Chapitre 6

Loi de probabilités discrètes

I. Loi de probabilités discrètes

1) Lois de probabilités discrètes

Définition:

 $\{e_1, e_2, ..., e_k, ..., e_m\}$ est l'ensemble des issues d'une expérience aléatoire.

A chaque issue, on associe un nombre et on note $F = \{x_1, x_2, ..., x_n\}$ (avec $n \le m$) l'ensemble de ces nombres.

Définir une **loi de probabilité discrète** sur l'ensemble F, c'est associer à chaque valeur x_i le nombre p_i , où p_i est la somme des probabilités des issues auxquelles x_i est associé.

vale	ur	x_1	•••	x_i	•••	\mathcal{X}_n
prob	abilité	p_1	•••	p_{i}	•••	p_{n}

$$\sum_{i=1}^{n} p_i = 1$$

Exemple:

On lance une pièce de monnaie bien équilibrée deux fois de suite.

Les issues de cette expérience aléatoire sont notées PP, PF, FP, FF.

A chaque sortie de « Pile », on gagne 10 €et à chaque sortie de « Face », on perd 20 € La probabilité de perdre 10 €est la somme des probabilités des deux issues FP et PF, auxquelles on a associé la valeur -10.

Cette probabilité est donc $\frac{1}{4} + \frac{1}{4} = \frac{1}{2}$.

La loi de probabilité du gain lors de ce jeu est donné par le tableau ci-contre.

gain	+20	-10	-40
probabilité	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

2) Espérance et variance d'une loi

Loi faible des grands nombres

Soit F l'ensemble des n résultats provenant d'une expérience aléatoire :

$$F = \{ x_1, x_2, ..., x_n \}$$

Lorsqu'on répète l'épreuve un grand nombre de fois :

• La distribution de fréquences observées :

es	3:			i
	x_3	•••	\mathcal{X}_n	
	f_3		f_n	

La variance de la série

La distribution de fréquences
 théoriques appelée loi de probabilité :

x_1	x_2	x_3		X_n
p_1	p_2	p_3	•••	p_n

- L'espérance
- La variance

Espérance et variance

Définitions:

• L'espérance de la loi de probabilité est la moyenne :

$$\mu = p_1 x_1 + p_2 x_2 + ... + p_n x_n = \sum_{i=1}^{n} p_i x_i$$

• La variance de la loi de probabilité est le nombre :

$$V = p_1(x_1 - \mu)^2 + p_2(x_2 - \mu)^2 + p_3(x_3 - \mu)^2 + \dots + p_n(x_n - \mu)^2 = \sum_{i=1}^n p_i(x_i - \mu)^2$$

• L'écart type de cette loi, noté σ , est la racine carrée de la variance : $\sigma = \sqrt{V}$

Remarques:

- L'espérance est la valeur qu'on peut « espérer » obtenir en moyenne quand on répète un grand nombre de fois l'épreuve.
- Comme en statistique, la variance caractérise la dispersion des valeurs autour de l'espérance.

Propriété (admise) :

La variance est également donnée par la formule :

$$V = \left(\sum_{i=1}^{n} p_i x_i^2\right) - \mu^2$$

Exemple:

En reprenant le jeu de l'exemple précédent :

$$\mu$$
=(-40)×0,25+(-10)×0,5+20×0,25=-10 €
 V =(-40)²×0,25+(-10)²×0,5+20²×0,25-(-10)²=450€ ² et σ = $\sqrt{450}$ €

Interprétation:

- L'espérance donne le gain moyen que l'on peut espérer à ce jeu, soit ici une perte de 10 € On dit qu'un jeu est équitable lorsque son espérance est nulle. Ici le jeu est défavorable au joueur car l'espérance est négative.
- La variance mesure le « risque » de s'écarter de l'espérance. On peut surtout l'utiliser pour comparer deux jeux de même espérance.

II. Lois binomiales

1) Lois de Bernoulli

Définition:

Lorsqu'une expérience aléatoire n'a que deux issues appelées succès et échec, on la nomme épreuve de Bernoulli.

On note p la probabilité du succès et q=1-p la probabilité de l'échec.

Remarques:

- La notion de succès n'a aucun caractère de jugement : le succès peut être un événement désagréable et l'échec un événement heureux.
- On note le succès 1 et l'échec 0.

Définition:

Définir une loi de Bernoulli de paramètre p, c'est associer à l'expérience aléatoire une loi de probabilité discrète définie par :

x_i	1	0
p_{i}	p	1-p

Exemple:

Un feu tricolore installé dans un carrefour est programmé de la façon suivante :

à chaque cycle, le feu reste au vert 25 secondes, 5 secondes à l'orange et 30 secondes au rouge. Un automobiliste se présente à un moment aléatoire.

On peut considérer une expérience de Bernoulli dont le « succès » est l'événement S : « le feu est vert ».

La probabilité de succès est $p = p(S) = \frac{25}{60} = \frac{5}{12}$.

La loi de Bernoulli associée a pour paramètre $\frac{5}{12}$.

x_i	1	0
p_i	<u>5</u> 12	7/12

Remarque:

Le succès étant 1 et l'échec 0, l'espérance de la loi de Bernoulli est p et l'écart type : $\sigma = \sqrt{pq}$

2) <u>Loi Binomiale</u>

Schéma de Bernoulli

Définition:

On parle de **schéma de Bernoulli** lorsqu'on répète n épreuves de Bernoulli de paramètre p, **identiques et indépendantes**.

A chaque issue, on associe le nombre k de succès avec $0 \le k \le n$.

La loi de probabilité du nombre de succès est la loi binomiale de paramètres n et p.

Cette loi est notée $\mathcal{B}(n;p)$.

Remarque:

La probabilité d'obtenir une liste ordonnée de k succès et n-k échecs à la fin des n épreuves peut se calculer en appliquant le principe multiplicatif.

La probabilité d'obtenir la liste (S, S, S, ..., S, E, E, ..., E) est $p^k \times q^{n-k}$.

k succès n-k échecs

Pour obtenir la loi de probabilité du nombre de succès, on dresse un arbre de choix et on compte le nombre de listes contenant *k* succès.

<u>Cas particuliers :</u>

- L'évènement « obtenir 0 succès » est réalisé par l'unique chemin de l'arbre qui ne comporte que des échecs, c'est-à-dire le dernier chemin de l'arbre qui est constitué de n branches qui ont toutes la probabilité 1-p.
 - Donc la probabilité d'obtenir n échecs consécutifs est $q^n = (1-p)^n$.
- De même, la probabilité d'obtenir n succès est : p^n .
- L'événement « obtenir un succès » est réalisé sur les chemins de l'arbre qui comportent exactement un succès et n-1 échecs. La probabilité de chacun de ces chemins est : $p(1-p)^{n-1}$.

Il reste à déterminer combien de chemins de ce type figurent dans l'arbre pondéré. Il suffit de repérer à quel niveau de l'arbre figure l'unique succès. Il y a donc *n* possibilités et ainsi *n* chemins qui réalisent l'événement « obtenir un succès ».

Donc la probabilité d'obtenir un succès est : $np(1-p)^{n-1}$.

• De même l'événement « obtenir n-1 succès » est $np^{n-1}(1-p)$.

Coefficients de Bernoulli

Définition:

Si n est un entier naturel et k est un entier compris entre 0 et n, on note $\binom{n}{k}$ et on lit « k parmi n »

le nombre de chemins qui réalisent exactement k succès dans l'arbre à n niveaux, associé à un schéma de Bernoulli.

Ces nombres sont appelés **coefficients binomiaux**.

Remarque:

Ces nombres $\binom{n}{k}$ sont par construction des entiers et on a vu que :

- quel que soit n, entier naturel : $\binom{n}{0} = 1$ et $\binom{n}{n} = 1$. quel que soit n, entier naturel non nul : $\binom{n}{1} = n$ et $\binom{n}{n-1} = n$.
- $\binom{4}{1} = 4$ et $\binom{4}{2} = 6$ et $\binom{5}{2} = 10$

Calculatrice:

Carcarati ice :
MATH NUM CPX 128 1:NbrAléat
2:Arrangement
MH Combinaison
5:entAléat(
6:normAléat(
Dinormaleact
7:BinAléat(

- 4 Combinaison 2 4 Combinaison 3

4	Combinaison	1
4	Combinaison	2,
4	Combinaison	3

Loi de probabilité

La loi binomiale est donc définie par :

Nombre de succès	0	1	2	•••	k	•••	n
Probabilité p_i	$q^{^n}$	np^1q^{n-1}	$\binom{n}{2}p^2q^{n-2}$		$\binom{n}{k} p^k q^{n-k}$		p^{n}

Propriété (admise) :

L'espérance de la loi binomiale de paramètre n et p : $\mathcal{B}(n;p)$ est égale à np.

Remarque:

On pourra noter que l'écart type de la loi binomiale de paramètre n et $p: \mathcal{B}(n;p)$ est égale à \sqrt{npq} .

Exemple:

Aziz et Benoît pratiquent le tennis.

Ils décident de jouer 4 matchs dans l'année. La probabilité que Benoît gagne un match est 0,4. Les résultats des matchs sont indépendants les uns des autres.

À la fin de chaque match, le perdant verse 10 €dans une cagnotte avec laquelle ils s'offriront un repas à la fin de la saison.

On s'intéresse à la loi de probabilité associée à la dépense de Benoît.

Chaque match est une épreuve de Bernoulli de succès l'événement S: « Benoît gagne le match », de probabilité p=0,4.

A chaque match, la probabilité du succès ne change pas et ne dépend pas du match précédent. On a donc une répétition de 4 épreuves de Bernoulli identiques et indépendantes de paramètre p=0,4.

L'événement A: « Benoît gagne exactement une fois » est formé des listes (S;E;E;E); (E;S;E;E); (E;E;S;E); (E;E;E;S). Chaque liste a pour probabilité $p\times q^3$, donc $p(A)=4\times 0,4\times 0,6^3=0,3456$.

Le nombre de victoire de Benoît (et donc la dépense de Benoît) suit donc une loi binomiale $\mathcal{B}(4;0,4)$.

La loi de probabilité de la loi binomiale $\mathcal{B}(4;0,4)$ est :

Nombre de succès k	0	1	2	3	4
Probabilité p_i	q^4	$4\times q^3\times p$	$6 \times p^2 \times q^2$	$4\times q\times p^3$	p^4

Donc, la loi de probabilité associée à la dépense de Benoît est alors :

d_i en \in	40	30	20	10	0
$p_i \ \text{à} \ 10^{-4}$	0,0256	0,1536	0,3456	0,3456	0,1296

L'espérance de Benoît est :

 $\mu = 0.0256 \times 40 + 0.1536 \times 30 + 0.3456 \times 20 + 0.3456 \times 10 = 16$

L'espérance de dépense pour Benoît, à la fin de l'année, est de 16 €