1. Select all the correct facts about complex numbers from the list below	1.	Select all	the correct	facts about	complex	numbers	from	the	list be	lov
---	----	------------	-------------	-------------	---------	---------	------	-----	---------	-----

 \square The phase (angle) of a complex number 1+j in radians is $\frac{\pi}{2}$.

lacksquare The complex number 3+4j has modulus 5.

 \square The value of the expression $\exp(j \frac{\pi}{4})$ is j.

lacksquare The conjugate of the complex number $re^{j heta}$ is given by $re^{-j heta}$.

Orrect Indeed: $r\cos(\theta)-jr\sin(\theta)=re^{-j\theta}$ which is the conjugate of $re^{j\theta}$.

 \square The conjugate of the complex number $re^{j\theta}$ is given by $rac{1}{r}e^{j\theta}$.

ightharpoonup The complex number j is one of the fourth roots of unity.

 \bigcirc Correct Correct. $j^4=-1^2=1$

For any complex number z, the numbers $z+\overline{z}$ and $z\times\overline{z}$ are both real numbers.

 \bigcirc Correct Correct: Let z=x+jy. We have $z+\overline{z}=2x$ and $z imes\overline{z}$ = x^2+y^2 .

ightharpoonup The value of $rac{1}{1+j}$ is $rac{1}{2}(1-j)$.

Correct
Correct.

$$lacksquare w_n = \cos(rac{2\pi}{n}) + j\sin(rac{2\pi}{n})$$

⊘ Correct

Correct

- \square The set of n^{th} roots of unity is $\{w_n, w_n^2, \cdots, w_n^{n-1}\}$.
- $w_n^{n-1} = \overline{w_n} = \frac{1}{w_n}.$
- \bigcirc Correct Correct. Because $w_n^{n-1}=w_n^n imes w_n^{-1}=rac{1}{w_n}=\overline{w_n}$
- \square If n is even and $n \geq 2$ then $w_n^{n/2} = 1$
- lacksquare If n is even and $n\geq 2$ then $w_n^2=w_{n/2}.$
- \bigcirc Correct: $w_n^2=e^{jrac{2\pi}{n} imes 2}=e^{jrac{2\pi}{n/2}}$
- lacksquare For any $0 \leq k < n$ we have $w_n^k = \overline{\omega_n}^{n-k} = rac{1}{\overline{\omega_n}^k}.$
- Correct
 Correct
- $lacksquare 1+w_n+w_n^2+\cdots+w_n^{n-1}=0$ for all $n\geq 2$
- \bigcirc Correct $1+w_n+w_n^2+\cdots+w_n^{n-1}=rac{w_n^n-1}{w_n-1}=0$ since $w_n^n=1$.