Lab 8: Software Engineering (IT314) Vivek Chaudhari 202201294

Q1. Consider a program for determining the previous date. Its input is triple of day, month and year with the following ranges 1 <= month <= 12, 1 <= day <= 31, 1900 <= year <= 2015. The possible output dates would be previous date or invalid date. Design the equivalence class test cases?

Write a set of test cases (i.e., test suite) – specific set of data – to properly test the programs. Your test suite should include both correct and incorrect inputs.

- Enlist which set of test cases have been identified using Equivalence Partitioning and Boundary Value Analysis separately.
- 2. Modify your programs such that it runs, and then execute your test suites on the program.

While executing your input data in a program, check whether the identified expected outcome (mentioned by you) is correct or not.

The solution of each problem must be given in the format as follows:

Equivalence Partitioning:

Tester Action and Input Data (Day, Month, Expected Outcome	
Year)	
Input: 15, 6, 2010 (Valid) Previous date: 14/6/2010	
Input: 1, 3, 2011 (Valid) Previous date: 28/2/2011	
Input: 32, 5, 2012 (Invalid day) Invalid date	
Input: 31, 13, 2014 (Invalid month) Invalid date	

Boundary Value Analysis:

Tester Action and Input Data (Day, Month,

Expected Outcome

Year)

Input: 1, 1, 2010 (Boundary case) Previous date: 31/12/2009

Input: 29, 2, 2012 (Leap year boundary case) Previous date: 28/2/2012

Input: 31, 12, 2015 (Boundary case) Previous date: 30/12/2015

Input: 1, 3, 2016 (Leap year boundary case) Previous date: 29/2/2016

Q2:

P1: Linear Search Program

Equivalence Partitioning:

Input: [5, 8, 12, 3], 8 Index 1

Input: [7, 10, 15, 19], 15 Index 2

Tester Action and Input Data (Array, Value) Expected Outcome

Input: [1, 2, 3], 4 -1 (not found)

Boundary Value Analysis:

Input: [], 5 (Empty array) -1 (not found)

Input: [1, 2, 3], 1 (First element) Index 0

Input: [1, 2, 3], 3 (Last element) Index 2

P2: Count items program

Equivalence Partitioning:

Tester Action and Input Data (Array, Value) Expected Outcome

Input: [5, 8, 12, 3], 8 1

Input: [7, 10, 15, 7, 7], 7 3

Input: [1, 2, 3], 4 0

Boundary Value Analysis:

Tester Action and Input Data (Array, Value) Expected Outcome

Input: [], 5 (Empty array) 0

Input: [5, 5, 5], 5 3

P3: Binary Search Program

Equivalence Partitioning:

Tester Action and Input Data (Sorted

Expected Outcome

Array, Value)

Input: [3, 6, 8, 12, 15], 8 Index 2

Input: [1, 2, 3, 4], 3 Index 2

Input: [5, 7, 9, 11], 10 -1 (not found)

Boundary Value Analysis:

Tester Action and Input Data (Sorted

Expected Outcome

Array, Value)

Input: [1, 3, 5, 7], 1 (First element) Index 0

Input: [1, 3, 5, 7], 7 (Last element) Index 3

Input: [1, 3, 5, 7], 2 (Not present) -1 (not found)

P4: Triangle Program(Integer Inputs)

Equivalence Partitioning:

Tester Action and Input Data (a, b, c) Expected Outcome	
Input: 3, 3, 3 Equilateral triangle	
Input: 5, 5, 3 Isosceles triangle	
Input: 6, 7, 8 Scalene triangle	
Input: 2, 5, 10 Invalid triangle	

Boundary Value Analysis:

Tester Action and Input Data (a, b, c) Expected Outcome	
Input: 1, 1, 2 Invalid triangle	
Input: 3, 4, 5 (Right-angled triangle) Scalene triangle	
Input: 6, 6, 10 Isosceles triangle	
Input: 2, 2, 4 Invalid triangle	

P5: Prefix Program

Equivalence Partitioning:

Tester Action and Input Data (String 1,	
	Expected Outcome
String 2)	
Input: "pre", "prefix" true	
Input: "sub", "substring" true	
Input: "app", "application" true	
Input: "miss", "mismatch" false	

Boundary Value Analysis:

Tester Action and Input Data (String 1,

Expected Outcome

String 2)

Input: "sub", "" (Empty string) false

Input: "", "substring" (Empty prefix) true

Input: "longstring", "short" (Longer prefix) false

P6: Triangle Program (Floating-Point Inputs)

- a) Equivalence Classes:
 - (a) Equilateral Triangle: All sides are equal (A = B = C).
 - (b) Isosceles Triangle: Two sides are equal, and the third is different $(A = B \neq C, A \neq B = C, A = C \neq B)$.
 - (c Scalene Triangle: All sides are different ($A \not= B \not= C$).
 - (d Right-Angled Triangle: Satisfies the Pythagorean theorem $(A^2 + B^2 = C^2)$. (e Non-Triangle: It cannot form a triangle $(A + B \le C, B + C \le A, C + A \le B)$.
- b) Extensive Test Cases:
 - (a) Equivalence Class: Equilateral Triangle
 - Test Case 1: A = 1, B = 1, C = 1 (Minimum positive values)
 - Test Case 2: A = 10, B = 10, C = 10 (Larger positive values)
 - (b) Equivalence Class: Isosceles Triangle
 - Test Case 3: A = 3, B = 3, C = 4 ($A = B \neq C$)
 - Test Case 4: A = 4, B = 3, C = 3 ($A \neq B = C$)
 - Test Case 5: A = 3, B = 4, C = 3 ($A = C \neq B$)
 - (c) Equivalence Class: Scalene Triangle
 - Test Case 6: A = 3, B = 4, C = 5 (Regular scalene triangle)
 - Test Case 7: A = 1, B = 2, C = 3 (Smallest positive values)
 - (d) Equivalence Class: Right-Angled Triangle
 - Test Case 8: A = 3, B = 4, C = 5 ($A^2 + B^2 = 9 + 16 = 25 = C^2$)
 - Test Case 9: A = 5, B = 12, C = 13 (Another right-angled triangle) (e)

Equivalence Class: Non-Triangle

- Test Case 10: A = 1, B = 2, C = 6 (A + B = 3 < C)
 - Test Case 11: A = 0, B = 0, C = 0 (All sides are zero)
- Test Case 12: A = 1, B = 1, C = 2 (A + B = 2 = C)
- c) Boundary Condition A + B > C (Scalene Triangle):
 - (a) Test Case 13: A = 3, B = 4, C = 6 (A + B = 7 > C)
 - (b) Test Case 14: A = 1, B = 1, C = 2 (A + B = 2 < C)

- d) Boundary Condition A = C (Isosceles Triangle):
 - (a) Test Case 15: A = 5, B = 4, C = 5 (A = C)
 - (b) Test Case 16: A = 1, B = 1, C = 2 ($A \neq C$)
- e) Boundary Condition A = B = C (Equilateral Triangle):
 - (a) Test Case 17: A = 4, B = 4, C = 4 (A = B = C)
 - (b) Test Case 18: A = 1, B = 2, C = 3 ($A \not= B \not= C$)
- f) Boundary Condition $A^2 + B^2 = C^2$ (Right-Angled Triangle):
 - (a) Test Case 19: A = 3, B = 4, C = 5 ($A^2 + B^2 = 9 + 16 = 25 = C^2$)
 - (b) Test Case 20: A = 7, B = 24, C = 25 (Another right-angled triangle)or Non-Triangle Case (Boundary Exploration):
 - (c) Test Case 21: A = 1, B = 2, C = 3 (A + B = 3 < C)
 - (d) Test Case 22: A = 0, B = 0, C = 1 (A and B are zero, A + B = 0 < C) (e)

Test Case 23: A = 1, B = 1, C = 3 (A + B = 2 < C)

- g) For Non-Positive Input (Boundary Exploration):
 - (a) Test Case 24: A = -1, B = 2, C = 3 (A is non-positive)
 - (b) Test Case 25: A = 1, B = -2, C = 3 (B is non-positive)
 - (c) Test Case 26: A = 1, B = 2, C = -3 (C is non-positive)
 - (d) Test Case 27: A = 0, B = 2, C = 3 (A is zero)
 - (e) Test Case 28: A = 1, B = 0, C = 3 (B is zero)
 - (f) Test Case 29: A = 1, B = 2, C = 0 (C is zero)