SAS Enterprise Miner

5.1 Data preparation

Before data analytics, 'Total_spent' by customers need to be binned into different categories. Here I use Excel as it's simple and clear for binning.

The Total_Spent of 1468 rows are distributed as follows, so I divide them into three categories based on the range:

Total Spent Range	Number of customers	Category
≤ 1000	507	1
1000 < , ≤ 3000	470	2
> 3000	491	3

The binned dataset is saved as Customer_Behavior_binned.xlsx.

Then I import the file in SAS Enterprise Miner:

The column metadata auto-classified by SAS is as follows:

After manual reclassification of roles and levels, column metadata is as follows:

Name △	Role	Level	Report	Order	Drop	Lower Limit
CustomerID	ID	Interval	No		No	
First_Category	Input	Nominal	No		No	
Gender	Input	Binary	No		No	
Last_Purchase_Date	Input	Interval	No		No	
Location	Input	Nominal	No		No	
Tenure_Months	Input	Interval	No		No	
Total_Purchases	Input	Interval	No		No	
Total_Spent	Rejected	Interval	No		No	
TotalSpent_Categories	Target	Nominal	No		No	

Identify missing value using StatExplore, and there is no missing value at all as shown below, so imputation is not needed.

	ariable Summar										
(maximu	um 500 observat	ions prin	ted)								
Data Ro	le=TRAIN										
				Number							
Data				of			Mode		Mode2		
Role	Variable Nam	ie	Role	Levels	Missing	Mode	Percentage	Mode2	Percentage	2	
TRAIN	First_Catego	ry	INPUT	19	0	Apparel	34.47	Nest-USA	27.11		
TRAIN	Gender		INPUT	2	0	F	63.62	М	36.38		
TRAIN	Location		INPUT	5	0	California	31.61	Chicago	31.06		
TRAIN	TotalSpent_C	ategories	TARGET	3	0	1	34.54	3	33. 45		
Distrib	ution of Class	: Target a	nd Segment	Variables							
(maximu	m 500 observat	ions prin	ted)								
Data Ro	le=TRAIN										
Data					Frequency						
Role	Variable	Name	Role	Level	Count	Percent					
TRAIN	TotalSpent_C	ategories	TARGET	1	507	34. 5368					
TRAIN	TotalSpent_C	ategories	TARGET	3	491	33.4469					
TRAIN	TotalSpent_C	ategories	TARGET	2	470	32.0163					
	l Variable Sum										
(maximu	um 500 observat	ions prin	.tea/								
Data Ro	le=TRAIN										
				Standard	Non	L					
Va	riable	Role	Mean	Deviation	Missing	Missing	Minimum	Medi an	Maximum	Skewness	Kurtosis
Last_Pu	rchase_Date	INPUT	21769.71	101.937	1468	0	21550	21783	21914	- 0. 45435	-0.87708
Tenure_	Months	INPUT	25.91213	13.95967	1468	0	2	26	50	-0.00265	-1.16852
Total_P	urchases	INPUT	36.05177	50.88568	1468	0	1	21	695	5. 784595	53.62543

5.2 Decision Tree Analysis

Split dataset using Data Partition tool into 60% train set, 40% validation set; 70% train set, 30% validation set; and 80% train set, 20% validation set, separately. Then connect them to decision tree and follow with model comparison, as shown below.

Comparison result is as shown below, the best model is using 70% train set and 30%

validation set, with the lowest Misclassification Rate of 0.28182 in validation.

Fit Statistics Model Selection based on Valid: Misclassification Rate (_VMISC_) Train: Valid: Valid: Average Train: Average Selected Misclassification Squared Misclassification Squared Model Node Model Description Rate Error Rate Error Tree2 Decision Tree 70/30 0.28182 0.11988 0.23054 0.13804 Tree3 Decision Tree 80/20 0.28669 0.10241 0.24340 0.12910 Decision Tree 60/40 0.29302 0.11336 0.21453 0.14455

We select the data splitting ratio of 70:30 for further analysis, and the result is as follows. Based on the dicision tree diagram, the prediction of TotalSpent_Categories is mainly governed by the attributes Total_Purchases after pruning unnecessary branches or attributes that do not provide significant value to the prediction.

Event Classification Table

Data Role=TRAIN Target=TotalSpent_Categories Target Label=TotalSpent_Categories

False	True	False	True
Negative	Negative	Positive	Positive
30	610	74	314

Data Role=VALIDATE Target=TotalSpent_Categories Target Label=TotalSpent_Categories

Based on the confusion matrix, we can calculate the precision, recall, F1-score, accuracy and specificity as follows:

•
$$Precision = \frac{TP}{TP+FP}$$

•
$$Recall = \frac{TP}{TP + FN}$$

•
$$F1 = \frac{2 \times precision \times recall}{precision + recall}$$

•
$$Accuracy = \frac{TP+TN}{TP+FN+TN+FP}$$

• Specificity =
$$\frac{TN}{TN+FP}$$

Matrica	Decision Tree 70:30			
Metrics	Train	Validate		
Precision	0.809	0.780		
Recall	0.913	0.871		
F1-Score	0.858	0.823		
Accuracy	0.899	0.875		
Specificity	0.892	0.877		

- Discussion:

Precision indicates how many of the samples predicted as positive by the model are true positives. A higher precision indicates that the model is more accurate in predicting positive examples. Recall represents the proportion of actual positive examples successfully captured by the model. A higher recall indicates that the model is better able to identify positive examples. F1-Score combines Precision and Recall and is a measure of the overall performance of the model. It has a trade-off between Precision and Recall. Accuracy represents the overall proportion of correct predictions by the model. A higher accuracy indicates a better overall model performance. Specificity represents the proportion of negative examples that the model successfully predicts. Higher specificity indicates that the model is better able to avoid misclassifying negative examples as positive examples. Taken together, the model performs relatively well on the training and validation sets, with high

accuracy, precision, and recall.

5.3 Ensemble Methods

Using HP Forest as the bagging modelling technique and Gradient Boosting as the boosting modelling technique to predict TotalSpent_Category as follows:

Event Classification Table
Model Selection based on Valid: Misclassification Rate (_VMISC_)

Model Node	Model Description	Data Role	Target	Target Label	False Negative	True Negative	False Positive	True Positive
HPDMForest	HP Forest	TRAIN	TotalSpent_Categories	TotalSpent_Categories	28	622	62	316
HPDMForest	HP Forest	VALIDATE	TotalSpent_Categories	TotalSpent_Categories	19	257	36	128
Boost	Gradient Boosting	TRAIN	TotalSpent_Categories	TotalSpent_Categories	55	648	36	289
Boost	Gradient Boosting	VALIDATE	TotalSpent_Categories	TotalSpent_Categories	28	274	19	119

Based on the confusion matrix, we can calculate the precision, recall, F1-score, accuracy and specificity as follows:

Metrics	HP F	orest	Gradient Boosting		
ivietrics	Train	Validate	Train	Validate	
Precision	0.836	0.780	0.889	0.862	
Recall	0.919	0.871	0.840	0.810	
F1-Score	0.875	0.823	0.864	0.835	
Accuracy	0.912	0.875	0.911	0.893	
Specificity	0.909	0.877	0.947	0.935	

- Discussion:

HP Forest and Gradient Boosting has similar performance with high precision, recall, F1-Score, Accuracy, and Specificity. Both perform better than Decision Tree.