Методы оптимизации. Отчет по лабораторной работе №2

Работа выполнена группой:

Дзюба Мария M3235 Карасева Екатерина M3235 Рындина Валерия M3235 Цель работы: Изучить и реализовать градиентные методы, провести анализ их работы и сравнение.

Задача 1.

а.Постановка задачи:

Реализовать алгоритмы:

- метод градиентного спуска;
- метод наискорейшего спуска;
- метод сопряженных градиентов.

Оцените, как меняется скорость сходимости, если для поиска величины шага использовать различные методы одномерного поиска.

- b. Решение задачи:
 - Вычислительная схема всех методов:
 - f(x) дифференцируема в E_n , $x^{k+1} = x^k + a_k p^k$, $k \in N$, где p^k определяется с учетом информации о частных производных, величина $a_k > 0$ такова, что: $f(x^{k+1}) < f(x^k)$.

Остановка итерационного процесса: $\|\nabla f(x^k)\| < \epsilon$

- Метод градиентного спуска:
 - Вычислительная схема данного метода: Предполагаем, что $p^k = -\nabla f(x^k)$, тогда если $\nabla f(x^k) \neq 0$, то $(\nabla f(x^k), p^k) < 0$, и, следовательно, $p^k -$ направление убывания f(x), таким образом, найдутся такие $a_k > 0$, что выполнится условие: $f(x^{k+1}) < f(x^k)$
 - Задача минимизации: $f(x_1, x_2) = 20^*(x_1)^2 + (x_2)^2 7^*x_1 + 3^*x_2 + 2$ a = 1.0 $\epsilon = 0.001$
 - Численный результат решения:
 минимум функции: -0,862481
 вектор минимума: [0,175976, -1,500425]
 - Итерации поиска решения в виде таблицы приведены в **Приложении 1**.
 - Иллюстрация работы метода:

- Метод наискорейшего спуска:
 - Вычислительная схема данного метода: $p^k = -\nabla f(x^k)$, a_k находится из решения задачи одномерной минимизации: $\Phi_k(a) > \min$, $\Phi_k(a) = f(x^k a^*\nabla f(x^k))$, a > 0
 - Задача минимизации: $f(x_1, x_2) = 20^*(x_1)^2 + (x_2)^2 7^*x_1 + 3^*x_2 + 2$ $\epsilon = 0.001$
 - Численный результат решения:
 минимум функции: -0,862500
 вектор минимума: [0,174947, -1,499543]
 - Итерации поиска решения в виде таблицы приведены в **Приложении 2**
 - Иллюстрация работы метода:

- Метод сопряженных градиентов.
 - Вычислительная схема данного метода:

$$p^0 = -\nabla f(x^0), x^0 \in E_n$$

для квадратичной функции:

$$\begin{aligned} \mathbf{Q}_{k} &= -\frac{(\nabla f(\mathbf{x}_{k}), \ \mathbf{p}_{k})}{(Ap_{k}, \ p_{k})}; \\ \mathbf{p}^{k+1} &= -\nabla f(\mathbf{x}^{k+1}) + \mathbf{b}_{k} \mathbf{p}^{k}; \\ \mathbf{b}_{k} &= -\frac{(A\nabla f(\mathbf{x}_{k+1}), \ \mathbf{p}_{k})}{(Ap_{k}, \ p_{k})} \end{aligned}$$

• Задача минимизации:

$$f(x_1, x_2) = 20^*(x_1)^2 + (x_2)^2 - 7^*x_1 + 3^*x_2 + 2$$

 $\epsilon = 0.001$

- Численный результат решения:
 минимум функции: -0,862500
 вектор минимума: [0,175000, -1,500000]
- Итерации поиска решения в виде таблицы приведены в **Приложении 3**
- Иллюстрация работы метода:

• Сравнение времени поиска минимума методом наискорейшего спуска в зависимости от используемого метода одномерной минимизации: $f(x_1, x_2) = 20^*(x_1)^2 + (x_2)^2 - 7^*x_1 + 3^*x_2 + 2$

Метод	Количество итераций	Время (наносекунды)
ΑυχοτοχυΔ	47	203.709498
Фибоначчи	47	199.781086
Золотое сечение	47	203.130228
Параболы	47	208.442307
Брент	47	205.629247

Вывод: Рассмотрев полученные данные, можно еще раз убедиться в правильности выводов первой лабораторной работы. Чем быстрее сходился метод одномерной оптимизации - тем быстрее сходится метод градиентного спуска, основанный на этой одномерной оптимизации. Но на количество итераций метода это не влияет.

Задача 2.

а. Постановка задачи:

Проанализируйте траектории методов для нескольких квадратичных функций: придумайте две-три квадратичные двумерные функции, на которых работа каждого из методов будет отличаться. Нарисуйте графики с линиями уровня функций и траекториями методов.

b. Решение задачи:

$$f(x_1, x_2) = 2*(x_1)^2 - 2*x_1*x_2 + (x_2)^2 + 3*x_1 + 6*x_2 + 1$$

 $a = 1.0$

 $\epsilon = 0.001$

Можно заметить, что даже на одной функции все методы работают по разному и имеют кардинально разные траектории.

$$f(x_1, x_2) = (x_1)^2 + 2^*x_1^*x_2 + 2^*(x_2)^2 - x_1 - x_2 + 1$$

$$\alpha = 1.0$$

$$\epsilon = 0.001$$

Стандартный градиентный спуск имеет зигзагообразный вид. Очень хорошо видно, что последовательность точек сходится к минимуму линейно.

Наискорейший спуск выбирает почти оптимальный путь и, что находит минимум он намного быстрее, чем простой градиентный спуск.

Метод сопряженных градиентов работает на двумерных функциях очень быстро и точно. (на всех подобранных нами двумерных функциях он работал за 2 итерации)

Задача 3.

а. Постановка задачи:

Исследуйте, как зависит число итераций, необходимое методам для сходимости, от следующих двух параметров:

- числа обусловленности $k \ge 1$ оптимизируемой функции;
- размерности пространства n оптимизируемых переменных.

Для этого для заданных параметров n и k сгенерируйте случайным образом квадратичную задачу размера n с числом обусловленности k и запустите на ней методы с некоторой заданной точностью. Замерьте число итераций T(n,k), которое потребовалось сделать методу до сходимости.

b. Решение задачи

Таблица и график зависимости количества итераций от n и k для метода градиентного спуска:

n∖k	5	15	25	35	45	55
10	3	13	16	35	49	40
10 ²	7	11	21	35	47	51
10 ³	18	21	28	41	41	50
104	54	56	60	61	86	79

Таблица зависимости количества итераций от n и k для метода наискорейшего спуска:

n\k	5	15	25	35	45	55	
10	3	12	22	31	34	42	
10 ²	4	12	18	25	35	40	
10 ³	4	13	23	30	39	48	
104	5	15	21	29	36	46	

Таблица зависимости количества итераций от n и k для метода сопряженных градиентов:

n\k	5	15	25	35	45	55
10	2	2	2	2	2	2
10 ²	3	5	5	7	7	7
10 ³	3	5	7	8	9	10
104	3	6	7	8	9	10

Вывод: Количества итераций от n зависит пропорционально, и в большинстве случаев пропорционально k, но иногда нет, вероятно, на это влияет стартовая точка поиска.

Задача 4.

- а. Постановка задачи:
 - I. Для разработанного программного кода в отчете привести код основных модулей, диаграмму классов, сделать текстовое описание.
 - II. Графический интерфейс должен быть продемонстрирован несколькими показательными иллюстрациями, описаны основные инструменты для работы с интерфейсом.

Инструментарий в графическом интерфейсе:

- возможность отображения/скрытия линий уровня функции,
- масштабирования изображения,
- подписи к координатным линиям (скрыть/показать);
- координатные оси (скрыть/показать);
- кнопки перехода (вперед/назад) по итерациям;
- метода решения (среди 3х заданных),
- задание начального приближения, точности.

b. Решение задачи

- I. Код основных модулей и текстовое описание представлены по ссылке https://github.com/valrun/MetOpt2. Диаграмма классов приведена в Приложение 4.
- II. Код графического интерфейса, а также файл для установки представлены по ссылке https://github.com/valrun/MetOpt2. Иллюстрации и описание инструментов для работы с интерфейсом приведены в Приложение 5.

Nº	Вектор минимума	Значение	Nº	Вектор минимума	Значение
	,	минимума		, , ,	минимума
0	[0,00000, 0,000000]	2,000000	39	[0,175964, -1,502835]	-0,862473
1	[0,229786, -0,098480]	1,161789	40	[0,174032, -1,502551]	-0,862475
2	[0,075807, -0,295432]	0,785270	41	[0,175968, -1,502296]	-0,862476
3	[0,289500, -0,425183]	0,554936	42	[0,174029, -1,502066]	-0,862477
4	[0,063188, -0,531403]	0,325720	43	[0,175971, -1,501860]	-0,862478
5	[0,292593, -0,630767]	0,169629	44	[0,174027, -1,501673]	-0,862478
6	[0,058097, -0,717435]	0,023236	45	[0,175973, -1,501506]	-0,862479
7	[0,295170, -0,796785]	-0,079173	46	[0,174025, -1,501355]	-0,862479
8	[0,055229, -0,866990]	-0,174898	47	[0,175974, -1,501220]	-0,862480
9	[0,296932, -0,930862]	-0,241231	48	[0,174025, -1,501098]	-0,862480
10	[0,053475, -0,987681]	-0,304661	49	[0,175975, -1,500988]	-0,862480
11	[0,298099, -1,039244]	-0,347135	50	[0,174024, -1,500889]	-0,862480
12	[0,052366, -1,085233]	-0,389685	51	[0,175975, -1,500800]	-0,862480
13	[0,298866, -1,126918]	-0,416455	52	[0,174024, -1,500720]	-0,862480
14	[0,051654, -1,164148]	-0,445416	53	[0,175975, -1,500648]	-0,862481
15	[0,299368, -1,197872]	-0,461869	54	[0,174023, -1,500583]	-0,862481
16	[0,051193, -1,228017]	-0,481959	55	[0,175976, -1,500525]	-0,862481
17	[0,299698, -1,255313]	-0,491637	56	[0,174023, -1,500473]	-0,862481
18	[0,050893, -1,279724]	-0,505925	57	[0,175976, -1,500425]	-0,862481
19	[0,299914, -1,301823]	-0,511156			
20	[0,050697, -1,321592]	-0,521645			
21	[0,300055, -1,339487]	-0,523958			
22	[0,050569, -1,355498]	-0,531956			
23	[0,300148, -1,369990]	-0,532355			
24	[0,050485, -1,382958]	-0,538721			
25	[0,175347, -1,388827]	-0,850138			
26	[0,167558, -1,513584]	-0,861208			
27	[0,175338, -1,512874]	-0,862332			
28	[0,173523, -1,509415]	-0,862368			
29	[0,175384, -1,508822]	-0,862419			
30	[0,174102, -1,507348]	-0,862430			
31	[0,175910, -1,506608]	-0,862440			
32	[0,174074, -1,505942]	-0,862448			
33	[0,175934, -1,505345]	-0,862454			
34	[0,174056, -1,504808]	-0,862459			
35	[0,175949, -1,504326]	-0,862463			
36	[0,174044, -1,503891]	-0,862467			
37	[0,175958, -1,503502]	-0,862469			
38	[0,174037, -1,503151]	-0,862472			

Nº	Вектор минимума	Значение	Nº	Вектор минимума	Значение
	,	минимума		,	минимума
0	[0,000000, 0,000000]	2,000000	39	[0,175038, -1,498240]	-0,862497
1	[0,205291, -0,087982]	1,149646	40	[0,174847, -1,498685]	-0,862498
2	[0,052069, -0,445102]	0,552552	41	[0,175027, -1,498762]	-0,862498
3	[0,196308, -0,506989]	0,132651	42	[0,174892, -1,499075]	-0,862499
4	[0,088561, -0,758055]	-0,162584	43	[0,175019, -1,499130]	-0,862499
5	[0,189983, -0,801582]	-0,370223	44	[0,174924, -1,499350]	-0,862499
6	[0,114196, -0,978222]	-0,516306	45	[0,175013, -1,499388]	-0,862500
7	[0,185539, -1,008833]	-0,619034	46	[0,174947, -1,499543]	-0,862500
8	[0,132243, -1,133022]	-0,691265			
9	[0,182411, -1,154551]	-0,742067			
10	[0,144926, -1,241914]	-0,777803			
11	[0,180213, -1,257055]	-0,802934			
12	[0,153851, -1,318487]	-0,820607			
13	[0,178666, -1,329136]	-0,833037			
14	[0,160125, -1,372344]	-0,841779			
15	[0,177578, -1,379834]	-0,847927			
16	[0,164539, -1,410219]	-0,852251			
17	[0,176813, -1,415486]	-0,855292			
18	[0,167643, -1,436859]	-0,857431			
19	[0,176275, -1,440563]	-0,858935			
20	[0,169826, -1,455592]	-0,859993			
21	[0,175897, -1,458198]	-0,860736			
22	[0,171361, -1,468769]	-0,861260			
23	[0,175631, -1,470601]	-0,861628			
24	[0,172441, -1,478035]	-0,861887			
25	[0,175444, -1,479323]	-0,862069			
26	[0,173200, -1,484553]	-0,862197			
27	[0,175312, -1,485459]	-0,862287			
28	[0,173734, -1,489135]	-0,862350			
29	[0,175219, -1,489773]	-0,862394			
30	[0,174110, -1,492359]	-0,862426			
31	[0,175154, -1,492808]	-0,862448			
32	[0,174374, -1,494626]	-0,862463			
33	[0,175109, -1,494941]	-0,862474			
34	[0,174560, -1,496221]	-0,862482			
35	[0,175076, -1,496443]	-0,862487			
36	[0,174690, -1,497342]	-0,862491			
37	[0,175054, -1,497498]	-0,862494			
38	[0,174782, -1,498131]	-0,862496			

Nº	Вектор минимума	Значение
		минимума
0	[0,000000, 0,000000]	2.000000
1	[0,205258, -0,087968]	1,149646
2	[0,175000, -1,500000]	-0,862500

Краткая диаграмма классов:

Развернутая диаграмма классов:

Иллюстрации графического интерфейса:

Описание инструментов для работы с интерфейсом:

Данное приложение имеет четыре категории меню. Первая информационная, в неё указана краткая информация про приложение и идеи методов. Оставшиеся три для соответствующих методов. У них одинаковый интерфейс:

- Название метода.
- Поля и кнопка для задания функции. Чтобы задать для отрисовки новую функцию, нужно заполнить все поля (all, all, a2l, a2l, bl, b2, c) корректными значениями (то есть числами формата double, например: -3.0) и нажать на кнопку "SET FUN"
- График. К сожалению, график не всегда изначально "находится" в том месте, где есть функция, но стоит его немного подвинуть и он сразу перейдет к функции. График очень чувствительный к прикосновениям, он может растягивать оси Ох2, если двигать пальцами вертикально в противоположные стороны или равномерно, если по диагонали (то есть масштабирование), аналогично вдоль Ох1, если горизонтально. Чтобы подвинуть график, нужно провести одним пальцем в противоположном направлении. Серым

- цветом показаны линии уровня, если нажать на них, то всплывает уведомление, показывающее их значение. А разноцветными линиями показа траектория метода.
- Кнопки "PREV ITER", "NEXT ITER" соответственно скрывает последнюю или показывает следующую линию траектория метода (кнопки перехода по итерациям)
- Кнопка "SET EPS" и поле ввода рядом используются для задания точности. По умолчанию точность 0.001. Для задания точности нужно ввести число формата double.
- Kнопка "HIDE LEVEL"/"SHOW LEVEL" соответственно скрывает и показывает линии уровня функции
- Khonka "HIDE COORDINATE LINES"/"SHOW COORDINATE LINES" соответственно скрывает и показывает подписи к координатным линиям
- Кнопка "HIDE AXIS"/"SHOW AXIS" соответственно скрывает и показывает координатные оси
- Текущая функция и её минимум.