6.6 习题

2024年8月3日

6.6.1

(1) 自反性

定义 f(n) = n 的函数 $f: \mathbb{N} \to \mathbb{N}$ 是从 \mathbb{N} 到 \mathbb{N} 的严格递增函数, 使得

$$a_n = a_{f(n)} = a_n$$
对所有的 $n \in \mathbb{N}$ 均成立

由定义 6.6.1 可知,此时 $(a_n)_{n=0}^{\infty}$ 是 $(a_n)_{n=0}^{\infty}$ 的一个子序列。

(2) 传递性

因为 $(b_n)_{n=0}^{\infty}$ 是 $(a_n)_{n=0}^{\infty}$ 的子序列,那么存在一个函数 $f: \mathbb{N} \to \mathbb{N}$ 是从 \mathbb{N} 到 \mathbb{N} 的严格递增函数,使得

$$b_n = a_{f(n)}$$
对所有的 $n \in \mathbb{N}$ 均成立

因为 $(c_n)_{n=0}^\infty$ 是 $(b_n)_{n=0}^\infty$ 的子序列,那么存在一个函数 $g: \mathbb{N} \to \mathbb{N}$ 是从 \mathbb{N} 到 \mathbb{N} 的严格递增函数,使得

$$c_n = b_{g(n)}$$
对所有的 $n \in \mathbb{N}$ 均成立

因为 f 的值域与 g 的定义域是同一个集合,我们可以把 g,f 复合,得到函数 $g\circ f:\mathbb{N}\to\mathbb{N}$,该函数是从 \mathbb{N} 到 \mathbb{N} 的严格递增函数,使得

$$c_n = a_{(g \circ f)(n)}$$
对所有的 $n \in \mathbb{N}$ 均成立

由定义 6.6.1 可知,此时 $(c_n)_{n=0}^{\infty}$ 是 $(a_n)_{n=0}^{\infty}$ 的子序列

6.6.2

略

6.6.3

证明存在性。这里采用的方法,是先构造出目标对象。这里需要考察的是,构造的目标是否满足要求。具体来说,对于本习题,需要确定构造的序列是存在的,并确定构造的序列的倒数是收敛于 0 的(习题 6.6.5 与本题类似)。

(1)证明序列的每一项都是存在的 归纳法证明。

j=0,因为序列 $(a_n)_{n=0}^{\infty}$ 是无界的,所以肯定存在 $|a_n| \ge 0$,取第一个满足要求的 n 即可。

说明. j = 0 时,如果 $a_{n_0} = 0$,会导致错误,所以 b_0 应该是要限制为非零的。

归纳假设, j-1 时, 项是存在的。

j 时,由于序列 $(a_n)_{n=0}^{\infty}$ 是无界的,所以肯定存在 $|a_n| \geq j$,此时满足条件的 n 至少有一个,可以看做是一个集合,使用公理 3.5 (分类公理),可以得到所有元素都大于 n_{j-1} 的集合 A,取该集合的下确界作为 n_j (这个下确界肯定是存在的,因为集合是有下界的。定理 5.5.9 的推论)。

(2) $\lim 1/b_n$ 存在且等于 0。

对任意 $\epsilon > 0$,都存在 $\epsilon \geq 1/j$ (因为 1/j 递增且极限为 0),由 $(b_n)_{n=0}^{\infty}$ 的构造方式,可知,取 n_j 时, $|b_j| = |a_{n_j}| \geq j$,且由序列 $(b_n)_{n=0}^{\infty}$ 是递增的,可知,当 $n \geq n_j$ 时, $|b_n| \geq j$ 均成立,于是 $|1/b_n| \leq 1/j \leq \epsilon$ 对 $n \geq n_j$ 均成立。

由 ϵ 的任意性,可知, $\lim_{n\to\infty} 1/b_n$ 存在且等于 0。

6.6.4

 $(a) \Rightarrow (b)$

序列 $(a_n)_{n=0}^{\infty}$ 收敛于 L, 那么,对任意 $\epsilon>0$,存在 $N\geq 0$,使得 $|a_n-L|\leq \epsilon$ 对 $n\geq N$ 均成立。

由子序列的定义 (定义 6.6.1) 可知,序列 $(a_n)_{n=0}^{\infty}$ 的任意子序列 $(b_n)_{n=0}^{\infty}$,都会存在一个严格递增的函数 $f: \mathbb{N} \to \mathbb{N}$ 使得

 $b_n = a_{f(n)}$ 对所有的 $n \in \mathbb{N}$ 均成立

由 f 的定义可知 $f(n) \ge n$,所以 $n \ge N$ 时, $f(n) \ge N$,所以 $|b_n - L| = |a_{f(n)} - L| \le \epsilon$ 对 $n \ge N$ 均成立。所以,序列 $(b_n)_{n=0}^{\infty}$ 收敛于 L。

由于 $(b_n)_{n=0}^{\infty}$ 是任意的子序列,所以命题得证。

$$(b) \Rightarrow (a)$$

由自反性可知 $(a_n)_{n=0}^{\infty}$ 也是 $(a_n)_{n=0}^{\infty}$ 的子序列,题设已经说明 $(a_n)_{n=0}^{\infty}$ 收敛于 L。

6.6.5

 $(a) \Rightarrow (b)$

(1) 证明序列的每一项都是存在的

归纳法证明。

j=0 时,定义 $a_{n_0}=a_0$ 。

归纳假设, j-1 时, 项是存在的。

j 时,现在要证明 $b_j := a_{n_j}$ 是存在的。由 L 是极限点,所以取 $\epsilon = 1/j > 0$,对 $N = n_{j-1}$ (归纳假设,保证了 n_{j-1} 存在),存在 $n \geq N$ 使得 $|a_n - L| \leq \epsilon$,满足该条件的 n 是一个集合,我们取其中最小值,此时的最小值就是 n_j 且可知 a_{n_j} 是存在的。

(2) 序列的收敛性

对任意实数 $\epsilon>0$,存在 $1/j\leq\epsilon$ (存在的原因是 1/j 收敛于 0)。通过序列 $(a_{n_j})_{j=0}^\infty$ 的构造方式,可知,只要证明存在 N,n=N 有 $|a_n-L|\leq 1/j$,那么,就有 n>N 有 $|a_n-L|<1/j$,即: $n\geq N$ 有 $|a_n-L|\leq 1/j$ 。接下来只要证明这个 N 是存在的即可。由构造方式可知 $|a_{n_j}-L|\leq 1/j\leq\epsilon$,所以,可取 $N=n_i$,即 N 是存在的。

$$(b) \Rightarrow (a)$$

设收敛于 L 的子序列是 $(b_n)_{n=0}^{\infty}$,因为是子序列,存在一个严格递增的 函数 $f: \mathbb{N} \to \mathbb{N}$ 使得

$$b_m = a_{f(n)}$$
对所有的 $n \in \mathbb{N}$ 均成立

(注意: 这里为了讨论的方便,把子序列的下标改为 m) 因为收敛于 L, 那么,对任意 $\epsilon>0$,存在 $M\geq 0$, $|b_m-L|\leq \epsilon$ 对 $m\geq M$ 均成立,因为 f 是严格 递增的函数,且没有上界,对每一个 N,都存在 n 使得 $f(n)\geq max(M,N)$,

因为 $f(n) \ge M$, 所以,

$$|b_m - L| \le \epsilon$$

$$|a_{f(n)} - L| \le \epsilon$$

由 ϵ 的任意性, 可知, L 是 $(a_n)_{n=0}^{\infty}$ 的极限点。