Advanced Data Analytics

Agenda

1. Data (Raw vs Traditional vs Big)

- 2. Data Science
- 3. Data vs Business vs BI
- 4. AI/ML/DL

Data

Raw Data

- may called primary data
- cannot be analysed straight away
- o untouched, accumulated, and stored
- o can be collected in a number of ways:
 - manuale (as surveys: how much you like a product on a scale of 1-10)
 - automatic (as cookies)
- o data preprocessing needs to be performed on raw data to obtain meaningful info
- There are operations that can convert raw data into a more understandable format

Traditional Data & Big Data

o stored in a digital format

o can be used as a base for performing analysis and decision making

- can be divided into:
 - Numerical: easily manipulated (e.g. added) that gives us useful info

• Categorical: hold no numerical value

Raw Data and Relativity

DIKW Pyramid: Data, Information, Knowledge, Wisdom

- o illustrates the process of transforming raw data into actionable insights
- o Flow starts from bottom to up with increasing values such as:
 - hindsight (looking back)
 - foresight (looking forward)
 - insight (looking broad and deep)

- O Data is collected, processed, and analyzed to generate information,
 - information is then used to develop knowledge and wisdom
- Using Analytics techniques, organizations can extract valuable insights from their data and use them to improve their operations, products, and services.

Data

- Dealing with data is the first step
 - when solving a business problem or researching,
 - so it is important to know what you are looking at

Data (Traditional & Big)

- Either Data or Big Data
 - it is your first port of call for business problem-solving,
 - so it is important to know what you are dealing with

365 DataScience Infographic Columns

Each describes a stage of solving business task process

- 1. Working with Traditional Data
- 2. Working with Big Data
- 3. Doing Business Intelligence (BI)

4. Applying Traditional Data Science Techniques

5. Using Machine Learning (ML) Techniques

Traditional Data

- o is structured and stored in databases
- o in the form of tables containing numeric or text values
- o can be managed from one computer

• structured

ID	Name	Age	
001	John	35	
002	Alan	22	

Big Data -1

- o a term reserved for extremely large data
 - not just humongous in terms of volume
- o could be in various format (its variety):
 - structured: SQL databases
 - semi-structured: NoSQL databases, HTML, XML, JSON, . . .

• unstructured: images, audio, video, . . .

Traditional Data vs Big Data - Volume

Big Data

- o needs a whopping amount of memory space,
- typically distributed between many computers
- Its size is measured in TB, PB, EB

Traditional Data vs Big Data - Variety

Big Data

- not just numbers and text
- o implies dealing with images, audio, video, files, and others

Traditional Data vs Big Data - Velocity

Big Data

- o One goal is to make extracting patterns from Big Data as quickly as possible
 - the progress that has been made in this area is remarkable
- Outputs from huge datasets can be retrieved in real-time
 - this means they can be extracted so quickly,
 - so results could be computed immediately after source data has been obtained

Big Data - 2

- o is often characterized with the letter 'V'
- Under different frameworks we may have 3,5,7,11 and even more Vs of Big Data

- The main Vs:
 - volume: amount of data
 - variety: number of data types
 - velocity: speed of data
- Some other Vs:
 - visualization process of representing abstract
 - value represents the business value to be derived from big data
 - veracity (quality) analysis of data is virtually worthless if it's not accurate
 - variability how efficiently it differentiates between noisy or important data

Big Data Note

o not just volume that defines a data set as 'big'

other Vs (characteristics) play an important role as well

Data Science

Data Science - 1

- After gathering and organizing all data,
 - it is time to get your hand dirty with analytics

Data Science Venn Diagram 2.0

Original Image Copyright © 2014 by Steven Geringer, Raleigh NC.

Permission is granted to use, distribute or modify this image, provided that this copyright notice remains intact.

Data Management Evolution (1)

- 1) Mainframe-based Hierarchical Databases became available in the 1960s
 - bringing more formality to the process of managing data
- 2) Relational Databases emerged in the 1970s
 - cemented its place at the center of the data management ecosystem during 1980s
- 3) Data Warehouses conceived late in 1980s
 - early adopters of the concept began deploying data warehouses in the mid-1990s

Data Management Evolution (2)

- 4) Hadoop became available in 2006
 - followed by Spark processing engine and various other big data technologies
- 5) NoSQL Databases started to become available in the same time frame
- 6) Data Lakes
 - have given organizations a broader set of data management choices
- 7) Data Lakehouse concept in 2017 further expanded the options
 - enforce a predefined schema and have data transformation capabilities,
 - allowing semi-structured and unstructured data to be standardized before storage

Why do we stream data?

- Get real-time info in a dashboard or another means
- Make decisions in real-time

- If data comes in late, it's no longer valuable
 - o especially during an emergency
- Example in cybersecurity: New York City Cyber Command
 - 5 or 6 TB on weekdays during peak times & 2 or 3 TB on weekends
 - Security Analysts can access the data in several ways:
 - run queries in the data warehouse
 - use other tools that will provide visualizations of the data
 - Check for example: Splunk Certified Cybersecurity Defense Analyst

Data Science - 2

The infographic divides Data Science into three segments:

- Traditional methods
- ML methods

The infographic divides Data into two segments:

- Traditional Data
- Big Data

Business Intelligence - 1

- 1st step of applying data science
- o is to analyse the past data that we have acquired
- Bl is the discipline we need for this

Business Intelligence - 2

includes all technology-driven tools involved in the proess of analyzing, understanding and reporting available past data

- This would result in having reports or dashboards;
 - which will help in making strategic and tactical business decisions

Example of BI Dashboard

Bl Questions - 1

Bl Questions - 2

- Example: BI means understanding how your sales grew and why:
 - Did competitors lose market share?
 - Was there an increase in the price of your products?
 - Did you sell a mix of more expensive products?
 - Were there more profitable client accounts?
 - How did your profitability margins behave in the same time frame of the previous year?
- Bl is all about:
 - understanding past business performance to improve future performance

Bl answers questions like

What happened?

When did it happen?

O How many units did we sell?

• In which region did we sell the most goods?

B

- BI requires the combination of
 - data skills
 - business knowledge
 - to explain the past performance of the company

BI: Real-life Example

- o BI allows you to adjust your strategy to past data as soon as it is available.
- If done right,
 - BI will help to efficiently manage your shipment logistics and, in turn,

reduce costs and increase profit.

After BI 1

- o Bl is worth the time in the total process
- Bl extracts insights and ideas about business that will
 - help to grow
 - give an edge over competitors, giving added stability
- We want to forecast future sales and profitability, as well as expenses
- Once BI reports and dashboards are complete and presented, it is time to apply:
 - Traditional Methods (Traditional Data Science)
 - or ML Methods
 - to develop an idea of what will happen

After BI 2

- After the dashboard is ready, the Data Science team will use:
 - business analytics or
 - data analytics
 - to develop models that could predict future outcomes

BI can be seen as the preliminary step of Predictive Analytics

Predictive Analytics

There are two branches of Predictive Analytics

1. Traditional Methods: classical statistical methods for forecasting

2. ML Methods

Traditional Methods

Traditional Methods

relate to Traditional Data

- designed prior to the existence of Big Data,
 - where the technology simply wasn't as advanced as it is today
- involve applying statistical approaches to create Predictive Models

- o perfect for forecasting future performance with great accuracy
- there is no denying that these tools are absolutely applicable today

Traditional Methods: Real-life Examples

- The application of traditional methods is extremely broad
- Example 1: Forecasting sales data
 - using time series data to predict a firm's future expected sales
- Example 2: UX
 - plot customer satisfaction and customer revenue
 - to find that each cluster represents a different geographical location

Traditional Methods: Techniques

- o Regression: model used for quantifying causal relationships,
 - among different variables included in the analysis

o Clustering: grouping the data to analyze meaningful patterns

Dowened Al/ML? (1)

- A lot of Data Analytics is backward-looking, nothing wrong with that
 - But instead we're going to use ML to generate forward-looking or predictive insights
- Of course, the point of looking at historical data might be to make those decisions
 - Perhaps a Business Analysts examine data and they suggest new policies or rules
 - Ex: They could suggest that it's possible to raise price of a product in a certain region
 - Now, that Business Analyst is making a predictive insight but is that scalable?

- Can Business Analysts make such a decision for every product in every single region?
- And can they dynamically adjust the price every period?

Dowened Al/ML? (2)

- Here's where the computers get involved:
 - In order to make decisions around predictive insights repeatable, we need ML
 - We need a computer program to derive those insights
 - So ML is about making predictive insights from data, many of them at a time

Data vs Business vs BI

Business Case Studies

- o are real-world experiences of how business people and companies succeed or fail
- examine events that have already happened
- We do not need a dataset to learn from business cases
- We could learn from them and attempt to prevent making a similar mistake in future

Business Case Studies: Example

Ryanair: cost-friendly budget airline that sells tickets so cheap

- travel to less busy airports
 - far from the city
 - outside business hours
 - tries to keep planes for small times on airfields to save on rent
- charges for almost every small addition
- operates only one type of aircraft to speed out ground crew processes

Data Analysts vs Business Analysts vs BI Analysts

Data Analyst common tasks:

- Identifying and sourcing data
- Cleaning and preparing data for analysis
- Analyzing data for patterns and trends
- Visualizing data to make it easier to understand
- Presenting data in such a way that it tells a compelling story
- Working with stakeholders to define a problem or business need

Data Analysts vs Business Analysts vs BI Analysts

Business Analyst common tasks:

- Training and coaching staff in new systems
- Reviewing processes to identify areas for improvement
- Evaluating a company's current functions and IT structures
- Interviewing team members to identify areas for improvement
- o Creating visuals and financial models to support business decisions
- Presenting recommendations/findings to management and other key stakeholders

Data Analysts vs Business Analysts vs BI Analysts

BI Analyst:

- Somewhat of a hybrid between Business Analyst and Data Analysts
- The job of a BI Analyst requires to:
 - 1. understand the essence of a business
 - 2. strengthen that business through the power of data
- They use analysis, modeling, and visualization of:
 - 1. industry trends
 - 2. competitive landscape
 - to help businesses cut losses and increase profits

AI/ML/DL

Al is the theory and development of computer systems able to perform tasks normally requiring human intelligence.

According to the Turing test: **AI** is the machine's ability to exhibit intelligence behavior indistinguishable from that of a human

Artificial Intelligence (AI)

- o AI is a pretty general term that can have a somewhat philosophical interpretation
- We, as humans, have only managed to reach AI through ML
- Data Scientists are interested in:
 - how tools from ML can help improve the accuracy of estimations

ML gives computers the ability to learn without explicit programming.

o In ML, the responsibility is left to the machine

TRADITIONAL PROGRAMMING

- ML is all about creating/implementing algorithms that let machines
 - receive data,
 - perform calculations, and
 - apply statistical analysis
 - to
 - make predictions
 - analyze pattern
 - give recommendations
 - with unprecedented accuracy

MACHINE LEARNING

(a) Traditional method

(b) Machine learning pipeline

ML Types: Supervised Learning

Supervised learning implies the data is already labeled

In supervised learning we are learning from past examples to predict future values.

- Training an algorithm resembles a teacher supervising her students
- Provides feedback every step of the way
- We use labelled data

ML Types: Unsupervised Learning

Unsupervised learning implies the data is not labeled

Unsupervised problems are all about looking at the raw data, and seeing if it naturally falls into groups

- Algorithm trains itself, No teacher to provide feedback
- Algorithm uses unlabelled data

ML Types: Reinforcement learning

- A reward system is introduced
- Every time a student does a task better than it used to in the past
 - they will receive a reward
 - and nothing if the task is not performed better
- Instead of minimizing an error,
 - we maximize a reward

ML: Main Types

Task-driven and identify a goal

Classify data

Is an email spam?

Logistic regression

Predict a number

Shoe sales for the next three months

Linear regression

Unsupervised models

Data-driven and identify a pattern

Identify patterns and clusters

Grouping photos

Cluster

Deep Learning (DL)

Deep learning is a subset of ML

Machine Learning

Supervised learning

Unsupervised learning

Reinforcement learning

Deep learning

Neural Networks

Some studies: Approximately 100 billion neurons in human brain

Artificial Neural Networks (ANNs)

Deep Learning (DL) needs Deep ANN

DL: a modern state-of-the-art approach to ML

- DL leverages the power of Artificial Neural Networks
- o there is a debate on why the algorithms used outperform all conventional methods

Traditional Program vs. ANNs

ANNs & Supervised Learning

ANNs & Semi-supervised Learning

- ANNs can use both Labeled and Unlabeled data
 - This is called Semi-Supervised Learning
- o In Semi-Supervised Learning, a ANN is trained on
 - a small amount of Labeled data and
 - a large amount of Unlabeled data
- Labeled data helps the ANN to learn the basic concepts of the task while

Unlabeled data helps the ANN to generalize to new examples

Notes

Note

o The border between Traditional and ML methods can be considered thin (artificial)

- The mathematics behind both is virtually the same
- Nevertheless, we will use this thin boundary to explain better
 - which techniques are considered classical and
 - which are more complex and unconventional

Questions

Links

https://github.com/FCAI-B/da

References

- 1. https://www.udacity.com/blog/2018/01/4-types-data-science-jobs.html
 - 4 Types of Data Science Jobs
- 2. https://www.coursera.org/articles/data-analyst-vs-business-analyst
 - Data Analyst vs. Business Analyst
- 3. https://learn.365datascience.com/courses/intro-to-data-and-data-science
 - 365 Data Science Introduction to Data and Data Science