Fiber bundles

1.1 Locally trivial bundles

We begin with what we will call a locally trivially bundle.1

1.1.1 *Definition.* A map $\pi: E \to B$ is a locally trivial bundle with fiber F if the following conditions hold:

- 1. Each point $b \in B$ has a neighbourhood U such that $\pi^{-1}(U_b) \xrightarrow{h_b} U_b \times F$.
- 2. The following diagram commutes

The maps h_b are called the *local trivializations* of the bundle.

1.1.2 *Example.* Let $E = B \times F$ and $\pi \colon E = B \times F \to B$ the projection map. This is called the trivial bundle.

1.1.3 *Example.* If *F* is discrete, then a locally trivial bundle with fiber *F* is a covering map.

1.1.4 *Example*. The Möbius band is a locally trivial bundle with fiber S^1 , see Figure 1.1. We will return to this example in due course.

1.1.5 Remark. We can write a locally trivial bundle as $F \to E \to B$, which is reminiscent of the notation for a fibration. In fact, fiber bundles over paracompact base spaces are always fibrations.² More generally, any locally trivial bundle is a Serre fibration.

1.1.6 Remark. Let us unwind the definition of a locally trivial bundle a little more. Let $\pi\colon E\to B$ be a locally trivial bundle with fiber F. From the definition we can cover B by a family of open sets $\{U_\alpha\}$ such that each inverse image $\pi^{-1}(U_\alpha)$ is fiberwise homeomorphic to $U_\alpha\times F$. This gives a system of homeomorphisms

$$\phi_{\alpha} \colon U_{\alpha} \times F \to \pi^{-1}(U_{\alpha}).$$

Observe that if $V \subseteq U_{\alpha}$ then the restriction of ϕ_{α} to $V \times F$ gives the homeomorphism with $\pi^{-1}(V)$. Hence on $U_{\alpha} \cap U_{\beta}$ there are two

¹ Confusingly, some books will also call this a fiber bundle. We will see why

² A space is paracompact if every open cover has an open refinement that is locally finite.

Figure 1.1: The Möbius band

fiberwise homeomorphisms

$$\phi_{\alpha} \colon (U_{\alpha} \cap U_{\beta}) \times F \to \pi^{-1}(U_{\alpha} \cap U_{\beta})$$

$$\phi_{\beta} \colon (U_{\alpha} \cap U_{\beta}) \times F \to \pi^{-1}(U_{\alpha} \cap U_{\beta})$$

Consider the following commutative diagram

$$(U_{\alpha} \cap U_{\beta}) \times F \xrightarrow{\varphi_{\alpha}} \pi^{-1}(U_{\alpha} \cap U_{\beta}) \xrightarrow{\varphi_{\beta}^{-1}} (U_{\alpha} \cap U_{\beta}) \times F$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

Let $\phi_{\alpha\beta}$ denote the top composite $\phi_{\beta}^{-1}\phi_{\alpha}$. Then the locally trivially bundle is completed determined by the base B, the fiber F, the covering U_{α} and the homeomorphisms $U_{\alpha\beta}$. Roughly speaking, E should be thought of as the cartesian product of the $U_{\alpha} \times F$ with some identifications by the $\phi_{\alpha\beta}$.

1.1.7 *Definition*. The open sets U_{α} are called *charts*, the family U_{α} the *atlas of charts*, the homeomorphisms ϕ_{α} are called the *coordinate homeomorphisms* and the $\phi_{\alpha\beta}$ are called the *transition functions*.

1.1.8 Remark. In order for homeomorphisms $\phi_{\alpha\beta}$ to be the transition functions of a locally trivial bundle, they must satisfy, $\phi_{\alpha\beta} = \phi_{\beta}^{-1}\phi_{\alpha}$. For example,

$$\phi_{\alpha\alpha} = id$$

and

$$\phi_{\gamma\alpha}\phi_{\beta\gamma}\psi_{\alpha\beta}=\mathrm{id}$$

on any triple $(U_{\alpha} \cap U_{\beta} \cap U_{\gamma}) \cap F$. Taking $\gamma = \alpha$ we get

$$\phi_{\alpha\beta}\phi_{\beta\alpha}=\mathrm{id}.$$

In fact, these conditions suffices to reconstruct the locally trivial bundle for the base, the fiber, atlas and homeomorphisms. Indeed, set $E = E' / \sim$ where

$$E'=\bigcup_{\alpha}(U_{\alpha}\times F)$$

and for $(x, f) \in U_{\alpha} \times F$ and $(y, g) \in U_{\beta} \times F$ we have $(x, f) \sim$ $(y,g) \iff x = y \in (U_{\alpha} \cap U_{\beta}) \text{ and } (y,g) = \phi_{\alpha\beta}(x,f). \text{ It is a}$ rather tedious exercise to show that this determines a locally trivial bundle.

1.1.9 *Definition.* Two locally trivial bundles $\pi: E \to B$ and $\pi': E' \to B$ B' are isomorphic if there is a homeomorphism $\psi \colon E \to E'$ such that the diagram

$$E \xrightarrow{\psi} E'$$

commutes. (Note that this implies that there is a homeomorphism $F \rightarrow F'$ between the fibers as well).

1.1.10 Theorem. Two systems of transition functors $\phi_{\beta\alpha}$ and $\phi'_{\beta\alpha}$ define isomorphic locally trivial bundles iff there exists fiber preserving homeomorphisms

$$h_{\alpha}: U_{\alpha} \times F \to U_{\alpha} \times F$$

such that $\phi_{\beta\alpha} = h_{\beta}^{-1} \phi_{\beta\alpha}' h_{\alpha}$.

Proof. First, we suppose that the two bundles are isomorphic, so in particular there is a homeomorphism $\psi \colon E \to E'$. We let

$$h_{\alpha} := \phi_{\alpha}^{'-1} \psi^{-1} \phi_{\alpha} \colon U_{\alpha} \times F \to U_{\alpha} \times F.$$

Then we have

$$\begin{split} h_{\beta}^{-1} \phi_{\beta\alpha}' h_{\alpha} &= \phi_{\beta}^{-1} \psi^{-1} \phi_{\beta}' \phi_{\beta\alpha}' \phi_{\alpha}^{-1} \psi^{-1} \phi_{\alpha} \\ &= \phi_{\beta}^{-1} \psi^{-1} \phi_{\beta'} \phi_{\beta}'^{-1} \phi_{\alpha}' \phi_{\alpha}^{-1} \psi^{-1} \phi_{\alpha} = \phi_{\beta\alpha}. \end{split}$$

Conversely, if the relations hold, then we set $\psi = \phi_{\alpha} h_{\alpha}^{-1} \phi_{\alpha}^{'-1}$. A similar argument then shows that $\phi_{\beta}h_{\beta}^{-1}\phi_{\beta}^{\prime-1} = \phi_{\alpha}h_{\alpha}^{-1}\phi^{\prime} - 1_{\alpha}$.

1.1.11 *Remark.* If π is (isomorphic to) a trivial bundle, then all transition functions can be chosen to be the identity. One can use the previous theorem to show that a bundle is not isomorphic to a trivial bundle.

1.1.12 Example. After this discussion, let us return to the example of the Möbius bundle (Example 1.1.4). One can think of this as the space

$$E = \{(x,y) : 0 \le x \le 1, 0 \le y \le 1\} / \sim$$

where we identify (0, y) and (1, 1 - y) for each $y \in [0, 1]$. The projection maps *E* to $I_x = \{0 \le x \le 1\}$ with the endpoints identified, that is, onto the circle. To see that this is a bundle we use the atlas

$$U_{\alpha} = \{0 \le x \le 1\}$$
, and $U_{\beta} = \{0 \le x < 1/2\} \cup \{1/2 < x \le 1\}$.

We define

$$\phi_{\alpha} \colon U_{\alpha} \times I_{y} \to E, \quad \phi_{\alpha}(x,y) = (x,y),$$

and

$$\phi_{\beta} \colon U_{\beta} \times I_{y} \to E$$

by

$$\phi_{\beta} = \begin{cases} (x, y) & \text{for } 0 \le x \le /1/2, \\ (x, 1 - y) & \text{for } 1/2 < x \le 1. \end{cases}$$

The intersection of these two charts is the union $(0,1/2) \cup (1/2,1)$, and the transition functions have the form

$$\phi_{\beta\alpha} = (x, y) \text{ for } 0 < x < 1/2$$

and

$$\phi_{\beta\alpha} = (x, 1 - y) \text{ for } 1/2 < x < 1.$$

One can check from Remark 1.1.11 that the Möbius bundle is not isomorphic to a trivial bundle.

We now give some more examples which will be useful in our study of characteristic classes.

1.1.13 *Definition.* For n < k the n-th Stiefel manifold associated to \mathbb{R}^k is defined as

$$V_n(\mathbb{R}^k) = \{n - \text{frames in } \mathbb{R}^k\}$$

where an n-frame in \mathbb{R}^k is a tuple $\{v_1, \ldots, v_n\}$ of orthonormal vectors in \mathbb{R}^k , i.e., v_1, \ldots, v_n are pairwise orthonormal, $\langle v_i, v_j \rangle = \delta_{ij}$. We given $V_n(\mathbb{R}^k)$ the subspace topology induced by thinking of it as a subspace of $S^{k-1} \times \ldots S^{k-1}$ (n-copies of S^{k-1}).

1.1.14 Example. A 1-frame is nothing but a unit vector, so the Stiefel manifold $V_1(\mathbb{R}^k)$ is the unit sphere in \mathbb{R}^k , i.e., $V_1(\mathbb{R}^k) \cong S^{k-1}$. On the other hand, an n-frame is an ordered basis, so $V_n(\mathbb{R}^n) \cong O(n)$.

1.1.15 Definition. The *n*-th Grassmannian associated to \mathbb{R}^k is defined as

$$G_n(\mathbb{R}^k) = \{n - \text{dimensional vector subspaces in } \mathbb{R}^k\}$$

There is a map $p: V_n(\mathbb{R}^k) \to G_n(\mathbb{R}^k)$ sending $\{v_1, \ldots, v_n\}$ to the span, which is surjective by Gram–Schmidt, and we given $G_n(\mathbb{R}^k)$ the quotient topology.

1.1.16 Example. We have $G_1(\mathbb{R}^k)$ is the space of lines through the origin in k-space, so $G_1(\mathbb{R}^k) \simeq \mathbb{R}P^{k-1}$.

1.1.17 Lemma. For k > n the quotient map $p: V_n(\mathbb{R}^k) \to G_n(\mathbb{R}^k)$ is a locally trivial bundle with fiber $V_n(\mathbb{R}^n) \cong O(n)$, i.e., we have a locally trivial bundle

$$O(n) \to V_n(\mathbb{R}^k) \xrightarrow{p} G_n(\mathbb{R}^k).$$
 (1.1.18)

Similarly, for $m < n \le k$ there are locally trivial bundles

$$V_{n-m}(\mathbb{R}^k) \to V_n(\mathbb{R}^k) \xrightarrow{p} V_m(\mathbb{R}^k).$$
 (1.1.19)

where the map p takes $\{v_1, \ldots, v_n\}$ to $\{v_1, \ldots, v_m\}$. Taking k = n we get a locally trivial bundle

$$O(n-m) \to O(n) \xrightarrow{p} V_m(\mathbb{R}^n).$$
 (1.1.20)

1.1.21 Example. Taking m = 1 in (1.1.20) we get a locally trivial bundle

$$O(n-1) \rightarrow O(n) \rightarrow S^{n-1}$$
.

Here the first map takes A to $\begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$ and the second takes B to

Bu for $u \in S^{n-1}$ some unit vector. In particular, this identifies S^{n-1} as an orbit space $S^{n-1} \cong O(n)/O(n-1)$.

Exercise 1

Use the fibrations

$$O(n-k) \to O(n) \to V_k(\mathbb{R}^n)$$

to show that

$$\pi_i(O(n-1)) \simeq \pi_i(O(n))$$
 for $i < n-2$

and

$$\pi_i(V_k(\mathbb{R}^n))=0$$

for i < n - k - 1.

1.1.22 Definition. We have infinite versions of the Stiefel manifold and Grassmanian:

$$V_n(\mathbb{R}^{\infty}) := \bigcup_{k=1}^{\infty} V_n(\mathbb{R}^k) \qquad G_n(\mathbb{R}^{\infty}) := \bigcup_{k=1}^{\infty} G_n(\mathbb{R}^k)$$

1.1.23 Remark. We get a fiber sequence

$$O(n) \to V_n(\mathbb{R}^{\infty}) \to G_n(\mathbb{R}^{\infty}).$$

1.1.24 Proposition. $V_n(\mathbb{R}^{\infty})$ is contractible.

Proof. As in the exercise, we deduce that $\pi_i(V_n(\mathbb{R}^\infty))=0$ for all i. We can give $V_n(\mathbb{R}^{\infty})$ the structure of a CW-complex, and so the claim follows from ??.

1.1.25 Remark. One can repeat the same story using ℂ or ℍ instead of \mathbb{R} . In the first case, all instances of O(n) get replaced by U(n), and in the second case by Sp(n).

1.1.26 Example (The tangent bundle to S^2). Let $S^2 = \{(x_0, x_1, x_2) \in$ $\mathbb{R}^3 \mid x_0^2 + x_1^2 + x_2^2 = 1$. Recall that the tangent space at a point $x \in S^2$ is defined by $T_x S^2 = \{ \xi \in \mathbb{R}^3 \mid x \perp \xi \}$. We then define $TS^2 = \coprod_{x \in S^2} T_x S^2$. This can be toplogized as a subspace of $\mathbb{R}^3 \times \mathbb{R}^3$ when we write

$$TS^2 = \{(x, \xi) \in \mathbb{R}^3 \times \mathbb{R}^3 \mid x \in S^2, x \perp \xi\}.$$

There is a natural projection map $p: TS^2 \to S^2$ sending the pair (x,ξ) to x, which we claim is a locally trivial bundle with fiber \mathbb{R}^2 . To see this is a locally trivial bundle, let *U* be the open subset of

 S^2 defined by $x_3 > 0$. We will show how to construct the local trivialization on this open subset.

If $\xi = (\xi_1, \xi_2, \xi_3)$ then we have the relation

$$x_1\xi_1 + x_2\xi_2 + x_3\xi_3 = 0$$

or

$$\xi_3 = -(x_1\xi_1 + x_2\xi_2)/x_3.$$

We define

$$\phi \colon U \times \mathbb{R}^2 \to p^{-1}(U)$$

by

$$\phi(x_1, x_2, x_3, \xi_1, \xi_2) = (x_1, x_2, x_3, \xi_1, \xi_2, -(x_1\xi_1 + x_2\xi_2)/x_3),$$

which gives the required chart for this open subset.

1.1.27 *Remark.* More generally, for any smooth manifold X of dimension n, we have a locally trivial bundle $\pi \colon TX \to X$ with fiber \mathbb{R}^n .

1.2 The structure group of locally trivial bundles

We recall that the on the intersection of two local trivializations we constructed a homeomorphism

$$\phi_{\beta\alpha} : (U_{\alpha} \cap U_{\beta}) \times F \to \pi^{-1}(U_{\alpha} \cap U_{\beta}) \to (U_{\alpha} \cap U_{\beta}) \times F$$

Unwinding the definition, the map ϕ is completely determine by a map $\overline{\phi}$: $U \to \operatorname{Homeo}(F)$, where $\operatorname{Homeo}(F)$ denotes the group of all homeomorphisms of the fiber $F.^3$. Indeed, we have

$$\phi_{\alpha\beta}(x,f) = (x,\overline{\phi}(x)(f))$$

In other words, instead of $\phi_{\alpha\beta}$ to determine a bundle we can instead specify a family of functions

$$\overline{\phi}_{\alpha\beta}(x,f)\colon U_{\alpha}\cap U_{\beta}\to \operatorname{Homeo}(F),$$

having values in the group Homeo(F). Of course these are not arbitrary, but need to satisfy various compatibility conditions:

$$\overline{\phi}_{\alpha\alpha}(x) = \mathrm{id}$$

and

$$\overline{\phi}_{\alpha\gamma}(x)\overline{\phi}_{\gamma\beta}(x)\overline{\phi}_{\beta\alpha}(x) = \mathrm{id},$$

for $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$.

1.2.1 *Definition*. Let E, B, F be topological spaces and G a topological group which acts freely on the space F. A continuous map $p: E \to B$ is a locally trivial bundle with fiber F and structure group G if there is an atlas $\{U_{\alpha}\}$ and the coordinate homeomorphisms

$$\phi_{\alpha}\colon U_{\alpha}\times F\to p^{-1}(U_{\alpha})$$

 $^{^{3}}$ If we choose the correct topology on Homeo(F), namely the compact-open topology (for reasonable spaces at least), then this map is even continuous

such that the transition functions

$$\phi_{\beta\alpha} = \phi_{\beta}^{-1}\phi_{\alpha} \colon (U_{\alpha} \cap U_{\beta} \times F) \to (U_{\alpha} \cap U_{\beta} \times F)$$

have the form

$$\phi_{\beta\alpha}(x,f) = (x,\overline{\phi}_{\beta\alpha}(x)f)$$

where $\overline{\phi}_{\beta\alpha}\colon (U_\alpha\cap U_\beta)\to G$ are continuous functions satisfying

$$\overline{\phi}_{\alpha\alpha}(x) = \mathrm{id}$$

and

$$\overline{\phi}_{\alpha\gamma}(x)\overline{\phi}_{\gamma\beta}(x)\overline{\phi}_{\beta\alpha}(x) = \mathrm{id},$$

1.2.2 Remark. Some words on terminology are useful. What we defined as a locally trivial bundle with fiber F, is exactly a locally trivial bundle with fiber F and structure group Homeo(F). Either of these may also be called a fiber bundle or a fiber bundle with structure group G.

1.2.3 Remark.

1.2.4 Remark. Note that the structure group is not unique. For example, a bundle with structure group *G* may admit transition functions with values in a subgroup $H \leq G$. We say that the structure group *G* is reduced to subgroup *H*. More generally, if $\rho \colon G \to G'$ is a continuous homeomorphism of topological groups, and we are given a locally trivial bundle with structure group *G* and the transition functors $\alpha_{\alpha\beta} \colon U_{\alpha} \cap U_{\beta} \to G$, then a new locally trivial bundle with structure group G' may be constructed by

$$\phi'_{\alpha\beta}(x) = \rho(\phi_{\alpha\beta}(x)).$$

This operation is called the change of structure group.

Exercise 2

Show that a trivial bundle has trivial structure group. Conversely, if the structure group can be reduced to the trivial group then the bundle is (isomorphic to) a trivial bundle.

1.2.5 Example. Let us return to the Möbius bundle (Examples 1.1.4 and 1.1.12). We have that

$$\overline{\phi}_{\alpha\beta}(y) = y$$
 and $\overline{\phi}_{\beta\alpha}(y) = 1 - y$.

Note that $\overline{\phi}_{\beta\alpha}\circ\overline{\phi}_{\beta\alpha}(y)=1-(1-y)=y=\overline{\phi}_{\alpha\beta}(y)$. Therefore, the group generated by $\overline{\phi}_{\alpha\beta}$ and $\overline{\phi}_{\beta\alpha}$ has order 2. In other words, the Möbius bundle has (or can be reduced to) structure group $\mathbb{Z}/2$.

1.2.6 Example. The tangent bundle $TS^2 \rightarrow S^2$ was considered in Example 1.1.26. The coordinate homeomorphisms

$$\phi \colon U \times \mathbb{R}^2 \to \mathbb{R}^3 \times \mathbb{R}^3$$

are defined by formulas that are linear with respect to the second argument. Hence that transition functions have values in the group of linear translations of the fiber $F = \mathbb{R}^2$, that is $G = GL_2(\mathbb{R})$. In fact, it can be shown that the structure group can be reduced to the subgroup O(n) of orthonormal rotations.

1.3 Principal bundles

The most important example of a bundle for a us is a *principal bundle*. We postpone the definition to talk a little about group actions.

- 1.3.1 *Definition*. Let *G* be a topological group, and *X* a topological space. A left action of *G* on *X* is a continuous map $\mu: G \times X \to X$, satisfying $\mu(e, x) = x$ and $\mu(h, \mu(g, x)) = \mu(hg, x)$.
- 1.3.2 *Example.* The multiplication map $\mu \colon G \times G \to G$ defines a left action of G on itself. Similarly, if $H \subseteq G$, then $\mu|_{H \times G} \colon H \times G \to G$ defines an action of H on G.
- 1.3.3 *Remark.* The map $\mu: G \times X \to X$ is adjoint to a map $ad(u): G \to Homeo(X)$, where Homeo(X) has the compact-open topology. If X is nice (specifically, locally compact Hausdorff) then a continuous map $G \to Homeo(X)$ gives rise to a group action $G \times X \to X$.
- 1.3.4 *Example.* The adjoint to the multiplication $\mu: G \times G \to G$ is the map $G \to \operatorname{Homeo}(G)$ given by $g \mapsto f_g$, where $f_g: G \to G$ is given by $f_g(x) = gx$.
- 1.3.5 *Remark.* We recall some standard terminology associated to a group action of *G* on *X*:
- 1. The orbit of a point $x \in X$ is the set $Gx = \{g \cdot xmidg \in G\}$.
- 2. The orbit space X/G is the quotient space X/\sim where $x\sim g\cdot x$.
- 3. The fixed set $X^G := \{x \in X | g \cdot x \text{ for all } g \in G\}$.
- 4. An action if free⁴ if $g \cdot x \neq x$ for all $x \in X$ and all $g \neq e$. (i.e., gx = x for all x implies g = e).
- 5. The stabilizer (or isotropy) group at x is $G_x = \{g \in G \mid g \cdot x = g\} \subseteq G$.
- 6. An action is effective is the adjoint $G \to \operatorname{Homeo}(X)$ is injective, or equivalently if $\bigcap_{x \in X} G_x = \{e\}.5$
- 7. A group action is transitive if and only if it has exactly one orbit, i.e., there exists $x \in X$ such that Gx = X.
- 1.3.6 Example. To motivate the definition of a principal *G*-bundle we first consider an example.
- 1.3.7 *Definition.* A locally trivial bundle with structure group G is called a principal G-bundle if F = G and the action of the group G on F is defined by left translations.

⁴ Here, meaning fixed-point free

⁵ Note that a free action is effective, but not vice-versa.