Examen del Bloque 2 de Sistemas Inteligentes ETSINF, Universitat Politècnica de València, 18 de enero de 2017

			J 111 + C1010	I OII (C		- GIOHOL	a, 10 de ellero	40 2011
${f Apellid}$	os:						Nombre:	
Grupo:	\square 3A	\square 3B	\Box 3C	\Box 3D	\square 3E	\Box 3F	\square 3FLIP	
Marca cada	a recuadro	con una úi	nica opción	n de entre	las dadas.			
l	e las siguier	ntes expres	siones es in	ncorrecta?				
A) P(a	$x \mid y) = \overline{\sum}$	$\frac{P(x,y)}{\sum_{z} P(y\mid z)}$	$\frac{1}{P(z)}$					
	$x \mid y) = \frac{1}{\sum_{i=1}^{n}}$	- 2 (0. /						
C) P(a	$x \mid y) = \frac{\sum_{x \mid y}}{\sum_{y \mid x}}$	$\frac{\sum_{z} P(x, z)}{P(y)}$						
D) P(s	$x \mid y) = \frac{F}{}$	$\frac{P(y \mid x) \ P(y)}{P(y)}$	<u>x)</u>					
y 1 ama bolsas ti tienen ic	rilla. Se esc ienen la mi	coge una b isma prob pabilidad d	oolsa al az abilidad d	ar y, segu e ser esco	idamente, gidas y qı	una man 1e, dada	nzana al azar de una bolsa cualq	e; la segunda, 2 rojas, 2 verde la misma. Supóngase que la quiera, sus manzanas también s la probabilidad <i>P</i> de que sea
A) 0.0	$00 \le P < 0$.25						
B) 0.2	$25 \le P < 0.$.50						
C) 0.5	$50 \le P < 0$.75						
D) 0.7	$75 \le P$							
de los si	guientes cla	asificadore				olos) a cla	asificar en una cl	lase de C posibles. Indica cuá
A) $c(x)$	$ = \underset{c=1,\dots,C}{\operatorname{argmax}} $	$x p(x \mid c)$						
B) $c(x)$	$ = \underset{c=1,,C}{\operatorname{argmax}} $	$\sum_{c} p(x,c)$						
C) $c(x)$	$ = \underset{c=1,,C}{\operatorname{argmax}} $	$\sum_{x} \log p(x, x)$	c)					
	$= \underset{c=1,,C}{\operatorname{argmax}}$							
minante son las r	s lineales cu regiones de	iyos vectoi decisión d	res de pesc efinidas po	os en notac or el clasifi	ión homog icador ant	génea son		uesto por dos funciones discri $\mathbf{y} \ \mathbf{a}_{ullet} = (1,1,1)^t.$ Indica cuále
*	$= \{ \mathbf{x} \in \mathbb{R}^2 \\ = \{ \mathbf{x} \in \mathbb{R}^2 \}$,						
\mathbf{p}_{j} n_{0}	$- \int \mathbf{v} \subset \mathbb{R}$	$\cdot u_1 > z_1$	y 11.0 — {1	$\mathbf{A} \subset \mathbb{R} \cdot \mathcal{X}$	1 \ 4}			

C) $R_{\circ} = \{ \mathbf{x} \in \mathbb{R}^2 : x_1 < 2 \}$ y $R_{\bullet} = \{ \mathbf{x} \in \mathbb{R}^2 : x_1 > 2 \}$ D) $R_{\circ} = \{ \mathbf{x} \in \mathbb{R}^2 : x_2 < 2 \}$ y $R_{\bullet} = \{ \mathbf{x} \in \mathbb{R}^2 : x_2 > 2 \}$

A)
$$\mathbf{a}_{\circ} = (-1, 1, 2)^t \text{ y } \mathbf{a}_{\bullet} = (0, 2, 1)^t$$

B)
$$\mathbf{a}_{\circ} = (1,1,2)^t \text{ y } \mathbf{a}_{\bullet} = (1,2,1)^t$$

C)
$$\mathbf{a}_{\circ} = (1, 1, 2)^t \text{ y } \mathbf{a}_{\bullet} = (0, 2, 1)^t$$

D)
$$\mathbf{a}_{\circ} = (1, 1, 1)^t \text{ y } \mathbf{a}_{\bullet} = (-1, 3, 0)^t$$

A)
$$b = 0.5$$

B)
$$b = 1.0$$

C)
$$b = 1.5$$

D) Ninguno de los anteriores

7 Se tiene un problema de clasificación para el cual se ha aprendido un clasificador. El intervalo de confianza al 95 % para la probabilidad de error de dicho clasificador se ha estimado empíricamente, a partir de un cierto conjunto de muestras de test. Indica cuál de las siguientes opciones permitiría reducir el tamaño del intervalo estimado:

A) Reducir significativamente el conjunto de test.

B) Mantener el conjunto de test y re-entrenar el clasificador con el algoritmo C-medias de Duda y Hart.

C) Mantener el conjunto de test y re-entrenar el clasificador con el algoritmo C-medias convencional ("popular").

D) Aumentar significativamente el conjunto de test.

8 Sea un problema de clasificación en 3 clases (A, B y C) para el que se dispone
de 6 datos de aprendizaje representados mediante vectores de características
tridimensionales (ver tabla a la derecha). Si deseamos aplicar el algoritmo de
aprendizaje de árboles de clasificación con dichos datos, ¿cuál es el número N
de particiones diferentes que se pueden generar en el nodo raíz del árbol? Nota:
no se tengan en cuenta las particiones que dan lugar a nodos vacíos.

n	1	2	3	4	5	6
x_{n1}	0	1	0	1	0	1
x_{n2}	1	1	2	2	3	3
x_{n3}	0	2	0	3	2	3
c_n	A	A	\mathbf{B}	В	\mathbf{C}	\mathbf{C}

A)
$$0 \le N \le 5$$

B)
$$5 < N \le 10$$

C)
$$10 < N \le 20$$

D) Se pueden generar infinitas particiones.

Supóngase que estamos aplicando el algoritmo de aprendizaje de árboles de clasificación para un problema de cuatro clases; esto es, $C = \{1, 2, 3, 4\}$. El algoritmo ha alcanzado un nodo t que incluye ocho datos: 4 de la clase 1, 2 de la 2, 1 de la 3 y 1 de la 4. La impureza de t, $\mathcal{I}(t)$, medida como la entropía de la distribución empírica de las probabilidades a posteriori de las clases en t, es:

A)
$$0.00 \le \mathcal{I}(t) < 0.25$$

B)
$$0.25 < \mathcal{I}(t) < 0.50$$

C)
$$0.50 \le \mathcal{I}(t) < 0.75$$

D)
$$0.75 \le \mathcal{I}(t)$$

- $10 \ \boxed{\quad} \ \text{Indica cu\'al de las siguientes afirmaciones sobre aprendizaje supervisado (AS) y no-supervisado (ANS) es correcta:}$
 - A) Tanto en ANS como en AS se requieren datos de entrenamiento sin etiqueta de clase.
 - B) En ANS se requieren datos de entrenamiento sin etiqueta de clase; en AS, con etiqueta.
 - C) En ANS se requieren datos de entrenamiento con etiqueta de clase; en AS, sin etiqueta.
 - D) Tanto en ANS como en AS se requieren datos de entrenamiento con etiqueta de clase.
- 11 Considérese el algoritmo C-medias en su versión convencional o "popular" (CM), así como en su versión de Duda y Hart (DH). Aunque ambas optimizan la suma de errores cuadráticos (SEC), sus resultados pueden diferir pues:
 - A) DH mimimiza la SEC y CM la maximiza.
 - B) DH maximiza la SEC y CM la minimiza.
 - C) Ambas maximizan la SEC, si bien DH puede alcanzar mejores soluciones que CM.
 - D) Ninguna de las anteriores.
- 12 Dado el modelo oculto de Markov M que se muestra en la figura de la derecha en el que $P_M(a) = P_M(b) = \frac{1}{4}$, ¿cuál es el valor $S = \sum_x P_M(x)$ donde x es cualquier posible cadena formada por dos o más símbolos?

- B) $\frac{1}{4} \le S < \frac{2}{4}$.
- C) $\frac{2}{4} \le S < \frac{3}{4}$.
- D) $\frac{3}{4} \le S \le 1$.

- 13 Siendo M un modelo oculto de Markov y x una cadena tal que $P_M(x) > 0$, siempre se cumple que:
 - A) La secuencia de estados de M que genera la cadena x con máxima probabilidad es única.
 - B) La aproximación de Viterbi a $P_M(x)$ es única.
 - C) La secuencia de estados de M que genera la cadena x con máxima probabilidad no es única.
 - D) La aproximación de Viterbi a $P_M(x)$ no es única.
- 14 Se tiene un problema de clasificación en dos clases $(A \ y \ B)$ de objetos representados mediante cadenas de símbolos en el alfabeto $\Sigma = \{a,b\}$. Las funciones de probabilidad condicional de las clases vienen caracterizadas por los modelos ocultos de Markov M_A y M_B . Supóngase que P(A) = 0.45, $P(ba \mid A) = P_{M_A}(ba) = 0.0612$ y $P(ba \mid B) = P_{M_B}(ba)$, siendo M_B el modelo representado en la figura de la derecha. ¿A qué clase se asignaría la cadena "ba" por mínima probabilidad de error?:

- A) Con los datos aportados no se puede determinar.
- B) Indistintamente en A ó B ya que $P_{M_A}(ba) = P_{M_B}(ba)$.
- C) En la clase A.
- D) En la clase B.
- Dado el modelo oculto de Markov M_B de la pregunta anterior, tras una iteración de re-estimación por Viterbi a partir de las cadenas de entrenamiento "ba", "b" y "aa", indica cuál de los siguientes resultados es cierto:

A)
$$A_{01} = A_{1F} = 1$$

B)
$$B_{0a} = B_{1a} = \frac{1}{2}$$

C)
$$\pi_0 = \frac{1}{3}$$

D)
$$\pi_1 = \frac{2}{3}$$