COSC 302: Analysis of Algorithms — Spring 2018 Adam Pettway Colgate University

Problem Set 2 — Order of Growth and Asymptotic Analysis

```
Pair-Finder (A, x)
1. 1: mergeSort(A)
    2: left = 0
    3: right = A.length - 1
    4: while left < right do
          if A[left] + A[right] = x then
             return True
    6:
             if A[left] + A[right] < x then
    7:
                left = left + 1
    8:
             if A[left] + A[right] > x then
    9:
                right = right - 1
   10:
  11: return False
```

Invariant: left < right and A[1...left-1] and A[right...n] cannot be used to find the sum x. Maintance: If A[left] + A[right] = x then the loop terminates. If x is smaller then it will decrease the right pointer and increase the left pointer if the x is smaller than the current sum. Termination: If there is a pair then the loop terminates and the function returns true. Otherwise we reach the point there left > right. Which means no such pair exists so the loop terminates and the False is returned.

2. Problem 3.1-1 in CLRS.

We shall prove that that $max(f(n), g(n)) = \Theta(f(n) + g(n)).$

Since f(n) and g(n) are nonnegative functions $f(n) \le f(n) + g(n)$ and $g(n) \le f(n) + g(n)$. Therefore, max(f(n), g(n)) = O(f(n) + g(n)).

Note that $f(n) + g(n) \le 2 * max(f(n), g(n))$ because $f(n) \le max(f(n), g(n))$ and $g(n) \le max(f(n), g(n))$ by definition.

Also, the definition of Ω if there exists a positive constant k which $0 \le cg(n) \le f(n) \forall n \ge n_0$. In this case, $n_0 = 0$ and k = 2.

Since we proved that $\max(f(n), g(n)) = \Omega(f(n) + g(n))$ and $\max(f(n), g(n)) = O(f(n) + g(n))$ then by definition $\max(f(n), g(n)) = \Theta(f(n) + g(n))$.

3. Problem 3-2 (Big Oh, Big Omega, and Big Theta only) in CLRS.

A	B	O	Ω	Θ
$lg^k n$	n^{ϵ}	No	Yes	No
n^k	c^n	Yes	No	No
\sqrt{n}	$n^{\sin n}$	No	No	No
2^n	$2^{n/2}$	Yes	Yes	Yes
n^{lgc}	c^{lgn}	Yes	No	No
lg(n!)	$lg(n^n)$	Yes	No	No

4. Problem 3-4 (parts c,d,e,g) in CLRS.

- c $f(n) = O(g(n)) \implies lg(f(n)) = O(g(n))$. We will prove this directly. By defition of upper bound: $f(n) \leq g(n)$ and by definition of $lg(f(n)) \leq lg(g(n))$ which means that lg(f(n)) = O(lg(g(n)))
- d Suppose that f(n) = 2n and g(n) = lgn. Then by definition, f(n) = O(g(n)) when c = 2. However, $2^{2n} \neq O(2^n)$ since there is no c that works so that so that $f(n) \leq g(n)$ for all n. Therefore the statement is not always true.
- e Suppose that $f(n) = \frac{1}{n}$ thus $(f(n))^2 = \frac{1}{n^2}$. So the statement $f(n) = O((f(n))^2)$ is a contradiction since there exists no c that works so that for all n $f(n) \leq (f(n))^2$. Therefore the statement is not true.
- g Suppose that $f(n) = 2^n$ so we must show that $2^n \le c * 2^{\frac{n}{2}}$ If we simplify this we get $n \le c * \frac{n}{2}$. But there exists no c > 1 where $n \le c * \frac{n}{2}$ for all n. Therefore the statement is not true.