





Digitized by the Internet Archive in 2010 with funding from Boston Public Library

|  | 194.5 |  |
|--|-------|--|
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |

2926

## TECHNICAL MEMORANDUM

TO:

Mr. Lawrence Gaboury Second Vice President

John Hancock Mutual Life Insurance Company

FROM:

Robert D. Klimm, Associate

HMM Associates, Inc.

DATE:

January 16, 1989

SUBJECT: TRAFFIC IMPACTS OF THE HERALD STREET

EXTENSION ON THE INTERSECTION OF

COLUMBUS AVENUE AND CLARENDON STREET



### SUMMARY OF FINDINGS

The additional analyses performed by HMM respond to the BTD's concern about the impact of the Hancock proposal on Herald Street with an eastbound access ramp to the Massachusetts Turnpike. HMM's previous study analyzed year 2010 conditions including a one-way Herald Street Extension, but without an eastbound connector to the Massachusetts Turnpike. This was not previously analyzed since both City and State suggested the geometrics of the Massachusetts Turnpike merge lane were a problem.

The findings of our supplemental effort support the initial Level of Service (LOS) conclusions reached in July 1988. Last summer we concluded that the Columbus Avenue/Clarendon Street intersection would function at LOS D for year 2010 conditions with the project, which meant that with the addition of site traffic and Herald Street, Columbus/Clarendon traffic delays were within the acceptable range.

The data supplied by CTPS and Bruce Campbell & Associates shows a LOS D during the year 2010 AM peak hour and a LOS C during the PM peak hour at the Columbus Avenue/Clarendon Street intersection. Comparisons with this and other technical analyses confirms that HMM's conclusions are very conservative if not a "worst-case" scenario, which supports our earlier findings.

College of the College Community

#### B. BACKGROUND

HMM Associates, Inc. (HMM) prepared a traffic study for the proposed Hancock Garage and Office Complex in July, 1988\*. The focus of this study was to establish an updated traffic baseline condition, upon which potential project-related traffic impacts could begin to be assessed. This study was not intended to be a detailed Transportation Access Plan (required by the City under Article 31), but to evaluate the potential impacts of the project on adjacent areas.

The July, 1988 study analyzed traffic operations for 1988 existing conditions and for 1991 conditions with and without the proposed project. Both the 1988 and 1991 analyses assumed no major changes to the existing roadway network.

In addition, since the City and State were at that time (i.e., June-July 1988) in the process of analyzing alternative roadway changes as part of the Central Artery/Third Harbor Tunnel project, an additional analysis was conducted for year 2010 conditions, assuming the implementation of these improvements. Based upon discussions with the Boston Transportation Department (BTD), HMM contacted the City's traffic consultant - Bruce Campbell & Associates - and received the latest year 2010 projections which were based upon completion of the following roadway projects:

- Third Harbor Tunnel/Central Artery Project;
- New westbound off-ramp from the Massachusetts Turnpike to Berkeley Street;
- Tremont Street/Arlington Street one-way loop system; and
- Herald Street Extension continuing to Columbus Avenue or Clarendon Street.

It was indicated by the City's BTD that this alternative, designated as Alternative P-3, was the preferred alternative at the time, as should be used by HMM in our analysis of the Herald Street Extension. Accordingly, HMM used Alternative P-3 to analyze year 2010 operations at the Clarendon Street/Columbus Avenue intersection. The results of the analyses were presented in the July 1988 report, and indicated that, using the Alternative P-3 volumes with the proposed project, the Herald Street Extension, if terminated at Columbus Avenue, would result in design year operations of Level of Service (LOS) C. This LOS was within an acceptable range, and it was concluded that the Herald Street Extension could be terminated at Columbus Avenue, rather than extend further to Clarendon Street.

<sup>\*</sup> Hancock Garage and Office Complex Traffic Study, HMM Associates, Inc., July 22, 1988.

The July 22, 1988 report was submitted to the BTD for their review. A review meeting with the BTD was held on August 10, 1988 to discuss the report's conclusions. A subsequent meeting with the BTD was held on December 21, 1988.

As indicated by Ted Siegel and Chi-Hsin Shao of the BTD at the December 21st Meeting, the City was interested in an additional evaluation of future traffic operations at the Clarendon Street/Columbus Avenue intersection under the following year 2010 conditions:

- 1. Completion of the Herald Street Extension, one-way, eastbound;
- Completion of a westbound off-ramp from the Massachusetts Turnpike to Berkeley Street; and
- Completion of an eastbound on-ramp to the Massachusetts Turnpike from the Herald Street Extension.

The previous July 1988 analyses conducted by HMM included items 1 and 2 above; but did not include item 3, the Massachusetts Turnpike eastbound on-ramp, since the City indicated during the course of our initial study that construction of this ramp was unlikely due to State DPW concerns about geometric constraints.

#### C. SUPPLEMENTAL YEAR 2010 TRAFFIC ANALYSES

As discussed at the December 21, 1988 meeting with the BTD, HMM adjusted the previously used year 2010, Alternative P-3 volumes to include an eastbound on-ramp to the Massachusetts Turnpike. A conservative approach was taken during the reassignment of network volumes so as to reflect a "worst-case" condition, in terms of potential Herald Street Extension volumes.

In addition, as requested by Chi-Hsin Shao of the BTD at the December 21st meeting, an analyses was performed to estimate capacity flows at the Clarendon Street/Columbus Avenue intersection, under the year 2010 conditions with the eastbound on-ramp to the Massachusetts Turnpike.

The traffic volumes associated with the adjustments to the year 2010, Alternative P-3 volumes (with the eastbound on-ramp to the Massachusetts Turnpike) and the subsequent capacity analysis for the conditions, are presented in Attachments 1 and 2. Level of Service analyses for these conditions resulted in the following:

| Location           | Peak Hour      | Year 2010 LOS*   |
|--------------------|----------------|------------------|
| Columbus Avenue at |                |                  |
| Clarendon Street   | PM-Design Hour | D (30.5 sec/veh) |

For comparative purposes, the previous analysis presented in the July 1988 report, which included an assessment of Alternative P-3 without the eastbound Massachusetts Turnpike on-ramp resulted in LOS C (15.8 sec/veh) at this intersection for the PM design hour.

Following the completion of this subsequent analysis, as requested by the BTD, HMM scheduled a meeting with representatives of BCA and Cambridge Systematics to discuss the resultant volumes, in light of work on-going as part of the City's Back Bay Traffic Study. A meeting was scheduled on January 11, 1989 at the BCA offices in Boston. Mr. George Bezkorovani represented BCA, and Mr. Robert LaPorte of Cambridge Systematics, although scheduled to attend, did not attend the meeting, but was contacted by telephone during the meeting.

At this January 11th meeting, the rationale for the reassignment of year 2010, Alternative P-3 volumes, including the eastbound on-ramp to the Massachusetts Turnpike, was discussed. It was generally agreed that the volumes developed by HMM represented a conservative estimate of the PM peak hour design flows. Mr. Bezkorovani presented year 2010 volumes which had been computer-generated by the Central Transportation Planning Staff (CTPS) which included both the Herald Street Extension and an eastbound on-ramp to the Massachusetts Turnpike. The CTPS volumes were developed for both the AM and PM peak hours. These volumes were reviewed and it was decided that it was appropriate to also evaluate the CTPS volumes at the intersection of Clarendon Street and Columbus Avenue for comparative purposes.

Accordingly, HMM performed peak hour Level of Service analyses at the Clarendon Street/Columbus Avenue intersection using the CTPS computer-generated volumes, assuming that the Herald Street Extension would not directly connect to Clarendon Street but will extend to Columbus Ave. (The volumes used for these analyses are presented in Attachment 2.) The analyses indicated that, using the year 2010 peak hour volumes, the intersection of Clarendon

<sup>\*</sup> The Alternative P-3 traffic volumes were adjusted by HMM to include an eastbound on-ramp to the Massachusetts Turnpike. Due to the heavy left turn volume we propose that the Clarendon Street lane assignments be revised to double left and one thru-right turn (L,L, TR). The existing signal heads, lane markings, and signal timing will need to be revised due to the double left turn lane arrangement.

Street and Columbus Avenue will operate at LOS D (38.6 sec/veh) during the AM peak hour, and LOS C (17.9 sec/veh) during the PM peak hour. Again, both of these results assume that the Herald Street Extension will terminate at Columbus Avenue.

A summary of the analyses results are presented in Table 1 for the different year 2010 volumes analyzed. The projected peak hour levels of service for the Columbus Avenue/Clarendon Street intersection will be "D" or better for the Alternative P-3 reassigned volumes, or the CTPS volumes supplied to us for the 2010 design year. This analysis is based upon full site development, construction of Herald Street to Columbus Avenue, construction of the eastbound Mass Pike on-ramp, and revising the lane assignments on Clarendon Street at Columbus Avenue.

In summary, we feel that the Herald Street Extension would be able to terminate at Columbus Avenue without having an adverse affect on traffic operations at Columbus Avenue/Clarendon Street.

#### TABLE 1

# YEAR 2010 LEVEL OF SERVICE AND VOLUME SUMMARY: HERALD STREET EXTENSION WITH EASTBOUND ON-RAMP TO THE MASSACHUSETTS TURNPIKE

|                                  |                                             |                     |                        | •                                      |                                                  |                     |
|----------------------------------|---------------------------------------------|---------------------|------------------------|----------------------------------------|--------------------------------------------------|---------------------|
|                                  | 2010 PM Design<br>Hour Volumes -<br>HMM/BCA |                     | 2010 Al<br>Volum       | M Peak Hour<br>les - CTPS <sup>2</sup> | 2010 PM Peak Hour<br>Volumes - CTPS <sup>2</sup> |                     |
| Location                         | Peak<br>Hour<br>Volume                      | Level of<br>Service | Peak<br>Hour<br>Volume | Level of<br>Service                    | Peak<br>Hour<br>Volume                           | Level of<br>Service |
| Columbus Ave.<br>@ Clarendon St. | 3193                                        | D<br>(30.5 sec/veh) | 2949                   | D<br>(38.6 sec/veh)                    | 2791                                             | C<br>(17.9 sec/veh) |
| Herald St.<br>Extension          | 1001                                        |                     | 1264                   |                                        | 600                                              |                     |
|                                  |                                             |                     |                        |                                        |                                                  |                     |

Source:

- Developed by HMM based upon a reassignment of volumes prepared by BCA.
- 2 Link flows conputer-generated by the Central Transportation Planning Staff. Turning movements along approaches developed by HMM.



#### ATTACHMENT 1\*:

PEAK DESIGN HOUR VOLUMES AND OPERATIONS FOR YEAR 2010, ALTERNATIVE P-3, WITH AN ESTIMATED ON-RAMP TO THE MASSACHUSETTS TURNPIKE

<sup>\*</sup> Source: Volumes developed by HMM based upon a reassignment of year 2010, Alternative P-3 volumes prepared by BCA.



1 C#-L.DL

HANGOCK DEVELOPMENT

: ND1TC B AVE. W IN ST.

PM PEAK HOUR TO NB DOLL - ESDOY

| Ċ | * CONAL |
|---|---------|
|   |         |

| 1    | RAF   | FIC  | & R O e | 4 D W A | 7 0 0 | OICIONE    | N 15  |         |      |
|------|-------|------|---------|---------|-------|------------|-------|---------|------|
| SHOW | HŲ    | ADJ. | FEG LN. | BUSES   |       | COME. PEDS | PED   | BUTTON  | 유유유  |
| (%)  | (=(,) | YZN  | Νm      | (hlb)   | HHE   | (peds/hr)  | 4 114 | SEC     | TYPE |
|      |       |      |         |         |       |            |       |         |      |
| 0    | 3     | Y    | j G     | C.      | 0.89  | 9          | Y     | 12.5    | 3    |
| - 2  | 4.]   | Ý    | 10      | Ö       | 0.87  | 1,)        | 7     | Gr . 12 | - 1  |
| -75  | 1_1   | 5-1  | Ġ.      | 0       | 0,90  | Ó          | 1.1   | 0.0     |      |
|      | • )   | N    | r"y     | (3)     | 0.89  | ()         | Υ     | 1.7.0   |      |
|      |       |      |         |         |       |            |       |         |      |

SEOMETRIUS / VOLUMES

|        |              |                                    |                                             |                                                     | LAN              | E GRUU                                                                         | IF '3                                                                                 |                                                                                       |                                                   |                                                  |
|--------|--------------|------------------------------------|---------------------------------------------|-----------------------------------------------------|------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|
| VOLUME |              |                                    | 1                                           |                                                     |                  | 2                                                                              |                                                                                       |                                                                                       | 3                                                 |                                                  |
| 144    | ECT          | MAN                                | ~ 5462                                      | tāĎ                                                 | m∨m              | LNS                                                                            | baT)                                                                                  | hVM                                                                                   | 12715                                             | MD                                               |
|        |              |                                    |                                             |                                                     |                  |                                                                                |                                                                                       |                                                                                       |                                                   |                                                  |
| 4.75.  | 5.8          | Ï                                  | 1                                           | 11.0                                                | TEC              | 3                                                                              | 12.0                                                                                  |                                                                                       |                                                   |                                                  |
| 965    | O.           | t_T                                | 1.                                          | 14.0                                                | T                | 1.                                                                             | 14.0                                                                                  |                                                                                       |                                                   |                                                  |
| 17     | €            |                                    |                                             |                                                     |                  |                                                                                |                                                                                       |                                                                                       |                                                   |                                                  |
| 270    | 213          | L                                  |                                             | 24.0                                                | TR               | 3.                                                                             | 17.0                                                                                  |                                                                                       |                                                   |                                                  |
|        | 7.75<br>7.65 | 18 RT<br>-675 58<br>-765 0<br>-0 0 | 18 RT hyh<br>-075 58 I<br>-965 0 LT<br>-0 0 | 18 RT hyh LNS<br>-075 58 F 1<br>-965 0 LT 1<br>-0 0 | 18 RT Mem CNS MD | VOLUME 1<br>18 RT MVM .NS WD MVM<br>-075 58 F 1 111.0 TR<br>-765 0 LT 1 14.0 T | VOLUME 1 2<br>18 RT MVM UNS WD MVM ENS<br>475 58 F 1 11.0 TR 1<br>765 0 LT 1 14.0 T L | 18 RT McM JNS MD MVM LNS MD<br>475 58 [ 1 1.0.0 TR 1 12.0<br>765 0 LT 1 14.0 T 1 14.0 | VOLUME 1 2<br>18 RT MeM .NS MD MVM ENS MD MVM<br> | VOLUME 1 2 3 18 RT MOM LNS WD MVM ENS WD MVM LAS |

|       | S 1                              | GNAL   | PHASI  | N G  |      |     |     |
|-------|----------------------------------|--------|--------|------|------|-----|-----|
| FHASE | IST MV                           | SMD WA | SRD MV | PROT | PMSV | G   | 7±8 |
|       | from death west room what filter |        |        |      |      |     |     |
| 1     | T                                | TR     |        | R    |      | 5.4 | 46  |
| 1     | LT                               | Ŧ      |        |      | 1_   | 54  | 45  |
| 2     | L.                               | TR     |        | t.R  |      | +0  | 50  |

171171989

HAMOUCH DEVALORMENT LOMEGL STION : 5 AVE. D

DN ST. PM PEAK HOUR IO NB DDLC CBD 11 r D STONAL

VOLUME ADJUSTMENT

| LANE<br>PUN       | GETTIE<br>VOLUME | HLOW<br>IN E |             | LANE<br>FACT           |                    | ADJ<br>RAT   | FLEW<br>TE | 1 1        |              | UFMS<br>FT   |
|-------------------|------------------|--------------|-------------|------------------------|--------------------|--------------|------------|------------|--------------|--------------|
| T<br>TR           | 542<br>541       |              | 18.4<br>8.3 |                        | 00 384<br>).00 383 |              |            | 0.0        | .io - 6      | .17          |
| 1. T              | ;15<br>685       | 4            | 77<br>87    | 1.40<br>3.40           |                    | 477<br>797   |            | 0.3<br>0.6 |              |              |
| t.<br>TR          | ~63<br>48.5      |              | 57<br>46    | 1.0                    |                    | 857<br>548   |            |            | 70 0<br>00 0 |              |
| IDEAL<br>SAT FLOW |                  |              |             | r I O<br>ULDA<br>BOARD | ISTMENT<br>PARK    | FACTO        |            |            | L.T          | ADJ.<br>FLOW |
| 1800<br>1800      | 1                | 0.97         |             | 1.00                   |                    | i.00<br>i.00 | 0.90       | 1.00       | 1.00         |              |
| 1800<br>1800      | i<br>1           |              |             | 1.00                   |                    |              |            | 1.00       | 0.50         | 1019<br>1444 |

1860 2 1.00 1.00 1.00 1.00 1.00 0.90 1.00 0.92 2981 1860 1 1.00 1.00 1.00 1.00 1.00 0.90 0.93 1.00 1513



IO: LDU

HANCOCK DEVELOPMENT

TION: AVE ∌ N ST.

FM PEAK HOUR 10 NR DOLT. CBD T Y SIGNAL

FARACTLY ABALYSIS

|          |            | CAP        | ACLI              | Y 44 1         | 4 A L 7 | 3 1 5 |        |                                       |                      |
|----------|------------|------------|-------------------|----------------|---------|-------|--------|---------------------------------------|----------------------|
| SH i     | BATE       |            | ADJ SAT<br>FLW RT |                |         | 3 87  | ario c | LN CR<br>APAC: TY                     |                      |
|          | 384<br>383 |            | 1521<br>1302      | 0.252          | N       | Θ,    | .540   | 823<br>795                            | 0.457                |
|          |            | 0<br>0     | 1019<br>1444      | 0.468<br>0.545 |         |       |        | 550<br>750                            |                      |
|          | 857<br>546 |            | 2981<br>1513      |                |         |       |        | 1192<br>505                           |                      |
|          |            | 0.0<br>: 6 | S                 | OM OF C        |         |       |        | RATIOS                                | : 0.906              |
|          |            | L E        | / E L   [         | ) F S          | ERV     | t C E |        | AND THE REST OFFI SELECTION OF THE SE |                      |
| per<br>M | RATIO S    | ATIO LE    | C ist<br>V DELAY  |                |         |       |        | 1.08                                  | AFF AFF<br>DELAY LOS |
| -<br>-   |            | .540 100   | 0 10.8            | 823            | 0.3     | 0.85  | 9.4    | B                                     | ଚ.୫ ୫                |
| ī        |            |            | 0 15.1<br>0 17.7  |                |         |       |        |                                       | 7.1.= 11             |

0.719 0.400 100 19.2 1192 1.5 1.00 20.7 C 0.902 0.400 100 21.4 605 12.0 0.85 28.4 D 23.7 C

INTERSECTION DELAY : 23.5 secs/vot LEVEL OF SERVICE : C





HANCOCK DEVELOPMENT

1 JDL BNW

CTION: B AVE. & ON ST.

PM PEAK HOUR TO B DOLL CROTY D SIGNAL

| T        | RAF   | FIC   | & R O A | A D W A | Y 5                            | DITIAND    | 11 5  |                                       |      |
|----------|-------|-------|---------|---------|--------------------------------|------------|-------|---------------------------------------|------|
| 見の言語     | 47    | ADJ.  | PEG LM. | HUSSE   |                                | LONE. PEOS | PFD   | BUTTON                                | ORR  |
| 1.50     | ( "C) | 17.71 | Phn     | ( ctit) | FHF                            | (Hede thr) | 77714 | SEC                                   | TYPE |
|          |       |       |         |         |                                |            |       |                                       |      |
| ()       | 8     | Y     | 1.0     | • )     | 0.89                           | Ó          | γ     | 12.5                                  | - 3  |
| 5.7      | 4     | Y     | 1.6.    | 0       | $\mapsto$ , $\prec$ $\nearrow$ | (*)        | ¥     | · · · · · · · · · · · · · · · · · · · | 5    |
| $+\xi_I$ | 1.1   | 74    | 1.4     | 9       | 0.90                           | ý.         | N     | () , ()                               | 15   |
| 475      | ()    | 5.1   | 0       | €}      | 0.89                           | Ö          | 'Y    | 37.0                                  | 3    |
|          |       |       |         |         |                                |            |       |                                       |      |

|      |         | G F | i. Pl L | TFI | Ľ S / |     | . U M<br>E GROL |      |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|---------|-----|---------|-----|-------|-----|-----------------|------|---------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | VICLUME |     |         | ł.  |       |     | 2               |      |         | -5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LT   | TH      | RT  | m√m     | LNS | MD    | MVM | LNS             | ฟอ   | 14.2.14 | LNS | ИÐ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 646     |     |         |     | 11.0  |     |                 | 12.0 |         |     | the state of the s |
| 1.35 | 989     | ()  | LT      | 3   | 14.0  | 7   | 1               | 14.0 |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0    | 0       | ()  |         |     |       |     |                 |      |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 802  | 787     | 261 | 1.      | £., | 24.O  | TR  | i               | 12.0 |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| (5) | 7+17     |
|-----|----------|
|     |          |
| 58  | 42       |
| 58  | 4T:      |
| 3.6 | 54       |
|     | 58<br>58 |

HANCOCK DEVELOPMENT LODLERW

TION : AVE. 0 N ST.

SIGNAL

FM PEAK HOUR 10 B DDLL CBD 2 Y

|                   |                 | $\vee$ C L   | D M E        | F1 (1)       | J U 5 | THE          | 74 T  |            |                |                  |
|-------------------|-----------------|--------------|--------------|--------------|-------|--------------|-------|------------|----------------|------------------|
|                   | GMOUF<br>VOLUME | FLOW<br>IN G | mour         |              | OF    | ADJ<br>Rej   |       | FROF       |                |                  |
|                   | 362<br>362      | 4            | 10 7<br>20 7 | 1.0          | r()   | 407          | 7     |            | io o.          | 99               |
| LT<br>T           | 500<br>524      | 7<br>7       | 175<br>17    | j., c        |       | 57°          |       | 0.7<br>0.£ |                |                  |
| r<br>FR           | 802<br>543      |              | 01<br>010    | jC<br>1C     |       | 90i<br>610   |       |            | 80 0.<br>90 0. |                  |
|                   |                 | 5 A T        | U R A        | т г э        | N 1-  | . L O M      | <br>J |            | · — — —        |                  |
| IDEAL<br>BAT FLOW | # DF<br>LANES   | WIDTH        | H.V.         | GRADE        |       | FACTO<br>BUS |       | 81         |                | ADJ.<br>FLOW<br> |
| 1800<br>1800      | i.              |              | 0.97         | 1.00         | 1.00  | 1.00         |       | 1.00       |                | 1524<br>1304     |
| 1900<br>1300      | 1               | 1.07<br>1.07 |              | 1.00         |       |              |       |            | 9.63<br>1.00   | 1070<br>1444     |
| 1800<br>1800      | 2               |              |              | 1.00<br>1.00 |       |              |       |            | 7.92<br>1.00   |                  |

GREEN TH GR 970

HMM ASSOCIATES

HANCOCK DEVELORMENT

1.00t (mbi

STION : B AVE. @ ON 15T.

) SIGNAL

PM PEAK HOUR to B to L ERD 2 Y

GE ADJ FLOW PMSV ADD SAT FLOW

| 1. | 49 | 15 | r-1 | ١. | Ţ |  | Y | 64 | F1 | (-·) | ι | Y | - ; ; | l. | 10 |
|----|----|----|-----|----|---|--|---|----|----|------|---|---|-------|----|----|
|----|----|----|-----|----|---|--|---|----|----|------|---|---|-------|----|----|

| 2M          | RATE           |                       | FLUM     | DU SAT       |                    | CRIT    | n 84   |              | FRACITY      |              |    |
|-------------|----------------|-----------------------|----------|--------------|--------------------|---------|--------|--------------|--------------|--------------|----|
| ·           | 407<br>407     |                       | O        | 1524<br>1504 |                    | L)<br>N | O.     | .580<br>.580 | 884<br>75    | 0.460        |    |
| Ī           | 575<br>717     |                       |          |              | 0.537<br>0.497     |         |        |              | 621<br>838   |              |    |
| R           | 701<br>510     |                       |          |              | 0,302<br>0,406     |         |        |              | 1073<br>541  |              |    |
|             | H : :          |                       |          |              | UM OF C<br>NIERSEC |         |        |              | KAITUS       | : 0.94       | ¥3 |
|             |                | }                     | . E 7    | E L C        | ) F 5              | ERV     | ILE    |              |              |              |    |
| GR<br>2M    | RATIO          | GREEN                 | CY(.     |              | LN GR<br>CAP       |         | PF<br> |              | LN GR<br>LOS | APP<br>DELAY |    |
| <br>:<br>:R | 0,450          | 0.580<br>0.580        | 100      | 9.1          | 884<br>756         | 0.3     | 0.85   | 8.0          |              |              | В  |
| _7          | 0.926<br>0.85a | 0.580<br>0.580        |          |              | 621<br>83 <b>8</b> |         |        |              |              | 20.1         | G  |
|             |                | N. P. M. Sand Service | 40 C C C |              |                    |         |        |              |              |              |    |

INTERSECTION DELAY: 30.5 secs/veh LEVEL OF SERVICE : D

## ATTACHMENT 2\*:

# CAPACITY FLOWS AT THE CLARENDON STREET/ COLUMBUS AVENUE INTERSECTION

<sup>\*</sup> Source: HMM Associates.





HANCOCK DEVELOPMENT

LONLDLM

TION : HVE. 0 M ST.

PM PEAK HOUR 10 NB LL MAX CROTY

| (2) | i. | U. | 14 | į. | ą, |  |
|-----|----|----|----|----|----|--|
|     |    |    |    |    |    |  |

| T    | RAF  | FIC  | & ROA   | e w d    | Y 0.0 | OITION     | N S  |        |      |
|------|------|------|---------|----------|-------|------------|------|--------|------|
| RAOE | HV   | ADJ. | PKG LN. | 5.US.F 3 |       | CONF. FEDS | PED  | BUITON | ARR  |
| (%)  | (12) | ANA  | P4.70   | (14b)    | F-14- | (oeds/hr)  | 1714 | SEC    | TYEE |
|      |      |      |         |          |       |            |      |        |      |
| -0   | Ü    | 7    | 10      | (_1      | 0.89  | 0          | 7    | 13     |      |
| (,)  | 4    | Ϋ́   | 10      | . )      | 0.87  | ()         | 7    | 7.3    | ~ 7  |
| -0   | O    | r.i  | Ō       | 0        | 0.90  | Ü          | r 1  | 0.0    |      |
| .1   | : ,  | 14   | (")     | Ö.       | 0.59  | -5>        | Y    | 17.0   | 7    |
|      |      |      |         |          |       |            |      |        |      |

DECMFIRITS / VOLUMES

|              |         |     |     |      |      | LAN | E GROU | FE   |         |     |             |
|--------------|---------|-----|-----|------|------|-----|--------|------|---------|-----|-------------|
|              | LE LUME |     |     | 1    |      |     | - 2    |      |         | 33  |             |
| L. T         | 714     | RT  | hVM | 1115 | 백급   | MVM | LNS    | MD   | 1417141 | LNS | $\Box \Box$ |
|              |         |     |     |      |      |     |        |      |         |     |             |
| $\epsilon_I$ | 955     | 58  | T   | 1    | 11.0 | 750 | 1      | 12.0 |         |     |             |
| 135          | 965     | ()  | LT  | 1    | 14.0 | Γ   | 1      | 14.0 |         |     |             |
| 0            | 0       | 0   |     |      |      |     |        |      |         |     |             |
| 393          | 273     | 213 | L_  | 7    | 24.0 | TR  | i.     | 12.0 |         |     |             |
|              |         |     |     |      |      |     |        |      |         |     |             |

|      | 5 | 3 | G | M | (-) | L_ | <u> -</u> ' | H | A | 5 | I. | N | $\Theta$ |  |
|------|---|---|---|---|-----|----|-------------|---|---|---|----|---|----------|--|
| <br> |   |   | - |   |     |    | _           |   |   |   |    |   |          |  |

|       | 5 3    | SNAL   | PHASI  | NG       |      |           |     |
|-------|--------|--------|--------|----------|------|-----------|-----|
| PHABE | 1ST MV | ZND MV | ZRD MV | PROT     | PMSV | ß         | Y+R |
|       |        |        |        |          |      | 1000 1000 |     |
| -5    | Τ      | TE     |        | R        |      | 4.2       | 58  |
| 1     | L.T    | Ī      |        | <u>L</u> |      | T-        | 75  |
| - 13  | LT     | Т      |        |          | L.   | 4.2       | 58  |
| - 55  | Ł      | TR     |        | LR       |      | 4 7       | 57  |
|       |        |        |        |          |      |           |     |

FORLOLM

HANCOCK DEVELOPMENT

Officials B AVE. & Onl GT.

PM PEAK HOUR - 10 NB LL MAX - EBD 2 Y D SIGNAL

|                  |                 | 7 D L    | UME        | A D   | J U 3        | T in E        | rl T | nd selfer bit is some in a second on |              |              |
|------------------|-----------------|----------|------------|-------|--------------|---------------|------|--------------------------------------|--------------|--------------|
| LAME<br>NVM      | GROUP<br>VOLUME | £ p4 = 1 |            |       | ropa<br>Topa | ADJ<br>RA     |      | PROF<br>L                            |              |              |
| F<br>TF:         | 500             | 15       | 56-2       | 1.5   | ιŌ           | 555<br>50°    | 2    | O,                                   | 50 c         | .00          |
| LT<br>T          | 475<br>525      |          | 545<br>128 | 1     |              | 543<br>718    |      | 1) 3<br>3) 6                         |              | 0.00<br>0.00 |
|                  | : 593<br>436    |          | e등<br>(46  | 1.0   |              | ) 5.65<br>548 |      |                                      | 10 Q<br>00 Q |              |
|                  | w               | SAT      | U R A      | 0 1 T | N F          | L 0 4         | )    |                                      |              |              |
| IDEAL<br>SAT FLO | LAMES           | WIOTH    | H.V.       |       | PARK         | BUS           | AREA | RT                                   | LT           |              |
| 1800<br>1800     | t 3             | 0.97     | 0.97       | 1.00  |              | 1.00          |      | 1.00                                 | 1.00         |              |
| 1800<br>1800     | 1.<br>i.        |          |            | 1.00  |              |               |      |                                      |              |              |
| 1800<br>1800     | 2               |          |            | 1.00  |              |               |      |                                      |              |              |



HANCOCK DEVELOPMENT

1000120003

: 4103 T AVE. D N 5T.

G HEMAL

PM PEAK HOUR 10 NB FL MAX CBD 2 Y

| 0 | ,-1 | P | $\hat{\Omega}$ | C | Ī | 77 | Y | Ã | M | A | 1. | Y | 8 | Ţ | 1.3 |
|---|-----|---|----------------|---|---|----|---|---|---|---|----|---|---|---|-----|

| GR<br>M          |                      |                            | ADJ EAT<br>FLW RT    | FLOW<br>RATIO     | CRIT                  |                | LN GR<br>CAPACITY |                                |
|------------------|----------------------|----------------------------|----------------------|-------------------|-----------------------|----------------|-------------------|--------------------------------|
| 400              |                      |                            | 1524                 | 0.389<br>0.389    | L1<br>L1              | 0.420          | 540<br>556        |                                |
|                  | 546<br>718           | )<br>0                     | :070<br>1444         |                   | Ŋ                     | 0.470<br>5.470 | 503<br>579        |                                |
|                  |                      | ψ<br>•)                    |                      |                   | Y<br>N                |                |                   |                                |
|                  | H : 100<br>PER CYCLE |                            |                      |                   | RITICAL L<br>TION V/C |                | UN RATIOS         | : 1.022                        |
| BF(              | LZC GE               | L. E                       |                      | F S               | ERVIC                 | E              |                   |                                |
|                  | RATIO RA             | FIO LE                     |                      | CAP               | DELAY P               | F DELA         | AY LOS            |                                |
|                  |                      | 420 10                     | N DELAY              | CAP<br><br>640    | DELAY P<br>           |                | ty LOS            |                                |
| M<br><br>F:<br>T | 0.878 0.             | 420 10<br>420 10<br>420 10 | DELAY 00 20.3 0 20.5 | CAP<br>540<br>550 | DELAY P<br>           | F DELA<br>     | ty LOS            | APP APP<br>OELAY LOC<br>17.9 0 |

INTERSECTION DELAY : 55.3 secs/veh LEVEL OF SERVICE : E



ATTACHMENT 3\*:

YEAR 2010 VOLUMES FROM CTPS

<sup>\*</sup> Source: Central Transportation Planning Staff.





() 601 to 506 must be a 'cs;

(a) 17 or p estimates

(b) 601 to 506 must be a 'cs;

(a) 17 or p estimates

m





1004811

HANCUC: CEVELOFMENT

ERSECTION : JMBUS AVE. D

RENDON ST.

|                   | Y AM<br>ED SIG   |                           | HOUR            | 10               | H ( )      | . HER                    | CB         | PΥ            |       |                        |                                        |                                   |
|-------------------|------------------|---------------------------|-----------------|------------------|------------|--------------------------|------------|---------------|-------|------------------------|----------------------------------------|-----------------------------------|
| 0                 | GRADE            | HV                        | ADJ.<br>Y/N     | PK6 I            | N.         | O W A Y<br>RUSES<br>UND: |            | CONF.         | FEDS  | PED :                  |                                        |                                   |
| e on an on e      |                  | 3<br> -<br> -<br> -<br> - | r)<br>Y         | 11<br>10<br>0    |            | 1)                       |            | J             | )     | Y<br>14                |                                        | 3 5 8 4                           |
| ·F-               | L_T              |                           | FVT             | nvn              | t<br>1.198 | 1 C S                    | LAI<br>MVM | NE GROU.<br>2 | lPS . | <br>4VM                | j<br>1 LNS                             | JD                                |
| 16:<br>16:<br>16: | 0<br>118<br>0    | (403<br>501<br>0          | O<br>O          | t<br>i           | 1          | 11.0<br>14.0             | TR         | 3<br>1.       |       |                        |                                        | e manie didde tradit eman verse e |
| 5                 | 843              | 50                        |                 |                  |            | 25.0<br>                 |            |               | 12.0  | nen san een naa aan aa | en ren - rans rans ann man man mas san |                                   |
| )P<br>            | PHA              |                           |                 | 2ME              |            | JRD                      |            |               | PMSV  |                        | 5                                      | Y+R                               |
| 18<br>18<br>18    | 1<br>1<br>2<br>3 |                           | T<br>L.T<br>L.T | 7<br>7<br>7<br>7 |            |                          |            | R<br>L<br>LR  | L.    |                        | 54<br>54<br>5<br>31                    | 46<br>46<br>95<br>69              |

171271989

HMM 4550C[ATES

VOLUME ADJUSTMENT

RSECTION : MBUS AVE. D

ENDON ST.

DAY AM PEAK HOUR 10 BIL HER CBD / Y ATED SIGNAL

|              |                                               |                                                                                    |                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                    | RAT                                                                                                                                                          | Ę                                                                                                                                                                                | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|--------------|-----------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|              |                                               |                                                                                    |                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                    | 354                                                                                                                                                          |                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ö O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| LT<br>T      | 118<br>501                                    |                                                                                    |                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|              |                                               |                                                                                    |                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|              |                                               | And the state state state and                                                      |                                                                                                                                   | ADJU                                                                                                                                                                      | STMENT                                                                                                                                                                             | FACTO                                                                                                                                                        | F(5                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ADJ.<br>FLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|              |                                               |                                                                                    |                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 1800<br>1800 |                                               |                                                                                    |                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1524<br>1330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|              |                                               |                                                                                    |                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 306<br>1444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|              | HVM T IR LT T  L TR  IDEAL SAT FLOW 1800 1800 | T 760 1R 640  LT 118 T 501  L. 843 TR 67  TDEAL # DF SAT FLOW LANES  1800 1 1800 1 | #VM VOLUME IN 5 T 760 8 IR 660 7 LT 118 1 T 501 5  L 843 9 TR 67  S A T  TDEAL # OF SAT FLOW LANES WIDTH  1800 1 0.97 1800 1 1.00 | HVM VOLUME IN SECUE  T 760 854 IR 660 742  LT 118 156 T 501 576  L 843 947 TR 67 75  S A T U R A  IDEAL # OF SAT FLOW LANES WIDTH H.V.  1800 1 0.97 0.97 1800 1 1.00 0.97 | HVM VOLUME IN SROUP FACT T 760 854 1.0 1R 660 742 1.0 LT 118 1.56 1.0 T 501 576 1.0  1. 843 947 1.0 TR 67 75 1.0  S A T U R A T I 0  TDEAL # DF —————————————————————————————————— | HVM VOLUME IN SROUP FACTOR  T 760 854 1.00 1R 660 742 1.00  LT 118 156 1.00 T 501 576 1.00  1. 843 947 1.00 TR 67 75 1.00  S A T U R A T I O N F  TDEAL # OF | HVM VOLUME IN SROUP FACTOR RAT  T 760 854 1.00 854 1R 660 742 1.00 742  LT 118 156 1.00 138 T 501 576 1.00 576  L 843 947 1.00 947 TR 67 75 1.00 75  SATURATION FLOW  TOPAL # OF | HVM         VOLUME         IN SROUP         FACTOR         RATE           T         760         854         1.00         854           1R         660         742         1.00         742           LT         118         156         1.00         135           T         501         576         1.00         576           L         843         947         1.00         947           TR         67         75         1.00         75    SATURATION FULLOW  AREA  1001  1002  1003  1004  1005  1006  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1 | HVM         VOLUME         IN SROUP         FACTOR         RATE         L1           T         760         854         1.00         854         0.0           1R         660         742         1.00         742         0.0           LT         118         156         1.00         135         1.0           T         501         576         1.00         576         0.0           L         843         947         1.00         947         1.0           TR         67         75         1.00         75         0.0           SATURATION FULL         FULL         W           TOBAL # OF SATURATION FULL         SATURATION FULL         FULL         W           TOBAL # OF SATURATION FULL         SATURATION FULL         FULL         W           TOBAL # OF SATURATION FULL         SATURATION FULL         FULL         W           TOBAL # OF SATURATION FULL         SATURATION FULL         FULL         W           TOBAL # OF SATURATION FULL         SATURATION FULL | HVM         VOLUME         IN SROUP         FACTOR         RATE         L.1         FC           T         760         854         1.00         854         0.00         0.0           1R         660         742         1.00         742         0.00         0.0           LT         118         156         1.00         135         1.00         0.0           T         501         576         1.00         576         0.00         0.0           TR         67         75         1.00         75         0.00         0.2           SATURATION FILOW           TOWN FILOW <td colspan<="" td=""></td> |  |

L 1800 0 1.02 1.00 1.00 1.00 0.90 1.00 0.90 3040 TR 1800 1 1.00 1.00 1.00 1.00 1.00 0.90 0.96 1.00 1559

HANCOCK DEVELOPMENT

ERSECTION : MRUS AVE. a KENDON ST.

ATED SIGNAL

DAY AM PEAK HOUR 10 B LL HER CBD 7 7

CAPACITY ANALYSIS

| EM SR<br>Muh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | I PMSV<br>.T FLUM      |         | FLOW<br>RATTO  | CRIT         | P RA  | ATIO C         | IN CR<br>APACITY    |                    |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|---------|----------------|--------------|-------|----------------|---------------------|--------------------|----|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :354               | ()<br>()               | 1504    | 0,540<br>0,558 | Υ<br>N       | Ο.    |                | 823                 | 1,036<br>1,036     | 3  |
| i. r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | ()                     |         |                |              |       |                | (8)<br>860          | O _ 755  <br>O _ 6 |    |
| t<br>TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 947<br>75          | 6<br>6                 |         |                |              |       |                | 942<br>4 <b>8</b> 3 |                    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 00.0<br>E: 9           |         |                |              |       |                | RATIOS              | : 0.87             | 72 |
| the side of the side of side of the side o |                    | L E                    | VEL C   | ) F S          | ERV          | 1 C E |                |                     |                    |    |
| LN GR<br>MVM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V/C S<br>RATIO F   | RATIO LE               | V DELAY | CAP            |              | P.F   | LN GR<br>DELAY |                     | APP<br>DELAY       |    |
| T<br>TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.038 (            | 0.540 100              | 0 18.3  | 823<br>718     | 34.5<br>34.8 | 0.85  | 44.9           |                     | 44.7               | -7 |
| LT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.751 (<br>0.676 ( |                        |         |                |              |       |                | C<br>B              | 11 °               | E  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 0.310 100<br>0.310 100 |         |                |              |       |                |                     | 47.5               | Æ  |

INTERSECTION DELAY . 38.6 secs/veh LEVEL OF SERVICE : D





3) 893-501-43: 729
349 + 265 = 617 oc.

21 20 + 265 - 578 - 47 1956
OK. +0 RULL.

m







FURNICE.

## HANCOCK DEVELOPMENT

ERSECTION : IMBUS AVE. 0 RENDOM ST.

| (C)                                    | Y PM<br>ED SIG   | PEAK | HOUR               | 10          | R LL | HER                  | CRI         | DPY                     |              |       |               |                          |
|----------------------------------------|------------------|------|--------------------|-------------|------|----------------------|-------------|-------------------------|--------------|-------|---------------|--------------------------|
|                                        | GRADE            |      | ADJ.<br>Yyn        | PYS L       | N. F | Nbo (F               |             | N D I<br>CONF.<br>Beds/ | PEOS         | FED B |               | 4R9<br>771               |
| - m m m m m                            | Ö                | 8    | Y<br>Y             | 3 (3)       |      | 0 0<br>0 0<br>0 0    | .89         | 0<br>0<br>0<br>0        |              |       |               |                          |
| ·P                                     | 1. 1             |      | RT                 |             | 1    | CS /                 | A.J<br>MVH: | NE GROL<br>2<br>LNS     | ₽FS<br>₩0    | nVM   | I.NS          | μŪ                       |
| 5B<br>4B<br>4B                         | 51<br>0          |      | 268<br>0<br>0      | LT          | 1    | 11.0<br>14.0<br>25.0 | TR<br>T     | 1                       | 12.0<br>14.0 |       |               |                          |
|                                        | PHA              |      | IST MV             | IMD         | MV   | F H A<br>3RD r       | 10          | PROT                    | PMSV         |       | ià.           | Y+h                      |
| 18<br>18<br>18<br>18<br>18<br>18<br>18 | 1<br>1<br>2<br>3 |      | T<br>LT<br>LT<br>L | T<br>T<br>T |      |                      |             | R<br>L<br>LR            | l_           |       | 54<br>54<br>5 | 46.<br>46.<br>95.<br>59. |

108Fil

HMM ASSOCIATES

ERSECTION : IMBLIS AVE. 5

Ξ 1

RENDON ST.

JATED SIGNAL

DAY PM PEAK HOUR 10 B LL HER CBD 7 Y

VOLUME ADJUSTMENT

|              |                                                   |                                                                                                          | -                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |
|--------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| MVM          | VOLUME                                            | IN G                                                                                                     | ROUP                                                                                                                                         | FACT                                                                                                                                                                                  | OR                                                                                                                                                                                                                                                     | RAT                                                                                                                                                  | F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT                                                                  |
| T<br>FR      | 305<br>304                                        | 79                                                                                                       | 45                                                                                                                                           | 1.0                                                                                                                                                                                   | e                                                                                                                                                                                                                                                      | 745                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1_}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br>0.00<br>0.88                                                    |
| L.T<br>T     | 605<br>606                                        |                                                                                                          |                                                                                                                                              |                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00<br>0.00                                                        |
| I<br>TFC     | 557<br>413                                        |                                                                                                          |                                                                                                                                              |                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |
|              |                                                   |                                                                                                          |                                                                                                                                              | ADJU                                                                                                                                                                                  | STMENT<br>PARK                                                                                                                                                                                                                                         | FACTO<br>BUS                                                                                                                                         | RS<br>AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i_T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FLO                                                                 |
| 1800<br>1800 | 1<br>i                                            | 0,97<br>1.00                                                                                             |                                                                                                                                              |                                                                                                                                                                                       | 1.00                                                                                                                                                                                                                                                   | E.OO                                                                                                                                                 | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 152                                                               |
| 1800<br>1800 | 1                                                 |                                                                                                          |                                                                                                                                              |                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |
| 1800<br>1800 |                                                   |                                                                                                          |                                                                                                                                              |                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |
|              | MVM T FR LT T L TR  IDEAL SAT FLCV 1800 1800 1800 | #VM VOLUME T 305 FR 504 LT 605 T 605 T 605  L 557 TR 413  IDEAL # 0F SAT FLOW LAMES 1800 1 1800 1 1800 1 | MVM VOLUME IN 6 T 305 3 FR 304 3 LT 606 6 T 606 6 L 557 6 TR 413 4  SAT  IDEAL # 0F AT FLOW LANES WIDTH  1800 1 0.97 1800 1 1.07 1800 1 1.07 | #VM VOLUME IN GROUP T JOS 34E FR JO4 542  LT 605 697  T 606 697  L 557 626 TR 413 464  SATURA  IDEAL # 0F SATURA  IBO0 1 0.97 0.97 1800 1 1.07 0.98 1800 1 1.07 0.98 1800 1 1.07 0.98 | #VM VOLUME IN GROUP FACT T 305 34% 1.0 FR 504 542 1.0  LT 606 597 1.0 T 606 697 1.0  L 557 626 1.0 TR 413 464 1.0  SATURATIO  BEAL # OF HORSE WIDTH H.V. GRADE 1800 1 0.97 0.97 1.00 1800 1 1.07 0.98 1.00 1800 1 1.07 0.98 1.00 1800 1 1.07 0.98 1.00 | #VM VOLUME IN GROUP FACTOR  T 305 34% 1.00 FR 504 542 1.00  LT 606 697 1.00 T 606 697 1.00  L 557 626 1.00 TR 413 464 1.00  SATURATION F  IDEAL # OF | MVM         VOLUME         IN GROUP         FACTOR         RAT           T         JOS         JAT         1.00         JAT           FR         JO4         JAT         1.00         JAT           L         LT         605         697         1.00         897           T         406         697         1.00         597           L         EST         626         1.00         454           TR         413         464         1.00         454           SATURATION FUSA         BUS           SATURATION FUSA         BUS           JUSTMENT FACTO           BATURATION FUSA         BUS           JUSTMENT FACTO           BATURATION FUSA         BUS           JUSTMENT FACTO           1800         1         0.97         0.97         1.00         1.00         1.00           1800         1         1.07         0.98         1.00         1.00         1.00           1800         1         1.07         0.98         1.00         0.98         1.00           1800         1         1.07         0.98         1.00         0.98 </td <td>MVM         VOLUME         IN GROUP         FACTOR         RATE           T         305         34%         1.00         345           FR         304         342         1.00         597           LT         606         697         1.00         897           T         506         697         1.00         597           L         257         526         1.00         454           TR         413         464         1.00         454           SAT FLOW LANES WIDTH H.V. GRADE PARK BUS AREA           1800         1         0.97         0.97         1.00         1.00         0.90           1800         1         0.97         0.97         1.00         1.00         0.90           1800         1         1.07         0.98         1.00         0.90         1.00         0.90           1800         1         1.07         0.98         1.00         0.90         1.00         0.90           1800         2         1.02         1.00         1.00         1.00         0.90</td> <td>MVM         VOLUME         IN GROUP         FACTOR         RATE         LT           T         705         34%         1.00         743         0.0           FR         704         342         1.00         342         0.0           LT         605         697         1.00         897         0.0           T         506         697         1.00         597         0.0           L         257         626         1.00         626         3.0           TR         413         404         1.00         454         0.0           SATURATION FLOW         FLOW         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80<td>TOS 34% 1.00 745 0.00 7 7 7 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00</td></td> | MVM         VOLUME         IN GROUP         FACTOR         RATE           T         305         34%         1.00         345           FR         304         342         1.00         597           LT         606         697         1.00         897           T         506         697         1.00         597           L         257         526         1.00         454           TR         413         464         1.00         454           SAT FLOW LANES WIDTH H.V. GRADE PARK BUS AREA           1800         1         0.97         0.97         1.00         1.00         0.90           1800         1         0.97         0.97         1.00         1.00         0.90           1800         1         1.07         0.98         1.00         0.90         1.00         0.90           1800         1         1.07         0.98         1.00         0.90         1.00         0.90           1800         2         1.02         1.00         1.00         1.00         0.90 | MVM         VOLUME         IN GROUP         FACTOR         RATE         LT           T         705         34%         1.00         743         0.0           FR         704         342         1.00         342         0.0           LT         605         697         1.00         897         0.0           T         506         697         1.00         597         0.0           L         257         626         1.00         626         3.0           TR         413         404         1.00         454         0.0           SATURATION FLOW         FLOW         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80 <td>TOS 34% 1.00 745 0.00 7 7 7 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00</td> | TOS 34% 1.00 745 0.00 7 7 7 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 |



HANCOCK DEVELOPMENT

RSECTION:

JMBUS AVE. 7 RENDON ST.

DAY PM PEAK HOUR TO BILL HER CBD 7 Y

JATED SIGNAL

CAPACITY ANALYSIS

| HVH                                          |                                           | J PMSV<br>LT FLUM     |         |                |       | 7 B  | ATIO C       | IN BR<br>APACIT: | RATIO          |
|----------------------------------------------|-------------------------------------------|-----------------------|---------|----------------|-------|------|--------------|------------------|----------------|
| T<br>TFP                                     | 545<br>542                                | Ü                     | 1524    | 0.725<br>0.295 | 1.1   | O    | .540         | 825<br>A 10      |                |
| \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \      | 697<br>897                                | ©<br>©                |         |                |       |      |              | 747<br>851       |                |
| L                                            |                                           | 6<br>6                |         |                |       |      | .016<br>.016 |                  | ).685<br>0.937 |
|                                              |                                           | 00.0<br>E: 7          |         |                |       |      |              | RATIOS           | : 0.774        |
| the strate would define the set of the least | water 4 on 10 is to them about their some | t E v                 | · E L f | ) F S          | ERV   | ICE  |              |                  |                |
| MVM                                          | VZC I<br>FATIO F                          | RATIO LEN             |         | CAP            | DELAY | FF   | DELAY        | LOS              |                |
| T<br>TE                                      | 0.417 0<br>0.546 0                        | 0.540 100             |         |                | 0.2   | 0.85 | 9.0<br>10.4  | В                | 9,2 E          |
| <u>L</u> T                                   |                                           | .590 100<br>0,590 100 |         |                |       |      | 11.5<br>14.0 |                  | 12.8 %         |
| i.                                           | 0.665 0                                   | ),310 100             | ) /2.8  | 942            | 1.3   | 3,00 | 24.1         | Ž.               |                |

TR 0.937 0.310 100 25.5 495 18.5 0.85 37.4 0 39.7 0

INTERSECTION DELAY : 17.9 secs/web-LEVEL OF SERVICE : C



