MAE0311 - Inferência Estatística

Fernando Henrique Ferraz Pereira da Rosa Vagner Aparecido Pedro Junior

18 de novembro de 2003

Lista 6¹

- 1. Seja X uma variável aleatória com função de densidade $f(x|\theta) = \theta^2 x e^{-\theta x}$, $x > 0, \theta > 0$, queremos testar $H_0: \theta = 1$ versus $H_1: \theta = 2$.
 - (a) Qual é a região crítica se n=5 e $\alpha=0.05$? Notemos que

$$X \sim Gama(\lambda = \theta, r = 2)$$

e que

$$L_0(x) = \prod_{i=1}^n f(x_i|\theta_0) = \prod_{i=1}^n f(x_i|\theta = 1) = \prod_{i=1}^n x_i e^{-x_i}$$

$$= e^{-\sum_{i=1}^n x_i} \prod_{i=1}^n x_i$$

$$L_1(x) = \prod_{i=1}^n f(x_i|\theta_1) = \prod_{i=1}^n f(x_i|\theta = 2) = \prod_{i=1}^n 2^2 x_i e^{-2x_i}$$

$$= 4^n e^{-2\sum_{i=1}^n x_i} \prod_{i=1}^n x_i$$

Pelo Lema de Neyman-Pearson, utilizando a razão de verossimilhanças simples, temos que o teste mais poderoso será aquele com região região crítica dada por

$$A_1^* = \left\{ x; \frac{L_1(x)}{L_0(x)} \ge k \right\}$$

Notemos que

$$\frac{L_1(x)}{L_0(x)} = \frac{4^n e^{-2\sum_{i=1}^n x_i} \prod_{i=1}^n x_i}{e^{-\sum_{i=1}^n x_i} \prod_{i=1}^n x_i} = 4^n e^{-\sum_{i=1}^n x_i} \prod_{i=1}^n x_i$$

 $^{^{1}\}textsc{Powered}$ by LATeX $2\varepsilon,$ R 1.8.0 and Gentoo 1.4

Que é equivalente a rejeitar H_0 quando $\sum_{i=1}^n x_i < -\log k/4^n = c$. Portanto a região crítica do teste M.P. é dada por

$$A_1^* = \left\{ x; \sum_{i=1}^n x_i < c \right\}$$

Como queremos $\alpha = 0.05$ devemos exigir

$$P_{H_0}(X \in A_1^*) = 0.05$$

Notemos que $\sum_{i=1}^{n} X_i \sim Gama(\lambda=1,r=2n)$ e que portanto, é simples achar c que satisfaça a condição dada. Com o seguinte comando no R, obtemos esse valor:

```
> qgamma(0.05,10,1)
[1] 5.425406
```

[1] 0.0508

Assim a região crítica para $\alpha = 0.05$ e n = 5 fica sendo

$$A_1^* = \left\{ x; \sum_{i=1}^n x_i < 5.425406 \right\}$$

Façamos uma simulação para verificar esse resultado.

```
# Geramos em primeiro lugar 100 mil amostras
# de tamanho 5 de uma gama (r=2,1=1)
sample <- matrix(rgamma(5*100000,2,1),nrow=5)
# Definamos uma função que nos indicará se, de acordo com a
# região critica encontrada, rejeitamos ou não HO
> rejeita <- function(x) {
+    if (sum(x) < qgamma(0.05,10,1)) {
+      1
+    }
+    else {
+      0
+    }
+ }
#Executemos essa funcao para cada amostra observada
#calculando a proporcao observada que tivemos de rejeicao
#de HO, HO verdadeira (estimativa de alfa)
sum(apply(sample,2,rejeita))/100000</pre>
```

Os resultados da simulação portanto sugerem que a região de rejeição está apropriada.

(b) Se n=1, qual é o teste que minimiza $\alpha+\beta$? E qual o valor de $\alpha+\beta$? Pelo Lema 6.3.1. sabemos que o o teste com região crítica

$$A_1^* = \left\{ x; \frac{L_1(x)}{L_0(x)} \ge \frac{a}{b} \right\}$$

minimiza o valor de $a\alpha + b\beta$. Como queremos minimizar o valor de $\alpha + \beta$ basta fazermos a = b = 1 e acharmos a seguinte região crítica

$$A_1^* = \left\{ x; \frac{L_1(x)}{L_0(x)} \ge 1 \right\}$$

Se n=1, temos

$$\frac{L_1(x)}{L_0(x)} = \frac{2^2 x e^{-2x}}{x e - x} = 4e^{-x} \ge 1 \Rightarrow e^{-x} \ge \frac{1}{4} \Rightarrow x < \log 4$$

Assim a região crítica do teste que minimiza $\alpha + \beta$ é dada por

$$A_1^* = \{x; x < \log 4\}$$

Calculando agora α e β :

$$\alpha = P_{H_0}(X \in A_1^*) = P(X < \log 4)$$

Onde $X \sim Gama(2,1)$. Obtemos então α , através do comando

> pgamma(log(4),2,1)
[1] 0.2357868

Analogamente para β

$$\beta = P_{H_1}(X \notin A_1^*) = P(X \ge \log 4)$$

Onde $X \sim Gama(2,2)$. Obtemos então, através do comando

> pgamma(log(4),2,2,lower.tail=F)
[1] 0.4034264

Logo $\alpha + \beta = 0.6392132$.

3. Sejam X_1, \dots, X_n uma amostra aleatória da variável aleatória X com função de densidade dada por

$$f(x|\theta) = \theta x^{\theta-1}, \quad 0 < x < 1, \quad \theta > 0.$$

(a) Mostre que o teste mais poderoso para testar $H_0: \theta=1$ versus $H_1: \theta=2$ rejeita H_0 , se e somente se, $\sum_{i=1}^n -\log x_i \leq a$, onde a é uma constante.

O teste mais poderoso será aquele da razão de verossimilhanças simples, cuja região crítica é dada por

$$A_1^* = \left\{ x; \frac{L_1(x)}{L_0(x)} \ge k \right\}$$

Desenvolvendo a razão de verossimilhanças

$$\frac{L_1(x)}{L_0(x)} = \frac{2^n \prod_{i=1}^n x_i}{1} \ge k \Rightarrow \prod_{i=1}^n \ge \frac{k}{2n} \Rightarrow \sum_{i=1}^n \log x_i \ge \log \frac{k}{2n}$$

$$\Rightarrow -\sum_{i=1}^n \log x_i \le \log \frac{k}{2n} = a$$

O que mostra a identidade pedida.

(b) Sendo n=2 e $\alpha=(1-\log 2)/2$, qual a região crítica? Para isso precisamos em primeiro lugar encontrar a distribuição de $-\sum_{i=1}^n \log X_i$. Analisemos primeiro cada parcela da soma, verificando a distribuição de $-\log X_i$. Sob H_0 , temos que cada X_i é uniforme em 0, 1, ou seja

$$f_X(x) = I(x)$$

$$(0,1)$$

Notando que

$$f_Y(y) = f_x(g^{-1}(y)) \left| \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) \right|$$

e encontrando as quantidades necessárias:

$$g^{-1}(y) = e^{-y}$$
 $\left| \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) \right| = \left| -e^{-y} \right| = e^{-y}$

Temos que $Y = -\log X_i$ segue distribuição com função de densidade dada por:

$$f_Y(y) = e^{-y} I(e^{-y}) = e^{-y} , y > 0$$

Ou seja, uma variável aleatória com distribuição exponencial de parâmetro $\lambda=1$. Mais que isso, temos ainda a distribuição de $\sum_{i=1}^n -\log X_i$, pois a soma de n exponenciais independentes com parâmetro $\lambda=1$ segue uma Gama(n,1). Assim, para achar a região crítica para $\alpha=\frac{1-\log 2}{2}$, basta achar o quantil $\frac{1-\log 2}{2}$ de uma Gama(2,1),o que é feito a partir do comando

> qgamma((1-log(2))/2,2,1)
[1] 0.6931472

Logo, a Região Crítica ao nível de significância $\alpha = \frac{1 - \log 2}{2}$ será dada por:

$$A_1^* = \left\{ -\sum_{i=1}^n \log x_i \le 0.6931472 \right\}$$

- 8. Sejam X_1, \ldots, X_n uma amostra aleatória da variável aleatória $X \sim N(0, \sigma^2)$.
 - (a) Encontre o teste UMP para testar $H_0: \sigma^2 = \sigma_0^2$ versus $H_1: \sigma^2 > \sigma_0^2$. Definamos o teste alternativo $H_0': \sigma^2 = \sigma_0^2$ versus $H_1': \sigma^2 = \sigma_1^2 \quad (\sigma_1^2 > \sigma_0^2)$ e verifiquemos se sua região crítica depende de σ_0^2 . O teste mais poderoso para esse teste alternativo será o de região crítica dada por

$$A_1^* = \left\{ x; \frac{L_1(x)}{L_0(x)} \ge k \right\}$$

Desenvolvendo a razão de verossimilhanças

$$\begin{split} \frac{L_1}{L_0} &= \frac{\prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma_1^2} e^{\frac{-x_i^2}{2\sigma_1^2}}}{\prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma_0^2} e^{\frac{-x_i^2}{2\sigma_0^2}}} = \left(\frac{\sigma_0^2}{\sigma_1^2}\right)^{n/2} e^{\sum_{i=1}^n x_i^2 \left(\frac{1}{2\sigma_0^2} - \frac{1}{2\sigma_1^2}\right)} \geq k \\ &\Rightarrow e^{\sum_{i=1}^n x_i^2 \left(\frac{1}{2\sigma_0^2} - \frac{1}{2\sigma_1^2}\right)} \geq k \left(\frac{\sigma_1^2}{\sigma_0^2}\right)^{n/2} \\ &\Rightarrow \sum_{i=1}^n x_i^2 \left(\frac{1}{2\sigma_0^2} - \frac{1}{2\sigma_1^2}\right) \geq \log \left[k \left(\frac{\sigma_1^2}{\sigma_0^2}\right)^{n/2}\right] \\ &\Rightarrow \sum_{i=1}^n x_i^2 \geq \log \left[k \left(\frac{\sigma_1^2}{\sigma_0^2}\right)^{n/2}\right] \left(\frac{1}{2\sigma_0^2} - \frac{1}{2\sigma_1^2}\right)^{-1} = c \end{split}$$

Assim, o nosso teste MP para nossas hipóteses alternativas terá região crítica dada por

$$A_1^* = \left\{ \sum_{i=1}^n x_i^2 \ge c \right\}$$

Como o teste acima vale para qualquer valor de σ_1^2 , temos pela definição 6.4.1., que ele é também o teste UMP para a hipótese composta inicial.

(b) Seja $\alpha=0.05,\,n=9$ e $\sigma_0^2=9,\,$ faça o gráfico da função poder. Precisamos primeiro encontrar a distribuição de $\sum_{i=1}^n X_i^2$. Dados n=9 e $\sigma_0^2=9,\,$ temos que

$$\sum_{i=1}^{9} \left(\frac{X_i}{3} \right)^2 \sim \chi_{(9)}^2$$

Considerando $\alpha = 0.05$ e dada H_0

$$0.05 = P_{H_0}\left(\sum_{i=1}^n X_i^2 > c\right) = P\left(\frac{1}{9}\sum_{i=1}^n X_i^2 > \frac{c}{9}\right) = P\left(\sum_{i=1}^n \left(\frac{X_i}{3}\right)^2 > \frac{c}{9}\right)$$

Dessa forma, basta encontrarmos $\frac{c}{a}$ com o comando:

> qchisq(0.95,9)
[1] 16.91898

E portanto $\frac{c}{9} = 16.91898 \Rightarrow c = 152.2708$.

A região crítica do teste UMP com nível de significância $\alpha=0.05$ para as hipóteses especificadas fica sendo

$$A_1^* = \left\{ \sum_{i=1}^n x_i^2 \ge 152.2708 \right\}$$

A função poder é definida por

$$\pi(\sigma_2) = P_{\sigma_2} \left(\sum_{i=1}^9 X_i^2 \in A_1^* \right)$$

Como por definição $Var(X_i) = \sigma^2$ temos

$$\pi(\sigma_2) = P_{\sigma_2} \left(\frac{1}{\sigma^2} \sum_{i=1}^9 X_i^2 \ge \frac{152.2708}{\sigma^2} \right) = P\left(W \ge \frac{152.2708}{\sigma^2} \right)$$

onde $W \sim \chi^2_{(9)}$. Assim a função poder se iguala a 1 menos a função de distribuição de uma qui-quadrado com 9 graus de liberdade. O seu gráfico se encontra na figura 1.

11. Sejam X_1, \ldots, X_n uma amostra aleatória da variável aleatória $X \sim Poisson(\theta_1)$ e sejam Y_1, \ldots, Y_m uma amostra aleatória da variável aleatória $Y \sim Poisson(\theta_2)$ sendo as amostras independentes.

Figura 1: Exericício 8: Função poder para o teste UMP

(a) Encontre o teste da RVG (aproximado) para testar $H_0:\theta_1=\theta_2$ versus $H_1:\theta_1\neq\theta_2.$ i

Encontremos em primeiro lugar o estimador de máxima verossimilhança para (θ_1, θ_2) :

$$L(\theta_1, \theta_2; x, y) = \prod_{i=1}^n \frac{e^{-\theta_1} \theta_1^{x_i}}{x_i!} \prod_{j=1}^m \frac{e^{-\theta_2} \theta_2^y_j}{y_j!} = \frac{e^{-n\theta_1} \theta_1^{\sum x_i} e^{-m\theta_2} \theta_2^{\sum y_j}}{\prod_{i=1}^n x_i! \prod_{j=1}^m y_j!}$$

Que implica:

$$l(\theta_1, \theta_2; x, y) = -\log \prod x_i! - \log \prod y_j!$$

Calculando as derivadas parciais e igualando a zero obtemos imediatamente:

$$(\hat{\theta_1}, \hat{\theta_2}) = (\overline{X}, \overline{Y})$$

que é o estimador de máxima verossimilhança para (θ_1, θ_2) em Θ . Notando que o EMV de (θ_1, θ_2) em $(\theta_1 = \theta_2 = \theta)$, fica dado por

$$\hat{\theta} = \frac{n\overline{X} + m\overline{Y}}{n+m}$$

Temos que

$$\lambda(x,y)^{-1} = e^{-n\overline{X} - m\overline{Y}} \hat{\theta}^{-n\overline{X} - m\overline{Y}} \overline{X}^{-n\overline{X}} \overline{Y}^{-m\overline{Y}}$$

Pelo TRVG, usando 6.5.1 rejeitamos H_0 quando:

$$\lambda(x,y) \le c \iff -2\log\lambda(x,y) > c$$

Simplificando $\lambda(x,y)$ e aplicando a transformação acima:

$$\begin{split} \lambda(x,y) &\leq c &\iff -2\log\lambda(x,y) > c \\ &= -2\log\left(\left[k\hat{\theta}^{-n\overline{X}-m\overline{Y}}\right]^{-1}\right) \\ &= 2\left[\log k - (n\overline{X} + m\overline{Y})\log\hat{\theta}\right] \\ &= 2\left[\log\overline{X}^{n\overline{X}}\overline{Y}^{m\overline{Y}} - (n\overline{X} + m\overline{Y})\log\frac{n\overline{X} + m\overline{Y}}{n+m}\right] \end{split}$$

A RC do teste é

$$A_1^* = \{(x, y) : -2 \log \lambda(x, y) > c_1\}$$

onde c_1 é tal que $P(\chi^2_{(1)} > c_1) = \alpha$.

(b) Sendo $n=5, \sum x_i=3.8, \, m=8, \, \sum y_i=4.8,$ qual a sua conclusão a um nível de significância de 5%?

Temos que $\overline{X} = 0.76$ e $\overline{Y} = 0.6$, assim:

$$-2\log\lambda(x,y) = 2\left[\log 0.76^{5\cdot 0.76}0.6^{8\cdot 0.6} - (3.8 + 4.8)\log\frac{3.8 + 4.8}{13}\right] = 0.11$$

Calculando o valor de c_1 no R

> qchisq(0.95,1)
[1] 3.841459

Como 0.11 < 3.84, não há evidências que sugiram a rejeição de H_0 .

Sobre

A versão eletrônica desse arquivo pode ser obtida em http://www.feferraz.net.

Copyright (c) 1999-2005 Fernando Henrique Ferraz Pereira da Rosa. É dada permissão para copiar, distribuir e/ou modificar este documento sob os termos da Licença de Documentação Livre GNU (GFDL), versão 1.2, publicada pela Free Software Foundation; Uma cópia da licença em está inclusa na seção intitulada "Sobre / Licença de Uso".