TEST CODE 1 – Has all of the instructions defined by the project requirement (V1).

ADVANCED HARDWARE DESIGN (TEAM 5)

TENZING RABGYAL

	INSTRUCTION	OPCODE	COMMENTS
	(imm values		
	shown as		
	decimal.		
	Convert this to		
	binary for		
	opcode)		
0	Addi r0,r1,9	000001000000001000000000001001	R1 now has 0x9
4	Addi r0,r2,2	000001000000010000000000000010	R2 now has 0x2
8	Subi r1,r1,2	000010000010000100000000000000000000000	R1 now has 0x7
12	Addi r1,r2,1	000001000010001000000000000000000000000	R2 now has 0x8
16	Or r1,r2,r3	0000000001000100001100000000111	R3 now has 0xF
20	And r2,r3,r4	000000001000011001000000000101	R4 now has 0x8
24	Andi r3,r5,11	00001100011001010000000000001011	R5 now has 0xB
28	Ori r3,r6,11	00010000011001100000000000001011	R6 now has 0xF
32	Sub r2,r1,r1	0000000010000010000100000000011	R1 now has 0x1
36	Nor r1,r2,r7	0000000001000100011100000001001	R7 now has 0xFFFFFF6
40	Shl r1,r8,2	000101000010100000000000000000010	R8 now has 0x4
44	Sw r1,r8,4	0010000001010000000000000000100	Location 5 now has the 0x4
48	Lw r1,r9,4	00011100001010010000000000000100	R9 now has 0x4
52	Add r9,r9,r9	0000001001010010100100000000001	First Time: R9 now has 0x8
			Second Time: R9 now has 0x10
56	Beq r9,r2,-8	00101001001000101111111111111111	First Time: Since R9 == R2. Branch to prev ins.
			Second Time: R9 now has 0x10. Go to next ins.
60	Addi r0,r10,3	00000100000010100000000000000011	R10 now has 0x3
64	Addi r0,r11,1	000001000000101100000000000000001	R11 now has 0x1
68	Addi r11,r11,1	000001010110101100000000000000001	First Time: R11 now has 0x2
			Second Time: R11 now has 0x3
72	Bne r10,r11,-8	00101101010010111111111111111111	First Time: Since R10 != R11. Branch to prev ins.
			Second Time: R10 == R11. Go to next ins.
76	Addi r0,r12,1	000001000000110000000000000000001	R12 now has 0x1
80	Addi r12,r12,1	000001011000110000000000000000000000000	First Time: R12 now has 0x2.
			Second Time: R12 now has 0x3.
84	Blt r12,r10,-8	00100101100010101111111111111111	First Time: Since R12 < R10. Branch to prev ins.
			Second Time: R12 == R10. Go to next ins.
88	Jmp 96	0011000000000000000000000011000	Jumps to 96 (PC Value). Will skip the next instruction.
92	Addi r0,r14,255	0000010000001110000000011111111	THIS INSTRUCTION WILL NOT BE EXECUTED
96	Addi r0,r15,170	0000010000001111000000010101010	R15 now has 0xAA
100	Hal	111111000000000000000000000000000000000	Program end.

NOTE: All registers and dmem locations have 0x0 value prior to this program's execution.

NOTE: For jump and branch instructions, divide the decimal value by 4 before converting it to binary. This is done to negate the fact that MIPS concatenates "00" at the end of these values.

REGISTER AND DMEM VALUES AFTER THIS PROGRAM FINISHES

REGISTER/DMEM	VALUE (in hex)
r1	0x00000001
r2	0x00000008
r3	0x000000F
r4	0x00000008
r5	0x000000B
r6	0x000000F
r7	0xFFFFFF6
r8	0x00000004
r9	0x00000010
dmem location = 5	0x00000004
r10	0x00000003
r11	0x00000003
r12	0x00000003
r15	0x000000AA

NOTE: Registers and dmem locations that are not shown on the table above have 0x0 value.

ASSEMBLY CODE

addi r0,r1,0000000000001001 addi r0,r2,0000000000000010 addi r1,r2,0000000000000001 or r1,r2,r3 and r2,r3,r4 andi r3,r5,0000000000001011 ori r3,r6,000000000001011 sub r2,r1,r1 nor r1,r2,r7 shl r1,r8,0000000000000010 sw r1,r8,0000000000000100 lw r1,r9,0000000000000100 add r9,r9,r9 beq r9,r2,1111111111111110 addi r0,r10,0000000000000011 addi r0,r11,0000000000000001 addi r11,r11,0000000000000001 bne r10,r11,1111111111111110 addi r0,r12,0000000000000001 addi r12,r12,0000000000000001 blt r12,r10,1111111111111110 jmp 0000000000000000000011000 addi r0,r14,000000011111111 addi r0,r15,0000000010101010 hal

OPCODE

```
"00000100","00000001","00000000","00001001",
"00000100","00000010","00000000","00000010",
"00001000","00100001","00000000","00000010",
"00000100","00100010","00000000","00000001",
"00000000","00100010","00011000","00000111",
"00000000","01000011","00100000","00000101",
"00001100","01100101","00000000","00001011",
"00010000","01100110","00000000","00001011",
"00000000","01000001","00001000","00000011",
"0000000","00100010","00111000","00001001",
"00010100","00101000","00000000","00000010",
"00100000","00101000","00000000","00000100",
"00011100","00101001","00000000","00000100",
"00000001","00101001","01001000","00000001",
"00101001","00100010","111111111","11111110",
"00000100","00001010","00000000","00000011",
"00000100","00001011","00000000","00000001",
"00000101","01101011","00000000","00000001",
"00101101","01001011","111111111","11111110",
"00000100","00001100","00000000","00000001",
"00000101","10001100","00000000","00000001",
"00100101","10001010","11111111","11111110",
"00110000","00000000","00000000","00011000",
"00000100", "00001111", "00000000", "10101010",
```