Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №1.1.1

по курсу общей физики на тему:

«Измерение удельного сопротивления нихромовой проволочки»

Работу выполнил: Никифоров Дмитрий (группа Б02-205)

Долгопрудный 23 сентября 2022 г.

1 Введение

Аннотация:

В работе измеряется удельное сопротивление тонкой проволоки круглого сечения, изготовленной из нихромового сплава. Геометрические размеры образца измеряются с помощью линейки, штангенциркуля и микрометра. Для измерения сопротивления используются следующие методы:

- определение углового коэффициента наклона зависимости напряжения на проволоке от тока через неё, измеряемых с помощью аналоговых и цифровых вольтметров и амперметров,
- измерение с помощью моста постоянного тока.

Детально исследуется систематические и случайные погрешности проводимых измерений.

Цель работы: измерить удельное сопротивление проволоки и вычислить систематические и случайные погрешности при использовании таких измерительных приборов, как линейка, штангенциркуль, микрометр, амперметр, вольтметр и мост постоянного тока.

Оборудование: линейка, штангенциркуль, микрометр, отрезок проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, реостат, ключ.

2 Теоритические сведения

Удельное сопротивление проволоки из однородного материала постоянного сечения измеряется по формуле:

$$\rho = R_{\rm np} \cdot \frac{S_{\rm np}}{l} = \frac{R_{\rm np}}{l} \cdot \frac{\pi d^2}{4}$$

В данной работе измерять сопротивление $R_{\rm np}$ предлагается с помощью схемы представленной на рис.1

Рис. 1: Схема для измерения сопротивления

Пусть V и I — показания вольтметра и амперметра, при расчете сопротивления только этими данными: $R_{\rm np1} = V_1/I_1$ найденное сопротивление будет отличаться от искомого $R_{\rm np}$ из-за внутренних сопротивлений приборов.

Учитывая сопротивления приборов получаем:

$$R_{\rm np1} = \frac{V_1}{I_1} = R_{\rm np} \frac{R_V}{R_{\rm np} + R_V}$$

Эту формулу можно преобразовать в удобную для нас форму:

$$R_{\rm np} = \frac{R_{\rm np1}}{1 - \left(\frac{R_{\rm np1}}{R_V}\right)} \approx R_{\rm np1} \left(1 + \frac{R_{\rm np1}}{R_V}\right)$$

Таким образом получаем пример систематической ошибки, возникающей из-за упрощения расчетной формулы. Для нашей схемы сопротивление $R_{\rm np}$ оказывается заниженным относительно рассчитанного.

Более точным методом измерения сопротивлений является метод моста постоянного тока (мост Уитстона).

3 Оборудование и экспериментальные погрешности

3.1 Характеристики измерительных приборов

Вольтметр	Миллиамперметр
Магнитоэлектрическая	Электромагнитная
0,5	_
0,75 B	2 A
150	_
5 мВ/дел	_
200 дел/В	_
$6,25~\mathrm{mB}$	$0.3 { m mA} - 2 { m mA}$
5000 Ом	1,2 Ом
	Магнитоэлектрическая 0,5 0,75 B 150 5 мВ/дел 200 дел/В 6,25 мВ

Вольтметр:

$$\sigma_{\mathrm{V}}=rac{c_{V}}{2}+rac{\gamma x_{\Pi}}{100}=6{,}25~\mathrm{мB}$$

Амперметр:

$$\sigma_{\rm I} = 0.005I + 2c_A$$

Штангенциркуль: $\sigma_{\mathrm{m}}=0.05~\mathrm{mm}$

Микрометр: $\sigma_{\text{м}} = 0.01 \text{ мм}$

4 Измерения

4.1 Измерение диаметра проволоки

Nº	1	2	3	4	5	6	7	8	9	10	cp.
$d_{\rm m}$, mm	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3
$d_{\scriptscriptstyle \mathrm{M}}$, mm	0,34	0,34	0,32	0,31	0,32	0,31	0,32	0,32	0,32	0,33	0,323

Таблица 2: Результаты измерения диаметра проволоки

При измерении штангенциркулем случайная погрешность отсутствует, а значит можно учитывать только системную погрешность: $d_{\rm m}=(0.30\pm0.05)\,$ мм.

При измерении же микрометром нужно учитывать и системную и случайную погрешость:

$$\sigma_{\text{сист}} = 0.01 \text{ мм}$$
 $\sigma_{\text{сл}} = \frac{1}{N} \sqrt{\sum_{i=1}^{n} (d_i - \overline{d})^2} = \frac{1}{10} \sqrt{4.3 \cdot 10^{-4}} \approx 2 \cdot 10^{-3} \text{ мм}$ $\sigma_{d_{\text{м}}} = \sqrt{\sigma_{\text{сист}}^2 + \sigma_{\text{сл}}^2} \approx 0.01 \text{ мм}$

тогда $d_{\scriptscriptstyle \rm M} = (0.32 \pm 0.01)\,$ мм.

Площадь поперечного сечения проволоки можно вычислить зная диаметр, используя диаметр найденный с помощью микрометра мы уменьшим погрешность площади. Вычислим площадь и ее погрешность:

$$S_{\text{IIP}} = \frac{\pi d_{\text{M}}^2}{4} = \frac{3,1415 \cdot (0,323)^2}{4} \approx 0,1 \text{ mm}^2$$

$$\sigma_S = 2 \frac{\sigma_{d_{\text{M}}}}{d_{\text{M}}} \cdot S = 2 \frac{0,01}{0.323} \cdot 0,1 \approx 6,2 \cdot 10^{-3} \text{ mm}^2$$

С учетом погрешности получаем, что $S_{\rm np}=(0.1\pm6.2\cdot10^{-3})\,$ мм 2 т.е. площадь поперченого сечения определена с точностью 6.2%

4.2 Измерение поправок при измерении сопротивления

Поправки при измерении $R_{\rm np}$ это дополнительные коэффиценты на которые мы умножаем полученное сопротивление, для учета сопротивления измерительных приборов. Для нашей схемы эта поправка будет равняться $\frac{R_{\rm np1}}{R_V} \cdot 100\% = 0.1\%$.

4.3 Снятие показаний вольтметра и амперметра, обработка полученных данных

Ниже представленны данные, снятые с приборов в ходе эксперимента, для проволок разной длины: $l_1=(20,0\pm0,1)$ см; $l_2=(30,0\pm0,1)$, см; $l_3=(50,0\pm0,1)$ см :

l	l = 20 cm	[l = 30 cm			l = 50 cm		
V, дел	V, мВ	І, мА	V, дел	V, мВ	І, мА	V, дел	V, мВ	І, мА
26	130	65,64	39	195	64,16	61	305	61,89
36	180	89,79	49	245	81,84	69	345	70,19
48	240	119,27	57	285	95,25	80	400	81,67
52	260	129,00	69	345	114,72	88	440	89,60
58	290	144,60	81	405	135,84	96	480	98,14
69	345	172,42	96	480	160,56	102	510	103,50
83	415	207,68	107	535	178,97	111	555	113,08
91	455	226,38	115	575	191,30	120	600	122,09
105	525	261,64	123	615	204,34	128	640	130,25
127	635	315,85	132	660	220,42	134	670	136,08
138	690	342,99	140	700	234,00	140	700	142,42
150	750	371,78	147	735	245,50	147	735	149,15

Таблица 3: Снятая зависимость V(I) для проволок разных длин

Построим графики по данным из таблицы: рис. 2.

Рис. 2: Графики зависимости V(I)

Для каждой длины проволоки l найдем сопротивление и погрешности методом наименьших квадратов по формулам:

$$R_{\rm cp} = \frac{\langle VI \rangle}{\langle I^2 \rangle}$$

$$\sigma_{R_{\rm cp}}^{\rm chyq} = \frac{1}{\sqrt{12}} \sqrt{\frac{\langle V^2 \rangle}{\langle I^2 \rangle} - R_{\rm cp}^2} \qquad \qquad \sigma_{R_{\rm cp}}^{\rm chct} = R_{\rm cp} \sqrt{\left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_I}{I}\right)^2}$$

$$\sigma_{R_{\rm cp}} = \sqrt{\sigma_{\rm chct}^2 + \sigma_{\rm chyq}^2}$$

где V и I – максимальные значения тока и напряжений, $\sigma_V = 6.25$ мB, а $\sigma_I = 2$ мA. Рассчитываем сопротивление с учетом поправки для схемы и погрешности:

l=20 cm	l = 30 cm	l = 50 cm
$R_{\rm cp} = 2{,}010~{ m Om}$	$R_{\rm cp} = 2{,}996~{ m Om}$	$R_{\rm cp} = 4.915 \; {\rm Om}$
$R_{\rm np} = 2{,}012~{ m Om}$	$R_{\rm np} = 2{,}999~{ m Om}$	$R_{\rm np} = 4,920 \; {\rm Om}$
$\sigma_R^{\text{случ}} = 0.002 \text{ Om}$	$\sigma_R^{\text{случ}} = 0.003 \text{ Ом}$	$\sigma_R^{\text{случ}} = 0.003 \text{ Om}$
$\sigma_R^{\text{сист}} = 0.020 \text{ Om}$	$\sigma_R^{\text{сист}} = 0.030 \text{ Om}$	$\sigma_R^{\text{сист}} = 0.048 \text{ Om}$
$\sigma_{R_{\rm cp}}=0.020~{ m Om}$	$\sigma_{R_{\rm cp}} = 0.030 \; {\rm Om}$	$\sigma_{R_{\rm cp}} = 0.048 \; {\rm Om}$

Таблица 4: Экспериментально полученные сопротивления и погрешности

4.4 Нахождение сопротивления с помощью моста

l, см	20	30	50	
$R_{\rm np}$, Om	2,0408	3,0546	5,0416	

Таблица 5: Сопротивления, полученные с помощью моста

Сравниваем результаты полученные косвенно с результатами на мосте. Результаты измерений первых двух длин попадают в предел $\pm 2\sigma_R$ из таб.4. Измерение 3 попадает в предел $\pm 3\sigma_R$.

4.5 Вычисление удельного сопроивления проволоки

Удельное сопротивление проволоки изготовленной из однородного материала и погрешность могут быть определены по формулам:

$$\rho = R_{\text{np}} \cdot \frac{S_{\text{np}}}{l} = \frac{R_{\text{np}}}{l} \cdot \frac{\pi d^2}{4} \qquad \qquad \sigma_{\rho} = \rho \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(2\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2}$$

где $R_{\rm np}$ — сопротивление измеряемого отрезка проволоки, $S_{\rm np}$ — площадь поперечного сечения проволоки, l — его длина, а d — диаметр проволоки.

Занесем полученные результаты в таблицу

l, cm	$\rho, 10^{-6} \text{ Om} \cdot \text{mm}^2/\text{m}$	$\sigma_{\rho}, 10^{-6} \text{ Om} \cdot \text{mm}^2/\text{m}$
20	0,84	0,05
30	0,83	0,05
50	0,83	0,05

Таблица 6: Удельные сопротивления участков проволоки различной длины

Конечным значением удельного сопротивления лучше считать удельное сопротивления участка проволоки длиной 50 см, так как его сопротивление наибольшее, что означает наименьшую погрешность и наибольшую точность измерения. В таком случае: $\rho = (0.83 \pm 0.05) \cdot 10^{-6} \text{ Cm} \cdot \text{mm}^2/\text{m}$.

4.6 Вывод

Основной вклад в общую ошибку вносит погрешность измерения площади сечения проволоки(6%), т.е. точности микрометра не хватает для данного эксперимента. Допустимые значения удельного сопротивления нихрома: $\rho_{\rm ra6} = (0.97-1.14) \cdot 10^{-6} \ {\rm Om} \cdot {\rm mm}^2/{\rm m}$

Все полученные значения отличаются от табличных на $3\sigma_{\rho}$. Это можно объяснить тем, что в эксперименте не было учтенно сопротивление проводов; также причиной такого несовпадения результатов с табличными данными может быть различие исследуемых проволочек.