Key advantage of finite dependence: no need to make assumptions far into lifecycle
Setup:

Setup:

• Utility varies over time: $u_{it}(X_t)$

Setup:

- Utility varies over time: $u_{it}(X_t)$
- State transitions vary over time: $f_{jt}(X_{t+1}|X_t)$

Setup:

- Utility varies over time: $u_{jt}(X_t)$
- ullet State transitions vary over time: $f_{jt}(X_{t+1}|X_t)$
- Decisions made until period T

Setup:

- Utility varies over time: $u_{jt}(X_t)$
- State transitions vary over time: $f_{jt}(X_{t+1}|X_t)$
- Decisions made until period T
- ullet Observations only until period $\mathcal{T} < \mathcal{T}$

Setup:

- Utility varies over time: $u_{it}(X_t)$
- State transitions vary over time: $f_{jt}(X_{t+1}|X_t)$
- Decisions made until period T
- Observations only until period T < T

Question: What remains identifiable?

With terminal or renewal choices, can identify f_{jt} 's and u_{jt} 's until period $\mathcal{T}-1$

With terminal or renewal choices, can identify f_{jt} 's and u_{jt} 's until period $\mathcal{T}-1$

Extreme value case:

$$v_j(X_t) = u_{jt}(X_t) + \beta \sum_{X_{t+1}} \log \left(\sum_k \exp[v_{kt+1}(X_{t+1})] \right) f_{jt}(X_{t+1}|X_t) + \beta c$$

With terminal or renewal choices, can identify f_{it} 's and u_{it} 's until period $\mathcal{T}-1$

 $= u_{jt}(X_t) + \beta \sum \left[v_{1t+1}(X_{t+1}) - \log \left(p_{1t+1}(X_{t+1}) \right) \right] f_{jt}(X_{t+1}|X_t) + \beta c$

Extreme value case:
$$v_j(X_t) = u_{jt}(X_t) + \beta \sum_{X_{t+1}} \log \left(\sum_k \exp[v_{kt+1}(X_{t+1})] \right) f_{jt}(X_{t+1}|X_t) + \beta c$$

With terminal or renewal choices, can identify f_{it} 's and u_{it} 's until period $\mathcal{T}-1$

Extreme value case:

$$v_{j}(X_{t}) = u_{jt}(X_{t}) + \beta \sum_{X_{t+1}} \log \left(\sum_{k} \exp[v_{kt+1}(X_{t+1})] \right) f_{jt}(X_{t+1}|X_{t}) + \beta c$$

$$= u_{jt}(X_{t}) + \beta \sum_{k} \left[v_{1t+1}(X_{t+1}) - \log \left(p_{1t+1}(X_{t+1}) \right) \right] f_{jt}(X_{t+1}|X_{t}) + \beta c$$

Last term differences out or is constant

Expression holds regardless of expectations at t + 2

When finite dependence takes more than one period:
Transition functions can vary over time

When	finite	dependence	takes	more	than	one	period:	

• Transition functions can vary over time

• Utility function needs to be stable

1 A /I	c· ·.				. 1		
VVhen	finite	dependence	takes	more	than	one	period:

- Transition functions can vary over time
- Utility function needs to be stable
- Reason: future flow payoffs appear in expectation of future utility, but we lack corresponding data to recover them

When finite dependence takes more than one period:

- Transition functions can vary over time
- Utility function needs to be stable
- Reason: future flow payoffs appear in expectation of future utility, but we lack corresponding data to recover them
- Implication: possible to estimate non-stationary games

But it can get complicated:

But it can get complicated:

• Math depends on form of G

But it can get complicated:

- Math depends on form of G
- Recall: $V_{t+1} = \log G$, where $G = \sum_k \exp(\cdot)$ for T1EV

But it can get complicated:

- Math depends on form of G
- Recall: $V_{t+1} = \log G$, where $G = \sum_k \exp(\cdot)$ for T1EV
- ullet For nested logit: formula involves nesting parameters $(\lambda_r$'s)

But it can get complicated:

- Math depends on form of G
- Recall: $V_{t+1} = \log G$, where $G = \sum_{k} \exp(\cdot)$ for T1EV
 - For nested logit: formula involves nesting parameters $(\lambda_r$'s)

If ϵ 's are Normal:

But it can get complicated:

- Math depends on form of G
- Recall: $V_{t+1} = \log G$, where $G = \sum_k \exp(\cdot)$ for T1EV
- For nested logit: formula involves nesting parameters $(\lambda_r$'s)

If ϵ 's are Normal:

• No closed-form expression for V_{t+1}

No closed-form expression for v_{t+1}

But it can get complicated:

- Math depends on form of G
- Recall: $V_{t+1} = \log G$, where $G = \sum_k \exp(\cdot)$ for T1EV
- For nested logit: formula involves nesting parameters $(\lambda_r$'s)

If ϵ 's are Normal:

- ullet No closed-form expression for V_{t+1}
- Need simulation to compute
 E max integral

$$G_t = \sum_r \left(\sum_{j \in J_r} \exp\left(\frac{v_j(X_t)}{\lambda_r}\right) \right)^{\lambda_r}$$

Probability of choosing
$$j$$
 in nest J_r :

$$p_{jt}(X_t) = rac{\left(\sum_{j' \in J_r} \exp\left(rac{v_{j'}(X_t)}{\lambda_r}
ight)
ight)^{\lambda_r - 1} \exp\left(rac{v_j(X_t)}{\lambda_r}
ight)}{G_t}$$

 $G_t = \sum_r \left(\sum_{i \in J_r} \exp\left(\frac{v_j(X_t)}{\lambda_r}\right) \right)^{\lambda_r}$

$$G_t = \sum_r \left(\sum_{j \in J_r} \exp\left(rac{v_j(X_t)}{\lambda_r}
ight)
ight)^{\lambda_r}$$

Probability of choosing i in nest J_r :

$$p_{it}(X_t) = \frac{\left(\sum_{j' \in J_r} \exp\left(\frac{v_{j'}(X_t)}{\lambda_r}\right)\right)^{\lambda_r - 1} \exp\left(\frac{v_{j}(X_t)}{\lambda_r}\right)}{2}$$

Probability of choosing nest r:

$$p_{rt}(X_t) = \frac{\left(\sum_{j' \in J_r} \exp\left(\frac{v_{j'}(X_t)}{\lambda_r}\right)\right)^{\lambda_r}}{G_t}$$

From nest probability:

$$(G_t p_{rt}(X_t))^{1/\lambda_r} = \sum_{j' \in J_r} \exp\left(rac{v_{j'}(X_t)}{\lambda_r}
ight)$$

From nest probability:

$$(G_t p_{rt}(X_t))^{1/\lambda_r} = \sum_{j' \in J_r} \exp\left(\frac{v_{j'}(X_t)}{\lambda_r}\right)$$

Substitute into choice probability:

$$p_{jt}(X_t) = \frac{\left(G_t p_{rt}(X_t)\right)^{\frac{\lambda_r - 1}{\lambda_r}} \exp\left(\frac{v_j(X_t)}{\lambda_r}\right)}{G_t}$$

From nest probability:

$$(G_t p_{rt}(X_t))^{1/\lambda_r} = \sum_{j' \in J_r} \exp\left(\frac{v_{j'}(X_t)}{\lambda_r}\right)$$

Substitute into choice probability:

$$p_{jt}(X_t) = \frac{\left(G_t p_{rt}(X_t)\right)^{\frac{\lambda_r - 1}{\lambda_r}} \exp\left(\frac{v_j(X_t)}{\lambda_r}\right)}{C}$$

Simplify:

implify:
$$\rho_{jt}(X_t) = G_t^{\frac{-1}{\lambda_r}} \rho_{rt}(X_t)^{\frac{\lambda_r-1}{\lambda_r}} \exp\left(\frac{v_j(X_t)}{\lambda_r}\right)$$

$$(1/\lambda_r)\log(G_t) = -\log(p_{it}(X_t)) + ((\lambda_r - 1)/\lambda_r)\log(p_{rt}(X_t)) + (1/\lambda_r)v_i(X_t)$$

$$(1/\lambda_r)\log(G_t) = -\log(p_{it}(X_t)) + ((\lambda_r - 1)/\lambda_r)\log(p_{rt}(X_t)) + (1/\lambda_r)v_i(X_t)$$

Multiply through by λ_r :

$$\log(G_t) = -\lambda_r \log(p_{it}(X_t)) + (\lambda_r - 1) \log(p_{rt}(X_t)) + v_i(X_t)$$

$$(1/\lambda_r)\log(G_t) = -\log(p_{it}(X_t)) + ((\lambda_r - 1)/\lambda_r)\log(p_{rt}(X_t)) + (1/\lambda_r)v_i(X_t)$$

Multiply through by λ_r :

$$\log(G_t) = -\lambda_r \log(p_{it}(X_t)) + (\lambda_r - 1) \log(p_{rt}(X_t)) + v_i(X_t)$$

Since $V_t(X_t) = \log(G_t) + c$, we're done

$$(1/\lambda_r)\log(\mathcal{G}_t) = -\log(p_{it}(X_t)) + ((\lambda_r-1)/\lambda_r)\log(p_{rt}(X_t)) + (1/\lambda_r)v_i(X_t)$$

Multiply through by λ_r :

$$\log(G_t) = -\lambda_r \log(p_{it}(X_t)) + (\lambda_r - 1) \log(p_{rt}(X_t)) + v_i(X_t)$$

Since $V_t(X_t) = \log(G_t) + c$, we're done

Note: when $\lambda_r = 1$, this reduces to multinomial logit

When $\epsilon \sim$ GEV,	analytic expressions for	$V_t(X_t)$ generally difficult

But: given particular X_t , can solve for $V_t(X_t)$ numerically

When $\epsilon \sim$ GEV, analytic expressions for $V_t(X_t)$ generally difficult

But: given particular X_t , can solve for $V_t(X_t)$ numerically

Recall: $p_{jt}(X_t) = rac{\partial \log(G_t)}{\partial v_i(X_t)}$

When $\epsilon \sim \text{GEV}$, analytic expressions for $V_t(X_t)$ generally difficult

$$\partial V_j(X_t)$$

Recall:
$$p_{jt}(X_t) = \frac{\partial \log(G_t)}{\partial v_j(X_t)}$$

Stack for all choices:
$$\begin{bmatrix} p_{1t}(X_t) \\ \vdots \\ p_{Jt}(X_t) \end{bmatrix} = \begin{bmatrix} \frac{\partial \log(G_t)}{\partial v_{1t}(X_t)} \\ \vdots \\ \frac{\partial \log(G_t)}{\partial v_{1t}(X_t)} \end{bmatrix}$$

But: given particular X_t , can solve for $V_t(X_t)$ numerically

When $\epsilon \sim \text{GEV}$, analytic expressions for $V_t(X_t)$ generally difficult

But: given particular X_t , can solve for $V_t(X_t)$ numerically

Recall:
$$p_{jt}(X_t) = \frac{\partial \log(G_t)}{\partial v_i(X_t)}$$

Stack for all choices:

$$\left[egin{array}{c} p_{1t}(X_t) \ dots \ p_{Jt}(X_t) \end{array}
ight] = \left[egin{array}{c} rac{\partial \log(G_t)}{\partial v_{1t}(X_t)} \ dots \ rac{\partial \log(G_t)}{\partial v_{\ell}(X_t)} \end{array}
ight]$$

One equation redundant $\Rightarrow J-1$ system solving for J-1 differences in v's