

Wiring up ion traps for quantum information

Hartmut Häffner

Department of Physics, University of California, Berkeley Institute for Quantum Optics and Quantum Information, Innsbruck, Austria

Motivation

Ion-wire interaction

First experiments

Summary

Quantum bits

Quantum bits

$$|0\rangle$$

$$\alpha |0\rangle + \beta |1\rangle$$

$$|1\rangle$$

Why quantum information?

Schrödinger equation for 300 interacting spins.

Classical computation needs more bits than there are atoms in the universe.

Quantum computers can solve certain tasks much more efficiently than classical computers.

Allows a new view on nature: reduction to information

Experimental challenges

Some examples of quantum control:

• Stern-Gerlach experiment

• NMR

SQUIDs

Full control of complex quantum systems is quite difficult.

Ion trap quantum computing

Ion trap quantum computing

Eight particle entanglement

Häffner et al., Nature 438, 643 (2005)

Scaling of ion trap quantum computers

Scaling of ion trap quantum computers

Two trapped ions ...

Two trapped ions + a wire

Transport of quantum information

Transport of quantum information

No trace of the quantum information should remain in the wire

super cenducting wire

Physics with this set-up

Physics:

- Decoherence in charge transport
- Wire mediated laser cooling to a few μK
- Cooling of LC resonators

Heinzen and Wineland, PRA PRA 47, 2977 (1990).

Technology:

- Scalable quantum computing with trapped ions/electrons
- Hybrid quantum computing
- Quantum detectors

Quantum control

Ion-wire interaction

Experiments

Summary

Ion-resistor interaction

Ion-resistor interaction

Ion-resistor interaction

Coupling

with
$$I=rac{q}{D}\dot{x}$$
, $L_{\mathrm{ion}}=rac{mD^2}{q^2}$, $C_{\mathrm{ion}}=rac{1}{\omega^2L_{\mathrm{ion}}}$

Energy exchange rate:

$$rac{1}{T}=rac{1}{2\pi}rac{q^2}{mD^2}rac{1}{\omega}rac{1}{C_{
m wire}}$$

D.J. Wineland and H.G. Dehmelt, J. Appl. Phys 46, 919 (1975).

D.J. Heinzen and D.J. Wineland, PRA 47, 2977 (1990).

Coupling

Projected numbers:

$$D_{eff} = 3.6 \times 50 \mu m$$

$$ω = 2π X 500 kHz$$

$$C_{\text{wire}} = 6 \text{ fF } (I_{\text{wire}} = 0.5 \text{mm})$$

$$\gamma = 2\pi \times 100 \text{ Hz}$$

Coupling

Current numbers:

$$D_{eff} = 3.6 \times 300 \mu m$$

$$ω = 2π X 500 kHz$$

$$C_{\text{wire}} = 120 \text{ fF } (I_{\text{wire}} = 1 \text{cm})$$

 γ would be $2\pi \times 0.14 \text{ Hz}$

Projected numbers:

$$D_{eff} = 3.6 \times 50 \mu m$$

$$ω = 2π X 500 kHz$$

$$C_{\text{wire}} = 6 \text{ fF } (I_{\text{wire}} = 0.5 \text{mm})$$

$$\gamma = 2\pi \times 100 \text{ Hz}$$

Dissipation in the wire

Trap parameters: $\omega = 2\pi \cdot 500 \text{ kHz}$, $D = 3.6 \cdot 50 \mu \text{m}$, $R = 0.1 \Omega$

Induced current: $I = \frac{q}{D}\dot{x} = \frac{q}{D}\sqrt{\frac{\hbar\omega}{m}} \approx 10^{-16}\,A$ Dissipation rate for motional quantum: $\gamma = \frac{I^2R}{\hbar\omega} \approx 10^{-6}\,\frac{1}{s}$

But what about Johnson noise?

Dissipation in the wire

Trap parameters: $\omega = 2\pi \cdot 500 \text{ kHz}$, $D = 3.6 \cdot 50 \mu \text{m}$, $R = 0.1 \Omega$

Induced current:
$$I = \frac{q}{D}\dot{x} = \frac{q}{D}\sqrt{\frac{\hbar\omega}{m}} \approx 10^{-16} A$$

Induced current: $I = \frac{q}{D}\dot{x} = \frac{q}{D}\sqrt{\frac{\hbar\omega}{m}} \approx 10^{-16}\,A$ Dissipation rate for motional quantum: $\gamma = \frac{I^2R}{\hbar\omega} \approx 10^{-6}\,\frac{1}{s}$

Johnson noise heating

Heating rate :
$$\gamma_{\rm J}=\frac{P_{\rm J}}{\hbar\omega}=\frac{k_{\rm B}T\gamma}{\hbar\omega}\approx 14\frac{1}{s}$$

Expected coupling over 0.5 mm: $2\pi \times 100 \text{ 1/s}$

Three coupled harmonic oscillators:

Three coupled harmonic oscillators:

lion₁, wire, ion₁>

Anything else?

See: J.R. Zurita-Sánchez and C. Henkel, submitted to New J. Phys. (2008).

Quantum control

Ion-wire interaction

Experiments

Summary

A segmented trap

Experimental set-up

Experimental set-up

Experimental set-up

Wire

Separation of trapping and coupling

Ion-wire interaction

Ion-wire interaction

Ion-wire interaction

Quantum sensors

Quantum sensor

Ultimate control and detection

Quantum sensors

Quantum sensor

Ultimate control and detection

Quantum sensors

© Nathan Flowers Jacobs, JILA

Hybrid quantum devices

A vision

Summary

