Divergence based inference for High dimensional GLMM

Lei Li

Department of Statistics George Mason University

Joint work with Anand N. Vidyashankar

July 2019

Contents

- Background and Introduction
- Finite Mixture Regression (FMR)
- Minimum Conditional Divergence Estimation
- DivMin Algorithm: Definition, Examples, and Properties
- DivMin Algorithm to FMR
- Numerical Studies
- ► Concluding Remarks

Merging Cluster Collaboration

Background and Introduction

- ► Finite Mixture Regression (FMR) have broad application areas. Eg. Classification, clustering, network analysis, astronomy.
- ► Challenge:
 - 1. Identifiability.
 - 2. Estimation. Traditional (likelihood based) methods are basically not stable/robust.
- Estimation of FMR includes moment estimator, maximum likelihood estimation, minimum hellinger distance estimation, etc.
- ▶ One of the most popular methods is EM algorithm proposed by Dempster, Laird, and Rubin (1977).
- We propose to use minimum conditional divergence method for FMR

Finite Mixture Regression

Definition

A pair (X, Y) is said to follow an Finite Mixture Regression (FMR) model of order K if the conditional density (or mass) function of Y given X = x is

$$f(y|\mathbf{x},\theta) = \sum_{k=1}^{K} \pi_k h(y; \lambda_k(\mathbf{x}), \xi_k), \tag{1}$$

where π_k are mixing probabilities with $\sum_{k=1}^K \pi_k = 1$, and $h(\cdot; \lambda_k(\mathbf{x}), \xi_k)$ belongs to a parametric family of density (or mass) functions, such that $\lambda_k(\mathbf{x}) = q(\beta_{k0} + \mathbf{x}^T \beta_k)$ for a known link function $q(\cdot)$; $\beta_{k0}, \beta_k = (\beta_{k1}, \beta_{k2}, \cdots, \beta_{kp})^T$, and ξ_k are respectively the intercepts, regression coefficients and dispersion parameters.

Finite Mixture Regression Examples of GLMM

- ► Example 1: Poisson Mixture Regression. If we take $h(y; \lambda_k(\mathbf{x}), \xi_k) = Poi(\lambda_k(\mathbf{x}))$, where $\lambda_k(\mathbf{x}) = \exp(\beta_{0k} + \mathbf{x}^T \beta_k)$ and $\theta_k = (\beta_{0k}, \beta_{1k}, \dots, \beta_{pk})$.
- Example 2: Poisson Lognormal Mixture Regression. If we take $h(y; \lambda_k(\mathbf{x}), \xi_k) = Poi(\lambda_k(\mathbf{x}))$, and $\lambda_k(\mathbf{x}) = \exp(\beta_{0k} + \mathbf{x}^T \beta_k + \epsilon_k)$, $\epsilon_k \sim N(0, \sigma_k^2)$, and $\xi_k = (\beta_{0k}, \beta_{1k}, \dots, \beta_{pk}, \sigma_k^2)$.

Minimum Divergence Estimation

For models with no regression:

▶ The population level general divergence between $g(\cdot)$ and $f(\cdot; \theta)$ is given by

$$D(\theta) = D(g(\cdot), f(\cdot; \theta)) \equiv \mathbf{E}_Y \left[G\left(-1 + \frac{g(Y)}{f(Y; \theta)}\right) \right],$$

where $G(\cdot)$ is a real valued thrice differentiable strictly convex function with G(0)=0. Besides, $\delta(y;\theta)=-1+\frac{g(y)}{f(y;\theta)}$ is called Pearson's residual between g(y) and $f(y;\theta)$.

▶ The minimum divergence estimator is then given by

$$\hat{\theta}_{\text{MDE}} = \underset{\theta}{\operatorname{argmin}} \ D_n(\theta), \quad \text{where} \quad D_n(\theta) = D(g_n(\cdot), f(\cdot; \theta)),$$
 (2)

where $g_n(\cdot)$ is a nonparametric density estimate, one choice is kernel density estimate.

▶ See Basu, Shioya, and Park 2011 for a comprehensive description.

Minimum Conditional Disparity Estimation

Intuition: For models with no regression, note that

$$D(g(\cdot), f(\cdot; \theta)) = \int_{\mathbb{R}} G(\delta(y; \theta)) f(y; \theta) dy$$

$$= \int_{\mathbb{R}} (G(\delta(y; \theta)) + \delta(y; \theta)) \left(\frac{f(y; \theta)}{g(y)}\right) g(y) dy$$

$$= \mathbf{E}_{g} \left[\frac{G(\delta(Y; \theta)) + \delta(Y; \theta)}{\delta(Y; \theta) + 1}\right]. \tag{3}$$

So one can approximate $D(g(\cdot), f(\cdot; \theta))$ as

$$D_n(g_n(\cdot), f(\cdot; \theta)) = \frac{1}{n} \sum_{i=1}^n \left(\frac{G(\delta_n(X_i; \theta)) + \delta_n(X_i; \theta)}{\delta_n(X_i; \theta) + 1} \right). \tag{4}$$

• Given $\{(X_i, Y_i)\}_{1 \leq i \leq n}$, the minimum conditional disparity objective function is given by

$$D_n(\theta) = \frac{1}{n} \sum_{i=1}^n \left(\frac{G(\delta_n(Y_i|X_i;\theta)) + \delta_n(Y_i|X_i;\theta)}{\delta_n(Y_i|X_i;\theta) + 1} \right).$$
 (5)

▶ The minimum conditional divergence estimator (MCDE) is then given by

$$\hat{\theta}_{\mathsf{MCDE}} = \underset{\theta \in \Theta}{\mathsf{argmin}} \ D_n(\theta).$$

• Q: How to find $\hat{\theta}_{MCDE}$ for FMR?

DivMin Algorithm

Suppose that the pair (Y,Z) has a joint density $p(y,z;\theta)$ that belongs to a parameterized family $\{p(\cdot,\cdot;\theta):\theta\in\theta\}$, where $\theta\subseteq\mathbb{R}^d$. Only Y is observed. Suppose that the true probability density of Y is $g(\cdot)$, and is postulated as a parametric density $f(\cdot;\theta)$ for Y, where

$$f(y;\theta) = \int_{\mathcal{Z}} p(y,z;\theta) dz.$$

In addition, let $k(z|y;\theta)$ denote the conditional density of Z given Y.

 By incorporating the latent data structure, this new divergence for "complete" data (Y, Z) is given by

$$Q(\theta'|\theta) = \mathbf{E}_{Y} \left[\mathbf{E}_{Z|Y} \left[G \left(-1 + \frac{g(Y)k(Z|Y;\theta)}{f(Y;\theta')k(Z|Y;\theta')} \right) \right] \right]. \tag{6}$$

- Similar to EM algorithm, the DivMin algorithm can be divided into two steps:
 - ▶ D-step. Determine $Q(\theta'|\theta)$.
 - ▶ M-step. Choose $\theta_{m+1} \in \theta$ so that it minimizes $Q(\theta'|\theta_m)$ over $\theta' \in \Theta$.

These two steps are repeated until convergence.

DivMin Algorithm Special Cases and Relation with Other Algorithms

- Special Cases:
 - ▶ 1. EM algorithm: Let $G(\delta) = (\delta + 1)\log(\delta + 1)$, $Q(\theta'|\theta)$ becomes the objective function obtained from E-step in the EM algorithm.
 - ▶ 2. HMIX algorithm: Taking $G(\delta) = 2[(\delta+1)^{1/2}-1]^2$, the corresponding objective function is

$$Q_{\mathsf{HD}}(\theta'|\theta) = 2\int_{\mathcal{Y}} \int_{\mathcal{Z}} \left[(g(y)k(z|y;\theta))^{\frac{1}{2}} - (f(y;\theta')k(z|y;\theta'))^{\frac{1}{2}} \right]^{2} dz dy.$$

▶ 3. VNEDMIX algorithm: Taking $G(\delta) = \exp\left(-\frac{1}{1+\delta} + 1\right)(1+\delta) - (2\delta + 1), \text{ we get the associated DivMin objective function as}$

$$Q_{\mathsf{VNED}}(\theta'|\theta) = \int_{\mathcal{Y}} \int_{\mathcal{Z}} \exp\left(-\frac{f(y;\theta')k(z|y;\theta')}{g(y)k(z|y;\theta)}\right) g(y)k(z|y;\theta) dz dy.$$

- DivMin algorithm belongs to the class of the following algorithms:
 - ▶ 1. MM algorithm. Note that $D(\theta') \leq Q(\theta'|\theta)$ and $D(\theta') = Q(\theta'|\theta')$ for all $\theta' \in \Theta$.
 - ▶ 2. Proximal Point algorithm.
 - 3. Coordinate Descent algorithm.

DivMin Algorithm Properties

- ▶ Under mild regularity conditions, DivMin sequence is nonincreasing and finally converges to the stationary point of $D_n(\cdot)$.
- Similar to EM structure, generalized DivMin (GDM) algorithm, divergence conditional minimizaition (DCM) algorithm could also be derived.
- Q1. From Local minima to Global minima?
- Q2. If so, are we able to connect sample size to iteration size?
- $ightharpoonup \hat{ heta}_{\mathsf{MCDE}}$ is (i) consistent, (ii) asymptotic normal, and (iii) robust.

DivMin Algorithm for FMR

The sample level DivMin objective function for FMR is given by

$$Q_n(\theta'|\theta) = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} \left[\left(\frac{G\left(\delta_n(Y_i|\boldsymbol{X}_i;\theta,\xi_k')\right) + \delta_n(Y_i|\boldsymbol{X}_i;\theta,\xi_k')}{\delta_n(Y_i|\boldsymbol{X}_i;\theta,\psi_k') + 1} \right) \tau_{ik} \right],$$

where

$$\delta_n(Y_i|\mathbf{X}_i;\theta,\psi_k') = -1 + \frac{\tau_{ik}g_n(Y_i|\mathbf{X}_i)}{\pi_k'h(Y_i|\mathbf{X}_i;\xi_k')} \quad \text{and} \quad \tau_{ik} = \frac{\pi_kh(Y_i|\mathbf{X}_i;\xi_k)}{\sum_{l=1}^K \pi_lh(Y_i|\mathbf{X}_i;\xi_l)}.$$

The estimation equation is

$$\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} \left[W_{ik} \tau_{ik} u(Y_i, \mathbf{X}_i; \eta_k') \right] = 0, \quad \text{where} \quad W_{ik} = \left(\frac{A(\delta_n(Y_i | \mathbf{X}_i; \theta)) + 1}{\delta_n(Y_i | \mathbf{X}_i; \theta) + 1} \right), \quad (7)$$

and
$$u(Y_i, \mathbf{X}_i; \eta_k') = \nabla \log(\pi_k' f(Y_i | X_i; \xi_k')), \ \eta_k' = (\pi_k', \xi_k').$$

▶ So the update for π'_k is

$$\pi'_{k} = \frac{\sum_{i=1}^{n} W_{ik} \tau_{ik}}{\sum_{k=1}^{K} \sum_{i=1}^{n} W_{ik} \tau_{ik}}.$$

DivMin Algorithm for FMR (contd.)

DivMin Algorithm:

- 1. D-step: Update posterior probability τ_{ik} and weight W_{ik} .
- 2. M-step: Choose $\theta_{m+1} \in \theta$ so that it minimizes $Q_n(\theta'|\theta_m)$ over $\theta' \in \Theta$.

Remarks:

- ► This is a "weighted EM " structure.
- ▶ For EM algorithm, $W_{ik} \equiv 1$.
- For HMIX, $W_{ik} = \left(\frac{\pi_k h(Y_i | \mathbf{X}_i; \theta_k)}{\tau_{ik} g_n(Y_i | \mathbf{X}_i)}\right)^{\frac{1}{2}}$.
- Other special cases can be found in the paper.
- For finite linear mixture regression, close form expression can be obtained (detail skipped).
- ► We focus on finite mixture Poisson regression and/or Poisson regression with Lognormal random effects.

Simulation: Finte Poisson Lognormal Model

Suppose that the underlying model is two component Poisson Lognormal (PL) model. We set n=2000,

 $\pi_1=\pi_2=0.5, \beta_{01}=0.6, \beta_{11}=1.0, \beta_{02}=2.5, \beta_{12}=1.5, \sigma_1=0.25, \sigma_2=0.25.$ In addition, 10% of Y are replaced with outlier with value 100. We compare bias and root mean squared error (RMSE) of EM, HD, and VNED methods.

(a) Bias of Parameters

(b) RMSE of Parameters

Concluding Remarks

- We proposed a robust minimum conditional divergence method for FMR.
- The DivMin algorithm is applied to estimate the parameters of FMR.
- Properties of DivMin algorithm have been investigated.
- Numerical study also supports the methodology.
- ► High Dimension (Lasso Type):

$$\hat{\theta} = \underset{\theta}{\mathsf{argmin}} \ \left\{ \frac{1}{n} \sum_{i=1}^n \left(\frac{G(\delta_n(Y_i | \mathbf{X}_i; \theta)) + \delta_n(Y_i | \mathbf{X}_i; \theta)}{\delta_n(Y_i | \mathbf{X}_i; \theta) + 1} \right) + \lambda \sum_{j=1}^p |\beta_j| \right\}.$$

End

Thank you!