CS2040C Data Structures and Algorithms

Trees

Outline

- Binary trees
- Implementation
- Binary Tree Traversal
- Binary Search Trees
- STL search algorithms

CS2040C 18/19 Sem 1 _____

Binary Trees

Each node has at most 2 ordered children

Binary Tree

Each node has at most 2 ordered children Binary Tree has a recursive structure

Note: a degree of a node is the number of subtrees it has

Full Binary Tree

 All nodes at a level < h have two children (where h is the height of the tree)

Complete Binary Tree

- Full down to level h-1
- level h filled in from left to right

Full Binary Tree Property

- Number of nodes in a full binary tree of height h is
 2^h 1
- Therefore the height of a full binary tree is O(log N)

Q: How many nodes in a complete binary tree of height h?

Implementation

A tree can be implemented using reference based representation or array based representation

Reference Based

```
class TreeNode {
private:
 TreeltemType item;
 TreeNode *left;
 TreeNode *right;
 // More definitions...
 friend class BinaryTree;
class BinaryTree {
private
 TreeNode root;
 // More definitions
```


(nil means "does not point to node")

CS2040C 18/19 Sem 1 _____

Array Based

```
class TreeNode {
private:
  TreeltemType item;
  int left;
  int right;
  // More definitions...
  friend class BinaryTree;
class BinaryTree {
private
  TreeNode[...] tree;
  int root;
  int free;
```


$$root = 2$$
 free = 4

Q: How to handle free space in the array?

Representing a Complete Tree (using array)

Height of a tree

Maximum level of the nodes in the tree

Height of a tree (cont'd)

```
height(T)
if T is empty
  return 0
else
  return 1 + max (height(T.left), height(T.right))
```

T.left and T.right represent the left and right subtrees of the node T respectively

Balanced Binary Trees

- Balanced binary trees
 - A binary tree is balanced if the height of any node's right subtree differs from the height of the node's left subtree by no more than 1
- Full binary trees are complete
- Complete binary trees are balanced

CS2040C 18/19 Sem 1 _____

Size of a tree

Number of nodes in the tree

□ The size of the subtree rooted at A is 4.

Size of a Tree (cont'd)

```
size(T)
if T is empty
    return 0
else
    return 1 + size(T.left) + size(T.right)
```

Binary Tree Traversal

Traversing a Tree

- Post-order traversal
- Pre-order traversal
- In-order traversal
- Level-order Traversal

Post-order Traversal

Traverse the subtrees first before processing the node

```
if T is not empty then
    postorder(T.left)
    postorder(T.right)
    process T.item
```

Traversal Example

Post-order: 4 8 9 5 2 0 6 7 3 1

Pre-order traversal

Process the node first before traversing the subtrees

```
preorder(T)

if T is not empty then
    process T.item
    preorder(T.left)
    preorder(T.right)
```

Traversal Example

Pre-order: 1 2 4 5 8 9 3 6 0 7

CS2040C 18/19 Sem 1 — 22

In-order Traversal

```
inorder(T)

if T is not empty then
  inorder(T.left)

  process T.item
  inorder(T.right)
```

Traversal Example

In-order: 4 2 8 5 9 1 6 0 3 7

CS2040C 18/19 Sem 1 — 24

Level-order Traversal

Traverse the tree level by level and from left to right

Level-order: 1 2 3 4 5 6 7 8 9 0

levelOrder(T) (using a queue)

```
if T is empty return
Q = new Queue
Q.enqueue(T)
while Q is not empty
  curr = Q.dequeue()
  process curr.item
  if curr.left is not empty
      Q.enqueue(curr.left)
  if curr.right is not empty
      Q.enqueue(curr.right)
```


levelOrder(T) (using a queue, cont'd)

Queue	curr	print
1		
empty	1	1
2,3		
3	2	2
3,4,5		
4,5	3	3
4,5,6,7		
5,6,7	4	4
5,6,7		
6,7	5	5
6,7,8,9		
7,8,9	6	6
7,8,9,0		
8,9,0	7	7
8,9,0		
9,0	8	8
9,0		
0	9	9
0		
empty	0	0
empty	end	

Note: The numbers are references to the nodes

Expression Trees

Evaluating Expression Tree

Leaf nodes (or leaves) store operands.

Internal nodes and root store operators

Traversing Expression Tree

Post-order: (((a b +) (a b -) *) 2 +)

Note: Brackets can be omitted, i.e. a b + a b - * 2 +

Evaluation of Expression Tree

```
eval(T)
 if T is empty
   return 0
 if T is a leaf
  return value of T
 else if T.item is "+"
        return eval(T.left) + eval(T.right)
      else if Titem is "*"
             return eval(T.left) * eval(T.right)
```

Q: How to handle operators /, -, and unary - ?
Q: Do you need to consider the priorities of the operators?

Binary Search Tree (BST)

CS2040C 18/19 Sem 1

Tables

- Phone books
- Street directories
- Dictionaries
- Class schedule

...

Key	Data
Carl	3849-3843
Alice	9493-9349
John	8934-3784

Table ADT operations

A table ADT provides operations to maintain a set of data, each can be uniquely identified by a key.

- insert (key, data)
- delete (key)
- data = search (key)

Running Time of operations

	Unsorted	Sorted	Sorted
	Array/List	Array	LinkedList
insert	O(1)	O(N)	O(1)
delete	O(N)	O(N)	O(1)
search	O(N)	O(log ₂ N)	O(N)

Binary Search Tree (BST)

insert, delete, and search can usually be done in

 $O(log_2 N)$

Q: So, are the update operations' performances of BST better than unsorted and sorted array?

BST Property

BST organizes data in a binary tree such that all keys **smaller** than the root are stored in the **left** subtree, and all keys **larger** than the root are stored in the **right** subtree.

Q: Can we have the same key values in a BST?

NOT a BST. Why?

ABST?

NO. Why?

A BST

Q: What do you get when you traverse a BST in in-order?

Ans: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (in increasing order).

BST of names:

Compare heap with BST

- Both are binary trees
- Difference
 - Heap maintains heap property
 - It is not a search tree
 - BST maintains BST property
 - It is a search tree

Operations on BST

Finding Minimum Element

while T.left is not empty T = T.left

return T.item

Q: How to find maximum values?

Q: How to find top-k (or bottom-k) values?

e.g. find top-3 values.

Searching x in T (iterative solution)

```
while T is not empty
  if T.item == x then
      return T
  else if T.item > x then
          T = T.left
       else
          T = T.right
return null // T is empty, so X is not in T
```

Searching x in T (recursive solution)

```
function search(x, T)
if T is empty
 return null
if x == T.item then
 return T
else if x < T.item
      return search(x, T.left)
     else
      return search(x, T.right)
```

How to Insert 6?

After Inserting 6

insert(x,T)

```
if T is empty
  return new TreeNode(x) // a tree with only node x
else if x < T.item
      T.left = insert(x, T.left)
    else if x > T.item
          T.right = insert(x, T.right)
         else
           ERROR! // X already in T
return T // return the new tree T
```

How to delete?

if T has no children
 if x == T.item
 return empty tree
 else
 NOT FOUND

e.g. Delete 4 in Figure 1

delete(x,T): Case 2 (A)

if T has only 1 child (left)

if x == T.item

return T.left

else

T.left = delete(x,T.left)

return T

e.g. delete 7 in Figure 1

delete(x,T): Case 2 (B)

```
if T has only 1 child (right)
  if x == T.item
    return T.right
.
```

else

T.right = delete(x, T.right)

return T

e.g. delete 1 in Figure 1

Node to be deleted has 2 children

e.g. delete 5

e.g. delete 5

5 deleted!


```
if T has two children
  if x == T.item
    T.item = findMin(T.right) // replace T.item by
            // the min. item of the right subtree
    T.right = delete(T.item, T.right)
   // delete x (i.e. T.item) from the right substree
  else if x < T.item
          T.left = delete(x, T.left)
        else
          T.right = delete(x, T.right)
return T
```

Running time of BST

- findMin O(h) where h is the height of the BST
- search O(h)
- insert O(h)
- delete O(h)

Running time of BST (cont'd)

But h is not always O(log₂ N)!
 Where N is the total number of nodes in the BST.

When you insert nodes in increasing or decreasing order, you get a **skewed** tree

Applications of BST

Treesort

- Uses binary search tree to sort an array of records into search-key order
 - Average case: O(n * log n)
 - Worst case: $O(n^2)$

Applications of BST

- Algorithms for saving a binary search tree
 - Saving a binary search tree and then restoring it to its original shape
 - Uses preorder traversal to save the tree to a file
 - Saving a binary tree and then restoring it to a balanced shape
 - Uses inorder traversal to save the tree to a file
 - Can be used if the data is sorted and the number of nodes in the tree is known

The STL Search Algorithms for Sorted Ranges

- binary_search
 - Returns true if a specified value appears in the sorted range
- lower_bound; upper_bound
 - Returns an iterator to the first occurrence; or to one past the last occurrence of a value
- equal_range
 - Returns a pair of iterators that indicate the first and one past the last occurrence of a value

CS2040C 18/19 Sem 1 _____

62

binary_search

```
#include <iostream>
#include <algorithm>
using namespace std;
int main() {
 int nums[] = { -242, -1, 0, 5, 8, 9, 11 };
 int start = 0;
 int end = 7:
 for( int i = 0; i < 10; i++) {
     if( binary_search( nums+start, nums+end, i ) ) {
        cout << "nums[] contains " << i << endl;</pre>
     } else {
        cout << "nums[] DOES NOT contain " << i << endl;</pre>
 return 0;
```

$lower_bound - (1)$

```
#include <algorithm>
#include <vector>
using namespace std;
int main() {
 vector<int> nums;
 nums.push_back( -242 );
 nums.push_back( -1 );
 nums.push_back( 0 );
 nums.push_back( 5 );
 nums.push_back( 8 );
 nums.push_back( 8 );
 nums.push_back( 11 );
```

$lower_bound - (2)$

```
cout << "Before nums is: ";
 for(unsigned int i = 0; i < nums.size(); i++) {
    cout << nums[i] << " ";
cout << endl;
vector<int>::iterator result;
int new val = 7;
result = lower_bound( nums.begin(), nums.end(), new_val );
nums.insert( result, new_val );
for( unsigned int i = 0; i < nums.size(); i++) {
    cout << nums[i] << " ";
return 0;
```

equal_range

```
#include <algorithm>
using namespace std;
int main() {
 // data declared in the previous example
  pair<vector<int>::iterator, vector<int>::iterator> result;
 int new_val = 8;
  result = equal_range( nums.begin(), nums.end(), new_val );
 cout << "The first place that "
  << new_val
  << " could be inserted is before "
  << *result.first
  << ", and the last place that it could be inserted is before "
  << *result.second << endl;
 return 0;
```