(19) 世界知的所有権機関 国際事務局

- | 1881 | 1871 | 1881 |

(43) 国際公開日 2002 年8 月15 日 (15.08.2002)

PCT

(10) 国際公開番号 WO 02/062800 A1

(51) 国際特許分類⁷: C07D 487/04, 471/04, A61K 31/4985, 31/5025, 31/5377, 31/437, 31/519, A61P 43/00, 25/28, 1/14, 3/04, 3/10, 25/32, 25/30, 25/20, 25/06, 25/04, 9/10, 25/00, 21/02, 25/08, 21/00, 27/06, 27/00, 25/02, 17/14, 9/12, 9/00, 9/06, 9/02, 11/00, 11/06, 29/00, 37/08, 15/10, 15/12, 15/08, 35/00, 31/18, 37/04, 13/00, 19/10

(21) 国際出願番号: PCT/JP02/01098

(22) 国際出願日: 2002年2月8日(08.02.2002)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2001-32637 2001 年2 月8 日 (08.02.2001) JP 特願2001-133208 2001 年4 月27 日 (27.04.2001) JP

- (71) 出願人 (米国を除く全ての指定国について): エーザ イ株式会社 (EISAI CO., LTD.) [JP/JP]; 〒112-8088 東 京都文京区 小石川 4 丁目 6 番 1 〇号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 日比 滋樹 (HIBI,Shigeki) [JP/JP]; 〒305-0051 茨城県 つくば市 二の宮 2-7-1 2 Ibaraki (JP). 高橋 良典 (TAKA-HASHI,Yoshinori) [JP/JP]; 〒305-0061 茨城県 つくば市 稲荷前 9-7-3 1 O Ibaraki (JP). 星野 偉久 (HOSHINO,Yorihisa) [JP/JP]; 〒305-0045 茨城県 つくば市 梅園 2-1 1-3-7 0 2 Ibaraki (JP). 菊池浩一 (KIKUCHI,Koichi) [JP/JP]; 〒300-0064 茨城県 土浦市 東若松町 3 3 7 6-1-3 0 2 Ibaraki (JP). 副島太啓 (SOEJIMA,Motohiro) [JP/JP]; 〒305-0005 茨城県 つくば市 天久保 4-8-7 1-1 0 2 Ibaraki (JP). 吉内達也 (YOSHIUCHI,Tatsuya) [JP/JP]; 〒302-0115 茨城県 守谷市 大字守谷甲 1 0 8 9 番地 Ibaraki

(JP). 慎 光玉 (SHIN,Kogyoku) [KR/JP]; 〒305-0061 茨城県 つくば市 稲荷前 9-7-4 0 9 Ibaraki (JP). 小野 睦子 (ONO,Mutsuko) [JP/JP]; 〒300-1222 茨城県 牛久市 南 2-3 0-1 B-1 0 9 Ibaraki (JP). 柴田 寿 (SHIBATA,Hisashi) [JP/JP]; 〒300-1232 茨城県 牛久市 上柏田 1-3 0-3 0 Ibaraki (JP). 伊野 充洋 (INO,Mitsuhiro) [JP/JP]; 〒300-1234 茨城県 牛久市 中央 5-3-6-3 0 3 Ibaraki (JP). 平川 哲也 (HIRAKAWA,Tetsuya) [JP/JP]; 〒305-0051 茨城県 つくば市 二の宮 1-1 0-1 9 I-1 0 1 Ibaraki (JP).

- (74) 代理人: 古谷 馨, 外(FURUYA,Kaoru et al.); 〒103-0007 東京都 中央区 日本橋浜町 2-1 7-8 浜町花長 ビル 6 階 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

- (54) Title: BICYCLIC NITROGENOUS FUSED-RING COMPOUND
- (54) 発明の名称: 二環性含窒素縮合環化合物

(57) Abstract: A novel compound having an excellent antagonistic effect on a corticotropin-releasing-factor receptor. It is a compound represented by the following formula or a salt thereof. (I) In the formula, R^1 represents hydrogen, C_{1-6} alkyl, C_{1-6} alkoxy, etc.; R^2 represents halogeno, cyano, nitro, C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, etc.; R^3 represents an optionally substituted C_{6-14} aromatic hydrocarbon group or an optionally substituted, 5- to 14-membered aromatic heterocyclic group; and X, Y, and Z each independently represents nitrogen or CR^4 (wherein R^4 represents hydrogen, halogeno, cyano, nitro, optionally halogenated C_{1-6} alkyl, etc.), provided that at least two of X, Y, and Z represent CR^4 .

(57) 要約:

本発明は、副腎皮質刺激ホルモン放出因子(Corticotropin-releasing-factor)受容体に対し優れた拮抗作用を有する新規化合物を提供する。すなわち、下記式で表される化合物またはその塩を提供する。

$$R^{1} \xrightarrow{N} X Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad$$

式中、 R^1 は水素原子、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基等を、 R^2 はハロゲン原子、シアノ基、ニトロ基、 C_{1-10} アルキル基、 C_{2-10} アルケニル基、 C_{2-10} アルキニル基等を、 R^3 はそれぞれ置換基を有していてもよい C_{6-14} 芳香族炭化水素環式基または5乃至14員芳香族複素環式基を、X、YおよびZはそれぞれ独立にNまたはCR 4 (式中、 R^4 は水素原子、ハロゲン原子、シアノ基、ニトロ基、ハロゲン化されていてもよい C_{1-6} アルキル基等を示す)を示し、 C_{1-6} の場合において、 C_{1-6} アルキル基等を示す。

明細書

二環性含窒素縮合環化合物

技術分野

本発明は、副腎皮質刺激ホルモン放出因子(Corticotropin-releasing-factor)受容体拮抗活性を有する新規化合物、その塩、それらの水和物、それらの製造法ならびにその医薬用途に関する。

従来の技術

副腎皮質刺激ホルモン放出因子 (Corticotropin-releasing factor:以下、 「CRF」という。)は41個のアミノ酸から成る神経ペプチドであり、はじ めに羊の視床下部から単離され〔Science, 213, 1394 (1981)〕、次いでラット (Proc. Natl. Acad. Sci. USA, 80, 4851 (1983)), 上ト (EMBO J. 5, 775 (1983)) において存在が確認された。CRFは下垂体、視床下部に最も多く存在し、大 脳皮質、小脳等の脳内に広く分布している。また、末梢組織においては胎盤、 副腎、肺、肝臓、膵臓や消化管に存在することが確認されている。〔J. Clin. Endocrinol. Metab., 65, 176 (1987), J. Clin. Endocrinol. Metab., 67, 768 (1988) Regul. Pept., <u>18</u>, 173 (1987) Peptides, <u>5</u> (Suppl. 1), 71 (1984) . CRF受容体にはCRF1とCRF2の2つのサブタイプが存在し、CRF1 受容体は大脳皮質、小脳、嗅球、下垂体、扁桃核等に多く分布することが報告 されている。最近、CRF2受容体にはCRF2a、CRF2ゟという2つの サブタイプの存在が確認され、СRF2α受容体は視床下部、中隔野、脈絡叢 に多く分布し、CRF2β受容体は主に骨格筋等の末梢組織に分布し、中枢で は脳血管に分布していることがわかってきた [J. Neuroscience, <u>15</u>(10)6340 (1995); Endocrinology, <u>137</u>, 72 (1996); BBA, 1352, 129 (1997)〕。各受容 体は分布が異なることからその役割も異なることが示唆される。CRFは視床 下部において生成・分泌され、ストレスによる副腎皮質刺激ホルモン(ACT

H) の放出を促す (Recent Prog. Horm. Res., <u>39</u>, 245 (1983)]。内分泌に対する役割に加え、CRFは脳内において神経伝達物質もしくは神経調節物質として働き、ストレスに対する電気生理的、自律神経及び行動等を統合している (Brain Res. Rev., <u>15</u>, 71 (1990); Pharmacol. Rev., <u>43</u>, 425 (1991)]。 現在、CRFはいろいろな疾患に関与すると考えられており、以下のような報告がある。

うつ病患者の脳脊髄液中のCRFは正常人に比べ高値である〔Am. J. Psychiatry, 144(7), 873 (1987)];うつ病患者の視床下部のCRF-mRN Aレベルは正常人に比較し高値である〔Am. J. Psychiatry, 152, 1372 (1995〕; 自殺者の大脳皮質のCRF受容体は減少している [Arch. Gen. Psychiatry, 45, 577 (1988)] ; うつ病患者ではCRFを投与した際の血漿中のACTHの上昇 が少ない [N. Engl. J. Med., 314, 1329 (1986))];強迫性障害、心的外傷後 ストレス障害、チューレット症候群等のある種の不安患者の脳脊髄液中のCR Fは正常人に比べ高値である [Arch. Gen. Psychiatry, 51, 794 (1994); Am. J. Psychiatry, <u>154</u>, 624 (1997); Biol. Psychiatry, <u>39</u>, 776 (1996)〕;パニッ ク障害患者ではCRFを投与した際の血漿中のACTHの上昇が少ない〔Am. J. Psychiatry, 143, 896 (1986)〕;実験動物の脳内にCRFを投与すると不安行 動が認められる[Brain Res., <u>574</u>, 70 (1992); J. Neurosci., 10(1), 176 (1992)]。 また、CRF過剰発現マウスでは正常動物と比較し不安行動が多く認められる [J. Neurosci., 14(5), 2579 (1994)]; 抗不安剤投与により青斑核のCRF は減少する〔J. Pharmaco. Exp. Ther., <u>258</u>, 349 (1991)〕。また、ペプチド 性CRFアンタゴニストの α -helical CRF (9-41) は動物モ デルにおいて抗不安作用を発揮する (Brain Res., <u>509</u>, 80 (1990); Regulatory Peptides, 18, 37 (1987); J. Neurosci., 14(5), 2579 (1994)〕;アルコール やコカイン等の依存性薬物の禁断による異常行動をペプチド性CRFアンタゴ ニストの α -helical CRF (9-41) は抑制する [Psychopharmacology, 103, 227 (1991)]; CRFはラットの性行動を抑制す

睡眠障害に関与すると考えられる [Pharmacol. Biochem. Behav., 26, 699] (1987)〕 ; 脳虚血やNMDA受容体の活性化による脳の障害や脳波異常をペプ チド性CRFアンタゴニストの α -helical CRF (9-41) は抑 制する (Brain Res., 545, 339 (1991)、Brain Res., 656, 405 (1994)〕; C RFは脳波を覚醒し、痙攣を誘発する (Brain Res., 278, 332 (1983)) :精神 分裂病患者の脳脊髄液中のCRFは正常人に比べ高値である〔Am. J. Psychiatry, 144(7), 873(1987)〕;アルツハイマー病、パーキンソン病、進 行性核上麻痺患者の大脳皮質のCRFは減少している (Neurology, 37, 905 (1987)〕; ハンチントン病の神経節ではCRFは減少している [Brain Res., 437, 355 (1987)、Neurology, 37, 905 (1987)〕。また、ラットにおいてCRF投与 により学習・記憶が高まることがわかっている (Nature, 378, 284 (1995); Neuroendocrinology, 57, 1071 (1993)〕;筋萎縮性側索硬化症患者の脳脊髄液 中のCRFは低下している。CRF過剰発現マウスではACTHと副腎皮質ス テロイドの過剰分泌が起こり、筋肉の萎縮、脱毛、不妊等のクッシング症候群 類似の異常が認められる (Endocrinology, 130(6), 3378 (1992)〕;神経性食 思不振症患者の脳脊髄液中のCRFは正常人に比べ高値であり、神経性食思不 振症患者ではCRFを投与した際の血漿中のACTHの上昇が少ない〔J. Clin. Endocrinol. Metab., 62, 319 (1986)〕;実験動物においてCRFは摂食を抑 制する [Neuropharmacology, <u>22</u>(3A), 337 (1983)]。また、ペプチド性CRF アンタゴニストの α -helical CRF(9-41)は動物モデルにお いてストレス負荷による摂食低下を改善した〔Brain Res. Bull., 17(3), 285 (1986)〕; CRFは遺伝性肥満動物において体重増加を抑制した〔Physiol. Behav., 45, 565 (1989)]; CRF値の低さと肥満症候群が関係することが示 唆されている (Endocrinology, 130, 1931 (1992)); セロトニン再取り込み阻 害剤の摂食抑制及び体重減少作用はCRFの遊離を介している可能性が示唆さ れている (Pharmacol. Rev., 43, 425 (1991)]; CRFは中枢性もしくは末梢 性に作用し、胃の収縮性を弱め、胃排出能を低下する (Regulatory Peptides, 21, 173 (1988); Am. J. Physiol., 253, G241 (1987)]。また、腹部の手術による

胃の機能低下に対し、ペプチド性CRFアンタゴニストの α -helical CRF (9-41) は回復作用を有する [Am. J. Physiol., 262, G616 (1992)]; CRFは胃の重炭酸イオンの分泌を促進し、胃酸分泌を減少するとともに寒冷 拘束ストレス潰瘍を抑制する〔Am. J. Physiol., 258, G152 (1990)〕。また、 非拘束ストレス動物ではCRF投与により潰瘍は増加する〔Life Sci., 45, 907 (1989)] : CRFは小腸輸送を抑制し、大腸輸送を促進し排便を惹起する。ま た、ペプチド性CRFアンタゴニストの α -helical CRF (9-4) 1) は拘束ストレスによる胃酸分泌低下、胃排出低下、小腸輸送低下及び大腸 輸送亢進に対し抑制作用を有する〔Gastroenterology, 95, 1510 (1988)〕;健 常人において精神的ストレスは、不安や腸拡張によるガス、腹痛を増加し、C RFは不快の閾値を下げる (Gastroenterol., 109, 1772 (1995); Neurogastroenterol. Mot. 8, 9 (1996)〕;過敏性腸症候群患者は健常人に比 較し、CRF投与により大腸運動が過剰に亢進する〔Gut, 42, 845 (1998)〕; CRF投与により血圧、心拍数、体温が上昇する。また、ペプチド性CRFア ンタゴニストの α -helical CRF (9-41) はストレスによる血 圧、心拍数、体温上昇を抑制する〔J. Physiol., 460, 221 (1993)〕;実験動 物の炎症部位やリウマチ性関節炎患者の関節液中において局所的にCRFの生 成が増加している (Science, 254, 421 (1991); J. Clin. Invest., 90, 2555 (1992); J. Immunol., 151, 1587 (1993)〕; CRFは肥満細胞の脱顆粒を惹起 し、血管透過性を亢進する (Endocrinology, 139(1), 403 (1998); J. Pharmacol. Exp. Ther., 288(3), 1349(1999)〕;自己免疫性甲状腺炎患者においてもCR Fが検出される〔Am. J. Pathol., 145, 1159 (1994)〕;実験的自己免疫性脳 脊髄膜炎ラットにCRFを投与すると、麻痺などの症状の進行は著名に抑制さ れた〔J. Immumol., 158, 5751 (1997)〕;先端巨大症患者の下垂体腺腫培養系 においてurocortin (CRFの類縁体) は成長ホルモン分泌を増加さ せた (Endocri. J, 44, 627 (1997)) 。さらに、CRFは白血球におけるイン ターロイキン1やインターロイキン2等のサイトカインの分泌を刺激する〔J. Neuroimmunol., 23, 256 (1989); Neurosci. Lett., 120, 151 (1990)]; CR

F投与及びストレス負荷によりTリンパ球の増殖、ナチュラルキラー細胞活性は低下する。ペプチド性CRFアンタゴニストの α ーhelical CRF(9-41)はCRF投与及びストレス負荷によるこれら免疫細胞の機能低下を改善する [Endocrinology, 128(3), 1329 (1991)]; CRF投与により呼吸が著しく増加する [Eur. J. Pharmacol., 182, 405 (1990)]。長期人工呼吸器を装着した高齢の患者ではCRF投与により呼吸の増悪と不眠が認められた [Acta Endocrinol. Copenh., 127, 200 (1992)]。

上記研究報告から、CRFアンタゴニストは、大うつ病、単発性うつ病、再 発性うつ病、うつ病による幼児虐待、産後うつ病を含むうつ病及び抑うつ症状、 そう病不安症、全般性不安障害、パニック障害、恐怖症、強迫性障害、心的外 傷後ストレス障害、チューレット症候群、自閉症、感情障害、情緒障害、双極 性障害、循環性格、分裂病、アルツハイマー病、アルツハイマー型老年性痴呆、 パーキンソン病・ハンチントン病等の神経変性疾患、多発梗塞性痴呆、老年期 の痴呆、神経性食思不振症、食欲亢進及び他の摂食障害、肥満、糖尿病、アル コール依存症、コカイン、ヘロイン、ベンゾジアゼピンなどに対する薬物嗜好、 薬物あるいはアルコール禁断症状、睡眠障害、不眠症、偏頭痛、ストレス性頭 痛、筋緊張性頭痛、虚血性神経障害、興奮毒性神経障害、脳卒中、進行性核上 麻痺、筋萎縮性側索硬化症、多発性硬化症、筋肉痙攣、慢性疲労症候群、精神 社会的発育不全、てんかん、頭部外傷、脊髄外傷、書痙、痙性斜頚、筋肉痙攣、 頚肩腕症候群、原発性緑内障、ニエール症候群、自律神経失調症、脱毛症、心 臓神経症、胃腸神経症、膀胱神経症を含む神経症、消化性潰瘍、過敏性腸症候 群、潰瘍性大腸炎、クローン病、下痢、便秘、術後イレウス、ストレスに伴う 胃腸機能異常及び神経性嘔吐、高血圧、神経性狭心症を含む心臓血管障害、頻 脈、鬱血性心麻痺、過呼吸症候群、気管支喘息、無呼吸症候群、乳児突然死症 候群、炎症性障害(例えばリウマチ様関節炎、骨関節炎、腰痛等)、疼痛、ア レルギー性疾患(例えばアトピー性皮膚炎、湿疹、蕁麻疹、乾癬等)、インポ テンツ、更年期障害、受精障害、不妊症、癌、HIV感染時の免疫機能異常、スト レスによる免疫機能異常、出血性ストレス、クッシング症候群、甲状腺機能異

常、脳脊髄炎、先端巨大症、失禁、骨粗鬆症等の治療・予防に優れた効果を発揮するものと期待することができる。CRFアンタゴニストとして、例えば、ヒトや他の哺乳類のCRFのアミノ酸配列の一部を改変または欠損させたペプチド型のCRF受容体アンタゴニストに関する報告があり、当該アンタゴニストのACTH放出抑制作用や抗不安作用を示すとされている〔Science, 224, 889 (1984)、J. Pharmacol. Exp. Ther., 269, 564 (1994)、Brain Research Reviews, 15, 71 (1990)〕。しかしながら、ペプチド誘導体は、生体内での化学的安定性や経口吸収性、生体利用率、脳内移行性、等の薬物動態学的観点から、医薬品としての利用価値は低いといわざるを得ない。

一方、非ペプチド型のCRFアンタゴニストに関しては、以下のような報告がある。

[1]式

$$R^3$$
 N
 N
 R^2

〔式中、 R^1 は NR^4R^5 等を示す; R^2 は C_{1-6} アルキル基等を示す; R^3 は C_{1-6} アルキル基等を示す; R^5 は C_{1-8} アルキル基等を示す; R^5 は C_{1-8} アルキル基等を示す; R^5 は C_{1-8} アルキル基等を示す; R^5 は R^5

[2]式

 $_1-C_6$ アルキル基等を示す; R^2 は C_1-C_{12} アルキル基等を示す; R^7 は水素原子等を示す。〕で表わされる化合物またはその薬理学的に許容される塩(W O 9 8 / 0 8 8 4 7);

[3] WO95/10506に記載のアニリノピリミジン化合物、WO95/34563に記載のピラゾロピリジン化合物、WO94/13661に記載のピラゾール化合物、WO94/13661に記載のピラゾール化合物、WO94/13643に記載のピラゾールならびにピラゾロピリミジン化合物、WO94/18644に記載のアミノピラゾール、WO94/13677に記載のピラゾロピリミジン化合物、WO94/13676に記載のピロロピリミジン化合物、EP-659747、EP-611766に記載のチアゾール化合物、J. Med. Chem., 39, 4358 (1996) に記載のアニリノピリミジン化合物、ibid. 39, 4354 (1996) に記載のアニリノトリアジン化合物およびWO97/29110に記載のチエノピリミジン化合物、等。また、

[4] イミダゾ [1, 2-a] ピラジン化合物として例えばEP0068378に記載の化合物が、イミダゾ [1, 2-b] ピリダジン化合物として例えばEP0353902に記載の化合物がある。

上記の如く、医薬として有用なCRF受容体アンタゴニストの提供が切望されているが、優れたCRF受容体アンタゴニスト作用を示し、且つ、医薬として、薬理活性、投与量、安全性等の点を満足させ臨床で有効に作用する薬剤は未だ見出されていない。即ち、本発明の目的は、そのような優れたCRF受容体アンタゴニストを探索し、見出すことにある。

発明の開示

本発明者らは、上記事情に鑑みて、精力的に研究を重ねた。その結果、式

$$R^{1}$$
 N
 X
 Y
 Z
 R^{3}
 X

〔式中、R¹は水素原子、ハロゲン原子、ニトロ基、シアノ基、C1-6アルキル

基、 C_{2-8} アルケニル基、 C_{2-8} アルキニル基、 C_{3-8} シクロアルケニル基、 C_{3-8} シクロアルケニル基、 C_{1-6} アルコキシ基、 C_{2-6} アルケニルオキシ基、-N $R^{1a}R^{1b}$ [R^{1a} および R^{1b} は同一または相異なって水素原子、 C_{1-6} アルキル基、 C_{2-6} アルキニル基、 C_{2-6} アルキニル基、 C_{1-6} アルキルスルフィニル基、 C_{1-6} アルキルスルホニル基または C_{1-7} 脂肪族アシル基を示す]、-CO-N $R^{1a}R^{1b}$ [R^{1a} および R^{1b} はそれぞれ前記定義と同意義を示す]、-CO-A 1 [A^1 は C_{1-6} アルキル基、 C_{2-8} アルケニル基または C_{2-8} アルキニル基を示す]、 $-G^1-A^2$ [G^1 は-O-CO-、S、SOまたは SO_2 を、 A^2 は C_{1-6} アルキル基または C_{2-6} アルケニル基を示す] または $-SO_2-NR^{1a}R^{1b}$ [R^{1a} および R^{1b} はそれぞれ前記定義と同意義を示す]で表わされる基を示し、更に前記 R^1 はハロゲン原子、シアノ基、 C_{1-6} アルキル基、 C_{2-8} アルケニル基、 C_{2-8} アルキニル基、 C_{1-6} アルキル基もよび C_{2-6} アルカニルスキシ基、 C_{1-6} アルキルチオ基および C_{2-6} アルケニルチオ基から選ばれる少なくとも1の基で置換されていてもよい;

R²は

(a)ハロゲン原子、シアノ基、ニトロ基、 C_{1-10} アルキル基、 C_{2-10} アルケニル基、 C_{2-10} アルキニル基、 C_{3-8} シクロアルキル基、 C_{3-8} シクロアルケニル基、 C_{3-8} シクロアルキル C_{1-6} アルキル基、 C_{3-8} シクロアルキル C_{2-6} アルケニル基、 C_{1-10} アルコキシ基、 C_{1-10} アルコキシ基、 C_{2-6} アルケニルオキシ基、 C_{1-10} アルコキシと C_{1-10} アルコキシと C_{1-10} アルキル基、 C_{2-6} アルケニルオキシ C_{2-6} アルケニルオキシ C_{1-6} アルキル基、 C_{2-6} アルケニルオキシ C_{2-6} アルケニル基、 C_{2-6} アルケニル基、 C_{2-6} アルケニル基、 C_{2-6} アルケニル基、 C_{2-6} アルケニル基、 C_{2-6} アルキル基、 C_{2-6} アルケニル基、 C_{1-6} アルキル基、 C_{1-6} アルキル基、 C_{1-6} アルキル基、 C_{1-6} アルキルチオ基、 C_{1-6} アルキルスルフィニル基、 C_{1-6} アルキルスルホニル基、 C_{1-6} アルキル基、 C_{1-6}

ール C_{1-6} アルキル基、アリール基、5乃至14員複素環式基、 C_{1-6} アルコキシカルボニル基または C_{2-6} アルケニルオキシカルボニル基を示す]、 $-CO-NR^{2a}R^{2b}$ [R^{2a} および R^{2b} はそれぞれ前記定義と同意義を示す]、 $-CO-A^3$ [A^3 は水素原子、水酸基、 C_{1-6} アルキル基、 C_{2-8} アルケニル基、 C_{2-8} アルキニル基、 C_{1-6} アルコキシ基、 C_{2-8} アルケニル基を示す]、-O-C(O) $-A^4$ [A^4 は C_{1-6} アルキル基、 C_{2-8} アルケニル基または C_{2-8} アルケニル基または C_{2-8} アルキニル基を示す]、 $-G^2-A^5$ [G^2 はS、S OまたはS O2を、 A^5 は C_{1-6} アルキル基または C_{2-6} アルケニル基を示す]で表わされる基もしくはS D至14員非芳香族複素環式基を示すか、または、

(b)R¹と結合して一緒になり環を形成していてもよく、更に、

前記(a)または(b)の場合において R^2 はハロゲン原子、水酸基、シアノ基、 C_1 -6アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、 C_{3-8} シクロアルキル基、 C_{3-8} シクロアルケニル基、 C_{1-6} アルコキシ基、 C_{2-6} アルケニルオキシ基、 C_{1-6} アルキルチオ基、 C_{2-6} アルケニルチオ基、 C_{1-6} アルキルチオ基、 C_{2-6} アルケニルチオ基、 C_{1-6} アルキルチオ基、 C_{1-6} アルケニルチオ基、 C_{1-6} アルナルチオ基、 C_{1-6} アルケニルチオ基、 C_{1-6} アルケニルチオーカー C_{1-6} アルケニルチオー C_{1-6} アルケニルチャー C_{1-6} アルケニルチャー C_{1-6} アルケニル C_{1-6} アルケニル C

 R^3 はそれぞれ置換基を有していてもよい C_{6-14} 芳香族炭化水素環式基または5万至14員芳香族複素環式基を示し:

X、YおよびZはそれぞれ独立に(a)Nまたは(b) C R^4 [式中、 R^4 は(aa)水素原子、ハロゲン原子、シアノ基、二トロ基、ハロゲン化されていてもよい C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、 C_{3-8} シクロアルキル基、 C_{3-8} シクロアルケニル基、 C_{1-6} アルコキシ基、 C_{2-6} アルケニルオキシ基、 C_{1-6} アルカニル基、 C_{1-6} アルカニル基、 C_{1-6} アルキル基、 C_{1-6} アルキルチオ基、 C_{1-6} アルキルスルフィニル基、 C_{2-6} アルキルスルホニル基、 C_{1-6} アルキルスルフィニル基、 C_{1-6} アルキルスルカティニル基、 C_{1-6} アルキルスルカニール基、 C_{1-6} アルキル基、 C_{1-6} アルカルボニル基または C_{2-6}

アルケニルオキシカルボニル基を示す]もしくは $-G^3-A^6$ [式中、 G^3 はS、S OまたはS O₂を; A^6 は C_{1-6} アルキル基または C_{2-6} アルケニル基を示す]を示すか、または、(bb) R^4 どうし、若しくは、 R^2 と R^4 とで結合して一緒になり環を形成していてもよい。]を示す; この場合において、X、Y およびZ のうち少なくとも 2 つはC R^4 [式中の R^4 は前記定義と同意義を示す]を示す; ただし、上記定義において、下記(1)乃至(4)の場合の化合物は除かれる。

- (1)R ¹およびR ²がメチル基で、X、YおよびZがCHで、且つ、R ³が 2 , 4 -ジクロロフェニル基である場合、
- (2)R¹がトリフルオロメチル基で、R²がフッ素原子または臭素原子で、Xが 窒素原子で、Yが=C(CH $_3$) で、ZがCHで、且つ、R³がフェニル基で ある場合、
- (3) R^1 がトリフルオロメチル基で、 R^2 がエトキシカルボニル基またはアミド基で、Xが窒素原子で、Yが=C(CH_3)-で、ZがCHで、且つ、 R^3 が3-クロロフェニル基である場合、
- (4)R¹が水素原子で、R²が4ーモルホリニルメチル基で、Xが窒素原子で、Yが=CR'ー [R'はフェニル基を示す。] で、ZがCHで、且つ、R³がフェニル基である場合。] で表される新規な化合物(以下、「化合物(I)」と称すことがある。)、その塩およびそれらの水和物を合成することに成功し、さらに驚くべきことに、該化合物が優れたCFRアンタゴニスト作用を有することを見出して、本発明を完成した。

即ち、本発明は、(1)前記式(I)で表わされる化合物またはその塩、(2) R^1 が C_{1-6} アルキル基、 C_{2-8} アルケニル基、 C_{2-8} アルキニル基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基、 C_{1-6} アルキルスルフィニル基または C_{1-6} アルキルスルホニル基である前記(1)記載の化合物またはその塩、(3) R^1 がメチル基、エチル基、n-プロピル基、i s o-プロピル基、メトキシ基、エトキシ基、n-プロピルオキシ基、i s o-プロピルオキシ基、メチルチオ基、エチルチオ基、n-プロピルチオ基、i s o-プロピルチオ基、メチルチオルフィニル基、エチルスルフィニル基、メチルスルホニル基またはエチルスルルフィニル基、エチルスルフィニル基、メチルスルホニル基またはエチルスル

ホニル基である前記(1)記載の化合物またはその塩、(4) R^1 が $-G^4-C$ H。[式中、G⁴は単結合、CH₂、OまたはSを示す。] である前記(1)記載 の化合物またはその塩、(5) R²がそれぞれ置換されていてもよいC₁₋₆アル キル基、C1-6アルコキシC1-6アルキル基、C1-6アルキルスルホニル基、C2 -6アルケニルスルホニル基または-NR^{2a}R^{2b}[R^{2a}およびR^{2b}はそれぞれ前 記定義と同意義を示す。〕である前記(1)記載の化合物またはその塩、(6) R²が-NR^{2aa}R^{2bb}「式中、R^{2aa}およびR^{2bb}はそれぞれ独立に水素原子、 C_{1-8} アルキル基、 C_{2-8} アルケニル基、 C_{2-6} アルキニル基、5乃至14員非 芳香族複素環式基で置換されたC1-6アルキル基、C1-8アルコキシ基、C1-8 アルコキシC₁₋₈アルキル基、C₁₋₆アルキルスルフィニル基、C₁₋₆アルキル スルホニル基、C₃₋₈シクロアルキル基、C₃₋₈シクロアルキルC₁₋₆アルキル 基または5乃至14員複素環式基を示し、更に前記R^{2aa}およびR^{2bb}はそれぞ れ独立にハロゲン原子で置換されていてもよい。] である前記(1)記載の化 合物またはその塩、(7) R 2 がジ (C $_{1-6}$ アルキル) アミノ基である前記 (1) 記載の化合物またはその塩、(8) R³がそれぞれ置換されていてもよいフェニ ル基またはピリジル基である前記(1)記載の化合物またはその塩、(9) R³ がハロゲン原子、C₁₋₆アルキル基、ハロゲノーC₁₋₆アルキル基、C₁₋₆アル コキシ基、ハロゲノーC1-6アルコキシ基、C1-6アルキルチオ基または5乃至 8 員芳香族複素環式基から選ばれる1乃至4個の基でそれぞれ置換されていて もよいフェニル基またはピリジル基である前記(1)記載の化合物またはその 塩、(10) R³がフッ素原子、塩素原子、臭素原子、メチル基、エチル基、ト リフルオロメチル基、メトキシ基、トリフルオロメトキシ基、メチルチオ基お よびピロリル基から選ばれる1万至3個の基でそれぞれ置換されていてもよい フェニル基またはピリジル基である前記(1)記載の化合物またはその塩、(1 1) X、YおよびZのうちいずれか1つがNで、残る2つがC R 4 : [式中、R4 は水素原子、ハロゲン原子、シアノ基、 C_{1-6} アルキル基または C_{1-6} アル コキシ基を示す。] である前記 (1) 記載の化合物またはその塩、(12) X およびYがCR⁴' [式中、R⁴' は前記定義と同意義を示す。] で、ZがNで

ある前記(1)記載の化合物またはその塩、(13)X、YおよびZがCR 4 ' [式中、R 4 ' は前記定義に同意義を示す。] で表わされる基である前記(1)記載の化合物またはその塩、(14)R 4 'が水素原子、ハロゲン原子、メチル基、エチル基、メトキシ基またはエトキシ基である前記(10)乃至(12)のいずれか1に記載の化合物またはその塩、(15)R 4 'が水素原子である前記(10)乃至(12)のいずれか1に記載の化合物またはその塩、(16)式

$$R^2$$
 N
 X'
 Z'
 R^3

〔式中、X'およびZ'はそれぞれ独立にNまたはCHを「この場合において X' およびZ' のうち少なくとも1つはCHを示す。]、 G^4 、 R^2 および R^3 はそれぞれ前記定義と同意義を示す。〕で表わされる前記(1)記載の化合物 またはその塩、(17) R²が-NR^{2aa}R^{2bb} [式中、R^{2aa}およびR^{2bb}はそ れぞれ独立に水素原子、 C_{1-8} アルキル基、 C_{2-8} アルケニル基、 C_{2-6} アルキ 二ル基、5乃至14員非芳香族複素環式基で置換されたC₁₋₆アルキル基、C₁ -8アルコキシ基、C1-8アルコキシC1-8アルキル基、C1-6アルキルスルフィ ニル基、C₁₋₆アルキルスルホニル基、C₃₋₈シクロアルキル基、C₃₋₈シクロ アルキルC,-。アルキル基または5乃至14員複素環式基を示し、更に前記R² aaおよびR2bbはそれぞれ独立にハロゲン原子で置換されていてもよい。]であ る前記 (16) 記載の化合物またはその塩、(18) R^2 がジ (C_{1-6} アルキル) アミノ基である前記(16)記載の化合物またはその塩、(19) R³がそれぞ れ置換されていてもよいフェニル基またはピリジル基である前記(16)記載 の化合物またはその塩、(20) R^3 がハロゲン原子、 C_{1-6} アルキル基、ハロ ゲノ C_{1-6} アルキル基、ハロゲノ C_{1-6} アルコキシ基、 C_{1-6} アルコキシ基、 C_1 -6アルキルチオ基または5乃至8員芳香族複素環式基から選ばれる1乃至4個

の基でそれぞれ置換されていてもよいフェニル基またはピリジル基である前記 (16)記載の化合物またはその塩、(21)式

$$R^{2a}$$
 N
 CH_3
 G^4
 N
 M
 M

〔式中、Z"はNまたはCHを、M環は更に置換基を有していてもよいベンゼ ン環を、G⁴、R^{2a}およびR^{2b}はそれぞれ前記定義と同意義を示す。〕で表わさ れる前記(1)記載の化合物またはその塩、(22) R2aおよびR2bがそれぞ れ独立に水素原子、C1-8アルキル基、C2-8アルケニル基、C2-8アルキニル 基、5乃至14員非芳香族複素環式基で置換されたC1-6アルキル基、C1-8ア ルコキシC₁₋₈アルキル基、C₃₋₈シクロアルキル基またはC₃₋₈シクロアルキ ルC1-6アルキル基で、更にそれぞれ独立にハロゲン原子で置換されていてもよ い前記(21)記載の化合物またはその塩、(23) R^{2a}およびR^{2b}がC₁₋₆ アルキル基である前記(21)記載の化合物またはその塩、(24)M環が更 にハロゲン原子、C1-6アルキル基、C1-6アルコキシ基、C1-6アルコキシ基 ハロゲノC1-6アルキル基またはハロゲノC,-6アルコキシ基から選ばれる1 乃至3個の基で置換されていてもよいベンゼン環である前記(21)記載の化 合物またはその塩、(25) 化合物がN-(2-エチル-8-メシチルイミダ ゾ[1, 2-a]ピラジン-3-1イル) -N, N-1ジプロピルアミン 塩酸塩、 N-(2-x+y-8-y+y+y+1)=N-(2-a)N) -N- (1-エチルプロピル) アミン、

NーシクロプロピルメチルーNー [8-(2, 4-ジクロロフェニル)-2]

ーエチルイミダゾ [1, 2-a] ピラジンー3-4ル]-N-4ソブチルアミン、

N-[8-(2,4-i)DDDDTx=N)-2-x+N+i = N-[8-(2,4-i)DDDTx=N)-2-x+N+i = N-2DDDTx=N-i = N-2DDDTx=N-i = N-2DDDTx=N-i = N-2DDDTx=N-i = N-i =

N3, N3 - ジプロピルー2 - イソプロピルー8 - (2 - メトキシー4, 6 - ジメチルフェニル)イミダゾ [1, 2 - <math>a] ピラジンー3 - アミン、

N-[2-エチル-8-(6-メチル-1, 3-ベンゾジオキソール-5- イル) イミダゾ <math>[1, 2-a] ピラジン-3-イル]-N, N-ジプロピルアミン、

N-8-[5-000-4-(2,5-i)+1-1-i] - 2-i N-8-[5-000-4-(2,5-i)+1-1-i] - 2-i N-8-[5-000-4-(2,5-i)+1-1-i] N-8-[5-000-4-(2,5-i)+1-1-i] N-8-[5-000-4-(2,5-i)+1-1-i] N-8-[5-000-4-(2,5-i)+1-1-i] N-8-[5-000-4-(2,5-i)+1-i] N-8-[5-000-4-(2,5-i)+1-i]

N-[8-(2,4-ジクロロフェニル)-2-エチルー6-メチルイミダ ゾ [1,2-a] ピラジン-3-イル]-N,<math>N-ジプロピルアミン 塩酸塩、N3,N3-ジプロピル-5-ブロモ-8-(2,4-ジクロロフェニル)

-2-エチルイミダゾ [1, 2-a] ピラジン-3-アミン、

8-(2, 4-i)クロロフェニル)-3-(i)プロピルアミノ)-2-Iチルイミダゾ [1, 2-a] ピラジン-6-1イル シアナイド、

N-[8-(2, 4-ジクロロフェニル) - 2-エチル-6-メトキシイミ ダゾ <math>[1, 2-a] ピラジン-3-イル] -N, N-ジプロピルアミン、

Nー $\begin{bmatrix} 6 - D \Box \Box - 2 - \mathbf{I} \mathcal{F} \mathcal{N} - 8 - (2 - \mathbf{J} \mathcal{F} \mathcal{F}) - 4 \\ 1 - \mathbf{J} \mathcal{F} \mathcal{F} \mathcal{N} \end{bmatrix}$ Nージプロピルアミン、

N3, N3-ジプロピル-8-(2, 4-ジクロロフェニル) -2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピラジン-3-アミン、

N, N-ジシクロプロピルメチル-N-[8-(2-メトキシ-4, 6-ジメチルフェニル)-2-(メチルスルファニル)イミダゾ<math>[1, 2-a]ピラジン-3-4ル[3-4]アミン、

N-[8-(2-7)ロモー4ーメトキシフェニル)-2-(メチルスルファニル)イミダゾ[1, 2-a]ピラジン-3-イル]-N-シクロプロピルメチル-N-(3-フルオロプロピル)アミン、

N-[8-[2-000-4-(トリフルオロメトキシ)フェニル]-2-(メチルスルファニル)イミダゾ<math>[1, 2-a]ピラジン-3-1イル]-N,

N-ジシクロプロピルメチルアミン、

1-[[8-[2-DDDD-4-(トリフルオロメトキシ) フェニル] -2 -(メチルスルファニル) イミダゾ [1, 2-a] ピラジン-3-イル] (シ クロプロピルメチル)アミノ] <math>-2-プロパノール、

4-[3-[3](2)(2) 4-[3](2) 4-

N, N-ジシクロプロピルメチル-N-[8-(2-メトキシ-4-テトラヒドロ-1<math>H-1-ピロリルフェニル)-2-(メチルスルファニル)イミダゾ [1, 2-a] ピラジン-<math>3-4ル] アミン、

 $N2-[8-[2-\rho \Box \Box -4-($ トリフルオロメトキシ)フェニル] -2 -(メチルスルファニル)イミダゾ [1; 2-a] ピラジン-3- イル] -N 2- シクロプロピルメチル-2- フルアミド、

N-[8-[2-DDDD-4-(トリフルオロメトキシ)フェニル]-2-(メチルスルファニル)イミダゾ <math>[1, 2-a] ピラジン-3-イル]-N-シクロプロピルメチル-N-(2-フリルメチル)アミン、

 $N-[8-[2-D_{1}]-2-(-1)]-2-(-1)$ (メチルスルファニル) イミダゾ [1, 2-a] ピラジン-3-(-1) - N-(-1) シクロプロピルメチル-N-(2-1) モルホリノエチル) アミン、

N-[8-[2-クロロ-4-(トリフルオロメトキシ) フェニル] -2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピラジン-3-4ル] -N-シクロプロピルメチル-N-[2-(1H-1-ピラゾイル) エチル] アミン、N-[8-[2-クロロ-4-(トリフルオロメトキシ) フェニル] -2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピラジン-3-4ル] -N-シクロプロピルメチル-N-[2-(1H-1-1)2ダゾ [1, 2+a] ア

ミン、

3-(1-x++)ブチル)-2-xチル-8-(2-x++)0-4, 6-ジメチルフェニル)イミダゾ [1, 2-a] ピラジン、

 $1 - [8 - (2 - \rho \Box \Box - 4 - \lambda + + \nu)] - 2 - \mu) - 2 - \mu$ [1, 2 - a] ピラジン-3 - イル] - 1 - ブタノン $O1 - \lambda$ チルオキシム、

3-(1-x++)ブチル)-8-(2-x++)0-4,6-ジメチルフェニル)-2-(x+)7-2ル)-21,1-2-4] ピラジン、

 $N-[8-(2-D_{1}-4-X_{1}+2)]$ $N-[8-(2-D_{1}-4-X_{1}+2)]$ $N-[8-(2-D_{1}-4-X_{1}+2)]$ $N-[8-(2-A_{1}+2)]$ $N-[8-(2-A_{1}+2)]$

N-[2-x+y-8-(4-y+y-2-y+y-y-x-y)] (1, 2-b) ピリダジン-3-イル] -N, N-ジプロピルアミン、

N-[2-エチル-8-(2-メトキシ-4,6-ジメチルフェニル) イミダゾ <math>[1,2-b] ピリダジン-3-イル]-N,N-ジプロピルアミン、

N, N-ジシクロプロピルメチル-N- [2-x-チル-8-(2-x-キシ-4, 6-ジメチルフェニル)イミダゾ [1, 2-b] ピリダジン-3-イル]アミン、

N-[8-(4- + 1) + 2 - 2 - 2 + 3 + 1 - 2 - (3 + 3 + 1 - 2 - 4 + 1

N-[8-(2,4-ジクロロフェニル)-2-(メチルスルファニル) イミダゾ <math>[1,2-a] ピリジン-3-イル]-N,N-ジプロピルアミン、

N-[8-(2-x++)-4, 6-i) N-[8-(2-x++)-4, 6-i

N- [8-(2, 6-ジメトキシ-4-メチルフェニル)-2-(メチルス

ルファニル) イミダゾ [1, 2-a] ピリジン-3-4ル]-N, N-ジプロピルアミン、

N-[8-(2,4-i)] + 2-(3+i) - 2-(3+i) ルファニル) -2-(3+i) ルファニル) -2-(3+i) -2-(3+i) ピルアミン、

 $N-[8-(2-D\Box\Box-6- + 1+ 2-4- + 2+ N)] - 2-(+ 2+ N)$ $N-[8-(2-D\Box\Box-6- + 1+ 2-4- + 2+ N)] - 2-(+ 2+ N)$ $N-[8-(2-D\Box\Box-6- + 1+ 2+ 2+ N)] - 2-(+ 2+ N)$ $N-[8-(2-D\Box\Box-6- + 1+ 2+ N)] - 2-(+ 2+ N)$ $N-[8-(2-D\Box\Box-6- + 1+ N)] - 2-(+ N)$

N-[8-(2,4-i)DDDDTLLN)-2-(メチルスルファニル)イミダゾ <math>[1,2-a] ピリジン-3-4ル]-N-プロピル-N-(2-プロピエル)アミン、

 $N-[8-(4-D_{1}-2-\lambda_{1}+2)-2-(\lambda_{2}+\lambda_{3})-2-(\lambda_{3}+\lambda_{4})$ $-2-(\lambda_{3}+\lambda_{4})$ $-2-(\lambda_{4}+\lambda_{4})$ $-2-(\lambda_{4$

N-[8-(2,6-i)] N-(3-i) N-(3-i)

 $N-[8-(4-\lambda)+2-\lambda+\nu]-2-(\lambda+\nu)-2-(\lambda+\nu)$ ニル) イミダゾ [1, 2-a] ピリジン-3-4ル] -N, N-ジプロピルアミン、

N-シクロブチルメチルーN-[8-(2,6-i)メトキシー4-iメチルフェニル)-2-(メチルスルファニル)1

N-[8-(4-クロロ-2, 6-ジメトキシフェニル)-2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジン-3-イル]-N, N-ジプロピルアミン、

ルメチルー*N*ープロピルアミン、

N-ブチル-N-シクロブチルメチル-N- [8-(2,6-ジメトキシー 4-メチルフェニル)-2-(メチルスルファニル)イミダゾ [1,2-a] ピリジン-3-イル] アミン、

N-シクロブチルメチル-N-シクロプロピルメチル-N- [8-(2, 6) -ジメトキシー4-メチルフェニル) -2-(メチルスルファニル) イミダゾ [1, 2-a] ピリジン-3-イル] アミン、

N3, N3-ジプロピル-8-[6-(ジメチルアミノ)-4-メチル-3-ピリジル]-2-(メチルスルファニル)イミダゾ <math>[1, 2-a] ピリジン-3-アミン、

N- [8-(2,6-ジメトキシー4-メチルフェニル)-2-(メチルスルファニル)イミダゾ [1,2-a] ピリジン-3-イル]-N-プロピル-N-テトラヒドロ-2H-4-ピラニルアミン、

N3-シクロブチルメチル-N3-(3-フルオロプロピル)-8-[6-(ジメチルアミノ)-4-メチル-3-ピリジル]-2-(メチルスルファニル) イミダゾ [1, 2-a] ピリジン-3-アミン、

N3, N3-ジシクロプロピルメチル-8-[6-(ジメチルアミノ)-4-メチル-3-ピリジル]-2-(メチルスルファニル)イミダゾ [1, 2-a] ピリジン-3-アミンまたは

 $N3 - \mathcal{J}$ ロピル- $N3 - \mathcal{F}$ トラヒドロ- $2H - 4 - \mathcal{C}$ ラニル-8 - [6 - (ジメチルアミノ) - 4 - メチル- 3 - ピリジル] - 2 - (メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジン- $3 - \mathcal{F}$ ミン、

N-[8-(2,6-i)] N-[8-(2,6-i)]

N-シクロプロピルメチルーN-[8-(2,6-i)]メトキシー4-メチルフ ェニル) -2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジン-3-イル]-N-テトラヒドロ-2H-4-ピラニルアミンである前記(1)記 載の化合物またはその塩、(26)前記(1)記載の化合物またはその塩およ び薬理学上許容される担体を含有してなる医薬組成物、(27)副腎皮質刺激 ホルモン放出因子 (Corticotropin-releasing factor:以下、「CRF」と称 する。) および/またはCRF受容体が関与する疾患の治療剤または予防剤で ある前記(26)記載の組成物、(28) CRF受容体アンタゴニストである 前記(26)記載の組成物、(29)CRF1受容体またはCRF2受容体の アンタゴニストである前記(26)記載の組成物、(30)うつ病、抑うつ症 状、そう病、不安症、全般性不安障害、パニック障害、恐怖症、強迫性障害、 心的外傷後ストレス障害、チューレット症候群、自閉症、感情障害、情緒障害、 双極性障害、循環性格または分裂病の治療剤または予防剤である前記(26) 記載の組成物、(31)抑うつ症状が大うつ病、単発性うつ病、再発性うつ病、 うつ病による幼児虐待または産後うつ病の治療剤または予防剤である前記(3 0) 記載の組成物、(32)消化性潰瘍、過敏性腸症候群、潰瘍性大腸炎、ク ローン病、下痢、便秘、術後イレウス、ストレスに伴う胃腸機能異常または神 経性嘔吐の治療剤または予防剤である前記(26)記載の組成物、(33)ア ルツハイマー病、アルツハイマー型老年性痴呆、神経変性疾患、多発梗寒性痴 呆、老年期の痴呆、神経性食思不振症、摂食障害、肥満、糖尿病、アルコール 依存症、薬物嗜好、薬物禁断症状、アルコール禁断症状、睡眠障害、不眠症、 偏頭痛、ストレス性頭痛、筋緊張性頭痛、虚血性神経障害、興奮毒性神経障害、 脳卒中、進行性核上麻痺、筋萎縮性側索硬化症、多発性硬化症、筋肉痙攣、慢 性疲労症候群、精神社会的発育不全、てんかん、頭部外傷、脊髄外傷、書痙、 痙性斜頚、筋肉痙攣、頚肩腕症候群、原発性緑内障、メニエール症候群、自律 神経失調症、脱毛症、神経症、高血圧、心臓血管障害、頻脈、鬱血性心麻痺、 過呼吸症候群、気管支喘息、無呼吸症候群、乳児突然死症候群、炎症性障害**、** 疼痛、アレルギー性疾患、インポテンツ、更年期障害、受精障害、不妊症、癌、

HIV感染時の免疫機能異常、ストレスによる免疫機能異常、出血性ストレス、 クッシング症候群、甲状腺機能異常、脳脊髄膜炎、先端巨大症、失禁または骨 粗鬆症の治療剤または予防剤である前記(26)記載の組成物、(34)CR F 受容体のアンタゴニストの製造のための前記(1)記載の化合物またはその 塩の使用、(35) CRF1受容体またはCRF2受容体のアンタゴニストの 製造のための前記(1)記載の化合物またはその塩の使用、(36)うつ病、 抑うつ症状、そう病、不安症、全般性不安障害、パニック障害、恐怖症、強迫 性障害、心的外傷後ストレス障害、チューレット症候群、自閉症、感情障害、 情緒障害、双極性障害、循環性格、分裂病、消化性潰瘍、過敏性腸症候群、潰 瘍性大腸炎、クローン病、下痢、便秘、術後イレウス、ストレスに伴う胃腸機 能異常または神経性嘔吐の治療剤または予防剤の製造のための、前記(1)記 載の化合物またはその塩の使用、(37) CRF受容体が関与する疾患を有す る患者に対し、治療上有効量の前記(1)記載の化合物またはその塩を単回ま たは複数回投与することを特徴とする、CRF受容体が関与する疾患の治療法 または予防法、(38)前記·(1)記載の化合物またはその塩を有効成分とし て含有する医薬、(39) CRFおよび/またはCRF受容体が関与する疾患 の治療剤または予防剤である前記(38)記載の医薬、(40) CRF受容体 アンタゴニストである前記(38)記載の医薬、(41)CRF1受容体また はCRF2受容体のアンタゴニストである前記(38)記載の医薬、(42) うつ病、抑うつ症状、そう病、不安症、全般性不安障害、パニック障害、恐怖 症、強迫性障害、心的外傷後ストレス障害、チューレット症候群、自閉症、感 情障害、情緒障害、双極性障害、循環性格または分裂病の治療剤または予防剤 である前記(38)記載の医薬、(43)抑うつ症状が大うつ病、単発性うつ 病、再発性うつ病、うつ病による幼児虐待または産後うつ病の治療剤または予 防剤である前記(42)記載の医薬、(44)消化性潰瘍、過敏性腸症候群、 潰瘍性大腸炎、クローン病、下痢、便秘、術後イレウス、ストレスに伴う胃腸 機能異常または神経性嘔吐の治療剤または予防剤である前記(38)記載の医 薬、(45)アルツハイマー病、アルツハイマー型老年性痴呆、神経変性疾患、

多発梗塞性痴呆、老年期の痴呆、神経性食思不振症、摂食障害、肥満、糖尿病、 アルコール依存症、薬物嗜好、薬物禁断症状、アルコール禁断症状、睡眠障害、 不眠症、偏頭痛、ストレス性頭痛、筋緊張性頭痛、虚血性神経障害、興奮毒性 神経障害、脳卒中、進行性核上麻痺、筋萎縮性側索硬化症、多発性硬化症、筋 肉痙攣、慢性疲労症候群、精神社会的発育不全、てんかん、頭部外傷、脊髄外 傷、書痙、痙性斜頚、筋肉痙攣、頚肩腕症候群、原発性緑内障、メニエール症 候群、自律神経失調症、脱毛症、神経症、高血圧、心臓血管障害、頻脈、鬱血 性心麻痺、過呼吸症候群、気管支喘息、無呼吸症候群、乳児突然死症候群、炎 症性障害、疼痛、アレルギー性疾患、インポテンツ、更年期障害、受精障害、 不妊症、癌、HIV感染時の免疫機能異常、ストレスによる免疫機能異常、出 血性ストレス、クッシング症候群、甲状腺機能異常、脳脊髄膜炎、先端巨大症、 失禁または骨粗鬆症の治療剤または予防剤である前記(38)記載の医薬、(4 6) CRFおよび/またはCRF受容体が関与する疾患の治療剤または予防剤 の製造のための前記(1)記載の化合物またはその塩の使用、(47)抑うつ 症状が大うつ病、単発性うつ病、再発性うつ病、うつ病による幼児虐待または 産後うつ病である前記(36)記載の使用、(48)アルツハイマー病、アル ツハイマー型老年性痴呆、神経変性疾患、多発梗塞性痴呆、老年期の痴呆、神 経性食思不振症、摂食障害、肥満、糖尿病、アルコール依存症、薬物嗜好、薬 物禁断症状、アルコール禁断症状、睡眠障害、不眠症、偏頭痛、ストレス性頭 痛、筋緊張性頭痛、虚血性神経障害、興奮毒性神経障害、脳卒中、進行性核上 麻痺、筋萎縮性側索硬化症、多発性硬化症、筋肉痙攣、慢性疲労症候群、精神 社会的発育不全、てんかん、頭部外傷、脊髄外傷、書痙、痙性斜頚、筋肉痙攣、 頚肩腕症候群、原発性緑内障、メニエール症候群、自律神経失調症、脱毛症、 神経症、高血圧、心臟血管障害、頻脈、鬱血性心麻痺、過呼吸症候群、気管支 喘息、無呼吸症候群、乳児突然死症候群、炎症性障害、疼痛、アレルギー性疾 患、インポテンツ、更年期障害、受精障害、不妊症、癌、HIV感染時の免疫 機能異常、ストレスによる免疫機能異常、出血性ストレス、クッシング症候群、 甲状腺機能異常、脳脊髄膜炎、先端巨大症、失禁または骨粗鬆症の治療剤また

は予防剤の製造のための前記(1)記載の化合物またはその塩の使用、(49) 前記(1)記載の化合物またはその塩の薬理学上有効量を患者に投与すること により、CRFおよび/またはCRF受容体が関与する疾患を治療又は予防す る方法、(50)前記(1)記載の化合物またはその塩の薬理学上有効量を患 者に投与することにより、CRF受容体拮抗作用が治療又は予防に有効な疾患 を治療又は予防する方法、(51)前記(1)記載の化合物またはその塩の薬 理学上有効量を患者に投与することにより、 CRF1 受容体または CRF2 受 容体拮抗作用が治療又は予防に有効な疾患を治療又は予防する方法、(52) 前記(1)記載の化合物またはその塩の薬理学上有効量を患者に投与すること により、うつ病、抑うつ症状、そう病、不安症、全般性不安障害、パニック障 害、恐怖症、強迫性障害、心的外傷後ストレス障害、チューレット症候群、自 閉症、感情障害、情緒障害、双極性障害、循環性格、分裂病、消化性潰瘍、過 敏性腸症候群、潰瘍性大腸炎、クローン病、下痢、便秘、術後イレウス、スト レスに伴う胃腸機能異常または神経性嘔吐を治療又は予防する方法、(53) 抑うつ症状が大うつ病、単発性うつ病、再発性うつ病、うつ病による幼児虐待 または産後うつ病である前記(52)記載の方法、(54)前記(1)記載の 化合物またはその塩の薬理学上有効量を患者に投与することにより、アルツハ イマー病、アルツハイマー型老年性痴呆、神経変性疾患、多発梗塞性痴呆、老 年期の痴呆、神経性食思不振症、摂食障害、肥満、糖尿病、アルコール依存症、 薬物嗜好、薬物禁断症状、アルコール禁断症状、睡眠障害、不眠症、偏頭痛、 ストレス性頭痛、筋緊張性頭痛、虚血性神経障害、興奮毒性神経障害、脳卒中、 進行性核上麻痺、筋萎縮性側索硬化症、多発性硬化症、筋肉痙攣、慢性疲労症 候群、精神社会的発育不全、てんかん、頭部外傷、脊髄外傷、書痙、痙性斜頚、 筋肉痙攣、頚肩腕症候群、原発性緑内障、メニエール症候群、自律神経失調症、 脱毛症、神経症、高血圧、心臓血管障害、頻脈、鬱血性心麻痺、過呼吸症候群、 気管支喘息、無呼吸症候群、乳児突然死症候群、炎症性障害、疼痛、アレルギ 一性疾患、インポテンツ、更年期障害、受精障害、不妊症、癌、HIV感染時 の免疫機能異常、ストレスによる免疫機能異常、出血性ストレス、クッシング

症候群、甲状腺機能異常、脳脊髄膜炎、先端巨大症、失禁または骨粗鬆症を治療または予防する方法に関する。

以下に、本願明細書において記載する記号、用語等の意義を説明し、本発明 を詳細に説明する。

なお、本願明細書中においては、化合物の構造式が便宜上一定の異性体を表すことがあるが、本発明には化合物の構造上生ずる総ての幾何異性体、不斉炭素に基づく光学異性体、立体異性体、互変異性体等の異性体および異性体混合物を含み、便宜上の式の記載に限定されるものではなく、いずれか一方の異性体でも混合物でもよい。従って、本発明化合物には、分子内に不斉炭素原子を有し光学活性体およびラセミ体が存在することがあり得るが、本発明においては限定されず、いずれもが含まれる。また、結晶多形が存在することもあるが同様に限定されず、いずれかの結晶形が単一であってもまたは結晶形混合物であってもよく、無水物以外に水和物であってもよい。さらに、本発明にかかる化合物が生体内で分解されて生じる、いわゆる代謝物も本発明の特許請求の範囲に包含される。

本願明細書における「神経変性疾患」とは、急性変性疾患または慢性変性疾患を示し、具体的には例えばくも膜下出血、脳血管障害急性期等による神経障害、アルツハイマー病、パーキンソン病、ハンチントン舞踏病、筋萎縮性側索硬化症、脊髄小脳変性症等を示す。本願明細書における「摂食障害」とは、食欲亢進、拒食症等を示す。本願明細書における「心臓血管障害」とは、神経性狭心症等を示す。本願明細書における「炎症性障害」とは、例えばリウマチ様関節炎、骨関節炎、腰痛等を示し、「アレルギー性疾患」とは、例えばアトピー性皮膚炎、湿疹、蕁麻疹、乾癬等を示す。

本願明細書におけるハロゲン原子とは、フッ素原子、塩素原子、臭素原子、 ヨウ素原子、等の原子を示し、好ましくはフッ素原子、塩素原子、臭素原子で ある。

本願明細書における C_{1-6} アルキル基とは、炭素数が1乃至6個のアルキル基を示し、好ましくはメチル基、エチル基、n-プロピル基、iso-プロピル

基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、1, 1-ジメチルプロピル基、1, 2-ジメチルプロピル基、2, 2-ジメチルプロピル基、1-エチルプロピル基、2-エチルプロピル基、1-エチルー ピル基、n-ヘキシル基、1-メチルー2-エチルプロピル基、1-エチルー 2-メチルプロピル基、1, 1, 2-トリメチルプロピル基、1-プロピルプロピル基、1-ブロピル基、1-ブロピルプロピル基、1-メチルブチル基、1-ブロピルブロピル基、1-ジメチルブチル基、1, 1-ジメチルブチル基、1, 1-ジメチルズンチル基、1-ズチルズンチル基、等の基である。

なお、本願明細書において、「n-」とはnormale、「sec-」とはsecondarye、「tert-」とはtertiaryeそれぞれ示す。

本願明細書における C_{2-6} アルキニル基とは、炭素数が2乃至6個のアルキニル基を示し、当該基における好ましい例としては、例えばエチニル基、1-プロピニル基、2-プロピニル基、1-プチニル基、2-プチニル基、3-プチニル基、3-プチニル基、3-プチニル基、1-プロピニル基、1-エチニル-2プロピニル基、2- スチル-3-プロピニル基、1-ペンチニル基、1-ペキサンジインイル基、1, 3-ペキサンジインイル基、1, 3-ペキサンジインイル基、1, 3-ペキサンジインイル基、等があげられる。

本願明細書におけるC₃₋₈シクロアルキル基とは、3 乃至8 個の炭素原子で形成されたシクロアルキル基を示し、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロペナシル基、シクロペプチル基、シクロオクチル基、

等があげられる。本願明細書における C_{3-8} シクロアルケニル基としては、例えば2-シクロプロペン-1-イル基、3-シクロプロペニル基、1-シクロブテニル基、4-シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロヘプテニル基、シクロオクテニル基、等があげられる。

本願明細書における C_{1-6} アルコキシ基とは、炭素数1乃至6個のアルコキシ基を示し、例えばメトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、sec-プロポキシ基、n-ブトキシ基、iso-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、iso-ペンチルオキシ基、iso-ペンチルオキシ基、sec-ペンチルオキシ基、sec-ペンチルオキシ基、sec-ペンチルオキシ基、sec-ペンチルオキシ基、sec-ペンチルオキシ基、sec-ペンチルオキシ基、sec-ペンチルオキシ基、sec-ペンチルプロポカキシ基、sec-ペンチルプロポカキシ基、sec-ペンチルプロポカキシ基、sec-ペンチルプロポカキシ基、sec-ペンチルプロポカーシ基、sec-ペンチルプロポカーシ基、sec-ジメチルプロポカーシ基、sec-ジメチルプロポカーシ基、sec-ジメチルプロポカーシ基、sec-ジメチルプロポカーシ基、sec-ジメチルプロポカーシ基、sec-ジメチルプロポカーシ基、sec-ジメチルプロポカーシ基、sec-ジメチルプロポカーシ基、sec-ジメチルプロポカーシ基、sec-ジメチルプロポカーシ基、sec-ジメチルプロポカーシ基、sec-ジメチルプトカーシ基、sec-ジメチルプトカーシ基、sec-ジメチルプトカーシ基、sec-ジメチルプトカーシ基、sec-ジメチルプトカーシ基、sec-ジスチルペントカーシ基、sec-ジーカージー

本願明細書における C_{2-6} アルケニルオキシ基とは、炭素数 2 乃至 6 個のアルケニルオキシ基を示し、例えばビニルオキシ基、アリルオキシ基、1-プロペニルオキシ基、2-メチルー1-プロペニルオキシ基、3-メチルー1-プロペニルオキシ基、2-メチナルー2-プロペニルオキシ基、3-メチルー2-プロペニルオキシ基、1- ブテニルオキシ基、1-ペンテニルオキシ基、1-ペンテニルオキシ基、1-ペンキシ基、1-ペンキシ基、1-ペキセニルオキシ基、1-ペキサンジエニルオキシ基、1+0-ペキサンジエニルオキシ基、等があげられる。

本願明細書における C_{1-6} アルキルチオ基とは、炭素数1乃至6個のアルキルチオ基を示し、例えばメチルチオ基、エチルチオ基、n-プロピルチオ基、iso-プロピルチオ基、n-ブチルチオ基、iso-ブテルチオ基、sec-

ブチルチオ基、tertーブチルチオ基、nーペンチルチオ基、1, 1ージメチルプロピルチオ基、1, 2ージメチルプロピルチオ基、2, 2ージメチルプロピルチオ基、nーペキシル基、1ーエチルプロピルチオ基、nーペキシル基、1ーメチルー2ーエチルプロピルチオ基、nーペキシル基、nーペキシル基、nーペーン・ボールプロピルチオ基、nーのピルチオ基、nーのピルチオ基、nーのピルチオ基、nーのピルチオ基、nーのピルチオ基、nーのピルチオ基、nーのピルチオ基、nーのピルチオ基、nーのピルチオ基、nーのピルチオ基、nーのピルチオ基、nーのピルチオ基、nーのピルチオ基、nーのピルチオ基、nーのジメチルブチルチオ基、nーのジメチルブチルチオ基、nのジメチルブチルチオ基、nの基があげられる。

本願明細書における C_{2-6} アルケニルチオ基とは、炭素数 2 乃至 6 個のアルケニルチオ基を示し、例えばビニルチオ基、アリルチオ基、1 ープロペニルチオ基、2 ープロペニルチオ基、イソプロペニルチオ基、2 ーメチルー1 ープロペニルチオ基、2 ーメチルー2 ープロペニルチオ基、3 ーメチルー1 ープロペニルチオ基、1 ーブテニルチオ基、2 ーブロペニルチオ基、1 ーブテニルチオ基、1 ーグテニルチオ基、1 ーベキセニルチオ基、1 ・ 1 ・

本願明細書における「置換基を有していてもよい C_{6-14} 芳香族炭化水素環式基」における C_{6-14} 芳香族炭化水素環式基とは、炭素数 6 乃至 1 4 個の芳香族炭化水素環式基をいい、単環式基だけでなく、二環式基、三環式基等の縮合環も含まれる。当該基における好適な例をあげると、フェニル基、インデニル基、1-ナフチル基、2-ナフチル基、アズレニル基、0プタレニル基、ビフェニル基、0プタレニル基、アセナフチル基、フェナレニル基、フェナレニル基、フェナントレニル基、アセナフチル基、フルオレニル基、フェナレニル基、フェナントレニル基、アントラセニル基、シクロペンタシクロオクテニル基、ベンゾシクロオクテニル基、等があげられる。

なお、本願明細書において用いる「アリール」および「アリール基」は、C₆ -14 芳香族炭化水素環式基と同意義を示す。

本願明細書における「置換基を有していてもよい5乃至14員芳香族複素環 式基」における5万至14員芳香族複素環式基とは、窒素原子、硫黄原子およ び酸素原子から選ばれる少なくとも1個の複素原子を含んでなる単環式、二環 式または三環式で、日つ、5乃至14員の芳香族複素環式基をいう。当該基に おける好適な例をあげると、含窒素芳香族複素環式基としてピロリル基、ピリ ジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアゾリル基、 テトラゾリル基、ベンゾトリアゾリル基、ピラゾリル基、イミダゾリル基、ベ ンツイミダゾリル基、インドリル基、イソインドリル基、インドリジニル基、 プリニル基、インダゾリル基、キノリル基、イソキノリル基、キノリジル基、 フタラジル基、ナフチリジニル基、キノキサリル基、キナゾリニル基、シンノ リニル基、プテリジニル基、イミダゾトリアジニル基、ピラジノピリダジニル 基、アクリジニル基、フェナントリジニル基、カルバゾリル基、カルバゾリニ ル基、ペリミジニル基、フェナントロリニル基、フェナシニル基、イミダゾピ リジニル基、イミダゾピリミジニル基、ピラゾロピリジニル基、ピラゾロピリ ジニル基、等:含硫黄芳香族複素環式基としてチエニル基、ベンゾチエニル基、 等:含酸素芳香族複素環式基としてフリル基、ピラニル基、シクロペンタピラ ニル基、ベンゾフリル基、イソベンゾフリル基、等;2個以上の異種複素原子 を含んでなる芳香族複素環式基としてチアゾリル基、イソチアゾリル基、ベン ゾチアゾリル基、ベンズチアジアゾリル基、フェノチアジニル基、イソキサゾ リル基、フラザニル基、フェノキサジニル基、オキサゾリル基、イソキサゾイ ル基、ベンゾオキサゾリル基、オキサジアゾリル基、ピラゾロオキサゾリル基、 イミダゾチアゾリル基、チエノフラニル基、フロピロリル基、ピリドオキサジ 二ル基、等があげられる。

なお、本願明細書において用いる「ヘテロアリール」および「ヘテロアリール基」とは、5万至14員芳香族複素環式基と同意義を示す。

本願明細書における5万至14員非芳香族複素環式基とは、芳香族性を有しない飽和または不飽和な複素環式基であって、窒素原子、硫黄原子および酸素原子から選ばれる少なくとも1個の複素原子を含んでなる単環式、二環式また

は三環式で且つ5乃至14員の非芳香族複素環式基をいう。当該基における好適な例をあげると、ピロリジニル基、ピロリル基、ピペリジニル基、ピペラジニル基、イミダゾリル基、ピラゾリジル基、イミダゾリジル基、モルホリル基、ピラニル基、テトラヒドロフリル基、テトラヒドロピラニル基、ピロリニル基、ジヒドロフリル基、ジヒドロピラニル基、イミダゾリニル基、オキサゾリニル基、等があげられる。また、当該基には、ピリドン環から誘導される基や、非芳香族性の縮合環(例えばフタルイミド環、スクシンイミド環、等)から誘導される基も含まれる。

本願明細書における5乃至14員複素環式基とは、5乃至14員の芳香族または非芳香族の複素環式基を示し、それぞれの意義は前記定義の如くである。

本願明細書における C_{2-7} 脂肪族アシル基とは、 C_{2-7} 脂肪族飽和カルボン酸または C_{2-7} 脂肪族不飽和カルボン酸のカルボキシル基からOH基を除いた原子団を示し、好適な基としては例えばアセチル基、プロピオニル基、ブチロイル基、等があげられる。

本願明細書における C_{1-6} アルキルスルフィニル基とは、前記 C_{1-6} アルキル基が結合したスルフィニル基を示し、例えばメチルメチルスルフィニル基、エチルスルフィニル基、n-プロピルスルフィニル基、iso-プロピルスルフィニル基、siso-プロピルスルフィニル基、等があげられる。

本願明細書における C_{1-6} アルキルスルホニル基とは、前記 C_{1-6} アルキル基が結合したスルホニル基を示し、例えばメチルメチルスルホニル基、エチルスルホニル基、n-プロピルスルホニル基、iso-プロピルスルホニル基、等があげられる。

本願明細書における C_{3-8} シクロアルキル C_{1-6} アルキル基および C_{3-8} シクロアルキル C_{2-6} アルケニル基とは、前記 C_{3-8} シクロアルキル基(例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロペプチル基、シクロオクチル基等)でそれぞれ任意に置換された C_{1-6} アルキル基(アルキル基の例としては例えばメチル基、エチル基、n-プロピル基、 $i \ s \ o-$ プロピル基等)と C_{2-6} アルケニル基(アルケニル基の例としてはビニ

ル基、アリル基、1-プロペニル基、2-プロペニル基、イソプロペニル基等)を示し、好適な例は特に限定されないが、より好適な例をあげると、それぞれ、シクロプロピルメチル基、シクロプロピルエチル基、シクロプロピルn-プロピル基、シクロブチルメチル基、シクロブチルエチル基等、および、シクロプロピルビニル基、シクロプロピルアリル基等である。

本願明細書における C_{1-10} アルコキシ C_{1-10} アルキル基および C_{1-10} アルコキシ C_{2-8} アルケニル基とは、炭素数1乃至10個のアルコキシ基(アルコキシ基の例としてはメトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基等)でそれぞれ任意に置換された C_{1-10} アルキル基(アルキル基の例としてはメチル基、エチル基、n-プロピル基、iso-プロピル基、n-プチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、1, 1-ジメチルプロピル基等)と C_{2-8} アルケニル基(アルケニル基の例としてはビニル基、アリル基、1-プロペニル基、2-プロペニル基、イソプロペニル基等)を示す。

本願明細書における C_{2-6} アルケニルオキシ C_{1-6} アルキル基および C_{2-6} アルケニルオキシ C_{2-6} アルケニル基とは、前記 C_{2-6} アルケニルオキシ基(アルケニルオキシ基の例としてはビニルオキシ基、アリルオキシ基、1-プロペニルオキシ基、2-プロペニルオキシ基、イソプロペニルオキシ基、2-メチル-1-プロペニルオキシ基等)でそれぞれ任意に置換された C_{1-6} アルキル基(アルキル基の例としてはメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブロピル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、1, 1-ジメチルプロピル基等)と C_{2-6} アルケニル基(アルケニル基の例としてはビニル基、アリル基、1-プロペニル基、2-プロペニル基、1ソプロペニル基等)を示す。

チルプロピル基等)を示し、好適な例は特に限定されないが、より好適には1個の水酸基で置換された C_{1-6} アルキル基で、例えばヒドロキシメチル基、2-ヒドロキシー1-エチル基、2-ヒドロキシー1-プロピル基等である。

本願明細書におけるアミノカルボニル C_{1-6} アルキル基とは、式 $-CONH_2$ で表される基で任意の位置が置換された C_{1-6} アルキル基(アルキル基の例としてはメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-プテル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、1, 1-ジメチルプロピル基等)を示す。

本願明細書におけるヘテロアリールカルボニル基とは、前記ヘテロアリール

基(例としてピロリル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピ ラジニル基、トリアゾリル基、テトラゾリル基、ベンゾトリアゾリル基、ピラ ゾリル基、イミダゾリル基、ベンツイミダゾリル基、インドリル基、イソイン ドリル基、インドリジニル基、プリニル基、インダゾリル基、キノリル基、イ ソキノリル基、キノリジル基、フタラジル基、ナフチリジニル基、キノキサリ ル基、キナゾリニル基、シンノリニル基、プテリジニル基、イミダゾトリアジ ニル基、ピラジノピリダジニル基、アクリジニル基、フェナントリジニル基、 カルバゾリル基、カルバゾリニル基、ペリミジニル基、フェナントロリニル基、 フェナシニル基、イミダゾピリジニル基、イミダゾピリミジニル基、ピラゾロ ピリジニル基、ピラゾロピリジニル基、チエニル基、ベンゾチエニル基、フリ ル基、ピラニル基、シクロペンタピラニル基、ベンゾフリル基、イソベンゾフ リル基、チアゾリル基、イソチアゾリル基、ベンゾチアゾリル基、ベンズチア ジアゾリル基、フェノチアジニル基、イソキサゾリル基、フラザニル基、フェ ノキサジニル基、オキサゾリル基、イソキサゾイル基、ベンゾオキサゾリル基、 オキサジアゾリル基、ピラゾロオキサゾリル基、イミダゾチアゾリル基、チエ ノフラニル基、フロピロリルカルボニル基またはオキサジニルカルボニル基) が結合したカルボニル基を示し、好適な例は特に限定されないが、より好適に は、単環式へテロアリール基(例えばピロリル基、チエニル基、フリル基、イ ミダゾリル基、ピラゾリル基、チアゾリル基、ピリジル基等)が結合したカル ボニル基である。

本願明細書におけるヘテロアリール C_{1-6} アルキル基とは、前記ヘテロアリール基で任意の位置が置換された C_{1-6} アルキル基を示し、好適な例は特に限定されないが、より好適にはピロリル基、チエニル基、フリル基、イミダゾリル基、ピラゾリル基、チアゾリル基またはピリジル基が結合した C_{1-6} アルキル基(アルキル基の例としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-プロピル基、iso-プロピル基、n-プロピル基、iso-プロピル基、n-

本願明細書におけるアリールC₁₋₆アルキル基とは、前記アリール基(例えば

フェニル基、ナフチル基等)で任意の位置が置換された C_{1-6} アルキル基を示し、 好適にはフェニル基で置換された C_{1-6} アルキル基で、より好適にはベンジル基、 フェニエチル基、等である。

本願明細書における C_{1-6} アルコキシカルボニル基とは、 C_{1-6} アルコキシ基が結合したカルボニル基を示し、好適には例えばメトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、i s o-プロポキシカルボニル基、i s o-プロポキシカルボニル基、等である。 C_{2-6} アルケニルオキシカルボニル基とは、 C_{2-6} アルケニルオキシ基が結合したカルボニル基を示し、好適には例えばビニルオキシカルボニル基、アリルオキシカルボニル基、1-プロペニルオキシカルボニル基、2-プロペニルオキシカルボニル基、イソプロペニルオキシカルボニル基、2- スチル-1-プロペニルオキシカルボニル基等である。

本願明細書におけるハロゲノ C_{1-6} アルキル基とは、少なくとも1個のハロゲン原子(例としてフッ素原子、塩素原子、臭素原子、ヨウ素原子等)によって任意の位置が置換された C_{1-6} アルキル基(アルキル基の例としてメチル基、エチル基、n-プロピル基、i s o-プロピル基、n-ブチル基、i s o-ブチル基、i s o-ブチル基等)である。

本願明細書におけるハロゲノ C_{1-6} アルコキシ基とは、少なくとも1個のハロゲン原子(例としてフッ素原子、塩素原子、臭素原子、ヨウ素原子等)によって任意の位置が置換された C_{1-6} アルコキシ基(アルキル基の例としてメトキシ基、エトキシ基、n-プロポキシ基、i s o-プロポキシ基等)を示し、好適な例は特に限定されないが、より好適な例をあげると、フッ素原子および塩素原子から選ばれる1 乃至4 個の原子でそれぞれ置換されたメトキシ基、x トキシ基、x ループロポキシ基、x の一プロポキシ基、x の一プロポキシ基

ブトキシ基、sec-ブトキシ基またはtert-ブトキシ基(例えばトリフルオロメトキシ基等)である。

本願明細書において、R¹、R²およびR³はそれぞれ同一または相異なって置 換基を有していてもよいが、該置換基の好ましい例としては、(1)ハロゲン原子、 (2) 水酸基、(3) ニトロ基、(4) シアノ基、(5) カルボキシル基、(6) С1-6 アルキ ルオキシカルボニル基、(7)式 $-S(O)_rR^{13}$ 〔式中、rは0、1または 2 の整数を示す; R¹³は (a) 水素原子、(b) C₁₋₆アルキル基、(c) 式 -NR¹⁴ R^{15} (式中、 R^{14} および R^{15} は同一または相異なって水素原子、置換されてい てもよいアリール基で置換されていてもよいC1-6アルキル基、C1-4アルキル アシル基、置換されていてもよいアリールC1-4アルキル基、置換されていても よいヘテロアリールC1-4アルキル基、置換されていてもよいアリール基または 置換されていてもよいヘテロアリール基を示す。)、(d)置換されていてもよい アリールC1-4アルキル基、(e) 置換されていてもよいアリール基、(f) 置換され ていてもよいヘテロアリールC, __4アルキル基または (g) 置換されていてもよい ヘテロアリール基を示す。〕、(h) - N R 16 R 17 〔式中、 R 16 および R 17 は 同一または相異なって水素原子、C,_。アルキル基またはC,_₄アルキルアシル 基を示す。〕、(i) C_{1-6} アルキル基、(j) C_{1-6} アルコキシ基、(k) C_{1-4} アルキ ル基で置換されていてもよい C_{3-8} シクロアルキル基、(I) C_{1-4} アルコキシ C_1 -6アルキル基、(m) C1-4アルキル基で置換されていてもよい飽和の3ないし8 員式へテロ環、(n)置換されていてもよいアリール基、(o)置換されていてもよ いヘテロアリール基、(p) C_{2-6} アルケニル基、(q) C_{2-8} アルキニル基、(r) C_{5} の _。アルケニルオキシ基、等があげられる。

本発明にかかる化合物 (I) の一般式における R^1 、 R^2 、 R^3 、 X 、 Y および Z で用いられる基の意義は前記定義の如くである。

それぞれの好適な例は特に限定されないが、例えば R^1 の場合、更に好適な例をあげると、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、 C_1 -6アルコキシ基、 $-G^1-A^2$ [式中の G^1 および A^2 はそれぞれ前記定義と同意義を示す。] 等で、最も好適なのは C_{1-6} アルキル基(例えばメチル基、エチル

基等)、 C_{1-6} アルコキシ基(例えばメトキシ基、エトキシ基等)、 C_{1-6} アルキルチオ基(例えばメチルチオ基、エチルチオ基等)等である。

 R^2 における更に好適な例は C_{1-10} アルキル基、 C_{2-10} アルケニル基、 C_{2-10} アルケニル基、 C_{3-8} シクロアルキル C_{1-6} アルキル基、 C_{3-8} シクロアルキル C_{2-6} アルケニル基、 C_{1-10} アルコキシ C_{1-10} アルカキル基、 C_{1-6} アルカキル基、 C_{2-6} アルケニル基、 C_{2-6} アルケニルオキシ C_{1-6} アルケニル基、 C_{2-6} [C_{2-6}] 管で、最も好適なのは C_{2-6}] 管で、最も好適なのは C_{2-6}] 管で、最も好適なのは C_{2-6}] である。

R³における更に好適な例をあげると、置換基を有していてもよいフェニル基、 または、置換基を有していてもよい5員もしくは6員芳香族複素環式基(例え ばピロリル基、イミダゾリル基、ピラゾリリル基、チエニル基、フリル基、チ アゾリル基、イソチアゾリル基、ピリジル基、ピリダジル基、ピリミジル基ま たはピラジル基)で、最も好適なのは、それぞれ置換基を有していてもよいフ ェニル基またはピリジル基である。また、当該置換基としてより好適な例をあ げると、ハロゲン原子(フッ素原子、塩素原子、臭素原子またはヨウ素原子)、 水酸基、ニトロ基、シアノ基、カルボキシル基、C₁₋₆アルキルオキシカルボニ ル基、-S(O), R¹³ 〔式中、rは0、1または2の整数を、R¹³は(a)水素 原子、(b) C₁₋₆アルキル基、(c) 式 -NR¹⁴R¹⁵ [式中、R¹⁴およびR¹⁵は 同一または相異なって水素原子、置換されていてもよいアリール基で置換され ていてもよいC1-6アルキル基、C1-4アルキルアシル基、置換されていてもよ いアリールC1-4アルキル基、置換されていてもよいヘテロアリールC1-4アル キル基、置換されていてもよいアリール基または置換されていてもよいヘテロ アリール基を示す。]、(d) 置換されていてもよいアリールC1-4アルキル基、 (e) 置換されていてもよいアリール基、(f) 置換されていてもよいヘテロアリー ルC1-4アルキル基または(g)置換されていてもよいヘテロアリール基を示す。〕、 $-NR^{16}R^{17}$ 〔式中、 R^{16} および R^{17} は同一または相異なって水素原子、 C_1 -6アルキル基またはC1-4アルキルアシル基を示す。〕、C1-6アルキル基(例

えばメチル基、エチル基、n-プロピル基、iso-プロピル基等)、 C_{1-6} アルコキシ基(例えばメトキシ基、xトキシ基、n-プロポキシ基、iso-プロポキシ基等)、 C_{1-6} アルキルチオ基(例えばメチルチオ基、xチルチオ基等)、x0 、x1 、x1 、x2 、x3 、x3 、x4 、x4 、x5 、x5 、x6 、x6 、x6 、x7 、x7 、x7 、x8 、x8 、x8 、x8 、x8 、x8 、x9 x9 x

また、X、YおよびZの取り得る組合せは、少なくとも2つが同時にCR⁴[R⁴の意義は前記定義に同意義を示す]を示す限りにおいて特に限定されない。

本発明にかかる化合物 (I) における好適な例は特に限定されないが、その中でのより好適な例をあげると、式

$$CH_3 - G^4 - X'$$

$$R^2$$

$$X'$$

$$Z'$$

$$R^3$$

〔式中、X'およびZ'はそれぞれ独立にNまたはCHを[この場合において X'およびZ'のうち少なくとも1つはCHを示す。]、G⁴、R²およびR³ はそれぞれ前記定義と同意義を示す。〕で表わされる化合物またはその塩であり、更にその中の好適な例をあげると、式

$$R^{2a}$$
 N
 R^{2b}
 CH_3
 R^{2b}
 R^{2b}

〔式中、Z"はNまたはCHを、M環は更に置換基を有していてもよいベンゼン環を、 G^4 、 R^{2a} および R^{2b} はそれぞれ前記定義と同意義を示す。〕で表わされる化合物(以下、「化合物(III)」と称することがある。)またはその塩であり、最も好適なのは、化合物(III)において、 R^{2a} および R^{2b} がそれぞれ独立に水素原子、 C_{1-8} アルキル基、 C_{2-8} アルケニル基、 C_{2-6} アルキニル基、5万至14員非芳香族複素環式基で置換された C_{1-6} アルキル基、 C_{1-8} アルコキシ C_{1-8} アルキル基、 C_{3-8} シクロアルキル基または C_{3-8} シクロアルキル C_{1-6} アルキル基で、更にそれぞれ独立にハロゲン原子で置換されていてもよく、且つ、M環が更にハロゲン原子、 C_{1-6} アルキル基、ハロゲノ C_{1-6} アルキル基、ハロゲノ C_{1-6} アルキル基または C_{1-6} アルコキシ基または C_{1-6} アルコキシ基すり選ばれる1万至3個の基で置換されていてもよいベンゼン環である場合である。

本願明細書における「塩」とは、本発明にかかる化合物と塩を形成し、且つ薬理学的に許容されるものであれば特に限定されないが、好ましくはハロゲン化水素酸塩(例えばフッ化水素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩等)、無機酸塩(例えば硫酸塩、硝酸塩、過塩素酸塩、リン酸塩、炭酸塩、重炭酸塩等)有機カルボン酸塩(例えば酢酸塩、トリフルオロ酢酸塩、シュウ酸塩、マレイン酸塩、酒石酸塩、フマル酸塩、クエン酸塩等)、有機スルホン酸塩(例えばメタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩、カンファースルホン酸塩等)、アミノ酸塩(例えばアスパラギン酸塩、グルタミン酸塩等)、四級アミン塩、アルカリ金属塩(例えばナトリウム塩、カリウム塩等)、アル

カリ土類金属塩(マグネシウム塩、カルシウム塩等)等があげられ、当該「薬理学的に許容できる塩」として、より好ましくは塩酸塩、シュウ酸塩、トリフルオロ酢酸塩、等である。

本発明にかかる前記式(I)で表わされる化合物の代表的な製造法について以下に示す。なお、以下の製造スキームにおいて、 R^1 、 R^{2a} 、 R^{2b} 、X、Y、Z それぞれ前記定義と同意義を、 R^5 および R^6 は R^4 と同意義を示し、且つ、互いに独立に定義され、R は炭化水素基を、 R^7 および R^7 はそれぞれ独立にアルキル、アルケニルまたはアルケニルを、 R^8 は C_{1-6} アルキル基等を、 R^6 および R^6 は炭化水素基を、A r はアリールまたはヘテロアリール基を、 R^6 および R^6 は炭化水素基を、 R^7 はアリールまたはヘテロアリール基を、 R^7 はハロゲン原子(特に好適なのは塩素原子、臭素原子またはヨウ素原子)を、 R^7 はハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)を、 R^7 はハロゲン原子等を、 R^7 な表される記号は保護基を、 R^7 と R^7 はハロゲン原子または脱離基(例えばトリフルオロメタンスルホニル基等)を示す。また、以下に記載する「室温」とは、 R^7 の R^7 の R^7 に記載する「室温」とは、 R^7 の R^7 に記載する「室温」とは、 R^7 の R^7 に記載する「室温」とは、 R^7 の R^7 に記述する

製造方法1

工程A: アミノピラジン誘導体 (1) と α -クロロー β -ケトエステル誘導体 (2) を、溶媒中または無溶媒で 0 乃至 2 0 0 $\mathbb C$ で反応させて、イミダゾ [1, 2-a] ピラジン誘導体 (3) を得ることができる。使用する溶媒は、出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には酢酸、トルエン、キシレン、メタノール、エタノール、エチレングリコールモノメチルエーテル、N, N-ジメチルホルムアミド等で、これらを単独又は混合して用いることができる。

工程B:イミダゾ [1, 2-a] ピラジン-3-カルボン酸エステル誘導体(3) を溶媒中もしくは無溶媒で、塩基存在下または非存在下、アリールー錫化合物 又はアリールーホウ酸化合物等のアリールー金属化合物(式中の4)とパラジウムやニッケル金属錯体を用い、0乃至250℃で反応させることにより8位に

工程C: イミダゾ [1, 2-a] ピラジン-3-カルボン酸エステル誘導体 (5) を、溶媒中または無溶媒で、塩基存在下にて0乃至200 で加水分解させることによって、イミダゾ [1, 2-a] ピラジン-3-カルボン酸誘導体 (6) を得ることができる。使用する溶媒は、出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適にはエタノール、メタノール、n-ブタノール、t-ブタノール、テトラヒドロフラン、ジオキサン、水等で、これらは単独で又は混合溶媒として用いることができる。用いる塩基は、出発原料、使用する溶媒等により異なり、また反応を阻害しない限りにおいて特に限定されないが、好適には水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、カリウム t-ブトキシドなどがあげられる。

工程D, E, F: イミダゾ [1, 2-a] ピラジン-3-カルボン酸誘導体 (6) を、溶媒中または無溶媒で、塩基存在下または非存在下、ジフェニルフォスフォリルアジド (DPPA) などのアジド化剤と-70乃至250℃で反応させ、酸アジド誘導体 (7)とし、この酸アジド誘導体を0乃至250℃の温度に加熱す

ることによりCurtius 転移反応等の転移反応を起こし、系内でイソシアネート (8) を発生させ、 tert ーブタノール等と反応させることによって、 tert ーブトキシカルボニル (Boc) 等のカルバメイト基などで保護された 3- r ミノーイミダゾ [1, 2-a] ピラジン誘導体 (9) を得ることができる。用いる溶媒は、出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適にはベンゼン、トルエン、キシレン、ジフェニルエーテル、 t ーブタノール、テトラヒドロフラン、ジオキサン、アセトニトリル、N, N ージメチルホルムアミド等で、これらは単独で又は混合溶媒として用いることができる。用いられる塩基としては、トリエチルアミン、ジイソプロピルエチルアミン、4 ー (ジメチルアミノ) ピリジン、ピリジンなどがあげられる。

一方、酸アジド誘導体(7)は、イミダゾ [1, 2-a] ピラジン-3-カルボン酸誘導体(6)を酸クロライドや混合酸無水物に誘導し、当該(6)をアジド化剤(例えばアジ化ナトリウム、トリメチルシリルアジド等)を用いてアジド化することからも製造できる。

その他、別法として、3-アミノーイミダゾ [1, 2-a] ピラジン誘導体 (9) はHofmann転位反応、Schmidt転位反応から製造することもできる。

工程G: 3-Pミノーイミダゾ[1, 2-a] ピラジン誘導体(9) を、ジエチルケトンなどのカルボニル誘導体又はプロピオンアルデヒドなどのアルデヒド誘導体と、還元剤存在下にて-10万至150 で反応させることによりイミダゾ[1, 2-a] ピラジン誘導体(10) を得ることができる。本工程は、酸存在下または非存在下、溶媒中または無溶媒、且つ、無機塩存在下または非存在下にて行うと良好な結果が得られる。用いる溶媒は、出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適にはテトラヒドロフラン、ジエチルエーテル、1, 2-ジクロロエタン、ジクロロメタン、クロロホルム、アセトニトリル、水等があげられ、これらは単独もしくは混合溶媒として用いることができる。また、用いる

酸は、出発原料、使用する溶媒等により異なり、また反応を阻害しない限りに おいて特に限定されないが、好適には酢酸、硫酸等があげられる。また、用い る無機塩は、出発原料、使用する溶媒等により異なり、また反応を阻害しない 限りにおいて特に限定されないが、好適には硫酸ナトリウム、硫酸マグネシウ ム等があげられる。また、用いられる還元剤として、トリアセトキシ水素化ホ ウ素ナトリウム、水素化ホウ素ナトリウム、シアノトリヒドロホウ酸ナトリウ ムなどがあげられる。

また、別法として、イミダゾ [1, 2-a] ピラジン誘導体 (10) は、3-P ミノーイミダゾ [1, 2-a] ピラジン誘導体 (9) を溶媒中または無溶媒で、且つ、塩基存在下または非存在下にて、ハライドなどの脱離基を含むアルキル化剤 (アルキルハライド等) 、酸クロライドや酸無水物などのアシル化剤又はトシル酸クロライド等のスルホン酸クロライド等と-70万至 200 で反応させることにより得ることもできる。 用いる溶媒は、出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適にはテトラヒドロフラン、ジエチルエーテル、N, N-ジメチルホルムアミド、ジメチルスルフォキサイド等があげられる。また、用いられる塩基としては、例えば水素化ナトリウム、水素化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、水酸化カリウム、水酸化ナトリウム、ピリジン、トリエチルアミン等があげられる。

工程日: イミダゾ [1, 2-a] ピラジン誘導体 (10) を、脱保護試薬存在下または非存在下にて、溶媒中または無溶媒で-70 乃至 200 ℃で反応させ、 t e r t - ブトキシカルボニル基 $(B \circ c)$ 等の保護基を脱保護することにより、イミダゾ [1, 2-a] ピラジン誘導体 (11) を得ることができる。用いる溶媒は、出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には酢酸エチル、テトラヒドロフラン、ジエチルエーテル、ジオキサン、アセトニトリル、ジクロロメタン、クロロホルム、ニトロメタン、フェノール、アニソール、チオフェノール等があげられる。用いられる脱保護試薬としては、例えば塩酸、硫酸、トリフルオ

口酢酸、メタンスルフォン酸、ヨードトリメチルシラン、塩化アルミニウム(I I I)、トリメチルシリルトリフレート等があげられる。なお、Boc以外の保護基(例えばFmoc, Troc等)を用いる場合には、該保護基に適した脱保護試薬及び反応を用いれば十分である。

<u>工程 I</u>:前記工程 G と 同様 に して、本発明 に かかる イミダゾ [1, 2-a] ピラジン 誘導体 (I) を 製造できる。

製造方法2

工程A:保護されたアミノ基を3位に有し、且つ、イミダゾール環が縮環した 二環性の含窒素へテロ環誘導体(9)を、製造方法1の工程Hと同様の反応に付す ることにより、脱保護された誘導体(12)を得ることが出来る。

工程B:アミン誘導体(12)を、製造方法1の工程Gと同様の反応に付して置換基を導入することにより、本発明にかかる化合物である、イミダゾール環が縮環した二環性の含窒素へテロ環誘導体(I)を製造できる。

製造方法3

本製造法では、まず、化合物(3)を製造方法1の工程Cと同様の反応に付すことにより、化合物(13)を製造することが出来る(工程A)。化合物(16)は、工程Aで得た化合物(13)を製造方法1の工程D,E,Fと同様の転位反応に付すことにより、製造することが出来る(工程B、CおよびD)。化合物(17)は、化合物(16)を製造方法1の工程Gと同様の反応に付すことにより製造することができる(工程E)。化合物(18)は、化合物(17)を製造方法1の工程Hと同様の反応に付することにより製造することができる(工程F)。化合物(19)は、化合物(18)を製造方法1の工程Iと同様の反応に付すことにより製造することができる(工程G)。最後に、化合物(19)を、製造方法1の工程Bと同様の反応に付すことにより、本発明にかかる化合物(I)を製造することができる(工程H)。

製造方法4

式中のLevは、前記定義と同意義を示す。本製造法では、まず、化合物 (16) を、製造方法1の工程日と同様の脱保護反応に付すことにより、化合物 (17) を製造することができる(工程A)。最後に、化合物 (17) を製造方法1の工程 I と同様の置換基導入反応に付すことにより、本発明にかかる化合物 (I) を製造することができる。

製造方法5

式中のLevは、前記定義と同意義を示す。本製造法では、化合物(16)、(17)

または(18)を、製造方法1の工程Bと同様のカップリング反応に付すことにより、それぞれの出発原料に対応して、8位にアリール基を導入した誘導体((9)、(10)または(11))を製造することが出来る。

製造方法6

工程A: 式中の2-アミノピラジン誘導体 (21) とハロゲン化剤(例えばN-クロロこはく酸イミド等)を、溶媒中または無溶媒で 0 乃至 2 0 0 0 0 の間で反応させることにより、ハロゲン化された 2- アミノピラジン誘導体 (22) を得ることが出来る。用いる溶媒は、出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には酢酸、トルエン、キシレン、メタノール、エタノール、ジエチルエーテル、エチレングリコールモノメチルエーテル、N, N-ジメチルホルムアミド、ジクロロメタン、クロロホルム、四塩化炭素等で、これらの溶媒は単独でも混合しても用いることができる。前記ハロゲン化剤としては、例えば塩素、臭素、ヨウ素、N-ブロモこはく酸イミド、N-クロロこはく酸イミド、N-ヨードこはく酸イミド等を用いることが出来る。但し、ハロゲン化の条件によっては、R 4 4 が結合する炭素原子がハロゲン化されることがある。

工程B: 2-アミノピラジン誘導体 (22) と $\alpha-$ クロロー $\beta-$ ケトエステル誘導体 (2) を、製造方法1の工程Aと同様の反応に付すことにより、イミダゾ [1, 2-a] ピラジン誘導体 (5') を得ることができる。

本製造法6における誘導体(5')を、製造方法1において誘導体(5)を用いた反応と同様の反応に付すことによって、本発明にかかる化合物(I)を製造することが出来る。

製造方法7

工程A: ピラジン-2-カルボン酸誘導体(23)を製造方法1の工程D, EおよびFで示したCurtius転移反応等の転移反応に付すことにより、2-アミノピラジン酸誘導体(24)を製造することができる。

工程B: 2-Pミノピラジン誘導体 (24) とハロゲン化剤を溶媒中または無溶媒にて-70乃至 200℃の間で反応させることにより、ハロゲン化された 2-Pミノピラジン誘導体 (25) を得ることが出来る。用いる溶媒は、出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には酢酸、トルエン、キシレン、ピリジン、ピリミジン、4-(ジメチルアミノ) ピリジン、メタノール、エタノール、ジエチルエーテル、エチレングリコールモノメチルエーテル、N,N-ジメチルホルムアミド、ジクロロメタン、クロロホルム、四塩化炭素等で、これらの溶媒は単独でも混合しても用いることができる。ハロゲン化剤としては、例えば塩素、臭素、ヨウ素、N-グロモこはく酸イミド、N-クロロこはく酸イミド、N-

<u>工程C</u>: アミノピラジン誘導体 (25) と α - クロロー β - ケトエステル誘導体 (2) を製造方法1の工程Aと同様の反応に付すことにより、イミダゾ [1, 2 - a] ピラジン誘導体 (3) を製造することができる。

本製造法7における誘導体(3)を、前記製造法1において誘導体(3)を用いた

反応と同様の反応に付すことによって、本発明にかかる化合物(I)を製造することが出来る。

製造方法8

$$R^5$$
 R^6
 R^7
 R^6
 R^7
 R^8
 R^6
 R^7
 R^8
 R^8

工程A: アミノピラジン誘導体 (27) と α -ハロゲンケトン誘導体 (26) を、溶媒中または無溶媒にて0℃から200℃の間で反応させることにより、イミダゾ [1, 2-a] ピラジン誘導体 (28) を製造することができる。用いる溶媒は、出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には酢酸、トルエン、キシレン、メタノール、エタノール、エチレングリコールモノメチルエーテル、N, N-ジメチルホルムアミド等で、これらの溶媒を単独でも混合しても用いることができる。

工程B: ピラゾロ [1, 5-a] ピリミジン誘導体 (28) とニトロ化剤を、溶媒中または無溶媒にT-20 C から 200 C の間で反応させることにより、3-2 ニトローイミダゾ [1, 2-a] ピラジン誘導体 (29) を得ることができる。用いる溶媒は、出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には無水酢酸、酢酸、硫酸、無水トリフルオロ酢酸、トリフルオロ酢酸、アセトニトリル等である。ニトロ化剤としては硝酸銅三水和物、硝酸、発煙硝酸、 $NaNO_3$ 、 NH_4 + NO_3

¸⁻、NO¸BF₄等があげられる。

その他、別法として、3-ニトローイミダゾ [1, 2-a] ピラジン誘導体 (4) を、溶媒中または無溶媒で、酸の存在下または非存在下で、水素雰囲気下で、1乃至100気圧の水素の圧力で、0 ℃から200 ℃の間で、金属触媒を用いる水素添加反応に付すことによっても、同様に3-アミノーイミダゾ [1, 2-a] ピラジン誘導体 (30) を製造することができる。用いる溶媒は、出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適にはメタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、酢酸エチル、アセトン、N, N-ジメチルホルムアミド等である。用いる酸としては、酢酸、塩酸等があげられる。用いる金属触媒としては、Pd-C, PtO_2 , Pt-C, Raney-N i 等があげられる。また、本別法における水素添加反応は、蟻酸アンモニウムなどを溶媒中で加熱して系内で水素を発生させることによっても行うことができる。

本製造法8における誘導体(30)を、前記製造法2において誘導体(12)を用いた反応と同様の反応に付すことによって、本発明にかかる化合物(I)を製造することが出来る。

製造方法9

工程A:イミダゾ [1, 2-a] ピラジン誘導体(31)をVilsmeier反 応の条件にてオキシ塩化リンとの反応に付すことにより、3-ホルミル体(32) を製造することが出来る。本反応は、通常、 N. N-ジメチルホルムアミド等 の溶媒中で、0℃から200℃の温度で行われる。また、3-ホルミル誘導体 (32) は、イミダゾ [1, 2-a] ピラジン誘導体(31) を溶媒中または無溶媒で ルイス酸存在下にてジクロロメチルメチルエーテルと反応させることによって も製造することが出来る。用いる溶媒は、出発原料、試薬等により異なり、ま た、反応を阻害せず出発物質をある程度溶解するものであれば、特に限定され ないが、好適には、ジクロロメタン、クロロホルム、四塩化炭素、1.2-ジ クロロエタン等で、これらは単独でも混合しても用いることが出来る。用いる ルイス酸としては、四塩化チタン、塩化アルミニウム、塩化錫等があげられる。 工程B:3-ホルミルーイミダゾ「1,2-a] ピラジン誘導体(32)とGri gnard試薬またはアルキルリチウム試薬等の有機金属試薬(33)を反応させ ることにより、2級アルコール誘導体(34)を製造することが出来る。本反応は、 诵常、-100℃から100℃の間で、溶媒中または無溶媒で行われる。用い る溶媒は、出発原料、試薬等により異なり、また、反応を阻害せず出発物質を ある程度溶解するものであれば、特に限定されないが、好適には、ジエチルエ ーテル、テトラヒドロフラン、 n-ヘキサン、トルエン等で、これらは単独で も混合しても用いることが出来る。

工程D: 化合物 (36) を前記製造法1における工程Bと同様の反応に付することにより、本発明にかかる化合物(I)を製造することが出来る。 製造方法10

工程A: 二級アルコール誘導体 (34) を溶媒中または無溶媒で、二酸化マンガン等の酸化剤と反応させることにより、カルボニル誘導体 (37) を製造することが出来る。本反応は、通常、-100 から150 の間で行われる。用いる溶媒は、出発原料、試薬等により異なり、また、反応を阻害せず出発物質をある程度溶解するものであれば、特に限定されないが、好適には、アセトン、ジクロロメタン、n ーヘキサン、トルエン等で、これらは単独でも混合しても用い

ることが出来る。、用いる酸化剤は、出発原料、試薬等により異なり、特に限定されないが、好適には、二酸化マンガン、Jones酸化試薬、Kiliani試薬、二クロム酸ピリジニウム、クロロクロム酸ピリジニウム、重クロム酸カリウム等で、これらは単独でも混合してもよい。なお、本工程における酸化反応は、金属酸化剤に限らず、Swern酸化等の酸化反応条件によっても行うことができる。

工程B: 化合物 (37) を、製造法1 における工程Bと同様の反応に付して、誘導体 (I) cを製造することが出来る。

工程C:カルボニル誘導体式 $(I)^{c}$ をWittig試薬またはHorner-Emmons試薬(38^a)と処理することによって(Wittig反応またはHo rner-Emmons反応)、オレフィン誘導体(I)^oを製造することが出 来る。本反応は、通常、溶媒中または無溶媒で行う。用いる溶媒は、出発原料、 試薬等により異なり、また、反応を阻害せず出発物質をある程度溶解するもの であれば、特に限定されないが、好適には、テトラヒドロフラン、ジエチルエ ーテル、ジクロロメタン、n-ヘキサン、トルエン等で、これらは単独でも混 合してもよい。別法として、オレフィン誘導体(I)^oは、Reformats ky反応等によっても製造することが出来る。その他、本工程において、カル ボニル誘導体(I)^cをヒドロキシアミン誘導体またはその塩酸塩等の塩誘導体 (38b)と反応させると、オキシム誘導体を製造することができる。反応は、通常、 溶媒中または無溶媒で、0 \mathbb{C} から1 5 0 \mathbb{C} の間の温度で行われる。用いる溶媒 は、出発原料、試薬等により異なり、また、反応を阻害せず出発物質をある程 度溶解するものであれば、特に限定されないが、好適には、テトラヒドロフラ ン、ジエチルエーテル、エタノール、メタノール、カープロパノール、水等で、 これらは単独でも混合してもよい。

工程D: オレフィン誘導体(I) $^{\circ}$ を溶媒中または無溶媒で、酸の存在下または非存在下で、Pd-C等の金属触媒存在下で、水素添加反応に付すことにより、本発明にかかるアルキル誘導体(I) を製造することが出来る。本反応は、通常、水素雰囲気下、1気圧から100気圧の水素圧力で、且つ、0 $^{\circ}$ から20

製造方法11

工程A:最初に、アミノ基を有する6員環含窒素へテロ環 (39) を溶媒中または無溶媒にて0 $\mathbb C$ から100 $\mathbb C$ の温度で塩基と反応させ、しばらく放置した後、0 $\mathbb C$ から100 $\mathbb C$ の温度で二硫化炭素と反応させ、更に、塩基を0 $\mathbb C$ から100 $\mathbb C$ の温度で加えてから、0 $\mathbb C$ から100 $\mathbb C$ の温度にてアルキルハライド等 (式中の $\mathbb R^s T^s$ で表される化合物)との反応に付し、アルキル (アルキルスルファニル)メタンイミドチオエート (40)を製造することが出来る。使用する溶媒は、出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には、N, N-ジメチルホルムアミド、メタノール、エタノール、エチレングリコールモノメチルエーテル、トルエン、水等であり、これらを単独または混合して使用することができる。用い

る塩基は、好適には、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化リチウム等である。

工程B:アルキル(アルキルスルファニル)メタンイミドチオエート(40)とハロゲノ酢酸エステル(41)を、溶媒中または無溶媒で、且つ、0℃から200℃の温度で反応させ、次いで、該反応混合物を室温まで冷却した後に、トリエチルアミン等の塩基で処理することにより、3位にエステル基を有しイミダゾール環を縮環した二環性の含窒素へテロ環(42)を製造することが出来る。使用する溶媒は出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には、N,Nージメチルホルムアミド、メタノール、エタノール、エチレングリコールモノメチルエーテル、トルエン等であり、これらを単独または混合して使用することができる。用いる塩基は、トリエチルアミン、ピリジン、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化リチウム等である。

本製造法11の化合物39または42において、式中のT"がハロゲン原子である場合には、前記製造法1の工程Bと同様のカップリング反応を行うことにより、アリール基等を導入した誘導体に導くことが出来る。尚、誘導体(42)は前記製造法1において誘導体(5)を処理した反応と同様の反応に付すことによって製造することが出来る。

製造方法12

工程A:3-オキソーアルキルーシアナイド誘導体(43)とヒドラジンを溶媒中 または無溶媒、0℃から200℃の温度で反応させることにより、3-アミノ ピリダジン誘導体(44)を製造することが出来る。使用する溶媒は出発原料、試 薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであ れば特に限定されないが、好適には、酢酸、トルエン、キシレン、メタノール、 エタノール、エチレングリコールモノメチルエーテル、N,N-ジメチルホル ムアミド、水等で、これらを単独又は混合して用いることができる。ヒドラジ ンは、ヒドラジン一塩酸塩等、対応する塩として反応に用いることもできる。 工程B: 3-アミノピリダジン誘導体 (44) と α -クロロ- β -ケトエステル誘導体 (2)を溶媒中または無溶媒で0℃から200℃の温度で反応させることにより、 イミダゾ「1, 2-b] ピリダジン誘導体(45)を製造することができる。使用 する溶媒は出発原料、試薬等により異なり、また反応を阻害せず出発物質をあ る程度溶解するものであれば特に限定されないが、好適には、トルエン、キシ レン、メタノール、エタノール、エチレングリコールモノメチルエーテル、N, N-ジメチルホルムアミド、ジメチルスルフホキサイド等で、これらを単独又 は混合して用いることができる。

<u>工程C</u>:イミダゾ[1,2-b]ピリダジン3-カルボン酸エステル誘導体(45)

等を、溶媒中または無溶媒で、塩基存在下0℃から200℃の温度で加水分解 反応に付すことにより、イミダゾ [1, 2-b] ピリダジン3-カルボン酸誘導体 (46) を製造することができる。使用する溶媒は出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には、エタノール、メタノール、n-ブタノール、tert-ブタノール、テトラヒドロフラン、ジオキサン、水等で、これらは単独で又は混合溶媒として用いることができる。用いる塩基としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、カリウム t-ブトキシドなどがあげられる。

工程D, E, F: イミダゾ [1, 2-b] ピリダジン3-カルボン酸誘導体 (46) とアジド化剤 (例えばジフェニルフォスフォリルアジド等) を、溶媒中または無溶媒で、塩基存在下または非存在下、-70 ℃から250 ℃の温度で反応させて酸アジド誘導体 (47) を製造し、次いで、該酸アジド誘導体を0万至250 ℃に加熱してCurtius 転位反応等の転位反応に付すことにより、系内でイソシアネート (48) を発生させ、更に、tert-ブトキシカルボニル (Boc)等)等で保護された3-アミノイミダゾ [1, 2-b] ピリダジン誘導体 (49) を製造することができる。使用する溶媒は出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には、ベンゼン、トルエン、キシレン、ジフェニルエーテル、tert-ブタノール、テトラヒドロフラン、ジオキサン、アセトニトリル、N, N-ジメチルホルムアミド等で、これらは単独で又は混合溶媒として用いることができる。用いる塩基としては、トリエチルアミン、ジイソプロピルエチルアミン、4-(ジメチルアミノ)ピリジン、ピリジンなどがあげられる。

その他、酸アジド誘導体 (47) の製造法の別法として、イミダゾ [1, 2-b] ピリダジン3-カルボン酸誘導体 (46) を酸クロライドまたは混合酸無水物に誘導し、次いで、該誘導体をアジド化剤 (例えばアジ化ナトリウム、トリメチルシリルアジド等) との反応に付すことによって製造する方法も可能である。また、

3-Pミノーイミダゾ [1, 2-b] ピリダジン誘導体 (49) を製造する別法として、Hofmann転位反応、Schmidt 転位反応を用いる製造法もある。

工程G: 保護されたイミダゾ [1, 2-b] ピリダジン誘導体 (49) を、溶媒中または無溶媒で、脱保護試薬存在下または非存在下-70万至200℃の温度で脱保護反応に付し、3-rミノーイミダゾ [1, 2-b] ピリダジン誘導体 (50) を製造することができる。使用する溶媒は出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には、酢酸エチル、テトラヒドロフラン、ジエチルエーテル、ジオキサン、アセトニトリル、ジクロロメタン、クロロホルム、ニトロメタン、フェノール、アニソール、チオフェノール等があげられる。また、用いられる脱保護試薬としては、例えば塩酸、硫酸、トリフルオロ酢酸、メタンスルホン酸、ヨードトリメチルシラン、塩化アルミニウム(III)、トリメチルシリルトリフレート等があげられる。なお、化合物 (49) の保護基としてBoc以外の保護基(例えば下moc,Troc等)を用いた場合には、それぞれの保護基に適した脱保護試薬及び反応によって脱保護される。

工程H: 3-Pミノーイミダゾ [1, 2-b] ピリダジンン誘導体 (50) とカルボニル誘導体(例えばジエチルケトンなど)またはアルデヒド誘導体(例えばプロピオンアルデヒドなど)を、酸存在下または非存在下、無機塩存在下または非存在下で、更に、溶媒中または無溶媒で反応させ、該反応系内でイミン誘導体を形成させ、次いで還元剤を-10乃至1500の温度で添加し反応させることにより、本発明にかかるイミダゾ [1, 2-b] ピリダジン誘導体(I1)を得ることができる。使用する溶媒は出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には、テトラヒドロフラン、ジエチルエーテル、1, 2-ジクロロエタン、ジクロロメタン、クロロホルム、アセトニトリル、水等があげられ、これらは単独もしくは混合溶媒として用いることができる。用いる酸としては、例えば酢酸、硫酸等があげられる。用いる無機塩としては、例えば硫酸ナトリウム、

硫酸マグネシウム等があげられる。用いる還元剤として、ドリアセトキシ水素 化ホウ素ナトリウム、水素化ホウ素ナトリウム、シアノトリヒドロホウ酸ナト リウム等があげられる。

本工程に関する別法として、3-Pミノーイミダゾ [1, 2-b] ピリダジン誘導体 (50) と、ハライドなどの脱離基を含むアルキル化剤(例えばアルキルハライド等)、アシル化剤(例えば酸クロライド、酸無水物等)またはスルホン酸クロライド(例えばトシル酸クロライド等)とを、溶媒中または無溶媒で、塩基存在下または非存在下、-70 ℃から 200 ℃の温度にて反応させることにより、イミダゾ [1, 2-b] ピリダジン誘導体 (I) を製造することができる。使用する溶媒は出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には、テトラヒドロフラン、ジエチルエーテル、N, N-ジメチルホルムアミド、ジメチルスルホキサイド等があげられる。用いる塩基としては、例えば水素化ナトリウム、水素化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、水酸化カリウム、水酸化ナトリウム、ピリジン、トリエチルアミン等があげられる。

製造方法1_3

$$CI$$
 $N-N$
 NH_2
 TRA
 T

工程A: 3-アミノ-6-クロロピリダジン(51)をハロゲン化剤と処理し、ハロゲン化反応に付すことにより、アミノピリダジン誘導体(52)を製造することができる。本反応は、通常、溶媒中または無溶媒で、且つ、塩基存在下または非存在下で行い、反応温度は通常 0 乃至 2 0 0 ℃である。用いるハロゲン化剤

としては、出発原料、使用する溶媒等により異なり、また反応を阻害しない限りにおいて特に限定されないが、好適には臭素、ヨウ素、Nークロロこはく酸イミド、Nーブロモこはく酸イミド、Nーヨードこはく酸イミド、テトラブチルアンモニウムトリブロマイド等があげられる。使用する溶媒は出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には、テトラヒドロフラン、N,Nージメチルホルムアミド、1,4ージオキサン、メタノール、エタノール、ジクロロメタン、酢酸、四塩化炭素、水等があげられる。用いる塩基としては、炭酸カリウム、炭酸ナトリウム、炭酸カルシウム、炭酸水素ナトリウム等があげられる。工程B:アミノピリダジン誘導体(52)を前記製造法1の工程Bと同様の反応に付し、4位にアリール基が置換したアミノピリダジン誘導体(53)を製造することができる。

工程C:3-アミノー4-アリールー6-クロロピリダジン誘導体(53)を接触水素添加反応に付すことにより、3-アミノピリダジン誘導体(54)を製造することが出来る。かかる接触水素添加反応は、通常、溶媒中または無溶媒で、塩基の存在下または非存在下で、且つ、Pd-C等の金属試薬存在下で行われ、水素圧力は通常1乃至100気圧で、反応温度は通常0乃至200℃である。用いる溶媒は、出発原料、試薬等により異なり、また、反応を阻害せず出発物質をある程度溶解するものであれば、特に限定されないが、好適には、メタノール、エタノール、プロパノール、ブタノール、酢酸エチル、ジオキサン、テトラヒドロフラン、ジエチルエーテル、N,Nージメチルホルムアミド、nーヘキサン、トルエン、酢酸等で、これらを単独又は混合して用いることが出来る。用いる塩基としては、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化リチウム等があげられる。用いる金属試薬としては、Pd-C、PtO2、Pt-C、Raney-Ni等があげられる。

本工程に関する別法として、蟻酸アンモニウム等の水素源を溶媒中で加熱して系内で水素を発生させることにより3-アミノピリダジン誘導体(54)を製造することも出来る。使用する溶媒は出発原料、試薬等により異なり、また反応

を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には、酢酸、メタノール、エタノール、n-プロパノール等があげられる。用いる水素源としては、 NaH_2PO_2 、 HCO_2NH_4 、 HCO_2NH (CH_2)。等があげられる。

工程D: アミノピリダジン誘導体 (54) と α -クロロ- β -ケトエステル誘導体 (2) を、溶媒中または無溶媒の系にて、0乃至 200 \mathbb{C} 00温度で反応させることにより、イミダゾ [1, 2-b] ピリダジン誘導体 (55) を製造することができる。使用する溶媒は出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には、例えば酢酸、トルエン、キシレン、メタノール、エタノール、エチレングリコールモノメチルエーテル、N, N-ジメチルホルムアミド等、これらを単独または混合して用いることができる。

最後に、本製造法にて製造できたイミダゾ [1, 2-b] ピリダジン誘導体 (55) を前記製造法12 においてイミダゾ [1, 2-b] ピリダジン誘導体 (45) を処理したのと同様の反応に付すことにより、本発明にかかる化合物を製造することが出来る。

製造方法14

工程A: 2環性の含窒素へテロ環誘導体(I) sを酸化反応に付し、(I) sの 2位に結合する置換されたスルフィド基を脱離基(例えば置換されたスルフォニル基等)に変換し、含窒素へテロ環誘導体(I) を製造することができる。 該酸化反応は、通常、溶媒中または無溶媒で行われ、反応温度は-70乃至1

50℃である。使用する溶媒は出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には、トルエン、キシレン、メタノール、エタノール、テトラヒドロフラン、エチレングリコールモノメチルエーテル、ジクロロメタン、クロロホルム等で、これらは単独または混合して用いることができる。用いる酸化剤としては、メタクロロ過安息香酸、オキソン等があげられる。

工程B:本工程は、脱離基(例えばハロゲン原子、トリフルオロメタンスルホニル基等)を有する2環性の含窒素へテロ環誘導体(I)^Lを、所望の置換基Rⁿが結合する2環性含窒素へテロ環誘導体(I)ⁿに変換するものである。該反応には、通常、アルコキサイド、金属シアン化合物等を用いる求核反応や、Pd触媒等を用いたカップリング反応等を用いることができる。導入する置換基の数は一個に限られず、容易に二個以上の置換基が導入された誘導体を製造することができる。

製造方法15

工程A: 2位がハロゲン原子で置換された単環性含窒素へテロ環誘導体(56)とエタノールアミン誘導体(57)を反応させることにより、前記エタノールアミン

誘導体のアミノ基が 2 位に置換した単環性含窒素へテロ環誘導体 (58) を製造することができる。該反応は、溶媒中または無溶媒、且つ、塩基存在下または非存在下にて行われ、反応温度は通常 0 乃至 2 5 0 $\mathbb C$ である。使用する溶媒は、出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には、トルエン、キシレン、テトラヒドロフラン、エチレングリコールジメチルエーテル、N, N - $\mathbb C$ $\mathbb C$

工程C: 単環性の含窒素へテロ環誘導体 (59) をハロゲン化反応に付し、続く環化反応によってジヒドロイミダゾール環を形成した誘導体 (61) を製造することができる。該反応は、通常、溶媒中または無溶媒で行われ、反応温度は通常 0 乃至 2 0 0 Cである。用いる溶媒は、出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、好適には酢酸、トルエン、キシレン、テトラヒドロフラン、エチレングリコールモノメチルエーテル、N, N-ジメチルホルムアミド、ジクロロメタン、ク

ロロホルム、四塩化炭素等で、これらを単独又は混合して用いることができる。 用いるハロゲン化剤としては、例えば塩素、臭素、ヨウ素、チオニルクロライド、チオニルブロマイド等を用いることが出来る。

工程D:ジヒドロイミダゾール環を有する二環性の含窒素へテロ環誘導体 (61)を酸化剤または芳香化剤と反応させることにより、イミダゾール環を有する含窒素へテロ環誘導体 (62)を製造することができる。該反応は、通常、溶媒中で行われ、反応温度は通常 0 乃至 2 5 0 ℃である。用いる溶媒は、出発原料、試薬等により異なり、また、反応を阻害せず出発物質をある程度溶解するものであれば、特に限定されないが、好適には、アセトン、ジクロロメタン、カーへキサン、トルエン、キシレン、1 ーメチルー2ーピロリジノン等で、これらを単独又は混合して用いることが出来る。用いる酸化剤は、出発原料、試薬等により異なり、特に限定されないが、好適には、二酸化マンガン、二クロム酸ピリジニウム、クロロクロム酸ピリジニウム、重クロム酸カリウム等で、これらを単独又は混合して用いることが出来る。芳香化剤としては 2 、3 ージクロロー5 、6 ージシアノー1 、4 ーベンゾキノン、空気酸化等があげられる。

工程E: イミダゾール環を有する含窒素へテロ環誘導体(62)を前記製造法9の工程Aと同様の反応に付することにより、アルデヒド体(63)を製造することができる。

工程下: アルデヒド体 (63) と酸化剤を反応させることにより、カルボン酸体 (64) を製造することができる。該反応は、通常、溶媒中または無溶媒で行われ、反応温度は通常-10乃至200℃である。用いる溶媒は、出発原料、試薬等により異なり、また、反応を阻害せず出発物質をある程度溶解するものであれば、特に限定されないが、好適には、アセトン、ジクロロメタン、n-ヘキサン、トルエン、キシレン、アセトニトリル、水等で、これらを単独又は混合して用いることが出来る。用いる酸化剤は、出発原料、試薬等により異なり、特に限定されないが、好適には、過マンガン酸カリウム、酸化銀、活性二酸化マンガン、二クロム酸ピリジニウム、亜塩素酸ナトリウム等で、これらを単独又は混合して用いることが出来る。前記誘導体 (64) を前記製造法 2 において誘導体

(13) を処理したのと同様の反応に付して、本発明にかかる化合物(I)を製造することが出来る。

以上が本発明にかかる化合物(I)の製造方法の代表例であるが、本発明化合物の製造における原料化合物・各種試薬は、塩や水和物を形成していてもよく、いずれも出発原料、使用する溶媒等により異なり、また反応を阻害しない限りにおいて特に限定されない。用いる溶媒についても、出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないことは言うまでもない。本発明に係る化合物(I)がフリー体として得られる場合、前記の化合物(I)が形成していてもよい塩の状態に常法に従って変換することができる。また、本発明に係る化合物(I)について得られる種々の異性体(例えば幾何異性体、不斉炭素に基づく光学異性体、回転異性体、立体異性体、互変異性体、等)は、通常の分離手段、例えば再結晶、ジアステレオマー塩法、酵素分割法、種々のクロマトグラフィー(例えば薄層クロマトグラフィー、カラムクロマトグラフィー、ガスクロマトグラフィー、第)を用いることにより精製し、単離することができる。

本発明にかかる前記式(I)で表わされる化合物もしくはその塩またはそれらの水和物は、そのまま用いるか、または自体公知の薬学的に許容できる担体等と混合し、慣用される方法により製剤化することが可能である。好ましい剤形としては錠剤、散剤、細粒剤、顆粒剤、被覆錠剤、カプセル剤、シロップ剤、トローチ剤、吸入剤、坐剤、注射剤、軟膏剤、眼軟膏剤、点眼剤、点鼻剤、点耳剤、パップ剤、ローション剤等があげられる。製剤化には、通常用いられる賦形剤、結合剤、崩壊剤、滑沢剤、着色剤、矯味矯臭剤や、および必要により安定化剤、乳化剤、吸収促進剤、界面活性剤、pH調整剤、防腐剤、抗酸化剤などを使用することができ、一般に医薬品製剤の原料として用いられる成分を配合して常法により製剤化可能である。

これらの成分としては例えば大豆油、牛脂、合成グリセライド等の動植物油; 流動パラフィン、スクワラン、固形パラフィン等の炭化水素;ミリスチン酸オクチルドデシル、ミリスチン酸イソプロピル等のエステル油;セトステアリル

アルコール、ベヘニルアルコール等の高級アルコール:シリコン樹脂:シリコ ン油:ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、グリ ヤリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリ オキシエチレン硬化ひまし油、ポリオキシエチレンポリオキシプロピレンブロ ックコポリマー等の界面活性剤:ヒドロキシエチルセルロース、ポリアクリル 酸、カルボキシビニルポリマー、ポリエチレングリコール、ポリビニルピロリ ドン、メチルセルロースなどの水溶性高分子;エタノール、イソプロパノール などの低級アルコール;グリセリン、プロピレングリコール、ジプロピレング リコール、ソルビトールなどの多価アルコール:グルコース、ショ糖などの糖; 無水ケイ酸、ケイ酸アルミニウムマグネシウム、ケイ酸アルミニウムなどの無 機粉体;精製水などがあげられる。賦形剤としては、例えば乳糖、コーンスタ ーチ、白糖、ブドウ糖、マンニトール、ソルビット、結晶セルロース、二酸化 ケイ素等;結合剤としては、例えばポリビニルアルコール、ポリビニルエーテ ル、メチルセルロース、エチルセルロース、アラビアゴム、トラガント、ゼラ チン、シェラック、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチ ルセルロース、ポリビニルピロリドン、ポリプロピレングリコール・ポリオキ シエチレン・ブロックポリマー、メグルミン、クエン酸カルシウム、デキスト リン、ペクチン等:崩壊剤としては、例えば澱粉、寒天、ゼラチン末、結晶セ ルロース、炭酸カルシウム、炭酸水素ナトリウム、クエン酸カルシウム、デキ ストリン、ペクチン、カルボキシメチルセルロース・カルシウム等:滑沢剤と しては、例えばステアリン酸マグネシウム、タルク、ポリエチレングリコール、 シリカ、硬化植物油、等;着色剤としては医薬品に添加することが許可されて いるものであれば、いかなるものでもよく;矯味矯臭剤としては、ココア末、 ハッカ脳、芳香散、ハッカ油、竜脳、桂皮末等;抗酸化剤としては、アスコル ビン酸、αートコフェロール、等、医薬品に添加することが許可されているも のがそれぞれ用いられる。

経口製剤は、本発明にかかる化合物またはその塩に賦形剤、さらに必要に応じて結合剤、崩壊剤、滑沢剤、着色剤、矯味矯臭剤などを加えた後、常法によ

り散剤、細粒剤、顆粒剤、錠剤、被覆錠剤、カプセル剤等とする。

錠剤・顆粒剤の場合には、糖衣、ゼラチン衣、その他必要により適宜コーティングすることはもちろん差支えない。

シロップ剤、注射用製剤、点眼剤、等の液剤の場合は、pH調整剤、溶解剤、等張化剤、等と、必要に応じて溶解補助剤、安定化剤、緩衝剤、懸濁化剤、抗酸化剤、等を加えて、常法により製剤化する。該液剤の場合、凍結乾燥物とすることも可能で、また、注射剤は静脈、皮下、筋肉内に投与することができる。懸濁化剤における好適な例としては、メチルセルロース、ポリソルベート80、ヒドロキシエチルセルロース、アラビアゴム、トラガント末、カルボキシメチルセルロースナトリウム、ポリオキシエチレンソルビタンモノラウレート、等;溶解補助剤における好適な例としては、ポリオキシエチレンソルビタンモノラウレート等;安定化剤における好適な例としては、亜硫酸ナトリウム、メタ亜硫酸ナトリウム、エーテル等;保存剤における好適な例としては、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、ソルビン酸、フェノール、クレゾール、クロロクレゾール等があげられる。

外用剤の場合は、特に製法が限定されず、常法により製造することができる。使用する基剤原料としては、医薬品、医薬部外品、化粧品等に通常使用される各種原料を用いることが可能で、例えば動植物油、鉱物油、エステル油、ワックス類、高級アルコール類、脂肪酸類、シリコン油、界面活性剤、リン脂質類、アルコール類、多価アルコール類、水溶性高分子類、粘土鉱物類、精製水などの原料が挙げられ、必要に応じ、pH調整剤、抗酸化剤、キレート剤、防腐防黴剤、着色料、香料などを添加することができる。さらに、必要に応じて分化誘導作用を有する成分、血流促進剤、殺菌剤、消炎剤、細胞賦活剤、ビタミン類、アミノ酸、保湿剤、角質溶解剤、等の成分を配合することもできる。

本発明にかかる化合物(I)、その塩またはそれらの水和物を有効成分として含んでなる医薬製剤は、哺乳類(例えばヒト、マウス、ラット、モルモット、ウサギ、イヌ、ウマ、サル、等)における治療・予防、特に、ヒトにおける治

療・予防に有用である。本発明にかかる医薬の投与量は、症状の程度、年齢、性別、体重、投与形態・塩の種類、薬剤に対する感受性差、疾患の具体的な種類、等に応じて異なるが、ヒトにおける場合、通常、成人の場合は1日あたり経口投与で約 30μ gないし10g、好ましくは 100μ gないし500mg、さらに好ましくは 100μ gないし100mgを、注射投与で約1ないし 300μ g/kg、好ましくは3ないし 1000μ g/kgを、それぞれ1回または数回に分けて投与する。

本発明により、CRF受容体拮抗作用を有する新規な化合物、その薬理学的に許容される塩およびそれらの水和物を提供することができた。本発明にかかる化合物もしくはその薬理学的に許容される塩またはそれらの水和物は、CRF受容体に対し優れた拮抗作用を有し、低毒性で、且つ安全性が高く、医薬としての有用性も高い。本発明にかかる化合物等は、CRFおよび/またはその受容体が関与する疾患の治療・予防に有用であり、特に、うつ病、抑うつ症状(大うつ病、単発性うつ病、再発性うつ病、うつ病による幼児虐待、産後うつ病等)、そう病、不安症、全般性不安障害、パニック障害、恐怖症、強迫性障害、心的外傷後ストレス障害、チューレット症候群、自閉症、感情障害、情緒障害、双極性障害、循環性格、分裂病、消化性潰瘍、過敏性腸症候群、潰瘍性大腸炎、クローン病、下痢、便秘、術後イレウス、ストレスに伴う胃腸機能異常、神経性嘔吐等の治療・予防剤として有用である。

実施例

以下に示す参考例、実施例および試験例は例示的なものであって、本発明にかかる化合物は如何なる場合も以下の具体例に制限されるものではない。当業者は、以下に示す実施例のみならず本願明細書にかかる特許請求の範囲に様々な変更を加えて本発明を最大限に実施することができ、かかる変更は本願明細書にかかる特許請求の範囲に含まれるものである。

参考例1

8-クロロ-2-エチルイミダゾ [1, 2-a] ピラジン-3-カルボン酸メ

チルエステル

 1 H NMR(400MHz,CDCl₃) δ 1. 37(t,J = 7. 6 Hz,3H),3. 18(q,J = 7. 6 Hz,2H),4. 03(s,3H),7. 87(d,J = 4. 6 Hz,1H),9. 14(d,J = 4. 6 Hz,1H). 参考例 2

5-クロロ-3-(2,4-ジクロロフェニル)-2-ピラジンアミン

3-(2,4-i)クロロフェニル)-2-lピラジンアミン(1.43g, 6.0mmol)をクロロホルム(9mL)に溶解し、N-クロロこはく酸イミド(0.96g, 7.2mmol)を加え加熱環流下4時間撹拌した。放冷後、反応混合物に水を加え、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムにて乾燥させ、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:2)にて精製し、標記化合物(1.54g)を黄色結晶として得た。

 1 H NMR (400MHz, CDCl₃) δ 4. 55 (br s, 2H), 7. 38 (d, J = 8. 2 Hz, 1H), 7. 41 (dd, J = 1. 8, 8. 2 Hz, 1H), 7. 55 (d, J = 1. 8 Hz, 1H), 8. 10 (s, 1H). 参考例 3

8-ブロモー2-エチルー6-メチルイミダゾ [1, 2-a] ピラジンー3-カルボン酸メチルエステル

3-プロモ-5-メチル-2-ピラジンアミン(3.5g, 18.6mmol) とメチル 2-クロロ-3-オキソペンタノエート(6.7mL, 48.6mm ol) を混合させ、130 で 1 時間加熱撹拌した。放冷後不要物を濾別し、酢酸エチルで洗浄し、濾液を合わせて減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)にて精

製し、標記化合物(0.32g)を淡黄色結晶として得た。

¹H NMR (400MHz, CDCl₃) δ 1. 35 (t, J = 7.5 Hz, 3H), 2. 56 (s, 3H), 3. 15 (q, J = 7.5 Hz, 2H), 4. 01 (s, 3H), 8. 98 (s, 1H).

参考例4

8-Dロロー2-エチルイミダゾ [1, 2-a] ピラジンー3-カルバアルデヒド

8-クロロ-2-エチルイミダゾ [1, 2-a] ピラジン(600mg, 3.3mmol)をN, N-ジメチルホルムアミド(3.3mL)に溶解し、オキシ塩化リン(1.2mL,13.2mmol)を室温で滴下し、90 で2時間加熱攪拌した。放冷後、反応混合物を氷に注ぎ酢酸エチルで抽出した。有機層を無水硫酸マグネシウムにて乾燥させ、減圧下濃縮し、標記化合物(472mg)を白色結晶として得た。

 1 H NMR(400MHz,CDCl₃) δ 1. 49(t,J = 7. 5 Hz,3H),3. 18(q,J = 7. 5 Hz,2H),7. 97(d,J = 4. 4 Hz,1H),9. 31(d,J = 4. 4 Hz,1H),10. 18(s,1H).参考例 5

8-クロロー2-エチルイミダゾ [1, 2-a] ピラジンー3-カルバアルデヒド(146mg, 0.70mmol)をテトラヒドロフラン(1.4mL)に溶解し、氷冷下0.90M臭化プロピルマグネシウムテトラヒドロフラン溶液(1.6mL, 1.4mmol)を加え、30分間攪拌した。反応混合物に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムにて乾燥させ、減圧下濃縮した。得られたアルコール体は精製することなく次の反応に用いた。

得られた $1-(8-\rho \Box \Box - 2-\chi \Box - \chi \Box)$ [1, 2-a] ピラジンー $3-\eta \Box)$ $-1-\eta \Box \beta J-\eta \Box \delta N$, $N-\eta \Box J-\eta \Box \gamma \Box \delta V$ (2. 2mL) に溶解し、氷冷下ヨード $\chi \Box \beta \Box \delta U$ (0. 0.79mL, 0.99mmol)、水素 化ナトリウム(6.5% in oil; 4.9mg, 1.32mmol)を加え、

3時間攪拌した。反応混合物に水を加え、酢酸エチルで抽出し減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:3)にて精製し、標記化合物(55mg)を無色油状物として得た。 ¹H NMR(400MHz,CDC1₃) δ 0.88-0.96(m, 3H),1.12-1.17(m, 3H),1.18-1.37(m, 4H),1.39-1.52(m, 1H),1.69-1.81(m, 1H),1.97-2.07(m, 1H),2.75-2.89(m, 2H),3.18-3.27(m, 1H),3.33-3.42(m, 1H),4.70-4.76(m, 1H),7.60(d, J=4.6 Hz,1H),8.35(d, J=4.6 Hz,1H).

参考例6

 $1 - (8 - \rho \Box \Box - 2 - \Box \Box \Box \neg \Box)$ - $1 - \Box \neg \Box \rho$ / $- 1 - \Box \rho$ /

8-クロロー2-エチルイミダゾ [1, 2-a] ピラジンー3-カルバアルデヒド(328mg,1.6mmo1)をテトラヒドロフラン(3.2mL)に溶解し、氷冷下0.90M臭化プロピルマグネシウムテトラヒドロフラン溶液(4.4mL,4.0mmo1)を加え、30分間攪拌した。反応混合物に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムにて乾燥させ、減圧下濃縮した。得られた1-(8-クロロー2-エチルイミダゾ [1, 2-a] ピラジンー3-イル)-1-ブタノールは精製することなく次の反応に用いた。

得られた1-(8-0)ロロ-2-xチルイミダゾ [1, 2-a] ピラジンー3ーイル)-1-ブタノールを酢酸エチル(4 mL)および塩化メチレン(1 mL)に溶解し、活性二酸化マンガン(3 g)を加え、6 0 $\mathbb C$ で 5 時間加熱攪拌した。放冷後、反応混合物を濾過したのち、酢酸エチルで洗浄し、濾液を合わせて減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:3)にて精製し、標記化合物(2 2 6 m g)を白色結晶として得た。

¹H NMR (400MHz, CDCl₃) δ 1.06 (t, J = 7.3 Hz, 3H), 1.49 (t, J = 7.5 Hz, 3H), 1.84 (tq, J = 7.3, 7.3 Hz, 2H), 2.97 (t, J = 7.3 Hz, 2H), 3.23 (q, J = 7.5 Hz, 2H), 7.88 (d, J = 4.6 Hz, 1H), 9.53 (d, J = 4.6 Hz, 1H).

参考例7

(E) - 4 - (2, 4 - i) + i) - 3 - i + i) - 3 - i + i) - 3 - i + i)

2, 4-ジメチルベンズアルデヒド(15.08g,0.112 mol) のジクロロメタン(100mL)溶液に、1-トリフェニルフォスフォラニリデン-2-プロパノン(49.08g,0.225 mol)を加え60℃で20時間加温した。反応混合物をそのまま減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:5)で精製し、標記化合物(18.32g,94%)を得た。

¹H NMR (400MHz, CDC1₃) δ 2. 33 (s, 3H), 2. 37 (s, 3H), 2. 42 (s, 3H), 6. 62 (d, J = 16.1 Hz, 1H), 7. 00–7. 08 (m, 2H), 7. 48 (d, J = 8.4 Hz, 1H), 7. 79 (d, J = 16.1 Hz, 1H).

参考例8

1-(2,4-ジメチルフェニル)-3-オキソブチル シアナイド

(E) -4-(2,4-i)メチルフェニル)-3-iテン-2-iン(18.32g,0.105mol)の15% 水とN,N-iジメチルホルムアミドの混合溶液(100mL)に塩化アンモニウム(6.84g,0.126mol)、シアン化カリウム(13.68g,0.210 mol)を加え、6時間加熱還流した。反応混合物に水を加え、酢酸エチルで抽出し、有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-10.3 円 (10.13g,48%)を得た。「11 NMR(400MHz、CDCl3)る2.20(s、3H)、2.30(s、3H)、2.33(s、3H)、2.87(dd、11 = 5.2、8.9 Hz、11 + 11)、3.16(dd、11 = 8.9、18.0 Hz、11 + 11)、4.44(dd、11 = 5.2、8.9 Hz、11 + 11)、7.01(s、11 + 11)、7.04(d、12 = 7.9 Hz、11 + 11)、7.27(d、13 = 10.3 Hz, 11 + 11)

参考例9

4-ブロモー6-クロロー3-ピリダジナミン

3-アミノー6-クロロピリダジン(10.0g,78mmol)のメタノ

ール($150 \,\mathrm{mL}$)溶液に、室温で炭酸水素ナトリウム($13.0 \,\mathrm{g}$, $155 \,\mathrm{mmol}$)、臭素($4.0 \,\mathrm{mL}$, $78 \,\mathrm{mmol}$)を加え、 $15 \,\mathrm{fhll}$ 撹拌した。反応混合物をろ過し、減圧下溶媒を留去した。水を加え、酢酸エチルで抽出し、有機層を $10 \,\mathrm{%}$ チオ硫酸ナトリウム水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残査をシリカゲルカラムクロマトグラフィー(酢酸エチル: $n-\!\!\mathrm{n}$ キサン=1:1)で精製し、標記化合物($8.6 \,\mathrm{g}$, 53%)を茶褐色結晶として得た。

¹H NMR(400MHz,CDCl₃)δ 5.35 (br s, 2H), 7.54 (s, 1H). 参考例 1 0

6-クロロー4-(2, 4-ジメチルフェニル)-3-ピリダジナミン

3-アミノ-4-プロモ-6-クロロピリダジン(822mg, 3.9mm o 1)のトルエン(40mL)溶液にエタノール(8mL)、2M炭酸ナトリウム水溶液(<math>4mL)、2, 4-ジメチルベンゼンホウ酸(<math>650mg, 4. 3mmol)及びテトラキストリフェニルホスフィンパラジウム錯体(456mg, 0. 39mmol)を加え、100で2時間加熱した。水を加え、酢酸エチルで抽出し、有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残査をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:3)で精製し、標記化合物(759mg, 82%)を淡褐色粉末として得た。

¹H NMR (400MHz, CDCl₃) δ 2. 15 (s, 3H), 2. 37 (s, 3H), 5. 03 (br s, 2H), 7. 03 (d, J = 7.7 Hz, 1H), 7. 07 (s, 1H), 7. 12 (d, J = 7.7 Hz, 1H), 7. 15 (s, 1H).

参考例11

4-(2,4-ジメチルフェニル)-3-ピリダジナミン

6-クロロ-4-(2, 4-ジメチルフェニル) -3-ピリダジナミン(759mg, 3.2mmol)のメタノール(40mL)溶液に10%Pd-C(759mg, 50wt%),蟻酸アンモニウム(1.23g, 19mmol)を加え、1時間加熱還流した。反応溶液をセライトを用いて濾過後、減圧下溶

媒を留去した。残査をシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製し、標記化合物(640mg, 99%)を淡黄色油状物として得た。

¹H NMR (400MHz, CDC1₃) δ 2. 13 (s, 3H), 2. 37 (s, 3H), 4. 89 (br s, 2H), 7. 03 (d, J=4. 6 Hz, 1H), 7. 04 (d, J=7. 1 Hz, 1H), 7. 11 (d, J=7. 7 Hz, 1H), 7. 14 (s, 1H), 8. 63 (d, J=4. 6 Hz, 1H).

参考例12

8-(2,4-ジメチルフェニル)-2-エチルイミダゾ <math>[1,2-b] ピリダジン-3-カルボン酸メチルエステル

4-(2,4-i)メチルフェニル)-3-lピリダジナミン(640mg, 3.2mmo1)にメチル 2-Dロロー3-dキソペンタノエート(5mL)を加え、155℃で30分間加熱した。得られた反応混合物に水を加え、酢酸エチルで抽出し、有機層を5N水酸化ナトリウム水溶液、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残査をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-n+tン=1:3)で精製し、標記化合物(373mg, 37%)を褐色油状物として得た。

¹H NMR (400MHz, CDCl₃) δ 1. 29 (t, J = 7.5 Hz, 3H), 2. 21 (s, 3H), 2. 38 (s, 3H), 3. 11 (q, J = 7.5 Hz, 2H), 4. 01 (s, 3H), 7. 06 (d, J = 4.6 Hz, 1H), 7. 12 (d, J = 7.7 Hz, 1H), 7. 16 (s, 1H), 7. 28 (d, J = 7.7 Hz, 1H), 8. 55 (d, J = 4.6 Hz, 1H).

参考例13

8-ブロモー6-メチルー2-(メチルスルファニル)イミダゾ [1, 2-a] ピリジンー3-カルボン酸エチルエステル

3ーブロモー5ーメチルー2ーピリジンアミン(5.0g)をN, Nージメチルホルムアミド(30mL)に溶解し、20M水酸化ナトリウム水溶液(1.35mL)を室温でゆっくり加えた。室温で30分撹拌した後、二硫化炭素(2.4mL)を加え更に30分撹拌した。その後、20M水酸化ナトリウム水溶液(1.35mL)を室温でゆっくり加え、2時間撹拌した後に、ヨウ化メチル(7.7g)を加えて一晩撹拌した。得られた反応混合物に氷を加えて酢酸工

チルで抽出し、無水硫酸マグネシウムで乾燥した後、減圧下濃縮した。得られた、メチル N-(3- ブロモー5-メチルー2-ピリジル)-(メチルスルファニル)メタンイミドチオエートは精製することなく次の反応に供した。.

メチル N-(3-7)ロモー5-メチルー2-ピリジル)-(メチルスルファニル)メタンイミドチオエートにプロモ酢酸エチル(5.4g)を加え60℃で4時間撹拌した。室温まで冷却した後にトリエチルアミンを加えて処理し、更に水を加えた。反応混合物を酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥した後、減圧下濃縮した。得られた残渣をカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:9)にて精製し、8-プロモー6-メチルー2-(メチルスルファニル)イミダゾ [1,2-a]ピリジンー3-カルボン酸エチルエステル(2.4g)を白色粉末として得た。

¹H NMR (400MHz, CDCl₃) δ 1. 46 (t, J = 7.2 Hz, 3H), 2. 37 (s, 3H), 2. 73 (s, 3H), 4. 44 (q, J = 7.2 Hz, 2H), 7. 49 (d, J = 1.6 Hz, 1H), 9. 07 (d, J = 2.4 Hz, 1H).

参考例14

8-ブロモー6-メチルー2-(メチルスルファニル)イミダゾ [1, 2-a] ピリジンー3-カルボン酸

8-ブロモー6-メチルー2-(メチルスルファニル)イミダゾ [1, 2-a] ピリジンー3-カルボン酸エチルエステル(1.33g)をエタノール(50mL)に溶解し、5N水酸化ナトリウム水溶液(3mL)を加え、1時間環流下撹拌した。反応混合物に氷を加え、更に2N塩酸(8mL)を加えたところ、析出物が得られた。得られた析出物を濾取し、水で洗浄し、減圧下乾燥させると、8-ブロモー6-メチルー2-(メチルスルファニル)イミダゾ [1, 2-a] ピリジンー3-カルボン酸(1.1g)を白色粉末として得た。

 1 H NMR (400MHz, DMSO-d₆) δ 2.34 (s, 3H), 2.48 (s, 3H), 7.77 (s, 1H), 9.02 (s. 1H), 13.4 (br s. 1H).

参考例15

(1, 2-a) ピリジン(1, 2-a) ピリジン(1, 2-a)

8 ー ブロモー 6 ーメチルー 2 ー(メチルスルファニル)イミダゾ [1, 2 ー a] ピリジンー 3 ーカルボン酸(5 0 0 m g)を t e r t ーブチルアルコール(1 5 m L)とトルエン(5 0 m L)の混合物にに溶解し、ジフェニルフォスフォリルアジド(5 0 0 m g)とトリエチルアミン(2 0 6 m g)を加え、7 0 $\mathbb C$ で 2 時間加熱した後に、加熱還流下 2 時間撹拌した。室温まで冷却後、反応混合物を減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n ーへキサン=1:9)にて精製し、t e r t ーブチル N ー [8 ーブロモー6 ーメチルー2 ー(メチルスルファニル)イミダゾ [1, 2 ー a] ピリジンー3 ーイル]カルバメート(0. 8 5 g)を白色粉末として得た。

'H NMR (400MHz, CDC1₃) δ 1. 50 (br s, 9H), 2. 33 (s, 3H), 2. 60 (s, 3H), 6. 18 (br s, 1H), 7. 32 (s, 1H), 7. 61 (s, 1H).

参考例16

tertーブチル N-[8-ブロモ-6-メチル-2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジン-3-イル]-N-プロピルカルバメート

tertーブチル N-[8-ブロモ-6-メチル-2-(メチルスルファニル) イミダゾ [1,2-a] ピリジン-3-イル] カルバメート(123 mg)をN, N-ジメチルホルムアミド(10 mL)に溶解し、氷冷下、水素化ナトリウム(65% in oil;15 mg)を加え、10分間撹拌した。ヨードプロパン(67 mg)を氷冷下加え、室温で1時間撹拌した。反応混合物を水に注ぎ酢酸エチルで抽出した。抽出した有機層を併せ、無水硫酸マグネシウムで乾燥させ、減圧下濃縮し、標記化合物(133 mg)を褐色油状物として得た。

¹H NMR (400MHz, CDC1₃) δ 0. 87 (t, J = 7.2 Hz, 3H), 1. 31 (br s, 9H), 1. 45–1. 60 (m, 2H), 2. 33 (s, 3H), 2. 60 (s, 3H), 3. 50–3. 63 (m, 2H), 7. 31 (s, 1H), 7. 44 (s, 1H).

参考例17

N-[8-70+6-8+10-2-(8+10)] (N-70+10) (N-70+10) (N-70+10) (N-70+10) (N-70+10) (N-70+10) (N-70+10)

tertーブチル N-[8-ブロモ-6-メチル-2-(メチルスルファニル) イミダゾ [1, 2-a] ピリジン-3-イル] - <math>N-プロピルカルバメートを酢酸エチル (5 mL) に溶解し、4 N塩酸-酢酸エチル溶液(10 mL)を室温にて加え、室温で20時間撹拌した。氷冷下、5 N水酸化ナトリウム水溶液を加え中和し、酢酸エチルで抽出した。有機層を併せ無水硫酸マグネシウムで乾燥させ、減圧下濃縮し、標記化合物(103 mg)を黄色非晶質として得た。

 1 H NMR (400MHz, CDCl₃) δ 1.01 (t, J=7.6 Hz, 3H), 1.57-1.63 (m, 2H), 2.32 (s, 3H), 2.54 (s, 3H), 2.95-3.00 (m, 2H), 7.24 (s, 1H), 7.71 (s, 1H). 参考例 1.8

N-[8-プロモ-6-メチル-2-(メチルスルファニル) イミダゾ [1,2-a] ピリジン-3-イル] - <math>N, N-ジプロピルアミン

N-[8-7012-6-85]ルー2-(メチルスルファニル)イミダゾ[1,2-a] ピリジン-3-イル]-N-70ピルアミン(103mg)とプロピオンアルデヒド(57mg)をテトラヒドロフラン(1.2mL)に溶解し、3M硫酸(0.24mL)を加え、水素化ホウ素ナトリウム(24mg)を氷冷下で加え、3時間撹拌した。反応混合物に水を加え、2N水酸化ナトリウム水溶液で中和し、酢酸エチルにて抽出した。有機層を無水硫酸マグネシウムにて乾燥させ、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-0キサン=1:9)にて精製し、標記化合物(79mg)を白色粉末として得た。

 1 H NMR(400MHz,CDC1₃) δ 0.85(t,J=7.2 Hz,6H),1.33-1.40(m,4H),2.31(s,3H),2.62(s,3H),3.00-3.10(m,4H),7.23(s,1H),7.81(s,1H).参考例19

タンイミドチオエート

3-メトキシー2-ピラジンアミン(28.3g)のN,N-ジメチルホルムアミド(230mL)に室温で20N水酸化ナトリウム水溶液(11.3mL)を加えた。1時間攪拌後、二硫化炭素(20.4mL)を加え、さらに1時間攪拌した。室温で20N水酸化ナトリウム水溶液(11.3mL)を加え、1時間攪拌した。その後ヨウ化メチル(28.2mL)を加え1時間攪拌した。反応混合物に水を加え酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:5)にて精製し、標記化合物(19.1g)を黄色結晶として得た。

¹H NMR (400MHz, DMS0-d₆) δ 2. 58 (s, 6H), 3. 99 (s, 3H), 7. 83 (d, J = 2. 9 Hz, 1H). 7. 91 (d, J = 2. 9 Hz, 1H).

参考例20

エチル 8-メトキシー2-(メチルスルファニル)イミダゾ [1, 2-a] ピラジン-3-カルボキシレート

メチル N-(3-メトキシー2-ピラジニル)-(メチルスルファニル)メタンイミドチオエート(19.1g)のアセトニトリル(42mL)溶液にブロモ酢酸エチル(18.5mL)とiso-ジプロピルエチルアミン(29mL)を加え、100℃で14時間加熱攪拌した。反応混合物を室温まで冷やした後、水を加え、酢酸エチルで抽出し、水洗した後、無水硫酸マグネシウムで乾燥させ、減圧下濃縮した。得られた残渣をn-ヘキサンで洗浄し、標記化合物(10.7g)を淡黄色結晶として得た。

¹H NMR (400MHz, CDC1₃) δ 1. 47 (t, J=7. 1 Hz, 3H), 2. 74 (s, 3H), 4. 19 (s, 3H), 4. 46 (q, J=7. 1 Hz, 2H), 7. 55 (d, J=4. 6 Hz, 1H), 8. 72 (d, J=4. 6 Hz, 1H).

参考例21

エチル 8-2000-2-(メチルスルファニル) イミダゾ [1, 2-a] ピラジン-3-カルボキシレート

エチル 8-メトキシ-2-(メチルスルファニル)イミダゾ [1, 2-a] ピラジン-3-カルボキシレート(10.7g)にオキシ塩化リン(75mL)を加え、130℃で8時間加熱攪拌を行った。得られた反応混合物を室温まで 冷却し、氷上に注ぎ、残渣を濾取し、エタノールと水で洗浄し、減圧下乾燥し、標記化合物(7.6g)を淡黄色結晶として得た。

 1 H NMR(400MHz,CDCl₃) δ 1. 48(t, J = 7. 1 Hz,3H),2. 76(s,3H),4. 48(q,J = 7. 1 Hz,2H),7. 85(d,J = 4. 7 Hz,1H),9. 07(d,J = 4. 7 Hz,1H).参考例 2 2

エチル 8-クロロー2-(メチルスルファニル)イミダゾ [1, 2-a] ピラジン-3-カルボキシレート(2.0g)をテトラヒドロフラン(36mL)とエタノール(9mL)に溶解させ、2N水酸化ナトリウム水溶液(9mL)を加え、室温で攪拌させた。氷冷下、1N塩酸(19mL)を加え、減圧下溶媒を留去し、得られた粗8-クロロー2-(メチルスルファニル)イミダゾ [1, 2-a] ピラジン-3-カルボン酸を精製することなく次の反応に用いた。

得られた粗8-クロロ-2-(メチルスルファニル)イミダゾ [1, 2-a]ピラジン-3-カルボン酸をトルエン($71\,\mathrm{mL}$)に溶解し、 $t\,e\,r\,t-$ ブチルアルコール($14\,\mathrm{mL}$)とトリエチルアミン($1.1\,\mathrm{mL}$)、ジフェニルフォスフォリルアジド($1.7\,\mathrm{mL}$)を加え、 $100\,\mathrm{C}$ で4時間加熱した。反応終了後、減圧下濃縮し、水を加え酢酸エチルで抽出し、水洗した後、無水硫酸マグネシウムで乾燥させ、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル: $n-\mathrm{N}$ キサン=1:2)にて精製し、標記化合物($880\,\mathrm{mg}$)を淡赤色結晶として得た。

¹H NMR (400MHz, CDCl₃) δ 1.51 (br s, 9H), 2.69 (s, 3H), 6.25 (br s, 1H), 7.70 (d, J = 4.6 Hz, 1H), 7.77 (d, J = 4.6 Hz, 1H).

参考例 2 3

N-[8-000-2-(メチルスルファニル) イミダゾ [1, 2-a] ピラ

ジン-3-イル] - N-プロピルアミン

tertーブチル N-[8-2000-2-(メチルスルファニル) イミダゾ [1, 2-a] ピラジン-3-イル] カルバメートを用い、参考例 16, 17 と同様にして標記化合物を黄色油状物として得た。

 1 H NMR(400MHz,CDCl₃) δ 1.01(t,J=7.3 Hz,3H),1.59(ddq,J=7.1,7.1,7.3 Hz,2H),2.64(s,3H),3.05(ddd,J=7.1,7.1,7.1 Hz,2H),3.30(t,J=7.1 Hz,1H),7.62(d,J=4.6 Hz,1H),7.82(d,J=4.6 Hz,1H),

N-[8-DDDD-2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピラジン-3-1ル]-N, N-ジプロピルアミン

Nー [8-Dロロー 2-(メチルスルファニル)イミダゾ [1, 2-a] ピラジン -3- イル]-N, N-ジプロピルアミンを用い、参考例 18 と同様にして標記化合物を淡黄色結晶として得た。

¹H NMR (400MHz, CDC1₃) δ 0. 86 (t, J=7.5 Hz, 6H), 1. 36 (ddq, J=7.5, 7. 5, 7. 5 Hz, 4H), 2. 71 (s, 3H), 3. 08 (dd, J=7.5, 7. 5 Hz, 4H), 7. 62 (d, J=4.6 Hz, 1H), 7. 92 (d, J=4.6 Hz, 1H).

参考例25

6- -

4ーブロモー6ークロロー3ーピリダジンアミン(12g)と4ーメトキシー2ーメチルフェニルホウ酸(10.5g)をトルエン(240mL)エタノール(45mL)混合溶媒に溶解させ、テトラキストリフェニルホスフィンパラジウム錯体(6.7g)、2M炭酸ナトリウム水溶液(24mL)を加えて、100℃で12時間加熱攪拌を行った。反応終了後、減圧下溶媒を留去した。残渣を酢酸エチルで抽出し、水で洗浄後、無水硫酸マグネシウムで乾燥させ、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:nーヘキサン=1:4)にて精製し、標記化合物(7.89g)を褐色結晶として得た。

¹H NMR (400MHz, CDC1₃) δ 2. 18 (s, 3H), 3. 85 (s, 3H), 5. 43 (br s, 2H), 6. 82–6. 90 (m, 2H), 7. 08 (d, J = 8. 2 Hz, 1H), 7. 14 (s, 1H).

参考例26

4-(4-メトキシ-2-メチルフェニル)-3-ピリダジンアミン

6-クロロー4- (4-メトキシー2-メチルフェニル)-3-ピリダジンアミン(7.89g)のメタノール(100mL)溶液に10%Pd-C(含水品;7.89g)と、蟻酸アンモニウム(11.96g)を加え、1.5時間加熱還流した。反応混合物をセライトを用いて濾過し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:エタノール=10:1)にて精製し、標記化合物(6.16g)を白色結晶として得た。

¹H NMR (400MHz, CDCl₃) δ 2. 15 (s, 3H), 3. 83 (s, 3H), 4. 89 (br s, 2H), 6. 80-6. 90 (m, 2H), 7. 02 (d, J=4. 6 Hz, 1H), 7. 08 (d, J=8. 2 Hz, 1H), 8. 62 (d, J=4. 8 Hz, 1H).

参考例27

メチル N-[4-(4-メトキシ-2-メチルフェニル)-3-ピリダジニル]-(メチルスルファニル)メタンイミドチオエート

4-(4-)++>-2-メチルフェニル)-3-ピリダジンアミン(6. 16g)のN,N-ジメチルホルムアミド溶液(60mL)に室温で20N水酸化ナトリウム水溶液(1.43mL)を加えた。1時間攪拌後、二硫化炭素(3.45mL)を加え、さらに1時間攪拌した。また、室温で20N水酸化ナトリウム水溶液(1.43mL)を加えた。ヨウ化メチル(3.57mL)を加え1時間攪拌した。反応混合物に水を加え酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=2:1)にて精製し、標記化合物(1.25g)を褐色油状物として得た。

¹H NMR (400MHz, CDCl₃) δ 2. 15 (s, 3H), 2. 35 (s, 6H), 3. 83 (s, 3H), 6. 72-6. 84 (m, 2H), 7. 07 (d, J = 8. 2 Hz, 1H), 7. 32 (d, J = 4. 6 Hz, 1H), 8. 97

(d. J = 4.6 Hz, 1H).

参考例28

メチル N-[4-(4-)++>-2-)メチルフェニル)-3-ピリダジニル]-(メチルスルファニル)メタンイミドチオエート(1.25g)のアセトニトリル(10mL)溶液にブロモ酢酸エチル(0.87mL)とiPr₂EtN(1.36mL)を加え、100℃で14時間加熱攪拌した。反応混合物を室温まで冷却後、水を加え、酢酸エチルで抽出し、水洗した後、無水硫酸マグネシウムで乾燥させ、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:3)にて精製し、標記化合物(628mg)を赤褐色油状物として得た。

 1 H NMR(400MHz,CDC1₃) δ 1. 38(t,J=7.1 Hz,3H),2. 10(s,3H),2. 72(s,3H),3. 85(s,3H),4. 33(q,J=7.1 Hz,2H),6. 79-6. 95(m,2H),7. 13(d,J=8.8 Hz,1H),7. 39(d,J=4.7 Hz,1H),8. 53(br s,1H).参考例 2. 9

2-「(6-クロロー4ーピリミジニル)アミノ]-1-ブタノール

4,6-ジクロロピリミジン(5.0g)と2-アミノー1ーブタノール(6.5mL)を1,4-ジオキサン(26mL)中で1時間加熱還流した。反応混合物を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:10)にて精製し、標記化合物(5.6g)を淡橙色油状物として得た。

 1 H NMR(400MHz,CDCl₃) δ 0.98(t,J=7.2 Hz,3H),1.52-1.64(m,2H),2.58(br s,1H),3.66(dd,J=10.8,5.2 Hz,1H),3.77(dd,J=10.8,3.6 Hz,1H),3.85(br s,1H),5.42(br s,1H),6.40(s,1H),8.30(s,1H).参考例 3 0

2-(4-ピリミジニルアミノ)-1-ブタノール

2-[(6-クロロー4-ピリミジニル)アミノ]-1-ブタノールをエタ

ノール($110 \, \mathrm{mL}$)に溶解し、 $5 \, \mathrm{N}$ 水酸化ナトリウム水溶液($5.5 \, \mathrm{mL}$)を加え、 $\mathrm{Pd-C}$ (含水品; $0.55 \, \mathrm{g}$)を添加し、常温常圧の水素雰囲気下、水素添加を行った。反応終了後 $\mathrm{Pd-C}$ を濾去し、減圧下溶媒を留去した。得られた残渣をジクロロメタンーメタノールで抽出し、溶媒を留去することで標記化合物($4.3 \, \mathrm{g}$)を白色結晶として得た。

¹H NMR (400MHz, CDC1₃) δ 0. 99 (t, J = 7.6 Hz, 3H), 1. 52–1. 64 (m, 2H), 2. 46 (br s, 1H), 3. 66 (dd, J = 11.2, 6. 0 Hz, 1H), 3. 77 (dd, J = 11.2, 3. 6 Hz, 1H), 3. 88 (br s, 1H), 5. 16 (br s, 1H), 6. 38 (d, J = 6.0 Hz, 1H), 8. 11 (d, J = 6.0 Hz, 1H), 8. 51 (s, 1H).

参考例31

2-[(5-ブロモ-4-ピリミジニル)アミノ]-1-ブタノール

2-(4-llus) を酢酸(4-llus) を酢酸(4-llus) に溶解し、臭素(1.5mL)を常温で滴下した。そのままの温度で一日攪拌した後、5N 水酸化ナトリウム水溶液で中和し、酢酸エチルで抽出し、溶媒を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル: n-n+lus) にて精製し、標記化合物(4.4g)を白色結晶として得た。

¹H NMR (400MHz, CDCl₃) δ 1.01 (t, J = 7.6 Hz, 3H), 1.58–1.81 (m, 2H), 3.72 (dd, J = 10.8, 5.6 Hz, 1H), 3.82 (dd, J = 10.8, 3.6 Hz, 1H), 4.12–4.20 (m, 1H), 5.56 (br s, 1H), 8.30 (s, 1H), 8.45 (s, 1H).

参考例 3 2

8-ブロモ-2-エチル-2, 3-ジヒドロイミダゾ [1, 2-c] ピリミジン

2-[(5-ブロモー4ーピリミジニル)アミノ]-1-ブタノール(3.3g)をキシレン(27mL)に溶解し、チオニルクロライド(4.9mL)を加えて100℃で一日加熱攪拌した。析出した結晶を濾取し、1M炭酸ナトリウム水溶液に懸濁した。この混合物をジクロロメタンで抽出し、標記の粗生成物(3.0g)を橙色油状物として得た。この標記化合物は精製することなく次の反応に用いた。

¹H NMR (400MHz, CDC1₃) δ 0. 98 (t, J = 7.6 Hz, 3H), 1. 55–1. 67 (m, 1H), 1. 79–1. 91 (m, 1H), 3. 82 (dd, J = 11.2, 8. 0 Hz, 1H), 4. 21–4. 30 (m, 2H), 7. 62 (s, 1H), 7. 77 (s, 1H).

参考例33

8-ブロモー2-エチルイミダゾ[1, 2-c]ピリミジン

8-ブロモー2-エチルー2, 3-ジヒドロイミダゾ [1, 2-c] ピリミジン (3.0g) をトルエン (60mL) に溶解し、活性化された二酸化マンガン (3.5g) を加え 90 で一日加熱攪拌した。二酸化マンガンをセライトを用いて濾去し、溶媒を減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル: n-ヘキサン=1:10)にて精製し、標記化合物 (1.3g) を白色結晶として得た。

¹H NMR (400MHz, CDC1₃) δ 1. 36 (t, J = 7.6 Hz, 3H), 2. 84–2. 99 (m, 2H), 7. 49 (s, 1H), 8. 08 (s, 1H), 8. 89 (s, 1H).

参考例34

8 - ブロモー2 - エチルイミダゾ [1, 2 - c] ピリミジンー3 - カルバアルデヒド

8-プロモ-2-エチルイミダゾ [1, 2-c] ピリミジン(1.0g)を、オキシ塩化リン(1.2 mL)とN, N-ジメチルホルムアミド(4.4 mL)の混合物に室温で加えた。そのまま80℃で1日加熱攪拌し、室温まで冷却した後、氷上にゆっくりと注いだ。酢酸エチルで抽出し、水洗した後、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:5)にて精製し、標記化合物(0.5g)を白色結晶として得た。

¹H NMR (400MHz, CDCl₃) δ 1. 47 (t, J = 7.6 Hz, 3H), 3. 15 (q, J = 7.6 Hz, 2H), 8. 41 (s, 1H), 10. 11 (s, 1H), 10. 16 (s, 1H).

参考例35

1-(8-) ロモー2-エチルイミダゾ [1, 2-c] ピリミジンー3-イル) -1-ブタノール

8-プロモー2-エチルイミダゾ [1, 2-c] ピリミジンー3-カルバアルデヒドを参考例5と同様に反応させ標記化合物を白色結晶として得た。

¹H NMR (400MHz, CDCl₃) δ 0. 95 (t, J = 7.2 Hz, 3H), 1. 22–1. 36 (m, 1H), 1. 31 (t, J = 7.6 Hz, 3H), 1. 41–1. 54 (m, 1H), 1. 77–1. 87 (m, 1H), 2. 01–2. 11 (m, 1H), 2. 70–2. 82 (m, 2H), 5. 22 (t, J = 7.2 Hz, 1H), 8. 10 (s, 1H), 9. 38 (s, 1H).

参考例36

1-(8-) ロモー2- エチルイミダゾ [1, 2-c] ピリミジンー3- イル)-1- ブタノールを参考例5 と同様に反応させ標記化合物を無色油状物として得た。

¹H NMR (400MHz, CDCl₃) δ 0. 92 (t, J=7.2 Hz, 3H), 1. 15 (t, J=7.2 Hz, 3H), 1. 18–1. 30 (m, 1H), 1. 33 (t, J=7.6 Hz, 3H), 1. 38–1. 50 (m, 1H), 1. 71–1. 81 (m, 1H), 1. 99–2. 09 (m, 1H), 2. 73–2. 88 (m, 2H), 3. 22–3. 43 (m, 2H), 4. 73 (t, J=7.2 Hz, 1H), 8. 08 (s, 1H), 9. 28 (s, 1H).

実施例1

8-(2,4-ジクロロフェニル)-2-エチルイミダゾ <math>[1,2-a] ピラジン-3-カルボン酸メチルエステル

参考例1で合成した8-クロロー2-エチルイミダゾ [1, 2-a] ピラジンー3-カルボン酸メチルエステル(0.92g、3.9mmo1)をトルエン(32mL)とメタノール(8mL)の混合溶媒に溶解させ、2, 4-ジクロロベンゼンボロン酸(1.49g、7.8mmo1)とテトラキストリフェニルホスフィンパラジウム錯体(230mg、0.2mmo1)を加え、窒素雰囲気下2時間加熱還流した。反応混合物を放冷後、シリカゲル(カラムクロマトグラフィー(n-n+サン:酢酸エチル=3:1)にて精製し、標記化合物(1.03g)を淡黄色結晶として得た。

¹H NMR (400MHz, CDCl₃) δ 1.31 (t, J = 7.5 Hz, 3H), 3.14 (q, J = 7.5 Hz,

2H), 4. 03 (s, 3H), 7. 41 (dd, J = 2.0, 8. 2 Hz, 1H), 7. 57 (d, J = 2.0 Hz, 1H), 7. 61 (d, J = 8.2 Hz, 1H), 8. 20 (d, J = 4.6 Hz, 1H), 9. 23 (d, J = 4.6 Hz, 1H).

実施例2

tert tert N-[8-(2, 4-ジクロロフェニル) - 2-エチルイミダゾ「1, 2-a] ピラジン-3-イル カルバメート

8-(2,4-i)00007エニル)-2-iエチルイミダゾ [1,2-a]ピラジン-3-iカルボン酸メチルエステル(1.03g、2.9mmol)をエタノール(11mL)に溶解し、2N水酸化ナトリウム水溶液(3.7mL、7.3mmol)を加え、加熱還流下1時間撹拌した。反応終了後氷温まで冷却し2N塩酸(7.3mL)を加え、pHを5に調節した。得られた反応混合物を、酢酸エチルで抽出したのち、水洗し、有機層を無水硫酸マグネシウムにて乾燥させ、減圧下濃縮した。得られた8-(2,4-i)00007エニル)-2-iチルイミダゾ [1,2-a]ピラジン-3-iカルボン酸は精製することなく次の反応に用いた。

得られた8-(2,4-ジクロロフェニル)-2-エチルイミダゾ [1,2-a] ピラジン-3-カルボン酸を tert-ブチルアルコール (15mL) に溶解し、ジフェニルフォスフォリルアジド (0.69mL、3.2mmol) とトリエチルアミン (0.49mL、3.5mmol) を加え、加熱還流下2時間撹拌した。室温まで冷却後、反応混合物を減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:2)にて精製し、標記化合物 (0.85g) を白色非晶形として得た。

¹H NMR (400MHz, CDC1₃) δ 1. 29 (t, J = 7.5 Hz, 3H), 1. 54 (br s, 9H), 2. 81 (q, J = 7.5 Hz, 2H), 6. 20 (br s, 1H); 7. 39 (dd, J = 2.0, 8. 2 Hz, 1H), 7. 55 (d, J = 2.0 Hz, 1H), 7. 62 (d, J = 8.2 Hz, 1H), 7. 86 (d, J = 4.5 Hz, 1H), 8. 02 (d, J = 4.5 Hz, 1H).

実施例3

N-[8-(2, 4-ジクロロフェニル) - 2-エチルイミダゾ [1, 2-a]

ピラジン-3-イル]-*N*-プロピルアミン

tertーブチル N-[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ[1,2-a] ピラジン-3-イル]カルバメート(200mg、0.49mmol)を<math>N,N-ジメチルホルムアミド(1.6mL)に溶解し、氷冷下、水素化ナトリウム(65% in oil;27mg、0.74mmol)を加え、10分間撹拌した。ヨードプロパン(0.062mL、0.64mmol)を氷冷下加え、室温で1時間撹拌した。反応混合物を水に注ぎ酢酸エチルで抽出した。抽出した有機層を併せ、無水硫酸マグネシウムで乾燥させ、減圧下濃縮した。得られた<math>tert-ブチル N-[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ[1,2-a] ピラジン-3-イル]-N-プロピルカルバメートは精製せずに次の反応に供した。

¹H NMR (400MHz, CDC1₃) δ 1. 00–1. 07 (m, 3H), 1. 30 (t, J = 7. 5 Hz, 3H), 1. 56–1. 69 (m, 2H), 2. 81 (q, J = 7. 5 Hz, 2H), 2. 99–3. 08 (m, 2H), 7. 38 (dd, J = 2. 0, 8. 2 Hz, 1H), 7. 55 (d, J = 2. 0 Hz, 1H), 7. 63 (d, J = 8. 2 Hz, 1H), 7. 94 (d, J = 4. 5 Hz, 1H), 7. 97 (d, J = 4. 5 Hz, 1H).

実施例4

N- [8-(2,4-ジクロロフェニル)-2-エチルイミダゾ <math>[1,2-a] ピラジン-3-イル]-N,N-ジプロピルアミン 塩酸塩

N-[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ[1,2-a] ピラジン-3-イル]-<math>N-プロピルアミン(296 mg,0.85 mm

o1)とプロピオンアルデヒド(0.19mL,2.6mmo1)をテトラヒドロフラン(1.1mL)に溶解し、3M硫酸(0.87mL,2.6mmo1)を加え、水素化ホウ素ナトリウム(70mg)を氷冷下で加え、3時間撹拌した。反応混合物に水を加え、2N水酸化ナトリウム水溶液で中和し、酢酸エチルにて抽出した。有機層を無水硫酸マグネシウムにて乾燥させ、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:2)にて精製し、N-[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ[1,2-a]ピラジン-3-イル]-N,N-ジプロピルアミン(272mg)を淡黄色結晶として得た。得られたフリー体を、常法を用いて塩酸-エーテルにより塩酸塩とし、標記化合物(250mg)を白色結晶として得た。

 $^{1}\text{H NMR } (400\text{MHz}, \ \ \text{DMSO-d}_{6}) \quad \delta \quad 0. \ 79-0. \ 87 \quad (\text{m}, \ 6\text{H}) \ , \ 1. \ 21 \quad (\text{t}, \ \ \textit{J} = 7. \ 5 \ \text{Hz}, \ 3\text{H}) \ ,$ $1. \ 32-1. \ 44 \quad (\text{m}, \ 4\text{H}) \ , \ \ 2. \ 78 \quad (\text{q}, \ \ \textit{J} = 7. \ 5 \ \text{Hz}, \ 2\text{H}) \ , \ \ 3. \ 05-3. \ 13 \quad (\text{m}, \ 4\text{H}) \ , \ \ 7. \ 66 \quad (\text{dd}, \ \ \textit{J} = 2. \ 0, \ 8. \ 2 \ \text{Hz}, \ 1\text{H}) \ , \ \ 7. \ 88 \quad (\text{d}, \ \ \textit{J} = 2. \ 0 \ \text{Hz}, \ 1\text{H}) \ ,$ $8. \ 29 \quad (\text{d}, \ \ \textit{J} = 4. \ 2 \ \text{Hz}, \ 1\text{H}) \ , \ \ 8. \ 59 \quad (\text{d}, \ \ \textit{J} = 4. \ 2 \ \text{Hz}, \ 1\text{H}) \ .$

実施例5

6-クロロ-8-(2, 4-ジクロロフェニル)-2-エチルイミダゾ [1, 2-a] ピラジン-3-カルボン酸メチルエステル

5-クロロ-3-(2,4-ジクロロフェニル)-2-ピラジンアミン(1.1g、4.0 mm o 1) とメチル 2-クロロ-3-オキソペンタノエート(5.7 mL) を混合させ、<math>170 で 3 時間加熱撹拌した。放冷後、反応混合物をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=20:1) にて精製し、得られた残渣をヘキサンで洗浄し、標記化合物(0.56g)を淡黄色結晶として得た。

¹H NMR (400MHz, CDCl₃) δ 1. 30 (t, J=7.5 Hz, 3H), 3. 12 (q, J=7.5 Hz, 2H), 4. 04 (s, 3H), 7. 42 (dd, J=2.0, 8. 2 Hz, 1H), 7. 57 (d, J=2.0 Hz, 1H), 7. 61 (d, J=8.2 Hz, 1H), 9. 34 (s, 1H).

実施例6

tertーブチル Nー [6-クロロ-8-(2,4-ジクロロフェニル) - 2-エチルイミダゾ <math>[1,2-a] ピラジン-3-イル] カルバメート 6-クロロ-8-(2,4-ジクロロフェニル) - 2-エチルイミダゾ <math>[1,2-a] ピラジン-3-カルボン酸メチルエステルを用いて実施例 2 と同様に して標記化合物を黄色油状物として得た。

¹H NMR (400MHz, CDCl₃) δ 1. 29 (t, J=7.5 Hz, 3H), 1. 54 (br s, 9H), 2. 80 (q, J=7.5 Hz, 2H), 6. 17 (br s, 1H), 7. 40 (dd, J=2.0, 8. 2 Hz, 1H), 7. 55 (d, J=2.0 Hz, 1H), 7. 62 (d, J=8.2 Hz, 1H), 7. 93 (s, 1H).

実施例7

 $N-[6-9\pi\pi-8-(2, 4-ジ9\pi\pi]-N-\pi\pi] - 2-エチルイミダゾ [1. 2-a] ピラジン-3-イル] - N-プロピルアミン$

tertーブチル Nー [6-クロロ-8-(2,4-ジクロロフェニル) -2-エチルイミダゾ [1,2-a] ピラジン-3-イル] カルバメートを用いて実施例3と同様にして標記化合物を赤茶色油状物として得た。

¹H NMR (400MHz, CDC1₃) δ 1. 00–1. 07 (m, 3H), 1. 30 (t, J = 7. 5 Hz, 3H), 1. 56–1. 70 (m, 2H), 2. 80 (q, J = 7. 5 Hz, 2H), 2. 98–3. 08 (m, 2H), 7. 38 (dd, J = 2. 0, 8. 2 Hz, 1H), 7. 54 (d, J = 2. 0 Hz, 1H), 7. 62 (d, J = 8. 2 Hz, 1H), 8. 02 (s, 1H).

実施例8

 $N-[6-D \Box \Box - 8-(2, 4-ジ D \Box \Box \Box \Box \Box \Box \Box) - 2-エチルイミダゾ [1, 2-a] ピラジン-3-イル] - <math>N$, N-ジプロピルアミン

N- [6-クロロ-8-(2, 4-ジクロロフェニル) - 2 - エチルイミダゾ [1, 2-a] ピラジン-3-イル] - N-プロピルアミンを用いて実施例 3 と同様にして標記化合物を淡黄色結晶として得た。

¹H NMR (400MHz, CDCI₃) δ 0. 87–0. 94 (m, 6H), 1. 29 (t, J = 7. 5 Hz, 3H), 1. 37–1. 49 (m, 4H), 2. 78 (q, J = 7. 5 Hz, 2H), 3. 03–3. 11 (m, 4H), 7. 38 (dd, J = 2. 0, 8. 2 Hz, 1H), 7. 54 (d, J = 2. 0 Hz, 1H), 7. 65 (d, J = 8. 2 Hz, 1H), 8. 08 (s, 1H).

実施例9

8-(2,4-ジクロロフェニル)-2-エチル-6-メチルイミダゾ [1,2-a] ピラジン-3- \dot{D} ルボン酸メチルエステル

8-プロモー2-エチルー6-メチルイミダゾ[1, 2-a]ピラジンー3-カルボン酸メチルエステル(0.30g, 1.0mmol)をトルエン(5.6mL)とメタノール(1.4mL)の混合溶媒に溶解させ、2, 4-ジクロロベンゼンボロン酸(0.382g, 2.0mmol)と、テトラキストリフェニルホスフィンパラジウム錯体(116mg, 0.1mmol)を加え、窒素雰囲気下4時間加熱還流した。反応混合物を放冷後、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=5:1)にて精製し、標記化合物(391mg)を白色結晶として得た。

¹H NMR (400MHz, CDCl₃) δ 1. 29 (t, J = 7.5 Hz, 3H), 2. 65 (s, 3H), 3. 11 (q, J = 7.5 Hz, 2H), 4. 02 (s, 3H), 7. 41 (dd, J = 2.0, 8. 2 Hz, 1H), 7. 56 (d, J = 2.0 Hz, 1H), 7. 58 (d, J = 8.2 Hz, 1H), 9. 08 (s, 1H).

実施例1乃至4の製造方法に準じて以下の実施例10乃至12の化合物を合成した。

実施例10

tertーブチル Nー [8-(2, 4-ジクロロフェニル) - 2-エチルー <math>6-メチルイミダゾ [1, 2-a] ピラジン-3-イル] カルバメート 白色非晶形

 1 H NMR(400MHz,CDCl₃) δ 1. 28(t,J = 7. 5 Hz,3H),1. 55(br s,9H),2. 58(s,3H),2. 78(q,J = 7. 5 Hz,2H),6. 14(br s,1H),7. 38(dd,J = 2. 0,8. 2 Hz,1H),7. 54(d,J = 2. 0 Hz,1H),7. 58(d,J = 8. 2 Hz,1H),7. 67(s,1H). 实施例 1 1

N-[8-(2, 4-ジクロロフェニル) - 2-エチル-6-メチルイミダゾ [1, 2-a] ピラジン-3-イル] - <math>N-プロピルアミン

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 1.00-1.07 (m, 3H), 1.29 (t, J = 7.5 Hz, 3H),

1. 56-1. 69 (m, 2H), 2. 57 (s, 3H), 2. 78 (q, J=7. 5 Hz, 2H), 2. 98-3. 06 (m, 2H), 7. 37 (dd, J=2. 0, 8. 2 Hz, 1H), 7. 53 (d, J=2. 0 Hz, 1H), 7. 59 (d, J=8. 2 Hz, 1H), 7. 78 (s, 1H).

実施例12

N-[8-(2,4-ジクロロフェニル)-2-エチル-6-メチルイミダゾ [1,2-a] ピラジン-3-イル]-<math>N,N-ジプロピルアミン 塩酸塩 白色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 89-0. 96 (m, 6H), 1. 40-1. 55 (m, 7H), 2. 74 (s, 3H), 3. 03-3. 15 (m, 6H), 7. 52 (dd, J = 2. 0, 8. 2 Hz, 1H), 7. 60 (d, J = 8. 2 Hz, 1H), 7. 64 (d, J = 2. 0 Hz, 1H), 8. 04 (s, 1H).

実施例13

8 - (2, 4 - ジクロロフェニル) - 2 - メチル - 3 - ニトロイミダゾ [1, 2 - a] ピラジン

'H NMR (400MHz, CDC1₃) δ 2. 92 (s, 3H), 7. 47 (dd, J = 2. 0, 8. 2 Hz, 1H), 7. 55 (d, J = 8. 2 Hz, 1H), 7. 63 (d, J = 2. 0 Hz, 1H), 8. 48 (d, J = 4. 6 Hz, 1H), 9. 36 (d, J = 4. 6 Hz, 1H).

実施例14

8-(2, 4-ジクロロフェニル)-2-メチルイミダゾ <math>[1, 2-a] ピラジン-3-アミン

8-(2,4-ij)クロロフェニル)-2-iメチルー3-iニトロイミダゾ [1,2-a] ピラジン(25mg, 0.077mmol)をエタノール(0.36m L)に溶解させ、酢酸(0.5mL)と、鉄粉(22mg)を加え、加熱環流下1時間撹拌した。反応混合物を放冷後、減圧下溶媒を留去し、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムにて乾燥させ、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-n+1ン=4:1)にて精製し、8-(2,4-i)クロロフェニル)-2-iメチルイミダゾ [1,2-a] ピラジン-3-iアミン(2mg)を黄色結晶として得た。

¹H NMR (400MHz, CDC1₃) δ 2. 47 (s, 3H), 3. 23 (br s, 2H), 7. 39 (dd, J = 2. 0, 8. 2 Hz, 1H), 7. 55 (d, J = 2. 0 Hz, 1H), 7. 58 (d, J = 8. 2 Hz, 1H), 7. 39 (dd, J = 4. 4 Hz, 1H), 7. 96 (d, J = 4. 4 Hz, 1H).

実施例1乃至4の製造方法に準じて以下の実施例15乃至109の化合物を 合成した。

実施例15

N- [8-(2, 4-ジクロロフェニル) - 2-メチルイミダゾ <math>[1, 2-a] ピラジン-3-イル]-N, N-ジプロピルアミン 塩酸塩

黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 88-0. 95 (m, 6H), 1. 40-1. 53 (m, 4H), 2. 73 (s, 3H), 3. 10-3. 17 (m, 4H), 7. 51 (d, J = 8. 2 Hz, 1H), 7. 62 (d, J = 8. 2 Hz, 1H), 7. 65 (s, 1H), 8. 24 (br s, 1H), 8. 34 (br s, 1H).

実施例16

N-[8-(2, 4-ジクロロフェニル) - 2-メチルイミダゾ [1, 2-a] ピラジン-3-イル]-N-(1-エチルプロピル) アミン

橙色結晶

¹H NMR (400MHz, CDC1₃) δ 1. 02 (t, J = 7.2 Hz, 6H), 1. 44–1. 60 (m, 4H), 2. 45 (s, 3H), 2. 85 (br s, 1H), 2. 92–3. 00 (m, 1H), 7. 39 (dd, J = 2.0, 8. 4 Hz, 1H), 7. 56 (d, J = 2.0 Hz, 1H), 7. 61 (d, J = 8.4 Hz, 1H), 7. 94 (d, J = 4.8 Hz, 1H), 7. 97 (d, J = 4.8 Hz, 1H).

実施例17

N- (2-エチル-8-メシチルイミダゾ [1, 2-a] ピラジン-3-イル) -N, N-ジプロピルアミン 塩酸塩

黄色結晶

実施例18

N- [8-(2, 4-ジクロロフェニル) -2-エチルイミダゾ [1, 2-a] ピラジン-3-イル] -N- (1-エチルプロピル) アミン 塩酸塩

橙色結晶

¹H NMR (400MHz, DMSO-d₆) δ 0. 87-0. 97 (m, 6H), 1. 20 (t, J = 7. 5 Hz, 3H), 1. 44-1. 60 (m, 4H), 2. 82 (q, J = 7. 5 Hz, 2H), 3. 16-3. 28 (m, 1H), 7. 67 (dd, J = 2. 0, 8. 2 Hz, 1H), 7. 72 (d, J = 8. 2 Hz, 1H), 7. 90 (d, J = 2. 0 Hz, 1H), 8. 07 (d, J = 4. 9 Hz, 1H), 8. 57 (d, J = 4. 9 Hz, 1H).

実施例19

N-ブチルーN- [8 - (2, 4 - ジクロロフェニル) - 2 - エチルイミダゾ [1, 2 - a] ピラジン-3 - イル] - N-エチルアミン 塩酸塩 淡黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 87-0. 95 (m, 3H), 1. 09 (t, J=7.1 Hz, 3H), 1. 29-1. 50 (m, 4H), 1. 47 (t, J=7.7 Hz, 3H), 3. 09 (q, J=7.7 Hz, 2H), 3. 15-3. 22 (m, 2H), 3. 24 (q, J=7.1 Hz, 2H), 7. 53 (dd, J=2.0, 8. 2 Hz, 1H), 7. 65 (d, J=8.2 Hz, 1H), 7. 66 (d, J=2.0 Hz, 1H), 8. 38 (d, J=4.6 Hz, 1H).

実施例 2 0

N-(2-x+y-8-y+y-x+y-1) [1, 2-a] ピラジン-3-イル) -N-(1-x+y+y-1) アミン

白色結晶

'H NMR (400MHz, CDC1₃) δ 0. 98-1. 05 (m, 6H), 1. 25 (t, J = 7. 5 Hz, 3H), 1. 44-1. 61 (m, 4H), 2. 02 (s, 6H), 2. 32 (s, 3H), 2. 75 (q, J = 7. 5 Hz, 2H), 3. 07-3. 15 (m, 4H), 6. 94 (s, 2H), 7. 90 (d, J = 4. 4 Hz, 1H), 7. 94 (d, J = 4. 4 Hz, 1H).

実施例21

N- [8-(2, 4-ジメトキシフェニル) -2-エチルイミダゾ [1, 2-a] ピラジン-3-イル] -N, N-ジプロピルアミン 塩酸塩

黄色結晶

 1 H NMR (400MHz, DMSO-d₆) δ 0. 78-0. 88 (m, 6H), 1. 26 (t, J = 7. 5 Hz, 3H), 1. 33-1. 47 (m, 4H), 2. 82 (q, J = 7. 5 Hz, 2H), 3. 06-3. 15 (m, 4H), 3. 82 (s, 3H), 3. 89 (s, 3H), 6. 78 (dd, J = 2. 3, 8. 6 Hz, 1H), 6. 81 (d, J = 2. 3 Hz, 1H), 7. 70 (d, J = 8. 6 Hz, 1H), 8. 24 (br s, 1H), 8. 54 (br s, 1H).

実施例22

N- [8-(2, 4-ジメトキシー6-メチルフェニル) -2-エチルイミダ ゾ [1, 2-a] ピラジン-3-イル] -N, N-ジプロピルアミン 塩酸塩 白色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 85-0. 93 (m, 6H), 1. 25 (t, J = 7. 5 Hz, 3H), 1. 38-1. 49 (m, 4H), 2. 06 (s, 3H), 2. 76 (q, J = 7. 5 Hz, 2H), 3. 02-3. 11 (m, 4H), 3. 69 (s, 3H), 3. 84 (s, 3H), 6. 44 (d, J = 1. 8 Hz, 1H), 6. 45 (d, J = 1. 8 Hz, 1H), 7. 90 (d, J = 4. 6 Hz, 1H), 7. 98 (d, J = 4. 6 Hz, 1H).

実施例 2 3

N- [2-xチル-8-(2, 4, 6-hリメトキシフェニル)イミダゾ [1, 2-a] ピラジン-3-1ル]-N, N-ジプロピルアミン 塩酸塩 白色結晶

'H NMR (400MHz, DMSO-d₆) δ 0.80-0.88 (m, 6H), 1.22 (t, J=7.5 Hz, 3H), 1.35-1.47 (m, 4H), 2.80 (q, J=7.5 Hz, 2H), 3.07-3.16 (m, 4H), 3.68 (s, 6H), 3.89 (s, 3H), 6.44 (s, 2H), 8.30 (br s, 1H), 8.60 (br s, 1H). 実施例 2.4

N- [2-xチル-8-(4-xトキシ-2,6-ジメチルフェニル)イミダゾ [1,2-a] ピラジン-3-イル]-N,N-ジプロピルアミン 塩酸塩白色非晶質

 1 H NMR(400MHz,DMSO-d₆) δ 0.77-0.89(m, 6H),1.20(t, J=7.3 Hz,3H),1.32-1.47(m, 4H),1.97(s, 6H),2.77(q, J=7.3 Hz,2H),3.05-3.17(m, 4H),3.80(s, 3H),6.80(s, 2H),8.19(br s, 1H),8.56(br s, 1H). 実施例 2.5

N- [2-エチル-8-(4-メトキシ-2-メチルフェニル)イミダゾ <math>[1, 2-a] ピラジン-3-イル]-N, N-ジプロピルアミン 塩酸塩 淡黄色結晶

¹H NMR (400MHz, DMS0-d₆) δ 0. 80-0. 88 (m, 6H), 1. 23 (t, J=7.5 Hz, 3H), 1. 34-1. 47 (m, 4H), 2. 29 (s, 3H), 2. 80 (q, J=7.5 Hz, 2H), 3. 06-3. 14 (m, 4H), 3. 84 (s, 3H), 6. 98 (dd, J=2.6, 8. 4 Hz, 1H), 7. 01 (d, J=2.6 Hz, 1H), 7. 55 (d, J=8.4 Hz, 1H), 8. 20 (d, J=4.8 Hz, 1H).

実施例26

実施例27

¹H NMR (400MHz, CDC1₃) δ 0. 86-0. 94 (m, 6H), 1. 34 (t, J = 7. 5 Hz, 3H), 1. 38-1. 52 (m, 4H), 2. 87 (q, J = 7. 5 Hz, 2H), 3. 05-3. 13 (m, 4H), 3. 88 (s, 3H), 6. 98 (dd, J = 2. 6, 8. 6 Hz, 1H), 7. 10 (d, J = 2. 6 Hz, 1H), 7. 67 (d, J = 8. 6 Hz, 1H), 8. 02 (d, J = 4. 0 Hz, 1H), 8. 08 (d, J = 4. 0 Hz, 1H).

¹H NMR (400MHz, CDC1₃) δ 0.86-0.93 (m, 6H), 1.29 (t, J = 7.5 Hz, 3H),

1. 37-1.48 (m, 4H), 2. 76 (q, J=7.5 Hz, 2H), 3. 02-3.09 (m, 4H), 3. 82 (s, 3H), 7. 04 (d, J=2.0 Hz, 1H), 7. 07 (dd, J=2.0, 8.1 Hz, 1H), 7. 55 (d, J=8.1 Hz, 1H), 8. 02 (s, 1H).

実施例28

3-Dロロー4-[6-Dロロー3-(ジプロピルアミノ)-2-エチルイミダゾ [1, 2-a] ピラジン-8-イル] ベンゾニトリル

淡黄色結晶

以下、実施例1と同様またはこれに準じた製造法により合成した。

実施例29

N-[8-(2,6-i)] - N-i - N

黄色結晶

 1 H NMR (400MHz, DMSO-d₆) δ 0. 79-0. 88 (m, 6H), 1. 22 (t, J=7.5 Hz, 3H), 1. 34-1. 47 (m, 4H), 2. 42 (s, 3H), 2. 79 (q, J=7.5 Hz, 2H), 3. 06-3. 15 (m, 4H), 3. 66 (s, 6H), 6. 72 (s, 2H), 8. 31 (br·s, 1H), 8. 60 (br s, 1H).

実施例30

N-[8-(4-DDDDTLLN)-2-LFNTSダゾ[1, 2-a] ピラジン-3-TN]-N, <math>N-ジプロピルアミン

橙色結晶

¹H NMR (400MHz, CDCl₃) δ 0. 84-0. 92 (m, 6H), 1. 35-1. 46 (m, 4H), 1. 40 (t, J = 7.5 Hz, 3H), 2. 84 (q, J = 7.5 Hz, 2H), 3. 03-3. 11 (m, 4H), 7. 50 (d, J = 8.5 Hz, 2H), 7. 89 (d, J = 4.4 Hz, 1H), 7. 99 (d, J = 4.4 Hz, 1H), 8. 71 (d, J = 8.5 Hz, 2H).

実施例31

N-[2-x+y-8-(4-y+y-y-x-y)] イミダゾ [1, 2-a] ピ. ラジン-3-4y] -N. N-ジプロピルアミン

橙色結晶

 1 H NMR (400MHz, CDC1₃) δ 0.86-0.94 (m, 6H), 1.38-1.52 (m, 4H), 1.45 (t,

J = 7.5 Hz, 3H), 2. 94 (q, J = 7.5 Hz, 2H), 3. 09-3. 17 (m, 4H), 3. 94 (s, 3H), 7. 18 (d, J = 9.2 Hz, 2H), 8. 09 (s, 2H), 8. 96 (d, J = 9.2 Hz, 2H).

実施例32

N-[2-x+y-8-(2-y++y-4, 6-y+y+y-1] (2-y-2-y-1) イミダゾ [1, 2-a] ピラジン-3-4ル]-N, N-y+y+y-1

淡黄色結晶

¹H NMR (400MHz, CDCl₃) δ 0. 88-0. 97 (m, 6H), 1. 39 (t, J=7.5 Hz, 3H), 1. 43-1. 55 (m, 4H), 2. 16 (s, 3H), 2. 41 (s, 3H), 2. 99 (q, J=7.5 Hz, 2H), 3. 08-3. 17 (m, 4H), 3. 84 (s, 3H), 6. 78 (s, 1H), 6. 80 (s, 1H), 8. 20 (d, J=4.9 Hz, 1H), 8. 24 (d, J=4.9 Hz, 1H).

実施例33

N-シクロプロピルメチル-N- [2-xチル-8-(2-xトキシー4, 6-ジメチルフェニル)イミダゾ [1, 2-a] ピラジン-3-イル]-N-イソブチルアミン

淡黄色結晶

¹H NMR (400MHz, CDC1₃) δ -0. 10-0. 00 (m, 2H), 0. 27-0. 38 (m, 2H), 0. 75-0. 85 (m, 1H), 0. 92-0. 99 (m, 6H), 1. 25 (t, J=7.5 Hz, 3H), 1. 59-1. 72 (m, 1H), 2. 01 (s, 3H), 2. 36 (s, 3H), 2. 77 (q, J=7.5 Hz, 2H), 2. 79-3. 05 (m, 4H), 3. 69 (s, 3H), 6. 68 (s, 1H), 6. 73 (s, 1H), 7. 90 (d, J=4.6 Hz, 1H), 8. 08 (d, J=4.6 Hz, 1H).

実施例34

Nー $\begin{bmatrix} 2 - x + y - 6 - y + y - 8 - (2 - y + y - 4), 6 - y + y + y - 2 - 1, 2 - a \end{bmatrix}$ ピラジン- 3 - 4ル $\end{bmatrix} - N$, N-ジプロピルアミン

淡黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 86-0. 93 (m, 6H), 1. 23 (t, J = 7. 5 Hz, 3H), 1. 36-1. 50 (m, 4H), 2. 07 (s, 3H), 2. 36 (s, 3H), 2. 73 (q, J = 7. 5 Hz, 2H), 3. 01-3. 08 (m, 4H), 3. 70 (s, 3H), 3. 94 (s, 3H), 6. 69 (s, 1H), 6. 74 (s, 1H),

7.55 (s. 1H).

実施例35

N-[8-(2,6-i)] - 3-i - 2-i - 3-i - 3

無色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 89 (t, J = 7.4 Hz, 6H), 1. 31 (t, J = 7.6 Hz, 3H), 1. 37–1. 47 (m, 4H), 2. 78 (q, J = 7.6 Hz, 2H), 3. 03–3. 09 (m, 4H), 3. 99 (s, 3H), 3. 99 (s, 3H), 6. 47 (d, J = 8.2 Hz, 1H), 7. 90 (d, J = 4.4 Hz, 1H), 7. 96 (d, J = 4.4 Hz, 1H), 8. 09 (d, J = 8.2 Hz, 1H).

実施例36

無色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 90 (t, J = 7.4 Hz, 6H), 1. 32 (t, J = 7.5 Hz, 3H), 1. 48–1. 58 (m, 4H), 2. 53 (s, 3H), 2. 79 (q, J = 7.5 Hz, 2H), 3. 05–3. 11 (m, 4H), 3. 99 (s, 3H), 6. 69 (d, J = 8.5 Hz, 1H), 7. 89 (d, J = 4.6 Hz, 1H), 7. 97 (d, J = 8.5 Hz, 1H), 7. 99 (d, J = 4.6 Hz, 1H).

実施例37

N3, N3-ジプロピル-8-[6-(ジメチルアミノ)-4-メチル-3-ピリジル] <math>-2-エチルイミダゾ [1, 2-a] ピラジン-3-アミン

無色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 89 (t, J = 7.4 Hz, 6H), 1. 31 (t, J = 7.5 Hz, 3H), 1. 38–1. 48 (m, 4H), 2. 40 (s, 3H), 2. 77 (q, J = 7.5 Hz, 2H), 3. 04–3. 09 (m, 4H), 3. 14 (s, 6H), 6. 44 (s, 1H), 7. 85 (d, J = 4.6 Hz, 1H), 7. 93 (d, J = 4.6 Hz, 1H), 8. 65 (s, 1H).

実施例38

無色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 91 (t, J = 7.4 Hz, 6H), 1. 26 (t, J = 7.6 Hz, 3H), 1. 38–1. 48 (m, 4H), 2. 07 (s, 3H), 2. 28 (s, 3H), 2. 55 (s, 3H), 2. 77 (q, J = 7.6 Hz, 2H), 3. 06–3. 11 (m, 4H), 6. 96 (s, 1H), 7. 91 (d, J = 4.4 Hz, 1H), 8. 04 (d, J = 4.4 Hz, 1H).

実施例39

N-[2-x+y-8-(3-x+y-2-y+y+y-1)] - N, N-ジプロピルアミン

無色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 89 (t, J=7.4 Hz, 6H), 1. 29 (t, J=7.6 Hz, 3H), 1. 37–1. 47 (m, 4H), 2. 35 (s, 3H), 2. 80 (q, J=7.6 Hz, 2H), 3. 06–3. 10 (m, 4H), 7. 30 (dd, J=7.8, 4. 6 Hz, 1H), 7. 64–7. 68 (m, 1H), 7. 93 (d, J=4.4 Hz, 1H), 8. 06 (d, J=4.4 Hz, 1H), 8. 58–8. 62 (m, 1H).

実施例40

N- [2-エチル-8-(6-メトキシ-2, 4-ジメチル-3-ピリジル) イミダゾ [1, 2-a] ピラジン-3-イル]-N, N-ジプロピルアミン 無色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 91 (t, J = 7.4 Hz, 6H), 1. 26 (t, J = 7.5 Hz, 3H), 1. 38–1. 48 (m, 4H), 2. 05 (s, 3H), 2. 22 (s, 3H), 2. 78 (q, J = 7.5 Hz, 2H), 3. 06–3. 11 (m, 4H), 3. 95 (s, 3H), 6. 52 (s, 1H), 7. 90 (d, J = 4.6 Hz, 1H), 8. 03 (d, J = 4.6 Hz, 1H).

実施例41

無色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 90 (t, J = 7.3 Hz, 6H), 1. 31 (t, J = 7.5 Hz, 3H), 1. 38–1. 48 (m, 4H), 2. 27 (s, 3H), 2. 79 (q, J = 7.5 Hz, 2H), 3. 04–3. 10

(m, 4H), 5. 97 (s, 2H), 6. 79 (s, 1H), 7. 16 (s, 1H), 7. 86 (d, J = 4.4 Hz, 1H), 7. 98 (d, J = 4.4 Hz, 1H).

実施例42

N- [2-エチル-8-(4-メトキシ-2, 5-ジメチルフェニル) イミダゾ [1, 2-a] ピラジン-3-イル] -N, N-ジプロピルアミン

無色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 89 (t, J = 7.4 Hz, 6H), 1. 31 (t, J = 7.5 Hz, 3H), 1. 37–1. 48 (m, 4H), 2. 21 (s, 3H), 2. 33 (s, 3H), 2. 78 (q, J = 7.5 Hz, 2H), 3. 04–3. 10 (m, 4H), 3. 87 (s, 3H), 6. 76 (s, 1H), 7. 41 (s, 1H), 7. 86 (d, J = 4.6 Hz, 1H), 7. 97 (d, J = 4.6 Hz, 1H).

実施例43

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 89 (t, J=7.2 Hz, 3H), 0. 94 (d, J=6.8 Hz, 6H), 1. 30 (t, J=7.6 Hz, 3H), 1. 38 - 1. 48 (m, 2H), 1. 55 - 1. 68 (m, 1H), 2. 80 (q, J=7.2 Hz, 2H), 2. 94 (d, J=6.8 Hz, 2H), 3. 04 (t, J=7.6 Hz, 2H), 7. 40 (d, J=8.0 Hz, 1H), 7. 56 (s, 1H), 7. 66 (d, J=8.0 Hz, 1H), 7. 94 (d, J=4.4 Hz, 1H), 8. 07 (d, J=4.4 Hz, 1H).

MS (ESI) m/z 405 MH^{\dagger}

実施例44

NーシクロプロピルメチルーNー $\begin{bmatrix} 8 - (2, 4 - i) / 2 - i / 2 - i / 3 - i / 4 - i / 2 / 4 - i / 3 - i / 4 - i /$

¹H NMR (400MHz, CDC1₃) δ 0.00 (br s, 2H), 0.36 (d, J = 8.4 Hz, 2H), 0.76 - 0.92 (m, 1H), 0.91 (t, J = 7.6 Hz, 3H), 1.30 (t, J = 7.6 Hz, 3H), 1.43–1.48 (m, 2H), 2.80 (q, J = 8.0 Hz, 2H), 2.96 (d, J = 6.8 Hz, 2H), 3.16 (t, J = 7.2 Hz, 2H), 7.39 (d, J = 8.4 Hz, 1H), 7.55 (s, 1H), 7.67 (d, J = 8.4

Hz, 1H), 7.93 (d, J = 4.8 Hz, 1H), 8.13 (d, J = 4.4 Hz, 1H). MS (ESI) m/z 403 MH⁺

実施例45

¹H NMR (400MHz, CDC1₃) δ 0. 91 (t, J=7.6 Hz, 3H), 1. 30 (t, J=7.6 Hz, 3H), 1. 40–1. 50 (m, 2H), 1. 72 – 1. 78 (m, 1H), 1. 80 – 1. 86 (m, 1H), 2. 81 (q, J=7.6 Hz, 2H), 3. 09 (dd, J=7.6, 7. 6 Hz, 2H), 3. 30 (t, J=7.2 Hz, 2H), 4. 45 (t, J=6.0 Hz, 1H), 4. 57 (t, J=5.6 Hz, 1H), 7. 39 (d, J=8.0 Hz, 1H), 7. 56 (s, 1H), 7. 66 (d, J=8.0 Hz, 1H), 7. 95 (d, J=4.8 Hz, 1H), 8. 05 (d, J=4.4 Hz, 1H).

MS (ESI) m/z 409 MH⁺

実施例46

¹H NMR (400MHz, CDC1₃) δ 0.00 (br s, 2H), 0.37 (br d, J=6.8 Hz, 2H), 0.74 - 0.88 (m, 1H), 0.97 (d, J=6.4 Hz, 6H), 1.32 (t, J=7.6 Hz, 3H), 1.60 - 1.72 (m, 1H), 2.83 (q, J=7.6 Hz, 2H), 2.95 (d, J=7.2 Hz, 2H), 3.02 (d, J=6.8 Hz, 2H), 7.41 (d, J=8.4 Hz, 1H), 7.57 (s, 1H), 7.68 (d, J=8.0 Hz, 1H), 7.95 (d, J=4.4 Hz, 1H), 8.17 (d, J=4.4 Hz, 1H).

MS (ESI) m/z 417 MH^{\dagger}

実施例47

N- [8-(2, 4-ジクロロフェニル) - 2-エチルイミダゾ <math>[1, 2-a] ピラジン-3-イル]-N, N-ジイソブチルアミン 塩酸塩

白色結晶

¹H NMR (400MHz, CDCl₃) δ 0.95 (d, J = 6.8 Hz, 12H), 1.29 (t, J = 7.2 Hz,

3H), 1. 56-1. 64 (m, 2H), 2. 80 (q, J = 7.6 Hz, 2H), 2. 89 (d, J = 6.4 Hz, 4H), 7. 38 (dd, J = 8.0, 2. 0 Hz, 1H), 7. 54 (d, J = 2.0 Hz, 1H), 7. 65 (d, J = 8.4 Hz, 1H), 7. 93 (d, J = 4.8 Hz, 1H), 8. 07 (d, J = 4.4 Hz, 1H).

MS (ESI) m/z 419 MH⁺

実施例48

N-[8-(2, 4-ジクロロフェニル) - 2-エチルイミダゾ [1, 2-a] ピラジン-3-イル] -N-イソブチルアミン

MS (FAB) m/z 363 MH^{\dagger}

実施例49

N-[8-(2,4-i)0117x1] - 2-x チルイミダゾ[1,2-a]ピラジン-3-4ル] -N-xチル-N-4ソブチルアミン

MS (FAB) m/z 391 MH⁺

実施例50

NーブチルーNー [8-(2, 4-ジクロロフェニル) -2ーエチルイミダゾ [1, 2-a] ピラジン-3ーイル]-Nーイソブチルアミン MS (FAB) m/z 419 MH^+

実施例51

NーベンジルーNー [8-(2, 4-ジクロロフェニル) - 2-エチルイミダ ゾ <math>[1, 2-a] ピラジンー3-イル] -Nーイソブチルアミン

+++++ = 0

MS (FAB) m/z 453 MH^+

実施例52

N-[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ <math>[1,2-a] ピラジン-3- イル]-N- イソブチル-N- (2- チエニルメチル) アミン MS (FAB) m/z 459 MH $^+$

実施例 5 3

N-[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ [1,2-a]ピラジン-3-イル] $-N-(2-フリルメチル)-N-イソブチルアミン MS (FAB) m/z 443 MH<math>^{\dagger}$

実施例54

N-[8-(2, 4-ジクロロフェニル) - 2-エチルイミダゾ [1, 2-a] ピラジン-3-イル] -N-イソブチル-N-イソペンチルアミン

MS (FAB) m/z 433 MH^+

実施例55

N-[8-(2, 4-ジクロロフェニル)-2-エチルイミダゾ [1, 2-a] ピラジン-3-イル] -N-イソブチル-N-[3-(メチルスルファニル) プロピル] アミン

MS (FAB) m/z 451 MH^+

実施例56

N-[8-(2, 4-ジクロロフェニル) - 2-エチルイミダゾ [1, 2-a] ピラジン-3-イル] -N-イソブチル-N-ペンチルアミン

MS (FAB) m/z 433 MH^{\dagger}

実施例57

実施例58

MS (FAB) m/z 367 MH^{\dagger}

実施例59

N-[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ [1,2-a]ピラジン-3-イル] $-N-エチル-N-(3-フルオロプロピル) アミン MS (FAB) m/z 395 <math>MH^{\frac{1}{2}}$

実施例60

N-ブチル-N- [8-(2, 4-ジクロロフェニル)-2-エチルイミダゾ [1, 2-a] ピラジン-3-イル]-N-(3-フルオロプロピル)アミン

MS (FAB) m/z 423 MH^+

実施例61

NーベンジルーNー [8-(2,4-ジクロロフェニル)-2-エチルイミダゾ <math>[1,2-a] ピラジン-3-イル]-Nー (3-フルオロプロピル) アミン

MS (FAB) m/z 457 MH^+

実施例62

N-[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ [1,2-a]ピラジン-3-イル]-N-(3-フルオロプロピル)-N-(2-チエニルメチル)アミン

MS (FAB) m/z 463 MH^{+}

実施例 6 3

N-[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ <math>[1,2-a] ピラジン-3-イル] -N-(3-フルオロプロピル)-N-(2-フリルメチル) アミン

MS (FAB) m/z 447 MH^{+}

実施例 6 4

N-[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ <math>[1,2-a] ピラジン-3-イル]-N-(3-フルオロプロピル)-N-イソペンチルアミン

MS (FAB) m/z 437 MH^{\dagger}

実施例 6 5

N-[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ [1,2-a] ピラジン-3-イル] -N-(3-フルオロプロピル)-N-[3-(メチルスルファニル)プロピル] アミン

MS (FAB) m/z 455 MH^{+}

実施例66

N-[8-(2, 4-ジクロロフェニル) -2-エチルイミダゾ <math>[1, 2-a]

ピラジンー 3 ーイル] -Nー(3 ーフルオロプロピル)-Nーペンチルアミン MS (FAB) m/z 437 MH⁺

実施例 6 7

MS (FAB) m/z 463 MH^{\dagger}

実施例68

MS (FAB) m/z 477 MH^{\dagger}

実施例69

N-シクロプロピルメチル-N-[8-(2, 4-ジクロロフェニル)-2-エチルイミダゾ[1, 2-a]ピラジン-3-イル]-N-(3-フルオロプロピル) アミン

MS (FAB) m/z 421 MH^{\dagger}

実施例70

N-[8-(2,4-9)/0007x=N)-2-x+1/25 [1,2-a] [1,2-a] [2-3)/25

MS (FAB) m/z 423 MH^{\dagger}

実施例71

MS (FAB) m/z 473 MH^{\dagger}

実施例72

N-[8-(2, 4-ジクロロフェニル) - 2-エチルイミダゾ <math>[1, 2-a] ピラジン-3-イル] -N-イソペンチルアミン

MS (FAB) m/z 377 MH^+

実施例73

N-[8-(2, 4-ジクロロフェニル) - 2-エチルイミダゾ <math>[1, 2-a] ピラジン-3-イル] -N-エチル-N-イソペンチルアミン

MS (FAB) m/z 405 MH^+

実施例74

N-ブチルーN- [8- (2, 4-ジクロロフェニル) -2-エチルイミダゾ [1, 2-a] ピラジン-3-イル] -N-イソペンチルアミン MS (FAB) m/z 433 MH^+

実施例75

N-[8-(2, 4-i)DDDDTx=N)-2-x+N+i = N-(2-a) ピラジン-3-4ル] -N-4ソペンチル-N-(2-x+1) アミン

MS (FAB) m/z 473 MH^+

実施例76

N-[8-(2, 4-ジクロロフェニル) - 2-エチルイミダゾ [1, 2-a] ピラジン-3-イル] -N, N-ジイソペンチルアミン

MS (FAB) m/z 447 MH^+

実施例77

N-[8-(2, 4-ij) - 2-ij] - 2-ij [1, 2-a] ピラジン-3-ij [1, 2-a] プロピル] アミン

MS (FAB) m/z 465 MH^{\dagger}

実施例78

MS (FAB) m/z 447 MH^+

実施例79

MS (FAB) m/z 487 MH^+

実施例80

N-シクロプロピルメチル-N-[8-(2, 4-ジクロロフェニル)-2-エチルイミダゾ[1, 2-a]ピラジン-3-イル]-N-イソペンチルアミン

MS (FAB) m/z 432 MH^+

実施例81

N-[8-(2, 4-ジクロロフェニル) - 2-エチルイミダゾ [1, 2-a] ピラジン-3-イル] -N-イソペンチル-N-プロピルアミン

MS (FAB) m/z 419 MH^{\dagger}

実施例82

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 89 (t, J=7.2 Hz, 6H), 1. 29 (t, J=7.6 Hz, 3H), 1. 47–1. 38 (m, 4H), 2. 78 (q, J=7.6 Hz, 2H), 3. 06 (dd, J=7.2, 8. 8 Hz, 4H), 3. 02 (s, 3H), 7. 05 (d, J=2.0 Hz, 1H), 7. 08 (dd, J=2.0, 8. 4 Hz, 1H), 7. 59 (d, J=8.0 Hz, 1H), 7. 90 (d, J=4.4 Hz, 1H), 7. 99 (d, J=4.8

実施例83

橙色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 90 (t, J=7.2 Hz, 6H), 1. 29 (t, J=7.2 Hz, 3H), 1. 47–1. 38 (m, 4H), 2. 80 (q, J=8.0 Hz, 2H), 3. 06 (dd, J=7.6, 7. 6 Hz, 4H), 7. 53 (ddd, J=0.4, 2. 0, 8. 4 Hz, 1H), 7. 59 (d, J=8.0 Hz, 1H), 7. 71 (d, J=1.6 Hz, 1H), 7. 93 (dd, J=0.4, 4. 8 Hz, 1H), 8. 05 (dd, J=0.4, 4. 8 Hz, 1H).

実施例84

N-[8-(2, 4-i)] ロモフェニル)-2-x チルイミダゾ [1, 2-a] ピラジン-3-4ル]-N, N-i プロピルアミン

橙色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 90 (t, J=7.6 Hz, 6H), 1. 29 (t, J=7.2 Hz, 3H), 1. 46–1. 38 (m, 2H), 2. 79 (q, J=7.2 Hz, 2H), 3. 08 (dd, J=7.2, 7. 2 Hz, 4H), 7. 57 (s, 1H), 7. 57 (dd, J=0.8, 2. 0 Hz, 1H), 7. 89 (d, J=1.6 Hz, 1H), 7. 92 (d, J=4.4 Hz, 1H), 8. 05 (dd, J=0.4, 4. 4 Hz, 1H).

実施例85

黄色結晶

¹H NMR (400MHz, CDCl₃) δ 0. 89 (t, J=7.6 Hz, 6H), 1. 32 (t, J=7.2 Hz, 3H), 1. 45–1. 38 (m, 4H), 2. 81 (q, J=7.6 Hz, 2H), 3. 07 (dd, J=7.6, 7. 6 Hz, 4H), 7. 43 (dd, J=2.0, 10. 0 Hz, 1H), 7. 45 (ddd, J=0.4, 1. 6, 7. 6 Hz, 1H), 7. 86 (dd, J=7.2, 8. 0 Hz, 1H), 7. 93 (d, J=4.4 Hz, 1H), 8. 04 (d, J=4.8 Hz, 1H).

実施例86

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 90 (t, J=7.2 Hz, 6H), 1. 30 (t, J=7.6 Hz, 3H), 1. 46–1. 40 (m, 2H), 2. 80 (q, J=7.6 Hz, 2H), 3. 07 (t, J=7.6 Hz, 4H),

6. 98 (dd, J = 2. 8, 8. 8 Hz, 1H), 7. 27 (d, J = 2. 8 Hz, 1H), 7. 63 (d, J = 8. 4 Hz, 1H), 7. 91 (d, J = 4. 4 Hz, 1H), 8. 01 (d, J = 4. 4 Hz, 1H).

実施例87

N- (sec-ブチル) -N- [8-(2, 4-ジクロロフェニル) -2-エチルイミダゾ [1, 2-a] ピラジン-3-イル] -N-プロピルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 84 (t, J=7.6 Hz, 3H), 0. 95 (t, J=7.6 Hz, 3H), 1. 08 (d, J=6.0 Hz, 3H), 1. 30 (t, J=7.6 Hz, 3H), 1. 30–1. 44 (m, 2H), 1. 74–1. 62 (m, 2H), 2. 79 (q, J=7.2 Hz, 2H), 3. 18–3. 04 (m, 3H), 7. 38 (dd, J=2.0, 8. 4 Hz, 1H), 7. 55 (d, J=2.0 Hz, 1H), 7. 67 (d, J=8.4 Hz, 1H), 7. 91 (d, J=4.4 Hz, 1H), 8. 04 (d, J=4.4 Hz, 1H).

実施例88

N- (sec-ブチル) -N-シクロプロピルメチル-N- [8- (2, 4-ジクロロフェニル) -2-エチルイミダゾ [1, 2-a] ピラジン-3-イル] アミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0.02-0.0 (m, 2H), 0.25-0.29 (m, 2H), 0.70-0.60 (m, 1H), 0.95 (t, J=7.2 Hz, 3H), 1.06 (m, 3H), 1.31 (t, J=7.6 Hz, 3H), 1.67 (m, 2H), 2.79 (q, J=7.6 Hz, 2H), 3.04-2.94 (m, 2H), 3.20 (br s, 1H), 7.39 (dd, J=2.0, 8.4 Hz, 1H), 7.55 (d, J=2.0 Hz, 1H), 7.68 (d, J=8.4 Hz, 1H), 7.92 (d, J=4.4 Hz, 1H), 8.14 (d, J=4.8 Hz, 1H).

実施例89

NーブチルーNー($s\ e\ c$ ーブチル)-Nー $[8\ -$ ($2\ ,\ 4\ -$ ジクロロフェニル) $-2\ -$ エチルイミダゾ $[1\ ,\ 2\ -\ a]$ ピラジンー $3\ -$ イル] アミン

黄色油状物

'H NMR (400MHz, CDC1₃) δ 0. 84 (t, J=6. 8 Hz, 3H), 0. 95 (t, J=7. 2 Hz, 3H), 1. 02–1. 12 (m, 3H), 1. 31 (t, J=7. 6 Hz, 3H), 1. 20–1. 46 (m, 4H), 1. 64–1. 78 (m, 2H), 2. 80 (q, J=7. 6 Hz, 2H), 3. 02–3. 20 (m, 3H), 7. 39 (dd,

J = 2.0, 8. 4 Hz, 1H), 7. 55 (d, J = 2.0 Hz, 1H), 7. 69 (d, J = 8.0 Hz, 1H), 7. 92 (d, J = 4.4 Hz, 1H), 8. 04 (d, J = 4.4 Hz, 1H).

実施例90

N- (sec-ブチル) -N- [8-(2, 4-ジクロロフェニル) -2-エチルイミダゾ [1, 2-a] ピラジン-3-イル] -N-イソブチルアミン 黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 92-0. 80 (m, 6H), 1. 01 (t, J=7.2 Hz, 3H), 1. 09 (dd, J=6.8, 9. 8 Hz, 3H), 1. 31 (t, J=7.6 Hz, 3H), 1. 30-1. 46 (m, 2H), 1. 62-1. 82 (m, 2H), 2. 78-2. 90 (m, 3H), 2. 92-3. 12 (m, 2H), 7. 39 (dd, J=2.0, 8. 4 Hz, 1H), 7. 55 (d, J=2.0 Hz, 1H), 7. 69 (d, J=8.0 Hz, 1H), 7. 92 (d, J=4.4 Hz, 1H), 8. 06 (d, J=4.8 Hz, 1H).

実施例91

N-シクロプロピルメチル-N-[8-(2, 4-ジクロロフェニル)-2-エチルイミダゾ[1, 2-a]ピラジン-3-イル]-N-テトラヒドロ-3-チオフェニルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 23-0. 10 (m, 1H), 0. 00-0. 12 (m, 1H), 0. 18-0. 32 (m, 1H), 0. 28-0. 40 (m, 1H), 0. 67-0. 73 (m, 1H), 1. 34 (t, J = 7.6 Hz, 3H), 1. 90-2. 02 (m, 1H), 2. 00-2. 24 (m, 1H), 2. 46-2. 55 (m, 1H), 2. 56-2. 72 (m, 1H), 2. 81 (q, J = 7.6 Hz, 2H), 2. 86-3. 12 (m, 4H), 4. 00-4. 10 (m, 1H), 7. 41 (dd, J = 2.0, 8. 4 Hz, 1H), 7. 56 (d, J = 2.0 Hz, 1H), 7. 68 (d, J = 8.0 Hz, 1H), 7. 98 (d, J = 4.4 Hz, 1H), 8. 22-8. 14 (m, 1H).

実施例92

N-[8-(2,4-i)] N-(2-a) N-(2-a)

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0.88 (t, J = 7.2 Hz, 3H), 1.28-1.40 (m, 2H),

1. 36 (t, J = 7.6 Hz, 3H), 1. 90-2. 20 (m, 2H), 2. 50-3. 02 (m, 6H), 3. 01-3. 21 (m, 2H), 3. 96-4. 03 (m, 1H), 7. 42 (dd, J = 2.0, 8. 4 Hz, 1H), 7. 58 (d, J = 2.0 Hz, 1H), 7. 67 (d, J = 8.4 Hz, 1H), 8. 01-8. 06 (m, 1H), 8. 15 (d, J = 4.4 Hz, 1H).

実施例93

N-[8-(2, 6-i)] + N-[8

黄色結晶

¹H NMR (400MHz, CDCl₃) δ 0. 94 (d, J = 6.8 Hz, 12H), 1. 25 (t, J = 7.6 Hz, 3H), 1. 58–1. 65 (m, 2H), 2. 40 (s, 3H), 2. 79 (q, J = 7.6 Hz, 2H), 2. 87 (d, J = 6.8 Hz, 4H), 3. 70 (s, 6H), 6. 50 (s, 2H), 7. 92 (d, J = 4.8 Hz, 1H), 8. 03 (d, J = 4.4 Hz, 1H).

実施例94

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 95 (d, J=6.4 Hz, 12H), 1. 31 (t, J=7.6 Hz, 3H), 1. 56–1. 65 (m, 2H), 2. 82 (q, J=7.2 Hz, 2H), 2. 90 (d, J=7.2 Hz, 4H), 3. 86 (s, 3H), 6. 94 (dd, J=3.0, 8. 4 Hz, 1H), 7. 80 (d, J=2.4 Hz, 1H), 7. 67 (d, J=8.8 Hz, 1H), 7. 93 (d, J=4.4 Hz, 1H), 8. 08 (d, J=4.4 Hz, 1H).

実施例95

N- [2-エチル-8-(2-メトキシ-4, 6-ジメチルフェニル) イミダゾ [1, 2-a] ピラジン-3-イル] -N, N-ジイソブチルアミン

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 95 (d, J = 6.4 Hz, 12H), 1. 26 (t, J = 7.6 Hz, 3H), 1. 56–1. 68 (m, 2H), 2. 03 (s, 3H), 2. 36 (s, 3H), 2. 79 (q, J = 7.6 Hz, 2H), 2. 89 (d, J = 6.8 Hz, 4H), 3. 70 (s, 3H), 6. 68 (s, 1H), 6. 74 (s, 1H),

7. 92 (d, J = 4.4 Hz, 1H), 8. 06 (d, J = 4.4 Hz, 1H).

実施例96

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 95 (d, J = 7.6 Hz, 12H), 1. 25 (t, J = 7.6 Hz, 3H), 1. 58–1. 65 (m, 2H), 2. 03 (s, 6H), 2. 32 (s, 3H), 2. 79 (q, J = 7.2 Hz, 2H), 2. 90 (d, J = 6.8 Hz, 4H), 6. 94 (s, 2H), 7. 91 (d, J = 4.8 Hz, 1H), 8. 07 (d, J = 4.4 Hz, 1H).

実施例97

NーブチルーNー $[8-(2-D_{10}-4-4-4)++シフェニル) -2-エチル イミダゾ <math>[1, 2-a]$ ピラジン-3-4ル]-N-イソブチルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J=7.2 Hz, 3H), 0. 94 (d, J=6.8 Hz, 6H), 1. 31 (t, J=7.2 Hz, 3H), 1. 25–1. 42 (m, 4H), 1. 58–1. 65 (m, 1H), 2. 81 (q, J=7.2 Hz, 2H), 2. 93 (d, J=7.2 Hz, 2H), 3. 06 (d, J=6.8 Hz, 2H), 3. 86 (s, 3H), 6. 94 (dd, J=2.8, 8. 8 Hz, 1H), 7. 08 (d, J=2.8 Hz, 1H), 7. 68 (d, J=8.8 Hz, 1H), 7. 93 (d, J=4.4 Hz, 1H), 8. 03 (d, J=4.4 Hz, 1H).

実施例98

N-ブチル-N- (2 - エチル-8 - メシチルイミダゾ [1, 2 - a] ピラジン-3 - イル) - N-イソブチルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 87 (t, J = 7.2 Hz, 3H), 0. 95 (d, J = 6.8 Hz, 6H), 1. 25 (t, J = 7.6 Hz, 3H), 1. 24–1. 46 (m, 4H), 1. 48–1. 67 (m, 1H), 2. 03 (s, 6H), 2. 32 (s, 3H), 2. 78 (q, J = 7.8 Hz, 2H), 2. 94 (d, J = 7.2 Hz, 2H), 3. 07 (t, J = 6.8 Hz, 2H), 6. 94 (s, 2H), 7. 92 (d, J = 4.4 Hz, 1H), 8. 04 (d, J = 4.4 Hz, 1H).

実施例99

N-ブチル-N- [8-(2,6-ジメトキシ-4-メチルフェニル)-2-エチルイミダゾ [1,2-a] ピラジン-3-イル]-N-イソブチルアミン 黄色結晶

¹H NMR (400MHz, CDCI₃) δ 0. 88 (t, J = 7.2 Hz, 3H), 0. 94 (d, J = 6.8 Hz, 6H), 1. 26 (t, J = 7.6 Hz, 3H), 1. 25–1. 42 (m, 4H), 1. 58–1. 68 (m, 1H), 2. 40 (s, 3H), 2. 79 (q, J = 7.6 Hz, 2H), 2. 91 (d, J = 7.2 Hz, 2H), 3. 05 (t, J = 7.2 Hz, 2H), 3. 70 (s, 6H), 6. 50 (d, J = 0.8 Hz, 2H), 7. 93 (d, J = 4.0 Hz, 1H), 7. 99 (d, J = 4.4 Hz, 1H).

実施例100

NーブチルーNー [2 ーエチルー8 ー (2 ーメトキシー4 , 6 ージメチルフェニル)イミダゾ [1 , 2 ーa] ピラジンー3 ーイル] ーNーイソブチルアミン黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J=6. 8 Hz, 3H), 0. 94 (d, J=6. 8 Hz, 6H), 1. 26 (t, J=7. 6 Hz, 3H), 1. 20–1. 41 (m, 4H), 1. 59–1. 68 (m, 1H), 2. 03 (s, 3H), 2. 37 (s, 3H), 2. 79 (q, J=7. 6 Hz, 2H), 2. 92 (d, J=6. 8 Hz, 2H), 3. 06 (t, J=7. 6 Hz, 2H), 3. 71 (s, 3H), 6. 69 (s, 1H), 6. 74 (d, J=0. 8 Hz, 1H), 7. 93 (d, J=4. 8 Hz, 1H), 8. 02 (d, J=4. 4 Hz, 1H).

実施例101

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0.05-0.04 (m, 2H), 0.36-0.42 (m, 2H), 0.76-0.96 (m, 1H), 0.94 (d, J=6.8 Hz, 6H), 1.33 (t, J=7.2 Hz, 3H), 1.60-1.70 (m, 1H), 2.83 (q, J=7.6 Hz, 2H), 2.94 (d, J=7.2 Hz, 2H), 3.01 (t, J=7.2 Hz, 2H), 3.88 (s, 3H), 6.96 (dd, J=2.4, 8.4 Hz, 1H), 7.09 (d, J=2.8 Hz, 1H), 7.69 (d, J=8.4 Hz, 1H), 7.94 (d, J=4.4 Hz, 1H), 8.13 (d, J=4.4 Hz, 1H), 8.14

= 4.4 Hz, 1 H).

実施例102

N-シクロプロピルメチル-N-[8-(2,6-i)メトキシー4-メチルフェニル)-2-エチルイミダゾ[1,2-a]ピラジン-3-イル]-N-イソブチルアミン

黄色結晶

¹H NMR (400MHz, CDC1₃) δ -0. 12-0. 02 (m, 2H), 0. 29-0. 40 (m, 2H), 0. 73-0. 85 (m, 1H), 0. 95 (d, J = 6.8 Hz, 6H), 1. 29 (t, J = 7.2 Hz, 3H), 1. 63-1. 70 (m, 1H), 2. 41 (s, 3H), 2. 90-2. 75 (m, 1H), 2. 92 (d, J = 6.8 Hz, 2H), 3. 00 (d, J = 7.2 Hz, 2H), 3. 72 (s, 6H), 6. 51 (s, 2H), 7. 94-8. 04 (m, 1H), 8. 08-8. 13 (m. 1H).

実施例103

無色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J = 7.2 Hz, 6H), 1. 36–1. 46 (m, 7H), 2. 85 (q, J = 7.6 Hz, 2H), 3. 05–3. 09 (m, 4H), 7. 51 (d, J = 8.8 Hz, 2H), 8. 44 (s, 1H), 8. 78 (d, J = 8.8 Hz, 2H).

実施例104

N3, N3-ジプロピルー5-プロモー8-(2, 4-ジクロロフェニル) - 2-エチルイミダゾ $\begin{bmatrix} 1 \\ 2-a \end{bmatrix}$ ピラジンー3-アミン

橙色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 90 (t, J=7.6 Hz, 6H), 1. 29 (t, J=7.6 Hz, 3H), 1. 38–1. 48 (m, 4H), 2. 78 (q, J=7.6 Hz, 2H), 3. 04–3. 09 (m, 4H), 7. 38 (dd, J=8.4 Hz, 2. 0 Hz, 1H), 7. 54 (d, J=2.0 Hz, 1H), 7. 65 (d, J=8.4 Hz, 1H), 8. 08 (s, 1H).

実施例105

8-(2,4-ジクロロフェニル)-3-(ジプロピルアミノ)-2-エチル

イミダゾ [1, 2-a] ピラジンー6ーイル シアナイド

橙色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 90 (t, J=7.6 Hz, 6H), 1. 30 (t, J=7.6 Hz, 3H), 1. 38–1. 48 (m, 4H), 2. 81 (q, J=7.6 Hz, 2H), 3. 05–3. 11 (m, 4H), 7. 40 (dd, J=8.4, 2. 0 Hz, 1H), 7. 57 (d, J=2.0 Hz, 1H), 7. 62 (d, J=8.4 Hz, 1H), 8. 50 (s, 1H).

実施例106

N3 - 47 - 17 - 17 - 18 - 1

無色結晶

¹H NMR (400MHz, CDCl₃) δ 0. 89 (t, J=7.6 Hz, 3H), 0. 94 (d, J=6.8 Hz, 6H), 1. 29 (t, J=7.6 Hz, 3H), 1. 38–1. 48 (m, 2H), 1. 54–1. 68 (m, 1H), 2. 79 (q, J=7.6 Hz, 2H), 2. 92 (d, J=7.2 Hz, 2H), 2. 99–3. 04 (m, 2H), 7. 38 (dd, J=8.4, 2. 0 Hz, 1H), 7. 54 (d, J=2.0 Hz, 1H), 7. 64 (d, J=8.4 Hz, 1H), 8. 18 (s, 1H).

実施例107

N3, N3-ジプロピルー6-プロモー8-(2, 4-ジクロロフェニル) ー 2-エチルイミダゾ [1, 2-a] ピラジンー3-アミン

橙色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 90 (t, J = 7.6 Hz, 6H), 1. 29 (t, J = 7.6 Hz, 3H), 1. 38–1. 48 (m, 4H), 2. 79 (q, J = 7.6 Hz, 2H), 3. 03–3. 09 (m, 4H), 7. 38 (dd, J = 8.4, 2. 0 Hz, 1H), 7. 54 (d, J = 2.0 Hz, 1H), 7. 64 (d, J = 8.4 Hz, 1H), 8. 17 (s, 1H).

実施例108

無色結晶

¹H NMR (400MHz, CDCl₃) δ 0.89 (t, J = 7.6 Hz, 6H), 1.31 (d, J = 6.8 Hz,

6H), 1. 38-1. 48 (m, 4H), 3. 05-3. 10 (m, 4H), 3. 14-3. 22 (m, 1H), 7. 39 (dd, J=8. 4, 2. 0 Hz, 1H), 7. 56 (d, J=2. 0 Hz, 1H), 7. 73 (d, J=8. 4 Hz, 1H), 7. 92 (d, J=4. 4 Hz, 1H), 8. 04 (d, J=4. 4 Hz, 1H).

実施例109

無色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 90 (t, J = 7.6 Hz, 6H), 1. 28 (dd, J = 6.8 Hz, 3. 2 Hz, 6H), 1. 38–1. 48 (m, 4H), 2. 05 (s, 3H), 2. 38 (s, 3H), 3. 05–3. 10 (m, 4H), 3. 12–3. 20 (m, 1H), 3. 72 (s, 3H), 6. 71 (s, 1H), 6. 75 (s, 1H), 7. 91 (d, J = 4.4 Hz, 1H), 8. 00 (d, J = 4.4 Hz, 1H).

実施例110

参考例 5 で得られた1-(8-クロロ-2-エチルイミダゾ[1, 2-a] ピラジン-3-イル) ブチル エチル エーテルを用いて、実施例 1 と同様にカップリング反応を行うことによって標記化合物を淡黄色油状物として得ることができた。

¹H NMR (400MHz, CDC1₃) δ 0. 92-0. 98 (m, 3H), 1. 15-1. 37 (m, 7H), 1. 42-1. 56 (m, 1H), 1. 76-1. 88 (m, 1H), 2. 03-2. 15 (m, 1H), 2. 72-2. 88 (m, 2H), 3. 24-3. 33 (m, 1H), 3. 35-3. 46 (m, 1H), 4. 75-4. 81 (m, 1H), 7. 40 (dd, J = 2. 0, 8. 4 Hz, 1H), 7. 56 (d, J = 2. 0 Hz, 1H), 7. 66 (d, J = 8. 4 Hz, 1H), 7. 92 (d, J = 4. 6 Hz, 1H), 8. 42 (d, J = 4. 6 Hz, 1H).

実施例110の製造法に準じて以下実施例111乃至114を合成した。 実施例111

3-(1-x)+2ブチル)-2-xチル-8-(2-x)+20-4, 6-ジメチルフェニル)イミダゾ [1, 2-a] ピラジン

白色結晶

 1 H NMR (400MHz, CDC1₃) δ 0.91-0.98 (m, 3H), 1.15-1.34 (m, 7H), 1.41-

1. 55 (m, 1H), 1. 76-1. 88 (m, 1H), 2. 02 (s, 3H), 2. 04-2. 15 (m, 1H), 2. 37 (s, 3H), 2. 70-2. 82 (m, 2H), 3. 21-3. 44 (m, 2H), 3. 69 (s, 3H), 4. 72-4. 78 (m, 1H), 6. 68 (s, 1H), 6. 74 (s, 1H), 7. 89 (d, J = 4. 6 Hz, 1H), 8. 34 (d, J = 4. 6 Hz, 1H).

実施例112

8-(2, 4-ジメトキシ-6-メチルフェニル) -3-(1-エトキシブチル) -2-エチルイミダゾ <math>[1, 2-a] ピラジン

白色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 91–0. 98 (m, 3H), 1. 15–1. 34 (m, 7H), 1. 41–1. 57 (m, 1H), 1. 76–1. 88 (m, 1H), 2. 06 (s, 3H), 2. 03–2. 14 (m, 1H), 2. 71–2. 83 (m, 2H), 3. 21–3. 44 (m, 2H), 3. 69 (s, 3H), 3. 84 (s, 3H), 4. 71–4. 79 (m, 1H), 6. 45 (s, 1H), 6. 46 (s, 1H), 7. 89 (d, J = 4. 6 Hz, 1H), 8. 33 (d, J = 4. 6 Hz, 1H).

実施例113

白色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 89–0. 98 (m, 3H), 1. 13–1. 35 (m, 7H), 1. 40–1. 55 (m, 1H), 1. 74–1. 86 (m, 1H), 2. 02–2. 14 (m, 1H), 2. 40 (s, 3H), 2. 68–2. 83 (m, 2H), 3. 24–3. 43 (m, 2H), 3. 69 (s, 3H), 3. 70 (s, 3H), 4. 70–4. 77 (m, 1H), 6. 50 (s, 2H), 7. 89 (d, J = 4. 8 Hz, 1H), 8. 31 (d, J = 4. 8 Hz, 1H).

実施例114

8-(2-2-1)-4-3-1 8-(1-1)-4-3-1

淡黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 90-0. 98 (m, 3H), 1. 19 (t, J=7.0 Hz, 3H), 1. 22-1. 36 (m, 4H), 1. 40-1. 55 (m, 1H), 1. 77-1. 88 (m, 1H), 2. 03-2. 15 (m, 1H), 2. 72-2. 87 (m, 2H), 3. 29 (dq, J=9.3, 7. 0 Hz, 1H), 3. 39 (dq, J=9.3, 7. 0

Hz, 1H), 3. 87 (s, 3H), 4. 73-4. 80 (m, 1H), 6. 95 (dd, J = 2.6, 8. 6 Hz, 1H), 7. 08 (d, J = 2.6 Hz, 1H), 7. 66 (d, J = 8.6 Hz, 1H), 7. 90 (d, J = 4.6 Hz, 1H), 8. 37 (d, J = 4.6 Hz, 1H).

実施例115

4- [2-x+n-8-(2-x++)-4, 6-iyx+n-2x-in) イミダゾ [1, 2-a] ピラジン-3-イル $]-4-\alpha$ プタノール

-1-ブタノン(226 mg, 0.90 mmo1) と4,6-ジメチルー2-メトキシベンゼンボロン酸(198mg, 1.1mmol)を1, 2-ジメトキシエタン(4.5mL)と水(0.75mL)の混合溶媒に溶解させ、水酸 化バリウム8水和物(347mg, 1.1mmol)とテトラキストリフェニ ルホスフィンパラジウム錯体 (79mg, 0.068mmol) を加え、窒素 雰囲気下4時間加熱還流した。放冷後、反応混合物を濾過し、酢酸エチルで洗 浄したのち、濾液を合わせて1N水酸化ナトリウム水溶液で洗浄した。酢酸エ チルで抽出し、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグ ラフィー(酢酸エチル:n-ヘキサン=1:3)にて精製し、1-[2-エチ ル-8-(2-メトキシ-4,6-ジメチルフェニル)イミダゾ[1,2-a]ピラジン-3-イル]-1-ブタノン(245mg)を白色非晶形として得た。 得られた1-[2-エチル-8-(2-メトキシ-4,6-ジメチルフェニ ル) イミダゾ [1, 2-a] ピラジン-3-4ル] -1-7タノン (220m)g, 0.63mmol)をテトラヒドロフラン(2mL)に溶解し、氷冷下0. 90M臭化プロピルマグネシウムテトラヒドロフラン溶液(3.6mL,3. 2mmol)を加え、室温で2時間攪拌した。反応混合物に飽和塩化アンモニ ウム水溶液を加え、酢酸エチルで抽出し減圧下濃縮した。得られた残渣をシリ カゲルカラムクロマトグラフィー(酢酸エチル: n-ヘキサン=6:5)にて 精製し、標記化合物(150mg)を白色結晶として得た。

¹H NMR (400MHz, CDCl₃) δ 0. 87–0. 96 (m, 6H), 1. 18–1. 45 (m, 4H), 1. 25 (t, J = 7. 5 Hz, 3H), 1. 90–2. 12 (m, 4H), 2. 02 (s, 3H), 2. 37 (s, 3H), 2. 82 (q,

J = 7.5 Hz, 2H), 3.68 (s, 3H), 6.68 (s, 1H), 6.74 (s, 1H), 7.81 (d, J = 4.9 Hz, 1H), 8.75 (d, J = 4.9 Hz, 1H).

実施例116

2 - [2 - エチル - 3 - [(Z) - 1 - プロピル - 1 - ブテニル] イミダゾ [1, 2 - a] ピラジン - 8 - イル] - 3, 5 - ジメチルフェニル メチル エーテル

実施例117

得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-へキサン=1:1)にて精製し、標記化合物(25mg)を白色結晶として得た。

¹H NMR (400MHz, CDCl₃) δ 0. 84-0. 92 (m, 6H), 1. 04-1. 33 (m, 4H), 1. 23 (t, J = 7.5 Hz, 3H), 1. 71-1. 91 (m, 4H), 2. 01 (s, 3H), 2. 36 (s, 3H), 2. 76 (q, J = 7.5 Hz, 2H), 3. 05-3. 15 (m, 1H), 3. 69 (s, 3H), 6. 68 (s, 1H), 6. 74 (s, 1H), 7. 87 (d, J = 4.8 Hz, 1H), 7. 92 (d, J = 4.8 Hz, 1H).

上記実施例116と117の製造法に準じて実施例118乃至120を合成した。

実施例118

2 - [2-x + y - 3 - [(z) - 1 - x + y - 1 - y - y - 2 - a] ピラジン [2 - a] ピラジン [3 - 4] ピラジン [3 - 4] ボーテル

橙色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 93 (t, J=7.5 Hz, 3H), 1. 22 (t, J=7.5 Hz, 3H), 1. 92 (d, J=7.0 Hz, 3H), 2. 04 (s, 3H), 2. 37 (s, 3H), 2. 47 (q, J=7.5 Hz, 2H), 2. 73 (q, J=7.5 Hz, 2H), 3. 70 (s, 3H), 5. 76 (q, J=7.0 Hz, 1H), 6. 68 (s, 1H), 6. 74 (s, 1H), 7. 79 (d, J=4.6 Hz, 1H), 7. 88 (d, J=4.6 Hz, 1H).

実施例119

白色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 79–0. 87 (m, 6H), 1. 23 (t, J=7.5 Hz, 3H), 1. 82–1. 94 (m, 4H), 2. 01 (s, 3H), 2. 37 (s, 3H), 2. 77 (q, J=7.5 Hz, 2H), 2. 87–2. 97 (m, 1H), 3. 69 (s, 3H), 6. 68 (s, 1H), 6. 74 (s, 1H), 7. 87 (d, J=4.8 Hz, 1H), 7. 92 (d, J=4.8 Hz, 1H).

実施例120

8-(2,4-ジメトキシフェニル)-2-エチル-3-(1-エチルプロピ

ル) イミダゾ [1, 2-a] ピラジン

無色油状物

'H NMR (400MHz, CDC1₃) δ 0. 78-0. 86 (m, 6H), 1. 29 (t, J = 7. 5 Hz, 3H), 1. 82-1. 92 (m, 4H), 2. 79 (q, J = 7. 5 Hz, 2H), 2. 87-2. 97 (m, 1H), 3. 81 (s, 3H), 3. 87 (s, 3H), 6. 60-6. 67 (m, 2H), 7. 64-7. 68 (m, 1H), 7. 85 (d, J = 4. 6 Hz, 1H), 7. 88 (d, J = 4. 6 Hz, 1H).

実施例121

N-[8-(2, 4-i)] + N-[8

1-(2,4-ジメチルフェニル)-3-オキソブチル シアナイド(10.13g,0.05mol)のエタノール(100mL)溶液に酢酸(5mL)、ヒドラジン一水和物(2.52g,0.05mol)を加え、8時間加熱還流した。反応混合物をそのまま減圧下濃縮した。水を加え、酢酸エチルで抽出し、有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、減圧下濃縮し、4-(2,4-ジメチルフェニル)-6-メチルー3-ピリダジンアミンの粗化合物を得た。

得られた4-(2,4-ジメチルフェニル)-6-メチル-3-ピリダジンアミンのN,N-ジメチルホルムアミド(60mL)溶液にメチル 2-クロロー3-オキソペンタノエート(7mL)を加え、140 $\mathbb C$ で6時間加温した。水を加え、酢酸エチルで抽出し、有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、減圧下濃縮し、8-(2,4-ジメチルフェニル)-2-エチル-6-メチルイミダゾ[1,2-b]ピリダジン-3-カルボン酸メチルエステルの粗化合物を得た。

得られた8-(2,4-ジメチルフェニル)-2-エチルー6-メチルイミダゾ [1,2-b] ピリダジン-3-カルボン酸メチルエステルのエタノール (100mL) 溶液に5N水酸化ナトリウム水溶液 (20mL) を加え、3時間加熱還流した。反応混合物をそのまま減圧下濃縮した。水を加え、酢酸エチルで抽出し、水層に5N塩酸を加え (pH=1)、酢酸エチルで抽出し、無水

硫酸マグネシウムで乾燥し、減圧下濃縮し、8-(2, 4-i)メチルフェニル) -2-iエチル-6-iメチルイミダゾ [1, 2-b] ピリダジン-3-iカルボン酸の粗化合物 (2.8g) を得た。

得られた8-(2,4-ジメチルフェニル)-2-エチル-6-メチルイミダゾ [1,2-b] ピリダジン-3-カルボン酸(2.8g,9.05mmol)のトルエン(40mL)溶液にトリエチルアミン(20mL), tert-ブチルアルコール(30mL),ジフェニルフォスフォリルアジド(1.95mL,9.05mmol)を加え、140で6時間加熱した。水を加え、酢酸エチルで抽出し、有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、減圧下濃縮し、tert-ブチル N-[8-(2,4-ジメチルフェニル)-2-エチル-6-メチルイミダゾ [1,2-b] ピリダジン-3-イル]カルバメートの粗化合物を得た。

得られた tertーブチル Nー [8-(2,4-i)メチルフェニル) -2 ーエチルー6ーメチルイミダゾ [1,2-b] ピリダジンー3ーイル] カルバメートの酢酸エチル(10 mL)溶液に、4 N塩酸/酢酸エチル(30 mL)を加え、室温で14時間撹拌した。氷冷下5 N水酸化ナトリウム水溶液を加えて中和し、酢酸エチルで抽出した。有機層を飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、減圧下濃縮し、8-(2,4-i)メチルフェニル) -2-1エチルー6-1メチルイミダゾ [1,2-b] ピリダジンー3-1アミンの粗化合物を得た。

得られた8-(2,4-ジメチルフェニル)-2-エチルー6-メチルイミダゾ[1,2-b]ピリダジン-3-アミン(9.05mmol)のジクロロメタン(60mL)溶液にプロピオンアルデヒド(3.26mL,45.25mmol)を加え、室温で10分間撹拌した。そこにトリアセトキシ水素化ホウ素ナトリウム(5.75g,27.15mmol)を徐々に加え、更に酢酸(1mL)を滴下し、5時間撹拌した。水を加え、酢酸エチルで抽出し、有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラ

フィー(酢酸エチル:n-ヘキサン=1:9)で精製し、標記化合物(8.8 mg)を淡緑色油状物として得た。

¹H NMR (400MHz, CDCl₃) δ 0. 88 (t, J = 7.3 Hz, 6H), 1. 25 (t, J = 7.6 Hz, 3H), 1. 31–1. 44 (m, 4H), 2. 24 (s, 3H), 2. 37 (s, 3H), 2. 57 (s, 3H), 2. 75 (q, J = 7.6 Hz, 2H), 3. 20 (t, J = 7.4 Hz, 4H), 6. 65 (s, 1H), 7. 09 (d, J = 7.7 Hz, 1H), 7. 13 (s, 1H), 7. 28 (d, J = 7.7 Hz, 1H).

MS (ESI) m/z 365 MH⁺

実施例122

N-[8-(2, 4-i)] + N-i = N-i

メチル 8-(2, 4-ジメチルフェニル) -2-エチルイミダゾ [1, 2 - b] ピリダジン-3-カルボキシレート(373mg, 1.20mmol) のエタノール(15mL)溶液に5N水酸化ナトリウム水溶液(0.603m L, 3.0mmol)を加え、1時間加熱還流した。氷冷下5N塩酸(0.603mL)を加え、減圧下溶媒を留去し、8-(2, 4-ジメチルフェニル) -2-エチルイミダゾ [1, 2-b] ピリダジン-3-カルボン酸の粗化合物を得た。

粗8-(2,4-ジメチルフェニル)-2-エチルイミダゾ [1,2-b] ピリダジン-3-カルボン酸 (1.206mmol)のトルエン (10mL) 溶液にトリエチルアミン (0.202mL,1.4mmol)、t-ブチルアルコール (5mL)、ジフェニルフォスフォリルアジド (0.26mL,1.2mmol)を加え、90℃で1時間、110℃で4時間加熱した。水を加え、酢酸エチルで抽出し、有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、減圧下濃縮し、粗tert-ブチルN-[8-(2,4-ジメチルフェニル)-2-エチルイミダゾ [1,2-b] ピリダジン-3-イル]カルバメートを得た。

粗 t e r t ーブチル N- [8-(2, 4-ジメチルフェニル) - 2-エチル イミダゾ <math>[1, 2-b] ピリダジン-3-イル] カルバメートの酢酸エチル(5

mL)溶液に、4 N塩酸/酢酸エチル(15 mL)を加え、室温で15 時間撹拌した。氷冷下5 N水酸化ナトリウム水溶液を加え、中和し、酢酸エチルで抽出し、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、減圧下濃縮し、粗8-(2,4-i) メチルフェニル)-2-i エチルイミダゾ [1,2-b] ピリダジン-3-y ミンを得た。

粗8-(2,4-ジメチルフェニル)-2-エチルイミダゾ [1,2-b] ピリダジン-3-アミン(1.2mmol)のテトラヒドロフラン(10mL)溶液に氷冷下プロピオンアルデヒド(0.435mL,6.0mmol)、3 M硫酸(2.01mL,6.0mmol)を加え、同温で水素化ホウ素ナトリウム(182mg,4.8mmol)を徐々に加た。30分間加熱攪拌した後、室温にして20分撹拌し、氷冷下5N水酸化ナトリウム水溶液を加え中和した。水を加え、酢酸エチルで抽出し、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残査をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-へキサン=1:15)で精製し、標記化合物(42mg,10%(4steps))を黄色結晶として得た。

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J = 7.4 Hz, 6H), 1. 28 (t, J = 7.5 Hz, 3H), 1. 32–1. 46 (m, 4H), 2. 25 (s, 3H), 2. 38 (s, 3H), 2. 79 (q, J = 7.5 Hz, 2H), 3. 20 (t, J = 7.5 Hz, 4H), 6. 79 (br s, 1H), 7. 10 (d, J = 7.9 Hz, 1H), 7. 15 (s, 1H), 7. 32 (d, J = 7.9 Hz, 1H), 8. 26 (d, J = 4.4 Hz, 1H).

以下実施例123乃至126は実施例122と同様の方法によって合成した。 実施例123

N-[8-(2, 4-i)] + N-i) - 2-i N-i N-i

黄色結晶

¹H NMR (400MHz, CDCl₃) δ 0. 87 (t, J=7.3 Hz, 6H), 1. 31 (t, J=7.6 Hz, 3H), 1. 32–1. 44 (m, 4H), 2. 80 (q, J=7.5 Hz, 2H), 3. 19 (t, J=7.5 Hz, 4H), 3. 83 (s, 3H), 3. 87 (s, 3H), 6. 59 (d, J=2.4 Hz, 1H), 6. 66 (dd, J=2.4, 8. 6 Hz, 1H), 7. 16 (d, J=4.8 Hz, 1H), 8. 01 (d, J=7.3 Hz, 1H), 8. 23 (d,

J = 5.1 Hz, 1 H).

MS (ESI) m/z 383 MH⁺

実施例124

N-[8-(2, 4-i)] + 2-i N-(2, 4-i) N-(2-i) N-(2-i)

橙色結晶

¹H NMR (400MHz, CDCl₃) δ 1. 01 (d, J = 6.8 Hz, 6H), 1. 34 (t, J = 7.6 Hz, 3H), 1. 75–1. 88 (m, 1H), 2. 84–2. 95 (m, 2H), 3. 07 (d, J = 6.8 Hz, 2H), 3. 83 (s, 3H), 3. 87 (s, 3H), 6. 59 (d, J = 2.2 Hz, 1H), 6. 65 (dd, J = 2.4, 8. 6 Hz, 1H), 7. 07 (d, J = 4.6 Hz, 1H), 7. 94 (br s, 1H), 8. 24 (d, J = 3.7 Hz, 1H).

実施例125

N-シクロプロピルメチル-N-[8-(2,4-i)]-ジメトキシフェニル)-2-エチルイミダゾ [1,2-b] ピリダジン-3-イル]-N-イソブチルアミン

黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 02-0. 06 (m, 2H), 0. 34-0. 44 (m, 2H), 0. 84-1. 00 (m, 1H), 1. 02 (d, J=6. 6 Hz, 6H), 1. 43 (t, J=7. 6 Hz, 3H), 1. 63-1. 76 (m, 1H), 2. 95 (q, J=7. 5 Hz, 2H), 3. 17 (t, J=7. 7 Hz, 4H), 3. 93 (s, 3H), 3. 97 (s, 3H), 6. 69 (d, J=2. 4 Hz, 1H), 6. 76 (dd, J=2. 4, 8. 6 Hz, 1H), 7. 26 (d, J=4. 8 Hz, 1H), 8. 12 (d, J=8. 2 Hz, 1H), 8. 32 (d, J=4. 8 Hz, 1H).

MS (ESI) m/z 409 MH⁺

実施例126

黄色結晶

¹H NMR (400MHz, CDCl₃) δ 0.88 (t, J = 7.4 Hz, 6H), 1.28 (t, J = 7.6 Hz,

3H), 1. 33-1. 45 (m, 4H), 2. 29 (s, 3H), 2. 79 (q, J = 7.5 Hz, 2H), 3. 20 (t, J = 7.5 Hz, 4H), 3. 85 (s, 3H), 6. 79 (br s, 1H), 6. 82-6. 90 (m, 2H), 7. 39 (d, J = 8.2 Hz, 1H), 8. 26 (d, J = 4.2 Hz, 1H).

MS (ESI) m/z 367 MH^+

実施例127

Nー [8-(2, 4-ジクロロフェニル) - 6-メチル-2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジン-3-イル]-N, N-ジプロピルアミン

N-[8-Jロモ-6-Xチル-2-(Xチルスルファニル)イミダゾ[1,2-a] ピリジン-3-イル]-N,N-ジプロピルアミン(50mg)を1,2-ジメトキシエタン(6mL)と水(1mL)の混合溶媒に溶解させ、2,4-ジクロロベンゼンボロン酸(53mg)、水酸化バリウム8水和物(88mg)とテトラキストリフェニルホスフィンパラジウム錯体(16mg)を加え、窒素雰囲気下2時間加熱還流した。反応混合物を放冷後、シリカゲルカラムクロマトグラフィー(酢酸エチル:<math>n-ヘキサン=1:9)にて精製し、N-[8-(2,4-ジクロロフェニル)-6-メチル-2-(メチルスルファニル)イミダゾ[1,2-a] ピリジン-3-イル]-N,N-ジプロピルアミン(43mg)を淡黄色油状物として得た。

¹H NMR (400MHz, CDCl₃) δ 0. 88 (t, J = 7.2 Hz, 6H), 1. 38–1. 44 (m, 4H), 2. 36 (s, 3H), 2. 50 (s, 3H), 3. 02–3. 18 (m, 4H), 6. 99 (d, J = 2.0 Hz, 1H), 7. 32 (dd, J = 2.4, 8. 8 Hz, 1H), 7. 51 (d, J = 2.0 Hz, 1H), 7. 59 (d, J = 8.4 Hz, 1H), 7. 87 (d, J = 1.6 Hz, 1H).

以下、実施例127の方法に準じて実施例128,129を合成した。

N3, N3-ジプロピル-8-(2, 4-ジクロロフェニル) -2-(メチルスルファニル) イミダゾ「1, 2-a] ピラジン-3-アミン

無色油状物

実施例128

¹H NMR (400MHz, CDCl₃) δ 0.89 (t, J = 7.6 Hz, 6H), 1.35-1.46 (m, 4H), 2.59

(s, 3H), 3. 08-3. 12 (m, 4H), 7. 38 (ddd, J = 8.4, 2. 0, 0. 4 Hz, 1H), 7. 56 (d, J = 2.0 Hz, 1H), 7. 73 (dd, J = 8.4, 0. 4 Hz, 1H), 7. 94 (d, J = 4.4 Hz, 1H), 8. 01 (d, J = 4.4 Hz, 1H).

実施例129

N3 ー イソブチルーN3 ー プロピルー8 ー (2, 4 ー ジクロロフェニル) ー 2 ー (メチルスルファニル) イミダゾ [1, 2-a] ピラジンー3 ー アミン 無色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 88 (t, J = 7.6 Hz, 6H), 0. 93 (d, J = 6.4 Hz, 6H), 1. 37–1. 47 (m, 2H), 1. 54–1. 62 (m, 1H), 2. 59 (s, 3H), 2. 98 (d, J = 7.2 Hz, 2H), 3. 02–3. 08 (m, 2H), 7. 39 (dd, J = 8.4, 2. 0 Hz, 1H), 7. 56 (d, J = 2.0 Hz, 1H), 7. 69 (d, J = 8.4 Hz, 1H), 7. 95 (d, J = 4.4 Hz, 1H), 8. 02 (d, J = 4.4 Hz, 1H).

実施例130乃至実施例187は、実施例4と同様にして合成した。

実施例130

N-[8-(2,4-ジクロロ-6-メチルフェニル)-2-エチルイミダゾ [1,2-a] ピラジン-3-イル]-<math>N, N-ジプロピルアミン 淡黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 90 (t, J = 7.6 Hz, 6H), 1. 25 (t, J = 7.6 Hz, 3H), 1. 38–1. 48 (m, 4H), 2. 09 (s, 3H), 2. 78 (q, J = 7.6 Hz, 2H), 3. 07 (dd, J = 6.4, 8. 0 Hz, 4H), 7. 64–7. 67 (m, 1H), 7. 80 (br s, 1H), 7. 83 (d, J = 8.0 Hz, 1H), 7. 94–7. 97 (m, 1H), 8. 08 (d, J = 4.4 Hz, 1H).

実施例131

N-8-[2-Dロロー4-(トリフルオロメチル)フェニル]-2-エチルイミダゾ[1, 2-a]ピラジンー3-イルーN, N-ジプロピルアミン 淡黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 90 (t, J = 7.2 Hz, 6H), 1. 29 (t, J = 7.6 Hz, 3H), 1. 38–1. 48 (m, 4H), 2. 80 (q, J = 7.6 Hz, 2H), 3. 08 (dd, J = 6.4, 8. 0 Hz, 4H), 7. 64–7. 67 (m, 1H), 7. 79–7. 80 (m, 1H), 7. 81–7. 84 (m, 1H), 7. 94 (d,

J = 4.4 Hz, 1H, 8.08 (d, J = 4.4 Hz, 1H).

実施例132

'H NMR (400MHz, CDC1₃) δ 0. 90 (t, J=7.6 Hz, 6H), 1. 28 (d, J=6.8 Hz, 6H), 1. 29 (t, J=7.6 Hz, 3H), 1. 38–1. 48 (m, 4H), 2. 80 (q, J=7.6 Hz, 2H), 2. 94 (hept., J=6.8 Hz, 1H), 3. 07 (dd, J=6.4, 8. 0 Hz, 4H), 7. 28 (d, J=1.6, 8. 4 Hz, 1H), 7. 58 (d, J=8.4 Hz, 1H), 7. 91 (d, J=4.4 Hz, 1H), 8. 02 (d, J=4.4 Hz, 1H).

実施例133

Nー [8-(2-) -(2

¹H NMR (400MHz, CDC1₃) δ 0. 89 (t, J = 7.6 Hz, 6H), 1. 24 (t, J = 7.6 Hz, 3H), 1. 38–1. 48 (m, 4H), 2. 38 (s, 3H), 2. 77 (q, J = 7.6 Hz, 2H), 3. 07 (dd, J = 6.4, 8. 0 Hz, 4H), 3. 70 (s, 3H), 6. 78 (s, 1H), 7. 12 (s, 1H), 7. 90 (d, J = 4.8 Hz, 1H), 8. 02 (d, J = 4.8 Hz, 1H).

実施例134

淡黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 90 (t, J = 7.2 Hz, 6H), 1. 24 (t, J = 7.6 Hz, 3H), 1. 37–1. 47 (m, 4H), 2. 08 (s, 3H), 2. 34 (s, 3H), 2. 77 (q, J = 7.6 Hz, 2H), 3. 07 (dd, J = 6.4, 8. 0 Hz, 4H), 7. 05 (s, 1H), 7. 34 (s, 1H), 7. 91 (d, J = 4.4 Hz, 1H), 8. 04 (d, J = 4.4 Hz, 1H).

実施例135

N-[8-(2, 4-ジメチルフェニル) - 2-エチルイミダゾ[1, 2-a]

ピラジン-3-イル]-N, N-ジプロピルアミン

淡黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 89 (t, J = 7.2 Hz, 6H), 1. 29 (t, J = 7.6 Hz, 3H), 1. 37–1. 47 (m, 4H), 2. 35 (s, 3H), 2. 37 (s, 3H), 2. 77 (q, J = 7.6 Hz, 2H), 3. 07 (dd, J = 6.4, 8. 0 Hz, 4H), 7. 09–7. 14 (m, 2H), 7. 53 (d, J = 7.6 Hz, 1H), 7. 87 (d, J = 4.4 Hz, 1H), 7. 98 (d, J = 4.4 Hz, 1H).

実施例136

N-[8-(2-000-4-メチルフェニル)-2-エチルイミダゾ[1,2-a] ピラジン-3-イル]-<math>N, N-ジプロピルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 90 (t, J = 7.6 Hz, 6H), 1. 30 (t, J = 7.6 Hz, 3H), 1. 37–1. 47 (m, 4H), 2. 34 (s, 3H), 2. 79 (q, J = 7.6 Hz, 2H), 3. 07 (dd, J = 6.0, 7. 2 Hz, 4H), 7. 29 (dd, J = 2.0, 8. 0 Hz, 1H), 7. 30–7. 32 (m, 1H), 7. 60 (d, J = 8.0 Hz, 1H), 7. 90 (d, J = 4.8 Hz, 1H), 8. 02 (d, J = 4.8 Hz, 1H).

実施例137

¹H NMR (400MHz, CDCl₃) δ 0. 89 (t, J = 7.6 Hz, 6H), 1. 24 (t, J = 7.2 Hz, 3H), 1. 38–1. 48 (m, 4H), 2. 38 (s, 3H), 2. 77 (q, J = 7.6 Hz, 2H), 3. 06 (t, J = 7.6 Hz, 4H), 3. 71 (s, 3H), 6. 74 (s, 1H), 6. 94 (s, 1H), 7. 91 (d, J = 4.4 z, 1H), 8. 01 (d, J = 4.4 Hz, 1H).

実施例138

N-[8-(2-)ロモー4-メチルフェニル)-2-エチルイミダゾ [1, 2-a] ピラジン-3-イル]-N, N-ジプロピルアミン

淡黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0.90 (t, J = 7.2 Hz, 6H), 1.29 (t, J = 7.2 Hz,

3H), 1. 38-1. 48 (m, 4H), 2. 40 (s, 3H), 2. 79 (q, J = 7.2 Hz, 2H), 3. 07 (t, J = 7.6 Hz, 4H), 7. 22-7. 25 (m, 1H), 7. 54-7. 56 (m, 2H)), 7. 92 (d, J = 4.4 Hz, 1H), 8. 03 (d, J = 4.4 Hz, 1H).

実施例139

 $N-[8-(2-D_{1}-4, 6-ジメチルフェニル) - 2-エチルイミダゾ [1, 2-a] ピラジン-3-イル] - N, <math>N-$ ジプロピルアミン

無色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 90 (t, J=7.6 Hz, 6H), 1. 25 (t, J=7.6 Hz, 3H), 1. 37–1. 47 (m, 4H), 2. 07 (s, 3H), 2. 34 (s, 3H), 2. 78 (q, J=7.6 Hz, 2H), 3. 08 (t, J=7.6 Hz, 4H), 7. 02 (s, 1H), 7. 16 (s, 1H), 7. 92 (d, J=4.8 Hz, 1H), 8. 04 (d, J=4.8 Hz, 1H).

実施例140

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0.00 (br s, 2H), 0.35 (d, J = 8.0 Hz, 2H), 0.76-0.90 (m, 1H), 1.30 (t, J = 7.6 Hz, 3H), 2.79 (q, J = 7.6 Hz, 2H), 3.04 (d, J = 7.2 Hz, 2H), 3.26 (s, 3H), 3.30-3.42 (m, 4H), 7.39 (d, J = 8.4 Hz, 1H), 7.55 (s, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 4.4 Hz, 1H), 8.19 (d, J = 4.4 Hz, 1H).

実施例141

N-[8-(2, 4-ジクロロフェニル) -2-エチルイミダゾ <math>[1, 2-a] ピラジン-3-イル]-N-(2-メトキシエチル) アミン

MS (FAB) m/z 365 MH^+

実施例142

N-[8-(2, 4-ジクロロフェニル) - 2-エチルイミダゾ <math>[1, 2-a] ピラジン-3-イル -N-(2-メトキシエチル) - N-プロピルアミン

MS (FAB) m/z 407 MH^+

実施例143

N-ブチル-N- [8-(2,4-ジクロロフェニル)-2-エチルイミダゾ [1,2-a] ピラジン-3-イル]-N-(2-メトキシエチル)アミン MS (FAB) m/z 421 MH†

実施例144

N-[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ [1,2-a] ピラジン-3-イル] -N-(2-メトキシエチル)-N-ペンチルアミン MS (FAB) <math>m/z 434 MH^{\dagger}

実施例145

N-[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ [1,2-a] ピラジン-3-イル] $-N-イソブチル-N-(2-メトキシエチル) アミン MS (FAB) m/z 421 <math>MH^{\dagger}$

実施例146

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0.00 (br s, 2H), 0.36 (br s, 2H), 0.78–0.85 (m, 1H), 0.90 (t, J=7.6 Hz, 3H), 0.97 (d, J=7.8 Hz, 3H), 1.10–1.21 (m, 1H), 1.33 (t, J=7.6 Hz, 3H), 1.40–1.51 (m, 1H), 1.51–1.60 (m, 1H), 2.84 (q, J=7.6 Hz, 2H), 2.88–2.89 (m, 3H), 3.17 (dd, J=6.4, 6.8 Hz, 1H), 7.40 (d, J=8.0 Hz, 1H), 7.55 (s, 1H), 7.67 (d, J=8.4 Hz, 1H), 7.96 (d, J=4.4 Hz, 1H), 8.18 (d, J=4.4 Hz, 1H).

実施例147

N-[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ [1,2-a]ピラジン-3-イル] -N-イソブチル-N-(2-メチルブチル)アミン 黄色油状物

 1 H NMR(400MHz,CDC1₃) δ 0.86(t,J=7.2 Hz,3H),0.94(d,J=6.8 Hz,6H),0.96(d,J=6.8 Hz,3H),1.04-1.16(m,1H),1.30-1.44(m,1H),1.46-1.64(m,2H),2.81(q,J=7.6 Hz, 2 H),2.84-2.96(m,3H),3.04(dd,J=6.0,6.0 Hz,1H),7.39(d,J=8.4 Hz,1H),7.56(s,1H),7.67(d,J=8.0 Hz,1H),7.93(d,J=4.4 Hz,1H),8.10(d,J=4.4 Hz,1H).

N-シクロブチルメチル-N-シクロプロピルメチル-N-[8-(2, 4-ジクロロフェニル) -2-エチルイミダゾ [1, 2-a] ピラジン-3-イル] アミン

黄色油状物

 1 H NMR(400MHz,CDC1₃) δ 0.00(br s,2H),0.36(br s,2H),0.72-0.82(m,1H),1.30(t,J=7.6 Hz,3H),1.56-1.72(m,2H),1.74-1.96(m,4H),2.24-2.34(m,1H),2.79(q,J=7.6 Hz,2H),2.94(d,J=7.2 Hz,2H),3.20(d,J=7.6 Hz,2H),7.39(d,J=8.0 Hz,1H),7.55(s,1H),7.66(d,J=8.0 Hz,1H),7.92(d,J=4.4 Hz,1H),8.09(d,J=4.4 Hz,1H).

NーシクロブチルメチルーNー [8-(2,4-ジクロロフェニル)-2-エチルイミダゾ <math>[1,2-a] ピラジンー3-イル]-Nープロピルアミン黄色油状物

 $^{1} \text{H NMR } (400 \text{MHz}, \text{ CDC1}_{3}) \quad \delta \quad 0. \ 90 \quad (\text{t}, \quad J=7. \ 6 \ \text{Hz}, \quad 3\text{H}) \, , \quad 1. \ 30 \quad (\text{t}, \quad J=7. \ 2 \ \text{Hz}, \\ 3\text{H}) \, , \quad 1. \ 42 \quad (\text{q}, \quad J=7. \ 2 \ \text{Hz}, \quad 2\text{H}) \, , \quad 1. \ 54-1. \ 66 \quad (\text{m}, \quad 2\text{H}) \, , \quad 1. \ 72-1. \ 94 \quad (\text{m}, \quad 4\text{H}) \, , \\ 2. \ 22-2. \ 34 \quad (\text{m}, \quad 1\text{H}) \, , \quad 2. \ 79 \quad (\text{q}, \quad J=7. \ 6 \ \text{Hz}, \quad 2\text{H}) \, , \quad 3. \ 06 \quad (\text{t}, \quad J=7. \ 4 \ \text{Hz}, \quad 2\text{H}) \, , \quad 3. \ 14 \\ (\text{d}, \quad J=7. \ 2 \ \text{Hz}, \quad 2\text{H}) \, , \quad 7. \ 39 \quad (\text{d}, \quad J=8. \ 4 \ \text{Hz}, \quad 1\text{H}) \, , \quad 7. \ 55 \quad (\text{s}, \quad 1\text{H}) \, , \quad 7. \ 66 \quad (\text{d}, \quad J=8. \ 4 \ \text{Hz}, \quad 1\text{H}) \, , \quad 7. \ 92 \quad (\text{d}, \quad J=4. \ 4 \ \text{Hz}, \quad 1\text{H}) \, , \quad 8. \ 02 \quad (\text{d}, \quad J=4. \ 4 \ \text{Hz}, \quad 1\text{H}) \, . \\ \end{cases}$

実施例150

NーシクロブチルメチルーNー [8-(2,4-ジクロロフェニル)-2-エチルイミダゾ <math>[1,2-a] ピラジンー3-イル]-Nーイソブチルアミン 黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0.90 (t, J = 7.6 Hz, 3H), 1.30 (t, J = 7.6 Hz,

3H), 1.38-1.48 (m, 2H), 1.50-1.78 (m, 4H), 2.80 (q, J=7.6 Hz, 2H), 3.09 (dd, J=7.6, 7.6 Hz, 2H), 3.17 (t, J=7.6 Hz, 2H), 4.37 (t, J=6.0 Hz, 1H), 4.48 (t, J=6.0 Hz, 1H), 7.39 (d, J=8.4 Hz, 1H), 7.55 (s, 1H), 7.66 (d, J=8.4 Hz, 1H), 7.93 (d, J=4.4 Hz, 1H), 8.02 (d, J=4.4 Hz, 1H). 美施例 1.51

N- [8-(2,4-ジクロロフェニル)-2-エチルイミダゾ [1,2-a] ピラジン-3-イル]-N-(4-フルオロブチル)-N-プロピルアミン 黄色油状物

 1 H NMR(400MHz,CDC1₃) δ 0. 90(t,J=7.6 Hz,3H),1. 30(t,J=7.6 Hz,3H),1. 38-1. 48(m,2H),1. 50-1. 78(m,4H),2. 80(q,J=7.6 Hz,2H),3. 09(dd,J=7.6,7. 6 Hz,2H),3. 17(t,J=7.6 Hz,2H),4. 37(t,J=6.0 Hz,1H),4. 48(t,J=6.0 Hz,1H),7. 39(d,J=8.4 Hz,1H),7. 55(s,1H),7. 66(d,J=8.4 Hz,1H),7. 93(d,J=4.4 Hz,1H),8. 02(d,J=4.4 Hz,1H).

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0.00 (br s, 2H), 0.38 (d, J=8.0 Hz, 2H), 0.74–0.84 (m, 1H), 1.31 (t, J=7.6 Hz, 3H), 1.50–1.60 (m, 2H), 1.64–1.82 (m, 2H), 2.81 (q, J=7.6 Hz, 2H), 2.97 (d, J=6.8 Hz, 2H), 3.26 (t, J=7.6 Hz, 2H), 4.38 (t, J=5.6 Hz, 1H), 4.50 (t, J=5.6 Hz, 1H), 7.40 (d, J=8.4 Hz, 1H), 7.57 (s, 1H), 7.67 (d, J=8.4 Hz, 1H), 7.94 (d, J=4.4 Hz, 1H), 8.11 (d, J=4.4 Hz, 1H).

実施例153

N-[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ <math>[1,2-a] ピラジン-3-4ル]-N-(4-フルオロブチル)-N-4ソブチルアミン 黄色油状物

'H NMR (400MHz, CDC1₃) δ 0. 95 (t, J=6.8 Hz, 6H), 1. 30 (t, J=7.6 Hz, 3H), 1. 50–1. 76 (m, 5H), 2. 80 (q, J=7.6 Hz, 2H), 2. 94 (d, J=7.2 Hz, 2H), 3. 13 (dd, J=8.0, 8. 0 Hz, 2H), 4. 367 (t, J=6.0 Hz, 1H), 4. 48 (t, J=6.0 Hz, 1H), 7. 38 (d, J=8.4 Hz, 1H), 7. 55 (s, 1H), 7. 66 (d, J=8.4 Hz, 1H), 7. 94 (d, J=4.4 Hz, 1H), 8. 05 (d, J=4.4 Hz, 1H).

実施例154

実施例155

N, N-ジシクロプロピルメチル-N-[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ[1,2-a]ピラジン-3-イル]アミン 黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0.03 (br s, 4H), 0.36 (d, J=7.6 Hz, 4H), 0.74–0.86 (m, 2H), 1.30 (t, J=7.6 Hz, 3H), 2.80 (q, J=7.6 Hz, 2H), 3.03 (d, J=6.4 Hz, 4H), 7.38 (t, J=8.4 Hz, 1H), 7.53 (s, 1H), 7.66 (d, J=8.4 Hz, 1H), 7.93 (d, J=4.4 Hz, 1H), 8.20 (d, J=4.4 Hz, 1H).

N1-[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ [1,2-a] ピラジン-3-イル]-<math>N1-(3-フルオロプロピル)ブタンアミド 黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0.83 (t, J=7.2 Hz, 3H), 1.33 (t, J=7.6 Hz, 3H), 1.50–2.08 (m, 6H), 2.74 (q, J=7.6 Hz, 2H), 3.68–3.98 (m, 2H), 4.48 (t, J=5.7 Hz, 1H), 4.60 (t, J=5.7 Hz, 1H), 7.44 (d, J=8.4 Hz, 1H), 7.59 (s, 1H), 7.71 (d, J=8.4 Hz, 1H), 7.79 (d, J=4.4 Hz, 1H), 8.09 (d, J=4.8 Hz, 1H).

MS (ESI) m/z 437 MH^+

実施例156

3-[[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ[1,2-a] ピラジン<math>-3-イル] (プロピル) アミノ] プロパンニトリル

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0.94 (t, J = 7.6 Hz, 3H), 1.31 (t, J = 7.6 Hz,

3H), 1. 48 (q, J = 7.2 Hz, 2H), 2. 46 (br s, 2H), 2. 79 (q, J = 7.6 Hz, 2H), 3. 14 (t, J = 7.6 Hz, 2H), 3. 47 (t, J = 6.4 Hz, 2H), 7. 40 (d, J = 8.4 Hz, 1H), 7. 56 (s, 1H), 7. 65 (d, J = 8.4 Hz, 1H), 8. 01 (d, J = 4.4 Hz, 1H), 8. 22 (d, J = 4.8 Hz, 1H).

実施例157

3-(シクロプロピルメチル) [8-(2,4-ジクロロフェニル)-2-エチルイミダゾ [1,2-a] ピラジン-3-イル] アミノプロパンニトリル 黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0.00 (br s, 2H), 0.40 (br s, 2H), 0.78–0.88 (m, 1H), 1.31 (t, J = 7.6 Hz, 3H), 2.40–2.56 (m, 1H), 2.80 (q, J = 7.6 Hz, 2H), 2.96–3.04 (m, 2H), 3.46–3.58 (m, 2H), 7.39 (d, J = 8.0 Hz, 1H), 7.56 (s, 1H), 7.65 (d, J = 8.4 Hz, 1H), 8.00 (d, J = 4.4 Hz, 1H), 8.28 (d, J = 4.4

実施例158

NーブチルNーシクロブチルメチルーNー [8-(2,4-i)クロロフェニル) -2-iエチルイミダゾ [1,2-a] ピラジン-3-iイル] アミン 黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J=7.2 Hz, 3H), 1. 30 (t, J=7.6 Hz, 3H), 1. 32–1. 20 (m, 4H), 1. 54–1. 66 (m, 2H), 1. 74–1. 92 (m, 4H), 2. 22–2. 32 (m, 1H), 2. 79 (q, J=7.6 Hz, 2H), 3. 09 (t, J=7.6 Hz, 2H), 3. 13 (d, J=7.2 Hz, 2H), 7. 39 (d, J=8.4 Hz, 1H), 7. 55 (s, 1H), 7. 66 (d, J=8.4 Hz, 1H), 8. 01 (d, J=4.4 Hz, 1H).

実施例159

N-ブチルーN-シクロプロピルメチルーN- [8-(2, 4-ジクロロフェニル) -2-エチルイミダゾ [1, 2-a] ピラジンー3-イル] アミン 黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0.01 (br s, 2H), 0.36 (d, J = 8.0 Hz, 2H), 0.76-0.88 (m, 1H), 0.89 (t, J = 7.2 Hz, 3H), 1.31 (t, J = 7.6 Hz, 3H), 1.32-

1. 44 (m, 4H), 2. 81 (q, J = 7.6 Hz, 2H), 2. 96 (d, J = 7.2 Hz, 2H), 3. 20 (t, J = 7.2 Hz, 2H), 7. 40 (d, J = 8.0 Hz, 1H), 7. 56 (s, 1H), 7. 68 (d, J = 8.4 Hz, 1H), 7. 94 (d, J = 4.8 Hz, 1H), 8. 12 (d, J = 4.4 Hz, 1H).

実施例160

N-ブチル-N- [8- (2-クロロー6-メトキシー4-メチルフェニル) -2-エチルイミダゾ [1, 2- \dot{a}] ピラジン-3-イル] -N-イソブチル アミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 87 (t, J=7. 2 Hz, 3H), 0. 94 (d, J=6. 8 Hz, 6H), 1. 25 (t, J=7. 6 Hz, 3H), 1. 24–1. 46 (m, 4H), 1. 56–1. 70 (m, 1H), 2. 39 (s, 3H), 2. 78 (q, J=7. 6 Hz, 2H), 2. 92 (d, J=7. 2 Hz, 2H), 3. 06 (t, J=7. 2 Hz, 2H), 3. 71 (s, 3H), 6. 75 (s, 1H), 6. 95 (s, 1H), 7. 92 (d, J=4. 8 Hz. 1H), 8. 04 (d, J=4. 4 Hz, 1H).

MS (ESI) m/z 429 MH⁺

実施例161

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0.00 (br s, 4H), 0.36 (br s, 4H), 0.74–0.88 (m, 2H), 1.26 (t, J = 7.6 Hz, 3H), 2.39 (s, 3H), 2.77 (q, J = 7.6 Hz, 2H), 2.94–3.10 (m, 4H), 3.71 (s, 3H), 6.74 (s, 1H), 6.95 (s, 1H), 7.92 (d, J = 4.4 Hz, 1H), 8.15 (d, J = 4.4 Hz, 1H).

MS (ESI) m/z 425 MH^+

実施例162

N, N-ジシクロプロピルメチル-N-[8-(2,6-ジメトキシ-4-メチルフェニル)-2-エチルイミダゾ<math>[1,2-a]ピラジン-3-4ル]アミン

黄色油状物

MS (ESI) m/z 421 MH^{\dagger}

実施例163

¹H NMR (400MHz, CDCl₃) δ 0.03 (br s, 4H), 0.37 (d, J = 7.6 Hz, 4H), 0.76-0.88 (m, 2H), 1.31 (m, J = 7.6 Hz, 3H), 2.81 (q, J = 8.0 Hz, 2H), 3.03 (d, J = 6.8 Hz, 4H), 3.86 (s, 3H), 6.95 (d, J = 8.4 Hz, 1H), 7.07 (s, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.91 (d, J = 4.4 Hz, 1H), 8.16 (d, J = 4.4 Hz, 1H).

MS (ESI) m/z 411 MH+

実施例164

N, N-ジシクロプロピルメチル-N-[2-エチル-8-(2-メトキシー4, 6-ジメチルフェニル) イミダゾ [1, 2-a] ピラジン-3-イル] アミン

黄色油状物

MS (ESI) m/z 405 MH^{\dagger}

実施例165

 $N-[8-(2-D_{1}_{1}_{1}-6-x_{1}_{2}+2-4-x_{2}_{3}+N_{1}_{2}-2-x_{2}_{4}]$ $N-[8-(2-D_{1}_{1}-6-x_{1}_{2}+2-4-x_{2}_{3}+N_{1}_{2}-2-x_{2}_{4}]$ $N-[8-(2-x_{2}+2-x_{3}_{4}+2-x_{4}_{4}+2-x$

黄色油状物

MS (ESI) m/z 441 MH^{\dagger}

実施例166

N-シクロプロピルメチル-N-[8-(2,6-i)メトキシー4-メチルフェニル)-2-エチルイミダゾ[1,2-a]ピラジン-3-イル]-N-(2-i)

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0.00 (br s, 2H), 0.33 (br s, 2H), 0.74–0.86 (m, 1H), 0.87 (t, J=7.6 Hz, 3H), 0.93 (d, J=6.8 Hz, 3H), 1.06–1.18 (m, 1H), 1.25 (t, J=7.6 Hz, 3H), 1.38–1.60 (m, 2H), 2.41 (s, 3H), 2.77 (q, J=7.6 Hz, 2H), 2.82–3.18 (m, 4H), 3.69 (s, 6H), 6.50 (s, 2H), 7.90 (d, J=4.8 Hz, 1H), 7.55 (s, 1H), 7.66 (d, J=8.0 Hz, 1H), 7.92 (d, J=4.4 Hz, 1H), 8.05 (d, J=4.4 Hz, 1H).

MS (ESI) m/z 437 MH⁺

実施例167

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 00 (br s, 2H), 0. 35 (br s, 2H), 0. 74–0. 84 (m, 1H), 0. 87 (t, J=7.6 Hz, 3H), 0. 93 (d, J=7.4 Hz, 3H), 1. 08–1. 18 (m, 1H), 1. 31 (t, J=7.6 Hz, 3H), 1. 36–1. 60 (m, 2H), 2. 81 (q, J=7.6 Hz, 2H), 2. 84–3. 18 (m, 4H), 3. 86 (s, 3H), 6. 94 (d, J=8.8 Hz, 1H), 7. 07 (s, 1H), 7. 67 (d, J=8.8 Hz, 1H), 7. 91 (d, J=4.4 Hz, 1H), 8. 10 (d, J=4.8 Hz, 1H).

MS (ESI) m/z 427 MH^{\dagger}

実施例168

N-シクロプロピルメチル-N-[2-エチル-8-(2-メトキシ-4, 6-ジメチルフェニル) イミダゾ [1, 2-a] ピラジン-3-イル] -N-(2-メチルブチル) アミン

黄色油状物

¹H NMR (400MHz, CDCl₃) δ -0.01 (br s, 2H), 0.33 (br s, 2H), 0.74-0.84 (m, 1H), 0.87 (t, J = 7.2 Hz, 3H), 0.94 (d, J = 6.4 Hz, 3H), 1.06-1.16 (m, 1H), 1.25 (t, J = 7.6 Hz, 3H), 1.40-1.60 (m, 2H), 2.01 (s, 1H), 2.37 (s, 3H), 2.77 (q, J = 7.2 Hz, 2H), 2.80-3.18 (m, 4H), 3.69 (s, 3H), 6.68 (s,

1H), 6. 74 (s, 1H), 7. 90 (d, J = 4.4 Hz, 1H), 8. 07 (d, J = 4.8 Hz, 1H). MS (ESI) m/z 421 MH⁺

実施例169

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0.01 (br s, 2H), 0.34 (d, J = 7.8 Hz, 2H), 0.74-0.84 (m, 1H), 0.92 (t, J = 7.2 Hz, 3H), 1.25 (t, J = 7.6 Hz, 3H), 1.40-1.50 (m, 2H), 3.39 (s, 3H), 2.77 (q, J = 7.2 Hz, 2H), 2.86-3.02 (m, 2H), 3.15 (dd, J = 7.6, 7.6 Hz, 2H), 3.71 (s, 3H), 6.74 (s, 1H), 6.94 (s, 1H), 7.91 (d, J = 4.4 Hz, 1H), 8.09 (d, J = 4.4 Hz, 1H).

MS (ESI) m/z 413 MH^{\dagger}

実施例170

N-シクロプロピルメチルーN- [8-(2,6-i)メトキシー4-iメチルフェニル)-2-iエチルイミダゾ [1,2-a] ピラジンー[3-i] ロピルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0.00 (br s, 2H), 0.36 (br s, 2H), 0.78–0.88 (m, 1H), 0.92 (t, J=7.2 Hz, 3H), 1.25 (t, J=7.6 Hz, 3H), 1.40–1.50 (m, 2H), 2.41 (s, 3H), 2.77 (q, J=7.2 Hz, 2H), 2.94 (d, J=6.8 Hz, 2H), 3.15 (t, J=7.2 Hz, 2H), 3.70 (s, 6H), 6.51 (s, 2H), 7.91 (d, J=4.8 Hz, 1H), 8.04 (d, J=4.4 Hz, 1H).

MS (FAB) m/z 409 MH^{\dagger}

実施例171

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 00 (br s, 2H), 0. 36 (d, J = 8. 1 Hz, 2H), 0. 76–0. 86 (m, 1H), 0. 91 (t, J = 7. 6 Hz, 3H), 1. 31 (t, J = 7. 6 Hz, 3H), 1. 38–1. 48 (m, 2H), 2. 81 (q, J = 7. 6 Hz, 2H), 2. 96 (d, J = 6. 8 Hz, 2H), 3. 16 (t, J = 7. 2 Hz, 2H), 3. 87 (s, 3H), 6. 95 (dd, J = 2. 4, 8. 8 Hz, 1H), 7. 08 (d, J = 2. 4 Hz, 1H), 7. 67 (d, J = 8. 4 Hz, 1H), 7. 91 (d, J = 4. 4 Hz, 1H), 8. 09 (d, J = 4. 4 Hz, 1H).

MS (FAB) m/z 399 MH^+

実施例172

N-シクロプロピルメチル-N- [2-エチル-8-(2-メトキシ-4, 6 -ジメチルフェニル) イミダゾ [1, 2-a] ピラジン-3-イル] -N-プロピルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 00 (br s, 2H), 0. 36 (d, J = 8. 4 Hz, 2H), 0. 80–0. 90 (m, 1H), 0. 95 (t, J = 7. 2 Hz, 3H), 1. 27 (t, J = 7. 6 Hz, 3H), 1. 42–1. 52 (m, 2H), 2. 04 (s, 3H), 2. 39 (s, 3H), 2. 79 (q, J = 7. 2 Hz, 2H), 2. 88–3. 06 (m, 2H), 3. 18 (t, J = 7. 2 Hz, 2H), 3. 71 (s, 3H), 6. 71 (s, 1H), 6. 76 (s, 1H), 7. 93 (d, J = 4. 8 Hz, 1H), 8. 08 (d, J = 4. 8 Hz, 1H).

 $MS (FAB) m/z 393 MH^{\dagger}$

実施例173

N- [8-(2-クロロ-6-メトキシー4-メチルフェニル) -2-エチルイミダゾ [1, 2-a] ピラジン-3-イル] -N, N-ジイソブチルアミン 黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 95 (d, J = 6.4 Hz, 6H), 1. 27 (t, J = 7.6 Hz, 3H), 1. 52–1. 66 (m, 2H), 2. 40 (s, 3H), 2. 82 (q, J = 7.6 Hz, 2H), 2. 89 (d, J = 6.8 Hz, 4H), 3. 73 (s, 3H), 6. 76 (s, 1H), 6. 95 (s, 1H), 7. 96 (d, J = 4.4 Hz, 1H), 8. 10 (d, J = 4.8 Hz, 1H).

実施例174

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 10-0. 05 (m, 2H), 0. 32-0. 24 (m, 2H), 0. 78-0. 92 (m, 1H), 1. 01 (d, J = 6.4 Hz, 6H), 1. 34 (t, J = 7.2 Hz, 3H), 1. 64-1. 76 (m, 1H), 2. 45 (s, 3H), 2. 45 (s, 3H), 2. 89 (q, J = 7.2 Hz, 2H), 2. 89-3. 04 (m, 2H), 3. 06 (d, J = 8.8 Hz, 2H), 3. 79 (s, 3H), 6. 82 (s, 1H), 7. 01 (s, 1H), 8. 05 (br s, 1H), 8. 22 (d, J = 4.4 Hz, 1H).

実施例175

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 90 (t, J=7.6 Hz, 3H), 1. 30 (t, J=7.6 Hz, 3H), 1. 45 (q, J=7.6 Hz, 2H), 1. 72– 1. 86 (m, 2H), 2. 80 (q, J=7.6 Hz, 2H), 3. 09 (t, J=7.6 Hz, 2H), 3. 30 (t, J=7.2 Hz, 2H), 3. 86 (s, 3H), 4. 45 (t, J=5.6 Hz, 1H), 4. 56 (t, J=5.6 Hz, 1H), 6. 98 (dd, J=2.4, 8. 0 Hz, 1H), 7. 27 (s, 1H), 7. 63 (d, J=8.4 Hz, 1H), 7. 92 (d, J=4.8 Hz, 1H), 7. 99 (d, J=4.4 Hz, 1H).

実施例176

 $N-[8-(2-2\pi -6-x+2-4-x+2)-2-2]$ $N-[8-(2-2\pi -6-x+2-4-x+2)-2-2]$ $N-[8-(2-2\pi -6-x+2-4-x+2)-2-2]$ $N-[8-(2-2\pi -6-x+2-4-x+2)]$ $N-[8-(2-2\pi -6-x+2-4-x+2)]$ $N-[8-(2-2\pi -6-x+2-4-x+2)]$ $N-[8-(2-2\pi -6-x+2-4-x+2)]$ $N-[8-(2-2\pi -6-x+2-4-x+2)]$ $N-[8-(2-2\pi -6-x+2-x+2)]$ $N-[8-(2\pi -6-x+2-x+2)]$

白色結晶

¹H NMR (400MHz, CDC1₃) $\cdot \delta$ 0. 90 (t, J = 7.2 Hz, 3H), 1. 25 (t, J = 7.6 Hz, 3H), 1. 40–1. 50 (m, 2H), 1. 72–1. 86 (m, 2H), 2. 38 (s, 3H), 2. 78 (q, J = 7.2 Hz, 2H), 3. 08 (t, J = 7.6 Hz, 2H), 3. 29 (t, J = 7.6 Hz, 2H), 3. 71 (s, 3H),

4. 45 (t, J = 5.6 Hz, 1H), 4. 56 (t, J = 5.6 Hz, 1H), 6. 74 (s, 1H), 6. 94 (s, 1H), 7. 93 (d, J = 4.4 Hz, 1H), 7. 99 (d, J = 4.4 Hz, 1H).

実施例177

N, N-ジシクロプロピルメチル-N-[8-(2, 4-ジブロモフェニル) -2-エチルイミダゾ [1, 2-a] ピラジン-3-イル] アミン 黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0.00 (br s, 4H), 0.33 (d, J=7.6 Hz, 4H), 0.72-0.82 (m, 2H), 1.28 (t, J=7.2 Hz, 3H), 2.77 (q, J=7.6 Hz, 2H), 3.01 (d, J=7.2 Hz, 4H), 7.53 (d, J=8.0 Hz, 1H), 7.57 (d, J=8.0 Hz, 1H), 7.86 (s, 1H), 7.90 (d, J=4.8 Hz, 1H), 8.16 (d, J=4.4 Hz, 1H).

実施例178

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0.00 (br s, 4H), 0.33 (d, J = 8.4 Hz, 4H), 0.76-0.86 (m, 2H), 1.25 (t, J = 7.6 Hz, 3H), 2.37 (s, 3H), 2.76 (t, J = 7.6 Hz, 2H), 2.92-3.12 (m, 4H), 3.69 (s, 3H), 6.77 (s, 1H), 7.11 (s, 1H), 7.91 (d, J = 4.4 Hz, 1H), 8.14 (d, J = 4.8 Hz, 1H).

実施例179

¹H NMR · (400MHz, CDC1₃) δ 0. 00 (br s, 4H), 0. 33 (d, J = 7.6 Hz, 4H), 0. 72-0. 84 (m, 2H), 1. 28 (t, J = 7.6 Hz, 3H), 2. 76 (q, J = 7.6 Hz, 2H), 3. 01 (d, J = 7.2 Hz, 4H), 3. 83 (s, 3H), 6. 96 (dd, J = 2.4, 8. 4 Hz, 1H), 7. 23 (s, 1H), 7. 61 (d, J = 8.4 Hz, 1H), 7. 88 (d, J = 4.8 Hz, 1H), 8. 13 (d, J = 4.4 Hz, 1H).

MS (ESI) m/z 455 MH^{+}

実施例180

N, N-ジシクロプロピルメチル-N-[8-(2, 4-ジクロロ-6-メトキシフェニル) -2-エチルイミダゾ<math>[1, 2-a]ピラジン-3-イル]アミン

黄色油状物

'H NMR (400MHz, CDCl₃) δ 0.00 (br s, 4H), 0.34 (d, J = 7.4 Hz, 4H), 0.76-0.86 (m, 2H), 1.25 (t, J = 7.6 Hz, 3H), 2.76 (q, J = 7.6 Hz, 2H), 2.96-3.08 (m, 4H), 3.71 (s, 3H), 6.92 (d, J = 1.6 Hz, 1H), 7.13 (d, J = 2.0 Hz, 1H), 7.91 (d, J = 4.8 Hz, 1H), 8.16 (d, J = 4.8 Hz, 1H). 実施例 1.8.1

N-[8-(2-7) - 4, 6-9)メチルフェニル)-2-xチルイミダゾ [1, 2-a] ピラジン-3-4ル] -N, N-9シクロプロピルメチルアミン

黄色油状物

 1 H NMR (400MHz, CDC1₃) δ -0.40-0.40 (m, 4H), 0.38 (d, J = 8.0 Hz, 4H), 0.78-0.88 (m, 2H), 1.30 (t, J = 7.6 Hz, 3H), 2.07 (s, 3H), 2.35 (s, 3H), 2.89 (q, J = 7.6 Hz, 2H), 2.98-3.16 (m, 4H), 7.10 (s, 1H), 7.35 (s, 1H), 8.35 (d, J = 4.8 Hz, 1H), 8.40 (d, J = 4.8 Hz, 1H).

実施例182

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 30-0. 40 (m, 2H), 0. 36-0. 46 (m, 2H), 0. 82-0. 92 (m, 1H), 1. 01 (t, J = 7. 2 Hz, 3H), 1. 38 (t, J = 7. 6 Hz, 3H), 1. 54-1. 62 (m, 2H), 2. 16 (s, 3H), 2. 43 (s, 3H), 2. 98 (q, J = 7. 6 Hz, 2H), 3. 00-3. 16 (m, 2H), 3. 25 (t, J = 7. 2 Hz, 2H), 7. 18 (s, 1H), 7. 44 (s, 1H), 8. 40 (d, J = 4. 4

Hz, 1H), 8.42 (d, J = 4.8 Hz, 1H).

実施例183

N-[8-(2, 4-i)] ロモフェニル)-2-i エチルイミダゾ [1, 2-a] ピラジン-3-i ルージイソブチルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 95 (d, J = 6.8 Hz, 12H), 1. 29 (t, J = 7.6 Hz, 3H), 1. 56–1. 64 (m, 2H), 2. 80 (q, J = 8.0 Hz, 2H), 2. 99 (d, J = 6.4 Hz, 4H), 7. 55 (d, J = 8.0 Hz, 1H), 7. 57 (d, J = 8.0 Hz, 1H), 7. 89 (s, 1H), 7. 93 (d, J = 4.4 Hz, 1H), 8. 11 (d, J = 4.4 Hz, 1H).

実施例184

黄色油状物

¹H NMR(400MHz,CDCl₃) δ 0.00(br s,4H),0.32(d,J=7.6 Hz,4H),0.70-0.82(m,2H),1.30(t,J=7.6 Hz,3H),2.02(s,6H),2.77(q,J=7.6 Hz,2H),2.99(d,J=7.2 Hz,4H),3.74(s,3H),5.91(s,2H),6.94(s,1H),8.82(s,1H),7.89(d,J=4.4 Hz,1H),8.13(d,J=4.4 Hz,1H).实施例 1.85

N3, N3-ジシクロプロピルメチル-8-(4-アミノ-5-クロロ-2-4)メトキシフェニル) <math>-2-エチルイミダゾ $\begin{bmatrix} 1 & 2-a \end{bmatrix}$ ピラジン-3-アミン

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 00 (br s, 4H), 0. 32 (d, J = 7.2 Hz, 4H), 1. 72–1. 80 (m, 2H), 1. 29 (t, J = 7.6 Hz, 3H), 2. 75 (q, J = 7.2 Hz, 2H), 2. 97 (d, J = 6.8 Hz, 4H), 3. 73 (s, 3H), 4. 20 (br s, 2H), 6. 41 (s, 1H), 7. 62 (s, 1H), 7. 83 (d, J = 4.4 Hz, 1H), 8. 03 (d, J = 4.4 Hz, 1H).

MS (ESI) m/z 426 MH+

実施例186

N-8-[2-D - 4-(-1)] - 2-x N-8-[2-D - 4-(-1)] - 2-x

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 04-0. 04 (m, 4H), 0. 30-0. 36 (m, 4H), 0. 72-0. 82 (m, 2H), 1. 27 (t, J = 7. 6 Hz, 3H), 2. 76 (q, J = 7. 6 Hz, 2H), 3. 01 (d, J = 6. 8 Hz, 4H), 7. 24 (dd, J = 2. 0, 7. 6 Hz, 1H), 7. 38 (d, J = 2. 0 Hz, 1H), 7. 73 (d, J = 8. 4 Hz, 1H), 7. 90 (d, J = 4. 4 Hz, 1H), 8. 17 (d, J = 4. 4 Hz, 1H).

実施例187

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 04-0. 04 (m, 4H), 0. 28-0. 38 (m, 4H), 0. 70-0. 82 (m, 2H), 1. 26 (t, J = 7. 6 Hz, 3H), 2. 76 (q, J = 7. 6 Hz, 2H), 3. 00 (d, J = 7. 2 Hz, 4H), 7. 62 (d, J = 8. 0 Hz, 1H), 7. 77 (s, 1H), 7. 80 (d, J = 8. 4 Hz, 1H), 7. 91 (d, J = 4. 4 Hz, 1H), 8. 19 (d, J = 4. 4 Hz, 1H).

以下実施例188乃至実施例195は実施例8と同様にして合成した。

実施例188

N-[8-(2, 4-ジクロロフェニル) - 2-エチル-6-メトキシイミダゾ [1, 2-a] ピラジン-3-イル] - N, <math>N-ジプロピルアミン

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 89 (t, J = 7.3 Hz, 6H), 1. 29 (t, J = 7.5 Hz, 3H), 1. 43 (ddq, J = 7.3, 7. 3, 7. 3 Hz, 4H), 2. 76 (q, J = 7.5 Hz, 2H), 3. 05 (dd, J = 7.3, 7. 3 Hz, 4H), 3. 98 (s, 3H), 7. 38 (dd, J = 2.0, 8. 2 Hz, 1H), 7. 55 (d, J = 2.0 Hz, 1H), 7. 61 (s, 1H), 7. 78 (d, J = 8.2 Hz, 1H).

実施例189

N- [6-クロロ-2-エチル-8-(2-メトキシ-4, 6-ジメチルフェニル) イミダゾ <math>[1, 2-a] ピラジン-3-イル]-N, N-ジプロピルアミン

白色結晶

¹H NMR (400MHz, CDCl₃). δ 0. 90 (t, J = 7.3 Hz, 6H), 1. 24 (t, J = 7.5 Hz, 3H), 1. 44 (ddq, J = 7.3, 7. 3, 7. 3 Hz, 4H), 2. 05 (s, 3H), 2. 35 (s, 3H), 2. 75 (q, J = 7.5 Hz, 2H), 3. 06 (dd, J = 7.3, 7. 3 Hz, 4H), 3. 69 (s, 3H), 6. 66 (s, 1H), 6. 72 (s, 1H), 8. 01 (s, 1H).

実施例190

白色結晶

¹H NMR (400MHz, CDC1₃) δ -0.06-0.08 (m, 4H), 0.31-0.43 (m, 4H), 0.78-0.90 (m, 2H), 1.25 (t, J = 7.5 Hz, 3H), 2.03 (s, 3H), 2.35 (s, 3H), 2.74 (q, J = 7.5 Hz, 2H), 2.92-3.11 (m, 4H), 3.68 (s, 3H), 6.66 (s, 1H), 6.73 (s, 1H), 8.16 (s, 1H).

実施例191

淡黄色結晶

¹H NMR (400MHz, CDC1₃) δ -0. 11-0. 03 (m, 2H), 0. 28-0. 42 (m, 2H), 0. 77-0. 86 (m, 1H), 0. 92 (t, J = 7. 3 Hz, 3H), 1. 24 (t, J = 7. 5 Hz, 3H), 1. 45 (ddq, J = 7. 3, 7. 3, 7. 3 Hz, 2H), 2. 04 (s, 3H), 2. 35 (s, 3H), 2. 75 (q, J = 7. 5 Hz, 2H), 2. 86-3. 03 (m, 2H), 3. 14 (dd, J = 7. 3, 7. 3 Hz, 2H), 3. 68 (s, 3H), 6. 66 (s, 1H), 6. 72 (s, 1H), 8. 09 (s, 1H).

実施例192

 $N-[6-D \Box \Box -2- \Box + D \Box -8-(2- \Box + D \Box +2) -4, 6- \Box + B \Box + D \Box + B \Box$

白色結晶

¹H NMR (400MHz, CDC1₃) δ -0. 09-0. 05 (m, 2H), 0. 31-0. 44 (m, 2H), 0. 77-0. 88 (m, 1H), 1. 25 (t, J = 7. 5 Hz, 3H), 1. 74-1. 90 (m, 2H), 2. 04 (s, 3H), 2. 36 (s, 3H), 2. 76 (q, J = 7. 5 Hz, 2H), 2. 88-3. 05 (m, 2H), 3. 32-3. 40 (m, 2H), 3. 68 (s, 3H), 4. 44-4. 50 (m, 1H), 4. 56-4. 62 (m, 1H), 6. 67 (s, 1H), 6. 73 (s, 1H), 8. 07 (s, 1H).

実施例193

N-[6-D - 8-(2-D - 4-X)++ y - 2-x - N-(4-y - 4-x - 4

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 03-0. 08 (m, 2H), 0. 35-0. 45 (m, 2H), 0. 76-0. 87 (m, 1H), 1. 31 (t, J = 7.5 Hz, 3H), 1. 72-1. 88 (m, 2H), 2. 80 (q, J = 7.5 Hz, 2H), 2. 93-3. 00 (m, 2H), 3. 33-3. 41 (m, 2H), 3. 86 (s, 3H), 4. 43-4. 49 (m, 1H), 4. 55-4. 62 (m, 1H), 6. 94 (dd, J = 2.6, 8. 6 Hz, 1H), 7. 07 (d, J = 2.6 Hz, 1H), 7. 67 (d, J = 8.6 Hz, 1H), 8. 10 (s, 1H).

実施例194

N-[6-DDD-8-(2-DDD-4-X++)] -2-X++ -2-X++

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 91 (t, J = 7.3 Hz, 3H), 1. 30 (t, J = 7.5 Hz, 3H), 1. 45 (ddq, J = 7.3, 7. 3, 7. 3 Hz, 2H), 1. 72–1. 88 (m, 2H), 2. 79 (q, J = 7.5 Hz, 2H), 3. 08 (dd, J = 7.3, 7. 3 Hz, 2H), 3. 25–3. 33 (m, 2H), 3. 86 (s,

3H), 4.42-4.48 (m, 1H), 4.53-4.60 (m, 1H), 6.94 (dd, J = 2.6, 8.6 Hz, 1H), 7.07 (d, J = 2.6 Hz, 1H), 7.67 (d, J = 8.6 Hz, 1H), 8.02 (s, 1H). 実施例195

黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 98-1. 05 (m, 6H), 1. 30 (t, J = 7. 5 Hz, 3H), 1. 42-1. 54 (m, 4H), 2. 78 (q, J = 7. 5 Hz, 2H), 2. 86 (br s, 1H), 2. 91-3. 00 (m, 1H), 3. 86 (s, 3H), 6. 93 (dd, J = 2. 6, 8. 6 Hz, 1H), 7. 06 (d, J = 2. 6 Hz, 1H), 7. 65 (d, J = 8. 6 Hz, 1H), 7. 97 (s, 1H).

実施例196

 $N-[8-(2-D_{1}-4-y_{1}+2)_{1}-2-(y_{1}+y_{1})_{1}-2-(y_{1}+y_{1}$

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 89 (t, J=7.3 Hz, 6H), 1. 41 (ddq, J=7.3, 7. 3, 7. 3 Hz, 4H), 2. 60 (s, 3H), 3. 10 (dd, J=7.3, 7. 3 Hz, 4H), 3. 88 (s, 3H), 6. 94 (dd, J=2.6, 8. 6 Hz, 1H), 7. 08 (d, J=2.6 Hz, 1H), 7. 71 (d, J=8.6 Hz, 1H), 7. 93 (d, J=4.4 Hz, 1H), 7. 98 (d, J=4.4 Hz, 1H).

以下、実施例197乃至実施例260までは実施例196と同様に合成した。 実施例197

Nー [8-.(2-メトキシー4, 6-ジメチルフェニル) <math>-2-(メチルスルファニル) イミダゾ [1, 2-a] ピラジン-3-イル] -N, N-ジプロピルアミン

白色結晶

'H NMR (400MHz, CDC1₃) δ 0.89 (t, J = 7.3 Hz, 6H), 1.41 (ddq, J = 7.3, 7.3, 7.3 Hz, 4H), 2.04 (s, 3H), 2.38 (s, 3H), 2.53 (s, 3H), 3.10 (dd, J

= 7. 3, 7. 3 Hz, 4H), 3. 70 (s, 3H), 6. 68 (s, 1H), 6. 74 (s, 1H), 7. 91 (d, J) = 4. 6 Hz, 1H), 7. 96 (d, J = 4. 6 Hz, 1H).

実施例198

N-イソブチル-N-[8-(2-メトキシ-4, 6-ジメチルフェニル)-2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピラジン-3-イル]-N-プロピルアミン

淡黄色結晶

¹H NMR (400MHz, CDCl₃) δ 0. 84-0. 97 (m, 9H), 1. 37-1. 48 (m, 2H), 1. 52-1. 68 (m, 1H), 2. 04 (s, 3H), 2. 38 (s, 3H), 2. 53 (s, 3H), 2. 91-3. 10 (m, 4H), 3. 70 (s, 3H), 6. 68 (s, 1H), 6. 74 (s, 1H), 7. 92 (d, J = 4. 6 Hz, 1H), 7. 98 (d, J = 4. 6 Hz, 1H).

実施例199

淡黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J=7.5 Hz, 3H), 0. 93 (d, J=6.8 Hz, 6H), 1. 43 (ddq, J=7.5, 7. 5, 7. 5 Hz, 2H), 1. 58 (tqq, J=7.1, 6. 8, 6. 8 Hz, 1H), 2. 60 (s, 3H), 2. 98 (d, J=7.1 Hz, 2H), 3. 05 (dd, J=7.5, 7. 5 Hz, 2H), 3. 88 (s, 3H), 6. 94 (dd, J=2.6, 8. 6 Hz, 1H), 7. 08 (d, J=2.6 Hz, 1H), 7. 71 (d, J=8.6 Hz, 1H), 7. 93 (d, J=4.6 Hz, 1H), 7. 99 (d, J=4.6 Hz, 1H).

実施例200

N-[8-(2,6-i)] N-(3-4-i) N-(3-4-i)

黄緑油状物

¹H NMR (400MHz, CDCl₃) δ 0.89 (t, J = 7.3 Hz, 6H), 1.41 (ddq, J = 7.3,

7. 3, 7. 3 Hz, 4H), 2. 42 (s, 3H), 2. 53 (s, 3H), 3. 09 (dd, J = 7. 3, 7. 3 Hz, 4H), 3. 71 (s, 6H), 6. 50 (s, 2H), 7. 92 (d, J = 4. 6 Hz, 1H), 7. 93 (d, J = 4. 6 Hz, 1H).

実施例201

N-[8-(2, 4-ジメトキシフェニル) - 2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピラジン-3-イル]-N, N-ジプロピルアミン

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0.88 (t, J=7.3 Hz, 6H), 1.40 (ddq, J=7.3, 7.3, 7.3 Hz, 4H), 2.60 (s, 3H), 3.09 (dd, J=7.3, 7.3 Hz, 4H), 3.83 (s, 3H), 3.88 (s, 3H), 6.62 (dd, J=2.2, 9.0 Hz, 1H), 6.63 (d, J=2.2 Hz, 1H), 7.70 (d, J=9.0 Hz, 1H), 7.90 (d, J=4.6 Hz, 1H).

実施例202

N-[8-(2,4-i)] + 2-6-i メチルフェニル)-2-(メチルスルファニル)-2-(メチルスルファニル)-2-(メチルスルファニル)-2-(メチルスルファニン)-2-(オルファニン)-2-(オルファニ

淡黄色結晶

¹H NMR (400MHz, CDCl₃) δ 0. 90 (t, J = 7.5 Hz, 6H), 1. 42 (ddq, J = 7.5, 7. 5, 7. 5 Hz, 4H), 2. 08 (s, 3H), 2. 54 (s, 3H), 3. 11 (dd, J = 7.5, 7. 5 Hz, 4H), 3. 69 (s, 3H), 3. 86 (s, 3H), 6. 44 (s, 1H), 6. 46 (s, 1H), 7. 91 (d, J = 4.6 Hz, 1H), 7. 96 (d, J = 4.6 Hz, 1H).

実施例203

N, N-ジシクロプロピルメチル-N-[8-(2-メトキシ-4,6-ジメチルフェニル)-2-(メチルスルファニル)イミダゾ<math>[1,2-a]ピラジン-3-4ル]アミン

白色結晶

'H NMR (400MHz, CDC1₃) δ -0.06-0.06 (m, 4H), 0.22-0.36 (m, 4H), 0.75-0.85 (m, 2H), 2.03 (s, 3H), 2.38 (s, 3H), 2.53 (s, 3H), 2.97-3.12 (m, 4H), 3.69

(s, 3H), 6.68 (s, 1H), 6.75 (s, 1H), 7.92 (d, J = 4.6 Hz, 1H), 8.12 (d, J = 4.6 Hz, 1H).

実施例204

黄色油状物

¹H NMR (400MHz, CDCl₃) δ -0. 02-0. 06 (m, 4H), 0. 26-0. 35 (m, 4H), 0. 72-0. 83 (m, 2H), 2. 61 (s, 3H), 3. 00-3. 07 (m, 4H), 3. 88 (s, 3H), 6. 94 (dd, J = 2. 6, 8. 6 Hz, 1H), 7. 08 (d, J = 2. 6 Hz, 1H), 7. 71 (d, J = 8. 6 Hz, 1H), 7. 93 (d, J = 4. 6 Hz, 1H), 8. 15 (d, J = 4. 6 Hz, 1H).

実施例205

淡黄色結晶

¹H NMR (400MHz, CDC1₃) δ -0. 15-0. 00 (m, 2H), 0. 20-0. 34 (m, 2H), 0. 72-0. 84 (m, 1H), 0. 91 (t, J = 7.3 Hz, 3H), 1. 42 (ddq, J = 7.3, 7. 3, 7. 3 Hz, 2H), 2. 03 (s, 3H), 2. 38 (s, 3H), 2. 53 (s, 3H), 2. 90-3. 04 (m, 2H), 3. 18 (dd, J = 7.3, 7. 3 Hz, 2H), 3. 69 (s, 3H), 6. 69 (s, 1H), 6. 74 (s, 1H), 7. 92 (d, J = 4.6 Hz, 1H), 8. 05 (d, J = 4.6 Hz, 1H).

実施例206

黄色油状物

¹H NMR (400MHz, CDCl₃) δ -0.05-0.03 (m, 2H), 0.28-0.35 (m, 2H), 0.71-0.82 (m, 1H), 0.90 (t, J = 7.3 Hz, 3H), 1.40 (ddq, J = 7.3, 7.3, 7.3 Hz, 2H),

2. 60 (s, 3H), 2. 94–3. 01 (m, 2H), 3. 18 (dd, J = 7.3, 7. 3 Hz, 2H), 3. 88 (s, 3H), 6. 94 (dd, J = 2.6, 8. 6 Hz, 1H), 7. 08 (d, J = 2.6 Hz, 1H), 7. 70 (d, J = 8.6 Hz, 1H), 7. 93 (d, J = 4.6 Hz, 1H), 8. 07 (d, J = 4.6 Hz, 1H).

N-シクロプロピルメチル-N-(3-フルオロプロピル)-N-[8-(2-メトキシ-4,6-ジメチルフェニル)-2-(メチルスルファニル)イミダゾ [1,2-a] ピラジン-3-イル] アミン

白色結晶

実施例207

¹H NMR (400MHz, CDC1₃) δ -0. 13-0. 02 (m, 2H), 0. 32-0. 48 (m, 2H), 0. 74-0. 85 (m, 1H), 1. 71-1. 87 (m, 2H), 2. 03 (s, 3H), 2. 39 (s, 3H), 2. 54 (s, 3H), 2. 91-3. 07 (m, 2H), 3. 35-3. 45 (m, 2H), 3. 69 (s, 3H), 4. 46-4. 50 (m, 1H), 4. 56-4. 62 (m, 1H), 6. 69 (s, 1H), 6. 75 (s, 1H), 7. 93 (d, J = 4. 6 Hz, 1H), 8. 01 (d, J = 4. 6 Hz, 1H).

実施例208

 $N-[8-(2-D_{1}-4-\lambda_{1}+2)]$ $N-[8-(2-D_{1}-4-\lambda_{1}+2)]$

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 05-0. 05 (m, 2H), 0. 28-0. 38 (m, 2H), 0. 72-0. 85 (m, 1H), 1. 68-1. 85 (m, 2H), 2. 61 (s, 3H), 2. 96-3. 02 (m, 2H), 3. 35-3. 46 (m, 2H), 3. 88 (s, 3H), 4. 43-4. 48 (m, 1H), 4. 54-4. 60 (m, 1H), 6. 94 (dd, J = 2. 6, 8. 6 Hz, 1H), 7. 08 (d, J = 2. 6 Hz, 1H), 7. 70 (d, J = 8. 6 Hz, 1H), 7. 94 (d, J = 4. 6 Hz, 1H), 8. 04 (d, J = 4. 6 Hz, 1H).

実施例209

N, N-ジシクロプロピルメチル-N-[8-(2,6-ジメトキシ-4-メチルフェニル)-2-(メチルスルファニル)イミダゾ<math>[1,2-a]ピラジン-3-4-1アミン

白色結晶

¹H NMR (400MHz, CDC1₃) δ -0. 06-0. 08 (m, 4H), 0. 24-0. 38 (m, 4H), 0. 73-0. 86 (m, 2H), 2. 42 (s, 3H), 2. 53 (s, 3H), 3. 00-3. 08 (m, 4H), 3. 70 (s, 6H), 6. 50 (s, 2H), 7. 93 (d, J = 4. 5 Hz, 1H), 8. 10 (d, J = 4. 5 Hz, 1H).

実施例210

N-シクロプロピルメチル-N-[8-(2,6-i)メトキシー4-メチルフェニル) -2-(メチルスルファニル) イミダゾ[1,2-a] ピラジン-3-イル[-N-プロピルアミン

白色結晶

¹H NMR (400MHz, CDC1₃) δ -0. 07-0. 00 (m, 2H), 0. 27-0. 34 (m, 2H), 0. 73-0. 84 (m, 1H), 0. 91 (t, J = 7. 5 Hz, 3H), 1. 41 (ddq, J = 7. 5, 7. 5, 7. 5 Hz, 2H), 2. 42 (s, 3H), 2. 53 (s, 3H), 2. 93-3. 00 (m, 2H), 3. 18 (dd, J = 7. 5, 7. 5 Hz, 2H), 3. 70 (s, 3H), 6. 50 (s, 2H), 7. 92 (d, J = 4. 6 Hz, 1H), 8. 02 (d, J = 4. 6 Hz, 1H).

実施例211

N-シクロプロピルメチル-N-[8-(2, 6-i)メトキシー4-iメチルフェニル)-2-(メチルスルファニル)イミダゾ[1, 2-a]ピラジン-3-i

白色結晶

¹H NMR (400MHz, CDC1₃) δ -0. 06-0. 03 (m, 2H), 0. 28-0. 37 (m, 2H), 0. 74-0. 85 (m, 1H), 1. 70-1. 86 (m, 2H), 2. 42 (s, 3H), 2. 54 (s, 3H), 2. 95-3. 01 (m, 2H), 3. 36-3. 45 (m, 2H), 3. 70 (s, 3H), 4. 43-4. 49 (m, 1H), 4. 55-4. 61 (m, 1H), 6. 51 (s, 2H), 7. 94 (d, J = 4. 6 Hz, 1H), 7. 99 (d, J = 4. 6 Hz, 1H).

実施例212

淡黄色結晶

¹H NMR (400MHz, CDCl₃) δ -0.13-0.02 (m, 2H), 0.22-0.37 (m, 2H), 0.73-0.84

(m, 1H), 1.71-1.87 (m, 2H), 2.41 (s, 3H), 2.54 (s, 3H), 2.92-3.06 (m, 2H), 3.37-3.46 (m, 2H), 3.72 (s, 3H), 4.43-4.50 (m, 1H), 4.56-4.62 (m, 1H), 6.75 (s, 1H), 6.95 (s, 2H), 7.95 (d, J = 4.6 Hz, 1H), 8.04 (d, J = 4.6 Hz, 1H). 実施例 2 1 3

N-[8-(2-70+4-4-4)++27+2] N-[8-(2-70+4-4)+27+2] N-[8-(2-70+4-4)+27+2]

淡黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 06-0. 03 (m, 2H), 0. 28-0. 37 (m, 2H), 0. 73-0. 85 (m, 1H), 1. 69-1. 85 (m, 2H), 2. 61 (s, 3H), 2. 97-3. 02 (m, 2H), 3. 37-3. 45 (m, 2H), 3. 87 (s, 3H), 4. 42-4. 48 (m, 1H), 4. 54-4. 61 (m, 1H), 6. 99 (dd, J = 2. 6, 8. 6 Hz, 1H), 7. 27 (d, J = 2. 6 Hz, 1H), 7. 66 (d, J = 8. 6 Hz, 1H), 7. 94 (d, J = 4. 6 Hz, 1H), 8. 04 (d, J = 4. 6 Hz, 1H).

実施例214

白色結晶

¹H NMR (400MHz, CDC1₃) δ -0. 03-0. 06 (m, 4H), 0. 26-0. 36 (m, 4H), 0. 73-0. 86 (m, 2H), 2. 54 (s, 3H), 3. 00-3. 08 (m, 4H), 3. 70 (s, 6H), 3. 88 (s, 3H), 6. 25 (s, 2H), 7. 92 (d, J = 4. 6 Hz, 1H), 8. 09 (d, J = 4. 6 Hz, 1H).

実施例215

 $N-[8-(2-\rho \Box \Box -6- \lor + + \lor -4- \lor + \lor T)]$ $-2-(\lor + \lor T)$ $-2-(\lor$

淡黄色結晶

 1 H NMR (400MHz, CDC1₃) δ -0.08-0.06 (m, 4H), 0.23-0.36 (m, 4H), 0.73-0.85 (m, 2H), 2.41 (s, 3H), 2.54 (s, 3H), 2.98-3.12 (m, 4H), 3.71 (s, 3H), 6.75

(s, 1H), 6.95 (s, 2H), 7.94 (d, J = 4.6 Hz, 1H), 8.15 (d, J = 4.6 Hz, 1H). 実施例 2 1 6

N-シクロプロピルメチルーN-イソブチルーN- [2 - (メチルスルファニル) -8 - (2, 4, 6 - トリメトキシフェニル) イミダゾ [1, 2 - a] ピラジン-3 - イル] アミン

淡黄色結晶

¹H NMR (400MHz, CDC1₃) δ -0. 11--0. 01 (m, 2H), 0. 25-0. 35 (m, 2H), 0. 73-0. 85 (m, 1H), 0. 94 (d, J = 6. 6 Hz, 6H), 1. 61 (tqq, J = 7. 0, 6. 6, 6. 6 Hz, 1H), 2. 54 (s, 3H), 2. 89-2. 96 (m, 2H), 3. 03 (d, J = 7. 0 Hz, 2H), 3. 70 (s, 6H), 3. 88 (s, 3H), 6. 25 (s, 2H), 7. 91 (d, J = 4. 6 Hz, 1H), 8. 04 (d, J = 4. 6 Hz, 1H).

実施例217

N-シクロプロピルメチルーN-[8-(2,6-i)]メトキシー4-iメチルフェニル)-2-(i)メチルスルファニル)イミダゾ[1,2-a]ピラジン-3-イル[-N-i]

白色結晶

¹H NMR (400MHz, CDC1₃) δ -0. 11- -0. 02 (m, 2H), 0. 25-0. 34 (m, 2H), 0. 72-0. 82 (m, 1H), 0. 94 (d, J = 6. 8 Hz, 6H), 1. 61 (tqq, J = 7. 0, 6. 8, 6. 8 Hz, 1H), 2. 42 (s, 3H), 2. 53 (s, 3H), 2. 39-2. 45 (m, 2H), 3. 03 (d, J = 7. 0 Hz, 2H), 3. 70 (s, 6H), 6. 50 (s, 2H), 7. 92 (d, J = 4. 6 Hz, 1H), 8. 04 (d, J = 4. 6 Hz, 1H).

実施例218

N-シクロプロピルメチル-N-イソブチル-N-[8-(2-メトキシ-4,6-ジメチルフェニル)-2-(メチルスルファニル)イミダゾ [1,2-a] ピラジン-3-イル] アミン

白色結晶

¹H NMR (400MHz, CDC1₃) δ -0. 20- -0. 02 (m, 2H), 0. 18-0. 35 (m, 2H), 0. 73-0. 84 (m, 1H), 0. 95 (d, J = 6. 6 Hz, 6H), 1. 62 (tqq, J = 7. 0, 6. 6, 6. 6

Hz, 1H), 2. 03 (s, 3H), 2. 38 (s, 3H), 2. 53 (s, 3H), 2. 86–3. 01 (m, 2H), 3. 03 (d, J = 7.0 Hz, 2H), 3. 69 (s, 3H), 6. 69 (s, 1H), 6. 74 (s, 1H), 7. 92 (d, J = 4.4 Hz, 1H), 8. 07 (d, J = 4.4 Hz, 1H).

実施例219

 $N-[8-(2-D_{1}_{1}_{1}-4-++2)]$ $N-[8-(2-D_{1}_{1}_{1}-4-++2)]$ $N-[8-(2-D_{1}_{1}-4-++2)]$ $N-[8-(2-D_{1}_{1}-4-++2)]$ $N-[8-(2-D_{1}_{1}-4-++2)]$ $N-[8-(2-D_{1}_{1}-4-++2)]$ $N-[8-(2-D_{1}_{1}-4-++2)]$ $N-[8-(2-D_{1}_{1}-4-++2)]$ $N-[8-(2-D_{1}_{1}-4-++2)]$ $N-[8-(2-D_{1}_{1}-4-++2)]$ $N-[8-(2-D_{1}-4-++2)]$ $N-[8-(2-D_{1}-4-+2)]$ $N-[8-(2-D_{1}-4-+2)]$

淡黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0.08-0.00 (m, 2H), 0.28-0.36 (m, 2H), 0.72-0.83 (m, 1H), 0.94 (d, J = 6.6 Hz, 6H), 1.59 (tqq, J = 6.8, 6.6, 6.6 Hz, 1H), 2.60 (s, 3H), 2.91-2.97 (m, 2H), 3.04 (d, J = 6.8 Hz, 2H), 3.88 (s, 3H), 6.94 (dd, J = 2.6, 8.6 Hz, 1H), 7.08 (d, J = 2.6 Hz, 1H), 7.71 (d, J = 8.6 Hz, 1H), 7.93 (d, J = 4.6 Hz, 1H), 8.09 (d, J = 4.6 Hz, 1H).

実施例220

淡黄色油状物

¹H NMR (400MHz, CDCl₃) δ -0. 12- -0. 06 (m, 2H), 0. 21-0. 28 (m, 2H), 0. 72-0. 84 (m, 1H), 0. 92 (t, J=7.3 Hz, 3H), 1. 42 (ddq, J=7.3, 7. 3, 7. 3, 7. 3 Hz, 2H), 2. 06 (s, 6H), 2. 54 (s, 3H), 2. 95-3. 02 (m, 2H), 3. 19 (dd, J=7.3, 7. 3 Hz, 2H), 3. 84 (s, 3H), 6. 68 (s, 2H), 7. 91 (d, J=4.6 Hz, 1H), 8. 07 (d, J=4.6 Hz, 1H).

実施例221

淡黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0.04-0.02 (m, 2H), 0.26-0.34 (m, 2H), 0.72-0.83 (m, 1H), 0.90 (t, J=7.3, Hz, 3H), 1.40 (ddq, J=7.3, 7.3, 7.3, 7.3 Hz, 2H), 2.39 (s, 3H), 2.61 (s, 3H), 2.94-3.00 (m, 2H), 3.18 (dd, J=7.3, 7.3 Hz, 2H), 3.86 (s, 3H), 6.86 (d, J=9.2 Hz, 1H), 6.87 (s, 1H), 7.71 (d, J=9.2 Hz, 1H), 7.89 (d, J=4.4 Hz, 1H), 8.03 (d, J=4.4 Hz, 1H).

実施例222

N-シクロプロピルメチル-N-[8-(2-メトキシ-4-メチルフェニル)-2-(メチルスルファニル)イミダゾ[1, 2-a]ピラジン-3-4ル]-N-プロピルアミン

淡黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 03-0. 04 (m, 2H), 0. 29-0. 37 (m, 2H), 0. 71-0. 82 (m, 1H), 0. 90 (t, J = 7. 3 Hz, 3H), 1. 39 (ddq, J = 7. 3, 7. 3, 7. 3 Hz, 2H), 2. 43 (s, 3H), 2. 59 (s, 3H), 2. 93-2. 99 (m, 2H), 3. 17 (dd, J = 7. 3, 7. 3 Hz, 2H), 3. 83 (s, 3H), 6. 88 (s, 1H), 6. 90 (d, J = 7. 7 Hz, 1H), 7. 59 (d, J = 7. 7 Hz, 1H), 7. 91 (d, J = 4. 4 Hz, 1H), 8. 02 (d, J = 4. 4 Hz, 1H).

実施例223

淡黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 04-0. 06 (m, 2H), 0. 27-0. 38 (m, 2H), 0. 71-0. 82 (m, 1H), 0. 90 (t, J=7.5 Hz, 3H), 1. 39 (ddq, J=7.5, 7. 5, 7. 5 Hz, 2H), 2. 59 (s, 3H), 2. 93-3. 01 (m, 2H), 3. 17 (dd, J=7.5, 7. 5 Hz, 2H), 3. 83 (s, 3H), 7. 06 (d, J=1.8 Hz, 1H), 7. 08 (dd, J=1.8, 8. 1 Hz, 1H), 7. 64 (d, J=8.1 Hz, 1H), 7. 92 (d, J=4.4 Hz, 1H), 8. 05 (d, J=4.4 Hz, 1H).

実施例224

N-シクロプロピルメチル-N-[8-(2, 4-ジメトキシフェニル)-2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピラジン-3-4-1

ープロピルアミン

淡黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 03-0. 04 (m, 2H), 0. 29-0. 36 (m, 2H), 0. 71-0. 82 (m, 1H), 0. 89 (t, J = 7. 3 Hz, 3H), 1. 39 (ddq, J = 7. 3, 7. 3, 7. 3 Hz, 2H), 2. 60 (s, 3H), 2. 93-2. 99 (m, 2H), 3. 17 (dd, J = 7. 3, 7. 3 Hz, 2H), 3. 83 (s, 3H), 3. 88 (s, 3H), 6. 62 (s, 1H), 6. 63 (d, J = 8. 8 Hz, 1H), 7. 71 (d, J = 8. 8 Hz, 1H), 7. 91 (d, J = 4. 6 Hz, 1H), 8. 01 (d, J = 4. 6 Hz, 1H).

実施例 2 2 5

4 - [3 - [(シクロプロピルメチル) (プロピル) アミノ] - 2 - (メチルスルファニル) イミダゾ <math>[1, 2 - a] ピラジン-8 - 4ル] -3 - 4 メチルベンゾニトリル

淡黄色結晶

¹H NMR (400MHz, CDC1₃) δ -0.05-0.02 (m, 2H), 0.27-0.34 (m, 2H), 0.72-0.83 (m, 1H), 0.91 (t, J = 7.3 Hz, 3H), 1.40 (ddq, J = 7.3, 7.3, 7.3 Hz, 2H), 2.41 (s, 3H), 2.59 (s, 3H), 2.95-3.00 (m, 2H), 3.18 (dd, J = 7.3, 7.3 Hz, 2H), 7.61 (d, J = 7.9 Hz, 1H), 7.63 (s, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.94 (d, J = 4.6 Hz, 1H), 8.11 (d, J = 4.4 Hz, 1H).

実施例226

白色結晶

¹H NMR (400MHz, CDCl₃) δ 0. 99–1. 06 (m, 6H), 1. 44–1. 64 (m, 4H), 2. 54 (s, 3H), 3. 00–3. 10 (m, 1H), 3. 13 (br s, 1H), 3. 87 (s, 3H), 6. 94 (dd, J=2. 6, 8. 6 Hz, 1H), 7. 07 (d, J=2. 6 Hz, 1H), 7. 67 (d, J=8. 6 Hz, 1H), 7. 86 (d, J=4. 6 Hz, 1H), 7. 92 (d, J=4. 6 Hz, 1H).

実施例227

N-(1-エチルプロピル)-N-[8-(2-メトキシ-4,6-ジメチル

フェニル)-2-(メチルスルファニル)イミダゾ[1, 2-a]ピラジンー3-イル]アミン

淡黄色結晶

¹H NMR (400MHz, CDCl₃) δ 0.95–1.07 (m, 6H), 1.44–1.63 (m, 4H), 2.03 (s, 3H), 2.37 (s, 3H), 2.47 (s, 3H), 3.00–3.10 (m, 1H), 3.13 (br s, 1H), 3.68 (s, 3H), 6.68 (s, 1H), 6.74 (s, 1H), 7.84 (d, J = 4.6 Hz, 1H), 7.91 (d, J = 4.6 Hz, 1H).

実施例228

N-シクロプロピルメチルーN- [8 - (4 - メチルー1, 3 - ベンゾジオキソールー5 - イル) - 2 - (メチルスルファニル) イミダゾ [1, 2 - a] ピラジン-3 - イル] - N-プロピルアミン

淡黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 05-0. 02 (m, 2H), 0. 27-0. 34 (m, 2H), 0. 72-0. 83 (m, 1H), 0. 90 (t, J = 7.3 Hz, 3H), 1. 40 (ddq, J = 7.3, 7. 3, 7. 3 Hz, 2H), 2. 24 (s, 3H), 2. 62 (s, 3H), 2. 95-3. 00 (m, 2H), 3. 18 (dd, J = 7.3, 7. 3 Hz, 2H), 6. 03 (s, 2H), 6. 80 (d, J = 8.1 Hz, 1H), 7. 32 (d, J = 8.1 Hz, 1H), 7. 89 (d, J = 4.6 Hz, 1H), 8. 04 (d, J = 4.6 Hz, 1H).

実施例 2 2 9

N-シクロプロピルメチルーN- [8-(5-メチルー2, 3-ジハイドロー1, 4-ベンゾジオキシンー6-イル) -2-(メチルスルファニル) イミダゾ [1, 2-a] ピラジン-3-イル] -N-プロピルアミン

淡黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0.05-0.02 (m, 2H), 0.27-0.34 (m, 2H), 0.72-0.83 (m, 1H), 0.90 (t, J=7.5 Hz, 3H), 1.40 (ddq, J=7.5, 7.5, 7.5 Hz, 2H), 2.18 (s, 3H), 2.61 (s, 3H), 2.95-3.00 (m, 2H), 3.17 (dd, J=7.5, 7.5 Hz, 2H), 4.32 (br s, 4H), 6.84 (d, J=8.4 Hz, 1H), 7.21 (d, J=8.4 Hz, 1H), 7.89 (d, J=4.4 Hz, 1H), 8.04 (d, J=4.4 Hz, 1H).

実施例230

N-シクロプロピルメチルーN- [8-[2-メトキシー4-(トリフルオロメチル)フェニル] -2-(メチルスルファニル)イミダゾ [1, 2-a] ピラジン-3-イル] -N-プロピルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 02-0. 02 (m, 2H), 0. 30-0. 34 (m, 2H), 0. 72-0. 84 (m, 1H), 0. 91 (t, J = 7. 6 Hz, 3H), 1. 34-1. 44 (m, 2H), 2. 59 (s, 3H), 2. 98 (m, 1H), 3. 18 (t, J = 7. 6 Hz, 2H), 3. 88 (s, 3H), 7. 27 (s, 1H), 7. 36 (d, J = 8. 0 Hz, 1H), 7. 79 (d, J = 8. 0 Hz, 1H), 7. 94 (d, J = 4. 8 Hz, 1H), 8. 08 (d, J = 4. 8 Hz, 1H).

実施例231

N, N-ジシクロプロピルメチル-N-[8-[2-メトキシ-4-(トリフルオロメチル)フェニル]-2-(メチルスルファニル)イミダゾ<math>[1, 2-a]ピラジン-3-[3-[3]-[4]-[5

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0.00-0.02 (m, 4H), 0.26-0.32 (m, 4H), 0.70-0.80 (m, 2H), 2.57 (s, 3), 3.01 (d, J = 7.2 Hz, 4H), 3.84 (s, 3H), 7.24 (s, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 4.4 Hz, 1H), 8.13 (d, J = 4.4 Hz, 1H).

実施例232

N, N-ジシクロプロピルメチル-N-[8-[4-メトキシ-2-(トリフルオロメチル) フェニル] -2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピラジン-3-[3-[4-[4-[4-[4-[4]-[

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 04-0. 04 (m, 4H), 0. 24-0. 34 (m, 4H), 0. 74-0. 84 (m, 2H), 2. 57 (s, 3H), 0. 36 (d, J = 6. 8 Hz, 4H), 3. 93 (s, 3H), 7. 18 (dd, J = 2. 4, 8. 8 Hz, 1H), 7. 33 (d, J = 2. 4 Hz, 1H), 7. 72 (d, J = 8. 8 Hz, 1H), 7. 91 (d, J = 4. 4 Hz, 1H), 8. 16 (d, J = 4. 8 Hz, 1H).

実施例233

N, N-ジシクロプロピルメチル-N- [8-(2,4-ジメトキシフェニル) -2-(メチルスルファニル) イミダゾ [1,2-a] ピラジン-3-イル] アミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0.04-0.04 (m, 4H), 0.24-0.34 (m, 4H), 0.68-0.80 (m, 2H), 2.59 (s, 3H), 3.01 (d, J=7.2 Hz, 4H), 3.79 (s, 3H), 3.85 (s, 3H), 6.59 (s, 1H), 6.61 (dd, J=2.0, 8.0 Hz, 1H), 7.71 (dd, J=2.0, 7.6 Hz, 1H), 7.89 (d, J=4.4 Hz, 1H), 8.06 (d, J=4.4 Hz, 1H).

実施例 2 3 4

N-[8-(4-DDDD-2-X++) - 2-(X+) - 2-(X+

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 04-0. 06 (m, 4H), 0. 24-0. 36 (m, 4H), 0. 68-0. 80 (m, 2H), 2. 57 (s, 3H), 3. 01 (d, J = 6.8 Hz, 4H), 3. 80 (s, 3H), 7. 03 (s, 1H), 7. 06 (d, J = 8.0 Hz, 1H), 7. 63 (d, J = 8.0 Hz, 1H), 7. 90 (d, J = 4.4 Hz, 1H), 8. 11 (d, J = 4.4 Hz, 1H).

実施例235

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 04-0. 04 (m, 4H), 0. 22-0. 32 (m, 4H), 0. 70-0. 82 (m, 2H), 2. 36 (s, 3H), 2. 60 (s, 3H), 3. 02 (d, J = 6. 8 Hz, 4H), 3. 85 (s, 3H), 6. 82-6. 86 (m, 2H), 7. 71 (d, J = 9. 2 Hz, 1H), 7. 89 (d, J = 4. 4 Hz, 1H), 8. 10 (d, J = 4. 4 Hz, 1H).

実施例236

N, N-ジシクロプロピルメチル-N- $\left[8-\left(2-メトキシ-4-メチルフ\right]$

x=x=1) -2-(x+y) (メチルスルファニル) イミダゾ [1, 2-a] ピラジン-3 -4ル] アミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 04-0. 04 (m, 4H), 0. 24-0. 32 (m, 4H), 0. 68-0. 80 (m, 2H), 2. 41 (s, 3H), 2. 57 (s, 3H), 3. 00 (d, J = 6.8 Hz, 4H), 3. 79 (s, 3H), 6. 85 (s, 1H), 6. 88 (d, J = 7.6 Hz, 1H), 7. 58 (d, J = 7.6 Hz, 1H), 7. 90 (d, J = 4.4 Hz, 1H), 8. 07 (d, J = 4.4 Hz, 1H).

実施例237

N-[8-[2-DDDD-4-(トリフルオロメトキシ)フェニル]-2-(メチルスルファニル)イミダゾ<math>[1, 2-a]ピラジン-3-4ル]-N, N-ジシクロプロピルメチルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 04-0. 04 (m, 4H), 0. 22-0. 34 (m, 4H), 0. 70-0. 82 (m, 2H), 2. 59 (s, 3H), 3. 03 (d, J = 6.8 Hz, 4H), 7. 27 (d, J = 7.6 Hz, 1H), 7. 41 (s, 1H), 7. 78 (d, J = 7.6 Hz, 1H), 7. 94 (d, J = 4.4 Hz, 1H), 8. 18 (d, J = 4.4 Hz, 1H).

実施例238

N, N-ジシクロプロピルメチル-N-[8-(2, 4-ジクロロフェニル)-2-(メチルスルファニル) イミダゾ[1, 2-a] ピラジン-3-4ル]アミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 04-0. 04 (m, 4H), 0. 24-0. 32 (m, 4H), 0. 72-0. 80 (m, 2H), 2. 59 (s, 3H), 3. 03 (d, J = 6. 8 Hz, 4H), 7. 38 (dd, J = 2. 0, 8. 4 Hz, 1H), 7. 54 (d, J = 2. 0 Hz, 1H), 7. 69 (d, J = 8. 4 Hz, 1H), 7. 93 (d, J = 4. 4 Hz, 1H), 8. 17 (d, J = 4. 4 Hz, 1H).

実施例239

N-[8-(2-70+4-4-4)] - 2-(3+3) - 2-

ルメチルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 04-0. 04 (m, 4H), 0. 26-0. 30 (m, 4H), 0. 70-0. 80 (m, 2H), 2. 51 (s, 3H), 3. 03 (d, J = 6.8 Hz, 4H), 3. 86 (s, 3H), 6. 98 (dd, J = 2.4, 8. 8 Hz, 1H), 7. 25 (d, J = 2.4 Hz, 1H), 7. 66 (d, J = 8.4 Hz, 1H), 7. 92 (d, J = 4.4 Hz, 1H), 8. 15 (d, J = 4.8 Hz, 1H).

実施例240

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 03-0. 05 (m, 2H), 0. 33-0. 41 (m, 2H), 0. 78-0. 88 (m, 1H), 2. 18 (t, J = 5.3 Hz, 1H), 2. 62 (s, 3H), 3. 03-3. 08 (m, 2H), 3. 43 (t, J = 5.3 Hz, 2H), 3. 59 (dt, J = 5.3, 5. 3 Hz, 2H), 3. 88 (s, 3H), 6. 95 (dd, J = 2.6, 8. 6 Hz, 1H), 7. 08 (d, J = 2.6 Hz, 1H), 7. 69 (d, J = 8.6 Hz, 1H), 7. 96 (d, J = 4.6 Hz, 1H), 8. 04 (d, J = 4.6 Hz, 1H).

実施例241

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 04-0. 04 (m, 2H), 0. 26-0. 36 (m, 2H), 0. 72-0. 82 (m, 1H), 1. 64-1. 94 (m, 6H), 2. 24-2. 34 (m, 1H), 2. 63 (s, 3H), 2. 98 (d, J = 7. 2 Hz, 2H), 3. 24 (d, J = 7. 0 Hz, 2H), 3. 89 (s, 3H), 6. 96 (dd, J = 2. 8, 8. 8 Hz, 1H), 7. 10 (d, J = 2. 8 Hz, 1H), 7. 72 (d, J = 8. 4 Hz, 1H), 7. 94 (d, J = 4. 4 Hz, 1H), 8. 06 (d, J = 4. 4 Hz, 1H).

実施例242

N, N-ジシクロプロピルメチル-N-2-エチル-8-[2-メトキシ-4

- (トリフルオロメチル) フェニル] イミダゾ [1, 2-a] ピラジン-3-4

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 04-0. 02 (m, 4H), 0. 28-0. 34 (m, 2H), 0. 70-0. 82 (m, 1H), 1. 26 (t, J = 7. 6 Hz, 3H), 2. 76 (q, J = 7. 6 Hz, 2H), 2. 98 (d, J = 7. 2 Hz, 4H), 3. 81 (s, 3H), 7. 22 (d, J = 2. 0 Hz, 1H), 7. 32 (dd, J = 2. 0, 8. 4 Hz, 1H), 7. 71 (d, J = 7. 6 Hz, 1H), 7. 88 (d, J = 4. 4 Hz, 1H), 8. 12 (d, J = 4. 4 Hz, 1H).

実施例243

N3, N3-ジシクロプロピルメチル-8-[6-(ジメチルアミノ)-4-メチル-3-ピリジル]-2-(メチルスルファニル)イミダゾ [1, 2-<math>a] ピラジン-3-アミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 04-0. 04 (m, 4H), 0. 24-0. 32 (m, 4H), 0. 72-0. 82 (m, 2H), 2. 40 (s, 3H), 2. 62 (s, 3H), 3. 01 (d, J = 7. 2 Hz, 4H), 3. 13 (s, 6H), 6. 43 (s, 1H), 7. 86 (d, J = 4. 4 Hz, 1H), 8. 05 (d, J = 4. 4 Hz, 1H), 8. 70 (s, 1H).

実施例244

 $N-[8-(2-D_{1}-4-\lambda_{1}+2)]$ $N-[8-(2-D_{1}-4-\lambda_{1}+2)]$

黄色油状物

¹H NMR (400MHz, CDCl₃) δ -0.02-0.02 (m, 4H), 0.28-0.36 (m, 2H), 0.76-0.86 (m, 1H), 1.66-2.74 (m, 2H), 2.06 (s, 3H), 2.55 (t, J = 7.2 Hz, 2H), 2.63 (s, 3H), 2.99 (d, J = 7.2 Hz, 2H), 3.37 (t, J = 7.0 Hz, 2H), 3.89 (s, 3H), 6.96 (dd, J = 2.4, 8.8 Hz, 1H), 7.09 (d, J = 2.4 Hz, 1H), 7.72 (d, J = 8.8 Hz, 1H), 7.96 (d, J = 4.8 Hz, 1H), 8.06 (d, J = 4.4 Hz, 1H).

MS (ESI) m/z 426 MH+

実施例245

淡黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 09-0. 07 (m, 2H), 0. 17-0. 33 (m, 2H), 0. 60-0. 71 (m, 1H), 1. 49-1. 63 (m, 4H), 2. 62 (s, 3H), 3. 00-3. 09 (m, 2H), 3. 32-3. 46 (m, 4H), 3. 88 (s, 3H), 3. 87-4. 03 (m, 1H), 6. 95 (dd, J = 2. 6, 8. 6 Hz, 1H), 7. 08 (d, J = 2. 6 Hz, 1H), 7. 71 (d, J = 8. 6 Hz, 1H), 7. 94 (d, J = 4. 6 Hz, 1H), 8. 08 (d, J = 4. 6 Hz, 1H).

実施例246

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 03-0. 05 (m, 2H), 0. 34-0. 42 (m, 2H), 0. 78-0. 88 (m, 1H), 1. 16 (d, J = 6. 2 Hz, 3H), 2. 62 (s, 3H), 2. 92 (dd, J = 9. 7, 13. 8 Hz, 1H), 2. 97-3. 13 (m, 2H), 3. 50 (dd, J = 3. 4, 13. 8 Hz, 1H), 3. 73 (ddq, J = 3. 4, 9. 7, 6. 2 Hz, 1H), 3. 88 (s, 3H), 6. 95 (dd, J = 2. 6, 8. 6 Hz, 1H), 7. 08 (d, J = 2. 6 Hz, 1H), 7. 69 (d, J = 8. 6 Hz, 1H), 7. 96 (d, J = 4. 6 Hz, 1H), 8. 01 (d, J = 4. 6 Hz, 1H).

実施例247

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0.05-0.07 (m, 2H), 0.32-0.44 (m, 2H), 0.78-0.90 (m, 1H), 1.17 (d, J = 6.2 Hz, 3H), 2.62 (s, 3H), 2.93 (dd, J = 9.9, 13.0

Hz, 1H), 2. 97–3. 04 (m, 1H), 3. 06–3. 13 (m, 1H), 3. 50 (dd, J = 3. 6, 13. 0 Hz, 1H), 3. 74 (ddq, J = 3. 6, 9. 9, 6. 2 Hz, 1H), 7. 28 (dd, J = 2. 6, 8. 4 Hz, 1H), 7. 43 (d, J = 2. 6 Hz, 1H), 7. 77 (d, J = 8. 4 Hz, 1H), 7. 98 (d, J = 4. 6 Hz, 1H), 8. 07 (d, J = 4. 6 Hz, 1H).

実施例248

 $N-[8-[2-D\Box\Box-4-($ トリフルオロメトキシ)フェニル] -2-(メチルスルファニル)イミダゾ [1, 2-a] ピラジン-3-イル] -N-シクロプロピルメチル-N-テトラヒドロ-2H-4-ピラニルアミン

黄色油状物

¹H NMR (400MHz, CDCl₃) δ -0.08-0.05 (m, 2H), 0.17-0.32 (m, 2H), 0.61-0.71 (m, 1H), 1.45-1.61 (m, 4H), 2.62 (s, 3H), 3.02-3.08 (m, 2H), 3.33-3.46 (m, 4H), 3.89-4.03 (m, 1H), 7.28 (d, J = 8.6 Hz, 1H), 7.43 (s, 1H), 7.80 (d, J = 8.6 Hz, 1H), 7.96 (d, J = 4.6 Hz, 1H), 8.13 (d, J = 4.6 Hz, 1H).

実施例249

N3, $N3 - \tilde{y}$ シクロプロピルメチル $-8 - [6 - (\tilde{y}$ メチルアミノ) -2, $4 - \tilde{y}$ メチル-3 -ピリジル] -2 - (メチルスルファニル) イミダゾ [1, 2 - a] ピラジン-3 -アミン

淡黄色油状物

 1 H NMR(400MHz,CDC1₃) δ -0.06-0.03(m,4H),0.23-0.32(m,4H),0.74-0.86(m,2H),2.05(s,3H),2.18(s,3H),2.55(s,3H),3.02-3.08(m,4H),3.12(s,6H),6.30(s,1H),7.91(d,J=4.6 Hz,1H),8.13(d,J=4.6 Hz,1H). 実施例250

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 04-0. 04 (m, 2H), 0. 34-0. 46 (m, 2H), 0. 80-0. 90 (m, 2H), 2. 58 (s, 3H), 3. 04 (d, J = 7. 2 Hz, 2H), 3. 92 (s, 2H), 5. 54 (br

s, 1H), 7.00 (br s, 1H), 7.26 (s, 1H), 7.41 (s, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.99 (d, J = 4.4 Hz, 1H), 8.03 (d, J = 4.4 Hz, 1H).

実施例 2 5 1

黄色油状物

¹H NMR (400MHz, CDCl₃) δ -0. 10-0. 78 (m, 10H), 1. 10-1. 25 (m, 3H), 2. 52-2. 58 (m, 1H), 2. 60 (s, 3H), 3. 04-3. 10 (m, 1H), 3. 22-3. 28 (m, 1H), 7. 28 (dd, J = 2. 4, 8. 4 Hz, 1H), 7. 42 (d, J = 2. 4 Hz, 2H), 7. 80 (d, J = 8. 4 Hz, 1H), 7. 94 (d, J = 4. 4 Hz, 1H), 8. 23 (d, J = 4. 4 Hz, 1H).

MS (ESI) m/z 497 MH+

実施例 2 5 2

N-[8-(4-7)1-2-4] トキシフェニル)-2-(4-7)1-2-1 ル) イミダゾ [1, 2-a] ピラジン-3-4ル] -N, N-ジシクロプロピルメチルアミン

淡黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0.01-0.08 (m, 4H), 0.27-0.36 (m, 4H), 0.71-0.82 (m, 2H), 2.60 (s, 3H), 2.99-3.07 (m, 4H), 3.83 (s, 3H), 7.21 (d, J = 1.8 Hz, 1H), 7.24 (dd, J = 1.8, 8.1 Hz, 1H), 7.60 (d, J = 8.1 Hz, 1H), 7.93 (d, J = 4.4 Hz, 1H), 8.13 (d, J = 4.4 Hz, 1H).

実施例 2 5 3

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0.00-0.52 (m, 4H), 0.96-1.08 (m, 2H), 2.48 (s, 3H), 3.45 (dd, J = 7.2, 13.6 Hz, 1H), 4.10 (dd, J = 7.2, 13.6 Hz, 1H), 6.25

(s, 1H), 6.33 (s, 1H), 7.14 (s, 1H), 7.29 (d, J = 8.8 Hz, 1H), 7.79 (d, J = 8.8 Hz, 1H), 7.89 (d, J = 4.4 Hz, 1H), 8.01 (d, J = 4.4 Hz, 1H). 実施例 2 5 4

N-[8-[2-DDDD-4-(トリフルオロメトキシ)フェニル]-2-(メチルスルファニル)イミダゾ <math>[1, 2-a] ピラジン-3-4ル] -N-シクロプロピルメチル-N-(2-7リルメチル)アミン

黄色油状物

 1 H NMR (400MHz, CDCl₃) δ -0. 02-0. 04 (m, 2H), 0. 26-0. 32 (m, 2H), 0. 72-0. 80 (m, 1H), 2. 59 (s, 3H), 3. 06 (d, J = 7. 2 Hz, 2H), 4. 30 (s, 2H), 6. 07 (s, 1H), 6. 20 (s, 2H), 7. 20-7. 26 (m, 1H), 7. 29 (s, 1H), 7. 40 (s, 1H), 7. 75 (d, J = 8. 8 Hz, 1H), 7. 88 (d, J = 4. 4 Hz, 1H), 8. 03 (d, J = 4. 4 Hz, 1H).

実施例255

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 04-0. 04 (m, 2H), 0. 30-0. 36 (m, 2H), 1. 78-1. 86 (m, 1H), 2. 61 (s, 3H), 3. 03 (d, J = 7. 2 Hz, 2H), 3. 37 (t, J = 6. 0 Hz, 2H), 3. 64 (t, J = 6. 0 Hz, 2H), 7. 28 (dd, J = 2. 4, 8. 4 Hz, 1H), 7. 43 (d, J = 2. 4 Hz, 1H), 7. 78 (d, J = 8. 4 Hz, 1H), 7. 98 (d, J = 4. 4 Hz, 1H), 8. 27 (d, J = 4. 4 Hz, 1H).

実施例256

N-[8-[2-DDDD-4-(トリフルオロメトキシ)フェニル]-2-(メチルスルファニル)イミダゾ <math>[1, 2-a]ピラジン-3-イル]-N-シクロプロピルメチル-N-(2-テトラヒドロ-1H-1-ピロイルエチル)アミン

黄色油状物

 1 H NMR (400MHz, CDCl₃) δ -0.02-0.04 (m, 2H), 0.30-0.36 (m, 2H), 1.76-1.82

(m, 1H), 1. 66-1. 74 (m, 4H), 2. 38-2. 48 (m, 4H), 2. 51 (t, J = 7.2 Hz, 2H), 2. 61 (s, 3H), 3. 03 (q, J = 6.8 Hz, 2H), 3. 39 (t, J = 7.2 Hz, 2H), 7. 24-7. 30 (m, 1H), 7. 43 (s, 1H), 7. 79 (d, J = 8.4 Hz, 1H), 7. 94 (d, J = 4.4 Hz, 1H), 8. 20 (d, J = 4.4 Hz, 1H).

実施例 2 5 7

N-[8-[2-000-4-(トリフルオロメトキシ)フェニル]-2-(メチルスルファニル)イミダゾ <math>[1, 2-a] ピラジン-3-1ル]-N-シクロプロピルメチル-N-(2-モルホリノエチル)アミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 04-0. 04 (m, 2H), 0. 28-0. 34 (m, 2H), 0. 72-0. 82 (m, 1H), 2. 28 (br s, 4H), 2. 38 (t, J = 6. 4 Hz, 2H), 2. 60 (s, 3H), 3. 01 (d, J = 7. 2 Hz, 2H), 3. 36 (br s, 2H), 3. 47 (t, J = 4. 4 Hz, 4H), 7. 27 (dd, J = 2. 4, 8. 4 Hz, 1H), 7. 43 (d, J = 2. 4 Hz, 2H), 7. 77 (d, J = 8. 4 Hz, 1H), 7. 95 (d, J = 4. 4 Hz, 1H), 8. 19 (d, J = 4. 4 Hz, 1H).

実施例 2 5 8

N-[8-[2-0000-4-(トリフルオロメトキシ)フェニル]-2-(メチルスルファニル)イミダゾ <math>[1, 2-a] ピラジン-3-1ル]-N-シ0 ロプロピルメチル-N-[2-(1H-1-ピラゾイル) エチル] アミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 02-0. 04 (m, 2H), 0. 32-0. 38 (m, 2H), 0. 72-0. 82 (m, 1H), 2. 68 (s, 3H), 3. 00 (d, J = 6. 8 Hz, 2H), 3. 82 (t, J = 6. 0 Hz, 2H), 4. 26 (t, J = 6. 0 Hz, 2H), 6. 29 (dd, J = 1. 6, 1. 6 Hz, 1H), 7. 30-7. 34 (m, 2H), 7. 48 (d, J = 1. 6 Hz, 1H), 7. 59 (d, J = 1. 6 Hz, 1H), 7. 65 (d, J = 4. 4 Hz, 1H), 7. 82 (d, J = 8. 4 Hz, 1H), 7. 91 (d, J = 4. 4 Hz, 1H).

実施例259

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 04-0. 04 (m, 2H), 0. 32-0. 40 (m, 2H), 0. 72-0. 82 (m, 1H), 2. 67 (s, 3H), 2. 99 (d, J = 6. 8 Hz, 2H), 3. 70 (t, J = 6. 0 Hz, 2H), 4. 05 (t, J = 6. 0 Hz, 2H), 6. 88 (s, 1H), 7. 11 (s, 1H), 7. 30-7. 34 (m, 1H), 7. 46 (d, J = 2. 0 Hz, 1H), 7. 45 (s, 1H), 7. 59 (d, J = 4. 4 Hz, 1H), 7. 80 (d, J = 8. 4 Hz, 1H), 7. 94 (d, J = 4. 4 Hz, 1H).

実施例260

N3, N3-ジシクロプロピルメチル-8-[4-(ジメチルアミノ)-2-メトキシフェニル]-2-(メチルスルファニル)イミダゾ <math>[1, 2-a]ピラジン-3-アミン

黄色油状物

 1 H NMR (400MHz, CDC1₃) δ 0.00-0.07 (m, 4H), 0.28-0.35 (m, 4H), 0.71-0.82 (m, 2H), 2.62 (s, 3H), 2.98-3.05 (m, 4H), 3.05 (s, 6H), 3.86 (s, 3H), 6.36 (d, J=2.4 Hz, 1H), 6.44 (dd, J=2.4, 8.6 Hz, 1H), 7.76 (d, J=8.6 Hz, 1H), 7.89 (d, J=4.6 Hz, 1H), 8.03 (d, J=4.6 Hz, 1H).

実施例261

 $N-[8-(2-D_{1}D_{1}-4-J_{1}+2D_{2}-1)-2-(J_{2}+D_{1}D_{2}-4-J_{1}+2D_{2}-3-J_{2}-1)-2-(J_{2}+D_{2}D_{2}-4-J_{2}-4-J_{2}-3-J_$

'H NMR (400MHz, CDC1₃) δ -0.02-0.07 (m, 2H), 0.31-0.42 (m, 2H), 0.76-0.97

(m, 4H), 1. 42–1. 54 (m, 2H), 3. 02–3. 12 (m, 2H), 3. 04 (s, 3H), 3. 22–3. 36 (m, 2H), 3. 89 (s, 3H), 6. 95 (dd, J = 2. 6, 8. 8 Hz, 1H), 7. 09 (d, J = 2. 6 Hz, 1H), 7. 71 (d, J = 8. 8 Hz, 1H), 8. 03 (d, J = 4. 6 Hz, 1H), 8. 16 (d, J = 4. 6 Hz, 1H).

実施例 2 6 2

 $N-[8-(2-D_{1}_{1}_{1}-4-y_{1}_{2}+2)-2-(y_{1}_{2}_{1})-2-(y_{2}_{1}_{2}_{1})$ $N-[8-(2-D_{1}_{1}_{1}-4-y_{1}_{2}+2)-3-4]$ $N-[8-(2-D_{1}_{1}-4-y_{1}+2)-3-4]$ $N-[8-(2-D_{1}_{1}-4-y_{1}+2)-3-4]$ $N-[8-(2-D_{1}_{1}-4-y_{1}+2)-3-4]$ $N-[8-(2-D_{1}_{1}-4-y_{1}+2)-3-4]$ $N-[8-(2-D_{1}_{1}-4-y_{1}+2)-3-4]$ $N-[8-(2-D_{1}_{1}-4-y_{1}+2)-3-4]$ $N-[8-(2-D_{1}_{1}-4-y_{1}+2)-3-4]$ $N-[8-(2-D_{1}-4-y_{1}+2)-3-4]$ $N-[8-(2-D_{1}-4-y_{1}+2)-3-4]$ $N-[8-(2-D_{1}-4-y_{1}+2)-3-4]$ $N-[8-(2-D_{1}-4-y_{1}+2)-3-4]$ $N-[8-(2-D_{1}-4-y_{1}+2)-3-4]$

上記の実施例 2 6 1 において生成した混合物として、シリカゲルカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:3)にて分離精製し、標記化合物(1 3 0 mg)を淡黄色油状物として得た。

¹H NMR (400MHz, CDC1₃) δ -0. 03-0. 04 (m, 2H), 0. 27-0. 34 (m, 2H), 0. 72-0. 83 (m, 1H), 3. 07-3. 12 (m, 2H), 3. 27 (dd, J = 7. 3, 7. 3 Hz, 2H), 3. 30 (s, 3H), 3. 89 (s, 3H), 6. 96 (dd, J = 2. 6, 8. 6 Hz, 1H), 7. 09 (d, J = 2. 6 Hz, 1H), 7. 69 (d, J = 8. 6 Hz, 1H), 8. 08 (d, J = 4. 6 Hz, 1H), 8. 27 (d, J = 4. 6 Hz, 1H).

以下、実施例263は実施例261と同様にして合成した。

実施例263

淡黄色結晶

¹H NMR (400MHz, CDCl₃) δ -0.02-0.09 (m, 2H), 0.31-0.43 (m, 2H), 0.79-0.89 (m, 1H), 0.91-0.97 (m, 3H), 1.41-1.54 (m, 2H), 2.47 (s, 3H), 3.03 (s, 3H), 3.04-3.13 (m, 2H), 3.12 (s, 3H), 3.23-3.37 (m, 2H), 7.87-7.96 (m, 3H), 8.06 (d, J = 4.6 Hz, 1H), 8.21 (d, J = 4.4 Hz, 1H).

実施例264

4-[3-[ジ(シクロプロピルメチル)アミノ]-2-(メチルスルファニ

ル) イミダゾ [1, 2-a] ピラジン-8-1ル] -3-1メトキシベンゾニトリル

N-[8-(4-)]ロモー2ーメトキシフェニル)ー2ー(メチルスルファニル)イミダゾ [1, 2-a] ピラジンー3ーイル]-N, Nージシクロプロピルメチルアミン(53mg)をN, Nージメチルホルムアミド(0.22m L)に溶かしシアン化亜鉛(23mg)とテトラキストリフェニルホスフィンパラジウム錯体(13mg)を加え、95で4時間加熱攪拌し、室温まで冷却し酢酸エチルを加えた。析出した不溶物を濾過して除いた後、酢酸エチルで抽出した。得られた有機層を水洗し、硫酸マグネシウムにて乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-へキサン=1:5)にて精製し、標記化合物(26mg)を黄色結晶として得た。

¹H NMR (400MHz, CDC1₃) δ -0.02-0.07 (m, 4H), 0.28-0.37 (m, 4H), 0.71-0.82 (m, 2H), 2.59 (s, 3H), 3.00-3.08 (m, 4H), 3.85 (s, 3H), 7.30 (d, J = 1.5 Hz, 1H), 7.41 (dd, J = 1.5, 7.9 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.95 (d, J = 4.4 Hz, 1H), 8.17 (d, J = 4.4 Hz, 1H).

実施例265は実施例264と同様にして合成した。

実施例 2 6 5

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0.00-0.10 (m, 4H), 0.28-0.38 (m, 4H), 0.71-0.82 (m, 2H), 1.99-2.10 (m, 4H), 2.63 (s, 3H), 2.98-3.07 (m, 4H), 3.33-3.43 (m, 4H), 3.86 (s, 3H), 6.21 (d, J=2.0 Hz, 1H), 6.30 (dd, J=2.0, 8.6 Hz, 1H), 7.77 (d, J=8.6 Hz, 1H), 7.89 (d, J=4.6 Hz, 1H), 8.02 (d, J=4.6 Hz, 1H).

以下、実施例266乃至実施例269は、実施例110と同様にして合成し

た。

実施例266

6-クロロ-3-(1-エトキシブチル)-2-エチル-8-(2-メトキシ-4,6-ジメチルフェニル)イミダゾ [1, 2-a] ピラジン

白色結晶

¹H NMR (400MHz, CDCl₃) δ 0. 91–1. 00 (m, 3H), 1. 17–1. 35 (m, 7H), 1. 42–1. 57 (m, 1H), 1. 73–1. 85 (m, 1H), 2. 01–2. 15 (m, 1H), 2. 05 (s, 3H), 2. 36 (s, 3H), 2. 69–2. 81 (m, 2H), 3. 23–3. 45 (m, 2H), 3. 68 (s, 3H), 4. 70–4. 75 (m, 1H), 6. 67 (s, 1H), 6. 73 (s, 1H), 8. 43 (s, 1H).

実施例267

- 8-(2-クロロー4-メトキシフェニル)-3-(1-エトキシブチル)-
- 2 (メチルスルファニル) イミダゾ <math>[1, 2 a] ピラジン

白色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 91–0. 97 (m, 3H), 1. 19 (t, J=7.2 Hz, 3H), 1. 21–1. 33 (m, 1H), 1. 40–1. 52 (m, 1H), 1. 77–1. 89 (m, 1H), 1. 99–2. 10 (m, 1H), 2. 59 (s, 3H), 3. 30 (dq, J=7.2, 9. 3 Hz, 1H), 3. 42 (dq, J=7.2, 9. 3 Hz, 1H), 3. 88 (s, 3H), 4. 84–4. 90 (m, 1H), 6. 94 (dd, J=2.4, 8. 6 Hz, 1H), 7. 08 (d, J=2.4 Hz, 1H), 7. 69 (d, J=8.6 Hz, 1H), 7. 92 (d, J=4.8 Hz, 1H), 8. 34 (d, J=4.8 Hz, 1H).

実施例268

3-(1-x)+2ブチル)-8-(2-x)+2-4, 6-23 デルフェニル)-2-(3+2)2 デルスルファニル)イミダゾ [1, 2-a]2 ピラジン

白色結晶

¹H NMR (400MHz, CDCl₃) δ 0. 90–0. 98 (m, 3H), 1. 15–1. 34 (m, 4H), 1. 40–1. 53 (m, 1H), 1. 77–1. 89 (m, 1H), 1. 95–2. 11 (m, 1H), 2. 04 (br s, 3H), 2. 38 (s, 3H), 2. 52 (s, 3H), 3. 23–3. 47 (m, 2H), 3. 70 (s, 3H), 4. 84–4. 91 (m, 1H), 6. 69 (s, 1H), 6. 74 (s, 1H), 7. 91 (d, J = 4. 6 Hz, 1H), 8. 31 (d, J = 4. 6 Hz, 1H).

実施例269

淡黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 91-0. 98 (m, 3H), 1. 19 (t, J=7.0 Hz, 3H), 1. 21-1. 34 (m, 1H), 1. 39-1. 53 (m, 1H), 1. 77-1. 88 (m, 1H), 1. 99-2. 10 (m, 1H), 2. 58 (s, 3H), 3. 30 (dq, J=9.3, 7. 0 Hz, 1H), 3. 43 (dq, J=9.3, 7. 0 Hz, 1H), 4. 83-4. 89 (m, 1H), 7. 39 (dd, J=2.0, 8. 2 Hz, 1H), 7. 56 (d, J=2.0) Hz, 1H), 7. 68 (d, J=8.2 Hz, 1H), 7. 94 (d, J=4.6 Hz, 1H), 8. 37 (d, J=4.6 Hz, 1H).

実施例270

1- [8-(2-クロロー4-メトキシフェニル) -2-エチルイミダゾ [1,2-a] ピラジン-3-イル] -1-ブタノン O1-メチルオキシム 1-[8-(2-クロロー4-メトキシフェニル) -2-エチルイミダゾ [1,2-a] ピラジン-3-イル] -1-ブタノン(60mg)をエタノール(0.34mL)と水(0.28mL)の混合溶媒に溶かし、O-メチルヒドロキシルアミン塩酸塩(71mg)を加え6時間加熱還流を行った。反応液を冷却し水を加えて酢酸エチルで抽出し、減圧下濃縮した。得られた粗異性体混合物をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:3)にて分離し、TLC上でRf値が大きい異性体1(31mg)とTLC上でRf値が小さい異性体2(13mg)をそれぞれ無色油状物として得た。

(a) 異性体 1:

¹H NMR (400MHz, CDC1₃) δ 0. 93-1. 00 (m, 3H), 1. 32 (t, J = 7. 5 Hz, 3H), 1. 53-1. 65 (m, 2H), 2. 77-2. 83 (m, 2H), 2. 91 (q, J = 7. 5 Hz, 2H), 3. 87 (s, 3H), 4. 06 (s, 3H), 6. 95 (dd, J = 2. 4, 8. 6 Hz, 1H), 7. 08 (d, J = 2. 4 Hz, 1H), 7. 62 (d, J = 8. 6 Hz, 1H), 8. 00 (d, J = 4. 6 Hz, 1H), 8. 68 (d, J = 4. 6 Hz, 1H).

(b) 異性体 2:

¹H NMR (400MHz, CDCl₃) δ 0. 94 (t, J = 7.3 Hz, 3H), 1. 30 (t, J = 7.5 Hz, 3H), 1. 51 (ddq, J = 7.3, 7. 3, 7. 3 Hz, 2H), 2. 66 (dd, J = 7.3, 7. 3 Hz, 2H), 2. 82 (q, J = 7.5 Hz, 2H), 3. 87 (s, 3H), 3. 93 (s, 3H), 6. 96 (dd, J = 2.6, 8. 6 Hz, 1H), 7. 09 (d, J = 2.6 Hz, 1H), 7. 56 (d, J = 4.6 Hz, 1H), 7. 68 (d, J = 8.6 Hz, 1H), 7. 98 (d, J = 4.6 Hz, 1H).

以下実施例271,272は実施例270と同様の方法で合成した。

実施例271

(a) TLC上でR f 値が大きい異性体1:

白色結晶

 1 H NMR(400MHz,CDC1₃) δ 0.96-1.02(m,3H),1.33(t,J=7.5 Hz,3H),1.57-1.68(m,2H),2.82-2.89(m,2H),2.92(q,J=7.5 Hz,2H),3.87(s,3H),6.95(dd,J=2.4,8.4 Hz,1H),7.08(d,J=2.4 Hz,1H),7.63(d,J=8.4 Hz,1H),7.98(d,J=4.6 Hz,1H),8.59(d,J=4.6 Hz,1H).

白色結晶

¹H NMR (400MHz, CDCl₃) δ 0. 95 (t, J=7.3 Hz, 3H), 1. 31 (t, J=7.5 Hz, 3H), 1. 52 (ddq, J=7.3, 7. 3, 7. 3 Hz, 2H), 2. 67 (dd, J=7.3, 7. 3 Hz, 2H), 2. 84 (q, J=7.5 Hz, 2H), 3. 87 (s, 3H), 6. 95 (dd, J=2.4, 8. 2 Hz, 1H), 7. 09 (d, J=2.4 Hz, 1H), 7. 67 (d, J=8.2 Hz, 1H), 7. 67 (d, J=4.6 Hz, 1H).

実施例272

(a) TLC上でR f 値が大きい異性体1:

無色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 98–1. 04 (m, 3H), 1. 61–1. 72 (m, 2H), 2. 04 (s, 3H), 2. 39 (s, 3H), 2. 58 (s, 3H), 2. 93–2. 99 (m, 2H), 3. 68 (s, 3H), 4. 05 (s, 3H), 6. 68 (s, 1H), 6. 75 (s, 1H), 8. 03 (d, J = 4.8 Hz, 1H), 9. 08 (d, J = 4.8 Hz, 1H).

(b) TLC上でR f 値が小さい異性体 2:

無色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 93 (t, J = 7.3 Hz, 3H), 1. 49 (ddq, J = 7.3, 7. 3, 7. 3 Hz, 2H), 2. 06 (s, 3H), 2. 39 (s, 3H), 2. 56 (s, 3H), 2. 81 (dd, J = 7.3, 7. 3 Hz, 2H), 3. 70 (s, 3H), 3. 95 (s, 3H), 6. 70 (s, 1H), 6. 76 (s, 1H), 7. 52 (d, J = 4.6 Hz, 1H), 7. 99 (d, J = 4.6 Hz, 1H).

実施例273

¹H NMR(400MHz, CDC1₃) る -0.06-0.03(m, 2H), 0.26-0.35(m, 2H), 0.72-0.83(m, 1H), 0.90(t, J=7.3 Hz, 3H), 1.39(ddq, J=7.3, 7.3, 7.3 Hz, 2H), 2.87-2.92(m, 2H), 3.08(dd, J=7.3, 7.3 Hz, 2H), 3.88(s, 3H), 4.03(s, 3H), 6.95(dd, J=2.6, 8.6 Hz, 1H), 7.08(d, J=2.6 Hz, 1H), 7.66(d, J=8.6 Hz, 1H), 7.96(d, J=4.4 Hz, 1H), 8.06(d, J=4.4 Hz, 1H). 実施例 2 7 3 と同様にして、実施例 2 7 4 を合成した。

実施例274

N-シクロプロピルメチル-N- [2-メトキシ-8-(2-メトキシ-4,6-ジメチルフェニル)イミダゾ <math>[1,2-a] ピラジン-3-イル]-N-プロピルアミン

淡黄色油状物

 1 H NMR(400MHz,CDC1₃) δ -0. 14-0. 01(m, 2H),0. 19-0. 24(m, 2H),0. 72-0. 84(m, 1H),0. 85-0. 93(m, 3H),1. 35-1. 47(m, 2H),2. 02(s,3H),2. 39(s,3H),2. 80-2. 97(m, 2H),3. 03-3. 11(m, 2H),3. 71(s,3H),3. 96(s,3H),6. 69(s,1H),6. 75(s,1H),7. 95(d,J = 4. 6 Hz,1H),8. 03(d,J = 4. 6 Hz,1H).以下、実施例 2 7 5 乃至実施例 2 9 3 は、実施例 1 2 1 と同様にして合成した。

実施例275

N-[2-エチル-8-(2-メトキシー4-メチルフェニル) イミダゾ [1,2-b] ピリダジン-3-イル] - N, <math>N-ジプロピルアミン

黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 87 (t, J=7.4 Hz, 6H), 1. 30 (t, J=7.5 Hz, 3H), 1. 32–1. 44 (m, 4H), 2. 41 (s, 3H), 2. 79 (q, J=7.5 Hz, 2H), 3. 19 (t, J=7.4 Hz, 4H), 3. 83 (s, 3H), 6. 86 (s, 1H), 6. 93 (dt, J=0.73, 7. 9 Hz, 1H), 7. 12 (d, J=4.6 Hz, 1H), 7. 82 (d, J=7.3 Hz, 1H), 8. 24 (d, J=4.8 Hz, 1H).

MS (ESI) m/z 367 MH^{\dagger}

実施例276

Nー [2-xチルー8 -(2-x)トキシー4 -xチルフェニル)イミダゾ [1, 2-b] ピリダジンー3 -4ル] -N -(1-xチルプロピル)アミン

橙色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 90 (t, J = 7.4 Hz, 6H), 1. 26 (t, J = 7.5 Hz, 3H), 1. 36–1. 56 (m, 4H), 2. 34 (s, 3H), 2. 79 (q, J = 7.1 Hz, 2H), 3. 15–3. 28 (m, 1H), 3. 58 (s, 1H), 3. 75 (s, 3H), 6. 79 (s, 1H), 6. 85 (dd, J = 0.73, 7. 9

Hz, 1H), 6.95 (d, J = 4.6 Hz, 1H), 7.71 (d, J = 6.6 Hz, 1H), 8.15 (d, J = 3.8 Hz, 1H).

MS (ESI) m/z: 353 MH^{\dagger}

実施例277

N-[8-(2,4-i)] ロロフェニル)-2-x チャー 6-x トキシイミダゾ [1,2-b] ピリダジンー 3-4 ル]-N, N-i プロピルアミン

黄色結晶

'H NMR (400MHz, CDC1₃) δ 0. 90 (t, J=7.4 Hz, 6H), 1. 24 (t, J=7.5 Hz, 3H), 1. 34–1. 46 (m, 4H), 2. 73 (q, J=7.5 Hz, 2H), 3. 18 (t, J=7.4 Hz, 4H), 4. 00 (s, 3H), 6. 64 (s, 1H), 7. 36 (dd, J=2.1, 8. 3 Hz, 1H), 7. 53 (d, J=2.1, 8. 3 Hz, 1H), 7. 54 (d, J=8.4 Hz, 1H).

MS (ESI) m/z 421 MH⁺

実施例 2 7 8

N- [2-エチル-8-(4-メトキシ-2-メチルフェニル)イミダゾ [1, 2-b] ピリダジン-3-イル] -N-イソブチル-N-プロピルアミン 黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J = 7.3 Hz, 3H), 0. 92 (d, J = 6.6 Hz, 6H), 1. 28 (t, J = 7.5 Hz, 3H), 1. 33–1. 46 (m, 2H), 1. 53–1. 66 (m, 1H), 2. 29 (s, 3H), 2. 80 (q, J = 7.5 Hz, 2H), 3. 05 (d, J = 7.1 Hz, 2H), 3. 17 (t, J = 7.4 Hz, 2H), 3. 84 (s, 3H), 6. 78 (d, J = 4.6 Hz, 1H), 6. 80–6. 92 (m, 2H), 7. 40 (d, J = 8.4 Hz, 1H), 8. 25 (d, J = 4.6 Hz, 1H).

実施例279

N-[8-(2,6-i)] - N-i - N

黄色結晶

'H NMR (400MHz, CDC1₃) δ 0. 87 (t, J=7.4 Hz, 6H), 1. 32 (t, J=7.5 Hz, 3H), 1. 30–1. 42 (m, 4H), 2. 79 (q, J=7.5 Hz, 2H), 3. 18 (t, J=7.5 Hz, 4H), 3. 98 (s, 3H), 4. 00 (s, 3H), 6. 51 (d, J=8.4 Hz, 1H), 7. 32 (d, J=4.8 Hz,

1H), 8. 24 (d, J = 4.8 Hz, 1H), 8. 64 (d, J = 8.2 Hz, 1H).

実施例280

N- [8-(2,6-i)メチル-3-ピリジル)-2-エチルイミダゾ[1,2-b]ピリダジン-3-イル[-N,N-i]ロピルアミン 黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J=7.4 Hz, 6H), 1. 27 (t, J=7.6 Hz, 3H), 1. 32–1. 44 (m, 4H), 2. 53 (s, 3H), 2. 61 (s, 3H), 2. 77 (q, J=7.6 Hz, 2H), 3. 20 (t, J=7.4 Hz, 4H), 6. 80 (d, J=4.8 Hz, 1H), 7. 13 (d, J=7.9 Hz, 1H), 7. 74 (d, J=7.7 Hz, 1H), 8. 28 (d, J=4.8 Hz, 1H).

MS (ESI) m/z 352 MH^+

実施例281

N- [2-xチル-8-(6-xトキシ-2-xチル-3-ピリジル)イミダゾ [1, 2-b] ピリダジン-3-イル]-N, N-ジプロピルアミン 黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J=7.3 Hz, 6H), 1. 29 (t, J=7.6 Hz, 3H), 1. 33–1. 45 (m, 4H), 2. 45 (s, 3H), 2. 80 (q, J=7.5 Hz, 2H), 3. 20 (t, J=7.5 Hz, 4H), 3. 97 (s, 3H), 6. 69 (d, J=8.4 Hz, 1H), 6. 81 (d, J=3.1 Hz, 1H), 7. 73 (d, J=8.4 Hz, 1H), 8. 28 (d, J=4.4 Hz, 1H).

MS (ESI) m/z 368 MH⁺

実施例282

Nー [2-xチルー8 ー (2-xトキシー4, $6-\tilde{y}$ メチルフェニル) イミダゾ [1, 2-b] ピリダジンー3-イル]-N, $N-\tilde{y}$ プロピルアミン 黄色結晶

¹H NMR (400MHz, CDCl₃) δ 0.88 (t, J = 7.3 Hz, 6H), 1.20–1.30 (m, 3H), 1.33–1.46 (m, 4H), 2.05 (s, 3H), 2.37 (s, 3H), 2.66–2.88 (m, 2H), 3.20 (dd, J = 6.4, 7.9 Hz, 4H), 3.70 (s, 3H), 6.69 (s, 1H), 6.77 (s, 2H), 8.26 (br s, 1H).

MS (ESI) m/z 381 MH^+

実施例283

N-[8-(4-DDDDTLLN)-2-LTFNTLS Y [1, 2-b] ピリ ダジン-3-TN]-N, <math>N-ジプロピルアミン

淡茶色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 87 (t, J=7.3 Hz, 6H), 1. 36 (t, J=7.5 Hz, 3H), 1. 32–1. 44 (m, 4H), 2. 85 (q, J=7.6 Hz, 2H), 3. 20 (t, J=7.5 Hz, 4H), 7. 04 (d, J=4.8 Hz, 1H), 7. 50 (d, J=8.8 Hz, 2H), 8. 14 (d, J=8.6 Hz, 2H), 8. 31 (d, J=4.8 Hz, 1H).

実施例284

N-[8-(2, 4-ジメトキシ-6-メチルフェニル)-2-エチルイミダ ゾ [1, 2-b] ピリダジン-3-イル] - <math>N, N-ジプロピルアミン

黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0.88 (t, J = 7.4 Hz, 6H), 1.26 (t, J = 7.1 Hz, 3H), 1.33-1.46 (m, 4H), 2.08 (s, 3H), 2.68-2.90 (m, 2H), 3.20 (dt, J = 0.8, 7.3 Hz, 4H), 3.70 (s, 3H), 3.84 (s, 3H), 6.43 (d, J = 1.8 Hz, 1H), 6.47 (d, J = 2.2 Hz, 1H), 6.80 (br s, 1H), 8:26 (br s, 1H).

実施例285

N-[8-(2-D-1-4-X)] - 2-X - 2-D] ピリダジン-3-4ル] -N, N-ジプロピルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J=7.3 Hz, 6H), 1. 29 (t, J=7.6 Hz, 3H), 1. 34–1. 46 (m, 4H), 2. 81 (q, J=7.3 Hz, 2H), 3. 20 (t, J=7.5 Hz, 4H), 3. 86 (s, 3H), 6. 95 (dd, J=2.5, 8. 7 Hz, 1H), 7. 03 (d, J=4.2 Hz, 1H), 7. 07 (d, J=2.6 Hz, 1H), 7. 70 (d, J=8.6 Hz, 1H), 8. 29 (d, J=4.4 Hz, 1H).

MS (ESI) m/z 387 MH+

実施例286

N-[2-エチル-8-(4-メトキシ-2, 6-ジメチルフェニル) イミダ

ゾ [1, 2-b] ピリダジン-3-4ル]-N, N-ジプロピルアミン 黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J = 7.4 Hz, 6H), 1. 24 (t, J = 7.5 Hz, 3H), 1. 33–1. 46 (m, 4H), 2. 06 (s, 6H), 2. 78 (q, J = 7.2 Hz, 2H), 3. 21 (t, J = 7.6 Hz, 4H), 3. 82 (s, 3H), 6. 70 (s, 2H), 6. 74 (br s, 1H), 8. 28 (br s, 1H).

MS (ESI) m/z 381 MH^+

実施例287

N-(2-x + y - 8 - y + y + y + y + 1 + 1 + 1 + 2 - b) ピリダジン-3-4ル) -N, N-3プロピルアミン

黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J = 7.4 Hz, 6H), 1. 23 (t, J = 7.5 Hz, 3H), 1. 33–1. 46 (m, 4H), 2. 03 (s, 6H), 2. 33 (s, 3H), 2. 76 (q, J = 7.5 Hz, 2H), 3. 21 (t, J = 7.5 Hz, 4H), 6. 72 (d, J = 4.2 Hz, 1H), 6. 97 (s, 2H), 8. 27 (d, J = 4.4 Hz, 1H).

MS (ESI) m/z 365 MH^{+}

実施例288

N, N-ジシクロプロピルメチルーN-(2 - エチルー8 - メシチルイミダゾ [1, 2 - b] ピリダジンー3 - イル)アミン

黄色結晶

¹H NMR (400MHz, CDC1₃) δ -0. 18- -0. 04 (m, 4H), 0. 18-0. 34 (m, 4H), 0. 76-0. 92 (m, 2H), 1. 26 (t, J = 7. 5 Hz, 3H), 2. 02 (s, 6H), 2. 33 (s, 3H), 2. 76-2. 90 (m, 2H), 3. 18 (d, J = 6. 8 Hz, 4H), 6. 72 (br s, 1H), 6. 97 (s, 2H), 8. 26 (br s, 1H).

MS (ESI) m/z 389 MH⁺

実施例289

N, N-ジシクロプロピルメチル-N-[2-エチル-8-(2-メトキシー4,6-ジメチルフェニル) イミダゾ [1,2-b] ピリダジン-3-イル]

アミン

淡緑色結晶

¹H NMR (400MHz, CDCl₃) δ -0. 18-0. 00 (m, 4H), 0. 20-0. 36 (m, 4H), 0. 76-0. 92 (m, 2H), 1. 20-1. 36 (m, 3H), 2. 04 (s, 3H), 2. 38 (s, 3H), 2. 74-2. 96 (m, 2H), 3. 09-3. 26 (m, 4H), 3. 70 (s, 3H), 6. 69 (s, 1H), 6. 77 (s, 1H), 6. 80 (br s, 1H), 8. 26 (br s, 1H).

MS (ESI) m/z 405 MH^{+}

実施例290

N-シクロプロピルメチルーN- [2-エチルー8-(2-メトキシー4, 6 -ジメチルフェニル) イミダゾ [1, 2-b] ピリダジンー3ーイル] -N-プロピルアミン

黄色結晶

¹H NMR (400MHz, CDC1₃) δ -0. 21- -0. 03 (m, 2H), 0. 19-0. 35 (m, 2H), 0. 75-0. 91 (m, 1H), 0. 90 (t, J = 7.3 Hz, 3H), 1. 19-1. 35 (m, 3H), 1. 36-1. 49 (m, 2H), 2. 05 (s, 3H), 2. 37 (s, 3H), 2. 71-2. 99 (m, 2H), 3. 10 (d, J = 6.8 Hz, 2H), 3. 26 (dt, J = 1.6, 7. 3 Hz, 2H), 3. 71 (s, 3H), 6. 70 (s, 1H), 6. 77 (s, 3H), 6. 85 (br s, 1H), 8. 29 (br s, 1H).

実施例 2 9 1

N-[2-x+N-8-(2-x++)-4, 6-ix+N-x-in) イミダゾ [1, 2-b] ピリダジン-3-4ル]-N-4ソブチル-N-7ロピルアミン

黄色結晶

'H NMR (400MHz, CDC1₃) δ 0. 81 (t, J = 7.3 Hz, 3H), 0. 85 (dd, J = 1.8, 6. 8 Hz, 6H), 1. 18 (t, J = 7.3 Hz, 3H), 1. 26–1. 38 (m, 2H), 1. 48–1. 62 (m, 1H), 1. 99 (s, 3H), 2. 31 (s, 3H), 2. 63–2. 82 (m, 2H), 2. 98 (d, J = 7.1 Hz, 2H), 3. 10 (t, J = 7.3 Hz, 2H), 3. 64 (s, 3H), 6. 62 (s, 1H), 6. 70 (s, 1H), 6. 75 (br s, 1H), 8. 21 (br s, 1H).

実施例292

N-シクロプロピルメチルーN- [2-エチルー8-(2-メトキシー4, 6-ジメチルフェニル) イミダゾ [1, 2-b] ピリダジンー3-イル] - N-(3-フルオロプロピル) アミン

黄色油状物

¹H NMR (400MHz, CDCl₃) δ –0. 21 – –0. 03 (m, 2H), 0. 19–0. 37 (m, 2H), 0. 75–0. 91 (m, 1H), 1. 26 (t, J = 7. 5 Hz, 3H), 1. 69–1. 91 (m, 2H), 2. 04 (s, 3H), 2. 37 (s, 3H), 2. 71–2. 89 (m, 2H), 3. 12 (d, J = 6. 8 Hz, 2H), 3. 40–3. 54 (m, 2H), 3. 70 (s, 3H), 4. 51 (t, J = 5. 9 Hz, 1H), 4. 62 (t, J = 5. 9 Hz, 1H), 6. 69 (s, 1H), 6. 77 (s, 1H), 6. 83 (br s, 1H), 8. 26 (d, J = 4. 6 Hz, 1H).

実施例 2 9 3

黄色結晶

¹H NMR (400MHz, CDCl₃) δ 0. 89 (t, J = 7.3 Hz, 3H), 1. 20–1. 30 (m, 3H), 1. 34–1. 48 (m, 2H), 1. 66–1. 85 (m, 2H), 2. 05 (s, 3H), 2. 37 (s, 3H), 2. 68–2. 88 (m, 2H), 3. 21 (t, J = 7.4 Hz, 2H), 3. 41 (t, J = 7.1 Hz, 2H), 3. 70 (s, 3H), 4. 48 (t, J = 5.7 Hz, 1H), 4. 60 (t, J = 5.7 Hz, 1H), 6. 69 (s, 1H), 6. 77 (s, 1H), 6. 84 (br s, 1H), 8. 28 (br s, 1H).

実施例294

 $8 - (4 - \lambda + b) - 2 - \lambda + b$ $- 2 - (\lambda + b) - 2 - (\lambda + b) + b$ $- 2 - (\lambda + b) + b$ - 2 - b - 2 - b

エチル $8-(4-メトキシ-2-メチルフェニル)-2-(メチルスルファニル) イミダゾ <math>\begin{bmatrix} 1 & 2-b \end{bmatrix}$ ピリダジン-3-カルボキシレート (628 mg) のエタノール溶液 (20mL) に5N水酸化ナトリウム水溶液 (0.88mL) を加え、1時間加熱還流した. 水冷後、5N塩酸 (0.88mL) を加え、減圧下溶媒を留去し、得られた粗8-(4-メトキシ-2-メチルフェニル) -2-(メチルスルファニル) イミダゾ <math>[1,2-b] ピリダジン-3

カルボン酸を精製することなく次の反応に用いた。

得られた8-(4-メトキシー2-メチルフェニル)-2-(メチルスルファニル)イミダゾ [1, 2-b] ピリダジンー3ーカルボン酸をトルエン(10mL)に溶解し、tert-ブチルアルコール(10mL)とトリエチルアミン(0.49mL)、ジフェニルフォスフォリルアジド(0.38mL)を加え、100で4時間加熱した。反応終了後、水を加え酢酸エチルで抽出し、水洗した後、無水硫酸マグネシウムで乾燥させ、減圧下濃縮した。得られたBoc体を精製することなく、酢酸エチル(10mL)に溶解させ、4N塩酸ー酢酸エチル溶液(15mL)を加えて、3時間室温で攪拌した。氷冷下、5N水酸化ナトリウム水溶液を加え、中和し酢酸エチルで抽出した。水洗し、無水硫酸マグネシウムで乾燥させ、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n-0ml)にて精製し、標記化合物(73mg)を褐色油状物として得た。

 1 H NMR(400MHz,CDC1₃) δ 2. 29(s,3H),2. 55(s,3H),3. 85(s,3H),6. 80-6. 96(m,3H),7. 37(d,J = 8. 8 Hz,1H),8. 42(d,J = 4. 6 Hz,1H). 実施例 2 9 5

実施例294で得られた8- (4-メトキシ-2-メチルフェニル)-2- (メチルスルファニル)イミダゾ [1, 2-b] ピリダジン-3-アミンを、 実施例4と同様にアミノ基上をアルキル化することにより標記の化合物を橙色油状物として得ることができた。

¹H NMR (400MHz, CDCl₃) δ 0.88 (t, J=7.3 Hz, 6H), 1.36–1.48 (m, 4H), 2.31 (s, 3H), 2.56 (s, 3H), 3.23 (t, J=7.6 Hz, 4H), 3.86 (s, 3H), 6.78 (d, J=4.8 Hz, 1H), 6.80–6.92 (m, 2H), 7.43 (d, J=8.4 Hz, 1H), 8.26 (d, J=4.6 Hz, 1H).

以下実施例296は実施例295と同様の方法によって合成した。

実施例296

黄色油状物

¹H NMR (400MHz, CDCl₃) δ -0. 11-0. 01 (m, 4H), 0. 23-0. 34 (m, 4H), 0. 85-0. 99 (m, 2H), 2. 28 (s, 3H), 2. 59 (s, 3H), 3. 20 (d, J = 6. 8 Hz, 4H), 3. 86 (s, 3H), 6. 81 (d, J = 4. 8 Hz, 1H), 6. 83-6. 90 (m, 2H), 7. 42 (d, J = 8. 4 Hz, 1H). 8. 27 (d, J = 4. 6 Hz, 1H).

以下実施例297乃至371は実施例127と同様の方法で合成した。 実施例297

N-[8-(2, 4-ジクロロフェニル)-2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジン-3-イル]-N, N-ジプロピルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J=7.6 Hz, 6H), 1. 38–1. 44 (m, 4H), 2. 52 (s, 3H), 3. 00–3. 20 (m, 4H), 6. 82 (dd, J=6.8, 6. 8 Hz, 1H), 7. 14 (d, J=6.8 Hz, 1H), 7. 33 (dd, J=2.0, 8. 0 Hz, 1H), 7. 52 (d, J=2.0 Hz, 1H9, 7. 62 (d, J=8.4 Hz, 1H), 8. 11 (d, J=8.4 Hz, 1H).

実施例298

N-[8-(2-メトキシ-4, 6-ジメチルフェニル)-2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジン-3-イル]-N, N-ジプロピルアミン

白色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J = 7.2 Hz, 6H), 1. 38–1. 45 (m, 4H), 2. 03 (s, 3H), 2. 38 (s, 3H), 2. 46 (s, 3H), 3. 00–3. 20 (m, 4H), 3. 68 (s, 3H), 6. 67 (s, 1H), 6. 75 (s, 1H), 6. 79 (dd, J = 6.8, 6. 8 Hz, 1H), 6. 95 (dd, J = 1.6, 6. 8 Hz, 1H), 8. 07 (dd, J = 1.2, 6. 8 Hz, 1H).

実施例299

N- $[8-(2-D_{D_{D_{D_{A}}}-4-X}++)$ $-2-(X_{D_{A_{A}}}-2)$ $-2-(X_{D_{A_{A_{A_{A_{A_{A_A}}}}}}-2)$ $-2-(X_{D_{A_{A_{A_A}}}}-2)$ $-2-(X_{D_{A_{A_A}}}-2)$ $-2-(X_{D_{A_A}}-2)$ $-2-(X_{D_{A_A_A}}-2)$ $-2-(X_{D_{A_A}}-2)$ $-2-(X_{D_{A_A}}-2)$ $-2-(X_{D_{A_A}}-2)$ $-2-(X_{D_{A_A}}-2)$ $-2-(X_{D_{A_A}}-2)$ $-2-(X_{D_A_A}-2)$ $-2-(X_{D_A_A}-2)$ -2-

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 88 (t, J=6. 8 Hz, 6H), 1. 38–1. 45 (m, 4H), 2. 52 (s, 3H), 3. 00–3. 20 (m, 4H), 3. 85 (s, 3H), 6. 81 (dd, J=6. 8, 6. 8 Hz, 1H), 6. 90 (dd, J=2. 4, 8. 4 Hz, 1H), 7. 05 (d, J=2. 4 Hz, 1H), 7. 14 (dd, J=1. 2, 6. 8 Hz, 1H), 7. 60 (d, J=8. 0 Hz, 1H), 8. 09 (dd, J=1. 2, 6. 8 Hz, 1H).

実施例300

N- [8-(2, 4-ジクロロフェニル) - 2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジン-3-イル]-N-イソブチルアミン

黄色結晶

¹H NMR (400MHz, CDCl₃) δ 1. 06 (d, J = 6.8 Hz, 6H), 1. 80–1. 90 (m, 1H), 2. 46 (s, 3H), 2. 76–2. 96 (m, 2H), 3. 30 (br s, 1H), 6. 85 (dd, J = 7.2, 7. 2 Hz, 1H), 7. 11 (dd, J = 1.2, 2. 7 Hz, 1H), 7. 33 (dd, J = 2.0, 8. 0 Hz, 1H), 7. 52 (d, J = 2.0 Hz, 1H), 7. 55 (d, J = 8.0 Hz, 1H), 8. 00 (dd, J = 1.2, 6. 4 Hz, 1H).

実施例301

N-[8-(2,4-ジクロロフェニル)-2-(メチルスルファニル) イミダゾ <math>[1,2-a] ピリジン-3- イル]-N- イソブチル-N- プロピルアミン

黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 87 (t, J=7.2 Hz, 3H), 0. 92 (d, J=6.8 Hz, 6H), 1. 35–1. 50 (m, 2H), 1. 55–1. 63 (m, 1H), 2. 52 (s, 3H), 2. 90–3. 10 (m, 4H), 6. 83 (dd, J=7.2, 7. 2 Hz, 1H), 7. 14 (dd, J=1.2, 6. 8 Hz, 1H), 7. 33 (dd, J=2.0, 8. 4 Hz, 1H), 7. 52 (d, J=2.0 Hz, 1H), 7. 62 (d, J=8.4 Hz, 1H), 8. 14 (dd, J=1.2, 6. 8 Hz, 1H).

実施例302

N-シクロプロピルメチル-N-[8-(2, 4-ジクロロフェニル)-2-(メチルスルファニル)イミダゾ<math>[1, 2-a]ピリジン-3-4ル]-N-4ソブチルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 15-0. 10 (m, 2H), 0. 15-0. 40 (m, 2H), 0. 75-0. 85 (m, 1H), 0. 93 (d, J = 6.8 Hz, 6H), 1. 53-1. 68 (m, 1H), 2. 86-3. 22 (m, 4H), 6. 82 (dd, J = 6.8, 6. 8 Hz, 1H), 7. 13 (dd, J = 1.2, 6. 8 Hz, 1H), 7. 33 (dd, J = 2.0, 8. 4 Hz, 1H), 7. 52 (d, J = 2.4 Hz, 1H), 7. 61 (d, J = 8.4 Hz, 1H), 8. 23 (dd, J = 1.2, 6. 8 Hz, 1H).

実施例303

N-ブチル-N- [8-(2,4-ジクロロフェニル)-2-(メチルスルファニル) イミダゾ <math>[1,2-a] ピリジン-3-イル]-N-イソブチルアミン

黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 86 (t, J=7.2 Hz, 3H), 0. 92 (d, J=6.4 Hz, 6H), 1. 24–1. 41 (m, 4H), 1. 50–1. 65 (m, 1H), 2. 52 (s, 3H), 2. 80–3. 10 (m, 4H), 6. 83 (dd, J=6.8, 6. 8 Hz, 1H), 7. 14 (dd, J=1.2, 6. 8 Hz, 1H), 7. 33 (dd, J=2.0, 8. 4 Hz, 1H), 7. 52 (d, J=2.0 Hz, 1H), 7. 63 (d, J=8.4 Hz, 1H), 8. 13 (dd, J=1.2, 7. 2 Hz, 1H).

実施例304

N-[8-(2, 4-ij)] ロロフェニル)-2-(x+ij) イミダゾ [1, 2-a] ピリジン-3-(x+ij) -N-(x+ij) アミン

緑褐色油状物

'H NMR (400MHz, CDC1₃) δ 0. 92 (d, J = 6.8 Hz, 6H), 1. 50-1. 65 (m, 1H), 2. 52 (s, 3H) 2. 80-3. 45 (m, 6H), 6. 83 (dd, J = 7.2, 6. 8 Hz, 1H), 7. 14 (dd, J = 1.2, 7. 2 Hz, 1H), 7. 33 (dd, J = 2.0, 8. 4 Hz, 1H), 7. 52 (d, J = 2.0 Hz,

1H), 7.61 (d, J = 8.4 Hz, 1H), 8.24 (dd, J = 1.2, 6.8 Hz, 1H). 実施例 3 0 5

黄色結晶

¹H NMR (400MHz, CDCl₃) δ 0. 87 (t, J=7.2 Hz, 6H), 1. 35–1. 43 (m, 4H), 2. 56 (s, 3H), 3. 00–3. 20 (m, 4H), 3. 96 (s, 3H), 3. 97 (s, 3H), 6. 45 (d, J=8.0 Hz, 1H), 6. 80 (dd, J=6.8, 7. 2 Hz, 1H), 7. 39 (dd, J=1.2, 7. 2 Hz, 1H), 8. 03 (dd, J=1.2, 6. 4 Hz, 1H), 8. 31 (d, J=8.4 Hz, 1H).

実施例306

N-[8-(2,6-i)] + i - 4-i + i - 2-(i) - 2-(i)

白色結晶

¹H NMR (400MHz, CDC1₃) δ 0.88 (t, J = 7.2 Hz, 6H), 1.39–1.46 (m, 4H), 2.41 (s, 3H), 2.47 (s, 3H), 3.00–3.20 (m, 4H), 3.71 (s, 6H), 6.51 (s, 2H), 6.78 (dd, J = 6.8, 6.8 Hz, 1H), 7.02 (dd, J = 1.2, 6.8 Hz, 1H), 8.04 (dd, J = 1.6, 6.8 Hz, 1H).

実施例307

N-[8-(2,4-ij)] ロロフェニル)-2-(x+ij) イミダゾ [1,2-a] ピリジン-3-1 ル-1 [1,2-a] ピリジン-3-1 [1,2-a] [1,2-a] [1,2-a] ピリジン-3-1 [1,2-a] [1,2-a]

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 94 (d, J = 6.8 Hz, 6H), 1. 50–1. 65 (m, 1H), 1. 70–1. 90 (m, 2H), 2. 53 (s, 3H), 2. 82–3. 38 (m, 4H), 4. 43 (t, J = 6.0 Hz, 1H), 4. 54 (t, J = 5.5 Hz, 1H), 6. 85 (dd, J = 6.8, 6. 8 Hz, 1H), 7. 15 (dd, J = 1.2, 6. 8 Hz, 1H), 7. 35 (dd, J = 2.8, 8. 0 Hz, 1H), 7. 53 (d, J = 2.0 Hz,

1H), 7.61 (d, J=8.0 Hz, 1H), 8.10 (dd, J=1.2, 6.8 Hz, 1H). 実施例 3 0 8

緑色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 93 (d, J = 6.8 Hz, 6H), 1. 40–1. 80 (m, 5H), 2. 82–3. 22 (m, 4H), 4. 34 (t, J = 5.6 Hz, 1H), 4. 46 (t, J = 6.0 Hz, 1H), 6. 84 (dd, J = 6.8, 6. 8 Hz, 1H), 7. 15 (dd, J = 1.2, 6. 8 Hz, 1H), 7. 34 (dd, J = 2.0, 8. 4 Hz, 1H), 7. 53 (d, J = 2.4 Hz, 1H), 7. 62 (d, J = 8.4 Hz, 1H), 8. 11 (dd, J = 1.2, 6. 8 Hz, 1H).

実施例309

N- [8-(2,4-ジメトキシフェニル)-2-(メチルスルファニル) イミダゾ <math>[1,2-a] ピリジン-3-イル]-N,N-ジプロピルアミン 白色結晶

¹H NMR (400MHz, CDCl₃) δ 0. 87 (t, J = 7.2 Hz, 6H), 1. 37–1. 44 (m, 4H), 2. 54 (s, 3H), 3. 00–3. 20 (m, 4H), 3. 80 (s, 3H), 3. 87 (s, 3H), 6. 60–6. 63 (m, 2H), 6. 79 (dd, J = 7.2, 7. 2 Hz, 1H), 7. 75 (br d, J = 8.0 Hz, 1H), 8. 03 (br d, J = 6.4 Hz, 1H).

実施例310

¹H NMR (400MHz, CDC1₃) δ 0. 87 (t, J=7.2 Hz, 6H), 1. 30–1. 50 (m, 4H), 2. 47 (s, 3H), 2. 52 (s, 3H), 2. 60 (s, 3H), 6. 81 (dd, J=6.8, 6. 8 Hz, 1H), 6. 97 (dd, J=1.6, 6. 8 Hz, 1H), 7. 07 (d, J=8.0 Hz, 1H), 7. 64 (d, J=7.6 Hz, 1H), 8. 11 (dd, J=1.6, 6. 8 Hz, 1H).

実施例311

黄色油状物

'H NMR(400MHz,CDC1₃) δ -0. 10-0. 10(m,2H),0. 24-0. 38(m,2H),0. 72-0. 83(m,1H),0. 89(t,J = 7. 6 Hz,3H),1. 35-1. 43(m,2H),2. 52(s,3H),2. 98(br d,J = 6. 8 Hz,2H),3. 05-3. 30(m,2H),6. 82(dd,J = 7. 2,7. 2 Hz,1H),7. 13(br d,J = 6. 8 Hz,1H),7. 33(dd,J = 2. 0,8. 4 Hz,1H),7. 52(d,J = 2. 0 Hz,1H),7. 62(d,J = 8. 4 Hz,1H),8. 21(dd,J = 1. 2,6. 8 Hz,1H).

黄色油状物

"H NMR (400MHz, CDCl₃) δ 0. 89 (t, J=7.2 Hz, 3H), 1. 36-1. 50 (m, 2H), 1. 70-1. 90 (m, 2H), 2. 53 (s, 3H), 3. 04-3. 18 (m, 2H), 3. 20-3. 42 (m, 2H), 4. 44 (t, J=6.0 Hz, 1H), 4. 56 (t, J=6.0 Hz, 1H), 6. 84 (dd, J=6.8 Hz, 1H), 7. 15 (dd, J=1.2, 7. 2 Hz, 1H), 7. 33 (dd, J=1.6, 8. 4 Hz, 1H), 7. 52 (d, J=2.4 Hz, 1H), 7. 61 (d, J=8.4 Hz, 1H), 8. 08 (dd, J=1.6, 6. 8 Hz, 1H). 実施例 3 1 3

NーシクロブチルメチルーNー $\begin{bmatrix} 8 - (2, 4 - \varnothing) / 2 - (3, 4 - \varnothing) / 2 - (3, 4 - \varnothing) / 2 - (4, 4 - \varnothing) /$

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0.88 (t, J=7.2 Hz, 3H), 1.30–1.43 (m, 2H), 1.50–1.63 (m, 2H), 1.70–1.90 (m, 4H), 2.22–2.36 (m, 1H), 2.52 (s, 3H), 2.90–3.35 (m, 4H), 6.81 (dd, J=6.8 Hz, 1H), 7.12 (dd, J=1.2, 6.8 Hz, 1H), 7.33 (dd, J=2.4, 8.4 Hz, 1H), 7.52 (d, J=2.0 Hz, 1H), 7.61 (d,

J = 8.4 Hz, 1H), 8.09 (dd, J = 1.2, 6.8 Hz, 1H).

実施例314

N-[8-(6-メトキシ-2-メチル-3-ピリジル)-2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジン-3-イル] -N, N-ジプロピルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J = 7.2 Hz, 6H), 1. 30–1. 50 (m, 4H), 2. 41 (s, 3H), 2. 53 (s, 3H), 3. 00–3. 20 (m, 4H), 3. 98 (s, 3H), 6. 65 (d, J = 8.4 Hz, 1H), 6. 80 (dd, J = 8.0, 8. 0 Hz, 1H), 6. 96 (dd, J = 2.0, 6. 8 Hz, 1H), 7. 66 (d, J = 8.0 Hz, 1H), 8. 09 (dd, J = 2.0, 6. 8 Hz, 1H).

実施例315

N-[8-(2, 4-ij)] ロロフェニル)-2-(x+ij) イミダゾ [1, 2-a] ピリジン-3-(x+ij) -N-(4-ij) ルプロピルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J = 7.6 Hz, 3H), 1. 35–1. 80 (m, 6H), 2. 53 (s, 3H), 3. 02–3. 25 (m, 4H), 4. 35 (t, J = 6.0 Hz, 1H), 4. 47 (t, J = 6.4 Hz, 1H), 6. 84 (dd, J = 6.8 Hz, 1H), 7. 15 (dd, J = 1.2, 6. 8 Hz, 1H), 7. 33 (dd, J = 2.0, 8. 0 Hz, 1H), 7. 53 (d, J = 2.4 Hz, 1H), 7. 62 (d, J = 8.4 Hz, 1H), 8. 09 (dd, J = 1.6, 6. 8 Hz, 1H).

実施例316

N-シクロプロピルメチルーN- [8 - (2, 6 - ジメトキシー4 - メチルフェニル) - 2 - (メチルスルファニル) イミダゾ [1, 2 - a] ピリジンー3 - A

淡緑色結晶

¹H NMR (400MHz, CDC1₃) δ -0. 10-0. 10 (m, 2H), 0. 20-0. 40 (m, 2H), 0. 75-0. 90 (m, 1H), 1. 70-1. 90 (m, 2H), 2. 41 (s, 3H), 2. 48 (s, 3H), 2. 98 (br d, J = 6. 8 Hz, 2H), 3. 20-3. 60 (m, 2H), 3. 70 (s, 3H), 4. 45 (t, J = 5. 2 Hz, 1H),

4. 57 (t, J = 5.6 Hz, 1H), 6. 51 (s, 2H), 6. 80 (dd, J = 6.8, 6. 8 Hz, 1H), 7. 02 (dd, J = 1.2, 7. 2 Hz, 1H), 8. 07 (dd, J = 1.2, 6. 8 Hz, 1H).

実施例317

N-[8-(2,6-i)] N-(3-i) N-(3-i)

淡鼠色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J = 6.8 Hz, 3H), 1. 30–1. 50 (m, 2H), 1. 70–1. 83 (m, 2H), 2. 42 (s, 3H), 2. 47 (s, 3H), 3. 05–3. 12 (m, 2H), 3. 22–3. 60 (m, 2H), 3. 71 (s, 6H), 4. 44 (t, J = 5.6 Hz, 1H), 4. 56 (t, J = 6.0 Hz, 1H), 6. 51 (s, 2H), 6. 80 (dd, J = 6.8, 6. 8 Hz, 1H), 7. 03 (br d, J = 6.8Hz, 1H), 7. 99 (br d, J = 6.8Hz, 1H).

実施例318

N-シクロプロピルメチル-N-[8-(2, 4-ジクロロフェニル)-2-(メチルスルファニル)イミダゾ<math>[1, 2-a]ピリジン-3-イル]-N-(3-フルオロプロピル)アミン

黄色油状物

'H NMR (400MHz, CDC1₃) δ -0. 10-1. 00 (m, 2H), 0. 25-0. 40 (m, 2H), 0. 75-0. 85 (m, 1H), 1. 72-1. 82 (m, 2H), 2. 53 (s, 3H), 2. 99 (br d, J = 7. 2 Hz, 2H), 3. 20-3. 60 (m, 2H), 4. 45 (t, J = 6. 6 Hz, 1H), 4. 57 (t, J = 5. 6 Hz, 1H), 6. 84 (dd, J = 6. 8, 6. 8 Hz, 1H), 7. 15 (dd, J = 1. 2, 6. 8 Hz, 1H), 7. 34 (dd, J = 2. 0, 8. 4 Hz, 1H), 7. 52 (d, J = 2. 0 Hz, 1H), 7. 60 (d, J = 8. 4 Hz, 1H), 8. 16 (dd, J = 1. 6, 6. 8 Hz, 1H).

実施例319

 $N-[8-(2, 4-i)D_{DD}]$ $N-[8-(2, 4-i)D_{DD}$

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 87 (t, J=7.2 Hz, 3H), 1. 30–1. 60 (m, 4H), 1. 70–1. 90 (m, 2H), 3. 10–3. 30 (m, 4 H), 3. 60–3. 90 (m, 3H), 6. 83 (dd, J=7.2, 7. 2 Hz, 1H), 7. 15 (dd, J=2.0, 7. 2 Hz, 1H), 7. 33 (dd, J=2.0, 8. 4 Hz, 1H), 7. 61 (d, J=8.0 Hz, 1H), 8. 25 (dd, J=1.2, 6. 8 Hz, 1H).

実施例320

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 94 (d, J = 6.4 Hz, 1H), 1. 50–1. 60 (m, 1H), 1. 70–1. 85 (m, 2H), 2. 42 (s, 3H), 2. 48 (s, 3H), 2. 90–3. 08 (m, 2H), 3. 10–3. 40 (m, 2H), 3. 71 (s, 6H), 4. 43 (t, J = 6.0 Hz, 1H), 4. 55 (t, J = 6.0 Hz, 1H), 6. 51 (s, 2H), 6. 81 (dd, J = 6.8, 6. 8 Hz, 1H), 7. 03 (d, J = 6.0 Hz, 1H), 8. 03 (br d, J = 6.4 Hz, 1H).

実施例321

N-[8-(2, 4-i)] + i = 6-i = N N-[8-(2, 4-i)] + i = 0 N-[8-(2, 4-i

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J=7.2 Hz, 6H), 1. 35–1. 45 (m, 4H), 2. 06 (s, 3H), 2. 47 (s, 3H), 3. 00–3. 20 (m, 4H), 3, 67 (s, 3H), 3. 85 (s, 3H), 6. 43 (d, J=2.4 Hz, 1H), 6. 47 (d, J=2.0 Hz, 1H), 6. 79 (dd, J=6.8, 6. 8 Hz, 1H), 6. 94 (dd, J=1.2, 6. 4 Hz, 1H), 8. 07 (dd, J=1.2, 8. 0 Hz, 1H). 実施例 3 2 2

黄色結晶

 1 H NMR(400MHz,CDCl₃) δ 0.86(t,J=7.6 Hz,6H),1.05(t,J=6.8 Hz,3H),1.35-1.43(m,4H),2.40(s,3H),2.47(s,3H),3.00-3.20(m,4H),3.72(s,3H),3.91-4.05(m,2H),6.50(br s,2H),6.78(dd,J=6.8,6.8 Hz,1H),7.03(dd,J=1.2,6.8 Hz,1H),8.04(dd,J=1.2,6.8 Hz,1H).

N-[8-(2,6-i)] N-i N-i

淡緑色結晶

¹H NMR (400MHz, CDC1₃) δ 1. 70–1. 89 (m, 4H), 2. 42 (s, 3H), 2. 49 (s, 3H), 3. 20–3. 40 (m, 4H), 3. 71 (s, 6H), 4. 44 (t, J = 5.6 Hz, 1H), 4. 56 (t, J = 5.6 Hz, 1H), 6. 51 (s, 2H), 6. 83 (dd, J = 6.8, 6. 8 Hz, 1H), 7. 05 (dd, J = 1.2, 5. 6 Hz, 1H), 7. 97 (dd, J = 1.6, 6. 8 Hz, 1H).

実施例324

 $N-[8-(2-D_{10}-6- + N-1)-4- + N-1]-N-[8-(2-D_{10}-6- + N-1)-1]-N-[8-(2-D_{10}-6- + N-1)-4- + N-1]-N-[8-(2-D_{10}-6- + N-1)-1]-N-[8-(2-D_{10}-6- + N-1)-1]-N-[8-(2-D_{10$

黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J=7.2 Hz, 6H), 1. 35–1. 45 (m, 4H), 2. 39 (s, 3H), 2. 46 (s, 3H), 3. 05–3. 20 (m 4H), 3, 70 (s, 3H), 6. 73 (s, 3H), 6. 80 (dd, J=7.2, 7. 2 Hz, 1H), 6. 95 (br s, 1H), 6. 99 (dd, J=1.2, 5. 6 Hz, 1H), 8. 09 (br d, J=6.8 Hz, 1H).

実施例325

N-[8-メシチル-2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジン-3-4ル]-N, N-ジプロピルアミン

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0.88 (t, J = 7.2 Hz, 6H), 1.35–1.42 (m, 4H), 2.02 (s, 6H), 2.34 (s, 3H), 2.45 (s, 3H), 3.05–3.20 (m, 4H), 6.78 (dd; J

= 6. 8, 6. 8 Hz, 1H), 6. 88 (dd, J = 1. 2, 6. 8 Hz, 1H), <math>6. 96 (s, 2H), 8. 09 (dd, J = 1. 2, 6. 4 Hz, 1H).

実施例326

N-[8-(2-メトキシ-4-メチルフェニル) -2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジン-3-イル]-N, N-ジプロピルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 87 (t, J = 7.2 Hz, 6H), 1. 35–1. 45 (m, 4H), 2. 42 (s, 3H), 2. 53 (s, 3H), 3. 00–3. 20 (m, 4H), 3. 80 (s, 3H), 6. 76–6. 90 (m, 3H), 7. 22 (dd, J = 1.6, 7. 2 Hz, 1H), 7. 64 (d, J = 8.0 Hz, 1H), 8. 04 (dd, J = 1.6, 6. 8 Hz, 1H).

実施例327

N-[8-(4-エチル-2, 6-ジメトキシフェニル)-2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジン-3-イル]-N, N-ジプロピルアミン

淡黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J=7.2 Hz, 6H), 1. 31 (t, J=7.6 Hz, 3H), 1. 30–1. 50 (m, 4H), 2. 47 (s, 3H), 2. 70 (q, J=7.6 Hz, 2H), 3. 02–3. 18 (m, 4H), 3. 72 (s, 6H), 6. 53 (s, 2H), 6. 79 (dd, J=6.8, 6. 8 Hz, 1H), 7. 03 (br d, J=6.8 Hz, 1H).

実施例328

N-シクロプロピルメチルーN- [8 - (2, 6 -ジメトキシー4 -メチルフェニル) -2 - (メチルスルファニル) イミダゾ [1, 2 - a] ピリジン-3 -イル] -N-プロピルアミン

黄色油状物

¹H NMR (400MHz, CDCl₃) δ -0. 10-0. 06 (m, 2H), 0. 22-0. 40 (m, 2H), 0. 75-0. 86 (m, 1H), 0. 89 (t, J = 7. 2 Hz, 1H), 1. 32-1. 50 (m, 2H), 2. 41 (s, 3H), 2. 47 (s, 3H), 2. 97 (br d, J = 6. 8 Hz, 2H), 3. 10-3. 30 (m, 2H), 3. 70 (s, 6H), 6. 51

(s, 2H), 6. 78 (dd, J = 6. 8, 6. 8 Hz, 1H), 7. 02 (br d, J = 6. 4 Hz, 1H), 8. 12 (dd, J = 1. 6, 6. 8 Hz, 1H).

実施例329

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 10-0. 15 (m, 4H), 0. 20-0. 40 (m, 4H), 0. 75-0. 85 (m, 2H), 2. 41 (s, 3H), 2. 48 (s, 3H), 3. 00-3. 10 (m, 4H), 3. 70 (s, 6H), 6. 51 (s, 2H), 6. 79 (dd, J = 6. 8, 6. 8 Hz, 1H), 7. 02 (dd, J = 1. 2, 6. 4 Hz, 1H), 8. 20 (dd, J = 1. 2, 6. 8 Hz, 1H).

実施例330

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 10-0. 10 (m, 4H), 0. 20-0. 30 (m, 4H), 0. 75-0. 85 (m, 2H), 2. 02 (s, 3H), 2. 38 (s, 3H), 2. 46 (s, 3H), 3. 00-3. 10 (m, 4H), 3. 68 (s, 3H), 6. 68 (br s, 1H), 6. 75-6. 81 (m, 2H), 6. 95 (dd, J = 1. 2, 6. 4 Hz, 1H), 8. 23 (dd, J = 1. 2, 6. 8 Hz, 1H).

実施例331

N-[8-(2-7) + 10-4, 6-3 + 10-2 + 10

淡黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 87 (t, J = 7.2 Hz, 6H), 1. 30–1. 50 (m, 4H), 2. 49 (s, 3H), 3. 00–3. 20 (m, 4H), 3. 74 (s, 3H), 3. 84 (s, 3H), 6. 36–6. 40 (m, 2H), 6. 79 (dd, J = 7.2, 7. 2 Hz, 1H), 7. 04 (br d, J = 6.8 Hz, 1H), 8. 07 (dd,

J = 1.2, 6.8 Hz, 1H.

実施例332

淡黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 87 (t, J=7.2 Hz, 6H), 1. 35–1. 43 (m, 4H), 2. 53 (s, 3H), 3. 00–3. 17 (m, 4H), 3. 81 (s, 3H), 6. 80 (dd, J=6.8, 6. 8 Hz, 1H), 7. 01 (d, J=2.4 Hz, 1H), 7. 05 (dd, J=1.6, 8. 0 Hz, 1H), 7. 72 (dd, J=1.2, 8. 4 Hz, 1H), 8. 06 (dd, J=1.2, 6. 8 Hz, 1H).

実施例333

N-[2-(メチルスルファニル)-8-(2,4,6-トリメトキシフェニル) イミダゾ <math>[1,2-a] ピリジン-3-イル]-N,N-ジプロピルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J = 7.6 Hz, 6H), 1. 35–1. 45 (m, 4H), 2, 47 (s, 3H), 3. 03–3. 16 (m, 4H), 3. 71 (s, 6H), 3. 87 (s, 3H), 6. 26 (s, 2H), 6. 78 (dd, J = 6.8, 6. 8 Hz, 1H), 7. 01 (dd, J = 1.6, 6. 8 Hz, 1H), 8. 04 (dd, 1. 6, 6. 8 Hz, 1H).

実施例334

N-[8-(2,4-i)/2 - 2-(x+i)/2 - 2-(x+i)/2

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 91 (t, J = 7.6 Hz, 3H), 1. 41–1. 50 (m, 2H), 2. 17 (t, J = 2.4 Hz, 1H), 2. 52 (s, 3H), 3. 20–3. 30 (m, 2H), 3. 92 (d, J = 2.8 Hz, 2H), 6. 84 (dd, 7. 2, 7. 2 Hz, 1H), 7. 16 (dd, J = 1.2, 6. 8 Hz, 1H), 7. 33 (dd, J = 2.0, 8. 4 Hz, 1H), 7. 53 (d, J = 2.0 Hz, 1H), 7. 60 (d, J = 8.0

Hz, 1H), 8.17 (dd, J = 1.2, 6.8 Hz, 1H).

実施例335

N-[8-(4-)++)フェニル)-2-(メチルスルファニル)イミダゾ [1, 2-a] ピリジン-3-イル]-N, N-ジプロピルアミン

黄色油状物

¹H NMR (400MHz, CDCl₃) る 0.87 (t, J = 7.6 Hz, 6H), 1.35-1.43 (m, 4H), 2.62 (s, 3H), 3.00-3.18 (m, 4H), 3.87 (s, 3H), 6.81 (dd, J = 6.8, 6.8 Hz, 1H), 7.00-7.02 (m, 2H), 7.20 (dd, J = 1.6, 7.2 Hz, 1H), 8.03-8.08 (m, 3H). 実施例 3 3 6

N-[8-(2,6-i)] N-(3-i) N-(3-i)

黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 94 (t, J = 7.6 Hz, 3H), 1. 63–1. 72 (m, 2H), 2. 43 (br s, 6H), 3. 55–3. 63 (m, 1H), 3. 73 (s, 6H), 6. 02–6. 03 (m, 1H), 6. 29–6. 31 (m, 1H), 6. 53 (s, 2H), 6. 79 (dd, J = 6.8, 6. 8 Hz, 1H), 7. 08–7. 13 (m, 2H), 7. 71 (dd, J = 1.6, 6. 8 Hz, 1H).

実施例337

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 90 (t, J=7.2 Hz, 3H), 1. 35–1. 46 (m, 2H), 1. 72 (t, J=2.4 Hz, 3H), 3. 20–3. 30 (m, 2H), 3. 81 (q, J=2.4 Hz, 2H), 6. 83 (dd, J=6.8, 6. 8 Hz, 1H), 7. 14 (dd, J=1.2, 6. 8 Hz, 1H), 7. 33 (dd, J=2.0, 8. 4 Hz, 1H), 7. 52 (d, J=2.0 Hz, 1H), 7. 61 (d, J=8.4 Hz, 1H), 8, 17 (dd, J=1.2, 6. 8 Hz, 1H).

実施例338

N-[8-(2,4-ジクロロ-6-メトキシフェニル)-2-(メチルスルファニル) イミダゾ <math>[1,2-a] ピリジン-3-イル]-N,N-ジプロピルアミン

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0.88 (t, J = 7.2 Hz, 6H), 1.35–1.45 (m, 4H), 2.47 (s, 3H), 3.03–3.20 (m, 4H), 3.71 (s, 3H), 6.81 (dd, J = 6.8, 6.8 Hz, 1H), 6.90 (d, J = 1.6 Hz, 1H), 6.97 (dd, J = 1.2, 6.8 Hz, 1H), 7.14 (d, J = 1.6 Hz, 1H), 8.11 (dd, J = 1.6, 6.8 Hz, 1H).

実施例339

N-[8-(2,4-ジクロロフェニル)-2-(メチルスルファニル) イミダゾ <math>[1,2-a] ピリジン-3-イル]-N-エチル-N-プロピルアミン緑色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J=7.6 Hz, 3H), 0. 99 (t, J=7.2 Hz, 3H), 1. 32–1. 48 (m, 2H), 2. 52 (s, 3H), 3. 10–3. 25 (m, 4H), 6. 82 (dd, J=6.8, 6. 8 Hz, 1H), 7. 14 (dd, J=1.2, 6. 8 Hz, 1H), 7. 33 (dd, J=2.0, 8. 4 Hz, 1H), 7. 52 (d, J=2.0 Hz, 1H), 7. 62 (d, J=8.4 Hz, 1H), 8. 12 (dd, J=1.6, 6. 8 Hz, 1H).

実施例340

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0.88 (t, J = 7.6 Hz, 6H), 1.35–1.44 (m, 4H), 2.24 (s, 3H), 2.52 (s, 3H), 3.05–3.18 (m, 4H), 3.85 (s, 3H), 6.77–6.86 (m, 3H), 6.95 (dd, J = 1.6, 7.2 Hz, 1H), 7.32 (d, J = 8.4 Hz, 1H), 8.08 (dd, J = 1.6, 6.8 Hz, 1H).

実施例341

N-シクロブチルメチルーN-[8-(2,6-ジメトキシ-4-メチルフェ

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 87 (t, J=7.2 Hz, 3H), 1. 30–1. 45 (m, 2H), 1. 50–1. 60 (m, 2H), 1. 60–1. 90 (m, 4H), 2. 22–2. 80 (m, 1H), 2. 41 (s, 3H), 2. 47 (s, 3H), 3. 00–3. 25 (m, 4H), 3. 70 (s, 3H), 6. 51 (s, 2H), 6. 77 (dd, J=6.8, 6. 8 Hz, 1H), 7. 01 (dd, J=1.2, 6. 8 Hz, 1H), 8. 02 (dd, J=1.2, 6. 8 Hz, 1H).

実施例342

N-[8-(2,6-i)] + i = 1 N-[8-(2,6-i)] + i = 1

黄褐色油状物

'H NMR (400MHz, CDC1₃) δ 0.90 (t, J = 7.2 Hz, 3H), 1.40-1.50 (m, 2H), 2.19 (t, J = 1.6 Hz, 1H), 2.42 (s, 3H), 2.47 (s, 3H), 2.20-2.31 (m, 2H), 3.70 (s, 6H), 3.91 (d, J = 1.6 Hz, 2H), 6.51 (s, 2H), 6.81 (dd, J = 6.8, 6.8 Hz, 1H), 7.04 (br d, J = 7.2 Hz, 1H), 8.08 (dd, J = 1.2, 6.8 Hz, 1H). 実施例 3 4 3

N-[8-[4-DDD-2-(トリフルオロメチル) フェニル] -2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジン-3-イル] -N, N-ジプロピルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J = 7.2 Hz, 6H), 1. 35–1. 45 (m, 4H), 2. 46 (s, 3H), 3. 02–3. 18 (m, 4H), 6. 79 (dd, J = 7.2, 7. 2 Hz, 1H), 6. 99 (d, J = 7.2 Hz, 1H), 7. 50–7. 60 (m, 2H), 7. 77 (br s, 1H), 8. 12 (dd, J = 1.2, 6. 8 Hz, 1H).

実施例344

N-[8-(4-0110-2.6-ジメトキシフェニル)-2-(メチルスル

ファニル) イミダゾ [1, 2-a] ピリジン-3-4ル] -N, N-ジプロピルアミン

淡緑色結晶

¹H NMR (400MHz, CDCl₃) δ 0. 88 (t, J = 7.6 Hz, 6H), 1. 35–1. 47 (m, 4H), 2. 47 (s, 3H), 3. 04–3. 16 (m, 4H), 3. 71 (s, 6H), 6. 68 (s, 2H), 6. 79 (dd, J = 6.8, 6. 8 Hz, 1H), 6. 99 (dd, J = 1.2, 6. 8 Hz, 1H), 8. 06 (dd, J = 0.8, 6. 8 Hz. 1H).

実施例345

N-[8-(4-0)-2, 6-i) N-(3-i) N-

黄色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 87 (t, J = 7.6 Hz, 3H), 1. 35–1. 45 (m, 2H), 1. 50–1. 90 (m, 6H), 2. 22–2. 40 (m, 1H), 2. 47 (s, 3H), 3. 00–3. 20 (m, 4H), 3. 70 (s, 6H), 6. 68 (s, 2H), 6. 78 (dd, J = 6.8 Hz, 1H), 6. 99 (br d, J = 6.8 Hz, 1H), 8. 03 (d, J = 6.8 Hz, 1H).

実施例346

N-[8-[4-x++2-2-(+)] フェニル] -2-(x+1) チルスルファニル) イミダゾ [1, 2-a] ピリジン-3-4 ルファニル ジプロピルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J=7.2 Hz, 6H), 1. 25–1. 45 (m, 4H), 2. 46 (s, 3H), 3. 04–3. 20 (m, 4H), 3. 90 (s, 3H), 6. 78 (dd, J=6.8, 6. 8 Hz, 1H), 6. 99 (d, J=7.2 Hz, 1H), 7. 12 (dd, J=2.4, 6. 8 Hz, 1H), 7. 25–7. 29 (m, 1H), 7. 50 (d, J=8.8 Hz, 1H), 8. 10 (dd, J=1.2, 6. 8 Hz, 1H).

実施例347

 $N-[8-(4-\lambda + N-1, 3-\lambda + N-1] - (4-\lambda + N-1, 3-\lambda + N-1) - (3-\lambda + N-1) - ($

ジプロピルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J = 7.2 Hz, 6H), 1. 35–1. 43 (m, 4H), 2. 10 (s, 3H), 2. 52 (s, 3H), 3. 02–3. 18 (m, 4H), 6. 01 (br s, 2H), 6. 73–6. 80 (m, 2H), 6. 88–6. 97 (m, 2H), 8. 08 (dd, J = 2.0, 6. 8 Hz, 1H).

実施例348

黄色結晶

¹H NMR (400MHz, CDCl₃) δ 0.86 (t, J=7.2 Hz, 3H), 1.25-1.37 (m, 4H), 1.60-1.90 (m, 4H), 2.22-2.38 (m, 1H), 2.41 (s, 3H), 2.47 (s, 3H), 3.00-3.25 (m, 4H), 3.70 (s, 6H), 6.50 (s, 2H), 6.75-6.80 (m, 1H), 7.01 (br d, J=6.8 Hz, 1H), 8.01 (dd, J=2.0, 8.4 Hz, 1H).

実施例349

N-シクロブチルメチル-N-[8-(2,6-i)メトキシー4-メチルフェニル)-2-(メチルスルファニル)イミダゾ[1,2-a]ピリジン-3-イル]-N-エチルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 98 (t, J = 6.8 Hz, 3H), 1. 50–1. 90 (m, 6H), 2. 22–2. 40 (m, 1H), 2. 41 (s, 3H), 2. 47 (s, 3H), 3. 08–3. 24 (m, 4H), 3. 70 (s, 6H), 6. 51 (s, 2H), 6. 78 (dd, J = 6.8, 6. 8 Hz, 1H), 7. 01 (br d, J = 6.8 Hz, 1H), 8. 02 (br d, J = 6.8 Hz, 1H).

実施例350

N-[8-[2-000-4-(トリフルオロメトキシ)フェニル]-2-(メチルスルファニル)イミダゾ <math>[1, 2-a] ピリジン-3-7ル]-N, N-ジプロピルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J=7.6 Hz, 6H), 1. 35–1. 45 (m, 4H), 2. 52 (s, 3H), 3. 03–3. 18 (m, 4H), 2. 52 (s, 3H), 3. 03–3. 18 (m, 4H), 6. 83 (dd, 7. 2, 7. 2 Hz, 1H), 7. 15 (dd, J=1.2, 6. 8 Hz, 1H), 7. 22 (br d, J=7.2 Hz, 1H), 7. 39 (s, 1H), 7. 71 (d, J=8.4 Hz, 1H), 8. 13 (dd, J=1.2, 7. 2 Hz, 1H).

実施例351

N-シクロブチルメチル-N-シクロプロピルメチル-N-[8-(2, 6-ジメトキシ-4-メチルフェニル)-2-(メチルスルファニル)イミダゾ [1, 2-a] ピリジン-3-イル] アミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 18-0. 12 (m, 2H), 0. 20-0. 40 (m, 2H), 0. 70-0. 85 (m, 1H), 1. 50-1. 85 (m, 6H), 2. 22-2. 38 (m, 1H), 2. 41 (s, 3H), 2. 47 (s, 3H), 2. 90-3. 00 (m, 2H), 3. 10-3. 35 (m, 2H), 3. 70 (s, 6H), 6. 51 (s, 2H), 6. 77 (dd, J = 6. 8, 6. 8 Hz, 1H), 7. 01 (dd, J = 1. 2, 6. 8 Hz, 1H), 8. 09 (dd, J = 1. 2, 7. 2 Hz, 1H).

実施例352

N-[8-(5-メチル-2, 3-ジハイドロ-1, 4-ベンゾジオキシンー6-イル)-2-(メチルスルファニル)イミダゾ <math>[1, 2-a] ピリジン-3-イル]-N, N-ジプロピルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J = 7.2 Hz, 6H), 1. 38–1. 45 (m, 4H), 2. 06 (s, 3H), 2. 52 (s, 3H), 3. 02–3. 20 (m, 4H), 4. 25–4. 36 (m, 4H), 6. 76–6. 80 (m, 2H), 6. 89–6. 96 (m, 2H), 8. 08 (dd, J = 1.2, 6. 8 Hz, 1H).

実施例353

N-シクロブチルメチル-N-[8-(2,6-ジメトキシ-4-メチルフェニル)-2-(メチルスルファニル)イミダゾ<math>[1,2-a]ピリジン-3-4ル]-N-(3-フルオロプロピル)アミン

黄色結晶

 1 H NMR(400MHz,CDCl₃) δ 1.50-1.85(m,8H),2.30-2.40(m,1H),2.41(s,3H),2.48(s,3H),3.00-3.40(m,4H),3.70(s,6H),4.43(t,J=6.0 Hz,1H),4.55(t,J=6.0 Hz,1H),6.51(s,2H),6.80(dd,J=6.8,6.8 Hz,1H),7.03(dd,J=1.2,6.8 Hz,1H),7.03(dd,J=1.2,6.8 Hz,1H),7.97(dd,J=1.2,6.8 Hz,1H).

N3, N3-ジプロピル-8-[6-(ジメチルアミノ)-4-メチル-3-ピリジル]-2-(メチルスルファニル)イミダゾ <math>[1, 2-a]ピリジンー3-アミン

橙色結晶

¹H NMR (400MHz, CDC1₃) δ 0. 88 (t, J = 7.2 Hz, 6H), 1. 35–1. 45 (m, 4H), 2. 24 (s, 3H), 2. 53 (s, 3H), 3. 00–3. 20 (m, 4H), 3. . 12 (s, 6H), 6. 45 (s, 1H), 6. 78 (dd, J = 6.8, 6. 8 Hz, 1H), 6. 95 (dd, J = 1.2, 6. 0 Hz, 1H), 8. 07 (d, J = 6.8 Hz, 1H), 8. 15 (s, 1H).

実施例355

N-[8-(2,6-i)] N-[8-(2,6-i)]

黄色結晶

実施例356

¹H NMR (400MHz, CDCl₃) δ 0. 84 (t, J = 7.2 Hz, 3H), 1. 22–1. 40 (m, 4H), 1. 50–1. 70 (m, 2H), 2. 42 (s, 3H), 2. 48 (s, 3H), 2. 95–3. 05 (m, 1H), 3. 22–3. 42 (m, 4H), 3. 71 (s, 6H), 3. 89–4. 05 (m, 2H), 6. 51 (s, 2H), 6. 79 (dd. J = 6.8, 6. 8 Hz, 1H), 7. 03 (br d, J = 6.8 Hz, 1H), 8. 03 (dd, 1. 2, 6. 4 Hz, 1H).

N3 -シクロブチルメチルーN3 -プロピルー8 - [6 - (ジメチルアミノ) - 4 -メチルー3 -ピリジル] - 2 - (メチルスルファニル) イミダゾ <math>[1,

2-a] ピリジン-3-アミン

褐色油状物

¹H NMR (400MHz, CDCl₃) δ 0.88 (t, J = 7.2 Hz, 3H), 1.32-1.43 (m, 2H),

1. 50-1. 90 (m, 6H), 2. 23 (s, 3H), 2. 21-2. 36 (m, 1H), 2. 53 (s, 3H), 2. 95-3. 30 (m, 4H), 3. 13 (s, 6H), 6. 45 (s, 1H), 6. 78 (dd, J = 6. 8, 6. 8 Hz, 1H), 6. 95 (dd, J = 1. 2, 6. 8 Hz, 1H), 8. 05 (dd, J = 1. 2, 6. 8 Hz, 1H), 8. 15 (s, 1H). 実施例 3 5 7

褐色油状物

'H NMR (400MHz, CDC1₃) δ 1. 50-1. 85 (m, 8H), 2. 23 (s, 3H), 2. 25-2. 38 (m, 1H), 2. 54 (s, 3H), 3. 00-3. 40 (m, 4H), 3. 13 (s, 6H), 4. 44 (t, J=6.0 Hz, 1H), 4. 55 (t, J=6.0 Hz, 1H), 6. 45 (s, 1H), 6. 80 (dd, J=6.8, 6. 8 Hz, 1H), 6. 97 (dd, J=1.2, 7. 2 Hz, 1H), 8. 00 (dd, J=1.2, 6. 8 Hz, 1H), 8. 15 (s, 1H).

実施例358

N3, N3-ジシクロプロピルメチル-8-[6-(ジメチルアミノ)-4-メチル-3-ピリジル]-2-(メチルスルファニル)イミダゾ <math>[1, 2-a]ピリジン-3-アミン

褐色油状物

¹H NMR (400MHz, CDC1₃) δ -0. 15-0. 12 (m, 4H), 0. 18-0. 40 (m, 4H), 0. 75-0. 85 (m, 2H), 2. 22 (s, 3H), 2. 52 (s, 3H), 2. 95-3. 20 (m, 4H), 3. 12 (s, 6H), 6. 46 (s, 1H), 6. 79 (dd, J = 6. 8, 6. 8 Hz, 1H), 6. 96 (dd, J = 1. 2, 6. 8 Hz, 1H), 8. 16 (s, 1H), 8. 24 (dd, J = 1. 2, 6. 8 Hz, 1H).

実施例359

N3, N3-ジプロピル-8-[6-(ジメチルアミノ)-2, 4-ジメチル -3-ピリジル]-2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジン-3-アミン

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0.89 (t, J = 7.2 Hz, 6H), 1.35-1.45 (m, 4H),

2. 00 (s, 3H), 2. 18 (s, 3H), 2. 47 (s, 3H), 3. 00-3. 20 (m, 4H), 3. 11 (s, 6H), 6. 31 (s, 1H), 6. 78 (dd, J = 6. 8, 6. 8 Hz, 1H), 6. 88 (dd, J = 1. 2, 6. 8 Hz, 1H), 8. 08 (dd, J = 1. 2, 6. 8 Hz, 1H).

実施例360

N3-ブチル-N3-エチル-8-[6-(ジメチルアミノ) -4-メチル-3-ピリジル] -2-(メチルスルファニル) イミダゾ [1, 2-a] ピリジン-3-アミン

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0. 86 (t, J = 7.2 Hz, 3H), 0. 98 (t, J = 7.2 Hz, 3H), 1. 23–1. 40 (m, 4H), 2. 24 (s, 3H), 2. 53 (s, 3H), 3. 12 (s, 6H), 3. 13–3. 25 (m, 4H), 6. 46 (s, 1H), 6. 79 (dd, J = 6.8, 6. 8 Hz, 1H), 6. 95 (dd, J = 1.2, 6. 8 Hz, 1H), 8. 07 (dd, J = 1.6, 6. 8 Hz, 1H), 8. 16 (s, 1H).

実施例361

 $N3 - \mathcal{O}$ ロピルー $N3 - \mathcal{O}$ トラヒドロー $2H - 4 - \mathcal{O}$ ラニルー $8 - [6 - (ジメチルアミノ) - 4 - メチルー <math>3 - \mathcal{O}$ ーピリジル] - 2 - (メチルスルファニル) イミダゾ [1, 2 - a] ピリジンー $3 - \mathcal{O}$ ラン

褐色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 85 (t, J=7.4 Hz, 3H), 1. 23–1. 40 (m, 2H), 1. 45–1. 70 (m, 4H), 2. 24 (s, 3H), 2. 54 (s, 3H), 2. 95–3. 07 (m, 1H), 3. 13 (s, 6H), 3. 25–3. 42 (m, 4H), 3. 87–4. 03 (m, 2H), 6. 46 (s, 1H), 6. 79 (dd, J=6.8, 6. 8 Hz, 1H), 6. 96 (dd, J=1.6, 6. 4 Hz, 1H), 8. 07 (dd, J=1.6, 6. 8 Hz, 1H), 8. 16 (s, 1H).

実施例362

N3, $N3 - \tilde{y}$ プロピルー $8 - [6 - (\tilde{y}$ メチルアミノ) $-2 - \tilde{y}$ チルー $3 - \tilde{y}$ ピリジル] $-2 - (\tilde{y}$ チルスルファニル) イミダゾ [1, 2 - a] ピリジンー $3 - \tilde{y}$ ミン

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0.88 (t, J = 7.2 Hz, 6H), 1.38-1.44 (m, 4H),

2. 39 (s, 3H), 2. 54 (s, 3H), 3. 02-3. 18 (m, 4H), 3. 12 (s, 6H), 6. 44 (d, J = 8. 4 Hz, 1H), 6. 77 (dd, J = 7. 2, 7. 2 Hz, 1H), 6. 94 (dd, J = 1. 2, 6. 8 Hz, 1H), 7. 59 (d, J = 8. 8 Hz, 1H), 8. 05 (dd, J = 1. 2, 6. 8 Hz, 1H).

実施例363

N-[8-(2,4-i)DDDDTLLN)-2-(メチルスルファニル) イミダゾ <math>[1,2-a] ピリジン-3-4ル]-N-プロピル-N-テトラヒドロ-2H-4-ピラニルアミン

黄色油状物

¹H NMR (400MHz, CDC1₃) δ 0. 85 (t, J=7.4 Hz, 3H), 1. 20–1. 40 (m, 2H), 1. 40–1. 80 (m, 4H), 2. 53 (s, 3H), 2. 95–3. 05 (m, 1H), 3. 25–3. 43 (m, 4H), 3. 84–4. 05 (m, 2H), 6. 83 (dd, J=7.2, 7. 2 Hz, 1H), 7. 15 (dd, J=1.2, 7. 2 Hz, 1H), 7. 34 (dd, J=2.4, 8. 4 Hz, 1H), 7. 53 (d, J=2.4 Hz, 1H), 7. 62 (d, J=8.4 Hz, 1H), 8. 11 (dd, J=1.2, 6. 8 Hz, 1H).

実施例364

N-[8-(2,6-i)] N-(2-4-i) N-(2-4-i)

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 1.25-2.02 (m, 10H), 2.10-2.20 (m, 1H), 2.41 (s, 3H), 2.49 (s, 3H), 3.05-3.10 (m, 1H), 3.20-3.40 (m, 2H), 3.69 (s, 3H), 3.71 (s, 3H), 3.90-4.00 (m, 2H), 6.51 (s, 2H), 6.78 (dd, J = 6.8, 6.8 Hz, 1H), 7.99 (dd, J = 1.2, 6.8 Hz, 1H).

実施例365

N-シクロプロピルメチルーN- [8 - (2, 6 -ジメトキシー4 -メチルフェニル) +2 - (メチルスルファニル) イミダゾ [1, 2 - a] ピリジンー3 -イル] - N-テトラヒドロー2H-4 -ピラニルアミン

黄色非晶質

¹H NMR (400MHz, CDCl₃) δ -0.20- -0.10 (m, 1H), -0.50-0.08 (m, 1H),

0.12-0.20 (m, 1H), 0.25-0.35 (m, 1H), 1.40-1.70 (m, 4H), 2.41 (s, 3H), 2.49 (s, 3H), 2.97-3.10 (m, 2H), 3.30-3.45 (m, 3H), 3.69 (s, 3H), 3.72 (s, 3H), 3.85-3.92 (m, 1H), 3.95-4.02 (m, 1H), 6.51 (s, 2H), 6.79 (dd, J=6.8, 6.8 Hz, 1H), 7.03 (dd, J=1.2, 6.8 Hz, 1H), 8.13 (dd, J=1.2, 6.8 Hz, 1H).

実施例366

N-[8-(2,4-i)] + i = 0 N-[

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0.85 (t, J = 7.2 Hz, 3H), 1.20-1.40 (m, 2H), 1.40-1.75 (m, ⁴4H), 2.05 (s, 3H), 2.49 (s, 3H), 2.95-3.10 (m, 1H), 3.22-3.45 (m 3H), 3.68 (s, 3H), 3.85 (s, 3H), 3.85-4.05 (m, 2H), 6.43 (d, J = 2.4 Hz, 1H), 6.47 (d, J = 2.4 Hz, 1H), 6.79 (dd, J = 6.8, 6.8 Hz, 1H), 6.96 (dd, J = 1.6, 7.2 Hz, 1H), 8.06 (dd, J = 1.6, 6.8 Hz, 1H).

実施例367

N-シクロプロピルメチルーN- [8 - (2, 4 - ジメトキシー6 - メチルフェニル) - 2 - (メチルスルファニル) イミダゾ [1, 2 - a] ピリジン-3 - 4

黄色油状物

 1 H NMR (400MHz, CDCl₃) δ -0.30- -0.08 (m, 1H), -0.02- 0.10 (m, 1H), 0.15-0.40 (m, 2H), 0.60-0.75 (m, 1H), 1.40-1.70 (m, 4H), 2.03-2.08 (m, 3H), 2.49 (s, 3H), 2.95-3.12 (m, 2H), 3.30-3.45 (m, 3H), 3.66-3.69 (m, 3H), 3.85 (s, 3H), 3.80-3.92 (m, 1H), 3.95-4.02 (m, 1H), 6.44 (br s, 1H), 6.47 (br s, 1H), 6.79 (dd, J=6.8, 6.8 Hz, 1H), 6.96 (br d, J=6.8 Hz, 1H), 8.16 (br d, J=6.8 Hz, 1H). 実施例 3 6 8

N-[8-(2,6-i)] + i - 4-i + i - 2-(i) - 2-(i) - 2-(i) - 2-(i) - 2-i - 2-i - 2-i - 3-i - 2-i - 2

褐色結晶

¹H NMR (400MHz, CDCl₃) δ 0.87 (t, J = 7.6 Hz, 3H), 1.35-1.57 (m, 3H), 1.70-1.95 (m, 3H), 2.41 (s, 3H), 2.47 (s, 3H), 3.00-3.35 (m, 5H), 3.50-3.90 (m, 8H), 6.51 (br s, 2H), 6.79 (dd, J = 6.8, 6.8 Hz, 1H), 7.02 (dd, J = 1.2, 6.8 Hz, 1H), 8.14 (dd, J = 1.2, 6.8 Hz, 1H).

実施例369

N-[8-(2, 6-i)] N-[8-(2, 6-i)]

褐色結晶

¹H NMR (400MHz, CDCl₃) δ 0.88 (t, J = 8.0 Hz, 3H), 1.35-1.50 (m, 2H), 1.60-1.95 (m, 2H), 2.10-2.30 (m, 1H), 2.42 (s, 3H), 2.48 (s, 3H), 2.90-3.10 (m, 4H), 3.60-3.84 (m, 10H), 6.51 (br s, 2H), 6.80 (dd, J = 6.8, 6.8 Hz, 1H), 7.03 (br d, J = 6.8 Hz, 1H), 7.93-8.02 (m, 1H).

実施例370

N-ブチル-N-シクロブチルメチル-N- [8-(2, 4-ジメトキシ-6-ーメチルフェニル) -2-(メチルスルファニル) イミダゾ [1, 2-a] ピリジン-3-イル] アミン

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0.86 (t, J = 6.8 Hz, 3H), 1.22-1.42 (m, 1H), 1.65-1.90 (m, 4H), 2.05 (s, 3H), 2.24-2.36 (m, 1H), 2.48 (s, 3H), 2.94-3.32 (m, 4H), 3.67 (s, 3H), 3.85 (s, 3H), 6.43 (d, J = 2.0 Hz, 1H), 6.47 (d, J = 2.4 Hz, 1H), 6.78 (dd, J = 6.8, 6.8 Hz, 1H), 6.93 (br d, J = 6.8 Hz, 1H), 8.03 (br d, J = 6.8 Hz, 1H).

実施例371

黄色油状物

¹H NMR (400MHz, CDCl₃) δ 0.86 (t, J = 7.2 Hz, 3H), 1.20-1.45 (m, 4H), 1.65-1.90 (m, 4H), 2.02 (s, 3H), 2.20-2.35 (s, 1H), 2.38 (s, 3H), 2.47 (s, 3H), 2.95-3.35 (m, 4H), 3.68 (s, 3H), 6.67 (br s, 1H), 6.75-6.80 (m, 2H), 6.95 (dd, J = 1.2, 6.8 Hz, 1H), 8.04 (dd, J = 1.2, 6.4 Hz, 1H).

実施例372

8-(2, 4-ジクロロフェニル) - 3-メチル-2-(メチルスルファニル) イミダゾ [1, 2-a] ピリジン

エチル ブロモー2ー(メチルスルファニル)イミダゾ [1, 2-a] ピリジン-3ーカルボキシレート(840mg)をテトラヒドロフラン(30mL)に溶解し、ジイソブチルアルミニウムハイドライドの1Mトルエン溶液(10mL)を-70℃で滴下し、室温まで上昇させた。反応混合物に塩化アンモニウム水溶液を0℃で加え、室温まで昇温した後、酢酸エチルで抽出した。得られた [8-ブロモー2ー(メチルスルファニル)イミダゾ [1, 2-a] ピリジン-3-イル] メタノールは、精製することなく次の反応に用いた。

得られた [8-ブロモ-2-(メチルスルファニル)イミダゾ [1,2-a] ピリジン-3-イル] メタノール(640mg)をアセトン(50mL)に溶解し、活性化された二酸化マンガン(4g)を加え、一晩攪拌した。二酸化マンガンをセライトを用いて濾去し、濾液を減圧下濃縮した。得られた残渣をシリカゲルを用いたカラムクロマトグラフィー(酢酸エチル:<math>n-ヘキサン=1:10)にて精製すると、8-ブロモ-3-メチル-2-(メチルスルファニル)イミダゾ [1,2-a] ピリジン(120mg)が褐色油状物として得られた。

得られた8-ブロモ-3-メチル-2-(メチルスルファニル)イミダゾ [1, 2-a] ピリジンを実施例4と同様に反応させて標記化合物を白色結晶として得た。

¹H NMR (400MHz, CDCl₃) δ 2.50 (s, 3H), 2.52 (s, 3H), 6.91 (dd, J=7.2 Hz, 1H), 7.17 (dd, J=1.2, 6.8 Hz, 1H), 7.34 (dd, J=2.0, 8.4 Hz, 1H), 7.52-7.57 (m,

2H), 7.83 (d, J = 6.8 Hz, 1H).

実施例373は実施例1と同様にして合成した。

実施例373

白色結晶

¹H NMR (400MHz, CDCl₃) δ 0.95 (t, J=7.2 Hz, 3H), 1.21 (t, J=7.6 Hz, 3H), 1.22-1.35 (m, 1H), 1.29 (t, J=7.2 Hz, 3H), 1.42-1.52 (m, 1H), 1.77-1.85 (m, 1H), 2.05-2.15 (m, 1H), 2.73-2.84 (m, 2H), 3.30-3.48 (m, 2H), 4.77 (t, J=7.2 Hz, 1H), 7.39 (dd, J=8.4, 2.0 Hz, 1H), 7.56 (d, J=8.4 Hz, 1H), 7.57 (d, J=2.0 Hz, 1H), 7.97 (br s, 1H), 9.39 (br s, 1H).

以下、実施例374及至376は実施例373と同様に合成した。 実施例374

3-(1-x)+2ブチル)-2-xチル-8-(2-x)+20-4, 6-ジメチルフェニル)イミダゾ [1, 2-c] ピリミジン

(a)TLC上でRf値の大きい異性体1

白色結晶

¹H NMR (400MHz, CDCl₃) δ 0.95 (t, J=7.2 Hz, 3H), 1.14-1.36 (m, 1H), 1.19 (t, J=7.2 Hz, 3H), 1.25 (t, J=7.2 Hz, 3H), 1.41-1.54 (m, 1H), 1.77-1.88 (m, 1H), 2.06-2.16 (m, 1H), 2.07 (s, 3H), 2.37 (s, 3H), 2.68-2.80 (m, 2H), 3.27-3.44 (m, 2H), 3.70 (s, 3H), 4.75 (t, J=7.2 Hz, 1H), 6.69 (s, 1H), 6.77 (s, 1H), 7.78 (br s, 1H), 9.32 (br s, 1H).

(b) TL C上でR f 値の小さい異性体 2

白色結晶

¹H NMR (400MHz, CDCl₃) δ 0.94 (t, J = 7.2 Hz, 3H), 1.14-1.34 (m, 1H), 1.20 (t, J = 7.2 Hz, 3H), 1.25 (t, J = 7.2 Hz, 3H), 1.41-1.54 (m, 1H), 1.78-1.88 (m, 1H), 2.06-2.16 (m, 1H), 2.07 (s, 3H), 2.38 (s, 3H), 2.68-2.84 (m, 2H), 3.30-3.44 (m, 2H), 3.71 (s, 3H), 4.75 (t, J = 7.2 Hz, 1H), 6.69 (s, 1H), 6.77 (s, 1H),

7.78 (br s, 1H), 9.34 (br s, 1H).

実施例375

8-(2-Dロロー4-メトキシフェニル)-3-(1-エトキシブチル)-2-エチルイミダゾ [1, 2-c] ピリミジン

白色結晶

¹H NMR (400MHz, CDCl₃) δ 0.94 (t, J=7.2 Hz, 3H), 1.19 (t, J=7.2 Hz, 3H), 1.22-1.35 (m, 1H), 1.28 (t, J=7.2 Hz, 3H), 1.42-1.52 (m, 1H), 1.78-1.88 (m, 1H), 2.05-2.15 (m, 1H), 2.71-2.82 (m, 2H), 3.29-3.45 (m, 2H), 3.86 (s, 3H), 4.76 (t, J=7.2 Hz, 1H), 6.94 (dd, J=8.4, 2.8 Hz, 1H), 7.08 (d, J=2.8 Hz, 1H), 7.53 (d, J=8.4 Hz, 1H), 7.93 (s, 1H), 9.34 (s, 1H).

実施例376

3-(1-x)+シブチル)-2-xチル-8-(6-x)+シー2-xチル-3-ピリジル)イミダゾ [1, 2-c] ピリミジン

白色結晶

¹H NMR (400MHz, CDCl₃) δ 0.94 (t, J=7.2 Hz, 3H), 1.19 (t, J=7.2 Hz, 3H), 1.26-1.38 (m, 1H), 1.28 (t, J=7.2 Hz, 3H), 1.42-1.52 (m, 1H), 1.78-1.88 (m, 1H), 2.05-2.15 (m, 1H), 2.42 (s, 3H), 2.70-2.81 (m, 2H), 3.29-3.46 (m, 2H), 3.97 (s, 3H), 4.77 (t, J=7.2 Hz, 1H), 6.69 (d, J=8.4 Hz, 1H), 7.64 (d, J=8.4 Hz, 1H), 7.79 (s, 1H), 9.34 (s, 1H).

-ジクロロフェニル) - 2 - エチルイミダゾ [1, 2 - a] ピラジン <math>- 3 - 4[N] [N-N-]ロピル[N-]アトラヒドロ[N-] [N-] [N-]3-ジプロピルー2-イソプロピルー8-(2-メトキシー4,6-ジメチル フェニル) イミダゾ [1, 2-a] ピラジン-3-アミン、N- [2-エチル 2-a] ピラジン-3-1ル] -N, N-ジプロピルアミン、N- [2-エチ ピラジン-3-4ル] -N, N-ジプロピルアミン、<math>N-シクロプロピルメチ $\mathcal{W}-\mathcal{N}-[8-(2,4-ジ)]$ クロロフェニル) -2-エチルイミダゾ [1,2] -a] ピラジン-3-1イル] -N-(2-1)トキシエチル) アミン 塩酸塩、 N-[8-(2-2)-4-4-4] - [8-(2-2)2-a] ピラジン-3-4ル] -N, N-ジシクロプロピルメチルアミン、<math>N-8-[5-000-4-(2,5-ジメチル-1H-1-ピロイル)-2-[x] 「メトキシフェニル] [x] [x]-N, N-ジシクロプロピルメチルアミン、N-[8-(2, 4-ジクロロフ ェニル) -2-エチル-6-メチルイミダゾ [1, 2-a] ピラジン-3-イ [N] [Nロモ-8-(2, 4-i)クロロフェニル) -2-iエチルイミダゾ [1, 2-a]ピラジン-3-アミン、8-(2,4-ジクロロフェニル)-3-(ジプロピ ルアミノ) -2 - エチルイミダゾ [1, 2 - a] ピラジン -6 - イル シアナ イド、N-[8-(2, 4-ジクロロフェニル) - 2-エチル-6-メトキシイミダゾ [1, 2-a] ピラジン-3-4ル] -N N-ジプロピルアミン、ニル)イミダゾ [1, 2-a] ピラジン-3-イル] - N, Nージプロピルア ミン、N3, N3-ジプロピル-8-(2, 4-ジクロロフェニル) <math>-2-(メチルスルファニル) イミダゾ $\begin{bmatrix} 1 & 2-a \end{bmatrix}$ ピラジン-3-アミン、N, N-ジシクロプロピルメチル-N-[8-(2-x)++y-4,6-y]-2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピラジン-3-

チルスルファニル) イミダゾ [1, 2-a] ピラジン-3-4ル] -N-シクロプロピルメチルーNープロピルアミン、Nー[8-(2-ブロモ-4-メトキシフェニル) -2- (メチルスルファニル) イミダゾ「1, 2-a] ピラジ ン-3-4ル] -N-シクロプロピルメチル-N-(3-フルオロプロピル) -(メチルスルファニル) イミダゾ [1, 2-a] ピラジン-3-イル] - NN-ジシクロプロピルメチルアミン、N- [8-(2-クロロー4-メトキシ フェニル) -2-(メチルスルファニル) イミダゾ [1, 2-a] ピラジンー3-イル]-N-シクロプロピルメチル-N-イソブチルアミン、N-シクロ プロピルメチルーNー[8-[2-メチルー4-(メチルスルフィニル)フェ[-2] イル] -N-プロピルアミン、N- [8-(2-)ロロー4ーメトキシフェニ ル] -N-シクロプロピルメチル-N-プロピルアミン、N- [8-[2-D]ロロー4-(トリフルオロメトキシ)フェニル]-2-(メチルスルファニル) イミダゾ [1, 2-a] ピラジン-3-4ル]-N, N-ジシクロプロピルメチルアミン、1-[[8-[2-クロロ-4-(トリフルオロメトキシ)フェ [-2] イル】(シクロプロピルメチル)アミノ】-2-プロパノール、2-「「8-「2-クロロー4-(トリフルオロメトキシ)フェニル]-2-(メチルスル ファニル) イミダゾ [1, 2-a] ピラジン-3-4ル] (シクロプロピルメ チル) アミノ] アセトアミド、4-[3-「ジ(シクロプロピルメチル) アミ J] -2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピラジン-8-4「8-(2-メトキシ-4-テトラヒドロ-1*H*-1-ピロリルフェニル)-2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピラジン-3-4ル] ア >>、 $N^2-[8-[2-クロロー4-(トリフルオロメトキシ)フェニル]$

-2-(メチルスルファニル) イミダゾ <math>[1.2-a] ピラジン-3-1-N2-シクロプロピルメチル-2-フルアミド、<math>N-[8-[2-クロロ-4-(トリフルオロメトキシ)フェニル]-2-(メチルスルファニル)イミ ダゾ [1, 2-a] ピラジン-3-4ル] -N-シクロプロピルメチル-N-(2-7) ルメチル) アミン、N-[8-[2-2] ロロー4ー (トリフルオロ xトキシ)フェニル] - 2 - (xチルスルファニル) イミダゾ [1, 2 - a]"ピラジン-3- (") - N- シクロプロピルメチル-N- ("2- モルホリノエ")チル) アミン、N-[8-[2-クロロ-4-(トリフルオロメトキシ)フェ $\{ (1, 1) - N - \nu \}$ ロプロピルメチルー $\{ (1, 1) - N - \nu \}$ (1) エ チル] アミン、N-[8-[2-クロロ-4-(トリフルオロメトキシ) フェ [-2] エチル] アミン、2 - [2 - エチル - 3 - (1 - エチルプロピル) イミダゾ [1, 1]2-a] 2-b] 2-a] 2-bル、3-(1-エトキシブチル)-2-エチル-8-(2-メトキシー4,6 -ジメチルフェニル) イミダゾ <math>[1, 2-a] ピラジン、1-[8-(2-2)]ロロー4-メトキシフェニル) -2-エチルイミダゾ [1, 2-a] ピラジン -3-イル]-1-ブタノン O1-メチルオキシム、3-(1-エトキシブ チル) -8-(2-メトキシ-4,6-ジメチルフェニル)-2-(メチルス ルファニル) イミダゾ [1, 2-a] ピラジン、N-[8-(2-2)]-メトキシフェニル)-2-メトキシイミダゾ[1, 2-a]ピラジン-3-イル] - N-シクロプロピルメチルーN-プロピルアミン、N-[2-エチル]-8-(4-メトキシ-2-メチルフェニル) イミダゾ <math>[1, 2-b] ピリダ -メトキシ-4, 6-ジメチルフェニル) イミダゾ [1, 2-b] ピリダジン -3-4ル]-N、N-ジプロピルアミン、<math>N、N-ジシクロプロピルメチル-N-[2-x+v-8-(2-x++v-4, 6-v+v+v-1)]

ダゾ [1, 2-b] ピリダジン-3-1ル] アミン、N-[8-(4-1)]シー2-メチルフェニル)-2-(メチルスルファニル)イミダゾ[1,2-[b] ピリダジン-3-1ル] -N, [N-1]プロピルアミン、[N-1]0 [8-1] (2, 1) ピリジン-3-4ル] -N, N-ジプロピルアミン、N- [8-(2-メトキ シー4、6-ジメチルフェニル)-2-(メチルスルファニル)イミダゾ[1, 2-a] ピリジン-3-4ル] -N, N-ジプロピルアミン、<math>N-[8-(2, 1)]6-ジメトキシー4-メチルフェニル)-2-(メチルスルファニル)イミダ y'[1, 2-a] ピリジン-3-4ル] -N, N-yプロピルアミン、N-[8]- (2, 4-ジメトキシ-6-メチルフェニル)-2-(メチルスルファニル) イミダゾ[1, 2-a]ピリジン-3-1イン]-N, N-1ジプロピルアミン、 N - [8 - (2 - 0 - 0 - 6 - 3 - 4 - 3 + 3 - 4 - 3 - 4ルスルファニル) イミダゾ [1, 2-a] ピリジン-3-4ル] -N N-ジプロピルアミン、N-[8-(2, 4-ジクロロフェニル) -2-(メチルスルファニル) イミダゾ [1, 2-a] ピリジン-3-4ル] -N-7ロピルー N-(2-プロピニル) アミン、N-[8-(4-クロロ-2-メトキシフェ-2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジン-3- $\{A, B\} = \{A, B\}$ $\{A, B\} =$ メチルフェニル) -2-(メチルスルファニル) イミダゾ [1, 2-a] ピリジン-3-イル] -N-プロピル-N-(3-チエニル)アミン、N-「8-(4-メトキシ-2-メチルフェニル)-2-(メチルスルファニル)イミダ ゾ[1, 2-a] ピリジン-3-イル]-N, N-ジプロピルアミン、N-シ クロブチルメチルーN-[8-(2,6-ジメトキシ-4-メチルフェニル)]-N-プロピルアミン、N-[8-(4-クロロ-2, 6-ジメトキシフェニ ル) -2-(メチルスルファニル) イミダゾ [1, 2-a] ピリジン<math>-3-4[N] [N] [N]キシフェニル) -2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジ

ン-3-4ル]-N-シクロブチルメチル-N-プロピルアミン、<math>N-ブチル -N-シクロブチルメチル-N-[8-(2, 6-ジメトキシ-4-メチルフ ェニル) -2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジン-3-イル] アミン、NーシクロブチルメチルーNーシクロプロピルメチルーNー [8-(2,6-ジメトキシ-4-メチルフェニル)-2-(メチルスルファ ニル) イミダゾ [1, 2-a] ピリジン-3-4ル] アミン、N3, N3-9プロピルー8-「6-(ジメチルアミノ)-4-メチルー3-ピリジル]-2 -(メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジン-3-アミン、N- [8-(2,6-ジメトキシ-4-メチルフェニル)-2-(メチルスルフ ァニル) イミダゾ [1, 2-a] ピリジン-3-1ル] -N-プロピル-N-テトラヒドロ-2H-4-ピラニルアミン、N3-シクロブチルメチル-N3ープロピルー8ー [6-(ジメチルアミノ)-4-メチルー3ーピリジル]ー 2-(メチルスルファニル) イミダゾ <math>[1, 2-a] ピリジン-3-アミン、 メチルアミノ) -4-メチル-3-ピリジル] -2-(メチルスルファニル) イミダゾ [1, 2-a] ピリジン-3-アミン、N3, N3-ジシクロプロピ ルメチル-8-[6-(ジメチルアミノ)-4-メチル-3-ピリジル]-2 - (メチルスルファニル) イミダゾ [1, 2-a] ピリジン-3-アミン、N3 -プロピル- N3 -テトラヒドロ- 2 H - 4 -ピラニル- 8 - [6 - (ジメ)]チルアミノ) -4-メチル-3-ピリジル] -2-(メチルスルファニル) イ ミダゾ [1, 2-a] ピリジン-3-アミン、N-[8-(2, 6-ジメトキ)]シー4-メチルフェニル)-2-(メチルスルファニル)イミダゾ[1,2a] ピリジン-3-イル] - N-シクロブチルメチル-N-テトラヒドロ-2 H-4-ピラニルアミン、N-シクロプロピルメチル-N-[8-(2,6-ジメトキシー4ーメチルフェニル)-2-(メチルスルファニル)イミダゾ[1, ン等の化合物や、そのフリー体、塩、それらの溶媒和物(好適には水和物)で ある。

試験例

本発明化合物について、コルチコトロピン放出ホルモン受容体(CRFR) への結合能およびアデニル酸シクラーゼ活性抑制能を評価した。それぞれの試 験方法とその結果は以下の如くである。

試験例1

CRFR結合実験

- (1) CRFR発現細胞の作製: CRFR結合実験の実験材料にはヒトCRFR1を高発現した細胞の膜画分を用いた。CRFR発現細胞は以下のように作製した。cDNAライブラリーとしてhuman brain (QuickCloneTM Clontech社)を用いてCRFR1の全長遺伝子をPCR法により得た。得られたDNA断片をクローニングベクターに挿入し、塩基配列を確かめた。正しい塩基配列をもつcDNAを発現ベクター(pcDNA3.1TM、Invirogen社)につなぎ変えた。CRFR1発現ベクターをHEK293細胞に遺伝子を導入し、G418(1mg/ml)を含んだ細胞培養液中で増殖してきた耐性細胞を限界希釈法によりクローン化した。クローン細胞から以下の実験に示す方法で示す結合実験により、単位蛋白量あたりの膜画分とsauvagineとの結合能が高いクローンを最終的に選択して実験に用いた。
- (2) 膜画分の調製: CRFR1を遺伝子導入したG418耐性細胞を集め、sonicate buffer $(D-PBS-10mM MgCl_2, 2mM EGTA)$ で超音波発生器により細胞破砕を行った。超音波破砕後の懸濁液を遠心分離し $(46,000\times g,10)$ 、その沈渣をさらにsonicate bufferで再懸濁して同じ操作を繰り返した。最終的に、沈渣はbinding buffer $(D-PBS-10mMmgCl_2, 2mM EGTA, 1.5%BSA, 0.15mM bacitracin、<math>1\times prote$ ease inhibitor cocktail $(COMPLETE^{TM}, Boehringer社)$ に懸濁して蛋白質濃度を1.6mg/ml に調製し、膜画分として使用した。

(3) 結合実験: Sauvagineとの結合実験は96穴プレートを用いて、SPATM (Amersham pharmacia社)を用いて行った。実験はSPA beads使用説明書に従った。膜画分蛋白40mg、beads 0.5mgと40pMの¹²⁵I-sauvagine (Amersham pharmacia社)を被検化合物存在下で2時間室温で放置し、遠心(1,000×g、5分間)後に各穴の放射活性をTopCountTM (Packard社)にて測定した。

(4) 結合能の算出: 1,000倍過剰量の非放射sauvagineを加えた場合の放射活性を非特異的な結合として各々の値から差し引き、被検物質を加えてない放射活性を100% (control) とし、各値を% (% of control) で表した。被検物質の濃度を横軸に、% (% of control) を縦軸にプロットしたグラフより% (% of control) で50%を示す濃度を求めて IC_{50} 値として算出した。

試験例2 AtT-20細胞を用いたアデニル酸シクラーゼ活性測定実験

(1) 試験操作: A t T - 20 細胞は、マウスの脳下垂体腫瘍由来の細胞株であり、コルチコトロピン放出ホルモン(CRF)に応答して細胞内アデニル酸シクラーゼ系が活性化して環状AMP(cAMP)を産生し、副腎皮質ホルモン(ACTH)を放出することが知られている(Biochem. Biophys. Res. Com. 106. 1364-1371, 1982)。本試験では、当該細胞(1×10^5)をD-MEM培地(0.1%FBS)に縣濁して、96穴プレートに蒔き、フォスフォヂエステラーゼ阻害剤(IBMX、Calbiochem社)を最終 1mMの濃度で添加して 30分間 37℃で培養した。被検化合物の希釈液とCRF(30nM)を加えて 10分間さらに 100分間さらに 100分間 100

(2) アデニル酸シクラーゼ活性阻害能の算出: 得られたデータの処理は以

下のように行った。30nMのCRFを添加した細胞のcAMP産生量を100% (control) とし、各試料の値を%(% of control)で表した。被検物質の 濃度を横軸に、%(% of control)を縦軸にプロットしたグラフより%(% of control)で50%を示す濃度を求め IC_{50} 値として算出した。

試験例1において、本発明にかかる化合物は、CRFRに対し優れた結合能を示し、その IC_{50} 値 $10\sim5000$ nMであった。また、試験例2において、本発明にかかる化合物は、CRFによるアデニル酸シクラーゼ活性に対し、優れた抑制作用を示した。

請求の範囲

1. 式で表される化合物またはその塩。

式中、 R^1 は水素原子、ハロゲン原子、ニトロ基、シアノ基、 C_{1-6} アルキル基、 C_{2-8} アルケニル基、 C_{2-8} アルケニル基、 C_{2-8} アルキニル基、 C_{3-8} シクロアルケニル基、 C_{1-6} アルコキシ基、 C_{2-6} アルケニルオキシ基、 C_{1-6} アルコキシ基、 C_{2-6} アルケニルオキシ基、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{1-6} アルキル基、 C_{2-6} アルキニル基、 C_{1-6} アルキルスルフィニル基、 C_{1-6} アルキルスルカコィニル基、 C_{1-6} アルキルスルホニル基または C_{1-7} 脂肪族アシル基を示す]、 $-CO-NR^1$ 1 0 1 1 1 1 1 2 1 2 1 3 1 3 1 4 1 4 1 5 1 7 1 7 1 8 1 7 1 9 $^$

R²は

(a)ハロゲン原子、シアノ基、ニトロ基、 C_{1-10} アルキル基、 C_{2-10} アルケニル基、 C_{2-10} アルキニル基、 C_{3-8} シクロアルキル基、 C_{3-8} シクロアルケニル基、 C_{3-8} シクロアルキル C_{1-6} アルキル基、 C_{3-8} シクロアルキル C_{2-6} アルケニル基、 C_{1-10} アルコキシ基、 C_{1-10} アルコキシ基、 C_{1-10} アルコキシと C_{1-10} アルコキシと C_{2-8} アルケニル基、 C_{2-6} アルケニル

オキシ C_{1-6} アルキル基、 C_{2-6} アルケニルオキシ C_{2-6} アルケニル基、 $-NR^2$ ^aR^{2b} [R^{2a}およびR^{2b}はそれぞれ独立に水素原子、C₁₋₈アルキル基、C₂₋₈ アルケニル基、C2-6アルキニル基、C1-6ヒドロキシアルキル基、5乃至14 員非芳香族複素環式基で置換された C_{1-6} アルキル基、 C_{1-6} アルキルチオ基、 C₁₋₆アルキルスルフィニル基、C₁₋₆アルキルスルホニル基、C₁₋₆アルコキ シ C_{1-6} アルキル基、 C_{1-6} アルキルチオ C_{1-6} アルキル基、アミノカルボニル C₁₋₆アルキル基、ヘテロアリールカルボニル基、C₃₋₈シクロアルキル基、C $_{3-8}$ シクロアルキル C_{1-6} アルキル基、ヘテロアリール C_{1-6} アルキル基、アリ ールC₁₋₆アルキル基、アリール基、5乃至14員複素環式基、C₁₋₆アルコキ シカルボニル基またはC2-6アルケニルオキシカルボニル基を示す]、-CO-NR^{2a}R^{2b} [R^{2a}およびR^{2b}はそれぞれ前記定義と同意義を示す]、-CO- A^3 [A^3 は水素原子、水酸基、 C_{1-6} アルキル基、 C_{2-8} アルケニル基、 C_{2-8} アルキニル基、C₁₋₆アルコキシ基、C₂₋₈アルケニルオキシ基、アリール基ま たはヘテロアリール基を示す]、-O-C(O) $-A^4$ [A^4 は C_{1-6} アルキル基、 C_{2-8} アルケニル基または C_{2-8} アルキニル基を示す]、 $-G^2-A^5$ [G^2 はS、 SOまたはSO₂を、A⁵はC₁₋₆アルキル基またはC₂₋₆アルケニル基を示す] で表わされる基もしくは5万至14員非芳香族複素環式基を示すか、または、

(b)R¹と結合して一緒になり環を形成していてもよく、更に、

前記(a)または(b)の場合において R^2 はハロゲン原子、水酸基、シアノ基、 C_1 - $_6$ アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、 C_{3-8} シクロアルキル基、 C_{3-8} シクロアルケニル基、 C_{1-6} アルコキシ基、 C_{2-6} アルケニルオキシ基、 C_{1-6} アルキルチオ基、 C_{2-6} アルケニルチオ基、 C_{1-6} アルキルチオ基、 C_{1-6} アルケニルチオ基、 C_{1-6} アルキルチオ基、 C_{1-6} アルケニルチオ基、 C_{1-6} [R^{2a} および R^{2b} はそれぞれ前記定義と同意義を示す]、アリール基およびヘテロアリール基から選ばれる少なくとも 1 の基で置換されていてもよい;

 R^3 はそれぞれ置換基を有していてもよい C_{6-14} 芳香族炭化水素環式基または5万至14員芳香族複素環式基を示し;

X、YおよびZはそれぞれ独立に(a)Nまたは(b)C R 4 [式中、R 4 は(aa)水素 原子、ハロゲン原子、シアノ基、ニトロ基、ハロゲン化されていてもよい<math>C ,_

 $_6$ アルキル基、 $_{C_{2-6}}$ アルケニル基、 $_{C_{2-6}}$ アルキニル基、 $_{C_{3-8}}$ シクロアルケニル基、 $_{C_{1-6}}$ アルコキシ基、 $_{C_{2-6}}$ アルケニルオキシ基、 $_{C_{2-6}}$ アルケニルオキシ基、 $_{C_{2-6}}$ アルケニルオキシ基、 $_{C_{1-6}}$ アルケニル基、 $_{C_{1-6}}$ アルキル基、 $_{C_{1-6}}$ アルキル基、 $_{C_{1-6}}$ アルキルスルフィニル基、 $_{C_{2-6}}$ アルキルスルホニル基、 $_{C_{1-6}}$ アルキルスルフィニル基、 $_{C_{1-6}}$ アルキルスルホニル基、 $_{C_{1-6}}$ アルキル基、 $_{C_{1-6}}$ アルキル基、 $_{C_{3-8}}$ シクロアルキル基、 $_{C_{3-8}}$ シクロアルキル基、 $_{C_{1-6}}$ アルキル基、 $_{C_{1-6}}$ アルカルボニル基を示す $_{C_{2-6}}$ アルケニルオキシカルボニル基を示す $_{C_{2-6}}$ アルケニルオキシカルボニル基を示す $_{C_{2-6}}$ アルケニル基を示す $_{C_{2-6}}$ $_{C_$

- (1)R¹およびR²がメチル基で、X、YおよびZがCHで、且つ、R³が2, 4-ジクロロフェニル基である場合、
- (2)R¹がトリフルオロメチル基で、R²がフッ素原子または臭素原子で、Xが Nで、Yが=C(CH $_3$)-で、ZがCHで、且つ、R³がフェニル基である場合、
- (3)R¹がトリフルオロメチル基で、R²がエトキシカルボニル基またはアミド基で、XがNで、Yが=C(CH₃) -で、ZがCHで、且つ、R³が3 -クロロフェニル基である場合、
- (4)R 1 が水素原子で、R 2 が4 $^-$ モルホリニルメチル基で、X がN で、Y が $^-$ C R $^-$ [R $^-$ はフェニル基を示す。] で、Z が C H で、且つ、R 3 がフェニル基である場合。
- 2. R^1 が C_{1-6} アルキル基、 C_{2-8} アルケニル基、 C_{2-8} アルキニル基、 C_1 -6アルコキシ基、 C_{1-6} アルキルチオ基、 C_{1-6} アルキルスルフィニル基または C_{1-6} アルキルスルホニル基である請求項1記載の化合物またはその塩。

3. R^1 がメチル基、エチル基、n-プロピル基、iso-プロピル基、メトキシ基、エトキシ基、n-プロピルオキシ基、iso-プロピルオキシ基、メチルチオ基、エチルチオ基、n-プロピルチオ基、iso-プロピルチオ基、メチルスルフィニル基、エチルスルフィニル基、メチルスルホニル基またはエチルスルホニル基である請求項1記載の化合物またはその塩。

- 4. R^1 が $-G^4-CH_3$ [式中、 G^4 は単結合、 CH_2 、OまたはSを示す。] である請求項1記載の化合物またはその塩。
- 5. R^2 がそれぞれ置換されていてもよい C_{1-6} アルキル基、 C_{1-6} アルコキシ C_{1-6} アルキル基、 C_{1-6} アルキルスルホニル基、 C_{2-6} アルケニルスルホニル基または $-NR^{2a}R^{2b}$ [R^{2a} および R^{2b} はそれぞれ前記定義と同意義を示す。] である請求項1記載の化合物またはその塩。
- 7. R^2 がジ(C_{1-6} アルキル)アミノ基である請求項1記載の化合物またはその塩。
- 8. R³がそれぞれ置換されていてもよいフェニル基またはピリジル基である 請求項1記載の化合物またはその塩。
- 9. R^3 がハロゲン原子、 C_{1-6} アルキル基、ハロゲノー C_{1-6} アルキル基、 C_{1-6} アルコキシ基、ハロゲノー C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基または5乃至8員芳香族複素環式基から選ばれる1乃至4個の基でそれぞれ置換されていてもよいフェニル基またはピリジル基である請求項1記載の化合物またはその塩。

10. R³がフッ素原子、塩素原子、臭素原子、メチル基、エチル基、トリフルオロメチル基、メトキシ基、トリフルオロメトキシ基、メチルチオ基およびピロリル基から選ばれる1乃至3個の基でそれぞれ置換されていてもよいフェニル基またはピリジル基である請求項1記載の化合物またはその塩。

- 11. X、YおよびZのうちいずれか1つがNで、残る2つがC R 4 (式中、R 4)は水素原子、ハロゲン原子、シアノ基、 C_{1-6} アルキル基または C_{1-6} アルコキシ基を示す。)である請求項1記載の化合物またはその塩。
- 13. X、YおよびZがC R 4 3 3 4 4 4 4 4 は前記定義に同意義を示す。)で表わされる基である請求項1 記載の化合物またはその塩。
- 14. R⁴ が水素原子、ハロゲン原子、メチル基、エチル基、メトキシ基またはエトキシ基である請求項11乃至13のいずれか1項に記載の化合物またはその塩。
- 15. R⁴'が水素原子である請求項11乃至13のいずれか1項に記載の化合物またはその塩。
 - 16. 下記式で表わされる請求項1記載の化合物またはその塩。

$$R^2$$
 R^3
 R^3
 R^3
 R^3

式中、X およびZ はそれぞれ独立にNまたはCHを [この場合においてX およびZ のうち少なくとも1つはCHを示す。]、 G^4 、 R^2 および R^3 はそれぞれ前記定義と同意義を示す。

17. R^2 が $-NR^2$ aa R^2 bb (式中、 R^2 aaB2bb はそれぞれ独立に水素原子、 C_{1-8} アルキル基、 C_{2-8} アルケニル基、 C_{2-6} アルキニル基、 E_{2-6} アルキニル基、 E_{2-6} アルキニル基、 E_{2-6} アルキニル基、 E_{2-6} アルキン基、

 C_{1-8} アルコキシ C_{1-8} アルキル基、 C_{1-6} アルキルスルフィニル基、 C_{1-6} アルキルスルホニル基、 C_{3-8} シクロアルキル基、 C_{3-8} シクロアルキル区 C_{3-8} シクロアルキル C_{1-6} アルキル基または5万至14員複素環式基を示し、更に前記 C_{3-8} および C_{3-6} である請求項16記載の化合物またはその塩。

- 18. R^2 がジ(C_{1-6} アルキル)アミノ基である請求項16記載の化合物またはその塩。
- $19. R^3$ がそれぞれ置換されていてもよいフェニル基またはピリジル基である請求項16記載の化合物またはその塩。
- 20. R^3 がハロゲン原子、 C_{1-6} アルキル基、ハロゲノ C_{1-6} アルキル基、ハロゲノ C_{1-6} アルコキシ基、 C_{1-6} アルコキシ基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基または5乃至8員芳香族複素環式基から選ばれる1乃至4個の基でそれぞれ置換されていてもよいフェニル基またはピリジル基である請求項16記載の化合物またはその塩。
 - 21. 下記式で表わされる請求項1記載の化合物またはその塩。

$$R^{2a}$$
 N
 R^{2b}
 CH_3
 G^4
 N
 Z''
 M

式中、Z"はNまたはCHを、M環は更に置換基を有していてもよいベンゼン環を、G4、R2aおよびR2bはそれぞれ前記定義と同意義を示す。

22. R^{2a} および R^{2b} がそれぞれ独立に水素原子、 C_{1-8} アルキル基、 C_{2-8} アルケニル基、 C_{2-6} アルキニル基、5 乃至 1 4 員非芳香族複素環式基で置換された C_{1-6} アルキル基、 C_{1-8} アルコキシ C_{1-8} アルキル基、 C_{3-8} シクロアルキル基または C_{3-8} シクロアルキル C_{1-6} アルキル基で、更にそれぞれ独立に

ハロゲン原子で置換されていてもよい請求項21記載の化合物またはその塩。

 $23. R^{2a}$ および R^{2b} が C_{1-6} アルキル基である請求項21記載の化合物またはその塩。

24. M環が更にハロゲン原子、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基ハロゲノ C_{1-6} アルキル基またはハロゲノ C_{1-6} アルコキシ基から選ばれる1乃至3個の基で置換されていてもよいベンゼン環である請求項21記載の化合物またはその塩。

25. 化合物がN-(2-エチル-8-メシチルイミダゾ [1, 2-a] ピラジン-3-イル)-N, N-ジプロピルアミン 塩酸塩、

N- (2-エチル-8-メシチルイミダゾ [1, 2-a] ピラジン-3-イル) -N- (1-エチルプロピル) アミン、

N-[8-(2-Dpp-4-メトキシフェニル)-2-エチルイミダゾ[1,2-a] ピラジン-3-イル]-N, <math>N-ジプロピルアミン 塩酸塩、

N-シクロプロピルメチル-N-[8-(2,4-ジクロロフェニル)-2-エチルイミダゾ[1,2-a]ピラジン-3-イル]-N-イソブチルアミン、

N3, $N3 - \tilde{y}$ プロピル-2 - 4ソプロピル-8 - (2 - 4) + 4, 6 $-\tilde{y}$

N- [2-エチル-8-(6-メチル-1, 3-ベンゾジオキソール-5-イル) イミダゾ [1, 2-a] ピラジン-3-イル] -N, N-ジプロピルアミン、

N-[2-エチル-8-(4-メトキシ-2,5-ジメチルフェニル) イミダゾ <math>[1,2-a] ピラジン-3-イル]-N.N-ジプロピルアミン、

エチル)アミン 塩酸塩、

N-8-[5-Dロロー4-(2,5-i)メチルー1H-1-lロイル) -2-xトキシフェニル]-2-xチルイミダゾ[1,2-a] ピラジンー3-4イル-N,N-iジンクロプロピルメチルアミン、

N- [8-(2, 4-ジクロロフェニル) -2-エチル-6-メチルイミダ ゾ [1, 2-a] ピラジン-3-イル] -N, N-ジプロピルアミン 塩酸塩、

N3, N3-ジプロピル-5-ブロモ-8-(2, 4-ジクロロフェニル) <math>-2-x チルイミダゾ [1, 2-a] ピラジン-3-y ミン、

N-[8-(2, 4-ジクロロフェニル) - 2-エチル-6-メトキシイミ ダゾ <math>[1, 2-a] ピラジン-3-イル]-N, N-ジプロピルアミン、

N3, N3-ジプロピル-8-(2, 4-ジクロロフェニル) <math>-2-(メチルスルファニル) イミダゾ [1, 2-a] ピラジン-3-アミン、

 $N-[8-(2-\rho \Box \Box -4- \lambda + + \nu]$ $-2-(\lambda + \nu)$ $-2-(\lambda + \nu)$

N-[8-(2-7) - 4-4-4-4 - 4-4] -2-(4+2) - 2-

 $N-[8-(2-\rho \Box \Box -4- \forall b+1) -2-(\forall f) \nabla z$ $= 2-(\forall f) \nabla$

 $N-[8-(2-\rho \Box \Box -4- eta + + eta \Box z = \Box N) - 2-(eta + eta Z +$

 $N-[8-[2-D_{\Box\Box}-4-(-1)]-2-(-1)]-2-(-1)$ (メチルスルファニル) イミダゾ [1, 2-a] ピラジン-3-1 (ルージシクロプロピルメチルアミン、

1-[[8-[2-010-4-(トリフルオロメトキシ)フェニル]-2-(メチルスルファニル)イミダゾ [1, 2-a]ピラジン-3-イル](シクロプロピルメチル)アミノ]-2-プロパノール、

2-[[8-[2-000-4-(トリフルオロメトキシ)フェニル]-2-(メチルスルファニル)イミダゾ[1, 2-a]ピラジン-3-イル](シクロプロピルメチル)アミノ]アセトアミド、

4-[3-[5](2) (シクロプロピルメチル) アミノ] -2-(3) (メチルスルファニル) イミダゾ [1, 2-a] ピラジン-8-(4) -3-(3) トリル、

N, N-ジシクロプロピルメチル-N-[8-(2-メトキシ-4-テトラヒドロ-1<math>H-1-ピロリルフェニル) -2-(メチルスルファニル) イミダゾ[1, 2-a] ピラジン-3-4ル] アミン、

N2 - [8 - [2 - クロロ-4 - (トリフルオロメトキシ) フェニル] - 2

-(メチルスルファニル)イミダゾ[1, 2-a]ピラジン-3-イル]-N2-シクロプロピルメチル-2-フルアミド、

 $N-[8-[2-D_{1}]-2-(-1)]-2-(-1)$ (メチルスルファニル) イミダゾ [1, 2-a] ピラジン-3-(-1) - N-(2-7) シクロプロピルメチル-N-(2-7) ルメチル) アミン、

2 - [2 - x + y - 3 - (1 - x + y + y - y - 1] 2 - a] ピラジン-8 - 4 y - 3 y - 5 y - 4 y - 5 y - 5 y - 6 y - 7 y - 7 y - 8 y - 7 y - 8

3-(1-x++)(7+x) - 2-x+x-8-(2-x++)-4, 6- ジメチルフェニル) イミダゾ [1, 2-a] ピラジン、

 $N-[8-(2-D_{1}-4-X_{1}+2)]$ $N-[8-(2-D_{1}-4-X_{1}+2)]$ $N-[8-(2-D_{1}-4-X_{1}+2)]$ $N-[8-(2-A_{1}+2)]$ $N-[8-(2-A_{1}+2)]$

N, N-ジシクロプロピルメチル-N-[2-x-1

N-[8-(4-x++)-2-x+)-2-x+]-2-(x+)-2-

N-[8-(2,4-ジクロロフェニル)-2-(メチルスルファニル) イミダゾ <math>[1,2-a] ピリジン-3-イル]-N,N-ジプロピルアミン、

 $N-[8-(2-\lambda++\nu-4,6-i)]$ $N-[8-(2-\lambda++\nu-4,6-i)]$

N-[8-(2,6-i)] N-[8-(2,6-i)]

N-[8-(2,4-i)] トキシー6-x チルフェニル)-2-(x チルスルファニル)1=x 1=x 1

N-[8-(2,4-ジクロロフェニル)-2-(メチルスルファニル) イミダゾ <math>[1,2-a] ピリジン-3-イル]-N-プロピル-N-(2-プロピエル) アミン、

N- $\begin{bmatrix} 8-(4-D\Box\Box-2- + N-1) - 2-(+ N-1) - N-1 \end{bmatrix}$ N-1 = N + N-1 =

N-[8-(2,6-i)] ルファニル)-2-(メチルス ルファニル) イミダゾ [1,2-a] ピリジン-3-iル] -N-プロピル-N-(3-F) アミン、

N-[8-(4-x)++ y-2-x+ N - 2-(x+ N - 2-(x+ N - 2-x + N -

N-シクロブチルメチル-N-[8-(2,6-i)メトキシー4-メチルフェニル)-2-(メチルスルファニル)イミダゾ[1,2-a]ピリジン-3-イル]-N-プロピルアミン、

 $N-[8-(4-D\Box\Box-2, 6-i)]$ $N-[8-(4-D\Box\Box-2, 6-i)]$

 $N-[8-(4-D\Box\Box-2, 6-i)] + (4-D\Box\Box-2, 6-i) + (4-i) + ($

N-ブチル-N-シクロブチルメチル-N-[8-(2,6-ジメトキシー4-メチルフェニル)-2-(メチルスルファニル)イミダゾ<math>[1,2-a]ピリジン-3-イル]アミン、

N-シクロブチルメチル-N-シクロプロピルメチル-N- [8-(2, 6 - ジメトキシ-4-メチルフェニル) -2-(メチルスルファニル) イミダゾ [1, 2-a] ピリジン-3-イル] アミン、

N3, N3-ジプロピル-8-[6-(ジメチルアミノ)-4-メチル-3-ピリジル]-2-(メチルスルファニル)イミダゾ <math>[1, 2-a]ピリジン-3-アミン、

N-[8-(2,6-i)] N-[8-(2,6-i

N3-シクロブチルメチル-N3-プロピル-8-[6-(ジメチルアミノ)

-4-メチル-3-ピリジル]-2-(メチルスルファニル)イミダゾ[1, 2-a]ピリジン-3-アミン、

 $N3 - \nu D - \nu D$

 $N3 - \mathcal{J}$ ロピルー $N3 - \mathcal{F}$ トラヒドロー $2H - 4 - \mathcal{C}$ ラニルー $8 - [6 - (ジメチルアミノ) - 4 - メチルー <math>3 - \mathcal{C}$ リジル] -2 - (メチルスルファニル) イミダゾ [1, 2-a] ピリジンー $3 - \mathcal{F}$ ミン、

NーシクロプロピルメチルーNー [8-(2,6-i)メトキシー4-iメチルフェニル)-2-(メチルスルファニル)イミダゾ [1,2-a] ピリジンー3-1イル]-N-テトラヒドロー2H-4-ピラニルアミン である請求項1記載の化合物またはその塩。

- 26. 請求項1記載の化合物またはその塩<u>および薬理学上許容できる担体</u>を 含有してなる医薬組成物。
- 27. 副腎皮質刺激ホルモン放出因子(Corticotropin-releasing factor;以下、「CRF」と称する。) および/またはCRF受容体が関与する疾患の治療剤または予防剤である請求項26記載の組成物。
 - 28. CRF受容体アンタゴニストである請求項26記載の組成物。
- 29. CRF1受容体またはCRF2受容体のアンタゴニストである請求項26記載の組成物。
- 30. うつ病、抑うつ症状、そう病、不安症、全般性不安障害、パニック障害、恐怖症、強迫性障害、心的外傷後ストレス障害、チューレット症候群、自

閉症、感情障害、情緒障害、双極性障害、循環性格または分裂病の治療剤また は予防剤である請求項26記載の組成物。

- 31. 抑うつ症状が大うつ病、単発性うつ病、再発性うつ病、うつ病による幼児虐待または産後うつ病の治療剤または予防剤である請求項30記載の組成物。
- 32. 消化性潰瘍、過敏性腸症候群、潰瘍性大腸炎、クローン病、下痢、便 秘、術後イレウス、ストレスに伴う胃腸機能異常または神経性嘔吐の治療剤ま たは予防剤である請求項26記載の組成物。
- 33.アルツハイマー病、アルツハイマー型老年性痴呆、神経変性疾患、多発梗塞性痴呆、老年期の痴呆、神経性食思不振症、摂食障害、肥満、糖尿病、アルコール依存症、薬物嗜好、薬物禁断症状、アルコール禁断症状、睡眠障害、不眠症、偏頭痛、ストレス性頭痛、筋緊張性頭痛、虚血性神経障害、興奮毒性神経障害、脳卒中、進行性核上麻痺、筋萎縮性側索硬化症、多発性硬化症、筋肉痙攣、慢性疲労症候群、精神社会的発育不全、てんかん、頭部外傷、脊髄外傷、書痙、痙性斜頚、筋肉痙攣、頚肩腕症候群、原発性緑内障、メニエール症候群、自律神経失調症、脱毛症、神経症、高血圧、心臓血管障害、頻脈、鬱血性心麻痺、過呼吸症候群、気管支喘息、無呼吸症候群、乳児突然死症候群、炎症性障害、疼痛、アレルギー性疾患、インポテンツ、更年期障害、受精障害、不妊症、癌、HIV感染時の免疫機能異常、ストレスによる免疫機能異常、出血性ストレス、クッシング症候群、甲状腺機能異常、脳脊髄膜炎、先端巨大症、失禁または骨粗鬆症の治療剤または予防剤である請求項26記載の組成物。
- 34. CRF受容体のアンタゴニストの製造のための前記請求項1記載の化合物またはその塩の使用。
- 35. CRF1受容体またはCRF2受容体のアンタゴニストの製造のための前記請求項1記載の化合物またはその塩の使用。
- 36.うつ病、抑うつ症状、そう病、不安症、全般性不安障害、パニック障害、恐怖症、強迫性障害、心的外傷後ストレス障害、チューレット症候群、自閉症、感情障害、情緒障害、双極性障害、循環性格、分裂病、消化性潰瘍、過

敏性腸症候群、潰瘍性大腸炎、クローン病、下痢、便秘、術後イレウス、ストレスに伴う胃腸機能異常または神経性嘔吐の治療剤または予防剤の製造のための、前記請求項1記載の化合物またはその塩の使用。

- 37. CRF受容体が関与する疾患を有する患者に対し、治療上有効量の前記請求項1記載の化合物またはその塩を単回または複数回投与することを特徴.とする、CRF受容体が関与する疾患の治療法または予防法。
 - 38. 請求項1記載の化合物またはその塩を有効成分として含有する医薬。
- 39. CRFおよび/またはCRF受容体が関与する疾患の治療剤または予防剤である請求項38記載の医薬。
 - 40. CRF受容体アンタゴニストである請求項38記載の医薬。
- 41. CRF1受容体またはCRF2受容体のアンタゴニストである請求項38記載の医薬。
- 42. うつ病、抑うつ症状、そう病、不安症、全般性不安障害、パニック障害、恐怖症、強迫性障害、心的外傷後ストレス障害、チューレット症候群、自閉症、感情障害、情緒障害、双極性障害、循環性格または分裂病の治療剤または予防剤である請求項38記載の医薬。
- 43. 抑うつ症状が大うつ病、単発性うつ病、再発性うつ病、うつ病による 幼児虐待または産後うつ病の治療剤または予防剤である請求項42記載の医薬。
- 4.4.消化性潰瘍、過敏性腸症候群、潰瘍性大腸炎、クローン病、下痢、便 秘、術後イレウス、ストレスに伴う胃腸機能異常または神経性嘔吐の治療剤ま たは予防剤である請求項3.8記載の医薬。
- 45. アルツハイマー病、アルツハイマー型老年性痴呆、神経変性疾患、多発梗塞性痴呆、老年期の痴呆、神経性食思不振症、摂食障害、肥満、糖尿病、アルコール依存症、薬物嗜好、薬物禁断症状、アルコール禁断症状、睡眠障害、不眠症、偏頭痛、ストレス性頭痛、筋緊張性頭痛、虚血性神経障害、興奮毒性神経障害、脳卒中、進行性核上麻痺、筋萎縮性側索硬化症、多発性硬化症、筋肉痙攣、慢性疲労症候群、精神社会的発育不全、てんかん、頭部外傷、脊髄外傷、書痙、痙性斜頚、筋肉痙攣、頚肩腕症候群、原発性緑内障、メニエール症

候群、自律神経失調症、脱毛症、神経症、高血圧、心臓血管障害、頻脈、鬱血性心麻痺、過呼吸症候群、気管支喘息、無呼吸症候群、乳児突然死症候群、炎症性障害、疼痛、アレルギー性疾患、インポテンツ、更年期障害、受精障害、不妊症、癌、HIV感染時の免疫機能異常、ストレスによる免疫機能異常、出血性ストレス、クッシング症候群、甲状腺機能異常、脳脊髄膜炎、先端巨大症、失禁または骨粗鬆症の治療剤または予防剤である請求項38記載の医薬。

- 46. CRFおよび/またはCRF受容体が関与する疾患の治療剤または予防剤の製造のための前記請求項1記載の化合物またはその塩の使用。
- 47. 抑うつ症状が大うつ病、単発性うつ病、再発性うつ病、うつ病による 幼児虐待または産後うつ病である請求項36記載の使用。
- 48.アルツハイマー病、アルツハイマー型老年性痴呆、神経変性疾患、多発梗塞性痴呆、老年期の痴呆、神経性食思不振症、摂食障害、肥満、糖尿病、アルコール依存症、薬物嗜好、薬物禁断症状、アルコール禁断症状、睡眠障害、不眠症、偏頭痛、ストレス性頭痛、筋緊張性頭痛、虚血性神経障害、興奮毒性神経障害、脳卒中、進行性核上麻痺、筋萎縮性側索硬化症、多発性硬化症、筋肉痙攣、慢性疲労症候群、精神社会的発育不全、てんかん、頭部外傷、脊髄外傷、書痙、痙性斜頚、筋肉痙攣、頚肩腕症候群、原発性緑内障、メニエール症候群、自律神経失調症、脱毛症、神経症、高血圧、心臓血管障害、頻脈、鬱血性心麻痺、過呼吸症候群、気管支喘息、無呼吸症候群、乳児突然死症候群、炎症性障害、疼痛、アレルギー性疾患、インポテンツ、更年期障害、受精障害、不妊症、癌、HIV感染時の免疫機能異常、ストレスによる免疫機能異常、出血性ストレス、クッシング症候群、甲状腺機能異常、脳脊髄膜炎、先端巨大症、失禁または骨粗鬆症の治療剤または予防剤の製造のための前記請求項1記載の化合物またはその塩の使用。
- 49. 請求項1記載の化合物またはその塩の薬理学上有効量を患者に投与することにより、CRFおよび/またはCRF受容体が関与する疾患を治療又は予防する方法。
 - 50. 請求項1記載の化合物またはその塩の薬理学上有効量を患者に投与す

ることにより、CRF受容体拮抗作用が治療又は予防に有効な疾患を治療又は 予防する方法。

- 51. 請求項1記載の化合物またはその塩の薬理学上有効量を患者に投与することにより、CRF1受容体またはCRF2受容体拮抗作用が治療又は予防に有効な疾患を治療又は予防する方法。
- 52. 請求項1記載の化合物またはその塩の薬理学上有効量を患者に投与することにより、うつ病、抑うつ症状、そう病、不安症、全般性不安障害、パニック障害、恐怖症、強迫性障害、心的外傷後ストレス障害、チューレット症候群、自閉症、感情障害、情緒障害、双極性障害、循環性格、分裂病、消化性潰瘍、過敏性腸症候群、潰瘍性大腸炎、クローン病、下痢、便秘、術後イレウス、ストレスに伴う胃腸機能異常または神経性嘔吐を治療又は予防する方法。
- 53. 抑うつ症状が大うつ病、単発性うつ病、再発性うつ病、うつ病による 幼児虐待または産後うつ病である請求項52記載の方法。
- 5 4. 請求項1記載の化合物またはその塩の薬理学上有効量を患者に投与することにより、アルツハイマー病、アルツハイマー型老年性痴呆、神経変性疾患、多発梗塞性痴呆、老年期の痴呆、神経性食思不振症、摂食障害、肥満、糖尿病、アルコール依存症、薬物嗜好、薬物禁断症状、アルコール禁断症状、睡眠障害、不眠症、偏頭痛、ストレス性頭痛、筋緊張性頭痛、虚血性神経障害、興奮毒性神経障害、脳卒中、進行性核上麻痺、筋萎縮性側索硬化症、多発性硬化症、筋肉痙攣、慢性疲労症候群、精神社会的発育不全、てんかん、頭部外傷、脊髄外傷、書痙、痙性斜頚、筋肉痙攣、頚肩腕症候群、原発性緑内障、メニエール症候群、自律神経失調症、脱毛症、神経症、高血圧、心臓血管障害、頻脈、鬱血性心麻痺、過呼吸症候群、気管支喘息、無呼吸症候群、乳児突然死症候群、炎症性障害、疼痛、アレルギー性疾患、インポテンツ、更年期障害、受精障害、不妊症、癌、HIV感染時の免疫機能異常、ストレスによる免疫機能異常、出血性ストレス、クッシング症候群、甲状腺機能異常、脳脊髄膜炎、先端巨大症、失禁または骨粗鬆症を治療または予防する方法。

International application No.
PCT/JP02/01098

A. CLASSIFICATION OF SU		/4985, 31/5025, 31/5377	. 31/437.	
31/519,	A61P43/00, 25/28,	1/14, 3/04, 3/10, 25/32	, 25/30,	
25/20, 25/06, 25/04, 9/10, 25/00, 21/02, 25/08, 21/00, According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SEARCHED				
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07D487/04, 471/04, A61K31/4985, 31/5025, 31/5377, 31/437, 31/519				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted d CAPLUS (STN), RE		e of data base and, where practicable, sear	rch terms used)	
C. DOCUMENTS CONSIDER	RED TO BE RELEVANT			
Category* Citation of do	ocument, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.	
	1999 (12.08.99),	cal Industries, Ltd.),	1,8-15	
		iosciences, Inc.), 6279598 A	1-10,12-36, 38-48	
26 Decembe Full text			1,8-11, 14-16,19,20	
X Further documents are list	ed in the continuation of Box C.	See patent family annex.		
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report		
02 May, 2002 (02.05.02) 21 May, 2002 (21.05.02)		.02)		
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer		
Facsimile No.		Telephone No.		

International application No.
PCT/JP02/01098

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	US 4596872 A (Schering A.G.),	1,5,6,
Λ	24 June, 1986 (24.06.86), Full text (Family: none)	8-10,12-15
Х	JP 2000-502723 A (Pfizer Inc.), 07 March, 2000 (07.03.00), Full text; particularly, page 19, refer to the formula 1-C and the relevant passages & AU 3456197 A & WO 98/08847 A1 & HR 970454 A & NO 990927 A & ZA 9707687 A & EP 923582 A & PL 332040 A & BR 9711970 A & CN 1227554 A & CZ 9900681 A & HU 9903965 A & SK 23399 A	1-4,8-11, 14-16,19,20, 26-36,38-48
Х	JP 10-72449 A (Pfizer Inc.), 17 March, 1998 (17.03.98), Full text & CA 2207348 A & EP 812831 A & US 6022978 A	1,26-36, 38-48
A	JP 2000-109431 A (Pfizer Inc.), 18 April, 2000 (18.04.00), & CA 2192289 A & EP 778277 A1	1-36,38-48
- - - - - - - - - - - - - - - - - - -		

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

International application No.

PCT/JP02/01098

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 37, 49 to 54 because they relate to subject matter not required to be searched by this Authority, namely: Claims 37 and 49 to 54 fall under the category of methods for treatment of the human body by therapy.
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.
PCT/JP02/01098

Continuation of A. CLASSIFICATION OF SUBJECT MATTER (International Patent Classification (IPC))

Int.Cl⁷ 27/06, 27/00, 25/02, 17/14, 9/12, 9/00, 9/06, 9/02, 11/00, 11/06, 29/00, 37/08, 15/10, 15/12, 15/08, 35/00, 31/18, 37/04, 13/00, 19/10

(According to International Patent Classification (IPC) or to both national classification and IPC)

Form PCT/ISA/210 (extra sheet) (July 1998)

国際調査報告

- A. 発明の属する分野の分類(国際特許分類(IPC))
- Int. C1⁷ C07D487/04, 471/04, A61K31/4985, 31/5025, 31/5377, 31/437, 31/519, A61P43/00, 25/28, 1/14, 3/04, 3/10, 25/32, 25/30, 25/20, 25/06, 25/04, 9/10, 25/00, 21/02, 25/08, 21/00, 27/06, 27/00, 25/02, 17/14, 9/12, 9/00, 9/06, 9/02, 11/00, 11/06, 29/00, 37/08, 15/10, 15/12, 15/08, 35/00, 31/18, 37/04, 13/00, 19/10

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. $C1^7$ C07D487/04, 471/04, A61K31/4985, 31/5025, 31/5377, 31/437, 31/519

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAPLUS (STN), REGISTRY (STN)

C. 関連すると認められる文献

0. 10.00		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	WO 99/40090 A1 (日産化学工業株式会社) 1999.08.12 (全文参照) & AU 2298599 A	1, 8–15
X	WO 98/35967 A2 (NEUROCRINE BIOSCIENCES, INC.) 1998.08.20 (全文参照) & EP 970082 A & AU 6279598 A & JP 2001-511813 A	1–10, 12–36, 38–48

|X| C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 02.05.02 国際調査報告の発送日 **21.05.0**2 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 P 7 9 1 8 胡田 尚則 明便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3491

G (13:33)		
_C (続き) 引用文献の	関連すると認められる文献	関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 3-506033 A (イー・アイ・デゥポン・ドゥ・ヌムール・アンド・カンパニー) 1991.12.26 (全文参照) & WO 90/01030 A1 & AU 3967789 A & EP 353902 A & WO 90/12012 A1 & EP 440659 A & US 517936 A	1, 8-11, 14-16, 19, 20
X	US 4596872 A (Schering A.G.) 1986.06.24 (全文参照) (ファミリーなし)	1, 5, 6, 8-10, 12-15
X	JP 2000-502723 A (ファイザー・インク) 2000.03.07 (全文、特に19頁 式1-C及び関連部分参照) & AU 3456197 A & WO 98/08847 A1 & HR 970454 A & NO 990927 A & ZA 9707687 A & EP 923582 A & PL 332040 A & BR 9711970 A & CN 1227554 A & CZ 9900681 A & HU 9903965 A & SK 23399 A	1-4, 8-11, 14-16, 19, 20, 26-36, 38-48
X	JP 10-72449 A(ファイザー・インコーポレイテッド)1998.03.17 (全文参照) & CA 2207348 A & EP 812831 A & US 6022978 A	1, 26–36, 38–48
A	JP 2000-109431 A (ファイザー・インク) 2000.04.18 & CA 2192289 A & EP 778277 A1	1-36, 38-48
0	,	
		,
•		
Ž.		
	<u></u>	J

	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
	等3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなか	³ つ <i>た</i> 。
1. X	請求の範囲 <u>37,49-54</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
	請求の範囲37,49-54に係る発明は、治療による人体の処置方法に該当するものである。
2.	請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. 🗌	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見 (第1ページの3の続き)
次に並	述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
1. 🗌	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3.	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
,	
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調查	手数料の異議の申立てに関する注意
	〕 追加調査手数料の納付と共に出願人から異議申立てがあった。
	追加調査手数料の納付と共に出願人から異議申立てがなかった。