On ESG Investing: Heterogeneous Preferences, Information, and Asset Prices
Itay Goldstein, Alexandr Kopytov, Lin Shen,
Haotian Xiang
WP 2022

Alex von Hafften

UW-Madison

April 29, 2022

Main Question

- Environmental, social, and governance (ESG) growing in finance
 - ▶ In 2014, \$6.6 trillion of ESG-related assets under management
 - ▶ In 2020, up to \$17.1 trillion out of \$48.6 trillion total
- Classic paradigm:
 - Financial markets aggregate information about fundamentals
 - ightharpoonup Price informativeness \implies cost of capital \implies allocation of capital
 - Assumes uniform objectives across investors
- Questions:
 - ▶ How do asset prices form when investors value assets differently?
 - ▶ How to interpret asset prices? What info is incorporated in the price?
 - What are the implications of recent trends?

Approach

- A noisy rational expectations equilibrium model à la Hellwig (1980)
- Asset payoff has two risky payoff components:
 - Financial cashflow
 - ESG component
- Two types of risk-averse investors with heterogenous signals:
 - ► Traditional investors (t) care only about financial cashflow
 - ► Green investors (g) care about both components

Main Findings

- Green and traditional investors trade differently based on same info
- Multiple equilibria from feedback loop (with low noise):
 - ▶ Type *i* dominate \implies price is more informative for $i \implies i$ trade more
- Increase in green investor might increase the cost of capital
 - More g investors \implies price comoves more with ESG component \implies price less informative about cash flows and noisier to t investors
- Improved ESG information might indirectly increase cost of capital
 - ▶ All investors benefit directly from better ESG info, but *g* investors more
 - ightharpoonup g investors trade more \implies price less informative to t investors

Outline

- Introduction
- Simplified Model
- Other Findings
- 4 Conclusion and Discussion

Environment - Assets

- Unlimited supply of risk-free asset
 - Payoff and price normalized to one
- Unit supply of risky asset, "stock"
 - ullet $ilde{z}$ is monetary factor in payoff and $ilde{\delta}$ is non-monetary factor in payoff

$$\tilde{z}, \tilde{\delta} \sim_{iid} N(0, \tau^{-1})$$

• Price \tilde{p} is determined by market clearing

Environment - Market Participants

- Rational investors trade on signals and learn from price
 - lacktriangle Traditional $(eta_z^t=1 \text{ and } eta_\delta^t=0)$ and green $(eta_z^g=0 \text{ and } eta_\delta^g=1)$
 - ▶ Mass of each group is $\frac{m}{2}$
 - ▶ Investor i of type j holding d_i^i shares has CARA expected utility

$$E\{-\exp(-\gamma[W_0^i+d_j^i(\tilde{v}_j-\tilde{q}])\}$$

where $\tilde{\textit{v}}_{j}=eta_{\textit{z}}^{j} ilde{\textit{z}}+eta_{\delta}^{j} ilde{\delta}$ is per-unit payoff

► Each investor receives private signals about each factor

$$ilde{s}_{z}^{i} \sim_{\mathit{iid}} \mathsf{N}(ilde{z}, au_{\mathsf{s}}^{-1}), ilde{s}_{\delta}^{i} \sim_{\mathit{iid}} \mathsf{N}(ilde{\delta}, au_{\mathsf{s}}^{-1})$$

- ▶ Define info set $\mathcal{F}_i \equiv \{\tilde{\mathbf{s}}_z^i, \tilde{\mathbf{s}}_\delta^i, \tilde{\mathbf{p}}\}$ of investor i
- Noise traders
 - ▶ Demand is $\tilde{N}(0, \tau_n^{-1})$

Market Clearing

Market clearing

$$\underbrace{\frac{D_t(\tilde{z},\tilde{\delta},\tilde{p})}{\equiv \int_{i\in\mathcal{T}_t} d_t^i(\mathcal{F}_i)di}}_{\equiv \int_{i\in\mathcal{T}_g} d_g^i(\mathcal{F}_i)di} + \tilde{n} = 1$$

Focus on equilibria with linear prices

$$\tilde{p} = p_0 + p_z \tilde{z} + p_\delta \tilde{\delta} + p_n \tilde{n}$$

= $p_0 + p_n (\xi_z \tilde{z} + \xi_\delta \tilde{\delta} + \tilde{n})$

where $\xi_{\it z}\equiv {q_{\it z}\over q_{\it n}}$ and $\xi_{\it \delta}\equiv {q_{\it \delta}\over q_{\it n}}$ is normalized price coefficeint

Trading Intensity

$$d_t(\mathcal{F}) = \frac{1}{\gamma} \frac{E[\tilde{z}|\mathcal{F}] - \tilde{p}}{V[\tilde{z}|\mathcal{F}]}$$

where

$$\begin{split} E[\tilde{z}|\mathcal{F}] &= \underbrace{\tilde{s}_z \frac{\tau_s}{\tau_s + \tau}}_{\text{inference from private signal}} \\ &+ \underbrace{\frac{\xi_z \frac{1}{\tau + \tau_s} [\tilde{p}/p_n - (p_0/p_n + \xi_z \tilde{s}_z \frac{\tau_s}{\tau_s + \tau} + \xi_\delta \tilde{s}_\delta \frac{\tau_s}{\tau_s + \tau})]}_{\text{inference from the price}} \end{split}$$

• \tilde{s}_{δ} is not informative about \tilde{z} , but has price inference effect

Trading Intensity

- Trading intensity is the change in demand given change in signal
- For traditional investor,

$$\begin{split} i_t^z &\equiv \frac{\partial d^t}{\partial \tilde{s}_z} = \frac{\tau_s}{\gamma} > 0 \\ i_t^\delta &\equiv \frac{\partial d^t}{\partial \tilde{s}_\delta} = -\frac{\tau_s}{\gamma} - \underbrace{\frac{\xi_\delta \xi_z}{\xi_\delta \xi_z}}_{\text{price noisiness}} < 0 \end{split}$$

- ullet Opposite for green investor $i_g^z < 0$ and $i_g^\delta > 0$
- Constant trading intensity for signal about valued factor

Feedback Loop

• How actively do investor trade on signals about non-valued factor?

$$\frac{i_t^{\delta}}{i_g^z} = \frac{\xi_z^2 + \frac{\tau + \tau_s}{\tau_n}}{\xi_{\delta}^2 + \frac{\tau + \tau_s}{\tau_n}} = \frac{PI_t}{PI_g}$$

where $PI_j \equiv [V(\tilde{v}_j|\mathcal{F})]^{-1}$ is the *price informativeness* for type j

- Feedback loop
 - $\frac{Pl_t}{Pl_g}$ is high \implies traditional investors dominate trading \implies price is informative about \tilde{z} but not $\tilde{\delta}$ \implies $\frac{Pl_t}{Pl_g}$ is high
 - $\frac{Pl_t}{Pl_g}$ is low \implies green investors dominate trading \implies price is informative about $\tilde{\delta}$ but not \tilde{z} \implies $\frac{Pl_t}{Pl_g}$ is low
- Feedback is strong when noise is small
 - ▶ Large noise $\implies \frac{i_t^\delta}{i_x^2} \to 1$ as $\tau_n^{-1} \to \infty \implies$ uninformative price
 - ▶ Small noise $\implies \frac{l_i^{\bar{\delta}}}{l_i^z} \to \frac{\xi_z^2}{\xi_z^2}$ as $\tau_n^{-1} \to 0 \implies$ strong feedback loop

Multiple Equilibria

• Trading intensity determine price coefficients:

$$\begin{aligned} \xi_z &= \frac{m}{2} i_g^z + \frac{m}{2} i_t^z = \frac{m}{2} \frac{\tau_s}{\gamma} \left[1 - \frac{\xi_z \xi_\delta}{\xi_z^2 + \frac{\tau + \tau_s}{\tau_n}} \right] \\ \xi_\delta &= \frac{m}{2} i_g^\delta + \frac{m}{2} i_t^\delta = \frac{m}{2} \frac{\tau_s}{\gamma} \left[1 - \frac{\xi_z \xi_\delta}{\xi_\delta^2 + \frac{\tau + \tau_s}{\tau_n}} \right] \end{aligned}$$

- Exists a noise threshold $\hat{ au}_n = 4(au + au_s)(rac{ au_2}{\gamma}rac{m}{2})^{-2}$
- Large noise $\tau_n^{-1} \geq \hat{\tau}_n^{-1} \implies$ unique equilibrium with $\xi_z = \xi_\delta$
- Small noise $au_n^{-1} < \hat{ au}_n^{-1} \implies$ three equilibria
 - ▶ Stable T-equilibrium with $\xi_z > \xi_\delta$ and $PI_t > PI_g$
 - ▶ Stable G-equilibrium with $\xi_z < \xi_\delta$ and $PI_t < PI_g$
 - ▶ Unstable M-equilibrium with $\xi_z = \xi_\delta$ and $PI_t = PI_g$

Multiple Equilibria

Unique equilibrium with small noise and multiple equilibria with large noise

Outline

- Introduction
- Simplified Model
- Other Findings
- 4 Conclusion and Discussion

Baseline Model

- Generalization:
 - ▶ Allow green investors to care about both components of payoff
 - Unequal masses of investors
 - ▶ Index equilibria by signal precision
 - ightharpoonup Dependence between $\tilde{\delta}$ and \tilde{z}
- Consider the cost of capital:

$$CoC = E[\tilde{z} - \tilde{p}] = \frac{\gamma}{m_t P I_t + m_g P I_g}$$

- How does cost of capital change with more green investors?
- \bullet How does cost of capital change with better info about $\tilde{\delta}?$

Cost of Capital with More Green Investors

(A) Unique equilibrium, $\tau_n \leq \tau_n^* \left(\frac{1}{2}, \beta_{\delta}\right)$

(B) Multiplicity is possible, $\tau_n > \tau_n^* \left(\frac{1}{2}, \beta_{\delta}\right)$

- $oldsymbol{\circ}$ α is fraction of green investors
- Cost of capital is highest when investor base is balanced

Cost of Capital with More Precise ESG Signals

- λ indexes precision of signals about δ (high λ is more precision)
- Direct effect: $\lambda \uparrow \Longrightarrow PI_t \uparrow$ and $PI_g \uparrow \uparrow \uparrow \uparrow$
- Indirect effect: $\lambda \uparrow \Longrightarrow i_g^{\delta} \uparrow \Longrightarrow PI_t \downarrow$

Outline

- Introduction
- Simplified Model
- Other Findings
- 4 Conclusion and Discussion

Conclusion

- REE model with investors with heterogenous valuations
 - ► Contribution: Combine (1) heterogeneous preferences over multiple fundamentals and (2) info sets with signals about all fundamentals
- ullet Show how investor base matters \Longrightarrow May reconcile mixed evidence on green premium/discount
- Novel channel for better ESG-disclosures to backfire

Discussion - Green Investor Preferences

- In the paper, green investors prefer for ESG factor is like consumption
- Unclear if this form of preferences is consistent with other research
- Using an experimental approach, Heeb et al (2021) find that green investors have a higher WTP for a sustainable investment, but their WTP does not grow with the social impact of the investment

Discussion - Endogenous Information Acquisition

- In the paper, signals are exogenous processes
- In appendix, they do allow for correlated signals
- How would endogenous information acquisition affect results?
- Green investors have direct incentive to discover info about ESG
- But do traditional investors really have private signals about ESG?
- Seems less plausible that traditional investors seek to acquire information about ESG impacts to better trade against green investors

Discussion - Other

- Testing this model's implications is challenging due to issues measuring ESG impacts (i.e. Allcott et al 2021, Berg et al 2021)
- More detailed ESG disclosures themselves may increase $\tilde{\delta}$. Kreuger et al (2021) found that firms who were required to disclose more detailed information about ESG-related issue had fewer negative ESG-related incidents (i.e. chemical spills)