Workshop: Introduction to Image Processing using Open-Source Software

Lucas D. Lo Vercio

Agenda - Workshop

Day 1: Installation and use of software. Opening files.

Day 2: Filtering

Day 3: Segmentation

Day 1

Day 2 - Filtering

An image processing pipeline

Filtering

Goals

- Noise reduction
- Enhance "important" characteristics of the image
 - And/or those required for further processing steps

Filters based on convolution

 They assign to the central pixel/voxel, the weighted average of it and the neighbourhood

.11	.11	.11
.11	.11	.11
.11	.11	.11

.1	.1	.1
.1	.2	.1
.1	.1	.1

Median Filter

- They assign to the central pixel/voxel, the median value of the window
 - Good for punctual noise
 - o Window size is the only parameter
 - o It does not create new values in the image
 - Higher computational cost

Anisotropic Diffusion Filter

- They assign to the central pixel/voxel, the weighted average of the window.
- The weights are determined using other characteristics of the image.
- I.e. Perona-Malik filter, SRAD

Filtering in 3D Slicer

Edge detectors based on Convolution

- They highlight gradients in the image
- Can be modified to detect edges in particular directions and signs

-1	0	1
-2	0	2
-1	0	1

1	2	1
0	0	0
-1	-2	-1

Sobel Filter X

Sobel Filter X

Day 3 - Segmentation

An image processing pipeline

Thresholding

- Intensity values that are inside a range are supposed to be part of the object of interest.
- Different ways to establish the range:
 - Visual inspection
 - Histogram analysis
 - Automatic histogram analysis (i.e. Otsu's method)

Region Growing

• Starting from a seed, it iteratively adds pixels/voxels if they comply with a certain criteria

Watershed algorithm

- A "flooding" is simulated in the image, with different starting points.
- The algorithm stops the evolution of a flooding before it encounters a different flooding.

Active contours or snakes

- The goal is to make an initial contour to evolve to the real edge of the object
- The evolution of the contour is guided by:
 - o Internal forces: Stretching and bending of the curve
 - o External forces: Intensities and edges of the image, among others

