

- This module begins an overview of I/O
 - How computers handle I/O transactions
 - The I/O system infrastructure
 - Device controllers
 - I/O bus systems
- Functionality as well as performance are important
 - Access to networks and the internet
 - The use of a rich variety of devices
 - Digital cameras
 - Music players
 - Video display devices
 - Printers
 - Storage devices

- I/O affects the overall system performance
 - I/O devices are even slower than central memory
 - Overlapping I/O with computation can hide the slowness
- Amdahl's Law applies to I/O as well
 - Limiting the amount of I/O boosts performance
- I/O is defined as a subsystem of components
 - These components move coded data
 - The exchange is between external devices and a host system

I/O System Performance

- I/O performance is measured in two ways:
 - I/O throughput or bandwidth
 - I/O transactions per unit time
- Bandwidth (bytes per second)
 - Depends on clock rate and width of data pathways
 - Important when large amounts of data need to be exchanged
- Transactions per second (TPS)
 - Important when numerous small data exchanges are made

IOHNS HOPKINS

- Overall system performance depends on the interaction of all of its components
- Improving the most heavily used components is most effective
- This idea is quantified by Amdahl's Law:

$$S = \frac{1}{(1-f) + \frac{f}{k}}$$

S is the overall speedup; f is the fraction of work performed by a faster component; and *k* is the improvement of the faster component

Example: if a component is made 100% faster, then k=2.

Facts:

IOHNS HOPKINS

Processes spend 70% of their time running on the CPU and 30% of their time waiting for disk service

Example

Options:

make the CPU 50% faster for \$10,000 make the disk drives 150% faster for \$7,000

Question:

Which option would be better based on benefit and cost?

• The processor option offers a 30% speedup:

$$f = 0.70, S = \frac{1}{(1 - 0.7) + 0.7/1.5} = 1.30$$

And the disk drive option gives a 22% speedup:

$$f = 0.30, S = \frac{1}{(1 - 0.3) + 0.3/2.5} = 1.22$$

• Each 1% of improvement for the processor costs \$333 (10000/30), and for the disk a 1% improvement costs \$318 (7000/22).