## WHAT IS CLAIMED IS:

| 1 | A method for treating a target region in tissue at or beneath a tissue                    |
|---|-------------------------------------------------------------------------------------------|
| 2 | surface, said method comprising:                                                          |
| 3 | deploying a first array of electrodes in the tissue at the target region;                 |
| 4 | deploying a second electrode on the tissue surface over the target region;                |
| 5 | and                                                                                       |
| 6 | applying electrical current to the tissue through the electrodes.                         |
| 1 | 2. A method for treating a target region in tissue at or beneath a tissue                 |
| 2 | surface, said method comprising:                                                          |
| 3 | deploying a first array of electrodes in the tissue at the target region;                 |
| 4 | deploying a cover over the tissue surface over the target region, wherein                 |
| 5 | the first array and cover are drawn together to apply compression on tissue in the target |
| 6 | region; and                                                                               |
| 7 | applying electrical current to tissue in the target region through the first              |
| 8 | array of electrodes.                                                                      |
| 1 | 3. A method for treating a target region in tissue at or beneath a tissue                 |
| 2 | surface, said method comprising:                                                          |
| 3 | deploying a first array of electrodes in the tissue at the target region;                 |
| 4 | deploying a cover over the tissue surface over the target region, wherein                 |
| 5 | the cover is configured to electrically and thermally isolate the target region and first |
| 6 | electrode array from external tissue structures adjacent to the target region; and        |
| 7 | applying electrical current to tissue in the target region through the first              |
| 8 | array of electrodes.                                                                      |
| 1 | 4. A method as in any of claims 1, 2, or 3, wherein deploying the first                   |
| 2 | array of electrodes comprises:                                                            |
| 3 | positioning a probe so that a portion of the probe is near the target region              |
| 4 | in the tissue; and                                                                        |
| 5 | advancing a plurality of at least three array electrodes radially outwardly               |
| 6 | from the probe to define the first electrode array.                                       |
| 1 | 5. A method as in claim 4, wherein the probe is advanced directly into                    |
| 2 | tissue with the array electrodes retracted within the probe.                              |

1

2

1

2

1

2

1

2

| 1 | 6. A method as in claim 4, wherein a combination of probe and stylet                     |
|---|------------------------------------------------------------------------------------------|
| 2 | <b>1</b>                                                                                 |
| 3 | prior to advancing the array electrodes through the probe.                               |
| 1 | 7. A method as in claim 4, wherein advancing the array electrodes                        |
| 2 | comprises advancing them forwardly from a distal end of the probe so that the electrodes |
| 3 | evert outwardly as they are advanced into the tissue.                                    |
|   | <b>\</b>                                                                                 |

- 8. A method as in claim 4, wherein the array electrodes deploy outwardly to a radius from 0.5 cm to 3 cm wherein fully distally extended.
- 9. A method as in any of claims 1, 2, or 3, wherein the first array electrodes are deployed at a depth below the tissue surface in the range from 2 cm to 10 cm.
  - 10. A method as in claim 1, wherein deploying the second electrode comprises engaging a plate electrode against the tissue surface.
  - 11. A method as in claim-10, wherein the plate electrode has an area in the range from 2 cm<sup>2</sup> to 10 cm<sup>2</sup>.
  - 12. A method as in claim 1, wherein deploying the second electrode comprises penetrating a plurality of tissue penetrating electrode elements through the tissue surface.
  - 13. A method as in claim 12, wherein the plurality of tissue-penetrating electrode elements are penetrated over an area in the range from 2 cm<sup>2</sup> to 10 cm<sup>2</sup>.
- 1 14. A method as in claim 13, wherein the electrode elements are penetrated to a depth in the range from 3 mm to 10 mm.
- 1 15. A method as in claim 12, wherein the tissue-penetrating electrode 2 elements are pins having a diameter in the range from 1 mm to 3 mm and a depth from 3 the electrode face in the range from 3 mm to 10 mm.
- 1 16. A method as in claim 4, further comprising removably attaching 2 the second electrode to the probe after the array electrodes have been advanced.

| 1 | 17, A method as in claim 1, wherein high frequency current is applied                          |
|---|------------------------------------------------------------------------------------------------|
| 2 | simultaneously through both the array electrodes and the second electrode attached to a        |
| 3 | common pole of a power supply in a monopolar mode.                                             |
| 1 | 18. A method as in claim 1, wherein high frequency current is applied                          |
| 2 | with one pole attached to the array electrodes and another pole attached to the second         |
| 3 | electrode in a bipolar fashion.                                                                |
| 1 | 19. A method as in claim 1, wherein the high frequency current is                              |
| 2 | applied successively from the electrodes in a monopolar mode.                                  |
| 1 | 20. A method as in claim 2, wherein the high frequency current is                              |
| 2 | applied first through the first array of electrodes to necrose tissue at or near a boundary of |
| 3 | the target region to inhibit blood flow into the target region.                                |
| 1 | 21. A method as in claim 2 or 3, wherein the cover comprises a rigid                           |
| 2 | plate.                                                                                         |
| 1 | 22. A method as in claim 2 or 3, wherein the cover comprises a                                 |
| 2 | conformable surface.                                                                           |
| 1 | 23. A method as in claim 2 or 3, wherein the cover is composed of an                           |
| 2 | electrically non-conductive material.                                                          |
| 1 | 24. A method as in claim 2 or 3, wherein the cover and first electrode                         |
| 2 | array are drawn together with a force of at least 0.5 psi.                                     |
| 1 | 25. A method as in claim 2 or 3, wherein deploying the first electrode                         |
| 2 | array comprises positioning a probe so that a portion of the probe lies near the target        |
| 3 | region and deploying the cover comprises securing the cover to the probe after the probe       |
| 4 | has been deployed.                                                                             |
| 1 | A method for heat-mediated necrosis of a target region in tissue,                              |
| 2 | said method comprising:                                                                        |
| 3 | inhibiting blood flow into the target region, wherein inhibiting comprises                     |
| 4 | creating a blood flow barrier across a tissue boundary or throughout the target region; and    |

| 5 | heating the tissue within the target region for a time and of a power level                |
|---|--------------------------------------------------------------------------------------------|
| 6 | sufficient to necrose said tissue, wherein blood flow inhibition reduces the amount of     |
| 7 | energy required to heat the tissue.                                                        |
| 1 | 27. A method as in claim 26, wherein inhibiting blood flow comprises                       |
| 2 | heating the tissue at or hear a distal boundary of the target region to at least partially |
| 3 | block the vasculature leading into and out of the target region.                           |
| 1 | 28. A method as in claim 27, wherein the inhibiting step comprises                         |
| 2 | deploying an electrode array proximal the distal boundary and delivering high frequency    |
| 3 | energy from the array into the tissue.                                                     |
| 1 | 29. A method as in claim 28, wherein heating of the target region                          |
| 2 | comprises engaging a second electrode against an area of tissue overlying the target       |
| 3 | region and delivering high frequency energy from the electrode to the target region.       |
| 1 | 30. A method as in claim 29, wherein the electrode array and the                           |
| 2 | second electrode are deployed to compress tissue therebetween and further inhibit blood    |
| 3 | flow into the target region.                                                               |
| 1 | 31. A method as in claim 26, wherein inhibiting blood flow comprises                       |
| 2 | compressing tissue within the target region sufficiently to reduce blood flow              |
| 3 | therethrough.                                                                              |
| 1 | A system for treating a target region in tissue beneath a tissue                           |
| 2 | surface, said system comprising:                                                           |
| 3 | a probe having a distal end adapted to be positioned beneath the tissue                    |
| 4 | surface to a site in the tissue;                                                           |
| 5 | a plurality of electrodes deployable from the distal end of the probe to span              |
| 6 | a region of tissue proximate the target region; and                                        |
| 7 | a cover removably attachable to the probe and adapted to span an area of                   |
| 8 | the tissue surface over the target region.                                                 |
| 1 | A system as in claim 32, wherein the cover has a generally flat                            |
| 2 | face.                                                                                      |

| 1 | A system as in claim 32, wherein the cover has an area in the rang                        |
|---|-------------------------------------------------------------------------------------------|
| 2 | from 2 cm <sup>2</sup> to 10 cm <sup>2</sup> .                                            |
| 1 | 35. A system as in claim 32, wherein the cover comprises a surface                        |
| 2 | electrode including a support having an electrode face and an electrically and/or thermal |
| 3 | insulated face opposite to the electrode face.                                            |
|   |                                                                                           |
| 1 | 36. A system as in claim 35, wherein the surface electrode comprises                      |
| 2 | plurality of tissue-penetrating elements on the electrode face.                           |
| 1 | 37. A system as in claim 36, wherein the surface electrodes comprises                     |
| 2 | from 4 to 16 tissue-penetrating elements.                                                 |
| 1 | 38. A system as in claim 36, wherein the tissue-penetrating elements                      |
| 1 |                                                                                           |
| 2 | are pins having a diameter in the range from 1 mm to 3 mm and a depth from the            |
| 3 | electrode face in the range from 3 mm to 10 mm.                                           |
| 1 | 39. A system as in claim 32, further comprising a connector on the                        |
| 2 | cover which removably attaches said electrode to the probe.                               |
| 1 | 40. A system as in claim 32, further comprising a connector on the                        |
| 2 | cover which is selectively attachable at different axial positions along the probe.       |
| _ | cover which is selectively attackable at affective amai positions are process             |
| 1 | 41. A system as in claim 36, wherein the surface electrode is adapted                     |
| 2 | to mechanically couple to the probe, wherein the plurality of electrodes and surface      |
| 3 | electrodes are electrically coupled for monopolar operation.                              |
| 1 | 42. A system as in claim 41, wherein the surface electrode is                             |
| 2 | electrically coupled to the probe electrodes when the surface electrode is mounted on the |
| 3 | probe.                                                                                    |
| , | proce.                                                                                    |
| 1 | 43. A system as in claim 41, wherein the surface electrode is                             |
| 2 | electrically isolated from the probe electrodes when the surface electrode is mounted on  |
| 3 | the probe.                                                                                |
|   |                                                                                           |

| 1  | 44. A system as in claim 36, wherein the surface electrode is adapted                       |
|----|---------------------------------------------------------------------------------------------|
| 2  | to mechanically couple to the probe, wherein the plurality of electrodes remain             |
| 3  | electrically isolated from the surface electrode for bipolar operation.                     |
|    | A sustain as in claim 22, wherein the probe comprises:                                      |
| 1  | 45. A system as in claim 32, wherein the probe comprises:                                   |
| 2  | a cannula having a proximal end, a distal end, and a lumen extending to at                  |
| .3 | least the distal end, and wherein the plurality of electrodes are resilient and disposed in |
| 4  | the cannula lumen to reciprocate between a proximally retracted position wherein all        |
| 5  | electrodes are radially constrained within the lumen and a distally extended position       |
| 6  | wherein all electrodes deploy radially outwardly, said plurality including at least three   |
| 7  | electrodes.                                                                                 |
| 1  | 46. A system as in claim 45, wherein at least some of the electrodes are                    |
| 2  | shaped so that they assume an outwardly everted configuration as they are extended          |
| 3  | distally into tissue from the distal end of the cannula.                                    |
|    |                                                                                             |
| 1  | 47. A system as in claim 45, further comprising a rod structure                             |
| 2  | reciprocatably received in cannula lumen, wherein the electrodes are secured at a distal    |
| 3  | end of the rod in an equally spaced-apart pattern.                                          |
| 1  | 48. A system as in claim 45, wherein the cannula has a tissue-                              |
| 1  |                                                                                             |
| 2  | penetrating member at its distal end to permit advancement of the cannula through tissue.   |
| 1  | 49. A system as in claim 45, further comprising a stylet reciprocatably                     |
| 2  | received in the cannula lumen, wherein the stylet may be used for initially positioning the |
| 3  | cannula in tissue and thereafter exchanged with the electrodes.                             |
|    |                                                                                             |
| 1  | 50. A system as in claim 45, wherein the cannula has a length in the                        |
| 2  | range from 5 cm to 30 cm and an outer diameter in the range from 1 mm to 5 mm.              |
| 1  | 51. A system as in claim 45, wherein the electrodes deploy outwardly                        |
| 2  | to a radius in the range from 0.5 cm to 3 cm when fully distally extended from the          |
| 3  | cannula.                                                                                    |
| -  |                                                                                             |
| 1  | 52. A system as in claim 45, wherein the plurality includes at least five                   |
| 2  | electrodes.                                                                                 |



| 1 | A system as in claim 45, wherein the plurality includes at least                                                                   |
|---|------------------------------------------------------------------------------------------------------------------------------------|
| 2 | eight electrodes.                                                                                                                  |
|   | 54 A southern as in slaim 45 wherein the alternity includes at least ten                                                           |
| 1 | 54. A system as in claim 45, wherein the plurality includes at least ten                                                           |
| 2 | electrodes.                                                                                                                        |
| 1 | 55. A system as in claim 36, wherein the active areas of the first                                                                 |
| 2 | electrode array and the second electrode are approximately equal and the first electrode                                           |
| 3 | array and second electrode are electrically isolated.                                                                              |
| 1 | 56. A surface electrode comprising:                                                                                                |
| 1 | <i>A</i> )                                                                                                                         |
| 2 | a support structure attachable to an elongate probe and having an area in the range from 2 cm <sup>2</sup> to 10 cm <sup>2</sup> ; |
| 3 | 4 to 16 tissue-penetrating pin electrodes projecting from the support                                                              |
|   |                                                                                                                                    |
| 5 | structure and having a length in the range from 3 mm to 10 mm and a diameter in the                                                |
| 6 | range from 1 mm to 3 mm.                                                                                                           |
| 1 | A kit comprising:                                                                                                                  |
| 2 | an electrode or cover adapted to be engaged against a tissue surface; and                                                          |
| 3 | instructions for treating a target region in tissue using the electrode in                                                         |
| 4 | combination with an electrode array according to any of claims 1, 2, or 3.                                                         |
| 1 | 58. A kit as in claim 57, further comprising the electrode array.                                                                  |
| 1 | In a method for applying high frequency electrical energy to tissue                                                                |
| 2 | a target region beneath a tissue surface, an improvement comprising compressing the                                                |
| 3 | target region sufficiently to inhibit blood flow therethrough while high frequency                                                 |
| 4 | electrical energy is being applied.                                                                                                |
| 1 | 60. Amethod as in claim 59, wherein the target region is compressed                                                                |
| 2 | between a first array of electrodes beneath the tissue surface and a cover or second                                               |
| 3 | electrode on the tissue surface.                                                                                                   |
|   |                                                                                                                                    |
| 1 | 61. A method as in claim 59, wherein the target region is compressed                                                               |
| 2 | between a pair of spaced-apart structures which are both penetrated into the tissue.                                               |

