Block 9 (Dienstag 27.2.2024)

10 Event-driven Simulations

VIDEO: video09a_ereignis_modell | VIDEO: video09a_ereignis_zeit

VIDEO: video09a_ereignis_bearbeitung

10.1 One-dimensional chain of hard particles

Model: "Line" of n hard particles i wth mass m_i , positions x_i , velocities v_i

Walls at x = 0/x = L with heat baths (temperatures T_1/T_2). Interaction of particles i.i + 1: ideal collision (before v_i , after v'_i)

$$v_{i}' = \frac{m_{i} - m_{i+1}}{m_{i} + m_{i+1}} v_{i} + \frac{2m_{i+1}}{m_{i} + m_{i+1}} v_{i+1}$$

$$v_{i+1}' = \frac{2m_{i}}{m_{i} + m_{i+1}} v_{i} - \frac{m_{i} - m_{i+1}}{m_{i} + m_{i+1}} v_{i+1}$$

_ [Activator] _

What happens if all particles have the same mass?

Interaction with walls:

velocities according to "Maxwell distribution" [5] .

$$P_{1/2}(v) = \theta(\pm v) \frac{mv}{T_{1/2}} \exp(-mv^2/2T_{1/2})$$
(50)

_ [Activator] _

How does one draw random numbers according to $P_{1/2}$?

Aim: investigate heat flow between baths.

10.2 Events

___ [Activator].

How would you simulate the modell?

Think about the question for 2 minutes, then discuss with your bench neighbor.

For each particle: store position $x_i(t_i)$ at previous collision at time t_i

$$x_{i}(t) = x_{i}(t_{i}) + (t - t_{i})v_{i}$$

$$x_{i+1}(t) = x_{i+1}(t_{i+1}) + (t - t_{i+1})v_{i+1}$$
(51)

At collision: $x_i(t^*) = x_{i+1}(t^*) \Rightarrow$ collision time:

$$t^* = \frac{(x_i(t_i) - t_i v_i) - (x_{i+1}(t_{i+1}) - t_{i+1} v_{i+1})}{v_{i+1} - v_i}$$

10.3 Implementation

_ [Activator] _____

Perform preliminary considerations about the program design:

Which data structures do you need?

Which fundamental functions do you have to implement?

Particles:

Initialisation: distribute particles uniformly between x = 0 and x = L, velocities randomly in [-1, 1]. Special: walls are particles 0, n + 1, at x = 0,

X = L with no velocities.

Events:

Event i describes collision between particles i and i+1. If no collision currently: collision time =" ∞ ". typical situation:

(Contains so far just the collision time, will be extended later on.) Each step, only the *next* event is treated \rightarrow one has to search all events to find the one with the smallest time (LATER: better implementation with heap).

Treatment of an event:

For event i the "neighboring" events i-1 and i+1 (special case: with walls) are recomputed, also new collision time for event i= " ∞ .

Function treat_event():

```
/************* treat_event() ************/
/** Treat event 'ev' from 'event' array:
                                                  **/
/** calculate new velocities of particles ev,ev+1
                                                  **/
/** recalculate events ev-1, ev, ev+1
                                                  **/
/** PARAMETERS: (*)= return-paramter
                                                  **/
/**
        glob: global data
                                                  **/
/**
        part: data of particles
                                                  **/
/**
        event: array of events
                                                  **/
       ev: id of event
                                                  **/
/** RETURNS:
                                                  **/
/** nothing
/****************/
void treat_event(global_t *glob, particle_t *part, event_t *event, int ev)
                          /* particles of collision */
 int pl, pr;
 double vl, vr;
                        /* velocities of particles */
 pl = ev;
 pr = ev+1;
 part[pl].x += (event[ev].t- part[pl].t)*part[pl].v;
 part[pr].x += (event[ev].t - part[pr].t)*part[pr].v;
 part[pl].t = event[ev].t;
 part[pr].t = event[ev].t;
 if(pl==0)
                           /* collision w. left wall */
   part[pr].v = generate_maxwell(part[pr].m, glob->T1);
   event[pl].t = glob->t_end+1;
   event[pr].t = event_time(pr, pr+1, glob, part);
 else if(pr==(glob->n+1)) /* collision w. right wall */
   part[pl].v = -generate_maxwell(part[pl].m, glob->T2);
   event[pl].t = glob->t_end+1;
   event[pl-1].t = event_time(pl-1, pl, glob, part);
 }
 else
 {
   vl = part[pl].v; vr = part[pr].v;
   part[pl].v = ( (part[pl].m-part[pr].m)*vl + 2*part[pr].m*vr )/
     (part[pl].m + part[pr].m);
   part[pr].v = ( 2*part[pl].m*vl - (part[pl].m-part[pr].m)*vr )/
     (part[pl].m + part[pr].m);
   event[pl-1].t = event_time(pl-1, pl, glob, part);
   event[pl].t = glob->t_end+1;
   event[pr].t = event_time(pr, pr+1, glob, part);
 }
}
```

Attention: possibly no event for a particle (neither collision with left nor with reight neighbor), but is no problem.

```
VIDEO: {\tt video09a\_ereignis\_dichte}
```

10.4 Density

t = next event

```
Meaure quantity: density as a function of position (one can also measure
heat conduction etc)
Realisation: (glob.L= size of system)
                                  /* for measuring rho(x) */
  double *density;
  int bin, num_bins;
  double delta_x;
  num_bins = 50;
  delta_x = glob.L/num_bins;
  density = (double *) malloc(num_bins*sizeof(double));
  for(bin=0; bin<num_bins; bin++)</pre>
    density[bin] = 0;
Measurement (part[p] = data for particle p, glob.n= number of particles):
        for(p=1; p<=glob.n; p++)</pre>
           bin = (int) floor(
              (part[p].x+(t_measure-part[p].t)*part[p].v)/
              delta_x);
           density[bin] += 1/delta_x;
Structure of main function. Plan with Pseudocode
algorithm main()
begin
  initialisation
   t = first event
   while t < t_{\text{end}}
   begin
     measurements
     treat event
```

end end

(siehe main() in chain.c)

Here: alternating masses $(m^a = 1/m^b = 2.6)$ n = 100 particles, run time $t_{\rm end} = 100$. Measurement of density after half of model time every 10 time units. Result: system not yet in steady state:

Figure 17: Average density as function of position in time interval [50, 100].

 $t_{\rm end} = 10000$.

Figure 18: Average density as function of position in time interval [5000, 10000].

Density is smaller where temperature is higher. More results see A. Dahr, Phys. Rev. Lett. **86**, 3554 (2001) [5].

VIDEO: video09a_ereignis_heaps

10.5 Heaps

Run time of programs:

Number of collisions per time unit: O(n)

Search for next event: O(n)

 $\Rightarrow O(n^2) = \text{"slow"}.$

Improvement: $O(n \log n)$, when using heaps.

Preview:

Run time example: $n = 500, t_{\text{end}} = 10000.$

time chain 500 10000

21.36user 0.07system 0:21.70elapsed 98%CPU (Oavgtext+Oavgdata Omaxresident)k Oinputs+Ooutputs (133major+20minor)pagefaults Oswaps

time chain_heap 500 10000

7.92user 0.01system 0:08.08elapsed 98%CPU (Oavgtext+Oavgdata Omaxresident)k Oinputs+Ooutputs (133major+23minor)pagefaults Oswaps

with heap \rightarrow faster program \rightarrow larger systems (n=16383 vs. n=1281) \rightarrow more reliable, DIFFERENT results (Crossover), see P. Grassberger et al., Phys. Rev. Lett **89**, 180601 (2002) [6].

Heap = partially ordered tree, where for each sub tree the (here) smallest element is located at the root of the sub \rightarrow jeach element is smaller than all decendants Example:

Thus: the "top" root element is ALWAYS the smallest of all, e.g., the one containing the next event \rightarrow faster access (O(1)).

For heaps: efficient realisation as array:

node i:

predecessor: (i-1)/2 (int division)

left descendant: 2i + 1 right descendant: 2i + 2

Basic heap operations:

Insert:

```
algorithm heap_insert()
begin
  add element at the end;
  while (element smaller than predecessor)
      exchange with predecessor;
end
```

(see heap_insert() in chain_heap.c)

Eaxmple: insert "17"

results in

At most one sweep from leaf to root \rightarrow time $O(\log N)$

Removal:

```
algorithm heap_remove()
begin
    replace element by last element;
    if (element smaller than predecessor) then
        while (element smaller than predecessor)
        exchange with predecessor;
    else
        while (element larger than a desendant)
```

exchange with the smaller descendant;

end

Case A:

Case B:

 \rightarrow time $O(\log N)$

Implementation hints: events are removed also from within the heap (if velocities change).

 \rightarrow to make it faster, for each event its current heap position is stored in the array of events (see type heap_elem_t in chain_heap.c). This position has to be updated if an event moves inside the heap! (Without this additional storage, one would have to search the full heap to find an arbitrary element \rightarrow again O(N) run time).

Such "double storage" (here heap \to array, array \to heap) is often needed to obtain efficient programs.

(see heap_remove() in chain_cheap.c)

Access to first element in heap: O(1) (in contrast to O(N) for the simple implementation).

 \rightarrow total run time $O(N \log N)$.