CLIMATE ACTION: FOOD SHORTAGE & GREENHOUSE EMISSIONS

Team: NOVA

Arpit Palo (114941242) Arun Kumar (114708780) Nisarg Gupta (115067918) Omkar Kanade (115097399)

INTRODUCTION

GOALS

- 1. Collect and analyze climate data and its correlation with food availability
- 2. Perform trend analysis on greenhouse gas emissions and temperature
- 3. Compare trends of developing vs developed countries

MOTIVATION

- 1. Study fluctuations in climate related data
- Lack of a data pipeline to aggregate the climate data across different stations and countries

WHY BIG DATA?

- 1. Handling large volumes of data scalability and distributed computing
- 2. Extracting meaningful insights
- 3. Addressing regional disparities

BACKGROUND

Empowering farmers for climate-smart agriculture and sustainable futures

Providing vital insights into crop yield potential to support informed decision-making for global food security.

Concerning levels of greenhouse gases and major emphasis on food security

DATA

IOWA STATE UNIVERSITY (IOWA ENVIRONMENTAL MESONET)

- Raw weather data collected across 1960 2016
- ~ 50 GB, 7 features, 150+ countries
- Multiple stations across multiple countries

UNIVERSITY OF MELBOURNE - GREENHOUSE GASES LEVELS

- Carbon Dioxide, Methane and Nitrous Oxide data collected across 1960 – 2015
- ~ 1.5 GB, 8 features

UNITED STATES DEPARTMENT OF AGRICULTURE

- Food security related data from 1990 2015
- ~ 10 MB, 25+ features

METHODS

TREND ANALYSIS OF TEMPERATURE & GHG

HYPOTHESIS TESTING & CORRELATION

Variable	Corresponding Beta Value	T statistic	p-value	Result
Sea Pressure	0.1287	-0.08	0.464	Failed to reject
Wind speed	-0.1004	0	0.47	Failed to reject
Feel like	0.0016	0	0.5	Failed to reject
Humidity	-0.0015	0	0.5	Failed to reject
Ice acceleration	-0.0144	0	0.498	Failed to reject
Precipitation	-0.0064	0.04	0.498	Failed to reject
CO2	-0.4435	0.02	0.483	Failed to reject
Methane levels	-2.1074	0.01	0.49	Failed to reject
NO levels	2.6312	0.09	0.497	Failed to reject

Correlation Heatmap for UZ

CONCLUSION

- 1.Time series analysis gives valuable insights into greenhouse gases emissions and temperature
- 2. Climate change is complex, influenced by GHG emissions.
- 3. Adjusting for the month-on-month seasonality in temperature data is a challenging task and requires domain expertise
- 4. Quantifying climate's impact on food production is challenging

REFERENCES

[1] Links for data collection:

https://mesonet.agron.iastate.edu/

https://greenhousegases.science.unimelb.edu.au/#!/view

https://www.usda.gov/

https://www.fao.org/faostat/en/#data

[2] Nature, Data-driven pathway analysis and forecast of global warming and sea level rise Jiecheng Song Guanchao Tong, Jiayou Chao, Jean Chung, Minghua Zhang, Wuyin Lin, Tao Zhang, Peter M. Bentler & Wei Zhu

[3] https://berkeleyearth.org/global-temperature-report-for-2022/

[4] Quantifying the impact of climate change on Food-Energy-Water nexus interactions: 10.5194/egusphere-egu21-3853

[5] https://essd.copernicus.org/articles/12/3469/2020/essd-12-3469-2020.html

[6] https://www.worldbank.org/en/news/feature/2022/10/17/what-you-need-to-know-about-food-security-and-climate-change

[7] https://samples.ccafs.cgiar.org/co-benefits-of-mitigation-options-in-the-ccafs-mitigation-options-tool-ccafs-mot/

[8] https://sdgs.un.org/sites/default/files/2022-07/SDG%20Report%202022 Goal%2013%20infographic.png