

Ar: WAR * 4TTr2/r

CAS at 17Ar WAR * 4TTr2/17Ar

$$= \frac{d(w_{Ar} \cdot r^2)}{dr} - r'_{A} r_{L} r^2 = 0$$

$$W_{Ar} = - D_e \frac{dC_A}{dr}$$
 for dilute concentrations

$$\frac{d^2C_A}{dr^2} + \frac{2}{r} \frac{dC_A}{dr} - \frac{k_n}{De} \frac{c_n}{C_n} = 0 \quad \text{where} \quad \frac{c_n^2}{c_n^2} = -k_n \frac{c_n^2}{c_n^2}$$

At
$$\Gamma = R$$
 $C_A = C_{AS}$ Boundary value problem
$$\Gamma = 0 \qquad \frac{dC_A}{dr} = 0 \qquad \text{or} \qquad C_A \text{ is finite at } \Gamma = 0$$

let
$$W_{k} = \frac{dC_{k}}{dr}$$

then
$$\frac{dW_A}{dr} = \frac{d^2C_A}{dr^2}$$

$$\frac{dW_A}{dr} = -\frac{2}{r}W_A + \frac{k_n}{De}C_A^n$$

$$\frac{dC_A}{dr} = W_A$$

Let
$$W_{A} = \frac{dC_{A}}{dr}$$

Let $W_{A} = \frac{dC_{A}}{dr}$

Let $W_{A} = \frac{dC_{A}}{dr}$

Let $W_{A} = \frac{dC_{A}}{dr}$

Let $W_{A} = 0.1 \text{ cm}^{2}/\text{s}$

Results of $W_{A} = 0.5 \text{ cm}$

Let $W_{A} = 0.5 \text{ cm}$

Results of $W_{A} = 0.4 \text{ ls}$

Cas = 0.2 moly

Let $W_{A} = 0.5 \text{ cm}$

Let $W_{A} = 0.5 \text{ cm}$

Results of $W_{A} = 0.4 \text{ ls}$

Let $W_{A} = 0.5 \text{ cm}$

Results of $W_{A} = 0.5 \text{ cm}$

Let $W_{A} = 0.5 \text{ cm}$

Results of $W_{A} = 0.2 \text{ ls}$

Let $W_{A} = 0.5 \text{ cm}$

Results of $W_{A} = 0.5 \text{ cm}$

Let $W_{A} = 0.5 \text{ cm}$

Results of $W_{A} = 0.5 \text{ cm}$

Let $W_{A} = 0.5 \text{ cm}$

Results of $W_{A} = 0.5 \text{ cm}$

Let $W_{A} = 0.5 \text{ cm}$

Results of $W_{A} = 0.5 \text{ cm}$

Let $W_{A} = 0.5 \text{ c$

internal diffusion

$$\frac{PBR}{dFA} = \Gamma_A$$