Class11-Maths-JEE-Mains-Formulas

October 18, 2025

Lesson	Concept	Formula / Key Point
Sets	Union	$A \cup B = \{x : x \in A \text{ or } x \in B\}$
	Intersection	$\overline{A} \cap B = \{x : x \in A \text{ and } x \in B\}$
	— Complement	A' = U - A
	— Cardinality	$\stackrel{-}{n(A \cup B)} = n(A) + n(B) - n(A \cap B)$
Relations & Functions	Function	A relation where every input has exactly one output
	Domain and Range	Set of inputs (domain), outputs (range)
	Types of Functions	One-one, onto, bijective
Trigonometry	Identities	$\sin^2 x + \cos^2 x = 1, 1 + \tan^2 x = \sec^2 x, 1 + \cot^2 x = \csc^2 x$
	— Angle Formulas	$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
	— Double Angle	$\sin 2A = 2\sin A\cos A, \cos 2A = \cos^2 A - \sin^2 A$
Complex Numbers	— General Form	z = a + ib
	— Conjugate	$\overline{z} = a - ib$
	Modulus	$\frac{-}{ z } = \sqrt{a^2 + b^2}$
Quadratic Equations	Roots	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	— Discriminant	$D = b^2 - 4ac$
	Sum & Product of Roots	$\frac{-}{\alpha + \beta} = -\frac{b}{a}, \ \alpha\beta = \frac{c}{a}$
	_	_

Lesson	Concept	Formula / Key Point
Sequence & Series	AP nth Term	$a_n = a + (n-1)d$
	AP Sum	$\overline{S_n} = \frac{n}{2}[2a + (n-1)d]$
	GP nth Term	$\overline{a_n} = ar^{n-1}$
	GP Sum (finite)	$\overline{S}_n = a \frac{r^n - 1}{r - 1}, r \neq 1$
	GP Sum (infinite)	$S_{\infty} = \frac{a}{1-r}, r < 1$
Permutation & Combination	Permutation	$_{n}^{-}P_{r} = \frac{n!}{(n-r)!}$
	— Combination	${}_{n}^{-}C_{r} = \frac{n!}{r!(n-r)!}$
	Property	$_{n}C_{r}=_{n}C_{n-r}$
Binomial Theorem	Expansion	$\overline{(x+a)^n} = \sum_{k=0}^n \binom{n}{k} x^{n-k} a^k$
	— General Term	$\overline{T_{k+1}} = \binom{n}{k} x^{n-k} a^k$
Straight Lines	Slope	$m = \frac{y_2 - y_1}{x_2 - x_1}$
	Point-Slope Form	$y - y_1 = m(x - x_1)$
	Slope-Intercept Form	y = mx + c
	Distance Angle Between Lines	
Conic Sections	— Circle	$\frac{1}{(x-h)^2 + (y-k)^2} = r^2$
	— Parabola	$\overline{y^2} = 4ax, \ x^2 = 4ay$
	Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
	— Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
3D Geometry	Distance in 3D	$ - \frac{-}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} } $
	— Section Formula	$\left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}, \frac{mz_2 + nz_1}{m + n}\right)$
Limits &	Limit Laws	$\lim_{x \to a} f(x) = L$
Derivatives	_	_

Lesson	Concept	Formula / Key Point
	Standard Limits	$\lim_{x \to 0} \frac{\sin x}{x} = 1, \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$
	Derivatives	$\frac{d}{dx}x^n = nx^{n-1}, \ \frac{d}{dx}\sin x = \cos x$
Mathematical Reasoning	Logical Connectives	And (), Or (), Not (¬), If-then (→), Iff ()
	_	_
	Contrapositive	$\neg q o eg p$
	_	_
Statistics	Mean	$\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$
	_	_
	Variance	$\sigma^2 = rac{\sum (x_i - ar{x})^2}{n}$
	Standard Deviation	$\sigma = \sqrt{\sigma^2}$
	_	
Probability	Basic Probability	$P(A) = \frac{\text{Favorable}}{\text{Total}}$
	— C 1	- $D(A)$ 1 $D(A)$
	Complement	P(A') = 1 - P(A)
	Addition Rule	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
		_
	Independence	$P(A \cap B) = P(A) \cdot P(B)$