

Wydział Nauk Geograficznych i Geologicznych

Field of studies: Geoinformation

Album ID: 455828

Tomasz Matuszek

Measuring impact of addition of Landsat 8 thermal band on supervised land cover classification results

Ocena wpływu zastosowania kanału termalnego
Landsat na wyniki nadzorowanej klasyfikacji pokrycia
terenu

Engineer's Thesis written
in the Institute of Geoecology and Geoinformation
under the supervision of
dr. hab. Jakub Nowosad

Abstract

Abstrakt

Streszczenie powinno przedstawiać skrótowo główny problem pracy i jego rozwiązanie.

Możliwa struktura streszczenia to: (1) 1-3 zdania wstępu do problemu (czym się zajmu-

jemy, dlaczego jest to ważne, jakie są problemy/luki do wypełnienia), (2) 1 zdanie opisu-

jące cel pracy, (3) 1-3 zdania przedstawiające użyte materiały (dane) i metody (techniki,

narzędzia), (4) 1-3 zdania obrazujące główne wyniki pracy, (5) 1-2 zdania podsumowujące;

możliwe jest też określenie dalszych kroków/planów.

Słowa kluczowe: (4-6 słów/zwrotów opisujących treść pracy, które nie wystąpiły w tytule)

Abstract

The abstract must be consistent with the above text.

Keywords: (as stated before)

3

Contents

Αl	bstract	3	,	
1	Introduction	5	;	
2	Source data	7	,	
	2.1 Satellite imagery	8)	
	2.2 Land cover data	9)	
3	Methods	13	;	
	3.1 Machine learning	13)	
	3.2 R language environment	14	ŀ	
4	Result of the model - land cover map	15	,	
5	Assessing model quality	17	,	
6 Evaluation of thermal band's impact on prediction results				
7	Conclusion	21		

Introduction

- applications and relevance of land cover maps
- machine learning and supervised classification of satellite images as a tool for creating land cover maps
- pointing out that thermal band if often omitted in land cover classification models,
 exact impact of thermal factor isn't fully clear
- goal of the thesis is to create land cover map of Poznań metropolitan area and measure the impact of thermal band on the model results

Wprowadzenie powinno mieć charakter opisu od ogółu do szczegółu (np. trzy-pięć paragrafów). Pierwszy paragraf powinien być najbardziej ogólny, a kolejne powinny przybliżać czytelnika do problemu. Przedostatni paragraf powinien określić jaki jest problem (są problemy), który praca ma rozwiązać i dlaczego jest to (są one) ważne.

Wprowadzenie powinno być zakończone stwierdzeniem celu pracy. Dodatkowo tutaj może znaleźć się również krótki opis co zostało zrealizowane w pracy.

Pisząc ten rozdział proszę pomyśleć o osobach, które zupełnie nie znają opisywanej tematyki. Należy tutaj krok po kroku wyjaśnić podstawowe koncepcje, istotność problemu, wyniki poprzednich podobnych badań, itd. Ten rozdział obejmuje tylko kwestie, które już zostały wykonane przez inne osoby - nowe wyniki mają swoje miejsce w rozdziale **?@sec-wyniki**.

Każda kwestia opisana w tym rozdziale powinna być cytowana. Dodatnie cytowania odbywa się poprzez uzupełnienie pliku thesis.bib zapisem w formacie BibTeX, a następnie dodanie nazwy referencji poprzedzonej znakiem @. Przykładowo, zacytowanie książki Geocomputation with R odbywa się poprzez (Lovelace et al., 2019).

W przypadku, gdy cytowanie zostało poprawnie wpisane oraz istnieje w pliku thesis.bib to bibliografia powinna się automatycznie wygenerować na końcu pracy.

W przypadku, gdy praca dyplomowa opisuje konkretny obszar to można po tym rozdziale stworzyć kolejny rozdział opisujący "obszar badań".

Ten i kolejne rozdziału moją mieć także podrozdziały. Tworzenie podrozdziałów polega na stworzeniu nowej linii rozpoczynającej się od znaków ## a następnie tytułu podrozdziału. Dodatkowo w postaci {#sec-} można dodać skrót nazwy rozdziału/podrozdziału umożliwiający odnoszenie się do niego używając operatora [-@sec].

Source data

Satellite imagery used in our model was downloaded from Landsat ARD dataset, provided by GLAD laboratory at the University of Maryland (Potapov et al., 2020). Training points were obtained from LUCAS dataset created by Eurostat (d'Andrimont et al., 2020). This data was pre-processed and then used to train the model and validate its performance. Middle-West Poland was chosen as a training area for which satellite imagery and land cover data were downloaded (Figure 2.1).

Figure 2.1: Training area

2.1 Satellite imagery

Satellite imagery from GLAD Landsat ARD is available in 16-day interval composites and is divided into 1 x 1 geographic degrees tiles. Processing of original Landsat images performed by GLAD team included conversion of spectral bands to top-of-atmosphere (TOA) reflectance, conversion of thermal band to brightness temperature (BT) in Kelvins, scaling the values of all bands as well as adding quality flag for every pixel (Potapov et al., 2020).

Satellite images for eight 1 x 1 degree tiles (Figure 2.1) were downloaded using GLAD Tools v1.1 and PERL programming language. These images come from 10th interval of the year 2018, so downloaded mosaics consist of images created between 24.05.2018 and 8.06.2018. All downloaded images were merged and reprojected from WGS84 coordinate reference system (EPSG:4326) to UTM zone 33N (EPSG:32633). Every band was also resampled to 30 meters resolution. In addition, four spectral indices were derived: Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference

Table 2.1: Formulas of spectral indices dervied from Landsat data

a	b
1	a
	b
3	c
4	d
5	e

Water Index (MNDWI), Normalized Difference Moisture Index (NDMI) and Modified Bare soil Index (MBI). Formulas used to calculate these indices can be found in below table (Table 2.1).

2.2 Land cover data

Data collected during LUCAS survey performed by Eurostat was chosen as land cover training set. It seems to be the most accurate and comprehensive dataset containing information about land use and land cover (Pflugmacher et al., 2019) due to the fact, that every point was either manually photo-interpreted or assessed during *in-situ* visit.

LUCAS survey consists of two phases. First phase is based on grid of points with 2km spacing covering whole territory of the European Union (which equals to more than 1 million points). Each point of the grid is visually interpreted using ortho-photos or satellite images, and classified into one of seven major land-cover classes. These are: arable land, permanent crops, grassland, wooded areas/shrub land, bare land, artificial land and water. In the second phase a subsample of grid points is selected and then visited by Eurostat surveyors. They classify each point according to full LUCAS land cover and land use classification. The survey takes place in the spring and summer in order to observe chosen places in high vegetation season.

Surveyor not only assign a land cover and land use classes to a point, but they also add auxillary information such as plant species present at the site, percentage of land coverage for chosen class, height of the trees and their maturity as well as information about water management and irrigation. If there are more than one land cover/land use types at the point, observer can also assign secondary class for every LUCAS point.

Table 2.2: *Filters applied to certain land cover groups*

a	b
1	a
2	
3	С
4	d
5	e

Majority of the training points used to train our classification model were points from the second phase of LUCAS survey, also called LUCAS Micro Data. We downloaded a total of 4153 points for our study area. Pre-processing step included omitting records with missing data, excluding linear artificial land cover classes (e.g. roads or railways) and excluding points that were surveyed more than 500 meters from their theoretical location. In the next step, detailed land cover classes were aggregated into eight main groups of land cover types. Then, we filtered some of the classes according to the percentage of land coverage or percentage of impervious surface coverage (Table 2.2).

For the least frequent classes in the LUCAS Micro Data dataset - bare land, artificial land and water bodies - we also added points classified during the first phase of LUCAS survey (Figure 2.2). This step was necessary to ensure that every land cover class is represented by enough number of points. It wasn't possible only for wetlands class, because of lack of such category in the first phase classification. At the end of the pre-processing, we were left with 3778 training points (Buck et al., 2015).

Later in the analysis, after extracting values from Landsat ARD raster, LUCAS points were also filtered using quality flag provided. Only points with clear-sky quality flag were taken into account during the process of model training. We also excluded water bodies points in which NDWI was lower than 0. These two conditions excluded over 400 points in total.

Training set obtained after pre-processing can be seen on Figure 2.3. Spatial distribution of data points was fairly even and due to the structure of LUCAS data set, every point was at least 2 kilometers from another one.

Figure 2.2: Distribution of land cover classes after pre-processing

Figure 2.3: Spatial distribution of LUCAS training points after pre-processing

Methods

3.1 Machine learning

- what is machine learning and what are its applications
- classification vs regression algorithms
- supervised and unsupervised classification

3.1.1 Random forest algorithm

- · what is a decision tree
- how random forest algorithm works

3.1.2 Model quality assessment

- idea of resampling
- measures and indices of classification model quality

3.1.3 Parameter tuning

- what is tuning of model's parameters
- idea of nested resampling

3.2 R language environment

Short description of R and RStudio environment. List of used libraries and packages.

Rozdział **Metody** zawiera opis użytych metod (np. statystycznych czy geostatystycznych) oraz technologii (np. pakiety R). Opis każdej z metod czy technologi powinien być zwarty i zawierać tylko najważniejsze informacje z punktu widzenia pracy dyplo-

mowej.

Każda użyta metoda i technologia powinna być zacytowana. W przypadku pakietów R, wystarczy wypełnić poniższy blok kodu (zwróć uwagę, że ten blok kodu ma parametr echo: false; oznacza to, że będzie on niewidoczny w wynikowym pliku PDF)...

... a następnie zacytować pakiet używając znaku @, po którym podać nazwę pakietu rozpoczynającą się od prefiksu R-. Przykładowe cytowanie języka R bez nawiasu to R Core Team (2021), a pakietu **kableExtra** w nawiasie to (Zhu, 2021). Więcej przykładów cytowania można znaleźć na stronie https://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html#citations.

W przypadkach, gdy cytowanie istnieje, ale nie jest pakietem R to należy dodać je do pliku thesis.bib i użyć powyższej składni ze znakiem @. W ostateczności, gdy dana technologia nie posiada cytowania, należy podać jej adres internetowy.

Result of the model - land cover map

- land cover map of Poznań metropolitan area
- probability map of model results

Część **Wyniki** może składać się z jednego lub więcej rozdziałów. Każdy z tych rozdziałów powinien mieć tytuł adekwatny do swojej treści.

Rozdziały wynikowe powinny korzystać z wiedzy opisanej w poprzednich rozdziałach (Rozdziały **?@sec-lit**, **?@sec-dane**, **?@sec-metody**). W przypadku prac analitycznych, ich treść powinna przedstawiać kolejne etapy eksploracji i analizy danych. W przypadku prac technicznych, treść tych rozdziałów powinna opisywać stworzone narzędzia, a następnie pokazywać ich zastosowanie/a.

W przypadku prac technicznych warto pokazywać fragmenty napisanego rozwiązania lub jego wywołania używając bloków kodu.

```
moja_funkcja = function(x){
  cat(x, "rządzi!")
}
moja_funkcja("Autor tej pracy")
```

Autor tej pracy rządzi!

Assessing model quality

Table with quality indices:

- overall accuracy (OA)
- classification error (CE)
- producer's and user's accuracy (PA, UA)
- Kappa coefficient

Część **Wyniki** może składać się z jednego lub więcej rozdziałów. Każdy z tych rozdziałów powinien mieć tytuł adekwatny do swojej treści.

Rozdziały wynikowe powinny korzystać z wiedzy opisanej w poprzednich rozdziałach (Rozdziały **?@sec-lit**, **?@sec-dane**, **?@sec-metody**). W przypadku prac analitycznych, ich treść powinna przedstawiać kolejne etapy eksploracji i analizy danych. W przypadku prac technicznych, treść tych rozdziałów powinna opisywać stworzone narzędzia, a następnie pokazywać ich zastosowanie/a.

W przypadku prac technicznych warto pokazywać fragmenty napisanego rozwiązania lub jego wywołania używając bloków kodu.

```
moja_funkcja = function(x){
  cat(x, "rządzi!")
}
moja_funkcja("Autor tej pracy")
```

Autor tej pracy rządzi!

Evaluation of thermal band's impact on prediction results

- mean temperature for every predicted land cover class
- variable importance plots, variable profiles
- thermal band importance map (two methods: raster aggregation and interpolation of importance in LUCAS points)
- mean importance of thermal band on each land cover class
- difference raster map between prediction with and without thermal band included,
 transition matrix

Część **Wyniki** może składać się z jednego lub więcej rozdziałów. Każdy z tych rozdziałów powinien mieć tytuł adekwatny do swojej treści.

Rozdziały wynikowe powinny korzystać z wiedzy opisanej w poprzednich rozdziałach (Rozdziały **?@sec-lit**, **?@sec-dane**, **?@sec-metody**). W przypadku prac analitycznych, ich treść powinna przedstawiać kolejne etapy eksploracji i analizy danych. W przypadku

prac technicznych, treść tych rozdziałów powinna opisywać stworzone narzędzia, a następnie pokazywać ich zastosowanie/a.

W przypadku prac technicznych warto pokazywać fragmenty napisanego rozwiązania lub jego wywołania używając bloków kodu.

```
moja_funkcja = function(x){
  cat(x, "rządzi!")
}
moja_funkcja("Autor tej pracy")
```

Autor tej pracy rządzi!

Conclusion

- land cover map of Poznań metropolitan area was created, impact of thermal band on classification results was measured
- despite thermal band having low overall impact on model results, there is a strong spatial auto-correlation for its importance
- land surface temperature was especially significant for land cover classification of urban areas, it helped in identify built-up areas
- it may mean that thermal band will become increasingly important in studies on urban sprawl and suburbanisation
- better land cover maps will help in better management of metropolitan areas growth and quantifying impact of urbanisation on natural environment more precisely

Podsumowanie pracy jest w pewnym sensie znacznie rozbudowanym abstraktem. Należy wyliczyć i opisać osiągnięcia uzyskane w pracy dyplomowej. Tutaj jednak (w przeciwieństwie do np. rozdziału **?@sec-wprowadzenie**) należy przechodzić od szczegółu do ogółu - co zostało stworzone/określone, jak zostało to zrobione, jakie ma to konsekwencje, itd.

Ten rozdział powinien też zawierać opis kwestii, których nie udało się rozwiązać w pracy dyplomowej (i dlaczego się nie udało) oraz pomysły na przyszłe ulepszenie uzyskanych wyników lub dalsze badania.

Bibliography

- Buck, O, C Haub, S Woditsch, D Lindemann, Luca Kleinewillinghöfer, G Hazeu, B Kosztra, S Kleeschulte, S Arnold, and Martin Hölzl (30, 2015). *Analysis of the LUCAS nomenclature and proposal for adaptation of the nomenclature in view of its use by the Copernicus land monitoring services*. https://land.copernicus.eu/user-corner/technical-library/LUCAS_Copernicus_Report_v22.pdf.
- d'Andrimont, R, M Yordanov, L Martinez-Sanchez, B Eiselt, A Palmieri, P Dominici, J Gallego, HI Reuter, C Joebges, G Lemoine, and M van der Velde (2020). Harmonised LUCAS in-situ land cover and use database for field surveys from 2006 to 2018 in the European Union. *Scientific Data* 7(1), 352.
- Lovelace, R, J Nowosad, and J Muenchow (2019). *Geocomputation with R. CRC Press.*
- Pflugmacher, D, A Rabe, M Peters, and P Hostert (2019). Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey. *Remote Sensing of Environment* **221**, 583–595.
- Potapov, P, MC Hansen, I Kommareddy, A Kommareddy, S Turubanova, A Pickens, B Adusei, A Tyukavina, and Q Ying (29, 2020). Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping. *Remote Sensing* **12**(3), 426.
- R Core Team (2021). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/.
- Zhu, H (2021). *kableExtra: Construct Complex Table with kable and Pipe Syntax*. R package version 1.3.4. https://CRAN.R-project.org/package=kableExtra.