# CHAPTER 2

## **OPERATIONS ON FUZZY SETS**

- . Fuzzy Complement
  - . Fuzzy Union
- ❖. Fuzzy Intersection
- **.** Combinations of Operations
- . General Aggregation Operations

## . Fuzzy Complement

<u>Def</u>: A <u>complement</u> of a fuzzy set A is specified by a function

$$c:[0,1] \to [0,1]$$

which assigns a value  $c(\mu_A(x))$  to each membership grade  $\mu_A(x)$ .

### Axiom:

The function of a fuzzy complement must satisfy at least the following two requirements:

**c1**.: c(0) = 1 and c(1) = 0 (boundary conditions).

**c2**.: For all  $a, b \in [0,1]$ , if a < b, then  $c(a) \ge c(b)$  (c is monotonic nonincreasing).

#### Remark:

- 1. All functions that satisfy axioms **c1** and **c2** form the most general class of fuzzy complements.
- 2. Axioms **c1** and **c2** are called the <u>axiomatic skeleton for fuzzy</u> <u>complements</u>.
- 3. Axiom **c1** is the ordinary complement for crisp sets.

*Example*: The threshold-type complement

$$c(a) = \begin{cases} 1 & \text{for } a \le t, \\ 0 & \text{for } a > t, \end{cases}$$

where  $a \in [0,1]$  and  $t \in [0,1)$ ; t is called the threshold of c.



### Axiom:

In practical significance, it is desirable to consider various additional requirements such as:

- **c3**. *c* is a *continuous* function.
- **c4.** c involutive, i.e. c(c(a)) = a for all  $a \in [0,1]$ .

**Example**: An example that satisfies axioms **c1** to **c3** 

$$c(a) = \frac{1}{2} \left( 1 + \cos \pi a \right)$$



# Examples of involutive fuzzy complement:

# 1. The *sugeno class*:

$$c_{\lambda}(a) = \frac{1-a}{1+\lambda a},$$

where  $\lambda \in (-1, \infty)$ .



# 2. The *yager class*:

$$c_w(a) = \left(1 - a^w\right)^{1/w},$$

where  $w \in (0, \infty)$ .



# *<u>Note</u>*:

- 1) For  $\lambda = 0$ ,  $c_{\lambda}(a) = 1 a$ .
- 2) For w = 1,  $c_w(a) = 1 a$ .

❖. Fuzzy Union

<u>Def</u>: The <u>union</u> of two fuzzy sets A and B is specified by a function of the form:

$$\mu:[0,1]\times[0,1]\to[0,1]$$
.

Formally,

$$\mu_{A \cup B}(x) = \mu [\mu_A(x), \mu_B(x)].$$

#### Axioms:

The function of a fuzzy union must satisfy at least the following axioms (the axiomatic skeleton for fuzzy set unions):

- **u1**. u(0,0) = 0; u(0,1) = u(1,0) = u(1,1) = 1 (boundary conditions).
- **u2**. u(a,b) = u(b,a) (commutative).
- **u3**. If  $a \le a'$  and  $b \le b'$ , then  $u(a,b) \le u(a',b')$  (monotonic).
- **u4**. u(u(a,b),c) = u(a,u(b,c)) (associative).

## Axiom:

It is often desirable to restrict the class of fuzzy union by considering various additional such as:

- **u5**. *u* is a *continuous* function.
- **u6**. u(a,a) = a, i.e. u is idempotent.

Example: The Yager class union satisfies **u1** to **u5**.

$$u_{w}(a,b) = \min \left[1, \left(a^{w} + b^{w}\right)^{1/w}\right]$$

where  $w \in (0, \infty)$ .

Property:

$$w = 1,$$
  $u_1(a,b) = \min(1, a+b)$ 

$$w = 2$$
,  $u_2(a,b) = \min(1, \sqrt{a^2 + b^2})$ 

$$w = \infty$$
,  $u_{\infty}(a,b) = \max(a,b)$ 

❖. Fuzzy Intersection

<u>Def</u>: The <u>intersection</u> of two fuzzy sets A and B is specific by a function:

$$i:[0,1]\times[0,1]\to[0,1]$$
.

Formally,

$$\mu_{A \cap B}(x) = \mu \big[ \mu_A(x), \mu_B(x) \big].$$

### Axioms:

The function of fuzzy intersection must satisfy the following axioms (the axiomatic skeleton for fuzzy set intersections):

- **i1**. i(1,1) = 1; i(0,1) = i(1,0) = i(0,0) = 0; (boundary conditions).
- **i2**. i(a,b) = i(b,a); (commutative)
- **i3**. If  $a \le a'$  and  $b \le b'$ , then  $i(a,b) \le i(a',b')$  (monotonic).
- **i4**. i(i(a,b),c)=i(a,i(b,c)) (associative).
- •. The most important additional requirements:
  - **i5**. *i* is a *continuous* function.
- **i6**. i(a,a) = a, i.e. i is idempotent.

**Example**: The Yager class union satisfies **i1** to **i4**:

$$i_w(a,b) = 1 - \min \left[ 1, \left( (1-a)^w + (1-b)^w \right)^{1/w} \right]$$

where  $w \in (0, \infty)$ .

## **Property**:

$$w = 1,$$
  $i_1(a,b) = 1 - \min(1,2 - a - b)$ 

$$w = 2$$
,  $i_2(a,b) = 1 - \min(1, \sqrt{(1-a)^2 + (1-b)^2})$ 

$$w = \infty$$
,  $i_{\infty}(a,b) = \min(a,b)$ 

| Reference                                                                                                                                      | Fuzzy Unions                                                                     | Fuzzy Intersections                                                                                                            | Range of<br>Parameter |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| Schweizer &<br>Sklar [1961]                                                                                                                    | $1 - \max[0, (1-a)^{-p} + (1-b)^{-p} - 1)]^{1/p}$                                | $[-1)]^{1/p}$ max $(0, a^{-p} + b^{-p} - 1)^{-1/p}$                                                                            |                       |  |
| Hamacher<br>[1978]                                                                                                                             | $\frac{a+b-(2-\gamma)ab}{1-(1-\gamma)ab}$                                        | $\frac{ab}{\gamma + (1 - \gamma)(a + b - ab)}$                                                                                 | γ ∈ (0, ∞)            |  |
| Frank [1979]                                                                                                                                   | $1 - \log_{\sigma} \left[ 1 + \frac{(s^{1-a} - 1)(s^{1-b} - 1)}{s - 1} \right].$ | $\log_s \left[ 1 + \frac{(s^a - 1)(s^b - 1)}{s - 1} \right]$                                                                   | s ∈ (0, ∞)            |  |
| Yager [1980]                                                                                                                                   | $\min[1, (a^w + b^w)^{1/w}]$                                                     | $1 - \min[1, (1 - a)^{w} + (1 - b)^{w}]^{1/w}]$                                                                                | w ∈ (0, ∞)            |  |
| Dubois & Prade<br>[1980]                                                                                                                       | $\frac{a + b - ab - \min(a, b, 1 - \alpha)}{\max(1 - a, 1 - b, \alpha)}$         | · ab max(a,b,α)                                                                                                                | α € (0, 1)            |  |
| Dombi [1982] $\frac{1}{1 + \left[ \left( \frac{1}{a} - 1 \right)^{-\lambda} + \left( \frac{1}{b} - 1 \right)^{-\lambda} \right]^{-1/\lambda}}$ |                                                                                  | $\frac{1}{1 + \left[ \left( \frac{1}{a} - 1 \right)^{\lambda} + \left( \frac{1}{b} - 1 \right)^{\lambda} \right]^{1/\lambda}}$ | λ ∈ (0, ∞)            |  |

### **❖**. COMBINATION OF OPERATORS:

## Theorem:

$$\max(a,b) \le u(a,b) \le u_{\max}(a,b),$$

where

$$u_{\text{max}}(a,b) = \begin{cases} a & \text{when } b = 0, \\ b & \text{when } a = 0, \\ 1 & \text{otherwise.} \end{cases}$$

### *proof*:

1) Using associativity (u4)

$$u(a,u(0,0)) = u(u(a,0),0)$$

By applying the boundary conditions (u1)

$$u(a,0) = u(u(a,0),0)$$

SO

$$u(a,0) = a$$

By monotonicity of u (**u3**)

$$u(a,b) \ge u(a,0) = a$$

By employing commutativity (u2)

$$u(a,b) = u(b,a) \ge u(b,0) = b$$

Hence  $u(a,b) \ge \max(a,b)$ .

- 2) When
  - 1. b = 0, then  $u(a,b) = a = u_{max}(a,b)$
  - 2. a = 0, then  $u(a,b) = b = u_{max}(a,b)$
  - 3.  $a, b \in (0,1]$ , then

$$u(a,b) \le u(a,1) = u(1,b) = 1 = u_{\text{max}}(a,b)$$

From 1, 2, 3,  $u_{\text{max}}(a,b) \ge u(a,b)$ .

### Theorem:

$$i_{\min}(a,b) \le i(a,b) \le \min(a,b)$$

where

$$i_{\min}(a,b) = \begin{cases} a & \text{when } b = 1, \\ b & \text{when } a = 1, \\ 0 & \text{otherwise.} \end{cases}$$

*proof*: Similar to the previous theorem

1) Basing on the associativity (u4)

$$i(a,i(1,1)) = i(i(a,1),1)$$

Using the boundary condition (u1)

$$i(a,1) = i(i(a,1),1)$$

SO

$$i(a,1) = a$$

By monotonicity (u3)

$$i(a,b) \le i(a,1) = a$$

With the commutativity (u2)

$$i(a,b) = i(b,a) \le i(b,1) = b$$

2) Left as an exercise!

### **Property**:

- 1. The max operation is the *lower bound* of function u, i.e. the largest union.
- 2. The *min* operation is the *upper bound* of function *i*, *i.e.* the weakest intersection.
- 3. Of all possible pairs of fuzzy sets unions and intersections, the *max* and *min* functions are closest to each other (an extreme pair), *i.e.*

$$\max(a,b) - \min(a,b) = |a-b| \le u(a,b) - i(a,b)$$

### Proposition:

The max and min functions together with the c(a) = 1 - a complement satisfy the DeMorgan's laws, *i.e.* 

$$\max(a,b) = 1 - \min(1 - a, 1 - b)$$

$$\min(a,b) = 1 - \max(1-a,1-b)$$

**Proof**: See blackboard!

## **Proposition**:

The operations  $u_{\max}$  and  $u_{\min}$  is another extreme pair in the sense that

$$u_{\text{max}}(a,b) - i_{\text{min}}(a,b) \ge u(a,b) - i(a,b)$$

The DeMorgan laws are also satisfied under the complement operation c(a) = 1 - a.

$$u_{\text{max}}(a,b) = 1 - i_{\text{min}}(1-a,1-b)$$

$$i_{\min}(a,b) = 1 - u_{\max}(1-a,1-b)$$

Proof: An exercise!

#### •. The full scope of fuzzy aggregation operation:



### Theorem:

 $u(a,b) = \max(a,b)$  and  $i(a,b) = \min(a,b)$  are the only continuous and idempotent fuzzy set union and fuzzy set intersection.

### **Proof**:

a) The fuzzy set union:

By associativity

$$u(a,u(a,b)) = u(u(a,a),b)$$

The idempotency leads to(**u6**)

$$u(a,u(a,b)) = u(a,b)$$

Similarly,

$$u(u(a,b),b) = u(a,u(b,b)) = u(a,b)$$

Hence

$$u(a,u(a,b)) = u(u(a,b),b) \tag{*}$$

When a = b, (\*) is trival.

W.l.o.g., Let a < b.

1) Assume  $u(a,b) = \alpha$ , where  $\alpha \neq a$  and  $\alpha \neq b$ . Then (\*) becomes

$$u(a,\alpha) = u(b,\alpha) \tag{**}$$

Since u is continuous (**u5**) and monotonic nondecreasing (**u3**) with  $u(0,\alpha) = \alpha$  and  $u(1,\alpha) = 1$ 

$$\exists a,b \in [0,1] \ni u(a,\alpha) < u(b,\alpha)$$

It contradicts to  $(**) \rightarrow$  the assumption is not warrant.

- 2) Assume  $u(a,b) = a = \min(a,b)$ , it violates the boundary condition (u1) when a = 0 and b = 1.
- 3) Assume  $u(a,b) = b = \max(a,b)$ , it satisfies **u1** and (\*) becomes u(a,b) = u(b,b) is also satisfied for all a < b.

(Remark: The Yager class satisfies continuity)

**b**) The intersection:

An exercise!

# ❖. About the fuzzy set operations max and min

The structure of  $\{\tilde{P}(X), \cup, \cap, -\}$  satisfies

- 1. Involution  $\overline{\overline{A}} = A$ 
  - A = A  $A \sqcup B = B \sqcup A$
- 2. Commutativity  $A \cup B = B \cup A$ ,
  - $A \cap B = B \cap A$
- 3. Associativity  $(A \cup B) \cup C = A \cup (B \cup C)$  $(A \cap B) \cap C = A \cap (B \cap C)$
- 4. Distributivity
- 5. Idempotence
- 6. Absorption
- 7. Absorption by X and  $\emptyset$ .
- 8. Identity
- 9. DeMorgan laws

#### But violates

a) Law of contradiction

$$A \cap \overline{A} \neq \emptyset$$

b) Law of excluded middle

$$A \cup \overline{A} \neq X$$

### Remark on violations:

1. Since a fuzzy set A has no sharp boundary, and neither has  $\overline{A}$ , A and  $\overline{A}$  would overlap, so  $A \cap \overline{A} \neq \emptyset$ . However, the overlap is always limited, since

$$u_{A \cap \overline{A}}(x) = \min(u_A(x), u_{\overline{A}}(x)) \le \frac{1}{2}$$

2. Also,  $A \cup \overline{A}$  does not cover X, but

$$u_{A \cup \overline{A}}(x) = \max(u_A(x), u_{\overline{A}}(x)) \ge \frac{1}{2}$$



# **•.** Alternative Operators on $\widetilde{P}(X)$

1. Probabilistic operator

**Def: Intersection** 

$$A \cdot B = \{X, u_{A \cdot B}\},\,$$

$$u_{A \cdot B}(x) = u_A(x) \cdot u_B(x), \ \forall x \in X$$

Union

$$A + B = \{X, u_{A+B}\},\$$

$$u_{A + B}(x) = u_A(x) + u_B(x) - u_A(x) \cdot u_B(x), \quad \forall x \in X$$

#### Remark:

1) Probabilistic union and intersection can be deduced by the Dubois and Prade class of fuzzy set operation, since as  $\alpha = 1$ ,

a) 
$$\frac{a+b-ab-\min(a,b,1-\alpha)}{\max(1-a,1-b,\alpha)} = \frac{a+b-ab-0}{1} = a+b-ab$$

**b**) 
$$\frac{a \cdot b}{\max(a,b,\alpha)} = \frac{a.b}{1}$$

2)  $\{\widetilde{P}(X), \hat{+}, \cdot, -\}$  satisfies only Commutativity associativity identity DeMorgan's law

$$A \cdot \emptyset = \emptyset$$
,  $A + X = X$  (absorption by  $\emptyset$  and X)

# 2. Bold operator

## Def: Intersection

$$A \cap B = \{X, \mu_{A \cap B}\}$$

$$\mu_{A \cap B}(x) = \max(0, \mu_A(x) + \mu_B(x) - 1), \quad \forall x \in X$$

Union

$$A \cup B = \{X, \mu_{A \cup B}\}$$

$$\mu_{A \cup B}(x) = \min(1, \mu_A(x) + \mu_B(x)), \quad \forall x \in X$$

#### Remark:

- 1) Bold union and intersection can be deduced by the Yager class operator, since as w = 1,
  - **a).**  $\min(1,(a^w+b^w)^{1/w})=\min(1,a+b)$
  - **b).**  $1 \min \left[ 1, \left( (1-a)^w + (1-b)^w \right)^{1/w} \right]$  $= 1 \min \left( 1, (1-a) + (1-b) \right)$  $= \max(0, a+b-1)$
- 2)  $\{\widetilde{P}(X), \cup, \cap, -\}$  satisfies only

  Commutativity
  associativity
  identity

  DeMorgan's law  $A \cap \emptyset = \emptyset$ ,  $A \cup X = X$  (absorption by  $\emptyset$  and X)  $A \cup \overline{A} = X$ ,  $A \cap \overline{A} = \emptyset$  (law of exclude middle)

- •. Comparison on  $\{\widetilde{P}(X), \cup, \cap, -\}, \{\widetilde{P}(X), \hat{+}, \cdot, -\}, \{\widetilde{P}(X), \cup, \cap, -\}$
- 1. In general,

$$A \cap B \subset A \cdot B \subset A \cap B$$

$$A \cup B \subset A + B \subset A \cup B$$

2. 
$$\max(0, \mu_A(x) + \mu_B(x) - 1) \le \mu_A(x) \cdot \mu_B(x)$$
  
 $\le \min(\mu_A(x), \mu_B(x)) \le \max(\mu_A(x), \mu_B(x))$   
 $\le \mu_A(x) + \mu_B(x) - \mu_A(x) \cdot \mu_B(x)$   
 $\le \min(1, \mu_A(x) + \mu_B(x))$ 

### ■. About the standard operators

## 1> *Union*

$$A \cup B = \{X, \mu_{A \cup B}\}$$

$$\mu_{A \cup B}(x) = \max_{x \in X} \left\{ \mu_A(x), \mu_B(x) \right\}$$

2> Intersection

$$A \cap B = \{X, \mu_{A \cap B}\}$$

$$\mu_{A \cap B}(x) = \min_{x \in X} \{ \mu_A(x), \mu_B(x) \}$$

3> **Complement** 

$$\overline{A} = \{X, \mu_{\overline{A}}\}$$

$$\mu_{\overline{A}}(x) = 1 - \mu_A(x), \ \forall x \in X$$

### Example:

| Ages | Infant | Adult | Young | Old |
|------|--------|-------|-------|-----|
| 5    | 0      | 0     | 1     | 0   |
| 10   | 0      | 0     | 1     | 0   |
| 20   | 0      | .8    | .8    | .1  |
| 30   | 0      | 1     | .5    | .2  |
| 40   | 0      | 1     | .2    | .4  |
| 50   | 0      | 1     | .1    | .6  |
| 60   | 0      | 1     | 0     | .8  |
| 70   | 0      | 1     | 0     | 1   |
| 80   | 0      | 1     | 0     | 1   |

Young 
$$\bigcirc$$
 Old =  $1/5 + 1/10 + .8/20 + .5/30 + .4/40 + .6/50 + .8/60 + 1/70 + 1/80$ 

Young 
$$\cap$$
 Old =  $.1/20 + .2/30 + .2/40 + .1/50$ 

**<u>Note</u>**: When we take  $\{0,1\}$  instead of [0,1], then

1. 
$$A \cup B = \{X, \mu_{A \cup B}(x) = \max_{x \in X} \{\mu_A(x), \mu_B(x)\}\}\$$
  
=  $\{x | x \in A \text{ or } x \in B\}$ 

2. 
$$A \cap B = \{X, \mu_{A \cap B}(x) = \min_{x \in X} \{\mu_A(x), \mu_B(x)\} \}$$
  
=  $\{x | x \in A \text{ and } x \in B\}$ 

3. 
$$\overline{A} = \{x | x \in X \text{ and } x \notin A\}$$

#### Comment:

- 1) From the note, they perform identically to the corresponding crisp set operators when  $\{0,1\}$  is instead of [0,1].
- 2) The max and min operations are additional significant in that they constitute the only fuzzy union and intersection operators that are *continuous* and *idempotent*.
- 3) Both of these operations are very simple.
- 4) They are good generalizations of the classical crisp set operators.
- 5) A lot of applications are baseing on this pair of operations.