CSC 348 – Homework #7

Astrid Augusta Yu

June 5, 2020

Contents

1	Extra Algorithms and Theorems			
	1.1	Foreach Linearity Theorem	2	
	1.2	Map	3	
		1.2.1 Correctness	3	
		1.2.2 Time complexity	4	
	1.3	Sum	4	
		1.3.1 Correctness	5	
		1.3.2 Time complexity	5	
	1.4	ZipConsecutive	6	
		1.4.1 Correctness	6	
		1.4.2 Time Complexity	7	
	_			
2	•	estions	7	
	2.1	Q1	7	
	2.2	Q2	7	
	2.3	Q3	7	
	2.4	Q4	7	
	2.5	Q5	8	
	2.6	Q6	8	
	2.7	Q7	9	
	2.8	Q8	9	
		2.8.1 Q8a	9	
		2.8.2 Q8b	9	
	2.9	Q9	9	
	2.10	Q10	10	
		2.10.1 Q10a	10	
		2.10.2 Q10b	10	
		2.10.3 Q10c	10	
		2.10.4 Q10d	10	
	2.11	Q11	10	
		2.11.1 Q11a	10	
		2.11.2 Q11b	11	
		2.11.3 O11c	12	

1 Extra Algorithms and Theorems

1.1 Foreach Linearity Theorem

Definition 1. A recursive algorithm R is a **foreach algorithm**¹it can be associated with a $n_0 \in \mathbb{N}$ (the base case size) and the following conditions are met:

- Some finite sequence of values A of size n such that $n \ge n_0$ is a parameter of that R. It may take in more parameters than just A, as well.
- At the beginning of R, it performs the check $n = n_0$. If this check passes, it terminates in O(1) time.
- \bullet If the R fails that check, then in all of its following branches, it will:
 - 1. possibly perform an O(1) operation
 - 2. call R, but with a new A such that |A| = n 1
 - 3. terminate

Example 1.1. The MaxElement algorithm is a foreach algorithm because:

- It uses $n_0 = 1$
- It takes in a finite sequence $A = (a_1 \dots a_n)$ of integers of size n
- It always returns a_1 when $n_0 = 1$
- If $n \neq n_0$, it will call MaxElement on a $(a_2 \dots a_n)$, a list of size n-1.

Theorem 1 (Foreach Linearity Theorem). If R is a foreach algorithm with base case n_0 , A is a sequence such that $n \geq n_0$, then R(A) has a time complexity of O(n).

Proof. By definition of a foreach algorithm, the base case when $n = n_0$ will immediately terminate in O(1) time. Therefore,

$$T(n_0) = O(1) \tag{1}$$

Additionally, if it is not the base case, the foreach algorithm will undergo a O(1) operation, then call itself on a n-1 element sequence. Thus, for $n > n_0$,

$$T(n) = T(n-1) + O(1)$$
(2)

Now, we will prove by induction that $T(n) = (n - n_0 + 1) \cdot O(1)$.

Base case. Consider $n = n_0$. By (1),

$$T(n_0) = O(1)$$

Note that $n_0 - n_0 + 1 = 1$. Therefore,

$$T(n_0) = (n_0 - n_0 + 1) \cdot O(1)$$

¹a term I literally just came up with

Induction hypothesis. Suppose that for some $k \ge n_0$, $T(k) = (k - n_0 + 1) \cdot O(1)$. Inductive step. By (2),

$$T(k+1) = T(k) + O(1)$$

Applying the induction hypothesis,

$$T(k+1) = (k - n_0 + 1) \cdot O(1) + O(1)$$

which can be rewritten as

$$T(k+1) = ((k+1) - n_0 + 1) \cdot O(1)$$

Therefore, $T(n) = (n - n_0 + 1) \cdot O(1)$.

Note that the coefficient can be moved into the O(1) like so:

$$T(n) = O(n - n_0 + 1)$$

Note that $-n_0 + 1$ is a constant. Therefore, T(n) = O(n).

d(^_^)>

1.2 Map

Algorithm 1: Map(f, A)

Input: A function $f: \mathbb{Z} \to \mathbb{Z}$ and a sequence of integers $A = (a_1 \dots a_n)$

Output: The sequence of integers $(f(a_1), f(a_2), \dots f(a_{n-1}), f(a_n))$

- 1 if n = 0 then
- 2 return ()
- з else
- 4 return $Map(f,(a_1 \ldots a_{n-1})) \circ (f(a_n))$

1.2.1 Correctness

Lemma 1. If A is a sequence of integers defined as $(a_1 ... a_n)$, and there exists some $f : \mathbb{Z} \to \mathbb{Z}$, then $Map(f, A) = (f(a_i))_{i=1}^n$.

Proof. We will proceed by induction.

Base case. Suppose n = 0. The algorithm will start at line 1. Since n = 0 = 0, the check passes and we proceed to line 2.

At line 2, the algorithm returns (), the empty sequence. This is correct because it equals the expected value $(f(a_i))_{i=1}^0 = ()$.

Inductive hypothesis. Suppose $Map(f,(a_1 \dots a_k)) = (f(a_i))_{i=1}^k$.

Inductive step. Consider n = k + 1. At line 1, we check if k + 1 = 0. However, this can never happen, because if it were the case, then k = -1, which violates the fact that $k \in \mathbb{N}$.

Thus, the algorithm proceeds to line 4 via else and returns

$$Map(f, (a_1 ... a_k)) \circ (f(a_{k+1}))$$

By the inductive hypothesis, this is equivalent to the sequence

$$(f(a_1))_{i=1}^k \circ (f(a_{k+1}))$$

which simplifies to

$$(f(a_1))_{i=1}^{k+1}$$

Therefore, by the principle of mathematical induction, $Map(f, A) = (f(a_i))_{i=1}^n$. $d(\hat{a})$

Theorem 2. Map is correct.

Proof. By Lemma 1, Map is correct.

d(^_^)>

1.2.2 Time complexity

Lemma 2. Map is a foreach algorithm.

Proof. Let $n_0 = 0$. The following are true about Map:

- \bullet It takes in a n-element sequence as its second parameter.
- It performs a check for $n = n_0 = 0$ at line 1. If it passes, it immediately returns.
- If the check fails, it calls Map on $(a_1 \dots a_{n-1})$, a n-1 element sequence, performs concatenation (a O(1) operation), and immediately returns.

Therefore, Map is a foreach algorithm.

d(^_^)>

Theorem 3. Map is a O(n) operation.

Proof. By Lemma 2, Map is a foreach algorithm, so by the Foreach Linearity Theorem (Theorem 1), it has a time complexity of O(n).

1.3 Sum

Algorithm 2: Sum(A)

Input: A sequence of integers $A = (a_1 \dots a_n)$

Output: The value $\sum_{i=1}^{n} a_i$

- 1 if n=0 then
- $_{\mathbf{2}}$ return θ
- з else
- 4 | return $Sum((a_1 \dots a_{n-1})) + a_n$

1.3.1 Correctness

Lemma 3. If the integer sequence $A = (a_1 \dots a_n) = (a_i)_{i=1}^n$ then $Sum(A) = \sum_{i=1}^n a_i$.

Proof. We will proceed by induction over the input size.

Base case. Suppose n = 0. The algorithm will start at line 1, and because n = 0 = 0, it will pass the check.

The algorithm proceeds to line 2 and returns 0. Note that $\sum_{i=1}^{0} a_i = 0$ because 0 is the additive identity.

Inductive hypothesis. Let $A = (a_1 \dots a_k) = (a_i)_{i=1}^k$. Suppose $Sum(A) = \sum_{i=1}^k a_i$. Induction step. Let $B = (a_1 \dots a_{k+1}) = (a_i)_{i=1}^{k+1}$. Consider Sum(B).

The algorithm begins at line 1. If n = k + 1 = 0, then k = -1, which is impossible, since $k \in \mathbb{N}$. Thus, the check at line 1 fails and the algorithm proceeds to line 4 due to else.

At line 4, the algorithm returns $Sum((a_1 \dots a_k)) + a_{k+1}$. By the inductive hypothesis,

$$Sum((a_1 \dots a_k)) + a_{k+1} = \sum_{i=1}^k a_i + a_{k+1} = \sum_{i=1}^{k+1} a_i$$

This can be further reduced to

$$\sum_{i=1}^{k} a_i + a_{k+1} = \sum_{i=1}^{k+1} a_i$$

Therefore, by the principle of mathematical induction, for all $n \in \mathbb{N}$, $Sum((a_i)_{i=1}^n) = \sum_{i=1}^n a_i$.

Theorem 4. Sum is correct.

Proof. By Lemma 3, Sum is correct.

d(^_^)>

1.3.2 Time complexity

Lemma 4. Sum is a foreach algorithm.

Proof. Let $n_0 = 0$. The following are true about Sum:

- It takes in a *n*-element sequence as its second parameter.
- It performs a check for $n = n_0 = 0$ at line 1. If it passes, it immediately returns.
- If the check fails, it calls Sum on $(a_1 \dots a_{n-1})$, a n-1 element sequence, performs addition (a O(1) operation), and immediately returns.

Therefore, Sum is a foreach algorithm.

d(^_^)>

Theorem 5. Sum is a O(n) operation.

Proof. By Lemma 4, Sum is a foreach algorithm, so by the Foreach Linearity Theorem (Theorem 1), it has a time complexity of O(n).

Algorithm 3: ZipConsecutive(A)

Input: A sequence of integers $A = (a_1 \dots a_n) = (a_i)_{i=1}^n$ where $n \ge 1$

Output: The sequence of ordered integer pairs $((a_i, a_{i+1}))_{i=1}^{n-1}$, where each pair contains two consecutive numbers from the original sequence

1 if n=1 then

2 return ()

з else

4 | **return** $((a_1, a_2)) \circ ZipConsecutive((a_i)_{i=2}^n)$

1.4 ZipConsecutive

1.4.1 Correctness

Lemma 5. If $A = (a_i)_{i+1}^n$ is an integer sequence and $n \in \mathbb{N}^+$, then

$$ZipConsecutive(A) = ((a_i, a_{i+1}))_{i=1}^{n-1}$$

Proof. We will proceed by induction over n, the size of A.

Base case. Suppose n = 1. The algorithm starts at line 1, and because n = 1 = 1, it passes the check and proceeds to line 2.

At line 2, the empty list is returned. This is equivalent to $((a_i, a_{i+1}))_{i=1}^{-1} = ()$.

Inductive hypothesis. Suppose for some $k \in \mathbb{N}^+$,

$$ZipConsecutive((a_i)_{i+1}^k) = ((a_i, a_{i+1}))_{i=1}^{k-1}$$

for all integer sequences sequences $(a_i)_{i+1}^k$.

Inductive step. Consider $ZipConsecutive((a_i)_{i+1}^{k+1})$.

The algorithm begins on line 1 and checks k+1=1. However, if this were true, then k=0, which can never happen because $k \in \mathbb{N}^+$. Thus, it fails and proceeds to line 4 via else.

At line 4, the algorithm returns

$$((a_1, a_2)) \circ ZipConsecutive((a_i)_{i=2}^{k+1})$$

which, by the inductive hypothesis, is equivalent to

$$((a_1, a_2)) \circ ((a_i, a_{i+1}))_{i=2}^k$$

We can include the first term in the sequence like so:

$$((a_i, a_{i+1}))_{i=1}^k$$

Thus,

$$ZipConsecutive(A) = ((a_i, a_{i+1}))_{i=1}^{n-1}$$

for all $n \in \mathbb{N}^+$.

Theorem 6. ZipConsecutive is correct.

Proof. By Lemma 5, ZipConsecutive is correct.

 $d(^{-})>$

1.4.2 Time Complexity

Lemma 6. ZipConsecutive is a foreach algorithm.

Proof. Let $n_0 = 0$. The following are true about ZipConsecutive:

- It takes in a *n*-element sequence as its second parameter.
- It performs a check for $n = n_0 = 0$ at line 1. If it passes, it immediately returns.
- If the check fails, it calls ZipConsecutive on $(a_1 \dots a_{n-1})$, a n-1 element sequence, performs concatenation (a O(1) operation), and immediately returns.

Therefore, ZipConsecutive is a foreach algorithm.

d(^_^)>

Theorem 7. ZipConsecutive is a O(n) operation.

Proof. By Lemma 6, ZipConsecutive is a foreach algorithm, so by the Foreach Linearity Theorem (Theorem 1), it has a time complexity of O(n).

2 Questions

2.1 Q1.

Algorithm 4: SumFirstN(n)

Input: Some $n \in \mathbb{Z}^+$ Output: The value $\sum_{i=1}^n i$ 1 return $Sum((i)_{i=1}^n)$

2.2 Q2.

Lemma 7. If $n \in \mathbb{N}$, then $SumFirstN(n) = \sum_{i=1}^{n} i$.

2.3 Q3.

Proof. At line 1, SumFirstN returns $Sum((i)_{i=1}^n)$. This evaluates to $\sum_{i=1}^n i$ by definition of the Sum algorithm. Therefore, $SumFirstN(n) = \sum_{i=1}^n i$.

2.4 Q4.

Define $f: \mathbb{Z} \to \{0,1\}$ as follows:

$$f(x) = \begin{cases} 1 & if x < 0 \\ 0 & if x \ge 0 \end{cases}$$

Algorithm 5: CountNegatives(A)

Input: An integer sequence $A = (a_i)_{i=1}^n$ **Output:** The number of negatives in A.

1 return Sum(Map(f, A))

2.5 Q5.

Lemma 8. If some sequence $A = (a_1 \dots a_n) = (a_n)_{i=1}^n$ has k negatives in it, then

$$CountNegatives(A) = k$$

Proof. The algorithm starts on line 1 and returns

which is equivalent to, by definition of A,

$$Sum(Map(f, f(a_i))_{i=1}^n))$$

By definition of Map, this is equivalent to

$$Sum((f(a_i))_{i=1}^n)$$

By definition of sum, this is equivalent to

$$\sum_{i=1}^{n} f(a_i)$$

Suppose B is a sequence that contains all the negative elemnts of A, and C is a sequence that contains every element of A not in B, and therefore, non-negative. This sum can be rewritten as

$$\sum_{b \in B} f(b) + \sum_{c \in C} f(c)$$

Since all $b \in B$ are negative and all $c \in C$ are non-negative, by definition of f, this is equivalent to

$$\sum_{b \in B} 1 + \sum_{c \in C} 0 = \sum_{b \in B} 1$$

Since there are k negatives in A, B has k elements. Therefore,

$$\sum_{b \in B} 1 = k$$

Therefore, CountNegatives(A) = k.

d(^_^)>

2.6 Q6.

Let $f: \mathbb{Z}^2 \to \mathbb{Z}^+$ be defined as follows:

$$f((a,b)) = |a-b|$$

Algorithm 6: LargestDiff(A)

Input: An integer sequence $A = (a_i)_{i=1}^n$

Output: The largest difference between any two consecutive numbers.

1 return MaxElement(Map(f, ZipConsecutive(A)))

2.7 Q7.

Lemma 9. Suppose the integer sequence $A = (a_i)_{i=1}^n$, and $p, q \in \mathbb{N}$ such that $1 \leq p < n$ and $1 \leq q < n$. If for some p, $|a_p - a_{p+1}| \geq |q_j - a_{q+1}|$ for all possible values of q, then $LargestDiff(A) = |a_p - a_{p+1}|$.

Proof.

2.8 Q8.

2.8.1 Q8a.

Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined as

$$f(x) = 2^x$$

Algorithm 7: Power2Sum(n)

Input: Some $n \in \mathbb{N}$

Output: The sum of all powers of 2 from 0 to n.

1 return $Sum(Map(f,(i)_{i=0}^n))$

2.8.2 Q8b.

Lemma 10. *If* $n \in \mathbb{N}$, then

$$Power2Sum(n) = \sum_{i=0}^{n} 2^{i}$$

Proof. Power2Sum starts at line 1 and returns $Sum(Map(f,(i)_{i=0}^n))$.

By the definitions of Map and f, this is equivalent to

$$Sum((2^{i})_{i=1}^{n})$$

By definition of Sum, this is equivalent to

$$\sum_{i=0}^{n} 2^{i}$$

Thus, $Power2Sum(n) = \sum_{i=0}^{n} 2^{i}$.

d(^_^)>

2.9 Q9.

Algorithm 8: ConstantPower2Sum(n)

Input: Some $n \in \mathbb{N}$

Output: The sum of all powers of 2 from 0 to n.

ı return $2^n - 1$

2.10 Q10.

2.10.1 Q10a.

Theorem 8. SumFirstN runs in O(n) time.

Proof. At line 1, it generates a sequence of size n, which is O(n), and executes Sum on it, a O(n) algorithm, and finally it returns. Thus, its time complexity is

$$O(n+n) = O(n) \label{eq:one}$$

$$\label{eq:one} \texttt{d(\hat{\sl}_-\hat{\sl})} >$$

2.10.2 Q10b.

Theorem 9. CountNegatives runs in O(n) time.

Proof. At line 1, it executes Map on a *n*-length sequence, which is a O(n) operation. Then, it executes Sum on the resulting sequence, also O(n). Finally, it returns. Thus, its time complexity is

$$O(n+n) = O(n)$$

$$\label{eq:continuous} d(\hat{\ }_-\hat{\ })>$$

2.10.3 Q10c.

Theorem 10. LargestDiff runs in O(n) time.

Proof. At line 1, it executes ZipConsecutive on a n-length sequence, which is a O(n) operation that outputs a (n-1)-length sequence. Next, it executes Map on that sequence, which is O(n-1) and outputs a n-1 length sequence. Then, it executes MaxElement on the result from that, and MaxElement is a O(n-1) sequence. Finally, it returns. Thus, its time complexity is

$$O(n+(n-1)+(n-1))=O(n)$$

$$\label{eq:ode_one} \operatorname{d}(\hat{\ }_-\hat{\ })>$$

2.10.4 Q10d.

Theorem 11. ConstantPower2 runs in O(1) time.

Proof. At line 1, it performs an exponentiation and a subtraction, which can each be considered O(1) operations. Then, it returns. Therefore, it runs in

$$O(1+1) = O(1) \label{eq:omega_def}$$

$$\label{eq:omega_def} \operatorname{d}(\widehat{\ }_-\widehat{\ }) >$$

2.11 Q11.

2.11.1 Q11a.

$$T(n) = T\left(\frac{n}{2}\right) + O(n)$$

Tree Method

$$\log_2(n) \text{ occurences} \begin{cases} O(n) \\ O(\frac{n}{2}) \\ O(\frac{n}{4}) \\ \vdots \\ O(4) \\ O(2) \\ O(1) \end{cases}$$

$$T(n) = O\left(\sum_{i=0}^{\log_2(n)} \left(\frac{1}{2}\right)^i \cdot n\right)$$

Note that $\sum_{i=0}^{\log_2(n)} \left(\frac{1}{2}\right)^i$ converges to 1. Therefore,

$$T(n) = O(n)$$

Master Theorem

Let a = 1, b = 2, and d = 1. We can rewrite T(n) as

$$T(n) = aT\left(\frac{n}{b}\right) + O(n^d)$$

Note that $d = 1 > log_b(a) = 0$. Therefore, by the Master Theorem,

$$T(n) = O(n)$$

2.11.2 Q11b.

$$T(n) = T\left(\frac{n}{2}\right) + O\left(n^2\right)$$

Tree Method

$$\log_2(n) \text{ occurences} \begin{cases} O(n^2) \\ O(\frac{n^2}{4}) \\ O(\frac{n^2}{16}) \\ \vdots \\ O(16) \\ O(4) \\ O(1) \end{cases}$$

$$T(n) = O\left(\sum_{i=0}^{\log_2(n)} \left(\frac{1}{4}\right)^i \cdot n^2\right)$$

Note that $\sum_{i=0}^{\log_2(n)} \left(\frac{1}{4}\right)^i$ converges to a finite value. Therefore, $T(n) = O(n^2)$

$$T(n) = O(n^2)$$

Master Theorem

Let a = 1, b = 2, and d = 2. We can rewrite T(n) as

$$T(n) = aT\left(\frac{n}{b}\right) + O(n^d)$$

Note that $d = 2 > log_b(a) = 0$. Therefore, by the Master Theorem,

$$T(n) = O(n^2)$$

2.11.3 Q11c.

$$T(n) = T(n-2) + O(1)$$

Tree Method

$$\frac{n}{2} \text{ occurences} \begin{cases} O(1) \\ O(1) \\ \vdots \\ O(1) \\ O(1) \end{cases}$$

Thus,

$$T(n) = O(n)$$

Master Theorem

T cannot be written in the form of

$$T(n) = aT\left(\frac{n}{b}\right) + O(n^d)$$

because what should be its $\frac{n}{b}$ term is of the form n-2. Therefore, the Master Theorem is not applicable here.