Parameters Module

Template Module

param

 \mathbf{Uses}

N/A

Syntax

Exported Constants

Constant name	Type	Value
E	\mathbb{R}	7.17×10^{7}
TD	\mathbb{R}	3.0
M	\mathbb{R}	7.0
MK	\mathbb{R}	2.86×10^{-53}
LSF	\mathbb{R}	1.0

Exported Types

Type name	Type
Param	?

Exported Access Programs

Routine name	In	Out	Exceptions
Param		Param	

Semantics

State Variables

Variable name	Type
a	\mathbb{R}
b	\mathbb{R}
t	\mathbb{R}
W	\mathbb{R}
tnt	\mathbb{R}
pbtol	\mathbb{R}
asprat	\mathbb{R}
sd	\mathbb{R}
h	\mathbb{R}
gtf	\mathbb{R}
ldf	\mathbb{R}
wtnt	\mathbb{R}
sdvect	sequence [3] of \mathbb{R}
gt	String

Environment Variables

Assumptions

N/A

Access Routine Semantics

Param():

• transition:

$$\begin{array}{lll} a & := 0.0 \\ b & := 0.0 \\ t & := 0.0 \\ w & := 0.0 \\ tnt & := 0.0 \\ pbtol & := 0.0 \\ asprat & := 0.0 \\ sd & := 0.0 \\ dd & := 0.0 \\ ddf & := 0.0 \\ wtnt & := 0.0 \\ sdvect & := \langle 0.0, 0.0, 0.0 \rangle \\ gt & := ``` \end{array}$$

• output:

$$out := self$$

• exception:

Local Functions

$$\begin{array}{l} \text{map}:\, (\mathbb{R} \to \mathbb{R}) \times \text{sequence of } \mathbb{R} \to \text{sequence of } \mathbb{R} \\ \text{map}(f,\; \ell) \equiv \langle \; \text{f}(x) \mid x \leftarrow \ell \; \rangle \end{array}$$

$$\begin{array}{l} \text{filter}: \ (\mathbb{R} \to \mathbb{B}) \times \text{sequence of } \mathbb{R} \to \text{sequence of } \mathbb{R} \\ \text{filter}(p, \ \ell) \equiv \langle \ x \mid x \leftarrow \ell \ \bullet \ \text{p}(x) \ \rangle \end{array}$$

Input Format Module

Module

input Format

Uses

param

Syntax

Exported Constants

N/A

Exported Types

N/A

Exported Access Programs

Routine name	In	Out	Exceptions
get_input	string	Param	

Semantics

State Variables

N/A

Environment Variables

Variable name	Type	
filesys	FileSystem Read	

Assumptions

N/A

Access Routine Semantics

 $get_input(filename, p)$:

 \bullet transition:

```
filesys := filename
p.a := filesys.readline
p.b := filesys.readline
p.t := filesys.readline
p.gt := filesys.readline
p.w := filesys.readline
p.tnt := filesys.readline
p.sdvect[0] := filesys.readline
```

```
\begin{aligned} p.sdvect[1] &:= filesys.readline \\ p.sdvect[2] &:= filesys.readline \\ pbtol &:= filesys.readline \end{aligned}
```

• output:

N/A

 \bullet exception:

N/A

Local Functions

Input Constraints Module

Module

derivedValues

Uses

param

Syntax

Exported Constants

N/A

Exported Types

N/A

Exported Access Programs

	Routine name	In	Out	Exceptions
ĺ	$derived_params$	Param	Param	

Semantics

State Variables

N/A

Environment Variables

N/A

Assumptions

N/A

Access Routine Semantics

 $derived_params(p)$:

• transition:

$$\begin{split} p.asprat &:= \frac{p.a}{p.b} \\ p.sd &:= \sqrt{p.sdvect[0]^2 + p.sdvect[1]^2 + p.sdvect[2]^2} \\ p.ldf &:= \frac{p.td}{60.0} \frac{p.m}{16.0} \\ p.wtnt &:= p.w \times p.tnt \end{split}$$

$$p.dt = 2.50 \implies 2.16$$

$$p.t = 2.70 \implies 2.59$$

$$p.t = 3.0 \implies 2.92$$

$$p.t = 4.0 \implies 3.78$$

$$p.t = 5.0 \implies 4.57$$

$$p.t = 6.0 \implies 5.56$$

$$p.t = 8.0 \implies 7.42$$

$$p.t = 10.0 \implies 9.02$$

$$p.t = 12.0 \implies 11.91$$

$$p.t = 16.0 \implies 15.09$$

$$p.t = 19.0 \implies 18.26$$

$$p.t = 22.0 \implies 21.44$$

$$T \implies 0.0$$

$$p.gt = \text{"AN"} \implies 1.0$$

$$p.gt = \text{"HS"} \implies 2.0$$

$$p.gt = \text{"FT"} \implies 3.0$$

$$T \implies 0.0$$

• output:

$$out := p$$

 \bullet exception:

Local Functions

Input Constraints Module

Module

 ${\bf check Constraints}$

Uses

param

Syntax

Exported Constants

N/A

Exported Types

N/A

Exported Access Programs

Routine name	In	Out	Exceptions
check_constraints	Param		INPUTERROR

Semantics

State Variables

N/A

Environment Variables

N/A

Assumptions

N/A

Access Routine Semantics

 $derived_params(p)$:

• transition:

N/A

 \bullet output:

N/A

 \bullet exception:

$$exc := \begin{cases} p.a \leq 0.0 \land p.b \leq 0.0 & \Longrightarrow \text{INPUTERROR} \\ \neg (1.0 \leq p.asprat \leq 5.0) & \Longrightarrow \text{INPUTERROR} \\ p.t \notin \begin{cases} 2.50, \ 2.70, \ 3.0, \ 4.0, \\ 5.0, \ 6.0, \ 8.0, \ 10.0, \\ 12.0, \ 16.0, \ 19.0, \ 22.0, \end{cases} \\ \Rightarrow \text{INPUTERROR} \\ p.qt \notin \begin{cases} \text{"AN", "HS", "FT",} \\ \text{"an", "hs", "ft",} \end{cases} \Rightarrow \text{INPUTERROR} \\ p.tnt \leq 0.0 & \Longrightarrow \text{INPUTERROR} \\ \neg (4.5 \leq p.wtnt \leq 910.0) & \Longrightarrow \text{INPUTERROR} \\ \neg (6.0 \leq p.sd \leq 130.0) & \Longrightarrow \text{INPUTERROR} \\ \Rightarrow \text{INPUTERROR}$$

Local Functions