Question #1

Perform PCA on USDA National Nutrient Database and summarize findings

Preparing Data

- 1. **Check correlation between numeric variables.** "Nutrient_USRDA" is highly correlated to "Nutrient_g"/"Nutrient_mg"/"Nutrient_mcg" with correlation 1. "Nutrient_USRDA" is redundant and should be removed.
- 2. **Delete ID and non-numeric variables** since PCA only applied on numerical data.
- 3. View the new data created, there's **no missing value**.
- 4. **Explore distribution of data.** Histograms of most of the variables are skewed right. Consider transformations to "improve" the distributions and hopefully produce better correlations for PCA. Common transformations for right-skewed data are square root, cube root and log. Histograms look better with cube transformation.

5. It's usually beneficial for each variable to be centered at zero for PCA, due to the fact that it makes comparing each principal component to the mean straightforward. This also eliminates potential problems with the scales of each variables, variables are measured in g, mg and mcg differently. **Standardizing each variable** will fix this issue.

Implement PCA in R

- 1. The **prcomp() function provides standard deviation and rotation**. The rotation measure provides the relationship between the initial variables and the principal components.
- 2. Summary table of principal components shows standard deviation, proportion of variance and cumulative proportion.
- 3. Square every standard deviation in Table 1 will get variance(eigenvalues) of each principal component. Add all variance up, then get the total variance of 22.99968.

Component	Standard	Variance	Proportion	Cumulative
	deviation	(eigenvalue)	of Variance	Proportion
PC1	2.8339	8.03098921	0.3492	0.3492
PC2	1.9554	3.82358916	0.1663	0.5154
PC3	1.42845	2.040469403	0.08872	0.60415
PC4	1.2067	1.45612489	0.06331	0.66746
PC5	1.16141	1.348873188	0.05865	0.7261
PC6	0.94899	0.90058202	0.03916	0.76526
PC7	0.83328	0.694355558	0.03019	0.79545
PC8	0.78742	0.620030256	0.02696	0.82241
PC9	0.71797	0.515480921	0.02241	0.84482
PC10	0.70991	0.503972208	0.02191	0.86673
PC11	0.6839	0.46771921	0.02034	0.88707
PC12	0.61641	0.379961288	0.01652	0.90359
PC13	0.58064	0.33714281	0.01466	0.91824
PC14	0.573	0.328329	0.01428	0.93252
PC15	0.50804	0.258104642	0.01122	0.94374
PC16	0.4904	0.24049216	0.01046	0.9542
PC17	0.45888	0.210570854	0.00916	0.96335
PC18	0.43902	0.19273856	0.00838	0.97173
PC19	0.42375	0.179564063	0.00781	0.97954
PC20	0.38409	0.147525128	0.00641	0.98595
PC21	0.36158	0.130740096	0.00568	0.99164
PC22	0.35291	0.124545468	0.00542	0.99705

PC23	0.26034	0.067776916	0.00295	1
Total		22.99967701		

Table 1

- 4. The proportion of variance explained by each eigenvalue is given in the fourth column in Table1. For example, 8.03098921 divided by 22.99968 equals 0.3492. About 34.92% of the variation is explained by the first eigenvalue. The cumulative percentage explained is obtained by adding the successive proportions of variation. For example, 0.3492 plus 0.1663 equals 0.5154, about 51.54% of the variation is explained by the first two eigenvalues together. The first two principal components explain 51.54% of the variance in the original variables.
- 5. There are several methods to **determine how many principal components to use**. Below presents scree plot and parallel analysis:
 - a. In **scree plot**, we look for the point where the proportion of variance explained significantly drops off. The cumulated proportion of variance explained increases moderately after 5, so we stop at the fifth component. When using 5 out of 23 components, about 72.61% of the variance is accounted for and this is an acceptably large percentage.

b. Run a **parallel analysis** to decide how many factors to retain. The third column of Table 2 shows how large eigenvalues can be as a result of just using randomly generated datasets. If the eigenvalue from actual data is greater than the generated eigenvalue, then have support to retain that factor. Since first five eigenvalues are greater than generated eigenvalues, we have support to **retain the first five component**. Same as the result from scree plot.

Component	Eigenvalue	0.95	Eigenvalue>0.95?
1	8.03098921	1.105	T
2	3.82358916	1.088	T
3	2.0404694	1.076	T
4	1.45612489	1.064	T
5	1.34887319	1.057	T
6	0.90058202	1.049	F

7	0.69435556	1.04	F
8	0.62003026	1.033	F
9	0.51548092	1.025	F
10	0.50397221	1.019	F
11	0.46771921	1.012	F
12	0.37996129	1.005	F
13	0.33714281	0.998	F
14	0.328329	0.991	F
15	0.25810464	0.984	F
16	0.24049216	0.977	F
17	0.21057085	0.971	F
18	0.19273856	0.964	F
19	0.17956406	0.957	F
20	0.14752513	0.949	F
21	0.1307401	0.942	F
22	0.12454547	0.932	F
23	0.06777692	0.922	F

Table2

Interpreting each component

1. First Principal Component Analysis-PC1

The correlation between the first principal component and the original variables are copied into the Table3.

First component can be viewed as the food that are **high** in *phosphorus*, *zinc*, *magnesium*, *iron*, *selenium*, *copper*, *calcium*, *manganese*, *niacin*, *riboflavin*, *vitB6*, *thiamin*, *vitB12*, *folate* and **low** in *sugar*, *vitC*.

$$\begin{aligned} \textit{PC}1 &= 0.2993 \times \left(\text{Phosphorus}_{mg} \right) + 0.2971 \times \left(\text{Zinc}_{mg} \right) + 0.2943 \times \left(\text{Niacin}_{mg} \right) + \cdots + \\ 0.0363 \times \left(\text{Fiber}_{g} \right) + 0.0014 \times \left(\text{Carb}_{g} \right) - 0.0121 \times \left(\text{VitC}_{mg} \right) - 0.0389 \times \left(\text{Sugar_g} \right) \end{aligned}$$

	PC1
	101
Phosphorus_mg	0.299277691
Zinc_mg	0.297107939
Niacin_mg	0.294338566
Riboflavin_mg	0.292815483
VitB6_mg	0.283511886
Magnesium_mg	0.270882614
Thiamin_mg	0.263032729
Protein_g	0.256891877
Iron_mg	0.255886779
Selenium_mcg	0.240638848
Copper_mcg	0.232833074
VitB12_mcg	0.20389979
Folate_mcg	0.20184984
Energy_kcal	0.150119339
Calcium_mg	0.148573035
Manganese_mg	0.145469225
Fat_g	0.114979685
VitE_mg	0.097376183
VitA_mcg	0.097345439
Fiber_g	0.036329846
Carb_g	0.001380964
VitC_mg	-0.012087581
Sugar_g	-0.038926437

	PC2
VitB12_mcg	0.27526006
Protein_g	0.23956295
Selenium_mcg	0.20580229
Fat_g	0.13779409
Zinc_mg	0.1272124
Niacin_mg	0.07174708
Phosphorus_mg	0.06047325
VitB6_mg	0.0265521
Riboflavin_mg	-0.0265569
Energy_kcal	-0.0304766
VitE_mg	-0.0835671
Copper_mcg	-0.0850684
VitA_mcg	-0.106607
Iron_mg	-0.1239173
Thiamin_mg	-0.1252729
Magnesium_mg	-0.1512906
Calcium_mg	-0.2094101
Folate_mcg	-0.2261434
Manganese_mg	-0.2415448
VitC_mg	-0.2593686
Sugar_g	-0.3350501
Fiber_g	-0.4108812
Carb_g	-0.4438004

Table3 Table4

2. Second Principal Component Analysis-PC2

The correlation between the second principal component and the original variables are copied into the Table4.

Second component can be viewed as the food that are **high** in *vitB12*, *protein*, *selenium* and **low** in *carb*, *fiber*.

3. Third Principal Component Analysis-PC3

	PC3	
Energy_kcal	0.57234716	
Fat_g	0.51446348	
Sugar_g	0.20967826	
Carb_g	0.20601933	
Fiber_g	0.10659897	
VitE_mg	0.09959312	
Thiamin_mg	0.0919126	
Protein_g	0.07434351	
Iron_mg	0.06512707	
Phosphorus_mg	0.03457768	
Niacin_mg	0.01303043	
Riboflavin_mg	-0.0056597	
Calcium_mg	-0.0291242	
Zinc_mg	-0.0395245	
Magnesium_mg	-0.0586505	
VitB12_mcg	-0.0841187	
Selenium_mcg	-0.0887486	
Manganese_mg	-0.1273156	
VitB6_mg	-0.1419006	
Folate_mcg	-0.159748	
Copper_mcg	-0.1981232	
VitA_mcg	-0.2031897	
VitC_mg	-0.3423963	

The correlation between the third principal component and the original variables are copied into the Table5. Third component can be viewed as the food that are **high** in energy, fat and low in vitC.

7	al	bl	e6	í

Table5

4. Fourth Principal Component Analysis-PC4 The correlation between the fourth principal component and the original variables are copied into the Table6. Fourth component can be viewed as the

Magnesium_mg 0.2736802 Copper_mcg 0.26595095 Fiber_g 0.15359432 Phosphorus_mg 0.1402365 0.13216424 Protein_g Zinc_mg 0.05825884 Selenium_mcg 0.05711588 0.02732854 Carb_g Iron_mg -0.0104385 Energy_kcal -0.0372095 Folate_mcg -0.0468822 Calcium_mg -0.0482742 -0.0704216 Thiamin_mg -0.0839546 Niacin_mg -0.0990789 Fat_g VitB6_mg -0.1424603 Riboflavin_mg -0.2027302 -0.2690974 Sugar_g VitC_mg -0.2808463 VitE_mg -0.2810481 VitB12_mcg -0.3035216 VitA_mcg -0.4887787 food that are **high** in *manganese*, *magnesium*, *copper* and **low** in *vitA*.

PC4

Manganese_mg

0.36836763

5. Fifth Principal Component Analysis-PC5

	PC5	
VitE_mg	0.53767278	
Copper_mcg	0.29529953	
Fat_g	0.28766398	
Manganese_mg	0.27775607	
VitA_mcg	0.26184507	
Selenium_mcg	0.16607056	
Calcium_mg	0.13207705	
Energy_kcal	0.13000716	
Magnesium_mg	0.0908521	
Folate_mcg	0.0639547	
Phosphorus_mg	0.02213777	
VitC_mg	0.02058759	
Zinc_mg	-0.0001702	
VitB12_mcg	-0.0374386	
Sugar_g	-0.0826554	
Protein_g	-0.0829129	
Fiber_g	-0.1091013	
VitB6_mg	-0.1192366	
Carb_g	-0.138676	
Riboflavin_mg	-0.2239977	
Iron_mg	-0.2366658	
Niacin_mg	-0.2542374	
Thiamin_mg	-0.2979572	

Table7

The correlation between the fifth principal component and the original variables are copied into the Table7. Fifth component can be viewed as the food that are **high** in *vitE* and **low** in *thiamin*, *niacin*, *iron*, *riboflavin*.