UNIVERSIDADE FEDERAL DO AMAZONAS - UFAM FACULDADE DE TECNOLOGIA - FT LABORATÓRIO DE FÍSICA II E

Força de Lorentz - Campo Magnético

UNIVERSIDADE FEDERAL DO AMAZONAS - UFAM FACULDADE DE TECNOLOGIA - FT LABORATÓRIO DE FÍSICA II E

Força de Lorentz - Campo Magnético

Relatório solicitado pela Professora Roberta Lorena como nota referente a disciplina de Laboratório de Física II E para obtenção da nota parcial.

JÚLIO MELO CAMPOS LUCAS SILVA DE OLIVEIRA

Manaus - AM 2023

Sumário

1. Objetivo	4
1.1. Objetivo Geral	4
1.2. Objetivos Específicos	4
2. Procedimento Experimental	5
2.1. Materiais Necessários	5
2.2. Experimento	5
3. Tratamento de Dados	5
3.1. Teoria e Resultados	6
3.2. Gráficos e Cálculos	6
4. Conclusão	7
5. Referências	9

1. Objetivo

1.1. Objetivo Geral

Estudar o funcionamento da balança de corrente, determinando os parâmetros que influenciam na força sobre o braço na balança. Aplicar os conceitos envolvidos na Força de Lorentz para calcular a indução magnética.

1.2. Objetivos Específicos

- Construir tabelas com os valores de força magnética e corrente elétrica para cada um das referentes massas encontradas.
- ullet Fazer um gráfico de $F_m imes i$ para cada uma das referentes massas encontradas, utilizando por meio da igualdade da Força Peso.
- Determinar o módulo do campo magnético da espira a partir do ângulo do gráfico, usando sua inclinação.

2. Procedimento Experimental

2.1. Materiais Necessários

- 1 balança de corrente
- 1 fonte CC variável
- 1 teslâmetro digital
- 1 fonte de CC variável
- 1 imã formato U
- fios de conexão
- 1 calço dos pólos

2.2. Montagem de experimento

- 1 Colocamos o calço dos pólos sobre o ímã mantendo a distância de 1 cm entre cada pólo;
- 2 A seguir, instalamos a placa no braço da balança, a fim de conectar a placa com o fio junto das fitas condutoras flexíveis, ligando a um suporte e a uma fonte de tensão;
- 3 Com o sistema montado, aumentamos a corrente na espira (fio), observando que a mesma movimenta-se, assim variando de 0,5 A até 3,5 A, medindo a massa apresentada a cada 0,5 A de intervalo.

3. Tratamento de Dados

3.1. Teoria e Resultados

Força de Lorentz

É o resultado da superposição da força elétrica proveniente de um campo elétrico **E**, e devido a um campo magnético **B** que atua sobre uma partícula carregada no espaço livremente com determinada velocidade **v**. Sendo essa força dada pela fórmula:

$$F = q(E + v \cdot B)$$

A contribuição a F devida à força elétrica F_m é paralela ao campo elétrico E, resultando em aceleração da partícula carregada na mesma direção e sentido do campo; uma partícula com carga negativa sofrerá aceleração no sentido contrário ao do campo.

Tabela 1 - Valores de medida (corrente e massa)

i (A)	$m\left(kg ight)$	$F_{m}(N)$
0,50	0,0393	0,01965
1,00	0,0394	0,0197
1,50	0,0398	0,0199
2,00	0,0402	0,0201
2,50	0,0406	0,0203
3,00	0,0411	0,02055
3,50	0,0416	0,0208

3.2. Gráficos e Cálculos

Gráfico 1 -
$$F_m \times i$$

Gráfico 1 - F x i

Cálculo da Força Magnética (F_m) e Campo Magnético (B)

Devido ao equilíbrio de forças, o somatório das forças é nulo, assim, temos a igualdade entre a Força Magnética e Peso, logo assim, podemos mensurá-la.

Com gravidade igual a 9,8 m/s², podemos calcular a força magnética dada às massas em diferentes pontos.

$$F_{m1} = m_1 \cdot g \Rightarrow F_{m1} = 0,0393 \cdot 9,8 \Rightarrow F_{m1} = 0,01965 N$$

 $F_{m2} = m_2 \cdot g \Rightarrow F_{m2} = 0,0394 \cdot 9,8 \Rightarrow F_{m2} = 0,0197 N$

$$\begin{split} F_{m3} &= m_3 \cdot g \Rightarrow F_{m3} = 0,0398 \cdot 9,8 \Rightarrow F_{m3} = 0,0199 \, N \\ F_{m4} &= m_4 \cdot g \Rightarrow F_{m4} = 0,0402 \cdot 9,8 \Rightarrow F_{m4} = 0,0201 \, N \\ F_{m5} &= m_5 \cdot g \Rightarrow F_{m5} = 0,0406 \cdot 9,8 \Rightarrow F_{m5} = 0,0203 \, N \\ F_{m6} &= m_6 \cdot g \Rightarrow F_{m6} = 0,0411 \cdot 9,8 \Rightarrow F_{m6} = 0,02055 \, N \\ F_{m7} &= m_7 \cdot g \Rightarrow F_{m7} = 0,0416 \cdot 9,8 \Rightarrow F_{m7} = 0,0208 \, N \end{split}$$

Com a força magnética no ponto máximo e no ponto mínimo do gráfico podemos, encontrar a tangente do ângulo θ que será numericamente igual ao campo magnético (B).

$$Tg \theta = \frac{\Delta F_m}{\Delta i}$$
 $Tg \theta = \frac{0,0208 - 0,01965}{3.50 - 0.5}$
 $Tg \theta = \frac{0,00115}{3,00}$

Campo Magnético (B) = 0,000383 T

4. Conclusão

O experimento tinha como objetivo estudar o funcionamento da Força de Lorentz a partir do princípio de indução magnética estabelecido entre a espira e a placa. Notamos uma relação de grandezas diretamente proporcionais, quanto mais aumentamos a corrente, se torna necessário o aumento da massa para atingir o equilíbrio. Tendo assim a igualdade entre a Força Magnética e a Força Peso do objeto, se tornando trivial o cálculo, a partir das massas encontradas e gravidade da Terra. Com o campo magnético de valor 0,000383 T, observamos também que, ao ser aplicado cada vez mais a corrente, tem uma tendência a ser puxada para baixo. Assim, podemos mensurar a desmonstração da Força de Lorentz que, dados os resultados, tem uma variação mínima em cada ponto de corrente diferente.

5. Referências

- GUSMÃO, Marta; SEIXAS, Simara; GUERREIRO, Haroldo; BRITO, Marcelo; FREITAS, Marcílio de; MACHADO, Waltair; JUNIOR, Walter Castro; OLIVEIRA, Gláucia de; BESSA, Heyrton. Manual de Física III. 3° edição. Manaus-AM: UFAM, 2013. Acesso em 12 de junho de 2023.
- RIBEIRO, José Edmar Arantes. Sobre a Força de Lorentz, os Conceitos de Campo e a "Essência" do Eletromagnetismo Clássico. São Paulo-SP: USP, 2008. Disponível em:

https://www.teses.usp.br/teses/disponiveis/43/43134/tde-27082008-172025/publico/D issert.pdf. Acesso em 12 de junho de 2023.