block name 1

1. Holomorphic functions

block name 3

3. Cauchy-Riemman

Let:

$$f \in \mathcal{H}(\mathbb{C})$$
 , $Ref + Imf = c_a$

Show that:

$$\cdot \exists a' \in \mathbb{C} :$$

$$f = c_{a'}$$

Demonstration:

u,v real components of f

$$u(x,y) + v(x,y) = a$$

differentiate respect x and y

$$u_x + v_x = 0$$

$$u_y + v_y = 0$$

fholomorphic $\rightarrow f$ CR

$$u_x - u_y = 0$$

$$u_y + u_x = 0$$

$$u_x, u_y, v_x, v_y = 0$$

$$\exists a_1 \in \mathbb{R}$$
:

$$u = c_{a_1}$$

$$\exists a_2 \in \mathbb{R}$$
:

$$v = c_{a_2}$$

$$f = c_{(a_1, a_2)}$$

3

B.2 a)

Let:

$$\begin{array}{ccc} u : \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & \exp(y)\cos(x) \end{array}$$

Show that:

$$\cdot \exists f \in \mathcal{H}(\mathbb{C}) :$$

u real component of f

Demonstration:

lab
$$1 \rightarrow u_{xx} + v_{yy} = 0$$

 $u_x = \exp(x)\cos(y)$
 $u_{xx} = \exp(x)\cos(y)$
 $u_y = -\exp(x)\sin(y)$
 $u_{yy} = -\exp(x)\cos(y)$
ok

Calculate v using CR

$$v_y = u_x = \exp(x)\cos(y)$$

$$v(x,y) = \int_{\mathbb{C}} \exp(x)\sin(y)dy = \exp(x)\sin(y) + \phi(x)$$

$$v_x = \partial_v x = \exp(x)\sin(y) + \phi'(x)$$

$$-u_y = \exp(x)\sin(y) + \phi'(x)$$

$$CR \to \phi'(x) = 0$$

$$\forall c \in \mathbb{R} :$$

$$\phi(x) = c \text{ ok}$$

$$v(x,y) = \exp(x)\sin(y)$$

block name 5

Preservation of angles

Let:

$$\cdot \gamma_1, \gamma_2$$
 plane arcs $_{"} \gamma_1(0) = \gamma_2(0)$

Then, holds:

· angle of
$$\gamma_1'(0)$$
 and $\gamma_2'(0)$ = angle $\sigma_1'(0), \sigma_2'(0)$

Demonstration:

rotations and homotecies let angles invariant