Grammars

[Linz (6 ed) p. 20]

Grammars are formalisms for **defining** or **generating** or **specifying** languages.

Definition: A grammar, G, is a quadruple:

$$G = (N, T, S, P)$$

N is a finite set of **non-terminals**.

(*Note*: Linz uses 'S' for N and calls these variables)

T is a finite set of **terminals** in Σ .

S is the **start symbol**, $S \in V$.

P is a finite set of **productions**.

(Assume $N \neq 0$, $T \neq \emptyset$, $N \cap T = \emptyset$).

All **productions** are of the form

$$x \rightarrow y$$

Where $x \in (N \cup T)^+$ and $y \in (N \cup T)^*$.

Productions are applied as follows:

Given a string w = uxv and a production $x \to y$,

we say the production $x \rightarrow y$ applies to w to get a new string

$$z = uyv$$
.

Write: $w \Rightarrow z$ by production $x \rightarrow y$.

We say: z is **derived from** w by the production $x \rightarrow y$.

Suppose:

$$w_1 \Rightarrow w_2 \Rightarrow \dots \Rightarrow w_n$$

by grammar G

(i.e. each step is **derived** by some production of G).

Then we write

$$w_1 \stackrel{\star}{\Longrightarrow} w_n$$

i.e. w_n is derived from w_1 by G.

Note: Always

$$w \stackrel{\star}{\Longrightarrow} w$$

(in zero steps)

Definition: For any G = (N, T, S, P), the **language generated** by G is:

$$L(G) = \{ w \in T^* \mid S \stackrel{\star}{\Longrightarrow} w \}$$

If $w \in L(g)$, then:

$$S \implies w_1 \implies w_2 \implies w \dots \implies w_n = w$$

is a **derivation** of w by G.

Strings $w_1, w_2, ...$ which contain non-terminals are called sentential forms of G.

Example: $\Sigma = \{a, b\},\$

$$G = \{ \{S\}, \Sigma, S, P \}$$

where P is given by:

$$S \longrightarrow a S b$$
$$S \longrightarrow \lambda$$

Then:

$$S \Rightarrow \lambda$$
 $S \Rightarrow a S b \Rightarrow a b$
 $S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow a^{2}b^{2}$
 $S \Rightarrow \underline{a S b} \Rightarrow \underline{a^{2}S b^{2}} \Rightarrow \underline{a^{3}S b^{3}} \Rightarrow \underline{a^{3}b^{3}}$

So
$$L(G) = \{a^n \mid S \mid b \mid n \geq 0\}$$

[See Linz, Example 1.11]

Notation for $P: S \longrightarrow a S b \mid \lambda$

Example: [Linz. Example 1.12]

Find a grammar for $L = \{a^n \ b^{n+1} \mid n \ge 0\}$

$$\Sigma = \{a, b\}, G = \{\{S, A\}, \Sigma, S, P\}$$

Where *P* consists of

$$S \longrightarrow A b$$

$$A \longrightarrow a A b \mid \lambda$$