#### Поиск примитивных полиномов

Нахождение примитивных полиномов происходит в соответствии с требованием формирования последовательности максимальной длины — 31. Удовлетворяющие условию результаты моделирования приведены на рисунках ниже.

1. 
$$g(x) = x^5 \oplus x^2 \oplus 1$$



2. 
$$g(x) = x^5 \oplus x^3 \oplus 1$$



3.  $g(x) = x^5 \oplus x^3 \oplus x^2 \oplus x \oplus 1$ 



4.  $g(x) = x^5 \oplus x^4 \oplus x^3 \oplus x \oplus 1$ 



5.  $g(x) = x^5 \oplus x^4 \oplus x^3 \oplus x^2 \oplus 1$ 



6. 
$$g(x) = x^5 \oplus x^4 \oplus x^2 \oplus x \oplus 1$$



Найденные примитивные полиномы представлены в таблице.

| No | Примитивные полиномы                                   |
|----|--------------------------------------------------------|
| 1  | $g(x) = x^5 \oplus x^2 \oplus 1$                       |
| 2  | $g(x) = x^5 \oplus x^3 \oplus 1$                       |
| 3  | $g(x) = x^5 \oplus x^3 \oplus x^2 \oplus x \oplus 1$   |
| 4  | $g(x) = x^5 \oplus x^4 \oplus x^3 \oplus x \oplus 1$   |
| 5  | $g(x) = x^5 \oplus x^4 \oplus x^3 \oplus x^2 \oplus 1$ |
| 6  | $g(x) = x^5 \oplus x^4 \oplus x^2 \oplus x \oplus 1$   |

В качестве полинома-делителя выбран:  $g(x) = x^5 \oplus x^2 \oplus 1$ .

#### Аналитический вариант деления полинома

Заданное шестнадцатиразрядное слово: 1010 1111 0011 0011.

Анализируемая последовательность в виде полинома:

$$y(x) = 1 \oplus 1 \cdot x \oplus 0 \cdot x^2 \oplus 0 \cdot x^3 \oplus 1 \cdot x^4 \oplus 1 \cdot x^5 \oplus 0 \cdot x^6 \oplus 0 \cdot x^7 \oplus 1 \cdot x^8 \oplus 1 \cdot x^9 \oplus 1 \cdot x^{10} \oplus 1 \cdot x^{11} \oplus 0 \cdot x^{12} \oplus 1 \cdot x^{13} \oplus 0 \cdot x^{14} \oplus 1 \cdot x^{15}.$$

$$\frac{x^{15} \oplus x^{13} \oplus x^{11} \oplus x^{10} \oplus x^9 \oplus x^8 \oplus x^5 \oplus x^4 \oplus x \oplus 1}{x^{15} \oplus x^{12} \oplus x^{10}}$$

$$\frac{x^{13} \oplus x^{12} \oplus x^{11} \oplus x^9 \oplus x^8 \oplus x^5 \oplus x^4 \oplus x \oplus 1}{x^{12} \oplus x^{11} \oplus x^{10} \oplus x^9 \oplus x^5 \oplus x^4 \oplus x \oplus 1}$$

$$\frac{x^{13} \oplus x^{10} \oplus x^8}{x^{12} \oplus x^{11} \oplus x^{10} \oplus x^9 \oplus x^5 \oplus x^4 \oplus x \oplus 1}$$

$$\frac{x^{12} \oplus x^9 \oplus x^7}{x^{11} \oplus x^{10} \oplus x^7 \oplus x^5 \oplus x^4 \oplus x \oplus 1}$$

$$\frac{x^{11} \oplus x^8 \oplus x^6}{x^{10} \oplus x^8 \oplus x^7 \oplus x^5}$$

$$\frac{x^{10} \oplus x^8 \oplus x^7 \oplus x^5}{x^8 \oplus x^6 \oplus x^4 \oplus x} \oplus 1$$

$$\frac{x^{10} \oplus x^7 \oplus x^5}{x^8 \oplus x^6 \oplus x^4 \oplus x} \oplus 1$$

$$\frac{x^8 \oplus x^5 \oplus x^3}{x^6 \oplus x^5 \oplus x^4 \oplus x} \oplus 1$$

$$\frac{x^6 \oplus x^3 \oplus x}{x^5 \oplus x^4 \oplus 1}$$

$$\frac{x^5 \oplus x^2 \oplus 1}{x^4 \oplus x^2 - S(x), \text{ остаток (сигнатура)}}$$

### Имитационное моделирование процедуры

Имитационное моделирование деления полиномов на сигнатурном анализаторе с внутренними сумматорами с делителем  $g(x) = x^5 \oplus x^2 \oplus 1$ .



Сравнивая сигнатуры, полученные аналитически и в результате моделирования, можно наблюдать идентичные результаты.

### Имитационное моделирование процедуры для обратного полинома

Для полинома  $g(x) = x^5 \oplus x^2 \oplus 1$  обратным будет являться следующий:  $\psi(x) = x^m g^{-1}(x) = x^5 (x^{-5} \oplus x^{-2} \oplus 1) = 1 \oplus x^3 \oplus x^5$ . Сигнатура S'(x):

| 1100110011110101 | 00000     |
|------------------|-----------|
| 110011001111010  | 10000     |
| 11001100111101   | 01000     |
| 1100110011110    | 10100     |
| 110011001111     | 01010     |
| 11001100111      | 10101     |
| 1100110011       | 01000     |
| 110011001        | 10100     |
| 11001100         | 11010     |
| 1100110          | 01101     |
| 110011           | 10100     |
| 11001            | 11010     |
| 1100             | 11101     |
| 110              | 11100     |
| 11               | 01110     |
| 1                | 10111     |
|                  | 01001     |
|                  | сигнатура |
|                  |           |

Матрица, составленная из коэффициентов  $b_i$  полинома-делителя g(x):

$$M = \begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{vmatrix}$$

Тогда  $S(x) = M \times S'(x)$ :

$$S(x) = \begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{vmatrix} \times \begin{vmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{vmatrix} = \begin{vmatrix} 11 & + & 00 & + & 00 & + & 01 & + & 00 \\ 01 & + & 10 & + & 00 & + & 01 & + & 00 \\ 11 & + & 00 & + & 10 & + & 01 & + & 00 \\ 01 & + & 10 & + & 00 & + & 01 & + & 10 \end{vmatrix} = \begin{vmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{vmatrix}$$

В результате, соотношение верное.

# Самотестирование комбинационной схемы

Комбинационная схема приведена на рисунке:



Выбран примитивный полином:  $g(x) = x^5 \oplus x^2 \oplus 1$ . Получена псевдослучайная последовательность:





#### Карта эталонных сигнатур

Результаты имитационного моделирования с полученными эталонными сигнатурами, а также с учетом возникновения константных неисправностей в точках 6, 7, 8, 9 отражены в таблице:

|    | ПСП<br>Q1 Q2 Q3 Q4 ( |    |    |    |    | Y |        |        | CA |    |    |   |    | (  | <b>5</b> /0 |    |    |        |    | (  | 5/1 |    |        |   |        | 7  | 7/0 |    |                                        |
|----|----------------------|----|----|----|----|---|--------|--------|----|----|----|---|----|----|-------------|----|----|--------|----|----|-----|----|--------|---|--------|----|-----|----|----------------------------------------|
| No | Q1                   | Q2 | Q3 | Q4 | Q5 | Y | Q1     | Q2     | Q3 | Q4 | Q5 | Y | Q1 | Q2 | Q3          | Q4 | Q5 | Y      | Q1 | Q2 | Q3  | Q4 | Q5     | Y | Q1     | Q2 | Q3  | Q4 | Q5                                     |
| 0  | 1                    | 1  | 1  | 1  | 1  | 1 | 0      | 0      | 0  | 0  | 0  | 1 | 0  | 0  | 0           | 0  | 0  | 1      | 0  | 0  | 0   | 0  | 0      | 1 | 0      | 0  | 0   | 0  | 0                                      |
| 1  | 1                    | 1  | 0  | 1  | 1  | 1 | 1      | 0      | 0  | 0  | 0  | 1 | 1  | 0  | 0           | 0  | 0  | 1      | 1  | 0  | 0   | 0  | 0      | 1 | 1      | 0  | 0   | 0  | 0                                      |
| 2  | 1                    | 1  | 0  | 0  | 1  | 1 | 1      | 1      | 0  | 0  | 0  | 1 | 1  | 1  | 0           | 0  | 0  | 1      | 1  | 1  | 0   | 0  | 0      | 1 | 1      | 1  | 0   | 0  | 0                                      |
| 3  | 1                    | 1  | 0  | 0  | 0  | 0 | 1      | 1      | 1  | 0  | 0  | 0 | 1  | 1  | 1           | 0  | 0  | 0      | 1  | 1  | 1   | 0  | 0      | 0 | 1      | 1  | 1   | 0  | 0                                      |
| 4  | 0                    | 1  | 1  | 0  | 0  | 1 | 0      | 1      | 1  | 1  | 0  | 0 | 0  | 1  | 1           | 1  | 0  | 1      | 0  | 1  | 1   | 1  | 0      | 0 | 0      | 1  | 1   | 1  | 0                                      |
| 5  | 0                    | 0  | 1  | 1  | 0  | 0 | 1      | 0      | 1  | 1  | 1  | 0 | 0  | 0  | 1           | 1  | 1  | 1      | 1  | 0  | 1   | 1  | 1      | 0 | 0      | 0  | 1   | 1  | 1                                      |
| 6  | 0                    | 0  | 0  | 1  | 1  | 1 | 1      | 1      | 1  | 1  | 1  | 1 | 1  | 0  | 1           | 1  | 1  | 1      | 0  | 1  | 1   | 1  | 1      | 1 | 1      | 0  | 1   | 1  | 1                                      |
| 7  | 1                    | 0  | 1  | 0  | 1  | 1 | 0      | 1      | 0  | 1  | 1  | 1 | 0  | 1  | 1           | 1  | 1  | 1      | 0  | 0  | 0   | 1  | 1      | 1 | 0      | 1  | 1   | 1  | 1                                      |
| 8  | 1                    | 1  | 1  | 1  | 0  | 1 | 0      | 0      | 0  | 0  | 1  | 0 | 0  | 0  | 0           | 1  | 1  | 1      | 0  | 0  | 1   | 0  | 1      | 0 | 0      | 0  | 0   | 1  | 1                                      |
| 9  | 0                    | 1  | 1  | 1  | 1  | 1 | 0      | 0      | 1  | 0  | 0  | 1 | 1  | 0  | 1           | 0  | 1  | 1      | 0  | 0  | 1   | 1  | 0      | 1 | 1      | 0  | 1   | 0  | 1                                      |
| 10 | 1                    | 0  | 0  | 1  | 1  | 1 | 1      | 0      | 0  | 1  | 0  | 1 | 0  | 1  | 1           | 1  | 0  | 1      | 1  | 0  | 0   | 1  | 1      | 1 | 0      | 1  | 1   | 1  | 0                                      |
| 11 | 1                    | 1  | 1  | 0  | 1  | 1 | 1      | 1      | 0  | 0  | 1  | 1 | 1  | 0  | 1           | 1  | 1  | 1      | 0  | 1  | 1   | 0  | 1      | 1 | 1      | 0  | 1   | 1  | 1                                      |
| 12 | 1                    | 1  | 0  | 1  | 0  | 1 | 0      | 1      | 0  | 0  | 0  | 0 | 0  | 1  | 1           | 1  | 1  | 1      | 0  | 0  | 0   | 1  | 0      | 0 | 0      | 1  | 1   | 1  | 1                                      |
| 13 | 0                    | 1  | 1  | 0  | 1  | 0 | 1      | 0      | 1  | 0  | 0  | 1 | 1  | 0  | 0           | 1  | 1  | 1      | 1  | 0  | 0   | 0  | 1      | 1 | 1      | 0  | 0   | 1  | 1                                      |
| 14 | 1                    | 0  | 0  | 1  | 0  | 0 | 1      | 1      | 0  | 1  | 0  | 0 | 0  | 1  | 1           | 0  | 1  | 1      | 0  | 1  | 1   | 0  | 0      | 0 | 0      | 1  | 1   | 0  | 1                                      |
| 15 | 0                    | 1  | 0  | 0  | 1  | 0 | 1      | 1      | 1  | 0  | 1  | 1 | 1  | 0  | 0           | 1  | 0  | 1      | 1  | 0  | 1   | 1  | 0      | 1 | 1      | 0  | 0   | 1  | 0                                      |
| 16 | 1                    | 0  | 0  | 0  | 0  | 0 | 0      | 1      | 0  | 1  | 0  | 0 | 1  | 1  | 0           | 0  | 1  | 0      | 1  | 1  | 0   | 1  | 1      | 0 | 1      | 1  | 0   | 0  | 1                                      |
| 17 | 0                    | 1  | 0  | 0  | 0  | 1 | 0      | 0      | 1  | 0  | 1  | 0 | 1  | 1  | 0           | 0  | 0  | 0      | 1  | 1  | 0   | 0  | 1      | 0 | 1      | 1  | 0   | 0  | 0                                      |
| 18 | 0                    | 0  | 1  | 0  | 0  | 1 | 1      | 0      | 1  | 1  | 0  | 0 | 0  | 1  | 1           | 0  | 0  | 1      | 1  | 1  | 0   | 0  | 0      | 0 | 0      | 1  | 1   | 0  | 0                                      |
| 19 | 0                    | 0  | 0  | 1  | 0  | 1 | 0      | 1      | 0  | 1  | 1  | 0 | 0  | 0  | 1           | 1  | 0  | 1      | 1  | 1  | 1   | 0  | 0      | 0 | 0      | 0  | 1   | 1  | 0                                      |
| 20 | 0                    | 0  | 0  | 0  | 1  | 1 | 1      | 0      | 0  | 0  | 1  | 1 | 0  | 0  | 0           | 1  | l  | 1      | 1  | l  | 1   | 1  | 0      | 1 | 0      | 0  | 0   | 1  | 1                                      |
| 21 | 1                    | 0  | 1  | 0  | 0  | 1 | 0      | 1      | 1  | 0  | 0  | 0 | 0  | 0  | 1           | 0  | 1  | 1      | 1  | 1  | 1   | 1  | 1      | 0 | 0      | 0  | 1   | 0  | 1                                      |
| 22 | 0                    | 1  | 0  | 1  | 0  | 1 | 1      | 0      | 1  | 1  | 0  | 0 | 1  | 0  | 1           | 1  | 0  | 1      | 0  | 1  | 0   | 1  | l<br>, | 0 | 1      | 0  | 1   | 1  | 0                                      |
| 23 | 0                    | 0  | 1  | 0  | 1  | 1 | 1      | 1      | 0  | 1  | 1  | 1 | 0  | 1  | 0           | 1  | 1  | 1      | 0  | 0  | 0   | 0  | 1      | 1 | 0      | 1  | 0   | 1  | 1                                      |
| 24 | 1                    | 0  | 1  | 1  | 0  | 1 | 0      | 1      | 0  | 0  | 1  | 0 | 0  | 0  | 0           | 0  | 1  | 1      | 0  | 0  | 1   | 0  | 0      | 0 | 0      | 0  | 0   | 0  | 1                                      |
| 25 | 0                    | 1  | 0  | 1  | 1  | 1 | 0      | 0      | 0  | 0  | 0  | 1 | 1  | 0  | 1           | 0  | 0  | 1      | 1  | 0  | 0   | 1  | 0      | 1 | 1      | 0  | 1   | 0  | $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ |
| 26 | 1                    | 0  | 0  | 0  | 1  | 1 | 1<br>1 | 0      | 0  | 0  | 0  | 1 | 1  | 1  | 0           | 1  | 0  | 1      | 1  | 1  | 0   | 0  | 1      | 1 |        | 1  | 0   | 1  | 0                                      |
| 27 | 1                    | 1  | 1  | 0  | 0  | 1 | 1<br>1 | l<br>1 | 0  | 0  | 0  | 0 | 1  | 1  | 1           | 0  | 1  | 1      | 0  | 1  | 0   | 0  | 0      | 0 | l<br>1 | 1  | 1   | 0  | 1                                      |
| 28 | 0                    | 1  | 1  | 1  | 0  | 1 | 1<br>1 | 1      | 1  | 0  | 0  | 0 | 1  | 1  | 0           | 1  | 0  | l<br>1 | 1  | 0  | 1   | 0  | 0      | 0 | 1      | 1  | 0   | 1  | 0                                      |
| 29 | 0                    | 0  | 1  | 1  | 1  | 1 | 1      | 1      | 1  | 1  | 0  | 1 | 0  | 1  | 1           | 0  | 1  | 1      | 1  | 1  | 0   | 1  | 0      | 1 | 0      | 1  | 1   | 0  | 1                                      |

| 30 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 31 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |

| 7/1 |    |    |    |    |    | 8/0 |    |    |    |    |    |   | 8/1 |    |    |    |    |   |    | 9/0 |    |    |    |   |    |    | 9/1 |    |    |  |  |  |  |
|-----|----|----|----|----|----|-----|----|----|----|----|----|---|-----|----|----|----|----|---|----|-----|----|----|----|---|----|----|-----|----|----|--|--|--|--|
| Y   | Q1 | Q2 | Q3 | Q4 | Q5 | Y   | Q1 | Q2 | Q3 | Q4 | Q5 | Y | Q1  | Q2 | Q3 | Q4 | Q5 | Y | Q1 | Q2  | Q3 | Q4 | Q5 | Y | Q1 | Q2 | Q3  | Q4 | Q5 |  |  |  |  |
| 1   | 0  | 0  | 0  | 0  | 0  | 1   | 0  | 0  | 0  | 0  | 0  | 1 | 0   | 0  | 0  | 0  | 0  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 0  | 0  | 0   | 0  | 0  |  |  |  |  |
| 1   | 1  | 0  | 0  | 0  | 0  | 1   | 1  | 0  | 0  | 0  | 0  | 1 | 1   | 0  | 0  | 0  | 0  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 1  | 0  | 0   | 0  | 0  |  |  |  |  |
| 1   | 1  | 1  | 0  | 0  | 0  | 1   | 1  | 1  | 0  | 0  | 0  | 1 | 1   | 1  | 0  | 0  | 0  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 1  | 1  | 0   | 0  | 0  |  |  |  |  |
| 1   | 1  | 1  | 1  | 0  | 0  | 0   | 1  | 1  | 1  | 0  | 0  | 1 | 1   | 1  | 1  | 0  | 0  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 1  | 1  | 1   | 0  | 0  |  |  |  |  |
| 1   | 1  | 1  | 1  | 1  | 0  | 0   | 0  | 1  | 1  | 1  | 0  | 1 | 1   | 1  | 1  | 1  | 0  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 1  | 1  | 1   | 1  | 0  |  |  |  |  |
| 0   | 1  | 1  | 1  | 1  | 1  | 0   | 0  | 0  | 1  | 1  | 1  | 1 | 1   | 1  | 1  | 1  | 1  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 1  | 1  | 1   | 1  | 1  |  |  |  |  |
| 1   | 1  | 1  | 0  | 1  | 1  | 1   | 1  | 0  | 1  | 1  | 1  | 1 | 0   | 1  | 0  | 1  | 1  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 0  | 1  | 0   | 1  | 1  |  |  |  |  |
| 1   | 0  | 1  | 0  | 0  | 1  | 1   | 0  | 1  | 1  | 1  | 1  | 1 | 0   | 0  | 0  | 0  | 1  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 0  | 0  | 0   | 0  | 1  |  |  |  |  |
| 1   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 1  | 1  | 1 | 0   | 0  | 1  | 0  | 0  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 0  | 0  | 1   | 0  | 0  |  |  |  |  |
| 1   | 1  | 0  | 0  | 0  | 0  | 1   | 1  | 0  | 1  | 0  | 1  | 1 | 1   | 0  | 0  | 1  | 0  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 1  | 0  | 0   | 1  | 0  |  |  |  |  |
| 1   | 1  | 1  | 0  | 0  | 0  | 1   | 0  | 1  | 1  | 1  | 0  | 1 | 1   | 1  | 0  | 0  | 1  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 1  | 1  | 0   | 0  | 1  |  |  |  |  |
| 1   | 1  | 1  | 1  | 0  | 0  | 1   | 1  | 0  | 1  | 1  | 1  | 1 | 0   | 1  | 0  | 0  | 0  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 0  | 1  | 0   | 0  | 0  |  |  |  |  |
| 1   | 1  | 1  | 1  | 1  | 0  | 0   | 0  | 1  | 1  | 1  | 1  | 1 | 1   | 0  | 1  | 0  | 0  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 1  | 0  | 1   | 0  | 0  |  |  |  |  |
| 1   | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 0  | 0  | 1  | 1  | 1 | 1   | 1  | 0  | 1  | 0  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 1  | 1  | 0   | 1  | 0  |  |  |  |  |
| 1   | 0  | 1  | 0  | 1  | 1  | 0   | 0  | 1  | 1  | 0  | 1  | 1 | 1   | 1  | 1  | 0  | 1  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 1  | 1  | 1   | 0  | 1  |  |  |  |  |
| 1   | 0  | 0  | 0  | 0  | 1  | 1   | 1  | 0  | 0  | 1  | 0  | 1 | 0   | 1  | 0  | 1  | 0  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 0  | 1  | 0   | 1  | 0  |  |  |  |  |
| 1   | 0  | 0  | 1  | 0  | 0  | 0   | 1  | 1  | 0  | 0  | 1  | 1 | 1   | 0  | 1  | 0  | 1  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 1  | 0  | 1   | 0  | 1  |  |  |  |  |
| 1   | 1  | 0  | 0  | 1  | 0  | 0   | 1  | 1  | 0  | 0  | 0  | 1 | 0   | 1  | 1  | 1  | 0  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 0  | 1  | 1   | 1  | 0  |  |  |  |  |
| 0   | 1  | 1  | 0  | 0  | 1  | 0   | 0  | 1  | 1  | 0  | 0  | 1 | 1   | 0  | 1  | 1  | 1  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 1  | 0  | 1   | 1  | 1  |  |  |  |  |
| 0   | 1  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 1  | 1  | 0  | 1 | 0   | 1  | 1  | 1  | 1  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 0  | 1  | 1   | 1  | 1  |  |  |  |  |
| 1   | 0  | 1  | 1  | 0  | 0  | 1   | 0  | 0  | 0  | 1  | 1  | 1 | 0   | 0  | 0  | 1  | 1  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 0  | 0  | 0   | 1  | 1  |  |  |  |  |
| 1   | 1  | 0  | 1  | 1  | 0  | 0   | 0  | 0  | 1  | 0  | 1  | 1 | 0   | 0  | 1  | 0  | 1  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 0  | 0  | 1   | 0  | 1  |  |  |  |  |
| 1   | 1  | 1  | 0  | 1  | 1  | 0   | 1  | 0  | 1  | 1  | 0  | 1 | 0   | 0  | 1  | 1  | 0  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 0  | 0  | 1   | 1  | 0  |  |  |  |  |
| 1   | 0  | 1  | 0  | 0  | 1  | 1   | 0  | 1  | 0  | 1  | 1  | 1 | 1   | 0  | 0  | 1  | 1  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 1  | 0  | 0   | 1  | 1  |  |  |  |  |
| 1   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 1  | 1 | 0   | 1  | 1  | 0  | 1  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 0  | 1  | 1   | 0  | 1  |  |  |  |  |
| 1   | 1  | 0  | 0  | 0  | 0  | 1   | 1  | 0  | 1  | 0  | 0  | 1 | 0   | 0  | 0  | 1  | 0  | 0 | 0  | 0   | 0  | 0  | 0  | 1 | 0  | 0  | 0   | 1  | 0  |  |  |  |  |

| 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |

## Окно формирования сигнатуры

В таблице желтым цветом выделены значения, с которых начинаются несоответствия с эталонными сигнатурами. Можно заметить, что первым набором, для которого сигнатуры отличаются от эталонных при всех указанных неисправностях, является №6.

Сигнатуры, характерные для этого набора при разных неисправностях, указаны в таблице ниже.

|     | Q1 | Q2 | Q3 | Q4 | Q5 |
|-----|----|----|----|----|----|
| 6/0 | 1  | 0  | 1  | 1  | 1  |
| 6/1 | 0  | 1  | 1  | 1  | 1  |
| 7/0 | 1  | 0  | 1  | 1  | 1  |
| 7/1 | 1  | 1  | 0  | 1  | 1  |
| 8/0 | 1  | 0  | 1  | 1  | 1  |
| 8/1 | 0  | 1  | 0  | 1  | 1  |
| 9/0 | 0  | 0  | 0  | 0  | 0  |
| 9/1 | 0  | 1  | 0  | 1  | 1  |

Исходя из отраженных в таблице данных, для таких неисправностей, как 6/0, 7/0, 8/0, 8/1, 9/1, приведены одинаковые сигнатуры. Из этого следует невозможность однозначного определения возникшей неисправности.