Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Лабораторная работа

"Бинарные отношения"

Выполнил		
студент гр. в $3530904/00030$		В.С. Баганов
D		
Руководитель		
доцент, к.т.н.		В.В. Амосов
		202
	<u> </u>	202 г.

 ${
m Cankt-} \Pi$ етербург 2023

Содержание

1.	Сво	йства и количественные характеристики отношений.	4
	1.1.	Рефлексивность	4
	1.2.	Антирефлексивность	4
	1.3.	Частичная рефлексивность	5
	1.4.	Симметричность.	5
	1.5.	Антисимметричность	5
	1.6.	Асимметричность.	6
	1.7.	Транзитивность	6
		Цикличность.	7
		Ацикличность.	7
	1.10.	Полнота (связность).	8
			8
			8
	1.13.	Нетранзитивное отношение	9
			9
	1.15.	Отношение порядка	9
			9
			9
			9
			0
2 .	Док	азательства утрверждений 1	0
	2.1.	Утверждение 1	.0
	2.2.	Утверждение 2	.0
	2.3.	Утверждение 3	0
	2.4.	Утверждение 4	1
	2.5.	Утверждение 5	1
	2.6.	Утверждение 6	1
	2.7.	Утверждение 7	2
	2.8.	Утверждение 8	2
	2.9.	Утверждение 9	2
	2.10.	Утверждение 10	2
			.3
	2.12.	Утверждение 12	.3
	2.13.	Утверждение 13	.3
	2.14.	Утверждение 14	3
	2.15.	Утверждение 15	3
	2.16.	Утверждение 16	.3
	2.17.	Утверждение 17	3
	2.18.	Утверждение 18	4
			4
			4
			4
			5
			5
			5

2.25. Утверждение	25		 									 						15
2.26. Утверждение	26		 									 						15
2.27. Утверждение	27		 									 						15
2.28. Утверждение	28		 									 						16
2.29. Утверждение	29		 									 						16
2.30. Утверждение	30		 									 						16
2.31. Утверждение	31		 									 						16
2.32. Утверждение	32		 									 						16
2.33. Утверждение	33		 									 						17
2.34. Утверждение	34		 									 						17
2.35. Утверждение	35		 									 						17
2.36. Утверждение	36		 									 						17
2.37. Утверждение	37		 									 						18
2.38. Утверждение	38		 									 						18
2.39. Утверждение	39		 									 					_	18

1. Свойства и количественные характеристики отношений.

Обозначим отношение символом [R, Ω]. R- имя отношения, Ω — множество-носитель отношения.

1.1. Рефлексивность.

Рефлексивность. $\mathbf{x} \in \mathbf{A}$ ($\mathbf{x}\mathbf{R}\mathbf{x}$). Отношение $[R,\Omega]$ называется рефлексивным, если каждый элемент множества находится в отношении R сам c собой. Граф рефлексивного E0 имеет во всех вершинах петли (дуги), а матрица отношения содержит (E) единичную главную диагональ.

Рисунок 1.1. Рефлексивность.

1.2. Антирефлексивность.

Антирефлексивность. $\mathbf{x} \in \mathbf{A} \neg (\mathbf{x} \mathbf{R} \mathbf{x})$. Отношение $[R,\Omega]$ называется антирефлексивным, если ни один элемент из множества не находится в отношении R сам c собой. Антирефлексивные отношения называют строгими.

Рисунок 1.2. Антирефлексивность.

1.3. Частичная рефлексивность.

Частичная рефлексивность. Отношение $[R,\Omega]$ называется частично рефлексивным, если один или более элементов из множества не находится в отношении R сам c собой.

Рисунок 1.3. Частичная рефлексивность

1.4. Симметричность.

Симметричность. $x, y \in A$ ($xRy \rightarrow yRx$). Отношение $[R,\Omega]$ называется симметричным, если вместе с упорядоченной парой (x, y) отношение содержит и упорядоченную пару (y, x).

Рисунок 1.4. Симметричность.

1.5. Антисимметричность.

Антисимметричность. (**xRy yRx** \rightarrow **x** = **y**). Отношение [R, Ω] называется антисимметричным, если, если для всякой упорядоченной пары (x, y) є R упорядоченная пара (y, x) є R, только в случае x = y. Для таких отнош ний R \cap R⁻¹ \subseteq E

Рисунок 1.5. Антисимметричность.

1.6. Асимметричность.

Асимметричность. Отношение $[R,\Omega]$ называется асимметричным, если оно антирефлексивно и для всякой упорядоченной пары $(x, y) \in R$ упорядоченная пара $(y, x) \notin R$, для отношений $R \cap (R^{-1})$

Рисунок 1.6. Асимметричность.

1.7. Транзитивность.

Транзитивность. $x, y, z \in A(xRy \ yRz \to xRz)$. Отношение $[R,\Omega]$ называется транзитивным, если для всяких упорядоченных пар $(x, y), (y, z) \in R$, в отношении R найдется упорядоченная пара $(x, z) \in R$ или если $R \times R \subseteq R$

Рисунок 1.7. Транзитивность.

1.8. Цикличность.

Цикличность. $\mathbf{x}, \mathbf{y} \in \mathbf{A};$. Отношение $[R,\Omega]$ называется циклическим, если для его элементов $\mathbf{x}1, \mathbf{x}2, \mathbf{z}3,..., \mathbf{x}n$ найдется подмножество элементов $\mathbf{x}i, \mathbf{x}i+1,...\mathbf{x}r,...,\mathbf{x}j, \mathbf{x}i,$ для которого можно выписать последовательность $\mathbf{x}iR\mathbf{x}i+1R...R\mathbf{x}jR\mathbf{x}i.$ Такая последовательность называется циклом или контуром.

Рисунок 1.8. Цикличность.

1.9. Ацикличность.

Ацикличность. Отношения, в которых отсутствуют контуры называются, ациклическими. Для ациклических отношений выполняется соотношение $R^k \cap R = \emptyset$ для любого k>1 .

Рисунок 1.9. Ацикличность.

1.10. Полнота (связность).

Полнота (связность) Отношение $[R,\Omega]$ называется полным (связным), если для любых двух элементов (y,z) $\in \Omega$ один из них находится в отношении с другим. Линейность. Линейные отношения – это минимально полные отношения.

Рисунок 1.10. Полнота (связность)

1.11. Обратное отношение

Обратное отношение. (отношение, обратное κ R) — это двухместное отношение, состоящее из пар элементов (y,x), полученных перестановкой пар элементов (x,y) данного отношения R. Обозначается: R^{-1} .

Для данного отношения и обратного ему верно равенство: $(\mathbf{R}^{-1})^{-1} = R$

1.12. Взаимо-обратные отношения (взаимообратные отношения)

Взаимо-обратные отношения (взаимообратные отношения) — отношения, являющиеся обратными друг по отношению к другу. Область значений одного из них служит областью определения другого, а область определения первого — областью значений другого.

1.13. Нетранзитивное отношение

Нетранзитивное отношение — двухместное отношение R, определённое на некотором множестве и отличающееся тем, что для любых x,y,z этого множества из xRy и yRz не следует xRz $\neg (xRy \land yRz \rightarrow xRz) \neg (xRy \land yRz \rightarrow xRz)$.

Пример нетранзитивного отношения: «х отец у»

1.14. Отношение эквивалентности

Отношение эквивалентности — бинарное отношение R между объектами x и y, являющееся одновременно рефлексивным, симметричным и транзитивным. Примеры: равенство, равномощность двух множеств, подобие, одновременность.

1.15. Отношение порядка

Отношение порядка — отношение, обладающие только некоторыми из трёх свойств отношения эквивалентности: отношение рефлексивное и транзитивное, но несимметричное (например, «не больше») образует нестрогий порядок, а отношение транзитивное, но нерефлексивное и несимметричное (например, «меньше») — строгий порядок.

1.16. Отношение толерантности

Отношение толерантности — бинарное отношение, удовлетворяющее свойствам рефлексивности и симметричности, но не обязательно являющееся транзитивным. Таким образом, отношение эквивалентности является частным случаем толерантности.

1.17. Функция одного переменного

Функция одного переменного — бинарное отношение R, определённое на некотором множестве, отличающееся тем, что каждому значению x отношения xRy соответствует лишь единственное значение y. Свойство функциональности отношения R записывается в виде аксиомы: $(xRy \land xRz) \rightarrow (y \equiv z)(xRy \land xRz) \rightarrow (y \equiv z)$.

1.18. Биекция (взаимно-однозначное отношение)

Биекция (взаимно-однозначное отношение) — бинарное отношение R, определённое на некотором множестве, отличающееся тем, что в нём каждому значению х соответствует единственное значение y, и каждому значению у соответствует единственное значение x.

1.19. Свойства отношений

```
Рефлексивность: \forall x \in M:(xRx) \forall x \in M:(xRx), Антирефлексивность (иррефлексивность): \forall x \in M: \neg(xRx) \forall x \in M: \neg(xRx), Корефлексивность: \forall x, y \in M:(xRy \Rightarrow x = y) \forall x, y \in M:(xRy \Rightarrow x = y), Симметричность: \forall x, y \in M:(xRy \Rightarrow yRx) \forall x, y \in M:(xRy \Rightarrow yRx), Антисимметричность: \forall x, y \in M:(xRy \land yRx \Rightarrow x = y) \forall x, y \in M:(xRy \land yRx \Rightarrow x = y), Асимметричность: \forall x, y \in M:(xRy \Rightarrow \neg(yRx)) \forall x, y \in M:(xRy \Rightarrow \neg(yRx)), Транзитивность: \forall x, y, z \in M:(xRy \land yRz \Rightarrow xRz) \forall x, y, z \in M:(xRy \land yRz \Rightarrow xRz), Евклидовость: \forall x, y, z \in M:(xRy \land xRz \Rightarrow yRz) \forall x, y, z \in M:(xRy \land xRz \Rightarrow yRz), Полнота (или связность[7]): \forall x, y \in M:(xRy \lor yRx) \forall x, y \in M:(xRy \lor yRx), Связность (или слабая связность[7]): \forall x, y \in M:(x \neq y \Rightarrow xRy \lor yRx) \forall x, y \in M:(x \neq y \Rightarrow xRy \lor yRx), Трихотомия: \forall x, y \in M \forall x, y \in M верно ровно одно из трех утверждений: xRyxRy, yRxyRx или x = yx = y.
```

2. Доказательства утрверждений

wikipedia.org/wiki/Бинарное отношение

2.1. Утверждение 1

Если бинарное отношение R рефлексивно, то этим свойством обладает и обратное отношение R^{-1} .

```
R — рефлексивно \forall x \in G: xRx, (x, x) \in R R^{-1} — обратное: yR^{-1}x \iff xRy, (x, y) \in R \iff (y, x) \in R^{-1} Рефлексивность R^{-1} при x=y: xR^{-1}x \iff xRx Рефлексивность R задана условием. Утверждение доказано.
```

2.2. Утверждение 2

Если бинарное отношение R симметрично, то обратное отношение R^{-1} симметрично, причем R симметрично тогда и только тогда, когда $R = R^{-1}$.

```
2.1 R – симметрично: \forall x,\,y\in G: xRy \Rightarrow yRx, (x,\,y)\in R \Rightarrow (y,\,x)\in R
```

- $2.2~R^{-1}$ обратное: $yR^{-1}x\iff xRy, (x,y)\in R\iff (y,x)\in R^{-1}$
- 2.3 Симметричность R^{-1} : $yR^{-1}x \iff xRy \Rightarrow xR^{-1}y \iff yRx$
- 2.4.1 Если принять $R^{-1}={\rm R},$ то требуется доказать: уRx \iff xRy \Rightarrow xRy \iff yRx
- $2.4.2\ {\rm T.e.}$ требуется доказать симметричность R
- 2.4.3 Симметричность R задана условием.
- 2.5 Если, наоборот, принять симметричность R^{-1} в качестве факта, то, учитывая симметричность R, $(yR^{-1}x\iff xRy\Rightarrow xR^{-1}y\iff yRx)\iff (yR^{-1}x\iff yRx)$, т.е. $R^{-1}=R$
 - 2.6 Таким образом, R симметрично тогда и только тогда, когда ${\rm R}=R^{-1}.$

Утверждение доказано

2.3. Утверждение 3

Если бинарное отношение R антисимметрично, то и R^{-1} антисимметрично.

- 3.1 R антисимметрично: $\forall x, y \in G$: xRy, yRx \Rightarrow x = y
 - $3.2~R^{-1}$ обратное: у R^{-1} х \iff хRу, (x, y) \in R \iff (y, x) \in R^{-1}
 - 3.3 Антисимметричность $R^{-1}: y R^{-1}x \iff xRy, x R^{-1}y \iff yRx \Rightarrow x = y$
 - 3.4 Пусть x, y \in G, x = y \Rightarrow xRy, yRx (см. 3.1) \Rightarrow R = R^{-1} (см. зад. 2)
 - 3.5 Пусть $x, y \in G, x \neq y$
 - 3.5.1 Предположим, что R асимметрично, а R^{-1} симметрично.
 - $3.5.2 \text{ Из } R^{-1}$ симметрично \Rightarrow R симметрично (см. зад. 2)
 - 3.6 Противоречие $\Rightarrow \forall x, y \in G, x \neq y \Rightarrow R \cap R^{-1} = \emptyset, R^{-1}$ асимметрично
 - 3.7 Если R антисимметрично, то для x=y R = R^{-1} , для $x\neq y\Rightarrow$ R \cap $R^{-1}=\varnothing$, т.е. R^{-1} антисимметрично.

Утверждение доказано.

2.4. Утверждение 4

Если бинарное отношение R асимметрично, то и R^{-1} асимметрично.

Доказано ранее. См. 3.5, 3.6 задания 3.

2.5. Утверждение 5

Если бинарное отношение R транзитивно, то и R^{-1} транзитивно.

- 5.1 R транзитивно: $\forall x,\,y,\,z\in G,\,xRy,\,yRz\Rightarrow xRz$
- 5.2 R^{-1} обратное: у R^{-1} х \iff хRу, (x, y) \in R \iff (y, x) \in R^{-1} 5.3 R^{-1} транзитивно:

```
\mathbf{y} \ R^{-1} \ \mathbf{x} \iff \mathbf{x} \mathbf{R} \mathbf{y}, \, (\mathbf{x}, \, \mathbf{y}) \in \mathbf{R} \iff (\mathbf{y}, \, \mathbf{x}) \in R^{-1} \ ,
```

$$z R^{-1} y \iff yRz, (y, z) \in R \iff (z, y) \in R^{-1}$$

- \Rightarrow z R^{-1} x \iff xRz, (x, z) \in R \iff (z, x) \in R^{-1}
- 5.4 \forall х, у, z \in G, xRу, yRz \Rightarrow xRz (см. 5.1) \iff z R^{-1} х (по определению R^{-1})
- 5.5 Истинность 5.3 прямо следует из 5.1.

Утверждение доказано.

2.6. Утверждение 6

Если бинарное отношение R рефлексивно, то двойственное отношение R^d антирефлексивно. И наоборот, если R^d рефлексивно, то R – антирефлексивно.

- 6.1 R рефлексивно: $\forall x \in G$: xRx, $(x, x) \in R$
- 6.2 R антирефлексивно: $\forall x \in G: (x, x) \in R$
- $6.3\ R^d$ двойственное отношение: $R^d=(R^{-1})^+=({\rm GxG})\ R^{-1}$, дополнение R^{-1} .
- 6.4 Если R рефлексивно, то R 1 рефлексивно (см. зад. 1)
- $6.5 (R^{-1})^+$ не включает пары вида (x, x), т.к. такие пары уже входят в R^{-1} (см. 6.4)
- 6.6 Следовательно, $R^d = (R^{-1})^+$ антирефлексивно
- 6.7 И наоборот, если $R^d = (R^{-1})^+$ рефлексивно, то все пары $(x, x) \in R^{-1}$
- 6.8 Следовательно, R^{-1} и R рефлексивны.

2.7. Утверждение 7

Бинарное отношение ${\bf R}$ симметрично тогда и только тогда, когда асимметрично двойственное отношение ${\bf R}^d.$

- 7.1 R симметрично: $\forall x, y \in G: xRy \Rightarrow yRx, (x, y) \in R \Rightarrow (y, x) \in R$
- 7.2 R^{-1} обратное: у R^{-1} х \iff хRу, (х, у) \in R \iff (у, х) \in R^{-1}
- 7.3 R^d двойственное отношение: $R^d = (R^{-1})^+ = (GxG)_{\overline{R}^1}R^{-1}$, дополнение R^{-1} .
- 7.4 Если R симметрично, то $R = R^{-1}$ (см. зад. 2)
- 7.5 R^d ассиметрично, не включает в себя пары из R, $(x, y) \in R \Rightarrow (y, x) \in R$.
- 7.6 И наоборот, R^d ассиметрично, не включает в себя пары $(x, y) \in R^d \Rightarrow (y, x) \in R^d$.
 - 7.6 Тогда такие пары, включает $R^{-1} = R$.

Утверждение доказано.

2.8. Утверждение 8

Бинарное отношение ${\bf R}$ асимметрично тогда и только тогда, когда двойственное отношение ${\bf R}^d$ полно.

- 8.1 R асимметрично: $R \cap R^{-1} = \emptyset$
- $8.2\ R^d$ двойственное отношение: $R^d=(R^{-1})^+=({
 m GxG})\ R^{-1}$, дополнение R^{-1} .
- 8.3 R^d полно: $\forall \mathbf{x}, \mathbf{y} \in \mathbf{G}$: или $\mathbf{x} R^d \mathbf{y}$, или $\mathbf{y} R^d \mathbf{x}$, или и $\mathbf{x} R^d \mathbf{y}$ и $\mathbf{y} R^d \mathbf{x}$.
- 8.4 Из $R \cap R^{-1} = \varnothing \Rightarrow R^d = (R^{-1})^+$: или $x R^d y$, или $y R^d x \Rightarrow R^d$ полно (п. 8.3)
- $8.5 \text{ Из } 8.3 \Rightarrow (R^{-1})$: или х R^d у, или у R^d х, но не оба $\Rightarrow R \cap R^{-1} = \emptyset$ (п. 8.1)

Утверждение доказано.

2.9. Утверждение 9

Бинарное отношение ${\bf R}$ негатранзитивно тогда и только тогда, когда двойственное отношение ${\bf R}^d$ транзитивно.

- 9.1 Если R транзитивно, то R^{-1} транзитивно, и, наоборот, если R негатранзитивно, то R^{-1} негатранзитивно (см. зад. 5)
- 9.2 Как следствие, $R^d = (R^{-1})^+$ транзитивно, в том и только в том случае, если R негатранзитивно и негатранзитивно, если R транзитивно.

Утверждение доказано.

2.10. Утверждение 10

Бинарное отношение ${\bf R}$ слабосвязно тогда и только тогда, когда двойственное отношение ${\bf R}^d$ антисимметрично.

- 10.1 R слабосвязно: $\forall x, y \in G, x \neq y$: xRy, yRx, xRyyRx.
- $10.2\ R^d$ двойственное отношение: $R^d=(R^{-1})^+=({
 m GxG})\ R^{-1}$, дополнение R^{-1} .
- 10.3 R^d антисимметрично: $\forall \mathbf{x},\,\mathbf{y}\in\mathbf{G}:\,\mathbf{x}R^d\mathbf{y},\,\mathbf{y}R^d\mathbf{x}\Rightarrow\mathbf{x}=\mathbf{y}$
- 10.4 Из антисимметричности R^d : $\forall x, y \in G$: $x R^{-1} y, y R^{-1} x \Rightarrow x \neq y$
- 10.5 Т.е. R^{-1} симметрично, но не рефлексивно $\Rightarrow R^{-1} = R$ (см. зад. 2)
- 10.6 Симметричное отношение без рефлексии слабосвязное отношение (см. 10.1)

2.11. Утверждение 11

Если бинарное отношение R асимметрично, то оно и антирефлексивно.

- 11.1 R асимметрично: R \cap $R^{-1} = \varnothing$
- $11.2~\mathrm{R}\cap R^{-1}=\varnothing\Rightarrow\mathrm{xRx}$ не определено, иначе $\mathrm{R}\varnothing R^{-1}=\mathrm{xRx}$
- 11.3 Следовательно R антирефлексивно

Утверждение доказано.

2.12. Утверждение 12

Объединение произвольного числа рефлексивных отношений – рефлексивное отношение.

- 12.1 R_i рефлексивно: $\forall \mathbf{x} \in \mathbf{G} : \mathbf{x} R_i \mathbf{x}, (\mathbf{x}, \mathbf{x}) \in R_i$
- 12.2 Утверждение тривиально. Отношение рефлексивности задано условием.

2.13. Утверждение 13

Пересечение произвольного числа рефлексивных отношений – рефлексивное отношение.

- 13.1 R_i рефлексивно: $\forall x \in G: xR_ix, (x, x) \in R_i$
- 13.2 Утверждение тривиально. Отношение рефлексивности задано условием.

2.14. Утверждение 14

Объединение произвольного числа антирефлексивных отношений – антирефлексивное отношение.

- 14.1 R антирефлексивно: $\forall x \in G: (x, x) \in R$
- 14.2 Утверждение тривиально. Отношение антирефлексивности задано условием.

2.15. Утверждение 15

Пересечение произвольного числа антирефлексивных отношений – антирефлексивное отношение.

- 15.1 R антирефлексивно: $\forall x \in G: (x, x) \in R$
- 15.2 Утверждение тривиально. Отношение антирефлексивности задано условием.

2.16. Утверждение 16

Объединение произвольного числа симметричных отношений – симметричное отношение.

- 16.1 R симметрично: $\forall x, y \in G$: $xRy \Rightarrow yRx, (x, y) \in R \Rightarrow (y, x) \in R$
- 16.2 Утверждение тривиально. Отношение симметричности задано условием.

2.17. Утверждение 17

Пересечение произвольного числа симметричных отношений – симметричное отношение

- 17.1 R симметрично: $\forall x, y \in G$: $xRy \Rightarrow yRx, (x, y) \in R \Rightarrow (y, x) \in R$
- 17.2 Утверждение тривиально. Отношение симметричности задано условием.

2.18. Утверждение 18

Для того, чтобы композиция симметричных отношений $R1^{\circ}R2$ была симметрична, необходимо и достаточно, чтобы $R1^{\circ}R2 = R2^{\circ}R1$.

- 18.1 R симметрично: $\forall x, y \in G: xRy \Rightarrow yRx, (x, y) \in R \Rightarrow (y, x) \in R$
- $18.2~R_1$ ° R_2 композиция: $\forall x, y \in G$: х R_1 ° R_2 у $\iff \exists z \in G$: х R_1 z и zR_2 у
- 18.3 R_2 ° R_1 композиция: $\forall x, y \in G$: х R_2 ° R_1 у $\iff \exists z \in G$: х R_2 z и zR_1 у
- 18.4 R_1 ° R_2 симметрична: \forall x, y \in G: x R_1 ° R_2 y \iff y R_1 ° R_2 x, т.е. \exists z \in G: y R_1 z и х R_2 z
 - T.e. $R_2 {}^{\circ} R_1 \Rightarrow R_1 {}^{\circ} R_2$
 - 18.4 Аналогично, из R_2 ° $R_1 \iff R_2$ ° $R_1 \iff R_1$ ° R_2 симметрична

Утверждение доказано

2.19. Утверждение 19

Пересечение произвольного числа антисимметричных отношений является антисимметричным отношением.

- 19.1 R антисимметрично: $\forall x, y \in G$: $xRy, yRx \Rightarrow x = y$
- 19.2 Пересечение антисимметричных отношений включает только общие для всех антисимметричных отношений элементы, т.е. такие элементы (пары), для которых в каждом множестве отсутствует симметричная пара и такие пары, для которых, в каждом множестве, выполняется отношение рефлексивности.

Т.е. пересечение антисимметричных отношений – антисимметричное отношение.

2.20. Утверждение 20

Объединение антисимметричных отношений R_1 и R_2^{-1} антисимметрично в том и только в том случае, когда $R_1 \cap R_1 \subseteq \Delta$, где Δ - единичное отношение.

- 20.1 R антисимметрично: $\forall x, y \in G$: xRy, yRx $\Rightarrow x = y$
- 20.2 R антисимметрично $\Rightarrow R^{-1}$ антисимметрично (см. зад. 3), при этом R^{-1} содержит рефлексивную часть отношения R.
 - 20.3 $R_1 \cup R_1$ антисимметрично $\Rightarrow \forall x,\,y \in G$: x R_1 y, y R_2 x или x R_2 y, y R_1 x \Rightarrow x = y
 - 20.4 Учитывая 20.1 для R_1, R_2 . $R_1 \cup R_2 \Rightarrow \forall x \in G: xR_1x, xR_2x$
- 20.5 Очевидно, что $\Delta=(\mathbf{x},\mathbf{x})$: xRx, и будет единственной общей частью $R_1\cap R_2$, т.е. $R_1\cap R_2^{-1}$ \exists Δ (в пересечение могут войти не все пары $(\mathbf{x},\mathbf{x})\in \mathbf{G}$)

Утверждение доказано.

2.21. Утверждение **21**

Если бинарное отношение R асимметрично, то пересечение отношений $R \cap R_1$ асимметрично при любом R_1 .

- 21.1 R асимметрично: R \cap $R^{-1} = \varnothing$
- 21.2 Следовательно, элементы состоящие в рефлексивных и симметричных отношениях в R не входят.
 - 21.3 Следовательно, ни в каком пересечении ни с каким множеством они не появятся
 - 21.4 Следовательно, $R \cap R_1$ асимметрично при любом R_1 .

2.22. Утверждение 22

Объединение ассиметричных отношений $R1\cap R2$ асимметрично тогда и только тогда, когда $R_1\cap R_2^{-1}=\varnothing$.

22.1 R – асимметрично: $R \cap R^{-1} = \emptyset$

22.2 Из $R_1\cap R_1$ и 22.1 для R_1 и $R_2\Rightarrow R_1\cap R_2^{-1}=\varnothing$ - условие 22.1 для $R_1\cap R_2.$

Утверждение доказано.

2.23. Утверждение 23

Пересечение любого числа транзитивных отношений является транзитивным отношением.

- 23.1 R транзитивно: $\forall x, y, z \in G$, $xRy, yRz \Rightarrow xRz$
- 23.2 Утверждение тривиально. Пересечение транзитивных отношений содержит только элементы, состоящие в транзитивных отношениях для всех отношений пересечения.

2.24. Утверждение 24

Если два бинарных отношения транзитивны и одно из них транзитивно относительно другого, то объединение этих отношений транзитивно.

- 24.1 R транзитивно: $\forall x, y, z \in G, xRy, yRz \Rightarrow xRz$
- 24.2 Утверждение тривиально, следует из определения транзитивности. Объединение транзитивных отношений, где одно отношение транзитивно относительно другого, ведет к созданию транзитивной цепочки для любого элемента области определения, включенного в объединяемые отношения.

2.25. Утверждение 25

Если бинарное отношение R транзитивно, то его симметричная R^s и ассиметричная R^a часть тоже транзитивны.

- 25.1 R транзитивно: $\forall x, y, z \in G$, $xRy, yRz \Rightarrow xRz$
- 25.2 R(s) симметричная часть R: R(s) = R \cap R⁻¹
- 25.3 R(a) асимметричная часть R: R(s) = R∩ R^{-1}
- 25.4 R(s) и R(a) определены на элементах транзитивного $R, R^s \subseteq R, R^a \subseteq R$
- 25.5 Как часть R, R(s) и R(a) транзитивны

Утверждение доказано.

2.26. Утверждение 26

Если R – ацикличное бинарное отношение, то оно асимметрично.

26.1 R – ациклично: \forall n \in N, $R^n \cap R^{-1} = \emptyset$, т.е. $R^s = \emptyset$, т.е. отношение - асимметрично **Утверждение доказано**.

2.27. Утверждение 27

Если R – антирефлексивное транзитивное бинарное отношение, то оно ациклично.

- 27.1 R транзитивно: $\forall x, y, z \in G$, $xRy, yRz \Rightarrow xRz$
- 27.2 R антирефлексивно: $\forall x \in G: (x, x) \notin R$

27.3 Т.е. любые транзитивные цепочки, выстраиваемые R, исключают цикл, т.к. цикл – рефлексивен по определению, следовательно R – ациклично.

Утверждение доказано.

2.28. Утверждение 28

Если бинарное отношение R симметрично, транзитивно и $\forall x \exists y : xRy$, то оно рефлексивно.

- 28.1 R транзитивно: $\forall x, y, z \in G$, $xRy, yRz \Rightarrow xRz$
- 28.2 R симметрично: $\forall x, y \in G: xRy \Rightarrow yRx$
- 28.3 Из \forall х \exists у: xRу и 27.2 \Rightarrow yRх
- 28.4 Из R транзитивно b 28.3: $\forall x, y, x \in G$, $xRy, yRx \Rightarrow xRx$
- 28.5 R рефлексивно

Утверждение доказано.

2.29. Утверждение 29

Если бинарное отношение R антирефлексивно и транзитивно, то оно асимметрично.

- 29.1 R транзитивно: $\forall x, y, z \in G, xRy, yRz \Rightarrow xRz$
- 29.2 R антирефлексивно: $\forall x \in G: (x, x) \notin R$
- $29.3 \text{ Из } 29.2 \text{ и } 29.1 \Rightarrow \text{R}$ ациклично, $\Rightarrow \text{R}$ асимметрично (см. зад. 26)

Утверждение доказано.

2.30. Утверждение 30

Если бинарное отношение R асимметрично и негатранзитивно, то оно транзитивно.

- $30.1~{
 m R}$ негатранзитивно: R^+ транзитивно
- 30.2 R асимметрично: $R \cap R^{-1} = \emptyset$
- 30.3~Для асимметричного отношения $R^{-1}=R^+$, на множестве G без пар (x,x)
- $30.4 \ \mathrm{Ec}$ ли $R^{-1} = R^+$ транзитивно, то и R транзитивно

Утверждение доказано.

2.31. Утверждение 31

Если бинарное отношение R антирефлексивно, транзитивно и слабополно, то оно негатранзитивно.

- $31.1~{
 m R}$ негатранзитивно: R^+ транзитивно
- 31.2 R транзитивно: $\forall x, y, z \in G$, $xRy, yRz \Rightarrow xRz$
- 31.3 R антирефлексивно: \forall x ∈ G: (x, x) \notin R
- $31.4 \; \mathrm{Если} \; R^{-1} = R^+$ транзитивно, то и R транзитивно

Утверждение доказано

2.32. Утверждение 32

Если R транзитивно, то оно совпадает со своим транзитивным замыканием и наоборот, если R совпадает со своим транзитивным замыканием, то R - транзитивно.

- 32.1 R транзитивно: $\forall x, y, z \in G$, $xRy, yRz \Rightarrow xRz$
- $32.2\ R^T$ транзитивное замыкание пересечение всех транзитивных замыканий, содержащих R

- 32.3 Пересечение всех транзитивных замыканий в G, содержащих R не менее R.
- 32.4 Если R^T более R, то существует замкнутое относительно некоторого транзитивного отношения R' подмножество в G, такое, R' \neq R (иначе R совпадает с R^T). Но рассматривались только транзитивные замыкания с отношением транзитивности R. Противоречие. Следовательно, $R^T = R$
- 32.5 Наоборот, если $R^T={
 m R},$ то т.к. транзитивное замыкание транзитивно, то и R транзитивно.

Утверждение доказано

2.33. Утверждение 33

Если отношение R_1 содержит отношение R_2 , то и транзитивное замыкание R_1 содержит транзитивное замыкание R_2 . $R_2 \subseteq R_1 \Rightarrow R_2 \subseteq R_1$

- 33.1 Отношение R_1 транзитивно относительно R если: $\mathbf{x}R_1\mathbf{y},\,\mathbf{y}\mathbf{Rz}\Rightarrow\mathbf{x}R_1\mathbf{z}$ и $\mathbf{x}\mathbf{Ry},\,\mathbf{y}R_1\mathbf{z}$ $\Rightarrow\mathbf{x}R_1\mathbf{z}$
 - 33.2 Из $R_2 \subseteq R_1 \Rightarrow$ если R_1 транзитивно относительно R, то и R_2 (см. 33.1)
 - 33.3 Транзитивное замыкание R^T для R_1 это объединение всех R, таких что 33.1
 - $33.4 \text{ Из } 33.2 \text{ и } 33.3 \Rightarrow R^T$ для R_1 это R^T для R_2 .

Утверждение доказано.

2.34. Утверждение 34

Отношения R^T и $(R^T)^T$ совпадают.

- 34.1 Транзитивное замыкание транзитивно (по определению)
- 34.2 Транзитивное замыкание транзитивного отношения совпадает с транзитивным отношением (доказано ранее, см. 32)

Утверждение доказано.

2.35. Утверждение 35

Ни для кого отношения не может быть ${
m R}=R^d.$

- $35.1\ R^d$ двойственное отношение: $R^d=(R^{-1})^+=({
 m GxG})\ R^{-1}$, дополнение R^{-1} .
- 35.2 Если R асимметрично (R \cap $R^{-1}=\varnothing$), то в R и R^{-1} не входят пары (x,x), но они входят в $R^d=(R^{-1})^+\Rightarrow R\neq R^d$
- 35.3 Если R \cap $R^{-1} \neq \emptyset$, то у R \cap R^{-1} есть общая часть, которая не входит в $R^d = (R^{-1})^+$, но входит в R \Rightarrow R \neq R^d
 - 35.4 T.e. $\forall R \Rightarrow R \neq R^d$

Утверждение доказано.

2.36. Утверждение 36

Отношение $\mathbf{R} \cup (R^+ \cap R^d) = \mathbf{R} \cup (R^+)^s$ всегда полно.

- 36.1 R полно: $\forall x, y \in G$: или xRy, или yRx, или и xRy и yRx.
- $36.2 \; {
 m E}$ сли R полно, то R $\cup (R^+)^s$ полно (из R) и **Утверждение доказано**.
- 36.3 Пусть R неполно, т.е. $\exists x, y \in G$: xRy и yRx не определены.
- 36.4 Тогда, для x, y \in G из 36.3: x R^+ y и y R^+ x, доопределены в $(R^+)^s$.
- $36.5 \text{ Тогда, для } P = R \cup (R^+)^s \ \forall x, y \in G$: или хРу, или уРх, или и хРу и уРх.

2.37. Утверждение 37

```
Для любого отношения R^+ = (R^{-1}) \cup (R^+ \cap R^d). 
 37.1 \ R^+ \cap R^d = (R^+)^s (см. ход доказательства в 35) 
 37.2 \ (R^{-1}) \cup (R^+ \cap R^d) = (R^{-1}) \cup (R^+)^s = (R^+)^a \cup (R^+)^s = R^+ 
 Утверждение доказано.
```

2.38. Утверждение 38

```
Для любого отношения R^{-1} \subseteq R^+ \cup (R \cup R^{-1}). 
 38.1 \ R^+ \cup (R \cap R^{-1}) = R^+ \cup R^s 
 38.2 \ R^{-1} \subseteq R^+ \cup R^s (Если R = R^{-1}, то R^{-1} = R^s, иначе R^{-1} \subseteq R^+ \boxtimes R^s) 
 Утверждение доказано.
```

2.39. Утверждение 39

```
Для полного отношения R^+ \subseteq R^{-1} и R^{-1} = R^+ \cup (\mathbf{R} \cap R^{-1}). 39.1 R — полно: \forall \mathbf{x}, \mathbf{y} \in \mathbf{G}: или \mathbf{x} \mathbf{R} \mathbf{y}, или \mathbf{y} \mathbf{R} \mathbf{x}, или и \mathbf{x} \mathbf{R} \mathbf{y} и \mathbf{y} \mathbf{R} \mathbf{x}. 39.2 R^{-1} = R^+ \cup (\mathbf{R} \cap R^{-1}) (см. 38, и R — полное по покрытию множества, потому равенство, а не включение, в R^+ нет элементов, не относящихся к R^{-1} ) 39.3 R^+ \subseteq R^{-1}, т.к. R^{-1} = R^+ \cup (\mathbf{R} \cap R^{-1}) и \mathbf{R} \cap R^{-1} \neq \varnothing, т.к. полное отношение по определению рефлексивно.
```