HMM Term Project

CMPT 318 GROUP 12 KYLE ISAAK, COLIN KIRKBY

Project Scope

To do principal component analysis on energy grid data to discern valuable data for training models

To develop and train HMMs for the purpose of anomaly detection in energy grid data

Learn how to properly fit HMMs to training data to achieve good results with testing data

To test trained models on anomalous datasets

PCA

- Global Intensity
- Global active power

Global_intensity -0.5664544 Sub_metering_1 -0.2430386 Voltage 0.3549207

Time window selection

- Rational
- Data division
- Testing and Training

Markov Model Training

- Selecting models for testing
- Model instability
- Overfitting and underfitting

Markov Model Testing

- Final model selection
- Process
- Normalization

Anomaly Detection

- Results
- Further exploration

Anomaly Detection

- Aditional data exploration
- Data irregularities

Anomaly Detection

- Points of interest
- Interpretation

Conclusion

Benefits of HMMs

Difficulties encountered

Potential applications