August 31, 2020

1. a) 0

Notes

- a) is 0 because (i >> 1 + j >> 1 = i >> 10 >> 1 = 0)
- Bitwise Shift Operators
 - has lower precedence than arithematic operators

Example:

```
i << 2 + 1 means i << (2+1) and not (i << 2) + 1
```

- << : Left Shift
- >> : Right Shift
- Tip: Always shift only on unsigned numbers for portability

Example

->>=/<<=: Are bitwise shift equivalent of +=

b) 0

Notes

- i is 111111111111111
- i is 0000000000000000
- so i & i = 0
- : Bitwise complement (NOT)

a	\sim a
0	1
1	0

Example:

```
1 0 1 1 1 //<- this is 7
2 ------
3 1 0 0 0 //<- this is 8
4
5 so, ~ 7 = 8
```

• &: Bitwise and

a	b	a & b
0	0	0
0	1	1
1	0	0
1	1	1

Example:

- ullet : Bitwise exclusive or
- |: Bitwise inclusive or
- c) 1

Notes

- i is 111111111111110
- j is 000000000000000
- $\bullet\,$ i & j is 0000000000000000 or 1
- i & j ^ k is 1

• ^: Bitwise XOR

a	b	a ^ b
0	0	0
0	1	1
1	0	1
1	1	0

Example:

```
0 1 1 1 //<- this is 7
0 1 0 0 //<- this is 4

3 ------
4 0 0 1 1 //<- this is 3

5 so, 7 ^ 4 = 3
```

d) 0

Example

- i is 000000000000111
- j is 00000000001000
- \bullet i ^ j is 0000000000000000 or 0
- k is 000000000001001
- i ^ j & k is 0000000000000000 or 0

Correct Solution

15

\underline{Notes}

• There is a precendence to the order of operations

e) Notes

• Setting a bit

- Is done using | or OR