# ANÁLISIS DEL RETO

Student No. 1 Yair Andrade Pechene, y.andrade1@uniandes.edu.co, 202310241.

Student No. 2 Santiago Guevara, s.guevarao@uniandes.edu.co, 202316629.

Student No. 3 Alejandro Parada, f.parada@uniandes.edu.co, 202313816.

[Back to top](#sample-tree)

# Requerimiento <<1>>

# Descripción

| Entrada              | Fecha inicial y final del intervalo.                             |
|----------------------|------------------------------------------------------------------|
| Salidas              | El número total de eventos sísmicos ocurridos durante las fechas |
|                      | indicadas. Todos los eventos ocurridos en el intervalo ordenados |
|                      | cronológicamente desde el más reciente al más antiguo            |
| Implementado (Sí/No) | Alejandro Parada                                                 |

# Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

| Pasos                                | Complejidad |  |
|--------------------------------------|-------------|--|
| Paso 1 – Inicialización de variables | O(1)        |  |
| Paso 2 - Función Values y keys       | O(log n )   |  |
| Paso 3 – iterar una lista            | O(1)        |  |
| Paso 4 – Funcion while               | O(n)        |  |
| Paso Final                           | O(n)        |  |

#### Tablas de datos

Las tablas con la recopilación de datos de las pruebas.

| Entrada | Tiempo (s)         |
|---------|--------------------|
| small   | 0.1482517719268798 |
| 5 pct   | 0.5336015224456787 |
| 10 pct  | 0.8312478065490723 |
| 20 pct  | 1.3666191101074219 |

| 30 pct | 1.8785781860351562 |
|--------|--------------------|
| 50 pct | 2.9455976486206055 |
| 80 pct | 4.484761476516724  |
| large  | 5.438508987426758  |

#### **Graficas**



### **Análisis**

Teniendo en cuenta la gráfica y el análisis de complejidad hecho podemos darnos cuenta de que se sigue un crecimiento lineal, esto pues en el peor caso el requerimiento tardara o(n) lo cual significa que solo se verá afectado por el número de datos que se tengan que usar.

# Requerimiento <<2>>

Plantilla para el documentar y analizar cada uno de los requerimientos.

# Descripción

Breve descripción de como abordaron la implementación del requerimiento

| Entrada              | Parámetros necesarios para resolver el requerimiento. |  |
|----------------------|-------------------------------------------------------|--|
| Salidas              | Respuesta esperada del algoritmo.                     |  |
| Implementado (Sí/No) | Si se implementó y quien lo hizo.                     |  |

# Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

| Pasos                                | Complejidad |
|--------------------------------------|-------------|
| Paso 1 – Inicialización de variables | O(1)        |
| Paso 2 - Función Values y keys       | O(log n )   |
| Paso 3 – iterar una lista            | O(1)        |
| Paso 4 – Funcion while               | O(n)        |
| Paso Final                           | O(n)        |

#### Pruebas Realizadas

Descripción de las pruebas de tiempos de ejecución y memoria utilizada. Incluir descripción del procedimiento, las condiciones, las herramientas y recursos utilizados (librerías, computadores donde se ejecutan las pruebas, entre otros).

| Entrada | Tiempo (s)           |
|---------|----------------------|
| small   | 0.010779857635498047 |
| 5 pct   | 0.0201873779296875   |
| 10 pct  | 0.03634381294250488  |
| 20 pct  | 0.04086341857910156  |
| 30 pct  | 0.07344603538513184  |
| 50 pct  | 0.1222238540649414   |
| 80 pct  | 0.2335610866546631   |
| large   | 0.365339994430542    |

#### **Graficas**

Las gráficas con la representación de las pruebas realizadas.



#### **Análisis**

Teniendo en cuenta la gráfica y el análisis de complejidad hecho podemos darnos cuenta de que se sigue un crecimiento lineal, esto pues en el peor caso el requerimiento tardara o(n) lo cual significa que solo se verá afectado por el número de datos que se tengan que usar.

# Requerimiento <<3>>

Plantilla para el documentar y analizar cada uno de los requerimientos.

# Descripción

Breve descripción de como abordaron la implementación del requerimiento

| Entrada              | La profundidad mínima del evento (depth) y      |
|----------------------|-------------------------------------------------|
|                      | La cantidad mínima de la magnitud (mag).        |
| Salidas              | El número total de eventos sísmicos registrados |
|                      | dentro de los límites de magnitud s. • Los 10   |
|                      | eventos cronológicamente que cumplan con las    |
|                      | condiciones de profundidad y sobrepasen el      |
|                      | mínimo de la magnitud                           |
| Implementado (Sí/No) | Alejandro Parada                                |

# Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

| Pasos                                   | Complejidad  |
|-----------------------------------------|--------------|
| Paso 1 - Obtención y Filtrado de Datos: | O(N * M)     |
| Paso 2 - Ordenamiento de Elementos:     | O( n log n ) |
| Paso 3 – Creación de la Lista Final     | O(n)         |
|                                         |              |
| Paso Final                              | O(N log N)   |

### **Pruebas Realizadas**

Descripción de las pruebas de tiempos de ejecución y memoria utilizada. Incluir descripción del procedimiento, las condiciones, las herramientas y recursos utilizados (librerías, computadores donde se ejecutan las pruebas, entre otros).

| Entrada | Tiempo (s)   |
|---------|--------------|
| small   | 0.0898480415 |
| 5 pct   | 0.1355457305 |
| 10 pct  | 0.4943200349 |
| 20 pct  | 0.1657581329 |
| 30 pct  | 0.4617586135 |
| 50 pct  | 0.513867378  |
| 80 pct  | 0.7455372810 |
| large   | 0.9624190330 |

#### Graficas



### **Análisis**

Teniendo en cuenta la gráfica y el análisis de complejidad hecho podemos darnos cuenta de que se sigue un crecimiento lineal, esto pues en el peor caso el requerimiento tardara o(nlogn).

# Requerimiento <<4>>>

Plantilla para el documentar y analizar cada uno de los requerimientos.

# Descripción

Breve descripción de como abordaron la implementación del requerimiento

| Entrada              | La significancia mínima del evento (sig). • La      |
|----------------------|-----------------------------------------------------|
|                      | distancia azimutal máxima del evento (gap).         |
| Salidas              | El número total de eventos sísmicos registrados     |
|                      | mayores a la significancia y menores a la distancia |
|                      | azimutal indicada • Los quince (15) eventos         |
|                      | cronológicamente más recientes que cumplan con      |
|                      | los parámetros especificados                        |
| Implementado (Sí/No) | Santiago Guevara                                    |

# Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

| Pasos                                   | Complejidad  |  |
|-----------------------------------------|--------------|--|
| Paso 1 - Obtención y Filtrado de Datos: | O(N * M)     |  |
| Paso 2 - Ordenamiento de Elementos:     | O( n log n ) |  |
| Paso 3 – Creación de la Lista Final     | O(n)         |  |
| Paso Final                              | O(N log N)   |  |

### **Pruebas Realizadas**

Descripción de las pruebas de tiempos de ejecución y memoria utilizada. Incluir descripción del procedimiento, las condiciones, las herramientas y recursos utilizados (librerías, computadores donde se ejecutan las pruebas, entre otros).

| Entrada | Tiempo (s)           |
|---------|----------------------|
| small   | 0.006041526794433594 |
| 5 pct   | 0.00821232795715332  |
| 10 pct  | 0.015336990356445312 |
| 20 pct  | 0.025398969650268555 |
| 30 pct  | 0.037157297134399414 |
| 50 pct  | 0.06508135795593262  |
| 80 pct  | 0.1063179969787597   |
| large   | 0.14815187454223633  |

### **Graficas**



#### **Análisis**

Teniendo en cuenta la gráfica y el análisis de complejidad hecho podemos darnos cuenta de que se sigue un crecimiento lineal, esto pues en el peor caso el requerimiento tardara o(nlogn).

# Requerimiento <<5>>

Plantilla para el documentar y analizar cada uno de los requerimientos.

# Descripción

Breve descripción de como abordaron la implementación del requerimiento

| Entrada | La profundidad mínima del evento (depth) y el número mínimo de estaciones que detectan el evento (nst). |
|---------|---------------------------------------------------------------------------------------------------------|
| Salidas | El número total de eventos sísmicos registrados dentro de los límites de magnitud y estaciones de       |

|                      | medición indicadas. • Los veinte (20) eventos cronológicamente más recientes que cumplan con las condiciones de profundidad y número de estaciones especificados |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Implementado (Sí/No) | Yair Andrade                                                                                                                                                     |

# Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

| Pasos                                   | Complejidad  |
|-----------------------------------------|--------------|
| Paso 1 - Obtención y Filtrado de Datos: | O(N * M)     |
| Paso 2 - Ordenamiento de Elementos:     | O( n log n ) |
| Paso 3 – Creación de la Lista Final     | O(n)         |
|                                         |              |
| Paso Final                              | O(N log N)   |

### Pruebas Realizadas

Descripción de las pruebas de tiempos de ejecución y memoria utilizada. Incluir descripción del procedimiento, las condiciones, las herramientas y recursos utilizados (librerías, computadores donde se ejecutan las pruebas, entre otros).

| Entrada | Tiempo (s)           |
|---------|----------------------|
| small   | 0.006041526794433594 |
| 5 pct   | 0.00821232795715332  |
| 10 pct  | 0.015336990356445312 |
| 20 pct  | 0.025398969650268555 |
| 30 pct  | 0.037157297134399414 |
| 50 pct  | 0.06508135795593262  |
| 80 pct  | 0.1063179969787597   |
| large   | 0.14815187454223633  |

#### Graficas



#### **Análisis**

Teniendo en cuenta la gráfica y el análisis de complejidad hecho podemos darnos cuenta de que se sigue un crecimiento lineal, esto pues en el peor caso el requerimiento tardara o(nlogn).

# Requerimiento <<6>>>

Plantilla para el documentar y analizar cada uno de los requerimientos.

## Descripción

Breve descripción de como abordaron la implementación del requerimiento

| Entrada              | *El año                                           |
|----------------------|---------------------------------------------------|
|                      | *Latitud                                          |
|                      | *Longitud                                         |
|                      | *Número de eventos                                |
| Salidas              | *El sismo más significativo de un año dado dentro |
|                      | de un área circundante de una coordenada GPS      |
|                      | designada, y los N eventos sísmicos más próximos  |
|                      | cronológicamente hablando antes y después de      |
|                      | dicho evento dentro del área.                     |
| Implementado (Sí/No) | Alejandro Parada                                  |

# Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

| Pasos                                                  | Complejidad    |
|--------------------------------------------------------|----------------|
| Paso 1 - Obtención de eventos seleccionados:           | O(N )          |
| Paso 2 - Longitud le dos datos según el filtrado del : | O(nlog(n)      |
| Paso 3 - Operación de la formula                       | O(1)           |
|                                                        |                |
| TOTAL                                                  | O(nlog(n) + n) |

# Requerimiento <<7>>>

Plantilla para el documentar y analizar cada uno de los requerimientos.

# Descripción

Breve descripción de como abordaron la implementación del requerimiento

| Entrada | El año relevante (en formato "%Y"). • El título de |
|---------|----------------------------------------------------|
|         | la región asociada ("title"). • La propiedad de    |

|                      | conteo (magnitud, profundidad o significancia). • El número de segmentos o casillas (bins) en los que se divide el histograma.                                                                                                                                                                                    |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Salidas              | El número de eventos sísmicos dentro del periodo anual relevante. • El número de eventos sísmicos utilizados para crear el histograma de la propiedad. • Valor mínimo y valor máximo de la propiedad consultada en el histograma. • El histograma con la distribución de los eventos sísmicos según la propiedad. |
| Implementado (Sí/No) | Santiago Guevara                                                                                                                                                                                                                                                                                                  |

# Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

| Pasos                                          | Complejidad  |
|------------------------------------------------|--------------|
| Paso 1 - Obtención de eventos seleccionados:   | O(N)         |
| Paso 2 - Obtención de valores de la propiedad: | O(m)         |
| Paso 3 – Creación del histograma:              | O(m+k)       |
| Generación de etiquetas y título del gráfico:  | O(1)         |
| Paso final                                     | O(n + m + k) |

# Pruebas Realizadas

Descripción de las pruebas de tiempos de ejecución y memoria utilizada. Incluir descripción del procedimiento, las condiciones, las herramientas y recursos utilizados (librerías, computadores donde se ejecutan las pruebas, entre otros).

| Entrada | Tiempo (s)   |
|---------|--------------|
| small   | 0.0898480415 |
| 5 pct   | 0.1355457305 |
| 10 pct  | 0.4943200349 |
| 20 pct  | 0.1657581329 |
| 30 pct  | 0.4617586135 |
| 50 pct  | 0.513867378  |
| 80 pct  | 0.7455372810 |
| large   | 0.9624190330 |

# Graficas



# **Análisis**

Teniendo en cuenta la gráfica y el análisis de complejidad hecho podemos darnos cuenta de que se sigue un crecimiento lineal, esto pues en el peor caso el requerimiento tardara o(n+m+k).