HW_Calibration 로직 설명서

빠른 Calibration, Levenberg-marquardt 알고리즘 두 가지 사용 가능

1. 빠른 Calibration

1-1 빠른 Calibration 방법론

κ는 0.002부터 0.1까지 0.002간격으로,

 σ_t 는 0.001부터 0.04까지 0.001간격으로 넣고 Swaption 및 Cap Pricing을 한다.

for(
$$\kappa=0.002$$
 to 0.1; $d\kappa=0.002)$
$$for(\sigma=0.001 \text{ to } 0.04; \ d\sigma=0.001)$$

$$Error(\kappa, \sigma) = P(\kappa, \sigma) - P(black)$$

Find Min Error Point(κ^* , σ^*)

찾아낸 κ, σ 근방에서 위의 로직을 한 번 더 실행함

for
$$(\kappa = \hat{\kappa} - 0.001)$$
 to $\hat{\kappa} + 0.001$; $d\hat{\kappa} = 0.0002$)
for $(\sigma = \hat{\sigma} - 0.001)$ to $\hat{\sigma} + 0.001$; $d\hat{\sigma} = 0.0001$)
Error $(\kappa, \sigma) = P(\kappa, \sigma) - P(black)$

Find Min Error Point(κ , σ)

1-2 Calibration 예시

Example) 다음과 같이 Swaption Vol이 주어진다고 가정하자.

	Swapmat= 1	Swapmat= 2	Swapmat= 3
Optmat= 0.5	10%	12%	14%
Optmat= 1	11%	13%	15%
Optmat= 1.5	12%	14%	16%

Calibration은 다음과 같이 실행된다.

```
\begin{split} &\text{for}(\text{optmat} = 0.5 \ \text{to} \ 1.5) \\ &\text{for}(\kappa = 0.002 \ \text{to} \ 0.1; \ d\kappa = 0.002) \\ &\text{for}(\sigma = 0.001 \ \text{to} \ 0.04; \ d\sigma = 0.001) \\ &\{ \\ &\text{Error}_1(\kappa,\sigma) = P(\kappa,\sigma) - P(\text{black},\text{Vol}_1) \\ &\text{Error}_2(\kappa,\sigma) = P(\kappa,\sigma) - P(\text{black},\text{Vol}_2) \\ &\text{Error}_3(\kappa,\sigma) = P(\kappa,\sigma) - P(\text{black},\text{Vol}_3) \\ &\text{Error} = \textit{Error}_1 + \textit{Error}_2 + \textit{Error}_3 \\ &\} \end{split}
```

Find Min Error Point(κ , σ_{optmat})

찾아낸 κ , σ 근방에서 위의 로직을 한 번 더 실행함

2. Levenberg-marquardt

$$(\kappa^*, \sigma_t^*) = argmin_{\kappa, \sigma} \sum_{i} \left\{ BLACKPRICE_i^{mkt} - HWPRICE(\kappa, \sigma_t) \right\}^2$$

$$P_{k+1} = P_k - (J^T J + \mu_k I)^{-1} J^T R(p_k)$$

(간혹 $\mu_k I$ 대신에 $\mu_k(J^T J)$ 를 사용하기도 함)

여기서
$$\mathbf{J} = \begin{bmatrix} \frac{\delta r_1(p)}{\delta p_1} & \cdots & \frac{\delta r_1(p)}{\delta p_m} \\ \vdots & \ddots & \vdots \\ \frac{\delta r_n(p)}{\delta p_1} & \cdots & \frac{\delta r_n(p)}{\delta p_m} \end{bmatrix}$$
, $\mathbf{R}(\mathbf{p}) = \begin{bmatrix} r_1(p) \\ \vdots \\ r_n(p) \end{bmatrix}$