Probability (2 points)

	P(A)	$P(B \mid A)$	+b	-b	$P(C \mid A)$	+c	-c
+a	0.25	+a	0.5	0.5	+a	0.2	0.8
-a	0.75	-a	0.25	0.75	-a	0.6	0.4

$P(D \mid B)$	+d	-d	$P(E \mid B)$	+e	-e
+b	0.6	0.4	+b	0.25	0.75
-b	0.8	0.2	-b	0.1	0.9

- 1. Using the Bayes net and conditional probability tables above, calculate the following quantities: (2 pts)
 - (a) $P(+b \mid +a) = \underline{\qquad 0.5}$

(b)
$$P(+a,+b) = \underline{P(+a)P(+b \mid +a)} = \frac{1}{8}$$

(c) $P(+a \mid +b) = \underline{P(+a \mid +b)} = \frac{P(+b \mid +a)P(+a)}{P(+b \mid +a)P(+a) + P(+b \mid -a)P(-a)} = \frac{0.5 * 0.25}{0.5 * 0.25 + 0.25 * 0.75} = \frac{2}{5}$

- (d) P(-e, +a) = 0.25 * (0.5 * 0.75 + 0.5 * 0.9) = 0.20625
- (e) P(D | A) =

$P(D \mid A)$	+d	-d
+a	$\frac{7}{40}$	$\frac{3}{40}$
-a	$\frac{36}{160}$	$\frac{15}{80}$

Independence (8 points)

- 2. For each of the following equations, select the minimal set of conditional independence assump- (4 pts) tions necessary for the equation to be true.
 - (a) P(A, C) = P(A | B)P(C)
 - $\Box \ A \perp\!\!\!\perp B \quad \Box \ A \perp\!\!\!\perp B \mid C \quad \Box \ A \perp\!\!\!\perp C \quad \sqrt{\ A \perp\!\!\!\perp C \mid B}$ \square $B \perp \!\!\! \perp C$ \square $B \perp \!\!\! \perp C \mid A$ \square No independence assumptions needed
 - (b) $P(A \mid B, C) = \frac{P(A)P(B|A)P(C|A)}{P(B|C)P(C)}$
 - (c) $P(A, B) = \sum_{c} P(A \mid B, c) P(B \mid c) P(c)$
 - $\square \ A \perp\!\!\!\perp B \quad \sqrt{\ A \perp\!\!\!\perp B \mid C} \quad \square \ A \perp\!\!\!\perp C \quad \square \ A \perp\!\!\!\perp C \mid B$ $\sqrt{B \perp \!\!\! \perp C} \quad \Box \quad B \perp \!\!\! \perp C \mid A \quad \Box$ No independence assumptions needed
 - (d) $P(A, B \mid C, D) = P(A \mid C, D)P(B \mid A, C, D)$
 - $\Box \ A \perp\!\!\!\perp B \quad \Box \ A \perp\!\!\!\perp B \mid C \quad \Box \ A \perp\!\!\!\perp C \quad \Box \ A \perp\!\!\!\perp C \mid B$
 - \square $B \perp \!\!\! \perp C$ \square $B \perp \!\!\! \perp C \mid A$ $\sqrt{}$ No independence assumptions needed

3. Indicate whether each of the following conditional independence relationships is guaranteed to be true in the Bayes Net below. If the independence relationship does not hold, identify all active (d-connected) paths in the graph.

- (a) $T \perp \!\!\! \perp Y$ Independence is \bigcirc Guaranteed $\sqrt{}$ Not Guaranteed $T \to V \to Y$ $T \to W \to Y$
- (b) $T \perp\!\!\!\perp Y \mid W$ Independence is \bigcirc Guaranteed $\sqrt{}$ Not Guaranteed $T \to V \to Y$
- (c) $U \perp \!\!\! \perp T$ Independence is $\sqrt{\textit{Guaranteed}}$ \bigcirc Not Guaranteed
- (d) $U \perp\!\!\!\perp T \mid Z$ Independence is \bigcirc Guaranteed $\sqrt{}$ Not Guaranteed $((U \to X) \text{ and } (T \to X)) \to Z \text{ because } Z \text{ is a decendant of } X \text{ and } X \text{ forms a v-structure.}$ While Z is observed, the v-structure is active.
- (e) $Z \perp\!\!\!\perp U$ Independence is \bigcirc Guaranteed $\sqrt{}$ Not Guaranteed $U \to X$
- (f) $Z \perp\!\!\!\perp Y \mid V$ Independence is \bigcirc Guaranteed $\sqrt{}$ Not Guaranteed $T \to X \to Z$ $T \to W \to Y$ $X \leftarrow T \to W$
- (g) $Z \perp\!\!\!\perp Y \mid T, W$ Independence is $\sqrt{\textit{Guaranteed}}$ \bigcirc Not Guaranteed
- (h) $Z \perp \!\!\! \perp W$ Independence is \bigcirc Guaranteed $\sqrt{}$ Not Guaranteed $T \to X \to Z$ $X \leftarrow T \to W$

Representation (4 points)

4. We are given the following ten Bayes nets, labeled G_1 to G_{10} :

(4 pts)

and the following three Bayes nets, labeled \mathbf{B}_1 to \mathbf{B}_3 :

(a) Assume we know that a joint distribution d_1 (over A, B, C) can be represented by Bayes net \mathbf{B}_1 . Mark all of the following Bayes nets that are guaranteed to be able to represent d_1 .

(b) Assume we know that a joint distribution d_2 (over A, B, C) can be represented by Bayes net \mathbf{B}_2 . Mark all of the following Bayes nets that are guaranteed to be able to represent d_2 .

G_1		G_2		G_3	G_4	G_5
G_6		G_7		G_8	 G_9	G_{10}
None	of ·	the al	oove			

(c) Assume we know that a joint distribution d_3 (over A, B, C) cannot be represented by Bayes net \mathbf{B}_3 . Mark all of the following Bayes nets that are guaranteed to be able to represent d_3 .

(d) Assume we know that a joint distribution d_4 (over A, B, C) can be represented by Bayes nets \mathbf{B}_1 , \mathbf{B}_2 and \mathbf{B}_3 . Mark all of the following Bayes nets that are guaranteed to be able to represent d_4 .

Page 4 of 4 Student number: <u>s0213082</u>

Inference (4 points)

5. Using the same Bayes Net from question 3, we want to compute $P(Y \mid +z)$. All variables have (4 pts) binary domains. Assume we run variable elimination to compute the answer to this query, with the following variable elimination ordering: U, T, X, V, W.

Complete the following description of the factors generated in this process:

- (a) After inserting evidence, we have the following factors to start out with: $P(U), P(T), P(X \mid U, T), P(V \mid T), P(W \mid T), P(+z \mid X), P(Y \mid V, W)$
- (b) When eliminating U we generate a new factor f_1 as follows, which leaves us with the factors: $f_1(X,T) = \sum_u \mathsf{P}(u)\mathsf{P}(X\mid u,T)$ Factors: $\mathsf{P}(T),\mathsf{P}(V\mid T),\mathsf{P}(W\mid T),\mathsf{P}(+z\mid X),\mathsf{P}(Y\mid V,W),f_1(X,T)$
- (c) When eliminating T we generate a new factor f_2 as follows, which leaves us with the factors:

 $f_2(...) =$ Factors:

(d) When eliminating X we generate a new factor f_3 as follows, which leaves us with the factors:

 $f_3(...) =$ Factors:

(e) When eliminating V we generate a new factor f_4 as follows, which leaves us with the factors:

 $f_4(...) =$ Factors:

(f) When eliminating W we generate a new factor f_5 as follows, which leaves us with the factors:

 $f_5(...) =$ Factors:

- (g) How would you obtain $P(Y \mid +z)$ from the factors left above?
- (h) What is the size of the largest factor that gets generated during the above process?
- (i) Does there exist a better elimination ordering (one which generates smaller largest factors)? Argue why not or give an example.