

CINCH Systems

RF-WIN-WATER-319

FCC 15.231:2017 Periodic Transmitter

Report # CINC0011.1

NVLAP Lab Code: 200881-0

CERTIFICATE OF TEST

Last Date of Test: September 5, 2017 CINCH Systems Model: RF-WIN-WATER-319

Radio Equipment Testing

Standards

Specification	Method
FCC 15.231:2017	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.5, 6.6	Field Strength of Fundamental	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.9.2	Occupied Bandwidth	Yes	Pass	
7.5	Duty Cycle	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Matt Nuernberg, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Report No. CINC0011.1 3/24

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI - Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://portlandcustomer.element.com/ts/scope/scope.htm http://gsi.nist.gov/global/docs/cabs/designations.html

Report No. CINC0011.1 4/24

FACILITIES

California
Labs OC01-13
41 Tesla
Irvine, CA 92618
(949) 861-8918

Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136 New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214 Oregon
Labs EV01-12
22975 NW Evergreen Pkwy
Hillsboro, OR 97124
(503) 844-4066

TexasLabs TX01-09
3801 E Plano Pkwy
Plano, TX 75074
(469) 304-5255

WashingtonLabs NC01-05
19201 120th Ave NE
Bothell, WA 98011
(425)984-6600

		Elbridge, NY 13060 (315) 554-8214	Hillsboro, OR 97124 (503) 844-4066	Plano, TX 75074 (469) 304-5255	Bothell, WA 98011 (425)984-6600				
	NVLAP								
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	00630-0 NVLAP Lab Code:201049-0 NVLAP Lab Code: 200					
	Innov	ation, Science and Eco	nomic Development Car	ada					
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1				
		BS	МІ						
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R				
		VC	CI						
A-0029	A-0109	N/A	A-0108	A-0201	A-0110				
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA								
US0158	US0175	N/A	US0017	US0191	US0157				

Report No. CINC0011.1 5/24

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. CINC0011.1 6/24

Test Setup Block Diagrams

Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. CINC0011.1 7/24

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	CINCH Systems
Address:	Suite 300 12075 43rd Street NE
City, State, Zip:	St. Michael, MN 55376
Test Requested By:	Jibril Aga
Model:	RF-WIN-WATER-319
First Date of Test:	September 5, 2017
Last Date of Test:	September 5, 2017
Receipt Date of Samples:	September 5, 2017
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Water flood detection sensor containing a low power transmitter which operates at 319.5 MHz utilizing AM modulation (OOK)

Testing Objective:

To demonstrate compliance of the periodic radio to FCC 15.231(b) requirements.

Report No. CINC0011.1 8/24

CONFIGURATIONS

Configuration CINC0011-1

Software/Firmware Running during test	
Description	Version
Firmware	V1.2

EUT								
Description	Manufacturer	Model/Part Number	Serial Number					
RF-WIN-WATER-319	CINCH Systems	319	12345					
Water Sensor	CINCH Systems	319	12345					

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Sensor Cable	No	1.7m	No	RF-WIN-WATER-319	Water Sensor

Report No. CINC0011.1 9/24

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
			Tested as	No EMI suppression	EUT remained at
1	9/5/2017	Duty Cycle	delivered to	devices were added or	Element following the
			Test Station.	modified during this test.	test.
		Field Strength of	Tested as	No EMI suppression	EUT remained at
2	9/5/2017	Fundamental	delivered to	devices were added or	Element following the
			Test Station.	modified during this test.	test.
		Occupied Bandwidth	Tested as	No EMI suppression	EUT remained at
3	9/5/2017		delivered to	devices were added or	Element following the
			Test Station.	modified during this test.	test.
		Spurious	Tested as	No EMI suppression	Scheduled testing
4	9/5/2017	Radiated	delivered to	devices were added or	was completed.
		Emissions	Test Station.	modified during this test.	was completed.

Report No. CINC0011.1 10/24

FIELD STRENGTH OF FUNDAMENTAL

PSA-FSCI 2017.06.01

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Tx unmodulated at 319.5 MHz

POWER SETTINGS INVESTIGATED

Batter\

CONFIGURATIONS INVESTIGATED

CINC0011 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency	319 MHz	Stop	Frequ	encv	320 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Element	Biconilog Cable	MNX	2/16/2017	12 mo
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	12/22/2016	12 mo
Antenna - Biconilog	ETS Lindgren	3142D	AXO	12/11/2015	24 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Report No. CINC0011.1 11/24

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2017.06.01

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was configured for continuous un-modulated CW operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.10:2013).

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = 0.160 mSec Pulsewidth of Type 2 Pulse = 0.480 mSec Number of Type 1 Pulses = 56 Number of Type 2 Pulses = 1

 $20 \log [((56)(0.160) + (1)(0.480)] = -20.5 dB$

The duty cycle correction factor of -20.5 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

Report No. CINC0011.1 12/24

FIELD STRENGTH OF FUNDAMENTAL

19.5

3.1 3.1

63.5

319.518

										EmiR5 2017.07.11	ı	PSA-ESCI 2017.06.0	1
Wo	ork Order:		C0011		Date:		5/17	7		Tres	16 0		
	Project:		one		nperature:	22.5		10	yla	11/4	Muli	m	
Carial	Job Site:		N09		Humidity:	52.89			Tantad bu	Iz. I. M.M.	.II		_
Serial	Number:		2345 WATER-319		tric Pres.:	1018	mbar		Tested by:	Kyle McMi	ullan		_
Conf	iguration:		WATER-319										_
	Customer:		eteme										_
	ttendees:		ysterns										_
EL	JT Power:	Battery											-
	ing Mode:		dulated at 31	9.5 MHz									_
Operati	ing wode:												_
D	eviations:	None											-
													_
0.		None											
Co	omments:												
									ı				
Test Speci							Test Metho						_
FCC 15.23	1:2017						ANSI C63.	10:2013					
Run#	6	Test Di	istance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	P:	ass	_
		10012	()		7	110.9.11(0)				Hooding			_
100													
0.5													
95													
90 +													
85													
80													
75													
70													
70													
70 +													
65													
60 +													
55													
50 \downarrow										\perp			
319	.0 3	19.1	319.2	319.3	319.4	319.5	319.6	319	9.7 3	19.8	319.9	320.0	
						MHz				■ PK	◆ AV	• QP	
										■ FN	▼ AV	→ Ų Γ	
					Duty Cycle	Futer : -1	Polarity/		Dietara			Comment	
Freq	Amplitude	Factor	Antenna Height	Azimuth	Correction Factor	External Attenuation	Transducer Type	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(dB)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	
319.523	76.2	19.5	1.0	332.0	0.0	0.0	Horz	PK	0.0	95.7	95.9	-0.2	Comments EUT Vert
319.523	76.2	19.5	1.0	0.0	0.0	0.0	Horz	PK	0.0	95.5	95.9	-0.2	EUT Horz
319.518	76.2	19.5	1.0	332.0	-20.5	0.0	Horz	AV	0.0	75.2	75.9	-0.7	EUT Vert
319.518	76.0	19.5	1.0	0.0	-20.5	0.0	Horz	AV	0.0	75.0	75.9	-0.9	EUT Horz
319.523 319.518	74.5 74.5	19.5 19.5	1.0 1.0	340.0 340.0	0.0 -20.5	0.0 0.0	Horz Horz	PK AV	0.0 0.0	94.0 73.5	95.9 75.9	-1.9 -2.4	EUT On Sid
319.516	66.3	19.5	3.0	61.0	0.0	0.0	Vert	PK	0.0	73.5 85.8	95.9	-2. 4 -10.1	EUT Vert
319.518	66.3	19.5	3.0	61.0	-20.5	0.0	Vert	AV	0.0	65.3	75.9	-10.6	EUT Vert
319.523	64.9	19.5	3.1	73.0	0.0	0.0	Vert	PK	0.0	84.4	95.9	-11.5	EUT Horz
319.518 319.523	64.8 63.6	19.5 19.5	3.1 3.1	73.0 58.0	-20.5 0.0	0.0 0.0	Vert Vert	AV PK	0.0 0.0	63.8 83.1	75.9 95.9	-12.1 -12.8	EUT Horz EUT On Sid
319.518	63.5	19.5	3.1	58.0	-20.5	0.0	Vert	AV	0.0	62.5	75.9	-12.6	EUT On Sid

Report No. CINC0011.1 13/24

Vert

ΑV

0.0

62.5

75.9

-13.4

EUT On Side

-20.5

0.0

58.0

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2017.06.01

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Tx unmodulated at 319.5 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

CINC0011 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 4000 MHz
--

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	2/23/2017	12 mo
Cable	Element	Double Ridge Guide Horn Cables	MNV	2/16/2017	12 mo
Antenna - Double Ridge	ETS-Lindgren	3115	AJQ	11/14/2016	24 mo
Amplifier - Pre-Amplifier	Miteq	AM-1064-9079 and SA18E-10	AOO	2/24/2017	12 mo
Cable	Element	Biconilog Cable	MNX	2/16/2017	12 mo
Antenna - Biconilog	ETS Lindgren	3142D	AXO	12/11/2015	24 mo
Filter - High Pass	Micro-Tronics	HPM50108	LFM	9/22/2016	12 mo
Filter - Low Pass	Micro-Tronics	LPM50004	LFK	9/22/2016	12 mo
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	12/22/2016	12 mo

MEASUREMENT BANDWIDTHS

<u></u>			
Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Report No. CINC0011.1 14/24

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2017.06.01

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequency in each operational band and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. Where T is the period of the pulse train.

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = 0.160 mSec Pulsewidth of Type 2 Pulse = 0.480 mSec Number of Type 1 Pulses = 56 Number of Type 2 Pulses = 1

 $20 \log [((56)(0.160) + (1)(0.480)] = -20.5 dB$

The duty cycle correction factor of -20.5 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz for measurements at or below 1GHz. Above 1GHz, a resolution bandwidth of 1MHz and a video bandwidth of 3MHz was used.

Report No. CINC0011.1 15/24

SPURIOUS RADIATED EMISSIONS

1597.582

639.036

639.041

639.031

59.2

36.5

35.9

35.4

-5.8

7.8

7.8

7.8

1.0

1.0

1.0

1.0

110.0

306.0

95.0

306.0

-21.1

-21.6

-22.2

-23.2

EUT On Side

EUT On Side

EUT Vert EUT On Side

										EmiR5 2017.07.11		PSA-ESCI 2017.06.0	ı
Wo	rk Order:		C0011		Date:		5/17			7-1-	11 1		
	Project:		one	Ter	mperature:		5 °C	1/2	yla	Ma	Muli	m	
	Job Site:		N09		Humidity:		% RH						
Serial	Number:		345	Barome	etric Pres.:	1018	mbar		Tested by:	Kyle McMu	ullan		_
06			VATER-319										=
	guration:												_
		CINCH Sy	/stems										_
		Jibril Aga											_
	T Power:		ulated at 319) E MI I-									_
Operati	ng Mode:	i x unimou	ulated at 31s	J.S IVITIZ									
		None											_
De	eviations:	T TONC											
		None											-
Co	mments:												
Test Speci	fications						Test Meth	od					
FCC 15.231							ANSI C63.						-
00 13.23	1.2017						ANGI COS.	. 10.2013					
Run#	7	Toet Di	stance (m)	3	Antonna	Height(s)		1 to 4(m)		Results	Г	ass	_
ituii #		I CSL DI	stance (iii)	<u> </u>	Antenna	rieigiii(s)		1 10 4(111)		iveanita		ass	-
80													
Ь		nı — —	, ,,,,					ш	┸		— п		
								ш.	_ " _			, 100	
70													
60													
60													
H	1 111		1						┸				
50	-Ш												
50								-	_				
		Ш			 *				_				
40 —													
							•						
					•		•						
30 +					•			•					
					•								
20													
20									•				
10													
0 +													
100						1000						10000	
						MHz				■ PK	◆ AV	• QP	
										FR	▼ AV	<u>- </u>	
					Duty Cycle		Polarity/						
Freq	Amplitude	Factor	Antenna Height	Azimuth	Correction Factor	External Attenuation	Transducer Type	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(dB)	(dB)	.,,,,,	Delector	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
` '													Comment
639.036	48.4	7.8	1.0	334.0	0.0	10.0	Horz	PK	0.0	66.2	75.9	-9.7	EUT Vert
639.031 639.036	48.2 46.9	7.8 7.8	1.0 1.0	334.0 351.0	-20.5 0.0	10.0 10.0	Horz Horz	AV PK	0.0 0.0	45.5 64.7	55.9 75.9	-10.4 -11.2	EUT Vert EUT Horz
639.036	46.9 46.8	7.8 7.8	1.0	157.0	0.0	10.0	Horz	PK PK	0.0	64.7 64.6	75.9 75.9	-11.2 -11.3	EUT Horz
639.031	46.6	7.8	1.0	157.0	-20.5	10.0	Horz	AV	0.0	43.9	55.9	-12.0	EUT On S
639.031	46.6	7.8	1.0	351.0	-20.5	10.0	Horz	AV	0.0	43.9	55.9	-12.0	EUT Horz
1597.715	62.9	-5.8	1.0	143.0	0.0	0.0	Horz	PK	0.0	57.1	74.0	-16.9	EUT Vert
1597.573	61.7	-5.8	1.0	143.0	-20.5	0.0	Horz	AV	0.0	35.4	54.0	-18.6	EUT Vert
1597.607	60.3 59.2	-5.8 -5.8	1.0 1.0	110.0 110.0	0.0 -20.5	0.0 0.0	Vert Vert	PK AV	0.0 0.0	54.5 32.9	74.0 54.0	-19.5 -21.1	EUT On S

Report No. CINC0011.1 16/24

Vert

Vert

Vert

Vert

AV PK AV PK

PK

ΑV

0.0

0.0

0.0

0.0

54.5 32.9 54.3

53.7

32.7

74.0 54.0

75.9

75.9

55.9

-20.5

0.0

0.0

-20.5

0.0

10.0

10.0

10.0

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2236.727	53.6	-2.9	1.1	229.0	0.0	0.0	Vert	PK	0.0	50.7	74.0	-23.3	EUT On Side
2236.593	53.4	-2.9	3.5	185.0	0.0	0.0	Horz	PK	0.0	50.5	74.0	-23.5	EUT Vert
639.031	34.9	7.8	1.0	95.0	-20.5	10.0	Vert	AV	0.0	32.2	55.9	-23.7	EUT Vert
639.031	32.0	7.8	1.1	172.0	0.0	10.0	Vert	PK	0.0	49.8	75.9	-26.1	EUT Horz
2236.618	50.9	-2.9	1.1	229.0	-20.5	0.0	Vert	AV	0.0	27.5	54.0	-26.5	EUT On Side
2236.593	50.8	-2.9	3.5	185.0	-20.5	0.0	Horz	AV	0.0	27.4	54.0	-26.6	EUT Vert
2875.645	47.5	-1.6	1.0	122.0	0.0	0.0	Horz	PK	0.0	45.9	74.0	-28.1	EUT Vert
639.036	30.4	7.8	1.1	172.0	-20.5	10.0	Vert	AV	0.0	27.7	55.9	-28.2	EUT Horz
2875.653	47.1	-1.6	1.0	58.0	0.0	0.0	Vert	PK	0.0	45.5	74.0	-28.5	EUT On Side
2875.645	42.3	-1.6	1.0	122.0	-20.5	0.0	Horz	AV	0.0	20.2	54.0	-33.8	EUT Vert
2875.662	40.9	-1.6	1.0	58.0	-20.5	0.0	Vert	AV	0.0	18.8	54.0	-35.2	EUT On Side

Report No. CINC0011.1 17/24

OCCUPIED BANDWIDTH

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Element	Biconilog Cable	MNX	2/16/2017	2/16/2018
Antenna - Biconilog	ETS Lindgren	3142D	AXO	12/11/2015	12/11/2017
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	12/22/2016	12/22/2017

TEST DESCRIPTION

The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. The EUT was transmitting at its maximum data rate.

The 20 dB occupied bandwidth is required to be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.

Report No. CINC0011.1 18/24

OCCUPIED BANDWIDTH

							XMit 2017.02.08
EUT:	RF-WIN-WATER-319				Work Order:	CINC0011	
Serial Number:	12345				Date:	09/05/17	
Customer:	CINCH Systems				Temperature:	22.3 °C	
Attendees:	Jibril Aga				Humidity:		
Project:					Barometric Pres.:		,
Tested by:	Kyle McMullan		Power:	Battery	Job Site:	MN09	,
TEST SPECIFICATI	ONS			Test Method			
FCC 15.231:2017				ANSI C63.10:2013			
COMMENTS							
None							
DEVIATIONS FROM	I TEST STANDARD						
None							,
Configuration #	1	Signature	ryle n	Malle			
					20dB OB (kHz)	Limit (kHz)	Result
319.5MHz		•			26.8	798	Pass

Report No. CINC0011.1 19/24

OCCUPIED BANDWIDTH

319.5MHz

20dB OB (kHz) Limit (kHz) Result

26.8 798 Pass

Report No. CINC0011.1 20/24

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					1
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Filter - Low Pass	Micro-Tronics	LPM50004	LFK	9/22/2016	9/22/2017
Cable	Element	Biconilog Cable	MNX	2/16/2017	2/16/2018
Antenna - Biconilog	ETS Lindgren	3142D	AXO	12/11/2015	12/11/2017
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	12/22/2016	12/22/2017

TEST DESCRIPTION

The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = 0.160 mSec Pulsewidth of Type 2 Pulse = 0.480 mSec Number of Type 1 Pulses = 56 Number of Type 2 Pulses = 1

Duty Cycle = $20 \log [((56)(0.160) + (1)(0.480)] = -20.5 dB$

The duty cycle correction factor of -20.5 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

Report No. CINC0011.1

EUT: RF-WIN-WATER-319
Serial Number: 12345
Customer: CINCH Systems
Attendees: Jibril Aga
Project: None
Tested by: Kyle McMullan
TEST SPECIFICATIONS Work Order: CINC0011

Date: 09/05/17

Temperature: 22.3 °C

Humidity: 45.3% RH

Barometric Pres.: 1019 mbar Power: Battery
Test Method Job Site: MN09 FCC 15.231:2017 ANSI C63.10:2013 COMMENTS DEVIATIONS FROM TEST STANDARD Kryli Configuration # Signature Length of Type 1 Pulse (ms) Length of Type 2 Pulse (ms) Number of Type 1 Pulse Number of Type 2 Pulse -20.5 N/A N/A Limit Result N/A N/A N/A N/A N/A N/A 319.5MHz, 1s 319.5MHz, 10s N/A N/A N/A N/A N/A N/A N/A N/A

Report No. CINC0011.1 22/24

319.5MHz, 20ms

Length of Type Number of Length of Type Number of

1 Pulse (ms) Type 1 Pulse 2 Pulse (ms) Type 2 Pulse DCCF Limit Result

0.16 56 0.48 1 -20.5 N/A N/A

			319.5MHz, 1s			
Length of Type	Number of	Length of Type	Number of			
1 Pulse (ms)	Type 1 Pulse	2 Pulse (ms)	Type 2 Pulse	DCCF	Limit	Result
N/A	N/A	N/A	N/A	N/A	N/A	N/A

Report No. CINC0011.1 23/24

Mit 2017.02.0

XMit 2017.02.0

			319.5MHz, 10s			
Length of Type	Number of	Length of Type	Number of			
1 Pulse (ms)	Type 1 Pulse	2 Pulse (ms)	Type 2 Pulse	DCCF	Limit	Result
N/A	N/A	N/A	N/A	N/A	N/A	N/A

Report No. CINC0011.1 24/24