Red Blood Cell Disorders IV:

Impaired RBC production

Elizabeth Rinker, M.D.

rinkere@musc.edu

July 2025

Impaired RBC production

- I. Aplastic anemia
 - A. Fanconi anemia
 - B. Pure red cell aplasia
- II. Macrocytic anemia
 - A. Folate deficiency
 - B. Vitamin B12 deficiency
 - 1. Pernicious anemia
- III. Microcytic anemia
 - A. Iron deficiency
 - B. Anemia of chronic disease
 - C. Sideroblastic anemia
 - 1. Lead toxicity
- IV. Myelophthisic anemia

Impaired RBC production

• Disturbance of stem cell proliferation and differentiation

- Disturbance of proliferation/maturation of erythroid cells
 - Macrocytic anemia (high MCV)
 - Microcytic anemia (low MCV)

Aplastic anemia

- Failure of the stem cell to produce hematopoietic elements
- Peripheral blood: cytopenias
- Can evolve into acute leukemia

Aplastic anemia

- Idiopathic
 - Primary stem cell defect
 - Immune mediated
- Toxic exposure
 - Drugs: antineoplastic drugs, chloramphenicol
 - Radiation
 - Chemicals: benzene
- Post-viral infection
 - Community acquired non-A,B,C hepatitis
- Inherited defects in DNA repair or telomerase
 - Fanconi anemia

• Treatment:

- Remove offending agent
- Supportive care: transfusions, G-CSF
- Immunosuppression
- Bone marrow transplant

Fanconi Anemia

- Rare autosomal recessive disorder caused by defects in DNA repair
- Signs and symptoms:
 - Short stature
 - Skeletal anomalies
 - Endocrinopathy
 - Renal failure
 - Cutaneous café au lait spots
- Increased incidence:
 - Solid tumors
 - Leukemia (especially AML)
 - Bone marrow failure (aplastic anemia)
- Treatment:
 - Bone marrow transplant

- Testing:
 - Chromosome breakage test

Abnormal

Pure red cell aplasia

- Subtype of aplastic anemia
- Only erythroid lineage is decreased
- Bone marrow shows decreased red blood cell precursors
- Many causes; examples:
 - Parvovirus B19 infection
 - Transient red cell aplasia
 - Diamond-Blackfan anemia (DBA)
 - Erythroid aplasia
 - Isolated anemia (normal platelets, white blood cells)
 - Presents in infancy

Parvovirus inclusions in nuclei of RBC precursors

Macrocytic anemias

Macrocytic anemia

- Increased MCV (>100 fL)
- Megaloblastic
 - DNA replication disorders
 - Hypoproliferative anemia (decreased reticulocyte production)
 - Causes:
 - B12 deficiency
 Folate deficiency

 necessary for production of DNA
- Non-megaloblastic
 - Hypoproliferative (decreased reticulocyte production):
 - Excess alcohol use
 - Liver disease
 - Lipid disorders
 - Hypothyroidism
 - Myelodysplasia
 - Hyperproliferative (increased reticulocyte production):
 - Hemorrhage
 - Hemolysis

Macrocytic anemia

Megaloblastic anemia

- Clinical findings
 - Symptoms of anemia: fatigue, weakness, pallor, tachycardia
 - B12 deficiency: neurologic impairment
 - Decreased vibratory sensation in lower extremities
 - Demyelination of posterior and lateral columns
- CBC
 - Decreased hemoglobin, hematocrit, RBC count
 - High MCV
 - +/- decreased WBC, platelets
- Diagnostic tests
 - Serum B12, folate levels
 - B12 deficiency consider pernicious anemia
 - Anti-intrinsic factor antibodies
 - Anti-parietal antibodies

Megaloblastic anemia

- Peripheral blood smear
 - Oval, teardrop macrocytes
 - Anisopoikilocytosis
 - Large platelets
 - Nucleated RBCs
 - Large neutrophils
 - Hypersegmented neutrophils
- Bone marrow
 - Dysplastic changes
 - Abnormally large RBC/WBC precursors

Vitamin B12 (cobalamin)

- Human intake dependent on dietary intake
 - Animal products
 - Excess stored in liver
- Absorption:
 - Vitamin B12 is freed from food by pepsin
 - Haptocorrin protects B12 from degradation
 - Pancreatic proteases split haptocorrin from B12
 - Intrinsic factor (IF) binds B12
 - IF bound with B12 endocytosed by ileal cells
 - Inside ileal cells, B12 binds to transcobalamin II and is secreted into plasma
 - B12 is delivered to liver and other areas that need it

Vitamin B12 deficiency

- Decreased intake
 - Inadequate diet
 - Vegetarian/vegan
- Impaired Absorption
 - Intrinsic factor deficiency
 - Pernicious anemia, gastrectomy, gastritis
 - Malabsorptive states
 - Diffuse intestinal disease (Crohn's disease)
 - Bacterial overgrowth, parasites
 - Pancreatic insufficiency
 - Agents that block absorption: proton pump inhibitors, inherited transcobalamin II deficiency
- Increased requirement
 - Pregnancy
 - Hyperthyroidism
 - Cancer

Tapeworm

Pernicious anemia

Normal

Abnormal

- Lack of intrinsic factor
 - Likely due to autoimmune attack of gastric mucosa
- Signs and symptoms
 - Pancytopenia
 - Neuropathy (peripheral and central)
 - Papillary atrophy of tongue
 - pH elevation in stomach
 - Psychosis
- Diagnostic tests
 - Antibodies:
 - Anti-parietal cell (sensitive, less specific)
 - Anti-IF antibodies (specific, less sensitive)
 - Schilling test
- Treatment
 - Supplemental intrinsic factor

Pernicious anemia: Schilling test

• Part 1:

- Patient is given oral radioactive B12 + intramuscular B12 injection
 - Intramuscular B12 saturates liver receptors
- If B12 is absorbed by the GI, the radiolabeled B12 should pass into the urine
- The urine is tested for radioactive B12
 - Normal = ↑ amount of the labeled B12 in urine
 - Abnormal = \downarrow labeled B12 in urine (remained in bowel, passed into feces)
- Part 2: (performed only if part one yields abnormal result)
 - Repeat steps of part one + supplemental intrinsic factor
 - Normal (个 labeled B12 in urine) = diagnostic of pernicious anemia (body was missing IF)
 - Abnormal (↓ labeled B12 in urine) = indicates malabsorption

Folate (folic acid/pteroglutamate)

- Human intake dependent on dietary intake
 - Green veggies, fruits, fortified cereals, dairy products, liver
 - Heat labile
- Absorbed in duodenum, jejunum
- Stored in liver (stores last 3-4 months)
- Function:
 - Transfers carbon units in many biochemical reactions
 - Purine synthesis → DNA synthesis

Folate deficiency

- Decreased intake
 - Poor diet
- Decreased absorption
 - Celiac disease, inflammatory bowel disease, short bowel syndrome
- Increased requirement
 - Pregnancy, lactation, chronic hemolytic anemia, exfoliative dermatitis, infancy, disseminated cancer
- Impaired utilization
 - Drugs acting as folic acid antagonists: methotrexate, phenytoin, oral contraceptives, trimethoprim

B12 vs. folate deficiency

- CBC and peripheral blood findings similar in both
- Measure B12 and RBC folate levels
 - If ambiguous results, measure homocysteine and methylmalonic acid
- Folate given when B12 is deficient:
 - Anemia may be reversed
 - Neurologic problems will persist

	B12 Deficiency	Folate Deficiency
Folate	Normal	\downarrow
B12	\downarrow	Normal
Homocysteine	\uparrow	\uparrow
Methylmalonate	\uparrow	Normal
Neurologic Defects	Yes	No

Microcytic anemia

Microcytic anemia (low MCV)

- Disorders of iron metabolism
 - Iron deficiency
 - Poor intake/increased requirement
 - Malabsorption
 - Chronic infection/inflammation
 - Neoplasia
- Sideroblastic anemias
- Lead toxicity
- Thalassemias

Anemia of chronic disease

Iron deficiency anemia

Anemia due to insufficient iron

- Signs and symptoms:
 - Pica
 - Koilonychia
 - Angular chelitis
 - Smooth tongue/glossitis

Iron deficiency anemia: Causes

- Low dietary intake
 - Most common in developing world
 - Breast milk low in iron
- Malabsorption
 - Celiac disease
 - Post-gastrectomy
- Increased demand
 - Pregnancy
 - Infancy
- Chronic blood loss most common in US
 - GI tract (peptic ulcers, colon cancer, hemorrhoids)
 - Female genital tract (menorrhagia, cancer)

Laboratory evaluation of iron

- Serum Iron
 - Amount of iron in blood
 - Normal 60-170 µg/dL
- Total Iron Binding Capacity (TIBC)
 - Amount of transferrin available for binding iron
 - Normal 250-370 µg/dL
- % Saturation
 - Amount of transferrin bound to iron
 - Normal 20-50%
- Ferritin
 - Indirect indication of iron stores
 - Normal 20-200 μg/dL

Laboratory diagnosis of iron deficiency anemia

- CBC
 - ↓ hemoglobin and hematocrit
 - **↓** MCV
 - **↓** MCH
 - ↓ MCHC

- Peripheral blood smear
 - Anisopoikilocytosis
 - Microcytic RBCs
 - Hypochromic RBCs

- Serum iron studies
 - ↓ iron
 - ↓ ferritin
 - ↓ % iron saturation
 - ↑ total iron binding capacity (TIBC)

Stages of iron deficiency anemia

- 1. Depletion of storage iron
 - Low ferritin
 - High TIBC
- 2. Depletion of serum iron
 - Low iron
 - Low % saturation
- 3. Normocytic anemia
- 4. Microcytic, hypochromic anemia

Iron deficiency anemia: peripheral blood smear

Anemia of chronic disease

- Most common anemia in hospitalized patients
- CBC
 - Moderate anemia
 - Normocytic or microcytic
 - Normochromic or hypochromic
- Associated conditions
 - Chronic infections
 - Chronic immune disorders
 - Neoplasms
- Iron studies
 - Decreased iron
 - Decreased TIBC
 - Increased ferritin

- Physiologic mechanisms:
 - Improper iron transfer
 - Iron trapped in bone marrow macrophages
 - Increased bone marrow storage iron
 - Decreased access of iron for use in hemoglobin synthesis
 - Inhibition/suppression of erythropoiesis by cytokines (hepcidin)

Sideroblastic anemia

- Defective protoporphyrin synthesis
 - \downarrow protoporphyrin $\rightarrow \downarrow$ heme $\rightarrow \downarrow$ hgb \rightarrow anemia
- Causes:
 - Inherited
 - Myelodysplastic syndrome
 - Alcohol abuse
 - Drugs
 - Toxic exposure
 - Lead
 - Zinc
 - Arsenic
 - Vitamin B6 deficiency

- Iron studies
 - Increased iron
 - Increased ferritin
 - Increased % saturation
 - Decreased TIBC

Sideroblastic anemia

- Peripheral blood smear
 - Dimorphic RBC population
 - Increased RDW
 - Hypochromic or normochromic
 - Microcytic or normocytic
 - Pappenheimer bodies (iron)
 - Basophilic stippling
 - +/- nucleated RBCs (nRBC)
- Bone marrow biopsy
 - Ringed sideroblasts

Lead toxicity

- Interferes with heme production
- Peripheral blood smear
 - Hypochromic RBC's
 - Normal RDW
 - Basophilic stippling
- Other lab tests
 - Increased lead level
 - Increased aminolevulinic acid
 - Increased free erythrocyte protoporphyrin (FEP)

- Signs and symptoms
 - Neurologic changes
 - Gl upset
 - Gingival "lead line"

Microcytic anemias: iron studies

	lron Deficiency	Anemia of Chronic Disease	Sideroblastic Anemia
Serum Iron	\downarrow	\downarrow	\uparrow
TIBC	\uparrow	\downarrow	\downarrow
% Saturation	\downarrow	\downarrow	\uparrow
Serum Ferritin	\downarrow	↑	↑

Microcytic anemias: CBC findings

Cause	RBC#	RDW	Anisopoikilo- cytosis	Basophilic Stippling
Iron Deficiency	\	↑	Yes	No
Thalassemia	Normal/†	Normal	No	Yes
Sideroblastic	\downarrow	↑	Yes	Yes
Chronic Disease	\	Varied	Varied	No

Myelophthisic anemia

- Bone marrow is replaced by nonhematopoietic elements
 - Fibrosis
 - Metastatic cancer
 - Granulomatous infection
- Peripheral blood smear
 - Leukoerythroblastosis
 - Immature/left shifted granulocytes
 - Nucleated RBCs
 - Teardrop shaped RBCs/dacryocytes
- Splenomegaly +/- hepatomegaly
 - Extramedullary hematopoiesis

Questions?