

又是上高中课经的一天 这理: 若 己, 它是至面上两个不决线的非零 向量,那么任意向量已都可以唯一地写成成 + 生日的好子,其中不,生是两个实数

1.者召,已是福上不失强的非忠向量, 己,之 協足さことなりで、よここで+いで、おさ、で 知果的上各件に1二日に1、且21万062 解: さって=(なはりな)(はま+いる) = 22/212 + YMB1 + CAB+YWZ.B 老满风条件, 2. 2 = 22 + yw

定义 169 (平面直角坐标系). 在平面上固定两个向量 了, 了满足 门 = 门 = 1, 且 了 工 了, 那么平 面上任意一个向量 \overrightarrow{a} 都可以表示为 $\overrightarrow{a} = x\overrightarrow{i} + y\overrightarrow{j}$ 的形式, 其中 x,y 是两个实数. 而且对任意两 个实数 x, y, 也存在一个唯一的向量 $\overrightarrow{a} = x\overrightarrow{i} + b\overrightarrow{j}$. 于是我们可以将所有平面向量 \overrightarrow{a} 和所有二元 有序数对 (x,y) ——对应起来. 我们将 (x,y) 称作 \overrightarrow{a} 的坐标表示, $\{\overrightarrow{i},\overrightarrow{j}\}$ 被称作一组平面直角坐 标系的基底.

(实际上,基底月接可以选择不垂直的每量, 这就是斜色标系)

小岩豆= のり、アニロルノ、東マナア 解: るせる = タブナダアル (27 + いず) = LT+Z) P+ (ytw) ? = (x+z, y+w)

2. 若是: (水)/, 对教教, 就不是 為これる=スノスアャリデノ = (27) 7 + (24/3) = (7, 7, 74)

3、若司=(加引, 了=(2,101, 求之了 解: 宛上

4. 考录: Chy), 说真(本) 121 = 522+y2

一篇者= ca.y, B= Cz, W, 计解文章 Cos O = 2.8 [2] [2]

- 72 + Yw (224 yz) (224 wz)

之·用户重证明 cos cd-p = cosdcosptsindsing

13: 7= CCOS d. SIND) J= COSB, SINB-7 : cos 0 = cos cd-B)

> = cosd cosBI sina sing V/x 1 = cosd cosp + andsin

3. 她因在多路梯形的cop, AD=BC=AB=ZDC 二2,点好分别自结段和此处的过龄点,0的比的 中点,则 005 LEFO = ==

以の部点、のこれを抽建 (AC-1,531, BC1,53) C (2,0), DC-2,0)

八程=言語七言語(加上大多记)

山龍=八服,则正=山刀)不十万强) = (-ま+ちノヤ+(3など) こくしょ、ふり

同程辞= 宇宙+安起= (学, 宁万) 八百二年一届二倍,一切 一、由新城报经 605 公下0 = 主

4. BYNE 直角棒形ABODP, AB = AD = 200=2, AB/CP, LADC 90, 岩从在ACL, 别花

1届4届1的取殖范围 2 御立ることにひり

FM = (x, 27) 丽= (2,0), 前= (0,2) ~ 二届=扇一配=(2-7,-22)

丽= 扇-配= (71,222) 1. Tus + Tup = (2-201, 2-421)

Lik + 1201 = 25 (1-2/2-4-22) = 2/567-1/4 = = 136,26]

C ZETO, 13)

熟知的公式是所谓直觉的一部分——于品							
好,现在我们可以开始数等分析了。							
(F) 域公	〉理:ℝ 是一个域						
(F1)	加法结合律: $x + (y + z) = (x + y) + z$ 。						
(F2)	加法交换律: $x + y = y + x$ 。						
(F3)	存在加法单位元: 存在 $0 \in \mathbb{R}$, 使得对任意 $x \in \mathbb{R}$, $0 + x = x$ 成立。						
(F4)	加法逆元的存在性: 对任意 $x \in \mathbb{R}$, 存在 $-x \in \mathbb{R}$, 使得 $x + (-x) = 0$ 。						
	练习. 证明,加法逆元 $-x$ 是唯一的,即如果 $x' \in \mathbb{R}$ 也满足 $x+x'=0$,那么 $x'=-x$ 。						
$2+\chi'=0 \Rightarrow \chi+\chi+(-\chi)=-\chi \Rightarrow \chi'=-\chi$							
	注记. 如果假定 $(F1)$ - $(F4)$ 成立,按照通行的代数学的概念, $(\mathbb{R},+)$ 被称作是一个 (\mathfrak{C}_{-})						
	换)群。我们强调 $-x$ 目前只是一个记号。根据俗套的约定,我们把 $x+(-y)$ 简写成						
	$x-y_{\circ}$						
(F5)	乘法结合律: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ 。						
(F6)	乘法交换律: $x \cdot y = y \cdot x$ 。						
(F7)	存在乘法单位元:存在 $1\in\mathbb{R}$,使得 $1\neq 0$ 并且对任意 $x\in\mathbb{R}$, $1\cdot x=x$ 成立。我们还要求 $1\neq 0$,从而 \mathbb{R} 中至少有两个元素。						
(F8)	乘法逆元的存在性: 对任意 $x\in\mathbb{R}-\{0\}$,存在 $x^{-1}\in\mathbb{R}$,使得 $x\cdot x^{-1}=1$ 。						
	练习. 证明, $x\neq 0$ 乘法逆元 x^{-1} 是唯一的,即若 $x'\in\mathbb{R}$ 也满足 $x\cdot x'=1$,那么——						
-92	$x' = x_{1}^{-1}.$ $\chi(x) = 1 \implies \chi(x)^{-1} = \chi(x)^{-1} \implies 1 \cdot \chi' = \chi(x)^{-1} \Rightarrow \chi(x)^{-1} = \chi'$						
	注记. $(F5)$ - $(F9)$ 这四条公理表明 $(\mathbb{R}^{\times}:=\mathbb{R}-\{0\},\cdot)$ 是一个 $($ 交换 $)$ 群。我们强调 x^{-1}						
	只是一个记号。根据约定,我们把 $x \cdot y^{-1}$ 也记作 $\frac{x}{y}$ 。另外,有时候我们还省略掉·把						
	乘法分配律: $x \cdot (y + z) = x \cdot y + x \cdot z$ 。						

注记. 假定 (F1)-(F7) 以及 (F9) 这八条,我们就称 $(\mathbb{R},+,\cdot)$ 是一个 (交换) 环;满足这九条

注记 (空间的概念.). 上面的定义具有下述的模式,首先固定一个集合 $X = \mathbb{R}$,然后在 X _____

上加上额外的结构,比如说加法结构 $+: X \times X \to X$, 当然, 我们对这个额外的加法结构也 ____

可以做一些要求,比如说满足 (F1)-F(4) 等;我们还可以加更多的结构,比如还要求 X 上

有乘法结构 $\cdot: X \times X \to X$ 并且对这些结构之间的关系也有限定 (比如说 (F9))。在数学中,____

公理的 $(\mathbb{R},+,\cdot)$ 被称作是一个域。

所谓的空间通常指的是一个配备了某些结构的集合 X。

练 · 1) i	明,对任意的 x,y ,如果 $b\neq 0$,	我们有		
	$x+a=y+a\Rightarrow x=$	$y; x \cdot b = y \cdot b \Rightarrow x$	= y.	
2) 证明,	计任意的 x, y, z, w , 如果 $y \neq 0$, u	≠0,那么我们有		
	$\frac{x}{y} + \frac{z}{w} = \frac{xw + yw}{yw}$	$\frac{zx}{y}, \ \frac{x}{y} \cdot \frac{z}{w} = \frac{x \cdot z}{y \cdot w}.$		
3) 证明,	什意非零的 x 和 y ,我们有			
	$\left(\frac{x}{y}\right)$	$x^{-1} = \frac{y}{x}$.		
4) 证明,	-1)· $x = -x$ 。据此,进一步证明	$(-x)\cdot y = -(xy),$	$(-x)\cdot(-y)=xy\circ$	
(提示:	利用 $x + (-1) \cdot x = 1 \cdot x + (-1) \cdot x$	r)		
1) x+ a=.	1 tas station ytation	w > ~ y		
x-b = y	b => 7. b. b-1 = y. b.b-1 => 70=1	1		
2) 爭境:	x. y-1+ 2. w-1 = x.y (w.w)	+ 2w-(yy-1)=	(XM+3A), (M, A,);	7CW ZZ
引倒误	=一张=1,由F8)时的线	河鸦(子)~ >-	यू र	<i>J</i>
41 X+ L-1	ス=1・メナレルン=ので=	0 -1 (-1) X =	-X	
(O) 序公理:	ℝ 是有序域			
(O1) 序的	传递性: $x \leq y, y \leq z \Rightarrow x \leq z$ 。			
(O2) 序可	从决定元素: $x \leq y, y \leq x \Rightarrow x = y$	<i>l</i> ∘		<u> </u>
(O3) 全序	关系:对任意的 x 和 y , $x \leq y$ 或	者 $y \leq x$,二者必居	其一 (可以都成立)。	
(O4) 与加	去相容: $x \leq y \Rightarrow x + z \leq y + z$ 。			
(O5) 与乘	去相容: $x \geqslant 0, y \geqslant 0 \Rightarrow xy \geqslant 0$ 。			
(A) Achime	les 公理∶ ℝ 是 Archimedes 有	序域,即		
对任意 3	>0 和 y ,总存在正整数 n ,使得	导 $n \cdot x \geqslant y$ 。		
思考题. 作	设 $a > 0$, 你是否能证明开区间 $(0, a)$	a) 是非空的。通过反	证法, 你就可以看到所	-
	ind 分割的影子。Dedekind 分割是构			
一 论。在思考	的过程中你也会发现, 真正的困难在	于,基于目前的公理	, 我们不清楚 ℝ 中都有	
什么样子的	元素(目前我们只知道 $0,1,-1\in\mathbb{R}$)), 所以,能否大量的	构造实数是一个很重要	a
	们课程的一个关键点就是构造 $\sqrt{2}$,			6
	有给出这些数的具体定义 (只要求大		and the second s	
	(0,4)= 1 , 即 松在 x	a 14 10		问题

命题 1. \mathbb{R} 包含所有有理数,即存在单射 $\iota: \mathbb{Q} \to \mathbb{R}$,使得对任意的 $x,y \in \mathbb{Q}$,我们有

$$\iota(x+_{\scriptscriptstyle{\mathbb{Q}}}y)=\iota(x)+\iota(y),\ \ \iota(x\cdot_{\scriptscriptstyle{\mathbb{Q}}}y)=\iota(x)\cdot\iota(y),$$

其中 $+_{\mathbb{Q}}$ 和 $\cdot_{\mathbb{Q}}$ 分别为有理数 \mathbb{Q} 上的乘法和加法。映射 $\iota:\mathbb{Q}\to\mathbb{R}$ 还保持序关系,即对任意的 $x,y\in\mathbb{Q}$,如果 $x\leqslant_{\mathbb{Q}}y$,那么 $\iota(x)\leqslant\iota(y)$,其中 $\leqslant_{\mathbb{Q}}$ 是有理数上的序。

证明: 首先对于整数 n 定义映射 $\iota(n) \in \mathbb{R}$ 。我们令

$$\iota(n) = \begin{cases} \overbrace{1+1+\dots+1}^{n\uparrow}, & \text{如果 } n > 0; \\ 0, & \text{如果 } n > 0; \\ \underbrace{(-1)+(-1)+\dots+(-1)}_{-n\uparrow}, & \text{如果 } n < 0. \end{cases}$$

不难验证(请同学参考课堂笔记),对任意的 $m,n \in \mathbb{Z}$,我们都有

$$\iota(m+_{\mathbb{Q}}n)=\iota(m)+\iota(n),\ \iota(-n)=-\iota(n),\ \iota(m\cdot_{\mathbb{Q}}n)=\iota(m)\cdot\iota(n).$$

-据此,为了验证 ι 是单射,只要说明如果 $\iota(m) = \iota(n)$,则 m = n。我们有

$$\iota(m-n) = \iota(m) + \iota(-n) = \iota(m) - \iota(n) = 0,$$

按照定义,就有 k=m-n (因为对任意的 k>0, $1+1+\cdots+1>0$, $(-1)+1+\cdots+(-1)<0$)。对于有理数 $x=\frac{p}{q}\in\mathbb{Q}$,其中 $p,q\in\mathbb{Z},\ q\neq 0$,我们定义

$$\iota(x) = \frac{\iota(p)}{\iota(q)},$$

其中,因为 p 和 q 是整数,所以 $\iota(p)$ 和 $\iota(q)$ 已经有了定义。当然,x 可以表示为其他的整数的商的形式,比如说, $x=\frac{s}{t}$,其中 $s,t\in\mathbb{Z}$,为了说明 $\iota(x)$ 是良好定义的,我们就要说这两种表示所给出的 $\mathbb R$ 中的元素是一样的,即证明

$$\frac{\iota(p)}{\iota(q)} = \frac{\iota(s)}{\iota(t)}.$$

根据整数情况已经证明的结论, 我们知道上式等价于

$$\iota(p) \cdot \iota(t) = \iota(q) \cdot \iota(s) \Leftrightarrow \iota(pt) = \iota(qs) \Leftrightarrow pt = qs,$$

其中最后一个等价性用到了 ι 在整数集上是单射,所以 $\iota(x)$ 是良好定义的,从而我们得到了映射

$$\iota: \mathbb{Q} \to \mathbb{R}$$
.

为了说明 ι 是单射,考虑 $\iota(\frac{p}{q})=\iota(\frac{s}{t})$,其中 p,q,s,t 是整数。此时,按照定义,我们有

$$\frac{\iota(p)}{\iota(q)} = \frac{\iota(s)}{\iota(t)} \Rightarrow pt = qs \Rightarrow \frac{p}{q} = \frac{s}{t}.$$

最后,我们把 ι 保持序关系,即说明如果 $\frac{p}{q} > \frac{s}{t}$,那么 $\frac{\iota(p)}{\iota(q)} > \frac{\iota(s)}{\iota(t)}$,其中,我们总能假设 q > 0 t > 0。由于 $\iota(q) > 0$, $\iota(t) > 0$ (因为对任意的 k > 0, $1 + 1 + \dots + 1 > 0$),所以 $-\frac{\iota(p)}{\iota(q)} > \frac{\iota(s)}{\iota(t)}$ 等价于

$$[\iota(p) \cdot \iota(t) > \iota(q) \cdot \iota(s) \Leftrightarrow \iota(pt - qs) > 0.$$

后者是显然的,因为pt-qs>0。

现这种看似奇怪的 相选,是因为我们还不 知道"别底是什么,它目 有又是十名号。同理片" 和以"也是未知的运第。 目后的针出代似乎也要达 在这种证法。

就以它好定义"是什么意. 思始·直不太清楚。

良定义的意思就是在定义可能有ambiguity^Q的时候,要检查一下给出的定义到底是不是清晰的,是不是有意义的。这个词最常见的用法就是定义映射 $f: X/\sim Y$ 的时候,很多情况下是先定义一个 $\tilde{f}: X\to Y$,然后再验证 \tilde{f} 跟代表元的选取无关,从而自然地给出了想要定义的f。

90%的情况下,良定义就是与代表元选取无关的意思;剩下10%可能出现什么别的数学上的用法我一下子想不起来了。"良定义"这个词毕竟是一个自然语言的词语,不是在形式语言里面通过抽象符号来定义的东西;自然语言里面任何概念都不可能完全限定死它的含义,永远都有外延。

练习. 有了以上的各种准备和经验, 我们就不难证明

- 1) 证明, 利用 \mathbb{R} 中的 n 的定义, 我们有 $n \cdot x = nx$, $n \cdot x = nx$ 。(先证明在 \mathbb{R} 中, 我们 有 $n \cdot x = \underbrace{x + x + \cdots + x}^{n \uparrow}$, 其中 n > 0 是 \mathbb{R} 中的一个自然数)。
- 2) 证明,对于任意的 a < b, (a,b) 有无限多个元素。(提示: 我们可以考虑 $\frac{1}{2}(a+b)$ 并利 用 $0 < \frac{1}{2} < 1$ 这个事实)
- 3) 如果 \mathbb{R} 中存在元素 o>0,使得对任意的 x>0,我们都有 o< x,我们就称 o 是无穷 小元。证明, ℝ 中没有无穷小元。(有一种专门研究含有无穷小的数的分析, 叫做非标 准分析)

少这题于是什么东西一、好问了一下老师现在明白了,挺简单的倒是。

注记. 我们之后将 $\mathbb Q$ 和 ι 的像等同。自此往后,我们就在这个意义下认为有理数 $\mathbb Q$ 是 $\mathbb R$ 的

子集。换句话说,我们用 n 来表示 \mathbb{R} 中的 $\overline{1+1+\cdots+1}$, \overline{p} 表示 $\overline{1+1+\cdots+1}$ 等。 习 $\overline{2}$ 简 \overline{n} 为 \overline{n} 为

惯上,我们将限一见的元素称为是无理数(这是一个在中文世界里被广泛接受的"无理的"术 语)。

L: Q→ R, N > 1+1+--+1 : N-X= (1+1+1+···+1)· X - NX

- 引令 a= 型, 局知 a G(ab), 取公二3些, 躬经co (a, C))。 它cn=(2-11a+b), cn E (a, Cn-1): an E(a,b) · (a,b)有规约元蒙
- 3) 考存在形的,则根据(的),对于不下, 篇neNst. no <不,即 o 三箭 · YEIR : X GIR. : 01云, 新角。 ; 不在在鸡瓜无

(I) 区间套公理

给定有限(即要求下面的 a_n 和 b_n 均为实数)闭区间的序列 $\{I_n = [a_n, b_n]\}_{n=1,2,...}$,如果 这个序列是下降的,即 $I_1 \supset I_2 \supset I_3 \supset \cdots$ (等价于对任意的 $n \ge 1$ 都有 $a_n \le a_{n+1}$ 并且 $b_{n+1} \ge b_n$),那么它们的交集非空,即

$$\lim_{n\to\infty}I_n:=\bigcap_{n\geqslant 1}I_n\neq\emptyset.$$

定义 2. 我们将满足上述四条公理系统 (F), (O), (A), (I) 的四元组 ($\mathbb{R}, +, \cdot, \leq$) 称作是实数。

注记. 这个定义目前并不是良好定义的: 我们完全不知道这样的实数理论是不是唯一的; 我们甚至 没有证明满足四条的四元组 $(\mathbb{R},+,\cdot,\leqslant)$ 是存在的。另外,除了有理数之外,我们并没有证明无理 数 (比如说 $\sqrt{2}$) 是存在的。

我们注意到,如果就强行要求 ℝ 是全体有理数的集合并且配备了 +, ·和 ≤ 这几种有理数上 的结构,我们所得到的四元组是满足(F),(O),(A)这三条公理系统的,所以,要想真的得到我 们中学所熟悉的实数(比如说存在 $\sqrt{2}$),区间套公理是必不可缺的。