I. Şiruri de numere reale

Fie $(x_n)_n \subseteq \mathbb{R}$ un sir de numere reale.

Spunem că șirul $(x_n)_n$ este **convergent** cu limita $l \in \mathbb{R}$ dacă pentru orice $\varepsilon > 0$, există $n_{\varepsilon} > 0$ astfel încât $|x_n - l| < \varepsilon$, pentru orice $n \ge n_{\varepsilon}$.

Spunem că șirul $(x_n)_n$ are limita $+\infty$ dacă pentru orice $\varepsilon > 0$, există $n_{\varepsilon} > 0$ astfel încât $x_n > \varepsilon$, pentru orice $n \ge n_{\varepsilon}$.

Spunem că sirul $(x_n)_n$ are limita $-\infty$ dacă pentru orice $\varepsilon > 0$, există $n_{\varepsilon} > 0$ astfel încât $x_n < -\varepsilon$, pentru orice $n \ge n_{\varepsilon}$.

Spunem că șirul $(x_n)_n$ este **șir Cauchy** dacă pentru orice $\varepsilon > 0$, există $n_{\varepsilon} > 0$ astfel încât $|x_n - x_m| < \varepsilon$, pentru orice $n, m \ge n_{\varepsilon}$, $n, m \in \mathbb{N}$. Aceasta condiție poate fi reformulată astfel: dacă pentru orice $\varepsilon > 0$, există $n_{\varepsilon} > 0$ astfel încât $|x_{n+p} - x_n| < \varepsilon$, pentru orice $n \ge n_{\varepsilon}$, $n, p \in \mathbb{N}$, atunci șirul $(x_n)_n$ este **șir Cauchy**.

Teoremă (Weierstrass): Un șir monoton și mărginit este convergent.

Criteriul Cauchy: Un șir este convergent dacă și numai dacă este șir Cauchy.

Criteriul cleștelui: Fie $(a_n)_n$, $(b_n)_n$, $(x_n)_n$ trei șiruri de numere reale cu proprietățile:

- există $n_0 \in \mathbb{N}$ astfel încât $(a_n)_n \leq (x_n)_n \leq (b_n)_n$, pentru orice $n \in \mathbb{N}$, $n \geq n_0$
- $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = l \in \mathbb{R}$

Atunci șirul $(x_n)_n$ este **convergent** cu limita l.

<u>Teorema Stolz-Cesàro</u>: Fie $(x_n)_n$, $(y_n)_n$ două șiruri de numere reale, astfel încât șirul $(y_n)_n$ este strict crescător și $\lim_{n\to\infty} y_n = \infty$. Dacă există $\lim_{n\to\infty} \frac{x_{n+1}-x_n}{y_{n+1}-y_n} \in \overline{\mathbb{R}}$, atunci există și $\lim_{n\to\infty} \frac{x_n}{y_n}$ și

$$\lim_{n\to\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=\lim_{n\to\infty}\frac{x_n}{y_n}$$

.

II. Exerciții

1. Arătați, cu ajutorul definiției (cu ε), că următoarele șiruri au limită:

(a)
$$x_n = 2^n - \frac{1}{n^2} + 4, n \in \mathbb{N}^*.$$

(b)
$$x_n = \sqrt{n^2 + 1} - n, n \in \mathbb{N}$$
.

(c)
$$x_n = \ln \frac{3n+2}{n+3}, n \in \mathbb{N}.$$

2. Folosind criteriul Cauchy, arătați că următoarele șiruri sunt convergente:

(a)
$$x_n = \frac{(\cos 1)^3}{4^2} + \frac{(\cos 2)^3}{4^4} + \dots + \frac{(\cos n)^3}{4^{2n}}, n \ge 1.$$

(b)
$$x_n = \sum_{k=1}^n \frac{1}{k^2}, n \ge 1.$$

3. Arătați că șirul $(x_n)_{n\geq 1}$, $x_{n+1}=x_n^2-2x_n+2$, $x_1\in [1,2]$, este convergent și calculați $\lim_{n\to\infty}x_n$.

4. Calculați limita șirului $(a_n)_{n\geq 1}$,

$$a_n = \sum_{k=1}^n \frac{k}{n^2 + 1}.$$

5. Calculați

$$\lim_{n\to\infty}\frac{1+\sqrt{2}+\ldots+\sqrt{n}}{n\sqrt{n}}.$$

6. Studiați convergența șirului de numere reale $(x_n)_{n\geq 1}$ cu proprietatea că

$$|x_{n+2} - x_{n+1}| < \frac{3n}{4n-1} \cdot |x_{n+1} - x_n|$$
, pentru orice $n \ge 1$.