Yair Caplan

Intro to Algorithms

Drill 1

Pick Your Constants: Big-O

1)

Definition:
$$T(n) = O(f(n))$$
 iff $T(n) \le c \times f(n)$ for $n \ge n_0$

Givens:
$$T(n) = 32n^2 + 17n + 1$$
, $f(n) = n^2$

Prove:
$$T(n) = O(f(n))$$
,

or:
$$32n^2 + 17n + 1 \le c \times n^2$$
 for $n \ge n_0$

Constants:
$$n_0 = 1$$
, $c = 51$

Substitute:
$$32n^2 + 17n + 1 \le 51n^2$$
 for $n \ge 1$

Prove By Induction:

Proof for
$$n = 1$$
:

$$(32 + 17 + 1 = 50) < 51$$

Proof for n + 1:

Assume:
$$32n^2 + 17n + 1 < 51n^2$$

Show that:
$$32(n+1)^2 + 17(n+1) + 1 < 51(n+1)^2$$

After expansion we have:

$$32n^2 + 64n + 32 + 17n + 17 + 1 < 51n^2 + 102n + 51$$

After reordering we have:

$$(32n^2 + 17n + 1) + (64n + 33) < (51n^2) + (102n + 51)$$

Using assumption, and 64n + 33 < 102n + 51,

if
$$a < c$$
 and $b < d$, then $a + b < c + d$,

therefore
$$32(n+1)^2 + 17(n+1) + 1 < 51(n+1)^2$$

--For n

Definition:
$$T(n) = O(f(n))$$
 iff $T(n) \le c \times f(n)$ for $n \ge n_0$

Givens:
$$T(n) = 32n^2 + 17n + 1$$
, $f(n) = n$

Prove:
$$T(n) \neq O(f(n))$$
,

or, $32n^2 + 17n + 1 \le c \times n$ for $n \ge n_0$ cannot hold for any c and n_0 .

No matter what c is, for all $n \ge c$ the inequality does not hold, because $32n^2 \ge 32nc > nc$ for all c > 0.

--For nlogn

Definition:
$$T(n) = O(f(n))$$
 iff $T(n) \le c \times f(n)$ for $n \ge n_0$

Givens:
$$T(n) = 32n^2 + 17n + 1$$
, $f(n) = n\log(n)$

Prove:
$$T(n) \neq O(f(n))$$
,

or, $32n^2 + 17n + 1 \le c \times n\log(n)$ for $n \ge n_0$ cannot hold for any c and n_0 .

No matter what c is, for $n \ge 2^c$ the inequality does not hold, because $32(2^c)^2 + 17(2^c) + 1 > c \times 2^c \log(2^c)$ for all $c \ge 0$, as follows from simplifying:

$$32(2^c)^2 + 17(2^c) + 1 > c^2 \times 2^c \rightarrow \text{pull c out of log, log(2)=1}$$

$$32(2^c) + 17 + \frac{1}{2^c} > c^2 \rightarrow$$
 divide both sides by 2^c

We know that this new inequality will hold if we prove that $32(2^c) > c^2$. Since, by the popular lemma, $2^c > c^2$ for $c \ge 4$, and for $0 \le c < 4$, $32(2^c) \ge 32 > 16 > c^2$,

it follows that
$$32(2^c) > c^2$$
 for all $c \ge 0$.

Alternatively, we can show it's not $O(n\log(n))$ using limits, by showing that no matter the c, when n gets large enough the definition for being $O(n\log(n))$ will fail:

$$32n^2 + 17n + 1 > n^2 > c \times n \log(n)$$
 \rightarrow contradiction to T(n)=O(f(n))

$$\frac{n}{\log(n)} > c \rightarrow \text{divide both sides by } n \log(n)$$

$$\lim_{n\to\infty} \frac{n}{\log(n)} = \lim_{n\to\infty} n \ln(b) = \infty > c \quad \Rightarrow \text{L'Hopital (b is the base of the log)}$$

Pick Your Constants: Big-Omega

1)

--For n²

Definition:
$$T(n) = \Omega(f(n))$$
 iff $T(n) \ge c \times f(n)$ for $n \ge n_0$

Givens:
$$T(n) = 32n^2 + 17n + 1$$
, $f(n) = n^2$

Prove:
$$T(n) = \Omega(f(n))$$
,

or:
$$32n^2 + 17n + 1 \ge c \times n^2$$
 for $n \ge n_0$

Constants:
$$n_0 = 1$$
, $c = 1$

Substitute:
$$32n^2 + 17n + 1 \ge n^2$$
 for $n \ge 1$

$$31n^2 + 17n + 1 > 0$$
 for $n \ge 1$ subtract n^2 from both sides

--For n

Definition:
$$T(n) = \Omega(f(n))$$
 if $f(n) \ge c \times f(n)$ for $n \ge n_0$

Givens:
$$T(n) = 32n^2 + 17n + 1$$
, $f(n) = n$

Prove:
$$T(n) = \Omega(f(n))$$
,

or:
$$32n^2 + 17n + 1 \ge c \times n$$
 for $n \ge n_0$

Constants: $n_0 = 1$, c = 1

Substitute:
$$32n^2 + 17n + 1 \ge n$$
 for $n \ge 1$

$$32n^2 + 16n + 1 > 0$$
 for $n \ge 1$

2)

Definition:
$$T(n) = \Omega(f(n))$$
 iff $T(n) \ge c \times f(n)$ for $n \ge n_0$

Givens:
$$T(n) = 32n^2 + 17n + 1$$
, $f(n) = n^3$

Prove: $T(n) \neq \Omega(f(n))$,

or: $32n^2 + 17n + 1 \ge c \times n^3$ for $n \ge n_0$ cannot hold for any for any c and n_0

First we simplify:

$$32 + \frac{17}{n} + \frac{1}{n^2} \ge c \times n$$
 \rightarrow divide both sides by n^2

Using limits, we will show that as n approaches ∞ , the left will be smaller than the right side, proving $T(n) \neq \Omega(f(n))$:

$$\lim_{n \to \infty} 32 + \frac{17}{n} + \frac{1}{n^2} = 32 < \lim_{n \to \infty} c \times n = \infty \text{ (for } c > 0)$$

Pick Your Constants: Big-Theta

1)

Definition:
$$T(n) = \theta(f(n))$$
 iff $c_1 \times f(n) \le T(n) \le c_2 \times f(n)$ for $n \ge n_0$

Givens:
$$T(n) = 32n^2 + 17n + 1$$
, $f(n) = n^2$

Prove:
$$T(n) = \theta(f(n))$$
,

or:
$$c_1 n^2 \le 32n^2 + 17n + 1 \le c_2 n^2$$
 for $n \ge n_0$

Constants:
$$c_1 = 1, c_2 = 51, n_0 = 1$$

Substitute:
$$n^2 \le 32n^2 + 17n + 1 \le 51n^2$$
 for $n \ge 1$

Split it up:

$$32n^2 + 17n + 1 \le 51n^2$$
 for $n \ge 1$

Using induction:

Proof for
$$n = 1$$
:

$$(32 + 17 + 1 = 50) < 51$$

Proof for n + 1:

Assume: $32n^2 + 17n + 1 < 51n^2$

Show that: $32(n+1)^2 + 17(n+1) + 1 < 51(n+1)^2$

After expansion we have:

$$32n^2 + 64n + 32 + 17n + 17 + 1 < 51n^2 + 102n + 51$$

After reordering we have:

$$(32n^2 + 17n + 1) + (64n + 33) < (51n^2) + (102n + 51)$$

Using assumption, and 64n + 33 < 102n + 51,

if a < c and b < d, then a + b < c + d,

therefore
$$32(n+1)^2 + 17(n+1) + 1 < 51(n+1)^2$$

$$32n^2 + 17n + 1 \ge n^2$$
 for $n \ge 1$

$$31n^2 + 17n + 1 > 0$$
 for $n \ge 1$ subtract n^2 from both sides

2)

--For n

Definition:
$$T(n) = \theta(f(n))$$
 iff $c_1 \times f(n) \le T(n) \le c_2 \times f(n)$ for $n \ge n_0$

Givens:
$$T(n) = 32n^2 + 17n + 1$$
, $f(n) = n$

Prove: $T(n) \neq \theta(f(n))$,

or: $c_1 n \le 32n^2 + 17n + 1 \le c_2 n$ for $n \ge n_0$ cannot hold for any c and n_0

Simplify: just need to show that $32n^2 + 17n + 1 \le c_2 n$ for $n \ge n_0$ cannot hold for any c_2 and n_0

No matter what c_2 is, for $n \ge c$ the inequality does not hold, because $32n^2 + 17n + 1 \ge 32nc > nc$ for all c > 0.

--For n³

Definition: $T(n) = \theta(f(n))$ iff $c_1 \times f(n) \le T(n) \le c_2 \times f(n)$ for $n \ge n_0$

Givens: $T(n) = 32n^2 + 17n + 1$, $f(n) = n^3$

Prove: $T(n) \neq \theta(f(n))$,

or: $c_1 n^3 \le 32n^2 + 17n + 1 \le c_2 n^3$ for $n \ge n_0$ cannot hold for any c and n_0

Simplify: just need to show that $c_1 n^3 \le 32n^2 + 17n + 1$ for $n \ge n_0$ cannot hold for any c_1 and n_0

First we simplify:

 $32 + \frac{17}{n} + \frac{1}{n^2} \ge c_1 n$ \rightarrow divide both sides by n^2

Using limits, we will show that as n approaches ∞ , the left will be smaller than the right side, proving $T(n) \neq \Omega(f(n))$:

$$\lim_{n \to \infty} 32 + \frac{17}{n} + \frac{1}{n^2} = 32 < \lim_{n \to \infty} c_1 n = \infty \text{ (for } c_1 > 0)$$