Paper critique

The role of direct air capture and negative emissions technologies in the shared socioeconomic pathways towards +1.5 °C and +2 °C futures

(Fuhrman et al. 2021.)

ITM 20235575, Jiseok AHN

Table of contents

IOP Publishing

Environ. Res. Lett. 16 (2021) 114012

https://doi.org/10.1088/1748-9326/ac2db0

ENVIRONMENTAL RESEARCH

LETTERS

OPEN ACCESS

RECEIVED

11 March 2021

8 September 2021

ACCEPTED FOR PUBLICATION

7 October 2021

PUBLISHED 22 October 2021

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

LETTER

The role of direct air capture and negative emissions technologies in the shared socioeconomic pathways towards $+1.5\,^{\circ}\text{C}$ and $+2\,^{\circ}\text{C}$ futures

Jay Fuhrman^{1,2}, Andres Clarens², Katherine Calvin¹, Scott C Doney³, James A Edmonds¹, Patrick O'Rourke¹, Pralit Patel¹, Shreekar Pradhan², William Shobe⁴ and Haewon McJeon^{1,*}

- Joint Global Change Research Institute, University of Maryland and Pacific Northwest National Laboratory, College Park, MD, United States of America
- ² Department of Engineering Systems and Environment, University of Virginia, Charlottesville, VA, United States of America
- ³ Department of Environmental Sciences, University of Virginia, Charlottesville, VA, United States of America
- ⁴ Batten School of Leadership and Public Policy, University of Virginia, Charlottesville, VA, United States of America
- * Author to whom any correspondence should be addressed.

E-mail: hmcjeon@pnnl.gov

Keywords: direct air capture, integrated assessment, climate change

Supplementary material for this article is available online

- 1. Introduction
- 2. Methods
- 3. Results
- 4. Summary of the key findings
- 5. Critique

Introduction

- DACCS as a viable negative emission technology
 - Several forms of **direct air capture with carbon storage** (DACCS) are in development, with different costs and energy inputs, as well as potential for future cost and performance improvements.
 - Recent progress in **DACCS commercialization** suggests it could be a viable means of removing CO2 in the near future.
 - DACCS has the advantage of **lower land intensity** than bioenergy with carbon capture or afforestation but requires **higher energy demands**.

Methods

- Two types of DACCS technology are considered in GCAM 5.4
 - Assess the **high-temperature** DACCS process that uses heat from **natural gas combustion**, **electricity, and water** could contribute to both ambitious near-term and delayed mitigation scenarios that limit end-of century warming to below +1.5 °C.
 - For **low-temperature DACCS**, this study converted the required low-temperature thermal energy to **electricity** by assuming an electric compression **heat pump** plant with a coefficient of performance equal to 3 and accounted for its additional levelized financial input.

Methods

Parametrizations for DACCS technologies

- This paper uses GCAM to understand the role of DACCS across all 5 SSPs for the below 2 °C and below 1.5 °C end-of-century warming goals.
- For parametrizations, generally follow the detailed methodology of **Fasihi et al (2019)**.

Table 1. Parametrizations for DACCS Technologies. Values are assumed to remain constant after 2030.

Technology	Scenario	Natural gas (GJ/tCO ₂)		Electricity (GJ/tCO ₂)		Non-energy cost (2015 \$/tCO ₂)		Water (m³/tCO ₂)	
		2020	2030	2020	2030	2020	2030	2020	2030
High temp.	SSP1—sustainable	8.1	5.3	1.8	1.3	\$296	\$185		4.7
DACCS (natural gas)	development								
	SSP2—middle of		5.3		1.3		\$185		
	the road								
	SSP3—regional		8.1		1.8		\$296		
	rivalry								
	SSP4—inequality		5.3		1.3		\$78		
	SSP5—fossil fueled		5.3		1.3		\$78		
	development								
High temp.	SSP1—sustainable		_	6	5	\$384	\$186		4.7
DACCS (fully	development								
electric)	SSP2—middle of				5		\$186		
	the road								
	SSP3—regional				6		\$384		
	rivalry								
	SSP4—inequality				5		\$101		
	SSP5—fossil fueled				5		\$101		
	development								
Low temp.	SSP1—sustainable		_	5 . 5	2.5	\$402	\$235		_
DACCS (electric	development								
heat pump)	SSP2—middle of				2.5		\$235		
	the road								
	SSP3—regional				3.8		\$402		
	rivalry								
	SSP4—inequality				2.5		\$137		
	SSP5—fossil fueled				2.5		\$137		
	development								

Results

Main results

- DACCS could play up to tens of GtCO2 yr-1 role in many of these scenarios, particularly those with **delayed climate policy** and/or **higher challenges to emissions mitigation**.
- Provides 4 different results for different SSP scenarios and target temperature goals.
 - Positive and negative CO2 emissions by sector
 - Primary energy consumption
 - Global land use
 - Water use

Results

- Positive and negative CO2 emissions by sector

- Primary energy consumption

Results

- Global land use

- Water consumption

Summary of the key findings

Comparative summary

- The SSP1- 1.5 °C -DACCS scenario shows the least overshoot of the +1.5 °C goal.
- DACCS could play a large role in mitigation and reduce the sharpest tradeoffs of land and irrigation-intensive negative emissions deployments.

Table 2. Comparative summary of DACCS and no-DACCS scenarios.

		SSP1		SSP2	SSP4		SSP5	
	Scenario	2 °C	1.5 °C	2 °C	2 °C	1.5 °C	2 °C	1.5 °C
Peak temperature, °C (year of peak)	DACCS	1.89	1.63	2.07	2.15	1.96	2.26	2.12
		(2075)	(2045)	(2060)	(2075)	(2060)	(2075)	(2055)
	No-DACCS	1.87	1.65	2.02	2.03	1.80	2.07	_
		(2075)	(2045)	(2055)	(2070)	(2055)	(2055)	
2050 gross CO ₂ removal	DACCS	9.1	13	10	3.6	8.5	17	27
$(GtCO_2 yr^{-1})$	No-DACCS	8.7	11	12	4.2	8.9	21	_
2050 CCS deployment	DACCS	5.6	8	9.8	5.7	14	15	30
$(GtCO_2 yr^{-1})$	No-DACCS	2.9	6.5	12	7.9	17	21	_
2050 primary energy consumption	DACCS	737	716	834	803	831	1150	1225
$(EJ yr^{-1})$	No-DACCS	735	711	835	783	817	1088	_
2050 water consumption for	DACCS	70	121	151	78	127	144	225
bioenergy + DACCS								
$(km^3 yr^{-1})$	No-DACCS	71	107	182	104	202	236	_
2050 land use for bioenergy crop	DACCS	3.2	4.5	6.5	4.1	5.4	5.3	6.7
cultivation (Mkm ²)	No-DACCS	3.2	4.1	7.4	5.2	8.7	8.4	_
First year of global CO ₂ pricing		2025		2040	2025		2040	
(exogenously assumed)								
Initial CO ₂ emissions price (2020	DACCS	51	110	118	36	58	87	118
\$/tCO ₂)	No-DACCS	53	98	98	56	101	160	_
DAC deployment in 2030	DACCS	3	14	_	90	180	_	_
$(MtCO_2 yr^{-1})$								
DAC deployment in 2050	DACCS	0.01	0.4	0.24	0.68	4.2	4.7	12
$(GtCO_2 yr^{-1})$								
Peak DAC y/y scaling rate after first	DACCS	24%	25%	97%	14%	20%	68%	102%
reference plant								

Summary of the key findings

- Strengthened near-term policy ambition is needed
 - SSP1 scenario is the only one of the below +2 ℃ scenarios that did not temporarily overshoot this warming target, and all scenarios temporarily overshot the +1.5 ℃ target.
 - This highlights the importance of strengthened near-term policy ambition in case negative emissions prove unable to scale up quickly enough to reverse the overshoot of a less ambitious goal.
 - Given the emerging emphasis on DACCS in deep negative emissions scenarios, this study propose that the IAM community more fully integrate DACCS into future SSP scenarios such that opportunities to reduce reliance on future negative emissions can be highlighted.

Critique

- I suggest 3 strengths and 1 weakness of this research as critique
 - Comparative summary allows us to see clearly the main results of the research.
 - The data that support the findings of this study are available online, so **GCAM modeler and** other IAM communities can easily access the configuration of the analysis.
 - Urge people to avoid the risks of delaying mitigation policies and thus further deepening the reliance on large-scale negative emissions, or else failing to meeting the goals of the Paris Agreement.
 - Some figures can be stylistically improved, such as a color scheme for legend properties or using different plots to show what the authors want to point out.

Thank you for listening

For those who wants know more about carbon capture

