

CS 6341: Robotics

Professor Yu Xiang

The University of Texas at Dallas

Robot Kinematics

 The relationship between a robot's joint coordinates and its spatial layout

https://www.marginallyclever.com/2020/04/gradient-descent-inverse-kinematics-for-6dof-robot-arms/

ullet Forward kinematics of a robot: calculation of the position and orientation of its end-effector from its joint coordinates eta

Recall robot links and joints

- End-effector frame {4}
- Joint angles $(\theta_1, \theta_2, \theta_3)$
- Position and orientation of the endeffector frame in base frame {0}

$$x = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2) + L_3 \cos(\theta_1 + \theta_2 + \theta_3),$$

$$y = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2) + L_3 \sin(\theta_1 + \theta_2 + \theta_3),$$

$$\phi = \theta_1 + \theta_2 + \theta_3.$$

Forward kinematics of a 3R planar open chain.

Forward kinematics of a 3R planar open chain.

- General cases
 - Attaching frames to links
 - Using homogeneous transformations

$$T_{04} = T_{01}T_{12}T_{23}T_{34}$$

$$T_{01} = \begin{bmatrix} \cos\theta_1 & -\sin\theta_1 & 0 & 0\\ \sin\theta_1 & \cos\theta_1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} T_{12} = \begin{bmatrix} \cos\theta_2 & -\sin\theta_2 & 0 & L_1\\ \sin\theta_2 & \cos\theta_2 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{23} = \begin{bmatrix} \cos \theta_3 & -\sin \theta_3 & 0 & L_2 \\ \sin \theta_3 & \cos \theta_3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad T_{34} = \begin{bmatrix} 1 & 0 & 0 & L_3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $T_{i-1,i}$ Depends only on the joint variable $\, heta_i$

Using homogeneous transformations

Need to define the coordinates of frames

Denavit-Hartenberg Parameters

Northwestern Engineering's legacy in robotics started in the 1950s when Dick Hartenberg, a professor, and Jacques Denavit, a PhD student, developed a way to represent mathematically how mechanisms move https://robotics.northwestern.edu/history.html

Denavit-Hartenberg Parameters

- Attach reference frames to each link of an open chain
- Derive forward kinematics using the relative displacements between adjacent line frames
- For a chain with n 1DOF joints, 0,...,n
 - The ground link is 0
 - The end-effect frame is attached to link n

$$T_{0n}(\theta_1,\ldots,\theta_n)=T_{01}(\theta_1)T_{12}(\theta_2)\cdots T_{n-1,n}(\theta_n)$$

$$T_{i,i-1}\in SE(3) \qquad T_{n,n+1} \text{ is constant for end-effector frame \{n+1\}}$$

Denavit-Hartenberg Parameters

Assigning link frames

- $\hat{\mathbf{z}}_{i}$ -axis coincides with joint axis i
- $\hat{\mathbf{z}}_{i-1}$ -axis coincides with joint axis i-1
- Origin of the link frame
 - Find the line segment that orthogonally intersects both the joint axes
 - Origin of frame {i-1} is the intersection of the line and the joint axis i-1
- \hat{x} -axis in the direction of the mutual perpendicular line pointing from (i-1)-axis to i-axis
- \hat{y} -axis given by $\hat{x} \times \hat{y} = \hat{z}$

Denavit-Hartenberg (D-H) Parameters

- Link length: the length of the mutual perpendicular line a_{i-1}
 - Not the actual length of the physical link
- Line twist α_{i-1} the angle from $\hat{\mathbf{z}}_{i-1}$ to $\hat{\mathbf{z}}_i$, measured about $\hat{\mathbf{x}}_{i-1}$
- Line offset d_i
 - Distance from the intersection to the origin of the link-i frame
- Joint angle ϕ_i

the angle from $\hat{\mathbf{x}}_{i-1}$ to $\hat{\mathbf{x}}_i$, measured about the $\hat{\mathbf{z}}_i$ -axis

D-H Parameters

• For an open chain with n 1DOF joints, 4n D-H parameters

- For an open chain with all joints revolute
 - Link lengths a_{i-1}
 - Line twists α_{i-1} constants
 - Line offsets d_i
 - Joint angle parameters are the joint variables ϕ_i (rotation around z-axis: joint axis)

D-H Parameters

- When adjacent revolute joint axes intersect
 - No mutual perpendicular line
 - Link length 0
 - $\hat{\mathbf{x}}_{i-1}$ perpendicular to the plane spanned by $\hat{\mathbf{z}}_{i-1}$ and $\hat{\mathbf{z}}_i$

- When adjacent revolute joint axes are parallel
 - Many possibilities for a mutually perpendicular line
 - Choose the one that is most physically intuitive and results in many zero parameters as possible
- Ground frame {0} and End-Effector frame {n+1}
 - Choose the one that is most physically intuitive and results in many zero parameters as possible

D-H Parameters

Prismatic joints

- \hat{z}_{i} -axis positive direction of translation
- d_i link offset is the joint variable
- ϕ_i joint angle is constant

- \hat{x} -axis in the direction of the mutual perpendicular line pointing from (i-1)-axis to i-axis
- \hat{y} -axis given by $\hat{x} \times \hat{y} = \hat{z}$

• Link frame transformation

$$T_{i-1,i} = \operatorname{Rot}(\hat{\mathbf{x}}, \alpha_{i-1}) \operatorname{Trans}(\hat{\mathbf{x}}, a_{i-1}) \operatorname{Trans}(\hat{\mathbf{z}}, d_i) \operatorname{Rot}(\hat{\mathbf{z}}, \phi_i)$$

- (a) A rotation of frame $\{i-1\}$ about its \hat{x} -axis by an angle α_{i-1} .
- (b) A translation of this new frame along its \hat{x} -axis by a distance a_{i-1} .

(d) A rotation of the new frame formed by (c) about its \hat{z} -axis by an angle ϕ_i .

Link frame transformation

$$T_{i-1,i} = \text{Rot}(\hat{\mathbf{x}}, \alpha_{i-1}) \text{Trans}(\hat{\mathbf{x}}, a_{i-1}) \text{Trans}(\hat{\mathbf{z}}, d_i) \text{Rot}(\hat{\mathbf{z}}, \phi_i)$$

$$= \begin{bmatrix} \cos \phi_i & -\sin \phi_i & 0 & a_{i-1} \\ \sin \phi_i \cos \alpha_{i-1} & \cos \phi_i \cos \alpha_{i-1} & -\sin \alpha_{i-1} & -d_i \sin \alpha_{i-1} \\ \sin \phi_i \sin \alpha_{i-1} & \cos \phi_i \sin \alpha_{i-1} & \cos \alpha_{i-1} & d_i \cos \alpha_{i-1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\hat{y}_{i-1}$$

$$\hat{y}_{i-1}$$

$$\operatorname{Rot}(\hat{\mathbf{z}}, \phi_i) = \begin{bmatrix} \cos \phi_{i-1} & -\sin \phi_{i-1} & 0 & 0 \\ \sin \phi_{i-1} & \cos \phi_{i-1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \operatorname{Trans}(\hat{\mathbf{z}}, d_i) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\operatorname{Trans}(\hat{\mathbf{x}}, a_{i-1}) = \begin{bmatrix} 1 & 0 & 0 & a_{i-1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \operatorname{Rot}(\hat{\mathbf{x}}, \alpha_{i-1}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha_{i-1} & -\sin \alpha_{i-1} & 0 \\ 0 & \sin \alpha_{i-1} & \cos \alpha_{i-1} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

D-H Parameters

i	α_{i-1}	a_{i-1}	d_i	ϕ_i
1	0	0	0	θ_1
2	90°	L_1	0	$\theta_2 - 90^{\circ}$
3	-90°	L_2	0	θ_3

A 3R spatial open chain in its zero position

 α_{i-1} the angle from $\hat{\mathbf{z}}_{i-1}$ to $\hat{\mathbf{z}}_i$, measured about $\hat{\mathbf{x}}_{i-1}$

 ϕ_i the angle from $\hat{\mathbf{x}}_{i-1}$ to $\hat{\mathbf{x}}_i$, measured about the $\hat{\mathbf{z}}_i$ -axis

Yu Xiang

 α_{i-1} the angle from $\hat{\mathbf{z}}_{i-1}$ to $\hat{\mathbf{z}}_i$, measured about $\hat{\mathbf{x}}_{i-1}$ ϕ_i the angle from $\hat{\mathbf{x}}_{i-1}$ to $\hat{\mathbf{x}}_i$, measured about the $\hat{\mathbf{z}}_i$ -axis

An RRRP spatial open chain in its zero position

D-H Parameters

i	α_{i-1}	a_{i-1}	d_i	ϕ_i
1	0	0	0	θ_1
2	90°	0	0	$ heta_2$
3	0	L_1	0	$\theta_3 + 90^{\circ}$
4	90°	0	L_2	$\theta_4 + 180^{\circ}$
5	90°	0	0	$\theta_5 + 180^{\circ}$
6	90°	0	0	θ_6

18

A 6R spatial open chain in its zero position

 α_{i-1} the angle from $\hat{\mathbf{z}}_{i-1}$ to $\hat{\mathbf{z}}_i$, measured about $\hat{\mathbf{x}}_{i-1}$ ϕ_i the angle from $\hat{\mathbf{x}}_{i-1}$ to $\hat{\mathbf{x}}_i$, measured about the $\hat{\mathbf{z}}_i$ -axis

Summary

Forward kinematics

• Denavit-Hartenberg Parameters

Further Reading

 Chapter 4 and Appendix C in Kevin M. Lynch and Frank C. Park.
 Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.

• J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair mechanisms based on matrices. ASME Journal of Applied Mechanics, 23:215-221, 1955.