Lightweight Detection of Abrupt Orientation Changes Using a 6-Axis IMU

Your Name Company/Institution

August 21, 2025

Abstract

This work investigates simple yet robust algorithms for long-term monitoring of mast orientation using the ST ISM330DHCX inertial measurement unit. We focus on KISS-principle solutions that (i) track azimuth and altitude, (ii) ignore slow drift, and (iii) reliably detect abrupt orientation changes under outdoor noise.

1 Introduction

Brief context of mast monitoring, device configuration (WDS axis), and problem statement.

2 Related Work

Short survey of complementary filters, Kalman filtering, threshold-based detectors, adaptive drift compensation.

3 Methodology

3.1 Mathematical Model

The raw accelerometer output $\mathbf{a}_m \in \mathbb{R}^3$ and gyroscope output $\boldsymbol{\omega}_m$ are modeled as

$$\mathbf{a}_m = \mathbf{R}^T(\mathbf{g}) + \mathbf{b}_a + \boldsymbol{\eta}_a,\tag{1}$$

$$\omega_m = \omega + \mathbf{b}_q + \boldsymbol{\eta}_q,\tag{2}$$

where **R** is the body-to-world rotation, $\mathbf{g} = [0, 0, g]^T$, \mathbf{b}_a , \mathbf{b}_g are constant biases and $\boldsymbol{\eta}_{(\cdot)} \sim \mathcal{N}(0, \sigma^2)$ are white noises.

Pitch (θ) and roll (ϕ) are extracted from the low-pass accelerometer tilt:

$$\theta = \operatorname{atan2}(-a_x, \sqrt{a_y^2 + a_z^2}), \tag{3}$$

$$\phi = \operatorname{atan2}(a_y, a_z). \tag{4}$$

A first—order complementary filter fuses the gyro integration with the accelerometer tilt,

$$\phi_k = \alpha (\phi_{k-1} + \omega_x \, \Delta t) + (1 - \alpha) \, \phi_k^{\text{acc}}, \tag{5}$$

$$\theta_k = \alpha (\theta_{k-1} + \omega_y \, \Delta t) + (1 - \alpha) \, \theta_k^{\text{acc}}, \tag{6}$$

with $\alpha = 0.98$.

Abrupt changes are detected by comparing the current filtered orientation to an adaptive baseline mean $\bar{\phi}, \bar{\theta}$ over a $2 \, exts$ sliding window. A detection flag d_k is raised when

$$|\phi_k - \bar{\phi}_k| > \tau \quad \text{or} \quad |\theta_k - \bar{\theta}_k| > \tau,$$
 (7)

where $\tau = 5^{\circ}$ (tunable).

3.2 Proposed Algorithm

Algorithm ?? summarises the procedure.

3.3 Evaluation Metrics

Detection latency, false positives, energy cost.

4 Results

Table ?? summarises the prototype performance over 30 Monte–Carlo trials (sensor noise $\sigma_{\rm acc} = 50 \, {\rm mg}$, $\sigma_{\omega} = 20 \, {\rm dps}$, detection threshold 5°).

Metric	Value
Detection rate	100%
Mean latency	$0.03\mathrm{s}$
Median false positives	$\mathcal{O}(2.4 \times 10^4) / \mathrm{h}$

Table 1: Baseline complementary–filter detector performance. Raising the threshold to 10° lowered false positives below $20\,/h$ while maintaining a $>95\,\%$ detection rate.

5 Discussion

Analysis of trade-offs, recommended threshold selection, calibration procedure, long-term stability.

Algorithm 1 Lightweight long-term orientation change detector (matching C++ implementation)

```
1: Input: stream \mathbf{a}_m[k], \boldsymbol{\omega}_m[k] at f_s Hz
 2: Parameters: \alpha (filter gain), window N = f_s T samples, threshold \tau
 3: State: orientation \phi, \theta, circular buffers Q_{\phi}, Q_{\theta}, running sums S_{\phi}, S_{\theta}
 4: Initialise (\phi, \theta) \leftarrow \text{TILTFROMACC}(\mathbf{a}_m[0])

⊳ static calibration

 5: for k \leftarrow 1, 2, \dots do
                                                                                             ▷ 1) Complementary filter
            (\phi^{\mathrm{acc}}, \theta^{\mathrm{acc}}) \leftarrow \mathrm{TiltFromAcc}(\mathbf{a}_m[k])
 6:
            \phi \leftarrow \alpha (\phi + \omega_x \Delta t) + (1 - \alpha) \phi^{\text{acc}}
 7:
            \theta \leftarrow \alpha (\theta + \omega_y \Delta t) + (1 - \alpha) \theta^{\text{acc}}
 8:
                                                                                  \triangleright 2) Update baseline mean for \phi
            push \phi to Q_{\phi}; S_{\phi} \leftarrow S_{\phi} + \phi
 9:
            if |Q_{\phi}| > N then S_{\phi} \leftarrow S_{\phi} - \text{pop\_front}(Q_{\phi})
10:
            end if
11:
            \bar{\phi} \leftarrow S_{\phi}/|Q_{\phi}|
                                                                                  \triangleright 3) Update baseline mean for \theta
12:
            push \theta to Q_{\theta}; S_{\theta} \leftarrow S_{\theta} + \theta
13:
            if |Q_{\theta}| > N then S_{\theta} \leftarrow S_{\theta} - \text{pop\_front}(Q_{\theta})
14:
            end if
15:
            \begin{split} \bar{\theta} &\leftarrow S_{\theta}/|Q_{\theta}| \\ d_{k} &\leftarrow (|\phi - \bar{\phi}| > \tau) \lor (|\theta - \bar{\theta}| > \tau) \end{split}
                                                                                                          ▷ 4) Threshold test
16:
17:
            if d_k then
18:
19:
                  start validation timer and alarm if condition persists
            end if
20:
21: end for
```

6 Conclusion

Key findings and future work.