

20V Dual P-Channel MOSFET

TSSOP-8

Pin Definition:

1

1. Drain 1 8. Drain 2 2. Source 1 7. Source 2 3. Source 1 6. Source 2

4. Gate 1 5. Gate 2

PRODUCT SUMMARY

V _{DS} (V)	$V_{DS}(V)$ $R_{DS(on)}(m\Omega)$		
-20	30 @ V _{GS} = -4.5V	-4.5	
	42 @ V _{GS} = -2.5V	-3	
	68 @ V _{GS} = -1.8V	-2	

Features

- Advance Trench Process Technology
- High Density Cell Design for Ultra Low On-resistance

Application

- Load Switch
- PA Switch

Ordering Information

Part No.	Package	Packing
TSM6963SDCA RVG	TSSOP-8	3Kpcs / 13" Reel

Note: "G" denote for Halogen Free Product

Block Diagram

Dual P-Channel MOSFET

Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	-20	V	
Gate-Source Voltage		V_{GS}	±12	V	
Continuous Drain Current, V _{GS} @4.5V.		I _D	-4.5	Α	
Pulsed Drain Current, V _{GS} @4.5V		I _{DM}	-16	Α	
Continuous Source Current (Diode Cond	uction) ^{a,b}	I _S	-1.0	Α	
Mariana Para Pinainatian	Ta = 25°C		1.14	\A/	
Maximum Power Dissipation	Ta = 70°C	P_{D}	0.73	W	
Operating Junction Temperature		TJ	+150	°C	
Operating Junction and Storage Temperature Range		T _J , T _{STG}	- 55 to +150	°C	

Thermal Performance

Parameter	Symbol	Limit	Unit
Junction to Foot (Drain) Thermal Resistance	$R\Theta_{JF}$	75	°C/W
Junction to Ambient Thermal Resistance (PCB mounted)	R⊖ _{JA}	90	°C/W

Notes:

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

20V Dual P-Channel MOSFET

Electrical Specifications (Ta =25°C unless otherwise noted)

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Static		1				
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = -250uA$	BV _{DSS}	-20			V
Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = -250$ uA	$V_{GS(TH)}$	-0.5	-0.7	-1.0	V
Zero Gate Voltage Drain Current	$V_{DS} = -16V, V_{GS} = 0V$	I _{DSS}			-1	uA
Gate Body Leakage	$V_{GS} = \pm 12V$, $V_{DS} = 0V$	I _{GSS}			±100	nA
On-State Drain Current	$V_{DS} = -5V, V_{GS} = -4.5V$	I _{D(ON)}	-25			Α
	$V_{GS} = -4.5V$, $I_{D} = -4.5A$			23	30	mΩ
Drain-Source On-State Resistance	$V_{GS} = -2.5V, I_{D} = -3A$	R _{DS(ON)}		30	42	
	$V_{GS} = -1.8V, I_{D} = -2A$			45	68	
Forward Transconductance	$V_{DS} = -5V, I_{D} = -4.5A$	g fs		16		S
Diode Forward Voltage	I _S =-0.5A, V _{GS} =0V	V_{SD}		- 0.8	-1.3	V
Dynamic ^b						
Total Gate Charge	V _{DS} =-10V, I _D =-4.5A,	Q_g		14	20	
Gate-Source Charge	, , ,	Q_gs		2.1	10	nC
Gate-Drain Charge	V _{GS} =-4.5 V	$Q_{GS} = -4.5V$ Q_{gd}		4.7		
Input Capacitance	- V _{DS} =-10V, V _{GS} =0V, - f =1.0MHz	C_{iss}		1500		
Output Capacitance		C _{oss}		220		pF
Reverse Transfer Capacitance		C _{rss}		160		
Switching ^{b,C}						
Turn-On Delay Time	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	t _{d(on)}		6	11	
Turn-On Rise Time		t _r		13	23	20
Turn-Off Delay Time		t _{d(off)}		86	145	nS
Turn-Off Fall Time		t _f		42	70	

Notes:

- a. pulse test: PW $\leq 300\mu$ S, duty cycle $\leq 2\%$
- b. For DESIGN AID ONLY, not subject to production testing.
- c. Switching time is essentially independent of operating temperature.

Switching Test Circuit

Switchin Waveforms

20V Dual P-Channel MOSFET

Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)

Output Characteristics

Transfer Characteristics

On-Resistance vs. Drain Current

Gate Charge

On-Resistance vs. Junction Temperature

Source-Drain Diode Forward Voltage

20V Dual P-Channel MOSFET

Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)

On-Resistance vs. Gate-Source Voltage

Threshold Voltage

Single Pulse Power

Normalized Thermal Transient Impedance, Junction-to-Ambient

20V Dual P-Channel MOSFET

TSSOP-8 Mechanical Drawing

TSSOP-8 DIMENSION					
DIM	MILLIMETERS		INCHES		
	MIN	MAX	MIN	MAX	
Α	6.20	6.60	0.244	0.260	
а	4.30	4.50	0.170	0.177	
В	2.90	3.10	0.114	0.122	
С	0.65 (typ)		0.025 (typ)		
D	0.25	0.30	0.010	0.019	
Е	1.05	1.20	0.041	0.049	
е	0.05	0.15	0.002	0.009	
F	0.127		0.005		
L	0.50	0.70	0.020	0.028	

Marking Diagram

Y = Year Code

M = Month Code for Halogen Free Product

 $oldsymbol{O}$ =Jan $oldsymbol{P}$ =Feb $oldsymbol{Q}$ =Mar $oldsymbol{R}$ =Apr

 $S = May \quad T = Jun \quad U = Jul \quad V = Aug$

W =Sep X =Oct Y =Nov Z =Dec

L = Lot Code

TSM6963SD 20V Dual P-Channel MOSFET

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.