CLAIMS

We claim:

1	1.	A method comprising:
2		commencing execution of a first set of one or more write instructions,
3		wherein the write instructions of the first set are the width of a
4		processor data bus;
5		aborting the execution of the first set of write instructions;
6		creating a second set of one or more write instructions, in response to the
7		aborting, wherein the write instructions of the second set are the
8		width of an expansion bus; and
9		executing the second set of write instructions.
1	2.	The method of claim 1, wherein the width of the processor bus is 32 bits.
1	3.	The method of claim 1, wherein the width of the expansion bus is 16 bits.
1	4.	The method of claim 1, wherein the second set of write instructions are
2	suital	ble for transmission over the expansion bus.
1	5.	A method comprising:
	٦.	
2		executing a write instruction that writes to a virtual memory address;
3		translating the virtual memory address, wherein translating includes
4		determining whether the virtual memory address maps to an
5		inaccessible physical memory address;
6		generating an abort indication after determining that the virtual memory
7		address maps to an inaccessible physical memory address;
8		performing the following in response to the abort indication,
9		creating multiple write instructions suited for transmission over an
10		expansion bus; and
11	execı	uting the multiple write instructions.

- 1 6. The method of claim 5, wherein the expansion bus is 16 bits wide.
- 1 7. The method of claim 6, wherein the write instruction is a 32-bit write
- 2 instruction.
- 1 8. The method of claim 6, wherein the write instruction is wider than the
- 2 expansion bus.
- 1 9. An apparatus comprising:
- a memory management unit to receive a virtual address, the memory
- management unit to determine whether the virtual address maps to an
- 4 inaccessible physical address and to transmit an abort indication if
- 5 the virtual address maps to an inaccessible address; and
- 6 a processor core to receive the abort indication from the memory management unit
- 7 and to execute instructions, the processor core including an abort handler to create
- 8 new instructions in response to receipt of the abort indication, wherein the new
- 9 instructions are the width of an expansion bus.
- 1 10. The apparatus of claim 9, wherein a physical address is inaccessible if it is
- 2 write-protected.
- 1 11. The apparatus of claim 9 further comprising:
- 2 an external expansion device communicatively coupled to the processor core, the
- 3 external expansion device to receive the new instructions over the expansion bus.
- 1 12. The apparatus of claim 11, wherein the expansion bus is 16 bits wide.
- 1 13. The apparatus of claim 9, wherein instructions are 32-bit instructions.
- 1 14. A system comprising:
- 2 a processor, the processor including,

3	a processor core to receive an abort indication, wherein the processor	
4	core includes an abort handler to create new write instructions	
5	suited for transmission over an expansion bus; and	
6	a memory management unit (MMU) coupled to the processor core by	
7	a processor data bus, the MMU to determine whether a virtual	
8	memory address maps to an accessible physical memory	
9	address, the MMU to transmit the abort indication to the	
10	processor core if the virtual memory address does not map to	
11	an accessible physical memory address;	
12	an external expansion device to receive the new write instructions from the	
13	processor over the expansion bus; and	
14	a dynamic random aggress momerty (DPAM) unit counted to the processor, wherein	
	a dynamic random access memory (DRAM) unit coupled to the processor, wherein	
15	the DRAM unit is to store data accessible by the processor.	
1	15. The system of claim 14, wherein the expansion bus is half the width of the	
2	processor data bus.	
1	16. The system of claim 14, wherein the abort indication includes the virtual	
2	memory address.	
1	17. The system of claim 14, wherein the external expansion device is a flash	
2	memory device.	
1	18. A machine-readable medium that provides instructions, which when	
2	executed by a machine, cause the machine to perform operations comprising:	
3	commencing execution of a first set of one or more write instructions,	
4	wherein the write instructions of the first set are the width of a	
5	processor data bus;	
6	aborting the execution of the first set of write instructions:	

7	in response to the aborting, creating a second set of one or more write
8	instructions, wherein the write instructions of the second set are the
9	width of an expansion bus;

- 10 executing the second set of write instructions.
- 1 19. The machine-readable medium of claim 18, wherein the width of the
- 2 processor bus is 32 bits.
- 1 20. The machine-readable medium of claim 18, wherein the width of the
- 2 expansion bus is 16 bits.
- 1 21. The machine-readable medium of claim 18, wherein the second set of write
- 2 instructions are suitable for transmission over the expansion bus.
- 1 22. A machine-readable medium that provides instructions, which when
- 2 executed by a machine, cause the machine to perform operations comprising:
- 3 executing a write instruction that writes to a virtual memory address;
- 4 translating the virtual memory address, wherein translating includes
- 5 determining whether the virtual memory address maps to an
- 6 inaccessible physical memory address;
- 7 after determining whether the virtual memory address maps to an
- 8 inaccessible physical memory address, generating an abort
- 9 indication;
- receiving the abort indication, and
- creating multiple write instructions suited for transmission over an
- 12 expansion bus; and
- 13 executing the multiple write instructions.
- 1 23. The machine-readable medium of claim 22, wherein the expansion bus is 16
- 2 bits wide.

- 1 24. The machine-readable medium of claim 22, wherein the write instruction is a
- 2 32-bit instruction.
- 1 25. The machine-readable medium of claim 22, wherein the write instruction is
- 2 wider than the expansion bus.