Kacper Kulczycki

Krótko o silnikach krokowych (cz. 2.)

Plan na dziś:

- Co to jest?
- Jakie są rodzaje silników krokowych?
- Ile z tym zabawy?
- Gdzie szukać informacji?

Co to jest silnik krokowy?

Norma PN-87/E-01006:

"Silnik krokowy jest to silnik przekształcający ciąg sterujących impulsów elektrycznych na ciąg przesunięć kątowych lub liniowych".

Czyli jest to urządzenie mechaniczne działające dyskretnie.

Do pracy silnika krokowego potrzebne są:

- zasilanie prądem stałym,
- źródło impulsów,
- układ logiczny,
- stopień wyjściowy mocy (zazwyczaj).

Gdzie znajdują zastosowanie?

- W napędach dyskietek,
- drukarkach,
- CDROM-ach,
- starych twardych dyskach,
- i oczywiście w różnego typu robotach.

Jak dzieli się silniki krokowe?

Podział na podstawie:

- typu pracy,
- rodzaju wirnika i stojana,
- szczegółów konstrukcyjnych.

Ad.1

Istnieją dwa zasadnicze typy silników:

- silniki wirujące praca powoduje przesunięcia kątowe wokół osi,
- i silniki liniowe w wyniku działania uzyskuje się przesunięcia wzdłuż osi silnika.

Ad.2

Najważniejszy jest jednak podział na:

- I. silniki o zmiennej reluktancji (Variable Reluctance VR),
- II.silniki z magnesem trwałym (Permanent Magnet PM),
- III.silniki hybrydowe (Hybrid HB).

Ad.2.I - VR

Najprostsza budowa:

Rotor z miękkiej magnetycznie stali - jego zęby przyciągane są przez zasilane prądem stałym (magnesujące się) zęby stojana. Ilość zębów wirnika może być równa lub większa niż ilość zębów stojana.

Reluktancja???

Reluktancja – dygresja.

Reluktancja jest to "oporność magnetyczna",

Analogicznie do oporności elektrycznej (jednostki A/(V s)).

 $R_m \sim R$

Wówczas:

strumień natężenia pola magn. ~ napięcie,

 $\Phi_{H} \sim U$

strumień indukcji pola magn. ~ natężenie prądu

 $\Phi_{\rm R} \sim I$

Ad.2.II - PM

Budowa:

Ty razem, rotor jest trwale, naprzemiennie namagnesowany, może być "gładki" – bieguny dyskretne (utajone), lub "zębaty" – bieguny jawne.

Drugi typ jest rzadziej stosowany.

Ad.2.III - HB

Budowa, łączy cechy obu poprzednich typów:

Tym razem jednak rotor namagnesowany "jednobiegunowo", a oddziałujące strumienie magnetyczne powodują taki obrót wirnika, aby zęby wirnika i stojana, wzmacniające pole pokryły się.

Ad.3

Rozwiązania konstrukcyjne powodują kolejne podziały: ze względu na ilość segmentów, zębów, faz, symetrie itp.

Ciekawe rozwiązanie – silnik tarczowy:

Zaletą takiej konstrukcji jest między innymi, bardzo mała bezwładność,

Jak sterować – czyli kolejny podział.

Istnieją dwa typy uzwojeń:

bipolarne

1

unipolarne.

Takie unipolarne połączenie jest bardzo rzadkie i bardzo stare

Lepiej bi- czy uni-?

Przy sterowaniu bipolarnym, całe uzwojenie bierze udział w pracy, za to potrzebny jest większy układ sterujący. Gdy silnik jest unipolarny, potrzeba mniej skomplikowanego sterowania, jednak kosztem wielkości momentu obrotowego.

Mały krok silnika, wielki skok dla ludzkości

(czyli krok po kroku)

Podstawowe rodzaje sterowania:

- B. falowe
- C. pełnokrokowe
- D. półkrokowe
- E. mikrokrokowe

Ad.A

Falowo czyli "jednofazowo"

Podstawowa wada: w uni- tylko 25%, a w bi- tylko 50% uzwojenia wykorzystane w każdym momencie.

Ad.B

Pełnokrokowo czyli "dwufazowo"

Ad.C

Półkrokowo czyli "raz tak, raz tak"

Zaleta – redukcja rezonansu mechanicznego.

Ad.D

Mikrokrokowo czyli małymi i płynnymi kroczkami

Zaletą jest płynniejsza praca, mniejsze drgania, dokładniejsze pozycjonowanie. Jednak znacznej komplikacji ulega układ sterujący (konieczność zapewnienia pośrednich wartości napięć, a właściwie prądów)

Wady i zalety

Zalety:

- 1. Kat obrotów silnika jest proporcjonalny do ilości impulsów wejściowych.
- 2. Silnik pracuje z pełnym momentem w stanie spoczynku.
- **3.** Precyzyjne pozycjonowanie i powtarzalność ruchu, dokładność 3-5 % kroku i nie kumulowanie się błędu z kroku na krok.
- 4. Możliwość bardzo szybkiego rozbiegu, hamowania i zmiany kierunku.
- **5.** Niezawodność ze względu na brak szczotek. Żywotność silnika zależy tylko od żywotności łożysk.
- **6.** Zależność obrotów silnika od dyskretnych impulsów umożliwiające sterowanie w pętli otwartej (bez sprzężenia zwrotnego) co w efekcie powoduje, że silnik krokowy jest łatwiejszy i tańszy w sterowaniu.
- **7.** Możliwe jest osiągnięcie bardzo niskich prędkości synchronicznych obrotów z obciążeniem umocowanym bezpośrednio na osi.
- **8.** Szeroki zakres prędkości obrotowych uzyskiwany dzięki temu, że prędkość jest proporcjonalna do częstotliwości impulsów wejściowych.

Wady:

- 1. Możliwość występowania stref rezonansowych częstotliwości sterowania.
- 2. Trudności przy pracy z dużymi prędkościami.
- 3. Możliwośc wypadania z synchronizmu.
- 4. Oscylacje powstające na końcu skoku.

Na koniec: "Gdzie szukać dalej?"

```
Po polsku:
   www.automatykaonline.pl
   www.silniki.pl
   "Mechatronika" B.Heimann, W.Gerth, K. Popp; PWN, Warszawa
   2001
Po angielsku:
SGS-Thomson Microelectonics Application Notes:
AN235, AN280, AN460, AN468, AN469, AN470,
National Semiconductor Application Notes:
AN-694, AN-706, AN-828,
Industrial Circuts Application Note: Stepper Motor Basics,
Lecture8. Stepper Motors,
Skip's Carter stepper motors page,
Ian's Harries stepper motors page,
```