Package 'mSigHdp'

June 6, 2020
Title Mutational signature extraction using hdp (Hierarchical Dirichlet Process)
Version 0.0.0.9015
Description Calls hdp for mutational signature analysis, with performance issues in hdp:::stirling() corrected.
License GPL-3
Encoding UTF-8
LazyData true
Language en-US
biocViews
Imports hdpx (>= 0.1.5.0014), SynSigGen
Roxygen list(markdown = TRUE)
Depends R (>= 3.5)
RoxygenNote 7.1.0
Remotes github::steverozen/hdpx, github::steverozen/SynSigGen, github::WuyangFF95/SynSigEval
Suggests testthat, ICAMS, utils, SynSigEval
R topics documented:
AnalyzeAndPlotretval ChainsDiagnosticPlot CombinePosteriorChains ExtendIterationAndPosterior MultipleSetupAndPosterior PlotExposure PlotExposureByRange PrepInit RunHdpParallel SetupAndPosterior 10 SortExp
Index 13

2 ChainsDiagnosticPlot

AnalyzeAndPlotretval Evaluate and plot retval from CombinePosteriorChains

Description

Evaluate and plot retval from CombinePosteriorChains

Usage

```
AnalyzeAndPlotretval(
  retval,
  out.dir = NULL,
  ground.truth.sig = NULL,
  ground.truth.exp = NULL,
  verbose = TRUE,
  overwrite = TRUE
)
```

Arguments

retval the output from function CombinePosteriorChains

out.dir Directory that will be created for the output; if overwrite is FALSE then abort

if out.dir already exits.

ground.truth.sig

Optional. Either a string with the path to file with ground truth signatures or and ICAMS catalog with the ground truth signatures. These are the signatures used to construct the ground truth spectre.

construct the ground truth spectra.

ground.truth.exp

Optional.Ground truth exposure matrix or path to file with ground truth expo-

sures. If NULL skip checks that need this information.

verbose If TRUE then message progress information.

overwrite If TRUE overwrite out.dir if it exists, otherwise raise an error.

ChainsDiagnosticPlot Diagnostic plot for hdp multi sample chains (output from CombinePosteriorChains)

Description

Diagnostic plot for hdp multi sample chains (output from CombinePosteriorChains)

Usage

```
ChainsDiagnosticPlot(retval, out.dir, verbose)
```

CombinePosteriorChains 3

Arguments

retval output from CombinePosteriorChains. A list with the following elements:

signature The extracted signature profiles as a matrix; rows are mutation types, columns are samples (e.g. tumors).

exposure The inferred exposures as a matrix of mutation counts; rows are signatures, columns are samples (e.g. tumors).

multi.chains A hdpSampleMulti-class object. This object has the method chains which returns a list of hdpSampleChain-class objects. Each of these sample chains objects has a method final_hdpState (actually the methods seems to be just hdp) that returns the hdpState from which it was generated.

out.dir Directory that will be created for the output; if overwrite is FALSE then abort

if out.dir already exits.

verbose If TRUE then message progress information.

CombinePosteriorChains

Extract components and exposures from multiple posterior sample chains

Description

Extract components and exposures from multiple posterior sample chains

Usage

```
CombinePosteriorChains(
  clean.chlist,
  input.catalog,
  multi.types,
  verbose = TRUE,
  cos.merge = 0.9,
  min.sample = 1
)
```

Arguments

clean.chlist It collects the output of multiple independent hdp_posterior calls.

multi.types A logical scalar or a character vector. If FALSE, hdp will regard all input spectra

as one tumor type.

If TRUE, hdp will infer tumor types based on the string before "::" in their names. e.g. tumor type for "SA.Syn.Ovary-AdenoCA::S.500" would be "SA.Syn.Ovary-AdenoCA"

If multi.types is a character vector, then it should be of the same length as the number of columns in input.catalog, and each value is the name of the tumor

type of the corresponding column in input.catalog, e.g. c("SA.Syn.Ovary-AdenoCA", "SA.Syn.O

verbose If TRUE then message progress information.

cos.merge The cosine similarity threshold for merging raw clusters from the posterior sampling chains into "components" i.e. signatures; passed to hdp_extract_components.

A "component" (i.e. signature) must have at least this many samples; passed to hdp_extract_components.

Value

Invisibly, a list with the following elements:

signature The extracted signature profiles as a matrix; rows are mutation types, columns are samples (e.g. tumors).

exposure The inferred exposures as a matrix of mutation counts; rows are signatures, columns are samples (e.g. tumors).

multi.chains A hdpSampleMulti-class object. This object has the method chains which returns a list of hdpSampleChain-class objects. Each of these sample chains objects has a method final_hdpState (actually the methods seems to be just hdp) that returns the hdpState from which it was generated.

ExtendIterationAndPosterior

Run hdp extraction and attribution on a spectra catalog file This repeats what Nicola do in her thesis. It starts four independent initial chains with post.burnin iterations, then pick up from the end of each initial chain, started another num.posterior MCMC chains for another post.burnin iterations and then collected post.n posterior samples at intervals of post.space iterations. In total, this collects 4 times num.posterior times post.n posterior samples from 4 times y separate chains.

Description

Run hdp extraction and attribution on a spectra catalog file This repeats what Nicola do in her thesis. It starts four independent initial chains with post.burnin iterations, then pick up from the end of each initial chain, started another num.posterior MCMC chains for another post.burnin iterations and then collected post.n posterior samples at intervals of post.space iterations. In total, this collects 4 times num.posterior times post.n posterior samples from 4 times y separate chains.

Usage

```
ExtendIterationAndPosterior(
  input.catalog,
  CPU.cores = 1,
  seedNumber = 1,
  K.guess,
  multi.types = FALSE,
  verbose = TRUE,
  num.posterior = 4,
  post.burnin = 4000,
  post.n = 50,
  post.space = 50,
  post.cpiter = 3,
```

```
post.verbosity = 0,
cos.merge = 0.9,
min.sample = 1,
checkpoint.aft.post = NULL
)
```

Arguments

input.catalog Input spectra catalog as a matrix or in ICAMS format.

CPU.cores Number of CPUs to use in running hdp_posterior; this is used to parallelize

running the posterior sampling chains, so there is no point in making this larger

than num.posterior.

seedNumber An integer that is used to generate separate random seeds for each call to dp_activate,

and each call of hdp_posterior; please see the code on how this is done. But repeated calls with same value of seedNumber and other inputs should produce

the same results.

K.guess Suggested initial value of the number of signatures, passed to dp_activate as

initcc.

multi.types A logical scalar or a character vector. If FALSE, hdp will regard all input spectra

as one tumor type.

If TRUE, hdp will infer tumor types based on the string before "::" in their names. e.g. tumor type for "SA.Syn.Ovary-AdenoCA::S.500" would be "SA.Syn.Ovary-

AdenoCA"

If multi.types is a character vector, then it should be of the same length as the number of columns in input.catalog, and each value is the name of the tumor

type of the corresponding column in input.catalog, e.g. c("SA.Syn.Ovary-AdenoCA", "SA.Syn.O

verbose If TRUE then message progress information.

num.posterior Number of posterior sampling chains; can set to 1 for testing.

post.burnin Pass to hdp_posterior burnin.

post.n Pass to hdp_posterior n.

Pass to hdp_posterior space.

post.space Pass to hdp_posterior space.
post.cpiter Pass to hdp_posterior cpiter.
post.verbosity Pass to hdp_posterior verbosity.

cos.merge The cosine similarity threshold for merging raw clusters from the posterior sam-

pling chains into "components" i.e. signatures; passed to hdp_extract_components.

min.sample A "component" (i.e. signature) must have at least this many samples; passed to

hdp_extract_components.

checkpoint.aft.post

If non-NULL, a file path to checkpoint the list of values returned from the calls to

hdp_posterior as a .Rdata file.

Value

A list with the following elements:

signature The extracted signature profiles as a matrix; rows are mutation types, columns are samples (e.g. tumors).

exposure The inferred exposures as a matrix of mutation counts; rows are signatures, columns are samples (e.g. tumors).

exposure.p exposure converted to proportions.

multi.chains A hdpSampleMulti-class object. This object has the method chains which returns a list of hdpSampleChain-class objects. Each of these sample chains objects has a method final_hdpState (actually the methods seems to be just hdp) that returns the hdpState from which it was generated.

MultipleSetupAndPosterior

Activate hierarchical Dirichlet processes and run posterior sampling in parallel.

Description

Activate hierarchical Dirichlet processes and run posterior sampling in parallel.

Usage

```
MultipleSetupAndPosterior(
  input.catalog,
  seedNumber = 1,
  K.guess,
  multi.types = FALSE,
  verbose = TRUE,
  post.burnin = 4000,
  post.n = 50,
  post.space = 50,
  post.cpiter = 3,
  post.verbosity = 0,
  CPU.cores = 1,
  num.child.process = 4
)
```

Arguments

input.catalog Input spectra catalog as a matrix or in ICAMS format.

seedNumber An integer that is used to generate separate random seeds for each call to dp_activate,

> and each call of hdp_posterior; please see the code on how this is done. But repeated calls with same value of seedNumber and other inputs should produce

the same results.

K.guess Initial guess of the number of "raw clusters", which may be larger than the num-

ber of signatures (sometimes called "components" in the hdpx code); passed to

dp_activate as initcc.

A logical scalar or a character vector. If FALSE, The HDP analysis will regard multi.types all input spectra as one tumor type.

> If TRUE, the HDP analysis will infer tumor types based on the string before "::" in their names. e.g. tumor type for "SA.Syn.Ovary-AdenoCA::S.500" would be "SA.Syn.Ovary-AdenoCA"

> If multi. types is a character vector, then it should be of the same length as the number of columns in input.catalog, and each value is the name of the tumor

type of the corresponding column in input.catalog, e.g. c("SA.Syn.Ovary-AdenoCA", "SA.Syn.O

PlotExposure 7

verbose If TRUE then message progress information.

post.burnin Pass to hdp_posterior burnin.

post.n Pass to hdp_posterior n.

post.space Pass to hdp_posterior space.

post.cpiter Pass to hdp_posterior cpiter.

post.verbosity Pass to hdp_posterior verbosity.

CPU. cores Number of CPUs to use; there is no point in making this larger than num. child. process.

num.child.process

Number of posterior sampling chains; can set to 1 for testing.

Value

Invisibly, the clean chlist (output of the hdp_posterior calls). This is a list of hdpSampleChain-class objects.

PlotExposure Plot a single exposure plot

Description

Plot a single exposure plot

Usage

```
PlotExposure(exposures, plot.proportion = FALSE, plot.legend = TRUE, ...)
```

Arguments

exposures Exposures as a numerical matrix (or data frame) with signatures in rows and

samples in columns. Rownames are taken as the signature names and column names are taken as the sample IDs. If you want exp sorted from largest to smallest use SortExp. Do not use column names that start with multiple underscores. The exposures will often be mutation counts, but could also be e.g. mutations

per megabase.

plot.proportion

Plot exposure proportions rather than counts.

plot.legend If TRUE plot a legend.

... Parameters passed to barplot.

8 PrepInit

PlotExposureByRange Plot exposures in multiple plots each with samples.	a manageable number of
---	------------------------

Description

Plot exposures in multiple plots each with a manageable number of samples.

Usage

```
PlotExposureByRange(exposures, num.per.line = 30, plot.proportion = FALSE, ...)
```

Arguments

exposures

Exposures as a numerical matrix (or data.frame) with signatures in rows and samples in columns. Rownames are taken as the signature names and column names are taken as the sample IDs. If you want exposures sorted from largest to smallest use SortExp. Do not use column names that start with multiple underscores. The exposures will often be mutation counts, but could also be e.g. mutations per megabase.

num.per.line

Number of samples to show in each plot.

plot.proportion

Plot exposure proportions rather than counts.

. . .

Other arguments passed to PlotExposure. If ylab is not included, it defaults to a value depending on plot.proportion. If col is not supplied the function tries to do something reasonable.

PrepInit

Initialize hdp object Allocate process index for hdp initialization. Prepare for hdp_init

Description

Initialize hdp object Allocate process index for hdp initialization. Prepare for hdp_init

Usage

```
PrepInit(multi.types, input.catalog, verbose, K.guess)
```

Arguments

```
multi.types TODO
input.catalog TODO
verbose TODO
K.guess TODO
```

RunHdpParallel 9

RunHdpParallel	Extract mutational signatures and optionally compare them to existing
	signatures and exposures.

Description

Extract mutational signatures and optionally compare them to existing signatures and exposures.

Usage

```
RunHdpParallel(
  input.catalog,
  seedNumber = 1,
 K.guess,
 multi.types = FALSE,
  verbose = TRUE,
 post.burnin = 4000,
 post.n = 50,
  post.space = 50,
 post.cpiter = 3,
 post.verbosity = 0,
 CPU.cores = 1,
  num.child.process = 4,
  cos.merge = 0.9,
 min.sample = 1,
 ground.truth.sig = NULL,
 ground.truth.exp = NULL,
 overwrite = TRUE,
  out.dir = NULL
)
```

Arguments

input.catalog	Input spectra	catalog as a ma	trix or in	ICAMS format.

seedNumber An integer that is used to generate separate random seeds for each call to dp_activate,

and each call of hdp_posterior; please see the code on how this is done. But repeated calls with same value of seedNumber and other inputs should produce

the same results.

K. guess Initial guess of the number of "raw clusters", which may be larger than the number of signatures (sometimes called "components" in the hdpy code); passed to

ber of signatures (sometimes called "components" in the hdpx code); passed to

dp_activate as initcc.

multi.types A logical scalar or a character vector. If FALSE, The HDP analysis will regard all input spectra as one tumor type.

If TRUE, the HDP analysis will infer tumor types based on the string before "::" in their names. e.g. tumor type for "SA.Syn.Ovary-AdenoCA::S.500" would be "SA.Syn.Ovary-AdenoCA"

If multi.types is a character vector, then it should be of the same length as the number of columns in input.catalog, and each value is the name of the tumor

type of the corresponding column in input.catalog, e.g. c("SA.Syn.Ovary-AdenoCA", "SA.Syn.O

10 SetupAndPosterior

verbose If TRUE then message progress information.

post.burnin Pass to hdp_posterior burnin.

post.n Pass to hdp_posterior n.

post.space Pass to hdp_posterior space.

post.cpiter Pass to hdp_posterior cpiter.

 $post.verbosity \ \ Pass\ to\ hdp_posterior\ verbosity.$

CPU. cores Number of CPUs to use; there is no point in making this larger than num. child.process.

num.child.process

Number of posterior sampling chains; can set to 1 for testing.

cos.merge The cosine similarity threshold for merging raw clusters from the posterior sam-

pling chains into "components" i.e. signatures; passed to hdp_extract_components.

min.sample A "component" (i.e. signature) must have at least this many samples; passed to

hdp_extract_components.

ground.truth.sig

Optional. Either a string with the path to file with ground truth signatures or and ICAMS catalog with the ground truth signatures. These are the signatures used to construct the ground truth spectra.

ground.truth.exp

Optional.Ground truth exposure matrix or path to file with ground truth expo-

sures. If NULL skip checks that need this information.

overwrite If TRUE, overwrite out.dir if it is non-NULL and exists.

out.dir If not NULL, output including data and plots will be saved in out.dir.

Value

Invisibly, a list with the following elements:

signature The extracted signature profiles as a matrix; rows are mutation types, columns are samples (e.g. tumors).

exposure The inferred exposures as a matrix of mutation counts; rows are signatures, columns are samples (e.g. tumors).

multi.chains A hdpSampleMulti-class object. This object has the method chains which returns a list of hdpSampleChain-class objects. Each of these sample chains objects has a method final_hdpState (actually the methods seems to be just hdp) that returns the hdpState from which it was generated.

SetupAndPosterior

Generate an HDP Gibbs sampling chain from a spectra catalog.

Description

Generate an HDP Gibbs sampling chain from a spectra catalog.

SetupAndPosterior 11

Usage

```
SetupAndPosterior(
  input.catalog,
  seedNumber = 1,
  K.guess,
  multi.types = FALSE,
  verbose = TRUE,
  post.burnin = 4000,
  post.n = 50,
  post.space = 50,
  post.cpiter = 3,
  post.verbosity = 0
)
```

Arguments

input.catalog Input spectra catalog as a matrix or in ICAMS format.

seedNumber An integer that is used to generate separate random seeds for each call to dp_activate,

and each call of hdp_posterior; please see the code on how this is done. But repeated calls with same value of seedNumber and other inputs should produce

the same results.

K. guess Initial guess of the number of "raw clusters", which may be larger than the num-

ber of signatures (sometimes called "components" in the hdpx code); passed to

dp_activate as initcc.

multi.types A logical scalar or a character vector. If FALSE, The HDP analysis will regard

all input spectra as one tumor type.

If TRUE, the HDP analysis will infer tumor types based on the string before "::" in their names. e.g. tumor type for "SA.Syn.Ovary-AdenoCA::S.500" would be

"SA.Syn.Ovary-AdenoCA"

If multi.types is a character vector, then it should be of the same length as the

number of columns in input.catalog, and each value is the name of the tumor type of the corresponding column in input.catalog, e.g. c("SA.Syn.Ovary-AdenoCA", "SA.Syn.O

verbose If TRUE then message progress information.

post.burnin Pass to hdp_posterior burnin.

post.n Pass to hdp_posterior n.

post.space Pass to hdp_posterior space.

post.cpiter Pass to hdp_posterior cpiter.

post.verbosity Pass to hdp_posterior verbosity.

Value

Invisibly, an hdpSampleChain-class object as returned from hdp_posterior.

SortExp

SortExp	Sort columns of an exposure matrix from largest to smaller (or vice versa).

Description

Sort columns of an exposure matrix from largest to smaller (or vice versa).

Usage

```
SortExp(exposures, decreasing = TRUE)
```

Arguments

exposures The exposures to sort; columns are samples.

 $\label{eq:continuous_decreasing} \qquad \quad \text{If TRUE sort from largest to smallest.}$

Index

```
{\tt AnalyzeAndPlotretval}, {\tt 2}
barplot, 7
chains, 3, 4, 6, 10
ChainsDiagnosticPlot, 2
CombinePosteriorChains, 3
dp_activate, 5, 6, 9, 11
ExtendIterationAndPosterior, 4
final_hdpState, 3, 4, 6, 10
hdp_extract_components, 4, 5, 10
hdp_posterior, 5-7, 9-11
ICAMS, 2, 3, 5, 6, 9–11
{\it Multiple Setup And Posterior}, {\it 6}
PlotExposure, 7, 8
{\tt PlotExposureByRange, 8}
PrepInit, 8
{\sf RunHdpParallel}, \textcolor{red}{9}
{\it SetupAndPosterior}, 10
SortExp, 7, 8, 12
```