# Laboratório 2 - Computação Concorrente

### Ricardo Kaê - DRE 116 039 521

#### Relatório do Laboratório 2 Para o Laboratório 2 foram feitos os seguintes arquivos:

- $lab2.c \longrightarrow lab2$  (Executável)
- tabela.sh → tabela.txt, dataset m500.dat, dataset m1000.dat, dataset m2000.dat
   Um script em bash para automatizar todos os casos de execução e gerar quatro arquivos de dados: Uma tabela e mais três conjuntos de dados para serem plotados.
- $\bullet$   $gera\_graficos.gnu$ Um script do gnuplot para gerar gráficos a partir dos arquivos .dat

#### Código lab2.c

O código lab2.c multiplica duas matrizes quadradas (A, B) de ordem definida pelo usuário (dim), de maneira sequencial e de maneira concorrente, onde de maneira concorrente, o usuário decide o número de threads a ser usado pelo programa.

Ambas as matrizes (A, B) são inicializadas com valor i + j em todas as entradas, onde  $i, j \in [0, dim] \subset \mathbb{Z}$ .

O resultado da multiplicação é armazenado numa matriz S e C, quando feito respectivamente, sequencialmente e concorrentemente.

Além disso, o código conta com três funções:  $verifica\_mult()$ ,  $print\_matrix()$ ,  $gera\_tabela()$ .

A função  $verifica\_mult()$  verifica se as matrizes S,C após as multiplicações são iguais. Isto é, se o procedimento sequencial confere com procedimento concorrente.

A função print\_matrix() imprime o número de threads e as matrizes de entrada e saída. Só vale ser usada quando as matrizes tem ordem pequena. Para matrizes de ordem grande, a saída é ruim de ver.

E por fim, a função  $gera\_tabela()$  que confere ao programa a saída adequada para quaisquer ordens de matrizes. Portanto, a função  $print\_matrix()$  encontra-se comentada no código (linha 134).

A saída de gera\_tabela() imprime cinco valores tabulados, que são respectivamente:

#Tseq, #Thread Principal, #Tconc, #No de threads, #Ganho (1)

A impressão é feita sem rotular as colunas, então apenas os valores são impressos.

Essa saída é auxilida pelo script *tabela.sh*, para gerar uma tabela de valores automaticamente para diferentes casos de execução do programa, isto é, matrizes com diferentes ordens e com diferentes números de threads.

#### Script tabela.sh

O script tabela.sh cumpre dois objetivos:

- 1. Gerar automaticamente uma tabela com as colunas de (1) (resultado da função gera\_tabela() de lab2.c), para diferentes casos de execução. Isto é, 5 execuções para matrizes de ordem 500, 1000 e 2000. E para cada uma das execuções, registrar o tempo de computação com 1, 2 e 4 threads respectivamente. Assim, para cada thread, há 5 execuções, totalizando 15 execuções no total. Como há 3 matrizes, são 15 execuções para cada uma, totalizando 45 execuções concorrentes no total. E como para cada execução concorrente, o programa lab2.c faz uma multiplicação sequencial também, são 90 multiplicações de matrizes ao todo.
  - \* O script costuma demorar em torno de 20 a 40 min para entregar o resultado final, que é redirecionado para um arquivo de texto tabela.txt
- 2. Gerar automaticamente conjuntos de dados para serem plotados no gnuplot.

Três conjuntos de dados são gerados (dataset-m500.dat, dataset-m1000.dat, dataset-m2000.dat), cujas as informações são retiradas de tabela.txt. Um conjunto de dados é referente a matriz com dimensão 500, outro com a dimensão 1000 e o último com a dimensão 2000.

A partir desses arquivos, pode-se executar o script  $gera\_graficos.gnu$  dentro do gnuplot, que ele gera como saída três arquivos .eps: m500.eps, m1000.eps, m2000.eps, que são os gráficos com os tempos de execução sequencial e concorrente das matrizes de dimensão 500, 1000 e 2000 respectivamente.

## ${f O}$ arquivo tabela.txt

### # TABELA #

| # MATRIZ COM DIMENSÃO 500  |                   |                                  |                                    |          |  |  |
|----------------------------|-------------------|----------------------------------|------------------------------------|----------|--|--|
| # T Sequencial (em s)      | #Thread Principal | <pre>#T Concorrente (em s)</pre> | ${\tt \#n}^{ m o}$ Threads         | #Ganho   |  |  |
| 1.322899                   | 1                 | 1.468214                         | 1                                  | 0.901026 |  |  |
| 1.311620                   | 1                 | 1.440662                         | 1                                  | 0.910428 |  |  |
| 1.339205                   | 1                 | 1.436752                         | 1                                  | 0.932105 |  |  |
| 1.290908                   | 1                 | 1.462699                         | 1                                  | 0.882552 |  |  |
| 1.317734                   | 1                 | 1.418772                         | 1                                  | 0.928785 |  |  |
| 1.285275                   | 1                 | 0.736922                         | 2                                  | 1.744114 |  |  |
| 1.334348                   | 1                 | 0.839372                         | 2                                  | 1.589698 |  |  |
| 1.369319                   | 1                 | 0.731159                         | 2                                  | 1.872806 |  |  |
| 1.215496                   | 1                 | 0.746455                         | 2                                  | 1.628358 |  |  |
| 1.210268                   | 1                 | 0.720318                         | 2                                  | 1.680186 |  |  |
| 1.204502                   | 1                 | 0.408765                         | 4                                  | 2.946689 |  |  |
| 1.266952                   | 1                 | 0.419967                         | 4                                  | 3.016788 |  |  |
| 1.215388                   | 1                 | 0.410308                         | 4                                  | 2.962135 |  |  |
| 1.208371                   | 1                 | 0.418479                         | 4                                  | 2.887529 |  |  |
| 1.200675                   | 1                 | 0.408955                         | 4                                  | 2.935961 |  |  |
| # MATRIZ COM DIMENSÃO 1000 |                   |                                  |                                    |          |  |  |
| # T Sequencial (em s)      | #Thread Principal | <pre>#T Concorrente (em s)</pre> | ${\tt \#n}^{ m o}$ ${\tt Threads}$ | #Ganho   |  |  |
| 12.852179                  | 1                 | 15.025679                        | 1                                  | 0.855348 |  |  |
| 9.170262                   | 1                 | 9.515158                         | 1                                  | 0.963753 |  |  |
| 8.925299                   | 1                 | 9.176126                         | 1                                  | 0.972665 |  |  |
| 9.154169                   | 1                 | 9.483944                         | 1                                  | 0.965228 |  |  |
| 9.257833                   | 1                 | 9.600310                         | 1                                  | 0.964326 |  |  |
| 9.156375                   | 1                 | 5.344537                         | 2                                  | 1.713221 |  |  |
| 12.842645                  | 1                 | 7.545107                         | 2                                  | 1.702116 |  |  |
| 9.319945                   | 1                 | 5.340889                         | 2                                  | 1.745018 |  |  |
| 9.220565                   | 1                 | 5.325122                         | 2                                  | 1.731522 |  |  |
| 9.387186                   | 1                 | 5.386652                         | 2                                  | 1.742675 |  |  |
| 9.323905                   | 1                 | 3.035821                         | 4                                  | 3.071296 |  |  |
| 9.287894                   | 1                 | 3.046447                         | 4                                  | 3.048762 |  |  |
| 9.252381                   | 1                 | 3.029967                         | 4                                  | 3.053624 |  |  |
| 9.437469                   | 1                 | 3.089035                         | 4                                  | 3.055152 |  |  |
| 9.254626                   | 1                 | 3.012638                         | 4                                  | 3.071934 |  |  |
| # MATRIZ COM DIMENSÃO 2000 |                   |                                  |                                    |          |  |  |
| # T Sequencial (em s)      | #Thread Principal | <pre>#T Concorrente (em s)</pre> | ${	t \#n^{ m o}}$ Threads          | #Ganho   |  |  |
| 80.642155                  | 1                 | 84.815525                        | 1                                  | 0.950795 |  |  |
| 79.440313                  | 1                 | 84.737322                        | 1                                  | 0.937489 |  |  |
| 80.644480                  | 1                 | 84.234690                        | 1                                  | 0.957378 |  |  |
| 80.638381                  | 1                 | 84.683605                        | 1                                  | 0.952231 |  |  |
| 79.935934                  | 1                 | 84.772814                        | 1                                  | 0.942943 |  |  |
| 80.695472                  | 1                 | 47.194654                        | 2                                  | 1.709843 |  |  |
| 80.465559                  | 1                 | 46.787433                        | 2                                  | 1.719811 |  |  |

| 80.515556 | 1 | 47.409209 | 2 | 1.698310 |
|-----------|---|-----------|---|----------|
| 80.892150 | 1 | 47.294200 | 2 | 1.710403 |
| 80.425375 | 1 | 45.364132 | 2 | 1.772885 |
| 80.445940 | 1 | 25.767286 | 4 | 3.122018 |
| 79.625988 | 1 | 25.252511 | 4 | 3.153191 |
| 80.482277 | 1 | 25.728727 | 4 | 3.128110 |
| 80.222821 | 1 | 25.733798 | 4 | 3.117411 |
| 80.320066 | 1 | 25.735781 | 4 | 3.120949 |

Da tabela pode-se notar que a multiplicação sequencial, para qualquer ordem de matriz, sempre vence a execução concorrente com 1 thread. Isto é, a multiplicação sequencial tem sempre um tempo menor que a concorrência com 1 thread e o ganho  $\frac{Tseq}{Tconc}$ , nesse caso, portanto, é sempre menor que 1.

E também nota-se como a concorrência com mais threads (2 ou 4) acelera a aplicação. Um ganho da ordem 2 faz com que o tempo concorrente seja a metade do tempo sequencial e um ganho da ordem de 3 faz com que o tempo concorrente seja três vezes menor que o tempo sequencial, que são melhorias bem significativas.

E por fim, a partir das informações de tabela.txt gera-se o conjunto de dados, usados pelo gnuplot para plotar os gráficos.

#### Gráficos







Figura 1: Tempo Sequencial e Concorrente das Matrizes

#### Hardware

O hardware usado para o processamento foi:

• CPU: AMD FX-8300 (4 cores físicos), 12 MB cache, 3.3 GHz clock, 8 threads

• RAM: 8GB DDR3 1330Mhz

• SO: Linux Debian 10