Numerical Linear Algebra

Sheet 1 — MT24

Norms and SVD, up to lecture 4 (solutions for Sections A,C)

Questions are split into three sections: Section A (basic, not marked, solutions provided): 1–3. Section B (will be marked): 4–8. Section C (new, solutions provided): 9.

1. Show that $||x||_{\infty} = \max_{i} |x_{i}|$ satisfies the axioms for a vector norm.

Solution: Verify the three properties required satisfied by a vector norm:

- 1) positivity: $\max_i |x_i| \ge 0$, $\max_i |x_i| = 0 \iff x = 0$ by properties of $|\cdot|$;
- 2) scaling: $|\alpha x_i| = |\alpha||x_i| \implies \max_i |\alpha x_i| = |\alpha| \max_i |x_i|$;
- 3) triangle inequality: $|x_i + y_i| \le |x_i| + |y_i| \implies \max_i |x_i + y_i| \le \max_i |x_i| + \max_i |y_i|$.

Thus $\|\cdot\|_{\infty}$ is a vector norm.

2. Show that if ||x|| is a vector norm then $\sup_{x} \frac{||Ax||}{||x||}$ satisfies the axioms for a matrix norm. Further show that

$$||AB|| \le ||A|| \, ||B||.$$

(Solution:) Suppose $\|\cdot\|$ is some vector norm. Verify the three requirements for matrix norms:

- 1) positivity: $||x|| \ge 0 \,\forall x \implies ||Ax|| \ge 0 \,\forall x$, so $||Ax||/||x|| \ge 0$ for $x \ne 0$; If ||A|| = 0 then $||Ax|| = 0 \,\forall x \implies Ax = 0 \,\forall x \implies A = 0$. Clearly ||0|| = 0.
- 2) scaling: $\|\alpha x\| = |\alpha| \|x\| \implies \|(\alpha A)x\| = |\alpha| \|Ax\|$, so $\|(\alpha A)x\|/\|x\| = |\alpha| \|Ax\|/\|x\| \, \forall x$;
- 3) triangle inequality: $||x+y|| \le ||x|| + ||y|| \implies ||A(x+y)|| \le ||Ax|| + ||Ay||$, so $\sup_x ||(A+B)x||/||x|| \le \sup_x ||Ax||/||x|| + \sup_x ||Bx||/||x||$.

Now, to show $||AB|| \le ||A|| \, ||B||$. The result is trivial if B = 0, thus

$$||AB|| = \sup_{x \neq 0} \frac{||ABx||}{||x||} = \sup_{Bx \neq 0} \frac{||ABx||}{||x||} = \sup_{Bx \neq 0} \frac{||ABx||}{||Bx||} \frac{||Bx||}{||x||}.$$

3. By considering the individual columns a_j of A and b_j of B = QA, show that

$$||QA||_{F} = ||A||_{F}$$

if Q is an orthogonal matrix.

(Solution:) Suppose $A \in \mathbb{R}^{m \times n}$ and let $Q \in \mathbb{R}^{m \times m}$ be orthogonal. Recall that $||Qx||_2 = ||x||_2$ since $||Qx||_2^2 = (Qx)^{\mathrm{T}}(Qx) = x^{\mathrm{T}}Q^{\mathrm{T}}Qx = x^{\mathrm{T}}x = ||x||_2^2$.

Partition $A \in \mathbb{R}^{m \times n}$ by columns, $A = [a_1 \ a_2 \ \cdots \ a_n]$, where $a_j \in \mathbb{R}^m$. Then we can write the Frobenius norm of A using dot products:

$$||A||_{\mathrm{F}}^2 = \sum_{i=1}^m \sum_{j=1}^n |\alpha_{ij}|^2 = \sum_{j=1}^n a_j^{\mathrm{T}} a_j.$$

Now write $QA = Q[a_1 \ a_2 \ \cdots \ a_n] = [Qa_1 \ Qa_2 \ \cdots \ Qa_n]$, and compute

$$||QA||_{\mathrm{F}}^2 = \sum_{j=1}^n (Qa_j)^{\mathrm{T}}(Qa_j) = \sum_{j=1}^n a_j^{\mathrm{T}} Q^{\mathrm{T}} Qa_j = \sum_{j=1}^n a_j^{\mathrm{T}} a_j = ||A||_{\mathrm{F}}^2.$$

(tutors: perhaps discuss what happens when Q is (i) tall-orthonormal (same identity holds), and (ii) fat-orthonormal rows (identity fails).

4. From the definition of the vector 1-norm show that

$$||A||_1 = \max_j \sum_i |a_{ij}|.$$

- 5. Full SVD. Prove the existence of $A=U\begin{bmatrix}\Sigma\\0_{(m-n)\times n}\end{bmatrix}V^*$, where $U\in\mathbb{C}^{m\times m}$ and $V\in\mathbb{C}^{n\times n}$ are unitary matrices i.e., $U^*U=I_m$ and $V^*V=I_n$, and $\Sigma\in\mathbb{R}^{n\times n}$ is diagonal.
- 6. What is the SVD of a normal matrix A, with respect to the eigenvalues and eigenvectors? What if A is (real) symmetric? And unitary?
- 7. If $A \in \mathbb{R}^{n \times n}$ is nonsingular, what is the SVD of A^{-1} in terms of that of A?
- 8. Let B be a square $n \times n$ matrix. Bound the ith singular values of AB using $\sigma_i(A)$ and $\sigma_i(B)$: Specifically, prove that for each i,

$$\sigma_i(A)\sigma_n(B) \le \sigma_i(AB) \le \sigma_i(A)\sigma_1(B).$$

Mathematical Institute, University of Oxford Yuji Nakatsukasa: nakatsukasa@maths.ox.ac.uk 9. (optional; harder) Let $A \in \mathbb{R}^{m \times n}$, $m \ge n$ and $\sigma_1(A) \ge \sigma_2(A) \ge \cdots \ge \sigma_n(A) \ge 0$ be its singular values. Prove that for $k = 1, 2, \ldots, n$,

$$\sum_{i=1}^{k} \sigma_i(A) = \max_{Q^T Q = I_k, W^T W = I_k} \operatorname{trace}(Q^T A W).$$

 $(Q \in \mathbb{R}^{m \times k}, W \in \mathbb{R}^{n \times k} \text{ are orthonormal. Recall for an } k \times k \text{ matrix } B, \text{ trace}(B) = \sum_{i=1}^k B_{ii}; \text{ a useful property is } \text{trace}(CD) = \text{trace}(DC) \text{ as long as } CD \text{ is square.})$

(Solution:) Equality is seen to be attained when $Q = [u_1, u_2, \ldots, u_k], W = [v_1, \ldots, v_k],$ since then $\operatorname{trace}(Q^TAW) = \operatorname{trace}(\operatorname{diag}(\sigma_1(A), \ldots, \sigma_k(A))) = \sum_{i=1}^k \sigma_i(A)$. We need to prove this is an upper bound for $\operatorname{trace}(Q^TAW)$. First note that $\sigma_i(AB) \leq \sigma_i(A) \|B\|$ holds for any A, B s.t. AB is defined (e.g. via Courant-Fisher). Now since Q, W are orthonormal, $\sigma_i(Q) = \sigma_i(W) = 1$ for all $i = 1, \ldots, k$. We thus have $\sigma_i(Q^TAW) \leq \sigma_i(A)$ for all i. We are thus done if we prove $\operatorname{trace}(B) \leq \sum_{i=1}^k \sigma_i(B)$ for any $k \times k$ matrix B. Let $B = U_B \Sigma_B V_B^T$ be the SVD. Then $\operatorname{trace}(B) = \operatorname{trace}(U_B \Sigma_B V_B^T) = \operatorname{trace}(\Sigma_B V_B^T U_B) = \sum_{i=1}^k \sigma_i(B)(V_B^T U_B)_{ii} \leq \sum_{i=1}^k \sigma_i$, because $V_B^T U_B$ is orthogonal and so its entries are bounded by 1 in absolute value.

Mathematical Institute, University of Oxford Yuji Nakatsukasa: nakatsukasa@maths.ox.ac.uk