Solutions to selected problems on Introduction to Topological Manifolds -John M. Lee.

Franco Zacco

Chapter 2 - Topological Spaces

Problems

Proof. 2-1

- (a) We want to show that $\mathcal{T}_1 = \{U \subseteq X : U = \emptyset \text{ or } X \setminus U \text{ is finite}\}$ is a topology on X.
 - (i) By definition \emptyset is in \mathcal{T}_1 . If U = X then $X \setminus X = \emptyset$ and \emptyset is finite then $X \in \mathcal{T}_1$.
 - (ii) Let $U_1, ..., U_n$ be elements of \mathcal{T}_1 such that $U_i = \emptyset$ or $X \setminus U_i$ is finite for every i. Also, we see that

$$X \setminus (U_1 \cap ... \cap U_n) = (X \setminus U_1) \cup ... \cup (X \setminus U_n)$$

And the finite union of finite sets is itself a finite set hence $U_1 \cap ... \cap U_n \in \mathcal{T}_1$. We assumed that not all of the elements are empty, but otherwise we already saw that $\emptyset \in \mathcal{T}_1$.

(iii) Let $(U_{\alpha})_{\alpha \in A}$ be a family of elements of \mathcal{T}_1 such that $U_i = \emptyset$ or $X \setminus U_i$ is finite for every i. Also, we have that

$$X \setminus \bigcup_{\alpha \in A} U_{\alpha} = \bigcap_{\alpha \in A} X \setminus U_{\alpha}$$

So this is the intersection between finite sets then itself it's a finite set hence $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}_1$.

Therefore \mathcal{T}_1 is a topology on X.

- (b) We want to show that $\mathcal{T}_2 = \{U \subseteq X : U = \emptyset \text{ or } X \setminus U \text{ is countable}\}$ is a topology on X.
 - (i) By definition \emptyset is in \mathcal{T}_2 . If U = X then $X \setminus X = \emptyset$ and \emptyset is countable then $X \in \mathcal{T}_2$.

(ii) Let $U_1, ..., U_n$ be elements of \mathcal{T}_2 such that $U_i = \emptyset$ or $X \setminus U_i$ is countable for every i. Also, we see that

$$X \setminus (U_1 \cap ... \cap U_n) = (X \setminus U_1) \cup ... \cup (X \setminus U_n)$$

And the finite union of countable sets is itself a countable set hence $U_1 \cap ... \cap U_n \in \mathcal{T}_2$. We assumed that not all of the elements are empty, but otherwise we already saw that $\emptyset \in \mathcal{T}_2$.

(iii) Let $(U_{\alpha})_{\alpha \in A}$ be a family of elements of \mathcal{T}_2 such that $U_i = \emptyset$ or $X \setminus U_i$ is countable for every i. Also, we have that

$$X \setminus \bigcup_{\alpha \in A} U_{\alpha} = \bigcap_{\alpha \in A} X \setminus U_{\alpha}$$

So this is the intersection between countable sets then itself it's a countable set hence $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}_2$.

Therefore \mathcal{T}_2 is a topology on X.

- (c) We want to show that $\mathcal{T}_3 = \{U \subseteq X : U = \emptyset \text{ or } p \in U\}$ is a topology on X.
 - (i) By definition \emptyset is in \mathcal{T}_3 . Since $p \in X$ by definition then $X \in \mathcal{T}_3$.
 - (ii) Let $U_1, ..., U_n$ be elements of \mathcal{T}_3 such that $U_i = \emptyset$ or $p \in U_i$ for every i then $U_1 \cap ... \cap U_n$ at least have the element p in common so $U_1 \cap ... \cap U_n \in \mathcal{T}_3$. This result is true assuming not every $U_i = \emptyset$ otherwise $U_1 \cap ... \cap U_n = \emptyset$ and we saw that $\emptyset \in \mathcal{T}_3$ so anyway $U_1 \cap ... \cap U_n \in \mathcal{T}_3$.
 - (iii) Let $(U_{\alpha})_{\alpha \in A}$ be a family of elements of \mathcal{T}_3 such that $U_i = \emptyset$ or $p \in U_i$ for every i. Then assuming not every $U_i = \emptyset$ we have that $p \in \bigcup_{\alpha \in A} U_{\alpha}$ which implies that $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}_3$. If every $U_i = \emptyset$ then $\bigcup_{\alpha \in A} U_{\alpha} = \emptyset$ and we saw that $\emptyset \in \mathcal{T}_3$ so anyway $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}_3$.

Therefore \mathcal{T}_3 is a topology on X.

- (d) We want to show that $\mathcal{T}_4 = \{U \subseteq X : U = X \text{ or } p \notin U\}$ is a topology on X.
 - (i) By definition X is in \mathcal{T}_4 . Since $p \notin \emptyset$ then $\emptyset \in \mathcal{T}_4$.
 - (ii) Let $U_1, ..., U_n$ be elements of \mathcal{T}_4 such that $U_i = X$ or $p \notin U_i$ for every i then p is not in $U_1 \cap ... \cap U_n$. This result is true assuming not every $U_i = X$ otherwise $U_1 \cap ... \cap U_n = X$ and we saw that $X \in \mathcal{T}_4$ so anyway $U_1 \cap ... \cap U_n \in \mathcal{T}_4$.
 - (iii) Let $(U_{\alpha})_{\alpha \in A}$ be a family of elements of \mathcal{T}_4 such that $U_i = X$ or $p \notin U_i$ for every i. Then assuming no $U_i = X$ we have that $p \notin \bigcup_{\alpha \in A} U_{\alpha}$ which implies that $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}_4$. If some $U_i = X$ then $\bigcup_{\alpha \in A} U_{\alpha} = X$ and we saw that $X \in \mathcal{T}_4$ so anyway $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}_4$.

Therefore \mathcal{T}_4 is a topology on X.

(e) We want to determine if $\mathcal{T}_5 = \{U \subseteq X : U = X \text{ or } X \setminus U \text{ is infinite}\}$ is a topology on X. If we let $X = \mathbb{Z}$ then $\mathbb{Z}^+ \in \mathcal{T}_5$ and $\mathbb{Z}^- \in \mathcal{T}_5$ but $\mathbb{Z} \setminus (\mathbb{Z}^+ \cup \mathbb{Z}^-) = \{0\}$ but $\{0\}$ is finite so $(\mathbb{Z}^+ \cup \mathbb{Z}^-) \notin \mathcal{T}_5$. Therefore \mathcal{T}_5 is not a topology on X.

Proof. **2-3**

- (a) Let $x \in \overline{X \setminus B}$ then for every neighborhood U where $x \in U$ contains a point of $X \setminus B$ this implies that no neighborhood that contains x is in $\operatorname{Int}(B)$ hence $x \in X \setminus \operatorname{Int}(B)$ and $\overline{X \setminus B} \subseteq X \setminus \operatorname{Int}(B)$.

 Let $x \in X \setminus \operatorname{Int}(B)$ then $x \notin \operatorname{Int}(B)$ so there is no neighborhood of x contained in B then for every neighborhood U that contains x we have that $U \cap X \setminus B \neq \emptyset$ hence $x \in \overline{X \setminus B}$ and $X \setminus \operatorname{Int}(B) \subseteq \overline{X \setminus B}$.

 Therefore $\overline{X \setminus B} = X \setminus \operatorname{Int}(B)$.
- (b) Let $x \in \operatorname{Int}(X \setminus B)$ then x has a neighborhood contained in $X \setminus B$ but then x is also in $\operatorname{Ext}(B) = X \setminus \overline{B}$ then $\operatorname{Int}(X \setminus B) \subseteq X \setminus \overline{B}$.

 In the same way if $x \in X \setminus \overline{B} = \operatorname{Ext}(B)$ then it has a neighborhood in $X \setminus B$ hence $X \setminus B$ is open and hence $x \in \operatorname{Int}(X \setminus B)$ this implies that $X \setminus \overline{B} \subseteq \operatorname{Int}(X \setminus B)$.

Therefore $\operatorname{Int}(X \setminus B) = X \setminus \overline{B}$.

4

- (a) We know that $\bigcap_{A\in\mathcal{A}}\overline{A}$ is a closed set where $\bigcap_{A\in\mathcal{A}}A\subseteq\bigcap_{A\in\mathcal{A}}\overline{A}$ but also we know that the closure of $\bigcap_{A\in\mathcal{A}}A$ is the smallest closed set containing $\bigcap_{A\in\mathcal{A}}A$. Therefore it must happen that $\overline{\bigcap_{A\in\mathcal{A}}A}\subseteq\bigcap_{A\in\mathcal{A}}\overline{A}$. Let $\mathcal{A}=\{(0,1),(1,2)\}$ where they are intervals of \mathbb{R} then $\bigcap_{A\in\mathcal{A}}\overline{A}=\{1\}$ and $\overline{\bigcap_{A\in\mathcal{A}}A}=\emptyset$ so we see that $\bigcap_{A\in\mathcal{A}}\overline{A}\not\subseteq\overline{\bigcap_{A\in\mathcal{A}}A}$. Therefore when \mathcal{A} is a finite collection the equality is not preserved.
- (b) We know that $A \subseteq \bigcup_{A \in \mathcal{A}} A$ then $A \subseteq \overline{\bigcup_{A \in \mathcal{A}} A}$ also $\overline{A} \subseteq \overline{\bigcup_{A \in \mathcal{A}} A}$ therefore

$$\bigcup_{A\in\mathcal{A}}\overline{A}\subseteq\overline{\bigcup_{A\in\mathcal{A}}A}$$

Let us assume now that \mathcal{A} is a finite collection. Then we see that $\bigcup_{A\in\mathcal{A}}\overline{A}$ is a closed set and that $\bigcup_{A\in\mathcal{A}}A\subseteq\bigcup_{A\in\mathcal{A}}\overline{A}$ but also we know that $\overline{\bigcup_{A\in\mathcal{A}}A}$ is the smallest closed set that contains $\bigcup_{A\in\mathcal{A}}A$ therefore it must happen that

$$\overline{\bigcup_{A\in\mathcal{A}}A}\subseteq\bigcup_{A\in\mathcal{A}}\overline{A}$$

Hence the equality holds when A is a finite collection.

(c) Let $x \in \operatorname{Int}(\bigcap_{A \in \mathcal{A}} A)$ then there is a neighborhood such that $U \subseteq \bigcap_{A \in \mathcal{A}} A$ hence $U \subseteq A$ for every $A \in \bigcap_{A \in \mathcal{A}} A$ hence because of Proposition 2.8 (a) we have that $x \in \operatorname{Int}(A)$ but since this is true for every A then must be that $x \in \bigcap_{A \in \mathcal{A}} \operatorname{Int}(A)$. Therefore

$$\operatorname{Int}\bigg(\bigcap_{A\in\mathcal{A}}A\bigg)\subseteq\bigcap_{A\in\mathcal{A}}\operatorname{Int}(A)$$

Let us assume now that \mathcal{A} is a finite collection. Then we see that $\bigcap_{A \in \mathcal{A}} \operatorname{Int}(A)$ is an open set and $\bigcap_{A \in \mathcal{A}} \operatorname{Int}(A) \subseteq \bigcap_{A \in \mathcal{A}} A$ but also we know that $\operatorname{Int}(\bigcap_{A \in \mathcal{A}} A)$ is the biggest open set contained in $\bigcap_{A \in \mathcal{A}} A$ therefore it must be that

$$\bigcap_{A\in\mathcal{A}}\operatorname{Int}(A)\subseteq\operatorname{Int}\bigg(\bigcap_{A\in\mathcal{A}}A\bigg)$$

5

Hence the equality holds when \mathcal{A} is a finite collection.

(d) We know that $\bigcup_{A \in \mathcal{A}} \operatorname{Int}(A)$ is open since it's an arbitrary union of open sets and also we see that $\bigcup_{A \in \mathcal{A}} \operatorname{Int}(A) \subseteq \bigcup_{A \in \mathcal{A}} A$ but also we know that $\operatorname{Int}\left(\bigcup_{A \in \mathcal{A}} A\right)$ is the biggest open set contained in $\bigcup_{A \in \mathcal{A}} A$ therefore it must happen that

$$\bigcup_{A \in \mathcal{A}} \operatorname{Int}(A) \subseteq \operatorname{Int}\left(\bigcup_{A \in \mathcal{A}} A\right)$$

Let $\mathcal{A} = \{[0,1], [1,2]\}$ where they are intervals of \mathbb{R} then $\bigcup_{A \in \mathcal{A}} \operatorname{Int}(A) = (0,1) \cup (1,2)$ and $\operatorname{Int}(\bigcup_{A \in \mathcal{A}} A) = (0,2)$ so we see that $\operatorname{Int}(\bigcup_{A \in \mathcal{A}} A) \not\subseteq \bigcup_{A \in \mathcal{A}} \operatorname{Int}(A)$. Therefore when \mathcal{A} is a finite collection the equality is not preserved.

Proof. 2-5

(a) Let $X = [0, \infty) \times \{0\} \subset \mathbb{R}^2$ and $Y = [-1, 1] \times \{0\} \subset \mathbb{R}^2$ such that $f(x) = \sin(1/x)$ for x > 0 and if x = 0 we have that f(0) = 0.

Let $U \subset X$ be an open set such that U is of the form (a,b) which is a basis and since $U \subset (0,\infty)$ and f is continuous in $(0,\infty)$ because of the intermediate value theorem, we have that f(U) is also open, therefore f is an open map.

Let $E = \{1/n : n \in \mathbb{N}\} \cup \{0\}$ we know that $E \subset X$ and E is a closed set then let us consider $f(E) = \{\sin(n) : n \in \mathbb{N}\} \cup \{0\}$ we see that f(E) is a dense set hence if we let $x \in [-1,1]$ such that $x \notin f(E)$ then every neighborhood of x will have a point of f(E) so x is a limit point of f(E) which is not contained in f(E), therefore f(E) is not closed and f is not a closed map.

Let us consider now a sequence $(x_n) \subseteq X$ defined as $x_n = 1/(\pi n + \pi/2)$ we see that $x_n \to 0$ but $f(x_n) = -1$ if n is odd and $f(x_n) = 1$ if n is even hence f does not converge and f is therefore not continuous.

(b) Let $X = \mathbb{R} \times \{0\}$ and $Y = \mathbb{R} \times \{0\}$ such that f(x) = 0 if $x \neq 0$ and f(x) = 1 if x = 0.

Let $E \subset X$ be a closed set then $f(E) = \{0\}$ or $f(E) = \{1\}$ or $f(E) = \{0, 1\}$ in any case they are closed sets since they are singletons hence f is a closed map.

Let $U \subset X$ be an open set then $f(U) \subseteq \{0,1\}$ and we know that neither $\{0,1\}$ nor $\{0\}$ nor $\{1\}$ are open sets hence f is not an open map.

Finally f is not continuous at y = 0 since if we take $\epsilon = 1/2$ we have that |f(x) - f(0)| = |0 - 1| = 1 > 1/2 no matter which $\delta > 0$ we take.

(c) Let $X = \mathbb{R} \times \{0\}$ and $Y = \mathbb{R} \times \{0\}$ such that f(x) = 0 if $x \leq 0$ and $f(x) = \arctan(x)$ if x > 0. We see that f is continuous.

Let $U = (-1,0) \subset \mathbb{R}$ we know U is an open set of X then $f(U) = \{0\}$ but $\{0\}$ is not an open set in $Y = \mathbb{R}$. Therefore f is not an open map.

Let $E = [0, \infty) \subset X$ we know that E is closed in X, also we see that f(E) = [0, 1) but [0, 1) is not an open nor a closed set in $Y = \mathbb{R}$ therefore f is not a closed map.

(d) Let $X = [0, \infty) \times \{0\}$ and $Y = \mathbb{R} \times \{0\}$ such that $f(x) = \arctan(x)$ we see that f is continuous.

Let $U \subset X$ be an open set such that U is of the form (a,b) which is a basis and since $U \subset (0,\infty)$ and f is continuous in $(0,\infty)$ because of the intermediate value theorem, we have that f(U) is also open, therefore f is an open map.

Let $E = [0, \infty) \subset X$ we know that E is closed in X, also we see that f(E) = [0, 1) but [0, 1) is not an open nor a closed set in $Y = \mathbb{R}$ therefore f is not a closed map.

(e) Let $X = \mathbb{R} \times \{0\}$ and $Y = \mathbb{R} \times \{0\}$ such that f(x) = 0 we see that f is continuous.

Let $E \subset X$ be a closed set then $f(E) = \{0\}$ which is a closed set in $Y = \mathbb{R}$ since it is a singleton hence f is a closed map.

Let $U \subset X$ be an open set then $f(U) = \{0\}$ and we know that $\{0\}$ is not an open sets in $Y = \mathbb{R}$ hence f is not an open map.

(f) Let $X = \mathbb{R} \times \{0\}$ and $Y = (-\infty, 1] \cup (2, \infty) \times \{0\}$ such that f(x) = x if $x \le 1$ and f(x) = 2x if x > 1.

Let $U \subset X$ be an open set such that U is of the form (a,b) which is a basis hence it's valid for any open set if $(a,b) \subset (-\infty,1]$ we know that f is continuous in this interval so because of the Intermediate Value Theorem f(U) is an open map and in the same way if $(a,b) \subset (1,\infty)$ then f(U) is open because f is continuous in this interval and the Intermediate Value Theorem. Now suppose (a,b) such that a<1< b then $(a,b)=(a,1]\cup(1,b)$ and we see that f((a,1])=(a,1] which is open in $(-\infty,1]$ since $(-\infty,1]\setminus(a,1]=(-\infty,a]$ which we know is a closed set hence (a,1] is an open set. Also, we have that f((1,b))=(2,2b) which is an open set so in this case f((a,b)) is the union of two open sets i.e. it's an open set. Therefore f is an open map.

Let $E \subseteq X$ be a closed set and let us take a sequence $(y_n) \subseteq f(E)$ such that $y_n \to y$ we want to prove that $y \in f(E)$ which would imply that f(E) is closed. By definition there is $x_n \in E$ such that $f(x_n) = y_n$.

But also we know that $x_n = y_n$ or $x_n = y_n/2$ or a combination of both but only for a finite number of points by the definition of f.

In the first case, this implies that $x_n \to x$ where x = y and since E is a closed set then $x \in E$ but also we know that f is continuous in $(-\infty, 1]$ hence $y \in f(E)$.

Lastly if $x_n = y_n/2$ we have that $x_n \to x/2$ where x/2 = y and since E is a closed set then $x \in E$ but also we know that f is continuous in $(1, \infty)$ hence $y \in f(E)$.

Therefore f is a closed map.

Proof. 2-6

(a) (\Rightarrow) Let f be continuous and let $A \subseteq X$ also $\overline{f(A)}$ is closed on Y hence $f^{-1}(\overline{f(A)})$ is closed on X because f is continuous but also we know that $A \subseteq f^{-1}(\overline{f(A)})$ and since $f^{-1}(\overline{f(A)})$ is closed it must happen that $\overline{A} \subseteq f^{-1}(\overline{f(A)})$ this in turn implies that $f(\overline{A}) \subseteq f(f^{-1}(\overline{f(A)})) \subseteq \overline{f(A)}$.

 (\Leftarrow) Let $B \subseteq Y$ be a closed set we want to show that $A = f^{-1}(B)$ is also closed in X. Given that $f(\overline{A}) \subseteq \overline{f(A)}$ we have that

$$f(\overline{A}) \subseteq \overline{f(A)} = \overline{f(f^{-1}(B))} \subseteq \overline{B} = B$$

since B is closed. Then we have that $f(\overline{A}) \subseteq B$ hence

$$\overline{A}\subseteq f^{-1}(f(\overline{A}))\subseteq f^{-1}(B)=A$$

Therefore A is closed since it contains \overline{A} .

- (b) (\Rightarrow) Let f be a closed map and let A be any set of X we know that $A \subseteq \overline{A}$ then $f(A) \subseteq f(\overline{A})$ but since f is a closed map then $f(\overline{A})$ is closed which implies that the closure of f(A) must be contained in $f(\overline{A})$ i.e. $\overline{f(A)} \subseteq f(\overline{A})$.
 - (\Leftarrow) Let A be a closed set of X we want to prove that f(A) is also closed. Since A is closed we have that $A = \overline{A}$ hence $f(A) = f(\overline{A})$ but we know that $\overline{f(A)} \subseteq f(\overline{A}) = f(A)$ thus the closure of f(A) is contained or equal to f(A) therefore f(A) is closed implying that f is a closed map.
- (c) (\Rightarrow) Let f be continuous and let $B \subseteq Y$ we know that by definition $\operatorname{Int}(B) \subseteq B$ so $f^{-1}(\operatorname{Int}(B)) \subseteq f^{-1}(B)$ we know that $f^{-1}(\operatorname{Int}(B))$ is open since f is continuous and $\operatorname{Int}(B)$ is an open set hence it must also happen that $f^{-1}(\operatorname{Int}(B)) \subseteq \operatorname{Int}(f^{-1}(B))$ since by definition $\operatorname{Int}(f^{-1}(B))$ is the largest open set contained in $f^{-1}(B)$.
 - (⇐) Let $B \subseteq Y$ be an open set we want to prove that $f^{-1}(B)$ is an open set which implies that f is continuous. Since B is open we have that B = Int(B) but also we know that $f^{-1}(B) = f^{-1}(\text{Int}(B)) \subseteq \text{Int}(f^{-1}(B))$ and by definition we know that $\text{Int}(f^{-1}(B)) \subseteq f^{-1}(B)$ therefore $\text{Int}(f^{-1}(B)) = f^{-1}(B)$ which implies that $f^{-1}(B)$ is an open set.
- (d) (\Rightarrow) Let f be an open map and let $B \subseteq Y$ also let us name $C = \operatorname{Int}(f^{-1}(B)) \subseteq f^{-1}(B)$ then $f(C) \subseteq f(f^{-1}(B)) \subseteq B$ where f(C) is open since f is an open map hence it must also happen that $f(C) \subseteq \operatorname{Int}(B)$ since $\operatorname{Int}(B)$ is the biggest open set contained in B so we have that $\operatorname{Int}(f^{-1}(B)) = C \subseteq f^{-1}(f(C)) \subseteq f^{-1}(\operatorname{Int}(B))$.
 - (\Leftarrow) Let $A \subseteq X$ be an open set we want to prove that f(A) is an open set too which implies that f is open. Since f(A) is a set of Y we know that $\operatorname{Int}(f^{-1}(f(A))) \subseteq f^{-1}(\operatorname{Int}(f(A)))$ also we have that $\operatorname{Int} A \subseteq \operatorname{Int}(f^{-1}(f(A)))$ then joining this two equations and applying f to both sides we have that

$$f(A) = f(\operatorname{Int}(A)) \subseteq f(f^{-1}(\operatorname{Int}(f(A)))) \subseteq \operatorname{Int}(f(A))$$

where we used that Int(A) = A since A is an open set. Therefore we have that $f(A) \subseteq Int(f(A))$ but also by definition we know that $Int(f(A)) \subseteq f(A)$ which implies that Int(f(A)) = f(A) thus f(A) is an open set and f is an open map.