Further Generalisation

- Finite automaton makes following actions:
 - read a symbol
 - changes its state
 - moves its reading head to the right
- The head is not allowed to move to the left.

- What happens, if we allow the head to move left and right?
- The automaton does not write anything on the tape!

Two way finite automata

Definition 5.1 (Two way finite automata)

Two way deterministic finite automaton is a five—tuple $A = (Q, \Sigma, \delta, q_0, F)$, where

Q is a finite set of states,

 Σ is a finite set of input symbols

transition function δ is a mapping $Q imes \Sigma o Q imes \{-1,1\}$ extended by head

transitions $q_0 \in Q$ initial state

a set of accepting states $F \subseteq Q$.

We may represent it by a graph or a table.

Two-way DFA computation

Definition 5.2 (Two-way DFA computation)

A string w is accepted by the two-way **DFA**, iff:

- computation started in the initial state at the left-most symbol of w
- the first transition from w to the right was in an accepting state
- the computation is not defined outside the word w (computation ends without accepting w).

- ullet We may add special end–symbols $\#
 otin \Sigma$ to any word
- If $L(A) = \{\#w\# | w \in L \subseteq \Sigma^*\}$ is regular, then also L is regular
- $L = \partial_{\#}\partial_{\#}^{R}(L(A) \cap \#\Sigma^{*}\#)$

Two-way automaton example

Example 5.1 (Two-way automaton example)

Let $A = (Q, \Sigma, \delta, q_1, F)$. We define a two–way DFA $B = (Q \cup Q^{||} \cup Q^{||} \cup \{q_0, q_N, q_F\}, \Sigma, \delta^{||}, q_0, \{q_F\})$ accepting the language $L(B) = \{\#u\#|uu \in L(A)\}$ (it is neither left nor right quotient!):

-(-)	(11 - 11) (10 10 110101101
$\delta^{ }$	$x \in \Sigma$	#	remark
q_0	$q_{N},-1$	$q_1, +1$	q_1 is starting in A
q	p,+1	$q^{\dagger},-1$	$p = \delta(q, x)$
$q^{ }$	$ \hspace{.1cm} q^{ }, -1 \hspace{.1cm} $	$q^{ },+1$	
$q^{ }$	$\mid p^{\mid\mid},+1$	$q_F, +1$	$q \in F, p = \delta(q, x)$
$q^{ }$	$\mid p^{\mid\mid},+1$	$q_{N}, +1$	$q \notin F, p = \delta(q, x)$
q_N	$q_{N}, +1$	$q_{N}, +1$	
q_F	$q_N, +1$	$q_{\mathcal{N}}, +1$	

Theorem 5.1

Languages accepted by two-way DFA are exactly regular languages.

Two-way DFA and Regular Languages

Proof: DFA \rightarrow two–way DFA

- To a DFA we add the move of the head to the right
- $A = (Q, \Sigma, \delta, q_0, F) \rightarrow 2A = (Q, \Sigma, \delta^{\dagger}, q_0, F)$, where $\delta^{|}(q,x) = (\delta(q,x), +1).$
- For the other direction, we need introduction.

The influence of $u \in \Sigma^*$ on the computation over $v \in \Sigma^*$

• the first time we leave *u* to the right

и

• we leave v to the left and return back v

Function f_u describing computation two-way DFA over u

Algorithm: Function f_u describing computation two—way DFA over u

We define $f_u: Q \cup \{q_0^{\mid}\} \rightarrow Q \cup \{0\}$

- $f_u(q_0^{\mid})$ the state of the first transition to the right in case the computation begins left in the state q_0 ,
- $f_u(p)$; $p \in Q$ the state of the right transition in case the computation begins right in p
- the symbol 0 denotes failure (a cycle or the head moves left from the initial symbol)

V

И

 q_0

- We define similarity \sim on strings: $u \sim w \Leftrightarrow_{def} f_u = f_w$,
 - strings are similar iff they define identical function f

Languages recognized by two-way DFA are regular

Similarity \sim is a right congruence with a finite index.

According to Myhill–Nerode theorem is the language L(A) regular.

Constructive proof

- We need the left-right movement transcript to a linear computation.
- we are interested in accepting computations only.
- We focus on transitions in cuts between input symbols

Observations:

- The direction of movement repeats (right, left)
- the first and the last transitions are to the right
- automaton is deterministic, any accepting computation is without cycles
- the first and the last cut contain only one state.

Algorithm: 2DFA → NFA

- Find all possible cuts state sequences (its a finite number).
- Define non-deterministic transition between cuts according to the input symbol.
- We re—construct the computation by composing cuts like a puzzle.

Algorithm: Formal reduction two-way DFA to NFA

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a two–way DFA. We define an equivalent NFA $B = (Q^{\dagger}, \Sigma, \delta^{\dagger}, (q_0), F^{\dagger})$ as follows:

- ullet Q^{\parallel} all possible correct transition sequences
 - sequences of states (q^1, \ldots, q^k) ; $q^i \in Q$
 - with an odd length (k = 2m + 1)
 - no state repeats at odd nor at even position $(\forall i \neq j) \ (q^{2i} \neq q^{2j}) \& (\forall i \neq j) \ (q^{2i+1} \neq q^{2j+1})$
- $F^{|} = \{(q) | q \in F\}$ sequences of the length 1
- $\delta^{|}(c, a) = \{d | d \in Q^{|} \& c \xrightarrow{a} d \text{ is a locally consistent transition for } a\}$
 - there is a bijection: $h: c_{odd} \cup d_{even} \rightarrow c_{even} \cup d_{odd}$ so that:
 - for $h(q) \in c_{even}$ is $(h(q), -1) = \delta(q, a)$
 - ullet for $h(q) \in d_{odd}$ is $(h(q), +1) = \delta(q, a)$

L(A) = L(B)

Trajektory two—way DFA A corresponds to cuts in NFA B, therefore L(A) = L(B).

Example Reduction Two-way DFA to NFA

Let us have two-way DFA:

$$egin{array}{c|ccccc} & a & b \\
ightarrow p & p,+1 & q,+1 \\
ightarrow q & q,+1 & r,-1 \\
ightarrow p,+1 & r,-1 \end{array}$$

Possible cuts and their transitions

- leftwards only r all even positions r, that means only one even position
- possible cuts: (p), (q), (p, r, q), (q, r, p).

	а	b
ightarrow (p)	(p)	(q)
*(q)	(q),(q,r,p)	
(p,r,q)		
(q,r,p)		(q)

Non-accepting computation example:

a	a	b	а	a	b	а	а	b	b
p	р	р	q	q	q				Resulting NFA:
					r				a a
					p	q	q	q	() a
								r	\rightarrow (p) b (q) (q,r,p)
								p	$q \longrightarrow (p) \longrightarrow (q) \qquad (q,r,p)$
								r	r b
								p	q

Automata with the output

Definition 5.3 (Moore machine)

Moore machine is a sixtuple $A = (Q, \Sigma, Y, \delta, \mu, q_0)$ consisting of

Q non-empty set of states

 Σ finite nonempty set of symbols (input alphabet)

Y finite nonempty set of symbols (output alphabet)

 δ a mapping $Q \times \Sigma \to Q$ (transition function)

 μ a mapping $Q \rightarrow Y$ (output function)

 $q_0 \in Q$ (initial state)

- the output function may imitate final states
 - ullet $F\subseteq Q$ may be replaced by output function $\mu:Q o\{0,1\}$ as follows:

$$\mu(q) = 0$$
 if $q \notin F$,

$$\mu(q)=1$$
 if $q\in F$.

Moore Machine Example

Example 5.2 (Tennis Game Score)

A machine calculates the tenis score.

- Input alphabet: ID of the player who scored a point
- Output alphabet & states: the score (Q=Y and $\mu(q)=q$)

State/output	А	В
00:00	15:00	00:15
15:00	30:00	15:15
15:15	30:15	15:30
00:15	15:15	00:30
30:00	40:00	30:15
30:15	40:15	30:30
30:30	40:30	30:40
15:30	30:30	15:40
00:30	15:30	00:40
40:00	Α	40:15
40:15	Α	40:30
40:30	Α	deuce
30:40	deuce	В
15:40	30:40	В
00:40	15:00	В
deuce	A:40	40:B
A:40	Α	deuce
40:B	deuce	В
A	15:00	00:15
В	15:00	00:15

Mealy machine

Definition 5.4 (Mealy machine)

Mealy machine is a six–tuple $A = (Q, \Sigma, Y, \delta, \lambda_M, q_0)$ consisting of:

Q non-empty set of states

 Σ finite nonempty set of symbols (input alphabet)

Y finite nonempty set of symbols (output alphabet)

 δ a mapping $Q \times \Sigma \to Q$ (transition function)

 λ_M a mapping $Q \times \Sigma \to Y$ (output function)

 $q_0 \in Q$ (initial state)

- The output is determined by a state and the input symbol
 - Mealy machine is more general then Moore
 - The output function may be replaced as follows

$$orall x \in \mathbf{\Sigma} \ \lambda_M(q,x) = \mu(q)$$
 or $orall x \in \mathbf{\Sigma} \ \lambda_M(q,x) = \mu(\delta(q,x))$

Mealy Machine Example

Example 5.3 (Mealy Machine)

The automaton for integer division of the input by 8 (the reminder is discarded).

- Three bit move to the left
- we need to remember last three bits
- three—bit dynamic memory.

State\symbol	0	1
→000	000/0	001/0
001	010/0	011/0
010	100/0	101/0
011	110/0	111/0
100	000/1	001/1
101	010/1	011/1
110	100/1	101/1
111	110/1	111/1

After three steps calculates properly non-regarding the initial state.

Extended Output Function

for any word in the input alphabet $\Sigma^* o$ we get a word in the output alphabet

Moore machine

output function $\mu: Q \to Y$ $\mu^*:Q imes\Sigma^* o Y^*$

$$\mu^*(q,\lambda) = \lambda$$
 (sometimes $\mu^*(q,\lambda) = q$)

$$\mu^*(q, wx) = \mu^*(q, w).\mu(\delta^*(q, wx))$$

Example: $\mu^*(00:00,AABA)=(00:00.)$ 15:00.30:00.30:15.40:15

Mealy machine

$$\lambda_M^*: Q \times \Sigma^* \to Y^*$$

$$\lambda_{M}^{*}(q,\lambda) = \lambda$$

output function
$$\lambda_M: Q \times \Sigma \to Y$$

$$\lambda_M^*: Q \times \Sigma^* \to Y^*$$

$$\lambda_M^*(q, \lambda) = \lambda$$

$$\lambda_M^*(q, wx) = \lambda_M^*(q, w).\lambda_M(\delta^*(q, w), x)$$

Example: $\lambda_M^*(000,1101010) = 0001101$

Lemma (Moore and Mealy Machines Reductions)

- For any Moore machine there exists a Mealy machine mapping each input word to the same output word.
- For any Mealy machine there exists a Moore machine mapping each input word to the same output word.

Proof.

- \Rightarrow Mealy machine $B=(Q,\Sigma,Y,\delta,\lambda_M,q_0)$ where $\lambda_M(q,x)=\mu(\delta(q,x))$
- \Leftarrow We define states of the Moore machine $Q \times Y$, $\delta^{||}([q,y],x) = [\delta(q,x),\lambda(q,x)]), \mu([q,y]) = y.$

