Problem Set 3 — Solving Recurrences and Divide and Conquer I

- 1. Problem 4-1 from CLRS 3rd edition.
 - a The third case of the master method applies since f(n) dominates the running time therefore it's $\theta(n^4)$.
 - b The third case of the master method applies since f(n) domintates the running time, therefore it's $\theta(n)$.
 - c The second case of the master method applies since the running time is evenly distributed, therefore it is $\theta(n^2 log(n))$.
 - d The third case of the master method applies since f(n) dominates the running time, therefore it's $\theta(n^2)$.
 - e The first case of the master method applies since $n^l o g_2(7)$ dominates, therefore it's $\theta(n^{2.807})$.
 - f The first case of the master method applies since the running time is evenly distributed, therefore it is $\theta(\sqrt{nlog}(n))$.
 - g The master method does not apply since there is no b value. Therefore we shall solve the recurrence by substitution. First we start with the recurrence $T(n) = T(n-2) + n^2$. And we then substitute n-1 into the recurrence to get $T(n-1) = T(n-3) + T(n-2)^2 + n^2$. It's clear that there will be n number of recursive calls therefore, the running time is $\theta(n^2)$.
- 2. Using one of the methods discussed in lecture, give a tight asymptotic bound for the recurrence $T(n) = 8T(n/2) + n^3 \log n$.

The third case of the master method applies since f(n) dominates the running time since $n^3 = O(n^3 \log(n))$. f(n) also passes the regularity tests since $8\frac{n^3}{2}log(\frac{n}{2}) \le cn^3\log(n)$ when c = 8.

- 3. Problem 4.3-9 from CLRS 3rd edition.
- 4. Revisiting the pinePhone. You are still hard at work testing the quality of pinePhones for Pineapple.
 - (a) With 3 pinePhones, one can divide the ladder by $\sqrt[3]{n}$ parts. Then start at the highest rung of each part $(c * \sqrt[3]{n}$ with $1 \le c \le n/\sqrt[3]{n}$). If one of these highest rungs break then check the lower ladders by 1. Which would lead to a maximum of 3 phones broken.
 - (b) YOne can find the highest safe rung with 4 pinePhones with $\Theta(\sqrt[4]{n})$ pinePhone drops. With 3 pinePhones, one can divide the ladder by $\sqrt[4]{n}$ parts. Then start at the highest rung of each part $(c*\sqrt[4]{n})$ with $1 \le c \le n/\sqrt[4]{n}$. If one of these highest rungs break then check the lower ladders by 1. Which would lead to a maximum of 4 phones broken.

(c)
$$\begin{cases} n & k = 1 \\ T(\sqrt[k]{n}) + \theta(1) & k \ge 2 \end{cases}$$