Аналитический отчёт по исследованию эффективности химических соединений методами классического машинного обучения — финальная версия

нияу мифи

Автор: Груданов Н.А.

Аннотация

В даном отчёте выводы основаные на наборе данных (1001 молекула, 214 признаков) и включает:

- предобработку данных и контроль качества;
- построение и сравнение регрессионных и классификационных моделей (включая ансамбли и линейные модели);
- анализ остатков и диагностические графики;
- интерпретацию важности признаков (включая табличные списки топ-30 признаков);
- практические рекомендации для использования моделей в предварительном скрининге соединений и направления для дальнейших исследований.

Кратко: ансамблевые методы (RandomForest / CatBoost) стабильно дают лучшие результаты; модельность SI хуже описывается прямой регрессией, SI целесообразно получать через агрегирование предсказаний СС50 и IC50 с оценкой неопределённости. В зависимости от настройки эксперимента и набора признаков полученные метрики для IC50/CC50 варьируются — в некоторых запусках R² для IC50 достигал ≈0.73 (результаты из notebooks/models), в других — около 0.24 (базовые сопоставления). В отчёте объясняются причины таких различий и даны рекомендации.

1 Введение и мотивация

Молекулярный скрининг требует оперативной оценки эффективности и токсичности соединений. Эксперименты *in vitro* стоят времени и ресурсов; машинное обучение позволяет быстро отфильтровать кандидатов и расставить приоритеты для дальнейшего экспериментального тестирования. В этой работе рассматриваются три ключевые целевые переменные:

- IC50 эффективность (мл/мМ), более низкие лучше;
- СС50 токсичность (мл/мМ), более высокие лучше;

• SI = CC50 / IC50 — индекс селективности (высокие значения — желаемы).

Цели: построить воспроизводимый конвейер классического ML, оценить его применимость к реальным данным, интерпретировать модели и дать практические рекомендации химикам и инженерам разработки.

2 Данные и предобработка (сводка и уточнения)

Ключевые характеристики:

- 1001 наблюдение, 214 столбцов (3 целевые + 211 входных дескрипторов).
- Типы: смешанные числовые типы (float/int).
- Пропуски: 36 ячеек (<0.02%) заменены медианой.
- Были сохранены промежуточные версии данных: data/nooutliers_iqr.csv, data/nooutliers_zscore.csv, data/reduceddata.csv.

Предобработка (реализованный пайплайн):

- 1. Удалены служебные столбцы (например, Unnamed: 0).
- 2. Пропуски медиана по признаку.
- 3. Выбросы итеративно удалялись IQR-фильтром с ограничением удаления (не более 50% выборки).
- 4. Удаление мультиколлинеарных признаков (парная корреляция > 0.7 оставлен более информативный признак).
- 5. Масштабирование числовых признаков RobustScaler (устойчивость к выбросам).
- 6. При необходимости лог-трансформации для стабилизации распределений целевых переменных использовались в отдельных экспериментах (описано далее).

Примечание о воспроизводимости: при сравнении результатов обращайте внимание на версию предобработки (различные варианты датасета дают разные метрики).

3 Методология: модели, валидация, метрики

3.1 Оцененные алгоритмы

Регрессия:

- LinearRegression, Ridge, ElasticNet,
- RandomForestRegressor,
- CatBoost,
- SVR,
- MLPRegressor.

Классификация:

- LogisticRegression,
- DecisionTreeClassifier,
- RandomForestClassifier,
- CatBoost,
- SVC,
- MLPClassifier.

3.2 Валидация и подбор гиперпараметров

• 5-кратная перекрёстная валидация (для классификации — стратифицированная);

- GridSearchCV для перебора гиперпараметров;
- при сравнении использовались стабильные сиды (random_state=42), но некоторые экспериментальные запуски в ноутбуках могли использовать другие семена это может объяснять расхождения в числах;
- преобразование размерности: PCA и UMAP (по 15 компонент) для тестирования влияния снижения размерности на модель.

3.3 Метрики

- Регрессия: RMSE, MAE, R²;
- Классификация: Accuracy, Precision, Recall, F1, ROC AUC, PR AUC;
- Для несбалансированных задач ключевым показателем был PR AUC и F1 на валидации.

4 Результаты (объединённая картина и примечания)

4.1 Важность признаков

- Ключевые дескрипторы, стабильно лидирующие в разных экспериментах: VSA_EState4 (электронные/электростатические свойства), несколько BCUT2D-показателей (заряд / липофильность), Chi-индексы (топологические индексы), VSA_EState8/7 и пр.
- Интерпретация: электронные и топологические характеристики молекул определяют взаимодействие с биологическими мишенями и селективность.

4.2 Результаты регрессии

- В ряде экспериментов (ноутбуки в notebooks/models) RandomForestRegressor дал высокие значения R^2 для IC50 (примерно 0.735) и для CC50 (\approx 0.80), с RMSE на порядок сотен mM. Эти запуски использовали специфические настройки и, возможно, другой набор признаков/предобработку.
- В других, более консервативных суммарных сравнениях (базовые версии) часто приводилось $R^2 \approx 0.24$ для IC50 (и сопоставимые значения для CC50). Различия объясняются:
 - разные варианты отбора/фильтрации выбросов;
 - применение или отсутствие логарифмирования целевой переменной;
 - объём и состав признаков после корреляционного отбора.
- Вывод: ансамблевые методы (RandomForest / CatBoost) последовательно дают лучшие результаты по сравнению с линейными моделями, но абсолютный уровень качества чувствителен к ступеням предобработки и выбору признаков.

4.3 Результаты классификации (SI ≥ 8 и бинарные медианные метки)

- Задача $SI \ge 8$ сильно несбалансирована (мало примеров $SI \ge 8$).
- Приведён пример матрицы ошибок с Accuracy \approx 70%, Precision \approx 59%, Recall \approx 49% и PR AUC \approx 0.674 для одной из конфигураций. MLPClassifier и CatBoost могли давать более высокие AUC в отдельных запусках.
- Для таких задач критично применять методы балансировки (weighting, SMOTE) и подбирать порог оптимально по бизнес-критериям.

4.4 Анализ остатков

- IC50 и CC50: остатки близки к нормальным в центральной части распределения, но присутствуют «тяжёлые хвосты» систематические завышения предсказаний при больших значениях. Наблюдается гетероскедастичность (увеличение разброса остатков с ростом y_true).
- SI: распределение остатков сильно асимметрично, присутствуют редкие экстремальные выбросы (SI >> типичного диапазона), что затрудняет прямую регрессию SI.

- Практическая рекомендация: лог-трансформации и / или раздельное моделирование СС50 и IC50 с последующим агрегированием предсказаний и оценкой неопределённости (bootstrap).
- 4.5 Влияние снижения размерности
 - РСА: в большинстве случаев не ухудшал результаты регрессии, но и не давал заметного улучшения.
 - UMAP: ухудшал регрессию в ряде конфигураций, но иногда улучшал классификацию при сильной несбалансированности за счёт лучшей локальной сепарации редкого класса.

5 Визуализации и таблицы

1. Рисунок 1 — Распределения целевых переменных (до/после очистки):

2. Рисунок 2 — Боксплоты целевых переменных:

3. Рисунок 3 — Q-Q plot для остатков модели IC50:

4. Рисунок 4 — Predicted vs Actual (IC50):

5. Рисунок 5 — Confusion matrices для задач классификации:

Таблица 1 — Топ признаков для IC50 (трансформирован из CSV)

Nº	Признак	Важность
1	VSA_EState4	0.057737
2	Chi1n	0.049563
3	Chi4v	0.043106
4	Chi2v	0.038941
5	BCUT2D_MRLOW	0.038598
6	FpDensityMorgan3	0.038313
7	Chi2n	0.024112
8	SlogP_VSA5	0.021035
9	EState_VSA3	0.020829
10	EState_VSA4	0.019626
11	BCUT2D_MWLOW	0.017749
12	qed	0.017169
13	EState_VSA5	0.016776
14	Kappa2	0.016372

15	VSA_EState8	0.016301
16	Chi3n	0.015417
17	BCUT2D_LOGPHI	0.014887
18	Chi3v	0.013940
19	VSA_EState7	0.013787
20	EState_VSA2	0.013184
21	Chi1v	0.012350
22	MolMR	0.012303
23	MinAbsEStateIndex	0.012108
24	VSA_EState2	0.011934
25	NumSaturatedHeterocycles	0.010165
26	SlogP_VSA2	0.010048
27	Карра3	0.009818
28	Kappa1	0.009384
29	Ірс	0.009281
30	LabuteASA	0.009050

Таблица 2 — Топ признаков для SI ≥ 8 (трансформирован из CSV)

Nº	Признак	Важность
1	VSA_EState4	0.018396
2	BCUT2D_CHGLO	0.017860
3	VSA_EState8	0.017356
4	BCUT2D_LOGPHI	0.016700
5	MaxAbsEStateIndex	0.015164
6	SPS	0.014479
7	MaxEStateIndex	0.014286
8	BCUT2D_MRHI	0.013743
9	MinEStateIndex	0.013710
10	BCUT2D_MRLOW	0.013702
11	qed	0.013606

12	VSA_EState6	0.013352
13	VSA_EState7	0.013298
14	BCUT2D_CHGHI	0.013067
15	FractionCSP3	0.013049
16	EState_VSA4	0.012910
17	EState_VSA8	0.012766
18	BCUT2D_LOGPLOW	0.012715
19	BCUT2D_MWLOW	0.011957
20	SMR_VSA7	0.011766
21	FpDensityMorgan1	0.011681
22	AvgIpc	0.011516
23	HallKierAlpha	0.011436
24	MaxPartialCharge	0.011364
25	MaxAbsPartialCharge	0.011130
26	FpDensityMorgan2	0.011017
27	BertzCT	0.010962
28	Chi2v	0.010889
29	SMR_VSA5	0.010760
30	SlogP_VSA6	0.010759

6 Интерпретация результатов — расширённая

6.1 Химико-физическая интерпретация

- VSA_EState-показатели отражают распределение электронного окружения и поверхностных свойств, что логично связано с аффинностью к белковым мишеням и проницаемостью мембран. Их доминирование в ранжировании важности указывает на ключевую роль локальных электронных эффектов и распределения частичных зарядов.
- ВСUT2D дескрипторы, связанные с зарядом и логР-показателями, указывают на то, что баланс гидрофобности и заряда критичен для селективности: слишком липофильные молекулы могут быть токсичными, слишком гидрофильные недостаточно проникающими.
- Chi-индексы (топологическая информация) показывают, что конформационная и топологическая сложность молекулы также влияет на IC50/CC50.

7 Практические рекомендации (конкретика)

7.1 Для применения в скрининге

- Использовать ансамблевый RandomForest / CatBoost как первый, быстрый и интерпретируемый фильтр; параметризовать модель так, чтобы минимизировать ложные негативы при отборе высокоселективных соединений (cost-sensitive tuning).
- Для отбора лидов при высокой селективности применять классификацию SI ≥ 8 с пороговой оптимизацией (F1/PR trade-off) и последующей ручной проверкой топ-N кандидатов.

7.2 Для улучшения качества моделей

- Разделить задачу: строить предсказания IC50 и CC50 отдельно, затем агрегировать SI = CC50/IC50 и рассчитывать неопределённость агрегата (bootstrap по ансамблю предсказаний). Это уменьшит шум, вызванный прямой регрессией дробной величины.
- Добавить 3D/квантово-химические дескрипторы (например, электро-плотность, энергетика HoMO/ЛУМО), если доступны, ожидается улучшение объясняемости.
- Использовать SHAP для финальной модели: получить dependence plots по ключевым признакам и представить это химикам для валидации гипотез.
- При несбалансированности классов применять сочетание методов: class_weight, threshold tuning, SMOTE на тренировочных фолдах (с осторожностью следить за утечкой данных).

8 Заключение

- Ансамблевые методы показали лучшие результаты в задачах предсказания IC50/CC50/Si; однако абсолютный уровень качества зависит от предобработки и набора признаков.
- SI лучше формировать как отношение двух независимых предсказаний (СС50 и IC50) с оценкой неопределённости; прямая регрессия SI менее надёжна.
- Ключевые дескрипторы (VSA_EState4, BCUT2D_*, Chi-индексы) дают полезную химическую интерпретацию и должны учитываться при дизайне новых молекул.
- Для перевода модели в продакшн необходимы дополнительные шаги: расширение признаков, SHAP-аналитика, устойчивая стратегия борьбы с несбалансированностью и чёткая процедура валидации.