TP2

Système à événements discrets

On considère le labyrinthe représenté par la figure ci-dessous. Il est possible de s'y déplacer à gauche avec G, à droite avec D, en haut avec H et en bas avec B. Un déplacement H, B, D, ou G s'arrête lorsqu'on rencontre un mur.

- 1. Proposer une machine à état correspondant à ce système.
- 2. Mettre en oeuvre cette machine à état sur le FPGA de la carte DE10-Lite (Terasic) à l'aide du logiciel Quartus (saisie graphique de la machine à état). On utilise un afficheur 7 segments pour les sorties. Plus précisément, la partie supérieure de l'afficheur 7 segments représente les obstacles de la case dans laquelle on se trouve.

segment	broche
a	PIN_C14
b	PIN_E15
С	PIN_C15
d	PIN_C16
е	PIN_E16
f	PIN_D17
g	PIN_C17

Ainsi, à l'état initial seuls les segments b et g sont actifs. Pour simuler les entrées, on peut utiliser les interrupteurs de la platine.

segment	broche
SW0	PIN_C10
SW1	PIN_C11
SW2	PIN_D12
SW3	PIN_C12
SW4	PIN_A12
SW5	PIN_B12
SW6	PIN_A13
SW7	PIN_A14
SW8	PIN_B14
SW9	PIN_F15

- 3. Donner la représentation en tableau de Karnaugh (ou TKVI) du système. En déduire les équations.
- 4. Proposer un labyrinthe (entre 6 et 8 murs) et donner la machine à état correspondante.

