

- Content-Free Grammar (CFG) is defined by the following four components:
 - (1)A finite terminal vocabulary Vt; this is the token set produced by the scanner.
 - (2) A finite set of different, interminate symbols, called the nonterminal vocabulary Vn.
 - (3)A start symbol S∈Vn that starts all derivations. A start symbol is sometimes called a goal symbol.
 - (4)P, a finite set of productions (sometimes called rewriting rules) of the form $A \rightarrow X1 \dots Xm$, where

$$A \in V_n, X_i \in V_n \cup V_t, 1 \le i \le m, m \ge 0$$

Note that $A \rightarrow \lambda$ is a valid production.

a, b, c, ... denote symbols in Vt A, B, C, ... denote symbols in Vn U, V, W, ... denote symbols in V α,β,γ , ... denote symbols in V* u, v, w, ... denote symbols in Vt*

$$A \rightarrow \alpha \mid \beta \mid \dots \mid \zeta$$

This is an abbreviation for the sequence of productions :

$$A \to \alpha$$

$$A \to \beta$$
...
$$A \to \zeta$$

If $A \to \gamma$ is a production, then $\alpha A\beta \Rightarrow \alpha \gamma \beta$, where \Rightarrow denotes a one-step derivation (using production $A \to \gamma$). We extend \Rightarrow to \Rightarrow_+ , derived in one or more steps, and \Rightarrow^* , derived in zero or more steps. If $S \Rightarrow^* \beta$, then β is said to be a sentential form of the CFG. SF(G) is the set of sentential forms of grammar G. Similarly, L(G) = $\{x \in V_t^* \mid S \Rightarrow^+ x\}$. Note that L(G) = SF(G) $\cap V_t^*$; that is, the language of G is simply those sentential forms of G that are terminal strings.

$$\begin{array}{cccc} \mathsf{E} & \to & \mathsf{Prefix} \; (\; \mathsf{E} \;) \\ \mathsf{E} & \to & \mathsf{V} \; \mathsf{Tail} \\ \mathsf{Prefix} & \to & \mathsf{F} \\ \mathsf{Prefix} & \to & \lambda \\ \mathsf{Tail} & \to & + \; \mathsf{E} \\ \mathsf{Tail} & \to & \lambda \end{array}$$

A leftmost derivation of F(V+V) is :

<Program>

Figure 4.5 A Top-Down Parse

Figure 4.6 A Bottom-Up Parse

typedef set_of_terminal_or_lambda termset; termset follow_set [NUM_NONTERMINAL]; termset first_set [SYMBOL]; marked_vocabulary derives_lambda = mark_lambda (g); /* mark_lambda (g), p. 103*/

```
termset compute_first (string_of_symbols alpha)
     int I, k;
     termset result;
     k = length(alpha);
     if (k == 0)
      result = SET_OF(\lambda);
     else {
       result = first_set [ alpha[0] ];
       for ( i = 1; i < k && \lambda \in \text{first\_set[ alpha[i-1] ] ; i++)}
        result = result \cup (first_set [ alpha[i] ] - SET_OF(\lambda));
      if ( i == k && \lambda \in \text{first\_set} [ \text{alpha[k-1] } ] )
        result = result \cup SET_OF(\lambda);
     return result;
    Figure 4.8 Algorithm to Compute First(alpha)
```

First2 - 10


```
extern grammar g;
void fill_first_set (void)
  nonterminal A;
  terminal a;
  production p;
  boolean changes;
  int i, j;
  for (i = 0; i < NUM_NONTERMINAL; i++)
     A = g.nonterminals[i];
     if (derives_lambda[A])
      first_set[A] = SET_OF(\lambda);
     else
      first_set[A] = \emptyset;
```



```
for (i = 0; i < NUM_TERMINAL; i++)
    a = g.terminals[i];
    first_set[a] = SET_OF(a);
    for (j = 0; j < NUM_NONTERMINAL; j++)
         A = g.nonterminals[j];
         if (there exists a production A \rightarrow a\beta)
           first\_set[A] = first\_set[A] \cup SET\_OF(a);
```



```
do {
       changes = FALSE;
      for (i = 0; i < g.num_productions; i++)
              p = g.productions[i];
             first\_set[p.lhs] = first\_set[p.lhs] \cup
              compute_first(p.rhs);
             if ( first_set changed )
               changes = TRUE;
  } while (changes);
Figure 4.9 Algorithm to Compute First Sets for V
```


- Follow (A) = { $a \in Vt \mid S \Rightarrow + ... Aa ... } ∪$ (if $S \Rightarrow + αA$ then $\{\lambda\}$ else \emptyset)
- Follow (A) is the set of terminals that may follow A in some sentential form.
- 用處: they define the right contest consistent with a given nonterminal. (lookahead)


```
\begin{array}{cccc} \mathsf{E} & \to & \mathsf{Prefix} \; (\; \mathsf{E} \; ) \\ & \mathsf{E} & \to & \mathsf{V} \; \mathsf{Tail} \\ & \mathsf{Prefix} & \to & \mathsf{F} \\ & \mathsf{Prefix} & \to & \lambda \\ & \mathsf{Tail} & \to & \lambda \end{array}
```


Step	first_set							
	E	Prefix	Tail	()	V	F	+
(1)First loop	Ø	{λ}	{λ}					
(2)Second (nested) loop	{ V }	{ F, λ }	{ +, λ }	{(}	{) }	{ V }	{ F }	{+}
(3)Third loop, production 1	{ V,F,(}	{ F, λ }	{ +, λ }	{(}	{)}	{ V }	{ F }	{ + }


```
For top-down
First(\alpha) = \{ a \in Vt \mid \alpha \Rightarrow^* a\beta \} \cup (if \alpha \Rightarrow^* \lambda then \{\lambda\} else \emptyset )
void fill_follow_set (void)
   nonterminal A, B;
   int i;
   boolean changes;
   for (i = 0; i < NUM_NONTERMINAL; i++) {
        A = g.nonterminals[i];
         Follow_set[A] = \emptyset;
   follow_set[g.start_symbol] = SET_OF(\lambda);
```

```
CSE B
```

```
do {
  changes = FLASE;
  for (each production A \rightarrow \alpha B\beta) {
      * i.e. for each production and each occurrence
      * of a nonterminal in its right-hand side.
     */
     follow_set[B] = follow_set[B] \cup
                    (compute_first(\beta) – SET_OF(\lambda) );
    if (\lambda \in \text{compute\_first}(\beta))
          follow_set[B] = follow_set[B] \cup follow_set[A];
     if (follow_set[B] changed)
          changes = TRUE;
} while (changes)
```

Figure 4.10 Algorithm to Compute Follow Sets for All First2 - 18 Nonterminals


```
\begin{array}{cccc} \mathsf{E} & \to & \mathsf{Prefix} \; (\; \mathsf{E} \; ) \\ & \mathsf{E} & \to & \mathsf{V} \; \mathsf{Tail} \\ & \mathsf{Prefix} & \to & \mathsf{F} \\ & \mathsf{Prefix} & \to & \lambda \\ & \mathsf{Tail} & \to & \lambda \end{array}
```


Step	Follow_set			
	Е	Prefix	Tail	
(1)Initialization	{ λ }	Ø	Ø	
(2)Process Prefix in production 1	{ \(\lambda \) }	{(}	Ø	
(3)Process E in production 1	{ \(\lambda,\)\)}	{(}	Ø	
(4)Process Tail in production 2	{ \(\lambda,\)\)}	{(}	{ λ,) }	

 To further illustrate the operation of the programs that compute First and Follow sets, we present two additional examples. For the following grammar

S	\rightarrow	aSe
S	\rightarrow	В
В	\rightarrow	bBe
В	\rightarrow	С
С	\rightarrow	сСе
С	\rightarrow	d

The execution of fill_first_set would proceed as follows:

Step	first_set							
	S	В	С	а	b	С	d	е
(1)First loop	Ø	Ø	Ø					
(2)Second (nested) loop	{ a }	{ b }	{ c,d }	{a}	{ b }	{ c }	{ d }	{ e }
(3)Third loop, production 2	{ a,b }	{ b }	{ c,d }	{ a }	{ b }	{ c }	{ d }	{ e }
(4)Third loop, production 4	{ a,b }	{b,c,d }	{ c,d }	{ a }	{ b }	{ c }	{ d }	{ e }
(5)Third loop, production 2	{ a,b,c,d }	{b,c,d }	{ c,d }	{ a }	{ b }	{ c }	{ d }	{ e }

First2 - 22

The execution of fill_follow_set is illustrated by

Step	follow_set				
	S	В	О		
(1)Initialization	{ \(\lambda \) }	Ø	Ø		
(2)Process S in production 1	{ e,λ }	Ø	Ø		
(3)Process B in production 2	{ e,λ }	{ e,λ }	Ø		
(4)Process B in production 3	No c	hanges			
(5)Process C in production 4	$\{e,\lambda\}$ $\{e,\lambda\}$ $\{e,\lambda\}$		{ e,λ }		
(6)Process C in production 5	No changes				

For the second example grammar

The execution of fill_first_set would proceed as follows:

Step			first_set	_set			
	S	Α	В	a	b	С	
(1)First loop	Ø	{ \(\lambda \) }	{ \(\lambda \) }				
(2)Second (nested) loop	Ø	{ a,λ }	{ b,λ }	{ a }	{ b }	{ c }	
(3)Third loop, production 1	{ a,b,c }	{ a,λ }	{ b,λ }	{a}	{ b }	{ c }	

The execution of fill_follow_set is illustrated by

Step	follow_set		
	S A E		
(1)Initialization	{ λ }	Ø	Ø
(2)Process A in production 1	{ λ }	{ b,c }	Ø
(3)Process B in production 1	{ λ }	{ b,c }	{ c }