

CS 310: Algorithms

Lecture 11

Instructor: Naveed Anwar Bhatti

Chapter 5:

Divide and Conquer

Section 5.3:

Counting Inversions

Motivation: Recommendation Systems

Motivation: Recommendation Systems

(1)

3

5

(2,1)

5

(2,1) (4,1)

(2,1) (4,1) (4,3)

Motivation: Recommendation Systems

Counting inversions: Divide and Conquer (Warm Up!)

- Divide: separate list into two halves A and B.
- Conquer: recursively count inversions in each list.
- Combine: count inversions (a, b) with $a \in A$ and $b \in B$.
- Return sum of three counts.

(3,1)(7,5)(7,1)(7,6)(11,5)(11,9)(11,1)(11,6)(5,1)(9,1)(9,6) = 11

 (4,2) (15,8) (15,10) (15,14) (15,12) (14,12) = 6

 4
 2
 15
 8
 10
 14
 12
 16

(3,2)(7,4)(7,2)(11,4)(11,2)(11,8)(11,10)(5,4)(5,2)(9,4)(9,2)(9,8)(6,4)(6,2)(13,4)(13,2)(13,8)(13,10)(13,12) = 19

3 7 11 5 9 1 6 13

4 2 15 8 10 14 12 16

Return = 11 + 6 + 19 = 36

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$ efficiently?
- A. Easy if A and B are sorted!

4 2 15 8 10 14 12 16

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j .
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j .
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_i$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_i$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_i$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

13

return (*A*, *inversions*)

Counting inversions: how to combine two subproblems?

```
Merge - And - Count(A_1, A_2)
      m \leftarrow length(A_1) + length(A_2)
                                                                                    inversions=0
      x \leftarrow length(A_1)
                                                                                                 x=8
      inversions \leftarrow 0
      i \leftarrow 1; j \leftarrow 1
      for k = 1 to m
                                                                  5
                                                                        9
                                                                                                           15
                                                                                                                 8
                                                                                                                     10
                                                                                                                           14
                                                                                                                                 12
                                                                                6 | 13
                                                                                                                                      16
                                                             11 |
           if A_1[i] \leq A_2[j]
6
                A[k] \leftarrow A_1[i]
                                                                          9
                                                                                                           8
                                                                                                                10 | 12 |
                                                                                                                           14
                                                                                                                                15
                                                                                    13
                                                                                                                                      16
                                                          3
                                                             5
                                                                  6
                                                                              11
                i \leftarrow i + 1
                x \leftarrow x - 1
9
           else A[k] \leftarrow A_2[j]
10
                j \leftarrow j + 1
11
12
                inversions \leftarrow inversions + x
```


13

return (*A*, *inversions*)

Counting inversions: how to combine two subproblems?

```
Merge - And - Count(A_1, A_2)
      m \leftarrow length(A_1) + length(A_2)
                                                                                     inversions=0
      x \leftarrow length(A_1)
                                                                                                  x=7
      inversions \leftarrow 0
      i \leftarrow 1; j \leftarrow 1
      for k = 1 to m
                                                                   5
                                                                        9
                                                                                                            15
                                                                                                                  8
                                                                                                                     10
                                                                                                                           14
                                                                                                                                 12
                                                                                 6 | 13
                                                                                                                                      16
                                                              11 |
            if A_1[i] \leq A_2[j]
6
                A[k] \leftarrow A_1[i]
                                                                          9
                                                                                                            8
                                                                                                                10 | 12 |
                                                                                                                           14
                                                                                                                                 15
                                                          3
                                                                                     13
                                                                                                                                      16
                                                              5
                                                                  6
                                                                              11
                i \leftarrow i + 1
                                                          a_i
                x \leftarrow x - 1
9
            else A[k] \leftarrow A_2[j]
10
                j \leftarrow j + 1
11
12
                inversions \leftarrow inversions + x
```


return (*A*, *inversions*)

```
Merge - And - Count(A_1, A_2)
      m \leftarrow length(A_1) + length(A_2)
                                                                                     inversions=7
      x \leftarrow length(A_1)
                                                                                                 x=7
      inversions \leftarrow 0
      i \leftarrow 1; j \leftarrow 1
      for k = 1 to m
                                                                  5
                                                                        9
                                                                                                            15
                                                                                                                 8
                                                                                                                     10
                                                                                                                           14
                                                                                                                                 12
                                                                                 6 | 13
                                                                                                                                      16
                                                             11 |
           if A_1[i] \leq A_2[j]
                A[k] \leftarrow A_1[i]
                                                                          9
                                                                                                            8
                                                                                                                10 | 12
                                                                                                                           14
                                                                                                                                 15
                                                                              11
                                                                                    13
                                                                                                                                      16
                                                             5
                                                                  6
                                                          3
                i \leftarrow i + 1
                                                         a_i
                x \leftarrow x - 1
9
                                                            2
           else A[k] \leftarrow A_2[j]
10
                j \leftarrow j + 1
11
12
                inversions \leftarrow inversions + x
```


return (*A*, *inversions*)

```
Merge - And - Count(A_1, A_2)
      m \leftarrow length(A_1) + length(A_2)
                                                                                    inversions=7
      x \leftarrow length(A_1)
                                                                                                 x=6
      inversions \leftarrow 0
      i \leftarrow 1; j \leftarrow 1
      for k = 1 to m
                                                                  5
                                                                       9
                                                                                                           15
                                                                                                                 8
                                                                                                                    10
                                                                                                                          14
                                                                                                                                12
                                                                                6 | 13
                                                                                                                                     16
                                                             11
           if A_1[i] \leq A_2[j]
6
                A[k] \leftarrow A_1[i]
                                                                         9
                                                                                                           8
                                                                                                                10 | 12
                                                                                                                          14
                                                                                                                                15
                                                          3
                                                             5
                                                                                    13
                                                                                                                                     16
                                                                  6
                                                                              11
                i \leftarrow i + 1
                                                             a_i
                x \leftarrow x - 1
9
                                                           2
                                                                 3
           else A[k] \leftarrow A_2[j]
10
                j \leftarrow j + 1
11
12
                inversions \leftarrow inversions + x
```


return (*A*, *inversions*)

```
Merge - And - Count(A_1, A_2)
      m \leftarrow length(A_1) + length(A_2)
                                                                                    inversions=13
      x \leftarrow length(A_1)
                                                                                                 x=6
      inversions \leftarrow 0
      i \leftarrow 1; j \leftarrow 1
      for k = 1 to m
                                                                  5
                                                                        9
                                                                                                           15
                                                                                                                 8
                                                                                                                    10
                                                                                                                          14
                                                                                                                                12
                                                                                6 | 13
                                                                                                                                     16
                                                             11
           if A_1[i] \leq A_2[j]
6
                A[k] \leftarrow A_1[i]
                                                                         9
                                                                                                           8
                                                                                                                10 | 12
                                                                                                                          14
                                                                                                                                15
                                                          3
                                                                                    13
                                                             5
                                                                  6
                                                                                                                                     16
                                                                              11
                i \leftarrow i + 1
                                                             a_i
                x \leftarrow x - 1
9
                                                           2
                                                                      4
                                                                 3
           else A[k] \leftarrow A_2[j]
10
                j \leftarrow j + 1
11
12
                inversions \leftarrow inversions + x
```


return (*A*, *inversions*)

```
Merge - And - Count(A_1, A_2)
      m \leftarrow length(A_1) + length(A_2)
                                                                                    inversions=13
      x \leftarrow length(A_1)
                                                                                                 x=5
      inversions \leftarrow 0
      i \leftarrow 1; j \leftarrow 1
      for k = 1 to m
                                                                  5
                                                                       9
                                                                                                           15
                                                                                                                 8
                                                                                                                    10
                                                                                                                          14
                                                                                                                                12
                                                                                6 | 13
                                                                                                                                     16
                                                             11
           if A_1[i] \leq A_2[j]
6
                A[k] \leftarrow A_1[i]
                                                                         9
                                                                                                           8
                                                                                                               10 | 12
                                                                                                                          14
                                                                                                                                15
                                                             5
                                                                                    13
                                                          3
                                                                  6
                                                                                                                                     16
                                                                              11
                i \leftarrow i + 1
                                                                 a_i
                x \leftarrow x - 1
9
                                                           2
                                                                 3
                                                                           5
                                                                      4
           else A[k] \leftarrow A_2[j]
10
                j \leftarrow j + 1
11
12
                inversions \leftarrow inversions + x
```


return (*A*, *inversions*)

```
Merge - And - Count(A_1, A_2)
      m \leftarrow length(A_1) + length(A_2)
                                                                                    inversions=13
      x \leftarrow length(A_1)
                                                                                                 x=4
      inversions \leftarrow 0
      i \leftarrow 1; j \leftarrow 1
      for k = 1 to m
                                                                  5
                                                                        9
                                                                                                            15
                                                                                                                 8
                                                                                                                     10
                                                                                                                           14
                                                                                                                                 12
                                                                                 6 | 13
                                                                                                                                      16
                                                             11
           if A_1[i] \leq A_2[j]
6
                A[k] \leftarrow A_1[i]
                                                                  6
                                                                          9
                                                                                                            8
                                                                                                                10 | 12
                                                                                                                           14
                                                                                                                                 15
                                                          3 | 5
                                                                                    13
                                                                                                                                      16
                                                                              11
                i \leftarrow i + 1
                                                                     a_i
                x \leftarrow x - 1
9
                                                                      4
                                                                            5
                                                                 3
                                                                                 6
           else A[k] \leftarrow A_2[j]
10
                j \leftarrow j + 1
11
12
                inversions \leftarrow inversions + x
```


return (*A*, *inversions*)

```
Merge - And - Count(A_1, A_2)
      m \leftarrow length(A_1) + length(A_2)
                                                                                    inversions=13
      x \leftarrow length(A_1)
                                                                                                 x=3
      inversions \leftarrow 0
      i \leftarrow 1; j \leftarrow 1
      for k = 1 to m
                                                                  5
                                                                        9
                                                                                                           15
                                                                                                                 8
                                                                                                                     10
                                                                                                                           14
                                                                                                                                12
                                                                                6 | 13
                                                                                                                                      16
                                                             11
           if A_1[i] \leq A_2[j]
6
                A[k] \leftarrow A_1[i]
                                                                          9
                                                                                                           8
                                                                                                                10 | 12
                                                                                                                           14
                                                                                                                                15
                                                                                    13
                                                             5
                                                                  6
                                                                      7
                                                                                                                                      16
                                                          3 |
                                                                              11
                i \leftarrow i + 1
                                                                         a_i
                x \leftarrow x - 1
9
                                                                 3
                                                                            5
                                                                                 6
                                                                      4
           else A[k] \leftarrow A_2[j]
10
                j \leftarrow j + 1
11
12
                inversions \leftarrow inversions + x
```


return (*A*, *inversions*)

```
Merge - And - Count(A_1, A_2)
      m \leftarrow length(A_1) + length(A_2)
                                                                                    inversions=16
      x \leftarrow length(A_1)
                                                                                                 x=3
      inversions \leftarrow 0
      i \leftarrow 1; j \leftarrow 1
      for k = 1 to m
                                                                  5
                                                                                                           15
                                                                                                                 8
                                                                                                                    10
                                                                                                                          14
                                                                                                                                12
                                                                        9
                                                                                6 | 13
                                                                                                                                     16
                                                             11
           if A_1[i] \leq A_2[j]
6
                A[k] \leftarrow A_1[i]
                                                                         9
                                                                                                           8
                                                                                                                10
                                                                                                                     12
                                                                                                                          14
                                                                                                                                15
                                                                  6
                                                                                    13
                                                                                                                                     16
                                                             5
                                                                      7
                                                                              11
                                                          3 |
                i \leftarrow i + 1
                                                                         a_i
                x \leftarrow x - 1
9
                                                                 3
                                                                           5
                                                                                6
                                                                                           8
                                                                      4
           else A[k] \leftarrow A_2[j]
10
                j \leftarrow j + 1
11
12
                inversions \leftarrow inversions + x
```

return (*A*, *inversions*)

```
Merge - And - Count(A_1, A_2)
      m \leftarrow length(A_1) + length(A_2)
                                                                                    inversions=16
      x \leftarrow length(A_1)
                                                                                                 x=2
      inversions \leftarrow 0
      i \leftarrow 1; j \leftarrow 1
      for k = 1 to m
                                                             11 5
                                                                       9
                                                                                                           15
                                                                                                                8
                                                                                                                    10
                                                                                                                          14
                                                                                                                                12
                                                                                6 | 13
                                                                                                                                     16
           if A_1[i] \leq A_2[j]
6
                A[k] \leftarrow A_1[i]
                                                                                                                    12
                                                                         9
                                                                                                           8
                                                                                                               10
                                                                                                                          14
                                                                                                                                15
                                                                              11
                                                                                    13
                                                                                                                                     16
                                                          3
                                                             5
                                                                 6
                                                                     7
                i \leftarrow i + 1
                                                                              a_i
                x \leftarrow x - 1
9
                                                                 3
                                                                           5
                                                                                6
                                                                                          8
                                                                      4
                                                                                                9
           else A[k] \leftarrow A_2[j]
10
                j \leftarrow j + 1
11
                inversions \leftarrow inversions + x
12
```

return (*A*, *inversions*)

```
Merge - And - Count(A_1, A_2)
      m \leftarrow length(A_1) + length(A_2)
                                                                                    inversions=18
      x \leftarrow length(A_1)
                                                                                                x=2
      inversions \leftarrow 0
      i \leftarrow 1; j \leftarrow 1
      for k = 1 to m
                                                             11 5
                                                                       9
                                                                                                           15
                                                                                                                8
                                                                                                                    10
                                                                                                                          14
                                                                                                                                12
                                                                                6 | 13
                                                                                                                                     16
           if A_1[i] \leq A_2[j]
6
                A[k] \leftarrow A_1[i]
                                                                         9
                                                                                                           8
                                                                                                               10
                                                                                                                    12
                                                                                                                          14
                                                                                                                               15
                                                                              11
                                                                                    13
                                                                                                                                     16
                                                          3
                                                             5
                                                                 6
                                                                     7
                i \leftarrow i + 1
                                                                              a_i
                x \leftarrow x - 1
9
                                                                3
                                                                           5
                                                                                6
                                                                                          8
                                                                                                9
                                                                                                     10
                                                                      4
           else A[k] \leftarrow A_2[j]
10
                j \leftarrow j + 1
11
                inversions \leftarrow inversions + x
12
```

return (*A*, *inversions*)

```
Merge - And - Count(A_1, A_2)
      m \leftarrow length(A_1) + length(A_2)
                                                                                    inversions=18
      x \leftarrow length(A_1)
                                                                                                x=1
      inversions \leftarrow 0
      i \leftarrow 1; j \leftarrow 1
      for k = 1 to m
                                                                  5
                                                                       9
                                                                                                          15
                                                                                                                8
                                                                                                                    10
                                                                                                                          14
                                                                                                                               12
                                                                                6 | 13
                                                                                                                                    16
                                                             11
           if A_1[i] \leq A_2[j]
6
                A[k] \leftarrow A_1[i]
                                                                         9
                                                                                                          8
                                                                                                               10
                                                                                                                    12
                                                                                                                          14
                                                                                                                               15
                                                                             11
                                                                                   13
                                                                                                                                    16
                                                         3
                                                             5
                                                                 6
                i \leftarrow i + 1
                                                                                   a_i
                x \leftarrow x - 1
9
                                                                3
                                                                           5
                                                                                6
                                                                                          8
                                                                                               9
                                                                                                     10
                                                                                                          11
                                                                     4
           else A[k] \leftarrow A_2[j]
10
                j \leftarrow j + 1
11
                inversions \leftarrow inversions + x
12
```


return (*A*, *inversions*)

```
Merge - And - Count(A_1, A_2)
      m \leftarrow length(A_1) + length(A_2)
                                                                                    inversions=19
      x \leftarrow length(A_1)
                                                                                                 x=1
      inversions \leftarrow 0
      i \leftarrow 1; j \leftarrow 1
      for k = 1 to m
                                                                  5
                                                                       9
                                                                                                           15
                                                                                                                 8
                                                                                                                    10
                                                                                                                          14
                                                                                                                                12
                                                                                6 | 13
                                                                                                                                     16
                                                             11
           if A_1[i] \leq A_2[j]
6
                A[k] \leftarrow A_1[i]
                                                                                                               10 | 12
                                                                         9
                                                                                                           8
                                                                                                                          14
                                                                                                                                15
                                                                                    13
                                                                                                                                     16
                                                          3
                                                             5
                                                                  6
                                                                              11
                i \leftarrow i + 1
                                                                                    a_i
                x \leftarrow x - 1
9
                                                                 3
                                                                           5
                                                                                6
                                                                                           8
                                                                                                9
                                                                                                     10
                                                                                                          11
                                                                                                               12
                                                                      4
           else A[k] \leftarrow A_2[j]
10
                j \leftarrow j + 1
11
                inversions \leftarrow inversions + x
12
```


return (*A*, *inversions*)

```
Merge - And - Count(A_1, A_2)
      m \leftarrow length(A_1) + length(A_2)
                                                                                    inversions=19
      x \leftarrow length(A_1)
                                                                                                x=0
      inversions \leftarrow 0
      i \leftarrow 1; j \leftarrow 1
      for k = 1 to m
                                                                  5
                                                                                                          15
                                                                                                                8
                                                                                                                    10
                                                                                                                          14
                                                                                                                               12
                                                                       9
                                                                                6 | 13
                                                                                                                                     16
                                                             11
           if A_1[i] \leq A_2[j]
6
                A[k] \leftarrow A_1[i]
                                                                                                          8
                                                                                                               10 | 12
                                                                                                                          14
                                                                                                                               15
                                                                         9
                                                                             11
                                                                                   13
                                                                                                                                     16
                                                         3
                                                             5
                                                                 6
                i \leftarrow i + 1
                x \leftarrow x - 1
9
                                                                3
                                                                           5
                                                                                6
                                                                                          8
                                                                                                9
                                                                                                     10
                                                                                                          11
                                                                                                               12
                                                                                                                    13
                                                                      4
           else A[k] \leftarrow A_2[j]
10
                j \leftarrow j + 1
11
12
                inversions \leftarrow inversions + x
```


return (*A*, *inversions*)

```
Merge - And - Count(A_1, A_2)
      m \leftarrow length(A_1) + length(A_2)
                                                                                   inversions=19
      x \leftarrow length(A_1)
                                                                                                x=0
      inversions \leftarrow 0
      i \leftarrow 1; j \leftarrow 1
      for k = 1 to m
                                                                  5
                                                                                                          15
                                                                                                                8
                                                                                                                    10
                                                                                                                         14
                                                                                                                               12
                                                                       9
                                                                                6 | 13
                                                                                                                                    16
                                                             11
           if A_1[i] \leq A_2[j]
6
                A[k] \leftarrow A_1[i]
                                                                                                          8
                                                                                                               10 | 12
                                                                                                                         14
                                                                                                                               15
                                                                         9
                                                                             11
                                                                                   13
                                                                                                                                    16
                                                         3
                                                             5
                                                                 6
                i \leftarrow i + 1
                x \leftarrow x - 1
9
                                                                3
                                                                           5
                                                                                6
                                                                                          8
                                                                                               9
                                                                                                     10
                                                                                                          11
                                                                                                               12
                                                                                                                    13
                                                                                                                         14
                                                                     4
           else A[k] \leftarrow A_2[j]
10
                j \leftarrow j + 1
11
12
                inversions \leftarrow inversions + x
```


return (*A*, *inversions*)

```
Merge - And - Count(A_1, A_2)
      m \leftarrow length(A_1) + length(A_2)
                                                                                   inversions=19
      x \leftarrow length(A_1)
                                                                                               x=0
      inversions \leftarrow 0
      i \leftarrow 1; j \leftarrow 1
      for k = 1 to m
                                                                 5
                                                                                                         15
                                                                                                               8
                                                                                                                   10
                                                                                                                        14
                                                                                                                              12
                                                                      9
                                                                               6 | 13
                                                                                                                                   16
                                                            11
           if A_1[i] \leq A_2[j]
6
                A[k] \leftarrow A_1[i]
                                                                                                         8
                                                                                                                   12
                                                                                                                        14
                                                                                                                              15
                                                                        9
                                                                             11
                                                                                   13
                                                                                                              10
                                                                                                                                    16
                                                         3
                                                            5
                                                                 6
                i \leftarrow i + 1
               x \leftarrow x - 1
9
                                                                3
                                                                          5
                                                                               6
                                                                                         8
                                                                                               9
                                                                                                    10
                                                                                                         11
                                                                                                              12
                                                                                                                   13
                                                                                                                        14
                                                                                                                             15
                                                                     4
           else A[k] \leftarrow A_2[j]
10
                j \leftarrow j + 1
11
12
                inversions \leftarrow inversions + x
```



```
Merge - And - Count(A_1, A_2)
      m \leftarrow length(A_1) + length(A_2)
                                                                                  inversions=19
      x \leftarrow length(A_1)
                                                                                              x=0
      inversions \leftarrow 0
      i \leftarrow 1; j \leftarrow 1
      for k = 1 to m
                                                                5
                                                                                                        15
                                                                                                              8
                                                                                                                 10
                                                                                                                       14
                                                                                                                             12
                                                                      9
                                                                              6 | 13
                                                                                                                                  16
                                                           11
           if A_1[i] \leq A_2[j]
6
                A[k] \leftarrow A_1[i]
                                                                                                        8
                                                                                                                 12
                                                                                                                       14
                                                                                                                            15
                                                                                                                                  16
                                                                       9
                                                                            11
                                                                                  13
                                                                                                            10
                                                        3
                                                           5
                                                                6
                i \leftarrow i + 1
               x \leftarrow x - 1
                                                               3
                                                                         5
                                                                              6
                                                                                        8
                                                                                             9
                                                                                                   10
                                                                                                       11
                                                                                                             12
                                                                                                                  13
                                                                                                                       14
                                                                                                                            15
                                                                                                                                 16
                                                                    4
           else A[k] \leftarrow A_2[j]
10
                j \leftarrow j + 1
11
12
               inversions \leftarrow inversions + x
13
      return (A, inversions)
```

```
Sort - And - Count(A)
           if (length(A) > 1)
                A_1 \leftarrow A[1 \cdots \lfloor n/2 \rfloor] \leftarrow \Theta(1)
                A_2 \leftarrow A[|n/2| + 1 \cdots n] \leftarrow \Theta(1)
                (A_1, A_1 inversions) \leftarrow Sort - And - Count(A_1) \leftarrow T(n/2)
                (A_2, A_{2 inversions}) \leftarrow Sort - And - Count(A_2) \leftarrow T(n/2)
5
                (A, A_{inversions}) \leftarrow Merge - And - Count(A_1, A_2) \leftarrow \Theta(n)
6
           return A
```


Counting inversions: divide-and-conquer algorithm analysis

- Proposition. The sort-and-count algorithm counts the number of inversions in a permutation of size n in $O(n \log n)$ time.
- **Proof:** The worst-case running time T(n) satisfies the recurrence:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T\left(\frac{n}{2}\right) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Chapter 5: **Divide and Conquer**

Section 5.4: Closed Pair of Points

• Closest pair problem: Given *n* points in the plane, find a pair of points with the smallest Euclidean distance between them.

• Closest pair problem. Given n points in the plane, find a pair of points with the smallest Euclidean distance between them.

• Closest pair problem. Given n points in the plane, find a pair of points with the smallest Euclidean distance between them.

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17)

Closest pair of points: Sorting Solution

Sort points by x-coordinate

(3, 9, 12, 5, 2, 7, 14, 15, 16, 1, 8, 6, 13, 11, 10, 4)

• Divide: draw vertical line L so that n / 2 points on each side.

(3, 9, 12, 5, 2, 7, 14, 15)

• Conquer: find closest pair in each side recursively.

(3, 9, 12, 5, 2, 7, 14, 15)

• Conquer: find closest pair in each side recursively.

 $d = \min(dl, dr)$

(3, 9, 12, 5, 2, 7, 14, 15)

 $d = \min(dl, dr)$

(3, 9, 12, 5, 2, 7, 14, 15)

• Closest pair problem. Given *n* points in the plane, find a pair of points with the smallest Euclidean distance between them.

 $d = \min(dl, dr)$

(3, 9, 12, 5, 2, 7, 14, 15)

Observation: suffices to consider only those points within d of line L

 $d=\min(dl,dr)$

(3, 9, 12, 5, 2, 7, 14, 15)

ullet Observation: suffices to consider only those points within d of line L

 $d = \min(dl, dr)$

(14,15,16,1)

Reorder based on Y-axis

 $d = \min(dl, dr)$

Closest Pair: Live Poll 1

What is the complexity of this algo?

- A. n^2
- B. $n^2 log^2 n$
- C. n log n
- $D. n log^2 n$

Scan the QR code to vote or go to https://forms.office.co m/r/zKJjPb1tCK

Closet Pair: Live Poll 1

Only people in my organization can respond, Record name

1. What is the complexity of this algo?

Scan the QR code to vote or go to https://forms.office.co m/r/zKJjPb1tCK

36 responses

< 1/1 >

Finding Closest Point Algorithm

 $\rightarrow O(n \log n)$ Sort points based on X-coordinates CLOSEST-PAIR($p_1, p_2, ..., p_n$) Compute vertical line L such that half the points $\rightarrow O(n)$ are on each side of the line. $\delta_1 \leftarrow \text{CLOSEST-PAIR}(\text{points in left half}).$ \rightarrow T(n/2) $\delta_2 \leftarrow \text{CLosest-Pair}(\text{points in right half}).$ $\rightarrow \mathsf{T}(n/2)$ $\delta \leftarrow \min \{ \delta_1, \delta_2 \}.$ $\rightarrow 0(1)$ $A \leftarrow \text{list of all points closer than } \delta \text{ to line } L.$ $\rightarrow O(n)$ Sort points in *A* by *y*-coordinate. $\rightarrow O(n \log n)$ Scan points in A in y-order and compare distance between each point and next $\rightarrow O(n)$ 7 neighbors. $\rightarrow 0(1)$ If any of these distances is less than δ , update δ . Return δ .

Finding Closest Point Algorithm

$$O(n \log n) + O(\log n).(O(n) + O(1) + O(n) + O(n \log n) + O(n) + O(1))$$

$$O(n \log^2 n)$$

Can we bring it down to $n \log n$?

One Last Thing... Yup

Sorted X-axis

(3, 9, 12, 5, 2, 7, 15, 14, 16, 1, 8, 6, 13, 11, 10, 4)

Sorted Y-axis

(13, 8, 16, 3, 15, 2, 12, 6, 10, 5, 1, 7, 9, 11, 14, 4)

Sort points based on X-coordinates $O(n \log n)$

CLOSEST-PAIR $(p_1, p_2, ..., p_n)$

Return δ .

Compute vertical line L such that half the points _____ $\rightarrow O(n)$ are on each side of the line. $\delta_1 \leftarrow \text{CLOSEST-PAIR}(\text{points in left half}).$ $\rightarrow \mathsf{T}(n/2)$ $\delta_2 \leftarrow \text{CLOSEST-PAIR}(\text{points in right half}).$ $\rightarrow \mathsf{T}(n/2)$ $\delta \leftarrow \min \{ \delta_1, \delta_2 \}.$ $\rightarrow 0(1)$ $A \leftarrow \text{list of all points closer than } \delta \text{ to line } L.$ $\rightarrow O(n)$ Sort points in *A* by *y*-coordinate. $\rightarrow O(n \log n)$ Scan points in A in y-order and compare distance between each point and next 7 neighbors. If any of these distances is less than δ , update δ .

Sort points based on X-coordinates

Sort points based on Y-coordinates $O(n \log n)$ $O(n \log n)$

CLOSEST-PAIR $(p_1, p_2, ..., p_n)$

Return δ .

Compute vertical line L such that half the points $\rightarrow O(n)$ are on each side of the line. $\delta_1 \leftarrow \text{CLOSEST-PAIR}(\text{points in left half}).$ \rightarrow T(n/2) $\delta_2 \leftarrow \text{CLosest-Pair}(\text{points in right half}).$ $\rightarrow \mathsf{T}(n/2)$ $\delta \leftarrow \min \{\delta_1, \delta_2\}.$ **→** 0(1) $A \leftarrow \text{list of all points closer than } \delta \text{ to line } L.$ $\rightarrow O(n)$ Sort points in A by y-coordinate. $\rightarrow O(n \log n)$ Scan points in A in y-order and compare distance between each point and next 7 neighbors. If any of these distances is less than δ , update δ .

98

Sort points based on X-coordinates
Sort points based on Y-coordinates $O(n \log n)$ $O(n \log n)$

CLOSEST-PAIR $(p_1, p_2, ..., p_n)$

Compute vertical line L such that half the points $\rightarrow O(n)$ are on each side of the line. $\delta_1 \leftarrow \text{CLOSEST-PAIR}(\text{points in left half}).$ \rightarrow T(n/2) $\delta_2 \leftarrow \text{CLosest-Pair}(\text{points in right half}).$ \rightarrow T(n/2) $\delta \leftarrow \min \{\delta_1, \delta_2\}.$ **→** 0(1) $A \leftarrow \text{list of all points closer than } \delta \text{ to line } L.$ $\rightarrow O(n)$ Sort points in A by y-coordinate. $\rightarrow O(n)$ Scan points in A in y-order and compare distance between each point and next $\rightarrow O(n)$ 7 neighbors. If any of these distances is less than δ , update δ . Return δ .

(3, 6, 8, 5, 2, 7, 1, 4) $\{(1,8),(2,2),(3,4),(4,5),(5,6),(7,4),(8,1),(8,7)\}$

$$(1, 6, 7, 5, 8, 2, 4, 3)$$

 $\{(8,1),(2,2),(7,4),(4,5),(3,6),(5,6),(8,7),(1,8)\}$

(3, 6, 8, 5, 2, 7, 1, 4) $\{(1,8),(2,2),(3,4),(4,5),(5,6),(7,4),(8,1),(8,7)\}$

$$(1, 6, 7, 5, 8, 2, 4, 3)$$

 $\{(8,1),(2,2),(7,4),(4,5),(3,6),(5,6),(8,7),(1,8)\}$

(3, 6, 8, 5)(2, 7, 1, 4) $\{(1,8),(2,2),(3,4),(4,5)\}\{(5,6),(7,4),(8,1),(8,7)\}$

$$(1, 6, 7, 5, 8, 2, 4, 3)$$

 $\{(8,1),(2,2),(7,4),(4,5),(3,6),(5,6),(8,7),(1,8)\}$

$$(3,6,8,5)(2,7,1,4)$$

 $\{(1,8),(2,2),(3,4),(4,5)\}\{(5,6),(7,4),(8,1),(8,7)\}$

$$(1, 6, 7, 5, 8, 2, 4, 3)$$

 $\{(8,1),(2,2),(7,4),(4,5),(3,6),(5,6),(8,7),(1,8)\}$
If $(X_coordinate = < 4)$

$$(3,6,8,5)(2,7,1,4)$$

 $\{(1,8),(2,2),(3,4),(4,5)\}\{(5,6),(7,4),(8,1),(8,7)\}$

$$(1, 6, 7, 5, 8, 2, 4, 3)$$

 $\{(8,1),(2,2),(7,4),(4,5),(3,6),(5,6),(8,7),(1,8)\}$
If $(X_coordinate = < 4)$

$$(3,6,8,5)(2,7,1,4)$$

 $\{(1,8),(2,2),(3,4),(4,5)\}\{(5,6),(7,4),(8,1),(8,7)\}$

$$(3,6,8,5)(2,7,1,4)$$

 $\{(1,8),(2,2),(3,4),(4,5)\}\{(5,6),(7,4),(8,1),(8,7)\}$

$$(3,6,8,5)(2,7,1,4)$$

 $\{(1,8),(2,2),(3,4),(4,5)\}\{(5,6),(7,4),(8,1),(8,7)\}$

$$(1, 6, 7, 5, 8, 2, 4, 3)$$

 $\{(8,1),(2,2),(7,4),(4,5),(3,6),(5,6),(8,7),(1,8)\}$
If $(X_coordinate = < 4)$
 $6 5$
 $(2,2) (4,5)$
else ()
 $1 7$
 $(8,1) (7,4)$

$$(3,6,8,5)(2,7,1,4)$$

 $\{(1,8),(2,2),(3,4),(4,5)\}\{(5,6),(7,4),(8,1),(8,7)\}$

$$(1, 6, 7, 5, 8, 2, 4, 3)$$

 $\{(8,1),(2,2),(7,4),(4,5),(3,6),(5,6),(8,7),(1,8)\}$
If $(X_coordinate = < 4)$
 $6 5 8$
 $(2,2) (4,5) (3,6)$
else ()
 $1 7$
 $(8,1) (7,4)$

$$(3,6,8,5)(2,7,1,4)$$

 $\{(1,8),(2,2),(3,4),(4,5)\}\{(5,6),(7,4),(8,1),(8,7)\}$

$$(1, 6, 7, 5, 8, 2, 4, 3)$$

 $\{(8,1),(2,2),(7,4),(4,5),(3,6),(5,6),(8,7),(1,8)\}$
If $(X_coordinate = < 4)$
 $6 5 8$
 $(2,2) (4,5) (3,6)$
else ()
 $1 7 2$
 $(8,1) (7,4) (5,6)$

$$(3,6,8,5)(2,7,1,4)$$

 $\{(1,8),(2,2),(3,4),(4,5)\}\{(5,6),(7,4),(8,1),(8,7)\}$

$$(1, 6, 7, 5, 8, 2, 4, 3)$$

 $\{(8,1),(2,2),(7,4),(4,5),(3,6),(5,6),(8,7),(1,8)\}$
If $(X_coordinate = < 4)$
 $6 5 8$
 $(2,2) (4,5) (3,6)$
else ()
 $1 7 2 4$
 $(8,1) (7,4) (5,6) (8,7)$

$$(3,6,8,5)(2,7,1,4)$$

 $\{(1,8),(2,2),(3,4),(4,5)\}\{(5,6),(7,4),(8,1),(8,7)\}$

Thanks a lot

If you are taking a Nap, wake up.....Lecture Over