

Tópicos

- Introdução
- Parte I Configurando uma rede simples.
- Parte II VLANs.
- Parte III Roteamento entre VLANs.
- Parte IV Roteamento entre Switchs

Antes de começar...

- Desconecte os cabos azuis das máquinas, usaremos os cabos vermalhos.
 - Faça um Down nas ethx desnecessárias (serão utilizados somente os cabos com acesso direto ao switch)

Principais características do Switch

- Layer 3 Stackable Gigabit Switch
- VLANs, QoS, Port Mirroring, Link
 Aggregation, Port Security, Rate Limit,
- IP Networking (Static, Rip e OSPF)
- SNMP Manager
- Monitoring (CPU, Packet Droped, etc.)

Parte I – Configurando uma rede simples. Maquina II IP: 192.168.1.2 Masc. 255.255.255.248 Masc. 255.255.255.248 Masc. 255.255.255.248 Masc. 255.255.255.248

Parte I – Configurando uma rede simples.

- Conectar os cabos brancos com atenção nas portas selecionadas e as máquinas conectadas a elas.
- Configurar os IPs nas máquinas e desabilitar as interfaces não utilizadas.

Procedimentos

- Antes de iniciar a configuração desabilite as interfaces que não serão utilizadas (exemplo a interface sem-fio ath0).
- # ifconfig eth0 down
- Para configurar os IP nas máquinas (exemplo para máquina I)
- # ifconfig eth2 192.168.1.2 netmask 255.255.255.248
- Após configurados todas as máquinas verifique se estão comunicando (exemplo máquina II)
 # ping 192.168.1.2
- Repita o comando ping para todas as máquinas.

Parte II - VLANs

- VLAN é uma topologia de rede configurada de acordo com um esquema lógico ao invés de um esquema físico.
- VLANs diferentes domínios broadcast.
- Nos switches da família xStack, uma VLAN é configurada por padrão: nome=default e VID=1. Inicialmente todas as portas pertencem a esta VLAN

Parte II - VLANs

- Criar as VLANs
- Excluir as portas da VLAN default
- Incluir as portas nas VLANs criadas

Procedimentos

- Criando as VLANs (No Switch):
- DGS-3324SR# create vlan X_100 tag 100 type 1q_vlan
- DGS-3324SR# create vlan Y_200 tag 200 type 1q_vlan
- Adicionando as portas nas VLANs:
- Primeiro deve-se excluir as portas da VLAN default.
- DGS-3324SR# config vlan default delete 1:10-1:13
- Incluindo as portas nas VLANs:
- DGS-3324SR# config vlan servidor_100 add untagged 1:13
- DGS-3324SR# config vlan clientes_200 add untagged 1:10-1:12

Procedimentos

- Teste a configuração das VLANs. Neste ponto as máquinas pertencentes a vlan X_100 se comunicam entre si, porém não se comunicam com a vlan Y_200, elas ficam inalcançáveis.
- # ping 192.168.1.3 ("pingando" outra máquina mesma vlan)
- # ping 192.168.1.5 ("pingando" outra máquina vlan diferente)

Parte III – Roteamento entre VLANs.

- Protocolos de roteamento:
 - -Static
 - -Rip
 - -OSPF

Parte III – Roteamento entre VLANs.

- Criar as interfaces virtuais com os endereços para cada VLAN.
- Configurar o gateway default para cada clientes.
- Configurar o IP e gateway para o roteador.

Procedimentos

- Primeiro verifique se o Switch está no modo Layer 3
- DGS-3324SR# show switch_mode
- Deve-se criar interfaces endereçadas para cada VLAN.
- DGS-3324SR# create ipif rede_X IP/masc X_100 state enable
- DGS-3324SR# create ipif rede_Y 192.168.1.1/29 Y_200 state enable
- # route add default gw 192.168.1.1

Trabalhinho

- Efetuar a configuração de modo a utilizar o protocolo RIP ou OSPF para fazer a conexão entre as vlans dos diferentes switchs.
- Confeccionar o relatório.
- Baixar a ferramenta Trino (ferramenta de ataque)

Rota Estática

- Delete portas da VLAN default vian para uso em outra VLAN.
 config vian default delete 1:1-1:24
- 2. Cria VLAN, adiciona portas nela, e cria interfaces IP para a VLAN.

 - create vlan v101 tag 101 config vlan v101 add untagged 1:1-1:6 create ipif net1 192.168.1.254/24 v101 state enabled

- create vian v102 tag 102 config vian v102 add untagged 1:7-1:12 create ipif net2 192.168.2.254/24 v102 state enabled create vian v103 tag 103 config vian v103 add untagged 1:13-1:18 create ipif net3 192.168.3.254/24 v103 state enabled create vian v103 tag 103 config vian v103 add untagged 1:13-1:18 create ipif net3 192.168.3.254/24 v103 state enabled

- create vian v104 tag 104 config vlan v104 add untagged 1:19-1:24 create ipif net4 192.168.4.254/24 v104 state enabled

Rota Estática

- 3. Verifique se a interface IP está corretamente configurada.
 - show vlan
 - show ipif
- No cliente
 - 1. Configure manualmente o endereço IP, máscara, para associar a um IP da REDE.
 - 2. Gateway = Interface IP do DGS-3324SR

Rota Estática

Teste

- 1. Net1 pode pingar o gateway (192.168.1.254), e outras interfaces do DGS-3324SR (192.168.2.254, 192.168.3.254, etc) e outras redes.
- 2. Net2 pode pingar o gateway (192.168.2.254), outras interfaces DGS-3324SR (192.168.1.254, 192.168.3.254, etc) e outras redes.
- 3. O mesmo teste para as redes NET3 e Net4.

Rota - RIP

- Cenário:
 - Neste exemplo é apresentada uma configuração para o switches Layer 3 DGS-3324SR. As rotas entre diferentes redes em cada switch será efetuada utilizando RIP. Assim, o RIP é configurado em ambos os switches, o DGS-3324SR_1 switch será capaz de ver a Net4 e Net5 redes encontradas no DGS-3324SR_2 switch. Da mesma forma, o DGS-3324SR_2 switch será capaz de ver a rede Net2 e Net3 encontradas no DGS-3324SR_1 switch switch.
 - O uso de rotas estáticas é utilizado somente para redes pequenas onde existem poucas redes. Se existem muitas sub-redes na rede, o uso de rotas estáticas irá requerer muita configuração nos switches. Utilizando RIP, o Layer 3 switches irá trocar informações de rotas permitindo-os conhecer as rotas um do outro automaticamente.

Rota RIP

- Passo 1 Se conecte ao DGS-3324SR_1 switch usando telnet.
- Passo 2 Uma vez conectado, efetue o login.
- Passo 3 No prompt, informe os seguintes comandos:
 - reset system
 - informe 'y' no prompt para confirmar o reset.
 O switch será rebutado com as configurações default.
- Passo 4 Efetue o login no switch novamente

Rota RIP

- Passo 5 NO DGS-3324SR_1 switch, entre com os comandos para criar VLANS e relacionar os IP para Net1, Net2 e Net3 on the DGS-3324SR_1 switch.
 - config vlan default delete 1:1-1:24
 - create vlan v101 tag 101
- config vlan v101 add untagged 1:1-1:8 create ipif net1 192.168.1.253/24 v101 state enabled
- create vlan v102 tag 102
- config vlan v102 add untagged 1:9-1:16 create ipif net2 192.168.2.254/24 v102 state enabled
- create vlan v103 tag 103
- config vlan v103 add untagged 1:17-1:24
- create ipif net3 192.168.3.254/24 v103 state enabled
- save

Rota RIP

- Passo 6 Habilite RIP no DGS-3324SR_1 switch utilizando o comando.
- enable rip
 Passo 7 Configure RIP para todas as interfaces usando os comandos que seguem:

 - config rip all tx_mode v2_only rx_mode v2_only state enable
- Alternativamente pode-se configurar o RIP para cada intereface IP utilizando o comando seguinte:

 config rip ipif net1 tx_mode v2_only rx_mode v2_only state enabled

 - config rip ipif net2 tx_mode v2_only rx_mode v2_only state enabled
 - config rip ipif net3 tx_mode v2_only rx_mode v2_only state enabled
 - save

Rota RIP

- Passo 8 Repita os passos de 1 a 4 para o DGS-3324SR 2 switch.
- Passo 8 Repita os passos de 1 a 4 para o DUS-3324SR_2 SWICCN.
 Step 9 Uma vez logado no DGS-3324SR_2 Switch, entre com os comandos que seguem para criar as VLANS e relacionar os IP para Net1, Net4 e Net5 no DGS-3324SR_2 switch.

 config vlan default delete 1:1-1:24

 create vlan v101 tag 101

 - create vial v101 add untagged 1:1-1:8 create ipif net1 192.168.1.254/24 v101 state enabled create vlan v104 tag 104 config vlan v104 add untagged 1:9-1:16 create ipif net4 192.168.4.254/24 v104 state enabled create vlan v105 tag 105 config vlan v105 add untagged 1:17-1:24 create ipif net5 103.168.5.254/24.4105 state enabled create vlan v105 add untagged 1:17-1:24 create ipif net5 103.168.5.254/24.4105 state enabled
- create ipif net5 192.168.5.254/24 v105 state enabled
- Passo 10 Configure o RIP para cada interface IP :

Rota RIP

- Passo 11 Configure o RIP para todas as interfaces utilizando os comandos que seguem:

 config rip all tx_mode v2_only rx_mode v2_only state enable

 - save
- Alternativamente pode-se configurar o RIP para cada interface IP usando o seguinte comando:
 - config rip ipif net1 tx_mode v2_only rx_mode v2_only state enabled
 - config rip ipif net4 tx_mode v2_only rx_mode v2_only state enabled
 - config rip ipif net5 tx_mode v2_only rx_mode v2_only state enabled
 - save

Rota RIP

- Testando a Configuração:

 1.Executando o teste ping da Net2 para a Net5.

 2. Executando o teste ping da Net3 para a Net4.

 Verificando a Configuração:

 A seguir uma lista de comandos que podem ser utilizados para verificar a configuração e são importantes para o diagnóstico:

 show iproute

 A seguir a tela de saida para o comando acima.

 DGS-332498:4#show iproute

 Command: show iproute

 Routing Table

	•	Routing	Table	

IP Address/Netmasl	c Gateway	Interface	Cost Protocol	
192.168.1.0/24	0.0.0.0	net1 1	Local	
192.168.2.0/24	0.0.0.0	net2 1	Local	
192.168.5.0/24 Total Entries : 3	192.16	8.1.254 net1 2	RIP	