Statistical Rethinking

Chapter 1: The Golem of Prague

Chapter 2: Small Worlds and Large Worlds

Chapter 3: Sampling the Imaginary

The Golems of Prague

Golem of Science

Golem

- Made of clay
- Animated by truth
- Powerful
- Blind to creator's intent
- Easy to misuse
- **Fictional**

Model

- Made of "silicon"
- Animated by "truth"
- Hopefully powerful
- The statistical procedure is just an algorithm Blind to creator's intent
- Easy to misuse
- Not even false

Model is not about true or falge Model is a tool -> useful or not

Frequentist Golem

- Pre-made golem
- Complicated procedure, difficult to deploy
- We need more freedom
- We need to build our own golem
- Falsifying null model is not sufficient
- They just produce "inference", not decision

Hypotheses ≠ Models

- Many models correspond to the same hypothesis, and many hypotheses correspond to a single model
- Measurement matters
- All swans are white? The Ivory-billed Woodpecker is extinct? Faster-than-light neutrino?

Tools for Golem Engineering

Bayesian Data Analysis

Count all the ways data can happen, according to assumptions

- Use probability to describe uncertainty
- Computationally difficult
- Used to be controversial

Multilevel Modelling

Models with multiple levels of uncertainty

- Repeat & imbalanced sampling, study variation, avoid averaging
- Phylogenetics, factor and path analysis, networks, spatial models
- Natural Bayesian strategy

Model Comparison

Models with multiple levels of uncertainty

- Overfitting
- Causal inference
- Must distinguish prediction from inference

Small Worlds and Large Worlds

Small and Large Worlds

Small World

- All possibilities are nominated
- There are no pure surprises
- Bayesian models are optimal in small world

Large World

- There may be events that were not imagined in the small world
- No guarantee of optimality for Bayesian models

Garden of Forking Data

Garden of Forking Data

Conjecture	Ways to produce ○○○
[0000]	$0 \times 4 \times 0 = 0$
[0000]	$1 \times 3 \times 1 = 3$
[0000]	$2 \times 2 \times 2 = 8$
[$3 \times 1 \times 3 = 9$
[4 imes 0 imes 4 = 0

Updating

Another draw from the bag:

Conjecture	Ways to produce O	Previous counts	New count
[0000]	0	0	$0 \times 0 = 0$
[0000]	1	3	$3 \times 1 = 3$
[0000]	2	8	$8 \times 2 = 16$
[0000]	3	9	$9 \times 3 = 27$
[4	0	$0 \times 4 = 0$

Using other information

Factory says: marbles rare, but every bag contains at least one.

Conjecture	Prior ways	Factory count	New count
[0000]	0	0	$0 \times 0 = 0$
[0000]	3	3	$3 \times 3 = 9$
[0000]	16	2	$16 \times 2 = 32$
[0000]	27	1	$27 \times 1 = 27$
[0000]	0	0	$0 \times 0 = 0$

Counts to plausibility

Things that can happen more ways are more plausible

Possible composition	p	ways to produce data	plausibility
[0000]	0	0	0
[0000]	0.25	3	0.15
[0000]	0.5	8	0.40
[0000]	0.75	9	0.45
[0000]	1	0	0

In:

```
import numpy as np
ways = np.array([0, 3, 8, 9, 0])
ways / ways.sum()
```

Out:

```
array([0. , 0.15, 0.4 , 0.45, 0. ])
```

Design the model (data story)

Condition on the data (update)

Evaluate the model (critique)

Nine tosses of the globe:

Design the model (data story)

Condition on the data (update)

Evaluate the model (critique)

- Data story motivates the model
 - O How do the data arise?
- For W L W W W L W L W:
 - Some true proportion of water, p
 - Toss globe, probability p of observing W, 1-p of L
 - Each toss therefore independent of other tosses
- Translate data story into probability statements

Design the model (data story)

Condition on the data (update)

Evaluate the model (critique)

- Data order irrelevant
- Every posterior is a prior for next observation
- Every prior is posterior of some other inference
- Sample size automatically embodied in posterior

Design the model (data story)

Condition on the data (update)

Evaluate the model (critique)

- Bayesian inference: How plausible is each proportion of water, given these data?
- Golem must be supervised
 - Did the golem malfunction?
 - Does the golem's answer make sense?
 - Does the question make sense?
 - Check sensitivity of answer to changes in assumptions

Definition of W

- Relative number of ways to see W, given N and p?
- Probability distribution

Definition of W

- Relative number of ways to see W, given N and p?
- Probability distribution

$$\Pr(W|N,p) = rac{N!}{W!(N-W)!} p^W (1-p)^{N-W}$$

The count of W's is of binomial distribution, with probability p of a W on each toss and N tosses total.

```
In:
```

```
import scipy.stats as stats
stats.binom.pmf(6, n=9, p=0.5)
```

Out:

0.164062500000000000

Prior probability p

- What the golem believes before data arrive
- Pr(W) and Pr(p) define prior predictive function
- Huge literature on choice of prior
- Flat prior conventional & bad

```
W \sim \text{Binomial}(N, p)
p \sim \text{Uniform}(0, 1)
```


Posterior probability

- Bayesian estimate is always posterior distribution over parameters, Pr(parameters|data)
- Here: Pr(p|W, N)
- Bayes' theorem

$$Pr(p|W, N) = \frac{Pr(W|N, p) Pr(p)}{\sum Pr(W|N, p) Pr(p) \text{ for all } p}$$

$$Posterior = \frac{(Prob\ observed\ variables) \times (Prior)}{Normalizing\ constant}$$

Computing the posterior

- Analytical approach (often impossible)
- Grid approximation (very intensive)
- Quadratic approximation (limited)
- Markov chain Monte Carlo (intensive)

Grid approximation

- The posterior probability standardized product of probability of the data and prior probability
- Standardized means: Add up all the products and divide each by this sum
- Grid approximation uses finite grid of parameter values instead of continuous space
- Too expensive with more than a few parameters

Grid approximation

```
import matplotlib.pyplot as plt
def posterior_grid_approx(grid_points=5, success=6, tosses=9):
    # define arid
    p_grid = np.linspace(0, 1, grid_points)
   # define prior
    prior = np.repeat(5, grid_points) # uniform
    # compute likelihood at each point in the grid
   likelihood = stats.binom.pmf(success. tosses. p grid)
    # compute product of likelihood and prior
    unstd_posterior = likelihood * prior
    # standardize the posterior, so it sums to 1
    posterior = unstd_posterior / unstd_posterior.sum()
    return p_grid, posterior
points = 20
w, n = 6, 9
p_grid, posterior = posterior_grid_approx(points, w, n)
plt.plot(p_grid, posterior, 'o-', label='success = {}\ntosses = {}\.format(w, n))
plt.xlabel('probability of water', fontsize=14)
plt.ylabel('posterior probability', fontsize=14)
plt.title('{} points'.format(points))
plt.legend(loc=0)
```


Quadratic approximation

```
import pymc3 as pm
data = np.repeat((0, 1), (3, 6))
with pm.Model() as normal_aproximation:
    p = pm.Uniform('p', 0, 1)
    w = pm.Binomial('w', n=len(data), p=p, observed=data.sum())
    mean_q = pm.find_MAP()
    std_q = ((1/pm.find_hessian(mean_q, vars=[p]))**0.5)[0]
mean_q['p'], std_q
# analytical calculation
w, n = 6, 9
x = np.linspace(0, 1, 100)
plt.plot(x, stats.beta.pdf(x , w+1, n-w+1),
         label='True posterior')
# quadratic approximation
plt.plot(x, stats.norm.pdf(x, mean_q['p'], std_q),
         label='Ouadratic approximation')
plt.legend(loc=0, fontsize=13)
plt.title('n = {}'.format(n), fontsize=14)
plt.xlabel('Proportion water', fontsize=14)
plt.ylabel('Density', fontsize=14)
plt.show()
```


Sampling the Imaginary

Sample from posterior

```
import arviz as az
%config InlineBackend.figure_format = 'retina'
az.style.use('arviz-darkgrid')
p_grid, posterior = posterior_grid_approx(grid_points=100,
                                          success=6.
                                          tosses=9)
samples = np.random.choice(p_grid,
                           p=posterior.
                           size=int(1e4),
                           replace=True)
\_, (ax0, ax1) = plt.subplots(1,2, figsize=(12,6))
ax0.plot(samples, 'o', alpha=0.2)
ax0.set_xlabel('sample number', fontsize=14)
ax0.set_ylabel('proportion water (p)', fontsize=14)
az.plot_kde(samples, ax=ax1)
ax1.set_xlabel('proportion water (p)', fontsize=14)
ax1.set_vlabel('density', fontsize=14);
```


Compute stuff

- How much posterior probability below/above/between specified parameter values?
- Which parameter values contain 50%/80%/95% of posterior probability? "Confidence" intervals
- Which parameter value maximizes posterior probability?
 Minimizes posterior loss? Point estimates

Compute stuff

Intervals of defined boundary ask how much mass?

Intervals of defined mass ask which values?

PI and HPDI

Percentile intervals (PI): equal area in each tail

Highest posterior density intervals (HPDI): narrowest interval containing mass

Point estimates not the point

- Don't usually want point estimates
 - Entire posterior contains more information
 - "Best" point depends upon purpose
 - Mean nearly always more sensible than mode

```
E (posterior) ang max (posterior)
```

In:

```
print(stats.mode(samples))
print(np.mean(samples))
```

Out:

```
ModeResult(mode=array([0.66666667]), count=array([292]))
0.6348787878789
```

Talking about intervals

- Confidence interval?
 - A non-Bayesian term that doesn't even mean what it says
- Credible interval?
 - The values are not "credible" unless you trust the model & data
- How about: Compatibility interval?
 - Interval contains values compatible with model and data as provided
 - Small World interval

"LISTEN, SCIENCE IS HARD.
BUT I'M A SERIOUS
PERSON DOING MY BEST."

Posterior predictive distribution

Posterior predictive distribution

```
dummy_w = stats.binom.rvs(n=9, p=samples)
plt.hist(dummy_w, bins=50)
plt.xlabel('number of water samples', fontsize=14)
plt.ylabel('Frequency', fontsize=14)
```

