Package 'AdvDif4'

October 12, 2022

Type Package

Title Solving 1D Advection Bi-Flux Diffusion Equation
Version 0.7.18
Author Jader Lugon Junior, Pedro Paulo Gomes Watts Rodrigues, Luiz Bevilacqua, Gisele Moraes Marinho, Diego Campos Knupp, Joao Flavio Vieira Vasconcellos and Antonio Jose da Silva Neto.
Maintainer Jader Lugon Junior <jlugonjr@gmail.com></jlugonjr@gmail.com>
Description This software solves an Advection Bi-Flux Diffusive Problem using the Finite Difference Method FDM. Vasconcellos, J.F.V., Marinho, G.M., Zanni, J.H., 2016, Numerical analysis of an anomalous diffusion with a bimodal flux distribution. <doi:10.1016 j.rimni.2016.05.001="">. Silva, L.G., Knupp, D.C., Bevilacqua, L., Galeao, A.C.N.R., Silva Neto, A.J., 2014, Formulation and solution of an Inverse Anomalous Diffusion Problem with Stochastic Techniques. <doi:10.5902 2179460x13184="">. In this version, it is possible to include a source as a function depending on space and time, that is, s(x,t).</doi:10.5902></doi:10.1016>
License GPL-3
Encoding UTF-8
LazyData true
Repository CRAN
NeedsCompilation no
Date/Publication 2019-07-21 18:20:02 UTC
R topics documented:
AdvDif4 2 pentaSolve 7
Index 9

2 AdvDif4

AdvDif4

Solving 1D Advection Bi-Flux Diffusion Equation

Description

This software solves an Advection Bi-Flux Diffusive Problem using the Finite Difference Method FDM. A file with R commands can be consulted in document folder.

Usage

```
AdvDif4(parm, func)
```

Arguments

parm Parameters data. It must contain values for k2,k4,v,l,m,tf,n,w10,w11,w12,w20,w21,w22,e10,e11,e12,e20

needed to run the model.

func Functions definitions. It must contain the functions beta,dbetadp,fn,fs,fw1,fw2,fe1,fe2

needed to run the model.

Value

The resulting matrix with results obtained for each time as rows and at each position as columns.

Examples

```
# Begin of the first example
# 100th power sinusoidal function as initial condition and no source.
# with advection, bi-blux (primary and secondary diffusion) and constant beta.
# Beta function
fbeta <- function(p)</pre>
\{f < -0.2
return(f)}
# Beta derivative function
dbetadp <- function(p)</pre>
\{f < - 0\}
return(f)}
# Initial condition
fn <- function(x)</pre>
\{ f < - \sin(pi * x)^100 \}
return(f)}
# velocity
v <- 0.2
# Source function
```

AdvDif4 3

```
fs <- function(x,t)</pre>
{ f <- 0
return(f)}
# diffusion coefficients parameter
k2 <- 1e-3
k4 <- 1e-5
# Space and temporal definition
1 <- 1
m <- 100
tf <- 1
n <- 1000
# Left boundary conditions
w10 <- 1
w11 <- 0
w12 <- 0
w20 <- 0
w21 <- 1
w22 <- 0
fw1 <- function(t)</pre>
{ f <- 0
return(f)}
fw2 <- function(t)</pre>
{ f <- 0
return(f)}
# Right boundary conditions
e10 <- 1
e11 <- 0
e12 <- 0
e20 <- 0
e21 <- 1
e22 <- 0
fe1 <- function(t)</pre>
{ f <- 0
return(f)}
fe2 <- function(t)</pre>
{ f <- 0
return(f)}
parm <- c(k2,k4,v,l,m,tf,n,w10,w11,w12,w20,w21,w22,e10,e11,e12,e20,e21,e22)
func <- c(fbeta=fbeta,dbetadp=dbetadp,fn=fn,fs=fs,fw1=fw1,fw2=fw2,fe1=fe1,fe2=fe2)</pre>
ad <- AdvDif4(parm,func)</pre>
eixo <- seq(0,1,by=0.01)
plot(eixo,ad[1,1:101],type='l',col="red",xaxt="n",xlab="X", ylab="p(x,t)")
axis(1, seq(0,1,0.1), las=2)
lines(eixo,ad[250,1:101],type='l',col="orange")
lines(eixo,ad[500,1:101],type='l',col="green")
lines(eixo,ad[750,1:101],type='l',col="blue")
lines(eixo,ad[1000,1:101],type='l',col="black")
```

4 AdvDif4

```
# End of the first example
# Begin of the second example
# 100th power sinusoidal function as initial condition and no source.
# with advection, bi-blux (primary and secondary diffusion) and sigmoid function beta.
# Beta function
fbeta <- function(p)</pre>
{betamin <- 0.2
betamax <- 1
gama <- 2500
pin <- 0.001
f <- betamax-(betamax-betamin)/(1+exp(-gama*(p-pin)))</pre>
return(f)}
# Beta derivative function
dbetadp <- function(p)</pre>
{betamin <- 0.2
betamax <- 1
gama <- 2500
pin <- 0.001
f <- (-gama*(betamax-betamin)*exp(-gama*(p-pin))/((1+exp(-gama*(p-pin)))^2))
return(f)}
# Initial condition
fn <- function(x)</pre>
{ f <- sin(pi*x)^100
return(f)}
# velocity
v <- 0.2
# Source function
fs <- function(x,t)</pre>
{ f <- 0
return(f)}
# diffusion coefficients parameter
k2 <- 1e-3
k4 <- 1e-5
# Space and temporal definition
1 <- 1
m < -100
tf <- 1
n <- 1000
# Left boundary conditions
w10 <- 1
w11 <- 0
w12 <- 0
```

AdvDif4 5

```
w20 <- 0
w21 <- 1
w22 <- 0
fw1 <- function(t)</pre>
{ f <- 0
return(f)}
fw2 <- function(t)</pre>
{ f <- 0
return(f)}
# Right boundary conditions
e10 <- 1
e11 <- 0
e12 <- 0
e20 <- 0
e21 <- 1
e22 <- 0
fe1 <- function(t)</pre>
{ f <- 0
return(f)}
fe2 <- function(t)</pre>
{ f <- 0
return(f)}
parm <- c(k2,k4,v,l,m,tf,n,w10,w11,w12,w20,w21,w22,e10,e11,e12,e20,e21,e22)
func <- c(fbeta=fbeta,dbetadp=dbetadp,fn=fn,fs=fs,fw1=fw1,fw2=fw2,fe1=fe1,fe2=fe2)</pre>
ad <- AdvDif4(parm,func)</pre>
eixo <- seq(0,1,by=0.01)
plot(eixo,ad[1,1:101],type='l',col="red",xaxt="n",xlab="X", ylab="p(x,t)")
axis(1, seq(0,1,0.1), las=2)
lines(eixo,ad[250,1:101],type='l',col="orange")
lines(eixo,ad[500,1:101],type='l',col="green")
lines(eixo,ad[750,1:101],type='l',col="blue")
lines(eixo,ad[1000,1:101],type='l',col="black")
# End of the second example
# Begin of the third example
# zero initial condition and a source.
# with advection, bi-blux (primary and secondary diffusion) and constant beta.
# Beta function
fbeta <- function(p)</pre>
\{f < -0.2
return(f)}
# Beta derivative function
dbetadp <- function(p)</pre>
{f <- 0
return(f)}
# Initial condition
```

6 AdvDif4

```
fn <- function(x)</pre>
{ f <- 0
return(f)}
# velocity
v <- 0.00
# Source function
fs <- function(x,t)</pre>
\{ if(x \le 0.1) \{ f < -1 \} \}
else{f <- 0}
return(f)}
# diffusion coefficients parameter
k2 <- 1e-3
k4 <- 1e-5
# Space and temporal definition
1 <- 1
m < -100
tf <- 1
n <- 1000
# Left boundary conditions
w10 <- 0
w11 <- 1
w12 <- 0
w20 <- 0
w21 <- 0
w22 <- 1
fw1 <- function(t)</pre>
{ f <- 0
return(f)}
fw2 <- function(t)</pre>
{ f <- 0
return(f)}
# Right boundary conditions
e10 <- 0
e11 <- 1
e12 <- 0
e20 <- 0
e21 <- 0
e22 <- 1
fe1 <- function(t)</pre>
{ f <- 0
return(f)}
fe2 <- function(t)</pre>
{ f <- 0
return(f)}
parm <- c(k2, k4, v, 1, m, tf, n, w10, w11, w12, w20, w21, w22, e10, e11, e12, e20, e21, e22)
func <- c(fbeta=fbeta,dbetadp=dbetadp,fn=fn,fs=fs,fw1=fw1,fw2=fw2,fe1=fe1,fe2=fe2)</pre>
```

pentaSolve 7

```
#
ad <- AdvDif4(parm,func)
eixo <- seq(0,1,by=0.01)
plot(eixo,ad[1000,1:101],type='l',col="black",xaxt="n",xlab="X", ylab="p(x,t)")
axis(1,seq(0,1,0.1),las=2)
lines(eixo,ad[250,1:101],type='l',col="orange")
lines(eixo,ad[500,1:101],type='l',col="green")
lines(eixo,ad[750,1:101],type='l',col="blue")
lines(eixo,ad[1,1:101],type='l',col="red")
#
# End of the third example
#
# It is easy to change k4 value in the previous example to observe its effect.
# Another possibility is to change beta function and its derivative also.
# There are more examples and also "News.md" inside "doc"" folder.
#
#</pre>
```

pentaSolve

Solving 'Ax=b' system

Description

This software solves an 'Ax=b' pentadiagonal system using a direct method. Variables a1, a2, a3, a4, a5 are matrix A diags and b is the vector.

Usage

```
pentaSolve(a1,a2,a3,a4,a5,b)
```

Arguments

a1	A vector
a2	A vector
a3	A vector
a4	A vector
a5	A vector
b	A vector

Value

A vector with the x value

8 pentaSolve

Examples

```
#
# Solve a 'Ax=b' easy sample
#
a1<-c(1)
a2<-c(2,2)
a3<-c(7,7,7)
a4<-c(2,2)
a5<-c(1)
b<-c(11,12,13)
pentaSolve(a1,a2,a3,a4,a5,b)
```

Index

AdvDif4, 2

pentaSolve, 7