HW1

Solution 1

Describe the principle of Dynamic Programming. Pick a problem of interest in Data Science which can be solved efficiently using Dynamic Programming. Describe the problem and the application of Dynamic Programming on it.

Principles of Dynamic Programming

- Breakdown a big problem into sub-problems.
- Identify relationship between sub-problems.
- Store the results of the sub-problems.
- In case the sub-problem is encountered again use the stored results instead of solving it again.

Application

Sequence Labelling with Hidden Markov Models (HMMs)

- Involves assigning labels to each element in a sequence, based on set of hidden states and observed emissions.
- HMMs are probabilistic model that models sequences of observations, where each observation is associated with a hidden state and the entire system evolves over time.

Problem

- HMMs emits sequence of observations from states and estimating its probability.
- Main problem is to find the most probable sequence of states.

Viterbi Decoding Algorithm

- A dynamic programming algorithm tailored for HMMs solves this problem.
- Parameters of HMM:
 - State transition probability matrix
 - o Emission probability matrix
 - Initial probability vector

Initialization

- A basic data structure or a table of size T (elements in sequence) * S (number of states).
- Stores probability of path taken at time t that ends in state s.

Start

• For the first element compute transition probability from a start state to each possible state.

Recursion

- Compute the probability of reaching each state at time t from all paths from prior step.
- Update the table with the probability of most likely path.

Termination

• Find most likely final state using transition probabilities from final to end state.

Backtracking

• Utilize the cached data in table to find the most likely sequences of states.

Solution 2

Describe the main ingredients of local search. Pick a problem of interest in Data Science which can be solved efficiently using local search in a discrete space. Describe the problem and the application of local search on it. What happens if the search space is continuous?

Ingredients of Local Search

- Hill Climbing/Descent (Greedy Local search):
 - Starts with an arbitrary assignment.
 - Move to next neighbor till reach a max/min where there is no neighbor with a higher/lower value.
 - There are chances that the algorithm may get stuck at neighborhood after finding a local optimum.
 - o Quit if no neighbors are better than the current.
- Random Restart (outer loop):
 - To avoid getting stuck at a local max/min periodically run hill climbing multiple times from random location until local optimum if found.
- Noisy Strategy (inner loop):
 - Stochastic approach
 - Randomly choose from uphill moves depending on probability of the amt. of improvement.
 - o Converges slower while it may find better solutions.
- Plateau Problem (Random walk)
 - When algorithm gets stuck in a neighborhood such it can neither move upwards or downwards.
 - Use a tabu list with limited use of memory to store the best seen neighbor from a random uniform choice of neighbor.
 - Continue for N iterations, with increase in N the random walk shall lead to global optimum.
- Simulated Annealing (Random Walk + Hill Climbing/Descent)
 - If the problem is set to decay exponentially
 - Accept an upward/downward move and reduce the acceptance rate proceeding further to escape the local optimum.
- In case of continuous search space
 - Utilize gradients to find the best direction.
 - Magnitude of gradient determines the direction of max improvement.

Application

Flight Route Planning

- Initialize: Initial set of available flight routes based upon origin, destination, air space regulations, and weather conditions.
- Neighborhood function: Define neighboring solutions depending upon route alternations possible, waypoints, altitudes.
- Objective function: Evaluate solution the maximizes the profit earned from flight depending upon fuel consumption, stop duration, parking costs, safety, and compliance with regulations.
- Selection criteria: Choose a route that maximizes the objective function meeting all the requirements.
- Termination criteria: Stop when a satisfactory solution is discovered.

Solution 3

Describe the K-means clustering algorithm. Is it an Expectation-Maximization algorithm? Explain. What are some drawbacks of the K-means algorithm?

K-Means Clustering

- an iterative partitioning algorithm
- · unsupervised learning method
- Group similar data points into distinct non overlapping clusters

Algorithm

- Inputs:
 - K clusters
 - N data points
- Initialize: Randomly select K clusters
- Iteration:
 - Assign points to nearest cluster center using a distance metric.
 - o Re-estimate the centroid by calculating the mean of points assigned to that cluster.
- Terminate:
 - o If none of the points change cluster membership
 - o Else re-iterate.

Expectation-Maximization Algorithm?

- A simplified case of EM algorithm where only hard membership is assigned to the data points.
- In general EM is much more flexible allowing soft membership where a point can have a partial belonging to a cluster.

Drawbacks

- Produces spherical clusters.
 - o Cannot form elongated clusters or clusters of non-globular shapes.
 - o Cluster may not be linearly separable.
- Problematic when are there clusters with different densities.
- Sensitive to outliers
- Cluster may overlap.
 - o Probability that an object belongs to a cluster.
- Only work with geometric points.

Solution 4

Describe the FastMap algorithm. What does it achieve and how does it do so? Comment on its efficiency. Describe two applications of FastMap in Data Science.

FastMap

- A dimensionality reduction technique that projects high dimensional data to low dimensional space preserving the pairwise distances between objects.
- Used to represent objects as points in low dimensional space creates K dimensional vector embeddings.

Algorithm

- Inputs:
 - N objects
 - o k dimension of output vector
 - Pairwise distance function
- It heuristically selects two farthest objects in the dataset which acts as initial reference for projection of points into the low dimensional space.
- Runs in K iterations.
- Iteration i:
 - o Calculate the distance of each data point from the reference line.
 - o Each iteration gives the i th coordinate for the projected vector for each object.
 - o Farthest pair is recomputed.
 - Pairwise distance function is corrected by component obtained by subtracting distance between the reference points.

Efficiency

- Time Complexity: O(Nk)
 - o Run in k iterations.
 - o Each iteration in O(N) time.

Applications

- Data fusion
 - Remote sensing: Combine data from different remote sensing sources like satellite with different resolutions, aerial imagery, LiDAR scans.
 - Speech and Image processing: Combine speech and image data to reduce dimensions of both modalities easing tasks like audio-visual recognition.
 - o Efficiently reduces the dimension of data by aligning and fusing.
- Recommendation systems
 - o Reduce the dimension of user-item interactions.