

Probability and Stochastic Processes

Lecture 10: Independence of Events, Borel-Cantelli Lemma, Conditional Probability, Law of Total Probability, Bayes' Theorem

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

02 September 2025

Recap: Construction of Lebesgue Measure

Probability Assignment for Uncountable Sample Spaces

- $\Omega = (0, 1)$
- As before, suppose we start by assigning probabilities to all singleton subsets
- More specifically, let

$$\mathbb{P}(\emptyset) = 0, \qquad \mathbb{P}(\Omega) = 1, \qquad \mathbb{P}(\{\omega\}) = p_{\omega}, \quad \omega \in \Omega.$$

• What is $\mathbb{P}((0,\frac{1}{2}))$?

This cannot be derived from the probabilities of singleton subsets!

An Important Result from Measure Theory

Theorem

Suppose Ω is an uncountable set, and $\mathscr{F}=2^{\Omega}$.

If $\mathbb P$ is a valid probability measure on $\mathscr F$ (satisfying the three axioms of probability), then there exists a countable subset $S\subseteq\Omega$ such that $\mathbb P(S)=1$.

Furthermore, for any $A \in \mathcal{F}$, we have

$$\mathbb{P}(\mathbf{A}) = \sum_{\omega \in \mathbf{A} \cap \mathbf{S}} \mathbb{P}(\{\omega\}).$$

Takeaway

When Ω is uncountable, the only interesting probability measures on 2^{Ω} are discrete measures!

Example 1: Lebesgue Measure on $\Omega = (0, 1)$

- Let $(\Omega, \mathscr{F}) = ((0, 1), \mathscr{B}(0, 1))$
- Consider the collection

$$\mathscr{S} = \left\{ (a, b] : \ 0 \le a \le b \le 1 \right\}.$$

Observe that:

- $-\emptyset\in\mathscr{S}$
- —
 \mathcal{S} is closed under finite intersections
- For any $A, B \in \mathcal{S}$, the set $A \setminus B$ may be expressed as

$$A \setminus B = \bigsqcup_{i=1}^n C_i,$$

for some disjoint sets $C_1, \ldots, C_n \in \mathscr{S}$

• The collection $\mathcal S$ is called a **semiring**

Example 1: Lebesgue Measure on $\Omega = (0, 1)$

Consider the collection

$$\mathscr{S} = \left\{ (a, b] : \ 0 \le a \le b \le 1 \right\}.$$

- Let $m: \mathscr{S} \to [0,1]$ be an assignment satisfying the following properties:
 - $-m(\emptyset)=0$
 - $-m(\Omega)=1$
 - m((a, b]) = b a
 - Finite additivity

Caratheodory's Extension Theorem

There exists a unique extension of m to the whole of $\mathcal{B}(0,1)$.

The extended measure is called the Lebesgue measure on $\mathscr{B}(0,1)$, denoted by λ . In particular,

$$\lambda(A) = m(A) \quad \forall A \in \mathscr{S}.$$

Example 2: Lebesgue Measure on $\Omega = \mathbb{R}$

Consider the collection

$$\mathscr{S} = \left\{ (a, b] : -\infty \le a \le b < +\infty \right\}.$$

- Let $m: \mathcal{S} \to [0, +\infty]$ be an assignment satisfying the following properties:
 - $-m(\emptyset)=0$
 - $-m(\Omega)=+\infty$
 - m((a, b]) = b a
 - Finite additivity

Caratheodory's Extension Theorem

There exists a unique extension of m to the whole of $\mathscr{B}(\mathbb{R})$.

The extended measure is called the Lebesgue measure on $\mathscr{B}(\mathbb{R})$, denoted by λ . In particular,

$$\lambda(A) = m(A) \quad \forall A \in \mathscr{S}.$$

Properties of Lebesgue Measure on $\mathscr{B}(\mathbb{R})$

Consider the measure space $(\Omega, \mathscr{F}, \mu) = (\mathbb{R}, \mathscr{B}(\mathbb{R}), \lambda)$.

- $\lambda(\{x\}) = 0$ for all $x \in \mathbb{R}$
- $\lambda(a,b) = \lambda((a,b]) = \lambda([a,b]) = \lambda([a,b]) = b a$
- $\lambda(\mathbb{Q}) = 0$
- Exercise: $\lambda(K) = 0$, where K denotes the Cantor set

Independence of Events

Independence of Events

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Definition (Independence of Events)

Events $A, B \in \mathscr{F}$ are said to be independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$$

We write $A \perp \!\!\! \perp B$ as a shorthand notation to denote that A and B are independent.

Some Tidbits on Independence

- Suppose $A \in \mathscr{F}$ is such that $\mathbb{P}(A) = 0$
 - $-A \perp \!\!\!\perp A$
 - A ⊥ B for all $B \in \mathscr{F}$
- Suppose $A \in \mathscr{F}$ is such that $\mathbb{P}(A) = 1$
 - $-A \perp \!\!\! \perp A$
 - **—** $A \perp \!\!\! \perp B$ for all $B \in \mathscr{F}$
- If $A \perp \!\!\!\perp B$, then:
 - $-A^{\complement} \perp \!\!\! \perp B$
 - $-A \perp \!\!\! \perp B^{\mathbb{C}}$
 - $-A^{\complement} \perp B^{\complement}$
- Can an event be independent of itself? Yes!

Independence of Multiple Events

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Definition (Independence of Events)

• Events $A_1,A_2,\ldots,A_n\in\mathscr{F}$ are said to be independent if for all $\mathcal{I}_0\subseteq\{1,2,\ldots,n\}$,

$$\mathbb{P}\left(igcap_{i\in\mathcal{I}_0}A_i
ight)=\prod_{i\in\mathcal{I}_0}\mathbb{P}(A_i).$$

• Let \mathcal{I} be an arbitrary index set. A collection of events $\{A_i : i \in \mathcal{I}\}$ is independent if for every finite subset $\mathcal{I}_0 \subseteq \mathcal{I}$, the collection of events $\{A_i : i \in \mathcal{I}_0\}$ is independent.

Borel-Cantelli Lemma

Borel-Cantelli Lemma

Lemma (Borel-Cantelli Lemma)

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

1. Suppose $A_1,A_2,\ldots\in\mathscr{F}$ are such that $\sum_{n\in\mathbb{N}}\mathbb{P}(A_n)<+\infty$. Then,

$$\mathbb{P}\left(\limsup_{n\to\infty}A_n\right)=0. \qquad \left(\limsup_{n\to\infty}A_n=A_{\mathrm{limsup}}=\bigcap_{n\in\mathbb{N}}\bigcup_{k\geq n}A_k\right)$$

2. Suppose $A_1,A_2,\ldots\in\mathscr{F}$ are independent and satisfy $\sum_{n\in\mathbb{N}}\mathbb{P}(A_n)=+\infty.$ Then,

$$\mathbb{P}\left(\limsup_{n\to\infty}A_n\right)=1.$$

Proof of Borel-Cantelli Lemma, Part 1

- Suppose $A_1,A_2,\ldots\in\mathscr{F}$ are such that $\sum_{n\in\mathbb{N}}\mathbb{P}(A_n)<+\infty$
- We then have

$$\mathbb{P}\left(igcap_{n\in\mathbb{N}}igcup_{k\geq n}A_k
ight) = \lim_{n o\infty}\mathbb{P}\left(igcup_{k\geq n}A_k
ight)$$
 (continuity of probability) $\leq \lim_{n o\infty}\sum_{k\geq n}\mathbb{P}(A_k)$ (union bound) $= 0$

• We thus proved that $\mathbb{P}(A_{\mathrm{limsup}}) = 0$

Proof of Borel-Cantelli Lemma, Part 2

- Suppose $A_1, A_2, \ldots \in \mathscr{F}$ are independent and satisfy $\sum_{n \in \mathbb{N}} \mathbb{P}(A_n) = +\infty$
- For each $n \in \mathbb{N}$,

$$\begin{split} \mathbb{P}\left(\bigcap_{k\geq n}A_k^\complement\right) &= \prod_{k\geq n}\mathbb{P}(A_k^\complement) & \text{ (independence of } A_n^\complement, A_{n+1}^\complement, \ldots) \\ &= \prod_{k\geq n}\left(1-\mathbb{P}(A_k)\right) &\leq \prod_{k\geq n}\exp\left(-\mathbb{P}(A_k)\right) & \left(1-x\leq \exp(-x) \ \forall \ x\geq 0\right) \\ &= \exp\left(-\sum_{k\geq n}\mathbb{P}(A_k)\right) &= 0. \end{split}$$

• Taking limits as $n \to \infty$ on either sides, we get

$$\mathbb{P}\left(\liminf_{n\to\infty}A_n^{\complement}\right)=0\quad\Longleftrightarrow\quad \mathbb{P}\left(\limsup_{n\to\infty}A_n\right)=1.$$

Independence of σ -Algebras

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Definition (Independence of \sigma-Algebras)

Let $\mathscr{F}_1, \mathscr{F}_2 \subseteq \mathscr{F}$ be sub- σ -algebras of \mathscr{F} . Then, \mathscr{F}_1 and \mathscr{F}_2 are independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) \qquad \forall A \in \mathscr{F}_1, \ B \in \mathscr{F}_2.$$

More generally, for an arbitrary index set \mathcal{I} , the collection sub- σ -algebras $\{\mathscr{F}_i: i \in \mathcal{I}\}$ are said to be independent if for all choices of $A_i \in \mathscr{F}_i$, $i \in \mathcal{I}$, the events $\{A_i: i \in \mathcal{I}\}$ are independent.

Conditional Probabilities

Conditional Probability Measure

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Conditional Probability)

Given $B \in \mathscr{F}$ such that $\mathbb{P}(B) > 0$, define

$$\mathbb{P}_B:\mathscr{F} o [0,1] \qquad \mathsf{via} \qquad \mathbb{P}_B(A) \coloneqq rac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}, \quad A\in \mathscr{F}.$$

Then, \mathbb{P}_B is a valid probability measure on (Ω, \mathscr{F}) , and is called the **conditional probability** measure conditioned on the event B.

Notation: $\mathbb{P}_B(A)$ is denoted more commonly as $\mathbb{P}(A|B)$.

\mathbb{P}_B is a Valid Probability Measure on (Ω, \mathscr{F})

•
$$\mathbb{P}_B(\emptyset) = 0$$

•
$$\mathbb{P}_B(\Omega) = 1$$

• For any mutually disjoint collection of sets $A_1, A_2, \ldots \in \mathscr{F}$,

$$\mathbb{P}_{B}\left(igsqcup_{n\in\mathbb{N}}A_{n}
ight) \quad = \quad \sum_{n\in\mathbb{N}}\mathbb{P}_{B}(A_{n}).$$

• Fix $B \in \mathscr{F}$ such that $0 < \mathbb{P}(B) < 1$. Then, for any $A \in \mathscr{F}$,

$$\mathbb{P}(A) = \mathbb{P}(A|B) \cdot \mathbb{P}(B) + \mathbb{P}(A|B^{\complement}) \cdot \mathbb{P}(B^{\complement}).$$

• (Law of Total Probability)

Suppose $B_1, B_2, \ldots \in \mathscr{F}$ form a partition of Ω , i.e.,

$$B_i \cap B_j = \emptyset \quad \forall i \neq j, \qquad \qquad \bigsqcup_{n \in \mathbb{N}} B_n = \Omega.$$

Then, for any $A \in \mathscr{F}$,

$$\mathbb{P}(A) = \sum_{n: \mathbb{P}(B_n) > 0} \mathbb{P}(A|B_n) \cdot \mathbb{P}(B_n).$$

• (Bayes' Theorem)

Suppose $B_1, B_2, \ldots \in \mathscr{F}$ form a partition of Ω , i.e.,

$$B_i \cap B_j = \emptyset \quad \forall i \neq j, \qquad \qquad \bigsqcup_{n \in \mathbb{N}} B_n = \Omega.$$

For any $A \in \mathscr{F}$ such that $\mathbb{P}(A) > 0$,

$$\mathbb{P}(B_n|A) = egin{cases} rac{\mathbb{P}(A|B_n) \cdot \mathbb{P}(B_n)}{\sum\limits_{j: \; \mathbb{P}(B_j) > 0}}, & \mathbb{P}(B_n) > 0, \ 0, & \mathbb{P}(B_n) = 0. \end{cases}$$

• (Chain Rule)

Let $A_1, A_2, \ldots \in \mathscr{F}$. Then,

$$egin{aligned} \mathbb{P}\left(igcap_{n\in\mathbb{N}}A_n
ight) &= \mathbb{P}(A_1)\cdot\mathbb{P}(A_2|A_1)\cdot\mathbb{P}(A_3|A_1\cap A_2)\cdot\cdot\cdot \ &= \mathbb{P}(A_1)\cdot\prod_{n\geq 2}\mathbb{P}\left(A_m\ \Big|\ igcap_{j=1}^{n-1}A_j
ight), \end{aligned}$$

provided each of the conditional probabilities on the right-hand side is defined.