Функциональные возможности программного комплекса

1.1 Описание программного комплекса

Программный комплекс лабораторных работ разработанный в рамках моей работы представляет из себя Windows Form приложение, включающее в себя семь лабораторных работ по предмету «Численные методы».

Включены следующие численные методы, распределенные по лабораторным работам:

- 1. Одношаговые методы решения задачи Коши: метод Эйлера, метод Эйлера-Коши и метод Рунге-Кутта 4-го порядка.
- 2. Многошаговые методы решения задачи Коши: метод Адамса (явный)
- 3. Решение жестких систем ОДУ: метод Гира, метод Ракитского (матричной экспоненты).
- 4. Численное дифференцирование: дифференцирование с помощью сплайнов.
- 5. Численное интегрирование: формула прямоугольников, формула трапеций, формула Симпсона, формула Гаусса.
 - 6. Приближенное вычисление преобразования Фурье.
- В конечном результате должен получится комплекс шести лабораторных работ, по выше описанным численным методам.

Каждая отдельная лабораторная работа содержится в своем классе (lab1 – лабораторная №1, lab2 – лабораторная №2 и т.д.). Все лабораторные работы выполнены в графическом интерфейсе. Исключением являются некоторые из лабораторных, которым требуется изменять исходный код для изменения входных данных. Программа может использоваться, как основа для математических вычислений отдельно взятых приложений.

1.2 Описание графического интерфейса

Лабораторная работа №8-9. Обе лабораторные работы исследуют численные методы решения задачи Коши. В восьмой лабораторной работе рассмотрены одношаговые методы, а в девятой многошаговые. Графический интерфейс содержит в себе таблицу вывода значений, которые получаются в процессе решения задачи Коши (рис. 3.1).

Рис. 3.1 – Графический интерфейс 8-9 лабораторной работы

По умолчанию в программе выставлен отрезок исследования от 0 до 3 с шагом 0.1. Метод Эйлера, Эйлера-Коши и Рунге-Кутта 4ого порядка относятся к восьмой лабораторной работе. Метод Адамса девятая лабораторная работа.

Лабораторная работа №10. Лабораторная работа исследует решение жестких систем ОДУ. Графический интерфейс содержит в себе таблицу вывода значений, которые получаются в процессе решения системы (рис. 3.2).

Рис. 3.2 – Графический интерфейс 10 лабораторной работы

По умолчанию в программе выставлен отрезок исследования от 0 о 2 с шагом 0.1.

Лабораторная работа №11. Лабораторная работа исследует численное дифференцирование с помощью сплайнов. Графический интерфейс содержит в себе элемент, который способен отображать график X от Y. Так же radioButton'ы выбора исследуемой функции (рис. 3.3).

Рис. 3.3 – Графический интерфейс 11 лабораторной работы По умолчанию выставлен отрезок исследования от 0 до 1.

Лабораторная работа №12. Лабораторная работа исследует численное интегрирование при помощи формулы прямоугольников, трапеций, метода Симпсона и метода Гаусса. Графический интерфейс содержит в себе исследуемую функцию, кнопки вызова решения по каждому методу и текстовое поле для вывода решения (рис. 3.4).

Рис. $3.4 - \Gamma$ рафический интерфейс 12 лабораторной работы По умолчанию отрезок исследования от 0 до 1.

Лабораторная работа №13. Лабораторная работа исследует приближенное вычисление преобразования Фурье. Графический интерфейс содержит в себе таблицу с значениями омега, действительной и мнимой частью (рис. 3.5).

Рис. 3.5 – Графический интерфейс 13 лабораторной работы Рассмотрены графические интерфейсы семи лабораторных работ.

1.3 Примеры решения численных методов

Лабораторная работа №8-9. Рассмотрим процесс работы лабораторной на примере решения задачи Коши, указанной на рис. 3.6.

$$\begin{cases} dy_1 / dx = y_2 \\ dy_2 / dx = e^{-xy_1} \end{cases} \begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

Рис. 3.6 – Задача Коши

Требуется решить на отрезке [0,3] с шагом 0,1 задачу Коши. Введем данные в код программы. Изменим код функций f1 и f2 (рис. 3.7).

```
double SQRN(double a, double b)
{
    if (a != 0) return Math.Exp(b*Math.Log(a));
    return 0;
}
double f1(double x, double y1, double y2)
{
    return y2;
}
double f2(double x, double y1, double y2)
{
    return SQRN(2.71828182846, -x * y1);
}
```

Рис. 3.7 – Содержимое функций

Выберем один из методов решения задачи, например, Эйлера и получим решение (рис. 3.8).

Рис. 3.8 – Решение задачи Коши

Все методы выдают результат сопоставимый с погрешностью 0.001.

Лабораторная работа №10. Рассмотрим процесс работы лабораторной на примере решения жесткой системы ОДУ, указанной на рис. 3.9.

$$\begin{cases} y_1' = -11y_1 + 9y_2 \\ y_2' = 9y_1 - 11y_2 \end{cases}$$

Рис. 3.9 – Жесткая система ОДУ

Введем данные в код программы. Для этого в функциях f1 и f2 введем значения, указанные на рис. 3.10.

```
double f1(double x, double y1, double y2)
{
    return -11 * y1 + 9 * y2;
}
double f2(double x, double y1, double y2)
{
    return 9 * y1 - 11 * y2;
}
```

Рис. 3.10 – Исходные данные задачи

Выберем один из методов решения задачи, например, Гира и получим решение (рис. 3.11).

_		4	X = 1,5	X = 1,6	X = 1,7	X = 1,8	X = 1,9	X = 2
١	Y1)60462789	0,025357055231	0,020683470093	0,016939767992	0,013900114643	0,011385768511	0,009310172403
	Y2	18624668	0,025271596160	0,020757302295	0,016992228077	0,013884161459	0,011360939462	0,009310180260.
*						0,0138	841614597131	
<						_		

Рис. 3.11 – Решение задачи Коши

Все методы выдают результат сопоставимый с погрешностью 0.001.

Лабораторная работа №11. Рассмотрим процесс работы лабораторной на примере численного дифференцирования функции, указанной на рис. 3.12.

$$e^{x^2}$$

Рис. 3.12 – Функция, которую требуется продифференцировать

Введем данные в код программы. Для этого в функциях f, fx и fxx введем функцию, первую производную и вторую производную соответственно, указанные на рис. 3.13.

```
double f(double x)
{
    if (radioButton1.Checked) {      return Math.Sin(x); }
    if (radioButton2.Checked) {      return Math.Cos(x); }
    if (radioButton3.Checked) {      return Math.Exp(Math.Pow(x, 2)); }
    return 0;
}
double fx(double x)
{
    if (radioButton1.Checked) {      return Math.Cos(x); }
    if (radioButton2.Checked) {      return -Math.Sin(x); }
    if (radioButton3.Checked) {      return 2 * x * Math.Exp(Math.Pow(x, 2)); }
    return 0;
}
double fxx(double x)
{
    if (radioButton1.Checked) {      return -Math.Sin(x); }
    if (radioButton2.Checked) {      return -Math.Cos(x); }
    if (radioButton3.Checked) {      return -Math.Exp(Math.Pow(x, 2)) * (1 + 2 * x * x); }
    return 0;
```

Рис. 3.13 – Исходные данные

Нажмем кнопку «получить решение». В результате получим график производной функции (рис. 3.14).

Рис. 3.14 – график производной функции

Лабораторная работа №12. Рассмотрим процесс работы лабораторной на примере численного интегрирования функции, указанной на рис. 3.15

$$\int_{0}^{1} \frac{\cos x - 1}{x^2} dx$$

Рис. 3.15 – Исходный интеграл

Введем данные в код программы. Для этого в функции f введем функцию, как указанно на рис. 3.16.

```
double f(double x)
{
    double result = -0.5;
    if (x > 1e-8)
    {
        result = (Math.Cos(x) - 1) / (x * x);
    }
    return result;
}
```

Рис. 3.16 – Исходные данные

Получим решение одним из методов, например прямоугольников, как на рисю 3.17.

Рис. 3.17 – Решение интеграла

Лабораторная работа №13. Рассмотрим процесс работы лабораторной на примере нахождения приближенного вычисления преобразования Фурье, указанного на рис. 3.18.

Пример. Вычислить $\int\limits_a^{\upsilon}e^{-x^2}e^{i\omega x}dx$, используя квадратурную фор-

мулу с 512 узлами (при
$$\omega=\omega_k=\frac{2\pi k}{b-a}$$
, $k=0,1,\ldots,n-1,n=512.$)

Рис. 3.18 – Задание для решения

Введем данные в код программы. Для этого в конструкторе Lab13 введем функцию, как указанно на рис. 3.19.

Рис. 3.19 – Исходные данные

Запустим программу и получим результат на 512 узлах, как и указано в задании (рис. 3.20).

	Омега	Действительная часть	Мнимая часть	•
504	158,0221104755	-0,00204693200	-0,00821457965	
505	158,3362697409	-0,00282031200	-0,00798467842	
506	158,6504290062	-0,00361964347	-0,00745109456	
507	158,9645882716	-0,00431450112	-0,00657237856	
508	159,2787475370	-0,00474577111	-0,00537008400	
509	159,5929068023	-0,00475996145	-0,00394597378	
510	159,90706606772	-0,00425315119	-0,00247843705	
511	160,2212253330	-0,00321088648	-0,00119319690	

Рис. 3.20 – Решение преобразования Фурье

Заключение

Разработка программного обеспечения — актуальность этого направления сейчас очень велика. Количество языков программирования и операционных систем, под которые пишут программное обеспечение великое множество, поэтому практикуясь разрабатывать программное обеспечение в рамках бакалаврской работы я обобщаю знания, полученные мною в рамках обучения по специальности «Информатика и вычислительная техника».

В ходе выполнения бакалаврской работы, на тему «Программирование численных методов. Часть2», было проделано следующее:

- 1) проведен теоретический обзор по технологии разработки программного обеспечения. Это сделано для расширения кругозора и подготовки мыслительного процесса по проектированию своей системы. В результате стали понятны цели и задачи, которые требуется поставить перед собой;
- 2) разработанная система подходит для применения в лабораторном комплексе по предмету «Численные методы» на кафедре ПОУТС;
- 3) в качестве средства разработки системы была выбрана MS Visual Studio, а язык программирования С#;
- 4) была проведена верификация данных полученных старым исходным кодом и новым, результаты совпали;
- 5) разработан графический интерфейс, который позволил отказаться от «консоли» и сконцентрировать внимание пользователя на результатах;
- 6) запрограммированы численные методы с восьмой по тринадцатую лабораторную работу;
- 7) описаны основные возможности программного обеспечения, такие как примеры решения численных методов и описание графического интерфейса. Это позволит студентам, которые хотят начать работать с данным лабораторным комплексом быстрее разобраться в его основах.

Список использованных источников

- 1. Анхимюк, В.Л. Теория автоматического управления [Текст] / В.Л. Анхимюк, О.Ф. Олейко, Н.Н. Михеев. М.: Дизайн ПРО, 2002. 352 с.
- 2. Бесекерский, В.А. Теория систем управления программным обеспечением [Текст] / В.А. Бесекерский, Е.П. Попов. 4-е изд., перераб. и доп. СПб.: Профессия, 2003. 747 с.
- 3. Гудвин, Г.К. Проектирование программного обеспечения [Текст] / Г.К. Гудвин, С.Ф. Гребе, М.Э. Сальдаго. пер. с англ. М.: БИНОМ, Лаборатория знаний, 2004. 911 с.
- 4. Брюханов, В.Н. Теория управления программным обеспечнием [Текст] : Учеб. для машиностроит. спец. вузов / В.Н. Брюханов, М.Г. Косов, С.П. Протопопов и др.; под ред. Ю.М. Соломенцева. 3-е изд., стер. М.: Высш. шк.; 2000. 268 с.
- 5. Техносфера [Электронный ресурс] / 2015. Режим доступа: http://tekhnosfera.com, свободный. Загл. с экрана.
- 6. ВЕДА программное обеспечение широкого профиля [Электронный ресурс] / 2015. Режим доступа: http://www.medical.ua-ru.net, свободный. Загл. с экрана.
- 7. Lib.ru: Журнал «Самиздат» [Электронный ресурс] / 2015. Режим доступа: http://samlib.ru, свободный. Загл. с экрана.
- 8. CIT FORUM [Электронный ресурс] / 2015. Режим доступа: http://citforum.ru, свободный. Загл. с экрана.
- 9. ОЛЛИ Информационные технологии [Электронный ресурс] / 2015. Режим доступа: http://www.olly.ru, свободный. Загл. с экрана.
- 10. TADVISER [Электронный ресурс] / 2015. Режим доступа: http://www.tadviser.ru, свободный. Загл. с экрана.
- 11. shportal [Электронный ресурс] / 2015. Режим доступа: http://shportal.ru, свободный. Загл. с экрана.

Приложение А

```
double SQRN(double a, double b)
                            if (a != 0) return Math.Exp(b*Math.Log(a));
                   double f1(double x, double y1, double y2)
                            return y2;
                   double f2(double x, double y1, double y2)
                            return SORN(2.71828182846, -x * v1);
                   void eiler(double a, double b, int n, int kolfun, double x, MyDelegate[] f,
double[,] y_1)
                   {
                            double t = (b - a) / n;
                            x = x + t;
                            for (int i = 1; i < n; i++)</pre>
                                     for (int k = 0; k < kolfun; k++)
                                               y_1[k,i]=y_1[k,i-1]+t*f[k](x,y_1[0,i-1],y_1[1,i-1]);
                                     dataGridView1.Columns[i].HeaderCell.Value = "X = " + x;
                                     dataGridView1.Rows[0].Cells[i].Value = y_1[0,i];
                                     dataGridView1.Rows[1].Cells[i].Value = y_1[1, i];
                                     x += t;
                            dataGridView1.Columns[0].HeaderCell.Value = "X = " + a;
                            dataGridView1.Rows[0].Cells[0].Value = y_1[0, 1];
                            dataGridView1.Rows[1].Cells[0].Value = y_1[1, 2];
                   void prognoz(double a, double b, int n, int kolfun, double x, MyDelegate[] f,
double[,] y_1)
                            double t = (b - a) / n;
                            x = x + t;
                            for (int i = 1; i < n; i++)
                                      for (int k = 0; k < kolfun; k++)
                                               y_1[k,i]=y_1[k,i-1]+t*f[k](x+0.5*t,y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1[0,i-1]+0.5*t*y_1
1],y_1[1,i-1]+0.5*t*y_1[1,i-1]);
                                     dataGridView1.Columns[i].HeaderCell.Value = "X = " + x;
                                     dataGridView1.Rows[0].Cells[i].Value = y_1[0, i];
                                     dataGridView1.Rows[1].Cells[i].Value = y_1[1, i];
                                     x += t;
                            }
                            dataGridView1.Columns[0].HeaderCell.Value = "X = " + a;
                            dataGridView1.Rows[0].Cells[0].Value = y_1[0, 1];
                            dataGridView1.Rows[1].Cells[0].Value = y_1[1, 2];
                  double[,] Runge_Kut(double a, double h, int n, double x, double[,] y_1,
MyDelegate[] FMas)
                   {
                            double[] k = new double[4];
                            for (int i = 1; i < n; i++)</pre>
```

```
for (int j = 0; j < 2; j++)
                {
                    k[0] = FMas[j](x, y_1[0, i - 1], y_1[1, i - 1]);
                    k[1] = FMas[j](x + h / 2, y_1[0, i - 1] + h / 2 * k[1], y_1[1, i - 1]
+ h / 2 * k[1]);
                    k[2] = FMas[j](x + h / 2, y_1[0, i - 1] + h / 2 * k[2], y_1[1, i - 1]
+ h / 2 * k[2]);
                    k[3] = FMas[j](x + h, y_1[0, i - 1] + h * k[3], y_1[1, i - 1] + h *
k[3]);
                    y_1[j, i] = y_1[j, i - 1] + h / 6 * (k[0] + 2 * k[1] + 2 * k[2] +
k[3]);
                }
                x = x + h;
                dataGridView1.Columns[i].HeaderCell.Value = "X = " + x;
                dataGridView1.Rows[0].Cells[i].Value = y_1[0, i];
                dataGridView1.Rows[1].Cells[i].Value = y_1[1, i];
            dataGridView1.Columns[0].HeaderCell.Value = "X = " + a;
            dataGridView1.Rows[0].Cells[0].Value = y_1[0, 1];
            dataGridView1.Rows[1].Cells[0].Value = y_1[1, 2];
            return y_1;
        }
```

Приложение Б

```
void Adams(double a, double b, double h, double[] NewValues, MyDelegate[] FMas)
         double x=a;
         double[,] y_1 = new double[2, 150];
         int n = (int)Math.Round((b-a)/h);
         y_1[0,1]=NewValues[0];
         y_1[1,1]=NewValues[1];
         y_1 = Runge_Kut(a,h, 30, x,y_1,FMas);
         x = 0.3;
            for (int i = 4; i < n; i++)</pre>
                for (int j = 0; j < 2; j++)
                    NewValues[j]=y_1[j,3]+h/24*(55*FMas[j](x,y_1[0,3],y_1[1,3])-
                        59*FMas[j](x-h,y_1[0,2],y_1[1,2])+
                        37*FMas[j](x-2*h,y_1[0,1],y_1[1,1])-
                        9*FMas[j](x-3*h,y_1[0,0],y_1[1,0]));
                for (int j = 1; j < 4; j++)
                    y_1[0,j-1]=y_1[0,j];
                    y_1[1,j-1]=y_1[1,j];
                y_1[0,4]=NewValues[0];
               y_1[1,4]=NewValues[1];
               x=x+h;
               dataGridView1.Columns[i].HeaderCell.Value = "X = " + x;
               dataGridView1.Rows[0].Cells[i].Value = y_1[0, i];
               dataGridView1.Rows[1].Cells[i].Value = y_1[1, i];
            }
               }
```

Приложение В

```
private delegate double MyDelegate(double x, double y1, double y2);
                              double[] Runge_Kut(double a, double b, int n, double x, double[] y_1,
MyDelegate[] FMas)
                              {
                                             double[] New = new double[2];
                                             double[] k = new double[4];
                                             double h=(b-a)/n;
                                             New[0]=y_1[0];
                                             New[1]=y_1[1];
                                             for (int j = 0; j < 2; j++)
                                                            k[0]=h*FMas[j](x,New[0],New[1]);
                                                            k[1] = h * FMas[j](x + (h / 2.0), New[0] + (1 / 2.0) * k[0], New[1] + (1 / 2.0) * k[0] + (1 / 2.0) * k[
/ 2.0) * k[0]);
                                                            k[2] = h * FMas[j](x + h / 2.0, New[0] + (1 / 2.0) * k[1], New[1] + (1 / 
2.0) * k[1]);
                                                            k[3]=h*FMas[j](x+h,New[0]+k[2],New[1]+k[2]);
                                                           y_1[j] = y_1[j] + (h / 6.0) * (k[0] + 2 * k[1] + 2 * k[2] + k[3]);
                                             }
                                                            return y 1;
                              void Gir(double a, double b, int n, double x, double[] y_1, MyDelegate[] FMas)
                                             int z = 0;
                                             double c1, c2;
                                             double[,] Fun = new double[2, 4];
                                             double h = (b - a) / n;
                                             for (int i = 0; i < 4; i++)
                                                           y_1 = Runge_Kut(a, b, n, x, y_1, FMas);
                                                           x = x + h;
                                                           for (int j = 0; j < 2; j++)
                                                                          Fun[j, i] = y_1[j];
                                                            }
                                             }
                                             x = a + 0.1;
                                             for (int i = 0; i < n; i++)</pre>
                                                            c1=(-48*Fun[0,3]+36*Fun[0,2]-16*Fun[0,1]+3*Fun[0,0])/1.2;
                                                            c2=(-48*Fun[1,3]+36*Fun[1,2]-16*Fun[1,1]+3*Fun[1,0])/1.2;
                                                           y_1[0]=(-9*c2-(25/1.2+11)*c1)/((25/1.2+11)*(25/1.2+11)-9*9);
                                                           y_1[1]=(9*y_1[0]-c2)/(25/1.2+11);
                                                            z++;
                                                            for (int j = 0; j < 2; j++)
                                                            {
                                                                           Fun[j,0]=Fun[j,1];
                                                                           Fun[j,1]=Fun[j,2];
                                                                           Fun[j,2]=Fun[j,3];
                                                                           Fun[j,3]=y_1[j];
                                                            }
                                                            dataGridView1.Columns[z-1].HeaderCell.Value = "X = " + x;
                                                            dataGridView1.Rows[0].Cells[z-1].Value = y_1[0];
                                                            dataGridView1.Rows[1].Cells[z-1].Value = y_1[1];
                                                            x += h;
                                             }
                              }
                              double f1(double x, double y1, double y2)
```

```
return -11 * y1 + 9 * y2;
        }
        double f2(double x, double y1, double y2)
        {
            return 9 * y1 - 11 * y2;
        }
        private void button1 Click(object sender, EventArgs e)
            MyDelegate[] FMas = new MyDelegate[2];
            double[] y_1 = new double[2];
             y_1[0]=1;
             y_1[1]=0;
             FMas[0]=f1;
             FMas[1]=f2;
             Gir(0,2,20,0,y_1,FMas);
        double[,] MulMat(int n, double[,] a, double[,] b)
            double[,] c = new double[n, n];
            for (int i = 0; i < n; i++)</pre>
                for (int j = 0; j < n; j++)
                    for (int k = 0; k < n; k++)
                         c[i,j]=c[i,j]+a[i,k]*b[k,j];
                     }
                }
            }
                return c;
        double[] MatnaVec(int n, double[,] a, double[] b)
            double[] c = new double[n];
            for (int i = 0; i < n;i++)</pre>
            {
                for (int j = 0; j < n; j++)
                    c[i]=c[i]+a[j,i]*b[j];
            }
                return c;
        double[,] MulConst(int n, double h, double[,] b)
            for (int i = 0; i < n; i++)</pre>
            {
                for (int j = 0; j < n; j++)
                    b[i, j] = b[i, j] * h;
            return b;
        double[,] MetRak(int n, double h, double[,] a, double[] y, double[,] q, int Ind,
int nts)
            double s = 0;
            double[,] Rabmas1 = new double[n, n];
            //double[,] q = new double[n, n];
            double[] y1 = new double[n], Rabmas2 = new double[n];
            double[] y0 = new double[n];
            if (Ind == 0)
            {
```

```
for (int i = 0; i < n; i++)</pre>
        for (int j = 0; j < n; j++)
        {
            s += a[i,j]*a[i,j];
        }
    }
    s=Math.Sqrt(s);
    h=0.1/s;
    nts = 0;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
        {
            q[i,j]=0;
        }
    }
    a = MulConst(n, h, a);
    for (int k = 5; k >= 1; k--)
        q = MulConst(n, 1 / k, q);
        for (int i = 0; i < n; i++)</pre>
            q[i, i] = q[i, i] + 1;
        double[,] temp = MulMat(n, q, a);
           q=temp;
    for (int i = 0; i < n; i++)</pre>
        q[i, i] = q[i, i] + 1;
    for (int i = 0; i < n; i++)</pre>
        for (int j = 0; j < n; j++)
        {
            y0[j]=0;
        y0[i]=1;
        for (int j = 0; j < Math.Round(0.1/h); j++)</pre>
            y1 = MatnaVec(n,q,y0);
               y0=y1;
        for (int j = 0; j < n; j++)
            Rabmas1[j,i]=y0[j];
        double test;
    }
    q=Rabmas1;
    if (nts > 0)
        Rabmas2 = MatnaVec(n, q, y);
        y=Rabmas2;
    y_result = y;
    h result = h;
    return q;
double[] getY0()
```

```
{
    return y_result;
}
double getH()
{
    return h_result;
}
private void button2_Click(object sender, EventArgs e)
    int n=2;
    double[,] a1 = new double[n,n];
    double[] y0 = new double[n];
    a1[0,0]=-11; a1[0,1]= 9;
a1[1,0]= 9; a1[1,1]=-11;
    y0[0]=1; y0[1]=0;
    double x=0;
    double h = 0;
    int nts = 0;
    double[,] a2 = (double[,])a1.Clone();
    double[,] q1 = new double[n,n];
    q1 = MetRak(n, h, a2, y0, q1, 0, nts);
    y0 = getY0();
    h = getH();
    for (nts = 1; nts < 21; nts++)
        a2 = (double[,])a1.Clone();
        q1 = MetRak(n, h, a2, y0, q1, 1, nts);
        y0 = getY0();
        h = getH();
        dataGridView1.Columns[nts - 1].HeaderCell.Value = "X = " + x;
        dataGridView1.Rows[0].Cells[nts - 1].Value = y0[0];
        dataGridView1.Rows[1].Cells[nts - 1].Value = y0[1];
        x=x+0.1;
    }
}
```

Приложение Г

```
void Spline3(int n, double[] x, double[] y, double s0, double sn, double[] a, double[] b,
double[] c, double[] d)
                  {
                           double[] f = new double[n];
                           double h2 = x[2] - x[1];
                           double h3 = x[3] - x[2];
                           a[1] = (2 * (h2 + h3)) / h3;
                           f[1] = (6 / h3) * (((y[3] - y[2]) / h3) - ((y[2] - y[1]) / h2)) - (h2 * s0) /
h3;
                           for (int i = 4; i <= n - 1; i++)
                                     h2 = x[i - 1] - x[i - 2];
                                    h3 = x[i] - x[i - 1];
                                     a[i - 2] = (2 / h3)^{-*} (h2 + h3);
                                    b[i - 2] = h2 / h3;
                                     f[i - 2] = (6 / h3) * (((y[i] - y[i - 1]) / h3 - ((y[i - 1] - y[i - 2]) / h3)
h2)));
                           h2 = x[n - 1] - x[n - 2];
                           h3 = x[n] - x[n - 1];
                           double p = 2 * (h2 + h3);
                           b[1] = h2 / p;
                           f[n - 2] = (6 / p) * (((y[n] - y[n - 1]) / h3) - ((y[n - 1] - y[n - 2]) / h3)) - ((y[n - 1] - y[n - 2]) / h3)) - ((y[n - 1] - y[n - 2]) / h3)) - ((y[n - 1] - y[n - 2])) / h3)) - ((y[n - 1] - y[n - 2])) / h3)) - ((y[n - 1] - y[n - 2])) / h3)) - ((y[n - 1] - y[n - 2])) / h3)) - ((y[n - 1] - y[n - 2])) / h3)) - ((y[n - 1] - y[n - 2])) / h3)) - ((y[n - 1] - y[n - 2])) / h3)) - ((y[n - 1] - y[n - 2])) / h3)) - ((y[n - 1] - y[n - 2])) / h3)) - ((y[n - 1] - y[n - 2])) / h3)) - ((y[n - 1] - y[n - 2])) / h3)) - ((y[n - 1] - y[n - 2])) / h3)) - ((y[n - 1] - y[n - 2])) / h3)) - ((y[n - 1] - y[n - 2])) / h3)) - ((y[n - 1] - y[n - 2])) / h3)) - ((y[n - 1] - y[n - 2])) / h3)) - ((y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 1] - y[n - 2])) / h3)) - (y[n - 2])) / h3)) - (y[n - 2])) / h3)) - (y[n - 2])) / h3
h2)) - (h3 * sn) / p;
                           d[1] = 1 / a[1]; c[1] = f[1];
                           for (int i = 2; i <= n - 3; i++)
                                     d[i] = 1 / (a[i] - b[i] * d[i - 1]); c[i] = f[i] - b[i] * d[i - 1] * c[i]
- 1];
                           d[n - 2] = (f[n - 2] - b[1] * d[n - 3] * c[n - 3]) / (1 - b[1] * d[n - 3]);
                           for (int i = n - 3; i >= 1; i--)
                                     d[i] = d[i] * (c[i] - d[i + 1]);
                           c[1] = s0; c[n] = sn;
                           for (int i = 2; i <= n - 1; i++)
                                     c[i] = d[i - 1];
                           for (int i = 1; i <= n; i++)
                                     a[i] = 0; b[i] = 0; d[i] = 0;
                           for (int i = 2; i <= n; i++)
                                     h2 = x[i] - x[i - 1]; d[i] = (c[i] - c[i - 1]) / h2;
                                     b[i] = h2 * c[i] / 2 - (Math.Pow(h2, 2)) * d[i] / 6 + (y[i] - y[i - 1]) /
h2;
                                     a[i] = y[i];
                           }
                  }
                  void DifSline(double[] x, double[] y, double[] z, double xx, int n, double s1,
double s2, bool error)
                  {
                           int i = 1;
                           while ((xx >= x[i]) && (i <= n)) { i++; }
                           if (i > n) { error = true; return; }
                           double hi = x[i] - x[i - 1];
                           double t = (xx - x[i - 1]) / hi; //(x[i]-x[i-1]);
```

```
double t1 = 1 - t;
            double t2 = t * t;
            double t12 = t1 * t1;
            s1 = -6 * t1 * t * (y[i - 1] - y[i]) / hi;
            s1 = s1 + t1 * z[i - 1] * (1 - 3 * t) + z[i] * (3 * t - 2) * t;
            s2 = 6 * (y[i - 1] - y[i]) * (2 * t - 1) / hi;
            s2 = s2 + (z[i - 1]) * (6 * t - 4) - z[i] * (2 - 6 * t);
            s2 = s2 / hi;
        private delegate double MyDelegate(double x);
        double f(double x)
            if (radioButton1.Checked) { return Math.Sin(x); }
if (radioButton2.Checked) { return Math.Cos(x); }
            if (radioButton3.Checked) { return Math.Exp(Math.Pow(x, 2)); }
            return 0;
        double fx(double x)
            if (radioButton1.Checked) { return Math.Cos(x); }
            if (radioButton2.Checked) { return -Math.Sin(x); }
            if (radioButton3.Checked) { return 2 * x * Math.Exp(Math.Pow(x, 2)); }
            return 0;
        double fxx(double x)
            if (radioButton1.Checked) { return -Math.Sin(x); }
            if (radioButton2.Checked) { return -Math.Cos(x); }
            if (radioButton3.Checked) { return 2 * Math.Exp(Math.Pow(x, 2)) * (1 + 2 * x
* x); }
            return 0;
        private void button1_Click(object sender, EventArgs e)
            chart1.Series[0].Points.Clear();
            int m = 15;
            int n = 300;
            double a = 0;
            double b = 1;
            double koefx = 1;
            double xc=-a*koefx;
            double dx = (b - a) / (m - 1);
            double[] x = new double[n];
            double[] ys = new double[n];
            x[0] = a - dx; ys[0] = f(x[0]);
            x[m + 1] = b + dx; ys[m + 1] = f(x[m + 1]);
            x[1] = a; ys[1] = f(a);
            x[m] = b; ys[m] = f(b);
            for (int i=1; i < m; i++)</pre>
                x[i]=x[i-1]+dx;
                ys[i]=f(x[i]);
            double max=f(a); double min=f(a);
              for (int i=0; i < m; i++)</pre>
              {
                   if (max<f(x[i])) { max=f(x[i]); }</pre>
                   if (min > f(x[i])) \{ min = f(x[i]); \}
              double dt=(chart1.Width-1)/(b-a);
              double koefy = (chart1.Height - 1) / (max - min);
              koefx = (chart1.Width - 1) / (b - a);
            bool err = false;
            double xx = 0.55;
```

```
double s1 = 0, s2 = 0;
            double[] z = new double[n], s = new double[n], c = new double[n], d = new
double[n];
            Spline3(m, x, ys, x[0], x[m + 1], z, s, c, d);
            DifSline(x, ys, s, xx, m, s1, s2, err);
            chart1.Series[0].ChartType =
System.Windows.Forms.DataVisualization.Charting.SeriesChartType.FastPoint; // тут сами
поизменяет/повыбирайте тип вывода графика
           for (int i = 1; i < m; i++)</pre>
               a=x[i]; b=x[i+1];
               while (a <= b)
                   //double xxx = Math.Round(a * koefx + xc);
                   //double y = chart1.Height - Math.Round((z[i] + s[i] * (a - x[i]) +
(c[i] / 2) * (a - x[i]) * (a - x[i]) + (d[i] / 6) * (a - x[i]) * (a - x[i]) * (a - x[i])
- min) * koefy);
                   double xxx = x[i];
                   double y = ys[i];
                   chart1.Series[0].Points.AddXY(xxx, y);
                   a=a+dt;
           }
               }
```

Приложение Д

```
private delegate double MyDelegate(double x);
        double f(double x)
            double result = -0.5;
            if (x > 1e-8)
                result = (Math.Cos(x) - 1) / (x * x);
            return result;
        }
        double rect(double a, double b, int n)
            double h = (b - a) / n;
            double h2 = h / 2.0;
            double s = 0.0;
            for (int j = 0; j < n; j++)
                double x = a + j * h - h2;
                s = s + f(x);
            return s* h;
        double trap(double a, double b, int n)
            double h = (b - a) / n;
            double s = (f(a) + f(b)) * 0.5;
            for (int j = 1; j <= n - 1; j++)
                double x = a + j * h;
                s = s + f(x);
            return s * h;
        double simps(double a, double b, int n)
            int n2 = n * 2;
            int n1 = n2 - 1;
            double h = (b - a) / n2;
            double s = f(a) + f(b);
            for (int j = 0; j < n1; j++)
                double z = 3.0 - Math.Pow((-1), j);
                double x = a + j * h;
                s = s + z * f(x);
            return s * h / 3;
        double gauss(double a, double b)
            double[] ag = new double[] {0.10122854,     0.22238104,
                               0.31370664, 0.36278378,
                               0.36268378,
                                             0.31370664,
                               0.22238104,
                                             0.10122854};
            double[] xg = new double[] {-0.96028986, -0.79666648,
                               -0.52553242, -0.18343464,
                                0.18343464, 0.52553242,
                                0.79666648, 0.96028986};
            double a1 = (b + a) * 0.5;
            double a2 = (b - a) * 0.5;
            double g = 0.0;
```

```
for (int i = 0; i < 8; i++)
        double x = a1 + a2 * xg[i];
        g = g + ag[i] * f(x);
    return g * a2;
}
private void button1_Click(object sender, EventArgs e)
    double eps = 0.0001;
      int n = 1;
      double a = 0.0;
      double b = 1.0;
      double ts = 0, zz, res = 1e+10;
    do
    {
        n = n * 2;
        zz = res;
        res = rect(a,b,n);
        //Memo1.Lines.Add(IntToStr(n) + ' '+FloatToStrF(Res,ffExponent,5,5));
        ts = Math.Abs(res - zz)/3;
    } while (ts > eps);
    textBox2.Text = res.ToString();
}
private void button2_Click(object sender, EventArgs e)
    double eps = 0.0001;
    int n = 1;
    double a = 0.0;
    double b = 1.0;
    double ts = 0, zz, res = 1e+10;
    do
    {
        n = n * 2;
        zz = res;
       res = trap(a, b, n);
        //Memo1.Lines.Add(IntToStr(n) + ' '+FloatToStrF(Res,ffExponent,5,5));
       ts = Math.Abs(res - zz) / 3;
    } while (ts > eps);
   textBox2.Text = (res + ts).ToString();
}
private void button3_Click(object sender, EventArgs e)
    double eps = 0.0001;
    int n = 1;
    double a = 0.0;
    double b = 1.0;
    double ts = 0, zz, res = 1e+10;
    do
    {
        n = n * 2;
        zz = res;
        res = simps(a, b, n);
        ts = Math.Abs(res - zz) / 15;
    } while (ts > eps);
    textBox2.Text = (res + ts).ToString();
}
```

```
private void button4_Click(object sender, EventArgs e)
{
    double a = 0.0;
    double b = 1.0;
    textBox2.Text = gauss(a,b).ToString();
    }
```

Приложение Е

```
void ff(double[] xr, double[] xi, double[] yr, double[] yi, int n, int ind)
            int k = n;
            int log2 = 0;
            do
            {
                k = k / 2;
                log2 = log2 + 1;
            } while (k >= 2);
            int mm = 1;
            for (int m = 1; m <= log2; m++)</pre>
                int m2 = mm * 2;
                double k1 = Math.Truncate(Math.Pow(2, (log2 - m)) - 1);
                int 11 = mm - 1;
                for (k = 1; k <= k1 + 1; k++)
                     for (int l = 1; l <= 11 + 1; l++)
                         int j = m2 * (k - 1) + 1;
                         int i = mm * (k - 1) + 1;
                         double w = Math.PI * (1 - 1) / mm;
                         double si = ind * Math.Sin(w);
                         double co = Math.Cos(w);
                         double ni = Math.Truncate(Math.Pow(2, (log2 - 1)) + i);
                         double jm = Math.Truncate(j + Math.Pow(2, (m - 1)));
                         double xa = xr[(int)ni] * co + xi[(int)ni] * si;
                         double xb = xi[(int)ni] * co - xr[(int)ni] * si;
                         yr[j] = xr[i] + xa;
                         yi[j] = xi[i] + xb;
                         yr[(int)jm] = xr[i] - xa;
                         yr[(int)jm] = xr[i] - xa;
                         yi[(int)jm] = xi[i] - xb;
                for (int it = 1; it <= n; it++)</pre>
                    xr[it] = yr[it];
                    xi[it] = yi[it];
                }
                mm = m2;
            if (ind < 0) { return; }</pre>
            for (int i = 1; i <= n; i++)</pre>
                xr[i] = xr[i] / n;
                xi[i] = xi[i] / n;
        void iff(double a, double b, double[] ar, double[] ai, double[] xr, double[] xi,
int n, double eps, int ip)
            double h = (b - a)/n;
            double a1, b1, w4, w5,w1, w2, w3;;
            ff(ar,ai,xr,xi,n,ip);
            for (int i = 1; i <= n; i++)</pre>
            {
                 int k = i - 1;
                double w = k * 2 * Math.PI / (b - a);
                double c = Math.Cos(w * a);
```

```
double s = Math.Sin(w * a);
                w = w * h * (b - a);
                if (w < eps)</pre>
                {
                    w4 = h - 2 * Math.PI * Math.PI * k * k * Math.Pow(h, 3) / Math.Pow((b))
- a), 2);
                    w5 = 2 * Math.PI * k * h * h / (b - a);
                    a1 = w4 * ar[i] + ip * w5 * ai[i];
                    b1 = w4 * ai[i] - ip * w5 * ar[i];
                }
                else
                {
                    if (k == 0)
                    {
                        w1 = 0;
                        w3 = 0;
                    }
                    else
                    {
                        w1 = Math.Sin(2 * Math.PI * k / n) * (b - a) / (2 * Math.PI * k);
                        w2 = 2 * Math.Pow(Math.Sin(Math.PI * k / n), 2);
                        w3 = w2 * (b - a) / (2 * Math.PI * k);
                    w2 = 2 * Math.Pow(Math.Sin(Math.PI * k / n), 2);
                    a1 = w1 * ar[i] + ip * w3 * ai[i];
                    b1 = w1 * ai[i] - ip * w3 * ar[i];
                ar[i] = a1 * c + b1 * s * ip;
                ai[i] = b1 * c - a1 * s * ip;
                if (ip > 0)
                    ar[i] = ar[i] * n * n;
                    ai[i] = ai[i] * n * n;
                ar[i] = ar[i] / n;
                ai[i] = ai[i] / n;
            }
              }
```

Приложение Ж

Презентационный материал

Федеральное агентство связи Федеральное государственное бюджетное образовательное учреждение высшего образования «Поволжский государственный университет телекоммуникаций и информатики»

> Факультет Заочного Отделения Кафедра «ПОУТС»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Программирование численных методов.

Часть 2

Разработал:

студент группы 26П Кондрашов И.А.

Руководитель:

ст. преп. каф. ПОУТС Малахов С.В.

Самара, 2016

Актуальность

2

В рамках работы требуется разработать комплекс программ решения численных методов на языке программирования высокого уровня, который изучается студентами ПГУТИ по дисциплине «Численные методы». Комплекс состоит из 6 заданий. Комплекс будет использоваться в замен старому, который предназначен для программирования на языке Pascal

Предметом данной бакалаврской работы является программирование численных методов.

Объектом исследования – задачи линейного

Введение

3

Эффективное решение крупных естественнонаучных и народнохозяйственных задач сейчас невозможно без применения быстродействующих электронно-вычислительных машин (ЭВМ). В настоящее время выработалась технология исследования сложных проблем, основанная на построении и анализе с помощью ЭВМ математических моделей изучаемого объекта. Такой метод исследования называют вычислительным экспериментом.

Язык программирования и среда разработки

4

В качестве средств разработки были выбраны, язык программирования C# и среда разработки Microsoft Visual Studio. Так как являются наиболее распространёнными и используются в университете ПГУТИ

Требования к графическому интерфейса

5

- 1. Наличие графического элемента «матрица», для ввода начальных значений.
- 2. Наличие графических элементов «текстовое поле», для ввода уточняющих значений, таких как «начало отрезка», «конец отрезка» и т.д.
- Наличие графического элемента «матрица», для вывода результирующих значений численных методов.
- 4. Наличие графического элемента «кнопка», для вызова начала вычислений того или иного численного метода или уточнений его результатов.

Решение следующих численных методов

6

- Одношаговые методы решения задачи Коши: метод Эйлера, метод Эйлера-Коши и метод Рунге-Кутта 4-го порядка.
- 2. Многошаговые методы решения задачи Коши: метод Адамса (явный).
- Решение жестких систем ОДУ: метод Гира, метод Ракитского (матричной экспоненты).
- 4. Численное дифференцирование: дифференцирование с помощью сплайнов.
- Численное интегрирование: формула прямоугольников, формула трапеций,
 формула Симпсона, формула Гаусса.
- 6. Приближенное вычисление преобразования Фурье.

Исходный код функции Эйлера

12

```
void eiler(double a, double b, int n, int kolfun, double x, MyDelegate[] f, double[,] y_1)
{
    double t = (b - a) / n;
    x = x + t;
    for (int i = 1; i < n; i++)
    {
        for (int k = 0; k < kolfun; k++)
        {
            y_1[k,i]=y_1[k,i-1]+t*f[k](x,y_1[0,i-1],y_1[1,i-1]);
        }
        dataGridView1.Columns[i].HeaderCell.Value = "X = " + x;
        dataGridView1.Rows[0].Cells[i].Value = y_1[0,i];
        dataGridView1.Rows[1].Cells[i].Value = y_1[1, i];
        x += t;
    }
    dataGridView1.Columns[0].HeaderCell.Value = "X = " + a;
    dataGridView1.Rows[0].Cells[0].Value = y_1[0, 1];
    dataGridView1.Rows[1].Cells[0].Value = y_1[1, 2];
}</pre>
```


Основные результаты и краткие выводы

15

- В ходе выполнения бакалаврской работы, было проделано следующее:
- 1) проведен теоретический обзор предметной области.
- разработано ПО, которое подходит для применения в лабораторном комплексе по предмету «Численные методы» на кафедре ПОУТС, состоящий из 6-ти заданий;
- 3) в качестве среды разработки была выбрана MS Visual Studio, а язык программирования С#;
- 4) разработан графический интерфейс, который позволил отказаться от «консоли» и сконцентрировать внимание пользователя на результатах;
- 5) запрограммированы численные методы с первой по седьмую лабораторную работу;
- описаны основные возможности программного обеспечения, такие как примеры решения численных методов и описание графического интерфейса.