1

Matični računari, krajnji sistemi (host) – PDA, PC, laptop, mobilni telefoni Hostovi su povezani **komunikacionim linkovima** (koaksijalni kablovi, optički kablovi, bakarne parice, radio talasi) i **komutatorima paketa** (ruteri, komutatori sloja veze) Hostovi pristupaju internetu preko provajdera – **ISP**

Za internet standarde zadužena je **IETF 2004** grupa – **RFC** dokumenta **IEEE 802** – standardi Ethernet i WiFi

Internet – infrastruktura koja određenim aplikacijama obezbeđuje određene usluge. Neke od tih aplikacija su: e-pošta, file sharing, browsing, IPTV, VOIP, internet radio, protok video zapisa, remote login, chat. Za ove aplikacije se kaže da su distribuirane aplikacije

Hostovi obezbeđuju **API** – definiše način na koji deo softvera na jednom hostu zahteva od infrastrukture interneta da dostavi podatke procesu koji se izvršava na drugom hostu. **Protokol** definiše **format i redosled poruka** kao i **postupke** koji se preuzimaju po prijemu/slanju istih

Hostovi se dele na dve vrste: klijenti i serveri

- Klijent server arhitektura (server opslužuje kljijenta)
- P2P (procesi su istovremeno i klijenti i serveri)

Pristupne mreže – fizički linkovi koji host povezuju sa pristupnim ruterom

- Pristup građanstva (kablovski, telefonski)
- Pristup kompanija (LAN, Ethernet)
- Bežični pristup (WiFi, 3G, EVDO, WIMAX)
- * Širokopojasni pristup od kuće:
 - 1. **DSL** (telefon 0-4 kHz, upstream 4-50 kHz, downstream 50 kHz 1MHz)
 - 2. **HFC** (optički + koaksijalni, **prenos se deli** između korisnika)
- * LAN Ethernet tehnologija 100 Mb/s 1 Gb/s (ili čak 10 Gb/s)
- * Bežični pristup
 - Bežične lokalne mreže 802.11 (54 Mb/s) deljeni opseg
 - Bežične regionalne mreže 3G (EVDO, HSDPA), WIMAX

Fizički medijumi: Usmereni

- Optički (10 Gb/s)
- Koaksijalni (1 Mb/s)
- Bakarni (**UTP** 10 Mb/s 1 Gb/s)

Neusmereni

- Etar
- Vasiona

Komutiranje vodova

- Resursi **rezervisan**i
- **Garantovana** brzina
- Telefon
- Za deljenje **FDM** ili **TDM**

Komutiranje paketa

- Resursi **nisu rezervisani**
- Nije garantovana brzina
- Internet
- Paketi **kasne**, moguć **gubitak paketa**

ISP prvog reda (Backbone)

- Neposredno međusobno povezani
- Povezani sa brojnim ISP II reda i drugim posredničkim mrežama

- Prisutni u većem broju zemalja

POP – priključne tačke – mesta na kojima se povezuju 2 ili više ISP –a

Kašnjenja u mrežama sa komutiranjem paketa:

- Kašnjenje usled obrade
- Kašnjenje usled čekanja u redu
- Kašnjenje usled prenosa **L/R** (L dužina u bitovima, R brzina u Mb/s)
- Kašnjenje usled prostiranja

Propusna moć: trenutna ili prosečna

Slojevita arhitektura:

- Modularnost
- Protokol koristi svoje i usluge protokola nižeg sloja

	Aplikativni sloj
	Sloj prezentacije
Aplikativni sloj	Sloj sesije
Transportni sloj	Transportni sloj
Mrežni sloj	Mrežni sloj
Sloj veze	Sloj veze
Fizički sloj	Fizički sloj

Aplikativni sloj (Poruka) - HTTP, SMTP, FTP, DNS

Transportni sloj (Segment) – Prenosi poruke između krajnjih tačaka aplikacije

- TCP (uspostavljanje veze, pouzdan prenos, kontrola toka)
- **UDP** (bez uspostavljanja veze, pouzdanost i kontrola toka)

Mrežni sloj (Datagram) – prenosi datagrame od jednog do drugog računara

• IP – definiše format paketa koji se prenose internetom

Sloj veze (Okvir) – za prenos paketa između čvorova mreže

Mrežni sloj se oslanja na usluge sloja veze

- Ethernet - WiFi - PPP

Fizički sloj (Bit) – prenosi pojedinačne bitove iz jednog okvira

Ruter ima donja tri sloja, switch samo poslednja dva

Prelaskom sa višeg na niži nivo poruka se **enkapsulira**

Prelaskom sa nižeg na viši nivo poruka se dekapsulira

Mreža pod opsadom – **botnet**

Zlonamerni software:

Virus – korisnik ga mora aktivirati svojom akcijom (npr. Klik na link)

Crv – prodire bez direktne akcije korisnika

Trojanski konj – sakriven unutar nekog korisnog programa

Vrste **DOS** –a:

Napad na ranjive delove mreže

Zakrčenje propusnog opsega (plavljenje paketima)

Plavljenje vezama

DDOS

Prisluškivanje paketa, IP spoofing, man in the middle

2. Aplikativni sloj

Arhitektura aplikacije:

Klijent - server

Server (stalno dostupan, stalna IP adresa)

Klijenti

Web, FTP, e-mail, TELNET

Serverska farma (moćan virtuelni server)

Peer - 2 - peer

Bez servera

BitTorent, Skype, Limewire

Proces koji inicira komunikaciju (poziva drugi proces) – klijent

Proces koji čeka na poziv da bi uspostavio komunikaciju – server

Procesi primaju i šalju poruke preko softverskog interfejsa – soketa (posrednik između aplikativnog i transportnog sloja, odnosno **API**)

TCP nudi usluge uspostavljanja veze (handshaking, full duplex TCP veza) i pouzdanog prenosa (bez grešaka, pravilan redosled)

TCP koriste: Web, remote login, e – mail, FTP aplikacije

UDP koriste: VOIP, IPTV, YouTube, Skype

Adresu čine (adresu procesa koji prima poruku)

IP adresa računara primaoca

Broja porta – identifikator prijemnog procesa

Protokol aplikativnog sloja definiše:

- Vrstu poruke (zahtev, odgovor)
- Sintaksu za različite vrste poruka
- Značenje polja iz tela poruke
- Pravila kada i kako procesi šalju poruke

5 najvažnijih aplikacija: Web, e-pošta, P2P filesharing, prenos fajlova, DNS Web radi na zahtev

Web strana se sastoji od objekata – HTML fajl, JPEG slika, video zapis – adresirani svojom URL adresom

HTTP koristi TCP kao svoj transportni protokol, nikada UDP!

HTTP ne održava informacije o klijentima – protokol bez stanja

Postoje postojane TCP veze (svi zahtevi preko iste veze) i nepostojane TCP veze (svaki zahtev preko zasebne veze)

Postoje dve vrste HTTP poruka – sa zahtevom i sa odgovorom

REHTTP poruka sa zahtevom:

ZAHTEVA **GET** /nekidir/strana.html HTTP/1.1 - verzija protokola

- ime servera

Host: www.neka skola.edu
Connection: close
User – agent: Mozilla/4.0
Accept – language: fr - nepostojana veza - verzija browsera

- jezik

GET – browser traži objekat adresiran u URL polju **HEAD** – sličan metodu GET, ali ne vraća objekat, samo poruku **PUT** – za objavljivanje dokumenata na Webu **DELETE** – briše objekat sa Web stranom

HTTP poruka sa odgovorom:

Connection: close
Date: ...
Server: ...
Last – modified: ...
Content – length: ...
Content – type: ...

200 OK – uspešno lociran dokument

301 MOVED PERMANENTLY - pomeren dokument, server vraća novu adresu

400 BAD REQUEST – loša komanda, ne razume je server

404 NOT FOUND – dokument ne postoji na serveru

data, data, data, data, data...

505 HTTP VERSION NOT SUPORTED

HTTP je protokol bez stanja, ali ako je potrebna evidencija korisnika koriste se **kolačići** (**cookies**) – onemogućavaju Web lokacijama da čuvaju podatke o korisnicima

<u>Server za Web keširanje</u> (proxy server) – ispunjava HTTP zahteve u ime Web servera na kome se nalazi originalni objekat, ima **sopstvene diskove** za skladištenje nedavno traženih objekata. Istovremeno je i server i klijent

- Smanjenje odziva na klijentov zahtev
- Smanjuje intezitet saobraćaja na internetu

Uslovno preuzimanje (uslovni GET) – prvo proverava da li je kopija objekta na proxy serveru zastarela u odnosu na original. Proxy server osim kopije objekta čuva i date modified

FTP protokol

- 1. Prijava na sajt odakle se fajl preuzima (**User Name i Password**)
- 2. Uspostavlja se TCP veza

FTP koristi dve paralelne TCP veze : **kontrolnu vezu i vezu podataka** (podaci, fajlovi) Kontrolne informacije šalje **"izvan opsega"**, dok HTTP šalje "u opsegu"

FTP vodi računa **o stanju** korisnika (kretanje kroz stablo direktorijuma, ovlašćenja) i za svaki fajl kreira **zasebnu vezu**

FTP port = port 21 – kontrolna veza (sedmobitni ASCII format)

FTP port = port 20 – veza podataka

FTP klijenti: Total Commander, Filezilla

Komande i odgovri:

- USER - 331 user ok, zahteva pass

- PASS - 125 počinje transfer

LIST (lista fajlova)
 425 ne može da uspostavi vezu

- RETR (download) - 452 greška pri upisu fajla

- STOR (upload)

Tri osnovna dela elektronske pošte:

Korisnički agenti

- e-mail serveri (svaki korisnik ima svoj **mailbox**)
- protokol SMTP

HTTP – **prijemni protokol** – TCP vezu uspostavlja primalac

SMTP – predajni protokol – TCP vezu uspostavlja pošiljalac

SMTP zahteva da poruke budu u **sedmobitnom ASCII formatu**

HTTP svaki objekat enkapsulira u posebnu poruku

SMTP sve objekte pakuje u jednu poruku

Zaglavlje SMTP poruke:

-FROM: ... Od ostatka poruke odvaja se praznim redom ili comandom

-TO: ... CRLF

-SUBJECT: ...

Ako poruka sadrži objekte koji nisu u sedmobitnom ASCII kodu dodaju se dodatni redovi u zaglavlju – **MIME** (Multipurpose Internet Mail Extension)

Content - Type: slika, fajl, video

Content - Transfer - Encoding: vrsta kodiranja u sedmobitni ASCII

SMTP je predajni protokol – za prijem poste koriste se POP3, IMAP i HTTP

POP3: (port 110)

- 1. Ovlašćenje (username i password)
- 2. Transakcija (čitanje i rad sa porukama)
- 3. Ažuriranje (u trenutku gašenja POP3 poruke se premeštaju, brišu)

IMAP: složeniji od POP3

- Može se poruka premeštati u sopstvene foldere direktorijume
- Može se preuzimati samo deo višedelne MIME poruke

HTTP: hotmail, gmail, yahoo, kompanije, univerziteti

Pošiljalac i primalac šalju/primaju preko HTTP

Mail serveri ipak komuniciraju preko **SMTP**

Računari se identifikuju **nazivima** (<u>www.fon.rs</u>) ili **IP adresama** (255.10.12.27)

IP adresa – **4 bajta** (0 - 255), hijerarhijska struktura

DNS – prevodi nazive u IP adrese:

- Distribuirana baza podataka preko hijerarhije **DNS servera**
- Protokol aplikativnog sloja koji omogućava pretraživanje te baze

DNS radi preko **UDP –a** i koristi **port 53**

DNS uvodi dodatno kašnjenje, ali je to rešeno uvođenjem keširanja na obližnjim DNS serverima

Ostale usluge koje DNS pruža:

• dodeljivanje pseudonima (zvaničnom nazivu računara (dug i nezgodan) dodaje jedan ili više "nadimaka")

- dodeljivanje pseudonima e-mail serverima (kako bi bili lakše pamtljiv)
- raspodela opterećenja (skup IP adresa vezuje se za zajednički naziv)

Problemi u slučaju centralizovanog DNS servera:

Mreža se oslanja na jednu tačku (cela mreža pada u slučaju kvara)

Intezitet saobraćaja (flood upitima)

Udaljena centralizovana baza podataka (kašnjenje)

Održavanja

Hijerarhija DNS servera:

- 1. Koreni DNS servera (13 na svetu)
- 2. Serveri domena najvišeg nivoa (com, org, net, gov, edu, uk, rs)
- 3. Nadležni DNS serveri (organizacije)
- 4. Lokalni DNS serveri (ISP, univerziteti, kompanije)

DNS zapisi i poruke: (polja type, name, value, ttl)

Type = A name – naziv računara; value – IP adresa uobičajeno preslikavanje

Type = NS name – domen; value – naziv nadležnog DNS servera preusmeravanje DNS upita

Type = CNAME name – pseudonim; value – zvanični naziv utvrđuje zvanični naziv računara

Type = MX name – pseudonim; value – zvaničan naziv daje pseudonime e-mail serverima

Registrator – kompanija koja dodeljuje domene Akredituje ih udruženje **ICANN**

P2P filesharing – BitTorrent (30% osnovnog internet saobraćaja) kada više računara istovremeno preuzima fajl vreme drastično opada u osnosu na klijent – server arhitekturu

BitTorrent:

- Skup svih računara koji distribuiraju fajl **Torrent**
- Odsečak fajla, najčešće 256kb **chunk**
- Odsečci se traže po principu prvo najređi
- Osnovni deo, računar koji prati korisnike **tracker** (pratilac)
- Prednost daje računarima koji korisnika opslužuju najbrže
- Biraju se **4+1 računara** sa kojima se razmenjuju fajlovi

P2P pretraživanje informacija:

Računari dinamički pretražuju i ažuriraju **indeks** (npr. jednoj mp3 pesmi se iznova pridružuju IP adrese računara na kojima se ona u međuvremenu našla)

- 1. **centralizovani indeks** (hibrid klijent server + P2P)
 - njegovi **nedostaci**:
 - oslanjanje na jednu tačku
 - usko grlo u pogledu performansi + visoka cena
 - lako ga ugasiti u slučaju kršenja autorskih prava

2. umnožavanje upita (querry flooding)

indeks potpuno raspodeljen među zajednicom korisnika računar vodi računa samo o fajlovima koje želi da podeli

poklopljena mreža (overlay network) – ako x i y održavaju TCP vezu, između njih postoji **grana (edge)**. Graf ovih grana naziva se preklopljena mreža

- **ograničenje dometa** umnožavanja upita definiše najveći broj koraka koje upit može da napravi u cilju smanjenja saobraćaja na internetu, a da se gašenjem obezbedi da drugi računari preuzmu njegov deo indeksa
- 3. hijerarhijsko preklapanje kombinuje pozitivne aspekte prethodna dva rešenja korisnici nisu ravnopravni postoje vođe grupa (računari koji imaju veći propusni opseg ili su jednostavno dostupniji) on praktično postaje mini server indeksa