ملخص الوحدة الرابعة

pKe = -Log Ke = 14 ، $Ke = \lceil H_3 O^+ \rceil \times \lceil OH^- \rceil = 10^{-14}$ الجداء الشاردي للماء

محلول مائي : $pH = -Log \left[H_3 O^+ \right]$: سواء كان المحلول حمضيا أو أساسيا أو معتدلا

طبيعة محلول مائي

محلول أساسي	محلول حامضي	محلول معتدل	
< 10 ⁻⁷	> 10 ⁻⁷	10^{-7}	$[H_3O^+](mol.L^{-1})$
>10 ⁻⁷	< 10 ⁻⁷	10^{-7}	$OH^ mol.L^{-1}$
> 7	< 7	7	pН

النسبة النهائية للتقدم

au<1 : (محدود) مهما كان التفاعل الكيميائي $au=rac{x}{x}$ ، تفاعل تام au=1 ، تفاعل غير تـام (محدود)

$$au=rac{\left[OH^{-}
ight]}{C}$$
 : الماء : $au=\frac{\left[H_{3}O^{+}
ight]}{C}$: الماء : تفاعل حمض مع الماء : $au=\frac{\left[H_{3}O^{+}
ight]}{C}$

إذا مددنا أساسا ضعيفا أو حمضا ضعيفا تزداد نسبة التقدم النهائي . أي au تتناسب عكسيا مع التركيز المولي للحمض أو الأساس

Q_r كسر التفاعل

يتعلّق بتراكيز الأفراد الكيميائية المنحلة لا يتعلق بتركيب المزيج الابتدائي (تراكيز المتفاعلات)

- يتعلق بدرجة الحرارة

- يتغير من الصفر إلى K (ثابت التوازن)

$$Q_r = \frac{\left[C\right]^{\gamma} \times \left[D\right]^{\delta}}{\left[A\right]^{\alpha} \left[B\right]^{\beta}} : \alpha A + \beta B = \gamma C + \delta D$$

ثابت التوازن K

 Q_r أي كسر التفاعل النهائي) ، له نفس خصائص $K=Q_{rf}$ $\mathit{K} < 10^4$: تفاعل غیر تام $\mathit{K} > 10^4$: تفاعل غیر تام العلاقة بين K و au عند تحليل حمض أو أساس في الماء

$$K = \frac{\tau^2}{1 - \tau}C$$

 A_2/B_2 في تفاعل حمض مع أساس للثنائيتين A_1/B_1 و

$$A_1 + B_2 = B_1 + A_2$$

يكون ثابت التوازن

$$K = \frac{K_{A1}}{K_{A2}} = 10^{pK_2 - pK_{A1}}$$

(A/B) الحموضة لثنائية أساس + حمض

$$pH = pK_A + Log \frac{[B]}{[A]}$$
 $K_A = \frac{[H_3O^+] \times [B]}{[A]}$

- م عير معرفان بالنسبة لحمض أو أساس قويين K_A K_A
 - كُلماً كَانَ K_A أَكْبَر (أي pK_A أصغر) يكون الحمض أقوى . كلما كان K_A أصغر (أي pK_A أصغر (أي pK_A أصغر الماسأ قوى .

 H_3O^+/H_2O^- عندما يكون الماء أساسا $pK_A = 0$ $K_A = 1$ H_2O/OH^- عندما يكون الماء حمضا $pK_A = 14 \cdot K_A = 10^{-14}$

A/B مجال تغلّب الفردين الكيميائين في ثنائية

$$\begin{array}{c|c} A & B \\ \hline pK_A \end{array} \longrightarrow pI$$

$$[A] = [B] : pH = pK_A -$$

$$[A] > [B]$$
 pH < pK_A -

$$[B] > [A]$$
 pH > pK_A -

(A/B) مجال توزیع الصفة لثنائیة أساس / حمض

$$\%[A] = \%[B] = 50\%$$
 : pH = pK_A -

$$%[A] > %[B]$$
 pH < pK_A -

$$%[B] > %[A]$$
 pH > pK_A -

مع العلم : C ، [A]+[B]=C هو التركيز المولي للحمض أو الأساس

المعايرة

الكاشف الملون

$$HIn$$
 لون In^- مجال تغیر اللون $pK_{Ai} - 1$ pK_A $pK_{Ai} + 1$

مجال تغير الكاشف : (الشكل) . أفضل كاشف للمعايرة هو الذي مجاله يشمل نقطة التكافؤ .

معايرة حمض قوي بأساس قوي

$$(Na^+,OH^-)$$
 $\rightarrow (H_3O^+,Cl^-)$: مثلا

$$(Na^+, OH^-) + (H_3O^+, Cl^-) = 2H_2O + (Na^+, Cl^-)$$
 : معادلة التفاعل

$$C_a = 10^{-pH_0}$$
: التركيز المولي للحمض

$$\left[Cl^{-}
ight]$$
 $=$ $\frac{C_{a}V_{a}}{V_{a}+V_{bE}}$ ، $\left[Na^{+}
ight]$ $=$ $\frac{C_{b}V_{bE}}{V_{a}+V_{bE}}$ ، $C_{a}V_{a}=C_{b}V_{bE}$ عند نقطة التكافؤ E عند نقطة التكافؤ

تسمى نقطة التكافؤ كذلك نقطة التعديل لأن pH = 7 نحسب تراكيز الأفراد الكيميائية في كل نقطة بمبدأي انحفاظ الشحنة والمادة

$$(Na^+, OH^-) + (H_3O^+, Cl^-) = 2H_2O + (Na^+, Cl^-)$$
 : معادلة التفاعل

$$C_b = 10^{pH_0 - 14}$$
 : التركيز المولي للأســاس

$$\left[Cl^{-}
ight]$$
 $=$ $\frac{C_{a}V_{aE}}{V_{aE}+V_{b}}$ ، $\left[Na^{+}
ight]$ $=$ $\frac{C_{b}V_{b}}{V_{aE}+V_{b}}$ ، $C_{a}V_{aE}$ $=$ $C_{b}V_{b}$: عند نقطة التكافؤ

تسمى نقطة التكافؤ كذلك نقطة التعديل لأن pH = 7

نحسب تراكيز الأفراد الكيميائية في كل نقطة بمبدأي انحفاظ الشحنة والمادة

معايرة حمض ضعيف بأساس قوي

$$\left(Na^{\scriptscriptstyle +},OH^{\scriptscriptstyle -}
ight)$$
 بـ $\mathsf{CH}_3\mathsf{COOH}$: مثلا

$$CH_3COO_{-}^{H} + \left(Na^+, O_{-}^{H}^-\right) = H_2O + \left(Na^+, CH_3COO^-\right)$$
 : معادلة التفاعل $C_a \neq 10^{-pH_0}$

$$C_a V_a = C_b V_{bE}$$
: يكون E عند نقطة التكافؤ

$$[CH_3COOH] = [CH_3COO^-]$$
 يكون E' عند نقطة نصف التكافؤ

نحسب تراكيز الأفراد الكيميائية في كل نقطة بمبدأي انحفاظ الشحنة والمادة

معابرة أساس ضعيف بحمض قوي

$$(H_3O^+,Cl^-)$$
 ب NH₃: مثلا

$$NH_3 + \left(H_3O^+, Cl^-\right) = H_2O + \left(NH_4^+, Cl^-\right)$$
 : معادلة التفاعل

 $C_b \neq 10^{pH_0-14}$

$$C_a V_{aE} = C_b V_b$$
: يكون E عند نقطة التكافؤ

$$[NH_3] = [NH_4^+]$$
 عند نقطة نصف التكافؤ E' عند نقطة نصف

نحسب تراكيز الأفراد الكيميائية في كل نقطة بمبدأي انحفاظ الشحنة والمادة

