Master Thesis

F3

Faculty of Electrical Engineering

Part localization for robotic manipulation

César Sinchiguano

Supervisor: Dr Gaël Pierre Écorchard.

May 2019

Acknowledgements

I would like to express my sincere gratitude to

Declaration

I hereby declare that the presented work was developed independently and that I have listed all sources of information used within it in accordance with methodical instructions for observing the ethical principles in the preparation of university theses. Prague, . May 2019

Abstract

The new generation of the collaborative robots allows the use of small robot arms working with human workers, e.g. the YuMi robot, a dual 7-DOF robot arms designed for precise manipulation of small objects. For further acceptance of such a robot in the industry, some methods and sensors systems have to be developed to allow them to perform a task such as grasping a specific object. If the robot wants to grasp an object, it has to localize the object relative to itself. This is a task of object recognition in computer vision, the art of localizing predefined objects in image sensor data. This master thesis presents a pipeline for object recognition of a single isolated model in point cloud. The system uses point cloud data rendered from a 3D CAD model and describes its characteristics using local feature descriptors. These are then matched with the descriptors of the point cloud data from the scene to find the 6-DoF pose of the model in the robot coordinate frame. This initial pose estimation is then refined by a registration method such as ICP. A robotcamera calibration is performed also. The contributions of this thesis are as followr: The syste uses FPFH (Fast Point Feature Histogram) for describing the local region and a hypothesize-and-test paradigm, e.g. RANSAC in the matching process. In contrast to several approaches those whose rely on Point Pair Features as feature descriptors and a geometry hashing, e.g. voting-scheme as matching process.

Keywords: Object Detection, Pose Estimation, Robotics, Point Cloud Data

Supervisor: Dr Gaël Pierre Écorchard. Czech Institute of Informatics, Robotics, and Cybernetics, Office B-323,Jugoslávských partyzánů 3, 160 00 Prague 6

Abstrakt

Nová generace spolupracujících robotů umožňuje použití malých robotických ramen pracujících s lidskými pracovníky, např. robota YuMi, dvojitá robotická ramena 7-DOF určená pro přesnou manipulaci s malými předměty. Pro další přijetí takového robota v průmyslu musí být vyvinuty některé metody a systémy senzorů, které jim umožní provádět úkol, například uchopení určitého objektu. Pokud chce robot uchopit objekt, musí objekt umístit relativně vůči sobě. To je úkol rozpoznávání objektů v počítačovém vidění, což je umění lokalizace předdefinovaných objektů v datech obrazového snímače. Tato diplomová práce představuje potrubí pro rozpoznávání objektů jednoho izolovaného modelu v bodovém mračnu. Systém využívá data z bodového mračna vykreslená z 3D CAD modelu a popisuje jeho charakteristiky pomocí lokálních deskriptorů funkcí. Ty jsou pak porovnány s deskriptory dat z bodového mračna ze scény, aby se 6-DoF pozice modelu v souřadném rámci robota. Tento počáteční odhad pozice je pak vylepšen metodou registrace, jako je ICP. Provádí se také kalibrace robotické kamery. Příspěvky této práce jsou následující: Systém používá FPFH (Fast Point Feature Histogram) pro popis lokální oblasti a hypotézu - a paradigma testu, např. RANSAC v procesu párování. Na rozdíl od několika přístupů k těm, které se spoléhají na vlastnosti Point Pair jako deskriptory vlastností a geometrické hašování, např. hlasovací systém jako proces shody.

Klíčová slova: Detekce objektů, Odhad Pozice, Robotika, Bodová Data

Contents

A List of Notation

1

Figures _ Tables

Appendix A List of Notation

Symbol	Meaning
\mathbb{R}	The real numbers
ICP	Iterative Closest Point
DOF	Degree(s) of Freedom.
CAD	Computer Aided Design.
FPFH	Fast Point Feature Histogram.
PCL	The Point Cloud Library is an open-source library of
	algorithms for point cloud processing tasks and 3D
	geometry processing.
Open3D	Open3D is an open-source library that supports rapid
	development of software that deals with 3D data.
RGB-D Camera	Specific type of depth sensing device that work in
	association with a RGB camera.
RANSAC	Random sample consensus. An iterative method to
	estimate parameters of a mathematical model from a
	set of observed data that contains outliers.
ROS	The Robot Operating System is a set of software
	libraries and tools that help you build robot
	applications.
ToF	Time-Of-Flight denotes a variety of methods that
	measure the time that it takes for an object, particle or
	wave to travel a distance through space.