Abstract

This document is an exhibition of a LATEX Template. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Contents

1	Section						
	1.1	Subse	ection		. 1		
		1.1.1	Subsubsection		. 4		
		1.1.2	Subsubsection		. (
		1.1.3	Subsubsection		. (
	1.2	Subse	ection		. 11		
		1.2.1	Subsubsection		. 14		
		1.2.2	Subsubsection		. 16		
		1.2.3	Subsubsection		. 19		
	1.3	Subse	ection		. 21		
		1.3.1	Subsubsection		. 24		
		1.3.2	Subsubsection		. 26		
		1.3.3	Subsubsection				
2		Section					
	2.1		ection		_		
		2.1.1	Subsubsection		_		
		2.1.2	Subsubsection				
		2.1.3	Subsubsection		. 39		
	2.2		ection				
		2.2.1	Subsubsection		. 44		
		2.2.2	Subsubsection		. 47		
		2.2.3	Subsubsection		. 49		
	2.3	Subse	ection		. 51		
		2.3.1	Subsubsection		. 54		
		2.3.2	Subsubsection		. 57		
		2.3.3	Subsubsection		. 59		
3	Soo	tion			61		
ა	3 Section 3.1 Subsection						
	5.1	3.1.1	Subsubsection				
		3.1.1					
		0	Subsubsection				
	3.2	3.1.3	Subsubsection				
	3. 2	3.2.1	ection				
		$\frac{3.2.1}{3.2.2}$	Subsubsection Subsubsection	•	. 75		

		3.2.3 Subsubsection	79				
	3.3		82				
		3.3.1 Subsubsection	85				
		3.3.2 Subsubsection	87				
		3.3.3 Subsubsection	89				
\mathbf{A}			-1				
	A.1	Subsection Appendix					
		A.1.1 Subsubsection Appendix	1				
		A.1.2 Subsubsection Appendix					
	A.2	Subsection Appendix	2				
		A.2.1 Subsubsection Appendix	-2				
		A.2.2 Subsubsection Appendix	-2				
В	Section Appendix A-3						
	В.1	Subsection Appendix					
		B.1.1 Subsubsection Appendix					
		B.1.2 Subsubsection Appendix					
	B.2	Subsection Appendix					
		B.2.1 Subsubsection Appendix					
		B.2.2 Subsubsection Appendix	5				
\mathbf{C}	List	of Notation A	-5				
D	List	of Definitions A	-6				
\mathbf{E}	List	of Examples A	-7				
F	List	of Lemmas A	-8				
_			Ŭ				
\mathbf{G}	G List of Theorems						
Н	H List of Corollaries						
Inc	dex	${f A}$ -1	11				

Last updated: 2024-03-10 17:19:26-04:00

1 Section

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

1.1 Subsection

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Definition 1.1 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 1.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 1.2

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 1.1

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 1.1 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 1.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 1.2

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 1.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 1.2 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 1.2.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Exercise 1.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Solution

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

1.1.1 Subsubsection

Definition 1.3 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 1.2

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 1.4

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 1.3

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 1.2 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_a^b f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 1.2

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 1.4

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 1.3

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

JSUDSECTIO

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 1.4 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 1.4.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

1.1.2 Subsubsection

Definition 1.5 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 1.3

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo

Definition 1.6

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 1.5

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 1.3 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Note 1.3

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 1.6

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 1.5

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, $vulputate\ a,\ magna.$

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 1.6 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 1.6.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

1.1.3 Subsubsection

Definition 1.7 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 1.4

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 1.8

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 1.7

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 1.4 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_a^b f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 1.4

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 1.8

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 1.7

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Theorem 1.8 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 1.8.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

1.2 Subsection

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Definition 1.9 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 1.5

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 1.10

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 1.9

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 1.5 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) \, dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 1.5

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

 $^{^{2}}$ This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Remark 1.10

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 1.9

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 1.10 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 1.10.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Exercise 1.2

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla

et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Solution

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

1.2.1 Subsubsection

Definition 1.11 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 1.6

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 1.12

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 1.11

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 1.6 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_a^b f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 1.6

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 1.12

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 1.11

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 1.12 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 1.12.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

1.2.2 Subsubsection

Definition 1.13 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 1.7

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo

Definition 1.14

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 1.13

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 1.7 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) \, dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Note 1.7

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 1.14

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 1.13

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, $vulputate\ a,\ magna.$

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 1.14 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 1.14.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

1.2.3 Subsubsection

Definition 1.15 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 1.8

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 1.16

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 1.15

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 1.8 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_a^b f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x)=f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does *not* depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + Cfor all x in [a, b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x=a and x=b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 1.8

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 1.16

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 1.15

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Theorem 1.16 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, $vulputate\ a,\ magna.$

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. П

Corollary 1.16.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Subsection

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Definition 1.17 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 1.9

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 1.18

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 1.17

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 1.9 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) \, dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 1.9

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

 $^{^{2}}$ This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Remark 1.18

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 1.17

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 1.18 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 1.18.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Exercise 1.3

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla

et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Solution

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

1.3.1 Subsubsection

Definition 1.19 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 1.10

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 1.20

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 1.19

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 1.10 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_a^b f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x)=f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + Cfor all x in [a, b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x=a and x=b is independent of the choice of anti-derivative of f(x) on the interval [a,b].²

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a,b].

Note 1.10

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 1.20

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 1.19

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 1.20 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 1.20.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

1.3.2 Subsubsection

Definition 1.21 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 1.11

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut

Definition 1.22

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 1.21

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 1.11 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x)=f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + Cfor all x in [a, b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x=a and x=b is independent of the choice of anti-derivative of f(x) on the interval [a, b].²

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a,b].

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Note 1.11

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 1.22

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 1.21

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, $vulputate\ a,\ magna.$

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 1.22 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 1.22.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

1.3.3 Subsubsection

Definition 1.23 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 1.12

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 1.24

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 1.23

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 1.12 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_a^b f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x)=f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does *not* depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + Cfor all x in [a, b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x=a and x=b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 1.12

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 1.24

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 1.23

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Theorem 1.24 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 1.24.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

2 Section

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

2.1 Subsection

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Definition 2.1 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut,

placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 2.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut

Definition 2.2

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 2.1

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 2.1 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_a^b f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x)=f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + Cfor all x in [a, b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x=a and x=b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a,b].

Note 2.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 2.2

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 2.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 2.2 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 2.2.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Exercise 2.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Solution

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.1.1 Subsubsection

Definition 2.3 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 2.2

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac,

adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 2.4

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 2.3

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 2.2 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) \, dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Note 2.2

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 2.4

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 2.3

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, $vulputate\ a,\ magna.$

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 2.4 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 2.4.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

2.1.2 Subsubsection

Definition 2.5 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 2.3

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 2.6

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 2.5

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 2.3 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_a^b f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 2.3

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 2.6

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 2.5

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Theorem 2.6 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 2.6.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

2.1.3 Subsubsection

Definition 2.7 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 2.4

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 2.8

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 2.7

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 2.4 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) \, dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 2.4

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 2.8

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Lemma 2.7

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. П

Theorem 2.8 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 2.8.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

2.2Subsection

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Definition 2.9 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 2.5

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 2.10

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 2.9

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 2.5 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x)=f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + Cfor all x in [a, b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x=a and x=b is independent of the choice of anti-derivative of f(x) on the interval [a, b].²

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a,b].

Note 2.5

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 2.10

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 2.9

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. П

Theorem 2.10 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 2.10.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Exercise 2.2

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Solution

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.2.1 Subsubsection

Definition 2.11 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 2.6

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 2.12

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 2.11

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 2.6 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) \, dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Note 2.6

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 2.12

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 2.11

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, $vulputate\ a,\ magna.$

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 2.12 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 2.12.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

2.2.2 Subsubsection

Definition 2.13 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 2.7

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 2.14

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 2.13

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 2.7 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_a^b f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 2.7

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 2.14

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 2.13

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Theorem 2.14 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, $vulputate\ a,\ magna.$

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. П

Corollary 2.14.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

2.2.3 Subsubsection

Definition 2.15 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 2.8

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 2.16

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 2.15

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n.'.

Example 2.8 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_a^b f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x)=f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does *not* depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + Cfor all x in [a, b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x=a and x=b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a,b].

Note 2.8

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 2.16

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Lemma 2.15

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. П

Theorem 2.16 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 2.16.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

2.3Subsection

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Definition 2.17 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 2.9

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 2.18

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 2.17

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 2.9 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x)=f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + Cfor all x in [a, b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x=a and x=b is independent of the choice of anti-derivative of f(x) on the interval [a, b].²

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a,b].

Note 2.9

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 2.18

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 2.17

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. П

Theorem 2.18 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 2.18.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Exercise 2.3

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Solution

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.3.1 Subsubsection

Definition 2.19 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 2.10

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo

Definition 2.20

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 2.19

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 2.10 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) \, dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Note 2.10

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 2.20

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 2.19

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, $vulputate\ a,\ magna.$

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 2.20 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 2.20.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

2.3.2 Subsubsection

Definition 2.21 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 2.11

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 2.22

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 2.21

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 2.11 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_a^b f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 2.11

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 2.22

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 2.21

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Theorem 2.22 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, $vulputate\ a,\ magna.$

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. П

Corollary 2.22.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

2.3.3 Subsubsection

Definition 2.23 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 2.12

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 2.24

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 2.23

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n.'.

Example 2.12 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_a^b f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x)=f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does *not* depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + Cfor all x in [a, b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x=a and x=b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a,b].

Note 2.12

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 2.24

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Lemma 2.23

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. П

Theorem 2.24 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 2.24.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

3 Section

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

3.1Subsection

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Definition 3.1 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 3.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 3.2

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 3.1

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n.'.

Example 3.1 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_a^b f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x)=f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + Cfor all x in [a, b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x=a and x=b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 3.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 3.2

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 3.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id. vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 3.2 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 3.2.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Exercise 3.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Solution

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.1.1 Subsubsection

Definition 3.3 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 3.2

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 3.4

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 3.3

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 3.2 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the

choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 3.2

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 3.4

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 3.3

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 3.4 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 3.4.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

3.1.2 Subsubsection

Definition 3.5 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 3.3

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 3.6

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 3.5

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 3.3 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_a^b f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 3.3

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 3.6

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 3.5

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 3.6 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 3.6.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

3.1.3 Subsubsection

Definition 3.7 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 3.4

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo

Definition 3.8

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 3.7

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 3.4 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) \, dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Note 3.4

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 3.8

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 3.7

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, $vulputate\ a,\ magna.$

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 3.8 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 3.8.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

3.2 Subsection

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Definition 3.9 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 3.5

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo

Definition 3.10

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 3.9

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 3.5 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_a^b f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 3.5

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 3.10

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 3.9

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 3.10 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 3.10.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Exercise 3.2

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Solution

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.2.1 Subsubsection

Definition 3.11 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 3.6

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 3.12

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 3.11

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 3.6 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the

choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + Cfor all x in [a, b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x=a and x=b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a,b].

Note 3.6

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 3.12

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 3.11

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 3.12 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 3.12.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

3.2.2 Subsubsection

Definition 3.13 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 3.7

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Definition 3.14

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 3.13

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 3.7 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 3.7

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 3.14

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 3.13

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 3.14 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 3.14.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

3.2.3 Subsubsection

Definition 3.15 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 3.8

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo

Definition 3.16

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 3.15

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 3.8 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) \, dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Note 3.8

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 3.16

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 3.15

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, $vulputate\ a,\ magna.$

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 3.16 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 3.16.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

3.3 Subsection

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Definition 3.17 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 3.9

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut

Definition 3.18

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 3.17

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 3.9 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_a^b f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x)=f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + Cfor all x in [a, b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x=a and x=b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 3.9

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 3.18

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 3.17

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id. vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 3.18 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 3.18.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Exercise 3.3

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Solution

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.3.1 Subsubsection

Definition 3.19 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 3.10

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo

Definition 3.20

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 3.19

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 3.10 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 3.10

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 3.20

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 3.19

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 3.20 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 3.20.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

3.3.2 Subsubsection

Definition 3.21 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 3.11

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut

Definition 3.22

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 3.21

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 3.11 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_a^b f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

Note 3.11

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 3.22

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 3.21

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 3.22 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 3.22.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

3.3.3 Subsubsection

Definition 3.23 (Defn Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. $\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$ Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$e^{i\pi} + 1 = 0$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. $\int_a^b x^2 dx = \frac{x^3}{3} + C$ Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Notation 3.12

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

$$\int x \, dx = \frac{x^2}{2} + C$$

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo

Definition 3.24

$$\sum_{i=1}^{n} n = \frac{n(n+1)}{2}$$

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Remark 3.23

No environment should ever start with inline- or (especially not) display-mode math. Not only is that bad writing practice but, in the case of starting with display-mode math such as above, blank vertical space will be left before the display-mode math where text is expected to be.

If you don't know what to write, just state some context about the equation or expression with which you intended to start, e.g. 'Given any natural number n:'.

Example 3.12 (This is transcribed from Example 1.3 here)

In calculus, $\int_a^b f(x) dx$ can be computed as

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a),$$

where F(x) is an arbitrary anti-derivative of f(x) on [a,b], i.e., F'(x) = f(x) for all x in [a,b]. This formula for $\int_a^b f(x) \, dx$ involves a choice of anti-derivative for f(x), but the formula does not depend on the choice: every anti-derivative G(x) of f(x) on [a,b] differs from F(x) by a constant, say G(x) = F(x) + C for all x in [a,b], and changing the anti-derivative G(x) does not change the difference of its values at the endpoints:

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

So the difference of the values of an anti-derivative of f(x) at x = a and x = b is independent of the choice of anti-derivative of f(x) on the interval [a, b].

In contrast, the "rule" F(b) + F(a) depends on the choice of anti-derivative of f(x), since

$$G(b) + G(a) = (F(b) + C) + (F(a) + C) = F(b) + F(a) + 2C,$$

which is a new value if $C \neq 0$. Taking differences in an anti-derivative cancels the effect of the undetermined additive constant, so the expression F(b) - F(a) is a well-defined value based on the original input function f(x) and the interval [a, b].

²This is why in physics, potential energy has no intrinsic meaning (the zero level of potential energy can be anywhere), but differences in potential energy are physically meaningful.

Note 3.12

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Remark 3.24

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.

Lemma 3.23

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, $vulputate\ a,\ magna.$

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theorem 3.24 (Thrm Ipsum)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Proof

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Corollary 3.24.1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, $vulputate\ a,\ magna.$

\mathbf{A}

Section Appendix

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

A.1 Subsection Appendix

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

A.1.1 Subsubsection Appendix

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

A.1.2 Subsubsection Appendix

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

A.2Subsection Appendix

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

A.2.1 **Subsubsection Appendix**

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla. malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

A.2.2 Subsubsection Appendix

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

\mathbf{B} Section Appendix

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada portitior diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

|B.1|Subsection Appendix

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Subsubsection Appendix

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

B.1.2 Subsubsection Appendix

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Subsection Appendix

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

B.2.1 Subsubsection Appendix

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Subsubsection Appendix

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

List of Notation

Notation 1.1													 					1
Notation 1.2													 					4
Notation 1.3													 					6
Notation 1.4													 					9
Notation 1.5													 					11
Notation 1.6													 					14
Notation 1.7													 					16
Notation 1.8													 					19
Notation 1.9													 					21
Notation 1.10													 					24
Notation 1.11													 					26
Notation 1.12													 					29
Notation 2.1													 					32
Notation 2.2													 					34
Notation 2.3													 					37
Notation 2.4													 					39
Notation 2.5													 					42
Notation 2.6													 					44
Notation 2.7													 					47
Notation 2.8													 					49
Notation 2.9													 					52
Notation 2.10													 					54
Notation 2.11													 					57
Notation 2.12													 					59
Notation 3.1													 					62
Notation 3.2													 					65
Notation 3.3													 					67
Notation 3.4													 					69
Notation 3.5													 					72
Notation 3.6													 					75
Notation 3.7													 					77
Notation 3.8													 					79
Notation 3.9													 					82
Notation 3.10													 					85
Notation 3.11																		87

51

52

54

55

Definition 3.2	Definition 2.21	Defn Ipsum						 	 		 				. 57
Definition 3.24	Definition 2.22	2						 	 		 				. 57
Definition 3.1 Defn Ipsum	Definition 2.23	B Defn Ipsum						 	 		 				. 59
Definition 3.2	Definition 2.24	1						 	 		 				. 59
Definition 3.3 Defn Ipsum	Definition 3.1	Defn Ipsum						 	 		 		 		. 62
Definition 3.4	Definition 3.2							 	 		 		 		. 62
Definition 3.5 Defn Ipsum	Definition 3.3	Defn Ipsum						 	 		 				. 65
Definition 3.6 66 Definition 3.7 Defin Ipsum 66 Definition 3.8 76 Definition 3.9 Defn Ipsum 75 Definition 3.10 Defn Ipsum 76 Definition 3.11 Defn Ipsum 77 Definition 3.12 76 Definition 3.13 Defn Ipsum 77 Definition 3.15 Defn Ipsum 77 Definition 3.16 77 Definition 3.17 Defn Ipsum 77 Definition 3.18 77 Definition 3.17 Defn Ipsum 78 Definition 3.18 88 Definition 3.19 Defn Ipsum 88 Definition 3.19 Defn Ipsum 88 Definition 3.20 88 Definition 3.21 Defn Ipsum 88 Definition 3.22 Defn Ipsum 88 Definition 3.23 Defn Ipsum 88 Definition 3.24 89 Definition 3.24 90 Definition 3.25 Defn Ipsum 88 Definition 3.26 18 Definition 3.27 18 Definition 3.28 18 Definition 3.29 18 Definition 3.20 18 Definition 3.21 Defn Ipsum 88 Definition 3.22 19 Definition 3.23 Defn Ipsum 88 Definition 3.24 90 Definition 3.25 18 Definition 3.26 18 Definition 3.27 18 Definition 3.28 18 Definition 3.29 18 Definition 3.20 18 Definition 3.21 19 Definition 3.22 10 Definition 3.23 10 Definition 3.24 18 Definition 3.25 18 Definition 3.26 18 Definition 3.27 18 Definition 3.28 18 Definition 3.29 18 Definition 3.10 18 Definition 3.1	Definition 3.4							 	 		 		 		. 65
Definition 3.7 Defn Ipsum	Definition 3.5	Defn Ipsum						 	 		 		 		. 67
Definition 3.8	Definition 3.6							 	 		 		 		. 67
Definition 3.9 Defn Ipsum	Definition 3.7	Defn Ipsum						 	 		 		 		. 69
Definition 3.10	Definition 3.8							 	 		 		 		. 70
Definition 3.11 Defn Ipsum 75 Definition 3.12 Defn Ipsum 77 77 77 77 78 78 78 7	Definition 3.9														
Definition 3.12 75 Definition 3.13 Defn Ipsum 77 Definition 3.14 77 Definition 3.15 Defn Ipsum 75 Definition 3.16 88 Definition 3.17 Defn Ipsum 85 Definition 3.19 Defn Ipsum 85 Definition 3.20 85 Definition 3.21 Defn Ipsum 85 Definition 3.22 Defn Ipsum 85 Definition 3.23 Defn Ipsum 86 Definition 3.24 86 Definition 3.24 96 E List of Examples 87 Example 1.1 This is transcribed from Example 1.3 here 2 Example 1.2 This is transcribed from Example 1.3 here 5 Example 1.3 This is transcribed from Example 1.3 here 5 Example 1.4 This is transcribed from Example 1.3 here 9 Example 1.5 This is transcribed from Example 1.3 here 9 Example 1.6 This is transcribed from Example 1.3 here 12 Example 1.7 This is transcribed from Example 1.3 here 15 Example 1.8 This is transcribed from Example 1.3 here 17 Example 1.9 This is transcribed from Example 1.3 here 22 Example 1.10 This is transcribed f	Definition 3.10)						 	 		 		 		. 72
Definition 3.13 Defn Ipsum 77 Definition 3.14 77 Definition 3.15 Defn Ipsum 78 Definition 3.16 88 Definition 3.17 Defn Ipsum 85 Definition 3.19 Defn Ipsum 85 Definition 3.20 88 Definition 3.21 Defn Ipsum 85 Definition 3.22 Defn Ipsum 85 Definition 3.23 Defn Ipsum 86 Definition 3.24 86 E List of Examples 87 Example 1.1 This is transcribed from Example 1.3 here 2 Example 1.2 This is transcribed from Example 1.3 here 2 Example 1.3 This is transcribed from Example 1.3 here 3 Example 1.4 This is transcribed from Example 1.3 here 4 Example 1.5 This is transcribed from Example 1.3 here 12 Example 1.6 This is transcribed from Example 1.3 here 15 Example 1.7 This is transcribed from Example 1.3 here 15 Example 1.8 This is transcribed from Example 1.3 here 16 Example 1.9 This is transcribed from Example 1.3 here 22 Example 1.10 This is transcribed from Example 1.3 here 22 Example 1.10 This is transcribed from Example 1.3 here	Definition 3.11	Defn Ipsum						 	 		 		 		. 75
Definition 3.14	Definition 3.12	2						 	 		 		 		. 75
Definition 3.15 Defn Ipsum 75 Definition 3.16 88 Definition 3.17 Defn Ipsum 82 Definition 3.19 Defn Ipsum 85 Definition 3.20 85 Definition 3.21 Defn Ipsum 85 Definition 3.22 Definition 3.23 Defn Ipsum 86 Definition 3.24 86 Definition 3.24 90 E List of Examples 26 Example 1.1 This is transcribed from Example 1.3 here 27 Example 1.2 This is transcribed from Example 1.3 here 28 Example 1.3 This is transcribed from Example 1.3 here 29 Example 1.4 This is transcribed from Example 1.3 here 29 Example 1.5 This is transcribed from Example 1.3 here 29 Example 1.6 This is transcribed from Example 1.3 here 12 Example 1.7 This is transcribed from Example 1.3 here 12 Example 1.8 This is transcribed from Example 1.3 here 12 Example 1.9 This is transcribed from Example 1.3 here 21 Example 1.10 This is transcribed from Example 1.3 here 22 Example 1.10 This is transcribed from Example 1.3 here 25 Example 2.1 This is transcribed from Example 1.3 here 27 <t< td=""><td>Definition 3.13</td><td>B Defn Ipsum</td><td></td><td></td><td></td><td></td><td></td><td> </td><td> </td><td></td><td> </td><td></td><td> </td><td></td><td>. 77</td></t<>	Definition 3.13	B Defn Ipsum						 	 		 		 		. 77
Definition 3.16 86 Definition 3.17 Defn Ipsum 85 Definition 3.18 85 Definition 3.20 85 Definition 3.21 Defn Ipsum 85 Definition 3.22 85 Definition 3.23 Defn Ipsum 86 Definition 3.24 86 Definition 3.24 96 E List of Examples Example 1.1 This is transcribed from Example 1.3 here 2 Example 1.2 This is transcribed from Example 1.3 here 5 Example 1.3 This is transcribed from Example 1.3 here 5 Example 1.4 This is transcribed from Example 1.3 here 6 Example 1.5 This is transcribed from Example 1.3 here 12 Example 1.6 This is transcribed from Example 1.3 here 15 Example 1.7 This is transcribed from Example 1.3 here 17 Example 1.9 This is transcribed from Example 1.3 here 12 Example 1.10 This is transcribed from Example 1.3 here 22 Example 1.11 This is transcribed from Example 1.3 here 22 Example 2.1 This is transcribed from Example 1.3 here 23 Example 2.2 This is transcribed from Example 1.3 here 25 Example 2.2 This is transcribed fro	Definition 3.14	1						 	 		 		 		. 77
Definition 3.17 Defn Ipsum 85 Definition 3.18 85 Definition 3.19 Defn Ipsum 85 Definition 3.20 85 Definition 3.21 Defn Ipsum 86 Definition 3.22 Defn Ipsum 86 Definition 3.23 Defn Ipsum 88 Definition 3.24 96 E List of Examples 96 Example 1.1 This is transcribed from Example 1.3 here 2 Example 1.2 This is transcribed from Example 1.3 here 5 Example 1.3 This is transcribed from Example 1.3 here 6 Example 1.4 This is transcribed from Example 1.3 here 1 Example 1.5 This is transcribed from Example 1.3 here 1 Example 1.6 This is transcribed from Example 1.3 here 1 Example 1.7 This is transcribed from Example 1.3 here 1 Example 1.9 This is transcribed from Example 1.3 here 1 Example 1.10 This is transcribed from Example 1.3 here 2 Example 1.11 This is transcribed from Example 1.3 here 2 Example 2.1 This is transcribed from Example 1.3 here 2 Example 2.2 This is transcribed from Example 1.3 here 2 Example 2.2 This is transcribed from Example 1.3 here 2 <td>Definition 3.15</td> <td></td>	Definition 3.15														
Definition 3.17 Defn Ipsum 85 Definition 3.18 85 Definition 3.19 Defn Ipsum 85 Definition 3.20 85 Definition 3.21 Defn Ipsum 86 Definition 3.22 Defn Ipsum 86 Definition 3.23 Defn Ipsum 88 Definition 3.24 96 E List of Examples 96 Example 1.1 This is transcribed from Example 1.3 here 2 Example 1.2 This is transcribed from Example 1.3 here 5 Example 1.3 This is transcribed from Example 1.3 here 6 Example 1.4 This is transcribed from Example 1.3 here 1 Example 1.5 This is transcribed from Example 1.3 here 1 Example 1.6 This is transcribed from Example 1.3 here 1 Example 1.7 This is transcribed from Example 1.3 here 1 Example 1.9 This is transcribed from Example 1.3 here 1 Example 1.10 This is transcribed from Example 1.3 here 2 Example 1.11 This is transcribed from Example 1.3 here 2 Example 2.1 This is transcribed from Example 1.3 here 2 Example 2.2 This is transcribed from Example 1.3 here 2 Example 2.2 This is transcribed from Example 1.3 here 2 <td>Definition 3.16</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td> </td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td>. 80</td>	Definition 3.16	3						 	 		 				. 80
Definition 3.19 Defn Ipsum 85 Definition 3.20 Defn Ipsum 85 Definition 3.21 Defn Ipsum 85 Definition 3.22 Defn Ipsum 85 Definition 3.23 Defn Ipsum 86 Definition 3.24 90 Example 1.1 This is transcribed from Example 1.3 here 2 Example 1.2 This is transcribed from Example 1.3 here 5 Example 1.3 This is transcribed from Example 1.3 here 5 Example 1.4 This is transcribed from Example 1.3 here 9 Example 1.5 This is transcribed from Example 1.3 here 9 Example 1.6 This is transcribed from Example 1.3 here 12 Example 1.7 This is transcribed from Example 1.3 here 15 Example 1.8 This is transcribed from Example 1.3 here 15 Example 1.10 This is transcribed from Example 1.3 here 25 Example 1.11 This is transcribed from Example 1.3 here 25 Example 2.1 This is transcribed from Example 1.3 here 26 Example 2.2 This is transcribed from Example 1.3 here 35 Example 2.2 This is transcribed from Example 1.3 here 36 Example 2.3 This is transcribed from Example 1.3 here 36 Example 2.3 This is transcribed from Example 1.3 here <t< td=""><td></td><td>Defn Ipsum</td><td></td><td></td><td></td><td></td><td></td><td> </td><td> </td><td></td><td> </td><td></td><td> </td><td></td><td>. 82</td></t<>		Defn Ipsum						 	 		 		 		. 82
Definition 3.19 Defn Ipsum 85 Definition 3.20 Defn Ipsum 87 Definition 3.21 Defn Ipsum 87 Definition 3.22 Defn Ipsum 88 Definition 3.23 Defn Ipsum 89 Definition 3.24 90 90 Example 1.1 This is transcribed from Example 1.3 here 2 Example 1.2 This is transcribed from Example 1.3 here 5 Example 1.3 This is transcribed from Example 1.3 here 7 Example 1.4 This is transcribed from Example 1.3 here 9 Example 1.5 This is transcribed from Example 1.3 here 9 Example 1.6 This is transcribed from Example 1.3 here 12 Example 1.7 This is transcribed from Example 1.3 here 15 Example 1.8 This is transcribed from Example 1.3 here 15 Example 1.9 This is transcribed from Example 1.3 here 25 Example 1.10 This is transcribed from Example 1.3 here 25 Example 2.1 This is transcribed from Example 1.3 here 26 Example 2.2 This is transcribed from Example 1.3 here 26 Example 2.2 This is transcribed from Example 1.3 here 36 Example 2.3 This is transcribed from Example 1.3 here 36 Example 2.3 This is transcribed from Example 1.3 here	Definition 3.18	3						 	 		 		 		. 82
Definition 3.21 Defn Ipsum 87 Definition 3.22 Defn Ipsum 88 Definition 3.23 Defn Ipsum 89 Definition 3.24 90 Example 1.1 This is transcribed from Example 1.3 here 2 Example 1.2 This is transcribed from Example 1.3 here 5 Example 1.3 This is transcribed from Example 1.3 here 5 Example 1.4 This is transcribed from Example 1.3 here 9 Example 1.5 This is transcribed from Example 1.3 here 12 Example 1.6 This is transcribed from Example 1.3 here 15 Example 1.7 This is transcribed from Example 1.3 here 15 Example 1.8 This is transcribed from Example 1.3 here 15 Example 1.9 This is transcribed from Example 1.3 here 25 Example 1.10 This is transcribed from Example 1.3 here 25 Example 2.1 This is transcribed from Example 1.3 here 26 Example 2.1 This is transcribed from Example 1.3 here 27 Example 2.2 This is transcribed from Example 1.3 here 26 Example 2.3 This is transcribed from Example 1.3 here 37 Example 2.4 This is transcribed from Example 1.3 here 36 Example 2.3 This is transcribed from Example 1.3 here 37 Example 2.4 This	Definition 3.19	Defn Ipsum						 	 		 		 		. 85
Definition 3.22 87 Definition 3.23 Defn Ipsum 88 Definition 3.24 90 E List of Examples 90 Example 1.1 This is transcribed from Example 1.3 here 2 Example 1.2 This is transcribed from Example 1.3 here 5 Example 1.3 This is transcribed from Example 1.3 here 7 Example 1.4 This is transcribed from Example 1.3 here 9 Example 1.5 This is transcribed from Example 1.3 here 12 Example 1.6 This is transcribed from Example 1.3 here 15 Example 1.7 This is transcribed from Example 1.3 here 15 Example 1.8 This is transcribed from Example 1.3 here 15 Example 1.9 This is transcribed from Example 1.3 here 25 Example 1.10 This is transcribed from Example 1.3 here 25 Example 1.11 This is transcribed from Example 1.3 here 26 Example 2.1 This is transcribed from Example 1.3 here 26 Example 2.2 This is transcribed from Example 1.3 here 36 Example 2.3 This is transcribed from Example 1.3 here 37 Example 2.4 This is transcribed from Example 1.3 here 36 Example 2.3 This is transcribed from Example 1.3 here 37 Example 2.4 This is transcribed fro	Definition 3.20)						 	 		 		 		. 85
Definition 3.23 Defn Ipsum Definition 3.24 90 E List of Examples Example 1.1 This is transcribed from Example 1.3 here 5 Example 1.2 This is transcribed from Example 1.3 here 7 Example 1.3 This is transcribed from Example 1.3 here 7 Example 1.4 This is transcribed from Example 1.3 here 9 Example 1.5 This is transcribed from Example 1.3 here 9 Example 1.6 This is transcribed from Example 1.3 here 9 Example 1.7 This is transcribed from Example 1.3 here 9 Example 1.8 This is transcribed from Example 1.3 here 9 Example 1.9 This is transcribed from Example 1.3 here 9 Example 1.10 This is transcribed from Example 1.3 here 9 Example 1.11 This is transcribed from Example 1.3 here 9 Example 1.12 This is transcribed from Example 1.3 here 9 Example 1.12 This is transcribed from Example 1.3 here 9 Example 2.1 This is transcribed from Example 1.3 here 9 Example 2.2 This is transcribed from Example 1.3 here 9 Example 2.3 This is transcribed from Example 1.3 here 9 Example 2.4 This is transcribed from Example 1.3 here 9 Example 2.5 This is transcribed from Example 1.3 here 9 Example 2.6 This is transcribed from Example 1.3 here 9 Example 2.7 This is transcribed from Example 1.3 here 9 Example 2.8 This is transcribed from Example 1.3 here 9 Example 2.9 This is transcribed from Example 1.3 here 9 Example 2.1 This is transcribed from Example 1.3 here 9 Example 2.2 This is transcribed from Example 1.3 here 9 Example 2.3 This is transcribed from Example 1.3 here 9 Example 2.4 This is transcribed from Example 1.3 here 9 Example 2.5 This is transcribed from Example 1.3 here 9 Example 2.6 This is transcribed from Example 1.3 here 9 Example 2.7 This is transcribed from Example 1.3 here 9 Example 2.8 This is transcribed from Example 1.3 here 9 Example 2.9 This is transcribed from Example 1.3 here 9 Example 2.1 This is transcribed from Example 1.3 here 9 Example 2.2 This is transcribed from Example 1.3 here 9 Example 2.3 This is transcribed from Example 1.3 here 9 Example 2.4 This is transcribed from															
Example 1.1 This is transcribed from Example 1.3 here Example 1.2 This is transcribed from Example 1.3 here Example 1.3 This is transcribed from Example 1.3 here Example 1.4 This is transcribed from Example 1.3 here Example 1.5 This is transcribed from Example 1.3 here Example 1.6 This is transcribed from Example 1.3 here Example 1.7 This is transcribed from Example 1.3 here Example 1.8 This is transcribed from Example 1.3 here Example 1.9 This is transcribed from Example 1.3 here Example 1.10 This is transcribed from Example 1.3 here Example 1.11 This is transcribed from Example 1.3 here Example 1.12 This is transcribed from Example 1.3 here Example 1.12 This is transcribed from Example 1.3 here Example 2.1 This is transcribed from Example 1.3 here Example 2.2 This is transcribed from Example 1.3 here Example 2.3 This is transcribed from Example 1.3 here Example 2.4 This is transcribed from Example 1.3 here Example 2.5 This is transcribed from Example 1.3 here Example 2.6 This is transcribed from Example 1.3 here 2.7 This is transcribed from Example 1.3 here 2.8 Example 2.9 This is transcribed from Example 1.3 here 2.9 Example 2.1 This is transcribed from Example 1.3 here 2.0 This is transcribed from Example 1.3 here 2.1 This is transcribed from Example 1.3 here 2.2 This is transcribed from Example 1.3 here 2.3 This is transcribed from Example 1.3 here 2.4 This is transcribed from Example 1.3 here	Definition 3.22	2						 	 		 				. 87
Example 1.1 This is transcribed from Example 1.3 here Example 1.2 This is transcribed from Example 1.3 here Example 1.3 This is transcribed from Example 1.3 here Example 1.4 This is transcribed from Example 1.3 here Example 1.5 This is transcribed from Example 1.3 here Example 1.6 This is transcribed from Example 1.3 here Example 1.7 This is transcribed from Example 1.3 here Example 1.8 This is transcribed from Example 1.3 here Example 1.9 This is transcribed from Example 1.3 here Example 1.10 This is transcribed from Example 1.3 here Example 1.11 This is transcribed from Example 1.3 here Example 1.12 This is transcribed from Example 1.3 here Example 2.1 This is transcribed from Example 1.3 here Example 2.2 This is transcribed from Example 1.3 here Example 2.3 This is transcribed from Example 1.3 here 32 Example 2.4 This is transcribed from Example 1.3 here 33 Example 2.4 This is transcribed from Example 1.3 here 34 Example 2.4 This is transcribed from Example 1.3 here 35 Example 2.4 This is transcribed from Example 1.3 here 36 Example 2.4 This is transcribed from Example 1.3 here 37 Example 2.4 This is transcribed from Example 1.3 here 38 Example 2.4 This is transcribed from Example 1.3 here 39 Example 2.4 This is transcribed from Example 1.3 here 30 Example 2.4 This is transcribed from Example 1.3 here 31 Example 2.4 This is transcribed from Example 1.3 here 32 Example 2.4 This is transcribed from Example 1.3 here 35 Example 2.4 This is transcribed from Example 1.3 here															
Example 1.1 This is transcribed from Example 1.3 here Example 1.2 This is transcribed from Example 1.3 here Example 1.3 This is transcribed from Example 1.3 here Example 1.4 This is transcribed from Example 1.3 here Example 1.5 This is transcribed from Example 1.3 here Example 1.6 This is transcribed from Example 1.3 here Example 1.7 This is transcribed from Example 1.3 here Example 1.8 This is transcribed from Example 1.3 here Example 1.9 This is transcribed from Example 1.3 here Example 1.10 This is transcribed from Example 1.3 here Example 1.11 This is transcribed from Example 1.3 here Example 1.12 This is transcribed from Example 1.3 here Example 2.1 This is transcribed from Example 1.3 here Example 2.1 This is transcribed from Example 1.3 here Example 2.2 This is transcribed from Example 1.3 here Example 2.3 This is transcribed from Example 1.3 here Example 2.3 This is transcribed from Example 1.3 here Example 2.4 This is transcribed from Example 1.3 here 35 Example 2.4 This is transcribed from Example 1.3 here 36 37 38 39 30 30 30 30 30 30 30 30 30	Definition 3.24	1						 	 		 				. 90
Example 1.1 This is transcribed from Example 1.3 here Example 1.2 This is transcribed from Example 1.3 here Example 1.3 This is transcribed from Example 1.3 here Example 1.4 This is transcribed from Example 1.3 here Example 1.5 This is transcribed from Example 1.3 here Example 1.6 This is transcribed from Example 1.3 here Example 1.7 This is transcribed from Example 1.3 here Example 1.8 This is transcribed from Example 1.3 here Example 1.9 This is transcribed from Example 1.3 here Example 1.10 This is transcribed from Example 1.3 here Example 1.11 This is transcribed from Example 1.3 here Example 1.12 This is transcribed from Example 1.3 here Example 2.1 This is transcribed from Example 1.3 here Example 2.1 This is transcribed from Example 1.3 here Example 2.2 This is transcribed from Example 1.3 here Example 2.3 This is transcribed from Example 1.3 here Example 2.3 This is transcribed from Example 1.3 here Example 2.4 This is transcribed from Example 1.3 here 35 Example 2.4 This is transcribed from Example 1.3 here 36 37 38 39 30 30 30 30 30 30 30 30 30															
Example 1.1 This is transcribed from Example 1.3 here Example 1.2 This is transcribed from Example 1.3 here Example 1.3 This is transcribed from Example 1.3 here Example 1.4 This is transcribed from Example 1.3 here Example 1.5 This is transcribed from Example 1.3 here Example 1.6 This is transcribed from Example 1.3 here Example 1.7 This is transcribed from Example 1.3 here Example 1.8 This is transcribed from Example 1.3 here Example 1.9 This is transcribed from Example 1.3 here Example 1.10 This is transcribed from Example 1.3 here Example 1.11 This is transcribed from Example 1.3 here Example 1.12 This is transcribed from Example 1.3 here Example 2.1 This is transcribed from Example 1.3 here Example 2.1 This is transcribed from Example 1.3 here Example 2.2 This is transcribed from Example 1.3 here Example 2.3 This is transcribed from Example 1.3 here Example 2.3 This is transcribed from Example 1.3 here Example 2.4 This is transcribed from Example 1.3 here 35 Example 2.4 This is transcribed from Example 1.3 here 36 37 38 39 30 30 30 30 30 30 30 30 30	E List o	of Examples													
Example 1.2 This is transcribed from Example 1.3 here Example 1.3 This is transcribed from Example 1.3 here Example 1.4 This is transcribed from Example 1.3 here Example 1.5 This is transcribed from Example 1.3 here Example 1.6 This is transcribed from Example 1.3 here Example 1.7 This is transcribed from Example 1.3 here Example 1.8 This is transcribed from Example 1.3 here Example 1.9 This is transcribed from Example 1.3 here Example 1.10 This is transcribed from Example 1.3 here Example 1.11 This is transcribed from Example 1.3 here Example 2.1 This is transcribed from Example 1.3 here Example 2.1 This is transcribed from Example 1.3 here Example 2.2 This is transcribed from Example 1.3 here Example 2.3 This is transcribed from Example 1.3 here Example 2.3 This is transcribed from Example 1.3 here Example 2.4 This is transcribed from Example 1.3 here Example 2.3 This is transcribed from Example 1.3 here Example 2.4 This is transcribed from Example 1.3 here Example 2.5 This is transcribed from Example 1.3 here Example 2.6 This is transcribed from Example 1.3 here Example 2.7 This is transcribed from Example 1.3 here Example 2.8 This is transcribed from Example 1.3 here Example 2.9 This is transcribed from Example 1.3 here Example 2.1 This is transcribed from Example 1.3 here Example 2.2 This is transcribed from Example 1.3 here		or Examples													
Example 1.2 This is transcribed from Example 1.3 here Example 1.3 This is transcribed from Example 1.3 here Example 1.4 This is transcribed from Example 1.3 here Example 1.5 This is transcribed from Example 1.3 here Example 1.6 This is transcribed from Example 1.3 here Example 1.7 This is transcribed from Example 1.3 here Example 1.8 This is transcribed from Example 1.3 here Example 1.9 This is transcribed from Example 1.3 here Example 1.10 This is transcribed from Example 1.3 here Example 1.11 This is transcribed from Example 1.3 here Example 2.1 This is transcribed from Example 1.3 here Example 2.1 This is transcribed from Example 1.3 here Example 2.2 This is transcribed from Example 1.3 here Example 2.3 This is transcribed from Example 1.3 here Example 2.3 This is transcribed from Example 1.3 here Example 2.4 This is transcribed from Example 1.3 here Example 2.3 This is transcribed from Example 1.3 here Example 2.4 This is transcribed from Example 1.3 here Example 2.5 This is transcribed from Example 1.3 here Example 2.6 This is transcribed from Example 1.3 here Example 2.7 This is transcribed from Example 1.3 here Example 2.8 This is transcribed from Example 1.3 here Example 2.9 This is transcribed from Example 1.3 here Example 2.1 This is transcribed from Example 1.3 here Example 2.2 This is transcribed from Example 1.3 here	Example 1.1	This is transcribed	l from	Exa	mple	e 1.3	here		 		 				. 2
Example 1.3 This is transcribed from Example 1.3 here Example 1.4 This is transcribed from Example 1.3 here Example 1.5 This is transcribed from Example 1.3 here Example 1.6 This is transcribed from Example 1.3 here Example 1.7 This is transcribed from Example 1.3 here Example 1.8 This is transcribed from Example 1.3 here Example 1.9 This is transcribed from Example 1.3 here Example 1.10 This is transcribed from Example 1.3 here Example 1.11 This is transcribed from Example 1.3 here Example 2.1 This is transcribed from Example 1.3 here Example 2.2 This is transcribed from Example 1.3 here Example 2.3 This is transcribed from Example 1.3 here Example 2.4 This is transcribed from Example 1.3 here Example 2.5 This is transcribed from Example 1.3 here Example 2.6 This is transcribed from Example 1.3 here Example 2.7 This is transcribed from Example 1.3 here Example 2.8 This is transcribed from Example 1.3 here Example 2.9 This is transcribed from Example 1.3 here Example 2.1 This is transcribed from Example 1.3 here Example 2.2 This is transcribed from Example 1.3 here Example 2.3 This is transcribed from Example 1.3 here Example 2.4 This is transcribed from Example 1.3 here	-														
Example 1.4 This is transcribed from Example 1.3 here Example 1.5 This is transcribed from Example 1.3 here Example 1.6 This is transcribed from Example 1.3 here Example 1.7 This is transcribed from Example 1.3 here Example 1.8 This is transcribed from Example 1.3 here Example 1.9 This is transcribed from Example 1.3 here Example 1.10 This is transcribed from Example 1.3 here Example 1.11 This is transcribed from Example 1.3 here Example 1.12 This is transcribed from Example 1.3 here Example 2.1 This is transcribed from Example 1.3 here Example 2.2 This is transcribed from Example 1.3 here Example 2.3 This is transcribed from Example 1.3 here Example 2.4 This is transcribed from Example 1.3 here 35 36 37 38 39 30 30 30 31 31 32 34 35 36 37 38 38 39 30 30 30 30 30 30 30 30 30					-				 		 				. 7
Example 1.5This is transcribed from Example 1.3 here12Example 1.6This is transcribed from Example 1.3 here15Example 1.7This is transcribed from Example 1.3 here17Example 1.8This is transcribed from Example 1.3 here19Example 1.9This is transcribed from Example 1.3 here25Example 1.10This is transcribed from Example 1.3 here25Example 1.11This is transcribed from Example 1.3 here27Example 1.12This is transcribed from Example 1.3 here29Example 2.1This is transcribed from Example 1.3 here35Example 2.2This is transcribed from Example 1.3 here35Example 2.3This is transcribed from Example 1.3 here35Example 2.4This is transcribed from Example 1.3 here37Example 2.4This is transcribed from Example 1.3 here37Example 2.4This is transcribed from Example 1.3 here37	•				_				 		 				. (
Example 1.6This is transcribed from Example 1.3 here15Example 1.7This is transcribed from Example 1.3 here17Example 1.8This is transcribed from Example 1.3 here19Example 1.9This is transcribed from Example 1.3 here22Example 1.10This is transcribed from Example 1.3 here25Example 1.11This is transcribed from Example 1.3 here26Example 1.12This is transcribed from Example 1.3 here27Example 2.1This is transcribed from Example 1.3 here35Example 2.2This is transcribed from Example 1.3 here35Example 2.3This is transcribed from Example 1.3 here35Example 2.4This is transcribed from Example 1.3 here36Example 2.4This is transcribed from Example 1.3 here37Example 2.4This is transcribed from Example 1.3 here37Example 2.4This is transcribed from Example 1.3 here37	Example 1.5								 		 				
Example 1.8This is transcribed from Example 1.3 here19Example 1.9This is transcribed from Example 1.3 here25Example 1.10This is transcribed from Example 1.3 here25Example 1.11This is transcribed from Example 1.3 here27Example 1.12This is transcribed from Example 1.3 here29Example 2.1This is transcribed from Example 1.3 here32Example 2.2This is transcribed from Example 1.3 here35Example 2.3This is transcribed from Example 1.3 here36Example 2.4This is transcribed from Example 1.3 here37Example 2.4This is transcribed from Example 1.3 here36Example 2.4This is transcribed from Example 1.3 here37	Example 1.6	This is transcribed	l from	Exa	$\operatorname{mpl}_{\epsilon}$	= 1.3	here		 		 				. 15
Example 1.8This is transcribed from Example 1.3 here19Example 1.9This is transcribed from Example 1.3 here25Example 1.10This is transcribed from Example 1.3 here25Example 1.11This is transcribed from Example 1.3 here27Example 1.12This is transcribed from Example 1.3 here29Example 2.1This is transcribed from Example 1.3 here32Example 2.2This is transcribed from Example 1.3 here35Example 2.3This is transcribed from Example 1.3 here37Example 2.4This is transcribed from Example 1.3 here37Example 2.4This is transcribed from Example 1.3 here40	*				-										
Example 1.9 This is transcribed from Example 1.3 here22Example 1.10 This is transcribed from Example 1.3 here25Example 1.11 This is transcribed from Example 1.3 here27Example 1.12 This is transcribed from Example 1.3 here29Example 2.1 This is transcribed from Example 1.3 here32Example 2.2 This is transcribed from Example 1.3 here35Example 2.3 This is transcribed from Example 1.3 here35Example 2.4 This is transcribed from Example 1.3 here36Example 2.4 This is transcribed from Example 1.3 here37Example 2.4 This is transcribed from Example 1.3 here40	-				_				 		 				. 19
Example 1.10 This is transcribed from Example 1.3 here25Example 1.11 This is transcribed from Example 1.3 here27Example 1.12 This is transcribed from Example 1.3 here29Example 2.1 This is transcribed from Example 1.3 here35Example 2.2 This is transcribed from Example 1.3 here35Example 2.3 This is transcribed from Example 1.3 here35Example 2.4 This is transcribed from Example 1.3 here36Example 2.4 This is transcribed from Example 1.3 here36					_				 		 				
Example 1.11 This is transcribed from Example 1.3 here27Example 1.12 This is transcribed from Example 1.3 here29Example 2.1 This is transcribed from Example 1.3 here32Example 2.2 This is transcribed from Example 1.3 here35Example 2.3 This is transcribed from Example 1.3 here37Example 2.4 This is transcribed from Example 1.3 here37Example 2.4 This is transcribed from Example 1.3 here40	-				-										
Example 1.12 This is transcribed from Example 1.3 here29Example 2.1 This is transcribed from Example 1.3 here32Example 2.2 This is transcribed from Example 1.3 here35Example 2.3 This is transcribed from Example 1.3 here37Example 2.4 This is transcribed from Example 1.3 here37Example 2.4 This is transcribed from Example 1.3 here40	-				_										
Example 2.1 This is transcribed from Example 1.3 here 32 Example 2.2 This is transcribed from Example 1.3 here 35 Example 2.3 This is transcribed from Example 1.3 here 37 Example 2.4 This is transcribed from Example 1.3 here 40	-				_										
Example 2.2 This is transcribed from Example 1.3 here 35 Example 2.3 This is transcribed from Example 1.3 here 37 Example 2.4 This is transcribed from Example 1.3 here 40															
Example 2.3 This is transcribed from Example 1.3 here	-				_										
Example 2.4 This is transcribed from Example 1.3 here	•				_										
	•				_										
	Example 2.5														

Example 2.6	This is to	ranscribed	from	Exan	iple 1	1.3 h e	ere	 		 	 				 		 45
Example 2.7	This is to	ranscribed	from	Exan	iple 1	1.3 h e	ere	 		 	 				 		 47
Example 2.8	This is to	ranscribed	from	Exan	iple 1	1.3 h e	ere	 		 	 				 		 50
Example 2.9		ranscribed			_			 		 	 				 		 52
Example 2.10					_			 		 	 				 		 55
Example 2.11		ranscribed			_			 		 	 				 		 . 57
Example 2.12					_			 		 	 				 		 60
Example 3.1	This is to	ranscribed	from	Exan	iple 1	1.3 h e	ere	 		 	 				 		 63
Example 3.2	This is to	ranscribed	from	Exan	iple 1	1.3 h e	ere	 		 	 				 		 65
Example 3.3	This is to	ranscribed	from	Exan	iple 1	1.3 h e	ere	 		 	 				 		 68
Example 3.4	This is to	ranscribed	from	Exan	iple 1	1.3 h e	ere	 		 	 				 		 70
Example 3.5	This is to	ranscribed	from	Exan	iple 1	1.3 h e	ere	 		 	 				 		 . 73
Example 3.6	This is to	ranscribed	from	Exan	iple i	1.3 h e	ere	 		 	 				 		 75
Example 3.7	This is to	ranscribed	from	Exan	iple 1	1.3 h e	ere	 		 	 				 		 . 78
Example 3.8	This is to	ranscribed	from	Exan	nple 1	1.3 h e	ere	 		 	 				 		 . 80
Example 3.9	This is to	ranscribed	from	Exan	nple 1	1.3 h e	ere	 		 	 				 		 . 83
Example 3.10	This is to	ranscribed	from	Exan	iple 1	1.3 h e	ere	 		 	 				 		 . 85
Example 3.11	This is to	ranscribed	from	Exan	iple 1	1.3 h e	ere	 		 	 				 		 . 88
Example 3.12	This is to	ranscribed	from	Exan	nple 1	1.3 h e	ere	 		 	 				 		 90
	of Lem	nmas															
Lemma 1.1																	_
Lemma 1.3																	_
Lemma 1.5																	_
Lemma 1.7																	-
Lemma 1.9 Lemma 1.11								 	-		 						
Lemma 1.11 Lemma 1.13																	10
Lemma 1.15																	
Lemma 1.15																	
Lemma 1.17								 			 			-			 ~ ~
Lemma 1.19																	•
Lemma 1.21 Lemma 1.23																•	 30
Lemma 2.1								 			 			-		•	 33
Lemma 2.3								 		 	 					•	
Lemma 2.5																	0.0
Lemma 2.7																	
Lemma 2.9								 		 	 						
Lemma 2.11								 	•		 			•		•	
Lemma 2.13																	
Lemma 2.15								 	•	 	 			•	 	•	
Lemma 2.17								 		 	 						
Lemma 2.19																	
Lemma 2.21																	
Lemma 2.23								 	•	 	 	 •	• •	•	 	•	
Lemma 3.1																	
Lemma 3.3																	

Lemma 3.5			 	 	 		 	 		 					. 68
Lemma 3.7			 	 	 		 	 		 					. 7
Lemma 3.9			 	 	 		 	 		 					. 73
Lemma 3.11			 	 	 		 	 		 					. 70
Lemma 3.13			 	 	 		 	 		 					. 78
Lemma 3.15			 	 	 		 	 		 					
Lemma 3.17															
Lemma 3.19															
Lemma 3.21															
Lemma 3.23															
Lemma 5.25			 	 	 	• •	 	 •	•	 	•	•	 •	•	. 9.
G List	of Theore	ems													
Theorem 1.2	Thrm Ipsum		 	 	 		 			 					. ;
Theorem 1.4	Thrm Ipsum		 	 	 		 	 		 					. (
Theorem 1.6	Thrm Ipsum		 	 	 		 			 					. 8
Theorem 1.8	Thrm Ipsum		 	 	 		 	 		 					. 10
Theorem 1.10	Thrm Ipsum		 	 	 		 	 		 					. 13
Theorem 1.12	_														
Theorem 1.14	-														
Theorem 1.16															
Theorem 1.18															
Theorem 1.20															
Theorem 1.22															
Theorem 1.22 Theorem 1.24															
	Thrm Ipsum Thrm Ipsum														
Theorem 2.4	Thrm Ipsum Thrm Ipsum														
Theorem 2.4 Theorem 2.6															
	Thrm Ipsum														
Theorem 2.8	Thrm Ipsum														
Theorem 2.10															
Theorem 2.12															
Theorem 2.14	_														
Theorem 2.16															
Theorem 2.18															
Theorem 2.20	_														
Theorem 2.22	-														
Theorem 2.24															
Theorem 3.2	Thrm Ipsum		 	 	 		 			 					. 64
Theorem 3.4	Thrm Ipsum		 	 	 		 			 					. 60
Theorem 3.6	Thrm Ipsum		 	 	 		 			 					. 69
Theorem 3.8	Thrm Ipsum		 	 	 		 			 					. 7
Theorem 3.10	Thrm Ipsum		 	 	 		 			 					. 74
Theorem 3.12	-														
Theorem 3.14	-														
Theorem 3.16	-														
Theorem 3.18	•														
Theorem 3.20															
Theorem 3.22	-														
1110010III 0.22	rmm rbsum		 	 	 		 	 •	•	 	•		 •	•	, 0,

- 7	г		
	Н	4	
	L	1	

Theorem 3.24 Thrm Ipsum	. 91
H List of Corollaries	
Corollary 1.2.1	. 3
Corollary 1.4.1	. 6
Corollary 1.6.1	. 8
Corollary 1.8.1	
Corollary 1.10.1	
Corollary 1.12.1	. 16
Corollary 1.14.1	. 18
Corollary 1.16.1	. 21
Corollary 1.18.1	
Corollary 1.20.1	. 26
Corollary 1.22.1	
Corollary 1.24.1	
Corollary 2.2.1	. 34
Corollary 2.4.1	. 36
Corollary 2.6.1	. 39
Corollary 2.8.1	. 41
Corollary 2.10.1	. 44
Corollary 2.12.1	. 46
Corollary 2.14.1	. 49
Corollary 2.16.1	. 51
Corollary 2.18.1	. 54
Corollary 2.20.1	. 56
Corollary 2.22.1	
Corollary 2.24.1	. 61
Corollary 3.2.1	. 64
Corollary 3.4.1	. 67
Corollary 3.6.1	. 69
Corollary 3.8.1	. 71
Corollary 3.10.1	
Corollary 3.12.1	
Corollary 3.14.1	
Corollary 3.16.1	
Corollary 3.18.1	
Corollary 3.20.1	
Corollary 3.22.1	
Corollary 3.24.1	

Index

 $\begin{array}{c} \text{Defn Ipsum, 1, 4, 6, 9, 11, 14, 16, 19, 21, 24, 26,} \\ 29, 31, 34, 37, 39, 41, 44, 47, 49, 51, 54, \\ 57, 59, 62, 65, 67, 69, 72, 75, 77, 79, 82, \\ 85, 87, 89, A-6, A-7 \end{array}$

Thrm Ipsum, 3, 6, 8, 11, 13, 16, 18, 21, 23, 26, 28, 31, 33, 36, 39, 41, 43, 46, 49, 51, 53, 56, 59, 61, 64, 66, 69, 71, 74, 76, 79, 81, 84, 86, 89, 91, A-9, A-10