Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цифрового развития Кафедра инфокоммуникаций

«Процессы дискретизации и квантования изображения»

ОТЧЕТ по лабораторной работе №8 дисциплины «Технологии распознавания образов»

	Выполнил:
	Борсуков Владислав Олегович
	2 курс, группа ПИЖ-б-о-21-1,
	011.03.04 «Программная инженерия»,
	направленность (профиль) «Разработка
	и сопровождение программного
	обеспечения», очная форма обучения
	(подпись)
	(\(\text{A} \)
	Проверил:
	(подпись)
O ×	П
Отчет защищен с оценкой	Дата защиты

```
2.1 Дискретизация изображения

Выбрать значение шага дискретизации в пределах от 5 до 15. Продискретизировать с этим шагом дискретизации изображение и вывести его на экран.

In 1 1 steport cv2 2 taport autitoritib. pyplot as plt 3 arpyзим и сохраним изображение:

In 2 1 Image=cv2.innead(*ings/cat.jpg*)

Создадим копию изображения над которой будем выполнять дискретизацию:
```

Рисунок 1 – Пример 1

```
In 8 1 center = np.uint8(center)

CBopaчиваем массив нескольких матриц в одну

In 9 1 res = center[label.flatten()]
 res2 = res.reshape(<u>dimg.shape</u>))

Bыводим изображения на экран

In 10 1 full_res = np.hstack((res2, img))
 plt.imshow(full_res[...,::-1])
 plt.axis('off');
```

Рисунок 2 – Пример 2

```
ret,label,center=cv2.kmeans(Z,K,None,crt,10,cv2.KMEANS_RANDOM_CENTERS)
center = np.uint8(center)
res = center[label.flatten()]
res2 = res.reshape((img.shape))
full_res = np.hstack((res2, img))
plt.imshow(full_res[...,::-1])
plt.axis('off');
```

Рисунок 3 – Индивидуальное задание

Контрольные вопросы

1) Что такое интенсивность изображения?

Поиск интенсивности изображения f(x, y) является функцией двух пространственных переменных x и y на ограниченной прямоугольной области

2) Алгоритм дискретизации изображения.

Разбиваем три матрицы цветного изображения на отдельные блоки с шагом дискретизации К. В каждом блоке вычисляем среднее значение по каждому цвету в отдельности и полагаем, что внутри блока интенсивность равна вычисленному среднему значению.

3) Что такое квантование изображения?

Процесс разбиения непрерывного динамического диапазона значений яркости на ряд дискретных уровней называется квантованием.

4) Чему равно число уровней квантования?

$$K = [A/\Delta A]$$

5) Что происходит в результате квантования изображения?

При квантовании изображения уменьшается число градаций в сером изображении. Качество изображения становится хуже.

Функция np.average вычисляет средневзвешанное значение оси (здесь это – средний цвет изображения). Здесь img[y:(y+K), x:(x+K)] – вырезаем

фрагмент изображения от текущего значения высоты у до K: (y:(y+K)) , то же самое и для ширины x

7) (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) В каких случаях прекратиться квантование?

Если достигнуто число итераций равное 10 и если достигли точности 1.0

8) Почему после при проверке длины s = img.shape при использовании цветного изображения будет выведено 3?

В цветном строка len вернет число 3, так как у цветного изображения 3 параметра, а именно высота ширина и число каналов rgb

- 9) Что вернёт проверка длины при использовании полутонового изображения?
- 2, так как полутоновое изображение имеет всего 2 параметра, высота и ширина
- 10) Что такое дискретизация?

Дискретизация — это преобразование непрерывного сигнала в последовательность чисел (отсчетов), то есть представление этого сигнала по какому-либо конечномерному базису.