Statement of authorship All authors conceived of this manuscript, which was inspired by our discussions at a Radcliffe Exploratory Seminar in 2016, and all authors contributed to manuscript revisions. A.E. and E.W. conceived of the idea for the literature review, database compilation, and related Radcliffe Exploratory Seminar. A.E. compiled the datasets; A.E. and C.R. analyzed the data and created the figures; A.E. wrote the manuscript.

Data Accessibility The C3E database will be available at KNB (Ettinger & Wolkovich, 2017), along with all R code from the analyses included in this paper. (Currently, metadata are published there; the full database and R code are available to reviewers on github.)

Running title Experimental climate change

Key words global warming, warming experiment, microclimate, soil moisture, spring phenology, budburst

Type of article Review and Synthesis

Number of words in abstract 248

Number of words in main text 4270

Number of references 84

Number of figures 5

Number of tables 0

Number of text boxes 1

Number of words in Box 1 475

1 Abstract

To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation in ways intended to be consistent with climate change projections. Such climate manipulations can manifest in complex and unintended ways, however, complicating interpretations of biological responses. We reviewed publications on active warming experiments to compile a new database of daily climate data from 12 experiments that use forced air, infrared heaters, and soil cables to warm plots in a variety of ecosystems, including forests, alpine meadows, and grasslands. We find that the common practice of summarizing and analyzing only the mean changes across treatments hides potentially important variation in treatment effects over space and time: mean annual above-ground temperature treatments with the same target warming level can vary by as much as 3°C among blocks and 1.5°C among years. Furthermore, treatments produce unintended secondary effects, such as soil drying in conjunction with warming. The implications of these complexities are rarely explored, but have important biological consequences. We show an example of one such consequence with a case study of spring plant phenology, in which accurately accounting for climate manipulation and its secondary effects triples the estimated sensitivity of budburst to warming. Based on our synthesis, we present recommendations for future analyses, as well as experimental design and data sharing, that we believe will improve the ability of climate change experiments to accurately identify and forecast species' responses.

18 Introduction

Climate change is dramatically altering earth's biota, shifting the physiology, distribution, and abundance of organisms, with cascading community, ecosystem, and climate effects (Shukla & Mintz, 1982; Cox et al., 2000; Thomas et al., 2004; Parmesan, 2006; Field et al., 2007; Sheldon et al., 2011; Urban et al., 2012). Much uncertainty exists about how particular individuals, populations, species, communities, and ecosystems will respond as shifts in temperature and precipitation regimes become more extreme (Thuiller, 2004; Friedlingstein et al., 2014). Predicting biological responses to current and future climate change—and their feedbacks to earth's climate and ecosystem services—are among the most significant challenges facing ecologists today.

Two common approaches for understanding biological effects of climate change are observational studies, and process-based modeling; yet these approaches are insufficient for several reasons. Observational studies,

which correlate recorded biological patterns with measured trends in climate, cannot disentangle the causal effects of warming from other factors that have also changed over time, such as successional stage or land use. Models based on correlative data may fail to make useful predictions for future conditions that fall outside the range of historical variability (e.g., Pearson & Dawson, 2004; Hampe, 2004; Ibanez et al., 2006; Swab et al., 31 2012; Chuine et al., 2016). This is an in important gap as climate change will yield warmer temperatures 32 than the previous 150 years, and possibly warmer than at any time in the last 2000 years (Ohlemüller et al., 2006; Williams & Jackson, 2007; Williams et al., 2007; Stocker et al., 2013). Process-based models begin to overcome these challenges through inclusion of explicit mechanistic relationships between climate and biological outcomes. However, they are limited by the processes they include (i.e., our knowledge of 36 mechanism), as well as by the data available to parameterize those processes (Moorcroft, 2006; Kearney & 37 Porter, 2009). 38 Experimental data from field-based climate change experiments are crucially important to fill these knowledge 39 gaps and determine mechanistic links between climate change and biological responses. Experiments can 40 quantify biological responses to different levels of climate change, and can create the "no-analog" climate scenarios forecasted for the future, particularly when they employ active warming methods, such as forced air heaters, soil warming cables, or infrared heaters (Shaver et al., 2000; Williams et al., 2007; Aronson & McNulty, 2009). In addition, active warming can be combined with precipitation manipulations (e.g., snow removal, water additions or reductions), offering the ability to isolate effects of temperature and precipitation from other environmental changes (e.g., Price & Waser, 1998; Cleland et al., 2006; Sherry et al., 2007; 46 Rollinson & Kaye, 2012). Compared with indoor growth-chamber experiments, field-based experiments offer 47 the possibility of preserving important but unknown or unquantified feedbacks among biotic and abiotic components of the studied systems. Climate experiments allow ecologists to draw conclusions about how climate change may affect species' growth, survival, and future distributions (Dukes & Mooney, 1999; Hobbie et al., 1999; Morin et al., 2010; Chuine et al., 2012; Reich et al., 2015; Gruner et al., 2017). But is it reasonable to extrapolate findings from these experiments to the real world? Do they actually alter climate in the ways intended by experimental 53 design? Recent research suggests that climate manipulations do not alter climate in ways that are consistent with observed changes over time (Wolkovich et al., 2012; Menke et al., 2014). However, we need a robust 55 assessment of how active warming experiments alter the climate conditions experienced by organisms, and the extent to which these conditions are similar to current field conditions or anticipated climate change.

Here, we investigate the complex ways that climate is altered by active-warming treatments, both directly and indirectly, across multiple studies. Though the qualitative challenges and opportunities of climate change experiments have been summarized previously (e.g., De Boeck et al., 2015), an in-depth quantitative analysis is lacking. Using plot-level daily microclimate data from 12 active warming experiments (yielding 44 experiment years and 11594 experiment days), we show the direct and indirect ways that experimental manipulations alter climate. We use a case study of spring plant phenology to demonstrate how analyses that assume a constant and perfect treatment effect, ignoring secondary effects of warming treatments, lead to inaccurate quantification of plant sensitivity to temperature. Finally, we synthesize our findings to make recommendations for future analysis and design of climate change experiments (Box 1).

G Climate from Climate Change Experiments (C3E) database

To investigate how climate change experiments actually change climate, we first identified published, active-

warming field experiments. We focused on in situ active-warming manipulations because recent analyses indicate that active-warming methods are the most controlled and consistent methods available for experimental warming (Kimball, 2005; Kimball et al., 2008; Aronson & McNulty, 2009; Wolkovich et al., 2012). We do not include passive warming experiments because they have been analyzed extensively already and are known to have distinct issues, including extreme reduction in wind, overheating and great variation in the amount of warming depending on irradiance and snow depth (Marion et al., 1997; Shaver et al., 2000; Wolkovich et al., 2012; Bokhorst et al., 2013). 75 We carried out a full literature review to identify potential active field warming experiments to include in the database. To find these studies, we followed the methods and search terms of Wolkovich et al. (2012) for their Synthesis of Timings Observed in iNcrease Experiments (STONE) database (Wolkovich et al., 2012), but restricted our focus to active-warming experiments. Further, because our goal was to tease out variation in climate (including temperature and soil moisture), we focused on warming studies with multiple levels of warming and/or precipitation treatments. These additional restrictions constrained the list to 11 new studies (i.e., published after the STONE database), as well as six of the 37 studies in the STONE database. We contacted authors to obtain daily (or sub-daily) climate data and phenological data for these 17 studies, 83 well as datasets from two additional sites offered to us over the course of our literature review. We received data (or it was already publicly available) from authors of 12 of these 19 studies, or 63.2%. (As a

comparison, STONE received 16.7% of data requested directly from authors (Wolkovich *et al.*, 2012).) The daily temperature and soil moisture data from these 12 experiments were put together into the Climate from Climate Change Experiments (C3E) database (Figure S1), which is available at KNB (Ettinger & Wolkovich, 2017).

Complexities in interpreting experimental climate change

Climate change experiments often include detailed monitoring of climate variables at the plot level, yielding 91 large amounts of data, such as daily or hourly temperature and other climate variables, over the course of an experiment. Ecologists, however, are generally interested in the ecological responses (e.g., community dynamics, species' growth, abundance, or phenology), which are collected on much coarser timescales (e.g., weekly or annually). Not surprisingly, then, authors typically provide detailed information on the observed biological responses, but report only the mean change in climate over the course of the experiment and whether it matched their target level of change (e.g., Price & Waser, 1998; Rollinson & Kaye, 2012; Clark 97 et al., 2014a,b). Though the published focus is often on shifts in mean climate variables, imposed climate manipulations actually result in much more complex shifts. The magnitude of change in these manipulations varies in time 100 and space, and the presence of experimental equipment often unintentionally alters environmental conditions. These factors, discussed below, challenge our interpretation of how experimental warming studies forecast effects of climate change on organisms and ecosystems. 103

104 Effects on local climate vary over time and space

Reporting only the mean temperature difference across the duration of the study hides potentially important variations in daily, seasonal, or annual temperatures among treatments (Figure S2). Using the C3E database, we found that active warming reduces above-ground daily temperature range by 0.38°C per °C of target warming (95% confidence interval[CI]:)(Table S3, see also Table S2, which details the different methods used to measure temperature). Active warming decreased above-ground daily temperature range by differentially affecting maximum and minimum temperatures: warming increased daily minima by 0.84°C per °C of target warming, but only increased daily maxima by 0.50°C per °C of target warming (Table S3). Soil daily

temperature range was minimally affected by experimental warming (-0.01°C per °C of target warming).

We observed strong seasonal and annual variations in experimental warming effects (Figures 1, 2, Table S4). 113 Warming appears to be generally close to targets in winter and early spring, and farthest below targets 114 in summer (around 150-200 day of year), though patterns differ among sites (Figures 1). The variation in 115 warming effectiveness may be driven by interactions between warming treatments and daily, seasonal, and 116 annual weather patterns, since the magnitude of warming can vary as weather conditions change. Both 117 infrared heaters and soil cables fail to achieve the target temperature increases during rainstorms (Peterjohn 118 et al., 1993; Hoeppner & Dukes, 2012) and with windy conditions (Kimball, 2005; Kimball et al., 2008). In 119 addition, treatments are often applied inconsistently within or across years. Heat applications are frequently 120 shut off during winter months, and some heating methods, even if left on throughout the year, are not capable of applying constant warming year-round (e.g. Clark et al., 2014a,b; Hagedorn et al., 2010). 122

Treatment effects also vary spatially, adding further complication to interpreting effects of climate change experiments. The C3E database contains four studies that used blocked designs, allowing us to examine spatial variation in the amount of warming (i.e. the difference between treatment and control plots within a block). We found that the amount of observed warming varied by more than 1°C among blocks (Figure 2, Table S5); this block-to-block variation in warming treatment is significant, at 60-100% of target temperatures. These differences in warming levels among blocks may be caused by fine-scale variation in vegetation, slope, aspect, soil type, or other factors that can alter wind or soil moisture, which in turn affect warming (Peterjohn et al., 1993; Kimball, 2005; Kimball et al., 2008; Hoeppner & Dukes, 2012; Rollinson & Kaye, 2015).

Of course, identical experimental treatments across space and time are not necessary for robust analysis of experimental results or for forecasting. Indeed, the spatial and temporal variation we report could improve and refine models, and—at least in some regions—may be consistent with contemporary patterns of climate change (Stocker *et al.*, 2013). Taking advantage of this variation, however, requires understanding and reporting it (e.g., Milcu *et al.*, 2016). In contrast, fine-scale spatial and temporal variations in warming treatments are rarely analyzed explicitly, so the implications for interpretation of experimental findings are unclear.

139

Experimental infrastructure alters local climate

in ways that are not generally examined nor reported in experimental climate change studies. The im-140 portance of controls that mimic a treatment procedure without actually applying the treatment is widely 141 acknowledged in biology (e.g., Spector, 2001; Johnson & Besselsen, 2002; Quinn & Keough, 2002). Though 142 some researchers install treatments with non-functional warming equipment in experimental climate change studies, the magnitude and implications of structural effects on climate are rarely discussed or interpreted. To investigate the magnitude of infrastructure effects, we compared temperature and soil moisture data from five active warming studies at two sites: Duke Forest and Harvard Forest (Farnsworth et al., 1995; Clark et al., 2014b; Marchin et al., 2015; Pelini et al., 2011). These were the only studies in the C3E database that 147 monitored climate in two types of control plots: structural controls (i.e., 'shams' or 'disturbance controls,' 148 which contained all the warming infrastructure, such as soil cables or infrared heating units but with no 149 heat applied) and ambient controls with no infrastructure added. Other studies monitored environmental 150 conditions in only structural controls (n=3) or only ambient controls (n=4). 151 We found that experimental structures altered above-ground and soil temperatures in opposing ways: above-152

Experimental structures themselves can alter temperature and other important biotic and abiotic variables

we found that experimental structures altered above-ground and soil temperatures in opposing ways: aboveground temperatures were higher in the structural controls than in ambient controls, whereas soil temperatures were lower in structural controls compared with ambient controls (Figure 3a-d). This general pattern
was consistent across different temperature models (mean, minimum, and maximum temperatures), although
the magnitude varied among seasons, studies, and years (Figure 3a-d, Tables S6-S10). We also found that
experimental infrastructure decreased soil moisture relative to ambient conditions across all seasons, studies,
years (Figure 3e, Tables S8, S11).

There are several possible reasons for the observed climatic differences between ambient and structural controls. Infrastructure materials may shade the plots, reduce airflow, reduce albedo relative to surroundings,
or otherwise change the energy balance. Specifically, soil temperatures may be cooler in structural controls
because the experimental structures block sunlight from hitting the ground surface, which would therefore
experience less radiative heating than ambient controls. In addition, above-ground temperatures may be
warmer in structural controls because the structures radiatively warm the air around them and block wind,
inhibiting mixing with air outside of the plot. Structures also interfere with precipitation hitting the ground,
thereby reducing local soil moisture and snowpack, with its insulative properties. The latter likely plays a

bigger role in soil temperature differences at the Harvard Forest sites (exp04, exp07, exp08), where average annual snowfall is over one meter, than at Duke Forest (exp03,exp10), where average snow accumulation each winter is 20 cm or less. Finally, for some warming types (e.g. soil cables), structural controls experience increased soil disturbance compared with ambient controls; this may alter water flow and percolation, and introduce conductive material such as metal via the cables and/or posts.

Although there is little discussion of measured temperature (or other) differences between ambient and 172 structural control plots in published work (e.g., Farnsworth et al., 1995; Pelini et al., 2011; Clark et al., 2014a), 173 the few studies that do mention these differences are consistent with our findings. Clark et al. (2014b), whose 174 study employed forced air and soil cables for warming, state that "control of the air temperature was less 175 precise, in part due to air scooping on windy days." Marchin et al. (2015) note that structural controls had mean spring air temperatures about 0.5°C or more above ambient temperatures and Peterjohn et al. (1994) 177 reported cooler soil temperatures in structural controls than in ambient controls at shallow soil depths. 178 Similarly, we found the greatest difference in soil temperature between structural and ambient controls in 179 shallow soils (e.g. $\exp 10$, soil depth = 2 cm). Further, although the focus to date has been largely on 180 these abiotic impacts of experimental structures, such structures may also alter herbivory and other biotic 181 conditions (Kennedy, 1995; Moise & Henry, 2010; Wolkovich et al., 2012; Hoeppner & Dukes, 2012).

Most warming experiments calculate focal response variables relative to ambient controls (e.g., Price & 183 Waser, 1998; Dunne et al., 2003; Cleland et al., 2006; Morin et al., 2010; Marchin et al., 2015), which our analyses suggest will not properly account for infrastructure effects. Further, results from studies reporting 185 only structural controls (e.g., Sherry et al., 2007; Hoeppner & Dukes, 2012; Rollinson & Kaye, 2012), should 186 be cautiously applied outside of an experimental context, as—without ambient controls—their inference 187 is limited to the environment of the structural controls. Though a major additional effort, our results 188 suggest that studies aiming to predict or forecast effects at their particular location would benefit markedly 189 from employing both structural and ambient controls. This will allow for documentation and analysis of infrastructure effects on abiotic and biotic responses. Separating infrastructure artifacts from warming effects is critical if we wish to apply findings to forecasts outside of an experimental context. 192

Secondary and feedback effects of climate change manipulations

Climate change experiments often seek to manipulate temperature or precipitation separately as well as inter-194 actively, but manipulating either of these variables in isolation is difficult. Treatments involving precipitation 195 additions typically reduce temperatures in climate change manipulations (Sherry et al., 2007; Rollinson & Kaye, 2012; McDaniel et al., 2014b). For example, McDaniel et al. (2014) observed that a 20% increase in 197 precipitation reduced mean hourly temperatures by 0.3°C over the course of their two-year experiment. In 198 the C3E database, there are four experiments that manipulated both temperature and precipitation, and 199 provided daily above-ground temperature data. We found that increasing the amount of added precipita-200 tion reduced both daily minimum and maximum above-ground temperatures, at rates of 0.007 and 0.020 201 °C, respectively, per percent increase in added precipitation (Table S12). This is because increasing soil 202 moisture (an effect of precipitation additions) typically shifts the surface energy balance to favor latent (i.e., evapotranspiration) over sensible energy fluxes, reducing heating of the air overlying the soils.

Experimental warming generally increases vapor pressure deficit and reduces soil water content (e.g., Sherry et al., 2007; Morin et al., 2010; Pelini et al., 2014; Templer et al., 2016). Of the twelve experiments in the C3E database, we examined the nine that continuously measured and reported soil moisture. We found that experimental warming reduced soil moisture by 3.0%, on average (Figure 5, Table S14), and that this reduction occurred at a rate of 0.36% per degree of target warming (Table S13). Thus, although active warming experiments may not be explicitly designed to manipulate soil moisture, soil moisture is unavoidably affected by changing temperatures.

Warming and precipitation treatments, and their secondary effects on soil moisture and other abiotic factors,
can also alter the biotic environment, which may produce cascading effects. Many studies have found shifts
from herbaceous to woody plant communities over time with experimental warming (e.g., Rollinson & Kaye,
2012; McDaniel et al., 2014b,a; Harte et al., 2015); this, in turn, can alter microbial and herbaceous plant
communities. These community shifts may change competitive dynamics and affect resource levels, such as
moisture, carbon, and nutrient levels in the soil (McDaniel et al., 2014b,a; Harte et al., 2015), and cause
positive feedbacks to local climate change (Harte et al., 2015).

The widespread presence of unintended secondary effects of climate change manipulations highlights the importance of measuring environmental conditions at the plot level, and using these measurements in analysis

and interpretation of results. Many climate change experiments—including seven of the 12 in the C3E database—analyze warming and/or precipitation treatments as simple categorical predictors (e.g., as in a two-way ANOVA). Our findings, however, demonstrate a clear need for alternative modelling approaches to fully understand the experimental results and to make mechanistic links between changes in climate and ecological responses. One straightforward alternative is to include the continuous climate data (e.g., plot-level temperatures) as predictors of the focal response variable, such as phenological state or species density (e.g., Marchin et al., 2015; Pelini et al., 2014).

Ecological implications

We have highlighted a suite of factors that complicate interpretation of warming experiments. These largely unintended alterations, analogous to the "hidden treatments" described by Huston (1997) in biodiversity 230 experiments, are likely to have biological implications for many of the responses studied in warming experi-231 ments (e.g., Figure 5). Interpretation of experimental climate change effects on biological responses may be 232 misleading because the intended climate treatments (i.e., categorical comparisons or target warming levels) 233 are generally used as explanatory variables in analyses. The interpretation is likely to be altered by using finescale, measured climate as explanatory variables. Detailed examination of multiple microclimate variables (e.g., plot-level temperature and soil moisture) will allow a more complete understanding of the indirect, as 236 well as direct, effects of treatments on abiotic and biotic drivers of focal responses. 237 Biological responses may be muted (Figure 5b) or exaggerated (Figure 5c) in experiments when direct and 238

indirect effects of climate manipulations interact. Plant phenology provides one example of a biological response that appears to be muted in experiments versus observational studies (Figure 5b). This is because phenology has a complex dependence on temperature and water availability (as well as other factors, Davis et al., 2015). Although phenology is generally advanced by higher spring temperatures, it can also be delayed by increased winter temperatures (which delay endodormancy break). In addition, reduced water availability during the spring can slow cell elongation and delay budburst (Peñuelas et al., 2004; Ourcival & Rambal, 2011; Craine et al., 2012; Matthews & Mazer, 2016). Effects of these different drivers may be responsible for the observed discrepancy between observational and experimental phenological responses to warming (Wolkovich et al., 2012).

268

271

272

273

274

275

We tested how using measured plot-level climate variables, instead of target warming, alters estimates of temperature sensitivity with data in the C3E database. We did this by fitting models with two different types of explanatory variables: 1) target warming, and 2) measured climate. We focus on budburst, as this is the most consistently measured phenological phase in the database: five study sites from C3E have above-251 ground temperature and soil moisture, as well as day of year of budburst data. To identify which measured 252 temperature and soil moisture variables to include in our measured climate model (e.g., mean annual versus mean seasonal values, minimum versus maximum daily temperature), we used a model selection approach with AIC (see Supplemental Materials for details). For both types of models, we accounted for non-independence due to site and year with random effects (see Supplemental Materials for details). The target warming model estimates temperature sensitivity of budburst to be -2.01 days/°C (95% CI -2.17,-1.86; i.e., budburst shifts 257 earlier by two days per °C of warming) (Table S15, solid black line in Figure 6). The best-fit measured 258 climate model included mean daily minimum above-ground temperature, mean winter (January-March) soil 259 moisture, and their interaction as explanatory variables (Tables S15, S16). The slope for temperature in the 260 measured climate model can be directly compared to the slope for target warming in the target warming model because the units are the same (change in budburst, in days/°C). The measured climate model had improved model fit compared to the target warming model (Table S16), and the slope tripled in magnitude: estimated temperature sensitivity of budburst was -6.22 days/°C (95% CI:-7.034,-5.41; Table S15). In addition, the 264 measured climate model estimated a significant negative effect of soil moisture on budburst of -1.35 days/% 265 VWC (95% CI: -1.58,-1.13; Table S15, Figure 6). This effect is consistent with previous work showing that budburst requires water uptake (Essiamah & Eschrich, 1986).

The increase in estimated temperature sensitivity with measured (rather than target) temperature has two major causes. First, target warming generally exceeds the measured above-ground temperature differences between treatment and control plots (Figure 2). Second, experimental warming dries out the soil in addition to increasing temperatures, and both climate variables affect the timing of budburst. Decreasing soil moisture has a delaying effect on budburst phenology, opposing the advancing effect of rising temperatures (Figure 5b). This example shows how the common method of using target warming alone to understand biological responses is likely to yield inaccurate estimates of temperature sensitivity in warming experiments. In this case, the underestimation may be substantial enough to account for the previously observed discrepancy between observational and experimental phenological responses to warming, though further investigation is required, for example across additional phenophases (Wolkovich et al., 2012).

Accounting for both direct and indirect effects of warming is critical for accurate interpretation of the consequences of climate change (Kharouba *et al.*, 2015). A critical question is the extent to which indirect abiotic and biotic effects are accurate forecasts of future shifts that are likely to occur with climate change, or due to artifacts that are unlikely to occur outside of experimental systems (Moise & Henry, 2010; Diamond *et al.*, 2013).

Altered above-ground daily temperature range (i.e. temperature minima changing more than maxima) with 283 experimental warming is consistent with observed changes in many places, at least for some time periods. 284 Minimum temperatures increased more rapidly than maximum temperatures, reducing above-ground daily 285 temperature range strongly and significantly from 1950-1980, but the trends have been largely insignificant from 1980 onward (Thorne et al., 2016; Vose et al., 2005). Soil drying in conjunction with future warming is forecasted in some regions, such as the southwestern United States, mainly because of reductions in 288 precipitation and increased evaporative demand with warmer air. (Dai, 2013; Seager et al., 2013). However, 289 the northeastern United States has been trending wetter over time and is expected to be wetter in the 290 future (Seager et al., 2014; Shuman & Burrell, 2017). The soil moisture changes in warming experiments, 291 and the biological changes they cause, may therefore represent an experimental artifact that is unlikely to 292 occur with future warming. The altered light, wind, and herbivory patterns documented under experimental infrastructure (Kennedy, 1995; Moise & Henry, 2010; Wolkovich et al., 2012; Hoeppner & Dukes, 2012; Clark 294 et al., 2014b) represent other potential experimental artifacts that are worth quantifying in future analyses 295 to provide improved estimates of temperature sensitivity. 296

97 Conclusions

As climate change continues across the globe, ecologists are challenged to not only document impacts but to make quantitative, robust predictions. Our ability to meet this challenge requires a nuanced mechanistic understanding of how climate directly and indirectly alters biological processes. Climate change experiments, which have been underway for nearly four decades (e.g., Tamaki et al., 1981; Carlson & Bazzaz, 1982; Melillo et al., 2017), provide invaluable information about biological responses to climate change. Yet the full range of changes in environmental conditions imposed by these experiments is rarely presented. We have compiled the first database of fine-scale climate data from multiple warming experiments and shown how time, space, experimental artifacts, and secondary effects of treatments may hinder simple interpretations of

these experiments. We hope this work provides a foundation for gaining the most knowledge and utility from existing experiments via robust analyses, for designing better experiments and models in the future (see Box 1), and for improved understanding of biological responses and feedbacks in a changing world.

309 Acknowledgements

We are grateful to those who shared their experimental climate data with us and others in the C3E database.

We thank the Radcliffe Institute for Advanced Study at Harvard University, which provided funding for an

Exploratory Seminar at which the ideas in this paper were conceived. This research was also supported by

the National Science Foundation (NSF DBI 14-01854 to A.K.E.). Any opinion, findings, and conclusions or

recommendations expressed in this material are those of the authors and do not necessarily reflect the views

of the National Science Foundation.

section* Box 1: Recommendations for future climate change experiments

- 1. Collect and analyze fine-scale climate data. This includes analyzing and interpreting minimum and maximum values, as well as variance and critical thresholds (e.g., the number and duration of freeze-thaw events and accumulated chilling hours, McDaniel et al., 2014b; Vasseur et al., 2014). We suggest saving the raw data from data loggers (often collected at hourly or higher resolution) to allow quantification of variance (and other summaries) at different temporal resolutions. In assessing which frequency of measurements is most appropriate for analyses (e.g., hourly, twice daily), it is critical to consider the chronobiology of the event and organisms of interest. For ants, this might mean that temperatures be monitored every minute (Helm & Shavit, 2017); for bacteria, even more frequently.
- 2. Analyze measured climate variables rather than targets. There can be substantial variation in the effects of warming and precipitation treatments among plots and across time (Figure 2). Analyzing measured climate will allow much more in-depth understanding of the drivers and biological effects of variation in temperature and moisture.
- 3. Publish high quality, usable data and metadata. Given that in situ climate manipulations are logistically challenging and expensive (Aronson & McNulty, 2009), and that they often produce a large volume of fine-scale climate data, good curation and data sharing will ensure wider use and deeper understanding of these valuable data. When studying biological implications of a global challenge as large as climate

- change, progress will come from designing and reporting experiments in ways that facilitate an eventual global data set.
- 4. Include both structural and ambient controls and collect, use, and report climate and biological data within them. Fewer than half of the studies in our C3E database reported climate data from these two control types (5 out of 12 studies); however, all experiments that did include both control types showed significant effects of infrastructure (Figure 3).
 - 5. Design relevant manipulations by consulting observational records and forecasts, including seasonal and annual variation in projected warming. When it is not possible or desirable to match anticipated changes in climate, studies should report how imposed treatments compare to projected changes and past observations (e.g., Hoover et al., 2014). In addition, if continuous treatments are not applied throughout the study, the seasonality and timing of treatments should be explicitly reported and the climate should be monitored throughout.
- 6. Maximize the duration of climate change experiments by running some experiments for as long as 345 possible, since the magnitude of climate change treatments can vary considerably among years (Figure 2. In addition, long-term responses of individuals and populations can differ from transient responses 347 (Saleska et al., 2002; Franklin, 1989; Giasson et al., 2013; Harte et al., 2015). We were only able to 348 acquire data extending for 5 years or more for one study in the C3E database (exp01), restricting our 349 ability to investigate the effect of study length on experimental climate change. Well-designed and well-350 supported longer warming experiments will allow investigation of how inter-annual variations interact 351 with climate change treatments, particularly when combined with observational studies and modeling 352 (Luo et al., 2011).

$_{54}$ References

341

342

343

344

- Aronson, E.L. & McNulty, S.G. (2009). Appropriate experimental ecosystem warming methods by ecosystem,
 objective, and practicality. Agricultural and Forest Meteorology, 149, 1791–1799.
- Bokhorst, S., Huiskes, A., Aerts, R., Convey, P., Cooper, E.J., Dalen, L., Erschbamer, B., Gudmundsson, J.,

 Hofgaard, A., Hollister, R.D. *et al.* (2013). Variable temperature effects of open top chambers at polar and

 alpine sites explained by irradiance and snow depth. *Global Change Biology*, 19, 64–74.

- Carlson, R.W. & Bazzaz, F.A. (1982). Photosynthetic and growth response to fumigation with so2 at elevated co2 for c3 and c4 plants. *Oecologia*, 54, 50–54.
- ³⁶² Chuine, I., Bonhomme, M., Legave, J.M., García de Cortázar-Atauri, I., Charrier, G., Lacointe, A. & Améglio,
- T. (2016). Can phenological models predict tree phenology accurately in the future? the unrevealed hurdle
- of endodormancy break. Global Change Biology, 22, 3444–3460.
- ³⁶⁵ Chuine, I., Morin, X., Sonié, L., Collin, C., Fabreguettes, J., Degueldre, D., Salager, J.L. & Roy, J. (2012).
- ³⁶⁶ Climate change might increase the invasion potential of the alien c4 grass setaria parviflora (poaceae) in
- the mediterranean basin. Diversity and Distributions, 18, 661–672.
- ³⁶⁸ Clark, J.S., Melillo, J., Mohan, J. & Salk, C. (2014a). The seasonal timing of warming that controls onset of
- the growing season. Global Change Biology, 20, 1136–1145.
- 370 Clark, J.S., Salk, C., Melillo, J. & Mohan, J. (2014b). Tree phenology responses to winter chilling, spring
- warming, at north and south range limits. Functional Ecology, 28, 1344–1355.
- ³⁷² Cleland, E.E., Chiariello, N.R., Loarie, S.R., Mooney, H.A. & Field, C.B. (2006). Diverse responses of
- phenology to global changes in a grassland ecosystem. Proceedings of the National Academy of Sciences of
- the United States of America, 103, 13740–13744.
- ³⁷⁵ Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A. & Totterdell, I.J. (2000). Acceleration of global warming
- due to carbon-cycle feedbacks in a coupled climate model. *Nature*, 408, 184–187.
- 377 Craine, J.M., Wolkovich, E.M., Towne, E.G. & Kembel, S.W. (2012). Flowering phenology as a functional
- trait in a tallgrass prairie. New Phytologist, 193, 673–682.
- Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change,
- 380 3, 52–58.
- Davis, C.C., Willis, C.G., Connolly, B., Kelly, C. & Ellison, A.M. (2015). Herbarium records are reliable
- sources of phenological change driven by climate and provide novel insights into species' phenological cueing
- mechanisms. American journal of botany, 102, 1599–1609.
- De Boeck, H.J., Vicca, S., Roy, J., Nijs, I., Milcu, A., Kreyling, J., Jentsch, A., Chabbi, A., Campioli, M.,
- Callaghan, T. et al. (2015). Global change experiments: challenges and opportunities. BioScience, 65,
- 922-931.

- Diamond, S.E., Penick, C.A., Pelini, S.L., Ellison, A.M., Gotelli, N.J., Sanders, N.J. & Dunn, R.R. (2013).
- Using physiology to predict the responses of ants to climatic warming. Integrative and comparative biology.
- ₃₈₉ 53, 965–974.
- Dukes, J.S. & Mooney, H.A. (1999). Does global change increase the success of biological invaders? Trends
- in Ecology and Evolution, 14, 135–139.
- Dunne, J.A., Harte, J. & Taylor, K.J. (2003). Subalpine meadow flowering phenology responses to climate
- change: integrating experimental and gradient methods. Ecological Monographs, 73, 69–86.
- Essiamah, S. & Eschrich, W. (1986). Water uptake in deciduous trees during winter and the role of conducting
- tissues in spring reactivation. IAWA Journal, 7, 31–38.
- Ettinger, A. & Wolkovich, E. (2017). Climate from climate change experiments (C3E).
- Farnsworth, E., Nunez-Farfan, J., Careaga, S. & Bazzaz, F. (1995). Phenology and growth of three temperate
- forest life forms in response to artificial soil warming. Journal of Ecology, 83, 967–977.
- Field, C.B., Lobell, D.B., Peters, H.A. & Chiariello, N.R. (2007). Feedbacks of terrestrial ecosystems to
- climate change. Annual Review of Environment and Resources, 32, 1–29.
- ⁴⁰¹ Franklin, J.F. (1989). Importance and justification of long-term studies in ecology. In: Long-term studies in
- ecology. Springer, pp. 3–19.
- Friedlingstein, P., Meinshausen, M., Arora, V.K., Jones, C.D., Anav, A., Liddicoat, S.K. & Knutti, R. (2014).
- Uncertainties in cmip5 climate projections due to carbon cycle feedbacks. Journal of Climate, 27, 511–526.
- Giasson, M.A., Ellison, A.M., Bowden, R., Crill, P.M., Davidson, E., Drake, J., Frey, S., Hadley, J., Lavine,
- M., Melillo, J. et al. (2013). Soil respiration in a northeastern us temperate forest: a 22-year synthesis.
- Ecosphere, 4, 1–28.
- Gruner, D.S., Bracken, M.E., Berger, S.A., Eriksson, B.K., Gamfeldt, L., Matthiessen, B., Moorthi, S.,
- Sommer, U. & Hillebrand, H. (2017). Effects of experimental warming on biodiversity depend on ecosystem
- type and local species composition. Oikos, 126, 8–17.
- 411 Hagedorn, F., Martin, M., Rixen, C., Rusch, S., Bebi, P., Zürcher, A., Siegwolf, R.T., Wipf, S., Escape, C.,
- Roy, J. et al. (2010). Short-term responses of ecosystem carbon fluxes to experimental soil warming at the
- swiss alpine treeline. Biogeochemistry, 97, 7–19.

- Hampe, A. (2004). Bioclimate envelope models: what they detect and what they hide. Global Ecology and
- Biogeography, 13, 469–471.
- 416 Harte, J., Saleska, S.R. & Levy, C. (2015). Convergent ecosystem responses to 23-year ambient and manip-
- ulated warming link advancing snowmelt and shrub encroachment to transient and long-term climate—soil
- carbon feedback. Global Change Biology, 21, 2349–2356.
- 419 Helm, B. & Shavit, A. (2017). Dissecting and reconstructing time and space for replicable biological research,
- New Haven, CT: Yale University Press, pp. 233–249.
- Hobbie, S.E., Shevtsova, A. & Chapin III, F.S. (1999). Plant responses to species removal and experimental
- warming in alaskan tussock tundra. Oikos, 84, 417–434.
- 423 Hoeppner, S.S. & Dukes, J.S. (2012). Interactive responses of old-field plant growth and composition to
- warming and precipitation. Global Change Biology, 18, 1754–1768.
- 425 Hoover, D.L., Knapp, A.K. & Smith, M.D. (2014). Resistance and resilience of a grassland ecosystem to
- climate extremes. *Ecology*, 95, 2646–2656.
- 427 Huston, M.A. (1997). Hidden treatments in ecological experiments: re-evaluating the ecosystem function of
- biodiversity. *Oecologia*, 110, 449–460.
- ⁴²⁹ Ibanez, I., Clark, J.S., Dietze, M.C., Feeley, K., Hersh, M., LaDeau, S., McBride, A., Welch, N.E. & Wolosin,
- 430 M.S. (2006). Predicting biodiversity change: Outside the climate envelope, beyond the species-area curve.
- Ecology, 87, 1896–1906.
- Johnson, P.D. & Besselsen, D.G. (2002). Practical aspects of experimental design in animal research. ILAR
- 433 Journal, 43, 202–206.
- ⁴³⁴ Kearney, M. & Porter, W. (2009). Mechanistic niche modelling: combining physiological and spatial data to
- predict species' ranges. *Ecology Letters*, 12, 334–350. PT: J; UT: WOS:000264067600007.
- 456 Kennedy, A. (1995). Temperature effects of passive greenhouse apparatus in high-latitude climate change
- experiments. Functional Ecology, 9, 340–350.
- Kharouba, H.M., Vellend, M., Sarfraz, R.M. & Myers, J.H. (2015). The effects of experimental warming on
- the timing of a plant-insect herbivore interaction. Journal of Animal Ecology, 84, 785-796.

- Kimball, B. (2005). Theory and performance of an infrared heater for ecosystem warming. Global Change
 Biology, 11, 2041–2056.
- Kimball, B.A., Conley, M.M., Wang, S., Lin, X., Luo, C., Morgan, J. & Smith, D. (2008). Infrared heater
 arrays for warming ecosystem field plots. Global Change Biology, 14, 309–320.
- 444 Luo, Y., Melillo, J., Niu, S., Beier, C., Clark, J.S., Classen, A.T., Davidson, E., Dukes, J.S., Evans, R., Field,
- 445 C.B. et al. (2011). Coordinated approaches to quantify long-term ecosystem dynamics in response to global
- change. Global Change Biology, 17, 843–854.
- 447 Marchin, R.M., Salk, C.F., Hoffmann, W.A. & Dunn, R.R. (2015). Temperature alone does not explain
- phenological variation of diverse temperate plants under experimental warming. Global Change Biology,
- 21, 3138–3151.
- 450 Marion, G., Henry, G., Freckman, D., Johnstone, J., Jones, G., Jones, M., Levesque, E., Molau, U., Møl-
- gaard, P., Parsons, A. et al. (1997). Open-top designs for manipulating field temperature in high-latitude
- ecosystems. Global Change Biology, 3, 20–32.
- Matthews, E.R. & Mazer, S.J. (2016). Historical changes in flowering phenology are governed by
- temperature× precipitation interactions in a widespread perennial herb in western North America. New
- Phytologist, 210, 157–167.
- 456 McDaniel, M., Kaye, J. & Kaye, M. (2014a). Do "hot moments" become hotter under climate change? soil
- nitrogen dynamics from a climate manipulation experiment in a post-harvest forest. Biogeochemistry, 121,
- 339-354.
- ⁴⁵⁹ McDaniel, M., Wagner, R., Rollinson, C., Kimball, B., Kaye, M. & Kaye, J. (2014b). Microclimate and eco-
- logical threshold responses in a warming and wetting experiment following whole tree harvest. Theoretical
- and Applied Climatology, 116, 287–299.
- ⁴⁶² Melillo, J., Frey, S., DeAngelis, K., Werner, W., Bernard, M., Bowles, F., Pold, G., Knorr, M. & Grandy,
- 463 A. (2017). Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming
- world. Science, 358, 101–105.
- ⁴⁶⁵ Menke, S.B., Harte, J. & Dunn, R.R. (2014). Changes in ant community composition caused by 20 years of
- experimental warming vs. 13 years of natural climate shift. *Ecosphere*, 5, 1–17.

- Milcu, A., Puga-Freitas, R., Ellison, A.M., Blouin, M., Scheu, S., Girin, T., Frechet, G., Rose, L., Scherer-
- Lorenzen, M., Barot, S. et al. (2016). Systematic variability enhances the reproducibility of an ecological
- study. bioRxiv(beta), p. 080119.
- 470 Moise, E.R. & Henry, H.A. (2010). Like moths to a street lamp: exaggerated animal densities in plot-level
- global change field experiments. Oikos, 119, 791–795.
- 472 Moorcroft, P.R. (2006). How close are we to a predictive science of the biosphere? Trends in Ecology &
- Evolution, 21, 400–407.
- 474 Morin, X., Roy, J., Sonié, L. & Chuine, I. (2010). Changes in leaf phenology of three european oak species
- in response to experimental climate change. New Phytologist, 186, 900–910.
- Ohlemüller, R., Gritti, E.S., Sykes, M.T. & Thomas, C.D. (2006). Towards european climate risk surfaces:
- the extent and distribution of analogous and non-analogous climates 1931–2100. Global Ecology and Bio-
- geography, 15, 395–405.
- Ourcival, J. & Rambal, S. (2011). Phenological responses to extreme droughts in a Mediterranean forest.
- 480 Global Change Biology, 17, 1036–1048.
- Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of
- Ecology Evolution and Systematics, 37, 637–669.
- 483 Pearson, R.G. & Dawson, T.P. (2004). Bioclimate envelope models: what they detect and what they hide -
- response to hampe (2004). Global Ecology and Biogeography, 13, 471–473.
- Pelini, S., Diamond, S., Nichols, L., Stuble, K., Ellison, A.M., Sanders, N., Dunn, R. & Gotelli, N. (2014).
- 486 Geographic differences in effects of experimental warming on ant species diversity and community compo-
- sition. Ecosphere, 5, 1–12.
- Pelini, S.L., Bowles, F.P., Ellison, A.M., Gotelli, N.J., Sanders, N.J. & Dunn, R.R. (2011). Heating up the
- forest: open-top chamber warming manipulation of arthropod communities at Harvard and Duke Forests.
- Methods in Ecology and Evolution, 2, 534–540.
- Peñuelas, J., Filella, I., Zhang, X., Llorens, L., Ogaya, R., Lloret, F., Comas, P., Estiarte, M. & Terradas,
- J. (2004). Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytologist,
- 493 161, 837–846.

- Peterjohn, W.T., Melillo, J.M., Bowles, F.P. & Steudler, P.A. (1993). Soil warming and trace gas fluxes:
- experimental design and preliminary flux results. *Oecologia*, 93, 18–24.
- Price, M.V. & Waser, N.M. (1998). Effects of experimental warming on plant reproductive phenology in a
- subalpine meadow. *Ecology*, 79, 1261–1271.
- ⁴⁹⁸ Quinn, G.P. & Keough, M.J. (2002). Experimental design and data analysis for biologists. Cambridge
- 499 University Press.
- Reich, P.B., Sendall, K.M., Rice, K., Rich, R.L., Stefanski, A., Hobbie, S.E. & Montgomery, R.A. (2015).
- Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species.
- Nature Climate Change, 5, 148–152.
- 503 Rollinson, C.R. & Kaye, M.W. (2012). Experimental warming alters spring phenology of certain plant
- functional groups in an early successional forest community. Global Change Biology, 18, 1108–1116.
- Rollinson, C.R. & Kaye, M.W. (2015). Modeling monthly temperature in mountainous ecoregions: importance
- of spatial scale for ecological research. Climate Research, 64, 99–110.
- Saleska, S.R., Shaw, M.R., Fischer, M.L., Dunne, J.A., Still, C.J., Holman, M.L. & Harte, J. (2002). Plant
- community composition mediates both large transient decline and predicted long-term recovery of soil
- carbon under climate warming. Global Biogeochemical Cycles, 16, 3–1–3–18.
- Seager, R., Neelin, D., Simpson, I., Liu, H., Henderson, N., Shaw, T., Kushnir, Y., Ting, M. & Cook, B.
- (2014). Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over north
- america in response to global warming. Journal of Climate, 27, 7921–7948.
- 513 Seager, R., Ting, M., Li, C., Naik, N., Cook, B., Nakamura, J. & Liu, H. (2013). Projections of declining
- surface-water availability for the southwestern united states. Nature Climate Change, 3, 482.
- Shaver, G.R., Canadell, J., Chapin, F.S., Gurevitch, J., Harte, J., Henry, G., Ineson, P., Jonasson, S., Melillo,
- J., Pitelka, L. et al. (2000). Global warming and terrestrial ecosystems: A conceptual framework for analysis
- ecosystem responses to global warming will be complex and varied. Ecosystem warming experiments hold
- great potential for providing insights on ways terrestrial ecosystems will respond to upcoming decades of
- climate change. Documentation of initial conditions provides the context for understanding and predicting
- ecosystem responses. *BioScience*, 50, 871–882.

- Sheldon, K.S., Yang, S. & Tewksbury, J.J. (2011). Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure. *Ecology Letters*, 14, 1191–1200.
- 523 Sherry, R.A., Zhou, X., Gu, S., 3rd, J.A.A., Schimel, D.S., Verburg, P.S., Wallace, L.L. & Luo, Y. (2007).
- 524 Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of
- Sciences of the United States of America, 104, 198–202.
- 526 Shukla, J. & Mintz, Y. (1982). Influence of land-surface evapotranspiration on the earth's climate. Science,
- 215, 1498–1501.
- 528 Shuman, B.N. & Burrell, S.A. (2017). Centennial to millennial hydroclimatic fluctuations in the humid
- northeast United States during the holocene. Quaternary Research, 88, 1–11.
- 550 Spector, R. (2001). Progress in the search for ideal drugs. *Pharmacology*, 64, 1–7.
- Stocker, T., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, B. & Midgley,
- B. (2013). IPCC 2013. climate change 2013: the physical science basis. contribution of working group i to
- the fifth assessment report of the intergovernmental panel on climate change.
- Swab, R.M., Regan, H.M., Keith, D.A., Regan, T.J. & Ooi, M.K.J. (2012). Niche models tell half the story:
- spatial context and life-history traits influence species responses to global change. Journal of Biogeography,
- ⁵³⁶ 39, 1266–1277.
- Tamaki, G., Weiss, M.A. & Long, G.E. (1981). Evaluation of plant density and temperature in predator-prey
- interactions in field cages. Environmental Entomology, 10, 716–720.
- Templer, P.H., Phillips, N.G., Ellison, A.M. & Pelini, S.L. (2016). Ecosystem warming increases sap flow
- rates of northern red oak trees. *Ecosphere*, 7.
- Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus,
- B.F.N., de Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A.S., Midgley,
- G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O.L. & Williams, S.E. (2004). Extinction
- risk from climate change. Nature, 427, 145–148.
- Thorne, P., Donat, M., Dunn, R., Williams, C., Alexander, L., Caesar, J., Durre, I., Harris, I., Hausfather, Z.,
- Jones, P. et al. (2016). Reassessing changes in diurnal temperature range: Intercomparison and evaluation
- of existing global data set estimates. Journal of Geophysical Research: Atmospheres, 121, 5138–5158.

- Thuiller, W. (2004). Patterns and uncertainties of species' range shifts under climate change. Global Change

 Biology, 10, 2020–2027.
- Urban, M.C., Tewksbury, J.J. & Sheldon, K.S. (2012). On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. *Proceedings of*
- Vasseur, D.A., DeLong, J.P., Gilbert, B., Greig, H.S., Harley, C.D., McCann, K.S., Savage, V., Tunney, T.D.
- & O'Connor, M.I. (2014). Increased temperature variation poses a greater risk to species than climate
- warming. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20132612.
- Vose, R.S., Easterling, D.R. & Gleason, B. (2005). Maximum and minimum temperature trends for the globe:
- An update through 2004. Geophysical Research Letters, 32, e01221.

the Royal Society B-Biological Sciences, 279, 2072–2080.

- Williams, J.W. & Jackson, S.T. (2007). Novel climates, no-analog communities, and ecological surprises.
- Frontiers in Ecology and the Environment, 5, 475–482.
- Williams, J.W., Jackson, S.T. & Kutzbacht, J.E. (2007). Projected distributions of novel and disappearing
- climates by 2100 AD. Proceedings of the National Academy of Sciences of the United States of America,
- 104, 5738–5742.

552

- Wolkovich, E.M., Cook, B.I., Allen, J.M., Crimmins, T.M., Betancourt, J.L., Travers, S.E., Pau, S., Regetz,
- J., Davies, T.J., Kraft, N.J.B., Ault, T.R., Bolmgren, K., Mazer, S.J., McCabe, G.J., McGill, B.J., Parme-
- san, C., Salamin, N., Schwartz, M.D. & Cleland, E.E. (2012). Warming experiments underpredict plant
- phenological responses to climate change. *Nature*, 485, 494–497.

567 Figures

Daily Mean Soil Temperature Difference exp11 exp06 exp08 exp04 5.4 7.3 9 target warming °C diff from non-warmed (°C) 11.5 12 14.9 15 15.2 200 100 200 100 200 300 200 300 100 200 day of year

Figure 1: Deviations in daily observed warming from mean soil temperature for 10 study sites, excluding data from plots that manipulated precipitation. We show mean soil, rather than above-ground, temperature, as this was the most frequently recorded temperature variable in the C3E database. Solid lines show observed difference between warming treatment (colors) and control (black) plots, averaged across replicates and years; shading shows 95% confidence intervals. Dashed lines represent target warming levels. Two sites not shown here did not monitor soil temperature. Experimental sites are ordered by low to high mean annual soil temperature (shown in the upper right corner of each panel).

Figure 2: Observed warming over space and time, for above-ground and soil temperatures, excluding data from plots that manipulated precipitation. Points represent the difference between treatment and control plots by block (i.e., one data point per block) and by year (i.e., one data point per year). The solid line is the fitted relationship between observed and target warming and the dashed line shows when observed warming is exactly equal to target warming (1:1). See Supplemental Materials (especially Tables S4 and S5) for details.

Figure 3: Deviations in measured abiotic variables by month in structural controls compared to ambient controls (i.e., with no control chambers or warming infrastructure in place). Above-ground temperatures were higher (a,b), whereas soil temperature (c,d) and soil moisture (e) were lower in structural controls compared with ambient controls. We show overall (fixed) effects in black from monthly mixed-effects models; site-level random effects are shown by symbols in blue (for the three studies conducted at Harvard Forest in Massachusetts, USA) and pink (the two studies conducted at Duke Forest in North Carolina, USA).

Figure 4: **Deviations in daily observed soil moisture**, shown for the nine study sites that continuously monitored soil moisture, excluding data from plots that manipulated precipitation. Black lines represent control plots, and colored lines represent warming treatments with various target warming levels. The number of temperature treatment levels vary from one (e.g. exp08, exp11) to nine (exp07 and exp10, which used an unreplicated regression design). Experimental sites are ordered by low to high mean annual soil moisture (shown in the upper right corner of each plot). All experiments measured soil moisture in volumetric water content (VWC, as a percentage of the soil volume in the sample, scaled from 0 to 100)

Figure 5: Theoretical biological responses to experimental warming and their interpretation. Direct responses to temperature alone (a) can be easily understood. Complications arise when biological responses are a mix of the direct and indirect effects of experimental warming. Then experimental warming may cause biological responses to be muted (b) or exaggerated (c). Slopes of these example lines assume a linear response with additive direct and indirect effects. The relationship between these effects could be more complex (e.g., nonlinear; antagonistic, multiplicative, or otherwise interactive).

Figure 6: Observed response of budburst day of year to experimental climate change is an example of a muted response: the observed response to increasing treatment intensity (i.e., the coefficient of a model fit with only target temperature as the explanatory variable, black line; units for x-axis are °C of target warming) suggests a weaker temperature sensitivity than the effect of temperature in a more biologically accurate (and better-fitting) model that includes both measured above-ground temperature (dashed red line, for which x-axis units are °C of measured temperature) and soil moisture (dotted blue line, for which x-axis units are % VWC, decreasing from left to right in conjunction with warming intensity), as well as their interaction. This is because experimental warming dries out the soil in addition to increasing temperatures, and both climate variables affect the timing of budburst. Whereas increasing temperatures advance budburst, decreasing soil moisture has a delaying effect. See Supplemental Materials, especially Tables S14 & S15, for model details.