What makes fake images detectable? Understanding properties that generalize

Lucy Chai, David Bau, Ser-Nam Lim, Phillip Isola European Conference on Computer Vision (ECCV), 2020

Presented by Bhanuka Mahanama October 17, 2022

Which image is fake?

Library of Congress

BBC

Types of Fake Images

Spliced images: Combine multiple images to form the composite image

Synthesized images: Generate images using random noise/text

How to detect fake images?

- Compare against similar images
- Inspect for signs for manipulation
 - Image content
 - Metadata
 - Timestamps
- Domain knowledge

Problems:

- Time consuming
- Does not scale
 - Easy to generate fake images

Library of Congress

Automated Image Classification

- Consistency throughout image
 - Metadata
 - Low level artifacts (traces of resampling)
 - Similar embeddings
 - Using image features
- Deep learning based
 - RGB images
 - Alternative image representations

Similar embeddings (Zhou et al., 2017)

What's the catch

It's straightforward to train a fake/not-fake classifier

But challenging

- Generalize
 - Ability to classify unseen data
- Localize manipulations
 - Identify manipulated regions

Localizing manipulations

Classifier generalizability

Solution = Patch Forensics

- Use patches of the image
 - Classify each patch fake/fake-not
 - Ensemble and classify the whole image
- Generalization:
 - No global features
 - Identify local manipulated regions
- Localization:
 - Fake patch = manipulated region

Additional benefits

- Shallower models
- Explainability
 - Identify the manipulated regions

Patch forensics: Classification via patches

Model Architecture

- Deep learning models
 - Series of modules
 - Progressively extract features
 - Receptive field => feature region
- Truncate early
 - Smaller receptive field
 - Local features
- Truncate later
 - Larger receptive field
 - Global features
- Truncate at early layers
- Use output to predict fake/true

Receptive fields with depth of a neural network

Dataset Processing

Challenge: Minimizing the effects of image processing

Solution:

- Apply same transformations for real images
- Save all images using identical pipelines

Fig. 2: Dataset processing pipeline

Generating Dataset

Fake image generator

- Generative models: Entirely manipulated images
- Facial manipulation models:
 Partially manipulated images

Real images

- Celebfaces Attributes (CelebA-HQ)
- Flickr Faces HQ (FFHQ)

Fig. 2: Dataset generation

Experiments

- Classification via patches
 - Progressive GAN (PGAN), StyleGAN (SGAN), StyleGAN2 (SGAN2)
- Facial manipulation
 - Face swap, Deepfake, Neural texture, Face2Face
- Baseline models
 - MesoIncception4
 - Resnet 18
 - Xception
 - Convolution Neural Network (CNN)

Classification via patches: Resolution

- Training
 - 128px fake images from PGAN
 - 128px real images
- Testing
 - 256 1024px images
 - Generated using PGAN using CelebAHQ
- Baseline full models perform worse on unseen resolutions
 - Less generalization

	Resolution			
Model Depth	128	256	512	1024
Resnet Layer 1	100.0	99.99	99.60	96.95
Xception Block 1	100.0	100.0	99.87	98.53
Xception Block 2	100.0	100.0	100.0	99.98
Xception Block 3	100.0	100.0	100.0	99.92
Xception Block 4	100.0	100.0	99.92	99.34
Xception Block 5	100.0	100.0	98.90	91.18
2 MesoInception4	100.0	99.59	98.15	$\bar{8}7.0\bar{0}$
13 Resnet-18	99.99	96.85	91.75	80.17
6 Xception	100.0	99.94	99.84	97.28
[33] CNN (p=0.1)	100.0	99.99	99.97	99.78
[33] CNN $(p=0.5)$	100.0	100.0	99.99	99.83

Table 1: Average precision for different image resolutions

Classification via patches: Model Seed

Training

- 128px fake images from PGAN
- 128px real images
- Different PGAN model seeds

Testing

- Fake images from other generators (SGAN, SGAN2)
- Classification via patches outperform full models
 - Robust to model seed

	Model Seed			
Model Depth	0	1	2	3
Resnet Layer 1	100.0	100.0	100.0	100.0
Xception Block 1	100.0	100.0	100.0	100.0
Xception Block 2	100.0	100.0	100.0	100.0
Xception Block 3	100.0	100.0	100.0	100.0
Xception Block 4	100.0	100.0	100.0	100.0
Xception Block 5	100.0	100.0	100.0	100.0
2 MesoInception4	100.0	99.99	$\bar{9}9.8\bar{2}$	99.95
13 Resnet-18	99.99	98.41	95.20	95.02
6 Xception	100.0	100.0	99.99	100.0
[33] CNN (p=0.1)	100.0	100.0	100.0	100.0
[33] CNN $(p=0.5)$	100.0	100.0	100.0	100.0

Table 1: Average precision for different model seed

Classification via patches: Generator Architecture

- Training
 - Random samples from PGAN
 - Reprojected images PGAN images
- Testing
 - Other generator architectures
 - SGAN
 - **G**enerative F**low** (Glow)
 - Gaussian Mixture Model (GMM)
- Outperform complete models
 - Easiest generalization: SGAN
 - Similar architectures
 - Except Glow

		Architectures			
Model	PGAN	SGAN	Glow*	GMM	
Resnet Layer 1	100.0	97.22	72.80	80.69	
Xception Block 1	100.0	98.68	95.48	76.21	
Xception Block 2	100.0	99.99	67.49	91.38	
Xception Block 3	100.0	100.0	74.98	80.96	
Xception Block 4	100.0	99.99	66.79	42.82	
Xception Block 5	100.0	100.0	60.44	48.92	
2 MesoInception4	100.0	97.90	49.72	-45.98	
13 Resnet-18	100.0	64.80	47.06	54.69	
6 Xception	100.0	99.75	55.85	40.98	
33 CNN (p=0.1)	100.0	98.41	90.46	50.65	
33 CNN (p=0.5)	100.0	97.34	97.32	73.33	

Table 2: Average precision for different generator architectures

Classification via patches: Datasets

- Training
 - Random samples from PGAN
 - Reprojected images PGAN images
 - CelebAHQ images
- Testing
 - FFHQ real images
 - FFHQ Fake images using
 - PGAN, SGAN, SGAN2
- Outperform complete baseline models
 - FFHQ has greater diversity

	FFHQ dataset			
Model	PGAN	SGAN	SGAN2	
Resnet Layer 1	99.81	72.91	71.81	
Xception Block 1	99.68	81.35	77.40	
Xception Block 2	100.0	90.12	90.85	
Xception Block 3	100.0	92.91	91.45	
Xception Block 4	100.0	95.85	90.62	
Xception Block 5	100.0	93.09	89.08	
2 MesoInception4	98.71	$-80.\overline{57}$	$-71.\overline{27}$	
13 Resnet-18	79.20	51.15	52.37	
6 Xception	99.94	85.69	74.33	
33 CNN (p=0.1)	99.95	90.48	85.27	
$\overline{33}$ CNN (p=0.5)	99.93	88.98	84.58	

Table 2: Average precision across FFHQ dataset

Classification via patches: Summary

- Outperforms baseline models across
 - Different image resolutions
 - Generator seeds
 - Generator architectures
 - Different datasets

=> Model generalizes concepts for classification for synthesized images.

Facial Manipulation

- Blend content from two images
 - Portion if image is manipulated
- Datasets
 - Face swap, Deepfake, Neural texture,
 Face2Face
- Train on one of dataset
- Test for generalization on others
 - Best generalization: Face2Face
 - Least generalization: FaceSwap

	Train on Face2Face				
Model Depth	DF	NT	F2F	\mathbf{FS}	
Resnet Layer 1	84.39	79.72	97.66	60.53	
Xception Block 1	77.65	80.88	93.84	61.62	
Xception Block 2	84.04	79.51	97.40	63.21	
Xception Block 3	76.10	74.77	97.33	63.10	
Xception Block 4	67.18	61.72	97.19	63.04	
Xception Block 5	81.25	61.91	96.45	55.15	
2 MesoInception4	$\bar{67.53}$	$-55.\overline{17}$	92.27	54.06	
13 Resnet-18	55.43	52.57	93.27	53.39	
6 Xception	66.12	56.07	97.41	53.15	
33 CNN (p=0.1)	65.76	64.81	98.40	59.48	
$\boxed{33}$ CNN (p=0.5)	65.43	60.36	97.94	63.52	

Table 2: Average precision across FFHQ dataset

Generalization in Facial Manipulation

- Classifiers use facial features to classify
 - Without explicit supervision
- Predominantly use mouth
 - Eyes or nose as a secondary feature

Table 2: Average precision across FFHQ dataset

Summary

- Shallow models can classify fake images
 - Limited receptive field
 - Using local features
 - Significantly less parameters
- Captures imperfections of generators
 - Local semantics instead of global
- Patch classifier can
 - localize regions of manipulation
 - Imperfective regions of generators

Applications

- Help to look for potential manipulations
- Better navigate falsified content
- Factual verification of content
- Challenges of fake images
 - Increasingly becoming easier to generate images
 - Generative models can exploit learnings of classification models

https://chail.github.io/patch-forensics/