微积分 I: 极限

Calculus I: Limit

王浩铭

2017 年 · 夏

这篇笔记的参考资料为同济大学《高等数学》与菲赫金戈尔茨《微积分学教程》,部分内容根据我的理解进行调整。因为本人水平有限,无法保证本文内容正确性,这篇笔记仅供参考。若您发现本文的错误,请将这些错误发送到我的邮箱 wanghaoming17@163.com ,谢谢!您可以在我的主页中浏览更多笔记。

目录

1	数列的极限	2
	1.1 数列极限的概念	2
	1.2 数列极限的性质	2
	1.3 数列极限的判定	3
2	函数的极限	4
	2.1 函数极限的概念	4
	2.2 函数极限的性质	5
	2.3 函数极限的判定	6
3	无穷小与无穷大	6
	3.1 无穷小(大)的概念	6
	3.2 无穷小(大)的性质	7
	3.3 无穷小的阶	8
4	极限的运算	9
	4.1 极限运管注册	g

1 数列的极限

1.1 数列极限的概念

定义 1.1 (数列的极限). 对于 $\forall \epsilon > 0, \exists N > 0, \text{s.t.} \forall n > N, 有 |x_n - a| < \epsilon, 记为 <math>\lim_{n \to \infty} x_n = a.$

注 1.1. 极限定义中的 ϵ 是任意给定 的,即 ϵ 不能是 n 的函数. 因为 N 是 ϵ 的函数,若 ϵ 是 n 的函数,则可能不存在 n,使得 $n > N(\epsilon(n))$ 成立.

例 1.1. 判断: 若 $\lim_{n\to\infty} a_n = a \neq 0$,则当 n 充分大时,有 $a_n > a - \frac{1}{n}$. 错误,如令 $a_n = a - \frac{2}{n}$.

注 1.2. 数列的极限与其前有限项无关,因此若 $\lim_{n\to\infty}a_n=a\Leftrightarrow\lim_{n\to\infty}a_{n+k}=a$, 其中 k 为任意给定值.

1.2 数列极限的性质

数列的极限有以下性质:

性质 1.1 (唯一性). 若 $\lim_{n\to\infty} x_n = a$, 且 $\lim_{n\to\infty} x_n = b$, 则 a = b.

证明. 利用反证法,若 $a \neq b$,不妨设 a > b,令 $\lambda = a - b, \epsilon = \frac{\lambda}{2}$,因为 $\lim_{n \to \infty} x_n = a$,且 $\lim_{n \to \infty} x_n = b$,则 $\exists N_1, N_2 > 0, \text{s.t.} \forall n > N_1$ 有 $|x_n - a| < \epsilon, \forall n > N_2$ 有 $|x_n - b| < \epsilon$,令 $N = \max\{N_1, N_2\}$,则 $\forall n > N$ 有 $|x_n - a| < \frac{\lambda}{2} = \frac{a - b}{2}, |x_n - b| < \frac{\lambda}{2} = \frac{a - b}{2}$,即:

$$x_n > \frac{a+b}{2}, x_n < \frac{a+b}{2}$$

同时成立,矛盾,故 a = b.

性质 1.2 (有界性). 若数列收敛, 即 $\lim_{n\to\infty} x_n = a$, 则 $\exists M > 0$, s.t. $|x_n| \leq M$.

证明. 因为 $\lim_{n\to\infty} x_n = a$,则 $\exists N > 0, \text{s.t.} \forall n > N$,有 $|x_n - a| < 1$,故 $|x_n| = |x_n - a + a| \le |x_n - a| + |a| < |a| + 1$,令 $M = \max\{|x_1|, |x_2|, \dots |x_N|, |a| + 1\}$,则有 $|x_n| \le M$.

性质 1.3 (不等式性). 若 $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$, a > b, 则 $\exists N > 0$, s.t. $\forall n > N$ 有 $x_n > y_n$.

证明. 因为 $\lim_{n\to\infty} x_n = a, \lim_{n\to\infty} y_n = b, a > b$, 令 $\epsilon = \frac{a-b}{2}$, 则 $\exists N_1, N_2 > 0, \text{s.t.} \forall n > N_1$ 有 $|x_n - a| < \epsilon, \forall n > N_2$ 有 $|y_n - b| < \epsilon$, 令 $N = \max\{N_1, N_2\}$, 则 $\forall n > N$ 有 $|x_n - a| < \frac{a-b}{2}, |y_n - b| < \frac{a-b}{2}$,即 $x_n > \frac{a+b}{2}, y_n < \frac{a+b}{2}$,即 $x_n > y_n$.

推论 1.1 (保号性). 若 $\lim_{n\to\infty} x_n = a > 0$,则 $\exists N > 0$, s.t. $\forall n > N$ 有 $x_n > 0$.

证明. \diamondsuit $y_n \equiv 0$,由性质1.3可证.

推论 1.2. 若 $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$, $\exists N > 0$, s.t. $x_n \ge y_n$,则 $a \ge b$.

证明. 利用反证法. 设 a < b ,则由性质1.3知: $\exists N_1 > 0, \forall n > N_1 \text{s.t.} x_n < y_n$,令 $N_2 = \max\{N, N_1\}$,则 $\forall n > N_2, \text{s.t.} x_n < y_n, x_n \geq y_n$ 同时成立,矛盾,则 $a \geq b$.

注 1.3. 由于数列极限与其前有限项无关,因此只有当 n 充分大时,数列极限的不等式性及其推论才成立.

1.3 数列极限的判定

数列极限存在性有如下判定方法:

定理 1.1 (夹逼准则). 若 $\exists N>0, \forall n>N, \text{s.t.} z_n\leq x_n\leq y_n$,且 $\lim_{n\to\infty}z_n=\lim_{n\to\infty}y_n=a$,则 $\lim_{n\to\infty}x_n=a$.

证明. 因为 $\exists N>0, \forall n>N, \text{s.t.} z_n\leq x_n\leq y_n$,所以 $\lim_{n\to\infty}x_n\leq \lim_{n\to\infty}y_n=a, a=\lim_{n\to\infty}z_n\leq \lim_{n\to\infty}x_n$,即 $a\leq \lim_{n\to\infty}x_n\leq a$,即 $\lim_{n\to\infty}x_n=a$.

定义 1.2 (上/下界). 若对所考察的集合 $\{x\}$, $\exists M>0, \forall x\in\{x\}$ s.t. $x\leq M$,则称 M 为集合 $\{x\}$ 的上界,下界同理.

定义 1.3 (上/下确界). 集合 $\{x\}$ 最小的上界成为上确界,记为 $\sup x$;最大的下界成为下确界,记为 $\inf x$.

引理 1.1. 若集合 $\chi = \{x\}$ 上(下)有界,则必有上(下)确界.

证明. 考察两种情况:

- 1. 若集合 χ 中的元素存在最大数 \mathbf{x} ,则一方面满足 $\forall x \in \chi, \text{s.t.} x \leq \mathbf{x}$,即 \mathbf{x} 属于集合 χ 的上界集;另一方面,由于 $\mathbf{x} \in \chi$,则对于 χ 的任意上界 A,有 $\mathbf{x} \leq A$,即 \mathbf{x} 为集合 χ 的最小上界,即 $\mathbf{x} = \sup \{\chi\}$.
- 2. 若集合 χ 中的不存在最大数。(待完善)

注意. 集合 $\chi = \{x\}$ 有上 (下) 确界 M 有以下两个特质.

1. $\forall x \in \chi, \text{s.t.} x \leq M$.

 $2. \ \forall \epsilon > 0, \exists N, \text{s.t.} x_N > M - \epsilon.$ (若 $\forall N, \text{s.t.} x_N \leq M - \epsilon, \ \text{则} \ M - \epsilon \ \text{为} \ \chi$ 上确界,矛盾.)

定理 1.2 (单调有界数列必收敛). 对于一单调递增的数列 $\{x_n\}$,若有上界 A, s.t. $x_n \leq A$,则 $\{x_n\}$ 收敛;对于一单调递减的数列 $\{x_n\}$,若有下界 a, s.t. $x_n \geq a$,则 $\{x_n\}$ 收敛.

证明. 由于 $\{x\}$ 有上界,则由引理1.1,其有上确界 M ,由上确界的两个特质,可知: $x_n \leq M$,且 $\forall \epsilon > 0, \exists N, \text{s.t.} x_N > M - \epsilon$,则对于 $\forall n > N$,由 $x_n > x_N$,即:

$$M - \epsilon < x_N < x_n \le M$$

, $\mathbb{P} |\forall n > N, \text{s.t.} |x_n - M| < \epsilon$, $\mathbb{P} \lim_{n \to \infty} x_n = M$.

注 1.4. 数列极限的常用判断方法就是上面两者: 夹逼准则、单调有界准则. 对于 n 项求和的数列, 常用夹逼准则; 对于递推关系的数列 $(x_{n+1} = f(x_n))$, 常用单调有界准则.

定理 1.3 (数列极限存在的充要条件). 若 $\lim_{n\to\infty} x_{2n} = \lim_{n\to\infty} x_{2n-1} = a \Leftrightarrow \lim_{n\to\infty} x_n = a$.

证明. 充分性: 因为 $\lim_{n\to\infty} x_{2n} = \lim_{n\to\infty} x_{2n-1} = a$,所以 $\forall \epsilon > 0, \exists N_1, N_2 > 0, \forall n > N_1, \text{s.t.} | x_{2n} - a| < \epsilon, \forall n > N_2, \text{s.t.} | x_{2n-1} - a| < \epsilon$,令 $N = \max\{2N_1 + 2, 2N_2 + 1\}$,则 $\forall n > N, \text{s.t.} | x_n - a| < \epsilon$,即 $\lim_{n\to\infty} x_n = a$.

必要性: 因为 $\lim_{n\to\infty}x_n=a$, 所以 $\forall \epsilon>0, \exists N^*>0, \forall n>N^*, \text{s.t.} |x_n-a|<\epsilon$, 令 $N=\frac{N^*+2}{2}$, 则 $\forall n>N, \text{s.t.} |x_{2n}-a|<\epsilon, |x_{2n-1}-a|<\epsilon$, 即:

$$\lim_{n \to \infty} x_{2n} = a, \lim_{n \to \infty} x_{2n-1} = a$$

注意. 1. $\forall \epsilon > 0, \exists N_1, N_2 > 0, \forall n > N_1, \text{s.t.} | x_{2n} - a | < \epsilon, \forall n > N_2, \text{s.t.} | x_{2n-1} - a | < \epsilon.$ 即 $\forall \epsilon > 0,$ 当 $n = N_1 + 1, N_1 + 2, \ldots, \text{s.t.} | x_{2n} - a | < \epsilon.$ 即 $|x_{2N_1+2}|, |x_{2N_1+4}|, |x_{2N_1+6}|, \cdots < \epsilon.$ 又因为当 $n = N_2 + 1, N_2 + 2, \ldots, \text{s.t.} | x_{2n-1} - a | < \epsilon.$ 即 $|x_{2N_2+1}|, |x_{2N_2+3}|, |x_{2N_2+5}|, \cdots < \epsilon.$ 则 $\forall \epsilon > 0,$ 令 $N = \max\{2N_1 + 2, 2N_2 + 1\}$,有 $\forall n > N, \text{s.t.} | x_n - a | < \epsilon.$

2 函数的极限

2.1 函数极限的概念

定义 2.1 (函数的极限). 对于 $\forall \epsilon > 0, \exists X > 0, \text{s.t.} \forall x > X$, 有 $|f(x) - a| < \epsilon$, 记为 $\lim_{x \to \infty} f(x) = a$.

定义 2.2 (函数的极限). 对于 $\forall \epsilon > 0, \exists \delta > 0, \text{s.t.} \forall x \in \mathring{U}(x_0, \delta)$, 有 $|f(x) - a| < \epsilon$, 记为 $\lim_{x \to x_0} f(x) = a$.

注 2.1. 注意去心邻域为开集,事实上极限的三个定义自变量都是在开集内。

注 2.2. 函数 f(x) 在点 x_0 的极限 $\lim_{x\to x_0} f(x)$ 与 f(x) 在点 x_0 的值没有关系。但是,f(x) 在点 x_0 的极限存在必须要求 f(x) 在点 x_0 的某一去心邻域 $\mathring{U}(x_0)$ 内处处有定义,否则极限不存在.

例 2.1. 极限
$$I = \lim_{x\to 0} \frac{\sin(x \cdot \sin\frac{1}{x})}{x \cdot \sin\frac{1}{x}}$$
.

易知 $x \cdot \sin \frac{1}{x}$ 在 $x \to 0$ 是震荡趋于零,即函数 $\frac{\sin \left(x \cdot \sin \frac{1}{x}\right)}{x \cdot \sin \frac{1}{x}}$ 在 x = 0 的任意去心邻域内都存在无定义点,因此极限不存在.

2.2 函数极限的性质

函数极限有以下性质:

性质 2.1 (唯一性). 若 $\lim_{x\to x_0} f(x) = a$, 且 $\lim_{x\to x_0} f(x) = b$, 则 a=b.

证明. 利用反证法,若 $a \neq b$,不妨设 a > b,令 $\lambda = a - b$, $\epsilon = \frac{\lambda}{2}$,因为 $\lim_{x \to x_0} f(x) = a$,且 $\lim_{x \to x_0} f(x) = b$,则 $\exists \delta_1, \delta_2 > 0$,s.t. $\forall x \in \mathring{U}(x_0, \delta_1)$ 有 $|f(x) - a| < \epsilon, \forall x \in \mathring{U}(x_0, \delta_2)$ 有 $|f(x) - b| < \epsilon$,令 $\delta = \min\{\delta_1, \delta_2\}$,则 $\forall x \in \mathring{U}(x_0, \delta)$ 有 $|f(x) - a| < \frac{\lambda}{2} = \frac{a - b}{2}$, $|f(x) - b| < \frac{\lambda}{2} = \frac{a - b}{2}$,即:

$$f(x) > \frac{a+b}{2}, f(x) < \frac{a+b}{2}$$

同时成立,矛盾,故 a = b.

性质 2.2 (局部有界性). 若 $\lim_{x \to x_0} f(x) = a$, 则 $\exists \delta > 0, M > 0, \forall x \in \mathring{U}(x_0, \delta), \text{s.t.} |f(x)| < M$.

证明. 因为 $\lim_{x\to x_0} f(x) = a$,所以对于 $\epsilon = 1, \exists \delta > 0, \text{s.t.} \forall x \in \mathring{U}(x_0, \delta)$,有 $|f(x) - a| < \epsilon = 1$,即 $|f(x)| = |f(x) - a + a| \le |f(x) - a| + |a| < 1 + |a|$, $\Leftrightarrow M = 1 + |a|$,则 |f(x)| < M.

性质 2.3 (不等式性). 若 $\lim_{x\to x_0} f(x) = a \lim_{x\to x_0} g(x) = b$, 且 a>b , 则 $\exists \delta>0, M>0, \forall x\in \mathring{U}(x_0,\delta), \text{s.t.} f(x)>g(x)$.

证明. 对于 $\epsilon=\frac{a-b}{2}, \exists \delta>0, M>0, \forall x\in \mathring{U}(x_0,\delta), \text{s.t.} |f(x)-a|<\frac{a-b}{2}, |g(x)-b|<\frac{a-b}{2}$,即

$$f(x)>\frac{a+b}{2}, g(x)<\frac{a+b}{2}$$

,即 f(x) > g(x).

推论 2.1 (保号性). 若 $\lim_{x\to x_0} f(x) = a > 0$, 则 $\exists \delta > 0, M > 0, \forall x \in \mathring{U}(x_0, \delta), \text{s.t.} f(x) > 0$.

推论 2.2. 若 $\lim_{x\to x_0} f(x) = a \lim_{x\to x_0} g(x) = b$,且 $\exists \delta>0, M>0, \forall x\in \mathring{U}(x_0,\delta), \text{s.t.} f(x)\geq g(x)$,则 $a\geq b$.

证明. 利用反证法. 若 a < b ,且 $\exists \delta > 0, M > 0, \forall x \in \mathring{U}(x_0, \delta), \text{s.t.} f(x) \geq g(x)$,则由性质2.3可知, $\exists \delta_1 > 0, M > 0, \forall x \in \mathring{U}(x_0, \delta_1), \text{s.t.} f(x) < g(x)$,令 $\delta_2 = \min \{\delta, \delta_1\}$,则 $\forall x \in \mathring{U}(x_0, \delta_2), \text{s.t.} f(x) \geq g(x), f(x) < g(x)$ 同时成立,矛盾.

2.3 函数极限的判定

函数极限存在性的判断有如下方法:

定理 2.1 (夹逼准则). 若 $\exists \delta > 0, \forall x \in \mathring{U}(x_0, \delta), \text{s.t.} h(x) \leq f(x) \leq g(x)$, 且 $\lim_{x \to x_0} h(x) = \lim_{x \to x_0} g(x) = a$,则 $\lim_{x \to x_0} f(x) = a$.

证明. 因为 $\exists \delta > 0, \forall x \in \mathring{U}(x_0, \delta), \text{s.t.} h(x) \leq f(x) \leq g(x)$, 由推论2.2可知:

$$a = \lim_{x \to x_0} h(x) \le \lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x) = a$$

 $\mathbb{P}: a \leq \lim_{x \to x_0} f(x) \leq a, \quad \mathbb{P} \leq \lim_{x \to x_0} f(x) = a.$

定理 2.2 (函数极限存在的充要条件). $\lim_{x\to x_0^+} f(x) = \lim_{x\to x_0^-} f(x) = a \Leftrightarrow \lim_{x\to x_0} f(x) = a$

证明. 充分性: 因为 $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = a$,所以 $\forall \epsilon > 0, \exists \delta_1, \delta_2, \forall x \in (x_0 - \delta_1, x_0) \cup (x_0, x_0 + \delta 2), \text{s.t.} |f(x) - a| < \epsilon$,令 $\delta = \min \left\{ \delta_1, \delta_2 \right\}$,则 $\forall x \in \mathring{U}(x_0, \delta), \text{s.t.} |f(x) - a| < \epsilon$,即 $\lim_{x \to x_0} f(x) = a$.

必要性: 因为 $\lim_{x\to x_0} f(x) = a$,所以 $\forall \epsilon > 0, \exists \delta > 0, \forall x \in \mathring{U}(x_0, \delta), \text{s.t.} |f(x) - a| < \epsilon$,所 以 $\forall x \in (x_0 - \delta, x_0), \text{s.t.} |f(x) - a| < \epsilon \Rightarrow \lim_{x\to x_0^-} f(x) = a; \forall x \in (x_0, x_0 + \delta), \text{s.t.} |f(x) - a| < \epsilon \Rightarrow \lim_{x\to x_0^+} f(x) = a.$

例 2.2. 设 $f(x) = xe^{\frac{1}{x}}$, 则 $\lim_{x\to 0} f(x)$ 为:

 $\lim_{x\to 0^-} x e^{\frac{1}{x}} = 0; \lim_{x\to 0^+} x e^{\frac{1}{x}} = \infty$, 因为 $\lim_{x\to 0^-} x e^{\frac{1}{x}} \neq \lim_{x\to 0^+} x e^{\frac{1}{x}}$, 所以极限不存在.

- 注 2.3. 有三种情况极易出题,必须讨论左右极限:
 - 1. 分段函数: 分段函数或带绝对值的函数, 在其分界点处必须讨论左右极限;
 - 2. 指数型极限: 含有 $a^{\frac{1}{x}}$ 的极限必须要对 $x\to 0^+$ 和 $x\to 0^-$ 分别求极限. 含有 a^x 的极限要对 $x\to +\infty$ 和 $x\to -\infty$ 分别求极限.
 - 3. 反三角函数: 含有 $\arctan \frac{1}{x}$, $\operatorname{arccot} \frac{1}{x}$ 的极限必须要对 $x \to 0^+$ 和 $x \to 0^-$ 分别求极限. 含有 $\operatorname{arctan} x$, $\operatorname{arccot} x$ 的极限要对 $x \to +\infty$ 和 $x \to -\infty$ 分别求极限.

3 无穷小与无穷大

3.1 无穷小(大)的概念

定义 3.1 (无穷小). 若 $\lim_{x\to x_0} f(x) = 0$, 则称函数 f(x) 为 $x\to x_0$ 的无穷小.

注意: 无穷小是函数的概念,用 $\epsilon - \delta$ 语言表示为: $\forall \epsilon > 0, \exists \delta > 0, \forall x \in \mathring{U}(x_0, \delta), \text{s.t.} |f(x)| < \epsilon.$

定义 3.2 (无穷大). 设函数 f(x) 在 x_0 某一去心邻域内有定义,对于 $\forall M > 0, \exists \delta > 0, \forall x \in \mathring{U}(x_0, \delta), \text{s.t.} |f(x)| > M$,则称函数 f(x) 为 $x \to x_0$ 的无穷大.

定义 3.3 (无界变量). 对于任意 M > 0, 存在 $N, \text{s.t.} |x_N| > M$, 则称 $\{x_n\}$ 为无界变量.

 $\dot{\mathbf{Z}}$ 3.1. 无穷大量一定是无界变量,无界变量不一定时无穷大量. 无穷大量的特点是当 n 充分大时,任意n 有 x_n 满足条件; 无界变量的特点是仅存在N, 使 x_N 满足条件. 无界变量的典型是

$$x_n = \begin{cases} n, & n \text{ 为偶数;} \\ 0, & n \text{ 为奇数.} \end{cases}$$

3.2 无穷小(大)的性质

无穷小(大)有如下性质:

定理 3.1 (极限与无穷小的关系). 在自变量的同一变化过程 $x \to x_0$ 中, $\lim_{x \to x_0} f(x) = a \Leftrightarrow \exists \alpha = o, \text{s.t.} f(x) = a + \alpha$.

证明. 充分性: 因为 $\lim_{x\to x_0} f(x) = a$,所以 $\forall \epsilon > 0, \exists \delta > 0, \forall x \in \mathring{U}(x_0, \delta), \text{s.t.} | f(x) - a| = |f(x) - a - 0| < \epsilon$,即 $\lim_{x\to x_0} (f(x) - a) = 0$,即 $x \to x_0$ 时 f(x) - a 为无穷小,令 $\alpha = f(x) - a$,则 $f(x) = a + \alpha$.

必要性: 因为 $f(x) = a + \alpha$, 即 $f(x) - a = \alpha$, 又因为 $x \to x_0$ 时 α 为无穷小,即 $\forall \epsilon > 0$, $\exists \delta > 0$, $\forall x \in \mathring{U}(x_0, \delta)$, s.t. $|\alpha| < \epsilon$,则 $\forall \epsilon > 0$, $\exists \delta > 0$, $\forall x \in \mathring{U}(x_0, \delta)$, s.t. $|f(x) - a| = |\alpha| < \epsilon$,即 $\lim_{x \to x_0} f(x) = a$.

注 3.2. 极限的 $\epsilon-\delta$ 定义在证明中起到重要作用: 若 $\forall \epsilon>0, \exists \delta>0, \forall x\in \mathring{U}(x_0,\delta), \text{s.t.} |f(x)-a|<\epsilon,$ 则 $\lim_{x\to x_0}f(x)=a;$ 若 $\forall \epsilon>0, \exists \delta>0, \forall x\in \mathring{U}(x_0,\delta), \text{s.t.} |\alpha(x)|<\epsilon,$ 则 $\lim_{x\to x_0}\alpha(x)=0.$

注 3.3. 无穷小的这一性质在计算极限时十分有用,对于 $\lim f(x) = a \neq 0$ 的极限,我们常可以将其转化为 f(x) = a + o,然后在利用等价阶运算求极限.

如极限 $I=1-\sqrt{1+x^2}\cdot\sqrt[3]{1+x^3}\cdot\sqrt[4]{1+x^4}$,因为 $\sqrt{1+x^2}\sim 1+\frac{1}{2}\cdot x^2$; $\sqrt[3]{1+x^3}\sim 1+\frac{1}{3}\cdot x^3$; $\sqrt[4]{1+x^4}\sim 1+\frac{1}{4}\cdot x^4$; 因此 $\sqrt{1+x^2}\cdot\sqrt[3]{1+x^3}\cdot\sqrt[4]{1+x^4}\sim 1+\frac{1}{24}\cdot x^{24}+o^{24}$,从而 $I\sim -\frac{1}{24}\cdot x^{24}$,然后再利用等价阶计算。

极限 $I = \frac{1 - \cos x \cdot \sqrt{\cos 2x} \cdot \sqrt[3]{\cos 3x}}{x^2}$ 也可如此计算。

定理 3.2 (无穷小的倒数为无穷大). 在自变量的同一变化过程 $x \to x_0$ 中,若 f(x) 为无穷小,且 $f(x) \neq 0$,则 $\frac{1}{f(x)}$ 为无穷大;若 f(x) 为无穷大,则 $\frac{1}{f(x)}$ 为无穷小.

证明. 在自变量的同一变化过程 $x \to x_0$ 中,若 f(x) 为无穷小,则 $\forall \epsilon > 0$, $\exists \delta > 0$, $\forall x \in \mathring{U}(x_0, \delta)$,s.t. $0 < |f(x)| < \epsilon$, 令 $M = \frac{1}{\epsilon}$, 则 $|\frac{1}{f(x)}| > M$, 由定义知: $x \to x_0$ 中 $\frac{1}{f(x)}$ 为无穷大.

注意. 在 $x \to x_0$ 的过程中,要求 $f(x) \neq 0$,如:函数 $g(x) = x \cdot \sin \frac{1}{x}$,虽然 $\lim_{x \to 0} g(x) = 0$,但是在 $x \to x_0$ 的过程中, $\frac{1}{g(x)}$ 不是无穷大,因为对于 $\forall \delta > 0$, $\exists x \in \mathring{U}(0,\delta)$,s.t. $\frac{1}{g(x)}$ 无定义,也就不满足无穷大的 $\epsilon - \delta$ 定义.

3.3 无穷小的阶

首先明确几个概念:

定义 3.4. 若 $\alpha(x)$ 和 $\beta(x)$ 是同一自变量变化过程的的无穷小,且:

- $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = 0$,则称 $\alpha(x)$ 为 $\beta(x)$ 的高阶无穷小,记作 $\alpha(x) = o(\beta(x))$;
- $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = \infty$, 则称 $\alpha(x)$ 为 $\beta(x)$ 的低阶无穷小;
- $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = c \neq 0$, 则称 $\alpha(x)$ 为 $\beta(x)$ 的同阶无穷小;
- $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = 1$, 则称 $\alpha(x)$ 为 $\beta(x)$ 的等价无穷小,记作 $\alpha(x)\sim\beta(x)$;
- $\lim_{x\to x_0} \frac{\alpha(x)}{\beta^k(x)} = c \neq 0$, 则称 $\alpha(x)$ 为 $\beta(x)$ 的 k 阶无穷小.

对于等价无穷小有如下几个性质:

定理 3.3. $\alpha(x) \sim \beta(x) \Leftrightarrow \alpha(x) = \beta(x) + o(\beta(x))$.

证明. 充分性: 因为 $\alpha(x) \sim \beta(x)$,即 $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$,即 $\forall \epsilon > 0, \exists \delta > 0, \forall x \in \mathring{U}(x_0, \delta), \text{s.t.} | \frac{\alpha(x)}{\beta(x)} - 1| = |\frac{\alpha(x) - \beta(x)}{\beta(x)}| < \epsilon$,即 $\lim_{x \to x_0} \frac{\alpha(x) - \beta(x)}{\beta(x)} = 0$,即在 $x \to x_0$ 中, $\alpha(x) - \beta(x)$ 是 $\beta(x)$ 的高阶无穷小,即 $\alpha(x) - \beta(x) = o(\beta(x))$,即 $\alpha(x) = \beta(x) + o(\beta(x))$.

必要性: 因为 $\alpha(x) = \beta(x) + o(\beta(x))$, 则 $\alpha(x) - \beta(x) = o(\beta(x))$, 即:

$$\lim_{x \to x_0} \frac{\alpha(x) - \beta(x)}{\beta(x)} = 0 \Rightarrow \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$$

定理 3.4 (等价无穷小替换)。若 $\alpha(x)\sim\alpha^*(x),\beta(x)\sim\beta^*(x)$,且 $\lim_{x\to x_0}\frac{\alpha^*(x)}{\beta^*(x)}$ 存在,则:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha^*(x)}{\beta^*(x)}$$

证明.

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} \cdot \frac{\alpha^*(x)}{\alpha^*(x)} \cdot \frac{\beta^*(x)}{\beta^*(x)} = \lim_{x \to x_0} \frac{\alpha(x)}{\alpha^*(x)} \cdot \lim_{x \to x_0} \frac{\alpha^*(x)}{\beta^*(x)} \cdot \lim_{x \to x_0} \frac{\beta^*(x)}{\beta(x)} = \frac{\alpha^*(x)}{\beta^*(x)}$$

推论 3.1 (等价无穷小传递性). 若 $\alpha(x) \sim \beta(x), \beta(x) \sim \gamma(x) \Rightarrow \alpha(x) \sim \gamma(x)$.

证明. 由定理3.4可知:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\gamma(x)} = \lim_{x \to x_0} \frac{\beta(x)}{\beta(x)} = 1 \Rightarrow \alpha(x) \sim \gamma(x)$$

例 **3.1** (一些等价无穷小). $x \to 0$ 时:

$$\sin x \sim x \qquad \tan x \sim x \qquad \arcsin x \sim x \qquad \arctan x \sim x \qquad 1 - \cos x \sim \frac{1}{2}x^2$$

$$\ln(1+x) \sim x \qquad e^x - 1 \sim x \qquad a^x - 1 \sim x \ln(a) \qquad (1+\beta x)^\alpha - 1 \sim \alpha \beta x$$

$$\log_a(1+x) \sim \frac{x}{\ln(a)}$$

性质 3.1. 无穷大的阶一般有以下结论: 对于 $\alpha, \beta > 0, a > 1$,

当 $x \to \infty$ 时:

$$\ln^{\alpha} x \ll x^{\beta} \ll a^x$$
.

当 $n \to \infty$ 时:

$$\ln^{\alpha} n \ll n^{\beta} \ll a^n \ll n! \ll n^n$$
.

由此性质可以得到一个常用极限:

$$\lim_{x \to 0} x \cdot \ln x = \lim_{x \to \infty} \frac{\ln \frac{1}{x}}{x} = -\lim_{x \to \infty} \frac{\ln x}{x} = 0.$$

4 极限的运算

4.1 极限运算法则

定理 4.1. 两个无穷小之和仍为无穷小.

证明. 设 $x \to x_0$ 的过程中 $\alpha(x), \beta(x)$ 为无穷小,则 $\lim_{x \to x_0} \alpha(x) = \lim_{x \to x_0} \beta(x) = 0$,即 $\forall \epsilon > 0, \exists \delta > 0, \forall x \in \mathring{U}(x_0, \delta), \text{s.t.} |\alpha(x)| < \frac{\epsilon}{2}, |\beta(x)| < \frac{\epsilon}{2}$,即 $|\alpha(x) + \beta(x)| \le |\alpha(x)| + |\beta(x)| < \epsilon$,所以 $\lim_{x \to x_0} \alpha(x) + \beta(x) = 0$,即: $\alpha(x) + \beta(x)$ 为无穷小.

推论 4.1. 有限个无穷小之和为无穷小.

证明. 利用数学归纳法. 首先,由定理4.1可知,两个无穷小之和为无穷小,设 k 个无穷小之和为无穷小,则由定理4.1知: k+1 个无穷小之和为无穷小,则有限个无穷小之和为无穷小.

定理 4.2. 有界函数与无穷小乘积为无穷小.

证明. 设 f(x) 为有界函数,即 $\exists M>0, \forall x\in D_f, \text{s.t.} |f(x)|\leq M$,设 $x\to x_0$ 过程中, $\alpha(x)$ 为无穷小,则 $\forall \epsilon>0, \exists \delta>0, \forall x\in \mathring{U}(x_0,\delta), \text{s.t.} |\alpha(x)|<\frac{\epsilon}{M}$,因为:

$$|f(x)\alpha(x)| = |f(x)| \cdot |\alpha(x)| \le M \cdot |\alpha(x)| < \epsilon$$

,所以 $\lim_{x\to x_0} f(x)\alpha(x) = 0$,即 $f(x)\alpha(x)$ 为无穷小.

推论 4.2. 常数与无穷小乘积为无穷小.

推论 4.3. 有限个无穷小乘积为无穷小.

注 4.1. 先证明两个无穷小之积 $\alpha(x)\beta(x)$ 为无穷小. 无穷小是函数极限的概念,因为 $\lim_{x\to x_0}\alpha(x)=0$ 由函数的局部有界性(性质 2.2)可知 $\exists \delta>0, \forall x\in \mathring{U}(x_0,\delta), \text{s.t.}\alpha(x)$ 有界,则两个无穷小的乘积为有界函数与无穷小的乘积的问题. 再用数学归纳法,证明有限个无穷小的乘积为无穷小.

定理 4.3. 由无穷小与无穷大的定义, 还可以得到

- 1. 无穷小 ± 无穷大 = 无穷大;
- 2. 无穷小 × 无穷大 = 不一定;
- 3. 无穷大 \pm 无穷大 = 不一定;
- 4. 无穷大 \times 无穷大 = 无穷大.

但需要注意的是:

- 1. 无界变量 ± 无界变量 = 不一定;
- 2. 无界变量 × 无界变量 = 不一定.

如数列

$$x_n = \begin{cases} n, & n \text{ 为偶数;} \\ 0, & n \text{ 为奇数.} \end{cases}$$

以及

$$y_n = \begin{cases} 0, & n \text{ 为偶数;} \\ n, & n \text{ 为奇数.} \end{cases}$$

均为无界变量,而 $x_n \cdot y_n = 0$.

定理 4.4 (极限四则运算法则). 若 $\lim_{x\to x_0} f(x) = a, \lim_{x\to x_0} g(x) = b$, 则:

- 1. $\lim_{x \to x_0} f(x) \pm g(x) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x) = a \pm b$;
- 2. $\lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = ab;$
- 3. 若 $b \neq 0$,则: $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{a}{b}$.

注意 (保号性). 若 $b \neq 0$, 则 $\exists \delta > 0, \forall x \in \mathring{U}(x_0, \delta), \text{s.t.} g(x) \neq 0$.

- 证明. 1. 由定理3.1可知: $f(x) = a + \alpha, g(x) = b + \beta$,则 $f(x) + g(x) = a + \alpha + b + \beta = a + b + (\alpha + \beta)$,由定理4.1可知 $\alpha + \beta$ 为无穷小,令 $\gamma = \alpha + \beta$,则 $f(x) + g(x) = a + b + \gamma$,所以 $\lim_{x \to x_0} f(x) + g(x) = a + b = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$.
 - 2. 由定理3.1可知: $f(x) = a + \alpha, g(x) = b + \beta$,则 $f(x) \cdot g(x) = (a + \alpha) \cdot (b + \beta) = ab + a\beta + b\alpha + \alpha\beta$,因为 $\lim_{x \to x_0} f(x) = a, \lim_{x \to x_0} g(x) = b$,由局部有界性(性质2.2)可知: $\exists \delta > 0M > 0, \forall x \in \mathring{U}(x_0, \delta), \text{s.t.} |f(x)| < M, |g(x)| < M$,由定理4.2与定理4.1可知 $a\beta + b\alpha$ 为无穷小,又

由引理4.3可知 $\alpha\beta$ 为无穷小,由定理4.1可知 $a\beta + b\alpha + \alpha\beta$ 为无穷小,,令 $\gamma = a\beta + b\alpha + \alpha\beta$,则 $f(x) \cdot g(x) = (a + \alpha) \cdot (b + \beta) = ab + \gamma$,即:

$$\lim_{x \to x_0} f(x) \cdot g(x) = ab = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

.

3. 因为在过程 $x \to x_0$ 中 $\frac{f(x)}{g(x)} = \frac{a+\alpha}{b+\beta}$, 则:

$$\frac{f(x)}{g(x)} - \frac{a}{b} = \frac{a+\alpha}{b+\beta} - \frac{a}{b} = \frac{b\alpha - a\beta}{b(b+\beta)}$$

下证明 $\frac{1}{b+\beta}$ 有界. 由于局部有界性(性质2.2)可知,因为 $\lim_{x\to x_0}g(x)=b$,所以: $\forall \epsilon>0$, $\exists \delta>0$, $\forall x\in \mathring{U}(x_0,\delta)$, $\mathrm{s.t.}|g(x)-b|<\epsilon\Rightarrow b-\epsilon< g(x)=b+\beta(x)< b+\epsilon$,令 $\epsilon=\frac{b}{2}$,则 $\exists \delta_1>0$, $\forall x\in \mathring{U}(x_0,\delta_1)$, $\mathrm{s.t.}\frac{b}{2}< b+\beta(x)<\frac{3b}{2}\Rightarrow \frac{2}{3b}<\frac{1}{b+\beta(x)}<\frac{2}{b}$,即 $\frac{1}{b+\beta}$ 有界. 由定理4.2,定理4.1可知 $\frac{b\alpha-a\beta}{b(b+\beta)}$ 为无穷小,令 $\gamma=\frac{b\alpha-a\beta}{b(b+\beta)}$,即 $\frac{f(x)}{g(x)}=\frac{a}{b}+\gamma$,即 $\lim_{x\to x_0}\frac{f(x)}{g(x)}=\frac{a}{b}=\frac{\lim_{x\to x_0}f(x)}{\lim_{x\to x_0}g(x)}$.

注意. β 是 $x \to x_0$ 过程中的无穷小,是关于 x 的函数,因此 $\frac{1}{b+\beta}$ 也是关于 x 的函数.

推论 4.4. 若 $\lim_{x\to x_0} f(x)$ 存在,则 $\lim_{x\to x_0} cf(x) = c \lim_{x\to x_0} f(x)$.

证明. \diamondsuit $C(x) \equiv c \Rightarrow \lim_{x \to x_0} C(x) = c$, 由极限的四则运算法则(4.4)可证.

推论 4.5. 若 $\lim_{x\to x_0} f(x)$ 存在,则 $\lim_{x\to x_0} f^n(x) = [\lim_{x\to x_0} f(x)]^n$.

证明.
$$\lim_{x\to x_0} f^n(x) = \lim_{x\to x_0} f(x) \cdot f(x) \cdot \cdots \cdot f(x) = [\lim_{x\to x_0} f(x)]^n$$
.

定理 4.5 (复合函数极限运算法则). 设函数 y = f[g(x)] 是由 y = f(u), u = g(x) 复合而成的函数, f[g(x)] 在 x_0 某去心邻域内有定义,若 $\lim_{u\to u_0} f(u) = a, \lim_{x\to x_0} g(x) = u_0$,且 $\exists \delta_0 > 0, \forall x \in \mathring{U}(x,\delta_0), \text{s.t.} g(x) \neq u_0$,则 $\lim_{x\to x_0} f[g(x)] = \lim_{u\to u_0} f(u) = a$.

注意. 要求 $\exists \delta_0 > 0, \forall x \in \mathring{U}(x, \delta_0), \text{s.t.} g(x) \neq u_0$ 是为了保证极限 $\lim_{u \to u_0} f(u)$ 中,u 始终在 u_0 的去心邻域中趋于 u_0 ,因为 f(u) 有可能在 u_0 处不连续(若 f(u) 在 u_0 处连续,则不需要这条假设,此时在 u_0 邻域和去心邻域内趋于 u_0 是一样的).

事实上在极限的所有定义中,自变量都是在去心邻域内运动的.

证明. 因为 $\lim_{u\to u_0} f(u) = a$,则 $\forall \epsilon > 0 \exists \eta > 0$, $\forall u \in \mathring{U}(u_0, \eta)$,s.t. $|f(u)-a| < \epsilon$. 因为 $\lim_{x\to x_0} f(x) = u_0$,则对于 $\epsilon = \eta$, $\exists \delta > 0$, $\forall x \in \mathring{U}(x, \delta)$,s.t. $|g(x) - u_0| < \eta$. 令 $\delta_1 = \min\{\delta_0, \delta\}$,则 $\forall x \in \mathring{U}(x_0, \delta_1)$,有 $0 < |g(x) - u_0| < \eta$,即 $g(x) = u \in \mathring{U}(u_0, \eta)$,即 $|f(u) - a| = |f[g(x)] - a| < \epsilon$,即 $\lim_{x\to x_0} f[g(x)] = \lim_{u\to u_0} f(u) = a$.

定理 4.6 (幂指数函数运算法则). 设 $\lim_{x\to x_0} f(x) = a > 0$, $\lim_{x\to x_0} g(x) = b$,则 $\lim_{x\to x_0} f(x)^{g(x)} = a^b$.

证明. 因为 $f(x)^{g(x)} = \mathrm{e}^{g(x)\ln(f(x))}$,我们先考虑函数 $y = g(x)\ln(f(x))$. 由于 $\lim_{x\to x_0} f(x) = a > 0$,所以 $\exists \delta > 0, \forall x \in \mathring{U}(x_0,\delta), \mathrm{s.t.} f(x) > 0$ (保号性),即 f(x) 的值在函数 $\ln(\cdot)$ 的定义域内,由复合函数极限运算法则(4.5)可知: $\lim_{x\to x_0} \ln(f(x)) = \ln(a)$,由极限四则运算法则(4.4)可知: $\lim_{x\to x_0} g(x)\ln(f(x)) = b\ln(a)$,即: $\lim_{x\to x_0} \mathrm{e}^{g(x)\ln(f(x))} = \mathrm{e}^{b\ln(a)} = a^b$.

例 4.1 (利用变量替换法). 幂指函数通常有两种变换方法:

1.
$$f(x)^{g(x)} = e^{g(x)\ln(f(x))}$$

2. 当
$$f(x) \to 1, g(x) \to \infty$$
 时: $f(x)^{g(x)} = \{[1 + f(x) - 1]^{\frac{1}{f(x) - 1}}\}^{[f(x) - 1]g(x)} = e^{[f(x) - 1]g(x)}$