Skript QT2

Joris Josiek

6. Mai 2021

Inhaltsverzeichnis

U	Grundstruktur der Quantenmecnanik			2
	0.1	Postul	late	2
	0.2	Ortsra	num, Teilchen in 1D	2
1	Rela	Relativistische Quantenmechanik		
	1.1	Kontinuierliche Symmetrien (Bsp. Rotationsinvarianz)		
		1.1.1	Drehungen in 3D	3
		1.1.2	Darstellungen	3
		1.1.3	Drehungen in der Quantenmechanik	4
	1.2	Lorent	tzinvarianz	5
		1.2.1	Lorentzgruppe	5
		1.2.2	Darstellungen	5
		1.2.3	Dirac spinoren und γ -Matrizen	6
	1.3	Überb	lick über relativistische Wellengleichungen	6
		1.3.1	Klein-Gordon-Gleichung	7
		1.3.2	Dirac-Gleichung	8
	1.4	Physil	k und Lösungen der Diracgleichung	9
		1.4.1	Freie Lösungen, Impuls-/Spin-Eigenzustände	9
		1.4.2	Mehr zum Drehimpuls	10
		1.4.3	Kopplung ans elektromagnetische Feld	11
		1.4.4	Nichtrelativistischer Limes	11
		1.4.5	Weitere Konsequenzen: Spin-Bahn-Kopplung	13

Kapitel 0

Grundstruktur der Quantenmechanik

0.1 Postulate

Essenz: Doppelspaltexperiment / Stern-Gerlach-Experiment

Zustand: eindeutig / maximal präpariertes physikalisches System, reproduzierbares Verhalten, eindeutige Zeitentwicklung. Beschreibung durch $|\psi\rangle$ eines Hilbertraums. Linearkombinationen erlaubt!

Observablen: Operatoren \hat{A} (hermitesch, da reelle Eigenwerte \leftrightarrow mögliche Messwerte)

Wahrscheinlichkeit: Für ein Messergebnis a_n ist die Wahrscheinlichkeit $|\langle a_n | \psi \rangle|^2$ (normierte Zustände).

Erwartungswert: (Korrollar) $\langle \psi | \hat{A} | \psi \rangle$

Zeitentwicklung: \hat{H} (Hamiltonoperator), \hat{H} sei nicht expl. zeitabh.

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \langle \psi_1 | \hat{A} | \psi_2 \rangle = \langle \psi_1 | [\hat{A}, \hat{H}] | \psi_2 \rangle$$

Schrödinger-Bild

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$

Heisenberg-Bild

$$\begin{aligned} |\psi_H\rangle &= e^{i\hat{H}t}|\psi(t)\rangle \\ \hat{A}_H(t) &= e^{i\hat{H}t}\hat{A}e^{-i\hat{H}t} \\ i\hbar\frac{\mathrm{d}}{\mathrm{d}t}\hat{A}_H(t) &= [\hat{A}_H(t),\hat{H}] \end{aligned}$$

0.2 Ortsraum, Teilchen in 1D

Operatoren $\hat{x}, \hat{p}, [\hat{x}, \hat{p}] = i\hbar$.

EZe: $|x\rangle,\,|p\rangle$ (bilden jeweils Basis)

Wellenfunktionen: $\psi(x) := \langle x | \psi \rangle$, $\tilde{\psi}(p) := \langle p | \psi \rangle$

Kapitel 1

Relativistische Quantenmechanik

1.1 Kontinuierliche Symmetrien (Bsp. Rotationsinvarianz)

Frage: Was ist Drehimpuls?

1.1.1 Drehungen in 3D

 $(\rightarrow \text{Liegruppe } SO(3))$

Aktive Drehung: Bsp. $\mathbf{v}' = R_z(\theta)\mathbf{v}$ (Drehung um Winkel θ um z-Achse)

Infinitesimale Drehungen, $\theta = \varepsilon \to 0$:

$$R_z(\varepsilon) = \mathbf{1} - i\varepsilon \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{1} - i\varepsilon \ell_z$$

$$\ell_z = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \ell_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \qquad \ell_y = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix} \qquad (\ell_k)_{i,j} = -i\varepsilon_{ijk}$$

"Generatoren der zugehörigen Lie-Algebra"

Charakteristische Kommutatorrelation: $[\ell_i, \ell_j] = i\varepsilon_{ijk}\ell_k$

Endliche Drehungen: $R_z(\theta) = \exp(-i\theta \ell_z)$

1.1.2 Darstellungen

Eine Darstellung einer Gruppe ist eine Zuordnung: $R \mapsto D(R) = \text{Matrix} / \text{linearer Operator}, \text{ mit}$

$$D(R_1R_2) = D(R_1)D(R_2)$$

Physikalische Idee: Viele physikalische Größen \rightarrow angeben, wie sie sich unter Drehungen verhält.

• Impuls: $\mathbf{p} \longmapsto \mathbf{p}' = R\mathbf{p}$

• Energie: $E \longmapsto E' = E = D(R)E$ mit $\forall R : D(R) = 1$

• Ladung: $Q \mapsto Q' = Q$

• Dichte: $\rho \longmapsto \rho' : \rho'(R\mathbf{x}) = \rho(\mathbf{x})$

• Quantenzustand $|\psi\rangle \longmapsto |\psi'\rangle = \hat{D}(R)|\psi\rangle$

Generatoren für Darstellungen: $\theta = \varepsilon \to 0$

$$D(R_z(\varepsilon)) = \mathbf{1} - i\varepsilon J_z$$
 (Analog für x, y)

mit Operatoren J_x, J_y, J_z wie $D(R_z(\varepsilon))$, diese sind spezifisch für die Darstellung.

$$D(R_z(\theta)) = \exp(-i\theta J_z)$$

$$[J_i, J_j] = i\varepsilon_{ijk}J_k$$

Die Generatoren jeder Darstellung erfüllen dieselben Vertauschungsrelationen.

1.1.3 Drehungen in der Quantenmechanik

Darstellung von Drehungen:

$$\hat{D}(R_k(\theta)): |\psi\rangle \mapsto |\psi'\rangle = \hat{D}(R_k(\theta))|\psi\rangle$$

Gruppenstruktur:

$$\hat{D}(R_1R_2) = \hat{D}(R_1)\hat{D}(R_2)$$

Falls Symmetrie:

$$\langle \psi' | \phi' \rangle = \langle \psi | \phi \rangle \Leftrightarrow \langle \psi | \hat{D}^{\dagger} \hat{D} | \phi \rangle$$

 $\hat{D}(R)$ ist ein unitärer Operator. $[\hat{D}(R), H] = 0$.

Infinitesimale Drehung:

$$\hat{D}(R_k(\varepsilon)) = \mathbf{1} - i\varepsilon \hat{J}_k$$

Falls Symmetrie:

$$[\hat{J}_k, \hat{H}] = 0$$
 $[\hat{J}_i, \hat{J}_j] = i\varepsilon_{ijk}\hat{J}_k$

Per Definition: $\hat{\mathbf{J}}$ is Drehimpuls dieser Quantentheorie.

Konsequenzen bei solchen $\hat{\mathbf{J}}$ -Operatoren: (QT1)

$$[\hat{J}_z, \hat{\mathbf{J}}] = 0 \qquad \hat{J}_{\pm} = \hat{J}_x \pm i\hat{J}_y$$

Mögliche Eigenzustände: $|j,m\rangle$ mit $j=0,\frac{1}{2},1,\frac{3}{2},\dots$ und $m=-j,\dots,j$

Einfachste nicht-triviale Darstellung: $j=\frac{1}{2},$ d.h. 2-Zustandssystem $|\pm\rangle:=|j=\frac{1}{2},m=\pm\frac{1}{2}\rangle$.

$$|\psi\rangle = \psi_{+}|+\rangle + \psi_{-}|-\rangle$$

$$\psi \stackrel{R_k(\theta)}{\longmapsto} \psi' = \left(\mathbf{1} - i\theta \frac{\sigma_k}{2}\right) \psi$$

mit Pauli-Matrizen σ_k .

1.2 Lorentzinvarianz

1.2.1 Lorentzgruppe

Drehungen: $(t, \mathbf{r}) \longmapsto (t, R(\mathbf{r}))$

Boosts in x-Richtung:

$$\begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} \cosh \beta & \sinh \beta & 0 & 0 \\ \sinh \beta & \cosh \beta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix}$$

Generatoren: ℓ_x, ℓ_y, ℓ_z wie gehabt. Boosts: $\Lambda_x(\beta) = \mathbf{1} - i\beta k_x + \mathcal{O}(\beta^2)$

6 Generatoren: Vertauschungsrelationen (und zyklisch):

$$[\ell_x, \ell_y] = i\ell_z$$

 $[k_x, k_y] = -i\ell_z$
 $[\ell_x, k_y] = ik_z$

1.2.2 Darstellungen

Def. Darstellung: Matrizen/Operatoren J_i , K_i , mit $[J_x, J_y] = iJ_z$, $[K_x, K_y] = -iJ_z$, $[J_x, K_y] = iK_z$. Triviale Darstellung: $J_i = 0$, $K_i = 0$

Spin $\frac{1}{2}$: $J_i = \sigma^i/2$, $K_i = -i\sigma^i/2$. Die Elemente des 2D Darstellungsraumes nennt man linkshändige Weyl-Spinoren. (Andere Variante mit $K_i = +i\sigma^i/2$: Elemente sind rechtshändige Weyl-Spinoren)

Partität/Raumspiegelung P: $\mathbf{x} \mapsto -\mathbf{x}$, $\mathbf{p} \mapsto -\mathbf{p}$, $\mathbf{J} \mapsto \mathbf{J}$, $\mathbf{K} \mapsto -\mathbf{K}$. Falls P-Transformation genutzt werden soll, sind beide Darstellungen nötig \Rightarrow 4D komplexer Spinorraum aus Dirac-Spinoren notwendig.

$$\Psi = \begin{pmatrix} \psi_{\alpha} \\ \overline{\psi}^{\dot{\alpha}} \end{pmatrix}$$

Darstellung für Diracspinoren:

$$J_i = \begin{pmatrix} \frac{\sigma^i}{2} & 0\\ 0 & \frac{\sigma^i}{2} \end{pmatrix} \qquad K_i = \begin{pmatrix} -i\frac{\sigma^i}{2} & 0\\ 0 & i\frac{\sigma^i}{2} \end{pmatrix}$$

Dirac
spinoren: 4-komponentige komplexe Spinoren. Einfachste Darstellung mit P-Transformation.

Lorentztransformationen und Darstellungen:

$$\Lambda^{\mu}{}_{\nu}=\delta^{\mu}{}_{\nu}+\omega^{\mu}{}_{\nu}$$

5

(mit infinitesimalem und antisymmetrischem $\omega^{\mu\nu}$ (wenn beide Indizes oben!), z.B Drehung, Boost)

$$\Lambda = \mathbf{1} - \frac{i}{2}\omega^{\mu\nu}L_{\mu\nu}$$

mit $L_{ij} = -L_{ji} = \varepsilon_{ijk}\ell_k$ und $L_{i0} = -L_{0i} = k_i$

Für eine Darstellung S:

$$S(\Lambda) := 1 - \frac{i}{2} \omega^{\mu\nu} L_{\mu\nu}$$

1.2.3 Diracspinoren und γ -Matrizen

 $\psi = (\psi_1, \psi_2, \psi_3, \psi_4) = \text{komplexer Diracspinor}.$

Def γ -Matrizen: $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}\mathbf{1}$

Weyl-Form:

$$\gamma^0 := \begin{pmatrix} 0 & \mathbf{1}_2 \\ \mathbf{1}_2 & 0 \end{pmatrix} \qquad \gamma^i \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}$$

Die Generatoren J, K lassen sich so ausdrücken:

$$S_{\mu\nu} = \frac{i}{4} [\gamma_{\mu}, \gamma_{\nu}]$$

Dies reproduziert die Darstellungsmatrix $L_{\mu\nu}$ der Lorentztransformation.

$$\gamma^{\mu\dagger}\!\!:\gamma^{0\dagger}=\gamma^0,\,\gamma^{i\dagger}=-\gamma^i=\gamma^0\gamma^i\gamma^0$$

$$S^{\dagger}_{\mu\nu} = \gamma^0 S_{\mu\nu} \gamma^0$$

$$S^{-1}(\Lambda) = \mathbf{1} + \frac{i}{2} \omega^{\mu\nu} S_{\mu\nu} = \gamma^0 S^{\dagger}(\Lambda) \gamma^0$$

Def Adjungierter Spinor: $\overline{\psi} := \psi^{\dagger} \gamma^0$

Lorentz:

$$\begin{split} \psi &\longmapsto S(\Lambda) \psi \\ \overline{\psi} &\longmapsto \overline{\psi} S^{-1}(\Lambda) \\ \overline{\psi} \psi &\longmapsto \overline{\psi} \psi \\ \overline{\psi} \gamma^{\mu} \psi &\longmapsto \Lambda^{\mu}{}_{\nu} \overline{\psi} \gamma^{\nu} \psi \\ S^{-1}(\Lambda) \gamma^{\mu} S(\Lambda) &= \Lambda^{\mu}{}_{\nu} \gamma^{\nu} \end{split}$$

1.3 Überblick über relativistische Wellengleichungen

Welche Gleichungen wären erlaubt durch Lorentzinvarianz?

Notation:

- 4-Vektoren: $(x^{\mu}) = (t, \mathbf{x}), (p^{\mu}) = (E, \mathbf{p})$
- Lorentzinvarianten sind Skalarprodukte, z.B. $p^\mu p_\mu = E^2 {\bf p}^2 =: m^2$

• Ableitungen: $\partial_{\mu} = \left(\frac{\partial}{\partial x^{\mu}}\right) = (\partial_{t}, \nabla), \ \Box = \partial_{\mu}\partial^{\mu} = \partial_{t} - \Delta$

• Elektrodynamik: $j^{\mu} = (\rho, \mathbf{j})$, $\partial_{\mu} j^{\mu} = 0$, $A^{\mu} = (\phi, \mathbf{A})$, $F^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}$ Maxwell: $\partial_{\mu} F^{\mu\nu} = \mu_0 j^{\nu}$, homogene Gleichung automatisch durch Potentiale erfüllt. Lorentz-Transf.: $x'^{\mu} = \Lambda^{\mu}{}_{\nu} x^{\nu}$, $j'^{\mu}(x') = \Lambda^{\mu}{}_{\nu} j^{\nu}(x)$

1.3.1 Klein-Gordon-Gleichung

 $\phi(x)$ sei Skalarfeld $(\phi \mapsto \phi' \text{ mit } \phi'(x') = \phi(x)).$

$$\Box \phi(x) + m^2 \phi(x) = 0$$

Interpretation?

• Einfachste relativistische Differentialgleichung

• "erraten aus QM" (mit QM Ersetzungsregeln $E \to i\partial_t$, $\mathbf{p} \to -i\nabla$)

• Nichtrelativistischer Limes: ein Teilchen, $E \approx m + \text{Korrektur}$. Ansatz:

$$\psi(\mathbf{x},t) = e^{-imt} \psi_{n.r.}(\mathbf{x},t)$$

$$\Rightarrow \partial_t^2 \psi = (-2im\partial_t \psi_{n.r.} - m^2 \psi_{n.r.} + \mathcal{O}(\ddot{\psi})) e^{-imt}$$

$$\Rightarrow 2im\partial_t \psi_{n.r.} = -\Delta \psi_{n.r.}$$

• Klassische Feldgleichung:

$$\mathcal{L}_{KG} = (\partial^{\mu} \phi^*)(\partial_{\mu} \phi) - m^2 \phi^* \phi$$

Euler-Lagrange:

$$0 = \partial_{\rho} \frac{\partial \mathcal{L}}{\partial (\partial_{\rho} \phi^*)} - \frac{\partial \mathcal{L}}{\partial \phi^*}$$

Rolle als QM Wellengleichung für ein Teilchen in Ortsdarstellung:

Schrödinger-Gleichung nicht-relativistisch: $i\partial_t \psi = -\frac{\Delta}{2m} \psi$

Klein-Gordon-Gleichung: $-\partial_t^2\phi=(-\Delta+m^2)\phi$

Aufenthaltwahrscheinlichkeitsdichte: Suche $(j^{\mu}) = (\rho, \mathbf{j})$ mit Kontinuitätsgleichung $\partial_{\mu}j^{\mu} = 0$:

$$\phi^*(\Box + m^2)\phi - \phi(\Box + m^2)\phi^* = 0$$
$$= \partial_{\mu}[\phi^*\partial^{\mu}\phi - \phi\partial^{\mu}\phi^*]$$

Definiere 4-Stromdichte:

$$j^{\mu} = \frac{i}{2m} \left[\phi^* \partial^{\mu} \phi - \phi \partial^{\mu} \phi^* \right]$$
$$\Rightarrow \mathbf{j} = -\frac{i}{2m} \left[\phi^* \nabla \phi - \phi \nabla \phi^* \right]$$
$$\Rightarrow \rho = \frac{i}{2m} \left[\phi^* \partial_t \phi - \phi \partial_t \phi^* \right]$$

Interpretation

- ρ ist nicht positiv definit! $\rho < 0$ möglich! Also kann ρ nicht als Aufenthaltswahrscheinlichkeit interpretiert werden.
- Lösungen: $\phi \sim e^{-iEt+i\mathbf{p}\cdot\mathbf{x}}$: $\rho = \frac{E}{m} > 0$, $\rho \sim e^{+iEt-i\mathbf{p}\cdot\mathbf{x}}$: $\rho = -\frac{E}{m} < 0$: negative Energie möglich!?
- Idee: KG-Gl. beschreibt zwei Teilchentypen (Teilchen + Antiteilchen) mit entgegengesetzten Ladungen. Interpretiere ρ als elektrische Ladungsdichte.

1.3.2 Dirac-Gleichung

 $\psi(x)$ sein "Dirac-Spinorfeld" d.h. $\psi \mapsto \psi'$ mit $\psi'(x') = S(\Lambda)\psi(x)$.

$$S(\Lambda) = \mathbf{1}_4 - \frac{i}{2}\omega^{\mu\nu}S_{\mu\nu}$$
$$S_{\mu\nu} = \frac{i}{4}[\gamma_{\mu}, \gamma_{\nu}]$$
$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}\mathbf{1}_4$$

Dirac-Gleichung:

$$(i\partial_{\mu}\gamma^{\mu} - m)\psi = 0$$

Interpretation:

- nicht einfachste Differenzialgleichung
- erraten von Dirac: gewünscht "Wurzel aus KG-Gleichung" (Herleitung \wedge Lit.)
- $\mathcal{L} = \overline{\psi}(i\partial_{\mu}\gamma^{\mu} m)\psi$
- Adjungierte Dirac-Gl. $i\partial_{\mu}\overline{\psi}\gamma^{\mu} + m\overline{\psi} = 0$

$$\Rightarrow \partial_{\mu}(\overline{\psi}\gamma^{\mu}\psi) = 0$$

• Def. $j^{\mu} = \overline{\psi} \gamma^{\mu} \psi$, $\rho = \psi^{\dagger} \psi$ ist positiv-definit

Vollständige Darstellung der Lorentztransformationen

$$\psi'(x) = S(\Lambda)\psi(\Lambda^{-1}x) = (\mathbf{1} - \frac{i}{2}\omega^{\mu\nu}S_{\mu\nu})\psi(x - \omega x)$$

und

$$\psi' = (1 - \frac{i}{2}\omega^{\mu\nu}\hat{J}_{\mu\nu})\psi$$

 $(\hat{J}$ Generatoren der Darstellung der Lorentz-Algebra auf dem Fkt.-Raum der Spinorfelder)

$$\implies \hat{J}_{\mu\nu} = i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu}) + S_{\mu\nu}$$
$$\hat{J}_{\mu\nu} = \hat{L}_{\mu\nu} + S_{\mu\nu}$$

Analog zur KG-Gl. treten Inkonsistenzen auf, wenn man Diracgl. als 1-Teilchen-Theorie auffasst. Die Probleme sind ähnlich aber nicht gleich.

1.4 Physik und Lösungen der Diracgleichung

1.4.1 Freie Lösungen, Impuls-/Spin-Eigenzustände

Dirac-Gleichung: $(i\partial \!\!\!/ - m)\psi = 0$

Gesamt-Drehimpuls: $\hat{J}_{ij} = \hat{L}_{ij} + S_{ij}$. Spin-EZ: $\pm \frac{1}{2}$

Ansatz: $\psi(x) = w(p)e^{\mp ipx}$ (mit $px = p_{\mu}x^{\mu}$)

$$\Rightarrow (\pm p - m)w(p) = 0$$

Eigenwertgleichung für p!

Beachte: $p^2 = p^\mu \gamma_\mu p^\nu \gamma_\nu = p^\mu p^\nu \gamma_\mu \gamma_\nu = \frac{1}{2} p^\mu p^\nu \{\gamma_\mu, \gamma_\nu\} = p^2 \mathbf{1}$

D.h. $\not p$ hat EWe $\pm \sqrt{p^2}$ vermutlich je 2-fach entartet. Nicht-triviale Lösung der EW-Gl. für $p^2=m^2$ \rightarrow Teilchen mit Ruhemasse m beschrieben.

Bezeichnungen der Lösungen

$$(\not p - m)u(p,s) = 0$$

$$(\not p + m)v(p, s) = 0$$

Beispiel: $p^2=m^2,\,(p^\mu)=(E,0,0,p_z)$ in z-Richtung, $E^2=p_z^2+m^2.$

$$p = p^{\mu} \gamma_{\mu} = E \gamma_0 + p_z \gamma_3 = E \gamma^0 - p_z \gamma^3 = \begin{pmatrix} \mathbf{1}E & -p_z \sigma^3 \\ p_z \sigma^3 & -\mathbf{1}E \end{pmatrix}$$

Es gilt $[p, S_{12}] = 0$, d.h. p und S_z haben simultane Eigenzustände. (allg. p und $\frac{\mathbf{p} \cdot \mathbf{S}}{|\mathbf{p}|} = \text{Helizitätsoperator}$ simultan Diagonalisierbar).

EW-Gleichung lösen:

$$u(p, +1/2) = N \cdot \begin{pmatrix} E + m \\ 0 \\ p_z \\ 0 \end{pmatrix}$$

$$u(p,-1/2) = N \cdot \begin{pmatrix} 0 \\ E+m \\ 0 \\ -p_z \end{pmatrix}$$

mit $N = \frac{1}{\sqrt{E+m}}$.

$$v(p, +1/2) = N \cdot \begin{pmatrix} p_z \\ 0 \\ E+m \\ 0 \end{pmatrix}$$

$$v(p, -1/2) = N \cdot \begin{pmatrix} 0 \\ -p_z \\ 0 \\ E+m \end{pmatrix}$$

Spinoren für andere \mathbf{p} : $\mathbf{p}=R\mathbf{p}_z=e^{-\frac{i}{2}\omega^{\mu\nu}L_{\mu\nu}}\mathbf{p}_z$:

$$u(p,s) = e^{-\frac{i}{2}\omega^{\mu\nu}S_{\mu\nu}}u(p_z,s)$$

Negative Energien

$$\psi(x) = u(p,s) = e^{-iEt + i\mathbf{p}\cdot\mathbf{x}}$$

$$\psi(x) = v(p,s) = e^{+iEt - i\mathbf{p}\cdot\mathbf{x}}$$

D.h. Energie (-E) < 0 für v-Lösungen.

1.4.2 Mehr zum Drehimpuls

Man betrachte die Diracgleichung als quantenmechanische 1-Teilchen-Gleichung. (sinnvoll, solange Antiteilchen und QFT Effekte vernachlässigbar sind).

Formulierung analog zur Schrödingergleichung im Ortsraum:

$$(i\partial \!\!\!/ - m)\psi = 0$$

Multiplikation mit γ^0 von links und nach Zeitableitung umstellen:

$$i\partial_t \psi = (-i\gamma^0 \gamma^i \partial_i + m\gamma^0) \psi =: \hat{H}_D^{(0)} \psi$$

Drehimpuls aus Darstellung der Lorentztransformation.

$$\hat{J}_{ij} = i(x_i\partial_j - x_j\partial_i) + \hat{S}_{ij} = \hat{L}_{ij} + \hat{S}_{ij}$$
$$\hat{\mathbf{J}} = \hat{\mathbf{L}} + \hat{\mathbf{S}}$$

Es gilt $[\hat{H}_D^{(0)}, \hat{\mathbf{J}}] = 0$, d.h. Gesamtdrehimpuls erhalten. $[\hat{H}_D^{(0)}, \hat{\mathbf{L}}] = \gamma^0 \gamma_1 \partial_y - \gamma^0 \gamma_2 \partial_x$.

Helizität

$$\frac{\hat{\mathbf{S}} \cdot \hat{\mathbf{p}}}{|\hat{\mathbf{p}}|}$$
$$[\hat{H}_D^{(0)}, \hat{\mathbf{S}} \cdot \hat{\mathbf{p}}] = [\hat{H}_D^{(0)}, \frac{1}{2} \epsilon_{ijk} S_{ij} \hat{p}^k] = \sim \frac{1}{2} \epsilon_{ijk} \gamma^0 \gamma_i \partial_j \partial_k = 0$$

Es gibt simultane Eigenzustände zu Energie, Impuls, Helizität.

Interpretation der 4 Komponenten von ψ

Zu gegebenem Impuls **p**: 4 linear unabhängige Lösungen:

- E > 0, Helizität $\pm \frac{1}{2}$
- E < 0, Helizität $\pm \frac{1}{2}$

1.4.3 Kopplung ans elektromagnetische Feld

Freie Diracgleichung: $(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$

Freie Klein-Gordon-Gleichung: $(-\partial_{\mu}\partial^{\mu} - m^2)\phi = 0$

Relativistisches klassisches Teilchen: $L = \frac{1}{2} m \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau}$

Kopplung and e.m. Feld soll relativistisch invariant und eichinvariant sein. (Eichung $A^{\mu}(x) \mapsto A^{\mu}(x) + \partial^{\mu}\theta(x)$).

Klassisches Teilchen:

$$L = \frac{1}{2} m \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau} - e \frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau} A^{\mu}(x)$$

(Einfachse denkbare relativistische WW, Wirkung ist eichinvariant, reproduziert Coulomb- und Lorentzkraft)

Kanonisch konjugierter Impuls:

$$\mathcal{P}^{\mu} = \frac{\partial L}{\partial \frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau}} = m \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} - eA^{\mu}$$

$$\Rightarrow H = \frac{1}{2m} (\mathcal{P}^{\mu} + eA^{\mu})^2$$

Rezept: minimale Kopplung $\mathcal{P}^{\mu} \to \mathcal{P}^{\mu} + eA^{\mu}$, Klein-Gordon-Gleichung:

$$\left[\left[\left(i\partial^{\mu} + eA^{\mu} \right) \left(i\partial_{\mu} + eA_{\mu} \right) - m^2 \right] \phi = 0 \right]$$

Dirac-Gleichung:

$$(i\partial + eA - m)\psi = 0$$

Elektromagnetische Stromdichte:

$$j^\mu = e \overline{\psi} \gamma^\mu \psi$$

Eichinvarianz:

$$A^{\mu}(x) \longrightarrow A^{\mu}(x) + \partial^{\mu}\theta(x)$$

 $\psi(x) \longrightarrow e^{ie\theta(x)}\psi(x)$

Eichkovariante Ableitung: $D^{\mu}\psi:=(\partial^{\mu}-ieA^{\mu})\psi$. Damit gilt $D^{\mu}\psi\longrightarrow e^{ie\theta(x)}D^{\mu}\psi$

1.4.4 Nichtrelativistischer Limes

Nichtrelativistische Schrödingergleichung mit e.m. Feld:

$$(i\partial_t + e\Phi)\psi = \frac{(\hat{\mathbf{p}} + e\mathbf{A})^2}{2m}\psi$$

Klein-Gordon-Gleichung:

$$\left[\left(i\partial^{\mu} + eA^{\mu} \right) \left(i\partial_{\mu} + eA_{\mu} \right) - m^2 \right] \phi = 0$$

$$(A^{\mu}) = (\Phi, \mathbf{A}), (i\partial^j) = (-i\partial_j) = (p^j).$$

Ansatz:

• ϕ ist Energie-EZ, $i\partial_t \phi = E\phi$

- E = m + klein, E > 0
- $e|A^{\mu}| \ll m$
- $|\partial_t A^{\mu}| \ll |mA^{\mu}|$
- $|p| \ll m$

Einsetzen in KG-Gl.:

$$[(i\partial_t + e\Phi)(E + e\Phi) - (\hat{\mathbf{p}} + e\mathbf{A})^2 - m^2] \phi = 0$$

Vernachlässigen von $\partial_t \Phi$:

$$\left[(E + e\Phi)^2 - (\hat{\mathbf{p}} + e\mathbf{A})^2 - m^2 \right] \phi = 0$$

Mit $E+e\Phi=m+(E-m+e\Phi)$ mit Vernachlässigung des Quadrates der letzten Klammer:

$$\left[2m(E - m + e\Phi) - (\hat{\mathbf{p}} + e\mathbf{A})^2\right]\phi = 0$$

Daraus folgt direkt die nichtrelativistische Schrödingergleichung.

Diracgleichung mit e.m. Feld

$$(i\not\!\!D-m)\psi=0$$

Ansatz wie oben. Aufteilung des Diracspinors in zwei Paulispinoren:

$$\psi = \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}$$

$$\begin{pmatrix} iD_0 - m & iD_i\sigma^i \\ -iD_i\sigma^i & -iD_0 - m \end{pmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = 0$$

Nach Ansatz: $iD_0 \to E + e\Phi$, $iD_i\sigma^i = -\sigma(\hat{\mathbf{p}} + e\mathbf{A})$.

$$(E - m + e\Phi)\psi_A - \boldsymbol{\sigma}(\hat{\mathbf{p}} + e\mathbf{A})\psi_B = 0$$
$$(-E - m - e\Phi)\psi_B + \boldsymbol{\sigma}(\hat{\mathbf{p}} + e\mathbf{A})\psi_A = 0$$

Eliminiere

$$\psi_{B} = \frac{\boldsymbol{\sigma}(\hat{\mathbf{p}} + e\mathbf{A})}{E + m + e\Phi} \psi_{A} \cong \left(\frac{1}{2m} + \mathcal{O}(m^{-2})\right) \boldsymbol{\sigma}(\hat{\mathbf{p}} + e\mathbf{A})$$

$$\Rightarrow (E - m + e\Phi)\psi_{A} = \frac{1}{2m} \left(\boldsymbol{\sigma}(\hat{\mathbf{p}} + e\mathbf{A})\right) \left(\boldsymbol{\sigma}(\hat{\mathbf{p}} + e\mathbf{A})\right) \psi_{A}$$

Vereinfachung der σ -Anteile

$$\begin{split} (\boldsymbol{\sigma} \cdot \hat{\mathbf{O}})(\boldsymbol{\sigma} \cdot \hat{\mathbf{O}}) &= \sigma^i \hat{O}^i \sigma^j \hat{O}^j = \sigma^i \sigma^j \hat{O}^i \hat{O}^j \\ &= \left(\frac{1}{2} \left\{ \sigma^i, \sigma^j \right\} + \frac{1}{2} \left[\sigma^i, \sigma^j \right] \right) \hat{O}^i \hat{O}^j = \left(\delta^{ij} + i \epsilon^{ijk} \sigma^k \right) \hat{O}^i \hat{O}^j \\ &= \hat{\mathbf{O}}^2 + i \epsilon^{ijk} \sigma^k \frac{1}{2} [\hat{O}^i, \hat{O}^j] \end{split}$$

Hier:
$$\hat{\mathbf{O}} = (\hat{\mathbf{p}} + e\mathbf{A})$$
:

$$\cdots = (\hat{\mathbf{p}} + e\mathbf{A})^2 + i\epsilon^{ijk}\sigma^k(-i\partial_i eA^j)$$

$$= (\hat{\mathbf{p}} + e\mathbf{A})^2 + e\mathbf{B} \cdot \boldsymbol{\sigma}$$
$$(E - m + e\Phi)\psi_A = \left[\frac{(\hat{\mathbf{p}} + e\mathbf{A})^2}{2m} + \frac{e}{2m}\boldsymbol{\sigma} \cdot \mathbf{B}\right]\psi_A$$

Pauli-Gleichung enthält Term $\mathbf{S} \cdot \mathbf{B}$ ($\mathbf{S} = \boldsymbol{\sigma}/2$) mit Vorfaktor:

$$g_s \frac{e}{2m} \mathbf{S} \cdot \mathbf{B} \qquad , \qquad g_s = 2$$

Bedeutung des g_s -Terms Allg. Hamiltonian für magnetischen Dipol μ im B-Feld:

$$H = -\boldsymbol{\mu} \cdot \mathbf{B}_{ext}$$

Vergleich mit Pauli-Gleichung liefert $\mu_s = -g_s \frac{e}{2m} \mathbf{S}$ mit $g_s = 2$. Das ist ein intrinsisches magnetisches Dipolmoment, proportional zum Spin.

Vergleich mit klassischer Elektrodynamik (rotierende Ladungsverteilung, Ladung Q, Masse M, Drehimpuls \mathbf{L}) liefert $\boldsymbol{\mu} = \frac{Q}{M} \mathbf{L} \Rightarrow$ Klassisches Ergebnis entspricht g = 1.

Interpretation des ersten Terms (identisch in der nicht-relativistischen Schrödingergleichung)

$$\frac{(\hat{\mathbf{p}} + e\mathbf{A})^2}{2m} = \underbrace{\frac{\hat{\mathbf{p}}^2}{2m}}_{E_{bin}} + \underbrace{\frac{e}{2m}(\hat{\mathbf{p}}\mathbf{A} + \mathbf{A}\hat{\mathbf{p}}) + \frac{e^2}{2m}\mathbf{A}^2}_{\text{e.m. WW}}$$

Bsp. homogenes **B**-Feld: setze $\mathbf{A}(x) = -\frac{1}{2}(\mathbf{x} \times \mathbf{B})$, dann $\mathbf{B} = \nabla \times \mathbf{A}$.

$$\hat{\mathbf{p}}\mathbf{A} + \mathbf{A}\hat{\mathbf{p}} = \mathbf{B} \cdot \hat{\mathbf{L}}$$

$$\Rightarrow \text{Erster Term } = \frac{\hat{\mathbf{p}}^2}{2m} + \frac{e}{2m}\mathbf{B} \cdot \hat{\mathbf{L}} + \frac{e^2}{2m}\mathbf{A}^2$$

1.4.5 Weitere Konsequenzen: Spin-Bahn-Kopplung

Höhere Ordnungen im nicht-relativistischen Limes:

- Spin-Bahn-Kopplung $\sim \mathbf{L} \cdot \mathbf{S}$ (Feinstrukturaufspaltung)
- Darwin-Term
- Korrektur E-kin.

Saubere Herleitung durch systematische Entwicklung in Potenzen von m. $\frac{1}{m}$ sei eine kleine Größe. \rightarrow Foldy-Wouthuysen-Transformation/-Bild.

$$(i\not\!\!D-m)\psi=0$$

$$\Leftrightarrow i\partial_t\psi=(-e\Phi+m\gamma^0-iD_i\gamma^0\gamma^i)\psi=H_D\psi$$

Idee: Unitäre Transformation / neues "Bild", Zerlegung in 2-Spinoren.

$$\psi = e^{-iS}\psi' = e^{-iS} \begin{pmatrix} \psi_A' \\ \psi_B' \end{pmatrix}$$

S hermitesch, eventuell t-abhängig.

Neuer Hamiltonian:

$$i\partial_t \psi' = i\partial_t (e^{iS}\psi) = (i\partial_t e^{iS})\psi + e^{iS}i\partial_t \psi$$

$$= \left[(i\partial_t e^{iS})e^{-iS} + e^{iS}H_D e^{-iS} \right]\psi'$$

$$H'_D = i(i\dot{S} + \frac{i^2}{2}[S, \dot{S}] + \frac{i^3}{6}[S, [S, \dot{S}]] + \dots) + H_D + i[S, H_D] + \frac{i^2}{2}[S, [S, H_D]] + \dots$$

Idee 2: H'_D soll blockdiagonal sein in 2-Spinoren (bis zu bestimmter Ordnung) \to Gleichung für ψ'_A reicht aus.

Konkret:

$$H_D = m\gamma^0 + (-e\Phi) + \begin{pmatrix} 0 & (\mathbf{p} + e\mathbf{A}) \cdot \boldsymbol{\sigma} \\ (\mathbf{p} + e\mathbf{A}) \cdot \boldsymbol{\sigma} & 0 \end{pmatrix} = \underbrace{m\gamma^0}_{\mathcal{O}(m^1)} + \underbrace{\mathcal{E}}_{\mathcal{O}(m^0)} + \underbrace{\mathcal{O}}_{\mathcal{O}(m^0)}$$

Häufige Umformung: $\gamma^0 O = -O \gamma^0$ mit ungeradem Operator O.

1. Schritt: arbeite bis $\mathcal{O}(m^0)$: Setze $S = \mathcal{O}(m^{-1})$

$$H'_D = H_D + i[S, H_D] + \mathcal{O}(m^{-1}) = m\gamma^0 + \mathcal{E} + \mathcal{O} + i[S, m\gamma^0 + \mathcal{E} + \mathcal{O}] + \mathcal{O}(m^{-1})$$
$$= m\gamma^0 + \mathcal{E} + \mathcal{O} + i[S, m\gamma^0]$$

Lösung: $S = -\frac{i}{2m}\gamma^0 \mathcal{O}$

Damit H_D' komplett ausrechnen bis $\mathcal{O}(m^{-2})$:

$$H'_D = H_D + i[S, H_D] - \dot{S} + \frac{i^2}{2}[S, [S, H_D]] - \frac{i}{2}[S, \dot{S}] + \frac{i^3}{6}[S, [S, [S, H_D]]] + \mathcal{O}(m^{-3})$$

Für die einzelnen Terme finden Wirkung

$$i[S, H_D] = i \left[-\frac{i}{2m} \gamma^0 \mathcal{O}, m\gamma^0 + \mathcal{E} + \mathcal{O} \right] = -\mathcal{O} + \frac{1}{2m} \gamma^0 [\mathcal{O}, \mathcal{E}] + \frac{1}{m} \gamma^0 \mathcal{O}^2$$

$$-\dot{S} = \frac{i}{2m} \gamma^0 \dot{\mathcal{O}}$$

$$\frac{i}{2} [S, \dot{S}] = -\frac{i}{8m^2} [\mathcal{O}, \dot{\mathcal{O}}]$$

$$\frac{i^2}{2} [S, [S, H_D]] = -\frac{1}{2m} \gamma^0 \mathcal{O}^2 - \frac{1}{8m^2} [\mathcal{O}, [\mathcal{O}, \mathcal{E}]] - \frac{1}{2m^2} \mathcal{O}^3$$

$$\frac{i^3}{3!} [S, [S, [S, H_D]]] = \frac{1}{6m^2} \mathcal{O}^3$$

Der neue Hamiltonian ist nun

$$\begin{split} H_D' &= \underbrace{m\gamma^0 + \mathcal{E} + \frac{1}{2m}\gamma^0\mathcal{O}^2 - \frac{1}{8m^2}[\mathcal{O}, i\dot{\mathcal{O}} + [\mathcal{E}, \mathcal{O}]]}_{\text{gerade} =: H_{D, \text{even}}'} + \\ &= \underbrace{\frac{1}{2m}\gamma^0(i\dot{\mathcal{O}} + [\mathcal{O}, \mathcal{E}]) - \frac{1}{6m^2}\mathcal{O}^3}_{\text{ungerade} =: \mathcal{O}'} \\ &=: H_{D, \text{even}}' + \mathcal{O}' \end{split}$$

2. Schritt: arbeite bis $\mathcal{O}(m^-1)$:

In Analogie setzen wir $\psi' = e^{iS'}\psi''$ mit $S' = -\frac{i}{2m}\gamma^0\mathcal{O}'$ und erhalten

$$H_D'' = H_{D,\text{even}}' + i[S', \mathcal{E}] - \dot{S}' + \mathcal{O}(m^{-3}) := D_{D,\text{even}} + \mathcal{O}''$$

3. Schritt: arbeite bis $\mathcal{O}(m^{-2})$:

Wir setzen wieder $\psi'' = e^{i-iS''}\psi'''$ mit $S'' = -\frac{i}{2m}\gamma^0\mathcal{O}'' = \mathcal{O}(m^{-3}).$

HIER FEHLT NOCH DIE GLEICHUNG FÜR $H_D^{\prime\prime\prime}$

Vollständig ausgerechnet:

$$H_D^{\prime\prime\prime} = \underbrace{m\gamma^0 + \mathcal{E} + \frac{1}{2m}\gamma^0\mathcal{O}^2}_{\mathcal{O}(m^{-1})} - \underbrace{\frac{1}{8m^2}[\mathcal{O}, i\dot{\mathcal{O}} + [\mathcal{O}, \mathcal{E}]]}_{\mathcal{O}(m^{-2})}$$

- Terme bis $\mathcal{O}(m^{-1})$ liefern genau den Limes aus 1.4.4 inkl. des g-2-Terms
- Zusätzliche Terme der relativistischen Korrektur bis $\mathcal{O}(m^{-2})$

Wir diskutieren diese Terme anhand des Zentralpotentials mit $\mathbf{A} = 0$ und $\Psi(\mathbf{x}, t) = \Psi(r)$ mit $r = |\mathbf{x}|$. Es ergeben sich die Terme

$$\nabla \Psi(r) = \frac{\mathbf{x}}{r} \frac{\mathrm{d}\Psi}{\mathrm{d}r}$$

$$\mathbf{E} = -\nabla \Psi$$

$$\mathcal{E} = e\Psi$$

$$\mathcal{O} = \begin{pmatrix} 0 & \boldsymbol{\sigma} \cdot \mathbf{p} \\ \boldsymbol{\sigma} \cdot \mathbf{p} & 0 \end{pmatrix} = -i \begin{pmatrix} 0 & \boldsymbol{\sigma} \cdot \nabla \\ \boldsymbol{\sigma} \cdot \nabla & 0 \end{pmatrix}$$

$$[\mathcal{O}, \mathcal{E}] = -ie \begin{pmatrix} 0 & \boldsymbol{\sigma} \cdot \mathbf{E} \\ \boldsymbol{\sigma} \cdot \mathbf{E} & 0 \end{pmatrix}$$

$$[\mathcal{O}, [\mathcal{O}, \mathcal{E}]] = (-i)(-ie) \begin{pmatrix} [\boldsymbol{\sigma} \cdot \nabla, \boldsymbol{\sigma} \cdot \mathbf{E}] & 0 \\ 0 & [\boldsymbol{\sigma} \cdot \nabla, \boldsymbol{\sigma} \cdot \mathbf{E}] \end{pmatrix}$$

$$[\boldsymbol{\sigma} \cdot \nabla, \boldsymbol{\sigma} \cdot \mathbf{E}] = \sigma^{i} \sigma^{j} (\partial_{i} E^{j} + E^{j} \partial_{i}) - \sigma^{j} \sigma^{i} E^{j} \partial_{i}$$

$$= \nabla \cdot \mathbf{E} + i \underline{\boldsymbol{\sigma}} \cdot (\nabla \times \mathbf{E}) + i \underline{\boldsymbol{e}}^{2} e^{ijk} \sigma^{k} E^{j} \partial_{i}$$

$$= \nabla \cdot \mathbf{E} - \frac{2}{r} \frac{\mathrm{d}\Psi}{\mathrm{d}r} \boldsymbol{\sigma} \cdot \mathbf{L}$$

Wir finden den nun bis zum $\mathcal{O}(m^{-2})$ Term blockdiagonalen Hamiltonian

$$H_D''' = \frac{e}{8m^2} \nabla \cdot \mathbf{E} - \frac{e}{2m^2r} \frac{\mathrm{d}\Psi}{\mathrm{d}r} \mathbf{S} \cdot \mathbf{L}$$

Der obere Block ist

$$H_{\text{eff}} = m + H_{\mathcal{O}(m^{-1})} + H_{\mathcal{O}(m^{-2})} + \dots$$

$$H_{\mathcal{O}(m^{-1})} = H_{\text{Pauli}} = -e\Psi + \frac{(\mathbf{p} + e\mathbf{A})^2}{2m} + \frac{e}{2m}\boldsymbol{\sigma} \cdot \mathbf{B}$$

$$H_{\mathcal{O}(m^{-2})} = \underbrace{\frac{e}{8m^2}\nabla \cdot \mathbf{E}}_{\text{Darwin-Term}} - \underbrace{\frac{e}{2m^2r}\frac{d\Psi}{dr}\mathbf{S} \cdot \mathbf{L}}_{\text{Spin-Bahn-Kopplung}}$$

Diskussion:

- Darwin-Term: beim Atom $\nabla \cdot \mathbf{E} = 4\pi \rho_{\mathrm{Kern}} \propto \delta^{(3)}(\mathbf{x})$ ergibt sich eine Korrektur für die s-Orbitale, die am Kern eine endliche Aufenthaltswahrscheinlichkeit haben
- Spin-Bahn-Koppluns: Wegen dieses Terms $[H_{\text{eff}}, \mathbf{S}] \neq 0$ und $[H_{\text{eff}}, \mathbf{L}] \neq 0$, aber $[H_{\text{eff}}, \mathbf{J}] = 0$.