

Design, Fabrication, Testing and Validation of a Ruggedized Fiber Optic Sensing System (FOSS) for Launch Application

AIAA Science and Technology Forum and Exposition Peacock Spring, SENS-03

Thurs, Jan 11th, 2024

Why Choose Fiber Optic Sensors over Resistive Gages?

One Of These Things (is Not Like The Others)

(Heavy)

(Big)

(Hard)

(Light, small, easy)

Fiber Bragg Grating (FBG) as sensor

Principle

- Fiber Reflector that reflects a particular wavelength and transmit all others
- Bragg Wavelength: λ_B =2 $n_e\Lambda$

Measuring Strain(ϵ) or Temperature (Δ T) via FBG sensor

$$\frac{\Delta \lambda_B}{\lambda_B} = (1 - p_e)\varepsilon + (\alpha_{\Lambda} + \alpha_n)\Delta T$$

- $\Delta \lambda_B$ = change in Bragg wavelength <u>due</u> to environmental change
- λ_B = Initial Bragg wavelength of FBG
- p_e = strain-optics coefficient
- α_{Λ} = Thermal expansion coefficient
- α_n = thermo-optic coefficient

How do FBG sensors works?

• Like an accordion → change in Bragg Wavelength

How to implement FBG into structural health monitoring (SHM)

Layers of optical fibers for strain bonding.

Side-by-side comparison of fiber-based strain and temperature sensor vs convention foil-type strain gage and thermocouple

An FBG being loosely coupled to measure temperature without measuring mechanical strain generated from the surface.

NASA's Unique FBG Interrogation Technique: OFDR

- Optical Frequency Domain Reflectometry (OFDR):
 - Based on laser interferometry
 - Single Longitudinal mode laser needed
 - Involves signal processing
 - Fourier Transform/inverse Fourier Transform
 - Use weak reflectivity FBG
 - Typical WDM FBG's R=80%
 - Typical OFDR FBG's R=0.05%
 - So why use OFDR for sensing instead?
 - Thousands of sensors in 1 single fiber
 - High spatial density (sensor every ½" increment)

Optical Frequency Domain Reflectometry

NASA

- All FBGs are written at the same wavelength (λ_B) , instead of each having a unique wavelength (WDM)
 - Multiplexing of hundreds of sensor in single fiber
- A narrowband wavelength tunable laser source is used to interrogate multiple sensors.
- Each FBG sensor is only ½ inch long

Principle

- Combine 2 coherent waves to generate a beat frequency
 - This is an unique beat frequency based on the length difference △L
- Multiple sensors with unique beat frequencies (ΔL_{fba}) are captured
- In Fourier Domain each sensor with unique frequency is separated, and iFFT to obtain its design wavelength (λ_R)

$$I_R = \sum_i R_i Cos(k2n_0 L_i) \qquad k = \frac{2\pi}{\lambda}$$

R_i – spectrum of ith grating

 n_0 – effective index

L – path difference

k – wavenumber

Layman's Term: Tuning your favorite radio station!

Multiple frequencies

are broadcasted on airwave

Radio tuner accepts ONE frequency

Radio analogy to Optical Frequency Domain Reflectometry

Advantage of FOSS – LOFTID results

Four thermocouples (diamond) vs 1000+ FBG data gives high spatial density temperature information of rigid nosecone during re-entry

Comparing laboratory FOSS vs launch-capable FOSS system

Launch Capable FOSS Specifications					
Parameters	Units				
Fiber channel count	4				
Max sensing fiber length	40 ft				
Max patch cable length from system	≈100 ft				
Fiber type	Single-mode fiber (SMF)-28				
Max no. of sensors/fibers	2,000				
Max Sample rate	50 Hz				
Onboard storage	32 GB				
Interface	Gigabit Ethernet				
User Interface Protocol	transmission control protocol				
User interface Protocor	(TCP)/internet protocol (IP)				
Operational Communication Protocol	user datagram protocol (UDP)				
Power	70 W at 28 VDC				
Weight (including enclosure)	38 lbs				
Size (application specific)	18.15 in by 8.625 in by 6.25 in				

FOSS ruggedized units, prior to environment testing

[4] identical units are built for environmental testing, where:

1 unit = Qualification unit

1 unit = Integrated into LOFTID

2 units = spares, later becomes proto-qualified units

Environmental Testing Protocol to Certify FOSS for flight

FOSS integration and test plan to follow, to make sure unit does not break any baseline configuration

NASA

FOSS under pyroshock testing - Summary

Shocks in Fach

Shock Test	# Snocks in Each Direction			Components	Results
	X	Y	Z		
1st	3	0	0	Full system test	Optical network failure. Mounts replaced after test.
Optical Network	3	3	3	Subcomponent test	Fully operational through all shocks. Component passed.
2nd	3	3	3	Full system test	Optical network failure. Completed remaining axis. Rest of system was operational after 9 shocks.
BBR	3	3	3	Subcomponent test	All three directions tested at once. Result Pass
Delta Qual	4	3	3	Full system test	Carrier board short on shock 7 during testing. Rest of system was operational after 10 shocks.

Lesson learned about integrating optical network into a shock environment

PS – next iteration of optical network does not have a fan anymore

FOSS under random vibration testing - AFRC

- Testing July 2022
- During qualification level, swept source laser within unit failed due to over-testing during shock (which it endures 22 shock events)
- Proto-qualification level was used (3dB above envelope of MPE, max predicted environment)
 - 2 units passed random vibration in all x-, y- and z-axis, with 11 GRMS under 2 minutes

FOSS under thermal cycling testing - KSC

Plateau					
Plateau	Temperature	Duration	Tests		
A	66 °C ±3 °C	270 min	FOSS Aliveness		
B C	36 °C ±3 °C -29 °C ±3 °C	120 min 270 min	FOSS Functional FOSS Aliveness		
D	36 °C ±3 °C	120 min	FOSS Functional		

- 16 consequent cycles conducted takes 7 days continuously
- One of the 2 proto-qualified unit failed laser controller electronics failure
- One unit was shipped to LaRC for thermal vacuum cycle testing

FOSS under thermal vacuum cycle testing - LaRC

- Testing from Sept 12-15, 2022
- 4 thermal cycles, identical to previous test, but in additional, under vacuum (< 10 x 10⁻⁴ Torr) condition
- FOSS unit passed all thermal-vacuum testing

FOSS under EMI/EMC testing

Conclusion

- 1. Environmental testing of ruggedized FOSS unit has lead to successful implementation into NASA's LOFTID project
- 2. Testing ensure that FOSS was operating throughout the re-entry process at LOFTID
- 3. Testing ensure FOSS was able to recording +1000 plus sensors concurrently with high-spatial density temperature measurement throughout re-entry process

