
National University of Singapore

Pattern Recognition (EE5907)

Assignment CA2

Matriculation: A0179741U

Name: Rogatiya Mohmad Aspak Arif

Important necessary python packages

```
In [1]: import numpy as np
    from pylab import imshow, show, savefig, cm
    import matplotlib.pylab as plt
    from sklearn.preprocessing import StandardScaler
    from itertools import combinations_with_replacement
```

Data file and folder names

```
In [2]: FILES_DIR = '.\\MNIST_Data\\'
    TRAIN_FILE = 'train-images.idx3-ubyte'
    TRAIN_LABEL = 'train-labels-idx1-ubyte'
    TEST_FILE = 't10k-images-idx3-ubyte'
    TEST_LABEL = 't10k-labels-idx1-ubyte'
```

Global constants

```
In [3]: POLYNOMIAL_ORDER = 2
    TOP_EIGENVECTORS = 30
    NUM_CLASSES = 10
    NUM_FEATURES = 784
```

DigitRecognition class with necessary functions

```
In [4]: class DigitRecognition:
            def __init__(self):
                    with open(FILES DIR + TRAIN FILE, 'rb') as ftemp:
                         datatemp = np.fromfile(ftemp, dtype = np.ubyte)
                         self.trainingData=datatemp[16::].reshape(60000,784)
                         print('Size of the training set: ',self.trainingData.shape)
                    with open(FILES DIR + TRAIN LABEL, 'rb') as ftemp:
                         datatemp = np.fromfile(ftemp, dtype = np.ubyte)
                         self.trainingLabels=datatemp[8::]
                         print('Size of the training labels: ',self.trainingLabels.shape)
                    with open(FILES_DIR + TEST_FILE) as ftemp:
                         datatemp = np.fromfile(ftemp, dtype = np.ubyte)
                         self.testData=datatemp[16::].reshape(10000,784)
                         print('Size of the test set: ',self.testData.shape)
                    with open(FILES_DIR + TEST_LABEL, 'rb') as ftemp:
                         datatemp = np.fromfile(ftemp, dtype = np.ubyte)
                         self.testLabels=datatemp[8::]
                         print('Size of the test labels: ',self.testLabels.shape)
            def showDigit(self,image):
                Function to show a single image
                imshow(image)
                show()
            def covarianceMatrix(self):
                Function to calculate covariance matrix
                trainingStd = StandardScaler().fit_transform(self.trainingData)
                trainingMean = np.mean(trainingStd, axis=0)
                self.covMatx = np.cov(trainingStd.T)
            def calcEigenValVec(self):
                Function to calculate eigen values and eigen vectors
                eigenVals, eigenVecs = np.linalg.eig(self.covMatx)
                print ("Eigenvals shape: " + str(eigenVals.shape))
                print ("Eigenvecs shape: " + str(eigenVecs.shape))
                self.eigenValVec = [(np.abs(eigenVals[i]), eigenVecs[:,i]) for i in range
                self.eigenValVec = sorted(self.eigenValVec, reverse=True, key=lambda x:x
            def plotEigenVectors(self,numOfEigenVecs):
                Function to plot selected eigen vectors
                f,ax = plt.subplots(1,10,figsize=(50,50))
                for i in range(10):
                     ax[i].imshow(self.eigenValVec[i][1].reshape(28,28))
                plt.show()
```

```
def plotTrainingDigits(self):
    Function to plot selected training digits
    trainDigitList = np.arange(2,21,2)
    f,ax = plt.subplots(1,10,figsize=(50,50))
    for idx,digit in enumerate(trainDigitList):
        ax[idx].imshow(self.trainingData[digit-1].reshape(28,28))
    plt.show()
def plotTestDigits(self):
    Function to plot selected test digits
    testDigitList = np.asarray([4, 3, 2, 19, 5, 9, 12, 1, 62, 8])
    f,ax = plt.subplots(1,10,figsize=(50,50))
    for idx,digit in enumerate(testDigitList):
        ax[idx].imshow(self.testData[digit-1].reshape(28,28))
    plt.show()
def plotReconstructedDigits(self):
    Function to reconstruct selected test digits and plot the same
    testDigitList = np.asarray([4, 3, 2, 19, 5, 9, 12, 1, 62, 8])
    reconstructedTestDigits = []
    for idx, digit in enumerate(testDigitList):
        lambdas = []
        for i in range(TOP_EIGENVECTORS):
            lambdas.append(self.testData[digit-1].T.dot(self.eigenValVec[i][
        digitNew = np.zeros(784)
        for i in range(TOP EIGENVECTORS):
            digitNew += lambdas[i]*self.eigenValVec[i][1]
        reconstructedTestDigits.append(digitNew)
    f,ax = plt.subplots(1,10,figsize=(50,50))
    for idx in range(10):
        ax[idx].imshow(reconstructedTestDigits[idx].reshape(28,28))
    plt.show()
def calcMatrixY(self):
    Function to calculate Y matrix for linear Regression
    trainingStd = StandardScaler().fit_transform(self.trainingData)
    trainingMean = np.mean(trainingStd, axis=0)
    # Generate normalized training data
    normedTrain = np.subtract(trainingStd,trainingMean)
    # Reconstruct training data
    for idx, digit in enumerate(normedTrain):
        lambdas = []
        for i in range(TOP EIGENVECTORS):
            lambdas.append(normedTrain[idx].T.dot(self.eigenValVec[i][1]))
        digitNew = np.zeros(784)
        for i in range(TOP_EIGENVECTORS):
```

```
digitNew += lambdas[i]*self.eigenValVec[i][1]
        normedTrain[idx] = digitNew
    # sort the training data based on class label
    sortedNormedTrain = []
    for i in range(0,60000,1):
        sortedNormedTrain += (normedTrain[self.trainingLabels==i].tolist())
    self.sortedNormedTrain = np.asarray(sortedNormedTrain)
    # sort the class labels
    self.sortedTrainLabels = np.sort(self.trainingLabels)
    # use few top eigenvectors
    top30EigenVecs = []
    for i in range(TOP_EIGENVECTORS):
        top30EigenVecs.append(self.eigenValVec[i][1])
    self.top30EigenVecs = np.asarray(top30EigenVecs)
    # initial Y matrix before appending ones
    initY = np.dot(self.sortedNormedTrain,self.top30EigenVecs.T)
    # append ones
    self.Y = np.append(initY,np.ones(60000,dtype=int).reshape(60000,1),axis=
    print (self.Y.shape)
def calcMatrixB(self):
    Function to calculate one-hot encoded B matrix for linear and polynomial
    a = np.asarray(self.sortedTrainLabels)
    self.B = np.zeros((a.size, a.max()+1))
    self.B[np.arange(a.size),a] = 1
    print (self.B.shape)
def calcMatrixA(self):
    Function to calculate matrix A for linear regression
    pY = np.linalg.pinv(self.Y)
    A = pY.dot(self.B)
    print (A.shape)
    self.AT = A.T
def LinearRegression(self,featureData,labels):
    Linear Regression Classifier Function
    predictedLabel = []
    for j in range(len(labels)):
        result = []
        for i in range(NUM CLASSES):
            result.append(self.AT[i].T.dot(featureData[j]))
        predictedLabel.append(result.index(max(result)))
    predictedLabels = np.asarray(predictedLabel)
    accuratePredictions = np.sum(labels==predictedLabels)
    accuracy = (accuratePredictions/len(labels))*100
    print ("Accuracy:",accuracy)
```

```
def prepareTestDataForLinearRegression(self):
    Function to prepare test dataset for linear regression
    trainingStd = StandardScaler().fit_transform(self.trainingData)
    trainingMean = np.mean(trainingStd, axis=0)
    testStd = StandardScaler().fit_transform(self.testData)
    # normalize test data
    normedTest = np.subtract(testStd,trainingMean)
    for idx, digit in enumerate(normedTest):
        lambdas = []
        for i in range(TOP_EIGENVECTORS):
            lambdas.append(normedTest[idx].T.dot(self.eigenValVec[i][1]))
        digitNew = np.zeros(NUM FEATURES)
        for i in range(TOP_EIGENVECTORS):
            digitNew += lambdas[i]*self.eigenValVec[i][1]
        normedTest[idx] = digitNew
    # Change to 30-dimensional
    shortedTest = np.dot(normedTest,self.top30EigenVecs.T)
    # append ones
    self.normedTest = np.append(shortedTest,np.ones(10000,dtype=int).reshape
    print (self.normedTest.shape)
def yMatrixPolRegression(self,yMatrix):
    Function to calculate Y matrix for polynomial regression
    newY = []
    for y in (yMatrix):
        combinations = np.asarray(list(combinations_with_replacement(y,POLYN))
        prodCombinations = np.prod(combinations,axis=1)
        newY.append(prodCombinations)
    newY = np.asarray(newY)
    return newY
def aMatrixPolRegression(self,newY):
    Function to calculate A matrix for polynomial regression
    pY = np.linalg.pinv(newY)
    A = pY.dot(self.B)
    self.polAT = A.T
def polRegression(self,dataset,labels):
    Polynomial Regression Classifier Function
    predictedLabel = []
    for j in range(len(labels)):
        result = []
        for i in range(NUM CLASSES):
```

```
result.append(self.polAT[i].T.dot(dataset[j]))
    predictedLabel.append(result.index(max(result)))
predictedLabels = np.asarray(predictedLabel)
accuratePredictions = np.sum(labels==predictedLabels)
accuracy = (accuratePredictions/len(labels))*100
print ("Accuracy: ", accuracy)
```

```
In [5]: digRec = DigitRecognition()

Size of the training set: (60000, 784)
Size of the training labels: (60000,)
Size of the test set: (10000, 784)
Size of the test labels: (10000,)
```

Calculate Mean and Covariance Matrix

```
In [6]: digRec.covarianceMatrix()
```

Calculate Eigenvalues and Eigenvectors

Plot top 10 Eigenvectors

Plot selected training digits

Plot selected test digits

Reconstruct the selected 10 test digits and plot the same

Calculate Y matrix for linear regression

Calculate B matrix for linear and polynomial regression

Calculate A matrix for linear regression

Classify training data using Linear Regression

Prepare test data to run linear regression

classifier

Classify test data using Linear Regression

Classify training data using Polynomial Regression

Accuracy: 94.00333333333334

Classify test data using Polynomial Regression

How to improve accuracy?

The test accuracy can be improved with following techniques.

- 1. By increasing the number of eigenvectors. This will increase the accuracy with a cost of increased execution time.
- 2. By using higher order polynomial regression. This will also increase the accuracy, but at the same time increasing the execution time drastically.
- 3. By using a bias term. The accuracy is better when bias term is included in the linear and polynomial classifier.