US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

B2

Date of Patent

Inventor(s)

12383690

B2

August 12, 2025

Dravitzki; Brent James et al.

Mask system

Abstract

A mask system includes a frame adapted to attach headgear, a sealing arrangement releasably connectable to the frame, and an elbow provided to the sealing arrangement and adapted to be connected to an air delivery tube that delivers breathable gas to the patient. The sealing arrangement defines a breathing chamber and is adapted to form a seal with the patient's face. The sealing arrangement includes structure to establish a positive connection with the frame and with the elbow.

Inventors: Dravitzki; Brent James (Sydney, AU), Brambilla; Enrico (Irvine, CA), Nga;

Lemmy (Sydney, AU), Quarmby; Nigel (Sydney, AU), Davidson; Aaron Samuel (Sydney, AU), Gibson; Joel Edward (Sydney, AU), Barbara; Anthony Paul (Sydney, AU), Formica; Justin John (Sydney, AU), Ozolins; Angelene Marie (Sydney, AU), Burnham; Robert Thomas (Sydney, AU), Goldspink; Lachlan

Richard (Sydney, AU)

Applicant: ResMed Pty Ltd (Bella Vista, AU)

Family ID: 43222061

Assignee: ResMed Pty Ltd (Bella Vista, AU)

Appl. No.: 17/528143

Filed: November 16, 2021

Prior Publication Data

Document IdentifierUS 20220072258 A1

Mar. 10, 2022

Foreign Application Priority Data

AU2009902524Jun. 02, 2009AU2009906101Dec. 15, 2009

Related U.S. Application Data

continuation parent-doc US 16402499 20190503 ABANDONED child-doc US 17528143 continuation parent-doc US 15492574 20170420 ABANDONED child-doc US 16402499 continuation parent-doc US 15179326 20160610 US 10130785 20181120 child-doc US 15492574 continuation parent-doc US 14184068 20140219 US 9387302 20160712 child-doc US 15179326 division parent-doc US 13375021 US 9149593 20151006 WO PCT/AU2010/000657 20100528 child-doc US 14184068

us-provisional-application US 61282693 20100318 us-provisional-application US 61263175 20091120 us-provisional-application US 61272250 20090904 us-provisional-application US 61272162 20090825 us-provisional-application US 61222711 20090702 us-provisional-application US 61213326 20090529

Publication Classification

Int. Cl.: A61M16/08 (20060101); A61M16/06 (20060101)

U.S. Cl.:

CPC **A61M16/0816** (20130101); **A61M16/06** (20130101); **A61M16/0611** (20140204);

A61M16/0622 (20140204); **A61M16/0633** (20140204); **A61M16/0644** (20140204); **A61M16/0603** (20140204); **A61M16/0607** (20130101); **A61M16/0607** (201

A61M16/0683 (20130101); **A61M16/0825** (20140204); **A61M16/0875** (20130101);

A61M2205/42 (20130101); A61M2210/0618 (20130101)

Field of Classification Search

CPC: A61M (16/06-0694)

References Cited

U.S. PATENT DOCUMENTS

COULTED CONTENTS					
Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC	
2875757	12/1958	Galleher, Jr.	N/A	N/A	
3330273	12/1966	Bennett	N/A	N/A	
5441046	12/1994	Starr et al.	N/A	N/A	
5570689	12/1995	Starr	128/207.11	A61M 16/0633	
6374826	12/2001	Gunaratnam et al.	N/A	N/A	
6467483	12/2001	Kopacko et al.	N/A	N/A	
6520182	12/2002	Gunaratnam	N/A	N/A	
6615834	12/2002	Gradon et al.	N/A	N/A	
6662803	12/2002	Gradon et al.	N/A	N/A	
6701926	12/2003	Olsen et al.	N/A	N/A	
6789541	12/2003	Olsen et al.	N/A	N/A	
6951218	12/2004	Gradon et al.	N/A	N/A	

7017576	7000614	12/2005	Lang et al.	N/A	N/A
12/2008 12/2014 Dravitzki et al. N/A N/A N/A 9149593 12/2016 Ging et al. N/A N/A N/A N/A 9669180 12/2016 Ging et al. N/A N/A N/A N/A 2002/0025198 12/2001 Kwok et al. N/A N/A N/A N/A 2002/002650 12/2001 Gunaratnam et al. N/A N/A N/A N/A 2002/0029782 12/2001 Linderoth N/A N/A N/A 2002/0026176 12/2002 Palkon et al. N/A N/A N/A N/A 2003/0019495 12/2002 Palkon et al. N/A N/A N/A 2003/0075180 12/2002 Raje et al. N/A N/A N/A 2003/0075182 12/2002 Heidmann N/A N/A N/A 2003/0196656 12/2002 Moore et al. N/A N/A N/A N/A 2003/0196656 12/2002 Biener 128/207.11 16/0633 N/A N/A	7017576	12/2005	_	N/A	N/A
9044564 12/2014 Dravitzki et al. N/A N/A 9149593 12/2016 Ging et al. N/A N/A N/A 9669180 12/2016 Ging et al. N/A N/A N/A N/A 2002/0005198 12/2001 Gunaratnam et al. N/A N/A N/A N/A 2002/0023650 12/2001 Linderoth N/A N/A N/A 2002/0029782 12/2001 Gunaratnam et al. N/A N/A N/A 2002/0029782 12/2001 Gunaratnam N/A N/A N/A N/A 2003/0019495 12/2002 Palkon et al. N/A N/A N/A 2003/0075180 12/2002 Raje et al. N/A N/A N/A N/A 2003/0075180 12/2002 Heidmann N/A N/A N/A	7500058	12/2008	Amarasinghe et	NI/A	NI/A
9149593 12/2016 Ging et al. N/A N/A N/A 2002/0005198 12/2001 Kwok et al. N/A N/A N/A 2002/0005198 12/2001 Kwok et al. N/A N/A N/A 2002/0023650 12/2001 Gunaratmam et al. N/A N/A N/A 2002/0026782 12/2001 Linderoth N/A N/A N/A N/A 2003/0019495 12/2002 Palkon et al. N/A N/A N/A 2003/0075180 12/2002 Palkon et al. N/A N/A N/A 2003/0075180 12/2002 Heidmann N/A N/A N/A N/A 2003/0075180 12/2002 Heidmann N/A N/A N/A N/A 2003/0196656 12/2002 Heidmann N/A N/A N/A N/A 2003/0196658 12/2002 Heidmann N/A N/A N/A N/A 2003/0196658 12/2002 Heidmann N/A N/A N/A N/A 2003/021691 12/2002 Biener 128/207.11 16/0633 2004/0045551 12/2003 Eaton N/A N/A N/A N/A 2004/0094159 12/2003 Eaton N/A N/A N/A N/A 2004/0012377 12/2003 Eaton N/A N/A N/A 2004/0112385 12/2003 Drew et al. N/A N/A N/A 2004/0112385 12/2003 Lang et al. N/A N/A N/A 2004/021385 12/2003 Ging et al. N/A N/A N/A 2004/021850 12/2003 Gradon et al. N/A N/A N/A 2004/0255950 12/2003 Gradon et al. N/A N/A N/A 2005/001521 12/2003 Gradon et al. N/A N/A N/A 2005/00155603 12/2004 Sprinkle 128/206.24 16/06 2005/00155603 12/2004 Frerichs et al. N/A N/A N/A 2005/0155605 12/2004 Lithgow et al. N/A N/A N/A 2005/0155605 12/2004 Ging N/A N/A N/A 2005/0155605 12/2004 Ging N/A N/A N/A 2005/015204 12/2005 Burton et al. N/A N/A N/A 2005/015204 12/2005 Burton et al. N/A N/A N/A 2006/0264478 12/2005 Genger N/A N/A N/A N/A 2006/0264565 12/2005 Genger N/A N/A N/A N/A 2006/026433 12/2005 Genger N/A N/A N/A N/A 2006/026433 12/2005 Genger N/A N/A N/A N/A 2006/0278233 12/2005 McAuley N/A N/A N/A N/A 2006/0278233 12/2005 McAuley N/A N/A N/A N/A 2007/0251516 12/2006 Frater N/A N/A N/A N/A 2007/0251226 12/2006 Frater N/A N/A N/A N/A 2007/0251226 12/2006 Frater N/A N/A N/A N/A N/A 2007/0251226 12/2006 Hansen N/A N/A N/A					
9669180					
2002/0005198 12/2001 Kwok et al. N/A N/A N/A 2002/0023650 12/2001 al. N/A N/A N/A N/A 2002/0029782 12/2001 Linderoth N/A N/A N/A 2002/0096176 12/2002 Palkon et al. N/A N/A N/A 2003/0019495 12/2002 Raje et al. N/A N/A N/A 2003/0075180 12/2002 Heidmann N/A N/A N/A 2003/0075182 12/2002 Heidmann N/A N/A N/A N/A 2003/0196656 12/2002 Moore et al. N/A					
2002/0029782 12/2001 Gunaratnam et al. N/A N/A 2002/0029782 12/2001 Linderoth N/A N/A 2002/0096176 12/2001 Gunaratmam N/A N/A 2003/0075180 12/2002 Palkon et al. N/A N/A 2003/0075182 12/2002 Heidmann N/A N/A 2003/0196656 12/2002 Moore et al. N/A N/A 2003/0196658 12/2002 Ging N/A N/A 2003/0221691 12/2002 Biener 128/207.11 16/0633 2004/045551 12/2003 Eaton N/A N/A 2004/012377 12/2003 Amarasinghe 128/207.11 16/0666 2004/0112387 12/2003 Drew et al. N/A N/A 2004/012385 12/2003 Drew et al. N/A N/A 2004/012285 12/2003 Gradon et al. N/A N/A 2004/012387 12/2003 Gradon et al. N/A N/A			_	•	
2002/0029682 12/2001 al. N/A N/A N/A 2002/0029782 12/2001 Cinderoth N/A N/A N/A 2003/0019495 12/2002 Palkon et al. N/A N/A N/A 2003/0075180 12/2002 Heidmann N/A N/A N/A 2003/0075182 12/2002 Heidmann N/A N/A N/A 2003/0196656 12/2002 Ging N/A N/A N/A 2003/0196658 12/2002 Ging N/A N/A N/A 2003/0196658 12/2002 Ging N/A N/A N/A 2003/021691 12/2002 Biener 128/207.11 16/0633 2004/0045551 12/2003 Eaton N/A N/A N/A 2004/0094159 12/2003 Kwok et al. N/A N/A N/A 2004/0012377 12/2003 Drew et al. N/A N/A N/A 2004/0112385 12/2003 Drew et al. N/A N/A N/A 2004/02521850 12/2003 Ging et al. N/A N/A N/A 2004/0255950 12/2003 Gradon et al. N/A N/A N/A 2005/00155603 12/2004 Sprinkle 128/206.24 A61M 16/06 2005/0098183 12/2004 Sprinkle 128/206.24 A61M 16/06 2005/0155603 12/2004 Cing et al. N/A N/A 2005/0199239 12/2005 Cing et al. N/A N/A 2006/0266365 12/2005 Cing et al. N/A N/A N/A 2006/0266365 12/2005 Cing et al. N/A N/A N/A 2006/0266365 12/2005 Cing et al. N/A N/A N/A 2006/0278233 12/2006 Cing et al.	2002/0005198	12/2001		N/A	N/A
2002/0096176 12/2001 Gunaratnam N/A N/A 2003/0019495 12/2002 Palkon et al. N/A N/A N/A 2003/0075180 12/2002 Heidmann N/A N/A N/A 2003/0075182 12/2002 Heidmann N/A N/A N/A 2003/0196656 12/2002 Ging N/A N/A N/A N/A 2003/0196658 12/2002 Ging N/A		12/2001	al.		
2003/0019495 12/2002 Palkon et al. N/A N/A N/A 2003/0075180 12/2002 Heidmann N/A N/A N/A 2003/0076182 12/2002 Heidmann N/A N/A N/A N/A 2003/0196656 12/2002 Ging N/A N/A			Linderoth		N/A
2003/0075180 12/2002 Raje et al. N/A N/A N/A 2003/0075182 12/2002 Heidmann N/A N/A N/A 2003/0196656 12/2002 Moore et al. N/A N/A N/A N/A 2003/0196658 12/2002 Ging N/A N/A N/A N/A 2003/0221691 12/2002 Biener 128/207.11 A61M 16/0633 2004/0045551 12/2003 Eaton N/A N/A N/A 2004/0094159 12/2003 Kwok et al. N/A N/A A61M 16/064666 N/A N/A N/A 2004/0112377 12/2003 Drew et al. N/A N/A N/A 2004/0112385 12/2003 Drew et al. N/A N/A N/A 2004/021850 12/2003 Ging et al. N/A N/A N/A 2004/0221850 12/2003 Gradon et al. N/A N/A N/A 2004/0221850 12/2003 Gradon et al. N/A N/A N/A 2005/00155603 12/2004 Sprinkle 128/206.24 A61M 16/06 2005/0098183 12/2004 Frerichs et al. N/A N/A N/A 2005/0155605 12/2004 Lithgow et al. N/A N/A 2005/0199239 12/2004 Ling et al. N/A N/A N/A 2005/0199239 12/2004 Lang et al. N/A N/A N/A 2005/0284478 12/2004 Meyer et al. N/A N/A 2006/0284478 12/2005 Burton et al. N/A N/A N/A 2006/032504 12/2005 Burton et al. N/A N/A N/A 2006/021514 12/2005 Davidowski et al. N/A N/A 2006/021515 12/2005 Davidowski et al. N/A N/A 2006/021515 12/2005 Kwok et al. N/A N/A N/A 2006/0266365 12/2005 Stallard N/A N/A N/A 2006/0278233 12/2005 Kwok et al. N/A N/A N/A 2006/0278233 12/2005 McAuley N/A N/A 16/0875 2007/0215161 12/2006 Gradon 128/207.11 16/0875 2007/021526 12/2006 Gradon 128/207.11 16/0875 2007/0212266 12/2006 Gradon 128/207.11 16/0875 2007/0212266 12					
2003/0075182 12/2002 Heidmann N/A N/A N/A 2003/0196656 12/2002 Ging N/A N/A N/A N/A 2003/0196658 12/2002 Biener 128/207.11 A61M 16/0633 12/2004 Biener 128/207.11 A61M 16/0633 2004/0045551 12/2003 Eaton N/A					
2003/0196656 12/2002 Ging N/A N/A N/A			_		
2003/0196658 12/2002 Ging N/A N/A 2003/0221691 12/2002 Biener 128/207.11 A61M 16/0633 2004/0045551 12/2003 Eaton N/A N/A 2004/0094159 12/2003 Kwok et al. N/A N/A 2004/0112377 12/2003 Amarasinghe 128/207.11 A61M 16/0666 2004/0112385 12/2003 Drew et al. N/A N/A 2004/02121850 12/2003 Ging et al. N/A N/A 2004/0221850 12/2003 Gradon et al. N/A N/A 2004/02255950 12/2003 Gradon et al. N/A N/A 2005/0011521 12/2004 Sprinkle 128/206.24 A61M 16/06 2005/0098183 12/2004 Prerichs et al. N/A N/A 2005/0155603 12/2004 Frerichs et al. N/A N/A 2005/0172969 12/2004 Ging N/A N/A 2005/0199239 12/2004 Meyer et al. N/A					
2003/0221691 12/2002 Biener 128/207.11 16/0633					
2003/0221691 12/2002 Biener 128/20/.11 16/0633 2004/0045551 12/2003 Eaton N/A N/A 2004/012377 12/2003 Kwok et al. N/A N/A 2004/0112385 12/2003 Drew et al. N/A N/A 2004/012387 12/2003 Lang et al. N/A N/A 2004/0221850 12/2003 Gradon et al. N/A N/A 2005/0011521 12/2004 Sprinkle 128/206.24 A61M 2005/0098183 12/2004 Sprinkle 128/206.24 A61M 2005/0155603 12/2004 Frerichs et al. N/A N/A 2005/0199239 12/2004 Ging N/A N/A 2005/0199239 12/2004 Lang et al. N/A N/A 2005/0284478 12/2004 Ging N/A N/A 2006/032504 12/2005 Burton et al. N/A N/A 2006/0100538 12/2005 Genger N/A N/A <	2003/0196658	12/2002	Ging	N/A	
2004/0094159 12/2003 Kwok et al. N/A N/A A61M 16/06666 2004/0112385 12/2003 Drew et al. N/A N/A N/A 2004/0112387 12/2003 Lang et al. N/A N/A N/A 2004/0221850 12/2003 Ging et al. N/A N/A N/A 2004/025950 12/2003 Gradon et al. N/A N/A N/A 2004/025950 12/2003 Gradon et al. N/A N/A N/A 2005/0011521 12/2004 Sprinkle 128/206.24 A61M 16/06 2005/0098183 12/2004 Frerichs et al. N/A N/A N/A 2005/0155603 12/2004 Frerichs et al. N/A N/A 2005/0172969 12/2004 Lithgow et al. N/A N/A 2005/0172969 12/2004 Ging N/A N/A 2005/0199239 12/2004 Lang et al. N/A N/A 2005/0284478 12/2004 Meyer et al. N/A N/A 2006/0032504 12/2005 Burton et al. N/A N/A 2006/0076019 12/2005 Burton et al. N/A N/A 2006/0076019 12/2005 Davidowski et al. N/A N/A 2006/01515 12/2005 Davidowski et al. N/A N/A 2006/021514 12/2005 Davidowski et al. N/A N/A 2006/026365 12/2005 Stallard N/A N/A 2006/0278233 12/2005 Stallard N/A N/A 2006/0278233 12/2005 McAuley N/A N/A 2007/0215161 12/2006 Gradon 128/207.11 A61M 16/0875 2007/0215161 12/2006 Frater N/A N/A N/A 2007/021526 12/2006 Hansen N/A N/A N/A 2007/021226 12/2006 Hansen N/A N/A N/A 2007/0221226 12/2006 Hansen N/A N/A N/A N/A 2007/0221226 12/2006 Hansen N/A N/A N/A N/A 2007/0221226 12/2006 Hansen N/A N/A N/A 2007/0221226 12/2006 Hansen N/A N/A N/A N/A 2007/0221226 12/2006 12/2006 12/2006 12/2006 12/2006 12/2006 12/2006	2003/0221691	12/2002	Biener	128/207.11	
2004/0112377 12/2003 Amarasinghe 128/207.11 A61M 16/0666 2004/0112385 12/2003 Drew et al. N/A N/A 2004/012387 12/2003 Lang et al. N/A N/A 2004/0251850 12/2003 Ging et al. N/A N/A 2004/0255950 12/2003 Gradon et al. N/A N/A 2005/0011521 12/2004 Sprinkle 128/206.24 A61M 16/06 2005/0098183 12/2004 Nash N/A N/A 2005/0155603 12/2004 Frerichs et al. N/A N/A 2005/0172969 12/2004 Lithgow et al. N/A N/A 2005/0199239 12/2004 Lang et al. N/A N/A 2005/0284478 12/2004 Meyer et al. N/A N/A 2006/0032504 12/2005 Burton et al. N/A N/A 2006/0076019 12/2005 Genger N/A N/A 2006/0201514 12/2005 Davidowski et al. N/A N	2004/0045551	12/2003	Eaton	N/A	N/A
2004/01123/7 12/2003	2004/0094159	12/2003	Kwok et al.	N/A	N/A
2004/0112387 12/2003 Lang et al. N/A N/A 2004/0221850 12/2003 Ging et al. N/A N/A 2004/0255950 12/2003 Gradon et al. N/A N/A 2005/0011521 12/2004 Sprinkle 128/206.24 A61M 2005/0098183 12/2004 Nash N/A N/A 2005/0155603 12/2004 Frerichs et al. N/A N/A 2005/0155605 12/2004 Lithgow et al. N/A N/A 2005/0172969 12/2004 Ging N/A N/A 2005/0199239 12/2004 Lang et al. N/A N/A 2006/0284478 12/2004 Meyer et al. N/A N/A 2006/0032504 12/2005 Burton et al. N/A N/A 2006/0076019 12/2005 Genger N/A N/A 2006/0100538 12/2005 Davidowski et al. N/A N/A 2006/0201514 12/2005 Jones 128/206.24 A61M	2004/0112377	12/2003	Amarasinghe	128/207.11	
2004/0221850 12/2003 Ging et al. N/A N/A 2004/0255950 12/2003 Gradon et al. N/A N/A 2005/0011521 12/2004 Sprinkle 128/206.24 A61M 16/06 2005/0098183 12/2004 Nash N/A N/A 2005/0155603 12/2004 Frerichs et al. N/A N/A 2005/0155605 12/2004 Lithgow et al. N/A N/A 2005/0172969 12/2004 Ging N/A N/A 2005/0284478 12/2004 Lang et al. N/A N/A 2006/032504 12/2005 Burton et al. N/A N/A 2006/0076019 12/2005 Ho 128/206.26 A61M 16/0655 2006/0100538 12/2005 Genger N/A N/A 2006/0201514 12/2005 Jones 128/206.24 A61M 16/0616 2006/0201515 12/2005 Kwok et al. N/A N/A 2006/0278233 12/2005 Kwok et al. N/A N/A <	2004/0112385	12/2003	Drew et al.	N/A	N/A
2004/0255950 12/2003 Gradon et al. N/A N/A 2005/0011521 12/2004 Sprinkle 128/206.24 A61M 16/06 2005/0098183 12/2004 Nash N/A N/A 2005/0155603 12/2004 Frerichs et al. N/A N/A 2005/0155605 12/2004 Lithgow et al. N/A N/A 2005/0172969 12/2004 Ging N/A N/A 2005/0199239 12/2004 Lang et al. N/A N/A 2005/0284478 12/2004 Meyer et al. N/A N/A 2006/0032504 12/2005 Burton et al. N/A N/A 2006/0076019 12/2005 Ho 128/206.26 A61M 16/0655 2006/0100538 12/2005 Genger N/A N/A 2006/0201514 12/2005 Jones 128/206.24 A61M 16/0616 2006/0201515 12/2005 Kwok et al. N/A N/A 2006/02026365 12/2005 Kwok et al. N/A N/A	2004/0112387	12/2003	Lang et al.	N/A	N/A
2005/0011521 12/2004 Sprinkle 128/206.24 A61M 16/06 2005/0098183 12/2004 Nash N/A N/A 2005/0155603 12/2004 Frerichs et al. N/A N/A 2005/0155605 12/2004 Lithgow et al. N/A N/A 2005/0172969 12/2004 Ging N/A N/A 2005/0199239 12/2004 Lang et al. N/A N/A 2005/0284478 12/2004 Meyer et al. N/A N/A 2006/032504 12/2005 Burton et al. N/A N/A 2006/0076019 12/2005 Genger N/A N/A 2006/0100538 12/2005 Genger N/A N/A 2006/0201514 12/2005 Jones 128/206.24 A61M 16/0616 2006/0201515 12/2005 Kwok et al. N/A N/A 2006/0266365 12/2005 Stallard N/A N/A 2006/0278233 12/2005 McAuley N/A N/A	2004/0221850	12/2003	Ging et al.	N/A	N/A
12/2004	2004/0255950	12/2003	Gradon et al.	N/A	N/A
2005/0155603 12/2004 Frerichs et al. N/A N/A 2005/0155605 12/2004 Lithgow et al. N/A N/A 2005/0172969 12/2004 Ging N/A N/A 2005/0199239 12/2004 Lang et al. N/A N/A 2005/0284478 12/2004 Meyer et al. N/A N/A 2006/032504 12/2005 Burton et al. N/A N/A 2006/0076019 12/2005 Ho 128/206.26 A61M 16/0655 2006/0100538 12/2005 Genger N/A N/A 2006/0144399 12/2005 Davidowski et al. N/A N/A 2006/0201514 12/2005 Kwok et al. N/A N/A 2006/0201515 12/2005 Kwok et al. N/A N/A 2006/0278233 12/2005 McAuley N/A N/A 2007/0175480 12/2006 Gradon 128/207.11 A61M 16/0875 2007/0215161 12/2006 Frater	2005/0011521	12/2004	Sprinkle	128/206.24	
2005/0155605 12/2004 Lithgow et al. N/A N/A 2005/0172969 12/2004 Ging N/A N/A 2005/0199239 12/2004 Lang et al. N/A N/A 2005/0284478 12/2004 Meyer et al. N/A N/A 2006/0032504 12/2005 Burton et al. N/A N/A 2006/0076019 12/2005 Ho 128/206.26 A61M 16/0655 2006/0100538 12/2005 Genger N/A N/A 2006/0144399 12/2005 Davidowski et al. N/A N/A 2006/0201514 12/2005 Kwok et al. N/A N/A 2006/020515 12/2005 Kwok et al. N/A N/A 2006/02078233 12/2005 McAuley N/A N/A 2007/0175480 12/2006 Gradon 128/207.11 A61M 16/0875 2007/0215161 12/2006 Frater N/A N/A 2007/0221226 12/2006 Hansen <	2005/0098183	12/2004	Nash	N/A	N/A
2005/0172969 12/2004 Ging N/A N/A 2005/0199239 12/2004 Lang et al. N/A N/A 2005/0284478 12/2004 Meyer et al. N/A N/A 2006/0032504 12/2005 Burton et al. N/A N/A 2006/0076019 12/2005 Ho 128/206.26 A61M 2006/0100538 12/2005 Genger N/A N/A 2006/0144399 12/2005 Davidowski et al. N/A N/A 2006/0201514 12/2005 Jones 128/206.24 A61M 2006/0201515 12/2005 Kwok et al. N/A N/A 2006/0266365 12/2005 Stallard N/A N/A 2006/0278233 12/2005 McAuley N/A N/A 2007/0175480 12/2006 Gradon 128/207.11 A61M 16/0875 16/0875 N/A N/A N/A 2007/0215161 12/2006 Frater N/A N/A N/A	2005/0155603	12/2004	Frerichs et al.	N/A	N/A
2005/0199239 12/2004 Lang et al. N/A N/A 2005/0284478 12/2004 Meyer et al. N/A N/A 2006/0032504 12/2005 Burton et al. N/A N/A 2006/0076019 12/2005 Ho 128/206.26 A61M 2006/0100538 12/2005 Genger N/A N/A 2006/0144399 12/2005 Davidowski et al. N/A N/A 2006/0201514 12/2005 Jones 128/206.24 A61M 16/0616 2006/0206365 12/2005 Kwok et al. N/A N/A 2006/0278233 12/2005 McAuley N/A N/A 2007/0175480 12/2006 Gradon 128/207.11 A61M 2007/0215161 12/2006 Frater N/A N/A 2007/0221226 12/2006 Hansen N/A N/A	2005/0155605	12/2004	Lithgow et al.	N/A	N/A
2005/0284478 12/2004 Meyer et al. N/A N/A 2006/0032504 12/2005 Burton et al. N/A N/A 2006/0076019 12/2005 Ho 128/206.26 A61M 2006/0100538 12/2005 Genger N/A N/A 2006/0144399 12/2005 Davidowski et al. N/A N/A 2006/0201514 12/2005 Jones 128/206.24 A61M 2006/0201515 12/2005 Kwok et al. N/A N/A 2006/0266365 12/2005 Stallard N/A N/A 2006/0278233 12/2005 McAuley N/A N/A 2007/0175480 12/2006 Gradon 128/207.11 A61M 16/0875 2007/0215161 12/2006 Frater N/A N/A 2007/0221226 12/2006 Hansen N/A N/A	2005/0172969	12/2004	Ging	N/A	N/A
2006/0032504 12/2005 Burton et al. N/A N/A 2006/0076019 12/2005 Ho 128/206.26 A61M 16/0655 2006/0100538 12/2005 Genger N/A N/A 2006/0144399 12/2005 Davidowski et al. N/A N/A 2006/0201514 12/2005 Jones 128/206.24 A61M 16/0616 2006/0201515 12/2005 Kwok et al. N/A N/A 2006/0266365 12/2005 Stallard N/A N/A 2006/0278233 12/2005 McAuley N/A N/A 2007/0175480 12/2006 Gradon 128/207.11 A61M 16/0875 2007/0215161 12/2006 Frater N/A N/A 2007/0221226 12/2006 Hansen N/A N/A	2005/0199239	12/2004	Lang et al.	N/A	N/A
2006/0076019 12/2005 Ho 128/206.26 A61M 16/0655 2006/0100538 12/2005 Genger N/A N/A 2006/0144399 12/2005 Davidowski et al. N/A N/A 2006/0201514 12/2005 Jones 128/206.24 A61M 16/0616 2006/0201515 12/2005 Kwok et al. N/A N/A 2006/0266365 12/2005 Stallard N/A N/A 2006/0278233 12/2005 McAuley N/A N/A 2007/0175480 12/2006 Gradon 128/207.11 A61M 16/0875 2007/0215161 12/2006 Frater N/A N/A 2007/0221226 12/2006 Hansen N/A N/A	2005/0284478	12/2004	Meyer et al.	N/A	N/A
2006/007/6019 12/2005 Ho 128/206.26 16/0655 2006/0100538 12/2005 Genger N/A N/A 2006/0144399 12/2005 Davidowski et al. N/A N/A 2006/0201514 12/2005 Jones 128/206.24 A61M 16/0616 2006/0201515 12/2005 Kwok et al. N/A N/A 2006/0266365 12/2005 Stallard N/A N/A 2006/0278233 12/2005 McAuley N/A N/A 2007/0175480 12/2006 Gradon 128/207.11 A61M 16/0875 2007/0215161 12/2006 Frater N/A N/A 2007/0221226 12/2006 Hansen N/A N/A	2006/0032504	12/2005	Burton et al.	N/A	N/A
2006/0144399 12/2005 Davidowski et al. N/A N/A 2006/0201514 12/2005 Jones 128/206.24 A61M 16/0616 2006/0201515 12/2005 Kwok et al. N/A N/A 2006/0266365 12/2005 Stallard N/A N/A 2006/0278233 12/2005 McAuley N/A N/A 2007/0175480 12/2006 Gradon 128/207.11 A61M 16/0875 2007/0215161 12/2006 Frater N/A N/A 2007/0221226 12/2006 Hansen N/A N/A	2006/0076019	12/2005	Но	128/206.26	
2006/0201514 12/2005 Jones 128/206.24 A61M 16/0616 2006/0201515 12/2005 Kwok et al. N/A N/A 2006/0266365 12/2005 Stallard N/A N/A 2006/0278233 12/2005 McAuley N/A N/A 2007/0175480 12/2006 Gradon 128/207.11 A61M 16/0875 2007/0215161 12/2006 Frater N/A N/A 2007/0221226 12/2006 Hansen N/A N/A	2006/0100538	12/2005	Genger	N/A	N/A
2006/0201514 12/2005 Jones 128/206.24 16/0616 2006/0201515 12/2005 Kwok et al. N/A N/A 2006/0266365 12/2005 Stallard N/A N/A 2006/0278233 12/2005 McAuley N/A N/A 2007/0175480 12/2006 Gradon 128/207.11 A61M 16/0875 2007/0215161 12/2006 Frater N/A N/A 2007/0221226 12/2006 Hansen N/A N/A	2006/0144399	12/2005	Davidowski et al.	N/A	N/A
2006/0266365 12/2005 Stallard N/A N/A 2006/0278233 12/2005 McAuley N/A N/A 2007/0175480 12/2006 Gradon 128/207.11 A61M 16/0875 2007/0215161 12/2006 Frater N/A N/A 2007/0221226 12/2006 Hansen N/A N/A	2006/0201514	12/2005	Jones	128/206.24	
2006/0278233 12/2005 McAuley N/A N/A 2007/0175480 12/2006 Gradon 128/207.11 A61M 16/0875 2007/0215161 12/2006 Frater N/A N/A 2007/0221226 12/2006 Hansen N/A N/A	2006/0201515	12/2005	Kwok et al.	N/A	N/A
2007/0175480 12/2006 Gradon 128/207.11 A61M 16/0875 2007/0215161 12/2006 Frater N/A N/A 2007/0221226 12/2006 Hansen N/A N/A	2006/0266365	12/2005	Stallard	N/A	N/A
2007/0175480 12/2006 Gradon 128/207.11 A61M 16/0875 2007/0215161 12/2006 Frater N/A N/A 2007/0221226 12/2006 Hansen N/A N/A	2006/0278233	12/2005	McAuley	N/A	N/A
2007/0215161 12/2006 Frater N/A N/A 2007/0221226 12/2006 Hansen N/A N/A	2007/0175400	12/2006	5	170/207 11	A61M
2007/0221226 12/2006 Hansen N/A N/A	200//01/5480	12/2006	Gradon	120/20/.11	16/0875
	2007/0215161	12/2006	Frater	N/A	N/A
2007/0277828 12/2006 Ho et al. N/A N/A	2007/0221226	12/2006	Hansen	N/A	N/A
	2007/0277828	12/2006	Ho et al.	N/A	N/A

2008/0053446	12/2007	Sleeper	N/A	N/A
2008/0110464	12/2007	Davidson	N/A	N/A
2008/0264413	12/2007	Doherty et al.	N/A	N/A
2008/0276937	12/2007	Davidson	N/A	N/A
2008/0314388	12/2007	Brambilla et al.	N/A	N/A
2008/0314389	12/2007	Thomas et al.	N/A	N/A
2009/0050156	12/2008	Ng et al.	N/A	N/A
2009/0065729	12/2008	Worboys et al.	N/A	N/A
2009/0114230	12/2008	Hernandez	N/A	N/A
2009/0120442	12/2008	Но	N/A	N/A
2009/0139526	12/2008	Melidis	N/A	N/A
2009/0173343	12/2008	Omura	128/205.25	A44B 11/2553
2009/0223521	12/2008	Howard et al.	N/A	N/A
2010/0000542	12/2009	Chu	N/A	N/A
2010/0108069	12/2009	Chang	128/205.25	A61M 16/06
2012/0138061	12/2011	Dravitzki et al.	N/A	N/A
2014/0166018	12/2013	Dravitzki et al.	N/A	N/A
2016/0279371	12/2015	Dravitzki et al.	N/A	N/A
2017/0232219	12/2016	Dravitzki et al.	N/A	N/A
2018/0140791	12/2017	Jones et al.	N/A	N/A
2019/0255275	12/2018	Dravitzki et al.	N/A	N/A

FOREIGN PATENT DOCUMENTS

Patent No.	Application Date	Country	CPC
784321	12/2000	AU	N/A
2002302002	12/2002	AU	N/A
2446805	12/2000	CN	N/A
1623610	12/2004	CN	N/A
1628870	12/2004	CN	N/A
1681551	12/2004	CN	N/A
1688358	12/2004	CN	N/A
1763468	12/2005	CN	N/A
1784250	12/2005	CN	N/A
101228017	12/2007	CN	N/A
201153678	12/2007	CN	N/A
2829439	12/1979	DE	N/A
102005033650	12/2006	DE	N/A
1 163 923	12/2000	EP	N/A
1057494	12/2003	EP	N/A
2 000 168	12/2007	EP	N/A
706346	12/1953	GB	N/A
0 300 875	12/2002	GB	N/A
2397244	12/2003	GB	N/A
57-106101	12/1981	JP	N/A
59-144703	12/1983	JP	N/A
2-136920	12/1989	JP	N/A
H06-510444	12/1993	JP	N/A

2002-539899	12/2001	JP	N/A
2005-506156	12/2004	JP	N/A
2008-521451	12/2005	JP	N/A
2006-518230	12/2005	JP	N/A
2006-525040	12/2005	JP	N/A
2004-570	12/2006	JP	N/A
WO 2007/114492	12/2006	JP	N/A
2008-526391	12/2007	JP	N/A
2008-526395	12/2007	JP	N/A
2008-264026	12/2007	JP	N/A
2009-501577	12/2008	JP	N/A
2009-39528	12/2008	JP	N/A
2009-504320	12/2008	JP	N/A
508219	12/2002	NZ	N/A
585826	12/2010	NZ	N/A
M274317	12/2004	TW	N/A
WO 2001/062326	12/2000	WO	N/A
WO 2004/022146	12/2003	WO	N/A
WO 2005/002656	12/2004	WO	N/A
WO 2005/094928	12/2004	WO	N/A
WO 2005/118040	12/2004	WO	N/A
WO 2006/074513	12/2005	WO	N/A
WO 2006/074516	12/2005	WO	N/A
WO 2006/074517	12/2005	WO	N/A
2006/122369	12/2005	WO	N/A
WO 2007/041751	12/2006	WO	N/A
WO 2007/143792	12/2006	WO	N/A
2008/007985	12/2007	WO	N/A
WO 2008/040050	12/2007	WO	N/A
WO 2009/026627	12/2008	WO	N/A
WO 2009/052560	12/2008	WO	N/A
WO 2009/062265	12/2008	WO	N/A
WO 2009/108995	12/2008	WO	N/A
WO 2010/066004	12/2009	WO	N/A
WO 2010/135785	12/2009	WO	N/A

OTHER PUBLICATIONS

Office Action dated Mar. 31, 2021 issued in Chinese Application No. 201910270973.X with English translation (12 pages). cited by applicant

Further Examination Report dated Oct. 1, 2020 issued in New Zealand Application No. 756921 (2 pages). cited by applicant

Notice of Reasons for Rejection dated Jul. 12, 2019 issued in Japanese Application No. 2018-147482 with English translation (12 pages). cited by applicant

Further Examination Report issued in related New Zealand Application No. 722758 dated Sep. 17, 2018, (3 pages). cited by applicant

Second Office Action issued in related Chinese Application No. 201610243366.0 dated Sep. 27, 2018, with English translation (7 pages). cited by applicant

Letter to IPONZ dated Jul. 23, 2018 filed by AJ Park on behalf of Fisher & Paykel Healthcare Limited in New Zealand Application No. 722758 (7 pages). cited by applicant

Application Under Regulation 168 for Extension of Time dated Jul. 23, 2018 in New Zealand

Application No. 722758 (1 page). cited by applicant

Notice of Opposition to Grant of Patent (Section 21) dated Jul. 23, 2018 filed by AJ Park on behalf of Fisher & Paykel Healthcare Limited in New Zealand Application No. 722758 (2 pages). cited by applicant

Extension of Time Granted dated Jul. 24, 2018 issued in New Zealand Application No. 722758 (1 page). cited by applicant

Notice of Allowance issued in related Japanese Application No. 2017-17358 dated Jul. 9, 2018, with English translation, (6 pages). cited by applicant

Office Action issued in related European Application No. 10 77 9932.2 dated Jun. 25, 2018, (4 pages). cited by applicant

First Examination Report issued in related New Zealand Application No. 739636, dated Mar. 6, 2018, 2 pages. cited by applicant

First Office Action issued in related Chinese Application No. 2016102433660, dated Dec. 27, 2017, with English translation, 12 pages. cited by applicant

First Office Action issued in corresponding Japanese Application No. 2015-198321 dated Aug. 22, 2016, with English language translation thereof. cited by applicant

First Examination Report issued in corresponding New Zealand Application No. 722758 dated Aug. 26, 2016. cited by applicant

First Examination Report dated Jan. 31, 2017 issued in Australian Application No. 2015202999 (8 pages). cited by applicant

International Search Report issued in PCT/AU2010/000657 mailed Sep. 9, 2010. cited by applicant Patent Examination Report issued in a related Australian Patent Application No. 2010251884 dated Jul. 27 2012. cited by applicant

U.S. Appl. No. 14/096,470, filed Dec. 4, 2013. cited by applicant

First Examination Report issued in a corresponding New Zealand Application No. 617661 dated Nov. 22, 2013. cited by applicant

Office Action issued in a corresponding U.S. Appl. No. 13/375,021 dated Jan. 3, 2014, including PTO-892 listing US 2003/0196658, US 2009/0139526, US 2009/0120442, US 2008/0276937, and US 2007/0215161. cited by applicant

Office Action issued in a corresponding Chinese Application No. 201080033786.7 dated Jan. 6, 2014, with English language translation thereof. cited by applicant

Further Examination Report issued in corresponding New Zealand Application No. 612693 dated Dec. 13, 2013. cited by applicant

Office Action issued in corresponding Japanese Appln. No. 2012-512169 dated Apr. 7, 2014, with English language translation thereof. cited by applicant

Final Office Action issued in corresponding U.S. Appl. No. 13/375,021 dated May 6, 2014. cited by applicant

Patent Examination Report issued in corresponding Australian Appln. No. 2013257413 dated Aug. 4, 2014. cited by applicant

Patent Examination Reoort issued in corresponding Australian Appln. No. 2013257426 dated Aug. 4, 2014. cited by applicant

Office Action issued in corresponding Chinese Appln. No. 201080033786.7 dated Sep. 3, 2014, with English language translation thereof. cited by applicant

Further Examination Report issued in corresponding New Zealand Appln. No. 612693 dated Sep. 8, 2014. cited by applicant

US Office Action issued in a corresponding U.S. Appl. No. 14/096,470 dated Oct. 8, 2014, including PT0-892 listing US 2003/0196658, US 2006/0201515, US 2004/0221850, US 2004/0094159, US 2008/0110464, US 2008/0276937, and US 2009/0139526. cited by applicant US Office Action issued in a related U.S. Appl. No. 13/375,021 dated Nov. 5, 2014, including PT0-892 listing US 2006/0032504 and US 2009/0114230. cited by applicant

Further Examination Report issued in corresponding New Zealand Appln. No. 617661 dated Jan. 6, 2015. cited by applicant

Patent Examination Report issued in corresponding Australian Appln. No. 2013257426 dated Feb. 11, 2015. cited by applicant

Patent Examination Report issued in corresponding Australian Appln. No. 2013257413 dated Feb. 19, 2015. cited by applicant

Office Action issued in corresponding Japanese Appln. No. 2012-512169 dated Jan. 26, 2015, with English translation thereof. cited by applicant

Final Office Action issued in related U.S. Appl. No. 13/375,021 dated Mar. 11, 2015, including PT0-892 listing US 2008/0110464. cited by applicant

Third Office Action issued in corresponding Chinese Appln. No. 201080033786.7 dated Mar. 23, 2015, with English translation thereof. cited by applicant

Fourth Office Action issued in corresponding Chinese Application No. 201080033786.7 dated Sep. 30, 2015, with English translation thereof. cited by applicant

Further Examination Report issued in corresponding New Zealand Application No. 705206 dated Nov. 6, 2015. cited by applicant

Supplementary Partial European Search Report issued in corresponding European Application No. 10 77 9932.2 dated Feb. 22, 2016. cited by applicant

Written Opinion of the International Searching Authority issued in corresponding PCT Application No. PCT/AU2010/000657 mailed on Sep. 9, 2010. cited by applicant

International Preliminary Report on Patentability issued in corresponding PCT Application No. PCT/AU2010/000657 dated May 30, 2011. cited by applicant

Extended European Search Report issued in corresponding European Patent Application No. 10 77 9932.2 dated Jun. 15, 2016. cited by applicant

U.S. Office Action mailed May 24, 2022 in corresponding U.S. Appl. No. 17/553,919 (19 pages). cited by applicant

JP Notice of Reasons for Rejection and English translation thereof mailed Jun. 20, 2022 in corresponding JP Patent Application P2021-134156 (11 pages). cited by applicant Notification of the Second Office Action with English Translation in corresponding Chinese Application No. 2021113752020, dated Feb. 1, 2024, 15 pages. cited by applicant Notice of Allowance in corresponding Japanese Application No. 2023-76829, dated Jan. 29, 2024, three pages. cited by applicant

Decision to Grant with English Translation in corresponding JP Application No. 2024-027327, six pages, dated Nov. 25, 2024. cited by applicant

Japanese Notice of Allowance for JP Application No. 2021-134156, three pages, dated Jul. 24, 2023. cited by applicant

Chinese Office Action with English Translation for CN Application No. 202111375202.0, nine pages, dated Aug. 30, 2023. cited by applicant

Notification of the Third Office Action with English Translation in corresponding Chinese Application No. 2021113752020, dated May 16, 2024, 16 pages. cited by applicant

Primary Examiner: Woodward; Valerie L

Attorney, Agent or Firm: Nixon & Vanderhye P.C.

Background/Summary

CROSS-REFERENCE TO APPLICATION (1) This application is a continuation of U.S. application Ser. No. 16/402,499, filed May 3, 2019, which is a continuation of U.S. application Ser. No. 15/492,574, filed Apr. 20, 2017, now abandoned, which is a continuation of U.S. application Ser. No. 15/179,326, filed Jun. 10, 2016, now U.S. Pat. No. 10,130,785, which is a continuation of U.S. application Ser. No. 14/184,068, filed Feb. 19, 2014, now U.S. Pat. No. 9,387,302, which is a divisional of U.S. application Ser. No. 13/375,021, filed Nov. 29, 2011, now U.S. Pat. No. 9,149,593, which is a national phase of PCT/AU2010/000657, filed May 28, 2010 in English and designating the United States, which claims the benefit of U.S. Provisional Application Nos. 61/213,326, filed May 29, 2009, 61/222,711, filed Jul. 2, 2009, 61/272,162, filed Aug. 25, 2009, 61/272,250, filed Sep. 4, 2009, 61/263,175, filed Nov. 20, 2009, and 61/282,693, filed Mar. 18, 2010, and Australian Provisional Application Nos. 2009902524, filed 2 Jun. 2009, and 2009906101, filed 15 Dec. 2009, each of which is hereby incorporated herein by reference in its entirety. Australian Provisional Application No. 2010902359, filed 28 May 2010, is also incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

(1) The present invention relates to a nasal mask system used for treatment, e.g., of Sleep Disordered Breathing (SDB) with Continuous Positive Airway Pressure (CPAP) or Non-Invasive Positive Pressure Ventilation (NIPPV).

BACKGROUND OF THE INVENTION

- (2) Patient interfaces, such as a full-face or nasal mask systems, for use with blowers and flow generators in the treatment of Sleep Disordered Breathing (SDB), typically include a soft face-contacting portion, such as a cushion, and a rigid or semi-rigid shell or frame. In use, the interface is held in a sealing position by headgear so as to enable a supply of air at positive pressure (e.g., 2-30 cm H.sub.2O) to be delivered to the patient's airways.
- (3) One factor in the efficacy of therapy and compliance of patients with therapy is the comfort and fit of the patient interface.
- (4) The present invention provides alternative arrangements of mask systems to enhance the efficacy of therapy and compliance of patients with therapy.

SUMMARY OF THE INVENTION

- (5) One aspect of the present technology is to provide a mask system that is simple and unobtrusive. Another aspect of the present technology is a mask system that can accommodate a wide range of different facial shapes including faces with high and low nasal bridge regions, and narrow and wide noses. Another aspect of the present technology is a mask system with a wide fit range.
- (6) A mask in accordance with the present technology is able to adapt the relative influence of different sealing forces dependent upon the size and shape of the face and nose of the wearer. In one form, an amount of tension force may be increased by splaying outwardly of an undercushion.
- (7) One aspect of the present technology is a cushion for a mask that seals at its upper extent in a region of the nose that is generally close to the junction between bone and cartilage on a range of people with larger noses, and which avoids impinging on the sight of people with smaller noses.
- (8) Another aspect of the present technology is a cushion for a mask that includes a thicker undercushion or backup band that supports a thinner membrane or facial flap. In one form the cushion has an undercushion or backup band that is relatively less stiff in an upper lip region than in a corner of the nose region, in a direction that is normal to the plane of the face of a person. In one form the cushion has no undercushion or backup band in a nasal bridge region of the cushion. In one form the undercushion or backup band directs a sealing force against the sides of the nose in a nasal bridge region. In one form the cushion is constructed and arranged so that when used by a person a relatively deep nasal bridge, the sides of the cushion in the region of the nasal bridge are drawn inwards and the force on the side of the nose increases. In one form, when used by a person

- with a relatively low nasal bridge, the sides of the cushion in the region of the nasal bridge splay outwards. In one form the undercushion is constructed and arranged to buckle. In one form the undercushion has a C-shaped or a sickle-shaped cross-section.
- (9) In one form, a seal forming surface of a cushion in accordance with the present technology has a non-tacky surface. In one form a seal forming surface of a cushion in accordance with the present technology has a non-polished surface. In one form, a seal forming surface of a cushion in accordance with the present technology has a frosted surface finish.
- (10) A cushion in accordance with the present technology is adapted to form a seal around a nose of a patient including a seal in a nasal bridge region of a patient. The nasal bridge region is a region of greater variability between different patients than other regions of a nose. Another region of potential variability between faces is an angle of the forehead with respect to a plane of the face.
- (11) In order to accommodate a wide range of face shapes, a series of masks of different sizes and shapes may be constructed. However this may be expensive. In accordance with the present technology, a cushion angle adjustment mechanism for a mask system may be provided to facilitate rotation or orientation of the cushion with respect to the plane of the face. In this way, a given mask system is able to accommodate a wider fit range of patients.
- (12) The cushion size and shape may be structured to accommodate a wide range of different facial shapes.
- (13) One aspect of the invention relates to a mask system including a frame adapted to attach headgear, a sealing arrangement releasably connectable to the frame, and an elbow provided to the sealing arrangement and adapted to be connected to an air delivery tube that delivers breathable gas to the patient. The sealing arrangement defines a breathing chamber and is adapted to form a seal with the patient's face. The sealing arrangement includes structure to establish a positive connection with the frame and with the elbow.
- (14) Another aspect of the invention relates to a mask system including a frame and a sealing arrangement provided to the frame. The sealing arrangement includes a silicone cushion and a foam cushion provided to the silicone cushion. The silicone cushion defines a breathing chamber and the foam cushion is supported by the silicone cushion such that the foam cushion is not in communication with the breathing chamber. The foam cushion supports the sealing arrangement on the frame.
- (15) Another aspect of the invention relates to a mask system including a frame adapted to attach headgear and a sealing arrangement releasably connectable to the frame. The sealing arrangement defines a breathing chamber and is adapted to form a seal with the patient's face. The sealing arrangement includes one or more protrusions adapted to interlock with respective openings provided to the frame and provide visual reinforcement that the connection has been established.
- (16) Another aspect of the invention relates to a sealing arrangement for a mask system including a side wall defining a breathing chamber, an undercushion curving outwards from the side wall and away from the breathing cavity, and a membrane that at least partially covers the undercushion. The membrane extends from the undercushion and curves inwards into the breathing cavity.
- (17) Another aspect of the invention relates to a mask system including a frame, a sealing arrangement releasably connectable to the frame, an elbow provided to the sealing arrangement and adapted to be connected to an air delivery tube that delivers breathable gas to the patient, and a forehead support provided to the frame. The sealing arrangement defines a breathing chamber and is adapted to form a seal with the patient's face. The forehead support includes an elongated arm adapted to extend from the frame and an upper headgear connector adapted to attach upper headgear straps. At least a portion of the arm may be constructed from metal.
- (18) Another aspect of the invention relates to a vent assembly for exhausting gases from a mask including at least two vent arrays and a connecting structure that joins the at least two vent arrays together. Each of the at least two vent arrays includes at least one vent hole structured to exhaust gas from the mask. The connecting structure has a first position and a second position in which the

at least two vent arrays are arranged at an angle offset from the at least two vent arrays when the connecting structure is in the first position.

- (19) Another aspect of the invention relates to a method for making a mask including molding a vent structure, inserting the vent structure into a mold for a mask component, and molding the mask component over the vent structure, wherein molding the mask component aligns the vent structures to create air flow paths that reduce interference of exiting air streams in use. (20) Another aspect of the invention relates to a nasal mask defining a breathing chamber for the delivery of a supply of gas at positive pressure to the airways of a patient. The nasal mask includes a sidewall, and a cushion located adjacent the sidewall at a rear side of the nasal mask. A rearward sealing surface of the cushion has a contour in a top lip region that is formed with a concave curvature to have a shape that is complementary to a top lip region of a person. The contour of the rearward surface of the cushion is constructed and arranged to extend in use along respective left and right sides of the nose from a nasal bridge region of a person located adjacent the joint between the nasal bone and the cartilage to respective left and right nasal corner regions of a person adjacent the left and right naso-labial creases. The contour of the rearward sealing surface of the cushion is further adapted to extend along the top lip of a person from the left side of the nose to the right side of the nose. The cushion includes a relatively thick backup band formed from a resilient flexible material and extending from the sidewall to form respective cantilevers in a top lip region, a corner region and a side of nose region of the cushion. The cantilevers each have a length and a thickness and the cantilevers define respective lip region, corner region and side of nose region stiffnesses. The corner region cantilever is stiffer than the top lip region cantilever in a direction normal to the plane of the face. The cushion further includes a relatively thin facial flap. The facial flap is inwardly curving and extends around the perimeter of the cushion to define the rearward sealing surface of the cushion. An inner edge of the facial flap defines an orifice through which a portion of a nose of the patient passes in use.
- (21) Another aspect of the invention relates to a nasal mask defining a breathing chamber for the delivery of a supply of gas at positive pressure to the airways of a patient. The nasal mask includes a sidewall, and a cushion located adjacent the sidewall at a rear side of the nasal mask. A rearward sealing surface of the cushion has a contour in a top lip region that is formed with a concave curvature to have a shape that is complementary to a top lip region of a person. The contour of the rearward surface of the cushion is constructed and arranged to extend in use along respective left and right sides of the nose from a nasal bridge region of a person to respective left and right nasal corner regions of a person. The contour of the rearward sealing surface of the cushion is further adapted to extend along the top lip of a person from the left side of the nose to the right side of the nose. The cushion includes a relatively thick backup band formed from a resilient flexible material and extending from the sidewall to form respective cantilevers in a top lip region, a corner region and a side of nose region of the cushion. The top lip region cantilever has a C-shaped cross-section. The cushion further includes a relatively thin facial flap. The facial flap is inwardly curving and extends around the perimeter of the cushion to define the rearward sealing surface of the cushion. An inner edge of the facial flap defines an orifice through which a portion of a nose of the patient passes in use.
- (22) Another aspect of the invention relates to a nasal mask defining a breathing chamber for the delivery of a supply of gas at positive pressure to the airways of a patient. The nasal mask includes a sidewall, and a cushion located adjacent the sidewall at a rear side of the nasal mask. A rearward sealing surface of the cushion has a contour in a top lip region that is formed with a concave curvature to have a shape that is complementary to a top lip region of a person. The contour of the rearward surface of the cushion is constructed and arranged to extend in use along respective left and right sides of the nose from a nasal bridge region of a person to respective left and right nasal corner regions of a person. The contour of the rearward sealing surface of the cushion is further adapted to extend along the top lip of a person from the left side of the nose to the right side of the

nose. The cushion includes a relatively thin facial flap. The facial flap is inwardly curving and extends around the perimeter of the cushion to define the rearward sealing surface of the cushion. An inner edge of the facial flap defines an orifice through which a portion of a nose of the patient passes in use. The cushion further includes a relatively thick backup band formed from a resilient flexible material and extending from the sidewall to form respective cantilevers in a top lip region, a corner region and a side of nose region of the cushion. A length of the side of nose region cantilever is longer than a length of the corner region cantilever, and the side of nose region cantilever is constructed and arranged to provide a force in a direction approximately normal to the side of the nose.

- (23) In one form the cushion and mask body are moulded in one piece. Preferably the cushion and adjacent sidewall are moulded in one piece. In this arrangement a more controlled and comfortable bending of the undercushion may be achieved.
- (24) Another aspect of the invention relates to a nasal cushion for a mask system. The nasal cushion includes a side wall defining a breathing chamber, an undercushion extending from the side wall, and a membrane that at least partially covers the undercushion. The membrane is adapted to seal along the nasal bridge, sides of nose, corners of nose, and upper lip of the patient's face in use. The undercushion is only provided along the side of nose, corner of nose, and upper lip regions of the cushion. The undercushion includes a flap or extending portion in each side of nose region that is wider than the other regions thereof and adapted to engage and provide a force into the sides of the patient's nose in use.
- (25) Another aspect of the invention relates to a nasal cushion for a mask system. The nasal cushion includes a cushion perimeter providing a plurality of regions. Each region is specifically configured to seal along or around the nose, and each region has characteristics that are at least partially determinative of the sealing force, stabilization, force distribution, comfort, and/or fit range provided by the cushion.
- (26) Another aspect of the invention relates to a forehead support for a respiratory mask including a forehead support arm structured to extend from a frame and a forehead support pad provided to the arm. The forehead support pad includes upper headgear connectors adapted to engage upper headgear straps and a flexible region. The upper headgear connectors are constructed of a first material and the flexible region is constructed of a second material that is more flexible than the first material to allow adjustment of the distance of the forehead support pad from the patient's forehead in use.
- (27) Another aspect of the invention relates to a headgear connector for a respiratory mask including a frame connection structured to extend from a frame and a connector provided to the frame connection. The frame connection is constructed of a more rigid material to hold the shape of the connector and transmit headgear forces to the mask and the connector is constructed of a more flexible material to facilitate engagement and disengagement of headgear straps with the connector. (28) Another aspect of the invention relates to a vent for a respiratory mask including a stem, at least one branch extending from the stem, and a vent array provided to the end of each branch. Each vent array includes a body and at least one vent hole through the body. The branches are spaced about the stem and/or the branches are angled with respect to stem to position the vent arrays such that they achieve diffuse exiting air flow streams.
- (29) Another aspect of the invention relates to an elbow for a respiratory mask including a mask connection end adapted to connect to the mask and a tube connection end adapted to connect to an air delivery tube. The mask connection end includes a first region constructed of a more rigid material and a second region constructed of a more flexible material. The second region provides flexibility to one or more portions of the mask connection end to enable engagement and disengagement of the elbow with the mask.
- (30) Further aspects of the invention are as set out in the claims.
- (31) Other aspects, features, and advantages of this invention will become apparent from the

following detailed description when taken in conjunction with the accompanying drawings, which are a part of this disclosure and which illustrate, by way of example, principles of this invention.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- (1) The accompanying drawings facilitate an understanding of the various examples of this invention. In such drawings:
- (2) FIG. **1-1** is a perspective view of a nasal mask system according to an example of the present invention;
- (3) FIG. **1-2** is an exploded perspective view of the nasal mask system of FIG. **1-1** showing the frame, silicone cushion, elbow, and swivel ring;
- (4) FIG. 1-3 is a perspective view showing the cushion of the nasal mask system of FIG. 1-1;
- (5) FIG. **1-4** is a cross-sectional view of the cushion of FIG. **1-3**;
- (6) FIG. **1-5** is a perspective view of a cushion according to an example of the present invention;
- (7) FIG. **1-6** is a side view of the cushion of FIG. **1-5**;
- (8) FIG. **1-7** is bottom view of the cushion of FIG. **1-5**;
- (9) FIG. **1-8** is a front view of the cushion of FIG. **1-5**;
- (10) FIG. **1-9** is a cross-section view through line **1-9-1-9** of FIG. **1-8**;
- (11) FIG. **1-10** is a cross-section view through line **1-10-1-10** of FIG. **1-8**;
- (12) FIG. **1-11** is a cross-section view through line **1-11-1-11** of FIG. **1-8**;
- (13) FIG. **1-12** is a cross-section view through line **1-12-1-12** of FIG. **1-8**;
- (14) FIG. **2-1** is a perspective view of a nasal mask system according to another example of the present invention;
- (15) FIG. **2-2** is an exploded perspective view of the nasal mask system of FIG. **2-1** showing the frame, foam cushion, silicone cushion, elbow, and swivel ring;
- (16) FIG. **2-3** is a perspective view showing the frame of the nasal mask system of FIG. **2-1**;
- (17) FIG. **2-4** is a perspective view showing the foam cushion, silicone cushion, elbow, and swivel ring of the nasal mask system of FIG. **2-1**;
- (18) FIG. **2-5** is a cross-sectional view of the foam cushion, silicone cushion, elbow, and swivel ring of FIG. **2-4**;
- (19) FIG. **2-6** is a cross-sectional view of the silicone cushion of the nasal mask system of FIG. **2-1**;
- (20) FIG. **2-7** is a cross-sectional view of the silicone cushion and foam cushion of the nasal mask system of FIG. **2-1**;
- (21) FIG. **2-8** is a side view of the silicone cushion and foam cushion of the nasal mask system of FIG. **2-1**;
- (22) FIGS. **3-1** to **3-6**, **3-7**(*a*), **3-7**(*b*), **3-8** to **3-12**, **3-13**(*a*), **3-13**(*b*), **3-14**(*a*) to **3-14**(*h*), **3-15**, **3-**
- **16**(a), 3-**16**(b), 3-**17** to 3-**19**, 3-**20**(a), 3-**20**(b), 3-**21** to 3-**24**, 3-**25**(a), 3-**25**(b), 3-**26**(a), 3-**26**(b), 3-**27**
- to 3-30, 3-31(a), 3-31(b), 3-32 to 3-35, 3-36(a), 3-36(b), 3-37 to 3-43, 3-44(a), 3-44(b), 3-45, 3-
- **46**(*a*), 3-**46**(*b*), 3-**47**, 3-**48**(*a*), 3-**48**(*b*), 3-**49**(*a*), 3-**49**(*b*), 3-**50**(*a*), 3-**50**(*b*), 3-**51**, 3-**52**(*a*) to 3-**52**(*c*),
- 3-53(a), 3-53(b), 3-54 to 3-57, 3-58(a), 3-58(b), 3-59 to 3-65, 3-66(a), 3-66(b), 3-67, 3-68, 3-69(a),
- 3-69(b), 3-70(a), 3-70(b), 3-71(a), 3-71(b), 3-72, 3-73, 3-74(a), 3-74(b), 3-75(a), 3-75(b), and 3-76(a), 3-76(a),
- to **3-79** are schematic views of headgear strap arrangements and headgear connection arrangements according to alternative examples of the present invention;
- (23) FIGS. **4-1** to **4-4** are schematic views of elbow to cushion connection arrangements according to alternative examples of the present invention;
- (24) FIGS. **4-5** to **4-9** are schematic views of swivel to elbow connection arrangements according to alternative examples of the present invention;

- (25) FIGS. **5-1** and **5-2** are isometric views of an alternative embodiment of the present invention;
- (26) FIG. **5-3** is a front view of an alternative embodiment of the present invention;
- (27) FIG. **5-4** is a rear view of an alternative embodiment of the present invention;
- (28) FIG. **5-5** is an alternative embodiment of the present invention in use;
- (29) FIG. **5-6** is a side view of an alternative embodiment of the present invention;
- (30) FIGS. **6-1** to **6-11**, **6-12**(*a*), and **6-12**(*b*) are schematic views of headgear connection arrangements according to alternative examples of the present invention;
- (31) FIGS. **7-1** to **7-3** show various views of a mask system according to an embodiment of the present invention;
- (32) FIGS. **8-1** to **8-3** show various views of a lower headgear connector for a frame according to an embodiment of the invention;
- (33) FIGS. **8-4** and **8-5** show lower headgear connectors according to alternative embodiments;
- (34) FIG. **9-1** shows an elongated arm for a forehead support according to an embodiment of the invention;
- (35) FIGS. **9-2** and **9-3** show a mask system with an elongated arm for a forehead support according to another embodiment of the invention;
- (36) FIG. **9-4** shows a mask system with an elongated arm for a forehead support according to another embodiment of the invention;
- (37) FIGS. **10-1** to **10-5** show various views of a forehead support according to an embodiment of the invention;
- (38) FIG. **10-6** shows a forehead support according to another embodiment of the invention;
- (39) FIG. **11-1** shows a cushion according to an embodiment of the invention;
- (40) FIGS. **11-2** to **11-9** show various views of a cushion according to another embodiment of the invention;
- (41) FIGS. **12-1** to **12-3** show various views of an elbow according to an embodiment of the invention;
- (42) FIGS. **12-4** to **12-8** show various views of an elbow according to another embodiment of the invention;
- (43) FIG. **12-9** is an end view of an elbow according to an embodiment of the invention;
- (44) FIG. **13-1** shows a swivel/vent ring according to an embodiment of the invention;
- (45) FIG. **13-2** shows a swivel/vent ring according to another embodiment of the invention;
- (46) FIGS. **14-1** and **14-2** show headgear according to an embodiment of the invention;
- (47) FIGS. **15-1** to **15-3** show various views of frame to cushion engagement according to an embodiment of the invention;
- (48) FIGS. **16-1** and **16-2** show a mask system according to an embodiment of the present invention;
- (49) FIGS. **17-1** and **17-2** show a mask system according to an embodiment of the present invention;
- (50) FIGS. 18-1 and 18-2 show headgear routing according to an embodiment of the invention;
- (51) FIGS. 19-1 and 19-2 show headgear routing according to an embodiment of the invention;
- (52) FIGS. **20-1**(a) to **20-1**(c) show sequential top views of a bendable or flexible forehead support according to an embodiment of the invention;
- (53) FIGS. **20-2**(*a*) to **20-2**(*c*) show sequential perspective views of a bendable or flexible forehead support according to an embodiment of the invention;
- (54) FIGS. 21(a) to 21(g) show various views of a forehead support including flexible regions according to an embodiment of the invention;
- (55) FIGS. 22(a) to 22(h) show various views of a forehead support including flexible regions according to an embodiment of the invention;
- (56) FIGS. **23**(*a*) to **23**(*e*) show various views of a forehead support including flexible regions according to an embodiment of the invention;

- (57) FIGS. **24**(*a*) and **24**(*b*) show a forehead support wherein each side of the cross-bar includes a resilient spring arm according to an embodiment of the invention;
- (58) FIGS. **25** and **26** show a forehead support including a forehead pad constructed of a soft foam material according to an embodiment of the invention;
- (59) FIGS. **27** to **32** show various views of a frame for a mask system according to an embodiment of the invention;
- (60) FIGS. **33** to **39** show various views of a cushion for a mask system according to an embodiment of the invention;
- (61) FIGS. **40** to **45** show various views of the cushion of FIGS. **33** to **39** and the frame of FIGS.
- **27** to **32** assembled to one another according to an embodiment of the invention;
- (62) FIGS. **46** to **54** show various views of an elbow and swivel for a mask system according to an embodiment of the invention;
- (63) FIG. **55** shows a top view of a vent assembly according to another embodiment of the invention;
- (64) FIG. **56** is a cross-sectional view through line **56-56** of FIG. **55**;
- (65) FIG. **57** is a side view of the vent assembly shown in FIG. **55**;
- (66) FIG. **58** shows a mask cushion provided with the vent assembly of FIG. **55** according to an embodiment of the invention;
- (67) FIG. **59** is a cross-sectional view through line **59-59** of FIG. **58**;
- (68) FIGS. **60** and **61** illustrate an elbow with a vent according to another embodiment of the invention;
- (69) FIGS. **62** and **63** illustrate a cushion with a vent according to another embodiment of the invention;
- (70) FIGS. **64** and **65** are alternative views of the vent assembly of FIGS. **55-59**;
- (71) FIGS. **66** to **69** show alternative views of a forehead support arm and forehead support pad according to an embodiment of the invention;
- (72) FIG. **70** shows an alternative view of a lower headgear connector according to an embodiment of the invention;
- (73) FIG. **71** is a front perspective view of a cushion according to an embodiment of the invention;
- (74) FIG. **72** is a rear perspective view of the cushion of FIG. **71**;
- (75) FIG. **73** is a front view of the cushion of FIG. **71**;
- (76) FIG. **74** is a rear view of the cushion of FIG. **71**;
- (77) FIG. **75** is a top view of the cushion of FIG. **71**;
- (78) FIG. **76** is a bottom view of the cushion of FIG. **71**;
- (79) FIG. **77** is a side view of the cushion of FIG. **71**;
- (80) FIG. **78** is a front view of the cushion of FIG. **71** showing section lines;
- (81) FIG. **79** is a cross-sectional view through line **79-79** of FIG. **78**;
- (82) FIG. **80** is a cross-sectional view through line **80-80** of FIG. **78**;
- (83) FIG. **81** is a cross-sectional view through line **81-81** of FIG. **78**;
- (84) FIG. 82 is a cross-sectional view through line 82-82 of FIG. 78;
- (85) FIG. **83** is an enlarged cross-sectional view of a flap of the undercushion in the side of nose region of the cushion of FIG. **71**;
- (86) FIG. **84** is a schematic view showing localized thickening of the undercushion of the cushion of FIG. **71**;
- (87) FIG. **85** is an enlarged cross-sectional view of the undercushion in the corner of nose region of the cushion of FIG. **71**;
- (88) FIG. **86** is a schematic view showing sealing forces of the cushion as viewed from the side of the patient's nose according to an embodiment of the invention;
- (89) FIG. **87** is a schematic view showing sealing forces of the cushion as viewed from the front of the patient's nose according to an embodiment of the invention;

- (90) FIGS. **87-1**(*a*) and **87-1**(*b*) are cross-sectional views through line **87-1-87-1** of FIG. **87** show deformation of the undercushion for low and high nose bridges;
- (91) FIG. **87-2** is a schematic view showing sealing forces of the cushion as viewed from the top of the patient's nose according to an embodiment of the invention, the membrane of the cushion being rolled back for the purposes of illustration to reveal the location of the undercushion in use;
- (92) FIGS. **88** to **93** are various views of a frame according to an embodiment of the invention;
- (93) FIG. **94** is a front view of a frame and cushion according to an embodiment of the invention and showing section lines;
- (94) FIG. **95** is a cross-sectional view through line **95-95** of FIG. **94**;
- (95) FIG. **96** is a cross-sectional view through line **96-96** of FIG. **94**;
- (96) FIG. **97** is a cross-sectional view through line **97-97** of FIG. **94**;
- (97) FIG. **98** is a cross-sectional view through line **98-98** of FIG. **94**;
- (98) FIGS. **99** to **105** are various views of a mask system according to an embodiment of the invention;
- (99) FIGS. **106** and **107** show the mask system of FIGS. **99-105** with headgear on a patient's face in use according to an embodiment of the invention;
- (100) FIG. **108** is an assembly view of an elbow according to an embodiment of the invention;
- (101) FIG. **109** is a cross-section view of the elbow of FIG. **108**;
- (102) FIG. **110** is a side view of the elbow of FIG. **108**;
- (103) FIG. **111** is a cross-sectional view through line **111-111** of FIG. **110**;
- (104) FIG. **112** is a cross-sectional view through line **112-112** of FIG. **110**;
- (105) FIG. **113** is a side view of an elbow according to an embodiment of the invention;
- (106) FIG. **114** is a cross-sectional view through line **114-114** of FIG. **113**;
- (107) FIG. **115** is a cross-sectional view through line **115-115** of FIG. **113**;
- (108) FIGS. **116-1**, **116-2**, and **116-3** illustrate sealing of the cushion in the nasal bridge region according to an embodiment of the invention;
- (109) FIGS. **117** to **120** illustrate bending points or bending regions of the undercushion according to different aspects of the present technology.
- (110) FIG. **119** shows a cross-section of an undercushion or backup band suitable for use along the side of a nose that can provide a sealing force into the plane of the face (arrow pointing up) and into the side of the nose (arrow pointing to the left).

DETAILED DESCRIPTION OF ILLUSTRATED EMBODIMENTS

- (111) The following description is provided in relation to several examples which may share common characteristics and features. It is to be understood that one or more features of any one example may be combinable with one or more features of the other examples. In addition, any single feature or combination of features in any of the examples may constitute additional examples.
- (112) In this specification, the word "comprising" is to be understood in its "open" sense, that is, in the sense of "including", and thus not limited to its "closed" sense, that is the sense of "consisting only of". A corresponding meaning is to be attributed to the corresponding words "comprise", "comprised" and "comprises" where they appear.
- (113) The term "air" will be taken to include breathable gases, for example air with supplemental oxygen.
- (114) 1. Nasal Mask System
- (115) Examples of the invention are directed towards a nasal mask system that is easy and quick to fit (e.g., with little or no adjustment), enable reduced strap tension, is manufacturable in high volumes, provides high consumer appeal, provides comfort and seal, provides reliable quality, unobtrusive, and/or fits a large majority of the population.
- (116) As described in greater detail below, the nasal mask system includes a frame, a sealing arrangement (e.g., a cushion) provided to the frame and adapted to form a seal with the patient's

nose, and an elbow, e.g., provided to the sealing arrangement, adapted to be connected to an air delivery tube that delivers breathable gas to the patient. A swivel ring may be optionally provided to couple the elbow to the sealing arrangement. Headgear may be removably attached to the frame to maintain the nasal mask system in a desired adjusted position on the patient's face. The nasal mask system is intended for use in positive pressure therapy for users with Obstructive Sleep Apnea (OSA) or another respiratory disorder.

(117) While each example below is described as including a nasal interface type, aspects of the invention may be adapted for use with other suitable interface types, e.g., full-face interface, nasal prongs, etc.

(118) 2. Frame

- (119) As shown in FIGS. **1-1**, **1-2**, and **2-1** to **2-3**, the frame **20** (also referred to an exoskeleton or skeleton) is structured to maintain, stabilize and/or support the sealing arrangement **40** (and also the elbow **70**) in an operative position with respect to the patient's face. In addition, the frame **20** is structured to attach headgear to the nasal mask system.
- (120) As illustrated, the main body 22 (e.g., see FIGS. 1-2, 2-2, and 2-3) of the frame 20 includes an open construction with a central opening 24 to allow the sealing arrangement 40 to communicate with or receive the elbow 70 and a side wall 26 structured to retain or otherwise engage the sealing arrangement **40**. In use, the frame **20** of this example is not in the air path, i.e., sealing arrangement **40** defines breathing cavity and is directly coupled to the elbow **70** as described below. The frame **20** may be semi-rigid or at least allow for some flexibility. The frame **20** may be made from a single material, a combination of materials, or a combination of the same material in varying hardnesses. The frame **20** may be made from polycarbonate, polypropylene, nylon, clear nylon, thermoplastic elastomer (TPE), silicone, or any other suitable material. (121) A forehead support **30** extends from the top end of the main body **22**. The forehead support **30** may be fixed (i.e., un-adjustable), adjustable (e.g., the height or length of elongated arm may be extendable, or the angle of the forehead support may be changeable), or interchangeable (e.g., various sizes of forehead supports for different sized patients or the elongated arm may be replaced with different various lengths of arm). The forehead support **30** includes an elongated arm **32** and an upper headgear connector **34** providing slots or receiving holes **35** at the free end of the arm adapted to receive respective headgear straps in use, thus using the padding of the headgear straps rather than requiring a separate pad. In an example, the headgear connector may be adjustable, e.g., with respect to the arm 32 (e.g., tilt or angle towards the patient's forehead). Lower headgear connectors **36** are provided to respective sides of the main body **22**, each lower headgear connector **36** including an elongated arm **38** and a slot or receiving hole **39** at the free end of the arm adapted to receive a respective headgear strap in use. The elongated arm **38** may be bendable or selectively deformable so as to allow the arm to bend towards or away from the patient's face in use, thereby pulling the headgear onto the patient's face, e.g., enabling side sleeping. In an example, if the elongated arm **38** is bendable or deformable with hand pressure of the user, the elongated arm may be suitably malleable to hold the deformed shape. This feature of the elongated arm **38** may increase the comfort, fit and/or sealing of the embodiment. The forehead support and headgear connectors may provide an unobtrusive arrangement which extend out of the patient's line of sight. The generally thin and elongate configuration of the elongated arm **38** may at least partially prevent or limit obstruction to patient's line of sight, whilst wearing the embodiment. In an example, the elongated arm **38** may be constructed of wire or a metallic alloy. However, a person skilled in the art will appreciate that other materials may be used including but not limited to polymeric materials.
- (122) In an example, the arms **32**, **38** may be suitably formed, shaped, or contoured to follow the contours of the patient's face whilst avoiding the patient's line of sight or impeding their vision. Also, the arms **32**, **38** may include some inherent flexibility to allow a range of adjustment. The elongated arms **32**, **38** may be made from a generally inextensible material such as aluminum,

stainless steel, polycarbonate, polypropylene, TPE, or any other suitable material. Alternatively, the elongated arms **32**, **38** may be continuous with the frame **20** and therefore made from the same material, or the elongated arms **32**, **38** may be made from the same material as the frame **20** but not a single piece construction (i.e., the elongated arms 32, 38 may be attached to the frame 20). However, wherein the elongated arm **32**, **38** is made of different material from the frame **20**, the elongated arm **32**, **38** may be secured onto frame **20** using an alternative fixing or securing method, e.g., such as gluing. The upper headgear connector 34 may be made from the same material as the elongated arm **32**. Alternatively, the upper headgear connector **34** may be made from a more flexible material than the elongated arm **32** such as Hytrel[™], silicone, nylon, or any other suitable material. The lower headgear connectors **36** may be continuous with the frame **20** and therefore made from the same material, or the lower headgear connectors 36 may be made from the same material as the frame **20** but not a single piece construction (i.e., elongated arm **38** may be attached to frame **20**). Alternatively, the lower headgear connectors **36** may be made from a more flexible material than frame **20** such as HytrelTM, silicone, nylon, or any other suitable material. (123) The forehead support and headgear connectors may be integrally molded or otherwise attached to the main body of the frame **20**. The frame **20** is constructed from a more rigid material than the sealing arrangement **40** (e.g., made of silicone, foam). For example, the frame may be constructed of plastic (e.g., polycarbonate) and/or metal materials, e.g., relatively thin metal material.

- (124) In an example, the arms **32** and/or **38** may be relatively thin or slender (e.g., 1-3 mm). In an example, the forehead support **30** and headgear connectors **36** may be formed of a material (e.g., metallic material) which is different than the material of the frame main body **22**. In such example, the forehead support **30** and headgear connectors **36** may be attachable to the frame main body **22**. The relatively thin or slender arms **32** and/or **38** may reduce the overall visual impact of the mask or embodiment.
- (125) In an example, upper headgear connector **34** provides a flattened area for the attachment of straps from the headgear. In an example, the straps attach to the upper headgear connector **34** through two apertures **35** mounted on opposed sides of the upper headgear connector **34** and the straps are adapted to extend through the apertures and elicit a force towards the patient's face and effectively pull the upper headgear connector **34** towards the patient's forehead, in this embodiment.
- (126) 2.1 Alternative Frame
- (127) FIGS. **5-1** to **5-6** show an alternative embodiment of a frame **420** that is structured to maintain or otherwise support a sealing arrangement **440** (and an elbow **70**) in an operative position with respect to the patient's face.
- (128) The frame **420** may be structured to attach a headgear to the nasal mask system. The frame **420** may be made from polycarbonate, polypropylene, nylon, or any other suitable material. A swivel ring **90** may connect the sealing arrangement **440** to an elbow **70**. The swivel ring **90** may be any suitable polymer such as polycarbonate or polypropylene. The elbow **70** may be small and unobtrusive. The elbow may include a venting arrangement **75** comprising holes or apertures for venting. The elbow **70** may be made from polypropylene, polycarbonate or any other suitable material.
- (129) A forehead support **430** extends from a top end of the main body **422** of the frame **420**. The forehead support **430** may be fixed (i.e., un-adjustable), adjustable (e.g., the height or length of elongated arm may be extendable, or the angle of the forehead support may be changeable), or interchangeable (e.g., various sizes of forehead supports for different sized patients or the elongated arm may be replaced with different various lengths of arm). The forehead support **430** includes an elongated arm **432** and an upper headgear connector **434** providing slots or receiving holes **435** at the free end of the arm **432** adapted to receive respective headgear straps in use, thus using the padding of the headgear straps rather than requiring a separate pad. In an example, the headgear

- connector **434** may be adjustable, e.g., with respect to the arm **432** (e.g., tilt or angle towards the patient's forehead).
- (130) Upper headgear connector, or forehead support pad, **434** may be made from silicone, nylon, polypropylene, TPE, polycarbonate, or any other suitable material. Elongated arm **432** may be made from a malleable metal. The frame **420** may be a connection point for the elongated arm **432** and the sealing arrangement **440**.
- (131) Lower headgear connectors **436** are provided to respective sides of the main body **422** of the frame **420**. The lower headgear connectors **436** may be hook shaped. The lower headgear connectors **436** may also be integrally formed with the main body **422** of the frame **420**, or they may be formed separately from the main body and attached by, for example, adhesive or any form of mechanical fixation.
- (132) Each lower headgear connector **436** may include a gap **439** between an upper end of the connector **436** and the main body **422** of the frame to permit a headgear strap to be inserted therebetween. It should be appreciated that the headgear connectors **436** may also be connected at both the lower end and the upper end to the main body **422** of the frame **420**. The connectors **436** may be bendable or selectively deformable so as to allow the connectors **436** to bend towards or away from the patient's face in use, thereby pulling the headgear onto the patient's face, e.g., enabling side sleeping. This may increase the comfort, fit and/or sealing of the nasal mask system. The forehead support **430** and the headgear connectors **434**, **436** may provide an unobtrusive arrangement which extend out of the patient's line of sight. The placement of the lower headgear connectors **436** at lower corner positions on the main body **422** of the frame **420** may at least partially prevent or limit obstruction to patient's line of sight, whilst wearing the nasal mask system.
- (133) 2.2 Alternative Frame
- (134) The following illustrates alternative embodiments of a frame, arm, and forehead support, for a mask system.
- (135) 2.2.1 Frame
- (136) FIGS. **7-1** to **7-3** show a nasal mask system including a frame **520**, sealing arrangement or cushion **540**, elongated arm **532** and forehead support **530**, elbow **570**, and ring **590** to couple the elbow to the cushion.
- (137) As best shown in FIGS. **8-1** to **8-3**, each lower headgear connector **536** provided to the frame may be generally S-shaped. Each lower headgear connector includes a top portion **536(1)**, a middle portion **536(2)**, a lower portion **536(3)**, and a connecting portion **536(4)** that attaches the connector to the frame. The top portion **536(1)** may have a lead in adapted to guide the headgear strap into position. The middle portion **536(2)** is adapted to abut or is close to the frame, so as to retain the strap within the connector once it is engaged. The lower portion **536(3)** is adapted to receive the strap once it has been pushed through the middle portion. The connecting portion **536(4)** allows the connector to hinge outwards or away from the frame to allow a headgear strap to pass between the middle portion of the connector and the frame.
- (138) The connectors **536** are aligned close to the frame to enable ease of use in sliding headgear along the side of the frame. The self closing connector enables easy access while still acting as a retention feature for headgear.
- (139) In an embodiment, one or more portions of the connector may be constructed of TPE.
- (140) FIGS. **8-4** and **8-5** illustrate alternative lower headgear connectors, e.g., hook-shaped connector **536-1**, and connector **536-2** with free end adapted to engage a connector base **520-1** on the frame. As shown in FIG. **8-5**, the free end of the hook-shaped connector **536-1** includes a retaining hook to help retain the headgear strap. As shown in FIG. **8-4**, the connector **536-2** may be biased into engagement with the base **520-1** to help retain the headgear strap.
- (141) FIGS. **16-1** and **16-2** illustrate another embodiment of a frame **520-1** for supporting the cushion and headgear (e.g., open frame arrangement with lower cross-bars **5536** for lower headgear

- straps and a forehead support bar with an opening **5537** for upper headgear straps). FIGS. **17-1** and **17-2** illustrate another embodiment of a frame **520-2** for supporting the cushion and headgear (e.g., headgear clip **5540** includes opening **5440(1)** adapted to engage a bar-like receptacle **5541** on frame). The frame **520-2** also includes a forehead support bar with an opening for upper headgear straps as in FIGS. **16-1** and **16-2** described above. In addition, the frame **520-2** includes upwardly extending cushion support bars **521** adapted to support and/or retain the cushion.
- (142) In an alternative embodiment, the frame may include clip receptacles adapted to removably interlock with respective headgear clips associated with lower headgear straps.
- (143) 2.2.2 Elongated Arm
- (144) The frame supports the elongated arm (e.g., constructed of metal, malleable metal) that holds the forehead support.
- (145) In an embodiment, as shown in FIGS. **7-1** to **7-3**, the metal arm **532** may be an encapsulated extrusion. As shown in FIG. **9-1**, the metal m of the arm **532** may be wider at the front so the plastic encapsulation p does not overshadow the metal. Such encapsulated arrangement provides a soft tactile feature to soften and protect the metal.
- (146) In another embodiment, as shown in FIGS. **9-2** and **9-3**, the metal arm may be an exposed extrusion (e.g., polished extruded aluminum). This arrangement highlights the metal feature and provides a streamlined, unobtrusive design.
- (147) FIG. **9-4** illustrates an arm **532** constructed of glass filled Nylon encapsulated in a polymer coating (such as silicone, TPE). The encapsulated metal design may be substituted with a reinforced plastic to provide strength in place of the metal and facilitate a thin unobtrusive arm. This arrangement also provides the opportunity to add color and finish details.
- (148) 2.2.3 Forehead Support
- (149) The forehead support is supported by the arm **532**. As shown in FIGS. **10-1** to **10-5**, the forehead support **530** may have flexible region **531** built into the forehead support to allow it to spring from its natural v-shaped position or shape to a more linear position or shape. The flexible region may be a thinned portion of material (i.e., same material as rest of forehead support, just thinner to allow flex), a softer, less stiff material or a combination of a softer material and a thinner section when compared to the remaining portions of the forehead support **530**.
- (150) The flexible region may be a co-molded portion of flexible material, such as thermoplastic elastomer (may also be colored), silicone, or any other material that may flex. The remainder of the forehead support may be made from a less flexible material such as nylon, polycarbonate or polypropylene. Co-molding may be via a chemical and/or mechanical bond between the two materials. The separately formed/assembled flexible region reduces breakage risk and enables assembly offsite with the headgear. The forehead support may include a frosted finish.
- (151) In an embodiment, the forehead support **530** may first be molded flat. Then, the flexible region **531** may be molded over the forehead support **530**, with the forehead support **530** positioned in its in use or flexed configuration. This may preload or provide a bias or spring to the forehead support.
- (152) The flexible region provides an auto-adjust flex feature that is adjusted with headgear tension enabling greater biasing of the cushion to assist fit. Preferably, the forehead support may flex so as to tilt or rotate the upper portion of the mask cushion inwards and outwards of the patient's nasal bridge region. In one form, when the headgear straps are tightened, the forehead support may splay outwards or flatten against the patient's forehead. This will tilt or rotate the mask cushion, with the lower portion of the mask cushion acting as a hinge point. The upper portion of the mask cushion may hence tilt or rotate inwards, in a direction generally normal to the plane of the patient's face, towards the patient's nose bridge. This may be useful to patients who have a higher nose bridge than other patients as this will urge the nasal bridge region of the mask cushion into sealing engagement with their nose.
- (153) Alternatively, the forehead support may be made from a thickened, compliant material, such

- as foam, that can be compressed thereby achieving a similar result.
- (154) As shown in FIG. **10-2**, the position of the forehead support without any loading (i.e., natural state), may be demonstrated as angle α , e.g., angle α may be 5-90°, e.g., 15°.
- (155) In use, the forehead support may allow about 0-30 mm of adjustment in the anterior-posterior direction (as indicated by the arrow in FIGS. **10-2** and **10-4**). In an exemplary embodiment, the forehead support may allow about 5-20 mm (e.g., about 10-20 mm, about 10-15 mm) of adjustment in the anterior-posterior direction. This may allow for a greater fit range of patients as it may accommodate a greater variety of anthropometrics, particularly at the nasal bridge region. (156) Headgear may attach to the forehead support through loop holes **535** (e.g., see FIGS. **10-1** and **10-3**) or may attach through a loop through arrangement in which a slot **535-1** extends into the
- (157) 2.3 Alternative Embodiments of the Forehead Support

hole **535** (see FIG. **10-6**).

elastomer).

- (158) FIGS. **20-1** to **26** show alternative embodiments of the forehead support.
- (159) One of the advantages of the forehead support is that the forehead support provides a reasonable amount of adjustment without a lot of additional components. In a preferred example, the forehead support is all molded in one piece. Furthermore, pulling the headgear straps in the forehead region towards the back of the patient's head results in an intuitive movement of the cushion rotating it towards the nasal bridge and potentially reducing and eliminating leak in that region.
- (160) In accordance with an example of the present technology, a mask system is provided that includes a nasal cushion and a frame. The frame includes a forehead support having a T-bar. The T-bar includes a main shaft and a cross-bar. In one form, the cross-bar includes a left side and a right side.
- (161) A mask system in accordance with an aspect of the present technology includes headgear. In one form, the headgear includes a left forehead strap and a right forehead strap. The left and right forehead straps are constructed and arranged to engage with respective left and right sides of the cross-bar in use, at a location distal from the apex.
- (162) In one form, the left and right side are arranged at an angle with respect to one another that is less than about 180 degrees. In this form, the cross-bar may be V-shaped in a top view. An apex is defined between the left and right side. In one form, the left and right sides are constructed and arranged to bend or flex about the apex. In one form, bending or flexing the sides by pulling them at their distal ends causes the angle between them to increase and causes the point of contact between the cross-bar and the main shaft to move closer to the forehead and to rotate the cushion. (163) In an alternative form, the left and right sides of the cross-bar may be U-shaped. In this Ushape, the cross-bar may have similar functionality to the V-shaped form described above. (164) For example, FIGS. **20-1** and **20-2** each show sequential views of a generally U-shaped cross-bar **1034** structured to bend or flex about the apex as headgear tension from headgear straps **1080** is applied to respective sides of the cross-bar. As illustrated, the forehead support starts at an extended position forward of the patient's forehead. As the patient tightens the headgear (i.e., headgear straps pulled outwardly from the cross-bar as indicated by the arrows), the sides of the cross-bar splay open or flex outwardly and the cross-bar moves into a substantially flat position on the patient's forehead, which enables the cushion to be biased inwards towards the patient's face. The slots **1035** in the cross-bar for respective headgear straps may be positioned relatively far outward from the apex (e.g., by a distance d as shown in FIG. 20-2) to improve vectors (e.g., less force required to pull forehead support toward the patient's head with effective force). (165) Bending or flexing may be achieved by molding a cross-bar from a material that has a thinner middle section. In this way, the cross-bar may be more flexible in the middle section than in ends thereof. Additionally or alternatively, a cross-bar may be formed by co-molding a more rigid

material (e.g., such as nylon) with a more flexible material (e.g., such as a thermoplastic

- (166) For example, as shown in FIGS. **20-1** and **20-2**, the cross-bar may include an intermediate portion **1034(1)** constructed of a more flexible material (e.g., flexible TPE or silicone) and end portions or sides **1034(2)** constructed of a more rigid material (e.g., clear Nylon).
- (167) FIGS. **21** to **23** show alternative configurations of the forehead support and cross-bar thereof. For example, FIG. **21** shows a forehead support including flexible regions **1036** positioned between more rigid regions, i.e., an intermediate portion **1034(1)** and respective sides **1034(2)** of the crossbar. The flexible regions **1036** are constructed of a more flexible material (e.g., Hytrel®) and the intermediate portion **1034(1)** and sides **1034(2)** are constructed of a more rigid material (e.g., nylon). As illustrated, the flexible regions may be embedded in the more rigid regions. Also, the flexible regions may interlocked with the more rigid regions by a retention feature, e.g., dovetail interlock. FIGS. **22** and **23** show alternative configurations for interlocking or coupling the flexible region **1036** with more rigid regions **1034(1)**, **1034(2)**. In FIG. **23**, the flexible region incorporates the sides of the cross-bar.
- (168) The forehead support and headgear are constructed and arranged so that tensioning the left and/or right forehead straps causes the main shaft to move and rotate the cushion. In this way, the mask fit may be adjusted to different facial shapes. For example, pulling the straps may rotate the cushion towards the face, reducing leak in the nasal bridge region.
- (169) FIG. **24** shows a forehead support wherein each side of the cross-bar includes a resilient spring arm **1037**. As illustrated, a headgear strap **1080** is adapted to loop around the spring arm, such that the headgear strap engages the patient's forehead with the spring arm positioned between the cross-bar and the headgear strap. In use, headgear tension may bend or flex the spring arm and cause the point of contact of the forehead support to move closer to the patient's forehead. (170) FIGS. **25** and **26** show a forehead support including a forehead pad **1090** constructed of a
- compliant material such as foam or gel. As shown in FIG. **25**, the forehead pad may be coupled to the cross-bar **1034** by a snap-fit, e.g., forehead pad **1090** includes snap fingers **1091** adapted to engage with respective openings **1038** in the cross-bar with a snap fit. Opposing sides of the cross-bar include open-ended slots adapted to engage a headgear strap. As shown in FIG. **26**, the headgear strap **1080** may pass across the cross-bar **1034** and the forehead pad thereof **1090**, such that the headgear strap engages the patient's forehead with the forehead pad positioned between the cross-bar and the headgear strap.
- (171) 2.4 Further Alternative Frame Embodiment
- (172) A frame may be provided to the system to stabilise the cushion in position and anchor the headgear to hold the cushion in position. The frame may further add structure or support to the cushion.
- (173) The alternative frame **2020** shown in FIGS. **27** to **32** comprises a main body **2100**, forehead support arm **2400** and forehead support pad **2530**.
- (174) The main body **2100** may be structured to capture or engage the cushion and lower headgear straps. Upper region **2700** engages a top or apex region of a mask cushion. The upper region **2700** may be positioned at the superior or top portion of the main body **2100** on the non-patient side of the mask frame **2020**. Upper region **2700** may also provide stability to the front or elbow engaging portion of the cushion by adding rigidity or support to this region of the cushion. Lower region **2800** may be positioned generally inferior to the upper region. The lower region **2800** may engage or otherwise interface with a bottom region of a mask cushion.
- (175) Rear connector or engagement portion **2650** (see FIGS. **29** and **32**) may be structured to receive a tab or locking element on a mask cushion. Rear engagement **2650** may also assist location of the mask cushion within the mask frame **2020**. Rear engagement **2650** may be a cut-out or aperture. Rear connector **2650** may be positioned on the patient side of the frame **2020**.
- (176) Lower headgear connectors **2520** may be arranged to receive a loop of headgear. Lower headgear connectors **2520** may be generally hook or C shaped to receive the headgear strap and maintain it in position. Lower headgear connectors **2520** may be attached or otherwise formed with

the main body **2100** by connection **2525**. Connection **2525** may allow some flexibility or hinging to enable some freedom of movement of the lower headgear connections **2520**.

(177) Lower headgear connectors **2520** may be formed from a flexible material, including but not limited to silicone, TPE, or any other suitable material. Lower headgear connectors may be formed from a combination of materials such as a stiffer material to hold the shape and transmit headgear forces to the mask, and a more flexible material to allow easy engagement and disengagement of the headgear straps. This may include combinations of materials such as nylon and silicone. The flexible material may also have a tackiness or friction to the material to prevent the headgear from sliding within the connectors. This may include but not be limited to silicone. Preferably, assembly of the headgear to the lower headgear connectors requires less force than disassembling the headgear from the lower headgear connectors. Preferably, the disassembly force is less than 15N. Most preferably, the disassembly force is less than 10N.

(178) FIG. **70** shows an alternative view of a lower headgear connector **2520**. As illustrated, the generally hook or C shaped lower headgear connector **2520** (constructed of a more flexible material, e.g., silicone) is overmolded or comolded with the main body connection 2525 of the main body **2100** (e.g., constructed of a more rigid material, e.g., nylon). Preferably, the flexible material may be silicone. Preferably, the flexible material may have a Shore A durometer of about 20-80. Most preferably, the flexible material may have a Shore A durometer of about 40-60. Most preferably, the flexible material may have a Shore A durometer of about 60. The connection **2525** includes a connecting portion **2526** to assist in molding the connector **2520** to the connection **2525**. The connecting portion 2526 includes retention slots 2526(1) to assist in the interlocking or mechanical locking of the overmolded flexible connector 2520 with the stiffer connection 2525. Also, the connecting portion **2526** extends substantially to the height or top of the connector **2520** to enhance headgear connection at the connector, i.e., stiffer material of connecting portion holds the shape of the connector to prevent headgear from sliding off the connector and transmits headgear forces to the mask. The flexible connector **2520** also allows easier removal of the strap from the connector and easier connection of the strap to the connector, e.g., connector deformable to facilitate removal and connection of strap.

(179) As shown in FIG. **89**, the lower headgear connector may provide interior surfaces **2521(1)**, **2521(2)** that are angled with respect to one another by an angle α **1** to help retain the headgear strap and prevent inadvertent removal. Preferably, al may be less than 180°. Preferably, al may be about 110-160°. Most preferably, al may be about 120-150°. Also, the spacing of the connector from the main body of the frame also helps strap retention. Preferably, the spacing of the connector from the main body may vary along the length of the connector. Preferably, the widest gap between the connector and the main body may be less than 15 mm to aid in retention of the strap. Most preferably, the widest gap between the connector and the main body may be less than 10 mm to aid in retention of the strap.

(180) As shown in FIGS. **41-44**, side engagement tabs **2600** may be positioned on the lateral flanges of the main portion **2100** and on the patient side of the mask frame for interfacing and supporting the mask cushion. In an embodiment, the tabs are positioned adjacent where the undercushion ends in the nasal bridge region. The tabs may form an interference fit with a portion of a cushion. The tabs may be thinner than remaining or surrounding part of the frame. The tabs may also support the cushion so that it is supported in sealing engagement with the sides of the patient's nose or cheek region. Tabs **2600** provide structural support to the flexible cushion so that it may not collapse away from the patient's face (e.g., blowout) and therefore break seal in use. The tabs **2600** may extend rearwardly from the arm **2400** as shown in FIG. **43**.

(181) Forehead support arm **2400** extends from the main body **2100** to the forehead pad **2530**. Preferably, forehead support arm **2400** is thin (e.g., 1-5 mm, less than 10 mm, or about 1-5 mm) to avoid obstructing the patient's vision, and structurally stable or relatively inextensible so as to support the mask in position.

(182) Forehead support pad **2530** may include upper headgear connectors **2535** for engagement with upper headgear straps. Forehead support pad may further include a flexible region **2540** for adjustment of the distance of the forehead support pad from the patient's forehead in use. By tightening or adjusting the upper headgear straps in the normal range of tension without causing discomfort, the flexible region **2540** may flatten to pull the forehead support pad closer to the patient's forehead. This will then in turn tilt the main body inwards towards the patient's nose bridge, thereby pushing the mask cushion further on to the patient's nasal bridge in use. In an embodiment, the force to flatten the flexible region may be in the range of about 1-8 N. Preferably, the force to flatten the flexible region may be in the range of about 2-6 N. Most preferably, the force to flatten the flexible region may be in the range of about 2-4 N.

(183) FIGS. **66-69** show alternative views of the forehead support arm **2400** and forehead support pad **2530**. As illustrated, the forehead support pad **2530** includes upper headgear connectors **2535** (e.g., constructed of a more rigid material, e.g., nylon) and a flexible region **2540** (constructed of a more flexible material, e.g., silicone). The flexible region is overmolded with the upper headgear connectors **2535** and the support arm **2400** (e.g., constructed of a more rigid material, e.g., nylon) so as to interconnect the headgear connectors and the support arm and provide flexibility to the forehead support for adjustment of the distance of the forehead support from the patient's forehead in use.

(184) Each upper headgear connector **2535** includes a loop hole **2536** for attaching headgear and a connecting portion **2538** to assist in molding the flexible region to the headgear connector. As illustrated, a slot **2536-1** extends into the hole **2536** to provide a loop through arrangement. The support arm includes a connecting portion **2402** to assist in molding the flexible region to the support arm. The connecting portions **2538**, **2402** each include respective retention slots **2538(1)**, **2402(2)** to assist in the interlocking or mechanical locking of the overmolded silicone flexible region **2540** with the nylon headgear connectors **2535** and support arm **2400**. Also, as shown in FIG. **67**, the silicone flexible region **2540** is sufficiently thicker on each side of the nylon support arm **2400** (e.g., 0.5 mm or more thickness on each side, e.g., 0.8 mm thicker on each side) to enhance the interlock. In an embodiment, the flexible region may be thicker in the middle around the arm **2400** and taper towards the connector **2535**.

(185) As shown in FIGS. **66** and **68**, the headgear connectors **2535** and support arm **2400** may include features to assist in molding with the silicone flexible region **2540** and prevent flash and damage to the frame. For example, support arm **2400** may include a lip **2404** to aid molding of the silicone flexible region over the nylon arm. Also, each headgear connector **2535** may include a rounded wall **2539** (e.g., about 0.2 to 0.6 mm high, e.g., 0.4 mm high) to aid molding of the silicone flexible region over the nylon headgear connector. In an embodiment, the wall **2539** may be a crush bead that is crushed off the part when it is placed in the molding tool.

(186) In a preferred embodiment, the headgear connectors **2535** and arm **2400** are formed separately from one another (e.g., 3 separate parts) and then connected to one another by the flexible region **2540**. In an alternative embodiment, as show in FIG. **69**, the headgear connectors **2535** may be connected to the arm **2400** by runners **2555** (e.g., headgear connectors and arm formed as one part) and then overmolded with the flexible region.

- (187) In an alternative embodiment, the headgear connectors **2535** may include silicone connectors such as the lower headgear connectors **2520** described above.
- (188) FIGS. **88** to **93** show various views of the frame **2020** and its forehead support arm **2400**, upper headgear connectors **2535**, flexible region **2540**, and lower headgear connectors **2520**. In an embodiment, as shown in FIG. **91**, the angle between connectors **2535** may be about 100-170°, e.g., 125-145°. FIGS. **94** to **98** show the frame **2020** of FIGS. **88** to **93** engaged with the cushion **6540** of FIGS. **71** to **87**.
- (189) 3. Sealing Arrangement
- (190) The sealing arrangement **40** is structured to interface with the frame **20** and form a seal with

- the patient's nose in use. In this example, the sealing arrangement **40** provides a nasal interface adapted to engage the patient's face generally along nasal bridge, cheek, and upper lip regions of the patient's face. However, other interfaces are possible, e.g., full-face. The sealing arrangement provides a compliant arrangement adapted to seal relatively quickly and maintain seal in use. In an example, the sealing arrangement may be structured to seal with or without air pressure. (191) 3.1 Silicone Cushion
- (192) In the example of FIGS. **1-1** to **1-4**, the sealing arrangement **40** includes a cushion **42** constructed of a generally flexible material including but not limited to silicone, TPE, gel, or other material. The cushion may be moulded in a material having a Type A durometer of about 35 to about 45, for example, about 37 to about 42, preferably about 40. The cushion **42** defines a breathing chamber or cavity adapted to receive the patient's nose and provide air communication to the patient.
- (193) The face-contacting side of the cushion **42** includes a dual-wall configuration wherein the cushion includes an undercushion **44** and a membrane **46** that at least partially covers the undercushion **44** (e.g., see FIG. **1-4**). The membrane is generally softer and less stiff than the undercushion and provides a seal against the patient's face in use. The undercushion is structured to generally support the membrane and prevent collapse of the membrane when the nasal mask system is attached and tightened using the headgear. In an example, the undercushion may only be provided in selected regions of the mask system, e.g., along the cheek regions, or not at all. Also, the cushion may be frosted, e.g., for easy fit and comfort, and/or tinted.
- (194) FIG. **1-4** shows a cross-section through cheek regions of the face-contacting side of the cushion **42**. As illustrated, the cushion includes a sickle-shape or question-mark configuration with a base portion **60** and an upper portion **62** that is radially offset towards the outside of the base portion **60**, e.g., to reduce size and perceived bulk, minimize dead space within the breathing chamber, and/or add more flexibility to the undercushion and membrane in use. Such cross-section may be provided around the entire perimeter of the cushion or may only be provided in selected regions of the cushion. In an example, the "question-mark"-shaped cross-section in the upper lip region may include less curvature, e.g., to avoid overhang of the cushion into the patient's mouth and prevent nostril occlusion.
- (195) In an example, the gap or spacing **45** between the membrane **46** and undercushion **44** (e.g., see FIG. **1-4**) may be adjusted, e.g., to reduce wrinkling and leak. For example, the gap may be relatively small so that the membrane closely follows the geometry of the undercushion. In an example, the cushion may be molded so that the gap is larger, but the membrane is preloaded to hinge closer to the undercushion after molding. In another example, a bellows **64** (as indicated in dashed lines in FIG. **1-4**) may be provided or molded with the membrane to bias the membrane closer to the undercushion.
- (196) The non-face-contacting or frame side of the cushion **42** includes one or more interfacing structures adapted to interface or otherwise removably connect to the frame **20**. In the illustrated example, the cushion **42** includes one or more elongated and spaced protrusions **50**, e.g., along the sides and bottom thereof adapted to engage or interlock with respective openings **27** along the side wall **26** of the frame **20**. As shown in FIGS. **1-1** and **2-1**, such arrangement provides positive reinforcement that the connection has been established as the user can visually see the connection and optionally a proper connection may result in an audible clicking noise. In addition, the cushion **42** includes a notch or detent **52** along the top thereof adapted to engage or interlock with a bead or catch along the inner side of the frame side wall **26** (not shown), e.g., to assist with alignment and even prevent misalignment. However, it should be appreciated that the cushion may be connected or interlocked with the frame in other suitable manners.
- (197) For example, a possible arrangement for connecting the cushion **42** to the frame **20** is disclosed in U.S. Pat. No. 7,000,614, which is incorporated herein by reference in its entirety. (198) The non-face-contacting side of the cushion **42** also includes an opening **55** adapted to

receive or otherwise communicate with the elbow **70** as described below.

- (199) FIGS. **1-5** to **1-12** show a cushion substantially similar to the cushion **42** described above and indicated with similar reference numerals. In contrast, the cushion of FIGS. **1-5** to **1-12** does not include a notch or detent along the top thereof.
- (200) As illustrated, the face-contacting side of the cushion (i.e., including the membrane **46** and undercushion **44**) may be co-molded with or formed separately and attached to the non-face-contacting side of the cushion (i.e., defining the opening **55** and breathing chamber). Preferably, the face contacting side of the cushion and the non-face-contacting side of the cushion are formed as a single component. Preferably, this single component may be made from a flexible sealing material that is relatively biocompatible when in contact with patient's skin, including but not limited to silicone.
- (201) FIGS. **1-9** to **1-12** show various cross-sections through the cushion. As shown in FIG. **1-9**, the cushion may not include an undercushion in the nasal bridge region of the cushion. Also, as shown in FIG. **1-9**, the curvature and/or length of the membrane and undercushion in the upper lip region membrane is selected for fit range, comfort, and to prevent occlusion of the nares. In contrast, the curvature and/or length of the membrane at the nasal bridge region may be flatter and longer than the upper lip region, e.g., to increase seal stability and fit range. This is because the cushion must accommodate for a variety of nasal bridge heights including high nose bridges and flatter nose bridges, and as such, a longer membrane at the nasal bridge region is required. There is no undercushion at the nose bridge region to allow greater flexibility and provide less force on the sensitive region that is the nose bridge. The anthropometric variation of the patients in the top lip region is less so the length of the membrane is less than the nose bridge region. The undercushion is provided in the top lip region to aid in stabilizing the cushion in position on the patient's face. (202) FIGS. **1-11** and **1-12** clearly illustrate the sickle-shape or question-mark configuration through cheek regions of the face-contacting side of the cushion, while FIGS. **1-9** and **1-10** show the upper lip region which is substantially devoid of such configuration. The sickle shape is required in the cheek regions to allow for greater flexibility of the cushion to accommodate anthropometric variation of a patient's faces. For example, some patients may have a generally flat face and hence require the cushion to flex from its substantially curved profile to a flatter profile. The cheek regions will be required to flex inwards or downwards. Alternatively, for patients with angular or swept back cheeks, they may not require as much flex of the cushion. In both scenarios, the patient's should have approximately the same level of comfort and hence force on their face from the cushion. The added flexibility of the sickle shape allows for a range of deflection of the cushion with approximately the same force feedback on the patient's face.
- (203) In addition, a lip seal **57** may be provided inwardly from the opening **55** to seal against the elbow in use.
- (204) 3.2 Foam Cushion with Silicone Membrane
- (205) In an alternative example as shown in FIGS. **2-1**, **2-2**, and **2-4** to **2-8**, the sealing arrangement **40** may include a foam cushion **241** and a silicone cushion or membrane **242**.
- (206) The silicone cushion **242** defines the breathing chamber and is adapted to support or otherwise retain the foam cushion **241**. As best shown in FIG. **2-6**, the face-contacting side of the silicone cushion **242** provides a dual-wall configuration including an undercushion **244** and a membrane **246**. The non-face-contacting side of the silicone cushion **242** includes an opening **255** adapted to receive or otherwise communicate with the elbow **70**.
- (207) The undercushion **244** and adjacent side wall **247** extending from the undercushion **244** are structured to retain the foam cushion **241**. The undercushion **244** curves outwards from the side wall **247** and away from the breathing cavity to provide a channel **248**, which is opposite to the membrane **246** which curves inwards into the breathing cavity. As illustrated, at least the patient side of the foam cushion **241** is inserted into the channel **248** (e.g., see FIGS. **2-2** and **2-6**) defined by the undercushion **244** with the interior surface of the foam cushion **241** supported by the side

- wall **247**. The foam cushion **241** may be retained in position by an interference and/or friction fit with the silicone cushion **242**. The foam cushion **241** is positioned under the membrane **246** and within the undercushion **244**, but not in the air path or breathing chamber. In use, the foam cushion **241** may absorb forces applied to the undercushion **244**, e.g., along cheek regions of the silicone membrane.
- (208) The non-patient side of the foam cushion **241** supports the foam cushion **241** and hence the silicone cushion **242** on the frame **20**. As illustrated, the foam cushion **241** includes one or more interfacing structures adapted to interface or otherwise removably connect to the frame. In the illustrated example, the foam cushion **241** includes one or more spaced and elongated protrusions **250**, e.g., along the sides thereof adapted to engage or interlock with respective openings **27** along the side wall of the frame **20**. However, it should be appreciated that the foam cushion may be connected or interlocked with the frame in other suitable manners, or the frame may be connectable to the silicone cushion possibly in conjunction with the foam cushion.
- (209) In an example, the outer lip **249** (e.g., see FIG. **2-5**) of the silicone cushion **242** (i.e., the joint between the membrane and the undercushion) may be structured to engage with an outer edge of the frame **20** so that the silicone cushion **242** and frame **20** encapsulate the foam cushion **241**. (210) In an example, a concertina or bellows-type arrangement may be provided in a nasal bridge region of the silicone cushion, e.g., to provide a higher degree of flexibility or increased movement without compromising seal in use. For example, the silicone cushion may include a concertina section such as that described in PCT Application No. PCT/AU2009/000241, filed Feb. 27, 2009, which is incorporated herein by reference in its entirety.
- (211) In an example, corrugations may be provided in the upper lip region of the membrane and/or undercushion of the silicone cushion, e.g., to prevent occlusion of the nares.
- (212) The foam cushion **241** may include skinned or unskinned foam. The foam cushion **241** may be open cell, closed cell, or a combination of open and closed cells. The foam cushion **241** may be die cut, molded or compression cut. The foam cushion **241** may be made from a polyurethane foam, silicone foam, or any other suitable material. The foam cushion **241** may be made from the same material or a combination of materials, e.g., two foams with different properties. For example, protrusions **250** may be made from a denser or harder foam than the remainder of foam cushion **241**.
- (213) The cushion **242** may also be made from materials other than silicone. For example, the cushion **242** may be made from a TPE, gel-filled, or any other suitable material.
- (214) 3.3 One Size Fits Most Cushion
- (215) A cushion according to an embodiment of the present invention may be constructed to fit a wide variety of patient's faces with only one size, i.e., can fit a large variety of anthropometry. (216) The undercushion may include slits or may be constructed of multiple individual narrow portions or fingers that may be structured so that the fingers splay outwards when a force is applied by the user when applying the mask. The fingers are arranged to spread outwards thereby pressing or supporting the membrane over a greater area of the patient's face. In addition, the fingers may be structured to bend, flex and move into crevices and creases of the patient's face (e.g., due to wrinkling of the patient's skin or at the sides of the nose where the nostrils flare outwards), thus supporting the seal in these typically difficult to seal regions.
- (217) FIGS. **71-87** illustrate a cushion **6540** according to an embodiment of the invention. As described in greater detail below, the cushion **6540** provides a nasal interface adapted to engage the patient's face generally along the nasal bridge region NB, side of nose region SN (including upper side of nose and lower side of nose), nasal-labial crease or corner of nose region CN, and upper or top lip region UL of the patient's face (e.g., see FIGS. **74**, **78-82**, and **94-98**).
- (218) The face-contacting side of the cushion **6540** includes a dual-wall configuration wherein the cushion includes an undercushion **6544** and a membrane **6546** that at least partially covers the undercushion **6544**. In the illustrated embodiment, the undercushion is not provided in the nasal

- bridge region NB, e.g., see FIGS. **79** and **95**. As shown in FIG. **79** for example, the free end of the membrane **6546** may include a bead **6546(1)**. The inclusion of the bead may allow the orifice defined by the membrane to be molded into the cushion, so that no additional cutting is required to form such orifice. In the illustrated embodiment, the membrane includes a relatively thin thickness, e.g., about 0.2 mm to about 0.35 mm.
- (219) The cushion may include a sickle shape in one or more regions of the cushion, e.g., see upper lip, side of nose, and corner of nose regions in FIGS. **79-82**. In use, the sickle shape of the cushion provides a hinge or flex point **6567** (e.g., see FIG. **98**) to facilitate controlled deformation of the cushion in use. Also, such sickle shape of the cushion allows one or more portions of the cushion to overhang the frame **2020** (e.g., see FIGS. **95-98**), which may allow the frame to support one or more portions of the cushion as it is deformed in use. In one form, this arrangement provides a less stiff undercushion which reduces the likelihood of the cushion bottoming out over the range of displacements used, hence making the cushion more comfortable.
- (220) FIG. 117 shows bending points or bending regions BP of the undercushion or backup band 6544 according to an embodiment invention, and FIGS. 118, 119, and 120 show bending points BP for undercushions of other arrangements. Different cross-sections may be used in different regions. (221) Preferably the arrangement illustrated in FIG. 117 is used in a top lip region of an undercushion or a backup band. This arrangement may be described as a double cantilever, depending on the relative thickness of the different sections. Increasing the thickness increases the stiffness. The shape of the cross-section may be arranged to extend laterally or radially outward of the adjacent sidewall, or in another version such as shown in FIG. 118 may be more in line with an adjacent sidewall, and have a similar radial outer extent by arranging folds or bends inwardly of the adjacent sidewall.
- (222) Preferably the cross-section shown in FIG. **119** is suitable for use along the sides of the nose. This arrangement can lead to improved lateral force being exerted to seal a difficult region of the face. This arrangement may be described as a triple cantilever, depending on the relative stiffnesses of the different sections.
- (223) An alternative arrangement is shown in FIG. **120** which may be described as a single cantilever.
- (224) The non-face-contacting or frame side of the cushion **6540** includes elongated protrusions or locking tabs **6550** along the sides thereof to engage or interlock with the frame **2020** to secure the cushion in position, e.g., see FIGS. **97** and **98**. The cushion **6540** also includes raised securing tabs **6552** along lower sides thereof to interface or engage with the frame (e.g., see FIGS. **97** and **98**), and a raised top tab **6554** at the apex of the cushion to interface or engage with the frame. FIG. **95** shows the tab **6554** engaged with the frame **2020** to help retain the cushion to the frame. The raised top tab **6554** may also provide aid to robotic demolding of the cushion from the mold. However, it should be appreciated that the cushion may be connected, interlocked, and/or aligned with the frame in other suitable manners.
- (225) The non-face-contacting side of the cushion also includes an opening **6555** adapted to receive or otherwise communicate with the elbow. As illustrated, the opening may provide a vent arrangement such as that shown in FIGS. **13-1** and **13-2**. However, it should be appreciated that the cushion may have alternative vent configurations, e.g., such as that shown in FIGS. **55-59**. (226) Nasal Bridge Region
- (227) As best shown in FIG. **79**, the length or depth d**1** of the membrane **6546** in the nasal bridge region is in the range of about 10-30 mm, e.g., 15-25 mm, e.g., 19-20 mm, e.g., 19.58 mm. As illustrated, the depth d**1** extends from about the start of the membrane (i.e., where the thin sealing portion is able to flex/hinge from the connecting portion **6547**) to the tangent of the patient contacting portion. The depth d**1** of the membrane in the nasal bridge region is relatively larger than those in the art and has been optimized to suit variations in anthropometry. For example, relatively high nasal bridges may extend further into the membrane, whereas relatively shallow

- nasal bridges may rest on the membrane with little or no flex of the membrane.
- (228) The geometry or curvature of the membrane **6546** in the nasal bridge region when viewed from the top is also configured to fit a wide variety of patient's faces. As best shown in FIG. **75** (which shows the scallop or curvature at the nasal bridge region and raised portions **6549** at side of nose region), the depth d**2** in the nasal bridge region is in the range of about 10-15 mm, e.g., 11-12 mm, e.g., 11.52 mm, and the width d**3** in the nasal bridge region is in the range of about 10-20 mm, e.g., 15-16 mm, e.g., 15.35 mm.
- (229) The depth d**2** is sufficient to accommodate the flattest noses, such that the edge of the membrane will sit on the nasal bridge and the raised portions **6549** will sit on respective sides of the nose. A higher nasal bridge will anchor on the sides of the nose at the raised portions and the membrane at the nasal bridge region will flex to allow the nasal bridge to move into the membrane at the nasal bridge region and stop somewhere within the zone z.
- (230) The width d**3** is sufficient to accommodate wide nasal bridges. The raised portions **6549** will anchor at the sides of the nose and then the membrane will flex or stretch to accommodate the nasal bridge. The width d**3** is selected to suit the widest nose, so that the raised portion always lies on the harder, boney tissue under the eye socket so as to anchor, stabilize, and position the cushion in the desired location.
- (231) In use, in one preferred form, as the membrane or sealing flap is substantially unsupported by undercushion in the nasal bridge region, when a nose moves into sealing position, the membrane is in tension on the highest portion of the nasal bridge. Furthermore, it is preferably "pinched in" on the sides of the nose in the region adjacent the highest point of the nasal bridge. The lateral force on the sides of the nose may be arranged to vary with height of nasal bridge. A deeper nasal bridge pushes further into the membrane, increasing the tension in that region, and drawing the sides of the cushion to bend, or cantilever inwards and to increase the lateral force and improving the seal on the sides of the nose. On a face with a relatively low nasal bridge, and with high cheekbones, the region of the cushion adjacent the nasal bridge may be splayed outwards, increasing a tension force in the membrane and leading it to increase a sealing force on the relatively low nasal bridge. In the preferred form of the present invention, the backup-band or undercushion is relatively free to flex inwardly and outwardly compared to prior art cushions in a region adjacent the nasal bridge. See FIGS. **116-1** to **116-3**.
- (232) Side of the Nose
- (233) The undercushion **6544** at the side of the nose has been constructed so as to anchor the cushion, and position and stabilize the membrane, particularly due to curvature on the face as the nose transitions to the cheeks. This curvature can vary across patients. The undercushion positions the membrane and maintains the profile of the membrane so that it does not crinkle.
- (234) There is a flap or extending portion **6545** of the undercushion **6544** that is wider than other regions of the undercushion such as the corner of the nose region or top lip region. This arrangement ensures that very thin noses may contact the membrane in a region where the membrane is supported by the undercushion and ensure the smooth transition of the membrane from the nose to the cheeks. Wider noses will contact a wider area of the membrane and a larger portion of the undercushion will support the membrane.
- (235) FIG. **74** shows various exemplary dimensions to provide an indication of the approximate location of the flap **6545** of the undercushion. In an embodiment, d**4** is about 5-15 mm, e.g., 9-10 mm, e.g., 9.26 mm, d**5** is about 10-15 mm, e.g., 12-13 mm, e.g., 12.80 mm, d**6** is about 20-25 mm, e.g., 22-23 mm, e.g., 22.10 mm, and d**7** (e.g., distance from the bottom of the flap to the top lip region) is about 10-20 mm, e.g., 15-16 mm, e.g., 15.58 mm. FIG. **75** also shows an exemplary distance d**8** from the top of the flap **6546** to the approximate contact point of the cushion in the top lip region. The cushion typically sits on the patient's top lip in about the same place, but the place where the cushion is likely to sit on the nasal bridge may vary. Accordingly, the flaps are spaced a sufficient distance from the top lip region to sit on the sides of the nose.

- (236) FIG. **83** is a cross-sectional view through the widest portion of the flap **6545** of the undercushion **6544**. As illustrated, the flap has a relatively large radius so that the undercushion may roll or flex inwards easily so that undue pressure is not exerted on the sides of the nose (e.g., such pressure may occlude the nares or cause a pinching sensation). In an embodiment, the radius r**1** of the outer face is about 12-20 mm, e.g., 16 mm, and the radius r**2** of the inner face is about 8-16 mm, e.g., 12 mm. Also, the thickness t**1** towards the free end of the flap is about 0.5-1.5 mm, e.g., 0.9 mm, to enable easy flexing, and the thickness t**2** inwards from the free end of the flap is about 1.0-1.5 mm, e.g., 1.2 mm, to encourage hinging rather than collapse of the undercushion. (237) The length of the flap **6545** is measured from the tip to the connection of the flap to the frame or front of the cushion. The length of the flap is about 10-30 mm. Preferably, the length of the flap is about 15 to 25 mm. Most preferably, the length of the flap is about 20 mm.
- (238) Crease or Corner of the Nose
- (239) The undercushion at the crease or corner of the nose has been structured so as to stabilize or anchor the mask in this region. Also, the crease or corners of the nose are inherently difficult to seal on as the geometry of this region of the face can be complex, i.e., flares of the nostrils, top lip, and cheek regions come together in a depression and/or crease of the skin. The undercushion is stiffer in this region so as to sufficiently support the membrane such that it can be positioned to abut or conform to this more complex geometry. As shown in FIG. **84** (which shows the undercushion for half the cushion), the undercushion in the corner of nose region includes localized thickening to increase its stiffness. In an embodiment, the localized thickness t**3** may be about 1-2 mm thick, e.g., 1.4 mm thick. Also, FIGS. **81** and **82** show the undercushion in the corner of nose region CN, and its relatively thicker thickness and tighter radius.
- (240) FIG. **85** is a cross-sectional view through the corner of nose region of the undercushion **6544**. In an embodiment, the radius r**3** of the outer face is about 5-15 mm, e.g., 8 mm, and the radius r**4** of the inner face is about 2-8 mm, e.g., 4.85 mm. Also, the thickness t**4** at the tip of the undercushion is about 0.5-1.5 mm, e.g., 0.85 mm, and the thickness t**5** at the peak of the undercushion is about 1-2 mm, e.g., 1.4 mm. The thickness t**5** at the peak is relatively thicker to stabilize the membrane and cause hinging about this point rather than at the base b of the undercushion.
- (241) Upper or Top Lip Region
- (242) As best shown in FIGS. **79** and **95**, the undercushion at the upper or top lip region UL has been configured to accommodate the sensitive mouth gum tissue. Therefore, the thickness of the undercushion in this region is about 0.5-1.0 mm, e.g., 0.7 mm. The thickness of the undercushion in the top lip region may be the thinnest with respect to the other regions of the undercushion. The radius of the undercushion in the top lip region is relatively large with the intention that the cushion rests on the top lip region rather than anchoring. In an embodiment, the radius of the top lip region may not be constant, e.g., radius r**5** at its center is about 65-75 mm, e.g., 72.71 mm, and radius r**6** towards the corner of the nose region is about 30-40 mm, e.g., 36.85 mm.
- (243) A mask in accordance with the present technology is able to adapt the sealing forces dependent upon the size and shape of the face and nose of the wearer. For example, in the top lip region, the sealing forces may be the result of both compression forces through the undercushion or backup-band, and a tension force of the membrane or facial flap. A wider nose may splay the corners of the cushion outwards and increase the amount of tension force which is applied to the face to effect a seal. Such an arrangement may be suitable for a flatter shape of face in this region. (244) Relationship Between Membrane and Undercushion
- (245) In the illustrated embodiment, the membrane may vary in its distance from the undercushion in different regions of the cushion, i.e., the gap between the membrane and the undercushion may vary in different regions in the cushion. In regions of the facial topography where there is more diversity (e.g., such as the top and sides of the nose), a larger gap may be provided to allow additional area for the membrane to flex. Also, in regions such as the top lip region where there is a

tendency for the membrane to stretch or exert a tensile force on the top lip, a smaller gap may be provided to allow less flexibility and thus more support of the membrane. FIGS. **76** and **79** show exemplary distances of the gap between the undercushion and membrane in different regions of the cushion. In an embodiment, the distance d**9** is about 5.8-6.0 mm, e.g., 5.89 mm, d**10** is about 4.8-5.0 mm, e.g., 4.93 mm, d**11** is about 4.2-4.4 mm, e.g., 4.29 mm, d**12** is about 4.0-4.2 mm, e.g., 4.06 mm, d**13** is about 3.2-3.4 mm, e.g., 3.3 mm, d**14** is about 3.4-3.6 mm, e.g., 3.49 mm, d**15** is about 3.7-3.9 mm, e.g., 3.76 mm, and d**16** is about 3.7-3.9 mm, e.g., 3.76 mm. (246) Sealing Forces

- (247) FIGS. **86** and **87** are schematic views showing exemplary sealing forces of the cushion as viewed from the side and front of the patient's nose in use.
- (248) As shown in FIG. **86**, the cushion in the nasal bridge region does not seal along the sellion or dip of nose indicated at A. Rather, the cushion in the nasal bridge region seals along a lower region of the nasal bridge indicated at B. Since the cushion seals lower down the nose, a relatively large cutout of the undercushion in the nasal bridge region is provided (e.g., see cutout **6557** in FIG. **74**). That is, the nose is wider lower down the nose, so the cutout is sufficiently wide to accommodate a wide range of patients.
- (249) The membrane in the nasal bridge region includes a stretching effect to apply force in the patient's nasal bridge, i.e., the stretch or elasticity of the membrane is used to apply force in the nasal bridge rather than the undercushion as in other regions of the cushion. For example, the cushion is pushed onto the patient's face until no spacing or gap is provided between the membrane and the undercushion. Because no undercushion is provided in the nasal bridge region, the membrane stretches as the cushion is pushed onto the patient's face, i.e., membrane stretches across the raised portions **6549** shown in FIG. **75**. The stretched or expanded membrane provides a taut, trampoline-like membrane portion to apply force in the nasal bridge.
- (250) For example, FIGS. **116-1**, **116-2**, and **116-3** illustrate sealing in the nasal bridge region NB with stretch and tension. FIG. **116-1** shows the cushion before contact with the patient's nose. As illustrated, the membrane or facial flap **6546** is spaced from the undercushion or backup band **6544**. FIG. **116-2** shows the nose contacting the membrane **6546** so that the membrane engages the undercushion, which places the membrane in tension (illustrated in this figure as a point load) across the gap defined by the undercushion in the nasal bridge region. As the nose is pushed further into the cushion as shown in FIG. **116-3**, the undercushion acts as a cantilever spring and starts to bend (illustrated in this figure as a point load).
- (251) The surface of the membrane may be frosted or polished to create friction and enhance the seal. Polishing the surface of the tool may give rise to a more sticky or tacky feel and increase friction. A frosted sealing surface may be provided by increasing the roughness of the surface of the tool. A frosted surface may be preferable in some regions.
- (252) As shown in FIGS. **87** and **87-2**, the curved flaps **6545** of the undercushion are configured to provide a sealing force into the sides of the nose and above the nasal vents indicated at C. The curved flaps push and/or roll in on the sides of the nose, as well as surround the nose (except in the nasal bridge region). There is no undercushion above the flaps to the apex. The gap G between the flaps is sized to fit the smallest nose population, i.e., gap is sufficient narrow to ensure that the flaps contact the sides of the nose for a wide range of patients. In an embodiment, the gap G is about 10-30 mm, e.g., 15-25 mm, e.g., 18.5 mm.
- (253) As a result of the preferred relatively large radius of the flaps **6545**, each flap defines a bending point for low nose bridge-type noses that is sufficiently spaced from the stiff portion of the side wall. In use, each flap bends or rolls without the low nose bridge encountering the stiff portion of the side wall. FIG. **87-1**(*a*) shows exemplary deformation of the flap for a nose low bridge, and FIG. **87-1**(*b*) shows exemplary deformation of the flap for a high low bridge. This arrangement is in contrast to undercushions known in the art which have a smaller radius which may allow a wider/low nose to encounter a stiffer region of the side wall.

- (254) As shown in FIG. **87**, the thickened undercushion in the corner of nose region provides a sealing force into the plane of the patient's face at the crease of the nose indicated at D. This region of the face is less sensitive and able to bear more force to stabilize the mask on the patient's face. The seal at the crease of the nose is important for nasal cushions, in contrast to a full-face cushion which passes over this region. Thus, the undercushion is relatively stiff in the corner of nose or crease region to dig in at the crease and force the cushion into the plane of the patient's face to seal and stabilize. Also, the cushion in the crease region includes a sickle shape (e.g., see FIG. **82**) to provide controlled deformation in use.
- (255) The undercushion in the lip region for providing sealing force at the patient's upper lip (indicated at E in FIG. **86**) is relatively less stiff (e.g., compared to the crease region) for comfort. (256) The shape, size, curl, and/or thickness of the undercushion may be varied to vary the force in different regions of the face.
- (257) 3.4 Alternative Sealing Arrangement
- (258) FIGS. **5-1** to **5-6** show an alternative embodiment of a sealing arrangement **440**. The sealing arrangement **440** may include a protrusion or protrusions **450** that are configured to be received in openings in the main body **422** of the frame **420** in a manner similar to that described above. The sealing arrangement **440** may also include a cushion as described above. For example, the sealing arrangement **440** may include an undercushion and a membrane, or a foam cushion and a silicone cushion as described above.
- (259) The cushion may have a dual wall seal, with the under cushion at the nose bridge cut out or removed. The under cushion at the upper cheeks or sides of nose may be raised to stabilize the cushion on the face of the user. The cushion may have a polished outer surface and matte inner surface. The cushion may be made from silicone or any other suitable material.
- (260) 3.5 Alternative Cushion
- (261) In FIG. **11-1**, each side of the cushion **540** includes a protrusion **550** which provides a retention feature adapted to interlock with the frame in a manner to that described above. The top end of the frame includes a landing **541** for branding and cushion retention, and each side of the frame includes a cupped section **543** to assist with retention and tie in aesthetically with the landing at the top end of the frame.
- (262) FIGS. **11-2** to **11-9** show various views of a cushion **540-1** according to another embodiment. As best shown in FIGS. **11-8** and **11-9**, the face-contacting portion of the cushion (e.g., membrane **546**, undercushion **544**, and side wall **542**) provides a sickle-shape or question-mark configuration to enhance comfort and flexibility.
- (263) As best shown in FIGS. **11-6** to **11-9**, the cushion **540-1** includes a shock absorbing portion **545** at the front of the cushion, i.e., portion between seal and elbow. The shock absorbing portion is a thinned region, e.g., 1 mm thick compared to other parts of the cushion that are 2 to 3 mm thick. (264) FIGS. **15-1** to **15-3** are various views of the cushion **540-1** engaged with a frame. Similar to arrangements described above, the cushion includes protrusions **550** adapted to engage or interlock with respective openings along the side wall of the frame **520**.
- (265) In an embodiment, the undercushion at the top lip region may be removed so as to prevent discomfort due to pressure on the patient's top lip when cushion is in use.
- (266) In an embodiment, the patient side of the cushion may include a frosted finish and the non-patient side of the cushion may include a polished finish.
- (267) 3.6 Further Alternative Cushion
- (268) An embodiment of a cushion **2010** is shown in FIGS. **33** to **39**. The cushion **2010** may be designed to fit a range of patient's in a single size. In order to achieve this, various regions of the cushion **2010** may be tailored to flex and adjust to comfortably fit larger noses and smaller noses. (269) Membrane **2040** contacts and seals with the patient's face in use. Nasal bridge region **2041** is structured to abut the nasal bridge or top portion of a patient's nose in use. Nasal bridge region

2041 may be elastically deformable such that it may stretch over the patient's nose in use. Raised

- side portions **2042** may engage and compress on the sides of the patient's nose proximal to the patient's eyes in use. This compression force may stabilize the cushion into engagement at the sides of the patient's nose. The compression force may also mean that on wider noses, the nasal bridge region **2041** will stretch over the patient's nasal bridge. Alternatively, nasal bridge region **2041** may rest or abut the patient's nose without stretching. Furthermore, the nasal bridge region **2041** is deeper or longer so that patient's with high nasal bridges can position their nose on the membrane and flex the nasal bridge region **2041** of the membrane over their longer nasal bridge in use. (270) Side flaps **2043** are longer or extend further into the mask cushion so that the cushion may seal with a flatter or shallow nose in use. Side flaps **2043** may be flexible so that they can flex into the cushion if the patient has a higher nose bridge.
- (271) Peaks **2046** on the membrane may be raised portions or points of greater height when compared to other regions of the membrane. This may be to secure the cushion in the corners of the user's nose proximal to the nostrils or flares of the nares in use.
- (272) Upper lip region **2044** is positioned on the lower portion of the membrane and may engage or rest on the user's top lip in use. The curvature may be swept to conform to various top lip geometries of patients.
- (273) Flexible portion **2045** may be positioned proximal to the connection of the elbow or swivel ring on the cushion **2040**. Flexible portion **2045** may be a region of thinned material or more flexible material to allow decoupling of the tube from the cushion.
- (274) Locking tabs **2601** may be positioned on at least one portion of the front region of the cushion. Locking tabs **2601** may have raised profile or peaks that secure the cushion in position when assembled with a frame.
- (275) Securing tabs **2661** may also be positioned on at least one portion of the front region of the cushion. Securing tabs **2661** may also be higher than other portions of the cushion to interface other otherwise engage with a frame.
- (276) Top tab **2651** may be a raised portion positioned at the apex of the cushion. Top tab **2651** may be positioned to allow for easier robot demolding of the cushion and also to engage with a frame. (277) Vent or swivel ring **2090** may be positioned at an orifice of the cushion to receive an elbow or supply of breathable gas. Vent ring **2090** may be molded or otherwise permanently attached with the cushion **2010**. Vent ring **2090** may have vent holes around at least a portion of the perimeter to permit the exhaust of gases from the mask system.
- (278) FIGS. **40** to **45** show the cushion **2100** and the frame **2020** described above assembled to one another according to an embodiment of the present invention.
- (279) 4. Elbow
- (280) The elbow **70** includes a first end portion **72** and a second end portion **74**, e.g., see FIGS. **1-2**, **2-2**, and **2-5**. The first end portion **72** provides an interfacing structure structured to interface or otherwise attach to the sealing arrangement **40**. The second end portion **74** is adapted to be connected to an air delivery tube. The first portion is angled about 135° with respect to the second portion. However, the first and second portions of the elbow may have other suitable angles with respect to one another, e.g., 0°, 90°, 120°, etc.
- (281) In an embodiment, the elbow may be similar to that disclosed in PCT Application No. PCT/AU2008/001557, filed Oct. 22, 2008, which is incorporated herein by reference in its entirety. (282) 4.1 Elbow Connection to Sealing Arrangement
- (283) The sealing arrangement **40** is structured to maintain the elbow **70** in an operative position with respect to the patient's face. That is, the sealing arrangement may act as a carrier and bearing surface for the elbow **70**. The sealing arrangement and elbow may connect with a friction fit, snapfit, mechanical interlock, or other suitable attachment mechanism. However, other suitable arrangements for attaching the elbow to the sealing arrangement are possible.
- (284) In the illustrated example, a swivel ring **90** is provided to couple the elbow **70** to the sealing arrangement **40**. Such swivel ring **90** is an optional component, and it should be appreciated that

the elbow **70** may be directly coupled to the sealing arrangement **40** without the swivel ring. (285) As best shown in FIG. **2-5**, the swivel ring **90** includes an annular groove **92** along its outer circumference adapted to interlock with the annular flange **256** defining the opening **255** of the silicone cushion **242** (or opening **55** in the cushion **42** of FIGS. **1-1** to **1-4**). The inner circumference of the swivel ring **90** provides a relatively smooth annular surface **94** adapted to engage the exterior surface of the first end portion **72** of the elbow **70**. The free end of the first end portion **72** provides an annular bead **73** to engage the interior shoulder of the swivel ring **90**, e.g., with a snap fit. Such connection holds the elbow in place (e.g., preferably a relatively airtight connection) and permits rotation or swiveling of the elbow with respect to the sealing arrangement. (286) The swivel ring is constructed from a more rigid material than the sealing arrangement (e.g., made of plastic, silicone, foam). This arrangement may facilitate connection of the elbow, e.g., hard elbow to hard swivel ring rather than hard elbow to soft sealing arrangement. In an example, the swivel ring may be co-molded, mechanically overmolded, and/or chemical bond overmolded with the sealing membrane or cushion, e.g., to reduce parts. Alternatively, the swivel ring may be provided as a separate part, e.g., to allow disassembly.

(287) Also, the region of the cushion surrounding the opening **55**, **255** may include some flexibility to allow decoupling of the elbow from the remainder of the mask system, e.g., to reduce tube drag. For example, a decoupling mechanism between the cushion opening **55** and the elbow **70** may include a flexible gimble or membrane on the cushion **42** in the region of the opening **55**. A similar decoupling mechanism is described in U.S. patent application Ser. No. 12/379,940, filed Mar. 4, 2009, which is incorporated herein by reference in its entirety. The thickness of the gimble region may be ½ the thickness of the cushion adjacent the gimble region. Preferably, the thickness of the gimble may be less than ½ the thickness of the cushion adjacent the gimble region. Most preferably, the thickness of the gimble region is less than ½ the thickness of the cushion adjacent the gimble region. FIGS. **79**, **96**, and **98** show another exemplary gimble region **6565** at the front of cushion **6540** between the seal and elbow opening. As illustrated, the gimble region is includes thicker and thinner regions with the thinner region towards the elbow opening.

(288) The sealing mechanism between the cushion and the elbow may be similar to that described in U.S. Patent Publication No. US 2006/0201514, which is incorporated herein by reference in its entirety.

(289) FIGS. **4-1** to **4-4** show alternative arrangements for coupling the elbow **70** to the cushion **42**. In FIG. 4-1, the cushion 42 includes an interference lip seal 57 inwardly from the opening 55 adapted to seal against an end of the elbow 70 in use. FIG. 4-2 illustrates alternative sealing arrangements for the lip seal **57** of FIG. **4-1**. As illustrated, the lip seal **57**(1) may seal against the end of the elbow **70**, e.g., like the arrangement of FIG. **4-1**. Alternatively, the lip seal **57**(2) may be arranged to seal around the perimeter of the elbow 70. FIG. 4-3 shows the elbow 70 attached to the cushion **42** via a swivel ring **90** as described above. In this embodiment, the cushion provides an inwardly extending, interference lip seal 57 adapted to seal against an end of the elbow 70 in use. FIG. **4-4** shows an arrangement in which the swivel ring **90** provides an inwardly extending lip seal **91** adapted to retain the elbow **70** and/or seal around the perimeter of the elbow **70** in use. (290) In examples, a swivel may be provided to the second end portion of the elbow and adapted to be connected to the air delivery tube. FIG. **4-5** shows one example of a swivel **95**. FIGS. **4-6** to **4-9** show alternative arrangements for forming a seal between the elbow **70** and the swivel **95**. As shown in FIG. **4-6**, a lip seal **96** may be provided (e.g., overmolded) to an interior surface of the swivel **95** for sealing with the elbow. As shown in FIG. **4-7**, the swivel **95** may include flange portions **97(1)**, **97(2)** adapted to overhang respective ends of the elbow **70**. In this embodiment, the elbow **70** defines a channel **71** for receiving and retaining an end of the swivel **85**. In FIG. **4-8**, the end of the swivel **95** includes a resilient clip portion **98** adapted to clip onto a flange **73** of the elbow **70**. Also, a lip seal **96** may be provided to an interior surface of the swivel **95** for sealing with the elbow **70**. The lip seal **96** may be structured such that is biased into engagement with the

- elbow **70** in use. FIG. **4-9** shows a swivel **95** in which an internal lip seal **96** is formed separately from the swivel **95** and attached thereto, e.g., by spin weld or glue.
- (291) 4.2 Vent Arrangement
- (292) As shown in FIGS. **1-1** and **1-2**, the elbow **70** includes a vent arrangement **75** for gas washout. The vent arrangement **75** includes a plurality of holes (e.g., 5-100 holes, e.g., 20-50 holes, or about 45 holes). As shown in FIG. **2-5**, each hole may include a contour or taper along its length. However, it should be appreciated that the vent arrangement may include other suitable arrangements, e.g., different number of holes, hole arrangement, vent insert with one or more vent holes, etc.
- (293) The vent may also, for example, be a diffuse vent as disclosed in U.S. Patent Publication No. US 2009/0050156, which is incorporated herein by reference in its entirety.
- (294) 4.3 Alternative Elbow
- (295) FIGS. **12-1** to **12-3** show various views of an embodiment of a non-vented elbow and FIGS. **12-4** to **12-8** show various views of another embodiment of a non-vented elbow. Each elbow **570** includes a cushion connection end **570(1)** adapted to connect to the cushion and a tube connection end **570(2)** adapted to connect to the air delivery tube. In FIGS. **12-4** to **12-8**, sides of the elbow provide "button" points or flexible fingers **573** for the user to grab and quick release the elbow from the cushion.
- (296) As best shown in FIGS. **12-4** to **12-8**, the elbow includes a flexible region **571** (constructed of soft and tactile TPE or flexible polymer) that may be co-molded with a more rigid region (constructed of polymer such as polypropylene or polycarbonate). The flexible region allows portions of the elbow to flex inwards when the patient pinches or squeezes these regions, enabling disengagement of the cushion connection end from the mask.
- (297) The arrangement also enables sealing of the elbow, a soft touch feature that adds value, some color to the part to make it more appealing, and easy assembly.
- (298) As shown in FIG. **12-9**, there may be stoppers **575(1)** within the elbow to prevent the flexible regions from occluding the air path in use. A support beam **575(2)** may also be provided to the inside of the elbow to provide strength to the annulus of the elbow, and also to maintain the stoppers in position.
- (299) In an embodiment, a TPE portion may be molded onto the cushion connection end of the elbow to enable better seal and ease of rotation of the elbow when connected to the cushion.
- (300) The use of a vent ring as described below enables the elbow to be non-vented.
- (301) In an embodiment, the elbow may include a frosted finish.
- (302) 4.4 Swivel/Vent Ring
- (303) The swivel/vent ring is provided to provide an interface between the cushion and elbow, i.e., allow elbow to connect to the cushion. As shown in FIG. 13-1, the ring 590 provides an interface 591 for cushion connection, an interface 593 for elbow connection, and vent holes 595 along the perimeter of the ring to provided diffused venting. In an embodiment, the ring may be co-molded (by either chemical or mechanical retention) with the cushion.
- (304) The ring provides ease of flow tuning (i.e., possible to add or remove vent holes), improved CO.sub.2 washout, control of humidification requirements, greater diffusivity, unobtrusiveness, ease of elbow manufacture since no vent holes in elbow, and/or facilitates aesthetic freedom in the elbow.
- (305) In an embodiment, a lip seal may be provided (e.g., co-molded) with the ring. For example, as shown in FIG. **13-2**, the ring may be molded with channels **596** between the vent holes **595** on the patient side, and then the vent ring may be placed in the tool for making the cushion and as the material to create the cushion is filled into the tool, some of the cushion material will flow through the channels between the vent holes to form a lip seal **597**. The lip seal **597** may provide a more effective seal between the cushion **540** and the elbow **570**. Molding the lip seal in the vent ring is beneficial to reduce parts for the patient to handle.

- (306) In an embodiment, the ring may be non-venting (i.e., no vent holes) for use with non-vented mask embodiments or vented elbows.
- (307) 4.5 Alternative Elbow and Swivel
- (308) FIGS. **46** to **50** show an embodiment of an elbow **3000** and swivel **3500**.
- (309) The elbow **3000** includes a first portion **3010** adapted to connect to a mask (e.g., vent ring **2090** of cushion **2010** described above) and a second portion **3020** provided to the swivel **3500** adapted to connect to an air delivery tube. In an embodiment, the swivel (e.g., constructed of nylon) may be overmolded to the elbow (e.g., constructed of polypropylene), e.g., second portion of elbow includes stepped shoulder **3030** for swivel overmolding and tooling shut off. However, the swivel may be connected to the elbow in other suitable manners, e.g., snap-fit. An annular ring **3600** is provided to the swivel, which provides a stop for connecting the air delivery tube. (310) The first portion includes a flexible quick release mechanism for attaching the elbow to the mask, e.g., vent ring **2090** of cushion **2010**. The mechanism includes a button **3100** on one or both sides of the first portion and a groove **3200** surrounding each button that allows the button to flex with respect to the first portion. The button is raised for ease of use and pinch travel. The profile shape of the button may change, e.g., for function and/or tooling. Also, each button includes a tab or catch **3040** adapted to engage the vent ring **2090**, e.g., with a snap-fit, to releasably secure the elbow to the cushion **2010**.
- (311) Moreover, at least a portion of the button is constructed of a soft, tactile material (e.g., TPE), e.g., to aid ease of use. As best shown in FIGS. **49**, **53**, and **54**, a channel **3070** is provided between the buttons to allow flow of TPE or soft tactile material. Also, interior stops **3300** are provided to prevent the buttons from being pressed too far into the elbow cavity and possibly breaking. (312) As illustrated, upper and lower tabs **3050** are provided to the first portion to interface with the vent ring **2090** and prevent the elbow from pushing too far into the vent ring.
- (313) FIGS. **108-112** show alternative views of the elbow. FIG. **108** shows the overmolding of the swivel **3500** to the elbow **3000**, and then the overmolding of the buttons **3100** to the elbow. As illustrated, the elbow includes a retention catch **3040**, a bearing surface **3041** to facilitate rotation relative to the cushion, a sealing edge **3043** for sealing with the cushion, and an insertion stop **3045** (provided on top, bottom, and sides of the first portion of the elbow) that provides a stop for connecting the cushion. FIG. **109** shows an interior stop **3300** to prevent a respective button from being pressed too far. As shown in FIGS. 110 and 111, the button 3100 may include a step 3101 (e.g., 0.85 mm or greater) along its perimeter that overhangs the elbow. Such step provides a flat even section for button movement in use. In an alternative embodiment, as shown in FIGS. 113 and **114**, the step may be thinner (e.g., 0.35 mm). As shown in FIG. **112**, the button may include a generally thin (e.g., about 0.4 mm thick) and concave section **3103** along its perimeter to facilitate button depression. Section **3103** may be formed from an elastomer such as TPE or silicone. Section **3103** may seal the buttons to the elbow body so as to seal the air path through the elbow. In an embodiment, the depression force F may be less than about 10 N. In an alternative embodiment, as shown in FIG. 115, the concave section 3103 may be thicker 3103 (e.g., about 1.3 mm) which may increase the depression force. It should be appreciated that the thickness of the concave section may be tuned to adjust the force.
- (314) As noted above, venting for the mask is provided by the vent ring **2090**. This arrangement provides several advantages, e.g., ease of flow tuning, improved CO.sub.2 washout, control of humidification requirements, greater diffusivity, unobtrusive, ease of elbow manufacture, and/or facilitates aesthetic freedom in the elbow.
- (315) 5. Alternative Vent Assembly
- (316) FIGS. **55** to **59** show an alternative vent **4000** that may be molded into or with another part of the mask assembly. An embodiment of the present invention relates to an assembly of interconnected vent structures joined together by element or structure in a first position that can be deformed to cause the vent structures to move to a second position.

- (317) An embodiment of the present embodiment relates to a vent **4000** being molded into a cushion **4500**, however it is possible for vent **4000** to be molded into any other part of the mask assembly in the air path, for example a tube, an elbow or a frame.
- (318) Vent **4000** may comprise a first structure to interconnect the vent arrays, where if the shape of the first structure is changed the arrangement or position of the vent arrays is also changed.
- (319) FIG. **55** shows an embodiment of vent **4000**. The first structure may comprise a stem **4100** and/or at least one branch **4150**. Stem **4100** may support the array of vent branches **4200**. Stem **4100** may be central to the branches **4150**. Stem **4100** may position and/or maintain branches **4150** in a defined spacing or array. Stem **4100** may also be structured to aid alignment of the vent **4000** with respect to the cushion **4500** or other mask system element (e.g., elbow, frame, etc.).
- (320) The embodiment of stem **4100** shown in FIG. **55** has a ring or circular structure. It should be appreciated that stem **4100** may have an alternative configuration such as a rectangle, triangle or any other shape that meets the desired outcomes of positioning and aligning the vent **4000** in the mask system and spacing the branches **4150**.
- (321) Stem **4100** may have an aperture **4600**. Aperture **4600** may be constructed and arranged to receive a portion of the mask system. For example, as best shown in FIGS. **58** and **59**, aperture **4600** is located to receive an elbow of a mask system.
- (322) Branches **4150** may connect the stem **4100** to the vent arrays **4200**. Branches **4150** may be evenly spaced about stem **4100** or may have an alternative configuration. The spacing of branches **4150** may be constructed to position vent arrays **4200** such that they achieve diffuse exiting air flow streams.
- (323) In another embodiment, branches **4150** may be selectively deformable. Branches **4150** may be formed into a first position by molding, cutting or any other forming method. Branches **4150** may then be deformed by heating, cooling, force, or other method into a second position. In an embodiment, branches **4150** may be deformed by placing vent **4000** into a tool for a mask component, closing the tool such that shape of the tool force the branches to bend or otherwise deform, and injecting or otherwise adding a second material into the tool and allowing this second material to set or stabilize around the vent **4000** so as to maintain branches **4150** in their deformed position.
- (324) In an embodiment, the second position or deformed position of the branches may be 0-120° from the first position. In an embodiment, the second position or deformed position of the branches may be 30-90° from the first position. In an embodiment, the second position or deformed position of the branches may be 40-60° from the first position. In an embodiment, the second position or deformed position of the branches may be 45° from the first position.
- (325) In another embodiment, stem **4100** may be selectively deformable. Stem **4100** may be formed into a first position by molding, cutting or any other forming method. Stem **4100** may then be deformed by heating, cooling, force, or other method into a second position. In an embodiment, stem **4100** may be deformed by placing vent **4000** into a tool for a mask component, closing the tool such that shape of the tool forces the stem to bend or otherwise deform, and injecting or otherwise adding a second material into the tool and allowing this second material to set or stabilize around the vent **4000** so as to maintain stem **4100** in its deformed position.
- (326) In an embodiment, the second position or deformed position of the branches may be 0-120° from the first position. In an embodiment, the second position or deformed position of the branches may be 30-90° from the first position. In an embodiment, the second position or deformed position of the branches may be 40-60° from the first position. In an embodiment, the second position or deformed position of the branches may be 45° from the first position.
- (327) As best shown in FIGS. **55** to **57**, branches may connect to at least one vent array **4200**. Vent array **4200** may comprise a body **4240** and at least one vent hole **4250**.
- (328) As best shown in FIGS. **56** and **57**, body **4240** may be generally rectangular or any other shape that may accommodate the at least one vent hole **4250**. Body **4240** may also comprise a

- ledge or protrusion **4230** that may assist in mechanically bonding or locking the vent **4000** in position when formed with the mask component, such as cushion **4500**.
- (329) In an embodiment, there is at least one vent hole **4250** on each body **4240**. In the illustrated embodiment, as shown in FIG. **55**, four vent holes **4250** are arranged on each body **4240**. However, any number of holes is possible, for example, 1, 5, 10, 11, or more holes.
- (330) In an embodiment, vent holes **4250** may be convergent, that is, their entrance may have a greater diameter than their exit. In an embodiment, their exit diameter is about 0.1-2 mm. In an embodiment, the exit diameter is about 0.3-0.8 mm. In an embodiment, the exit diameter is about 0.7 mm. In an embodiment, the vent holes have an aspect ratio of approximately 1:3.
- (331) FIGS. **58** and **59** show the vent **4000** arranged in cushion **4500**. Vent arrays **4200** are distributed around aperture **4600**. FIG. **59** shows the longitudinal axis **4155** of branch **4150** disposed at an angle α to the axis **4610** of aperture **4600**. Hence, vent holes **4250** on body **4240** are arranged to position exiting air flow streams from vent holes **4250** at an angle α with respect to the aperture **4600**, hence splaying or dispersing the individual air stream exiting each vent hole. This diffuses the air flow paths and thus reduces the jetting of air streams onto a bed partner or bed clothes. This arrangement may also reduce vent noise.
- (332) In alternative embodiments, a similar vent **4000** may be arranged in an elbow, whereby the vent **4000** is formed in a first position, then placed in the mold for an elbow. In the mold for the elbow, the branches and vent arrays are deformed approximately 90° from their first position, thereby being positioned around the circumference of a portion of an elbow. The material for the elbow component is then injected into the mold and set, thereby maintaining the vent **4000** in the desired position.
- (333) The vent **4000** may be constructed of a material that is flexible and/or extensible. The vent **4000** may be constructed of nylon, polypropylene, thermoplastic elastomer, silicone, polycarbonate, polyurethane or any other moldable, selectively deformable polymer.
- (334) The mask component into which the vent is formed may be made from a material with a lower melting point than the material used for the vent. This is so that when the vent is inserted into the mold for the mask component, and the second material for the mask component is injected or otherwise inserted into the mold, the vent does not melt.
- (335) FIGS. **64** and **65** show alternative views of the vent **4000** arranged in cushion **4500**. As illustrated, the vent arrangement allows multiple vent holes **4250** to be molded in the line of draw on a plastic cushion ring, and then bent during an over-moulding process to create a very diffuse and quiet vent array about the elbow **3000**. This array is encapsulated and suspended in the silicone material of the cushion **4500**.
- (336) FIGS. **99** to **105** show various views of a nasal mask system **6600** including a frame **6620** (e.g., like that shown in FIGS. **88** to **93**), cushion **6640** (e.g., like that shown in FIGS. **71-87** with the vent of **55-59** and **64-65**), and elbow **6670** (e.g., like that shown in FIGS. **46-50**) according to an embodiment of the invention. FIGS. **106** and **107** show the mask system **6600** with headgear **6680** on the patient's head in use, e.g., headgear including upper side straps **6682** routed over the ears and lower side straps **6684** routed under the ears. In an embodiment, the mask system may be used with headgear described in U.S. Pat. No. **7**,509,958 and PCT Application No.
- PCT/AU2009/001605, each of which is incorporated herein by reference in its entirety. (337) Alternative Vents
- (338) FIGS. **60** and **61** illustrate an elbow **6000** with a vent **6050** according to another embodiment of the invention. In the illustrated embodiment, the vent **6050** includes a vent plate **6052** having one or more vent holes **6054** formed within it. The vent plate also includes a weakened or bendable region **6056** (i.e., hinge). A swivel **6070** may be provided to the elbow for attachment to an air delivery tube. Each vent hole may include a contour or taper along its length. However, it should be appreciated that the vent may include other suitable arrangements, e.g., different number of holes, hole arrangement, etc.

- (339) In an embodiment, the vent plate **6052** may be molded with the vent holes **6054** and the hinge **6056**. Then, the vent plate may be placed in the mold for the elbow **6000**. As the mold for the elbow closes, the hinge of the vent plate allows the vent plate to bend from a first position (as shown in FIG. **60** which shows the vent plate in a generally upright position in the elbow mold) to a second, in use position (as shown in FIG. **61** which shows the vent plate bent into engagement with the elbow). Once the mold for the elbow is closed, the material for the elbow is injected into the mold and the vent plate remains in its second, in use position by the molded elbow. Also, additional components may be molded onto the elbow (e.g., elbow buttons **6060** as shown in FIG. **61**).
- (340) FIGS. **62** and **63** show a vent **6150** according to another embodiment of the invention. In this embodiment, the vent **6150** is in the form a vent insert that is molded (e.g., over-molded) with the cushion **6140**. The vent insert is positioned along a top portion of the cushion above the opening adapted to receive the elbow. As illustrated, the vent insert includes a plurality of vent holes **6152** that are oriented to direct exhausted gas away from the patient's face in use. In addition, the vent holes may be arranged to diffuse exiting air flow streams. It should be appreciated that the vent may include other suitable arrangements, e.g., contoured vent holes, different number of holes, hole arrangement, etc.
- (341) 6. Headgear
- (342) Headgear may be removably attached to the headgear connectors **34**, **36** of the frame **20** to maintain the nasal mask system in a desired position on the patient's face. In the illustrated example, the frame provides a four-point connection for a pair of upper headgear straps and a pair of lower headgear straps. However, the frame may provide other arrangements, e.g., two-point connection or three-point connection. Rigidizers or reinforcing materials may be provided to one or more of the straps.
- (343) Headgear may be constructed of an elastic or flexible material such as woven and non-woven fabric, TPE, polypropylene, nylon, or any other suitable material. The headgear may also be reinforced with stiffening members that may add stability.
- (344) In an example, the nasal mask system may be used with headgear such as that described in Australian Provisional Application Nos. AU 2008906390, filed Dec. 10, 2008, and AU 2009900327, filed Jan. 29, 2009, each of which is incorporated herein by reference in its entirety. In an example, attachment/adjustment of such headgear may be provided by buckles or hook and loop material. For example, the headgear straps may be constructed of a nylon elastic material with strap adjustment provided by buckles without any hook and loop material.
- (345) However, the nasal mask system may be used with alternative headgear arrangements. For example, FIGS. **3-1** to **3-79** illustrate headgear strap arrangements and headgear connection arrangements according to alternative examples of the present invention.
- (346) FIGS. **3-1** to **3-4** illustrate alternative arrangements for sizing the headgear straps. FIG. **3-1** shows a headgear with two part top strap adjustment. Each side of the top strap **5001(1)**, **5001(2)** may be adjusted by a ladder lock or buckle connected at the mask, or Velcro[™] adjustment, or any other suitable means. This arrangement provides central adjustment, can be evenly tensioned, and provides a greater fit range. In addition, the rear portion of the headgear straps may be narrowed or widened by sliding the rear straps **5003** (shown generally vertical, but may be otherwise angled) over the lower headgear straps **5004**. FIG. **3-2** shows a headgear with a single top strap **5001** and a single lower strap **5004**. The top and lower straps may preferably be constructed from an elastic or other suitable stretchy material, so as to provide a wide range of fit. This arrangement may also provide minimal to no adjustment and no requirement of a buckle or extraneous parts on the mask system. FIG. **3-3** shows a headgear with an adjustable top strap with sides **5001(1)**, **5001(2)** where a buckle **5002** is provided to one side of the top strap, such that the adjustment of the top strap length is independent of the mask (i.e., forehead support). This may provide advantages such as one adjustment point, and low profile. FIG. **3-4** shows a headgear with one piece top strap **5001**

with adjustment and an alternative buckle **5002**. This buckle may be hinged at one end (e.g., hinge **5002**(1)), such that when it is positioned perpendicular to the headgear strap, the buckle teeth **5002**(2) are disengaged from the strap **5001** thereby allowing the strap to pass through the buckle and adjust the length in use. When the buckle **5002** is positioned parallel to the headgear strap, the buckle teeth **5002**(2) engage with the strap **5001** and prevent it from sliding through the buckle, thus locking or fixing the length of the top strap. Such an arrangement may provide advantages such as one adjustment point and simple clasp mechanism.

(347) FIGS. **3-5** to **3-7** illustrate alternative arrangements for sizing the bottom or lower headgear straps. FIG. **3-5** shows a lower strap **5004** overlapping such that at its end, the overlapped end **5004(1)** would slidably engage with a lower headgear connector. The lower strap end may be threaded through an adjustment buckle **5005**, such that sliding of the buckle along the length of the lower headgear strap may adjust the amount of overlapping of the lower strap hence adjusting its length in use. Such an arrangement may advantageously provide a simple adjustment mechanism and no requirement for traditional adjustment means such as hook and loop. FIG. **3-6** shows a lower strap **5004** overlapping such that at its end, the overlapped end would slidably engage with a lower headgear connector. The lower strap end may be attached along the length of the lower strap material using hook and loop attachment (e.g., the lower strap headgear material is loop material, and a portion **5004(2)** at the end of the lower strap is hook material). Such an arrangement advantageously provides a simple hook and loop connection and slim line. FIG. **3-7** shows an adjustment arrangement that could be utilized anywhere on the headgear, however more preferably at the top or lower headgear straps. The adjustment arrangement may include a push through mushroom shaped connector **5010** that resides on one portion of the headgear, that may engage with a selected hole **5012** in another portion of the headgear so as to prevent sliding adjustment of the headgear portions. Advantageously, this arrangement may still allow the headgear portions to rotate over one another. Additionally, this arrangement may have a positive feedback (e.g., clicking noise) when the adjustment arrangement is locked in position, meaning the patient will know when their headgear is adjusted. One or more holes and/or one or more mushroom shaped connectors may be provided to the headgear. The adjustment arrangement may be constructed from a flexible and sufficiently hard material, such that the arrangement maintains its connection once in use, for example TPE, silicone, polycarbonate or any other suitable materials.

(348) FIGS. 3-8 to 3-13 show alternative fixed or adjustable headgear arrangements. FIG. 3-8 shows a headgear strap size adjustment, where a loop of material **5014** with a hole **5014(1)** is provided to allow sliding engagement with a headgear strap **5004** (e.g., lower strap). The headgear strap may be provided with one or more mushroom shaped connectors **5016** to interface or engage with the hole **5014(1)** provided to the loop of material. Preferably, size indicators (e.g., S, M, L or 1, 2, 3, 4, 5, etc.) may be provided on or near the mushroom shaped connectors to specify the size that the headgear has been adjusted to. This arrangement may be advantageous since it provides a simple, known adjustment mechanism and an ability to know what size the headgear has been adjusted to. FIG. **3-9** shows back strap size adjustment (that may be adapted for use with a top strap, rear strap, or any other headgear strap) where the back strap **5006** may be provided with markings **5007** to indicate size (e.g., S, M, L, XL, etc). The manufacturer, patient or other suitable person may choose which size to adjust the headgear strap to, align the adjustment markers (for example, by folding or cutting the strap to align the markers) such that the headgear is positioned to match the chosen size, and then the headgear strap may be permanently fixed in this position using stitching, ultrasonic welding, or other suitable technique. Such an arrangement provides no adjustment once permanently fixed, and a low profile connection. FIG. **3-10** shows a centre back strap **5008** constructed from an elastic or other suitably flexible material, with adjustable arms similar to those shown in FIG. 3-7, i.e., mushroom shaped connector 5010 and hole 5012 arrangement. FIG. **3-11** shows headgear with two positions for top strap adjustment, i.e., a hook and loop connection 5015 and a mushroom shaped connector and hole arrangement 5016 (e.g., like

that shown in FIG. 3-7). This arrangement allows for greater adjustability and may thus accommodate varying sizes of patient's heads. FIG. 3-12 shows a headgear connection where a first headgear strap **5004** (such as a lower strap) may be slidably engaged with a second headgear strap **5003** (such as a rear strap). The second headgear strap **5003** may be provided with a loop or additional layer of material **5003(1)** that is ultrasonically welded, stitched, or otherwise attached to the second headgear strap. The first headgear strap is positioned in the spacing or channel between the second headgear strap and the additional layer of material. The ultrasonic weld or stitch or other attachment means may include bumps or projections that provide more friction in the channel between the second headgear strap and the additional layer of material, to prevent excessive sliding of the first headgear strap through the channel. The additional layer of material may be the same as the headgear material, or a more durable component such as a TPE or silicone. FIG. **3-13** shows sliding clip adjustment, where the headgear strap **5018** is looped through the clip **5020** and may be adjusted by engaging or disengaging an internal spring by pressing the button **5020(1)** on the clip. The end of the headgear strap may be provided with a hole **5018(1)** for attachment to a frame or forehead support. This hole may be reinforced (e.g., with laminate, stitching, or other reinforcing means) whereby the reinforcement **5018(2)** prevents the hole from propagating and may also prevent the sliding clip from sliding off the headgear material.

- (349) FIG. **3-14** shows alternative arrangements for sizing of the headgear straps. In embodiment, the strap may be ultrasonically welded, may include ultrasonically cut holes, or may be ultrasonically modified.
- (350) FIG. **3-15** shows a similar arrangement to FIG. **3-8**, with a different shape mushroom connector **5016** to interface with a hole **5014** (i.e., generally square shaped).
- (351) FIG. **3-16** shows alternative arrangements to FIGS. **3-8** and **3-15**, whereby a similar sizing indicator is used, however the headgear straps are routed differently. A first end 5021(1) of a first headgear strap is looped through a first side of a second headgear strap **5022**. A second end **5021**(2) of a first headgear strap is looped through a second side of a second headgear strap **5022**. Either the first or second end of the first headgear strap may have a size indicator on it. The second headgear strap may have a hole **5023** or other means to display the size indicator on the first headgear strap. (352) FIGS. 3-17 to 3-24 show alternative arrangements of headgear connections to the frame or forehead support. FIG. **3-17** shows a bottom strap **5024** that may wrap around an arm or hole **5025** in the frame and then re-connects to the bottom strap with button or hook and loop material. This arrangement may provide a simple, intuitive connection, with the potential for multiple adjustment positions should multiple connections be provided, slim line design, and easy to manufacture. FIG. **3-18** shows a bottom strap **5024** that may have a hook shaped clip **5025** (e.g., made from plastic or other suitable material) welded, sewn or laminated at one or both ends of the bottom strap material. The hook may snap into a receptacle **5026**, slot or hole on the frame. Such a connecting means may provide a simpler drop in connection, slim line, and be easy to manufacture. FIG. 3-19 shows a headgear strap **5024** with a series of fingers **5027** positioned at the end of a strap, that may be welded or sewn or otherwise attached. The frame may also be supplied with similar fingers 5028 such that when the fingers on the headgear strap are interlocked or overlaid onto the fingers on the frame, lateral movement and hence sliding of the headgear strap away or towards the frame is prevented or minimized. Disengagement of the fingers in the direction of the fingers may be relatively simple when compared to disengagement of typical headgear clips (for example, headgear clips provided to a ResMed Mirage Quattro™). FIG. 3-20 shows a headgear strap 5024 that may have a T-bar **5029** provided at its end(s). The T-bar may be constructed from a flexible material such as a TPE, silicone, polycarbonate, or any other suitable material. The T-bar may be attached by looping the headgear strap through a hole provided to a T-bar connecting rod. Alternatively, the T-bar may be welded, sewn, ultrasonically welded or attached by any other suitable means. The T-bar may loop over or around a receptacle or catch **5030** provided on the frame. FIG. 3-21 shows headgear strap with a push-fit connection means 5031 attached at its

end(s). The push-fit connection means may be constructed from a generally flexible material such as silicone or TPE. The push-fit connected means may be attached to the headgear strap by similar means described for the T-bar shown in FIG. 3-20. The push-fit connection means may be a bulbous shaped rod that may engage with holes or slots **5032** on the frame. Multiple holes or slots may be provided to the frame. FIG. **3-22** shows a headgear strap **5024** looped over at its end and sewn or otherwise re-attached to itself along its length. The looped section is slidably engaged around a receptacle **5033** in the frame. Hook material may be provided on the looped section of the headgear strap to enable adjustment and then fixation of the headgear strap. The headgear material may need to be constructed of a looped material to enable engagement of the hook material. FIG. **3-23** shows a headgear strap **5024** that loops over a notch or barb **5034** on the frame. The headgear strap may be adjusted by a sliding sprung clip 5035 whereby a spring mechanism within the clip enables engagement and disengagement with the headgear strap. FIG. **3-24** shows headgear connection hook **5036** with slotted receptacle to allow for the headgear strap to feed into it. (353) FIGS. **3-25** to **3-30** show alternative arrangements of headgear connections to the frame. FIG. **3-25** shows a headgear strap with an 'R' shaped clip **5037** attached at its end(s). The 'R' shaped clip may be sprung or biased such that it preferably remains in its locked position. A loop **5038** may be provided to the frame (for example, a lower headgear connector as shown in FIG. 3-25) that engages with the 'R' shaped clip (cross section shown). FIG. 3-26 shows a headgear strap with a slot or cylinder **5039** provided at its end(s), that slots over a frame extension or finger **5040**. FIG. **3**-**27** shows open ended headgear strap receptacle **5041** that may be provided to a frame that enables a loop of headgear strap to be wound or looped vertically, however the slit provided at the front of the receptacle. FIG. **3-28** shows a generally 'U' shaped headgear connection receptacle **5042** on the frame. Such an arrangement may be preferable for vertical insertion of the headgear strap loop **5043** (as indicated by the drawing). Once the headgear strap loop is inserted into the headgear connection receptacle, the headgear strap loop may pass from one side of the 'U' shaped receptacle to the other and as such, may prevent accidental disassembly of the headgear strap loop from the headgear connection receptacle since the headgear strap loop is anchored in the 'U' shape. FIG. 3-**29** shows hook or loop material **5044** attached directly on the frame to interface with opposing hook or loop from a headgear strap. FIG. **3-30** shows a magnetic attachment where a magnet **5045** is provided to the frame and a magnet **5046** is provided to the headgear strap. FIGS. **3-31** and **3-32** show alternative arrangements for headgear attachment positions on the frame. FIG. 3-31 shows headgear attachment receptacles or slots **5047** located on the perimeter of the frame, which reduces the visual bulk of the mask. FIG. **3-32** shows headgear mount receptacles **5048** located on the frame and adapted to receive headgear clips **5049** associated with the headgear strap, similar to that disclosed in U.S. Pat. No. 6,374,826, which is incorporated herein by reference in its entirety. (354) FIGS. **3-33** and **3-37** show alternative arrangements for attaching the cushion to the frame or the lower headgear straps to the frame. FIG. 3-33 shows headgear connection loops 5050(1) located at the end of headgear connection arms **5050(2)**. This arrangement may space the connection of the headgear away from the frame, thereby allowing a more streamlined look. FIG. 3-34 shows a skeleton frame **5051** that is positioned along or within grooves in the cushion **5052**, i.e., connects to the cushion with an interference fit or snap fit. The skeleton frame may have headgear connection arms **5053** with a generally perpendicular post at its end to enable a looped connection with a headgear strap. It may be preferable to create the skeleton frame from a more rigid material than the cushion. FIG. **3-35** shows a lower headgear connecting portion **5054** positioned to snap or otherwise interface with the cushion **5055** underneath or below the aperture where the elbow connects. FIG. **3-36** shows snap fit lower headgear connection assembly **5056**; a variation of that shown in FIG. **3-21**. FIG. **3-37** shows elbow seal ring **5057** with combined headgear attachment arms **5058** that snaps or otherwise interfaces with a frame **5059** and/or cushion **5060**. (355) FIGS. **3-38** to **3-49** show alternative arrangements for connecting a headgear to a forehead support or a forehead support arm to a forehead support cushion. FIG. 3-38 shows a male buckle

5061 that may snap fit to a female buckle **5062** mounted on a forehead support arm (push to release). Headgear may be looped or otherwise connected to the male buckle. Alternatively, the male and female buckle positions may be reversed. The buckle may be made from a suitably rigid material so as to allow for a snap fit, for example polycarbonate, polypropylene, nylon, etc. FIG. 3-**39** shows a forehead support cushion **5063** with a slot or female connector **5063(1)**, that may be engaged or interfaced with a rod or male connector **5064(1)** attached to a forehead support arm **5064.** This arrangement may allow for some horizontal rotation that may be preferable or desirable to patients. There may also be a permanent or removable retention feature for connection of the male and female components. FIG. **3-40** shows an alternative buckle arrangement including a male buckle **5061** and a female buckle **5062** to that shown in FIG. **3-38**. FIG. **3-41** shows an alternative arrangement of male and female connectors **5064(1)**, **5063(1)** to that shown in FIG. **3-39**. FIG. **3-42** shows another alternative arrangement of male and female connectors **5064(1)**, **5063(1)** to that shown in FIG. **3-39**. FIG. **3-43** shows a forehead support cushion **5065** for attachment with upper headgear straps. The forehead support cushion may have a slot or cavity **5065(1)** to receive a T shaped forehead support arm **5066**. Such an arrangement may allow rotation of the forehead support arm vertically and thus greater flexibility to adjust the mask in use. FIG. 3-44 shows a forehead support cushion **5067** with a slot **5067**(**1**) to receive a sliding engagement with a forehead support arm **5068**. The forehead support arm may vertically slide into the slot, and may be provided with retention tabs to prevent accidental disengagement of the connection. The forehead support arm may have a generally T-shaped cross section that may prevent horizontal rotation of the forehead support arm when connected to the forehead support cushion. It may also act to strengthen the forehead support arm. FIG. **3-45** shows a forehead support cushion **5069** with a keyhole shaped aperture **5069(1)** that may receive a forehead support arm **5070**. The forehead support arm may have a generally round disk **5070(1)** attached at its end for communication with the aperture on the forehead support cushion. Such an arrangement may allow for horizontal rotation of the forehead support arm in use. FIG. **3-46** shows a forehead support cushion **5071** that may have generally Cshaped pocket **5071(1)** that may capture a ball **5072(1)** attached to the end of forehead support arm **5072**. FIG. **3-47** shows two piece forehead support cushion including first and second pieces 5073(1), 5073(2) that may snap around a generally cylindrical forehead support arm 5074. FIG. 3-**48** shows two piece forehead support cushion that may have a first side **5075(1)** that slidably engages with a generally cylindrical forehead support arm 5076, and a second side 5075(2) that receives the end of the forehead support arm and first side. FIG. **3-49** shows a forehead support cushion **5077** that may have a two piece construction, where each forehead support cushion is permanently or removably attached to the upper headgear straps. The forehead support cushions **5077** may also have apertures **5077(1)** to receive a ball **5078(1)** attached to the end of the forehead support arm **5078** to rotatably engage with the forehead support arm. Alternatively, the ball/aperture arrangement may be reversed as shown in the related cross-sectional view. (356) FIGS. **3-50** to **3-69** show alternative arrangements for connecting headgear to the forehead support with no buckle. FIG. **3-50** shows an upper headgear strap **5079** that may be threaded through an aperture in a forehead support **5080**. In addition, the aperture may be provided with a lip or engagement tab **5080**(1) on the outer or non-patient contacting side of the forehead support to maintain the upper headgear strap in position. FIG. **3-51** shows an upper headgear strap **5079** that may thread through the forehead support 5080 with an engaging tab or hook 5080(1) to anchor the upper headgear strap within the forehead support. The forehead support may have an aperture for the upper headgear strap to rest within. FIG. **3-52** shows a flexible forehead support **5081** that can flex vertically away from the forehead of the patient to allow for a greater range of fit. FIG. 3-53 shows an upper headgear strap **5082** that may be thread through a forehead support **5083** which may have two engagement arms 5083(1), 5083(2) to encompass and maintain the position of the upper headgear strap. These two arms may be generally C-shaped when viewed from the side. FIG. **3-54** shows upper headgear straps **5084** that may be threaded through a generally Y-shaped

forehead support **5085**. The slot or gap in the top of the forehead support may be provided for disengagement of the headgear straps. FIG. 3-55 shows an upper headgear strap 5086 that may be provided with a pocket or gap **5086(1)** such that the forehead support **5087** may be inserted within the pocket of the upper headgear strap. FIG. 3-56 shows an upper headgear strap 5088 that may have loop material **5088(1)** on its outer or non-patient contacting side. The forehead support **5089** may have a facing of hook material **5089(1)** that may interface with the upper headgear strap, thereby engaging the forehead support with the upper headgear strap. FIG. **3-57** shows an upper headgear strap **5090** that may have a receptacle **5090(1)** in its structure. The receptacle may be a gap in the fabric or an inserted reinforcing such as a small tube. A forehead support **5091** may be generally cylindrical and may push fit or slide into the receptacle for engagement of the forehead support with the upper headgear strap. FIG. **3-58** shows a forehead support **5092** with a hinged region **5092(1)** that may enclose over an upper headgear strap **5093**, gripping said upper headgear strap and retaining it within the clamp. FIG. 3-59 shows forehead support 5094 that may be ultrasonically welded to an upper headgear strap **5095**. The forehead support may be permanently attached to the upper headgear strap by other reasonable means such as gluing. FIG. 3-60 shows a two piece upper headgear strap **5096** in a baseball cap style that may thread through a forehead support **5097**. FIG. **3-61** shows an upper headgear strap **5098** with button or push pin **5098**(1) that engages with a slot or receiving portion **5099(1)** on the forehead support **5099**. FIG. **3-62** shows an upper headgear strap **5101** with a cylindrical section **5101**(1) that may engage with a forehead support **5102** that may be shaped like a cradle or hook, such that the forehead support anchors over the cylindrical section of the upper headgear strap. FIG. **3-63** shows an upper headgear strap **5103** with a cylindrical section **5103(1)** that may engage with a Y-shaped forehead support **5104**. The Yshaped forehead support may wrap around the cylindrical region of the upper headgear strap and may include pins adapted to engage within respective openings in the cylindrical region. FIG. 3-64 shows an upper headgear strap **5105** with the end region of each end of the upper headgear strap folded into a T-shape. This T-shaped fold **5105(1)** may then be slid into a buckle or receiving portion **5106**(**1**) attached to the forehead support **5106**. FIG. **3-65** shows an upper headgear strap **5107** with a two piece sliding adjusting channel that may have an aperture or hole **5107(1)** for receiving a projection **5108(1)** on the forehead support **5108**. FIG. **3-66** shows an upper headgear strap **5109** that may be slid or otherwise engaged with a channel **5110(1)** formed on the top of a forehead support **5110**. Alternatively, the forehead support **5111** may be slid or otherwise engaged within receiving channels in the ends of the headgear 5112. FIG. 3-67 shows forehead support 5113 attached to an upper headgear strap **5114**, with the arm of the forehead support including a portion for snapping or otherwise attaching onto the frame **5115**. FIG. **3-68** shows forehead support **5116** sewn into a loop at the end of upper headgear strap 5117, and the forehead support then snaps or otherwise connects onto the frame **5118**. FIG. **3-69** shows a forehead support with separatable arms **5119**. In an embodiment, the arms may be connected by an elastic strap **5120**. (357) FIGS. **3-70** to **3-76** show alternative arrangements of buckle arrangements to be used to attach the upper headgear connectors to the straps of the headgear. Preferably, the buckles (shown in FIGS. 3-70 to 3-76) are adapted to form ladder-type locking clips. In these examples, the strap of the headgear is weaved through a first and second aperture in the buckles. The apertures are adapted to be in parallel and are generally aligned with the orientation of the strap, to be received. The weaving of the strap through this series of apertures allows the strap to be secured or locked in position so as to prevent or limit slipping. The straps may also include a contoured or rippled surface to facilitate better engagement with the buckle. Further, FIG. **3-70** shows an example of a buckle **5130** wherein the series of parallel apertures (also named a ladder lock) includes a series teeth or ripples **5131** on an extended end of the buckle. In an example, the extended end is kinked away from the horizontal plane to allow for or facilitate better access by a patient's fingers which may be necessary to disengage to the buckle, when the strap is secured. FIG. **3-71** shows a further example of a buckle 5132 wherein the length of a buckle has been configured into a curved or

arcuate shape (when viewed from the side). This also improves the ability of a user to remove or engage the strap, depending on the circumstances. FIG. 3-72 shows a further example of a buckle **5133** that may be used with any of the above-described examples. This example of a buckle includes a further series of teeth or engagement means **5134** positioned so as to come into frictional contact with the strap, when in use. These second series of teeth are generally aligned with the general orientation of the engagement of the strap. This second series of teeth are generally adapted to prevent or limit slippage of the strap, when engaged. FIG. 3-73 shows a further buckle 5135 wherein the series of apertures, referred to in FIGS. 3-70 and 3-71 and 3-72, are joined to form a single aperture **5136**. The single aperture is adapted to receive a strap and allow it to be weaved around the buckle to prevent or limit slippage. Further, the aperture is opened or broken at the upper surface to permit easier threading or weaving of the strap. FIG. 3-74 shows a further example of a buckle **5137** wherein the buckle is ultra-sonically welded to one end of a headgear strap **5138**. The other end of the strap or another strap may be threaded or weaved through the apertures of this buckle. It is noted that other means of fixing the buckle to an end of the strap may achieve the same or similar result, including frictional locks, gluing, or other kinds of suitable welding. FIG. 3-75 shows a further buckle **5139** wherein the piece **5139(1)** of the buckle positioned between the two apertures is slightly raised. This feature of raising the centre of the buckle may further prevent or limit slippage by increasing the frictional forces impacted on the strap **5140**, when in use. FIG. **3**-**76** shows a further buckle **5141** wherein the buckle is attached to an end of a first strap **5142**(1) through a first set of two apertures. The first strap is weaved through the first set of apertures and looped back onto itself. The first strap may then be secured against itself by stitching. This buckle also includes a second set of two apertures positioned on the opposed end and this second set may be used to engage a second strap **5142(2)**. In an example, the second set of apertures is adapted to releasably secure the second strap wherein the first set of apertures is relatively more permanent and may generally prevent releasability of the first strap.

(358) FIG. **3-77** shows headgear including a rear strap loop **5143(1)**, upper straps **5143(2)** extending from a top of the rear strap loop, and a lower strap loop **5143(3)** that wraps around the mask and a bottom of the rear strap loop. The length of the lower strap loop may be adjusted by a spring loaded clip **5144**. FIG. **3-78** shows an adjustment arrangement including a mushroom shaped connector **5145** provided to the mask that is adapted to engage with a hole **5146(1)** provided to a headgear clip **5146** for a headgear strap. FIG. **3-79** shows an adjustment arrangement including a ladder-lock buckle **5147** provided to the mask that allows a headgear strap **5148** to loop therethrough.

(359) FIGS. **6-1** to **6-12** illustrate headgear connection arrangements (e.g., buckle clip designs) according to alternative examples of the present invention. FIG. **6-1** shows an outrigger-type clip **5150** having a narrow configuration with clip arms **5150**(1) adapted to be pushed along the sides to release. The neck of the clip may be flexible. FIG. **6-2** shows an outrigger-type clip **5151** including a clip arm **5151(1)** adapted to be pushed down from the top to release. The neck of the clip may be flexible. The clip provides a relatively flat, low profile design. FIG. **6-3** shows a continuous clip **5152** with a flexible neck. The clip includes clip arms **5152**(1) adapted to be pushed along the sides to release. The clip includes no gaps to jam into the clip receptacle. FIG. **6-4** shows a clip **5153** with a hook-like attachment portion 5153(1) adapted to engage a bar-like receptacle on the frame. FIG. **6-5** shows a clip **5154** with a flexible neck ball or tapper lead in **5154(1)** and clip arms **5154(2)** adapted to be pushed along the sides to release. FIG. **6-6** shows a T-bar type clip **5155** adapted to engage a hook-like receptacle **5156**. The neck of the clip may be flexible. FIG. **6-7** shows a ball in socket arrangement in which the ball **5157(1)** on the end of the outrigger **5157** is adapted to engage a c-cup receptacle **5158** provided to the frame, e.g., with a snap fit. In an embodiment, the receptacle (e.g., plastic) may be constructed of a harder material than the ball in socket arrangement (e.g., silicone). FIG. 6-8 shows a loop over arrangement in which an opening **5159**(1) on the end of an outrigger **5159** is adapted to engage a bar-like receptacle **5160** with an

enlarged head **5160**(**1**). FIG. **6-9** shows further details and alternatives of the clip **5151** shown in FIG. **6-2** described above, e.g., receptacle **5161** on frame to receive clip. FIG. **6-10** shows an arrangement wherein the frame includes a release mechanism **5162** and the outrigger **5163** has a ball and catch detail **5163**(**1**) for retention. The tension of the straps may be used for release. FIG. **6-11** shows further details and alternatives of the clip **5152** shown in FIG. **6-3** described above. FIG. **6-12** shows an arrangement wherein the frame includes a flexible receptacle **5164** and the outrigger **5165** includes a push button release **5165**(**1**). (360) 6.1 Alternative Headgear

- (361) As shown in FIGS. **14-1** and **14-2**, headgear **580** may include a two tone color combination (e.g., blue and grey) to assist ease of use in indicating which orientation the headgear should be when fitting the mask (e.g., two tone color provides intuitive ease of use indicating when headgear is correctly aligned and where hook and loop tabs are positioned). For example, the grey or lighter color may be arranged on the inside of the headgear so that when the headgear straps are threaded through the mask and fold over on itself, the grey faces the outside to be visually less unobtrusive on the face.
- (362) The headgear provides an arrangement that looks easy to use (inherent stability structure, two-tone alignment indication), looks comfortable (no hard ridgidized parts visible, soft fabric finish, 'soft' greys), does not look obtrusive (soft gender neutral greys, greys sympathetic to metal and silicone colours in system, provides a high quality look and increased value perception (two-tone colors, premium heat transfer branding, new manufacturing methods), and looks unique (departure from traditional breathe-o-prene style, high quality edge treatment, greys help emphasize branding).
- (363) FIGS. **18-1** to **18-2** and **19-1** to **19-2** show alternative arrangements for routing the headgear straps on the patient's head in use, e.g., upper side straps **5560** routed over the ears and lower side straps **5570** routed under the ears.
- (364) While the invention has been described in connection with what are presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention. Also, the various embodiments described above may be implemented in conjunction with other embodiments, e.g., aspects of one embodiment may be combined with aspects of another embodiment to realize yet other embodiments. Further, each independent feature or component of any given assembly may constitute an additional embodiment. In addition, while the invention has particular application to patients who suffer from OSA, it is to be appreciated that patients who suffer from other illnesses (e.g., congestive heart failure, diabetes, morbid obesity, stroke, bariatric surgery, etc.) can derive benefit from the above teachings. Moreover, the above teachings have applicability with patients and non-patients alike in non-medical applications.

Claims

1. A mask system for delivery of air at positive pressure to a patient for treatment of sleep disordered breathing, comprising: a sealing arrangement configured to, in use, form a seal with the patient's face, the sealing arrangement comprising a silicone cushion configured to sealingly engage the patient's face in use; and a frame configured to interface with the sealing arrangement to, in use, support the sealing arrangement in an operative position with respect to the patient's face, the frame comprising polycarbonate and being more rigid than the silicone of the cushion, the frame including: a main body configured to interface with the sealing arrangement; a forehead support arm extending from the main body; a forehead support pad provided to the forehead support arm and configured to support the frame against the patient's forehead in use, the forehead support pad including a pair of upper headgear connectors for engagement with a pair of upper side

into the receiving holes, formed in the forehead support pad to receive the pair of upper side straps; and a pair of lower headgear connectors integrally formed with the main body of the frame, each lower headgear connector being connected to the main body at a lower end of the headgear connector, an upper end of each lower headgear connector being spaced from the main body by a first gap disposed between the upper end and the main body to allow a lower side strap to be inserted therebetween; and headgear comprising a pair of lower side straps removably connectable to the lower headgear connectors, a length of each lower side strap being adjustable by overlapping an end portion of the lower side strap along a length of the lower side strap to form a headgear strap loop, wherein each lower headgear connector is aligned close to the frame such that, in use, the lower headgear connector and the frame are configured to cause the headgear strap loop of a corresponding lower side strap to slide along a side of the frame in contact therewith when the headgear strap loop is vertically inserted onto the lower headgear connector by sliding the headgear strap loop along the first gap between the upper end of the lower headgear connector and the main body of the frame in order to attach the headgear strap loop to the lower headgear connector, wherein when the mask system is worn by the patient in use, each lower headgear connector includes 1) a radially outwardly extending portion connected to the main body of the frame and extending radially outwardly therefrom, 2) a vertically extending portion connected to the radially outwardly extending portion and extending vertically therefrom, and 3) a radially inwardly extending portion connected to the vertically extending portion and extending radially inwardly therefrom towards the main body, the radially inwardly extending portion terminating at the upper end of the lower headgear connector; the vertically extending portion of each lower headgear connector being spaced from the main body by a second gap disposed between the vertically extending portion and the main body; the first gap being smaller than the second gap at at least one location along a length of the vertically extending portion, wherein the main body of the frame and the lower headgear connectors are arranged such that when the headgear strap loop is inserted onto the lower headgear connector, the headgear strap loop is disposed in a space bordered by a curved portion of the main body and an elongate portion of the lower headgear connector, wherein the elongate portion of the lower headgear connector is the vertically extending portion, and wherein a distance of the second gap varies along the length of the vertically extending portion.

straps; the upper headgear connectors comprising a pair of receiving holes, without slots extending

- 2. The mask system of claim 1, wherein the forehead support arm is non-adjustably fixed relative to the main body of the frame.
- 3. The mask system of claim 1, wherein the forehead support arm is integrally formed with the main body of the frame.
- 4. The mask system of claim 1, wherein the forehead support pad comprises silicone.
- 5. The mask system of claim 1, wherein the forehead support pad includes a first region and a second region, the second region having increased flexibility as compared to the first region.
- 6. The mask system of claim 5, wherein the first region comprises polycarbonate.
- 7. The mask system of claim 6, wherein the second region comprises silicone.
- 8. The mask system of claim 5, wherein the headgear further comprises a pair of upper side straps removably connectable to the upper headgear connectors, and wherein, in use, the second region of the forehead support pad is configured such that tightening the upper side straps causes a flexing portion of the second region to splay outwardly against a spring force of the flexing portion to thereby pull the forehead support pad closer to the patient's forehead.
- 9. The mask system of claim 1, wherein the lower headgear connectors are hook shaped.
- 10. The mask system of claim 1, wherein the radially outwardly extending portion extends from a bottom wall of the main body.
- 11. The mask system of claim 1, wherein the lower headgear connectors are C-shaped.
- 12. The mask system of claim 1, wherein each lower headgear connector includes a linear portion and a curved portion, the curved portion terminating at the upper end of the lower headgear

connector.

- 13. The mask system of claim 1, wherein the lower end of each lower headgear connector is connected to the main body of the frame at a connection region, wherein the connection region is configured to allow the lower headgear connector to flex relative to the main body to enable some freedom of movement of the lower headgear connector.
- 14. The mask system of claim 1, wherein each lower side strap has 1) an inner surface arranged to, in use, face towards the patient, and 2) an outer surface arranged to, in use, face away from the patient, wherein when the headgear strap loop is inserted onto the lower headgear connector, the outer surface of the lower side strap along an entire width of the lower side strap is supported by and arranged to contact the lower headgear connector.
- 15. The mask system of claim 1, wherein the cushion is configured to, in use, seal with a nasal bridge region of the patient's face.
- 16. The mask system of claim 15, wherein the cushion is a full-face cushion.
- 17. The mask system of claim 1, wherein the cushion includes a face-contacting side including a membrane configured to sealingly engage the patient's face in use, and a non-face contacting side including an interfacing structure configured to removably connect to the frame.
- 18. The mask system of claim 1, further comprising an elbow having a first end and a second end, the second end being configured to be connected to an air delivery tube.
- 19. The mask system of claim 18, wherein the cushion includes a face-contacting side including an opening configured to fluidly communicate with the elbow to receive a supply of breathable gas.
- 20. The mask system of claim 1, wherein the frame includes a vent comprising a plurality of holes for gas washout.
- 21. The mask system of claim 1, wherein the headgear is configured for four-point removable connection to the lower headgear connectors and the upper headgear connectors.
- 22. The mask system of claim 21, wherein the headgear further comprises a pair of upper side straps removably connectable to the upper headgear connectors.
- 23. The mask system of claim 22, wherein, in use, the lower side straps are configured to be routed under the patient's ears and the upper side straps are configured to be routed over the patient's ears.
- 24. The mask system of claim 22, wherein the upper side straps comprise hook and loop material to allow the upper side straps to be length adjustable, and wherein the lower side straps comprise hook and loop material to allow the overlapping end portion of each lower side strap to be attached along the length of the lower side strap to form the headgear strap loop.
- 25. The mask system of claim 1, wherein the main body comprises the polycarbonate, and the pair of lower headgear connectors comprises the polycarbonate.
- 26. The mask system of claim 1, wherein the headgear is configured for four-point removable connection to the lower headgear connectors and the upper headgear connectors, wherein the headgear further comprises a pair of upper side straps removably connectable to the upper headgear connectors, wherein, in use, the lower side straps are configured to be routed under the patient's ears and the upper side straps are configured to be routed over the patient's ears, wherein the lower side straps and the upper side straps are adjustable and include hook and loop material, wherein the forehead support arm is fixed relative to the main body of the frame, wherein the forehead support arm is integrally formed with the main body of the frame, wherein the forehead support pad comprises silicone, wherein the lower headgear connectors are hook shaped, wherein the cushion is configured to, in use, seal with a nasal bridge region of the patient's face, wherein the cushion is a full-face cushion, and wherein the cushion includes a face-contacting side including a membrane configured to sealingly engage the patient's face in use, and a non-face contacting side including an interfacing structure configured to removably connect to the frame.
- 27. The mask system of claim 26, wherein the forehead support pad includes a first region and a second region, the second region having increased flexibility as compared to the first region, the first region comprising polycarbonate, and the second region comprising silicone, and wherein, in

use, the second region of the forehead support pad is configured such that tightening the upper side straps causes the second region to flatten to thereby pull the forehead support pad close to the patient's forehead.

28. The mask system of claim 26, wherein when the mask system is worn by the patient in use, each lower headgear connector includes 1) a radially outwardly extending portion connected to the main body of the fame-frame and extending radially outwardly therefrom, 2) a vertically extending portion connected to the radially outwardly extending portion and extending vertically therefrom, and 3) a radially inwardly extending portion connected to the vertically extending portion and extending radially inwardly therefrom towards the main body, wherein the radially inwardly extending portion terminates at the upper end of the lower headgear connector, wherein the lower end of each lower headgear connector is connected to the main body of the frame at a connection region, wherein the connection region is configured to allow the lower headgear connector to flex relative to the main body to enable some freedom of movement of the lower headgear connector, wherein each lower side strap has 1) an inner surface arranged to, in use, face towards the patient, and 2) an outer surface arranged to, in use, face away from the patient, and wherein when the headgear strap loop is inserted onto the lower headgear connector, the outer surface of the lower side strap along an entire width of the lower side strap is supported by and arranged to contact the lower headgear connector.