ЛАБОРАТОРНАЯ РАБОТА №2 «СВЕТОДИОДЫ»

Цель работы: освоить принцип работы светодиодов и кнопок на плате BASYS 3.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Таблица 1. Соответствие сигналов и ножек ПЛИС

Имя сигнала	Номер	Описание	Стандарт
согласно схеме	ножки		питания с
платы	(Location)		настройками (I/O
			Standard)
CLK100MHZ	W5	Тактирующий сигнал	LVCMOS33
		с частотой 100 МГц	
BTNU	T18	Кнопка BTNU –	LVCMOS33
		верхняя	
BTNR	T17	Кнопка BTNR –	LVCMOS33
		правая	
BTND	U17	Кнопка BTND –	LVCMOS33
		нижняя	
BTNL	W19	Кнопка BTNL – левая	LVCMOS33
BTNC	U18	Кнопка BTNC –	LVCMOS33
		центральная	
LD0	U16	Светодиод LD0	LVCMOS33
LD1	E19	Светодиод LD1	LVCMOS33
LD2	U19	Светодиод LD2	LVCMOS33
LD3	V19	Светодиод LD3	LVCMOS33
LD4	W18	Светодиод LD4	LVCMOS33
LD5	U15	Светодиод LD5	LVCMOS33
LD6	U14	Светодиод LD6	LVCMOS33
LD7	V14	Светодиод LD7	LVCMOS33
LD8	V13	Светодиод LD8	LVCMOS33
LD9	V3	Светодиод LD9	LVCMOS33
LD10	W3	Светодиод LD10	LVCMOS33
LD11	U3	Светодиод LD11	LVCMOS33
LD12	Р3	Светодиод LD12	LVCMOS33
LD13	N3	Светодиод LD13	LVCMOS33
LD14	P1	Светодиод LD14	LVCMOS33
LD15	L1	Светодиод LD15	LVCMOS33

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Составьте алгоритм горения светодиодов согласно табл. 2 для своего варианта. Номер варианта см. в гугл-таблице, ссылка на которую лежит в текстовом файле в папке «Гугл-таблицы». При нажатии кнопки «Пауза» изменение комбинаций должно прекращаться, а кнопки «Сброс» возврат к самой первой комбинации.
- 2. Рассчитайте разрядность регистра и его значение для задержки смены комбинаций горения светодиодов согласно варианту и частоте входного сигнала 100 МГц.
- 3. Покажите преподавателю расчёт задержки и расскажите алгоритм горения светодиодов.
- 4. Напишите код на HDL согласно варианту. Модуль обработки нажатия кнопки можно использовать из папки «Примеры» «LR_2.srcs».
- 5. Промоделируйте работу написанного кода, тестовый файл должен быть написан на том же HDL. Для моделирования задержку между сменами комбинаций горения светодиодов уменьшите в миллион раз и не забыть уменьшить задержку в модуле обработки нажатия кнопки, если он имеется. Моделирование выполнять в режиме «Run Post-Implementation Timing Simulation».
- 6. Сравните результаты моделирования с алгоритмом горения светодиодов и реакцией на кнопки. Если всё корректно работает, приступайте к следующему пункту.
- 7. Согласно табл. 2 назначьте соответствующие ножки ПЛИС для входов и выходов.
- 8. Покажите преподавателю результаты моделирования и назначенные ножки ПЛИС, чтобы получить плату Basys 3.
- 9. Проверьте работу написанного кода на плате Basys 3 в соответствии с составленным алгоритмом горения светодиодов и реакции на кнопки.
 - 10. Покажите преподавателю работу платы Basys 3.
 - 11. Сделайте несколько фотографий работы кода на плате Basys 3.
- 12. Составьте отчёт согласно требованиям раздела «содержание отчёта».

Таблица 2

Варианты задания

No	Пауза	Сброс	Задержка, с	нрг Нрг	Алгоритм
1	U	R	0,69	VHDL	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2	R	D	0,66	SystemVerilog	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3	D	L	0,63	VHDL	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4	L	С	0,6	SystemVerilog	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

№	Пауза	Сброс	Задержка, с	HDL	Алгоритм
5	С	U	0,59	VHDL	15 14 13 12 3 2 1 0 15 14 13 12 3 2 1 0 16 14 13 12 3 2 1 0 17 15 14 13 12 3 2 1 0 18 15 14 13 12 3 2 1 0 19 15 14 13 12 3 2 1 0 10 15 14 13 12 3 2 1 0
6	U	D	0,56	SystemVerilog	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
7	R	L	0,53	VHDL	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
8	D	С	0,5	SystemVerilog	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

№	Пауза	Сброс	Задержка, с	HDL	Алгоритм
9	L	U	0,49	VHDL	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
10	С	R	0,46	SystemVerilog	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
11	U	L	0,43	VHDL	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
12	R	С	0,4	SystemVerilog	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

№	Пауза	Сброс	Задержка, с	HDL	Алгоритм
13	D	U	0,39	VHDL	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
14	L	R	0,36	SystemVerilog	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
15	С	D	0,33	VHDL	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
16	U	С	0,3	SystemVerilog	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

No	Пауза	Сброс	Задержка, с	HDL	Алгоритм
17	R	U	0,29	VHDL	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
18	D	R	0,26	SystemVerilog	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
19	L	D	0,23	VHDL	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
20	С	L	0,2	SystemVerilog	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

№	Пауза	Сброс	Задержка, с	HDL	Алгоритм
21	U	С	0,19	VHDL	15 14 13 12 3 2 1 0 15 14 13 12 3 2 1 0 15 14 13 12 3 2 1 0 15 14 13 12 3 2 1 0 15 14 13 12 3 2 1 0 15 14 13 12 3 2 1 0
22	R	U	0,16	SystemVerilog	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
23	D	R	0,13	VHDL	15 14 13 12 3 2 1 0 15 14 13 12 3 2 1 0 15 14 13 12 3 2 1 0 15 14 13 12 3 2 1 0 15 14 13 12 3 2 1 0 15 14 13 12 3 2 1 0 15 14 13 12 3 2 1 0
24	L	D	0,1	SystemVerilog	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

СОДЕРЖАНИЕ ОТЧЕТА

На титульный лист отчёта вставить свою подпись. Подпись преподавателя из шаблона не убирать. Под каждой подписью место под дату. Даты под каждой подписью проставить, они должны совпадать с датой отправки отчёта. Без подписи отчёты будут возвращаться на доработку. Предпочтительный формат отчёта pdf, в крайнем случае docx или doc. Другие форматы не принимаются. Отчет по лабораторной работе должен быть оформлен согласно шаблону (см. папку «шаблоны отчётов») и содержать следующие разделы.

1) цель работы и постановка задачи.

В разделе описывается цель работы.

2) постановка задачи.

В разделе описываются задачи на лабораторную работу (как общие для всех, так и задачи своего варианта), которые необходимо выполнить.

3) описание алгоритма.

В разделе приводится описание алгоритма горения светодиодов на плате, работе кнопок и расчёт задержки смены комбинаций горения светодиодов.

4) код на HDL.

В разделе приводятся код на HDL, включая модули, и их описание.

5) моделирование.

В разделе приводятся код файла тестирования и результат моделирования кода, его описание и сравнение с алгоритмом работы. На экранных снимках обязательно должны быть временные шкалы и названия входов и выходов.

6) назначение ножек ПЛИС.

В разделе приводятся содержание файла xdc и его описание.

7) фотографии макета.

В разделе приводятся фотографии с работающей прошивкой ПЛИС и их описания.

8) выводы.

Приводятся выводы о проделанной работе: в краткой форме описывается что было сделано и какие результаты были получены.

Заголовки первого уровня такие как «ЦЕЛЬ РАБОТЫ», «ПОСТАНОВКА ЗАДАЧИ» и «ВЫВОДЫ» — не нумеруются. Остальные разделы должны быть пронумерованы.

ПРИМЕРНЫЙ СПИСОК ВОПРОСОВ ПРИ ЗАЩИТЕ РАБОТЫ

- 1. Как работает шифратор и чем он отличается от приоритетного шифратора?
 - 2. Привести УГО шифратора и приоритетного шифратора.
- 3. С помощью каких конструкций описывается шифратор и приоритетный шифратор на HDL?
 - 4. Как работает дешифратор?
 - 5. Привести УГО дешифратора.
- 6. С помощью каких конструкций можно описать дешифратор на HDL?
 - 7. Как работает мультиплексор?
 - 8. Привести УГО мультиплексора.
- 9. С помощью каких конструкций описывается мультиплексор на HDL?
 - 10. Как работает демультиплексор?

- 11. Привести УГО демультиплексора.
- 12. С помощью каких конструкций описывается демультиплексор на HDL?
- 13. Как рассчитать задержку под конкретную частоту входного сигнала (привести пример для конкретных значений задержки и частоты входного сигнала)?
- 14. Как правильно считывать сигнал с кнопки, избегая дребезга контакта?