Medical/Bio Research Topics II: Week 03 (21.09.2023)

Structural MRI: data processing (구조 자기공명영상: 데이터 처리 방법)

Brain Mapping with Structural MRI (sMRI)

T1/T2-weighted sMRI

Automatic Abnormality Detection

- Segmentation
 - Deep learning for volumetric segmentation of stroke lesions on a T1-weighted image [Tomita et al., 2020]
- Grading
 - Deep learning for predicting the severity of enlarged perivascular spaces on a T2-weighted image [Williamson et al., 2022]

3D deep neural network with residual learning

[Tomita et al., 2020]

[Tomita et al., 2020]

Evaluation of the performance of stroke lesion segmentation

sMRI Data Processing

- Numerous steps to clean and standardise sMRI data before brain morphometry
 - Correction for unwanted variation
 - Intensity non-uniformity
 - Segmentation
 - Classifies an image into the non-brain and brain and, furthermore, the brain into different tissues usually including grey matter, white matter, and cerebrospinal fluid
 - Normalisation
 - Transforms an image from a native space to the standard space

[Hands-on Processing of sMRI]

- Process sMRI data and check the output from each step
- [Approach 1] SPM toolbox (https://www.fil.ion.ucl.ac.uk/spm/) in MATLAB

GUI of the SPM toolbox

Input

T1-weighted and T2-weighted sMRI

Output

Correction for intensity non-uniformity

Intensity non-uniformity

Correction of the T1-weighted image for intensity non-uniformity

Correction of the T2-weighted image for intensity non-uniformity

Output

Segmentation

Segmentation

Grey matter

White matter

Cerebrospinal fluid

Bone

Soft tissue

Air/background

Tissue classification based on a mixture of Gaussians

OutputNormalisation

Normalisation

Unified segmentation and normalisation

Confirmation

MNI152 template brain

Individual's normalized brain

- [Approach 2] BrainPrep (https://github.com/quqixun/BrainPrep)
 - Pipeline to process brain MRI images by using FMRIB Software Library (FSL) and Advanced Normalization Tools (ANTs)
 - 1. Install FSL and ANTs
 - 2. Install python packages
 - tqdm
 - numpy
 - scipy
 - nipype
 - nibabel
 - matplotlib
 - sciKit-fuzzy (optional)
 - scikit-learn (optional)

Voxel-based Morphometry

- Without defining boundaries and modelling cortical surfaces
- CAT12 toolbox (https://neuro-jena.github.io/cat/)
 - Extension to SPM12

GUI of the CAT12 toolbox

Grey matter volume

- Computed by multiplying voxel-wise grey matter probability by voxel volume
- For a grey matter probability map in the native space or its modulated one in the standard space

Normalisation and modulation

Voxel size: $1.5 \text{ mm} \times 1.5 \text{ mm} \times 1.5 \text{ mm}$

Voxel volume: 3.375 mm³

Computation of grey matter volume for a voxel or a region

Mapping of grey matter volume

- Input to machine learning models
 - Table of voxel-wise or region-wise grey matter volume values

Grey matter volume map

Surface-based Morphometry

- Independent of registration and modulation
- Not applicable to subcortical regions
- FreeSurfer (https://surfer.nmr.mgh.harvard.edu/)
 - sMRI analysis software of choice for the Human Connectome Project

Surface reconstruction

- White matter surface: inner cortical boundary between the grey matter and white matter
- Pial surface: outer cortical boundary between the grey matter and pia mater

White matter surface

Pial surface

[https://www.physio-pedia.com/Meninges]

Cortical surfaces beneath cranial meninges

[https://surfer.nmr.mgh.harvard.edu/]

Surface representation of the cerebral cortex

Surface representation with different numbers of vertices

Cortical thickness

 Distance between the inner (white matter surface) and outer (pial surface) cortical boundaries

Information of cortical thickness

sMRI as an Individual's Spatial Reference

- Anatomical localization of other modalities of MRI
 - Within-subject between-modality registration

Rigid registration Within-subject within-modality Registration (global shift and rotation) Affine registration Within-subject between-modality Registration (global shift, rotation, scale, and shear) Deformable registration Between-subject Registration (local transformations)

[https://kr.mathworks.com/help/medical-imaging/ug/medical-image-registration.html]

Image registration

Coregistration between sMRI and functional MRI

Brain activity on a functional image

Brain activity on a structural image

Anatomical localization of brain activity