Discrete Mathematics Set 6

Math 435: Complete 5 parts of the following exercises.

Math 530: Exercise 2 and 4 parts of the remaining exercises.

- **1.** Prove these identities without writing $\binom{n}{k}_q$ as a fraction and manipulating powers of q. Instead, interpret both sides of the identity as rearrangements or integer partitions and show the result by double counting or a bijection.
 - a. (The q-Pascal identity) $\begin{bmatrix} n \\ k \end{bmatrix}_q = q^k \begin{bmatrix} n-1 \\ k \end{bmatrix}_q + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_q$.
 - b. (The q -Vandermonde identity) $\begin{bmatrix} a+b\\n \end{bmatrix}_q = \sum_{k=0}^n q^{(a-k)(n-k)} \begin{bmatrix} a\\k \end{bmatrix}_q \begin{bmatrix} b\\n-k \end{bmatrix}_q.$
 - c. (The *q*-binomial theorem) $(1+xq^0)\cdots(1+xq^{n-1})=\sum_{k=0}^nq^{\binom{k}{2}}\begin{bmatrix}n\\k\end{bmatrix}_qx^k.$
- **2.** Let q be a prime power, \mathbb{F}_q be the finite field with q elements, and \mathbb{F}_q^n be the n-dimensional vector space over \mathbb{F}_q .
 - a. Prove that the number of k dimensional subspaces in \mathbb{F}_q^n is equal to $\begin{bmatrix} n \\ k \end{bmatrix}_q$. (For this you may wish to use the definition of the q-analogues.)
 - b. Let X be a vector space with a finite number of elements x. Show that there are

$${n \brack n-k}_q(x-q^0)\cdots(x-q^{k-1}) = {n \brack k}_q(x-q^0)\cdots(x-q^{k-1})$$

linear maps $L: \mathbb{F}_q^n \to X$ which have a nullspace of dimension n-k.

c. By counting linear maps $L:\mathbb{F}_q^n o X$, prove the q-Cauchy identity:

$$x^n = \sum_{k=0}^n {n \brack k}_q (x - q^0) \cdots (x - q^{k-1}).$$

- d. The identity in part c. has been shown true for prime powers q. How can we conclude that this identity is true for any complex number q?
- **3.** Let $p_k(n)$ be the number of integer partitions of n with $\ell(\lambda)=k$.
 - a. Show there are $\binom{n-1}{k-1}$ solutions to $x_1+\cdots+x_k=n$ where x_1,\ldots,x_k are positive integers. (One way is to use a "balls and bars" or "stars and bars" argument from an introductory combinatorics course.)
 - b. By considering rearrangements of the parts of partitions, show that $\binom{n-1}{k-1} \leq k! p_k(n)$.
 - c. By making the parts of a partition distinct, show that $k!p_k(n) \leq \binom{n+\binom{k}{2}-1}{k-1}$.
 - $\text{d. Show that } \binom{n+a-1}{k-1} \sim \frac{n^{k-1}}{(k-1)!} \text{ for any nonnegative integer } a \text{ and then show } p_k(n) \sim \frac{n^{k-1}}{k!(k-1)!}.$