ESTIMATING COASTAL ECOSYSTEM HEALTH THROUGH INDICES

A case study of anthropogenic pressures in Tampa Bay

♣ Arjun Joshi ♣ Brainstation

Capstone Project

Joshi.Arjun.K@Gmail.com

What is an Environmental Index?

- "A composite measure that combines multiple environmental indicators into a single value..."
- " ...typically developed to provide an overall snapshot of some feature"

Example indicator term	n	Associated descriptor terms found throughout the articles included in data extraction
Richness	23	11 species richness, 1 arthropod species richness, 9 richness, 1 taxonomic richness, 1 functional richness
Integrity	21	11 ecological integrity, 1 landscape ecological integrity, 3 environmental integrity, 5 ecosystem integrity
Abundance	18	1 species abundance, 1 abundance biomass comparison ABC curve
Biomass	17	
Diversity	16	2 taxonomic diversity, 1 plant species diversity, 1 functional diversity
Resilience	15	1 resilience to disturbance factors, 1 intrinsic resilience, 1 landscape resilience
Biodiversity	14	
Ecosystem services	14	2 ecosystem service value, 1 ecosystem services demand, 1 ecosystem services supply-demand ratio
Productivity	11	1 vegetation productivity, 4 net primary productivity (NPP), 1 ecosystem functioning productivity, 1 total primary production: biomass, 1 total primary production: respiration
Habitat	9	1 habitat continuity, 1 habitat diversity, 1 habitat fragmentation, 1 habitat function, 1 habitat heterogeneity, 1 habitat provision, 1 habitat specialists, 1 habitat stress, 1 habitat topographic heterogeneity
Stability	9	1 ecological stability, 1 landscape structure stability, 1 vegetation coverage stability, 1 soil food web stability, 1 environmental stability, 1 ecosystem stability
Vulnerability	7	5 ecological vulnerability, 1 landscape vulnerability, 1 ecosystem vulnerability

Source:

Penn, Gillian et al., cabionehealth. 2024.0006, CABI One Health, doi:10.1079/cabionehealth. 2024.0006, CABI, General ecosystem health indicators – A scoping review, (2024)

https://www.cabidiaitallibrary.org/doi/abs/10.1079/cabionehealth.2024.0006

"[The importance of] how terminology descriptors and their use can be understood by [] stakeholders across disciplines, with implications on the dimensions of implicit intrinsic and extrinsic value statements..."

THE PROBLEM SPACE: ENVIRONMENTAL INDICES, LOST IN TRANSLATION

- Purpose of the Study:
- Selection of the optimal or most positively impacting mitigation feature...using[ing] indices of negative environmental impact.
- Originally evaluating performance of models through predictions of diversity (through the Shannon Diversity Index)
- New approach:
 Test along with Shannon Diversity Index as an engineered feature,
 to predict well established, academically vetted peer-reviewed local
- indera Issues
- Existing Information
- Unexpected findings during EDA

REFRAMING, PIVOT

Hypothesis:

There is a statistically significant relationship between a proposed A.P. Index with well established, academically vetted indices of ecosystem health of Tampa Bay.

 Artificial, Harmful Nitrate Concentrations (Associated With Fertilizer)

- Population Growth (Annual change, Total, Region specific)

- Coastal Development
 - Land Sales
 - Annual New Construction
 - Change in Land Use

Transform then standardize data, using weights to adjust for relative Impact of a given feature. This is adjustable to any localized system.

$$A{
m PI}=\omega_1z_1+\omega_2z_2+\cdots+\omega_nz_n$$
 Weighted Sum Model (Aggregate Index)

Residential Construction Emphasis on "waterfront"

ANTHROPOGENIC PRESSURE INDEX

Modelling Approaches

- Linear Regression
- Lasso, Ridge Regression (L1/L2 Regularization)
- SARIMAX
 - Seasonal decomposition
- Recurrent Neural Network
 - Long Short Term Memory ****

First Model: Multivariate Linear Regression.

Score: 0.2523

RNN (LSTM): Predicting TBNI using iterations of API,

Shannon Diversity Index, WQI

Loss, MSE: 0.035,

n = 45,431

Using Train-Test-Validation Datasets

MODELLING APPROACHES & PERFORMANCE

There's a method more readily accessible and understandable to the general population without...having to be a scientist!

- ▶ Complete processing of large dataset
- ▶ Cross-Validation
- ▶ Github Repository
- ▶ Further applications

IMPLICATIONS & NEXT STEPS