Highly compacted detergent with good cold water solubility or dispersibility - comprises compacted core of active and auxiliary substances coated with relatively coarse particles of same substances with the aid of a solid, cold water soluble binder.

Patent Number: DE19524287

International patents classification : C11D-001/83 C11D-017/00

DE19524287 A Multicomponent bulkable and pourable washing or cleaning agent (M), pref. textile detergent, comprises an abrasion resistant, dust- and fines-free prod. with particle structure comprising (A) compacted core of one or more active and/or auxiliary substances soluble and/or finely dispersible in the aq. washing soln.; (B) encapsulating coating of a mixt. of the same active and/or auxiliary substances having smaller individual particle sizes than those in (A); and (C) binder solid at room temp. and soluble in cold water, for binding particles of (B) together onto the surface of

The prepn. of (M) by agglomerating or granulating a mixt. of (A), (B) and liq. (C) and then solidifying (C), is also claimed. (A).

ADVANTAGE - The agent combines high density with good solubility in cold water, allowing greater freedom of choice for active and opt. auxiliary substances. Reproducible washing or cleaning results are obtd. with a relatively hard and abrasion-resistant, highly compacted multicomponent solid detergent showing excellent rapid solubility/dispersibility in cold water. (Dwg.0/0)

• <u>Publication data</u>:

<u>Patent Family</u>: DE19524287 A1 19970109 DW1997-07 C11D-

001/83 22p * AP: 1995DE-1024287 19950706

Priority nº: 1995DE-1024287 19950706

Covered countries: 1 Publications count: 1

· Accession codes :

Accession N°: 1997-066268 [07] Related Acc. N°: 1997-118750

Sec. Acc. nº CPI: C1997-021885

· Patentee & Inventor(s):

Patent assignee: (HENK) HENKEL KGAA Inventor(s): FUES J; JUNG D; KUEHNE N; RAEHSE W;

SANDKUEHLER P

• Derwent codes :

Manual code: CPI: A12-W12A D11-B

D11-D01

Derwent Classes: A97 D25

• Update codes :

Basic update code:1997-07

			r 1
			r 1
			•
	•		
		•	

BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift ® DE 195 24 287 A 1

(51) Int. Cl.6: C 11 D 1/83 C 11 D 17/00

PATENTAMT

195 24 287.4 Aktenzeichen: 6. 7.95 Anmeldetag:

Offenlegungstag: 9. 1.97

(7) Anmelder:

Henkel KGaA, 40589 Düsseldorf, DE

② Erfinder:

Rähse, Wilfried, Dr., 40589 Düsseldorf, DE; Kühne, Norbert, 42781 Haan, DE; Jung, Dieter, Dr., 40723 Hilden, DE; Fues, Johann-Friedrich, Dr., 41516 Grevenbroich, DE; Sandkühler, Peter, Dr., 41812 Erkelenz, DE

66 Entgegenhaltungen:

DE 42 21 736 A1 EP 34 10 072 A2 wo 90 09 428 A1

Prüfungsantrag gem. § 44 PatG ist gestellt

- (5) Von Staub- und Feinanteilen freie granulare Wasch- und Reinigungsmittel hoher Schüttdichte
- Die Erfindung betrifft neue mehrkomponentige schüttund rieselfähige Wasch- und Reinigungsmittel mit hoher Dichte und gleichzeitig guter Auflösbarkeit in kaltem Wasser. Die neuen Mittel sind als abriebfestes, von Staub- und Feinanteilen freies Gut der nachfolgenden Kornstruktur ausgebildet: Ein haftfest verdichteter Kern aus einem oder mehreren Wert- und/oder Hilfsstoffen, die in wäßriger Flotte löslich und/oder feinstdispergiert unlöslich sind, ist umhüllt von einer Abmischung gleicher und/oder weiterer Wertund/oder Hilfsstoffe mit - bezogen auf den Durchmesser des Kernmaterials - geringerer individueller Teilchengröße. Hier-bei sind diese Teilchen der Hüllsubstanz unter Mitverwendung eines in kaltem Wasser löslichen und bei Raumtemperatur festen Bindemittels miteinander und an die Außenfläche des Kernmaterials gebunden.

Die Erfindung betrifft in einer weiteren Ausführungsform das Verfahren zur Herstellung der neuen Angebotsform solcher Wasch- und Reinigungsmittel.

Beschreibung

Die Erfindung betrifft eine neue Angebotsform mehrkomponentiger schütt- und rieselfähiger Wasch- und Reinigungsmittel, insbesondere Textilwaschmittel, die hohe Dichte mit guter Auflösbarkeit auch in kaltem Wasser verbindet, frei von Staub- und Feinanteilen ist und dabei eine vergrößerte Freiheit in der Wahl der im Mehrkomponentengemisch einzusetzenden Wert- und Hilfsstoffe ermöglicht.

Die zunehmende Schüttgewichtserhöhung marktüblicher Waschmittelgranulate wird hauptsächlich durch eine immer kompakter werdende Kornstruktur der Granulate erreicht, die allerdings — als negative Begleiterscheinung — mit einer zunehmenden Löseverzögerung verbunden ist. Diese unerwünschte Löseverzögerung wird unter anderem dadurch ausgelöst, daß eine Reihe praxisüblicher anionischer und nichtionischer Tenside und vor allem entsprechende Tensidmischungen bei der Auflösung in Wasser zur Ausbildung von Gelphasen neigen. Bereits bei Tensidgehalten von 10 Gew.-% und darüber, bezogen auf das Mehrkomponentengemisch, kann es bei der Auflösung in insbesondere kaltem Wasser zu unerwünschten und löseverzögernden Vergelungen kommen.

Die EP-B-0486 592 beschreibt granulare beziehungsweise extrudierte Wasch- oder Reinigungsmittel mit Schüttdichten oberhalb 600 g/l, die anionische und/oder nichtionische Tenside in Mengen von mindestens 15 Gew.-% und bis zu etwa 35 Gew.-% enthalten. Sie werden nach einem Verfahren hergestellt, bei dem ein festes, rieselfähiges Vorgemisch, das ein Plastifizier- und/oder Gleitmittel enthält, bei hohen Drucken zwischen 25 und 200 bar strangförmig verpreßt und der Strang nach Austritt aus der Lochform mittels einer Schneidevorrichtung auf die vorbestimmte Granulatdimension zugeschnitten wird. Die hergestellten Extrudate können nachträglich mit anderen Granulaten vermischt werden, wobei in einer vorteilhaften Ausführungsform der Anteil der Extrudate in den fertigen Wasch- oder Reinigungsmitteln mehr als 60 Gew.-% beträgt.

Aus der internationalen Patentanmeldung WO-A-93/15180 ist bekannt, daß die Lösegeschwindigkeit extrudierter Mittel dadurch verbessert werden kann, daß im Vorgemisch kurzkettige Alkylsulfate, insbesondere C₆₋₁₆-Alkylsulfate eingesetzt werden, die auf eine bestimmte Art und Weise in das Vorgemisch eingebracht werden. Diese Maßnahme reicht jedoch nicht in allen Fällen aus, um die Lösegeschwindigkeiten des gesamten Mittels zu erhöhen.

Die ältere deutsche Patentanmeldung der Anmelderin gemäß DE 195 19139 (H 1795) schlägt zur Lösung des Konfliktes zwischen hohem Verdichtungsgrad des Wertstoffgemisches, insbesondere durch Extrusion, auf der einen Seite und der gleichwohl geforderten raschen, insbesondere vergelungsfreien Auflösbarkeit dieses Wertstoffgutes auch schon in der Frühphase eines Waschprozesses vor, granulare Wasch- oder Reinigungsmittel mit einer Schüttdichte oberhalb 600 g/l, enthaltend eine extrudierte Komponente sowie anionische und/oder nichtionische Tenside in Mengen von mindestens 15 Gew.-% derart auszugestalten, daß mindestens zwei verschiedene granulare Komponenten im einzusetzenden Mehrstoffgemisch vorgesehen sind, von denen mindestens eine extrudiert und mindestens eine nicht extrudiert ist. Die extrudierte(n) Komponente(n) soll dabei in Mengen von 30 bis 85 Gew.-%, bezogen auf das gesamte Mittel, enthalten sein, wobei gleichzeitig der Gehalt der extrudierten Komponente(n) an Tensiden (einschließlich Seifen) 0 bis weniger als 15 Gew.-%, bezogen auf die jeweilige extrudierte Komponente, beträgt. Im Mehrstoffgemisch liegt mindestens eine nicht-extrudierte granulare und tensidhaltige Komponente in solchen Mengen vor, daß durch diese Komponente mindestens 1 Gew.-%, bezogen auf das gesamte Mittel, an Tensiden bereitgestellt wird, wobei weiterhin bevorzugt ist, nicht-extrudierte granulare und tensidhaltige Komponenten in den unterschiedlich hergestellten Stoffabmischungen in solchen Mengen vorzusehen, daß dadurch bis zu 30 Gew.-% und vorzugsweise 5 bis 25 Gew.-% - bezogen jeweils auf das gesamte Mehrstoffgemisch - an Tensiden bereitgestellt werden. Das Gewichtsverhältnis der tensidhaltigen extrudierten Komponente zur nicht-extrudierten tensidhaltigen granularen Komponente liegt vorzugsweise im Bereich von 6:1 bis 2:1, bevorzugt im Bereich von 5:1 bis 3:1. Der Gegenstand der Offenbarung dieser älteren Anmeldung wird hiermit ausdrücklich auch zum Gegenstand der vorliegenden Erfindungsoffenbarung gemacht.

Wenn auch durch eine solche Abmischung unterschiedlich hergestellter Mehrstoffkomponenten, von denen wenigstens eine mittels Extrusion hochverdichtet ist, zu einem besseren Kompromiß zwischen dem angestrebten hohen Schüttgewicht der Mehrkomponentenmischung und der gleichzeitig geforderten vergelungsfreien hinreichend raschen Löslichkeit führt, so werden gleichwohl eine Reihe neuer Probleme damit geschaffen. Die Idealvorstellung des einheitlichen Kornes, das jeweils die gesamten Komponenten des Mehrstoffgemisches enthält, wird verlassen. Es können damit Entmischungsvorgänge und dementsprechend Schwankungen in der Reproduzierbarkeit des angestrebten Wasch- und Reinigungsergebnisses auftreten. Der extrudierte Materialanteil ist nicht nur von hoher Dichte, die aufgetrockneten Extrudatkörner sind gleichzeitig vergleichsweise hart. Unter den Bedingungen von Transport, Lagerung und Einsatz kann der vergleichsweise weichere Granulatanteil damit mechanischen Kräften ausgesetzt sein, die anteilsweise zu seiner Verkleinerung und damit zur Bildung von Staub- und Feinanteilen durch Abrieb führen.

Aufgabe der Erfindung

60

Hier setzt die Konzeption der erfindungsgemäßen Lehre ein. Die Erfindung hat sich die Aufgabe gestellt, hochverdichtete Mehrkomponentengemische aus dem Bereich der Wasch- und Reinigungsmittel und hier insbesondere aus dem Bereich der Textilwaschmittel zugänglich zu machen, die der alten Wunschvorstellung entsprechen, alle Komponenten dieser bekanntlich hochkomplexen Mehrstoffgemische in jeweils nur einem Korn vereinigen zu können. Das neue kornförmige Gut soll dabei die sich in gewissem Sinne widersprechenden Stoffeigenschaften der hohen Verdichtung und damit entsprechend hoher Schüttgewichte einerseits, gleichzeitig aber guter Dispergierbarkeit und Löslichkeit — insbesondere auch schon während der Einspülphase mit dem in

195 24 287 DE

Haushaltswaschmaschinen üblicherweise kalten Leitungswasser - verbinden.

Die erfindungsgemäße Aufgabenstellung geht aber darüber hinaus. Die neue Angebotsform der hochverdichteten Textilwaschmittel soll auch die Möglichkeit einer steuerbaren Verzögerung der Löslichkeit gewisser Anteile des Mehrstoffgemisches ermöglichen, um auf diese Weise - insbesondere unter gleichzeitiger Mitverwendung rasch löslicher Komponenten - ein mehrstufiges Wasch- und Reinigungsverfahren zu ermöglichen, wie es beispielsweise Gegenstand der älteren deutschen Patentanmeldung der Anmelderin gemäß P 44 38 850.0 ist. Die Offenbarung auch dieser älteren Anmeldung wird hiermit zum Gegenstand der vorliegenden Erfindungsoffenbarung gemacht. Beschrieben ist dort insbesondere eine Konditionierung der wäßrigen Flotte und/oder des zu reinigenden Gutes in der Frühphase des Waschprozesses durch Mitverwendung von auch in kaltem Wasser schnell löslichen Komplexbildnern für die mehrwertigen Kationen der Wasserhärte und entsprechende Abmischungen mit kaltlöslichen Tensidverbindungen.

Die Konzeption der im nachfolgenden beschriebenen technischen Lehre geht insbesondere von der Aufgabe aus, die in vielfacher Hinsicht hochsensiblen Stoffmischungen heute üblicher Textilwaschmittel in einer von Staub- und Feinanteilen freien einheitlichen Kugelform anbieten zu können, die die dargestellten Anforderungen in Summe erfüllt, gleichzeitig aber auch die Möglichkeit offenläßt weiter modifizierende Änderungen in den jeweiligen Rezepturen der Mehrstoffgemische zuzulassen, ohne grundsätzliche Änderungen in der gewünschten Anbietungsform des Mehrstoffgemisches vornehmen zu müssen. Die erfindungsgemäße Lehre will gleichzeitig den Zugang zur technischen Verwirklichung dieser Aufgabe so breit ausgestalten, daß auf Basis der beim jeweiligen Hersteller heute vorhandenen Technologie die technische Verwirklichung der Wunschvorstellung ohne substantielle apparative Änderungen möglich ist.

Gegenstand der Erfindung

20

Gegenstand der Erfindung ist dementsprechend in einer ersten Ausführungsform ein mehrkomponentiges schütt- und rieselfähiges Wasch- und Reinigungsmittel, insbesondere Mehrkomponenten-Textilwaschmittel, das 25 hohe Dichte mit guter Auflösbarkeit auch in kaltem Wasser verbindet und dabei vergrößerte Freiheit in der Wahl der Wert- und gegebenenfalls Hilfsstoffe ermöglicht. Die erfindungsgemäße Lehre ist dabei dadurch gekennzeichnet, daß diese neue Angebotsform der Mehrkomponentengemische als abriebfestes, von Staub- und Feinanteilen freies Gut der nachfolgenden Kornstruktur ausgebildet ist:

– Jedes Korn enthält in seinem Inneren einen haftfest verdichteten Kern aus einem oder mehreren Wertund/oder Hilfsstoffen, die in wäßriger Flotte löslich und/oder feinstdispergiert unlöslich sind - im nachfolgenden auch als "Kernmaterial" bezeichnet.

Dieses Kernmaterial ist umhüllt von einer Abmischung gleicher und/oder weiterer Wert- und/oder Hilfsstoffe, deren Feststoffanteil eine individuelle Teilchengröße besitzt, die geringer als der Durchmesser 35 des Kernmaterials ist - im nachfolgenden auch als "Hüllsubstanz" bezeichnet.

- Dabei sind diese Teilchen der Hüllsubstanz unter Mitverwendung eines auch in kaltem Wasser löslichen und bei Raumtemperatur festen Bindemittels miteinander und an die Außenfläche des Kernmaterials gebunden - in der Erfindungsbeschreibung wird dieses Bindemittel auch als "Binder" bezeichnet.

Die erfindungsgemäße Lehre sieht dabei in der bevorzugten Ausführungsform vor, daß bei Wasserzutritt gelbildende und/oder nur langsam lösliche Komponenten der Mehrstoffgemische zum wenigstens überwiegenden Anteil Bestandteil der Hüllsubstanz sind, wobei hier diese Anteile mit jeweils vorbestimmbarer individueller Teilchengröße in die Hüllsubstanz eingebaut werden. Ihr Zusammenhalt wird hier durch den bei Raumtemperatur und den in der Praxis auftretenden mäßig erhöhten Temperaturen festen Binders gewährleistet. Bei Zutritt von Wasser löst sich der Binder auch schon bei den Temperaturen üblichen kalten Leitungswassers. Die in der Hüllsubstanz durch den Binder isoliert und getrennt voneinander vorliegenden langsam löslichen und gegebenenfalls vergelenden Feststoffteilchen dispergieren in der Flotte ohne zu koagulieren oder auf andere Weise den Einspülvorgang und/oder den Waschprozeß zu beeinträchtigen. Durch die im nachfolgenden geschilderten Zusatzmaßnahmen - beispielsweise Mitverwendung von Dispergier- und/oder Lösungshilfsmitteln - kann dieser Prozeß des Zerfalls der Hüllsubstanz in individualisierte Feinstteilchen nahezu beliebig gefördert werden.

Die Beschaffenheit und insbesondere die Löslichkeit des Kernmaterials, das als hochverdichtetes Gut und gewöhnlich in der jeweiligen Kugel in der Form nur eines Kornes - im nachfolgenden auch als "Trägerkorn" bezeichnet - vorliegt, werden so gewählt, daß Behinderungen der Auflösbarkeit und Dispergierung des Mehrkomponentengemisches ausgeschlossen sind.

Insbesondere in der Hüllsubstanz können nahezu beliebige feinteilige bis staubförmige Komponenten vorgelegt und verfestigt sein, die dann nach ihrer Freisetzung durch den Primärschritt der Auflösung des Binders die ihnen zukommende Teilaufgabe im Rahmen des Wasch- und Reinigungsprozesses erfüllen können. Es leuchtet sofort ein, daß als Bestandteile der Hüllsubstanz nicht nur ausgewählte Einzelkomponenten geeignet sind, zum Einsatz können hier insbesondere beliebig ausgewählte und zusammengestellte Mehrstoffcompounds kommen, die in der Angebotsform des bevorzugt kugelförmigen Trockengutes von benachbarten Partikeln getrennt und damit vor einer unerwünschten Interaktion geschützt sind. Solche feinteiligen Mehrstoffcompounds in der Hüllsubstanz können dabei so aufeinander abgestimmt sein, daß vorbestimmte technische Effekte bei und/oder nach ihrer Auflösung in der Waschflotte in optimierter Form ablaufen können.

Die Zusammenstellung des festen Kernmaterials - des Trägerkornes - ist ebenfalls im Rahmen der hier zur Verfügung stehenden Mehrkomponentengemische in einem vergleichsweise breiten Bereich variabel und wählbar. Beherrscht wird hier die Auswahl der Komponente(n) einerseits durch das Erfordernis einer hinreichenden Auflösbarkeit im Rahmen des Waschprozesses - ohne beispielsweise Schwierigkeiten durch Vergelungsbildung auszulösen — zum anderen durch übergeordnete Konzeptionen eines beispielsweise bezüglich des pH-Wertes der Waschflotte mehrstufigen Wasch- und Reinigungsprozesses. Das Trägerkorn kann aus einer bestimmt ausgewählten Komponente, insbesondere aber auch aus entsprechend ausgewählten und miteinander verdichteten Mehrkomponentengemischen bestehen. Nähere Angaben hierzu finden sich in den nachfolgenden

Einzelheiten zur erfindungsgemäßen Lehre.

Die vorliegende Erfindung betrifft in einer weiteren Ausführungsform das Verfahren zur Herstellung der Wasch- und Reinigungsmittel in der hier dargestellten bestimmten Raumform. In der breitesten Fassung ist das Verfahren dadurch gekennzeichnet, daß man das Kernmaterials in Form eines vorgebildeten Trägerkorns mit dem feinteiligen Gut der Hüllsubstanz in Gegenwart des Binders in fließfähiger Zubereitungsform umhüllend agglomeriert beziehungsweise granuliert und den Binder verfestigt. Der Binder kann dabei insbesondere unter Mitverwendung eines Lösungs- und/oder Emulgierhilfsmittels — bevorzugt als wäßrige Lösung und/oder Emulsion — unter gleichzeitiger beziehungsweise nachfolgender Trocknung zum Einsatz kommen, bevorzugt ist es jedoch den Binder in Form einer Schmelze einzusetzen, auf das miteinander zu vereinigende Gut aufzutragen und durch anschließende Kühlung des beschichteten Gutes die Verfestigung des Mehrstoffgemisches sicherzustellen. Einzelheiten auch hierzu siehe in der nachfolgenden Erfindungsbeschreibung.

Einzelheiten zur erfindungsgemäßen Lehre

Bevor auf die einzelnen Bestimmungselemente zum erfindungsgemäßen Handeln näher eingegangen wird, sei ihr konzeptioneller Zusammenhang zunächst nachfolgend dargestellt. Die Auswahl und Festlegung im konkreten Einzelfall zu wählender Kombinationen der Einzelelemente wird dann im Licht des allgemeinen Fachwissens

zugänglich.

Im Kern will die Erfindung die Rückführung der Raumform einer mehrkomponentigen Wasch- und Reinigungsmittelzubereitung im Trockenzustand auf das 1-Korn. Dieses kornförmige Gut soll dabei alle oder praktisch alle Bestandteile für den Anwendungsfall beinhalten. Grundsätzlich soll damit das Prinzip verwirklicht werden, das beispielsweise in der zuvor zitierten EP-B-04 86 592 geschildert ist. Insbesondere will auch die erfindungsgemäße Lehre als konkrete Kornform die kugelige oder zylindrisch abgerundete Anbietungsform

solcher festen Mehrstoffgemische ermöglichen.

Abweichend von der gerade zitierten Druckschrift des Standes der Technik will die erfindungsgemäße Lehre jetzt aber eine Trennung der Wert- und/oder Hilfsstoffe innerhalb jeder einzelnen Kugel in eine Mehrzahl von im Trockenzustand getrennten Räumen vorsehen. Hierbei handelt es sich zunächst um den inneren Kern, das "Kernmaterial", und die diesen Kern umhüllendangeordnete "Hüllsubstanz". Die Hüllsubstanz kann dabei — unabhängig von der Anzahl ihrer Einzelbestandteile — einschalig oder auch mehrschalig ausgebildet sein. Die auf diese Weise entstehenden Vorratsräume für das im Trockenzustand zu lagernde Mehrstoffgut können in unmittelbarem Kontakt miteinander stehen, sie können aber auch durch Trennschichten von einander zusätzlich getrennt werden.

Die erfindungsgemäße Konzeption sieht weiterhin vor, die Schale(n) der Hüllsubstanz ihrerseits in eine Mehrzahl beliebig vieler kleiner Einzelräume zu unterteilen, in denen die vergleichsweise feinteiligen Wertund/oder Hilfsstoffe der Hüllsubstanz-Schale(n) berührungsfrei und gleichwohl in dichter Packung gelagert sind.
Erreicht wird das durch die erfindungsgemäße Konzeption, den in Wasser kalt löslichen Binder als zusätzliche

Komponente in die Hüllsubstanz(en) einzubringen.

Der erfindungsgemäßen Binderkomponente kommt damit eine multifunktionelle Bedeutung zu. Ohne Anspruch auf Vollständigkeit seien hier die folgenden Funktionen aufgezählt: Die Verfestigung der Hüllsubstanz auf dem Kernmaterial und gleichzeitig der feinteiligen Mehrstoffmischung von festen Wert- und/oder Hilfsstoffen; die Abtrennung der Einzelkomponenten aus der Hüllsubstanz gegeneinander und die Abtrennung der Hüllsubstanz insgesamt gegenüber dem Kernmaterial; die Freigabe der Hüllsubstanzen einschließlich der Oberfläche des Kernmaterials bei Zutritt schon von kaltem Wasser; die Verfestigung insbesondere der Kornau-Benbereiche gegenüber Abrieb unter den üblichen Bedingungen von Transport, Lagerung, Anwendung und dergleichen; der Binder kann selber als Rezepturbestandteil der Gesamtmischung ausgewählt werden; der Binder kann aber auch zusätzlich Träger für Löse- und/oder Dispergierhilfen zur erleichterten und gelfreien

Auflösung der Einzelkomponenten und des Wertstoffgemisches in seiner Gesamtheit werden.

Im Ergebnis ermöglicht die erfindungsgemäße Lehre die Ausbildung nach Art und Größe vorbestimmbarer fester Mehrstoffgemische, die jeweils in einem Korn die Gesamtheit der Mehrstoffmischung enthalten. Hier liegen sie in vorausbestimmbarer Form getrennt voneinander vor, so daß eine unerwünschte Interaktion in diesem Stadium nicht stattfindet. Gleichzeitig ist die gesteuerte beziehungsweise steuerbare Freisetzung der mehrkomponentigen Wertstoffmischung in der wäßrigen Flotte möglich. Problemanteile dieser Wertstoffgemische können in dem Zustand einer vorausbestimmbaren Feinstdispergierung so gelagert und dem Wasch- und Reinigungsprozeß angeboten werden, daß unerwünschte Behinderungen hier ausscheiden. Das trockene Feststoffgut ist staubfrei und ebenfalls frei von Feinanteilen. Eine mehrstufige Textilwäsche wird möglich. Schließlich schafft die Erfindung die Möglichkeit, das visuelle Erscheinungsbild des Trockenkornes — beispielsweise seinen Weißgrad oder seine Farbe — in vorausbestimmbarer Weise einzustellen; alle diese kontrolliert einstellbaren Effekte gehen dabei von der heute geforderten Konzeption aus, hochverdichtete Wertstoffzubereitungen, beispielsweise im Bereich von 500 bis 1.300 g/l, insbesondere 600 bis 1.200 g/l, zur Verfügung zu stellen, die sich in der Auswahl und Zusammenstellung ihrer Wert- und Hilfsstoffe den jeweiligen Bedingungen des Wasch- und Reinigungsvorganges und/oder den sich stets wandelnden Vorstellungen zur Optimierung der im einzelnen eingesetzten Wertstoffe — zum Beispiel aus ökologischer Sicht — anpassen.

Im nachfolgenden wird zunächst vertieft auf die drei wesentlichen Bestimmungselemente für das erfindungsgemäße Handeln eingegangen: das Kernmaterial — auch als "Trägerkorn" bezeichnet —, die Hüllsubstanz

beziehungsweise die als Hüllsubstanz zu verwendenden Komponenten und schließlich das Bindemittel/der Binder für die schalenförmige Umhüllung des Trägerkorns.

Kernmaterial/Trägerkorn und seine Herstellung

5

Dieser innere Kern dem jeweils individuellen Kornes der erfindungsgemäßen Mehrstoffmischung kann seinerseits 1-komponentig oder mehrkomponentig ausgebildet sein. Da in der Regel ein substantieller Anteil — vorzugsweise der überwiegende Anteil — des Gesamtkornes durch das Trägerkorn gebildet wird, ist seine hinreichende Verdichtung ein mitbestimmendes Element. Für das Kernmaterial sind Schüttdichten von wenigstens 450 g/l und insbesondere von wenigstens 500 bis 600 g/l bevorzugt. Gerade die Möglichkeit, dieses 10 Trägerkorn auch 1-komponentig, zum Beispiel durch wasserlösliche anorganische und/oder organische Salze wie Soda, Alkalisilikat, Alkalisalze von Polycarbonsäuren, wie Trinatriumcitrat, und dergleichen zu bilden, eröffnet hier den Weg zu hohen Schüttdichten in diesem inneren Kugelkern. Obere Grenzwerte können beispielsweise bei 1.300 bis 1.500 g/l oder auch noch darüber liegen. Gleichwohl ist die vorausbestimmbare Wasserlöslichkeit dieses Kernmaterials einstellbar abzusichern.

Das Kernmaterial macht wenigstens etwa 15 bis 20 Gew.-% und insbesondere wenigstens etwa 35 bis 40 Gew.-% der Gesamtmischung aus. In den wichtigsten Ausführungsformen liegt die gewichtsmäßige Menge des Kernmaterials bei wenigstens etwa 50 Gew.-% der Gesamtabmischung, wobei besondere Bedeutung dem Bereich von etwa 55 bis 90 Gew.-% zukommen kann — Gew.-% auch hier wie zuvor bezogen auf das gesamte Mehrstoffgemisch.

Das Kernmaterials ist 1-komponentig oder mehrkomponentig ausgebildet und wird dabei zum wenigstens substantiellen Anteil durch wasserlösliche und/oder feindispers in Wasser unlösliche anorganische und/oder organische Komponenten üblicher Wasch- und Reinigungsmittel gebildet. Lediglich beispielhaft seien hier aus dem Bereich der Textilwaschmittel entsprechende Builder und/oder Cobuilder, Alkalisierungsmittel, temperaturstabile Bleichmittel auf Wasserstoffperoxidbasis, wie Perboratverbindungen, genannt. Weitere Beispiele sind 25 wenigstens weitgehend vergelungsfrei lösliche Tensidverbindungen, insbesondere entsprechende Aniontenside und/oder Niotenside, aber auch eine Mehrzahl weiterer üblicher Kleinkomponenten aus Textilwaschmitteln, die bedenkenlos den Belastungen eines hinreichenden Verdichtungsschrittes, beispielsweise durch Extrusion, ausgesetzt werden können. Grundsätzlich kann das Trägerkorn im erfindungsgemäßen Sinne aus der Gruppe von Wertstoffen aufgebaut sein, die in der eingangs erwähnten älteren deutschen Patentanmeldung DE 195 19 139 (H 30 1795) als Bestandteile für die Extrusion vorgesehen sind und dort mit nicht extrudierten granularen weiteren Bestandteilen der Wasch- und Reinigungsmittelgemische abgemischt werden. Die Einzelkomponenten sollen dabei in wäßriger Phase löslich und/oder feindispers unlöslich sein. Nachfolgend wird noch eine summarische Zusammenstellung hier geeigneter Komponenten gegeben, zunächst sei lediglich beispielhaft — damit aber für das Fachwissen exemplarisch - eine Reihe geeigneter Komponenten für den Aufbau des Kernmaterials/Trä- 35 gerkorns aufgezählt:

Anorganische lösliche oder feinstdispers unlösliche Waschmittelbestandteile wie Builder-Hauptkomponenten — beispielsweise Zeolith-Verbindungen vom Typ Zeolith A, X und/oder P, Alkalisierungsmittel wie Soda und Wasserglas, hinreichend stabile Trägersalze für Wasserstoffperoxid, zum Beispiel Natriumperboratsalze, aber auch anorganische Salze als Hilfskomponenten, zum Beispiel Natriumsulfat. Geeignete organische Komponenten können hinreichend lösliche Antiontenside zum Beispiel vom Typ Alkylbenzolsulfonat oder auch vergleichsweise kürzerkettige Alkylsulfatsalze sein. Niontensidverbindungen in beschränkten Mengen, die insbesondere Fettalkoholreste mit Oligo-EO-Resten verbinden, sind ebenfalls geeignete Mischungskomponenten für das Kernmaterial. Verbindungen dieser Art sind in der Regel bei Raumtemperatur fließfähige Komponenten, die dementsprechend nur in beschränkten Mengen in das feste Kernmaterial eingemischt werden. Auch Seife als weitere Tensidverbindung ist ein geeigneter Bestandteil für den Aufbau des Kernmaterials.

Andere organische Mischungskomponenten des Trägerkorns sind beispielsweise Cobuilderkomponenten, die in Abmischung mit der Hauptbuilderkomponente das Buildersystem ausbilden. Typische Beispiele hierfür sind Verbindungen von der Art des Trinatriumcitrats und/oder polymere Polycarboxylate, wie Natriumsalze der Polyacrylsäure oder Polymethacrylsäure, ihrer Copolymeren und/oder ihrer Copolymeren mit Maleinsäure.

Weitere Bestandteile des Kernmaterials können gut wasserlösliche und/oder löslichkeitsvermittelnde organische Komponenten wie Polyethylenglykol und/oder dessen Derivate sein, denen ihrerseits Mehrfunktionalität bei der Herstellung der hochverdichteten Zubereitungsformen des Kernmaterials und seiner Wiederauflösung in der wäßrigen Flotte zukommt. Aber auch Kleinkomponenten, deren Mitverwendung unter den vergleichsweise scharfen Bedingungen der Verdichtung des Trägermaterials unbedenklich ist, können Bestandteil des Kernmaterials/Trägerkorns sein. Lediglich beispielhaft seien hier die bekannten Aufheller aus dem Bereich der Textilwaschmittel benannt.

In einer wichtigen Ausführungsform der erfindungsgemäßen Lehre ist die folgende Abwandlung vorgesehen: Bestandteil oder sogar auch alleiniger Bildner des Trägerkorns können Waschmittelenzyme beziehungsweise ihre heute üblichen Zubereitungsformen sein, die die Waschmittelenzyme in Abmischung mit Trägersubstanzen eingeschlossen in Hüllsubstanzen enthalten. In Anpassung an die jeweiligen Bedingungen der Herstellung des Trägerkorns können dabei auch Abmischungen mit weiteren der bisher benannten Komponenten für das Trägermaterial in Betracht kommen, insoweit kann auf das allgemeine Fachwissen verwiesen werden. Die hier betroffene besondere Ausgestaltung bringt unter anderem den folgenden wichtigen Vorteil: Für die Lagerung und die Handhabung von Waschmittelzubereitungen ist bekanntlich der sichere Verschluß gegebenenfalls est mitverwendeter Wertstoffe auf enzymatischer Basis eine wichtige Grundforderung, um unerwünschte Reaktionen im Direktkontakt auszuschließen. Der Einbau von enzymatischen Wertstoffen in den inneren Kern des kugelförmigen Mehrschichtgutes verstärkt einerseits hier die entsprechenden Sicherheitsaspekte, zum anderen

wird durch die Angleichung der Außenhülle der in Abmischung vorliegenden Kugeln — Hüllsubstanz/Binder im Sinne der erfindungsgemäßen Definition — die Homogenisierung des kugelförmigen Gutes und die Wahrung des homogen Mischzustandes substantiell erleichtert. Aufgrund der dem Fachmann bekannten Besonderheiten enzymatischer Zubereitungen kann es erfindungsgemäß allerdings zweckmäßig sein, solche Enzymzussätze zum Trägermaterial nur in einem Anteil der individuellen Mehrkomponentenkörner vorzusehen, dabei die entsprechenden Fertigkörner bezüglich ihrer physikalischen Eigenschaften derart aneinander anzugleichen, daß die homogene Einmischung der enzymhaltigen Bestandteile in das enzymfreie Korngut sichergestellt ist.

Die Herstellung des kornförmig ausgebildeten Kernmaterials/Trägerkorn kann in jeder beliebigen der Fachwelt hier bekannten Weise erfolgen. Besonders geeignet sind für Mehrstoffgemische im Trägerkorn übliche Verdichtungsverfahren bei gleichzeitiger und/oder nachfolgender Formgebung zum individuellen Trägerkorn. Insoweit kann auf das allgemeine Fachwissen verwiesen werden. Lediglich beispielhaft seien hier Verfahren benannt, wie die Naßgranulation, die Schmelzagglomeration, die Sprühagglomeration in insbesondere rotierender Wirbelschicht, die Walzenkompaktierung und/oder andere Kompaktierungsverfahren. Zur einschlägigen Literatur sei beispielsweise verwiesen auf das Handbuch W. Pietsch "SIZE ENLARGEMENT BY AGGLOMERATION", John Wiley & Sons, New York/Salle + Sauerländer, Frankfurt a. Main, 1991 sowie die darin zitierte

einschlägige Literatur.

Besondere Bedeutung hat für die Herstellung des verdichteten mehrkomponentigen Trägerkorns im Sinne der erfindungsgemäßen Lehre die Wertstoffverarbeitung mittels Extrusion und verwandter Verfahren, beispielsweise der Verarbeitung in der Pelletpresse, jeweils verbunden mit nachfolgender Zerkleinerung der Extrudatstränge, zum Beispiel mittels Abschlaggranulation und gewünschtenfalls Verrundung der noch verformbaren Granulate. Diese heute auch gerade für Textilwaschmittelformulierung in der Praxis weltweit eingeführte Technologie ist in der eingangs zitierten EP 0 486 592 und zugehörigen Druckschriften ausführlich beschrieben. Geeignete Extrudatkörner weisen beispielsweise Schüttdichten im Bereich von 600 bis 1.100 g/l und insbesondere Dichten im Bereich von 750 bis 1.000 g/l auf. Unter Berücksichtigung der erfindungsgemäßen Lehre, die Zusammensetzung dieser durch Extrusion oder vergleichbare Verfahren gewonnenen hochdichten Agglomerate hinreichend vergelungsfrei und wasserlöslich auszubilden, ist hier ein optimaler Zugang zur Gewinnung des Kernmaterials in der Ausbildung des Trägerkorns gegeben.

Die Hüllsubstanz und die Art ihrer Aufbringung

Die Hüllsubstanz kann unmittelbar haftfest auf dem Trägerkorn angebunden werden. Es ist aber auch möglich eine oder mehrere Trennschichten zwischen dem Trägerkorn und der Hüllsubstanz vorzusehen. Dieser zuletzt genannte Fall wird allerdings nur dann Bedeutung haben, wenn über die Auswahl und Beschaffenheit der Komponenten der Hüllsubstanz besondere Effekte beim praktischen Einsatz ausgelöst werden sollen, die eine Verzögerung in der Auflösung des Trägerkorns wünschenswert machen. Lediglich beispielhaft sei hier die Mehrstufen-Textilwäsche mit zeitlicher Steuerung der einleitenden Arbeitsstufe(n) erwähnt. Trennschichten der hier betroffenen Art kann aber auch eine ganz andere praktische Bedeutung zukommen: Bei geeigneter Auswahl des Trennschichtmaterials kann dieses die Auflösung des Trägerkornes in der wäßrigen Flotte begünstigen beziehungsweise beschleunigen. Gültig kann das insbesondere für solche Trägermaterialien sein, die nicht frei sind von gelbildenden Tensidverbindungen und bei der Herstellung des Trägermaterials eine lösungsbehindernde vergelte Tensidschicht wenigstens in der Außenhülle des Trägerkorns ausgebildet haben.

In der Regel wird allerdings der unmittelbare Auftrag der Hüllsubstanz auf das Trägerkorn vorgesehen sein. Die Hüllsubstanz kann dabei, wie bereits angegeben, einschichtig oder auch mehrschichtig aufgetragen werden. Auch hier ist in der Regel der technisch anspruchslosere Auftrag der einschichtigen Hüllsubstanz die bevorzugte

Ausführungsform.

Die auf das Trägerkorn aufgetragene Hüllsubstanz besteht ihrerseits aus den im Vergleich zum Trägerkorn in der Regel feinteiligeren festen Wert- und gegebenenfalls Hilfsstoffen, den damit gegebenenfalls abzumischenden fließfähigen Wert- und/oder Hilfsstoffen sowie dem als Agglomerationshilfe eingesetzten, in kaltem Wasser löslichen und bei Raumtemperatur festen Binder. Diese letzte Komponente wird in einer gesonderten Abhandlung nachfolgend im einzelnen beschrieben, so daß zunächst hier nur auf die Wert- und gegebenenfalls Hilfsstoffe der Hüllsubstanz eingegangen wird, die mittels des Binders auf dem Trägerkorn schalenförmig verfestigt werden.

Als Feststoffkomponenten der Hüllsubstanz können insbesondere eine oder mehrere der nachfolgenden Vertreter vorliegen: Staubund/oder Feinanteile beziehungsweise zur Feinteiligkeit zerkleinerte Anteile des Kernmaterials; langsam lösliche und/oder vergelende Komponenten in Form ausgewählter 1-Stoffe und/oder in Form vorgebildeter Mehrstoffcompounds; übliche Bestandteile, insbesondere auch Kleinbestandteile von Wasch- und Reinigungsmitteln, soweit sie den Arbeitsbedingungen der Verdichtung des Kernmaterials nicht ausgesetzt werden sollen; gegebenenfalls auch in kaltem Wasser schnell lösliche Komponenten zur raschen Kondition der Waschflotte und/oder des zu reinigenden Gutes in einer Frühphase des Waschvorganges; Reaktivkomponenten zur nachfolgenden Abreaktion mit weiteren Reaktivbestandteilen des Mehrstoffgemisches, die in der Lagerung im Feststoffgut von den korrespondierenden Reaktivbestandteilen mit hinreichender Sicherheit getrennt gelagert werden sollen. Die hier dargestellten unterschiedlichsten Gruppen für die Feststoffkomponenten der Hüllsubstanz werden im nachfolgenden beispielhaft erläutert. Unter Berücksichtigung des allgemeinen Fachwissens ergeben sich daraus weiterführende Lehren für den Aufbau der erfindungsgemäßen Wertstoffgemische

In einer ersten Ausführungsform werden die Feststoffkomponenten der Hüllsubstanz durch das Kernmaterials oder wenigstens durch wesentliche Anteile der Kernmaterialwertstoffe gebildet. Die Hüllsubstanz unterscheidet sich vom Kernmaterial durch die Größe der miteinander zu vergleichenden Feststoffteilchen. Diese

Ausführungsform kann beispielsweise dann Bedeutung bekommen, wenn an sich bekannte Abmischungen von Wasch- und Reinigungsmitteln in die erfindungsgemäße Raumform der Kugel beziehungsweise Perle oder ähnlich geformter Raumkörper überführt werden soll. Textilwaschmittelgemische werden heute noch immer weitaus überwiegend in Form schütt- und rieselfähiger Pulver beziehungsweise Teilagglomerate angeboten, die ein sehr breites Kornspektrum der Einzelteilchen umfassen. Textilwaschmittelgemische dieser Art enthalten insbesondere häufig substantielle Mengen an Staubanteilen, die im praktischen Gebrauch zu unerwünschter Belästigung führen können. Die gleichzeitig vorliegenden Feinanteile fördern — beispielsweise unter Bedingungen erhöhter Luftfeuchtigkeit — den unerwünschten Verklumpungsprozeß des trockenen Wertstoffgemisches, der beispielsweise die Portionierung von Haushaltswaschmitteln bei längerem Gebrauch einer Waschmittelpakkung behindern oder erschweren kann. Die erfindungsgemäß vorgesehene Anbietungsform der insbesondere kugelförmigen Mehrstoffabmischungen mit fester und vorzugsweise nicht klebriger Außenfläche bei gleichzeitiger Wahl des individuellen Kugeldurchmessers im Millimeterbereich schließt Behinderungen der geschilderten Art aus.

In der hier besprochenen Ausführungsform kann also beispielsweise eine in an sich bekannter Weise agglomerierte und insbesondere wenigstens teilverdichtete Abmischung entsprechender Wasch- und Reinigungsmittel mit breitem Kornspektrum der Einzelteilchen einer nach Teilchengrößen fraktionierenden Auftrennung zugeführt werden. Die als Kernmaterial geeignete Teilchengröße wird dann im erfindungsgemäßen Sinne mit den Staub- und Feinanteilen des gleichen Produktes aufgearbeitet. Eventuell angefallene gröbere Anteile können zu Staub- und Feinanteilen zerkleinert und dann in dieser Form in das Produkt zurückgeführt werden. Die Verdichtung des Mehrstoffgemisches kann dabei in beliebiger Form unter Einsatz von Verfahrenstypen erfolgen, die zuvor für die erfindungsgemäße Herstellung des Kernmaterials/Trägerkorns aufgezählt worden sind.

Die erfindungsgemäße Lehre sieht in der nächsten Ausführungsform die Verwendung von nur langsam löslichen und/oder vergelenden Komponenten und/oder Mehrstoffcompounds als Feststoffanteil der Hüllsubstanz vor. Lediglich beispielhaft seien hier benannt tensidische Wertstoffe von der Art der Fettalkoholsulfate mit insbesondere geradkettigen FA-Resten, beispielsweise des Bereiches C₁₄₋₁₈. Die erfindungsgemäße Lehre sieht hier vor, über die getrennte Lagerung dieser Problemanteile in der Hüllsubstanz und die erfindungsgemäß mögliche Auswahl und Vorbestimmung der individuellen Teilchengröße dieser Problembestandteile die hinreichend feindisperse Verteilung dieser Anteile in der wäßrigen Flotte selbst dann sicherzustellen, wenn keine zusätzlichen Maßnahmen der Lösungsvermittlung beziehungsweise Vergelungseinschränkung getroffen werden. In wichtigen Ausführungsformen kann hier aber auch vorgesehen sein, diese Problemkomponenten unter Mithilfe von beispielsweise Lösungsvermittlern — etwa von der Art Fettalkohol-Oligoethoxylate — zu Mehrstoffcompounds aufzuarbeiten und diese dann feindispers getrennt voneinander und getrennt von weiteren Bestandteilen in die Hüllsubstanz einzubauen und hier zu lagern. Es leuchtet ein, daß hier substantielle Hilfe zur Dispergierung und Auflösung solcher Problembestandteile durch die erfindungsgemäße Lehre gegeben werden kann.

Eine nächste Gruppe möglicher Mischungsbestandteile der Hüllsubstanz sind weitere übliche Bestandteile, insbesondere auch Kleinbestandteile von Wasch- und Reinigungsmitteln, die den Arbeitsbedingungen der Verdichtung des Kernmaterials nicht ausgesetzt werden sollen. Komponenten dieser Art fallen häufig in Form feinster Feststoffprodukte an. Ihre Einarbeitung in die Hüllsubstanz beseitigt sonst eventuell auftretende Probleme. Auf eine Besonderheit in diesem Zusammenhang sei schon hier eingegangen: Entsprechende insbesondere staubförmige oder sehr feinteilige Bestandteile des mehrkomponentigen Wertstoffgemisches können der fließfähigen Zubereitung des Binders zugesetzt und darin gelöst, dispergiert und/oder emulgiert werden und in dieser Form in die Hüllsubstanz eingetragen werden.

Ein weiteres Beispiel für mögliche Mischungskomponenten der Hüllsubstanz ist dann gegeben, wenn das Wasch- und Reinigungsverfahren mehrstufig durchgeführt werden soll. Ein solches Beispiel liegt etwa vor, wenn die Textilwäsche in einer zeitlich vorzubestimmenden Anfangsphase beispielsweise unter anderen pH-Werten der Waschflotte durchgeführt werden soll als der nachfolgende Hauptwaschgang. So kann es wünschenswert sein, der Hauptwäsche unter vergleichsweise stärker alkalischen Bedingungen eine Vorwaschstufe unter schwächer alkalischen Bedingungen oder gar im Neutralbereich oder schwach sauren Bereich vor zuschalten. Durch geeignete Wahl entsprechender Wertstoffe zur Regulierung des pH-Wertes in der Hüllsubstanz, gegebenenfalls in Kombination mit einer Lösungsverzögerung des Kernmaterials, ist die breite Variation des hier angesprochenen Arbeitsparameters möglich. Weitere Beispiele für diese stufenweise Ausgestaltung liegen in einer vorgängigen Konditionierung der Waschflotte und/oder des zu reinigenden Textilgutes durch Mitverwendung von besonders rasch wirksamen Bindern für die Wasserhärte, die Freisetzung von besonders stark netzenden und entlüftenden Tensidanteilen in der Frühphase des Waschprozesses und dergleichen. Auch hier erschließt die erfindungsgemäße Lehre unter Berücksichtigung des allgemeinen Fachwissens die technisch besonders einfache Möglichkeit zur Verwirklichung dieser Varianten.

Abschließend sei ein weiteren Beispiel für die getrennte Lagerung von Einzelkomponenten in der Hüllsubstanz gegeben: Wichtig kann eine räumliche Trennung von ausgewählten Wertstoffbestandteilen auch im festen Mehrstoffgemisch dann sein, wenn potentielle Reaktivkomponenten in der Abmischung gemeinsam zum Einsatz kommen sollen, ihre Abreaktion aber erst in der wäßrigen Phase stattfinden soll. Ein typisches Beispiel hierfür ist der Einsatz von Bleichkomponenten auf der Basis von Wasserstoffperoxid enthaltenden Salzen, etwa von der Art entsprechender Perboratverbindungen und/oder Percarbonatverbindungen einerseits, sowie die gleichzeitig Mitverwendung von sogenannten Bleichaktivatoren auf Basis von Komponenten, die in der Waschflotte unter Zutritt von H_2O_2 Persäuren bilden. Die erfindungsgemäße Lehre sieht optimierte Möglichkeiten zum gleichzeitigen Einbau dieser Reaktivkomponenten unter Ausschluß einer vorzeitigen Abreaktion im Feststoffgut vor.

Der Mengenanteil der Hüllsubstanz beträgt bevorzugt wenigstens etwa 5 bis 10 Gew.-% und insbesondere

wenigstens etwa 20 bis 25 Gew.-% - Gew.-% bezogen auf das gesamte Mehrstoffgemisch. Wenn die Hüllsubstanz durchaus auch mehr als die Hälfte der Gesamtmischung ausmachen kann, so kann in wichtigen Ausführungsformen gleichwohl davon ausgegangen werden, daß die Hüllsubstanz maximal etwa 50 Gew.-% des Mehrstoffgemisches bildet. In konkreten Ausführungsformen haben sich beispielsweise entsprechende Mengenbereiche der Hüllsubstanz von etwa 20 bis 45 Gew.-% und insbesondere von etwa 25 bis 35 Gew.-% als sehr vorteilhaft erwiesen - Gew.-% wie zuvor definiert.

Wie schon zuvor angegeben werden die Feststoffkomponenten der Hüllsubstanz mit mittleren Teilchengrö-Ben - bestimmt als Siebzahlen - eingesetzt, die kleiner sind als die mittlere Teilchengröße beziehungsweise die individuelle Teilchengröße des Kernmaterials/Trägerkorns. Auf diese Weise ist sichergestellt, daß bei dem Prozeß der Beschichtung des Kernmaterials die Ausbildung der Hüllsubstanz im Sinne einer Schalenagglomeration um den Trägerkern herum stattfindet. Geeignete mittlere Teilchengrößen (Siebzahlen) für die Feststoffkomponenten der Hüllsubstanz sind - in Abstimmung mit den Teilchengrößen des zum Einsatz kommenden Trägerkorns - insbesondere die nachfolgenden Werte: vorzugsweise < als 0,8 mm, bevorzugt < als 0,6 mm und insbesondere < als 0,5 mm. Eine Beschränkung der Teilchengröße nach unten für diese Feststoffteilchen der Hüllsubstanz scheidet in der Regel aus. Selbst feinste Staubanteile können Bestandteil der Hüllsubstanz sein und/oder mittels des fließfähigen Binders in die Hüllsubstanz eingetragen werden.

Erfindungsgemäß ist es insbesondere auch vorgesehen, in die Feststoffkomponenten der Hüllsubstanz bei Raumtemperatur fließfähige Wertstoffanteile aufzunehmen. Beispielhaft seien hier benannt entsprechende flüssige Niotensidverbindungen aber auch Hilfsstoffe ganz anderer Art. Ein Beispiel sind hier Silikonöle, die bekanntlich als Schaumbremse oder Bestandteil der Schaumbremse in Textilwaschmittelabmischungen eingesetzt werden. Erfindungsgemäß kann es dabei bevorzugt sein, einer vorzeitigen Spreitung solcher fließfähigen Hilfsstoffe durch ihre Zubereitung und Einarbeitung in Form ausgewählter Mehrstoffcompounds vorzubeugen. Auf diese Weise kann etwa eine unerwünschte Lösungsverzögerung der ohnehin langsam löslichen und/oder

unter Vergelung löslichen Aniontenside entgegengewirkt werden.

Die festen und gegebenenfalls darin aufgenommenen fließfähigen Wert- und/oder Hilfsstoffe aus der Hüllsubstanz sind in der fertigen Zubereitungsform des kugelförmigen Granulats in inniger Abmischung mit dem bei Raumtemperatur festen Binder und insbesondere von diesem zum wenigstens überwiegenden Teil umhüllt miteinander verbunden. Dabei ist diese Bindung der Hüllsubstanzpartikel aneinander bevorzugt so hinreichend stabil ausgestaltet, daß ein nennenswerter Abrieb von Feingut unter den Bedingungen von Transport, Lagerung und Anwendung des körnigen Gutes ausscheidet. Auf der anderen Seite kann es bevorzugt sein, die Menge des auf die Feststoffpartikel der Hüllsubstanz aufzutragenden Binders so einzuschränken, daß wenigstens anteilig in dieser äußeren Schale doch auch noch eine mikroporöse Gutstruktur erhalten bleibt, die eine rasche Penetration der wäßrigen Phase in die Hüllsubstanz fördert. Diese in bestimmten Ausführungsformen bevorzugte Ausgestal-

tung der Hüllsubstanz ist allerdings nicht zwingend.

50

Der Auftrag der feinteiligen Hüllsubstanzkomponenten auf die Oberfläche des Trägerkernes und ihre Anbindung daran sowie miteinander unter Mitverwendung der im nachfolgenden geschilderten Bindersubstanz(en) erfolgt zweckmäßigerweise in der Form, daß die feinteiligen Komponenten der Hüllsubstanz unter Mitverwendung einer fließfähigen Binder-Phase durch Granulation beziehungsweise Agglomeration auf das Trägerkorn aufgebracht und dort verfestigt werden. Geeignet ist hier insbesondere die Durchführung dieses Verfahrensschrittes im Sinne einer Schmelzagglomeration beziehungsweise Schmelzgranulation, wobei der auf höhere Temperaturen aufgeheizte und erschmolzene Binder als fließfähige Phase eingesetzt wird. Einzelheiten hierzu werden im nachfolgenden noch angegeben. Das Auftragsverfahren der Hüllsubstanz ist allerdings nicht auf diese Schmelzagglomeration beziehungsweise -granulation eingeschränkt, auch andere Naß-Verfahren sind geeignet. Die Hüllsubstanz kann beispielsweise unter Mitverwendung einer Binderphase ausgebildet werden, in der wäßrige Zubereitungen - Lösungen und/oder Emulsionen - des Binders zum Einsatz kommen. Hier schließt sich dann in der Regel ein nachfolgender Trocknungsschritt an die Ausbildung der Hüllschicht an. Einzelheiten dazu vergleiche im nachfolgenden.

Der bei der Ausbildung der Hüllsubstanz eingesetzte Binder

Bereits eingangs sind zwei wichtige Anforderungen an den Binder definiert worden: Der Binder soll eine bei Raumtemperatur feste Komponente, gleichzeitig aber in kaltem Wasser löslich sein. Weiterhin gilt: Als Binder können bestimmte ausgewählte Komponenten oder auch Mehrkomponentengemische eingesetzt

werden, die der polyfunktionellen und eingangs geschilderten Bedeutung dieser Komponente gerecht werden. Besonders geeignet sind in diesem Zusammenhang organische Komponenten mit Erweichungs- und/oder Schmelzpunkten nicht unterhalb 45°C und vorzugsweise von wenigstens 60°C, wobei eine weitere bevorzugte untere Grenze für die Erweichungs- und/oder Schmelzpunkte der Bindersubstanz bei wenigstens 75°C liegt.

Als Bindemittel können besonders organische Komponenten und dabei wiederum insbesondere filmbildende organische Komponenten besonders geeignet sein, die als solche oder auch in Abmischung mit Hilfsstoffen, wie Dispergiermitteln und/oder Lösungsvermittlern, zum Einsatz kommen können. Den als Binder eingesetzten Komponenten kann im Rahmen üblicher Wasch- und Reinigungsmittelgemische eine Eigenfunktion - beispielsweise als Cobuilder oder als Lösungs- und Dispergierhilfsmittel - zukommen, es sind aber auch Komponenten im erfindungsgemäßen Sinn als Binder geeignet, die keine üblichen Bestandteile von Wasch- und/oder Reinigungsmitteln sind.

Eine besonders geeignete Klasse von organischen und dabei bevorzugt filmbildenden Bindern sind wasserlösliche und/oder wasserdispergierbare Oligomer- und/oder Polymerverbindungen synthetischen, halbsynthetischen und/oder natürlichen Ursprungs. Die einschlägige Literatur hat sich insbesondere mit wasserlöslichen Polymerverbindungen aus der jüngeren Vergangenheit unter Bezugnahme auf die US-amerikanische Patentlite-

ratur ausführlich auseinandergesetzt. Verwiesen wird in diesem Zusammenhang auf die in Buchform erschienene Veröffentlichung Y. Meltzer "WATER-SOLUBLE POLYMERS" Developments Since 1978, NOYES DATA CORPORATION, New Jersey, USA (1981) Verwiesen wird hier insbesondere auf die Zusammenfassung in dem Kapitel Market Survey a.a.O., Seiten 5 bis 15. Zum Zwecke der Offenbarung seien hier die wichtigsten Stoffklassen wasserlöslicher Polymerverbindungen zusammengefaßt, die grundsätzlich auch im Sinne der erfindungsgemäßen Verwendung als Binderkomponente — unter Berücksichtigung allgemeinen Fachwissens — zum Einsatz kommen können.

Acrylamidpolymere, Acrylsäure- und/oder Methacrylsäure-Polymere und -Copolymere mit weiteren insbesondere freie Carboxygruppen enthaltenden Komponenten, wie Maleinsäure, Ethylenoxidpolymere beziehungsweise Polyethylenglykole und deren Umsetzungsprodukte, Polymerverbindungen auf Basis von Kohlehydratverbindungen von der Art des Gum Gum sowie Hetropolysaccaride von der Art des Gum Arabic oder des Gum Tragacanth, Galacto-mannan Polymere von der Art des Locust Bean Gum, wasserlösliche Cellulosederivate zum Beispiel von der Art der Alkylcellulosen, Hydroxyalkylcellulosen, Carboxymethylcellulosen und dergleichen. Polyethylenimine, Polyvinylalkohol und wasserlösliche Vinylalkohol-Copolymere, Polyvinylpyrrolidon sowie Stärke und wasserlösliche Stärkederivate. Der hier definierte Begriff der Polymerverbindungen schließt in allen Fällen entsprechende Oligomerverbindungen vergleichsweise niedrigeren Molgewichtes ein, soweit diese Komponenten die im Rahmen der Erfindungsoffenbarung geschilderten Anforderungen an den Binder und seine Eigenschaften erfüllen. Auch insoweit kann auf das allgemeine Fachwissen verwiesen werden.

Besonders geeignete Kaltwasser-lösliche und gleichwohl bei Raumtemperatur feste Binderkomponenten können im Bereich der als Cobuilder bekannten (Meth)acrylsäure-Polymerverbindungen beziehungsweise -Copolymerverbindungen mit beispielsweise Maleinsäure gegeben sein. Ein anderes besonders geeignetes Gebiet für die Auswahl von Binder beziehungsweise Binderkomponenten im erfindungsgemäßen Sinne sind Poly-EO-Komponenten beziehungsweise entsprechende Derivate mit reaktiven und gegebenenfalls auch oleophilen Molekülbestandteilen, soweit die Gesamtstruktur des Poly- beziehungsweise Oligo-EO-Derivates die zuvor definierten Grundbedingungen für den Binder erfüllt.

Als Klebeflüssigkeit eignen sich grundsätzlich Schmelzen, Emulsionen sowie insbesondere wäßrige Lösungen der Bindersubstanzen und hier insbesondere entsprechender organischer Oligomer- beziehungsweise Polymerverbindungen, wobei hier haftfeste Filme ausbildenden Komponenten besondere Bedeutung zukommt.

In einer weiteren Ausgestaltung der Erfindung kann über eine Steuerung der Kaltwasserlöslichkeit des Binders Einfluß auf den Lösemechanismus des erfindungsgemäßen festen kugelförmigen Mehrkomponentengemisches genommen werden. So können beispielsweise im Prinzip sehr gut wasserlösliche Oligo-EO-Derivate — etwa von der Art der Fettalkoholethoxylate mit 30 oder 40 EO-Einheiten im Molekül — dadurch in ihrem Löseverhalten modifiziert werden, daß sie in Abmischung mit stärker hydrophoben Komponenten — beispielsweise Fettalkoholen — eingesetzt werden. Unter Wahrung des fachmännischen Wissens ist auch hier die Einstellung der Kaltiöslichkeit und des Festzustandes bei Raumtemperatur oder nur schwach erhöhten Temperaturen sicherzustellen. Gleichwohl wird über die Mitverwendung der oleophilen Mischungskomponente eine Steuerung der Kaltwasserlöslichkeit und damit der Wasserlöslichkeit insgesamt möglich, so daß hier eine weitere Möglichkeit der gezielten Beeinflussung des Mehrkomponentenproduktes in seiner Gesamtheit möglich ist

Besondere Bedeutung kann Bindern zukommen, die von ihrer Molekülstruktur her gesehen in den Bereich der Wert- und Hilfsstoffe für den Einsatz in Wasch- und Reinigungsmitteln fallen. Eine gegebenenfalls verbleibende geringfügige Klebrigkeit der aufgetrockneten Binderkomponente im Bereich der Raumtemperatur kann durch an sich bekanntes Abpudern in einfacher Weise aufgefangen werden. In Betracht kann das beispielsweise bei Bindern auf Basis von Oligo- beziehungsweise Poly-EO-Verbindungen kommen.

Wie schon zuvor erwähnt, kann der fließfähige Binder seinerseits auch Träger für feinstteilig feste und/oder gelöste Wert- und/oder Hilfsstoffe sein, die zusammen mit dem Träger in das Mehrkomponentengut eingebracht werden. Auf eine Besonderheit sei in diesem Zusammenhang hier ausdrücklich verwiesen: Der fließfähigen Zubereitung des Binders können als Zusatzstoffe insbesondere auch gelöste und/oder dispergierte Hilfsstoffe zur Beeinflussung der visuellen Erscheinungsform des Fertiggutes zugesetzt und in dieser Form in die Hüllsubstanz eingetragen werden. Beispiele hierfür sind etwa Farbstoffe, Pigmente, Aufheller und dergleichen. Hier erschließt sich die technisch einfach zu verwirklichende Möglichkeit, den kugelförmigen trockenen Mehrkomponentengemischen ein besonders attraktives Aussehen zu verleihen.

Hier erschließt sich auch die folgende Modifikation: Sollen beispielsweise lösliche und/oder feinstteilig unlösliche Farbstoffe beziehungsweise Pigmente zur farblichen Ausrüstung der Außenhülle der Mehrstoffkugeln zum Einsatz kommen, so kann eine entsprechende letzte Auftragshülle des Kaltwasser-löslichen Binders diese Ausrüstung der Kugelaußenfläche sicherstellen. Auf diese Weise gelingt es, gegebenenfalls stark ausgeprägte visuelle Effekte mit einem Mindestzusatz an optisch wahrnehmbarem Hilfsstoff sicherzustellen. Für den praktischen Einsatz der Waschmittelgemische liegt hier eine wichtige Modifikation gegenüber bisher üblichen Waschmittelzubereitungen mit breitem Kornspektrum und feiner Teilchengröße vor.

In diesem Zusammenhang sei auf einen weiteren Parameter zur ästhetischen Erscheinungsform und potentiellen Akzeptanz des Mehrstoffgemisches eingegangen, der durch den erfindungsgemäß vorgesehenen Schalenaufbau unter Einsatz des unter Lagerbedingungen festen Binders weitgehend frei variiert werden kann: Es ist bekannt, daß eine Reihe von Inhaltsstoffen handelsüblicher Wasch- und Reinigungsmittel und insbesondere übliche Textilwaschmittelabmischungen mit unerwünschten Geruchsnoten belastet sind. Diesem Parameter kommt überproportionale Bedeutung bei der Lagerung des Mehrstoffgemisches in fest verschlossenen Packungen zu. Wird die Packung nach einer längeren Lagerungsdauer erstmalig oder wieder geöffnet, so können sich unerwünschte Geruchsnoten in überproportionaler Weise bemerkbar machen und zu einer substantiellen Störung des ästhetischen Erscheinungsbildes führen. Es ist dementsprechend bekannt und üblich, Duftbezie-

hungsweise Geruchsstoffe den fertigen Mehrkomponentengemischen zuzusetzen, um gegebenenfalls vorliegende unerwünschte Geruchsnoten zu verdecken. Durch die erfindungsgemäße Lehre der individuellen Verkapselung letztlich aller Bestandteile des Mehrstoffgemisches mit dem bei Raumtemperatur und unter üblichen Lagerbedingungen festen Binder kann auch hier eine wenigstens substantielle Minderung dieser Problematik erreicht werden. Unabhängig davon schließt die Lehre der Erfindung die Mitverwendung von Duft- beziehungsweise Geruchsstoffen allerdings ein. Aus dem vorher gesagten wird aber verständlich, daß sich hier ein weiterer wichtiger Vorteil aus der erfindungsgemäßen Struktur des Mehrkomponentengemisches ableitet, dem für die praktische Akzeptanz mitentscheidende Bedeutung zukommen kann.

Im erfindungsgemäß aufgebauten Trockengut ist die jeweilige Menge des einzusetzenden Binders unter anderem durch das Mischungsverhältnis von Kernmaterial und Hüllsubstanz mitbestimmt. Gleichwohl reichen in aller Regel begrenzte Mengen an Bindersubstanz aus, die Schalenagglomeration der Hüllsubstanzen auf dem Trägerkorn sicherzustellen. Dementsprechend liegen die Bindergehalte in den erfindungsgemäßen trockenen Wertstoffzubereitungen üblicherweise höchstens bei etwa 15 bis 20 Gew.-% und vorzugsweise bei nicht mehr als 10 Gew.-% — Gew.-% jeweils berechnet als Festsubstanz und bezogen auf die Summe von Kernmaterial und Hüllsubstanz. In besonders wichtigen Ausführungsformen sind nochmals deutlich geringere Gehalte an Binder im Trockengut vorgesehen. Die Mengen dieser Substanz überschreiten hier im allgemeinen nicht Werte von 5 bis 6 Gew.-%. Sie können zum Beispiel im Bereich von etwa 0,5 bis 4 Gew.-% liegen - Gew.-% wie zuvor definiert. Es hat sich gezeigt, daß bei der Umhüllung vorgebildeter Träger auf Basis von Extrudatkörnern mit der Hüllsubstanz in Gewichtsverhältnissen von etwa 2/3 Trägerkorn auf 1/3 Hüllsubstanz die Schalenagglomeration mit einer Binderschmelze schon mit Mengen des Binders im Bereich von etwa 1 bis 3 Gew.-% zu verwirklichen ist. Die entsprechenden kugelförmigen Festprodukte zeichnen sich durch vollkommene Staubfreiheit bei einheitlicher Kugelform mit hoher Abriebfestigkeit und gleichwohl ausgezeichneter Einspülbarkeit und Löslichkeit in der kalten oder nur mäßig erwärmten Waschflotte aus. Weiterführende Angaben hierzu finden sich in der nachfolgenden Beschreibung der bevorzugten Herstellungsverfahren für das zur Kugelform umgewandelte mehrkomponentige Wertstoffgut im Sinne der erfindungsgemäßen Lehre.

Die Herstellung der erfindungsgemäß agglomerierten beziehungsweise granulierten mehrschichtigen Zubereitungen in Kugelform

25

Die zum Auftrag der Hüllsubstanz auf das Trägerkorn einzusetzende Technologie fällt in den Bereich der Schalenagglomeration beziehungsweise Schalenaggregation. In diesem Zusammenhang kann erneut Bezug genommen werden auf das bekannte Fachwissen der in Buchform erschienenen und zuvor zitierten Veröffentlichung W. Pietsch a.a.O., "SIZE ENLARGEMENT BY AGGLOMERATION".

Generalisierend sind die geeigneten Herstellungsverfahren dadurch gekennzeichnet, daß man das Kernmaterial in Form eines vorgebildeten Trägerkorns mit dem feinteiligen Gut der Hüllsubstanz in Gegenwart des Binders in fließfähiger Zubereitungsform umhüllend agglomeriert beziehungsweise granuliert und den Binder verfestigt. Als fließfähige Binderphase sind einerseits wäßrige Zubereitungen der Bindersubstanzen geeignet, wobei hier insbesondere Lösungen und/oder Emulsionen in Betracht kommen, besonders bevorzugt ist aber der Einsatz des Binders als fließfähige Schmelze.

In an sich bekannter Weise können die beiden hier angesprochenen Verfahrenstypen in der Form durchgeführt werden, daß die fließfähige Zubereitung des Binders in das zu agglomerierende beziehungsweise zu granulierende Gut versprüht wird, wobei gleichzeitig Kernmaterial und die feinteiligen Feststoffpartikel der Hüllsubstanz der Agglomerationszone zugegeben und hier vorzugsweise hinreichend bewegt werden. Das Coaten der Trägerkörner läßt sich dabei in an sich bekannter Weise in Verrundern, in anderen Mischvorrichtungen aber auch in der Wirbelschicht durchführen. So wird beispielsweise das Kernmaterial in einem Mischer mit der klebrigen Fließphase des Binders besprüht. Die im Vergleich zum Kernmaterial feineren Teilchen kleben an der Oberfläche des Kernmaterials, das rollend bewegt wird, fest und bilden dort die gewünschte Schalenumhüllung. Weitere geeignete Vorrichtungen sind Verrunder (Spheronizer), Dragierbirnen, Drehtrommeln und die bereits genannten Wirbelschichtapparaturen.

Wird mit wäßrigen Zubereitungen des Binders gearbeitet, schließt sich in der Regel an diesen Umhüllungsschritt eine Trocknungsstufe an. Der Einsatz von Schmelzen des Binders beziehungsweise Bindergemisches kann auf diese zusätzliche Arbeitsstufe verzichten.

Zum Versprühen der fließfähigen Binderzubereitung wird in einer bevorzugten Ausführungsform die Mitverwendung eines Treibgases unter Einsatz von Mehrstoffdüsen vorgesehen. Dabei kann in einer besonderen Ausführungsform wie folgt gearbeitet werden: Zusätzlich zu der insbesondere mit einem Treibgas eingetragenen Binderschmelze wird eine weitere Heißgasphase — in der Regel heiße Luft — in das zu agglomerierende Gut eingeblasen. Möglich wird damit die kurzfristige Einstellung und Optimierung des Mikroklimas im Bereich der Feststoffoberflächen und damit die Optimierung des Auftrags und der Spreitung der Binderschmelze auf den miteinander in Haftkontakt zu bringenden Oberflächen.

Die Temperaturführung insbesondere im Feststoffgut im Rahmen einer Schmelzagglomeration wird weitgehend durch die Temperatursensitivität der miteinander in Kontakt zu bringenden Wertstoffe beziehungsweise Wertstoffanteile bestimmt. Im allgemeinen wird die Temperatur des Feststoffgutes maximal im Bereich bis 45 oder 60°C und damit höchstens im Bereich der Schmelztemperatur des Binders gehalten. Unter Berücksichtigung der hohen Sensibilität wenigstens ausgewählter Bestandteile des Feststoffgutes ist es jedoch in bevorzugten Ausführungsformen der Erfindung vorgesehen, das feste Einsatzgut etwa bei Raumtemperatur oder nur schwach erhöhten Temperaturen zu halten und mittels der Einstellung des Mikroklimas über eine eingeblasene Heißgasphase den Auftrag und die Spreitung des Binders auf den Feststoffflächen sicherzustellen, ohne dabei zu einer substantiellen Anhebung der Guttemperatur zu kommen.

Im nachfolgenden, werden allgemeine Angaben zu Wertstoffen und Wertstoffgemischen zusammengefaßt, die im Rahmen der erfindungsgemäßen Lehre im Trägermaterial und/oder in der Hüllsubstanz zum Einsatz kommen können.

Der Gehalt der Mittel an Tensiden einschließlich der Seifen beträgt insgesamt vorzugsweise 15 bis 40 Gew.-% und insbesondere 18 bis 30 Gew.-%.

Als Tenside kommen dabei — insbesondere auch im Trägerkorn — sowohl Aniontenside als auch gemeinsam anionische und nichtionische Tenside in Betracht.

Als Tenside vom Sulfonat-Typ kommen vorzugsweise C₂—C₁₃-Alkylbenzolsulfonate, Olefinsulfonate, d. h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C₁₂-C₁₈-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-C18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Weiterhin geeignet sind auch die Ester von μ-Sulfofettsäuren (Estersulfonate), z. B. die μ-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren, sowie deren Disalze. So kommen auch sulfierte Fettsäureglycerinester in Betracht. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder 20 Behensäure. Die Sulfierprodukte stellen ein komplexes Gemisch dar, das Mono-, Di- und Triglyceridsulfonate mit p-ständiger und/ oder innenständiger Sulfonsäuregruppierung enthält. Als Nebenprodukte bilden sich sulfonierte Fettsäuresalze, Glyceridsulfate, Glycerinsulfate, Glycerin und Seifen. Geht man bei der Sulfierung von gesättigten Fettsäuren oder gehärteten Fettsäureglycerinestergemischen aus, so kann der Anteil der u-sulfonierten Fettsäure-Disalze je nach Verfahrensführung durchaus bis etwa 60 Gew.-% betragen.

Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundarer Alkohole dieser Kettenlänge bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind C₁₆-C₁₈-Alk(en)ylsulfate insbesondere bevorzugt. Dabei kann es auch von besonderem Vorteil und insbesondere für maschinelle Waschmittel von Vorteil sein, C16-C18-Alk(en)ylsulfate in Kombination mit niedriger schmelzenden Aniontensiden und insbesondere mit solchen Aniontensiden, die einen niedrigeren Kraft-Punkt aufweisen und bei relativ niedrigen Waschtemperaturen von beispielsweise Raumtemperatur bis 40°C eine geringe Kristallisationsneigung zeigen, einzusetzen. In einer bevorzugten Ausführungsform der Erfindung enthalten die Mittel daher Mischungen aus kurzkettigen und langkettigen Fettalkylsulfaten, vorzugsweise Mischungen aus C₁₂-C₁₄-Fettalkylsulfaten oder C₁₂-C₁₈-Fettalkylsulfaten mit C₁₆-C₁₈-Fettalkylsulfaten ten oder C₁₂-C₁₆-Fettalkylsulfaten mit C₁₆--C₁₈-Fettalkylsulfaten. In einer weiteren Ausführungsform der Erfindung werden jedoch nicht nur gesättigte Alkylsulfate, sondern auch ungesättigte Alkenylsulfate mit einer 40 Alkenylkettenlänge von vorzugsweise C16 bis C22 eingesetzt. Dabei sind insbesondere Mischungen aus gesättigten, überwiegend aus C16 bestehenden sulfierten Fettalkoholen und ungesättigten, überwiegend aus C18 bestehenden sulfierten Fettalkoholen bevorzugt, beispielsweise solche, die sich von festen oder flüssigen Fettalkoholmischungen des Typs HD-Ocenol (R) (Handelsprodukt des Anmelders) ableiten. Dabei sind Gewichtsverhältnisse von Alkylsulfaten zu Alkenylsulfaten von 10:1 bis 1:2 und insbesondere von etwa 5:1 bis 1:1 bevorzugt.

Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.

Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C₇—C₂₁-Alkohole, wie 2-Methyl-verzweigte C₉—C₁₁-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C₁₂—C₁₈-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Waschmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.

Bevorzugte Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C₈- bis C₁₈-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.

Bevorzugte Aniontenside sind jedoch Alkylbenzolsulfonate und/oder sowohl geradkettige als auch verzweigte Alkylsulfate.

Zusätzlich zu den anionischen Tensiden kommen auch Seifen, vorzugsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf das gesamte Mittel, in Betracht. Geeignet sind beispielsweise gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z. B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemi-

sche.

40

Die anionischen Tenside und Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.

Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C₁₂—C₁₄-Alkohole mit 3 EO oder 4 EO, C₉—C₁₁-Alkohole mit 7 EO, C₁₃—C₁₅-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C₁₂—C₁₈-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C₁₂—C₁₄-Alkohol mit 3 EO und C₁₂—C₁₈-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.

Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)_x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl

zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.

Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden, insbesondere zusammen mit alkoxylierten Fettalkoholen und/oder Alkylglykosiden, eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden.

Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole,

insbesondere nicht mehr als die Hälfte davon.

Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (I),

$$R^3$$

| R²-CO-N-[Z] (1)

in der R²CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R³ für Wasserstoff, einen Alkyloder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können. Vorzugsweise leiten sich die Polyhydroxyfettsäureamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab.

Wie schon zuvor dargestellt erfaßt die Erfindung die Ausführungsform, das die Zusammensetzung des Trägermaterials einerseits und die der Hüllsubstanz(en) identisch oder praktisch gleich sind und sich dabei lediglich durch die Teilchengrößen der im jeweiligen Materialanteil vorliegenden Feststoffteilchen unterscheiden. In wichtigen und bevorzugten Ausführungsformen liegen allerdings durchaus Unterschiede in der Zusammensetzung der Wertstoffe beziehungsweise der Wertstoffgemische — einerseits im Trägerkorn, andererseits in der

Hüllsubstanz - vor. Hier gilt dann beispielsweise das Folgende:

In einer bevorzugten Ausführungsform der Erfindung enthalten die kornförmigen Mittel ein Trägerkorn auf Extrudatbasis, wobei der Anteil der extrudierten Komponente(n) 50 bis 80 Gew.-%, bezogen auf das gesamte Mittel, beträgt. Es ist dabei weiterhin bevorzugt, daß diese extrudierte Komponente Tenside enthält, wobei der Gehalt der extrudierten Komponente an Tensiden nicht mehr als 14 Gew.-% und vorzugsweise 6 bis 13 Gew.-%, bezogen auf die extrudierte Komponente, beträgt. In einer weiteren bevorzugten Ausführungsform der Erfindung enthalten die Mittel tensidhaltige extrudierte Träger-Komponenten in den Mengen, daß dadurch 0,5 bis 10 Gew.-%, bezogen auf das gesamte Mittel, an Tensiden bereitgestellt werden.

Die extrudierten Komponenten können dabei nach jedem der bekannten Verfahren hergestellt werden. Bevorzugt ist dabei jedoch ein Verfahren gemäß der Lehre des europäischen Patents EP-B-0 486 592 oder der Lehre der internationalen Patentanmeldung WO-A-94/09111. Die Größe der bevorzugten, nahezu kugelförmi-

gen Träger-Extrudate liegt vorteilhafterweise zwischen 0,8 und 2 mm.

Die Hüllsubstanz(en) enthält Aniontenside oder anionische, und nichtionische Tenside vorzugsweise in Mengen von 30 bis 95 Gew.-%, bezogen auf die Hüllsubstanz. Insbesondere ist es bevorzugt, daß die Hüllsubstanz Aniontenside enthält, aber frei von nichtionischen Tensiden ist. Vorteilhafterweise werden als Aniontenside Alkylbenzolsulfonate und/oder geradkettige und/oder verzweigte Alkylsulfate eingesetzt. Die nicht-extrudierten granularen und tensidhaltigen Komponenten sind dabei vorzugsweise in den Mengen in den Mitteln enthalten, daß durch sie 2 bis 30 Gew.-%, insbesondere 5 bis 25 Gew.-%, jeweils bezogen auf das gesamte Mittel, an Tensiden bereitgestellt werden.

In einer weiteren bevorzugten Ausführungsform der Erfindung werden tensidhaltige extrudierte Träger-Komponenten und tensidhaltige nicht-extrudierte Hüllsubstanzen eingesetzt, wobei das Gewichtsverhältnis tensidhaltige extrudierte Komponente nicht-extrudierter tensidhaltiger Komponente 6:1 bis 2:1 und insbeson-

dere 5:1 bis 3:1 beträgt.

Die nicht-extrudierten Komponenten, insbesondere die tensidhaltigen Komponenten, können nach jedem der heute bekannten Verfahren, beispielsweise mittels Sprühtrocknung, Heißdampftrocknung, Sprühneutralisation oder Granulierung hergestellt worden sein. Insbesondere sind hierbei aniontensidhaltige Komponenten bevorzugt, die durch Sprühneutralisation gemäß der älteren deutschen Patentanmeldung P 44 25 968.9 oder durch Granulierung und ggf. gleichzeitige Trocknung in einer Wirbelschicht gemäß der Lehre der internationalen Anmeldungen WO-A-93/04162 und WO-A-94/18303 erhalten werden. Die Korngrößenverteilung der nicht-extrudierten tensidhaltigen Wertstoffe — auch in der Form von Granulaten — sollte der zuvor angegebenen Forderung entsprechen: Wenigstens im Mittel kleiner als das Trägerkorn, um dessen Umhüllung sicherzustellen. Insbesondere nach der Lehre der WO-A-93/04162 lassen sich beispielsweise Granulate in der Wirbelschicht von nahezu beliebiger Korngröße und Korngrößenverteilung herstellen. Entsprechendes gilt auch für die Korngrößenverteilung anderer granularer Komponenten, beispielsweise eines Enzym-Granulats, eines Schauminhibitor-Granulats, eines Bleichaktivator-Granulats für deren Einbau in die Hüllsubstanz.

Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen bzw. lipolytisch wirkenden Enzyme, 25 Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Amylase und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease- und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Die Enzyme sind vorzugsweise an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.

Beim Einsatz in maschinellen Waschverfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C₁₈—C₂₄-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, ggf. silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, z. B. solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- und/oder Paraffin-haltige Schauminhibitoren, an eine granulare, in Wasser lösliche bzw. dispergierbare Trägersubstanz

gebunden.

Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamiden und Mischungen aus Paraffinen und Silikonen auf anorganischen Trägern bevorzugt. Granulate, welche Mischungen aus Paraffinen

und Silikonen im Gewichtsverhältnis von 1:1 bis 3:1 enthalten, sind hierbei besonders bevorzugt.

Um beim Waschen bei Temperaturen von 60°C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die Präparate eingearbeitet werden. Beispiele hierfür sind mit H₂O₂ organische Persäuren bildende N-Acyl- bzw. O-Acyl-Verbindungen, vorzugsweise N,N'-tetraacylierte Diamine, p-(Alkanoyloxy)benzolsulfonate, ferner Carbonsäureanhydride und Ester von Polyolen wie Glucosepentaacetat. Weitere bekannte Bleichaktivatoren sind acetylierte Mischungen aus Sorbitol und Mannitol, wie sie beispielsweise in der europäischen Patentanmeldung EP-A-0 525 239 beschrieben werden. Besonders bevorzugte Bleichaktivatoren sind N,N,N',N'-Tetraacetylethylendiamin (TAED), 1,5-Diacetyl-2,4-dioxo-hexahydro-1,3,5-triazin (DADHT) und acetylierte Sorbitol-Mannitol-Mischungen (SORMAN). Der Gehalt der bleichmittelhaltigen Mittel an Bleichaktivatoren liegt in dem üblichen Bereich. Insbesondere werden die Bleichaktivatoren in die erfindungsgemäßen Mittel in den Mengen eingebracht, daß die Mittel 1 bis 10 Gew.-% und vorzugsweise 3 bis 8 Gew.-%, 60 jeweils bezogen auf das gesamte Mittel, an Bleichaktivator enthalten.

Weitere Inhaltsstoffe der erfindungsgemäßen Mittel sind vorzugsweise anorganische und organische Buildersubstanzen, Bleichmittel, Substanzen, welche die Öl- und Fettauswaschbarkeit positiv beeinflussen, Vergrauungsinhibitoren, gegebenenfalls Substanzen, welche die Löslichkeit und die Lösegeschwindigkeit der einzelnen granularen Komponenten und/oder der gesamten Mittel verbessern, textilweichmachende Stoffe, optische Aufheller, Farb- und Duftstoffe sowie alkalische und/oder neutrale Salze in Form ihrer Natrium- und/oder

Kaliumsalze.

Als anorganische Buildersubstanz eignet sich beispielsweise feinkristalliner, synthetischer und gebundenes

Wasser enthaltender Zeolith in Waschmittelqualität. Geeignet sind insbesondere Zeolith A und/oder P sowie ggf. Zeolith X und Mischungen aus A, X und/oder P. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C₁₂—C₁₈-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C₁₂—C₁₄-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 mm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser. Zeolithe können sowohl in den extrudierten Komponenten als auch in den nicht-extrudierten Komponenten enthalten sein.

Geeignete Substitute bzw. Teilsubstitute für Phosphate und Zeolithe sind kristalline, schichtförmige Natriumsilikate der allgemeinen Formel NaMSi_xO_{2x+1}·yH₂O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch d-Natriumdisilikate Na₂Si₂O₅-yH₂O bevorzugt, wobei β-Natriumdisilikate beispielsweise nach dem Verfahren erhalten werden können, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist. Kristalline schichtförmige Natriumsilikate können so-

wohl in den extrudierten als auch in den nichtextrudierten Komponenten enthalten sein.

Auch amorphe Silikate, sogenannte röntgenamorphe Silikate, welche in Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen, können Sekundärwaschvermögen besitzen und als Buildersubstanzen eingesetzt werden. Es kann sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Besonders bevorzugt sind dabei Silikate und silikatische Compounds gemäß der älteren deutschen Patentanmeldung P 44 00 024.3 oder Silikate und Silikat Compounds, beispielsweise solche, die im Handel unter den Bezeichnungen Nabion 15° und Britesil® (Akzo-PQ) erhältlich sind. Besonders bevorzugt sind auch sprühgetrocknete Natriumcarbonat-Natriumsilikat-Compounds, die zusätzlich Tenside, insbesondere Aniontenside wie Alkylbenzolsulfonate oder Alkylsulfate einschließlich der 2,3-Alkylsulfate enthalten können. Amorphe Silikate und Silikat-Compounds wie die genannten Silikat-Carbonatcompounds können ebenfalls im Trägerkorn wie auch in der Hüllsubstanz enthalten sein.

Zusätzlich zu den Alkalicarbonaten oder anstelle der Alkalicarbonate, insbesondere der Natriumcarbonate, können auch Bicarbonate, insbesondere Natriumbicarbonate in den Mitteln enthalten sein. Als amorphe, Silikate werden vor allem Natriumsilikat mit einem molaren Verhältnis Na₂O:SiO₂ von 1:1 bis 1:4,5, als amorphe Silikate mit Sekundärwaschvermögen vorzugsweise von 1:2 bis 1:3,0 eingesetzt. Der Gehalt der Mittel an Natriumcarbonat und/oder Natriumbicarbonat beträgt dabei vorzugsweise bis zu 20 Gew.-%, vorteilhafterweise zwischen 5 und 15 Gew.-%. Der Gehalt der Mittel an Natriumsilikat beträgt im allgemeinen bis zu 30 Gew.-%

und vorzugsweise zwischen 2 und 25 Gew.-%.

Brauchbare organische Gerüstsubstanzen sind beispielsweise die bevorzugt in Form ihrer Natriumsalze eingesetzten Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zukkersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mi-

schungen aus diesen.

Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150 000 (auf Säure bezogen). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5000 bis 200 000, vorzugsweise 10 000 bis 120 000 und insbesondere 50 000 bis 100 000. Insbesondere bevorzugt sind auch Ter- und Quadropolymere, beispielsweise solche, die gemäß der DE-A-43 00 772 als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder gemäß der DE-C-42 21 381 als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.

Weitere geeignete Buildersysteme sind Oxidationsprodukte von carboxylgruppenhaltigen Polyglucosanen und/oder deren wasserlöslichen Salzen, wie sie beispielsweise in der internationalen Patentanmeldung WO-A-93/08251 beschrieben werden oder deren Herstellung beispielsweise in der internationalen Patentanmeldung

WO-A-93/16110 beschrieben wird.

VO-A-93/10110 beschrieben who.

Ebenso sind als weitere bevorzugte Buildersubstanzen auch die bekannten Polyasparaginsäuren bzw. deren

Salze und Derivate zu nennen.

Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung EP-A-0 280 223 beschrieben erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.

Die organischen Buildersubstanzen können sowohl im Trägerkorn als auch in der Hüllsubstanz eingesetzt

DE 195 24 287

werden, wobei der Einsatz im Trägerkorn bevorzugt sein kann.

Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure oder Diperdodecandisäure. Der Gehalt der Mittel an Bleichmitteln beträgt vorzugsweise 5 bis 25 Gew.-% und insbesondere 10 bis 20 Gew.-%, wobei vorteilhafterweise Perboratmonohydrat eingesetzt wird. Die Bleichmittel können sowohl im Trägerkorn als auch in der Hüllsubstanz des Mittels enthalten sein. Dabei ist es bevorzugt, Perborate über das Trägerkorn in das Mittel einzubringen, während Percarbonate vorzugsweise in der Hüllsubstanz eingesetzt werden.

Zusätzlich können die Mittel auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus 10 Textilien positiv beeinflussen. Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wird. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-%, und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf 15 den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionische modifizierten Derivaten von diesen. Diese Substanzen können sowohl im Kern als auch in der Hülle enthalten sein, wobei ihr Gehalt in der

Hülle bevorzugt ist.

Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide 25 sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z. B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkyl-cellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, sowie Polyvinylpyrrolidon beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt. Auch diese Substanzen können sowohl im Kern als auch in der Hülle, insbesondere aber auch im Binder enthalten sein.

Die Mittel können außerdem Bestandteile enthalten, welche die Lösegeschwindigkeit der einzelnen Komponenten und/oder des gesamten Mittels erhöhen. Zu den bevorzugt eingesetzten Bestandteilen gehören insbesondere C₈—C₁₈-Alkohole mit 10 bis 80 Mol Ethylenoxid pro Mol Alkohol, beispielsweise Talgfettalkohol mit 30 EO und Talgfettalkohol mit 40 EO, aber auch Fettalkohole mit 14 EO, sowie Polyethylenglykole mit einer relativen Molekülmasse zwischen 200 und 2000. Weitere geeignete Substanzen werden beispielsweise in der internationa-

len Patentanmeldung WO-A-93/02176 beschrieben.

Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z. B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z. B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-4'-(2-sulfostyryl)-4'-(2-sulfostyryl)-4'-(2-sulfostyryl)-4'-(3-s ryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.

Als neutrale Salze können vor allem Sulfate, gegebenenfalls und insbesondere in Reinigungsmitteln auch

Chloride enthalten sein.

Einige feinkörnige Komponenten können auch dazu benutzt werden, vorhandene Granulate abzupudern, dadurch beispielsweise Klebrigkeiten der Granulate zu verringern und die Schüttdichten der einzelnen Granulate als auch des gesamten Mittels zu erhöhen. Geeignete derartige Oberflächenmodifizierer sind aus dem Stand 50 der Technik bekannt. Neben weiteren geeigneten sind dabei feinteilige Zeolithe, Kieselsäuren, amorphe Silikate, Fettsäuren oder Fettsäuresalze, beispielsweise Calciumstearat, insbesondere jedoch Fällungskieselsäuren, Mischungen aus Zeolith und Kieselsäuren oder Mischungen aus Zeolith und Calciumstearat bevorzugt. Interessante Ergebnisse - und gegebenenfalls sogar auch Verbesserungen bezüglich der Wiederauflösbarkeit der Agglomerate in wäßriger Flotte - haben sich auch beim Einsatz der Entschäumerkomponente als gegebenenfalls 55 zusätzliches Abpuderungsmittel ergeben. Feinteilig feste Zubereitungen auf Basis von Silikonöl als Komponente mit Entschäumerwirkung können in dieser Form in der Außenhülle der Granulatkugeln gelagert und von einer unerwünschten Interaktion mit ohnehin lösungsbehinderten Mischungsbestandteilen der Hüllsubstanz abgeschirmt werden.

Beispiele

Unter Einsatz der in der nachfolgenden Tabelle 1 aufgelisteten Wertstoffbestandteile eines Textilwaschmittelgemisches wird gemäß den Angaben der EP-B 0 486 592 mittels Extrusion, Abschlaggranulation und nachfolgender Trocknung ein Rohextrudat hergestellt, dessen Teilchengrößenverteilung - bestimmt als Siebzahlen- 65 Gew.-% - in der nachfolgenden Tabelle 3 zusammengefaßt ist.

Die Zusammensetzung dieses Rohextrudates ist wie folgt:

Tabelle 1

	Zusammensetzung Rohextrudat	Gew%
5	Zeolith A	27,1
3	Soda	11,4
	Na-Perborat-Monohydrat	17,4
	Na-Sulfat	5,1
	C ₉ —C ₁₃ -Alkylbenzolsulfonat	9,6
10	Talgfettalkohol mit 5 EO	0,7
	C ₁₂ —C ₁₈ -Fettalkohol mit 7 EO	4,3
	Copolymeres Natriumsalz der Acrylsäure	7,1
	C ₁₂ —C ₁₈ -Fettsäureseife	1,2
15	PEG 400	3,0
15	Natriumsilikat (Na ₂ O : SiO ₂ 1 : 2,0)	2,1
	Aufheller	0,4
	Wasser	10,1
	Salze	0,5
20	Amma	

Das granulare Rohextrudat wird im nachfolgenden Arbeitsschritt als Trägermaterial (Trägerkorn) mit den in der Tabelle 2 zusammengefaßten weiteren Wert- und Hilfsstoffe (Hüllsubstanz) unter Einsatz der nachfolgend noch identifizierten Binder im Sinne einer Schalenagglomeration vereinigt. In der Tabelle 2 sind dabei zusätzlich die Mengenverhältnisse — in Gew.-%, bezogen auf die Summe von Trägerkorn und Hüllsubstanzen — für die im Agglomerationsprozeß eingesetzten Komponenten angegeben.

Tabelle 2

30	Zusammensetzung Fertigprodukt	Gew%
	m to conduct	66,8
	Rohextrudat Granulat aus 85 Gew% der Natriumsalze von Kokosfettalkoholsulfat und Talgfettalkoholsulfat im Gewichtsverhältnis 1:1,12 Gew% Natriumsulfat, Rest unsulfierte Anteile und Wasser; hergestellt durch Granulierung und gleichzeitig Trocknung in der Wirbelschicht	15,8
35	nergestelli durch Granulei mig und gleichzeing Froemung in der Wilderder in Granulei	8.2
	Tetraacetylethylendiamin-Granulat Entschäumer-Granulat auf Basis einer Abmischung von Silikonöl, Stärke und Fettalkohol	3,64
		2,0
	Soil repellent	1,56
40	Enzym-Gemisch	1,5
70	Abpuderungsmittel	•
	Duftstoffe	0,42

Die nachfolgende Tabelle 3 faßt die Korngrößenverteilung — bestimmt nach Siebzahlen in Gew.-% — für das Rohextrudat (Trägerkorn) und die Zusatzstoffe (Hüllsubstanzen) zusammen. Unter Berücksichtigung der Mengenverhältnisse gemäß Tabelle 2 zum Anteil des Rohextrudats/Trägerkorn einerseits und der zusätzlich als Hüllsubstanz eingesetzten Mischungskomponenten wird ersichtlich, daß in dem weitaus überwiegenden Teil der gebildeten kugelförmigen Granulate das Trägerkorn durch Rohextrudatteilchen eines Teilchendurchmessers > 1,0 mm gebildet wird.

50

55

60

65

5

10

15

20

65

Abpuderungsmittel 62,2 mischung Enzym-1,1 9,3 30,9 22 29,3 3,5 0 Sollrepellent 31'.9 28,6 25 Entschäumer 33,5 39,5 30 aktivator Bleich-35 TAED 40 Aniontensid auf Basis FAS 62 45 Rohextrudat 50 55 Siebzahlen E E in(%) 1,6 1,0 0,8 60 ۸

Das Auflöseverhalten der jeweiligen Agglomeratkugeln wird mittels des "L-Test" bestimmt. Hierzu wird das jeweils zu untersuchende Agglomerat unter den im nachfolgenden angegebenen Bedingungen in Wasser gelöst

Tabelle 3;

und der Rückstand gravimetrisch bestimmt. Gemessen wird dabei der Rückstand (in Gew.-%) nach einer Lösezeit von 1,5 Minuten unter Standardbedingungen und in einer zweiten Bestimmung der Rückstand in Gew.-% nach einer Lösezeit von 5,0 Minuten. Im einzelnen gilt zur Durchführung dieses L-Testes:

Es wird Stadtwasser mit einer Wasserhärte von 16° dH ± 2° dH verwendet.

Die eingesetzten Geräte sind wie folgt definiert:

Laborrührer mit Digitalanzeige Rührwelle Länge 350 mm Propellerrührkopf Ø 50 mm

Handwaschtest-Siebe 0,2 mm Maschenweite

o übliches Laborgerät.

Die Testdurchführung erfolgt im einzelnen wie folgt:

In ein 2.000 ml Becherglas werden 1.000 ml Stadtwasser gegeben und der Propellerrührkopf ca. 1,5 cm vom Becherglasboden zentriert eingesetzt. Der Rührmotor wird eingeschaltet und auf 800 U/Min. ± 10 U/Min. eingestellt. Dann werden 8 g des zu untersuchenden Waschmittels eingegeben und 90 Sekunden beziehungsweise 5,0 Min. gerührt. Der Rührer wird entfernt und mit Wasser gereinigt. Danach wird die Waschlauge durch das vorher tarierte Sieb gegossen und mit wenig Wasser das Becherglas ausgespült. Das Sieb mit dem Rückstand wird bis zur Gewichtskonstanz im Trockenschrank bei 40°C ± 5°C getrocknet und ausgewogen. Es wird dabei jeweils mit einer Doppelbestimmung gearbeitet.

Der Rückstandswert (Gew.-%) errechnet sich als

20

25

35

Rückstand % = Auswaage in g + 100

Einwaage in g

Bei größeren Differenzen wird eine Dreifachbestimmung durchgeführt. Aus den Doppel- beziehungsweise Dreifachbestimmungen wird ein Mittelwert berechnet.

Zusätzlich wird das Auflöseverhalten im sogenannten Schüsseltest bestimmt. Die Durchführung dieses Testes

wird dabei wie folgt vorgenommen:

In einer Waschschüssel aus dunklem Kunststoff (beispielsweise dunkelrot) werden 25 g des Testmittels in 5 l Leitungswasser (30°C) eingegeben. Nach 15 Sekunden wird das Mittel mit der Hand in der Schüssel verteilt. Nach weiteren 15 Sekunden wird ein Frottierhandtuch in die Waschflotte gegeben und wie in einer typischen Handwäsche bewegt. Nach 30 Sekunden wird mit dem Handtuch die Wand der Schüssel abgewischt. Nach weiteren 30 Sekunden Waschbewegung wird das Handtuch entnommen und ausgewrungen.

Die Waschlauge wird aus der Schüssel abdekantiert und der verbleibende Rückstand nach einer Behandlung

mit 5 bis 10 ml visuell benotet, dabei bedeuten:

+ einwandfrei, keine erkennbaren Rückstände

± vereinzelte aber doch erkennbare und bei kritischer Beurteilung bereits störende Rückstände

deutlich erkennbare und störende Rückstände in steigender Anzahl und Menge, Agglomerat- bis Klumpenbildung.

Die nachfolgenden Beispiele 1 bis 5 geben die näheren Angaben zur Auswahl des Binders nach Art und Menge, zum Typ des jeweils eingesetzten Agglomerationsverfahrens und zu den dabei erhaltenen Kenndaten nach den Bewertungskriterien des L-Testes und des Schüssel-Testes sowie zur Korngrößenverteilung der Agglomerate gemäß der Erfindung.

Zur Durchführung der jeweiligen Agglomerationsverfahren gelten dabei die nachfolgenden allgemeinen

Angaben:

Alle in der Agglomerationsstufe miteinander zu vereinigenden Mischkomponenten werden entsprechend der Aufmischrezeptur zusammengewogen und gemeinsam in die ausgewählte Coating- beziehungsweise Agglome-

rationsapperatur eingefüllt.

Der zum Einsatz kommende Binder wird ebenfalls entsprechend der gewählten Rezeptur — entweder als Schmelze oder als wäßrige Zubereitung — ausgewogen und in die Pumpenvorlage eingefüllt. Die Coatingbeziehungsweise Agglomerationsapparatur wird gestartet und gleichzeitig mit der Bedüsung begonnen. Die fließfähige Binderzubereitung wird auf den bewegten Inhalt der Agglomerationsapparatur gesprüht. Der Aufsprühvorgang wird innerhalb einiger Minuten, bevorzugt in 1 bis 2 Minuten und äußerstenfalls innerhalb 5 Minuten abgeschlossen. Nach beendeter Aussprühung erfolgt noch eine kurze Nachmischung für ca. 0,5 bis 1 Minuten, anschließend wird das Agglomerat entnommen. Ist zur Bedüsung eine Schmelze verwendet worden, ist damit der Prozeß beendet. Bei Einsatz wäßriger Binderzubereitungen schließt sich ein abschließender Trocknungsschritt an. Dazu wird das entnommene Agglomerat in einer Wirbelschichtapparatur mittels Warmluft von ca. 90°C für den Zeitraum von ca. 5 Minuten getrocknet, die Materialtemperatur darf dabei 65°C (maximal 70°C) nicht überschreiten.

Beispiel 1

65

Als Agglomerationsvorrichtung wird in einem Mischer gearbeitet, in dem das Feststoffgut bewegt und mit der Binderphase besprüht wird. Als Binderflüssigphase wird eine 30%ige wäßrige Zubereitung des in Textilwaschmitteln als Cobuilder eingesetzten und unter der Handelsbezeichnung "SOKALAN" vertriebenen Produktes

verwendet (Natriumsalz eines Acrylsäure-Copolymeren). Diese wäßrige Binderzubereitung wird in einer Menge von 4 Gew.-% — bezogen auf das zu agglomerierende Feststoffgut — aufgesprüht. Dabei wird hier ohne Zusatz der Entschäumerkomponente zur Agglomerationsstufe gearbeitet.

Beispiel 2

5

30

35

40

45

50

55

60

65

In Abwandlung der Technologie des Beispiels 1 wird das gleiche Wertstoffgemisch jetzt in der Wirbelschicht unter Einsatz einer Schmelze von PEG 4000 als Binder der Agglomeration unterzogen. Dieses bei Raumtemperatur feste und Kaltwasser-lösliche Bindemittel kommt in einer Menge von 2 Gew.-% — bezogen auf zu agglomerierendes Feststoffgut zum Einsatz.

Beispiel 3

Die technische Lehre gemäß Beispiel 1 wird wiederholt. Die Entschäumerkomponente auf Basis einer Abmischung von Silikonöl, Stärke und Fettalkohol wird jetzt jedoch nachträglich auf das gebildete kugelförmige 15 Agglomerat gegeben und dort durch Einrollen verfestigt.

Beispiel 4

Die Lehre des Beispiels 1 wird wiederholt, hier wird jedoch — in Abweichung von der Lehre des Beispiels 3 — 20 das Entschäumergranulat auf Silikonölbasis unmittelbar dem Mehrstoffgemisch im Mischer zugesetzt und gemeinsam mit den anderen Komponenten der Hüllsubstanz mittels des eingesprühten Binders im Mehrstoffgut gebunden.

An den Produkten der Beispiele 1 bis 4 werden bestimmt: das jeweilige Kornspektrum, die L-Test-Werte nach 1,5 Min. und 5,0 Min. sowie die Beurteilung im Schüsseltest. Die jeweils bestimmten Werte beziehungsweise 25 Bewertungen sind in der nachfolgenden Tabelle 4 zusammengefaßt.

19

50 55 60	45	40	35	30	25	20	15	10	5	
Tabelle 4			l zur Verb	Megaperis 2 zur Verbesserung der Ästhetik	s 2 der Ästh	etik				_
Komspektrum (%)	Beispiel 1	11	Beis	Beispiel 2		Beispiel 3		Beispiel 4	oiel 4	
4 A B B B B B B B B B B B B B B B B B B	51			41		38		52	2	
Mm 8.0 ×	40		•	45		46		42	8	
> 0.4 mm	w			13		7		9	_	
> 0.2 mm	8			_		ស		J	0	
> 0,1 mm	2			0		0		J	0	
< 0,1 mm	0			0		0			0	_
Pulvereigenschaften	n Beispiel 1	el 1	Beis	Beispiel 2		Beispiel 3		Beis	Beispiel 4	
L-Test 1.5 min (% Rückstend)	d) 11			12		10		N	24	
L-Test 5,0min (% Rückstand)	0			. 0		က			_	
Schüsseltest	+			+		+		•	+	_

Die Zahlenwerte zum Kornspektrum aus Tabelle 4 zeigen — im Vergleich zu den Siebzahlen der Tabelle 3 — die Kornvergrößerung und -vereinheitlichung unter gleichzeitiger nahezu völliger Beseitigung von Fein- und Staubanteilen.

Der Schüsseltest in allen Ansätzen der Beispiele 1 bis 4 ist optimiert. Auch die Löslichkeitswerte sind deutlich verbessert oder zumindestens hinreichend.

Beispiel 5

Ein pulverförmig schütt- und rieselfähiges Textilwaschmittelgemisch des Handels mit einem Korngrößenanteil > 0,8 mm von ca. 50 Gew.-% und einem Feinanteil < 0,4 mm von ca. 27% wird unter Einsatz einer Schmelze von PEG 4000 als Binder dem Schmelzagglomerationsverfahren im Sinne der erfindungsgemäßen Lehre unterworfen. In aufeinanderfolgenden Ansätzen wird dabei die Menge des Binders von 1 Gew.-% bis 5 Gew.-% gesteigert.

In allen Versuchen findet die schalenförmige Agglomeration unter Kugelausbildung statt, wobei der mittlere Kugeldurchmesser mit zunehmender Menge des eingesetzten Bindermaterials ebenfalls steigt. Es wird auf diese Weise schließlich ein gut lösliches kornförmiges Agglomerat mit einer Teilchengröße von wenigstens 10 80 Gew.-% > 0,8 mm erhalten.

Patentansprüche

- 1. Mehrkomponentiges schütt- und rieselfähiges Wasch- und Reinigungsmittel, insbesondere Textilwaschmittel, das hohe Dichte mit guter Auflösbarkeit auch in kaltem Wasser verbindet und dabei vergrößerte Freiheit in der Wahl der Wert- und gegebenenfalls Hilfsstoffe ermöglicht, dadurch gekennzeichnet, daß es als abriebfestes, von Staub- und Feinanteilen freies Gut der nachfolgenden Kornstruktur ausgebildet ist:
 - haftfest verdichteter Kern aus einem oder mehreren Wert- und/oder Hilfsstoffen, die in wäßriger Flotte löslich und/oder feinstdispergiert unlöslich sind (Kernmaterial)
 - umhüllt von einer Abmischung gleicher und/oder weiterer Wert- und/oder Hilfsstoffe mit bezogen auf den Durchmesser des Kernmaterials geringerer individueller Teilchengröße (Hüllsubstanz)
 - wobei diese Teilchen der Hüllsubstanz unter Mitverwendung eines in kaltem Wasser löslichen und bei Raumtemperatur festen Bindemittels miteinander und an die Außenfläche des Kernmaterials 25 gebunden sind (Binder).
- 2. Wertstoffgemisch nach Anspruch 1, dadurch gekennzeichnet, daß bei Wasserzutritt gelbildende und/oder nur langsam lösliche Komponenten der Mehrstoffgemische zum wenigstens überwiegenden Anteil Bestandteil der Hüllsubstanz mit vorbestimmbarer individueller Teilchengröße dieser Anteile sind.
- 3. Wertstoffgemisch nach Ansprüchen 1 und 2, dadurch gekennzeichnet, daß seine Körner wenigstens annähernd Kugelform besitzen, deren Größe (Kugeldurchmesser) bevorzugt innerhalb der folgenden Bereiche liegt: 0,5 bis 5 mm, bevorzugt 0,8 bis 3 mm und insbesondere 1 bis 2 mm, wobei es weiterhin bevorzugt sein kann, daß innerhalb einer Produktcharge das kugelförmige Gut in seiner Gesamtheit im wesentlichen gleiche Kugelgröße aufweist.
- 4. Wertstoffgemisch nach Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß das Kernmaterial wenigstens 15 35 bis 20 Gew.-%, bevorzugt wenigstens 35 bis 40 Gew.-% und insbesondere mehr als 50 Gew.-%, ausmacht Gew.-% jeweils bezogen auf das gesamte Mehrstoffgemisch während der Mengenanteil der Hüllsubstanz bevorzugt wenigstens 10 Gew.-% und insbesondere wenigstens 20 bis 25 Gew.-%, beträgt (Gew.-% wie zuvor definiert).
- 5. Wertstoffgemisch nach Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß das verdichtete Kernmaterial im Kugelinneren (Trägerkorn) beim wenigstens überwiegenden Anteil des schütt- und rieselfähigen Feststoffgutes durch nur ein Trägerkorn gebildet ist, das seinerseits ein- oder mehrkomponentig ausgebildet sein kann und insbesondere im letzten Fall mittels Verdichtungsverfahren eines Mehrstoffgemisches bei gleichzeitiger und/oder nachfolgender Formgebung zum individuellen Trägerkorn hergestellt worden ist.
- 6. Wertstoffgemisch nach Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß das mehrkomponentige Trägerkorn des Kernmaterials über Verdichtungsverfahren wie Naßgranulation, Schmelzagglomeration, Sprühagglomeration in insbesondere rotierender Wirbelschicht, Walzenkompaktierung, insbesondere aber durch Extrusion und verwandte Verdichtungsverfahren soweit erforderlich jeweils mit eingeschlossener Formgebung zum individuellen Trägerkorn hergestellt worden ist.
- 7. Wertstoffgemische nach Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß das Trägermaterial zum wenigstens substantiellen Anteil durch wasserlösliche und/oder feinstdispers in Wasser unlösliche anorganische und/oder organische Komponenten üblicher Wasch- und Reinigungsmittel gebildet ist zum Beispiel Textilwaschmittelbuilder und/oder Cobuilder, Alkalisierungsmittel, temperaturstabile Bleichmittel auf Wasserstoffperoxidbasis wie Perboratverbindungen —, wobei aber auch bevorzugt in untergeordneten Mengen Inhaltsstoffe organischen Ursprungs, zum Beispiel wenigstens weitgehend vergelungsfrei lösliche Tensidverbindungen, insbesondere entsprechende Aniontenside und/oder Niotenside, Cobuilder, Auf-
- heller und dergleichen, Bestandteil(e) des Trägermaterials sein können.

 8. Wertstoffgemische nach Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß auch wasch- und reinigungsaktive Enzyme und Enzymzubereitungen als Bestandteil des Trägermaterials vorliegen, wobei hier bevorzugt sein kann, daß nur in einem untergeordneten Anteil der Feststoffkugeln enzymhaltiges Trägermaterial im

 Teligenkorn guragen ist
- 9. Wertstoffgemische nach Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß die Hüllsubstanz unmittelbar auf dem Trägerkorn haftet oder über (eine) Trennschicht(en) mittelbar haftfest mit dem Trägerkorn verbunden ist
- 10. Wertstoffgemische nach Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß als Feststoff-Komponenten 65 der Hüllsubstanz eine oder mehrere der nachfolgenden Vertreter vorliegen:
 - Staub- und/oder Feinanteile beziehungsweise zur Feinteiligkeit zerkleinerte Anteile des Kernmaterials

195 24 287 A₁ DE

- langsam lösliche und/oder vergelende Komponenten und/oder Mehrstoffcompounds

- übliche Bestandteile, insbesondere auch Kleinbestandteile, von Wasch- und Reinigungsmitteln, soweit sie den Arbeitsbedingungen der Verdichtung des Kernmaterials nicht ausgesetzt werden sollen gegebenenfalls auch in kaltem Wasser schnell lösliche Komponenten zur raschen Konditionierung der Waschflotte und/oder des zu reinigenden Gutes

- Reaktivkomponenten zur nachfolgenden Abreaktion mit weiteren Reaktivbestandteilen des Mehr-

stoffgemisches nach deren Auflösung in der wäßrigen Flotte.

11. Wertstoffgemische nach Ansprüchen 1 bis 10, dadurch gekennzeichnet, daß die Feststoffkomponenten der Hüllsubstanz mit mittleren Teilchengrößen (Siebzahlen) < 0,8 mm, bevorzugt < 0,6 mm und insbesondere < 0,5 auf das Trägermaterial aufgetragen sind.

12. Wertstoffgemische nach Ansprüchen 1 bis 11, dadurch gekennzeichnet, daß bei Raumtemperatur flüssige Anteile des Mehrkomponentengemisches im Kernmaterial und/oder in der Hüllsubstanz aufgenommen sind, wobei es bevorzugt, sein kann, Niotensidverbindungen - insbesondere aus der Klasse der Fettalkohol-Ethoxylate - zum wenigstens überwiegenden Anteil dem Kernmaterial zuzusetzen.

13. Wertstoffgemische nach Ansprüchen 1 bis 12, dadurch gekennzeichnet, daß die Hüllsubstanz 1-schalig

oder mehrschalig auf den Trägerkern aufgetragen ist.

14. Wertstoffgemische nach Ansprüchen 1 bis 13, dadurch gekennzeichnet, daß der Hüllsubstanz weitere Zusatzstoffe, zum Beispiel zur Beeinflussung der visuellen Erscheinungsform des Fertiggutes - beispielsweise Farbstoffe, Pigmente, Aufheller und dergleichen - zugesetzt worden sind.

15. Wertstoffgemische nach Ansprüchen 1 bis 14, dadurch gekennzeichnet, daß der bei Raumtemperatur feste Binder die einzelnen Feststoffkomponenten der Hüllsubstanz zum wenigstens überwiegenden Teil umhüllt und miteinander verbindet und dabei diese Bindung der Hüllsubstanz-Partikel aneinander bevorzugt so hinreichend stabil ausgestaltet ist, daß nennenswerter Abrieb von Feingut unter den Bedingungen von Transport, Lagerung und Anwendung des körnigen Fertiggutes ausscheidet.

16. Wertstoffgemische nach Ansprüchen 1 bis 15, dadurch gekennzeichnet, daß die Hüllsubstanz unter Einsatz des Binders im Rahmen einer Naß-Agglomeration beziehungsweise - Granulation oder Schmelz-Agglomeration beziehungsweise - Granulation auf das Trägerkorn aufgebracht und dort verfestigt wor-

den ist.

5

10

15

20

25

30

35

40

45

50

55

17. Wertstoffgemische nach Ansprüchen 1 bis 16, dadurch gekennzeichnet, daß der Binder in Mengen von höchstens etwa 15 bis 20 Gew.-%, vorzugsweise nicht mehr als 10 Gew.-% vorliegt, wobei Bindergehalte im Bereich bis 5 Gew.-%, zum Beispiel 0,5 bis 4 Gew.-%, bevorzugt sein können - Gew.-% jeweils berechnet als Festsubstanz bezogen auf die Summe von Kernmaterial und Hüllsubstanz.

18. Wertstoffgemische nach Ansprüchen 1 bis 17, dadurch gekennzeichnet, daß als Binder insbesondere filmbildende organische Komponenten mit Erweichungs- und/oder Schmelzpunkten nicht unterhalb 45°C, vorzugsweise von wenigstens 60°C und insbesondere von wenigstens 75°C, vorliegen, die auch mit Hilfs-

stoffen, wie Dispergiermitteln und/oder Lösungsvermittlern, abgemischt sein können.

19. Wertstoffgemische nach Ansprüchen 1 bis 18, dadurch gekennzeichnet, daß als Binder wasserlösliche und/oder wasserdispergierbare Oligomer- und/oder Polymerverbindungen synthetischen, halbsynthetischen und/oder natürlichen Ursprungs vorliegen. 20. Wertstoffgemische nach Ansprüchen 1 bis 17, dadurch gekennzeichnet, daß Binder oder Bindergemische

eingesetzt werden, die wenigstens anteilsweise Wert- und/oder Hilfsstoffe aus dem Bereich der Textilwaschmittel sind.

21. Wertstoffgemische nach Ansprüchen 1 bis 20, dadurch gekennzeichnet, daß die Außenhülle des kugeligen Gutes - gegebenenfalls unter Mitverwendung von feinteiligen Abpuderungshilfen - im Bereich der

Raumtemperatur im wesentlichen klebfrei ausgebildet ist.

22. Verfahren zur Herstellung der Wasch- und Reinigungsmittel nach Ansprüchen 1 bis 21, dadurch gekennzeichnet, daß man das Kernmaterial in Form eines vorgebildeten Trägerkorns mit dem feinteiligen Gut der Hüllsubstanz in Gegenwart des Binders in fließfähiger Zubereitungsform umhüllend agglomeriert beziehungsweise granuliert und den Binder verfestigt.

23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß mit einer insbesondere wäßrigen Zubereitung des Binders und nachfolgender Trocknung, bevorzugt jedoch mit einer Schmelze des Binders und

anschließender Kühlung des beschichteten Gutes gearbeitet wird.

24. Verfahren nach Ansprüchen 22 und 23, dadurch gekennzeichnet, daß die fließfähige Zubereitung des Binders in das zu agglomerierende beziehungsweise zu granulierende Gut versprüht wird, wobei bevorzugt unter Mitverwendung eines Treibgases gearbeitet wird.

25. Verfahren nach Ansprüchen 22 bis 24, dadurch gekennzeichnet, daß insbesondere beim Eintrag einer Binderschmelze mit Zuführung einer zusätzlichen Heißgasphase in das zu agglomerierende Gut zur Einstellung und Optimierung des Mikroklimas im Bereich der Festsstoffoberflächen gearbeitet wird, wobei bevorzugt die Temperatur dieser zusätzlichen Gasphase über der Temperatur des Feststoffgutes liegt.

26. Verfahren nach Ansprüchen 22 bis 25, dadurch gekennzeichnet, daß bei einer Schmelzagglomeration die Temperatur des Feststoffgutes maximal im Bereich von 45 bis 60°C und damit höchstens im Bereich der Schmelztemperatur des Binders gehalten wird, wobei es jedoch bevorzugt ist, mit Temperaturen des Feststoffgutes in der Schmelzagglomeration unterhalb der Schmelztemperatur des Binders zu arbeiten.

65

60