Reinforcement Learning Policy Approximation

• Till now in control methods we talked about finding the true value functions and used that to generate the policy for the task.

- $\pi(a|s,\theta)$ is a probability of selecting action a in state s, according to our function approximator.
 - $\pi(a|s,\theta) \ge 0$ $\forall a \in A, s \in S$
 - $\sum_{a} \pi(a|s,\theta) = 1 \quad \forall s \in S$
- Soft-max policy parametrization

• Action preference =
$$h(s, a, \theta)$$

$$\pi(a|s, \theta) = \frac{e^{h(s, a, \theta)}}{\sum_{b} e^{h(s, b, \theta)}}$$

$$Sa_{1} = h(s, a, \theta)$$

$$h(s, a, \theta) = \frac{e^{h(s, a, \theta)}}{\sum_{b} e^{h(s, b, \theta)}}$$

$$h(s, a, \theta) = \frac{e^{h(s, a, \theta)}}{\sum_{b} e^{h(s, b, \theta)}}$$

In card games with imperfect information, the optimal policy is often to do two different things with specific probabilities, such as when bluffing in Poker.

Advantages and disadvantages of policy based methods

• Advantages:

- Better convergence properties
- Effective in high-dimensional or continuous action spaces.
- Can learn stochastic policy

Disadvantages

- Often converge to local instead of global optima.
- High variance

Reinforcement Learning Policy Gradient Theorem

Policy gradient objective function

- For a policy $\pi(a|s,\theta)$ parameterized by θ we need to maximize the objective function $J(\theta)$.
- $J(\theta)$ is some formulation of reward, which is measure of how good a policy π_{θ} is.
- For episodic cases, $J(\theta)$ can be the value function at the starting state.

•
$$J(\theta) = v_{\pi_{\theta}}(s_0)$$

Gradient Ascent

- Stochastic gradient-ascent update equation:
 - $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Policy Gradient Theorem

$$J(\theta) = v_{\pi_{\theta}}(s_{0})$$

$$\nabla_{\theta}J(\theta) = \nabla_{\theta}v_{\pi_{\theta}}(s_{0})$$

$$\nabla_{\theta}J(\theta) \propto \sum_{s} \mu(s) \sum_{a} q_{\pi_{\theta}}(s, a) \nabla_{\theta}\pi(a|s, \theta)$$

$$\nabla_{\theta}J(\theta) \propto \sum_{s} \mu(s) \sum_{a} q_{\pi_{\theta}}(s, a) \pi(a|s, \theta) \nabla_{\theta}\log(\pi(a|s, \theta))$$

$$\nabla_{\theta}J(\theta) \propto \sum_{s} \mu(s) \sum_{a} \pi(a|s, \theta) \nabla_{\theta}\log(\pi(a|s, \theta)) q_{\pi_{\theta}}(s, a)$$

$$\nabla_{\theta}J(\theta) = \mathbb{E}_{\pi_{\theta}}[\nabla_{\theta}\log(\pi(A_{t}|S_{t}, \theta)) q_{\pi_{\theta}}(S_{t}, A_{t})]$$

$$,\nabla f(x) = \frac{\nabla f(x)}{f(x)} f(x) = f(x) \nabla \log(f(x))$$

Score function for soft-max policy

• Soft-max policy:

$$\pi(a|s,\theta) = \frac{e^{h(s,a,\theta)}}{\sum_{b} e^{h(s,b,\theta)}}$$

Let h be a linear function approximator,

$$h(s, a, \theta) = x(s, a). \theta^T$$

$$\nabla_{\theta} \log (\pi(a|s,\theta)) = \nabla_{\theta} \left[\log \left(\frac{e^{x(s,a)\theta^{T}}}{\sum_{b} e^{x(s,a)\theta^{T}}} \right) \right]$$

$$\nabla_{\theta} \log (\pi(a|s,\theta)) = x(s,a) - \sum_{b} \pi(b|s,\theta) x(s,b)$$

Reinforcement Learning
Monte Carlo Policy Gradient : REINFORCE

REINFORCE

$$, \mathbb{E}_{\pi}[G_t|S_t, A_t] = q_{\pi}(S_t, A_t)$$

Reinforce update equation:

$$\theta \leftarrow \theta + \alpha G_t \nabla_{\theta} \log(\pi(A_t | S_t, \theta))$$

REINFORCE

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π_*

Input: a differentiable policy parameterization $\pi(a|s, \theta)$

Algorithm parameter: step size $\alpha > 0$

Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ (e.g., to $\boldsymbol{0}$)

Loop forever (for each episode):

Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \boldsymbol{\theta})$

Loop for each step of the episode $t = 0, 1, \dots, T-1$:

$$G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$

$$\theta \leftarrow \theta + \alpha \gamma^t G \nabla \ln \pi (A_t | S_t, \theta)$$

Reducing variance using baseline

Baseline can be any function, as long as it does not vary with a.

$$\nabla_{\theta} J(\theta) \propto \sum_{s} \mu(s) \sum_{a} (q_{\pi_{\theta}}(s, a) - b(s)) \nabla_{\theta} \pi(a|s, \theta)$$

• Reinforce update equation with baseline:
$$\theta \leftarrow \theta + \alpha(G_t - b(S_t)) \nabla_{\theta} \log(\pi(A_t | S_t, \theta))$$

• One natural choice for baseline is the state value function,

$$b(s) = \hat{v}_{\pi_{\theta}}(s, w)$$

REINFORCE – with baseline

REINFORCE with Baseline (episodic), for estimating $\pi_{\theta} \approx \pi_{*}$

```
Input: a differentiable policy parameterization \pi(a|s,\theta)
```

Input: a differentiable state-value function parameterization $\hat{v}(s, \mathbf{w})$

Algorithm parameters: step sizes $\alpha^{\theta} > 0$, $\alpha^{\mathbf{w}} > 0$

Initialize policy parameter $\theta \in \mathbb{R}^{d'}$ and state-value weights $\mathbf{w} \in \mathbb{R}^d$ (e.g., to $\mathbf{0}$)

Loop forever (for each episode):

- \rightarrow Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \boldsymbol{\theta})$
 - Loop for each step of the episode $t = 0, 1, \dots, T 1$:

$$G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k \tag{G_t}$$

$$\delta \leftarrow G - \hat{v}(S_t, \mathbf{w})$$

$$\delta \leftarrow G - \hat{v}(S_t, \mathbf{w})$$

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S_t, \mathbf{w})$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} \gamma^{t} \delta \nabla \ln \pi(A_{t}|S_{t}, \boldsymbol{\theta})$$

Reinforcement Learning Actor-Critic

Actor-Critic based methods

Actor-Critic based methods

• From policy gradient theorem,

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi} [\nabla_{\theta} \log (\pi(A_t | S_t, \theta)) q_{\pi_{\theta}}(S_t, A_t)]$$

• We use a critic to estimate action value function.

$$q_{\pi_{\theta}}(s,a) \approx \hat{q}_{\pi_{\theta}}(s,a,w)$$

Actor-Critic based methods

For Q-actor critic,

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi} [\nabla_{\theta} \log (\pi(A_t | S_t, \theta)) \hat{q}_{\pi_{\theta}} (S_t, A_t, w)]$$

$$\theta \leftarrow \theta + \alpha \hat{q}_{\pi_{\theta}} (S_t, A_t, w) \nabla_{\theta} \log (\pi(A_t | S_t, \theta))$$

Adding baseline (advantageous actor critic),

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi} [\nabla_{\theta} \log(\pi(A_{t}|S_{t},\theta)) (\hat{q}_{\pi_{\theta}}(S_{t},A_{t}(w) - \hat{v}_{\pi_{\theta}}(S_{t}(w)))]$$

$$\theta \leftarrow \theta + \alpha (\hat{q}_{\pi_{\theta}}(S_{t},A_{t},w) - \hat{v}_{\pi_{\theta}}(S_{t},w)) \nabla_{\theta} \log(\pi(A_{t}|S_{t},\theta))$$

• TD(0) actor critic,

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi} [\nabla_{\theta} \log(\pi(A_{t}|S_{t},\theta)) (R_{t+1} + \gamma \hat{v}_{\pi_{\theta}}(S_{t+1},w) - \hat{v}_{\pi_{\theta}}(S_{t},w))]$$

$$\delta = (R_{t+1} + \gamma \hat{v}_{\pi_{\theta}}(S_{t+1},w) - \hat{v}_{\pi_{\theta}}(S_{t},w))$$

$$\theta \leftarrow \theta + \alpha \delta \nabla_{\theta} \log(\pi(A_{t}|S_{t},\theta))$$

TD(0) Actor Critic Algorithm

```
One-step Actor-Critic (episodic), for estimating \pi_{\theta} \approx \pi_*
Input: a differentiable policy parameterization \pi(a|s,\theta)
Input: a differentiable state-value function parameterization \hat{v}(s, \mathbf{w})
Parameters: step sizes \alpha^{\theta} > 0, \alpha^{\mathbf{w}} > 0
Initialize policy parameter \theta \in \mathbb{R}^{d'} and state-value weights \mathbf{w} \in \mathbb{R}^{d} (e.g., to 0)
Loop forever (for each episode):
    Initialize S (first state of episode)
     I \leftarrow 1
     Loop while S is not terminal (for each time step):
    A \sim \pi(\cdot|S, \theta)
         Take action A, observe S', R

\frac{\delta \leftarrow R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})}{\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S, \mathbf{w})} = (\text{if } S' \text{ is terminal, then } \hat{v}(S', \mathbf{w}) \doteq 0)

                -\theta + \alpha^{\theta} I \delta \nabla \ln \pi(A|S,\theta)
```

Difference between Value based and Policy Based RL

- Value Based
 - Learn Value Function
 - Implicit policy (e.g. ϵ -greedy policy)
- Policy Based
 - No value function
 - Learnt policy
- Actor-Critic
 - Learnt Value Function
 - Learnt Policy

Reinforcement Learning Policy Gradient in continuous action space

Policy for continuous action space

• Probability density function for normal distribution is,

•
$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Policy parameterized as a normal distribution,

•
$$\pi(a|s,\theta) = \frac{1}{\sigma(s,\theta)\sqrt{2\pi}} \exp\left(-\frac{(a-\mu(s,\theta))^2}{2\sigma(s,\theta)^2}\right)$$

Policy for continuous action space

• Using linear function approximator for μ and σ ,

•
$$\theta = [\theta_{\mu}, \theta_{\sigma}]$$

•
$$\mu(s,\theta) = \theta_{\mu}^T x_{\mu}(s)$$

$$\mu(s,\theta) = \theta_{\mu}^{T}.x_{\mu}(s)$$

$$\sigma(s,\theta) = \exp(\theta_{\sigma}^{T}.x_{\sigma}(s))$$

Gradient of log policy has two components,

•
$$\nabla_{\theta_{\mu}} \log(\pi(a|s,\theta)) = \frac{1}{\sigma(s,\theta)^2} (a - \mu(s,\theta)) x_{\mu}(s)$$

•
$$\nabla_{\theta_{\sigma}} \log(\pi(a|s,\theta)) = \left(\frac{(a-\mu(s,\theta))^2}{\sigma(s,\theta)^2} - 1\right) x_{\sigma}(s)$$