2018 年上海大学社区学院大学物理(2)期中考试试卷(C卷)

应试人 应试人学号 应试人所在班级 分数

- 一、选择题(每题3分共30分)
- 1、(本题 3 分)

若匀强电场的场强为 \vec{E} ,其方向平行于半径为R 的半球面的

轴,如图所示.则通过此半球面的电场强度通量 Φ ,为

(B)
$$2\pi R^2 E$$

(C)
$$\frac{1}{2}\pi R^2 E$$

(D)
$$\sqrt{2}\pi R^2 E$$

(E)
$$\pi R^2 E / \sqrt{2}$$

如图所示,两个同心球壳. 内球壳半径为 R_1 , 均匀带有电荷O; 外球壳半径为 R_2 , 壳的厚度忽 略,原先不带电,但与地相连接。设地为电势零点,则在两球之间、距离球心为r的P点处电场强 度的大小与电势分别为:

(A)
$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$
, $U = \frac{Q}{4\pi\varepsilon_0 r}$.

(B)
$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$
, $U = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{R_1} - \frac{1}{r} \right)$.

(C)
$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$
, $U = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r} - \frac{1}{R_2} \right)$.

(D)
$$E=0$$
, $U=\frac{Q}{4\pi\varepsilon_0 R_2}$.

3、(本题 3 分)

如图所示,半径为R的均匀带电球面,总电荷为O,设无穷远处的电势为零,则球内距离球心 为r的P点处的电场强度的大小和电势为:

(A)
$$E=0$$
, $U = \frac{Q}{4\pi\varepsilon_0 r}$.

(B)
$$E=0$$
, $U = \frac{Q}{4\pi\varepsilon_0 R}$.

(C)
$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$
, $U = \frac{Q}{4\pi\varepsilon_0 r}$

(D)
$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$
, $U = \frac{Q}{4\pi\varepsilon_0 R}$.

4、(本题 3 分)

带有电荷-q的一个质点垂直射入开有小孔的两带电平行板之间,如 图所示. 两平行板之间的电势差为 U, 距离为 d, 则此带电质点通过电场 后它的动能增量等于

5、(本题 3 分)

充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F与两极板间的电压U的关系 是:

- (A) $F \propto U$.
- (B) $F \propto 1/U$.
- (C) $F \propto 1/U^2$.
- (D) $F \propto U^2$.

6、(本题 3 分)

 C_1 和 C_2 两空气电容器并联以后接电源充电, 在电源保持联接的情况

下,在 C_1 中插入一电介质板,如图所示、则

- (A) C₁ 极板上电荷增加, C₂ 极板上电荷减少,
- (B) C₁ 极板上电荷减少, C₂ 极板上电荷增加.
- (C) C_1 极板上电荷增加, C_2 极板上电荷不变.
- (D) C_1 极板上电荷减少, C_2 极板上电荷不变.

7、(本题 3 分)

一个平行板电容器, 充电后与电源断开, 当用绝缘手板将电容器两极板间距离拉大, 则两极板 间的电势差 U_{12} 、电场强度的大小 E、电场能量 W 将发生如下变化:

- (A) U_{12} 减小, E减小, W减小.
- (B) *U*12增大, *E*增大, *W*增大.
- (C) U₁₂增大, E不变, W增大.
- (D) U₁₂减小, E不变, W不变.

两个完全相同的电容器 C_1 和 C_2 , 串联后与电源连接. 现将一各向同性均匀电介质板插入 C_1 中 如图所示,则

- (A) 电容器组总电容减小.
- (B) C_1 上的电荷大于 C_2 上的电荷.
- (C) C_1 上的电压高于 C_2 上的电压 .
- (D) 电容器组贮存的总能量增大.

在点电荷+q 的电场中, 若取图中 P 点处为电势零点 , 则 M 点

10、(本题 3 分)

如图所示, CDEF 为一矩形, 边长分别为 l 和 2l. 在 DC 延长线 上 CA=1 处的 A 点有点电荷 +a, 在 CF 的中点 B 点有点电荷 -a, 若 使单位正电荷从 C 点沿 CDEF 路径运动到 F 点,则电场力所作的功 等干:

(A)
$$\frac{q}{4\pi\varepsilon_0 l} \cdot \frac{\sqrt{5} - 1}{\sqrt{5} - l}$$
 . (B) $\frac{q}{4\pi\varepsilon_0 l} \cdot \frac{1 - \sqrt{5}}{\sqrt{5}}$

(B)
$$\frac{q}{4\pi\varepsilon_0 l} \cdot \frac{1-\sqrt{5}}{\sqrt{5}}$$

(C)
$$\frac{q}{4\pi\varepsilon_0 l} \cdot \frac{\sqrt{3}-1}{\sqrt{3}}$$
 . (D) $\frac{q}{4\pi\varepsilon_0 l} \cdot \frac{\sqrt{5}-1}{\sqrt{5}}$.

二、填空题(每空2分共20分)

11、三个平行的"无限大"均匀带电平面,其电荷面密度都是 $+\sigma$,如图 $+\sigma$ $+\sigma$

所示,则 $A \setminus B \setminus C \setminus D$ 三个区域的电场强度分别为: E_A =

 E_B = .(设方向向右为正)

O 点电势 U= ; P 点电势 U= .

13、一质量为m、电荷为q的小球,在电场力作用下,从电势为U的a点,移动到电势为零的b点.若 已知小球在 b 点的速率为 v_b ,则小球在 a 点的速率 v_a =

14、A、B 两个导体球,相距甚远,因此均可看成是孤立的. 其中 A 球原来带电,B 球不带电,现用

一根细长导线将两球连接,则球上分配的电荷与球半径成 比.

15、带有电荷 q、半径为 r_A 的金属球 A,与一原先不带电、内外半径分别为 r_B 和 r_C 的金属球壳 B 同心放置如图. 则图中 P 点的电场强度

势 U

$\vec{E} =$	如果用导线将 <i>A、B</i> 连接起来,	则 A 球的电
=	. (设无穷远处电势为零)	

16 、一带电荷 q 、半径为 R 的金属球壳,壳内充满介电常量为 ε 的各向同性均匀
电介质,壳外是真空,则此球壳的电势 $U=$
17、在相对介电常量 ε_r = 4 的各向同性均匀电介质中,与电能密度 w_e =2×10 6 J/cm 3
相应的电场强度的大小 $E=$