

deng@tsinghua.edu.cn

Complexity of Convex Hull

- ❖ Let P be a set of n points in the plane
 How many points are expected
 to lie on CH(P)?
- ❖ Point sets with different distributions will give quite different answers
- ❖ As an example, this section will discuss the
 uniform and independent distribution
 inside a unit square (or affinely, a box)
- ❖ We will show that the expected number of vertices on CH(P) is O(logn)

Quadrant Hulls

- ❖ Actually, instead of the entire hull, we will count only a quarter of CH(P)
- ❖CH(P) is broken by its leftmost, rightmost, highest, and lowest vertices into (no more than) four parts,
 - each of which is called a quadrant hull
- ❖ In terms of worst case complexity,
 to count the points on CH(P), it suffices
 to count any of the four quadrant hulls
- ❖ W.L.O.G.,
 here we examine the upper-right one,
 which henceforth will be denoted as CH_{UR}(P)

Domination

- ***** Given two points $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$ in the plane p_1 is said to be dominated by p_2 if $x_1 \le x_2$ and $y_1 \le y_2$
- ***** Ex: how to count dominations for any given P in $O(n\log n)$ time? Note that there could be up to $\Omega(n^2)$ dominations

Maximal Point

- ❖ In fact, we will count a super set of CH_{UR}(P) ...
- ❖ Let P be a finite planar point set

A maximal point of P is one not dominated by any of the other points

❖ The set of all maxima of P is denoted as MAX(P)

Maxima Set

- *Note that each vertex of $CH_{UR}(P)$ is a maximal point of P

 Therefore, $CH_{UR}(P)$ is a subset of MAX(P), and $|CH_{UR}(P)| \leq |MAX(P)|$ and
- *The expected number of points on $CH_{UR}(P)$ (and hence on CH(P)) is bounded by the expected number of points in MAX(P)
- \clubsuit We will show next that |MAX(P)| is expected to be $O(\log n)$

(!

```
expected (|MAX(P)|) = O(logn)
```

- *Number all points in P as $\{p_1, \ldots, p_n\}$, from right to left
- \diamond Consider the point p_k ...
- ❖ Note that

```
p<sub>k</sub> is a maximal point iff
```

 p_k is the highest among { p_1 , ..., p_k }

expected (|MAX(P)|) = O(logn)

- \Rightarrow By the assumption of uniform and independent distribution, this is true with a probability of $\boxed{1/k}$
- ❖ By |linearity of expectation

the sum of these expectations gives the expected number of maxima

expected (
$$|MAX(P)|$$
) = $1/n + 1/(n-1) + ... + 1/3 + 1/2 + 1 = 0(logn)$

Expected Complexity & Expected Area

- ❖ For n points chosen uniformly and independently from the unit square,
 - 1) the expected number of vertices of the convex hull is $O(\log n)$
 - 2) the expected area of the convex hull is $O(1 \log(n)/n)$
- ❖ For n points chosen uniformly and independently from the unit disk,
 - 1) the expected number of vertices of the convex hull is $O(n^{1/3})$
 - 2) the expected area of the convex hull is $\pi * O(1 n^{-2/3})$
- ❖ For n points chosen uniformly and independently from a triangle,
 the expected number of vertices of the convex hull is ∅(logn)
- ❖ For n points chosen uniformly and independently from a convex k-gon
 the expected number of vertices of the convex hull is ⊘(klogn)

Efron's Theorem, 1965

- ❖ B. Efron, The convex hull of a random set of points
 Biometrika, 52(3):331-343, 1965
- ❖ Let C be a compact convex set in the plane
- ❖ If the expected area of the convex hull of n points, chosen uniformly and independently from C, is

$$\boxed{O(1 - f(n))}$$
 * Area(C), where $1 \ge f(n) \ge 0$, for $n \ge 0$,

then the expected number of vertices of the convex hull is

$$O(n * f(n/2))$$