# Optique géométrique – corrigé

# /30 E1 Étude de quelques lentilles minces

D'après IESSA 2022

## A Lentille convergente de focale donnée

1 On obtient donc une image <u>réelle</u>, <u>renversée</u> et de <u>même taille</u> que l'objet. Avec la relation de DES-CARTES :

$$\frac{1}{f'} = \frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}}$$

$$\Leftrightarrow \frac{1}{\overline{OA'}} = \frac{1}{\overline{OA}} + \frac{1}{f'} = \frac{\overline{OA} + f'}{\overline{OA}f'}$$

$$\Leftrightarrow \overline{\overline{OA'}} = \frac{\overline{OA}f'}{\overline{OA} + f'} \quad \text{avec} \quad \begin{cases} \overline{OA} = -40 \text{ cm} \\ f' = 20 \text{ cm} \end{cases}$$

$$A.N. : \overline{OA'} = 40 \text{ cm}$$



De plus,

$$\boxed{\gamma = \frac{\overline{OA'}}{\overline{OA}}} \quad \text{avec} \quad \begin{cases} \overline{OA'} = 40 \, \text{cm} \\ \overline{OA} = -20 \, \text{cm} \end{cases}$$

$$A.N. : \gamma = -1$$

2 On obtient donc une image <u>virtuelle</u>, <u>droite</u> et agrandie. Avec la relation de DESCARTES :

$$\boxed{ \overline{\mathrm{OA'}} = \frac{\overline{\mathrm{OA}} \, f'}{\overline{\mathrm{OA}} + f'} } \quad \text{avec} \quad \begin{cases} \overline{\mathrm{OA}} = -10 \, \mathrm{cm} \\ f' = 20 \, \mathrm{cm} \end{cases}$$

$$\text{A.N.} : \overline{\mathrm{OA'}} = -20 \, \mathrm{cm}$$

De plus,

$$\boxed{\gamma = \frac{\overline{OA'}}{\overline{OA}}} \quad \text{avec} \quad \begin{cases} \overline{OA'} = -20 \, \text{cm} \\ \overline{OA} = -10 \, \text{cm} \end{cases}$$

$$A.N. : \gamma = +2$$



3 On obtient donc une image <u>réelle</u>, <u>droite</u> et <u>rétrécie</u>. Avec la relation de DESCARTES :



De plus,

$$\boxed{\gamma = \frac{\overline{OA'}}{\overline{OA}}} \quad \text{avec} \quad \begin{cases} \overline{OA'} = 10 \, \text{cm} \\ \overline{OA} = 20 \, \text{cm} \end{cases}$$

$$A.N. : \gamma = +0.5$$



#### B Lentille convergente quelconque

- 4 Les questions 1 et 2 montrent que pour un objet réel, une lentille convergente peut donner aussi bien une image réelle (question 1) que virtuelle (question 2). Donc pour l'image d'un objet réel à travers une lentille convergente, les deux cas peuvent se présenter.
- $\overline{5}$  Nous avons vu qu'avec la relation de Descartes, en isolant  $\overline{OA'}$  on obtenuit

$$\overline{\mathrm{OA'}} = \frac{\overline{\mathrm{OA}}f'}{\overline{\mathrm{OA}} + f'}$$

Si l'objet est virtuel, alors  $\overline{OA} > 0$ . Or, la lentille est convergente, donc f' > 0. Ainsi,  $\overline{OA'} > 0$ . En conclusion, l'image d'un objet virtuel au travers d'une lentille convergente est toujours réelle.

# C Lentille divergente quelconque

- $\boxed{6}$  De même que précédemment, le calcul de  $\boxed{\text{OA}'}$  avec un objet réel  $(\boxed{\text{OA}} < 0)$  pour une lentille divergente (f' < 0) implique que  $\boxed{\text{OA}'} < 0$ . Ainsi, l'image d'un objet réel à travers une lentille divergente est donc toujours virtuelle.
- Tette fois, si  $\overline{OA} > 0$  et f' < 0, alors  $\overline{OA'}$  peut changer de signe selon les valeurs de  $\overline{OA}$  et f': le produit est toujours négatif, mais  $\overline{OA} + f' > 0$  si  $\overline{OA} > f'$  et inversement.

Ainsi, pour un objet virtuel au travers d'une lentille divergente, les deux cas peuvent se présenter.



FIGURE 1.1 – Image réelle ou virtuelle pour une lentille divergente.

## /50 E2

#### Instruments d'optique à l'infini

#### D'après CCP PC 2015

#### Les deux parties sont indépendantes.

# A Principe du téléobjectif

I L'objet étant à l'infini, l'image intermédiaire  $\overline{A_1B_1}$  est située dans le plan focal image de la lentille  $\mathcal{L}_1$ . L'image finale  $\overline{A'B'}$  étant rejetée à l'infini, l'image intermédiaire  $\overline{A_1B_1}$  est aussi située dans le plan focal objet de la lentille  $\mathcal{L}_3$ . On en déduit que les foyer image  $F'_1$  et objet  $F_3$  sont confondus :

$$A_{\infty} \xrightarrow{(L_1)} A_1 = F_1' = F_3 \xrightarrow{(L_3)} A_{\infty}'$$

On obtient donc  $\overline{\mathrm{O}_1\mathrm{O}_3} = \overline{\mathrm{O}_1\mathrm{F}_1'} + \overline{\mathrm{F}_1'\mathrm{F}_3} + \overline{\mathrm{F}_3\mathrm{O}_3} = \overline{\mathrm{O}_1\mathrm{F}_1'} + \overline{\mathrm{F}_3\mathrm{O}_3}$  d'où  $\overline{\mathrm{O}_1\mathrm{O}_3} = f_1' + f_3'$ 

- La relation de conjugaison de Descartes appliquée à la lentille  $\mathcal{L}_3$  s'écrit  $\frac{1}{\overline{O_3A_1}} \frac{1}{\overline{O_3A_1}} = \frac{1}{f_3'}$ . Pour amener l'image définitive sur la plaque, il faut diminuer la distance  $\overline{O_3A_1} = \overline{O_3F_1'}$ . Il faut donc rapprocher la lentille  $\mathcal{L}_3$  du plan focal image de la lentille  $\mathcal{L}_1$  et donc écarter les deux lentilles  $\mathcal{L}_1$  et  $\mathcal{L}_3$  l'une de l'autre.
- 3 On obtient



 $\boxed{4}$  D'après la formule de conjugaison de Newton appliquée à la lentille  $\mathcal{L}_3$  :

$$\overline{F_3A_1}.\overline{F_3'A'} = -f_3'^2 \text{ soit } \overline{F_3F_1'}.\overline{F_3'P} = -f_3'^2 \text{ d'où } \overline{F_1'F_3} = \frac{f_3'^2}{\overline{F_3'P}} = \frac{f_3'^2}{\overline{F_3'O_3} + \overline{O_3P}}$$

On about it à  $\left|\overline{\mathbf{F}_1'\mathbf{F}_3} = \frac{f_3'^2}{\overline{\mathbf{O}_3\mathbf{P}} - f_3'}\right| : \overline{\mathbf{F}_1'\mathbf{F}_3} = 0,69\,\mathrm{cm}$ 

La taille de l'image intermédiaire est donnée par la relation  $\overline{\overline{A_1B_1}} = \alpha f_1'$  (en raisonnant dans le triangle  $O_1F_1'B_1$ ).

La taille de l'image définitive est donnée par la relation  $\overline{A'B'} = \gamma_3 \overline{\overline{A_1B_1}} = \gamma_3 \alpha f_1'$ .

 $\gamma_3$  est le grandissement introduit par la lentille  $\mathcal{L}_3$  dont l'expression est donnée par la formule de Newton :

$$\gamma_3 = \frac{f_3'}{\overline{F_3}\overline{F_1'}} = -\frac{f_3'}{\overline{F_1'}\overline{F_3}}$$
. On en déduit  $\overline{\overline{A'B'}} = -\frac{f_3'}{\overline{F_1'}\overline{F_3}}\alpha f_1'$ :  $\underline{\overline{A'B'}} = -4.3 \,\mathrm{cm}$ .

#### B Principe de la lunette astronomique

6 <u>L'observation à l'infini</u> se fait sans fatigue d'accommodation. Il faut donc que l'image objective se forme dans le plan focal objet de l'oculaire. La lunette visant un objet à l'infini en forme une image objective dans le plan focal image de l'objectif : ainsi, le plan focal image de l'objectif est confondu avec le plan focal objet de l'oculaire.

Le système est afocal, il n'a pas de foyers et il donne d'un objet à l'infini une image finale rejetée à l'infini.

[7] Les rayons traversant un système optique centré dans les conditions de Gauss sont <u>paraxiaux</u>, c'est-à-dire peu écartés de l'axe optique et peu inclinés par rapport à cet axe. On trace le rayon incident passant par le



centre optique  $O_1$  de l'objectif, faisant un angle  $\theta$  avec l'axe optique. Ce rayon n'est pas dévié. Ce rayon arrive sur l'oculaire de façon quelconque. On trace la parallèle à ce rayon passant par le centre optique  $O_2$  de l'oculaire. Le rayon émergent passe par le point d'intersection de la parallèle tracée et du plan focal image de l'oculaire.

Les deux rayons émergeant de l'oculaire sur le schéma ci-dessus sont parallèles entre eux. Ils proviennent d'un même point objet qui est un foyer secondaire objet pour l'oculaire. Ce point est noté  $B_1$  sur le schéma ci-dessus.

8 Le rayon incident forme un angle  $\theta \ll 1$  rad avec l'axe optique. La lunette astronomique travaille dans les conditions de Gauss donc  $\theta' \ll 1$  rad d'où  $\tan(\theta) = \theta$  et  $\tan(\theta') = \theta'$ .

On a donc, en exprimant  $\tan(\theta)$  et  $\tan(\theta')$  dans les triangles rectangles  $O_1F_1'B_1$  et  $O_2F_2B_1$  en allégant les notations puisque les angles ne sont pas orientés :

$$\theta=\frac{F_1'B_1}{f_1'}$$
 et  $\theta'=\frac{F_2'B_1}{f_2'}.$  On en déduit  $\boxed{G=\frac{f_1'}{f_2'}}:\underline{G=50}$ 

- 9 Le faisceau incident parallèle à l'axe optique émerge de l'objectif en convergeant vers le foyer principal image  $F_1'$  de l'objectif. Comme ce point est confondu avec l foyer principal objet  $F_2$  de l'oculaire, le faisceau émergent est un faisceau de rayons parallèles à l'axe optique.
- Comme on travaille avec des grandeurs non algébriques, on peut appliquer le théorème de Thalès dans les triangles  $MO_1F_1'$  et  $F_2O_2Q$ , ainsi :  $\frac{f_2'}{f_1'} = \frac{PQ}{2}/\frac{MN}{2}$  soit encore  $\frac{f_2'}{f_1'} = \frac{D}{D_1}$ .

On en conclut que  $D = \frac{D_1}{G}$ 

11 On calcule :  $D = 2.0 \,\mathrm{mm}$ 

Comme  $D < D_2$ , c'est bien le diamètre  $D_1$  de l'objectif qui limite le diamètre du faisceau émergent.



On représente le chemin des rayons lumineux du faisceau incident incliné d'un angle  $\theta$  plus important par rapport à l'axe optique (on suppose les conditions de Gauss toujours vérifiées) : les rayons déviés par l'objectif convergent en un point du plan focal image de l'objectif (foyer secondaire image).



- On remarque que <u>ces rayons ne frappent pas l'oculaire</u> car ils sont arrêtés par la monture. Ainsi, la monture de l'oculaire délimite la zone de l'espace objet qui peut donner une image par la lunette : c'est le diaphragme de champ.
- L'aberration chromatique d'une lentille provient du fait que l'<u>indice optique</u> du milieu la constituant dépend de la longueur d'onde de la radiation lumineuse considérée.

Le milieu constituant la lentille est un milieu dispersif.

# P1 Étude de pierres précieuses

#### D'après CCP 2007 PC

# A Réfractomètre à réflexion interne totale

Comme  $n_2 < n_1$ , le rayon réfracté est plus éloigné de la normale au point d'incidence que le rayon incident. De ce fait, au delà d'un angle d'incidence  $i_{1\ell}$ , le rayon réfracté n'existe plus : il y a réflexion totale. Pour déterminer  $i_{1\ell}$ , on se place dans la situation où la réfraction est rasante et on utilise la loi de la réfraction de Snell-Descartes :

$$n_1 \sin(i_{1\ell}) = n_2 \sin(\pi/2)$$
 soit  $i_{1\ell} = \arcsin\left(\frac{n_2}{n_1}\right)$ 

Ainsi, pour  $i>i_{1\ell}$  le rayon est totalement réfléchi.



- 2 Le spectre de la lumière blanche est « étalé » par le verre : on met en évidence le fait que le verre est un milieu dispersif.
- 3 La zone 1 est éclairée par les rayons d'angle d'incidence inférieur à l'angle d'incidence limite de réflexion totale. Une partie de l'énergie de ces rayons a donc été perdue par réfraction dans la gemme avant d'arriver jusqu'à la zone graduée. La zone 2 est éclairée par des rayons qui ont subi une réflexion totale sur la gemme : aucune énergie lumineuse n'a été perdue dans la gemme.

La zone 1 est donc la zone sombre et la zone 2 est la zone claire.

L'angle d'incidence qui marque la limite entre les deux zones est l'angle limite de réfraction. On utilise donc le résultat de la question ?? avec  $n_1 = n_v = 1,96$  et  $n_2 = n_g = 1,55$ :

$$i_{\ell} = 52,3^{\circ}$$

Dour la moissanite,  $n_g > n_v$  il n'y a donc plus de réflexion totale possible sur la face inférieure de la gemme : il y a toujours réfraction et réflexion en même temps. Ainsi, il n'existe plus de zone nettement plus sombre : le réfractomètre ne peut pas être utilisé pour la moissanite.

# B Identification qualitative de pierres précieuses

- 6 La moissanite a une masse volumique plus faible que celle du liquide contrairement aux deux autres : elle va donc être la seule à flotter. Ceci permet d'identifier immédiatement la moissanite.
- 7 On obtient les figures proposées ci-dessous en se rappelant qu'en entrant dans un milieu plus réfringent que le milieu incident, les rayons se rapprochent de la normale (et inversement si le milieu est moins réfringent).
- 8 On constate que, dans le cas  $n_g > n_{\text{liq}}$ , la lumière se concentre sous les arêtes (zones de forte intensité) et s'éloigne des bords (zones de faible intensité). Dans le cas  $n_g < n_{\text{liq}}$ , la lumière s'éloigne des arêtes (zones de faible intensité) mais reste sous les bords (zones de forte intensité).

On en déduit que la pierre numéro 1 correspond au cas où  $n_g < n_{\text{liq}}$ : c'est donc le verre flint (1,64<1,75).

Inversement la pierre numéro 2 correspond au cas où  $n_g < n_{\text{liq}}$ : c'est donc le zircon (1,95>1,75).



(a) Cas où  $n_g > n_{\text{liq}}$ 



(b) Cas où  $n_g < n_{\text{liq}}$ 

Figure 1.2 - Annexe complétée problème 2

/50 P1 Image au fond d'un gobelet

D'après CCP 2012 PC



A Visibilité d'un objet situé dans le plan focal objet

1 Dans l'approximation de Gauss, on ne considère que les rayons paraxiaux, c'est-à-dire les rayons proches de l'axe optique et faiblement inclinés par rapport à l'axe optique.



2



3

4 Dans le triangle SAE' rectangle en  $A: \tan(\alpha) = \frac{EE'}{2SF}$ 

Dans le triangle KDP' rectangle en  $K: \tan(\alpha) = \frac{DD' + PP'}{2SO}$ 

On en déduit

$$EE' = \frac{(DD' + PP') \cdot SF}{SO} = 1,56 \,\text{mm} \quad ; \quad \tau_1 = 6 \cdot 10^{-3}$$

#### B Visibilité d'un objet situé entre le plan focal et la lentille

 $\boxed{5}$  On note  $A_2$ , l'image de A à travers la lentille. D'après la relation de conjugaison de Descartes

$$\frac{1}{\overline{SA_2}} - \frac{1}{\overline{SA}} = \frac{1}{f'} \quad \Leftrightarrow \quad \overline{SA_2} = \frac{f' \cdot \overline{SA}}{f' + \overline{SA}} = -18 \,\mathrm{mm}$$

 $\overline{SA_2} < 0$ , donc l'image est virtuelle, ce qui est normal car l'objet est dans la "zone loupe" de la lentille convergente, c'est-à-dire entre le foyer objet principal objet et la lentille.

D'après la relation du grandissement de Descartes,

$$\gamma = \frac{\overline{SA_2}}{\overline{SA}} = 1.5$$

On en déduit  $B_2B_2' = \gamma BB' = 30 \,\mathrm{mm}$ 

 $\boxed{6}$  Un carreau correspond à 3 cm. On a bien  $\overline{SA_2} = -18$  mm. L'image est virtuelle et est 1,5 fois plus grande.



 $\boxed{7}$  La distance entre l'œil et le plan image  $B_2B_2'$  est  $\boxed{\overline{\mathrm{A_2O}} = 218\,\mathrm{mm}}$ .

Soient C et C' les points extrêmes de l'image  $B_2B_2'$  visible depuis O. Les triangles ODD' et OCC' sont semblables, donc d'après Thalès :

$$CC' = \frac{A_2O}{SO} \times DD' = 21.8 \,\mathrm{mm}$$

On constate que  $CC' < B_2B_2'$ , donc on ne voit qu'une partie de l'image.

On en déduit  $\boxed{\tau_2 = \left(\frac{CC'}{B_2 B_2'}\right)^2 = 0.53}.$ 

# C Distance focale de lentilles minces accolées

 $\boxed{8}$  Par identification avec la relation de conjugaison de Descartes en posant S le centre optique de la lentille,

$$f_1' = \frac{n_1 \overline{\text{CS}}}{n_2 - n_1} = 12 \,\text{mm}$$

9 De même, 
$$f_2' = \frac{n_1 \overline{\text{CS}}}{n_2 - n_3} = 35 \,\text{mm}$$
.

Dans ce qui précède, sans liquide, il n'y a que 0.6% de la surface de l'image  $B_2B_2'$  visible, tandis qu'avec le liquide il y en a 53%. Donc l'image devient visible.