Weightwise Almost Perfectly Balanced Functions, Construction From A Permutation Group Action View.

No Author Given

No Institute Given

Abstract.

1 Introduction

2 Preliminaries

Let \mathbb{F}_2^n be the vector space of dimension n over the binary field \mathbb{F}_2 . For any two vectors $a = (a_1, a_2, \dots, a_n)$ and $b = (b_1, b_2, \dots, b_n)$ in \mathbb{F}_2^n , the dot product is defined as $a \cdot b = a_1b_1 + a_2b_2 + \dots + a_nb_n \mod 2$.

A Boolean function of n variables is a map from \mathbb{F}_2^n to \mathbb{F}_2 and \mathcal{B}_n is the set of all n-variable Boolean functions. The 2^n -length binary sequence $(f(v_0), f(v_1), \dots, f(v_{2^n-1}))$ is called as the truth table of the Boolean function f, it corresponds to the ordered vectors of \mathbb{F}_2^n as $v_0 = (0, 0, \dots, 0), v_1 = (0, 0, \dots, 1), \dots, v_{2^n-1} = (1, 1, \dots, 1)$. The Hamming weight of a vector $x \in \mathbb{F}_2^n$, denoted by $\mathsf{w}_\mathsf{H}(x)$, is the number nonzero coordinates (i.e., 1s) in the vector x. The support of $f \in \mathcal{B}_n$, denoted by $\mathsf{supp}(f) = \{x \in \mathbb{F}_2^n : f(x) = 1\}$. Therefore, the Hamming weight of the Boolean function f, is cardinality of $\mathsf{supp}(f)$ and is denoted by $\mathsf{w}_\mathsf{H}(f)$. The function f is called balanced if $\mathsf{w}_\mathsf{H}(f) = 2^{n-1}$. Let $f(x), g(x) \in \mathcal{B}_n$, then The Hamming distance between two Boolean functions $f, g \in \mathcal{B}_n$ is defined by $\mathsf{d}_\mathsf{H}(f,g) = |\{x \in \mathbb{F}_2^n : f(x) \neq g(x)\}|$ i.e., $\mathsf{d}_\mathsf{H}(f,g) = \mathsf{w}_\mathsf{H}(f+g)$.

An *n*-variable Boolean function f can be expressed as a polynomial in the ring $\mathbb{F}_2[x_1, x_2, \dots, x_n]/< x_1^2 + x_1, x_2^2 + x_2, \dots, x_n^2 + x_n >$, i.e. $f(x) = \sum_{u \in \mathbb{F}_2^n} c_u x^{u_1} x^{u_2} \cdots x^{u_n}$, where c_u are the coefficients with a value

in \mathbb{F}_2 . It is called as the algebraic normal form or ANF and the number of variables in the highest order monomial with nonzero coefficient is called the *algebraic degree* of the function f, and denoted as $\deg(f)$. A function f is called as affine function if $f(x) = a \cdot x + b$ for $a \in \mathbb{F}_2^n$ and $b \in \mathbb{F}_2$. If b = 0, then f is also called a linear Boolean function. \mathcal{A}_n denotes the set of all n-variable affine functions.

Definition 1 (Walsh-Hadamard Transform). The Walsh-Hadamard transform of a function on \mathbb{F}_2^n is the map $W_f : \mathbb{F}_2^n \to \mathbb{R}$, defined by

$$W_f(w) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + w \cdot x}.$$

Definition 2 (Nonlinearity). The nonlinearity of $f \in \mathcal{B}_n$ denoted as $\mathsf{NL}(f)$, is the minimum Hamming distance of f to any affine function. That is, $\mathsf{NL}(f) = \min_{g \in \mathcal{A}_n} \mathsf{d}_\mathsf{H}(f,g)$. It can be verified that $\mathsf{NL}(f) = 2^{n-1} - \frac{1}{2} \max_{w \in \mathbb{F}_2^n} |W_f(w)|$.

We denote $\mathsf{E}_{k,n} = \{x \in \mathbb{F}_2^n : \mathsf{w}_\mathsf{H}(x) = k\}$ and $\mathsf{w}_{k,n}(f) = |\{x \in \mathsf{E}_{k,n} : f(x) = 1\}| = |\mathsf{supp}(f) \cap \mathsf{E}_{k,n}|$. Accordingly, the Hamming distance of two functions $f,g \in \mathcal{B}_n$ on $\mathsf{E}_{k,n}$ denoted as $d_{k,n}(f,g) = |\{x \in \mathsf{E}_{k,n} : f(x) \neq g(x)\}|$. The cryptographic criteria like balancedness, nonlinearity and algebraic immunity of a function f defined over \mathbb{F}_2^n can also be defined, if we restrict f to the set $\mathsf{E}_{k,n}$. For two integers m,n with $m \leq n$, we define $[m,n] = \{m,m+1,\ldots,n\}$.

Definition 3 (Weightwise Almost Perfectly Balanced (WAPB)). A Boolean function $f \in \mathcal{B}_n$ is said to be weightwise almost perfectly balanced (WAPB) if for all $k \in [0, n]$,

$$\mathsf{w}_{k,n}(f) = \begin{cases} \frac{\binom{n}{k}}{2} & \text{if } \binom{n}{k} \text{ is even,} \\ \frac{\binom{n}{k} \pm 1}{2} & \text{if } \binom{n}{k} \text{ is odd.} \end{cases}$$

Definition 4 (Weightwise Perfectly Balanced (WPB)). A Boolean function $f \in \mathcal{B}_n$ is said to be weightwise perfectly balanced (WPB) if for all $k \in [1, n-1]$,

$$\mathsf{w}_{k,n}(f) = \frac{\binom{n}{k}}{2},$$

and $f(0,0,\ldots,0) = 0 = 1 + f(1,1,\ldots,1)$.

Using Lucas' Theorem [Fin47], we have that a WPB function exists only if, n is a power of 2. Hence, there are $\prod_{k=1}^{n-1} \binom{\binom{n}{k}}{\binom{n}{k}/2}$ WPB Boolean functions.

Definition 5 (Restricted Walsh Transform). Let f be an n-variable Boolean function, then its Walsh transform $W_{f,k}(a)$ is defined as:

$$\mathcal{W}_{f,k}(a) = \sum_{x \in \mathsf{E}_{k,n}} (-1)^{f(x) + a \cdot x}.$$

Definition 6 (Weightwise Nonlinearity). The nonlinearity of $f \in \mathcal{B}_n$ over $\mathsf{E}_{k,n}$, denoted as $\mathsf{NL}_k(f)$, is the Hamming distance of f to the set of all affine functions \mathcal{A}_n when evaluated over $\mathsf{E}_{k,n}$. That is, $\mathsf{NL}_k(f) = \min_{g \in \mathcal{A}_n} d_{k,n}(f,g) = \min_{g \in \mathcal{A}_n} \mathsf{w}_{k,n}(f+g)$.

The following identity and upper bound on the nonlinearity of a Boolean function over $\mathsf{E}_{k,n}$ can be derived. The upper bound is further improved by Mesnager et al. in [MZD18].

Lemma 1 ([CMR17], Propositions 4 and 5). If $f \in \mathcal{B}_n$ then for $k \in [0, n]$,

$$NL_k(f) = \frac{|E_{k,n}|}{2} - \frac{1}{2} \max_{a \in \mathbb{F}_2^n} |\mathcal{W}_{f,k}(a)|, \text{ and }$$

$$\mathsf{NL}_k(f) \leq \frac{1}{2}[|\mathsf{E}_{k,n}| - \sqrt{|\mathsf{E}_{k,n}|}] = \frac{1}{2}[\binom{n}{k} - \sqrt{\binom{n}{k}}].$$

Definition 7 (Algebraic immunity and weightwise algebraic immunity). The algebraic immunity of a Boolean function $f \in \mathcal{B}_n$, denoted as AI(f), is defined as:

$$\mathsf{AI}(f) = \min_{g \neq 0} \{ \mathsf{deg}(g) \mid fg = 0 \ or \ (f+1)g = 0 \},$$

where deg(g) is the algebraic degree of g. The function g is called an annihilator of f (or f+1). The weightwise algebraic immunity of $f \in \mathcal{B}_n$ for $k \in [0, n]$, denoted as $Al_k(f)$, is defined as:

$$\mathsf{AI}_k(f) = \min_{g \neq 0 \ over} \mathsf{E}_{k,n} \{ \mathsf{deg}(g) \mid fg = 0 \ or \ (f+1)g = 0 \}.$$

Definition 8 (Krawtchouk Polynomial). For a positive integer n, the Krawtchouk polynomial [MS78, Page 151] of degree k is given by

$$\mathsf{K}_{k}(x,n) = \sum_{j=0}^{k} (-1)^{j} \binom{x}{j} \binom{n-x}{k-j} \text{ for } k = 0, 1, \dots n.$$

We have listed some nice properties of the Krawtchouk Polynomials from [DMS06] which are useful for proving some later results.

Proposition 1. 1. $K_0(l, n) = 1, K_1(l, n) = n - 2l.$

- 2. $\mathsf{K}_k(l,n) = (-1)^l \mathsf{K}_{n-k}(l,n)$ (that implies, $\mathsf{K}_{\frac{n}{2}}(l,n) = 0$ for n even and l odd).
- 3. $\mathsf{K}_k(l,n) = (-1)^k \mathsf{K}_k(n-l,n)$, (that implies, $\mathsf{K}_k(\frac{n}{2},n) = 0$ for n even and k odd).
- 4. For n odd, $|\mathsf{K}_k(1,n)| \ge |\mathsf{K}_k(l,n)|$ where $0 \le k \le n$ and $1 \le l \le n-1$,
- 5. For n even, $|\mathsf{K}_k(1,n)| \ge |\mathsf{K}_k(l,n)|$ where $0 \le k \le n$ and $1 \le l \le n-1$ except $k = \frac{n}{2}$ or $l = \frac{n}{2}$.

Further from the results in [DMS06, GM22], the following relations can be derived.

Theorem 1 (Krawtchouk Polynomials relations). For integers n > 0, $0 \le k \le n$ and fixed $a \in \mathbb{F}_2^n$ such that $w_H(a) = \ell$, the following relations hold.

- 1. $\sum_{x \in \mathsf{E}_{k,n}} (-1)^{a.x} = \mathsf{K}_k(\ell,n).$
- 2. If $l_{a,b}(x) = a \cdot x + b$, where $a \in \mathbb{F}_2^n$, $b \in \mathbb{F}_2$, be an affine Boolean function then

$$\mathsf{w}_{k,n}(l_{a,b}) = \frac{1}{2}(|\mathsf{E}_{k,n}| - (-1)^b \mathsf{K}_k(\ell,n)).$$

Definition 9 (Rotation Symmetric Boolean function). A Boolean function f is rotation symmetric (RotS) if and only if for any $(x_1, x_2, ..., x_n) \in \mathbb{F}_2^n$,

$$f(\rho_n^k(x_1, x_2, \dots, x_n)) = f(x_1, x_2, \dots, x_n)$$

for every $1 \leq k \leq n$ where ρ_n is a cyclic shift permutation on n-elements i.e., $\rho_n(x_1, x_2, \dots, x_n) = (x_2, x_3, \dots, x_n, x_1)$ and $\rho_n^k = \rho_n \circ \rho_n^{k-1}$ for k > 1 i.e., the composition of ρ_n k times. Therefore, RotS Boolean functions have the same truth value for all vectors in every orbit obtained by the action of permutation group $\langle \rho_n \rangle$ on \mathbb{F}_2^n .

Let denote $P=\langle \rho_n\rangle$ be the cyclic permutation group generated by the permutation ρ_n . Applying Burnside's lemma, we can have the number of orbits obtained due the action of P on \mathbb{F}_2^n is $g_n=\frac{1}{n}\sum_{t|n}\phi(t)2^{n/t}$ [SM08]. Let $\mathcal{O}=\{\mathsf{O}_1,\mathsf{O}_2,\ldots,\mathsf{O}_{g_n}\}$ be the set of orbits obtained due the action of P on \mathbb{F}_2^n . An orbit leader/representative ν_0 is chosen for each orbit $\mathsf{O}\in\mathcal{O}$. The representatives can be chosen using some ordering, for example it may be the lexicographically smallest element in the orbit.

Definition 10 (2-Rotation Symmetric Boolean function). A Boolean function f is 2-rotation symmetric (2-RotS) if and only if for every orbit $O \in \mathcal{O}$ with representative element ν ,

$$f(\rho_n^{2i+1}(\nu)) = f(\nu); \quad f(\rho_n^{2i}(\nu)) = f(\nu) + 1 \text{ for every } 1 \le i \le \lfloor \frac{|\mathsf{O}|}{2} \rfloor.$$

Therefore, 2-RotS Boolean functions have the alternative truth value for the lexicographically ordered vectors in every orbit obtained by the action of permutation group P on \mathbb{F}_2^n . As example, a 2-RotS Boolean function on n=5 satisfies f(00001)=f(00100)=f(10000) and f(00010)=f(01000)=1+f(00001) for the orbit $\{00001,00010,\ldots,10000\}$ with representative 00001.

A construction of a class of 2-RotS WPB Boolean functions is presented by Liu and Mesnager [LM19].

Proposition 2. [LM19] For a Boolean function $f \in \mathcal{B}_n$ with n is power of 2, if $f(x^2) = f(x) + 1$ holds for all $x \in \mathbb{F}_{2^n} \setminus \{0,1\}$, then f is WPB.

Since, n is the power of 2 in the construction proposed in Proposition 2, the cardinality of all orbits in $\mathbb{F}_{2^n} \setminus \{0,1\}$ are even. Therefore, $f(x^2) = f(x) + 1, x \in \mathbb{F}_{2^n} \setminus \{0,1\}$ is well defined and hence, the truth value 1 and 0 can be assigned alternatively to the half of the vectors in the each orbit. This can not be assigned when n is not a power of 2 as there are some orbits with cardinality odd and hence the $f(x^2) = f(x) + 1$ can not be defined. However, we have proposed an generalization of this concept to construct WAPB Boolean function on any n where n is a natural number in Section 4.

3 Construction of WAPB Boolean functions using Group action

In this section we will present a construction of 2-RotS WAPB Boolean functions using a cyclic permutation group action. Let $G = \langle \pi \rangle$ be a cyclic subgroup of the symmetric group \mathbb{S}_n on n elements. Let the group action of G on \mathbb{F}_2^n partitions the set into g_n number of orbits. The orbit generated by $x \in \mathbb{F}_2^n$ is denoted as $O_{\pi}(x) = \{g(x) : g \in G\} = \{x, \pi(x), \pi^2(x), \dots, \pi^{l-1}(x)\}$ where l is the order of the permutation π . As $\mathsf{w}_{\mathsf{H}}(\pi^i(x)) = \mathsf{w}_{\mathsf{H}}(x)$ for $1 \leq i \leq l-1$, the group action G splits each $\mathsf{E}_{k,n}$ into orbits and let $g_{k,n}$ be the number of orbits in $\mathsf{E}_{k,n}$. Denote $\nu_{k,n,i}$ be the orbit representative of i-th orbit $\mathsf{E}_{k,n}$ with some ordering. The construction of 2-RotS WAPB Boolean functions is presented in Construction 1.

```
Construction 1 Construction of 2-RotS WAPB Boolean function
```

```
Input: \pi \in \mathbb{S}_n
Output: A 2-RotS WAPB Boolean function f_{\pi} \in \mathcal{B}_n
   Initiate supp(f_{\pi}) = \phi
   t = 0
   for k \leftarrow 0 to n do
        for i \leftarrow 1 to g_{k,n} do
             u = \nu_{k,n,i}; l = |O_{\pi}(u)|
             if l is even then
                  for j \leftarrow 1 to \frac{l}{2} do
                       supp(f_{\pi}).append(u)
                       u \leftarrow \pi \circ \pi(u)
                  end for
             else
                  u = \pi^t(u)
                  for j \leftarrow 1 to \lceil \frac{l-t}{2} \rceil do
                       supp(f_{\pi}).append(u)
                       u \leftarrow \pi \circ \pi(u)
                  end for
                  Update t \leftarrow 1 - t
             end if
        end for
   end for
   return f_{\pi}
```

Construction 1 ensures a balanced WAPB Boolean function. The binary variable t indicates whether the partially constructed is balanced (when t = 0) or having an extra 1 (when t = 1) during each iteration of orbits.

Example 1. Consider n=5 and the permutation $\pi=\rho_n$ is the cyclic rotation. Then considering the orbits with representatives 00000,00001,00011,00101,00111,01011,01111,11111, we have the resultant function $f_{\rho_n} \in \mathcal{B}_5$ of Construction 1 as

```
\begin{aligned} \mathsf{supp}(f_{\rho_n}) = & \{00000, 00010, 01000, 00011, 01100, 10001, 01010, 01001, \\ & 00111, 11100, 10011, 10110, 11010, 01111, 11101, 10111\}. \end{aligned}
```

is a 2-RotS WAPB Boolean function.

Theorem 2. Nonlinearity and Weightwise nonlinearity bound.

4 Extending Liu-Mesnager construction [LM19] for WAPB Boolean function

In this section, we present a class of 2-RotS WAPB Boolean function which is a special case of the construction presented in Section 3. This construction extends the idea of Liu-Mesnager construction [LM19] to generate WAPB Boolean functions. As Liu-Mesnager construction outputs a WPB Boolean function, the form of n (the number of variable) needs to be a power of 2. However, in our case, the number of variables n can be any positive integer for generating a WAPB Boolean functions. Let n be a positive integer with binary representation as

$$n = n_1 + n_2 + \dots + n_w$$
 where $n_1 = 2^{a_1}, n_2 = 2^{a_2}, \dots, n_w = 2^{a_w}$ and $0 \le a_1 < a_2 < \dots < a_w$. (1)

We denote $w_H(n) = w$ i.e., the number of 1's in the binary representation of n. Consider the cyclic subgroup $G = \langle \psi \rangle$ of the symmetric group \mathbb{S}_n , where the disjoint cycle form of ψ contains cycles of length n_1, n_2, \ldots, n_w . Without loss of generality, we consider

$$\psi = (x_1, x_2, \dots, x_{n_1})(x_{n_1+1}, x_{n_1+2}, \dots, x_{n_1+n_2}) \cdots (x_{n-n_m+1}, x_{n-n_m+2}, \dots, x_n). \tag{2}$$

Hence, for $x = (x_1, x_2, \dots, x_n)$, we have

$$\psi(x) = (\rho_{n_1}(x_1, \dots, x_{n_1}), \rho_{n_2}(x_{n_1+1}, \dots, x_{n_1+n_2}), \dots, \rho_{n_w}(x_{n-n_w+1}, \dots, x_n))$$
(3)

where ρ_{n_i} is the cyclic shift permutation on n_i elements. Here, $ord(\psi) = 2^{a_w} = n_w$. Hence, the cardinality of orbits obtained due the action of G on \mathbb{F}_2^n are of power of 2 i.e., $|O_{\psi}(x)| = 2^l$ where $0 \le l \le a_w$ for $x \in \mathbb{F}_2^n$. Hence, there are some orbits of cardinality 1 and the rest are of even cardinality.

Lemma 2. Let n be a positive integer and $\psi \in \mathbb{S}_n$ as in Equation 2. Then there are 2^w orbits of cardinality 1 where $w = \mathsf{w}_\mathsf{H}(n)$.

Proof. For a vector $x \in \mathbb{F}_2^n$ is having an orbit of cardinality 1 i.e., $|O_{\psi}(x)| = 1$ if and only if the coordinates of x present in the cycles are of same value i.e.,

$$x_1 = x_2 = \dots = x_{n_1};$$

 $x_{n_1+1} = x_{n_1+2} = \dots = x_{n_1+n_2};$
 \vdots
 $x_{n-n_w+1} = x_{n-n_w+2} = \dots = x_n.$ (4)

As each partition of coordinates can be either 0 or 1, there are 2^w vectors x in \mathbb{F}_2^n satisfying Equation 4 and hence $|O_{\psi}(x)| = 1$.

Since every orbit contains the vectors of same weight, we denote the weight of an orbit is the weight of vectors in the orbit i.e, $\mathsf{w}_\mathsf{H}(O_\psi(x)) = \mathsf{w}_\mathsf{H}(x)$ for $x \in \mathbb{F}_2^n$. Further, for $x = (x_1, x_2, \ldots, x_n), y = (y_1, y_2, \ldots, y_n) \in \mathbb{F}_2^n$, we say y covers x (i.e., $x \leq y$), if $x_i \leq y_i, \forall 1 \leq i \leq n$ i.e., $y_i = 1$ if $x_i = 1, \forall 1 \leq i \leq n$. Similarly, given two positive integers n and k with binary representation $n = 2^{a_1} + 2^{a_2} + \cdots + 2^{a_w}$ and $k = 2^{b_1} + 2^{b_2} + \cdots + 2^{b_t}$, we denote $k \leq n$ if $\{b_1, b_2, \ldots, b_t\} \subseteq \{a_1, a_2, \ldots, a_w\}$.

Lemma 3. Let n be a positive integer and $\psi \in \mathbb{S}_n$ as in Equation 2. For $k \in [0, n]$, the number of orbits of weight k and cardinality 1 is 1 if $k \leq n$, otherwise it is 0.

Proof. Let $k = 2^{b_1} + 2^{b_2} + \cdots + 2^{b_t}$ where $0 \le b_1 < b_2 < \cdots < b_t$.

Case I: Let $k \leq n$ i.e., $\{b_1, b_2, \dots, b_t\} \subseteq \{a_1, a_2, \dots, a_w\}$. Since the only way of writing k as sum of powers of 2 is $k = 2^{b_1} + 2^{b_2} + \dots + 2^{b_t}$ and satisfying the condition in Equation 4, there is only one vector x with $\mathsf{w}_\mathsf{H}(x) = k$ and $|O_\psi(x)| = 1$. In this case, the coordinates of x in the partitions of cardinality $2^{b_1}, 2^{b_2}, \dots, 2^{b_t}$ are having value 1 and other coordinates have value 0.

Case II: Let $k \not \leq n$, then $\{b_1, b_2, \dots, b_t\} \not \subseteq \{a_1, a_2, \dots, a_w\}$. Therefore, if $\mathsf{w}_\mathsf{H}(x) = k$, the nonzero coordinates of x can not be partitioned of (distinct) sizes from the set $\{2^{a_1}, 2^{a_2}, \dots, 2^{b_w}\}$. As a result, the coordinates of x will not satisfy the Equation 4. Hence, $|O_\psi(x)| > 1$. Hence, in this case there is no orbit of weight k and cardinality 1.

Let denote \mathcal{O} be the set of all orbits due the action of ψ on \mathbb{F}_2^n . Further, we denote \mathcal{O}_o be the set of orbits of odd cardinality (i.e., here 1) and \mathcal{O}_e be the set of orbits of even cardinality. Since the cardinality of all orbits of carinality odd is 1, abusing the notation, we also denote \mathcal{O}_o as the set of all vectors belonging in the orbits of cardinality odd. Hence from Equation 4, $\mathcal{O}_o = \{(x_1, x_2, \cdots, x_n) \in \mathbb{F}_2^n : x_1 = x_2 = \cdots = x_{n_1}; x_{n_1+1} = x_{n_1+2} = \cdots = x_{n_1+n_2}; \cdots; x_{(n-n_w)+1} = x_{(n-n_w)+2} = \cdots = x_n\}$. For example, if n = 6, there are there are $2^{\mathsf{w}_{\mathsf{H}}}(6) = 2^2 = 4$ orbits of weight 1 and $\mathcal{O}_o = \{000000, 000011, 111100, 111111\}$.

By choosing such permutation ψ for Construction 1, we have every slice $\mathsf{E}_{k,n}$, $0 \le k \le n$, contains at most one orbit of odd cardinality (and i.e., 1). Therefore, it becomes easy to construct 2-RotS WAPB Boolean functions as other orbits are of even cardinality. Hence, we have the following result.

Proposition 3. Let n be a positive integer and $\psi \in \mathbb{S}_n$ as in Equation 2. For a Boolean function $f_{\psi} \in \mathcal{B}_n$, if $f_{\psi}(\psi(x)) = 1 + f_{\psi}(x)$ holds for all $x \in \mathbb{F}_2^n \setminus \mathcal{O}_o$ where \mathcal{O}_o is the set of vectors whose orbit cardinality is 1, then f_{ψ} is WAPB.

Hence, when $n=2^m$, a power of 2, $\psi=\rho_n$ and Construction 1 on input $\psi\in\mathbb{S}_n$ results the 2-RotS WPB Boolean function by Liu and Mesnager [LM19]. A simplified version of Construction 1 is presented in Construction 4 for input ψ .

Construction 2 Construction of 2-RotS WAPB Boolean function using $\psi \in \mathbb{S}_n$

```
Input: \psi \in \mathbb{S}_n as in Equation 2

Output: A 2-RotS WAPB Boolean function f_{\psi} \in \mathcal{B}_n

For every orbit O in \mathbb{F}_2^n due to the action of G = \langle \psi \rangle, do the following:

if |\mathsf{O}| is even then

f satisfies f_{\psi}(\psi(x)) = 1 + f(x) for x \in \mathsf{O}

end if

if |\mathsf{O}| = 1 then

assign f_{\psi}(x) = 0 or 1 to make f balanced.

end if

return f_{\psi}
```

PM: For construction 2, I propose the following modifications:

- in input we add a representative ν_i
- in input we add a binary vector v of length the number of orbits.
- then, for every orbit f takes the value v_i on v_i , and we keep "f satisfies $f_{\psi}(\psi(x)) = 1 + f(x)$ for $x \in \mathbb{O}$ "
- we withdraw the last part, forcing f_{ψ} to be balanced.

The advantage of the extra inputs would be to define more easily each function later on (if we use an order to list the representatives, we can identify a function in n variables only from the the vector v). Regarding the balancedness, WAPB functions are not required to be balanced, so we would have a more general description (I do not think the balancedness is used in the proofs after). We would make a remark on the restriction that is sufficient to be balanced, or even than the weight of f is determined by the weight of v restricted to the orbits of size 1.

Theorem 3. The number of orbits generated due the action of ψ on \mathbb{F}_2^n is

$$g_n = \frac{1}{n_w} \sum_{k=1}^{n_w} 2^{\gcd(n_1,k) + \gcd(n_2,k) + \dots + \gcd(n_w,k)}.$$

Proof. As $ord(\psi) = 2^{a_w} = n_w$, let denote $G = \langle \psi \rangle = \{\psi_n^1, \psi_n^2, \dots, \psi_n^{n_w}\}$ where $\psi_n^1 = \psi$ and $\psi_n^i = \psi \circ \psi_n^{i-1}$ for $i \geq 2$. From the disjoint cycle form of ψ as in Equation 3, we have

$$\psi(x) = (\rho_{n_1}(x_1, \dots, x_{n_1}), \rho_{n_2}(x_{n_1+1}, \dots, x_{n_1+n_2}), \dots, \rho_{n_w}(x_{n-n_w+1}, \dots, x_n))$$

where ρ_{n_i} is the cyclic shift permutation on n_i elements. Hence, we denote, $\psi_n = (\rho_{n_1}, \rho_{n_2}, \dots, \rho_{n_w})$ and for positive integers k, we have $\psi_n^k = (\rho_{n_1}^k, \rho_{n_2}^k, \dots, \rho_{n_w}^k)$. Now to apply Burnside's lemma, for every $k \in \{1, 2, \dots, n_w\}$, we need to compute the number of fixed

Now to apply Burnside's lemma, for every $k \in \{1, 2, \dots, n_w\}$, we need to compute the number of fixed vectors $z \in \mathbb{F}_2^n$ by ψ_n^k i.e., $\psi_n^k(z) = z$. That is, for every $k \in \{1, 2, \dots, n_w\}$, we need to compute the number of vectors $z \in \mathbb{F}_2^n$ such that $\rho_{n_1}^k(z_1) = z_1, \rho_{n_2}^k(z_2) = z_2, \dots, \rho_{n_w}^k(z_w) = z_w$ where $z = (z_1, z_2, \dots, z_w)$ and $z_1 \in \mathbb{F}_2^{n_1}, z_2 \in \mathbb{F}_2^{n_2}, \dots, z_w \in \mathbb{F}_2^{n_w}$.

Here, the number of permutation cycles in $\rho_{n_i}^k = \gcd(n_i, k)$ for $1 \le i \le w$ and $1 \le k \le n_w$. So, the length of each permutation cycle in $\rho_{n_i}^k$ is $\frac{n_i}{\gcd(n_i, k)}$. Therefore, the total number of permutation cycles in ψ^k is

$$\gcd(n_1,k) + \gcd(n_2,k) + \cdots + \gcd(n_w,k).$$

As every permutation cycle fixes all 0's or all 1's, each permutation cycle has two choices. $\rho_{n_i}^k$ fixes $2^{\gcd(n_i,k)}$ number of $z_i \in \mathbb{F}_2^{n_i}$. Therefore, ψ^k fixes $2^{\gcd(n_1,k)+\gcd(n_2,k)+\cdots+\gcd(n_w,k)}$ number of $z \in \mathbb{F}_2^n$. Hence, by using the Burnside Lemma, the number of orbits is

$$g_n = \frac{1}{n_w} \sum_{\pi \in G} |fix_{\mathbb{F}_2^n}(\pi)| = \frac{1}{n_w} \sum_{k=1}^{n_w} 2^{\gcd(n_1, k) + \gcd(n_2, k) + \dots + \gcd(n_w, k)}.$$

Now we can count the number of such WAPB f_{ψ} functions on n variables. There are 2^w many orbits of cardinality 1 and remaining g_n-2^w orbits are having cardinality even. The orbit representative of even cardinality orbits can be assigned 0 or 1 and accordingly other vectors in the orbit are assigned. Further, we need to choose 2^{w-1} vectors from the 2^w orbits of cardinality 1 in $\binom{2^w}{2^{w-1}}$ ways to make f_{ψ} balanced. Hence $\binom{2^w}{2^{w-1}} \times 2^{g_n-2^w}$ balanced WAPB Boolean functions can be generated using Construction 4. Now we will study some cryptographic properties of the function $f_{\psi} \in \mathcal{B}_n$.

Proposition 4. For $n \geq 2$ as in Equation 1, let $\psi \in \mathbb{S}_n$ be the permutation as defined in Equation 2. Then

$$|\{x \in \mathbb{F}_2^n \setminus \mathcal{O}_o : c \cdot (x + \psi(x)) = 1\}| = \begin{cases} 2^{n-1} & \text{if } c \in \mathbb{F}_2^n \setminus \mathcal{O}_o \\ 0 & \text{if } c \in \mathcal{O}_o. \end{cases}$$

Proof. Now for any $x=(x_1,x_2,\ldots,x_n), c=(c_1,c_2,\ldots,c_n)\in\mathbb{F}_2^n$, [DKD: need to write $\psi(x)$ in proper order]

$$c \cdot (x + \psi(x)) = c_1(x_1 + x_{n_1}) + c_2(x_2 + x_1) + \dots + c_{n_1}(x_{n_1} + x_{n_1-1})$$

$$+ c_{n_1+1}(x_{n_1+1} + x_{n_1+n_2}) + \dots + c_{n_1+n_2}(x_{n_1+n_2} + x_{n_1+n_2-1})$$

$$+ \dots$$

$$+ c_{n-n_w+1}(x_{n-n_w+1} + x_n) + \dots + c_n(x_n + x_{n-1})$$

$$\implies c \cdot (x + \psi(x)) = (c_1 + c_2)x_1 + (c_2 + c_3)x_2 + \dots + (c_{n_1} + c_1)x_{n_1}$$

$$+ (c_{n_1+1} + c_{n_1+2})x_{n_1+1} + \dots + (c_{n_1+n_2} + c_{n_1+1})x_{n_1+n_2}$$

$$+ \dots$$

$$+ (c_{n-n_w+1} + c_{n-n_w+2})x_{n-n_w+1} + \dots + (c_n + c_{n-n_w+1})x_n$$

$$\implies c \cdot (x + \psi(x)) = (c + \psi^{-1}(c)) \cdot x.$$

$$(5)$$

Therefore, $c \cdot (x + \psi(x))$ is a linear Boolean function on n variables. Here, $c \cdot (x + \psi(x))$ is the zero Boolean function if and only if $c_1 = c_2 = \ldots = c_{n_1}$; $c_{n_1+1} = c_{n_1+2} = \cdots = c_{n_1+n_2}$; \ldots ; $c_{(n-n_w)+1} = c_{(n-n_w)+2} = \cdots = c_n$ i.e., $c \in \mathcal{O}_o$. Hence,

$$|\{x \in \mathbb{F}_2^n : c \cdot (x + \psi(x)) = 1\}| = \mathsf{w}_\mathsf{H}(c \cdot (x + \psi(x))) = \begin{cases} 2^{n-1} \text{ if } c \in \mathbb{F}_2^n \setminus \mathcal{O}_o \\ 0 & \text{if } c \in \mathcal{O}_o \end{cases}$$
 (6)

Now further, if $x = (x_1, x_2, \dots, x_n) \in \mathcal{O}_o$, then $\psi(x) = x$ and that implies $c \cdot (x + \psi(x)) = 0$. Hence,

$$|\{x \in \mathcal{O}_o : c \cdot (x + \psi(x)) = 0\}| = |\mathcal{O}_o| = 2^w$$

$$\implies |\{x \in \mathcal{O}_o : c \cdot (x + \psi(x)) = 1\}| = 0.$$
(7)

Now combining Equation 6 and Equation 7 we have the desired result

$$|\{x \in \mathbb{F}_2^n \setminus \mathcal{O}_o : c \cdot (x + \psi(x)) = 1\}| = \begin{cases} 2^{n-1} & \text{if } c \in \mathbb{F}_2^n \setminus \mathcal{O}_o \\ 0 & \text{if } c \in \mathcal{O}_o. \end{cases}$$

Theorem 4. Let $n \geq 2$ be an positive integer as in Equation 1 and $\psi \in \mathbb{S}_n$ as in Equation 2. Then $\mathsf{NL}(f_{\psi}) \geq 2^{n-2} - 2^{w-1}$.

Proof. Let $a \in \mathbb{F}_2^n$ and $\psi \in \mathbb{S}_n$ be the permutation defined as in Equation 2. As $w_H(n) = w$, from Lemma 2 there are 2^w orbits with cardinality 1 and remaining orbits are of even cardinality. Then the Walsh spectrum of f_{ψ} at a is as follows.

$$W_{f_{\psi}}(a) = \sum_{x \in \mathbb{F}_{2}^{n}} (-1)^{f_{\psi}(x) + a \cdot x} = \sum_{\mathsf{O} \in \mathcal{O}} \sum_{x \in \mathsf{O}} (-1)^{f_{\psi}(x) + a \cdot x} = \sum_{\mathsf{O} \in \mathcal{O}_{e}} \sum_{x \in \mathsf{O}} (-1)^{f_{\psi}(x) + a \cdot x} + \sum_{\mathsf{O} \in \mathcal{O}_{o}} \sum_{x \in \mathsf{O}} (-1)^{f_{\psi}(x) + a \cdot x}$$

$$\implies |W_{f_{\psi}}(a)| \leq |\sum_{\mathsf{O} \in \mathcal{O}_{e}} \sum_{x \in \mathsf{O}} (-1)^{f_{\psi}(x) + a \cdot x}| + |\sum_{\mathsf{O} \in \mathcal{O}_{o}} \sum_{x \in \mathsf{O}} (-1)^{f_{\psi}(x) + a \cdot x}|.$$
(8)

Since the number of orbits of cardinality odd (i.e., 1) is 2^w , we have a bound for second sum as

$$\left| \sum_{\mathsf{O} \in \mathcal{O}_o} \sum_{x \in \mathsf{O}} (-1)^{f_{\psi}(x) + a \cdot x} \right| \le 2^w. \tag{9}$$

Now we will work on the first sum.

$$\sum_{\mathbf{O} \in \mathcal{O}_e} \sum_{x \in \mathbf{O}} (-1)^{f_{\psi}(x) + a \cdot x} = \frac{1}{2} \left[\sum_{\mathbf{O} \in \mathcal{O}_e} \sum_{x \in \mathbf{O}} (-1)^{f_{\psi}(x) + a \cdot x} + \sum_{\mathbf{O} \in \mathcal{O}_e} \sum_{x \in \mathbf{O}} (-1)^{f_{\psi}(\psi(x)) + a \cdot \psi(x)} \right]$$

$$= \frac{1}{2} \left[\sum_{\mathbf{O} \in \mathcal{O}_e} \sum_{x \in \mathbf{O}} (-1)^{f_{\psi}(x) + a \cdot x} + (-1)^{f_{\psi}(\psi(x)) + a \cdot \psi(x)} \right]$$

$$= \frac{1}{2} \left[\sum_{\mathbf{O} \in \mathcal{O}_e} \sum_{x \in \mathbf{O}} (-1)^{f_{\psi}(x) + a \cdot x} - (-1)^{f_{\psi}(x) + a \cdot \psi(x)} \right] \quad \text{(as } f_{\psi}(\psi(x)) = 1 + f_{\psi}(x)$$

$$= \frac{1}{2} \left[\sum_{\mathbf{O} \in \mathcal{O}_e} \sum_{x \in \mathbf{O}} (-1)^{f_{\psi}(x)} \left((-1)^{a \cdot x} - (-1)^{a \cdot \psi(x)} \right) \right].$$

There are some vectors x in even orbits such that $((-1)^{a \cdot x} - (-1)^{a \cdot \psi(x)}) = 0$ i.e., $a \cdot (x + \psi(x)) = 0$. As these vectors contributes 0 to the sum, we now separate them in the equation. Hence, we have

$$\begin{split} \sum_{\mathbf{O} \in \mathcal{O}_e} \sum_{x \in \mathbf{O}} (-1)^{f_{\psi}(x) + a \cdot x} &= \frac{1}{2} \left[\sum_{\mathbf{O} \in \mathcal{O}_e} \left(\sum_{x \in \mathbf{O}: a \cdot (x + \psi(x)) = 0} (-1)^{f_{\psi}(x)} ((-1)^{a \cdot x} - (-1)^{a \cdot \psi(x)}) \right) \right] \\ &+ \sum_{x \in \mathbf{O}: a \cdot (x + \psi(x)) = 1} (-1)^{f_{\psi}(x)} ((-1)^{a \cdot x} - (-1)^{a \cdot \psi(x)}) \right) \right] \\ &= \frac{1}{2} \left[\sum_{\mathbf{O} \in \mathcal{O}_e} \sum_{x \in \mathbf{O}: a \cdot (x + \psi(x)) = 1} (-1)^{f_{\psi}(x)} ((-1)^{a \cdot x} - (-1)^{a \cdot \psi(x)}) \right] \\ &= \frac{1}{2} \left[\sum_{\mathbf{O} \in \mathcal{O}_e} \sum_{x \in \mathbf{O}: a \cdot (x + \psi(x)) = 1} 2 \times (-1)^{f_{\psi}(x) + a \cdot x} \right] = \sum_{\mathbf{O} \in \mathcal{O}_e} \sum_{x \in \mathbf{O}: a \cdot (x + \psi(x)) = 1} (-1)^{f_{\psi}(x) + a \cdot x} . \end{split}$$

Now, using the Proposition 4, we have an upper bound to the sum

$$\left| \sum_{\mathsf{O} \in \mathcal{O}_e} \sum_{x \in \mathsf{O}} (-1)^{f_{\psi}(x) + a \cdot x} \right| = \left| \sum_{x \in \mathbb{F}_2^n \setminus \mathsf{O}_o : a \cdot (x + \psi(x)) = 1} (-1)^{f_{\psi}(x) + a \cdot x} \right| \le \begin{cases} 2^{n-1} & \text{if } a \in \mathbb{F}_2^n \setminus \mathcal{O}_o \\ 0 & \text{if } a \in \mathcal{O}_o. \end{cases}$$
(10)

Hence, from Equation 8, Equation 9 and Equation 10, we have

$$|W_{f_{\psi}}(a)| \le \begin{cases} 2^{n-1} + 2^w & \text{if } a \in \mathbb{F}_2^n \setminus \mathcal{O}_o \\ 2^w & \text{if } a \in \mathcal{O}_o \end{cases}$$
 (11)

Hence, the nonlinearity of f_{ψ} satisfies

$$\begin{split} \mathsf{NL}(f_{\psi}) &= 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}_2^n} |W_{f_{\psi}}(a)| \ \geq \ 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}_2^n} \{2^{n-1} + 2^w, 2^w\} \ = \ 2^{n-1} - 2^{n-2} - 2^{w-1} \\ \Longrightarrow \ \mathsf{NL}(f_{\psi}) &\geq 2^{n-2} - 2^{w-1}. \end{split}$$

In the following table we have presented the maximum and minimum nonlinearity among all f_{ψ} for the number of variables $n = \{4, 5, ..., 10\}$ along with the upper bound of balanced Boolean functions and lowerbound of f_{ψ} as per Theorem 4. We have searched all such Boolean functions for $n \leq 6$ and from 2^{20} randomly chosen such Boolean functions for n > 6.

n	4	5	6	7	8	9	10
Number of functions	$2^4 \times \binom{2}{1}$	$2^8 \times \binom{4}{2}$	$2^{18} \times \binom{4}{2}$	$2^{36} \times \binom{8}{4}$	$2^{34} \times \binom{2}{1}$	$2^{68} \times \binom{4}{2}$	$2^{138} \times \binom{4}{2}$
	$=2^{5}$	$=3\times2^9$	$= 3 \times 2^{19}$	$=35\times2^{37}$	$=2^{35}$	$= 3 \times 2^{69}$	$= 3 \times 2^{139}$
Max Nonlinearity	4	12	26	56	116	236	480
% functions at max nl	100	22.917	0.651042	0.304318	0.008297	0.072575	0.013638
Nonlinearity upper bound	4	12	26	56	116	240	492
Min Nonlinearity	4	6	14	28	64	192	328
% functions at min nl	100	4.17	0.260417	0.014687	0.006199	0.000191	2^{-20}
Nonlinearity lower bound	3	6	14	28	63	144	254

Now we will study the weightwise nonlinearity of f_{ψ} .

Lemma 4. For $n \geq 2$ as in Equation 1, let $\psi \in \mathbb{S}_n$ be the permutation as defined in Equation 2. Then

$$|\{x \in \mathsf{E}_{k,n} \setminus \mathcal{O}_o : c \cdot (x + \psi(x)) = 1\}| = \frac{1}{2} (|\mathsf{E}_{k,n}| - \mathsf{K}_k(l,n)),$$

where $l = w_{H}(c + \psi^{-1}(c))$.

Proof. Let $x = (x_1, x_2, \dots, x_n) \in \mathsf{E}_{k,n}$ and $c = (c_1, c_2, \dots, c_n) \in \mathbb{F}_2^n$. Then as in Equation 5, we have

$$c \cdot (x + \psi(x)) = (c + \psi^{-1}(c)) \cdot x$$

is a linear function on n variable defined over the slice $E_{k,n}$. Therefore, using Theorem 1, we have

$$|\{x \in \mathsf{E}_{k,n} : c \cdot (x + \psi(x)) = 1\}| = \mathsf{w}_{n,k}((c + \psi^{-1}(c)) \cdot x) = \frac{1}{2}(|\mathsf{E}_{k,n}| - \mathsf{K}_k(l,n))$$

where $l = \mathsf{w}_\mathsf{H}(c + \psi^{-1}(c))$. If $x \in \mathsf{E}_{k,n}$ and $|\mathcal{O}_\psi(x)| = 1$ i.e., $x \in \mathsf{E}_{k,n} \cap \mathcal{O}_o$ then $c \cdot (x + \psi(x)) = 0$. Hence,

$$|\{x \in \mathsf{E}_{k,n} \setminus \mathcal{O}_o : c \cdot (x + \psi(x)) = 1\}| = \frac{1}{2} (|\mathsf{E}_{k,n}| - \mathsf{K}_k(l,n)).$$

Theorem 5. Let $n \geq 2$ be an positive integer as in Equation 1 and $\psi \in \mathbb{S}_n$ as in Equation 2. Then

 $\mathsf{NL}_k(f_\psi) \ \geq \ \begin{cases} \frac{1}{4} \left(\binom{n}{k} + \min_{\substack{0 \leq l \leq n \\ l \ even}} \mathsf{K}_k(l,n) \right) & \text{if } k \not \leq n \\ \\ \frac{1}{4} \left(\binom{n}{k} + \min_{\substack{0 \leq l \leq n \\ l \ even}} \mathsf{K}_k(l,n) - 2 \right) & \text{if } k \preceq n. \end{cases}$

Proof. Let \mathcal{O}_k be the set of all orbits of the group action $G = \langle \psi \rangle$ on $\mathsf{E}_{k,n}$. Let $\mathcal{O}_{e,k}$ and $\mathcal{O}_{o,k}$ be the set of all orbits in \mathcal{O}_k of cardinality even and cardinality odd respectively. The restricted Walsh spectrum of f_{ψ} at $a \in \mathbb{F}_2^n$ is as follows.

$$\mathcal{W}_{f_{\psi},k}(a) = \sum_{x \in \mathsf{E}_{k,n}} (-1)^{f_{\psi}(x) + a \cdot x} = \sum_{\mathsf{O} \in \mathcal{O}_{k}} \sum_{x \in \mathsf{O}} (-1)^{f_{\psi}(x) + a \cdot x} \\
= \sum_{\mathsf{O} \in \mathcal{O}_{e,k}} \sum_{x \in \mathsf{O}} (-1)^{f_{\psi}(x) + a \cdot x} + \sum_{\mathsf{O} \in \mathcal{O}_{o,k}} \sum_{x \in \mathsf{O}} (-1)^{f_{\psi}(x) + a \cdot x} \\
\implies |\mathcal{W}_{f_{\psi},k}(a)| \leq |\sum_{\mathsf{O} \in \mathcal{O}_{e,k}} \sum_{x \in \mathsf{O}} (-1)^{f_{\psi}(x) + a \cdot x}| + |\sum_{\mathsf{O} \in \mathcal{O}_{o,k}} \sum_{x \in \mathsf{O}} (-1)^{f_{\psi}(x) + a \cdot x}| \\
= \begin{cases} |\sum_{\mathsf{O} \in \mathcal{O}_{e,k}} \sum_{x \in \mathsf{O}} (-1)^{f_{\psi}(x) + a \cdot x}| & \text{if } k \not \leq n \\ |\sum_{\mathsf{O} \in \mathcal{O}_{e,k}} \sum_{x \in \mathsf{O}} (-1)^{f_{\psi}(x) + a \cdot x}| + 1 \text{ if } k \leq n. \end{cases} \tag{12}$$

$$\sum_{\mathbf{O} \in \mathcal{O}_{e,k}} \sum_{x \in \mathbf{O}} (-1)^{f_{\psi}(x) + a \cdot x} = \frac{1}{2} \left[\sum_{\mathbf{O} \in \mathcal{O}_{e,k}} \sum_{x \in \mathbf{O}} (-1)^{f_{\psi}(x) + a \cdot x} + \sum_{\mathbf{O} \in \mathcal{O}_{e,k}} \sum_{x \in \mathbf{O}} (-1)^{f_{\psi}(\psi(x)) + a \cdot \psi(x)} \right] \\
= \frac{1}{2} \left[\sum_{\mathbf{O} \in \mathcal{O}_{e,k}} \sum_{x \in \mathbf{O}} (-1)^{f_{\psi}(x) + a \cdot x} + (-1)^{f_{\psi}(\psi(x)) + a \cdot \psi(x)} \right] \\
= \frac{1}{2} \left[\sum_{\mathbf{O} \in \mathcal{O}_{e,k}} \sum_{x \in \mathbf{O}} (-1)^{f_{\psi}(x) + a \cdot x} - (-1)^{f_{\psi}(x) + a \cdot \psi(x)} \right] \\
= \frac{1}{2} \left[\sum_{\mathbf{O} \in \mathcal{O}_{e,k}} \sum_{x \in \mathbf{O}} (-1)^{f_{\psi}(x)} \left((-1)^{a \cdot x} - (-1)^{a \cdot \psi(x)} \right) \right] \\
= \frac{1}{2} \left[\sum_{x \in \mathbf{E}_{k,n} \setminus \mathcal{O}_{o}} (-1)^{f_{\psi}(x)} \left((-1)^{a \cdot x} - (-1)^{a \cdot \psi(x)} \right) \right]. \tag{13}$$

Here, \mathcal{O}_o is the set of vectors with orbit cardinalty 1. The vectors x for which $((-1)^{a \cdot x} - (-1)^{a \cdot \psi(x)}) = 0$ i.e., $a \cdot (x + \psi(x)) = 0$ have contribution 0 to the sum in Equation 13. Hence, we have

$$\sum_{\mathbf{O} \in \mathcal{O}_{e,k}} \sum_{x \in \mathbf{O}} (-1)^{f(x) + a \cdot x} = \frac{1}{2} \left[\sum_{\substack{x \in \mathsf{E}_{k,n} \setminus \mathcal{O}_o \\ a \cdot (x + \psi(x)) = 1}} (-1)^{f_{\psi}(x)} ((-1)^{a \cdot x} - (-1)^{a \cdot \psi(x)}) \right] = \sum_{\substack{x \in \mathsf{E}_{k,n} \setminus \mathcal{O}_o \\ a \cdot (x + \psi(x)) = 1}} (-1)^{f_{\psi}(x) + a \cdot x}.$$

Hence from Equation 12 and Lemma 4, we have

$$|\mathcal{W}_{f_{\psi},k}(a)| \leq \begin{cases} \left| \sum_{\substack{x \in \mathsf{E}_{k,n} \setminus \mathcal{O}_o \\ a \cdot (x+\psi(x)) = 1}} (-1)^{f_{\psi}(x)+a \cdot x} \right| & \text{if } k \not \leq n \\ \left| \sum_{\substack{x \in \mathsf{E}_{k,n} \setminus \mathcal{O}_o \\ a \cdot (x+\psi(x)) = 1}} (-1)^{f_{\psi}(x)+a \cdot x} \right| + 1 & \text{if } k \leq n. \end{cases}$$

$$= \begin{cases} \frac{1}{2} (|\mathsf{E}_{k,n}| - \mathsf{K}_k(l,n)) & \text{if } k \not \leq n \\ \frac{1}{2} (|\mathsf{E}_{k,n}| - \mathsf{K}_k(l,n)) + 1 & \text{if } k \leq n. \end{cases}$$

$$(14)$$

where $l = w_H(a + \psi^{-1}(a))$. Hence, the nonlinearity of f_{ψ} satisfies

$$\begin{split} \mathsf{NL}_{k}(f_{\psi}) \; &= \; \frac{|\mathsf{E}_{k,n}|}{2} - \frac{1}{2} \max_{a \in \mathbb{F}_{2}^{n}} |\mathcal{W}_{f_{\psi},k}(a)| \; \; \geq \; \; \begin{cases} \frac{|\mathsf{E}_{k,n}|}{2} - \frac{1}{4} \max_{a \in \mathbb{F}_{2}^{n}} (|\mathsf{E}_{k,n}| - \mathsf{K}_{k}(l,n)) & \text{if } k \not \preceq n \\ \frac{|\mathsf{E}_{k,n}|}{2} - \frac{1}{4} \max_{a \in \mathbb{F}_{2}^{n}} (|\mathsf{E}_{k,n}| - \mathsf{K}_{k}(l,n)) - \frac{1}{2} & \text{if } k \preceq n \end{cases} \\ &= \; \begin{cases} \frac{|\mathsf{E}_{k,n}|}{4} + \frac{1}{4} \min_{0 \le l \le n} \mathsf{K}_{k}(l,n) & \text{if } k \not \preceq n \\ \frac{|\mathsf{E}_{k,n}|}{4} + \frac{1}{4} \min_{0 \le l \le n} \mathsf{K}_{k}(l,n) - \frac{1}{2} & \text{if } k \preceq n \end{cases} \\ &= \; \begin{cases} \frac{1}{4} \left(\binom{n}{k} + \min_{0 \le l \le n} \mathsf{K}_{k}(l,n) - 2 \right) & \text{if } k \not \preceq n \\ \frac{1}{4} \left(\binom{n}{k} + \min_{0 \le l \le n} \mathsf{K}_{k}(l,n) - 2 \right) & \text{if } k \preceq n. \end{cases} \end{split}$$

Further, it can be checked that $l = w_H(a + \psi^{-1}(a))$ is even. Hence, we have

$$\mathsf{NL}_k(f_{\psi}) \; \geq \; \begin{cases} \frac{1}{4} \left(\binom{n}{k} + \min_{\substack{0 \leq l \leq n \\ l \; \text{even}}} \mathsf{K}_k(l,n) \right) & \text{if } k \not \leq n \\ \frac{1}{4} \left(\binom{n}{k} + \min_{\substack{0 \leq l \leq n \\ l \; \text{even}}} \mathsf{K}_k(l,n) - 2 \right) & \text{if } k \preceq n. \end{cases}$$

Theorem 6. 1. Let n=2m+1 be an odd integer for some $m\in\mathbb{Z}^+$. Then, $\min_{0< l< n}\mathsf{K}_m(l,n)=\mathsf{K}_k(2,n)$ if m=1is even and $\min_{0 \le l \le n} \mathsf{K}_{m+1}(l,n) = \mathsf{K}_k(2,n)$ if m is odd.

2. Let n=2m be an even integer for some $m \in \mathbb{Z}^+$. If m is even, then $\min_{0 \le l \le n} \mathsf{K}_m(l,n) = \mathsf{K}_m(2,n)$. If m is odd, then $\min_{0 \le l \le n} \mathsf{K}_{m-1}(l,n) = \mathsf{K}_{m-1}(2,n)$ and $\min_{0 \le l \le n} \mathsf{K}_{m+1}(l,n) = \mathsf{K}_{m+1}(1,n)$.

Proof. 1. Here n=2m+1 be an odd integer for some $m\in\mathbb{Z}^+$. Then

$$\mathsf{K}_{m+1}(1,n) = \sum_{j=0}^{m+1} (-1)^j \binom{1}{j} \binom{n-1}{m+1-j} = \binom{n-1}{m+1} - \binom{n-1}{m} \text{ and}
\mathsf{K}_{m+1}(2,n) = \sum_{j=0}^{m+1} (-1)^j \binom{2}{j} \binom{n-2}{m+1-j} = \binom{n-2}{m+1} - 2\binom{n-2}{m} + \binom{n-2}{m-1}
= \binom{n-2}{m+1} - \binom{n-2}{m} - \binom{n-2}{m-1} + \binom{n-2}{m} = \binom{n-1}{m+1} - \binom{n-1}{m}.$$

Hence, $\mathsf{K}_{m+1}(1,n) = \mathsf{K}_{m+1}(2,n) < 0$. From Proposition 1[Item 2], we have $\mathsf{K}_m(1,n) = -\mathsf{K}_{m+1}(1,n)$ and $\mathsf{K}_m(2,n) = \mathsf{K}_{m+1}(2,n)$. That implies, $\mathsf{K}_m(1,n) > 0$ and $\mathsf{K}_m(2,n) < 0$. If m is even, then $\mathsf{K}_m(0,n) = \mathsf{K}_m(n,n) = \binom{n}{m} > 0$. Now using Proposition 1[Item 4], $\min_{0 \le l \le n} \mathsf{K}_m(l,n) = 0$

 $\mathsf{K}_m(2,n)$. Similarly, if m is odd, then $K_{m+1}(0,n) = K_{m+1}(n,n) = \binom{n}{m+1} > 0$. Using Proposition 1[Item 4], $\min_{0 \le l \le n} \mathsf{K}_{\frac{n+1}{2}}(l,n) = \mathsf{K}_{\frac{n+1}{2}}(2,n).$

2.

We have

$$\mathsf{K}_{k}(l,n) = \sum_{j=0}^{k} (-1)^{j} \binom{l}{j} \binom{n-l}{k-j} = \sum_{j=0}^{k} \binom{l}{j} \binom{n-l}{k-j} - 2 \sum_{\substack{j=0 \\ j : \mathrm{odd}}}^{k} \binom{l}{j} \binom{n-l}{k-j} = \binom{n}{k} - 2 \sum_{\substack{j=0 \\ j : \mathrm{odd}}}^{k} \binom{l}{j} \binom{n-l}{k-j}.$$

Hence, $K_2(l,n) = \binom{n}{2} - 2\sum_{j=0}^{2} \binom{l}{j} \binom{n-l}{2-j} = \binom{n}{2} - 2\binom{l}{1} \binom{n-l}{1} = \binom{n}{2} - 2l(n-l)$. For real value of l, the function

 $\mathsf{K}_2(l,n)$ has minima at $l = \frac{n}{2}$ as $\frac{d(\mathsf{K}_2(l,n))}{dl} = 4l - 2n = 0$ at $l = \frac{n}{2}$ and $\frac{d^2(\mathsf{K}_2(l,n))}{dl^2} = 4 > 0$. In our case, as $l = \mathsf{w}_\mathsf{H}(a + \psi^{-1}(a))$ for $a \in \mathbb{F}_2^n$ is an integer, we have $\min_{0 \le l \le n} \mathsf{K}_2(l,n)$ is $\binom{n}{2} - 2(\frac{n}{2})^2 = -\frac{n}{2}$ when n is

even. For n is odd, it can be checked that $\mathsf{K}_2(l,n)$ has minimum at $l=\frac{n-1}{2}$ and $l=\frac{n+1}{2}$ with value $\min_{0\leq l\leq n}\mathsf{K}_2(l,n)=\binom{n}{2}-2\frac{n-1}{2}\frac{n+1}{2}=-\frac{n-1}{2}$. Hence, combining both the cases, we have $\min_{0\leq l\leq n}\mathsf{K}_2(l,n)=-\lfloor\frac{n}{2}\rfloor$.

Further, denote $NL_k^n = \min\{NL_k^n(f_{\psi})|f_{\psi} \in \mathcal{B}_n \text{ constructed as in Proposition 3}\}.$

k	2	3	4	5	6	7	8	9	10
n	n-2	n-3	n-4	n-5	n-6	n-7	n-8	n-9	n-10
15	24	0	330	0	1215	0	-	-	-
	0	45	0	500	0	1506	-	-	-
16	28	0	443	0	1931	0	3003	-	-
	8	0	228	0	1502	0	_	_	-
17	32	0	580	0	3003	0	5720	-	-
	0	60	0	910	0	4004	0	-	-
18	36	0	750	0	4550	0	10725	0	-
	8	0	340	0	3094	0	9724	0	-
19	40	0	950	0	6650	0	18343	0	-
	0	76	0	1530	0	9282	0	21879	-
20	45	0	1190	0	9524	0	30719	0	43758
	10	0	484	0	5814	0	25194	0	43758

Table 1. A lower bound of $NL_k(f_{\psi})$ as per Theorem 5

Theorem 7. Let $n \geq 2$ be an positive integer as in Equation 1 and $\psi \in \mathbb{S}_n$ as in Equation 2. Then

$$\mathsf{NL}_2(f_\psi) \ \geq \ \left\{ egin{array}{ll} rac{n(n-2)}{8} & \textit{if n is even} \\ \lfloor rac{(n-1)^2}{8}
floor & \textit{if n is odd.} \end{array}
ight.$$

 $\textit{Moreover, if } n = 2^m \textit{ for } m \geq 1, \qquad \frac{n(n-2)}{8} \leq \mathsf{NL}_2^n \leq \mathsf{NL}_4^{2n} \leq \mathsf{NL}_8^{2^2n} \leq \dots \leq \mathsf{NL}_{2^{i+1}}^{2^i n} \leq \dots,$ and if $n = 2^{a_w} + 2^{a_{w-1}} + \dots + 2^{a_1}$ for $a_w > a_{w-1} > \dots > a_1 \ge 0$ as defined in 1, $\left| \frac{(n+1)(n-4) + n}{8} \right| \le n$ $NL_{2}^{n} < NL_{4}^{2n} < NL_{2}^{2^{2}n} < \cdots < NL_{2i+1}^{2^{i}n} < \cdots$

Proof. Using the $\min_{0 \le l \le n} \mathsf{K}_2(l,n)$ in Theorem 5 we have, $\mathsf{NL}_2(f_\psi) \ge \begin{cases} \frac{1}{4} \left(\binom{n}{2} - \lfloor \frac{n}{2} \rfloor \right) & \text{if } 2 \not \le n \\ \frac{1}{4} \left(\binom{n}{2} - \lfloor \frac{n}{2} \rfloor - 2 \right) & \text{if } 2 \le n. \end{cases}$

Therefore, for $2 \npreceq n$, we have $\mathsf{NL}_2(f_\psi) \ge \begin{cases} \frac{n(n-2)}{8} & \text{if } n \text{ is even} \\ \frac{(n-1)^2}{8} & \text{if } n \text{ is odd,} \end{cases}$ and for $2 \preceq n$, we have $\mathsf{NL}_2(f_\psi) \ge \begin{cases} \frac{n(n-2)}{8} - \frac{1}{2} & \text{if } n \text{ is even} \\ \frac{(n-1)^2}{8} - \frac{1}{2} & \text{if } n \text{ is odd.} \end{cases}$

We can check that for n even, $\frac{n(n-2)}{8}$ is always an integer and for n odd, $\frac{(n-1)^2}{8}$ is an integer iff $2 \npreceq n$. Hence, combining the cases, we have

$$\mathsf{NL}_2(f_\psi) \ge \left\{ egin{array}{l} rac{n(n-2)}{8} & ext{if } n ext{ is even} \\ \left\lfloor rac{(n-1)^2}{8}
ight
floor & ext{if } n ext{ is odd.} \end{array} \right.$$

For proof of the second part of the theorem, we apply the technique followed in the proof of [LM19, Theorem-3.14]. If $R \subseteq E$, then $\mathsf{NL}_R(f) \leq \mathsf{NL}_E(f)$. When $n = 2^m$, for a fixed integer $j \in [1, m]$, consider the set

$$R = \{(y,y): y \in \mathbb{F}_2^{\frac{n}{2}}, \mathsf{w_H}(y) = 2^{j-1}\} = \{(y,y): y \in \mathsf{E}_{2^{j-1},n}\} \subseteq \mathsf{E}_{2^j,n}.$$

It can be checked that for $x=(y,y)\in R$, $\mathsf{O}_x=\{(z,z):z\in\mathsf{O}_y\}$. Then for a WPB $f\in\mathcal{B}_n$ satisfying Proposition 3, we have a WPB $g\in\mathcal{B}_{\frac{n}{2}}$ such that g(y)=f(x) for all $y\in\mathbb{F}_2^{\frac{n}{2}}$. This implies,

$$\mathsf{NL}_2^{\frac{n}{2}}(g) = \mathsf{NL}_{\mathsf{E}_{2,\frac{n}{2}}}(g) = \mathsf{NL}_R(f) \le \mathsf{NL}_{\mathsf{E}_{4,n}}(f) \le \mathsf{NL}_4^n(f).$$

Then we have the generalised result as

$$\frac{n(n-2)}{8} \le \mathsf{NL}_2^n \le \mathsf{NL}_4^{2n} \le \mathsf{NL}_8^{2^2n} \le \dots \le \mathsf{NL}_{2^{i+1}}^{2^i n} \le \dots.$$

Now consider $n = n_w + n_{w-1} + \dots + n_1 = 2^{a_w} + 2^{a_{w-1}} + \dots + 2^{a_1}$ such that $a_w > a_{w-1} > \dots > a_1 \ge 0$ as defined in 1. Let $y \in \mathsf{E}_{2,n}$ for $y = y_{n_w} y_{n_{w-1}} \dots y_{n_1}$ where $y_{n_i} = (y_{n_{i+1}+1}, y_{n_{i+1}+2}, \dots, y_{n_{i+1}+n_i})$ and $\mathsf{w}_\mathsf{H}(y) = 2$. Let us define,

$$R = \{(y_{n_w}, y_{n_w})(y_{n_{w-1}}, y_{n_{w-1}}) \dots (y_{n_1}, y_{n_1}) : y = y_{n_w} y_{n_{w-1}} \dots y_{n_1} \in \mathbb{F}_2^n \text{ and } w_{\mathsf{H}}(y) = 2\} \subseteq \mathsf{E}_{4,2n}.$$

Now for $x = (y_{n_w}, y_{n_w})(y_{n_{w-1}}, y_{n_{w-1}}) \dots (y_{n_1}, y_{n_1}) \in R$, we have

$$O_x = \{(z_{n_w}, z_{n_w})(z_{n_{w-1}}, z_{n_{w-1}}) \dots (z_{n_1}, z_{n_1}) : z_{n_w} z_{n_{w-1}} \dots z_{n_1} \in O_y\}$$

Then for a $f \in \mathcal{B}_{2n}$ satisfying Proposition 3, we have a WAPB $g \in \mathcal{B}_n$ such that $\forall y \in \mathbb{F}_2^n$, g(y) = f(x) for $x \in R$. This implies, $\mathsf{NL}_2^n(g) = \mathsf{NL}_R(f) \leq \mathsf{NL}_{\mathsf{E}_{4,2n}}(f) = \mathsf{NL}_4^{2n}(f)$. If we generalised the result,

$$\left| \frac{(n+1)(n-4)+n}{8} \right| \le \mathsf{NL}_2^n \le \mathsf{NL}_4^{2n} \le \mathsf{NL}_8^{2^2n} \le \dots \le \mathsf{NL}_{2^{i+1}}^{2^in}.$$

Thus, the above theorem provides a better lower bound for the weightwise nonlinearity $NL_k(f_{\psi})$, as proved in the paper [LM19].

Proposition 5. [LM19] For any $n = 2^m \ge 8$ and f_{ψ} be a WPB Boolean function as defined in 2, then

$$\mathsf{NL}_{2^{i}}^{(n)}(f_{\psi}) \geq \begin{cases} 5, & \text{if } 1 \leq i \leq m-3, \\ 6, & \text{if } i=m-2, \\ 19, & \text{if } i=m-1. \end{cases}$$

References

- CMR17. Claude Carlet, Pierrick Méaux, and Yann Rotella. Boolean functions with restricted input and their robustness; application to the FLIP cipher. IACR Trans. Symmetric Cryptol., 2017(3), 2017.
- DMS06. Deepak Kumar Dalai, Subhamoy Maitra, and Sumanta Sarkar. Basic theory in construction of boolean functions with maximum possible annihilator immunity. Designs, Codes and Cryptography, 2006.
- Fin 47. N. J. Fine. Binomial coefficients modulo a prime. The American Mathematical Monthly, 54(10):589–592, 1947.
- GM22. Agnese Gini and Pierrick Méaux. On the weightwise nonlinearity of weightwise perfectly balanced functions. Discret. Appl. Math., 322:320–341, 2022.
- LM19. Jian Liu and Sihem Mesnager. Weightwise perfectly balanced functions with high weightwise nonlinearity profile. *Des. Codes Cryptogr.*, 87(8):1797–1813, 2019.
- MS78. F.J. MacWilliams and N.J.A. Sloane. *The Theory of Error-Correcting Codes*. North-holland Publishing Company, 2nd edition, 1978.
- MZD18. Sihem Mesnager, Zhengchun Zhou, and Cunsheng Ding. On the nonlinearity of boolean functions with restricted input. Cryptography and Communications, Mar 2018.
- SM08. Pantelimon Stanica and Subhamoy Maitra. Rotation symmetric boolean functions count and cryptographic properties. *Discret. Appl. Math.*, 156(10):1567–1580, 2008.