

SENSOR DE PROXIMIDAD INFRARROJO FC-51

OKY3127

Productos evaluados por ingenieros calificados

Garantía y seguridad en cada producto

Experiencia de compra en la calidad como sello distintivo

Descripción

El OKY3127 es un sensor de proximidad infrarrojo que basa su principio de funcionamiento en un transmisor y receptor IR para identificar obstáculos delante del sensor en un rango de 2 a 30cm de distancia. El módulo cuenta con un potenciómetro que permite al usuario ajustar el rango de detección.

El sensor cuenta con una respuesta estable con luz ambiente o en completa oscuridad, se puede utilizar con Arduino, Raspberry Pi entre otras tarjetas y microcontroladores que se alimenten en un rango de 3.3VDC a 5VDC.

Modo de funcionamiento

• Cuando el módulo detecta un obstáculo frente a la señal, el led verde enciende a nivel de la placa, mientras que el puerto de salida OUT emite una señal continua de bajo nivel. El módulo puede detectar distancias de 2 a 30 cm, tiene un ángulo de detección de 35°. La distancia de detección se puede ajustar girando el potenciómetro: en el sentido de las agujas del reloj para aumentar la distancia de detección y en sentido contrario para reducirla.

- Los sensores infrarrojos activos detectan la luz reflejada, por lo que la reflectividad y la forma del objetivo son críticas para el rango de detección. La distancia mínima de detección se da con objetos negros y la máxima con objetos blancos. Objetos pequeños con áreas pequeñas se detectan a distancias más cortas, mientras que objetos grandes con áreas grandes se detectan a mayores distancias.
- El puerto de salida OUT se puede conectar directamente al puerto IO de un microcontrolador y puede conducir directamente un relevador de 5V. Conexiones: VCC a VCC, GND a GND, OUT a IO.
- Puede ser alimentado con un voltaje de 3-5V DC. Cuando se enciende, el indicador de encendido rojo se ilumina.

Especificaciones

Parámetro	Descripción
Voltaje de trabajo	3 V~5V
Angulo de cobertura	35°
Rango de detección	2cm~30cm
Consumo de corriente	23mA (3.3V) 43mA (5V)
Circuito de detección	basado en el LM393 y tecnología IR
Led indicador	Alimentación y obstáculos
Sensibilidad	Ajustable
Orificio de montaje	Diámetro 3mm
Dimensiones	31mmx14mm

Definición de los pines

1: VCC (+5VDC) 2: GND (0V)

3: OUT (Salida digital)

Implementación con Arduino

Conectar el pin OUT del módulo al pin digital del Arduino que utilices y por ultimo conectar los pines de VCC a 5v y conectar los GND.

Ejemplo de código para la detección de objetos

```
// Definir el pin del sensor como una constante
const int sensorPin = 9;
void setup() {
  // Inicializar el puerto serie a 9600 baudios
  Serial.begin(9600);
  // Configurar el pin del sensor como entrada
  pinMode(sensorPin, INPUT);
}
void loop() {
  // Variable para almacenar el valor leído del sensor
  int value = 0;
  // Leer el estado digital del pin del sensor
  value = digitalRead(sensorPin);
  // Si el valor leído es HIGH, significa que se ha detectado un obstáculo
  if (value == HIGH) {
    // Imprimir mensaje en el monitor serie
    Serial.println("Detectado obstáculo");
  }
  // Esperar 1 segundo antes de realizar la siguiente lectura
  delay(1000);
}
```

Enlace externo: Usos y aplicaciones del sensor de proximidad

David Portilla - Programación y Electrónica. (2020, 1 octubre). Como USAR el SENSOR INFRARROJO FC-51| Funcionamiento DETECTOR de OBSTÁCULOS infrarrojo con ARDUINO [Vídeo]. YouTube. https://www.youtube.com/watch?v=F-vl-7uNSB8

AG Electrónica SAPI de CV	
República de El Salvador 20 Piso 2, Centro	
Histórico, Centro, 06000 Ciudad de México,	
CDMX	
Teléfono: 55 5130 7210	

Realizó	Adrián Jesús Beltrán Cruz
Revisó	Ing. Jesús Daniel Ibarra Noguez
Fecha	17/06/2024

