7. 可编程控制器

- 7.1 PLC **概述** PLC概念 特点 基本组成
- 7.2 PLC功能模块

输入输出模块 A/D模块 D/A模块 PID模块 高数计数模块 通信模块 位置控制模块 电子凸轮模块等

7.3 PLC应用 逻辑控制 机床、机械、流水生产线 运动控制 机械、机床、机器人、电梯等场合 过程控制工业中应用

冶金、化工、热处理、锅炉控制等场合 DCS、FCS控制 现场I/O控制器

7. 可编程控制器

应用领域

电力(供电、输配电、电源等) 电子制造设备(数控) 通信(计算机集散监控系统) 交通运输(车、船、飞机等) 安防、广播电视 纺织印染 锅炉供暖 石油化工 机床、机械 楼宇建筑 矿业 能源 食品饮料 环保 冶金 制冷 制药 水利

常用PLC及其系统软件

德国西门子S200、S300、S400系列 S7-1200 S7-1500

编程软件 STEP7-MicroWINV4.0 博途

日本欧姆龙CH200、CP1H、CP1L系列

编程软件 CX-Programmer2.1

日本三菱FX1N、FX1S、FX2N

编程软件 FXGP-WIN-C GX Developer7.0

美国罗克韦尔AB PLC 编程软件rologix500

台湾台达PLC 编程软件WPLsoft V2.11

中国无锡信捷PLC 编程软件 XcpproV3.1

以微处理器为基础,综合计算机技术、自动控制技术和通信技术 (3C)的一种新型工业自动控制装置。

1、可编程序控制器的特点

(1) 适用各种复杂工业控制领域(批量控制)

既有过程控制又有运动控制领域,根据需要选用PLC主机及功能模块,积木式拼接组成控制装置。

(2) 使用方便、维护简单

工程师用梯形图编程,自诊断、监控功能,迅速找到故障点,予以排除。

(3) 安全可靠,环境适应性好

硬件电子器件采用工业、军用级器件,冗余配置,软件有自诊断、自恢复功能,平均无故障时间2万小时以上。

(4) 通信与联网能力强

接入DCS、FCS,PLC与计算机等远程装置通信。实现远程监控。

7-1 硬件组成框图

(1) 开关量输入模块

将输入的通断信号转换为PLC内部的1、0信号。

①直流开关输入模块

光电耦合器输入发光二极管为什么用两个反向并接方式。

②交流开关输入模块

交流供电光电耦合器输入 发光二极管必须两个反向 并接方式。

图7-3 交流开关量输入模块原理图

(2) 输出模块

作用:输出PLC的控制信号,控制外部负载的通断。

①晶体管输出模块

图7-4 直流开关量输出模块原理图

②继电器输出模块

图7-5 继电器输出模块原理图

③可控硅输出模块

图5-6交流(双向可控硅)输出模块原理图

(3) 开关量输入输出模块等效电路

输入器件通断信号对应PLC输入继电器的通断。

如A₀通, X0=1; A₀断, X0=0。

输出继电器通断对应PLC输出触点通断。

如继电器Y₀=1,Y₀触点接通。

图7-7 开关量输入输出模块等效电路

PB1(常开按钮)按下

- A、线圈得电,输入继电器常开触点断开,常闭触点闭合
- B、线圈得电,输入继电器常开触点闭合,常闭触点断开

PB2(常闭按钮)按下

- A、线圈断电,输入继电器常开触点断开,常闭触点闭合
- B、线圈断电,输入继电器常开触点闭合,常闭触点断开

输入继电器常开触点状态取决于输入点的通断

3、PLC的软件系统

- (1) 系统程序监控程序、解释程序、模块化子程序。
- (2) 用户程序

利用系统开发软件,根据控制功能要求,将元器件及功能模块用适当语言连接起来。生成用户程序。

图7-8 PLC控制方式

- 1、模拟量输入模块
 - (1) 功能:将模拟信号转换为数字量,将数字量读入到PLC内存。

(2) 功能模块与PLC基本单元的连接

FX2N FX2N | FX2N | FX2N -10PG -16EX -4A/D

#0

CPU+扩展功能模块+功能模块

扩展槽最多接8个功能模块

#2

#1

(3) A/D模块接线图

双绞线的作用

利用导线产生感应电 势相互抵消,滤除外 界电磁干扰。

DVP04AD与PLC信息交换

写命令

①通道输入模式选择

CR1

CR#1中通道选择: CH1:b0-b2 CH2:b3-b5 CH3:b6-b8 CH4:b9-b11 某一通道输入模式确定: 某3位数值

CH1: 0 模式0: -10V~10V

CH2: 1 模式1: -6V~10V

CH3: 2 模式2: 4mA~20mA

CH4: 3 模式3: -20mA~20mA

②通信速率设定

根据实时性要求设置

CR#32: b15~b0

b0=1, 4800bps; b1=1, 9600bps; b2=1,

19200bps; b3=_38400bps......

TO K0 K32 k2 K1 通信速率4800bps

③ 采样次数

根据精度与实时性要求综合考虑

CR#2~CR#5 CH1~CH4平均次数

					_
TO	K1	K2	k8	K 4	

④ 通道信号的零点调整

CR#18~CR#21

数字量为0时,对应模拟输入值。单位mV、uA。

模式0: 零点偏置0V(0) -10V~10V对应-8000~8000。

模式1: 零点偏置2000mV(2000)-6V~10V对应-8000~8000。

模式2: 零点迁移4mA(4000), -12mA~20mA对应-4000~4000;

模式3: 零点迁移0mA(0), -20mA~20mA对应-4000~4000.

⑤ 输入通道的增益调整

CR#24~CR#27

电压输入模式

模式0: -10V~10V 增益5V (5000)

模式1: -6V~10V 增益6V (6000)

模式2: -12mA~20mA,增益20mA(20000)

模式3: -20mA~20mA, 增益20mA(20000)

⑥ CR#33 恢复出厂设定设定特性微调权限

b15	b14	b13	b12	b11	b10	b9	b8	b7	b 6	b 5	b4	b3	b2	b1	b 0
保留				СН4			СНЗ			СН2			CH1		

CH1通道为例,

b0=0,允许零点及增益调整; b0=1,禁止零点及增益调整。

b1=0, 零点及增益寄存器停电保持;

b1=1, 零点及增益寄存器非停电保持。

b2=1, 所有设定值恢复出厂设定值。

读A/D模块(FROM指令):

① 读A/D转换结果

CR#6-CR#9

CH1-CH4平均值

FROM	K0	K6 ===	D10	K 4
------	----	--------	------------	------------

CR#12-CR#15 CH1-CH4当前值

FROM	K 0	K12 ===	D20	K 4
------	------------	---------	------------	------------

② 读错误信息

CR#30

FROM K0	$K30 \Longrightarrow D3$	0 K1
---------	--------------------------	------

CR#30 错误状态

错误状态	内容值	B15-b8	b 7	b 6	b5	b 4	b 3	b 2	b1	b 0
电压异常	k1									1
刻度超过	k2								1	
模式设定错 误	k4							1		
零点增益错 误	k8						1			
硬件故障	k16					1				
变化值异常	k32				1					
平均次数设 定错误	k64			1						-
指令错误	k128		1							

应用举例1

电流测量,测量范围0~20mA,对应数字量为0~4000。采样次数为10, D40输入信号平均值,D50输入信号的现在值。测量现在电流值存储在D0寄存器中。

应用举例2

DVP04AD为0#模块; CH1为电压(-10V~10V)输入, CH2为电流(4~20mA)输入(CR#1); 采样次数为4(CR#2); 通信速率9600(CR#32)。用PLC的D10,D11接收CH1、CH2的平均值(CR#6, CR#7)。假设CH1CH2路零点、增益已经设置。

- 2、模拟量输出模块(D/A模块)
- (1) 功能: 数模转换,输出控制信号。

图 7-13 D/A转换曲线

(3) D/A模块与PLC主机信息交换

(4)对CR的设定

① CR#1 2通道输出模式设定 CH1:b0-b2 CH2:b3-b5

K1

说明H11含义

ТО

K1 H0011

K1

电压输出模式

模式0: 0V--10V电压对应0—4000;

模式1: 2V--10V电压对应0-4000。

电流输出模式

模式2: 4mA-20mA对应0—4000;

理想模式: 0mA-20mA对应0-4000。

② CH1-CH2零点CR#22-23, 增益CR#28-29设定 电压输出模式

模式0, 零点0。模式1, 零点2000。 模式0, 增益5000。模式1, 增益6000。

ТО	K1	K22	k2000	K1
ТО	K1	K28	k6000	K1

② CH1-CH2零点CR#22-23增益CR#28-29设定

电流输出模式_{I(mA)}

模式2, 零点4000。增益, 20000。

ТО	K1	K23	k4000	K1	
ТО	K1	K29	k2000	00 K1	

3、热电阻、热电偶模块

功能: 检测温度、温差。

可接J、K、E、N、S、T、R七种热电偶。

可接三线、四线制铂电阻。

热电偶模块为何进行冷端温度补偿

热电阻模块为何采用三线或四线接入

图 7-14 (A) 热电阻测温接线

图 7-14 (B)热电偶测温接线

图7-15 热电偶测温接线

图5-16 热电阻测温接线

(1) 热电阻模块DVP04PT

温度数字特性曲线

热电阻模块控制寄存器CR(16位)

CR编号	功能	CR编号	功能
#2#5*	CH1~CH4平均次数	#31*	通信地址设定
#6#9	CH1~CH4摄氏温度 平均值	#32*	通信速率设定
#18#21	CH1~CH4摄氏温度 当前值	#33*	恢复出厂设定设定
#30	错误状态		

CH~CH4平均次数为10次,读CH1-CH4平均值到D20-D23。

(2) 热电偶模块DVP04TC

温度数字特性曲线

图5-20 R/S型热电偶 (铂铑13/10-铂) 图5-21 T型热电偶 (铜-康铜)

热电偶模块控制寄存器CR(16位)

CR编号	功能	CR编号	功能
#1*	热电偶型式	#30	错误状态
#2~#5*	CH1~CH4平均次数	#31	通信地址设定
#6~#9	CH1~CH4摄氏温度 平均值	#32*	通信速率设定
#14~#17	CH1~CH4摄氏温度 当前值	#33*	恢复出厂设定设定
#24~#27*	CH1~CH4偏置值		

CR#1热电偶型式

CH1:b0-b2 CH2:b3-b5 CH3:b6-b8 CH4: b9-b11

CH1为例: b2b1b0=000, J型; b2b1b0=001, K型;

b2b1b0=010, R型; b2b1b0=011, S型; b2b1b0=100, T型。

热电偶测温

4、PID 模块

PID参数设置需预先在专用寄存器中设定。

参数编号	功能	参数编号	功能
S	取样时间(TS)	S+5	偏差不作用范围
S+1	比例增益(KP)	S+6	输出值饱和上限
S+2	积分增益(KI)	S+7	输出值饱和下限
S+3	微分增益(KD)	S+8	积分饱和上限
S+4	动作方向(DIR)	S+9	积分饱和下限

例1: AD模块插在主机板的0号插槽,要求每秒钟A/D转换一次,采样次数2次,需要设置下表参数,测量结果存D11。设定值2000存D10中,

偏差进行PID运算,结果存D0。设置的PID参数如下

D100	PID 采样时间参数 400mS
D101	比例度 100%
D102 积分增益10 ⁴	
D103 微分增益0	
D104 动作方向(2反作用)	

绘制梯形图,实现上述功能。

梯形图

PID参数初始化

A/D模块设置

读A/D转换结果

PID控制

1S定时器

例2: 水温PID控制

温度测量范围0~100 ℃。经过变送器及A/D转换器后转换为0~4000数字量。

温度设定值80℃,偏差进行PID运算,结果t_p/T经Y0口PWM输出。通过控制器控制加热器的加热功率。PWM周期为T=1000mS。

PID运算 控制流程图

软元件功能设置(地址规划)

PLC 软元件	控制说明	
M0 (=1)	· PID 指令运算启动	
D10 (3200)	目标温度值(SV) 80	
D11	温度现在值 (PV)	
D0	PID 运算输出结果MV	
D100	PID 取样时间参数 400mS	
D101	比例度 100%	
D102	积分增益104	
D103	微分增益0	
D104	动作方向(2反作用)	
D20	GPWM 指令的运算周期1000 ms	
Y0	可调变脉冲宽度的脉冲输出	

D30

PID的MV转换为tp。

梯形图

例3: 水温PID控制

控制热水锅炉温度,设0~100 ℃ 经过变送器转换为0~10V电压,经14位A/D转换器后转换为0~8000数字量。温度设定值80℃,偏差进行PID运算,结果经12位D/A转换器输出0~10V电压。控制加热器功率,控制温度。

软元件功能设置(地址规划)

PLC 软元件	控制说明	
M0 (=1)	PID 指令运算启动	
D10 (0.8)	目标温度值(SV) 80	
D11	温度现在值 (PV)	
D0	PID 运算输出结果MV	
D100	PID 取样时间参数 400mS	
D101	比例度 100%	
D102	积分增益104	
D103	微分增益0	
D104	动作方向(2反作用)	
D20	D/A输出值	

图7-23 PLC控制系统组成框图

应用1: 水塔水位监控

1、设计要求

水位测量:液位传感器将0~Hmax 转换为0~10V 电压输出。

水位监控:水位处于正常高度时,水位正常指示灯亮,水塔剩1/4水量时进行给水动作,

水位到达上限时,报警并停止给水。

水位采集:通过12位A/D转换器将0~10V电压转换为0~4000数字量输出。

图7-24 水塔水位控制系统图

2、根据设计要求,确定输入、输出器件

输入器件		输出器件	
启动按钮	软元件	正常指示灯	软元件
PB1	X1	L1	Y1
停止按钮	软元件	报警指示灯	软元件
PB2	X2	L2	Y2
上水按钮	软元件	上水电磁阀	软元件
PB3	X0	L3	Y0

3、根据输入输出I/O点数量,程序容量情况,具有的特殊功能要求等,

选择PLC及其扩展模块

PLC主机+A/D模块

PLC及扩展模块

顺序控制:带输入输出I/O点PLC。

过程控制: A/D、D/A模块+PLC主机(PID控制模块)

高速计数: 高速计数模块+PLC

伺服电机定位:定位模块+PLC

炉温控制:温度模块+PLC(PID控制模块)

4、选取人机接口设备。(触摸屏、文本显示器、PC机等)

触摸屏

文本显示器

5、进行I/O分配,设计PLC外部接线图

输入点数、输出点数、端子号外界的设备,是否需要电源及接触器。

6、程序设计及模拟调试。设计PLC控制程序,进行模拟调试,检查软硬件是否满足工艺要求。

PC机上PLC系统软件编程, RS232通信接口下载到PLC。

利用PLC的监控仿真功能及输入输出指示灯,检验程序的正确性。

M1: 上限开关 M2: 下限开关

6、设计控制面板或控制柜,注意强弱电隔离和屏蔽。 人机接口设计

控制面板: 指示灯, 显示器, 按钮, 开关等人机接口装置。

控制箱(柜): PLC, 低压电器, 电机驱动器, 电源等。

- 7、现场调试。编制技术文件(包括电气原理图、软件清单、使用说明书、元件明细表等)
- 8、交付使用

应用2: 污水净化控制系统

控制要求

- 1、将水槽污水经过水泵打到净化设备中,经过过滤器,净化成清水。
- 2、污水到上限,净化10分钟,反冲清洗过滤器直到水位到下限。

净化期间,开进水阀,关循环阀和排污阀。

清洗期间,关进水阀,开循环阀,开 排污阀。

3、流量计测得流量过低,停止净化。

图5-26污水净化控制系统流程图

控制流程

1、启动按钮X1=ON,

Y1=ON, Y2=OFF, Y3=OFF

2、到上限X2=ON, 过滤10分。

Y1=ON, Y2=OFF, Y3=OFF

3、到时,反冲。

Y1=OFF, Y2=ON, Y3=ON

- 4、到下限, X3=0, 转到1循环净化。
- 5、按下停止按钮,净化停止。

进水阀

6、流速小于设定值,堵塞现象, 净化停止。

图5-27 污水净化控制系统PLC接线图

电接点开关

软元件功能

PLC 软元件	控制功能说明	
X1	X1 启动净化处理(常开按钮)	
X2	上限位开关(常开)	
Х3	下限位开关(常开)	
X4	停止净化处理(常开按钮)	
Y1	进水阀控制	
Y2	循环阀控制	
Y3	排污阀控制	
T0	10分钟定时器(过滤定时)	
T1	1秒定时器(流量测量)	
C235	高速计数器 (流量测量)	

污水净化控制系统梯形图设计

起停净化处理

开进水阀,至上限过滤10分关进 水阀

至上限启动定时10分钟

定时10分钟,到时反冲,关进水 阀,开循环阀、排污阀

进水阀与(循环阀、排污阀) 互锁

到下限,复位T0,开进水阀 关循环阀、排污阀。循环

流量测量加防堵

换热站工作流程

换热站的一次管网进水由热水锅炉加热,经过板式换热器与二次管网水进行热交换后再返回 锅炉。

二次管网循环水由循环泵P201加压后进入换热器,加热后进入管网对居民住户进行循环供热。

图7-29 换热站工艺流程图

控制要求

- 二次网供水温度PID控制,通过一次网调节阀V101进行二次网供水温度定值控制。
- 二次网供水压力PID控制,通过循环泵变频调速变流量进行供水压力定值控制。
- 二次网回水压力限值控制,回水压力小于低限启动补水泵P202,大于高限停止补水泵。

PLC控制系统框图

设备选型,硬件接口电路设计(输入、输出地址分配;输入输出接线图设计),控制系统梯形图设计

可编程控制器习题

- 1、可编程控制器定义及其特点
- 2、可编程控制器组成及各组成部分功能
- 3、可编程控制器A/D模块功能及信息交换方法
- 4、A/D模块写指令与读指令格式
- 5、D/A模块功能及信息交换方法
- 6、PID模块组成结构及其模块调用方法
- 7、污水净化控制系统梯形图设计