

# A Case Study for Moving Targets

### Let's consider a more practical use case for MT

We will still tackle a synthetic problem, but one closer to practice

- In particular, given a classification problem
- We will require to have roughly balance class predictions

$$\left|\sum_{i=1}^{m} z_{ij} - \frac{m}{n_c}\right| \le \beta \frac{m}{n_c}, \quad \forall j \in 1..n_c$$

- Where  $z_{ij} = 1$  iff the classifier predicts class j for example i
- I.e. the result of an argmax applied to the output of a probabilistic classifier

...Basically, this the "very bad example" from the previous section

#### The Dataset

# We will use the "wine quality" dataset from UCI

```
In [6]: data = util.load_classification_dataset(f'{data_folder}/winequality-white.csv', onehot_inputs=['
display(data.head())
```

| a          | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density | рН   | sulphates | alcohol | quality_3 | quality_4 | quality_5 | qual |
|------------|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|---------|------|-----------|---------|-----------|-----------|-----------|------|
| <b>o</b> 7 | 7.0              | 0.27                | 0.36           | 20.7              | 0.045     | 45.0                      | 170.0                      | 1.0010  | 3.00 | 0.45      | 8.8     | 0         | 0         | 0         | 1    |
| <b>1</b> 6 | 5.3              | 0.30                | 0.34           | 1.6               | 0.049     | 14.0                      | 132.0                      | 0.9940  | 3.30 | 0.49      | 9.5     | 0         | 0         | 0         | 1    |
| <b>2</b> 8 | 3.1              | 0.28                | 0.40           | 6.9               | 0.050     | 30.0                      | 97.0                       | 0.9951  | 3.26 | 0.44      | 10.1    | 0         | 0         | 0         | 1    |
| <b>3</b> 7 | 7.2              | 0.23                | 0.32           | 8.5               | 0.058     | 47.0                      | 186.0                      | 0.9956  | 3.19 | 0.40      | 9.9     | 0         | 0         | 0         | 1    |
| <b>4</b> 7 | 7.2              | 0.23                | 0.32           | 8.5               | 0.058     | 47.0                      | 186.0                      | 0.9956  | 3.19 | 0.40      | 9.9     | 0         | 0         | 0         | 1    |

- We will learn a model to predict wine quality
- There are 7 possible classes, represented via a one-hot encoding
- An ordinal encoding would be better, but our choice makes for a better example

# **The Dataset**

## We perform pre-processing as usual

```
In [7]: dtout = [c for c in data.columns if c.startswith('quality_')]
    dtin = [c for c in data.columns if c not in dtout]
    trl, tsl, scalers = util.split_datasets([data], fraction=0.7, seed=42, standardize=dtin)
    tr, ts, scaler = trl[0], tsl[0], scalers[0]
    tr.describe()
```

#### Out[7]:

|       | fixed acidity | volatile acidity | citric acid   | residual sugar | chlorides     | free sulfur<br>dioxide | total sulfur<br>dioxide | density       |
|-------|---------------|------------------|---------------|----------------|---------------|------------------------|-------------------------|---------------|
| count | 1.469000e+03  | 1.469000e+03     | 1.469000e+03  | 1.469000e+03   | 1.469000e+03  | 1.469000e+03           | 1.469000e+03            | 1.469000e+03  |
| mean  | 5.235960e-16  | 1.475259e-16     | -1.934766e-16 | 1.644551e-16   | -1.015752e-16 | -1.813843e-16          | 1.463167e-16            | -8.416231e-15 |
| std   | 1.000341e+00  | 1.000341e+00     | 1.000341e+00  | 1.000341e+00   | 1.000341e+00  | 1.000341e+00           | 1.000341e+00            | 1.000341e+00  |
| min   | -3.513954e+00 | -1.981296e+00    | -2.750607e+00 | -1.170902e+00  | -1.436585e+00 | -1.916670e+00          | -2.969922e+00           | -2.338980e+00 |
| 25%   | -6.396233e-01 | -6.660564e-01    | -5.421591e-01 | -9.256225e-01  | -4.519909e-01 | -6.550002e-01          | -7.262526e-01           | -7.862395e-01 |
| 50%   | -4.080447e-02 | -1.601951e-01    | -1.331873e-01 | -2.306630e-01  | -1.387109e-01 | -8.151391e-02          | -1.309932e-01           | -5.839245e-02 |
| 75%   | 5.580144e-01  | 4.468384e-01     | 4.393732e-01  | 7.197965e-01   | 1.745692e-01  | 5.493210e-01           | 6.474229e-01            | 7.387734e-01  |
| max   | 8.821714e+00  | 4.898418e+00     | 5.347035e+00  | 4.031074e+00   | 1.006527e+01  | 1.454239e+01           | 6.897646e+00            | 3.112941e+00  |

#### **Dataset Balance**

We can use the (avg. of) our constraint metric to assess the dataset balance:

$$\frac{1}{n_c} \sum_{j=1}^{n_c} \left| \sum_{i=1}^{m} \hat{z}_{ij} - \frac{m}{n_c} \right|, \quad \forall j \in 1..n_c$$

• Where  $\hat{z}$  are the class columns (one-hot encoding)

```
In [8]: bal_thr = 0.2
    tr_true = np.argmax(tr[dtout].values, axis=1)
    ts_true = np.argmax(ts[dtout].values, axis=1)
    tr_bal_src = util.avg_bal_deviation(tr_true, bal_thr, nclasses=len(dtout))
    ts_bal_src = util.avg_bal_deviation(ts_true, bal_thr, nclasses=len(dtout))
    print(f'Original avg deviation: {tr_bal_src*100:.2f}% (training), {ts_bal_src*100:.2f}% (test)')
Original avg deviation: 101.42% (training), 98.71% (test)
```

- Our goal will be to push the balance deviation down to 20%
- I.e. we will assume  $\beta = 0.2$  in the constraint

#### The Learner

## Our "learner" will be a multilayer perceptron

The code can be found as usual in the util module

- We are using a standard scikit-learn API
- ...With the ability to use different #epochs for the first and subsequent training
- ...Which will prove useful later

## The Learner

# Let's start by checking how regular training fares

```
In [10]: hidden = [8, 8]
         learner = util.MLPLearner(hidden=hidden, epochs=150)
         learner.fit(tr[dtin].values, tr[dtout].values)
         util.plot training history(learner.history, figsize=figsize)
          1.8
          1.6
          1.4
          1.2
          1.0
                                 20
                                                                    60
                                                       epochs
          Model loss: 1.0167 (training) 1.0904 (validation)
```

#### The Learner

### Now we can check the model performance

...In terms of both accuracy and degree of constraint violation

```
In [11]: tr_pred_prob = learner.predict_proba(tr[dtin])
    ts_pred_prob = learner.predict_proba(ts[dtin])
    tr_acc, tr_bal = util.mt_balance_stats(tr[dtout].values, tr_pred_prob, bal_thr)
    ts_acc, ts_bal = util.mt_balance_stats(ts[dtout].values, ts_pred_prob, bal_thr)
    print(f'Accuracy: {tr_acc:.2f} (training), {ts_acc:.2f} (test)')
    print(f'Classifier avg deviation: {tr_bal*100:.0f}% (training), {ts_bal*100:.0f}% (test)')
    print(f'Balance violation threshold: {bal_thr*100:.0f}%')

Accuracy: 0.55 (training), 0.53 (test)
    Classifier avg deviation: 133% (training), 132% (test)
    Balance violation threshold: 20%
```

- The accuracy is slightly above 50%
- ...But the balance violation is far larger than our threshold

```
def mt_balance_master(y_true, y_pred, bal_thr, alpha=1, time_limit=None, mode=...):
    # Build a model
    slv = pywraplp.Solver.CreateSolver('CBC')
    ...
    # Solve
    status = slv.Solve()
    ...
    # Return the solution and stats
    return sol, stats
```

- lacktriangle y\_true corresponds to  $\hat{y}$  and y\_pred to the current prediction vector
- The balance threshold bal\_thr is a fractional value
- A mode parameter allows one to adjust a bit the problem behavior

```
def mt_balance_master(y_true, y_pred, bal_thr, alpha=1, time_limit=None, mode='gradient')
...
# Build target variables
z = {(i,j) : slv.IntVar(0, 1, f'z[{i},{j}]') for i in range(ns) for j in range(nc)}
# Unique class constraints
for i in range(ns):
    slv.Add(sum(z[i, j] for j in range(nc)) == 1)
...
```

- We are using integer variables for the targets
- This is partly for sake of simplicity and scalability
- ...And partly since it is compatible with DT models as well
- Using continuous (probabilistic) targets is possible, but harder

```
def mt_balance_master(y_true, y_pred, bal_thr, alpha=1, time_limit=None, mode='gradient')
...
# Add the balance constraint
ref = ns / nc
for j in range(nc):
    slv.Add(sum(z[i, j] for i in range(ns)) <= ref + ref * bal_thr)
    slv.Add(sum(z[i, j] for i in range(ns)) >= ref - ref * bal_thr)
...
```

- The balance constraint is implemented via two inequalities
- Class counts are easy to compute by relying on integer one-hot targets

- lacksquare As a loss L for the master, we use  $\|y-\hat{y}\|$
- lacksquare ...Hence the gradient is given by the sign of the difference  $y-\hat{y}$
- $\blacksquare$  If  $y_i = \hat{y}_i$  for some i, the dsgn function has a customized behavior

```
def mt_balance_master(y_true, y_pred, bal_thr, alpha=1, time_limit=None, mode='gradient')
...
# Build the quadratic part of the objective
loss_p = 0
for i in range(ns):
    for j in range(nc):
        loss_p += z[i, j] * (1-y_pred[i, j])**2 + (1-z[i, j]) * (0-y_pred[i, j])**2
# Define the cost function
slv.Minimize(alpha * loss_t + loss_p)
...
```

- The quadratic part of the objective is easy to linearize
- $\blacksquare$  ...Since we are using integer z variables

# **Loss-driven Projection**

#### A simpler approach to inject constraints in the ML model...

...Starts by directly "projecting" the ground truth  $\hat{y}$  in feasible space

■ The projection can be done using the loss itself as a distance:

$$\operatorname{argmin}_z \left\{ L(z, \hat{y}) \mid z \in C \right\}$$

#### By doing this, we can obtain the best possible feasible target vector

```
In [12]: zp, stats = util.mt_balance_master(tr[dtout].values, tr[dtout].values, bal_thr, time_limit=10, n
    tmp_acc, tmp_bal = util.mt_balance_stats(tr[dtout].values, zp, bal_thr)
    print(f'Accuracy: {tmp_acc:.2f}, Balance deviation: {tmp_bal*100:.2f}%, Optimal solution: {state}

Accuracy: 0.58, Balance deviation: 16.80%, Optimal solution: False
```

- In our case, the solution is not optimal (there is a time limit)
- ...But it's very close to optimality

# **Loss-driven Projection**

### Then, the simple approach consists training against this "ideal" vector

The method is implemented in util as part of the MT code:

```
In [13]: learner_prj = util.MLPLearner(hidden=hidden, epochs=600)
    util.mt_balance(tr[dtin].values, tr[dtout].values, learner_prj, bal_thr, mode='projection', mast
    tr_pred_prob = learner_prj.predict_proba(tr[dtin])
    ts_pred_prob = learner_prj.predict_proba(ts[dtin])
    tr_acc, tr_bal = util.mt_balance_stats(tr[dtout].values, tr_pred_prob, bal_thr)
    ts_acc, ts_bal = util.mt_balance_stats(ts[dtout].values, ts_pred_prob, bal_thr)
    print(f'Accuracy: {tr_acc:.2f} (training), {ts_acc:.2f} (test)')
    print(f'Classifier balance violation: {tr_bal*100:.0f}% (training), {ts_bal*100:.0f}% (test)')

Accuracy: 0.44 (training), 0.43 (test)
    Classifier balance violation: 103% (training), 103% (test)
```

- The accuracy is lower, since we have confounded the input/output relation
- ...And the violation is roughly the same!
  - The ML model bias prevents it from reaching the adjusted target
  - ...But too little bias may result in overfitting

# **Moving Targets**

#### Let's now test the actual MT method

We use fewer training epochs after the first fit call to speed up the process

- Constraint satisfaction improves across iterations
- The learner/master accuracy tends to decrease/increase

# **Moving Targets**

#### Let's check generalization over the test set

```
In [15]: tr_pred_prob = learner_mt.predict_proba(tr[dtin])
    ts_pred_prob = learner_mt.predict_proba(ts[dtin])
    tr_acc, tr_bal = util.mt_balance_stats(tr[dtout].values, tr_pred_prob, bal_thr)
    ts_acc, ts_bal = util.mt_balance_stats(ts[dtout].values, ts_pred_prob, bal_thr)
    print(f'Accuracy: {tr_acc:.2f} (training), {ts_acc:.2f} (test)')
    print(f'Classifier balance deviation: {tr_bal*100:.0f}% (training), {ts_bal*100:.0f}% (test)')

Accuracy: 0.36 (training), 0.29 (test)
    Classifier balance deviation: 18% (training), 12% (test)
```

We do have some overfitting in terms of accuracy

- This is due to the fact that we have very restrictive constraints
- ...And they directly oppose information in the data

Constraint satisfaction generalizes without issues

■ ...And this is a big deal!