Isabel Walter
Written Assignment 3
Machine Learning
Worked together with Carine Candel

4 * x0 + x1 - 2 * x2 gives -1 above the line and 1 under the line.

2.

If you have no parameters then your hypothesis will be a horizontal line \rightarrow underfitting. If you have as many parameters as you have examples your hypothesis will fit your training set perfectly but it won't do so well on the test set \rightarrow overfitting.

3.

1

$$\theta_{10}^{(1)} = 0.2$$
 $\theta_{20}^{(2)} = 0.2$
 $\theta_{11}^{(2)} = 1$
 $\theta_{11}^{(1)} = 0.5$
 $\theta_{12}^{(2)} = 2$
 $\theta_{12}^{(1)} = 0.1$
 $\theta_{21}^{(1)} = 0.5$
 $\theta_{22}^{(1)} = 0.7$

$$a_{1}^{(1)} = x = 0.5$$

$$a_{2}^{(1)} = x = 0.9$$

$$z_{1}^{(2)} = \theta_{10}^{(1)} * 1 + \theta_{11}^{(1)} * a_{1}^{(1)} + \theta_{12}^{(1)} * a_{2}^{(1)} = 0.2 + 0.25 + 0.09 = 0.54$$

$$z_{2}^{(2)} = \theta_{20}^{(1)} * 1 + \theta_{21}^{(1)} * a_{1}^{(1)} + \theta_{22}^{(1)} * a_{2}^{(1)} = 1.08$$

$$a_{1}^{(2)} = \frac{1}{1+e^{-0.54}} = 0.6318124177 \Rightarrow 0.63$$

$$a_{2}^{(2)} = \frac{1}{1+e^{-1.08}} = 0.7464939833 \Rightarrow 0.75$$

$$z_{1}^{(3)} = \theta_{10}^{(2)} * 1 + \theta_{11}^{(2)} * \alpha_{1}^{(2)} + \theta_{12}^{(2)} * \alpha_{2}^{(2)} = 2.3248$$

$$a_{1}^{(3)} = \frac{1}{1+e^{-2.3248}} = 0.9109102742 \Rightarrow 0.91$$

2
$$\delta_{1}^{(3)} = a_{1}^{(3)} - y = 0.9109102742 - 1 = -0.0890897258 \Rightarrow -0.09$$

$$\delta_{1}^{(2)} = \theta_{11}^{(2)} * \delta_{1}^{(3)} * a_{1}^{(2)} * (1 - a_{1}^{(2)}) = -0.0207245408 \Rightarrow -0.02$$

$$\delta_{2}^{(2)} = \theta_{12}^{(2)} * \delta_{1}^{(3)} * a_{2}^{(2)} * (1 - a_{2}^{(2)}) = -0.033718807 \Rightarrow -0.03$$

1 iteration:

$$\begin{array}{l} \alpha = 0.1 \\ \theta_{11}^{(2)} = \; \theta_{11}^{(2)} - \alpha * \; a_{1}^{(2)} * \; \delta_{1}^{(3)} = 1.0056288 \\ \theta_{12}^{(2)} = \; \theta_{12}^{(2)} - \; \alpha * \; a_{2}^{(2)} * \delta_{1}^{(3)} = 2.006650494 \\ \theta_{11}^{(1)} = \; \theta_{11}^{(1)} - \; \alpha * \; a_{1}^{(1)} * \; \delta_{1}^{(2)} = \; 0.501036227 \\ \theta_{12}^{(1)} = \; \theta_{12}^{(1)} - \; \alpha * \; a_{2}^{(1)} * \; \delta_{1}^{(2)} = 0.1018652087 \\ \theta_{21}^{(1)} = \; \theta_{21}^{(1)} - \; \alpha * \; a_{1}^{(1)} * \; \delta_{2}^{(2)} = 0.5016859404 \\ \theta_{22}^{(1)} = \; \theta_{22}^{(1)} - \; \alpha * \; a_{2}^{(1)} * \; \delta_{2}^{(2)} = 0.9030346926 \end{array}$$

4.

1

Equation of the line:

w0 + w1x1 + w2x2 = 0

Given points:

P(-1,0) and Q(0,2)

w0 - w1 = 0

w0 + 2 * w2 = 0

w0 = w1 = -2 * w2

e.g. w0 and w1 are 2 and w2 is -1

If you fill this in for, for example, a point on the right of the line with x1 = 1 and x2 = 0 then w0 + w1x1 + w2x2 = 2 + 2 * 1 + 0 = 4 is bigger than $0 \rightarrow$ would give an outcome of 1 but is supposed to be -1.

So w0 and w1 are -2 and w2 is 1.

2 A

A	В	A ^ not B
-1	-1	-1
-1	1	-1
1	-1	1
1	1	-1

So line crosses the A axis at 1 and the B axis at -1.

$$w0 + w1x1 + w2x2 = 0$$

P(1, 0) and P(0,-1)

w0 + w1 = 0

$$w0 - w2 = 0$$

 $w0 = -w1 = w2$

So e.g. w0 = 1 w1 = -1 and w2 = 1

If you fill this in for, for example, a point on the right of the line with x1 = 1 and x2 = -1 then w0 + w1x1 + w2x2 = 1 - 1 - 1 = -1 which is smaller than $0 \rightarrow$ outcome of -1 but is supposed to be $1 \rightarrow$ negate weights:

Gives w0 = -1, w1 = 1, w2 = -1

В

A XOR B = $(A \land \neg B) \lor (\neg A \land B)$

	· · · · · · · · · · · · · · · · · · ·			
Α	В	P1 (A∧¬B)	P2 (¬A∧B)	P3
				(A∧¬B)∨(¬A∧B)
-1	-1	-1	-1	-1
-1	1	-1	1	1
1	-1	1	-1	1
1	1	-1	-1	-1

For P1: w0 = -1, w1 = 1, w2 = -1

For P2:

Line crosses the A axis at -1 and the B axis at 1.

w0 + w1x1 + w2x2 = 0

P(-1, 0) and P(0,1)

w0 - w1 = 0

w0 + w2 = 0

w0 = w1 = -w2

So e.g. w0 = 1 w1 = 1 and w2 = -1

If you fill this in for, for example, a point on the right of the line with x1 = -1 and x2 = 1 then w0 + w1x1 + w2x2 = 1 - 1 - 1 = -1 which is smaller than $0 \rightarrow$ outcome of -1 but is supposed to be $1 \rightarrow$ negate weights:

Gives w0 = -1, w1 = -1, w2 = 1

For P3:

w0 + w1x1 + w2x2 = 0

P(1, -1) or P(-1,1)

w0 + w1 - w2 = 0

w0 - w1 + w2 = 0

w0 = -w1 + w2 = w1 - w2

- w1 + w2 = w1 - w2

w2 = 2 * w1 - w2

2 * w2 = 2 * w1

w2 = w1 = w0

Take all the same weights, e.g. take for all weight 0.5.

If x1 = 1 and x2 = 1 then the perceptron should return 1.

w0 + w1x1 + w2x2 = 0.5 + 0.5 + 0.5 = 1.5, is bigger than 0 so perceptron would return 1.

Gives w0 = 0.5, w1 = 0.5 and w2 = 0.5.