Hi, I'm Daniel.

Science rules!

Daniel Correia (b) | github.com/0xDBFB7 | therobotist+resume@gmail.com | @0xDBFB7 | 1-705-606-8866

Education:

B.Sc. in Science from York University, with some focus on Physics. Graduated January 2021 with B+ GPA.

SafeSump Inc.

Founder/CTO of four-year project to design and produce a failure-resistant water pump system. Funded by a \$37,500 Ontario Centres of Excellence grant (2017-2020) followed by a \$75,000 government contract (2018-2020).

Broad overview of skills gained:

- Electronics: Hardware development from inhouse prototyping to volume production; design of ultrasonic and capacitive sensors
- Software and firmware: Writing and maintaining a 20k SLOC codebase of Python and embedded C and C++ on STM32 and SAM devices. Version control, frontend and backend programming; Linux administration.
- Soft skills: Pair programming, management, collaboration

0.1 Personal research projects

Musings on an inexpensive 1500°C silicon carbide furnace

An attempt to make various high-performance ceramic techniques available to a broader audience. Built on the work of more than 200 scientific papers.

A short report on some parts can be found at 0xdbfb7.com/furnace.html.

Some notes and experiments on the electropermeabilization of viral membranes

A 10-month attempt to follow up experimentally on previous research regarding the dielectric properties of viruses.

Involved a custom, inexpensive synchronous photoncounting fluorescence DNA sampling system and a custom 12 GHz absorption spectrometer.

Broad overview of skills gained:

- Documentation: LaTeX, Jupyter notebooks, Reference management
- Software: Data analysis and automation; Python, C++, Mathematica, with a smattering of Julia and MATLAB.
- Simulation: Several dozen toolchains were in use, ranging from modified open-source electromagnetic simulation systems to molecular dynamics with GROMACS.
- Electronics: Microwave electronics design, PCB design with KiCAD
- **Fabrication**: Electronics prototyping, CNC mill and lathe operation, micromachining, microfluidics

R&D in vacuum systems

A multi-year attempt to develop a high-current ion beam lithography system, involving vacuum chamber design and fabrication and several custom GPU-accelerated simulation tools written in CUDA/C++.

Personal:

Member of SimCoLab hackerspace for 7 years. Canadian and German citizenship.

1 Gallery

Bespoke high vacuum system. GPU-accelerated multigrid data structure and electrostatics solver for particle-in-cell ion beam simulation.

Redundant controller with a 120 Mhz Atmel ARM processor, running ~10k lines of high-reliability firmware.

- (a) A sub-nanosecond kilovolt pulse exposure cell (based on an off-the-shelf avalanche transistor pulser design).
- (b) A 12 GHz microwave absorption spectrometer.
- (c) The very pretty opalescent blue culture caused by E. coli B trying to metabolize lactose in an indicator for the enzyme β -galactosidase.
- (d) An FDTD simulation of electromagnetic interaction with tissue.