Data Mining Exam

May 22, 2021

Kasper Rosenkrands

Aalborg University Denmark

Clustering

- ► What is clustering?
- K-Means optimization problem and algorithm
- ► Implementation of the K-Means algorithm and an example
- ► Hierarchical Clustering (briefly)

Clustering

Clustering is a way to categorize data to impose structure.

A use case is recommender systems (Amazon, Spotify, Netflix), where a user is recommended items that bought/listened to/watched by other users with similar interests.

Clustering K-Means Optimization Problem

Given $D = (x_1, \dots, x_n)$ where $x_i \in \mathbb{R}^p$, $K \in \mathbb{N}$ and let C_1, \dots, C_K denote different groups of the x_i 's.

The K-Means algorithm tries to solve

$$\min_{C_1,\ldots,C_K} \left\{ \sum_{k=1}^K W(C_k) \right\},\tag{1}$$

where $W(C_k)$ denotes the **within cluster variation**, in other words the dissimilarity of the group.

The most common dissimilarity measure is the is the squared Euclidean distance

$$W(C_k) := \frac{1}{|C_k|} \sum_{i,j} \sum_{i=1}^{p} (x_{i,j} - x_{i',j})^2.$$
 (2)

Clustering K-Means Optimization Problem

If we by $\bar{x}_{k,j} = \frac{1}{|C_k|} \sum_{i \in C_k} x_{i,j}$ denote the mean value of the j'th dimension in cluster k, it can be shown that

$$\frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^{p} (x_{i,j} - x_{i',j})^2 = 2 \sum_{i \in C_k} \sum_{j=1}^{p} (x_{i,j} - \bar{x}_{k,j})^2.$$
 (3)

If we further note that $\bar{x}_{k,j} = \min_{\mu_k} \left\{ \sum_{i \in C_k} \sum_{j=1}^p (x_{i,j} - \mu_k)^2 \right\}$ this implies that the optimization problem in (1) can be rewritten as

$$\min_{C_1,...,C_k,\mu_1,...,\mu_k} \left\{ \sum_{k=1}^K \sum_{i \in C_k} \sum_{j=1}^p (x_{i,j} - \mu_k)^2 \right\}. \tag{4}$$

The K-Means algorithm is now able to exploit the new formulation of the optimization problem and iteratively solve for $\{C_1, \ldots, C_k\}$ and $\{\mu_1, \ldots, \mu_k\}$.

This makes K-Means a greedy algorithm because, in each iteration it chooses optimal values for $\{C_1, \ldots, C_k\}$ and $\{\mu_1, \ldots, \mu_k\}$.

Convergence of the algorithm is therefore ensured, however we cannot guarantee it will find the global optimum.

Clustering K-Means Algorithm

Algorithm 1: K-Means

- Assign each obsevation to a cluster randomly foreach Cluster do Compute the centroid foreach Observation do Compute distance to all centroids Assign to the closest while Centroids have not changed since last iteration do foreach Observation do Compute distance to all centroids 9 Assign to the closest 10 foreach Cluster do 11 Compute the centroid 12
- 3 return Clusters

Figure: Iteration 01

Figure: Iteration 02

Figure: Iteration 03

Figure: Iteration 04

Figure: Iteration 05

Figure: Iteration 06

Figure: Iteration 07

Figure: Iteration 08

Figure: Iteration 09

Figure: Iteration 10

Figure: Iteration 11

Figure: Iteration 12

Figure: Iteration 13

Clustering Hierarchical Clustering

Todo

- Introduction
- ► Type Agglomerative vs Divise
- ► Pseudocode for algorithm, or just in words
- ► Visualization with dendogram
- ► Linkage types (complete, single, average, centroid)

Kasper Rosenkrands | Data Mining Exam

Shrinkage Overview

Kasper Rosenkrands | Data Mining Exam

Shrinkage

Shrinkage Ridge Regression

Shrinkage Elastic Net

Classification Linear Discriminant Analysis (LDA)

Araoag university

Classification

Quadratic Discriminant Analysis (QDA)

Classification Naive Bayes

Trees Classification and Regression Trees (CART)

Kasper Rosenkrands | Data Mining Exam

Trees Bagging

Trees Random Forest

Kasper Rosenkrands | Data Mining Exam

Trees Boosting

Support Vector Machines

Neural Networks

Backpropagation: For a given loss function L we look for $\frac{\partial L}{\partial w_i}$. We start with initial values for the weights, which we shall denote w_{old} . Then we update the weights by $w_{new} = w_{old} - \eta \frac{\partial L}{\partial w}$. One iteration is called an **epoch**.

