

Department of Mathematics Academic Year 2023-2024 (Even Semester 2024)

Date	02/12/2024	Time	09:30 AM to 11:30 AM			
TEST	CIE - II	Maximum Marks	10+50			
Course Title	LINEAR ALGEBRA AND PROBAI	BILITY THEORY	Course Code	MA231TC		
Semester	III	Programs	CS, CD, CY, IS			

Instructions

- 1. Answer all questions.
- 2. Mathematics handbook of Second-year B.E. programme is allowed.

PART - A

Sl. no.	Questions					
1	Given $A = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix}$, then singular values of A is/are					
2	If 0 is an eigenvalue of a symmetric matrix $A_{3\times3}$ repeated twice, then $Nullity(A) = $	1	2	2		
3	If X is a discrete random variable with $E[X] = 2$ and $E[X^2] = 5$, then $Var(X + 1) = $	1	2	2		
4	Let $F(x) = \frac{x^2 + k}{25}$, $x = 0, 1, 2, 3$ be the cumulative distribution of a random variable X . The value of k is					
5	Let $\mathcal{C}\left[0,\frac{\pi}{4}\right]$ be the inner product space of continuous functions over $\left[0,\frac{\pi}{4}\right]$ with respect to the inner product defined by $\langle f,g\rangle=\int_0^{\pi/4}f(x)g(x)dx,\ \forall f,\ g\in\mathcal{C}\left[0,\frac{\pi}{4}\right]$. Determine $\ f\ $ where $f(x)=\cos(x)$.					
6	If $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ are the eigen values of a symmetric matrix $A_{2\times 2}$ with respect to the eigen value 1 and 2 respectively, then $A = \underline{}$					
7	Determine c that renders $f(x) = \begin{cases} \frac{x^2}{3}, & -1 < x < c \\ 0, & \text{elsewhere} \end{cases}$ a valid density function.	2	3	2		

PART - B

SI. no.	Questions	M	BT	СО
1	Given the matrix A such that the column vectors are linearly independent and for $X \in \mathbb{R}^4$: $A = \begin{bmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{bmatrix}, X = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}$ i) Obtain an orthonormal basis for column space of A ii) Find the shortest distance from X to $Col(A)$.	10	3	3
2a	Let $u_1 = \begin{bmatrix} 2/3 \\ 1/3 \\ -2/3 \end{bmatrix}$, $u_2 = \begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{bmatrix}$, $u_3 = \begin{bmatrix} 4/\sqrt{45} \\ 2/\sqrt{45} \\ 5/\sqrt{45} \end{bmatrix}$ and $X = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$ i) Show that $B = \{u_1, u_2, u_3\}$ form orthonormal basis for \mathbb{R}^3 . ii) Obtain the coordinate vector of X with respect to the basis B .	4	3	3

Department of Mathematics Academic Year 2023-2024 (Even Semester 2024)

Given $A = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$ i) Obtain a diagonal matrix D and an orthogonal matrix X such that $A = XDX^T$. ii) Hence determine the eigenvalues and eigenvectors of $B = A^2 - 2I$. 3 Obtain the singular value decomposition of the matrix $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. 10 4 4 Two balls are chosen randomly from an urn containing 8 white, 4 black, and 2 orange balls. Suppose that we win Rs. 200 for each black ball selected and we lose Rs. 100 for each white ball selected. Let X denotes our winnings. Determine i) The possible values of X , and the probabilities associated with each value. ii) The expected winning amount. iii) The cumulative distribution of X . Measurements of scientific systems are always subject to variation, some more than others. There are many structures for measurement error, and statisticians spend a great deal of time modeling these errors. Suppose the measurement error X of a certain physical quantity is decided by the density function $f_X(x) = \begin{cases} k(3 - x^2), & -1 \le x \le 1 \\ 0, & \text{Otherwise} \end{cases}$ i) Determine k that renders $f_X(x)$ a valid density function. ii) Find the probability that a random error in measurement is less than $1/2$. The probability density function of a random variable X is given by $f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 \le x \le 2. \\ 0, & \text{Otherwise.} \end{cases}$ i) Determine the cumulative density function $F(x)$ ii) Find $P(X \ge 1.5)$. Given the function $p(x,y) = cxy \text{ for } x = 1, 2, 3; \ y = 1, 2, 3.$ i) Determine c such that $p(x,y)$ is the joint probability mass function of random variables X and Y . ii) Find the marginal distribution of X and Y . iii) Obtain $E[XY]$.		Academic Teal 2020-2024 (Even Semester 2024)				
Two balls are chosen randomly from an urn containing 8 white, 4 black, and 2 orange balls. Suppose that we win Rs. 200 for each black ball selected and we lose Rs. 100 for each white ball selected. Let X denotes our winnings. Determine i) The possible values of X , and the probabilities associated with each value. ii) The expected winning amount. iii) The cumulative distribution of X . Measurements of scientific systems are always subject to variation, some more than others. There are many structures for measurement error, and statisticians spend a great deal of time modeling these errors. Suppose the measurement error X of a certain physical quantity is decided by the density function $f_X(x) = \begin{cases} k(3-x^2), & -1 \le x \le 1\\ 0, & \text{Otherwise} \end{cases}$ i) Determine k that renders $f_X(x)$ a valid density function. ii) Find the probability that a random error in measurement is less than $1/2$. The probability density function of a random variable X is given by $f(x) = \begin{cases} x, & 0 \le x \le 1\\ 2-x, & 1 \le x \le 2.\\ 0, & \text{Otherwise}. \end{cases}$ 5 2 2 2 5 5 2 2 6 1 Determine the cumulative density function $F(x)$ ii) Find $P(X \ge 1.5)$. Given the function $p(x,y) = cxy \text{ for } x = 1, 2, 3; \ y = 1, 2, 3.$ i) Determine c such that $p(x,y)$ is the joint probability mass function of random variables X and Y . ii) Find the marginal distribution of X and Y .	2b	i) Obtain a diagonal matrix D and an orthogonal matrix X such that $A = XDX^T$.	6	3	3	
Suppose that we win Rs. 200 for each black ball selected and we lose Rs. 100 for each white ball selected. Let X denotes our winnings. Determine i) The possible values of X , and the probabilities associated with each value. ii) The expected winning amount. iii) The cumulative distribution of X . Measurements of scientific systems are always subject to variation, some more than others. There are many structures for measurement error, and statisticians spend a great deal of time modeling these errors. Suppose the measurement error X of a certain physical quantity is decided by the density function $f_X(x) = \begin{cases} k(3-x^2), & -1 \le x \le 1\\ 0, & \text{Otherwise} \end{cases}$ i) Determine k that renders $f_X(x)$ a valid density function. ii) Find the probability that a random error in measurement is less than $1/2$. The probability density function of a random variable X is given by $f(x) = \begin{cases} x, & 0 \le x \le 1\\ 2-x, & 1 \le x \le 2.\\ 0, & \text{Otherwise}. \end{cases}$ 5 2 2 2 5 5 2 2 6 3 5 2 2 5 5 2 1 1 5 5 6 Siven the function $p(x,y) = cxy \text{ for } x = 1, 2, 3; \ y = 1, 2, 3.$ i) Determine c such that $p(x,y)$ is the joint probability mass function of random variables X and Y .	3	Obtain the singular value decomposition of the matrix $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}$.	10	4	4	
There are many structures for measurement error, and statisticians spend a great deal of time modeling these errors. Suppose the measurement error X of a certain physical quantity is decided by the density function $f_X(x) = \begin{cases} k(3-x^2), & -1 \le x \le 1\\ 0, & \text{Otherwise} \end{cases}$ i) Determine k that renders $f_X(x)$ a valid density function. ii) Find the probability that a random variable X is given by $f(x) = \begin{cases} x, & 0 \le x \le 1\\ 2-x, & 1 \le x \le 2.\\ 0, & \text{Otherwise.} \end{cases}$ 5 2 2 i) Determine the cumulative density function $F(x)$ ii) Find $P(X \ge 1.5)$. Given the function $p(x,y) = cxy \text{ for } x = 1,2,3; \ y = 1,2,3.$ i) Determine c such that $p(x,y)$ is the joint probability mass function of random variables x and y . ii) Find the marginal distribution of x and y .	4a	Suppose that we win Rs. 200 for each black ball selected and we lose Rs. 100 for each white ball selected. Let <i>X</i> denotes our winnings. Determine i) The possible values of <i>X</i> , and the probabilities associated with each value. ii) The expected winning amount.				
$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 \le x \le 2. \\ 0, & \text{Otherwise.} \end{cases}$ i) Determine the cumulative density function $F(x)$ ii) Find $P(X \ge 1.5)$. Given the function $p(x,y) = cxy \text{ for } x = 1, 2, 3; \ y = 1, 2, 3.$ i) Determine c such that $p(x,y)$ is the joint probability mass function of random variables X and Y . ii) Find the marginal distribution of X and Y .	4b	There are many structures for measurement error, and statisticians spend a great deal of time modeling these errors. Suppose the measurement error X of a certain physical quantity is decided by the density function $f_X(x) = \begin{cases} k(3-x^2), & -1 \le x \le 1\\ 0, & \text{Otherwise} \end{cases}$ i) Determine k that renders $f_X(x)$ a valid density function.				
$p(x,y) = cxy \text{ for } x = 1,2,3; \ y = 1,2,3.$ i) Determine c such that $p(x,y)$ is the joint probability mass function of random variables X and Y . ii) Find the marginal distribution of X and Y .	5a	$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 \le x \le 2. \\ 0, & \text{Otherwise.} \end{cases}$ i) Determine the cumulative density function $F(x)$	5	2	2	
	5b	 p(x,y) = cxy for x = 1,2,3; y = 1,2,3. i) Determine c such that p(x,y) is the joint probability mass function of random variables X and Y. ii) Find the marginal distribution of X and Y. 	5	1	1	

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

				37			,				
	Particulars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Marks Distribution	Test Max Marks	5	15	20	10	5	15	20	10		
	Quiz Max Marks	1	7	2	-	1	5	4	-	-	-