

Thermodynamical Stability Analysis of a Model Quasicrystal

Moritz Holzwarth* Johannes Roth Hans-Rainer Trebin DPG-Frühjahrstagung der Sektion Kondensierte Materie

Introduction

- According to the random tiling hypothesis quasicrystals (QCs) are high temperature phases that stabilize due to large entropy [1].
- We prove the hypothesis by using the decagonal Tübingen tiling as a model QC.
- We apply exclusively geometric methods, namely the polar calculus.

The Tübingen tiling (TT)

- A random tiling arises from the ideal TT through atom flips.
- Random flips do not change the generalized 10-fold rotational symmetry.
- A randomized TT arises also in a MD-simulation with a Lennard-Jones Gauß-potential.
- Many possible flip configurations lead to a large entropy.

(b) A randomized version of the TT, from a molecular dynamics simulation [2].

Constructing crystals by cut and project scheme (CPS)

orientation.

(a) Cut space S and projection space E^{\parallel} have the same (b) Cut space S and projection space E^{\parallel} have different orientation.

- 1D crystals can be constructed as the E^{\parallel} -projection of a 2D hyperlattice $\mathcal{L} \cap \mathcal{S}$.
- The structure of a projected 1D crystal is determined by phason strain: $\chi = \tan(\theta \theta')$.
- The window \mathcal{W} is the E^{\perp} -projection of $\mathcal{L} \cap \mathcal{S}$.
- Phason strain expresses itself in the tiling by flips.
- The CPS for the TT requires a 4D hyperlattice and yields two independent strain components: $\chi = (\chi_1, \chi_2)$.

The dynamic polar calculus for vertices and flips

- The TT's window is a regular decagon that will be deformed by applying phason strain.
- ullet Every atom configuration corresponds to a domain in ${\mathcal W}$.
- The density of such configurations is given by the domain's area.

Atom environments and flip configurations in the TT for a cut-off radius $r_c = 2$

• The energy density of one specific tiling is determined by its atom environments V_i and their potential energies E_i .

- ullet A fixed average phason strain χ corresponds to certain flip configurations and determines the free energy density $F(\chi, T)$.
- Asymmetric flips may increase or decrease the tiling energy depending on the energy difference of their two states, $\Delta E \leq 0$.

• The simplest model of correlated flips consists of pairs of coupled flips and has at most 5 non-degenerate states.

The free energy density

 $\sum n_i(\chi)E_i +$ projected tiling

Flips $q \mid \Delta E_q < 0$ flip relaxation

 $\widehat{n}_q(\chi)\Delta E_q+\sum \widetilde{n}_k(\chi)\ln(\sum \mathrm{e}^{-k_B\Delta E_k^{(i)}/T})$ Flip pairs *k* flip randomization

- n_i , \hat{n}_q and \hat{n}_k are the densities of atom environments, flip configurations or flip pair configurations for a given average χ .
- These quantities are calculated by a dynamic polar calculus.

Free energy at low and high temperature

- $F(\chi, T = 0)$ has saddle point at $\chi = 0$. • $F(\chi, T)$ is minimized at $\chi = \mathbf{0}$ for T > 0 due to entropy caused by thermal flips.
- The phonon free energy is χ -independent [3].
- The free energy curvature $\partial_{\chi_2}^2 F(\chi, T)|_{\chi=0}$ becomes positive above $T_C = 0.23$ and hence, the QC is stabilized.

References:

- [1] Henley C. "Random Tiling Models". In: Quasicrystals The State Of The Art. Singapore: World Scientific Publishing, 1991, pp. 429–524.
- Engel M. "Dynamics and Defects of Complex Crystals and Quasicrystals: Perspectives from Simple Model Systems". PhD thesis. Universität Stuttgart, 2008.
- Kiselev A. "Phasonen in quasikristallinen Strukturen des Lennard-Jones-Gauß-Systems". Diploma thesis. Universität Stuttgart, 2011.

