

Aritmética binária Arquitetura de Computadores

Bruno Prado

Departamento de Computação / UFS

- Como é feita a representação numérica?
 - Bases numéricas
 - 2 (binário)
 - 10 (decimal)
 - ▶ 16 (hexadecimal)

$$N\'{u}mero = \sum_{i=0}^{n-1} B_i \times N^i$$

$$\begin{array}{rll} 33_{10} & = & 1 \times 2^5 + 1 \times 2^0 = 100001_2 \\ & = & 3 \times 10^1 + 3 \times 10^0 = 33_{10} \\ & = & 2 \times 16^1 + 1 \times 16^0 = 21_{16} \end{array}$$

- Como o sinal dos números binários é implementado?
 - Sinal e magnitude
 - ► Complemento a 1 e 2

- Como o sinal dos números binários é implementado?
 - Sinal e magnitude
 - Complemento a 1 e 2
- De que maneira as principais operações aritméticas em formato binário são implementadas?
 - Adição
 - Subtração
 - Multiplicação
 - Divisão

- Quais são os menores e maiores números que podem ser representados pela arquitetura?
 - Capacidade de armazenamento
 - ► Conceitos de overflow e underflow

- Quais são os menores e maiores números que podem ser representados pela arquitetura?
 - Capacidade de armazenamento
 - Conceitos de overflow e underflow
- E as frações e os números reais?
 - Padrão IFFF 754

- Métodos para representação de sinal em números
 - Sinal e magnitude
 - Complemento a 1
 - Complemento a 2

I Bit de sinal + 7 Bits de dados

- ▶ Sinal e representatividade
 - $ightharpoonup + \leftrightarrow S = 0 \ e \ 2^7 \ valores$
 - $ightharpoonup -\leftrightarrow S=1$ e 2^7 valores

- Método de sinal e magnitude (8 bits)
 - Primeiro bit indica o sinal e demais bits a magnitude

- Método de sinal e magnitude (8 bits)
 - Primeiro bit indica o sinal e demais bits a magnitude

Duas representações para o valor O

- Método de complemento a 1 (8 bits)
 - O valor de sinal oposto é o complemento bit a bit

- Método de complemento a 1 (8 bits)
 - O valor de sinal oposto é o complemento bit a bit

Duas representações para o valor O

- Método de complemento a 2 (8 bits)
 - O valor de sinal oposto é o complemento bit a bit + 1

- Método de complemento a 2 (8 bits)
 - O valor de sinal oposto é o complemento bit a bit + 1

 $2^{7} = 128$ valores negativos e positivos

- Adição binária de 8 bits
 - $A = 200_{10} = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^3 = 11001000_2$
 - $B = 25_{10} = 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0 = 00011001_2$
 - Arr $R = A + B = 225_{10} = 11100001_2$

A_{i}	B_i	R_i	C_{i}
0	0	0	0
0	-	I	0
1	0	ı	0
1	- 1	0	l

- Adição binária de 8 bits
 - $A = 200_{10} = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^3 = 11001000_2$
 - $B = 25_{10} = 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0 = 00011001_2$
 - Arr $R = A + B = 225_{10} = 11100001_2$

Ai	B_{i}	R_i	C_{i}
0	0	0	0
0	1	1	0
1	0	1	0
- 1	- 1	0	l

A adição de números com n Bits pode Gerar um resultado com até n + 1 Bits

- Subtração binária de 8 bits
 - $A = 200_{10} = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^3 = 11001000_2$
 - $B = 25_{10} = 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0 = 00011001_2$
 - Arr $R = A B = 175_{10} = 10101111_2$

A_{i}	B_i	R_{i}	C_{i}
0	0	0	0
0	1	1	ı
l	0	1	0
I	1	0	0

- Subtração binária de 8 bits
 - $A = 200_{10} = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^3 = 11001000_2$
 - $B = 25_{10} = 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0 = 00011001_2$
 - $ightharpoonup R = A B = 175_{10} = 10101111_2$

,	A_{i}	B_i	R_i	C_{i}
	0	0	0	0
	0	1	1	1
	1	0	1	0
	1	1	0	0

A subtração de números com n bits pode gerar um resultado com até n + l bits

- Multiplicação binária de 8 bits
 - $A = 11_{10} = 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^0 = 00001011_2$
 - $B = 13_{10} = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0 = 00001101_2$
 - Arr $R = A \times B = 143_{10} = 10001111_2$

	×			l	ı
	^	1	1	0	1
		-	0	l	1
1	0	0	0	0	
7	0	1	1		
10	1	1			
\overline{Q}	\circ	1	1	1	1

- Multiplicação binária de 8 bits
 - $A = 11_{10} = 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^0 = 00001011_2$
 - $B = 13_{10} = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0 = 00001101_2$
 - $R = A \times B = 143_{10} = 10001111_2$

A multiplicação de números com n Bits necessita de até 2n Bits para armazenar o resultado

- Divisão binária de 8 bits
 - $A = 143_{10} = 1 \times 2^7 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 10001111_2$
 - $B = 10_{10} = 1 \times 2^3 + 1 \times 2^1 = 00001010_2$
 - \triangleright Q = A \div B = $14_{10} = 00001110_2$
 - $ightharpoonup R = A \mod B = 3_{10} = 00000011_2$

- Divisão binária de 8 bits
 - $A = 143_{10} = 1 \times 2^7 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 10001111_2$
 - $B = 10_{10} = 1 \times 2^3 + 1 \times 2^1 = 00001010_2$
 - $Q = A \div B = 14_{10} = 00001110_2$
 - $R = A \mod B = 3_{10} = 00000011_2$

A divisão de números com n Bits necessita de até n Bits para o quociente e o resto

- Adição/subtração binária de 8 bits
 - Método de sinal e magnitude
 - $A = -72_{10} = 11001000_2$
 - $B = +25_{10} = 00011001_2$
 - $R = A + B = -(|A| |B|) = -47_{10} = 10101111_2$

É feito o ajuste do sinal de acordo com o resultado obtido pela magnitude

- Adição/subtração binária de 8 bits
 - Método de complemento a 1

$$A = -72_{10} = 10110111_2$$

$$B = +25_{10} = 00011001_2$$

$$R = A + B = -47_{10} = 11010000_2$$

O Bit de sinal é calculado como dado

- Adição/subtração binária de 8 bits
 - Método de complemento a 2
 - $A = -72_{10} = 10111000_2$
 - $B = +25_{10} = 00011001_2$
 - $R = A + B = -47_{10} = 11010001_2$

Uma única representação para zero

- Extensão de sinal dos números
 - Codificação em complemento a 2
 - $A[8] = 10000000_2 = -128_{10}$
 - $B[32] = 11111 \cdots 1111110000000_2 = -128_{10}$

$$A = B$$

- Como implementar de forma escalável e com portas lógicas as operações de adição e de subtração?
 - Método de complemento a 2

$$Z = Y + Y = Y \times Y$$

- Como implementar de forma escalável e com portas lógicas as operações de adição e de subtração?
 - Método de complemento a 2

X	Υ	Z
0	0	0
0	1	1
1	0	1
1	-	0

$$Z = Y + Y = Y \times Y$$

Como fazer o "vai a um" (carry)?

- Como implementar de forma escalável e com portas lógicas as operações de adição e de subtração?
 - Método de complemento a 2

*	Ч	C_{in}	Z	C_{out}
0	0	0	0	0
0	- 1	0	- 1	0
I	0	0	1	0
1	- 1	0	0	1
0	0	1	- 1	0
0	1	1	0	- 1
1	0	- 1	0	-
l	Ī	Ī	I	I

$$Z = Y + Y + C_{in} = Y \times Y \times Y \times C_{in}$$

 $C_{out} = (Y \text{ and } Y) \times Y \times (C_{in} \text{ and } (Y \times Y))$

- Como implementar de forma escalável e com portas lógicas as operações de adição e de subtração?
 - Método de complemento a 2

$$Z[32] = Y[32] + Y[32]$$

Exemplo

- Considerando o método de codificação de complemento a 2 e capacidade de armazenamento de 8 bits, realize as operações abaixo passo a passo em codificação binária
 - \rightarrow 4 + 8 + 16 + 32
 - \triangleright 5 3 + 8 13
 - \triangleright 2 × 3 × 4 × -5

- Quais são os limites para os números inteiros?
 - Capacidade de 32 bits (sem sinal)

31	30	29	 2	I	0
l	1	I	 1	I	$1 \longrightarrow +2^{32} - 1$
:	:	:	 :	÷	<u>:</u> :
0	0	0	 0	l	l →+3
0	0	0	 0	1	$O \longrightarrow +2$
0	0	0	 0	0	l → +l
0	0	0	 0	0	$O \longrightarrow O$

- Quais são os limites para os números inteiros?
 - Complemento a 2 com 32 bits (com sinal)

31	30	29		2	1	0
0	l	l	• • •	1	1	l → +2 ³ - l
÷	:	÷		:	:	: :
0	0	0		0	0	l → +l
0	0	0		0	0	$O \longrightarrow O$
1	l	1		1	1	→ -
:	:	:		÷	:	: :
1	0	0		0	0	$O \longrightarrow -2^{31}$

O que acontece quando a capacidade de armazenamento do hardware é extrapolado?

- O que acontece quando a capacidade de armazenamento do hardware é extrapolado?
 - Capacidade de 8 bits
 - Sem sinal: é gerado um bit excedente (carry)

- O que acontece quando a capacidade de armazenamento do hardware é extrapolado?
 - Capacidade de 8 bits
 - Sem sinal: é gerado um bit excedente (carry)

 Com sinal: ocorre quando o sinal do resultado é diferente para operandos que possuem o mesmo sinal

- O que acontece quando a capacidade de armazenamento do hardware é extrapolado?
 - Capacidade de 8 bits
 - Sem sinal: é gerado um bit excedente (carry)

 Com sinal: ocorre quando o sinal do resultado é diferente para operandos que possuem o mesmo sinal

Como representar os números reais?

- Como representar os números reais?
 - ► Ponto fixo (notação Q)
 - Hardware padrão
 - Operações com números inteiros

- Como representar os números reais?
 - ► Ponto fixo (notação Q)
 - Hardware padrão
 - Operações com números inteiros
 - Ponto flutuante (IEEE 754)
 - Hardware dedicado
 - Operações especializadas

- Como representar os números reais?
 - ► Ponto fixo (notação Q)
 - Hardware padrão
 - Operações com números inteiros
 - Ponto flutuante (IEEE 754)
 - Hardware dedicado
 - Operações especializadas
 - Precisão arbitrária
 - Emulação por software
 - Números inteiros ou reais

- Aritmética de ponto fixo (notação Q)
 - Definição da parte inteira e fracionária (32 bits)

$$Q4.27 = 9,25_{10}$$

$$= 9_{10} + 0,25_{10}$$

$$= 1001_2 + 0,01_2$$

Sinal	Inteira	Fracionária
0	1001	010000000000000000000000000000000000000

- Aritmética de ponto fixo (notação Q)
 - ► Entendendo a codificação binária fracionária

$$9,25_{10} = 9_{10} + 0,25_{10}$$

- Aritmética de ponto fixo (notação Q)
 - Entendendo a codificação binária fracionária

$$9,25_{10}=9_{10}+0,25_{10}\\$$

$$9,25_{10} = (2^3 + 1) + 0,25_{10}$$

- Aritmética de ponto fixo (notação Q)
 - Entendendo a codificação binária fracionária

$$9,25_{10} = 9_{10} + 0,25_{10} \\$$

$$9,25_{10} = \left(2^3 + 2^0\right) + 0,25_{10}$$

- Aritmética de ponto fixo (notação Q)
 - Entendendo a codificação binária fracionária

$$9,25_{10} = 9_{10} + 0,25_{10}$$

$$9,25_{10} = 1001_2 + 0,25_{10}$$

- Aritmética de ponto fixo (notação Q)
 - Entendendo a codificação binária fracionária

$$9,25_{10}=9_{10}+0,25_{10}$$

$$9,25_{10}=1001_2+\left(2^{-2}+\underline{0}\right)$$

- Aritmética de ponto fixo (notação Q)
 - Entendendo a codificação binária fracionária

$$9,25_{10} = 9_{10} + 0,25_{10}$$

$$9,25_{10} = 1001_2 + 0,01_2$$

- Aritmética de ponto fixo (notação Q)
 - Representatividade um número Q2.2

S	3	2	1	0
0	1	1	1	I → +3,75
0	1	1	1	O → +3,50
0	1	1	0	I → +3,25
0	1	1	0	O → +3,00
:	÷	:	:	: :
: 	: O	: O	: 1	: : 1 → -4,00
: 	: O O	: 0 0	: 	: : 1 → -4,00 0 → -4,25
: 	_	_	: 	

- Aritmética de ponto fixo (notação Q)
 - ✓ São utilizados componentes de aritmética inteira que permitem operações mais rápidas e simples

- Aritmética de ponto fixo (notação Q)
 - ✓ São utilizados componentes de aritmética inteira que permitem operações mais rápidas e simples
 - √ Maior precisão da parte fracionária com mesma quantidade de bits

	Ponto fixo (Q0.31)				
S	Fracionária				
	Ponto flutuante (32 Bits)				
S	Expoente	Fracionária			

- Aritmética de ponto fixo (notação Q)
 - ✓ São utilizados componentes de aritmética inteira que permitem operações mais rápidas e simples
 - √ Maior precisão da parte fracionária com mesma quantidade de bits

X Representatividade limitada

- Aritmética de ponto fixo (notação Q)
 - √ São utilizados componentes de aritmética inteira que permitem operações mais rápidas e simples
 - √ Maior precisão da parte fracionária com mesma quantidade de bits

- X Representatividade limitada
- X Problemas com arredondamento e *overflow*

- Aritmética de ponto fixo (notação Q)
 - ✓ São utilizados componentes de aritmética inteira que permitem operações mais rápidas e simples
 - √ Maior precisão da parte fracionária com mesma quantidade de bits

- X Representatividade limitada
- X Problemas com arredondamento e *overflow*

Aplicação principal: sistemas de baixo custo sem unidade de ponto flutuante (FPU)

- Aritmética de ponto flutuante (IEEE 754)
 - Níveis de precisão

Simples (32 Bits)

S Expoente (8 Bits)	Fracionária (23 bits)
---------------------	--------------------------

Dupla (64 Bits)

S	Expoente (Bits)	Fracionária (52 Bits)
---	-----------------------	--------------------------

Quádrupla (128 Bits)

S	Expoente (15 Bits)	Fracionária (II2 Bits)
---	-----------------------	---------------------------

- Aritmética de ponto flutuante (IEEE 754)
 - ► Representação dos valores de 32 bits

float =
$$(-1)^{Sinal} \left(1 + \sum_{i=0}^{22} B_{22-i} 2^{-i}\right) \times 2^{(Expoente-127)}$$

Sinal	Expoente	Fracionária
0	10000010	001010000000000000000000000000000000000

- Aritmética de ponto flutuante
 - √ Maior representatividade de valores

- Aritmética de ponto flutuante
 - ✓ Maior representatividade de valores
 - √ Mecanismos de arredondamento e de precisão

- Aritmética de ponto flutuante
 - ✓ Maior representatividade de valores
 - ✓ Mecanismos de arredondamento e de precisão
 - X Hardware dedicado que aumenta o custo e o consumo de potência do sistema

- Aritmética de ponto flutuante
 - ✓ Maior representatividade de valores
 - ✓ Mecanismos de arredondamento e de precisão
 - X Hardware dedicado que aumenta o custo e o consumo de potência do sistema
 - X As operações são mais complexas e demoradas

- Aritmética de ponto flutuante
 - ✓ Maior representatividade de valores
 - ✓ Mecanismos de arredondamento e de precisão
 - X Hardware dedicado que aumenta o custo e o consumo de potência do sistema
 - X As operações são mais complexas e demoradas

Aplicação principal: redução do tempo de projeto em sistemas com unidade de ponto flutuante (FPU)

- Aritmética de precisão arbitrária
 - Geralmente é utilizada em aplicações com números inteiros com capacidade que depende somente da quantidade de memória disponível, sendo nativamente suportada em linguagens como Python

- Aritmética de precisão arbitrária
 - Geralmente é utilizada em aplicações com números inteiros com capacidade que depende somente da quantidade de memória disponível, sendo nativamente suportada em linguagens como Python
 - As linguagens de programação que não suportam diretamente a aritmética de precisão arbitrária, como C/C++, podem utilizar bibliotecas para suportar estas operações (GMP/MPFR)

- Aritmética de precisão arbitrária
 - Geralmente é utilizada em aplicações com números inteiros com capacidade que depende somente da quantidade de memória disponível, sendo nativamente suportada em linguagens como Python
 - As linguagens de programação que não suportam diretamente a aritmética de precisão arbitrária, como C/C++, podem utilizar bibliotecas para suportar estas operações (GMP/MPFR)
 - Aplicações
 - Cálculo de constantes matemáticas
 - Criptografia de chave pública
 - Descoberta de números primos
 - **.**..

Exemplo

Considerando os métodos de complemento a 2, de ponto fixo Q2.5 e de ponto flutuante F8 descritas abaixo, converta os números reais A = 2,71 e B = 3,14 para estas representações numéricas

$$F8 = (-1)^{S} \left(1 + \sum_{i=0}^{4} B_{4-i} 2^{-i}\right) \times 2^{Expoente}$$

$$Q25 \quad Sinal \quad Inteira \qquad Fractionária$$

$$Q25 \quad Sinal \quad Expoente \qquad Fractionária$$

$$Q35 \quad Sinal \quad Expoente \qquad Fractionária$$

$$Q45 \quad Sinal \quad Expoente \qquad Fractionária$$

$$Q5 \quad F4F3F2F1F0$$

- Realize a operação A B para cada representação e compare erro dos resultados obtidos
- Verifique o que seria necessário para implementar as operações de divisão e de multiplicação