Broadened Pulse-Step Change—Isotopic Sharp Pulse Analysis of the Mechanism of Methane Partial Oxidation to Synthesis Gas

Yun Hang Hu and Eli Ruckenstein*

Department of Chemical Engineering, State University of New York at Buffalo, Amherst, New York 14260 Received: August 28, 1997; In Final Form: October 22, 1997[®]

The mechanism of the partial oxidation of CH_4 was studied by a transient response analysis of a broadened pulse combined with either a step change or a sharp isotopic pulse. Over the unreduced NiO/SiO_2 catalyst, the reaction between CH_4 and O_2 occurs via the Eley-Rideal mechanism, CH_4 in the gas phase (or weakly adsorbed) reacting with O_2 in the adsorbed state. In contrast, over the reduced NiO/SiO_2 catalyst, the reaction takes place by a Langmuir-Hinshelwood mechanism, CH_4 and O_2 reacting in the adsorbed states. In addition, isotopic pulses of $^{18}O_2$ revealed that over the reduced catalyst lattice oxygen is formed and reduced by the carbon species; hence, on the reduced catalyst a dynamic redox process occurs.

1. Introduction

Two mechanisms have been suggested for the partial catalytic oxidation of methane to synthesis gas. In one, CO_2 and H_2O are the primary products, and CO is a result of their reaction with CH_4 . In the other, CO is produced directly without the preformation of CO_2 . Prettre et al., who were the first to study the CH_4 partial oxidation over a nickel catalyst, concluded that the overall oxidation involves two stages: an initial exothermic oxidation of CH_4 to CO_2 and H_2O followed by the endothermic reaction $CH_4 + CO_2 \rightarrow 2CO + 2H_2$. Some recent investigations brought support to this mechanism. $^{2-6}$ The other mechanism involves the pyrolysis $CH_4 \rightarrow C + 4H$ followed by the oxidation of C to CO. $^{6-12}$

Regarding the active catalytic phase for the reaction, some of the researchers considered that the metal is the active phase. $^{7-11,13,14}$ However, Dissanayake et al. 3 identified three constituents in the used Ni/Al₂O₃ catalyst and suggested that CH₄ is oxidized to CO₂ and H₂O over the regions containing NiAl₂O₄ and/or NiO + Al₂O₃ and that the steam and/or CO₂ reforming of CH₄ to CO and H₂ occur over the regions containing Ni/Al₂O₃. Van Looij and Geus 15 suggested that, in the parallel combustion of methane to CO₂ and reforming of methane, the combustion proceeds partly over NiO and more completely over partially oxidized nickel and that the reforming of methane to synthesis gas proceeds over metallic nickel sites.

Recently, ¹⁶ a new transient method, in which, instead of sharp pulses, both broadened pulses combined with step changes and broadened pulses combined with sharp isotopic pulses are employed, was developed. This combination of pulses provides richer dynamic information than the individual pulses. In the present paper it will be shown that this method allows us to obtain some information about the mechanism of partial oxidation of CH₄ over both the unreduced and reduced NiO/SiO₂ catalysts. Different mechanisms have been thus identified: (i) the CH₄ of the gas phase (or in a weakly adsorbed state) reacts with the O₂ adsorbed on the catalyst over the unreduced catalyst; (ii)a surface reaction between adsorbed CH₄ and O₂ species takes place over the reduced catalyst.

2. Experimental Section

2.1. Catalyst Preparation. NiO/SiO₂ (containing 13.6 wt % Ni) catalysts were prepared by impregnating SiO₂ (Aldrich) with an aqueous solution of nickel nitrate (Alfa). The paste thus obtained was dried at room temperature in air and then decomposed and calcined at 800 °C in air for 1.5 h. The BET surface area and average diameter of the pores were 362 m²/g and 52 Å, respectively.

2.2. Transient Response Analysis of a Broadened Pulse Combined with a Step Change or with a Sharp Isotopic Pulse. The transient analysis experiments were performed at $800\,^{\circ}\text{C}$ under atmospheric pressure. The catalyst powder (weight: $0.02\,\text{g}$) was held on quartz wool in a vertical quartz tube reactor of 2 mm inside diameter in an electronically controlled furnace of large heat capacity in order to keep the temperature constant. Helium ($60\,\text{mL/min}$) was used as the carrier gas. The feed gas contained CH₄ and O₂ (CH₄/O₂ = 2:1) and the isotopes $^{13}\text{CH}_4$ (99%) and $^{O18}_2$ (99%) (Isotec Inc) were employed in the experiments.

The method, which was proposed in our previous paper, ¹⁶ can be simply described as follows. A gas pulse of 2.5 mL is injected almost instantaneously into a carrier gas (He) and allowed to flow into a large tube (40 mm diameter and 164 mm length) in which the pulse is broadened to a width of about 20 min. From the broadening tube, the pulse flows more slowly to the reactor and finally to the MS equipment. During the broadened pulse, a step change from the feed gas to He, or a sharp isotopic pulse of 3 μ L, is introduced at selected times in the broadened pulse. The reactants and products have been continuously detected with a MS equipment (HP Quadrupole, 5971 Series mass-selective detector) equipped with a fast response inlet capillary system.

3. Results

3.1. Transient Response to a Broadened CH₄/CO₂ Pulse over NiO/SiO₂. Over the unreduced catalyst, the response curves to a broadened pulse (Figure 1) show that no CO is present and only a relatively small amount of CO₂ is formed. Most of CH₄ and O₂ remain unreacted. After NiO/SiO₂ was reduced with six pulses of H₂ (2.5 mL), the response (Figure

^{*} To whom correspondence should be addressed.

[®] Abstract published in Advance ACS Abstracts, December 1, 1997.

Figure 1. Responses to a broadened pulse of CH₄/O₂ (2.5 mL) over an unreduced NiO/SiO₂ catalyst at 800 °C.

Figure 2. Responses to a broadened pulse of CH₄/O₂ (2.5 mL) over a reduced NiO/SiO₂ catalyst at 800 °C: (a) first pulse; (b) second pulse; (c) third pulse.

2) to the broadened pulse of CH₄/O₂ shows the presence of CO and of a small amount of CO₂ and is free of CH₄, O₂, and water. Three successive pulses have been carried out. Since they are very similar, it is clear that the pulses do not change appreciably the surface of the catalyst.

3.2. Transient Response to a Broadened Pulse Combined with a Step Change. The response to a step change to He during the broadened CH₄/O₂/Ar/He (13.4% Ar as internal standard) pulse shows that, over the unreduced catalyst (Figure 3), the CO₂, O₂, and CH₄ curves coincide with that of Ar; hence, the product CO₂ does not exhibit a delay tail. In contrast, over the reduced catalyst (Figure 4), the tail of the CO response is 3.3 min longer than that of Ar.

3.3. Transient Response Analysis of a Broadened Pulse Combined with an Isotopic Sharp Pulse. Sharp ¹⁸O₂/Ar (13.4% Ar) or ¹³CH₄ (5% Ar) pulses were introduced during broadened ¹²CH₄/¹⁶O₂ pulses (Figures 5-7). Figure 5 shows that, over the unreduced catalyst, the response curve of C¹⁶O¹⁸O to a sharp pulse of ¹⁸O₂ has a much longer tail, 5 min longer, than Ar, which has a width of only 0.1 min, and that no C¹⁸O₂ is present. Figure 6 shows that, over the reduced catalyst, the response curves of C18O and C16O18O to a sharp pulse of 18O2/ Ar have much longer tails than Ar, being 1.8 min longer. Figure 7 shows that the response of ¹³CO to a ¹³CH₄ sharp pulse, over the reduced catalyst, has a somewhat longer tail than Ar. In addition, one can see that the tail of the C18O response to an

Figure 3. Normalized responses to a broadened pulse of CH₄/O₂/Ar combined with a step change to pure carrier (He) over an unreduced NiO/SiO₂ catalyst at 800 °C.

Figure 4. Responses to a broadened pulse of CH₄/CO/Ar combined with a step change to He over a reduced NiO/SiO2 catalyst at 800 °C (no CO₂ was detected after the step change).

Figure 5. Normalized responses to a broadened pulse of CH₄/¹⁶O₂ combined with a sharp pulse of ¹⁸O₂/Ar over an unreduced NiO/SiO₂ catalyst at 800 °C.

¹⁸O₂ sharp pulse is much longer than the tail of the ¹³CO response to a ¹³CH₄ sharp pulse (compare Figures 6 and 7).

4. Discussion

Over the unreduced NiO/SiO2 catalyst, the response curves of CO₂, O₂, and CH₄ to a step change from the feed gas to He coincide with that of Ar (Figure 3). Because in the absence of

Figure 6. Normalized responses to a broadened pulse of $CH_4/C^{16}O_2/Ar$ combined with a sharp pulse of $^{18}O_2/Ar$ over a reduced NiO/SiO₂ catalyst at 800 °C.

Figure 7. Normalized responses to a broadened pulse of $^{12}\text{CH}_4/\text{O}_2$ combined with a sharp pulse of $^{13}\text{CH}_4/\text{Ar}$ over a reduced NiO/SiO₂ catalyst at 800 °C.

the catalyst the conversion is extremely small, the above observations indicate that the formation of CO2 over the unreduced catalyst can occur (a) between weakly adsorbed species, (b) between one weakly adsorbed species and another species in the gas phase, or (c) between one strongly adsorbed and another weakly adsorbed or gas-phase species with rapid desorption of the product. However, the response of C¹⁸O¹⁶O over the unreduced catalyst to a sharp pulse of ¹⁸O₂/Ar during a broadened pulse of CH₄/¹⁶O₂ has a longer tail than Ar (Figure 5). This reveals that a strongly adsorbed oxygen or lattice oxygen species participates in the reaction. Therefore, over the unreduced catalyst, the reaction occurs between the gas-phase or weakly adsorbed CH₄ and the strongly adsorbed or lattice oxygen (Eley-Rideal mechanism). Because during the sharp pulse of ¹⁸O₂/Ar, C¹⁶O¹⁸O (and not C¹⁸O₂) is formed, it is clear that ¹⁸O₂ first dissociates to two ¹⁸O before reacting with CH₄. The fact that C16O18O has a long tail indicates that at least a part of ¹⁸O is stabilized by its exchange with the lattice O. The temperature programmed reaction experiments between CH₄ and NiO ¹⁷ demonstrated that the lattice oxygen can be reduced by

Over the reduced catalyst, the CO response to a step change to He, during the CH₄/O₂/Ar-broadened pulse, has a longer tail than that of Ar (Figure 4). The delay can be a result of (a) CO desorption and (b) CO formation by the surface reaction between the C and O species. Previously, ¹⁶ we have shown that the CO response to a step change from CO/Ar/He to He during a

broadened pulse of CO/Ar is near that of Ar. This indicates that the delay is not due to the desorption but to the surface reaction between the C and the O species. Consequently, the reaction over the reduced NiO/SiO₂ catalyst takes place via the Langmuir—Hinshelwood mechanism, in which the adsorbed CH₄ and O₂ species are involved. This is further confirmed by the responses of ¹³C¹⁶O or ¹²C¹⁸O to sharp pulses of ¹³CH₄/Ar (Figure 7) or ¹⁸O₂/Ar (Figure 6) during ¹²CH₄/¹⁶O₂-broadened pulses, which exhibit longer tails than that of Ar.

The long tail in the response of CO to a step change to He, during the broadened pulse of $CH_4/O_2/Ar/He$ (Figure 4), indicates the presence of C species on the reduced catalyst. In contrast, there are no C species over the unreduced catalyst (Figure 3). Therefore, one can conclude that Ni^0 is responsible for the activation of CH_4 . This occurs because of the $\sigma-\pi$ coordination between the σ bonds of C-H in CH_4 and the d orbitals of Ni. This reduces the C-H binding energy via the electron donation from the σ bond of C-H to a vacant d orbital of Ni and the back-donation from the filled d orbital of Ni to the vacant antibonding σ^* orbital of C-H. Indeed, the experiments of Ceyer¹⁸ demonstrated that the CH bond is dissociated over Ni.

Over the reduced catalyst, the tail of the ¹²C¹⁸O response to a sharp pulse of ¹⁸O₂/Ar (Figure 6) is much longer than that of the ¹³C¹⁶O response to a sharp pulse of ¹³CH₄ (Figure 7), both during the broadened pulse of ¹²CH₄/¹⁶O₂. This indicates that the C species react more easily than the O species. Because the long tail of C¹⁸O to the sharp pulse indicates that the ¹⁸O species are relatively stable (Figure 6), it is reasonable to consider that at least some of the ¹⁸O species are lattice oxygen atoms. Hence, a slow dynamic redox process consisting of lattice oxygen formation and its reduction by C species is at least partly responsible for the CO formation. This explains why after a pulse the catalyst does not remain oxidized (Figure 2). However, Figure 4 also reveals that initially, after the step change, the responses of Ar and CO coincide. This may be caused by another O species present on the surface of the catalyst, which reacts more rapidly with the C species.

5. Conclusion

The reaction mechanism between CH_4 and O_2 over the unreduced NiO/SiO_2 catalyst differs from that over the reduced catalyst. The former takes place via the Eley–Rideal mechanism in which O_2 in the adsorbed state reacts with the CH_4 in the gas phase, while the latter takes place via the Langmuir–Hinshelwood mechanism in which adsorbed CH_4 and O_2 species react with each other.

References and Notes

- (1) Prettre, M.; Eicher, C.; Perrin, M. Trans. Faraday Soc. 1964, 43, 335
- (2) Ashcroft, A. T.; Cheetham, A. K.; Foord J. S.; Green, M. L. H. *Nature* **1990**, *344*, 319.
- (3) Dissanayake, D.; Rosynek, M. P.; Lunsford, J. H. J. Catal. 1991, 132, 117.
- (4) Boucouvalas, Y.; Zhang, Z. L.; Verykios, X. E. Catal. Lett. 1994, 27. 131.
 - (5) Papp, H.; Schuler, P.; Zhuang, Q. Catal. Lett. 1996, 3, 299.
- (6) Boucouvalas, Y.; Zhang, Z. L.; Verykios, X. E. Catal. Lett. 1996, 40, 189.
- (7) Choudhary, V. R.; Rajput, A. M.; Prabhaker, B. J. Catal. Lett. 1992, 15, 363.
 - (8) Hickman, D. A.; Schmidt, L. D. Science 1993, 259, 343.
 - (9) Hu, Y. H.; Ruckenstein, E. Catal. Lett. 1995, 34, 41.
 - (10) Hu, Y. H.; Ruckenstein, E. J. Catal. 1996, 158, 260.

- (11) Buyerskaya, O. V.; Walter, K.; Wolf, D.; Baerns, M. Catal. Lett. 1996, 38, 81.
- (12) Mallens, E. P. J.; Hoebink, J. H. B. J.; Marin, G. B. J. Catal., 1997, *167*, 43.
- (13) Wang, D. Z.; Dewaele, O.; Degroote, A. M.; Froment, G. F. *J. Catal.* **1996**, *159*, 418.
- (14) Chu, Y. L.; Li, S. B.; Lin, J. Z.; Gu, J. F.; Yang, Y. L. Appl. Catal.
 A 1996, 134, 67.
 (15) Van Looij, F.; Geus, J. W. J. Catal. 1997, 168, 154.
 (16) Hu, Y. H.; Ruckenstein, E. J. Phys. Chem. B 1997, 101, 7563.
 (17) Hu, Y. H.; Ruckenstein, E. Langmuir 1997, 13, 2055.
 (18) Ceyer, S. T. Science 1990, 249, 133.