

DESARROLLO DE MÓDULO DE VISUAL SERVOING PARA EL REPOSITORIO OPEN SOURCE ASIBOT

ÁLVARO MARTÍNEZ ESTRADÉ

TUTOR: ALBERTO JARDÓN HUETE

DIRECTOR: JUAN GONZÁLEZ VÍCTORES

- Objetivos
- Estado del arte
- Libro de Peter Corke
- Sistema de simulación
- Desarrollo del módulo de Visual Servoing
- Funcionamiento y resultados
- Conclusiones y presupuesto

Objetivos

Objetivos específicos

- Conexión MATLAB OpenRAVE
- Desarrollo de entorno de pruebas en OpenRAVE y robot cartesiano
- Desarrollo sistema de programas
- Corrección de sistema
- Implementación del sistema entorno de la cocina ASIBOT con detección de lata o esferas.

Robot ASIBOT

- Brazo robótico asistencial
- 5 grados de libertad
- Alcance de 1.3 m
- Peso reducido (unos 10 Kg)
- Sistema de control y electrónica a bordo

Repositorio Open Source ASIBOT

- Simulador OpenRAVE
- Control cartesiano mediante terminal en Linux
- Diferentes conexiones preparadas mediante YARP
- Diferentes módulos de visión. OpenCV

Sistemas de control en robótica

- Sistema de control en lazo abierto
- Sistema de control en lazo cerrado

- Control de posición
- Control de velocidad
- Control fuerza posición
- Control fuerza velocidad
- Control por impedancia
- Control visual feedback
- Control Visual Servoing

Sistemas de control Visual Servoing

- Sistema de control mediante la realimentación de imágenes proporcionadas por una cámara
- Identificación del objetivo buscado en la imagen y marcado del mismo mediante puntos feature o caja envolvente
- Encuadre de las features dentro de la imagen mediante el movimiento del robot

Dos opciones preliminares:

- Cámara montada en el robot
- Cámara fijada en el mundo

Dos tipos básicos de Visual Servoing:

- Visual Servoing basado en posición (PBVS)
- Visual Servoing basado en imagen (IBVS)

Libro de Peter Corke

- Libro de robótica general con amplia máquina de visión
- Formación y tratamiento de imágenes
- Diferentes clases para la simulación de cámaras
- Simulación de Visual Servoing basado en posición o en imagen

Sistema de simulación

MATLAB

YARP

OpenRAVE

Desarrollo del módulo de Visual Servoing

Simulación pura (MATLAB) vs simulación con robot (OpenRAVE)

MATLAB

- Conocimiento a priori de todo el entorno incluyendo posiciones
- Cámara enfocando objeto de interés
- No existen errores de posicionamiento ni existe segmentación
- Cálculo y aplicación de velocidades de manera unitaria (pasos)

OpenRAVE

- Robot en alguna posición del entorno
- Cámara enfocando objeto de interés
- Existe cierto error de posicionamiento de los motores, además de tener segmentación con su error
- Cálculo y aplicación de velocidades de manera continua. Velocidad constante hasta el siguiente cálculo

Desarrollo del módulo de Visual Servoing

Modelado de la cámara

$$KK = \begin{pmatrix} \frac{cam.f}{\rho_x} & 0 & u_c \\ 0 & \frac{cam.f}{\rho_y} & v_c \\ 0 & 0 & 1 \end{pmatrix}$$

$$KK = \begin{pmatrix} 1000 & 0 & 640 \\ 0 & 1000 & 512 \\ 0 & 0 & 1 \end{pmatrix}$$

- Aproximación del modelado de una cámara usada en la simulación
- Obtener datos del fabricante para correcto modelo de cámara
- Mismo modelado en MATLAB y en fichero de entorno de OpenRAVE

Desarrollo del módulo de Visual Servoing

Sistema de programas

Funcionamiento

- Lanzar OpenRAVE con un entorno determinado (gyarmanager) y conectar cámara
- Posicionar robot en lugar deseado (viendo features o lata)
- 3. Lanzar MATLAB. Moverse a la carpeta correspondiente del repositorio

Funcionamiento

- 4. Definir matriz de coordenadas deseadas en píxeles (manualmente, precargando, adquiriéndolas)
- 5. Iniciar acción de control:
 - Finalizar por error umbral>[a, b, c, d, e] = viss (pStar, profundidad)
 - Finalizar por número de iteraciones
 >>[a, b, c, d, e] = viss (pStar, profundidad, nº iter.)

$$pStar = \begin{pmatrix} x1 & x2 & x3 & x4 \\ y1 & y2 & y3 & y4 \end{pmatrix}$$

Resultados

Salida por MATLAB una vez finalizada la acción de control

```
>> [a,b,c,d,e] = viss (pStar1,1);
Yarp library already loaded and initialized, doing nothing
[success] port connected from /colorSegmentor/state:o
[success] port connected from /ravebot/rpc:i
[success] port connected from /ravebot/state:o
Elapsed time is 46.308809 seconds.
Completado en el error requerido
Cerrando puertos...
```

Cinco valores de retorno, matriz o vector (a, b, c, d, e), además del tiempo

Resultados

Ganancias de motores de rotación << Ganancias motores de traslación

Graficas de error y posición

Resultados

Comparación de ganancias

Ganancias independientes

Ganancias ligadas

Ganancias independientes

Posición sin rotar sin umbral

Posición rotada con umbral de reducción

Resultados

Respuesta de los motores según la profundidad aplicada

Profundidad similar a la final

Profundidad mucho mayor a la final

Conclusiones y presupuesto

Conclusiones

- Se ha conseguido con éxito la conexión entre módulos
- Desarrollo de entorno de pruebas en el que se ha comprobado el correcto funcionamiento del sistema de control, llevando al robot siempre a la misma posición relativa respecto de las features
- Implantación del sistema de control dentro del entorno de la cocina de ASIBOT con detección de esferas o de lata
- Sistema preparado para implantarlo en otros entornos/robots mediante la adaptación de éstos

Conclusiones y presupuesto

Presupuesto

Ordenador portátil 84 €

Costes laborales

Alberto Jardón 240 €

Juan González 1200 €

Álvaro Martínez 5000 €

• Costes indirectos 1304.8 €

• Coste total 7828.8 €