Lean & Agile Performance Measurement

Metrics, Models, and Measures for Managing Programs & Projects

Dr. David F. Rico, PMP, CSEP, FCP, FCT, ACP, CSM, SAFE, DEVOPS

Twitter: @dr_david_f_rico

Website: http://www.davidfrico.com

LinkedIn: http://www.linkedin.com/in/davidfrico

Agile Capabilities: http://davidfrico.com/rico-capability-agile.pdf
Agile Cost of Quality: http://www.davidfrico.com/agile-vs-trad-coq.pdf

DevOps Return on Investment (ROI): http://davidfrico.com/rico-devops-roi.pdf

Dave's NEW Business Agility Video: https://www.youtube.com/watch?v=-wTXqN-OBzA Dave's NEWER Development Operations Security Video: https://vimeo.com/214895416 DoD Fighter Jets vs. Amazon Web Services: http://davidfrico.com/dod-agile-principles.pdf

Author Background

- ☐ Gov't contractor with 34+ years of IT experience
- □ B.S. Comp. Sci., M.S. Soft. Eng., & D.M. Info. Sys.
- Large gov't projects in U.S., Far/Mid-East, & Europe

- → Career systems & software engineering methodologist
- → Lean-Agile, Six Sigma, CMMI, ISO 9001, DoD 5000
- → NASA, USAF, Navy, Army, DISA, & DARPA projects
- → Published seven books & numerous journal articles
- → Intn'l keynote speaker, 185+ talks to 14,000 people
- → Specializes in metrics, models, & cost engineering
- → Cloud Computing, SOA, Web Services, FOSS, etc.
- → Professor at 7 Washington, DC-area universities

On Metrics—Peter Drucker

Requirements Defects & Waste

- □ Requirements defects are #1 reason projects fail
- □ 80% of requirements exist only as tacit knowledge
- □ 65% to 95% of explicit requirements are never used

Sheldon, F. T. (1992). Reliability measurement: From theory to practice. *IEEE Software*, 9(4), 13-20. Johnson, J. (2002). ROI: It's your job. *Extreme Programming 2002 Conference*, Alghero, Sardinia, Italy. Goffin, K., & Mitchell, R. (2005). *Innovation management: Strategy and implementation*. London, UK: Palgrave-Macmillan. Chedalawada, A. (2012). Lean-agile overview. *Second Annual AFEI/NDIA Conference on Agile in DoD, Springfield, VA, USA*.

Large Traditional Projects

- Big projects result in poor quality and scope changes
- □ Productivity declines with long queues/wait times
- □ Large projects are unsuccessful or canceled

What are Agile Metrics?

- □ Met-ric (mĕt'rĭk) A standard of measurement; system of related measures; quantification of a characteristic
 - Quantitative measure of a degree to which agile project processes or resulting systems possess some property
 - Numerical ratings to measure the size, cost, complexity, or quality of software produced using agile methods
 - Measurement of a particular characteristic of an agile project's scope, time, cost, progress, or technical perf.
 - *Measure of the degree of* customer collaboration, teamwork, iterative development, or adaptability to change
- Ensuring BUSINESS VALUE by measuring operational and team performance, customer satisfaction, and ROI

What are Some Agile Metrics?

- Collaboration maximizes customer satisfaction
- □ Iteration maximizes speed, quality, and feedback
- Adaptability maximizes continuous improvements

CUSTOMER COLLABORATION

- COLLABORATION QUALITY
 CUSTOMER SATISFACTION
- Communication Quality
- Continuous Feedback
- valued Customer Retention more than

CONTRACTS

- CONTRACT COMPLIANCE
- Contract Deliverables
- Contract Change Orders

INDIVIDUALS & INTERACTIONS

WORKING SYSTEMS & SOFTWARE

- TEAMWORK QUALITY
- Communication Quality
- Continuous Improvement TEAM PRODUCTIVITY
- TEAM MORALE
- TEAM MOTIVATION

Customer Delight

PROCESSES

- LIFECYCLE COMPLIANCE
- Process Maturity Level
- Regulatory Compliance

Build Frequency

- Integration Frequency
- Deployment Frequency

• DELIVERY SPEED

- PRODUCT QUALITY
- PRODUCT RELIABILITY

DOCUMENTATION

- DOCUMENT COMPLIANCE
- Document Deliverables
- Document Volumes

RESPONDING TO CHANGE

- BEHAVIORAL FLEXIBILITY MARKET SHARE
- Process Flexibility
- Product Flexibility
- SALES REVENUE
- SHAREHOLDER VALUE

PROJECT PLANS

- Cost Compliance
- Scope Compliance
- Schedule Compliance

Agile Metrics Taxonomy

- Agile methods are based on traditional measures
- □ Story points, velocity, and burndown basic metrics
- □ Experts use Agile EVM, test, ROI & portfolio metrics

1. Agile CODE Metrics

- Code Size
- Code Complexity
- Object Oriented
- Code Coverage
- Code Defects
- Relational Design

2. Agile PROJECT Metrics

- Software Size
- Software Productivity
- Software Effort
- Software Quality
- Software Schedule
- Software Success

AGILE METRICS

- 1. Agile CODE Metrics
- 2. Agile Project Metrics
- 3. Agile TRACKING Metrics
- 4. Agile TESTING Metrics
- **5. Agile VALUE Metrics**
- 6. Agile HEALTH Metrics
- 7. Agile Portfolio Metrics

7. Agile Portfolio Metrics

- Portfolio Kanban
- Epic Progress
- Portfolio Radar
- Release Train Radar
- Lean Portfolio Metrics
- Enterprise Scorecard

6. Agile HEALTH Metrics

- Teamwork Quality
- Collaboration Quality
- Agile Process Maturity
- Agile Adoption Rate
- Degree of Agility
- Product Flexibility

3. Agile TRACKING Metrics

- Story Points
- Sprint Burndown
- Release Burndown
- Velocity
- Feature Progress
- Agile Earned Value

4. Agile TESTING Metrics

- Test Coverage
- Test Automation
- Integration Builds
- Running Tested FeaturesDevOps Automation
- Deployment Frequency

5. Agile VALUE Metrics

- Total Lifecycle Costs
- Total Lifecycle Benefits
- Benefit to Cost Ratio
- Return on Investment
- Net Present Value
- Real Options Analysis

Agile Code Metrics

□ Software source metrics created in the 1960s/1970s
 □ Halstead software science & complexity very popular
 □ Complexity, OO, and defect metrics most widely used

Metric	DESCRIPTION
CODE SIZE	Volume or amount of software source code
CODE COMPLEXITY	Intricacy, difficulty, or complication of software source code
OBJECT ORIENTED	Cohesion, coupling, or modularity of software source code
CODE COVERAGE	Executable, reachable, or testable software source code
CODE DEFECTS	Flawed, imperfect, or non-conformant software source code
RELATIONAL DESIGN	Normalized, non-redundant, or anomaly-free data schema

Agile Code Metrics—Example

Lines of Code

Minimum 6,493 Maximum 5,050,450 Mean 425,179

Cyclomatic Complexity

Minimum 158 Maximum 816,066 Mean 53,035

Avg. Defect Density		
Minimum	0.00	
Maximum	1.22	
Mean	0.25	

Number of Functions

Minimum 47 Maximum 215,925 12,880 Mean

Halstead Effort

Minimum 2,276 Maximum 71,949,783 Mean 6,399,178

Ava Number of Defects

Minimum 13.97 Maximum 345.72 Mean 66

Average Function Length

Avg. Ivulibe	I of Defects
Minimum	1
Maximum	4,967
Mean	283.49
Mean	283.49

Defect Type	Defects	%
NULL Pointer Dereference	6,448	27.95%
Resource Leak	5,852	25.73%
Unintentional Ignored Expressions	2,252	9.76%
Use Before Test (NULL)	1,867	8.09%
Buffer Overrun (statically allocated)	1,417	6.14%
Use After Free	1,491	6.46%
Unsafe use of Returned NULL	1,349	5.85%
Uninitialized Values Read	1,268	5.50%
Unsafe use of Returned Negative	859	3.72%
Type and Allocation Size Mismatch	144	0.62%
Buffer Overrun (dynamically allocated)	72	0.31%
Use Before Test (negative)	49	0.21%

Agile Project Metrics

Core software project metrics created in 1960s/1970s
 Software size, productivity, & effort were very popular
 Software productivity & quality metrics still relevant

METRIC	DESCRIPTION
SOFTWARE SIZE	Estimate of conceptual, logical, or physical software volume
SOFTWARE PRODUCTIVITY	Relative rate or speed at which software is produced
SOFTWARE EFFORT	Estimate of time needed for software development project
SOFTWARE QUALITY	Degree to which software conforms to its requirements
SOFTWARE SCHEDULE	Software timeline in milestones, activities, or deliverables
SOFTWARE SUCCESS	Average probability of on-time software schedule delivery

Agile Project Metrics—Example

Software Size (Lines of Code)						Effor	
FP	HTML	Java	Ruby	Python	C #	SQL	Hour
1	91	<i>5</i> 3	46	46	40	13	4
10	914	533	457	457	400	128	61
100	9,143	5,333	4,571	4,571	4,000	1,280	809
1,000	91,430	53,330	45,710	45,710	40,000	12,800	10,418
10,000	914,300	533,300	457,100	457,100	400,000	128,000	352,00
100,000	9,143,000	5,333,000	4,571,000	4,571,000	4,000,000	1,280,000	5,038,1
1,000,000	91,430,000	53,330,000	45,710,000	45,710,000	40,000,000	12,800,000	61,395,3

^^^^^^^
Effort
Hours
4
61
809
10,418
352,000
5,038,168
61,395,349
VAAAAAAAAAAAAAAAAAAAAAAAAA

Schedule
Months
0.03
0.59
4.50
13.29
42.86
60.00
72.43

	Productivity (Lines of Code per Hour)						
FP	HTML	Java	Ruby	Python	C #	SQL	
1	23.44	13.67	11.72	11.72	10.25	3.28	
10	14.93	8.71	7.47	7.47	6.53	2.09	
100	11.30	6.59	5.65	5.65	4.94	1.58	
1,000	8.78	5.12	4.39	4.39	3.84	1.23	
10,000	2.60	1.52	1.30	1.30	1.14	0.36	
100,000	1.81	1.06	0.91	0.91	0.79	0.25	
1,000,000	1.49	0.87	0.74	0.74	0.65	0.21	

Quality
Defects/LOC
0.0012
0.0031
0.0057
0.0134
0.0238
0.0386
0.0498

	Success
	On-Time%
	83.16%
	81.25%
	74.77%
	60.76%
	28.03%
	13.67%
X	7.18%

Agile Tracking Metrics

Basic agile metrics confluence of XP-Scrum practices
 XP release planning formed basis of Scrum planning
 Today's basic agile metrics were tailored for Scrum

Metric	DESCRIPTION
STORY POINTS	Degree of size, difficulty, or complexity of a user story
SPRINT BURNDOWN	Estimated hours completed on a daily basis each iteration
Release Burndown	Estimated story points completed each iteration on a project
VELOCITY	Software productivity expressed in story points per iteration
FEATURE PROGRESS	Number, degree, or percent of planned features completed
AGILE EARNED VALUE	Simplified set of earned value measures for agile projects

Agile Tracking Metrics—Example

Story Points							
Relative Size	Story Points	Staff Hours	Staff Days	Staff Month	Staff Years	2-Week Sprints	3-Sprint Releases
	1	22	3	0.1	0.0	0.1	0.0
User	2	44	6	0.3	0.0	0.1	0.0
Story	3	67	8	0.4	0.0	0.2	0.1
	5	111	14	0.6	0.1	0.3	0.1
	8	178	22	1.0	0.1	0.4	0.1
	13	289	36	1.7	0.1	0.7	0.2
Feature	21	467	58	2.7	0.2	1.2	0.4
	34	755	94	4.4	0.4	1.9	0.6
	55	1,222	153	7.0	0.6	3.1	1.0
Epic	89	1,977	247	11.4	1.0	4.9	1.6
	144	3,199	400	18.5	1.5	8.0	2.7
	233	5,177	647	29.9	2.5	12.9	4.3

Agile Testing Metrics

Software test automation emerged during the 1970s
 Reached their height in personal computer (PC) era
 Most are FOSS and used by successful agile teams

Metric	DESCRIPTION
Test Coverage	Percent or degree to which software source code is tested
Test Automation	Ratio or degree to which software tests are automated
Integration Builds	Frequency of automated software builds and integrations
RUNNING TESTED FEATURES	Number of completed and tested features or user stories
DEVOPS AUTOMATION	Ratio or degree to which deployments are automated
DEPLOYMENT FREQUENCY	Frequency of automated software deployments or deliveries

Agile Testing Metrics—Example

Agile Value Metrics

- Business value metrics form basis of agile methods
 - Most measures used throughout the 20th century
- Most useful at the portfolio and program levels

Metric	DESCRIPTION
TOTAL LIFECYCLE COSTS	Sum of all software development and maintenance costs
TOTAL LIFECYCLE BENEFITS	Sum of all software development and maintenance benefits
BENEFIT TO COST RATIO	Ratio of total lifecycle benefits to costs
RETURN ON INVESTMENT	Ratio of adjusted total lifecycle benefits to costs
NET PRESENT VALUE	Discounted value of adjusted total lifecycle benefits
REAL OPTIONS ANALYSIS	Risk-adjusted value of total lifecycle benefits to costs

Agile Value Metrics—Example

Costs Sum of Costs	Total amount of money spent	$\sum_{i=1}^{n} Cost_{i}$
Benefits Sum of Benefits	Total amount of money gained	$\sum_{i=1}^{n} Benefit_{i}$
B/CR Benefit to Cost Ratio	Ratio of benefits to costs	Benefits Costs
ROI Return on Investment	Ratio of adjusted benefits to costs	$\frac{\textit{Benefits} - \textit{Costs}}{\textit{Costs}} \times 100\%$
NPV Net Present Value	Discounted cash flows	$\sum_{i=1}^{\text{Nearz}} \frac{Benefits_i}{(1 + Discount \ Rate)^{\text{Nears}}} - Costs_0$
BEP Breakeven Point	Point when benefits exceed costs	$\frac{\textit{New Costs}}{\textit{Old Costs}/\textit{New Costs} - 1}$
ROA Real Options Analysis	Value gained from strategic delay	$N(d_1) \times Benefits - N(d_2) \times Costs \times e^{-Rate \times Years}$

Business Value Formulas				
Costs	(10,000 ÷ 5.4436 + 3.945 × 10 × 100) × 100			
Benefits	$(10,000 \times 10.51 - 6,666.67 \times 9) \times 100 - $588,202$			
B/CR	\$3,930,631 ÷ \$588,202			
ROI	(\$3,930,631 - \$588,202) ÷ \$588,202 × 100%			
NPV	$(\sum_{i=1}^{5} (\$3,930,631 \div 5) \div 1.05^{5}) - \$588,202$			
BEP	\$588,202 ÷ (\$4,509,997 ÷ \$588,202 - 1)			
ROA	NORMSDIST(2.24) × \$3,930,631 – NORMSDIST(0.85) × \$588,202 × EXP(-5% × 5)			

Business Value Measures					
Metric	Scrum	Contin. Integ.	DevOps		
Costs	\$588,202	\$233,152	\$32,315		
Benefits	\$3,920,631	\$4,275,681	\$4,476,517		
Benefit-Cost	7:1	18:1	139:1		
ROI%	567%	1,734%	13,753%		
NPV	\$2,806,654	\$3,469,140	\$3,843,880		
Breakeven	\$88,220	\$12,710	\$233		
Real Options	\$3,504,292	\$4,098,159	\$4,451,359		

Agile Health Metrics

- □ Agile health metrics emerged in mid-2000s
- Designed to measure agile process compliance
- □ Best ones assess teamwork & collaboration quality

METRIC	DESCRIPTION
TEAMWORK QUALITY	Degree to which teamwork results in project success
COLLABORATION QUALITY	Degree to which collaboration results in project success
AGILE PROCESS MATURITY	Degree to which agile processes are consistently applied
AGILE ADOPTION RATE	Degree to which agile processes are widely used
DEGREE OF AGILITY	Degree to which agile behaviors are consistently applied
PRODUCT FLEXIBILITY	Degree to which agile products are technologies are utilized

Agile Health Metrics—Example

Agile Portfolio Metrics

Business value metrics traditionally used for portfolios
 Processes now emerging for portfolio management
 Lean-Kanban practices & measures most popular

METRIC	DESCRIPTION
Portfolio Kanban	Information display to optimize flow of portfolio epics
EPIC PROGRESS	Number, degree, or percent of planned epics completed
Portfolio Radar	Degree to which portfolio practices and behaviors are used
Release Train Radar	Degree to which agile release train practices are utilized
LEAN PORTFOLIO METRICS	Degree to which lean measures are utilized
ENTERPRISE SCORECARD	Degree to which an agile enterprise scorecard is used

Agile Portfolio Metrics—Example

LEAN & AGILE METRICS Summary

- □ Traditional metrics and principles apply to lean & agile
- □ Metrics range from source code up to portfolio levels
- Metrics apply to teams, projects, and organizations

- Early & Often Don't hesitate to measure early and often.
- Traditional Metrics Don't throw the baby out with the bathwater.
- ALIGNMENT Align metrics and measures with lean-agile principles.
- Resistance Expect resistance to change with respect to metrics.
- HIERARCHY Use metric hierarchy ranging from code to portfolios.
- Basic Remember to use basic metrics such as burndown charts.
- Testing Testing metrics may be the single most important metrics.
- **HEALTH** *Use health metrics to assess team, project, and org. perf.*
- Portfolio Portfolio metrics used to track organizational projects.
- EASY Collecting and analyzing metrics is easier than you think.
- FOSS Don't break the bank on multi-million dollar metric tools.

Books on ROI of SW Methods

- ☐ Guides to software methods for business leaders
- Communicates the business value of IT approaches
- Rosetta stones to unlocking ROI of software methods

- http://davidfrico.com/agile-book.htm (Description)
- http://davidfrico.com/roi-book.htm (*Description*)

Dave's Professional Capabilities

STRENGTHS – Data Mining • Gathering & Reporting Performance Data • Strategic Planning • Executive & Management Briefs • Brownbags & Webinars • White Papers • Tiger-Teams • Short-Fuse Tasking • Audits & Reviews • Etc.

- 34+ YEARS
 IN IT
 INDUSTRY
- Data mining. Metrics, benchmarks, & performance.
- Simplification. Refactoring, refinement, & streamlining.
- Assessments. Audits, reviews, appraisals, & risk analysis.
- Coaching. Diagnosing, debugging, & restarting stalled projects.
- Business cases. Cost, benefit, & return-on-investment (ROI) analysis.
- Communications. Executive summaries, white papers, & lightning talks.
- Strategy & tactics. Program, project, task, & activity scoping, charters, & plans.

PMP, CSEP, FCP, FCT, ACP, CSM, SAFE, & DEVOPS

Backup Slides

Agile Earned Value Metrics

- Adaptation of earned value mgt. for agile projects
- Value accrues with completed sprints and releases
 - Better measure of value due to agile DoD, RTF, & CI

Sulaiman, T. (2010). AgileEVM: Information for good decision making. San Francisco, CA: CollabNet, Inc. Sulaiman, T., & Smits, H. (2007). Measuring integrated progress on agile software development projects. Methods & Tools, 5(3), 2-9. Sulaiman, T., Barton, B., & Blackburn, T. (2006). Agile EVM: Earned value management in scrum projects. Agile 2006 Conference, Minneapolis, Minnesota, USA, 7-16. Rico, D. F. (2015). Lean & agile earned value management: How to use EVM to manage projects, programs, & portfolios, Retrieved from, http://davidfrico.com/rico15v.pdf

Agile Lean Metrics

- Late big bang integration increases WIP backlog
- Agile testing early and often reduces WIP backlog
- □ CI/CD/DevOps lower WIP, Cycle Time, & Lead Time

KANBAN BOARD

LEAD TIME & CYCLE TIME

CUMULATIVE FLOW DIAGRAM

PUTTING IT ALL TOGETHER

Agile SAFe Metrics

- □ Basic SAFe metrics & assessments at all levels
 □ Many are rollups of burndown, velocity, & bus. value

	Lean Portfolio Metrics	Comprehensive but Lean set of metrics that can be used to assess internal and external progress for an entire portfolio.
0	Portfolio Kanban	Ensures Epics and Enablers are reasoned and analyzed prior to a PI boundary, prioritized, and have acceptance criteria.
Portfolio	Epic Burn-up Chart	Tracks progress toward epic completion, i.e., Initial estimate, Work completed, and Cumulative work completed.
<u>9</u>	Epic Progress Measure	At-a-glance view of the status of all epics in a portfolio, i.e., Epic X, progress, and current vs. initial est. story points.
	Enterprise Scorecard	Four perspectives to measure performance for each portfolio, i.e., Efficiency, Value delivery, Quality, and Agility.
P	LPM Self Assessment	Structured, periodic self-assessment to continuously measure and improve portfolio processes.
	Value Stream KPIs	Set of criteria or KPIs to evaluate value stream investments, i.e., revenues, innovation, intangibles, and lean metrics.
	Solution Kanban Board	Ensures Capabilities and Enablers are reasoned and analyzed prior to PI boundary, prioritized, and have acc. criteria.
_	Solution Predictability	Aggregation of individual predictability measures for ARTs to assess the overall predictability of Solution Trains.
<u>io</u>	Solution Performance	Aggregation of individual performance measures for ARTs to assess the overall performance of Solution Trains.
말범	Economic Framework	Decision rules to align work to financial objectives of Solution and guide economic decision-making process.
Large Solution	WSJF	Prioritization model used to sequence jobs (e.g., Features, Capabilities, and Epics) to maximize economic benefit.
S	Cost of Delay	A way of communicating the impact of time on the outcomes we hope to achieve, i.e., combining urgency and value.
	Duration (Job Size)	Length of time required to complete an epic, enabler, capability, or feature, i.e., size or complexity in story points.
	Feature Progress	Tracks feature and enabler status during PI and indicates which features are on track or behind, i.e., plan vs. actual.
Program	Program Kanban	Ensures Features are reasoned and analyzed prior to a PI boundary, prioritized, and have acceptance criteria.
9	Program Predictability	Aggregation of Team PI Performance Reports to assess the predictability of ART, i.e., planned vs. actual business value.
<u>5</u>	Program Performance	Aggregation of team metrics collected at end of PI, i.e., functionality (velocity, etc.) and quality (tests, defects, etc.).
2	PI Burn-down Chart	Shows progress toward PI timebox to track work planned for PI against work accepted, i.e., iterations vs. story points.
4	Cumulative Flow	Graph to visualize amount of work waiting to be done (backlog), work in progress (started), and completed (validated).
	Art Self Assessment	Structured, periodic self-assessment to continuously measure and improve program processes.
	CD Pipeline Efficiency	Measures efficiency of steps in terms of touch and wait time, i.e., analysis, backlog, build, validate, deploy, release, etc.
	Deployments and Releases	Deployment and release frequency progress as a ratio of deployment to production vs. product release frequency.
	Recovery over time	How often physical or logical rollbacks performed by overlaying points in time for deployment, release, and rollbacks.
E	Innovation Indicators	Hypothesis measures of MMF and MVP business outcomes based upon actionable innovation accounting measures.
Team	Hypotheses Tested	Number of successful vs. unsuccessful hypothesis tests (with goal of increasing the number, frequency, and success).
	Team Performance	Individual team metrics collected at end of PI, i.e., functionality (velocity, etc.) and quality (tests, defects, etc.).
	Team Kanban	Ensures Stories and tasks are reasoned and analyzed prior to a PI boundary, prioritized, and have acceptance criteria.
	Team Business Value	Estimate of actual business value achieved for each team's PI objectives during a PI demo by customer and agile team.
	Team Self-Assessment	Structured, periodic self-assessment to continuously measure and improve team processes.

Agile DevOps ROI Metric

- Detailed agility economics starting to emerge
- □ ROI ranges from \$17M to \$195M with minor costs
- Benefits from cost savings, revenue, and availability

Org	Low Perf	Med Perf	High Perf	
	\$23M Benefits	\$29M Benefits	\$17M Benefits	
Small	\$0.2M Costs	\$0.2M Costs	\$0.2M Costs	
- 250 -	13,589% ROI	17,799% ROI	9,932% ROI	
	3 Day Payback	2 Day Payback	4 Day Payback	
	\$42M Benefits	\$66M Benefits	\$36M Benefits	
Medium	\$1.3M Costs	\$1.3M Costs	\$1.3M Costs	
- 2,000 -	3,101% ROI	4,901% ROI	2,663% ROI	
	11 Day Payback	7 Day Payback	13 Day Payback	
	\$114M Benefits	\$195M Benefits	\$76M Benefits	
Large	\$5.6M Costs	\$5.6M Costs	\$5.6M Costs	
- 8,500 -	1,942% ROI	3,375% ROI	1,254% ROI	
40	18 Day Payback	11 Day Payback	27 Day Payback	

Agile Deployment Metric

- □ Assembla went from 2 to 45 monthly releases w/CD
- □ 15K Google developers run 120 million tests per day
- □ 30K+ Amazon developers deliver 8,600 releases a day

Agile Microservices Metric

- Productivity STOPS due to excessive integration
- □ Implements DevOps & Microservices around 2010

Agile DevOps Metrics

- DevOps metrics gaining in widespread popularity
- Hybrid of development & IT operations measures
- Includes code, deployment & e-business analytics

Agile DevOps Metrics—Example

- □ Hewlett-Packard is a major user of CI, CD, & DevOps
 - 400 engineers developed 10 million LOC in 4 years
- Major gains in testing, deployment, & innovation

Түре	Metric	Manual	DEVOPS	Major Gains
	Build Time	40 Hours	3 Hours	13 x
CYCLE TIME	No. Builds	1-2 per Day	10-15 per Day	8 x
IMPROVEMENTS	Feedback	1 per Day	100 per Day	100 x
	Regression Testing	240 Hours	24 Hours	10 x
	Integration	10%	2%	5 x
	Planning	20%	5%	4 x
DEVELOPMENT Cost Front	Porting	25%	15%	2 x
COST EFFORT DISTRIBUTION	Support	25%	5%	5 x
DISTRIBUTION	Testing	15%	5%	3 x
	Innovation	5%	40%	8 x

Agile Cost of Quality Metric

- □ Agile testing is 10x better than code inspections
- □ Agile testing is 100x better than traditional testing
- □ Agile testing is done earlier "and" 1,000x more often

Agile DevOps CoQ Metric

- □ Agile testing is orders-of-magnitude more efficient
- Based on millions of automated tests run in seconds
- One-touch auto-delivery to billions of global end-users

Activity	Def	CoQ	DevOps Economics		ROI
Development Operations 100 0.001 100 Defects x 70% Efficiency x		100 Defects x 70% Efficiency x 0.001 Hours	0.070	72,900%	
Continuous Delivery	30	0.01	30 Defects x 70% Efficiency x 0.01 Hours	0.210	24,300%
Continuous Integration	9	0.1	9 Defects x 70% Efficiency x 0.1 Hours	0.630	8,100%
Software Inspections	3	1	2.7 Defects x 70% Efficiency x 1 Hours	1.890	2,700%
"Traditional" Testing	0.81	10	0.81 Defects x 70% Efficiency x 10 Hours	5.670	900%
Manual Debugging	0.243	100	0.243 Defects x 70% Efficiency x 100 Hours	17.010	300%
Operations & Maintenance	0.073	1,000	0.0729 Defects x 70% Efficiency x 1,000 Hours	51.030	n/a

Agile Business/Enterprise Metrics

Generic Gov't/Commercial Metrics

Strategic

Increase (Commercial)

- Products & Services
- Product Safety & Reliability
- Reputation, Image, & Brand Equity
- Customers
- Marketshare
- Sales
- Revenues
- Profits
- Return on Investment

Increase (Government)

- Mission Efficiency & Effectiveness
- National Security & Safety Posture
- Identification of High-Value Targets
- Actionable Intelligence
- Intelligence Value Estimate
- Exploit Multiple Signal Sources
- Exploit Emerging Signal Sources
- Exploit Emerging Missions & Threats
- Strategic & Tactical Military Readiness

Operational

Reduce (Commercial & Gov't)

- Technical Complexity, Scale, & Size
- Development, Test, & Evaluation Costs
- Cycle Time & Delivery Speed
- Rework, Defects, Faults, & Failures
- Cost, Schedule, & Budget Overruns
- Turnover, Attrition, & Knowledge Loss
- Programmatic & Technical Risks
- Tech Obsolescence & Legacy Sys. Cost
- Hardware & Software Purchasing Time
- Integration & Interoperability Costs

Increase (Commercial & Gov't)

- Efficiency & Effectiveness
- Delivery Order Quantity (DoQ)
- Speed, Productivity, & Competitiveness
- Innovation, New Ideas, & Technology
- Morale, Retention, & Emp. Satisfaction
- Communication & Knowledge Sharing
- Cust. Satisfaction, Loyalty, & Retention
- Faster Tech. & Infrastructure Refresh
- Decisionmaking & Governance Speed
- Certification & Accreditation Speed

Generic Gov't/Project Mgt. Metrics

- □ Gov't projects require broad range of measurements
- □ Many gov't measures are qualitative vs. quantitative
- Data gathered by meetings, phone, & conversations

- Top 10 Risks Critical cost, schedule, & technical risks (using Probability Estimates).
- Staffing Levels Is project fully staffed (especially with critical technical resources)?
- BUDGET PERFORMANCE Is project achieving total budget parameters (at agreed rates)?
- TOP ACCOMPLISHMENTS Is project achieving early, value-adding performance objectives?
- CDRL Performance Is project delivering minimal contractual deliverables & reports?
- **EMERGING NEEDS** Are there any unforeseen changes in scope (new value propositions)?
- Performance Delays Are there significant performance delays (internal dependencies)?
- Training Performance Have required & ongoing training requirements been satisfied?
- Contract Performance Have contracts & subcontracts been awarded (& executing)?
- External Dependencies Are there major performance delays (external dependencies)?
- FACILITIES/EQUIPMENT ISSUES Have all facility & equipment requirements been satisfied?
- Travel Issues Are travel resources, policies, & requirements completely satisfied?
- Special Activities What's the status of research, prototyping, & exploratory "what-ifs"?

