vector_space.h

This header will provide us an abstraction of vector spaces which are spanned by a collection of regular paths. Bare in mind that in our context we have a sequence of sets of regular paths, indexed by $i \in \mathbb{R}_{>0}$, given by

$$R_i^p = \{ [a_0, a_1, \dots, a_p]; f(a_0, a_1) \le i, f(a_1, a_2) \le i, \dots, f(a_{p-1}, a_p) \},$$

where a_0, a_1, \ldots, a_p nodes of a graph and $f: G \times G \to \mathbb{R}_{\geq 0}$ a matrix. This provide a sequence

$$\mathbb{R}_i \subseteq \mathbb{R}_i$$

whenever $0 \le i \le j$. This is called a filtration, and it will provide us times which homological features appears and dissapear. With that in mind, for every regular path $w = [a_0, a_1, \ldots, a_p]$, we define

allowtime
$$(w) := \inf\{i \in \mathbb{R}_{>0}; f(a_0, a_1) \le i, f(a_1, a_2) \le i, \dots, f(a_{p-1}, a_p)\}$$

and

$$entrytime(w) := min{allowtime(w), allowtime(\partial(w))};$$

with f that matrix associated with the graph and ∂ the border operator.

3.2.1 Data Types

With these operators in mind we start by the following data types:

- tuple_regular_path_double. Given a base β of regular paths, then tuple_regular_path_double is a structure composed by the ith regular path of the base β and by the allow time of such regular path. See Figure 3.
- base. This is a structure that will be responsible to store all elements of a base which are regular paths of same dimension. Thus base_matrix is a pointer to tuple_regular_path_double where the regular paths must have the dimendion given by dimension_of_the_regular_path. The dimension of the vector space spaned by the base base_matrix is stored at dimension_of_the_vs_spanned_by_base. Finally, marks is an array of the same size of base_matrix where it shows if the ith element of the base is marked or not. See Figure 3. Notice that in the Figure 3 only base_matrix is represented, while the other features are left inside the center dots (this is done beacuse base_matrix is the object that should be paid more atention).
- collection_of_basis. This is a structure which can be seen as the union of every base indexed by the dimension of the paths that generates each vector space. Here max_of_basis counts how many basis do we have, taking into consideration that we start counting from zero. See Figure 3.

Figure 3: Visual reresentation of the data types defined at the file basis_of_vector_space.h.

3.2.2 Functions

We start with the two functions responsible for allocating all possible regular paths into their respectively basis:

alloc all basis

Parameters: unsigned_int, unsigned_int, double**.

Objective: Given an integer N, this function will allocate N+1 basis, taking as reference the amount of nodes of the graph and its network weight matrix.

(Obs: the function generating_all_regular_paths_dim_p is used) Also, regular paths of dimension 0 are stored by this function.

Return : collection_of_basis*.

generating all regular paths dim p version2

Parameters : collection_of_basis*, double**.

Objective: Given a collection_of_basis* this function will all regular paths of dimension 1 and 2 into the structures which represent the basis of the vector spaces spanned by such regular paths. generating_all_regular_paths_dim_p_version2 will be used by the function above.

Return: void.

Now, in order to the main algorithm to work we need to be able to "mark" a vector basis. The first thing that I do is to initialize arrays where their index are in correspondence with the index of the base_matrix. Then, a function is definined so, in the runtime, it is possible to mark a given vector basis.

initialize Marking basis vectors

Parameters : collection_of_basis

Objective: For each dimension of regular paths up to max_of_basis, an array, namely marks, of size dimension_of_the_vs_spanned_by_base is created so we will be able to say if a vector basis is marked or not

Return: void

marking basis vectors

Parameters: collection_of_basis, dim_path, base_index

Objective: Mark a vector of a basis where all regular paths have dimension equal to a dim_path.

Return: void

When we have all basis of regular paths allocated in memory we need to sort each base by the allow time of its elements. In other words, let $\beta = \{a_0, a_1, a_2, \dots, a_p\}$ be the base of the vector space spanned by regular paths of dimension N. Then we need to ensure that

 $allowtime(a_0) \le allowtime(a_1) \le allowtime(a_2) \le \cdots$.

This is done by the function

sorting the basis by their allow times

Parameters : collection_of_basis

Objective: Sort each element of a base_matrix by the allow time of each tuple_regular_path_double.

Return: void

which uses the function:

 $compare \, Tuple$

Parameters: tuple_regular_path_double, tuple_regular_path_double

Objective: This function induces a partial order into the space of regular paths by compairing allow times.

Return: int

to induce a partial order in the space of regular paths of same dimension.

Another important function is the one resposible to calculate the allow time of any regular:

allow time regular path

Parameters : network_weight**, regular_path, dim_path

Objective: It calculates the allow time of a regular_path with dimension dim_path.

Return : double

Last but not least, the getters and setters! Their meaning are straightforward.

get dimVS of ith base

Parameters : collection_of_basis**, dim_path

Objective: It returns the dimension of the vector space spanned by regular paths of dimension dim_path

Return : dim_vector_space

 $set_dim_path_of_ith_base$

Parameters : collection_of_basis**, dim_path

Objective: It sets the dimension of the regular paths that are going to be used

Return : void

 $set \ dim VS \ of \ ith \ base$

Parameters : collection_of_basis**, dim_path, dim_vector_space

Objective: It sets the dimension of the vector space spanned by regular paths of dimension dim_path to the values of dim_vector_space

Return: void

get path of base i index j

Parameters : collection_of_basis**, dim_path, base_index

Objective: It returns a regular path of dimension dim_path which has the index of base_index

Return : regular_path

 $is_path_of_dimPath_p_index_j_marked$

Parameters : collection_of_basis**, dim_path, base_index

Objective: It returns true if a regular path of dimension dim_path is marked and false otherwise

Return: boolean

3.3 Tp.h

Here we have the main structure responsible to take care with the gaussian elimination.

3.3.1 Data Types

The data types in here are going to be something equal to the ones found to allocate the basis above.

- T_p_tuple. A structure rpresenting a tuple (v, e, m) where v is a vector whose coordinates represent the regular paths that decomposes v. Also, e is the double storing an entry time and m is a boolean which informs if this tuple is empty or not.
- T_p_tuple_collection. A collection of T_p_tuple which are indexed by a base of regular paths of the same dimension that spans a vector space of dimension size
- T_p. A collection of all T_p_tuple_collection up to max_of_Tp.

Check Figure 4 to understand these data types and notice that they follow the same pattern of the Figure 3.

Figure 4: Visual reresentation of the data types defined at the file Tp.h.

3.3.2 Functions

 $alloc_\ T_\ p$

Parameters : collection_of_basis.

 ${\bf Objective} \ : \ {\bf Function} \ {\bf responsible} \ {\bf to} \ {\bf allocate} \ {\bf all} \ {\bf T_p} \ {\bf structure} \ {\bf into}$

memory

Return : T_p* .

Setters and getters.

 $set_\ T_\ p_\ pathdim_\ i_\ vector_\ j$

Parameters: T_p*, dim_path, vector_index, vector, double.

Objective: Allocate the vector at position (T_p->all_Tp)->array_of_T_p_tuple + vector_index as well it stores an entry time. Whenever this function is called this vector_index is set as not empty.

Return: void.

 $is \ T \ p \ pathdim \ i \ vector \ j \ empty$

Parameters : T_p*, dim_path, vector_index.

Objective : It checks if (T_p->all_Tp)->array_of_T_p_tuple + vector_index is empty

Return : boolean.

get Tp vector of pathdim i index j

Parameters : T_p*, dim_path, vector_index.

Objective : It returns the vector at (T_p->all_Tp)->array_of_T_p_tuple + vector_index

Return: vector.

 $get_Tp_et_of_pathdim_i_index_j$

Parameters : T_p*, dim_path, vector_index.

 $\label{eq:objective:thmost} \textbf{Objective} \ : \ \text{It returns the entry time of (T_p->all_Tp)->array_of_T_p_tuple}$

+ vector_index

Return : double.