

BINARY ARITHMETIC

Bernhard Kainz (with thanks to A. Gopalan, N. Dulay and E. Edwards)

b.kainz@imperial.ac.uk

Binary Arithmetic

Unsigned

Addition, Subtraction, Multiplication and Division

Signed

- Two's Complement Addition, Subtraction, Multiplication and Division
 - Chosen because of its widespread use

Binary Arithmetic

- Couple of definitions
 - Subtrahend: what is being subtracted
 - Minuend: what it is being subtracted from
 - Example: 612 485 = 127
 - 485 is the subtrahend, 612 is the minuend, 127 is the result

Binary Addition – Unsigned

- Reasonably straight forward
- Example: Perform the binary addition 111011 + 101010

Carry	1	1	1		1		
А		1	1	1	0	1	1
В	+	1	0	1	0	1	0
Sum	1	1	0	0	1	0	1
Step	7	6	5	4	3	2	1

In Decimal: 59 + 42 = 101

Binary Subtraction – Unsigned

- Reasonably straight forward as well ©
- Example: Perform the binary subtraction 1010101 11100

A "	0	1	10				
A'	1	0	0	10			
Α	1	0	1	0	1	0	1
В		_	1	1	1	0	0
Diff	0	1	1	1	0	0	1
Step	7	6	5	4	3	2	1

Step k	$A_k - B_k = Diff_k$	
1	1 - 0 = 1	
2	0 - 0 = 0	
3	1 - 1 = 0	
4	0 – 1	Borrow by subtracting 1 from A ₇₅ =101 to
	give	A' ₇₅ =100 and A' ₄ =10.
		Now use A' instead of A, e.g. $A'_4 - B_4$
	10 – 1 =1	
5	0 – 1	Subtract 1 from A' _{7,6} =10 to give A" _{7,6}
	=01, A" ₅ = 10.	76
	5 1,1 5	Now use A" instead of A', e.g. $A''_5 - B_5$
	10 – 1 =1	
<u>0</u>	$1 - 0 = 1$ i.e. $A''_{6} - B_{6}$	
/	0 - 0 = 0	

Binary Multiplication – Unsigned

• Example: Perform the binary multiplication 11101 x 111

А				1	1	1	0	1
В					х	1	1	1
				1	1	1	0	1
			1	1	1	0	1	
		1	1	1	0	1		
Answer	1	1	0	0	1	0	1	1
Carry	1	10	10	1	1			

Binary Division – Unsigned

Recall:

```
• Division is: \frac{dividend}{divisor} = quotient + \frac{remainder}{divisor}
```

- Or: $dividend = quotient \times divisor + remainder$
- Left as an exercise ©
 - Can use long division

Binary Arithmetic – Signed

Two's complement Arithmetic because of it's widespread use

Recall

 Addition and subtraction in two's complement works without having a separate sign bit

Overflow

- Result of an arithmetic operation is too large or too small to fit into the resultant bit-group (E.g.: 9 can't fit into 4-bits in Two's complement)
- Normally left to programmer to deal with this situation

Two's Complement – Addition

- Add the values and discard any carry-out bit
- Example: Add -8 to +3 and -2 and -5 using 8-bit two's complement

(+3)	0000 0011	(-2)	1111 1110	
+(-8)	1111 1000	+(-5)	1111 1011	
(-5)	1111 1011	(-7)	1 1111 1001	
			↑ Discard Ca	rry-Out

Two's Complement – Addition

Overflow

- Occurs if and only if 2 Two's Complement numbers are added and they both have the same sign (both positive or both negative) and the result has the opposite sign
 - Adding two positive numbers must give a positive result
 - Adding two negative numbers must give a negative result
- Never occurs when adding operands with different signs
- E.g.
 - (+A) + (+B) = -C
 - (-A) + (-B) = +C

Two's Complement – Addition

Overflow

Example: Using 4-bit Two's Complement numbers (-8 ≤ x ≤ +7),
calculate (-7) + (-6)

	1001		(-7)
	1010		+(- 6)
"Overflow"	0011	1	(+3)

Two's Complement – Subtraction

- Accomplished by negating the subtrahend and adding it to the minuend
 - Any carry-out bit is discarded
- Example: Calculate 8 5 using an 8-bit two's complement representation
 - Recall: $8 5 \rightarrow 8 + (-5)$

(+8)	0000 1000		0000 1000
-(+5)	0000 0101	-> Negate ->	+ 1111 1011
(+3)			1 0000 0011
			♠ Discard

Two's Complement – Subtraction

- Overflow
 - Occurs if and only if 2 two's complement numbers are subtracted, and their signs are different, and the result has the same sign as the subtrahend
 - E.g.
 - (+A) (-B) = -C
 - (-A) (+B) = +C

Two's Complement – Subtraction

Overflow

Example: Using 4-bit Two's Complement numbers (-8 ≤ x ≤ +7),
calculate 7 – (-6)

(+7)	0111
-(-6)	1010

(+7)	0111
-(-6)	0110 (Negated)
(-3)	1101 "Overflow"

Two's Complement – Summary

Addition

Add the values, discarding any carry-out bit

Subtraction

Negate the subtrahend and add, discarding any carry-out bit

Overflow

- Adding two positive numbers produces a negative result
- Adding two negative numbers produces a positive result
- Adding operands of unlike signs never produces an overflow
- Note discarding the carry out of the most significant bit during Two's Complement addition is a normal occurrence, and does not by itself indicate overflow

Two's Complement – Multiplication and Division

- Cannot be accomplished using the standard technique
- Example: consider X * (-Y)
 - Two's complement of -Y is $2^n-Y \rightarrow X * (Y) = X * (2^n-Y) = 2^nX XY$
 - Expected result should be 2²ⁿ XY

Signed multiplication

- Booth's multiplication algorithm
- Let m and r be the multiplicand and multiplier, respectively; and let x and y represent the number of bits in m and r.
- Determine the values of A and S, and the initial value of P. All of these numbers should have a length equal to (x + y + 1).
 - A: Fill the most significant (leftmost) bits with the value of \mathbf{m} . Fill the remaining (y + 1) bits with zeros.
 - S: Fill the most significant bits with the value of (-m) in two's complement notation. Fill the remaining (y + 1) bits with zeros.
 - P: Fill the most significant x bits with zeros. To the right of this, append the value of **r**. Fill the least significant (rightmost) bit with a zero.
- Determine the two least significant (rightmost) bits of P.
 - If they are 01, find the value of P + A. Ignore any overflow.
 - If they are 10, find the value of P + S. Ignore any overflow.
 - If they are 00, do nothing. Use *P* directly in the next step.
 - If they are 11, do nothing. Use *P* directly in the next step.
- Arithmetically shift the value obtained in the 2nd step by a single place to the right. Let P now equal this new value.
- Repeat steps 2 and 3 until they have been done y times.
- Drop the least significant (rightmost) bit from P. This is the product of m and r.

Booth's multiplication example

- Find $3 \times (-4)$, with **m** = 3 and **r** = -4, and x = 4 and y = 4:
- m = 0011, -m = 1101, r = 1100
- A = 0011 0000 0
- S = 1101 0000 0
- P = 0000 1100 0
- Perform the loop four times:
 - $P = 0000 \ 1100 \ 0$. The last two bits are 00.
 - P = 0000 0110 0. Arithmetic right shift.
 - $P = 0000 \ 0110 \ 0$. The last two bits are 00.
 - P = 0000 0011 0. Arithmetic right shift.
 - P = 0000 001**1 0**. The last two bits are 10.
 - P = 1101 0011 0. P = P + S.
 - P = 1110 1001 1. Arithmetic right shift.
 - P = 1110 100**1 1**. The last two bits are 11.
 - P = 1111 0100 1. Arithmetic right shift.
- The product is 1111 0100, which is −12.

Two's Complement – Multiplication and Division

- Can perform multiplication and division by converting the two's complement numbers to their absolute values and then negate the result if the signs of the operands are different
- Most architectures implement more sophisticated algorithms (Booth's multiplication algorithm, Wallace tree, Dadda multiplier)