Unit 1 Physical Quantities and Measurements

1.1 Calculate the number of second in a (a) day (b) week(c) month and state your answers using SI prefixes.Given Data

(a)
$$t = 1 \, day$$

(b)
$$t = 1 week$$

(c)
$$t = 1 month$$

To Find

No. of seconds in SI prefixes = ?

Solution

(a)
$$t = 1 \, day$$

$$t = 1 \times 24 \times 60 \times 60 \, s$$

$$t = 86400 \, s$$

$$t = 8.64 \times 10^4 \, s$$

$$t = 86.4 \times 10^{-1} \times 10^4 \, s$$

$$t = 86.4 \times 10^{-1+4} \, s$$

$$t = 86.4 \times 10^3 \, s$$

$$t = 86.4 \, ks$$

$$\therefore k = 10^3$$

(b)
$$t = 1 \text{ week}$$

$$t = 1 \times 7 \times 24 \times 60 \times 60 \text{ s}$$

$$t = 604800 \text{ s}$$

$$t = 6.048 \times 10^5 \text{ s}$$

$$t = 604.8 \times 10^{-2} \times 10^5 \text{ s}$$

$$t = 604.8 \times 10^{-2+5} \text{ s}$$

$$t = 604.8 \times 10^3 \text{ s}$$

$$t = 604.8 \text{ ks} \qquad \because k = 10^3$$

(c)
$$t = 1 month$$

 $t = 1 \times 30 \times 24 \times 60 \times 60 s$
 $t = 2592000 s$
 $t = 2.592 \times 10^6 s$
 $t = 2.592 Ms$ $\therefore M = 10^6 M$

1.2 State the answers of problem 1.1 in scientific notation.

Given Data

- (a) 86.4 ks
- **(b)** 604.8 ks
- (c) 2.592 *Ms*

To Find

Answers in scientific notation =?

Solution

(a)
$$86.4 ks$$

$$= 86.4 \times 10^{3} s$$

$$= 8.64 \times 10^{1} \times 10^{3} s$$

$$= 8.64 \times 10^{1+3} s$$

$$= 8.64 \times 10^{4} s$$
(b)
$$604.8 ks$$

$$= 604.8 \times 10^{3} s$$

$$= 6.048 \times 10^{2} \times 10^{3} s$$

$$= 6.048 \times 10^{2+3} s$$

(c)
$$2.592 Ms$$

= $2.592 \times 10^6 s$

1.3 Solve the following addition or subtraction. State your answers in scientific notation.

(a)
$$4 \times 10^{-4} kg + 3 \times 10^{-5} kg$$

(b)
$$5.4 \times 10^{-6} m - 3.2 \times 10^{-5} m$$

Given Data

(a)
$$4 \times 10^{-4} kg + 3 \times 10^{-5} kg$$

(b)
$$5.4 \times 10^{-6} m - 3.2 \times 10^{-5} m$$

To Find

Answers in scientific notation =?

Solution

(a)
$$4 \times 10^{-4} kg + 3 \times 10^{-5} kg$$

$$= 4 \times 10^{-4} kg + 0.3 \times 10^{1} \times 10^{-5} kg$$

$$= 4 \times 10^{-4} kg + 0.3 \times 10^{1-5} kg$$

$$= 4 \times 10^{-4} kg + 0.3 \times 10^{-4} kg$$

$$= 4 \times 10^{-4} kg + 0.3 \times 10^{-4} kg$$

$$= (4 + 0.3) \times 10^{-4} kg$$

$$= 4.03 \times 10^{-4} kg$$

$$= 4.03 \times 10^{-6} m - 3.2 \times 10^{-5} m$$

$$= 0.54 \times 10^{1-6} m - 3.2 \times 10^{-5} m$$

$$= 0.54 \times 10^{1-6} m - 3.2 \times 10^{-5} m$$

$$= 0.54 \times 10^{-5} m - 3.2 \times 10^{-5} m$$

 $= (0.54 - 3.2) \times 10^{-5} m$ $= -2.66 \times 10^{-5} m$ 1.4 Solve the following multiplication or division. State your answers in scientific notation.

(a)
$$(5 \times 10^4~m) \times (3 \times 10^{-2}~m)$$

(b) $\frac{6 \times 10^8~kg}{3 \times 10^4~m^3}$

Given Data

(a)
$$(5 \times 10^4 m) \times (3 \times 10^{-2} m)$$

(b)
$$\frac{6 \times 10^8 \ kg}{3 \times 10^4 \ m^3}$$

To Find

Answers in scientific notation =?

Solution

(a)
$$(5 \times 10^{4} m) \times (3 \times 10^{-2} m)$$

$$= 5 \times 3 \times 10^{4-2} m^{2}$$

$$= 15 \times 10^{2} m^{2}$$

$$= 1.5 \times 10^{1} \times 10^{2} m^{2}$$

$$= 1.5 \times 10^{1+2} m^{2}$$

$$= 1.5 \times 10^{3} m^{2}$$
(b)
$$\frac{6 \times 10^{8} kg}{3 \times 10^{4} m^{3}}$$

$$= \frac{6}{3} \times 10^{8-4} kgm^{-3}$$

$$= 2.0 \times 10^{4} kgm^{-3}$$

1.5 Calculate the following and state your answer in scientific notation. $\frac{\left(3\times10^2~kg\right)\times(4.0~km)}{5\times10^2~s^2}$

Given Data

$$\frac{(3 \times 10^2 \ kg) \times (4.0 \ km)}{5 \times 10^2 \ s^2}$$

To Find

Answers in scientific notation =?

Solution

$$= \frac{(3 \times 10^2 \ kg) \times (4.0 \ km)}{5 \times 10^2 \ s^2}$$
$$= \frac{(3 \times 10^2 \ kg) \times (4.0 \times 10^3 \ m)}{5 \times 10^2 \ s^2}$$

 $= 6.048 \times 10^5 \, s$

Mobile: 03338114798

$$= \frac{3 \times 4.0}{5} \times 10^{2+3-2} kgms^{-2}$$
$$= 2.4 \times 10^{3} kgms^{-2}$$

1.6 State the number of significant digits in each measurement. (a) 0.0045 m (b) 2.047 m (c) 3.40 m(d) $3.420 \times 10^4 m$

Given Data

- (a) 0.0045 m
- **(b)** 2.047 *m*
- (c) 3.40 m
- (d) $3.420 \times 10^4 m$

To Find

 $Significant\ digits = ?$

Solution

- (a) 0.0045 m **2** (Significant digits) **4** (Significant digits) **(b)** 2.047 *m* **3** (Significant digits) (c) 3.40 m (d) $3.420 \times 10^4 m$ 4 (Significant digits)
- 1.7 Write in scientific notation: (a) 0.0035 m(b) 206. $4 \times 10^2 m$

Given Data

- (a) 0.0035 m
- **(b)** $206.4 \times 10^2 m$

To Find

Answers in scientific notation =?

Solution

(a)
$$0.0035 m$$

 $= 3.5 \times 10^{-3} m$
(b) $206.4 \times 10^2 m$
 $= 2.064 \times 10^2 \times 10^2 m$
 $= 2.064 \times 10^{2+2} m$
 $= 2.064 \times 10^4 m$

1.8 Write using correct prefixes: (a) $5.0 \times$ $580 \times 10^2 \ g$ (c) $45 \times 10^{-4} \ s$

Given Data

- (a) $5.0 \times 10^4 \ cm$
- **(b)** $580 \times 10^2 g$
- (c) $45 \times 10^{-4} s$

To Find

 $Correct\ prefixes = ?$

Solution

(a)
$$5.0 \times 10^{4} cm$$

 $= 5.0 \times 10^{4} \times 10^{-2} m$
 $= 5.0 \times 10^{2} m$
 $= 0.5 \times 10^{1} \times 10^{2} m$
 $= 0.5 \times 10^{1+2} m$
 $= 0.5 \times 10^{3} m$
 $= 0.5 km$ (kilometer)
(b) $580 \times 10^{2} g$
 $= 58.0 \times 10^{1} \times 10^{2} g$
 $= 58.0 \times 10^{1+2} g$
 $= 58.0 \times 10^{3} g$
 $= 58.0 \times 10^{3} g$
 $= 58.0 \times 10^{3} g$
 $= 58.0 \times 10^{1} \times 10^{-4} s$
 $= 4.5 \times 10^{1-4} s$
 $= 4.5 \times 10^{1-4} s$
 $= 4.5 \times 10^{-3} s$
 $= 4.5 ms$ (millisecond

1.9 Light year is a unit of distance used in Astronomy. It is the distance covered by light in one year. Taking the speed of light as $3.0 \times 10^8 \, ms^{-1}$, calculate the distance.

Given Data

Speed of light =
$$c = 3.0 \times 10^8 ms^{-1}$$

 $Time = t = 1 \ year$
 $t = 1 \times 365 \times 24 \times 60 \times 60 \ s$
 $t = 31536000 \ s$
 $t = 3.1536 \times 10^7 \ s$

To Find

 $Distance\ covered = S = ?$

Solution

By using formula of distance

$$S = vt$$

 $S = ct$ $\because c = v$
 $S = (3.0 \times 10^8)(3.1536 \times 10^7)$
 $S = 9.5 \times 10^{15} m$

1.10 Express the density of mercury given as 13.6 gcm^{-3} in kgm^{-3}

Given Data

Density of mercury = 13.6 gcm^{-3}

To Find

Density of mercury in $kgm^{-3} = ?$

Solution

$$13.6 \ gcm^{-3}$$

$$= 13.6 \times \frac{1 \text{ g}}{1 \text{ cm}^3}$$

$$= 13.6 \times \frac{10^{-3} kg}{10^{-6} m^3} : 1 g = 10^{-3} kg \& 1 cm^3 = 10^{-6} m^3$$

$$= 13.6 \times 10^{-3+6} \, kgm^{-3}$$

$$= 13.6 \times 10^3 \ kgm^{-3}$$

$$= 1.36 \times 10^{1} \times 10^{3} \; kgm^{-3}$$

$$= 1.36 \times 10^{1+3} \ kgm^{-3}$$

$$= 1.36 \times 10^4 \, kgm^{-3}$$

(millisecond)