

USN:

MOB					IOBIL	ES A	ARE BANNED	
1	M	S	2	2	I	S	1	3 8

DEPARTMENT OF MATHEMATICS

Sub Code:		Sub:	Numerical 7 Differential	Test:	I	
Time:	09.30am to 10.30am	Term:	01-06-2023 TO 09-09-2023		Marks:	30
Date:	12-07-2023	Semester:		Section:	CS/IS/AI&DS/ACS(CS), CS(AI&	AI&ML,

Note: Answer any TWO full questions. Each main question carries 15 marks.

Q.No. Questions		Questions	Blooms	CO's	
					Marks
1. (a)		Using Newton-Raphson method, find a root of $3x - \cos x - 1 = 0$ By taking initial guess as $x_0 = 0.6$. (Carryout 1 iteration).	L1	CO1	2
(0	(b)	Expand $f(x,y) = e^{2x-y}$ in a Taylor series about the point (0,1) up to second degree terms.	L2	CO1	3
	(c)	Find the orthogonal trajectories of the family of curves $x^2 + y^2 + 2\lambda x = 0$ where λ is a parameter.	L3	.CO2	5
	(d)	Find the minimum value of $x^2 + y^2 + z^2$, given that $xyz = a^3$.	L4	CO1	5
2.	(a)	Write the DE of the closed circuit involving L, C and R in series with applied e.m.f.	L1	CO2	2
	(b)	Using Euler's method, solve $\frac{dy}{dx} = 3x^2 + 1$, $y(1) = 2$ by taking $h = 0.5$, $\chi = 2$	L2	CO2	3
	(c)	Solve the system of non-linear equations $\sin xy + x - y = 0$; $y \cos xy + 1 = 0$ using Newton-Raphson method with (1,2) as initial approximation. (Carryout 1 iteration).	L4	CO1	5
	(d)	Using R-K method of 4 th order, solve $\frac{dy}{dx} = 3x + \frac{y}{2}$, $y(0) = 1$ at $y(0.1)$ by taking $h = 0.1$.	L3	CO2	5
	(a)	Verify that the point $(-7,-7)$ is maxima or minima for the function $f(x,y)=x^3+y^3-63(x+y)+12xy$.	L1	CO2	2
	(b)	If the temperature of the air is maintained at 150° c and the temperature of the body cools from 70° c to 40° c in 10 minutes then find when the temperature of the body after 30 minutes.	L2	CO2	3
	(c)	Using Modified Euler's method, solve $\frac{dy}{dx} = x + \sin y$, $y(0) = 1$ at $y(0.2)$ by taking $h = 0.2$.	L3	CO1	5
	(d)	Expand $x^2 \sin^2 x$ in powers of x up to x^4 .	L5	CO1	5