

VT 02 – REVISÃO CÁLCULO APLICADO

ENTREGAR: NO DIA DA N2: 10/11/23 - VALOR: 5,0 PONTOS

https://www.youtube.com/watch?v=6r6K5PNVOC4

ORIENTAÇÕES:

- 1) O TRABALHO TERÁ QUE SER MANUSCRITO
- 2) CAPA PADRÃO UNIUBE

QUESTÃO 01

O trabalho realizado por uma força em um campo vetorial é dado por:

$$W = \int_{C} Fdr = \int_{a}^{b} F(r(t))r'(t)dt$$

Calcule as seguintes integrais de linha $\int_C F dr$:

- a) $\vec{F}(x, y, z) = yzi + xzj + xyk$; onde $\vec{r}(t) = ti + t^2j + t^3k$; $0 \le t \le 2$
- b) $\vec{F}(x, y, z) = xi zj + yk$; onde $\vec{r}(t) = 2ti + 3tj t^2k$; $-1 \le t \le 1$
- c) $\vec{F}(x, y, z) = xzi + yzj + zxk$; onde $\vec{r}(t) = (t, t^2, t^3)$; $0 \le t \le 1$

QUESTÃO 02

Campo gradiente é também um campo vetorial.

$$\nabla f = \frac{\delta f}{\delta x} i + \frac{\delta f}{\delta y} j + \frac{\delta f}{\delta z} k;$$

- a) Determinar o campo vetorial gradiente de $f(x,y,z) = 4x^3y^2 y^4x + z$
- b) Determinar o campo vetorial gradiente de $f(x,y,z) = x xy^2 + z^2$
- c) Determinar o campo vetorial gradiente de $f(x,y,z) = -x^4 + 4(x^2 y^2) 3z$
- d) Determinar o campo vetorial gradiente de $f(x,y,z) = y^3xz$

QUESTÃO 03

Um campo vetorial F é conservativo quando:

$$\vec{F} = \nabla f$$

$$W = \int_{C} F dr = f(b) - f(a)$$

Calcular o trabalho realizado por um campo conservativo:

a)
$$\vec{F}(x, y, z) = \nabla(x^2y^3 + x^3y^2 + z \text{ de A}(0,0,1) \text{ a B}(2,1,0)$$

b)
$$\vec{F}(x, y, z) = \nabla(6 + 4xy + 2x^2 - 6y^2)$$
 de A(1,1,1) a B(3,2,1)

c)
$$\vec{F}(x, y, z) = \nabla (x - xy^2 + z^2) \text{ de A}(1,0,0) \text{ a B}(1,2,1)$$

d)
$$\vec{F}(x, y, z) = \nabla(y^3xz) \text{de A}(-1, 2, 0) \text{ a B}(3, 2, 1)$$

OUESTÃO 04

Divergente de um campo vetorial.

Considere o campo vetorial:

$$\vec{F}(x, y, z) = Pi + Qj + Mk$$
, então:

Div
$$\vec{F} = \frac{\delta P}{\delta x} + \frac{\delta Q}{\delta y} + \frac{\delta M}{\delta z}$$
 é um campo escalar.

$$\operatorname{Div} \vec{F} = \nabla * \vec{F}$$

Se Div $\vec{F} = 0$, \vec{F} é campo incompreensível.

- a) Verifique se $\vec{F}(x, y, z) = yi + xzj + yk$ é incompreensível.
- b) Determine o Div \vec{F} ; $\vec{F}(x, y, z) = 2x^2yi + xzj + z^2xyk$.

QUESTÃO 05

Rotacional de um campo vetorial.

Considere o campo vetorial:

$$\vec{F}(x, y, z) = Pi + Qj + Mk$$
, então:

rot \vec{F} é um campo vetorial.

$$rot \vec{F} = \nabla x \vec{F}$$

Se rot $\vec{F} = 0$, \vec{F} é um campo conservativo e é dito irrotacional.

- a) Verifique se $\vec{F}(x, y, z) = 2xyi + xzj + yzk$ é conservativo.
- b) Verifique se $\vec{F}(x, y, z) = senx^2i 2yzj y^2k$ é conservativo.

QUESTÃO 06

Considere o campo vetorial: $\vec{F}(x, y, z) = Pi + Qj + Mk$, então:

Div
$$\vec{F} = \frac{\delta P}{\delta x} + \frac{\delta Q}{\delta y} + \frac{\delta M}{\delta z}$$
 é um campo escalar e Div $\vec{F} = \nabla * \vec{F}$

Se Div $\vec{F} = 0$, \vec{F} é campo incompreensível.

Considere o campo vetorial a seguir; $\vec{F}(x, y, z) = 2x^2yi + xyzj + z^2xyk$.

Aplicando os conceitos anteriores pode-se concluir que:

- a) $Div\vec{F} = 4xy + xz + 2zxy$
- b) \vec{F} é um campo incompreensível, pois $\vec{P}=0$
- c) $Div\vec{F} = y + xz + xy$ d) \vec{F} não é um campo incompreensível, pois $Div\vec{F} = 20$
- e) nda

Justifique a resposta com a resolução.