# 光栅衍射实验报告

鲁睿 未央软-11 2021012539 2022.10.3

**摘要:** 本实验使用分光计和光栅观察汞灯光谱,推导误差限以选取合适的衍射级数,寻找谱线并在分光计上读数。基于光栅方程,使用垂直入射法计算光栅常数,并在此基础上使用三种方法(垂直入射、斜入射、最小偏向角)测定波长,并与约定真值比较。实验结果表明,分光计调整符合要求,波长测量误差小于1%。

关键词: 衍射光栅; 分光计; 波长; 最小偏向角

## 目录

### 1 实验原理

- 1.1 光栅方程
- 1.2 最小偏向角
- 1.3 偏心差消除
- 2 实验步骤
- 3 实验内容
  - 3.1 衍射级推导
  - 3.2 光栅常数测定
  - 3.3 波长测定
    - 3.3.1 垂直入射法
    - 3.3.2 斜入射法
    - 3.3.3 最小偏向角法

#### 4 实验总结

- 4.1 误差分析
- 4.2 范式分析
- 5 原始数据

## 1 实验原理

## 1.1 光栅方程

平行光射入光栅,入射角为i,衍射角为 $\varphi$ ,由光程差为波长的整数倍

$$d(\sin arphi \pm \sin i) = m\lambda, m \in Z^+$$
 (1)

其中入射光和衍射光分居两侧时取负,否者取正,i=0时,为垂直入射时的光栅方程

$$d\sin\varphi_m = m\lambda \tag{2}$$

测量  $\varphi_m$  以及给定波长  $\lambda_0$  计算光栅常数 d,再测定其余谱线的  $\varphi_m$ ,计算对应的  $\lambda$ 。

## 1.2 最小偏向角

当光束入射角为i,相应m级谱线的衍射角为 $\varphi$ ,由几何关系知

$$\Delta = \varphi + i \tag{3}$$

此时公式 (1) 取正号,  $\Delta$  随入射角 i 变化, 由对称性  $\varphi = i$  时  $\Delta$  为极值, 此时

$$i = \varphi = \frac{\delta}{2} \tag{4}$$

代入式 (1) 以及相关数学运算可知, $\delta$  为最小偏向角,由此可以反推波长

$$\lambda = \frac{2d\sin\frac{\delta}{2}}{m} \tag{5}$$

# 1.3 偏心差消除



图1 因中心不重合造成的偏心差

由平面几何知识,可知将**两侧取平均**之后,可以消除由于偏心造成的误差

$$\frac{1}{2}\left(\widehat{AB} + \widehat{A'B'}\right) = \widehat{CD} = \widehat{C'D'} \tag{6}$$

# 2 实验步骤

分光计的调整要求:

- 1. 望远镜能够接受平行光
- 2. 平行光管能够发出平行光
- 3. 望远镜与平行光管的光轴共轴, 且与分光计的中心轴垂直

分光计调节过程中的核心在干基准法:

先粗调平行光管和望远镜以及载物台,以平面镜调整**目镜**清晰度,基于**目镜**清晰度调整**望远镜和载物台**平行,基于**望远镜**发出平行光调整**平行光管**发出平行光。

光栅参数和波长的测量过程中,**移动望远镜**找到对应的谱线,记录两侧角度的数值(精确到 1′);最小偏向角的测量中,旋转光栅,当对应谱线**发生"回转"**时微调得到临界点位置,测量平行光入射光以及出射光的角位置。

## 3 实验内容

本次实验给定**绿光**波长 **546.1nm**, 待测 <mark>黄光</mark> 波长约定值 **579.1nm**, 汞灯其他各谱线的波长大小如下

| 颜色 | 当              | Ł<br>K | 绿     | 黄     | 丝     | Ţ     |
|----|----------------|--------|-------|-------|-------|-------|
| かと | 404.7<br>410.8 | 407.8  | 491.6 | 577.0 | 607.3 | 612.3 |
| 波太 | 410.8          | 433.9  | 546.1 | 579.1 | 623.4 | 690.8 |
|    | 434.8          | 435.8  |       |       |       |       |

表1 汞灯谱线(约定真值)

# 3.1 衍射级推导

由误差限的方和根原理对公式(2)进行计算

$$\delta\lambda = \lambda\sqrt{\left(\frac{\delta d}{d}\right)^2 + (\cot\varphi_m \frac{\delta\varphi_m}{\varphi_m})^2} \tag{7}$$

由于对标标准波长测量的时候认为  $\delta\lambda=0$ , 此时

$$\delta d = -d\cot\varphi_m \frac{\delta\varphi_m}{\varphi_m}, |\frac{\delta d}{d}| = |\cot\varphi_m \frac{\delta\varphi_m}{\varphi_m}| \tag{8}$$

从而  $m\delta\lambda = \sqrt{2}d\cos\varphi_m\delta\varphi_m = \sqrt{2(d^2 - (m\lambda)^2)}\delta\varphi_m$ ,整理有

$$\frac{\delta\lambda}{\delta\varphi_m} = \sqrt{2\left(\left(\frac{d}{m}\right)^2 - \lambda^2\right)} \tag{9}$$

由分光计仪器误差限  $\delta\varphi_m=1'$ , 取  $\delta\lambda_0\leq 1$ nm,  $\lambda_0=550$ nm, 代入得到

$$\frac{d}{m} \le \sqrt{\frac{1}{2} \left(\frac{\delta \lambda}{\delta \varphi_m}\right)^2 + \lambda^2} \approx 2.5 \times 10^{-6} \text{m}$$
 (10)

实验过程中使用光栅方程估测  $d \approx 3 \times 10^{-6} \text{m}$ ,带入公式 (10) 误差关系式得到  $m \geq 1.34$ ,且在实际测量中第二级亮纹**清晰度较好**,综合考虑下,取定 m=2。

## 3.2 光栅常数测定

当光垂直入射时,测定 ±2 级谱线衍射角,由公式(2)计算光栅常数

| 衍射级数    | 波长/nm   | 正级左    | 正级右    | 负级左     | 负级右                |
|---------|---------|--------|--------|---------|--------------------|
| 2       | 546.1   | 142°4' | 322°3' | 103°48' | 283°48'            |
|         |         |        |        |         |                    |
| 零级左     | 零级右     | Δφ     | φm/rad | 光栅常     | 常数/m               |
| 122°54' | 302°55' | 2'     | 0.3339 | 3.3329  | $0 \times 10^{-6}$ |

表2 垂直入射法测定光栅常数数据表格

其中光栅常数的计算过程如下

$$d = \frac{2\lambda}{\sin \varphi_2} = \frac{2 \cdot 546.1 \times 10^{-9} \text{m}}{\sin \frac{142^{\circ}4' - 103^{\circ}48^{\circ} + 322^{\circ}3' - 283^{\circ}48'}{4}}$$
$$= \frac{1.0922 \times 10^{-6} \text{m}}{\sin 19.1292^{\circ}}$$
$$\approx 3.3329 \times 10^{-6} \text{m}$$

计算两侧  $\varphi_{\pm 2}$ ,消除偏心差误差,  $\varphi_{+2} = \frac{142°4' - 122°54' + 322°3' - 302°55'}{2} = 19°9'$ ,  $\varphi_{-2} = \frac{122°54' - 103°48' + 302°55' - 283°48'}{2} = 19°6'30''$ ,从而  $\Delta \varphi_{\pm 2} = 2'30'' < 4'$ ,说 明**分光计的调整符合要求**。

该分光计的仪器误差限为

$$\Delta_{INS} = \mathbf{1}' = \frac{1}{60} \cdot \frac{\pi}{180} \text{rad} = 2.91 \times 10^{-4} \text{rad}$$
 (11)

代入公式(7)计算光栅常数的不确定度,计算过程以及列表如下

$$egin{aligned} |\delta d| &= d\cotarphi_m rac{\deltaarphi_m}{arphi_m} \ &= 3.3329 imes 10^{-6} \mathrm{m} \cdot \cot 19.1292 ^\circ \cdot rac{1'}{19.1292 ^\circ} \ &= 8.4 imes 10^{-9} \mathrm{m} \end{aligned}$$

| 仪器误差限/rad                | 不确定度/m                   |
|--------------------------|--------------------------|
| $2.90888 \times 10^{-4}$ | $8.37214 \times 10^{-9}$ |

表3 垂直入射法光栅常数不确定度计算表格

故光栅常数结果可以表示为  $d=(3.333\pm0.008)\times10^{-6}\mathrm{m}$  (P=68.3%),对应刻痕为 300条/mm 为一种**经典复刻光栅**,用于测量各种可见光波长。

## 3.3 波长测定

### 3.3.1 垂 首 入射法

| 衍射级数    | 光栅常数/m                 | 正级左     | 正级右     | 负级左     | 负级右     |
|---------|------------------------|---------|---------|---------|---------|
| 2       | $3.333 \times 10^{-6}$ | 143°20' | 323°18' | 102°37' | 282°35' |
|         |                        |         |         |         |         |
| 零级左     | 零级右                    | Δφ      | φm/rad  | 波       | 长/nm    |
| 122°54' | 302°55'                | 3'      | 0.3553  | 5       | 579.7   |

表4 垂直入射法测定波长数据表格

计算两侧的衍射角之差同上,将衍射角的平均值代入公式(2)计算黄光波长

$$\lambda_y = rac{d\sin arphi_m}{m} = rac{1}{2} \cdot 3.333 imes 10^{-6} ext{m} \cdot \sin \left( rac{143°20' - 102°37' + 323°18' - 282°35'}{4} 
ight)$$

$$= 1.6665 imes 10^{-6} ext{m} \cdot \sin(20.3583°)$$

$$pprox 5.7974 imes 10^{-7} ext{m}$$

误差限由公式(6)和公式(11)决定,其计算过程以及列表如下

$$egin{align*} \delta\lambda &= \lambda\sqrt{\left(rac{\delta d}{d}
ight)^2 + (\cotarphi_mrac{\deltaarphi_m}{arphi_m})^2} \ &= 5.7974 imes 10^{-7} ext{m} \cdot \sqrt{\left(rac{0.008}{3.333}
ight)^2 + \left(\cot 20.3583^\circ \cdot rac{2.91 imes 10^{-4} ext{rad}}{20.3583^\circ}
ight)^2} \ &= 5.7974 imes 10^{-7} ext{m} \cdot 3.26 imes 10^{-3} \ &pprox 1.9 imes 10^{-9} ext{m} \end{split}$$

| 仪器误差限/rad                | 不确定度/nm |
|--------------------------|---------|
| $2.90888 \times 10^{-4}$ | 1.9     |

#### 表5 垂直入射法波长不确定度计算

故测量的黄光波长可以表示为  $\lambda_y=(5.80\pm0.02)\times10^{-7}\mathrm{m}$  (P=68.3%),其约定真值  $579.1\mathrm{nm}=5.791\times10^{-7}\mathrm{m}$  在测量区间范围内,偏离实际值  $\eta=\frac{580\mathrm{nm}-579.1\mathrm{nm}}{579.1\mathrm{nm}}\approx0.16\%$ 

### 3.3.2 斜入射法

本实验固定入射角 i = 15°0′,调节过程如下

| 转动前角度  | 转动后角度  | 入射角   | 衍射级数 |
|--------|--------|-------|------|
| 105°0' | 120°0' | 15°0' | 2    |

表6 斜入射法初始参数

当入射角固定后,在光栅两侧寻找 m=2 的光谱,分为同侧和异侧,代入公式 (1) 计算对应的波长,例如当衍射角和入射角位于法线异侧时,波长计算如下

 $\lambda_+$  以及  $\eta_+$  的计算类似,两者的数据以及计算结果如下,由上述计算可知,波长不确定 度为 1nm 量级,进而将结果保留至纳米的个位

| 约定真值/n  | m ·      | 垂直左    | 垂直右    | 正级左     | 正级右     | φm2/rad | 波长+/nn | n 相对误差- |
|---------|----------|--------|--------|---------|---------|---------|--------|---------|
| 579.1   |          | 125°0' | 305°0' | 119°51' | 299°49' | 0.0902  | 581    | 0.4%    |
|         |          |        |        |         |         |         |        |         |
| 光栅常数    | 女/m      | 垂直左    | 垂直右    | 负级左     | 负级右     | φm1/rad | 波长-/nm | 相对误差-   |
| 3.333×1 | $0^{-6}$ | 125°0' | 305°0' | 162°19' | 342°18' | 0.6512  | 579    | -0.05%  |

表7 斜入射法波长测量数据以及结果

### 3.3.3 最小偏向角法

测定入射光偏向最小的时候对应的偏角,测量数据如下(对应衍射级数为4级)

| 衍射级数   | 光栅常数/m                | 约定真值/nm | 入射左     | 入射右     | 出射左    | 出射右     |     |
|--------|-----------------------|---------|---------|---------|--------|---------|-----|
| 4      | $3.33 \times 10^{-6}$ | 579.1   | 135°50' | 315°49' | 95°35' | 275°35' | - / |
|        |                       |         |         |         |        |         |     |
| 2δ/r   | ad                    | 波长/nm   |         | 木       | 目对误差   |         | _   |
| 0.7023 |                       | 573     | -1.0%   |         |        |         |     |

表8 最小偏向角法测量数据以及结果

其中波长的计算如下

$$\lambda = \frac{2d\sin\frac{\delta}{2}}{m} = \frac{1}{2}d\sin\frac{\delta}{2}$$

$$= 1.6665 \times 10^{-6} \text{m} \cdot \sin\left(\frac{135°50' - 95°35' + 315°49' - 275°35'}{4}\right)$$

$$= 1.6665 \times 10^{-6} \text{m} \cdot 0.344001$$

$$= 5.733 \times 10^{-7} \text{m}$$
相对误差  $\eta = \frac{573.3 \text{nm} - 579.1 \text{nm}}{579.1 \text{nm}} = -1.0\%$ 

## 4 实验总结

## 4.1 误差分析

实验中测量波长的误差如下

| 垂直入射法 | 斜入射法正级 | 斜入射法负级 | 最小偏向角法 |
|-------|--------|--------|--------|
| 0.16% | 0.4%   | -0.05% | -1.0%  |

表9 各种方法测量波长的误差对比

则本次实验对于 <mark>黄光</mark> 的测量精度  $|\eta| \le 1\%$ ,且若考虑由于分光器仪器  $\delta \varphi = 1'$  的偏差,可以肯定,真值在  $\mu \pm \sigma$  区间范围内。

相较其余方法而言,最小偏向角法的测量误差最大,究其原因是在寻找最小偏向角的过程中,处于**顶峰**位置的范围**人眼难以区分**,而其余光路图为**静态的**,误差更**可控**,该处偏角数值计算如下

$$\Delta(\delta) = i + \delta = \delta + \arcsin\left(\frac{m\lambda}{d} - \sin\delta\right) = \delta + \arcsin(0.694989 - \sin\delta)$$
 (12)

在最小偏向角  $\delta \in [20.334^{\circ} - \epsilon, 20.334^{\circ} + \epsilon]$  区域,取  $\epsilon = 0.05^{\circ} = 3'$  作图如下



图2偏向角和衍射角在极值点附近的变化关系

图中可以看出,在最小偏向角(极值点)附近,变化是非常缓慢的,3' 的衍射角变化对应偏向角的变化不到  $0.70979635-0.7097961=2.5\times 10^{-7}\mathrm{rad}=0.05''$ ,对应在光谱中,由于整个视场约为 3',约为**整个视场**的  $\frac{1}{3600}$ ,**人眼难以精确地找到最小偏向角的位置**。

前面计算过 1′ 引起的偏差能达到**数个纳米**,由上述计算可知,最小偏向角极其容易造成 3′ 的误差,这也就解释了最小偏向角偏离真值最大的原因。

# 4.2 范式分析

实验中从三种不同的视角,"充分"利用了光栅方程

垂直入射法 <sup>光栅方程</sup> 标准运用 斜入射法 <sup>光栅方程</sup> 增加初始值 最小偏向角法 <sup>光栅方程</sup> 动态变化下的极值

这提示我们面对同一个问题可以从不同的角度进行拆解,形成不同的方法。

# 5 原始数据

| 4  | Α               | В         | С           | D       | E           | F             | G       | Н       | 1       | J      | K       | L          |
|----|-----------------|-----------|-------------|---------|-------------|---------------|---------|---------|---------|--------|---------|------------|
| 1  |                 |           |             |         | VI 1mm 45:  | - 6-1. c}-¬¬A |         |         |         |        |         | 未央软-11     |
| 2  |                 |           |             |         | 光栅孔         | 謝实验           |         |         |         |        |         | 鲁睿         |
| 3  |                 |           |             |         | A) 垂直入      | 射,测定光栅常       | 赏数和波长   |         |         |        |         |            |
| 4  | A Lun Me Me.    | 衍射级数      | 波长/nm       | 正级左     | 正级右         | 负级左           | 负级右     | 零级左     | 零级右     | Δφ/'   | φm+/rad | 光栅常数/m     |
| 5  | 光栅常数            | 2         | 546.1       | 142°4'  | 322°3'      | 103°48'       | 283°48' | 122°54' | 302°55' | 1.2    | 0.3339  | 3.3329E-06 |
| 6  | -th 1/2 3rb 1/2 | 衍射级数      | 光栅常数/m      | 正级左     | 正级右         | 负级左           | 负级右     | 零级左     | 零级右     | Δφ/'   | φm/rad  | 波长/nm      |
| 7  | 黄光波长            | 2         | 3.33E-06    | 143°20' | 323°18'     | 102°37'       | 282°35' | 122°54' | 302°55' | 3.0    | 0.3553  | 579.7      |
| 8  |                 |           | 不确定         | 度计算     |             | 1             |         |         |         |        |         |            |
| 9  | As Inn Me Me.   | 仪器误差限/rad | 不确定度/m      | 黄光波长    | 仪器误差限/rad   | 不确定度/nm       |         |         |         |        |         |            |
| 0  | 光栅常数            | 2.91E-04  | 8.37214E-09 |         | 2.91E-04    | 1.9           |         |         |         |        |         |            |
| 11 |                 |           |             |         |             |               |         |         |         |        |         |            |
| 2  |                 |           |             | B) 入射   | 角 i=15°,测定波 | K             |         |         |         |        |         |            |
| 3  | 入射角             | 光栅常数/m    | 垂直左         | 垂直右     | 负级左         | 负级右           | φm1/rad | 波长+/nm  | 相对误差+   |        | 转动前角度   | 转动后角度      |
| 4  | 15°0'           | 3.33E-06  | 125°0'      | 305°0'  | 162°19'     | 342°18'       | 0.6512  | 578.7   | -0.1%   |        | 105°0′  | 120°0'     |
| 5  | 衍射级数            | 约定真值/nm   | 垂直左         | 垂直右     | 正级左         | 正级右           | φm2/rad | 波长-/nm  | 相对误差-   |        |         |            |
| 6  | 2               | 579.1     | 125°0'      | 305°0'  | 119°51'     | 299°49'       | 0.0902  | 581.4   | 0.4%    |        |         |            |
| 17 |                 |           |             |         |             |               |         |         |         |        |         |            |
| 18 |                 |           |             |         | C) 最小偏向角测定  | 三波长           |         |         |         |        |         |            |
| 19 | 衍射级数            | 光栅常数/m    | 约定真值/nm     | 入射左     | 入射右         | 出射左           | 出射右     | 2δ/rad  | 波长/nm   | 相对误差   |         |            |
| 20 | 4               | 3.33E-06  | 579.1       | 135°50' | 315°49'     | 95°35'        | 275°35' | 0.7023  | 573.3   | -1.01% |         |            |
| 21 |                 |           |             |         |             |               |         |         |         |        |         |            |

图2原始数据截图