חישוביות ומבוא לסיבוכיות – א2006 - פתרונות לשאלות מממ"ן 11

שאלה 1 סעיף ב

(xy) ההוכחה באינדוקציה על |xy| (האורך של המחרוזת

. אם |xy|=0 אם אם |xy|=0 אם

|xy| < n כך ש- yו רכל את נכונות הטענה לכל את נכונות הטענה לכל

|xy|=n , xy=yx יהיו y-1 שתי מילים המקיימות y-1 א

 $|x| \le |y|$ - בלי הגבלת הכלליות, נניח

אם x=0, הטענה מתקיימת.

|xt| < n נקבל, xt = tx ומכאן, xtx = tx ואז אחרת, נקבל גען נקבל אין, y = tx נקבל גען אחרת, מהשווין

. לפי הנחת האינדוקציה, z כלשהי לפי תבור $t=z^{[\,i\,]}$, $x=z^{[\,i\,]}$

|xy|=n ולכן, $y=z^{[i+j]}$ והטענה מתקיימת , $y=z^{[i+j]}$, ולכן, y=tx

שאלה 4

 $EX_{P}(x)$ תכנית לחישוב

- [A] IF Z = X GOTO D
- [B] IF $P(Z_2)$ GOTO C $Z_2 \leftarrow Z_2 + 1$

GOTO B

- [C] $Z \leftarrow Z + 1$ $Z_2 \leftarrow Z_2 + 1$ GOTO A
- [D] $Y \leftarrow Y + 1$

 $p(z_2)$ את מספר האיברים במשתנה Z את מספר מונים במשתנה

. ועוצרים y-ברגע שמספר זה מגיע ל-x, משימים ברגע שמספר זה

אם מספר זה קטן מ-x, התכנית לא תעצור.

שאלה 5

f נוכיח את הטענה באינדוקציה על מספר ההרכבות p שבוצעו בהגדרת הפונקציה (a)

: אם f אז f יכולה להיות אחת מן הפונקציות הבאות

$$f(x) = 0$$
 in $f(x) = x + 1$ in $f(x_1, ..., x_n) = x_i = x_i + 0$

בכל אחת מן האפשרויות האלה, הטענה מתקיימת.

. כעת נניח שהטענה מתקיימת לכל פונקציה שהתקבלה על-ידי סדרה של p או פחות הרכבות

תהי p+1 הרכבות שהתקבלה על-ידי $f(x_1,\ldots,x_n)$ תהי

p ידי h,g_1,\ldots,g_m ו- $f(x_1,\ldots,x_n)=h(g_1(x_1,\ldots,x_n),\ldots,g_m(x_1,\ldots,x_n))$ אז אז פחות הרכבות.

 $x_i + k$ או k כולן מהצורה h, g_1, \dots, g_m לפי

$$f(x_1,\ldots,x_n)=k$$
 in $h(x_1,\ldots,x_m)=k$

$$f(x_1,...,x_n) = l + k$$
 in $g_i(x_1,...,x_n) = l$ in $h(x_1,...,x_m) = x_i + k$ in

$$f(x_1,\ldots,x_n)=x_j+l+k$$
 in $g_i(x_1,\ldots,x_n)=x_j+l$ in $h(x_1,\ldots,x_m)=x_i+k$ in

. p+1 בכל מקרה, הטענה מתקיימת בכל

.COMP-פונקציה ב $f(x_1,...,x_n)$ פונקציה (b)

$$f(y_1,\ldots,y_n)=k\geq f(x_1,\ldots,x_n)$$
 , $y_i\geq x_i$ אז עבור , $f(x_1,\ldots,x_n)=k$

$$f(y_1,\ldots,y_n) = y_i + k \ge x_i + k = f(x_1,\ldots,x_n)$$
 אם $f(x_1,\ldots,x_n) = x_i + k$ אם

היא פרימיטיבית רקורסיבית, כי היא מתקבלת מן הפונקציות (c) כל פונקציה על-ידי סדרה סופית של הרכבות.

כדי להראות שיש פונקציות פרימיטיביות שאינן ב-COMP, די שנראה שיש פונקציות פרימיטיביות הקורסיביות שאינן מונוטוניות.

$$f(2,1) = 1, f(2,2) = 0$$
 $f(x_1, x_2) = x_1 - x_2$ לדוגמה,

 $f(x_1,\ldots,x_n)=k$ תכנית ללא הוראות סיעוף יכולה לחשב רק פונקציות מהצורה (d)

כל פונקציה כזו ניתנת לקבלה מן הפונקציות ההתחלתיות על-ידי מספר סופי של הרכבות:

$$f(x_1,\ldots,x_n) = \underbrace{s(s(\ldots s(n(u_1^n(x_1,\ldots,x_n)))\ldots))}_k$$

כדי להראות שיש ב-COMP פונקציות נוספות, נראה שיש ב-COMP פונקציה מהצורה

$$f(x_1,\ldots,x_n) = u_i^n(x_1,\ldots,x_n) = x_i + 0 : f(x_1,\ldots,x_n) = x_i + k$$

שאלה 7

. $\sum\limits_{k=1}^m k \leq z$ -ש כך המספר הטבעי המספר את את את על-ידי m על-ידי מספר טבעי. א יהי יהי מספר מספר את את את את יהי

$$y = m - x$$
; $x = z - \sum_{k=1}^{m} k$ in

. יחידים כנדרש y-וx יש z יחיד כזה, לכל m יחידים כנדרש מכיוון שלכל

ב. 1. הפונקציה $\left\langle x,y\right\rangle$ היא פרימיטיבית רקורסיבית, כי בהגדרתה משתמשים בחיבור ובסכום של פונקציות פרימיטיביות רקורסיביות.

כל הפונקציות שבהן השתמשנו הן פרימיטיביות רקורסיביות. לכן גם l(z) וו-l(z) הן פרימיטיביות רקורסיביות.

$$r(\langle x,y\rangle = (x+y) \div x = y ; l(\langle x,y\rangle = (x+\sum_{k=1}^{x+y}k) \div \sum_{k=1}^{x+y}k = x) \div m(\langle x,y\rangle) = x+y . 2$$

- $.\langle l(z),r(z)
 angle =z$ לכן .r(x)=y , l(z)=x . לפי מה שהראינו, $.z=\langle x,y
 angle :$.3
 - $.l(z),\,r(z)\leq z$ לכן . $x,\,y\leq z$. לפי הגדרת הפונקציה, . $z=\left\langle x,\,y\right\rangle$. לכן .4