Imsara Samarasinghe

Flat 3B4, Parsons House, Claybrook Road, W6 8NB. imsara256@gmail.com +44 (0) 7949 577223 Websites: LinkedIn, GitHub

E

Education	
MEng. Aeronautical Engineering at Imperial College London	2020-2024
 Graduated with an Upper Second Class Honours (Programme total: 65.77%) 	
 Received a score of 71.27% for final year research project 	
 Relevant Modules: Finite Elements (score: 76.45%), Computational Mechanics (score: 	
75.00%), CFD (score: 67.94%) and Applications of CFD (score: 64.50%)	
 Edited Fortran code to simulate the flow field in a grid of circular cylinders 	
 Created C++ code utilising MPI libraries to solve CFD problems in HPC environment 	
 Experience using Star-ccm+ and Nektar++ to perform CFD simulation 	
 Experience using Python and Matlab to perform analysis of CFD data 	
Lyceum International School	2013-2019
 A-Levels: Mathematics, Physics, Chemistry and Further Mathematics: A*A*A*A 	
Online Courses	
The Finite Element Method for Problems in Physics – University of Michigan (Coursera)	2023
 Learnt the mathematical formulation of the finite element method 	
• Used the C++ library, deal.II, to solve physics problems including heat transfer and elasticity	
CFD Python: 12 Steps to Navier Stokes – Boston University (Open Course)	2023
 Learnt the finite difference method for solving PDEs and the factors impacting numerical 	
scheme stability and consistency	
Implemented a Python code for simulating 2D cavity and channel flow using FD methods	
Research Experience	
Optimising 3D Printed Bone Screws - Final Year Project - Awarded 71.27%	2024
 Designed innovative screw structures that reduced shear stresses in bone by 70% 	
 Coupled Firedrake and IPOPT libraries using Python code to generate optimal geometries 	
 Gained hands-on experience of finite element modelling and topology optimisation 	
 Delivered a high-quality final presentation, achieving a grade of 78.00% 	
Laboratory Experience	
3 rd Year Swept wing wind tunnel testing	2023
 Collaborated with a group of 5 to measure flow around a swept wing section 	
 Measure pressure around the aerofoil using manometers and produced accurate plots of 	
flow parameters around the aerofoil	
 Discussed 3D sweep effects and variation of pressure along the span of a wing, achieving a grade A 	
Coding Projects	
	2024
 MPI parallelised solver for lid driven cavity flow (C++) Changed existing C++ based solver by implementing MPI routines for distributed calculation 	2024
 Created buffer system using MPI commands for easy communication of border nodes 	
between ranks	
 Carried out further code optimisation using profilers and good programming practices 	
Physics Informed Neural Networks with DeepXDE and TensorFlow (Python)	2024
Developed a physics-informed neural network for solving advection-diffusion PDEs using	
TensorFlow-based DeepXDE	

Acquired skills in creating neural networks for approximating PDEs with ML packages

Analysed PINN solutions with a custom finite difference method in Python

Finite Difference based solver for Maxwell's equations (Python)	2024
 Created a Python code utilising NumPy and Matplotlib packages to create a finite difference based solver for Maxwell's equations 	
 Used efficient array slicing methods to perform fast FD calculations and generated detailed visualisations using Matplotlib's animation packages 	
Academic Engineering Projects	
Modelling Flow around an Aerofoil – Awarded 64.00%	2024
 Created a model of an aerofoil in Star-ccm+ and ran several CFD simulations with varying 	
model parameters, using Java scripts for automation	
 Ran similar simulations in Nektar++ to obtain data for comparison between star-ccm+ and high-fidelity methods 	
 Gained good experience of CFD model setup in Star-ccm+ and Nektar++ 	
• Gained in-depth knowledge of various turbulence models, including Spalart–Allmaras, k– ϵ , and k– ω , with a focus on their distinct characteristics and applications	
Structural Design of a deployable re-entry vehicle – Awarded 66.43%	2023
Developed a Matlab code to find optimum location of supports based on Euler beam theory	
 Verified results of Matlab code using finite element simulations in Abaqus 	
 Learnt SimScape in a short period of time to develop a simulation of a 4-bar linkage 	
 Presented key findings to project supervisors during weekly meetings 	
 Produced a detailed design report, achieving a final grade of 66% 	
Work Experience	
Tutor for Oxford Exchange Program - Baliol College	2024
 Undertook a tutoring program to teach Chinese undergraduate students design principles of wind turbines 	
 Assisted students in learning principles such as Weibull distributions, aerofoil theory and blade element momentum theory as they created a design for a wind farm 	
 Practiced strong communication by effectively teaching difficult engineering concepts 	
Undergraduate Teaching Assistant at Imperial College London	2023
 Collaborated with a team to facilitate Matlab sessions for a large group of students 	
 Demonstrated proficiency in Matlab and strong communication skills by explaining programming concepts in a clear and concise manner 	
Computer Vision and Machine Learning Intern at E-net Solutions (pvt) Itd	2023
 Performed research on possible methods to create an affordable conveyor belt product counting system 	
 Trained a YOLOV8 AI model on a custom dataset, while optimising its performance by using 	
quantisation and multiprocessing methods	
 Led to a Python program that could process live video feeds on affordable CPUs 	
IT/Programming Skills	
Proficient in Matlab, Python and C++	
Intermediate knowledge of FORTAN	
Version control using Git	
 Experienced user of Linux (Ubuntu) and bash for automation of Python and C++ scripts 	
 Project experience in Star-CCM+, Nektar++, ABAQUS and Solidworks (CAD) 	
 Good knowledge of the finite element libraries: Firedrake, FENICS (Python) and deal.II (C++) 	
 Proficient in Latex and Microsoft office applications. 	

Interests

- Current member of the Imperial Medics Squash team
- Volunteer for the charity "Sport4Health"