Worksheet on "Multivariate Normal and Bayes Classifier"

August 11, 2023

- 1. (a) Consider a continuous random variable X and a discrete random variable Y. Let
 - $P_Y(Y=1) = 0.5$ and $P_Y(Y=-1) = 0.5$, and
 - $(X|Y=1) \sim \text{Unif}(1,2)$ and $(X|Y=-1) \sim \text{Unif}(-2,-1)$.

Draw the plots for P(Y = 1|X = x) and P(Y = -1|X = x) given the above assumptions.

- (b) Consider the following setting:
 - $P_Y(Y=1) = 0.7$ and $P_Y(Y=-1) = 0.3$
 - $(X|Y=1) \sim Unif(-1,3)$ and $(X|Y=-1) \sim Unif(-2,0)$
 - 1. Compute P(Y = 1 | X = x) for different possible values of x
 - 2. Draw the plot for P(Y = 1|X = x).
- 2. In this question, you are required to verify if the following probability mass function over its respective support S follows the following properties:
 - 1. $P(X = x) \ge 0 \ \forall x \in S$, and
 - 2. $\sum_{x \in S} P(X = x) = 1$.

In addition, find the expectation, $\mathbb{E}(X)$ and variance, Var(X) in the following case: A discrete random variable X is said to have a Poisson distribution, with parameter $\lambda > 0$ over the support $S = \{0, 1, 2, ...\}$ if it has the following probability mass function:

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

Hint: $\sum_{n=1}^{\infty} \frac{a^n}{n!} = e^a$

- 3. Consider a multivariate normal $X \sim N(\mu, \Sigma)$ where $X = \begin{pmatrix} X_1 & X_2 \end{pmatrix}, d = 2, \mu \in \mathbb{R}^2$ and $\Sigma \in \mathbb{R}^{2 \times 2}$. Then, the density is defined as: $f_X(x) = \frac{1}{(2\pi)\sqrt{|\Sigma|}} exp\left(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right)$.
 - (a) If $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$, $\Sigma^{-1} = \frac{1}{1-\rho^2} \begin{pmatrix} 1 & -\rho \\ -\rho & 1 \end{pmatrix}$, and $\mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. What are the legal values for ρ ?
 - (b) If $\rho = 0.5$ and $X_1 \sim N(0,1)$, what is the distribution for $X_2|X_1 = 4$?
 - (c) If $\rho = 0.5$ and $X_2 \sim N(0,1)$, what is the distribution for $X_1|X_2 = 3$?
 - (d) Consider the following scatter plot from a multivariate normal with $\rho = 0.5$. Draw the corresponding contour plot and mark the lines depicting the means of X_1 and X_2 .
 - (e) If $\Sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, and $\mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, what is the distribution of $X_2 | X_1 = x_1$ and $X_1 | X_2 = x_2$?

1

