SIEMENS

SINUMERIK

SINUMERIK 828D Turning and Milling

Commissioning Manual

1 101000	
Scope of delivery and requirements	1
Settings on the HMI	2
Commissioning the PLC	3
Commissioning the drive	4
Setting NCK machine data	5
Configuring cycles	6
Service Planner	7
Easy Extend	8
Tool management	9
Series start-up	10
References	Α
List of abbreviations	В

Preface

Valid for:

NCU system software Version 2.6 HMI sl Version 2.6

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

∕!\DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

$/! \backslash \mathsf{WARNING}$

indicates that death or severe personal injury may result if proper precautions are not taken.

/!\CAUTION

with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION

without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE

indicates that an unintended result or situation can occur if the corresponding information is not taken into account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific task in accordance with the relevant documentation for the specific task, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

/!\WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be adhered to. The information in the relevant documentation must be observed.

Trademarks

All names identified by ® are registered trademarks of the Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Preface

SINUMERIK documentation

The SINUMERIK documentation is organized in three parts:

- General documentation
- User documentation
- Manufacturer/service documentation

Information on the following topics is available at http://www.siemens.com/motioncontrol/docu:

Ordering documentation:

Here you can find an up-to-date overview of publications.

• Downloading documentation:

Links to more information for downloading files from Service & Support.

· Researching documentation online

Information on DOConCD and direct access to the publications in DOConWEB.

 Compiling individual documentation on the basis of Siemens contents with the My Documentation Manager (MDM), refer to http://www.siemens.com/mdm

My Documentation Manager provides you with a range of features for generating your own machine documentation.

Training and FAQs

Information on our range of training courses and FAQs (frequently asked questions) is available via the page navigation.

Target group

This documentation is intended for commissioning personnel.

The plant or system is readily assembled and wired. For the following steps, e.g. configuring the individual components, the Commissioning Manual contains all necessary information or at least references.

Benefits

The intended target group can use the Commissioning Manual to test and commission the system or the plant correctly and safely.

Utilization phase: Setup and commissioning phase

Standard version

This documentation only describes the functionality of the standard version. Extensions or changes made by the machine manufacturer are documented by the machine manufacturer.

Other functions not described in this documentation might be executable in the control. However, no claim can be made regarding the availability of these functions when the equipment is first supplied or in the event of servicing.

Further, for the sake of simplicity, this documentation does not contain all detailed information about all types of the product and cannot cover every conceivable case of installation, operation or maintenance.

Structure of the documentation:

Target group	Manual
User	 SINUMERIK 828D/840D sl Operating Manual HMI sl Turning SINUMERIK 828D/840D sl Operating Manual HMI sl Milling SINUMERIK 828D/840D sl Programming Manual Fundamentals SINUMERIK 828D/840D sl Programming Manual Job Planning SINUMERIK 840D sl Programming Manual Measuring Cycles SINUMERIK 802D sl/828D/840D sl
	Programming Manual, ISO Dialects Turning Programming Manual, ISO Dialects Milling SINUMERIK 828D Diagnostics Manual
Manufacturer	 SINUMERIK 828D Manual PPU SINUMERIK 828D Commissioning Manual Turning and Milling SINUMERIK 828D Service Manual Hardware and Software SINUMERIK 828D Parameter Manual
	 SINUMERIK 828D/840D sl Function Manual Basic Functions SINUMERIK 828D/840D sl Function Manual Extended Functions SINUMERIK 840D sl Function Manual Tool Management SINUMERIK 802D sl/828D/840D sl Function Manual ISO Dialects
	 SIMATIC NET System Manual GPRS/GSM Modem SINAUT MD720-3 SIMATIC NET Operating Instructions Quad-Band GSM Antenna SINAUT 794-4MR

Additional references:

Subject	Manual
RCS Commander	Online help
Programming Tool PLC828	Online help
Easy Screen	SINUMERIK 840D sl Programming Manual Easy Screen
	in: Commissioning Manual Base Software and HMI sl
Easy Message	SINUMERIK 828D/840D sl Operating Manual HMI sl Turning
	SINUMERIK 828D/840D sl Operating Manual HMI sl Milling
ePS Network Services	ePS Network Services Function Manual and online help

Subject	Manual
Networking	SINUMERIK 840D sl Manual Operator Components and Networking
SAFETY (safe standstill)	SINAMICS S120/SINUMERIK 840D sl Manual Machine Configuration

Questions about this documentation

If you have any queries (suggestions, corrections) in relation to this documentation, please send a fax or e-mail to the following address:

Fax	+49 9131 98 2176
E-mail	mailto:docu.motioncontrol@siemens.com

A fax form is available at the end of this document.

SINUMERIK Internet address

http://www.siemens.com/sinumerik

Technical Support

If you have any technical questions, please contact our hotline:

	Europe/Africa
Phone	+49 180 5050 222
Fax	+49 180 5050 223
0.14 €/min from the German fixed-line network; cell phone charges may vary.	
Internet http://www.siemens.com/automation/support-request	

	Americas
Phone	+1 423 262 2522
Fax	+1 423 262 2200
E-mail	mailto:techsupport.sea@siemens.com

	Asia/Pacific
Phone	+86 1064 757575
Fax	+86 1064 747474
E-mail	mailto:support.asia.automation@siemens.com

Note

National telephone numbers for technical support are provided under the following Internet address:

http://www.siemens.com/automation/partner

EC Declaration of Conformity

The EC Declaration of Conformity for the EMC Directive can be found on the Internet at:

http://support.automation.siemens.com

under the Product Order No. 15257461, or at the relevant branch office of I DT MC Division of Siemens AG.

CompactFlash cards for users

- The SINUMERIK CNC supports the file systems FAT16 and FAT32 for CompactFlash cards. You may need to format the memory card if you want to use a memory card from another device or if you want to ensure the compatibility of the memory card with the SINUMERIK. However, formatting the memory card will permanently delete all data on it.
- Do not remove the memory card while it is being accessed. This can lead to damage of the memory card and the SINUMERIK as well as the data on the memory card.
- If you cannot use a memory card with the SINUMERIK, it is probably because the
 memory card is not formatted for the control system (e.g. Ext3 Linux file system), the
 memory card file system is faulty or it is the wrong type of memory card.
- Insert the memory card carefully with the correct orientation into the memory card slot (take note of arrows, etc.). This way you avoid mechanical damage to the memory card or the device.
- Only use memory cards that have been approved by Siemens for use with SINUMERIK.
 Even though the SINUMERIK keeps to the general industry standards for memory cards,
 it is possible that memory cards from some manufacturers will not function perfectly in
 this device or are not completely compatible with it (you can obtain information on
 compatibility from the memory card manufacturer or supplier).
- The CompactFlash card from SanDisk "CompactFlash® 5000 Industrial Grade" has been approved for SINUMERIK (Order Number 6FC5313-5AG00-0AA0).

Table of contents

	Prefac	Э	3
1	Scope	of delivery and requirements	13
	1.1	System overview	13
	1.2	Toolbox CD and other available tools	14
	1.3	This is the general sequence for commissioning	15
	1.4	Starting up the control	16
	1.5 1.5.1 1.5.2 1.5.3 1.5.4	Communication with the control	19 23
2	Setting	s on the HMI	31
	2.1	Access levels	31
	2.2	How to set and change the password	33
	2.3	Available system languages	34
	2.4	How to set the date and time	35
	2.5 2.5.1 2.5.2	Checking and entering licenses	37
	2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6	Configuring user alarms Structure of user PLC alarms How to create user PLC alarms Configuring the alarm log How to configure the log Configuring user alarms with colors How to configure colors for user alarms	40 43 44
	2.7 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5	Creating OEM-specific online help Structure and syntax of the configuration file. Structure and syntax of the help book Description of the syntax for the online help Example: How to create an OEM-specific help Example: How to create an online help for user PLC alarms	50 52 53
3	Commissioning the PLC		63
	3.1	Activating I/O modules	64
4	Commissioning the drive		67
	4.1 4.1.1 4.1.2 4.1.3 4.1.4	Configuring the drive Example of a drive configuration Example: How to configure the drive Example: How to configure the infeed Example: How to configure the external encoder	67 69
	4.1.4	LABITIPE. FOW TO COMINGUE THE EXTERNAL ENCOURT	(C

	4.1.5 4.1.6	Example: How to assign the axes Example: Setting machine data for an axis/spindle	
	4.1.7	Parameters for the axis/spindle test run	89
	4.2	Terminal assignments	
	4.2.1	Terminal assignment on X122	
	4.2.2	Terminal assignment on X132	
	4.2.3	Terminal assignment on X122 for a Numeric Control Extension	
	4.2.4	Example: Circuitry for a CU with line contactor	
_	4.2.5	Connecting the probes	
5	•	NCK machine data	
	5.1	Classification of machine data	
	5.2	Processing part programs from external CNC systems	
6	Configu	ıring cycles	105
	6.1	Settings for activating cycles	105
	6.1.1	How to adapt the manufacturer cycles	
	6.1.2	Standard cycle PROG_EVENT.SPF	
	6.1.3	Setting the simulation and simultaneous recording (option)	111
	6.2	Drilling	
	6.2.1	Technology cycles for drilling	
	6.2.2	ShopTurn: Drilling centered	115
	6.3	Milling	
	6.3.1	Technology cycles for milling	
	6.3.2	Cylinder surface transformation (TRACYL)	117
	6.3.3 6.3.4	Example: Axis configuration for milling machines	
	6.4	Turning	
	6.4.1	Technology cycles for turning	
	6.4.2	Example: Residual material machining	
	6.4.3	Example: Axis configuration for lathes	
	6.4.4	Cylinder surface transformation (TRACYL)	
	6.4.5	End face machining (TRANSMIT)	
	6.4.6	Inclined axis (TRAANG)	
	6.4.7	ShopTurn: Setting up cycles for turning	
	6.4.8	ShopTurn: Counterspindle	
	6.4.9	ShopTurn: Cylinder surface transformation (TRACYL)	150
	6.4.10	ShopTurn: End face machining (TRANSMIT)	
	6.4.11	ShopTurn: Inclined axis (TRAANG)	
	6.5 6.5.1	Swivel Technology cycles for swiveling	
	6.5.2	Setting the workpiece, tool and rotary table reference	
	6.5.3	ShopMill: Swivel plane and swivel tool	
	6.5.4	CYCLE800 checklist for the identification of the machine kinematics	
	6.5.5	Commissioning of the kinematic chain (swivel data record)	
	6.5.6	Example of the commissioning of swivel head 1	
	6.5.7	Example of the commissioning of swivel head 2	
	6.5.8	Example of the commissioning of a cardanic table	170
	6.5.9	Example of the commissioning of a swivel head/rotary table	
	6.5.10	Example of the commissioning of a swivel table	
	6.5.11	Manufacturer cycle CUST_800.SPF	176

	6.6	High Speed Settings (Advanced Surface)	
	6.6.1	Configuring the High Speed Settings function (CYCLE832)	
	6.6.2	How to adapt the High Speed Settings function (CYCLE832)	184
	6.7	Measuring cycles and measurement functions	186
	6.7.1	General settings for measuring	
	6.7.2	Manufacturer cycle CUST_MEACYC.SPF	
	6.7.3	Measuring in the JOG mode	
	6.7.4	JOG: Measure workpiece during milling	
	6.7.5	JOG: Measure tool during milling	
	6.7.6	JOG: Measure tool during turning	
	6.7.7	Measuring in the AUTOMATIC mode	198
	6.7.8	AUTO: General settings for the workpiece measurement	200
	6.7.9	AUTO: Measure workpiece during milling	
	6.7.10	AUTO: Measure workpiece during turning	
	6.7.11	AUTO: Measure tool during milling	
	6.7.12	AUTO: Measure tool during turning (CYCLE982)	213
7	Service	Planner	215
	7.1	PLC user program	217
	7.2	Interfaces in the PLC user program	218
	7.3	Functions on the HMI	223
8	Easy Ex	xtend	231
	8.1	Overview of functions	231
	8.2	Configuration in the PLC user program	233
	8.3	Display on the user interface	235
	8.4	Creating language-dependent texts	236
	8.5	Description of the script language	237
	8.5.1	Special characters and operators	
	8.5.2	Structure of the XML script	239
	8.5.3	CONTROL_RESET	241
	8.5.4	DATA	
	8.5.5	DATA_ACCESS	
	8.5.6	DATA_LIST	
	8.5.7	DRIVE_VERSION	
	8.5.8	FILE	
	8.5.9	FUNCTION	
	8.5.10	FUNCTION_BODY	
	8.5.11	INCLUDE	
	8.5.12	LET	
	8.5.13	MSGBOX	
	8.5.14	OP	
	8.5.15	OPTION_MD	
	8.5.16	PASSWORD	
	8.5.17 8.5.18	PLC_INTERFACE	
	8.5.18 8.5.19	POWER_OFF PRINT	
	8.5.19	WAITING	
	8.5.21	?up	
	8.5.22	XML identifiers for the dialog	
	8.5.23	BOX	
	8.5.24	CONTROL	0.50

	8.5.25	IMG	260
	8.5.26	PROPERTY	261
	8.5.27	REQUEST	
	8.5.28	SOFTKEY_OK, SOFTKEY_CANCEL	
	8.5.29	TEXT	263
	8.5.30	UPDATE_CONTROLS	263
	8.5.31	Addressing the parameters	264
	8.5.32	Addressing the drive objects	266
	8.5.33	XML identifiers for statements	268
	8.6	String functions	271
	8.6.1	string.cmp	
	8.6.2	string.cmpstring.icmp	
	8.6.3	string.left	
	8.6.4	string.right	
	8.6.5	string.nigntstring.middle	
	8.6.6		
	8.6.7	string.length	
		string.replace	
	8.6.8	string.remove	
	8.6.9	string.delete	
	8.6.10	string.insert	
	8.6.11	string.find	
	8.6.12	string.reversefind	
	8.6.13	string.trimleft	
	8.6.14	string.trimright	280
	8.7	Trigonometric functions	282
	8.8	Examples	284
	8.8.1	Example with control elements	
	8.8.2	Example with parameters to support the commissioning	
	8.8.3	User example for a power unit	
^	Taslma	anagement	
9	10011118	anagement	291
	9.1	Fundamentals	291
	9.1.1	Structure of the tool management	292
	9.1.2	Components of the tool management	293
	9.1.3	Loading and unloading tools manually	296
	9.2	PLC - NCK user interface	207
	9.2.1	Relocating, unloading, loading tool, positioning magazine	
	9.2.1		304
	9.2.2	Transfer-step and acknowledgment-step tables	
	9.2.3	·	
	9.3	Machine data for the tool management	313
	9.4	PLC Program Blocks	320
	9.4.1	Acknowledgment process	320
	9.4.2	Types of acknowledgment	321
	9.4.3	Acknowledgment states	322
	9.4.4	Configuring step tables	
	9.4.5	Configuring acknowledgment steps	
	9.4.6	Adjust the PLC user program	
	9.4.7	Information on magazine location	
	9.4.8	PI service: TMMVTL	
	9.5	Example: Loading/unloading	
	96	Example: Change manual tools	338

	9.7	Application example for turning machine	342
	9.7.1	Example: Turning machine with revolver magazine (MAG_CONF_MPF)	342
	9.7.2 9.7.3	Example: Acknowledgment steps (turning machine)	
	9.7.3 9.7.4	Example: Tool change cycle for turning machine	
	9.7.5	Example: Turning machine with counterspindle	
	9.7.6	Example: Test for empty buffer	
	9.7.7 9.7.8	Example: Transporting a tool from a buffer into the magazine Example: Repeat "Prepare tool change" order	
	9.8	Application example for milling machine	354
	9.8.1 9.8.2	Example: Milling machine with chain magazine and dual gripper (MAG_CONF_MPF) Flow chart: Tool change	
	9.8.3	Example: Acknowledgment steps (milling machine)	
	9.8.4	Example: Tool change cycle for milling machine	
10	Series	start-up	373
	10.1	Series start-up and archiving	374
	10.2	How to create and read in a series start-up archive	376
	10.3	Example: Data archiving "Easy Archive" (use case)	378
	10.4	Parameterizing the V.24 interface	380
Α	Refere	nces	383
	A.1	List of language codes used for file names	383
	A.2	List of the alarm number ranges	384
	A.3	List of the color codes	385
	A.4 A.4.1	Directory structure on the CompactFlash card	
	A.5	Definitions for license management	391
	A.6	Rules for wiring with DRIVE-CLiQ	393
В	List of a	abbreviations	397
	B.1	Abbreviations	397
	B.2	Feedback on the documentation	400
	B.3	Overview of documentation	402
	Glossa	у	403
	Index		409

Scope of delivery and requirements

1

1.1 System overview

System design

The following configuration shows a typical example:

Figure 1-1 Configuration example

1.2 Toolbox CD and other available tools

Toolbox CD

The Toolbox CD for SINUMERIK 828D has the following content:

- PLC Programming Tool for Integrated PLC
- Commissioning software for SINAMICS S120
- PLC Library (example)

PLC Programming Tool for Integrated PLC

The following tool is available for programming the PLC: PLC Programming Tool for Integrated PLC. For the rest of this manual, this will be referred to using the abbreviation "Programming Tool".

Commissioning software for SINAMICS S120

Until the SINAMICS S120 commissioning functionality is completely available via the user interface, drive configuration and optimization is performed using the commissioning software for SINAMICS S120. The PC is connected using the Ethernet interface on the front of the SINUMERIK 828D.

Note

Ordering data

You can find the ordering data for the following tools in Catalog NC 61.

RCS Commander

The RCS Commander (Remote Control System) is a tool the commissioner can use to exchange files between the PC and the control very easily, using drag and drop.

For data transmission, the PC is connected directly to the Ethernet interface on the front of the control. For a point-to-point connection, time-consuming parameterization of the Ethernet interface is not necessary. All settings are made automatically by the RCS Commander. The RCS Commander can also access several NCUs sequentially via a company network.

STARTER drive/commissioning software

Drive commissioning for the SINUMERIK 828D can be performed using the STARTER drive commissioning software. Simple commissioning procedures which are usually performed by field service staff (such as activating direct measuring systems) can be executed directly via the SINUMERIK 828D user interface. Advanced commissioning procedures which are usually performed when the machine is being manufactured (such as drive optimization) can be executed offline via the commissioning software used for SINAMICS S120.

1.3 This is the general sequence for commissioning

Requirements

The mechanical and electrical installation of the system must be completed.

- · Check the system visually for:
 - Correct mechanical installation with secure electrical connections
 - Connection of the power supply
 - Connection of shielding and grounding
- Switching on the control and startup in "Normal startup":

Startup of the control is finished when the main screen is shown on the HMI.

Sequence overview

Commissioning of the SINUMERIK 828D is carried out in the following steps:

- 1. Install the software from Toolbox CD onto PG/PC
 - See chapter "Scope of delivery and requirements"
- 2. Create communication connection with the control
 - See chapter "Communication with the control"
- 3. Addressing the I/O
 - See chapter "Addressing the I/O modules"
- 4. Set HMI
 - See chapter "Settings on the HMI"
- 5. PLC functions
 - See Function Manual Basic Functions (P4)
- 6. Commission drive and connect probes
 - See chapter "Configuring drive"
- 7. Setting NCK machine data
 - See chapter "Setting NCK machine data"
- 8. Configuring cycles
 - See chapter "Configuring cycles"
- 9. Define maintenance tasks and maintenance intervals
 - See chapter "Service Planner"
- 10.Extend machine with additional devices
 - See chapter "Easy Extend"
- 11.Tool management
 - See chapter "Tool management"

1.4 Starting up the control

Control startup

Procedure:

1. Switch the control on. The following display then appears during startup:

- 2. Press the <SELECT> key within three seconds.
- Then press the following keys in succession:
 Menu reset key, HSK2 (horizontal SK2), VSK2 (vertical SK2)
- 4. The "Setup menu" is displayed, "Normal startup" is the default setting.

Operating modes for startup

Selection	Function
Normal startup	The system carries out a normal startup.
Reload saved user data	The system loads the stored user data ("Save data" softkey) from the system CompactFlash card.
Install software update/backup	An update is installed on the system CompactFlash card from the user CompactFlash card or USB FlashDrive.
Create software backup	A backup of the system CompactFlash card is saved to the user CompactFlash card or USB FlashDrive.
NCK default data	The system loads the Siemens NCK data default settings and deletes the retentive data on the PLC.
Drive default data	The SINAMICS user data is deleted.
PLC default data	PLC general reset and load default NOP PLC program.

Selection	Function	
HMI default data	The HMI user data is deleted.	
Factory settings	Choice between two cases: No [case 1]/ Yes [case 2]	
	• Case 1:	
	The SINAMICS user data is deleted.	
	Siemens standard NCK data is loaded.	
	PLC general reset and load default NOP PLC program.	
	Save HMI user data.	
	• Case 2:	
	As case 1 and additionally:	
	Deletion of the data in the /oem and /addon directories.	
Delete OEM data	All the data under /oem and /addon is deleted: OEM archives; OEM alarm texts; Easy Screen application.	
PLC stop	PLC is stopped.	

NOTICE

Replacement of the system CompactFlash card between different PPUs

Because of the system-related dependency between the CompactFlash card and SRAM for the data storage in the SINUMERIK 828D, the system CompactFlash card should be considered as a permanently installed EEPROM and should not be replaced!

If this has to be performed for imperative reasons, the replacement of the system CompactFlash card is detected during startup because of the stored serial number.

The reaction of the control is the loading of saved during startup (backup was performed previously with "Save data" softkey). If no stored data is found, a startup is performed automatically with the "NCK default data".

1.4 Starting up the control

Empty RTC capacitor

If the RTC capacitor is discharged, the following message is issued during startup:

You can then reset the date and time:

The capacitor is then charged again when the control is switched on during startup.

1.5 Communication with the control

Creating the connection

An Ethernet cable is needed to connect the control and PG/PC. The following Ethernet interfaces are available on the control:

• Connection via X127 (behind the flap on the front):

Cable type: Crossed Ethernet cable

At interface X127, the control is preset as a DHCP server, delivering the IP address192.168.215.1 for a direct connection (peer-to-peer connection).

• Connection via X130 (at the back):

Cable type: Uncrossed Ethernet cable

The interface X130 is the connection to the company network. The IP address that the PG/PC receives here as a DHCP client is determined by the DHCP server from the company network or fixed IP address is entered manually.

1.5.1 How to communicate with the control using the Programming Tool

Setting up the communications interface in the Programming Tool

Proceed as follows to set up the network connection in the Programming Tool:

- 1. Start the Programming Tool.
- i. Start the Programming 100i.
- 2. In the navigation bar, click the "Communication" icon or select "View" → "Communication" from the menu.
- 3. In the left column, under "Communications parameters" enter 192.168.215.1as the IP address for X127.
- 4. Double click on the icon "TCP/IP" at the top right.

1.5 Communication with the control

5. In the dialog "PG/PC interface" select the TCP/IP protocol of the PG/PC. Normally this is the network card of the PC.

Figure 1-2 TCP/IP communications settings

6. Confirm with "OK".

7. Connect by double clicking on the icon "Double click to update". If the connection is made successfully, the icon will be displayed with a green border:

Figure 1-3 Online connection

8. If the connection is unsuccessful, the following setting may have to be deactivated:

Select "Control Panel" → "Network Connections" → "Local Area Connection" "Properties" → "Advanced" → "Windows Firewall" → "Settings" → "Advanced": Deactivate the option "Local Area Connection".

1.5 Communication with the control

Figure 1-4 Deactivate option

Confirm with "OK" and repeat Step 7.

1.5.2 Example: How to communicate with the control using the NCU Connection Wizard

Requirements

The commissioning software for SINAMICS S120 is installed on the PG/PC. The "NCU Connection Wizard" is part of this software.

The connection to the control has already been set up via the Programming Tool.

Create connection to control

Procedure for the PG/PC:

- 1. Start the "NCU Connection Wizard" via this link or via the Start menu.
- 2. In the "Select Control Model" dialog, select "840D solution line" for the NCU type connection to the SINUMERIK 828D.

Figure 1-5 Select the NCU type

1.5 Communication with the control

3. In the "Select Port" dialog, select the connection to the control that you have connected via Ethernet.

Figure 1-6 Select connection

4. Confirm the cable connection for both devices in the "Cabling Help" dialog.

Figure 1-7 Cabling

5. Check the IP address and enter the name for these settings in the "Settings" dialog.

Figure 1-8 Network settings

1.5.3 How to communicate with the control using the RCS Commander

Connection options

The following options are available for the "RCS Commander" to create a connection with the control:

- Direct connection (peer-to-peer)
- Network connection

The current status of the connection is shown at the bottom in the RCS Commander status bar.

NOTICE

Generally only **one connection** is permitted, i.e. several simultaneous connections to different controls are not supported: So data exchange between two NCUs using "RCS Commander" is not possible.

Direct connection

To create a direct connection:

1. The login data is entered in the dialog "Settings" → "Connection" → "Direct connection":

Figure 1-9 Dialog: Login data for direct connection

2. In the menu, select "Connection" → "Connect" → "Direct connection" or click the "Connect" button.

The following dialog box is displayed:

Figure 1-10 Dialog: Direct connection

3. The last selected direct connection is highlighted. Using the "Connect" button, a connection to the IP address196.168.215.1 is created.

This dialog does not appear when the direct connection is selected using the menu.

Network connection

To create a network connection:

1. In the menu, select "Settings" → "Connection" → "Direct connection" or click the "Connect" button.

Figure 1-11 Dialog: Network connection

- 2. In the menu, select "Connection" → "Connect" → "Network connection" or select if available one of the previously selected connections.
- 3. Connection is made to the parameterized control.

Note

SSh key file

As an alternative to entering a password, the user may also use an SSh key for authentication. Please refer to the Online Help for more information on this topic.

1.5.4 Communicating with the control via X130

Connection to the company network

The NCU is connected to the company network via the Ethernet interface X130. The company network is used, for example, to access the network drives.

In the "Diagnostics" operating area select the "Bus TCP/IP" \rightarrow "TCP/IP Diagnostics" \rightarrow "Details" softkey with the menu forward key in order to set the parameters for the communication via X130.

Figure 1-12 Network settings

Connection properties

Company network X130 white Network cable inserted red Network cable not inserted

Availability

The availability describes the percentage of faulty data compared to the entire data volume. Problems in the company network (e.g. logical drives that cannot be reached, double IP address, etc.) as well as settling time during power up can result in fluctuations in availability:

Ø	green	Greater than 95%
---	-------	------------------

__ yellow 50 - 95 %

red Less than 50%

Note

All information that is not available is marked in the relevant table line with a hyphen "-".

1.5 Communication with the control

Settings on the HMI

2.1 Access levels

Access to functions and machine data

The user only has access to information corresponding to a particular access level and the levels below it. The machine data is assigned different access levels.

The access concept controls access to functions and data areas. Access levels 0 to 7 are available, where 0 represents the highest level and 7 the lowest level. Access levels 0 to 3 are locked using a password and 4 to 7 using the appropriate key-operated switch settings.

Access level	Locked by	Area	Data class
0		System (reserved)	System (S)
1	Password: SUNRISE	Manufacturer	Manufacturer (M)
2	Password: EVENING	Servicing	Individual (I)
3	Password: CUSTOMER	User	User (U)
4	Key-operated switch setting 3	Programmer, machine setter	User (U)
5	Key-operated switch setting 2	Qualified operator	User (U)
6	Key-operated switch setting 1	Trained operator	User (U)
7	Key-operated switch setting 0	Semi-skilled operator	User (U)

The password remains valid until it is reset with the "Delete Password" softkey. The passwords can be changed after activation.

If, for example, the passwords are no longer known, reinitialization (power up with "NCK default data") must be carried out. This resets all passwords to the default (see table). POWER ON does not reset the password.

Note

PI LOGOUT

The password can also be deleted via the PLC.

2.1 Access levels

Key-operated switch

Access levels 4 to 7 require a corresponding key-operated switch setting on the machine control panel. Three keys of different colors are provided for this purpose. Each of these keys provides access only to certain areas.

Meaning of the key-operated switch settings:

Access level	Switch setting	Key color
4-7	0 to 3	red
5-7	0 to 2	green
6-7	0 and 1	black
7	0 = Key removal position	No key inserted

The key-operated switch setting must always be edited from the PLC user program and applied to the interface accordingly.

2.2 How to set and change the password

Set password

To change the access level, select the "Start-up" operating area:

- 1. Press the "Password" softkey.
- 2. Press the "Set password" softkey to open the following dialog:

Figure 2-1 Set password

3. Enter a password and confirm this with "OK" or with the <Input> key.

A valid password is acknowledged as set and the currently applicable access level is displayed. Invalid passwords will be rejected.

4. You must delete the old password before activating a password for a lower access level than the one activated.

The last valid password is deleted by pressing the "Delete password" softkey. Then the current key-operated switch setting is valid.

Change password

To change the password:

1. Press the "Change password" softkey to open the following dialog:

Figure 2-2 Change password

2. Enter the new password in both fields and then confirm with the "OK" softkey. If both passwords match, the new password becomes valid and is adopted by the system.

2.3 Available system languages

System languages

In the basic configuration, the SINUMERIK 828D is delivered with the following system languages:

- German
- English
- French
- Italian
- Spanish
- Portuguese (Brazil)
- Chinese (simplified)
- Chinese (traditional)
- Korean

All system languages are installed in the SINUMERIK 828D as delivered, so that a change of language can be carried out directly via the user interface, without having to download system language data.

Note

Additional languages

No CNC option needs to be ordered for the installation of additional languages not included in the scope of delivery.

The language files can be ordered on the DVD Additional Languages for SINUMERIK.

2.4 How to set the date and time

Requirement

Changes can only be made with the appropriate access authorization (as of "User" and higher).

Setting the date and time

Procedure:

- 1. Select the "Start-up" operating area.
- 2. Press the "HMI" softkey.
- 3. Press the "Date/Time" softkey.

The "Date/Time" window opens.

- 4. Select the required formats for the date and time in the "Format" field.
- 5. Confirm the entry with the "OK" softkey.

The new date and time details are accepted and output on the first line in the "current" fields.

2.5 Checking and entering licenses

Use

The use of the installed system software and the options activated on a SINUMERIK control system require that the licenses purchased for this purpose are assigned to the hardware. In the course of this assignment, a license key is generated from the license numbers of the system software, the options, as well as the hardware serial number. Here, a license database administered by Siemens is accessed via the Internet. Finally, the license information including the license key is transferred to the hardware.

The license database can be accessed using the Web License Manager.

Web License Manager

By using the Web License Manager, you can assign licenses to hardware in a standard Web browser. To conclude the assignment, the license key must be entered manually on the control via the user interface.

The Internet address of the Web License Manager is:

http://www.siemens.com/automation/license

Note

SINUMERIK software products

If a license key has not been activated or does not exist for a SINUMERIK software product, alarm 8080 is output by the control.

See also

Definitions for license management (Page 391)

2.5.1 How to enter a license key

Requirement

The appropriate licenses are required for the activated options. After licensing the options in the Web License Manager, you receive a "license key" containing all options requiring a license and which is only valid for your system CompactFlash card.

To set or reset options, "Manufacturer" access rights are required.

Entering the license key

Procedure:

- 1. Select the "Start-up" operating area.
- 2. Press the menu forward key.
- 3. Press the "Licenses" softkey.

The "Licensing" window opens and gives you the following options:

- Determine the license requirement ("All options" and "Missing licenses" softkeys)
- Softkey: "Exp. license requirement"
- Entry line: "Enter license key"

Figure 2-3 Entering the license key

2.5.2 How to determine the license requirement

Determining the license requirement

Procedure:

- 1. Press the "All options" softkey to list all the options that can be selected for this control.
- 2. Activate or deactivate the required options in the "Set" column:
 - Mark the checkbox
 - Enter the number of options
 Options displayed in red are activated, however are not licensed or insufficiently licensed.
 - OR -
- 3. Press the "Missing licenses" softkey to display all options that are activated but not licensed. In the "Set" column, you can deselect the options that you do not require.

Figure 2-4 Licensing (example)

- 4. To activate new selected options, press the "Reset (po)" softkey. A safety prompt appears.
 - With HMI options, you will need to restart the HMI. Corresponding prompts will appear in the dialog line.
- 5. Press the "OK" softkey to trigger a warm restart.
 - OR -
- 6. Press the "Cancel" softkey to cancel the process.

2.6 Configuring user alarms

Creating user PLC alarms

The PLC alarms in the area from **700 000 - 700 247** are configured by the machine manufacturer. The access level "Manufacturer" is required with the appropriate password.

To enter the user PLC alarms via the user interface, select → "HMI"→ "Alarm texts" in the "Start-up" operating area.

Then you receive the following selection:

Alarm texts for	Name of the xml file
User cycle alarms	oem_alarms_cycles
User PLC alarms	oem_alarms_plc
User part program message texts	oem_partprogram_messages

Loading user PLC alarms

The alarm text files are only loaded during startup.

- "Alarm" attribute: red, is shown in the "alarm list".
- "Message" attribute: black, is shown under "Messages".

Select <MENU SELECT>, then the menu forward key and press the "HMI restart" softkey to load the alarm texts.

See also

You can find a detailed description of the alarms with system responses and deleting criteria in: SINUMERIK 828D Diagnostics Manual

2.6.1 Structure of user PLC alarms

Structure of a user PLC alarm

The user PLC alarms have the following structure:

Figure 2-5 Alarm structure

The table below shows the mode of operation of the PLC alarms:

- 1. The alarm is triggered with the appropriate number and output via the PLC signal.
- 2. If a variable has been configured to this alarm, the value of this variable is in the specified data word of the PLC variable.
- 3. The NCK response when the alarm is triggered is defined in the MD14516[x] index (see table below).
- 4. The alarm text can be freely selected and may be up to 255 characters long.

Alarm number	PLC signal	PLC variable	Alarm response (MD)	Alarm text
700 000	DB1600.DBX0.0	DB1600.DBW1000	14516[0]	Alarm 1
700 001	DB1600.DBX0.1	DB1600.DBW1004	14516[1]	Alarm 2
700 002	DB1600.DBX0.2	DB1600.DBW1008	14516[2]	Alarm 3
700 003	DB1600.DBX0.3	DB1600.DBW1012	14516[3]	Alarm 4
700 004	DB1600.DBX0.4	DB1600.DBW1016	14516[4]	Alarm 5
700 005	DB1600.DBX0.5	DB1600.DBW1020	14516[5]	Alarm 6
700 006	DB1600.DBX0.6	DB1600.DBW1024	14516[6]	Alarm 7

Continuation:				
700 247	DB1600.DBX30.7	DB1600.DBW1988	14516[247]	Alarm 248

Defining the NCK response

The following NCK responses are possible:

MD14516[x]	Meaning
Bit 0	NC start disabled
Bit 1	Read-in disable
Bit 2	Feed hold for all axes
Bit 3	EMERGENCY STOP
Bit 4	PLC in stop
Bit 5	Reserved
Bit 6	Definition for alarm or message
	Bit 6=1: → alarm, Bit 6=0: → message
Bit 7	POWER ON

Configuring alarm texts with variables

The following data types are permitted for variables in the alarm text:

Variable	Meaning
%b	Binary representation of a 32-bit value
%d	Integer decimal number
%f	4 byte floating point number
%i	Integer decimal number with sign
%o	Integer octal number
%u	Unsigned decimal number
%x	Integer hexadecimal number

2.6.2 How to create user PLC alarms

Notes for processing

The following points should be observed when processing the files:

- The files should be edited externally on a PG/PC with a text editor (e.g. notepad) or with an XML editor. The structure must not be altered.
- The created alarm text files are copied to the the following directory on the CompactFlash card: oem/sinumerik/hmi/lng
- To enable the system to recognize the alarm text file, the file name must be written in lower case letters.
- The alarm text file is converted during system startup: A restart of the HMI is necessary to activate the alarms.

Procedure

To edit a larger number of alarms, first create 2 or 3 alarms directly on the control. Then the file oem_alarms_plc_xxx.ts is created and you have a "document template" with the correct structure, which you can then extend with further alarms. The abbreviation "xxx" stands for the language in which the file has been created.

- 1. Select the "Start-up" operating area.
- 2. Press the "HMI" softkey.
- 3. Press the "Alarm texts" softkey. The "Select file" window appears.
- 4. Select "oem_alarms_plc" to create user PLC alarm texts.
- 5. Enter the alarm number in the "Number" field and the desired alarm text in the "Text" field. The alarm numbers and their alarm texts do not have to be consecutive. If an alarm is triggered without a configured text, only the alarm number is specified.

Searching within the alarm texts

To search for a text or a series of characters:

- 1. Press the "Find >" softkey. The "Find" window opens; and a new menu is displayed on the vertical softkey bar.
- 2. Enter the search term in the "Text" field.
- 3. Place the cursor in the "Direction" field and choose the search direction (forward, backward) with the "SELECT" key.
- 4. Activate the "Case-sensitive" checkbox when a distinction is to be made between upper and lower case in the entered text.
- 5. Press the "Find + replace" softkey. The "Find and replace" window appears.
- 6. Press the "OK" softkey to start the search.
- 7. Press the "Cancel" softkey to cancel the search.

Other navigation options are:

Softkey "Go to start":

The cursor jumps to the first entry of the selected alarm text file

Softkey "Go to end":

The cursor jumps to the last entry of the selected alarm text file.

See also

List of language codes used for file names (Page 383)

Example: How to create an online help for user PLC alarms (Page 60)

2.6.3 Configuring the alarm log

Logging

Configure the alarm log in the "Diagnostics" operating area.

All alarms and messages are logged in chronological order with their raised and cleared time stamps. The exception are messages of the type "msg" from the NC part program. All alarms and messages that are no longer active when the log is displayed are also retained (historical alarm events).

The alarm log is organized as a ring buffer (default setting). The oldest entries are overwritten with new events in the following cases:

- When the maximum size is exceeded (permissible range: 0 32000).
- When the events happened before the last time the system was switched on.

Permanent backup

To save the alarm log permanently, the alarm log is written to the CompactFlash card.

NOTICE

Saving the alarm log

For permanent storage, the alarm log is written to the CompactFlash card which only allows a limited number of write cycles.

- Therefore, ensure that the backup is only performed when there is a justifiable need!
- Make sure you undo the setting "on every event" if you no longer require storage of the alarm log.

Default: The alarm log is not backed up.

See also

Filtering events: Set up a filter to limit the number of events in the alarm log. You can find more details on this in:

- Commissioning Manual Basesoftware and HMI sl, chapter "Configuring alarms".
- List of the alarm number ranges (Page 384)

2.6.4 How to configure the log

Configuring the log

Procedure:

- 1. Select the "Diagnostics" operating area.
- 2. Press the "Alarm log" softkey.
- 3. Press the "Settings" softkey.
- Enter the desired number in the "Number of entries" field to change the maximum number of raised and cleared events.

Default is 500 events; permissible value range 0 - 32000.

- 5. Select the type of logging under "File write mode":
 - "Off" if the events are not to be written to a file.
 - "On every event" if every event is to be written to a file.
 - "Time controlled" if the file is to be overwritten after a particular time interval.
 An additional "Time interval" input field appears in which you can specify the time in seconds.
- 6. Press the "Save log" softkey to save the alarm log.

The settings become effective only after restarting the HMI.

Editing the configuration file

Procedure:

- 1. Copy the configuration file "oem_alarmprot_slaesvcconf.xml" from the /siemens/sinumerik/hmi/template/cfg directory.
- Insert the file into the directory /oem/sinumerik/hmi/cfg or /user/sinumerik/hmi/cfg
- 3. Name the file "slaesvcconf.xml".
- 4. Open the user-specific file "slaesvcconf.xml" in the editor.
- Enter the number of events to be output in the <Records type .../> identifier.
 The default value is 500. The permissible number is in the range from 0 ... 32000.

OR:

The number of events to be output and the type of logging can also be entered directly via the user interface:

- 1. Press the "Alarm log" → "Settings >" softkey in the "Diagnostics" operating area.
 - As soon as changes are made to the default settings, the "slaesvcconf.xml" file is automatically created in the /user/sinumerik/hmi/cfg directory.
- 2. Enter the mode of the permanent storage in the <DiskCare type="int" value="-1"/> identifier. The following values are possible:
 - -1: There is no saving of the alarm log (default setting).
 - 0: Each alarm event triggers an immediate saving of the alarm log.
 - >0: Time for saving the log in seconds:

When there is a change, the log is saved every n > 0 seconds.

3. You adapt the filter for the entry type in the <Filter> identifier.

Here the following applies:

- An alarm event is only entered in the log when it satisfies the filter criteria.
- When several filters are defined, these should be linked using the logical operators OR or AND.

The settings become effective only after restarting the HMI.

Note

Number of events

Each incoming or outgoing event of an alarm or message requires a separate entry, even when they belong to the same alarm or message.

Acknowledgement events are also contained in the alarm log. They also require an entry even when they are not recognizable in the alarm log.

Examples

All alarms that fulfill the following conditions are logged:

• CLEARINFO = 15, therefore without part program messages:

• "SEVERITY larger than 10" and "smaller than 500" :

```
<CONFIGURATION>
  <Protocol>
    <Filters>
        <Filter_01 type="QString" value= "SEVERITY HIGHER 10

AND SEVERTY LOWER 500" />
        </Filters>
        </Protocol>
</CONFIGURATION>
```

2.6.5 Configuring user alarms with colors

Introduction

For the display of alarms and messages, user specific colors are configured in the alarm attribute file, which are shown in the alarm or message line.

Note

The colors of the tabular overviews of alarms and messages in the "Diagnostics" operating area are permanently set and cannot be changed.

Copy the following files into the oem, user or addon branch:

- Alarm attribute file: /siemens/sinumerik/hmi/cfg/oem_slaedatabase.xml

 To be able to add further colors for alarms and messages at a later point, use the alarm attribute file already available or extend other alarm attribute files.
- Configuration file: /siemens/sinumerik/hmi/cfg/oem_slaesvcconf.xml In the configuration file, notify the "Alarm&Event Service" of the new alarm attribute file.

Alarm colors

The following attributes for colors can be configured for each alarm number:

Identifier <attribut attrname=""></attribut>	Meaning
TEXTCOLOR	Font color of the alarm/message text
TEXTBACKGROUNDCOLOR	Background color of the alarm/message text
NUMBERCOLOR	Font color of the alarm number
NUMBERBACKGROUNDCOLOR	Background color of the alarm number

2.6.6 How to configure colors for user alarms

General procedure

The sequence includes the following steps:

- Create alarm attribute file
- Define alarm colors
- Create configuration file
- Trigger restart of the HMI

Create alarm attribute file

Procedure:

- Copy the alarm attribute file "oem_slaedatabase.xml" as a template from the directory siemens/sinumerik/hmi/template/cfg/
- 2. Paste the file into one of the following directories:

oem/sinumerik/hmi/cfg/Oruser/sinumerik/hmi/cfg/

2.6 Configuring user alarms

3. Give the file a new name e.g. "alarm_slaedatabase.xml".

When assigning a name please note:

- Any name can be chosen but it must be written in lower case letters.
- The name must contain a period and file extension.

Example of the copied file: "alarm_slaedatabase.xml"

```
<?xml version="1.0" encoding="ISO-8859-1"?</pre>
<!DOCTYPE SlAeAlarmAttributs>
<SlAeAlarmAttributs Version="01.00.00.00">
<Types>
 <Type>
   <Category>
      <CatDesc>Alarms of the Sinumerk 828 </CatDesc>
      <Attributes>
        <a href="Attribute AttrName="TEXTCOLOR""
                      AttrDefault="5003" AttrDataType="10" >
        <AttrDesc> Text color of the alarm used
                  when displayed at the header panel </AttrDesc>
        </Attribute>
        <attribute AttrName="TEXTBACKGROUNDCOLOR"
                      AttrDefault="5004" AttrDataType="10"
        <AttrDesc>Background color of the alarm used
                   when displayed at the header panel </AttrDesc>
        </Attribute>
        <a href="NUMBERCOLOR"</a>
                      AttrDefault="5005" AttrDataType="10"
        <AttrDesc>Text color of the alarm number used
                  when displayed at the header panel </AttrDesc>
        </Attribute>
        <Attribute AttrName="NUMBERBACKGROUNDCOLOR"</pre>
AttrDefault="5006" AttrDataType="10"
        <a href="AttrDesc>Background">AttrDesc>Background</a> color of the alarm number used
                  when displayed at the header panel </AttrDesc>
        </Attribute>
      </Attributes>
    </Category>
  </Type>
</Types>
```

Define alarm colors

Procedure:

- 1. Open the created alarm attribute file "alarm slaedatabase.xml" in the editor.
- Enter the attribute name of the alarm color type to be changed in the <Attribute AttrName> identifier.
- 3. Define the alarm source in the identifier <Sources>: SourceID="51" SourceURL="/PLC/PMC"
- 4. Delete the areas that are not being changed.
- 5. In the <Alarms> identifier, create a separate area for each individual alarm or for an alarm number range.
- 6. Enter the alarm number in the <Alarm AlarmID= "..." > identifier, or enter the alarm number range in the <Range FromAlarmID="..." ToAlarmID= "..." > identifier.
- 7. Enter the desired color values in the identifiers:
 - <TEXTCOLOR>
 - <TEXTBACKGROUNDCOLOR>
 - <NUMBERCOCLOR>
 - <NUMBERBACKCOLOR>

Note

To insert further alarm sources <Sources>, make sure that the alarm number is always assigned to the correct alarm source.

You can find the SourceID and the SourceURL in the following table: List of the alarm number ranges (Page 384)

Create configuration file

Procedure:

- 1. Copy the configuration file "oem_slaesvcconf.xml" from the siemens/sinumerik/hmi/template/cfg directory.
- 2. Insert the file into directory oem/sinumerik/hmi/cfg or user/sinumerik/hmi/cfg.

OR:

3. Press the "HMI" → "Alarm texts >" softkey in the "Start-up" operating area.

As soon as an entry is made, the "alarmtexteditor_db_oem_< ... >.xml" file is automatically created in the /oem/sinumerik/hmi/cfg directory.

OR:

- 4. Edit the "alarmtexteditor_db_oem_< ... >.xml"file with an external editor.
- 5. Transfer the file to the /oem/sinumerik/hmi/cfg directory.

The settings become effective only after restarting the HMI.

2.7 Creating OEM-specific online help

Overview

In addition to the existing system online help, you also have the option of creating a manufacturer-specific online help and adding this to the operator software.

This online help is generated in the HTML format, i.e. it comprises HTML documents that are linked with one another. The subject being searched for is called in a separate window from a contents or index directory. Similar to a document browser (e.g. Windows Explorer), a list of possible selections is displayed in the left-hand half of the window and when you click the required subject, the explanation is displayed in the right-hand half of the window.

Context-sensitive selection of online help pages is not possible.

General sequence:

- 1. Generating HTML files
- 2. Generating a help book
- 3. Integrating the online help in the operator software
- 4. Saving help files in the target system

2.7.1 Structure and syntax of the configuration file

Syntax description of the "slhlp.xml"

You require the configuration file "slhlp.xml" to integrate the help book in the existing online help system of the user interface:

Tag	Number	Meaning	
CONFIGURATION	1	Root element of the XML document: Indicates that this involves a configuration file.	
OnlineHelpFiles	1	Introduc	es the section of the help books.
<help_book></help_book>	*	Introduc	es the section of a help book.
EntriesFile	1	File name of the help book with the list of contents and subject (keyword) entries. Attributes:	
	I	value	Name of the XML file
		type	Data type of the value (QString)
III-Technology	0,1	Specifies the technology for which the help book applies. "All" applies for all technologies. If the help book applies to several technologies, then the technologies are listed separated by comma.	
		Possible values: All, Universal, Milling, Turning, Grinding, Stroking, Punching Attributes:	

Tag	Number	Meaning	9
		value	Technology data
		type	Data type of the value (QString)
DisableSearch		Disable	the subject (keyword) search for the help book.
		Attributes:	
	0,1	value	true, false
		type	type, data type of the value (bool)
DisableFullTextSearch		Disable	the full text search for the help book.
		Attribute	es:
	0,1	value	true, false
		type	type, data type of the value (bool)
DisableIndex		Disable	the subject index for the help book.
		Attribute	es:
	0,1	value	true, false
		type	type, data type of the value (bool)
DisableContent		Disable	the table of contents for the help book.
	0,1	Attribute	es:
		value	true, false
		type	type, data type of the value (bool)
DefaultLanguage		Abbreviation for the language that should be displayed if the actual country language is available for the help book. Attributes:	
	0,1		
		value	chs, cht, deu, eng, esp, fra, ita, kor, ptb
		type	Data type of the value (QString)

The following applies to the "Number" column: * means 0 or several

Example of a "slhlp.xml" file

The help book "hmi_myhelp.xml" is configured in the following example; the subject index is not activated:

2.7.2 Structure and syntax of the help book

Syntax for the help book

The help book is an XML file in which the structure of the online help is defined. The name of the file can be freely selected, e.g. "hmi_myhelp". In this file, you define:

- HTML documents
- Contents and subject index

Tag	Number	Meaning		
HMI_SL_HELP	1	Root element of the XML document		
BOOK		Identifies a	a help book. The name can be freely selected.	
		Attributes:		
		ref	Identifies the HTML document that is displayed as the entry page for the help book.	
	+	titel	Title of the help book that is displayed in the table of contents.	
		helpdir	Directory that contains the online help of the help book.	
ENTRY		Chapter of	the online help	
		Attributes:		
	*	ref	Identifies the HTML document that is displayed as entry page for the chapter.	
		titel	Title of the chapter that is displayed in the table of contents.	
INDEX_ENTRY		Subject (keyword) to be displayed		
		Attributes:		
	*	ref Identifies the HTML document that is jumped to for subject index entry.		
		titel	Title of the subject that is displayed in the subject index.	

The following applies to the "Number" column:

^{*} means 0 or several

⁺ means 1 or several

Formatting the index

You have the following options to format the subject index:

- Single entry: <INDEX ENTRY ...title="index"/>
- Two two-stage entry, whereby each title has a main and a subentry.

Separate the entries with a comma.

```
<INDEX ENTRY ...title="mainIndex 1, subIndex 1 with mainIndex 1"/>
```

 Two-stage entry, whereby the first title is the main entry and the second title is the subentry.

Separate the entries with a semicolon.

Figure 2-6 Example: Two-stage index

2.7.3 Description of the syntax for the online help

Rules for creating the HTML files

Generating help files in the HTML format. It is possible to save all information in a single HTML file or to distribute the information over several HTML files.

The file names are assigned taking into account the following rules:

- References within HTML files should always be specified with relative paths. Only then
 can it be ensured that the references function in precisely the same way on both the
 development computer as well as on the target system.
- If jumps are to be made to certain points within an HTML file per link, then so-called anchors must be defined for this purpose.

Example of an HTML anchor:

```
<a name="myAnchor">This is an anchor</a>
```

See also: Example: How to create an online help for user PLC alarms (Page 60)

 The contents of HTML documents must be saved with the UTF-8 coding. This guarantees that the HTML documents are correctly displayed in all of the supported country languages.

HTML tags

The following sub-set of the HTML functional scope is supported:

Tag	Description	Comment
а	Anchor or link	Supported attributes: href and name
address	Address	
b	Bold	
big	Larger font	
blockquote	Indented paragraph	
body	Document body	Supported attributes: bgcolor (#RRGGBB)
br	Line break	
center	Centered paragraph	
cite	Inline citation	Same effect as tag i
code	Code	Same effect as tag tt
dd	Definition data	
dfn	Definition	Same effect as tag i
div	Document division	The standard block attributes are supported
dl	Definition list	The standard block attributes are supported
dt	Definition term	The standard block attributes are supported
em	Emphasized	Same effect as tag i
font	Font size, family, color	Supported attributes: size, face, and color (#RRGGBB)
h1	Level 1 heading	The standard block attributes are supported
h2	Level 2 heading	The standard block attributes are supported
h3	Level 3 heading	The standard block attributes are supported
h4	Level 4 heading	The standard block attributes are supported
h5	Level 5 heading	The standard block attributes are supported
h6	Level 6 heading	The standard block attributes are supported
head	Document header	
hr	Horizontal line	Supported attributes: width (can be specified as absolute or relative value)
html	HTML document	
i	Italic	
img	Image	Supported attributes: src, width, height
kbd	User-entered text	
meta	Meta-information	
li	List item	
nobr	Non-breakable text	
ol	Ordered list	The standard attributes for lists are supported
р	Paragraph	The standard block attributes are supported (default setting: left-aligned)
pre	Preformated text	
s	Strikethrough	
samp	Sample code	Same effect as tag tt

Tag	Description	Comment
small	Small font	
span	Grouped elements	
strong	Strong	Same effect as tag b
sub	Subscript	
sup	Superscript	
table	Table	Supported attributes: border, bgcolor (#RRGGBB), cellspacing, cellpadding, width (absolute or relative), height
tbody	Table body	No effect
td	Table data cell	The standard attributes for table cells are supported
tfoot	Table footer	No effect
th	Table header cell	The standard attributes for table cells are supported
thead	Table header	This is used to print tables that extend over several pages
title	Document title	
tr	Table row	Supported attributes: bgcolor (#RRGGBB)
tt	Typewrite font	
u	Underlined	
ul	Unordered list	The standard attributes for lists are supported
var	Variable	Same effect as tag tt

Block attributes

The following attributes are supported by the tags div, dl, dt, h1, h2, h3, h4, h5, h6, p:

- align (left, right, center, justify)
- dir (ltr, rtl)

Standard attributes for lists

The following attributes are supported by tags ol and ul:

• type (1, a, A, square, disc, circle)

Standard attributes for tables

The following attributes are supported by tags td and th:

- width (absolute, relative, no-value)
- bgcolor (#RRGGBB)
- colspan
- rowspan
- align (left, right, center, justify)
- valign (top, middle, bottom)

CSS properties

The following table includes the supported CSS functional scope:

Property	Values	Description
background-color	<color></color>	Background color for elements
background-image	<uri></uri>	Background image for elements
color	<color></color>	Foreground color for text
text-indent	<length>px</length>	Indent the first line of a paragraph in pixels
white-space	normal pre nowrap pre- wrap	Defines how whitespace characters are handled in HTML documents
margin-top	<length>px</length>	Width of the upper edge of the paragraph in pixels
margin-bottom	<length>px</length>	Width of the lower edge of the paragraph in pixels
margin-left	<length>px</length>	Length of the left hand edge of the paragraph in pixels
margin-right	<length>px</length>	Width of the righthand edge of the paragraph in pixels
vertical-align	baseline sub super middle top bottom	Vertical alignment for text (in tables, only the values middle, top and bottom are supported)
border-color	<color></color>	Border color for text tables
border-style	none dotted dashed dot- dash dot-dot-dash solid double groove ridge inset outset	Border style for text tables
background	[<'background-color'> <'background-image'>]	Short notation for background property
page-break-before	[auto always]	Page break before a paragraph/table
page-break-after	[auto always]	Page break after a paragraph/table
background-image	<uri></uri>	Background image for elements

Supported CSS selectors

All CSS 2.1 selector classes are supported with the exception of so-called pseudo selector classes such as :first-child, :visited and :hover.

2.7.4 Example: How to create an OEM-specific help

Requirements

Create the following files:

Configuration file: "slhlp.xml"

Definition of the help book. "hmi_myhelp.xml"

```
<?xml version="1.0" encoding="UTF-8"?>
<HMI SL HELP language="en-US">
    <BOOK ref="index.html" title="Easy Help" helpdir="hmi myhelp">
      <ENTRY ref="chapter 1.html" title="Chapter 1">
         <INDEX ENTRY ref="chapter 1.html" title="Keyword 1"/>
         <INDEX ENTRY ref="chapter 1.html" title="Keyword 2"/>
       </ENTRY>
       <ENTRY ref="chapter 2.html" title="Chapter 2">
         <INDEX ENTRY ref="chapter 2.html" title="Keyword 2"/>
       </ENTRY>
      <ENTRY ref="chapter 3.html" title="Chapter 3">
         <INDEX ENTRY ref="chapter 3.html" title="Keyword 3"/>
        <ENTRY ref="chapter 31.html" title="Chapter 3.1">
           <INDEX ENTRY ref="chapter 31.html" title="test;Chapter 3.1"/>
         </ENTRY
         <ENTRY ref="chapter_32.html" title="Chapter 3.2">
          <INDEX ENTRY ref="chapter 32.html" title="test;Chapter 3.2"/>
         </ENTRY
       </ENTRY>
     </BOOK>
 /HMI SL HELP>
```

Saving help files in the target system

In the following example, the structure of a help book with the name "Easy Help" with table of contents and subject index is described.

Procedure:

1. Copy the configuration file "slhlp.xml" to the following directory:

/oem/sinumerik/hmi/cfg

2. Create a directory for the desired language of the online help under the following path: /oem/sinumerik/him/hlp

Use the specified language code from Chapter List of language codes used for file names (Page 383).

Note

Notation

The directory names must be written in lower case.

For example, if you are integrating a help in English, create an "eng" directory.

3. Place the help book, e.g. "hmi_myhelp.xml" in the "eng" directory.

/oem/sinumerik/him/hlp/eng/hmi myhelp.xml

4. Copy the help files to the following directory:

/oem/sinumerik/him/hlp/eng/hmi myhelp/

The settings become effective only after restarting the HMI.

NOTICE

Updates or changes

For the display of the table of contents and index of a help book and for quicker processing in the <code>/siemens/sinumerik/sys_cache/hmi/hlp</code> directory, the help files are stored in binary format: slhlp_<Hilfebuch>_*_<Ing>.hmi .

In the example: slhlp_hmi_myhelp_*_eng.hmi

These files must first be deleted so that the changes can take effect and be displayed in the online help.

Result

The book consists of three chapters with sections:

Figure 2-7 Example: OEM online help

Entries in the subject index:

Figure 2-8 Example: Index

2.7.5 Example: How to create an online help for user PLC alarms

Overview

If a user PLC alarm is triggered, a context-sensitive online help can be created for the respective alarm, e.g. with explanation and remedy. The online help texts for the user PLC alarms are managed in the following file: "sinumerik_alarm_oem_plc_pmc.html"

Figure 2-9 Example: Online help of user PLC alarms

Structure of the help file

The following entries are permitted in the help file:

Entry	Meaning
AlarmNo	Hyperlink to the alarm number
	Help text for the corresponding alarm
	Text that is displayed after the "Explanation" or "Remedy" field.

Creating a help file

The file name is language-neutral and must be:

```
sinumerik_alarm_oem_plc_pmc.html
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE html PUBLIC>
<html>
<head><title></title></head>
<body>
. . .
<b><a name="700004">700004</a></b>
<b>Help for user PLC alarm 700004 </b>
<b>Reaction: </b>
Reaction for user PLC alarm 700004 
<b>Remedy:</b>
Restart control. 
<br>>
<b><a name="700005">700005</a></b>
<b>Help for user PLC alarm 700005 </b>
<b>Reaction: </b>
Reaction for user PLC alarm 700005 
<b>Remedy:</b>
Clear alarm with Reset key. 
<br/>br>
</body>
</html>
```

2.7 Creating OEM-specific online help

Procedure:

1. Copy the file to one of the following directories:

/oem/sinumerik/hmi/hlp/<lng>/sinumerik_alarm_plc_pmc/
/user/sinumerik/hmi/hlp/<lng>/sinumerik_alarm_plc_pmc/

<Ing> stands for the language code.

2. Delete all files in the directory:

/siemens/sinumerik/sys cache/hmi//hlp

The settings become effective only after restarting the HMI.

See also

List of language codes used for file names (Page 383)

Commissioning the PLC

Creating a PLC program

The PLC is commissioned with the Programming Tool. This is a Windows program and is installed on a PC. A typical Windows easy-to-use online help is available.

If the Programming Tool is called without specifying an existing project, a new project is implicitly created with the name "Project1". This project can be used immediately to create the PLC user program and then saved under an arbitrary name and loaded to the control.

Existing projects can be opened in the usual Windows manner.

See also

A detailed description on the operation of the Programming Tool, the properties and the programming of the PLC as well as further useful functions from the PLC can be found in:

Function Manual Basic Functions /PG/, Chapter PLC for SINUMERIK 828D (P4)

3.1 Activating I/O modules

General machine data

I/O modules, machine control panel and PN bus coupler are assigned fixed addresses for the input and output image of the PLC: See table below.

The machine data contains two fields to deactivate the update of the input and output image of the PLC:

Machine data		Value range	
12986[i]	\$MN_PLC_DEACT_IMAGE_LADDR_IN	0 ≤ i ≤ 7	Input addresses
12987[i]	\$MN_PLC_DEACT_IMAGE_LADDR_OUT	0 ≤ i ≤ 7	Output addresses

The SINUMERIK 828D works with a fixed maximum configuration of the I/O modules. As delivered, the data transfer to the input and output image of the PLC is deactivated for all I/O modules.

Field with logical input addresses:

MD	Logical input address	Data transfer to the PLC deactivated	
12986[0]	0	1st PP module inactive	
12986[1]	9	2nd PP module inactive	
12986[2]	18	3rd PP module inactive	
12986[3]	27	4th PP module inactive	
12986[4]	36	5th PP module inactive	
12986[5]	96	PN bus coupler inactive	
12986[6]	112	Machine control panel inactive	

The field of output addresses is empty (default setting): MD12987[i] = -1

If an I/O module is to be activated, its address must not be entered in either MD12986[i] or in MD12987[i]. Instead, the value -1 ("empty") must be entered.

Example

Two PP modules and the machine control panel are activated:

MD	Logical input address	Data transfer to the PLC deactivated	
12986[0]	-1	1st PP module active	
12986[1]	-1	2nd PP module active	
12986[2]	18	3rd PP module inactive	
12986[3]	27	4th PP module inactive	
12986[4]	36	5th PP module inactive	
12986[5]	96	PN bus coupler inactive	
12986[6]	-1	Machine control panel active	

Note

The use of an input/output address of a deactivated module in the PLC user program does not trigger an alarm. The PLC user program always works with the image memory. Whether there is a connection to the physical input/outputs is configured via MD12986[i] and MD12987[i].

Active modules are then monitored cyclically for failure.

Figure 3-1 I/O switch

Activating fast onboard I/O for PLC

The PLC of the SINUMERIK 828D use four fast inputs and outputs respectively, which are provided "onboard" via the X142 connector.

Example: X142.1 corresponds to \$A_IN[9]

These four inputs and four outputs are assigned to the NC of the SINUMERIK 828D as standard and can be jointly assigned to the PLC by changing the following machine data:

Machine data		I/O of the NC assigned	I/O of the PLC assigned
10366[0]	\$MN_HW_ASSIGN_DIG_FASTIN	10101H	10001H
10368[0]	\$MN_HW_ASSIGN_DIG_FASTOUT	10101H	10001H

IP addresses of the I/O modules

You can find the DIP switch setting for the IP address belonging to the appropriate I/O module in the following table. The maximum configuration with five PN modules for PPU 28x.1 and four PN modules for PPU 26x.1 including analog modules, bus coupler and machine control panel with PLC I/O interface based on PROFINET are taken into account.

Example: setting for machine control panel

Figure 3-2 DIP switch

I/O module	IP address	Input addresses	Output addresses
	192.168.214.	(active with MD12986[i] = -1)	
1st PP module digital	9	0 8	0 5
2nd PP module digital	8	9 17	6 11
3rd PP module digital	7	18 26	12 17
4th PP module digital	6	27 35	18 23
5th PP module digital	5	36 44	24 29
Unassigned		45	30 55
Reserved		46 47	
Reserved		48 49	
Reserved		50 51	
Reserved		52 53	
Reserved		54 55	
Reserved		64 71	64 71
Reserved		72 79	72 79
Reserved		80 87	80 87
Reserved		88 95	88 95
PN bus coupler	20	96 111	96 111
External machine control panel	64	112 125	112 121
Reserved		126 131	122 123

Commissioning the drive

4.1 Configuring the drive

4.1.1 Example of a drive configuration

Overview

The SINAMICS S120 commissioning software is available on the Toolbox CD, free of charge.

Until the SINAMICS S120 commissioning functionality is completely available via the user interface, drive commissioning is performed using the commissioning software for SINAMICS S120. The PG/PC is connected via the Ethernet interface on the front of the SINUMERIK 828D.

Configuring the drive

For the configuration of the drive, the illustration from chapter System overview (Page 13) is chosen as an example. The DRIVE-CLiQ connections are connected as in the following diagram:

Figure 4-1 DRIVE-CLiQ connections

4.1 Configuring the drive

The following applies to the configuration of 4 axes:

The sequence of the DRIVE-CLiQ connections corresponds to the sequence of the SINAMICS drive object numbers (= default). Adjustments are only necessary if this setting does not fit with the sequence in the drive system.

Index	Axes	SINAMICS drive object		
		Number	Name	
		1	CU_I_3.3:1	
		2	SLM_3.3:2	
4	MSP1	3	SERVO_3.3:3	
1	MX1	4	SERVO_3.3:4	
2	MY1	5	SERVO_3.3:5	
3	MZ1	6	SERVO_3.3:6	

See also

Rules for wiring with DRIVE-CLiQ (Page 393)

Sequence

The sequence is divided into the following steps:

- Create connection to control.
- Step 1: Configure the drive.
- Step 2: Configure the infeed.
- Step 3: Assign the encoders.
- Step 4: Assign the axes.
- Finally: Save the data.

These steps are described in more detail in the following sections.

4.1.2 Example: How to configure the drive

Initial state

Before you begin:

- Connect PG/PC with the control: See chapter Example: How to communicate with the control using the NCU Connection Wizard (Page 23)
- Power up of the control is carried out with "Siemens default data".
- Display in "Start-up" operating area on the control:

Figure 4-2 Control after power up

4.1 Configuring the drive

Procedure

HMI Startup

To configure the drive:

- 1. Start the commissioning software for SINAMICS S120.
- 2. Select the "Start-up" operating area.
- 3. If necessary, change the password to "Manufacturer" access level.

Figure 4-3 Start commissioning

Note

Updating firmware

When a drive is connected, the update of the firmware is started automatically.

Alternatively:

The firmware update can also be started via the following softkeys:

4. Start commissioning with the "Drive system" softkey (horizontal bar); the following dialog appears:

Figure 4-4 Drive commissioning

 To ensure the drive's firmware matches the software level on the control, press the "Load firmware..." softkey (vertical bar): The current firmware on the control's CompactFlash card is loaded to the drive.

Figure 4-5 Message on time needed

- 6. Confirm this message with "Yes".
 - During loading, you will be informed of progress with a status display.
 - While the firmware is loading, the "RDY" LED flashes alternately red green on the appropriate module. When the module is finished, this LED will show a steady green light. The "DC LINK" LED will show a steady orange light.

4.1 Configuring the drive

7. When the firmware has finished loading successfully, confirm this message with "OK":

Figure 4-6 Firmware loaded

Note

The following selection depends on the configuration of the target system:

- Without NX expansion module: "Drive unit" softkey
- With NX expansion module: "Drive system" softkey

8. This example is a configuration without NX module. In this example, select the "Drive unit" softkey (vertical bar).

Figure 4-7 Drive unit: Commissioning

9. Then you receive the message that the device configuration process may last several minutes.

Figure 4-8 Drive unit: Configuration

CHAN1 Jog MPFO Channel reset Program aborted Communication failure 120201 ADrive devices\Configuration DP3.SLAVE3:CU_I_3.3:1 (1) Axis Drive Object Component -No. FW-Vers. C.level Start-up To match the cyclic data traffic between the NCK and SINAMICS to the SINAMICS configuration, an NCK power ON reset (warm restart) should be executed. Do you want to execute an NCK power ON reset (warm restart)? No CU_I_3.3:1.Control_Unit_1(1)

10. Then you receive the following display:

Figure 4-9 NCK Power On Reset

11. Confirm with "Yes". The system carries out a warm restart. This operation can take several minutes.

After the warm restart you receive the following selection:

Figure 4-10 Continue configuration

12. To continue commissioning, press the "Drive" softkey.

Yes

13. Carry out a POWER ON for the drive – as requested in the message: Switch off completely and then on again. The following will be displayed:

Figure 4-11 Drive data overview

14. Option: To identify the individual Motor Modules, select "Identify via LED": The "RDY" LED flashes alternately red - orange.

Select the next module with the vertical softkeys "Drive +" and "Drive -".

Result

Step 1 for commissioning of the drives is now complete.

Note

Alternative procedure

If, in the "Configuration" dialog (Fig. Continue configuration), you accidentally press "OK", continue the configuration after POWER ON with the following selection:

• On the horizontal softkey bar select: "Drive system" → "Drive devices" → "Configuration".

4.1.3 Example: How to configure the infeed

Configuring the infeed

Note

If there are alarms that require acknowledgment after switching on, these must be acknowledged first. Then commissioning can be continued.

Procedure:

1. In the "Overview" dialog, select the vertical softkey "Change", then the following query appears:

Figure 4-12 Query for further action

2. Here, select the vertical softkey "Change" to continue configuration.

3. Then press the horizontal softkey "Infeed" for the following display:

Figure 4-13 Commissioning infeed

- 4. To configure the infeed, select the vertical softkey "Change".
- 5. In the following dialog "Configuration Active Line Module" press "Continue >".
- 6. In the following dialog "Configuration Further data" press "Continue >".
- 7. In the following dialog "Configuration Terminal wiring" press "Continue >".

- 8. In the following dialog "Configuration Summary" press "Finish".

 The infeed has been configured.
- 9. Confirm the query if you want to save the data with "Yes".

This process may take several minutes.

Figure 4-14 Infeed: Non-volatile saving of the data

Result

Step 2 for commissioning of the drives is now complete.

4.1.4 Example: How to configure the external encoder

Connecting a direct measuring system

In addition, a direct measuring system is connected for the spindle (see chapter Example of a drive configuration (Page 67)). The following section describes the configuration.

Procedure

To change the configuration of the drive:

1. You pressed the vertical softkey "Change".

Figure 4-15 Change drive

2. Confirm the query with the "Change" softkey.

The dialog "Configuration - Motor" is opened and the drive object 3 = Spindle is selected. Press "Next >".

3. The next dialog tells you which motor is assigned to the drive.

Press "Next >".

4. The next dialog tells you about the motor assignment. Press "Next >".

Start-up CHAN1 Jog NMPF.DIR

Figure 4-16 Configuring the motor

- 5. This dialog tells you the exact data of the motor recognized.
 - Press "Next >".
- 6. The next dialog tells you about the configuration of the motor brake.
 - Press "Next >".

7. The next dialog tells you which encoder has already been assigned to this drive object (= spindle):

Figure 4-17 Assigning the encoder

- 8. Activate the "Encoder 2" option.
- 9. Select the encoder "SM_19.Encoder_20" from the selection list.
- 10.Confirm with the <INPUT> key.
- 11.Press "Next >".
- 12. Confirm the query with "OK".

This may take several minutes.

13. While the data is being saved, you receive the following status display:

Figure 4-18 Encoder 2: Saving data

- 14. The next dialog tells you about the configuration of the control mode.
- 15.Press "Next >".
- 16. The next dialog tells you about the BICO connection.

- 17.Press "Next >".
- 18.At the end you receive a summary showing all the data.
- 19.If you press "Finish >" you receive the following information:

Figure 4-19 Confirm saving

20. Confirm the saving of the configuration data with "Yes".

Saving can take several minutes.

Result

Step 3 for commissioning of the drives is now complete.

4.1.5 Example: How to assign the axes

Assigning axes

After the final save of the Encoder 2 configuration data, the following overview is shown:

Figure 4-20 Drive data overview

1. To assign every logical drive a real axis, select the horizontal softkey "Assign axis". The "Axis assignment" dialog is opened:

Figure 4-21 Assigning axis

Note

Both the following actions are each carried out **twice** so the softkeys "Change" and "Accept" must be pressed repeatedly.

- 2. Press the "Change" softkey to assign an axis to DO number 2.
- 3. From the selection list choose "MSP1" and press the "Accept" softkey.
- 4. An NCK Power On Reset is needed to make the assignment effective in the system.

5. Press the "Cancel" softkey to assign the other axes first.

Figure 4-22 Assigning axis: Spindle

- 6. Select the next module with the vertical softkeys "Drive +" and "Drive -".
- 7. Assign all axes one after another:

Axis	Drive
MSP1	SERVO_3.3:3
MX1	SERVO_3.3:4
MY1	SERVO_3.3:5
MZ1	SERVO_3.3:6

Accept settings

Finally, carry out the NCK Power On Reset and check the following settings:

Figure 4-23 Confirming Power On Reset

Confirm with "OK" and carry out a restart; not only for the drives and but also for the control. The following assignment is shown on the PG/PC:

Figure 4-24 Assignment of all axes

DP003.Slave003: SLM_3.3:2 (2)": 206400 Infeed: Line supply data identification selected/active. Machine configuration **Machine Axis** Drive Motor Index Name No. Identifier Туре Channel Туре MX1 LIN SERUO_3.3:4 SRM CHAN1 1 2 LIN 3 SERU0_3.3:5 SRM CHAN1 Change MY1 language 3 LIN 4 SERVO_3.3:6 SRM CHAN1 MZ1 MSP1 SP SERU0_3.3:3 ARM CHAN1 Password Save Current access level: Manufact. data Optim./ Mach. System HMI PLC PLC MD data

After the restart, the following machine configuration is displayed on the control:

Figure 4-25 Control: Configuration of all axes

Result

Step 4 for commissioning of the drives is now complete.

Data backup

The configuration data is backed up after commissioning in the non-volatile memory with the vertical softkey "Save data":

Figure 4-26 Data backup

4.1.6 Example: Setting machine data for an axis/spindle

Axis machine data

After the commissioning in the previous example, the following values are set for the axis machine data:

Axis machine data		X	Υ	Z	SP	Α
30130	\$MA_GEAR_STEP_MAX_VELO	1	1	1	1	1
30230	\$MA_ENC_INPUT_NR	1	1	1	2	1
30240	\$MA_ENC_TYPE	1	1	1	1	4
31020	\$MA_ENC_RESOL	2048	2048	2048	1024	512
34200	\$MA_ENC_REFP_MODE	1	1	1	1	0

To operate the axes in the previous example in JOG mode **after** commissioning the drive, enter the new values for the following machine data:

Spindle mach	ine data	Default setting	New value
32000	\$MA_MAX_AX_VELO	10000	3000
32010	\$MA_JOG_VELO_RAPID	10000	100
32020	\$MA_JOG_VELO	2000	50
35100	\$MA_SPIND_VELO_LIMIT	10000	3000
35110[0]	\$MA_GEAR_STEP_MAX_VELO[0]	500	3000
35110[1]	\$MA_GEAR_STEP_MAX_VELO[1]	500	3000
35130[0]	\$MA_GEAR_STEP_MAX_VELO_LIMIT[0]	500	3150
35130[1]	\$MA_GEAR_STEP_MAX_VELO_LIMIT[1]	500	3150
36200[0]	\$MA_AX_VELO_LIMIT[0]	11500	3300
36200[1]	\$MA_AX_VELO_LIMIT[1]	11500	3300

Further information on the status of axes and spindle is available in the "Diagnostics" operating area with the menu forward key:

- The "Axis diagnostics" softkey opens the "Service overview".
- The "Service axis" softkey opens the "Service Axis/Spindle" dialog.

4.1.7 Parameters for the axis/spindle test run

Relevant parameters and terminals

Infeed:

Parameter/terminal	Meaning
p0840	ON/OFF1
p0844	1st OFF2
p0845	2nd OFF2
p0852	Enable operation
X21.3 (+24 V) and X21.4 (ground)	EP terminals enable (pulse enable)

Drive:

Parameter/terminal	Meaning
p0840	ON/OFF1
p0844	1st OFF2
p0845	2nd OFF2
p0848	1st OFF3

Parameter/terminal	Meaning
p0849	2nd OFF3
p0852	Enable operation
X21.3 (+24 V) and X21.4 (ground)	EP terminals enable (pulse enable)
p0864	Infeed enable
p1140	Ramp-function generator enable
p1141	Ramp-function generator start
p1142	Setpoint enable

The drive parameters are set at: "Start-up" operating area → "Drive units" softkey → "Inputs/outputs"

Figure 4-27 Drive parameters

See also

Further references on the drive:

- SINAMICS S120 Commissioning Manual
- Booksize Power Units Manual

4.2 Terminal assignments

4.2.1 Terminal assignment on X122

Terminal assignment X122 of the Control Unit (PPU)

Pin no.	Function	Assignment	BICO source/sink		
1	Input ¹⁾	ON/OFF1 infeed for:	CU: r0722.0	Infeed p0840	
		Line Module with DRIVE-CLiQ connection			
		"Infeed ready signal" for:	SLM X21.1	Drive p0864	
		Line Module without DRIVE-CLiQ connection			
2	Input	"OFF3 – quick stop"	CU: r0722.1	Each drive	
				2nd OFF3, p0849	
3	Input	SH/SBC 1 - Group 1	CU: r0722.2	p9620 (all drives in the	
		SINAMICS Safety Integrated		group)	
		(SH enable = p9601)			
4	Input	SH/SBC 1 - Group 2	CU: r0722.3	p9620 (all drives in the	
		SINAMICS Safety Integrated		group)	
		(SH enable = p9601)			
5	Ground for	pins 14			
6	+24 V				
7	Output	SH/SBC 1 - Group 1	CU: p0738	p9774 bit 1	
		SINAMICS Safety Integrated		BICO from CU after	
				the first drive in the	
	0 1 1	OLUMPO 4 O O	011 0700	group	
8	Output	SH/SBC 1 - Group 2	CU: p0739	p9774 bit 1	
		SINAMICS Safety Integrated		BICO from CU after the first drive in the	
				group	
9	Ground for	pins 7, 8, 10, 11	1		
10	Input	BERO 1 - zero mark substitute	CU: r0722.10	Drive p0495 = 2	
11	Input	Probe 1: Distributed measurement	CU: p0680[0]=0	Every drive p0488	
	'	(MD13210=1)		Index=encoders	
				1,2,3=3	
12	Ground for	pins 7, 8, 10, 11			
1) Low-hi	igh edge requ	ired			

4.2.2 Terminal assignment on X132

Terminal assignment X132 of the Control Unit (PPU)

Pin no.	Function	Assignment	BICO source/sink	BICO source/sink		
1	Input	Digital input \$A_IN[1]	CU: r0722.4	CU: p2082[0]		
2	Input	Digital input \$A_IN[2]	CU: r0722.5	CU: p2082[1]		
3	Input	Digital input \$A_IN[3]	CU: r0722.6	CU: p2082[2]		
4	Input	Digital input \$A_IN[4]	CU: r0722.7	CU: p2082[3]		
	Input	Line contactor feedback signal (when configured in the HMI)	CU: r0722.7	LM: p0860		
5	Ground for	pins 14		•		
6	+24 V					
7	Output	Infeed: in operation	LM: r0863.0	CU: p0742		
		(LM with DRIVE-CLiQ connection)				
	Output	Digital output \$A_OUT[4]	CU: 2091.3			
8	Output	Infeed: Ready for switching on	LM: r0899.0	CU: p0743		
		(LM with DRIVE-CLiQ connection)				
Output		Digital output \$A_OUT[3]	CU: 2091.2			
9	Ground for	pins 7, 8, 10, 11				
10	Output	Digital output \$A_OUT[2]	CU: 2091.1	CU: p0744		
	Output	Line contactor control	LM: r0863.1	CU: p0744		
		(when configured in the HMI)				
	Input	BERO 2 - zero mark substitute	CU: r0722.14	Drive p0495 = 5		
	Input	2nd OFF 2	CU: r0722.14	Drive p0845		
11	Output	Digital output \$A_OUT[1]	CU: 2091.0	CU: p0745		
	Input	Probe 2: Distributed measurement	CU: p0680[1]=0	Every drive p0489		
		(MD13210=1)	CU: p0728 bit 15=0	Index=encoders 1,2,3=6		
12	Ground for	pins 7, 8, 10, 11				

4.2.3 Terminal assignment on X122 for a Numeric Control Extension

Terminal assignment X122 on the NX

Pin no.	Function	Assignment	BICO source/sink		
1	Input	"Infeed ready signal"	NX: r0722.0	Drive p0864	
2	Input	"OFF3 – quick stop"	NX: r0722.1	Each drive	
		Function: Braking with a configurable OFF3 ramp (p1135, p1136, p1137); thereafter, pulse suppression and switching on inhibited.		2nd OFF3, p0849	
		The drive comes to a controlled stop.			
		The braking response can be set separately for each servo (behavior similar to that of terminal 64).			
3	Input	SH/SBC 1 - Group 1	NX: r0722.2	p9620 (all drives in the	
		SINAMICS Safety Integrated (SH enable = p9601)		group)	
4	Input	SH/SBC 1 - Group 2	NX: r0722.3	p9620 (all drives in the	
		SINAMICS Safety Integrated (SH enable = p9601)		group)	
5	Ground for	pins 14			
6	Ground for	pins 7, 8, 10, 11			
7	Output	SH/SBC 1 - Group 1	NX: p0738	p9774.1	
		SINAMICS Safety Integrated		BICO from CU after the 1st drive in the group	
8	Output	SH/SBC 1 - Group 2	NX: p0739	p9774.1	
		SINAMICS Safety Integrated		BICO from CU after the 1st drive in the group	
9	Ground for	pins 7, 8, 10, 11			
10	Input	BERO 1 - zero mark substitute	NX: r0722.10	Drive p0489 = 2	
	Input	Probe 2: Distributed measurement	NX: p0680[1]=0	Every drive on NX: p0489	
			p0728 bit 10=0	Index=encoders 1,2,3=2	
11	Input	BERO 2 - zero mark substitute	NX: r0722.11	Drive p0488 = 3	
	Input	Probe 1: Distributed measurement	NX: p0680[0]=0	Every drive on NX: p0488	
			p0728 bit 11=0	Index=encoders 1,2,3=3	
	Input	2nd OFF 2	NX: r0722.11	Drive p0845	
12	Ground for	pins 7, 8, 10, 11			

Note

The ON/OFF1 and OFF3 enables are only required on terminal X122 of the CU.

4.2.4 Example: Circuitry for a CU with line contactor

Example

The circuitry shown refers to the assignment of the terminals in the previous chapters.

Figure 4-28 Circuitry for a Control Unit with line contactor

Smart Line Module connection

The connections for the digital in/outputs X122 and X132 are on the rear side of the control.

- ① Early opening contact t > 10 ms, 24 VDC and ground must be applied for operation
- ② DI/DO controlled by the Control Unit
- 3 No additional load permitted downstream of line contactor
- The current carrying capacity of the DO must be observed; an output interface must be used if required.
- ⑤ DO high, feedback deactivated (a jumper can be inserted between X22 pin 1 and pin 2 for permanent deactivation).
- (6) X22 pin 4 must be connected to ground (external 24 V).
- Contacting via rear mounting panel or shielding buses in accordance with EMC installation guideline
- Signal output of the control, to avoid interference of the 24 VDC supply on the EP terminal.
- Connect via BICO to parameter p0864 → X122.1

Figure 4-29 Example: SLM connection

4.2 Terminal assignments

ON/OFF1 enable: Connection of Smart Line Module pin X21.1 → X122.1 SINUMERIK 828D Connect further input and output signals to the PLC I/O:

- DI → PLC inputs
- DO → PLC outputs

See also

Additional information can be found in:

- SINUMERIK 828D Manual PPU
- SINAMICS S120 Manual Booksize Power Units

NOTICE

DSC operation

Parameterization of the combination STIFFNESS_CONTROL_ENABLE=1 and ENC_FEEDBACK_POL= -(encoder inversion) is not permitted.

The encoder inversion must be performed in the drive parameter p0410 bit 1 of the SINAMICS.

- DSC operation is preset for motor measuring systems.
- DSC operation must be explicitly activated for external measuring systems.

Requirement: Message frame ≥ 116

SINAMICS drive parameters:

p1192[0] encoder selection

p1193[0] encoder adaptation factor

4.2.5 Connecting the probes

Connecting the probes

The probes are connected to both the SINUMERIK 828D CU and the NX:

1st probe to terminal X 122 pin 11/X122 pin 11 of the NX

2nd probe to terminal X 132 pin 11/X122 pin 10 of the NX

Note

A precondition for measuring with the SINUMERIK 828D is that the distributed (local) measurement function has been parameterized.

Central measurement is not possible with SINUMERIK 828D.

Machine data

The following machine data should be checked and adjusted if necessary:

· General machine data:

```
MD13200[0] $MN_MEAS_PROBE_LOW_ACTIVE = 0 or 1 MD13200[1] $MN_MEAS_PROBE_LOW_ACTIVE = 0 or 1
```

Value 0 = deflected state 24 V (default)

Value 1 = deflected state 0 V

MD13210 \$MN_MEAS_TYPE = 1 distributed measurement

• Axis-specific machine data:

```
MD30244[0] $MA_ENC_MEAS_TYPE = 1 for all axes MD30244[1] $MA_ENC_MEAS_TYPE = 1 for all axes
```

Note

The machine data MD13210 and MD30244 are preset to the value 1 and cannot be changed! (Data class: SYSTEM)

4.2 Terminal assignments

Control Unit parameters:

```
P0680[0] Central probe input terminal = 0
P0680[1] Central probe input terminal = 0
p0680[2] Central probe input terminal = 0
```

The first probe is connected to terminal X122 pin 11, the second probe to terminal X132 pin 11 of the SINUMERIK 828D and, if present, on the NX10 module to terminal X122 pin 10.

A precondition is the switichover of pin X132.11 from output to input. Set CU input or output = set p0728 bit 15 to 0 (DI/DO X132.11)

• Drive parameters:

```
p0488[0] Probe 1 input terminal: Encoder 1 = 3 \rightarrow connector X 122.11 p0488[1] Probe 1 input terminal: Encoder 2 = 3 \rightarrow connector X 122.11 p0488[2] Probe 1 input terminal: Encoder 3 = 0 \rightarrow not used p0489[0] Probe 2 input terminal: Encoder 1 = 6 \rightarrow connector X 132.11 p0489[1] Probe 2 input terminal: Encoder 2 = 6 \rightarrow connector X 132.11 p0489[2] Probe 2 input terminal: Encoder 3 = 0 \rightarrow not used
```

The second probe at terminal X122.10 must be parameterized for all axes that are parameterized on the NX module:

```
p0489[0] Probe 2 input terminal: Encoder 1 = 6 \rightarrow connector X 122.10 p0489[1] Probe 2 input terminal: Encoder 2 = 6 \rightarrow connector X 122.10 p0489[2] Probe 2 input terminal: Encoder 3 = 0 \rightarrow not used
```

Note

All drives must be parameterized.

Terminals

Figure 4-30 Connecting the probes with NX module

Probe status

DB2700	General signals from NCK [r] NCK → PLC interface							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBB0							EMER- GENCY STOP active	
DBB1	Inch						Probe actuated	
	dimension system						Probe 2	Probe 1

See also

Measuring cycles and measurement functions (Page 186)

4.2 Terminal assignments

Setting NCK machine data

5.1 Classification of machine data

Authorization for machine data

At least the Manufacturer password is necessary to enter or change machine data.

Changes in the machine data have a considerable influence on the machine. Incorrect configuration of the parameters can endanger human life and cause damage to the machine.

Classification of machine data

The machine data is divided into the following areas:

- General machine data (\$MN)
- Channel-specific machine data (\$MC)
- Axis-specific machine data (\$MA)
- SINAMICS machine data (Control Unit and drive machine data):

```
r0001 ... r9999 (read-only)
r0001 ... r9999 (read/write)
```

- General setting data (\$MNS)
- Channel-specific setting data (\$MCS)
- Axis-specific setting data (\$MAS)
- Display machine data (\$MM)

Note

Machine data for turning and milling technologies is already set up in such a way that an adjustment of machine data is only necessary in exceptional cases.

5.1 Classification of machine data

A separate list image is provided for each of these areas in which you can view and edit machine data:

Figure 5-1 Softkey bar

The following properties of the machine data are displayed from left to right:

- Number of the machine data, if applicable with array index in square brackets
- Name of the machine data
- Value of the machine data
- Unit of the machine data
- · Effectiveness of the machine data
- Data class

See also

Description of the data classes: Function Manual Basic Functions (P4)

A detailed description of the machine data and interface signals is given in the Parameter Manual with cross-references to the appropriate section in the Function Manual.

Physical units of the machine data

The physical units of machine data are displayed on the right-hand side of the input field:

Display	Unit	Measured quantity	
m/s**2	m/s²	Acceleration	
rev/s**3	rev/s³	Acceleration change for the rotating axis	
kg/m**2	kgm²	Moment of inertia	
mH	mH (millihenry):	Inductance	
Nm	Nm (Newton meters):	Torque	
us	μs (microseconds):	Time	
μΑ	μA (microamperes):	Electric current	
μVs	μVs (microvolt-seconds):	Magnetic flux	
userdef	user-defined:	The unit is defined by the user.	

If the machine data does not use units, no units are displayed.

If the data is not available, the "#" symbol is displayed instead of the value. If the value ends in an "H", it is a hexadecimal value.

Effectiveness of the machine data

The right-hand column indicates when a machine data becomes effective:

cf = with confirmation using the "Activate MD" softkey

po = NCK Power On Reset

re = Reset

so = immediately effective

User views

User views are user-specific groups of machine data. They are used to call all relevant machine data in a certain operating state from various areas for processing.

The user views are stored on the CompactFlash card with the following path:

user/sinumerik/hmi/template/user views

The following user views are already available as template:

- Electrical_Startup
- Mechanical_Startup
- Optimizing_Axis

5.2 Processing part programs from external CNC systems

Activate the ISO Dialect function

Part programs from external CNC systems can be read in and executed.

Selection of ISO Dialect M or T:

MD10880: \$MN_MM_EXTERN_CNC_SYSTEM=1 ISO Dialect M MD10880: \$MN_MM_EXTERN_CNC_SYSTEM=2 ISO Dialect T

Note

Availability of the ISO Dialect function

The switchover to an external programming language is contained in the scope of delivery for SINUMERIK 828D.

MD10712: \$MN_NC_USER_CODE_CONF_NAME_TAB is only valid for NC language commands in the Siemens mode.

See also

Function Manual ISO Dialects

Configuring cycles

6.1 Settings for activating cycles

Configuring the cycles

The cycles are configured via the following machine and setting data:

- General machine data
- Channel-specific machine data
- Axis-specific machine data
- General setting data
- Channel-specific setting data
- Axis-specific setting data

Software option

For the "ShopMill" and "ShopTurn" functions, you require the software option: "ShopMill/ShopTurn"

Settings for the technology

MD52005	MD52005 \$MCS_DISP_PLANE_MILL				
Plane selection G17, G18, G19					
= 0	Plane for the milling technology can be selected on the user interface				
= 17	G17 plane (default setting)				
= 18	= 18 G18 plane				
= 19	G19 plane				

MD52006 \$MCS_DISP_PLANE_TURN		
Plane sele	lane selection G17, G18, G19	
= 0	Plane for the turning technology can be selected on the user interface	
= 17	G17 plane	
= 18	G18 plane (default setting)	
= 19	G19 plane	

MD52201	MD52201 \$MCS_TECHNOLOGY_EXTENSION	
Technolog	echnology extension for combined machines with several technologies	
= 1	Additional settings for the turning technology	
= 2	Additional settings for the milling technology, e.g. lathe with milling technology	
	MD52200 \$MCS_TECHNOLOGY = 1	
	MD52201 \$MCS_TECHNOLOGY_EXTENSION = 2	

MD52212	MD52212 \$MCS_FUNCTION_MASK_TECH		
Cross-tec	Cross-technology function mask		
Bit 0	Enable swiveling		
= 0	Swivel plane, swivel tool not enabled		
= 1	Swivel plane, swivel tool enabled		
Bit 1	No optimized travel along the software limit switches		
= 0	No optimized travel along the software limit switches		
= 1	Optimized travel along the software limit switches		
Bit 2	Approach logic for stepped drill (ShopTurn)		
= 0			
= 1			
Bit 3	Call block search cycle		
= 0	The E_S_ASUP and F_S_ASUP cycles are not called in the block search cycle PROG_EVENT.SPF.		
= 1	The E_S_ASUP and F_S_ASUP cycles are called in the block search cycle PROG_EVENT.SPF (default setting).		
Bit 4	Approach logic using the cycle (ShopTurn)		
= 0			
= 1			

	MD52240 \$MCS_NAME	_TOOL_CHANGE_PROG
Tool change program for G code steps		
	= Program name	The associated program is called for tool change.

Meaning of the axes

MD52206 \$MCS_AXIS_USAGE[i]			
Meaning of	Meaning of the axes in the channel		
= 0	No special meaning		
= 1	Tool spindle (driven tool)		
= 2	Auxiliary spindle (driven tool)		
= 3	Main spindle (turning)		
= 4	C axis of the main spindle (turning)		
= 5	Counterspindle (turning)		
= 6	C axis of the counterspindle (turning)		
= 7	Linear axis of the counterspindle (turning)		
= 8	Tailstock (turning)		
= 9	Steady (turning)		

Enter the direction of rotation for the rotary axes that are not configured in a tool carrier or a 5-axis transformation via the following channel-specific machine data:

MD52207 \$MCS_AXIS_USAGE_ATTRIB[i]		
Attribute	ributes of the axes	
Bit 0	Rotation around 1st geometry axis (for rotary axes)	
Bit 1	Rotation around 2nd geometry axis (for rotary axes)	
Bit 2	Rotation around 3rd geometry axis (for rotary axes)	
Bit 3	Displayed positive direction of rotation is counter-clockwise (for rotary axes C axis)	
Bit 4	Displayed direction of rotation for M3 is counter-clockwise (for spindles)	
Bit 5	Direction of rotation for M3 corresponds to minus rotary axis (for spindles)	

Bit 5 must be set analog to the PLC signal on the spindle: DB380x.DBX2001.6

Setting the coordinate system

Set the appropriate coordinate system in the channel via the following channel-specific machine data:

MD52000 \$MCS_DISP_COORDINATE_SYSTEM Position of coordinate system	

Figure 6-1 Position of coordinate system

6.1.1 How to adapt the manufacturer cycles

Overview of cycles

The following cycles are also available in the cycle package for individual adaptation:

Designation	Used for	Description
CUST_800.SPF	Manufacturer cycle for the adaptation of the "Swivel plane" and the "Swivel tool" functions.	Manufacturer cycle CUST_800.SPF (Page 176)
CUST_832.SPF	Manufacturer cycle for the adaptation of the "High Speed Settings" function.	High Speed Settings (Advanced Surface) (Page 182)
CUST_MEACYC.SPF	Manufacturer cycle for the adaptation of measuring functions.	Manufacturer cycle CUST_MEACYC.SPF (Page 189)
CUST_TECHCYC.SPF	Manufacturer cycle for the adaptation of technology cycles.	ShopTurn: Setting up cycles for turning (Page 139)

Generating manufacturer cycles

General procedure:

- 1. Select the "Start-up" operating area.
- 2. Press the "System data" softkey.
- 3. Open the following directory:

NC data/Cycles/Standard cycles

- 4. Select the manufacturer cycles: CUST_*.SPF
- 5. Press the "Copy" softkey.
- 6. Open the following directory:

NC data/Cycles/Manufacturer cycles

7. Press the "Paste" softkey.

The cycles copied to the "Manufacturer cycles" directory can be modified.

See also

Standard cycle PROG_EVENT.SPF (Page 110)

6.1.2 Standard cycle PROG_EVENT.SPF

Rules for PROG_EVENT

PROG_EVENT.SPF is a standard cycle and cannot be changed (not accessible).

- Storage of a PROG_EVENT.SPF cycle that you have written under manufacturer of user cycles is **not** switched active.
- Manufacturer-specific "prog_events" must be reproduced by the following cycles, which, when available, are automatically called by the PROG_EVENT.
 - CYCPE1MA.SPF is called at the start of the internal prog event.
 - CYCPE_MA.SPF is called at the end of the internal prog_event.

Remark: CYCPE_MA.SPF should preferably be used.

Block search:

Default setting: The correction of tool change, spindle direction of rotation/speed, swivel axes is performed by the internal PROG_EVENT, the necessary machine data is appropriately preset. The manufacturer does not have to use a CYCPE_MA.SPF for the actions described above.

Special features of the block search in conjunction with PROG EVENT:

Machine data		Bit
MD11450	\$MN_SEARCH_RUN_MODE	Bit 1=1
MD52212	\$MCS_FUNCTION_MASK_TECH	Bit 3=1

Note

If \$P_PROG_EVENT==5 is used in the cycpe_ma, no REPOSA may be programmed as this is already present in the prog_event, otherwise an error occurs for SSL with calculation.

6.1.3 Setting the simulation and simultaneous recording (option)

Machining technologies

Milling technology:

Swivel head change

Milling on turning machines:

Milling with geometry axes: TRANSMIT, TRACYL, TRAANG

Turning technology:

- Conventional turning with two geometry axes
- Three spindles: Main spindle, counterspindle, tool spindle
- Counterspindle slides, tailstock as NC axis
- B axis: Aligning turning tools in the tool spindle

Options

Software option

For the "Simultaneous recording" function, you require the option: "Simultaneous recording (real-time simulation)"

Software option

You require the following option for further simulation settings: "3D simulation 1 (finished part)"

Setting the coordinate system for simulation

Set the appropriate coordinate system in the channel via the following channel-specific machine data:

MD52000 \$MCS_DISP_COORDINATE_SYSTEM		
Position of coording	Position of coordinate system (0 47)	
= 0	For milling (example)	
= 34	For turning (example)	

See also: Section Settings for activating cycles (Page 105)

6.1 Settings for activating cycles

Deactivating simulation:

- 1. Copy the file "slsimconfigsettings.xml" from the following directory:
 - /siemens/sinumerik/hmi/appl
- 2. Store the file in the following directory:

/user/sinumerik/hmi/cfg or /oem/sinumerik/hmi/cfg

If the "slsimconfigsettings.xml" file already exists in the directory, add the entries from the Siemens file "slsimconfigsettings.xml".

The settings become effective only after restarting the HMI.

Simultaneous recording: Activating the runtime

Timers are provided as system variables in the Program runtime function. While the NCK-specific timers are always activated (for time measurements since the last control power-up), the channel-specific timers must be started via the following channel-specific machine data.

MD27860 \$MC_PROCESS_TIMERMODE	
Activating the runtime measurement of the program	
Bit 0 = 1	Measurement of the total runtime for all part programs \$AC_OPERATING_TIME
Bit 1 = 1	Measurement of the current program runtime
Bit 2 = 1	Measurement of machining time
Bit 3	n. a.
Bit 4 = 1	Measurement during active dry run feedrate
Bit 5 = 1	Measurement during program test
Bit 6 = 1	Delete condition \$AC_CYCLE_TIME
Bit 7 = 1	Count condition \$AC_CUTTING_TIME
Bit 8 = 1	Delete \$AC_CYCLE_TIME with GOTOS
Bit 9 = 1	Measurement during override = 0%

6.2 Drilling

6.2.1 Technology cycles for drilling

Drilling technology

You can set the drilling technology via the following channel-specific machine data and channel-specific setting data.

MD52216 \$MCS_FUNCTION_MASK_DRILL	
Drilling function mask	
	Tapping cycle CYCLE84, technology input fields
= 0	Hide input fields
= 1	Display input fields
Bit 1	Tapping cycle CYCLE840, technology input fields
= 0	Hide input fields
= 1	Display input fields

SD55216 \$SCS_FUNCTION_MASK_DRILL_SET		
Drilling fur	Drilling function mask	
Bit 0	Tapping CYCLE84, determine spindle direction of rotation in the cycle	
= 0	Do not reverse spindle direction of rotation	
= 1	Reverse spindle direction of rotation	
Bit 4	Tapping CYCLE840, monitoring of the machine data:	
	MD31050 \$MA_DRIVE_AX_RATIO_DENOM	
	MD31060 \$MA_DRIVE_AX_RATIO_NUMERA	
= 0	No monitoring	
= 1	Monitoring	

Tapping (CYCLE84 and CYCLE840)

If the technology masks are hidden using the channel-specific machine data MD52216 \$MCS_FUNCTION_MASK_DRILL, then the settings in the following channel-specific setting data are effective:

SD55481 \$SCS_DRILL_TAPPING_SET_GG12[0]	
Exact stop response	
= 0	Exact stop response as before the cycle call (default value).
= 1	G601
= 2	G602
= 3	G603

SD55482 \$SCS_DRILL_TAPPING_SET_GG21[0]	
Acceleration behavior	
= 0	Acceleration behavior as before the cycle call (default value).
= 1	SOFT
= 2	BRISK
= 3	DRIVE

SD55483 \$SCS_DRILL_TAPPING_SET_GG24[0]	
Precontrol	
= 0	Precontrol as before the cycle call (default value).
= 1	FFWON
= 2	FFWOF

Tapping (CYCLE84)

SD55484 \$SCS_DRILL_TAPPING_SET_MC[0]	
Spindle operation for MCALL	
= 0	For MCALL, reactivate spindle operation (default value).
= 1	For MCALL, remain in position-controlled spindle operation.

6.2.2 ShopTurn: Drilling centered

Requirement

Software option

You require the following software option in order to use the ShopTurn function: "ShopMill/ShopTurn"

Tapping centered (CYCLE84)

If the technology masks are hidden using the channel-specific machine data MD52216 \$MCS_FUNCTION_MASK_DRILL, then the settings in the following channel-specific setting data are effective:

SD55481 \$SCS_DRILL_TAPPING_SET_GG12[1]	
Exact stop response	
= 0	Exact stop response as before the cycle call (default value).
= 1	G601
= 2	G602
= 3	G603

SD55482 \$SCS_DRILL_TAPPING_SET_GG21[1]	
Acceleration behavior	
= 0	Acceleration behavior as before the cycle call (default value).
= 1	SOFT
= 2	BRISK
= 3	DRIVE

SD55483 \$SCS_DRILL_TAPPING_SET_GG24[1]	
Precontrol	
= 0	Precontrol as before the cycle call (default value).
= 1	FFWON
= 2	FFWOF

6.3 Milling

6.3.1 Technology cycles for milling

Contour milling (CYCLE63)

Channel-specific setting data:

SD5521	SD55214 \$SCS_FUNCTION_MASK_MILL_SET		
Milling f	Milling function mask		
Bit 0	Basic setting, milling in synchronous operation.		
Bit 1	Angle of rotation referred to the center or corner of a rectangular pocket (POCKET3).		
= 0	When dimensioning rectangular pockets using the corner point, the angle of rotation refers to this reference point.		
= 1	When dimensioning rectangular pockets using the corner point, the angle of rotation refers to the center point of the pocket.		
Bit 2	Depth calculation of the milling cycles, with or without safety clearance.		
= 0	Depth calculation of the milling cycles is performed between the reference plane + safety clearance and the depth.		
= 1	Depth calculation is performed without including the safety clearance.		
	Bit 2 is effective in the following milling cycles:		
	CYCLE61, CYCLE71, CYCLE76, CYCLE77, CYCLE79, CYCLE899,		
	LONGHOLE, SLOT1, SLOT2, POCKET3, POCKET4.		

SD5546	SD55460 \$SCS_MILL_CONT_INITIAL_RAD_FIN		
Finishin	Finishing approach circle radius		
The rad	The radius of the approach circle during the finishing of contour pockets is affected.		
= -1	The radius is selected so that at the starting point the safety clearance to the finishing allowance is maintained (default setting).		
= >0	The radius is selected so that at the starting point the value of this channel-specific setting data to the finishing allowance is maintained.		

SD55461 \$SCS_MILL_CONT_DIFF_TOOLRAD_MIN	
Contour pocket milling	
= 5	Smallest possible cutter radius deviation (default setting).

SD55462 \$SCS_MILL_CONT_DIFF_TOOLRAD_MAX		
Contour pocket milling		
= 0.01	= 0.01 Largest possible cutter radius deviation in mm (default setting).	

Channel-specific setting data for:

- Multi-edge (CYCLE79)
- Circle position pattern (HOLES2)
- Circumferential groove (SLOT2)

SD55230 \$SCS_CIRCLE_RAPID_FEED

Rapid feed in mm/min for positioning on a circular path between the circumferential grooves or the contour elements.

= 100000 (default setting)

6.3.2 Cylinder surface transformation (TRACYL)

Requirement

Software option

You require the following software option in order to use this function:

"TRANSMIT and peripheral surface transformation".

Requirements on the machine:

- There must be at least one rotary axis at the machine.
- The milling tool must be radially oriented to the cylinder to be machined.

Cylinder surface transformation

The following groove machining operations can be performed with the Cylinder surface transformation function:

- Longitudinal grooves on cylindrical bodies
- Transverse grooves on cylindrical objects
- Grooves with any path on cylindrical bodies

The path of the grooves is programmed with reference to the unwrapped, level surface of the cylinder. The programming can be performed using straight line/circle, drilling or milling cycles or contour milling (free contour programming).

There are two variants of cylinder surface transformation, i.e.

- 1. with groove side offset (ON)
- 2. without groove side offset (OFF)

Figure 6-2 Grooves with and without groove side offset

6.3.3 Example: Axis configuration for milling machines

XYZ-AC axis configuration on a milling machine

- X 1st axis of the machining plane parallel to the rotary axis
- Y 2nd axis of the machining plane
- Z Infeed axis (tool axis) perpendicular (radial) to the rotary axis
- A Rotary axis
- C Working spindle

Figure 6-3 Machining slots on a cylinder surface with X-A-Z kinematics

Two data sets with the following machine data are configured for the machine illustrated above:

MD200	MD20070 \$MC_AXCONF_MACHAX_USED[4]	
Machine	Machine axis number valid in channel	
= 5	= 5 Number of axes in the channel	

MD20080 \$MC_AXCONF_CHANAX_NAME_TAB[i]		
Channel axis	Channel axis name in the channel	
[0] = XC	Channel axis XC, corresponds to channel axis 1	
[1] = YC	Channel axis YC, corresponds to channel axis 2	
[2] = ZC	Channel axis ZC, corresponds to channel axis 3	
[3] = A	Channel axis A, corresponds to channel axis 4	
[4] = C	Channel axis C, corresponds to channel axis 5	

General settings for the transformation:

MD10602 \$MN_FRAME_GEOAX_CHANGE_MODE		
Frames whe	Frames when switching over geometry masks	
= 1	The current total frame (work offsets) is recalculated when switching over geometry axes (selecting/deselecting TRACYL).	

Data set for the 1st transformation in the channel

MD24100 \$MC_TRAFO_TYPE_1		
Definition of	Definition of transformation 1 in the channel:	
0: No transfo	0: No transformation	
		
As of 256: T	As of 256: TRANSMIT transformation	
As of 512: T	As of 512: TRACYL transformation	
= 512	= 512 TRACYL transformation without groove side offset	
= 514	TRACYL with additional linear axis and with groove side offset	

MD24110 \$MC_TRAFO_AXES_IN_1		
Axis assi	gnment for the 1st transformation in the channel	
[0] = 3	Channel axis: Infeed axis (tool axis) perpendicular (radial) to the rotary axis	Z
[1] = 4	Channel axis: Rotary axis	Α
[2] = 1	Channel axis: 1st axis of the machining plane parallel to the rotary axis	Х
[3] = 2	Channel axis: 2nd axis of the machining plane	Υ

MD24120 \$	MD24120 \$MC_TRAFO_GEOAX_ASSIGN_TAB_1	
Assignment of the geometry axes to channel axes for transformation 1.		
[0] = 1	Channel axis: 1st geometry axis	Х
[1] = 4	Channel axis: 2nd geometry axis	Α
[2] = 3	Channel axis: 3rd geometry axis	Z

MD24800 \$MC_TRACYL_ROT_AX_OFFSET_1	
= 0	Offset of rotary axis for the 1st TRACYL transformation.

MD24805 \$MC_TRACYL_ROT_AX_FRAME_1	
= 1	Axial offset of rotary axis for the 1st TRACYL transformation.

MD24810 \$MC_TRACYL_ROT_SIGN_IS_PLUS_1	
= 1	Sign of the rotary axis for the 1st TRACYL transformation.

MD24820 \$M	MD24820 \$MC_TRACYL_BASE_TOOL_1[i]	
Vector of ba	se tool for the 1st TRACYL transformation in XYZ	
[0] = 0		
[1] = 0		
[2] = 0		

Data set for the 2nd transformation in the channel

MD24100 \$MC_TRAFO_TYPE_1	
Definition of transformation 1 in channel	
= 513	TRACYL transformation with groove side offset

MD24210 \$MC_TRAFO_AXES_IN_2		
[0] = 3	Channel axis: Infeed axis perpendicular (radial) to rotary axis	Z
[1] = 4	Channel axis: Rotary axis	Α
[2] = 1	Channel axis: 1st axis of the machining plane parallel to the rotary axis	Х
[3] = 2	Channel axis: 2nd axis of the machining plane	Υ

MD24220 \$MC_TRAFO_GEOAX_ASSIGN_TAB_1		
[0] = 1	Channel axis: 1st geometry axis	X
[1] = 4	Channel axis: 2nd geometry axis	А
[2] = 3	Channel axis: 3rd geometry axis	Z

MD24850 \$MC_TRACYL_ROT_AX_OFFSET_2	
= 0	Offset of rotary axis for the 2nd TRACYL transformation

MD24855 \$MC_TRACYL_ROT_SIGN_IS_FRAME_2	
= 1	Axial offset for the 1st TRACYL transformation

MD24860 \$MC_TRACYL_ROT_SIGN_IS_PLUS_2	
= 1	Sign of rotary axis for the 2nd TRACYL transformation

MD24870 \$MC_TRACYL_BASE_TOOL[i]	
Vector of bas	se tool for the 2nd TRACYL transformation in XYZ
[1] = 0	
[2] = 0	
[3] = 0	

Note

For both data sets, you can use any transformations from all available transformations (MD24100 \$MC_TRAFO_TYPE_1, MD24200 \$MC_TRAFO_TYPE_2, etc.).

The two data sets need not be directly next to each other.

The 1st data set must always be used for "Cylinder surface transformation without groove side offset" (= 512) and the 2nd data set for "Cylinder surface transformation with groove side offset" (=513).

6.3.4 ShopMill: Setting up cycles for milling

Requirement

Software option

You require the following software option in order to use the ShopMill function: "ShopMill/ShopTurn"

In order that simulation and simultaneous recording are displayed without any errors, set the machine data as described in the following section:

Setting the simulation and simultaneous recording (option) (Page 111)

Milling under ShopMill

In order that the direction of rotation is correctly displayed in the ShopMill user interface, and when programming ShopMill functions, the correct direction of rotation is executed, you must make some settings that are coordinated with one another.

You must align these settings to the actual direction of rotation of the axis at the machine.

MD52229 \$MCS_ENABLE_QUICK_M_CODES		
Enable quick	Enable quick M commands	
= 0H (defai	= 0H (default setting)	
Bit 0	Coolant OFF.	
Bit 1	Coolant 1 ON.	
Bit 2	Coolant 2 ON.	
Bit 3	Coolant 1 and 2 ON.	

MD52230 \$MCS_M_CODE_ALL_COOLANTS_OFF	
M code for all coolants OFF.	
= 9	You define the M function to switch off the coolant that is output when the tool is changed.

MD52231 \$MCS_M_CODE_COOLANT_1_ON		
M code fo	M code for coolant 1 ON.	
= 8	You define the M function for coolant 1 that is output when the tool is changed.	

MD52232 \$MCS_M_CODE_COOLANT_2_ON		
M code fo	M code for coolant 2 ON.	
= 7	You define the M function for coolant 2 that is output when the tool is changed.	

MD52233	MD52233 \$MCS_M_CODE_COOLANT_1_AND_2_ON	
M code fo	M code for both coolants ON.	
= -1	You define the M function for coolant 1 and 2 that is output when the tool is changed.	

MD52281	MD52281 \$MCS_TOOL_MCODE_FUNC_ON[i]	
M code fo	or tool-specific function ON.	
= -1	M function is output (default setting):	
	If both M commands of a function "= -1", the corresponding field is not displayed on the interface.	
[0]	M code for tool-specific function 1 ON.	
[1]	M code for tool-specific function 2 ON.	
[2]	M code for tool-specific function 3 ON.	
[3]	M code for tool-specific function 4 ON.	

MD522	MD52282 \$MCS_TOOL_MCODE_FUNC_OFF[i]	
M code	M code for tool-specific function OFF.	
= -1	M function is output (default setting):	
	If both M commands of a function "= -1", the corresponding field is displayed on the interface.	
[0]	M code for tool-specific function 1 OFF.	
[1]	M code for tool-specific function 2 OFF.	
[2]	M code for tool-specific function 3 OFF.	
[3]	M code for tool-specific function 4 OFF.	

Channel-specific setting data:

SD55212 \$SCS_FUNCTION_MASK_TECH_SET		
Cross-te	Cross-technology function mask.	
= 6H	Default setting	
Bit 0	Tool preselection active.	
	The next tool is prepared directly after a tool change.	
	Note: For a turret, the setting data must be set to "0".	
Bit 1	Automatic calculation of the thread depth for metric threads.	
Bit 2	Take the thread diameter and thread depth from the table.	

6.4 Turning

6.4.1 Technology cycles for turning

Thread-cutting (CYCLE99)

During program runtime, the master spindle can be the main spindle or the counterspindle. Bit 3 must be set accordingly in the array index [i=channel axis number]:

MD52207 \$MCS_AXIS_USAGE[i]	
Direction of rotation of the master spindle [channel axis number]	
Bit 3	Direction of rotation of the C axis normal or in the opposite direction
= 0	Normal (M3 is +C)
= 1	Opposite (M3 is -C)

Set setting data for:

- Contour grooving CYCLE930
- Contour turning CYCLE950, CYCLE952
- Stock removal, corner CYCLE951

SD55500 \$SCS_TURN_FIN_FEED_PERCENT		
	Enter the finishing feedrate for complete machining, roughing and finishing. The percentage of the value corresponds to that entered under parameter F (feedrate).	
= 100	100 % finishing feedrate	

SD55510 \$SCS_TURN_GROOVE_DWELL_TIME		
	Dwell time, which is necessary between grooving and retracting for grooving technology. Tool clearance time during grooving at the base.	
= > 0	Dwell time in seconds	
= < 0	Dwell time in spindle revolutions	

SD55580 \$SCS_TURN_CONT_RELEASE_ANGLE	
Angle, through which the tool is lifted from the contour for contour turning, roughing.	
= 45	Retraction angle of 45 degrees

Figure 6-4 Angle of retraction

SD55581 \$SCS_TURN_CONT_RELEASE_DIST

Amount, by which the tool is lifted in both axes when roughing a contour.

This applies for stock removal, plunge cutting and plunge turning.

= 1 1 mm or 1 inch retraction distance

SD55582 \$SCS_TURN_CONT_TRACE_ANGLE

The angle between cutting edge and contour as of which rounding is performed on the contour during contour turning in order to remove residual material.

If the angle of the residual material is greater than that specified in the setting data, the tool will round the contour.

= 5 5 degree angle

Figure 6-5 Angle of the residual material

SD55583 \$SCS_TURN_CONT_VARIABLE_DEPTH

Percentage of the changing cutting depth when turning a contour

You can select changing the cutting depth for stock removal and for removing residual material.

= 20 20 % variable cutting depth

SD55584 \$SCS_TURN_CONT_BLANK_OFFSET

Distance from the blank at which G0 is switched over to G1 during contour turning to compensate for any blank allowances.

This applies for stock removal, plunge cutting and plunge turning.

= 1 1 mm or 1 inch blank allowance

SD55585	SD55585 \$SCS_TURN_CONT_INTERRUPT_TIME	
Time for t	Time for the feedrate interruption for contour turning.	
This appli	This applies for stock removal, plunge cutting and plunge turning.	
= > 0	Interruption time in seconds	
= < 0	Interruption time in revolutions	
= 0	No interruption	

Note

The channel-specific setting data SD55585 is only evaluated if SD55586 $SCS_TURN_CONT_INTER_RETRACTION = 0$.

SD55586 \$SCS_TURN_CONT_INTER_RETRACTION		
Retraction	Retraction distance for contour turning for feedrate interruption.	
This appli	This applies for stock removal, plunge cutting and plunge turning.	
= > 0	Retraction distance at feed interruption SD55585 \$SCS_TURN_CONT_INTERRUPT_TIME has no effect.	
= 0	No retraction distance	

SD55587 \$SCS_TURN_CONT_MIN_REST_MAT_AX1		
Limit for re	Limit for removal of residual material in the direction of axis 1 (for G18 Z) min.	
This applies for stock removal, plunge cutting and plunge turning.		
50	50 % min. differential dimension for the residual material machining, axis 1	

6.4.2 Example: Residual material machining

Requirement

Software option

You require the following software option in order to use this function:

"Residual material identification and machining".

Residual material machining, axis 1

If the limit is set to 50% and the final machining allowance is 0.5 mm, any residual material thinner than 0.25 mm is not machined in a separate machining step but is removed during finishing.

SD55588 \$SCS_TURN_CONT_MIN_REST_MAT_AX2		
Limit value	Limit value for removing residual material in the direction of axis 2 (for G18 X).	
This appli	This applies for stock removal, plunge cutting and plunge turning.	
50	50 % min. differential dimension for the residual material machining, axis 2	

Residual material machining, axis 2

If the limit is set to 50% and the final machining allowance is 0.5 mm, any residual material thinner than 0.25 mm is not machined in a separate machining step but is removed during finishing.

As the tool bends during plunge turning, the tool cannot travel right up to the contour during stock removal. The lateral distance to the last cut by which the next cut is shortened is specified in the following channel-specific setting data.

SD55595	SD55595 \$SCS_TURN_CONT_TOOL_BEND_RETR	
Retraction	Retraction distance because of tool bending	
0.1 0.1 mm or 0.1 inch retraction distance		

6.4 Turning

- a SD55595: Distance to the last cut
- b SD55596: Retraction between plunge cutting and stock removal

Figure 6-6 Set SD55595 and SD55596

As the tool bends during plunge turning, the tool would make an excessively deep cut during stock removal. The retraction distance of the tool between plunge cutting and stock removal is specified in the following channel-specific setting data:

SD55596 \$SCS_TURN_CONT_TURN_RETRACTION		
Retraction	Retraction depth before turning	
= 0.1 0.1 mm or 0.1 inch retraction depth		

6.4.3 Example: Axis configuration for lathes

Lathe with milling tools

If driven milling tools are available on a lathe, then the following functions can also be set-up on this machine:

- Cylinder surface transformation (TRACYL) (Page 130)
- End face machining (TRANSMIT) (Page 133)

Lathe with X and Z axes, main and tool spindle

For example, for a lathe with X and Z axes, main spindle (C1) and tool spindle (WZ), you can configure the following channel-specific machine data:

MD20080 \$MC_AXCONF_CHANAX_NAME_TAB[i]	
Channel axis name in the channel	
[0] = XC	Channel axis XC
[1] = ZC	Channel axis ZC
[2] = C1	Main spindle C1
[3] = WZ	Tool spindle WZ

Lathe with X and Z axes, main and tool spindle and counterspindle

For example, for a lathe with X and Z axes, main spindle (C1), tool spindle (WZ) and counterspindle (C2), you can configure the following machine data:

MD20080 \$MC_AXCONF_CHANAX_NAME_TAB[i]		
Channel axis	Channel axis name in the channel	
[0] = XC	Channel axis XC	
[1] = ZC	Channel axis ZC	
[2] = C1	Main spindle C1	
[3] = WZ	Tool spindle WZ	
[5] = C2	Counterspindle C2	

Lathe with X and Z axes, main and tool spindle and Y axis

For example, for a lathe with X, Z and Y axes, main spindle (C1) and tool spindle (WZ), you can configure the following machine data:

MD20080 \$MC_AXCONF_CHANAX_NAME_TAB[i]	
Channel axis name in the channel	
[0] = XC	Channel axis XC
[1] = ZC	Channel axis ZC
[2] = C1	Main spindle C1
[3] = WZ	Tool spindle WZ
[5] = YC	Channel axis YC

6.4.4 Cylinder surface transformation (TRACYL)

Requirement

Software option

You require the following software option in order to use this function:

"TRANSMIT and peripheral surface transformation"

Function

Using the cylinder surface transformation function (TRACYL), you can machine the peripheral surface of a turned part.

General settings for the cylinder surface transformation

MD10602 \$MN_FRAME_GEOAX_CHANGE_MODE		
Frames w	Frames when switching over geometry axes.	
= 1	The current total frame (work offsets) is recalculated when switching over geometry axes (selecting and deselecting TRACYL).	

MD24040 \$MC_FRAME_ADAPT_MODE	
Adapting the active frames	
7H	Default setting
Bit 0 = 1	Rotations in active frames that rotate coordinate axes for which there are no geometry axes, are deleted from the active frames.
Bit 1 = 1	Shearing angles in the active frames are made orthogonal.
Bit 2 = 1	Scaling factors of all geometry axes in the active frames are set to 1.

MD28082 \$MC_MM_SYSTEM_FRAME_MASK	
Bit 6 = 1	Configuration of channel-specific system frames, which are included in the channel calculation.

When setting up the functions, you can take the following channel-specific machine data into account:

MD24300 \$MC_TRAFO_TYPE_3	
Cylinder surface transformation, main spindle: Transformation 3	
= 512	Without groove side offset (without Y axis)
= 513	With groove side offset (with Y axis):
= 514	With groove side offset and Y offset

MD24400 \$MC_TRAFO_TYPE_4	
Cylinder surface transformation, counterspindle: Transformation 4	
= 512	Without groove side offset (without Y axis)
= 513	With groove side offset (with Y axis)
= 514	With groove side offset and Y offset

Note

You must also set up further machine data for the individual transformations.

Cylinder surface transformation without groove side offset

MD24300	MD24300 \$MC_TRAFO_TYPE_3	
Definition	Definition of the 3rd transformation in the channel	
= 512	TRACYL main spindle.	

MD24310 \$MC_TRAFO_AXES_IN_3[i]	
Axis assignment for transformation 3	
[0] = 1	Perpendicular to the rotary axis XC
[1] = 3	Rotary axis (main spindle) C1
[2] = 2	Parallel to rotary axis ZC

MD24320 \$MC_TRAFO_GEOAX_ASSIGN_TAB_3[i]	
Assignment of geometry axes to channel axes for transformation 3.	
[0] = 1 1st channel axis X	

6.4 Turning

MD24320 \$MC_TRAFO_GEOAX_ASSIGN_TAB_3[i]	
[1] = 3	2nd channel axis Y
[2] = 2	3rd channel axis Z

MD24800 \$MC_TRACYL_ROT_AX_OFFSET_1		
Offset of t	Offset of the rotary axis for the 1st TRACYL transformation.	
= 0		

MD24805 \$MC_TRACYL_ROT_AX_FRAME_1		
Axial offse	Axial offset of the rotary axis is taken into account during TRACYL.	
= 2		

MD24810 \$MC_TRACYL_ROT_SIGN_IS_PLUS_1		
Sign of the	Sign of the rotary axis for the 1st TRACYL transformation.	
= 1		

MD24820 \$1	MD24820 \$MC_TRACYL_BASE_TOOL_1[i]	
Vector of the base tool for the 1st TRACYL transformation.		
[0] = 0	Index i assumes values 0, 1, 2 for the 1st, 2nd and 3rd geometry axis.	
[1] = 0	Programmed tool length offsets are added to the base tool.	
[2] = 0		

Cylinder surface transformation with groove side offset

MD24300	MD24300 \$MC_TRAFO_TYPE_3	
Definition	Definition of the 3rd transformation in the channel	
= 513	TRACYL main spindle	

MD24310 \$MC_TRAFO_AXES_IN_3[i]	
Axis assignment for transformation 3	
[0] = 1	Perpendicular to the rotary axis XC
[1] = 3	Rotary axis (main spindle) C1
[2] = 2	Parallel to rotary axis ZC
[3] = 6	Parallel to the cylinder surface and perpendicular to the rotary axis ZC

MD24320 \$MC_TRAFO_GEOAX_ASSIGN_TAB_3[i]	
Assignment of geometry axes to channel axes for transformation 3.	
[0] = 1	1st channel axis X
[1] = 3	2nd channel axis Y
[2] = 2	3rd channel axis Z

MD24800 \$MC_TRACYL_ROT_AX_OFFSET_1	
Offset of the rotary axis for the 1st TRACYL transformation.	
= 0	

MD24805 \$MC_TRACYL_ROT_AX_FRAME_1		
Axial offset of the rotary axis is taken into account during TRACYL.		
= 2		

MD24810 \$MC_TRACYL_ROT_SIGN_IS_PLUS_1		
Sign of the	Sign of the rotary axis for the 1st TRACYL transformation.	
= 1		

MD24820 \$MC_TRACYL_BASE_TOOL_1[i]		
Vector of the	Vector of the base tool for the 1st TRACYL transformation.	
[0] = 0		
[1] = 0		
[2] = 0		

6.4.5 End face machining (TRANSMIT)

Requirement

Software option

You require the following software option in order to use this function:

"TRANSMIT and peripheral surface transformation"

For general settings for transformations, please refer to Chapter:

Cylinder surface transformation (TRACYL) (Page 130)

Function

The end faces of a turned part are machined with the end face machining function (TRANSMIT).

You can make additional settings in the following channel-specific machine data:

MD24100 \$MC_TRAFO_TYPE_1		
End face	End face machining, main spindle: Transformation 1	
= 256	Machining without Y axis	
= 257	Machining with Y axis	

MD24200 \$MC_TRAFO_TYPE_2		
End face	End face machining, counterspindle: Transformation 2	
= 256	Machining without Y axis	
= 257	Machining with Y axis	

MD24110 \$MC_TRAFO_AXES_IN_1[i]		
Axis assig	Axis assignment for the 1st transformation in the channel	
[0] = 1	Perpendicular to the rotary axis XC	
[1] = 3	Rotary axis (main spindle) C1	
[2] = 2	Parallel to the rotary axis ZC	

MD24120 \$MC_TRAFO_GEOAX_ASSIGN_TAB_1[i]	
Assignment of the geometry axes to channel axes for transformation 1	
[0] = 1	1st channel axis X
[1] = 3	2nd channel axis Y
[2] = 2	3rd channel axis Z

MD24900 \$MC_TRANSMIT_ROT_AX_OFFSET_1	
= 0	Offset of the rotary axis for the 1st TRANSMIT transformation.

MD24905 \$MC_TRANSMIT_ROT_AX_FRAME_1	
= 2	Axial offset of the rotary axis is taken into account during TRANSMIT 1.

MD24910 \$MC_TRANSMIT_ROT_SIGN_IS_PLUS_1	
= 0	Sign of the rotary axis for the 1st TRANSMIT transformation.

MD24911 \$MC_TRANSMIT_POLE_SIDE_FIX_1	
= 1	Limitation of working range in front of/behind the pole, 1st TRANSMIT.

MD24920 \$MC_TRANSMIT_BASE_TOOL_1[i]	
Vector of the base tool for the 1st TRANSMIT transformation.	
[0] = 0	Index i assumes values 0, 1, 2 for the 1st, 2nd and 3rd geometry axis.
[1] = 0	Programmed tool length offsets are added to the base tool.
[2] = 0	

TRANSMIT with real Y axis

MD24100 \$MC_TRAFO_TYPE_1	
= 257	Definition of transformation 1 in the channel: TRANSMIT main spindle.

MD24110 \$	MD24110 \$MC_TRAFO_AXES_IN_1[i]	
Axis assign	Axis assignment for the 1st transformation in the channel.	
[0] = 1	Perpendicular to the rotary axis XC	
[1] = 3	Rotary axis C1	
[2] = 2	Parallel to rotary axis ZC	

MD24120 \$MC_TRAFO_GEOAX_ASSIGN_TAB_1[i]		
Assignment	Assignment of the geometry axes to channel axes for transformation 1.	
[0] = 1	1st channel axis X	
[1] = 3	2nd channel axis Y	
[2] = 2	3rd channel axis Z	

MD24900 \$MC_TRANSMIT_ROT_AX_OFFSET_1	
= 0	Offset of the rotary axis for the 1st TRANSMIT transformation.

	MD24905 \$MC_TRANSMIT_ROT_AX_FRAME_1	
ĺ	= 2	Axial offset of the rotary axis is taken into account during TRANSMIT 1.

MD24910 \$MC_TRANSMIT_ROT_SIGN_IS_PLUS_1	
= 0	Sign of the rotary axis for the 1st TRANSMIT transformation.

MD24911 \$	MD24911 \$MC_TRANSMIT_POLE_SIDE_FIX_1	
= 1	Limitation of working range in front of/behind the pole, 1st TRANSMIT.	

6.4 Turning

MD24920 \$MC_TRANSMIT_BASE_TOOL_1[i]	
Vector of the	e base tool for the 1st TRANSMIT transformation.
[0] = 0	
[1] = 0	
[2] = 0	

References

Function Manual, Extended Functions; Kinematic Transformation (M1): TRANSMIT

6.4.6 Inclined axis (TRAANG)

Requirement

Software option

You require the following software option in order to use this function:

"Inclined axis"

Function

If the lathe has an inclined Y axis (i.e. this axis is not perpendicular to axes X and Z), you can still completely program machining operations in Cartesian coordinates. The control uses the "Inclined axis function (TRAANG)" to transform the Cartesian coordinates to the motion of the inclined axis.

You still have to set up the "Inclined axis function (TRAANG)" via machine data.

See also

Function Manual, Extended Functions; Kinematic Transformations (M1)

Example for a turning machine

For example, for a turning machine with X and Z axes and inclined Y axis, main spindle (C) and tool spindle (WZ), you must configure the following machine data:

MD20050 \$I	MD20050 \$MC_AXCONF_GEOAX_ASSIGN_TAB[i]	
Assignment	of geometry axis to channel axis.	
[0] = 1	1st real geometry axis X axis.	
[1] = 0	2nd real geometry axis Y axis not available.	
[2] = 2	3rd real geometry axis Z axis.	

MD20110 \$N	MD20110 \$MC_RESET_MODE_MASK	
Bit 0 = 1		
Bit 7 = 0	TRAANG is retained after ramp-up.	

MD20112 \$MC_START_MODE_MASK	
Bit 7 = 1	TRAANG is retained after "Cycle start".

MD20118 \$MC_GEOAX_CHANGE_RESET	
= 1	Permit automatic change of the geometry axes.

MD20140 \$MC_TRAFO_RESET_VALUE	
= 5	TRAANG always active after reset.

MD20144 \$MC_TRAFO_MODE_MASK	
Bit 0 = 1	TRAANG runs in the background (persistent) and is not shown on the user interface.

MD20070 \$MC_AXCONF_MACHAX_USED[4]	
= 5	Channel axis YC = 5th machine axis.

MD20080 \$MC_AXCONF_CHANAX_NAME_TAB[i]	
Name of channel axis in the channel.	
[0] = XC	1st channel axis XC
[1] = ZC	2nd channel axis ZC
[2] = C	3rd channel axis C
[3] = WZ	4th channel axis WZ
[4] = YC	5th channel axis YC

Data set for inclined axis:

	MD24430 \$N	MC_TRAFO_TYPE_5
ſ	= 1024	Transformation 5: TRAANG

MD24432 \$MC_TRAFO_AXES_IN_5[i]	
Axis assignment for transformation 5.	
[0] = 5	1st transformation axis = channel axis, YC
[1] = 1	2nd transformation axis = channel axis, XC
[2] = 2	3rd transformation axis = channel axis, ZC

MD24434 \$MC_TRAFO_GEOAX_ASSIGN_TAB_5[i]	
Assignment of geometry axes to channel axes for transformation 5.	
[0] = 1	1st axis = channel axis XC
[1] = 5	2nd axis = channel axis YC
[2] = 2	3rd axis = channel axis ZC

MD24436 \$MC_TRAFO_INCLUDES_TOOL_5	
= 0	Tool handling with active transformation 5.

MD24700 \$MC_TRAANG_ANGLE_1	
= 55	Angle between 1st and 2nd transformation axis.
	Data set for linking (TRACON) of end face machining on main spindle (TRANSMIT) and inclined axis (TRAANG).

Data set for linking (TRACON) of end face machining on main spindle (TRANSMIT) and inclined axis (TRAANG):

MD24440 \$MC_TRAFO_TYPE_6	
= 8192	Type of transformation that is available as sixth in the channel.

MD24444 \$MC_TRAFO_GEOAX_ASSIGN_TAB_6[i]	
Assignment of geometry axes to channel axes for transformation 6.	
[0] = 1	1st axis = channel axis XC
[1] = 3	2nd axis = channel axis YC
[2] = 2	3rd axis = channel axis ZC

MD24995 \$MC_TRACON_CHAIN_1[i]	
Transformation linking	
[0] = 1	Number of the transformation: TRANSMIT (main spindle) for linking.
[1] = 5	Number of the transformation: TRAANG for linking. Data set with linking (TRACON) of cylinder surface transformation on main spindle (TRACYL) and inclined axis (TRAANG).

Data set for linking (TRACON) of cylinder surface transformation on main spindle (TRACYL) and inclined axis (TRAANG):

MD24450 \$MC_TRAFO_TYPE_7		
= 8192	Type of transformation 7 in the TRACON channel.	

MD24454 \$MC_TRAFO_GEOAX_ASSIGN_TAB_7[i]		
Assignment of geometry axes to channel axes for transformation 7.		
[0] = 1	1st axis = channel axis XC	
[1] = 3	2nd axis = channel axis YC	
[2] = 2	3rd axis = channel axis ZC	

MD24996 \$MC_TRACON_CHAIN_2[i]		
Transformat	Transformation linking	
[0] = 3	Number of the TRACYL transformation (main spindle) for linking.	
[1] = 5	Number of the TRAANG transformation for linking.	

6.4.7 ShopTurn: Setting up cycles for turning

Manufacturer cycle CUST_TECHCYC.SPF

In cycle CUST_TECHCYC.SPF, the function markers (_M1: to _M142) are prepared and documented. The manufacturer cycle CYC_TECHCUST.SPF is called by the ShopTurn cycles.

Requirement

Software option

You require the following software option in order to use the ShopTurn function: "ShopMill/ShopTurn"

Making adaptations

Adapt the cycle if you want to perform one of the following actions:

- Switch between spindle and C axis mode for the main spindle or counterspindle.
 - Markers _M1, _M2, _M21, _M22
- Clamp or release rotary axes (main spindle/counterspindle).
 - Markers _M3, _M4, _M23, _M24

6.4 Turning

Open, close, flush chuck (main spindle/counterspindle).

Markers _M5 to _M8, _M25 to _M29

• Engage/disengage driven tool (make/break connection to drive).

Markers _M41, _M42

• Configure special functions for switchover between machining planes.

Markers _M61 to _M68

(You do not have to make any settings for cylinder surface transformation or end face machining with the C axis.)

• Position receptacle for cut-off, move out or in.

Markers _M100, _M101, _M102

Configure special functions for tool changing.

Markers _M110, _M111, _M112

(These special functions are called after the T command is output.)

• Change default settings for the coupling of the main spindle and counterspindle.

Marker M120

• Set special features for the program start or program end.

Markers _M131, _M135, _M13

Direction of rotation of spindle

The direction of rotation is set in the following machine data:

MD52207 \$MCS_AXIS_USAGE_ATTRIB[5]

The direction of spindle rotation (M3/M4) is assigned to the positive rotational direction of the C axis via interface signal DB380x.DBX2001.6 (where n = index of the relevant C axis). Bit 4 defines whether M3 and C+ rotate in the same direction (=0) or in opposite directions (=1).

The direction of rotation of an NC rotary axis is set via the following machine data:

MD32100 \$MA_AX_MOTION_DIR		
Travel dire	Travel direction	
-1	Direction reversal	
0, 1	no direction reversal	

As a result, the following setting options are obtained for the main spindle. However, the settings for the machine data depend on the direction from which the coordinate axis is viewed. The settings for the direction of rotation as well as the interface signal DB380x.DBX2001.6 must be observed under all circumstances.

NOTICE

Under all circumstances, ensure that bit 5 in MD52207 is identical to DB380x.DBX2001.6!

Main spindle direction of rotation	52207[C-Ax] Bit 3 =	52207[Spnd] Bit 4 =	DB380x. DBX2001.6	52207[Spnd] Bit 5 =
C+) M3	0	0	0	0
C+p M4	1	0	1	1
C+ M3	1	1	0	0
C+ M4	0	1	1	1

The setting of machine data marked with "*" assumes that the viewing direction was towards the negative coordinate axis. If, on the other hand, you are looking towards the positive coordinate axis, you need to reverse the values, i.e. swap "0" and "1".

Note

The MD52207[i] is only relevant for display in the ShopTurn user interface, not for correct machining on the machine.

Further settings for ShopTurn

MD52	MD52241 \$MCS_SPINDLE_CHUCK_TYPES[]		
Spindl	Spindle jaw type.		
[0]	Main spindle		
[1]	Counters	Counterspindle	
	= 0	Clamping, outer	
= 1 Clamping, inner		Clamping, inner	

MD52242 \$MCS_MAIN_SPINDLE_PARAMETER[]		
Main spindle parameters.		
[0]	Chuck dimensions	
[1]	Stop dimensions	
[2]	Jaw dimensions	

MD52243 \$MCS_SUB_SPINDLE_PARAMETER[]		
Parameters for counterspindle.		
[0]	Chuck dimensions	
[1]	Stop dimensions	
[2]	Jaw dimensions	

MD52246 \$MCS_TAILSTOCK_DIAMETER		
Tailstock of	Tailstock diameter	
= 0		

MD52247	MD52247 \$MCS_TAILSTOCK_LEGTH	
Tailstock I	Tailstock length	
= 0		

The M code, e.g. M34 or M1 = 34 for the spindle chuck is defined in the following machine data. The manufacturer cycle CUST_TECHCYC.SPF takes the M functions from the following machine data:

MD52250 \$MCS_M_CODE_CHUCK_OPEN[i]		
M code fo	M code for open chuck with stationary spindle.	
[0] = 0	Main spindle	
[1] = 0	Counterspindle	

MD52251 \$MCS_M_CODE_CHUCK_CLOSE_OPEN_ROT[i]		
M code fo	M code for open chuck with spindle rotating.	
[0] = 0	Main spindle	
[1] = 0	Counterspindle	

MD52252 \$MCS_M_CODE_CHUCK_CLOSE[i]		
M code fo	M code for close chuck.	
[0] = 0	Main spindle	
[1] = 0	Counterspindle	

MD52214 \$MCS_FUNCTION_MASK_MILL		
Milling function mask.		
Bit 3		/rear" machining is enabled in the ShopTurn masks which themselves define the ning plane.
Bit 4	cycle	have implemented the "Clamp/release spindle" function using the manufacturer CUST_TECHCYC.SPF, then using this machine data, you can activate the p/release spindle" parameter in the drilling and milling masks.
= 0		The "Clamp/release spindle" parameter is not displayed in the drilling and milling masks. ShopTurn automatically clamps the spindle if it makes sense for the particular machining operation.
= 1		The "Clamp/release spindle" parameter is displayed in the drilling and milling masks: Specification for which machining operation the spindle should be clamped.

Enable various functions under the Turning function mask in the following channel-specific machine data.

MD52218 \$MCS_FUNCTION_MASK_TURN		
Turning fu	Turning function mask	
Bit 0	Enable zoom under manual for tool measurement.	
Bit 1	Enable part catcher for cut-off.	
Bit 2	Enable tailstock.	
Bit 3	Reserved.	
Bit 4	Enable spindle control of main spindle via user interface.	
Bit 5	Enable spindle control of tool spindle via user interface.	
Bit 6	Enable taper angle mask.	

MD52229 \$MCS_ENABLE_QUICK_M_CODES = 0H (default setting)	
Enable quick M commands	
Bit 0	Coolant OFF.
Bit 1	Coolant 1 ON.
Bit 2	Coolant 2 ON.
Bit 3	Coolant 1 and 2 ON.

MD52230 \$MCS_M_CODE_ALL_COOLANTS_OFF		
M code fo	M code for all coolants OFF	
= 9	This machine data is used to define the M function for switching off the coolant; which is output when the tool is changed.	

MD52231 \$MCS_M_CODE_COOLANT_1_ON		
M code fo	M code for coolant 1 ON	
= 8	This machine data is used to define the M function for coolant 1, which is output when the tool is changed.	

MD52232 \$MCS_M_CODE_COOLANT_2_ON		
M code fo	M code for coolant 2 ON	
= 7	This machine data is used to define the M function for coolant 2, which is output when the tool is changed.	

MD52233 \$MCS_M_CODE_COOLANT_1_AND_2_ON	
M code for both coolants ON	
= -1	This machine data is used to define the M function for coolant 1 and 2, which is output when the tool is changed.

MD52210 \$MCS_FUNCTION_MASK_DISP		
Function r	Function mask display	
Bit 0	Dimension system for programs always in the basic system.	
Bit 1	For G17, use the training coordinate system.	

MD52281 \$MCS_TOOL_MCODE_FUNC_ON[]	
M code for tool-specific function ON	
= -1	M function is not output: If both M commands of a function "= -1", the corresponding field is not displayed on the user interface.
[0]	M code for tool-specific function 1 ON.
[1]	M code for tool-specific function 2 ON.
[2]	M code for tool-specific function 3 ON.
[3]	M code for tool-specific function 4 ON.

MD52282 \$MCS_TOOL_MCODE_FUNC_OFF[i]			
M code fo	M code for tool-specific function OFF		
= -1	M function is output: If both M commands of a function "= -1", the corresponding field is displayed on the user interface.		
[0]	M code for tool-specific function 1 OFF.		
[1]	M code for tool-specific function 2 OFF.		
[2]	M code for tool-specific function 3 OFF.		
[3]	M code for tool-specific function 4 OFF.		

Setting data for rounding on the contour:

SD55582 \$SCS_TURN_CONT_TRACE_ANGLE		
Contour turning: Minimum angle for rounding the contour		
= 5	Specifies the angle between the cutting edge and contour, above which for contour turning, the contour is rounded in order to remove residual material (default setting).	

SD55505 \$SCS_TURN_ROUGH_O_RELEASE_DIST		
Retraction	n distance for stock removal during external machining	
= 1	Specifies the distance, by which the tool is retracted from the contour when removing stock from an outer corner. This does not apply to stock removal at a contour (default setting).	
= -1	The distance is internally defined.	

SD55506 \$SCS_TURN_ROUGH_I_RELEASE_DIST		
Retraction	distance for stock removal during internal machining	
= 0.5	Specifies the distance, by which the tool is retracted from the contour when removing stock from an internal corner. This does not apply to stock removal at a contour (default setting).	
= -1	The distance is internally defined.	

SD55515 \$SCS_TURN_THREAD_RELEASE_DIST			
Retraction	Retraction distance when cutting threads.		
= 2	Specifies the distance to the workpiece that is retracted between the infeeds when cutting threads (default setting).		

6.4.8 ShopTurn: Counterspindle

Requirement

Software option

You require the following software option in order to use the Counterspindle function:

"Travel to fixed stop (with force control)"

Function

If your turning machine has a counterspindle, you can machine workpieces using turning, drilling and milling functions on the front and rear faces without reclamping the workpiece manually. Before machining the rear face, the counterspindle must grip the workpiece, pull it out of the main spindle, and position it at the new machining position.

The direction of rotation of an NC rotary axis is set via MD32100 \$MA_AX_MOTION_DIR. The PLC signal DB380x.DBX2001.6 (nn = 31 + machine axis index) is used to specify whether M3 has the same direction as rotary axis + (bit = 0).

The directions of rotation are set in the following machine data:

MD52207 \$MCS_AXIS_USAGE_ATTRIB[i]

Counterspindle setting options

As a result, the following setting options are obtained for the counterspindle. However, the settings for the machine data depend on the direction from which the coordinate axis is viewed. The settings for the direction of rotation as well as the interface signal DB380x.DBX2001.6 must be observed under all circumstances.

Counter-spindle direction of rotation	52207[C-Ax] Bit 3 =	52207[Spnd] Bit 4 =	DB380x. DBX2001.6	52207[Spnd] Bit 5 =
M3 (C+ P)	1	0	0	0
M4 (C+1)	0	0	1	1

Counter-spindle direction of rotation	52207[C-Ax] Bit 3 =	52207[Spnd] Bit 4 =	DB380x. DBX2001.6	52207[Spnd] Bit 5 =
M3 (C+)	0	1	0	0
M4 C+	1	1	1	1

The setting of machine data marked with "*" assumes that the viewing direction was towards the negative coordinate axis. If, on the other hand, you are looking towards the positive coordinate axis, you need to reverse the values, i.e. swap "0" and "1".

The position to which the counterspindle travels when the program starts is defined in the following channel-specific setting data:

SD55232 \$SCS_SUB_SPINDLE_REL_POS	Retraction position Z for counterspindle.
-----------------------------------	---

In order that the counterspindle traverses to the fixed stop when gripping, the following channel-specific cycle data must be set.

SD55550 \$SCS_TURN_FIXED_STOP_DIST	Distance for travel to fixed stop.
SD55551 \$SCS_TURN_FIXED_STOP_FEED	Feedrate for travel to fixed stop.
SD55552 \$SCS_TURN_FIXED_STOP_FORCE	Force for travel to fixed stop in %.

Between traveling to the fixed stop and gripping, the counterspindle can retract a short distance to counteract compressive stress in the workpiece.

SD55553 \$SCS_TURN_FIXED_STOP_RETRACTION	Retraction distance before clamping
	after fixed stop.

After gripping you can cut off the workpiece. Before doing so, the counterspindle can retract a short distance with the workpiece to exert tensile stress on the workpiece. This relieves pressure on the tool when cutting off.

6.4 Turning

SD55543 \$SCS_TURN_PART_OFF_RETRACTION	Retraction distance before parting.
--	-------------------------------------

After the part, you can carry out a cutting-off check and for turning, use the "Travel to fixed stop" function. You can activate or deactivate the cut-off check via the following channel-specific setting data:

SD55540 \$SCS_TURN_PART_OFF_CTRL_DIST	Distance for cut-off check.	
SD55541 \$SCS_TURN_PART_OFF_CTRL_FEED	Feedrate for cut-off check.	
SD55542 \$SCS_TURN_PART_OFF_CTRL_FORCE	Force for cut-off check in %.	

The cut-off is successful when travel to fixed stop fails. The following alarms are output:

Alarm	Alarm text
20091	Axis %1 has not reached the fixed stop.
20094	Axis %1 end stop has been aborted.

You can switch off the alarm display using the following machine data:

MD37050 \$MA_FIXED_STOP_ALARM_MASK			
Enabling the	Enabling the fixed stop alarms.		
= 2	Suppressing alarms 20091 and 20094.		

You can set this machine data axis-specifically in the "Machine Data" window in the "Tool zero" operating area.

If, however, the specified force is reached during the cut-off check (i.e. travel to fixed stop is successful), alarm 61255 "Error during cut-off: Tool break?" is issued.

Note

The "Travel to fixed stop" function can also be used when gripping the spindle (see above). If travel to fixed stop does not succeed when gripping, an alarm will of course also be issued. Instead of alarms 20091 and 20094, the alarm 61254 "Error during travel to fixed stop" will be issued.

Dimensions of the counterspindle

To define the reference point for moving the counterspindle, you must first announce the dimensions of the counterspindle. You can either enter the dimensions in the following channel-specific machine data or in the menu "Tools - zero offset" \rightarrow ">" \rightarrow "Spindles". Changes to the machine data are automatically accepted in the menu and vice versa.

MD52241 \$MCS_SPINDLE_CHUCK_TYPES[]			
Spindle jaw type.			
[0]	Mai	Main spindle	
[1]	Cou	ounterspindle	
	= 0	Clamping, outer	
	= 1	Clamping, inner	

MD52242 \$MCS_MM_MAIN_SPINDLE_PARAMETER[]		
Main spindle parameters.		
[0]	Chuck dimensions	
[1]	Stop dimensions	
[2]	Jaw dimensions	

MD52243 \$MCS_MM_SUB_SPINDLE_PARAMETER[]		
Parameters for counterspindle.		
[0]	Chuck dimensions	
[1]	Stop dimensions	
[2]	Jaw dimensions	

MD52244 \$MCS_SUB_SPINDLE_PARK_POS_Y			
Parking po	Parking position of Y axis for counterspindle.		
= 0			

Manufacturer cycle CUST_TECHCYC.SPF

If you want to perform one of the following actions, you must adapt the manufacturer cycle CUST_TECHCYC.SPF.

- Switch between spindle and C axis mode for the main spindle or counterspindle.
- Open, close, flush chuck (main spindle/counterspindle).
- Change default settings for the coupling of the main spindle and counterspindle.

See also

ShopTurn: Setting up cycles for turning (Page 139)

6.4.9 ShopTurn: Cylinder surface transformation (TRACYL)

Requirement

Software option

You require the following software option in order to use this function:

"TRANSMIT and peripheral surface transformation"

Function

If you wish to use the function cylinder surface transformation (TRACYL) under ShopTurn, please take the settings from Chapter:

Cylinder surface transformation (TRACYL) (Page 130)

In addition, set the following channel-specific machine data:

MD52214 \$MCS_FUNCTION_MASK_MILL			
Milling funct	Milling function masks.		
Bit 3	Enable "internal/rear" machining in ShopTurn masks that define the machining plane themselves.		
Bit 4	If you have implemented the "Clamp/release spindle" function using the machine manufacturer cycle CUST_TECHCYC.SPF, then using this machine data, you can activate the "Clamp/release spindle" parameter in the drilling and milling masks.		
= 0	The "Clamp/release spindle" parameter is not displayed in the drilling and milling masks. ShopTurn automatically clamps the spindle if it makes sense for the particular machining operation.		
= 1	The "Clamp/release spindle" parameter is displayed in the drilling and milling masks. The operator decides for which machining operation the spindle should be clamped.		

References

Programming Manual Job Preparation: Cylinder surface transformation (TRACYL)

6.4.10 ShopTurn: End face machining (TRANSMIT)

Requirement

Software option

You require the following software option in order to use this function:

"TRANSMIT and peripheral surface transformation"

Function

If you wish to use the end face machining function under ShopTurn, please proceed as described in the following Chapter:

End face machining (TRANSMIT) (Page 133)

In addition, set the following channel-specific machine data:

MD52214 \$MCS_FUNCTION_MASK_MILL		
Function masks, ShopTurn.		
Bit 3	Enable "internal/rear" machining in ShopTurn masks that define the machining plane themselves.	
Bit 4	If you have implemented the "Clamp/release spindle" function using the machine manufacturer cycle CUST_TECHCYC.SPF, then using this machine data, you can activate the "Clamp/release spindle" parameter in the drilling and milling masks.	
= 0	The "Clamp/release spindle" parameter is not displayed in the drilling and milling masks. ShopTurn automatically clamps the spindle if it makes sense for the particular machining operation.	
= 1	The "Clamp/release spindle" parameter is displayed in the drilling and milling masks. The operator decides for which machining operation the spindle should be clamped.	

Note

The end face machining is automatically integrated in the cycles, with the exception of the straight line and circle. You can select the function for these two cycles in the "Program" operating area at "Straight line" and "Circle".

References

Function Manual, Extended Functions; Kinematic Transformation (M1): TRANSMIT

6.4 Turning

6.4.11 ShopTurn: Inclined axis (TRAANG)

Requirement

Software option

You require the following software option in order to use this function: "Inclined axis"

Function

If you wish to use the "Inclined axis" function under ShopTurn, please take the settings from Chapter:

Inclined axis (TRAANG) (Page 136)

Note

Once the "Inclined axis" function has been set up in the user interface, it is automatically integrated in the cycles. This means that for machining with inclined axis, you can select the "Face Y" or "Surface Y" machining plane and enter Cartesian coordinates.

References

Programming Manual Job Preparation: Inclined axis (TRAANG)

6.5 Swivel

6.5.1 Technology cycles for swiveling

Requirement

The commissioning of the kinematic chain of the machine is a mandatory requirement for the swivel function (CYCLE800). The kinematic chain is stored in the tool parameters \$TC_CARR1 to \$TC_CARR65.

Note

For the activation of the swivel function, **one** tool holder that can be oriented (swivel data set) and **the system frames** Setting the workpiece, tool and rotary table reference (Page 156) are already activated in the NCK (default setting).

References

Function Manual Basic Functions: Tool offset (W1), inclined surface machining with 3 + 2 axes

Activating the swivel function

The swivel function is activated via the following channel-specific machine data:

MD52212 \$MCS_FUNCTION_MASK_TECH		
Cross-techno	logy function mask	
Bit 0 = 1	Enable swivel	

Configuring the input dialog

You can configure the input dialog for swivel via the following channel-specific setting data. The setting data is effective for all of the declared swivel data sets.

SD55221 \$SCS_	SD55221 \$SCS_FUNKTION_MASK_SWIVEL_SET		
Function mask, s	Function mask, swivel CYCLE800		
Bit 0	Input field "No swivel"		
= 0	hide		
= 1	display		
Bit 1	Text displayed for retract the tool axis		
= 0	Display text Z = "Z", display text Z, XY = "Z,XY"		
= 1	Display text Z = "Fixed point 1", Display text Z, XY = "Fixed point 2".		
	If you wish to modify the retraction version "Z" or "Z, XY" via the manufacturer cycle CUST_800.SPF, the neutral text "Fixed point 1" and "Fixed point 2" can be displayed when retracting in this case.		

SD55221 \$SCS_FUNKTION_MASK_SWIVEL_SET		
Bit 2	Deselecting the active swivel set	
= 0	Deselection not permitted	
	If deselection is not permitted, the "Swivel data set" (TC) selection field is not displayed in the "Swivel" input dialog.	
= 1	Deselection permitted	
	Parameter TC_CARR37[n] HUNDRED MILLIONS position	

TC_CARR37[n] display versions of the input dialog for CYCLE800 HUNDRED MILLIONS. Enable swivel data set, Swivel data set change, Tool change

[n]	Swivel data set		
	Swivel data set change	Tool change	
0	Swivel data set not enabled		
4	Enable swivel data set		
	Automatic swivel data set change	Automatic tool change	
5	Enable swivel data set		
	Automatic swivel data set change	Manual tool change	
6	Enable swivel data set		
	Manual swivel data set change	Automatic tool change	
7	Enable swivel data set		
	Manual swivel data set change	Manual tool change	

Additional settings

To use the "Swivel" function, set the following machine data:

MD10602 \$MN_FRAME_GEOAX_CHANGE_MODE	
= 1	The current total frame (work offsets) is recalculated when switching over geometry
	axes (selecting/deselecting TRAORI).

MD11450 \$MN_SEARCH_RUN_MODE	
Settings, block search	
Bit 1 = 1	Activate PROG_EVENT.SPF after block search. This means that for a block search, the rotary axes of the active swivel data set are pre-positioned.

MD11602 \$MN_ASUP_START_MASK	
Ignore stop conditions for ASUB	
Bit 0 = 1	ASUB, modal; used for the swivel function in JOG.

MD11604 \$MN_ASUP_START_PRIO_LEVEL	
Priorities \$MN_ASUP_START	
= 64	Corresponds to 100; used for the swivel function in JOG.

MD20196 \$MC_TOCARR_ROTAX_MODE	
Rotary axis mode for tool holders with orientation capability	
Bit 0 = 1	Swivel data set with one rotary axis,
	used for a rotary table with C axis.
Bit 1 = 1	Swivel data set with two rotary axes,
	used with swivel default setting.

MD20360 \$MC_TOOL_PARAMETER_DEF_MASK	
Tool parameter setting	
Bit 10 = 1	Orientation vector is retained for T0 and D0 (no tool).
	Used for machine kinematics, types "T" and "M".
	See also: Parameter \$TC_CARR34

MD21186 \$MC_TOCARR_ROT_OFFSET_FROM_FR	
Offset of the rotary axes for a tool holder with orientation capability from the work offset of the rotary axis.	
= 0	In CYCLE800, the WCS is recalculated when there is a value in the work offset (WO) of the rotary axes.
= 1	A value in the WO of the rotary axes acts as offset of the tool holder that has orientation capability. The WCS remains unchanged.

MD21186 may not be rewritten in a program with call CYCLE800.

If several swivel data sets are declared per channel, and if machine functions need to be activated on changeover between swivel heads or tables, an M command can be issued in the PLC user program on switchover to another swivel data set.

MD22530 \$MC_TOCARR_CHANGE_M_CODE		
M code fo	M code for swivel data set change.	
= 0	No swivel data set change	
< 0	M code + number of the swivel data set for the swivel data set change.	

Example

MD22530 \$MC_TOCARR_CHANGE_M_CODE = -800

Number of swivel data sets in channel 1 = 2

Programming swivel data set 1 (TCARR=1) = M801

Programming swivel data set 2 (TCARR=2) = M802

With the output of the M commands, the PLC can, for example, limit or invert the spindle speed or clamp or release the rotary axes.

Kinematics with Hirth tooth system (swivel head/mixed kinematics)

Depending on the active plane (G17, G18, G19), the TOROT command or TOROTX, TOROTY is programmed in the NCU (G group 53) to calculate the compensating frame for the Hirth tooth system in CYCLE800. If the Hirth tooth system causes the programmed rotation to deviate from the possible positions of the rotary axes, a \$P_TOOLFRAME compensating frame is created for swivel head and mixed kinematics.

If the compensating frame must be retained after RESET or end of part program, enter the following value in the channel-specific machine data:

MD20150 \$MC_GCODE_RESET_VALUES[52]	
Reset behavior of the G groups	
= 2	For G17 (TOROT)
= 3	For G18 (TOROTY)
= 4	For G19 (TOROTX)

6.5.2 Setting the workpiece, tool and rotary table reference

Using the system frames

System frames can be active after Reset or Power On, in order, e.g. to retract a drill from a swiveled position without causing a collision.

Using the following machine data, you can set the workpiece, tool and rotary table reference system frames or you can influence the behavior of the system frames.

MD24006 \$MC_CHSFRAME_RESET_MASK	
Active system frames after reset	
Bit 4	System frame workpiece reference
= 0	Not active
= 1	Remains active

MD24007 \$MC_CHSFRAME_RESET_CLEAR_MASK	
Deletion of system frames after reset	
Bit 4	System frame workpiece reference
= 0	Do not delete
= 1	Delete

When used for measuring or swiveling in JOG, the workpiece reference must be active on reset and not deleted (cascaded measuring).

MD24006 \$MC_CHSFRAME_RESET_MASK	
Active system frames after reset	
Bit 4 = 1	System frame for workpiece reference remains active after reset

MD24007 \$MC_CHSFRAME_RESET_CLEAR_MASK			
Deletion of system frames after reset			
Bit 4 = 0 Do not delete system frame workpiece reference after reset			

MD24008 \$MC_CHSFRAME_POWERON_MASK				
Reset syster	Reset system frames after power on			
Bit 2	System frame rotary table reference (PAROT).			
= 0	Do not reset			
= 1	Reset			
Bit 3	System frame tool reference (TOROT,)			
= 0	Do not reset			
= 1	Reset			
Bit 4	System frame workpiece reference			
= 0	Do not reset			
= 1	Reset			

MD24080 \$MC_USER_FRAME_POWERON_MASK		
Settings for settable frames.		
Bit 0		
= 0 Settable work offset via power on not active.		
=1 Last active settable work offset remains active after power on if MD20152 \$MC_GCODE_RESET_MODE[7] = 1.		

Use: If work offset G5xx, including all rotations, is to remain active after power on.

Axial machine data for the modulo rotary axes of the swivel data set:

MD3045	MD30455 \$MA_MISC_FUNCTION_MASK				
Axis fun	Axis functions				
Bit 0		Modulo rotary axis programming			
	= 0	No modulo rotary axis programming (e.g. 0 to 359.999 degrees)			
	= 1	Modulo rotary axis programming (e.g180 to 180 degrees)			
Bit 2		Positioning, rotary axis			
	= 0	As programmed.			
	= 1	Along the shortest path			
		Use: With the setting, bit 2=1 then e.g. for G90 with DC, rotary axis C travels along the shortest path.			
		See also: Manufacturer cycle CUST_800.SPF.			

MD32010 \$MA_JOG_VELO_RAPID[AX] AX = axis name				
Rapid traverse in JOG, rotary and machine axes that are traversed for swivel in JOG.				
= 10000 Rapid traverse in JOG mode for swivel in JOG.				

SD42980 \$SC_TOFRAME_MODE			
Setting, fr	Setting, frame definition for TOROT, PAROT.		
= 2000	Swivel (default setting)		

SD42974 \$SC_TOCARR_FINE_CORRECTION		
Fine offset TCARR (swivel data set).		
= 0	No fine offset of the swivel data set vectors.	
= 1	Fine offset of the swivel data set vectors.	
	The parameters of the swivel data set as of \$TC_CARR41[n] apply.	

n : Number of swivel data set

Swivel in the JOG mode

Cycle alarms 62186 and 62187 can be hidden or displayed via the following machine data:

MD55410 \$MC_MILL_SWIVEL_ALARM_MASK		
Activate faul	t evaluation CYCLE800	
Bit 0	Activates fault 61186	
= 0	Hide fault 61186 "Active work offset G%4 and base (base reference) contains rotations" (default setting).	
= 1	Display fault 61186	

MD55410 \$N	MD55410 \$MC_MILL_SWIVEL_ALARM_MASK		
Bit 1	Activate fault 61187		
= 0	Hide fault 61187 "Active base and base reference (G500) contain rotations" (default setting).		
= 1	Display fault 61187		

6.5.3 ShopMill: Swivel plane and swivel tool

Requirement

Software option

You require the following software option in order to use the ShopMill function: "ShopMill/ShopTurn"

Refer to the following chapter for a description and setting the function:

Technology cycles for swiveling (Page 153)

Swivel under ShopMill

To enable the swivel function under ShopMill, set the following additional channel-specific machine data:

MD52212 \$MCS_FUNCTION_MASK_TECH		
Cross-technology function mask		
Bit 0 = 1	Enable swivel	

You must create a swivel data set for every swivel head, swivel table or combination of both.

A swivel data set consists of the following parameters:

```
TC CARR1[n] to TC CARR65[n] where n = number of the swivel data set
```

The parameters of the swivel data set (\$TC_CARR1[n] to \$TC_CARR65[n]) can be read-in and read-out in the Startup operating area.

Programming with appropriate value assignment is also possible in an NC program (manufacturer cycle). The parameters of the swivel data set are immediately effective after the program has started. You can adapt the swivel function to specific user requirements in the CUST_800.SPF manufacturer cycle.

6.5.4 CYCLE800 checklist for the identification of the machine kinematics

Identification of the machine kinematics (kinematic chain) according to DIN 66217 or ISO 841-2001

Note

This checklist does not claim to be complete.

• Do the three linear axes of the machine that are active for the transformation form an orthogonal coordinate system?

Geometry axes XYZ

How many swivel kinematics does the machine have?

Combinations of two (or one) rotary axis and the three linear axes are always formed.

• Which kinematics type is it?

Swivel head, swivel table or mixed kinematics of swivel head and swivel table.

• What are the names of the rotary axes of the kinematics?

Manual rotary axes are permitted and do not have to be declared in the NC.

• What is the 1st or 2nd rotary axis of a swivel data set?

Rule: Rotary axis 2 is based on rotary axis 1. With mixed kinematics, rotary axis 1 is always the axis for the tool orientation.

• Is the traversing direction of the linear axes and the rotary axes correct?

Right-hand rule:

If the linear axis or the rotary axis moves the workpiece, the direction of motion of the axis and also the sign of the rotary axis vector change.

What is the initial setting of the kinematics?

This defines the tool orientation and the plane G17, G18, G19.

• Which rotary axis rotates around which axis of the coordinate system or the machine axis (axes)?

This defines the rotary axis vectors of the kinematics.

Example 1:

Head kinematics. Rotary axis 2 rotates around axis $Y \rightarrow$ rotary axis vector V2xyz = 0,1,0 Example 2:

Table kinematics. Rotary axis 1 rotates around axis X → rotary axis vector V1xyz = -1,0,0

6.5.5 Commissioning of the kinematic chain (swivel data record)

Swivel data set (SDS)

You must create a swivel data set for every swivel head, swivel table and combination of both.

A swivel data set consists of the parameters:

 $TC_CARR1[n]$ to $TC_CARR65[n]$ where n = number of the swivel data set

The parameters of the swivel data set (\$TC_CARR1[n] to \$TC_CARR65[n]) can be read-in and read-out in the startup operating area. Programming with appropriate value assignment is also possible in an NC program (manufacturer cycle). The parameters of the swivel data set are immediately effective after the program has started.

References

Function Manual Basic Functions: Tool offset (W1), tool holders with orientation capability

Offset vectors I1 to I4

The vectors always contain three components, which represent the reference to the X, Y and Z machine axes. The position in the kinematic chain is measured by the machine manufacturer and is always relevant for a swivel head/swivel table (swivel data set).

Offset vectors I1 to I4 refer to the non-swiveled state of the rotary axes (machine kinematics initial setting).

The machine kinematics used do not need to be fully implemented. However, be aware that the traversing range in the swivel planes may be restricted. If machine kinematics are to be implemented with just one rotary axis, this must always be declared as the 1st rotary axis.

\$TC_CARR1[n],	\$TC_CARR2[n],	\$TC_CARR3[n]	Offset vector I1xyz
\$TC_CARR4[n],	\$TC_CARR5[n],	\$TC_CARR6[n]	Offset vector I2xyz
\$TC_CARR15[n],	\$TC_CARR16[n],	\$TC_CARR17[n]	Offset vector I3xyz
\$TC_CARR18[n],	\$TC_CARR19[n],	\$TC_CARR20[n]	Offset vector I4xyz

Rotary axis vectors V1 and V2

\$TC_CARR7[n],	\$TC_CARR8[n],	\$TC_CARR9[n]	Rotary axis vector V1xyz
\$TC_CARR10[n],	\$TC_CARR11[n],	\$TC_CARR12[n]	Rotary axis vector V2xyz

Kinematic types \$TC_CARR23[n]

Selection:

- Swivel head (type T)
- Swivel table (type P)
- Swivel head + swivel table (type M)

Offset parameters

An offset value is entered for rotary axis 1 or 2 when the position of the rotary axes is not equal to 0 in the initial setting of the kinematics. In the initial setting of the kinematics, the tool orientation to a geometry axis (X, Y, Z) must be parallel.

\$TC_CARR24[n]	Kinematics offset of rotary axis 1.
\$TC_CARR25[n]	Kinematics offset of rotary axis 2.
\$TC_CARR26[n]	Angular offset of the Hirth tooth system at the start of gearing of rotary axis 1.
\$TC_CARR27[n]	Angular offset of the Hirth tooth system at the start of gearing of rotary axis 2.
\$TC_CARR28[n]	Angle grid of the Hirth tooth system of rotary axis 1.
\$TC_CARR29[n]	Angle grid of the Hirth tooth system of rotary axis 2.

A valid angle range (e.g. -90 to +90 degrees) must be assigned to each rotary axis. This does not have to be the software end position range of the relevant rotary axis.

An angle range of 0 degrees and 360 degrees can be entered for modulo axes.

\$TC_CARR30[n]	Angle range of rotary axis 1 (minimum value).
\$TC_CARR31[n]	Angle range of rotary axis 2 (minimum value).
\$TC_CARR32[n]	Angle range of rotary axis 1 (maximum value).
\$TC_CARR33[n]	Angle range of rotary axis 2 (maximum value).

Name of swivel data set, name of rotary axis

If several swivel data sets are declared in each NC channel, then a name is assigned to each swivel data set. No name needs to be specified if the swivel-mounted tool carrier is not exchangeable.

\$TC_CARR34[n]	Name of the swivel data set.
\$TC_CARR35[n]	Name of rotary axis 1.
\$TC_CARR36[n]	Name of rotary axis 2.

Note

The name of the swivel data set may only contain characters that are also permitted in the NC programming: A...Z, 0...9 and _!

The following identifiers should be chosen for the rotary axes' names, where possible:

- Rotary axis rotates around machine axis X → A
- Rotary axis rotates around machine axis Y → B
- Rotary axis rotates around machine axis Z → C

For automatic rotary axes, the channel names of the corresponding NC rotary axes must be entered (see \$TC_CARR37[n] TENS and HUNDREDS position: Automatic mode).

For manual (manually adjustable) and semi-automatic rotary axes, you can use any axis identifier (up to six letters or numbers).

System variables

	l
\$TC_CARR37[n]	Display versions of the input masks for CYCLE800.
Ψ 1 O_O/ 11 (1 (0 / [11]	Display versions of the input masks for of occord.

In the "Program" → "Miscellaneous" operating area, the "Swivel plane" and "Swivel tool" softkeys are assigned to the swivel function.

The "Swivel tool" softkey is subdivided into "Set milling tool" and "Align milling/turning tool".

The "Align milling/turning tool" softkeys are only displayed if the "B-axis kinematics turning technology" function was activated, refer to TEN THOUSANDS position in the following table.

In order that a value can be displayed in the input and output fields of the input dialogs for swivel, the following display versions can be set.

Meaning of the decimal places

Decimal place	Meaning		
ONES	Selects	the swivel mode	
	0 =	Axis by axis	
	1 =	Axis-by-axis + projection angle	
	2 =	Axis-by-axis + projection angle + solid angle	
	3 =	Axis-by-axis + direct	
	4 =	Axis-by-axis + projection angle + direct	
	5 =	Axis-by-axis + projection angle + solid angle + direct	
TENS	Rotary a	xis 1	
	0 =	Automatic	
	1 =	Manual	
	2 =	Semi-automatic	
HUNDREDS	Rotary a	ixis 2	
	0 =	Automatic	
	1 =	Manual	
	2 =	Semi-automatic	
THOUSANDS	Selection field, direction: Direction reference of the rotary axes.		
	0 =	No, no display of the direction reference for kinematics that only have one solution.	
	3 =	Direction reference of rotary axis 1 optimized.	
	4 =	Direction reference of rotary axis 2 optimized.	
TEN THOUSANDS	Selection field, correction of the tool tip or B axis kinematics		
	0 =	No, no display of the Correction of tool tip input field	
	1 =	Yes, correction of tool tip by means of TRAORI.	
	2 =	No correction of tool tip + B axis kinematics turning technology.	
	3 =	Correction of tool tip + B axis kinematics turning technology.	
		The correction function requires the "5-axis transformation (TRAORI)" option.	
HUNDRED THOUSANDS	Reserve	d	
ONE MILLION TEN MILLION	Selection field, retraction		
	00 =	No retraction	
	01 =	Retraction Z	
	02 =	Retraction Z, XY	
	03 =	Retraction Z or Z, XY	
	04 =	Maximum retraction in tool direction	
	08 =	Incremental retraction in tool direction	

Decimal place	Meanin	ning			
	15 =	5 = Retraction Z or Z, XY or in maximum tool direction or in incremental tool direction.			
		\$TC_CARR38[n]	Retraction position X		
		\$TC_CARR39[n]	Retraction position Y		
		\$TC_CARR40[n]	Retraction position Z		
HUNDRED MILLION	Selection	on field, swivel data set change (deselection), tool change		
		Via SD55221 \$SCS_FUNCTION_MASK_SWIVEL_SET, bit 2: Permit deselection of the active swivel set.			
		swivel data set is active and de d in the "Swivel" window.	eselection is not possible, then no selection field is		
		ctive swivel set is not to be displa to be deleted.	ayed in the status field, the name of the swivel data		
	A tool o		vel data set change is only supported under ShopMill		
	0 = 8	Swivel data set not enabled			
	1 = 1	No swivel data set active			
		Automatic swivel data set change			
	ı	Manual tool change			
	2 = 1	No swivel data set active			
	l l	Manual swivel data set change			
	/	Automatic tool change			
	1 = 8	No swivel data set active			
	1	Manual swivel data set and tool change 4 = Enable swivel data set Automatic swivel data set and tool change			
	4 = [
	/				
	5 = 3	Swivel data set active			
		Automatic swivel data set change	e		
		Manual tool change			
	6 = 8	= Swivel data set active			
		Manual swivel data set change			
		Automatic tool change			
1		Swivel data set active			
	1	Manual swivel data set and tool of	change		

Retracting the geometry axes before swiveling

The ONE MILLION and TEN MILLION positions of the system variable \$TC_CARR37[n] define which retraction versions are displayed in the swivel input mask:

- · Retraction of axis Z
- Retract axes Z, XY
- Retract in the tool direction, maximum or incremental

6.5 Swivel

Retracting axis Z or retracting axes Z, XY is realized as an absolute machine position at the values of parameters \$TC_CARR38[n] to \$TC_CARR40[n].

\$TC_CARR38[n]	Retraction position X
\$TC_CARR39[n]	Retraction position Y
\$TC_CARR40[n]	Retraction position Z

The type of retraction is modified in the manufacturer cycle CUST_800.SPF, see also:

NOTICE

When traversing the tool axes, the following must be taken into account:

Retract the tool axis in such a way that the tool and workpiece cannot collide when swiveled.

Fine offsets of the the offset vectors

\$TC_CARR41[n]	to	\$TC_CARR60[n]
----------------	----	----------------

Assignment of base vectors to the fine offset vectors:

I1 \$TC_CARR13[n]	to	\$TC_CARR4143[n]
I2 \$TC_CARR46[n]	to	\$TC_CARR4446[n]
I3 \$TC_CARR1517[n]	to	\$TC_CARR5557[n]
I4 \$TC_CARR1820[n]	to	\$TC_CARR5860[n]

The fine offsets are activated by the following setting data:

SD42974 \$SC_TOCARR_FINE_CORRECTION = 1.

The fine offsets act in addition to the corresponding base vectors when the Swivel function CYCLE800 or the NC function TCARR=n is called.

6.5.6 Example of the commissioning of swivel head 1

Swivel head 1 "HEAD_1"

The vectors relate to the kinematics initial setting (not true-to-scale in the drawing):

Rotary axis 1(C)	(Manual) around Z
Rotary axis 2(A)	(Manual) around X
Changeable swivel head	Manually adjustable

Changeable swivel head with steep taper to hold the spindle

Figure 6-7 Swivel head 1 "HEAD_1"

Commissioning softkey "Swivel", kinematics (example 1):

Kinematics	Swivel head		HEAD_1
Retract	Z		
	Х	Υ	Z
			200.000
Offset vector I1	0.000	0.030	-63.000
Rotary axis vector V1	0.000	0.000	1.000
Offset vector I2	0.000	0.000	40.000
Rotary axis vector V2	1.000	0.000	0.000
Offset vector I3	0.000	-0.030	23.000
Display version			
Swivel mode	Axis by axis		
Direction reference	Rotary axis 2		
Correct tool	No		
Rotary axes			
Rotary axis 1	С	Mode	Manual
Angular range	0.000		360.000
Rotary axis 2	А	Mode	Manual
Angular range	-15.000		100.000

6.5.7 Example of the commissioning of swivel head 2

Swivel head 2 "HEAD_2"

The vectors relate to the initial setting of the kinematics:

Rotary axis vector V1:	Rotary axis B rotates around Y		
Rotary axis vector V2:	Rotary axis C rotates around Y and around Z		
Offset vector I1:	Closure of vector chain with fixed-mounted swivel head I1=-(I2+I3)		
Offset vector I2:	Distance between pivot point of rotary axis 1 and pivot point of rotary axis 2		
Offset vector I3: Distance between reference point of tool and pivot point of rotary axis 2			
If the swivel head is fixed-mour	nted, the vector chain is closed (see I1)		

Rotary axis 2

172

V2

V1

172

Rotary axis 2

Rotary axis 1

Pivot point of rotary axis 1

Pivot point of rotary axis 2

Reference point of

Cardanic swivel head (manually adjustable) with Hirth tooth system:

Figure 6-8 Swivel head 2 "HEAD_2"

tool

Commissioning softkey "Swivel", kinematics (example 2):

Kinematics	Swivel head		HEAD_2
Retract	Z	Tool direction	Max.+inc.
	Х	Υ	Z
			200.000
Offset vector I1	0.000	-172.000	-265.800
Rotary axis vector V1	0.000	1.000	0.000
Offset vector I2	0.000	172.000	172.000
Rotary axis vector V2	0.000	1.0001)	1.000 *)
Offset vector I3	0.000	0.000	93.800
Display version			
Swivel mode	Axis by axis		
Direction reference	Rotary axis 2		
Rotary axes			
Rotary axis 1	В	Mode	Manual
Angular range	0.000		360.000
Kinematics offset	0.000		
Hirth tooth system	yes	Angular grid	1.000
Rotary axis 2	С	Mode	Manual

6.5 Swivel

Kinematics	Swivel head	HEAD_2
Angular range	0.000	180.000
Kinematics offset	0.000	

^{*)} Calculation of rotary axis vector V2: 45 degree angle

V2Y= sin(45)= 0.7071

V2z= cos(45)= 0.7071

V2Y and V2z can be normalized to 1.

The reference point of the pivot point of rotary axes 1 and 2 can be offset on the line of rotation and does not have to coincide with the mechanical pivot point.

6.5.8 Example of the commissioning of a cardanic table

Cardanic table "TABLE_45"

The vectors relate to the initial setting of the kinematics:

Rotary axis vector V1: Rotary axis B rotates around Y and around Z.

Rotary axis vector V2 Rotary axis C rotates around Z.

Offset vector I2: Distance from the reference point of the machine to the pivot

point/intersection of rotary axis 1

Offset vector I3: Distance between pivot point/intersection of rotary axis 1 and

pivot point/intersection of rotary axis 2

Offset vector I4: Closure of vector chain I4=-(I2+I3)

Side view of the machine:

Spindle (tool adapter) is positioned on a block dimension above the top edge of the table (rotary axis C) or the center of the table. A measuring rod in the spindle is used to determine the turning center of rotary axis C.

Figure 6-9 Cardanic table "TABLE_45"

Commissioning softkey "Swivel", kinematics (example 3):

Kinematics	Swivel table		TABLE_45
	Х	Υ	Z
Offset vector I2	0.000	100.000	50.000
Rotary axis vector V1	0.000	-1.000 ¹⁾	1.000 *)
Offset vector I3	0.000	0.000	-30.000
Rotary axis vector V2	0.000	0.000	-1.000
Offset vector I4	0.000	-100.000	-20.000
Display version			
Swivel mode	Axis by axis		
Direction reference	Rotary axis 2		
Correct tool	No		
Rotary axes			
Rotary axis 1	В	Mode	Auto
Angular range	0.000		180.000
Rotary axis 2	С	Mode	Auto
Angular range	0.000		360.000

^{*)} Calculation of rotary axis vector V1: β = -45 degrees

V1Y= sin(-45)= -0.7071

V1z= cos(-45)= 0.7071

V1Y and V1z can be normalized to -1 and 1.

6.5.9 Example of the commissioning of a swivel head/rotary table

Swivel head/rotary table "MIXED_45"

The vectors relate to the initial setting of the kinematics:

Rotary axis vector V1: Rotary axis B rotates around Y **and** around Z.

Rotary axis vector V2: Rotary axis C rotates around Z.

Offset vector I2: Distance from the reference point of the tool adapter to the pivot

point/intersection of rotary axis 1

Offset vector I1: Closure of vector chain I1=-I2

Offset vector I3: Distance from the reference point of the machine to the pivot

point/intersection of rotary axis 2

Offset vector I4: Closure of vector chain I4=-I3

Side view of the machine:

Spindle (tool adapter) is positioned on a block dimension above the top edge of the table (rotary axis C) or the center of the table. A measuring rod in the spindle is used to determine the turning center of rotary axis C.

Figure 6-10 Swivel head/rotary table "MIXED_45"

Commissioning softkey "Swivel", kinematics (example 4):

Kinematics	Mixed kinematics		MIXED_45
	Х	Υ	Z
Offset vector I1	0.000	0.000	-30.600
Rotary axis vector V1	0.000	1.0001)	1.000 *)
Offset vector I2	0.000	0.000	30.600
Offset vector I3	300.000	150.000	0.000
Rotary axis vector V2	0.000	0.000	-1.000
Offset vector I4	-300.000	-150.000	0.000
Display version			
Swivel mode	Axis by axis		
Direction	Rotary axis 1		
Correct tool	yes		
Rotary axes			
Rotary axis 1	В	Mode	Auto
Angular range	0.000		180.000
Rotary axis 2	С	Mode	Auto
Angular range	0.000		360.000

^{*)} Calculation of rotary axis vector V1: β = 45 degrees

V1Y= sin(45)= -0.7071

V1z = cos(45) = 0.7071

V1Y and V1z can be normalized to 1.

6.5.10 Example of the commissioning of a swivel table

Swivel table "TABLE_5"

The vectors relate to the initial setting of the kinematics:

Rotary axis vector V1: Rotary axis A rotates around X. Rotary axis vector V2: Rotary axis C rotates around Z.

Offset vector I2: Distance from the reference point of the machine to the pivot

point/intersection of rotary axis 1

Offset vector I3: Distance from the pivot point of rotary axis 1 to the pivot

point/intersection of rotary axis 2

Offset vector I4: Closure of vector chain I4=-(I2+I3)

Side view of the machine from the X direction:

Spindle (tool adapter) is positioned on a block dimension above the top edge of the table (rotary axis C) or the center of the table. A measuring rod in the spindle is used to determine the turning center of rotary axis C.

Figure 6-11 Swivel table "TABLE_5" (side view)

Front view of the machine from the Y direction:

Figure 6-12 Swivel table "TABLE_5" (front view)

Commissioning softkey "Swivel", kinematics (example 5):

Kinematics	Swivel table		TABLE_5
	Х	Υ	Z
Offset vector I2	260.000	200.000	0.000
Rotary axis vector V1	-1.000	0.000	0.000
Offset vector I3	0.000	0.020	20.400
Rotary axis vector V2	0.000	0.000	-1.000
Offset vector I4	-260.000	-200.020	-20.400
Display version			
Swivel mode	Axis by axis		
Direction	Rotary axis 1		
Correct tool	No		
Rotary axes			
Rotary axis 1	Α	Mode	Auto
Angular range	-90.000		90.000
Rotary axis 2	С	Mode	Auto
Angular range	0.000		360.000

6.5.11 Manufacturer cycle CUST_800.SPF

Overview

During swiveling, all axis positions are approached using the CUST_800.SPF cycle. The call is exclusively made from the swivel cycle CYCLE800 or from the cycles E_TCARR (ShopMill) or F_TCARR (ShopTurn).

In cycle CUST_800.SPF, the function markers (_M2: to _M59) are prepared and documented.

Parameters of the CUST_800.SPF manufacturer cycle

CUST_800 (INT $_$ MODE, INT $_$ TC1, REAL $_$ A1, REAL $_$ A2, INT $_$ TC2, REAL $_$ T $_$ POS) SAVE DISPLOF

_MODE	A jump is made to markers _M2 to _M59.
_TC1	Number of the swivel head/table
_A1	Angle of rotary axis 1
_A2	Angle of rotary axis 2
_TC2	1. Feed evaluation in percent (%) for swiveling in JOG mode
	2. Number of the new swivel head/table replacement under ShopMill
_T_POS	Incremental position during retraction in the incremental tool direction (see marker _M44, _M45)

Retract prior to swiveling

If the CUST_800.SPF cycle is not modified, the Z axis (marker _M41) or the Z axis followed by the X, Y axes (marker _M42) are first traversed in the MCS to the positions when retracting prior to swiveling. The freely available position values are specified in the system variables \$TC_CARR38[n] to \$TC_CARR40[n]. When retracting, the active tool cutting edge is deselected (D0) and is reselected after retraction.

If retraction in the tool direction had been declared, the tool axis is retracted to the software end position (maximum in tool direction) or by an incremental distance away from the tool in the tool direction. The tool lengths are taken into account accordingly.

Input dialog with ShopMill (ShopTurn)

CYCLE800 input dialog

Figure 6-13 CYCLE800 programming

Structure CYCLE800

Sequence in AUTOMATIC mode:

Figure 6-14 Structure CYCLE800.SPF/CUST_800.SPF

Structure E_TCARR.SPF (F_TCARR.SPF)

The following structure refers tot the swivel data set change and the related tool change tool change during milling or turning.

Figure 6-15 Structure E_TCARR.SPF

6.5 Swivel

Markers _M2 to _M13

If the swivel data set or tool is changed, the linear axes are retracted using the last retraction mode (modal).

If this behavior is not desired in milling/turning, the corresponding calls must be commented out with a semicolon (;). The E_SWIV_H or F_SWIV_H cycle is called in milling/turning (see markers _M2 to _M9) in the CUST_800.SPF manufacturer cycle.

Parameters: E_SWIV_H (Par1, Par2, Par3)

- Par1: Number of swivel data set (_TC1)
- Par2: Angle of 1st rotary axis
- Par3: Angle of 2nd rotary axis

Modification examples

If the rotary axes (swivel head) are not to be positioned during swivel data change/tool change, the call of the E_SWIV_H cycle can be commented out at the relevant markers. If the rotary axes are to move to a certain position, an angle value can be transferred to parameters Par 2, Par 3.

Markers _M14 to _M15

Depending on the values of the retraction plane and the programmed swivel plane, it is possible that the linear axes now travel the swiveled retraction plane while running up from the current position to the software limit switches after a block search. To avoid this problem, marker _M14 in the CUST_800.SPF is called after swiveling. The E_SP_RP(30) cycle preset there runs up to the milling retraction plane, whereby travel may be along the software limit switches. An appropriate retraction after block search can be set at marker _M15.

Markers _M20 to _M31

Markers _M20 to _M31 are distinguished by machine kinematics with two rotary axes or one rotary axis. A distinction is also made between automatic rotary axes (known to the NCU) and manual (semi-automatic) rotary axes. There is only ever one valid marker for swiveling with the active swivel data set.

Marker _M35

Run through _M35 for block search and a swivel data set with manual rotary axes.

Marker _M46

Retraction before swiveling after a block search can be set at marker _M46. Variable _E_VER is 1 if it is a milling technology program.

Markers _M57 to _M59

Markers _M57 to _M59 are used for swiveling in JOG mode and active 5-axis transformation (TRAORI).

"Correct tool"

"Correct tool" requires that a 5-axis transformation is set up, which is equivalent to the corresponding swivel data set. The programming section for "Correct tool" is integrated in the markers _M20, _M21, _M22 and _M30. The first 5-axis transformation is called with TRAORI(1).

Tool change + swivel

In general, the swivel (CYCLE800) and tool change functions for a machine are independent of each other. Thus, the swiveled work plane can be retained in a technological sequence with multiple tools, e.g. centering, drilling, tapping.

If the rotary axes of the active swivel data set are involved in the mechanical sequence of the tool change or have to be retracted, this must be taken into account in the tool change program. After the tool change, the rotary axis positions are approached as prior to the tool change. If linear axes (geometry axes) are also involved in the tool change, the rotations in the NC (swivel frame) must not be deleted. Rather, the linear axes can be positioned as machine axes using the G153 or SUPA commands.

Swivel without active tool offset

If swiveling the rotary axes without active tool cutting edge (D0) is not possible, then you can adapt this in cycle CUST_800.SPF:

```
_M40:

IF ((NOT $P_TOOL) AND _TC1)

LOOP

MSG ("no tool cutting edge active")

MO

STOPRE

ENDLOOP

ENDIF

GOTOF_MEND
```

6.6 High Speed Settings (Advanced Surface)

6.6.1 Configuring the High Speed Settings function (CYCLE832)

Function

The High Speed Settings function is used to preset data for the machining of sculptured surfaces so that optimum machining is possible. The "Advanced Surface" function is implemented in the "High Speed Settings" cycle (CYCLE832).

The call of CYCLE832 contains the following parameters:

- Tolerance
- Machining type
- Version=1 (permanently preset)

Tolerance value

The tolerance value for the linear axes (geometry axes) is transferred to the NC with the NC command CTOL. CTOL = root(3) * tolerance value.

If rotary axes are involved in the machining (multi-axis transformation), the tolerance value is transferred to the NC with a factor on the NC command OTOL. This factor can be set in the following channel-specific setting data for each machining type:

SD55440 \$SCS_MILL_TOL_FACTOR_NORM= 10	
Factor, tolerance of the rotary axes for CYCLE 832, G group 59.	
= 10	

SD55441 \$SCS_MILL_TOL_FACTOR_ROUGH		
Factor, tolerance of the rotary axes for roughing of the G group 59.		
= 10		

SD55442 \$SCS_MILL_TOL_FACTOR_SEMIFIN		
Factor, tolerance of the rotary axes for roughing-finishing of the G group 59.		
= 10		

SD55443 \$SCS_MILL_TOL_FACTOR_FINISH	
Factor, tolerance of the rotary axes for finishing of the G group 59.	
= 10	

Machining type and technology G group 59

The machining types of the technology G group 59 are permanently assigned in CYCLE832 or in CUST_832.SPF:

Machining type	Technology G group 59	Array index
Deselection	DYNNORM	0
Roughing	DYNROUGH	2
Pre-finishing	DYNSEMIFIN	3
Finishing	DYNFINISH	4

Dynamic parameters can be adapted to the respective machining operation with the technology G groups. Using the commands of technology G group 59, the value of the following channel and axis-specific machine data is activated using the corresponding array index.

Note

During the optimization of the machine axes, the values (array index) of the following machine data must be set correctly.

Machine data		Meaning
MD20600	\$MC_MAX_PATH_JERK[04]	Path dependent maximum jerk.
MD20602	\$MC_CURV_EFFECT_ON_PATH_ACCEL[04]	Influence of path curvature on path dynamic response.
MD20603	\$MC_CURV_EFFECT_ON_PATH_JERK[04]	Influence of path curvature on path jerk.
MD32300	\$MA_MAX_AX_ACCEL[04]	Maximum axis acceleration
MD32310	\$MA_MAX_ACCEL_OVL_FACTOR[04]	Overload factor for axial velocity jumps.
MD32431	\$MA_MAX_AX_JERK[04]	Maximum axial jerk for path motion.
MD32432	\$MA_PATH_TRANS_JERK_LIM[04]	Maximum axial jerk at the block transition in continuous-path mode.
MD32433	\$MA_SOFT_ACCEL_FACTOR[04]	Scaling of acceleration limitation for SOFT.

Machining type, deselection

When CYCLE832 is deselected, the G groups are programmed for the settings during the program run time; these settings are declared in MD2150 \$MC_GCODE_RESET_VALUES[].

If, when deselecting CYCLE832, a tolerance has not been programmed, the setting from the following channel-specific setting data is used.

SD55445 \$SCS_MILL_TOL_VALUE_NORM	
Tolerance value for deselection	

6.6.2 How to adapt the High Speed Settings function (CYCLE832)

Adapting manufacturer cycle CUST_832.SPF

In contrast to the settings (G commands) by CYCLE832.SPF, these settings can be modified in the manufacturer cycle CUST_832.SPF.

Procedure:

1. Copy the CUST_832.SPF cycle from the directory:

```
/NC data/Cycles/Standard cycles
```

2. Paste the CUST 832.SPF cycle into the following directory:

```
/NC data/Cycles/Manufacturer cycles
```

3. Open the cycle. The following settings are programmed:

```
SOFT
COMPCAD
G645
FIFOCTRL
UPATH
;FFWON
;ORISON
;OST
```

DYNNORM, DYNFINISH, DYNSEMIFIN, DYNROUGH depending on the machining type.

Corresponding markers are prepared in CUST_832.SPF:

```
_M_NORM:
_M_FINISH:
_M_SEMIFINISH:
_M_ROUGH:
```

The programming of FGREF () is useful when machining with active multi-axis transformation (e.g. TRAORI). In this case, in CUST_832.SPF, variable _FGREF is pre-assigned a value of 10 mm. This value can also be modified. In CYCLE832.SPF, the value of variable _FGREF is written to the rotary axes involved in the machining, which are declared as orientation axis of a 5-axis transformation, using the FGREF(rotary axis) command. When G70/G700 is active, the value from _FGREF is converted into inches before writing to the command FGREF.

Note

More than three rotary axes (orientation axes) in CYCLE832:

In CYCLE832, a maximum of three rotary axes of the orientation transformation (TRAORI) are taken into account for FGREF.

Example:

If more than three rotary axes are declared in the channel for the orientation transformation, You can wrote the value to FGREF with the following syntax in the CUST_832.SPF:

```
FGREF[AA]=$AA_FGREF[C]
;C = rotary axis 1 (axis is taken into account by CYCLE832)
;AA = rotary axis 4
```

6.7 Measuring cycles and measurement functions

6.7.1 General settings for measuring

Requirement

Two types of electronic probes are used for measuring:

- Probe for workpiece measurement
- Probe for tool measurement

The electronic probe is only called probe in the following description.

You set the electrical polarity of the connected probe using the following general machine data:

MD13200[0] \$MN_MEAS_PROBE_LOW_ACTIVE MD13200[1] \$MN_MEAS_PROBE_LOW_ACTIVE	
Polarity change of the probe	
= 0	Probe in the non-deflected state 0 V (default setting)
	Probe in the deflected state 24 V
= 1	Probe in the non-deflected state 24 V
	Probe in the deflected state 0 V

MD13210 \$MN_MEAS_TYPE =1
Measuring type for distributed drives
The distributed measuring is permanently preset (data class: SYSTEM).

See also

Connecting the probes (Page 97)

Testing the probe function

You can test the switching function of the probe by manually deflecting it and checking the following PLC interface signals: DB2700

To test the switching behavior and the measured value transfer, use an NC test program with, for example, the following NC commands:

MEAS	Measuring with delete distance-to-go
\$AC_MEA[n] Checking of the switching operation	
	n = measuring input number
\$AA_MW[axis name]	Measured value of the axes in workpiece coordinates
\$AA_MM[axis name]	Measured value of the axes in machine coordinates

Example: Test program

1	
Program code	Comment
%_N_PRUEF_MESSTASTER_MPF	;
\$PATH=/_N_MPF_DIR	; Test program, probe connection
NOO DEF INT MTSIGNAL	; Bit memory to check the switching status
N05 G17 G54 T="3D_Taster" D1	; Select tool geometry for probe
N10 M06	; Activate tool
N15 G0 G90 X0 F150	; Starting position and measuring speed
N20 MEAS=1 G1 X100	; Measurement at measuring input 1 in the $\ensuremath{\mathtt{X}}$ axis
N30 MTSIGNAL=\$AC_MEA[1]	; Switching operation at the 1st measuring input completed, YES/NO
N35 IF MTSIGNAL == 0 GOTOF _FEHL1	; Signal evaluation
N40 R1=\$AA_MM[X]	; Save measured value in machine coordinates at R1
N45 R2=\$AA_MW[X]	; Save measured value in workpiece coordinates at R2
N50 M0	; Check measured value in R1/R2
N55 M30	
N60 _FEHL1: MSG ("Probe does not switch!")	
N65 M0	
N70 M30	

Measuring input of the PPU for the workpiece or tool probe

The assignment of the NC measuring input is defined in the following general machine data.

MD51606 \$MNS_MEA_INPUT_PIECE_PROBE[0]		
Workpiece	Workpiece probe measuring input	
= 0	Workpiece probe at the 1st NC measuring input (default setting)	
= 1	Workpiece probe at the 2nd NC measuring input	

MD51607 \$MNS_MEA_INPUT_TOOL_PROBE[0]		
Tool prob	Tool probe measuring input	
= 0	Tool probe at the 1st NC measuring input	
= 1	Tool probe at the 2nd NC measuring input (default setting)	

MD51614 \$MNS_MEA_PROBE_LENGTH_RELATE	
Length reference when calibrating the probe length	
= 0	In the infeed axis, calibration is performed to the center of the probe ball
= 1	In the infeed axis, calibration is performed in relation to the circumference of the probe ball (default setting)

Note

After changing MD51614, the probe must be recalibrated.

MD51616 \$MNS_MEA_CAL_MONITORING	
Monitoring the calibration status	
= 0	Without monitoring
= 1	With monitoring (default setting)

6.7.2 Manufacturer cycle CUST_MEACYC.SPF

Manufacturer and user cycle CUST_MEACYC.SPF

The CUST_MEACYC.SPF is part of the measuring cycle functionality. It is called in every measuring cycle before and after executing the measurement task. The CUST_MEACYC.SPF acts in the same way when measuring in the JOG mode and measuring in the AUTOMATIC mode.

You can use the CUST_MEACYC.SPF to program and execute sequences that are necessary before and/or after a measurement (e.g. activating/deactivating a probe).

6.7.3 Measuring in the JOG mode

Requirement

You have already made the settings from the previous section. General settings for measuring (Page 186)

Measure workpiece

Milling technology:

- The probe has been inserted in the tool spindle.
- The probe has been selected in the tool list as type 710 (3D probe milling).
- Probe is activated as tool in the current NC channel.

Setting the general setting data:

SD54798 \$SNS_J_MEA_FUNCTION_MASK_PIECE= 4	
Settings for the input mask, measuring in JOG, workpiece measurement.	
Bit 2 = 1	Activation of the function "Measuring with electronic workpiece probe".

Measure tool

To measure tools, an appropriate probe must be located in the machine space so that this can be reliably and safely reached with a tool in the spindle.

The following tool types are supported with measure tool:

- Milling technology: Tool types 1xx and 2xx
- Turning technology: Tool type 5xx, 1xx, 2xx

For the specified tool types, the tool lengths and the tool radii can be measured.

6.7 Measuring cycles and measurement functions

Set the general setting data:

SD54798 \$SNS_J_MEA_FUNCTION_MASK_TOOL= 4	
Settings for the input mask, measuring in JOG, tool measurement.	
Bit 2 = 1	Activation of the function "Measuring with electronic tool probe".

Set the general machine data:

MD11602 \$MN_ASUP_START_MASK		
Ignore stop	Ignore stop reasons for ASUB.	
Bit 0 = 1	ASUB start possible in the JOG mode.	

MD11604 \$MN_ASUP_START_PRIO_LEVEL		
Priorities from	Priorities from which ASUP_START_MASK is effective.	
= 1 - 64	Priorities for ASUP_START_MASK.	

Set the channel-specific machine data:

MD20050 \$MC_AXCONF_GEOAX_ASIGN_TAB[i]	
Assignment, geometry axis to channel axis.	
[0]	
[1]	Prerequisite for measuring in the JOG mode is that all of the geometry axes must be
[2]	available; preferably XYZ.

MD20110 \$MC_RESET_MODE_MASK		
Defines the	Defines the basic control settings after reset/TP end,	
= 4045H	Minimum value	
Bit 0 = 1		
Bit 2 = 1		
Bit 6 = 1	Basic control setting after power on and reset.	
Bit 14 = 1		

MD20112 \$MC_START_MODE_MASK	
Definition of the basic control setting after part program start.	
= 400H	Minimum value
Bit 6 = 0	Definition of the basic control setting after NC start.

MD20310 \$MC_TOOL_MANAGEMENT_MASK	
Activating tool manager functions	
= 4002H	Minimum value
Bit 1 = 1	Tool manager and monitoring functions active
Bit 14 = 1	Automatic tool change for reset and start.

Note

If you create the conditions described in this section and you have set and checked the machine setting data, then in the JOG mode, you can measure a workpiece using a workpiece probe on a milling machine!

In the JOG mode, you can measure a tool using a tool probe on a milling machine or lathe!

A description is provided in the following sections as to which settings you can make in order to adapt measuring to the specific requirements of the machine.

6.7.4 JOG: Measure workpiece during milling

Measure workpiece

Measuring in the "Machine" operating area can be appropriately adapted to the specific requirements using the following channel-specific general machine data and channel-specific setting data.

General machine data:

MD51751 \$MNS_J_MEA_M_DIST_MANUELL	
Measuring path in mm, before and after the measuring point.	
= 10 Default setting	

MD51755 \$MNS_J_MEA_MEASURING_FEED	
Measuring feedrate in mm/min for workpiece measurement and calibration.	
= 300	Default setting

MD51757 \$MNS_J_MEA_COLL_MONIT_FEED	
Position feedrate in mm/min, in the working plane for active collision monitoring.	
= 1000	Default setting

MD51758 \$MNS_J_MEA_COLL_MONIT_POS_FEED	
Position feedrate in mm/min, in the infeed axis for active collision monitoring.	
= 1000	Default setting

MD51770 \$MNS_J_MEA_CAL_RING_DIAM[i] Pre-assignment of the calibration diameter in mm specifically for the calibration data sets. = -1 Default setting

MD51772 \$MNS_J_MEA_CAL_HEIGHT_FEEDAX[i]	
Default setting of the calibration height in mm in the infeed axis, specifically for the calibration data sets.	
= -99999	Default setting

General setting data:

SD54798 \$SNS_J_MEA_FUNCTION_MASK_PIECE		
Settings of the	Settings of the input masks for measuring in JOG	
Bit 0	n. a.	
Bit 1	n. a.	
Bit 2 = 1	Activates measurements with an electronic probe.	
Bit 3 = 1	Selects the probe calibration data field, enable.	
Bit 4	n. a.	
Bit 5	n. a.	
Bit 6 = 1	Selects WO in the base reference (SETFRAME), enable.	
Bit 7 = 1	Selects WO in the channel-specific basic frames, enable.	
Bit 8 = 1	Selects WO in the global basic frame, enable.	
Bit 9 = 1	Selects WO in adjustable frames, enable (default setting).	

Channel-specific setting data:

SD5577	SD55770 \$SCS_J_MEA_SET_COUPL_SP_COORD	
Behavior of the probe carrier spindle.		
= 0	Coupling of the probe carrier spindle with coordinate rotation around the infeed axis, default setting.	
= 1	The position of the probe carrier spindle at the time that the cycle started is used as the initial position for the measurement.	

Note

After changing this setting data, the probe must be recalibrated.

SD55761 \$SCS_J_MEA_SET_NUM_OF_ATTEMPTS		
Number	Number of measurements at a measuring point	
= 0	Five measurements at every measuring point. The arithmetic average is generated.	
= 1	One measurement at every measuring point, default setting.	

SD55762 \$SCS_J_MEA_SET_RETRAC_MODE	
Retraction velocity from the measuring point	
= 0	Retraction velocity corresponding to the intermediate positioning, default setting.
= 1	Retraction with rapid traverse

SD55763 \$SCS_J_MEA_SET_FEED_MODE	
Selection of the measuring feedrate	
= 0	Measuring with the measuring feedrate, default setting.
= 1	Measuring with the feedrate corresponding to the channel-specific setting data SD55633 \$SCS_MEA_FEED_FAST_MEASURE.
	2. Measuring with measuring feedrate

If you are using a monoprobe, set the following general machine and channel-specific setting data. A monoprobe only switches in one direction of motion.

MD51612 \$MNS_MEA_MONO_COR_POS_ACTIVE		
Alignment	Alignment of the switching direction for monoprobe, taking into account the offset angle.	
= 0	Without offset angle	
= 1	With offset angle, default setting	

SD55772 \$SCS_J_MEA_SET_PROBE_MONO		
Selection	Selection of the probe type	
= 0	Probe is a multiprobe (3D probe) default setting.	
= 1	Probe is a monoprobe.	

6.7.5 JOG: Measure tool during milling

Tool probe

In the following machine data, index [i] stands for the number of the current data field (probe number -1) of the probe.

General machine data:

MD51774 \$MNS_J_MEA_T_PROBE_TYPE[i]		
Probe ver	Probe version	
= 0	Cube, default setting	
= 101	Disk in XY, working plane G17	

6.7 Measuring cycles and measurement functions

MD51774 \$MNS_J_MEA_T_PROBE_TYPE[i]		
= 201	Disk in ZX, working plane G18	
= 301	Disk in YZ, working plane G19	

The following general machine data is used to define in which axes and directions it is possible to calibrate a tool probe.

MD51776	6 \$MNS_J_MEA_T_PROBE_ALLOW_AX_DIR[i]			
Axes and directions for "calibration"				
= 133	Default setting			

Decimal place	Decimal place		
ONES	1st ax	xis	
	-	= 0	axis not possible
	=	= 1	only minus direction
		= 2	only plus direction
	-	= 3	both directions
TENS	2nd a	axis	
		= 0	axis not possible
		= 1	only minus direction
		= 2	only plus direction
	-	= 3	both directions
HUNDREDS	3rd a	ixis	
		= 0	axis not possible
	=	= 1	only minus direction
	-	= 2	only plus direction
	=	= 3	both directions

Example

If the general machine data MD51776[i] \$MNS_J_MEA_T_PROBE_ALLOW_AX_DIR has the value 123, the tool probe is calibrated as follows in the G17 plane:

- X in both directions
- Y only in plus direction
- Z only in minus direction

MD51778 \$MNS_J_MEA_T_PROBE_DIAM_LENGTH[i]		
Effective of	Effective diameter of the tool probe for length measurement.	
= 0	Default setting	

MD51780	MD51780 \$MNS_J_MEA_T_PROBE_DIAM_RAD[i]	
Effective of	Effective diameter of the tool probe for radius measurement.	
= 0	Default setting	

MD51782 \$MNS_J_MEA_T_PROBE_T_EDGE_DIST[i]		
Distance between the upper edge of the tool probe and the lower edge of the tool		
(= calibration depth, measuring depth when measuring the milling cutter radius).		
= 2	Default setting	

Measuring path/measuring feedrate

General machine data:

MD51752 \$MNS_J_MEA_M_DIST_TOOL_LENGTH		
Measuring	Measuring path to measure the tool length.	
= 2	Default setting	

MD51753 \$MNS_J_MEA_M_DIST_TOOL_RADIUS		
Measuring	Measuring path to measure the tool radius.	
= 1	Default setting	

MD51786 \$MNS_J_MEA_T_PROBE_MEASURE_DIST	
Measuring path to calibrate the probe or for measurements with stationary spindle.	
= 10	Default setting

MD51787 \$MNS_J_MEA_T_PROBE_MEASURE_FEED		
Calibrate	Calibrate measuring feedrate for probe and tool measurement with stationary spindle.	
= 100	Default setting	

Monitoring when measuring with a rotating spindle

General setting data:

SD54670 \$SNS_MEA_CM_MAX_PERI_SPEED[0]	
Maximum permissible peripheral speed of the tool to be measured.	
= 100	Default setting

SD54671 \$SNS_MEA_CM_MAX_REVOLUTIONS[0]

Maximum permissible tool speed of the tool to be measured. The speed is automatically reduced when exceeded.

= 1000 Default setting

SD54672 \$SNS_MEA_CM_MAX_FEEDRATE[0]

Maximum permissible feedrate to probe the tool to be measured at the probe.

= 20 Default setting

SD54673 SNS_MEA_CM_MIN_FEEDRATE[0]

Minimum feedrate for the first probing of the tool to be measured at the probe. The avoids excessively small feedrates for large tool radii.

= 1 Default setting

SD54674 \$SNS_MEA_CM_SPIND_ROT_DIR[0]

Spindle direction of rotation to measure tools.

= 4 Spindle rotation the same as M4 (default setting)

NOTICE

If the spindle is already rotating when the measuring cycle is called, this direction of rotation remains independent of the setting of this data.

SD54675 \$SNS_MEA_CM_FEEDFACTOR_1[0]		
Feedrate factor 1		
= 10	Default setting	
= 0	Only single probing with the feedrate calculated by the cycle. However, as a minimum, the value from SD54673[0] \$SNS_MEA_CM_MIN_FEEDRATE.	
>= 1	First probing with feedrate. But at least with the value of	
	SD54673[0] \$SNS_MEA_CM_MIN_FEEDRATE)	
	SD54675[0] \$SNS_MEA_CM_FEEDFACTOR_1	

SD54676	SD54676 \$SNS_MEA_CM_FEEDFACTOR_2[0]	
Feedrate	Feedrate factor 2	
= 0	Second probing with the feedrate calculated by the measuring cycle. This is only effective for SD54673[0] \$SNS_MEA_CM_FEEDFACTOR_1 > 0 (default setting)	
>= 1	Second probing with the calculated feedrate from SD54673[0] \$SNS_MEA_CM_MIN_FEEDRATE feedrate factor 2. Third probing with the calculated feedrate.	

NOTICE

Feedrate factor 2 should be less than feedrate factor 1.

SD54677 \$SNS_MEA_CM_MEASURING_ACCURACY[0]

Specified measuring accuracy: The value of this parameter always refers to the last probing of the tool at the probe!

= 0.005 Default setting

6.7.6 JOG: Measure tool during turning

Measuring path/measuring feedrate

General machine data:

MD51786 \$MNS_J_MEA_T_PROBE_MEASURE_DIST		
Measuring	Measuring path to calibrate the probe or for measurements with stationary spindle.	
= 10	Default setting	

MD51787 \$MNS_J_MEA_T_PROBE_MEASURE_FEED		
Calibrate	Calibrate measuring feedrate for tool probe and tool measurement with stationary spindle.	
= 100 Default setting		

Channel-specific setting data:

SD42950 \$SC_TOOL_LENGTH_TYP		
Assignme	Assignment of the tool length offset independent of tool type.	
= 0	Measuring turning tools, type 5xx (default setting)	
= 2	Measuring turning tools, type 5xx, drilling and milling tools, type 1xx, 2xx	

6.7.7 Measuring in the AUTOMATIC mode

Requirement

Software option

In order to use the "Measuring in AUTOMATIC" function, you require the software option: "Measuring cycles"

You have already made the settings from this section: General settings for measuring (Page 186)

Workpiece measurement for milling:

- The probe has been inserted in the tool spindle.
- The probe has been selected in the tool list as type 710 (3D probe milling).
- The probe is activated in the current NC channel.

Workpiece measurement for turning:

- The tool of type 580 (3D probe, turning) is selected.
- The tool is activated in the current NC channel.

Measure tool

To measure tools, an appropriate probe must be located in the machine space so that this can be reliably and safely reached with a tool in the spindle.

The following tool types are supported with measure tool:

- Milling technology: Tool types 1xx and 2xx
- Turning technology: Tool type 5xx, 1xx, 2xx

For the specified tool types, the tool lengths and the tool radii can be measured.

Using the following channel-specific setting data, you can adapt the workpiece and tool measuring in the "Program" operating area. However, a basic change is not required.

SD5561	SD55613 \$SCS_MEA_RESULT_DISPLAY	
Selects	the screen display of the measuring result	
= 0	No screen display of the measuring result (default setting).	
= 1	Screen display of the measuring result is displayed for 8 seconds.	
= 3	The measuring cycle stops an internal machine data, the measuring result is statically displayed on the screen!	
	Continue with NC start, the measuring result screen is deselected.	
= 4	The measuring result is only displayed on the screen for cycle alarms 61303, 61304, 61305, 61306.	
	Continue with NC start, the measuring result display on the screen is deselected.	

SD55623 \$SCS_MEA_EMPIRIC_VALUE[i]		
Empirio	Empirical values	
= 0	Default setting	

SD556	SD55618 \$SCS_MEA_SIM_ENABLE	
Simula	Simulation of measuring cycles	
= 0	The measuring cycles are skipped when simulation is called (default setting).	
= 1	The measuring cycles are run through when simulation is called:	
	No corrections are performed and there is no logging.	
	The measurement result is not displayed on the screen.	

SD556	SD55619 \$SCS_MEA_SIM_MEASURE_DIFF	
Value fo	Value for simulated measuring difference.	
= 0	For the simulation, a setpoint/actual value difference can be entered (default setting).	

SD55600 \$SCS_MEA_COLLISION_MONITORING		
Internal	Internal intermediate positioning of the measuring cycle is monitored for deflection of the probe.	
= 0	= 0 Without collision monitoring	
= 1	With collision monitoring (default setting).	

Configuring input masks for measuring cycles in the program editor

You can extend or restrict the entries and measuring variants with the following user variable $_MZ_MASK[i]$. The GUD is displayed in the operating area "Parameter" \rightarrow "User variable" \rightarrow "Global GUD" or "Channel GUD".

GUD parameter		Function
_MZ_MASK[2]		Input field for the number of measurements and measuring speed:
	= 0	Without input field (default setting)
	= 1	With input field
_MZ_MASK	[5]	Selection box for probe type:
	= 0	Multiprobe (default setting)
	= 1	Monoprobe

6.7 Measuring cycles and measurement functions

Note

SGUD parameters

The SGUD parameters are not defined via the user interface.

Program the parameters with value assignment in the appropriate NC program in the "MDA" or "AUTOMATIC" mode.

Example: _MZ_MASK[2]=1

The value of parameter _MZ_MASK is also retained after NC program end, reset and power OFF/ON!

If you have created the prerequisites described in this section and you have set and checked the machine and setting data, you can perform measurements on the machine with a workpiece or tool probe in the AUTOMATIC mode!

See also

If you wish to set-up workpiece measurement on a lathe, then additional settings are required:

AUTO: Measure workpiece during turning (Page 204)

If you wish to set up tool measurement using a tool probe, then you must also make additional settings:

- AUTO: Measure tool during milling (Page 205)
- AUTO: Measure tool during turning (CYCLE982) (Page 213)

A description is provided in the following sections as to which settings you can make in order to adapt measuring to the specific requirements of the machine.

6.7.8 AUTO: General settings for the workpiece measurement

Requirement

You have already made the settings from the following chapter: General settings for measuring (Page 186)

Settings

Using the following setting data, you can appropriately adapt workpiece measurement to the specific requirements in the "Program" operating area.

General setting data:

SD54655 \$SNS_MEA_REPEAT_ACTIVE		
Repeating	Repeating measurements for alarm - dimension difference or confidence range.	
= 0	Measurement is not repeated (default setting)	
= 1	Measurements are repeated a maximum of four times	

SD54656 \$SNS_MEA_REPEAT_WITH_M0		
M0 for rep	M0 for repeating measurement and alarm - dimension difference or confidence range.	
= 0	No M0 for alarm (default setting)	
= 1	With M0 for alarm	

SD54657 \$SNS_MEA_TOL_ALARM_SET_M0	
M0 for ala	rm - oversize or undersize
= 0	No M0 for alarm (default setting)
= 1	With M0 for alarm

Channel-specific setting data:

SD55606 \$SCS_MEA_NUM_OF_MEASURE		
Number of repeated measurements at a measuring position, when the probe does not switch.		
= 0	Maximum of 5 measurement attempts (default setting)	
= 1	Only 1 measurement attempt	

SD55608 \$SCS_MEA_RETRACTION_FEED		
Retraction velocity from the measuring point.		
= 0	Retraction velocity corresponding to the intermediate positioning (default setting)	
= 1	Retraction with percentage rapid traverse corresponding to the settings from SD55630 \$SCS_MEA_FEED_RAPID_IN_PERCENT.	
	The setting of the channel-specific setting data SD55600 \$SCS_MEA_COLLISION_MONITORING must be = 1.	

SD55610 \$SCS_MEA_FEED_TYP		
Selection of the measuring feedrate.		
= 0	Measuring with the measuring feedrate, default setting.	
= 1	1st measurement with the feedrate corresponding to the channel-specific setting data SD55633 \$SCS_MEA_FEED_FAST_MEASURE.	
	2nd measurement with measuring feedrate.	

SD55630 \$SCS_MEA_FEED_RAPID_IN_PERCENT		
Percentage reduction		
= 50	Default setting of the percentage reduction of the rapid traverse velocity for internal cycle intermediate positioning without collision monitoring.	
	The setting of the channel-specific setting data SD55600 SCS_MEA_COLLISION_MONITORING must be = 0.	

SD55631 \$SCS_MEA_FEED_PLANE_VALUE		
Feedrate of the intermediate positioning in the working plane with active collision monitoring.		
= 1000	Default setting	

SD55632 \$SCS_MEA_FEED_FEEDAX_VALUE		
Feedrate of the intermediate positioning in the infeed axis with active collision monitoring.		
= 1000	Default setting	

SD55633 \$SCS_MEA_FEED_MEASURE		
Fast meas	Fast measuring feedrate.	
= 900	Default setting	

6.7.9 AUTO: Measure workpiece during milling

Settings

Measuring in the "Program" operating area can be adapted corresponding to the specific requirements using the channel-specific setting data.

SD54660 \$SNS_MEA_PROBE_BALL_RAD_IN_TOA		
Acceptance of the calibrated probe ball radius into the probe tool data.		
= 0	Without acceptance (default setting)	
= 1	With acceptance	

SD55602 \$SCS_MEA_COUPL_SPIND_COORD	
Coupling of the spindle alignment with coordinate rotation in the active plane.	
= 0	No coupling of the spindle position (probe in the spindle) with coordinate rotation around the infeed axis (default setting).
= 1	Coupling of the spindle position (probe in the spindle) with coordinate rotation around the infeed axis.

SD55625 \$SCS_MEA_AVERAGE_VALUE[i]		
Number o	Number of mean values.	
= 0	Default setting	

The following setting data is written by the measuring cycles with the "calibrate" measuring function. User parameterization is not necessary here.

SD54600 \$SNS_MEA_WP_BALL_DIAM[i]	Effective diameter of the probe ball of the workpiece probe.
SD54601 \$SNS_MEA_WP_TRIG_MINUS_DIR_AX1[i]	Trigger point minus direction,
	1st measuring axis in the plane.
SD54602 \$SNS_MEA_WP_TRIG_PLUS_DIR_AX1[i]	Trigger point plus direction,
	1st measuring axis in the plane.
SD54603 \$SNS_MEA_WP_TRIG_MINUS_DIR_AX2[i]	Trigger point minus direction,
	2nd measuring axis in the plane.
SD54604 \$SNS_MEA_WP_TRIG_PLUS_DIR_AX2[i]	Trigger point plus direction,
	2nd measuring axis in the plane.
SD54605 \$SNS_MEA_WP_TRIG_MINUS_DIR_AX3[i]	Trigger point plus direction,
	3rd measuring axis in the plane.
SD54606 \$SNS_MEA_WP_TRIG_PLUS_DIR_AX3[i]	Trigger point minus direction,
	3rd measuring axis opposite to the tool direction.
	In the default case = 0.
SD54607 \$SNS_MEA_WP_POS_DEV_AX1[i]	Positional deviation.
	1st measuring axis in the plane.
SD54608 \$SNS_MEA_WP_POS_DEV_AX2[i]	Positional deviation.
	2nd measuring axis in the plane.

However, after the probe has been calibrated, you can check these values and if required, evaluate the probe quality, e.g. for position deviations, no values > 0.1 mm should be reached. Otherwise, the probe must be mechanically readjusted.

Note

Observe the manufacturer's instructions for the probe.

6.7.10 AUTO: Measure workpiece during turning

Requirement

MD51610 \$MNS_MEA_TOOLCARR_ENABLE		
Suppor	Support of a probe or tool that is positioned with a toolholder that can be oriented (swivel-mounted).	
= 0	No support (default setting)	
= 1	With support	

MD52605 \$MNS_MEA_TURN_CYC_SPECIAL_MODE	
Function for turning. Measure in the Y axis (3rd axis) and correct in the X axis (face axis).	
= 0	Default setting

Calibration data of the tool probe in relation to the MCS

Before calibration is started, the position of the tool probe in the machine coordinate system (MCS) must be entered into the following general setting data.

SD54615	SD54615 \$SNS_MEA_CAL_EDGE_BASE_AX1[i]	
Calibration	Calibration slot base referred to the 1st measuring axis.	
= 0		

SD54617 \$SNS_MEA_CAL_EDGE_PLUS_DIR_AX1[i]		
Calibration	Calibration slot edge in the positive direction of the first measuring axis.	
= 0		

SD54618 \$SNS_MEA_CAL_EDGE_MINUS_DIR_AX1[i]		
Calibration	Calibration slot edge in the negative direction of the first measuring axis.	
= 0		

SD54619 \$SNS_MEA_CAL_EDGE_BASE_AX2[i]		
Calibration	Calibration slot base referred to the 2nd measuring axis.	
= 0		

SD54620 \$SNS_MEA_CAL_EDGE_UPPERE_AX2[i]	
Upper calibration slot edge referred to the 2nd measuring axis.	
= 0	

SD54621 \$SNS_MEA_CAL_EDGE_PLUS_DIR_AX2[i]		
Calibration	Calibration slot edge in the positive direction of the 2nd measuring axis.	
= 0		

SD54422	\$SNS_MEA_CAL_EDGE_MINUS_DIR_AX2[i]	
Calibration	Calibration slot edge in the negative direction of the 2nd measuring axis.	
= 0		

Note

For a standard lathe with axes X and Z (G18), axis Z is the 1st measuring axis and axis X is the 2nd measuring axis.

6.7.11 AUTO: Measure tool during milling

Calibration data of the tool probe in relation to the MCS

Before calibration is started, the position of the tool probe in the machine coordinate system (MCS) must be entered into the following general setting data. In this case, the reference point is the outer diameter or the tool length of the active tool in the spindle. If there is no tool in the spindle, the reference points are the spindle center point and the tool reference point at the spindle.

Note

If you have already calibrated the tool probe in the JOG mode, then the calibration data has already been correctly entered.

The setting of the following machine and setting data must match:

- MD51776 \$MNS_J_MEA_T_PROBE_ALLOW_AX_DIR[ii]
- SD54632 \$SNS_MEA_TP_AX_DIR_AUTO_CAL[i]

Index [i] stands for the number of the actual data field (_PRNUM-1).

SD54625 \$SNS_MEA_TP_TRIG_MINUS_DIR_AX1[i]		
Trigger	Trigger point of the 1st measuring axis in the negative direction.	
= 0		

SD5462	SD54626 \$SNS_MEA_TP_TRIG_PLUS_DIR_AX1[i]	
Trigger	Trigger point of the 1st measuring axis in the positive direction.	
= 0		

SD54627 \$SNS_MEA_TP_TRIG_MINUS_DIR_AX2[i]		
Trigger	Trigger point of the 2nd measuring axis in the negative direction.	
= 0		

SD54628 \$SNS_MEA_TP_TRIG_PLUS_DIR_AX2[i]			
Trigger	Trigger point of the 2nd measuring axis in the positive direction.		
= 0			

SD54629[i] \$SNS_MEA_TP_TRIG_MINUS_DIR_AX3[i]			
Trigger poir	Trigger point of the 3rd measuring axis in the negative direction.		
= 0			

SD54630 \$SNS_MEA_TP_TRIG_PLUS_DIR_AX3[i]		
Trigger	point of the 3rd measuring axis in the positive direction.	
= 0		

SD54631 \$SNS_MEA_TP_EDGE_DISK_SIZE[i]			
Tool pro	Tool probe, edge length/disk diameter.		
= 0			

SD54632 \$SNS_MEA_TP_AX_DIR_AUTO_CAL[i]			
Axes ar	Axes and directions for automatic calibration.		
= 133			

The general setting data SD54632 $SNS_MEA_TP_AX_DIR_AUTO_CAL$, is used to define in which axes and directions it is possible to calibrate the tool probe.

Decimal place				
ONES	1st	1st axis		
		= 0	axis not possible	
		= 1	only minus direction	
		= 2	only plus direction	
		= 3	both directions	
TENS	2nd	axis		
		= 0	axis not possible	
		= 1	only minus direction	
		= 2	only plus direction	
		= 3	both directions	

Decimal place			
HUNDREDS	3rd	axis	
		= 0	axis not possible
		= 1	only minus direction
		= 2	only plus direction
		= 3	both directions

Example

If the general machine data SD54632 \$SNS_MEA_TP_AX_DIR_AUTO_CAL = 123, the tool probe is calibrated as follows in the G17 plane:

- X in both directions
- Y only in plus direction
- Z only in minus direction

SD54633 \$SNS_MEA_TP_TYPE[i]		
Probe version		
= 0	Cube, default setting.	
= 101	Disk in XY, working plane G17.	
= 201	Disk in ZX, working plane G18.	
= 301	Disk in YZ, working plane G19.	

SD54634 \$SNS_MEA_TP_CAL_MEASURE_DEPTH[i]		
	e between the upper edge of the tool probe and lower edge of the tool (calibration depth, ring depth for milling radius).	
= 2	Default setting	

Calibration data of the tool probe in relation to the WCS

Before calibration is started, the position of the tool probe in the workpiece coordinate system (WCS) must be roughly entered into the following general setting data. In this case, the reference points are the outer diameter and the tool length of the active tool in the spindle. If there is no tool in the spindle, the reference points are the spindle center point and the tool reference point at the spindle.

NOTICE

When measuring tools, ensure that the data of the adjustable work offset and the basic reference always correspond to the data when calibrating (measuring in WCS).

Always make measurements and calibrate with the same adjustable work offset.

SD54640 \$SNS_MEA_TPW_TRIG_MINUS_DIR_AX1[i]		
Trigger point of the 1st measuring axis in the negative direction.		
= 0		
SD54641 \$SNS_MEA_TPW_TRIG_PLUS_DIR_AX1[i]		
Trigger point of the 1st measuring axis in the positive direction.		
= 0		
SD54642 \$SNS_MEA_TPW_TRIG_MINUS_DIR_AX2[i]		
Trigger point of the 2nd measuring axis in the negative direction.		
= 0		
SD54643 \$SNS_MEA_TPW_TRIG_PLUS_DIR_AX2[i]		
Trigger point of the 2nd measuring axis in the positive direction.		
= 0		
SD54644 \$SNS_MEA_TPW_TRIG_MINUS_DIR_AX3[i]		
Trigger point of the 3rd measuring axis in the negative direction.		
= 0		
SD54645 \$SNS_MEA_TPW_TRIG_PLUS_DIR_AX3[i]		
Trigger point of the 3rd measuring axis in the positive direction.		
= 0		
SD54646 \$SNS_MEA_TPW_EDGE_DISK_SIZE[i]		
Tool probe, edge length/disk diameter.		
= 0		
SD54647 \$SNS_MEA_TPW_AX_DIR_AUTO_CAL[i]		
Automatic calibration, tool probe, enable axes/directions.		
= 133		

The following general setting data is used to define in which axes and directions it is possible to calibrate a tool probe.

Decimal place		
ONES	1st axis	
	= 0	axis not possible
	= 1	only minus direction
	= 2	only plus direction
	= 3	both directions
TENS	2nd axis	
	= 0	axis not possible
	= 1	only minus direction
	= 2	only plus direction
	= 3	both directions
HUNDREDS	3rd axis	
	= 0	axis not possible
	= 1	only minus direction
	= 2	only plus direction
	= 3	both directions

Example

If the general machine data SD54647 \$SNS_MEA_TPW_AX_DIR_AUTO_CAL = 123, the tool probe is calibrated as follows in the G17 plane:

- X in both directions
- · Y only in plus direction
- Z only in minus direction

SD54648 \$SNS_MEA_TPW_TYPE[i]		
Probe version		
= 0	Cube (default setting)	
= 101	Disk in XY, working plane G17.	
= 201	Disk in ZX, working plane G18.	
= 301	Disk in YZ, working plane G19.	

SD54649 \$SNS_MEA_TPW_CAL_MEASURE_DEPTH[i]		
Distance between the upper edge of the tool probe and lower edge of the tool (calibration depth, measuring depth for milling radius).		
= 2	Default setting	

Monitoring when measuring with a rotating spindle

Setting data settings:

SD54670 \$SNS_MEA_CM_MAX_PERI_SPEED[0]		
Maximum permissible peripheral speed of the tool to be measured.		
= 100	Default setting	

SD54671 \$SNS_MEA_CM_MAX_REVOLUTIONS[0]		
Maximum permissible tool speed of the tool to be measured.		
The speed is automatically reduced when exceeded.		
= 1000	Default setting	

SD54672 \$SNS_MEA_CM_MAX_FEEDRATE[0]		
Maximum permissible feedrate to probe the tool to be measured at the probe.		
= 20	Default setting	

SD5467	SD54673 \$SNS_MEA_CM_MIN_FEEDRATE[0]		
Minimu	Minimum feedrate for the first probing of the tool to be measured at the probe.		
This avoids excessively small feedrates for large tool radii.			
= 1	Default setting		

SD54674 \$SNS_MEA_CM_SPIND_ROT_DIR[0]		
Spindle direction of rotation to measure tools.		
4 = M4	Default setting	

NOTICE

If the spindle is already rotating when the measuring cycle is called, this direction of rotation remains independent of the setting of this data.

SD54675 \$SNS_MEA_CM_FEEDFACTOR_1[0]		
Feedrate factor 1		
= 10	Default setting	
= 0	Only single probing with the feedrate calculated by the cycle. However, as a minimum, the value from SD54673[0] \$SNS_MEA_CM_MIN_FEEDRATE.	
= ≥ 1	First probing with feedrate. But at least with the value of	
	SD54673[0] \$SNS_MEA_CM_MIN_FEEDRATE)	
	SD54675[0] \$SNS_MEA_CM_FEEDFACTOR_1	

SD54676 \$SNS_MEA_CM_FEEDFACTOR_2[0]		
Feedrate factor 2		
= 0	Second probing with the feedrate calculated by the cycle. This is only effective for SD54673 \$SNS_MEA_CM_FEEDFACTOR_1[0] > 0, default setting.	
= ≥ 1 Second probing with the calculated feedrate from SD54673 \$SNS_MEA_CM_MIN_FEEDRATE[0] feedrate factor 2. Third probing with the calculated feedrate.		

NOTICE

Feedrate factor 2 should be less than feedrate factor 1.

SD54677 \$SNS_MEA_CM_MEASURING_ACCURACY[0]		
Specified measuring accuracy: The value of this parameter always refers to the last probing of the tool at the probe.		
= 0.005	Default setting	

Measured value correction using correction tables

SD54691 \$SNS_MEA_T_PROBE_OFFSET	
Activates the measuring result correction	
= 0	No data (default setting)
= 1	Correction in the cycle. This is only effective if SD54690 \$SNS_MEA_T_PROBE_MANUFACTURER>0.
= 2	Correction using user-defined correction table

SD54689 \$SNS_MEA_T_PROBE_MANUFACTURER		
Activate pre-configured compensation tables for several tool probe models (customer-specific).		
= 0	No data (default setting)	
= 1	TT130 (Heidenhain)	
= 2	TS27R (Renishaw)	

Correction values for users

For the general setting data SD54691 \$SNS_MEA_T_PROBE_OFFSET= 2, the following settings apply:

SD54695 to SD54700	Correction values for radius measurement.	See the subsequent general setting data.
SD54705 to SD54710	Correction values for length measurement.	

SD5469	95 \$SNS_MEA_RESULT_OFFSET_TAB_RAD1[i]	Radius measurement
SD5470	05 \$SNS_MEA_RESULT_OFFSET_TAB_LEN1[i]	Length measurement
= 0	0	
= 1	1st radius	
= 2	2nd radius	
= 3	3rd radius	
= 4	4th radius	

SD5469	06 \$SNS_MEA_RESULT_OFFSET_TAB_RAD2[i]	Radius measurement
SD5470	06 \$SNS_MEA_RESULT_OFFSET_TAB_LEN2[i]	Length measurement
= 0	1st peripheral speed.	
= 1	Correction value for 1st radius/length measurement.	
= 2	Correction value for 2nd radius/length measurement.	
= 3	Correction value for 3rd radius/length measurement.	
= 4	Correction value for 4th radius/length measurement.	_

SD5469	7 \$SNS_MEA_RESULT_OFFSET_TAB_RAD3[i]	Radius measurement
SD5470	07 \$SNS_MEA_RESULT_OFFSET_TAB_LEN3[i]	Length measurement
= 0	2nd peripheral speed.	
= 1	Correction value for 1st radius/length measurement.	
= 2	Correction value for 2nd radius/length measurement.	
= 3	Correction value for 3rd radius/length measurement.	
= 4	Correction value for 4th radius/length measurement.	

SD5469	98 \$SNS_MEA_RESULT_OFFSET_TAB_RAD4[i]	Radius measurement
SD5470	08 \$SNS_MEA_RESULT_OFFSET_TAB_LEN4[i]	Length measurement
= 0	3rd peripheral speed.	
= 1	Correction value for 1st radius/length measurement.	
= 2	Correction value for 2nd radius/length measurement.	
= 3	Correction value for 3rd radius/length measurement.	
= 4	Correction value for 4th radius/length measurement.	

SD5469	99 \$SNS_MEA_RESULT_OFFSET_TAB_RAD5[i]	Radius measurement
SD5470	09 \$SNS_MEA_RESULT_OFFSET_TAB_LEN5[i]	Length measurement
= 0	4th peripheral speed.	
= 1	Correction value for 1st radius/length measurement.	
= 2	Correction value for 2nd radius/length measurement.	
= 3	Correction value for 3rd radius/length measurement.	
= 4	Correction value for 4th radius/length measurement.	

SD5470	00 \$SNS_MEA_RESULT_OFFSET_TAB_RAD6[i]	Radius measurement
SD5471	0 \$SNS_MEA_RESULT_OFFSET_TAB_LEN6[i]	Length measurement
= 0	5th peripheral speed.	
= 1	Correction value for 1st radius/length measurement.	
= 2	Correction value for 2nd radius/length measurement.	
= 3	Correction value for 3rd radius/length measurement.	
= 4	Correction value for 4th radius/length measurement.	

6.7.12 AUTO: Measure tool during turning (CYCLE982)

Calibration data of the tool probe

Measurement in relation to the machine coordinate system (MCS):

Before calibration is started, the position of the tool probe in the machine coordinate system (MCS) must be entered into the following general setting data.

SD5462	25 \$SNS_MEA_TP_TRIG_MINUS_DIR_AX1[i]
Trigger	point in minus direction of the 1st measuring axis (for G18 Z)
= 0	

SD5462	26 \$SNS_MEA_TP_TRIG_PLUS_DIR_AX1[i]
Trigger	point in plus direction of the 1st measuring axis (for G18 Z)
= 0	

SD5462	27 \$SNS_MEA_TP_TRIG_MINUS_DIR_AX2[i]
Trigger	point in minus direction of the 2nd measuring axis (for G18 X).
= 0	

SD5462	28 \$SNS_MEA_TP_TRIG_PLUS_DIR_AX2[i]
Trigger	point in plus direction of the 2nd measuring axis (for G18 X).
= 0	

Index [i] stands for the number of the actual data field (_PRNUM-1)

Measurement in relation to the workpiece coordinate system (WCS):

Before calibration is started, the position of the tool probe in the workpiece coordinate system (WCS) must be roughly entered into the following general setting data. In this case, the reference point is the outer diameter or the tool length of the active tool in the spindle.

SD5464	40 \$SNS_MEA_TPW_TRIG_MINUS_DIR_AX1[i]
Trigger	point minus direction of the 1st measuring axis (for G18 Z).
= 0	

SD54641 \$SNS_MEA_TPW_TRIG_PLUS_DIR_AX1[i]	
Trigger point plus direction of the 1st measuring axis (for G18 Z).	
= 0	

SD54642 \$SNS_MEA_TPW_TRIG_MINUS_DIR_AX2[i]		
Trigger point minus direction of the 2nd measuring axis (for G18 X).		
= 0		

SD5464	3 \$SNS_MEA_TPW_TRIG_PLUS_DIR_AX2[i]	
Trigger point plus direction of the 2nd measuring axis (for G18 X).		
= 0		

Index [i] stands for the number of the actual data field (_PRNUM-1)

Measure tool with "Toolholder that can be oriented" or "Swivel tool"

MD51	610 \$MNS_MEA_TOOLCARR_ENABLE
Supp	ort for toolholders that can be orientated.
= 0	No support for toolholders that can be orientated (default setting).
= 1	With support of a measuring probe or tool, positioned using a tool holder that can be oriented (kinematics type "T") referred to the special holder positions 0°, 90°, 180° and 270°.

If the general machine data MD51610 \$MNS_MEA_TOOLCARR_ENABLE = 1, then the following setting applies:

MD51618 \$MNS_MEA_CM_ROT_AX_POS_TOL		
Tolerance parameter for rotary axis settings.		
= 0.5	Default setting	

The real angular position of rotary axes can deviate from that programmed (exact stop fine window). This deviation depends on the position control properties of the axis. The maximum deviation that can be expected at a specific axis should be entered into the parameter. If the tolerance is exceeded, the following alarm is output:

Toolholder not parallel to the geometry axes.

Service Planner

Overview

By means of the Service Planner dialog on the HMI or Programming Tool, time intervals and alarm sequences for the tasks to be processed (mainly machine maintenance tasks) can be edited, started, deactivated or reactivated. The tasks are managed in the PLC.

The numeric data of the tasks is organized in data blocks and provided in the user interface for the PLC user program, HMI and Programming Tool. The text data of the tasks, i.e. the designations of the respective tasks, is managed and edited via the HMI and displayed there together with the numeric data.

The PLC firmware accesses the user interface data blocks, processes the data and then provides the results in the form of remaining times as well as warnings and alarms in data blocks. The Service Planner is processed every minute in the PLC firmware. When the control is switched off, the actual data of the maintenance tasks is frozen. When the control is switched on, processing is continued with these retentively saved values.

The PLC user program evaluates the actual data and generates warning and alarm messages in numeric form either with or without Power OFF status. The HMI alarm handler converts these messages with the appropriate PLC alarm text file oem_alarm_plc_<lng>.ts to a message for the operator which is displayed on the HMI (<lng> currently set language) and which can be logged, if required.

Figure 7-1 Service Planner: Configuration

7.1 PLC user program

PLC user program

The PLC user program operates the user interface. This includes, in particular, the bit interfaces of the DB1800 and the evaluation of the remaining time in DB9904. You must ensure that appropriate messages are displayed for the warnings and alarms.

During the configuration of these messages, so-called alarm responses can be selected, e.g. the machine is "disabled" after a Power OFF message.

The alarm messages are configured in accordance with the specifications of the SINUMERIK 828D PLC messages. The texts are entered with the alarm text editor. The texts are then available on the HMI.

Functionality to be implemented:

- Evaluation of the alarm and actual data with the aim of generating PLC warning and alarm messages. Further signals can be included in the evaluation logic.
- Optional linking of the deactivation bits with bit memory or I/O signals.

Note

A sample program is supplied in the PLC function library. This can be adapted by machine manufacturers to meet their requirements.

7.2 Interfaces in the PLC user program

DB9903: Initial data

DB9903	Initial dat	Initial data table [r16]						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBW0	Interval 1	[h]						
DBW2	Time of f	irst warning	ı 1 [h]					
DBW4	Number	Number of warnings to be output 1						
DBW6	Reserved	Reserved 1						
DBW8	Interval 2	Interval 2 [h]						
DBW10	Time of f	Time of first warning 2 [h]						
DBW12	Number	Number of warnings to be output 2						
DBW14	Reserved	Reserved 2						
DBW248	Interval 3	Interval 32 [h]						
DBW250	Time of f	Time of first warning 32 [h]						
DBW252	Number	Number of warnings to be output 32						
DBW254	Reserved 32							

Designation	Meaning
Interval	Number of hours after which the maintenance must be performed. When this time expires, the warning or alarm bit belonging to the task is set for the last time.
Time of the first warning	Number of hours after which the first warning is output. This time must be greater than or equal to the interval.
Number of warnings to be output	Number of n warnings to be output before the alarm. (The alarm bit is therefore set maximum (n+1)-times, i.e n-times as warning and 1-time as alarm.)
Reserved	Reserved for expansions.

Example:

Interval = 100

Time of the first warning = 80

Number of warnings to be output = 2

After the task is started, the warning/alarm bit is output for the first time after 80 hours, a second time after a further 10 hours (i.e. after a total of 90 hours), and the warning/alarm bit is set for the last time after 100 hours.

DB9904: Actual data

DB9904	Actual dat	Actual data table [r16]						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBW0	Remaining	g time 1 [h]						
DBW2	Number of	f warnings	output 1					
DBW4	Reserved	_1 1						
DBW6	reserved_2	reserved_2 1						
DBW8	Remaining	Remaining time 2 [h]						
DBW10	Number of	Number of warnings output 2						
DBW12	Reserved	_1 2						
DBW14	reserved_2	reserved_2 2						
DBW248	Remaining time 32 [h]							
DBW250	Number of warnings output 32							
DBW252	Reserved_1 32							
DBW254	reserved_2	reserved_2 32						

Designation	Meaning
Remaining time	Number of hours remaining after the start of the task until it expires.
	Remaining time ≠ 0 and associated alarm bit set: Warning
	Remaining time = 0 and associated alarm bit set: Alarm
Number of warnings output	Number n of warnings that have already been output. If the interval has expired completely, the output value is (n+1):
	n = "number of warnings to be output"
	1 = alarm at the end of the interval
Reserved_1, ~_2	Reserved for expansions.

Example:

Interval = 100, time of the first warning = 80, number of warnings to be output = 2 After the task is started, the remaining time is decremented every hour.

- After 80 hours, the remaining time is 20 hours and the number of warnings that have been output is increased from 0 to 1.
- After a further 10 hours (i.e. a total of 90 hours), the remaining time is 10 hours and the number of warnings that have been output is increased from 1 to 2.
- After 100 hours, the remaining time is 0 and the number of warnings that have been output is 3 (= 2 warnings plus 1 alarm).

DB1800: Acknowledgments

DB1800	Acknowledgments [r/w]							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBB4000	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-
	edgment 8	edgment 7	edgment 6	edgment 5	edgment 4	edgment 3	edgment 2	edgment 1
DBB4001	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-
	edgment 16	edgment 15	edgment 14	edgment 13	edgment 12	edgment 11	edgment 10	edgment 9
DBB4002	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-
	edgment 24	edgment 23	edgment 22	edgment 21	edgment 20	edgment 19	edgment 18	edgment 17
DBB4003	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-
	edgment 32	edgment 31	edgment 30	edgment 29	edgment 28	edgment 27	edgment 26	edgment 25

Designation	Meaning
Acknowledgment n	The acknowledgment bit assigned to task n:
	Under the precondition that the corresponding acknowledgment blocking bit is not set, the setting of the acknowledgment bit restarts the task and, in particular, the actual data of the task is set:
	Remaining time = interval
	Number of warnings output = 0
	The bit is automatically reset at the end of the PLC cycle.

Example:

Interval = 100, time of the first warning = 80, number of warnings to be output = 2

After the setting of the associated acknowledgment bit, the remaining time is set to the interval time and the number of output warnings is zero - assuming the associated acknowledgment blocking bit is not set.

DB1800: Alarms

DB1800	Warnings/Alarms [r]							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBB3000	Alarm 8	Alarm 7	Alarm 6	Alarm 5	Alarm 4	Alarm 3	Alarm 2	Alarm 1
DBB3001	Alarm 16	Alarm 15	Alarm 14	Alarm 13	Alarm 12	Alarm 11	Alarm 10	Alarm 9
DBB3002	Alarm 24	Alarm 23	Alarm 22	Alarm 21	Alarm 20	Alarm 19	Alarm 18	Alarm 17
DBB3003	Alarm 32	Alarm 31	Alarm 30	Alarm 29	Alarm 28	Alarm 27	Alarm 26	Alarm 25

Designation	Meaning
Alarm n	The alarm bit assigned to task n.
	The bit is set each time for one PLC cycle:
	As warning (remaining time \neq 0) and as alarm (remaining time $=$ 0).

DB1800: Deactivate tasks

DB1800	Task deactivation [r/w]									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
DBB2000	Deacti-	Deacti-	Deacti-	Deacti-	Deacti-	Deacti-	Deacti-	Deacti-		
	vation 8	vation 7	vation 6	vation 5	vation 4	vation 3	vation 2	vation 1		
DBB2001	Deacti-	Deacti-	Deacti-	Deacti-	Deacti-	Deacti-	Deacti-	Deacti-		
	vation 16	vation 15	vation 14	vation 13	vation 12	vation 11	vation 10	vation 9		
DBB2002	Deacti-	Deacti-	Deacti-	Deacti-	Deacti-	Deacti-	Deacti-	Deacti-		
	vation 24	vation 23	vation 22	vation 21	vation 20	vation 19	vation 18	vation 17		
DBB2003	Deacti-	Deacti-	Deacti-	Deacti-	Deacti-	Deacti-	Deacti-	Deacti-		
	vation 32	vation 31	vation 30	vation 29	vation 28	vation 27	vation 26	vation 25		

Designation	Meaning
Deactivation n	The deactivation bit assigned to task n.
	If the bit is set via the HMI or from the PLC user program, the current state of task n is frozen and no longer processed.
	TRUE: Task deactivated
	FALSE: Task active
	This means it is possible, for example, to adapt the maintenance interval according to the actual runtime of the modules.

DB1800: Acknowledgment block

DB1800	Acknowledg	Acknowledgment block [r/w]						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBB5000	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-
	edgment	edgment	edgment	edgment	edgment	edgment	edgment	edgment
	block 8	block 7	block 6	block 5	block 4	block 3	block 2	block 1
DBB5001	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-
	edgment	edgment	edgment	edgment	edgment	edgment	edgment	edgment
	block 16	block 15	block 14	block 13	block 12	block 11	block 10	block 9
DBB5002	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-
	edgment	edgment	edgment	edgment	edgment	edgment	edgment	edgment
	block 24	block 23	block 22	block 21	block 20	block 19	block 18	block 17
DBB5003	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-	Acknowl-
	edgment	edgment	edgment	edgment	edgment	edgment	edgment	edgment
	block 32	block 31	block 30	block 29	block 28	block 27	block 26	block 25

Designation	Meaning
Acknowledgment	The acknowledgment blocking bit assigned to task n.
block n	If the bit is set via the HMI or from the PLC user program, the task is not acknowledged even when the acknowledgment bit is set.
	TRUE: Acknowledgment of the task blocked
	FALSE: Acknowledgment of the task permitted
	In this way, it is possible, for example, to incorporate a sensor in the PLC user program, which signals that the maintenance task has been performed, and, if required, block the acknowledgment.

7.3 Functions on the HMI

Dialog on the HMI

The system provides the machine manufacturer with a configurable dialog, in which 32 maintenance tasks can be displayed.

The opened table has columns with the following meaning:

Column	Meaning
Maintenance display	Name of the maintenance task.
Interval in hours [h]	Maximum time until the next maintenance in hours; if this value ≠ 0, this data set is accepted by the PLC as a valid maintenance task.
1st warning [h]	Time in hours after which the first warning is displayed; this value must be less than that of the interval.
Number of warnings	Number of warnings that are output by the PLC before the PLC sets the alarm bit for the last time after the interval has expired (remaining time == 0).
Remaining time [h]	Time until the interval expires in hours.

The dialog is opened with different contents depending on the access level:

• Access level 2: (Configuration mode)

All columns are visible and can be edited (except Remaining time).

• Access level 3: (Standard mode)

Maintenance text and remaining time are visible, but cannot be edited.

Note

Acknowledgment of a maintenance task

The access level for the acknowledgment of a maintenance task is determined by MD51235 \$MNS_ACCESS_RESET_SERV_PLANNER.

Default setting: Access level 2 (service)

Configuration mode

Figure 7-2 Configuration mode

Maintenance tasks can be created, changed and also deleted in this mode. The maintenance tasks can also be acknowledged. All columns are visible, but cannot be edited. Navigation between the columns is with <Tab> or <Key Left/Right>.

Maintenance performed	The maintenance task is acknowledged and restarts.
Change task	Change to edit mode: All columns except Remaining time can be edited. The maintenance task data can be entered. The edit mode can be exited via "Cancel" or "OK". Only with "OK" are the changes accepted and saved.
New task	If not all the 32 tasks have been assigned, a new maintenance task is created and edit mode started.

Note

Number assignment

A number is automatically assigned when a task is created. If this is not desired, the relevant tasks must be created via DB change in the Programming Tool with subsequent download.

This is recommended, for example, if task m is deleted by mistake and this has to be created again under number m because of the evaluation in the PLC user program.

Standard mode

Figure 7-3 Standard mode

Maintenance performed

The maintenance task is acknowledged and restarts.

Only the columns Maintenance text, Interval and Remaining time are visible in standard mode, but cannot be edited. This mode is used so that the operator can see the status of the maintenance tasks and for their acknowledgment.

Acknowledge maintenance task

Figure 7-4 Acknowledge maintenance task

After completion of the maintenance activities, the maintenance tasks are acknowledged by the PLC user program or from the HMI.

When acknowledging on the HMI, the maintenance task is first selected with KEY_UP/KEY_DOWN. The operator then presses "Maintenance performed".

The Service Planner dialog sets the acknowledgment bit for the maintenance task, the PLC deletes "Number of output warnings/alarms" in the actual data and loads the interval value to the remaining time. The user can see this in the Service Planner dialog and is an indication of successful acknowledgment.

Acknowledgment before the interval has expired

The maintenance interval can be acknowledged at any time. Premature acknowledgment means premature start of a new maintenance interval.

Acknowledgment after the interval has expired

Acknowledgment of the maintenance interval restarts the task.

Chronological sequence

Figure 7-5 Chronological sequence for the generation of messages

TI[h] Interval

T1[h] Time of the first warning

N Number of warnings to be output

Tc Working cycle of the service planner, 60 calls per hour, = constant

The following then applies:

Tw/min = (TI - T1)/min/N

Time between warnings

- Start of the message generation and first warning after T1
- Each further warning i after Ti = (T1 + (i-1) * Tw);1 ≤ i ≤ N
- Alarm after TI

Example 1:

TI = 100
T1 = 99
$$\rightarrow$$
 Tw = (100 - 99) h / 60 = 1/60 h
N = 60

The time still remaining after T1 (TI - T1) in hours (=1 h=60 min) without the remaining time can be divided by the number of warnings (60). Therefore, after 99 h a warning is issued every minute.

Example 2:

TI = 100

T1 = 99
$$\rightarrow$$
 Tw = (100 - 99) h / 61 = 1/61 h < 1 min N = 61

The time still remaining after T1 (TI - T1) in hours (=1 h=60 min) can no longer be divided per minute by 61 warnings. An error is displayed. (Warnings must be output every 59 s, but this is not possible as the Service Planner only runs every minute.)

7.3 Functions on the HMI

Example 3:

TI = 100

T1 = 99
$$\rightarrow$$
 Tw = (100 – 99) h / 8 = 1/8 h == 7.5 min N = 8

The time still remaining after T1 (TI - T1) in hours (=1 h=60 min) cannot be divided by the number of warnings without the remaining time. The remaining 4 min extend the interval between the last warning and the alarm.

The interval between the last warning and the alarm is therefore maximum Tw/min + (N-1)

Example 4:

TI = 3

T1 = 1
$$\rightarrow$$
 Tw = (3 - 1) h / 61 = 2/61 h == 1.967 min N = 61

The time still remaining after T1 (TI - T1) in hours (=2 h=120 min) also cannot be divided by the number of warnings without the remaining time. A warning is output every minute after T1. There are 59 min between the last warning and the alarm.

Structure of the oem_maintenance_<Ing>.ts file

This file has the extension ".ts" and contains all the language-dependent warning texts that were entered in the dialog.

This file is required in binary format (*.qm) so that it can be read out during runtime. A corresponding file is available the next time the HMI powers up.

```
Name: oem_maintenance_<lng>.ts, <Ing>: Language code
Directory: /oem/sinumerik/hmi/lng
```

Integration in the existing language concept

When started, the Service Planner reads the oem_maintenance_<lng>.ts file with the language set in the language selection menu. If this is not available, the English version is read which has to be available for the commissioning.

Editing text entries

The maintenance texts are entered in the dialog with the values for the interval, time of the first warning and the number of warnings. In addition, the .ts file can also be edited in the alarm text editor if the necessary entry is available in the setting file "oem_alarms_config.xml".

7.3 Functions on the HMI

Easy Extend

8.1 Overview of functions

Purpose

Easy Extend provides you with a simple facility for commissioning, activating, deactivating or testing optional equipment. The available equipment and device states are displayed in a list by the control system. The system can manage a maximum of 64 devices.

Softkeys are used to activate or deactivate a device.

The Easy Extend function is available in the operating area "Parameter" \rightarrow "Extension menu" \rightarrow "Easy Extend".

Configuration

Figure 8-1 Mode of operation of Easy Extend

8.1 Overview of functions

To use Easy Extend, the following functions should be configured by the machine manufacturer:

PLC ↔ HMI interface

The optional devices are managed via the interface between the user interface and the PLC.

Script processing

The machine manufacturer saves the sequences to be executed for commissioning, activating, deactivating or testing a device, in a statement script.

Parameter dialog (optional)

The parameter dialog shows device information that is saved in the script file.

Storage of the files

The Easy Extend files are stored on the system CompactFlash card in the "oem" (machine manufacturer) directory.

File	Name	Target directory
Text file	oem_aggregate_xxx.ts	/oem/sinumerik/hmi/lng/
Script file	agm.xml	/oem/sinumerik/hmi/dvm
Archive file	Any	/oem/sinumerik/hmi/dvm/archives
PLC user program	Any	PLC

8.2 Configuration in the PLC user program

Loading configurations

The configurations created are transferred to the manufacturer directory of the control, with the script and text file. Additionally, the corresponding PLC user program should be loaded.

Programming the equipment

Communication between the operator component and the PLC takes place in the PLC user program via data block DB9905, in which 128 words are reserved for the device management.

PLC words are assigned beginning with Device 1:

Data block		Device designation
DB9905.DBB0	DB9905.DBW1	Device 1
DB9905.DBB4	DB9905.DBW2	Device 2
DB9905.DBB8	DB9905.DBW3	Device 3
DB9905.DBB12	DB9905.DBW4	Device 4 etc.

Four bytes with the following meanings are used for each device:

Byte	Bit	Description	
0	0	== 1	Device has been started up (HMI acknowledgment)
	1	== 1	Device is to be activated (HMI request)
	2	== 1	Device is to be deactivated (HMI request)
	3-7	Reserved	
1	0-7	Reserved	
2	0	== 1	Device is active (PLC acknowledgment)
	1	== 1	Device has an error
	2-7	Reserved	
3	0-7	Unique identifier for the device	

8.2 Configuration in the PLC user program

General sequence

The machine manufacturer must execute the following steps to make the required data available:

- 1. Creating a PLC user program which activates the device during activation on the PLC.
- 2. Commissioning of the "standard machine" followed by backup of the data in a series startup archive.
- 3. Installation of the devices, commissioning, followed by read-out of the data as a differential series startup archive.

Note

Changing the machine configuration

Should there be any need to edit the drive machine data, this should be adapted in the control first. This procedure should be repeated for all devices and constellations.

Adding axes

If the machine is extended with machine axes, it is important to install the drive objects (DO) in a fixed sequence because the series startup archive contains the constellation of the machine manufacturer's reference machine and cannot be applied if the sequence is changed.

It is recommended that the following settings be selected for the "control components":

- NC data
- PLC data
- Drive data
 - ACX format (binary)

NOTICE

In order to be able to use series startup archives in the Easy Extend script, these archives must be created **without** HMI data!

See also

How to create and read in a series start-up archive (Page 376)

8.3 Display on the user interface

Dialogs on the user interface

The following dialogs are available for Easy Extend:

- The control offers a **configurable dialog**, in which the available devices are shown.
- If first commissioning has not taken place yet, the control opens the commissioning dialog.

If a commissioning procedure has been programmed for the device (XML statement: "START_UP") and the device has not been commissioned yet, the control starts the commissioning procedure.

This involves a complete data backup before the series startup archives saved in the script file are read in. Standard or data class archives are permitted as archive types: *.arc and *.ard

- In the event of an error, the commissioning engineer can decide whether to roll back the commissioning procedure or to rectify possible errors in machine configurations manually.
- Commissioning can be aborted early with the "Cancel" function. The control then copies
 the previously saved commissioning files back.

If the machine has to be switched off after successful completion of the commissioning, the XML statement "POWER_OFF" can be used to program that a corresponding message is output on the control.

8.4 Creating language-dependent texts

Structure of text file

The XML files with the language-dependent texts must be created in UTF8 format:

Example oem_aggregate_eng.ts

Example oem_aggregate_deu.ts

8.5 Description of the script language

Script language: Extended XML

XML (Extended Markup Language) is used as the script language, extended to include data processing and high-level language elements.

In contrast to standard XML, the language offers the following additional properties:

- Data storage for NC/PLC data, start-up data
- Reading and writing NC/PLC and drive data
- Execution of conditional jumps within an XML block
- Execution of program loops
- Execution of arithmetic operations
- Creation of local variables
- Loading/creation of a series startup archive
- Displaying messages

Additionally, SinuCom Update Agent script elements can be processed with the "up" execute statement.

Program parts of the script

The script is divided into the following areas:

- Identifier for Easy Extend
- · Identifier for the device
- Identifier for commissioning the device
- Identifier for activating the device
- Identifier for deactivating the device
- · Identifier for testing the device
- Identifier for machine data and high-level language elements
- Identifier for the parameter dialog

The individual identifiers are described in the following sections.

8.5.1 Special characters and operators

Displaying special characters

Characters with special meanings in XML syntax have to be rewritten if they are to be displayed correctly by a general XML interpreter.

The following characters are affected:

Character	Notation in XML	Meaning
<	>	Greater than
>	<	Less than
&	&	
"	"	Quotation marks (straight)
1	'	Apostrophe

Permitted operators

The operation statement processes the following operations:

Operator	Notation in XML	Meaning
=	=	Assignment
==	==	Equal to
!	!	Not
!=	!=	Not equal to
>	>, >	Greater than
<	<, &It	Less than
>=	>=, >=	Greater than or equal to
<=	<=, &It=	Less than or equal to
1	1	Bit-by-bit OR operation
11		Logical OR operation
&	&	Logical or bit-by-bit AND operation
&&	&&	Logical AND operation
+	+	Addition
-	-	Subtraction
*	*	Multiplication
/	1	Division

Substitution characters

The system offers the option of defining CONTROL properties (attribute values) during runtime. In order to use this function, the desired property must be set in a local variable and the variable name must be transferred to the tag as an attribute value preceded by the character \$.

Example:

```
<let name="my_ypos">100</let>
<let name="field_name" type="string"></let>
<control name = "edit1" xpos = "322" ypos = "$my_ypos"

refvar="nck/Channel/Parameter/R[1]" />
<op>my_ypos = my_ypos +20 </op>
<control name = "edit2" xpos = "322" ypos = "$my_ypos"

refvar="nck/Channel/Parameter/R[2]" />
<print name =" field_name" text="edit%d">3</print>
<op>my_ypos = my_ypos +20 </op>
<control name = "$field_name" xpos = "322" ypos = "$my_ypos"

refvar="nck/Channel/Parameter/R[3]" />
```

8.5.2 Structure of the XML script

Overview

The following identifiers are available for the description of the device:

- Identifier for Easy Extend
- Identifier for the device
- Identifier for commissioning the device
- Identifier for activating the device
- Identifier for deactivating the device
- Identifier for testing the device

Description

Identifier <tag></tag>	Meaning
AGM	Identifier for Easy Extend
DEVICE	Identifier for the description of the device.
Attribute: option_bit	The device is assigned a fixed bit number for the option management.
NAME	The identifier specifies the name of the device to be displayed in the dialog.
	If a text reference is used, the dialog displays the text which is saved for the identifier.
START_UP	The identifier contains a description of the sequences required for commissioning the device.

8.5 Description of the script language

Identifier <tag></tag>	Meaning
SET_ACTIVE	The identifier contains a description of the sequences required to activate the device.
SET_INACTIVE	The identifier contains a description of the sequences required to shut down the device.
TEST	The identifier contains the statements for testing the operating capability of a device.
UID	Unique numerical identifier to identify the device in the PLC ↔ HMI interface.
VERSION	Identifier for a version

Negative acknowledgment of the function execution

With the automatically provided variable "\$actionresult", the system can inform the XML parser of a negative execution result. If the value is set to zero, the parser aborts the function processing.

Example

```
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE AGM>
<AGM>
                                      Identifier for Easy Extend
<DEVICE>
<NAME> Device 1 </NAME>
                                      Identifier for the device
<START UP>
                                      Identifier for commissioning the device
</start up>
                                      Identifier for activating the device
<SET ACTIVE>
</SET ACTIVE>
<SET INACTIVE>
                                      Identifier for deactivating the device
</set INACTIVE>
<TEST>
                                      Identifier for testing the device
</TEST>
</DEVICE>
</AGM>
```

8.5.3 CONTROL RESET

Description

This identifier allows one or more control components to be restarted. Execution of the script is only continued when the control has resumed cyclic operation.

Programming

Identifier: CONTROL_RESET

Syntax: <CONTROL_RESET resetnc="TRUE" />

Attributes: resetnc="true" The NC component is restarted.

8.5.4 DATA

Description

Identifier for access to NCK, PLC and drive data.

Further details are described in Chapter: Addressing the parameters (Page 264)

Programming

Identifier: DATA

Syntax: <data name ="<Address>" > value </data>

Attributes: name Identifier for the variable name

8.5.5 DATA_ACCESS

Description

The identifier controls the behavior of the dialog when user inputs are being saved. The behavior should be defined within the INIT identifier. If this identifier is not used, inputs are always buffered.

Exception: The following attribute is set: hotlink = true

8.5 Description of the script language

Programming

Identifier: DATA_ACCESS

Syntax: --

Attributes: type=true There is no buffering of the input values.

The dialog copies the entered values directly to

the reference variables.

type=false The values are only copied to the reference

variables with the UPDATA_DATA type =

"FALSE" identifier.

8.5.6 DATA_LIST

Description

This identifier enables the drive and machine data to be buffered or restored. Up to 20 temporary data lists can be created per device.

Note

The system deletes the data lists when the Easy Extend function is exited.

Programming

Identifier: DATA_LIST

Syntax: <DATA_LIST action ="<read/write>" id="list name>" > </DATA_LIST>

Attributes: action Identifier for variable values:

action identifier for variable values.

 action="read"
 The values of the listed variables are stored in a temporary memory.

action="append"

• The values of the listed variables are added to an existing list.

• The backed up values of the variables are action="write" copied into the relevant machine data.

id Identifier for identifying the temporary memory

Example

```
< DATA_LIST action ="read" id="<name>">
nck/channel/parameter/r[2]
nck/channel/parameter/r[3]
nck/channel/parameter/r[4]
$MN_USER_DATA_INT[0]
...
</ DATA_LIST >
< DATA_LIST action ="write" id="<name>" />
```

8.5.7 DRIVE_VERSION

Description

Identifier for the drive version. The version number is copied to the driveversion variable which is valid within the DEVICE identifier.

Further details are described in Chapter: Addressing the parameters (Page 264)

Programming

Identifier: DRIVE_VERSION

Syntax: --Attributes: --

8.5.8 FILE

Description

The identifier enables the reading in or creation of standard or data class archives.

• Reading in an archive:

The file name of the archive must be specified for reading in an archive.

• Creating an archive:

If the attribute create= "true" is specified, the function creates a standard archive (*.arc) under the specified name and stores the file in the .../dvm/archives directory.

If the attribute class is also used, the system also creates a data class archive. The attributes class and group define the contents.

Programming

Identifier: FILE

Syntax: <file name ="<archive name>" />

<file name ="<archive name>" create="true" class="<data classes>"

group="<area>" />

Attributes: name Identifier for the file name

class Specifies the data classes that are to be contained in

the archive. If several data classes are to be saved,

the classes should be separated by a blank.

The following data classes can be specified:

user

manufacturer

individual

create A commissioning archive is created under the

specified name in the .../dvm/archives/ directory. If the "class" attribute is not specified, it is a standard

archive with NC/PLC, HMI and drive data.

group Specifies the data groups that are to be contained in

the archive. If several data groups are to be saved,

the groups should be separated by a blank.

The following data groups can be contained in the

archive:

NC

PLC

HMI

DRIVES

Example

```
<!-- Create data class archive -->
<file name="user.arc" create="true"
class="user manufacturer individual"
group="nc plc hmi" />

<!-Read archive into the control à
<file name="user.arc" />
; or
<file name="user.ard" />
```

8.5.9 FUNCTION

Description

Function call: This identifier carries out the function specified under the attribute "name".

Programming

Identifier: FUNCTION

Syntax: <FUNCTION name = "function name" />
Attributes: name Function name

return Variable name for saving the result of the function

Call parameters: Call parameters are transferred as values of the XML statement.

The listed variables must be separated by a comma. A maximum of 10

parameters can be transferred.

It is also possible to specify constants or text expressions as call

parameters.

The identifier _T should be placed at the start as a means of identifying

a text expression.

8.5 Description of the script language

Example

The calling function does not expect a return value

```
<FUNCTION name = "function name" return="variable name" />
; Parameter transfer
<FUNCTION name = "function name"> var1, var2, var3 </FUNCTION>
<FUNCTION name = "function name"> _T"Text", 1.0, 1 </FUNCTION>
```

8.5.10 FUNCTION_BODY

Description

Function body: This identifier forms the function body of a subfunction.

Programming

```
Identifier: FUNCTION_BODY

Syntax:

Function body without parameter

FUNCTION_BODY name = "function name" > ...

// FUNCTION_BODY>

Function body with parameter

FUNCTION_BODY name="function_name" parameter="p1, p2, p3" > ...

| Compare the compared of t
```

Function body with <FUNCTION_BODY name="function_name" parameter="p1, p2, return value
 p3" return="true" >

. . .

<let name="tmp></let>
 tmp = p1 </op>

. . .

<op> \$return= tmp </op>
</ FUNCTION_BODY>

Attributes: name Name of the subfunction's function body

return If the attribute is set to true, the system creates

the local variable \$return. The function's return value which is forwarded to the calling function when exiting the function body should be copied

to this variable.

(optional) parameter The attribute lists the expected transfer

parameters. The parameters must be separated

by a comma.

When the function body is called, the values of the parameters specified in the function call are

copied to the transfer parameters listed.

Example

8.5 Description of the script language

8.5.11 INCLUDE

Description

An XML description is included in this statement.

Programming

Identifier: INCLUDE

Syntax: <?include src="file name" ?>

Attributes: src Identifier for the file name

8.5.12 LET

Description

Identifier for a local variable under the specified name.

The variable remains valid until the end of the higher-level XML block.

Variables which are to be available globally should be created directly after the AGM tag.

Note

Preassignment of a STRING variable

Texts containing more than one line can be assigned to a string variable if the formatted text is transferred as a value. If a line is to end with a line feed <LF> , the characters "\n" should be added at the end of the line.

Programming

Identifier: LET

Syntax: <|et name ="<Name>" > preassignment </let>

<let name ="<Name>" type="<Variable type>"> preassignment </let>

Attributes: name Identifier for the variable name

type Permissible identifiers for the variable type:

Integer (INT)

• Double (DOUBLE)

Float (FLOAT)

• String (STRING)

Default:

If no type is defined, the system creates an integer veriable

integer variable.

<LET name = "VAR1" type = "INT" />

A variable can be initialized with a value.

<LET name = "VAR1" type = "INT" > 10 </LET>

If values comprising NCK or PLC variables are saved in a local variable, the assignment

operation automatically adapts the format to that

of the variables which have been loaded.

permanent If the attribute is set to TRUE, the variable value

is saved permanently.

This attribute only applies to global variables!

Syntax:

<let name ="<Name>" type="<Variable type>"
permanent="TRUE" > preassignment </let>

Example

```
<LET name="text" type = "string"> F4000 G94\n
    G1 X20\n
    Z50\n
    M2\n
</LET>
```

8.5.13 MSGBOX

Description

The identifier opens a message window whose return value can be used for branching. If a text reference is used, the message window displays the text which is saved for the identifier.

Programming

Identifier: MSGBOX

Syntax: <MSGBOX text="<Text>" caption="<Title>" retvalue="<Variable>"

type="<Acknowledgment>" />

<MSGBOX text="<Text>" caption="<\$\$Text reference>"

retvalue="<Variable>" type="<Acknowledgment>" />

Attributes: caption Identifier for the title of the message window

retvalue Identifier for the name of the variable to which the

return value is copied:

retval=0 0: OK retval=1 1: Cancel

type Identifier for acknowledging the message

type="btn_ok"
type="btn_cancel"
type="btn_okcancel"

8.5.14 OP

Description

Identifier for an execute statement: All permissible operators may be executed. For accessing the NCK, PLC and drive data, the complete variable name is to be placed in quotation marks.

Programming

Identifier: OP

Syntax: arithmetic operation

Attributes: --

Example

```
<OP> tmpVar = "PLC/MB170" </OP>
<OP> tmpVar = "PLC/MB170" + 5 </OP</pre>
```

Character string processing

The operation instruction is able to process character strings and assign the results to the string variable specified in the equation.

The identifier _T should be placed at the start as a means of identifying text terms. Formatting of variable values is also possible. The identifier _F should be placed at the start of the formatting regulation, followed by the format instruction.

The address is then specified for the variable.

Example

```
<LET name="buffer" type="string"></LET>
...
...
<op> buffer = _T"unformatted value R0= " + "nck/Channel/Parameter/R[0]" + _T" and " + _T"$$85051" + _T" formatted value R1 " + _F%9.3f"nck/Channel/Parameter/R[1]" </op>
```

8.5.15 OPTION_MD

Description

The identifier allows option machine data to be redefined. As delivered, the system uses MD14510 \$MN_USER_DATA_INT[0] to \$MN_USER_DATA_INT[3].

If the PLC user program manages the options, the appropriate data words must be provided in a data block or GUD.

The data is structured in bits. Starting with bit 0, there is a fixed assignment of the bits to the listed devices, i.e. bit 0 is assigned to device 1, bit 1 to device 2, etc. If more than 16 devices are managed, the address identifiers of the device groups 1-3 are assigned via the area index.

Note

Converting the value range

The value range of MD14510 \$MN_USER_DATA_INT[i] is from -32768 to +32767. To activate the devices bit-by-bit via the machine data dialog, the bit combination must be converted to decimal representation.

Programming

Identifier: OPTION_MD

Syntax: Area 0:

<option md name = "Address identifier of the data" />

OR:

<option_md name = "Address identifier of the data" index= "0"/>

Area 1 to 3:

<option_md name = "Address identifier of the data" index= "Area</pre>

index"/>

Attributes: name Identifier for the address, e.g.

\$MN_USER_DATA_INT[0]

index Identifier for the area index:

0 (default setting): Device 1 to 16

1: Device 17 to 32 2: Device 33 to 48 3: Device 49 to 64

8.5.16 PASSWORD

Description

If this identifier is assigned to a device, a softkey appears when the option is not set requesting the input of a password for this device. The character string is processed by the PLC and the result forwarded to the HMI via the option data.

Programming

Identifier: PASSWORD

Syntax: <pre

Attributes: refvar Name of the reference variable

Example:

<password refvar="plc/db9900.dbd0" />

8.5.17 PLC_INTERFACE

Description

This identifier permits the PLC ↔ HMI interface to be redefined. The system expects 128 addressable words.

Default: DB9905

Programming

Identifier: PLC_INTERFACE

Syntax: <plc_interface name = "Address identifier of the data" />

Attributes: name Identifier for the address, e.g. "plc/mb170"

Example: plc/mb170

8.5.18 **POWER_OFF**

Description

Identifier for a message prompting the operator to switch the machine off. The message text is permanently saved in the system.

Programming

Attributes: --

8.5.19 PRINT

Description

The identifier outputs a text in the message line or copies the text to the specified variable. If the text contains formatting identifiers, the variable values are inserted at the appropriate place.

- The specified "%n" results in a line break in the displayed text.
- The character '%' results in the formatting of the variable specified as the value:

%[Flags] [Width] [.decimal places] type

Parameter	Application	
Flags	Optional character to define the formatting for the task:	
	Right or left-justified (- left-justified)	
	Add leading zeros (0)	
	Fill with blanks	
Width	The argument defines the minimum output width for a non-negative number. If the value to be output has fewer places than the argument defined, the missing spaces are filled with blanks.	
	Decimal places:	
	With floating-point numbers, the optional parameter defines the number of decimal places.	

Parameter	Application	
Туре	The type character defines which data formats are transferred for the PRINT instruction. This character must be specified.	
	The following data formats are supported:	
	d: Integer value	
	f: Floating-point number	
	• s: String	
Values	Number of variables whose values are to be inserted into the text. The variable types must match the corresponding type identifier for the formatting instruction.	

Programming

Identifier: PRINT

Syntax: <pri> <print name = "Variable name" text="text %formatting"> Variable, ...

</print>

Attributes: name Name of the variable where the text is to be stored.

text Text

8.5.20 **WAITING**

Description

After a reset of the NC or the drive, there is a wait for the restart of the respective component.

Programming

Identifier: WAITING

Syntax: <WAITING WAITINGFORNC ="TRUE" />

Attributes: waitingfornc="true" There is a wait for the restart of the NC.

waitingfordrive="true" There is a wait for the restart of the drive.

8.5 Description of the script language

8.5.21 ?up

Description

SinuCom Update Agent:

This section contains the script language for the SinuCom Update Agent. If the code from an Update Agent file is to be included, the INCLUDE (Page 248) statement must be used.

Programming

Identifier: **?up**Syntax: <?up

<?include src="Filename" ?>

?>

Attributes: --

8.5.22 XML identifiers for the dialog

Dialog for the parameterization

A dialog can be configured for each device so that additional parameters can be set or output during runtime. This is displayed by pressing the "Additional parameters" softkey.

The following dialog elements are available:

- Input dialog
- Dialog title
- · Combined input/output field
- Text display
- Image display

Description

Identifier <tag></tag>	Meaning
CAPTION	Identifier for the title of the dialog:
	Syntax: <caption> title </caption>
CLOSE	Dialog message:
	This identifier is executed before the dialog is closed.

Identifier <tag></tag>	Meaning
FORM	Identifier for a user dialog.
	Attribute color: Color coding of the background color
INIT	Dialog message:
	Identifier for initializing the dialog.
	The identifier is executed immediately after the dialog is created. All the input elements and hotlinks for the dialog should be created here.
PAINT	Dialog message:
	Identifier for displaying all texts and images of a dialog.
	This identifier is executed when the dialog is shown.
TIMER	Dialog message:
	This identifier is called cyclically

```
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE AGM>
<AGM>
<DEVICE>
<NAME> Device 1 </NAME>
<START UP>
</START_UP>
<SET ACTIVE>
</set_ACTIVE>
<FORM>
                                           Identifier for a user dialog
<INIT>
<CONTROL name = edit1 /CONTROL>
                                           Identifier for an input field
</INIT>
                                           Identifier for text or image display
<PAINT>
<TEXT>hello world !</TEXT>
</PAINT>
</FORM>
</pe>
</AGM>
```

8.5 Description of the script language

8.5.23 BOX

Description

Identifier for drawing a filled rectangle at the specified position, colored as specified.

Programming

Identifier: BOX

Syntax:
 <box xpos="X position" ypos = "Y position" width="X extension"

height="Y extension" color="Color code" />

Attributes: xpos Position in the X direction (zero point in the left upper corner)

ypos Position in the Y direction (zero point in the left upper corner)

width Extension in X direction (in pixels) height Extension in Y direction (in pixels)

color Color

8.5.24 **CONTROL**

Description

Identifier for creating control elements.

Default: fieldtype="edit" The data can be edited.

Programming

Identifier: CONTROL

Syntax: <control name = "edit1" xpos = "X position" ypos = "Y position" refvar="NC

variable" hotlink="true" format="Format" />

Attributes: name Name of the field: A local variable of the same name is

created for each field.

xpos Position in the X direction (zero point in the left upper corner) ypos Position in the Y direction (zero point in the left upper corner)

fieldtype	Field type:
fieldtype="edit"	The data can be edited.
fieldtype="readonly"	The data can be read.
fieldtype="combobox"	• Identifiers are shown instead of the data.
refvar	Identifier for a reference variable (NC, PLC or drive variable)
hotlink	Identifier for a field that is updated (=TRUE) immediately when the data is changed.
format	Identifier for the formatting

Note

Cyclic update

The "hotlink" attribute results in a cyclic update of the corresponding control.

This means that If a value is entered, the following update cycle overwrites the entered value.

To avoid this behavior, the immediate saving of the entries must be activated with the DATA_ACCESS identifier.

Example

If "combo box" is selected as the field type, the expressions to be displayed must also be defined. The <item> identifier should be used for this:

The combo box saves the index of the currently selected text in the variable belonging to the "CONTROL" (variable name). The index starts with 1.

Syntax: <item>expression</item>

8.5 Description of the script language

```
<item value = "20" >text2</item>
  <item value = "12" >text3</item>
  <item value = "1" >text4</item>
</control>
```

8.5.25 IMG

Description

Identifier for displaying a pixel graphic in the directory: .../oem/sinumerik/hmi/dvm

- The bitmaps must be stored in BMP or PNG format.
- Lower-case letters should be used for all file names.
- If the image display is to differ from the original in terms of size, the attributes width and height can be used to define the dimensions.

Programming

Identifier: Syntax:	•	e = " <name>" xpos = "X position" ypos = "Y position" height =</name>
Attributes:	name	Y" width = "Scaling in X" /> Extension in Y direction (in pixels)
	xpos	Position in the X direction (zero point in the left upper corner)
	ypos	Position in the Y direction (zero point in the left upper corner)
	width	Scaling in X (optional)
	height	Scaling in Y (optional)

8.5.26 PROPERTY

Description

The identifier specifies additional properties of an operator control.

Programming

Identifier: PROPERTY

Syntax: <pre

Attributes: max Maximum input value

min Minimum input value

default Default

8.5.27 **REQUEST**

Description

This identifier is only valid within the INIT statement of a form. This identifier is used to add a variable to the cyclic reading service (hotlink).

Programming

Identifier: REQUEST

Syntax: <REQUEST name = "NC variable" />
Attributes: name Address identifier

8.5.28 SOFTKEY_OK, SOFTKEY_CANCEL

Description

The identifier SOFTKEY_OK overwrites the standard behavior when closing a dialog by means of the "OK" softkey. The identifier SOFTKEY_CANCEL overwrites the standard behavior when closing a dialog by means of the "CANCEL" softkey.

The following functions can be performed within this identifier:

- Data manipulation
- · Conditional processing
- Loop processing

Programming

Identifier: SOFTKEY_OK
Syntax: <SOFTKEY_OK>

• • •

</SOFTKEY_OK>

Identifier: SOFTKEY_CANCEL
Syntax: <SOFTKEY_CANCEL>

٠..

</SOFTKEY_CANCEL>

8.5.29 TEXT

Description

Identifier for displaying text

Programming

Identifier: TEXT

Syntax: <text xpos="X position" ypos = "Y position" color="Color code"> Text

</text>

Attributes: xpos Position in the X direction (zero point in the left upper corner)

ypos Position in the Y direction (zero point in the left upper corner)

color Color

8.5.30 UPDATE_CONTROLS

Description

This identifier performs a comparison between the operator controls and the reference variables.

Programming

Identifier: UPDATE_CONTROLS

Syntax: <update_controls type="<Direction>"/>

Attributes: type The attribute defines the direction of the data

comparison.

- TRUE The data is read from the reference variables and copied to the operator controls.
- FALSE The data is copied from the operator controls to the reference variables.

8.5.31 Addressing the parameters

Addressing parameters

Address identifiers for the desired data must be created to address NC variables, PLC blocks or drive data. An address consists of the subpaths component name and variable address. A slash should be used as a separating character.

Addressing PLC data blocks

Data format f: B: Byte

W: Word

D: Double word

x address: Valid PLC address identifier

Bit addressing: b = Bit number

The following addresses are permissible:

 $\begin{array}{lll} \text{DBx.DB(f)} & \text{Data block} \\ \text{I (f) x} & \text{Input} \\ \text{Q (f) x} & \text{Output} \\ \text{M (f) x} & \text{Bit memory} \\ \text{V (f) x} & \text{Variable} \end{array}$

Data format identification is not applicable for bit addressing:

DBx.DBXx.b	Data block
Ix.b	Input
Qx.b	Output
Mx.b	Bit memory
Vx.b	Variable

```
<data name = "plc/mb170">1</data>
<data name = "plc/db9905.dbb0"> 0 </data>
<data name = "plc/i0.1"> 1 </data>
<op> plc/m19.2 = 1 </op>
```

Addressing NC variables

Addressing starts with the path section nck. This section is followed by the data address; its structure should be taken from the OEM Package Parameter Manual 2.

Example:

```
<let name = "tempStatus"></let>
<op> tempStatus = "nck/channel/state/chanstatus" </op>
```

Addressing the machine data and setting data

Machine data and setting data is identified by the character \$, followed by the name of the data.

Machine data:

\$Mx_<name[index, AX<axis_number>]>

• HMI machine data:

\$MxS_<name[index, AX<axis_number>]>

Option data:

\$Ox_<name[index, AX<axis_number>]>

· Setting data:

\$\$x_<name[index, AX<axis_number>]> \$\$x\$_<name[index, AX<axis_number>]>

Structure		Meaning
x:	N	General machine or setting data
	С	Channel-specific machine or setting data
	Α	Axis-specific machine or setting data
index:		For a field, the parameter indicates the index of the data.
AX <axis_number>:</axis_number>		The required axis (<axis_number>) has to be specified for axis-specific data.</axis_number>
		Alternatively, the axis index can be read from a local variable using a "substitution character" \$ <variable name="">: e.g. AX\$localvariable</variable>

Example:

```
<data name ="$MN_AXCONF_MACHAX_NAME_TAB[0] ">X1</data>
```

• Direct addressing of the axis:

```
<data name ="$MA CTRLOUT MODULE NR[0, AX1] ">1</data>
```

Indirect addressing of the axis:

```
<let name ="axisIndex"> 1 </let>
<data name ="$MA_CTRLOUT_MODULE_NR[0, AX$axisIndex] ">1</data>
```

Addressing the global user data

Addressing starts with the path section gud, followed by the specification of the area CHANNEL. This address section is followed by the specification of the GUD areas:

GUD areas	Assignment
sgud	Siemens GUD
mgud	Machine manufacturer GUD
ugud	User GUD

Then enter the GUD name. If an array is to be addressed, the name is followed by the array subscript in square brackets.

Example:

```
<data name ="gud/channel/mgud/syg_rm[0]">1</data>
"gud/channel/mgud/syg rm[0]" = 5*2 </op>
```

8.5.32 Addressing the drive objects

Addressing the drive objects (DO)

Addressing starts with the path section "drive". Then the drive device is specified: CU or DC. The parameter to be set is added to this section.

To address individual objects, the desired object should be entered in square brackets after the parameter.

Parameter number[do<DO-index>]

Example:p0092 [do1]

Note

Numbering

The drive object number differs from the numbering used in the drive dialog, since the CU components, ALM and all connected hubs are integrated in the consecutive numbering.

The DO number can be determined as follows:

All connected drive objects are listed in field p0978 of the relevant CU. The numerical value of a field corresponds to the slot number of a drive object. It is a question of establishing the field index for the desired slot and adding one to this number. This value is the DO index needed for addressing purposes.

If there are drive objects connected to an NX, the index of the last CU drive object should be established first and the index of the NX drive object should be added to it.

Alternatively, the drive index can be read from a local variable, e.g. DO\$localvariable, using a "substitution character" \$<variable name>.

Example:

```
<data name ="drive/cu/p0092">1</data>
<data name ="drive/dc/p0092[do1] ">1</data>
Indirect addressing:
<let name = "driveIndex> 0 </let>
<op> driveIndex = $ctrlout_module_nr[0, AX1] </op>
<data name ="drive/dc[do$driveIndex]/p0092">1</data>
```

Addressing an NX

An NX module is treated as another CU, module addressing uses the CU specification, whereby the desired NX number incremented by one is specified in square brackets after the parameter.

Parameter number[CU<CU index>]

```
<let name="r0002_content"></let>
<let name="p107_content"></let>
<!- Reading of value r0002 from the CU ->
<op> r0002_content = "drive/cu/r0002" </op>
<op> r0002_content = "drive/cu/r0002[CU1]" </op>
<!- Reading of value r0002 from the NX1 ->
<op> r0002_content = "drive/cu/r0002[CU2]" </op>
<!- Reading of value p107[0] from the CU ->
<op> r107_content = "drive/cu/p107[0]" </op>
<print text="%d"> p107_content </print>
<!- Reading of value p107[0] from the NX1 ->
<op> p107_content = "drive/cu/p107[0]" </op>
<print text="%d"> p107_content </print>
<op> p107_content = "drive/cu/p107[0,CU2]" </op>
<print text="%d"> p107_content </print></print></print></print></print></print></print></print>
```

8.5.33 XML identifiers for statements

Program statements

The following identifiers are permissible for statements:

Identifier <tag></tag>	Meaning
IF	Conditional statement (IF, THEN, ELSE)
	The THEN and ELSE tags are included in the IF tag.
	The condition which is stated in the CONDITION tag follows the IF tag. The further processing of the statements depends upon the result of the operation. If the result of the function is true, the THEN branch is executed and the ELSE branch is skipped. If the result of the function is false, the parser executes the ELSE branch.
	Example:
	<if></if>
	<condition> plc/mb170 != 7 </condition>
	<then></then>
	<op> plc/mb170 = 7 </op>
	<else></else>
THEN	Statement for situations where the condition has been met (IF, THEN, ELSE).
ELSE	Statement for situations where the condition has not been met (IF, THEN, ELSE).

Meaning
The FOR loop is executed as follows:
The expression initialization (INIT) is analyzed.
2. The expression test (CONDITION) is analyzed as a Boolean expression. If the value is false (FALSE) the FOR loop is ended.
3. The following statements are executed.
4. The expression continuation (INCREMENT) is analyzed.
5. Proceed with Step 2.
for (initialization, test, continuation) statements Syntax:
<for></for>
<init></init>
<condition></condition>
<increment></increment>
Statements
Conditional cancellation of a loop
The WHILE loop is used to execute a sequence of statements repeatedly while a condition is met. This condition is tested before the sequence of statements is executed.
while (test) statements
Syntax:
<while></while>
<condition></condition>
Statements

8.5 Description of the script language

Identifier <tag></tag>	Meaning
DO_WHILE	The DO WHILE loop comprises a block of statements and a condition. The code within the statement block is executed first, then the condition is analyzed. If the condition is true, the function executes the code section again. This is continuously repeated until the condition is false.
	do Statements while (test)
	Syntax: <do_while></do_while>
	Statements
	<condition></condition>
SWITCH	The SWITCH statement describes a multiple choice. A term is evaluated once and compared with a number of constants. If the term matches the constants, the statements are processed within the CASE statement.
	The DEFAULT statement is processed when none of the constants listed match the expression.
	Syntax:
	<switch></switch>
	<condition> Expression </condition>
	<case value="<constant 1>"></case>
	Statements
	<case value="<constant 2>"></case>
	Statements
	<default></default>
	Statements

8.6 String functions

Overview of the functions

The script language offers various string functions. The function names are reserved and cannot be overloaded.

Name	Function
string.cmp	Comparing character strings (string.cmp (Page 271))
string.icmp	Comparing character strings without consideration of upper/lower case (string.icmp (Page 272))
string.left	Selecting number of characters from the left (string.left (Page 273))
string.right	Selecting number of characters from the right (string.right (Page 273))
string.middle	Selecting number of characters from the middle (string.middle (Page 274))
string.length	Determining the length of a character string (string.length (Page 275))
string.replace	Replacing character strings (string.replace (Page 275))
string.remove	Deleting character strings (string.remove (Page 276))
string.insert	Inserting a character string as of the index (string.delete (Page 277))
string.delete	Deleting a number of characters in a character string (string.insert (Page 277))
string.find	Finding a subset of a character string (forwards) (string.find (Page 278))
string.reversefind	Finding a subset of a character string (backwards) (string.reversefind (Page 279))
string.trimleft	Removing blanks from the left (string.trimleft (Page 280))
string.trimright	Removing blanks from the right (string.trimright (Page 280))

8.6.1 string.cmp

Description

Two strings are compared with each other.

The function gives a return value of zero if the strings are the same, a value less than zero if the first string is smaller than the second string or a value greater than zero if the second string is smaller then the first string.

Programming

Designation: string.cmp

Syntax: <function name="string.cmp" retvar ="<int var>" > str1, str2 </function>

Parameters: str1 String

8.6 String functions

str2 Comparison string

rval Result

Example

```
<let name="rval">0</let>
<let name="str1" type="string">A brown bear hunts a brown dog.</let>
<let name="str2" type="string">A brown bear hunts a brown dog.</let>
<function name="string.cmp" return="rval"> str1, str2 </function>
;Result: rval=0
```

8.6.2 string.icmp

Description

Two strings are compared (the comparison is not case-sensitive).

The function gives a return value of zero if the strings are the same, a value less than zero if the first string is smaller than the second string or a value greater than zero if the second string is smaller then the first string.

Programming

Designation: string.icmp

Syntax: <function name="string.icmp" retvar ="<int var>" > str1, str2 </function>

Parameters: str1 String

str2 Comparison string

rval Result

```
<let name="rval">0</let>
<let name="str1" type="string">A brown bear hunts a brown dog.</let>
<let name="str2" type="string">A brown Bear hunts a brown Dog.</let>
```

```
<function name="string.icmp" return="rval"> str1, str2 </function>
;Result: rval=0
```

8.6.3 string.left

Description

The function extracts the first nCount characters from string 1 and copies them to the return variable.

Programming

Designation: string.left

Syntax: <function name="string.left" return="< result string>"> str1, nCount

</function>

Parameters: str1 String

nCount Number of characters

Example

```
<let name="str1" type="string">A brown bear hunts a brown dog.</let>
<let name="str2" type="string"></let>
<function name="string.left" return="str2"> str1, 12 </function>
;Result: str2="A brown bear"
```

8.6.4 string.right

Description

The function extracts the last nCount characters from string 1 and copies them to the return variable.

8.6 String functions

Programming

Designation: string.right

Syntax: <function name="string.right" return="< result string>"> str1, nCount

</function>

Parameters: str1 String

nCount Number of characters

Example

```
<let name="str1" type="string">A brown bear hunts a brown dog.</let>
<let name="str2" type="string"></let>
<function name="string.right" return="str2"> str1, 10 </function>
;Result: str2="brown dog"
```

8.6.5 string.middle

Description

The function extracts the specified number of characters from string 1, starting from the iFirst index, and copies them to the return variable.

Programming

Designation: string.middle

Syntax: <function name="string.middle" return="< result string>"> str1, iFirst,

nCount </function>

Parameters: str1 String

iFirst Start index

nCount Number of characters

Example

```
<let name="str1" type="string">A brown bear hunts a brown dog.</let>
<let name="str2" type="string"></let>
<function name="string.middle " return="str2"> str1, 2, 5 </function>
;Result: str2="brown"
```

8.6.6 string.length

Description

The function gives the number of characters in a string.

Programming

Designation: string.length

Syntax: <function name="string.length" return="< int var>"> str1 </function>

Result

Parameters: str1 String length

Example

```
<let name="length">0</let>
<let name="str1" type="string">A brown bear hunts a brown dog.</let>
<function name="string.length" return="length"> str1 </function>
; Result: length=31
```

8.6.7 string.replace

Description

The function replaces all the substrings found with the new string.

8.6 String functions

Programming

Designation: string.replace

Syntax: <function name="string.replace"> string, find string, new string

</function>

Parameters: string String

find string String to be replaced

new string New string

Example

```
<let name="str1" type="string">A brown bear hunts a brown dog. </let>
<function name="string.replace" > str1, _T"a brown dog" ,
   _T"a big salmon"</function>
; Result: str1="A brown bear hunts a big salmon."
```

8.6.8 string.remove

Description

The function deletes all the substrings found.

Programming

Designation: string.remove

Syntax: <function name="string.remove" > string, remove string </function>

Parameters: string String

remove string Substring to be deleted

```
<let name="index">0</let>
<let name="str1" type="string">A brown bear hunts a brown dog. </let>
```

```
<function name="string.remove" > str1, _T"a brown dog" </function>
; Result: str1="A brown bear hunts ."
```

8.6.9 string.delete

Description

The function deletes the defined number of characters starting from the start position specified.

Programming

Designation: string.delete

Syntax: function name="string.delete"> string, start index, nCount </function>

Parameters: string String

start index Start index

nCount Number of characters

Example

```
<let name="str1" type="string">A brown bear hunts. </let>
<function name="string.delete" > str1, 2, 5 </function>
;Result: str1="A bear hunts."
```

8.6.10 string.insert

Description

The function inserts a string at the index specified.

8.6 String functions

Programming

Designation: string.insert

Syntax: <function name="string.insert"> string, index, insert string </function>

Parameters: string String variable

index Number of characters to be inserted

insert string String to be inserted

Example

```
<let name="str1" type="string">A brown bear hunts. </let>
<let name="str2" type="string">a brown dog </let>
<function name="string.insert"> str1, 19, str2 </function>
;Result: str1="A brown bear hunts a brown dog."
```

8.6.11 string.find

Description

The function searches the transferred string for the first match with the substring. If the substring is found, the function provides the index to the first character (starting with zero), otherwise -1.

Programming

Designation: string.find

Syntax: <function name="string.find" return="<int val>"> str1, find string

</function>

Parameters: string String variable

find string String to be found

```
<let name="index">0</let>
```

```
<let name="str1" type="string">A brown bear hunts a brown dog. </let>
<function name="string.find" return="index"> str1, _T"brown" </function>
; Result: index=2
```

8.6.12 string.reversefind

Description

The function searches the transferred string for the last match with the substring. If the substring is found, the function provides the index to the first character (starting with zero), otherwise -1.

Programming

Designation: string.reversefind

Syntax: <function name="string.reversefind" return="<int val>"> str1, find string

</function>

Parameters: string String variable

find string String to be found

```
<let name="index">0</let>
<let name="str1" type="string">A brown bear hunts a brown dog. </let>
<function name="string.reversefind" return="index"> str1, _T"brown" </function>
; Result: index=21
```

8.6 String functions

8.6.13 string.trimleft

Description

The function trims the starting characters from a string.

Programming

Designation: string.trimleft

Syntax: <function name="string.trimleft" > str1 </function>

Parameters: str1 String variable

Example

8.6.14 string.trimright

Description

The function trims the closing characters from a string.

Programming

Designation: string.trimright

Syntax: <function name="string.trimright" > str1 </function>

Parameters: str1 String variable

```
<let name="str1" type="string"> test trim right </let>
```

<function name="string.trimright" > str1 </function>

;Result: str1=" test trim right"

8.7 Trigonometric functions

Overview of the functions

The script language offers various trigonometric functions. The function names are reserved and cannot be overloaded.

Trigonometric functions and inverse functions:

Name	Function
sin	Sine
cos	Cosine
tan	Tangent
arcsin	Arc sine
arccos	Arc cosine
arctan	Arc tangent

Sine, cosine, tangent description

The function calculates the sine, cosine, tangent of the value transferred.

Programming

Designation: sin

Syntax: <function name="sin" return="<double val>"> double </function >

Designation: cos

Syntax: <function name="cos" return="<double val>"> double </function >

Designation: tan

Syntax: <function name="tan" return="<double val>"> double </function >

Parameters: double Angle (0° to 360°)

```
<let name= "sin_val" type="double"></let>
<function name="sin" return="sin_val"> 20.0 </function>
```

Arc sine, arc cosine, arc tangent description

The function calculates the arc sine, arc cosine, arc tangent of the value transferred.

Programming of arcsin, arccos

Designation: arcsin

Syntax: <function name="arcsin" return="<double val>"> double </function >

Designation: arccos

Syntax: <function name="arccos" return="<double val>"> double </function >

Parameters: double x in the range from -1 to +1

Value range: $\frac{1}{2}$ arcsin $\frac{1}{2}$ y in the range from $-\pi/2$ to $+\pi/2$

arccos y in the range from 0 to π

Programming of arctan

Designation: arctan

Syntax: <function name="arctan" return="<double val>"> double </function >

Parameters: double x arbitrary value

Value range: y in the range from $-\pi/2$ to $+\pi/2$

Example

<let name= "arccos_val" type="double"></let>
<function name="arccos" return="arctan_val"> 0.47 </function>

8.8 Examples

8.8.1 Example with control elements

Example of a combo box

If "combo box" is selected as the field type, the expressions to be displayed must also be defined. The <item> identifier should be used for this purpose. The combo box saves the index of the currently selected text in the variable belonging to the "CONTROL" (variable name). The index starts with 1.

```
<control name = "button1" xpos = "10" ypos = "10" fieldtype = "combobox">
  <item>text1</item>
  <item>text2</item>
  <item>text3</item>
  <item>text4</item>
  </control>
```

Example of a value assignment

If an arbitrary integer value is to be assigned to an expression, the attribute value="value" should be added to the identifier. Rather than consecutive numbers, the control variable now contains the item's assigned value.

```
<control name = "button1" xpos = "10" ypos = "10" fieldtype = "combobox">
<item value = "10" >text1</item>
<item value = "20" >text2</item>
<item value = "12" >text3</item>
<item value = "1" >text4</item>
</control>
```

Note

"hotlink" attribute

The hotlink attribute results in a cyclic update of the corresponding control. This means that when a value is entered, the following update cycle overwrites the entered value. To avoid this behavior, the immediate saving of the entries must be activated with the DATA_ACCESS tag.

Another possibility is to take the SOFTKEY_OK identifier into the form. This identifier is performed before the dialog is closed. In this block, the data comparison can be made between the control and reference variables with the UPDATE CONTROLS statement.

8.8.2 Example with parameters to support the commissioning

Dialog with additional parameters

The input fields list selected drive parameters.

```
<DEVICE>
 <list id>3</list id>
  <name> "Test form" </name>
  <form>
 <init>
    <caption>Equipment Manager</caption>
    <control name = "edit1" xpos = "400" ypos = "34" refvar = "drive/dc/p105[D05]"</pre>
/>
    <control name = "edit1" xpos = "400" ypos = "54" refvar =</pre>
"$MC AXCONF MACHAX USED[4]" />
    <control name = "edit1" xpos = "400" ypos = "74" refvar = "drive/dc/p971[D05]"</pre>
    <control name = "edit1" xpos = "400" ypos = "94" refvar = "drive/dc/r2[DO5]" />
 </init>
 <paint>
 <text xpos = "40" ypos = "34">dc[DO5]/p105</text>
  <text xpos = "40" ypos = "54">$MC AXCONF MACHAX USED[4]</text>
  <text xpos = "40" ypos = "74">dc[DO5]/p971</text>
  <text xpos = "40" ypos = "94">dc[DO5]/r2</text>
  </paint>
  </form>
</DEVICE>
```

Dialog with combo box

```
<form>
<init>
<caption>selected machine data/caption>
<DATA ACCESS type="true" />
<!-- switch on the direct access to the NC variables -->
<control name = "edit1" xpos = "322" ypos = "34"</pre>
refvar="$MN_AXCONF_MACHAX_NAME_TAB[0]" />
<control name = "edit2" xpos = "322" ypos = "54"</pre>
refvar="$MN AXCONF MACHAX NAME TAB[1]" />
<control name = "edit3" xpos = "322" ypos = "74"</pre>
refvar="$MN_AXCONF_MACHAX_NAME_TAB[2]" />
<control name = "edit4" xpos = "322" ypos = "94"</pre>
refvar="$MN_AXCONF_MACHAX_NAME_TAB[3]" />
<control name = "edit5" xpos = "322" ypos = "114" refvar="$MA IS ROT AX[AX1]"</pre>
hotlink="true" />
<control name = "edit6" xpos = "322" ypos = "134" refvar="$MA IS ROT AX[AX2]"</pre>
hotlink="true" />
<control name = "edit7" xpos = "322" ypos = "154" refvar="$MA IS ROT AX[AX3]"</pre>
hotlink="true" />
<!-- using the control type combo box to display the rotation axis value -->
<control name = "edit5" xpos = "322" ypos = "194" refvar="$MA IS ROT AX[AX1]"</pre>
fieldtype = "combobox" hotlink="true" >
<item value= "0" >no</item>
<item value= "1" >yes</item>
</control>
<control name = "edit6" xpos = "322" ypos = "214" refvar="$MA IS ROT AX[AX2]"</pre>
fieldtype = "combobox" hotlink="true" >
<item value= "0" >No</item>
<item value= "1" >yes</item>
</control>
<control name = "edit7" xpos = "322" ypos = "234" refvar="$MA_IS_ROT_AX[AX3]"</pre>
fieldtype = "combobox" hotlink="true" >
<item value= "0" >No</item>
<item value= "1" >yes</item>
</control>
</init>
<paint>
```

```
<text xpos = "23" ypos = "34">AXCONF_MACHAX_TAB[0]</text>
<text xpos = "23" ypos = "54">AXCONF_MACHAX_TAB[0]</text>
<text xpos = "23" ypos = "74">AXCONF_MACHAX_TAB[1]</text>
<text xpos = "23" ypos = "74">AXCONF_MACHAX_TAB[2]</text>
<text xpos = "23" ypos = "94">AXCONF_MACHAX_TAB[3]</text>
<text xpos = "23" ypos = "114">Is rot axis 1</text>
<text xpos = "23" ypos = "134">Is rot axis 2</text>
<text xpos = "23" ypos = "154">Is rot axis 3</text>
</text xpos = "23" ypos = "174">Is rot axis 3</text>
</text xpos = "23" ypos = "194">Is rot axis 1</text>
<text xpos = "23" ypos = "194">Is rot axis 1</text>
<text xpos = "23" ypos = "214">Is rot axis 2</text>
<text xpos = "23" ypos = "214">Is rot axis 3</text>

</paint>

</pre
```

8.8.3 User example for a power unit

Activating the drive object

The drive object to be activated has already been commissioned and deactivated again by the machine manufacturer, to market the axis (axes) as an option.

To activate the axis carry out the following steps:

- Activate the drive object via p0105.
- Enable the 2nd axis in the channel machine data.
- Back up the drive machine data via p0971.
- Wait until the data has been written.
- Restart the NCK and the drives.

Programming:

```
<DEVICE>
 t id>1</list id>
 <name> "Activate the drive" </name>
 <SET ACTIVE>
   <data name = "drive/dc/p105[D05]">1</data>
   <data name = "$MC AXCONF MACHAX USED[4]">5</data>
   <data name = "drive/dc/p971[DO5]">1</data>
   <while>
     <condition> "drive/dc/p971[DO5]" !=0 </condition>
   <while>
   <control reset resetnc ="true" resetdrive = "true"/>
 </set active>
 <SET_INACTIVE>
   <data name = "drive/dc/p105[D05]">0</data>
   <data name = "$MC AXCONF MACHAX USED[4]">0</data>
   <data name = "drive/dc/p971[DO5]">1</data>
   </while>
     <condition> "drive/dc/p971[DO5]" !=0 </condition>
   <control reset resetnc ="true" resetdrive = "true"/>
  </SET INACTIVE>
</pe>
```

Activating the PLC-controlled device

The device is addressed via output byte 10 and signals data set ready to the PLC via input byte 9.

The output byte is set to the specified coding for activation. The WHILE loop then waits for the data set ready of the device.

Programming:

```
<SET_ACTIVE>
  <DATA name = "plc/qb10"> 8 </DATA>
  <while>
        <condition> "plc/ib9" !=1 </condition>
        </while>
  </SET_ACTIVE>
```

8.8 Examples

Tool management

9.1 Fundamentals

Tool management (TM)

The tool management (TM) function ensures that the right tool is in the right place on the machine at all times.

Machines, magazines, loading positions and tool buffers (e.g. spindles, grippers) form a specific system in which the tools are stored and transported. The tool management continually informs the NCK of the current location of the tools and logs it using NC part programs, PLC or HMI initiated tool movements.

During tool management commissioning the specific machine system architecture is mapped in the control. For example, one or more magazines are set up that are able to pick up tools at their locations. The "workplace" of a tool is described in the control in the form of value pairs (magazine number and location number).

Note

Scope of delivery

Tool management is included in the scope of delivery for all controls (M/T version).

The function "Spare tools for tool management" (duplo tools) is an option.

See also

Additional references:

- SINUMERIK 828D Parameter Manual
- A comprehensive description of the tool and magazine parameters and the internal data structure is to be found in:
 - → Description of Functions Tool Management of the SINUMERIK 840D sl

As far as the range of functions is concerned, the NCK part of this documentation is also valid for the SINUMERIK 828D.

The description of the PLC functions and the communication between NC and PLC in this documentation is **not** valid for the SINUMERIK 828D.

- The settings of the tool management user interface are described in:
 - → Commissioning Manual Basesoftware and HMI sl (IM9)

9.1.1 Structure of the tool management

Function structure

The software components of the control have the following tasks in the tool management:

HMI:

- Tool data display, input/output
- Magazine data display, input/output
- Load/Unload relocation dialog

NCK:

The tool management administrates the magazine locations. These locations might be empty, loaded with tools or assigned to oversized tools in adjacent locations. Empty locations can be loaded with other tools. The tool management provides the machine manufacturer with optimized management of tools and magazine locations. Magazine management provides extended functions such as load, unload or position tools. It also includes searches for tools, magazine locations and search strategies for replacement tools.

For the tool monitoring functions, while the active monitoring is running, tools are disabled and no longer used. To continue machining, an equivalent tool (duplo tool) that is not disabled is used, if available.

PLC:

- Execute tool change
- Move tools in the magazine
- Gripper control
- Magazine control if applicable
- Safety interlocks
- Providing the structure of tool movements in transfer step tables
- Acknowledgment of the tool movements with acknowledgment step tables

PLC user program

The PLC user program executes the tool management jobs and acknowledges all position changes of the tools (and magazines). The monitoring and prevention of collisions is the task of the PLC user program alone, for example:

- Multiple spindles are using the same magazine.
- The paths of simultaneous jobs cross.
- As long as a large tool is located in the shifter, the chain must not be moved.

PLC-Firmware

Functions of the PLC firmware:

- Assignment of tool management jobs to the PLC user program
- Communication of PLC user program acknowledgments to the tool management
- Transfer feedback signals for each acknowledgment (acknowledgment incorrect with error number of acknowledgment OK) to PLC user program.
- In addition: Register order status

9.1.2 Components of the tool management

Tool list, magazines, magazine list

Circular and chain magazines can be managed. Other types of magazines are mapped on these. Loading points or loading stations shall be used as the magazine type for loading and unloading.

A magazine buffer combines all other locations in which tools can be placed (spindle, gripper, ...).

Note

The number of magazines which the NCK can manage is permanently set by the system. The number of magazines is three for PPU260/261 and four for PPU280/281.

Since at least one buffer and one loading point must be available, the PPU260/261 can manage one real magazine and the PPU280/281 can manage two real magazines.

Magazines

Information is provided by the system for all locations in the magazine, describing the content and status of the locations.

The position of a tool is described by an identifier for the magazine and an identifier for the location. Magazines have an identifier and a number, magazine locations only a number. In a real magazine (chain, turret, etc.), the position of the tool is identified by the magazine number assigned during start-up and the location within the magazine.

Example:

The T number of the tool in magazine location 7 in magazine 1: \$TC MPP6[1,7]

9.1 Fundamentals

Tool list

The tool list contains all the tools known to the NC. These are the tools in the magazine and unloaded tools whose data is to be retained. The tool management works with loaded tools from the tool list.

Magazine list

The magazine list is a location-oriented map of the tool magazine, gripper and spindle. The tool management only works with the tools from the magazine list. Additional tools without a magazine assignment can also be selected for tool changes. The tool must be inserted in the machine manually and removed again manually after machining (manual tool).

Loading magazine

The loading magazine is the first internal magazine and is assigned magazine number 9999. The loading magazine has loading points for loading and unloading tools.

For the allocation of locations, one is fixed, all other locations can be assigned freely. Location 1 in the loading magazine is used for the fixed assignment. Location 1 is reserved for loading/unloading to all spindles/tool holders.

All positioning and relocation jobs to any locations (not loading points) are still handled via location 1. The stated jobs, which refer to a particular loading point, are output at the interface of this loading point. The loading points are assigned to magazines during start-up (\$TC_MDP1). A loading point is an open access point to the magazine, where a tool is manually loaded and unloaded from the magazine.

Buffer

Buffers are located in the second internal magazine. The buffer includes the spindle, tool holder, gripper, loader and transfer location. The buffers are managed under magazine number 9998. Each buffer element is assigned a unique location. Any location numbers may be assigned. It is recommended that all spindles or tool holders be numbered in ascending order, starting at number 1. The assignment to real magazines or of spindles/tool holders to other buffers is made during start-up (\$TC_MDP2, \$TC_MLSR).

Chain magazine

The setting in MD22550: \$MC_TOOL_CHANGE_MODE must be 1 for this magazine type.

Chain magazines do not as a rule have any additional buffer available for transportation between magazine and spindle. These additional buffers can contain tools temporarily.

Description of the buffers and loading points:

Magazine	Location	Meaning
1	xx	Real magazine 1 (chain, plate, box), position xx
9998	1	Spindle
9998	2	Gripper
9998	3	Gripper
9998	4	Toolboy
9998	5	Shifter
9999	1	Loading point for spindle, manual tool
9999	2	Magazine loading point

Circular magazine

The setting of MD22550: \$MC_TOOL_CHANGE_MODE is usually 0.

Circular magazines do not have any additional buffer with which tools can be transported from the magazine to the spindle. The tools on circular magazines are not physically transported into the spindle, but are moved into a defined position through rotation of the turret so that machining can take place with one particular tool. The tool is only transported to the spindle or tool holder in the software. Transporting the tool to the buffer 9998/1 (spindle) serves to inform the tool management that the turret holding the requested tool has been turned to the machining position.

The programming command T = identifier initiates the tool change. T = location can be programmed as an alternative. If T = location, no tool need actually be stored in the location.

Description of the buffers and loading points:

Magazine	Location	Meaning
1	xx	Real magazine 1 (circular), position xx
9998	1	Tool holder
9999	1	Loading point for tool holder, manual tool

If the value 1 is set for the revolver in MD22550: \$MC_TOOL_CHANGE_MODE, the same applies as for chain magazines.

Consider adjacent location

Consider adjacent location is used for oversized tools. When searching for empty locations (loading, tool change) the bits 4...11 are then evaluated in the magazine location parameter \$TC_MPP4 (half location occupied/reserved).

See also

You can find additional information in the "Machine data for the tool management (Page 313)" section.

9.1 Fundamentals

9.1.3 Loading and unloading tools manually

Manual tools

Bit 1 of MD22562: \$MC_TOOL_CHANGE_ERROR_MODE decides whether additional tools without magazine allocation can be selected during tool change. The automatically selected tool must be inserted in the machine manually and removed again manually after machining.

Responsibility of the operator

The operator must ensure that the data block for the tool on the spindle is in the NCK, or that he/she puts the appropriate tool onto the spindle for the data block stored in the NCK. Tools which are loaded manually during machining are referred to as "manual tools".

Note

The responsibility is on the user to comply with the safety regulations via the PLC program.

An alarm (17212, 17214 or 17216) is always output to indicate that a tool change involving a manual tool has been executed. The alarm is reset by the tool change acknowledgment of the PLC user program.

The following types of tools are manual tools:

- Oversized tools
- Tools that cannot be stored in the magazine.
- Tools that may not be handled by the gripper system.

9.2 PLC - NCK user interface

Overview

The tool management receives tasks for preparing and carrying out a tool change (T command, M06), a tool movement (MVTOOL) or magazine positioning (POSM) from the part program or from the HMI. From these tasks the TM defines the location change needed for the tool and assigns this to the PLC.

Program components and interfaces:

Figure 9-1 Interfaces of the tool management

The user interface provides separate data blocks for loading, unloading, relocating and magazine positioning on the one hand and tool change on the other hand.

9.2.1 Relocating, unloading, loading tool, positioning magazine

Tool and magazine movements

Per loading point there is one interface for:

 Jobs for loading, unloading, relocating a tool (MVTOOL) and for magazine positioning (POSM).

Message to the PLC user program:

- Job active
- Job specification
- Job description

The jobs appear on the interface of the loading point from which the tool is to be exchanged.

Acknowledgments of the PLC user program

All acknowledgments for a job must take place in the interface of the same loading point. Acknowledgment errors should also be reset in this interface.

• Feedback from the tool management to the PLC user program

Message to the PLC user program:

- Status of acknowedgment
- Error status
- Map of the acknowledgment bits
- Job status

Selected data from the last intermediate or end acknowledgment is saved. This data is needed by the PLC firmware for the next acknowledgment to the tool management and is readable for diagnostic purposes. This data can be used by the user program to restart after an abort (e.g. reset during a tool change).

Rule

The distribution of jobs to the interfaces takes place according to the following rule:

If the job contains a loading point (9999/x), that interface will be used.

Otherwise, the interface of the first loading point (9999/1) will be used.

All acknowledgments for a job must take place in the interface of the same loading point.

Interface signal	Meaning
xx: Load location	
DB40xx.DBX0.0 – DBX 3.6	PLC user program:
	Acknowledgments for loading/unloading/relocating or positioning the magazine
DB40xx.DBX9.0	PLC user program:
	Resetting the message "Acknowledgment error" /DB41xx.DBX100.1) and the diagnostic information in the feedback interface
DB41xx.DBX0.0	Tool management:
	Job for loading/unloading/relocating or positioning the magazine
DB41xx.DBB1	Tool management: Job specification
DB41xx.DBW 6 – DBW34	Job description
DB41xx.DBX100:0	Positive feedback: Acknowledgment status, acknowledgment OK, 1 PLC cycle pending
DB41xx.DBX100.1	Negative feedback: Acknowledgment status, acknowledgment error, static pending
DB41xx.DBB104	Tool management: Feedback error status
DB41xx.DBX108.0 - DB41xx.DBX111.6	Map of acknowledgments for load, unload, relocate or position magazine. This map belongs to the positive or negative feedback and remains valid for the same time.
DB41xx.DBW124 – DBW130	Job status

Jobs

DB410041xx	Signals	Signals from tool management [r]											
xx: Load location													
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
DBB0								Job					
DBB1				Job from NC program	Positioning	Relocating	Unloading	Loading					
DBB2	Reserve	ed											
DBB3	Reserve	ed											
DBB4	Reserve	ed											
DBB5	Reserve	ed											
DBW6	Source	magazine	number ((INT)									
DBW8	Source	location r	umber (IN	IT)									
DBW10	Target	magazine	number (INT)									
DBW12	Target	Target location number (INT)											
DBW14: HMI → PLC								Load/unload without moving magazine					

9.2 PLC - NCK user interface

Signal description:

Job:

The interface contains a job. Job processing has not yet been completed with an end acknowledgment. This signal is reset after transmission of the end acknowledgment to the tool management.

Loading:

The "target location" parameter's magazine location should be loaded with a tool via the "source location" parameter's loading station.

Unloading:

The tool in the "source location" parameter's magazine location should be unloaded to the "target location" parameter's unloading station.

Relocating:

The tool in the "source location" parameter's magazine location should be relocated to the "target location" parameter's magazine location.

Positioning:

The "source location" parameter's magazine location should be positioned at the "target location" parameter's change/loading/unloading station. The tool remains in its magazine location.

• NC program positions magazine:

The positioning job comes from the part program.

• Loading/unloading without moving magazine:

HMI sets/deletes this signal when requested by the operator. If the bit is active, there must be no traversing motion of the magazine, only a mechanical unlocking/locking of the location. The load/unload command must be acknowledged after the action. For a position and relocate request, this signal is not valid for a traversing motion.

• Source location:

Magazine and location number of a tool that traverses or should be positioned at a change or loading station.

Target location:

Magazine and location number to where a tool is moving or to where a magazine location should be positioned.

Acknowledgments

DB400040xx	Signals to t	ool manager	ment [r/w]					
xx: Load location								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBB0	Acknowl- edgment step 7	Acknowl- edgment step 6	Acknowl- edgment step 5	Acknowl- edgment step 4	Acknowl- edgment step 3	Acknowl- edgment step 2	Acknowledgmen step 1	
DBB1	Acknowl- edgment step 15	Acknowl- edgment step 14	Acknowl- edgment step 13	Acknowl- edgment step 12	Acknowl- edgment step 11	Acknowl- edgment step 10	Acknowledgmen step 9	
DBB2	Acknowl- edgment step 23	Acknowl- edgment step 22	Acknowl- edgment step 21	Acknowl- edgment step 20	Acknowl- edgment step 19	Acknowl- edgment step 18	Acknowledgmen step 17	
DBB3	Reserved	Acknowl- edgment step 30	Acknowl- edgment step 29	Acknowl- edgment step 28	Acknowl- edgment step 27	Acknowl- edgment step 26	Acknowledgmen step 25	
DBB4	Reserved							
DBB5	Reserved							
DBB6	Reserved							
DBB7	Reserved							
DBB8	Reserved	·	·			·		
DBB9								Resetting the acknowledg-ment error

Signal description:

• Total acknowledgment:

At a 0/1 edge the end acknowledgment, with status 99, is sent to the current job (job complete, all target positions have been reached). As long as the signal is present, no changes may be made to the data of this interface!

This signal is reset by the PLC firmware after the acknowledgment has been transferred to the tool management.

• Acknowledgment step 1...30:

At a 0/1 edge, the appropriate acknowledgment step from the acknowledgment step table is sent to the tool management. As long as the signal is present, no changes may be made to the data of this interface and the variable transfer-step table!

This signal is reset by the PLC firmware after the acknowledgment has been transferred to the tool management.

• Resetting the acknowledgment error:

Resetting the message "Acknowledgment error" /DB41xx.DBX100.1) and the diagnostic information in the feedback interface.

Feedback reports

DB410041xx	Signals from tool management [r]										
xx: Load location											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
DBB100							Acknowl- edgment error	Acknowl- edgment OK			
DBB101	Reserved										
DBB102	Reserved										
DBB103	Reserved										
DBW104	Error status	(WORD)									
DBB106	Reserved										
DBB107	Reserved										
DBB108	Acknowl- edgment step 7	Acknowl- edgment step 6	Acknowl- edgment step 5	Acknowl- edgment step 4	Acknowl- edgment step 3	Acknowl- edgment step 2	Acknowl- edgment step 1	Acknowl- edgment step 0			
DBB109	Acknowl- edgment step 15	Acknowl- edgment step 14	Acknowl- edgment step 13	Acknowl- edgment step 12	Acknowl- edgment step 11	Acknowl- edgment step 10	Acknowl- edgment step 9	Acknowl- edgment step 8			
DBB110	Acknowl- edgment step 22	Acknowl- edgment step 22	Acknowl- edgment step 21	Acknowl- edgment step 20	Acknowl- edgment step 19	Acknowl- edgment step 18	Acknowl- edgment step 17	Acknowl- edgment step 16			
DBB111	Reserved	Acknowl- edgment step 30	Acknowl- edgment step 29	Acknowl- edgment step 28	Acknowl- edgment step 27	Acknowl- edgment step 26	Acknowl- edgment step 25	Acknowl- edgment step 24			

Signal description:

• Acknowledgment OK (DB41xx.DBX100.0):

The acknowledgment of the PLC user program (area DB40xx.DBB0 to DBB3) was transferred without error to the tool management. This signal is reset after one PLC cycle.

• Acknowledgment error (DB41xx.DBX100.1):

Negative feedback of acknowledgment status. There is an error in the acknowledgment of the PLC user program (area DB40xx.DBB0 to DBB3). The cause of the error is displayed in "Error status."

The "acknowledgment error" bit is only set if the acknowledgment from the PLC firmware is accepted as error free and the tool management detects and signals an error in the acknowledged tool transfer (for example, when the target location for tool transfer is occupied).

Errors that are detected directly by the tool management in the NC before an acknowledgment is sent by the PLC user program, do not result in the setting of bit 100.1.

If an error is present that prevents transfer of the acknowledgment to the tool management (error status 1 to 7), the error is only output on the interface of the tool management and not by the NC (no NC alarm!).

If necessary, signal such errors with a user PLC alarm in the PLC user program.

This signal remains pending statically until the error has been acknowledged (set the bit "Reset acknowledgment error" DB40xx.DBX9.0) by the user. The interface in DB40xx.DBB0 to DBB3 is disabled if bit "acknowledgment error" is pending. Incoming acknowledgment bits are not evaluated by the PLC firmware and are cleared when bit "Reset acknowledgment error" is set.

Error status:

If there is an error, the error status (DB41xx.DBB104) contains a diagnostic number unequal to zero.

Status	Meaning
0	No error
1	Multiple acknowledgment signals at the same time
2	Acknowledgment without job
3	Invalid transfer step number
4	There is no job for a position specification
5	The status does not permit a location change (acknowledgment status 0 is used)
7	An impermissible acknowledgment status has been used
Other values:	The number corresponds to the error message of the tool management in the NCK caused by this transfer

The error status is reset by acknowledgment of the error by the user.

Map of acknowledgments (DB41xx.DBB108 to DBB111)

The acknowledgments last set by the PLC user program (DB40xx.DBB0 to DBB3) are set and reset by the PLC firmware together with the bits "Acknowledgment OK" or "Acknowledgment error". If there is an error, the user uses these statically pending bits to see which acknowledgment step triggered the error. If the PLC user program incorrectly sets multiple acknowledgment bits, these are also entered one-to-one in the map.

Job status

DB410041xx	Signals	Signals from tool management [r]									
xx: Load location	1										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
DBW124	Current	magazine	number o	f the tool (INT)						
DBW126	Current	location n	umber of t	he tool (IN	T)						
DBW128	Target r	Target magazine number of the tool (INT)									
DBW130	Target I	ocation nu	mber of th	e tool (INT)						

9.2.2 Tool change

Interface description

Per tool holder/spindle there is one interface for:

Jobs for preparing and executing the tool change.

Message to the PLC user program: Job active; job specification and job description.

The jobs appear in the toolholder interface (of the spindle) where a tool is to be exchanged.

Acknowledgments of the PLC user program

All acknowledgments for a job must take place in the interface of the same tool holder (of the same spindle). Acknowledgment errors should also be reset in this interface.

Feedback from the tool management to the PLC user program

Message to the PLC user program: Acknowledgment status, error status, map of the acknowledgment bits.

Job status

Selected data from the last intermediate or end acknowledgment is saved. This data is needed by the PLC firmware for the next acknowledgment to the tool management and is readable for diagnostic purposes. This data can be used by the user program to restart after an abort (e.g. reset during a tool change).

End acknowledgment for tool change

A common end acknowledgment (tool change via T command using turret) or separate end acknowledgment (Txx and M206 in separate blocks, default milling) is possible for "Prepare tool change" and "Implement tool change." With the appropriate MD setting, the end acknowledgment for the job to prepare for a tool change permits the NCK preprocessing to continue.

The machine data with which the response of block preprocessing, main run, and the various acknowledgment responses are defined are described in Chapter Machine data for the tool management (Page 313).

The main NCK run can be continued with the end acknowledgment to the job "Carry out tool change". Therefore, these end acknowledgments should take place as early as possible. This can mean that the end acknowledgment can take place before the old tool is in the magazine (e.g. the new tool is in the spindle, the old tool in the toolboy). The rest of the steps to bring the old tool into the magazine must then be communicated asynchronously. The same interface should be used as for synchronous acknowledgments.

Interface signal	Meaning
xx: Spindle index/tool holder	
DB42xx.DBX0.0 – DBX 3.6	PLC user program:
	Preparing and carrying out acknowledgments for tool change
DB42xx.DBX9.0	PLC user program:
	Resetting the message "Acknowledgment error" (DB43xx.DBX100.1) and the diagnostic information in the feedback interface
DB43xx.DBX0.0	Tool management: Job for "Prepare tool change" and "Execute tool change"
DB43xx.DBB1	Tool management job specification
DB43xx.DBW 6 – DBW34	Job description
DB43xx.DBX100.0	Positive feedback: Acknowledgment status, acknowledgment OK, one PLC cycle pending
DB43xx.DBX100.1	Negative feedback: Acknowledgment status, acknowledgment error, static pending
DB43xx.DBX100:0	Positive feedback: Acknowledgment status, one PLC cycle pending
DB43xx.DBX100:1	Negative feedback: Acknowledgment status, static pending.
DB43xx.DBX100:0	Tool management feedback: Acknowledgment status
DB43xx.DBB104	Tool management feedback: Error status
DB43xx.DBX108.0 - DB43xx.DBX111.6	Map of acknowledgments for tool change: This map belongs to the positive or negative feedback and remains valid for the same time.
DB43xx.DBW124 – DBW138	Job status

Jobs

DB430043xx	Signals fro	Signals from tool management [r]										
xx: Tool holder												
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
DBB0								Job				
DBB1	Tool remains in the spindle	Unload manual tool	Load manual tool	No old tool	ТО	Prepare change	Change tool (initiated by: M06)	fixed- location coded				
DBB2	Reserved											
DBB3	Reserved											
DBB4	Reserved											
DBB5	Reserved											
DBW6	Source ma	agazine num	ber for new	tool (INT)								
DBW8	Source loc	cation number	er for new to	ol (INT)								
DBW10	Reserved											
DBW12	Reserved											
DBW14	Reserved	Reserved										
DBW16	Reserved											

DB430043xx	Signals from	Signals from tool management [r]										
DBW18	Target mag	Target magazine number for old tool (INT)										
DBW20	Target loca	Target location number for old tool (INT)										
DBW22	Location type	Location type (INT)										
DBW24	Size left (IN	IT)										
DBW26	Size right (I	NT)										
DBW28	Reserved											
DBW30	Reserved											
DBB32				Tool status	for new tool							
				Master tool	To be loaded	To be unloaded	Blocked	Identifier for tool				
DBB33	Tool status for new tool											
	Tool has been in use	Tool fixed- location- coded	Tool being changed	Prewarnin g limit reached	Measuring tools	Tool disabled	Tool enabled	Active tool				
DBW34	New tool: Ir	nternal T nun	nber of NCK	(INT)								
DBW36	Reserved											
DBW38	Reserved											
DBW40	Reserved											
DBW42	Reserved											
DBW44	Free param	eter 1 (DWC	RD)									
DBW48	Free param	eter 2 (DWC	RD)									
DBW52	Free param	eter 3 (DWC	RD)									

Signal description:

• Job:

The interface contains a job. Job processing has not yet been completed with an end acknowledgment. This signal is reset after transmission of the end acknowledgment to the tool management.

- Fixed-location coded: The new tool is fixed-location-coded.
- Execute tool change:

The new tool is to be loaded into the tool holder/the spindle. The old tool is to be brought back to a magazine location. This job always requires an end acknowledgment.

Prepare a tool change:

Initialize new tools. If necessary, position magazine location for old tool at the changing point. This job requires an individual end acknowledgment. If there is a parallel job "Execute change," end acknowledgment for the preparation is not necessary.

• T0: T0 has been programmed (empty tool holder/spindle).

• No old tool:

Tool change into the previously empty tool holder/spindle.

Load manual tool:

A manual tool is to be loaded. The HMI displays the tool which is to be loaded.

Unload manual tool:

The tool is to be changed via manual operation.

Tool remains in spindle:

The bit is set at a change from tool holder \rightarrow spindle to tool holder \rightarrow spindle. Triggers can be, for example, reset start mode or block search.

• Source location for the new tool:

Magazine and location number from where the new tool comes (mostly a location in a real magazine).

• Target location for the old tool:

Magazine and location number to where the old tool is to be transported (mostly a location in a real magazine).

- Origin of the new tool:
 - Internal T number: Internal T number of the new tool
 - Tool status: Tool status of the new tool
 - Location type: Location type of the new tool
 - Size: Size (right, left, up, down) of the new tool
 - User-definable parameters: Three user-definable parameters which are transferred by the part program to the PLC user program.

Acknowledgments

DB4200 42xx	Signals to to	ool managem	ent [r/w]					
xx: Tool holder								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBB0	Acknowl- edgment step 7	Acknowl- edgment step 6	Acknowl- edgment step 5	Acknowl- edgment step 4	Acknowl- edgment step 3	Acknowl- edgment step 2	Acknowl- edgment step 1	Total acknowl-edgment
DBB1	Acknowl- edgment step 15	Acknowl- edgment step 14	Acknowl- edgment step 13	Acknowl- edgment step 12	Acknowl- edgment step 11	Acknowl- edgment step 10	Acknowl- edgment step 9	Acknowl- edgment step 8
DBB2	Acknowl- edgment step 23	Acknowl- edgment step 22	Acknowl- edgment step 21	Acknowl- edgment step 20	Acknowl- edgment step 19	Acknowl- edgment step 18	Acknowl- edgment step 17	Acknowl- edgment step 16
DBB3	Reserved	Acknowl- edgment step 30	Acknowl- edgment step 29	Acknowl- edgment step 28	Acknowl- edgment step 27	Acknowl- edgment step 26	Acknowl- edgment step 25	Acknowl- edgment step 24
DBB4	Reserved							
DBB5	Reserved							
DBB6	Reserved							
DBB7	Reserved							
DBB8	Reserved							
DBB9								Resetting the acknowledgment error

Signal description:

• Total acknowledgment:

At a 0/1 edge the end acknowledgment, with status 99, is sent to the current job (job complete, all target positions have been reached). As long as the signal is present, no changes may be made to the data of this interface!

This signal is reset by the PLC firmware after the acknowledgment has been transferred to the tool management.

• Acknowledgment step 1...30:

At a 0/1 edge, the appropriate acknowledgment step from the acknowledgment step table is sent to the tool management. As long as the signal is present, no changes may be made to the data of this interface and the variable transfer-step table!

This signal is reset by the PLC firmware after the acknowledgment has been transferred to the tool management.

Resetting the acknowledgment error:

Resetting the message Acknowledgment error (DB43xx.DBX100.1) and the diagnostic information in the feedback interface.

Feedback reports

DB430043xx	Signals from tool management [r]							
xx: Load location								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBB100							Acknowl- edgment error	Acknowl- edgment OK
DBB101	Reserved							
DBB102	Reserved							
DBB103	Reserved							
DBW104	Error status	s (WORD)						
DBB106	Reserved							
DBB107	Reserved							
DBB108	Acknowl- edgment step 7	Acknowl- edgment step 6	Acknowl- edgment step 5	Acknowl- edgment step 4	Acknowl- edgment step 3	Acknowl- edgment step 2	Acknowl- edgment step 1	Acknowl- edgment step 0
DBB109	Acknowl- edgment step 15	Acknowl- edgment step 14	Acknowl- edgment step 13	Acknowl- edgment step 12	Acknowl- edgment step 11	Acknowl- edgment step 10	Acknowl- edgment step 9	Acknowl- edgment step 8
DBB110	Acknowl- edgment step 23	Acknowl- edgment step 22	Acknowl- edgment step 21	Acknowl- edgment step 20	Acknowl- edgment step 19	Acknowl- edgment step 18	Acknowl- edgment step 17	Acknowl- edgment step 16
DBB111	Reserved	Acknowl- edgment step 30	Acknowl- edgment step 29	Acknowl- edgment step 28	Acknowl- edgment step 27	Acknowl- edgment step 26	Acknowl- edgment step 25	Acknowl- edgment step 24

Signal description:

Acknowledgment OK (DB43xx,DBX100.0): Positive feedback of acknowledgment status.

The acknowledgment of the PLC user program (area DB42xx.DBB0 to DBB3) was transferred without error to the tool management. This signal is reset after one PLC cycle.

Acknowledgment error (DB43xx.DBX100.1): Negative feedback of acknowledgment status.

There is an error in the acknowledgment of the PLC user program (area DB42xx.DBB0 to DBB3). The cause of the error is displayed in "Error status."

The "acknowledgment error" bit is only set if the acknowledgment from the PLC firmware is accepted as error free and the tool management detects and signals an error in the acknowledged tool transfer (for example, when the target location for tool transfer is occupied).

Errors that are detected directly by the tool management in the NC before an acknowledgment is sent by the PLC user program, do not result in the setting of bit 100.1.

If an error is present that prevents transfer of the acknowledgment to the tool management (error status 1 to 7), the error is only output on the interface of the tool management and not by the NC (no NC alarm!).

If necessary, signal such errors with a user PLC alarm in the PLC user program.

This signal remains pending statically until the error has been acknowledged (set the bit "Reset acknowledgment error" DB4200.DBX9.0) by the user. The interface in DB42xx.DBB0 to DBB3 is disabled if bit "acknowledgment error" is pending. Incoming acknowledgment bits are not evaluated by the PLC firmware and are also cleared when bit "Reset acknowledgment error" is set.

Error status:

If there is an error, the error status (DB43xx.DBB104) contains a diagnostic number unequal to zero.

Status	Meaning
0	No error
1	Multiple acknowledgment signals at the same time
2	Acknowledgment without job
3	Invalid transfer step number
4	There is no job for a position specification
5	The status does not permit a location change (acknowledgment status 0 is used)
7	An impermissible acknowledgment status has been used
Other values:	The number corresponds to the error message of the tool management in the NCK caused by this transfer.

The error status is reset by acknowledgment of the error by the user.

Map of acknowledgments (DB43xx.DBB108 to DBB111)

The acknowledgments last set by the PLC user program (DB42xx.DBB0 to DBB3) are set and reset by the PLC firmware together with the bits "Acknowledgment OK" or "Acknowledgment error." If there is an error, the user uses these statically pending bits to see which acknowledgment step triggered the error. If the PLC user program incorrectly set multiple acknowledgment bits, these are also entered one-to-one in the map.

Job status

DB4300 43xx	Signals	Signals from tool management [r]						
xx: Tool holder								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBW124	Current	magazine	number fo	or new too	ol (INT)			
DBW126	Current	t location n	umber for	new tool	(INT)			
DBW128	Target	Target magazine number for new tool (INT)						
DBW130	Target	location nu	ımber for n	ew tool (INT)			
DBW132	Current	Current magazine number for old tool (INT)						
DBW134	Current	Current location number for old tool (INT)						
DBW136	Target	Target magazine number for old tool (INT)						
DBW138	Target	location nu	ımber for o	ld tool (IN	NT)			

9.2.3 Transfer-step and acknowledgment-step tables

Configurable step tables

There are configurable tables available in the data blocks TM_CTS (DB9900), TM_VTS (DB9901) and TM_ACK (DB9902), which are used to describe the tool movement sequences.

Interface signal	Name	Meaning
DB9900	TM_CTS	Constant transfer-step table (configurable)
DB9901	TM_VTS	Variable transfer-step table (can be configured and written to from PLC user program)
DB9902	TM_ACK	Acknowledgment-step table (configurable)

The data blocks DB40xx, 41xx, 42xx and 43xx are system blocks and are created automatically by the control.

The data blocks DB9900, DB9901 and DB9902 are made available by the Programming Tool under Libraries/Special data blocks. The blocks are not yet filled with the necessary data. The user must copy them into the PLC project and edit them.

Transfer-step tables

The individual tool movements are defined as transfer steps – tool from magazine location x/y to magazine location m/n. Acknowledgment steps can be defined with these transfer steps. DB9900 contains permanently configured transfer steps (constant transfer-step table). DB 9901 can be changed by the PLC user program; for example, for acknowledging intermediate steps like magazine locations for tool change preparation (variable transfer-step table).

DB9900	Constar	Constant transfer-step table [r]						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBW0	Transfe	r step 1 Sou	ırce magaz	ine number	· (INT)			
DBW2	Transfe	r step 1 Sou	ırce locatio	n number (l	NT)			
DBW4	Transfe	r step 1 Tar	get magazi	ne number	(INT)			
DBW6	Transfe	r step 1 Tar	get location	n number (II	NT)			
DBW8	Transfe	r step 2 Sou	ırce magaz	ine number	(INT)			
DBW10	Transfe	r step 2 Sou	ırce locatio	n number (l	NT)			
DBW12	Transfe	r step 2 Tar	get magazi	ne number	(INT)			
DBW14	Transfe	Transfer step 2 Target location number (INT)						
DBW504	Transfer step 64 Source magazine number (INT)							
DBW506	Transfer step 64 Source location number (INT)							
DBW508	Transfer step 64 Target magazine number (INT)							
DBW510	Transfe	r step 64 Ta	arget location	on number ((INT)			

DB9901	Variable	Variable transfer-step table [rw]						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBW0	Transfer	step 101 S	Source mag	jazine num	ber (INT)			
DBW2	Transfer	ransfer step 101 Source location number (INT)						
DBW4	Transfe	Transfer step 101 Target magazine number (INT)						
DBW6	Transfei	Transfer step 101 Target location number (INT)						
DBB 8	Transfer	step 102 S	Source mag	jazine num	ber (INT)			
DBW10	Transfer	step 102 S	Source loca	tion number	er (INT)			
DBW12	Transfei	step 102 7	arget mag	azine numl	per (INT)			
DBW14	Transfe	step 102 7	arget locat	ion numbe	r (INT)			
DBW504	Transfei	step 164 S	Source mag	jazine num	ber (INT)			
DBW506	Transfe	Transfer step 164 Source location number (INT)						
DBW508	Transfei	Transfer step 164 Target magazine number (INT)						
DBW510	Transfei	step 164 7	arget locat	ion numbe	r (INT)		•	

Acknowledgment step table

Each entry indexes two transfer steps (for the new and old tool) and gives the corresponding status reached. The acknowledgment-step table in DB9902 is used jointly for acknowledgments on the interface of the loading point and on the interface of the tool holder.

DB9902	Acknowledgment-step table [r]							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBB0	Acknowled	dgment step	1 Transfe	r step for n	ew tool (B'	YTE)		
DBB1	Acknowled	dgment step	1 Transfe	r step for ol	d tool (BY	TE)		
DBB2	Acknowled	dgment step	1 Acknow	ledgment s	tatus (BY	ΓE)		
DBB3	Acknowled	dgment step	1 reserve	d				
DBB4	Acknowled	dgment step	2 Transfe	r step for n	ew tool (B	YTE)		
DBB5	Acknowled	dgment step	2 Transfe	r step for ol	d tool (BY	TE)		
DBB6	Acknowled	dgment step	2 Acknow	ledgment s	tatus (BY	ΓΕ)		
DBB7	Acknowled	dgment step	2 reserve	d				
DBB116	Acknowled	dgment step	30 Transf	er step for	new tool (I	BYTE)		
DBB117	Acknowled	Acknowledgment step 30 Transfer step for old tool (BYTE)						
DBB118	Acknowled	Acknowledgment step 30 Acknowledgment status (BYTE)						
DBB119	Acknowled	dgment ster	30 reserve	ed				

See also

PLC Program Blocks (Page 320)

9.3 Machine data for the tool management

Machine data (default setting)

The following machine data has already been preset for tool management or will be set with "default data" during booting: These settings can be changed as necessary.

MD number	Name	Value	
10715[0]	M_NO_FCT_CYLE	6	(M version)
10716[0]	M_NO_FCT_CYLCLE_NAME	L6	(M version)
10717	T_NO_FCT_CYLCLE_NAME	TCHANGE	(T version)
17500	MAXNUM_REPLACEMENT_TOOLS	0	
20124	TOOL_MANAGEMENT_TOOLHOLDER	1	
20270	CUTTING_EDGE_DEFAULT	1	
20310	TOOL_MANAGEMENT_MASK	181400F	(T version)
		180400F	(M version)
22550	TOOL_CHANGE_MODE	0	(T version)
		1	(M version)
22560	TOOL_CHANGE_MCODE	206	
22562	TOOL_CHANGE_ERROR_MODE	0	(for manual tool)

MD20270: \$MC_CUTTING_EDGE_DEFAULT

If no cutting edge is programmed after a tool change, the cutting edge number set in \$MC_CUTTING_EDGE_DEFAULT is used.

MD20270:	MD20270: \$MC_CUTTING_EDGE_DEFAULT					
	Basic setting of tool cutting edge without programming (DWORD)					
> 0	Number of the cutting edge that is selected with M206 Cutting edge selection is also active if followed by D programming.					
= 1	Default setting					
= 0	No cutting edge is initially active after a tool change. Any tool offset active before tool change is deselected (corresponds to D0!). Cutting edge selection only active with D programming.					
= -1	Tool edge number of old tool also applies to new tool.					
= -2	Tool edge offset of old tool remains active until D is programmed.					

The setting in MD20270 affects the block preparation of the NC. To prevent preprocessing stop from occurring when tool change command is called until it is acknowledged again, perform NC functions without tool offset in the tool change subprogram, for example, traversing axes or output of auxiliary functions.

Example:

Requirement: MD20270: CUTTING_EDGE_DEFAULT= 0 or = -2

After the tool change command M206 the axes can continue travel without having to wait for the tool change acknowledgment and execute traversing blocks without tool compensation. Travel only stops in a block with compensation selected (D no.) until end of tool change is signaled by the PLC.

Sequence in the part program:

```
N10 T="Drill18"
                          ; Tool change preparation
                          ; Tool change subprogram called
Tool change subprogram L6:
N10 M206
                          ; Tool change
N20 D0
                          : Compensation deselected
N40 Y150 M79
                          ; Traverse machine axes
N50 G01 D1 X10
                          ; Activate tool compensation.
                          ; Check whether tool has been changed.
                          ; Preprocessing stop is maintained until tool change
                          preparation is completed. The main run waits at N50 (D1)
                          until tool change has been executed and acknowledged.
```

MD20310: \$MC_TOOL_MANAGEMENT_MASK

Settings:

MD2031	MD20310: \$MC_TOOL_MANAGEMENT_MASK						
Activating the tool management functions							
T and M	T and M version:						
Bit 0	= 1	Tool management active:					
		The functions of tool management are enabled for the current channel.					
Bit 1	= 1	Monitoring functions of tool management active:					
		The functions for monitoring tools (tool life and workpiece count) are enabled.					
Bit 2	= 1	OEM functions active					
Bit 3	= 1	Adjacent location consideration active					
Bit 14	= 1	Tool and offset selection according to the settings in:					
		MD20110 \$MC_RESET_MODE_MASK					
		MD20112 \$MC_START_MODE_MASK					
Bit 23	= 1	With offset selection no synchronization with main run.					

MD20310	MD20310: \$MC_TOOL_MANAGEMENT_MASK						
Bit 24	= 1	An asynchronous transfer which moves a tool to a location reserved for another tool with "reserved for tool from buffer" is possible.					
		This location reservation is then removed before the movement is executed ("Reserved for new tool to be loaded" (bit value="H8") remains effective).					
Additionally only for T version:							
Bit 16	= 1	T location number is active					

If a locked tool is at the programmed location, the location of a replacement tool (if available) is output as job from the tool management when the option "Spare tools for tool management" option is set.

Channel MD52270: \$MCS_TM_FUNCTION_MASK

Settings:

SD52270:	SD52270: \$MCS_TM_FUNCTION_MASK					
	Tool management function mask					
Bit 0:	Creating tool at the magazine location is not permitted.					
	Tools can only be created outside of the magazine.					
Bit 1:	Load/unload lock, if the machine is not in the reset state.					
	Tools can only be loaded/unloaded when the relevant channel is in the reset state.					
Bit 2:	Load/unload lock for EMERGENCY STOP.					
	Tools can only be loaded/unloaded when EMERGENCY STOP is not active.					
Bit 3:	Tool in/out of spindle load/unload locked.					
	Tools cannot be loaded to or unloaded from the spindle.					
Bit 4:	Loading is performed directly into the spindle.					
	Tools are only loaded directly into the spindle.					
Bit 5:	Reserved					
Bit 6:	Reserved					
Bit 7:	Create tool using the T number.					
	The T number of the tool must be entered when creating a tool.					
Bit 8:	Hide tool relocation.					
	The "Relocate tool" function is hidden in the user interface.					
Bit 9:	Hide magazine positioning.					
	The "Position magazine" function is hidden in the user interface.					
Bit 10:	Reactivate tool with magazine positioning.					
	Before Reactivate, the tool is positioned at the loading point.					
Bit 11:	Reactivate tool in all monitoring types.					
	When reactivating a tool, all the monitoring types for this tool enabled in the NC are reactivated. I.e. also the monitoring types that are not set for the relevant tool, but are only in the background.					
Bit 12:	Hide reactivating tool.					
	The "Reactivate tool" function is hidden in the user interface.					

Settings on the HMI

The settings for the tool management dialogs on the HMI are made in general setting data 54215:

SD54215: \$SNS_TM_FUNCTION_MASK_SET							
	Tool management function mask						
Bit 0:	Diameter display for rotating tools.						
	For rotating tools, the diameter is displayed and not the radius.						
Bit 1:	M4 is the default direction of rotation for all turning tools.						
	When creating turning tools, the direction of rotation is pre-assigned with M4.						
Bit 2:	Create tool without name suggestion.						
Bit 3:	Input lock, tool name and tool type for loaded tools.						
	For loaded tools, the tool name and the tool type can no longer be changed.						
Bit 4:	Input lock for loaded tools if the channel is not in the reset state.						
Bit 5:	Calculate by adding tool wear entries.						
	Wear data is entered in addition to the already existing wear value.						
Bit 6:	Numerical input of the tool identification.						
	Only numbers are permitted for the input of the tool identification.						
Bit 7:	Hide tool monitoring parameters.						
	The tool monitoring parameters are hidden in the user interface.						
Bit 8:	Diameter display for face axis → Geometry.						
	The geometry value of the face axis is displayed as diameter value.						
Bit 9:	Diameter display for face axis → Wear.						
	The wear value of the face axis is displayed as diameter value.						
Bit 10:	Enable tool load/relocate to buffer storage locations.						
	The magazine number can be entered into the "Load" dialog. It is therefore possible to access the buffer storage via magazine number 9998.						

Default setting for milling technology

The default settings of the following machine data for the milling technology are intended to replace the M6 command function. If M6 is programmed in the part program, the execution is always in two separate steps (block splitting).

```
G91 F500 X... M06 M73 ... The NC splits this block into a. G91 F500 X... M73 ...
```

b. $M06 \rightarrow M6$ branches into the subprogram L6

```
MD22560: $MC_TOOL_CHANGE_M_CODE = 206
MD10715: $MN_M_NO_FCT_CYCLE [0] = 6
MD10716: $MN_M_NO_FCT_CYCLE_NAME[0] = L6
```

The advantage of block splitting is fast acknowledgment of the tool change preparation without interrupting the main run of the NC, and the tool change subprogram call in which the NC steps for the tool change procedure are carried out (approach change position, put the spindle into position etc...). The "Prepare tool change" and "Execute tool change" jobs are issued in succession at the user interface, and each must be acknowledged individually. The user interface always behaves identically, irrespective of whether T and M6 are programmed in one block or successively in different blocks. The chronological sequence is shorter than for simultaneous acknowledgment of "Prepare tool change" and "Execute tool change" (with T and M6 in one block).

Note

The sequence with block splitting should be adhered to as far as is possible.

If **no block splitting** is to be used, when programming Txx and M206 in a single block make sure that the jobs for prepare tool change and execute tool change are output simultaneously at the interface and are acknowledged with a common end acknowledgment.

Sequence with M6 function replacement in the part program:

```
T = "TOOL NAME"; ; starts the "prepare tool change" job (magazine positioning)

M6 ; M6 is used to call up the tool change subprogram L6

; Minimum content of L6:

M206 The tool change command stops block search, wait for tool change acknowledgment.

Valid for default setting:

$MC_CUTTING_EDGE_DEFAULT= 1

M17

; Subprogram is continued:
```

Default setting for turning technology

Two machine data items determine the function for turning technology:

MD22550: \$MC_TOOL_CHANGE_MODE = 0

Setting for a revolver magazine: The new tool is changed immediately with the T function. No additional M command is used. No distinction is made between Prepare tool change and Execute tool change.

The function "Manual tools" is not enabled for this case.

MD20310: \$MC_TOOL_MANAGEMENT_MASK = 81400F (bit 16=1)

Bit 16 is used to set the tool programming type:

T = "x" with x as tool identifier

Tx, with x as location number of the magazine containing the tool used for machining.

When the function is active, T1 selects the tool in location number 1 instead of the tool with identifier "1". Then the identifier of the tool in this location is ascertained (e.g. "FINISHING TOOL") The subsequent procedure is as if T="FINISHING_TOOL" had been programmed.

If T = location number, no tool need actually be stored in the location.

MD10717: \$MN_T_NO_FCT_CYCLE_NAME = TCHANGE

Name of tool change cycle for T function replacement.

For a description, refer to the Chapter Example: Tool change cycle for turning machine (Page 348)

Replace tool call

Replace tool call irrespective of status and with selection of duplo and toolholder number (TCA):

It is necessary for certain applications (e.g. measuring cycle) to load a specific tool into the spindle or the toolholder regardless of its status (e.g. a disabled tool). The cycle defined in MD10717 and run through with the T call, is not started with the TCA command. To ensure that a T function replacement cycle starts when TCA is programmed, the language command TCA must be redefined in _TCA. In this way it is also possible to start a TCA.SPF manufacturer cycle analogous to the TCHANGE.SPF cycle, in which the actual tool call is implemented.

An example can be found in Chapter Example: Tool change cycle for TCA command (Page 350)

Configuring the magazine

The magazine configuration can be created either with the start-up tool or with a configuration program. The configuration program is selected and started as a normal part program.

An NC POWER ON is needed after changing the magazine configuration. The changed configuration is shown on the HMI only after restarting the NC.

See also

Detailed description of the interface signals in: SINUMERIK 828D Parameter Manual Examples:

- Configuration of a chain magazine with a dual gripper (Page 354)
- Configuration of a revolver magazine (Page 342)

The program is also to be found on the Toolbox CD.

9.4 PLC Program Blocks

9.4.1 Acknowledgment process

Information to tool management

The tool management expects acknowledgment of its orders in order to track and carry the actual tool positions. At least one acknowledgment is required for each order. This is sufficient for many applications.

Acknowledgment takes place either via the table defined in DB9902, or in one step with the total acknowledgment (DB40xx/42xx DBX0.0) after a completely finished tool management order using a 0/1 edge (set) of the corresponding bits in the user interface.

As long as the acknowledgment signal is present, no changes may be made to the data of this interface! This signal is reset by the PLC firmware after the acknowledgment has been transmitted to the tool management. In certain circumstances resetting may take place after several PLC cycles.

There are further advantages if the tool management is also informed of intermediate positions:

• Information about intermediate positions:

If the intermediate tool positions are known in the tool management, the allocation of the buffer magazine may be queried. This makes powering up easier after switching off and on again or after canceling a command (e.g. via reset). If the tool currently being changed is needed again immediately, it can be loaded back into the spindle from a buffer location without loading it into the magazine first.

Information about magazine positions:

If the tool management knows at which magazine location there is a transfer point (changing point for the spindle, loading point), it can determine the shortest paths in the magazine for finding an empty location or for selecting a new tool. During orders the tool management can usually recognize the magazine position from intermediate acknowledgments (e.g. tool transfer between the real magazine and the buffer) or from the end acknowledgment (e.g. "magazine positioning" order complete). If the magazine is positioned by the PLC user program itself (e.g. by means of HMI or machine keys) without a tool management order, this must be communicated to the tool management via synchronous signals.

9.4.2 Types of acknowledgment

Tool and magazine movements

The tool management distinguishes between synchronous acknowledgment and an asynchronous job-independent message.

Synchronous acknowledgment

• Acknowledgment of the intermediate steps of a job (tool management registers the current position changes of tools, part program must wait).

The tool management is informed of intermediate steps of a job by an intermediate acknowledgment. In intermediate acknowledgments, only the target position of the intermediate step is relevant. The source position is known from the job or the last intermediate acknowledgment. During a tool change, two tools (new and old) can also be acknowledged simultaneously. Intermediate acknowledgments are only possible **before** the end acknowledgment.

• End acknowledgment of a job (part program can be continued)

An end acknowledgment is necessary for every job. The end acknowledgment allows the part program to continue and frees up the job interface for new jobs. It should take place as soon as possible (e.g. as soon as the new tool is in the spindle and a collision is no longer expected). The tool management can be informed asynchronously of further steps after the end acknowledgment of a job (e.g. the return path of the old tool into the magazine).

Asynchronous job-independent message

Position change of a tool or magazine ("asynchronous message", e.g. when the PLC changes a tool position via machine control panel operation without tool change job).

An asynchronous message can be used to inform the tool management of a tool or magazine movement, independently of a job. An asynchronous message must always contain a source position (from) **and** target position (to).

Tool movements within a magazine (relocate tool) can only be carried out with magazine locations which are actually occupied. Empty transfers are not permissible. Two asynchronous transfers can be implemented in a single message. In this case the interface must be used for tool change DB42xx.

Effect of acknowledgments

Effect of acknowledgments on the job and the part program:

- Intermediate and end acknowledgment take place synchronously with the job.
 - The part program must wait.
 - No new job can come yet.
- Message of an asynchronous transfer:
 - The part program continues to run.
 - The message is completely independent of any job.

9.4.3 Acknowledgment states

Acknowledgment states and their meaning

The status indicated by the respective type of acknowledgment is shown in the following table:

Acknowledgment		Meaning						
Synchronous end	1	Job finished at the specified position:						
acknowledgment		The tools are in the positions specified. The part program can be continued.						
	3	Job canceled:						
		The job is canceled, previously acknowledged tool position changes will be kept. The cancel command itself does not trigger any position acknowledgments or changes in the tool management.						
	6	End acknowledgment for "Move tool" from the real magazine to a buffer (gripper, spindle) with reservation of the old location in the magazine for this tool. Same meaning as status 1.						
	7	Repeat "prepare tool change" job:						
		The tool change was informed of a new tool position in advance. The "prepare tool change" job is to be recalculated with this position. This is permissible only for preparation commands which have not yet been acknowledged.						
	99	Total acknowledgment: Job complete, all positions reached.						
		All the tools concerned are in the positions specified in the job. The part program can be continued. All target positions from the job have been reached.						
Synchronous	105	Intermediate position for tool:						
intermediate acknowledgment		The tools are moved from the source position specified in the job, or from the last acknowledged intermediate position, to the specified target position.						
Communicating an	201	Communicate tool movement:						
asynchronous transfer		The tool is moved from the source position to the specified target position. When moving from a location in a real magazine to an intermediate buffer location, the source location is reserved for the tool.						
	204	Communicate magazine position:						
		The magazine location is in the change/load/unload point of the specified target location.						

Overview of evaluated table parameters

Acknowledgment status		1	3	6	7	99	105	201	204
New tool	Transfer step	Х	-	Х	-	-	Х	Х	Х
	from magazine	-	-	-	-	-	-	xx	xx
	from location	-	-	-	-	-	-	xx	xx
	to magazine	xx	-	xx	-	-	XX	xx	ZZ
	to location	xx	-	xx	-	-	xx	xx	ZZ
Old tool	Transfer step	Х	-	-	-	ı	Х	Х	-
	from magazine	-	-	-	-	-	-	xx	-
	from location	-	-	-	-	-	-	xx	-
	to magazine	XX	-	-	-	-	xx	xx	-
	to location	xx	-	-	-	-	xx	xx	-

Legend:

- Date not relevant
- x Number (1...n) of the transfer step from the transfer-step table
- xx Magazine number, location number of the tool
- zz Magazine number, location number of the load/unload or changing point

The status overview issues the following information:

- Depending on their meaning, the states 1, 6, 105, 201 and 204 should be combined in the acknowledgment table with the transfer steps to make useful acknowledgment steps.
- If status 1 is coded with both transfer step numbers = 0, this acknowledgment step serves as an end acknowledgment of the current status reached via intermediate acknowledgments.
- If a tool has been moved for a real magazine to a buffer (relocate, MVTOOL), acknowledgment with status 6 or total acknowledgment reserves the source location for this tool (\$TC_MPP4 bit 1 and bit 2). The behavior is the same as for the removal of a tool from the magazine during tool change. With status 1, there is no reservation of the source location during relocation or MVTOOL.
- Statuses 3 and 7 need only to be coded once in the acknowledgment-step table, as no transfers steps are evaluated.
- Status 99 does not need to be coded, it is specified by the "total acknowledgment" bit.

Typical sequence of any job with total acknowledgment

Signal description:

- ① The PLC user program recognizes from the 0/1 edge of the signal DB43xx.DBX0.0 (job) that a new job has been assigned by the tool management.
- The PLC user program sets the acknowledgment signal in DB42xx.DBX0.0 (total acknowledgment). With activation of the 0/1 edge, the PLC firmware starts transferring the acknowledgment to the tool management.
- 3 After successful transmission of the acknowledgment to the tool management, the PLC firmware sets a PLC cycle to 1 for the signal "acknowledgment OK" and at the same time the job signal and the acknowledgment bit are reset to 0.

Typical sequence of any job with total acknowledgment and end acknowledgment

Signal description:

- ① The PLC user program recognizes from the 0/1 edge of the signal DB43xx.DBX0.0 (job) that a new job has been assigned by the tool management.
- The PLC user program acknowledges the transfer steps configured in DB9900, DB9901, and DB9902 with an acknowledgment status 105 or as an asynchronous transfer. The positions of the tools are updated using the transfer steps of the acknowledgments from the tool management.
- The execution of the job is acknowledged by the PLC user program with acknowledgment status 1. After successful transmission of the acknowledgment to the tool management, the PLC firmware sets a PLC cycle to 1 for the signal "acknowledgment OK" and at the same time the job signal and the acknowledgment bit are reset to 0.

Sequence of the tool management with block splitting (machine data setting milling)

Txx M6 ;

Program L6 is called with M6 (basic setting)

Signal description:

- The PLC user program receives a new job. The job "prepare tool change" and the job "execute tool change" are issued one after the other. Txx and M206 have been programmed in separate NC blocks. Only the job "prepare tool change" is present on the interface in DB43xx. The job "execute tool change" is output only after the end acknowledgment for the job for tool preparation.
- ② Bit DB43xx.DBX0.0 (job) is reset with acknowledgment of the "prepare tool change" job. If the change command (M206) has already run through the NC main run, the new job is immediately output at the interface.
- The "execute tool change" job is acknowledged as a normal job. The end acknowledgment OK is returned and the bit for the job is simultaneously reset.
 - The description of the job ("execute tool change" and "prepare tool change") is not reset. Byte 1 of DB43xx is not overwritten until the next job.

Note

MD20270, MD20310:

The response of the interface in DB43xx.DBB1 and of NC block processing is affected by the setting in MD20270: \$MC_CUTTING_EDGE_DEFAULT and MD20310: \$MC_TOOL_MANAGEMENT_MASK bit 5, 6, 7, and 8.

This sequence described here corresponds to the presetting of the machine data.

Sequence of the tool management without block splitting (machine data setting milling)

Txx Myy ;

Myy is the setting from MD22560: \$MC_TOOL_CHANGE_M_CODE

This type of programming is not recommended!

Signal description:

- The PLC user program receives a new job. The job "prepare tool change" and the job "execute tool change" are issued simultaneously. Txx and M206 have been programmed in one NC block.
- Several intermediate steps are acknowledged. The state of the job remains unchanged. The positions of the tools are updated using the transfer steps of the acknowledgments from the tool management.
- The end acknowledgment OK is returned and the bit for the job is simultaneously reset.
 The description of the job ("execute tool change" and "prepare tool change") is not reset. Byte 1 of DB43xx is not overwritten until the next job.

Note

MD20310: \$MC_TOOL_MANAGEMENT_MASK

The response of the interface in DB43xx.DBB1 is affected by the setting in MD20310 bit 10. This sequence described here corresponds to the presetting of the machine data.

9.4.4 Configuring step tables

Configuring step tables

You can find the transfer-step tables (TM_CTS, DB9900 and TM_VTS, DB9901) and the acknowledgment-step table (TM_ACK, DB9902) in the Programming Tool under "Libraries" → "Special data blocks". The blocks are copied into a project with a double-click.

The structure of the data blocks is permanently fixed.

The blocks are not yet filled with the necessary data. The user must edit them in the Programming Tool, via the menu "View" → "Data block". The constant tables (TM_CTS, DB9900 and TM_ACK, DB9902) are configured by writing the initial data block values in the Programming Tool.

The initial data block values are loaded into the control, along with the PLC user program. Changed initial values are not activated until the PLC is restarted!

Configuring the transfer steps

Any changes to the tool and magazine positions must be communicated to the tool management by the PLC user program. A table of all mechanical single movements which should be acknowledged/communicated helps with this. For each tool transfer, the table contains the corresponding tool start and target position, or for positioning a magazine location at a transfer point (change, load, unload point), the magazine position and the name of the transfer point.

- The transfer steps 1 ... 64 are permanently configured in TM_CTS (DB9900) and can be changed only by reloading.
- The transfer steps 101 ... 164 in TM_VTS (DB9901) can be completely or partially overwritten by the PLC user program (e.g. by entering the current magazine location).

Coding for position from a job

In the constant transfer-step table, the locations of real magazines are not identified by their actual values (e. g. 1/14 for magazine 1 location 14) but with symbolic values (0/1) or (0/2). Otherwise the transfer-step table would be huge for large magazines.

These symbolic values have the following meaning:

Magazine/Location	Meaning
(0/1)	The source position of the only or new tool from the job should be used.
(0/2)	The target position of the old tool from the job should be used.
(0/3)	The target position of the only tool or new tool from the job should be used.

9.4 PLC Program Blocks

This symbolic notation form can only be used for synchronous intermediate and end acknowledgments, since asynchronous messages do not have a job as a reference.

Example: Constant transfer-step table

Transfer step	Address DB9900	Name	Start value	Comment
1	0.0	SrcMag_1	0	Source magazine number of the transfer step
	2.0	SrcPos_1	1	Source position number of the transfer step
	4.0	DstMag_1	0	Target magazine number of the transfer step
	6.0	DstPos_1	1	Target position number of the transfer step
2	8.0	SrcMag_2	0	Source magazine number of the transfer step
	10.0	SrcPos_2	1	Source position number of the transfer step
	12.0	DstMag_2	9998	Target magazine number of the transfer step
	14.0	DstPos_2	2	Target position number of the transfer step

Example as a complete step

Transfer step	from		to		Comment
	Magazine	Location	Magazine	Location	
1	0	1	0	1	Prepare Tool: The magazine is positioned at the changing point of the new tool.
2	0	1	9998	2	Tool change: Tool from magazine to gripper 1
3	9998	1	9998	3	Tool change: Tool from spindle to gripper 2
4	9998	2	9998	1	Tool change: Tool from gripper 1 to spindle
5	9998	3	0	2	Tool change: Tool from gripper 2 to magazine

Example: Variable transfer-step table

Transfer step	Address DB9901	Name	Start value	Comment
101	0.0	SrcMag_101	1	Source magazine number of the transfer step
	2.0	SrcPos_101	0	Source position number of the transfer step
	4.0	DstMag_101	9998	Target magazine number of the transfer step
	6.0	DstPos_101	1	Target position number of the transfer step
102	8.0	SrcMag_102	1	Source magazine number of the transfer step
	10.0	SrcPos_102	0	Source position number of the transfer step
	12.0	DstMag_102	9998	Target magazine number of the transfer step
	14.0	DstPos_102	2	Target position number of the transfer step

Example as a complete step

Transfer step	from		to		Comment
	Magazine	Location	Magazine	Location	
101	1	0	9998	1	"Prepare tool change": The magazine is positioned at the changing point. The source position must be entered by the PLC user program.
102	1	0	9998	2	"Prepare tool change": Tool from magazine to buffer. The source position must be entered by the PLC user program.

9.4.5 Configuring acknowledgment steps

Configuring the acknowledgment steps

The PLC 31 provides acknowledgment steps to acknowledge tool and magazine movements. These are activated via the corresponding bits on the user interface. The data of these acknowledgment steps (with the exception of special case acknowledgment step 9: total acknowledgment) are stored in acknowledgment step table TM_ACK (DB9902). The transfer steps (number of the transfer step from the transfer step table) for the old and new tool and an acknowledgment status are combined in one acknowledgment status.

It is important to include an acknowledgment step with the status 3 in this table, so that potential errors can be reset. The numbers for the transfer in this acknowledgment step are 0.

Special meaning of transfer step 0

Only the transfer steps assigned to the acknowledgment step are executed. If only one or no transfer step is assigned, no tool transfer will be carried out for the tool with transfer step = 0. The tool is not available or remains at its original location.

Example: Acknowledgment step table

Acknowledg- ment step	Address DB9902	Name	Start value	Comment
1	0.0	TsNewT_1	0	Transfer step number of the new tool
	1.0	TsOldT_1	0	Transfer step number of the old tool
	2.0	State_1	3	Status to NCK
2	4.0	TsNewT_2	1	Transfer step number of the new tool
	5.0	TsOldT_2	0	Transfer step number of the old tool
	6.0	State_2	1	Status to NCK

Example as a complete step

Acknowledg-	Transf	Transfer step Acknowle		Comment
ment step	New tool	old tool	ment status	
1	0	0	3	"Cancel order" command.
2	2	0	1	Prepare Tool: The tool is taken from the magazine (changing point) and placed into gripper 1.

Acknowledgment is given by setting the corresponding bits in the user interface:

- DB40xx for loading/unloading/relocating or positioning the magazine
- DB42xx for "prepare tool change" and "execute tool change"

After processing, the acknowledgment bit is reset one PLC cycle by the PLC firmware.

In the same data block where the acknowledgments have taken place, for a PLC cycle the feedback message is output in bit 100.0 (acknowledgment OK), or as a static signal in bit 100.1 (acknowledgment error); the error status is output in byte 104 for an acknowledgment error, and in bytes DBB108 to DBB111 the acknowledgment bits last set are output. The user can use these bits to see which acknowledgment step triggered the error. If the PLC user program incorrectly set multiple acknowledgment bits, these are also entered one-to-one in the map. Resetting of the error status occurs when the user acknowledges the error in DB40xx.DBX9.0 or DB42xx.DBX9.0.

9.4.6 Adjust the PLC user program

Adjust the PLC user program

The control of mechanical processes, monitoring and prevention of potential collisions and the acknowledgment of tool position changes are the task of the PLC user program.

See also

In the PLC project on the Toolbox CD you can find examples of transfer steps and their acknowledgments, for a turning machine with a circular magazine and a milling machine with a chain magazine and dual gripper:

- Application example for milling machine (Page 354)
- Application example for turning machine (Page 342)

These blocks are function examples for the acknowledgment of different tool management jobs.

Acknowledging jobs

Many tool movements or tool management jobs can be directly acknowledged using total acknowledgment at bit 0.0 of the interface, without previous intermediate acknowledgment.

For example:

- Turns of a circular magazine
- Loading/unloading (only for systems without additional buffers such as handling systems, loaders, etc.)
- Changing manual tools
- Positioning a magazine

Rules for acknowledgment

If intermediate steps are useful, several rules must be observed during acknowledgment:

The PLC user program must ensure that all acknowledgments are transferred correctly to the tool management.

- Only one acknowledgment signal at a time may be sent to the tool management.
- Synchronous acknowledgments are permissible only for the pending job
- Only valid transfer-step numbers may be used (1 64, 100 164). For asynchronous messages, at least one transfer step must be input for status 201, for status 204 a transfer step for the new tool must be input.
- Coded positions in the transfer steps may only be used for synchronous acknowledgments and only with the values 0/1, 0/2 or 0/3.
- No illegal acknowledgment states may be used.
- Magazine positioning with a job may only receive a synchronous acknowledgment (end acknowledgment). Intermediate positions must be reported to the tool management with asynchronous messages.
- Acknowledgment signals must be reset by the PLC basic program. After an acknowledgment bit is set, the user interface may not be changed until the feedback message in DB41xx/DB43xx DBB100!
- Asynchronous messages with two transfer steps must be acknowledged on the tool change interface (DB42xx).

9.4.7 Information on magazine location

Overview

It is possible to read up to eight NC variables in one job using the existing NC services interface (DB1200).

Location type \$TC_MPP2 with variables index 7

Parameter assignment:

Read variable from the NCK	Address	Signal	Valid values
Job	DB1200.DBX0.0	Start	0/1
	DB1200.DBX0.1	Write variable	0
	DB1200.DBB1	Number of variables	1 8
Parameter	DB120x.DBW1000	Variables index	7
	DB120x.DBW1002	Location number	1 31999
	DB120x.DBW1004	Magazine number	1 9999
Result	DB1200.DBX2000.0	Job completed	0/1
	DB1200.DBX2000.1	Error in job	0/1
	DB120x.DBX3000.0	Variable is valid	0/1

Read variable from the NCK	Address	Signal	Valid values
	DB120x.DBB3001	Access result	0/3/5/10
	DB120x.DBW3004	Data from NCK variable	n

Legend:

n > 0: Location type for virtual location

n = 0: "match all" (buffer)

n = 9999: undefined (no virtual location)

Location type \$TC_MPP4 with variables index 8

Parameter assignment:

Read variable from the NCK	Address	Signal	Valid values
Job	DB1200.DBX0.0	Start	0/1
	DB1200.DBX0.1	Write variable	0
	DB1200.DBB1	Number of variables	1 8
Parameter	DB120x.DBW1000	Variables index	8
	DB120x.DBW1002	Location number	1 31999
	DB120x.DBW1004	Magazine number	1 9999
Result	DB1200.DBX2000.0	Job completed	0/1
	DB1200.DBX2000.1	Error in job	0/1
	DB120x.DBX3000.0	Variable is valid	0/1
	DB120x.DBB3001	Access result	0/3/5/10
	DB120x.DBW3004	Data from NCK variable	n

Legend:

n = 2	free (<> occupied)
n = 4	reserved for tool in buffer
n = 8	reserved for tool to be loaded
n = 16	occupied in left half location
n = 32	occupied in right half location
n = 64	occupied in upper half location
n = 128	occupied in lower half location

Location type \$TC_MPP6 with variables index 9

Parameter assignment:

Read variable from the NCK	Address	Signal	Valid values	
Job	DB1200.DBX0.0	Start	0/1	
	DB1200.DBX0.1	Write variable	0	
	DB1200.DBB1	Number of variables	1 8	
Parameter	DB120x.DBW1000	Variables index	9	
	DB120x.DBW1002	Location number	1 31999	
	DB120x.DBW1004	Magazine number	1 9999	
Result	DB1200.DBX2000.0	Job completed	0/1	
	DB1200.DBX2000.1	Error in job	0/1	
	DB120x.DBX3000.0	Variable is valid	0/1	
	DB120x.DBB3001	Access result	0/3/5/10	
	DB120x.DBW3004	Data from NCK variable	n	
	n = T number of the tool on the parameterized location			

Error (for all location types)

In case of error, DB120x.DBX3000.0 = 0 and an entry is made in the access result:

Values in	Values in DB120x.DBB3001			
0	No error			
3	Illegal access to object			
5	Invalid address			
10	Object does not exist			

9.4.8 PI service: TMMVTL

Function

With PI service TMMVTL, it is possible to initiate a job to relocate a tool from the PLC. After an error-free "PI Start," the tool management performs an empty location search in the target magazine for the tool on the defined source location. Subsequently the PLC receives a job for relocating the tool (user interface DB41xx.DBB0). The target magazine must be a real magazine.

Parameter assignment

Starting program instance services in the NCK area:

PI service	Address	Signal	Valid values
Job	DB1200.DBX4000.0	Start	0/1
	DB1200.DBB4001	PI index	5
Parameter	DB1200.DBW4004	Tool number (internal T number)	1 31999
	DB1200.DBW4006	Source location number	1 31999
	DB1200.DBW4008	Source magazine number	1 31999
	DB1200.DBW4010	Target location number	-1
	DB1200.DBW4012	Target magazine number	1 32000
Result	DB1200.DBX5000.0	Job completed	0/1
	DB1200.DBX5000.1	Error in job	0/1

Application

Examples:

- When using buffers to return the tool (for example Toolboy and/or shifter), an explicit
 empty location search in the magazine may be needed during the asynchronous return
 transport. In this case the PLC does not have to note the original location, the PI service
 searches for a suitable location.
- A tool is to be moved from a background magazine to the front magazine.

9.5 Example: Loading/unloading

Programming

For loading, tools are placed directly in the magazine or the spindle; for unloading, they are removed directly from the magazine. Normally, a single acknowledgment from the operator or the PLC user program (tool holder is closed again) is sufficient as a message that the process is complete. There is no need to configure a transfer step. The total acknowledgment can be set in DB40xx.DBX0.0.

Acknowledgment to tool management:

Acknowledgment step	Acknowledgment bit	Transfer step new tool	Transfer step old tool	Status
xxx	DB4000.DBX0.0			(99)

Figure 9-2 Programming in PLC user program

Loading procedures using handling systems or transporting the tool from the spindle into the magazine can be performed using further asynchronous messages.

Different loading sequences are described below:

Loading via the spindle with preselection of a magazine location

You can create a new tool directly on the chosen free magazine location or, using the "load" dialog, move a tool from the tool list, which is not located in the magazine, to a magazine location.

- 1. A job from the tool management is always output at the interface for the loading point. You must acknowledge this job.
- 2. Then move this tool, which is not yet positioned in the magazine, into the spindle with Txx M6 or via an asynchronous transfer.
- 3. Then manually place the tool into the spindle and deposit it in the magazine with T0 M6.

The procedure is **always** possible irrespective of whether manual tools are allowed. If manual tools are permitted, this sequence of operations must always be observed when loading via the spindle.

The tools can be oversized or fixed-location coded.

Loading via the spindle with preselection of a magazine location

You can create a new tool directly on the spindle or, using the "load" dialog, move a tool from the tool list, which is not located in the magazine, to the spindle.

- 1. A job from the tool management is always output at the interface for the loading point. You must acknowledge this job.
- 2. Then manually place the tool into the spindle and deposit it in the magazine with T0 M6. A free location is selected by the tool management in which the tool can be deposited.

This sequence is only possible if the manual tools function is not set MD22562: \$MC_TOOL_CHANGE_ERROR_MODE Bit 1=0 (default setting).

The tools can be oversized or fixed-location coded.

Loading directly into the magazine

Position the relevant magazine location next to the loading position. You can create a new tool directly on the chosen free magazine location or, using the "load" dialog, move a tool from the tool list, which is not located in the magazine, to the selected magazine location.

- 1. A job from the tool management is always output at the interface for the loading point. You must acknowledge this job.
- 2. Now place the tool in the magazine.

This sequence is not subject to any restrictions or constraints.

9.6 Example: Change manual tools

Programming

In MD22562: \$MC_TOOL_CHANGE_ERROR_MODE Bit 1=1, additional tools without magazine allocation have been selected by the NC part program. The selected tool must be inserted in the machine manually and removed again manually after machining ("manual tools").

The operator must ensure that the data block for the tool on the spindle is in the NCK, or that he/she puts the appropriate tool onto the spindle for the data block stored in the NCK.

Note

The responsibility is on the user to comply with the safety regulations via the PLC user program.

The PLC user program is informed with DB43xx.DBX1.5 and DBX1.6 whether a manual tool is involved in a tool change job. With alarm 17212: "Channel %1, Manual tool %2, Duplo No. %3, Load to toolholder %4" or Alarm 17214. "Remove manual tool from spindle/tool holder," the operator is requested to execute the tool change.

The alarms are reset after a tool change by the acknowledgment from the PLC.

Starting position 1

The manual tool in the spindle should be exchanged for another manual tool

Job from tool management to the PLC user program (tool change):

DB4300.DBX0.0, DBX1.2, DBX1.5 and DBX1.6 ("Prepare tool change")

DB43xx.DBW6	Source magazine number	9999
DB43xx.DBW8	Source location number	1
DB43xx.DBW10	Target magazine number	9999
DB43xx.DBW12	Target location number	1

Acknowledgment "Prepare tool change":

Acknowledgment step	Acknowledgment bit	Transfer step for the new tool	Transfer step for the old tool	Status
xxx	DB4200.DBXx.x	0	0	1

Displayed on the interface:

DB4300.DBX0.0 /1.1, DBX1.5 and DBX1.6 ("Execute")

The job remains otherwise unchanged, the tools are still at the starting positions.

An intermediate step can be inserted for acknowledging the removal of the old tool: Synchronous acknowledgment: The tool is no longer in the spindle:

Transfer step	fer step from to		Comment		
	Magazine	Loca- tion	Magazine	Loca- tion	
6 DB9900.DBW40	9998	1	9999	1	Tool removed from the spindle

Acknowledgment step	Acknowledgment bit	Transfer step for the new tool	Transfer step for the old tool	Status
xxx	DB4200.DBXx.x	0	6	105

After intermediate acknowledgment of the empty spindle and insertion of the new tool in the spindle, the tool change is terminated with a total acknowledgment:

Acknowledgment step	Acknowledgment bit	Transfer step for the new tool	Transfer step for the old tool	Status
	DB4200.DBX0.0			(99)

Starting position 2

A manual tool is in the spindle and is to be replaced by a tool from the magazine

Job from tool management to the PLC user program (tool change):

DB4300.DBX0.0, DBX1.2 and DBX1.6 ("Prepare tool change")

DB43xx.DBW6	Source magazine number	1
DB43xx.DBW8	Source location number	6
DB43xx.DBW10	Target magazine number	9999
DB43xx.DBW12	Target location number	1

Acknowledgment "Prepare tool change":

Acknowledgm ent step	Acknowledgment bit	Transfer step for the new tool	Transfer step for the old tool	Status
xxx	DB4200.DBXx.x	0	0	1

Displayed on the interface:

DB4300.DBX0.0 /1.1 and 1.6 ("Execute tool change")

The job remains otherwise unchanged, the tools are still at the starting positions.

Synchronous acknowledgment: The old tool is no longer in the spindle.

Transfer step	from		to		Comment
	Magazine	Loca- tion	Magazine	Loca- tion	
6 DB9900.DBW40	9998	1	9999	1	Asynchronous message, unload the tool from the spindle

Acknowledgm ent step	Acknowledgment bit	Transfer step for the new tool	Transfer step for the old tool	Status
xxx	DB4200.DBXx.x	0	6	105

The spindle is now empty, the old tool is outside the magazine.

Next step: Synchronous acknowledgment, new tool to gripper 1

Transfer step	from	from to			Comment
	Magazine	Loca- tion	Magazine	Loca- tion	
3	0	1	9998	2	New tool to gripper 1
DB9900.DBW16					

Acknowledg ment step	Acknowledgment bit	Transfer step for the new tool	Transfer step for the old tool	Status
xxx	DB4200.DBXx.x	3	0	105

The job is unchanged.

Next step: Synchronous acknowledgment, new tool from gripper 1 to spindle:

Transfer step	from		to		Comment
	Magazine	Loca- tion	Magazine	Loca- tion	
4	9998	2	9998	1	New tool from gripper 1 to spindle
DB9900.DBW24					

Acknowledg ment step	Acknowledgment bit	Transfer step for the new tool	Transfer step for the old tool	Status
xxx	DB4200.DBXx.x	4	0	105

This completes the tool movement.

End acknowledgment:

Acknowledg ment step	Acknowledgment bit	Transfer step for the new tool	Transfer step for the old tool	Status
xxx	DB4200.DBXx.x	0	0	1

9.6 Example: Change manual tools

The step New tool from gripper 1 to spindle can be omitted and replaced by a total acknowledgment. This also informs the tool management that all tools are in their target positions.

Acknowledg- ment step	Acknowledgment bit	Transfer step for the new tool	Transfer step for the old tool	Status
	DB4200.DBX0.0			(99)

9.7 Application example for turning machine

9.7.1 Example: Turning machine with revolver magazine (MAG_CONF_MPF)

Example file

You can find the program for configuring the magazine in the Toolbox.

The program can be read into the control and should be adjusted for the specific machine concerned.

Configuration

Figure 9-3 Turning machine with revolver magazine

Description of the program

To start with, all the old magazine definitions and tools are deleted. As the program sequence continues, all magazines and buffers are newly created and assigned by writing the magazine parameters.

Search strategies for tools and magazine locations can be defined in N70.

For revolver magazines it is advisable to define all locations as fixed-location coded. For magazine type 3 N320 \$TC_MAP3[NUM_MAG] = 81 (Bit6 = 1) is set.

The chain magazine locations are set up from N430 to N500. Magazine location type = 0 means that the magazine location can be loaded with tools of different location types.

The buffers are set up from N520 onwards.

From N920, the buffers are assigned to the spindle/tool holder and the magazine.

After the magazine configuration program has finished running, restart the NC using (NCK reset).

See also

You will find a precise description of the parameters used in the Tool Management Function Manual of SINUMERIK 840D sl.

Example MAG_CONF_MPF

- 1. Plant configuration:
 - 1 revolver magazine with 8 locations (can be set up in N40)
 - 1 loading point
 - 3 buffer locations (can be set up in N50, assignments from N540)
- 2. Part program:

```
; MAG CONF MPF
N10 def int NUM_MAG, MAG_TYPE, LOCATIONS,
PLACE, NUM BUFFER, NUM LOAD, PLACE SEARCH
N20 NUM_MAG = 1
                                                 ; Number of the magazine
N30 MAG TYPE = 3
                                                 ; Magazine type (1: chain,
                                                 3: revolver, 5: box magazine)
N40 LOCATIONS = 8
                                                 ; Number of magazine locations
N50 NUM BUFFER = 1
                                                 ; Number of buffers (spindle,
                                                 gripper)
N60 NUM LOAD = 1
                                                 ; Number of loading points
N70 PLACE SEARCH = 257
                                                 ; Type of search strategy
;= 257 Bit13=0 no exchange of the old tool on the location of the new tool
;Setting for pickup magazine
;=12289 Bit13=1 exchange old tool on the location of the new tool
;Setting for chain magazine
N80;
N90;
;Check parameters
N100 STOPRE
N110 if ((NUM MAG==0))or(LOCATIONS==0))
N120 Err1:STOPRE
N130 MSG("Wrong Parameter --> Cancel")
N140 G04 F4
N150 STOPRE
N160 M0
N170 GOTOB Err1
N180 endif
N190; Magazine configuration
N200;
N210;
```

9.7 Application example for turning machine

```
N220; Delete old data when magazine 1 is set up
N230 if NUM MAG ==1
N240 $TC MAP1[0]=0
                                              ; Delete magazine
N250 $TC DP1[0,0]=0
                                              ; Delete Tools
N260 STOPRE
N270 endif
; Configuration
N280 $TC_MAMP2= PLACE_SEARCH
                                              ; Type of search strategy
; Magazine
; Set up magazine
N290 $TC MAP1[NUM MAG] = MAG TYPE
N300 $TC MAP2[NUM MAG]="MAGAZINE"<<NUM MAG
N310 if MAG TYPE == 3
N320 $TC_MAP3[NUM_MAG]=81
                                              ; Magazine status, all locations
                                               fixed-location-coded for revolver
                                               magazine
N330 else
N340 $TC MAP3[NUM MAG]=17
                                                ; Magazine status
N350 endif
N360 $TC MAP4[NUM MAG]=-1
N370 $TC MAP5[NUM_MAG]=-1
N380 $TC MAP6[NUM MAG]=1
                                              ; Number of lines in magazine
N390 $TC MAP8[NUM MAG]=0
N400 $TC MAP9[NUM MAG]=0
N410 $TC MAP7[NUM MAG]=LOCATIONS
                                              ; Number of magazine locations
N420 $TC MAP10[NUM MAG]=PLACE SEARCH
; Magazine locations
N430 for PLACE=1 to LOCATIONS
N440 STOPRE
N450 $TC MPP1[NUM MAG, PLACE]=1
                                              ; Location type
N460 $TC MPP2[NUM MAG, PLACE]=0
                                               ; Location type, 0 compatible with
                                               every tool location type
N470 $TC MPP3[NUM MAG, PLACE]=1
                                               ; Consider adjacent location On (Off
                                               would be 0)
N480 $TC MPP4[NUM MAG, PLACE]=2
                                               ; Location status
N490 $TC MPP5[NUM MAG, PLACE]=PLACE
                                              ; Location type index
N500 endfor
N510 STOPRE
N520; Definition of buffer magazine (always number 9998)
N530 $TC MAP1[9998]=7
                                                ; Magazine type 7: Buffer
```

```
N540 $TC MAP2[9998]="BUFFER"<<NUM MAG
N550 $TC MAP3[9998]=17
                                               ; Magazine status
N560 $TC MAP6[9998]=1
                                               ; Number of lines
N570 $TC MAP7[9998]=NUM BUFFER
                                               ; Number of locations
; Locations in the buffer
;Spindle
N580 $TC MPP1[9998,1]=2
                                               ; Location type (here spindle)
N590 $TC_MPP2[9998,1]=0
                                               ; Location type (here always 0)
N600 $TC MPP3[9998,1]=0
                                               ; Consider adjacent location Off
N610 $TC MPP4[9998,1]=2
                                                ; Location status
N620 $TC_MPP5[9998,1]=1
                                                ; Location type index
N630; Gripper
N640 FOR PLACE=2 to NUM BUFFER
N650 STOPRE
N660 $TC MPP1[9998, PLACE]=3
                                               ; (here gripper)
N670 $TC MPP2[9998,PLACE]=0
                                               ; (here always 0)
N680 $TC_MPP3[9998,PLACE]=0
                                               ; Consider adjacent location Off
N690 $TC MPP4[9998, PLACE]=2
                                               ; Location status
N700 $TC MPP5[9998, PLACE]=PLACE
                                               ; Location type index
N710 endfor
N720 STOPRE
N730; Definition of loading magazine (always number 9999)
N740 $TC MAP1[9999]=9
                                               ; Magazine type 9: Loading magazine
N750 $TC MAP2[9999]="LOADING
MAGAZINE"<<NUM MAG
N760 $TC MAP3[9999]=17
                                               ; Magazine status
N770 $TC MAP4[9999]=-1
N780 $TC MAP5[9999]=-1
N790 $TC MAP6[9999]=1
                                               ; Number of lines
N800 $TC MAP7[9999]=NUM LOAD
                                               ; Number of locations
N810 STOPRE;
N820; Loading magazine locations
N830 for PLACE=1 to NUM LOAD
N840 STOPRE
N850 $TC MPP1[9999, PLACE]=7
                                               ; Location type Loading point
N860 $TC MPP2[9999, PLACE]=0
                                               ; Location type (here always 0)
N870 $TC MPP3[9999,PLACE]=0
                                                ; Consider adjacent location Off
```

9.7 Application example for turning machine

```
N880 $TC_MPP4[9999,PLACE]=2
                                            ; Location status
N890 $TC_MPP5[9999,PLACE]=PLACE
                                            ; Location type index
N900 endfor
N910 STOPRE
N920; Offsets (clearances); Clearances to magazine
; Buffer
N930 for PLACE=1 to NUM_BUFFER
N940 $TC_MDP2[1,PLACE]=0
N950 endfor
N960 STOPRE
;Loading points
N970 for PLACE=1 to NUM_LOAD
N980 stopre
N990 $TC_MDP1[1,PLACE]=0
N1000 endfor
N1010 M30
                                              ; End
```

09/26/08 7:53 AM Tool list Magazine 1 Loc. Typ Tool name D Lngth X Lngth 2 Radius New tool 2 3 4 5 6 7 8 Magazine selection Sort > SD Setting Work User Tool Tool Maga[.] zine offset variable wear

Display on HMI:

Figure 9-4 Turning machine tool list

9.7.2 Example: Acknowledgment steps (turning machine)

Acknowledgment steps

Generally, the mechanical sequences on a turning machine are simpler than those for a milling machine. In the configuration described in the previous chapter without additional buffer, tool changes can be acknowledged after the mechanical movements without transfer steps. The PLC user program must detect incoming jobs in the job interfaces and execute the mechanical movements.

Total acknowledgment to tool management:

Acknowledgment step	Acknowledgment bit	Transfer step new tool	Transfer step old tool	Status
	DB4000.DBX0.0			(99)
	DB4200.DBX0.0			(99)

9.7 Application example for turning machine

Figure 9-5 Programming in PLC user program

An asynchronous message can be used for magazine movements without a job from the tool management.

Acknowledgment to tool management:

Acknowledgment step	Acknowledgment bit	Transfer step new tool	Transfer step old tool	Status
xxx	DB4000.DBXx.x	101	0	204

Transfer step	Sou	rce	Objective		Comment
	Magazine	Location	Magazine	Location	
101 DB9901.DBW0	1	n	9998	1	The variable location in Magazine 1 is positioned at the changing point to the spindle.

n is the actual location number (n ≠ 0) to be entered by the PLC user program in the variable transfer table.

9.7.3 Example: Tool change cycle for turning machine

Transfer variables

With MD10717: \$MN_T_NO_FCT_CYCLE_NAME (name of cycle to be executed instead of the T function, e.g. "TCHANGE"), you can set that a cycle is run when the T command is called. The cycle is run through at every T call, irrespective of whether a new tool or the already active tool is called. The position of the revolver can be set on the programmed tool in this cycle (POSM). This is necessary when the revolver has been positioned manually after a tool selection and the tool has not been deselected. In this case, the NC does not issue a new job for tool change at the interface.

Sample program

Prerequisite is that the tool management has been informed of each magazine movement. The example has been created for machine data with the turning technology default setting. The "Spare tools for tool management" option is not active.

Transfer variables of the T replacement cycle:

Tag	Description
\$SC_T	T number of the tool (numerical)
\$SC_T_Prog	Bool variable that shows whether a T word is available in \$C_T.

Tag	Description
\$C_TS	Identifier for tool (string)
\$C_TS_Prog	Bool variable that shows whether an identifier is available in \$C_TS.
\$C_TE	Address extension of the T word
\$C_D	Programmed D number
\$C_D_Prog	Bool variable that shows whether an offset number is available in \$C_D.
\$C_DL	Programmed additive/setup offset
\$C_DL_Prog	Bool variable that shows whether an offset number is available in \$C_DL.

In the following example, a job for positioning the magazine with POSM is output at the interface. During the magazine positioning, the block processing of the NC must be controlled by the PLC user program. In most cases, it is useful to set the load or feed disable during this time. As soon as the position setpoint specified in the job is reached (asynchronous message of the magazine position), the job is terminated with total acknowledgment.

```
PROC L6 SAVE SBLOF DISPLOF
  IF $C T PROG==1
                                    ; T is numeric
    IF $C T==0
                                     ; T=0
     T=0
   ENDIF
   IF $C T>0
     IF $C_T<=$TC_MAP7[1]
                                     ; Does the magazine location exist?
     POSM($C T)
                                    ; Position magazine
     ENDIF
     T=$C_T
                                     ; T programming of location number
   ENDIF
  ENDIF
  IF $C_TS_PROG==1
                                     ; T is an identifier
    TNO NEW=GETT($C TS,1)
                                    ; Querying of T number
   IF TNO NEW>0
                                     ; Does the T number exist?
     _TL_NEW=$A_MYMLN[_TNO_NEW]
                                     ; Querying of location number
   ENDIF
    IF _TL_NEW>0
                                     ; Is the tool in the magazine?
     POSM (_TL_NEW)
                                     ; Position magazine
    ENDIF
    T=$C TS
                                     ; T programming without address extension
  ENDIF
M17
```

9.7 Application example for turning machine

See also

The function is available irrespective of tool management and is described in full in: Function Manual, Basic Functions, "Mode Group, Channel, Program Operation, Reset Behavior (K1)."

9.7.4 Example: Tool change cycle for TCA command

Overview

To ensure that a T function replacement cycle also starts when TCA is programmed, the language command TCA must be redefined in _TCA (default setting).

In this way it is also possible to start a TCA.SPF manufacturer cycle analogous to the TCHANGE.SPF cycle, in which the actual tool call is implemented.

Programming

The sequence is described in the following example:

```
PROC TCA(STRING[64] _TOOL_NAME, INT
_DUPLO,INT _TH_NO)
DEF INT _TNO_NEW_TCA,
_TL_NEW_TCA
                                          ;Tool call to NC
_TCA(_TOOL_NAME,_DUPLO,_TH_NO)
                                          ; Reading of the internal T number and the
                                          magazine location of the calling tool
                                          ;Positioning of the revolver
GETSELT(_TNO_NEW_TCA)
                                          ;An example here with POSM command
                                          magazine 1 toolholder 1
                                          ; The magazine position is also set to the
                                          location of the new tool with the end
                                          acknowledgment of the TCA command.
TL NEW TCA=$A MYMLN
[ TNO NEW TCA]
POSM ( TL NEW TCA)
                                          ; With offset selection, the tool change
                                          must be acknowledged
D1
```

See also

The TCA.SPF cycle can be found on the Toolbox CD.

9.7.5 Example: Turning machine with counterspindle

Magazine configuration

In the magazine configuration the magazine is assigned twice as many locations as actually exist, e.g. in the case of revolver with 12 locations, 24 locations are set up. Location 1-12 for the main spindle, location 13-24 for the counterspindle.

The user program positions the magazine in such a way that, for example, the same position is approached for location 1 and location 13. So each real magazine location corresponds to a virtual magazine location for the main spindle and a virtual magazine location for the counterspindle.

9.7.6 Example: Test for empty buffer

Procedure

Read the T number of a tool in gripper 1 and 2:

- 1. In the PLC user program, enter the parameters in DB1200.
- 2. In DB1200.DBX0.0, set the start for reading the location states.

Once the order has been successfully executed, the results are entered starting from DB1200.DBB3000:

Read variable from the NCK	Address	Signal	Values
Parameters	DB1200.DBW1000	Variables index	9
	DB1200.DBW1002	Location number	2
	DB1200.DBW1004	Magazine number	9998
	DB1201.DBW1000	Variables index	9
	DB1201.DBW1002	Location number	3
	DB1201.DBW1004	Magazine number	9998
Order	DB1200.DBX0.1	Write variable	0
	DB1200.DBX0.2	PI service	0
	DB1200.DBB1	Number of variables	2
	DB1200.DBX0.0	Start	→ 1
Result	DB1200.DBB2000.0	Order completed	1
	DB1200.DBX2000.1	Error in order	0
	DB1200.DBX3000.0	Variable is valid	1
	DB1200.DBB3001	Access result	0
	DB1200.DBW3004	Data from NCK variable	n
	DB1201.DBX3000.0	Variable is valid	1
	DB1201.DBB3001	Access result	n
	DB1201.DBW3004	Data from NCK variable	0

9.7.7 Example: Transporting a tool from a buffer into the magazine

Procedure

A tool is to be moved from a buffer (for example, of a gripper) into the magazine. The empty location search for the tool from gripper 1 (magazine 9998, location 2) is executed with PI Service TMMVTL and an order to relocate the tool is generated.

In the PLC user program, enter the parameters in DB1200 and in DB1200.DBX0.0 set the start to read the PI service.

Start PI Services in the NCK area	Address	Signal	Values
Parameters	DB1200.DBW4	Tool number	0
	DB1200.DBW6	Source location number	2
	DB1200.DBW8	Source magazine number	9998
	DB1201.DBW10	Target location number	-1
	DB1201.DBW12	Target magazine number	1
Order	DB1200.DBX0.1	Write variable	0
	DB1200.DBX0.2	PI service	1
	DB1200.DBB1	PI index	5
	DB1200.DBX0.0	Start	→ 1
Result	DB1200.DBB2000.0	Order completed	1
	DB1200.DBX2000.1	Error in order	0

DB410x.DBX0.0 delivers an order to relocate the tool from the buffer. The target location in magazine 1 is in DB4100.DBW12. With it, the PLC user program can execute the necessary sequence.

9.7.8 Example: Repeat "Prepare tool change" order

Sequence: Repeat the command

For a milling machine with toolboy and shifter, the asynchronous transfer message and order can cross:

- The toolboy was acknowledged to the tool management as the target position for the old tool with the end acknowledgment.
- The part program is continued with the new tool and after a very short time needs the previous (old) tool once more.
- The tool management generates the next preparation order for the tool change with the toolboy as the source position for what will then be the new tool.
- At the same time the PLC user program transferred the tool from the toolboy into the shifter.

- The PLC user programm communicates the tool movement from the toolboy to the shifter asynchronously and starts onward transport to the magazine.
- In the next cycle the AWP recognizes the new order to relocate the tool from the toolboy to the spindle.

But the tool is no longer in the toolboy! The PLC user program must detect such a condition (monitoring: does toolboy or shifter contain a tool?). It can now cancel the return of the tool into the magazine. A repeat order (Status 7) can then be requested from the tool management:

- Meanwhile, the tool management has received the message that the tool is in the shifter.
- It generates a new preparation order with the source position shifter for the new tool.

NOTICE

The acknowledgment to repeat the order "Prepare tool change" may only be issued **before** the end acknowledgment of the "Prepare tool change" order!

Acknowledgment to tool management:

Acknowledgment step	Acknowledgment bit	Transfer step new tool	Transfer step old tool	Status
xxx	DB4000.DBXx.x	0	0	7

9.8 Application example for milling machine

9.8.1 Example: Milling machine with chain magazine and dual gripper (MAG_CONF_MPF)

Example file

You can find the program for configuring the magazine in the Toolbox.

The program can be read into the control and should be adjusted for the specific machine concerned.

Configuration

1 ... 11 Transfer steps

Figure 9-6 Milling machine with chain magazine

Description of the buffers and loading points:

Magazine	Location	Meaning	
1	xx	Real magazine (chain, plate, box), position xx	
9998	1	Spindle	
9998	2	Gripper 1	
9998	3	Gripper 2	
9999	1	Magazine loading point	

Description of the program

To start with, all the old magazine definitions and tools are deleted. As the program sequence continues, all magazines and buffers are newly created and assigned by writing the magazine parameters.

Search strategies for tools and magazine locations can be selected in N70. Here it is determined whether the tool can be placed directly in the new tool location, when changing out of the spindle. This makes the tool change possible in a single mechanical sequence, so shorter changeover times can be achieved. This sequence is not possible for pickup magazines.

The chain magazine locations are set up from N430 to N500. Magazine location type = 0 means that the magazine location can be loaded with tools of different location types.

The buffers are set up from N520 onwards. If additional buffers are available (toolboy, shifter...), the number should be changed in N50.

Additionally available loading points should be dealt with in the same way in N60.

From N920, the buffers are assigned to the spindle/tool holder and the magazine.

After the magazine configuration program has finished running, restart the NC (NCK reset).

See also

Further information:

- The configuration of a disk-type magazine with fixed-location coding is performed as for the configuration of a revolver magazine: Example: Turning machine with revolver magazine (MAG_CONF_MPF) (Page 342)
- You will find a precise description of the parameters used in the Tool Management Function Manual of SINUMERIK 840D sl.

Example MAG_CONF_MPF

- 1. Plant configuration:
 - 1 chain magazine with 8 locations (can be set up in N40)
 - 1 loading point
 - 3 buffer locations (can be set up in N50, assignments from N540)
- 2. Part program:

```
;MAG_CONF_MPF
N10 def int NUM_MAG,MAG_TYPE, LOCATIONS,
PLACE, NUM_BUFFER, NUM_LOAD, PLACE_SEARCH
;
N20 NUM_MAG = 1 ;Number of the magazine
N30 MAG_TYPE = 1 ;Magazine type (1: chain,
3: revolver, 5: box magazine)
```

9.8 Application example for milling machine

```
N40 LOCATIONS = 8
                                                 ; Number of magazine locations
N50 NUM BUFFER = 3
                                                 ; Number of buffers (spindle,
                                                 gripper)
N60 NUM LOAD = 1
                                                 ; Number of loading points
N70 PLACE SEARCH = 12289
                                                 ; Type of search strategy
;= 257 Bit13=0 no exchange of the old tool on the location of the new tool
;Setting for pickup magazine
;=12289 Bit13=1 exchange old tool on the location of the new tool
;Setting for chain magazine
N80;
N90:
;Check parameters
N100 STOPRE
N110 if ((NUM MAG==0)or(LOCATIONS==0))
N120 Errl:STOPRE
N130 MSG("Wrong Parameter --> Cancel")
N140 G04 F4
N150 STOPRE
N160 M0
N170 GOTOB Err1
N180 endif
N190; Magazine configuration
N200;
N210;
N220; Delete old data when magazine 1 is set up
N230 if NUM MAG ==1
N240 $TC MAP1[0]=0
                                                ; Delete magazine
N250 $TC DP1[0,0]=0
                                                 ; Delete Tools
N260 STOPRE
N270 endif
; Configuration
N280 $TC MAMP2= PLACE SEARCH
                                               ; Type of search strategy
; Magazine
; Set up magazine
N290 $TC MAP1[NUM MAG] = MAG TYPE
N300 $TC MAP2[NUM MAG]="MAGAZINE"<<NUM MAG
N310 if MAG TYPE == 3
N320 $TC MAP3[NUM MAG]=81
                                                 ; Magazine status, all locations
                                                 fixed-location coded for revolver
                                                 magazine
N330 else
N340 $TC MAP3[NUM MAG]=17
                                                 ; Magazine status
```

```
N350 endif
N360 $TC MAP4[NUM MAG]=-1
N370 $TC MAP5[NUM MAG]=-1
N380 $TC MAP6[NUM MAG]=1
                                              ; Number of lines in magazine
N390 $TC MAP8[NUM MAG]=0
N400 $TC MAP9[NUM MAG]=0
N410 $TC MAP7[NUM MAG]=LOCATIONS
                                               ; Number of magazine locations
N420 $TC MAP10[NUM MAG]=PLACE SEARCH
; Magazine locations
N430 for PLACE=1 to LOCATIONS
N440 STOPRE
N450 $TC MPP1[NUM MAG, PLACE]=1
                                              ; Location type
N460 $TC_MPP2[NUM_MAG,PLACE]=0
                                              ; Location type, 0 compatible with
                                               every tool location type
N470 $TC_MPP3[NUM_MAG,PLACE]=1
                                               ; Consider adjacent location On (Off
                                               would be 0)
N480 $TC_MPP4[NUM_MAG,PLACE]=2
                                               ; Location status
N490 $TC MPP5[NUM_MAG,PLACE]=PLACE
                                              ; Location type index
N500 endfor
N510 STOPRE
N520; Definition of buffer magazine (always number 9998)
N530 $TC MAP1[9998]=7
                                              ; Magazine type 7: Buffer
N540 $TC MAP2[9998]="BUFFER"<<NUM MAG
N550 $TC MAP3[9998]=17
                                              ; Magazine status
N560 $TC MAP6[9998]=1
                                              ; Number of lines
N570 $TC MAP7[9998]=NUM BUFFER
                                              ; Number of locations
; Locations in the buffer
;Spindle
N580 $TC MPP1[9998,1]=2
                                              ; Location type (here spindle)
N590 $TC MPP2[9998,1]=0
                                              ; Location type (here always 0)
N600 $TC MPP3[9998,1]=0
                                              ; Consider adjacent location Off
N610 $TC MPP4[9998,1]=2
                                               ; Location status
N620 $TC MPP5[9998,1]=1
                                               ; Location type index
N630; Gripper
N640 FOR PLACE=2 to NUM BUFFER
N650 STOPRE
N660 $TC MPP1[9998, PLACE]=3
                                              ; (here gripper)
N670 $TC MPP2[9998, PLACE]=0
                                              ; (here always 0)
N680 $TC MPP3[9998, PLACE]=0
                                               ; Consider adjacent location Off
```

9.8 Application example for milling machine

```
N690 $TC_MPP4[9998,PLACE]=2
                                              ; Location status
N700 $TC MPP5[9998, PLACE]=PLACE
                                              ; Location type index
N710 endfor
N720 STOPRE
N730; Definition of loading magazine (always number 9999)
N740 $TC_MAP1[9999]=9
                                                ; Magazine type 9: Loading magazine
N750 $TC_MAP2[9999]="LOADING
MAGAZINE"<<NUM MAG
N760 $TC_MAP3[9999]=17
                                               ; Magazine status
N770 $TC_MAP4[9999]=-1
N780 $TC MAP5[9999]=-1
N790 $TC MAP6[9999]=1
                                               ; Number of lines
N800 $TC_MAP7[9999]=NUM_LOAD
                                               ; Number of locations
N810 STOPRE;
N820; Loading magazine locations
N830 for PLACE=1 to NUM LOAD
N840 STOPRE
N850 $TC MPP1[9999,PLACE]=7
                                              ; Location type Loading point
N860 $TC_MPP2[9999,PLACE]=0
                                              ; Location type (here always 0)
N870 $TC MPP3[9999, PLACE]=0
                                               ; Consider adjacent location Off
N880 $TC MPP4[9999, PLACE]=2
                                              ; Location status
N890 $TC MPP5[9999, PLACE]=PLACE
                                              ; Location type index
N900 endfor
N910 STOPRE
N920; Offsets (clearances); Clearances to magazine
; Buffer
N930 for PLACE=1 to NUM BUFFER
N940 $TC MDP2[1,PLACE]=0
N950 endfor
N960 STOPRE
;Loading points
N970 for PLACE=1 to NUM LOAD
N980 stopre
N990 $TC MDP1[1,PLACE]=0
N1000 endfor
```

N1010 M30 ; End

Display on HMI

Figure 9-7 Tool list Milling machine

9.8.2 Flow chart: Tool change

Tool change program sequence (PLC)

The sequence described here describes the change between magazine and spindle. The changing of manual tools as well as loading and unloading are not taken into account.

Both procedures are described in Chapter:

The machine data default setting is selected such that the job for "Prepare tool change" is triggered with the T command on the interface:

```
N10 T = "Tool name" M6
```

The block preprocessing is not interrupted. M6 is used to start the tool change subprogram (L6) at the same time. As soon as the job for "Prepare tool change" has been acknowledged and in the tool change subprogram the M code for tool change output has been reached, the "Execute tool change" job is output to the interface (block splitting).

A tool change command (M206) must always precede a prepare tool change command. A change command without a previous "Prepare tool change" job will not initiate a job from the tool management.

You will find the expression 1:1 change in the program sequence. This means that the tool change will be carried out in a single cycle. The tool from the spindle (old tool) will be set down at the magazine location of the new tool. No additional magazine positioning is required. In this case, the target location of the old tool in the tool management job is the same as the source location of the new tool (DB43xx.DBW6 and DBW8 are equal to DBW18 and DBW20).

A 1:1 change is not possible for:

- Tools with different location types
- Different tool sizes
- Fixed-location tools

By programming T0 in the NC program, a tool change is initiated without a new tool. Only the spindle tool is transported to the magazine (empty the spindle).

① ... ④ refer to the steps in the flow chart below.

You can see the different acknowledgment options from the steps. Job-related acknowledgments and asynchronous messages are used.

Please take the transfer steps used from the table in Chapter Example: Acknowledgment steps (milling machine) (Page 369)

"Tool change" flow chart

1: 1 change: The old tool is deposited in the location of the new tool.

Figure 9-8 Flow chart

Description of the Procedure

NC program:

T command or T command with simultaneous tool change call (M6)

Interface signals:

Job from TM: DB43xx.DBX0.0 (job bit) and

DB43xx.DBB1 (command bits): Prepare change (DB43xx.DBX1.2)

• Magazine and location number of the tools to be moved:

DB43xx.DBW6 to DBW20: Source location of the new tool, target location of the old tool

Step 1: 1:1 Change requested

Request: Source location of the new tool == Target location of the old tool, Normal case:

There is a tool in the tool holder and a new tool is being requested. Both tools have the same location type and the same tool size in the magazine list, the tools are not fixed-location-coded.

The old tool is set down on the magazine location of the new tool, in a direct exchange (1:1 change). If there is no old tool in the tool holder (DB4300.DBX1.4), the same sequence takes place. In this case, the magazine positions the new tool to the changing point.

→ continue with Step 2

Request: Source location of new tool >< Target location of old tool, Special cases:

The TM is informed by DB43xx.DBX1.3 whether the active tool from the tool holder should be removed (T0). In this case, the magazine positions the storage location of the old tool (that is currently in the spindle) to the changing point.

The magazine location for the old tool is also positioned to the changing point if the old tool cannot be stored on the new tool location (1:1 change not possible). The cause could be different location types or tool sizes, or that a fixed-location-coded tool is involved. In this case, the tool change is carried out in two steps. First the old tool in the magazine is set down and then the new tool is transported to the spindle.

→ continue with Step 3

Step 2: Position magazine, location from new tool to changing point

← Previous step: Step 1

For example, the magazine movement can be executed via an NC rotary axis controlled by a PLC. The movement should be notified to the tool management. The magazine position is thus updated in the HMI, in the views of the tool and magazine lists.

The target position is read from DB4300.DBW8 (location number for new tool – source) and written to DB9901.DBW2 (transfer step 101). If there is magazine coincidence at the target position, the step is acknowledged asynchronously:

Acknowledg- ment step	Acknowledgment bit	Transfer step new tool	Transfer step old tool	Status
4	DB4200.DBX0.4	101	0	204

Acknowledgment to TM:

Transfer step	from		to		Comment
	Magazine	Loca- tion	Magazine	Loca- tion	
101 DB9901.DBW0	1	n	9998	1	The variable location in magazine 1 is positioned at the changing point to the spindle.

n: is the actual location number (n \neq 0) to be entered by the PLC user program in the variable transfer table.

→ continue with Step 4

Step 3: Positioning the magazine; location from the old tool to the changing point

← Previous step: Step 1

Same as Step 2, however, the magazine target location is obtained from DB4300.DBW20 (location number for old tool – target).

Acknowledgment to TM:

Acknowledg- ment step	Acknowledgment bit	Transfer step new tool	Transfer step old tool	Status
4	DB4200.DBX0.4	101	0	204

Transfer step	from		to		Comment
	Magazine	Loca- tion	Magazine	Loca- tion	
101 DB9901.DBW0	1	n	9998	1	The variable location in magazine 1 is positioned at the changing point to the spindle.

n: is the actual location number (n ≠ 0) to be entered by the PLC user program in the variable transfer table.

→ continue with Step 4

Step 4: Acknowledge prepare tool change job

← Previous step: Step 2 or Step 3

With this, the preparation for the tool change is complete for many systems.

Acknowledgment to TM:

Acknowledg- ment step	Acknowledgment bit	Transfer step new tool	Transfer step old tool	Status
1	DB4200.DBX0.1	0	0	1

→ continue with Step 5

• NC program:

M206 initiates the job for execute tool change

• Interface signals:

Job from TM: DB43xx.DBX0.0 (job bit) and

DB43xx.DBB1 (command bits): Execute change (DB43xx.DBX1.1)

Magazine and location number of the tools to be moved:

DB43xx.DBW6 to DBW20: Source location of the new tool, target location of the old tool

Step 5: 1:1 change requested

← Previous step: No previous step, entry point in the sequence for "Execute tool change" job

Similarly to Step 1, it is checked whether a direct change or a change in two steps is to be executed:

- 1:1 change possible: → continue with Step 6
- 1:1 change not possible: → continue with Step 9

Step 6: Old tool from the spindle to gripper 2 and new tool from the magazine to gripper 1

← Previous step: Step 5

The PLC program controls the machine functions with which the gripper movements, tool clamping, etc. are performed. As soon as the mechanical movements are completed and acknowledged in the PLC user program, the tool movements are acknowledged to the tool management.

Acknowledgment to TM:

Acknowledg- ment step	Acknowledgment bit	Transfer step new tool	Transfer step old tool	Status
5	DB4200.DBX0.5	1	2	105

Transfer step	from	from			Comment
	Magazine	Loca- tion	Magazine	Loca- tion	
1	0	1	9998	2	New tool from magazine to gripper 1
DB9900.DBW0					Step 6 or Step 13
2	9998	1	9998	3	Old tool from spindle to gripper 2
DB9900.DBW8					Step 6 or Step 9

[→] continue with Step 7.

Step 7: Old tool from gripper 2 to magazine and new tool from gripper 1 to spindle

← Previous step: Step 6

The PLC program controls the machine functions for the gripper movements, tool clamping, etc. As soon as the mechanical movements are completed and acknowledged in the PLC user program, the tool movements are acknowledged to the tool management.

Acknowledgment to tool management:

Acknowledg- ment step	Acknowledgment bit	Transfer step new tool	Transfer step old tool	Status
7	DB4200.DBX0.7	3	4	105

Transfer step	from		to		Comment
	Magazine	Loca- tion	Magazine	Loca- tion	
3	9998	2	9998	1	New tool from gripper 1 to spindle
DB9900.DBW16					Step 7 or Step 14
4	9998	3	0	2	Old tool from gripper 2 to magazine
DB9900.DBW24					Step 7 or Step 10

→ continue with Step 8

Step 8: End acknowledgment

← Previous step: Step 7 or Step 14

End acknowledgment takes place with tool changeover in the initial setting, or in a state where the machine can continue machining. Here it is possible that there are still mechanical movements to be executed before the tool change can be completed.

Acknowledgment to tool management:

Acknowledg- ment step	Acknowledgment bit	Transfer step new tool	Transfer step old tool	Status
1	DB4200.DBX0.1	0	0	1

→ continue with Step 9

Step 9: Old tool from spindle to gripper 2

← Previous step: Step 5

The PLC program controls the machine functions with which the gripper movements, tool clamping, etc. are performed. As soon as the mechanical movements are completed and acknowledged in the PLC user program, the tool movements are acknowledged to the tool management.

Acknowledgment to tool management:

Acknowledg- ment step	Acknowledgment bit	Transfer step new tool	Transfer step old tool	Status
8	DB4200.DBX1.0	0	2	105

Transfer step	from		to		Comment
	Magazine	Loca- tion	Magazine	Loca- tion	
2	9998	1	9998	3	Old tool from spindle to gripper 2
DB9900.DBW8					Step 6 or Step 9

→ continue with Step 10

Step 10: Old tool from gripper 2 to magazine

← Previous step: Step 9

The PLC program controls the machine functions with which the gripper movements, tool clamping, etc. are performed. As soon as the mechanical movements are completed and acknowledged in the PLC user program, the tool movements are acknowledged to the tool management.

Acknowledgment to tool management:

Acknowledg- ment step	Acknowledgment bit	Transfer step new tool	Transfer step old tool	Status
9	DB4200.DBX1.1	0	4	105

Transfer step	from	from			Comment
	Magazine	Loca- tion	Magazine	Loca- tion	
4	9998	3	0	2	Old tool from gripper 2 to magazine
DB9900.DBW24					Step 7 or Step 10

→ continue with Step 11

Step 11: T0?

← Previous step: Step 10

Request: Is T0 set in the tool change job?

DB43xx.DBX1.3

If only the tool holder should be emptied, the tool change can be completed:

→ continue with Step 8

Do you want to place a new tool in the tool holder?

→ continue with Step 12

Step 12: Magazine position location from new tool to changing point

← Previous step: Step 11

Sequence as in Step 2

Acknowledgment to tool management:

Acknowledg- ment step	Acknowledgment bit	Transfer step new tool	Transfer step old tool	Status
4	DB4200.DBX0.4	101	0	204

Transfer step	from		to		Comment
	Magazine	Loca- tion	Magazine	Loca- tion	
101 DB9901.DBW0	1	n	9998	1	The variable location in magazine 1 is positioned at the changing point to the spindle.

n: is the actual location number (n \neq 0) to be entered by the PLC user program in the variable transfer table.

→ continue with Step 13

Step 13: New tool from magazine to gripper 1

← Previous step: Step 12

The PLC program controls the machine functions used to execute gripper movements, tool clamping etc.

Acknowledgment to tool management:

Acknowledg- ment step	Acknowledgment bit	Transfer step new tool	Transfer step old tool	Status
10	DB4200.DBX1.2	1	0	105

Transfer step	from	from			Comment
	Magazine	Loca- tion	Magazine	Loca- tion	
1	0	1	9998	2	New tool from magazine to gripper 1
DB9900.DBW0					Step 6 or Step 13

→ continue with Step 14

Step 14: New tool from gripper 1 to spindle

← Previous step: Step 13

The PLC program controls the machine functions with which the gripper movements, tool clamping, etc. are performed. As soon as the mechanical movements are completed and acknowledged in the PLC user program, the tool movements are acknowledged to the tool management.

The tool change can be ended:

Acknowledgment to tool management:

Acknowledg- ment step	Acknowledgment bit	Transfer step new tool	Transfer step old tool	Status
11	DB4200.DBX1.3	3	0	105

Transfer step	from		to		Comment
	Magazine	Loca- tion	Magazine	Loca- tion	
3	9998	2	9998	1	New tool from gripper 1 to spindle
DB9900.DBW16					Step 7 or Step 14

→ continue with Step 8

9.8.3 Example: Acknowledgment steps (milling machine)

Constant transfer step table

Transfer step	from		to		Comment
	Magazine	Loca- tion	Magazine	Loca- tion	
1 DB9900.DBW0	0	1	9998	2	New tool from magazine to gripper 1 Step ® or ®
2 DB9900.DBW8	9998		9998	3	Step ® or ®
3 DB9900.DBW16	9998		9998	1	Step ⑦ or ⑩
4 DB9900.DBW24	9998	3	0	2	Step ⑦ or ⑭
5 DB9900.DBW32	0	2	9998	1	Storage location of the old tool
6 DB9900.DBW40	0	1	9998	1	Magazine location with the new tool to the changing point Step ② or ⑫
7 DB9900.DBW48					

Variable transfer step table

Transfer step from		to		Comment	
	Magazine	Loca- tion	Magazine	Loca- tion	
101 DB9901.DBW0	1	n	9998	1	The variable location in Magazine 1 is positioned at the changing point to the spindle.
102 DB9901.DBW8					

n : here is the actual location number (n \neq 0) to be entered by the PLC user program in the variable transfer table.

Acknowledgment step table

Acknowledgment	Trans	fer step	Acknowledg-	Comment	
step	Old tool	New tool	ment status		
1	0	0	1	End acknowledgment,	
DB9902.DBW0				Step ④ and ⑧	
2	0	0	3	Cancel order	
DB9902.DBW4					
3	0	0	105	Intermediate acknowledgment	
DB9902.DBW8				for subsequent order, Step ④	
4	101	0	204	Variable magazine location to	
DB9902.DBW12				changing point	
5	1	2	105	Intermediate acknowledgment	
DB9902.DBW16				Step ®	
6	0	5	105	Intermediate acknowledgment	
DB9902.DBW20				Step ③	
7	3	4	105	Intermediate acknowledgment	
DB9902.DBW24				Step ⑦	
8	0	2	105	Intermediate acknowledgment	
DB9902.DBW28				Step ®	
9	0	4	105	Intermediate acknowledgment	
DB9902.DBW32				Step ⑩	
10	1	0	105	Intermediate acknowledgment	
DB9902.DBW36				Step ®	
11	3	0	105	Intermediate acknowledgment	
DB9902.DBW40				Step @	
12					
DB9902.DBW44					

Note: The step numbers 1 ... 4 refer to the flow chart in Chapter Flow chart: Tool change (Page 360)

9.8.4 Example: Tool change cycle for milling machine

Sample program

```
PROC L6 SAVE DISPLOF
;-----
; Example of a tool change cycle for machine manufacturers
;-----
DEF INT _WZ_IN_SP,_WZ_VOR
DEF REAL SPP= ...
                           ; spindle position
 IF(NOT $P_SEARCH)
                           ; if no block search
  WZ IN SP=$TC MPP6[9998,1]
                           ; tool in spindle
  GETSELT ( WZ VOR)
                           ; previously selected tool
  IF(_WZ_IN_SP<>_WZ_VOR)
                           ; if another tool
                           ; position spindle
   SPOS= SPP
   G0
                           ; approach tool change position:
   G75 Z=0
   WAITS(1)
  ENDIF
 ELSE
 ENDIF
; Load tool: Tool management and PLC
M206
M17
;-----
; END
;-----
```

9.8 Application example for milling machine

Series start-up 10

Overview

In line with the data segregation in data classes, an archive can be created separately for each data area and for each data class.

The data class "System" is an exception. This data is set permanently and becomes effective at the first installation or a default initialization. For this reason, data backup of system data is unnecessary, as this data class contains no data created during commissioning or during the machine run-time.

A system archive delivered by Siemens can, for example, contain a new NCK version or an integrated HMI version or also a cycle hotfix.

NOTICE

Protection of the system data

All system data and data contained in the "System" data class in the HMI, NCK, PLC and drive areas may not be affected.

System data cannot be changed through operation or through the writing of a part program or subroutine or cycle or through reading in an archive.

When you load user data with a USB FlashDrive, the data volume must not be larger than 4 MB!

Identification of archives

Every archive contains the following identifiers:

- Data class: S, I, M, U
- Type of control: 828D TE or 828D ME
- Time stamp: Date and time when the archive was created
- Version designation: Software version with which this archive was created
- Serial number of the system CompactFlash card

These markings allow filters to be set when reading in, determining which archive may be read in to which control variant, depending on the data class and the software version.

Compatibility of the data

SINUMERIK 802D sI PLC archives can be transferred to a SINUMERIK 828D control variant using the Programming Tool.

10.1 Series start-up and archiving

When should you back up the start-up data?

The following times are recommended for performing a data backup:

- After start-up
- After changing machine-specific settings
- After the replacement of a hardware component
- Before a software upgrade

Backing up and restoring data

To back up and restore data, select in the "Start-up" operating area:

- "Save data" softkey for an internal data backup of the entire memory
- "Series startup" softkey
 - Create series start-up
 - Read in the series start-up

Data areas

The following data areas are backed up during series start-up:

Components	Data
NC data	Machine data
	Setting data
	Option data
	Global (GUD) and local (LUD) user data
	Tool and magazine data
	Protection zone data
	R parameters
	Work offsets
	Compensation data
	Display machine data
	Workpieces, global part programs and subroutines
	Standard and user cycles
	Definitions and macros
PLC data	User program
	MAIN (main program)
	DB (data blocks)

Components	Data	
HMI data	Cycle storage	
	Texts	
	Templates	
	Applications	
	Configurations	
	Configuration	
	Online help	
	Version data	
	• Logs	
	User views	
	Dictionaries	

Note

The series start-up archive is saved as an archive, taking into account the data classes (file type ARD). The drive data is saved as binary data which cannot be edited.

Memory areas for archives

Archives can be stored in the following memory areas:

- On the user CompactFlash card: any directory
- On the CompactFlash card at:

/user/sinumerik/data/archive

or:

/oem/sinumerik/data/archive

• On a USB FlashDrive

NOTICE

USB flash drives

USB flash drives are not suitable as persistent memory media.

10.2 How to create and read in a series start-up archive

10.2 How to create and read in a series start-up archive

Overview

Control components can be saved individually or jointly. Creating a separate series start-up archive for each component is recommended, so that the files can be read in again independently of each other.

Requirement

The access level "Service" is required.

Create "Series start-up"

Procedure:

- 1. Select the "Start-up" operating area.
- 2. Press the menu forward key and then the "Series start-up" softkey. The "Series Start-up" window opens.
- 3. Select the option "Create series start-up" with the <SELECT> key and confirm with "OK". The "Create Series Start-up" window opens:

Figure 10-1 Create archive

- 4. Choose whether the data classes should be "ignored" or "considered" using the <SELECT> key:
 - Select "ignored" to archive all data belonging to the control component.
 - Select "considered" to write only the data in the data classes selected under "Selection" in the archive.
- 5. Mark the control component(s) for the archive.
- 6. Make use of the option to enter a comment and the creator of the archive.
- 7. Press the "Generate archive" softkey.

The "Generate Archive: Select Storage Location" window opens.

8. Select a directory or press the "New directory" softkey to create a new subdirectory.

The "New Directory" window opens.

9. Enter a name and confirm with "OK."

The directory is created subordinate to the selected folder.

The "Generate Archive: Name" window opens.

10.Enter a name and confirm with "OK."

An archive file is created in the chosen directory.

Read in "Series start-up"

Requirement: The access level "User" is necessary for reading in an archive.

Procedure:

- 1. Select the "Start-up" operating area.
- 2. Press the menu forward key and then the "Series start-up" softkey.

The "Series Start-up" window opens.

- 3. Select the option "Read in series start-up" with the <SELECT> key and confirm with "OK". The "Select Start-up Archive" window opens.
- 4. Select the archive and confirm with "OK".
- 5. To read in the archive, confirm the prompt with "OK".

The "Read In Archive" window opens and a progress message box appears for the readin process.

6. Press the "Cancel" softkey to cancel the read-in process.

10.3 Example: Data archiving "Easy Archive" (use case)

Easy Archive

With "Easy Archive", the SINUMERIK 828D has a fundamentally new procedure for data archiving. This procedure is tailored exactly to the needs of series machine manufacture. "Easy Archive" is based on a strict separation between SINUMERIK system software, customized OEM data (machine data, manufacturer cycles) and operator data (part programs, tool offsets). There is a further separation for customized data; for data that is the same for all machines of that type, and for data that has been adjusted for an individual machine.

This will be clarified with an example:

User example

A machine manufacturer builds a vertical machining center in series. The customized data is created on a prototype machine. This prototype machine's customized data set will later be ported to all series machines (cloned). After porting the data, however, individual settings are made on each individual machine.

Figure 10-2 User example

For example, reference cams and ball bearing spindles are measured and entered as individual customized data. If an error occurs at the end user, the error is reproduced and solved on the prototype machine. If a complete archive from the prototype machine is now transferred to the affected machine, the individual customized data of this machine is overwritten by the individual customized data of the prototype machine.

10.3 Example: Data archiving "Easy Archive" (use case)

For the SINUMERIK 828D, the machine manufacturer's customized data, to which no individual change has been made, may be archived separately. If this archive is transferred to the affected machine, it is ensured that the individual customized data and the end user data are retained. So the machine manufacturer's update process is simplified considerably.

Advantages

The advantage of the "Easy Archive" is that archive creation occurs directly at the SINUMERIK 828D user interface. So no separate PC is needed for the archive.

By separating the system data from the customized and user data, the SINUMERIK 828D system updates can be completely carried out by the OEMs, without changes to the customized data. A system update can be carried out by the end user themselves in a short time.

10.4 Parameterizing the V.24 interface

Requirement

To activate the V.24 interface, the following must be entered:

File: slpmconfig.ini [V24] V24Settings=1

Data exchange

Data exchange via the V.24 interface is possible from the following operating areas:

- "Program manager" operating area
- "Start-up" operating area → "System data" softkey

Press the following softkeys to set the interface parameters:

Description of parameters

Figure 10-3 Setting parameters

Parameter	Permissible values	
Protocol:	RTS/CTS (default setting)	
	Xon/Xoff	
Transmission:	Normal (default setting)	
	Safe	
Baud rate:	9600 (default)	
	300 19200 max.	
Archive format:	Punched tape	
	Binary format (PC format) → only with RTS/CTS protocol	
Interface:	COM1	
Parity:	None (default setting)	
	Even	
	Odd	
Stop bits:	1 (default setting)	
	2	
Data bits:	5 bits	
	6 bits	
	7 bits	
	8 bits (default setting)	
Xon	11	
Xon	13	
End of transmission (hex)	1a	
Time monitoring (sec)	4	

Note

If the interface is already assigned, e.g. because a modem is connected, data exchange via the V.24 interface is not possible and a message is output.

10.4 Parameterizing the V.24 interface

References

A.1 List of language codes used for file names

Supported languages

Standard languages:

Language	Abbreviation in file name
Chinese (simplified)	chs
Chinese (traditional)	cht
German	deu
English	eng
Korean	kor
Portuguese (Brazil)	ptb

Other languages:

Language	Abbreviation in file name
Czech	csy
Danish	dan
Spanish	esp
Finnish	fin
French	fra
Hungarian	hun
Italian	ita
Japanese	jpn
Dutch	nld
Polish	plk
Romanian	rom
Russian	rus
Slovakian	sky
Swedish	sve
Turkish	trk

A.2 List of the alarm number ranges

Number ranges of alarms

Number range	Description	Source ID	Source URL	
000 000 – 009 999	General alarms	0	/NCK	
010 000 – 019 999	Channel alarms			
020 000 – 029 999	Axis/spindle alarms			
030 000 – 039 999	General functional alarms			
040 000 – 059 999	- reserved -			
060 000 – 064 999	Siemens cycle alarms			
065 000 – 069 999	User cycle alarms			
070 000 – 079 999	Compile cycle alarms (manufacturer and OEM)			
080 000 – 084 999	Message texts for Siemens cycles			
085 000 – 089 999	Message texts for user cycles			
090 000 – 099 999	- reserved -			
100 000 – 129 000	System	10000	/HMI	
130 000 – 139 000	ОЕМ			
140 000 – 199 999	- reserved -			
200 000 – 299 999	Drive: SINAMICS	0	/NCK	
300 000 – 399 999	- reserved -			
400 000 – 499 999	General alarms	51	/PLC/PMC	
500 000 – 599 999	Channel alarms			
600 000 – 699 000	Axis/spindle alarms			
700 000 – 799 999	User alarms			
800 000 – 899 999	- reserved -			
810 000 – 810 009	System error messages	50	/PLC/DiagBuffer	
900 000 – 999 999	- reserved -	0	/NCK	

A.3 List of the color codes

RGB colors

The colors configured are defined by the RGB value:

- The RGB value starts with the character "#" (hexadecimal).
- The RGB value is entered in the format "#RRGGBB".

Each R, G or B represents a single-digit hexadecimal number.

Color code

Color	Code (hexadecimal) ↓	Ċ	ode (decima	al)
Black	#00000	0	0	0
Red	#FF0000	255	0	0
Green	#00FF00	0	255	0
Blue	#0000FF	0	0	255
White	#FFFFF	255	255	255

A.4 Directory structure on the CompactFlash card

Data classes

The arrangement in data classes is essentially already given by the directory structure of the CompactFlash card:

Directory	Data class
system	SYSTEM
siemens	
addon	MANUFACTURER
oem	MANUFACTURER, INDIVIDUAL
oem_i	MANUFACTURER, INDIVIDUAL
user	USER

The directories "System" and "Siemens" have no significance for archiving, since they are set up with the installation of the SINUMERIK software and are not changed by installation, configuration or in later use. An update or upgrade of the system will typically be carried out in these directories. The archiving of these directories is for this reason only necessary as a rollback backup in the background.

Further subdividing of these directories into SINUMERIK NCK/PLC/HMI and SINAMICS covers the data areas described above and is echoed in all named directories (data classes).

CompactFlash card	Data area
SINUMERIK	NCK
	PLC
	HMI
SINAMICS	Drives

Structure of the CompactFlash card

The file system consists at the top level of the directories "add_on", "oem_i", "oem_i", "siemens" and "user": These directories have essentially an identical structure.

The section of the directory structure relevant for the configuration is shown below:

siemens directory		
/siemens/sinumerik		
/hı	mi	
	/appl	Applications (operating areas)
	/base	Basic system components
	/cfg	All configuration files

siemens directory				
	/data	Version data		
	/hlp	Online help files		
	/hlps	Online help files, zipped and version files		
	/ico	Icon files		
	/ico640	Icons in resolution 640 x 480		
	/ico800	Icons in resolution 800 x 600		
	/ico1024	Icons in resolution 1024 x 768		
	/ico1280	Icons in resolution 1280 x 1024		
	/ico1600	Icons in resolution 1600x1240		
	/Ing	Text files		
	/Ings	Text files zipped and versions files		
	/osal			
	/ace	ACE/TAO		
	/qt	Qt		
	/proj	Easy Screen configurations		
	/template	Various templates		
	/cfg	Templates for configuration files		
	/ing	Templates for text files		
	/tmpp	Storage, temporary data		

addon directory		
addon/sinumerik		
/hmi		
/appl	Applications (operating areas)	
/cfg	Configuration files	
/data	Version data	
/hlp	Online help files, zipped and version files	
/ico	Icon files	
/ico640	Icons in resolution 640 x 480	
/ico800	Icons in resolution 800 x 600	
/ico1024	Icons in resolution 1024 x 768	
/ico1280	Icons in resolution 1280 x 1024	
/ico1600	Icons in resolution 1600x1240	
/Ing	Text files	
/Ings	Text files zipped and versions files	
/proj	Easy Screen configurations	
/template	Various templates	

A.4 Directory structure on the CompactFlash card

oem, oem i direct	em, oem_i directory		
/oem/sinumerik			
/data		Version data	
/ar	chive	Manufacturer archives	
/hmi			
/ar	opl	Applications (operating areas)	
/cf	g	Configuration files	
/da	ata	Version data	
/hl	р	Online help files	
/hl	ps	Online help files, zipped and version files	
/ic	0	Icon files	
	/ico640	Icons in resolution 640 x 480	
	/ico800	Icons in resolution 800 x 600	
	/ico1024	Icons in resolution 1024 x 768	
	/ico1280	Icons in resolution 1280 x 1024	
	/ico1600	Icons in resolution 1600x1240	
/In	g	Text files	
/In	gs	Text files zipped and versions files	
/pr	oj	Easy Screen configurations	
/te	mplate	Various templates	

user directory				
/user/sinumerik				
/data	Version data			
/archive	User-specific archives			
/prog	User-specific programs			
/hmi				
/cfg	Configuration files			
/data	Version data			
/hlp	Online help files			
/ico	Icon files			
/ico640	Icons in resolution 640 x 480			
/ico800	Icons in resolution 800 x 600			
/ico1024	Icons in resolution 1024 x 768			
/ico1280	Icons in resolution 1280 x 1024			
/ico1600	Icons in resolution 1600x1240			
/Ing	Text files			
/log	Log files			
/md	Machine data views			
/proj	Easy Screen configurations			

A.4.1 How to edit files in the file system

Requirements

To perform specific adaptations, use a copy of the sample files that are contained in the following directories:

```
/siemens/sinumerik/hmi/template/cfg
/siemens/sinumerik/hmi/template/lng
```

Store the modified files in the appropriate folder of the "user" or "oem" directory.

Note

In order to copy files, you need access rights for protection level 1 (password for manufacturer).

When assigning a new file name, ensure that only files with a maximum name length of 49 characters can be managed.

Settings that have been made take effect only after restarting the HMI.

Copying/inserting/opening a file

Procedure:

- 1. Select the "Start-up" operating area.
- 2. Press the "System data" softkey.

The directory structure is displayed.

- 3. Open the required directory (e.g. System CF Card/siemens/sinumerik/hmi/cfg) in the "System CF Card" directory under "siemens".
- 4. Position the cursor on the desired file.
- 5. Press the "Copy" softkey.
- Open the directory to which you wish to save the copied file (e.g. System CF Card/user/sinumerik/hmi/cfg) in the "System CF Card" directory under "user".
- 7. Press the "Paste" softkey. If a file of the same name already exists, you receive a message. You can overwrite or rename the file.
- 8. Press the "OK" softkey.
- 9. You can open the selected file in the editor by pressing the "Open" softkey.
 - OR -
- 10.Press the <INPUT> key.
 - OR -
- 11. Double-click the highlighted file.

A.4 Directory structure on the CompactFlash card

Editing XML files externally

To create or edit an XML file on an external PC with Windows, use a text editor such as "TextPad". The "TextPad" text editor supports the "UTF-8" encoding required for the XML file.

Saving the XML file in UTF-8 coding:

- 1. Select the "Save As" dialog box.
- 2. Set the character set to "UTF-8".

Entering comments in an XML file

If you are entering comments to explain a program, you must keep the following in mind:

- A comment always begins with the sequence: <!--
- A comment ends with the sequence -->

Example:

<!-- Work offset: -->

Note

In the comment itself, you can never use two minus signs one right after the other!

Entering comments in an ini file

If you enter a comment in an ini file, start the comment line with a semicolon.

See also

Online help for the RCS Commander

A.5 Definitions for license management

Important terms

The terms below are important for understanding the license management of SINUMERIK software products:

Term	Description
Software product	The term software product is generally used to describe a product that is installed on a piece of hardware to process data. Within the license management of SINUMERIK software products, a corresponding license is required to use each software product.
Hardware	In the context of license management of SINUMERIK software products, hardware refers to the component of a SINUMERIK control system to which licenses are assigned on the basis of its unique identifier. License information is also saved to non-volatile memory on this component. Examples: SINUMERIK 828D/840D sl: CompactFlash card SINUMERIK 840Di sl: MCI board
License	A license gives the user a legal right to use the software product. Evidence of this right is provided by the following: CoL (Certificate of License) License key
CoL (Certificate of License)	The CoL is the proof of the license. The product may only be used by the holder of the license or authorized persons. The CoL includes the following data relevant for the license management: Product name License number Delivery note number Hardware serial number Note: The hardware serial number is located only on a CoL of the system software or if the license was ordered bundled, in other words the system software came together with options.
License number	The license number is the feature of a license that is used for its unique identification.
CompactFlash card	As the carrier of all non-volatile data in a SINUMERIK solution line control system, the CompactFlash card represents the identity of this control system. The CompactFlash Card includes the following data relevant for the license management:
	Hardware serial number License information including the license key.
	License information including the license key

A.5 Definitions for license management

Term	Description
Hardware serial number	The hardware serial number is a permanent part of the CompactFlash card. It is used to identify a control system uniquely. The hardware serial number can be determined by: CoL (see: Certificate of License "Note") HMI user interface
	Printing on the CompactFlash Card system
License key	The License Key is the "technical representative" of the sum of all the licenses that are assigned to one particular piece of hardware, which is uniquely marked by its hardware serial number.
Option	An option is a SINUMERIK software product that is not included in the basic version and that requires the purchase of a license for its use.
Product	A product is marked by the data below within the license management of SINUMERIK software products: • Product designation • Order number • License number

A.6 Rules for wiring with DRIVE-CLiQ

Introduction

The following rules apply for wiring components with DRIVE-CLiQ. The rules are subdivided into **DRIVE-CLiQ rules**, which must be observed, and **recommended rules**, which, when observed, do not require any subsequent changes to the topology created offline in STARTER.

The maximum number of DRIVE-CLiQ components and the possible wiring form depend on the following points:

- The binding DRIVE-CLiQ wiring rules
- The number and type of activated drives and functions on the respective control unit
- The computing power of the respective control unit
- The set processing and communication cycles

Below you will find the binding wiring rules and some other recommendations as well as a few sample topologies for DRIVE-CLiQ wiring.

The components used in these examples can be removed, replaced with others or supplemented. If components are replaced by another type or additional components are added, the SIZER tool should be used to check the topology.

If the actual topology does not match the topology created offline by STARTER, the offline topology must be changed accordingly before it is downloaded.

DRIVE-CLiQ rules

The wiring rules below apply to standard cycle times (servo 125 μ s, vector 400 μ s). For cycle times that are shorter than the corresponding standard cycle times, additional restrictions apply due to the computing power of the CU (configuration via the SIZER tool).

The rules below apply on a general basis, unless limited, as a function of the firmware version.

- A maximum of 8 DRIVE-CLiQ nodes can be connected in one row. A row is always seen from the perspective of the Control Unit.
- A maximum of 14 nodes can be connected to one DRIVE-CLiQ line on a Control Unit.
- Ring wiring is not permitted.
- Components must not be double-wired.

Figure A-1 Example: DRIVE-CLiQ line on the X103 terminal of a CU320

- The TM54F must not be operated on the same DRIVE-CLiQ line as Motor Modules.
- The Terminal Modules TM15, TM17 and TM41 have faster sample cycles than the TM31 and TM54F. For this reason, the two Terminal Module groups must be connected to separate DRIVE-CLiQ lines.
- Only one Line Module can be connected to a Control Unit. Further Line Modules may be connected in parallel to this Line Module.
- If using chassis design components, no more than one Smart Line Module and one Basic Line Module may be jointly operated on one Control Unit (mixed operation on a DRIVE-CLiQ line).
- The default sampling times may be changed.
- Mixed operation of servo and vector is not permitted.
- Mixed operation (servo with vector V/f control) is possible.
- During mixed operation of servo and vector V/f control, separate DRIVE-CLiQ lines must be used for Motor Modules (mixed operation is not permissible on Double Motor Modules).
- With vector V/f control, more than four nodes can only be connected to one DRIVE-CLiQ line on the Control Unit.
- A maximum of nine encoders can be connected.
- A maximum of eight Terminal Modules can be connected to the CU320.
- A maximum of three Terminal Modules can be connected to the CU310.
- The Active Line Module booksize and Motor Modules booksize
 - can be connected to one DRIVE-CLiQ line in **servo** mode.
 - must be connected to separate DRIVE-CLiQ lines in **vector** mode.
- The Line Module (chassis) (Active Line, Basic Line, Smart Line) and the Motor Modules (chassis) must be connected to separate DRIVE-CLiQ lines.
- Motor Modules in chassis format with different current controller cycles must be connected to separate DRIVE-CLiQ lines. For this reason, chassis Motor Modules and booksize Motor Modules must be connected to separate DRIVE-CLiQ lines.

- The Voltage Sensing Module (VSM) should be connected to a free DRIVE-CLiQ port of the corresponding Active Line Module/Motor Module (due to automatic assignment of the VSM). For exceptions see the rules for firmware version V2.4 and V2.5.
- The sampling times (p0115[0] and p4099) of all components that are connected to a DRIVE-CLiQ line must be divisible by one another with an integer result. If the current controller sampling time on a DO has to be changed to another pattern that does not match the other DOs on the DRIVE-CLiQ line, the following options are available:
 - Reconnect the DO to a separate DRIVE-CLiQ line.
 - Also change the current controller sampling time and the sampling time of the inputs/outputs of the DO not involved so that they again fit into the time grid.

Note

A Double Motor Module, a DMC20, a TM54F and a CUA32 each correspond to two DRIVE-CLiQ participants. This also applies to Double Motor Modules, of which just one drive is configured.

In STARTER, you can change and check the DRIVE-CLiQ topology for each drive unit in the "Topology" screen.

To enable the function "Automatic configuration" to assign the encoders to the drives, the recommended rules below must be observed.

Recommended rules

- The DRIVE-CLiQ cable from the Control Unit must be connected as follows:
 - To X200 of the first booksize power unit
 - To X400 of the first chassis power unit
- The DRIVE-CLiQ connections between the power units must each be connected from interface X201 to X200 or from X401 to X400 on the follow-on component.
- A Power Module with the CUA31 should be connected to the end of the DRIVE-CLiQ line.

Figure A-2 Example: DRIVE-CLiQ line

The motor encoder must be connected to the associated power unit.

Component	Connecting the motor encoder via DRIVE-CLiQ
Single Motor Module booksize	X202
Double Motor Module booksize	Motor connection X1: Encoder at X202Motor connection X2: Encoder at X203
Single Motor Module chassis	X402
Power Module blocksize	CUA31: Encoder at X202CU310: Encoder at X100 or via TM31 at X501
Power Module chassis	X402

Note

If an additional encoder is connected to a Motor Module, it is assigned to this drive as encoder 2 in the automatic configuration.

Figure A-3 Example: Topology with VSM for booksize and chassis components

Component	VSM connection
Active Line Module booksize	X202
Active Line Module (chassis)	X402
Power Modules	The VSM is not supported.

Note

The following applies for firmware versions < V2.5:

All of the nodes on a DRIVE-CLiQ line must have the same basic sampling time in p0115[0]. Otherwise the VSM must be connected to a separate DRIVE-CLiQ interface on the Control Unit.

- Only one final node should ever be connected to free DRIVE-CLiQ ports of components within a DRIVE-CLiQ line (e.g. Motor Modules wired in series), for example, one Sensor Module or one Terminal Module, without forwarding to additional components.
- If possible, Terminal Modules and Sensor Modules of direct measuring systems should not be connected to the DRIVE-CLiQ line of Motor Modules but rather to free DRIVE-CLiQ ports of the Control Unit.

List of abbreviations

B.1 Abbreviations

Abbreviation	Meaning	Explanation
ALM	Active Line Module	
ASCII	American Standard Code for Information Interchange	American coding standard for the exchange of information
AUTO	"Automatic" operating mode	
BAG	Mode group	
BERO	Proximity limit switch with feedback oscillator	
BICO	Binector Connector	Interconnection technology for the drive
CEC	Cross Error Compensation	
CNC	Computerized Numerical Control	Computerized numerical control
DB	Data Block in the PLC	
DBB	Data Block Byte in the PLC	
DBW	Data Block Word in the PLC	
DBX	Data Block Bit in the PLC	
DDE	Dynamic Data Exchange	Dynamic Data Exchange
DIN	Deutsche Industrie Norm	
DO	Drive object	Drive Object
DRAM	Dynamic Random Access Memory	Dynamic memory block
DRF	Differential Resolver Function	Differential resolver function (handwheel)
DRY	DRY run	DRY run feedrate
ESR	Extended Stop and Retract	
FIFO	First In - First Out	Method of storing and retrieving data in a memory
GUD	Global User Data	Global user data
Hardware	Hardware	
HD	Hard Disk	Hard disk
НМІ	Human Machine Interface	Controller user interface
IGBT	Insulated Gate Bipolar Transistor	
INC	Increment	Increment
INI	Initializing Data	Initializing data
IPO	Interpolator	
ISO	International Standardization Organisation	International Standards Organization
JOG	"Jogging" operating mode	Jogging via the direction keys
LEC	Leadscrew Error Compensation	Leadscrew error compensation
LED	Light Emitting Diode	Light-emitting diode
LUD	Local User Data	Local user data
MAIN	Main program	Main program (OB1, PLC)

B.1 Abbreviations

Abbreviation	Meaning	Explanation
МВ	Megabyte	
MCP	Machine Control Panel	Machine control panel
MCS	Machine Coordinate System	
MD	Machine data	
MDA	"Manual Data Automatic" operating mode	Manual input
MLFB	Machine-readable product designation	
MPF	Main Program File	Main program (NC part program)
MPI	Multi Point Interface	Multi-Point Interface
NCK	Numerical Control Kernel	Numerical control kernel
NCU	Numerical Control Unit	NCK hardware unit
OEM	Original Equipment Manufacturer	
OPI	Operator Panel Interface	
PCU	Programmable Control Unit	
PG	Programming device	
PI	Program Instance	
PLC	Programmable Logic Control	Programmable logic controller
POU	Program organization unit	in the PLC user program
PPU	Panel Processing Unit	Panel-based control
QEC	Quadrant Error Compensation	Quadrant error compensation
REF POINT	"Reference point approach" in JOG mode	
REPOS	"Repositioning" in JOG mode	
RPA	R parameter Active	Memory area on the NCK for R parameter numbers
RTC	Real Time Clock	Real-time clock
SBL	Single Block	Single block
SBR	Subroutine	Subroutine (PLC)
SD	Setting Data	
SDB	System Data Block	
SEA	Setting Data Active	Identifier (file type) for setting data
SK	Softkey	
SLM	Smart Line Module	
SPF	Subprogram file	Subprogram (NC)
SRAM	Static Random Access Memory	Static memory block
SW	Software	
TEA	Testing Data Active	Identifier for machine data
TM	Tool Management	
TMMG	Tool Magazine Management	
ТО	Tool Offset	Tool offset
TOA	Tool Offset Active	Identifier (file type) for tool offsets

B.1 Abbreviations

Abbreviation	Meaning	Explanation
WCS	Workpiece Coordinate System	
WO	Work Offset	
ZOA	Zero Offset Active	Identifier (file type) for work offset data

B.2 Feedback on the documentation

This document will be continuously improved with regard to its quality and ease of use. Please help us with this task by sending your comments and suggestions for improvement via e-mail or fax to:

E-mail: mailto:docu.motioncontrol@siemens.com

Fax: +49 9131 - 98 2176

Please use the fax form on the back of this page.

То	From
SIEMENS AG I DT MC MS1	Name:
P.O. Box 3180	Address of your company/department
D-91050 Erlangen / Germany	Street:
	Zip code: City:
	Phone: /
Fax: +49 9131 - 98 2176 (Documentation)	Fax: /

Suggestions and/or corrections

B.3 Overview of documentation

Glossary

Active Line Module (ALM)

A controlled, self-commutating infeed/feedback unit (with IGBTs in infeed/feedback direction) which supplies a DC-link voltage for the → Motor Modules.

Basic infeed

Overall functionality of an infeed with → Basic Line Module, including the additional components required (filters, switching devices, etc.).

Basic Line Module

Unregulated line infeed unit (diode bridge or thyristor bridge, without feedback) for rectifying the line voltage of the \rightarrow DC link.

CompactFlash card

Memory card with non-volatile memory: The CompactFlash card can be plugged into the \rightarrow Control Unit from outside.

Control Unit

Central open and closed-loop control module. The following Control Units are available:

- SIMOTION Control Units, e.g. D425 and D435
- SINAMICS Control Units, e.g. CU320
- SINUMERIK solution line Control Units, e.g. NCU 7x0, PPU

Double Motor Module (DMM)

Two motors can be connected to and operated with a Double Motor Module. See \rightarrow Motor Module.

Drive

The drive includes the (electric or hydraulic) motor, the actuator (converter, valve), the control unit, the measuring system and the supply components (line infeed module, pressure accumulator). For electric drives, a distinction is made between a converter system and an inverter system. With a converter system (e.g. \rightarrow MICROMASTER 4), the line infeed, the actuator, and the control component form a single device from the point of view of the user. With an inverter system (e.g. \rightarrow SINAMICS S), the supply is ensured by means of \rightarrow Line Modules, thereby realizing a DC link to which the \rightarrow Inverters (\rightarrow Motor Modules) are connected. The (\rightarrow Control Unit) is implemented as a separate device and connected to the other components by means of \rightarrow DRIVE-CLiQ.

Drive component

Hardware component connected to a \rightarrow Control Unit via \rightarrow DRIVE-CLiQ or in some other way. Drive components include: \rightarrow Motor Modules, \rightarrow Line Modules, \rightarrow Motors, \rightarrow Sensor Modules and \rightarrow Terminal Modules. The overall arrangement of a Control Unit including the connected drive components is known as the \rightarrow Drive unit.

Drive line-up

A drive line-up comprises a \rightarrow Control Unit as well as the \rightarrow Motor Modules and \rightarrow Line Modules connected via \rightarrow DRIVE-CLiQ.

Drive object (DO)

A drive object is a self-contained software function with its own \rightarrow parameters and, if necessary, its own \rightarrow Faults and \rightarrow Alarms. Drive objects may exist by default (e.g. onboard I/O), can be created individually (e.g. \rightarrow Terminal Board 30, TB30) or also as multiples (e.g. \rightarrow Servo control). As a rule, each drive object has its own window for parameterization and diagnostic purposes.

Drive parameters

Parameters of a drive axis that include, for example, the parameters of the corresponding controllers, as well as the motor and encoder data. The parameters of the higher-level technology functions (positioning, ramp-function generator), however, are called \rightarrow Application parameters.

Drive system

A drive system includes all components of a family of products (e.g. SINAMICS) belonging to a drive. A drive system includes components such as \rightarrow Line Modules, \rightarrow Motor Modules, \rightarrow Encoders, \rightarrow Motors, \rightarrow Terminal Modules and \rightarrow Sensor Modules, as well as complementary components such as reactors, filters, lines, etc.

Drive unit

The drive unit includes all components, which are connected via \rightarrow DRIVE-CLiQ and required for carrying out a drive task: \rightarrow Motor Module \rightarrow Control Unit \rightarrow Line Module and the required \rightarrow Firmware and \rightarrow Motors, but not complementary components (such as filters and reactors). Several \rightarrow Drives can be implemented in one drive unit. See \rightarrow Drive system

DRIVE-CLIQ

Abbreviation for "Drive Component Link with IQ".

Communication system for connecting the various components of a SINAMICS drive system, such as the \rightarrow Control Unit, \rightarrow Line Modules, \rightarrow Motor Modules, \rightarrow Motors and speed/position encoders.

DRIVE-CLiQ is based on Industrial Ethernet using twisted-pair lines. The DRIVE-CLiQ line provides the send and receive signals, as well as the +24 V power supply.

Encoder

Records and makes positions available for electronic processing. Depending on their mechanical design, encoders can be incorporated in the \rightarrow Motor (\rightarrow Motor encoder) or mounted on the external mechanics (\rightarrow External encoder). Depending on the type of movement, a distinction is made between rotary encoders (also called shaft encoders) and translatory encoders (e.g. \rightarrow Linear encoder). In terms of measured value provision, we distinguish between \rightarrow Absolute encoders (code sensors) and \rightarrow Incremental encoders. See \rightarrow Incremental encoder TTL/HTL \rightarrow Incremental encoder sin/cos 1 Vpp \rightarrow Resolver.

External encoder

Position encoder that is not built in or mounted on the \rightarrow Motor, but is attached outside to the working machine or via a mechanical intermediate element. The external encoder (externally mounted encoder) is used for direct position detection.

Infeed

Input component of a converter system for generating a DC-link voltage for feeding one or several → Motor Modules, including all components required, such as → Line Modules, fuses, reactors, line filters and firmware, as well as proportional computing power (if required) in a → Control Unit.

Line Module

A Line Module is a power component which creates the DC-link voltage for one or several → Motor Modules from a three-phase mains voltage. The following three Line Module types are used for SINAMICS: → Basic Line Module, → Smart Line Module and → Active Line Module.

The overall function of an infeed, including the required additional components such as \rightarrow Line reactor, proportional computing power in a \rightarrow Control Unit, switching devices, etc. is called \rightarrow Basic infeed, \rightarrow Smart infeed, and \rightarrow Active infeed.

Motor

For the electric motors that can be driven by \rightarrow SINAMICS, a basic distinction is made between rotary and linear motors with regard to their direction of motion, and between synchronous and induction motors with regard to their electromagnetic operating principle. For SINAMICS, the motors are connected to a \rightarrow Motor Module. See \rightarrow Synchronous motor \rightarrow Induction motor \rightarrow Motor encoder \rightarrow External encoder.

Motor encoder

An \rightarrow Encoder integrated in the motor or attached to the motor, e.g. \rightarrow Resolver, \rightarrow Incremental encoder TTL/HTL or \rightarrow Incremental encoder sin/cos 1 Vpp. The encoder is used for detecting the motor speed. In the case of synchronous motors, also for detection of the rotor position angle (the commutation angle for the motor currents). For drives without an additional \rightarrow Direct position measuring system, it is also used as a \rightarrow Position encoder for position control. In addition to the motor encoders, there are \rightarrow External encoders for \rightarrow Direct position sensing.

Motor Module

A motor module is a power unit (DC-AC inverter) that provides the power supply for the motor(s) connected to it. Power is supplied via the \rightarrow DC link of the \rightarrow Drive unit. A Motor Module must be connected to a \rightarrow Control Unit via \rightarrow DRIVE-CLiQ. The open-loop and closed-loop control functions of the Motor Module are stored in the Control Unit. There are Single Motor Modules and \rightarrow Double Motor Modules.

Parameter

Variable quantity within the drive system that the user can read and, in some cases, write. For → SINAMICS, a parameter meets all specifications defined for drive parameters in the → PROFIdrive profile. See → Display parameter → Adjustable parameter

Sensor Module

Hardware module for evaluating speed/position encoder signals and providing detected actual values as numerical values at a \rightarrow DRIVE-CLiQ socket. There are three mechanical variants of Sensor Modules:

- SMCxx = Sensor Module Cabinet-Mounted = Sensor Module for the snap-on mounting in the control cabinet.
- SME = Sensor Module Externally Mounted = Sensor Module with high degree of protection for mounting outside the control cabinet.

Servo control

This type of closed-loop control enables operation with a high dynamic response and precision for \rightarrow Motors with \rightarrow Motor encoders. In addition to speed control, position control can be included.

Servo drive

An electric servo drive consists of a motor, $a \rightarrow Motor Module$ and $a \rightarrow Servo$ control and, in most cases, a speed and position encoder. Electric servo drives generally work very precisely and with a high dynamic response. They are designed for cycle times of up to 100 ms. In many cases, they have a very short-time overload capacity, thus allowing particularly fast acceleration. Servo drives are available as rotary and as linear drives.

Smart Line Module (SLM)

Unregulated line infeed/feedback unit with a diode bridge for feeding; stall-protected, line-commutated feedback via IGBTs. The Smart Line Module provides the DC-link voltage for the \rightarrow Motor Modules.

User views

User views are user-specific groups of machine data. They are used to call all relevant machine data in a certain operating state from various areas for processing.

The user views are stored on the CompactFlash card with the following path:

user/sinumerik/hmi/template/user views

The following user views are already available as template:

- Electrical Startup
- Mechanical_Startup
- Optimizing_Axis

Index

	GUD, 266
\$	MD, 265
\$MC_CUTTING_EDGE_DEFAULT (MD20270), 313 \$MC_TOOL_CHANGE_ERROR_MODE (MD22562), 296, 313, 337, 338 \$MC_TOOL_CHANGE_MCODE (MD22560), 313 \$MC_TOOL_CHANGE_MODE (MD22550), 295, 313 \$MC_TOOL_MANAGEMENT_MASK (MD20310), 314 \$MC_TOOL_MANAGEMENT_TOOLHOLDER (MD20124), 313 \$MCS_TM_FUNCTION_MASK (MD52270), 315 \$MN_M_NO_FCT_CYCLE_NAME (MD10716), 313 \$MN_MAXNUM_REPLACEMENT_TOOLS (MD17500), 313 \$MN_MM_EXTERN_LANGUAGE (MD10880), 104 \$MN_NC_USER_CODE_CONF_NAME_TAB (MD10712), 104 \$MN_PLC_DEACT_IMAGE_LADDR_IN (MD12986), 64 \$MN_PLC_DEACT_IMAGE_LADDR_OUT (MD12987), 64 \$MN_T_NO_FCT_CYCLE_NAME (MD10717), 318 \$MN_USER_DATA_PLC_ALARM (MD14516), 41 \$MNS_ACCESS_RESET_SERV_PLANNER (MD51235), 223 \$SNS_TM_FUNCTION_MASK_SET (SD54215), 316	NC variables, 265 NX, 267 Parameter, 264 Setting data, 265 Adjacent location, 295 Advanced Surface, 182 Alarms Backing up permanently, 44 Colors, 47 Configuring variables, 42 Language code, 383 Log, 43 Number ranges, 384 Structure, 40 Archive Memory area, 375 Series start-up, 376 Axis configuration Lathe with milling tools, 129 Milling machine, 118 B Buffer, 294
1	
1:1 Change, (> Tool change)	С
	Certificate of License (CoL), 391
A	Chain magazine, 294 Circular magazine, 295
Access levels, 31 Acknowledgment Maintenance task, 220 Process, 320 Rules, 332 Status, 322 Synchronous, 321 TM, 301 Acknowledgment block, 222	Circumferential groove, 117 Company network, 28 Configuring the measuring system, 78 Contour grooving CYCLE930, 124 Contour milling (CYCLE63), 116 Contour turning CYCLE950, CYCLE952, 124 CUST_800.SPF, 109 CUST_832.SPF, 109, 184 CUST_MEACYC.SPF, 109, 189
Acknowledgment step, 330 Acknowledgment-step table, 312 Actual data table, 219 Addressing	CUST_TECHCYC.SPF, 109, 139, 149 CYCLE79, 117 CYCLE800 example Cardanic swivel head, 168

DO, 266

Cardanic table, 170	F
Changeable swivel head, 167	Foodback signal 202
Swivel head/rotary table, 172	Feedback signal, 302
Swivel table, 174	
CYCLE84, 114	G
CYCLE840, 114	O
CYCLE930, 124	Groove side offset, 118
CYCLE950, 124	
CYCLE951, 124	
CYCLE952, 124	Н
CYCLE982, 213	Hardware serial number, 392
CYCLE99, 124	High Speed Settings (CYCLE832), 182
Cylinder surface transformation	Hirth tooth system, 156, 169
under milling, 117	
under turning, 130	
with groove side offset, 132	1
without groove side correction, 131	
	I/O module DIP switch, 66
D	Infeed, 76
D	Initial data table, 218
Data area, 374	Intermediate acknowledgment, 321, 322
DB1800, 217	IP address, 66
DB9904, 217	ISO Dialect, 104
Direct connection, 25	
Drilling, 113	J
Drive	J
Circuitry, 94	Job status, 310
Configuration, 67	
Parameter, 89	
DRIVE-CLiQ, 67	K
Wiring rules, 393	Kinematics
	Check list, 160
_	Swivel data set, 161
E	with Hirth tooth system, 156
Easy Archive, 378	,,,,,,,
Easy Extend, 231	
EE_IFC (DB9905), 233	L
End acknowledgment, 321, 322	Lamayana anda 202
Ethernet interface, 28	Language code, 383
Example	License, 37, 391
Axis configuration of a lathe, 129	License key, 37, 392 License management, 391
Change manual tool (1), 338	License number, 391
Change manual tool (2), 339	Loading magazine, 294
Measure tool in AUTO mode during milling, 207	Location type, 332
Milling machine, 354	Location type, 332
Milling machine axis configuration, 118	
Milling part program, 355	M
Residual material machining, 127	
Turning machine, 342	Machine data, 101
Turning part program, 343	Effectiveness, 103
	Unit, 102
	Machining type G group 59, 183

Magazine, 293, 327 Configuration, 351 Magazine list, 294 Manual tools, 296 MD10712 NC_USER_CODE_CONF_NAME_TAB, 104 MD10715[0]	Milling Cylinder surface transformation, 117 Measure tool in JOG, 193 Measure workpiece, 202 Measure workpiece in JOG, 191 Multi-edge CYCLE79, 117
M_NO_FCT_CYCLE, 313 MD10716[0] M_NO_FCT_CYCLE_NAME, 313 MD10717 \$MN_T_NO_FCT_CYCLE_NAME, 318 MD10880 MM_EXTERN_LANGUAGE, 104	NCK variables, 332 Network connection, 25
MD12986 PLC_DEACT_IMAGE_LADDR_IN, 64 MD12987 PLC_DEACT_IMAGE_LADDR_OUT, 64 MD14516 USER_DATA_PLC_ALARM, 41 MD17500 MAXNUM_REPLACEMENT_TOOLS, 313 MD20124 TOOL_MANAGEMENT_TOOLHOLDER, 313 MD20270 CUTTING_EDGE_DEFAULT, 313 MD20310	Option, 37 3D simulation 1 (finished part), 111 Inclined axis, 136, 152 Measuring cycles, 198 Residual material identification and machining, 127 ShopMill/ShopTurn, 105, 115, 121, 139, 159 Simultaneous recording (real-time simulation), 111 TRANSMIT and peripheral surface transformation, 117, 130, 133, 150, 151 Travel to fixed stop (with force control), 146
TOOL_MANAGEMENT_MASK, 314 MD22550 TOOL_CHANGE_MODE, 295, 313 MD22560 TOOL_CHANGE_MCODE, 313 MD22562 TOOL_CHANGE_ERROR_MODE, 296, 337, 338 MD51235 ACCESS_RESET_SERV_PLANNER, 223 MD52270 TM_FUNCTION_MASK, 315 Measure tool In AUTO mode during turning, 213 In JOG mode during turning, 197 when milling, 205 Measure workpiece AUTO settings, 200 In AUTO mode during milling, 202 In JOG mode during milling, 191	Password Change, 33 Set, 33 PI service, 335 PLC user alarms, 40 PLC user program, 292 Aligning, 331 PLC-Firmware, 293 Probe, 97 Assigning NC measuring input, 188 Example of a test program, 187 Measure tool, 186 Measure workpiece, 186 Testing the function, 187 PROG_EVENT, 110 Programming Tool, 14
under turning, 204 Measured value correction using correction tables, 211 Measurement path, 197 Measuring feedrate, 197 Message, asynchronous, 321	RCS Commander, 14 Residual material machining (turning), 127 RGB colors, 385 Rotary axis vectors, 161 RTC capacitor, 18

S	TRACYL, 139
SD54215	Cylinder surface transformation, 150
TM_FUNCTION_MASK_SET, 316	Transfer step, 327
Series start-up, 374	Transfer-step table
Setting data, 101	Constant, 311
Setting data, 101 Setting date/time, 35	Variable, 312
Setting-up measuring in JOG, 189	TRANSMIT, 138
ShopTurn	TRANSMIT with Y axis, 135
Cylinder surface transformation, 150	Trigonometric functions, 282
Face end machining, 151	Turning
Setting up a counterspindle, 146	Cylinder surface transformation (TRACYL), 130
Tapping, 115	Inclined axis (TRAANG), 136
Simulation, 111	Measure workpiece, 204
Deactivate, 112	
Simultaneous recording, activating the runtime, 112	
Source ID, 384	U
Source URL, 384	USB flash drive, 375
STARTER drive/commissioning software, 14	User example, 378
Stock removal, corner CYCLE951, 124	User interface, 297
String functions, 271	User views, 103
Swivel	
Activating, 153	
Commission kinematic chain, 161	V
Configuring the input dialog, 153	V/04
under ShopMill, 159	V.24
System languages, 34	Interface, 380
System variables, 163	Parameter, 380
T	W
Т	
Tapping, 114	Wiring rules
TCP/IP, 28	DRIVE-CLiQ, 393
Technology	
Drilling, 113	X
Milling, 116	^
Swivel, 153	XML
Terminal assignment	Identifiers, 239
X122, 91	Operators, 238
X132, 92	Special characters, 238
Thread-cutting CYCLE99, 124	Statements, 268
TMMVTL (PI service), 335	XML identifier
Tolerance value, 182	?up, 256
Tool change, 304, 360	AGM, 239
End acknowledgment, 304	BOX, 258
Tool list, 294	CAPTION, 256
Tool management, 291	CLOSE, 256
Toolbox, 14	CONTROL, 258
Toolholder that can be oriented, 214	CONTROL_RESET, 241
Total acknowledgment, 322	DATA, 241
TRAANG, 138	DATA_ACCESS, 242
Inclined axis, 152 TRACON, 138	DATA_LIST, 242 DEVICE, 239

DRIVE_VERSION, 243

FILE, 244

FORM, 257

FUNCTION, 245

FUNCTION_BODY, 246

IMG, 260

INCLUDE, 248

INIT, 257

LET, 249

MSGBOX, 250

NAME, 239

OP, 251

OPTION_MD, 252

PAINT, 257

PASSWORD, 253

PLC_INTERFACE, 253

POWER_OFF, 254

PRINT, 255

PROPERTY, 261

REQUEST, 262

SET_ACTIVE, 240

SET INACTIVE, 240

SOFTKEY CANCEL, 262

SOFTKEY_OK, 262

START_UP, 239

TEST, 240

TEXT, 263

UID, 240

UPDATE_CONTROLS, 263

VERSION, 240

WAITING, 255