1 Attempt without P_P

current state:

lemma 2 and 3 seem to not work together. they would need some kind of common σ

Definition 1. Overline as in paper, replace Δ -terms t_1, \ldots, t_n by respective fresh variables in parenthesis

NOTE: variables are *not* replaced by overline.

Lemma 2. Let t_1, \ldots, t_n be the maximal Δ -terms in C.

Let
$$\sigma'(x) = \begin{cases} x_i & \text{if } x = x_j \text{ for some } j \text{ and } t_j \sigma = t_i \\ \overline{x\sigma} & \text{otherwise} \end{cases}$$

$$Then (\overline{C}\sigma(x_1, \dots, x_n)) = (\overline{C}(x_1, \dots, x_n))\sigma'.$$

Proof. TODO

// the first case handles the case where σ replaces x and $P(f(x)) \in C$ where f is Δ -colored.

Lemma 3. If $l\sigma = l'\sigma$, then $\overline{l}\sigma' = \overline{l'}\sigma'$ for σ' defined as follows: TODO

Proof. TODO

Lemma 4. // currently unused

 $(\overline{C}(x_1,\ldots,x_n))\sigma=(\overline{C\sigma'}(x_1,\ldots,x_n))$ if σ does not change any of x_1,\ldots,x_n or any of t_1,\ldots,t_n . it would work to fix substitutions of x_i by substituting t_i for that instead, as long as the result isn't another t_i , but this isn't actually relevant here.

Proposition 5. $\Gamma = \overline{\Gamma}(x_1, \dots, x_n)$.

Proof. By definition, Δ -terms only appear in Δ and not in Γ .

Lemma 6. $\Gamma \models \overline{(\operatorname{PI}(C) \vee C)}(x_1, \ldots, x_n)$.

Proof. By induction on the resolution refutation.

Base case: Either $C \in \Gamma$, then it does not contain Δ -terms. Otherwise $C \in \Delta$ and $PI(C) = \top$. Induction step:

Resolution.

$$\frac{C_1: D \vee l \qquad C_2: E \vee \neg l'}{C: (D \vee E)\sigma} \quad l\sigma = l'\sigma$$

By the induction hypothesis, we can assume that:

$$\Gamma \models \overline{\mathrm{PI}(C_1) \vee (D \vee l)}(x_1, \dots, x_n)$$

$$\Gamma \models \overline{\mathrm{PI}(C_2) \vee (E \vee \neg l')}(x_1, \dots, x_n)$$

1. $PS(l) \in L(\Gamma) \setminus L(\Delta)$: Then $PI(C) = [PI(C_1) \vee PI(C_2)]\sigma$.

We show that $\Gamma \models \overline{(\operatorname{PI}(C_1) \vee \operatorname{PI}(C_2))\sigma \vee (D \vee E)\sigma}(x_1, \dots, x_n),$

i.e. $\Gamma \models \overline{(\operatorname{PI}(C_1) \vee \operatorname{PI}(C_2) \vee D \vee E)\sigma}(x_1, \dots, x_n)$. This is by lemma 2 with σ' as in the lemma equivalent to $\Gamma \models \overline{(\operatorname{PI}(C_1) \vee \operatorname{PI}(C_2) \vee D \vee E)}(x_1, \dots, x_n)\sigma'$.

By Lemma 11 (Huang) and the induction hypothesis,

$$\Gamma \models \overline{\mathrm{PI}(C_1)} \vee \overline{D} \vee \overline{l}$$

$$\Gamma \models \overline{\mathrm{PI}(C_2)} \vee \overline{E} \vee \neg \overline{l'}$$

By lemma 3 and since $l\sigma = l'\sigma$, $\bar{l}\sigma'' = \bar{l'}\sigma''$.

Hence $\Gamma \models (\overline{\operatorname{PI}(C_1)} \vee \overline{D} \vee \overline{\operatorname{PI}(C_2)} \vee \overline{E})\sigma''$ and again by Lemma 11 (Huang), $\Gamma \models \overline{\operatorname{PI}(C_1)} \vee D \vee \overline{\operatorname{PI}(C_2)} \vee E\sigma''$.

TODO: show that from this, it follows that: $\Gamma \models \overline{(\operatorname{PI}(C_1) \vee \operatorname{PI}(C_2))\sigma \vee (D \vee E)}(x_1, \dots, x_n)\sigma'$,

2. $PS(l) \in L(\Delta) \setminus L(\Gamma)$: Then $PI(C) = [PI(C_1) \wedge PI(C_2)]\sigma$.

We show that $\Gamma \models \overline{((\operatorname{PI}(C_1) \wedge \operatorname{PI}(C_2)) \vee D \vee E)\sigma}(x_1, \ldots, x_n)$. By lemma 2 with σ' as in the lemma, $\Gamma \models \overline{((\operatorname{PI}(C_1) \wedge \operatorname{PI}(C_2)) \vee D \vee E)}(x_1, \ldots, x_n)\sigma'$.

TODO

Paramodulation.

$$\frac{C_1: D \vee s = t \qquad C_2: E[r]}{C: (D \vee E[t])\sigma} \quad \sigma = \text{mgu}(s, r)$$

By the induction hypothesis, we have:

$$\Gamma \models \overline{\mathrm{PI}(C_1) \vee (D \vee s = t)}$$

$$\Gamma \models \overline{\mathrm{PI}(C_2) \vee (E[r])}$$

easy case:
$$PI(C) = [(s = t \land PI(C_2)) \lor (s \neq t \land PI(C_1))]\sigma$$

to show:
$$\Gamma \models \overline{[((s = t \land \operatorname{PI}(C_2)) \lor (s \neq t \land \operatorname{PI}(C_1))) \lor (D \lor E[t])]\sigma}$$

proof idea: either s = t, then also $PI(C_2)$, or else $s \neq t$, but then also $PI(C_1)$

by lemma 2 for σ' as in lemma, $\Gamma \models \overline{((s = t \land \operatorname{PI}(C_2)) \lor (s \neq t \land \operatorname{PI}(C_1)))} \lor (D \lor E[t]) \sigma'$

by lemma 11 (huang)
$$\Gamma \models [((\overline{s} = \overline{t} \land \overline{\operatorname{PI}(C_2)}) \lor (\overline{s \neq t} \land \overline{\operatorname{PI}(C_1)})) \lor (\overline{D} \lor \overline{E[t]})]\sigma'$$

reformulate:
$$\Gamma \models ((\overline{s}\sigma' = \overline{t}\sigma' \land \overline{\mathrm{PI}(C_2)}\sigma') \lor (\overline{s}\sigma' \neq \overline{t}\sigma' \land \overline{\mathrm{PI}(C_1)}\sigma')) \lor (\overline{D}\sigma' \lor \overline{E[t]}\sigma')$$

By the rule: $s\sigma = r\sigma$, hence also $\bar{s}\bar{\sigma} = \bar{r}\bar{\sigma}$ and $\bar{s}\sigma' = \bar{r}\sigma'$ REALLY TRUE? – think so...

Suppose $M \models \Gamma$ and $M \not\models (\overline{D}\sigma' \vee \overline{E[t]}\sigma')$.

Suppose $M \models \overline{s}\sigma' = \overline{t}\sigma'$.

By induction hypothesis (and lemma 11 (huang) and adding the substitution σ'), $\Gamma \models \overline{\mathrm{PI}(C_2)}\sigma' \vee \overline{(E[r])}\sigma'$.

However by assumption $\Gamma \not\models \overline{E[t]}\sigma'$.

Hence $\Gamma \not\models \overline{E[s]}\sigma'$, and $\Gamma \not\models \overline{E[r]}\sigma'$. Therefore $\Gamma \models \overline{\mathrm{PI}(C_2)}\sigma'$.

Suppose on the other hand $M \models \bar{s}\sigma' \neq \bar{t}\sigma'$.

By the induction hypothesis, $M \models \overline{\mathrm{PI}(C_1)}\sigma' \vee (\overline{D}\sigma' \vee (\overline{s} = \overline{t})\sigma')$, hence then $M \models \overline{\mathrm{PI}(C_1)}\sigma'$.

Consequently, $M \models (\overline{s}\sigma' \neq \overline{t}\sigma' \wedge \overline{\operatorname{PI}(C_1)}\sigma') \vee (\overline{s}\sigma' = \overline{t}\sigma' \wedge \overline{\operatorname{PI}(C_2)}\sigma').$

By lemma 11 (huang), $M \models \overline{(s \neq t \land \operatorname{PI}(C_1) \lor (s = t \land \operatorname{PI}(C_2))} \sigma'$.

Hence $\Gamma \models \overline{(s \neq t \land \operatorname{PI}(C_1) \lor (s = t \land \operatorname{PI}(C_2))} \sigma' \lor (\overline{D} \lor \overline{E[t]}) \sigma').$

IS THIS REALLY WHAT I NEED TO SHOW?