

57. La conique d'équation $(\lambda y + x - 1)(2\lambda y - 5x) + 1 = 0$ rencontre la polaire de l'origine par rapport à la conique au point P. L'équation du lieu de P égale :

1. $7x - 1 = 0$ 2. $x - 7 = 0$ 3. $x + 7 = 0$ 4. $7x + 1 = 0$ 5. $5x + 1 = 0$ (M. 2000)

58. Le lieu du centre des courbes représentées par l'équation

$3y^2 + \lambda xy + x^2 - 5x + 3 = 0$ est une hyperbole d'équation :

1. $x^2 - y^2 + 2y - 1 = 0$ 3. $6y^2 - 2x^2 + 5x = 0$ 5. $x^2 - y^2 + 2x - 1 = 0$
2. $12y^2 - 2x^2 + 7x = 0$ 4. $8y^2 - 2x^2 - 3x - 1 = 0$ (M. 2001)

59. Dans le système d'axes perpendiculaires, on donne les points A(4 ; 0) ; B(0 ; 2k), trois cercles : (C_1) passe par A et touche Oy en 0 ; (C_2) passe par B et touche Ox en O ; (C_3) centré en O et de rayon $k \in \mathbb{R}^+$.

Le lieu géométrique du centre radical de ces trois cercles est :

1. $y + x^2 = 0$ 3. $y^2 - x = 0$ 5. $y = x^2 + x$
2. $y - x^2 = 0$ 4. $y^2 + x = 0$ (M. 2001)

60. On donne une famille de cordes issues de l'origine des axes et un cercle passant par le même point et centré en (0, -8). Le cercle de Monge du lieu géométrique des milieux de ces cordes est :

1. $x^2 + y^2 - 8x - 16 = 0$ 3. $x^2 + y^2 + 8x - 16 = 0$ 5. $x^2 + y^2 - 8x + 8y - 16 = 0$
2. $x^2 + y^2 + 8y - 16 = 0$ 4. $x^2 + y^2 - 8y - 16 = 0$ (M.-2001)

61. On donne les points P(1, 2) et Q(3, -2) dans un système d'axes orthonormés XOY. On les relie au point M variable, situé sur l'axe Ox. De l'origine des axes, on trace la perpendiculaire (p) à la droite passant par les points P et M. Le lieu du point d'intersection de (p) avec la droite passant par les points Q et M est une conique d'équations :

1. $y^2 - 2x^2 + 2y + 4x = 0$ 4. $2y^2 - 2x^2 + 3xy - 4y - 2x = 0$
2. $y^2 - 2x^2 - 2xy + 2y + 2x = 0$ 5. $2y^2 - 2x^2 - 3xy + 4y - 2x = 0$
3. $y^2 - 2x^2 - xy + 2y + 4x = 0$ (B.-2004)

62. Le lieu des points (x, y) se déplaçant de telle sorte que la somme des carrés des distances aux points (-2, 3) et (0, -5) est égale 42, représente :

1. une équation globale de deux droites parallèles. www.ecoles-rdc.net
2. une ellipse de centre (-1, -1) et de petit axe 2
3. un cercle de centre (-1, -1) et de rayon 2
4. un cercle imaginaire
5. un cercle évanouissant (M.-2005)