Hierarchical View-Frustum Culling for Z-buffer Rendering

Tomáš Bubeníček

Contents

- Recap of last presentation
 - What is frustum culling
- My implementation
- My measurements

What is frustum culling?

- Limiting the objects which are rasterized to be just the objects that are visible
- Saves vertex shader computations

Frustum culling using BVH

- Check AABB of node
 - If inside, draw all children
 - If outside, discard all children
 - If intersects, recurse deeper
- Fast AABB-frustum incidence test
 - Split into 6 AABB-plane tests
 - If one fails, the test fails

My implementations

- SDL2, OpenGL
- Several simple scenes to test with
 - Scene contains objects + camera animation

Measurements

- Both Nvidia (desktop) and Intel (integrated) GPUs
- Measurements
 - FPS, Frametime
 - # of draw calls
 - GL_TIME_ELAPSED Actual time to draw on GPU
 - CPUtime Time to traverse + driver calls
 - Traversaltime time to traverse w/o driver calls
- 10 measurements for each scene, averaged

Measurements – Scene 1

60 instances of asianDragon.obj (7.6M tris each) spaced out

7 of 12

Measurements – Scene 2

60 instances of asianDragon.obj (7.6M tris each) packed

- Windows 10
- Nvidia GTX 1070

Measurements – Scene 3

20 instances of part_of_pompeii (16M tris each), flat scene

- Windows 10
- Nvidia GTX 1070

Measurements – Laptop

60 instances of asianDragon.obj (7.6M tris each) spaced out

- Linux
- Intel UHD Graphics 620

Summary

- Frustum culling very effective
 - Further optimalization of AABB-frustum test with modern HW not needed (profiler shows 97% of time spent in OpenGL calls)
- Number of triangles in leaves of BVH should be picked based on target platform
 - (Nvidia drivers cause a lot of overhead)

Sources

- [1] U. Assarsson and T. Moller. Optimized view frustum culling algorithms for bounding boxes. Journal of graphics tools, 5(1):9–22, 2000.
- [2] G. Gribb and K. Hartmann. Fast extraction of viewing frustum planes from the world-view-projection matrix. Online document, 2001.
- [3] D. S`ykora and J. Jelinek. Efficient view frustum culling. In Central European Seminar on Computer Graphics, 2002.