Chapter 1

Conclusions And Future works

1.1 Conclusions

In this thesis, we proposed a patient-adaptable ECG classification framework. The system has a two-staged hierarchical structure including a global classifier and personalized classifier. Global classifier is designed to filter the samples with severe distortion and abnormal waveforms by triggering red alarms. The samples classified as "normal" by global classifier are delivered to the deviation detection stage. In this stage, the personalized dynamic normal cluster is constructed and used to specify the normal range for each patient. By comparing the a sample with the personalized normal range, we use two joint conditions to decide if the sample is in a fuzzy state between normality and abnormality. If the sample fails to meet the joint conditions, a yellow alarm will be triggered to provide predictive information about upcoming abnormalities and the sample will be passed to the personalized classifier, which will label it as one of the three abnormal types. Whereas, the samples without detected deviation are further utilized to update personalized dynamic normal cluster.

In Chapter 3, a kernel-based nonlinear transformation is proposed to address the problem of cluster topology in original feature space. More specifically, the weighted combination of kernel functions are deployed in this method as a spatial transformation function. The ideal topology is formulated as two objective functions, so that the system is able to find the optimal coefficients of kernels by jointly optimizing these two functions. This non-convex multi-objective optimization is solved with MOPSO. In order to validate the improvement on spatial topology by introducing nonlinearities with kernels, we compared the Pareto front generated with linear combination of original features and Pareto front produced in mapped feature space with polynomial kernels. The result verifies that the kernel-based transformation allows more degree of freedom so that the topology can be further optimized according to the objective functions. Moreover, we applied this method on MITDB test data and obtained similar sensitivity and specificity as proposed in the literature. More importantly, the predictive capability of yellow alarms is analyzed. The performance is quantified by comparing prior probabilities and posterior probabilities for each type of yellow alarms. The comparison result shows that a promising improvement has been made by applying the nonlinear transformation.

While the method in Chapter 3 demonstrated capacity of predicting upcoming abnormalities of ECG signal, it remains challenging to interpret the mechanisms of the systems and thus hindering the generalization of predictive warning in biomedical signal applications. Therefore, the main objective of Chapter 4 is to develop a deterministic spatial transformation function, which is able to achieve the ideal spatial topology at the same time. Thus, we proposed a novel spatial transformation specifically designed to reshape the feature space according to angles between cluster centroids. In this method, between-cluster cosine distances are optimized through orthogonalization of cluster centroids using spherical coordinate. Meanwhile, within-cluster variance is reduced by a piecewise mapping function

composed with designed basis functions. The basis function proposed in Chapter 4 has the property of saturating at the boundaries, which is similar to sigmoid function but yet more flexible. An advantage of deploying such basis function is that the cluster geometry is preserved after spatial transformation. We implement this novel transformation in the patient-adaptable classification framework, the performance of this system is evaluated with classification and prediction results on the test dataset. The classification results show that by triggering yellow alarms through this method, specificity of abnormal types is improved. Especially for S (supraventricular) type, the proposed system performs better on identifying S class than all 5 methods in the literature. Moreover, compared to the method proposed in Chapter 3, this method improves predictive capability for all abnormal classes but the improvement for type S is most significant.

We also studied the time lag of between a yellow alarm and the subsequent real abnormality in Chapter 4. The result shows that most of the real abnormalities occurs within 10 beat after a yellow alarm. Generally speaking, the system has been proven to be efficient both in classification and prediction in this work.

1.2 Future works

In this research, we focused on improving two main drawbacks of automated ECG analysis in literature, namely, failure to adapt to the inter-patient variability and incapability of early detection and prediction. We proposed two methods for improving predictive capability. While the result shows the promising performance of designed system, further investigations can help on generalizing and improving the proposed system. The following tasks can be resolved as a continuation of this research:

• Research on other kernel functions to improve the transformation for spatial topology

optimization.

- Investigate on the deterministic solution for the objective functions proposed in Chapter 3.
- Assess the performance of proposed spatial transformation on other biomedical signals with similar properties as ECG signal.
- Improve the deterministic mapping function in Chapter 4 by including clusters size in mapping function.

Bibliography

- [1] C. J. Murray and A. D. Lopez, "Measuring the global burden of disease," New England Journal of Medicine, vol. 369, no. 5, pp. 448–457, 2013.
- [2] D. Lloyd-Jones, R. J. Adams, T. M. Brown, M. Carnethon, S. Dai, G. De Simone, T. B. Ferguson, E. Ford, K. Furie, C. Gillespie, et al., "Heart disease and stroke statistics2010 update," Circulation, vol. 121, no. 7, pp. e46–e215, 2010.
- [3] W. H. Organization, "Cardiovascular diseases (cvds)," 2017.
- [4] S. C. Smith, R. Jackson, T. A. Pearson, V. Fuster, S. Yusuf, O. Faergeman, D. A. Wood, M. Alderman, J. Horgan, P. Home, et al., "Principles for national and regional guidelines on cardiovascular disease prevention: a scientific statement from the world heart and stroke forum," Circulation, vol. 109, no. 25, pp. 3112–3121, 2004.
- [5] E. Besterman and R. Creese, "Waller-pioneer of electrocardiography.," *British Heart Journal*, vol. 42, no. 1, p. 61, 1979.
- [6] B. E. Kreger, L. A. Cupples, and W. B. Kannel, "The electrocardiogram in prediction of sudden death: Framingham study experience," *American heart journal*, vol. 113, no. 2, pp. 377–382, 1987.

- [7] M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandt, and L. Sornmo, "Clustering ecg complexes using hermite functions and self-organizing maps," *IEEE Transactions on Biomedical Engineering*, vol. 47, no. 7, pp. 838–848, 2000.
- [8] G. K. Prasad and J. Sahambi, "Classification of ecg arrhythmias using multi-resolution analysis and neural networks," in *TENCON 2003. Conference on Convergent Technologies for the Asia-Pacific Region*, vol. 1, pp. 227–231, IEEE, 2003.
- [9] P. de Chazal, M. O'Dwyer, and R. B. Reilly, "Automatic classification of heartbeats using ECG morphology and heartbeat interval features," *IEEE Transactions on Biomedical Engineering*, vol. 51, pp. 1196–1206, July 2004.
- [10] R. Ceylan, Y. Ozbay, and B. Karlik, "A novel approach for classification of ecg arrhythmias: Type-2 fuzzy clustering neural network," Expert Systems with Applications, vol. 36, no. 3, pp. 6721–6726, 2009.
- [11] S. Osowski, L. T. Hoai, and T. Markiewicz, "Support vector machine-based expert system for reliable heartbeat recognition," *IEEE transactions on biomedical engineering*, vol. 51, no. 4, pp. 582–589, 2004.
- [12] H. H. Yu, P. S., and J. T. W., "A patient-adaptable ECG beat classifier using a mixture of experts approach," *IEEE Transactions on Biomedical Engineering*, vol. 44, no. 9, pp. 891–900, 1997.
- [13] P. de Chazal and R. B. Reilly, "A patient-adapting heartbeat classifier using ecg morphology and heartbeat interval features," *IEEE Transactions on Biomedical Engineering*, vol. 53, pp. 2535–2543, Dec 2006.

- [14] M. Llamedo and J. P. Martínez, "An automatic patient-adapted ecg heartbeat classifier allowing expert assistance," *IEEE Transactions on Biomedical Engineering*, vol. 59, no. 8, pp. 2312–2320, 2012.
- [15] W. Jiang and S. G. Kong, "Block-based neural networks for personalized ECG signal classification," *IEEE Transactions on Neural Networks*, vol. 18, no. 6, pp. 1750–1761, 2007.
- [16] T. Ince, S. Kiranyaz, and M. Gabbouj, "A generic and robust system for automated patient-specific classification of ecg signals," *IEEE Transactions on Biomedical Engi*neering, vol. 56, no. 5, pp. 1415–1426, 2009.
- [17] S. Kiranyaz, T. Ince, and M. Gabbouj, "Real-time patient-specific ecg classification by 1-d convolutional neural networks," *IEEE Transactions on Biomedical Engineering*, vol. 63, no. 3, pp. 664–675, 2016.
- [18] P. W. Wilson, R. B. DAgostino, D. Levy, A. M. Belanger, H. Silbershatz, and W. B. Kannel, "Prediction of coronary heart disease using risk factor categories," *Circulation*, vol. 97, no. 18, pp. 1837–1847, 1998.
- [19] M. A. Whooley, P. de Jonge, E. Vittinghoff, C. Otte, R. Moos, R. M. Carney, S. Ali, S. Dowray, B. Na, M. D. Feldman, et al., "Depressive symptoms, health behaviors, and risk of cardiovascular events in patients with coronary heart disease," Jama, vol. 300, no. 20, pp. 2379–2388, 2008.
- [20] S. H. Jambukia, V. K. Dabhi, and H. B. Prajapati, "Classification of ecg signals using machine learning techniques: A survey," in Computer Engineering and Applications (ICACEA), 2015 International Conference on Advances in, pp. 714–721, IEEE, 2015.

- [21] S. Kiranyaz, T. Ince, and M. Gabbouj, "Personalized monitoring and advance warning system for cardiac arrhythmias," *Scientific Reports*, vol. 7, no. 1, p. 9270, 2017.
- [22] L. S. Green, R. L. Lux, C. W. Haws, R. R. Williams, S. C. Hunt, and M. J. Burgess, "Effects of age, sex, and body habitus on QRS and ST-T potential maps of 1100 normal subjects.," *Circulation*, vol. 71, no. 2, pp. 244–253, 1985.
- [23] R. Hoekema, G. J. H. Uijen, and A. van Oosterom, "Geometrical aspects of the interindividual variability of multilead ecg recordings," *IEEE Transactions on Biomedical Engineering*, vol. 48, pp. 551–559, May 2001.
- [24] A. Houghton and D. Gray, Making sense of the ECG: a hands-on guide. CRC Press, 2014.
- [25] G. A. Ng, "Treating patients with ventricular ectopic beats," Heart, vol. 92, no. 11, pp. 1707–1712, 2006.
- [26] A.-A. EC57, "Testing and reporting performance results of cardiac rhythm and st segment measurement algorithms," Association for the Advancement of Medical Instrumentation, Arlington, VA, 1998.
- [27] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, "Physiobank, physiotoolkit, and physionet," *Circulation*, vol. 101, no. 23, pp. e215–e220, 2000.
- [28] G. B. Moody and R. G. Mark, "The impact of the mit-bih arrhythmia database," *IEEE Engineering in Medicine and Biology Magazine*, vol. 20, no. 3, pp. 45–50, 2001.
- [29] J. Chen and A. Razi, "A predictive framework for ecg signal processing using controlled nonlinear transformation," in *Biomedical & Health Informatics (BHI)*, 2018

 IEEE EMBS International Conference on, pp. 161–165, IEEE, 2018.

- [30] J. Chen, H. Peng, and A. Razi, "Remote ECG monitoring kit to predict patient-specific heart abnormalities," *Journal of Systemics, Cybernetics and Informatics*, vol. 15, no. 4, pp. 82–89, 2017.
- [31] B. N. Singh and A. K. Tiwari, "Optimal selection of wavelet basis function applied to ecg signal denoising," *Digital signal processing*, vol. 16, no. 3, pp. 275–287, 2006.
- [32] N. V. Thakor, J. G. Webster, and W. J. Tompkins, "Estimation of qrs complex power spectra for design of a qrs filter," *IEEE Transactions on biomedical engineering*, no. 11, pp. 702–706, 1984.
- [33] Y. Lian and P. C. Ho, "Ecg noise reduction using multiplier-free fir digital filters," in Signal Processing, 2004. Proceedings. ICSP'04. 2004 7th International Conference on, vol. 3, pp. 2198–2201, IEEE, 2004.
- [34] Y.-W. Bai, W.-Y. Chu, C.-Y. Chen, Y.-T. Lee, Y.-C. Tsai, and C.-H. Tsai, "Adjustable 60hz noise reduction by a notch filter for ecg signals," in *Instrumentation and Measurement Technology Conference*, 2004. IMTC 04. Proceedings of the 21st IEEE, vol. 3, pp. 1706–1711, IEEE, 2004.
- [35] O. Sayadi* and M. B. Shamsollahi, "Ecg denoising and compression using a modified extended kalman filter structure," *IEEE Transactions on Biomedical Engineering*, vol. 55, pp. 2240–2248, Sept 2008.
- [36] K. Park, K. Lee, and H. Yoon, "Application of a wavelet adaptive filter to minimise distortion of the st-segment," Medical and Biological Engineering and Computing, vol. 36, no. 5, pp. 581–586, 1998.
- [37] N. Nikolaev, Z. Nikolov, A. Gotchev, and K. Egiazarian, "Wavelet domain wiener filtering for ecg denoising using improved signal estimate," in *Acoustics, Speech, and Signal*

- Processing, 2000. ICASSP'00. Proceedings. 2000 IEEE International Conference on, vol. 6, pp. 3578–3581, IEEE, 2000.
- [38] S. Poungponsri and X.-H. Yu, "An adaptive filtering approach for electrocardiogram (ecg) signal noise reduction using neural networks," *Neurocomputing*, vol. 117, pp. 206–213, 2013.
- [39] V. X. Afonso, W. J. Tompkins, T. Q. Nguyen, and S. Luo, "Ecg beat detection using filter banks," *IEEE transactions on biomedical engineering*, vol. 46, no. 2, pp. 192–202, 1999.
- [40] D. Sadhukhan and M. Mitra, "R-peak detection algorithm for ecg using double difference and rr interval processing," *Procedia Technology*, vol. 4, pp. 873–877, 2012.
- [41] S. Mehta and N. Lingayat, "Svm-based algorithm for recognition of qrs complexes in electrocardiogram," *IRBM*, vol. 29, no. 5, pp. 310–317, 2008.
- [42] R. V. Andreão, B. Dorizzi, and J. Boudy, "Ecg signal analysis through hidden markov models," *IEEE Transactions on Biomedical engineering*, vol. 53, no. 8, pp. 1541–1549, 2006.
- [43] J. P. Martínez, R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna, "A wavelet-based ecg delineator: evaluation on standard databases," *IEEE transactions on biomedical engineering*, vol. 51, no. 4, pp. 570–581, 2004.
- [44] S. Banerjee, R. Gupta, and M. Mitra, "Delineation of ecg characteristic features using multiresolution wavelet analysis method," *Measurement*, vol. 45, no. 3, pp. 474–487, 2012.

- [45] Z. Zidelmal, A. Amirou, M. Adnane, and A. Belouchrani, "QRS detection based on wavelet coefficients," Computer methods and programs in biomedicine, vol. 107, no. 3, pp. 490–496, 2012.
- [46] J. Shawe-Taylor and N. Cristianini, *Kernel methods for pattern analysis*. Cambridge university press, 2004.
- [47] B. Schölkopf, C. J. Burges, and A. J. Smola, Advances in kernel methods: support vector learning. MIT press, 1999.
- [48] T. Evgeniou, M. Pontil, and T. Poggio, "Regularization networks and support vector machines," *Advances in computational mathematics*, vol. 13, no. 1, p. 1, 2000.
- [49] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines and other kernel-based learning methods. Cambridge university press, 2000.
- [50] C. A. Coello Coello, "Mopso: A proposal for multiple objective particle swarm optimization," Proc. Congr. Evolutionary Computation (CEC'2002), Honolulu, HI, 5, vol. 1, pp. 1051–1056, 2002.
- [51] J. E. Alvarez-Benitez, R. M. Everson, and J. E. Fieldsend, "A mopso algorithm based exclusively on pareto dominance concepts," in *International Conference on Evolutionary Multi-Criterion Optimization*, pp. 459–473, Springer, 2005.
- [52] L. Blumenson, "A derivation of n-dimensional spherical coordinates," *The American Mathematical Monthly*, vol. 67, no. 1, pp. 63–66, 1960.
- [53] G. W. Stewart, Matrix algorithms volume 1: Basic decompositions, vol. 2. Society for Industrial and Applied Mathematics, 1998.
- [54] G. Arfken, "Gram-schmidt orthogonalization," Mathematical methods for physicists, vol. 3, pp. 516–520, 1985.