FINITE ELEMENT METHOD - EXERCISES

ANDREA BONITO

(1) For $N \in \mathbb{N}$, let $0 \le x_0 < x_1 < ... < ... x_N = 1$ be a partition of [0,1]. For i = 1, ..., N - 1, we define the hat function

$$\phi_i(x) := \begin{cases} \frac{x - x_{i-1}}{x_i - x_{i-1}} & x \in (x_{i-1}, x_i), \\ \frac{x_{i+1} - x}{x_{i+1} - x_i} & x \in [x_i, x_{i+1}), \\ 0 & \text{otherwise.} \end{cases}$$

(a) Show that $\phi_i \in H_0^1(0,1)$ for i = 1, ..., N-1;

(b) Show that span $(\phi_1,...,\phi_{N-1})$ contains all continuous piecewise linear functions subordinate to the partition $\{x_i\}_{i=0}^N$ and that vanish at x=0

and x=1. (c) Compute $\int_0^1 \phi_i'(x)\phi_j'(x)\ dx$ for i,j=1,...,N-1. (d) Consider now uniform partitions of [0,1], i.e., $x_i=i/N$. Implement a FEM code to approximate the solution u of the ODE

-(p(x)u'(x))' = 1,u(0) = u(1) = 0,0 < x < 1and where p(x) is given by

$$p(x) = \begin{cases} 1 & x \in (0, 1/2) \\ \alpha & x \in [1/2, 1) \end{cases}$$

for some $\alpha > 0$. Plot your FEM approximations for $\alpha \in \{1, 2, 5, 10\}$ and N large enough.

(e) Show that the weak solution $u \in H_0^1(0,1)$ to the above ODE satisfies

$$J(u) \leq J(v) \qquad \forall v \in H^1_0(0,1),$$

where for $v \in H_0^1(0,1)$

$$J(v) := \frac{1}{2} \int_0^1 p(x) |v'(x)|^2 dx - \int_0^1 f(x) v(x) dx.$$

(2) Consider the same ODE but supplemented with mixed boundary conditions

$$-(p(x)u'(x))' = 1$$
, $0 < x < 1$ and $u(0) = 0$, $u'(1) = 1$.

(a) Determine the corresponding weak formulation. Think first what are reasonable test functions to multiply the ODE with.

(b) Show that span $(\phi_1, ..., \phi_N)$, where

$$\phi_i(x) := \begin{cases} \frac{x - x_{N-1}}{x_N - x_{N-1}} & x \in (x_{N-1}, x_N], \\ 0 & \text{otherwise,} \end{cases}$$

1

contains all continuous piecewise linear functions subordinate to the partition $\{x_i\}_{i=0}^N$ and that vanish at x=0.

(c) Modify your code to approximate the solution to the ODE with mixed boundary conditions.

Date: May 24, 2024.