

IERG 5350 HW5

Car Racing Game

Lixin LIU 2020.12.07

Results (Single Agent)

==== Reward Matrix (row vs column) ====								
1	.155136644	alphacar	zhenghao	average				
1155136644	695.994	862.475	844.087	800.852				
alphacar	715.542	601.989	599.341	638.957				
zhenghao	625.051	599.529	556.458	593.679				

Results (Multi Agents)

Hyperparameters

I use the default hyperparameters...

train.py --algo PPO --env-id cCarRacing-v0 --num-envs 12 --lr 1e-4 --action-repeat 1 --entropy 0.0

Nothing special...

Checkpoint Selection

Find the best checkpoint with a **simple** scripts

```
best_ckpt = OneGoodCkpt
ckpt_list = []
ckpt_list.append(best_ckpt)
for cur_ckpt in all_ckpts:
    markdown_res_path = tournament(cur_ckpt, best_ckpt)
    cur_avg_score = parse_md(markdown_res_path)
    if cur_avg_score > best_avg_score:
        best_avg_score = cur_avg_score
        best_ckpt = cur_ckpt
        ckpt_list.append(best_ckpt)

markdown_res_path = tournament(*ckpt_list)
pick_best_ckpt_from_markdown_res
```

Best: iter4100

Why using the default params

Something I tried...

- Reward scale
 - Reward scale doesn't work in car-racing game
- Value clip
 - It seems that value clip cannot bring significant improvements in car-racing game
- Different value of entropy loss weight
 - Value: 0, 1e-2, 1e-3, 1e-4
 - Better to train without entropy loss... (entropy_loss_weight == 0)
- Opponent training
 - Not working...

Reward Scale

The training is early terminated around 2.4e6 step. Reward scale may not be useful in car-racing game.

A.2 PPO CODE-LEVEL OPTIMIZATIONS

Algorithm 1 PPO scaling optimization. 1: procedure INITIALIZE-SCALING()

- 2: $R_0 \leftarrow 0$
- 3: RS = RUNNINGSTATISTICS() deviation

New running stats class that tracks mean, standard

- 4: **procedure** SCALE-OBSERVATION (r_t)
- $R_t \leftarrow \gamma R_{t-1} + r_t$
- 6: $ADD(RS, R_t)$
- 7: **return** r_t/S TANDARD-DEVIATION(RS)

⊳ Returns scaled reward

 $\triangleright \gamma$ is the reward discount

 \triangleright Input: a reward r_t

- 1. Rewards are too random in the early stage of training.
- 2. Bug?

Engstrom, Logan, et al. "Implementation Matters in Deep Policy Gradients: A Case Study on PPO and TRPO." In ICLR (2020). https://github.com/thu-ml/tianshou

Value Clip

There is no significant difference between enabling value clip and disabling value clip... So, I disable the value clip.

```
if self.use_value_clip:
    v_clip = old_value_batch + (values - old_value_batch).clamp(-self.clip_param, self.clip_param)
    value_term1 = (return_batch - values).pow(2)
    value_term2 = (return_batch - v_clip).pow(2)
    value_loss = 0.5 * torch.max(value_term1, value_term2).mean()
else:
    value_loss = 0.5 * (return_batch - values).pow(2).mean()
```

1. **Value function clipping:** Schulman et al. (2017) originally suggest fitting the value network via regression to target values:

$$L^V = (V_{\theta_t} - V_{targ})^2,$$

but the standard implementation instead fits the value network with a PPO-like objective:

$$L^{V} = \min \left[\left(V_{\theta_{t}} - V_{targ} \right)^{2}, \left(\operatorname{clip} \left(V_{\theta_{t}}, V_{\theta_{t-1}} - \varepsilon, V_{\theta_{t-1}} + \varepsilon \right) - V_{targ} \right)^{2} \right],$$

where V_{θ} is clipped around the previous value estimates (and ε is fixed to the same value as the value used in (2) to clip the probability ratios).

Engstrom, Logan, et al. "Implementation Matters in Deep Policy Gradients: A Case Study on PPO and TRPO." In ICLR (2020). https://github.com/thu-ml/tianshou

Entropy Loss Weight

After evaluating the performance of these agents, I choose the agent which is trained without entropy_loss.

Entropy loss need not to be involved.

Table 6: Hyperparameters for all algorithms for Hopper-v2.

	PPO	TRPO	PPO-NoClip	PPO-M	TRPO+
Timesteps per iteration	2048	2048	2048	2048	2048
Discount factor (γ)	0.99	0.99	0.99	0.99	0.99
GAE discount (λ)	0.95	0.95	0.925	0.95	0.95
Value network LR	0.00025	0.0002	0.0004	0.0004	0.0002
Value network num. epochs	10	10	10	10	10
Policy network hidden layers	[64, 64]	[64, 64]	[64, 64]	[64, 64]	[64, 64]
Value network hidden layers	[64, 64]	[64, 64]	[64, 64]	[64, 64]	[64, 64]
KL constraint (δ)	N/A	0.13	N/A	N/A	0.04
Fisher estimation fraction	N/A	0.1	N/A	N/A	0.1
Conjugate gradient steps	N/A	10	N/A	N/A	10
Conjugate gradient damping	N/A	0.1	N/A	N/A	0.1
Backtracking steps	N/A	10	N/A	N/A	10
Policy LR (Adam)	0.0003	N/A	6e-05	0.00017	N/A
Policy epochs	10	N/A	10	10	N/A
PPO Clipping ε	0.2	N/A	1e+32	0.2	N/A
Entropy coeff.	0	0	-0.005	0	0
Reward clipping	[-10.0, 10.0]	_	[-2.5, 2.5]	_	[-10.0, 10.0]
Gradient clipping (ℓ_2 norm)	-1	-1	4	-1	1
Reward normalization	returns	none	rewards	none	returns
State clipping	[-10.0, 10.0]	-	[-2.5, 2.5]	_	[-10.0, 10.0]

Engstrom, Logan, et al. "Implementation Matters in Deep Policy Gradients: A Case Study on PPO and TRPO." In ICLR (2020). https://github.com/thu-ml/tianshou

Opponent training

Python train.py --algo PPO --env-id cCarRacing-v0 --num-envs 6 --lr 1e-4 --entropy 0.0 --max-steps 1e7 -- opponent true --restore data/alphacar/checkpoint-1155136644.pkl

Not working. There are neither penalties nor rewards for collision.

Simple is better...

Q&A

Thanks!

Lixin LIU 2020.12.07