Katia Djerroud –
Phd computational cognitive neuroscience

Background

Bachelor degree: Biochemistry

Master degree : Neuroscience

Phd: Computational cognitive neuroscience

Main Question!

How can voice, linguistic, and text analysis techniques be applied to discern the emotional dynamics within human interactions?

Data

Describe what data you are aiming to use?

Friends tv show episodes

Why it fits with your research question?

It has the parameters needed

for my study:

- -Audio
- -Transcript
- -Video

Where will you obtain the data?

MarieSTL from Pierre Bellec's Lab

Tools & methods

Voice analysis

Text analysis

Linguistic analysis

Emotion detection

Voice Analysis

	\sim
> •	••}
~	
23	

Feature Extraction: Speaker Tagging: Speech-to-Text:	Algorithm: Linear Predictive Coding (LPC), Mel-Frequency Cepstral Coefficients (MFCCs)
	Tool: Librosa, Praat
	Description: Extracts acoustic features like spectrograms, pitch, and formants from speech signals.
	Example: Analyzing a voice recording to extract pitch and formant frequencies.
	Algorithm: Gaussian Mixture Models (GMMs)
	Tool: Sci-kit Learn
	Description: Identifies different speakers in a conversation using extracted features.
	Example: Classifying different speakers in a group discussion
	Algorithm: Transformer-based models (e.g., Wav2Vec 2.0)
	Tool: Hugging Face Transformers
	Description: Converts speech to text for further analysis.
	Example: Transcribing a recorded dialogue to text.

Sentiment Analysis:

Algorithm: VADER, TextBlob, BERT Tool: NLTK, TextBlob, Hugging Face

Transformers

Description: Determines sentiment in text. **Example:** Identifying a review as positive or negative.

Topic Modeling:

Algorithm: Latent Dirichlet Allocation (LDA)

Tool: Gensim

Description: Discovers topics within a text

corpus.

Example: Finding topics like "technology"

and "sports" in news articles.

Text analysis

Named Entity Recognition (NER):

Algorithm: Conditional Random Fields

(CRF), BERT Tool: SpaCy

Description: Identifies entities within text. Example: Recognizing "New York" as a

location

Keyword Extraction:

Algorithm: TF-IDF, RAKE Tool: Scikit-Learn, Gensim

Description: Identifies important words or

phrases.

Example: Extracting keywords like "machine

learning" from a research paper.

Linguistic Analysis

Algorithm: Intonation, Stress Analysis Tool: Praat

Description: Analyzes intonation, stress patterns, and pauses in speech.

Example: Identifying rising intonation in questions.

Phonological Features

Algorithm: Tokenizers and Parsers

Tool: (NLTK)

Tokenization and parsing

Description: Splits text into words or phrases and identifies grammatical structure.

Example: Splitting "I love programming" into ["I", "love", "programming"] and identifying grammatical roles.

Algorithm: Dependency Parsing,

Constituency Parsing

Tool: SpaCy

Syntactic Analysis

Description: Analyzes grammatical relationships between words in sentences.

Example: Understanding the structure of "The cat sat on the mat."

Emotion Detection

Vocal Emotion Recognition:

- Algorithm: OpenSMILE feature extraction, GMMs
- Tool: OpenSMILE
- **Description:** Extracts vocal features to classify emotions.
- **Example:** Detecting anger from a high-pitched, loud voice

Text-based Emotion Detection:

- Algorithm: Transformer- based models (BERT)
- **Tool:** Hugging Face Transformers
- **Description:** Identifies emotions in text.
- **Example:** Analyzing a tweet to determine if the sentiment is joyful or sad

Summary of the used Tools:

- 1. Librosa
- 2. Praat
- 3. Scikit-learn
- 4. NLTK (Natural Language Toolkit)
- 5. SpaCy
- 6. Stanford NLP
- 7. OpenSMILE
- 8. Hugging Face Transformers
- 9. TextBlob
- 10. Gensim
- 11. ELAN
- 12. Inception

Holistic Analysis

Emotion Detection

Social Dynamics Understanding

Tool Integration

Dataset Creation

Model Development

Visualization and Interpretation

Deliverables: will ensure that the project is well-documented, reproducible, and accessible to other

researchers and stakeholders who may be interested in understanding or building upon the analysis.

Code Scripts

Python scripts or Jupyter notebooks implementing the algorithms and analysis pipelines for voice analysis, emotion detection, text analysis, and linguistic analysis.

GitHub Repository:

A public GitHub repository containing all project-related materials, including code scripts, documentation, and data files.

Documentation:

Detailed documentation outlining the project goals, methodology, algorithms used, and instructions for running the code and replicating the analysis.

Markdown Files:

Markdown files documenting specific aspects of the project, such as data preprocessing steps, algorithm descriptions, and analysis results.

Containerization:

Docker containers or similar containers encapsulating the project environment, dependencies, and code, ensuring reproducibility and portability of the analysis.

Evaluation Reports:

Reports summarizing the performance and outcomes of the analysis, including any insights or findings derived from the data.

Voice Analysis

- 1 Boersma, P., & Weenink, D. (2022). Praat: Doing Phonetics by Computer [Computer program]. Version 6.1.37. Retrieved from http://www.praat.org/
- 2 Librosa: A python package for music and audio analysis. Retrieved from https://librosa.org/doc/main/index.html

Emotion Detection

- 1 Eyben, F., Wöllmer, M., & Schuller, B. (2010). Opensmile: the Munich versatile and fast open-source audio feature extractor. In Proceedings of the international conference on multimedia (pp. 1459-1462).
- 2. Hugging Face Transformers: State-of-the-art Natural Language Processing for PyTorch and TensorFlow. Retrieved from https://huggingface.co/transformers/
- 3 Schuller, B., & Batliner, A. (2013). Computational Paralinguistics: Emotion, Affect and Personality in Speech and Language Processing. Wiley.

Text Analysis

- 1 Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit. O'Reilly Media.
- 2.Gensim: Topic Modelling for Humans. Retrieved from https://radimrehurek.com/gensim/
- 3 Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press.
- 4 Jurafsky, D., & Martin, J. H. (2019). Speech and Language Processing (3rd ed.). Pearson.

Linguistic Analysis

- LSpaCy: Industrial-strength Natural Language Processing in Python. Retrieved from https://spacy.io/
- 2. Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing. MIT press.
- 3 rystal, D. (2008). A Dictionary of Linguistics and Phonetics (6th ed.). Wiley-Blackwell

