Modelling in CP

Formalization as a Constraint Satisfaction Problem (CSP)

- A CSP is a triple <X,D,C> where:
 - X is a set of decision variables $\{X_1,...,X_n\}$;
 - D is a set of domains $\{D_1,...,D_n\}$ for X:
 - D_i is a set of possible values for X_i;
 - usually non-binary and assume finite domain;
 - \mathbb{C} is a set of constraints $\{\mathbb{C}_1, \dots, \mathbb{C}_m\}$:
 - C_i is a relation over a subset of variables $\{X_j,...,X_k\}$, denoted as $C_i(X_j,...,X_k)$, which is a set of combinations of allowed values of the variables $C_i \subseteq D(X_i) \times ... \times D(X_k)$.
- A solution to a CSP is an assignment of values to the variables which satisfies all constraints simultaneously.

Constraint Optimization Problems

- CSP enhanced with an optimization criterion, e.g.:
 - minimum cost;
 - shortest distance;
 - fastest route;
 - maximum profit.
- Formally, <X,D,C,f> where f is the formalization of the optimization criterion as an objective variable. Goal: minimize f (maximize -f).

N-Queens

 Place n queens in an nxn board so that no two queens can attack each other.

N-Queens

Variables and Domains

- A variable for each row $[X_1, X_2, ..., X_n]$ → no row attack
- Domain values [1..n] represent the columns:
 - X_i = j means that the queen in row i is in column j

Constraints

- alldifferent($[X_1, X_2, ..., X_n]$) → no column attack
- for all i<j $|X_i X_j| \neq |i j|$ \rightarrow no diagonal attack

Sudoku

	6		1	4		5	
		8	3	5	6		
2							1
8			4	7			6
		6			3		
7			9	1			4
5							2
		7	2	6	9		
	4		5	8		7	

Sudoku

X ₁₁ ←		6		1	4		5	_	X ₉₁
2811			8	3	5	6			7.91
	2							1	
	8			4	7			6	
•			6			3			
	7			9	1			4	
_	5							2	
			7	2	6	9			
X ₁₉ ←	_	4		5	8		7	_	→ X ₉₉

- Variables and Domains
 - 9x9 variables X_{ii} for each cell with domains [1..9].
 - X_{ij} = k means that the cell X_{ij} has the value k.
- Constraints
 - Initial assignments. E.g., $X_{21} = 6$.
 - Difference constraints on all the rows, columns, and 3x3 boxes. E.g., alldifferent([X₁₁, X₂₁, X₃₁, ..., X₉₁])
 alldifferent([X₁₁, X₁₂, X₁₃, ..., X₁₉])
 alldifferent([X₁₁, X₂₁, X₃₁, X₁₂, X₂₂, X₃₂, X₁₃, X₂₃, X₃₃])

Task Scheduling

- Schedule n tasks on a machine, in time D, by obeying the temporal and precedence constraints:
 - each task t_i has a specific fixed processing time p_i;
 - each task t_i can be started after its release date r_i, and must be completed before its deadline d_i;
 - tasks cannot overlap in time;
 - precedence relations (→) must be respected.

Task Scheduling

Variables and Domains

- Start_i, representing the starting time of a task t_i, taking a value from [0..D].
- Ensures that each task starts at exactly one time point.

Constraints

- Respect of release date and deadline
 - for all $i \in \{1, ..., n\}$, $r_i \leq Start_i \leq d_i p_i$
- No overlap in time
 - noOverlap([Start₁, ..., Start_n], [p₁, ..., p_n])
- Precedence constraints
 - Start_i + p_i ≤ Start_j for each pair of tasks t_i → t_j

Optimal Map Colouring

 What is the minimum number of colours necessary to colour the neighbouring regions differently?

Optimal Map Colouring

- Variables and Domains
 - X_i for each of n regions with domain [1..n].
- Constraints
 - X_i ≠ X_i for each neighbour region i and j
- Objective variable
 - f = max(X_i)
- Objective: minimize f

Variables and Domains

- Variable domains include the classical:
 - binary, integer, continuous.
- In addition, variables may take a value from any finite set.
 - e.g., X in {a,b,c,d,e}.
- There exist special "structured" variable types.
 - Set variables (take a set of elements as value).
 - Activities or interval variables (for scheduling applications).

Constraints

- Any constraint can be expressed by listing all the allowed combinations.
 - E.g., $C(X_1, X_2) = \{(0,0), (0,2), (1,3), (2,1)\}$
 - Extensional representation.
 - General but possibly inconvenient and inefficient with large domains.
- Declarative (invariant) relations among objects.
 - E.g., X > Y
 - Intensional representation.
 - More compact, clear but less general.

Properties of Constraints

- The order of imposition does not matter.
 - $X + Y \le Z$ is the same as $Z \ge X + Y$.
- Non-directional.
 - A constraint between X and Y can be used to infer domain information on Y given domain information on X and vice versa.
- Rarely independent.
 - Shared variables as communication mechanism between different constraints.

Constraints – Examples

- Algebraic expressions
 - $-X_1 > X_2$
 - $-X_1 + X_2 = X_3$
- Logical expressions
 - $-X \wedge Y \rightarrow Z$
- Global constraints
 - alldifferent([X₁, X₂, X₃]) instead of:

$$X_1 \neq X_2, X_1 \neq X_3, X_2 \neq X_3$$

noOverlap([Start₁, ..., Start_n], [p₁, ..., p_n]) instead of:

for all
$$i < j \in \{1, ..., n\}$$
, (Start_i + p_i \leq Start_i) \vee (Start_i + p_i \leq Start_i)

Constraints – Examples

- Variables as subscripts (element constraints)
 - Y = cost[X] (here Y and X are variables, 'cost' is an array of parameters)
- Meta-constraints
 - $-\sum_{i} (X_i > t_i) \le 5$
- Extensional constraints (table constraints)
 - (X,Y,Z) in {(1, 2, 2), (2, 3, 3), (1, 2, 3)}

Modeling is Critical!

- Choice of variables and domains defines the search space size:
 - $|D(X_1)| \times |D(X_2)| \times ... \times |D(X_n)|;$
 - Exponential in size!
- Choice of constraints defines:
 - how search space can be reduced;
 - how search can be guided.
- Need to go beyond the declarative specification!

Modeling is Critical

- Given the human understanding of a problem, we need to answer questions like:
 - which variables shall I choose?
 - which constraints shall I enforce?
 - can I exploit any global constraints?
 - do I need any auxiliary variables?
 - are some constraints redundant, therefore can be avoided?
 - are there any implied constraints?
 - can symmetry be eliminated?
 - are there any dual viewpoints?
 - among alternative models, which one shall I prefer?

Golomb Ruler

- Place m marks on a ruler such that:
 - distance between each pair of marks is different;
 - the length of the ruler is minimum.
- Applications in radio astronomy and information theory.
- Difficult to solve! Largest known ruler is of order 28.

A non optimal Golomb ruler of order 4.

Golomb Ruler

- Place m marks on a ruler such that:
 - distance between each pair of marks is different;
 - the length of the ruler is minimum.
- Applications in radio astronomy and information theory.
- Difficult to solve! Largest known ruler is of order 28.

An optimal Golomb ruler of order 4.

Naive Model

Variables and Domains

- $[X_1, X_2, ..., X_m]$
- X_i , representing the position of the ith mark, taking a value from $\{0,1,...,2^{(m-1)}\}$

Naive Model

- Variables and Domains
 - $[X_1, X_2, ..., X_m]$
 - X_i , representing the position of the ith mark, taking a value from $\{0,1,\ldots,2^{(m-1)}\}$
- Constraints
 - for all $i_1 < j_1$, $i_2 < j_2$, $i_1 \ne i_2$ or $j_1 \ne j_2 |X_{i1} X_{j1}| \ne |X_{i2} X_{j2}|$
- Objective: minimize (max([X₁, X₂, .., X_m]))

Naive Model

Variables and Domains

- $[X_1, X_2, ..., X_m]$
- X_i , representing the position of the ith mark, taking a value from $\{0,1,\ldots,2^{(m-1)}\}$

Constraints

- for all $i_1 < j_1$, $i_2 < j_2$, $i_1 \ne i_2$ or $j_1 \ne j_2 |X_{i1} X_{j1}| \ne |X_{i2} X_{j2}|$
- Objective: minimize (max([X₁, X₂, .., X_m]))
- Problematic model.
 - Quartic O(m⁴) quaternary constraints.
 - Loose reduction in domains.

Better Model

Auxiliary Variables

- New variables introduced into a model, because either:
 - it is difficult/impossible to express some constraints on the main decision variables;
 - or some constraints on the main decision variables do not lead to significant domain reductions.
- for all i<j D_{ij}, representing the distance between ith and the jth marks.

Constraints

- for all i<j, $D_{ij} = |X_i X_j|$
- all different ([D_{12} , D_{13} , ..., $D_{(m-1)m}$])

Better Model

Constraints

- for all $i < j D_{ij} = |X_i X_j|$
- all different ($[D_{12}, D_{13}, ..., D_{(m-1)m}]$)

Improvements

- Quadratic O(m²) ternary constraints.
- A global constraint.

Better Model

Constraints

- for all $i < j D_{ij} = |X_i X_j|$
- all different ($[D_{12}, D_{13}, ..., D_{(m-1)m}]$)
- alldifferent([X₁, X₂, ..., X_m])

Improvements

- O(m²) ternary constraints.
- A global constraint.
- Implied constraint
 - Logically implied by the constraints defining the problem which cannot be deduced by the solver immediately.
 - Semantically redundant (no change in the set of solutions), computationally significant (can greatly reduce the search space)!

Symmetry in CSPs

- Creates many symmetrically equivalent search states:
 - a state leading to a solution/failure will have many symmetrically equivalent states.
- Bad when proving optimality, infeasibility or looking for all solutions.
 - May lead to thrashing.
- Variable and value symmetry.

Symmetries and Permutation

Variable Symmetry

- A permutation π of the variable indices s.t. for each (un)feasible assignment, we can re-arrange the variables according to π and obtain another (un) feasible assignment.
- Intuitively: permuting variable assignments.
- π identifies a specific symmetry.

Variable Symmetries in Golomb Ruler

Permuting variable assignments

$$X_1 = 0, X_2 = 1, X_3 = 4, X_4 = 6$$
 $X_1 = 0, X_2 = 1, X_3 = 6, X_4 = 4$
 $X_1 = 0, X_2 = 4, X_3 = 1, X_4 = 6$
 $X_1 = 0, X_2 = 4, X_3 = 6, X_4 = 1$
 $X_1 = 0, X_2 = 6, X_3 = 1, X_4 = 4$
 $X_1 = 0, X_2 = 6, X_3 = 1, X_4 = 4$
 $X_1 = 0, X_2 = 6, X_3 = 4, X_4 = 1$

- m! permutations → m! variable symmetries.
- For a given (un)feasible assignment, there are m! (un)feasible assignments.

Value Symmetry

Value Symmetry

- A permutation π of values s.t. for each (un)feasible assignment, we can re-arrange the values according to π and obtain another (un) feasible assignment.
- Intuitively: permuting values.
- π identifies a specific symmetry.

A Value Symmetry in Golomb Ruler

Values can be permuted as:

$$0 \rightarrow 0$$
, $1 \rightarrow 2$, $2 \rightarrow 1$, $3 \rightarrow 3$, $4 \rightarrow 5$, $5 \rightarrow 4$, $6 \rightarrow 6$ (reversing the ruler)

$$X_1 = 0$$
, $X_2 = 1$, $X_3 = 4$, $X_4 = 6 \Rightarrow$
 $X_1 = 0$, $X_2 = 2$, $X_3 = 5$, $X_4 = 6$

Any other value symmetry in the models we have seen so far?

Variable and Value Symmetry

- Composition of a variable and a value symmetry.
- Golomb Ruler
 - Both variable assignments and values can be permuted.

$$X_1 = 0$$
, $X_2 = 1$, $X_3 = 4$, $X_4 = 6 \rightarrow X_1 = 0$, $X_2 = 2$, $X_3 = 5$, $X_4 = 6 \rightarrow X_1 = 2$, $X_2 = 0$, $X_3 = 6$, $X_4 = 5$

For a given (un)feasible assignment, there are 2*m!
 (un)feasible assignments.

Symmetry Breaking Constraints

- Reduce the set of solutions and search space!
- Not implied by the constraints defining the problem.
- Common technique: impose an ordering to avoid permutations.
 - E.g., $X_1 \le X_2 \dots \le X_n$ when $[X_1, X_2, \dots, X_n]$ are all symmetric.
- Attention: at least one solution from each set of symmetrically equivalent solutions must remain.

Improved Model

- Symmetry Breaking Constraints
 - $X_1 < X_2 < ... < X_m$
 - $-X_1 = 0$
 - $D_{12} < D_{(m-1)m}$
- New objective
 - minimize (X_m)

Improved Model

- Symmetry breaking constraints enable constraint simplification.
 - $X_1 < X_2 < ... < X_m$
 - alldifferent([X₁, X₂, ..., X_m]) becomes redundant (semantically and computationally).
 - for all i<j, $D_{ij} = |X_i X_j|$ becomes for all i<j, $D_{ij} = X_j X_i$
 - Note the terminology redundant vs implied.

Improved Model

 Symmetry breaking constraints enable additional implied constraints.

An optimal Golomb ruler of order 4.

Can We Improve This Model Too?

Variables and Domains

- A variable for each row $[X_1, X_2, ..., X_n] \rightarrow$ no row attack
- Domain values {1,...,n} represent the columns:
 - X_i = j means that the queen in row i is in column j

Constraints

- alldifferent($[X_1, X_2, ..., X_n]$) \rightarrow no column attack
- for all i<j $|X_i X_i| \neq |i j|$ \rightarrow no diagonal attack

N-Queens

- Diagonal attack constraint
 - for all $i < j |X_i X_i| \neq |i j|$

≡ for all iX_i - X_j \neq i - j and
$$X_i - X_j \neq j - i$$
 and $X_j - X_i \neq j - i$ and $X_j - X_i \neq j - i$

$$\equiv$$
 for all iX_i - i \neq X_j - j and $X_i + i \neq X_j + j$

$$\equiv$$
 all different([$X_1 - 1, X_2 - 2, ..., X_n - n$])

$$\equiv$$
 all different([$X_1 + 1, X_2 + 2, ..., X_n + n$])

A Better Model for N-Queens

Original Model

- alldifferent($[X_1, X_2, ..., X_n]$) \rightarrow no column attack
- for all i<j $|X_i X_i| ≠ |i j|$ → no diagonal attack

Alldiff Model

- alldifferent([X₁, X₂, ..., X_n])
- all different ($[X_1 + 1, X_2 + 2, ..., X_n + n]$)
- all different ($[X_1 1, X_2 2, ..., X_n n]$)

Modeling is Critical!

- Given the human understanding of a problem, we need to answer questions like:
 - which variables shall I choose?
 - which constraints shall I enforce?
 - can I exploit any global constraints?
 - do I need any auxiliary variables?
 - are some constraints redundant, therefore can be avoided?
 - are there any implied constraints?
 - can symmetry be eliminated?
 - are there any dual viewpoints?
 - among alternative models, which one shall I prefer?

Dual Viewpoint

- Viewing a problem P from different perspectives may result in different models.
- Each model yields the same set of solutions.
- Each model exhibits in general a different representation of P.
 - Different variables.
 - Different domains.
 - Different constraints.
 - Different size of the search space!
- Can be hard to decide which is better!

Symmetries of N-Queens

- Geometric symmetries.
 - Cannot impose an ordering like $X_1 \le X_2 \dots \le X_n$
 - We need to avoid certain 7 permutations of [X₁, X₂,, X_n], not all permutations.
 - These permutations are difficult to define in the current model.

A New Model for N-Queens

- Variables and Domains
 - Represent the board with n x n Boolean variables B_{ij} ∈ {0,1}.
- Attacking Constraints
 - $\sum B_{ij} = 1$ on all rows and columns, $\sum B_{ij} \leq 1$ on all diagonals.
- Symmetry Breaking Constraints
 - Flatten the 2-d matrix to a single sequence of variables.
 - E.g., append every row to the end of the first row.
 - Every symmetric configuration corresponds to a variable permutation of the original solution, which is easy to define.
 - We then impose an order between a solution and all the solutions obtained by the 7 permutations:
 - $lex \le (B, \pi(B))$ for all π .

Lexicographic Ordering Constraint

- Requires a sequence of variables to be lexicographically less than or equal to another sequence of variables.
- lex≤([X₁, X₂, ..., X_k], [Y₁, Y₂, ..., Y_k]) holds iff: $X_1 \le Y_1$ AND $(X_1 = Y_1 \rightarrow X_2 \le Y_2)$ AND $(X_1 = Y_1$ AND $X_2 = Y_2 \rightarrow X_3 \le Y_3)$... $(X_1 = Y_1$ AND $X_2 = Y_2$ $X_{k-1} = Y_{k-1} \rightarrow X_k \le Y_k)$ - lex≤([1, 2, 4],[1, 3, 3])

Symmetry Breaking in N-Queens

- lex≤(B, [B_{ii} | i, j ∈ [1..n]])
- $lex \le (B, [B_{ij} | i \in [n..1], j \in [1..n]))$
- lex≤(B, [B_{ii} | i, j ∈ [n..1]])
- $lex \le (B, [B_{ij} | i \in [1..n], j \in [n..1]])$
- ...

- i, j \rightarrow j,i
- i,j → reverse i, j
- i,j → reverse j, reverse i
- $i,j \rightarrow i$, reverse j
- ..

Symmetry Breaking in N-Queens

- lex≤(B, [B_{ji} | i, j ∈ [1..n]])
- lex≤(B, [B_{ij} | i ∈ [n..1], j ∈ [1..n]])
- lex≤(B, [B_{ii} | i ∈ [1..n], j ∈ [n..1]])
- lex≤(B, [B_{ii} | i ∈ [1..n], j ∈ [n..1]])
- lex≤(B, [B_{ji} | i ∈ [n..1], j ∈ [1..n]])
- lex≤(B, [B_{ij} | i, j ∈ [n..1]])
- lex≤(B, [B_{ii} | i, j ∈ [n..1]])

Which Model?

Alldiff Model

- $[X_1, X_2, ..., X_n] \in [1..n]$
- all different ($[X_1, X_2, ..., X_n]$)
- all different ($[X_1 + 1, X_2 + 2, ..., X_n + n]$)
- all different ($[X_1 1, X_2 2, ..., X_n n]$)

Boolean Symmetry Breaking Model

- $n \times n B_{ij}$ ∈ [0..1]
- $\sum B_{ii} = 1$ on all rows, columns
- $\sum B_{ij} \leq 1$ on diagonals
- lex≤(B, π(B)) for all π

- Global constraints
- ⊗ No easy symmetry breaking

- © Easy symmetry breaking
- No global constraints

Which Model?

Combined model

- If you can't beat them, combine them ©
- Keep both models and use channeling constraints to maintain consistency between the variables of the two models.
- Benefits:
 - Facilitation of the expression of constraints.
 - Enhanced constraint propagation.
 - More options for search variables.

Combined Model

- Variables
 - for all i, X_i ∈ [1..n], for all i, j B_{ii} ∈ [0..1]
- Constraints
- and offerent ($[X_1 + 1, X_2 + 2, ..., X_n + n]$)
 all different ($[X_1 1, X_2 2, ..., X_n n]$)
 lex \leq (B, π (B)) for all π Channeling Constraints
 for all i, j $X_i = j \leftrightarrow B_{ij} = 1$
- Channeling Constraints