Seminar on Topological Dynamics of Definable Group Actions

Section1

March 17, 2022

1 Lookback

Definition 1.1.

- 1. V is a homogeneous definable G-set in M, if $\varphi_V(M) = V$, and $\forall v_1 v_2 \in V \exists g \in G(g(v_1) = v_2)$
- 2. G-flow X is point transitive if for some $x_0 \in X$, its G-orbit is dense, i.e., $\operatorname{cl}(o(x_0)) = X$.
- 3. E is a G-invariant relation on X, if $\forall x, y \in X$, xEy implies g(x)Eg(y), for all $g \in G$.
- 4. E is a btde relation on $V^{\mathfrak{C}}$, if E is type definable over $M \supseteq V$ with bounded number of classes, i.e., there is (partial) type p(x,y) over M such that $E = \{(x,y) : V^{\mathfrak{C}} \models \varphi(x,y), \varphi \in p\}$ and $|V^{\mathfrak{C}}/E| < |V^{\mathfrak{C}}|$.
- 5. $p \in X$ is almost periodic iff cl(Gp) is a minimal flow.

Proposition 1.2. If V is a homogeneous G-set, then the flow V_E is point transitive. $S_G(M)$ is a universal point transitive G-flow.

2 Generic and weak generic types

Assume $U \subseteq V$. For $A \subseteq G$, by AU we mean $\bigcup_{g \in A} gU$.

Definition 2.1.

- 1. U is generic for G on V, if for some finite $A \subseteq G$, V = AU
- 2. U is weak generic, if for some non-generic $U' \subseteq V$, $U \cup U'$ is generic.
- 3. formula $\varphi(x)$ over M is [weak] generic, if $\varphi(M) \cap V$ is [weak] generic.
- 4. type p(x) is [weak] generic, if every formula $\varphi(x) \in p(x)$ is [weak] generic.

Remark 2.2.

- 1. U is weak generic iff for some finite $A \subseteq G$, V AU not generic.
- 2. if U definable, then U weak generic iff for some non-generic definable $U' \subseteq V$, $U \cup U'$ is generic.

Proof.

- (1) \Rightarrow : U is weak generic, so for some A, U', $V = A(U \cup U')$, so V AU = AU'. U' not generic, so AU' not generic.
- (1) \Leftarrow : for some finite A, V AU not generic, claim $U \cup (V AU)$ generic. let e be identity in G, then $A' = A \cup \{e\}$ is finite, and $A'(U \cup (V AU)) \supseteq AU \cup (V AU)$.

• (2) V - AU is definable if U is definable.

Definition 2.3. Assume X is a point transitive G-flow, $p \in X$. Say p is [weak] generic if its every open neighbourhood is [weak] generic.

Remark 2.4. in the case $X = S_G(M)$, close sets on X are in the form $[\varphi] = \{p \in S_G(M) : \varphi \in p\}$. and $[\neg \varphi]$ is close, so its complement set is open. every $[\varphi]$ is clopen. For $p \in X$, its open neighbourhood is $[\varphi]$, $[\psi]$,... $(\varphi, \psi \in p)$. Every open neighbourhood of p is [weak] generic is the same as every formula in p is [weak] generic.

Definition 2.5. Given a point transitive G-flow X, let Gen(X) and WGen(X) denote the sets of generic and weak generic points in X. When $X = S_V(M)$, denote Gen(X) and WGen(X) by $Gen_V(M)$ and $WGen_V(M)$.

Remark 2.6.

- 1. $Gen(X) \subseteq WGen(X)$.
- 2. And if Gen(X) not empty, then WGen(X) = Gen(X).

Proof. (1) is obvious.

(2) if not, some definable generic X can be divided into two non-generic definable A and B. If p is a generic point, there is some $g \in G$ such that $p \in gX$. But either gA or gB witness p not a generic point, contradiction.

Lemma 2.7. Assume $f: X \to Y$ is a surjective morphism of point transitive G-flows. Then $f[Gen(X)] \subseteq Gen(Y)$ and f[WGen(X)] = WGen(Y).

Proof. For any $f(x) \in f[Gen(X)]$, any open neighbourhood containing f(U), U is open neighbourhood of x in X, its finite translations cover X. So finite translations of f(U) covers f(X) = Y.

Corollary 2.8. Assume E is a G-invariant btde-relation on $V^{\mathfrak{C}}$ and $a \in V^{\mathfrak{C}}$.

- 1. a_E is weak generic in V_E iff for some $a' \in [a]_E$, type $\operatorname{tp}(a'/M)$ is weak generic in $S_V(M)$.
- 2. if type $\operatorname{tp}(a/M)$ is generic in $S_V(M)$, then a_E is generic in V_E .
- 3. a_E is generic in V_E iff for every formula $\varphi(x,y) \in E(x,y)$, $\varphi(\mathfrak{C},a)$ is generic for action of G on $V^{\mathfrak{C}}$.
- *Proof.* (1) and (2) follows from that there is surjective morphism form $S_V(M)$ to V_E .
- (3) by definition, closed sets in V_E are in the form of $\pi[U]$, where U is a type definable subset of $V^{\mathfrak{C}}$, π maps elements in $V^{\mathfrak{C}}$ to its equivalence class. open sets in V_E are image of definable sets and image of complements of type definable sets. Claim a_E is generic in V_E iff for every $\varphi(x,y) \in E(x,y)$, the set $\bigcup \{[b]_E : [b]_E \subseteq \varphi(\mathfrak{C},a)\}$ is generic in $V^{\mathfrak{C}}$.
 - \Rightarrow : clearly holds.
- \Leftarrow : suppose $\varphi(x,y), \varphi'(x,y) \in E(x,y)$ and $\varphi'(x,y) \wedge \varphi'(y,z) \vdash \phi(x,z)$. $\varphi'(\mathfrak{C},a)$ is generic in $V^{\mathfrak{C}}$. For any x, if $\mathfrak{C} \models \varphi'(x,a) \wedge E(x,y)$, there is $\mathfrak{C} \models \varphi(y,a)$. So $\varphi'(\mathfrak{C},a) \subseteq \bigcup \{[b]_E : [b]_E \subseteq \varphi(\mathfrak{C},a)\}$.

Remark 2.9. $p \in X$ is almost periodic iff for every open $U \ni p$, the set cl(Gp) is covered by AU for some finite $A \subseteq G$.

Proof. \Leftarrow : prove minimality of $\operatorname{cl}(Gp)$. suppose $q \in \operatorname{cl}(Gp)$ and open $U \ni p$. So finite translations AU covers $\operatorname{cl}(Gp)\ni q$, thus there is $g\in A\subseteq G$ such that $q\in gU$. That is $g^{-1}q\in U$, U meets Gq. Thus we find any open neighbourhood meets Gp also meets Gq, so $\operatorname{cl}(Gp)\subseteq\operatorname{cl}(Gq)$.

 \Rightarrow : Let open $U \ni p$, then GU is open, $\operatorname{cl}(Gp)-GU$ is closed and G-invariant, hence a G-flow. By minimality of $\operatorname{cl}(Gp)$, $\operatorname{cl}(Gp)-GU$ must be empty. By compactness(?), finite translations of U covers $\operatorname{cl}(Gp)$.

Lemma 2.10. Assume X is a point transitive G-flow and $p \in X$.

- 1. open $U \subseteq X$ is generic iff U meets every minimal subflow in X.
- 2. p is generic iff every open $U \ni p$ meets every minimal subflow in X.
- 3. p is weak generic iff every open $U \ni p$ meets some minimal subflow in X.

Proof.

- 1. \Rightarrow : U is generic, so AU covers X for some finite $A \subseteq G$, also every minimal subflow in X. if gU meets some minimal subflow at p, then U meets the same subflow at $g^{-1}p$.
 - \Leftarrow : U is open, so GU is open and X-GU is closed and G-invariant, hence a G-flow. For U meets every minimal flow, so X-GU cannot contain any minimal flow, so it can only be empty. GU covers X. (?)By compactness, finite translations of U covers X, so U is generic.

- 2. follows from 1.
- 3. \Rightarrow : If not ,some weak generic U disjoint from any minimal subflow in X. (?)By regularity of X, we can assume $\operatorname{cl}(U)$ is such. If $\operatorname{cl}(GU)$ meets some subflow at q, then $\operatorname{cl}(U)$ meets the same subflow at $g^{-1}q$. So $\operatorname{cl}(GU)$ is also disjoint from any minimal subflow, equivalently, X- $\operatorname{cl}(GU)$ meets every minimal subflow. By 1., X- $\operatorname{cl}(GU)$ is generic. But U is weak generic, so $X GU \supseteq X \operatorname{cl}(GU)$ is not generic. Contradiction. Hence weak generic U must meet some minimal flow.

 \Leftarrow : Let open U meets a minimal flow V, choose open U' meeting V with $\operatorname{cl}(U') \subseteq U$. $V - \operatorname{cl}(GU')$ is a G-flow, by minimality of V, it must be empty. (?)By compactness, there is finite $A \subseteq G$ such that $V \subseteq AU'$. Thus $X - \operatorname{cl}(AU')$ does not meet minimal flow V, hence not generic, $X - AU \subseteq X - \operatorname{cl}(AU')$ is not generic, so U is weak generic.

Corollary 2.11. WGen(X) is the closure of the union of all minimal flows in X.

Corollary 2.12. Assume Gen(X) is not empty. Then Gen(X) = WGen(X) is the only minimal flow in X.

Proof. Any point from a minimal flow is generic, so its every neighbourhood meets every minimal flow. But distinct minimal flows disjoint, so there is only one minimal flow. \Box

Definition 2.13. Say a closed set $C \subseteq X$ is almost generic, if every open $U \supseteq C$ is generic. Let MGen(X) denote the family of all minimal closed almost generic sets $C \subseteq X$.

Remark 2.14.

- 1. $WGen(X) = cl(\bigcup MGen(X))$.
- 2. Every subflow $Y \subseteq X$ meets every closed almost generic set $C \subseteq X$.

Proof.

- 1. \supseteq : Suppose not, then take $p \in C WGen(X)$ for some minimal almost generic C, let $U \ni p$ open, with cl(U) disjoint from WGen(X). So U is not weak generic. Let C' = C U, then for every open $U' \supseteq C'$, $C \subseteq U \cup U'$. C is almost generic, so $U \cup U'$ is generic. U is not weak generic, so U' is generic, therefor C' almost generic, contradicting the minimality of C.
 - \subseteq : For $p \in WGen(X)$, let $U \ni p$ open, $U' \ni p$ open with $\operatorname{cl}(U') \subseteq U$, thus U' weak generic. Then there is finite $A \subseteq G$ such that X AU' not generic. So open set $X A \cdot \operatorname{cl}(U')$ is not generic, thus almost generic sets cannot be subset of $X A \cdot \operatorname{cl}(U')$. So $A \cdot \operatorname{cl}(U')$ meets every minimal almost generic set C, so does AU. Or, for some $a \in A$, U meets $a^{-1}C$. Note that $a^{-1}C$ is also a minimal almost generic set. If any superset of C is generic, than its a^{-1} translation is still generic, thus $a^{-1}C$ is minimal almost generic. So open neighbourhood $U \ni p$ must meet $\operatorname{cl}(\bigcup MGen(X))$. Hence $p \in \operatorname{cl}(\bigcup MGen(X))$, $WGen(X) \subseteq \operatorname{cl}(\bigcup MGen(X))$.

2. Let C be any almost generic set, and $U \supseteq C$ open, then U is generic, for some finite $A \subseteq G$, AU covers X. There is some $a \in A$ such that aU meets subflow Y, or U meets $a^{-1}Y$. Y is a subflow, so $Y = a^{-1}Y$, Y meets U, so Y meets C. So every subflow meets every almost generic set.

In model theory setting, closed $C \subseteq S_V(M)$ corresponds to a (partial) type(closed sets are defined as image of type definable subsets), minimal closed almost generic sets $C \subseteq S_V(M)$ correspond to maximal generic types over M containing V(x).

If T = Th(M) is stable, then there are generic types in $S_V(M)$, G acts transitively on them, hence there is just one minimal G - flow in $S_V(M)$, consisting of a single orbit. (?)In o-minimal case, when G is S^1 (a circle?) interpreted in the field of reals, the minimal G flow consists of two orbits.

When $G = (\mathbb{R}^n, +)$, there are no generic types in $S_G(M)$, but a rich structure of weak generic types.

Notions of a minimal flow in X and a minimal closed almost generic set $C \subseteq X$ are quite orthogonal: minimal G-flows in X are pairwise disjoint and lie densely in WGen(X), but they need not be pairwise disjoint.

Definition 2.15.

- Say a subset U of M is Borel if $U = \bigcup \{p(M) : p \in B\}$ where B is Borel subset of $S(\emptyset)$.
- A Borel set in a topological space is any set that can be formed from open sets(or, equivalently, closed sets) through countable union, countable intersection, relative complement.

Theorem 2.16. Assume G is a 0-definable group in an \aleph_0 -saturated structure M, covered by countably many Borel sets $X_n, n < \omega$. Then for some finite $A \subseteq G$ and some $n < \omega$ we have $G = A \cdot X_n \cdot X_n^{-1}$.

Proof. Let $r: S_G(M) \to S(\emptyset)$ be the restriction map, and for $n < \omega$ let $Y_n = r^{-1}[B_n]$, where $B_n \subset S(\emptyset)$ is the Borel set determining X_n . Each Y_n is a Borel subset of $S_G(M)$. Let $S \subseteq S_G(M)$ be a minimal G-flow. Countable X_n covers G, so countable Y_n covers $S_G(M)$, $S \subseteq S_G(M)$, therefore we can find some Y_n not meager in S. Choose a $\varphi(x)$ such that U meets S and $Y_n \cap S$ is co-meager (complement is meager) in $U \cap S$, where $U = S_G(M) \cap [\varphi]$. S is minimal flow, so any neighbourhood of its point can cover S by finite translations. There is finite $A \subseteq G$ such that $S \subseteq AU$. Hence $A(Y_n \cap S)$ is co-meager in S. claim

$$G = A \cdot X_n \cdot X_n^{-1}$$

To show this, let $g \in G$. $Y_n \cap S$ is not meager in S, $g \cdot S = S$, so $g(Y_n \cap S)$ is not meager in S, hence it meets $A \cdot (Y_n \cap S)$. So there are $p, q \in (Y_n \cap S)$ such that $g \cdot p = a \cdot q$ for some $a \in A$. Hence $g \in a \cdot q(\mathfrak{C}) \cdot p(\mathfrak{C})^{-1}$. Let q', p' be their restrictions on $S(\emptyset)$, by saturation of M we have $g \in a \cdot q'(M) \cdot p'(M)^{-1}$. $q'(M), p'(M) \subseteq X_n$, hence $g \in a \cdot X_n \cdot X_n^{-1}$.

Proposition 2.17. Assume G is a 0-definable group in an \aleph_0 -saturated structure M, covered by countably many 0-type-definable sets X_n , $n < \omega$. Then there is a finite set $A \subset G$ and $n < \omega$ such that

$$G = \bigcup_{a \in A} (X_{< n} \cdot X_{< n}^{-1})^a$$

where $X_{\leq n} = \bigcup_{i \leq n} X_i$ and $X^a = aXa^{-1}$.