

- Consider classical transposition or permutation ciphers
- Hide the message by rearranging the letter order without altering the actual letters used

- Write message letters out diagonally over a number of rows
- Then read the letters row by row
- Encrypt the message "meet me after the toga party" with a rail fence of depth 2

mematrhtgpry etefeteoaat

Ciphertext: MEMATRHTGPRYETEFETEOAAT

• Think: how to encrypt the above message using rail fence cipher of depth 3?

Rail Fence cipher

- Write message letters out diagonally over a number of rows
- Then read the letters row by row
- Encrypt the message "meet me after the toga party" with a rail fence of depth 3

Rail Fence cipher

- Write message letters out diagonally over a number of rows
- Then read the letters row by row
- Encrypt the message "meet me after the toga party" with a rail fence of depth 3

m t a e h o p t e m f r e g a y e e t t t a r

Ciphertext: MTAEHOPTEMFREGAYEETTTAR

•How to decrypt a ciphertext with 3 rows? ciphertext: CPEERYOURCIMTSUT

→ Plaintext: computersecurity

Rail Fence cipher: Decryption

- How to decrypt a ciphertext
 - Let |row| be the number of rows
 - * Compute the length of the ciphertext |cipher|
 - Compute the number of letters of each row
 - Write down the ciphertext row by row
 - * Read the ciphertext diagonally

Row Transposition Ciphers

- 🔽 A more complex transposition
- Write letters of message out in rows over a specified number of columns
- Then reorder the columns according to some key before reading off the rows
 Read the 3rd column

Rey: 3 4 2 1 5 6 7

Plaintext: a t t a c k p
 o s t p o n e
 d u n t i 1 t
 w o a m x y z

Ciphertext:

TTNAAPTMTSUOAODWCOIXKNLYPETZ

Row Transposition Ciphers

- A more complex transposition
- Write letters of message out in rows over a specified number of columns
- Then reorder the columns according to some key before reading off the rows

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

 how to decrypt a ciphertext using the above key? ciphertext: ATHNIERIPTSISORPNSOCZ

Row Transposition Ciphers: Decryption

 How to decrypt a ciphertext? ciphertext: ATHNIERIPTSISORPNSOCZ

|cipher| = 21, |key| = 7 $\rightarrow |$ row| = 3

Key: 3 4 2 1 5 6 7
Ciphertext: T R A N S P O
S I T I O N C
I P H E R S Z

Plaintext: transpositionciphers

4

Product Ciphers

- Ciphers using substitutions or transpositions are not secure because of language characteristics
- Hence consider using several ciphers in succession to make harder
 - Two substitutions make a more complex substitution
 - Two transpositions make a more complex transposition
 - But a substitution followed by a transposition makes a much harder cipher
 - > This is bridge from classical to modern ciphers

Chapter 3

Block Ciphers and the Data Encryption Standard (DES)

Block Ciphers

- Block ciphers: a block of plaintext is treated as a whole and used to produce a ciphertext block of equal length.
 - Typically, a block size of 64 or 128 bits is used
 - Many current ciphers are block ciphers
 - Broader range of applications
 - *DES (Data Encryption Standard): one of the most widely used cryptographic algorithms, especially in financial applications.

Block Cipher Principles

- A block cipher operates on a plaintext block of n bits to produce a ciphertext block of n bits.
- There are possible different plaintext blocks.

Block Cipher Principles

- A block cipher operates on a plaintext block of n bits to produce a ciphertext block of n bits.
- There are 2ⁿ possible different plaintext blocks
- For the encryption to be reversible (for decryption to be possible), each must produce a unique ciphertext block
- Reversible:

Plaintext	Ciphertext		
00	11		
01	10		
10	00		
11	01		

Block Cipher Principles

- A block cipher operates on a plaintext block of n bits to produce a ciphertext block of n bits.
- There are 2n possible different plaintext blocks,
- for the encryption to be reversible (for decryption to be possible), each must produce a unique ciphertext black
- Irreversible:

Plaintext	Ciphertext		
00	11		
01	10		
10	00		
11	00		

Ideal Block Cipher

- Ideal block cipher: allows for maximum number of possible encryption mappings from the plaintext block.
 - n bits → possible mappings

Ideal Block Cipher

- Ideal block cipher: allows for maximum number of possible encryption mappings from the plaintext block.
 - ♦n bits → 2n! possible mappings
 - ❖Impractical when n is large
 - ≻Each mapping constitutes a key
 - > n=64 \Rightarrow the key size is > 63*2⁶³ -- not practical.

The Feistel Cipher

- The Feistel cipher: approximate the ideal block cipher by utilizing the concept of a product cipher
 - Develop a block cipher with a key length of k bits and a block length of n bits, allowing a total of 2^k possible mappings (rather than 2ⁿ! Mappings)
 - Alternates substitution and permutation
- Most symmetric block ciphers are based on a Feistel Cipher Structure

Data Encryption Standard (DES) Most widely used block cipher in world Developed in 1974 by IBM and the U.S. government The algorithm transforms 64-bit input in a series of steps into a 64-bit output. The same steps, with the same key, are used to reverse the encryption. Use of DES has flourished, especially in financial applications

- Desirable property of any encryption algorithm.
- Small change in either the plaintext or the key should produce a significant change in the ciphertext.
- ❖ Change in 1 bit of the plaintext or the key should produce a change in many bits of the ciphertext.
- Making attempts of guessing keys impossible
- DES exhibits strong avalanche

Avalanche Effec	it .			
	(a) Chan	(a) Change in Plaintext Number of bits		
Two plaintexts:				
♦ P1:	Round	that differ		
00000000 00000000	0	6		
00000000 00000000	2	21		
00000000 00000000	3	35		
00000000 00000000	4	39		
	5	34		
❖ P2:	6	32		
10000000 00000000 00000000	7	31		
00000000 00000000 00000000	8	29		
00000000 00000000	9	42		
• Key K:	10 11	44 32		
• 0000001 1001011 0100100	12	30		
1100010 0011100 0011000	13	30		
0011100 011100 0011000	14	26		
	15	29		
	16	34		

