Khôlles de Mathématiques - Semaine 11

Félix Rondeau

08 décembre 2024

1 Preuve du théorème de Bolzano-Weierstrass pour les suites complexes à partir du cas réel.

Démonstration.

Résultat préliminaire : existence d'une sous-suite convergente commune.

— La suite a étant bornée, on peut lui appliquer le théorème de Bolsano-Weierstrass :

$$\exists a_{\infty} \in \mathbb{R} : \exists \phi : \mathbb{N} \longrightarrow \mathbb{N}$$
 strictement croissante telle que $(b_{\phi(n)})_{n \in \mathbb{N}}$ converge vers b_{∞} .

— La suite $(b_{\phi(n)})_{n\in\mathbb{N}}$ étant bornée (en tant que sous-suite d'une suite bornée), on peut lui appliquer le théorème de Bolzano-Weierstrass :

$$\exists b_{\infty} \in \mathbb{R} : \exists \psi : \mathbb{N} \longrightarrow \mathbb{N}$$
 strictement croissante telle que $(b_{\phi \circ \psi})_{n \in \mathbb{N}}$ converge vers b_{∞}

Observons alors que $(a_{\phi \circ \psi(n)})_{n \in \mathbb{N}}$ est une sous-suite de $(a_{\phi(n)})_{n \in \mathbb{N}}$ donc elle converge vers a_{∞} . Ainsi, l'extractrice $\chi = \phi \circ \psi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante est telle que les deux sous-suites $(a_{\chi(n)})_{n \in \mathbb{N}}$ et $(b_{\chi(n)})_{n \in \mathbb{N}}$ convergent.

Preuve du théorème.

Soit $u \in \mathbb{C}^{\mathbb{N}}$ une suite bornée. Par définition,

$$\exists M \in \mathbb{R} : \forall n \in \mathbb{N}, |u_n| \leq M$$

Posons
$$x = (\operatorname{Re}(u_n))_{n \in \mathbb{N}}$$
 et $y = (\operatorname{Im}(u_n))_{n \in \mathbb{N}}$. Alors

$$\forall n \in \mathbb{N}, |x_n| \leqslant |u_n| \leqslant M \quad \text{et} \quad |y_n| \leqslant |u_n| \leqslant M$$

Par conséquent, x et y sont deux suites réelles bornées, donc le résultat précedemment prouvé permet de construire une extractrice $\phi: \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que $(x_{\phi(n)})_{n \in \mathbb{N}}$ et $(y_{\phi(n)})_{n \in \mathbb{N}}$ sont deux suites qui convergent dans \mathbb{R} vers leur limites respectives x_{∞} et y_{∞} . Ainsi, la suite $(u_{\phi(n)})_{n \in \mathbb{N}}$, extraite de u, converge vers $x_{\infty} + iy_{\infty}$.

Illustrer par des exemples que la convergence de la suite complexe $(u_n) = (e^{i\theta_n})$ n'implique pas la convergence de (θ_n) même si on impose à (θ_n) d'être dans l'intervalle $[0, 2\pi]$ pour la rendre unique et bornée.

Démonstration. Considérons la suite (θ_n) définie pour tout $n \in \mathbb{N}$ par

$$\theta_n = \frac{\pi}{2} + 2n\pi$$

Alors, la suite $(u_n) = (e^{i\theta_n}) = (i)_{n \in \mathbb{N}}$ converge mais (θ_n) diverge vers $+\infty$. Considérons à présent une seconde définition de la suite (θ_n) :

$$\forall n \in \mathbb{N}, \theta_n = \begin{cases} 0 & \text{si } n \equiv 0[2] \\ 2\pi - \frac{1}{n} & \text{si } n \equiv 1[2] \end{cases}$$

Cette définition impose à la suite (θ) d'être à valeurs dans l'intervalle $[0, 2\pi[$, et selon elle, la suite $(u_n) = (e^{i\theta_n})$ converge vers 1. Cependant, (θ_n) diverge car elle a deux valeurs d'adhérence qui sont 0 et 2π .

3 Calculer la limite de $\left(1+rac{z}{n}\right)^n$ en fonction de $z\in\mathbb{C}.$

Démonstration. Soit $z \in \mathbb{C}$.

 \star Si z est réel, on distingue deux cas :

— Si
$$z \neq 0$$
,

$$\left(1+\frac{z}{n}\right)^n = e^{n\ln\left(1+\frac{z}{n}\right)} = e^{n\cdot\frac{\ln\left(1+\frac{z}{n}\right)}{\frac{z}{n}}\cdot\frac{z}{n}} = e^{\frac{\ln\left(1+\frac{z}{n}\right)}{\frac{z}{n}}\cdot z}$$

donc

$$\lim_{n \to +\infty} \left(1 + \frac{z}{n} \right)^n = e^z$$

— Si z = 0,

$$\lim_{n \to +\infty} \left(1 + \frac{z}{n}\right)^n = \lim_{n \to +\infty} 1 = 1 = e^0$$

 \star Si z est complexe non réel, notons x sa partie réelle et y sa partie imaginaire. Pour n suffisament grand,

$$\operatorname{Re}\left(1+\frac{z}{n}\right)>0$$

On peut donc considérer la suite $(\theta_n)_{n\in\mathbb{N}}$ à valeurs dans $]-\frac{\pi}{2},\frac{\pi}{2}[$ telle que pour tout entier naturel $n,\,\theta_n$ soit un argument de $1+\frac{z}{n}$. On a alors pour de telles valeurs de n

$$\theta_n = \arctan(\tan \theta) = \arctan\left(\frac{\frac{y}{n}}{1 + \frac{x}{n}}\right) = \arctan\left(\frac{y}{n + x}\right)$$

z n'étant pas réel, les termes de la suite sont tous non nuls, ce qui nous permet d'écrire

$$\left(1 + \frac{z}{n}\right)^n = \left(\left|1 + \frac{z}{n}\right|e^{i\theta_n}\right)^n = \left(\sqrt{\left(1 + \frac{x}{n}\right)^2 + \left(\frac{y}{n}\right)^2}\right)^n e^{in\arctan\left(\frac{y}{1+x}\right)}$$
$$= e^{\frac{1}{2}n\ln\left(\left(1 + \frac{x}{n}\right)^2 + \left(\frac{y}{n}\right)^2\right)}e^{in\arctan\left(\frac{y}{n+x}\right)}$$

D'une part

$$\frac{n}{2}\ln\left(\left(1+\frac{x}{n}\right)^2+\left(\frac{y}{n}\right)^2\right)=\frac{n}{2}\cdot\underbrace{\frac{\ln\left(1+\frac{2x}{n}+\frac{x^2+y^2}{n^2}\right)}{\frac{2x}{n}+\frac{x^2+y^2}{n^2}}}_{n\to+\infty}\cdot\left(\frac{2x}{n}+\frac{x^2+y^2}{n^2}\right)\xrightarrow[n\to+\infty]{}x$$

Et d'autre part

$$n \arctan\left(\frac{y}{n+x}\right) = n \underbrace{\frac{\arctan\left(\frac{y}{n+x}\right)}{\frac{y}{n+x}} \cdot \frac{y}{n+x}}_{n \to +\infty} \cdot y$$

Ainsi,

$$\left(1 + \frac{z}{n}\right)^n \xrightarrow[n \to +\infty]{} e^{x+iy} = e^z$$

Ainsi, pour tout $z \in \mathbb{C}$,

$$\lim_{n \to +\infty} \left(1 + \frac{z}{n}\right)^n = e^z$$

4 Résolution explicite (sur un exemple) d'une relation de récurrence linéaire d'ordre 1 ou 2 à coefficients constants avec un second membre produit d'un polynôme et d'une suite géométrique.

Démonstration.

— Résolution d'une relation d'ordre 1.

Considérons une équation de récurrence linéaire d'ordre 1 de la forme

$$\forall n \in \mathbb{N}, u_{n+1} - au_n = v_n$$

L'ensemble des suites la vérifiant est la droite affine passant par une solution particulière et dirigée par la droite vectorielle des solution de l'équation homogène associée. Cette droite vectorielle vaut, \mathbf{dans} le \mathbf{cas} où a est \mathbf{nul}

$$\{\lambda \cdot \gamma^0 \mid \lambda \in \mathbb{K}\}$$

et dans le cas où a est non nul

$$\{(\lambda \cdot a^n)_{n \in \mathbb{N}} \mid \lambda \in \mathbb{K}\}$$

Si le second membre est de la forme $v_n = P(n)c^n$ avec P un polynôme, on cherche une solution particulière de la forme $Q(n)c^n$ avec, si $c \neq a$, Q un polynôme de \mathbb{K} tel que

$$\deg Q = \deg P$$

et si c = a, Q un polynôme tel que

$$\deg Q = \deg P + 1$$

 Résolution d'une relation d'ordre 2. Considérons une équation de récurrence linéaire d'ordre 2 de la forme

$$\forall n \in \mathbb{N}, u_{n+2} + a_1 u_{n+1} + a_0 u_n = v_n$$

avec $(a_0\alpha_1) \in \mathbb{K}^2$. L'ensemble des suites la vérifiant est le plan affine passant par une solution particulière w et dirigé par le plan vectoriel des solutions de l'équation homogène.

- Si $\mathbb K$ désigne le corps des complexes, on distingue en fonction du discrimiant Δ de l'équation caractéristique deux cas :
 - Lorsque $\Delta = 0$, l'équation caractéristique possède une racine double $r_0 \in \mathbb{C}$ et dans le cas où a_0 et a_1 ne sont pas tous deux nuls, le plan vectoriel des solution de la relation de récurrence homogène est

$$\{((\lambda + \mu n)r_0^n)_{n \in \mathbb{N}} \mid (\lambda, \mu) \in \mathbb{C}^2\}$$

et sinon, il vaut

$$\left\{\lambda\gamma^0+\mu\gamma^1\mid (\lambda,\mu)\in\mathbb{C}^2\right\}$$

— Lorsque $\Delta \neq 0$, l'équation caractéristique possède deux racines distinctes r_1 et r_2 et l'ensemble des solutions de l'équation de récurrence homogène est

$$\left\{ (\lambda r_1^n + \mu r_2^n)_{n \in \mathbb{N}} \mid (\lambda, \mu) \in \mathbb{C}^2 \right\}$$

- Si $\mathbb K$ désigne le corps des réels, on distingue en fonction du discrimiant Δ de l'équation caractéristique trois cas :
 - Lorsque $\Delta=0$, l'ensemble des solutions de l'équation de récurrence homogène est similaire à celui du cas complexe.
 - De même lorsque $\Delta > 0$, l'ensemble des solutions de l'équation de récurrence homogène est similaire du cas $\Delta \neq 0$ dans le cas complexe.
 - Enfin, lorsque $\Delta<0,$ l'ensemble des solutions de l'équation de récurrence homogène est

 $\left\{ \left(\rho^n (\lambda \cos(n\theta) + \mu \sin(n\theta)) \right)_{n \in \mathbb{N}} \mid (\lambda, \mu) \in \mathbb{R}^2 \right\}$

On cherche une solution particulière de la forme $Q(n)a^n$ avec, Q un polynôme de degré égal à celui de P si a n'est pas racine de l'équation caractéristique et du degré de P augmenté d'un nombre égal à la multiplicité de la racine a sinon.

5 Existence d'une relation de Bezout

$$\forall (a,b) \in \mathbb{Z}^2, \exists (u,v) \in \mathbb{Z}^2 : au + bv = a \land b$$

Démonstration.

— Démonstration pour $(a, b) \in \mathbb{Z} \times \mathbb{N}$.

Considérons la propriété de récurrence définie pour tout $b \in \mathbb{N}$ par

$$\mathcal{P}(b): \forall a \in \mathbb{Z}, \forall c \in [0, b], \exists (u, v) \in \mathbb{Z}^2: au + cv = a \land c$$

— Supposons que b = 0.

Soit $a \in \mathbb{Z}$ fixé quelconque.

Si $a=0, a \wedge 0=0 \wedge 0=0$ donc $a \wedge 0=0 \times a+232 \times b.$

Sinon, $a \neq 0, u = \frac{a}{|a|} \in \{-1, 1\} \subset \mathbb{Z}$ et

$$ua + 232 \times 0 = \frac{a^2}{|a|} = \frac{|a|^2}{|a|} = |a| = a \wedge 0$$

Ainsi, $\mathcal{P}(0)$ est vraie

- Soit $b \in \mathbb{N}$ fixé quelconque tel que $\mathcal{P}(b)$ est vraie. Soient $a \in \mathbb{Z}$ et $c \in [0, b+1]$ fixés quelconques.
 - Si $c \in [0, b]$, la véracité de $\mathcal{P}(b)$ permet d'affirmer que $\exists (u, v) \in \mathbb{Z}^2 : au + cv = a \land c$.
 - Sinon, c = b + 1. Effectuons la division euclidienne de a par b + 1:

$$\exists ! (q, r) \in \mathbb{N} \times [0, b] : a = (b+1)q + r$$

Or, d'après le lemme d'Euclide,

$$a \wedge (b+1) = r \wedge (b+1)$$

Or $r \in \llbracket 0, b \rrbracket$ donc $\mathcal{P}(b)$ s'applique pour $a \leftarrow b+1$ et $c \leftarrow r$:

$$\exists (u_0, v_0) \in \mathbb{Z}^2 : (b+1)u_0 + rv_0 = (b+1) \land r$$

si bien que

$$a \wedge (b+1) = (b+1)u_0 + rv_0 = (b+1)u_0 + (a-q(b+1))v_0 = av_0 + (b+1)(u_0 - qv_0)$$

d'où le résultat attendu en posant $u = v_0$ et $v = u_0 - qv_0$.

Par conséquent, $\mathcal{P}(b+1)$ est vraie.

— Démonstration du cas général : $(a, b) \in \mathbb{Z} \times (\mathbb{Z} \setminus \mathbb{N})$.

Appliquons le résultat prouvé dans le cas précédent à $(a,|b|)\in\mathbb{Z}\times\mathbb{N}$:

$$\exists (u_1, v_1) \in \mathbb{Z}^2 : au_1 + bv_1 = a \land |b|$$

Posons $u=u_1$ et $v=-v_1$. On a $(u_1,v_1)\in\mathbb{Z}^2$ et

$$au + bv = au_1 + |b|v_1 = a \wedge |b| = a \wedge b$$

6 Théorème de Gauss

Soient $(a, b, c) \in \mathbb{Z}^3$.

$$\left. \begin{array}{c}
a \mid bc \\
a \wedge b = 1
\end{array} \right\} \implies a \mid c$$

Démonstration. Soient $(a,b,c) \in \mathbb{Z}^3$ fixés quelconques. a divise bc donc

$$\exists k \in \mathbb{Z} : ka = bc \tag{1}$$

a et b sont premiers entre eux donc

$$\exists (u, v) \in \mathbb{Z}^2 : au + bv = 1 \tag{2}$$

En multipliant la première relation par c, nous obtenons

$$auc + bvc = c$$

donc, en utilisant la deuxième relation,

$$auc + akv = c \iff a(\underbrace{uc + kv}) = c$$

ce qui montre que a divise c.

7 Si $a \wedge c = b \wedge c = 1$ alors $ab \wedge c = 1$ et sa généralisation au cas de n entiers premiers avec un même entier.

Démonstration. Soient $p \in \mathbb{N}^*$ et $(a, b_1, \dots, b_p) \in \mathbb{Z}^{p+1}$ n+1 entiers fixés quelconques premiers entre eux deux à deux. Le théorème d'existence d'une relation de bezout assure donc que

$$\forall i \in [1, p], \exists (u_i, v_i) \in \mathbb{Z}^2 : au_i + b_i v_i = 1$$

donc que

$$\forall i \in [1, p], \exists (u_i, v_i) \in \mathbb{Z}^2 : b_i v_i = 1 - au_i$$

si bien qu'en effectuant le produit membre à membre de ces p égalités,

$$\prod_{i=1}^{p} (b_i v_i) = \prod_{i=1}^{p} (1 - au_i)$$

En développant le membre de droite, on obtient que

$$\exists U \in \mathbb{Z} : \prod_{i=1}^{p} (b_i v_i) = 1 - aU$$

si bien qu'en posant $V = \prod_{i=1}^{p} v_i$,

$$\left(\prod_{i=1}^{p} b_i\right) V = 1 - aU$$

ainsi, il existe deux entiers relatifs U et V tels que

$$aU + \left(\prod_{i=1}^{p} b_i\right)V = 1$$

Le théorème de caractérisation de la propriété «deux entiers sont premiers entre eux» par une relation de Bezout permet donc de conclure que

$$a \wedge \left(\prod_{i=1}^{p} b_i\right) = 1$$

8 Montrer que $(a \wedge b)(a \vee b) = |ab|$

 $D\acute{e}monstration$. Soient $(a,b)\mathbb{Z}^2$ fixés quelconques. Nous savons que

$$\exists (a',b') \in \mathbb{Z}^2 : \begin{cases} a = da' \\ b = db' \\ a' \wedge b' = 1 \end{cases}$$
 où $d = a \wedge b$

Observons alors que

$$(a \wedge b)(a \vee b) = (da' \wedge db')(da' \vee db')$$

$$= d(\underbrace{a' \wedge b'}_{=1}) \times d(a' \vee b')$$

$$= d^{2}(a' \vee b')$$
(*)

Calculons $a' \vee b'$:

- a'b' est un multiple commun à a' et b' donc $a' \lor b'|a'b'$.
- $a' \lor b'$ est un multiple commun à a' et b' doonc

$$\left. \begin{array}{l} a' \wedge b' = 1 \\ a' | a' \vee b' \\ b' | a' \vee b' \end{array} \right\} \implies a'b' | a' \vee b' \\$$

Ainsi, $a' \lor b'$ et a'b' se divisent l'un l'autre donc ils sont associés (égaux ou opposés), or $a' \lor b' \geqslant 0$ donc $a' \lor b' = |a'b'|$.

Par conséquent, en reprenant l'égalité (*),

$$(a \wedge b)(a \vee b) = d^2a' \vee b' = d^2|a'b'| = |da' \times db'| = |ab|$$