

M54HC04 M74HC04

Z G Z-THOMZON

T-43-21 HEX INVERTER

- HIGH SPEED tpD = 8 ns (TYP.) at V_{CC} = 5V
- LOW POWER DISSIPATION $I_{CC} = 1 \mu A \text{ (MAX.)}$ at $T_A = 25 \text{ °C}$
- HIGH NOISE IMMUNITY V_{NIH} = V_{NIL} = 28% V_{CC} (MIN.)
- OUTPUT DRIVE CAPABILITY 10 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE |I_{OH}| = I_{OL} = 4 mA (MIN.)
- BALANCED PROPAGATION DELAYS tplh = tphl
- WIDE OPERATING VOLTAGE RANGE V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS04

DESCRIPTION

The M54/74HC04 is a high speed CMOS HEX IN-VERTER fabricated in silicon gate C2MOS technology. It has the same high speed performance of LSTTL combined with true CMOS low power consumption.

The internal circuit is composed of 3 stages including buffer output, which enables high noise immunity and stable output. All inputs are equipped with circuits against static discharge and transient excess voltage.

INPUT AND OUTPUT EQUIVALENT CIRCUIT

LOGIC DIAGRAM (Per Gate)

Z G Z-THOMZON

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
V _{CC}	Supply Voltage	-0.5 to 7	٧	
V _I	DC Input Voltage	-0.5 to V _{CC} +0.5	٧	
v _o	DC Output Voltage	-0.5 to V _{CC} +0.5	V	
l _{iK}	DC Input Diode Current	± 20	mA	
lok	DC Output Diode Current	± 20	mA	
· lo	DC Output Source Sink Current Per Output Pin	± 25	mA	
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA	
PD	Power Dissipation	500 (*)	mW	
T _{stg}	Storage Temperature	-65 to 150	°C	

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

(*) 500 mW: ≅ 65°C derate to 300 mW by 10 mW/°C: 65°C to 85°C.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
v_{cc}	Supply Voltage	2 to 6	V
VI	Input Voltage	0 to V _{CC}	V
v _o	Output Voltage	0 to V _{CC}	V
TA	Operating Temperature 74HC Series 54HC Series	- 40 to 85 - 55 to 125	°C
t _r , t _f	Input Rise and Fall Time	V _{CC}	ns

_56E D ■ 7929237 0039744 085 ■SGTH ----

DC SPECIFICATIONS

S G S-THOMSON

Symbol	Parameter	v _{cc}	Test	Test Condition		T _A =25°C 54HC and 74HC			- 40 to 85°C 74HC		– 55 to 125°C 54HC	
					Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input Voltage	2.0 4.5 6.0			1.5 3.15 4.2	<u> </u>	_ _	1.5 3.15 4.2	=	1.5 3.15 4.2	=	٧
V _{IL}	Low Level Input Voltage	2.0 4.5 6.0			<u>-</u>	_ _ _	0.5 1.35 1.8	_ _ _	0.5 1.35 1.8		0.5 1.35 1.8	٧
V _{OH}	High Level Output Voltage	2.0 4.5 6.0	V _I V _{IH} or	lo -20 μA	1.9 4.4 5.9	2.0 4.5 6.0	_	1.9 4.4 5.9	<u>-</u>	1.9 4.4 5.9	_	٧
		4.5 6.0	V _{IL}	−4.0 mA −5.2 mA	4.18 5.68	4.31 5.8	=	4.13 5.63	_	4.10 5.60		
VOL	Low Level Output Voltage	2.0 4.5 6.0	V _{IH} or	20 μΑ	=	0.0 0.0 0.0	0.1 0.1 0.1	=	0.1 0.1 0.1	 -	0.1 0.1 0.1	٧
		4.5 6.0	V _{IL}	4.0 mA 5.2 mA	_	0.17 0.18	0.26 0.26	_	0.33 0.33	-	0.40 0.40	
lį	Input Leakage Current	6.0	V _I =V _{CC} or GND		_	_	±0.1	_	±1.0	_	±1.0	μА
lcc	Quiescent Supply Current	6.0	V _I =V _{CC} or GND		_	_	1	_	10	_	20	μА

AC ELECTRICAL CHARACTERISTICS ($V_{CC} = 5V$, $T_A = 25$ °C, $C_L = 15$ pF, Input $t_f = t_f = 6$ ns)

Symbol		54HC and 74HC					
	Parameter	Min.	Тур.	Max.	Unit		
t _{TLH}	Output Transition Time		4	8	ns		
t _{PLH}	Propagation Delay Time		9	15	ns		

S G S-THOMSON

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 pF$, input $t_r = t_f = 6 ns$)

Symbol	Parameter	V _{CC} Test Condition	Test Condition	T _A = 25°C 54HC and 74HC			- 40 to 85°C 74HC		– 55 to 125°C 54HC		Unit
				Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition Time	2.0 4.5 6.0			30 8 7	75 15 13	<u>-</u>	95 19 16		110 22 19	ns
t _{PLH} t _{PHL}	Propagation Delay Time	2.0 4.5 6.0		=	40 10 9	90 18 15	_ _ _	115 23 20		135 27 23	ns
CIN	Input Capacitance			_	5	10		10		10	ρF
C _{PD} (*)	Power Dissipation Capacitance			_	22	_	-	_			ρF

Note (*) CpD is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit)

Average operating current can be obtained by the following equation.

ICC(opr) = CpD * VcC * fin + IcC/6 (per Gate).

SWITCHING CHARACTERISTICS TEST CIRCUIT

TEST CIRCUIT ICC (Opr.)

