ベクトル場を用いた画像解析 Color Image Analysis by a Vector fields

篠原 克幸 K.SHINOHARA 結城 義徳 Y.YUKI

南 敏 T.MINAMI

工学院大学 Kogakuin University

Abstract

A color image can be defined by a function (vector filed) F:V2→V3 where V2 is a 2-dimensional pixel coordinate space and V3 is a 3-dimensional color space with r,g,b color signals transformed to CIE L*a*b* uniform color space. The derivative of the vector filed F'(x) is characterized by the Jacobian matrix. The largest singular value of Jacobian matrix shows the vector gradient magnitude. In this paper we show that the detected edges obtained from the largest singular value are more accurate and finer than the edges obtained by the differential operator method. Where a color and its complement color collide on a boundary line, the direction of the projected vector to the (a*,b*) space reverses and the source or sink arises. Where two colors collide, only the luminance component of color signals grows larger. This means that the image is enhanced at that area:

1. まえかき

近年、絵画データベース検索システムなどにおいて、タイトルおよび著者による検索の他に直接絵画特徴からの検索問題が 重要となっている。本論文は、カラー関係をベクトル場と考え 解析することで特徴伸出を試みる。カラー画像は2次元の画紫 平画に数次元の色ベクトルが定義されているベクトル場として 考えることができる。そこで、RGB信号をCIEの、L*a*b* 均等色空間に変換し、カラー画像を画素平面 V2から V3へのベ クトル場(F: V2→V3)として考えると、画像の特徴につい てベクトル場の立場から考察することが可能となる。

ベクトル場下の微分はJacobian行列によって特徴づけられる。本論文では、エッジ付近でのペクトル場の変化を、Jacobian行列の最大特異値とそれに対応する特異ペクトルにより考察する。また、均等色ペクトルの色彩成分のみに注目するため、ペクトル場下を(a・, b・) 上へ射影したペクトル場Cを考える。このベクトル場を速度ベクトル場と考えれば、色ベクトル場に流線、スカラーボテン シャル、ベクトルボテンシャルなどを定義することができる。それにより、色彩成分の回転、発散、ヘルムホルツの定理によるベクトル場の分解などが考察できる。更に、ベクトル場C上の色彩ベクトルを数種類にクラスタリン

グレ、ベクトル量子化すれば、カラー 画像を 色彩成分でラベリングできることを示す。

また、捕色関係にある色を衝突させると、その場所では、減 法混色の場合は黒色で、加法混色の場合は白色になり、画像強 調がなされることを示す。

2.ベクトル場の定義

カラー國像における、色の表現法は穏々あるが、色を表す要素が、①色相の様に循環的であったり、属性として不連続であったりする要素を持たないこと、②要素が各々独立で相関がないこと、③要素からなる空間が均等な歩度(座標間のユークリッド距離が色の差と比例する)をもつこと、が望ましいことから、L'a'b'的等色を使用する、カラー画像の画素位置を座標(ェ、y)で、色ペクトルの要素を(L',a',b')とする、この時、画紫平面V2に対し、3次元の色ペクトルを対応させる関数下を考えると、FはV2→V3へのベクトル場となる、

図1はL³, a¹, b¹の大きさを個像化した画像およびこれらの 信号によるベクトル場の例である。(a)は明度指数L゚であり。 (b)および(c)はクロマティクネス指数a¹, b¹, (d)はベクトル場 の例である。

$$p = (\partial L^4/\partial x)^2 + (\partial a^4/\partial x)^2 + (\partial b^4/\partial x)^2 \qquad \cdots (2)$$

$$q = (3L^2/3y)^2 + (3a^2/3y)^2 + (3b^2/3y)^2 \qquad \cdots (3)$$

$$t = (\partial L^*/\partial x)(\partial L^*/\partial y) + (\partial a^*/\partial x)(\partial a^*/\partial y)$$

とすると,

$$D^{T}D = \begin{bmatrix} p & t \\ t & q \end{bmatrix} \qquad \cdots (5)$$

となり、行列Dの最大特異値 / maxは、

$$\mu_{\text{max}} = \sqrt{\frac{1}{2} (p+q+\sqrt{(p+q)^2-4(pq-t^2))}} \cdots (6)$$

となる.

これに対応する特異ペクトルumaxは、

- (a) [t, μ max-p] τ
- (b) [μmax-q, t] T (t=0・でかつ λ=p・の時)・・・(7) となる,

図2は、最大特異値を各画素毎に計算し、これを画像化した ものと、Prewittの微分オペレークの出力を比較したものである。 共にエッジを表しているが、(a)の最大特異値によるエッジ抽出 は雑音に対する耐性が優れていることが分かる【文献】参照】。

図3は、雑音に対する耐性を調べるために、各R、G、Bに ランダム粒子雑音(平均温度値127に対し,約1068程度の雑音) を付加し、これを均等色空間に変換し、ベクトル関を作り、こ。 れに対するJacobian成分行列の最大特異値および輝度信号し*に 対するPrevillのオペレータの出力分布を比較したものである.

(a)明度指数 L*

(a)Luminance facterL*

(c)クロマディクネスb゜

(b)クロマティクネス&*

(b)Chromticness a*

(d)ベクトル場の例

(d)An example of vector fields

図1、明度指数L*,クロマティクネス指数a*, b* およびベクトル場の例

Fig. 1 Luminance facter L *, chromaticness a*, b* and an example of vector foilds.

クトル場Fの微分は、

 $f(x+\alpha)=f(x)+[f'(x)](\alpha)+\xi(\alpha)(\alpha\rightarrow0\tau,\xi\rightarrow0)$ \$\dots\$, Jacob lan行列

$$F'(x) = D(x) = \begin{bmatrix} \partial L^*/\partial x \ \partial L^*/\partial y \\ \partial a^*/\partial x \ \partial a^*/\partial y \end{bmatrix} \cdots (1)$$

によって特徴づけられる。

(b) 輝度信号のPrevittのオペ レータの出力

(a) Image of the maximum singular value

(b) Output of the Prewitt's operator

図2 エッジ画像の比較 Fig. 2 Comparison of edge images

図3の(a)はランダム雑音画像の浪度値分布を,(b)は雑音に 対するPrewittのオペレータの出力を点練で、更にJacobian敵分 行列の最大特異値の分布を実換で示したものである。

(a)雑皆画像の混配分布 (a)Distribution of gray-scale of noise-image

(b)エッジ融度の分布の比較 (b)Comparison of the distribution of the edge magnitude

図3 雑音に対する耐性の比較 Fig.3 Comparison of the tolerance for the noise

Prewittのオペレータの出力は約0~50の範囲に分布している。これは、濃度値の僅かな変化も微分値として取り出していることを示している。これに比べ、最大特異値の分布は、ビークを50付近にもち、0~200程度まで分布している。これは、大きな微分値のみ抽出していることを示している。これら微分画像の比較から、減大特異値によるエッジ抽出が雑音に対して剛性があることがわかる。

3. クラスタリングによる ペクトル場のラベリング

V3の色ペクトルロを(a*,b*)平面に射影する。このベクトルを vpとする。(a*,b*)平面を C2とし、 Fp: V2→ C2なる関数 を考えると、 Fpは國際座標から色彩要素のみからなる平面への ベクトル場となる。このベクトル場を数種類の同系色に k ~ 平均クラスタリング法により、ラベル付けすることを考える。

クラスタリングは、最子化の場合と異なるので、初期クラスタ中心は、①から④により求めた。

①a・b・値に関する3次元ヒストグラムを10×10のプロックに 分割し、各プロック毎の累積頻度を求める。

②累積頻度が高い上位8個のブロックを選び出す.

③選び出されたプロック内で、最大頻度を持つa *b *値を切期 クラスタ中心とする。

④クラスタリングの科丁条件は、k回目でのクラスタ中心をそれぞれμak、μbk、またk-1回目でのクラスタ中心をμa(k-1),

μb(k-1)とした時,

¾ μak-μa(k-1) ¶ < 0.01 .and. ∏ μbk-μb(k-1) ▮ < 0.01 をアルゴリズムの終了条件とした。

図4は、図1の画像の4*, b'の分布を示したもので、表1はこの分布に対して8カテゴリーにクラスタリングした時のクラスター中心で、図5は、a*、b*の分布にクラスター中心を重ねた図である。この図から、分布に対しクラスター中心の妥当性が分かる。図6は、このクラスタ中心により画像をラベル化した結果で、個々の果物、観、テーブルがベクトル的に近い色により識別できる。

図4 (a⁴, b^{*})の分布例 Fig.4 An example of the distribution of (a^{*},b^{*})

表1、ベクトル場を8カテゴリーに分類した時のクラスタ中心

Clustering centers when the color vector filed is clustered into the 8-categories.

Number of categories	Clustering centers (a*,b*)
1	(-0.20, 0.02)
2	(-1.20,48.70)
3.	(~3.30,~6.45)
. 4	(2.60,29.83)
5 · ((8.58, 2.79)
·8 ·	(8.36,15.00)
. 7	(37.86,23.44)
-8	(20.67, 37.26)

図5 クラスター中心の分布 Fig.5 Distribution of clustering centers

4. 色彩ベクトル場における 回転, 発散

色彩ベクトル場をある流体の速度場、 ア(t)をこの速度場の流線、およびベクトル場内のある点Pにおけるベクトルを ロPとすれば、短時間では、ベクトル場内に置かれた質点は、ベクトル ロPの方向に 『ロP』に比例した距離を進むとすることができる。 したがって流線 ア(t)は、以下の①②の処理を繰り返す事で得られる。この流線は、色の流れを示している。

①vp= (a', b') とする.

②水を比例定数としてベクトルvpの方向に水 『vp』進んだ点をp+1とし、この点のベクトルvp+1をベクトルvpに接続する。

ベクトル解析[2]から、流線ア(t)の各点での方向は、その点でのベクトル場up(t)の方向と同じであるから、

$$d\gamma(t)/dt = v p(\gamma(t))$$
 ...(8)

が成り立つ、これは、 $\gamma(t)$ に関する散分方程式である。

この方程式は、一般には解くのが難しい、そこで、ある点pO と、近くの点pがy(t)に沿って流れて行く時、点pDと点pの相対 的位置の変化を考える。

点p0と点pを結sベクトルをA0、t時間後に点p0が点p0、に, 点pがp、に移ったとした時、p0、とp、を結んだベクトルをA(t)とする。

ェ=(1,1)とし、しが十分小さいとすると、

$$A(t) = (E + t (\partial \nu p / \partial x)) / 10 \qquad \cdots (9)$$

となる。 納形変換 (ド+ t(コvp/3 z)(A0)) を

D = 1/2 ((3 up/3 z)(A0)

 $R=1/2\;(\left(\,\partial\;\upsilon\,p/\,J\;\varkappa\,\right)(\,A0)$

$$-'(\partial \nu p/\partial x)(A0)) \qquad \cdots (12)$$

と置くと、

 $\Lambda(1) = \{E + 1 (D + R)\} A0$

$$= (E+LD)\cdot(E+LR)+O(L^2) \qquad \cdots (13)$$

と分解できる、Dは対称行列でDの固有値を入い、入っとすると、

(a) B カテゴリーにクラス (b) 16カテゴリーにクラス タリングした例 タリングした例 An example of clustering with 8-categories with 16-categories

図6 色彩ペクトル場のクラスタリングによる画像のラベリ ング例

Fig.6 An example of image labelings by the clustering of chromationess vector filed

$$E+tD=\begin{bmatrix}1+t\lambda_1 & 0\\ 0 & 1+t\lambda_2\end{bmatrix}\cdots(14)$$

となり、Dの固有値A1(1=1,2)の方向に (1+tAi) 倍されている。したがって、(E+tD)は A0の能張 (発散) を表している (divupは | D | の定数倍になる) .

建た.

$$R = (1/2)\Omega$$

$$= (1/2) \cdot \begin{bmatrix} 0 & \omega \\ -\omega & 0 \end{bmatrix} \qquad \cdots (15)$$

とすると、Ω'A0=(cule υp)×A0となるから、

 $(E+tR)A0 = A0+t/2(culevp) \times A0$

となる。したがって、線形変換(E+tR)はベクトルA0を、ベクトル cule vp= ω =(∂ a*/ ∂ x $-\partial$ b*/ ∂ y) κ (ここでは κ は z執)とし、回転角 \pm t・ $\|$ cule vp $\|$ (角速度は \pm $\|$ cule vp $\|$)で反時計方向に回転させることを示している。

これらのことから、ベクトルADはも時間に回転と膨張とを繰り返しながら A(t)になる。したがって、ほとんど同一色の領域および色ベクトルが同一方向に平行に変化している領域、即ち、管状ベクトル場の領域では、AB = A(t)で、D = div vp = 8となっている。このような領域では、vp = culewpを消たすベクトルポテンシャルwpが存在する。D=0以外の領域でのベクトル場の発散の様子は、Dの特異値分解を考えると、Dの最大特異値によって特徴付けられる。

行列R=0となっている領域では、色ベクトルは放射上に広がり、vp=gradfを満たすスカラー関数(ボテンシャル) f が存在し、f=const.によって作られる曲線群は、等高線、等圧線のような層状になっている。この領域では同じような色が扇のように未広の短冊状に広がている。したがって、この領域では、f=const.の曲線群の各曲線上で、色がある周期でうねるように変化し、定数=const.の大小により、周期が変化している状態になっている。

ベクトル場 v pはヘルムホルツの定理により, スカラーボテンシャル t とべクトルボテンシャル ωにより,

と分解して考えることができる(詳しい考察は次回以降の研究 報告に扱る).

5. 輪郭鴻調への応用について

境界線上で二つの色ベクトルが衝突すると、お互いに補色脚 係にある色が衝突した場合。そこでは混色の結果彩度が消え。 明るさ成分のみが残る、したがって、絵の具のような加法混色 の場合には、灰褐色になり、光のような減法混合の場合には、 白くなる、絵画の手法に「色彩の同時対照」がある、これは、 人の視覚混色(目の網膜上で混色する)により、ある色は、そ の周囲にその色の「储色」を感じさせることを利用したもので、 例えば、赤い点があると、赤の補色(赤の補色は絵の具の3原 色(赤、黄、青)で赤を除いた、黄色と青色を混ぜた色)の緑色 が周囲に感じる、これを利用すると、赤と縁を並置することに より、赤の補色(緑)が隣接する緑を補強して、単独に緑の点 を置くより艶やかになることが知られている。緑の樹葉の輝き を増すためにその中に赤の反転を置く、また、背の影を出すた め、橙色の斑点を置く等などの絵画手法が知られている。した がって、絵画ではエッジを必ずしも明確にせず、背景と柔らか に触和させることにより立体感を表現している。また、エッジ は二つの物体の境界線でもあるから、二つの物体はエッジを境 に二つの領域に分離される、ところがレンプラントは一つの物 体の境界線を他の物体の領域内に描き、後にもとに戻すことで、 近くで見るとがっかりさせられるが、触れてみると、態くほど 真に迫って感じさせる効果を挙げている.

ベクトル場を用いた関係の解析結果の,上述ような面像強調, エッジ強調への応用を検討中である,

6. むすび

カラー面像を均等色空間の信号でベクトル場を構成し、ベクトル場の被分および色彩要素のみで構成したベクトル場で流線によりベクトル場の定性的性質について考察した。微分行列の最大特異値によるエッジ抽出を行い、輝度信号に対するPrewittの微分オペレータによるエッジ強度、および雑音に対する耐性について比較した。また、ランダム雑音面像に対し、最大特異値によるエッジ強度とPrewittのオペレータによるエッジ強度の分布を求め雑音に対する耐性を確認した。色彩要素から構成したベクトル場について、色の流れを追跡することでベクトル場の発散、回転を特徴付ける行列DおよびRについて述べた。

色彩要素からなるベクトル場をベクトル量子化の手法を用いて、ラベリングした結果、 面像中の物体を識別できることをシミュレーションで示した、 最後に、 色の衝突と 面像頭調の関係について、 絵画の手法を通して述べた。

今後、さらに、ベクトル場の性質を調べる事により、より高 次の画像特徴の抽出および画像処理の手法を考える。

7. 参考文献

- 1) Haien the Lee: "Detecting Boundaries in a Vector Field", IEEE Trans. on Signal Processing, Vol.39, No.5,pp.1181-1194.(1891, May)
- 2) 丹羽: "ベクトル解析-場の量の解析-", 朝倉書店 (1991)
- 3) 篠原,南:" L*a*b*均等色空間におけるカラーエッジ抽出法",テレビジョン学会技術報告,Vol. 15,No. 29,pp. 19-24(1991)
- 4)日本色彩学会編: "新編色彩科学ハンドブック", 東京大学出版会