Computer Organization & Architecture (COA) GTU # 3140707

Computer Arithmetic

Prof. Krunal D. Vyas
Computer Engineering Department
Darshan Institute of Engineering & Technology,
Reilret

Rajkot krunal.vyas@darshan.ac.in

9601901005

- Addition and Subtraction
- Multiplication Algorithms (Booth Multiplication Algorithm)
- Decimal Arithmetic Unit
- Questions asked in GTU exam

Addition and Subtraction

Addition and Subtraction

	A .J .J	Subtract Magnitudes						
Operation	Add Magnitudes	When A > B	When A < B	When A = B				
(+A) + (+B)	+(A+B)							
(+A) + (-B)		+ (A - B)	- (B - A)	+ (A - B)				
(-A) + (+B)		- (A - B)	+ (B - A)	+ (A - B)				
(-A) + (-B)	- (A + B)							
(+A) - (+B)		+ (A - B)	- (B - A)	+ (A - B)				
(+A) - (-B)	+(A+B)							
(-A) - (+B)	- (A + B)							
(-A) - (-B)		- (A - B)	+ (B - A)	+ (A - B)				

Flowchart for Addition & Subtraction

Multiplication

☐ Traditional way of binary multiplication

23	10111
x19	x 10011
	10111
	10111
	00000
	00000
	10111
437	110110101

Perform 23 x 19

Multiplicand B = 10111	E	A	Q	SC
Multiplier in Q	0	00000	10011	101
$Q_n = 1$; add B		10111		
First partial product	0	10111		
Shift right EAQ	0	01011	11001	100
$Q_n = 1$; add B		10111		
Second partial product	1	00010		
Shift right EAQ	0	10001	01100	011
$Q_n = 0$; shift right EAQ	0	01000	10110	010
$Q_n = 0$; shift right EAQ	0	00100	01011	001
$Q_n = 1$; add B		10111		
Fifth partial product	0	11011		
Shift right EAQ	0	01101	10101	000
Final product in AQ = 0110110101				

Multiply (-9) x (-13) using Booth Algorithm

		Initial	00000	10011	0	101
1	0	Subtract BR	01001	01001		
			01001			
		ashr	00100	11001	1	100
1	1	ashr	00010	01100	1	011
0	1	Add BR	10111			
			11001			
		ashr	11100	10110	0	010
0	0	ashr	11110	01011	0	001
1	0	Subtract BR	01001			
			00111			
		ashr	00011	10101	1	000

Booth Multiplication Algorithm

Decimal Arithmetic Unit

BCD Adder

If codes are illegal or carry is generated in the group then we add 0110 to that particular group

- ☐ Two BCD digits are applied to 4-bit binary adder which produce result ranging from 0 to 19 i.e. 9 + 9 + 1 = 19
- ☐ Output sum of two decimal numbers must be represented in BCD.
- ☐ Problem is to find rule by which binary number is to be converted to correct BCD

BCD Adder

Binary Sum					BCD Sum					
K	Z_8	Z_4	Z_2	Z_1	С	S ₈	S ₄	S_2	S_1	Decimal
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9

Binary Sum					BCD Sum					
K	Z_8	Z_4	Z_2	Z_1	С	S ₈	S ₄	S_2	S_1	Decimal
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

BCD Adder

Questions asked in GTU exam

Questions asked in GTU exam

- 1. Explain Booth multiplication algorithm for multiplying binary integers in signed 2's complement representation.
- 2. Draw and explain flowchart for addition and subtraction operations with sign-magnitude data.
- 3. Explain BCD Adder with its block diagram.
- 4. Develop an algorithm for multiplication of two binary numbers, which are stored as per floating point representation.
- 5. Draw flowchart hardware multiplication algorithm and explain it.

