Indecidibilidade e redução

Universidade Federal de Campina Grande – UFCG

Centro de Engenharia Elétrica e Informática – CEEI

Departamento de Sistemas e Computação – DSC

Professor: Andrey Brito Período: 2023.2

Indecidibilidade

- Existem mesmo problemas indecidíveis?
- A_{MT} não é decidível
 - Dado um programa e uma entrada, simular aquela entrada
 - $A_{MT} = \{ \langle M, w \rangle \mid M \text{ \'e uma MT e M aceita w} \}$
 - Mais algo, verificação de software: verificar propriedades interessantes de "programas" não é decidível
- O que faz a máquina que tem como linguagem A_{MT} ?
 - Lembre do testador de A_{AFD}

Outro problema indecidível

- PCP: Problema de correspondência de Post
 - Dado um conjunto de dominós

- Verificar se existe uma sequência, onde a cadeia de cima é igual à de baixo
- (Pode repetir peças e não precisa usar tudo)

Hierarquia de linguagens

Existe algo fora de LTR?

Sobre o problema da parada e H...

- Não necessariamente H simula a máquina
 - Poderia fazer uma "análise"
 - Mesmo assim H n\u00e3o pode existir
- A_{MT} não é decidível, mas é reconhecível...

Existe algo fora de LTR?

- Se eu tiver duas linguagens L e seu complemento, /L
 - Sei que elas são Turing-reconhecíveis
 - Eu posso dizer algo sobre decidibilidade delas?
- Consequências
 - LTR não é fechada por complemento
 - Existe algo fora de LTR, as linguagens Turing-irreconhecíveis

Indecidibilidade

- Teorema: uma linguagem é decidível se e somente se, tanto ela quanto o complemento forem reconhecíveis
 - Co-Turing reconhecível: complemento reconhecível

• Prova:

- Se A é decidível, A e \bar{A} são reconhecíveis
- Se A e \bar{A} são reconhecíveis, A é decidível
- M = "Com entrada w:
 - Simule as M_A e $M_{/A}$ em paralelo (ex., uma quantidade limitada de tempo em cada uma e que cresce a cada tentativa)
 - Se M_Δ aceita, aceite, se M_Δ aceita, rejeite."

Turing-irreconhecível

- Mas então se ${\bf A}_{\rm MT}$ não é decidível, mas é reconhecível: \overline{A}_{MT} não pode ser sequer reconhecível
- Mas quem seria $\overline{A_{MT}}$?
 - $A_{MT} = \{ \langle M, w \rangle \mid M \text{ \'e uma MT e M aceita w} \}$
 - $\overline{A_{MT}}$ = {<M,w> | M é uma MT e M não aceita w}

Provas de indecidibilidade

- Como mostrar que um problema (ou a linguagem que o representa) é indecidível?
 - Matematicamente (A_{MT}, existência de raízes inteiras para um polinômio com múltiplas variáveis)
 - O complemento da linguagem em questão não é reconhecível
 - Redução: ele poderia ser usado para resolver um problema que é indecidível

O verdadeiro problema da parada: $HALT_{TM}$ (PARADA_{MT})

 HALT_{TM} só se preocupa em determinar se a máquina/programa a ser testado para ou não com aquela entrada

O verdadeiro problema da parada: $HALT_{TM}$ (PARADA_{MT}) é indecidível

- Ideia: HALT_{TM} não pode ser decidível
 - Se HALT $_{\text{TM}}$ fosse decidível, seriam simples construir um decididor para A_{TM}
 - No entanto, provamos que A_{TM} não é decidível
- Se R decide HALT_{TM} (aceita = para), S decide A_{MT}
- Quem seria o programa/máquina S?

O verdadeiro problema da parada: $HALT_{TM}$ (PARADA_{MT}) é indecidível

- Ideia: HALT_{TM} não pode ser decidível
 - Se HALT_{TM} fosse decidível, seriam simples construir um decididor para A_{TM}
 - No entanto, provamos que A_{TM} não é decidível
- Se R decide $HALT_{TM}$ (aceita = para), S decide A_{MT}
- S = "com entrada <M, w>, onde M é uma descrição de uma MT e w uma palavra:
 - Execute R com a entrada <M, w>
 - Se R rejeita, rejeite, caso contrário, simule M com a entrada w.
 - Se M aceita w, aceite. Se M rejeita, rejeite."

VAZIO_{MT} é indecidível?

- VAZIO_{MT} = { <M> | M é uma MT e L(M) = ∅}
- Novamente, a ideia é mostrar que se VAZIO_{MT} fosse decidível (existindo uma MT R), conseguiríamos usar isso para decidir A_{MT} (MT S)
 - Como não podemos decidir A_{MT}, logo VAZIO_{MT} não pode ser decidível
- Possibilidade 1: rodar R com <M> e ver se aceita
 - Se R aceitar, $L(M) = \emptyset$ e portanto M não aceita w
 - Mas e se rejeitar? Tudo que saber é que L(M) ≠ Ø
 - Ou seja, eu não consigo resolver S usando R, bom sinal?!?

VAZIO_{MT} é indecidível

- Possibilidade 2: crie uma variante de M, M₁
 - Que rejeite qualquer entrada diferente de w imediatamente
 - Se a entrada for w, então ela prossegue com o código original de M
- O que M₁ aceita?

VAZIO_{MT} é indecidível

- Possibilidade 2: crie uma variante de M, M₁
 - Que rejeite qualquer entrada diferente de w imediatamente
 - Se a entrada for w, então ela prossegue com o código original de M
- O que M₁ aceita?
 - M_1 aceita ou aquela palavra w ou nada
 - Usamos então R para verificar qual das duas situações ocorre

V_{MT} é indecidível?

• $V_{MT} = \{ <M > | M \text{ é uma MT que para com entrada } \lambda \}$

V_{MT} é indecidível

- $V_{MT} = \{ <M > | M \text{ é uma MT que para com entrada } \lambda \}$
- Seja uma MT R que decide V_{MT}
- S = "com entrada <M, w>, onde M é uma descrição de uma MT e w uma cadeia:
 - Construir uma variante de M, M₁:
 - M₁ = "Ignorando a entrada:
 - Escreve w na fita.
 - Simula M com entrada <M, w>, aceita se M aceitaria e rejeita se ela rejeitaria."
 - Executa R com entrada < M₁ >
 - Se R aceita, aceite. Caso contrário, rejeite."
- Se R aceitar, é por que M₁ aceita a palavra vazia... mas isso só acontece se M aceita w

Redução

- Transformar a solução de um problema A em uma solução para o problema B
 - A é redutível a B se uma solução de B pode ser usada para resolver A
 - "Resolver A se reduz a resolver B"
- Uma estratégia para avaliar decidibilidade
 - Se A é redutível a B e B é decidível, A é decidível
 - Se A é redutível a B, mas A é indecidível, B é indecidível
 - Se A é redutível a B e B é indecidível...?
- B pode ser "aparentemente" mais fácil que A

Redução por mapeamento

- A linguagem A é redutível por mapeamento à linguagem B (A ≤_m B) se existe uma função computável f: Σ* → Σ* tal que:
 - $w \in A$ se e somente se $f(w) \in B$
 - A função f é chamada de redução

Redução por mapeamento (intuição!)

- Os problemas
 - $B = \{x \mid x \in par\}$
 - A = { x | x é ímpar}
- Lembre: $w \in A$ se e somente se $f(w) \in B$
- Será que existe um f(w)?
 - Uma função computável...
 - ... e que me garante que se $y \in A$, então $f(y) \in B$??

Redução por mapeamento (só intuição!)

- Os problemas
 - $B = \{x \mid x \in par\}$
 - A = { x | x é ímpar}
- Lembre: $w \in A$ se e somente se $f(w) \in B$
- Será que existe um f(w)?
 - Uma função computável...
 - ... e que me garante que se $y \in A$, então $f(y) \in B$??
 - Que tal f(w) = w + 1?

Redução por mapeamento

- Os problemas
 - $B = \{x \mid x \in par\}$
 - $A = \{x \mid x \in \text{impar}\}$
- Com f(w) = w + 1 sabemos que A é redutível a B por mapeamento pois:
 - Dado MT B que me diz se uma entra w é par
 - Eu posso construir uma MT para A:
 - Pegue a entrada w e use uma calculadora que implemente f(w)
 - Chame a MT B, aceite se B aceitar, rejeite se B rejeitar

Decidibilidade

- Se A ≤_m B e B é decidível, A é decidível
- Seja M uma MT que decide B e f uma função de redução
- Prova: N = "Com entrada w:
 - Compute f(w).
 - Execute M com entrada f(w), se M aceita, aceite. Se M rejeita, rejeite."
- O formato da máquina N, que decide A, tem que ser sempre esse!

Indecidibilidade de PARADA_{MT}

- Prova alternativa usando mapeamento, ou seja, existe uma função f computada pela seguinte MT...
- F = "Dado uma entrada < M, w >, onde M é uma descrição de MT:
 - Construa a seguinte MT M': "Com entrada x...
 - Execute M com entrada x.
 - Se M aceita, aceite.
 - Se M rejeita, entre em loop."
 - Grave <M', w> na fita e limpe o resto."
- <M, w $> <math>\in$ A_{TM} se e somente se <M', w $> <math>\in$ PARADA_{MT}

Outro exemplo

- VAZIO_{MT} ≤_m IGUAL_{MT}
 - VAZIO_{MT} (que sabemos ser indecidível) verifica se para entrada M, L(M)= \varnothing
 - $IGUAL_{TM}$ (a ser testado) testa se duas MTs têm a mesma linguagem

Outro exemplo

- VAZIO_{MT} ≤_m IGUAL_{MT}
 - VAZIO_{MT} (que sabemos ser indecidível) verifica se para entrada M, L(M)= \varnothing
 - $IGUAL_{TM}$ (a ser testado) testa se duas MTs têm a mesma linguagem
 - Função de redução: transforme a entrada <M> em <M, M₁>, onde M₁ é uma descrição de uma máquina que rejeita tudo.
 - Bastaria executar a MT que decide IGUAL_{TM} com <M, M₁>

Hierarquia de linguagens

