SÉRIES DÉFINIES EXPLICITEMENT 1

- Étudier la nature des séries suivantes :

 1) $\sum \frac{1}{n\sqrt[n]{n}}$.
 2) $\sum \frac{n}{2^n + n}$.
 3) $\sum e^{-\sqrt{n}}$.
 4) $\sum \frac{1}{(n^2 + 1)\sin\frac{1}{\sqrt{n}}}$.
 5) $\sum \frac{n^2 \ln n}{4^n}$.

- 6) $\sum \left(\frac{n}{n+1}\right)^{n^2}$. 7) $\sum \frac{n!^3}{(3n)!}$. 8) $\sum \frac{1}{(\ln n)^{\ln n}}$. 9) $\sum \frac{a^n}{1+a^{2n}}$ $(a \in \mathbb{R})$. 10) $\sum \frac{1}{(\ln n)^n}$. 11) $\sum \frac{1}{\ln (n^2+1)}$.

- $\sum \sin\left(\pi\sqrt{4n^2+1}\right). \qquad 13) \quad \sum \frac{1}{n!} \prod_{i=1}^{n} \ln k.$
- 14) $\sum \cos^n \frac{1}{n^{\alpha}} \quad (\alpha > 0). \quad 15) \quad \sum \int_{-\pi}^{\pi} \frac{\sin x}{1 + x} \, \mathrm{d}x.$
- 16) $\sum \int_{0}^{\frac{\pi}{2n}} e^{x} \tan x \, dx$. 17) $\sum \frac{n!^{2}}{2^{n^{2}}}$
- Étudier la nature des séries suivantes : $\sum \ln \left(1 + \frac{(-1)^n}{n}\right). \qquad 2) \qquad \sum (-1)^n \sqrt{n} \sin \frac{1}{n}.$ $\sum \frac{(-1)^n (\ln n)^2}{\sqrt{n}}. \qquad 4) \qquad \sum \frac{(-1)^n}{\sqrt[n]{n!}}.$ $\sum \frac{(-1)^n}{n^{\frac{2}{3}} + \sin(n)}. \qquad 6) \qquad \sum \sin \left(\pi \sqrt{n^2 + 1}\right).$ 2

- $\frac{(-1)^n}{n^{\alpha} + (-1)^n} \quad (\alpha \in \mathbb{R}^*).$
- Justifier la convergence des séries suivantes et calculer leurs sommes
 - 1) \odot $\sum \frac{1}{n(n+1)}$. 2) \odot $\sum \frac{n}{7^n}$.
 - 3) $\bigcirc \sum \frac{1}{(3n+1)(3n+4)}$ 4) $\bigcirc \bigcirc \sum \frac{(-1)^n}{n(n+1)}$.
- $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Pour tout $n \in \mathbb{N}^*$, on pose : $a_n = \ln \frac{n!e^n}{n^{n+\frac{1}{2}}}$ Montrer, sans utiliser la formule de Stirling, que la suite $(a_n)_{n\in\mathbb{N}^*}$ est convergente.
- (P) (P) 5
 - 1) Justifier l'existence de : $\int_{0}^{\pi} \frac{\sin t}{t} dt$ pour tout $n \in \mathbb{N}$.
 - **2)** Trouver une suite $(u_n)_{n\in\mathbb{N}}$ positive simple telle que pour tout $n \in \mathbb{N}^*$:
 - $\int_0^{n\pi} \frac{\sin t}{t} dt = \sum_{k=1}^{n-1} (-1)^k u_k.$
 - 3) En déduire que la suite $\left(\int_{0}^{t} \frac{\sin t}{t} dt\right)$ converge.

- 6
 - 1) Soit $P \in \mathbb{R}[X]$. Montrer que la série $\sum \frac{P(n)}{n!}$ converge. On notera S(P) sa somme
 - 2) On rappelle que : $\sum_{n=0}^{+\infty} \frac{1}{n!} = e$. On pose : $L_0 = 1$ et pour tout $k \in \mathbb{N}^*$

$$L_k = X(X-1)...(X-p+1).$$

Calculer $S(L_k)$ pour tout $k \in \mathbb{N}$.

- 3) Calculer : $S(X^3)$.
- Soient $\alpha, \beta \in \mathbb{R}$. On s'intéresse à la nature de la série $\sum \frac{1}{n^{\alpha}(\ln n)^{\beta}}$, qu'on appelle une *série de Bertrand*.
 - 1) O O On suppose : $\alpha > 1$. Trouver un réel $\gamma > 1$ pour lequel : $\frac{1}{n^{\alpha}(\ln n)^{\beta}} = O\left(\frac{1}{n^{\gamma}}\right)$. Conclusion?
 - 2) $\bigcirc \bigcirc \bigcirc$ On suppose : $\alpha < 1$. Trouver un réel $\gamma < 1$ pour lequel : $\frac{1}{n^{\gamma}} = O\left(\frac{1}{n^{\alpha}(\ln n)^{\beta}}\right)$.
 - 3) $\bigcirc \bigcirc \bigcirc \bigcirc$ Déterminer la nature de la série $\sum \frac{1}{n(\ln n)^{\beta}}$ pour tout $\beta \in \mathbb{R}$ grâce à une comparaison série intégrale.
 - 4) © Énoncer une condition nécessaire et suffisante de convergence des séries de Bertrand.
- P P P Soit $\alpha \in \mathbb{R}$. On pose pour tout $n \in \mathbb{N}^*$:

$$u_n = \frac{(-1)^{\frac{n(n+1)}{2}}}{n^{\alpha}}.$$

- 1) Étudier la convergence de la série $\sum u_n$ dans le cas où : $\alpha \le 0$ ou $\alpha > 1$.
- **2)** On suppose à présent que : $0 < \alpha \le 1$ et pour tout $n \in \mathbb{N}^*$, on pose : $v_n = u_{2n-1} + u_{2n}$. a) Montrer que la série $\sum v_n$ converge.

 - a) En déduire la nature de la série $\sum u_n$.

SÉRIES ABSTRAITES

- O O Soit $(u_n)_{n\in \mathbb{N}}\in \mathbb{R}^{\mathbb{N}}$. La série $\sum u_n^2$ converge-t-

 - 1) si la série $\sum u_n$ converge?
 2) si la série $\sum u_n$ converge absolument?
- 10 Soit $(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$.

 1) On suppose $(u_n)_{n \in \mathbb{N}}$ positive. Montrer que les séries $\sum u_n$ et $\sum \frac{u_n}{1+u_n}$ ont même nature.

- 2) On suppose que les séries $\sum_{n} u_n$ et $\sum_{n} u_n^2$ convergent. Montrer que la série $\sum_{n} \frac{u_n}{1+u_n}$ converge.
- D Soient $(u_n)_{n\in \mathbb{N}}, (v_n)_{n\in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ positives. On suppose que les séries $\sum u_n$ et $\sum v_n$ convergent.
 - 1) a) Montrer que la série $\sum u_n v_n$ converge. b) Et sans l'hypothèse de positivité?
 - 2) Étudier la nature des séries $\sum \sqrt{u_n v_n}$ et $\sum \frac{\sqrt{u_n}}{n}$.
- \bigcirc \bigcirc Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ décroissante.
 - 1) On suppose que la série $\sum u_n$ converge. Montrer qu'alors : $u_n = 0$ o $\left(\frac{1}{n}\right)$. 2) La réciproque est-elle vraie ?
- 13 1) Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}$ strictement positive. On suppose que pour un certain $\alpha>1$:

$$\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{=} 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right).$$

- a) Montrer que pour tout $\beta < \alpha$, la suite $(n^{\beta}u_n)_{n \in \mathbb{N}}$ est décroissante à partir d'un certain rang.
- b) En déduire que la série $\sum u_n$ converge c'est la règle de Raabe-Duhamel.
- 2) Étudier la nature de la série $\sum {2n \choose n} \frac{1}{2^{2n}n}$ sans utiliser les formules de Wallis et Stirling
- - 1) Soient $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$. On pose, pour tout $n \in \mathbb{N}$: $V_n = \sum_{k=0}^n v_k$. On suppose $(u_n)_{n \in \mathbb{N}}$ est décroissante de limite nulle et $(V_n)_{n \in \mathbb{N}}$
 - **a)** Montrer que pour tout $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} u_k v_k = u_n V_n - \sum_{k=0}^{n-1} (u_{k+1} - u_k) V_k.$$

De quel résultat bien connu cette relation estelle l'analogue?

- **b)** En déduire que la série $\sum u_n v_n$ converge c'est la règle d'Abel.
- 2) Soit (u_n)_{n∈N} ∈ C^N. On suppose que la série ∑ u_n converge. Montrer que pour tout α > 0, la série ∑ u_n/n^α converge aussi.
 3) Soient θ ∈ R et α > 0.
- - a) Étudier la nature des séries $\sum \frac{e^{in\theta}}{n^{\alpha}}$, $\sum \frac{\sin(n\theta)}{n^{\alpha}}$ et $\sum \frac{\cos(n\theta)}{n^{\alpha}}$.

b) Montrer que pour tout $x \in \mathbb{R}$:

$$|\sin x| \geqslant \frac{1 - \cos(2x)}{2}.$$

- c) Étudier la nature des séries $\sum \frac{|\sin(n\theta)|}{n^{\alpha}}$ et $\sum \frac{\left|\cos(n\theta)\right|}{n\theta}$
- 15
 - 1) Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}$ positive décroissante. Montrer que les séries $\sum u_n$ et $\sum 2^n u_{2^n}$ ont même nature. Ce résultat est parfois appelé le *critère de* condensation.
 - 2) Redémontrer le théorème de convergence des séries de Riemann.
 - **3)** Montrer que pour tous $\beta \in \mathbb{R}$, la série de Bertrand $\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^{\beta}}$ converge si et seulement si :
- D D D Soit $(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ positive de limite nulle. On pose, pour tout $n \in \mathbb{N}$: $U_n = \sum_{k=0}^{n} u_k$ pose la suite $(U_n - nu_n)_{n \in \mathbb{N}}$ bornée par un certain M en valeur absolue.
 - 1) Montrer que pour tout $n \ge 2$:

$$\left|\frac{U_{n-1}}{n-1} - \frac{U_n}{n}\right| \le M\left(\frac{1}{n-1} - \frac{1}{n}\right).$$

2) En déduire que la série $\sum u_n$ converge.