Construction of Pbs.PGK.PCRI

Construction of pIG.NEO

Overview of available adenovirus packaging constructs and assessment of their capacity to transform primary kidney cells

*average of 5 plates 21 days after transelection

FIG. 6

Western blotting analysis of A549 clones transfected with pIG.E1A.NEO and PER clones (HER cells transfected with pIG.E1A.E1B)

FIG. 7

Southern blot analyses of 293, 911 and PER cell lines

FIG. 8

Transfection efficiency of PER.C3, PER.C5, PER.C6 and 911 cells. Cells were cultured in 6-well plates and transfected (n=2) with 5 µg pRSV.lasZ by calcium-phosphate co-precipitation. Forty-eight hours later the cells were stained with X-GAL. The mean percentage of blue cells is shown.

FIG. 9

Construction of pMLP1.TK

FIG. 10

New recombinant adenoviruses and packaging constructs without sequence overlap

Packaging system based on primary cells

FIG. 11A

New recombinant adenoviruses and packaging constructs without sequence overlap

FIG. IB Packaging system based on established cell lines: transfection with E1a and selection with G418

F1G. 12

FIG. 13

Replication of Adenovirus

FIG. 14

The potential hairpin conformation of a single—stranded DNA molecule that contains the HP/asp sequences used in these studies. Restriction with the restriction endonucleases <code>Asp718I</code> of plasid pICLHa, containing the annealed oligonucleotide pair HP/asp1 en HP/asp2 will yield a linear double—stranded DNA fragment. In cells in which the required adenovirus genes are present, replication can initiate at the terminus that contains the ITR sequence. During the chain elongation, the one of the strands will be displaced. The terminus of the single—stranded displaced—strand molecule can adopt the conformation depicted above. In this conformation the free 3'—terminus can serve as a primer for the cellular and/or adenovirus DNA polymerase, resulting in conversion of the displaced strand in a double—stranded form.

5'-GTACACTGACCTAGTGCCGCCCGGGCA ||||||||||||| A 3'-GATCACGGCGGGCCCGA

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

Cloned adenovirous fragments

FIG. 20

Adapter plasmid pAd5/L420-HSA

FIG. 21

Adapter plasmid pAd5/CLIP

FIG. 22

Generation of recombinant adenoviruses

Minimal adenovirus vector pMV/L420H

FIG. 24

FIG. 26A

thesni AMOo

Average percentage CPE efficiency: 86 %

FIG. 27

	Average titer 0.8 ±0.7 x 10 ⁹ pfu/ml											FIG. 28		
Insert kb	3.6	3.5	3.5	3.2	2.2	2.0	1.7	1.4	.550	.511	.434	.412	.104	
Gene	ceNOS	hTERT	hTERT D712A	lacZ	hCAT1	GLVR2	Luc	SOD3	MAX1	hVEGF121	hIL3	UBC9	ANG1-7	

% wells producing functional virus

FIG. 32

FIG. 34A

FIG. 34B

FIG. 34G

FIG. 34M

Relative amounts of wells with CPE after transfection of PER.C6/E2A cells with pCLIP—LacZ and the adapter plasmid plPspAdapt2.

Transfection of pIPspAdapt2 to PER.C6/E2A

FIG. 34N

E.coli transformation transfer colonies Linearize adapters Construction total Adeno cDNA Library (1) cDNA ■ mRNA isolation Isolation of adapter plasmids with c DNA Cells/tissue

FIG. 36A

FIG. 36B

EXAMPLE 21 384 WELL PLATE IN PROGRESS

Medium changed 7 days after transfection

FIG. 38A

Medium not changed

FIG. 38B

Propagation 7 days after transfection

FIG. 38C

Infection of human primary pre-adipocytes using Ad5C01 and Ad5C20 fiber-modified viruses

Adipocyte differentiation Primary human mesenchymal stem cells

Adipocyte differentiation Mouse mesenchymal stem cell line C3H10T1/2

H5-24: adenoviraly mediated expression of CIDEB does not induce any cell death

H5-1 DNA sequence (SEQ ID NO:14)

1	GCCCACGCGT	CCGGTTTTCT	ACTTTGCCAC	AGATTATCTT	GTACAGCCTT	TTATGGACCA
61	ATTAGCATTC	CATCAATTTT	ATATCTAGCA	TATTTGCGGT	TAGAATCCCA	TGGATGTTTC
121	TTCTTTGACT	ATAACAAAAT	CTGGGGAGGA	CAAAGGTGAT	TTTCCTGTGT	CCACATCTAA
181	CAAAGTCAAG	ATTCCCGGCT	GGACTTTTGC	AGCTTCCTTC	CAAGTCTTCC	TGACCACCTT
241	GCACTATTGG	ACTTTGGAAG	GAGGTGCCTA	TAGAAAACGA	TTTTGAACAT	ACTTCATCGC
301	AGTGGACTGT	GTCCCTCGGT	GCAGAAACTA	CCAGATTTGA	GGGACGAGGT	CAAGGAGATA
361	TGATAGGCCC	GGAAGTTGCT	GTGCCCCATC	AGCAGCTTGA	CGCGTGGTCA	CAGGACGATT
421	TCACTGACAC	TGCGAACTCT	CAGGACTACC	GTTACCAAGA	GGTTAGGTGA	AGTGGTTTAA
481	ACCAAACGGA	ACTCTTCATC	TTAAACTACA	CGTTGAAAAT	CAACCCAATA	ATTCTGTATT
541	AACTGAATTC	TGAACCTTTC	AGGAGGTACT	GTGAGGAAGA	GCAGGCACCA	GCAGCAGAAT
601	GGGGAATGGA	GAGGTGGGCA	GGGGTTCCAG	CTTCCCTTTG	ATTTTTTGCT	GCAGACTCAT
661	CCTTTTTAAA	TGAGACTTGT	TTTCCCCTCT	CTTTGAGTCA	AGTCAAATAT	GTAGATTGCC
721	TTTGGCAATT	CTTCTTCTCA	AGCACTGACA	CTCATTACCG	TCTGTGATTG	CCATTTCTTC
781	CCAAGGCCAG	TCTGAACCTG	AGGTTGCTTT	ATCCTAAAAG	TTTTAACCTC	AGGTTCCAAA
841	TTCAGTAAAT	TTTGGAAACA	GTACAGCTAT	TTCTCATCAA	TTCTCTATCA	TGTTGAAGTC
901	AAATTTGGAT	TTTCCACCAA	ATTCTGAATT	TGTAGACATA	CTTGTACGCT	CACTTGCCCC
961	AGATGCCTCC	TCTGTCCTCA	TTCTTCTCTC	CCACACAAGC	AGTCTTTTTC	TACAGCCAGT
1021	AAGGCAGCTC	TGTCGTGGTA	GCAGATGGTC	CCATTATTCT	AGGGTCTTAC	TCTTTGTATG
1081	ATGAAAAGAA	TGTGTTATGA	ATCGGTGCTG	TCAGCCCTGC	TGTCAGACCT	TCTTCCACAG
1141	CAAATGAGAT	GTATGCCCAA	AGACGGTAGA	ATTAAAGAAG	AGTAAAATGG	CTGTTGAAGC
1201	АААААААА	AAAAA				

H5-24 DNA sequence (SEQ ID NO:16)

1	GTCGACCCAC	GCGTCCG CGC	CTGCAGAAGG	TTGACTGCGT	GGTAGGGGGC	CCAGAGCAAG
61	CCGAAGGCAA	GCACGATGGC	GCTCACCAGC	CGGCCCACCC	GCGCCCCGTG	CCGCCCGGAG
121	CCCCAGCGGG	CGCCCGCAG	CCGTGCCAGC	GTCACGCTGT	AGCAGCCGAG	CATCAGCCCG
181	AAAGGAAGCA	CGAAAGCGGT	GGCGGTAGAC	GGCGGCCGGG	ACGGCGAGCA	ACAGGGCGGC
241	CAGCCAGACC	GCCAGCAGCA	GGCGGCGGC	CAGGGCCGGG	CTGCGCAGCC	GAGGCGCCAG
301	GAAGGGGCGG	GTGACTGCGA	GGCAGCGCTG	CAGGCTGAGC	AGGCCGGTGA	GCAGCACGCT
361	GGCGTACATG	CTGAGCGCGC	ACACGTAGTA	CACCGCCTTG	CAGCCGCCT	GGCCCAGCGG
421	CCAGGCCTGC	CGGGTCAGGA	AGGCCACAAA	GAGCGGCGTG	AGCAGCAGCA	CCGCGCCGTC
481	GGCCAGCGCC	AGGTGCAGCA	CAAGCGTGGC	CGCCAGCGGT	CGCCCCGTG	CAGGCCGCCA
541	GCCCGCCAAG	CTCCACACCA	CGAAGCCGTT	GCCAGGCAGC	CCCAGCAGCG	CCGCCAGCAG
		GTGCCTGTGG				
		CAGACCGACA				
		CCTACAAGGA				
		TGAGAGTCTC				
		CACAGCGCAC				
		TCTCTGTCAC				
		ACTGCAGCAG				
		AAGGAGGAAG				
		GGAAGGAACT				
		CAGGTCAGTA				
		ACCCCAGCGA				
		TGCCACCCGC				
		AACCCTGGTG				
		GGAGGATGAC				
		TGGAGTGCTG				
		ATTCACCTTT				
		AGCCACATTC				
		AGTACTCAGG				
		GCTGGGAATT				
		GGGCCGCCTC ACCCACTGCA				
		TAACCCACCC				
		CGCCTCACAT				
		TCTAGCCTCC				
		CAGCCTGACT				
		CATACTGATG				
		AAACTAACAA				
	AAAAAAAGGG		MANCALLICC	TUTANANATA	TCAAATATTT	AAAAAAAAA

H5-24 ORF4 Amino Acid sequence (SEQ ID NO:15)

- 1 MEYLSALNPS DLLRSVSNIS SEFGRRVWTS APPPQRPFRV CDHKRTIRKG
- 51 LTAATRQELL AKALETLLLN GVLTLVLEED GTAVDSEDFF QLLEDDTCLM
- 101 VLQSGQSWSP TRSGVLSYGL GRERPKHSKD IARFTFDVYK QNPRDLFGSL
- 151 NVKATFYGLY SMSCDFQGLG PKKVLRELLR WTSTLLQGLG HMLLGISSTL
- 201 RHAVEGAEQW QQKGRLHSY 219

Region 1 of H5-24 Complementary to BLTR2 DNA sequence (SEQ ID NO:17)

18 CGC CTGCAGAAGG TTGACTGCGT GGTAGGGGGC CCAGAGCAAG

61 CCGAAGGCAA GCACGATGGC GCTCACCAGC CGGCCCACCC GCGCCCGGTG CCGCCCGGAG

121 CCCCAGCGGG CGCCCCGCAG CCGTGCCAGC GTCACGCTGT AGCAGCCGAG CATCAGCCCG

181 AAAGGAAGCA CGAAAGCGGT 200

Region 2 of H5-24 Complementary to BLTR2 DNA sequence (SEQ ID NO:18)

		198 GGT	GGCGGTAGAC	GGCGGCCGGG	ACGGCGAGCA	ACAGGGCGGC
241	CAGCCAGACC	GCCAGCAGCA	GGCGGCGGGC	CAGGGCCGGG	CTGCGCAGCC	GAGGCGCCAG
301	GAAGGGGCGG	GTGACTGCGA	GGCAGCGCTG	CAGGCTGAGC	AGGCCGGTGA	GCAGCACGCT
361	GGCGTACATG	CTGAGCGCGC	ACACGTAGTA	CACCGCCTTG	CAGCCCGCCT	GGCCCAGCGG
421	CCAGGCCTGC	CGGGTCAGGA	AGGCCACAAA	GAGCGGCGTG	AGCAGCAGCA	CCGCGCCGTC
481	GGCCAGCGCC	AGGTGCAGCA	CAAGCGTGGC	CGCCAGCGGT	CGCCCCCGTG	CAGGCCGCCA
541	GCCCGCCAAG	CTCCACACCA	CGAAGCCGTT	GCCAGGCAGC	CCCAGCAGCG	CCGCCAGCAG
601	CAGGAAGGCT	GTGCCTGTGG	CCCGCGAAGT	CTTCCAGCTC	AGCAGTGTCT	CGTTCCCTGG
661	GGGACGGTAG	CAGACCGACA	TCCTTCTGGG	CCTACAGG 69	98	

Alignment of SEQ ID NO:17 with DNA sequence complementary to BLTR2 sequence. SEQ ID NO:17 is 100% identical to antisense BLTR2 DNA.

SEQ ID NO:17 18	cgcctgcagaaggttgactgcgtggtagggggcccagagcaagccgaaggcaagcacgat	77
Antisense 2455 BLTR2	cgcctgcagaaggttgactgcgtggtagggggcccagagcaagccgaaggcaagcacgat	2396
SEQ ID NO:17 78	ggcgctcaccagccggcccacccgcgccccgtgccgcccggagccccagcgggcgccccg	137
Antisense 2395 BLTR2	ggcgctcaccagccggcccacccgcgccccgtgccgcccggagccccagcgggcgccccg	2336
SEQ ID NO:17 138	<pre>cagccgtgccagcgtcacgctgtagcagccgagcatcagcccgaaaggaagcacgaaagc</pre>	197
Antisense 2335 BLTR2	cagccgtgccagcgtcacgctgtagcagccgagcatcagcccgaaaggaagcacgaaagc	2276
SEQ ID NO:17 198	ggt 200 	
Antisense 2275 BLTR2	ggt 2273	

Alignment of SEQ ID NO:18 with DNA sequence complementary to BLTR2 sequence. SEQ ID NO:18 is 100% identical to antisense BLTR2 DNA.

SEQ ID NO:18 198	ggtggcggtagacggcgggccgggcggcaacagggcggccagcca	257
Antisense 2195 BLTR2	ggtggcggtagacggcggccgggacggcgagcaacagggcggccagccagccagca	2136
	gcaggeggegggecagggecgggetgegeagecgaggecaggaaggggegggtgaetg	
Antisense 2135 BLTR2	gcaggcggcgggccagggccgggctgcgcagccgaggcgcaggaagggggggg	2076
	cgaggcagcgctgcaggctgagcaggccggttgagcagcacgctggcgtacatgctgagcg	
Antisense 2075 BLTR2	cgaggcagcgctgcaggctgagcaggcggtgagcagcacgctggcgtacatgctgagcg	2016
SEQ ID NO:18 378	cgcacacgtagtacaccgccttgcagcccgcctggcccaggggccaggcctgccgggtca	437
Antisense 2015 BLTR2	cgcacacgtagtacaccgccttgcagcccgcctggcccagcggccaggcctgccgggtca	1956
	ggaaggccacaaagagcggcgtgagcagcagcaccgcgccgtcggccagcgccaggtgca	
Antisense 1955 BLTR2	ggaaggccacaaagagcggcgtgagcagcagcaccgcgccgtcggccagcgccaggtgca	1896
	gcacaagcgtggccgccagcggtcgcccccgtgcaggccgccagcccgccaagctccaca	
Antisense 1895 BLTR2	gcacaagcgtggccgccagcggtcgccccgtgcaggccgccagcccaagctccaca	1836
SEQ ID NO:18 558	ccacgaagccgttgccaggcagcccagcagcgccgccagcagcaggaaggctgtgcctg	617
Antisense 1835 BLTR2	ccacgaagccgttgccaggcagcccagcagcagcagcaggaaggctgtgcctg	1776
SEQ ID NO:18 618	tggcccgcgaagtcttccagctcagcagtgtctcgttccctgggggacggtagcagaccg	677
Antisense 1775 BLTR2	tggcccgcgaagtcttccagctcagcagtgtctcgttccctgggggacggtagcagaccg	1716
SEQ ID NO:18 678	acatccttctgggcctacagg 698	
Antisense 1715 BLTR2	acatcettetgggcetaeagg 1695	