Physics-informed machine learning

Emmanuel Skoufris

University of Queensland

July 16, 2024

Discretization invariance

- These definitions are based on (Li et al., 2020).
- For any subset $D \subseteq \mathbb{R}^d$, we call a sequence of increasing, nested sets $D_1 \subseteq D_2 \subseteq \cdots \subseteq D$ satisfying $|D_k| = k$ for every $k \in \mathbb{N}$ a discrete refinement of D if, for arbitrary $\epsilon > 0$, there exists some $K \in \mathbb{N}$ such that

$$D \subseteq \bigcup_{x \in D_L} B_{\epsilon}(x) = \bigcup_{x \in D_L} \{ y \in D : ||x - y||_2 < \epsilon \}.$$

• Let \mathcal{A} be a Banach space of \mathbb{R}^m -valued functions defined on $D \subset \mathbb{R}^d$. Let $\mathcal{G}: \mathcal{A} \to \mathcal{U}$ be an operator, D_L an L-point discretization of D, and $\hat{\mathcal{G}}: \mathbb{R}^{Ld} \times \mathbb{R}^{Lm} \to \mathcal{U}$ some map. For any compact $K \subseteq \mathcal{A}$, we define the discretized uniform risk by

$$R_{K}(\mathcal{G}, \mathcal{G}_{L}, D_{L}) = \sup_{a \in K} \|\hat{\mathcal{G}}(D_{L}, a_{|D_{L}}) - \mathcal{G}(a)\|_{\mathcal{U}}$$

$$= \sup_{a \in K} \int_{D'} [\hat{\mathcal{G}}(D_{L}, a_{|D_{L}})(x) - \mathcal{G}(a)(x)]^{2} dx.$$

Emmanuel Skoufris Physics-informed machine learning 2 / 19

Discretization invariance

• Let $\Theta \subseteq \mathbb{R}^p$ be a parameter subspace, and $\mathcal{G}: \mathcal{A} \times \Theta \to \mathcal{U}$ a parametric map. Given a discrete refinement $\{D_L\}_{L=1}^\infty$ of a domain $D \subseteq \mathbb{R}^d$, \mathcal{G} is said to be discretization invariant if there exists a sequence of maps $\hat{\mathcal{G}}_1, \hat{\mathcal{G}}_2, \ldots$ with $\hat{\mathcal{G}}_L: \mathbb{R}^{Ld} \times \mathbb{R}^{Lm} \times \Theta \to \mathcal{U}$ such that for all $\theta \in \Theta$, and for any compact $K \subseteq \mathcal{A}$,

$$\lim_{L\to\infty} R_K(\mathcal{G}(\cdot,\theta),\hat{\mathcal{G}}_L(\cdot,\cdot,\theta),D_L).$$

• Question: What is the proper interpretation and motivation of this definition in relation to neural operators?

Emmanuel Skoufris

Introduction

- Last week, we examined the ideas of Neural Operators, and, more specifically, the Fourier Neural Operator (FNO).
- These networks construct an operator between the space of boundary/initial conditions to the solution space.
- The benefits of a neural operator include discretization invariance and convergence, which are unique features of these models.
- Now, is there a way to further universalise these solvers, by training them to learn the operator mapping the domain + intial/boundary conditions to the solution?
- The idea of the Geometry-informed Neural Operator is to learn how to map various subdomains of \mathcal{D} to the solution.
- We will need to place some technical restrictions on which geometries we can consider.

Emmanuel Skoufris

Problem setup

- What follows is based on (Li et al., 2020) and (Li et al., 2023).
- Consider some Lipschitz domain $\mathcal{D} \subseteq \mathbb{R}^d$, and some Banach space of real functions \mathcal{A} defined on \mathcal{D} .
- We let $\mathcal{T} \subseteq \mathcal{A}$ be some subset of distance functions such that, for each $T \in \mathcal{T}$, the set

$$S_T = T^{-1}(\{0\}) = \{x \in \mathcal{D} : T(x) = 0\}$$

is a (d-1)-dimensional sub-manifold.

- S_T is the "surface" of interest in our PDE.
- Assume that for each T, S_T is simply-connected, closed (compact with trivial geometric boundary), smooth, and that there exists some $\epsilon > 0$ such that $B_{\epsilon}(x) \cap \partial \mathcal{D} = \emptyset$ for every $x \in S_{\mathcal{T}}$, for every $T \in \mathcal{T}$.

5 / 19

¹Meaning that, at each point x of $\partial \mathcal{D}$, \mathcal{D} is locally the set of points located above some Lipschitz function.

Problem setup

- Let Q_T be the open volume² enclosed by the hypersurface S_T , so that $\partial Q_T = S_T$.
- Finally, define $\Omega_T = D \setminus \bar{Q}_T$, meaning that $\partial \Omega_T = \partial D \cup S_T$.
- ullet Let ${\mathcal L}$ be a differential operator and consider the problem

$$\mathcal{L}(u)(x) = f(x), x \in \Omega_T$$
$$u(x) = g(x), x \in \partial \Omega_T,$$

for some $f \in \mathcal{F}$ and $g \in \mathcal{B}$, where \mathcal{F} and \mathcal{B} are Banach spaces of functions defined on \mathbb{R}^d .

 $^{^{2}}$ We also assume Q_{T} to be a Lipschitz domain

Problem setup

- Let \mathcal{U} denote a Banach space of functions on \mathcal{D} and $U_{\mathcal{T}}$ a Banach space of functions on $\Omega_{\mathcal{T}}$.
- Assume that \mathcal{L} is such that for any such triplet (T, f, g), the PDE has a unique solution.
- Let $\{E_T : \mathcal{U}_T \to \mathcal{U}\}$ denote a family of extension operators that are linear and bounded (i.e. continuous).
- The operator we wish to estimate is

$$\Psi: \mathcal{T} \times \mathcal{F} \times \mathcal{B} \to \mathcal{U},$$

- where $\Psi(T, f, g) = E_T(u)$.
- It is not entirely clear in (Li et al., 2023) why the final output function has to be an extended operator defined on all of \mathcal{D} .

Emmanuel Skoufris Physics-informed machine learning 7 / 19

Example

Geometry-informed neural operator

- The Geometry-informed neural operator (GINO) can be used to estimate Ψ .
- We feed the model a discretization of the geometry, the distance function T, and the initial and boundary conditions evaluated on the discretization.
- A graph neural operator (GNO) constructs a function on a latent regular grid, which is then fed through to a FNO.
- Using the output function of the FNO, a second GNO then constructs the solution function defined on Ω_T .

Geometry-informed neural operator

Graph Neural Operator

 Recall that the innovation of neural operators is to recursively define a series of kernels

$$(K_{\ell}v_{\ell-1})(x) = \int_{\mathcal{D}} \kappa_{\ell}(x,y)v_{\ell-1}(y)dy, x \in \mathcal{D}.$$

- Last time we parameterised the kernel in Fourier space, and leveraged the speed of the FFT algorithm.
- The original parameterisation of κ_ℓ however was defined via a GNN, which we'll now explore.

Emmanuel Skoufris

Graph neural operator

• To simplify calculations, for each x, we reduce the integral to be defined over a ball $B_r(x)$:

$$(K_{\ell}v_{\ell-1})(x) = \int_{B_r(x)} \kappa_{\ell}(x,y)v_{\ell-1}(y)dy, x \in \mathcal{D}$$

for some uniform r > 0.

- Given an *N*-point discretization \mathcal{D}_N , for each $x, y \in \mathcal{D}$, we therefore have that $\kappa_{\ell}(x, y) \in \mathbb{R}^{d \times d}$.
- Therefore, in discrete form, $\kappa_{\ell-1} \in \mathbb{R}^{Nd \times Nd}$, i.e. $\kappa_{\ell-1}$ is a $N \times N$ block matrix, the entries of which we wish to learn.
- To ensure that the GNO is discretization invariant, we keep the matrix entries the same across the N^2 blocks of $\kappa_{\ell-1}$.

Emmanuel Skoufris Physics-informed machine learning 12 / 19

Graph neural operator

- We then form a graph G that has nodes \mathcal{D}_N , with vertex features $v_{\ell-1} \in \mathbb{R}^{N \times d}$, and edge weights $e(x, y) = (x, y, a(x), a(y)) \in \mathbb{R}^{N \times 4d}$.
- The neighbourhoods of each node are given by $\mathcal{N}(x) = B_r(x) \cap \mathcal{D}_N$.
- Then

$$(K_{\ell}v_{\ell-1})(x) = \sum_{y \in N(x)} \kappa_{\ell}(x,y)v_{\ell-1}(y)\mu(y).$$

• Thus, we have a message passing GNN with average aggregation:

$$v_{\ell}(x) = \sigma \left(Wv_{\ell-1}(x) + \sum_{y \in N(x)} \kappa_{\ell}(x,y)v_{\ell-1}(y)\mu(y)\right), \ell = 2,\ldots,L.$$

 One can add as many GNO layers as needed, although we must define the first layer differently, as we'll see.

13 / 19

Graph neural operator

- Given a set of points $\{x_1^{\text{in}}, \dots, x_N^{\text{in}}\} \subseteq S_T \subseteq \mathcal{D}$, we use a GNO-encoder to obtain v_0 , a function defined on a uniform grid, which is then fed through any further GNO layers, and eventually a Fourier layer.
- Let $\{x_1^{\mathsf{grid}}, \dots, x_S^{\mathsf{grid}}\} \subseteq D$ represent the latent grid, for a fixed resolution S. Then we compute:

$$v_0(x^{\mathsf{grid}}) = \sum_{y^{\mathsf{in}} \in B_r(x^{\mathsf{grid}})} \kappa(x^{\mathsf{grid}}, y^{\mathsf{in}}) \mu(y^{\mathsf{in}}),$$

where the weights $\mu(y^{\rm in})$ are also fine-tuned during training.

Fourier operator block

- We feed the output of the GNO into an FNO for simplicity, assume the GNO only contains one layer, so that its output is the function v_0 defined on the latent regular grid.
- Then the output of the FNO is given by

$$(Kv_0)(x) = \sigma(Wv_0(x) + \mathcal{F}^{-1}(\mathcal{F}(\kappa) \cdot \mathcal{F}(v_0)), x \in grid,$$

where \mathcal{F} is the DFT, evaluated via the FFT algorithm, which can be used since this v_0 is defined on a uniform grid.

GNO Decoder

• Given a function defined on the grid, we randomly sample points $\{x_1^{\text{out}}, \dots, x_N^{\text{out}}\} \subseteq \Omega_T$, and compute

$$u(x^{\mathsf{out}}) = \sum_{y^{\mathsf{grid}} \in B_r(x^{\mathsf{out}}) \cap \mathsf{grid}} \kappa(x^{\mathsf{out}}, y^{\mathsf{grid}}) v(y^{\mathsf{grid}}) \mu(y^{\mathsf{grid}}),$$

where we set $\mu(y^{\text{grid}}) = 1/S$ since the grid is uniform.

What's next

- The most obvious shortfalls of the GINO is that it is not physics-informed, and it has not been tested on a diverse range of geometries.
- Speaking generally, it seems that future work in this area will aim to further "universalize" PDE solvers.
- Recall that we went from using a neural network to solve a single instance of a PDE using PINNs, to solving a PDE for a range of boundary conditions, to now solving a PDE for a range of a boundary conditions and geometries.
- To my knowledge, creating a solver adapted to a variety of different differential operators has not yet been considered.

What's next

- We could, for example, let Λ denote some class of differential operators over a space.
- In general, if Λ is continuous, it could be infinite dimensional, although we could fix a basis and take its span, e.g.:

$$\Lambda = \mathsf{span}_{(\mathbb{R} \text{ or } \mathbb{C})} \left\{ \frac{\partial u}{\partial x}, \frac{\partial^2 u}{\partial y^2}, u \frac{\partial^2 u}{\partial x \partial y}, \sin \left(\frac{\partial u}{\partial y} \right) \right\} \cong \mathbb{R}^4.$$

- This basis is an illustrative example only: in reality, one would likely pick basis operators that appear in common differential equations.
- Then, the operator of interest is

$$\Psi: \Lambda \times \mathcal{T} \times \mathcal{F} \times \mathcal{B} \to \mathcal{U}.$$

18 / 19

Emmanuel Skoufris Physics-informed machine learning

References

