מודלים חישוביים – סיכום

כריעות

<u>טענה:</u> לא כל הפונקציות חשיבות.

- מספר התוכניות הוא בן מניה.
- כל תוכנית מגדירה פונקציה מספרית אחת לכל היותר.
- לכן מספר האלגוריתמים הוא בן מניה בעוד שמספר הפונקציות המספריות אינו בן מניה.

<u>דוגמאות לתוכניות לא חשיבות</u>

```
\begin{split} bb(n) &= max\{[p(\ )]|\ p \in L_0.\ |p| \le n\} \\ mm(n) &= min\{k|\ k \in \mathbb{N}, \forall p \in L_0, |p| \le n \rightarrow [p(\ )] \ne k\} \\ minProg(n) &= min\{|p|\ |\ p \in L_0, [p(\ )] \ge n\} \\ halt(x) &= \{if\ x\ is\ a\ program\ that\ halts\ return\ T, else\ F\} \end{split}
```

רדוקציה

נאמר שיש רדוקציה מפונ' g לפונ' g ונסמן ונסמן g אם באמצעות תכנית שמחשבת את g ניתן לכתוב תכנית שמחשבת את g אם קיימת רדוקציה מg ל-g אז:

- אם f לא חשיבה, אז גם g לא חשיבה. ullet
 - אם g חשיבה, אז גם f חשיבה. \bullet

בעיית ההכרעה

:מאמר ששפה היא **כריעה \ שבעיית ההכרעה היא כריעה** אמ"מ קיימת תכנית p שמקיימת

- p(x) = T אז $x \in L$ אם .1
- p(x) = F אז $x \notin L$.2

R

זוהי מחלקת השפות הכריעות. מחלקה זו סגורה תחת פעולת **המשלים**.

רדוקציית מיפוי

 $A \leq B$:נסמן: $f(x) \in B$ אמ"מ $x \in A$ אמ"מ $x \in A$ אם קיימת פונ' חשיבה f כך ש- $x \in A$ אמ"מ לשפה f נסמן: $f(x) \in B$ אז מתקיים:

- A אם B היא B, אז כך גם \bullet
- RE אינה B אינה RE, אז גם A אינה •
- .Co-RE אינה B אינה Co-RE, אז גם A אינה
 - $.\overline{A} \leq \overline{B} \iff A \leq B \quad \bullet$

בעיות סופיות

כל בעיה עם מספר סופי של בדיקות היא כריעה.

למשל: האם גיל קופטש יהיה חבר כנסת בכנסת ה-19?

משפט רייס

 $P(f) \equiv P(g) \leftarrow f \equiv g$ היא בעיה סמנטית אם P

:השפה L אינה כריעה לפי רייס אם

- (!אינה תוכנית p,x> אינה תוכנית.
 - היא בעיה לא טריויאלית L .2
 - היא בעיה סמנטית L .3

<u>דוגמאות לבעיות לא כריעות לפי רייס:</u>

- $Pconst := \{ \langle p \rangle | p \ halts \ on \leq i \ inputs \}$
- $Fin = \{ \langle p \rangle | p \text{ halts in a finite # of inputs} \}$

<u>שקילות סמנטית</u>

- . אם a,b שקולות סמנטית אז אם $a,b\in S$ אם שפה סמנטית אז אם S
 - סמנטית, אז שניהן בהכרח באותה שפה סמנטית a,b שקולות סמנטית, אז שניהן בהכרח שני, אם

<u>סוגי בעיות סמנטיות:</u>

- $P(\perp) = false$: type A •
- $P(\perp) = true$: type B

משפט הרקורסיה

 $f(c) \equiv c$ קיימת תוכנית $f:Scheme \rightarrow Scheme$ לכל תוכנית $f:Scheme \rightarrow Scheme$

RE

:L היא מחלקת השפות שניתנות להכרעה למחצה, כלומר נאמר שתוכנית p מקבלת\מכריעה למחצה שפה RE

- p(x) = T . x אם p אז p אז p אז $x \in L$
- $p(x) = F \setminus \bot$ אם או לא עוצרת. p דוחה את p אז p אז p אם p

תכונות:

- $L \notin \mathit{Co} \mathit{RE}$ לא בהכרח גורר ש $L \notin \mathit{RE}$
 - $R = RE \cap Co RE$
 - $L \in RE \iff \overline{L} \in CO RE$
 - $L \in R \iff L, \overline{L} \in RE$
- לכל בעיה שהיא או משלימתה ב- \emph{RE} ניתן לעשות רדוקציית מיפוי מ- $halt^*$ (כל התוכניות שמתבדרות לכל \emph{RE} 0)
 - (תוכניות ללא קלט שעוצרות) $halt_0$ יש רדוקציית מיפוי REיש רדוקציית מיפוי לכל בעיה ב-

שפות חשובות:

הסבר	קבוצה	תאור	קלט	שפה
השפה לא כריעה כי אחרת ניתן לפתור איתה את	$RE \setminus R$	עוצרת על הקלט p	< p, x >	halt
בקלטים x על x בקלטים p כי ניתן להריץ את p על x בקלטים bb		X		
ששייכים לשפה ולחכות שיעצרו.				
ניתן להראות כי היא ב- RE בדומה לשפה הקודמת.	$RE \setminus R$	עוצרת על הקלט p		$halt_{arepsilon}$
מראים רדוקציה coRE - כדי להראות שלא ב		הריק	-	

.halt מהשפה			
\overline{halt} ע"י רדוקציה מ- RE ע ולא ב- R	∉ RE	התוכנית p עוצרת	Fin
		על מספר סופי של	
		קלטים	
\overline{halt} ומ <i>halt</i> -רדוקציה מ	∉ RE, coRE	התוכנית p עוצרת	halt*
·		על כל קלט	
לא ב- RE לפי רדוקצייה מ- \overline{halt} . ב- $coRE$ כי ניתן	$coRE \setminus R$	התוכנית p דוחה כל	empty
לעבור על כל הקלטים עד שנתקלים בקלט שעליו		קלט או מתבדרת	
התוכנית עוצרת.			

STEPPER

. זו תוכנית המקבלת p תוכנית, k קלט לתוכנית, k מספר טבעי

תכונית זו מחזירה F אם p עצר על הקלט x בלכל היותר k צעדים, מחזירה עצר על הקלט אוכנית זו היא כמובן כריעה

אנומרביליות

על. $f\colon \mathbb{N} \to L$ שהיא שפה בעלת אנומרטור אם קיימת שפה בעלת שפה

<u>טענה:</u> לכל שפה כריעה למחצה קיים אנומרטור.

<u>טענה:</u> לשפה קיים אנומרטור מונוטוני אמ"מ היא כריעה.

<u>טענה:</u> לכל שפה כריעה למחצה אינסופית קיימת תת שפה אינסופית כריעה. (ניתן ליצור אנומרטור מונוטוני)

סיכום שיטות הוכחה

:בעיה L היא Cבעיה אם

- מציגים אלגוריתם הפותר את הבעיה
 - הבעיה היא סופית
- מראים רדוקציה לבעיה כריעה אחרת
- הבעיה והמשלים שלה כריעים למחצה
 - מראים אנומרטור מונוטוני לשפה

כדי להוכיח שבעיה $\it L$ אינה כריעה ניתן להשתמש ב

- שני את עצמה הוערת את עצמה בשיטת הליכסון, למשל במקרה ה-BB הראנו כי הבעיה סותרת את עצמה
 - רדוקציה (לאו דווקא מיפוי) מבעיה לא כריעה אחרת
 - RICE משפט
 - הצגת הוכחה הדומה להוכחת משפט *RICE*

:בעיה L בעיה למחצה אם

- מציגים אלגוריתם המכריעה למחצה את השפה
 - מציגים רדוקציית מיפוי לבעיה כריעה למחצה
 - אם קיים אנומרטור לשפה

:אינה כריעה למחצה אם L אם

- משתמשים בשיטת הליכסון
- רדוקציית מיפוי מבעיה לא כריעה למחצה

תובנות ממבחנים

- (לפי רייס) אם ידוע כי $L \in R$ אם ידוע כי
- אן נשים לב שלא ניתן לייצר למכונה הזו קלט שלא Σ^* ולכן היא ב-R, אך נשים לב שלא ניתן לייצר למכונה הזו קלט שלא בשפה. באופן סימטרי עבור השפה \emptyset לא ניתן לייצר קלט שמתקבל בשפה.
 - אם המלאה. בהכרח לא השפה המלאה. L אם קיימת שפה \mathbb{L} כך שמתקיים ב \mathbb{L} אז בהכרח לא השפה המלאה. באותו אופן אם $\Sigma^* \leq_m L$ אז בהכרח לא השפה הריקה.
 - שפת כל המכונות שעוצרות שלמה ב-RE

מודלים חישוביים

היסטוריה חישובית חוקית - סדרת קונפיגורציות סופית:

- $(\{a_1, 0, ..., 0, 1 | a_1 \in \mathbb{N}\}$ קונפ' התחלה (במכונת מונים זה C_0 .1
 - .ים חוקי. $\forall i \ (C_i, C_{i+1})$.2
 - . הוא קונפ' סיום \mathcal{C}_n . 3

xעל x אמ"מ אמ"מ היא חישובית חוקית של ריצת אמ"מ x אמ"מ היא היסטוריה חישובית שמחזירה x

מכונת מונים

 $CM = (\Lambda, R)$ מכונת מונים עם k רגיסטרים:

 $.l_i \in \{inc\ j, dec\ j, if\ j=0\ go\ to\ l_s, halt\ |\ 1\leq j\leq k, l_s\in \Lambda\}\ .l_1, \ldots, l_m$ סידרה סופית של הוראות $-r_1, \ldots, r_k$: $-r_1, \ldots, r_k$: $-r_1, \ldots, r_k$: $-r_2$

 $\{(a_1,\ldots,a_k,j)| \forall i \ a_i \in \mathbb{N}, l_j \in \Lambda\}$ במכונת מונים

בהנתן קונפיגורציה ומכונת מונים ניתן להמשיך את החישוב.

<u>תכונות:</u>

- $n \to n^2$ מונים עם 2 מונים לא יכולה לחשב כל דבר, למשל את הפונ': •
- ניתן לסמלץ מכונה עם 4 מונים ע"י מכונה עם 2 מונים: מונה אחד ישמור מספר מהצורה $2^i 3^j 5^k 7^l$ אשר ייצג את מצבי ארבעת המונים במכונה הראשונה.
- $2^{f(n)}$ אם קיימת מכונת מונים עם 3 מונים המחשבת f(n) אז קיימת מכונת מונים עם 2 מונים המחשבת
 - . כל מה שניתן לעשות עם מכונת n מונים, ניתן לעשות עם מכונת 3 מונים.
 - בעיית העצירה במכונת מונים עם מונה אחד אינה כריעה.
- איך בודקים שמכונת מונים עם 2 סרטים מאפסת את אחד המונים במהלך הריצה על קלט ספציפי? מריצים את המכונה m פעמים (מספר שורות הקוד) בהכרח אחד מהמצבים יחזור על עצמו (עקרון דיר החזירים). לכן אם נריץ את המכונה m פעמים * מספר האיברים ברגיסטר המקסימלי בתחילת הריצה, אם לא נגיע ל-0. לעולם לא נגיע.

מכונת טיורינג

$$M = (Q, \Sigma, \Gamma, q_0, q_a, q_r, \delta)$$

קב' סופית של מצבים:Q

(רווח לא שייך לא"ב: Σ

(ב"ב) שייך ל-א"ב) א"ב סרט סופי $\varSigma \subseteq \varGamma$. א"ב סרט סופי : \varGamma

מצב התחלה: q_0

קבוצת מצבים מקבלים: q_a

קבוצת מצבי דחייה : q_r

פונקציית המעבר: δ

N-מספר הקונפיגורציות במכונת טיורינג המשתמשת ב

$$|\Gamma|^N \times N \times |Q|$$
מצב מיקום תוכן

כל הגרסאות הבאות שקולות למכונת טורינג רגילה:

- התחלת הסרט מסומנת
- ניתן להשאר במקום אחרי כתיבה
- מותר לכתוב פעם אחת בלבד על הסרט
 - מספר סרטים
 - סרט דו כיווני
 - גרסה לא דטרמיניסטית •

סיבוכיות במכונות טורינג שונות:

אם מכונת טורינג עם מספר סרטים מכריעה בעיה בעיה בזמן אז קיימת מכונת טורינג עם סרט יחיד המכריעה בעיה באם מכונת טורינג עם מספר סרטים מכריעה בעיה בזמן $O(t^2(n))$.

שקילות מודלים

ניתן להראות כי המודלים הבאים שקולים:

- מכונת טורינג
- מכונת מונים עם 2 מונים
 - RAM
 - Scheme •

מקרים בהם בעיית העצירה כריעה

- אורך התוכנית והקלט מוגבלים •
- קיים חסם למספר הצעדים שעושה תוכנית שעוצרת.
 - יש חסם על מספר הקונפיגורציות

סיבוכיות זמן

Oig(T(n)ig) בתור אוסף הבעיות שניתן להכריע בזמן מגדיר את בתור את בתור אוסף הבעיות שניתן להכריע בזמן $T\colon \mathbb{N} \to \mathbb{N}$ בתור אוסף הבעיות שניתן להכריע בזמן כאשר n הוא אורך הקלט.

$$t_1(n) = O(t_2(n)) \rightarrow DTIME(t_1(n)) \subseteq DTIME(t_2(n))$$

:היררכיית זמן

$$t_1(n) = O\left(\frac{t_2(n)}{\log n}\right) \Longrightarrow DTIME(t_1(n)) \subsetneq DTIME(t_2(n))$$

P המחלקה

$$P = \bigcup_{c \ge 1} DTIME(n^c)$$

NP המחלקה

בעיות שקלות לוידוא – NP

<u>הגדרה</u>

:x שפה שלכל (באורך הקלט) כך שלכל $p\colon \mathbb{N} \to \mathbb{N}$ שפה אם קיים פולינום ווים פולינום שרצה על בזמן פולינומיאלי

$$x \in L \Longleftrightarrow \exists \underset{x \text{ up int } v \in \mathcal{L}}{w} \in \varSigma^{p(|x|)} \ s.t. \ M(x,w) = T$$

<u>:טענה</u>

$$P \subseteq NP \subseteq EXP = \bigcup_{c \ge 1} DTIME(2^{n^c})$$

רדוקציית מיפוי פולינומיאלית

 $x \in A \Leftrightarrow f(x) \in B$ -נסמן $A \leq B$ אם קיימת פונ' חשיבה ופול' חשיבה $A \leq B$ נסמן

טענה:

$$A\in P(NP)$$
 אז $B\in P(NP)$ אז: אם , $A\leq B$ תהי $A\notin P(NP)$ אם אז $A\notin P(NP)$

NP-Hard

$$NPHard = \{L|\forall L \ \in NP, L \ \leq L\}$$

NP-Complete

 $NPC = \{L \mid L \in NPHard \& L \in NP\}$

טענה

 $B\in NPC$ אם $A\leq B$ -ו $B\in NP, A\in NPC$ אם $B\in NPHard$ אם $A\in NPHard$, $A\leq B$ אם

דוגמאות לבעיות

<u>:P-בעיות ב</u>

- בדיקת ראשוניות של מספר
- $(x_1 \lor x_2) \land (x_3 \lor x_4) \land \dots \land (x_{n-1} \lor x_n)$ פסוקית מהצורה : \dot{SAT}
 - מסלול אוילר

<u>:NP-בעיות</u>

- 3SAT
 - SAT •
- Graph Colorability
 - Independent Set •

<u>:NP-ו coNP-בעיות</u>

פשותף. מקבלים שני מספרים וצריך לומר האם יש לשניהם מחלק משותף. *factoring*

<u>:NPC-בעיות</u>

- *3SAT,SAT* ●
- Hamilton Path
 - Clique •
- כך שאין קשת המחברת בין 2 מהקודקודים הללו בגרף G כך בגרף IS פרימת קבוצת קודקודים בגודל IS
 - $VC = \{ \langle G, k \rangle \mid k$ האם ב-G קיים VC בגודל
 - t בהינתן קבוצה של מספרים, האם קיימת תת קבוצה שסכום איבריה הוא subset Sum ullet

$\underline{:}(L \in NPHard \Leftrightarrow \overline{L} \in coNPHard) \ coNPHard$ וגם ב-NPHard וגם ב-

- $IS \oplus Clique = \{ \langle G, k \rangle | k \leq there's clique XOR IS \}$
 - Halt •

NPC-בעיות ב

(החצים מציינים רדוקציות מיפוי פול")

סיבוכיות מקום

מודל לחישוב סיבוכיות מקום

סרט הקלט – קריאה. ראש נע לשני הצדדים.

סרט עבודה – קריאה וכתיבה. ראש נע לשני הצדדים.

סרט פלט – כתיבה. נע רק ימינה.

חישוב המקום הוא ע"פ כמות המקום בו השתמשנו בסרט העבודה.

$$|S|^N imes |\Gamma|^S imes N imes S imes Q$$
מצב מיקום הראש מיקום הראש בעבודה בקלט העבודה הקלט העבודה הקלט

PSpace

.Oig(S(n)ig) עבור פונ' $S: \mathbb{N} \to \mathbb{N}$, נאמר שSPACE(S(N)) - עבור פונ' אוסף השפות המוכרעות אוסף אוסף $PSpace = \cup_{c=1} Space(n^c)$ נגדיר

בעיות ב-*PSPACE*:

QSAT •

בעיית העצירה של מכונת טיורינג עם מקום מוגבל היא כריעה, מאחר ודרוש מקום פול' על מנת לבדוק האם יש קונפיגורציה של המכונה החוזרת על עצמה.

שפות רגולריות \ אוטומטים

<u>:טענות</u>

- כריעה. $x \in L(A) \Leftarrow A \in NFA$ או $A \in DFA$
 - כל שפה <u>סופית</u> היא רגולרית
 - . בריעה L(A) = L(B)

DFA - אוטומט סופי דטרמיניסטי

$$A = egin{pmatrix} Q & , & \varSigma & , & \delta & , & q_0 & , & F \\ n , & \delta & , & q_0 & , & F \end{pmatrix}$$
תת קבוצה של מצבים מקבלים מאב התחלה פונקציית מעבר א"ב קלט וסופי

$$\delta: Q \times \Sigma \to Q$$

<u>חישוב</u>

- q_0 מתחילים במצב 1.
- .2 בכל צעד נקרא אות מהקלט $w \in \Sigma^*$ ונשתמש ב- δ לקביעת המצב הבא.
 - $q \in F$ אמ"מ בסיום הריצה על הקלט נהיה ב-3

הבדלים ממכונת טורינג

- .1 אין ראש שנע שמאלה וימינה על הקלט.
 - 2. אין כתיבה.
 - .3 אין מצבי עצירה.

 $L(A) = \{w | A \ accepts \ w\}$ נגדיר

NFA – אוטומט סופי לא דטרמיניסטי

$$A = igg(egin{array}{c} Q & , & \varSigma & , & \delta & , & q_0 & , & F \\ n'' מת קבוצה של מצבים מקבלים ' מצב התחלה' פונקציית מעבר ' א"ב קלט וסופי קבוצת מצבים סופית \end{array}$$

$$\delta: Q \times \Sigma \cup \{\varepsilon\} \rightarrow p(Q)$$

חישוב מקבל

$$(q_0),\dots,q_m$$
 וקבוצת מצבים $w=\overset{\sim}{w_1}\overset{\sim}{w_2}\dots\overset{\sim}{w_m},\overset{\sim}{w_i}\in \Sigma\cup\{\varepsilon\}$ רצף

$$q_0` = q_0$$
 .1

$$q_{j+1} \in \delta(q_j, w_{j+1})$$
 .2

$$q_m \in F$$
 .3

Nב- N ב מקבל מילה M אם קיים חישוב מקבל עבור M ב- N

. השפות הרגולריות - השפט - זהות DFA והרגולריות השפות המתקבלות ע"י השפט מחלקת השפות הרגולריות.

:DFA-ל NFA

 $N=(Q,\Sigma,\delta,q_0,F)$:אוטומט לא דטרמיניסטי $M=(Q`,\Sigma,\delta`,q`_0,F`)$ אוטומט דטרמיניסטי השקול ל

- Q: ב-Mיהיה מצב לכל קבוצת מצבים ב-Q: Q
 - $q_0 = \{q_0\}$
- המכיל (M- מצב מקבל (מצב יחיד ב-M- מצב מקבל ב-F' מצב מקבל (מצב יחיד ב-F') המכיל (M- מצב מקבל מ-M- מצב מער מער מ-M- מ
- אבים של Q ב-N הינה קבוצת מצבים של $R: \forall R \in Q` \forall a \in \Sigma.$ $\delta`(R,a) = \{q \in Q | \exists r \in R: q \in \delta(r,a)\}$ מצב ב-N. מ-S נקבל קבוצה של מצבים מ-S (או מצב מ-S) של כל המצבים (ב-S) שניתן להגיע מהם דרך S ממצב כלשהו השייך ל-S.
 - כדי לטפל גם במעברי $\mathfrak{Z},$ לכל מצב R בR בא מגדירים $E(R) = \{q \mid q \ can \ be \ reached \ from \ R \ by \ traversing \ 0 \ or \ more \ \varepsilon \ arrows\}$: עתה מחליפים את $\delta(r,a)$ ב- $\delta(r,a)$. כלומר ההגדרה החדשה ל $\delta(r,a)$ $\forall R \in Q`\ \forall a \in \Sigma.\ \delta`(R,a) = \{q \in Q \mid \exists r \in R: q \in E\big(\delta(r,a)\big)\}$ בנוסף נשנה את המצב ההתחלתי $\delta(r,a)$

למת הניפוח (לשפות רגולריות)

באופן הבא: w=xyz את את לפרק את w ל ייים קבוע $w\in L$ שפה לכל באופן הבא עיים קבוע לפרל באופן הבא:

- $|xy| \le p$
 - |y| > 0 •
- $\forall i \geq 0. xy^i z \in L$ •

סגירות שפות רגולריות לפעולות

- חיתוך •
- איחוד
- שרשור •
- משלים

- (reverse) היפוך
 - Kleene Star •
- $DropChar(L) = \bullet$
- $\{xy|x,y\in\Sigma^*,a\in\Sigma,xay\in L\}$

 $Rot(L) = \{yx | xy \in L\}$ • $max(L) = \{w \in L | \forall u \in \Sigma^*, wu \in L\}$ •

בעיות כריעות בשפות רגולריות

- Subset • שייכות •
- Equivalence Emptiness
 - Fullness •

מינימליזציה של אוטומט

- ראשית מוחקים מצבים לא נחוצים.
- שנית מגדירים שפת המשך של מצב L(q), שנית מגדירים שפת המשך של מצב L(q) שנית מצבים עם שפות המשך שוות.

ביטוי רגולרי

לכל ביטוי רגולרי ניתן לבנות אוטומט סופי. גם ההפך נכון.

דוגמה	משמעות	ביטוי רגולרי
$a+b\equiv\{a\}\cup\{b\}$	איחוד קבוצות	+
$a^* = \{\varepsilon, a, aa, aaa,\}$	Kleene Star	*
$(a+b)^* \equiv \{a, b, ab, aa, bb, ba \dots\}$	שרשור	•

פעולת התרגום מאוטומט לביטוי רגולרי מתבצעת ע"י שימוש ב-L(q,r,S) - שפת כל המילים w שמתחילות במצב - שפקבוצה S.

סיכום שיטות הוכחה

<u>רגורליריות:</u>

- NFA ,DFA בניית ●
- בניית ביטוי רגולרי
- שפה שמתקבלת משפות רגולריות ע"י פעולות משמרות רגולריות.

<u>אי רגולריות:</u>

- סתירה ללמת הניפוח
- קבלת שפה לא רגולרית מפעולות משמרות רגולריות

תובנות ממבחנים

. מעבר מ-DFA ל-NFA נעשה בזמן פולינומיאלי. •

שפות חסרות הקשר

דקדוק חסר הקשר

$$G = ig(V \ , \ \Sigma \ , \ R \ , S \)$$
אוסף חוקים , קבוצה סופית של טרמינלים , קבוצה סופית של משתנים $R: V o (V \cup \Sigma)^*$

 $A \to \beta$ ומחליפים את $A \to \beta$ ובכל שלב בוחרים משתנה כלשהו A וכלל גזירה ומחליפים את $A \to A$ ומחליפים את $A \to A$ ומחליפים את מסיימים כשאיו יותר משתנים.

 $L(G) = \{w \mid S$ שפה חסרת הקשר: $\{e$ ניתן ב-G לגזור את ש

למת הניפוח (לשפות חסרות הקשר)

תהי א מתקיימת מתקיימת $w\in L, |w|\geq p$ פך שלכל מילה בשפה p>0 מתקיימת חלוקה שפה חסרת הקשר. אזי קיים קבוע ער שינ w=uvxyz

- $|vy| \ge 0$.1
- $|vxy| \le p$.2
- $uv^ixy^iz \in L$ מתקיים $i \in \mathbb{N}$ לכל.

הערה: יש שפות לא חסרות הקשר שלא ניתן להוכיח כי הן אכן לא חסרות הקשר ע"י למת הניפוח. כדי להראות שלמת הניפוח לא מקריסה ח"ה מראים שלכל מילה בשפה w (ארוכה מספיק) ניתן למצוא חלוקה שתקיים את למת הניפוח.

פעולות השומרות על סגירות של שפות ח"ה

- Reverse
- חיתוך עם שפה רגולרית
 - איחוד •
 - שרשור •

- ומחליפים כל טרמינל בה לסימן התחלה של
 - דקדוק ח"ה אחר.
 - Kleene Star •
 - $pref(L) = \{w \mid \exists u. wu \in L\}$ •

הצבה חסרת הקשר – לוקחים שפה קיימת

דקדוק חסר הקשר לינארי

 $x,y \in \Sigma^*, A,B \in V$ כאשר $A \to xBy$ או $A \to x$ מהצורה הוא מהצורה כלל גזירה הוא

כאשר $S \to \varepsilon$ או $A \to aB$ או $A \to a$ או מהצורה הוא מהצורה אם כל כלל גזירה הוא לינארי ימני אם כל כלל גזירה הוא מהצורה $a \in \Sigma, A, B \in V$

טענה: משפחת השפות הנוצרות על ידי דקדוקים לינאריים ימניים היא משפחת השפות הרגולריות.

צורת חומסקי לדקדוק חסר הקשר

בצורת חומסקי, כל כלל גזירה הוא מהצורה הבאה בלבד:

כלומר כל משתנה הופך לטרמינל או לשרשור שני משתנים.

<u>טענה:</u> כל דקדוק חסר הקשר ניתן להפוך לצורת חומסקי. זה נעשה באופן הבא:

- S_0 הוספת מצב התחלה חדש \bullet
- $A \to \varepsilon$ נפטרים מכל כללי הגזירה מהצורה •
- A o B נפטרים מכל כללי הגזירה של משתנה ההופך למשתנה אחר. למשל
 - מוסיפים כללי גזירה כך שהדקדוק החדש יצור אותה שפה כמו המקור.
 - כלל גזירה היוצר מחרוזת הופך לרצף של כללי גזירה, למשל:

$$A \rightarrow u_1 u_2 \dots u_k \Longrightarrow A \rightarrow u_1 N_1, \ N_{i-1} \rightarrow u_i N_{i+1}$$

בעיות הכרעה בדקדוקים חסרי הקשר

- שייכות, $x \in L(G)$ שייכות,
- **כריעה** $L(G) = \emptyset$, סבוצה ריקה
- **לא כריעה** $L(G) = \Sigma^*$, מלאה, סבוצה מלאה, •

שיטות הוכחה לח"ה

שפה חסרת הקשר:

- מראים דקדוק ח"ה לשפה
 - השפה היא רגולרית
- השפה מתקבלת מהפעלת פעולות השומרות ח"ה על שפות ח"ה

שפה אינה חסרת הקשר:

- לא מתקיימת למת הניפוח
- אם מפעולות שומרות ח"ה ניתן לקבל שפה שהיא לא חסרת הקשר

הערה חשובה

לא קיים דקדקוד חסר הקשר המייצר את כל החישובים של מכונה מסויימת. אך המשלים לכל המחרוזות שמייצגות חישוב הוא חסר הקשר.

תובנות ממבחנים

- ניתן לבדוק כי דקדוק כלשהו הוא סופי.
- ידוע כי קיים דקדוק חסר הקשר ל- Σ^* , אין צורך להראות בניה שלו במידה ורוצים להשתמש בו. •

תאור כל מחלקות השפות לפי סיבוכיות

