PATENT ABSTRACTS OF JAPAN

(11)Publication number:

61-058076

(43) Date of publication of application: 25.03.1986

(51)Int.CI.

G06F 15/16

G06F 15/20

(21)Application number: 59-180947

(71)Applicant: SUMITOMO ELECTRIC IND LTD

(22)Date of filing:

29.08.1984

(72)Inventor: KAJI MIKIO

(54) SIMULTANEOUS PRIMARY EQUATION SIMULATOR

(57)Abstract:

PURPOSE: To make possible the calculation for a short time by utilizing the band efficiency matrix of simultaneous primary equation and dividing into several blocks and processing by each processor. CONSTITUTION: A simulator consists of an all control processor T, (m) number of a subordinate processor S and an auxiliary storage device M. The auxiliary storage device memorizes each asymptotic value of the unknown number vector ϕ1, ϕ2Wϕm. A subordinate processos Si defines a vector asymptotic value ϕ (k), Wm(k) k times to input into support storage device Mj according to it. After all vector asymptonic value &phiv:(k), &phiv:m(k) are recognized, each subordinate proces sor changes j into j + 1 to calculate [ϕj(k+1)] from [ϕj(k)]. The result is inputted into the auxiliary storage device [Mj]. The all control processor T carries out the synchronous control and spreading discrimination every time.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

①特許出願公開.

⑫公開特許公報(A)

昭61-58076

@Int_Cl_4

識別記号

庁内整理番号

⑬公開 昭和61年(1986)3月25日

G 06 F 15/16 15/20 Z-6619-5B 6619-5B

審査請求 未請求 発明の数 1 (全5頁)

ᡚ発明の名称 連立一次

連立一次方程式シミユレータ

②特 願 昭59-180947

②出 願 昭59(1984)8月29日

⑫発 明 者 鍛 治

幹雄

大阪市此花区島屋1丁目1番3号 住友電気工業株式会社

大阪製作所内

①出 願 人

住友電気工業株式会社

大阪市東区北浜5丁目15番地

20代 理 人 弁理士 川瀬 茂樹

明 御 魯

1. 発明の名称

連 立一次方程式シミュレータ

2. 特許請求の範囲

1 個の全体制御プロセッサ T と、 m 個の従民プ ロセッサ S₁ 、S₂ 、……、S m 及 び m 個 の 縮 助 記 憶 装 置 M₁、M₂、……、Mm よりなり、元数の大きな連立 一次方程式を、 帯行列を係数行列と し未知べ クト ルを (øj) とするとき、 う否目の式は う否目の未知 ベクトル øj と前後のベクトル øj-1、øj+1 とを含 み、 øj の係数行列式の値 det |Aj| が øj-1、øj+1 の係数行列の値 det |Uj| 、 det |Lj|の値より大きく なるように皿個のプロック式に分け、「否目の箱 助記憶装置 Mj は j 番目の未知べクトル øj の 脈近 値 øj(k) を記憶し、m個の未知ベクトル {øj} に対 サ {Sj} と補助記憶装置 {Mj} とが繰返 し未知 ベクトル の衝近値 {øj(k)}を計算する事とし、 j 否目の従 民 プロセッサ Sjはm個のプロック式の内の j 番目 の式と、新助記憶装置 [M] に記憶されている(k-1) 3. 発明の詳細な説明

(7) 技術分野

この発明は、連立一次方程式シミュレータの協 成方式に関する。

(1) 従 来 技 術

偏微分方程式で記述される物型現象をデイジタル計算機でシミュレートする時には、連立一次方程式を数値的に解く必要がある。

亚立一次方程式は、解き方が明確に分つているから、必ず解ける。

しかし、連立一次方程式の元数が大きくなれば、 多大の針算時間を要する。

未知数の数、すなわち独立な方程式の数を元という。これをnとすると、演算回数はn²~n゚のォーターで増大してゆく。

未知数を x₁、x₂、…… x_n とし、係数を aij とすると、n 元連立方程式は、

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}$$
 (1)

と古く事ができる。これを解くには、係数の行列 の値

$$\Delta = \det |aij| \qquad (2)$$

を求め、さらに、 {aij} の j 番目の列ベクトルを {bi} で置換したものの行列の値 Aj を求めなければならない。

$$x_j = \frac{\overline{A}_j}{\Delta} \tag{3}$$

る並列シミユレータを与える事を目的とする。

物型現象を扱う場合は、物型量が変位、速度、加速度、角加速度、角速度、 渦、 … … などベクトル である事が多い。 2 次元或は 3 次元ベクトルである。ひとつのベクトルが(x₁ 、 x₂ 、 x₃)という 3 つの未知数からなる。

ところが物理現象を記述する方程式は、マックスウェル方程式やナビェストークス方程式など、 3次元ベクトルの形で表現される事が多い。

すると、ひとつの物理量ベクトルに対して、ひとつの係数行列が対応して、行列とベクトルの根が、いくつか集まつて、連立一次方程式の内の3つの式を構成する、という事になる。

つまり、(1)式に於て、xjをベクトルøjに置きかえ、aijを行列とし、biをベクトルとした式が成りたつ事が多い。例えばøjは3次元ベクトルで、aijは(3×3)の行列で、biは3次元ベクトルであるとするものである。

すると(1) 式のかわりに、

である。これは厳密解である。 n × n の行列の値を求めるには、n ! 個の積を計算し、これを加え合わせなければならない。計算すべき行列は(n+1) 個あるから、積計算だけで (n+1)! の項の計算をしなければならない。

nの数が多くなると、これは膨大な数となつて、 高性能の計算機であつても、多大の計算時間を要 する。

もちろん、多くの場合、係数 (aij) は 0 である ものが多く、実際には、このように多くの計算を 伴うわけではない。ひとつの式について、 0 でな い数係数の数が 2 つ、 3 つ、或は 4 つしかない、 という場合も多い。

しかし、このような場合であつても、 第回数は $n^2 \sim n^3$ 程度には比例して、増大する。

(ウ) 目的

本発明は、得られる連立一次方程式の係数行列 が帯行列になる事が多いのに着目し、それをいく つかのブロックに分け、それぞれを別々のブロセ ッサで処理する事により、短時間で計算を行い得

$$\sum_{j=1}^{n/3} A_{ij} \phi_j = b_i$$
 (4)

となる。この式は n 個の連立一次方程式である。 Aij が行列、 øj はベクトルであるから、この演算 は、もちろん、次のようにするわけである。簡単 のため、i、jのサフィックスを省き、 A の行列 要素を {apq}、 øの成分を {xq}と盤く事にすると、

$$A \phi = \sum_{q=1}^{3} a_{pq} x_{q} \qquad (5)$$

となるわけである。

これは 3 次元ベクトルの場合であるが、 3 次元ベクトルが多数集まつたベクトルを øj とし、(4) 式の形に掛ける場合も多い。 結局、 h 元ベクトルを m 個使つて、全方程式を掛く事ができる、という場合がある。

$$m h = n (6)$$

である。 ø1 、ø2 、……、øm は h 元ベクトルで、行

$$\mathbf{A} \phi = \sum_{\mathbf{q}=1}^{h} \mathbf{a}_{\mathbf{p} \mathbf{q}} \mathbf{x}_{\mathbf{q}} \tag{7}$$

となり、全連立一次方程式は、

$$\sum_{j=1}^{m} A_{ij} \phi_{j} = b_{i}$$
 (8)

という形になる。

(1) 式で扱わされる任意の n 元連立一次方程式は、必ず(7)、(8)のような方程式に費き換える事ができる。

物理現象を扱う場合は、さらに進んで、(8) 式に於て、ベクトルが1の係数行列の内、2~3つだけが0でない、という場合が多い。これが重要な点である。

そこで、 h の成分をもつベクトル ø1 、ø2 、……、 øm に関して、次のような形の帯行列の式にする事 ができる、とする。

まり、すべての式が隣接(サイクリックに)する ベクトル3つを含む式であつても良い。

さらに、ひとつの式に含まれるベクトルの数は 必ず3つでなければならないという事ではなく、 あるものは4つあつても良いし、5つあつても良 いわけである。後の処理がより複雑になる、とい うわけではない。

(9)式を作るに当つて、もとの式を、皿個の h 元 式に単にブロックわけしたというのではなく、ひ とつの式によつて、前後のベクトルがつながれて ゆく、という必要がある。路接するベクトルが順 次、式に現われる。

しかし、この条件が課されても、(9)式の設現が一窓的に定まるわけではなく、自由皮が残つている。(9)式のそれぞれの式は、数係数を乗じて加減しても良いし、行列を乗じて加減しても良い。このような変形は自由である。

ひとつ、重要な事は、収束性に関する問題である。 bj 、 bj+1 に関する式は

これを帯行列を持つ連立一次方程式という。

この式を作るためには、 øj の成分としての {xq} の選び方、式の順序などについて工夫しなければならない。

この式の特徴は、 j = 1、 m以外の øj kcついては、 øj と、その前 øj-1、 その後 øj+1の 3 つの ベクトルだけを含む式が必ずひとつ存在し、 j = 1、 j = mの øj kc 関しては、 øj と、 øj+1 又は øj とøj-1を含む式がひとつずつ存在する、という事である。 そこで、(9) 式に於て、 j 否目の式では、 øj の係数を Aj とむき、その前の øj-1 の係数を Ujとむき、その後の øj+1 の係数を Lj とむいている。

(a) 式は典型的な例にすぎない。 ø1 、øm に関して、さらに øm の項と、ø1 の項とが含まれても良い。つ

$$U_{j\phi j-1} + A_{j\phi j} + L_{j\phi j+1}$$
 (10)

$$U_{j+1}\phi_{j+} A_{j+1}\phi_{j+1} + L_{j+1}\phi_{j+2}$$
 (11)

という項を持つている。

収束性を得るために、

$$|\det |A_j^{-1}L_j A_{j+1}^{-1}U_{j+1}|| < 1$$
 (12)

という条件が課されるべきである。ただし、 A⁻¹は A の逆行列を示す。この計算は(h × h)の行列の乗算であるが、行列の積のデタミナントの値は、それぞれの行列のデタミナントの積に等しいから、(12)式は

$$| \det |Aj| \det |Aj+1| > | \det |Lj| \det |Uj+1| |$$

という事である。この式は対角項の係数行列の砂の行列式の値(デタミナント)が、非対角項の係数行列の行列式の砂より大きい、という事を要求

が成立すれば良い。

ただちにこうならない場合もあろう。その場合は、隣接する式に定数を乗じたものを j 番目の式に加えたり、引いたりして、(14)、(15) が成立するようにする。

第1図は本発明のシミュレータの協成を示す。 シミュレータは1個の全体制御プロセッサTと、 m個の従属プロセッサSと、m個の補助記憶装置 Mとよりなる。

補助記憶装置は、それぞれ未知数ベクトルφ₁、 φ₂、……、φ_Bの新近値を記憶する。

従屋プロセッサ Sjは、(9)の方程式を øjの項を左

øj(k) が新しく入力される。第1図の下向き矢印がこれを示す。

こうして、 k 回目のベクトル断近値 $\phi_1(k)$ 、 … $\phi_m(k)$ の全てが分るから、同様の計算を、各従属プロセッサは、 (16) 式の j を j+1 にかえて、 $\{\phi_j(k)\}$ から、 $\{\phi_j(k+1)\}$ を計算するようにする。この結果が補助記憶装置 $\{M_j\}$ に入力される。

このように、同様の計算を繰返すが、第2図に示すように、1回ごとに同期制御と、収束判定を行う。これは、全体制御プロセッサTが行なうのである。

同期制御は、各従民プロセッサでの計算のタイ ミンクを合致させるためのものである。

収束判定は、 j 番目のベクトルの(k - 1) 回目の漸近値と、 k 回目の漸近値の差を求める操作で、これが予め定められた微少なベクトル ε より小さければ、 j 番目のベクトルは厳密解の近くへ十分収束した、と判定する

$$|\phi_j(k) - \phi_j(k-1)| < \varepsilon$$
 (17)

収束判定は全体制御プロセッサTが、従属プロ

辺に、それ以外の項を右辺に移行し、繰返し処型によつて、 øj の値を求めるものである。

繰返しの数をφ(k) で表わす事にする。 j番目の従属プロセッサ Sj は、

$$A_{j\phi j}(k) = b_{j} - U_{j\phi j-1}(k-1) - L_{j\phi j+1}(k-1)$$
 (16)

という浙近式を用いて、(k - 1)回目の結果 øj-1(k-1)、 øj+1(k-1) から、 k 回目の結果 øj(k)を計算する。

全ての従属プロセッサは同時に(16)の演算をする。必要なデータの内、 Aj 、 bj 、 Uj 、Lj は定数行列であるから予め記憶している。(k - 1)回目のデータは、 躁りの補助記憶装置から øj-1、 øj+1 を読みとつて使用する。これが第1図の補助記憶装置から従属プロセッサへ向う斜め上向きの矢印である。

従属プロセッサ Sjは k 回目のベクトル浙近値 $\phi_{j}(k)$ を求めると、これを対応する補助記憶装置 M_{j} へ入力する。 M_{j} の記憶から $\phi_{j}(k-1)$ が消え、

セッサごとに行うので、多少の時間の差がある。 第2図の矢印の長さが異なるのは、こういう事を 意味している。

収束判定の結果 øj の内ひとつでも、(17)式を満さないものがある時は、さらにもう一回、同じような演算を繰返す。すべての øj が (17) 式を満した時に、繰返し演算を終了する。ここに得られたベクトル {øj} が、連立一次方程式の解である。

{φj} の初期値 (φj(1)) の与え方は任意である。 例えば、全て 0 ベクトルとしても良い。このよう に、任意の定数を初期値としても良い。

収束の早い初期値を選ぶのが望ましいわけであるが、そのためには、例えば、2つの式ずつに分けて、前と後のU、Lの項をおとした式、

$$A_{i}\phi_{1} + L_{1}\phi_{2} = b_{1}$$
 (18)

$$U_{2}\phi_{1} + A_{2}\phi_{2} = b_{2} \cdot (19)$$

のような、縮約された方程式を作り、この解を求めても良い。この解を初期値として出発する事もできる。

狩開昭61-58076 (5)

先程述べた、 0 ベクトルから出発する方法は、 k = 2 で

$$\phi_{\mathbf{j}}(2) = A_{\mathbf{j}}^{-1}b_{\mathbf{j}}$$
 (20)

となる初期値の選び方である。

どのような初期値を選んでも、(14)、(15) が成立する限り、厳密解に向つて収束する。しかし、 収束の早さは、初期値の遊び方によつて異なる。

(オ) 効 果

係数行列が帯行列である亚立一次方程式を短時間で解く事ができる。

元数の大きな連立一次方程式を皿個の元数の小さな連立一次方程式に分解し、それを並列処理して解くからである。

4. 図面の簡単な説明

第1図は本発明の連立一次方程式シミユレータの構成を示すプロック図。

第2図は本発明の連立一次方程式シミュレータの、並列処理が繰返される動作を示すための説明図。

T … … 全体制御プロセッサ S … … 従属プロセッサ M … … 補助記憶装置 1~gm … … 未知ベクトル

an 2 hai

