Last name	
First name	

LARSON—MATH 601—CLASSROOM WORKSHEET 10 Linear independence & Bases.

Concepts & Notation

- (Sec. 2.1) vector, vector space, linear combination.
- (Sec. 2.2) subspace, subspace spanned by a set of vectors, span.
- (Sec. 3.3) linearly independent set of vectors, basis.
- 1. The set of $n \times 1$ column matrices with entries in a field \mathbb{F} is a vector space over \mathbb{F} ; call it V. Let A be an $m \times n$ matrix. Claim: the $n \times 1$ column matrices X that are solutions to AX = 0 is a subspace of V.

If V is a vector space over a field \mathbb{F} and $S \subset V$, the subspace spanned by S is the intersection of all subspaces of V containing S (S spans V); if $S = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ then say it is the subspace spanned by $\alpha_1, \alpha_2, \ldots, \alpha_n$.

2. Find the subspace spanned by $\alpha = (1,0)$ in \mathbb{R}^2 .

3. Let $\alpha_1 = (1,0), \alpha_2 = (0,1) \in \mathbb{R}^2$. Show that, if $c_1\alpha_1 + c_2\alpha_2 = (0,0)$ then $c_1 = c_2 = 0$.

Vectors $\alpha_1, \ldots, \alpha_n$ in a vector space V over a field \mathbb{F} are linearly independent if $c_1\alpha_1 + \ldots c_n\alpha_n = 0$ ($c_i \in \mathbb{F}$) implies $c_1 = \ldots c_n$. If $\alpha_1, \ldots, \alpha_n$ are not linearly independent then they are linearly dependent.

4. Show $\alpha_1 = (1,0), \alpha_2 = (0,1) \in \mathbb{R}^2$ are linearly independent.

A basis for V is a set of linearly independent vectors which spans V.

5. Show that $\alpha_1 = (1,0), \alpha_2 = (0,1) \in \mathbb{R}^2$ is a basis for \mathbb{R}^2 .

6. Let \mathbb{F} be a field, and \mathbb{F}^n be the vector space of *n*-tuples with coordinates in \mathbb{F} , and ϵ_i be the 0-vector with a 1 in the i^{th} -coordinate. Claim: the set $S = \{\epsilon_1, \epsilon_2, \dots, \epsilon_n\}$ is a basis for \mathbb{F}^n .