One-sample t-test

Setup

Suppose $Y_1, Y_2, ..., Y_n$ are i.i.d. $N(\mu, \sigma^2)$ random variables with σ^2 unknown.

- The BLUE for μ is \overline{Y}
- The estimated standard error for \overline{Y} is S/\sqrt{n}

Inference for μ with unknown σ^2

To test

$$H_0: \mu = \mu_0$$
$$H_1: \mu \neq \mu_0$$

the test statistic is

$$t = \frac{\bar{Y} - \mu_0}{\sqrt{S}/\sqrt{n}}.$$
 Under Ho.

$$t \sim t_{n-1}$$

We reject H_0 iff

$$|t| \ge t_{n-1,\alpha/2}$$
 $P(T > t_{\alpha}) = \alpha$

This procedure has a significance level of α .

Proof of hypothesis test

CI for μ with unknown σ^2

The corresponding $100(1-\alpha)\%$ confidence interval for μ is

$$\left(\overline{Y}-t_{n-1,\frac{\alpha}{2}}\frac{S}{\sqrt{n}},\overline{Y}+t_{n-1,\alpha/2}\frac{S}{\sqrt{n}}\right).$$

Proof:

$$P(Y - t_{n-1}, \underline{a} \leq \overline{h}) \leq \mu \leq Y + t_{n-1}, \underline{a} \leq \overline{h})$$

$$= P(-t_{n-1}, \underline{a} \leq \overline{h}) \leq \mu - Y \leq t_{n-1}, \underline{a} \leq \overline{h})$$

$$= P(-t_{n-1}, \underline{a} \leq \overline{h}) \leq Y - \mu \leq t_{n-1}, \underline{a} \leq \overline{h})$$

$$= P(-t_{n-1}, \underline{a} \leq \overline{h}) \leq t_{n-1}, \underline{a} \leq \overline{h}$$

$$= 1 - \alpha$$

$$= 1 - \alpha$$

P-value

The corresponding P-value of the hypothesis test is

 $P(|T| \ge |t|)$ $T \sim t_{n-1}$ observed test statistic

where

$$t = \frac{\bar{y} - \mu_0}{s / \sqrt{n}}$$

is the observed t-statistic and $T \sim t_{n-1}$.

Example 2.6

A new waterjet cutting machine was developed and eight samples were tested. The recorded jet velocities (in m/s) were as follows:

			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
916	891	895	904
913	916	895	885

The developer claims that the new machine produces an average jet velocity of not less than 915m/s. We may assume that jet velocities are approximately normally distributed.

- (a) Find a 95% confidence interval for the true average jet velocity μ for machines of this type.
- (b) Do the sample data provide sufficient evidence to contradict the developer's claim at 2.5% significance level?
- (c) What is the P-value associated with test in part (b)?

Example 2.6 Solution

a)
$$CI = y \pm t_{n-1}, \frac{s}{2} \frac{s}{\sqrt{n}}$$

$$= 901.815 \pm t_{7,0.025} \frac{12.1}{\sqrt{8}} \text{ In R: } 9t(\frac{0.45}{0.975}, 7)$$

$$= 901.815 \pm 2.365 \frac{12.1}{\sqrt{8}}$$

$$= 901.815 \pm 10.11588$$

$$\approx (891.76, 911.99)$$

b)
$$H_0: \mu = 915 \text{ vs } H_a: \mu < 915$$

$$t = \frac{y - \mu_0}{\frac{5}{10}} = \frac{901.875 - 915}{\frac{12.1}{18}} \approx -3.068$$

critical region: t <-tn-1,0 = -t7,0.025 = -2.365

There is sufficient evidence to reject Ho at the 0.025 level of significance.

population	0 ²	n	CI
norma (known	small/large	15 + 2 = 15 P = 15
normal	not known	small	y t t = s
not normal	known	large	y + Za on
not normal	not known	large	y t t = Sh
not normal	known	small	no formula exists
not normal	not known	small	no formula exists