

Daniel Pagotto

- Mestre em Administração (UFG) e bacharel em administração (UnB)
- Coordenador Adjunto do Laboratório de Pesquisa em Empreendedorismo e Inovação da UFG (LAPEI-UFG)
- Consultoria em órgãos públicos federais

Objetivos do treinamento

Nivelar conhecimentos básicos

Manipular dados em um dataframe

 Demonstrar princípios de visualização de dados

A linguagem R

 Linguagem de programação e ambiente computacional estatístico mantido por um conjunto de colaboradores do mundo todo

- 15639 pacotes (packages)
 - dplyr, ggplot2, rtweet, tm, qdap, dendextend, tidyverse

Toques antes de iniciar

 Principalmente no começo, é muito comum acontecer pequenos erros de digitação. Portanto, fiquem atentos. (ex.: roud(number))

- O R é case sensitive! (ex.: pesoDaniel ≠ PesoDaniel)
- Os comandos do R são baseados em palavras ao inglês.
- Take a deep breath!

O R é uma calculadora

• O R vai executar os comandos que você instruir. Portanto, para começarmos nossa jornada, o R é uma calculadora.

```
# Operações básicas
5 + 5
10 - 6
10*2
5/2
5**2
sqrt(16)
5*(50-45)
```

- Observe que, assim como na matemática, você pode usar parênteses para priorizar a ordem de um cálculo
- # são usados para fazer comentários.
- Digite em cada linha de script exemplos de cálculos usando as operações básicas e execute-os usando Ctrl + Enter (Cmd + Enter) posicionado sobre a linha

Atribuição de variáveis

• O resultado das operações que você criou pode ser armazenado em variáveis. Para isso use a notação (<-)

```
# Operações básicas e atribuicoes
x <- 5 + 5
y <- 10 - 16
a <- 9
soma <- a + x
nome <- "daniel"
certo <- TRUE</pre>
```

Eu executei esse comando aí, mas não aconteceu nada...

Vamos criar um programa que calcula IMC

Vamos criar duas variáveis: peso e altura

```
# Operações básicas
pesoDaniel <- 79
alturaDaniel <- 1.78

imcDaniel <- pesoDaniel/alturaDaniel**2</pre>
```

IMC	Situação
<16	Subpeso Severo
16 a 19,9	9 Subpeso
20 a 24,9	9 Normal
25 a 29,9	9 Sobrepeso
30 a 39,9	9 Obeso
>40	Obeso Mórbido

Agora tente fazer o IMC de Pedro (peso: 85,

altura: 1.69) e Maria (peso: 69, altura: 1.60).

Agora tente fazer o IMC desse pessoal aí:

Nome	Peso	Altura
Alice	65	1.60
Gilmar	95	1.78
Cecília	75	1.80
Bianca	77	1.68
Valentina	80	1.72
Augusto	68	1.65

Agora tente fazer o IMC desse pessoal aí:

Nome	Peso	Altura
Alice	65	1.60
Gilmar	95	1.78
Cecília	75	1.80
Bianca	77	1.68
Valentina	80	1.72
Augusto	68	1.65

Vamos usar um tipo de **objeto** chamado **vetor**

```
# trabalhando com vetores
pesos <- c(65, 95, 75, 77, 80, 68)
alturas <- c(1.60, 1.78, 1.80, 1.68, 1.72, 1.65)
imc <- pesos/alturas**2
imc
```


Agora que entendemos o que é um vetor, vou apresentar outro tipo de objeto chamado matriz

$$A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 2 & 1 & 1 & 1 \\ 2 & 3 & 0 & 1 \\ -1 & 1 & 2 & 2 \end{bmatrix}$$

Existe um objeto chamado lista, porém, exige um nível de abstração um pouco maior.

afinn	list [9] (S3: gg, ggplot)	List of length 9
O data	list [48015 x 28] (S3: data.fra	A data.frame wit
layers	list [1]	List of length 1
scales	environment [2] (S3: ScalesLis	<environment: 0<="" td=""></environment:>
mapping	list [2] (S3: uneval)	List of length 2
theme	list [0]	List of length 0
coordinates	environment [5] (S3: CoordCa	<environment: 0<="" td=""></environment:>
clip	character [1]	'on'
default	logical [1]	TRUE
expand	logical [1]	TRUE
Iimits	list [2]	List of length 2
super	function (S3: ggproto_methoc	function()
facet	environment [2] (S3: FacetNul	<environme< td=""></environme<>
plot_env	environment [110]	<environment: r<="" td=""></environment:>
labels	list [2]	List of length 2

Agora vamos para o **dataframe**, um dos **objetos** mais importantes para a manipulação dos nossos dados. Fonte dos dados: https://cran.r-project.org/web/packages/gapminder/index.html

Manipulando dados

- Pertence ao conjunto tidyverse
- Possui um conjunto de funções que permite manipular um dataframe de modo eficiente e intuitivo

 Select, filter, group_by, arrange, top_n, mutate, summarise, join

Instalando o dplyr

 Você pode instalar o dplyr unicamente ou o tidyverse que automaticamente insere todos os pacotes do conjunto

```
# Instalando
install.packages("tidyverse")
library(tidyverse)

install.packages("dplyr")
library(dplyr)
```

O R consegue ler arquivos das mais variadas extensões. Mas uma das formas mais recomendadas é o csv (comma separated values).

Como adicionar a arquivos basePaises.csv e paisesIDH.csv?

Se você estiver usando Rstudio Cloud

Para quem tiver com o Rstudio instalado no computador

Pausa de 10 minutos

Inspecionando a base e pacote dplyr

```
# caso não tenha consequido subir a
  #base, use o comando a seguir
  install.packages("gapminder")
  library(gapminder)
  basePaises <- gapminder</pre>
  codigo <- country codes</pre>
  str(basePaises)
  head(basePaises)
  tail(basePaises, n = 10)
  glimpse(basePaises)
  View(basePaises)
10 basePaises%>%
         distinct(continent)
```


Funções importantes: filter e select

E se eu quiser pegar só países que estão no continente Asiático?


```
basePaises%>%
       filter(continent == "Asia")
basePaises%>%
       filter(continent == "Americas" & year>1990)
basePaises%>%
       filter(continent != "Oceania")
# O mais legal é que você pode armazenar essas consultas em novos objetos
# basta usar uma atribuição
baseAsia <- basePaises%>%
       filter(continent == "Asia")
```

Funções importantes: select

Vamos supor agora que eu precise só de quatro variáveis da minha tabela: ano, país e PIB per capita


```
basePaises%>%
    select(year,country,gdpPercap)

basePaises%>%
    select(-lifeExp)

basePaises%>%
    filter(continent == "Americas" & year>1990)%>%
    select(year,country,gdpPercap)
```

Funções importantes: mutate

E se eu quiser adicionar uma nova variável na tabela? Como posso fazer?


```
basePaises <- basePaises%>%
              mutate(GDP = qdpPercap * pop)
base2007 <- basePaises%>%
              filter(year == 2007) %>%
              mutate(porte = if else(pop>median(pop), "G", "P"))
base2007<-base2007%>%
  mutate(classGPC = case_when(
  gdpPercap < 1625 ~ "Baixo",</pre>
  gdpPercap >= 1625 & gdpPercap <18008 ~ "Medio",</pre>
  gdpPercap >= 18008 ~ "Alto")) # til
```

Funções importantes: group_by e summarize

```
base2007%>%
  group by(classGPC)%>%
  count()
basePaises%>%
  group by(country)%>%
  summarize(meanLE=mean(lifeExp), meanPop=mean(pop),
            meanGpc=mean(gdpPercap))
baseContinentes <- basePaises %>%
                     group by(continent, year)%>%
                     summarize(meanLE=mean(lifeExp), meanPop=mean(pop),
                     meanGpc=mean(gdpPercap))
```

Juntando duas bases: joins

```
#Adicione a base codigo e idh ao global environment
basePaisCod <- basePaises%>%
              inner_join(codigo,by="country")
baseCompleta <- basePaisCod %>%
              inner join(paisesIDH, by=c("country"="paises"))
Paisesfora <- paisesIDH%>%
              anti join(basePaises, by=c("paises"="country"))
Paisesfora <-base2007%>%
              anti_join(basePaises, by=c("country"="paises"))
```


- 1. Filtre os países das Américas ou Europa
- 2. Filtre países que possuem uma população menor que 100 milhões de habitantes em 2007
- 3. Crie uma nova variável chamada *gdpRound* que é um arredondamento de 2 casas da variável gdpPercap
- 4. Faça um agrupamento por continente e ano e depois uma resumo considerando cálculos de média expectativa de vida, população e PIB per capta. Salvar o resultado em um novo dataframe chamado <u>baseContinente</u>
- 5. Filtre os anos de 1957 e 2007 para comparar o 20 maiores PIB dos dois anos. Faça o mesmo para identificar os 20 menores.

Pausa de 10 minutos

Vamos preparar algumas bases para nosso próximo tópico, visualização de dados

Usando o ggplot2

- O ggplot2 é umas dos pacotes de visualização mais populares do R
- Camadas
- Alto grau de customização

```
install.packages("ggplot2")
library(ggplot2)
```


O ggplot2 funciona por camadas. A primeira camada possui a seguinte estrutura:

ggplot(nome da base, aes(x = variável do eixo x, y = variável do eixo y)) $\frac{1}{2}$... (demais configurações/customizações)

```
grafico1<-ggplot(base2007, aes(x=continent, y=lifeExp))</pre>
  ggplot(base2007,aes(x=continent,y=lifeExp)) + geom_boxplot()
  ggplot(base2007,aes(x=continent,y=lifeExp)) + geom point()
  ggplot(base2007,aes(x=continent,y=lifeExp)) + geom_violin()
  ggplot(base2007, aes(x=continent, y=lifeExp))+geom boxplot()+
        ggtitle("Boxplot da expectativa de vida")+xlab("Continentes")+
        ylab("Expectativa de vida")
  ggplot(baseProx,aes(x=year, y=gdpPercap))+geom point()
  ggplot(baseProx,aes(x=year, y=gdpPercap))+geom_line()
  ggplot(baseProx,aes(x=year, y=gdpPercap, col = country))+geom point()
  ggplot(baseProx,aes(x=year, y=gdpPercap, col = country))+geom_line()
10 ggplot(baseProx,aes(x=year, y=gdpPercap, col = country))+geom_line(size=1.2)
```

Vamos visualizar agora a associação entre duas variáveis quantitativas: PIB per capita e expectativa de vida

```
ggplot(base2007,aes(x=gdpPercap,y=lifeExp))+ geom point()
ggplot(base2007,aes(x=gdpPercap,y=lifeExp))+ geom point() + geom smooth()
ggplot(base2007,aes(x=gdpPercap,y=lifeExp,col=continent))+ geom point()
ggplot(base2007, aes(x=gdpPercap,y=lifeExp,col=continent,size=pop))+ geom point()
ggplot(base2007, aes(x=gdpPercap,y=lifeExp,color=continent))+ geom point() +
geom smooth(method='lm')
ggplot(base2007,aes(x=gdpPercap,y=lifeExp,col=continent))+ geom point() +
geom smooth(method='lm') + facet wrap(~continent)
```

Vamos visualizar o histograma da expectativa de vida

```
ggplot(base2007,aes(x=lifeExp))+ geom histogram()
ggplot(base2007,aes(x=lifeExp))+ geom density()
ggplot(base2007, aes(x=lifeExp, col=continent))+ geom density()
ggplot(base2007, aes(x=lifeExp, col=continent, fill = continent))+
geom density()
ggplot(base2007,aes(x=lifeExp, col=continent, fill = continent))+
geom density(alpha=0.5)
ggplot(base2007,aes(x=lifeExp, col=continent))+ geom density(alpha=0.5)+
facet wrap(~continent)
ggplot(base2007,aes(x=lifeExp, fill=continent))+ geom histogram(alpha=0.5)+
facet wrap(~continent)
base2007%>%
  filter(continent!="Oceania")%>%
  ggplot(aes(x=lifeExp, col=continent, fill = continent))+
geom density(alpha=0.5)
```

Dicas a mais

- Aprender R é como aprender um novo idioma: exige prática constante e quanto mais você estuda, mais vocabulário você tem
- O R possui muitas funcionalidades. Enquanto preparava esse treinamento surgiram outros conteúdos que podem ser explorados: listas, funções, estruturas condicionais, conectando tabelas, manipulando estruturas de dados, etc
- O R possui muitas aplicações na ciências sociais aplicadas, tanto na perspectiva acadêmica, quanto de mercado.

