This listing of claims will replace all prior versions, and listings, of claims in the application:

Claims 1-17 (canceled)

Claim 18 (currently amended): A solid-state image sensing 1 2 apparatus comprising: 3 an image sensing area in which a plurality of pixels 4 are two-dimensionally arrayed; a plurality of output channels; 5 6 a first driving mode [[for reading]] in which pixel signals of pixels in the image sensing area are read out, 7 wherein the read-out pixel signals are output to at least 8 9 one output channel selected from among the plurality of output channels [[the first driving mode selects a first 10. 11 set of output channels]]; 12 a second driving mode [[for reading]] in which pixel 13 signals of [[pixels]] odd-numbered columns and pixel 14 signals of even-numbered columns arrayed in the same row in the image sensing area are read-out, wherein the read-out 15 16 pixel signals are output to a plurality of output channels selected from among the output channels, and wherein the 17 read-out pixel signals of odd-numbered columns and the 18 19 read-out pixel signals of even-numbered columns are output to different ones of the selected output channels so as to 20 have different phases; and [[wherein-the second driving 21 22 mode selects a second set of output channels;]] 23 a control circuit which sets driving mode to one of 24 the first driving mode and the second driving mode based on 25 an externally input [[control]] signal, wherein the input 26

[[control]] signal may be freely set,

2

27 .	wherein the number of output channels to which the
28	pixel signals are output in the first driving mode and
29	[[set is different from]] the number of output channels to
30	which the pixel signals are output in the second [[set]]
31	driving mode are different.
1	Claim 19 (new): The solid-state image sensing apparatus
2	according to claim 18, further comprising line memories
3	which temporarily store selected and read-out pixel signals
4	of pixels,
5	wherein the control circuit is arranged between the
6	pixels and the line memories and is a transfer switch in
7	which a common control signal is input in every other
8	column.
1	Claim 20 (new): The solid-state image sensing apparatus
2	according to claim 18, wherein the phase shift between the
3	pixel signals of the odd-numbered columns and the pixel
4	signals of the even-numbered columns is 180 degrees.
1	Claim 21 (new): The solid-state image sensing apparatus
2	according to claim 18,
3	wherein the image sensing area is provided with a
4	color filter in Bayer matrix corresponding to the pixels,
5	and
6	in the second driving mode, pixel signals of pixels in
7	the same color phase among color phase codings defined by
8	the color filters are output from the same output channels.
i	Claim 22 (new): The solid-state image sensing apparatus

according to claim 18, wherein in the first and second

- driving modes, there is a channel which can be used in
- ,4 common.
- l Claim 23 (new): The solid-state image sensing apparatus
- 2 according to claim 18, wherein in both the first and second
- driving modes, pixel signals of pixels from m X n pieces in
- 4 the image sensing area are output wherein m and n are
- 5 integers.