

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»				
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»(ИУ7)				
НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 «Программная инженерия»				

ОТЧЕТ по лабораторной работе № 3

Название Организация памяти конвейерных суперскалярных ЭВМ Дисциплина Архитектура элекронно-вычислительных машин				
G				
Студент:		———— подпись, дата	<u>Кузнецова А.В.</u> Фамилия, И.О.	
Преподавател	ть:		Попов А. Ю.	
		подпись, дата	Фамилия, И. О.	

Цель

Основной целью работы является освоение принципов эффективного использования подсистемы памяти современных универсальных ЭВМ, обеспечивающей хранение и своевременную выдачу команд и данных в центральное процессорное устройство. Работа проводится с использованием программы для сбора и анализа производительности РСLAB.

В ходе работы необходимо ознакомиться с теоретическим материалом, касающимся особенностей функционирования подсистемы памяти современных конвейерных суперскалярных ЭВМ, изучить возможности программы РСLAB, изучить средства идентификации микропроцессоров, провести исследования времени выполнения тестовых программ, сделать выводы о архитектурных особенностях используемых ЭВМ.

Исследования расслоения динамической мяти

Рисунок 1 – Результат исследования расслоения динамической памяти

Вывод

Оперативная память расслоена и неоднородна, поэтому обращение к последовательно расположенным данным требует различного времени из-за наличия открытыя и закрытыя страниц динамической памяти. При этом чем больше адресное расстояние, тем больше время доступа. В связи с этим для создания эффективных программ необходимо учитывать расслоение памяти и размещать рядом данные для непосредственной обработки.

Сравнение эффективности ссылочных и торных структур

Рисунок 2 – Результат исследования расслоения динамической памяти

Вывод

Видна проблема семантического разрыва: машина не присоблена к работе со ссылочными структурами. Использовать структуры данных надо с учётом скры-тых технологических констант. Если алгоритм предполагает возможность исполь-зования массива, а списки не дают существенной разницы, то использование мас-сива вполне оправдано.

Исследование эффективности предвыборки

Исходные данные: степень ассоциативности и размер TLB данных.

Рисунок 3 – Результат исследования расслоения динамической памяти

Вывод

Обработка больших массивов информации сопряжена с открытием большого количества физических страниц памяти. При первом обращении к странице па- мяти наблюдается увеличенное время доступа к данным в 20 раз, так как оно при отсутствии информации в ТLВ вызывает двойное обращение к оперативной памяти: сначала за информацией из таблицы страниц, а далее за востребованными данными. Поэтому для ускорения работы программы можно использовать предвыборку. Например, пока процессор занят некоторыми расчетами и не обращается к памяти, можно заблаговременно провести все указанные действия благодаря дополнительному запросу небольшого количества данных из оперативной памяти.

Также стоит стараться не использовать в программе массивы, к которым обращение выполняется только один раз.

Исследование способов эффективного ния оперативной памяти

Рисунок 4 – Результат исследования расслоения динамической памяти

Вывод

Эффективная обработка нескольких векторных структур данных без их дополнительной оптимизации не использует в должной степени возможности аппаратных ресурсов.

Для создания структур данных, оптимизирующих их обработку, необходимо передавать в каждом пакете только востребованную для вычислений информацию. То есть для ускорения алгоритмов необходимо правильно упорядочивать данные.

Исследование конфликтов в кэш-

Рисунок 5 – Результат исследования расслоения динамической памяти

Вывод

Попытка читать данные из оперативной памяти с шагом, кратным размеру банка, приводит к их помещению в один и тот же набор. Если же количество за- просов превосходит степень ассоциативности кэш-памяти, т.е. количество банков или количество линеек в наборе, то наблюдается постоянное вытеснение данных из кэш-памяти, причем больший ее объем остается незадействованным. Кэш па- мять ускоряет работу процессора в 6.7 раз

Сравнение алгоритмов

Рисунок 6 – Результат исследования расслоения динамической памяти

Вывод

Существует алгоритм сортировки менее чем линейной вычислительной сложности.

Общий

В результате выполнения лабораторной работы были изучены принципы эффективного использования подсистемы памяти современных универсальных ЭВМ.

В ходе работы проработан теоретический материал, касающийся особенностей функционирования подсистемы памяти современных конвейерных суперскаляр-ных ЭВМ, изучены возможности программы PCLAB, изучены средства иденти- фикации микропроцессоров, проведены исследования времени выполнения тесто- вых программ, сделаны выводы об архитектурных особенностях используемых ЭВМ.