Amendments to the Claims

1. (Currently Amended) A silicon-on-insulator radiation detector, comprising:

a silicon layer formed on an insulating substrate, wherein the silicon layer includes a PNPN structure; and

a gate layer formed over the PNPN structure, wherein the gate layer includes a PN gate a PN interface of the gate is offset from a P-well - N-well interface of the PNPN structure;

wherein latch-up occurs in the radiation detector only in response to incident radiation.

- 2. (Currently Amended) The silicon-on-insulator radiation detector of claim 1, wherein the PNPN structure comprises a P+ region, an N-well, a P-well, and an N+ region, and wherein the PNPN gate comprises a first P+ region and a first N+ region.
- 3. (Original) The silicon-on-insulator radiation detector of claim 2, wherein the first P+ region of the gate covers the N-well of the PNPN structure and extends a substantial distance over the P-well of the PNPN structure.

Serial No.: 10/604,204

2

4. (Original) The silicon-on-insulator radiation detector of claim 3, further comprising:

a parasitic PMOS FET within the radiation detector that is prevented from turning on by coupling the P+ region of the PNPN structure and the first P+ region of the gate to a source voltage; and

a parasitic NMOS FET within the radiation detector having a threshold voltage of about 1.2 volts, wherein the threshold voltage prevents the parasitic NMOS FET from turning on.

- 5. (Original) The silicon-on-insulator radiation detector of claim 2, wherein the first N+ region of the gate covers the Pwell of the PNPN structure and extends a substantial distance over the N-well of the PNPN structure.
- 6. (Original) The silicon-on-insulator radiation detector of claim 5, further comprising:

a parasitic NMOS FET within the radiation detector that is prevented from turning on by coupling the N+ region of the PNPN structure and the first N+ region of the gate to ground; and

a parasitic PMOS FET within the radiation detector having a threshold voltage of about -1.2 volts, wherein the threshold voltage prevents the parasitic PMOS FET from turning on.

- 7. (Currently Amended) The silicon-on-insulator radiation detector gate of claim 1, wherein the gate layer comprises a PNPN gate, and wherein the PNPN gate includes a first P+ region, a first N+ region, a second P+ region, and a second N+ region.
- 8. (Original) The silicon-on-insulator radiation detector of claim 7, wherein the first N+ region of the PNPN gate is located over the N-well of the PNPN structure and the second P+ region of the PNPN gate is located over the P-well of the PNPN structure.
- 9. (Original) The silicon-on-insulator radiation detector of claim 8, wherein an interface between the first N+ region and the second P+ region of the PNPN gate is substantially coincident with an interface between the P-well and N-well of the PNPN structure.

10. (Original) The silicon-on-insulator radiation detector of claim 8, further comprising:

a parasitic PMOS FET within the radiation detector having a threshold voltage of about -1.2 volts, wherein the threshold voltage prevents the parasitic PMOS FET from turning on; and

a parasitic NMOS FET within the radiation detector having a threshold voltage of about 1.2 volts, wherein the threshold voltage prevents the parasitic NMOS FET from turning on.

11. (Currently Amended) A radiation detector, comprising:

a silicon-on-insulator PNPN diode structure and a gate formed over the PNPN diode structure, wherein a PN interface of the gate is offset from a P-well - N-well interface of the PNPN diode structure, wherein latch-up occurs in the radiation detector only in response to incident radiation.

12. (Currently Amended) The radiation detector of claim 11, further comprising.

a-FN-gate-over the PNPN diode structure, wherein at least one parasitic FET within the radiation detector has a threshold voltage of about 1.2 volts or -1.2 volts.

- 13. (Original) The radiation detector of claim 11, further comprising:
- a PNPN gate over the PNPN diode structure, wherein at least one parasitic FET within the radiation detector has a threshold voltage of about 1.2 volts or -1.2 volts.
- 14. (Currently Amended) An integrated circuit, comprising:
- a silicon-on-insulator radiation detector, wherein the radiation detector includes:
- a silicon layer formed on an insulating substrate, wherein the silicon layer includes a PNPN structure;
- a gate layer formed over the PNPN structure, wherein the gate layer includes a PN gate wherein a PN interface of the gate is offset from a P-well N-well interface of the PNPN structure; and

wherein latch-up occurs in the radiation detector only in response to incident radiation.

15. (Currently Amended) The integrated circuit of claim 14, wherein the PNPN structure comprises a P+ region, an N-well, a P-well, and an N+ region, wherein the PN gate comprises a first P+ region and a first N+ region, and wherein the first P+ region of the gate covers the N-well of the PNPN structure

and extends a substantial distance over the P-well of the PNPN structure.

16. (Currently Amended) The integrated circuit of claim 14, wherein the PNPN structure comprises a P+ region, an N-well, a P-well, and an N+ region, wherein the PN gate comprises a first P+ region and a first N+ region, and wherein the first N+ region of the gate covers the P-well of the PNPN structure and extends a substantial distance over the N-well of the PNPN structure.

17. (New) A method for forming a silicon-on-insulator radiation detector, comprising:

forming a silicon layer on an insulating substrate, wherein the silicon layer includes a PNPN structure; and

forming a gate on the silicon layer and offsetting a PN interface of the gate from a P-well - N-well interface of the PNPN structure;

wherein latch-up occurs in the radiation detector only in response to incident radiation.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
\cdot	

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.