# High Performance Computing for Cryptography

M2P SCCI: Ensimag-Ujf





Abdourahmane SAKHO – Ali MKHIDA – Maad EL YADARI

#### Outline

- > Canonical basis to normal basis
- > Finding isomorphisms
- $\triangleright$  Speeding up computations on  $\delta$
- > Non LUT Implementation
- > Recovery of secret key
- > Throughput of design at 200 MHz of the AES
- > Practical Work

#### Sbox

$$S(t) = At^{-1} + B$$

 $t^{-1}$  : modulo inversion in  $\mathbb{F}_2[X]/X^8+X^4+X^3+X+1$ 

Idea:

Find isomorphisms  $\delta: \mathbb{F}_{256} \to \mathbb{F}_{16}[X]/X^2 + AX + B$  and compute the modular inversion in  $\mathbb{F}_{16}[X]/X^2 + AX + B$ 

$$t \xrightarrow{\delta} a_1 X + a_0 \xrightarrow{inversion} b_1 X + b_0 \xrightarrow{\delta^{-1}} t^{-1}$$

#### Sbox

$$S(t) = At^{-1} + B$$

 $t^{-1}$  : modulo inversion in  $\mathbb{F}_2[X]/X^8+X^4+X^3+X+1$ 

Idea:

Find isomorphisms  $\delta: \mathbb{F}_{256} \to \mathbb{F}_{16}[X]/X^2 + AX + B$  and compute the modular inversion in  $\mathbb{F}_{16}[X]/X^2 + AX + B$ 

$$t \xrightarrow{\delta} a_1 X + a_0 \xrightarrow{inversion} b_1 X + b_0 \xrightarrow{\delta^{-1}} t^{-1}$$

#### Computations in $\mathbb{F}_{16}$ under canonical basis

$$\mathbb{F}_{16} = \mathbb{F}_2[X]/X^4 + X^3 + X^2 + X + 1$$

with  $\alpha$  a root of the generating polynomial.

Elements represented in the ordered basis :  $\{\alpha^3, \alpha^2, \alpha, 1\}$ 

#### Normal Basis

Normal basis :  $\{\alpha^8, \alpha^4, \alpha^2, \alpha\}$ 

$$1_{\mathbb{F}_{16}} = \alpha^8 + \alpha^4 + \alpha^2 + \alpha.$$

$$\alpha^{3} = \alpha^{8}, \alpha^{5} = \alpha^{10} = \alpha^{8} + \alpha^{4} + \alpha^{2} + \alpha, \alpha^{6} = \alpha^{16} = \alpha, \alpha^{9} = \alpha^{4}, \alpha^{12} = \alpha^{2}$$

 $x = [a_3, a_2, a_1, a_0]$  and  $y = [b_3, b_2, b_1, b_0]$  in  $\mathbb{F}_{16}$  where the  $a_i$ s and  $b_i$ s are the co-ordinates in the ordered basis.

#### Normal Basis

#### Normal basis : $\{\alpha^8, \alpha^4, \alpha^2, \alpha\}$

$$1_{\mathbb{F}_{16}} = \alpha^8 + \alpha^4 + \alpha^2 + \alpha.$$

$$\alpha^{3} = \alpha^{8}, \alpha^{5} = \alpha^{10} = \alpha^{8} + \alpha^{4} + \alpha^{2} + \alpha, \alpha^{6} = \alpha^{16} = \alpha, \alpha^{9} = \alpha^{4}, \alpha^{12} = \alpha^{2}$$

 $x = [a_3, a_2, a_1, a_0]$  and  $y = [b_3, b_2, b_1, b_0]$  in  $\mathbb{F}_{16}$  where the  $a_i$ s and  $b_i$ s are the co-ordinates in the ordered basis.

#### Multiplication

$$x \times y = (a_{3}\alpha^{8} + a_{2}\alpha^{4} + a_{1}\alpha^{2} + a_{0}\alpha) \times (b_{3}\alpha^{8} + b_{2}\alpha^{4} + b_{1}\alpha^{2} + b_{0}\alpha)$$

$$= (a_{0}b_{1} \oplus a_{1}b_{0} \oplus a_{2}b_{2} \oplus \overbrace{a_{0}b_{2} \oplus a_{2}b_{0} \oplus a_{1}b_{3} \oplus a_{3}b_{1}})\alpha^{8} +$$

$$(a_{0}b_{3} \oplus a_{3}b_{0} \oplus a_{1}b_{1} \oplus a_{0}b_{2} \oplus a_{2}b_{0} \oplus a_{1}b_{3} \oplus a_{3}b_{1})\alpha^{4} +$$

$$(a_{2}b_{3} \oplus a_{3}b_{2} \oplus a_{0}b_{0} \oplus a_{0}b_{2} \oplus a_{2}b_{0} \oplus a_{1}b_{3} \oplus a_{3}b_{1})\alpha^{2} +$$

$$(a_{1}b_{2} \oplus a_{2}b_{1} \oplus a_{3}b_{3} \oplus a_{0}b_{2} \oplus a_{2}b_{0} \oplus a_{1}b_{3} \oplus a_{3}b_{1})\alpha$$

#### Computations continued

#### Square

Taking x = y in the above expression gives :

$$a_2\alpha^8 + a_1\alpha^4 + a_0\alpha^2 + a_3\alpha$$

#### Remarks

A lot of terms in common in the co-ordinates of the ordered basis.

Squaring is permutation of co-ordinates: Comes for free in hardware.

Better suited than canonical basis.

#### Isomorphism $\delta$

- Look for generators  $\alpha$  of  $\mathbb{G}_m(\mathbb{F}_2[X]/X^8 + X^4 + X^3 + X + 1)$  and  $\beta$  of  $\mathbb{G}_m(\mathbb{F}_{16}[X]/X^2 + AX + B)$ .
- $\alpha$  and  $\beta$  roots of the same irreducible polynomial P(X).
- Set  $\delta(\alpha) = \beta$ , use  $\delta(\alpha^i) = \delta(\alpha)^i$ .

#### Isomorphism $\delta$

- Look for generators  $\alpha$  of  $\mathbb{G}_m(\mathbb{F}_2[X]/X^8 + X^4 + X^3 + X + 1)$  and  $\beta$  of  $\mathbb{G}_m(\mathbb{F}_{16}[X]/X^2 + AX + B)$ .
- $\alpha$  and  $\beta$  roots of the same irreducible polynomial P(X).
- Set  $\delta(\alpha) = \beta$ , use  $\delta(\alpha^i) = \delta(\alpha)^i$ .

#### Finding $\beta$ using $\delta$ of the lecture

- $2^8 1 = 255 = 3 \times 5 \times 17$ , any non-identity element whose order is co-prime to  $\{3, 5, 17\}$  is a generator.
- $\delta(X^2) = [1, 0, 0, 1]X + [0, 0, 0, 0]$ . order $(\delta(X)) = 255 \implies$  order $(\delta(X^2)) = 255$ .
- $\beta = [1,0,0,1]X + [0,0,0,0] \implies P(\beta) = [0,0,0,0]X + [0,0,0,0]$ where  $P(X) = X^8 + X^4 + X^3 + X + 1$ .
- $\delta_2(X) = [1, 0, 0, 1]X + [0, 0, 0, 0]$  and use  $\delta_2(X^i) = \delta_2(X)^i$ .

#### $\delta_2$ derived from $\delta$

$$\delta_2 = egin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\delta_2 = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \qquad \delta_2^{-1} = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$$

### III. Speeding up computations on $\delta$

### III. Speeding up computations on $\delta$

$$\delta(v), \delta^{-1}(v)$$

Computations are matrix multiplication, can be performed in parallel.

### III. Speeding up computations on $\delta$

$$\delta(v), \delta^{-1}(v)$$

Computations are matrix multiplication, can be performed in parallel.

$$\delta(v), \delta^{-1}(v)$$

Computations are matrix multiplication, can be performed in parallel. One can look for  $\delta$  with low hamming weight.

#### Non-LUT proposition

#### Further use of composite field arithmetic

Idea:

Look to cut the longest path to reduce maximum computational delay i.e. find  $\delta_a$  and  $\delta_b$  st  $\delta(\cdot) = \delta_b(\delta_a(\cdot))$ 

#### Non-LUT proposition

#### Further use of composite field arithmetic

#### Idea:

Look to cut the longest path to reduce maximum computational delay i.e. find  $\delta_a$  and  $\delta_b$  st  $\delta(\cdot) = \delta_b(\delta_a(\cdot))$ 

- Find  $\delta_a: \mathbb{F}_{16} \to \mathbb{F}_4[X]/X^2 + CX + D$ .
- Inversion done in  $\mathbb{F}_4[X]/X^2 + CX + D$  where computations done in  $\mathbb{F}_4$ .
- $\bullet \ \gamma \in \mathbb{F}_4 \implies \gamma^3 = 1 \implies \gamma^{-1} = \gamma^2.$

#### Non-LUT proposition

#### Further use of composite field arithmetic

#### Idea:

Look to cut the longest path to reduce maximum computational delay i.e. find  $\delta_a$  and  $\delta_b$  st  $\delta(\cdot) = \delta_b(\delta_a(\cdot))$ 

- Find  $\delta_a: \mathbb{F}_{16} \to \mathbb{F}_4[X]/X^2 + CX + D$ .
- Inversion done in  $\mathbb{F}_4[X]/X^2 + CX + D$  where computations done in  $\mathbb{F}_4$ .
- $\bullet \ \gamma \in \mathbb{F}_4 \implies \gamma^3 = 1 \implies \gamma^{-1} = \gamma^2.$
- Inversion comes for free in hardware so no LUT needed.

$$t \xrightarrow{\delta_b} a_1 X + a_0 \xrightarrow{\delta_a} \{b_1 X + b_0\} \xrightarrow{inverse} \{c_1 X + c_0\} \xrightarrow{\delta_a^{-1}} (a_1 X + a_0)^{-1} \xrightarrow{\delta_b^{-1}} t^{-1}$$

### V. Recovery of secret key

> PROOF ON BOARD

### VI. Throughput of design at 200 MHz of the AES

> PROOF ON BOARD

### VII. Practical work









#### **Exhaustive search**

#### **Hellman's TMTO**

#### **Distinguished Points TMTO**

#### Input:

- -Plaintext.
- -Cipher text.

#### Output:

-The encryption key.

Encrypt the plaintext with all the possible keys and compare with cipher text.

For a key of 24 bits of entropy we got: 78 seconds in average => 5,525 for a key with 32 bits of entropy.









#### **Exhaustive search**

#### **Hellman's TMTO**

#### **Distinguished Points TMTO**

- •Offline computation: the plaintext => the list of (start point, end point).
- •Online computation : the plaintext, the cipher text and the list => the Key ?

#### Some tests for a key with 16 bits of entropy: m = 10000 and t = 10:

| Execution time : offline | Execution time : online | Found the key | False alarm |
|--------------------------|-------------------------|---------------|-------------|
| 1.929seconde             | 0.05seconde             | key found     | 0           |
| 1.896seconde             | 0.092seconde            | Key found     | 3           |
| 1.9seconde               | 0.004seconde            | key found     | 0           |









#### **Hellman's TMTO**

#### **Distinguished Points TMTO**

For an 32 bits of entropy for the key: m = 10 and t = 100 000:

| Execution time : offline | Execution time : online | Found the key | False alarm |
|--------------------------|-------------------------|---------------|-------------|
| 14.956seconde            | 122.934seconde          | Not found     | 220         |
| 22.652seconde            | 247.143seconde          | Not found     | 90          |

#### For an 32 bits of entropy for the key: m = 100 000 and t= 10:

| Execution time : offline | Execution time : online | Found the key | False alarm |
|--------------------------|-------------------------|---------------|-------------|
| 5.364seconde             | 34.917seconde           | Not found     | 0           |
| 3.656seconde             | 12.11seconde            | Not found     | 0           |



#### **Exhaustive search**

#### **Hellman's TMTO**

#### **Distinguished Points TMTO**

#### m = 10 and t= 100 000:

| Execution time offline | Execution time online | Found the key | False |
|------------------------|-----------------------|---------------|-------|
|                        |                       |               | alarm |
| 11.234seconds          | 2.035seconds          | Not found     | 5     |
| 8.078seconds           | 1.96seconds           | Not found     | 3     |

#### m = 100 000 and t= 100:

| Execution time offline | Execution time online | Found the key | False alarm |
|------------------------|-----------------------|---------------|-------------|
| 103.662seconds         | 0.002seconds          | Not found     | 0           |
| 112.268seconds         | 0.001seconds          | Not found     | 0           |

## Thanks for your attention ...

