

Come funziona Shazam?

Alessandro Liotta

Miriana Martini

Roberta Macaluso

Indice

Premessa

- Passaggio da analogico a digitale: campionamento di un segnale
- Dominio del tempo e dominio della frequenza
- Discrete Fourier Transform (DFT)

Tema principale

- Cattura di un suono
- Fingerprint di una canzone
- Creazione di un database di canzoni
- L'algoritmo di Shazam

Una necessaria premessa

- Il suono è una variazione di pressione che si propaga come un'onda meccanica, attraverso un mezzo
- I trasduttori convertono la pressione dell'onda sonora in un segnale elettrico continuo
- Il segnale continuo non è molto utile nel mondo digitale, quindi prima che possa essere elaborato, deve essere tradotto in un segnale discreto che può essere memorizzato digitalmente

Passaggio da analogico a digitale: campionamento di un segnale

- Un convertitore analogico-digitale esegue molte conversioni su parti molto piccole del segnale catturando di volta in volta un valore digitale che rappresenta l'ampiezza del segnale - un processo noto come campionamento
- Il Teorema di Nyquist-Shannon ci dice quale tasso di campionamento è necessario per catturare una certa frequenza nel segnale continuo
- L'audio viene registrato più spesso a una frequenza di campionamento di 44.100 Hz

Campionamento di un segnale

Dominio della frequenza

- All'inizio del 1800, Jean-Baptiste Joseph Fourier scoprì che era possibile rappresentare qualsiasi segnale del dominio del tempo considerando semplicemente l'insieme di frequenze, ampiezze e fasi corrispondenti a ciascuna sinusoide che costituisce il segnale
- Il dominio della frequenza agisce come un tipo di impronta digitale per il segnale del dominio del tempo, fornendo una rappresentazione statica di un segnale dinamico

Dominio del tempo e dominio della frequenza

Discrete Fourier Transform (DFT)

 Un modo per convertire il nostro segnale dal dominio del tempo al dominio della frequenza è utilizzare la Discrete Fourier Transform (DFT)

Cattura di un suono

- Uno sfortunato effetto collaterale della FFT è che perdiamo una grande quantità di informazioni sui tempi, ma per descrivere una canzone abbiamo bisogno di sapere quando è apparsa ogni frequenza
- Ecco perché introduciamo una sorta di finestra scorrevole, o un chunk di dati, e trasformiamo solo questa parte delle informazioni
- Una volta che abbiamo informazioni sulla composizione delle frequenze del segnale, possiamo iniziare a determinare il fingerprint della canzone

Fingerprint di una canzone

- La sfida principale adesso è come distinguere,
 nell'oceano di frequenze catturate, quali frequenze sono le più importanti
- Individuiamo le frequenze con la massima ampiezza in diversi intervalli più piccoli che analizziamo separatamente
- Questa informazione costituisce una firma per questo intervallo della canzone, e questa firma diventa parte del fingerprint nel suo complesso

Creazione di un database di canzoni

 Per facilitare la ricerca audio, questa firma diventa la chiave in una tabella hash. Il valore corrispondente è il tempo in cui questo insieme di frequenze è apparso nella canzone, insieme all'ID della canzone (titolo del brano e artista)

Hash Tag	Time in Seconds	Song
30 51 99 121 195	53.52	Song A by artist A
33 56 92 151 185	12.32	Song B by artist B
39 26 89 141 251	15.34	Song C by artist C
32 67 100 128 270	78.43	Song D by artist D
30 51 99 121 195	10.89	Song E by artist E
34 57 95 111 200	54.52	Song A by artist A
34 41 93 161 202	11.89	Song E by artist E

L'algoritmo di Shazam

- Molti dei tag hash corrisponderanno all'identificatore musicale di più brani (potrebbe capitare che qualche parte della canzone A suoni esattamente come un pezzo della canzone E)
- Dobbiamo controllare anche la tempistica
- Consideriamo i₁ e i₂, momenti nel brano registrato, e j₁ e j₂ momenti nel brano dal database. Possiamo dire che abbiamo due combinazioni tra le differenze di tempo se:

```
Recorded Hash(i_1) = Song In DB Hash(j_1) AND Recorded Hash(i_2) = Song In DB Hash(j_2)
```

AND

 $abs(i_1 - i_2) = abs(j_1 - j_2)$

Conclusioni

 Adesso che abbiamo imparato come funziona
 Shazam possiamo andare tutti al cinema a vedere il nostro documentario

Alessandro Liotta O4500923 Ing. Elettronica

Miriana Martini O46001185 Ing. Informatica

Roberta Macaluso 046001205 Ing. Informatica

GRAZIE PER L'ATTENZIONE