Министерство образования и науки Российской Федерации

Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

Ю.Е. Гагарин

ЛАБОРАТОРНАЯ РАБОТА №2: ПРЕОБРАЗОВАТЕЛИ КОДОВ Методические указания по выполнению лабораторных работ по курсу «Архитектура ЭВМ»

ЛАБОРАТОРНАЯ РАБОТА № 2: ПРЕОБРАЗОВАТЕЛИ КОДОВ

Цель задания

Получение практических навыков построения и исследования работы схем преобразования кодов.

Постановка задачи

Для соответствующего варианта:

Построить схему преобразователей кодов, обеспечивающих перевод информации из кода 8421 в коды, указанные в варианте задания.

1. Реализовать две схемы преобразователей кода.

Для построения схемы преобразователя кода воспользуемся следующим алгоритмом:

- 1) Составить таблицу истинности для четырехразрядного преобразователя кода 8421 в код, указанный в варианте задания. В дополнительном столбце указать число в шестнадцатеричном счислении, соответствующее выходному коду.
- 2) Заполнить карты Карно для функций, соответствующим выходному коду.
- 3) Получить минимизированные выражения для выходных функций.
- 4) По полученным выражениям для выходных функций построить логическую схему преобразователя.
- 2. Два преобразователя кода работают параллельно и результаты их работы должны отображаться на соответствующих индикаторах.
- 3. С помощью мультиплексора на выходном индикаторе должны последовательно отображаться результаты работы первого, а затем второго преобразователя кодов.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Преобразователи кодов

Преобразователи кодов используются для перевода информации из одной формы в другую. Например, рассмотрим каким образом можно осуществить преобразование чисел прямого кода в обратный. Обратный код используется для представления отрицательных чисел. При этом положительные числа представляются в обычном двоичном коде. Обратный код отрицательного числа образуется путем замены 0 во всех разрядах исходного двоичного числа $A=a_k...a_1a_0$ на 1 в обратном числе $B=b_k...b_1b_0$ и наоборот.

Для представления знака числа используется знаковый разряд z, который обычно располагается перед числовыми разрядами. В зависимости от знакового разряда z, отрицательное число (z=1)

переводится в обратный код $B = \overline{A}$, а положительное (z = 0) передается без изменения B = A . Такое преобразование

реализуется с помощью схемы исключающее ИЛИ: $b_i = z \cdot \overline{a_i} \oplus \overline{z} \cdot a_i$.

Построим логическую схему для преобразования двоично-десятичного кода 8421 в код с «избытком 3». Таблицу 1 примем за таблицу истинности.

Таблица 1. Различные коды цифр от 0 до 9

	Чис	сла в 1	коде 8	Числа в коде «с избытком 3»				
Десятичное число	<i>a</i> ₃	a_2	a_1	a_0	c_3	c_2	c_1	c_0
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0

Выходными функциями, в данном преобразователе, является $c_0 \; c_1 \; c_2 \; c_3$

Для выходных функций получим карты Карно.

Рис. 1. Карты Карно выходных функций преобразователя кода 8241 в код с «избытком 3»

Выходные функции c_0 c_1 c_2 c_3 являются частично определенными, поскольку значения этих функций определены только для части наборов переменных a_0 a_1 a_2 a_3 (табл. 1). Кроме этого имеется класс положительно определенных функций, которые имеют определенное значение (0 или 1) при всех возможных наборах переменных. Наборы переменных, для которых выходная функция определена, называются рабочими, а для которых не определена — безразличными. На рис. 1 кроме рабочих наборов переменных, знаком х показаны безразличные наборы. Безразличные наборы введены для упрощения логических функций.

Объединение клеток на картах Карно дает следующие минимизированные выражения выходных функций:

$$\begin{split} c_0 &= \overline{a_0} \,; \\ c_1 &= \overline{a_1} \cdot \overline{a_0} + a_1 \cdot a_0 \,; \\ c_2 &= a_0 \cdot \overline{a_2} + a_1 \cdot \overline{a_2} + \overline{a_0} \cdot \overline{a_1} \cdot a_2 \,; \\ c_3 &= a_3 + a_0 \cdot a_2 + a_1 \cdot a_2 \,; \end{split}$$

где a_0 a_1 a_2 a_3 значения разрядов кода 8421. Полученные выражения выходных функций используются для построения логической схемы преобразователя. Так младший разряд c_0 в коде с «избытком 3» получается с помощью инверсии младшего разряда a_0 кода 8421. По логическим выражениям построим схему преобразователя (рис.2).

Рис.2. Схема преобразователя двоично-десятичного кода 8421 в код с «избытком 3»

Следует отметить, что преобразование двоично-десятичного кода 8421 в код с «избытком 3» обычно производится с помощью сумматора, прибавляющего 3 (11 в двоичном коде) к младшим разрядам числа.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

1) Две схемы преобразователей кода можно реализовать в виде иерархического блока (добавление иерархического блока см. Руководство пользователя с. 141).

Рис.3. Общая схема преобразователей

На рис. 3 используются два иерархических блока: CODE_1 и CODE_2, для двух схем преобразователей.

На рис. 4-5 показаны схемы иерархических блоков.

Рис.4. Схема преобразователя, соответствующая блоку СОDE_1

Рис.5. Схема преобразователя, соответствующая блоку CODE_2

1) Для реализации пункта 2 постановки задачи необходимо задать следующие значения генератора слова:

Data:

Младший разряд соответствует входному сигналу первого преобразователя. Следующий разряд соответствует входному сигналу второго преобразователя. Третий разряд слева подается на вход селектора мультиплексора.

3) Для реализации пункта 3 постановки задачи можно использовать 4-х разрядный мультиплексор на два входа 74ALS257M. Вход 1 (селектор) мультиплексора определяет выбор одного из двух входных сигналов.

ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ

Код 8421	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001
	0000	0001	0011	0010	0110	0111	0101	0100	1100	1101
Вариант 1	0010	1001	0001	1010	0000	1011	1111	1100	1110	1101
	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101
Вариант 2	1101	1110	1111	0000	0001	0010	0011	0100	0101	0110
D 2	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110
Вариант 3	1100	0101	1101	0100	1110	0011	1111	0010	0000	0001
D 4	1010	1011	1100	1101	1110	1111	0000	0001	0010	0011
Вариант 4	0101	1100	0100	1101	0011	1110	0010	1111	0001	0000
D 5	0000	0001	0010	0011	0100	1011	1100	1101	1110	1111
Вариант 5	1011	0010	1010	0011	1001	0100	1000	0101	0111	0110
D. (1110	1111	0000	0001	0010	0011	0100	0101	0110	0111
Вариант 6	0111	1110	0110	1111	0101	0000	0100	0001	0011	0010
D 7	1111	1110	1101	1100	1011	0100	0011	0010	0001	0000
Вариант 7	0000	1111	0001	1110	0010	1101	0011	1100	0100	1011
D0	1111	0000	0001	0010	0011	0100	0101	0110	0111	1000
Вариант 8	1000	1111	0111	0000	0110	0001	0101	0010	0100	0011
D0	0101	1100	0100	1101	0011	1110	0010	1111	0001	0000
Вариант 9	0011	1010	0010	1011	0001	1100	0000	1101	1111	1110
Вариант10	0111	1000	1001	1010	1011	1100	1101	1110	1111	0000
	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010
D 41	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101
Вариант 11	1111	0000	1110	0001	1101	0010	1100	0011	1011	0100

	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011
Вариант 12	1011	1100	1101	1110	1111	0000	0001	0010	0011	0100
Вариант 13	1111	0110	1110	0111	1101	1000	1100	1001	1011	1010
	1001	1010	1011	1100	1101	1110	1111	0000	0001	0010
Вариант 14	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101
	0000	0111	1111	1000	1110	1001	1101	1010	1100	1011
	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Вариант 15	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101
Damasa 16	1000	1001	1010	1011	1100	1101	1110	1111	0000	0001
Вариант 16	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110
Danwayer 17	0000	0111	1111	1000	1110	1001	1101	1010	1100	1011
Вариант 17	1010	1011	1100	1101	1110	1111	0000	0001	0010	0011
Вариант 18	1001	1010	1011	1100	1101	1110	1111	0000	0001	0010
Бариант 18	0000	0001	0010	0011	0100	1011	1100	1101	1110	1111
Вариант 19	1011	1100	1101	1110	1111	0000	0001	0010	0011	0100
Бариант 19	1110	1111	0000	0001	0010	0011	0100	0101	0110	0111
Вариант 20	0010	1001	0001	1010	0000	1011	1111	1100	1110	1101
Бариант 20	1111	1110	1101	1100	1011	0100	0011	0010	0001	0000
Вариант 21	1101	1110	1111	0000	0001	0010	0011	0100	0101	0110
Вариант 21	1111	0000	0001	0010	0011	0100	0101	0110	0111	1000
Вариант 22	1100	0101	1101	0100	1110	0011	1111	0010	0000	0001
	0101	1100	0100	1101	0011	1110	0010	1111	0001	0000
Вариант 23	0101	1100	0100	1101	0011	1110	0010	1111	0001	0000
	0111	1000	1001	1010	1011	1100	1101	1110	1111	0000
Вариант 24	1011	0010	1010	0011	1001	0100	1000	0101	0111	0110

	0000	0001	0011	0010	0110	0111	0101	0100	1100	1101
Вариант 25	0111	1110	0110	1111	0101	0000	0100	0001	0011	0010
	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101
Вариант 26	0000	1111	0001	1110	0010	1101	0011	1100	0100	1011
	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011
Вариант 27	1000	1111	0111	0000	0110	0001	0101	0010	0100	0011
	1111	0110	1110	0111	1101	1000	1100	1001	1011	1010
Вариант 28	0011	1010	0010	1011	0001	1100	0000	1101	1111	1110
	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101
Damasa 20	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010
Вариант 29	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Вариант 30	1111	0000	1110	0001	1101	0010	1100	0011	1011	0100
	1000	1001	1010	1011	1100	1101	1110	1111	0000	0001

ФОРМА ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

- 1) Постановка задачи.
- 2) Таблица истинности для преобразователей кодов с дополнительным столбцом, в котором указать число в шестнадцатеричном счислении, соответствующее выходному коду.
- 3) Карты Карно для выходных функций.
- 4) Минимизированные выражения для выходных функций двух преобразователей.
- 5) Логическая схема преобразователей кодов.
- 6) Выводы.