

2020 Competition Handbook



# **Revision History**

Please note that only the latest version of this document is considered authoritative. The most recent version is available at <a href="http://mercury.okstate.edu/">http://mercury.okstate.edu/</a>. Major changes to the Handbook will be described on this page.

| Revision | Date          | Notes               |
|----------|---------------|---------------------|
| 0        | July 30, 2019 | Preliminary version |



# Contents

| 1 | Competition Overview       |                                                                                                                                                                                                                                                                                                                                                |  |
|---|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2 | Field<br>2.1<br>2.2<br>2.3 | I       2         Track       2         Obstacles       2         Rough Terrain       2         2.3.1 Tunnel       3                                                                                                                                                                                                                           |  |
|   | 2.4<br>2.5                 | 2.3.2 Bridge                                                                                                                                                                                                                                                                                                                                   |  |
| 3 | The 3.1 3.2 3.3            | Game         Objective       4         3.1.1 The Payload       4         Run Times       4         Scoring       5         3.3.1 Payload Retrieval       5         3.3.2 Payload Control       5         3.3.3 Tunnel       5         3.3.4 Bridge       6         3.3.5 Launch       6         3.3.6 Sprint       6         Penalties       6 |  |
| 4 | <b>The</b> 4.1 4.2 4.3     | Robot         7           General Robot Requirements         7           Safety         7           Communications         7           4.3.1 Loss-of-Signal Test         8                                                                                                                                                                     |  |
| 5 | The 5.1 5.2 5.3 5.4 5.5    | Tournament         9           Registration         9           Practice Runs         9           Documentation         9           5.3.1 Technical Document         10           5.3.2 Video Presentation         10           5.3.3 Robot and Team Picture         10           Judging         10           Awards         11               |  |
| 6 | 6.1                        | endix Important Dates                                                                                                                                                                                                                                                                                                                          |  |



# 1 Competition Overview

The Mercury Remote Robot Challenge is an international, interscholastic competition that involves the design and implementation of a robot that is capable of completing a variety of tasks while under the control of an Operator. Any communication between the robot and Operator must be carried out over the onsite communications channel. Additionally, the Operator may only receive information provided by the robot. This means that any source of information, such as live streaming video, that originates from a source other than the robot and/or does not utilize the onsite communications channel cannot be used as a reference by the Operator.

Each game begins with a five minute setup time followed by ten minutes in which the robot may attempt a maximum of three runs. The robot must follow a predefined path from "Start" to "Finish" and perform the Pickup, Transport and Delivery of the Payload in the allotted time while attempting to avoid striking obstacles. Striking and/or knocking over obstacles will carry penalties. Nothing may be dropped on the course and any robot that is likely to cause damage to persons or property will be deemed ineligible to compete. It is understood that minor damage due to robots bumping the track walls may occur. While the robot must be guided by the actions of the Operator at the remote location, it may utilize onboard intelligence as well.

The Eleventh Mercury Remote Robot Challenge will be held on **April 25, 2020** at the Nobel Research Center located on the Oklahoma State University campus in Stillwater Oklahoma.



# 2 Field

The Field consists of several components; the Track, Pickup and Launch zones, three Obstacles, the Target and the Sprint. A general description of each component follows below. Models and dimensioned drawings of each of the Field's components can be found in the 2019 Track Pack.



Figure 1: Field Overview

#### 2.1 Track

The Track is defined as a 24 inch wide path that is bounded on either side by 3 inch high walls. The walls used at the Competition will be constructed from foam board of the type that is easily obtainable from craft stores; 1/8 inch thick with a matte, white paper surface. The track floor will be short pile carpet.

#### 2.2 Obstacles

The 2020 Competition Track does include paths that bypass most Obstacles. Teams may choose to bypass any or all of the Obstacles during a run. See section 3.4 for details.

# 2.3 Rough Terrain

The Rough Terrain section is a 3 feet wide by 5 feet long area covered with an array of domes aligned in a diagonal grid pattern. The domes are 3D printed plastic with a base diameter of 2 inches and a height of 1/2 inch. There will be walls on the long edges of the section, with bypass paths extending another 24 inches beyond the section walls. This Obstacles tests the durability and agility of the robot.



#### 2.3.1 **Tunnel**

The Tunnel is an L-shaped wooden structure with openings on either end that are 12 inches high by 18 inches wide. The interior is dark. This Obstacle tests the maneuverability of the robot in a confined space with limited visibility.

#### 2.3.2 Bridge

The Bridge is 24 inches wide with a smooth wooden surface and no guard walls. The climb is 30 degrees with 12 inch rise, followed by a 24 inch span and a 30 degree descent. This Obstacle tests the robot's ability to move in a controlled manner on an inclined surface.

# 2.4 Object Identification and Handling

#### 2.5 Obstacle Avoidance

The Obstacle Avoidance section is defined as a 6 feet wide by 8 feet long rectangular area. The Robot must navigate from the start to the finish without contacting walls or obstacles. Obstacles will be 2 inches deep by 4 inches high and of varied length. They will be **bright orange**. There will be at least one path with a minimum of 24 inches between obstacles. This section will be offered in 3 versions of varying autonomy.

• Manual - Known Placement

The Network will remain enabled and the Operator will have full control of the Robot as it navigates the section. If this option is chosen, the section will be laid out as defined below.

• Autonomous - Known Placement

The Network will be disabled and the Operator will lose contact with the Robot. The Robot must be able to navigate the section autonomously. If this option is chosen, the section will be laid out as defined below.

• Autonomous - Unknown Placement

The Network will be disabled and the Operator will lose contact with the Robot. The Robot must be able to navigate the section autonomously. If this option is chosen, the layout of obstacles in the section will be unknown to Teams until after the deadline to submit Robots on the day of the Competition.



# 3 The Game

The order in which robots take the track will be determined by lottery and may be reordered at the discretion of the event organizers.

### 3.1 Objective

The Objective of the Game this year is the controlled retrieval, transport and launch of the Payload to the Target. Teams score points based on their robot's performance in carrying out the Objective and navigating the Field.

#### 3.1.1 The Payload

The Competition Payload will be a ping-pong ball that is approved for use in International Table Tennis Federation (ITTF) sanctioned tournaments and one that appears on the list of ITTF Approved and Authorized Equipment. This criteria will allow teams from different regions to obtain similar results during practice and at the Competition. If a team cannot obtain an ITTF approved ball for practice, then one that is 40 mm in diameter and that has a mass of 2.7 g that is made of either plastic or celluloid is acceptable <sup>1</sup>. The official Payload for use in the Competition will be provided by the event organizers at the venue. Teams will be allowed place the Payload at the location of their choice within the Pickup Zone prior to each run.

#### 3.2 Run Times

Each team will be allowed a maximum of 15 minutes of operating time during the competition. The 15 minutes is divided into two sections; 5 minutes for setup and 10 minutes to run the track. The setup time ends when the robot begins operating. If the team uses more than 5 minutes for setup, it will cut into the 10 minutes of run time.

The teams may attempt up to 3 runs within 10 minute time window. At any time during the 10 minute run time, a team may choose to terminate the run and restart the Track. A team may not restart after starting its third and final run. When the final run is started, it must be completed before the 10 minute window expires. A run in progress will be terminated at the 10 minute mark, and the score for that run recorded at that time.

If a robot cannot complete the track in the allotted time, or if it runs out of time during a run, then "Did Not Finish" (DNF) is recorded along with the score for that run. A DNF score cannot be considered for the purpose of selecting a champion. Additionally, robots that obtain DNF scores will be ranked among themselves in a second, lower category.

If a robot is unable to start a run during the 15 minute operating period, it is recorded as "Did Not Start" (DNS).

In the event that the site communication link fails, the clock may be stopped or reset at the judges' discretion.

<sup>&</sup>lt;sup>1</sup>See Technical Bulletin T3 at https://www.ittf.com/equipment for acceptance testing details.



## 3.3 Scoring

For the score of a particular run to be considered valid for the purpose of selecting a Champion, the robot must perform a complete run of the track.

The score for each run is calculated using the following formula:

$$Score = (P + (60 - T) + B + (50 - C) + L) \cdot (2 - t_{sprint}/50) - (5W + 10R)$$

Values Notes PPayload Capture 0,50 50 if retrieval successful, else 0 CPayload Control Increments with each time robot loses control of the Payload 0,10,20,30,40,50 TTunnel 0,15,30,45,60 Increments with each impact В Bridge 0.50.75 75 if crossing with payload, 50 points without, else 0 LLaunch 0,10,30,40,50 Best of three tries Sprint Time  $0 \le t_{sprint} \le 50$ Time in seconds to complete sprint  $t_{sprint}$ Contact Penalty Number of times the robot touches a wall W $0 \leq W$ RReset Penalty  $0 \le R$ Number of times the Handler resets/touches robot

Table 1: Scoring Variables

#### 3.3.1 Payload Retrieval

The Payload Retrieval is considered successful if the robot is able to retrieve the Payload from the Pickup Zone unaided by the Handler. P is assigned fifty points for a successful pickup. Otherwise no points are awarded. A Reset Penalty is assessed any time the Handler places the Payload in the robot's delivery device.

## 3.3.2 Payload Control

The variable C increments by ten points each time the Payload is not in contact with the floor or the robot loses control of the Payload within the Payload Control Zone. The robot is said to lose Control of the Payload any time it has to interrupt its journey within the Payload Control Zone in order to chase down, recapture or otherwise regain control of the Payload. The hatched area in the figure 2 denotes the Payload Control Zone. Outside of the Payload Control Zone it is not mandatory that the Payload be in contact with the floor while being transported to the Launch Zone.

Figure 2: Payload Control Zone

#### 3.3.3 Tunnel

The variable T is initially zero and increments by fifteen points for each of the first two times the robot makes contact with the Tunnel. Further impacts with the Tunnel do not result in T increasing beyond 30, and do not count as Contact Penalties.



#### 3.3.4 Bridge

If the robot is able to cross the Bridge unaided with the Payload and without falling off, B is assigned seventy five points. Without the Payload fifty points are awarded. In all other cases, no points are awarded. The team can choose to take a Reset Penalty and reattempt the crossing for the full seventy five points should the robot fall off while crossing.

#### 3.3.5 Launch

L is assigned thirty, forty or fifty points depending on which of the Target's openings the Payload is thrown into. Ten points are awarded if the Payload falls within the hatched area in figure 4. Zero points are awarded if the Payload falls anywhere else.

Figure 3: Target Point Values

Figure 4: Ten Point Area

#### **3.3.6** Sprint

Any time the robot has not completed the Sprint, or the time taken to complete the sprint is greater than fifty seconds,  $t_{sprint}$  is assigned a value of 50.

#### 3.4 Penalties

- **Robot Reset** If the Robot Handler has to touch the robot during the run it will result in a score penalty of 10 points and the robot will be put where it left the track or anywhere prior to that point. If any other team member touches the robot during the run, the current run will be disqualified and therefore not scored.
- Excessive Communication If the judge rules that any team member at the competition site is providing directions to the Operator during a run, the team may be issued a warning, penalty or be disqualified depending on the extent of the infraction. The only communications recommended between the Operator and the Robot Handler are "Start when ready" and "Terminate this run?"
- Touching track boundaries If the robot comes into contact with the track walls or crosses over the area above marked track boundaries a penalty of 5 points will be deducted from the final score. The penalty will be assessed each time the robot comes into contact with the boundaries. Extended contact can be assessed multiple penalties if it lasts longer than three seconds and the robot remains in motion. For example, a robot that stops while touching the boundary will only receive one penalty while one that drives while touching the wall might receive a series of penalties at the judge's discretion.
- **Bypassing an Obstacle** To bypass an Obstacle the Robot Handler may pick up the robot at that Obstacle's entry point and place the robot just after the exit point for a Reset Penalty.



### 4 The Robot

#### 4.1 General Robot Requirements

All work on the robot shall be completed by **8:30 AM April 25, 2020**, at which time all competing robots are to be turned off and put on display. Minor adjustments, such as the tightening of screws or the replacement of components that have fallen off, are permissible only during a team's fifteen minute run time.

## 4.2 Safety

We strongly encourage all teams to consider the safety of their fellow participants, the public and the venue when designing their robot. We reserve the right to disqualify any team whose robot is considered to fall short of safety standards. Consider the following:

- Batteries: You may use NiCad, NiMH, SLA batteries or other "safe" batteries. Li-ion batteries
  may be used only if the team can demonstrate that proper charging and low cut-off systems have
  been implemented.
- Rocket motors, Medieval flails, Nuclear devices (that includes both fusion and fission) and any
  components that have a tendency to combust, explode, or jump-start the apocalypse are strictly
  prohibited.

#### 4.3 Communications

The Competition provides an 802.11b/g/n Wi-Fi network on the venue. All communications between the driver and the robot must use this network. The driver must establish a two-way communication with the robot. At the very least, the robot must send a heartbeat signal back to the driver.

The following are the details of the wireless network and regulations of its use during the competition:

- 1. The Competition Wi-Fi network will have the ESSID "MERCURY" and *no security protection*. This ESSID will not be broadcast. Please ensure that your system can connect to a Wi-Fi network without the ESSID broadcast.
- 2. The Wi-Fi router providing this network will have a public IP address that will be disclosed to the team on the day of the Competition.
- 3. Each team is allowed to have at most **three** networked hosts using the Wi-Fi network. For example, an IP camera and a Wi-Fi device will count as two hosts. A Wi-Fi device with a non-IP camera attached only counts as one host (for example, a smartphone providing video feed will only count as one host, but it must use the Wi-Fi network).
- 4. The team will have to provide information about their networked devices on the online registration form. The team may change this information on the form any number of times up until April 10, 20. This information includes a brief description of each device, the MAC addresses, and the ports each device will use if an inbound connection is required.



- 5. The networked devices will have to use DHCP to obtain an IP address. Static IP addresses are not allowed and will result in the team's disqualification if used. IP addresses are assigned based on the MAC addresses of the networked devices provided by the team on the registration form.
- 6. If the team requires an inbound connection to a networked device, the team is allowed to have at most three forwarded ports. The information provided on the registration form will be used and the team will be notified of the external ports assigned to the team a week before the competition.
- 7. During a team's run, only that team's robot and its associated devices will have access to the Wi-Fi network. All other robots and devices that access the Competition router must be completely turned off. Failure to do so will result in the team being issued a warning, a penalty or disqualified.
- 8. A base station to provide non-Wi-Fi wireless link between the robot and the official router is allowed to be used on-site. This wireless link must not use the 802.11 standard. The base station must use the competition Wi-Fi network to gain Internet access and the base station will count towards the three maximum networked devices.
- 9. Independent Wi-Fi repeaters, bridges, ad-hoc Wi-Fi networks, and access points are not allowed. The only 802.11b/g network each device may use is the official wireless network.

#### 4.3.1 Loss-of-Signal Test

The team must pass a "Loss-of-Signal" (LOS) test to be eligible as the Competition champion. Teams will have two opportunities to demonstrate LOS handling: **April 24, 2020** during the evening Practice period and during regular testing the morning of **April 25, 2020**.

The test will be performed as follows:

- 1. The team clearly demonstrates that the driver can control the robot,
- 2. The official router technician will then shut down the router and the robot must be able to clearly indicate that it is now experiencing a loss-of-signal situation and stop,
- 3. After the official router is restarted, the team must be able to demonstrate that the driver can re-establish connection to the robot without the team personnel manipulating the robot. The robot must show that connection is re-established by turning off the Loss-of-Signal indicator, and resume normal operation as in point 1.



### 5 The Tournament

# 5.1 Registration

Registration forms can be found online at <a href="http://mercury.okstate.edu">http://mercury.okstate.edu</a> under the Mercury Challenge tab. Registration information should be submitted no later than **February 28, 2020**. The registration forms provide information that is needed to organize the competition, generate name tags, and for preparing refreshments. Please contact us if you have special dietary needs.

The competition is open to teams of any size though only four members may hold active positions at the competition. The active positions and their responsibilities are:

- Team Leader The team leader is the contact point between the competition organizers and the team. The team leader is encouraged to be at the venue or to have a representative standing in during the day of the competition and may act as the robot handler or a technical assistant.
- Operator During the competition only the Operator may guide the robot. Note that the Operator must be at least 50 miles (80km) away from the competition site at all times during the team's run.
- Robot Handler During the competition only the Robot Handler may touch the robot during a run. Permitted contact includes any technical support or maintenance.
- Technical Assistant During the competition the technical assistant may only handle the robot whenever a "run" is not in progress. The technical assistant is to provide aid with technical issues that may arise with the robot.

Teams are encouraged to come up with a unique team name that will be used for keeping score and for announcements at the competition.

#### 5.2 Practice Runs

Track setup will begin **April 24, 2020 at 5 pm** at the Competition venue. During the setup period teams will be allowed to test their robots on the Track as it is being assembled. The Competition router will also be available for testing. Additionally, robots can undergo LOS testing at this time. Teams are encouraged to contact us ahead of time so that staff is available to assist them when they arrive.

#### 5.3 Documentation

In order to participate in the competition, each team is required to provide a documentation package that is to be submitted via email to okstate.mercury.robotics@gmail.com no later than **March 27, 2020**. This section describes all submission items that comprise the documentation package.



#### 5.3.1 Technical Document

The technical document describes the robot and the design decisions that go into the robot. There is a 10 page limit to this document NOT including appendices. This document will be used by the competition officials to survey the technology and engineering methods used by the team to improve subsequent competitions.

At the minimum, please ensure that the document addresses the following topics:

- A high-level block diagram of the robot
- Communication systems used (TCP or UDP sockets, applications, etc.)
- The main controller used for the robot (single-board computers, Arduino, custom made, etc.)
- Video feedback system (if the robot has it)
- The driver interface of the robot
- The robot's drive configuration (number of motors, wheels, etc.)
- Sensors and other intelligent subsystems used on the robot
- Power subsystem

This document is a factor for the "Best Design" award. Please submit this document in PDF format.

#### 5.3.2 Video Presentation

Each team is required to submit a 2 to 5 minute video for the competition. This video will be used for promotional materials for the competition and will be played during the competition itself for the audience, so please tailor the contents of the video accordingly and ensure that the robot is actually featured! The video is a factor for the "Best Presentation" award. Please upload your team's video to a video hosting service, preferably YouTube or Vimeo, and include a link to it with your documentation package submission.

#### 5.3.3 Robot and Team Picture

Teams are required to submit a reasonably high-resolution picture of the robot (300 dpi) and a smaller picture of the team personnel. These pictures will be featured in promotional materials and miscellaneous items in the competition such as team member badges, posters, displays, etc. The picture must be in JPEG or PNG format. Please submit the picture with your documentation package submission.

# 5.4 Judging

The Jury consists of professors from OSU. The head judge will be responsible for judging the performance of the robot during the competition (penalties, starting time, etc.). The remaining judges will be in charge of scoring the video presentation, the robot design, and interview the participants to determine the winners for Judges' Choice awards. Any subject not considered in this document will be left to the discretion of the Judges.



# 5.5 Awards

The awards will be given to the three highest scores computed during the competition, resulting in the 1st, 2nd, and 3rd place respectively. Other Awards will include: the "Best Presentation" (submitted video presentation), "Best Design" and "Judge's Choice". Note that it is possible for one team to win multiple awards. Awards, except the ones based on the team's score, will be given at the discretion of the Judges. They may base awards on personal preference or by examining the general consensus of teams, volunteers, and spectators.



# 6 Appendix

### 6.1 Important Dates

Please note that the cutoff time for each deadline below is 11:59:59 PM CST.

Registration Deadline February 28, 2020
Documentation Submission Deadline March 27, 2020
Deadline to Update Network Information April 10, 20

Practice, Early LOS Testing April 24, 2020 Competition April 25, 2020

#### 6.2 Contact Information

If you have any questions regarding the information in this document or in relation to the Competition, visit our website at http://mercury.okstate.edu or contact us via email at okstate.mercury.robotics@gmail.com.

We look forward to seeing you at the 2019 Mercury Remote Robot Challenge