Aliah University

End-Semester (autumn) Examination - 2021

(2nd Year 3rd Semester BTech, CSE[Regular & Supplementary])

Paper Name: Discrete Mathematics Full Marks: 80
Paper Code: MATUGBS04 (Regular + Supplementary) / Time: 3 Hrs

aper	· Code:	MATUGBS04 (Regular + Supplementary) /	Time: 3 Hrs
		MA 237 (Supplementary)	
		Group – A	(10X1=10)
1.	Fill in the blanks with appropriate answer —		
	a)	All graphs are regular.	
	b)	Every is a Lattice.	
		A relation which is not reflexive is called as Irreflexive relation. ((True/False)
	d)	Degree of any vertex in a cyclic graph is	
		Consider a simple graph G with k components. If each component then maximum number of edges in G is	at has $n_1, n_2, \dots n_k$ vertices,
	f)	A graph with Chromatic number 2 is a for sure.	
	g)	Every regular graph is Euler graph. (True/Flase)	
	h)	Let \varnothing be an empty set and P (\varnothing) be a power set of \varnothing then the can	rdinality of P (P (P (\varnothing))) is
	i)	If a simple graph G with n vertices is isomorphic to its complen (n-1) must be multiple of	nent G', then value of n or
	j)	Consider the binary relations R and S on non-empty set A. Bo Then RUS is also reflexive. (True/False)	oth R and S are reflexive.
		Group – B	
		(Answer any 6 questions)	(6X5=30)
2.	Find number of spanning trees in $K_{3,4}$. Find the vertex cover and edge cover for the same graph. Is a planar graph?		
3.	Find the sum of degrees of all the vertices in any wheel graph of order 'n' (W_n) ?		
4.	How many "Hamiltonian-cycles" possible for complete graph of order 5?		
5.	How many one-to-one and onto functions are possible for functions from set A to set B, where $ A =m$ and $ B =n$?		
6.	For a relation defined as $R:A \rightarrow A$, where $ A =11$. How many reflexive, not reflexive, symmetric and anti-symmetric relations possible?		
7.	Insert values given below (in the order) and form the binary search tree(BST) – Values are (in order): 12, 21, 17, 7, 20, 3, 35, 32, 9 and 78. Delete 21 then mention the height of new BST.		
0	****		

8. Which of these Hasse diagrams is/are not Lattice?

Group - C (Answer any 4 questions)

(10X4=40)

9.

- a) Prove "There are at-least 2 non-cut vertices in every non-trivial connected graph".
- b) Prove "No edge of a cycle is bridge".
- c) Find out cut-vertices and bridges in the graph given below -

3+3+4=10

- 10. When a graph will be called as a "planar" graph? Generate the below mentioned equations (to decide planarity of a graph) with the conditions and give one example of each (here e size and n order of graph –
 2+4+4=10
 - a) e <= 3n-6
 - b) $e \le 2n-4$

11.

a) Let P(x): x is perfect

F(x): x is your friend

Write the following statements in symbolic form – (use quantifiers)

- I. No-one is perfect.
- II. All of your friends are perfect.
- III. None of your friends are perfect.
- b) Mention these equations are tautology or not. (Don't use truth table)

I.
$$((P \rightarrow R) \land (Q \rightarrow R)) \rightarrow ((P \land Q) \rightarrow R)$$

II.
$$((P \rightarrow Q) \land (P \rightarrow R)) \rightarrow (P \rightarrow (Q \land R))$$

1+2+2+2.5+2.5=10

12. Consider the graph given to answer the questions below -

4+3+3=10

- a) Find Chromatic Polynomial and mention chromatic number (x number of colors are given for coloring).
- b) Define Euler graph. Is it Euler graph? Give reason for your answer.
- c) Define Hamiltonian graph. Is it Hamiltonian graph? Give reason for your answer.
- **13.** Consider the set $D_{40} = \{1, 2, 4, 5, 8, 10, 20, 40\}$ and the relation divides (/) make a Po-set = $(D_{40}, /)$.
 - a) Draw the Hasse Diagram of the Po-set.
 - b) Find Upper Bound and Lower bound of {8, 10} and mention GLB and LUB.
 - c) Find join and meet for {4, 5}.
 - d) Is it a Lattice? If yes, then is it Complementary Lattice?

4+2+2+2=10