Math 341: Homework 2

Daniel Ko

Spring 2020

§1 A

Let D be the set of all differentiable functions defined on \mathbb{R} . Note that D is a subset of C because differentiable functions are continuous.

Proof. D is a subspace of C

a. $0 \in D$

Zero vector is defined as f(x) = 0 where $x \in \mathbb{R}$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{0 - 0}{0}$$
$$= 0$$

Because the derivative of f(x) = 0 exists, $0 \in D$

b. $f + g \in D$ where $f, g \in D$

$$(f+g)'(x) = \lim_{h \to 0} \frac{(f(x+h) + g(x+h)) - (f(x) + g(x))}{h}$$
$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$
$$= f'(x) + g'(x)$$

Because the derivative of f + g exists, $f + g \in D$

c. $cf \in D$ where $c \in \mathbb{R}$ and $f \in D$

$$cf'(x) = \lim_{h \to 0} \frac{cf(x+h) - cf(x)}{h}$$
$$= c \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Because the derivative of cf exists, $cf \in D$

 \therefore D is a subspace of C

§2 B

Prove the set of even functions in $F(F_1, F_2)$ and odd functions in $F(F_1, F_2)$ are subspaces of $F(F_1, F_2)$

Proof. Let O be the set of all odd functions in $F(F_1, F_2)$ and E be the set of all even functions in $F(F_1, F_2)$.

a. $0 \in O$ and $0 \in E$ Zero function is defined as g(x) = 0

 $0 \in O$ is odd:

$$g(-x) = 0$$
$$-g(x) = 0$$
$$g(-x) = -g(x)$$

 $0 \in E$ is even:

$$g(x) = 0$$
$$g(-x) = 0$$
$$g(x) = g(-x)$$

b. $X + Y \in O$ where $X, Y \in O$ and $t \in F_1$

$$(X+Y)(-t) = X(-t) + Y(-t) = -X(t) + -Y(t) = -(X+Y)(t)$$
 (X, Y \in O)

 $X + Y \in E$ where $X, Y \in E$ and $t \in F_1$

$$(X+Y)(t) = X(t) + Y(t)$$

$$= X(-t) + Y(-t)$$

$$= (X+Y)(-t)$$

$$(X,Y \in E)$$

c. $cX \in O$ where $c \in F$ and $X \in O$ and $t \in F_1$

$$(cX)(-t) = cX(-t)$$
$$= -cX(t)$$

 $cY \in E$ where $c \in F$ and $Y \in E$ and $t \in F_1$

$$(cY)(t) = cY(t)$$
$$= cY(-t)$$

Therefore, O and E are subspaces of $F(F_1, F_1)$

Math 341: Homework 2

§3 C

$$W_1 = \{(a_1, a_2, \dots, a_n) \in F^n : a_n = 0\}$$

 $W_2 = \{(a_1, a_2, \dots, a_n) \in F^n : a_1 = a_2 = \dots = a_{n-1} = 0\}$
Show $F^n = W_1 \oplus W_2$

Proof. Definition of direct sum is $W_1 \cap W_2 = \{0\}$ and $W_1 + W_2 = F^n$

a.
$$W_1 \cap W_2 = \{0\}$$

Let $v \in W_1, W_2$

$$v = (a_1, a_2, \dots, a_n)$$

$$v \in W_1 \Rightarrow a_n = 0$$

$$v \in W_2 \Rightarrow a_1 = a_2 = \cdots = a_{n-1} = 0$$

 $\therefore v = (0, 0, \cdots, 0) \Rightarrow W_1 \cap W_2 = \{0\}$

b.
$$W_1 + W_2 = F^n$$

Let
$$v \in F^n$$

 $v = (a_1, a_2, \dots, a_n)$
Let $w_1 \in W_1$ and $w_2 \in W_2$
 $w_1 = (a_1, a_2, \dots, a_{n-1}, 0)$
 $w_2 = (0, 0, \dots, a_n)$

 $w_1 + w_2 = (a_1, a_2, \dots, a_n) = v$ Thus, any vector in E^n can be expressed as a sum of ve

Thus, any vector in F^n can be expressed as a sum of vectors in W_1 and W_2 $\therefore W_1 + W_2 = F^n$

$$\therefore F^n = W_1 \oplus W_2$$

§4 D

In $M_{m \times n}(F)$ $W_1 = \{A \in M_{m \times n}(F) : A_{i,j} = 0 \text{ whenever } i > j\}$ $W_2 = \{B \in M_{m \times n}(F) : B_{i,j} = 0 \text{ whenever } i \leq j\}$

Show that $M_{m \times n}(F) = W_1 \oplus W_2$

Proof.

a.
$$W_1 \cap W_2 = \{0\}$$

Let
$$m \in W_1, W_2$$

 $m \in W_1 \Rightarrow m_{i,j} = 0$ whenever $i > j$
 $m \in W_2 \Rightarrow m_{i,j} = 0$ whenever $i \leq j$
Thus, $(\forall i, j)(m_{i,j} = 0)$ which is $\{0\}$
 $\therefore W_1 \cap W_2 = \{0\}$

b.
$$W_1 + W_2 = M_{m \times n}(F)$$

Let
$$q \in M_{mxn}(F)$$

Let $w_1 \in W_1$ and $w_2 \in W_2$
 $w_1 = \{(w_1)_{i,j} = 0 \text{ whenever } i > j\}$
 $w_2 = \{(w_2)_{i,j} = 0 \text{ whenever } i \leq j\}$

 $w_1 + w_2 = \{(w_1)_{i,j} \text{ wherever } i \leq j \text{ and } (w_2)_{i,j} \text{ wherever } i > j\} = q$ Thus, any matrix in $M_{m \times n}(F)$ can be expressed as a sum of matrices in W_1 and W_2 $\therefore W_1 + W_2 = M_{m \times n}(F)$

$$\therefore M_{m \times n}(F) = W_1 \oplus W_2$$

§5 E

Let W be a subspace of a vector space V over a field F.

For any $v \in V$ the set $\{v\} + W = \{v + w : w \in W\}$ is the coset W containing v.

a. Prove that v + W is in the subspace of V if and only if $v \in W$.

Proof.

v + W is in the subspace of $V \Rightarrow v \in W$.

 $0 \in v + W$ because v + W is a subspace.

0 = v + w, $w \in W$

v = -w

 $v \in W$

 $v \in W \Rightarrow v + W$ is in the subspace of V.

a)
$$0 \in v + W$$

 $w \in W$ and let $v = -w$
 $v + w = 0$
Thus, $0 \in v + W$

§6 F

Show that if

$$M_1=egin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}$$
 , $M_2=egin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix}$, $M_3=egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$

then the span of $\{M_1, M_2, M_3\}$ is the set of all symmetric 2x2 matrices.

Proof.

$$Sym(M_{2\times 2}(F)) = \{ m \in M_{2\times 2}(F) : m = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \Leftrightarrow m = m^t \}$$

 $m \in span(\{M_1, M_2, M_3\})$ if $m = c_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + c_3 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, where $c_1, c_2, c_3 \in F$ $= \begin{pmatrix} c_1 & c_3 \\ c_3 & c_2 \end{pmatrix}$ $m^t = \begin{pmatrix} c_1 & c_3 \\ c_3 & c_2 \end{pmatrix}$

$$Sym(M_{2\times 2}(F)) = span(\{M_1, M_2, M_3\})$$