2.R Visualization

Kim Wong

04/01/2021

Material taken from

Graham J. Williams. 2017. The Essentials of Data Science: Knowledge Discovery Using R (1st ed.). Chapman & Hall/CRC.

Load required packages

```
library(dplyr)
                      # glimpse().
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
                      # Visualise data.
library(ggplot2)
                     # Data pipelines: %>% %<>% %T>% equals().
library(magrittr)
library(randomForest) # na.roughfix() for missing data.
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
## The following object is masked from 'package:dplyr':
##
##
       combine
library(rattle)
                      # normVarNames().
## Loading required package: tibble
## Loading required package: bitops
```

```
## Rattle: A free graphical interface for data science with R.
## Version 5.4.0 Copyright (c) 2006-2020 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
## Attaching package: 'rattle'
## The following object is masked from 'package:randomForest':
##
##
       importance
library(rattle.data) # weatherAUS.
##
## Attaching package: 'rattle.data'
## The following objects are masked from 'package:rattle':
##
##
       {\tt locationsAUS}, \ {\tt weather}, \ {\tt weatherAUS}
library(scales)
                     # commas(), percent().
                  # str_replace_all().
# String concat operator %s+%.
library(stringr)
library(stringi)
```

Edgar Anderson's Iris Data

iris								
##		Sepal Length	Sepal.Width	Petal.Length	Petal.Width	Species		
##	1	5.1	3.5	1.4	0.2	setosa		
##		4.9	3.0	1.4	0.2	setosa		
##		4.7	3.2	1.3	0.2	setosa		
##		4.6	3.1	1.5	0.2	setosa		
##		5.0	3.6	1.4	0.2	setosa		
	6	5.4	3.9	1.7	0.4	setosa		
	7	4.6	3.4	1.4	0.3	setosa		
##	•	5.0	3.4	1.5	0.2	setosa		
##	9	4.4	2.9	1.4	0.2	setosa		
	10	4.9	3.1	1.5	0.1	setosa		
##	11	5.4	3.7	1.5	0.2	setosa		
##	12	4.8	3.4	1.6	0.2	setosa		
##	13	4.8	3.0	1.4	0.1	setosa		
##	14	4.3	3.0	1.1	0.1	setosa		
##	15	5.8	4.0	1.2	0.2	setosa		
##	16	5.7	4.4	1.5	0.4	setosa		
##	17	5.4	3.9	1.3	0.4	setosa		
##	18	5.1	3.5	1.4	0.3	setosa		
##	19	5.7	3.8	1.7	0.3	setosa		
##	20	5.1	3.8	1.5	0.3	setosa		
##	21	5.4	3.4	1.7	0.2	setosa		
##	22	5.1	3.7	1.5	0.4	setosa		
##	23	4.6	3.6	1.0	0.2	setosa		
##	24	5.1	3.3	1.7	0.5	setosa		
##	25	4.8	3.4	1.9	0.2	setosa		
##	26	5.0	3.0	1.6	0.2	setosa		
##	27	5.0	3.4	1.6	0.4	setosa		
##	28	5.2	3.5	1.5	0.2	setosa		

## 29	5.2	3.4	1.4	0.2	setosa
## 30	4.7	3.2	1.6	0.2	setosa
## 31	4.8	3.1	1.6	0.2	setosa
## 32	5.4	3.4	1.5	0.4	setosa
## 33	5.2	4.1	1.5	0.1	setosa
## 34	5.5	4.2	1.4	0.2	setosa
## 35	4.9	3.1	1.5	0.2	setosa
## 36	5.0	3.2	1.2	0.2	setosa
## 37	5.5	3.5	1.3	0.2	setosa
## 38	4.9	3.6	1.4	0.1	setosa
## 39	4.4	3.0	1.3	0.2	setosa
## 40	5.1	3.4	1.5	0.2	setosa
## 41	5.0	3.5	1.3	0.3	setosa
## 42	4.5	2.3	1.3	0.3	setosa
## 43	4.4	3.2	1.3	0.2	setosa
## 44	5.0	3.5	1.6	0.6	setosa
## 45	5.1	3.8	1.9	0.4	setosa
## 46	4.8	3.0	1.4	0.3	setosa
## 47	5.1	3.8	1.6	0.2	setosa
## 48	4.6	3.2	1.4	0.2	setosa
## 49	5.3	3.7	1.5	0.2	setosa
## 50	5.0	3.3	1.4	0.2	setosa
## 51	7.0	3.2	4.7	1.4 ve	rsicolor
## 52	6.4	3.2	4.5	1.5 ve	rsicolor
## 53	6.9	3.1	4.9	1.5 ve	rsicolor
## 54	5.5	2.3	4.0	1.3 ve	rsicolor
## 55	6.5	2.8	4.6	1.5 ve	rsicolor
## 56	5.7	2.8	4.5	1.3 ve	rsicolor
## 57	6.3	3.3	4.7	1.6 ve	rsicolor
## 58	4.9	2.4	3.3	1.0 ve	rsicolor
## 59	6.6	2.9	4.6	1.3 ve	rsicolor
## 60	5.2	2.7	3.9	1.4 ve	rsicolor
## 61	5.0	2.0	3.5	1.0 ve	rsicolor
## 62	5.9	3.0	4.2	1.5 ve	rsicolor
## 63	6.0	2.2	4.0	1.0 ve	rsicolor
## 64	6.1	2.9	4.7	1.4 ve	rsicolor
## 65	5.6	2.9	3.6	1.3 ve	rsicolor
## 66	6.7	3.1	4.4	1.4 ve	rsicolor
## 67	5.6	3.0	4.5	1.5 ve	rsicolor
## 68	5.8	2.7	4.1	1.0 ve	rsicolor
## 69	6.2	2.2	4.5	1.5 ve	rsicolor
## 70	5.6	2.5	3.9	1.1 ve	rsicolor
## 71	5.9	3.2	4.8	1.8 ve	rsicolor
## 72	6.1	2.8	4.0	1.3 ve	rsicolor
## 73	6.3	2.5	4.9	1.5 ve	rsicolor
## 74	6.1	2.8	4.7	1.2 ve	rsicolor
## 75	6.4	2.9	4.3	1.3 ve	rsicolor
## 76	6.6	3.0	4.4	1.4 ve	rsicolor
## 77	6.8	2.8	4.8	1.4 ve	rsicolor
## 78	6.7	3.0	5.0		rsicolor
## 79	6.0	2.9	4.5		rsicolor
## 80	5.7	2.6	3.5		rsicolor
## 81	5.5	2.4	3.8		rsicolor
## 82	5.5	2.4	3.7		rsicolor

## 83	5.8	2.7	3.9	1.2 versicolor
## 84	6.0	2.7	5.1	1.6 versicolor
## 85	5.4	3.0	4.5	1.5 versicolor
## 86	6.0	3.4	4.5	
		3.4		1.6 versicolor
## 87	6.7		4.7	1.5 versicolor
## 88	6.3	2.3	4.4	1.3 versicolor
## 89	5.6	3.0	4.1	1.3 versicolor
## 90	5.5	2.5	4.0	1.3 versicolor
## 91	5.5	2.6	4.4	1.2 versicolor
## 92	6.1	3.0	4.6	1.4 versicolor
## 93	5.8	2.6	4.0	1.2 versicolor
## 94	5.0	2.3	3.3	1.0 versicolor
## 95	5.6	2.7	4.2	1.3 versicolor
## 96	5.7	3.0	4.2	1.2 versicolor
## 97	5.7	2.9	4.2	1.3 versicolor
## 98	6.2	2.9	4.3	1.3 versicolor
## 99	5.1	2.5	3.0	1.1 versicolor
## 100	5.7	2.8	4.1	1.3 versicolor
## 101	6.3	3.3	6.0	2.5 virginica
## 102	5.8	2.7	5.1	1.9 virginica
## 103	7.1	3.0	5.9	2.1 virginica
## 104	6.3	2.9	5.6	1.8 virginica
## 105	6.5	3.0	5.8	2.2 virginica
## 106	7.6	3.0	6.6	2.1 virginica
## 107	4.9	2.5	4.5	1.7 virginica
## 108	7.3	2.9	6.3	1.8 virginica
## 109	6.7	2.5	5.8	1.8 virginica
## 110	7.2	3.6	6.1	2.5 virginica
## 111	6.5	3.2	5.1	2.0 virginica
## 112	6.4	2.7	5.3	1.9 virginica
## 113	6.8	3.0	5.5	2.1 virginica
## 114	5.7	2.5	5.0	2.0 virginica
## 115	5.8	2.8	5.1	2.4 virginica
## 116	6.4	3.2	5.3	2.3 virginica
## 117	6.5	3.0	5.5	1.8 virginica
## 118	7.7	3.8	6.7	2.2 virginica
## 119	7.7	2.6	6.9	2.3 virginica
## 120	6.0	2.2	5.0	1.5 virginica
## 121	6.9	3.2	5.7	2.3 virginica
## 122	5.6	2.8	4.9	2.0 virginica
## 123	7.7	2.8	6.7	2.0 virginica
## 124	6.3	2.7	4.9	1.8 virginica
## 125	6.7	3.3	5.7	2.1 virginica
## 126	7.2	3.2	6.0	1.8 virginica
## 127	6.2	2.8	4.8	1.8 virginica
## 128	6.1	3.0	4.9	1.8 virginica
## 129	6.4	2.8	5.6	2.1 virginica
## 130	7.2	3.0	5.8	1.6 virginica
## 131	7.4	2.8	6.1	1.9 virginica
## 132	7.9	3.8	6.4	2.0 virginica
## 133	6.4	2.8	5.6	2.2 virginica
## 134	6.3	2.8	5.1	1.5 virginica
## 135	6.1	2.6	5.6	1.4 virginica
## 136	7.7	3.0	6.1	2.3 virginica
				•

```
## 137
                6.3
                             3.4
                                           5.6
                                                       2.4 virginica
                6.4
                                           5.5
## 138
                             3.1
                                                       1.8 virginica
## 139
                6.0
                             3.0
                                           4.8
                                                       1.8
                                                            virginica
## 140
                6.9
                             3.1
                                           5.4
                                                       2.1
                                                            virginica
## 141
                6.7
                             3.1
                                           5.6
                                                       2.4
                                                            virginica
## 142
                6.9
                             3.1
                                           5.1
                                                       2.3
                                                            virginica
## 143
                5.8
                             2.7
                                           5.1
                                                       1.9
                                                            virginica
                                                            virginica
## 144
                6.8
                             3.2
                                           5.9
                                                       2.3
## 145
                6.7
                             3.3
                                           5.7
                                                       2.5
                                                            virginica
## 146
                6.7
                             3.0
                                           5.2
                                                            virginica
                                                       2.3
## 147
                6.3
                             2.5
                                           5.0
                                                       1.9
                                                            virginica
                6.5
                             3.0
                                           5.2
                                                       2.0
## 148
                                                            virginica
## 149
                6.2
                             3.4
                                           5.4
                                                            virginica
                                                       2.3
## 150
                5.9
                             3.0
                                           5.1
                                                       1.8 virginica
```

A Simple scatterplot

```
iris %>%
  ggplot(aes(x=Sepal.Length, y=Sepal.Width, size=4)) +
  geom_point()
```


A simple line plot with data points

```
iris %>%
  ggplot(aes(x=Sepal.Length, y=Sepal.Width)) +
  geom_point() +
```


A Simple scatterplot but color coding of points based on species variable; also encode size

```
iris %>%
  ggplot(aes(x=Sepal.Length, y=Sepal.Width, color=Species)) +
  geom_point(aes(size=Petal.Length))
```


A Simple scatterplot but shape coding of points based on species variable

```
iris %>%
   ggplot(aes(x=Sepal.Length, y=Sepal.Width, shape=Species, size=Petal.Width)) +
   geom_point()
```


dimensions of data frame

```
iris %>%
  ggplot(aes(x=Sepal.Length, y=Sepal.Width)) +
  geom_point() +
  #stat_smooth(method="lm", formula=y~x+I(x^2))
  #stat_smooth(method="lm", formula=y~poly(x,2))
  #stat_smooth(method="loess", formula=y~x)
  stat_smooth(method="gam", formula=y~s(x), se=T)
```


Let's load the data which we output from the data cleaning notebook

```
fpath <- getwd() %>% print()
```

[1] "/Users/kimwong/OneDrive - University of Pittsburgh/Documents/Kim F. Wong/CRC_Workshop/2021/Adva

generate timestamp

```
#dsdate <- "_" %s+% format(Sys.Date(), "%Y%m%d") %T>% print()
dsdate <- "_20201104"
```

specify filename for dataset

```
dsname="cleaned_weatherAUS"
dsrdata <-
file.path(fpath, dsname %s+% dsdate %s+% ".RData") %T>%
file.path(fpath, dsname %s+% dsdate %s+% ".RData") %T>%
print()
```

[1] "/Users/kimwong/OneDrive - University of Pittsburgh/Documents/Kim F. Wong/CRC_Workshop/2021/Adva

Load R objects from file and list them

```
## [7] "target"
                     "risk"
                                 "id"
                                              "ignore"
                                                           "omit"
                                                                        "inputi"
## [13] "inputs"
                                  "numc"
                                                                        "form"
                     "numi"
                                              "cati"
                                                           "catc"
## [19] "seed"
                     "train"
                                  "validate"
                                              "test"
                                                           "tr target" "tr risk"
## [25] "va_target" "va_risk"
                                  "te_target" "te_risk"
```

Take a peak at the data

```
glimpse(ds)
```

```
## Rows: 173,890
## Columns: 27
## $ date
                    <date> 2008-12-01, 2008-12-02, 2008-12-03, 2008-12-04, 2008-~
## $ location
                    <fct> albury, albury, albury, albury, albury, albury, albury-
## $ min_temp
                    <dbl> 13.4, 7.4, 12.9, 9.2, 17.5, 14.6, 14.3, 7.7, 9.7, 13.1~
## $ max_temp
                    <dbl> 22.9, 25.1, 25.7, 28.0, 32.3, 29.7, 25.0, 26.7, 31.9, ~
## $ rainfall
                    <dbl> 0.6, 0.0, 0.0, 0.0, 1.0, 0.2, 0.0, 0.0, 0.0, 1.4, 0.0,~
## $ evaporation
                    ## $ sunshine
                    ## $ wind_gust_dir
                    <ord> w, wnw, wsw, ne, w, wnw, w, w, nnw, w, n, nne, w, sw, ~
## $ wind_gust_speed <dbl> 44, 44, 46, 24, 41, 56, 50, 35, 80, 28, 30, 31, 61, 44~
## $ wind_dir_9am
                    <ord> w, nnw, w, se, ene, w, sw, sse, se, s, sse, ne, nnw, w~
## $ wind dir 3pm
                    <ord> wnw, wsw, wsw, e, nw, w, w, w, nw, sse, ese, ene, nnw,~
                   <dbl> 20, 4, 19, 11, 7, 19, 20, 6, 7, 15, 17, 15, 28, 24, NA~
## $ wind_speed_9am
## $ wind_speed_3pm
                   <dbl> 24, 22, 26, 9, 20, 24, 24, 17, 28, 11, 6, 13, 28, 20, ~
## $ humidity_9am
                    <dbl> 71, 44, 38, 45, 82, 55, 49, 48, 42, 58, 48, 89, 76, 65~
                    <dbl> 22, 25, 30, 16, 33, 23, 19, 19, 9, 27, 22, 91, 93, 43,~
## $ humidity_3pm
## $ pressure_9am
                    <dbl> 1007.7, 1010.6, 1007.6, 1017.6, 1010.8, 1009.2, 1009.6~
## $ pressure 3pm
                    <dbl> 1007.1, 1007.8, 1008.7, 1012.8, 1006.0, 1005.4, 1008.2~
## $ cloud_9am
                    <dbl> 8, NA, NA, NA, 7, NA, 1, NA, NA, NA, NA, 8, 8, NA, 0, ~
## $ cloud_3pm
                    <dbl> NA, NA, 2, NA, 8, NA, NA, NA, NA, NA, NA, 8, 8, 7, NA,~
                    <dbl> 16.9, 17.2, 21.0, 18.1, 17.8, 20.6, 18.1, 16.3, 18.3, ~
## $ temp_9am
## $ temp_3pm
                    <dbl> 21.8, 24.3, 23.2, 26.5, 29.7, 28.9, 24.6, 25.5, 30.2, ~
## $ rain_today
                    <fct> no, no, no, no, no, no, no, no, yes, no, yes, yes,~
## $ risk mm
                    <dbl> 0.0, 0.0, 0.0, 1.0, 0.2, 0.0, 0.0, 0.0, 1.4, 0.0, 2.2,~
## $ rain_tomorrow
                    <fct> no, no, no, no, no, no, no, yes, no, yes, yes, yes~
                    <fct> 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, ~
## $ year
                    <fct> summer, summer, summer, summer, summer, summer, summer~
## $ season
## $ cluster
                    <fct> area5, area5, area5, area5, area5, area5, area5, area5~
```

Count the number of missing values.

```
ds[vars] %>% is.na() %>% sum() %>% comcat()
## 403,758
```

Impute missing values.

```
ds[vars] %<>% na.roughfix()
```

Confirm that no missing values remain

```
ds[vars] %>% is.na() %>% sum() %>% comcat()
```

Take a peak at the data again

```
glimpse(ds)
## Rows: 173,890
## Columns: 27
## $ date
                   <date> 2008-12-01, 2008-12-02, 2008-12-03, 2008-12-04, 2008-~
## $ location
                   <fct> albury, albury, albury, albury, albury, albury, albury~
                    <dbl> 13.4, 7.4, 12.9, 9.2, 17.5, 14.6, 14.3, 7.7, 9.7, 13.1~
## $ min temp
## $ max_temp
                    <dbl> 22.9, 25.1, 25.7, 28.0, 32.3, 29.7, 25.0, 26.7, 31.9, ~
## $ rainfall
                    <dbl> 0.6, 0.0, 0.0, 0.0, 1.0, 0.2, 0.0, 0.0, 0.0, 1.4, 0.0,~
## $ evaporation
                    ## $ sunshine
                    ## $ wind_gust_dir
                    <ord> w, wnw, wsw, ne, w, wnw, w, w, nnw, w, n, nne, w, sw, ~
## $ wind_gust_speed <dbl> 44, 44, 46, 24, 41, 56, 50, 35, 80, 28, 30, 31, 61, 44~
## $ wind_dir_9am
                    <ord> w, nnw, w, se, ene, w, sw, sse, se, s, sse, ne, nnw, w~
## $ wind_dir_3pm
                    <ord> wnw, wsw, wsw, e, nw, w, w, w, nw, sse, ese, ene, nnw,~
## $ wind_speed_9am
                   <dbl> 20, 4, 19, 11, 7, 19, 20, 6, 7, 15, 17, 15, 28, 24, 13~
## $ wind_speed_3pm
                   <dbl> 24, 22, 26, 9, 20, 24, 24, 17, 28, 11, 6, 13, 28, 20, ~
## $ humidity 9am
                    <dbl> 71, 44, 38, 45, 82, 55, 49, 48, 42, 58, 48, 89, 76, 65~
## $ humidity_3pm
                    <dbl> 22, 25, 30, 16, 33, 23, 19, 19, 9, 27, 22, 91, 93, 43,~
## $ pressure_9am
                   <dbl> 1007.7, 1010.6, 1007.6, 1017.6, 1010.8, 1009.2, 1009.6~
## $ pressure_3pm
                    <dbl> 1007.1, 1007.8, 1008.7, 1012.8, 1006.0, 1005.4, 1008.2~
                    <dbl> 8, 5, 5, 5, 7, 5, 1, 5, 5, 5, 5, 8, 8, 5, 0, 8, 8, 5, ~
## $ cloud_9am
## $ cloud_3pm
                    <dbl> 5, 5, 2, 5, 8, 5, 5, 5, 5, 5, 5, 8, 8, 7, 5, 1, 1, 2, ~
## $ temp_9am
                    <dbl> 16.9, 17.2, 21.0, 18.1, 17.8, 20.6, 18.1, 16.3, 18.3, ~
## $ temp_3pm
                    <dbl> 21.8, 24.3, 23.2, 26.5, 29.7, 28.9, 24.6, 25.5, 30.2, ~
## $ rain_today
                    <fct> no, no, no, no, no, no, no, no, yes, no, yes, yes,~
                    <dbl> 0.0, 0.0, 0.0, 1.0, 0.2, 0.0, 0.0, 0.0, 1.4, 0.0, 2.2,~
## $ risk_mm
## $ rain_tomorrow
                   <fct> no, no, no, no, no, no, no, yes, no, yes, yes, yes~
                    <fct> 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, ~
## $ year
## $ season
                    <fct> summer, summer, summer, summer, summer, summer, summer~
## $ cluster
                    <fct> area5, area5, area5, area5, area5, area5, area5, area5,
```

Randomly pull out a sample of 1000 observations from data set

```
ds %>% nrow() %>% sample(1000) -> sobs
```

Do a scatterplot of the min and max temperatures and encode if it will rain tomorrow in the color

```
ds %>% extract(sobs,) %>%
   ggplot(aes(x=min_temp, y=max_temp, color=rain_tomorrow)) +
   geom_point()
```


Standard bar chart.

ds %>% ggplot(aes(x=wind_dir_3pm)) + geom_bar()

Standard bar chart with binary outcome encoded in the color.

```
ds %>% ggplot(aes(x=wind_dir_3pm, fill=rain_tomorrow)) +
  geom_bar()
```


Define two shades of blue using ColorBrewer, http://colorbrewer2.org.

```
library(RColorBrewer)
blues2 <- brewer.pal(4,"Paired")[1:2] %T>% print()
## [1] "#A6CEE3" "#1F78B4"
```

Output the number of weather stations from data set

```
ds$location %>%
  unique() %>%
  length() %>%
  print() ->
  num_locations
```

[1] 49

Generate a bar chart with more complex annotation

Rain Expectedd by Wind Direction at 3PM

Observations from 49weather stations

Source: Australian Bureau of Meteorology

Bar chart of mean temperature at 3PM across all 49 weather stations

```
ds %>%
   ggplot(aes(x=location, y=temp_3pm, fill=location)) +
   geom_bar(stat="summary", fun.y="mean") +
   theme(legend.position="none")
```

- ## Warning: Ignoring unknown parameters: fun.y
- ## Warning: Removed 4157 rows containing non-finite values (stat_summary).
- ## No summary function supplied, defaulting to `mean_se()`

Since the above plot has all labeled weather stations cluttered together, let's rotate the labels by 90 degrees.

```
ds %>%
  ggplot(aes(x=location, y=temp_3pm, fill=location)) +
  geom_bar(stat="summary", fun.y="mean") +
  theme(legend.position="none") +
  theme(axis.text.x = element_text(angle=90))
```

- ## Warning: Ignoring unknown parameters: fun.y
- ## Warning: Removed 4157 rows containing non-finite values (stat_summary).
- ## No summary function supplied, defaulting to `mean_se()`

Instead of rotating the labels by 90 degrees, we can flip the x-y coordinates.

```
ds %>%
   ggplot(aes(x=location, y=temp_3pm, fill=location)) +
   geom_bar(stat="summary", fun.y="mean") +
   theme(legend.position="none") +
   #theme(axis.text.x = element_text(angle=90)) +
   coord_flip()
```

- ## Warning: Ignoring unknown parameters: fun.y
- ## Warning: Removed 4157 rows containing non-finite values (stat_summary).
- ## No summary function supplied, defaulting to `mean_se()`

We want to reorder the location in alphabetical order instead of the reverse

```
ds$location %>%
  levels() %>%
  rev() ->
  loc
```

Use mutate within dplyr to temporarily place the location in alphabetical order

```
ds %>%
  mutate(location=factor(location,levels=loc)) %>%
  ggplot(aes(x=location, y=temp_3pm, fill=location)) +
  geom_bar(stat="summary", fun.y="mean") +
  theme(legend.position="none") +
  #theme(axis.text.x = element_text(angle=90)) +
  coord_flip()
```

```
## Warning: Ignoring unknown parameters: fun.y
```

^{##} Warning: Removed 4157 rows containing non-finite values (stat_summary).

^{##} No summary function supplied, defaulting to `mean_se()`

Output box plot of maximum temperature as a parameter of year

```
ds %>%
  ggplot(aes(year, max_temp, fill=year)) +
  geom_boxplot(notch = T) +
  theme(legend.position="none")
```


Output violin plot of maximum temperature as a parameter of year

```
ds %>%
  ggplot(aes(year, max_temp, fill=year)) +
  geom_violin() +
  theme(legend.position="none")
```


Overlay box plot and violin plot of maximum temperature as a parameter of year

```
ds %>%
   ggplot(aes(year, max_temp, fill=year)) +
   geom_violin() +
   geom_boxplot(width=0.5, position = position_dodge(width=0)) +
   theme(legend.position="none")
```


Use facet_wrap to split the plots across locations

```
ds %>%
   ggplot(aes(x=year, y=max_temp, fill=year)) +
   geom_violin() +
   geom_boxplot(width=0.5, position=position_dodge(width=0)) +
   theme(legend.position="none") +
   theme(axis.text.x=element_text(angle=45, hjust=1)) +
   facet_wrap(~location, ncol=5)
```


year

Create a helper funtion so as to visualize clusters of location

```
myplot <- function(ds, n)
{
    ds %>%
        filter(cluster==n) %>%
        ggplot(aes(x=year, y=max_temp, fill=year)) +
        geom_violin() +
        geom_boxplot(width=0.5, position=position_dodge(width=0)) +
        theme(legend.position="none") +
        theme(axis.text.x=element_text(angle=45, hjust=1)) +
        facet_wrap(~location, ncol=5)
}

myplot(ds, "area3")
```


convert variables from character to factor class

```
lblr <- function(x)
{
    x %>%
        str_replace_all("n", "North ") %>%
        str_replace_all("s", "South ") %>%
        str_replace_all("e", "East ") %>%
        str_replace_all("w", "West ") %>%
        str_replace(" $", "")
}
```

convert wind direction to factor

