"编译原理"考试试卷 (A卷)

考试方式	闭卷	考试日期	2023	考试时间	
专业班级		- 学号		- _ 姓 名	

题号	_	11	111	四	五	六	七	八	九	总分	核对人
分值	10	10	15	15	15	15	5	5	10	100	
得分											

分 数	
评卷人	

一、简答(10分)

1. 请阐述什么是编译器,以及编译器在我国基础软件发展中的重要作用。 (5分)

2. 请解释什么是编译器的前端和后端,以及这样设计有什么好处。(5分)

分 数	
评卷人	

- 二、文法与语言(10分)
 - 1. 给定文法 G[S]:
 - S → Aab

 $A \rightarrow Aab \mid B$

B → a

请指出该文法类型(乔姆斯基分类),并给出该文法所描述的语言。(4分)

- 2. 给定文法 G[S]:
- $S \rightarrow A$
- $A \rightarrow A+A \mid B++$
- $B \rightarrow y$
- (1) 证明 y+++y++是文法的句子。(1分)
- (2) 画出句子的语法推导树。(2分)
- (3) 指出这个句子中的短语,直接(简单)短语和句柄。(3分)

答内容不得超过

三、词法分析(15分)

1. 给定正规式 a(a|b)*b,构造其相应的 NFA(5分)

2. 请将如下 NFA 转换成 DFA (6分)

3. 请用分割法将如下 DFA 最小化 (4分)

分 数	
评卷人	

四、自顶向下的语法分析(15分)

考虑文法 G ({∨, ∧, ¬, (,), i }, {S, X, Y, E}, {S}, P), 其中产生式 集合 P 由下列产生式构成:

 $S \rightarrow S \lor X \mid X$

 $X \rightarrow X \land Y \mid Y$

 $Y \rightarrow \neg E \mid E$

 $E \rightarrow (S) | i$

(1) 判断文法 G[S]是不是 LL(1) 文法,并说明理由;如果不是 LL(1) 文法,写出与该文法等价的 LL(1) 文法 G1[S]。

(2) 构造 G1[S]的 LL(1)分析表。

分 数 评卷人

五、LR 分析(15 分)

说明下面的文法 G[E]:

 $E \rightarrow Fa \mid bFc \mid Gc \mid bGa$

 $F \rightarrow d$

G→d

是 LR(1)的, 但不是 LALR(1)的。

分 数 评卷人

六、语法制导的翻译模式及中间代码生成(15分)。

下面是某语言文法的部分产生式及相应的 L-翻译模式片断:

 $S \rightarrow id'='A';' \{ S.code := A.code || gen(id.place'='A.place) \}$

 $S \rightarrow \text{'while'} '(' \{ E.true := newlabel; E.false := S.next \} E ')' \{ S_1.next := newlabel \} S_1$

 $\{ S.code := gen(S_1.next ':') || E.code || gen(E.true ':') || S_1.code || gen('goto' S_1.next) \}$

 $S \rightarrow 'if' '(' \{ E.true := newlabel; E.false := newlabel \} E ')'$

 $\{S_1.next := S.next\}S_1 \ 'else' \{S_2.next := S.next\}S_2$

{ S.code := E.code|| gen(E.true ':') || S1.code|| gen('goto' S.next)

|| gen(E.false ':') || S2.code}

A → id {A.place := id.place; A.code := "" }

 $A \rightarrow A_1 '-' A_2$

{ A.place := newtemp; A.code := A₁.code || A₂.code || gen (A.place '=' A₁.place '-' A₂.place) }

 $E \rightarrow id_1 \text{ rop } id_2$

{ E.code := gen ('if' id1.place rop.op id2.place 'goto' E.true) || gen ('goto' E. false) }

注: S代表语句, id代表标识符, A代表算术表达式, E代表布尔表达式, rop代表关系比较运算符(如'!=', '>'等)。

语义属性说明:

id. place: 对应id的存储位置;

A. place: 用来存放A的值的存储位置

A. code | E. code : 对A | E求值的三地址代码序列;

E. true和E. false分别表示布尔表达式为真和假时,程序要跳转到的位置,即标号。

S. code: 对应于 S 的三地址代码序列;

S. next:表示 S 之后要执行的首条 TAC 语句的标号。

语义函数/过程说明:

gen(): 生成一条三地址代码;

newtemp: 在符号表中新建一个从未使用过的名字,并返回该名字的存储位置:

||: 是三地址代码序列之间的链接运算;

newlabel 返回一个新的语句标号。

(1) 根据题设给出的文法画出语句 S:

while (a != b) if (a>b) a = a - b; else b = b - a;

的语法分析树: (5分)

- (2) 根据题设给出的翻译模式, 计算语法树各结点的继承属性值,设语句 S 的 next 属性值为 'L0', newlabel 返回的第一个标号为 L1, newtemp 返回的第一个临时变量名为 t1。语法树中相同的符号请用下标以示区别,如: S 的产生式右部的 S 分别用 S_1 , S_2 等区分, S_1 的产生式右部的 S 用 S_{11} , S_{12} 等区别。如果语法树有足够空间,你也可以将继承属性及其值标注在语法树上(4分)
- (3) 根据题设给出的翻译模式,将语句 S 翻译成三地址代码序列。(6分)

分 数 评卷人

七、运行时存储组织(5分)。 有 c 语言的程序如下:

```
#include <stdio.h>
int bonus = 52;
int f(int n) {
    int a[n]; //定义变长数组
    int s = 0:
    if (n != 0) {
        for (int i = 0; i < n; i++) {
           a[i] = i;
           s = s + i;
       }
    }
    /* 断点1 */
    return s;
}
int main() {
    int sum;
    unsigned int size;
    scanf("%d", &size);
    sum = f(size);
    return sum + bonus;
}
```

该程序在 X86_64 机器上经某编译器(未开启任何优化选项)编译成 32 位目标代码后运行,并在运行时输入 4 作为 size 的值。设栈帧结构如下图所示(栈从高地址向低地址增长):

实际参数	▮高地址
返回地址	
控制链(前 ebp)	
局部变量区	低地址
动态数组区	\

int 型变量占 4 个字节,目标代码 32 位,故 指针或地址亦为 4 字节, 字符占 1 个字节。 下表记录了一次实际运行时存储分配的部分情况,请在下表空白的地方填写当程序运行至"断点1"时,静态数据区和函数 f 的栈帧的主要内容(符号/含义及值),填写时请参考已填写部分的格式,阴影部分不需要填写。

地址	内容	备注
0xffffd248	控制链(前 ebp)	main
		的栈
0xffffd240	sum(未赋值)	帧
0xffffd23c	size=4	1995
0xffffd230		
0xffffd22c	返回地址=0x804922d	
0xffffd228	控制链=0xffffd248	
0xffffd21c	s=6	
0xffffd218		f 的
0xffffd214	a 的首地址=0xffffd200	栈帧
0xffffd20c		
0xffffd208		
0xffffd204		
0xffffd200		
		堆区
		静态
0x804c01c		数据
		X
		代码
		区

(注: 填写内容包括变量 bonus, 函数 f 的参数,数组 a 和变量 i 的位置和对应存储单元的十进制值.)

解

分 数 评卷人

八、数据流图(5分)。

有如下基本块与流图(B₁为入口基本块, B₅为出口基本块):

- (1) 请根据到达-定值数据流方程,迭代求解每个基本块入口和出口的定值点集合。将 Gen[B], Ki11[B], 以及 in[B]和 out[B]迭代结束的值直接填写在表中, 假设 IN[B₁]= Ø。(3分)
- (2) 给出该流图中,变量 i 在引用点 8 的 UD 链。(1分)
- (3) 给出该流图中,变量 m 在定值点 3 的 DU 链。(1分)

り线	基本块 B	Gen[B]	Kill[B]	In[B]	Out[B]
= 1	B_1			Ø	
	B ₂				
1	B ₃				
-	B ₄				
	B ₅				

分 数	
评卷人	

九、中间代码优化(10分)。

右图为三地址代码片断(代码片断结束时只有r 是活跃的):

- (1) 请将该三地址代码片断划分为基本块,并画出其流图。(3分)
- (2) 对(1)得出的基本块进行常量传播、删除公共子表达式、复写传播、删除死代码等优化;简述优化过程,给出优化后的代码序列。(3分)
- (3) 找出流图中的循环,对循环进行不变计算代码外提、归纳变量强度削弱、删除基本归纳变量等优化,简述优化过程,画出优化后流图。(4分);

1: i = 12: r = 03: if i < 10 goto 5 4: goto 18 5: p = 16: t1 = a + 47: t2 = 4 * i8: t3 = t1[t2]9: t4 = b + 410: t5 = 4 * i11: t6 = t4[t5]12: t7 = t3 * t613: t8 = r + t714: r = t815: t9 = i + p16: i = t917: goto 3 18: return r