```
In [ ]: ACTIVIDAD = "Visualización y Análisis de Datos - Diabetes"
        ALUMNA = "Fabiola Ochoa A01752754"
        print(ACTIVIDAD, "-", Fabiola)
In [2]: import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        df = pd.read_csv("diabetes.csv")
        df.head()
Out[2]:
           Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunc
        0
                     6
                            148
                                           72
                                                         35
                                                                 0
                                                                    33.6
                                                                                            (
         1
                     1
                            85
                                           66
                                                         29
                                                                 0
                                                                    26.6
                                                                                            (
        2
                     8
                            183
                                           64
                                                          0
                                                                 0
                                                                    23.3
                                                                                            (
        3
                     1
                            89
                                           66
                                                         23
                                                                94
                                                                   28.1
        4
                     0
                                           40
                            137
                                                         35
                                                               168 43.1
In [3]: # Ver dimensiones, tipos y valores nulos
        print("Dimensiones (filas, columnas):", df.shape)
        df.info()
        df.isnull().sum()
       Dimensiones (filas, columnas): (768, 9)
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 768 entries, 0 to 767
       Data columns (total 9 columns):
        # Column
                                      Non-Null Count Dtype
           -----
                                      -----
        0
            Pregnancies
                                      768 non-null
                                                       int64
            Glucose
                                      768 non-null
                                                      int64
        1
        2
            BloodPressure
                                      768 non-null
                                                      int64
                                      768 non-null
        3
            SkinThickness
                                                      int64
            Insulin
                                      768 non-null
                                                      int64
        5
                                      768 non-null
                                                      float64
        6
            DiabetesPedigreeFunction 768 non-null
                                                      float64
        7
                                      768 non-null
                                                      int64
            Age
            Outcome
                                      768 non-null
                                                      int64
       dtypes: float64(2), int64(7)
       memory usage: 54.1 KB
```

```
Out[3]: Pregnancies
                                      0
         Glucose
                                      0
         BloodPressure
                                      0
         SkinThickness
                                      0
         Insulin
                                      0
         BMI
                                      0
         DiabetesPedigreeFunction
                                      0
                                      0
         Outcome
                                      0
         dtype: int64
```

In [4]: df.describe()

un [4]: un describe()

Out[4]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Dia
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
	std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
	max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	

In [5]: variables = ["Pregnancies", "DiabetesPedigreeFunction", "Outcome"]
 df_sel = df[variables]
 df_sel.head()

Out[5]: Pregnancies DiabetesPedigreeFunction Outcome 6 1 0 0.627 0 1 0.351 2 8 0.672 1 1 0.167 0 3 0 4 2.288 1

```
In [6]: sns.set(style="whitegrid")

# Diabetes Pedigree Function por Outcome
sns.barplot(data=df, x='Outcome', y='DiabetesPedigreeFunction', palette='coolwarm')
plt.title('Promedio de Diabetes Pedigree Function por Diagnóstico (Outcome)')
plt.show()

# Pregnancies por Outcome
```

```
sns.barplot(data=df, x='Outcome', y='Pregnancies', palette='viridis')
plt.title('Promedio de Embarazos por Diagnóstico (Outcome)')
plt.show()
```

/tmp/ipykernel_9149/3848688924.py:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.1 4.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(data=df, x='Outcome', y='DiabetesPedigreeFunction', palette='coolwar m')

Promedio de Diabetes Pedigree Function por Diagnóstico (Outcome)

/tmp/ipykernel_9149/3848688924.py:9: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.1 4.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(data=df, x='Outcome', y='Pregnancies', palette='viridis')

Promedio de Embarazos por Diagnóstico (Outcome)


```
In [13]: fig, axes = plt.subplots(1, 2, figsize=(12,5))
sns.boxplot(data=df, y='Pregnancies', ax=axes[0], color='skyblue')
axes[0].set_title('Distribución de Pregnancies')
sns.boxplot(data=df, y='DiabetesPedigreeFunction', ax=axes[1], color='lightcoral')
axes[1].set_title('Distribución de DiabetesPedigreeFunction')
plt.show()
```


In [8]:


```
In [9]: fig, axes = plt.subplots(1, 2, figsize=(12,5))
sns.histplot(df['Pregnancies'], kde=True, color='orange', ax=axes[0])
axes[0].set_title('Histograma de Pregnancies')
sns.histplot(df['DiabetesPedigreeFunction'], kde=True, color='teal', ax=axes[1])
axes[1].set_title('Histograma de Diabetes Pedigree Function')
plt.show()
```



```
In [10]: plt.figure(figsize=(10,6))
    sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt=".2f")
    plt.title('Mapa de Calor de Correlaciones entre Variables')
    plt.show()
```



```
In [11]: #Promedio de DiabetesPedigreeFunction por Outcome
print("Promedio de DPF por Outcome:")
print(df.groupby('Outcome')['DiabetesPedigreeFunction'].mean(), "\n")

#Promedio de embarazos por Outcome
print("Promedio de Pregnancies por Outcome:")
print(df.groupby('Outcome')['Pregnancies'].mean(), "\n")

#Casos con muchos embarazos y alto DPF
filtro = df[(df['Pregnancies'] > 10) & (df['DiabetesPedigreeFunction'] > 1)]
print("Casos con >10 embarazos y DPF >1:", len(filtro))
filtro.head()
```

Promedio de DPF por Outcome:

Outcome

0 0.429734

1 0.550500

Name: DiabetesPedigreeFunction, dtype: float64

Promedio de Pregnancies por Outcome:

Outcome

0 3.298000

1 4.865672

Name: Pregnancies, dtype: float64

Casos con >10 embarazos y DPF >1: 2

Out[11]:	Pregna	ancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFu			
	259	11	155	76	28	150	33.3				
	744	13	153	88	37	140	40.6				
	4							•			
In [14]:	<pre>## Conclusiones del Análisis de Visualización **1. ¿Hay alguna variable que no aporta información?** Todas las variables que analizamos aportan información relevante aunque, *Diabetes **2. Si tuvieras que eliminar variables, ¿cuáles quitarías y por qué?** Ninguna de las tres, ya que *Pregnancies* y *DiabetesPedigreeFunction* son indicad **3. Si comparas el rango de las variables (min-max), ¿todas están en rangos simil No,</pre>										
	4. ¿Existen variables que tengan datos atípicos? Sí. *Pregnancies* tiene valores muy altos (más de 10 embarazos) y *Dia										
	5. ¿Existe correlación alta entre variables? La correlación es positiva moderada entre *Pregnancies* y *Outcome*, lo que indica que un mayor número de embarazos podría asociarse con un may La correlación entre *DiabetesPedigreeFunction* y *Outcome* es débil pero										
	<pre>Cell In[14], line 3 **1. ¿Hay alguna variable que no aporta información?**</pre>										
In []:	Symulation .	111101	- Chara	(3100)	/						