Diabetes Prediction with Incomplete Patient Data

Hao Yi Ong, Dennis Wang, Xiao Song Mu *CS 221: Introduction to Aritificial Intelligence Project*

Introduction

- Desirable to have minimal flexing in a building, which is determined by how well the supporting truss structure is built
- A truss is defined by the size and shape of bars, and their attachment points (i.e., nodes) in some physical space $\mathcal{D} \subset \mathbf{R}^2$ (for a 2-D structure)
- Traditional approaches:
- Discretize the space for nodes: $\hat{\mathcal{D}} \subset \mathbf{Z}^2$ (e.g., Ben-Tal & Nemirovski)
- Introduce complicated domain-specific heuristics (e.g., Wang et. al.)

Truss Topology Optimization

Produce

- ullet Set of sized bars ${\cal B}$ that constitute a truss
- Set of attachment points or nodes ${\mathcal X}$ for the bars

Given

- Set of fixed nodes $\mathcal{X}^{\mathsf{fixed}} \subset \mathcal{X}$ representing the truss foundation
- Set of loading forces $\mathcal F$ that the truss is to be designed to support
- ullet Physical space ${\mathcal D}$ that limits where ${\mathcal X}$ can be placed
- Maximum allowable weight of truss W^{max}
- Structural symmetry constraints

To maximize the truss stiffness, which is related to the elastic stored energy $\Theta(\mathcal{F}, \mathcal{U})$, where \mathcal{U} is the set of node deflections under load forces

Problem Formulation

The design variables for our truss optimization are:

- Cross sectional areas $a \in \mathbf{R}^m$, where $a_i \in \mathbf{R}$ is the area of the i^{th} bar
- Coordinates $x \in \mathbf{R}^{2n}$, where $x_j \in \mathbf{R}^2$ are the coordinates of the j^{th} node

Our problem data are:

- Loading forces $F \in \mathbf{R}^{2n}$, where $F_j \in \mathbf{R}^2$ is the load on the j^{th} node
- Material densities $\rho_1, \ldots, \rho_m \in \mathbf{R}$ of bars
- Young's moduli $E_1, \ldots, E_m \in \mathbf{R}$ characterizing the elasticities of the bars
- Bar lengths $L_1, \ldots, L_m \in \mathbf{R}$, which are dependent on node coordinates x

(Cont'd)

- Force mapping matrix $P(\mathcal{X}) \in \mathbf{R}^{m \times 2n}$, which relates loads F to the internal stresses experienced by the bars, $f \in \mathbf{R}^m$; implicit in P is an adjacency matrix relating each bar to its attachment points
- Stiffness matrix $K(\mathcal{X}, a, L)$, which determines the amount of flex in the truss

$$K = \sum_{i=1}^{m} \frac{E_i a_i}{L_i^2} p_i p_i^T,$$

where p_1, \ldots, p_m are the columns of the force mapping matrix P

Our truss design optimization is further characterized by the following variables, whose relations contain all of the physics of the problem:

- Node deflections $u \in \mathbf{R}^{2n}$ due to the truss flexing under loads F, where $u_j \in \mathbf{R}^2$ is the deflection of the j^{th} node; by Hooke's Law, we have the force balance F = Ku
- Internal stress $f_i \in \mathbf{R}$ experienced by each bar due to the node deflections

$$f_i = -\frac{E_i a_i}{L_i^2} p_i^T u, \quad i = 1, \dots, m$$

• Stored elastic energy $\Theta = \frac{1}{2}F^Tu$, which we minimize in order to maximize the truss stiffness

An Alternating Convex Optimization Approach

The minimization of Θ in (a,x) that follows from our formulation above is non-convex. As a heuristic to solve the optimization problem, we first optimize over the bar sizes a, and then over the node coordinates x:

• We perform a linear change of coordinates to cast the bar sizing problem as a second-order cone program (SOCP) in $w, v \in \mathbf{R}^m$:

$$w_i + v_i = -\frac{1}{2} \left(u^T P \right)_i f_i,$$
$$w_i - v_i = a_i$$

The value of $w_i + v_i$ is therefore the spring energy stored in the i^{th} bar

• Holding x constant, find the bar cross sectional areas a that minimize Θ :

minimize
$$\Theta = 1^T (w + v)$$

subject to $Pf + F = 0$
 $M(w - v) \leq d$
 $\left\| \left(v_i, \frac{L_i}{\sqrt{E_i}} f_i \right) \right\|_2 \leq w_i, \quad i = 1, \dots, m$
 $1^T (w - v) \leq W^{max}$ (1)

• We then perform an affine change of coordinates to cast the node positioning problem as an SOCP in $w, v \in \mathbf{R}^m$ (different from above):

$$w_i + v_i = -\frac{1}{2} \left(u^T P \right)_i f_i,$$

$$w_i - v_i = \frac{2p_i^T y_i}{L_i} + 1$$

(Cont'd)

• Holding a constant, find a set of displacements $y \in \mathbf{R}^{2n}$ that "shift" the node coordinates x from their original positions and minimize Θ :

minimize
$$\Theta = 1^T (w + v)$$
 subject to $Pf + F = 0$
$$\frac{1}{2} ((w_i - v_i) - 1) = \frac{p_i^T y_i}{L_i}, \quad i = 1, \dots, m$$

$$\left\| \left(v_i, \frac{L_i}{\sqrt{E_i a_i}} f_i \right) \right\|_2 \le w_i, \quad i = 1, \dots, m$$

$$\|y_i\|_2 \le \epsilon_i, \quad i = 1, \dots, m$$

$$g(y) = 0,$$
 (2)

where g(y) = 0 enforces truss symmetry, and $||y_i||_2 \le \epsilon_i$ restrict node shifts.

In our heuristic, we first discretize the physical space as in traditional approaches to obtain $\hat{\mathcal{D}}$, and alternate between solving (1) and (2) in each iteration:

given
$$\mathcal{X}^{\mathsf{fixed}}$$
, \mathcal{F} , $\hat{\mathcal{D}}$

Generate set of node coordinates x^0 from $\hat{\mathcal{D}}$, set $x := x^0$

repeat

1. Given x , obtain a and Θ_1 as the solution to and objective of (1)

2. Given a , obtain y and Θ_2 as the solution to and objective of (2), set $x := x + y$

3. **break if** Θ_1 and Θ_2 converge

Example: Bridge Design

This problem has 791 variables and 219 constraints. Out of several solvers, SCS was the fastest at 0.3 s per iteration (vs. 2.0 s with SeDuMi at comparable accuracy requirements). SCS's speed advantage scales with problem size (~100 times faster than SeDuMi with 16000 variables, 4000 constraints).

Conclusion

Our alternating convex optimization approach presents a promising tool to solving the non-convex truss design problem. Future work should extend the model to 3-D and compare this approach to other existing methods.

Acknowledgments

We thank Professor Liang and the instructor team, as well as fellow classmates for their help on our project.