7 Théorème de d'Alembert-Gauß

Leçons 144, 204(, 214)

Ref: [Gonnord-Tosel]

Ce développement consiste à démontrer le théorème fondamental de l'algèbre.

Théorème 1 (D'Alembert-Gauß) Le corps \mathbb{C} est algébriquement clos : tout polynôme non constant de $\mathbb{C}[X]$ admet une racine.

Démonstration. Pour obtenir ce résultat, on va montrer que tout polynôme non constant de $\mathbb{C}[X]$ est surjectif, et donc que 0 admet en particulier un antécédent. Cette démonstration utilise des résultats de connexité. On se donne $P \in \mathbb{C}[X]$ non constant, et on appelle S l'ensemble des racines de P'. Alors S est fini (puisque tout polynôme possède un nombre fini de racines) et donc P(S) aussi. On définit également

$$\left\{ \begin{array}{l} \Omega = P(\mathbb{C}) \backslash P(S) \\ \mathbb{L} = \mathbb{C} \backslash P(S) \end{array} \right.$$

On va montrer que Ω et $\mathbb L$ sont les mêmes ensembles. On en déduira alors que $P(\mathbb C)=\mathbb C$, et donc que P est surjectif.

Étape 1. Connexité de \mathbb{L} .

On va montrer que \mathbb{L} est connexe en montrant qu'il est connexe par arcs. On se donne a et b dans \mathbb{L} . On définit pour un point z de \mathbb{C} l'ensemble \mathcal{D}_z des droites du plan complexe (assimilé à \mathbb{R}^2) passant par z. En particulier, comme \mathcal{D}_z est en bijection avec $[0,\pi)$, c'est un ensemble infini, et comme P(S) est un ensemble fini, il existe pour tout $z \in \mathbb{L}$ une droite de \mathcal{D}_z ne passant par aucun point de S. On se donne donc $\Delta_a \in \mathcal{D}_a$ et $\Delta_b \in \mathcal{D}_b$ deux droites passant respectivement par a et b et ne passant pas par P(S) (voir figure 7.1). On se donne un réel R > 0 tel que la boule centrée en l'origine et de rayon R, notée B(0,R), contienne $P(S) \cup \{a,b\}$ (R existe car cet ensemble est fini). Comme Δ_a et Δ_b sont des droites passant par l'intérieur de B(0,R), elles coupent toutes les deux le disque $\partial B(0,R)$ en deux points. On en choisit un pour chacune, que l'on note respectivement a' et b'. Alors le chemin $[a,a'] \cup \mathcal{C} \cup [b',b]$, où $[z_1,z_2]$ désigne le segment reliant z_1 à z_2 dans \mathbb{C} , et \mathcal{C} l'un des deux arcs de cercles reliant a' à b' sur $\partial B(0,R)$ forme, comme on le voit sur la figure 7.1, un chemin continu de a à b ne passant par aucun point de P(S), c'est à dire inclus dans \mathbb{L} . Donc \mathbb{L} est connexe.

Étape 2. Ω est ouvert dans \mathbb{L} .

On se donne $x \in \Omega$. Alors en partculier, x est dans l'image de P, et on peut donc se donner $z \in \mathbb{C}$ tel que P(z) = x. Comme x n'est pas dans P(S), P'(z) est non nul. On en déduit que c'est un élément inversible de \mathbb{C} . On applique à P le théorème d'inversion locale en $z : \mathbb{C}$ est un Banach, et P une application polynomiale donc de classe C^1 de \mathbb{C} vers \mathbb{C} , et P'(z) est inversible dans \mathbb{C} . On en déduit qu'il existe un ouvert U_z autour de z dans \mathbb{C} et un voisinage U_x autour de x = P(z) dans \mathbb{C} tel que P soit un C^1 -difféomorphisme de U_z vers U_x . En particulier, U_x est inclus dans $P(\mathbb{C})$. On en déduit que $U_x \cap \mathbb{L}$ est inclus dans $P(\mathbb{C}) \cap \mathbb{L} = \Omega$. Donc Ω est ouvert dans \mathbb{L} .

Étape 3. Ω est fermé dans \mathbb{L} .

On se donne une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de Ω qui converge vers un élément $x\in\mathbb{L}$. On va montrer que $x\in\Omega$. Comme pour $n\in\mathbb{N}$, x_n est dans Ω , on peut se donner un élément $z_n\in\mathbb{C}$ tel que $P(z_n)=x_n$. Or les fonctions polynomiales sont propres :

$$\lim_{|z| \to +\infty} |P(z)| = +\infty.$$

On en déduit, comme la suite $(P(z_n))_{n\in\mathbb{N}} = (x_n)_{n\in\mathbb{N}}$ est bornée car convergente dans \mathbb{L} , que la suite $(z_n)_{n\in\mathbb{N}}$ l'est aussi. Donc, par théorème de Bolzano-Weierstraß, il existe une extractrice φ et un complexe z tels que

$$z_{\varphi(n)} \xrightarrow[n \to +\infty]{} z.$$

Par continuité de la fonction polynomiale P, on en déduit que

$$P(z_{\varphi(n)}) \underset{n \to +\infty}{\longrightarrow} P(z).$$

Or cette suite est aussi la suite $(x_{\varphi(n)})_{n\in\mathbb{N}}$, qui converge vers x, donc par unicité de la limite, on a x=P(z). On en déduit que x est dans Ω . Donc Ω est fermé dans \mathbb{L} .

Figure 7.1 – Construction d'un chemin entre deux points de $\mathbb L$

Étape 4. Conclusion.

 \mathbb{L} étant connexe, et Ω ouvert et fermé dans \mathbb{L} , on a $\Omega = \emptyset$ ou $\Omega = \mathbb{L}$. Or comme P est non constant, $P(\mathbb{C})$ est infini, et donc comme P(S) est fini, Ω n'est pas vide. Donc $\Omega = \mathbb{L}$, ce qui permet de conclure. \square