TEMASEK POLYTECHNIC SCHOOL OF INFORMATICS & IT AY2018/2019 APRIL SEMESTER TERM 2 SPECIALIST DIPLOMA IN AI SOLUTIONS DEVELOPMENT

MACHINE LEARNING SOLUTIONS DEVELOPMENT (CAI1C02)

Project Report

Full Name	Admin No.	
Lim Yuan Her	1881120H	

Table of Contents

I. In	troduction					
2. So	cope					
2.1	Intents					
2.2	Entities					
2.3	Process flow					
3. St	atus					
3.1	Assumptions					
3.2	Functions					
3.3	improvements / Additional features					
3.4	Problems Encountered/ Challenges					
4. R	eferences4					
5. A	ppendix4					
	List of Tables					
TABLE 1	- Chatbot Functions1					
TABLE 2	2 - CHATBOT FUNCTION/ INTENT MAPPING					
	3 - Chatbot System Entity List					
TABLE 4	4 - Chatbot Developer Entity List					
	Table of Figures					
FIGURE	1 – System Architecture					
	2 – Process Flow					
FIGURE	GLIDE 3 _ CHATROT CLIENT INTEDEACES					

1. Introduction

The report summarizes the design and implementation details of a chatbot client named "AskFM".

This chatbot allows facility managers/ engineers/ technicians to manage the equipment in a building using a chat interface to facilitate maintenance chores e.g. equipment monitoring/ control etc, thus providing a natural language querying interface for the system.

Figure 1 – System Architecture

This chatbot provides the following functions:

s/n	Function	Description		
1	Equipment Status	Check the on/off status of the facility equipment e.g.		
	Monitoring AHU (Air Handling Unit), FCU (Fan Coil unit) etc.			
2	Equipment Control	Turn on/ off the facility equipment		
3	Equipment Scheduling	Schedule when the facility equipment will operate e.g.		
		Daily from 8a.m. to 9p.m.		
4	Thermostat Adjustment	Adjust the thermostat temperature setting for facility equipment in specific location of building		
5	System Health Check	Check for unresolved faults in the facility equipment requiring attention		

Table 1 - Chatbot Functions

2. Scope

2.1 Intents

5 intents were created for each function identified for this chatbot, and are tabled below:

s/n	Function	Intent	Parameters	
1	Equipment	EquipmentStatusCheck	EqptName	Equipment Name
	Status		EqptLocation	Location of equipment
	Monitoring		EqptParam	Equipment info requested

s/n	Function	Intent	Parameters	
				e.g. run/stop status, temperature, humidity
2	Equipment	EquipmentControl	EqptName	Equipment Name
	Control		EqptLocation	Location of equipment
			EqptCommand	Equipment start/stop command
3	Equipment	EquipmentScheduling	EqptName	Equipment Name
	Scheduling		EqptLocation	Location of equipment
			SchStartTime	Start time of equipment
			SchStopTime	Stop time of equipment
			SchFrequency	Scheduling frequency e.g.
				daily, weekly etc.
4	Thermostat	ThermostatAdjustment	EqptName	Equipment Name
	Adjustment		EqptLocation	Location of equipment
			SetTemp	Temperature Setting
5	System Health Check	SystemHealthCheck	EqptName	Equipment Name
			EqptLocation	Location of equipment

Table 2 - Chatbot Function/ Intent Mapping

As can be observed from the table above, EqptName and EqptLocation parameters are used in all the intents. Training phrases are framed in order to solicit either the equipment name or location from the user entry.

2.2 Entities

To extract parameter values from the user, both system and developer entities are used. For direct parameter types e.g. temperature, time etc. system entities are used as listed in the table below:

s/n	Parameter	Entity Type	Typical values
1	EqptName	@sys.any	FCU_L1_01
2	EqptLocation	@sys.any	StarBucks, Let's Eat
3	SchStartTime	@sys.time	9a.m.
4	SchStopTime	@sys.time	10p.m.
5	SetTemp	@sys.temperature	24C

Table 3 - Chatbot System Entity List

For complex value extraction and to accommodate the myriad number of synonyms that map to the specific parameter value requested, developer entities are created as listed in the table below:

s/n	Parameter	Entity Name		Synonyms
1	EqptParam	EqptParam	Status	status, running, stopped,
				start
			Humidity	humid, stuffy
			Temperature	temp, hot, cold
			Schedule	sched, scheduling
2	EqptCommand	EqptCommand	Start	run, on
			Stop	off
3	SchFrequency	ScheduleFrequency	Daily	everyday, every day
			Weekly	every week

s/n	Parameter	Entity Name		Synonyms
			Monthly	Every month, month
			Fortnightly	every 2 weeks, every other
				week
			Weekday	Week day, Mon to Fri
			Weekend	Non-working day,
				nonworking day, Sat and
				Sun

Table 4 - Chatbot Developer Entity List

2.3 Process flow

All the intents provide direct answers to the user questions and do not require followup clarification with the user. The following figure illustrates the typical user interaction with the chatbot:

The facility technician/ engineer can interact with the chatbot via multiple methods (web/ mobile app/ social messaging platform e.g. Slack/ Telegram). The corresponding intent is triggered based on the query sent and the request is fulfilled using an external NodeJS webhook hosted on the Heroku platform. The webhook retrieves/sends the equipment information/commands from/to a cloud database hosted on the Mongo DB Atlas platform. This cloud database interacts with the equipment using an intermediary IoT cloud platform (AWS/ Microsoft Azure) via restful API calls.

3. Status

3.1 Assumptions

The scope of the facility management system is limited only to ACMV devices e.g. AHU (air handling unit), FCU (fan cool unit) to adhere to the submission deadline and timeframes. However, it is envisaged that the system is expandable to accommodate other facility equipment not yet included.

3.2 Functions

All the functions of the chatbot as listed in Table 1 were implemented.

All the listed intents and entities were configured in the DialogFlow platform with fulfilment implemented via a NodeJS webhook hosted on the Heroku platform.

3.3 improvements / Additional features

In addition to the scope and features mentioned in the original proposal, the following additional features were added:

- a) Integration with Telegram social platform in addition to Slack messaging platform.
- b) Mobile App Integration using Ionic/ Cordova.
- c) Implementation of webhook function using NodeJS and web front-end using jade templating engine and hosting on Heroku platform (https://fms-ws.herokuapp.com)
- d) Implementation of backend cloud database using Mongo DB Atlas

3.4 Problems Encountered/ Challenges

- All the intents accept either an equipment name or location as an input parameter
 for the webhook fulfilment to work. However, individual training phrases
 including each of name and location needed to be configured separately e.g.
 "FCU_L1_01 status", "StarBucks status". If only one is configured e.g.
 "FCU_L1_01 status", the user phrase "StarBucks status" will not work.
- For training phrases that include more than one parameter, individual training phrases need to be configured to cater for the different appearance order of the parameter e.g. "status of FCU_L1_01" and "FCU_L1_01 status" (where FCU_L1_01 and status refers to the "EqptName" and "EqptName" parameters respectively).

4. References

- [1] Rohan Kar, Rishin Haldar (2016). Applying Chatbots to the Internet of Things: Opportunities and Architectural Elements. International Journal of Advanced Computer Science and Applications(ijacsa), Volume 7 Issue 11, 2016.
- [2] Creating a NodeJS based Webhook for Intelligent Bots https://chatbotslife.com/creating-a-nodejs-based-webhook-for-intelligent-bots-a91ecbe33402

5. Appendix

Figure 3 - Chatbot Client Interfaces

Web Chatbot Interface

Telegram Messenger Interface

Page 4