

Expert: Thijs Van Schel – 20245821 Coach: Siebe Haché, Stan Van Campenhout Doelgroep: studenten informatica

1. alfabet, strings en een taal over een gegeven alfabet

Alfabet

Eindige, niet lege verzameling Symbolen (vb. binair, kleine letters)

Strings

Eindige reeks symbolen uit alfabet (vb. 0010101)

Taal

Verzameling strings over alfabet (vb. woorden in Nederlands)

2.5-tuple

DFA: $A=(Q,\Sigma,\delta,q0,F)$

- **Q** = Eindige verzameling toestanden
- Σ = Eindig alfabet
- δ = transitiefunctie (Q × Σ \rightarrow Q: (q, a) \rightarrow p)
- $q_0 \in Q$ = starttoestand
- **F** ⊆ **Q** = verzameling eindtoestanden

3. Transitiefunctie

- Naar welke toestand DFA
- Bepaald inputsymbool
- Def:

$$\delta: Q \times \Sigma \rightarrow Q$$

- $\delta(q, a) = p$
- Toestand q, invoer a, naar p

4. Uitgebreide Transitiefunctie

- Werking op strings
- $\delta = (q, \epsilon) = q$
- Na inductie: $\delta(q, xa) = \delta(\delta(q, x), a)$

5. L(A), Taal aanvaard door DFA A

Geaccepteerde talen

= reguliere talen

Definitie

 $L(A) = \{w : \delta^{\hat{}}(q0, w) \in F \}$

6.5-tuple

NFA: $A=(Q,\Sigma,\delta,q0,F)$

- **Q** = Eindige verzameling toestanden
- Σ = Eindig alfabet
- δ = transitiefunctie (Q × $\Sigma \rightarrow 2^Q$)
- $q_0 \in Q$ = starttoestand
- **F**⊆**Q** = verzameling eindtoestanden

7. Transitiefunctie

- > 1 toestand toewijzen
- δ: mogelijke volgende toestanden
 - → niet deterministisch

8. Uitgebreide Transitiefunctie

- Werking op strings
- $\delta(q, \varepsilon) = \{q\}$
- Na Inductie: $\delta(q, xa) = \bigcup_{p} \in \delta(q, x) \delta(p, a)$

9. L(A), Taal aanvaard door NFA A

Definitie

 $L(A) = \{w : \hat{\delta}(q0, w) \cap F \neq \emptyset\}$

10. Reguliere expressie

Basis: ε en ø zijn reguliere expressies. Als a
∈ Σ, dan is a een reguliere expressie

• Inductie:

- E = regex → (E) een regex.
- E en $F = regex \rightarrow E + F en E.F = regex$
- $E = regex \rightarrow E^* = regex$

DFA

11. DFA: Transitietabel

Toestand	0	1
q0	q1	q0
q1	q1	q2
q2	q2	q2

- q0 = persoon niet aanwezig
- q1 = persoon aanwezig, geen actie
- q2 = persoon aanwezig, wel actie

DFA

12. DFA: Transitiediagram

•
$$q0 \rightarrow 0 \rightarrow q1 \rightarrow 1 \rightarrow q2 \rightarrow 0 \rightarrow q2$$

•
$$q1 \rightarrow 0 \rightarrow q1 \rightarrow 1 \rightarrow q2$$

- q0 = persoon niet aanwezig
- q1 = persoon aanwezig, geen actie
- q2 = persoon aanwezig, wel actie

NFA

13. NFA: Transitietabel

Toestand	0	1
q0	q0,q1	q0
q1	q2	
q2		q2

- q0 = deur gesloten
- q1 = deur open, geen actie
- q2 = deur open, wel gestolen

NFA

14. NFA: Transitiediagram

- $q0 \rightarrow 0 \rightarrow q0, q1$
- $q0 \rightarrow 1 \rightarrow q0$
- $q1 \rightarrow 0 \rightarrow q2$
- $\bullet \quad q2 \rightarrow 1 \rightarrow q2$

- q0 = deur gesloten
- q1 = deur open, geen actie
- q2 = deur open, wel gestolen

