LLM 학습

1. Full Fine-Tuning이 어려운 이유

1. 모델 파라미터의 규모

- 일반적인 LLM은 수십억(1.5~3B) 이상의 파라미터를 가짐.
- 모델을 *단순히 로드*하는 것만으로도 고사양 GPU가 필요하고, 파인 튜닝할 때는 더 많은 VRAM이 요구됨.

2. 학습 과정에서의 자원 소모

- Forward & Backward 연산, Gradient 계산, Optimizer 상태 유지 등을 위해 수 배 이상의 메모리가 추가로 필요함.
- 예를 들어, 1B 파라미터를 가진 모델을 학습하려면 2~3B 이상의 GPU 메모리가 필요한 경우가 많음.

3. 결과적으로

• 기업이나 개인이 LLM을 통째로 미세 조정(Full Fine-Tuning)하기 어려운 가장 큰 이유는 비용과 자원 한계

3. PEFT(파라미터 효율화 미세 조정)

PEFT는 모델 전체 파라미터가 아닌 **일부만 조정**해서 모델을 튜닝하는 기법

대표적으로 LoRA(Low-Rank Adaptation)가 있고, 최근에는 양자화(quantization)까지 접목한 QLoRA로 확장됨.

3.1 LoRA(Low-Rank Adaptation)란?

(1) 핵심 아이디어

- 모델의 대규모 파라미터(Weight)는 고정(Freeze)
- 대신에, 각 Transformer 레이어에 저차원(낮은 랭크, r) 행렬 A, B를 추가로 삽입해서 *학습 가능한 파라미터*만 업데이트함.
- 이렇게 하면 모델의 전체 파라미터를 학습할 필요가 없어서 메모리 사용량과 계산량이 대폭 줄어듦.

(2) 저차원 구조(Low-Rank)의 이해

- 행렬 분해(Matrix Factorization) 기법을 이용해 큰 차원의 행렬을 작은 행렬 A, B의 곱으로 표현함.
- 이미지 추가 해야함..

(3) 작동 방식

- 사전훈련된 모델(Pretrained Weight)을 변경 없이 고정
- 실제 Forward/Backward 시, ΔW = B × A를 해당 레이어의 Pretrained Weight에 덧셈해서 미세 조정 효과를 줌.
- 역전파(Backpropagation) 때는 관련 파라미터에 대해서만 기울기를 계산하니까, **학습해야 할 파라미터**가 현저히 줄어듦.

(4) 장점

LLM 학습

- VRAM, 메모리 사용량 절감: 거대한 모델 가중치를 업데이트하지 않아도 됨.
- 학습 속도 향상: 적은 파라미터만 학습하니까 연산량도 줄어듦.
- **추론(Inference) 시에도 동일한 복잡도**: 추가된 ΔW를 단순히 원래 가중치에 더하기만 하면 됨. (수식 이미지 캡처로 추가 할까 아니면 캡 처할까)
- 원상복구가 쉬움: 모델의 원본 가중치는 변화가 없고, LoRA 파라미터만 제거하면 바로 초기 상태로 복구 가능함.

3.2 QLoRA(Quantized LoRA)란?

QLoRA는 LoRA의 파라미터 효율성에 양자화(Quantization) 기법을 결합해서, 더욱 적은 메모리로 유사한 성능을 얻는 방법

1. 양자화(Quantization)

• 파라미터(Weights)를 16비트, 8비트 혹은 4비트 등 **낮은 정밀도로 표현**해서 메모리 절약하고, 계산 효율성 향상시킴.

• 예: bnb_4bit_quant_type="nf4" 옵션 등을 사용해 4비트 정밀도에 맞춰 모델 파라미터를 양자화.

2. **LoRA와의 결합**

- LoRA는 중요한 레이어에 저랭크(A, B) 행렬을 추가해서 학습.
- 여기에 양자화된 모델을 활용해서 전체 모델 로드를 훨씬 가볍게 수행할 수 있음.
- 결과적으로 Low-Rank 행렬과 Quantization이라는 두 가지 효율화 기법이 합쳐져 최소 자원으로도 준수한 성능을 낼 수 있음.

4. 마무리

- Full Fine-Tuning: 모델 성능을 최적화하기 좋지만, 방대한 메모리와 계산량이 필요함.
- LoRA:
 - 。 사전훈련된 거대한 파라미터는 그대로 두고, 일부 저차원 파라미터(A, B)만 학습.
 - 。 메모리 사용과 계산량을 크게 줄이면서도 **준수하거나 더 나은 성능**을 제공.

QLoRA:

- 。 LoRA에 양자화까지 더해서, 훨씬 적은 정밀도로 모델 파라미터를 표현.
- **추가 메모리 절감**과 **학습 속도 향상**, 그럼에도 **성능은 큰 손실 없이** 유지.

결론 PEFT 기법(LoRA, QLoRA)은 한정된 자원으로도 대형 언어 모델을 효과적으로 활용할 수 있게 해준다.

LLM 학습

2