Assignment I (MATH 2201)

Number Theory

- 1. Show that (a+b, a-b) is either 1 or, 2 if and only if (a,b)=1.
- 2. Find all integers n such that $n^2 + 1$ is divisible by n + 1.
- 3. Show that for all odd integers n, gcd(3n, 3n + 2) = 1.
- 4. Prove that the sum of first n natural numbers (n > 2) cannot be prime.
- 5. Prove that $n^2 + 23$ is divisible by 24 for infinitely many n.
- 6. Find all the primes of the form $n^3 1$, for integer n > 1.
- 7. Use Euclidean Algorithm to calculate gcd(a,b) and hence express it as au + bv for some $u,v \in \mathbb{Z}$ for the following a,b:
- (a) gcd(12378, 3054)
- (b) gcd(272, 1479)
- (c) gcd(42823, 6409)
- (d) gcd(1819, 3587)
- 8. Find integers x, y, z satisfying gcd(198, 288, 512) = 198x + 288y + 512z.
- 9. Find the general solution in integers of the equation 56x + 72y = 40.
- 10. Find the general solution in integers of the equation 24x + 138y = 18.
- 11. Find the general solution in integers of the equation 221x + 35y = 11.
- 12. Find $\tau(360)$, $\sigma(360)$, $\tau(1482)$, $\sigma(1225)$, $\tau(1932)$, $\sigma(7007)$.
- 13. Show that $2903^n 803^n 464^n + 261^n$ is divisible by 1897 for all natural numbers n.
- 14. Find the least positive residues in 3^{36} (mod 77).
- 15. Use the theory of congruences to prove that $7|2^{5n+3} + 5^{2n+3}$ for all n > 1.
- 16. Solve the linear congruence (a) $15x \equiv 9 \pmod{18}$ (b) $28x \equiv 63 \pmod{105}$.
- 17. Solve the system of linear congruences
 - (a) $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$
 - (b) $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 4 \pmod{7}$
 - (c) $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$, $x \equiv 5 \pmod{8}$
 - (d) $x \equiv 5 \pmod{6}, x \equiv 4 \pmod{11}, x \equiv 3 \pmod{17}$.
- 18. Find the number of integers less than n and prime to n, when n = 256, 324, 900, 2048, 5040, 7200.
- 19. Find the least positive residue in 2^{41} (mod 23).
- 20. Using congruence find the remainder when $2^{73} + 14^3$ is divided by 11.
- 21. Prove that the eighth power of any integer is of the form 17k or $17k \pm 1$.
- 22. Show that $a^{12} b^{12}$ is divisible by 91 if a and b are both prime to 91.
- 23. If n is a prime > 7 prove that $n^6 n$ is divisible by 504.

- 24. Show that 4(29)! + 5! is divisible by 31.
- 25. Using congruence find the remainder when 4444⁴⁴⁴⁴ is divided by 9.
- 26. Prove that $641|(2^{32}+1)$.
- 27. Prove that $7|(2222^{5555} + 5555^{2222})$.
- 28. If p is a prime, prove that $2(p-3)! + 1 \equiv 0 \pmod{p}$.

POSET and Lattice

- 1. Let S be the set of all lines in 3-space. A relation ρ is defined on S by " $l\rho m$ if and only if l lies on the plane of m" for $l, m \in S$. Examine if ρ is an equivalence relation.
- 2. Define a relation R on the set \mathbb{Z} of all integers by mRn if and only if $m^2 = n^2$. Is R a partial order?
- 3. Define a relation ρ on $\mathbb C$ by " $(a+ib)\rho(c+id)$ if and only if $a\leq c$ and $b\leq d$ " for $a+ib, c+id\in \mathbb C$. Show that ρ is a partial order relation.
- 4. Let D_{30} be the set of all positive divisors of 30. Define a relation " \leq " on D_{30} by " $x \leq y$ if and only if x divides y" for $x, y \in D_{30}$. Prove that (D_{30}, \leq) is a poset. Hence draw the Hasse diagram of the poset.
- 5. Let S be the set of all positive divisors of 72. Define a relation \leq on S by " $x \leq y$ if and only if x is a divisor of y" for $x, y \in S$. Prove that (S, \leq) is a poset. Draw the covering diagram of the poset.
- 6. Define distributive lattice. Give an example. Is the lattice with the following Hasse diagram distributive? Justify.

- 7. Let $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Let $x \leq y$ mean x is a divisor of y. Find the maximal element/elements in the poset (S, \leq) .
- 8. Show that the poset given in the following Hasse diagram is a lattice. Is it distributive and complemented? Justify your answer.

Morphisms, Ring and Field

- 1. Show that the groups $(\mathbb{Z}, +)$ and $(\mathbb{Q}, +)$ are not isomorphic.
- 2. Determine whether the given map ϕ is a homomorphism.
- (a) $\phi: \mathbb{R} \longrightarrow \mathbb{Z}$ under addition given by $\phi(x) = \text{the greatest integer} \leq x$.
- (b) $\phi: \mathbb{R}^* \longrightarrow \mathbb{R}^*$ under multiplication given by $\phi(x) = |x|$.
- (c) Let $M_n(R)$ be the additive group of all $n \times n$ matrices with real entries and $\phi(A) = \det(A)$, $A \in M_n(R)$.
- 3. Show that $8\mathbb{Z}/72\mathbb{Z} \cong \mathbb{Z}_9$.
- 4. Prove that \mathbb{Z}_8 is not a homomorphic image of \mathbb{Z}_{15} .
- 5. Prove that the cancellation law holds in a ring R if and only if R has no divisor of zero.
- 6. Show that the ring of matrices $\left\{ \begin{pmatrix} 2a & 0 \\ 0 & 2b \end{pmatrix} : a, b \in \mathbb{Z} \right\}$ contains divisors of zero and does not contain the unity.
- 7. Examine if the ring of matrices $\left\{\begin{pmatrix} a & b \\ 2b & a \end{pmatrix}: a,b \in \mathbb{R}\right\}$ contains divisors of zero.
- 8. Prove that the ring $\mathbb{Z}[x]$, the ring of all polynomials with integer coefficients is an integral domain.
- 9. Prove that the ring of matrices $\left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$ is a field.
- 10. Prove that the ring of matrices $\left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in \mathbb{Q} \right\}$ is a field.
- 11. Examine if the ring of matrices $\left\{\begin{pmatrix} a & b \\ 2b & a \end{pmatrix}: a,b \in \mathbb{R}\right\}$ is a field.
- 12. Prove that the set S of matrices $\left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} : a, b, c \in \mathbb{Z} \right\}$ is a subring of the ring $M_2(\mathbb{Z})$.
- 13. Prove that the ring $(\mathbb{Z}_n, +, \cdot)$ is an integral domain if and only if n is prime.
- 14. Prove that the ring $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$, the ring of Gaussian integers is an integral domain.
- 15. Prove that \mathbb{Z}_{11} , the ring of all integers modulo 11, is a field. State any theorem that you use. Find the multiplicative inverses of all the non-zero elements of \mathbb{Z}_{11} .
- 16. Let R be a ring. The centre of R is the set $\{x \in R : ax = xa\}$ for all $a \in R$. Prove that the centre of a ring is a subring.
- 17. In a ring $(\mathbb{Z}_n, +, \cdot)$, [m] is a unit if and only if the gcd(m, n) = 1.
- 18. In a ring R with unity $(xy)^2 = x^2y^2 \ \forall x,y \in R$ then show that R is commutative.
- 19. Prove that in a field F, $a^2 = b^2$ implies either a = b or a = -b for $a, b \in F$.
- 20. Find all solutions of the equation $x^2 + x 6 = 0$ in the ring \mathbb{Z}_{14} by factoring the quadratic polynomial.
- 21. Find all solutions of the equation $x^3 2x^2 3x = 0$ in the ring \mathbb{Z}_{12} .
- 22. An element a of a ring R is idempotent if $a^2 = a$.
- (a) Show that the set of all idempotent elements of a commutative ring is closed under multiplication.
- (b) Find all idempotents in the ring $\mathbb{Z}_6 \times \mathbb{Z}_{12}$.
- 23. Let R be a commutative ring with unity of characteristic 3. Compute and simplify $(a+b)^6$ for $a,b \in R$.
- 24. Prove that intersection of two subrings is a subring.