

기초통계 및 경영통계

강사 김경하

기초 통계 with 데이터분석, 머신러닝

학습 내용

- EDA와 통계량 이해
- 추론 통계학 이해
- 통계적 가설 검정 이해
- 다양한 가설검정 방법 살펴보기

학습 내용

- EDA 주요 활동에 대해 안다.
- 가설 검정 방법과 절차에 대해 알아본다.
- 영 가설과 대립 가설의 의미를 안다.
- 유의확률(p-value)의 의미를 안다.
- 가설검정에서 발생가능한 오류를 이해한다.
- 다양한 가설검정 방법을 이해하고, 실습한다.

EDA와 통계량 이해

탐색적 데이터 분석(EDA)

• EDA는 그래프를 통한 시각화와 통계 분석등을 바탕으로 수집한 데이터를 다양한 각도에서 관찰하고 이해하는 방법

EDA의 필요성과 효과

- 데이터를 여러 각도에서 살펴보면서 데이터의 전체적인 양상과 보이지 않던 현상을 더 잘 이해할 수 있도록 도움
- 문제 정의 단계에서 발견하지 못한 패턴을 발견하고, 이를 바탕으로 데이터 전처리 및 모델에 관한 가설을 추가하거나 수정할 수 있음
- 즉 본격적인 데이터 분석에 앞서 구체적인 분석 계획을 수립하는데 도움이 됨

EDA 주요 활동

구분	활동 내용	
분석 목적 및 변수 확인	대략적인 문제 정의변수별 의미를 코드북 및 도메인 지식을 통해 확인	
데이터 전체적으로 살펴보기	 데이터 자체에 문제가 없는지를 확인하기 데이터의 일부를 샘플링하여 하나하나 살펴보기 이상치 및 결측치 탐색 군집화 및 빈발 패턴 추출등을 통한 주요 패턴 파악 	
개별 속성값 확인	개별 변수에 대한 빈도분석 및 기술 통계그래프시각화(히스토그램, 파이차트, 박스플롯)분포 적합성 검정	
속성 간 관계 파악	- 카이제곱 검정 - 상관관계 분석 - T-검정 및 일원분산분석 - 산점도 및 히트맵 시각화	

확률 변수의 정의

- 변수(variable) : 특정 조건에 따라 변하는 값
- 확률 변수(random variable) : 특정 값(범위)을 확률에 따라 취하는 변수 → 예시 : 주사위를 던졌을 때 나오는 결과를 나타내는 변수 X

값	1	2	3	4	5	6
확률	1/6	1/6	1/6	1/6	1/6	1/6

- 상태 공간의 크기에 따라
 - 。 **무한**한 변수: **연속 확률** 변수
 - 。 **유한**한 변수: **이산 확률** 변수

확률 분포의 정의

- 확률 분포(probability distribution)
 - · 확률 변수가 특정한 값을 취할 확률을 나타내는 **함수**를 의미함

확률 분포의 확인

- 한 변수가 따르는 확률 분포를 확인했을 때의 효과
 - 현재 수집한 데이터가 어떻게 생겼는지를 이해할 수 있음
 - 새로 데이터가 들어오면 어떻게 들어올 것인지 예상할 수 있음
- 그러나 가지고 있는 데이터는 샘플 데이터이므로 절대로 정확히 한 변수가 따르는 확률 분포를 알 수 없음.
- 그래프를 이용하여 확인하거나 **적합성 검정을 사용**하여 확률 분포를 확인해야 하는데, 이 작업은 굉장히 많은 노력과 시간이 필요함.

통계량의 필요성 : 간단하게 확률 분포 확인

- 통계량은 확률 분포의 특성을 나타내는 지표를 의미함
- 통계량을 계산하는 기초 통계분석(기술 통계 분석)을 바탕으로 확률 분포를 간단하게 확인 가능함 (단, 반드시 각 통계량이 나타내는 의미를 이해해야 함.)
- 특히, 변수가 많은 경우에 훨씬 효율적으로 사용 가능함

통계량의 종류

• 통계량은 크게 대표 통계량, 산포 통계량, 분포 통계량으로 구분

구분	내용	예시
대표 통계량	데이터의 중심 및 집중경향을 나타내는 통계량	평균, 중앙값, 최빈값 등
산포 통계량	데이터의 퍼진 정도를 나타내는 통계량	분산, 범위, 표준편차
분포 통계량	데이터의 위치 정보 및 모양을 나타내는 통계량	외도, 첨도, 사분위수, 최대값, 최소값

추론 통계학 이해

추론 통계학

- 모집단의 성격을 모르는 상황에서 모집단의 성격을 규명해야할 때
 - 어느 회사 제품의 평균 용량을 알기를 원하다고 하면,
 - 제품 전체를 분석한다면 시간적 제약과 경비등의 문제로 불가능함
 - 표본의 특성을 나타내는 통계량을 계산하여 모집단의 모수를 찾아냄
- 가능한 모수를 정확하게 추정하는 것이 통계적 분석에서 가장
 중요함
 - 。이 분야를 다루는 통계학을 **추론 통계학**이라고 함
 - 추론 통계학이 다루는 영역: 통계적 추정, 가설검정
 - * 모집단 : 우리가 관심을 가지고 연구하고 싶어 하는 전체 대상
 - * 모수 : 모집단의 특징을 나타내는 수치적인 값(평균, 표준편차, 비율 등의 지표)

추론 통계학

- 통계적 추정(statistical **estimation**)
 - 。통계량을 기초로하여 **모수를 추정**하는 **통계적 분석** 방법
 - 표본으로부터 계산한 통계량을 사용하여 모수의 특성을 규명하는 것
- 가설검정(**hypothesis** test)
 - 모수에 대하여 특정한 가설을 세워 놓고, 모집단으로 부터 추출된
 표본을 분석함으로써 그 가설의 타당성 여부를 결정하는 것

추론 통계학 - 통계적 추정 예시

- 서울 시내의 모든 대학의 신입생을 대상으로 수학능력시험 점수를 알아보려고 하는데, 시간적인 제약과 경비 때문에 서울 시내의 모든 대학의 신입생을 대상으로 수학능력시험을 조사할 수는 없다.
- 이런 경우 각 대학의 신입생 중에서 적정한 수의 학생을 표본으로 뽑아 그들의 수학능력 시험 점수를 조사하여 본 결과 평균 점수가 250점 이었다고 하고, 다음과 같이 답하면,
 - 250점일 것이다.
 - 225점~275점 사이일 것이다.
 - 170~330점 사이일 것이다.

추론 통계학 - 가설검정 예시

- 어느 기업의 신입사원들과 입사 후 연차가 어느정도 쌓인 대리급 사원들의 같은 해 명절 상여금을 비교해 본 결과 명절 상여금의 분포가 아래 그림과 같다.
- 대리급 사원들의 평균 상여금은 100만원이었고, 신입 사원들의 평균 상여금은 60만원, 두 분포는 정규분포를 이룬다고 한다.
- 인사팀장이 한 사원을 선택해 직급을 확인하지 않고 그 사원의 상여금을 조사하니, 이번 명절 상여금으로 80만원을 받았다고 한다면, 그 사원은 신입사원일까? 대리일까?

추론 통계학 - 가설검정 예시

- 귀무가설 : 그 사원은 대리 직급이다. 대립가설 : 그 사원은 신입사원이다.
- 몇 만원 이상을 대리직급으로 보야야 할지 기준 필요 -> 90만원 이상 대리
- 80만원 받은 직원에 대한 의사결정, 귀무가설은 기각됨
- 결과적으로 그 직원은 신입사원이라는 **대립가설이 채택**됨
- α와 β 구간의 의사결정 오류 존재할 가능성

가설 수립과 검정하기

• 탐색적 데이터 분석은 **가설(질문) 수립과 검정의 반복**으로 구성됨

가설 수립과 검정하기(예시)

- 문제 상황
 - 한 보험사에서 고객의 **이탈이 크게 늘고 있음**
 - 이탈한 고객들을 미리 식별하는 모델을 만들고 **이탈할 것이라 예상**되는 고객을 관리하여 **이탈율을 줄이고자** 함
- 가장 먼저 선행되어야 하는 작업은?

가설 수립과 검정하기(예시)

- 문제 상황
 - 한 보험사에서 고객의 이탈이 크게 늘고 있음
 - 이탈한 고객들을 미리 식별하는 모델을 만들고 이탈할 것이라 예상되는
 고객을 관리하여 이탈율을 줄이고자 함
- 가장 먼저 선행되어야 하는 작업은?
 - 문제 정의 및 목표 설정
 - 고객의 이탈 원인을 파악하는 것이고, 파악된 원인을 모델의 특징으로 사용해야 함.

가설 예시	검정 방법
보험 가입 기간이 긴 고객일수록 이	보험 가입 기간과 고객 이탈 여부 간의 관계 분석
탈율이 줄어들 것이다.	독립표본 t검정(보험 가입 기간이 다른 두 그룹 이탈율 비교)
고객 여정과 이탈율은 관계가 있을	주요 고객 여정 추출 및 주요 고객 여정 여부와 이탈율 간
것이다.	카이 제곱 검정 및 히트맵 시각화

통계적 가설 검정 이해 (Statistical Hypothesis Test)

- 갖고 있는 샘플을 가지고 모집단의 특성에 대한 가설의 통계적 유의성을 검정하는 일련의 과정
 - 수집한 데이터의 매우 특별한 경우를 제외하고, 대부분 샘플이며, 모집단은 정확히 알 수 없는 경우가 더 많음.
 - 통계적 유의성
 - 어떤 실험결과(데이터)가 확률적으로 봐서 단순한 우연이 아니라고 판단될 정도로
 의미가 있는 차이라는 것을 검증하는 것
 - 의사결정의 근거 제공 → 단순한 숫자 차이가 아니라 신뢰할 수 있는 차이인지 확인
 - 비즈니스 적용 가능성 → 데이터 기반 의사결정시 과학적 근거 마련

• 통계적 가설 검정 5단계

• 영 가설(null hypothesis)과 대립 가설(alternative hypothesis)로 구분하여, 가설을 수립하여야 함

	영 가설 또는 기무가설 (null hypothesis)	대립 가설 (alternative hypothesis)
정의	 특별한 증거가 없으면 참으로 추정되는 가설 우리의 관심 대상이 아닌 가설 검정을 통해, 기각하고 싶어함 	 특별한 증거가 없으면 거짓으로 추정되는 가설 우리의 관심 대상인 가설 검정을 통해, 채택하고 싶어함
표기	H_0	H_1 또는 H_a
설정 방법	모집단에 대한 특성을 등호로 표기	모집단에 대한 특성을 부등호로 표기 (단측 검정 ,양측 검정) >,<, <=, >=, !=

• 영 가설(null hypothesis)과 대립 가설(alternative hypothesis)로 구분하여, 가설을 수립하여야 함

구분	영 가설 또는 귀무가설 (null hypothesis)	대립 가설 (alternative hypothesis)
예시	H_0 : 대한민국 성인 남성의 키의 평균은 175cm 이다. H_0 : 성인 남성의 키는 성인 여성의 키와 같다	H_1 : 대한민국 성인 남성 키의 평균은 175cm와 같지 않다.(양측 검정) H_1 : 성인 남성의 키는 성인 여성의 키보다 크다(단측 검정)

통계적 가설 검정 - 가설 검정의 오류

- 가설 검정에서 발생하는 오류
 - 제1종 오류(Type 1 Error) : 귀무가설 참을 거짓이라 결정 함
 - 。제2종 오류(Type 2 Error): 귀무가설 거짓을 참이라고 결정 함

		결정		
	구분	귀무가설 기각함 (F)	귀무가설 기각 안함 (T)	
실제 사실	귀무가설 거짓 (F)	올바른 선택	제2종 오류	
	귀무가설 참 (T)	제1종 오류	올바른 선택	

통계적 가설 검정 – p-value

가설 검정에서 P-value 의미

- p-value(유의 확률)
 - 귀무가설이 참이라고 가정 했을 때, 우리가 현재 관측한 데이터보다 극단적인 결과가 나올 확률을 의미함.
 - P-value가 작다는 것은 귀무가설이 맞다고 보기 어려우며, 대립가설이 더 타당할 가능성이 높다는 뜻
- p-value 해석
 - p < 0.05 : 귀무가설 기각 → 대립가설 채택(통계적으로 유의미함)
 - p ≥ 0.05 : 귀무가설 채택 → 대립가설을 채택할 증거 부족

귀무가설(영가설 H_0) : 기존 상태, 검정을 시작할 때 기본적으로 설정하는 가설 대립가설(연구가설 H_1) : 연구자가 입증하고 싶은 가설

통계적 가설 검정 – p-value

• p-value(유의 확률) 귀무가설이 맞다고 가정할 때 얻은 결과와 다른 결과가 관측될 확률로, 그 값(p-value)이 작을 수록 귀무가설을 기각할 근거가 됨

p-value가 0.05(5%) 미만이면 귀무가설(영 가설)을 기각함

통계적 가설 검정 – p-value

유의 확률, p-value(예시1) – 한 모집단

- 영 가설 (H_0) : 대한민국 성인 남성의 평균 키는 165cm일 것이다.
- 대립 가설 (H_1) : 대한민국 성인 남성의 평균 키는 165cm 이상일 것이다.
- 관측한 대한민국 성인 남성의 키는 평균 175cm, 표준편차 1cm이다.
- 관측값 개수 n = 20명

가설 검정의 종류

• 가설 검정과 사용 목적 설명

가설검정 종류	사용 목적
단일 표본 t-검정	한 그룹의 평균이 기준 값과 차이가 있는지를 확인
독립 표본 t-검정	서로 다른 두 그룹의 데이터 평균 비교
쌍체 표본 t-검정	특정 실험 및 조치 등의 효과가 유의한지 확인
일원분산(ANOVA) 분석	셋 이상의 그룹 간 차이가 존재하는지 확인
상관분석	두 연속형 변수 간에 어떠한 선형 관계를 가지는지 파악
카이제곱 검정	두 범주형 변수가 독립인지 파악

• 통계적 가설 검정 5단계

단일 표본 t-검정 (One-Sample t-test)

- 목적 : 그룹의 평균이 기준 값과 차이가 있는지를 확인하는 검정방법
- 영가설과 대립 가설

모집단 평균 기

 H_0 : $\bar{x} = \mu (\bar{x}$: 표본 평균, μ : 기준 값)

 H_1 : $\bar{x} > \mu$ or $\bar{x} < \mu$ or $\bar{x} \neq \mu$

• 가설 수립 예시) 한 웹 사이트를 운영하고 있는데, 고객이 웹사이트에서 체류하는 평균 시간이 10분인지 아닌지를 알고 싶어 다음과 같이 가설을 수립하였다.

 H_0 : $\bar{x} = 10$

 $H_1: \bar{x} \neq 10$

단일표본 t검정

단일표본 t검정의 선행 조건

- 。단일 표본 t-검정은 해당 변수가 정규분포를 따라야 수행할 수 있음
- Kolmogorov-Smornov 또 Shapiro-Wilk를 사용한 정규성 검정이 선행되어야 함
- 보통 샘플 수가 많을 수록(30개 이상) 정규성을 띌 가능성이 높아지므로, 샘플 수가 부족한 경우에만 정규성 검정을 수행한 뒤, 정규성을 띄지 않는다 라고 판단된다면 비모수적 방법인 부호검정(sign test)나 윌콕슨 부호-순위 검정을 수행해야 함.

단일 표본 t-검정 통계량

$$t=rac{ar{x}-\mu}{s/\sqrt{n}}, \quad \stackrel{\checkmark}{\checkmark} \quad ar{x}$$
: 표본 평균 $\quad \checkmark \quad n$: 표본 수 $\quad \checkmark \quad s$: 표본 표준편차

• 위에 제시된 통계량을 t-분포 상에 위치시키는 방식으로 p-value를 계산함

• 단측 검정: **t 통계량**이 임계값보다 크거나 작은 경우 영가설을 기각함

• 양측 검정: |t| 가 임계값보다 큰 경우 영가설을 기각함

정규성 검정 : Kolmogorov-Smornov

- Kolmogorov-Smornov검정(KS test)
 - **관측한 샘플들이 특정분포를 따르는지 확인**하기 위한 검정 방법
 - · 해당 특정 분포를 정규 분포로 설정하여 **정규성 검정에도 사용**함
- KS test는 특정 분포를 따른다면 나올 것이라 예상되는 값과 실제 값의 차이가 유의한지를 확인하는 방법
 - 우리가 관측한 값과 특정 분포를 따랐을 때 나올 값과의 차이가크면 클 수록 특정 분포를 따르지 않는다라고 볼 수 있음

단일 표본 t-검정

• 파이썬을 이용한 단일 표본 t-검정

구분	코드	결과해석
정규성 검정 (KS test)	scipy.stats.kstest(x, 'norm', args=(평균, 표준편차))	 result = (statistics, pvalue)의 튜플 형태 p-value > 특정 수치(0.05): 정규성을 따른다고 판단
단일 표본 (t-검정)	scipy.stats.ttest_1samp (x, popmean)	 result = (statistics, pvalue)의 튜플 형태 statistics가 양수면 x의 평균이 popmean보다 큰 것이며, 음수면 x의 평균이 popmean보다 작음을 의미함 p-value <= 특정 수치(0.05) x는 popmean과 같지 않다고 판단
윌콕슨 부호- 순위 검정	scipy.stats.wilcoxon(x)	 result = (statistics, pvalue)의 튜플 형태 단일 표본 t-검정과 결과 해석이 같음 (단, popmean은 x의 중위수로 설정됨)

• 2-1. **단일 표본 t검정**과 독립 표본 t검정 실습

독립 표본 t-검정 (independent sample t-test)

독립 표본 t-검정

- 목적 : **서로 다른 두 그룹의 데이터 평균 비교**
- 영가설과 대립 가설

$$H_0$$
: $\mu_a = \mu_b \; (\mu_a$: 그룹 a의 표본 평균, μ_b : 그룹 b의 표본 평균)

 H_1 : $\mu_a > \mu_b$ or $\mu_a < \mu_b$ or $\mu_a \neq \mu_b$

• 가설 수립 예시 : 2024년 7월 한달 간 지점 A의 일별 판매량과 지점 B의 일별 판매량이 아래와 같다면, 지점A와 지점B의 7월 판매량 간 유의미한 차이가 있는가?

일자	지점A	지점B
2024.07.1	160	170
2024.07.2	220	180
2024.07.31	190	150
평균	200	180

독립 표본 t-검정

독립 표본 t-검정 선행 조건

- 독립성 : 두 그룹은 서로 독립적이어야 함
- 정규성 : 데이터는 정규분포를 따라야 함
 - 정규성을 따르지 않으면 비모수 검정인 Mann-Whitney 검정을 수행해야 함.
- 등분산성 : 두 그룹의 데이터에 대한 분산이 같아야 함
 - Levene의 등분산 검정 : p-value가 0.05미만이면 분산이 다르다고 판단(등분산성이 없음)
 - 분산이 같은지 다른지에 따라 사용하는 통계량이 달라지므로, 설정만 달리해주면 됨
- 비모수 : 특정한 분포(예: 정규분포)에 대한 가정이 없거나, 그런 가정을 하지 않는 검정 방법을 의미
- 등분산성 검정은 두 개 이상의 그룹이 같은 분산을 갖는지 평가하는 검정

독립 표본 t-검정 통계량

• 두 그룹의 분산이 같은 경우

$$t=rac{ar{x}_a-ar{x}_b}{s}$$
, $\sqrt{ar{x}_a}$: 그룹 a의 표본 평균 $\sqrt{n_a}$: 그룹 a의 샘플 수 \sqrt{s} : 통합 분산 $\sqrt{ar{x}_b}$: 그룹 b의 표본 평균 $\sqrt{n_b}$: 그룹 b의 샘플 수

$$S = \sqrt{\frac{(n_a-1)\times s_a^2 + (n_b-1)s_b^2}{n_a+n_b-2}}, \ \ \checkmark \ s_a$$
: 그룹 a의 표준편차 $\checkmark \ s_b$: 그룹 b의 표준편차

• 두 그룹의 분산이 다른 경우

$$t=rac{ar{x}_a-ar{x}_b}{s},~~rac{\checkmark~ar{x}_a:}{ar{x}_b:}$$
그룹 a의 표본 평균

$$S=\sqrt{rac{s_a^2}{n_a}+rac{s_b^2}{n_b}}, rac{\checkmark}{\checkmark} rac{n_a}{n_b}$$
그룹 a의 샘플 수 $\sqrt{\ s_a}$: 그룹 a의 표준편차

독립 표본 t-검정 통계량

• 파이썬을 이용한 독립 표본 t-검정

구분	코드	결과해석
정규성 검정 (KS test)	scipy.stats.kstest(x, 'norm', args=(평균, 표준편차))	• p-value > 특정 수치(0.05) : 정규성 을 따른다 고 판단할 수 있음
등분산성 검정 (Levene test)	scipy.stats.levene(s1,s2,s3,) # s1, s2, : 샘플(배열)	• p-value > 특정 수치(0.05) : 샘플 간 분산이 유 사하다고 판단할 수 있음(등분산성 만족) p-value <= 특정 수치(0.05) : 샘플 간 분산이 같지 않다고 판단할 수 있음
독립 표본 t-검정	scipy.stats.ttest_ind (a, b, equal_var) # a,b : 두 그룹의 데이터(배열) # equal_var : 등분산성을 만족 하는지 여부	 statistics가 양수면 a의 평균이 더 크다고 판단 pvalue <= 특정 수치(0.05): a와 b의 평균이 같지 않다고 판단
Mann- Whitneyu검정	Scipy.stats.mannwhitneyu(a, b) # a,b : 두 그룹의 데이터(배열)	 result = (statistics, pvalue)의 튜플 형태 pvalue가 특정 수치 미만이면 a와 b의 평균이 같지 않다고 판단

• 2-1. 단일 표본 t검정과 독립 표본 t검정 실습

쌍체 표본 t-검정 (paired sample t-test) • 목적 : 특정 실험 및 조치 등의 **효과가 유의미한지**를 확인

쌍체 표본 t-검정

가설 수립 예시

- 문제 상황
 - 어떤 제약회사가 신약을 투여하기 전과 후의 혈압 변화를 관찰하고자 합니다.
 - 같은 환자 10명을 대상으로 신약 투여 전후의 혈압을 측정한 데이터가 있다고 가정합니다.
- 목표
 - 신약 복용 전과 후의 평균 혈압 간 유의미한 차이가 있는지를 검정한다

[실험 데이터]

대상자	복용 전	복용 후	차이
1	145	138	7
2	150	142	8
3	138	135	3
4	142	140	2
5	148	145	3
9	151	146	5
10	144	139	5

쌍체 표본 t-검정

- 쌍체 표본 t-검정의 선행 조건
 - 。데이터는 쌍(pair)d으로 구성되어 있어야 함.
 - 실험 전과 후의 측정 값(즉, X와 Y)은 정규 분포를 따르지 않아도 무방함. 그러나 **측정 값의 차이인 d는 정규성**을 갖고 있어야 함.
 - 。이상치가 없어야 함(검정 결과의 왜곡을 피하기 위함.

• 쌍체 표본 t-검정의 통계량

$$t=rac{ar{d}}{{}^S\!d/\sqrt{n}}, \ ^\checkmark \ ar{d}$$
: d 의 평균 ${}^S\!d/\sqrt{n} \ ext{$\checkmark$} \ s_d$: d 의 표준편차 ${}^S\!d/\sqrt{n} \ ext{$\Xi$}$ 표준오차 SE

쌍체 표본 t-검정

• 파이썬을 이용한 쌍체 표본 t-검정

구분	코드	결과해석
정규성 검정	- Shapiro-Wilk 검정 scipy.stats.shapiro(d)	 소표본에 강하고 정규성 검정 전용 p-value > 특정 수치(0.05): 정규성을 따른다고 판단할 수 있음
	- D'Agostino-Pearson 검정 scipy.stats.normaltest(d)	 샘플 수가 (n >= 20) 일 때 사용하는 권장 p-value > 특정 수치(0.05) : 정규성을 따른다고 판단할 수 있음
쌍체 표본 t 검정	scipy.stats.ttest_rel(a, b) # a,b : 실험 전 후 결과 (주의 : 반드시 길이가 같아야 함)	 pvalue <= 특정 수치(0.05): 그룹 a와 그룹 b간 차이가 존재한다고 판단 (즉, 특정 실험의 효과가 존재함) statistics가 양수면 양의 효과(d>0)가 있다고 판단하며, 음수면 음의 효과(d<0)가 있다고 판단

- 2-2. 쌍체 표본 t검정 실습
- 문제 : 다이어트 전과 후의 차이가 유의한지 검정하기

일원분산(ANOVA) 분석 (One-way ANalysis Of Variance)

- 목적 : **셋 이상의 그룹 간 차이가 존재**하는지를 확인하기 위한 가설 검정 방법임(ANOVA 분산 분석)
- 영 가설과 대립가설

 H_0 : $\mu_a = \mu_b = \mu_c \ (\mu_a$: 그룹 a의 표본 평균, μ_b : 그룹 b의 표본 평균, μ_c : 그룹 c의 표본 평균)

 H_1 : 최소한 한 개 그룹에는 차이를 보인다

[Tip]

- * ANOVA(ANalysis Of Variance): 분산분석
- * 일원분산분석(One-way ANOVA) : 분석에 사용된 요인이 한 개(one factor)

용어	설명	예시
요인(factor)	그룹을 나누는 기준	지점, 브랜드, 수업 방식 등
수준(level)	요인의 하위 분류	A지점, B지점, C지점

가설 수립 예시

- 문제 상황
 - 2024년 7월 한 달 동안 지점 A, B, C의 일별 판매량이 각각 기록되었다.
 - 세 지점간 유의미한 차이가 있는지 궁금하다.
- 목표
 - 전체 지점 간 유의미한 차이가 존재 여부 검정
 - 개별 지점 간 차이 여부 파악

일자	지점A	지점B	지점C
2024.07.1	160	170	180
2024.07.2	220	180	185
2024.07.31	190	150	140
평균	200	190	180

일원분산분석의 선행 조건

- 독립성 : 모든 그룹은 서로 독립적이어야 함(실험 설계, 데이터 수집 시)
- 정규성 : 모든 그룹의 데이터는 정규분포를 따라야 함
 - Shapiro-Wilk 사용, Q-Q((Quantile-Quantile) Plot 확인
 - 。그렇지 않으면 비모수적인 방법인 Kruskal-Wallis H Test를 수행해야 함.
- 등분산성 : 모든 그룹에 데이터에 대한 분산이 같아야 함.
 - Levene test(레빈 검정) 사용
 - 그렇지 않으면 등분산성 가정 없이 평균 차이를 비교하는Welch's ANOVA 수행

• 일원 분산분석의 통계량

$$F = rac{ ext{집단 간 분산}}{ ext{집단 내 분산}}$$

집단 간 분산 =
$$\frac{\sum_{g=1}^{G} \left(\left(\bar{x}_{g} - \bar{x} \right)^{2} \times n_{g} \right)}{G - 1} \quad \checkmark \quad G: \, \text{그룹 개수} \qquad \checkmark \quad n_{g}: \, \text{그룹 } g \text{에 속한 샘플 수}$$

$$\checkmark \quad \bar{x}_{i}: \, \text{모든 샘플의 평균} \quad \checkmark \quad \bar{x}_{g}: \, \text{그룹 } g \text{에 속한 샘플의 평균}$$

집단 내 분산 =
$$\frac{\sum_{g=1}^{G} \left(s_g \times (n_g - 1) \right)}{n - G}$$
 \checkmark n : 샘플 개수 \checkmark s_g : 그룹 g 에 속한 샘플의 표준편차

- 사후 분석 : Tukey HSD test
 - Tukey HSD(honestly significant difference) test는
 일원분산분석에서 전체 그룹 간 평균 차이가 유의할 때, 두 그룹
 a와 b간 차이가 유의한 지 파악하는 사후 분석 방법임

$$\mathrm{H}SD_{a,b} = rac{\max(\mu_a,\mu_b) - \min(\mu_a,\mu_b)}{\mathrm{SE}}$$
 \checkmark μ_a : 그룹 a의 평균 \checkmark SE: 그룹 a와 b의 표준 오차 \checkmark μ_b : 그룹 b의 평균

◦ 만약, HSD_{a,b}가 유의 수준(임계값)보다 크면, 행당 그룹 간에는 유의미한 차이가 있다고 간주 함.

- * 사후 분석 : 실험이나 통계 분석에서 일차적인 검정(primary test) 후에 추가로 수행하는 분석을 의미
- * 유의하다 : "단순한 우연이나 무작위로 생긴 결과가 아니라,실제로 어떤 차이 또는 효과가 존재할 가능성이 크다"는 뜻

• 파이썬을 이용한 일원분산분석

구분	코드	결과해석
정규성 검정	- Shapiro-Wilk 검정 scipy.stats.shapiro(d)	• p-value > 특정 수치(0.05) : 정규성 을 따른다고 판단할 수 있음
등분산성 검정 (Levene test)	scipy.stats.levene(s1,s2,s3,) # s1, s2, : 샘플(배열)	 p-value > 특정 수치(0.05): 샘플 간 분산이 유사하다고 판단할 수 있음(등분산성 만족).
일원분산분석	scipy.stats.f_oneway(sample1, sample2, sample3,)	 p-value <= 특정 수치(0.05): 최소 하나의 그룹은 다른 그룹의 평균과 다르다고 판단 (집단 간 차이를 유발하는 요인/효과가 존재한다고 볼 수 있음)
사후분석	- 모수적 사후분석 statsmodels.stats.multicomp .pairwise_tukeyhsd(endog, groups, alpha=0.05)	 정규성을 따를 때 사용 endog: 분석 대상이 되는값(점수, 판매량), groups: 각 값이 속한 그룹 이름(A,B,C 등), alpha: 유의수준 reject가 True이고, p-adj <= 0.05이면, 두 그룹 간 통계적으로 유의한 평균 차이가 있다고 판단함.
	- 비모수적 사후분석 scipy.stats.mannwhitneyu(a, b) # a,b : 두 그룹의 데이터(배열)	 정규성을 따르지 않거나, 이상치가 많을 때, 중앙값 차이 또는 순위 차이를 비교하기 위한 방법 p-value <= 특정 수치(0.05): 두 집단 간에는 통계적으로 유의한 차이가 있다고 판단함.

- 2-3. 일원분산분석 실습
- 문제 : 세 지점의 일별 판매량의 평균이 유의한 차이가 존재하는지 검정하기

상관분석 (Correlation Analysis)

• 목적 : **두 연속형 변수** 간에 어떠한 **선형 관계**가 존재하는지, 그리고 그 관계의 방향과 강도를 파악하기 위함

• 영 가설과 대립 가설

 H_0 : 두 변수 간에는 유의미한 상관성이 존재하지 않는다 r=0

 H_1 : 두 변수 간에는 유의미한 상관성이 존재한다 r != 0, r < 0, r > 0

- 방법
 - 피어슨 상관계수 : 정규분포를 따르는 연속형 변수 일 때, 이상치 민감
 - 。 스피어만 상관계수 : 서열형(순위형), 정규성을 몰라도 됨
- 시각화 방법 : 산점도(scatter plot), 히트맵(heatmap plot)

• 두 변수 모두 **연속형 변수** 일 때 사용하는 상관 계수로 x와 y에 대한 상관 계수 $\rho_{x,y}(z)$ 는 다음과 같이 정의 됨

$$\rho_{x,y} = \frac{cov(x,y)}{\sqrt{var(x) \times var(y)}} \quad \checkmark \quad cov(x,y) : x 와 y 의 공분산, \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - y)}{n-1}$$

$$\checkmark \quad var(x) : x 의 분산$$

- 상관 계수가
 - 1에 가까울 수록 양의 상관관계가 강하다고 하며,
 - 。-1에 가까울 수록 음의 상관관계가 강하다고 함.
 - 。0에 가까울 수록 상관관계가 약하다고 함.
 - * 공분산(Covariance)은 두 개의 변수가 얼마나 함께 변하는지를 측정하는 통계량

• 두 변수의 순위 사이의 **단조 관련성을 측정**하는 상관 계수로 x, y에 대한 스피어만 상관 계수 $S_{x,y}$ 는 다음과 같이 정의됨

$$S_{x,y} = \rho_{r(x),r(y)}$$
 $\checkmark r(x)$: x 의 요소의 개별 순위 (x의 순위와 y의 순위 사이의 상관계수)

x	у	r(x)	r(y)
0	1.0	1	1
1	1.1	2	2
2	1.2	3	3
3	1.3	4	4
4	3.0	5	5

$ ho_{x,y} =$	$\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sqrt{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\sum_{i=1}^{n}(y_{i}-\bar{y})^{2}}}$

- $\rho_{x,y} = 0.795$
- $S_{x,y} = 1.000$

* 단조 관련성: 한 변수가 증가할 때 다른 변수도 함께 증가하거나 감소하는 경향이 있는 관계를 말함

상관분석 - 피어슨 상관 계수

• 파이썬을 이용한 상관분석

구분	코드	결과해석
피어슨 상관계수	scipy.stats.pearsonr(x, y)	 결과 (statistics, p-value) statistics: 피어슨 상관계수(-1 ~ 1) (H₀: 모집단 상관계수 ρ = 0) p-value <= 0.05: 유의한 선형 상관성이 있다고 판단
스피어만 상관계수	scipy.stats.spearmanr(x, y)	 결과 (statistics, p-value) statistics: 스피어만 상관계수(-1 ~ 1) (H₀: 모집단 상관계수 ρ_s = 0) p-value <= 0.05: 유의한 순위 기반 상관성이 있다고 판단
사후분석	DataFrame.corr(method) #method: pearson , spearman	• 컬럼 간 상관계수 계산 방법(2D 행렬)

상관분석 실습

- 2-4. 상관분석 실습
- 문제 : 금, 은, 달러의 상관성 분석

카이제곱 검정 (Chi-Square Test)

카이제곱 검정

- 목적 : 두 범주형 변수가 서로 독립적인지 검정
- 영가설과 대립 가설

 H_0 : 두 변수가 서로 독립이다 (연관 없음)

 H_1 : 두 변수가 서로 종속된다 (연관 있음)

- 시각화 방법 : 교차 테이블
- 적용 상황 예)
 - 성별(남/여)과 구매 여부(구매/비구매)의 관계
 - 。지역(서울/부산/대구)과 투표 여부(투표/비투표)의 관계
 - 학년(1~4학년)과 스마트폰 브랜드 선호(애플/삼성/기타)의 관계

교차 테이블과 기대값

- 교차 테이블(contingency table)은 두 변수가 취할 수 있는 값의 조합의 출현 빈도를 나타냄
- 예시 : 성별에 따른 강의 만족도(카테고리 수;상태공간 = 2x3 = 6)

	만족	보통	불만족	합계
남성	50 (45)	40 (35)	10 (20)	100
여성	40 (45)	(35)	30 (20)	100
합계	90	70	40	200

- 여성이면서 강의에 보통이라고 응답한 사람이 30명
- 남성이면서 강의에 <mark>불만족</mark>을 느낀 사람 수에 대한 기대값이 20명

- 카테고리 $C_{i,j}$ 에 대한 기대값 = $\frac{N_i \times N_j}{N}$ (N: 전체 샘플 수, N_i : 값 i를 갖는 샘플 수, N_j : 값 j를 갖는 샘플 수)
- 예시) 45 = 45 에서) 45 = 45 이 대한 기대 값: $\frac{100 \times 90}{200} = 45$

카이제곱 검정 – 카이제곱 통계량

• 카이제곱 검정에 사용하는 카이제곱 통계량은 기대값과 실제값의 차이를 바탕으로 정의됨 x:카이(그리스어)

$$\chi^2 = \sum_{j=1}^c \frac{\left(o_j - E_j\right)^2}{E_j}$$

- √ c: 카테고리 개수 (두 변수의 상태 공간의 곱)
- \checkmark o_j : 카테고리 j의 실제 값 (관측 값)
- \checkmark E_i : 카테고리 j의 기대 값
- 기대값과 실제값의 차이가 클수록 통계량이 커지며,
 통계량이 커질수록 변수간 연관성이 존재할 가능성이 높음
 - p-value <= 0.05
 - H₀: 두 변수는 독립이다 (변수간에 연관성이나상관성 없음)

카이제곱 검정

• 파이썬을 이용한 카이제곱 검정

구분	코드	결과해석
교차 테이블 생성	pandas.crosstable(S1, S2)	• Series S1과 S2로 구성된 교차테이블 생성
카이제곱 검정	scipy.stats.chi2_contingency(obs) #obs: 실제값	 교차 테이블의 실제값에 대한 기대값 계산 보통 pandas.crosstable의 결과에 대한 values를 입력으로 투입 result=(chi2, pvalue, dof, expected)

- 2-5. 카이제곱검정 실습
- 문제 : 성별과 만족도는 서로 관련이 있는가?

머신러닝에서의 가설검정

특징 정의 및 추출

• 예측 및 분류에 효과적인 특징을 정의하고 추출하는 과정

• 예시) 음료수 판매량 예측

특징 선택

- 특징 선택(Feature Selection)
 - 예측 및 분류에 효과적인 특징을 선택하여 모델의 성능을 높이고,
 차원의 저주를 완화하며 과적합을 줄이기 위한 기법
- 특징 효과성(클래스 관련성) 평가
 - 가설 검정에서 사용하는 통계랑을 사용할 수 있음.
 - 연속형 목표 변수(t-통계량, ANOVA), 범주형 목표 변수(카이제곱 검정)

특징
x_1
x_2
<i>x</i> ₃
x_4
<i>x</i> ₅
<i>x</i> ₆
<i>x</i> ₇

<u>정리</u>

가설 검정의 종류 정리

• 가설 검정과 사용 목적 설명

가설검정 종류	사용 목적
단일 표본 t-검정	한 그룹의 평균이 기준 값과 차이가 있는지를 확인
독립 표본 t-검정	서로 다른 두 그룹의 데이터 평균 비교
쌍체 표본 t-검정	특정 실험 및 조치 등의 효과가 유의한지 확인
일원분산(ANOVA) 분석	셋 이상의 그룹 간 차이가 존재하는지 확인
상관분석	두 연속형 변수 간에 어떠한 선형 관계를 가지는지 파악
카이제곱 검정	두 범주형 변수가 독립인지 파악

통계개념 정리

- 가설검정은 귀무가설 (H_0) 과 대립가설 (H_1) 을 설정하고, 표본 데이터를 통해 귀무가설이 통계적으로 기각될 수 있는지를 검정하는 절차
 - ① 귀무가설 설정, ② 표본 수집, ③ 검정 통계량 계산, ④ 유의확률(p-value) 비교
 - ⑤ 귀무가설을 기각하거나 채택함
- p-value(유의 확률) : 귀무가설이 옳다는 전제 하에 표본에서 실제로 관측된 통계값과 같거나 더 극단적인 통계값이 우연히 관측될 확률임
 - p-value <= 0.05 : 관찰된 결과가 귀무가설 하에서 매우 드물게(5% 이하의 확률로) 나타남이런 극단적인 결과는 거의 일어나지 않음
 - → 귀무가설 기각
 - p-value > 0.05 : 관찰된 결과가 귀무가설 하에서도 충분히 일어날 수 있는 5% 초과의 확률이라는 의미. 귀무가설을 기각할 충분한 근거가 없다고 판단
 - → 귀무가설을 기각하지 못함

통계개념 정리

- 평균이 $H(\mu)$ 이고 분산이 시그마 $^2(\sigma^2)$ 인 모집단으로부터 가능한 모든 n개의 조합을 표본으로 추출하면 표본 평균들의 분포는 점점 정규분포에 가까워짐
 - → 중심극한 정리,
 - → **정규분포 기반의 통계기법**을 다양한 상황에 적용
 - → 표본 크기 n >= 30 이면 대부분 정규분포에 충분히 근사함.
- 카이제곱 검정은 범주형 데이터의 통계 분석에 사용되는 검정으로, 2개의 범주형 변수 사이에 독립성을 판단함
- ANOVA 분산분석은 모집단이 셋 이상인 경우, 이들의 평균이 서로 동일한지 테스트함.

