Lista4

June 21, 2024

```
[2]: import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sb
    import numpy as np
[3]: data = pd.read_csv('t-shirts.csv')
    data.head()
[3]:
      size
             material
                        color sleeves demand
                                       medium
         S
                nylon
                        white
                                 long
    1
        XL
            polyester
                                short
                                         high
                        cream
    2
         S
                 silk
                         blue
                                short medium
    3
                                short medium
         М
               cotton
                        black
        XL
           polyester orange
                                 long medium
[4]: len(data)
[4]: 20000
[5]: sizes = ['XS', 'S', 'M', 'L', 'XL', 'XXL', '3XL']
    materials = ['nylon', 'polyester', 'silk', 'cotton', 'linen']
    colors = ['white', 'cream', 'blue', 'black', 'orange', 'green', 'yellow', _
     sleeves = ['long', 'short']
    demands = ['low', 'medium', 'high']
    attributes = ['size', 'material', 'color', 'sleeves']
    attr_map = {'size': sizes, 'material': materials, 'color': colors, 'sleeves':
      ⇔sleeves}
    goal = 'demand'
```

1 Eksploracja danych

Jak zostało wymienione w liście 4, nasz zbiór danych skupia się na problemie zapotrzebowania na koszulki o danych parametrach, tj. cechami są rozmiar, materiał, kolor i rękawy, natomiast etykietą jest zapotrzebowanie.

```
[6]: data.isnull().sum()
```

```
[7]: for attribute in attributes:
    attr_values = attr_map[attribute]
    count = data[attribute].value_counts()
    plt.bar(attr_values, count, color='red')
    plt.title(f'Count of {attribute}')
    plt.show()
```



```
[8]: count = data[goal].value_counts()
  plt.bar(demands, count, color='red')
  plt.title('Count of demand')
  plt.show()
```



```
[9]: for attribute in attributes:
    sb.countplot(data, x=attribute, hue=data[goal])
    plt.title(f'Count of {attribute}')
    plt.show()
```


Powyżej zostały przedstawione podstawowe zestawienia dla zbioru danych. Można zauważyć, że dla każdej cechy mamy 0% wartość null oraz dla etykiet 0% wartości null. Patrząc się dalej można zauważyć, że najpopularniejsze są mniejsze rozmiary ubrań, nylonowe lub poliestrowe, białe lub kremowe. Długości rękawów są równomiernie rozłożone w zbiorze. Dodatkowo większość zestawień (kombinacji cech) t-shirtów ma zapotrzebowanie małe lub średnie. Na sam koniec można zobaczyć we własnym zakresie, jak wygląda zapotrzebowanie dla poszczególnych cech.

2 Przygotowanie danych

Ponieważ zbiór danych zawiera większą ilość danych, liczoną w tysiącach można pozwolić na większy zestaw walidacyjny. Przyjmę proporcję 80/20, czyli 80% na zestaw uczący i 20% na zestaw walidacyjny.

```
[10]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import OneHotEncoder

encoder = OneHotEncoder()

X = data.drop(goal, axis=1)
X_temp = encoder.fit_transform(X)
```

Za wczasu można przygotować zbioru po różnych przetworzeniach, żeby sprawdzić ich wpływ na wyniki klasyfikacji. Wybrałem: standaryzację oraz PCA.

```
[11]: from sklearn.preprocessing import Normalizer, StandardScaler
from sklearn.decomposition import PCA

standardizer = StandardScaler()
pca = PCA()

X_train_standardized = standardizer.fit_transform(X_train)
X_test_standardized = standardizer.transform(X_test)
X_train_pca = pca.fit_transform(X_train)
X_test_pca = pca.transform(X_test)
```

3 Klasyfikacja

Następnie dokonam klasyfikacji uzyskanych zbiorów danych przy użyciu naiwnego Bayesa oraz drzewa decyzyjnego, dla każdego stosując 3 różne zestawy hiperparametrów.

```
[12]: from sklearn.tree import DecisionTreeClassifier
      from sklearn.naive_bayes import GaussianNB
      from sklearn.model_selection import GridSearchCV
      from sklearn.metrics import make scorer, f1 score, accuracy score,
       →precision_score, recall_score
      dtc1 = DecisionTreeClassifier()
      dtc1_standardized = DecisionTreeClassifier()
      dtc1_pca = DecisionTreeClassifier()
      nb1 = GaussianNB()
      nb1_standardized = GaussianNB()
      nb1_pca = GaussianNB()
      dtc1.fit(X train, Y train)
      dtc1_standardized.fit(X_train_standardized, Y_train)
      dtc1_pca.fit(X_train_pca, Y_train)
      nb1.fit(X train, Y train)
      nb1_standardized.fit(X_train_standardized, Y_train)
```

```
nb1_pca.fit(X_train_pca, Y_train)
      hyperparameters_dtc = {
          "max_depth": [None, 5, 10, 15],
          "criterion": ['gini', 'entropy'],
          "max_leaf_nodes": [None, 5, 10, 15]
      }
      hyperparameters nb = {
          "var_smoothing": [2e-9, 3e-9, 1e-8]
      }
      scoring_values = {
          'accuracy': 'accuracy',
          'f1': make_scorer(f1_score, average='macro'),
          'recall': make_scorer(recall_score, average='macro'),
          'precision': make_scorer(precision_score, average='macro')
      }
      dtc2 = GridSearchCV(
          estimator=DecisionTreeClassifier(),
          param_grid=hyperparameters_dtc,
          cv=3,
          n jobs=-1,
          scoring=scoring_values,
          refit='accuracy'
      nb2 = GridSearchCV(
          estimator=GaussianNB(),
          param_grid=hyperparameters_nb,
          cv=3,
          n_jobs=-1,
          scoring=scoring_values,
          refit='accuracy'
      dtc2.fit(X_train, Y_train)
      nb2.fit(X_train, Y_train)
[12]: GridSearchCV(cv=3, estimator=GaussianNB(), n_jobs=-1,
                   param_grid={'var_smoothing': [2e-09, 3e-09, 1e-08]},
                   refit='accuracy',
                   scoring={'accuracy': 'accuracy',
                            'f1': make_scorer(f1_score, response_method='predict',
      average=macro),
                            'precision': make_scorer(precision_score,
```

4 Ocena klasyfikacji

Na sam koniec można porównać wyniki (metryki) uzyskane przy pomocy różnych klasyfikatorów i je zinterpretować.

```
[13]: from sklearn.metrics import classification_report, confusion_matrix,_
       →ConfusionMatrixDisplay, accuracy_score
      def visualize(y_test, y_pred):
          print(classification_report(y_test, y_pred))
          print(f'Accuracy: {accuracy_score(y_test, y_pred)}')
          ConfusionMatrixDisplay(confusion_matrix=confusion_matrix(y_test, y_pred),__
       display_labels=demands).plot(cmap=plt.cm.Reds)
          plt.show()
      Y_pred = dtc1.predict(X_test)
      visualize(Y_test, Y_pred)
      Y_pred = dtc1_standardized.predict(X_test_standardized)
      visualize(Y_test, Y_pred)
      Y_pred = dtc1_pca.predict(X_test_pca)
      visualize(Y_test, Y_pred)
      Y_pred = nb1.predict(X_test)
      visualize(Y_test, Y_pred)
      Y_pred = nb1_standardized.predict(X_test_standardized)
      visualize(Y_test, Y_pred)
      Y_pred = nb1_pca.predict(X_test_pca)
      visualize(Y_test, Y_pred)
```

	precision	recall	f1-score	support
high low	0.98 0.95	0.99	0.98 0.95	1790 465
medium	0.97	0.97	0.97	1745
accuracy			0.97	4000
macro avg	0.97	0.97	0.97	4000
weighted avg	0.97	0.97	0.97	4000

Accuracy: 0.9735

	precision	recall	f1-score	support
high	0.98	0.99	0.98	1790
low	0.95	0.95	0.95	465
medium	0.97	0.97	0.97	1745
accuracy			0.97	4000
macro avg	0.97	0.97	0.97	4000
weighted avg	0.97	0.97	0.97	4000

	precision	recall	f1-score	support
high	0.98	0.99	0.98	1790
low	0.95	0.95	0.95	465
medium	0.97	0.97	0.97	1745
accuracy			0.97	4000
macro avg	0.97	0.97	0.97	4000
weighted avg	0.97	0.97	0.97	4000

	precision	recall	f1-score	support
high	0.56	0.98	0.72	1790
low	0.73	0.48	0.58	465
medium	0.90	0.30	0.46	1745
accuracy			0.63	4000
macro avg	0.73	0.59	0.58	4000
weighted avg	0.73	0.63	0.59	4000

	precision	recall	f1-score	support
high	0.56	0.98	0.71	1790
low	0.77	0.48	0.59	465
medium	0.90	0.30	0.46	1745
accuracy			0.63	4000
macro avg	0.74	0.59	0.59	4000
weighted avg	0.73	0.63	0.59	4000

	precision	recall	f1-score	support
high	0.70	0.80	0.75	1790
low	0.59	0.55	0.57	465
medium	0.67	0.57	0.62	1745
accuracy			0.67	4000
macro avg	0.65	0.64	0.64	4000
weighted avg	0.67	0.67	0.67	4000


```
[27]: temp_str = ""
                                    for metric in scoring_values.keys():
                                                           best_index = np.argmax(dtc2.cv_results_['mean_test_accuracy'])
                                                           temp_str += f"{metric}: {dtc2.
                                           Graph continuous 
                                                           temp_str += '\n'
                                    print(
                                                          f'''
                                                           Decision Tree
                                                           Best hyperparameters: {dtc2.best_params_}
                                                           Best accuracy score: {dtc2.best_score_}
                                                           Metrics scores:
                                                           {temp_str}
                                                            1.1.1
                                    )
                                    temp_str = ""
                                    for metric in scoring_values.keys():
```

```
best_index = np.argmax(nb2.cv_results_['mean_test_accuracy'])
    temp_str += f"{metric}: {nb2.

cv_results_[f'mean_test_{metric}'][best_index]}"
    temp_str += '\n'

print(
    f'''
    Bayes
    Best hyperparameters: {nb2.best_params_}
    Best accuracy score: {nb2.best_score_}
    Metrics scores:
    {temp_str}
    '''
)

# dtc2.best_params_
# nb2.best_params_
```

```
Decision Tree
    Best hyperparameters: {'criterion': 'gini', 'max_depth': None,
'max_leaf_nodes': None}
    Best accuracy score: 0.969187472417251
    Metrics scores:
    accuracy: 0.969187472417251
f1: 0.9611748305627072
recall: 0.9639707265795533
precision: 0.9584960940123343
    Baves
    Best hyperparameters: {'var_smoothing': 1e-08}
    Best accuracy score: 0.6390632119794326
    Metrics scores:
    accuracy: 0.6390632119794326
f1: 0.6075134059463653
recall: 0.6159148021170489
precision: 0.733857199057832
```

Jak można zauważyć wszystkie metryki, które wykorzystują klasyfikator drzewa decyzyjnego prezentują się bardzo dobrze. Wyniki dla accuracy i innych metryk wynoszą powyżej 0.95. Dla naiwnego Bayesa wyniki metryk prezentują się o wiele gorzej ~ 0.60 . Z wyjątkiem zauważalnej różnicy między estymatorami różnice dla przykładowo ustandaryzowanych danych treningowych nie są znaczne. To samo tyczy się hiperparametrów dla tych estymatorów.