Fügen Sie in die folgenden Ausdrücke alle impliziten Klammern ein!

(a)
$$(c_0 c_1) (c_2 c_3) c_4) c_5$$

(b) $(c_0 c_1) c_2) (c_3 c_4) c_5$
(c) $(c_0 c_1) (c_2 c_3) c_4) (c_5 c_6)$
(d) $(c_0 c_1) (c_2 c_3) c_4) c_5 c_6$
(e) $(c_0 (c_1 (c_2 c_3) c_4)) c_5 c_6$
(f) $(\lambda y. (c_0 c_1) c_2) (c_3 c_4) c_5)$
(g) $(\lambda y. c_0 (\lambda z. c_1 c_2)) (c_3 c_4) c_5)$

- 2. Welcher dieser beiden λ -Terme repräsentiert den gleichen λ -Term wie λy . y c_0 ?
 - (a) $(\lambda y. y) c_0$

(b) λy . $(y c_0)$ repr. (b)

(a) Führen Sie in folgenden Termen Substitution durch:

i.
$$x = \lambda y$$
. y in den Term $(x) c_0 \Rightarrow (\lambda y \cdot y) (0 \Rightarrow c_0)$
ii. $x = (\lambda y \cdot y)$ in den Term $x c_0$ $(\lambda y \cdot y) (0 \Rightarrow c_0)$

(b) Gilt folgende Aussage im λ-Kalkül?

"Für beliebiges t repräsentieren t und (t) den gleichen λ -Term" Ja, habe kein Gegenbeispiel gefunden, vorausgesetzt bei Substitution wird

(c) Führen Sie in folgendem Term Substitution durch:² iii. $x = \lambda y$. y in den Term x c_0 (2g. g)(0=) c0

3. Angenommen, $x = c_0 c_1$. Welche der folgenden Aussagen gelten?

(a)
$$c_0 \ c_1 \ c_2 = x \ c_2 \ \sqrt{}$$

(b)
$$c_2 c_0 c_1 = c_2 x \times$$

(c)
$$c_2 (c_3 c_4) c_0 c_1 = c_2 (c_3 c_4) x X$$

(d)
$$c_2 (c_0 c_1 c_3) c_4 = c_2 (x c_3) c_4 \checkmark$$

4. Unterstreichen Sie alle linken Seiten der Redexe (also die "sofort anwendbaren Funktionen") in folgendem Term:

$$(\lambda a.a) \ (\lambda b.b) \ ((\lambda c.c) \ ((\lambda d.d) \ (\lambda e.e) \ (\lambda f.f))) \ (\lambda g.g) \ ((\lambda h.h) \ (\lambda i.i)).$$

Führen Sie dann, jeweils ausgehend von obigem Term, je einen Reduktionsschritt pro Redex

Statt zu unterstreichen können Sie auch einfach den Variablennamen der zugehörigen Lambda-Abstraktion angeben.