Quiz 0 - Results ×

Attempt 1 of 1

Written Jan 22, 2024 5:33 PM - Jan 22, 2024 6:28 PM

Released Jan 24, 2024 2:00 PM

Attempt Score 58.2 / 70 - B

Overall Grade (Highest Attempt) 58.2 / 70 - B

Background Questionnaire

The first 4 survey questions are completion-based. All answer will receive full credit.

Question 1 1 / 1 point

Have you taken CSCI-UA 473 Fundamental of Machine Learning (previously named Introduction to Machine Learning) at NYU?

Yes, I've taken it
Not yet, I am taking it this semester
No, I will take it in the future

No, I don't plan to take it

No, I've taken another equivalent course

Question 2 1 / 1 point

Rate your level of knowledge in Machine Learning in general: (5 is highest)

5

 \bigcirc 3

 \bigcirc 2

		1
)	Ш
(

Question 3 3 / 3 points

Select the following Machine Learning topics which you are familiar with. Don't worry if you are unfamiliar with certain topics, we will adjust our schedule based on your answers:

×		Linear	Regression
---	--	--------	------------

\chi 🦳 Regularization

χ 🦳 Logistic Regression

🙀 🦳 Bias-variance tradeoff, Overfitting and Underfitting

★ Cross-validation

Myperparameter Optimization

\chi 🦳 Feature Engineering

Model performance evaluation

Perceptron

Gradient Descent

Training Neural Network in Tensorflow/Pytorch

✓ Convolutional Neural Networks

✓ Recurrent Neural Networks

💢 🦳 Reinforcement Learning

Question 4 1 / 1 point

Besides the topics listed in the syllabus and schedule posted on Brightspace, are there any other relevevnt topics that you are interested in and would like the course to cover more?

Feel free to enter "N/A" if you do not want to provide any response

N/A

The correct answer is not displayed for Written Response type questions.

Quiz 0

Question 5 0 / 1 point

You've just finished training a decision tree for spam classification, and it is getting abnormally bad performance on both your training and test sets. You know that

your implementation has no bugs, so what could be causing the problem?
Your decision trees are too shallow
You need to increase the learning rate
You are overfitting
None of the above
Question 6 0 / 1 point
Which of the following is true in Python?
A) If data is an ndarray, the index must be the same length as data.
B) Series is a one-dimensional labeled array capable of holding any data type.
C) Both A and B
O) None of the above
Question 7 1 / 1 point
Question 7 Identify the type of learning in which labeled training data is used.
Identify the type of learning in which labeled training data is used.
Identify the type of learning in which labeled training data is used. Supervised learning
Identify the type of learning in which labeled training data is used. Supervised learning Semi unsupervised learning
Identify the type of learning in which labeled training data is used. Supervised learning Semi unsupervised learning Reinforcement learning
Identify the type of learning in which labeled training data is used. Supervised learning Semi unsupervised learning Reinforcement learning Unsupervised learning
Identify the type of learning in which labeled training data is used. Supervised learning Semi unsupervised learning Reinforcement learning Unsupervised learning Question 8 0/1 point In building a linear regression model for a particular data set, you observe the coefficient of one of the features having a relatively high negative value. This
Identify the type of learning in which labeled training data is used. Supervised learning Semi unsupervised learning Reinforcement learning Unsupervised learning Question 8 0 / 1 point In building a linear regression model for a particular data set, you observe the coefficient of one of the features having a relatively high negative value. This suggests that

None of the above	
Question 9	1 / 1 point
The prior goal of the unsupervised learning model is to determine the	
✓ Data patterns	
Classification task	
Discuss	
Regression task	
Question 10	1 / 1 point
The error function most suited for gradient descent using logistic regres	ssion is
The number of mistakes.	
✓ The cross-entropy function.	
The squared error.	
The entropy function.	
Question 11	1 / 1 point
Which of the following is NOT a preprocessing step in Scikit-learn?	
✓ Regularization	
Encoding	
Scaling	
Imputation	
Question 12	0 / 1 point
Which of the following options can be used to get global minima in K-m Algorithm?	ieans
💢 🔵 Try to run an algorithm for different centroid initialization	
Adjust the number of iterations	
Find out the optimal number of clusters	
→ △ All of the above	

Question 17

Question 13 1 / 1 point	t
What is the purpose of the GridSearchCV function in Scikit-learn?	
✓ To tune the hyperparameters of a model	
To preprocess the data for modeling	
To evaluate the performance of a model	
To select the best features for modeling	
Question 14 1 / 1 point	t
Logistic regression is used when you want to:	
Predict a continuous variable from dichotomous or continuous variables.	
✔ Predict a dichotomous variable from continuous or dichotomous variables.	
Predict any categorical variable from several other categorical variables.	
Predict a continuous variable from dichotomous variables.	
Question 15 1 / 1 point	t
Predicting whether it will rain or not tomorrow evening at a particular time is a type of problem.	_
Predicting whether it will rain or not tomorrow evening at a particular time is a type of	_
Predicting whether it will rain or not tomorrow evening at a particular time is a type ofproblem.	_
Predicting whether it will rain or not tomorrow evening at a particular time is a type of problem. Classification	_
Predicting whether it will rain or not tomorrow evening at a particular time is a type of problem. Classification Regression	_
Predicting whether it will rain or not tomorrow evening at a particular time is a type of problem. Classification Regression Unsupervised learning	
Predicting whether it will rain or not tomorrow evening at a particular time is a type of problem. Classification Regression Unsupervised learning All of the above	
Predicting whether it will rain or not tomorrow evening at a particular time is a type of problem. Classification Regression Unsupervised learning All of the above Question 16 1 / 1 point Which evaluation metrics can be used to evaluate a model while modeling a	
Predicting whether it will rain or not tomorrow evening at a particular time is a type of problem. Classification Regression Unsupervised learning All of the above Question 16 1 / 1 point Which evaluation metrics can be used to evaluate a model while modeling a continuous output variable?	
Predicting whether it will rain or not tomorrow evening at a particular time is a type of problem. Classification Regression Unsupervised learning All of the above Question 16 1 / 1 point Which evaluation metrics can be used to evaluate a model while modeling a continuous output variable? Accuracy	

 $https://brightspace.nyu.edu/d2l/lms/quizzing/user/quiz_submissions_attempt.d2l?isprv=\&qi=352912\&ai=3231908\&isInPopup=0\&cfql=0\&fromQB=0\&fromS...$

0 / 1 point

Adding a non-important feature to a linear regression model may result in.
a) Increase in R-square
b) Decrease in R-square
c) Both (a) and (b)
d) None of the above
Question 18 1.2 / 2 points
Which of the following is not supervised learning?
⇒ X Singular Value Decomposition (SVD)
✓ Linear Regression
✓ SVM
→ ✓ Principal Component Analysis (PCA)
✓ Decision Tree
Question 19 1 / 1 point
Given a large dataset of medical records from patients suffering from heart disease, try to learn whether there might be different clusters of such patients for which we might tailor separate treatments. What kind of learning problem is this?
a) Supervised learning
✓ b) Unsupervised learning
c) Both (a) and (b)
d) Neither (a) nor (b)

Question 20 1 / 1 point

The K-means algorithm:

4	/20	/24	5.0	n	DA	Λ
4	/ / 1	1/24	2.0	19	PN	И

✓ Minimizes the within-class variance for a given number of clusters
\bigcirc Has the smallest value of the objective function when K = 1
Converges to the global optimum if and only if the initial means are chosen as some of the samples themselves
Requires the dimension of the feature space to be no bigger than the number of samples
Question 21 1 / 1 point
In Pandas, the key data structure is called?
✓ DataFrame
☐ Table
Keyframe
Tibble
Question 22 0 / 1 point
When performing regression or classification, which of the following is the correct way to preprocess the data?
Normalize the data -> PCA -> training
PCA -> normalize PCA output -> training
Normalize the data -> PCA -> normalize PCA output -> training
All of the above
Question 23 1 / 1 point
Consider that you are analyzing an extensive collection of fraudulent credit card transactions to discover if there are sub-types of these transactions. Which of the following learning methods best describes the given learning problem?
Supervised Learning
Semi-supervised learning
Reinforcement Learning
✓ Unsupervised Learning

Question 24 1 / 1 point

Logistic regression assumes a:
Linear relationship between continuous predictor variables and the logit of the outcome variable.
Linear relationship between continuous predictor variables.
Linear relationship between continuous predictor variables and the outcome variable.
Linear relationship between observations.
Question 25 1 / 1 poin
Which of the following methods prevent a model from overfitting to the training set?
Dropout
 Early stopping
Data augmentation
✓ All of these
Question 26 1 / 2 points
Which of the following methods can achieve zero training error on any linearly separable dataset?
Logistic regression
✓ 15-nearest neighbors
→ ✓ Perceptron
⇒ X Decision tree
Question 27 1 / 1 poin
Which of the following is/are common uses of RNNs?
Provide a caption for images
Detect fraudulent credit card transaction
Businesses help securities traders generate analytic reports

Question 28 1 / 1 point

✓ All of the above

Which, if any, of the following propositions is true about fully-connected networks (FCNN)?	neural
In an FCNN, there are connections between neurons of the same lay	yer.
An FCNN could only have linear activations.	
In an FCNN, the most common weight initialization scheme is zero initialization, because it leads to faster and more robust training.	
✓ None of the above	
Question 29	l / 1 point
In which cases will K-means clustering fail to give good results?	
Data points with outliers	
Data points with different densities	
Data points with nonconvex shapes	
✓ All of the above	
Question 30) / 1 point
In linear regression, we try to the of the model to identify the	e line of
best fit.	
Maximize; least square errors	
Maximize; least square errors	
Maximize; least square errors Maximize; residuals	
Maximize; least square errorsMaximize; residualsMinimize; residuals	
 Maximize; least square errors Maximize; residuals Minimize; residuals Minimize; least square errors None of the above) / 1 point
 Maximize; least square errors Maximize; residuals Minimize; residuals Minimize; least square errors None of the above 	
 Maximize; least square errors Maximize; residuals Minimize; residuals Minimize; least square errors None of the above Question 31	
 Maximize; least square errors Maximize; residuals Minimize; residuals Minimize; least square errors None of the above Question 31 What is the disadvantage of decision trees?	
 Maximize; least square errors Maximize; residuals Minimize; residuals Minimize; least square errors None of the above Question 31 What is the disadvantage of decision trees? Factor analysis 	

Question 32 1 / 1 point

Which of the following is a widely used and effective machine learning algorithm based on the idea of bagging?
Regression
O Decision Tree
Classification
Random Forest
Question 33 1 / 1 point
Lasso can be interpreted as least-squares linear regression where
✓ Weights are regularized with the L1 norm
The weights have a Gaussian prior
Weights are regularized with the L2 norm
The solution algorithm is simpler
Question 34 1 / 1 point
Which of the following functions can be used as an activation function in the output layer if we wish to predict the probabilities of n classes (p1, p2, pk) such that the sum of p over all n equals to 1?
Sigmoid
Tanh
☐ Tanh☐ ReLu
ReLu
ReLu Softmax
ReLu Softmax Question 35 1/1 point
ReLu Softmax Question 35 1 / 1 point What does a gradient descent algorithm do?

()	DI	NIO	
	וט	Nor	ıe

Q

Question 36 0.5 / 1.5	5 points
Which of the following statement(s) is true for Gradient Descent (GD) and Stochastic Gradient Descent (SGD)?	
In GD and SGD, you update a set of parameters in an iterative man minimize the error function.	ner to
In SGD, you must run through all the samples in your training set for single parameter update in each iteration.	or a
In GD, you either use the entire data points or a subset of training of update a parameter in each iteration.	data to
Question 37	1 point
Real-time decisions, Game AI, Learning Tasks, Skill acquisition, and Robot Na are applications of	vigation
✓ Reinforcement Learning	
Supervised Learning: Classification	
Supervised Learning: Regression	
 Unsupervised Learning 	
None of the above	
Question 38	1 point
Which of the following is NOT a classification metric used in Scikit-learn?	
F1-score	
Recall	
✓ R-squared	
Precision	
	· • -

Question 39 1 / 1 point

Which of the following is the correct order for the Convolutional Neural Network operation?

Convolution -> max pooling -> flattening -> full connection

Max pooling -> convolution -> flattening -> full connection	
Flattening -> max pooling -> convolution -> full connection	
None of them	
Question 40	1 / 1 point
What would you do in PCA to get the same projection as SVD?	
✓ Transform data to zero mean	
Transform data to zero median	
Not possible	
None of these	
Question 41	1 / 1 point
Netflix maintains a dataset of its members' information that includes the and watch history. Now, based on these records, the company wants to members into seven groups so that it can push different ads to them. W following methods should Netflix use to get the groups?	divide the
◯ k-nn	
Convolutional neural network	
✓ k-means	
_ Linear regression	
Question 42	1 / 1 point
Suppose we have a regularized linear regression model. What is the effection increasing $\boldsymbol{\lambda}$ on bias and variance?	ect of
Decreases bias, increases variance	
Decreases bias, decreases variance	
Increases bias, increases variance	
✓ Increases bias, decreases variance	
	4 / 4

Question 43 1 / 1 point

Which of the following is a method for evaluating the performance of a classification model in Scikit-learn?

0/24		

, 5:09 PM	Yinao Larry Znong - Adv	ranced Topics in Data Science, Section 004 - N Y	U
✓ Acci	uracy		
Roo	t mean squared error (RMSE)		
R-sc	quared		
Mea	in squared error (MSE)		
Question 44	ļ		3.5 / 3.5 points
Match the	purpose of the following metho	ods in Scikit-learn:	
√ _6_	To compute the probability estimates of the class labels		
✓ _1_	To train a model using a given dataset	1 £;±/)	
✓ 2	To make predictions using a trained model	1. fit() 2. predict()	
✓ <u>7</u>	To transform the predicted values back to their original scale	 score() plot() transform() 	
√ _3_	To evaluate the performance of a model	6. predict_proba()7. inverse_transform()	
√ _ <u>5</u> _	To preprocess the data for modeling	7. mverse_cransronm()	
✓ _ <u>4</u> _	To visualize the data using a plot		
Question 45	5		1 / 1 point
Which of t	he following is a disadvantage o	of the k-fold cross-validatio	n method?
This	usually does not take longer tir	me to compute	
✓ The	training algorithm has to rerun	from scratch k times	
The	variance of the resulting estima	te is reduced as k is increas	sed.
Red	uced bias		
Question 46	5		2 / 2 points
	bias and variance, which of the low' are relative to the ideal mo		rue? (Here

Models that underfit have a low variance

✓ Models that overfit have a low bias.	
✓ Models that overfit have a high bias.	
✓ Models that underfit have a high variance.	
Question 47	/ 1 point
Which of the following neural network models has a shared weight structu	re?
A) Recurrent Neural Network	
B) Convolution Neural Network	
✓ C) Both A and B	
O D) None	
Question 48	/ 1 point
Which of the following Numpy operations are correct?	
Mathematical and logical operations on arrays.	
Fourier transforms and routines for shape manipulation.	
Operations related to linear algebra.	
✓ All of the above	
Question 49	/ 1 point
Consider a point that is correctly classified and distant from the decision be Which of the following methods will be unaffected by this point?	oundary.
✓ SVM	
 Logistic regression 	
Nearest neighbor	
Linear regression	
Question 50	/ 1 point

You trained a binary classifier model which gives very high accuracy on the training

data, but much lower accuracy on validation data. Which of the following mabe true?	ay NOT
The training and testing examples are sampled from different distribut	tions.
✓ This is an instance of underfitting.	
This is an instance of overfitting.	
The training was not well regularized.	
Question 51 1/	1 point
Which of the following is a method for selecting the best hyperparameters for model in Scikit-learn?	or a
Grid search	
Random search	
Bayesian optimization	
✓ All of the above	
Question 52	1 point
Question 52 Which of the following are correct features of DataFrame?	1 point
	1 point
Which of the following are correct features of DataFrame?	1 point
Which of the following are correct features of DataFrame? Potentially columns are of different types	1 point
Which of the following are correct features of DataFrame? Potentially columns are of different types Can Perform Arithmetic operations on rows and columns	1 point
Which of the following are correct features of DataFrame? ○ Potentially columns are of different types ○ Can Perform Arithmetic operations on rows and columns ○ Labeled axes (rows and columns) ✓ All of the above	1 point 1 point
Which of the following are correct features of DataFrame? ○ Potentially columns are of different types ○ Can Perform Arithmetic operations on rows and columns ○ Labeled axes (rows and columns) ✓ All of the above	1 point
Which of the following are correct features of DataFrame? Potentially columns are of different types Can Perform Arithmetic operations on rows and columns Labeled axes (rows and columns) All of the above Question 53 1/ refers to a model that can neither model the training data nor generalize	1 point
Which of the following are correct features of DataFrame? Potentially columns are of different types Can Perform Arithmetic operations on rows and columns Labeled axes (rows and columns) All of the above Question 53 1/ refers to a model that can neither model the training data nor generalized new data.	1 point
Which of the following are correct features of DataFrame? Potentially columns are of different types Can Perform Arithmetic operations on rows and columns Labeled axes (rows and columns) All of the above Question 53 1/ refers to a model that can neither model the training data nor generalized new data. good fitting	1 point

Question 54 1 / 1 point

Given a Neural Net with N input nodes, no hidden layers, one output node, with

Entropy Loss and Sigmoid Activation Functions, which of the following a (with the proper hyper-parameters and initialization) can be used to find optimum?	
Stochastic Gradient Descent	
Mini-Batch Gradient Descent	
Batch Gradient Descent	
✓ All of the above	
Question 55	1 / 1 point
Which of the following are the most widely used metrics and tools to as classification model?	ssess a
Confusion matrix	
Cost-sensitive accuracy	
Area under the ROC curve	
✓ All of the above	
Question 56	1 / 1 point
Which of the following can be data in Pandas?	
a dictionary	
an ndarray	
a scalar value	
✓ All of the above	
Question 57	1 / 1 point
The most important object defined in NumPy is an N-dimensional array	type called?
nd_array	
✓ ndarray	
narray	

Question 58 1 / 1 point

darray

In many real-world classification problems, the datasets are often nonlinearly separable. When using a neural network to solve such problems, we need to add nonlinearity to the network. Which of the following will add nonlinearity to the network?

✓ using a rectified linear function as an activation function
adding a hidden layer
removing a hidden layer
using a linear function as the activation function
Question 59 1 / 2 points
Which of the following can ONLY be used when training data are linearly separable?
✓ Logistic Regression
→ ✓ Hard-margin SVM
✓ Soft margin SVM
⇒ × Perceptron
Question 60 1 / 1 point
For an image classification task, which of the following deep learning architectures is best suited?
Recurrent Neural Network
Multi-Layer Perceptron
✓ Convolution Neural Network
All of the above
Question 61 1 / 1 point
In Reinforcement Learning, ϵ -greedy algorithm describes the tradeoff between
✓ exploration and exploitation
agent and environment
action and reward
the agent's action and the environment's state

Question 62 0 / 0.0001 points

Please select all the time slots you are eligible for attending OH. Note that for project discussion in the future, you will have to attend OH for advisement.

- 🛶 χ 🦳 Mondays 2 4 PM
- → ✓ Tuesdays 10 AM 12 PM
- → ✓ Tuesdays 12 2 PM
- → ✓ Tuesdays 2 4 PM
- 🛶 \chi 🦳 Wednesdays 10 AM 12 PM
- ⇒ ★ Wednesdays 12 2 PM
- 📦 💢 🦳 Wednesdays 2 4 PM
- → ✓ Thursdays 12 2 PM
- Thursdays 2 4 PM
- → ✓ Fridays 10 AM 12 PM

Done