ABES Engineering College, Ghaziabad MODEL PAPER (Odd Semester) 2023-24 B. TECH, [Bronch/Section All]

B.TECH. [Branch/Section:All] SEM: I.

	D.TECH. [Dranch/Section, Anj	. 1.					
Subject Name: Engineering Mathematics-I Subject Code: BAS103 Name:							
Instr	1. Attempt the questions as per the instructions given 2. Assume missing data suitably						
CO1	Statement of CO1: Understand the concept of complex matrices, Eigen values, Eigen vectors and apply the collinear simultaneous equations	ncept of	rank to	evaluate			
CO2 CO3 CO4	Statement of CO2: Remember the concept of differentiation to find successive differentiation, Leibnitz Theoret tracing, and find partial and total derivatives Statement of CO3: Identify the application of partial differentiation and apply for evaluating maxima, minima, Statement of CO4: Remember the concept of Beta and Gamma function; analyze area and volume and Dirichle integral	series ar	ıd Jacobi	ians.			
CO5	Statement of CO5: Apply the concept of Vector Calculus to analyze and evaluate directional derivative, line, so integrals	ırface an	d volum	e			
	Section – A						
Q.1	Attempt all the parts (2 x 7=14)						
	Find characteristic equation of the matrix whose eigen values are 1, 2.	K2	CO1	2			
(b)	About which axes the curve $x^{2/3} + y^{2/3} = a^{2/3}$ is symmetrical?	K2	CO1	2			
(c)	Find the nth derivative of $y = x^{n-1} \log x$	K2	CO2	2			
(d)	The time T of a complete oscillation of a simple pendulum of length L is governed by the equation $=2\pi\sqrt{\frac{L}{g}}$, where g is a constant. Find the approximate error in the calculate value T corresponding to an error of 2% in the value of L.	K2	CO3	2			
(e)	Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{dxdy}{\sqrt{1-x^2}\sqrt{1-y^2}}$	K2	CO4	2			
(f)	Find the constant 'b' such that the vector $(bx+4y^2z)\hat{i}+(x^3\sin z-3y)\hat{j}-(e^x+4\cos x^2y)\hat{k}$ is solenoidal vector.	K2	CO5	2			
(g)	Find the unit normal vector to the surface $(x-1)^2 + y^2 + (z+2)^2 = 9$ at the point $(3,1,-4)$.	K2	CO5	2			
	Section – B						
Q.2	Attempt any three parts of the following $(7 \times 3 = 21)$)					
(a)	Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$	K4	CO1	7			
(b)	If $y = e^{m\cos^{-1}x}$, find the value of y_n at $x = 0$.	K4	CO2	7			
(c)	Find the maximum and minimum distances of the point $(3,4,12)$ from the sphere $x^2 + y^2 + z^2 = 1$.	K4	CO3	7			
(d)	Find the volume of solid surrounded by the surface $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} + \left(\frac{z}{c}\right)^{2/3} = 1$.	K4	CO4	7			
(e)	Verify the divergence theorem for $\vec{F} = (x^3 - yz)\hat{i} + (y^3 - zx)j + (z^3 - xy)k$, taken over the cube bounded by planes $x = 0$, $y = 0$, $z = 0$, $x = 1$, $y = 1$, $z = 1$.	K4	CO5	7			
Section – C							
Q.3	Attempt any one part of the following $(7x 1 = 7)$						

(a)	Find the rank of the following matrix by reducing to normal form: $\begin{bmatrix} 0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1 \end{bmatrix}$.	К3	CO1	7
(b)	Determine the values of λ , μ , such that the following system of equations has (i) Unique solution, (ii) no solution, (iii) Infinite no. of solutions. $x + y + z = 6$, $x + 2y + 5z = 10$, $2x + 3y + \lambda z = \mu$	K4	CO1	7
Q.4	Attempt any one part of the following $(7x 1 = 7)$			
(a)	If $u = \cos^{-1}\left(\frac{x^3 + y^3 + z^3}{ax + by + cz}\right)$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = -2\cot u$. Also evaluate $x^2\frac{\partial^2 u}{\partial x^2} + 2xy\frac{\partial^2 u}{\partial x\partial y} + y^2\frac{\partial^2 u}{\partial y^2}$	K4	CO2	7
(b)	Trace the curve $y^2(2a - x) = x^3$	K4	CO2	7
Q.5	Attempt any one part of the following $(7x 1 = 7)$			
(a)	Expand x^y in power of $(x-I)$ and $(y-I)$ up to the third-degree term and hence evaluate $(1.1)^{1.02}$.	K4	CO3	7
(b)	If u, v, w be the roots of the equation $(x - a)^3 + (x - b)^3 + (x - c)^3 = 0$, then find $\frac{\partial(u, v, w)}{\partial(a, b, c)}$	K4	CO3	7
Q.6	Attempt any one part of the following $(7x 1 = 7)$			
(a)	Change the order of integration in $\int_{0}^{2} \int_{\frac{x^2}{4}}^{3-x} xy dy dx$ and hence evaluate the same.	K4	CO4	7
(b)	Evaluate by changing the variable $\iint_R (x+y)^2 dx dy$, where R is the region bounded by the parallelogram $x+y=0, x+y=2, 3x-2y=0, 3x-2y=3$.	K4	CO4	7
Q.7	Attempt any one part of the following $(7x 1 = 7)$			
(a)	Find the directional derivative of $\phi = x^2 yz + 4xz^2$ at the point $(1, -2, 1)$ in the direction of the vector $2\hat{i} - \hat{j} - 2\hat{k}$. Find also the greatest rate of increase of \emptyset .	K4	CO5	7
(b)	State and Verify Green's theorem by evaluating $\int_C [(x^3 - xy^3)dx + (y^2 - 2xy)dy]$, where C is the square having the vertices at the point $(0,0)$, $(2,0)$, $(2,2)$ & $(0,2)$.	K4	CO5	7