Cyclic Polygon

- 1. Suppose ABCD is a quadrilateral with AB = a, BC = b, CD = c, DA = d. Find a formula for the area S of ABCD. (Note: The area depends on the angles at A, B, C and D.)
- 2. Let $a_i > 0$, $i = 1, \dots, k$, $k \ge 3$. Prove that the following conditions are equivalent:
 - a) $2 \max\{a_i : 1 \le i \le k\} < \sum_{i=1}^k a_i$.
 - b) There exists a non-degenerate polygon with sides a_i , $i = 1, \dots, k$.
 - c) There exists a convex polygon with sides a_i , $i = 1, \dots, k$.
 - d) There exists a cyclic convex polygon with sides a_i , $i = 1, \dots, k$.

Moreover, if any of the conditions hold, then, up to permutation of the vertices, there is only one polygon in d), which maximizes the area of a polygon with sides a_i , $i = 1, \dots, k$.

- 3. Let x be the diameter of the circle. Then the center of the circle is inside (or on) P iff the equation $S(x) = \sum_{i=1}^k \sin^{-1}\left(\frac{a_i}{x}\right) = \pi$ has a solution for $x \ge a_1$. Since $S'(x) = \sum_{i=1}^k -\frac{a_i}{x\sqrt{x^2 a_i^2}} < 0$ and $S(x) \to 0$ as $x \to \infty$, the solution exists iff $S(a_1) \ge \pi$ iff $\sum_{i=2}^k \sin^{-1}\left(\frac{a_i}{a_1}\right) \ge \frac{\pi}{2}$.
- 4. Suppose $a_i > 0$, $i = 1, \dots, k$, $k \ge 3$, satisfy the conditions in 2., find an equation connecting the diameter of the circle given in d) and $a_i > 0$, $i = 1, \dots, k$.
- 5. Suppose a_i , $i = 1, \dots, k-1$ are fixed. prove that
 - a) Among all k-sided polygon with k-1 sides equal to a_i , $i=1,\dots,k-1$, there is a unique choice of a_k and a polygon of sides a_i , $i=1,\dots,k$ that maximizes the area.
 - b) The polygon in a) is cyclic with a_k as a diameter.
 - c) The value of a_k is given by the unique solution of the equation $\sum_{i=1}^{k-1} \sin^{-1} \left(\frac{a_i}{x} \right) = \frac{\pi}{2}$.
 - d) The value of a_k does not depend on the order of a_i , $i = 1, \dots, k-1$.
 - e) For $a_1 = 3$, $a_2 = 4$, $a_3 = 12$, find a_4 such that the area of the cyclic polygon with sides a_i , $i = 1, \dots, 4$ is a maximum among all quadrilateral with 3 sides equal to 3, 4 and 12.

Solution

1. Suppose ABCD is a quadrilateral with $AB=a,\ BC=b,\ CD=c,\ DA=d.$ Then the area S of ABCD satisfies

$$S^{2} = \frac{1}{4} \left(a^{2}b^{2} + c^{2}d^{2} - \left(\frac{(a^{2} + b^{2}) - (c^{2} + d^{2})}{2} \right)^{2} \right) - \frac{1}{2}abcd\cos(B + D)$$

Proof Let AC = x. Then, by Cosine Law, we have

$$a^{2} + b^{2} - 2ab\cos B = x^{2} = c^{2} + d^{2} - 2cd\cos D$$

$$\Rightarrow ab\cos B - cd\cos D = \frac{(a^2 + b^2) - (c^2 + d^2)}{2}$$

$$\Rightarrow (ab\cos B - cd\cos D)^2 = \left(\frac{(a^2 + b^2) - (c^2 + d^2)}{2}\right)^2$$

$$\Rightarrow (ab\cos B)^{2} + (cd\cos D)^{2} = \left(\frac{(a^{2} + b^{2}) - (c^{2} + d^{2})}{2}\right)^{2} + 2abcd\cos B\cos D$$

Then

$$S^{2} = \left(\frac{1}{2}ab\sin B + \frac{1}{2}cd\sin D\right)^{2}$$

$$= \frac{1}{4}\left((ab\sin B)^{2} + (cd\sin D)^{2} - 2abcd\sin B\sin D\right)$$

$$= \frac{1}{4}\left((ab)^{2}(1-\cos^{2}B) + (cd)^{2}(1-\cos^{2}D) + 2abcd\sin B\sin D\right)$$

$$= \frac{1}{4}\left((ab)^{2} + (cd)^{2} - \left(\left(\frac{(a^{2}+b^{2}) - (c^{2}+d^{2})}{2}\right)^{2} + 2abcd\cos B\cos D\right) + 2abcd\sin B\sin D\right)$$

$$= \frac{1}{4}\left(a^{2}b^{2} + c^{2}d^{2} - \left(\frac{(a^{2}+b^{2}) - (c^{2}+d^{2})}{2}\right)^{2}\right) - \frac{1}{2}abcd(\cos B\cos D - \sin B\sin D)$$

$$= \frac{1}{4}\left(a^{2}b^{2} + c^{2}d^{2} - \left(\frac{(a^{2}+b^{2}) - (c^{2}+d^{2})}{2}\right)^{2}\right) - \frac{1}{2}abcd\cos(B+D)$$

Note: The angles B and D are measured counterclockwise and inside the quadrilateral. The result holds for both convex and concave quadrilaterals.

2. For fixed a, b, c and d, the quadrilateral attains maximum area when $B + D = 180^{\circ}$, i.e. ABCD is a cyclic quadrilateral.

3. Suppose points $A_1, A_2, \dots, A_k, n \geq 3$, (respectively, A'_1, A'_2, \dots, A'_k) are vertices of a cyclic polygon arranged in the counterclockwise direction on a circle with center C (respectively, C') and radius R (respectively, R') such that $|A_iA_{i+1}| = |A'_iA'_{i+1}|$ for $i = 1, \dots k-1$ and R > R'. Then we have

a.
$$\angle A_i A_{i+1} A_{i+2} > \angle A'_i A'_{i+1} A'_{i+2}$$
 for $i = 1, \dots, k-2$.

b.
$$\angle A_k A_1 A_2 < \angle A'_k A'_1 A'_2$$
.

c.
$$\angle A_{k-1}A_kA_1 > \angle A'_{k-1}A'_kA'_1$$
.

d.
$$|A_k A_1| > |A'_k A'_1|$$
.

Proof. Let $|A_k A_1| = a_1$, $|A'_k A'_1| = a'_1$ and $|A_i A_{i+1}| = a_{i+1} = |A'_i A'_{i+1}|$ for $i = 1, \dots, n-1$.

a. For
$$i = 1, \dots k - 2$$
,

$$\angle A_{i}A_{i+1}A_{i+2} = \angle A_{i}A_{i+1}C + \angle CA_{i+1}A_{i+2}
= \frac{\pi}{2} - \sin^{-1}\left(\frac{a_{i+1}}{2R}\right) + \frac{\pi}{2} - \sin^{-1}\left(\frac{a_{i+2}}{2R}\right)
> \frac{\pi}{2} - \sin^{-1}\left(\frac{a_{i+1}}{2R'}\right) + \frac{\pi}{2} - \sin^{-1}\left(\frac{a_{i+2}}{2R'}\right)
= \angle A_{i}A_{i+1}C + \angle CA_{i+1}A_{i+2}
= \angle A'_{i}A'_{i+1}A'_{i+2}$$

b.

- c. Similar to b.
- d. By induction on k. For k = 3, the result is obvious.

Suppose k > 3. Apply induction assumption on the triangles $A_k A_1 A_2$ and $A'_k A'_1 A'_2$ and cyclic polygons $A_2, \dots A_k$ and $A'_2, \dots A'_k$ we have

$$\angle A_2 A_1 A_k < \angle A_2' A_1' A_k', \ \angle A_3 A_2 A_k < \angle A_3' A_2' A_k' \text{ and } \angle A_3 A_2 A_1 > \angle A_3' A_2' A_1'.$$
 So we have

$$\angle A_k A_2 A_1 = \angle A_3 A_2 A_1 - \angle A_3 A_2 A_k > \angle A_3' A_2' A_1' - \angle A_3' A_2' A_k' = \angle A_k' A_2' A_1'.$$

Since $|A_2A_k| > |A'_2A'_k|$, we have

$$a_1 = \frac{|A_2 A_k|}{\sin \angle A_2 A_1 A_k} \sin \angle A_k A_2 A_1 > \frac{|A_2' A_k'|}{\sin \angle A_2' A_1' A_k'} \sin \angle A_k' A_2' A_1' = a_2'.$$

Let
$$a_i > 0, i = 1, \dots, k, k \ge 3$$
.

- 4. The following conditions are equivalent:
 - a) $2 \max\{a_i : 1 \le i \le k\} < \sum_{i=1}^k a_i$.
 - b) There exists a non-degenerate polygon with sides a_i , $i = 1, \dots, k$.
 - c) There exists a convex polygon with sides a_i , $i = 1, \dots, k$.
 - d) There exists a cyclic convex polygon with sides a_i , $i = 1, \dots, k$.

Moreover, up to permutation of the vertices, there is only one polygon in d) maximizes the area of a polygon with sides a_i , $i = 1, \dots, k$.

Proof: Clearly, $d \Rightarrow c \Rightarrow b \Rightarrow a$. Suppose a) holds. Without loss of generality, we may assume that $a_1 = \max\{a_i : 1 \le i \le k\}$. Choose $2 \le j < k-1$ such that $a_1 + a_2 + \cdots + a_{j-1} < a_j + a_{j+1} + \cdots + a_k$ and $a_1 + (a_2 + \cdots + a_{j-1} + a_j) \ge (a_{j+1} + \cdots + a_k)$. Then we have

$$a_1 < (a_2 + \dots + a_{j-1} + a_j) + (a_{j+1} + \dots + a_k)$$
 (1)

$$a_2 + \dots + a_{j-1} + a_j \leq a_1 + a_2 + \dots + a_{j-1} < a_j + a_{j+1} + \dots + a_k \leq a_1 + (a_{j+1} + \dots + a_k)$$
 (2)

$$a_{j+1} + \dots + a_k \le a_1 + (a_2 + \dots + a_{j-1} + a_j)$$
 (3)

Therefore, we can form a triangle of sides a_1 , $(a_2 + \cdots + a_{j-1} + a_j)$, $(a_{j+1} + \cdots + a_k)$. This triangle is non-degenerate unless $a_2 + \cdots + a_{j-1} + a_j = a_1 + a_{j+1} + \cdots + a_k$ in (2), which implies that $a_1 = a_j$ and $a_2 + \cdots + a_{j-1} = a_{j+1} + \cdots + a_k$. In this case, we can form a rectangle with sides a_1 , $(a_2 + \cdots + a_{j-1})$, a_j , $(a_{j+1} + \cdots + a_k)$. Hence, in all cases, we have a non-degenerate polygon of sides a_i , $i = 1, \dots, k$.

Let P be a polygon that maximizes the area. We are going to prove by induction on k that P is a cyclic polygon.

Suppose the vertices of P are $A_1, A_2, \cdots A_k$ with $\overline{A_i A_{i+1}} = a_i$ for $i = 1, \cdots, k$, $(A_{k+1} = A_1)$.

If k = 3, the result is obvious.

For k = 4, the result follows from 2.

Suppose the result holds for polygons with fewer than k sides, k > 4, then $A_1, A_2, \dots A_{k-1}$ are cyclic and $A_2, \dots A_k$ are cyclic. Since k > 4, $A_1, A_2, \dots A_k$ lie on the circle determined by $A_2, \dots A_{k-1}$. Therefore, P is cyclic.

Uniqueness of the polygon follows from the result in 3.

5. Let x be the diameter of the circle. Then the center of the circle is inside (or on) P iff the equation $S(x) = \sum_{i=1}^k \sin^{-1}\left(\frac{a_i}{x}\right) = \pi$ has a solution for $x \ge a_1$. Since $S'(x) = \sum_{i=1}^k -\frac{a_i}{x\sqrt{x^2 - a_i^2}} < 0$ and

$$S(x) \to 0$$
 as $x \to \infty$, the solution exists iff $S(a_1) \ge \pi$ iff $\sum_{i=2}^k \sin^{-1} \left(\frac{a_i}{a_1} \right) \ge \frac{\pi}{2}$.

- 6. Suppose a_i , $i = 1, \dots, k-1$ are fixed. Then
 - a) Among all k-sided polygon with k-1 sides equal to a_i , $i=1,\dots,k-1$, there is a unique choice of a_k and a polygon of sides a_i , $i=1,\dots,k$ that maximizes the area.
 - b) The polygon in a) is cyclic with a_k as a diameter.
 - c) The value of a_k is given by the unique solution of the equation $\sum_{i=1}^{k-1} \sin^{-1} \left(\frac{a_i}{r} \right) = \frac{\pi}{2}$.
 - d) The value of a_k does not depend on the order of a_i , $i = 1, \dots, k-1$.

Proof: Let P be a polygon that maximizes the area. We are going to prove by induction on k that P is a cyclic polygon, with diameter a_k .

Suppose the vertices of P are $A_1, A_2, \dots A_k$ with $\overline{A_i A_{i+1}} = a_i$ for $i = 1, \dots, k$, with $A_{k+1} = A_1$. For k = 3, the result is obvious.

Suppose the result holds for polygons with number of sides less than k, with k > 3. Then $A_1, A_3, \dots A_k$ is cyclic with diameter $\overline{A_1 A_k}$ and A_1, A_2, A_k is cyclic with diameter $\overline{A_1 A_k}$. Therefore, $A_1, A_2, \dots A_k$ is cyclic with diameter $\overline{A_1 A_k}$. If $x = a_k$, we have

 $S(x) = \sum_{i=1}^{k-1} \sin^{-1}\left(\frac{a_i}{x}\right) = \frac{\pi}{2}$. Clearly, S(x) is defined for $x \ge a = \max\{a_i : 1 \le i \le k-1\}$ and $S(a) > \frac{\pi}{2}$, S(x) is decreasing and $S(x) \to 0$ as $x \to \infty$. Therefore, $S(x) = \frac{\pi}{2}$ for a unique

x and this solution does not depend on the order of a_i .

e) For $a_1 = 3$, $a_2 = 4$, $a_3 = 12$, a_4 is the solution of (See 3. Remark)

$$1 - \frac{3*4}{\sqrt{(x^2 - 3^2)(x^2 - 4^2)}} - \frac{4*12}{\sqrt{(x^2 - 4^2)(x^2 - 12^2)}} - \frac{3*12}{\sqrt{(x^2 - 3^2)(x^2 - 12^2)}} = 0$$

 $\Rightarrow x \approx 13.78039394882347$

7. Remark Let $\theta_{j} = \sin^{-1} t_{j}$. Then $\sin \theta_{j} = t_{j}$ and $\cos \theta_{j} = \sqrt{1 - t_{j}^{2}}$. Let $\theta = \sum_{j=1}^{k} \theta_{j}$. Then, $\cos \theta + \mathbf{i} \sin \theta = \prod_{j=1}^{k} (\cos \theta_{j} + \mathbf{i} \sin \theta_{j})$ $= \sum_{m=0}^{\left[\frac{k}{2}\right]} (-1)^{m} \left(\sum_{1 \leq i_{1} < i_{2} < \cdots i_{2m} \leq k} \prod_{r=1}^{2m} \sin \theta_{i_{r}} \prod_{i_{s} \neq i_{1}, i_{2}, \cdots i_{2m}} \cos \theta_{i_{s}} \right)$ $+ \mathbf{i} \sum_{m=0}^{\left[\frac{k-1}{2}\right]} (-1)^{m} \left(\sum_{1 \leq i_{1} < i_{2} < \cdots i_{2m+1} \leq k} \prod_{r=1}^{2m+1} \sin \theta_{i_{r}} \prod_{i_{s} \neq i_{1}, i_{2}, \cdots i_{2m+1}} \cos \theta_{i_{s}} \right)$ $= \sum_{m=0}^{\left[\frac{k}{2}\right]} (-1)^{m} \left(\sum_{1 \leq i_{1} < i_{2} < \cdots i_{2m} \leq k} \prod_{r=1}^{2m} t_{i_{r}} \prod_{i_{s} \neq i_{1}, i_{2}, \cdots i_{2m}} \sqrt{1 - t_{i_{s}}^{2}} \right)$ $+ \mathbf{i} \sum_{m=0}^{\left[\frac{k-1}{2}\right]} (-1)^{m} \left(\sum_{1 \leq i_{1} < i_{2} < \cdots i_{2m+1} \leq k} \prod_{i_{s} \neq i_{1}, i_{2}, \cdots i_{2m+1}} \prod_{i_{s} \neq i_{1}, i_{2}, \cdots i_{2m+1}} \sqrt{1 - t_{i_{s}}^{2}} \right)$

Therefore, we have

1.
$$\sum_{i=1}^{k} \sin^{-1}\left(\frac{a_{i}}{x}\right) = \pi$$

$$\Leftrightarrow \sum_{m=0}^{\left[\frac{k}{2}\right]} (-1)^{m} \left(\sum_{1 \leq i_{1} < i_{2} < \cdots i_{2m} \leq k} \prod_{r=1}^{2m} \left(\frac{a_{i_{r}}}{x}\right) \prod_{i_{s} \neq i_{1}, i_{2}, \cdots i_{2m}} \sqrt{1 - \left(\frac{a_{i_{s}}}{x}\right)^{2}}\right) = -1$$

$$\Leftrightarrow \prod_{i=1}^{k} \frac{x}{\sqrt{x^{2} - a_{i}^{2}}} + \sum_{m=0}^{\left[\frac{k}{2}\right]} (-1)^{m} \left(\sum_{1 \leq i_{1} < i_{2} < \cdots i_{2m} \leq k} \prod_{r=1}^{2m} \frac{a_{i_{r}}}{\sqrt{x^{2} - a_{i_{r}}^{2}}}\right) = 0$$

$$2. \sum_{i=2}^{k} \sin^{-1}\left(\frac{a_{i}}{x}\right) = \sin^{-1}\left(\frac{a_{1}}{x}\right)$$

$$\Leftrightarrow \sum_{m=0}^{\left[\frac{k-1}{2}\right]} (-1)^{m} \left(\sum_{2 \le i_{1} < i_{2} < \cdots : i_{2m} \le k} \prod_{r=1}^{2m} \left(\frac{a_{i_{r}}}{x}\right) \prod_{i_{s} \ne i_{1}, i_{2}, \cdots : i_{2m}} \sqrt{1 - \left(\frac{a_{i_{s}}}{x}\right)^{2}}\right) = \sqrt{1 - \left(\frac{a_{1}}{x}\right)^{2}}$$

$$\Leftrightarrow \sum_{m=0}^{\left[\frac{k-1}{2}\right]} (-1)^{m} \left(\sum_{2 \le i_{1} < i_{2} < \cdots : i_{2m} \le k} \prod_{r=1}^{2m} \frac{a_{i_{r}}}{\sqrt{x^{2} - a_{i_{r}}^{2}}}\right) = \frac{\sqrt{x^{2} - a_{1}^{2}}}{\prod_{i=2}^{k} \sqrt{x^{2} - a_{i}^{2}}}$$

3.
$$\sum_{i=1}^{k-1} \sin^{-1}\left(\frac{a_{i}}{x}\right) = \frac{\pi}{2}$$

$$\Leftrightarrow \sum_{m=0}^{\left[\frac{k-1}{2}\right]} (-1)^{m} \left(\sum_{1 \leq i_{1} < i_{2} < \cdots i_{2m} \leq k-1} \prod_{r=1}^{2m} \left(\frac{a_{i_{r}}}{x}\right) \prod_{i_{s} \neq i_{1}, i_{2}, \cdots i_{2m}} \sqrt{1 - \left(\frac{a_{i_{s}}}{x}\right)^{2}} \right) = 0$$

$$\Leftrightarrow \sum_{m=0}^{\left[\frac{k-1}{2}\right]} (-1)^{m} \left(\sum_{1 \leq i_{1} < i_{2} < \cdots i_{2m} \leq k-1} \prod_{r=1}^{2m} \frac{a_{i_{r}}}{\sqrt{x^{2} - a_{i_{r}}^{2}}} \right) = 0$$