HEXADECIMAL ARITHMETIC

http://www.tutorialspoint.com/computer logical organization/hexadecimal arithmetic.htm

Copyright © tutorialspoint.com

Hexadecimal Number System

Following are the characteristics of a hexadecimal number system.

- Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
- Letters represents numbers starting from 10. A = 10, B = 11, C = 12, D = 13, E = 14, F = 15.
- Also called base 16 number system.
- Each position in a hexadecimal number represents a 0 power of the base 16. Example -16°
- Last position in a hexadecimal number represents an x power of the base 16. Example -16^{x} where x represents the last position 1.

Example

Hexadecimal Number – 19FDE₁₆

Calculating Decimal Equivalent -

Step	Binary Number	Decimal Number
Step 1	19FDE ₁₆	((1 \times 16^4) + (9 \times 16^3) + (F \times 16^2) + (D \times 16^1) + (E \times 16^0))10
Step 2	19FDE ₁₆	((1 \times 16 ⁴) + (9 \times 16 ³) + (15 \times 16 ²) + (13 \times 16 ¹) + (14 \times 16 ⁰)) ₁₀
Step 3	19FDE ₁₆	65536 + 36864 + 3840 + 208 + 14 10
Step 4	19FDE ₁₆	106462 ₁₀

Note – $19FDE_{16}$ is normally written as 19FDE.

Hexadecimal Addition

Following hexadecimal addition table will help you greatly to handle Hexadecimal addition.

+	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	}	X
)	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	ñ	
	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F	10		
2	2	3	4	5	6	7	8	9	Α	В	C	D	E	F	10	11		
3	3	4	5	6	7	8	9	Α	В	C	D	Е	F	10	11	12		
4	4	5	6	7	8	9	Α	В	C	D	E	F	10	11	12	13		
5	5	6	7	8	9	Α	В	C	D	E	F	10	11	12	13	14		
5	6	7	8	9	Α	В	C	D	E	F	10	11	12	13	14	15		
7	7	8	9	Α	В	C	D	E	F	10	11	12	13	14	15	16		Sum
В	8	9	Α	В	C	D	Ε	F	10	11	12	13	14	15	16	17	Ī	Juli
9	9	Α	В	C	D	E	F	10							17	75.75		
	2	-	22.2		95		100	1800	100	3.4					100			

```
A B C D E F 10 11 12 13 14 15 16 17 18 19
B B C D E F 10 11 12 13 14 15 16 17 18 19 1A
C C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B
D D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C
E E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
F F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
F
```

To use this table, simply follow the directions used in this example - Add A_{16} and 5_{16} . Locate A in the X column then locate the 5 in the Y column. The point in 'sum' area where these two columns intersect is the sum of two numbers.

$$A_{16}$$
 + $5_{16} = F_{16}$.

Example - Addition

Hexadecimal Subtraction

The subtraction of hexadecimal numbers follow the same rules as the subtraction of numbers in any other number system. The only variation is in borrowed number. In the decimal system, you borrow a group of 10_{10} . In the binary system, you borrow a group of 2_{10} . In the hexadecimal system you borrow a group of 16_{10} .

Example - Subtraction

Loading [MathJax]/jax/output/HTML-CSS/jax.js