תרגיל נומרי

תשובות סופיות

.א.1

זהו גרף ההתכנסות לפי מספר האיטרציות:

ניתן לראות שמ7 איטרציות (epsilon= 10^{-4}) ומעלה, הגרף שואף להתכנסות מסוימת ולא משתנה פשתותית לאשר הpsilon קטן.

בדיקת ההתכנסות ברזולוציה מוצגת בפונקציה בנספחים. הרזולוציה האידאלית יצאה n=50, כלומר מטריצת הפוטנציאל בגודל 101x101.

נשרטט את הפוטנציאל לפי הרזולוציה ומספר האיטרציות האידאליים:

2.א. נשנה את הפוטנציאל במרכז הגלילים ונשרטט את השדה עבור כל אחד מן הפוטנציאלים: -2,1-,2,1,0

 φ cyl = 2

lh.

 φ cyl = -1

 φ cyl = -2

2.ב. נבדוק מהו המטען הכולל על כל גליל עבור השינוי בפוטנציאל במרכז הגלילים. סיכום התוצאות בטבלה:

2	1	0	1-	2-	פוטנציאל במרכז(v)
10 ⁻⁹ *5.7639	10 ⁻⁹ *2.9848	10 ⁻¹⁰ *2.2964	10 ⁻⁹ * - 2.4960	10 ⁻⁹ * 5.1858	מטען על גליל שמאלי
10 ⁻⁹ * - 5.6833	10 ⁻⁹ * – 2.929	10 ⁻¹⁰ * - 2.0035	10 ⁻⁹ *2.4982	10 ⁻⁹ *5.1593	מטען על גליל ימני

ניתן לראות שהמטען על הגלילים עבור כל פוטנציאל כמעט זהה בסימן הפוך, כפי שציפינו עבור בעיה סימטרית.

2.ג. נחשב ונשרטט את האנרגיה במערכת ליחידת אורך עבור כל פוטנציאל:

$$\varphi$$
cyl = 2

 $\phi cyl = 1$

ϕ cyl = -2

: $\phi {
m cyl} = -0.067$ א הפוטנציאל עבורו המטען מתאפס הוא 20.06 מטען על הגליל כתלות בפוטנציאל על השפה (עם נרמול של אפסילון אפס):

שינינו את המרחק d להיות ±0.7L, ניתן לראות כי במרחק זה השפעת הגלילים זה על זה זניחה. הפוטנציאל עבור מערכת עם גליל אחד:

הפוטנציאל עבור מערכת עם שני גלילים במרחק 1.4.2

ב. ראשית נציג את הפתרון האנליטי:

פתרון אנליטי:

נסתכל על הפוטנציאל של גליל אחד הנמצא בראשית. ניתן לעשות זאת מכיוון שאין השפעה של הגלילים אחד על השני.

נשים מטעני דמות – 2 תילים אינסופיים במרחקים ±d נשים מטעני דמות

$$\begin{split} \varphi_{total} &= \varphi_{ext} + \varphi_{\lambda^{-}} + \varphi_{\lambda^{+}} \\ \varphi_{\lambda^{-}} + \varphi_{\lambda^{+}} &= \frac{\lambda}{2\pi\varepsilon_{0}} \ln(|r\hat{r} + d\hat{x}|) - \frac{\lambda}{2\pi\varepsilon_{0}} \ln(|r\hat{r} - d\hat{x}|) \\ &= \frac{\lambda}{2\pi\varepsilon_{0}} \ln\left(\frac{|r\hat{r} + d\hat{x}|}{|r\hat{r} - d\hat{x}|}\right) \\ &= \frac{\lambda}{2\pi\varepsilon_{0}} \ln\left(\frac{|(r + d\cos\theta)\hat{r} - d\sin\theta\hat{x}|}{|(r - d\cos\theta)\hat{r} + d\sin\theta\hat{x}|}\right) \\ &= \frac{\lambda}{4\pi\varepsilon_{0}} \ln\left(\frac{r^{2} + 2rd\cos\theta + d^{2}}{r^{2} - 2rd\cos\theta + d^{2}}\right) \\ &= \frac{\lambda}{4\pi\varepsilon_{0}} \ln\left(\frac{r^{2} (1 + 2\frac{d}{r}\cos\theta + \frac{d^{2}}{d^{2}})}{r^{2}(1 - 2\frac{d}{r}\cos\theta + \frac{d^{2}}{r^{2}})}\right) \end{split}$$

$$\approx \frac{\lambda}{4\pi\varepsilon_0} ln \left((1 + 2\frac{d}{r}cos\theta)^2 \right)$$

$$\approx \frac{\lambda}{4\pi\varepsilon_0} ln \left(1 + 4\frac{d}{r}cos\theta \right)$$

$$\approx \frac{\lambda}{4\pi\varepsilon_0} \cdot 4\frac{d}{r}cos\theta = \frac{\lambda d}{\pi\varepsilon_0 r}cos\theta$$

$$\varphi_{total} = -E_0 rcos\theta + \frac{\lambda d}{\pi\varepsilon_0 r}cos\theta$$

$$\varphi_{total} \left(\frac{1}{5} \right) = -\frac{E_0}{5}cos\theta + \frac{5\lambda d}{\pi\varepsilon_0}cos\theta = E_0 cos\theta \left(\frac{1}{25r} - r \right)$$

$$\Rightarrow E_r = E_0 cos\theta \left(\frac{1}{25r^2} + 1 \right)$$

$$\sigma = \varepsilon_0 \Delta E_r = \varepsilon_0 \left(\frac{E_0 cos\theta}{25\left(\frac{1}{5}\right)^2} + 1 \right) = 2\varepsilon_0 E_0 cos\theta$$

ניתן לראות כי בפתרון הנומרי התלות של המטען בזווית הוא במתכונת של קוסינוס כמו בפתרון האנליטי:

נספחים

 $\cos(x)$ איית, ע"י שימוש בנוסחת הנגזרת הדיסקרטית, ניסינו לבדוק מה יהיה דיוק הנגזרת של (מאשית, ע"י שימוש בנוסחת הנגזרת הדיסקרטית, ניסינו לקבל נגזרת 1-. בנקודה $\frac{\pi}{2}$, כתלות בגודל אפסילון (כאשר אפסילון=

```
def d_cos(x, dx):
    import math
    df_dis = (math.cos(x+dx) - math.cos(x))/dx
```

```
df anal = -1
    epsilon = 1-abs(df_dis/df_anal)
    return df_dis, epsilon
from math import pi
# >>> d \cos(pi/2, 10^{-7})
# (-0.03232054129435699, 0.967679458705643)
# >>> d_cos(pi/2, 10^(-10))
# (0.1892006238269821, 0.8107993761730179)
# >>> d_cos(pi/2, 10^(-12))
# (-0.4546487134128408, 0.5453512865871593)
# >>> d_cos(pi/2, 10^(-14))
# (-0.12366978082792271, 0.8763302191720773)
# >>> d_cos(pi/2, 10^(-13))
# (-0.09385522838839844, 0.9061447716116016)
# >>> d_cos(pi/2, 10^(-11))
# (-0.8414709848078964, 0.1585290151921036)
```

ניתן לראות שבהתחלה ההתכנסות הולכת ונעשית מדויקת יותר ככל שמקטינים את אפסילון, עד לסביבת אפסילון מסדר גודל של 10⁻¹¹ , ושם המגמה משתנה להיות פחות מדויקת ככל שנגדיל את אפסילון.

1. א. כעת נחשב את הפוטנציאל החשמלי במערכת הנתונה ע"י שיטת הרלקסציה:

```
function [A,B,count] = numeri(n,a,epsilon)
    A=zeros(2*n+1,2*n+1);
    B=ones(2*n+1,2*n+1);
     A(:,1) = -1;
     A(:,end)=1;
     A(1,:) = -1:1/n:1;
     A(end,:) = -1:1/n:1;
    for y = -0.2:1/n:0.2
        t=asin(5*y);
        inxi1=n+1+round((-0.3-0.2*cos(t))*n);
        inxf1=n+1+round((-0.3+0.2*cos(t))*n);
        iny=n+1+round(n*y);
        A(iny, inxi1: inxf1) = a;
        B(iny, inxi1: inxf1) = 0;
        inxi2=n+1+round((0.3-0.2*cos(t))*n);
        inxf2=n+1+round((0.3+0.2*cos(t))*n);
        iny=n+1+round(n*y);
        A(iny, inxi2:inxf2) = -1*a;
        B(iny, inxi2:inxf2)=0;
    end
    A = A + 100;
    dy=1/(2*n+1);
    dx=1/(2*n+1);
    Ik=1;
    count=0;
```

את בעיית החילוק ב-0 פתרנו ע"י הוספת קבוע 100 והפחתתו בסוף התהליך.

בדקנו מהי הרזולוציה האידאלית ע"י הקוד הבא:

```
epsilon=10^{(-2)};
n=25;
 flag=1;
 while flag == 1
     flag = 0;
     A=numeri(n,2, epsilon);
     [C,B,count]=numeri(2*n,2 epsilon);
     C(:,[1,2,4*n+1])=[];
     C([1,2,4*n],:)=[];
     c=mat2cell(C, 2*ones(1, 2*n-1), 2*ones(1, 2*n-1));
     for j = 3:(2*n)-1
            for i = 3:(2*n)-1
                 if B(i,j) == 1
                 In=max(max(abs(c{i,j}-A(i,j))));
            if In>epsilon;n=2*n;flag=1; break
            end
                 end
            end
     if In>epsilon; break
     end
     end
 end
```

כאשר הכפלנו את הרזולוציה פי 2 בכל פעם ובדקנו את ההתכנסות. הרזולוציה האידאלית לפי הקוד הינה n=50, כלומר גודל המטריצה, הרזולוציה, היא 101x101.

2. א. עבור הרזולוציה מסעיף א', חישבנו את השדה החשמלי ע"י שימוש בנגזרת הדיסקרטית:

```
function[E, dx, dy] = field(A, n)
    dx = zeros(2*n, 2*n);
    dy = zeros(2*n, 2*n);
    for k= 1:2*n
        for j= 1:2*n
            dx(k,j)=(A(k,j+1)-A(k,j))/(1/(n));
            dy(k,j)=(A(k+1,j)-A(k,j))/(1/(n));
    end
end
E=(dx.^2+dy.^2).^0.5;
```

את הגרף שרטטנו בצורה ברורה יותר ע"י ייצוג כל 4 חצים על ידי חץ אחד. השתמשנו בפקודות quiver ,meshgrid במטלאב:

```
n=50;
D=numeri(50,a, epsilon));
[\sim, dx, dy] = df1(D, n);
z=4;
l = floor (2*n/z);
new dx=zeros(1);
new dy=zeros(1);
for px=0: (1-1)
    for py=0:(1-1)
        for w1=0:(z-1)
             for w2=0:(z-1)
new dx(1+px,1+py) = new dx(1+px,1+py) + dx(1+px*z+w1,1+py*z+w2);
new dy(1+px,1+py) = new dy(1+px,1+py) + dy(1+px*z+w1,1+py*z+w2);
             end
        end
    end
end
figure
[x,y] = meshgrid(1:1,1:1);
quiver(x,y,new_dx,new_dy,'LineWidth',0.1)
```

ב. נחשב את המטען הכולל על כל אחד מהגלילים לפי הקפיצה בשדה על השפה:

```
unction [ql,qr,m] = q(a)
n=50;
% A = numeri2(a);
A = numeri(n,a, epsilon);
m = zeros(2*n, 2*n);
[E,dx,dy] = dfl(A,n);
ql=0;
qr=0;
for x= 2: (2*n-1)
                          for y= 2: (2*n-1)
                                                    if (E(y+1,x)==0 | | E(y-1,x)==0 | | E(y,x+1)==0 | | E(y,x-1)==0 | | E(y,x-1)
 1) == 0) && E(y, x) \sim = 0
                                                                              if x<n
                                                                                                        ox = 3*n/10+1;
                                                                                                      oy = n+1;
                                                                              else
                                                                                                       ox = 7*n/10+n+1;
                                                                                                       oy = n+1;
                                                                              end
                                                                             ax = x-ox;
                                                                             ay = y-oy;
                                                                              if ax==0
                                                                                                      if ay>0
                                                                                                                               teta = pi/2;
                                                                                                       else
                                                                                                                               teta = pi/-2;
                                                                                                       end
```

ג. נחשב את האנרגיה ליחידת אורך, כלומר אנרגיה לכל נקודה במישור xy, לפי הנוסחה הנתונה בהוראות, ע"י הקוד:

- 3. א. בשביל לראות מהו הפוטנציאל עבור גליל אחד∖ גלילים מורחקים כאשר d א. בשביל לראות מהו הפוטנציאל עבור גליל אחד השתמשנו בפונקציה numeri שהראנו בשאלה 1 עם שינויים קטנים.
 - ב. מציאת התלות של המטען בזווית: