Learning

Purpose of Learning

- The agent can improve itself.
- The agent can adapt itself to different problems / scenarios.
- Why can't these improvements/abilities to handle different problems/scenarios be programmed in?
 - The designer can not program the agent for every possible problem/scenario that it may encounter.
 - The environment is stochastic or not fully observable.
 - The designer does not know how to program the agent for a task, except for letting the agent learn to solve it.

Learning Agent

Designing a Learning Agent

- Which components are to be affected by learning?
- What is already known (prior knowledge)?
- How are the components and the data represented:
 - Factored representation: A vector of attributes (numerical or categorical, continuous or discrete)
- What kind of feedback is available, if any?

Types of Learning

- Unsupervised learning: The agent needs to organize the object or data with no outside help and no feedback.
 - Clustering: To group objects into meaningful or useful "clusters".
- Reinforcement leaning: The available feedback is the outcome (reward or penalty). This can happen long after the decisions or actions that lead to the outcome.
 - Goal of learning: To minimize penalty and maximize reward.
- Supervised learning: The correct answers or actions are given by a "teacher" during the learning process.
 - Goal of learning: To generate "correct" answers given the inputs.

Learning from Examples

- A form of supervised learning
- A set of example cases (training samples) and their corresponding correct/desired outputs are given.
- The goal is to form a mechanism that, when given an example case, will produce the correct output.

Example of Learning from Examples

Example problem: Learning to decide whether to wait for a table when arriving at a restaurant:

Example of Learning from Examples

The example cases:

Examples	Input Attributes										Output
	Alt.	Bar	Fri/Sat	Hun	Pat.	Price	Rain	Res.	Type	Time	Wait?
\boldsymbol{x}_1	Y	N	N	Υ	Some	\$\$\$	>	Υ	French	0-10	Y
\boldsymbol{x}_2	Y	<i>N</i>	N	Y	Full	\$	>	7	Thai	30-60	N
\boldsymbol{x}_3	N	Y	N	7	Some	\$	<i>N</i>	<i>N</i>	Burger	0-10	Y
x_4	Y	7	Y	Y	Full	\$	Y	7	Thai	10-30	Y
x_5	Y	7	Y	7	Full	\$\$\$	2	Υ	French	>60	N
\boldsymbol{x}_6	N	Y	N	Y	Some	\$\$	Y	Y	Italian	0-10	Y
\boldsymbol{x}_7	N	Y	N	<i>N</i>	None	\$	Y	<i>N</i>	Burger	0-10	N
x_8	N	7	N	Y	Some	\$\$	Y	Y	Thai	0-10	Y
x_9	N	Y	Y	7	Full	\$	Y	7	Burger	>60	N
x_{10}	Y	Y	Y	Y	Full	\$\$\$	>	Y	Italian	10-30	N
\boldsymbol{x}_{11}	Ν	Ν	N	Ν	None	\$	N	N	Thai	0-10	N
x_{12}	Y	Y	Y	Υ	Full	\$	N	N	Burger	30-60	Y

Decision Tree

The input-output relations are organized into a tree. Each node divides its set of samples into subsets according to a particular input attribute.

Decision Tree Learning

- Each tree node is associated with a set of labeled samples.
- In the beginning, we generate only the root node, which is associated with all the samples.
- The following steps are applied to each new node:
 - Select an attribute as the basis for splitting the samples of the current node.
 - Divide the values of the selected attribute in the set of samples into several groups. A new tree node is generated for each of these groups.
- The key is how to split the samples. (How to select an attribute, and how to partition the values of the selected attribute.)

Choosing Attribute Tests: The Idea

Idea: a good attribute splits the samples into subsets that (ideally) contains samples of the same labels.

Q: Which of the following two attributes are better?

- The goal of splitting is so that the sample labels (desired outputs) of the child nodes are more "pure" (or are "less uncertain") than those in the parent node.
- How to measure the "impurity" or "uncertainty" of the label distribution of a node? Some typical ones:
 - Shannon's Entropy: $H(V) = -\sum_{k} P(v_k) \log_2 P(v_k)$
 - Gini Index: $G(V) = 1 \sum_{k} P(v_k)^2$

- The goal of splitting is so that the sample labels (desired outputs) of the child nodes are more "pure" (or are "less uncertain") than those in the parent node.
- Some representative metrics of "impurity" or "uncertainty":
 - Shannon's Entropy: $H = -\sum_{k} p_k \log_2 p_k$
 - Gini Index: $G = 1 \sum_{k} p_k^2$

Here p_k is the ratio of items with label k.

Now, consider an attribute with m possible values. Splitting a node (A) with N items on this attribute will result in m child nodes $(C_1, C_2, \ldots C_m)$ with $N_1, N_2, \ldots N_m$ items, respectively. The idea is to select the attribute that gives the most reduction in uncertainty/impurity (entropy used here):

$$\Delta H = H(A) - \sum_{i=1}^{m} \frac{N_i}{N} H(C_i)$$

For entropy, this is also called the *information gain*.

Now we can try to choose an attribute again:

$$H(A) = 2\left(-\frac{1}{2}\log_2\frac{1}{2}\right) = 1$$

$$H(C_1) = H(C_2) = 0$$

$$H(C_3) = -\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3} = 0.80$$

$$\Delta H = 1 - (2/12) * 0 - (4/12) * 0 - (6/12) * 0.80$$
$$= 0.60$$

$$H(C_1) = H(C_2) = H(C_3) = H(C_4) = 1$$

 $\Delta H = 0$

This tree is substantially smaller than the first one, but it gives the same outputs for all the training samples.

- Main usages of supervised learning:
 - Classification: The expected output is one of several categories. Such an agent / program is called a classifier.
 - Regression: The expected output is a numerical value.
 Example: temperature in weather forecast.
- Both involve some input/output mapping: $f: x \rightarrow y$

Training and testing:

- Training data: Collect samples in the form of $(x \rightarrow y)$.
 - For such a pair of $(x \rightarrow y)$, y is often called the ground-truth or target output of x.
 - If y represents a category (class), then it is also called the class label (or simply the label) of x.
- Training: Derive an estimated model of the mapping f using the training data.
- Testing: Using the derive model, determine y for some given x (normally not in the training data).

- There are numerous possible forms (model types) to represent the mapping. Examples:
 - Rule Sets
 - Polynomials
 - Gaussian Mixtures
 - k Nearest Neighbors
 - Decision Trees
 - Neural Networks
 - ...
- There are many possible forms for representing the mapping of a given set of training data. This means that the actual form used is a design choice.
- For each given form of representation, there are <u>parameters</u> to be determined according to the training data.

■ Stages of learning a model for $f: x \rightarrow y$:

Model Type

Model Design Hyperparameters

Parameter Estimation

Polynomial?

Mixture of Gaussians? Neural networks?

. .

Polynomial: degree?

Mixture of Gaussians: #Gaussians?

Neural networks: #neurons?

Polynomial: coefficients

Mixture of Gaussians: means/covars

Neural networks: network weights

...

Training and Testing

Here we will use regression as an example.

Bias-Variance Dilemma

Desired properties of the estimated mapping:

- Low Bias (goodness of fitting):
 - The estimated mapping should fit to the training data as well as possible.
 - Goal: To capture the behaviors of the underlying mapping as well as possible.
- Low Variance (high confidence):
 - Assume that we have several estimated mappings, each derived from a different set of training samples.
 - ullet For a given x, each mapping gives an estimations for y.
 - The estimations for y should by as similar to each other as possible.
 - Goal: To be confident of the estimation of y.

Bias-Variance Dilemma

For supervised learning, we always need to consider the trade-off between bias and variance.

Reason 1:

Sampled Value (used for training) = Signal (from underlying mapping) + Noise

Noise is a reality of life that you have to deal with.

Reason 2: We can only have a finite number of training samples. (If we have infinite number of training samples, the noise can be averaged out.)

Bias-Variance Dilemma

Now, difficulties for supervised learning:

- To reduce Bias
 - → Use more complex models
 - → BOTH signal and noise are learned
 - → Overfitting
- To reduce Variance
 - → Try to avoid learning noise (variance is caused by noise)
 - → Use less complex models
 - → Signal is not sufficiently learned
 - Underfitting

Fitting and Model Complexity

Using polynomial regression as an example:

What to Do Now?

Several representative approaches:

- Increase the number of training samples.
- Try to determine the suitable level of model complexity.
- Regularization (the "suppression" of complexity during training)
- Consensus-based methods (ensembles)

Amount of Training Data

- The usual case: The more training data, the better.
- Rule of thumb (not always suitable):(# training samples) ≥ 10 x (# free parameters in model)
- Possible difficulties:
 - Data availability
 - Increased computational cost
- When there are few training samples, some classifier types (e.g., support vector machines) generally work better than others.

Amount of Training Data

Example (polynomial regression):

How Much Model Complexity?

- Ockham's Razor: Among different ways to explain the data, choose the simplest one.
- Model complexity is usually controlled / adjusted using some hyper-parameters.
- Example methods: cross-validation, post-processing model pruning.
- Many of these methods utilize validation data (training samples not used for model parameter estimation) to check the generalization ability of the built model.

Validation

Cross-Validation

- The N labeled samples are divided into K subsets of approximately equal sizes (K>1). They should have similar distributions.
- The training process (model parameter estimation) is run K times (K trials).
- In the Kth trial, the Kth subset is used for validation, and the other subsets are used for training.
- The overall performance is the combination of the performance on all the validation subsets.

Cross-Validation

4-fold cross-validation: parameter estimation validation

Trial 1: #2 #3 #1 #4 Trial 2: #1 #2 #3 #4 Trial 3: #2 #1 #3 #4 Trial 4: #2 #3 #1 #4

Extreme case: The leave-one-out method (K=N).

Model Selection by Cross-Validation

Example: polynomial regression:

9 training samples → 3 subsets

Model Selection by Cross-Validation

Model Selection by Cross-Validation

Finally, use the selected model and ALL the training samples for parameter optimization:

Regularization

- Include the trade-off during the learning process:
 - Regularization: Modify the learning objective to minimize BOTH the bias and the model complexity. (Normally, the learning process only attempts to minimize bias.)
 - Example cost function (to be minimized) for polynomial regression:

To minimize:
$$E = \sum_{i} \left| y_i - \sum_{k=0}^{d} a_k x_i^k \right|^2 + \lambda \sum_{k=0}^{d} a_k^2$$
 Fitting Error Regularization

Regularization

Example (polynomial regression):

N=11, degree=9

Consensus Based Methods

- Build many somewhat different models (an Ensemble) for the same underlying mapping.
- The consensus should better represent the "signal" part, and the "noise" part is more likely to be averaged out.
- Result: Reduction of variance with minimal effect on bias.
- Common ways to create the ensemble of different models:
 - Random subset of attributes
 - Random subset of training samples

Back to Decision Trees

- Representative decision tree algorithms include:
- ID3 (most similar to the method in the textbook)
 - Designed for categorical attributes
 - Post-processing pruning with validation data
- C4.5 (a successor of ID3)
 - Categorical and numerical attributes
 - Use normalized information gain
- CART (Classification And Regression Trees)
 - Categorical and numerical attributes
 - Branching factor is always two (binary tree)

Classification and Regression Trees

Node splitting criterion:

- Numerical attributes:
 - Select a threshold
 - Minimize total within-node variance
- Categorical attributes:
 - Need to find a way to partition the categories into two groups.
 - Multiple possible partitions if the items in a node are of more than two categories.
 - Minimize total Gini's impurity

Classification and Regression Trees

Output:

- To avoid overfitting, the growth of the tree is usually limited.
 - → A leaf node is often "impure" in terms of the expected outputs of its items.
- To generate an estimated output:
 - For regression: Use the mean output of the items in the node.
 - For classification: Use the majority vote of the items in the node.

Random Forests

- A representative example of ensemble learning.
- The final output is the average output of many randomized trees.
- Bagging = bootstrap aggregating (random sampling with replacement)

■ Tree Bagging:

 Each tree is trained with a somewhat different set of training data (selected from a common pool of training data with bootstrap aggregation).

■ Feature/Attribute Bagging:

- Consider only a (small) subset of features/attributes at each node splitting.
- Typically only $p^{1/2}$ of p features used (for classification).

Random Forests: An Example

Random Forests: Generalization

- For each training sample x, there are some trees that do NOT consider it during tree building. It is called an out-of-bag sample for those trees.
- Use the trees for which x is out-of-bag to predict the output for x. (Use averaging for regression, and use majority vote for classification.)
- Repeat the above step for all training samples. Now we have the overall out-of-bag error (mean squared error for regression, classification error rate for classification) as a measure of generalization ability.

Random Forests: Generalization

Random forests do not overfit with increased number of trees.

