Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE SI DE NOTARE

Varianta 8

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(\sqrt{5}+1\right)^2 = 6+2\sqrt{5}$	2p
	$\left(\sqrt{5} - 1\right)^2 = 6 - 2\sqrt{5} \Rightarrow \left(6 + 2\sqrt{5}\right) + \left(6 - 2\sqrt{5}\right) = 12$	3 p
2.	f(3) = 0	3p
	f(1) f(2) f(3) f(4) = 0	2p
3.	$x^2 - 4x + 4 = 1 \Leftrightarrow x^2 - 4x + 3 = 0$	2p
	$x_1 = 1$ și $x_2 = 3$, care verifică ecuația dată	3 p
4.	Cifra unităților este 3	2p
	Numerele sunt 243 și 423, deci se pot forma două astfel de numere	3 p
5.	$m_{AB} = 1$ și $m_d \cdot m_{AB} = -1 \Rightarrow m_d = -1$	3 p
	Ecuația dreptei d este $y = -x + 3$	2p
6.	$\sin(\pi - x) = \sin x$	2p
	$\sin(\pi + x) = -\sin x \Rightarrow \sin(\pi - x) + \sin(\pi + x) = \sin x - \sin x = 0$, pentru orice număr real x	3 p

1.a)	$B(0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(B(0)) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} =$	2p
	=1+0+0-0-0-0=1	3р
b)	$B(x)+B(y) = \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & 0 \\ 3x & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 & y \\ 0 & 1 & 0 \\ 3y & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & x+y \\ 0 & 2 & 0 \\ 3x+3y & 0 & 2 \end{pmatrix} =$	3p
		2 p
	$B(x^{2}+1)B(x) = \begin{pmatrix} 3x^{3}+3x+1 & 0 & x^{2}+x+1 \\ 0 & 1 & 0 \\ 3(x^{2}+x+1) & 0 & 3x^{3}+3x+1 \end{pmatrix}, B(x^{2}+x+1) = \begin{pmatrix} 1 & 0 & x^{2}+x+1 \\ 0 & 1 & 0 \\ 3(x^{2}+x+1) & 0 & 1 \end{pmatrix}$	3p
	$3x^3 + 3x + 1 = 1 \Leftrightarrow x = 0$	2 p

2.a)	$(-3) \circ 3 = \frac{1}{2}(-3-3)(3-3) + 3 =$	3 p
	=0+3=3	2 p
b)	$n \circ n = \frac{1}{2}(n-3)^2 + 3$	2p
	$(n-3)^2 = 16 \Leftrightarrow n_1 = -1$, care nu convine, și $n_2 = 7$, care convine	3 p
c)	$x \circ 3 = 3$ și $3 \circ y = 3$, pentru x și y numere reale	2p
	$1 \circ 2 \circ 3 \circ \dots \circ 2015 = (1 \circ 2) \circ 3 \circ (4 \circ 5 \circ \dots \circ 2015) = 3 \circ (4 \circ 5 \circ \dots \circ 2015) = 3$	3 p

1.a)	$f'(x) = \frac{1 \cdot (x-1) - (x+2) \cdot 1}{(x-1)^2} =$	3p
	$= \frac{x-1-x-2}{(x-1)^2} = -\frac{3}{(x-1)^2}, \ x \in (1,+\infty)$	2 p
b)	$f''(x) = \frac{6}{(x-1)^3}, x \in (1, +\infty)$	3 p
	$f''(x) > 0$, pentru orice $x \in (1, +\infty)$, deci funcția f este convexă pe intervalul $(1, +\infty)$	2 p
c)	$f'(x) = -3 \Leftrightarrow (x-1)^2 = 1$	3p
	Cum $x \in (1, +\infty)$, coordonatele punctului sunt $x = 2$ și $y = 4$	2 p
2.a)	$\int_{1}^{2} \frac{1}{x} f(x) dx = \int_{1}^{2} e^{x} dx = e^{x} \Big _{1}^{2} =$	3p
	$=e^2-e=e(e-1)$	2 p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = (x-1)e^x + c$, unde $c \in \mathbb{R}$	3p
	$F(1) = 0 \Rightarrow c = 0$, deci $F(x) = (x-1)e^x$	2 p
c)	$I_n = \int_0^1 x^{n+1} e^x dx = \left(x^{n+1} e^x\right) \Big _0^1 - \left(n+1\right) \int_0^1 x^n e^x dx =$	3p
	$=e-(n+1)I_{n-1}$, deci $I_n+(n+1)I_{n-1}=e$, pentru orice număr natural $n, n \ge 2$	2p

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M mate-info*

Varianta 8

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $(\sqrt{5}+1)^2 + (\sqrt{5}-1)^2 = 12$.
- **5p** 2. Calculați produsul f(1) f(2) f(3) f(4), unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = x 3.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_2(x^2 4x + 4) = 0$.
- **5p 4.** Determinați câte numere naturale impare, de trei cifre distincte, se pot forma cu cifrele 2, 3 și 4.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,2) și B(2,3). Determinați ecuația dreptei d care trece prin punctul A și este perpendiculară pe dreapta AB.
- **5p 6.** Arătați că $\sin(\pi x) + \sin(\pi + x) = 0$, pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $B(x) = \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & 0 \\ 3x & 0 & 1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(B(0))=1$.
- **5p b)** Arătați că $B(x) + B(y) = 2B\left(\frac{x+y}{2}\right)$, pentru orice numere reale x și y.
- **5p** c) Determinați numerele reale x pentru care $B(x^2 + 1)B(x) = B(x^2 + x + 1)$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = \frac{1}{2}(x-3)(y-3)+3$.
- **5p a)** Arătați că $(-3) \circ 3 = 3$.
- **5p b**) Determinați numerele naturale n pentru care $n \circ n = 11$.
- **5p** c) Calculati $1 \circ 2 \circ 3 \circ \dots \circ 2015$.

- **1.** Se consideră funcția $f:(1,+\infty) \to \mathbb{R}$, $f(x) = \frac{x+2}{x-1}$
- **5p** a) Arătați că $f'(x) = -\frac{3}{(x-1)^2}, x \in (1,+\infty).$
- **5p b**) Arătați că funcția f este convexă pe intervalul $(1, +\infty)$.
- **5p** c) Determinați coordonatele punctului situat pe graficul funcției f, în care tangenta la graficul funcției f este paralelă cu dreapta de ecuație y = -3x.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = xe^x$.
- **5p a)** Arătați că $\int_{1}^{2} \frac{1}{x} f(x) dx = e(e-1)$.
- **5p b**) Determinați primitiva F a funcției f pentru care F(1) = 0.
- **5p** c) Pentru fiecare număr natural nenul n se consideră numărul $I_n = \int_0^1 x^n f(x) dx$. Arătați că $I_n + (n+1)I_{n-1} = e$, pentru orice număr natural n, $n \ge 2$.

Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$r = a_2 - a_1 = 2015 - 1 =$	3 p
	= 2014	2p
2.	Valoarea maximă a funcției f este $f(4) =$	3 p
	=4+1=5	2 p
3.	$x^2 - 8x = 9 \Leftrightarrow x^2 - 8x - 9 = 0$	3 p
	$x_1 = -1$ și $x_2 = 9$, care verifică ecuația	2p
4.	Prima cifră se poate alege în 4 moduri, a doua cifră se poate alege în câte 3 moduri Ultima cifră se poate alege, pentru fiecare mod de alegere a primelor două cifre, în câte 2 moduri, deci se pot forma $4 \cdot 3 \cdot 2 = 24$ de numere	2p 3p
5.	$x_A + x_C = x_B + x_D \Longrightarrow x_D = 1$	3p
	$y_A + y_C = y_B + y_D \Longrightarrow y_D = 0$	2 p
6.	$A = \frac{\pi}{2}$	2p
	BC = 2	3 p

1.a)	$(1 \ 1 \ 2)$ $ 1 \ 1 \ 2 $	
1)	$A(1) = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{vmatrix} =$	2p
	=1+0+0-0-0-0=1	3 p
b)	$A^{2}(a) = \begin{pmatrix} 1 & 2a & a^{2} + 4a + 2 \\ 0 & 1 & 2a + 4 \\ 0 & 0 & 1 \end{pmatrix}, \ 2A(a) = \begin{pmatrix} 2 & 2a & 2a + 2 \\ 0 & 2 & 2a + 4 \\ 0 & 0 & 2 \end{pmatrix}$	2p
	$A^{2}(a) - 2A(a) + I_{3} = \begin{pmatrix} 0 & 0 & a^{2} + 2a \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	1p
	$\begin{pmatrix} 0 & 0 & a^2 + 2a \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow a^2 + 2a = 0 \Leftrightarrow a_1 = -2 \text{ si } a_2 = 0$	2p
c)	A(2)+A(100)=2A(51), A(4)+A(98)=2A(51),, A(50)+A(52)=2A(51)	3p
	$A(2) + A(4) + A(6) + + A(100) = 25 \cdot 2A(51) = 50A(51)$	2p

2.a)	$f(0) = 0^3 - 4 \cdot 0^2 + m \cdot 0 + 2 =$	3p
	= 2	2p
b)	$x_1 + x_2 + x_3 = 4$, $x_1 = x_2 + x_3 \Leftrightarrow x_1 = 2$	2p
	$f(2) = 0 \Leftrightarrow 2m - 6 = 0 \Leftrightarrow m = 3$	3 p
c)	$f = X^3 - 4X^2 + 8X + 2$, $x_1 + x_2 + x_3 = 4$ şi $x_1x_2 + x_1x_3 + x_2x_3 = 8$	2p
	Cum $x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_1x_3 + x_2x_3) = 16 - 16 = 0$, dacă polinomul f ar avea toate rădăcinile reale, am obține $x_1 = x_2 = x_3 = 0$, contradicție cu $f(0) = 2$	3p

1.a)	$f'(x) = e^x(x^2 - 6x + 9) + e^x(2x - 6) =$	3p
	$= e^{x} \left(x^{2} - 6x + 9 + 2x - 6 \right) = e^{x} \left(x^{2} - 4x + 3 \right), \ x \in \mathbb{R}$	2p
b)	$f'(x) = 0 \Leftrightarrow x_1 = 1$ şi $x_2 = 3$	2p
	$f'(x) \ge 0$, pentru orice $x \in (-\infty, 1] \Rightarrow f$ este crescătoare pe $(-\infty, 1]$	1p
	$f'(x) \le 0$, pentru orice $x \in [1,3] \Rightarrow f$ este descrescătoare pe $[1,3]$	1p
	$f'(x) \ge 0$, pentru orice $x \in [3, +\infty) \Rightarrow f$ este crescătoare pe $[3, +\infty)$	1p
c)	$f(x) \le f(1)$, pentru orice $x \in (-\infty, 3]$	3p
	Cum $f(1) = 4e$, obţinem $e^x(x-3)^2 \le 4e$, pentru orice $x \in (-\infty, 3]$	2p
2.a)	$I_1 = \int_0^1 (1 - x^3) dx = \left(x - \frac{x^4}{4} \right) \Big _0^1 =$	3 p
	$=1-\frac{1}{4}=\frac{3}{4}$	2p
b)	$I_{n+1} - I_n = \int_0^1 (-x^3) (1-x^3)^n dx$, pentru orice număr natural nenul n	2p
	Pentru orice număr natural nenul n și $x \in [0,1]$ avem $-x^3 \le 0$ și $(1-x^3)^n \ge 0 \Rightarrow I_{n+1} \le I_n$	3 p
c)	$I_{n+1} = \int_{0}^{1} x' (1-x^3)^{n+1} dx = x(1-x^3)^{n+1} \Big _{0}^{1} - \int_{0}^{1} x(n+1)(1-x^3)^{n} (-3x^2) dx =$	2p
	$= 3(n+1)\int_{0}^{1} x^{3} (1-x^{3})^{n} dx = -3(n+1)\int_{0}^{1} (1-x^{3}-1)(1-x^{3})^{n} dx = -3(n+1)(I_{n+1}-I_{n}), \text{ deci}$ $I_{n+1} = \frac{3(n+1)}{3n+4}I_{n}, \text{ pentru orice număr natural nenul } n$	3р

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_mate-info*

Varianta 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Calculați rația progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_1=1$ și $a_2=2015$.
- **5p** 2. Determinați valoarea maximă a funcției $f:[1,4] \to \mathbb{R}$, f(x) = x+1.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_3(x^2 8x) = \log_3 9$.
- **5p 4.** Determinați câte numere naturale de trei cifre distincte se pot forma cu elementele mulțimii $A = \{1, 2, 3, 4\}$.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(3,3), B(6,3) și C(4,0). Determinați coordonatele punctului D, știind că ABCD este paralelogram.
- **5p 6.** Calculați lungimea laturii *BC* a triunghiului *ABC* în care AB = 1, $B = \frac{\pi}{3}$ și $C = \frac{\pi}{6}$.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $O_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ și $A(a) = \begin{pmatrix} 1 & a & a+1 \\ 0 & 1 & a+2 \\ 0 & 0 & 1 \end{pmatrix}$, unde a este

număr real.

- **5p** a) Arătați că $\det(A(1))=1$.
- **5p b**) Determinați numerele reale a, știind că $A^2(a) 2A(a) + I_3 = O_3$, unde $A^2(a) = A(a)A(a)$.
- **5p** c) Arătați că A(2) + A(4) + A(6) + ... + A(100) = 50A(51).
 - **2.** Se consideră polinomul $f = X^3 4X^2 + mX + 2$, unde *m* este număr real.
- **5p a)** Arătați că f(0) = 2.
- **5p b)** Determinați numărul real m pentru care $x_1 = x_2 + x_3$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.
- **5p** c) Pentru m = 8, arătați că polinomul f **nu** are toate rădăcinile reale.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x(x^2 6x + 9)$.
- **5p** a) Arătați că $f'(x) = e^x(x^2 4x + 3), x \in \mathbb{R}$.
- **5p b**) Determinați intervalele de monotonie a funcției f.
- **5p** c) Demonstrați că $e^x (x-3)^2 \le 4e$, pentru orice $x \in (-\infty, 3]$.
 - **2.** Pentru fiecare număr natural nenul n, se consideră numărul $I_n = \int_0^1 (1-x^3)^n dx$.
- **5p** a) Arătați că $I_1 = \frac{3}{4}$.
- **5p b**) Arătați că $I_{n+1} \le I_n$, pentru orice număr natural nenul n.
- **5p** c) Demonstrați că $I_{n+1} = \frac{3(n+1)}{3n+4}I_n$, pentru orice număr natural nenul n.

Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	r = 5 - 2 = 3	3 p
	$a_3 = 5 + 3 = 8$	2p
2.	$f(3) = 5 \Leftrightarrow a - 3 = 5$	3 p
	a=8	2p
3.	$2^{3(4-x)} = 2^{2x+2} \Leftrightarrow 12-3x = 2x+2$	3 p
	x=2	2 p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	Sunt 9 numere naturale de două cifre care au produsul cifrelor egal cu 0, deci sunt 9 cazuri	2 p
	favorabile	2p
	nr. cazuri favorabile 9 1	•
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{90} = \frac{1}{10}$	2 p
5.	$y - y_M = 2(x - x_M)$	2p
	y=2x-1	3 p
6.	$13^2 = 5^2 + 12^2$, deci triunghiul ABC este dreptunghic în A	2 p
	$\sin C = \frac{AB}{AB} = \frac{5}{AB}$	3р
	$\frac{\sin c}{BC} - \frac{1}{13}$	эp

1.a)	$A(1) = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 1 & 0 \\ -1 & 0 & 3 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 0 & 0 & 2 \\ 0 & 1 & 0 \\ -1 & 0 & 3 \end{vmatrix} =$	2p
	= 0 + 0 + 0 - (-2) - 0 - 0 = 2	3 p
b)	$A(x)A(y) = \begin{pmatrix} (1-x)(1-y) - 2xy & 0 & (1-x)2y + 2x(1+2y) \\ 0 & 1 & 0 \\ -x(1-y) - (1+2x)y & 0 & -2xy + (1+2x)(1+2y) \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 - (xy + x + y) & 0 & 2(xy + x + y) \\ 0 & 1 & 0 \\ -(xy + x + y) & 0 & 1 + 2(xy + x + y) \end{pmatrix} = A(xy + x + y), \text{ pentru orice numere reale } x \text{ si } y$	2p
c)	$A(x)A(x)A(x) = A((x+1)^3 - 1)$, pentru orice număr real x	3 p
	$(x+1)^3 - 1 = 7 \Leftrightarrow x = 1$	2 p
2.a)	$f(0) = 0^3 + 2 \cdot 0^2 + 0 + m =$	3 p
	= 0 + 0 + 0 + m = m	2 p

b)	$x_1 + x_2 + x_3 = -2$, $x_1x_2 + x_1x_3 + x_2x_3 = 1$, $x_1x_2x_3 = -1$	3 p
	$x_1^3 + x_2^3 + x_3^3 = -2\left(x_1^2 + x_2^2 + x_3^2\right) - \left(x_1 + x_2 + x_3\right) - 3 = -2\left((-2)^2 - 2 \cdot 1\right) - (-2) - 3 = -5 = 5x_1x_2x_3$	2p
c)	$x_1 \in \mathbb{Z} \text{si} f(x_1) = 0 \Leftrightarrow m = -x_1(x_1 + 1)^2$	2p
	Deoarece m este prim, obținem $(x_1 + 1)^2 = 1 \Leftrightarrow x_1 = 0$, care nu convine, sau $x_1 = -2$, pentru care $m = 2$	3 p

1.a)	1 (2)	
1)	$f'(x) = 1 - \frac{1}{2\sqrt{x^2 + 1}} (x^2 + 1)' =$	3 p
	$=1-\frac{2x}{2\sqrt{x^2+1}}=1-\frac{x}{\sqrt{x^2+1}}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(x - \sqrt{x^2 + 1} \right) = \lim_{x \to +\infty} \frac{x^2 - \left(x^2 + 1 \right)}{x + \sqrt{x^2 + 1}} = \lim_{x \to +\infty} \frac{-1}{x + \sqrt{x^2 + 1}} = 0$	3р
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2p
c)	$f''(x) = -\frac{x'\sqrt{x^2 + 1} - x(\sqrt{x^2 + 1})'}{x^2 + 1} = -\frac{\sqrt{x^2 + 1} - \frac{x^2}{\sqrt{x^2 + 1}}}{x^2 + 1} = -\frac{1}{(x^2 + 1)\sqrt{x^2 + 1}}, \ x \in \mathbb{R}$	3р
	$f''(x) < 0$, pentru orice număr real x , deci funcția f' este descrescătoare pe $\mathbb R$	2p
2.a)	$\int_{1}^{e} \frac{1}{x} dx = \ln x \Big _{1}^{e} =$	3p
	$= \ln e - \ln 1 = 1$	2p
b)	$\mathcal{A} = \int_{1}^{e} \left f(x) \right dx = \int_{1}^{e} \ln x dx = x \ln x \left _{1}^{e} - \int_{1}^{e} x \cdot \frac{1}{x} dx = \right $	3р
	$=e-x \begin{vmatrix} e \\ 1 \end{vmatrix} = e-e+1=1$	2 p
c)	$\int_{1}^{e} \frac{1}{x} (f(x))^{n} dx = \int_{1}^{e} \frac{1}{x} \ln^{n} x dx = \frac{1}{n+1} \ln^{n+1} x \Big _{1}^{e} = \frac{1}{n+1}$	3р
	$\frac{1}{n+1} = \frac{1}{2015} \Leftrightarrow n = 2014$	2p

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_mate-info*

Varianta 1

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați al treilea termen al progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_1=2$ și $a_2=5$.
- **5p** 2. Determinați numărul real a, știind că punctul A(3,5) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, f(x) = a x.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $8^{4-x} = 2^{2x+2}$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă produsul cifrelor egal cu 0.
- **5p 5.** În reperul cartezian xOy se consideră punctul M(1,1). Determinați ecuația dreptei care trece prin punctul M și are panta egală cu 2.
- **5p 6.** Se consideră triunghiul ABC cu AB = 5, AC = 12 și BC = 13. Arătați că $\sin C = \frac{5}{13}$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(x) = \begin{pmatrix} 1-x & 0 & 2x \\ 0 & 1 & 0 \\ -x & 0 & 1+2x \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(1)) = 2$.
- **5p b**) Arătați că A(x)A(y) = A(xy + x + y), pentru orice numere reale x și y.
- **5p** c) Determinați numerele reale x, știind că A(x)A(x)A(x) = A(7).
 - **2.** Se consideră polinomul $f = X^3 + 2X^2 + X + m$, unde m este număr real.
- **5p** a) Arătați că f(0) = m.
- **5p b**) Pentru m = 1, arătați că $x_1^3 + x_2^3 + x_3^3 = 5x_1x_2x_3$, unde x_1, x_2 și x_3 sunt rădăcinile polinomului f.
- **5p** c) Determinați numărul natural prim m, știind că polinomul f are o rădăcină întreagă.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x \sqrt{x^2 + 1}$.
- **5p** a) Arătați că $f'(x) = 1 \frac{x}{\sqrt{x^2 + 1}}, x \in \mathbb{R}$.
- **5p** \mid **b**) Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
- **5p** c) Arătați că derivata funcției f este descrescătoare pe \mathbb{R} .
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \ln x$.
- **5p** a) Arătați că $\int_{1}^{e} \frac{1}{x} dx = 1$.
- **5p b)** Calculați aria suprafeței plane delimitate de graficul funcției f, axa Ox și dreptele de ecuații x = 1 și x = e.
- **5p** c) Determinați numărul natural nenul n, știind că $\int_{1}^{e} \frac{1}{x} (f(x))^n dx = \frac{1}{2015}$.

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(z-1\right)^2 = i^2 =$	2p
	=-1	3 p
2.	$x_1 + x_2 = 5$	2p
	$x_1 \cdot x_2 = 3 \Rightarrow 3(x_1 + x_2) - 4x_1x_2 = 3 \cdot 5 - 4 \cdot 3 = 3$	3 p
3.	$(2^{x}-1)(2^{x}-2)=0 \Leftrightarrow 2^{x}=1 \text{ sau } 2^{x}=2$	3 p
	x = 0 sau $x = 1$	2p
4.	Sunt 7 numere de două cifre care sunt divizibile cu 13, deci sunt 7 cazuri favorabile	2p
	Sunt 90 de numere de două cifre, deci sunt 90 de cazuri posibile	1p
	nr. cazuri favorabile 7	_
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{7}{90}$	2p
5.	Panta paralelei duse prin punctul A la dreapta d este $m = 3$	3р
	Ecuația paralelei duse prin punctul A la dreapta d este $y = 3x - 3$	2p
6.	$\sin C = \frac{1}{2}$	2p
	$\frac{AB}{\sin C} = 2R \Rightarrow R = 12$	3 p

1.a)	$\det(A(a)) = \begin{vmatrix} 1 & 1 & 1 \\ 0 & a & a+1 \\ 2 & a+2 & a+3 \end{vmatrix} =$	2p
ı	$\begin{vmatrix} 1 & 1 & 1 \\ 0 & a & a+1 \\ 2 & 2 & 2 \end{vmatrix} = 0$	3р
b)	$2A(n^{2}) - A(n) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2n^{2} - n & 2n^{2} - n + 1 \\ 2 & 2n^{2} - n + 2 & 2n^{2} - n + 3 \end{pmatrix}, A(6) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 6 & 7 \\ 2 & 8 & 9 \end{pmatrix}$	3p
	$2n^2 - n - 6 = 0 \Rightarrow n = -\frac{3}{2} \notin \mathbb{N}, \ n = 2 \in \mathbb{N}$	2p

c)	Pentru $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, avem $A(2015) \cdot X = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} x + y + z = 0 \\ 2015y + 2016z = 0 \\ 2x + 2017y + 2018z = 0 \end{cases}$	2p
	Determinantul sistemului omogen este egal cu $0 \Rightarrow$ sistemul are o infinitate de soluții, deci există o infinitate de matrice X	3p
2.a)	$f = X^{3} + 2X - 3$ f(1) = 1 + 2 - 3 = 0	2p
	f(1) = 1 + 2 - 3 = 0	3 p
b)	$f = X^3 + mX - 3$ este divizibil cu $X + 1 \Leftrightarrow f(-1) = 0$	2p
	m = -4	3 p
c)	$x_1^2 + x_2^2 + x_3^2 = -2m < 0 \Rightarrow f$ are cel puţin o rădăcină din $\mathbb{C} \setminus \mathbb{R}$	2p
	$f \in \mathbb{R}\big[X\big] \Rightarrow f$ are două rădăcini conjugate din $\mathbb{C} \setminus \mathbb{R}$, care au modulele egale	3 p

1.a)	$f'(x) = \frac{e^x - x - (x+1)(e^x - 1)}{(e^x - x)^2} =$	2p
	$=\frac{1-xe^x}{\left(e^x-x\right)^2},\ x\in\mathbb{R}$	3 p
b)	y-f(0)=f'(0)(x-0)	2p
	f(0)=1, $f'(0)=1$, deci ecuația tangentei este $y=x+1$	3 p
c)	$\lim_{x \to +\infty} f(-x) = \lim_{x \to +\infty} \frac{-x+1}{e^{-x} + x} =$	2p
	$= \lim_{x \to +\infty} \frac{-1}{1 - e^{-x}} = -1$	3p
2.a)	$\int_{0}^{2} f^{2}(x) dx = \int_{0}^{2} \frac{1}{x^{2} + 4} dx = \frac{1}{2} \operatorname{arctg} \frac{x}{2} \Big _{0}^{2} =$	3 p
	$=\frac{1}{2}(\arctan 1-\arctan 0)=\frac{\pi}{8}$	2p
b)	1 () ()	2p
	$F'(x) = \frac{1}{\sqrt{x^2 + 4}} > 0$ pentru orice număr real x, deci F este crescătoare pe \mathbb{R}	3 p
c)	$I_n = \int_0^1 \frac{x^n}{\sqrt{x^2 + 4}} dx = x^{n-1} \sqrt{x^2 + 4} \Big _0^1 - (n-1) \int_0^1 x^{n-2} \sqrt{x^2 + 4} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx = \sqrt{5} - (n-1) \int_0^1 \frac{x^{n-2} \left(x^2 + 4\right)}{\sqrt{x^2 + 4}} dx$	3 p
	$= \sqrt{5} - (n-1)I_n - 4(n-1)I_{n-2} \Rightarrow nI_n = \sqrt{5} - 4(n-1)I_{n-2} \text{ pentru orice număr natural } n, n \ge 3$	2p

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M mate-info*

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** | **1.** Se consideră numărul complex z = 1 + i. Calculați $(z 1)^2$.
- **5p** 2. Arătați că $3(x_1 + x_2) 4x_1x_2 = 3$, știind că x_1 și x_2 sunt soluțiile ecuației $x^2 5x + 3 = 0$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $4^x 3 \cdot 2^x + 2 = 0$.
- **5p 4.** Calculați probabilitatea ca alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie divizibil cu 13.
- **5p 5.** În reperul cartezian xOy se consideră dreapta d de ecuație y = 3x + 4 și punctul A(1,0). Determinați ecuația paralelei duse prin punctul A la dreapta d.
- **5p 6.** Calculați raza cercului circumscris triunghiului ABC, știind că AB = 12 și $C = \frac{\pi}{6}$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(a) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & a & a+1 \\ 2 & a+2 & a+3 \end{pmatrix}$, unde a este număr real.
- **5p** a) Calculați $\det(A(a))$.
- **5p b)** Determinați numărul natural n, știind că $2A(n^2) A(n) = A(6)$.
- **5p** c) Arătați că există o infinitate de matrice $X \in \mathcal{M}_{3,1}(\mathbb{R})$ care verifică relația $A(2015) \cdot X = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.
 - **2.** Se consideră polinomul $f = X^3 + mX 3$, unde m este număr real.
- **5p** a) Pentru m=2, arătați că f(1)=0.
- **5p b)** Determinați numărul real m, știind că polinomul f este divizibil cu X+1.
- **5p** c) Arătați că, pentru orice număr real strict pozitiv m, polinomul f are două rădăcini de module egale.

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x+1}{e^x x}$.
- **5p a)** Calculați f'(x), $x \in \mathbb{R}$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă $x_0 = 0$, situat pe graficul funcției f.
- **5p** c) Calculați $\lim_{x \to +\infty} f(-x)$.
 - 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{\sqrt{x^2 + 4}}$.
- **5p** a) Calculați $\int_{0}^{2} f^{2}(x) dx$.
- **5p b)** Arătați că orice primitivă a funcției f este funcție crescătoare pe \mathbb{R} .
- **5p** c) Pentru fiecare număr natural nenul n se consideră numărul $I_n = \int_0^1 x^n f(x) dx$. Arătați că $nI_n = \sqrt{5} 4(n-1)I_{n-2}$ pentru orice număr natural n, $n \ge 3$.

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_mate-info* Clasa a XII-a BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z = \frac{(2+3i)(3+2i)}{4+9} = \frac{13i}{13} = i$	3p
	Partea reală a numărului z este egală cu 0	2p
2.	$\Delta = 1 + 4a$	2p
	$1 + 4a = 0 \Leftrightarrow a = -\frac{1}{4}$	3 p
3.	$4^x + 3 \cdot 4^x - 16 = 0 \Leftrightarrow 4 \cdot 4^x = 16$	3 p
	x=1	2p
4.	Sunt $C_3^1 \cdot C_4^1 = 12$ cazuri favorabile	2p
	Sunt $C_7^2 = 21$ de cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{12}{21} = \frac{4}{7}$	2p
5.	Mediatoarea d trece prin punctul $P(3,2)$, care este mijlocul segmentului MN	2p
	$m_{MN} = -1 \Rightarrow m_d = 1$	1p
	Ecuația dreptei d este $y = x - 1$	2 p
6.	$\sin(\pi - x) = \sin x , \cos(2\pi - x) = \cos x$	2p
	$(2\sin x)^2 + (2\cos x)^2 = 4(\sin^2 x + \cos^2 x) = 4$, pentru orice număr real x	3 p

1.a)	$A(1) + A(-1) = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -2 \\ 0 & 0 & 0 \\ 0 & -2 & 0 \end{pmatrix} =$	3p
	$= 2 \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} = 2A(0)$	2p
b)	$A(x) + I_3 = \begin{pmatrix} 1 & 0 & -1 \\ x & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \Rightarrow \det(A(x) + I_3) = \begin{vmatrix} 1 & 0 & -1 \\ x & 1 & 0 \\ 0 & -1 & 1 \end{vmatrix} = 1 + x$ $1 + x = 0 \Leftrightarrow x = -1$	3p
c)	$aI_{3} - bA(-1) + cA(-1) \cdot A(-1) = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} - \begin{pmatrix} 0 & 0 & -b \\ -b & 0 & 0 \\ 0 & -b & 0 \end{pmatrix} + \begin{pmatrix} 0 & c & 0 \\ 0 & 0 & c \\ c & 0 & 0 \end{pmatrix} = \begin{pmatrix} a & c & b \\ b & a & c \\ c & b & a \end{pmatrix}$	2p 2p

	$\det(aI_3 - bA(-1) + cA(-1) \cdot A(-1)) = \begin{vmatrix} a & c & b \\ b & a & c \\ c & b & a \end{vmatrix} = (a+b+c)(a^2+b^2+c^2-ab-bc-ca) =$	1p
	$= \frac{1}{2}(a+b+c)\left((a-b)^2 + (b-c)^2 + (c-a)^2\right) \ge 0, \text{ pentru orice numere reale pozitive } a, b \text{ si } c$	2p
2.a)	x * y = xy - 5x - 5y + 25 + 5 =	2p
	=x(y-5)-5(y-5)+5=(x-5)(y-5)+5, pentru orice numere întregi x și y	3 p
b)	Elementul neutru al legii de compoziție "*" este 6	1p
	x este simetrizabil dacă există $x' \in \mathbb{Z}$ astfel încât $x * x' = x' * x = 6$, de unde $x' = 5 + \frac{1}{x - 5}$	2p
	Cum x' este număr întreg, obținem $x = 4$ sau $x = 6$	2p
c)	x*5=5 și $5*y=5$, pentru x și y numere întregi	2p
	5 este divizor al lui 2015	1p
	2015 are 8 divizori naturali și legea de compoziție este asociativă, avem $d_1 * d_2 * \cdots * d_8 = 5$	2p

1.a)	$f(x) = x \cdot (m(x+1))$	2p
	$=1-\frac{1}{x+1}, \ x \in (-1, +\infty)$	3 p
b)		2p
	$=\frac{1}{2}$	3 p
c)	$f'(0) = 0$, $f'(x) < 0$, pentru orice $x \in (-1,0)$ și $f'(x) > 0$, pentru orice $x \in (0,+\infty)$	3 p
	$f(x) \ge f(0) \Rightarrow \ln(x+1) \le x$, pentru orice $x \in (-1, +\infty)$	2 p
2.a)	$\int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{x}{x^{2} + 1} dx = \frac{1}{2} \ln(x^{2} + 1) \Big _{0}^{1} =$	3p
	$=\frac{1}{2}\ln 2$	2p
b)	$\int_{0}^{1} \frac{f(x) + x^{2} f(x)}{x^{4} + 1} dx = \int_{0}^{1} \frac{x}{x^{4} + 1} dx =$	2p
	$= \frac{1}{2} \operatorname{arctg}\left(x^2\right) \Big _0^1 = \frac{\pi}{8}$	3 p
c)	Din regula lui l'Hospital pentru cazul $\frac{0}{0}$, limita cerută este egală cu $\lim_{x\to 1} \left(\int_{1}^{x} f(t)dt\right) =$	3p
	$=\lim_{x\to 1}f(x)=\frac{1}{2}$	2p

Proba E. c) Matematică *M_mate-info*Clasa a XII-a

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Calculați partea reală a numărului complex $z = \frac{3+2i}{2-3i}$
- **5p** 2. Determinați numărul real a, știind că funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + x a$ are graficul tangent axei Ox.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $2^{2x} + 3 \cdot 4^x 16 = 0$.
- **5p 4.** Calculați probabilitatea ca, alegând una dintre submulțimile cu două elemente ale mulțimii $A = \{1, 2, 3, 4, 5, 6, 7\}$, aceasta să aibă un singur element număr par.
- **5p 5.** În reperul cartezian xOy se consideră punctele M(2,3) și N(4,1). Determinați ecuația mediatoarei segmentului MN.
- **5p 6.** Arătați că $(\sin x + \sin(\pi x))^2 + (\cos x + \cos(2\pi x))^2 = 4$, pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și $A(x) = \begin{pmatrix} 0 & 0 & -1 \\ x & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$, unde x este număr real.
- **5p a)** Arătați că A(1) + A(-1) = 2A(0).
- **5p b**) Rezolvați în mulțimea numerelor reale ecuația $\det(A(x) + I_3) = 0$.
- **5p** c) Arătați că $\det(aI_3 bA(-1) + cA(-1) \cdot A(-1)) \ge 0$, pentru orice numere reale pozitive a, b și c.
 - **2.** Pe mulțimea numerelor întregi se definește legea de compoziție asociativă și cu element neutru x * y = xy 5x 5y + 30.
- **5p** a) Arătați că x * y = (x-5)(y-5)+5, pentru orice numere întregi x și y.
- **5p b**) Determinați elementele simetrizabile în raport cu legea de compoziție "*".
- **5p** c) Calculați $d_1 * d_2 * \cdots * d_8$, unde d_1, d_2, \dots, d_8 sunt divizorii naturali ai lui 2015.

SUBIECTUL al III-lea (30 de puncte)

1. Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x)=x-\ln(x+1)$.

- **1.** Se considera funcția $f:(-1,+\infty) \to \mathbb{R}$ **5p** a) Calculați $f'(x), x \in (-1,+\infty)$.
- **5p b)** Calculați $\lim_{x \to 1} \frac{x f(x) \ln 2}{x 1}$.
- **5p** c) Demonstrați că $\ln(x+1) \le x$, pentru orice $x \in (-1, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{x^2 + 1}$.
- **5p a)** Calculați $\int_{0}^{1} f(x) dx$.
- **5p b)** Arătați că $\int_{0}^{1} \frac{f(x) + x^{2} f(x)}{x^{4} + 1} dx = \frac{\pi}{8}$.
- **5p** c) Calculați $\lim_{x \to 1} \frac{1}{x-1} \int_{1}^{x} f(t) dt$.

Examenul de bacalaureat național 2015 Proba E. c) Matematică M_mate-info Clasa a XI-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	2(2x+3)=5+(2x+7)	2p
	x = 3	3 p
2.	$\Delta = \left(m - 1\right)^2 + 4m =$	2p
	$=(m+1)^2 \ge 0$, deci, pentru orice număr real m , graficul funcției f intersectează axa Ox	3 p
3.	$2-x=(2x-1)^2 \Leftrightarrow 4x^2-3x-1=0$	2 p
	$x_1 = -\frac{1}{4}$, care nu verifică ecuația, și $x_2 = 1$, care verifică ecuația	3 p
4.	Elementele mulțimii $\{1,2,3,4,5\}$ care verifică relația $5^{n-1} > (n+1)!$ sunt 3 și 4, deci sunt 2 cazuri favorabile	2p
	Mulțimea $\{1,2,3,4,5\}$ are 5 elemente, deci sunt 5 cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{5}$	2 p
5.	$a + (2a+1) \cdot (-2) - 4 = 0 \Leftrightarrow a = -2$	3 p
	$3 \cdot (-2) + b \cdot (-2) - 8 = 0 \Leftrightarrow b = -7$	2 p
6.	$\sin 2x = 2\sin x \cos x$	2p
	$1 + \cos 2x = 2\cos^2 x \Rightarrow \frac{2\sin x \cos x}{2\cos^2 x} = \frac{\sin x}{\cos x} = \operatorname{tg} x$	3 p

1.a)	$D\left(2,\frac{1}{2}\right) = \begin{vmatrix} 1 & 2 & \frac{1}{2} \\ 1 & \frac{1}{2} & 2 \\ 1 & \frac{1}{2} & 2 \end{vmatrix} = $	2p
	= 0, deoarece determinantul are două linii egale	3 p
b)	$D(x,y) = \begin{vmatrix} 0 & x - \frac{1}{2} & \frac{1}{x} - 2 \\ 0 & y - \frac{1}{2} & \frac{1}{y} - 2 \\ 1 & \frac{1}{2} & 2 \end{vmatrix} =$	2p
	$= \left(x - \frac{1}{2}\right) \left(\frac{1}{y} - 2\right) - \left(y - \frac{1}{2}\right) \left(\frac{1}{x} - 2\right) = -\frac{1}{2xy} (2x - 1)(2y - 1)(x - y)$	3 p

c)	$(2\log_2 x - 1)(2 \cdot 2 - 1)(\log_2 x - 2) = 0$	3р
	$x = \sqrt{2}$ sau $x = 4$, care verifică ecuația	2p
2.a)	$A(1) = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{pmatrix}, \ A(-1) = \begin{pmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{pmatrix}$	2p
	$2A(1) - A(-1) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix} = A(3)$	3 p
b)	$A(a) + bI_2 = \begin{pmatrix} 1+b & 2 & a \\ a & 1+b & 2 \\ 2 & a & 1+b \end{pmatrix}, A(1) - I_3 = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{pmatrix}, (A(1) - I_3)(A(1) - I_3) = \begin{pmatrix} 4 & 1 & 4 \\ 4 & 4 & 1 \\ 1 & 4 & 4 \end{pmatrix}$	3 p
	$\begin{pmatrix} 1+b & 2 & a \\ a & 1+b & 2 \\ 2 & a & 1+b \end{pmatrix} = \begin{pmatrix} 8 & 2 & 8 \\ 8 & 8 & 2 \\ 2 & 8 & 8 \end{pmatrix} \Leftrightarrow a=8, b=7$	2p
c)	$\det(A(n)) = \begin{vmatrix} 1 & 2 & n \\ n & 1 & 2 \\ 2 & n & 1 \end{vmatrix} = (n+3)(n^2 - 3n + 3)$	3 p
	Ecuația $\det(A(n)) = 0$ nu are soluții în mulțimea numerelor naturale, deci matricea $A(n)$ este inversabilă pentru orice număr natural n	2 p

1.a)	$\lim_{x \to 1} \ln \frac{x+1}{x} = 0$	3р
	$x \rightarrow +\infty$ X	- r
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2p
b)	$a_{n+1} - a_n = f(n+1) =$	2 p
	$=\ln\left(1+\frac{1}{n+1}\right)>0$, pentru orice număr natural nenul n , deci șirul $\left(a_n\right)_{n\geq 1}$ este crescător	3 p
c)	$a_n = \ln \frac{2}{1} + \ln \frac{3}{2} + \dots + \ln \frac{n+1}{n} = \ln \left(\frac{2}{1} \cdot \frac{3}{2} \cdot \dots \cdot \frac{n+1}{n} \right) = \ln (n+1)$	2p
	$\lim_{n \to +\infty} (2n+1) \left(\ln(n+1) - \ln n \right) = \lim_{n \to +\infty} \ln \left(\frac{n+1}{n} \right)^{2n+1} = \lim_{n \to +\infty} \ln \left(\left(1 + \frac{1}{n} \right)^n \right)^{\frac{2n+1}{n}} = \ln e^2 = 2$	3 p
2.a)	f este continuă în $x = 1 \Rightarrow \lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} f(x) = f(1)$	2p
	$a+3=1+a^2 \Leftrightarrow a^2-a-2=0 \Leftrightarrow a_1=-1 \text{ și } a_2=2$	3p
b)	$\lim_{x \to +\infty} \left(\sqrt{x^2 + 4x} - \sqrt{x^2 + 4x + x} \right) =$	2 p
	$= \lim_{x \to +\infty} \frac{-x}{\sqrt{x^2 + 4x} + \sqrt{x^2 + 5x}} = -\frac{1}{2}$	3 p
c)	$g:[-1,0] \to \mathbb{R}, \ g(x) = f(x) + 2^x = 2x + 2^x$	2p
	Cum g este continuă pe $[-1,0]$, $g(-1) = -\frac{3}{2} < 0$ și $g(0) = 1 > 0$, ecuația $f(x) + 2^x = 0$ are	3 p
	cel puțin o soluție în intervalul [-1,0]	

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_mate-info* Clasa a XI-a

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați numărul real x pentru care numerele 5, 2x+3, 2x+7 sunt termeni consecutivi ai unei progresii aritmetice.
- **5p** 2. Arătați că, pentru orice număr real m, graficul funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + (m-1)x m$ intersectează axa Ox.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{2-x} = 2x-1$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $\{1,2,3,4,5\}$, acesta să verifice relația $5^{n-1} > (n+1)!$.
- **5p 5.** Determinați numerele reale a și b, știind că, în reperul cartezian xOy, punctul de intersecție a dreptelor x + (2a+1)y 4 = 0 și 3x + by 8 = 0 este M(a, -2).
- **5p 6.** Arătați că $\frac{\sin 2x}{1+\cos 2x} = \operatorname{tg} x$, pentru orice număr real $x \in \left(0, \frac{\pi}{2}\right)$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră determinantul $D(x, y) = \begin{vmatrix} 1 & x & \frac{1}{x} \\ 1 & y & \frac{1}{y} \\ 1 & \frac{1}{2} & 2 \end{vmatrix}$, unde x și y sunt numere reale nenule.
- **5p** a) Arătați că $D\left(2, \frac{1}{2}\right) = 0$.
- **5p b)** Arătați că $D(x, y) = -\frac{1}{2xy}(2x-1)(2y-1)(x-y)$, pentru orice numere reale nenule x și y.
- **5p** c) Rezolvați în mulțimea numerelor reale ecuația $D(\log_2 x, 2) = 0$.
 - **2.** Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și $A(a) = \begin{pmatrix} 1 & 2 & a \\ a & 1 & 2 \\ 2 & a & 1 \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că 2A(1) A(-1) = A(3).
- **5p b**) Determinați numerele reale a și b pentru care $A(a) + bI_3 = 2(A(1) I_3)(A(1) I_3)$.
- **5p** c) Arătați că matricea A(n) este inversabilă pentru orice număr natural n.

SUBIECTUL al III-lea

- **1.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=\ln\frac{x+1}{x}$ și șirul de numere reale $(a_n)_{n\geq 1}$, $a_n=f(1)+f(2)+...+f(n)$.
- **5p** a) Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
- **5p b**) Arătați că șirul $(a_n)_{n\geq 1}$ este crescător.
- **5p** c) Calculați $\lim_{n \to +\infty} (2n+1)(a_n \ln n)$.

- 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} 2x + a + 1, & x \le 1 \\ x^2 + a^2x, & x > 1 \end{cases}$, unde a este număr real.
- **5p** a) Determinați numerele reale a pentru care funcția f este continuă în x = 1.
- **5p b**) Pentru a = 2, calculați $\lim_{x \to +\infty} \left(\sqrt{f(x)} \sqrt{f(x) + x} \right)$.
- **5p** c) Pentru a = -1, arătați că ecuația $f(x) + 2^x = 0$ are cel puțin o soluție în intervalul [-1,0].

Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE SI DE NOTARE

Varianta 9

Varianta 9

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z_1 + z_2 = (2+3i) + (1-3i) =$	3p
	= 3, care este număr real	2 p
2.	g(1)=3	2p
	$(f \circ g)(1) = f(g(1)) = f(3) = 2$	3 p
3.	$4^x = 4^3$	2p
	x = 3	3 p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	Sunt 13 numere naturale de două cifre care sunt divizibile cu 7, deci sunt 13 cazuri favorabile	2p
	$n = \frac{\text{nr. cazuri favorabile}}{120} = \frac{13}{120}$	
	$p = \frac{1}{\text{nr. cazuri posibile}} = \frac{1}{90}$	2p
5.	Dreapta paralelă cu dreapta d are panta egală cu 4	2p
	Ecuația paralelei duse prin punctul A la dreapta d este $y = 4x - 8$	3 p
6.	$\sin(\pi - x)\sin x - \cos(\pi - x)\cos x = -\cos(\pi - x + x) =$	3p
	$=-\cos\pi=1$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = $	
	$\det A = \begin{vmatrix} 0 & 1 & 0 \end{vmatrix} =$	2 p
		1
	=1+0+0-1-0-0=0	3 p
b)	$\begin{pmatrix} 0 & 2x & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & x & 0 \end{pmatrix}$	
	$A \cdot B(x) = \begin{pmatrix} 0 & 2x & 0 \\ x & 0 & x \\ 0 & 2x & 0 \end{pmatrix}, \ B(x) \cdot A = \begin{pmatrix} 0 & x & 0 \\ 2x & 0 & 2x \\ 0 & x & 0 \end{pmatrix}$	2 p
	$\begin{pmatrix} 0 & 2x & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & x & 0 \end{pmatrix}$	
	(0 3x 0) (0 x 0)	
	$A \cdot B(x) + B(x) \cdot A = \begin{vmatrix} 3x & 0 & 3x \end{vmatrix} = 3 \begin{vmatrix} x & 0 & x \end{vmatrix} = 3B(x)$, pentru orice număr real x	3р
	$A \cdot B(x) + B(x) \cdot A = \begin{pmatrix} 0 & 3x & 0 \\ 3x & 0 & 3x \\ 0 & 3x & 0 \end{pmatrix} = 3 \begin{pmatrix} 0 & x & 0 \\ x & 0 & x \\ 0 & x & 0 \end{pmatrix} = 3B(x), \text{ pentru orice număr real } x$. •
c)	$\begin{pmatrix} 0 & 2x^3 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & x^2 + x - 2 & 0 \end{pmatrix}$	
	$B(x)B(x)B(x) = \begin{pmatrix} 0 & 2x^3 & 0 \\ 2x^3 & 0 & 2x^3 \\ 0 & 2x^3 & 0 \end{pmatrix} $ si $B(x^2 + x - 2) = \begin{pmatrix} 0 & x^2 + x - 2 & 0 \\ x^2 + x - 2 & 0 & x^2 + x - 2 \\ 0 & x^2 + x - 2 & 0 \end{pmatrix}$	3n
	$\begin{bmatrix} B(x)B(x)B(x) \\ 0 & 23 \\ 0 & 24 \end{bmatrix} \xrightarrow{\text{gf } B(x+x-2)} \begin{bmatrix} x+x-2 \\ 0 & 2+x-2 \\ 0 & 2+x-2 \end{bmatrix}$	Эp
	$\begin{pmatrix} 0 & 2x^2 & 0 \end{pmatrix}$	
	$2x^3 = x^2 + x - 2, x \in \mathbb{R} \iff x = -1$	2 p
2.a)	$f(0) = 0^3 - 2 \cdot 0^2 + 2 \cdot 0 + m =$	3p
	=0-0+0+m=m	2p

Probă scrisă la matematică M_mate-info

Barem de evaluare și de notare

b)	$x_1 + x_2 + x_3 = 2$, $x_1x_2 + x_1x_3 + x_2x_3 = 2$, $x_1x_2x_3 = 1$	3p
	$\left(x_1 + x_2 + x_3\right) \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}\right) = \frac{\left(x_1 + x_2 + x_3\right)\left(x_2 x_3 + x_1 x_3 + x_1 x_2\right)}{x_1 x_2 x_3} = \frac{2 \cdot 2}{1} = 4$	2 p
c)	$x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_1x_3 + x_2x_3) = 2^2 - 2 \cdot 2 = 0$	2 p
	Dacă polinomul f ar avea toate rădăcinile reale, am obține $x_1=x_2=x_3=0$, contradicție cu $x_1+x_2+x_3=2$	3 p

1.a)	$f'(x) = \frac{(2x-1)(x^2+x+1)-(2x+1)(x^2-x+1)}{(x^2+x+1)^2} =$	3p
	$= \frac{2x^2 - 2}{\left(x^2 + x + 1\right)^2} = \frac{2(x - 1)(x + 1)}{\left(x^2 + x + 1\right)^2}, \ x \in \mathbb{R}$	2p
b)	f(0)=1, f'(0)=-2	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x - 0) \Rightarrow y = -2x + 1$	3 p
c)	$\lim_{x \to +\infty} (f(x))^x = \lim_{x \to +\infty} \left(\frac{x^2 - x + 1}{x^2 + x + 1} \right)^x = \lim_{x \to +\infty} \left(1 - \frac{2x}{x^2 + x + 1} \right)^x =$	2p
	$= e^{\lim_{x \to +\infty} \frac{-2x^2}{x^2 + x + 1}} = e^{-2}$	3 p
2.a)	$\int_{0}^{1} (f(x) + 2x) dx = \int_{0}^{1} e^{x} dx =$	2p
	$=e^{x}\begin{vmatrix}1\\0=e-1\end{vmatrix}$	3 p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = e^x - x^2 + c$, unde $c \in \mathbb{R}$	2p
	$F(1) = e - 3 \Rightarrow c = -2$, deci $F(x) = e^x - x^2 - 2$	3 p
c)	$V = \pi \int_{0}^{1} g^{2}(x) dx = \pi \int_{0}^{1} (e^{x} - 2x)^{2} dx = \pi \int_{0}^{1} (e^{2x} - 4xe^{x} + 4x^{2}) dx =$	2p
	$= \pi \left(\frac{1}{2} e^{2x} - 4(x-1)e^x + 4\frac{x^3}{3} \right) \Big _0^1 = \frac{\pi \left(3e^2 - 19 \right)}{6}$	3 p

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_mate-info*

Varianta 9

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBJECTUL I (30 de puncte)

- **5p** 1. Se consideră numerele complexe $z_1 = 2 + 3i$ și $z_2 = 1 3i$. Arătați că numărul $z_1 + z_2$ este real.
- **5p** 2. Calculați $(f \circ g)(1)$, unde $f : \mathbb{R} \to \mathbb{R}$, f(x) = x 1 și $g : \mathbb{R} \to \mathbb{R}$, g(x) = 3x.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $4^x 64 = 0$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie divizibil cu 7.
- **5p 5.** În reperul cartezian xOy se consideră dreapta d de ecuație y = 4x + 1 și punctul A(2,0). Determinați ecuația paralelei duse prin punctul A la dreapta d.
- **5p** | **6.** Arătați că $\sin(\pi x)\sin x \cos(\pi x)\cos x = 1$, pentru orice număr real x.

SUBIECTUL al II-lea

(30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ și $B(x) = \begin{pmatrix} 0 & x & 0 \\ x & 0 & x \\ 0 & x & 0 \end{pmatrix}$, unde x este număr real.
- **5p** | **a**) Arătați că det A = 0.
- **5p b**) Arătați că $A \cdot B(x) + B(x) \cdot A = 3B(x)$, pentru orice număr real x.
- **5p** c) Determinați numerele reale x pentru care $B(x) \cdot B(x) \cdot B(x) = B(x^2 + x 2)$.
 - **2.** Se consideră polinomul $f = X^3 2X^2 + 2X + m$, unde m este număr real.
- **5p** a) Arătați că f(0) = m.
- **5p b)** Pentru m = -1, demonstrați că $(x_1 + x_2 + x_3)\left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}\right) = 4$, unde x_1, x_2 și x_3 sunt rădăcinile polinomului f.
- **5p** $| \mathbf{c} |$ Arătați că polinomul f **nu** are toate rădăcinile reale.

SUBIECTUL al III-lea

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^2 x + 1}{x^2 + x + 1}$.
- **5p** a) Arătați că $f'(x) = \frac{2(x-1)(x+1)}{(x^2+x+1)^2}, x \in \mathbb{R}$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** c) Calculați $\lim_{x \to +\infty} (f(x))^x$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x 2x$.
- **5p** a) Arătați că $\int_{0}^{1} (f(x) + 2x) dx = e 1$
- **5p b**) Determinați primitiva F a funcției f pentru care F(1) = e 3.
- **5p** c) Arătați că volumul corpului obținut prin rotirea în jurul axei Ox a graficului funcției $g:[0,1] \to \mathbb{R}$, g(x) = f(x), este egal cu $\frac{\pi}{6}(3e^2 19)$.