Your grade: 80%

Your latest: 80% • Your highest: 80% • To pass you need at least 80%. We keep your highest score.

Next item →

1.	Which approach ensures continual (never-ending) exploration? (Select all that apply)		
	~	Exploring starts	
		Correct! Exploring starts guarantee that all state-action pairs are visited an infinite number of times in the limit of an infinite number of episodes.	
	~	On-policy learning with a deterministic policy	
		Incorrect, a deterministic policy always chooses one action in each state. Please review Lesson 3 (Video: Epsilon-Soft Policies)	
	~	On-policy learning with an €-soft policy	
		Correct! ϵ -soft policies assign non-zero probabilities to all state-action pairs.	
		Off-Policy learning with an €-soft behavior policy and a deterministic target policy	
		Off-Policy learning with an €-soft target policy and a deterministic behavior policy	
2.	Whe	en can Monte Carlo methods, as defined in the course, be applied? (Select all that apply)	1 point
		When the problem is continuing and given a batch of data containing sequences of states, actions, and rewards	
	~	When the problem is continuing and there is a model that produces samples of the next state and reward	
		Incorrect, the full return is only available at the end of an episode. Please review Lesson 1 (Video: What is Monte Carlo?)	

	✓	When the problem is states, actions, and r		of data containing sample episodes (sequences of				
		Correct! Well-define	ed returns are available in epi	sodic tasks.				
		When the problem is	episodic and there is a mode	el that produces samples of the next state and reward				
3.	Whi	ich of the following lea	arning settings are examples	of off-policy learning? (Select all that apply)	1/1 point			
	~	Learning the optimal	l policy while continuing to ex	xplore				
		Correct! An off-poli	Các ứng dụng học tập ngoài chính sách bao gồm học tập	/ behavior policy can assure continual exploration.				
	~	Learning from data;	từ dữ liệu được tạo bởi một tác nhân không học hoặc chuyên gia con người.					
		agent or human exp		de learning from data generated by a non-learning earned (the target policy) can be different from the				
4.		_	a requirement on the behavior of the assumption of coverage.	$egin{aligned} & egin{aligned} & egi$	1/1 point			
	\bigcirc For each state s and action a , if $b(a\mid s)>0$ then $\pi(a\mid s)>0$							
	$igcirc$ All actions have non-zero probabilities under π							
	O	For each state \boldsymbol{s} and	action a , if $\pi(a \mid s) > 0$ the	en $b(a \mid s) > 0$				
		Correct! Every actio	in taken under π must have a	non-zero probability under $oldsymbol{b}$.				
5.	Whe	en is it possible to det	ermine a policy that is greedy	g with respect to the value functions v_π, q_π for the poli	cy 1/1 point			
		(Select all that apply)						

	~	When state values v_π and a model are available	
		Correct! With state values and a model, one can look ahead one step and see which action leads to the best combination of reward and next state.	
		When state values v_π are available but no model is available.	
	~	When action values q_π and a model are available	
		Correct! Action values are sufficient for choosing the best action in each state.	
	~	When action values q_π are available but no model is available.	
		Correct! Action values are sufficient for choosing the best action in each state.	
6.	Mor	nte Carlo methods in Reinforcement Learning work by	1/1 point
		t: recall we used the term <i>sweep</i> in dynamic programming to discuss updating all the states systematically. s is not the same as visiting a state.	
	0	Performing sweeps through the state set	
	0	Averaging sample rewards	
	•	Averaging sample returns	
		Correct! Monte Carlo methods in Reinforcement Learning sample and average returns much like bandit methods sample and average rewards.	
	0	Planning with a model of the environment	
7.		pose the state s has been visited three times, with corresponding returns $8,4$, and 3 . What is the current ate Carlo estimate for the value of s ?	1/1 point
	0	3	

 π ? (Select all that apply)

	0	3					
	0	15					
	•	5					
		Correct! The Monte Carlo estimate for the state value is the average of sample returns observed from that state.					
	0	3.5					
8.	Whe	n does Monte Carlo prediction perform its first update?	1/1 point				
	0	After the first time step					
	0	After every state is visited at least once					
	•	At the end of the first episode					
		Correct! Monte Carlo Prediction updates value estimates at the end of an episode.					
9.	For	Monte Carlo Prediction of state-values, the number of updates at the end of an episode depends on	1/1 point				
	Hint	: look at the innermost loop of the algorithm					
	•	The length of the episode					
		Correct! Monte Carlo Prediction updates the estimated value of each state visited during the episode.					
	The number of possible actions in each state						
	0	The number of states					
10.		ϵ -greedy policy over ${\cal A}$ actions, what is the probability of the highest valued action if there are no other ons with the same value?	1/1 point				
	-						
	1	0. In an ϵ -greedy policy over ${\cal A}$ actions, what is the probability of the highest valued action if there are no other actions with the same value?	1/1 point				
		$\bigcirc \ 1-\epsilon$					
		\bigcirc ϵ					
		$leften{O}$ $1-\epsilon+rac{\epsilon}{A}$					
		Correct! The highest valued action still has a chance of being selected as an exploratory action.					
		$\bigcirc \frac{\epsilon}{A}$					