CSE276C - Linear Systems of Equations

Computer Science and Engineering University of California, San Diego http://cri.ucsd.edu

October 2020

Outline

- Linear Systems of Equations
- Solution Techniques Gauss Jordan
- Matrix Decomposition
- Matrix Factorization
- Singular Value Decomposition
- Rank and sensitivity

Material

- Numerical Recipes: Chapter 2
- Math for ML: Chapter 2.1-2.3

Example: Camera calibration

Example: Plane Estimation

Linear Systems of Equations

• One of the most basic tasks is solve for a set of unknowns

$$\begin{array}{rcl} a_{00}x_0 + a_{01}x_1 + a_{02}x_2 + \dots + a_{0n-1}x_{n-1} & = & b_0 \\ a_{10}x_0 + a_{11}x_1 + a_{12}x_2 + \dots + a_{1n-1}x_{n-1} & = & b_1 \\ \vdots & & & \vdots \end{array}$$

 $a_{m-10}x_0 + a_{m-11}x_1 + a_{m-12}x_2 + \ldots + a_{m-1,n-1}x_{n-1} = b_{m-1}$

Linear Systems of Equations

One of the most basic tasks is solve for a set of unknowns

$$\begin{array}{rcl} a_{00}x_0 + a_{01}x_1 + a_{02}x_2 + \dots + a_{0n-1}x_{n-1} & = & b_0 \\ a_{10}x_0 + a_{11}x_1 + a_{12}x_2 + \dots + a_{1n-1}x_{n-1} & = & b_1 \\ \vdots & & \vdots & & & \end{array}$$

which we can rewrite

$$A\vec{x} = \vec{b}$$

 $a_{m-10}x_0 + a_{m-11}x_1 + a_{m-12}x_2 + \ldots + a_{m-1,n-1}x_{n-1} = b_{m-1}$

where

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{01} & \cdots & a_{0n-1} \\ a_{10} & a_{11} & a_{11} & \cdots & a_{1n-1} \\ & & \vdots & & \\ a_{m-10} & a_{m-11} & a_{m-11} & \cdots & a_{m-1n-1} \end{pmatrix}, \vec{b} = \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_{m-1} \end{pmatrix}$$

Matrix Properties

- Given an $m \times n$ matrix A we define
 - Column space Linear combination of columns
 - Row space Linear combination of row
- We can consider A a mapping:

$$A: \mathbb{R}^{n} \to \mathbb{R}^{m}$$

$$\begin{pmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{n-1} \end{pmatrix} \to \begin{pmatrix} b_{0} \\ b_{1} \\ \vdots \\ b_{m-1} \end{pmatrix} = A \begin{pmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{n-1} \end{pmatrix}$$

ullet Column space of A is vector subspace of R^m that image vectors under A

Null Space

• We define the null-space: set of vectors $x \in \mathbb{R}^n$ where

$$Ax = 0$$

• The row space and the null space are complementary

$$n = dim(row \ space) + dim(null \ space)$$

Questions

Questions

Matrix properties

• Consider the square matrix A. The square matrix B is the inverse if

$$AB = I_n = BA$$

and we denote this A^{-1} .

- If the inverse exists the matrix is called regular/invertable/non-singular
- Inverse matrices are unique
- If the determinant of A: det(A) is zero the matrix is singular
- ullet The transpose of A is denoted A^T and elements of the transpose are $a_{ji}^T=a_{ij}$
- useful properties

$$\begin{array}{rcl}
AA^{-1} & = & I = A^{-1}A \\
(AB)^{-1} & = & B^{-1}A^{-1} \\
(A+B)^{-1} & \neq & A^{-1} + B^{-1} \\
(A^{T})^{T} & = & A \\
(A+B)^{T} & = & A^{T} + B^{T} \\
(AB)^{T} & = & B^{T}A^{T}
\end{array}$$

Singular matrices

- A matrix A is singular iff
 - det(A) = 0
 - rank(A) < n
 - rows of A are not linearly independent
 - columns of A are not linearly independent
 - the dimension of the null-space of A is non-zero
 - A is not invertible

Gauss-Jordan Elimination

- How can we solve the equation system?
- The standard form

$$A\vec{x} = \vec{b} \rightarrow U\vec{x}' = \vec{b}'$$

where

$$U = \begin{pmatrix} d_0 & U'_m \\ & \ddots & \\ 0 & d_{n-1} \end{pmatrix}$$

Gauss-Jordan Elimination

- How can we solve the equation system?
- The standard form

$$A\vec{x} = \vec{b} \rightarrow U\vec{x}' = \vec{b}'$$

where

$$U = \left(\begin{array}{ccc} d_0 & & U'_m \\ & \ddots & \\ 0 & & d_{n-1} \end{array}\right)$$

- Two different approaches:
 - **1** Gauss Elimination Ux' = b'
 - 2 Gauss Jordan $Dx^* = b^*$

Allows for direct back substitution

$$\begin{pmatrix} 0 & 4 & -1 \\ 1 & 1 & 1 \\ 2 & -2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 0 & 4 & -1 & 5 \\ 1 & 1 & 1 & 6 \\ 2 & -2 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 4 & -1 \\ 1 & 1 & 1 \\ 2 & -2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 0 & 4 & -1 & | & 5 \\ 1 & 1 & 1 & | & 6 \\ 2 & -2 & 1 & | & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 4 & -1 & | & 5 \\ 2 & -2 & 1 & | & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 5 & 1 & | & 2 & | & 2 & | & 2 \\ 2 & -2 & 1 & | & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 4 & -1 \\ 1 & 1 & 1 \\ 2 & -2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 4 & -1 & | & 5 \\ 1 & 1 & 1 & | & 6 \\ 2 & -2 & 1 & | & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & -1 \\ 2 & -2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 4 & -1 & | & 5 \\ 2 & -2 & 1 & | & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & -1 \\ 0 & -4 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ -11 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 4 & -1 & | & 5 \\ 0 & -4 & -1 & | & -11 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 4 & -1 \\ 1 & 1 & 1 \\ 2 & -2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 4 & -1 & | & 5 \\ 1 & 1 & 1 & | & 6 \\ 2 & -2 & 1 & | & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & -1 \\ 2 & -2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 4 & -1 & | & 5 \\ 2 & -2 & 1 & | & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & -1 \\ 0 & -4 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ -11 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 4 & -1 & | & 5 \\ 0 & -4 & -1 & | & -11 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & -1 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ -6 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 4 & -1 & | & 5 \\ 0 & 0 & -2 & | & -6 \end{pmatrix}$$

Grauss Elimination → Gauss Jordan

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 4 & -1 & | & 5 \\ 0 & 0 & 1 & | & 3 \end{pmatrix}$$

Grauss Elimination \rightarrow Gauss Jordan

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 4 & -1 & | & 5 \\ 0 & 0 & 1 & | & 3 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 8 \\ 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 4 & 0 & | & 8 \\ 0 & 0 & 1 & | & 3 \end{pmatrix}$$

Grauss Elimination → Gauss Jordan

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 4 & -1 & | & 5 \\ 0 & 0 & 1 & | & 3 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 8 \\ 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 4 & 0 & | & 8 \\ 0 & 0 & 1 & | & 3 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 4 & 0 & | & 8 \\ 0 & 0 & 1 & | & 3 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 3 \end{pmatrix}$$

Grauss Elimination \rightarrow Gauss Jordan

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 4 & -1 & | & 5 \\ 0 & 0 & 1 & | & 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 8 \\ 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 4 & 0 & | & 8 \\ 0 & 0 & 1 & | & 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \\ 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 3 \end{pmatrix}$$

Questions

Questions

Matrix Decomposition

• Given an $m \times n$ matrix we can write A in the form

$$PA = LDU$$

- where:
 - P is an $m \times m$ permutation matrix that specs row interchanges
 - L is a lower triangular matrix with 1 along the diagonal
 - U is a upper triangular matrix with 1 along the diagonal
 - D is a square diagonal only matrix
- If A is a symmetric positive definite then $U = L^T$ and D has strictly positive diagonal elements

Solving the matrix system

Our objective is to solve

$$LDUx = Pb$$
 which we can solve
 $Ly = Pb$ (solve for y)
 $Ux = D^{-1}y$ (solve for x)

• Enable use of forward / backward substitution

Square - Full Rank Matrices

• If A is a square $n \times n$ matrix with n linearly independent eigen vectors, then

$$A = SES^{-1}$$

where

- E is a diagonal matrix where elements are the eigenvalues of A
- ullet S is a matrix where the columns are the eigenvectors of A
- Any solution is then a linear combination of basis vectors. Useful for example for sub-space methods (discussed later)

Matrix factorization based on A^TA

- We will look at QR and SVD decompositions in more detail
- Consider A has independent columns then we can factorize

$$A = QR$$

where Q is $m \times n$ and R is $n \times n$

- Q has the same column space as A but it is orthonormal, i.e., $Q^TQ = I$
- R is upper triangular
- Two possible approaches:
 - Use Gram Schmidt to orthogonalize A. The columns are now an orthonormal basis, R is computed by keep track of the G-S operations. R expresses the linear combinations of Q to form A.
 - i) Form A^TA , ii) compute LDU factorization, iii) $R = D^{\frac{1}{2}}L^T$ and $Q = AR^{-1}$
- \bullet More efficient QR factorizations exist (see Numerical Recipes) in general $O(n^3)$

Gram-Schmidt?

- Build an orthonormal basis by re-projection
- Build a basis using $proj_u(v) = \frac{\langle v, u \rangle}{\langle u, u \rangle} u$, i.e., project v onto u
- Process is then
- $u_1 = v_1$
- $u_2 = v_2 proj_{v_1}(v_2)$
- $u_3 = v_3 proj_{v_1}(v_3) proj_{v_2}(v_3)$
- $u_k = v_k \sum_{j=1}^{k-1} proj_{u_j}(v_k)$
- ullet $e_i = rac{v_i}{||v_i||}$ as the normal basis vectors

Applications

- QR: is an iterative process of building a factorization / eigenvectors
- If we wish to solve a system Ax = b in the LSQ sense

$$\bar{x} = (A^T A)^{-1} A^T b$$

given full rank $Q^TQ = I$ i.e. with a QR factorization

$$\bar{x} = R^{-1}Q^Tb$$

compute Q^TR and back substitute for $R\bar{x}=Q^Tb$ more stable than $A^TA\bar{x}=A^Tb$, i.e., the Moore-Penrose pseudo inverse

Questions

Questions

Singular Value Decomposition

• We can factorize any $m \times n$ matrix A as

$$A = UDV^T$$

where

- U is an $m \times m$ w. columns are the eigenvectors of $A^T A$
- D is a diagonal matrix

$$D = \left(\begin{array}{cccc} \sigma_1 & & & & \\ & \ddots & & 0 & \\ & & \sigma_k & & \\ & 0 & & 0 & \\ & & & 0 \end{array} \right)$$

where $\sigma_1 > \cdots > \sigma_k > 0$ and the rank(A) = k

- σ_i are sqrt of eigenvalues of A^TA and called the singular values
- ullet if A is symmetric and positive definite then $U=V^{T}$ and D is the eigenvalue matrix of A

Motivation

Goal is to solve

$$Ax = b$$

- For all A and b
- In a numerically stable manner
- Solve equation in reasonable time
- Comments
 - Ideally we would like for an $n \times n$ matrix

$$x = A^{-1}b$$

- If A is under-constrained the full solution set
- If A is over-constrained the LSQ solution

Considerations

Gauss Elimination is efficient, but necessarily stable

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1.01 & 1.00 & 1.00 \\ 1.00 & 1.01 & 1.00 \\ 1.00 & 1.00 & 1.01 \end{pmatrix}$$
 Independent?

not well suited for close to singular or over-constrained systems

Can we do elimination and solve

$$Ly = b$$
 and $Ux = D^{-1}y$

if A is close to singular D^{-1} could be a challenge

Eigenvector factorization

Remembers we can factorize a square matrix

$$A = SES^{-1}$$

where E is the eigenvalue matrix and S is the eigenvector matrix

- We can add this to the trick of working with A^TA or AA^T
- We can use

$$A^T A = V D V^T$$

and

$$AA^T = UD'U^T$$

- Where D is the eigenvalue of A^TA , V are the eigenvalue of A^TA , D' are the eigenvalue of AA^T and U are eigenvectors of AA^T
- We can decompose

$$A = UDV^T$$

- Note:
 - rank(A) = rank(D) = k
 - colspace(A) = first k columns of U
 - nullspace(A) = first n-k columns of V

Numerical considerations

- If SVD generates \approx 0 eigenvalues the best is zero them out (compare values, see later)
- Example we had before

$$\left(\begin{array}{cccc} 1.01 & 1.00 & 1.00 \\ 1.00 & 1.01 & 1.00 \\ 1.00 & 1.00 & 1.01 \end{array}\right)$$

the D matrix is then

$$\left(\begin{array}{cccc}
3.01 & 0 & 0 \\
0 & 0.01 & 0 \\
0 & 0 & 0.01
\end{array}\right)$$

so you barely have full rank.

Sensivity

If we use

$$A = UDV^T$$
 then using $\sum_{i=1}^n \sigma_i u_i v_j$

solving for Ax = b is then

$$x = A^{-1}b = (UDV^T)^{-1}v \Rightarrow \sum \frac{u_ib}{\sigma_i}v_j$$

as σ_i decreases we have a sensitivity problem

• The condition number is a good indicator

$$K(A) = \frac{\sigma_1}{\sigma_k}$$

Using SVD

• To solve Ax = b we can compute

$$\bar{x} = V \frac{1}{D} U^T b$$

- The solution is
 - If A is non-singular then \bar{x} is the unique solution
 - ullet If A is singular then $ar{x}$ is the solution is closest to origin when b is range
 - If A is singular and b is not in range then \bar{x} is the LSQ solution
- You can use SVD for all your needs to solve the equations Ax = b

Linear Systems of Equations

- Many problems in robotics can be solved using linear systems of equations
- Stability and sensitivity are key to consider
- Numerous factorization methods available QR and SVD merely two of them
- You can use numerous tricks to make problems tractable
- Factorization part of all the big packages NumPy, Matlab, Linpack, ...

Questions

Questions