High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. Programming languages are essential for software development. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Code-breaking algorithms have also existed for centuries. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. Different programming languages support different styles of programming (called programming paradigms). Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. Whatever the approach to development may be, the final program must satisfy some fundamental properties. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Whatever the approach to development may be, the final program must satisfy some fundamental properties. Code-breaking algorithms have also existed for centuries. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. Different programming languages support different styles of programming (called programming paradigms). Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display.