A study of Shazam's Audio Recognition

Presentation - December 2016		
DOI: 10.13140/RG.2.2.21768.21766		
CITATIONS		READS
0		3,620
		-,
1 author:		
	Guendalina Palmirotta	
	University of Luxembourg	
	5 PUBLICATIONS 0 CITATIONS	
	SEE PROFILE	
Campa of the authors of this multipation are also unadding an those related was instead		
Some of the authors of this publication are also working on these related projects:		
Project	Lower bounds for kissing numbers View project	
	•	
Project	Construction of flexible polyhedra View project	

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam algorithm

From digital sound to spectogram Spectogram (Sonic visualization) Fingerprinting and Hash functions

Anchor point and target zone
Matching of a song

Conclusion

Roboustness, Speedness and Noise

A mini Shazam

A study of Shazam's Audio Recognition Seminar in Data Science

PALMIROTTA Guendalina

University of Luxembourg,
Faculty of Science, Technology and Communication,
Master in Mathematics
Winter semester 2016-2017

December 21, 2016

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam

algorithm

From digital sound to spectogram Spectogram (Sonic visualization)
Fingerprinting and Hash functions
Anchor point and target zone
Matching of a song

Conclusion

Roboustness, Speedness and Noise

A mini Shazam

Get in touch with Shazam

- Motivation
- The magic behind the Shazam algorithm
 - From digital sound to spectogram
 - Spectogram (Sonic visualization)
 - Fingerprinting and Hash functions
 - Anchor point and target zone
 - Matching of a song
 - Scatterplot and Histogram
- Conclusion
 - Roboustness, Speedness and Noise resistanceness
- A mini Shazam on R

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam

algorithm

From digital sound to spectogram (Sonic visualization) Fingerprinting and Hash functions Anchor point and target zone Matching of a song

Conclusion

Roboustness, Speedness and Noise

A mini Shazam on R

Get in touch with Shazam

- Motivation
- 2 The magic behind the Shazam algorithm
 - From digital sound to spectogram
 - Spectogram (Sonic visualization)
 - Fingerprinting and Hash functions
 - Anchor point and target zone
 - Matching of a song
 - Scatterplot and Histogram
- Conclusion
 - Roboustness, Speedness and Noise resistanceness
- 4 A mini Shazam on R

Get in touch with Shazam

Motivation

The magic behind the Shazam algorithm

From digital sound to spectogram Spectogram (Sonic visualization) Fingerprinting and Hash functions Anchor point and target zone Matching of a song Scatterplot and Histogram

Conclusion

Roboustness, Speedness and Noise resistanceness

A mini Shazam on R

Motivation – Introduction

- Capture the music for a few seconds (5-15s)
- 2 Identification of the song
- Display the information (name, artist, album)

Goal

Recognize our unknown song in a short time using Shazam music application

PALMIROTTA Guendalina

Get in touch with Shazam Motivation

The magic behind the Shazam algorithm

From digital sound to spectogram Spectogram (Sonic visualization) Fingerprinting and Hash functions Anchor point and target zone Matching of a song Scatterplot and

Conclusion

Roboustness, Speedness and Noise resistanceness

A mini Shazam on R

Difficulty and constraints

Develop an algorithm that is able to:

- Capture by a little microphone a short sample of music
- Often with mixed heavy ambient noise
- Quick identification over a large database of music ⇒ 2M tracks

Keywords:

Roboustness, Noise resistanceness and Speedness

Motivation

The magic behind the Shazam algorithm

From digital sound to spectogram Spectogram (Sonic visualization) Fingerprinting and Hash functions

Anchor point and target zone Matching of a soi

_ . .

Roboustness, Speedness and Noise

A mini Shazam on R

Seems to be magic, but...

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam algorithm

From digital sound to spectogram Spectogram (Sonic visualization) Fingerprinting and Hash functions Anchor point and target zone Matching of a song Scatterplot and

Conclusion

Roboustness, Speedness and Noise

A mini Shazam

- Get in touch with Shazam
 - Motivation
- 2 The magic behind the Shazam algorithm
 - From digital sound to spectogram
 - Spectogram (Sonic visualization)
 - Fingerprinting and Hash functions
 - Anchor point and target zone
 - Matching of a song
 - Scatterplot and Histogram
- Conclusion
 - Roboustness, Speedness and Noise resistanceness
- 4 A mini Shazam on R

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam algorithm

From digital sound to spectogram Spectogram (Sonic visualization) Fingerprinting and Hash functions Anchor point and target zone Matching of a song

onclusio

Roboustness, Speedness and Noise

A mini Shazam

Overview

Shazam two sides: 'Client' side and the 'Server' side

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam algorithm

From digital sound to spectogram Spectogram (Sonic visualization) Fingerprinting and Hash functions Anchor point and

Anchor point and target zone
Matching of a song
Scatterplot and
Histogram

Conclusion

Roboustness, Speedness and Noise

A mini Shazam

Step by step – Continous signal to discrete signal

Step 1

The song must be transformed in a time-frequency graph, that we call spectrogram. Then we do a kind of filtration, we get a constellation map and keep only the 'important points'.

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam algorithm

From digital sound to spectogram Spectogram (Sonic

visualization)
Fingerprinting and Hash functions

Matching of a son Scatterplot and

Conclusion

Roboustness, Speedness and Noise

A mini Shazam

How to get a spectogram?

Goal: From digital sound to frequency

Discrete Fourier Transform (DFT)

$$X(n) = \sum_{k=0}^{N-1} x[k]e^{\frac{-2\pi ikn}{N}},$$

- N size of (Hamming) window
- X(n) the *n*-th bin of frequencies
- x[k] the k-th sample of the audio signal
- \Rightarrow Use Fast Fourier Tranform (FFT) instead of the DFT

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam algorithm

From digital sound to spectogram Spectogram (Sonic visualization) Fingerprinting and Hash functions

target zone
Matching of a son
Scatterplot and

Conclusion

Roboustness, Speedness and Noise resistanceness

A mini Shazam

Spectogram filtering

Combination of sinewaves at multiple frequencies

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam algorithm

From digital sound to spectogram Spectogram (Sonic visualization) Fingerprinting and Hash functions Anchor point and target zone Matching of a song Scatterplot and

Conclusion

Roboustness, Speedness and Noise resistanceness

A mini Shazam

Filtration : Consellation map

What are the important nodes to consider?

- Depends on the coefficients of the bins
- Depends on the number of bands of the strongest time-frequency point

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam algorithm

From digital sound to spectogram Spectogram (Sonic visualization)

Fingerprinting and Hash functions

Anchor point and target zone

Matching of a son Scatterplot and

Conclusion

Roboustness, Speedness and Noise resistanceness

A mini Shazam

Step by step – Fingerprinting and Hash functions

Step 2

We code the song in a unique acoustic fingerprints and store it in a hash tag table.

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam algorithm

From digital sound to spectogram
Spectogram (Sonic

Spectogram (Sonic visualization)
Fingerprinting and Hash functions

Anchor point and target zone
Matching of a song

Scatterplot and Histogram

Conclusion

Roboustness, Speedness and Noise resistanceness

A mini Shazam on R

How to store?

Use anchor point with their corresponding zone, called target zone

Idea

To look for multiple points at the same time instead of comparing each point one by one.

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam algorithm

From digital sound to spectogram Spectogram (Sonic visualization) Fingerprinting and Hash functions

Anchor point and target zone

Matching of a song Scatterplot and Histogram

Conclusior

Roboustness, Speedness and Noise resistanceness

A mini Shazam

Hash details

Each time an anchor point lies inside the target zone \rightarrow a hash is created.

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam algorithm

From digital sound to spectogram Spectogram (Sonic visualization) Fingerprinting and Hash functions

Anchor point and target zone
Matching of a song Scatterplot and Histogram

Conclusion

Roboustness, Speedness and Noise

A mini Shazam on R

Searching and Scoring the fingerprints

Fingerprint

Unknown song: $[(f_1, f_2, \Delta t), t_1] \rightarrow [t_1]$ Update a new song: $[(f_1, f_2, \Delta t), t_1, ID] \rightarrow [t_1, ID]$

- (t_1, f_1) time-frequency at which the anchor point is located,
- (t_2, f_2) time-frequency at which the point in the target zone is positioned,
- $\Delta t = t_2 t_1$ the time difference between t_1 and t_2 ,
- *ID* of the song (name, artist, album, of the song).

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam algorithm

From digital sound to spectogram Spectogram (Sonic visualization) Fingerprinting and

Hash functions
Anchor point and target zone

Matching of a song Scatterplot and Histogram

Conclusion

Roboustness, Speedness and Noise resistanceness

A mini Shazam on R

Hash function and table

⇒ Store in a hash tag table in the database

- Hash tag table: $\mathsf{Hash}_{\mathsf{table}} = [\mathsf{Hash}(1), \dots, \mathsf{Hash}(n)]$
- Bucket is a specific location in database

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam

algorithm

From digital sound to spectogram

Spectogram (Sonic visualization)

Fingerprinting and

Hash functions
Anchor point and target zone

Matching of a song Scatterplot and Histogram

Conclusion

Roboustness, Speedness and Noise resistanceness

A mini Shazam on R

Step by step – Matching of a song

Step 3

For the matching factor we use a scatter graph and the corresponding histogram graph.

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam

algorithm

From digital sound to spectogram Spectogram (Sonic visualization) Fingerprinting and Hash functions Anchor point and

target zone
Matching of a song
Scatterplot and

Histogram Conclusion

Roboustness, Speedness and Noise

A mini Shazam on R

Scatterplot and Histogram of no matching

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam algorithm

From digital sound to spectogram Spectogram (Sonic visualization) Fingerprinting and Hash functions Anchor point and target zone

Matching of a song

Scatterplot and Histogram

Conclusio

Speedness and Noise resistanceness

A mini Shazam on R

Scatterplot and Histogram of matching

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam

algorithm

From digital sound to spectogram Spectogram (Sonic visualization) Fingerprinting and Hash functions Anchor point and target zone

Matching of a so Scatterplot and Histogram

Conclusion

Roboustness, Speedness and Noise resistanceness

A mini Shazam on R

Get in touch with Shazam

- Motivation
- 2 The magic behind the Shazam algorithm
 - From digital sound to spectogram
 - Spectogram (Sonic visualization)
 - Fingerprinting and Hash functions
 - Anchor point and target zone
 - Matching of a song
 - Scatterplot and Histogram
- Conclusion
 - Roboustness, Speedness and Noise resistanceness
- 4 A mini Shazam on R

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam

algorithm

From digital sound to spectogram Spectogram (Sonic visualization) Fingerprinting and Hash functions Anchor point and target zone Matching of a song

Conclusion

Roboustness, Speedness and Noise resistanceness

A mini Shazam

Roboustness, Speedness and Noise resistanceness

• Identify the music with a rate of 90% of correctness in a short time with noise!

PALMIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam

algorithm

From digital sound to spectogram

Spectogram (Sonic visualization)

Hash functions

target zone
Matching of a song

onclusio

Roboustness, Speedness and Noise resistanceness

A mini Shazam on R

PAI MIROTTA Guendalina

Get in touch with Shazam

Motivation

The magic behind the Shazam

algorithm

From digital sound to spectogram Spectogram (Sonic visualization) Fingerprinting and Hash functions target zone

Conclusion

Roboustness. Speedness and

A mini Shazam on R

- Motivation
- - From digital sound to spectogram
 - Spectogram (Sonic visualization)
 - Fingerprinting and Hash functions
 - Anchor point and target zone
 - Matching of a song
 - Scatterplot and Histogram
- - Roboustness, Speedness and Noise resistanceness
- A mini Shazam on R

