This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(9) BUNDESREPUBLIK **DEUTSCHLAND**

[®] Offenl gungsschrift ₀₀ DE 3413330 A1

(5) Int. Cl. 3: B 23 Q 41/08

DEUTSCHES PATENTAMT

(21) Aktenzeichen:

P 34 13 330.5

Anmeldetag:

9. 4.84

Offenlegungstag:

6. 12. 84

30 Unionspriorität: 07.04.83 FR 8305979

7 Anmelder:

Universite de Valenciennes et du Hainaut Cambresis, Valenciennes, FR

(74) Vertreter:

Lamprecht, H., Dipl.-Ing., Pat.-Anw., 8000 München

② Erfinder:

Margin, Paul, Prof., Aulnoy-les-Valenciennes, FR; Willaeys, Didier, Prof., Raismes, FR

(A) Verfahren zur Überwachung und Lokalisierung eines Fehlers der Fabrikationszyklen einer automatischen Fertigungsstraße und Vorrichtung zu seiner Durchführung

Die Erfindung betrifft ein Verfahren zur Überwachung und zur Lokalisierung eines Fehlers in einem Fabrikationszyklus einer automatisierten Fertigungsstraße und eine zur Durchführung des Verfahrens geeignete Vorrichtung, wobei das Verfahren darin besteht, daß ein die Fertigungsstraße steuernder logischer Kreis (1) Eingänge (2) aufweist, die mit Sensoren (3) verbunden sind, und Ausgänge (4), die mit Betätigungsgliedem (5) verbunden sind, daß jeder Zyklus aus einer Folge von Schritten besteht, deren Standardausführungszeit bekannt und in einem Speicher (9) in Form einer Zeitbasis (12) abgespeichert ist. daß dieser Speicher (9) außerdem in Matrizenform die theoretischen Zustände der Eingänge (11) und Ausgänge (10) im Verlauf des Zyklus enthält, daß bei Beginn des Zyklus eine Zeitmeßeinheit ausgelöst wird, daß diese Zeitmeßeinheit bei jedem Wechsel des Zustands wenigstens eines Ausgangs (4) reinitialisiert wird, daß man periodisch den Zeitwert mit der Standardzeit des ablaufenden Schrittes vergleicht und, wenn dieser Wert die Standardzeit überschreitet, den wirklichen Zustand der Eingänge (2) und Ausgänge (4) des logischen Kreises (1) mit den theoretischen, in den Speicher (9) eingespeicherten Werten vergleicht und die nicht realisierten, den Fehler verursachenden logischen Bedingungen anzeigt.

HELMUT LAMPRECHT

PATENTANWALT

PROFESSIONAL REPRESENTATIVE BEFORE THE EUROPEAN PATENT OFFICE CORNELIUSSTR. 42 · D-2000 MÜNCHEN 5 · TEL. 089/2014867 · TELEX 5 28 425

3441

UNIVERSITE DE VALENCIENNES ET DU HAINAUT CAMBRESIS

Verfahren zur Überwachung und zur Lokalisierung eines
Fehlers der Fabrikationszyklen einer automatischen
Fertigungsstraße und Vorrichtung zu seiner Durchführung.

5 Ansprüche:

10

15

l. Verfahren zur Überwachung und zur Lokalisierung eines Fehlers der Fabrikationszyklen einer automatischen Fertigungsstraße, die durch einen oder mehrere logische Kreise, wie programmierbare Automaten, gesteuert wird, die über hauptsächlich mit Sensoren verbundene Eingänge und mit Steuer- oder Anzeigeorganen verbundene Ausgänge verfügen, wobei jeder Zyklus aus einer Folge von Schritten besteht, deren Standarddurchführungszeit bekannt und in einem Speicher in Form einer Zeitbasis abgespeichert ist, wobei dieser Speicher außerdem in Matrizenform die theoretischen Zustände der Eingänge und Ausgänge im Verlauf eines Zyklus enthält, dadurch gekennzeichnet, daß

man

- zu Beginn des Zyklus eine Zeitmeßeinheit startet oder reinitialisiert,
- bei jeder Zustandsänderung wenigstens eines Ausgangs
 (4) der logischen Kreise (1) die einem Wechsel des Zyklusschritts entspricht, die Zeitmeßeinheit reinitialisiert,
- periodisch den Wert der Zeitmeßeinheit mit der Standardzeit in dem betrachteten Zyklusschritt vergleicht,

 den wirklichen Zustand der Eingänge (2) und Ausgänge (4)

 der logischen Kreise (1) und der in den Vergleichsspeicher (9) eingegebenen theoretischen Werte vergleicht und die nicht realisierten, den Fehler verursachenden logischen Bedingungen anzeigt.

15

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man in einem Register (8) die Zustände der Eingänge und Ausgänge wiederherstellt, die theoretisch der logische Kreis (1) aufweisen soll, ausgehend von einem Vergleichsspeicher (9), in welchem in Matrizenform ein Bezugszyklus gespeichert ist, von dem jede Zeile einer Zustandsänderung wenigstens eines Ausgangs (4) der logischen Kreise (1) entspricht und jede Zeile die Nummern der Ausgänge (10) und Eingänge (11) umfaßt, deren Zustand gegenüber der vorhergehenden Zeile geändert wurde, und eine Standardzeit (12).
 - 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man den theoretischen Zustand der im Register (8) enthaltenen Eingänge und Ausgänge in Abhängigkeit vom Inhalt des Vergleichsspeichers (9) ändert bei jeder

Änderung des Zustands eines Ausgangs (4) der logischen Kreise (1) oder wenn die zulässige Standardzeit für den betrachteten Zyklusschritt, die in der Zeitbasis (12) enthalten ist, überschritten ist.

5

- 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet.
 daß man bei jeder Veränderung des Zustands wenigstens
 eines Ausgangs (4) der logischen Kreise (1) einen augenblicklichen Vergleich zwischen den an den Eingängen (2)
 und Ausgängen (4) der logischen Kreise (1) gegebenen
 wirklichen Werten und den im Vergleichsspeicher (9) gespeicherten theoretischen Werten (10, 11) dieser Eingänge
 und Ausgänge durchführt.
- 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man zur Bildung des Speicherinhalts des Vergleichsspeichers (9) aufeinanderfolgend für jeden Zustandswechsel wenigstens eines Ausgangs (4) der logischen Kreise (1) die Nummern der Eingänge (2) und Ausgänge (4) speichert, deren Zustand gegenüber der vorhergehenden Speicherung verändert ist, wie auch das seit der vorhergehenden Speicherung verstrichene Zeitintervall.
- 6. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man bei der Ausgabe eines Vergleichs und falls
 zwischen dem Inhalt des Registers (8) und den Eingängen
 (2) und Ausgängen (4) der logischen Kreise (1) eine Abweichung besteht, die nicht verwirklichten logischen
 Bedingungen bzw. Zustände anzeigt, welche diesen Abweichungen entsprechen und den Fehler verursachen.

- 7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man dem zur Vollendung eines Zyklusschritts notwendigen Zeitintervall eine Toleranz zubilligt, bevor man eine Anzeige der fehlerhaften, einen Fehler verursachenden Zustände auslöst.
- 8. Überwachungsvorrichtung zur Durchführung des
 Verfahrens nach Anspruch 1 ausgehend von einem Mikroprozessor-Kreis, dadurch gekennzeichnet, daß sie ein
 Vergleichsregister (8), einen einen Bezugszyklus enthalden Speicher (9), eine Zeitmeßeinheit und eine Anzeigeeinheit umfaßt.

Verfahren zur Überwachung und zur Lokalisierung eines Fehlers der Fabrikationszyklen einer automatischen Fertigungsstraße und Vorrichtung zu seiner Durchführung.

Die Erfindung betrifft ein Verfahren zur Überwachung und zur Lokalisierung eines Fehlers der Fabrikationszyklen einer automatischen Fertigungsstraße, die durch einen oder mehrere logische Kreise, wie programmierbare Automaten, gesteuert wird, die über hauptsächlich mit Sensoren verbundene Eingänge und mit Steuer- oder Anzeigeorganen verbundene Ausgänge verfügen, wobei jeder Zyklus aus einer Folge von Schritten besteht, deren Standarddurchführungszeit bekannt und in einem Speicher in Form einer Zeitbasis abgespeichert ist, sowie eine Vorrichtung zu seiner Durchführung.

Insbesondere bezieht sich die Erfindung auf Transfermaschinen, wie sie insbesondere bei der Fertigung von großen Serien, z.B. in der Automobilindustrie, verwendet werden.

20

25

Derzeit ist es bekannt, den Fabrikationszyklus eines Produkts auf einer Fertigungsstraße oder einem Fließband mit Hilfe eines oder mehrerer logischer Kreise, insbesondere unter Anwendung programmierbarer Automaten durchzuführen. Letztere sind spezialisierte Rechner, die eine gewisse Anzahl von Eingängen und Ausgängen aufweisen, wobei letztere in Abhängigkeit vom Zustand der Eingänge und einem vorher eingespeicherten Programm reagieren.

Bei gewissen komplizierten Fertigungsvorgängen ist es

Bei gewissen komplizierten Fertigungsvorgängen ist es notwendig, mehrere Automaten heranzuziehen, welche insgesamt pro Fertigungsstraße bis zu 300 Eingänge-Ausgänge aufweisen können.

5

In dem häufig anzutreffenden Fall einer sehr achtlichen Anzahl von Eingängen-Ausgängen ist es im Pannenfall sehr schwierig, den genauen Grund der Störung festzustellen. Tatsächlich besitzen die programmierbaren 10 Automaten bis heute keine Anzeigen, die es gestatten, den Zyklusschritt genau anzuzeigen, in dessen Verlauf sie stillgesetzt wurden, weshalb es erforderlich ist, eine ganze Reihe von logischen Prüfungen durchzuführen, um den Zyklusschritt zu ermitteln, in welchem der Stillstand verursacht wurde, und anschließend den Zustand der Eingänge zu überprüfen, um festzustellen, welcher fehlerhaft ist, sowie schließlich zurückzukehren bis zum Steuerorgan dieses Eingangs.

Abgesehen davon, daß die Fehlersuche sehr schwierig ist, ist die Stillstandszeit der Fertigungsstraße wegen des sich ergebenden Produktivitätsverlusts kostspielig, weshalb man gewisse Programme für programmierbare Automaten entwickelt hat, die für den Fall einer Störung eine Fehlerdiagnose aufweisen. Es handelt sich dabei gewiß um einen großen Fortschritt, jedoch erfordern die Diagnoseprogramme eine bedeutende Speicherkapazität, außerdem sind sie bei ihrer Verwirklichung und wegen des erforderlichen Materialaufwands kostspielig.

30

Hauptsächliche Aufgabe der Erfindung ist es, ein einfacheres und kostengünstigers Überwachungsverfahren und eine dafür geeignete Vorrichtung zu schaffen, wobei der Weg einer zeitlichen Überwachung vermittels einer Beschränkung der Daten beschritten wird. Das Verfahren soll auf jeden logischen Steuerkreis anwendbar sein, sei er verkabelt oder programmiert.

Das Verfahren soll absolut keine Störung des oder der logischen Steuerkreise bewirken und selbst wenn eine mögliche Störung der Überwachungsvorrichtung auftritt, soll keine Beeinflussung der Fertigung stattfinden.

5

10

20

Außerdem soll das Überwachungsverfahren standardisiert und ohne besondere Anpassung mit allen Fabrikationszyklen anwendbar sein.

Das Überwachungsverfahren soll es gestatten, die Speicherkapazität der zur Durchführung des Verfahrens dienenden Vorrichtung auf ein Minimum zu beschränken und damit eine beachtliche Wirtschaftlichkeit zu erreichen.

Das Verfahren soll geeignet sein, mit derzeit existierenden logischen Steuerkreisen angewandt zu werden, ohne diese abändern zu müssen.

Außerdem soll die Vorrichtung zur Durchführung des Überwachungsverfahrens durch eine Anzeige die Möglichkeit bieten, sehr schnell das fehlerhafte Organ zu ermitteln; bei einer fertiggestellten Vorrichtung ist es sogar möglich, dem Bedienungspersonal das fehlerhafte Teil und die Arbeitsweise zu seinem Austausch anzuzeigen.

Weitere Zwecke und Vorteile der Erfindung ergeben sich aus der noch folgenden Beschreibung.

Zur Lösung der gestellten Aufgabe besteht die Erfindung bei dem eingangs erwähnten Verfahren darin, daß man

- zu Beginn des Zyklus eine Zeitmeßeinheit startet oder reinitialisiert.
- bei jeder Zustandsänderung wenigstens eines Ausgangs der logischen Kreise die einem Wechsel des Zyklusschritts
 entspricht, die Zeitmeßeinheit reinitialisiert.
- periodisch den Wert der Zeitmeßeinheit mit der Standardzeit in dem betrachteten Zyklusschritt vergleicht, den wirklichen Zustand der Eingänge und Ausgänge der logischen Kreise und der in den Vergleichsspeicher eingegebenen theoretischen Werte vergleicht und die nicht realisierten, den Fehler verursachenden logischen Bedingungen anzeigt.
- Eine Überwachungsvorrichtung zur Durchführung des erfindungsgemäßen Verfahrens umfaßt ausgehend von einem
 Mikroprozessor-Kreis ein Vergleichsregister, einen einen
 Bezugszyklus enthaltenden Speicher, eine Zeitmeßeinheit
 und eine Anzeigeeinheit.
- Anhand der nun folgenden Beschreibung eines in der Zeichnung dargestellten Ausführungsbeispiels der Erfindung wird diese näher erläutert.
- Die Zeichnung zeigt schematisch die verschiedenen Schritte des Verfahrens zur Überwachung und Lokalisierung von Fehlern.

Das erfindungsgemäße Verfahren zur Überwachung und zur
Lokalisierung eines Fehlers eines Fabrikationszyklus in
einer automatisierten Fertigungsstraße bzw. einem
Fließband wird insbesondere angewandt bei Transferketten,
welche durch einen oder mehrere logische Kreise, wie z.B.
programmierbare Automaten, gesteuert werden. Die Transferketten werden im allgemeinen durch Aneinanderreihung von
Werkzeugmaschinen gebildet, die aufeinanderfolgend an
einem Werkstück verschiedene Arbeiten ausführen, wobei
das Werkstück seinerseits aufeinanderfolgend auf den
Werkzeugmaschinen verschiedenen Arbeiten unterworfen wird.

Ein Fabrikationszyklus umfaßt alle Arbeiten, welche durch die Maschinen am Werkstück ausgeübt werden müssen. Die Arbeiten werden in verschiedenen aufeinanderfolgenden Schritten ausgeführt, die sich aneinander anschließen, wenn der jeweils vorangehende Schritt beendet ist, was durch eine Reihe von Sensoren oder Fühlern oder anderen Prüforganen festgestellt wird.

Wenn eine der Bedingungen, welche für den Übergang zum nachfolgenden Schritt erforderlich ist, nicht erfüllt ist, wird die Maschine stillgesetzt.

Das Überwachungsverfahren nach der vorliegenden Erfindung hat die Aufgabe, festzustellen, welche die nicht erfüllte Bedingung ist, um den Fabrikationszyklus fortsetzen zu können.

Die Figur zeigt schematisch die verschiedenen, zur

Durchführung des erfindungsgemäßen Verfahrens nötigen
Elemente. Ein logischer Steuerkreis 1, der die Form

eines programmierbaren Automaten aufweist, besitzt Eingänge 2, welche beispielsweise mit den Bezugszeichen a, b, c, d und e gekennzeichnet sind und die mit verschiedenen Sensoren oder Fühlern 3 verbunden sind, die in der zu überwachenden bzw. zu steuernden automatischen Fertigungsstraße angeordnet sind. Der Steuerkreis 1 besitzt außerdem mit S₁, S₂, S₃, S₄ und S₅ gekennzeichnete Ausgänge 4, die mit verschiedenen Betätigungsgliedern von Steuer- oder Signalorganen 5 verbunden sind. Der Steuer-kreis 1 enthält außerdem ein dem auszuführenden Fabrikationszyklus entsprechendes Programm, das symbolisch durch ein die "norme grafcet" anwendendes Diagramm 6 wiedergegeben ist.

Die Tafel 7 zeigt die Zustände der verschiedenen Eingänge a, c, d und e und der Ausgänge S₃ und S₅ im Verlauf eines Fabrikationszyklus.

Nach dem erfindungsgemäßen Verfahren vergleicht man im
20 Falle einer Anomalie den Zustand der Eingänge 2 und der
Ausgänge 4 des logischen Steuerkreises 1 oder der logischen Steuerkreise 1 mit dem Inhalt eines Registers 8,
in welchem die Zustände der Eingänge und Ausgänge enthalten sind, die der logische Kreis 1 aufweisen müßte,
25 um einen korrekten Zyklus zu bewirken.

Die verschiedenen Zustände der Eingänge und Ausgänge des Registers 8 werden ausgehend von einem Speicher 9 hergestellt, in welchem ein Referenzzyklus in Matrizenform eingespeichert ist, wobei jede Zeile einer Veränderung des Zustandes zumindest eines Ausgangs eines logischen Kreises zugeordnet ist und jede Zeile die Nummern

der Ausgänge 10 und der Eingänge 11 enthält, deren Zustand gegenüber der vorhergehenden Zeile verändert ist, und eine Zeitbasis 12. Man kann bemerken, daß nach dem erfindungsgemäßen Verfahren die Möglichkeit besteht, den Eingangsund Ausgangsklemmenbereich des logischen Kreises 1 zu rekonstruieren, von welchem die Tafel 7 einen vereinfachten Überblick gibt, weil ja diese Tafel nicht die im Fabrikationszyklus unbenützten Eingänge und Ausgänge aufnimmt, so daß sich im Speicher 9 eine minimale Zahl von Speicherdaten befindet, was einer Komprimierung der Daten entspricht.

Die Rekonstruktion des Klemmenzustands des Ausgangs im Register 8 ist außerordentlich einfach, indem man vom Speicher 9 ausgeht, weil jede Zeile dieses Speichers die Nummern der Eingänge und Ausgänge enthält, deren Zustand sich gegenüber der vorhergehenden Zeile geändert hat, so daß es durch eine Beobachtung des Zyklus möglich ist, den theoretischen Zustand kennenzulernen, den die Eingänge und Ausgänge wie im Register 8 angezeigt aufweisen müssen.

Unter Bezugnahme auf das in der Zeichnung dargestellte Beispiel entspricht die erste Zeile der Tafel 7 dem Anfang des Zyklus. Die zweite Zeile kommt hinzu, wenn der Eingang a auf den Zustand 1 und der Eingang e auf den Zustand 0 übergeht, was zur Folge hat, daß der Ausgang S₅ ebenfalls auf den Zustand 1 übergeht. Parallel hat die Änderung des Ausgangs S₅ die Änderung des Inhalts des Registers 8 zur Folge. Die Änderung des Registers 8 erfolgt in Abhängigkeit von der ersten Zeile

25

des Speichers 9, welcher die Befehle, Änderungen des Ausgangs S₅ und des Eingangs a des Registers 8 enthält. Die Anomalien werden mittels einer Zeitmeßeinheit durch Zeitüberwachung ermittelt. Die Zeitbasis 12 enthält die für jeden der einen Fabrikationszyklus bildenden Schritte vorgesehene Standardzeit.

Zu Beginn eines Zyklus wird eine Zeitmeßeinheit gestartet oder reinitialisiert. Man vergleicht ihren Wert mit der für den ablaufenden Schritt vorgesehenen Standardzeit aus der Zeitbasis 12. Wenn der aus der Zeitmeßeinheit erhaltene Wert, der der seit der Reinitialisierung abgelaufenen Zeit entspricht, größer ist als die Standardzeit, liegt im Zyklus eine Anomalie vor und es wird das Vergleichsverfahren ausgelöst, das die Lokalisierung des Fehlers ermöglicht.

Bei jeder Veränderung des Zustands wenigstens eines Ausgangs 4 des logischen Steuerkreises 1 wird das Zeit20 glied reinitialisiert, was einem Wechsel des Zyklusschritts entspricht, und die bei der Zeitüberwachung in Betracht gezogene Standardzeit wird ebenfalls verändert, um mit der des ablaufenden neuen Schritts übereinzustimmen.

25

30

Dann wird der Zyklus fortgesetzt und geht auf den folgenden Zustand über, der der Zeile 3 der Tafel 7 entspricht, wo ein gegebener Zustand der Ausgänge nicht verändert ist und deshalb keinen Einfluß auf die Zeitüberwachung hat.

Schließlich wird der Schritt der vierten Zeile der Tafel 7 erreicht, für welchen der Ausgang S₃ auf den Zustand l, der Ausgang S₅ auf den Zustand 0 und der Eingang a auf den Zustand 0 übergeht, während die Eingänge c und d auf den Zustand lübergehen. Man kann bemerken, daß die Zeile 2 der entsprechenden Matrize im Speicher 9 tatsächlich die Änderung der entsprechenden Eingänge und Ausgänge S₃, S₅, a, c und d anzeigt. Diese Daten beeinflussen den den Wert der verschiedenen Zustände im Register 8 im Vergleich mit ihrem vorhergehenden Zustand. Das Register 8 nimmt deshlab den in der Zeichnung dargestellten Wert an und parallel dazu wird das Zeitglied reinitialisiert.

Schließlich erreicht der Fabrikationszyklus den der Zeile 15 5 der Tafel 7 entsprechenden Schritt und parallel dazu wird das Register 8 durch den Inhalt der Zeile 3 des Speichers 9 verändert, um den der Zeile 5 der Tafel 7 entsprechenden Wert anzunehmen, wenn der Zyklus richtig verläuft. Die Zeiten T_1 , T_2 und T_3 der Zeitbasis 12 20 gestatten die Ermittlung von Fehlern. Tatsächlich findet die Änderung des Registers 8 am Übergang von z.B. der Zeile 1 zur Zeile 2 des Speichers 9 am Ende der vorher gespeicherten Zeit T_2 statt. Diese Zeit entspricht mit einer Toleranz der für einen korrekten Fabrikationszyklus 25 zur Durchführung des Schrittes 1 des Zyklus festgesetzten Zeit. Wenn die Zeit T_2 abgelaufen ist, ohne daß ebenso Änderungen der entsprechenden Ausgänge des logischen Kreises 1 stattgefunden haben, dann überschreitet der Wert der Zeitmeßeinheit die Standardzeit T_{γ} und es ist 30 eine Anomalie eingetreten. Der Inhalt des Registers 8

und die Eingänge und Ausgänge des logischen Kreises 1 werden verglichen und der Fehler wird lokalisiert.

Das Register 8 entwickelt sich fort bis zu dem am Ende der Zeit T₂ gewünschten Zustand und wird mit dem Zustand der Anschlüsse der Eingänge 2 und Ausgänge 4 verglichen.

Die Abweichungen der Eingänge und Ausgänge werden angezeigt und geben so die möglichen Gründe für den Fehler 10 zu erkennen, der dadurch eingegrenzt wird.

Beispielsweise kann die Zeit T_2 von der Zeitmeßeinheit überschritten werden, wenn der logische Kreis in dem durch die Zeile 3 der Tafel 7 angezeigten Zustand blok-15 kiert bleibt. Das Register 8 wird auf den Zustand übergehen, welcher der Zeile 4 der Tafel 7 entspricht, indem die Zeile 3 des Speichers 9 berücksichtigt wird. Durch Vergleich des Registers 8 mit dem Zustand der Eingänge 2 und 4 des logischen Kreises 1 kann man die für den 20 Fehler verantwortlichen Elemente entdecken, nämlich jene, deren Zustand sich entgegen dem theoretischen Zyklus nicht geändert hat: die Eingänge a und d und Ausgänge S, deren Betätigungsorgan nicht reagiert haben kann. Die Ursachen der Fehler werden somit eingeschränkt und loka-25 lisiert.

Man kann gleichermaßen vorsehen, daß ein Vergleich zwischen dem Inhalt des Registers,8 und dem Zustand der
Eingänge 2 und Ausgänge 4 augenblicklich zum Zeitpunkt
30 eines jeden Wechsels des Zustandes wenigstens eines
Ausgangs 4 des logischen Kreises 1 stattfindet. Dieser

3413330

Vergleich erlaubt die Entdeckung gewisser Arten von Anomalien, z.B. nicht beleuchtete Anzeigeelemente... und die Vorwegnahme der Entdeckung einer Störung bzw. eines Fehlers.

5

10

30

Außerdem werden die Vergleiche angestellt, indem man den Inhalt des Speichers 9 in ein Register 8 überträgt. Man könnte gleichermaßen in Betracht ziehen, die wirklichen Werte der Eingänge 2 und der Ausgänge 4 zu "komprimieren" unter der im Speicher 9 angenommenen Form und ihre so reduzierten Werte mit dem direkten Inhalt des Speichers 9 zu vergleichen.

Nach dem erfindungsgemäßen Verfahren zur Überwachung und
Lokalisierung von Fehlern bzw. Störungen bildet man den
Inhalt des Speichers 9 auf der Basis eines korrekten
Fabrikationszyklus. In diesem Fall beginnt das Überwachungsverfahren mit einer Speicherungsphase, Lernvorgang genannt, in welcher man zu jeder Änderung des Zustandes wenigstens eines Ausgangs des logischen Kreises
die Nummern der entsprechenden geänderten Ausgänge, die
Nummern der Eingänge, deren Zustand sich gegenüber der
vorhergehenden Speicherung verändert hat, wie auch das
seit der vorhergehenden Speicherung verstrichene Zeitintervall einspeichert.

Auf diese Weise ist es möglich, einen Referenzspeicher zu bilden und das Verfahren zur Überwachung und Lokalisierung von Fehlern wie oben angegeben durchzuführen, ohne das Verfahren speziell auf eine Fabrikation einzurichten. Die Kontrolle der Zustände der Eingänge 3 und der Ausgänge 5 des logischen Kreises 1 kann erfindungsgemäß parallel erfolgen, es ist jedoch vorteilhafter, eine sequentielle Überwachung vorzusehen. Es genügt hierzu,

5 das in den logischen Kreis 1 eingegebene Programm derart zu ändern, daß bei jedem internen Zyklus des logischen Kreises letzterer auf einen Ausgang in Serie den Inhalt des verschiedenen Eingänge 2 und Ausgänge 4 seiner Anschlüsse adressiert. Diese Änderung ist außerordentlich einfach und erfordert nur sehr wenig Speicherkapazität und gestattet es, zahlreiche Verbindungen wirtschaftlicher zu gestalten.

Die Vorrichtung zur Durchführung des erfindungsgemäßen

Verfahrens ist ausgehend von einem Mikroprozessor-Kreis
gebildet. Die Vorrichtung umfaßt ein Vergleichsregister
8, einen einen Bezugszyklus enthaltenden Speicher 9,
eine Zeitmeßeinheit und ein Anzeigesystem, auf welchem
die nicht eingetretene Bedingung bzw. der nicht eingetretene Zustand angezeigt wird, der also die Ursache
der Störung ist.

Man kann gleichermaßen die Durchführung des erfindungsgemäßen Verfahrens auf einem Rechner vorsehen, bei welchem z.B. die Anzeige auf einem Bildschirm erfolgt, der in einer Überwachungsstation angeordnet ist.

Die zwischen dem programmierbaren Automaten und dem Mikroprozessor herzustellende Verbindung kann direkt auf die Anschlüsse des Automaten beispielsweise durch eine serielle Schnittstelle durchgeführt werden, wie sie vorstehend beschrieben wurde, oder aber auch mit

3413330

Zugang über den Bus des Automaten oder unter Verwendung einer R-232-Schnittstelle oder schließlich einer spezialisierten Karte, die insbesondere im Falle intermittierender, flüchtiger Fehler Nutzen bietet.

5

10

15

Die Vorrichtung kann dauerhaft an der zu überwachenden Transfermaschine angeordnet sein oder sie kann auch als autonomes System derart angewandt werden, daß sie mit dem Automaten im Störungsfall über eine Steckverbindung verbunden wird.

Beim Referenz- oder Vergleichsspeicher 9 kann der Referenzzyklus auf einen RAM-Speicher oder auch auf nach Bedarf geladene Kassetten oder Disketten abgespeichert werden.

Die Anzeige des Fehlers kann auf einem Display erfolgen, das den fehlerhaften Schritt mit den verschiedenen logischen Bedingungen anzeigt, die nicht den geforderten entsprechen, wodurch die zu überprüfenden und gegebenenfalls auszutauschenden Organe präzisiert werden.

Der Mikroprozessor ist außerdem mit einer Spezialtastatur versehen, die verschiedene Funktionen, wie z.B.

25 eine Steuerung des Lernvorgangs oder der Überwachung aufweist, wobei der Lernvorgang der Einspeicherung der den verschiedenen Schritten des Fabrikationszyklus entsprechenden logischen Bedingungen mit Inbetriebnahme der Zeitmeßeinheit und Speicherung der entsprechenden

30 Zeiten entspricht.

- 18 -

3413330

Dem Bedienungspersonal wird beispielsweise die Möglichkeit angeboten, an einer Maschine verschiedene Veränderungen vorzunehmen, ohne daß dadurch zugleich ein Fehlerzyklus ausgelöst wird.

5

Überdies ist es auch möglich, mehrere Zyklen einzuspeichern, von denen jeder einem Fabrikationstyp zugeordnet ist, wobei das Bedienungspersonal vom Speicher denjenigen Teil abruft, der dem durchzuführenden und zu

10 überwachenden Zyklus entspricht.

