

Documento de Análisis y Diseño

de

Plataforma IoT para la compartición de estaciones de carga privadas para vehículos eléctricos

Fecha: 19/05/2025

Versión: 0.1

Integrantes del grupo:

Gabriel Arias Javier Martínez

Profesores:

Mohammed Abelhamid José Manuel Martínez

${\bf \acute{I}ndice}$

1.	Intr	oducción	2
	1.1.	Problema a resolver	2
	1.2.	Acercamiento a la solución	2
	1.3.	Estado del Arte y de la Técnica	3
2.	Req	uisitos del Sistema	8
	2.1.	Requisitos Funcionales	8
	2.2.	Requisitos No Funcionales	9
	2.3.	Requisitos de Interfaces	9
	2.4.	Requisitos de Ambiente	0
			0
		2.4.2. Software de Desarrollo	0
	2.5.	Perfiles de Usuario	.1
3.	Plai	nificación del Proyecto 1	2
		· · · · · · · · · · · · · · · · · · ·	2
		·	2
4.	Dise	eño de Arquitectura del Sistema 1	3
		<u>-</u>	.3
	4.2.		.3
	4.3.		4
		-	5
5.	Ges	tión de Riesgos 1	6
			6
	5.2.		6
	5.3.	-	6
	5.4.		7

1. Introducción

El mundo está sufriendo un cambio drástico con respecto a la energía, con una conciencia ambiental mayor que impulsa el uso de energías renovables. Por lo que se está buscando un reemplazo o alternativa a los combustibles fósiles. Es por esta razón que los fabricantes de automóviles empezaron a diseñar modelos híbridos, que ocupan tanto combustibles fósiles como electricidad para poder funcionar, y totalmente eléctricos [1].

La venta de automóviles eléctricos (EV) en Chile ha ido en aumento año tras año de forma exponencial [2], por lo que se espera que para 2035 se vendan exclusivamente automóviles eléctricos. Esto implica que también tiene que haber una disponibilidad de electrolineras suficiente para la demanda de carga por parte de los vehículos. Este año 2024, se vendieron un total de 4.500 unidades en Chile, correspondientes a la mitad de las unidades en circulación.

Según ANAC [3], actualmente hay un total de 1.240 cargadores para autos eléctricos livianos y medianos. Siendo 336 unidades destinadas a la carga pública, mientras que 904 para carga privada. La diferencia entre una estación de carga pública y una privada, es el acceso al público que estas poseen. La instalación de estaciones de carga es un proceso lento y costoso, no solo en temas de costo de instalación/mantención [4] sino también de un tema energético. [5] Este último tema es crucial de evaluar, al momento de realizar una instalación de una estación de carga, ya que tiene que adecuarse a las condiciones que proporciona el sistema eléctrico de la localidad. La tensión en el sistema eléctrico acá en Chile es de 220 voltios ([V]) con un amperaje variable entre 10, 16 o 25 amperes ([A]) [6] [7]. Con respecto a las estaciones de carga (CS), hay diversos modelos [8] [9] [10] que varían en la potencia desde los 2,2, 7, 22 y hasta 400 kilowatts ([kW]), por lo que hay muchas opciones de potencia con las que trabajar; esto afecta a la velocidad de carga y la energía que necesita para poder funcionar eficazmente.

1.1. Problema a resolver

La actual oferta de estaciones de carga **no será suficiente** para satisfacer el ritmo de crecimiento en la demanda de vehículos eléctricos. En Chile, la mayoría de los hogares cuenta con una red eléctrica monofásica de 220[V] y un máximo de 25[A], lo que permite una potencia máxima teórica de 5.5kW. Sin embargo, para evitar sobrecargas o cortes frecuentes, las instalaciones domésticas suelen limitarse a potencias cercanas a los 2.2kW. Este tipo de carga lenta implica que una recarga completa (de 0 % a 100 %) puede tardar varias horas, lo que hace necesario contar con mecanismos de **planificación y gestión del tiempo de carga** para no afectar la experiencia del usuario.

1.2. Acercamiento a la solución

Con el objetivo de mitigar la limitada disponibilidad de estaciones de carga, se propone una solución basada en la transformación de estaciones de carga privadas en puntos de acceso público. Esta conversión se gestionará mediante una plataforma de *Internet of Things* (IoT), que permitirá a los propietarios compartir sus estaciones con usuarios externos, ampliando así la oferta disponible y sorteando las restricciones actuales del sistema.

La implementación de esta plataforma requerirá diversos componentes tecnológicos, entre ellos microcontroladores, sensores y otros dispositivos embebidos, así como servicios web, bases de datos, servidores y aplicaciones móviles. Estos elementos se integrarán para conformar una arquitectura robusta, escalable y funcional.

Como complemento a la apertura de estaciones privadas, se contempla el desarrollo de un sistema de reservas que optimice la gestión del recurso, permitiendo a los usuarios planificar su carga con antelación. Esta funcionalidad representa una ventaja competitiva frente a las soluciones actuales del mercado, que solo ofrecen visualización en tiempo real de la disponibilidad de sus propias estaciones.

1.3. Estado del Arte y de la Técnica

Tras la investigación de proyectos similares, se recopilaron múltiples papers de utilidad, cuyo aporte está descrito en la sección contribución. Se enumeran los papers compilados.

Paper	Autores	Año	Enlace	Contribución
WEcharge: democratizing EV charging infrastructure	Md Umar Hashmi, Mohammad Meraj Alam, Ony Lalai et al.	2024	https://ieeexplore.ieee.org/document/9841835	Plantea estaciones de carga privadas com- partidas al público mediante plataforma digital, presenta algoritmos de empareja- miento para asignar la mejor estación de carga a los usarios.
Enhancing EV Charging Stations Through IoT Platforms and Service- Mobility App Landscape Station Using the Internet of Things	Philipp Hofer, Dimitri Petrik, Georg Herzwurm	2024	https://ieeexplore.ieee.org/document/10794261	Plataforma IoT con una tienda de servicios para mejorar la infraestructura de carga y adaptarla a las necesidades de los usuarios.
Smart and Sustainable Wireless Electric Vehi- cle Charging Strategy with Renewable Energy and Internet of Things Integration	Sheeraz Iqbal, Nahar F. Alshammari, Mokhtar Shahida	2024	https://www.mdpi.com/2071- 1050/16/6/2487	Sistema de carga inalámbrico, automatización de carga de vehiculo, monitoreo en tiempo real con aplicación Blynk, implementación de sistema de seguridad RFID.
Solar parking lot management: An IoT platform for smart charging EV fleets, using real-time data and production forecasts	Alberto Varone, Zeno Heilmann, Guido Porruvecchio	2024	https://www.sciencedirect.com/science/article/pii/S1364032123007037?via%3Dihub	Utiliza carga potenciada por energía so- lar, implementa gestión de carga en base a algoritmos basados en la producción de energía de paneles solares.

Cuadro 1 – continuación de la página anterior

Paper	Autores	Año	Enlace	Contribución
A Blockchain-Supported Framework for Charging Management of Electric Vehicles	Marina Dorokhova, Jérémie Vianin, Jean-Marie Aurand	2022	https://www.mdpi.com/1996- 1073/14/21/7144	Implementa compartición de estaciones de carga mediante transacciones de Ethereum con una implementación de aplicación web/movil.
Smart Wireless EV Charging Station Using Raspberry Pi and Web-Based Monitoring	Kabilamani, Karthikeyan, Praanesh, Karthik	2023	https://ieeexplore.ieee.org/document/10894144	Implementa un sistema de monitoreo remoto para la estación de carga (enfocada en los dueños de las estaciones) donde además de ver el consumo y el estado de las baterías, sino que también mide la temperatura del ambiente, con la finalidad de detectar de forma temprana incendios. Mandando alertas al usuario.
Electrical Vehicle Smart Charging Using the Open Charge Point Interface (OCPI) Protocol	Sylvain Guillemin, Romain Choulet, Gregorio Guyot, Sothun Hing	2024	https://www.mdpi.com/1996- 1073/17/12/2873	Se propone separar el rol del Proveedor de Servicios de Carga (SCSP) y el Operador del Punto de Carga (CPO) usando OCPI para garantizar interoperabilidad con el EMS, optimizando la gestión de energía fotovoltaica, reduciendo costes de carga y adaptándose a las preferencias de usuario y límites de la red.

Cuadro 1 – continuación de la página anterior

Paper	Autores	Año	Enlace	Contribución
A Design of Smart Charging Architecture for Battery Electric Vehicles	Riza, Yusuf Margowadi, Prasetyo Aji, Dwidharma Priyasta, Estiko Rijanto, Eka Rakhman Priandana	2024	https://ieeexplore.ieee.org/document/10408308	Se presenta una arquitectura que conecta el sistema de gestión de estaciones de carga (CSMS) con un sistema de monitoreo de la red (EPMS) vía IoT, usando OCPP y MQTT para ajustar dinámicamente los patrones de carga según la disponibilidad de energía y la estabilidad de la red.
A Monitoring System for Electric Vehicle Charging Stations: A Prototype in the Amazon	zeres, Iago Medeiros, Feli-	2024	https://www.mdpi.com/1996- 1073/16/1/152	Gran escalabilidad (hasta 160 estaciones de carga conectadas simultaneamente), proyecto adaptado a la zona amazónica de Brasil.
A System for the Efficient Charging of EV Fleets	Tobias Fleck, Alice Glatz, Sarah Krieger et al.	2024	https://www.mdpi.com/2032-6653/14/12/335	El SCS, extensión del proyecto Open e- Mobility, gestiona y distribuye energía en parkings de flotas eléctricas para evitar picos de demanda; validado durante tres años en SAP Labs France.

Cuadro 1 – continuación de la página anterior

Paper	Autores	Año	Enlace	Contribución
Smart Systems Employing IoT Devices for Monito- ring and Control of Electric Vehicle Residential Char- ging	Grant M. Fischer; Steven B. Poore; Rosemary E. Alden; Donovin D. Lewis; Dan M. Ionel	2024	https://ieeexplore.ieee.org/document/10815321	Benchmark de hardware con sensores de alta resolución y una configuración experimental para la monitorización y comparación de cargadores J1772 de nivel 2. Se centra exclusivamente en la monitorización y el control de cargadores de una sola residencia.
Blockchain-Based Secure and Cooperative Private Charging Pile Sharing Services for Vehicular Networks	Yuntao Wang; Zhou Su; Jiliang Li; Ning Zhang; Kuan Zhang; Kim-Kwang Raymond Choo	2022	https://ieeexplore.ieee.org/document/9632411	Implementa contratos inteligentes de Ethereum para la facturación y el cobro seguros entre múltiples actores en sitios privados y semiprivados suizos; demostración en condiciones reales. Se centra en la digitalización y la confianza descentralizada para una infraestructura compartida.
An Edge-Supported Blockchain-Based Secu- re Authentication Method and Cryptocurrency-Based Billing System for P2P Charging of Electric Vehi- cles	A. F. M. Suaib Akhter, Tawsif Zaman Arnob, Ekra Binta Noor, Selman Hizal, Al-Sakib Khan Pathan	2024	https://www.mdpi.com/1099- 4300/24/11/1644	Diseña autenticación segura y facturación de criptomonedas, utilizando servidores Edge para mayor eficiencia; implementación probada en máquinas virtuales. Se centra en compartir cargadores domésticos privados en una red P2P.

2. Requisitos del Sistema

2.1. Requisitos Funcionales

Se proponen los siguientes requisitos funcionales básicos para el proyecto y se plantea la inclusión paulatina acorde con el proceso de desarrollo.

Cuadro 2: Requisitos Funcionales

ID	Nombre	Descripción
RF1	Iniciar Sesión Usuario	El sistema permite el uso de cuentas
		para cada usuario.
RF2	Registrar Usuario	El sistema permite registrar un
		nuevo usuario.
RF3	Monitorear Recursos Cargador	El sistema permite monitorear los
		recursos de la estación de carga de
		un usuario propietario.
RF4	Definir Características Cargador	El sistema permite caracterizar al
		cargador del usuario oferente,
		dependiendo del tipo de este.
RF5	Reconocer Tipo de Usuario	El sistema permite discernir entre
		oferente y demandante de los
		servicios de carga.
RF6	Cambiar Tipo de Usuario	El sistema permite cambiar entre
		roles de demandante y oferente
		según verificación de seguridad.
RF7	Realizar Transacción entre Usuarios	El sistema permite realizar
		transacciones monetarias entre
		usuario oferente y demandante.
RF8	Enviar Datos de Sensores	El sistema comunica los datos
		recopilados de los sensores hacia la
		red mediante un gateway.
RF9	Transmitir Datos a Internet	El sistema debe permitir que el PCB
		se conecte a Internet para enviar los
		datos recopilados por los sensores a
		un servidor o servicio en la nube.
RF10	Obtener Datos desde Cloud	El usuario puede obtener datos
		correspondientes a su usuario o las
		estaciones de carga en "tiempo
		real".
RF11	Medir Carga Realizada	El sistema permite medir el uso de
		la estación de carga y la carga
		realizada.
RF12	Gestionar Ubicación de Estaciones	El sistema permite gestionar y
		administrar la ubicación de las
		estaciones de carga.

ID	Nombre	Descripción
RF13	Calcular Pago entre Usuarios	El sistema permite calcular la
		asignación de un pago definido por
		el oferente.
RF14	Reservas de Estación	El sistema permite a los usuarios
		realizar la reserva de estaciones de
		carga, para poder cargar su
		vehículo.

2.2. Requisitos No Funcionales

Se proponen los siguientes requisitos no funcionales identificados hasta el momento:

Cuadro 4: Requisitos No Funcionales

ID	Nombre	Descripción
RNF1	Hardware Pulcro y Resiliente	El sistema debe estar compuesto
		por hardware de calidad resistente
		al paso del tiempo.
RNF2	Conectividad Asegurada	El sistema debe disponer de
		disponibilidad de conexión a
		internet permanente.
RNF3	Seguridad entre Usuarios	Debe existir relación de confianza
		mediante protocolos de seguridad
		informática.
RNF4	Disponibilidad en Plataformas	El software debe ser accesible en
		navegadores web y aplicación móvil.
RNF5	Diseño Intuitivo	Debe presentar interfaz sencilla de
		usar y visualmente intuitiva.

2.3. Requisitos de Interfaces

Se proponen los siguientes requisitos de interfaces según lo planificado hasta esta etapa de desarrollo.

Cuadro 6: Eventos Externos

Evento	Descripción	Iniciador	Parámetros	Respuesta
Carga de	Usuario inicia	Uso del	Tipo de	-
vehículo	proceso de	cargador	cargador,	
	carga		vehículo	
Reserva de	Reserva de	Selección en	Usuario,	Reserva
hora	horario en	app/web	cargador, hora	confirmada
	aplicación			
Utilización de	Resumen de	Cargas	Carga total,	Gráficas de
cargador	uso periódico	múltiples	semanal,	uso
			mensual	

Cuadro 8: Respuestas del Sistema

Respuesta	Descripción	Parámetros
Envío datos a la nube	Procesamiento de datos	Usuario, carga
	de carga	transmitida, tiempo
		estimado
Reserva de hora	Compatibilización de	Agenda del cargador,
	horarios	horario solicitado
Presentación gráficas	Visualización de datos de	Gráficas de carga total,
	uso	históricos

2.4. Requisitos de Ambiente

2.4.1. Hardware de Desarrollo

- 1. Raspberry Pi Pico W: Tarjeta de desarrollo Raspberry Pi con soporte para WiFi, sirve como punto de conexión de todos los sensores del sistema, además de poseer la capacidad de enviar los datos recopilados a través de WiFi a internet por medio del protocolo MQTT.
- 2. **Módulo sensor de corriente por efecto Hall**: Sensor no intrusivo de corriente que permite recolectar datos de corriente y/o voltaje del cargador. Puede ser útil para cargadores sin soporte a OCPP, pero se va a utilizar para todo tipo de cargadores para el proyecto ya que se descarta el uso de OCPP.
- 3. Módulo sensor de proximidad: Sensor de proximidad en el estacionamiento donde se ubica el cargador de vehículos eléctricos, identifica si el cargador se encuentra operativo o en estado de inoperabilidad.

2.4.2. Software de Desarrollo

1. Visual Studio Code: Editor de texto con compatibilidad con múltiples lenguajes de programación, soporte a repositorios de GIT y con múltiples extensiones

- desarrolladas por la comunidad de la plataforma, muy útil para la realización del software del proyecto.
- 2. **Python 3.13/MicroPython**: Última versión del lenguaje de programación de alto nivel Python, de alta utilidad para la programación del microcontrolador Raspberry Pi Pico W y para manejar los múltiples protocolos de la capa de percepción.
- 3. **NodeJS**: Compilador y gestor de paquetes del lenguaje de programación Javascript, éste resulta de utilidad para gestionar la API y gran parte de los paquetes de la capa de aplicación (manejo de interfaces de usuario, gráficas, etc.).
- 4. React Vite/Capacitor: Framework seleccionado para realizar la interfaz gráfica de la capa de aplicación, gracias a su popularidad cuenta con una gran cantidad de extensiones de uso libre que permiten gran flexibilidad para la implementación del frontend del proyecto, adicionalmente para su funcionamiento en celulares se plantea utilizar la utilizad "Capacitor" para potabilizar la aplicación web a una aplicación móvil.

2.5. Perfiles de Usuario

Perfil	Socio- económico y cultural	Ocupacional	Etario	Característi- cas físicas, fisiológicas, psicológicas	Otros
Usuario propietario de Estación de Carga de Vehículos Eléctricos (Administrador / Oferente)	Clase media- alta, con- ciencia ecológica	Profesional urbano	2060 años	 Habilidad tecnológica intermedia Preocupación por seguridad 	Vehículo eléctrico propio, cargador de vehícu- lo propio, utilización limitada de su estación de carga.
Usuario Ocasional del servicio de cargas (Demandante)	Clase media- alta, acceso a tecnología	Estudiante / Profesional joven	2060 años	 Alta adaptación tecnológica Movilidad flexible Presupuesto limitado 	Uso compartido de transporte de vehículos eléctricos o propietario de un vehículo eléctrico particular.

3. Planificación del Proyecto

3.1. Objetivo General

Implementar una plataforma IoT para compartir estaciones de carga para vehículos eléctricos junto con un sistema de reservas para estas mismas.

3.2. Objetivos Específicos

Cuadro 11: Objetivos específicos del proyecto

ID	Nombre	Descripción
OE1	Monitorear las CSs y EVs	Monitorear las estaciones de carga
		(CS) y los vehículos eléctricos (EV)
		en tiempo real, utilizando sensores
		de corriente para registrar el flujo de
		carga y sensores de proximidad para
		detectar la ocupación de la estación.
OE2	Desarrollar un sistema de reservas de	Desarrollar un sistema de reservas
	las estaciones	para las estaciones de carga,
		considerando los distintos casos de
		uso y posibles usos indebidos, con el
		objetivo de garantizar eficiencia y
		equidad en la asignación de recursos.
OE3	Promocionar el compartir las	Diseñar un sistema de incentivos
	estaciones privadas	para motivar a los propietarios de
		estaciones privadas a compartir sus
		estaciones, considerando aspectos de
		seguridad, privacidad y beneficios
0.77.4		económicos u operacionales.
OE4	Levantar servidor para el despliegue	Implementar la infraestructura
	de la aplicación	necesaria para desplegar la
		aplicación, evaluando servicios de
		servidor en la nube o propios, con el
		fin de garantizar la transmisión de
		datos y la conexión entre los
ODE	1.1	distintos módulos del sistema.
OE5	Integrar con métodos de	Desarrollar un sistema de
	autenticación el control de acceso	autenticación para validar la
		identidad de los usuarios al momento
		de usar o reservar una estación de
		carga, garantizando trazabilidad y
OE6	Transmitir los datos recolectados al	seguridad en el acceso. Se transmiten los datos de forma
OEO	servidor	segura y con una tecnología de
	SCI VIQUI	comunicación establecida. Teniendo
		un correcto funcionamiento y
		protección de los datos.
		protection de los datos.

4. Diseño de Arquitectura del Sistema

4.1. Esquema General del Sistema

El sistema va a tener 5 entes clave los cuales son representados en las interacciones mostradas en la figura 1. La estación de carga representa al objeto físico el cual se va a medir, estación de carga (CS) o vehículo eléctrico (EV), los datos medidos van a ser recopilados por un microcontrolador (MCU) y enviados a la nube para su procesamiento. Por parte externa del sistema, están los dos tipos de usuarios que van a interactuar con él.

Figura 1: Esquema general del sistema

4.2. Arquitectura del Sistema

En la figura 2, se puede apreciar de forma más detallada la arquitectura del sistema, reconociendo a grandes rasgos los componentes que tendrá cada módulo y cómo interactúan entre sí.

Figura 2: Arquitectura del sistema y relación entre módulos.

4.3. Descripción de Módulos

En el Cuadro 7, se pueden identificar los módulos que componen la arquitectura del sistema.

Cuadro 13: Módulos de la arquitectura del sistema

Componente	Propósito
Capa de Percepción (C1)	Capa compuesta por los sensores y actuadores del
	sistema, la capa se encarga de recopilar información del
	mundo real necesaria para permitir a la plataforma
	adaptarse a las limitaciones existentes o plasmar la
	información recabada de forma útil para el usuario,
	para el proyecto la componen cargadores, sensores de
	corriente, sensores de proximidad y una Raspberry Pi
	Pico W para el manejo de datos.
Capa de Red (C2)	Capa compuesta por los medios de red y protocolos
	utilizados para permitir el funcionamiento del sistema
	en Internet, su propósito es permitir la comunicación
	entre todos los componentes del sistema. Para el
	proyecto se propone el uso de WIFI para la
	comunicación de la Raspberry Pico con internet, el uso
	de protocolo MQTT para su conexión a un bróker
	MQTT y una comunicación HTTP entre API e interfaz
	gráfica.
Capa de Servicio (C3)	Capa compuesta por todos los elementos de backend
	que garantizan la funcionalidad del sistema, su
	propósito es el manejo y almacenamiento de datos ya
	anteriormente recopilados desde la capa de percepción
	o desde la capa de aplicación. Para el proyecto se
	propone el uso de brokers MQTT, API expressJS y una
	base de datos MongoDB.
Capa de Aplicación (C4)	Capa compuesta por elementos de visualización y
	presentación para la plataforma IoT, es decir es la capa
	de visualización gráfica y depende totalmente de los
	datos de la capa de servicio, su propósito es presentar
	grafica y intuitivamente al usuario los datos recopilados
	de una forma intuitiva y útil, además de manejar
	elementos propios del usuario, como características
	definidas por él (Por ejemplo, nombre de usuario,
	correo, tipo de cargador, etc.) que son enviadas a la
	capa de servicio para su almacenamiento. Para el
	proyecto se propone el uso de React para el manejo de
	esta capa.

Componente	Propósito		
Capa de Negocio (C5)	Capa responsable de definir las políticas, reglas de		
	operación, modelos comerciales y estrategias que rigen		
	el funcionamiento y evolución de la plataforma IoT. Es		
	la capa donde se definen los flujos de negocio, es decir,		
	cómo los distintos actores del sistema (usuarios,		
	propietarios de estaciones, administradores, etc.)		
	interactúan con la solución, y qué beneficios o servicios		
	se derivan de esas interacciones. Esto incluyen las		
	reglas para el sistema de reserva, la monetización del		
	servicio y el modelo de participación para los dueños de		
	las estaciones privadas.		

4.4. Matriz de Requisitos Funcionales y Módulos

La matriz mostrada en el cuadro 8, asocia cada uno de los requisitos funcionales identificados con los componentes del sistema.

Cuadro 15: Matriz de requisitos funcionales y módulos

Requisito	C1	C2	СЗ	C4	C5
RF1				X	
RF2				X	
RF3				X	
RF4			X		
RF5			X		
RF6				X	
RF7					X
RF8		X			
RF9		X			
RF10			X		
RF11	X				
RF12				X	
RF13					X
RF14					X

5. Gestión de Riesgos

5.1. Supuestos

- Se cuenta con infraestructura de red necesaria para la sostenibilidad del proyecto (Existencia de WiFi con conectividad a internet en el área).
- Se cuenta con hardware necesario para la implementación del proyecto (Cargadores de vehículos eléctricos, sensores de corriente, microcontroladores, etc.).
- Se cuenta con el uso de software para el desarrollo de la aplicación móvil/web y se permite total libertad de elección en éstos.
- Se cuenta con el suplemento energético suficiente como para que el sistema pueda funcionar y para que los cargadores puedan funcionar con normalidad.

5.2. Dependencias

- Disponibilidad de sensores y microcontroladores necesarios para el hardware.
- Disponibilidad de infraestructura de red en ubicaciones de cargadores.
- Disponibilidad de cargador de vehículos eléctricos para manejo de pruebas.
- Disponibilidad de equipos y software para el desarrollo de la aplicación móvil/web.

5.3. Restricciones

- Presupuesto lo más económico posible
- Uso de sensores de calibre industrial
- Disponibilidad limitada de cargadores
- Se deben contar con los permisos necesarios para futura posible comercialización de software/hardware.

5.4. Riesgos

Cuadro 16: Matriz de riesgos y medidas de mitigación

Riesgo	Medida de Mitigación		
Existencia nula de disponibilidad de	Realizar pruebas en simulación o en		
cargadores para pruebas	dispositivos similares.		
Software o Hardware comúnmente	Se debe realizar una investigación de		
utilizados inviable para comercialización	uso de componentes libres para		
	comercialización		
Propuesta planificada inviable para el	Se debe economizar la solución haciendo		
presupuesto disponible	recortes en módulos planificados.		
Inexistencia de infraestructura de red	Se deben plantear nuevas ubicaciones o		
necesaria para la instalación de	fomentar una instalación de		
hardware en zona de cargadores.	infraestructura de red en la zona		

Referencias

- [1] Lira, G. (2025, 26 de marzo). Modelos y precios de autos 100 % eléctricos en Chile en 2025. Extraído de: https://www.autofact.cl/blog/noticias/autofact/autos-electricos
- [2] Laborde, A. (2025, enero 8). Chile pisa el acelerador en la compra de automóviles eléctricos: sus ventas aumentaron en 183 % en un año. Ediciones EL PAÍS S.L. https://elpais.com/chile/2025-01-08/chile-pisa-el-acelerador-en-la-compra-de-automoviles-electricos-sus-ventas-aumentaron-en-183-en-un-ano.html
- [3] Gerlach, N. (2025, enero 27). Infraestructura en Chile: Descubre Cuántos Cargadores Hay Para Autos Eléctricos. Extraído de: https://www.rutamotor.com/infraestructura-en-chile-descubre-cuantos-cargadores-hay-para-autos-electricos/
- [4] Instalación de cargadores para autos eléctricos. (s/f). Energica.city. Recuperado el 18 de mayo de 2025, de https://energica.city/instalacion_cargadores
- [5] Plataforma de Electromovilidad Instalación de cargadores para vehículos eléctricos. (s/f). Gob.cl. Recuperado el 18 de mayo de 2025, de https://energia.gob.cl/electromovilidad/sistemas-de-carga/instalacion-de-puntos-de-carga
- [6] Maestro chasquilla: guía básica para entender el circuito eléctrico en casa. (2023, mayo 3). La Tercera. https://www.latercera.com/practico/noticia/maestro-chasquilla-guia-basica-para-entender-el-circuito-electrico-en-casa/BBVXNUKM4ZERDD3ROZCRFNBVWM/
- [7] SUPERINTENDENCIA DE ELECTRICIDAD Y COMBUSTIBLES S.E.C. (2003, octubre). INSTALACIONES DE CONSUMO EN BAJA TENSIÓN. Sec.cl. Recuperado el 19 de mayo de 2025, de https://www.sec.cl/sitioweb/electricidad_norma4/norma4_completa.pdf
- [8] Productos. (s/f). Tienda Copec Voltex. Recuperado el 19 de mayo de 2025, de https://copecvoltex.cl/collections/all
- [9] EV charging station manufacturer. (2024, diciembre 12). BESEN INTERNATIONAL GROUP CO., LTD. https://www.besen-group.com/evse-manufacturer/?nab=1&utm_medium=paidsearch&utm_source=google&utm_camp aign=21559079647&utm_term=170969438572&utm_content=723060296122&gad_source=1&gad_campaignid=21559079647&gclid=Cj0KCQjwiqbBBhCAARIsAJSfZk YBbXYEzd8-3az2Wy0V7H8IZuLaY3ftlChc0D0of6k4WF0_d-Lhq6YaAgSzEALw_wcB
- [10] XCharge north America C7. (s/f). Xcharge.Us. Recuperado el 19 de mayo de 2025, de https://www.xcharge.us/product/c7?gad_source=1&gad_campaigni d=21803375230&gclid=Cj0KCQjwiqbBBhCAARIsAJSfZkamWztEsLSVHKUP7rvQsuHMBDm2tzZ34JfrLrfhcnmU7uEHnz6q3gkaArtxEALw_wcB