Aula de exercícios

Prof. Dr. Vinícius Wasques

Departamento de Matemática

Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP.

https://viniciuswasques.github.io/home/

email: viniciuswasques@gmail.com

Dúvida 1: Como a lei da transformação linear pode ser obtida através da matriz de transformação?

Veja que a partir da matriz de transformação podemos obter a lei da transformação linear, da seguinte forma.

Seja
$$[T]_B = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$
 a matriz de transformação T associada a base canônica.

Assim, escrevendo o vetor (x, y) na forma matricial $[x]_{2\times 1} = \begin{bmatrix} x \\ y \end{bmatrix}$, obtemos

$$[T]_B[x]_{2\times 1} = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x + 0.y \\ 1.x + 1.y \end{bmatrix} = \begin{bmatrix} 2x \\ x + y \end{bmatrix}$$

Logo, T(x, y) = (2x, x + y).

Dúvida 2: Por que aparece a matriz identidade na obtenção dos autovalores?

Considere a seguinte situação:

Seja $\begin{bmatrix} x \\ y \end{bmatrix}$ um vetor na forma matricial. Então

$$3\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x \\ 3y \end{bmatrix}$$

Por outro lado,

$$3I \begin{bmatrix} x \\ y \end{bmatrix} = 3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x \\ 3y \end{bmatrix}$$

Portanto, concluímos que

$$3\begin{bmatrix} x \\ y \end{bmatrix} = 3I\begin{bmatrix} x \\ y \end{bmatrix}$$

De um modo geral, tomando um valor λ qualquer e um vetor u, em sua forma matricial, temos que $\lambda u = \lambda I u$. A fim de tornar coerente a conta $[T]_B u = \lambda u$, substituímos λu por $\lambda I u$.

Perceba que se não fizermos essa reformulação, teríamos que efetuar a seguinte conta no meio do processo $[T]_B - \lambda$. Como $[T]_B$ é uma matriz quadrada de ordem $n \geq 1$ e $\lambda \in R$, então não é possível realizar tal operação. Por isso a substituição se faz necessária.

Dúvida 3: Fiz o processo a seguir para obtenção de base, mas me deparei com um conjunto L.D.

"Seja
$$T(x,y,z)=(x,y,0)$$
. Como $(x,y,0)=x(1,0,0)+y(0,1,0)+z(0,0,0)$, tome $B=\{(1,0,0),(0,1,0),(0,0,0)\}$."

Por mais que o raciocínio utilizado acima não esteja errado, alguns levantamentos devem ser feitos:

Primeiro é importante discutirmos a importância do vetor (0,0,0) no sentido de gerador. Perceba que o único vetor que (0,0,0) gera é ele mesmo, pois:

$$(0,0,0) = \lambda(0,0,0)$$

para qualquer $\lambda \in R$.

Isso mostra a irrelevância do vetor nulo nesse sentido. Por outro lado, note que o vetor (1,0,0) tem contribuição, pois ele gera a uma lista de outros vetores:

$$[(1,0,0)] = \{(1,0,0), (2,0,0), (3,0,0), \ldots\}$$

Dito isso, o vetor nulo pode ser descartado no sentido de gerador, ao contrário dos vetores não nulos.

A segunda observação é no sentido de (in)dependência. Observe que qualquer conjunto que contenha o vetor nulo é sempre L.D. Por exemplo, considere o conjunto $\{(1,0,0),(0,1,0),(0,0,0)\}$. Podemos escrever a seguinte combinação

$$0(1,0,0) + 0(0,1,0) + 2(0,0,0) = (0,0,0)$$

que é verdadeira.

Perceba que nem todos os escalares são nulos, e mais, a combinação linear entre eles resulta no vetor nulo.

O mesmo raciocínio pode ser feito para qualquer conjunto de vetores.

Portanto, a inclusão do vetor nulo ao conjunto B compromete a propriedade de independência entre os vetores de uma base.

Para contornar esse problema, não incluímos o vetor nulo no conjunto. Dessa forma obtemos o seguinte:

$$(x, y, 0) = x(1, 0, 0) + y(0, 1, 0)$$

e portanto, tomamos $B = \{(1,0,0), (0,1,0)\}$ como sendo a base da imagem da transformação linear T.

Observação: Veja que como encontramos apenas dois vetores na base da imagem, e como $dim(R^3)=3$, então a transformação linear não é sobrejetora. Consequentemente, também não é injetora.

Exercício: Determine os autopares da seguinte operador linear $T: R^2 \to R^2$ dada por T(x,y)=(x,2x+y).

Seja $B = \{(1,0),(0,1)\}$ a base canônica de R^2 . Assim, temos que a matriz de transformação é dada por:

$$T(1,0) = (1,2) = 1.(1,0) + 2.(0,1)$$

$$T(0,1) = (0,1) = 0.(1,0) + 1.(0,1)$$

Logo, a matriz de transformação com respeito a base B é dada por

$$[T]_B = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

1) Subtrair λ dos elementos que se encontram na diagonal. Isto é,

$$\begin{bmatrix} 1 - \lambda & 0 \\ 2 & 1 - \lambda \end{bmatrix}$$

2) Calcular o determinante da matriz e igualar a zero. Isto é,

$$\begin{vmatrix} 1 - \lambda & 0 \\ 2 & 1 - \lambda \end{vmatrix} = 0 \implies (1 - \lambda)(1 - \lambda) - (2(0)) = 0 \implies \lambda^2 - 2\lambda + 1 = 0$$

3) Determinar as raízes do polinômio característico.

$$\Delta = b^2 - 4ac = (-2)^2 - 4(1)(1) = 4 - 4 = 0$$

Assim,

$$\lambda = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-(-2) \pm \sqrt{0}}{2(1)} = \frac{2}{2} = 1$$

Portanto, $\lambda = 1$ é um autovalor da trasnformação T.

4) Determinar os autovetores que estão associados aos autovalores encontrados. Substituir na matriz de transformação os valores de λ . Obtemos:

Para $\lambda = 1$,

$$\begin{bmatrix} 1-1 & 0 \\ 2 & 1-1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Que é equivalente ao seguinte sistema linear:

$$\begin{cases} 0x + 0y = 0 \\ 2x + 0y = 0 \end{cases} \Rightarrow \begin{cases} 0 = 0 \\ 2x = 0 \end{cases}$$

Portanto, x = 0. Logo, os autovetores que estão associados a este autovalor são da forma (0, y), cujo gerador é dado por y(0, 1), isto é, $\{(0, 1)\}$.

Sendo assim, o autopar é dado por (1, (0, 1)).

Exercício: Determine os autopares da seguinte operador linear $T: R^3 \to R^3$ dada por T(x,y,z)=(3x,4y,-z).

Seja $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ a base canônica de R^3 . Assim, temos que a matriz de transformação é dada por:

$$T(1,0,0) = (3,0,0) = 3(1,0,0) + 0(0,1,0) + 0(0,0,1)$$

$$T(0,1,0) = (0,4,0) = 0(1,0,0) + 4(0,1,0) + 0(0,0,1)$$

$$T(0,0,1) = (0,0,-1) = 0(1,0,0) + 0(0,1,0) + (-1)(0,0,1)$$

Logo, a matriz de transformação com respeito a base B é dada por

$$[T]_B = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

1) Subtrair λ dos elementos que se encontram na diagonal. Isto é,

$$\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 4 - \lambda & 0 \\ 0 & 0 & -1 - \lambda \end{bmatrix}$$

2) Calcular o determinante da matriz e igualar a zero. Isto é,

$$\begin{vmatrix} 3 - \lambda & 0 & 0 \\ 0 & 4 - \lambda & 0 \\ 0 & 0 & -1 - \lambda \end{vmatrix} = 0 \implies (3 - \lambda)(4 - \lambda)(-1 - \lambda) = 0$$

3) Determinar as raízes do polinômio característico.

Para que $(3 - \lambda)(4 - \lambda)(-1 - \lambda) = 0$, devemos ter

$$3 - \lambda = 0$$
 ou $4 - \lambda = 0$ ou $-1 - \lambda = 0$

Portanto, os autovalores de T são $\lambda=3$, $\lambda=4$ e $\lambda=-1$.

4) Determinar os autovetores que estão associados aos autovalores encontrados. Substituir na matriz de transformação os valores de λ . Obtemos:

Para $\lambda = 3$,

$$\begin{bmatrix} 3-3 & 0 & 0 \\ 0 & 4-3 & 0 \\ 0 & 0 & -1-3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Que é equivalente ao seguinte sistema linear:

$$\begin{cases} 0x + 0y + 0z = 0 \\ 0x + 1y + 0z = 0 \\ 0x + 0y - 4z = 0 \end{cases} \Rightarrow \begin{cases} 0 = 0 \\ y = 0 \\ -4z = 0 \end{cases}$$

Portanto, y=0 e z=0. Logo, os autovetores que estão associados a este autovalor são da forma (x,0,0), cujo gerador é dado por x(1,0,0), isto é, $\{(1,0,0)\}$.

Sendo assim, o autopar é dado por (3, (1, 0, 0)).

Para $\lambda = 4$,

$$\begin{bmatrix} 3 - 4 & 0 & 0 \\ 0 & 4 - 4 & 0 \\ 0 & 0 & -1 - 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Que é equivalente ao seguinte sistema linear:

$$\begin{cases}
-x + 0y + 0z = 0 \\
0x + 0y + 0z = 0 \\
0x + 0y - 5z = 0
\end{cases} \Rightarrow \begin{cases}
-x = 0 \\
0 = 0 \\
-5z = 0
\end{cases}$$

Portanto, x=0 e z=0. Logo, os autovetores que estão associados a este autovalor são da forma (0,y,0), cujo gerador é dado por y(0,1,0), isto é, $\{(0,1,0)\}$.

Sendo assim, o autopar é dado por (4, (0, 1, 0)).

Para
$$\lambda = -1$$
,

$$\begin{bmatrix} 3 - (-1) & 0 & 0 \\ 0 & 4 - (-1) & 0 \\ 0 & 0 & -1 - (-1) \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Que é equivalente ao seguinte sistema linear:

$$\begin{cases} 4x + 0y + 0z = 0 \\ 0x + 5y + 0z = 0 \\ 0x + 0y + 0z = 0 \end{cases} \Rightarrow \begin{cases} 4x = 0 \\ 5y = 0 \\ 0 = 0 \end{cases}$$

Portanto, x=0 e y=0. Logo, os autovetores que estão associados a este autovalor são da forma (0,0,z), cujo gerador é dado por z(0,0,1), isto é, $\{(0,0,1)\}$.

Sendo assim, o autopar é dado por (-1, (0, 0, 1)).