Zad 1

```
import pandas as pd
import numpy as np
data = pd.read_csv('Boston.csv')
print(data)
```

	Unna	med: 0	crim	zn	indus	chas	nox	rm	age	dis	rad	\
0		1	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	
1		2	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	
2		3	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	
3		4	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	
4		5	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	
501		502	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	
502		503	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	
503		504	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	
504		505	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	
505		506	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	
	tax	ptrati	o black	lsta	t medv							
0	296	15.	3 396.90	4.9	8 24.0							
1	242	17.	8 396.90	9.1	4 21.6							
2	242	17.	8 392.83	4.0	3 34.7							
3	222	18.	7 394.63	2.9	4 33.4							
4	222	18.	7 396.90	5.3	3 36.2							
501	273	21.	0 391.99	9.6	7 22.4							

[506 rows x 15 columns]

data.info()

502 273

503 273504 273

505 273

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 15 columns):

21.0 396.90 9.08 20.6 21.0 396.90 5.64 23.9

21.0 393.45 6.48 22.0

21.0 396.90 7.88 11.9

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	506 non-null	int64
1	crim	506 non-null	float64
2	zn	506 non-null	float64
3	indus	506 non-null	float64
4	chas	506 non-null	int64
5	nox	506 non-null	float64
6	rm	506 non-null	float64
7	age	506 non-null	float64
8	dis	506 non-null	float64
9	rad	506 non-null	int64
10	tax	506 non-null	int64
11	ptratio	506 non-null	float64
12	black	506 non-null	float64
13	lstat	506 non-null	float64

14

medv

506 non-null

float64

```
dtypes: float64(11), int64(4)
     memory usage: 59.4 KB
P1=pd.DataFrame(data=data,columns=['crim'],copy=True)
print(P1)
             crim
     0
          0.00632
     1
          0.02731
     2
          0.02729
     3
          0.03237
     4
          0.06905
     . .
              . . .
     501
          0.06263
     502
          0.04527
     503
          0.06076
     504
          0.10959
     505
          0.04741
     [506 rows x 1 columns]
np.array(data.loc[:,"rm"])
     array([6.575, 6.421, 7.185, 6.998, 7.147, 6.43, 6.012, 6.172, 5.631,
            6.004, 6.377, 6.009, 5.889, 5.949, 6.096, 5.834, 5.935, 5.99,
            5.456, 5.727, 5.57, 5.965, 6.142, 5.813, 5.924, 5.599, 5.813,
            6.047, 6.495, 6.674, 5.713, 6.072, 5.95, 5.701, 6.096, 5.933,
            5.841, 5.85, 5.966, 6.595, 7.024, 6.77, 6.169, 6.211, 6.069,
            5.682, 5.786, 6.03, 5.399, 5.602, 5.963, 6.115, 6.511, 5.998,
            5.888, 7.249, 6.383, 6.816, 6.145, 5.927, 5.741, 5.966, 6.456,
            6.762, 7.104, 6.29, 5.787, 5.878, 5.594, 5.885, 6.417, 5.961,
            6.065, 6.245, 6.273, 6.286, 6.279, 6.14, 6.232, 5.874, 6.727,
            6.619, 6.302, 6.167, 6.389, 6.63, 6.015, 6.121, 7.007, 7.079,
            6.417, 6.405, 6.442, 6.211, 6.249, 6.625, 6.163, 8.069, 7.82 ,
            7.416, 6.727, 6.781, 6.405, 6.137, 6.167, 5.851, 5.836, 6.127,
            6.474, 6.229, 6.195, 6.715, 5.913, 6.092, 6.254, 5.928, 6.176,
            6.021, 5.872, 5.731, 5.87, 6.004, 5.961, 5.856, 5.879, 5.986,
            5.613, 5.693, 6.431, 5.637, 6.458, 6.326, 6.372, 5.822, 5.757,
            6.335, 5.942, 6.454, 5.857, 6.151, 6.174, 5.019, 5.403, 5.468,
            4.903, 6.13, 5.628, 4.926, 5.186, 5.597, 6.122, 5.404, 5.012,
            5.709, 6.129, 6.152, 5.272, 6.943, 6.066, 6.51, 6.25, 7.489,
            7.802, 8.375, 5.854, 6.101, 7.929, 5.877, 6.319, 6.402, 5.875,
            5.88, 5.572, 6.416, 5.859, 6.546, 6.02, 6.315, 6.86, 6.98,
            7.765, 6.144, 7.155, 6.563, 5.604, 6.153, 7.831, 6.782, 6.556,
            7.185, 6.951, 6.739, 7.178, 6.8 , 6.604, 7.875, 7.287, 7.107,
            7.274, 6.975, 7.135, 6.162, 7.61 , 7.853, 8.034, 5.891, 6.326,
            5.783, 6.064, 5.344, 5.96, 5.404, 5.807, 6.375, 5.412, 6.182,
            5.888, 6.642, 5.951, 6.373, 6.951, 6.164, 6.879, 6.618, 8.266,
            8.725, 8.04, 7.163, 7.686, 6.552, 5.981, 7.412, 8.337, 8.247,
            6.726, 6.086, 6.631, 7.358, 6.481, 6.606, 6.897, 6.095, 6.358,
            6.393, 5.593, 5.605, 6.108, 6.226, 6.433, 6.718, 6.487, 6.438,
            6.957, 8.259, 6.108, 5.876, 7.454, 8.704, 7.333, 6.842, 7.203,
            7.52 , 8.398, 7.327, 7.206, 5.56 , 7.014, 8.297, 7.47 , 5.92 ,
            5.856, 6.24, 6.538, 7.691, 6.758, 6.854, 7.267, 6.826, 6.482,
            6.812, 7.82, 6.968, 7.645, 7.923, 7.088, 6.453, 6.23, 6.209,
            6.315, 6.565, 6.861, 7.148, 6.63, 6.127, 6.009, 6.678, 6.549,
            5.79 , 6.345, 7.041, 6.871, 6.59 , 6.495, 6.982, 7.236, 6.616,
```

```
7.42 , 6.849, 6.635, 5.972, 4.973, 6.122, 6.023, 6.266, 6.567,
5.705, 5.914, 5.782, 6.382, 6.113, 6.426, 6.376, 6.041, 5.708,
6.415, 6.431, 6.312, 6.083, 5.868, 6.333, 6.144, 5.706, 6.031,
6.316, 6.31, 6.037, 5.869, 5.895, 6.059, 5.985, 5.968, 7.241,
6.54 , 6.696, 6.874, 6.014, 5.898, 6.516, 6.635, 6.939, 6.49 ,
6.579, 5.884, 6.728, 5.663, 5.936, 6.212, 6.395, 6.127, 6.112,
6.398, 6.251, 5.362, 5.803, 8.78, 3.561, 4.963, 3.863, 4.97,
6.683, 7.016, 6.216, 5.875, 4.906, 4.138, 7.313, 6.649, 6.794,
6.38, 6.223, 6.968, 6.545, 5.536, 5.52, 4.368, 5.277, 4.652,
     , 4.88 , 5.39 , 5.713, 6.051, 5.036, 6.193, 5.887, 6.471,
6.405, 5.747, 5.453, 5.852, 5.987, 6.343, 6.404, 5.349, 5.531,
5.683, 4.138, 5.608, 5.617, 6.852, 5.757, 6.657, 4.628, 5.155,
4.519, 6.434, 6.782, 5.304, 5.957, 6.824, 6.411, 6.006, 5.648,
6.103, 5.565, 5.896, 5.837, 6.202, 6.193, 6.38, 6.348, 6.833,
6.425, 6.436, 6.208, 6.629, 6.461, 6.152, 5.935, 5.627, 5.818,
6.406, 6.219, 6.485, 5.854, 6.459, 6.341, 6.251, 6.185, 6.417,
6.749, 6.655, 6.297, 7.393, 6.728, 6.525, 5.976, 5.936, 6.301,
6.081, 6.701, 6.376, 6.317, 6.513, 6.209, 5.759, 5.952, 6.003,
5.926, 5.713, 6.167, 6.229, 6.437, 6.98, 5.427, 6.162, 6.484,
5.304, 6.185, 6.229, 6.242, 6.75, 7.061, 5.762, 5.871, 6.312,
6.114, 5.905, 5.454, 5.414, 5.093, 5.983, 5.983, 5.707, 5.926,
5.67, 5.39, 5.794, 6.019, 5.569, 6.027, 6.593, 6.12, 6.976,
6.794, 6.03 ])
```

np.array(data.loc[:,"rm"]).reshape(-1,1)

```
array([[6.575],
       [6.421],
       [7.185],
       [6.998],
       [7.147],
       [6.43],
       [6.012],
       [6.172],
       [5.631],
       [6.004],
       [6.377],
       [6.009],
       [5.889],
       [5.949],
       [6.096],
       [5.834],
       [5.935],
       [5.99],
       [5.456],
       [5.727],
       [5.57],
       [5.965],
       [6.142],
       [5.813],
       [5.924],
       [5.599],
       [5.813],
       [6.047],
       [6.495],
       [6.674],
       [5.713],
       [6.072],
       [5.95],
```

```
[5.701],
[6.096],
[5.933],
[5.841],
[5.85],
[5.966],
[6.595],
[7.024],
[6.77],
[6.169],
[6.211],
[6.069],
[5.682],
[5.786],
[6.03],
[5.399],
[5.602],
[5.963],
[6.115],
[6.511],
[5.998],
[5.888],
[7.249],
[6.383],
[6.816],
```

Zadanie 2

data.describe()

	Unnamed: 0	crim	zn	indus	chas	nox	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.0000
mean	253.500000	3.613524	11.363636	11.136779	0.069170	0.554695	6.2846
std	146.213884	8.601545	23.322453	6.860353	0.253994	0.115878	0.7026
min	1.000000	0.006320	0.000000	0.460000	0.000000	0.385000	3.5610
25%	127.250000	0.082045	0.000000	5.190000	0.000000	0.449000	5.8855
50%	253.500000	0.256510	0.000000	9.690000	0.000000	0.538000	6.2085
75%	379.750000	3.677083	12.500000	18.100000	0.000000	0.624000	6.6235
max	506.000000	88.976200	100.000000	27.740000	1.000000	0.871000	8.7800


```
for (columnName, columnData) in data.iteritems():
    print('Column Name : ', columnName)
    #print('Column Contents : ', columnData.values)
    print("Min")
    print(columnData.values.min())
```

```
print("Max")
print(columnData.values.max())
print("Std")
print(columnData.values.std())
print("Mean")
print(columnData.values.mean())
 ٧٧٠ عد عد
 Std
 2.1036283563444593
Mean
 3.795042687747036
 Column Name : rad
Min
 1
Max
 24
 Std
 8.698651117790636
Mean
 9.549407114624506
 Column Name : tax
Min
 187
Max
 711
 Std
 168.37049503938118
Mean
 408.2371541501976
 Column Name : ptratio
 Min
 12.6
Max
 22.0
 Std
 2.1628051914821365
 Mean
 18.455533596837945
 Column Name : black
 Min
 0.32
 Max
 396.9
 Std
 91.20460745217277
 Mean
 356.6740316205534
 Column Name : lstat
 Min
 1.73
 Max
 37.97
 Std
 7.134001636650485
 Mean
 12.653063241106722
 Column Name : medv
```

```
25.10.2022, 11:39
```

```
Min
5.0
```

Max

50.0

Std

9.188011545278203

Mean

22.532806324110677

Zadanie 3

```
import matplotlib.pyplot as plt
rm=pd.DataFrame(data,columns=['rm'])
medv=pd.DataFrame(data,columns=['medv'])
plt.scatter(rm,medv)
plt.show()
```



```
number_of_points=506
x_point = []
y_point = []
x_1=[]
y_1=[]
for i in range(number_of_points):
  x_1.append(1)
  y_1.append(1)
x_s=np.array(rm)
y_s=np.array(medv)
x2=np.sum(x_s*x_s)
x1=np.sum(x_s)
x1sum=np.sum(x_1)
```

y1sum=np.sum(y_1)

```
xy=np.sum(x_s*y_s)
y1=np.sum(y_s)
```

```
print(x2,x1,x1sum,y1sum,xy,y1)
```

20234.598247 3180.025 506 506 73924.0776 11401.600000000002

```
M = np.array([[x2,x1],[x1,x1sum]])
```

```
M_1=np.linalg.inv(M)
```

```
N=np.array([[xy],[y1]])
print(N)
```

```
[[73924.0776]
[11401.6]]
```

```
a,b = np.matmul(M_1,N)
print(a,b)
```

[9.10210898] [-34.67062078]

```
plt.scatter(x_s,y_s)
plt.plot(x_s,a*x_s+b,"black")
plt.show()
```


Zadanie 4

Kowiariacja

```
cov = data.iloc[:,1:].cov()
cov.style.background_gradient(cmap='coolwarm')
```

	crim	zn	indus	chas	nox	rm	
crim	73.986578	-40.215956	23.992339	-0.122109	0.419594	-1.325038	85.40
zn	-40.215956	543.936814	-85.412648	-0.252925	-1.396148	5.112513	-373.90
indus	23.992339	-85.412648	47.064442	0.109669	0.607074	-1.887957	124.51
chas	-0.122109	-0.252925	0.109669	0.064513	0.002684	0.016285	0.61
nox	0.419594	-1.396148	0.607074	0.002684	0.013428	-0.024603	2.38
rm	-1.325038	5.112513	-1.887957	0.016285	-0.024603	0.493671	-4.75
age	85.405322	-373.901548	124.513903	0.618571	2.385927	-4.751929	792.35
dis	-6.876722	32.629304	-10.228097	-0.053043	-0.187696	0.303663	-44.32
rad	46.847761	-63.348695	35.549971	-0.016296	0.616929	-1.283815	111.77
tax	844.821538	-1236.453735	833.360290	-1.523367	13.046286	-34.583448	2402.69
ptratio	5.399331	-19.776571	5.692104	-0.066819	0.047397	-0.540763	15.93
black	-302.381816	373.721402	-223.579756	1.131325	-4.020570	8.215006	-702.94
Istat	27.986168	-68.783037	29.580270	-0.097816	0.488946	-3.079741	121.07
medv	-30.718508	77.315176	-30.520823	0.409409	-0.455412	4.493446	-97.58

black=pd.DataFrame(data,columns=['black'])
crim=pd.DataFrame(data,columns=['crim'])

```
plt.scatter(black,crim)
plt.show()
```


Korelacja

```
cor = data.iloc[:,1:].corr()
cor.style.background_gradient(cmap='coolwarm')
```

	crim	zn	indus	chas	nox	rm	age	
crim	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734	-0.37
zn	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.66
indus	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.70
chas	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.09
nox	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.76
rm	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.20
age	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-0.74
dis	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.00
rad	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.49
tax	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.53
ptratio	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.23
black	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.29
Istat	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.49
medv	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	0.24

```
rad=pd.DataFrame(data,columns=['rad'])
tax=pd.DataFrame(data,columns=['tax'])
nox=pd.DataFrame(data,columns=['nox'])
indus=pd.DataFrame(data,columns=['indus'])
```

```
plt.scatter(rad,tax)
plt.show()
```


for column in rad:
 rad[column]=rad[column] / rad[column].abs().max()

for column in tax:

```
tax[column]=tax[column] / tax[column].abs().max()
```

```
print(rad)
```

```
rad
     0.041667
0
1
     0.083333
2
     0.083333
3
     0.125000
4
     0.125000
501
     0.041667
502
     0.041667
     0.041667
503
504
     0.041667
505
     0.041667
```

[506 rows x 1 columns]

```
plt.scatter(rad,tax)
plt.show()
```


print(nox)

```
nox
0
     0.538
1
     0.469
2
     0.469
3
     0.458
4
     0.458
     0.573
501
502
     0.573
503
     0.573
504
     0.573
505
     0.573
[506 rows x 1 columns]
```

print(indus)

```
indus
      2.31
0
      7.07
1
2
      7.07
3
      2.18
4
      2.18
        . . .
501
     11.93
502
     11.93
503
     11.93
504
     11.93
     11.93
505
```

[506 rows x 1 columns]

```
plt.scatter(nox,indus)
plt.show()
```



```
x_point = []
y_point = []
x_1=[]
y_1=[]

for i in range(number_of_points):
  x_1.append(1)
  y_1.append(1)
```

number_of_points=506

print(rad)

	rad
0	1
1	2
2	2
3	3
4	3
501	1
502	1
503	1

```
504
            1
     505
     [506 rows x 1 columns]
print(tax)
          tax
          296
     0
          242
     1
     2
          242
          222
     3
     4
          222
          . . .
     . .
     501 273
     502 273
     503 273
     504 273
     505 273
     [506 rows x 1 columns]
x_s=np.array(nox)
y_s=np.array(indus)
x2=np.sum(x_s*x_s)
x1=np.sum(x_s)
x1sum=np.sum(x_1)
y1sum=np.sum(y_1)
xy=np.sum(x_s*y_s)
y1=np.sum(y_s)
print(x2,x1,x1sum,y1sum,xy,y1)
     162.47038009 280.6757 506 506 3432.39536 5635.20999999999
M = np.array([[x2,x1],[x1,x1sum]])
M_1=np.linalg.inv(M)
N=np.array([[xy],[y1]])
print(N)
     [[3432.39536]
      [5635.21
                 ]]
a,b = np.matmul(M_1,N)
print(a,b)
```

[45.21076575] [-13.94140973]

```
plt.scatter(x_s,y_s)
plt.plot(x_s,a*x_s+b,"black")
plt.show()
```


Płatne usługi Colab - Tutaj możesz anulować umowy

✓ 0 s ukończono o 11:37

×