1.3. Unsupervised Learning and Reinforcement Learning

Lecture based on "Dive into Deep Learning" http://D2L.AI (Zhang et al., 2020)

Prof. Dr. Christoph Lippert

Digital Health & Machine Learning

Unsupervised Learning

(k-means) Clustering

- \bullet Find subgroups in the data based on x only.
- Represent each cluster by the mean value of members.
- Example applications:
 - Find subgroups of patients with similar symptoms
 - Find genes with similar gene-expression patterns

Unsupervised Learning Representation learning Principal Components Analysis

Project high-dimensional (large D) x on principal axes of variation (i.e. principal components). Example applications:

- Determine population structure from genetic markers (SNPs)
- Data visualization

Unsupervised Learning

Representation learning

Autoencoders

Use pair of neural networks (encoder and decoder) to learn a numeric embedding z of x.

- ullet encoder predicts z from x
- decoder predicts x from z

Example applications:

- Learn numeric embedding
- Compression
- De-noising
- Data visualization

Unsupervised Learning **Generative Models**

Models:

- Variational Autoencoders
- Generative adversarial networks

Applications:

- Image synthesis
- Image super-resolution (MRI, microscopy)
- Probabilistic modeling

How do we expect the environment to behave?

Does it ...

- Remember what we did previously?
- Want to help us, e.g., a user reading text into a speech recognizer?
- Want to beat us, i.e., an adversarial setting like spam filtering (against spammers) or playing a game (vs an opponent)?
- Not care?
- Have shifting dynamics
 Does future data always resemble the past or do the patterns change over time?
 - naturally
 - in response to our tools?

Interacting with the environment

Reinforcement learning

Deep reinforcement learning applies deep neural networks to RL.

- deep Q-network that beat humans at Atari games using only the visual input
- AlphaGo dethroned the world champion at Go

Unsupervised Learning and Reinforcement Learning **Summary**

- Unsupervised Learning
 - Clustering
 - Representation Learning
 - Generative Models
- Interacting with the environment