MaIE-CORE+1 RECOMBINANT PROTEINS

FIG. 1A

FIG. 1B

FIG. 2A

FIG. 3A

FIG. 3B

GST-CORE+1 RECOMBINANT PROTEINS

FIG. 4A

GST-CORE+1 RECOMBINANT PROTEINS

FIG. 5

pGEX 663 668

FIG. 6

Pizzous Monoclonal 101 Gem

anti-GST

LANES:

ECL detection

FIG. 7A

15 16

LANES: 13 14

		1
1		
C	T	j
Ĺ	Ī	

천 쓩

121 750

PGEX

\$ \$

LANES:

668 npwt. 668 faut.

668 faut.

.twqn 868

668 npwt. 668 faut. pGEX

beex

8

१

F/G. 9A

opos 631 1:100

Monoclogal Gey 1:200

LANES:

\$ \$

Ė

Coomasie staining 24

FIG. 9C

WILD TYPE pHPI 643 & pHPI 663

(SEQ ID NO: 11)

FIG. 10A

(SEQ ID NO: 12)

FIG. 10B

Cys → Ser pHPI 679

(SEQ ID NO: 13)

FIG. 10C

FIG. 10D

(SEQ ID NO: 15)

FIG. 10E

FIG. 10F

(amino acids 1 to 161 of SEQ ID NO:1)

FIG. 11

FIG. 12A

FIG. 12B

750 ACC TCA TGG (
TGG AGT ACC (
Thr Ser Trp G
TRANSLATION C 740 GCT TCG CCG ACG ACG AGC GGC TAIA Ser Pro I

FIG. 12C

```
TGG CGC ATG GCG TCC GGG TTC TGG AAG ACG
ACC GCG TAC CGC AGG CCC AAG ACC TTC TGC
Trp Arg Met Ala Ser Gly Phe Trp Lys Thr>
OF HCVSEND.SEQ (RITSA) [A]_a_a___
          820
          810
         800
780

GAG GCG CTG CCA GGG CCC TGG
CTC CGC GAC GGT CCC GGG ACC
Glu Ala Leu Pro Gly Pro Tr
```

FIG. 12D

SEQUEBCE RANGE: 1 TO 166

0 * *	RLPSGRNLEV	120	TPGVGRAIWV		
*	ALDWVCARRE	110	VALGLAGAPQ	*	A*TMQQ
* 40	*ARILNLKKK TNVTPTVAHR TSSSRVAVRS LVEFTCCRAG ALDWVCARRE RLPSGRNLEV	* 100	DVSLSPRLVG PRAGPGLSPG TLGPSMAMRA AGGRDGSCLP VALGLAGAPQ TPGVGRAIWV	160	RSSIPLRAAS PTSWGTYRSS APLLEALPGP WRMASGFWKT A*TMQQ
* 30	TSSSRVAVRS	00 *	TLGPSMAMRA	150	APLLEALPGP
* 50	TNVTPTVAHR	*	PRAGPGLSPG	140	PTSWGTYRSS
* TO	*ARILNLKKK	70 * *	DVSLSPRLVG	130	RSSIPLRAAS

(SEQ ID NO:1)

FIG. 13