Thesis Outline

- 1. Introduction
- 2. Category Theory
 - 1. Category Theory Basics
 - 1. Categories
 - 2. Functors
 - 3. Natural Transformations
 - 2. Universal Properties
 - 1. Terminal/Initial Objects
 - 2. (Co)Products
 - 3. (Co)Equalizers
 - 4. Pullbacks and Pushouts
 - 5. (Co)Cones and (Co)Limits
 - 3. Relations Between Categories
 - 1. Subcategory
 - 2. Full Subcategory
 - 3. Natural Isomorphism
 - 4. Adjunction
 - 5. Monad (*)
 - 6. The Yoneda Lemma (*)
 - 4. Structure on Categories
 - 1. Monoidal Categories
 - 2. Symmetric Monoidal Categories
 - 3. Cartesian Monoidal Categories
- 3. Categorical Systems Theory
 - 1. Abstracting Systems
 - 2. The Category of Arenas and Lenses
 - 1. Lenses in an underlying Cartesian monoidal category
 - 2. Identity Lenses
 - 3. Lens Composition
 - 4. The Parallel Product of Lenses
 - 3. Case Study: Composing Discrete Dynamical Systems
 - 1. Discrete Dynamical Systems are Lenses over **Set**
 - 2. The Case Study (+)
 - 4. Case Study: Composing Differential Systems
 - 1. Differential Systems are Lenses over **Euc**
 - 2. The Case Study (+)
 - 5. Monadic Lenses (*)
 - 6. Case Study: Composing Markov Processes (*)(+)
- (*): These sections might be cut in the final paper.
- (+): I don't know what my case studies will be yet.