3,809 00280677aa Reply to office action mailed 4/27/2004

2

The following is a complete listing of all claims in the application, with an indication of the status of each:

Listing of claims:

2

comprises the steps of:

1 1. (currently amended) A method for making prioritized recommendations to 2 a customer in the process of filling a market basket for purchase on an Internet commerce site, the method comprising the steps of: 3 generating a matrix of training data; 4 5 considering determining preferences based on associative and renewal buying history from the training data; and 6 7 making a prioritized recommendation of items so as to maximize the 8 likelihood that the customer will add to the market basket those items with 9 higher priorities. 2. (original) The method of claim 1, wherein the two preferences are 1 2 estimated separately from the training data and combined in proper 3 proportions to obtain an overall preference for item not yet in the market basket. 4 1 3. (canceled) A method for making prioritized recommendations to a 2 customer in the process of filling a market basket for purchase on an Internet commerce site, the method comprising the steps of: 3 4 collecting statistics from training data; 5 precomputing model parameters from the collected statistics; and recommending ordering for a given partial market basket based on the 6 7 precomputed model parameters. 1 4. (canceled) The method of claim 3, wherein the step of collecting statistics

Reply to office action mailed 4/27/2004

3

- 3 (a) for each item j, obtaining n_i a number of baskets with item j purchased;
- 4 (b) for each item j, obtaining n'_j a number of baskets with j being a sole item purchased;
- 6 (c) for each pair of items *i* and *j*, obtaining a number of market baskets n_{ji} with items *j* and *i* purchased together; and
- 8 (d) for each pair of items i and j, obtaining a number of market baskets n_{ji} with items i and j being the only two items purchased.
- 5. (canceled) The method of claim 4, wherein the step of precomputing model parameters comprises the steps of:

3 (a) computing
$$P(\text{renewal}) = \frac{\sum_{k} n_{k}'}{\sum_{k} n_{k}};$$

- 4 (b) for each item j, computing $P(j) = \frac{n_j}{\sum_k n_k}$;
- 5 (c) for each item j, computing $\mathbf{P}(\text{renewal} \mid j) = \frac{n_j'}{n_j} + \mathbf{P}(\text{renewal}) \left(1 \frac{n_j'}{n_j}\right)$

6 ;

- 7 (d) for each item j, computing
- 8 $P'(j \mid \text{renewal}) = P(\text{renewal} \mid j) \times \frac{P(j)}{P(\text{renewal})};$
- 9 (e) for each pair of items i and j with $n_{ij} \neq 0$, computing

$$\mathbf{P}(j \mid i) = \frac{n_{ji}}{\sum_{k} n_{ki}};$$

Reply to office action mailed 4/27/2004

4

11 (f) for each pair of items i and j with $n_{ij} \neq 0$, computing

12
$$\mathbf{P}(\text{renewal} \mid j,i) = \frac{n_{ji}'}{n_{ji}} + \mathbf{P}(\text{renewal}) \left(1 - \frac{n_{ji}'}{n_{ji}}\right) ; \text{ and }$$

13 (g) for each pair of items i and j with $n_{ij} \neq 0$, computing

14
$$\mathbf{P}'(j \mid \text{asso},i) = \mathbf{P}(j \mid i) \times \frac{(1-\mathbf{P}(\text{renewal } \mid j,i))}{(1-\mathbf{P}(\text{renewal } \mid i))}.$$

- 6. (canceled) The method of claim 5, wherein given a partial basket $\mathbf{B} = \{i_1, \dots, i_n\}$
- 2 i_2, \ldots, i_k and $\overline{\mathbf{B}}$ is a complementary set of items not in \mathbf{B} , the step of
- recommending ordering for a given partial market basket comprises the steps
- 4 of:

5

- (a) if **B** is empty, sorting items in order of decreasing P(j | renewal) and returning this as an item preference ordering;
- 7 (b) if **B** is non-empty, then
- 8 (i) computing $\mathbf{P}(\text{renewal} \mid \mathbf{B}) = \min_{i \in \mathbf{B}} \mathbf{P}(\text{renewal} \mid i_k)$;
- 9 (ii) compute a normalization factor $\sum_{k \in \overline{\mathbf{B}}} \mathbf{P}'(k \mid \text{renewal})$;
- 10 (iii) for each item $j \in \overline{\mathbf{B}}$, computing

11
$$\mathbf{P}(j \mid \text{renewal}) = \frac{\mathbf{P}'(j \mid \text{renewal})}{\sum_{k \in \overline{\mathbf{B}}} \mathbf{P}'(k \mid \text{renewal})};$$

- (iv) computing a normalization factor $\sum_{k \in \overline{B}} \mathbf{P}'(j \mid asso, \mathbf{B})$;
- (v) for each item $j \in \overline{\mathbf{B}}$, computing
- $\mathbf{P}'(j \mid \mathsf{asso}, \mathbf{B}) = \mathsf{max}_{i_k \in \mathbf{B}} \mathbf{P}(j \mid \mathsf{asso}, i_k) ;$

S/N: 09/773,809 00280677aa Reply to office action mailed 4/27/2004

15	(vi) for each item $j \in \overline{\mathbf{B}}$, computing
16	$\mathbf{P}(j \mid \mathrm{asso},\mathbf{B}) = \frac{\mathbf{P}'(j \mid \mathrm{asso},\mathbf{B})}{\sum_{k \in \overline{\mathbf{B}}} \mathbf{P}'(k \mid \mathrm{asso},\mathbf{B})};$
17	(vii) for each item $j \in \overline{\mathbf{B}}$, computing
18 19	P(j B) = P(j asso,B)P(asso B)+P(j renewal,B)P(renewal B); and
20 21	(viii) sorting items in order of decreasing $P(j B)$ and returning this as an item preference ordering.
1	7. (canceled) The method of claim 6, wherein the step of sorting comprises
2	the step of using a final probability obtained for each item, $P(j B)$, of a
3	customer buying the item to maximize profit by recommendation.
1	8. (canceled) The method of claim 7, wherein the step of using a final
2	probability of an item to maximize profit comprises the steps of:
3	assigning a profit amount, \$, to each item;
4	computing $P(j B)$ \$, for each item; and
5	ranking recommendations based on the computation of $P(j B)$ for
6	each item.
1	9. (new) A method for making prioritized recommendations to a customer in
2	the process of filling a market basket for purchase on an Internet commerce
3	site, the method comprising the steps of:
4	collecting statistics on preferences for associative and renewal buying
5	from training data;
6	precomputing model parameters from the collected statistics; and
7	recommending ordering for a given partial market basket based on the
8	precomputed model parameters.

6 7

8

9

7

Reply to office action mailed 4/27/2004

- 1 10. (new) The method of claim 9, wherein the step of collecting statistics 2 comprises the steps of:
- 3 (a) for each item j, obtaining n_j a number of baskets with item j purchased;
- 4 (b) for each item j, obtaining n_j a number of baskets with j being a sole 5 item purchased;
 - (c) for each pair of items i and j, obtaining a number of market baskets n_{ii} with items j and i purchased together; and
 - (d) for each pair of items i and j, obtaining a number of market baskets n_{ii} with items i and j being the only two items purchased.
- 1 11. (new) The method of claim 10, wherein the step of precomputing model 2 parameters comprises the steps of:
- (a) computing $\mathbf{P}(\text{renewal}) = \frac{\sum_{k} n_{k}'}{\sum_{k} n_{k}}$; 3
- (b) for each item j, computing $P(j) = \frac{n_j}{\sum_{i} n_k}$; 4
- (c) for each item j, computing $\mathbf{P}(\text{renewal} \mid j) = \frac{n_j'}{n_i} + \mathbf{P}(\text{renewal}) \left(1 \frac{n_j'}{n_i}\right)$ 5
- 6 (d) for each item j, computing
- $\mathbf{P}'(j \mid \text{renewal}) = \mathbf{P}(\text{renewal} \mid j) \times \frac{\mathbf{P}(j)}{\mathbf{P}(\text{renewal})};$ 8
- (e) for each pair of items i and j with $n_{ij} \neq 0$, computing 9

10
$$\mathbf{P}(j \mid i) = \frac{n_{ji}}{\sum_{k} n_{ki}};$$

Reply to office action mailed 4/27/2004

7

11 (f) for each pair of items i and j with $n_{ij} \neq 0$, computing

12
$$\mathbf{P}(\text{renewal} \mid j,i) = \frac{n_{ji}'}{n_{ji}} + \mathbf{P}(\text{renewal}) \left(1 - \frac{n_{ji}'}{n_{ji}}\right) ; \text{ and }$$

(g) for each pair of items i and j with $n_{ij} \neq 0$, computing

14
$$\mathbf{P}'(j \mid \text{asso},i) = \mathbf{P}(j \mid i) \times \frac{(1-\mathbf{P}(\text{renewal} \mid j,i))}{(1-\mathbf{P}(\text{renewal} \mid i))}.$$

- 1 12. (new) The method of claim 11, wherein given a partial basket $\mathbf{B} = \{i_1, i_2, ...\}$
- 2 ..., i_k and $\overline{\mathbf{B}}$ is a complementary set of items not in \mathbf{B} , the step of
- recommending ordering for a given partial market basket comprises the steps
- 4 of:

5

- (a) if **B** is empty, sorting items in order of decreasing P(j | renewal) and returning this as an item preference ordering;
- 7 (b) if \mathbf{B} is non-empty, then
- 8 (i) computing $\mathbf{P}(\text{renewal} \mid \mathbf{B}) = \min_{i_k \in \mathbf{B}} \mathbf{P}(\text{renewal} \mid i_k)$;
- 9 (ii) compute a normalization factor $\sum_{k \in \overline{\mathbf{B}}} \mathbf{P}'(k \mid \text{renewal})$;
- 10 (iii) for each item $j \in \overline{\mathbf{B}}$, computing

11
$$\mathbf{P}(j \mid \text{renewal}) = \frac{\mathbf{P}'(j \mid \text{renewal})}{\sum_{k \in \overline{\mathbf{B}}} \mathbf{P}'(k \mid \text{renewal})};$$

- (iv) computing a normalization factor $\sum_{k \in \mathbb{R}} \mathbf{P}'(j \mid asso, \mathbf{B})$;
- 13 (v) for each item $j \in \overline{\mathbf{B}}$, computing
- 14 $\mathbf{P}'(j \mid \mathrm{asso}, \mathbf{B}) = \mathrm{max}_{i_k \in \mathbf{B}} \mathbf{P}(j \mid \mathrm{asso}, i_k) ;$

Reply to office action mailed 4/27/2004

8

15 for each item $j \in \overline{\mathbf{B}}$, computing (vi) $\mathbf{P}(j \mid \mathrm{asso},\mathbf{B}) = \frac{\mathbf{P}'(j \mid \mathrm{asso},\mathbf{B})}{\sum_{k \in \overline{\mathbf{B}}} \mathbf{P}'(k \mid \mathrm{asso},\mathbf{B})};$ 16 for each item $j \in \overline{\mathbf{B}}$, computing 17 (vii) P(j|B) = P(j | asso,B)P(asso | B)+P(j | renewal,B)P(renewal | B);18 19 and 20 (viii) sorting items in order of decreasing $P(j \mid B)$ and returning this 21 as an item preference ordering. 1 13. (new) The method of claim 12, wherein the step of sorting comprises the 2 step of using a final probability obtained for each item, P(i | B), of a customer 3 buying the item to maximize profit by recommendation. 1 14. (new) The method of claim 13, wherein the step of using a final 2 probability of an item to maximize profit comprises the steps of: 3 assigning a profit amount, \$,, to each item; 4 computing P(j | B), for each item; and ranking recommendations based on the computation of $P(j \mid B)$ \$, for 5 6 each item.