

IFWO

RAW SEQUENCE LISTING

PATENT APPLICATION: US/10/723,148

DATE: 08/04/2004

TIME: 08:27:12

Input Set : N:\Crf3\RULE60\10723148.raw
 Output Set: N:\CRF4\08042004\J723148.raw

1 <110> APPLICANT: Beraud, Christophe
 2 Craven, Andrew
 3 Yu, Ming
 4 Sakowicz, Roman
 5 Patel, Umesh A.
 6 Davies, Katherine A.
 7 <120> TITLE OF INVENTION: NOVEL MOTOR PROTEINS AND METHODS FOR THEIR USE
 8 <130> FILE REFERENCE: 020552-001410US
 9 <140> CURRENT APPLICATION NUMBER: US/10/723,148
 10 <141> CURRENT FILING DATE: 2003-11-25
 11 <150> PRIOR APPLICATION NUMBER: US/09/883,096
 12 <151> PRIOR FILING DATE: 2001-06-15
 13 <150> PRIOR APPLICATION NUMBER: US 09/594,655
 14 <151> PRIOR FILING DATE: 2000-06-15
 15 <160> NUMBER OF SEQ ID NOS: 6
 16 <170> SOFTWARE: PatentIn Ver. 2.1
 18 <210> SEQ ID NO: 1
 19 <211> LENGTH: 4108
 20 <212> TYPE: DNA
 21 <213> ORGANISM: Artificial Sequence
 22 <220> FEATURE:
 23 <223> OTHER INFORMATION: Nucleic acid sequence of human kinesin motor
 24 protein gene HsKip3a (Figure 1).
 25 <223> OTHER INFORMATION: Description of Artificial Sequence: HsKip3a gene.
 W--> 26 <400> 1

ENTERED

27 gcggccgcga attcggcacc agggcgctc tctccggtg tggtaactgc tgtctgtggt 60
 28 gtggctgtgg gaccgcgtgag caagcagcga cgccagcggc ggagaaccga cgaaagggtgt 120
 29 caccacagtg atggcagtgg aggacagcac gctgcaagta gtggtaacggg tgccggcccc 180
 30 caccgcctcg gagctggaca gtcagcggcg gccagtggtt caggtgggtt acgagcgggt 240
 31 gctggtgttt aaccctgagg agcccgatgg agggttccct ggcctgaaaat ggggtggcac 300
 32 ccatgatggc cccaaagaaga agggcaaaga cctgacgttt gtctttgacc gggctttgg 360
 33 cgaggcggcc acccaacagg acgtgttcca gcacaccacg cacagcgtcc tggacagctt 420
 34 cttccagggc tacaactgct cagtgttgc ctacggggcc accggggctg ggaagacaca 480
 35 caccatgctg ggaagggagg gggaccccg catcatgtac ctgaccaccg tggaaactgta 540
 36 caggcgcctg gaggcccggc agcaggagaa gcacttcgag gtgtctcatca gctaccagga 600
 37 ggtgtataat gaacagatcc atgacctcct ggagcccaag gggcccttg ccatccgcga 660
 38 ggaccccgac aagggggtgg tggtgcaagg actttcttc caccagccag cctcagccga 720
 39 gcagctgctg gagatactga ccagggggaa ccgttaaccgc acgcagcacc ccactgatgc 780
 40 caacgcgact tcctcccgct cccatgccat ttccagata tttgtgaagg agcaggaccg 840
 41 ggttccagga ctgaccagg ctgtccaggt ggccaagatg agcctgatttg acctggctgg 900
 42 ctcagagcgg gcatccagca cccatgcgaa gggggagcgg ctgcgggagg gggcaacat 960
 43 caaccgcgtct ctgctggcgc tcatacaacgt cctcaatgcc ttggccgatg caaaggccg 1020
 44 caagacccat gtgccttacc gggacagcaa actgacccgc ctgctcaaag actccctcg 1080

RAW SEQUENCE LISTING

PATENT APPLICATION: US/10/723,148

DATE: 08/04/2004

TIME: 08:27:12

Input Set : N:\CrF3\RULE60\10723148.raw

Output Set: N:\CRF4\08042004\J723148.raw

45 gggcaactgc cgcacagtga ttagtcgtgc catcagcccc tccaggctga cctacgagga 1140
 46 cacgtacaac accctcaaat atgccgaccg ggccaaggag atcaggctct cgctgaagag 1200
 47 caatgtgacc agcctggact gtcacatca gcaatgtat accatctgcc aacagctcca 1260
 48 ggctgaggta gccgctctga ggaagaagct ccaagtgtat gagggggggag gccagcccc 1320
 49 accacaggac ctcccaggat ctcccaagtc gggaccacca ccagaacacc ttcccaagctc 1380
 50 ccccttgcca ccccacccctc ccagccagcc ctgcacccca gagctccctg cagggcctag 1440
 51 agcccttcaa gaggagagtc tggttatggaa ggcccagggtg gagagggcca tggaaggaa 1500
 52 ctcttcagac caggagcgt ccccagagga tgaggatgaa ggcccagctg aggaggttcc 1560
 53 aaccaggatg ccagagcaga accccacaca tgcactgcca gagtcccctc gcctgaccct 1620
 54 gcagcccaag ccagtctgtgg gccacttctc agcacggaa ctggatgggg accgttctaa 1680
 55 gcagttggcc ctaaagggtgc tggcggtgc ccagccggcag tactccctgc tccaagcagc 1740
 56 caacccctcg acggccgaca ttagtacaga gtttgagacc ctacagcagc tggtgcaaga 1800
 57 ggaaaaaaatt gagcctgggg cagaggcctt gaggacttca ggccctggcca ggggggcacc 1860
 58 tctggcttag gaggctgttt cagagtcaat ccctgtggcg tctccctct gcccagagcc 1920
 59 tccaggatac actggccctg tgaccggac tatggcgagg cgactgagtg gcccctgca 1980
 60 caccctggga atcccgctg gacccaactg caccggcggc caggggtccc gatggcccat 2040
 61 ggagaagaag aggaggagac caagccgtt ggaggcagac agtcccattgg cctcaaagcg 2100
 62 gggcaccaccc cggccggc agtccttcct gcccggccta aggagagggt ctctggctga 2160
 63 caccacacct tcacaggggc ccagccaccc caaaggagaa agggccttcct cccctggca 2220
 64 ttccctcgcc gtttggccag ccacagtcat caaaagccgg gtggccctgg gcccctccgc 2280
 65 catgcagaac tgcctccaccc cgtggctct gcccactcga gacccatgt ccaccccttga 2340
 66 tctctcttag gaggcccttca aacggccag tttccatgaa tgcattggct gggacaaaat 2400
 67 accccaggag ctgagcaggc tggaccagcc cttcatcccc agggcacctg tgcccctgtt 2460
 68 caccatgaag ggccccaagc caacatcttc cctccctggg acctctgcct gcaagaagaa 2520
 69 ggcgttgcg agttccctcag tctccatgg ccgcagccgc atgcggccgc tccccagcag 2580
 70 cactttagaag agggccagctg ggccccttgt actcccaagag ctgccttgc tgcccctgtg 2640
 71 cccttagcaac cggaggaatg gaaaggaccc catcagggtg gggagagcgc tctcagcagg 2700
 72 gaacggcgcc accaagggtgt cctgaccgcg agaatgtctt gaccaccaag gtgtcctaacc 2760
 73 ctacccggccc ctctgttgcg taccctctt ggacctgttag ccacctgcac caggagctgg 2820
 74 acctgccttc cttacctggg agcaatttagt gccaacacac cttgtctgtt ttaacatccc 2880
 75 tcccccagaca tccatctgc tactcaccct ctgttaatct cctgttacac tcagcttctt 2940
 76 ggcattgtaca tattcattt tgagtgttta tgcattgtt tttttgttt tttgggtgtt 3000
 77 tttttttttt gttttttttt tttttagatg gaggcttact ctgtcgccca ggctggagtg 3060
 78 cagttgtacg atcttgctc actgcaaccc cccgcctcctg gttcaagta attctcctgc 3120
 79 ctcaagtttc caagtagctg ggattacagg caccatcac cacacccagc taattttcg 3180
 80 ctttttaata gagaggggtt tttccatgt tggccaggct ggtcttgaac tcctgaccc 3240
 81 aggtgtatccg cctgcctcag cttcccaaag tgctgagatt acaggcatga gctaccacgc 3300
 82 ctggcccggtt ttgttgcgtt aaagggtctg ccatgttccc ccatctttt ttttttttag 3360
 83 atggagtctc gctctgtcgc ccaggctggat gtcaggtgtt ggcgtatctt gctcaactgca 3420
 84 agctccgcct cccagggtca caccattctc ctgcctcagc ctcccaagta gctgggacta 3480
 85 cagccgcggcc accacccgc cggcttaattt tttgtttagt tagtagagat ggggtttcac 3540
 86 cgtttagcc aggctggctc cgtatgtacc tcatgttcca cccgcctcgg cctcccaaag 3600
 87 tgctgggattt acaggcgtga gcaactgcgc ccggccctccc ctctcattta tgatggccctc 3660
 88 tgtgcaggca gacggcttgg ggcctttt cccacccgtt ctctaacaca ggccccacgg 3720
 89 tgcattgttcc acaggcgttgg ggcctttt cccacccgtt ctctaacaca ggccccacgg 3780
 90 tggcttcc tggcttcc tggcttcc gaggacatc ttcatccctt ctcccttgg tcccaatcca 3840
 91 cagtcctgtt gaaatgttgg atgataatgg tgccttgatt tccaaatgaa gacagttta 3900
 92 ttgtttaactt ctattgttaca taggatacac gttcagtgta aaataaaatgt taaaggaa 3960
 93 ttcaaggcttta atgctgcacc tagatataaa tgctaatgtt acttgggttt atagccttct 4020

RAW SEQUENCE LISTING
PATENT APPLICATION: US/10/723,148

DATE: 08/04/2004
TIME: 08:27:12

Input Set : N:\Crf3\RULE60\10723148.raw
Output Set: N:\CRF4\08042004\J723148.raw

94 gatccttat ttctgcata atatatacat atatacatat attttggta taacaataaa 4080
 95 ccgtctccat ccttggaaa aaaaaaaaaa 4108
 97 <210> SEQ ID NO: 2
 98 <211> LENGTH: 864
 99 <212> TYPE: PRT
 100 <213> ORGANISM: Artificial Sequence
 101 <220> FEATURE:
 102 <223> OTHER INFORMATION: Amino acid sequence encoded by human kinesin motor
 103 protein gene HsKip3a (Figure 1).
 104 <223> OTHER INFORMATION: Description of Artificial Sequence:Amino acid
 105 sequence of HsKip3a.
 W--> 106 <400> 2
 107 Met Ala Val Glu Asp Ser Thr Leu Gln Val Val Val Arg Val Arg Pro
 108 1 5 10 15
 109 Pro Thr Pro Arg Glu Leu Asp Ser Gln Arg Arg Pro Val Val Gln Val
 110 20 25 30
 111 Val Asp Glu Arg Val Leu Val Phe Asn Pro Glu Glu Pro Asp Gly Gly
 112 35 40 45
 113 Phe Pro Gly Leu Lys Trp Gly Gly Thr His Asp Gly Pro Lys Lys Lys
 114 50 55 60
 115 Gly Lys Asp Leu Thr Phe Val Phe Asp Arg Val Phe Gly Glu Ala Ala
 116 65 70 75 80
 117 Thr Gln Gln Asp Val Phe Gln His Thr Thr His Ser Val Leu Asp Ser
 118 85 90 95
 119 Phe Leu Gln Gly Tyr Asn Cys Ser Val Phe Ala Tyr Gly Ala Thr Gly
 120 100 105 110
 121 Ala Gly Lys Thr His Thr Met Leu Gly Arg Glu Gly Asp Pro Gly Ile
 122 115 120 125
 123 Met Tyr Leu Thr Thr Val Glu Leu Tyr Arg Arg Leu Glu Ala Arg Gln
 124 130 135 140
 125 Gln Glu Lys His Phe Glu Val Leu Ile Ser Tyr Gln Glu Val Tyr Asn
 126 145 150 155 160
 127 Glu Gln Ile His Asp Leu Leu Glu Pro Lys Gly Pro Leu Ala Ile Arg
 128 165 170 175
 129 Glu Asp Pro Asp Lys Gly Val Val Val Gln Gly Leu Ser Phe His Gln
 130 180 185 190
 131 Pro Ala Ser Ala Glu Gln Leu Leu Glu Ile Leu Thr Arg Gly Asn Arg
 132 195 200 205
 133 Asn Arg Thr Gln His Pro Thr Asp Ala Asn Ala Thr Ser Ser Arg Ser
 134 210 215 220
 135 His Ala Ile Phe Gln Ile Phe Val Lys Gln Gln Asp Arg Val Pro Gly
 136 225 230 235 240
 137 Leu Thr Gln Ala Val Gln Val Ala Lys Met Ser Leu Ile Asp Leu Ala
 138 245 250 255
 139 Gly Ser Glu Arg Ala Ser Ser Thr His Ala Lys Gly Glu Arg Leu Arg
 140 260 265 270
 141 Glu Gly Ala Asn Ile Asn Arg Ser Leu Leu Ala Leu Ile Asn Val Leu
 142 275 280 285
 143 Asn Ala Leu Ala Asp Ala Lys Gly Arg Lys Thr His Val Pro Tyr Arg

RAW SEQUENCE LISTING
PATENT APPLICATION: US/10/723,148

DATE: 08/04/2004
TIME: 08:27:12

Input Set : N:\Crf3\RULE60\10723148.raw
Output Set: N:\CRF4\08042004\J723148.raw

144	290	295	300
145	Asp Ser Lys Leu Thr Arg Leu Leu Lys Asp	Ser Leu Gly Gly Asn Cys	
146	305	310	315 320
147	Arg Thr Val Met Ile Ala Ala Ile Ser Pro	Ser Ser Leu Thr Tyr Glu	
148	325	330	335
149	Asp Thr Tyr Asn Thr Leu Lys Tyr Ala Asp Arg	Ala Lys Glu Ile Arg	
150	340	345	350
151	Leu Ser Leu Lys Ser Asn Val Thr Ser Leu Asp	Cys His Ile Ser Gln	
152	355	360	365
153	Tyr Ala Thr Ile Cys Gln Gln Leu Gln Ala	Glu Val Ala Ala Leu Arg	
154	370	375	380
155	Lys Lys Leu Gln Val Tyr Glu Gly Gly Gln	Pro Pro Pro Gln Asp	
156	385	390	395 400
157	Leu Pro Gly Ser Pro Lys Ser Gly Pro Pro	Glu His Leu Pro Ser	
158	405	410	415
159	Ser Pro Leu Pro Pro His Pro Pro Ser Gln	Pro Cys Thr Pro Glu Leu	
160	420	425	430
161	Pro Ala Gly Pro Arg Ala Leu Gln Glu Glu	Ser Leu Gly Met Glu Ala	
162	435	440	445
163	Gln Val Glu Arg Ala Met Glu Gly Asn Ser	Ser Asp Gln Glu Gln Ser	
164	450	455	460
165	Pro Glu Asp Glu Asp Glu Gly Pro Ala Glu	Glu Val Pro Thr Gln Met	
166	465	470	475 480
167	Pro Glu Gln Asn Pro Thr His Ala Leu Pro	Glu Ser Pro Arg Leu Thr	
168	485	490	495
169	Leu Gln Pro Lys Pro Val Val Gly His Phe	Ser Ala Arg Glu Leu Asp	
170	500	505	510
171	Gly Asp Arg Ser Lys Gln Leu Ala Leu Lys	Val Leu Cys Val Ala Gln	
172	515	520	525
173	Arg Gln Tyr Ser Leu Leu Gln Ala Ala Asn	Leu Leu Thr Pro Asp Met	
174	530	535	540
175	Ile Thr Glu Phe Glu Thr Leu Gln Gln Leu	Val Gln Glu Glu Lys Ile	
176	545	550	555 560
177	Glu Pro Gly Ala Glu Ala Leu Arg Thr Ser	Gly Leu Ala Arg Gly Ala	
178	565	570	575
179	Pro Leu Ala Gln Glu Leu Cys Ser Glu	Ser Ile Pro Val Pro Ser Pro	
180	580	585	590
181	Leu Cys Pro Glu Pro Pro Gly Tyr Thr Gly	Pro Val Thr Arg Thr Met	
182	595	600	605
183	Ala Arg Arg Leu Ser Gly Pro Leu His Thr	Leu Gly Ile Pro Pro Gly	
184	610	615	620
185	Pro Asn Cys Thr Pro Ala Gln Gly Ser Arg	Trp Pro Met Glu Lys Lys	
186	625	630	635 640
187	Arg Arg Arg Pro Ser Ala Leu Glu Ala Asp	Ser Pro Met Ala Ser Lys	
188	645	650	655
189	Arg Gly Thr Lys Arg Gln Arg Gln Ser Phe	Leu Pro Cys Leu Arg Arg	
190	660	665	670
191	Gly Ser Leu Pro Asp Thr Gln Pro Ser Gln	Gly Pro Ser Thr Pro Lys	
192	675	680	685

RAW SEQUENCE LISTING
PATENT APPLICATION: US/10/723,148

DATE: 08/04/2004
TIME: 08:27:12

Input Set : N:\CrF3\RULE60\10723148.raw
Output Set: N:\CRF4\08042004\J723148.raw

193 Gly Glu Arg Ala Ser Ser Pro Cys His Ser Pro Arg Val Cys Pro Ala
 194 690 695 700
 195 Thr Val Ile Lys Ser Arg Val Pro Leu Gly Pro Ser Ala Met Gln Asn
 196 705 710 715 720
 197 Cys Ser Thr Pro Leu Ala Leu Pro Thr Arg Asp Leu Asn Ala Thr Phe
 198 725 730 735
 199 Asp Leu Ser Glu Glu Pro Pro Ser Lys Pro Ser Phe His Glu Cys Ile
 200 740 745 750
 201 Gly Trp Asp Lys Ile Pro Gln Glu Leu Ser Arg Leu Asp Gln Pro Phe
 202 755 760 765
 203 Ile Pro Arg Ala Pro Val Pro Leu Phe Thr Met Lys Gly Pro Lys Pro
 204 770 775 780
 205 Thr Ser Ser Leu Pro Gly Thr Ser Ala Cys Lys Lys Lys Arg Val Ala
 206 785 790 795 800
 207 Ser Ser Ser Val Ser His Gly Arg Ser Arg Ile Ala Arg Leu Pro Ser
 208 805 810 815
 209 Ser Thr Leu Lys Arg Pro Ala Gly Pro Leu Val Leu Pro Glu Leu Pro
 210 820 825 830
 211 Leu Ser Pro Leu Cys Pro Ser Asn Arg Arg Asn Gly Lys Asp Leu Ile
 212 835 840 845
 213 Arg Val Gly Arg Ala Leu Ser Ala Gly Asn Gly Val Thr Lys Val Ser
 214 850 855 860
 216 <210> SEQ ID NO: 3
 217 <211> LENGTH: 1014
 218 <212> TYPE: DNA
 219 <213> ORGANISM: Artificial Sequence
 220 <220> FEATURE:
 221 <223> OTHER INFORMATION: Description of Artificial Sequence: HsKip3a
 fragment
 223 <223> OTHER INFORMATION: Nucleotide sequence encoding motor domain fragment
 224 of HsKip3a (Figure 2).
W--> 225 <400> 3
 226 gacagcacgc tgcaagtatg ggtacgggtg cggcccccca cccctcgaaa gctggacagt 60
 227 cagcggcggc cagtggttca ggtgggtggac gagcgggtgc tgggtttaa ccctgaggag 120
 228 cccgatggag ggttccctgg cctgaaatgg ggtggcaccc atgatggccc caagaagaag 180
 229 gcaaagacc tgacgtttgt ctttgaccgg gtctttggcg aggccgcac ccaacaggac 240
 230 gtgttccagc acaccacgc cagcgtcctg gacagcttc tccagggcta caactgctca 300
 231 gtgtttgcct acggggccac cggggctggg aagacacaca ccatgctggg aaggggaggg 360
 232 gaccccgccca tcatgtacct gaccaccgtg gaactgtaca ggccgcctgga ggcggccag 420
 233 caggagaagc acttcgaggt gctcatcagc taccaggagg tgtataatga acagatccat 480
 234 gaccccttg agcccaaggg gccccttggcc atccgcgagg accccgacaa ggggggtggtg 540
 235 gtgcaaggac tttcttcca ccagccagcc tcagccgagc agctgctggta gatactgacc 600
 236 agggggaaacc gtaaccgcac gcagcaccac actgatgcca acgcgacttc ctcccgctcc 660
 237 catgccatct tccagatctt tgtgaagcag caggaccggg ttccaggact gaccaggct 720
 238 gtcagggtgg ccaagatgag cctgattgac ctggctggct cagagcgggc atccagcacc 780
 239 catgcgaagg gggagcggct gcgggagggg gccaacatca accgctctct gctggcgctc 840
 240 atcaacgtcc tcaatgcctt ggccgatgca aaggccgcac agaccatgt gccctaccgg 900
 241 gacagcaaac tgaccgcct gctcaaagac tccctcgaaa gcaactgcgg cacagtgtatg 960
 242 atcgctgcca tcagcccttc cagcctgacc tacgaggaca cgtacaacac cctc 1014

VERIFICATION SUMMARY

PATENT APPLICATION: US/10/723,148

DATE: 08/04/2004

TIME: 08:27:13

Input Set : N:\Crf3\RULE60\10723148.raw

Output Set: N:\CRF4\08042004\J723148.raw

L:26 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:1
L:106 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:2
L:225 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:3
L:252 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:4
L:306 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:5
L:365 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:6