BS2280 - Econometrics 1

Lecture 6 - Part 1: Multiple Regression Analysis II

Dr. Yichen Zhu

Structure of today's lecture

- Review: OLS Assumptions
- Multiple Regression Model: OLS Assumptions
- Multiple Regression Model: F-Tests

Intended Learning Outcomes

- Understand OLS assumptions for the multiple regression model
- Testing the overall fit of the model

Review: Simple Regression Model OLS Assumptions

Population	Sample
$Y_i = \beta_1 + \beta_2 X_i + u_i$	$Y_i = \hat{Y}_i + \hat{u}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + \hat{u}_i$
parameters β_1 and β_2	coefficients $\hat{eta}_{ extsf{1}}$ and $\hat{eta}_{ extsf{2}}$
u_i disturbance term	\hat{u}_i residual

OLS estimates $\hat{\beta}_1$ and $\hat{\beta}_2$ have certain desirable properties, but these properties rely on a set of assumptions we need to make!!!

$$Y_i = \beta_1 + \beta_2 X_i + u_i \tag{1}$$

- Assumption 2. There is some variation in the X variable. X cannot be constant.
- **Assumption 3.** Disturbance term has zero expectation. $E(u_i) = 0$ for all i or $E(u_i|X_1, X_2, ..., X_n) = 0$ for all i
- Assumption 4. The disturbance term is homoscedastic. We assume that the error term has a constant variance, $E(u_i^2) = \sigma_u^2$ for all i
- Assumption 5. Values of disturbance term have independent distributions. We assume that the error terms are absolutely independent of each other.
 u_i is independently distributed from u_i for all i ≠ j
- Assumption 6. The disturbance term has a normal distribution. Once we assume that the error term has a normal distribution, we can assume that $\hat{\beta}_1$ and $\hat{\beta}_2$ will also have a normal distribution, allowing us to carry out hypothesis tests on them.

$$Y_i = \beta_1 + \beta_2 X_i + u_i \tag{1}$$

- Assumption 2. There is some variation in the X variable. X cannot be constant.
- Assumption 3. Disturbance term has zero expectation. $E(u_i) = 0$ for all i or $E(u_i|X_1, X_2, ..., X_n) = 0$ for all i
- Assumption 4. The disturbance term is homoscedastic. We assume that the error term has a constant variance, $E(u_i^2) = \sigma_{ii}^2$ for all i
- Assumption 5. Values of disturbance term have independent distributions. We assume that the error terms are absolutely **independent** of each other. u_i is independently distributed from u_i for all $i \neq j$
- Assumption 6. The disturbance term has a normal distribution. Once we assume that the error term has a normal distribution, we can assume that $\hat{\beta}_1$ and $\hat{\beta}_2$ will also have a normal distribution, allowing us to carry out hypothesis tests on them.

$$Y_i = \beta_1 + \beta_2 X_i + u_i \tag{1}$$

- Assumption 2. There is some variation in the X variable. X cannot be constant.
- Assumption 3. Disturbance term has zero expectation. $E(u_i) = 0$ for all i or $E(u_i|X_1, X_2, ..., X_n) = 0$ for all i
- Assumption 4. The disturbance term is homoscedastic. We assume that the error term has a constant variance, $E(u_i^2) = \sigma_u^2$ for all i
- Assumption 5. Values of disturbance term have independent distributions. We assume that the error terms are absolutely **independent** of each other. u_i is independently distributed from u_i for all $i \neq j$
- Assumption 6. The disturbance term has a normal distribution. Once we assume that the error term has a normal distribution, we can assume that $\hat{\beta}_1$ and $\hat{\beta}_2$ will also have a normal distribution, allowing us to carry out hypothesis tests on them.

$$Y_i = \beta_1 + \beta_2 X_i + u_i \tag{1}$$

- **Assumption 2**. There is some variation in the *X* variable. *X* cannot be constant.
- Assumption 3. Disturbance term has zero expectation. $E(u_i) = 0$ for all i or $E(u_i|X_1, X_2, ..., X_n) = 0$ for all i
- **Assumption 4**. The disturbance term is homoscedastic. We assume that the error term has a constant variance, $E(u_i^2) = \sigma_{ii}^2$ for all i
- Assumption 5. Values of disturbance term have independent distributions. We assume that the error terms are absolutely **independent** of each other. u_i is independently distributed from u_i for all $i \neq j$
- Assumption 6. The disturbance term has a normal distribution. Once we assume that the error term has a normal distribution, we can assume that $\hat{\beta}_1$ and $\hat{\beta}_2$ will also have a normal distribution, allowing us to carry out hypothesis tests on them.

$$Y_i = \beta_1 + \beta_2 X_i + u_i \tag{1}$$

- Assumption 2. There is some variation in the X variable. X cannot be constant.
- Assumption 3. Disturbance term has zero expectation. $E(u_i) = 0$ for all i or $E(u_i|X_1, X_2, ..., X_n) = 0$ for all i
- **Assumption 4.** The disturbance term is homoscedastic. We assume that the error term has a constant variance, $E(u_i^2) = \sigma_u^2$ for all i
- Assumption 5. Values of disturbance term have independent distributions. We assume that the error terms are absolutely independent of each other.
 u_i is independently distributed from u_i for all i ≠ j
- Assumption 6. The disturbance term has a normal distribution. Once we assume that the error term has a normal distribution, we can assume that $\hat{\beta}_1$ and $\hat{\beta}_2$ will also have a normal distribution, allowing us to carry out hypothesis tests on them.

$$Y_i = \beta_1 + \beta_2 X_i + u_i \tag{1}$$

- Assumption 2. There is some variation in the X variable. X cannot be constant.
- Assumption 3. Disturbance term has zero expectation. $E(u_i) = 0$ for all i or $E(u_i|X_1, X_2, ..., X_n) = 0$ for all i
- **Assumption 4.** The disturbance term is homoscedastic. We assume that the error term has a constant variance, $E(u_i^2) = \sigma_u^2$ for all i
- Assumption 5. Values of disturbance term have independent distributions. We assume that the error terms are absolutely independent of each other. *u_i* is independently distributed from *u_j* for all *i* ≠ *j*
- Assumption 6. The disturbance term has a normal distribution. Once we assume that the error term has a normal distribution, we can assume that $\hat{\beta}_1$ and $\hat{\beta}_2$ will also have a normal distribution, allowing us to carry out hypothesis tests on them.

- As with the simple regression model, a set of assumptions hold for multiple regression model
- **Assumption 1**. Model is linear in parameters and correctly specified:

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + \dots + \beta_k X_{ki} + u_i$$

- **Assumption 2.** There is no exact linear relationship amongst the *X* variables in the sample (more about this later)
- **Assumption 3**. Disturbance term has zero expectation.

$$E(u_i) = 0$$
 for all i

- As with the simple regression model, a set of assumptions hold for multiple regression model
- Assumption 1. Model is linear in parameters and correctly specified:

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + ... + \beta_k X_{ki} + u_i$$

- **Assumption 2.** There is no exact linear relationship amongst the *X* variables in the sample (more about this later)
- **Assumption 3**. Disturbance term has zero expectation.

$$E(u_i) = 0$$
 for all i

- As with the simple regression model, a set of assumptions hold for multiple regression model
- Assumption 1. Model is linear in parameters and correctly specified:

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + ... + \beta_k X_{ki} + u_i$$

- **Assumption 2.** There is no exact linear relationship amongst the *X* variables in the sample (more about this later)
- **Assumption 3**. Disturbance term has zero expectation.

$$E(u_i) = 0$$
 for all i

- As with the simple regression model, a set of assumptions hold for multiple regression model
- Assumption 1. Model is linear in parameters and correctly specified:

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + ... + \beta_k X_{ki} + u_i$$

- **Assumption 2.** There is no exact linear relationship amongst the *X* variables in the sample (more about this later)
- **Assumption 3**. Disturbance term has zero expectation.

$$E(u_i) = 0$$
 for all i

- **Assumption 4**. The disturbance term is homoscedastic. We assume that the error term has a constant variance, $E(u_i^2) = \sigma_u^2$ for all i
- **Assumption 5**. Values of disturbance term have independent distributions. We assume that the error terms are absolutely **independent** of each other. u_i is independently distributed from u_i for all $i \neq j$
- **Assumption 6**. The disturbance term has a normal distribution.

- **Assumption 4**. The disturbance term is homoscedastic. We assume that the error term has a constant variance, $E(u_i^2) = \sigma_u^2$ for all i
- **Assumption 5**. Values of disturbance term have independent distributions. We assume that the error terms are absolutely **independent** of each other. u_i is independently distributed from u_j for all $i \neq j$
- **Assumption 6**. The disturbance term has a normal distribution.

- **Assumption 4**. The disturbance term is homoscedastic. We assume that the error term has a constant variance, $E(u_i^2) = \sigma_u^2$ for all i
- **Assumption 5**. Values of disturbance term have independent distributions. We assume that the error terms are absolutely **independent** of each other. u_i is independently distributed from u_j for all $i \neq j$
- **Assumption 6**. The disturbance term has a normal distribution.

Multiple Regression Model: BLUE

If all our OLS assumptions hold, we get Best (most efficient) Linear Unbiased Estimators (BLUE) $\hat{\beta}_i$

Unbiasedness

An estimator is unbiased when expected value equals population value.

$$E(\hat{\beta}_i) = \beta_i$$

Consistency

The larger the sample the closer our estimators $\hat{\beta}_i$ should be to the population value β_i

Efficiency / Precision

For the OLS estimator to be best (most efficient) it needs to have a lower variance than all the other estimators within the class

Multiple Regression Model: BLUE

Efficiency / Precision

Simple regression model:

$$Y_i = \beta_1 + \beta_2 X_i + u_i \tag{2}$$

$$variance(\hat{\beta}_2) = \sigma_{\hat{\beta}_2}^2 = \frac{\sigma_{u_i}^2}{nMSD(X)}$$

where $MSD(X) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$

Multiple regression model:

$$Y_i = eta_1 + eta_2 X_{2i} + eta_3 X_{3i} + u_i$$
 $variance(\hat{eta}_2) = \sigma_{\hat{eta}_2}^2 = rac{\sigma_{u_i}^2}{nMSD(X_2)} imes rac{1}{1 - r_{X_2 X_3}^2}$

where $MSD(X_2) = \frac{1}{n} \sum_{i=1}^{n} (X_2 - \bar{X_2})^2$

 $r_{X_2X_2}^2$ is the squared sample correlation coefficient between X_2 and X_3

Multiple Regression Model: *F*-Tests

F-tests are extremely popular! We will use them to

- Testing the overall significance or overall fit of a model
- Testing the joint significance of a group of variables
- Testing restrictions

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + \dots + \beta_k X_{ki} + u_i$$

- We will use F-Tests again to check the overall significance of the model
- There are two ways to write down the hypotheses:
 - \bigcirc H₀ : β₂ = β₃ = ... = β_k = 0; H₁ : at least one β \neq 0
 - $O H_0: R^2 = 0; H_1: R^2 \neq 0$
- The F-test is identical to before
- Calculate F-statistic and compare with critical F-value
- Reject or do not reject null hypothesis

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + ... + \beta_k X_{ki} + u_i$$

- We will use F-Tests again to check the overall significance of the model
- There are two ways to write down the hypotheses:

①
$$H_0: \beta_2 = \beta_3 = ... = \beta_k = 0; H_1: at least one \beta \neq 0$$

②
$$H_0: R^2 = 0$$
; $H_1: R^2 \neq 0$

- The F-test is identical to before
- Calculate F-statistic and compare with critical F-value
- Reject or do not reject null hypothesis

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + ... + \beta_k X_{ki} + u_i$$

- We will use F-Tests again to check the overall significance of the model
- There are two ways to write down the hypotheses:

1
$$H_0: \beta_2 = \beta_3 = ... = \beta_k = 0$$
; $H_1:$ at least one $\beta \neq 0$

- ② $H_0: R^2 = 0$; $H_1: R^2 \neq 0$
- The F-test is identical to before
- Calculate F-statistic and compare with critical F-value
- Reject or do not reject null hypothesis

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + ... + \beta_k X_{ki} + u_i$$

- We will use F-Tests again to check the overall significance of the model
- There are two ways to write down the hypotheses:

1
$$H_0: \beta_2 = \beta_3 = ... = \beta_k = 0; H_1: at least one $\beta \neq 0$$$

②
$$H_0: R^2 = 0$$
; $H_1: R^2 \neq 0$

- The F-test is identical to before
- Calculate F-statistic and compare with critical F-value
- Reject or do not reject null hypothesis

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + ... + \beta_k X_{ki} + u_i$$

- We will use F-Tests again to check the overall significance of the model
- There are two ways to write down the hypotheses:

1
$$H_0: \beta_2 = \beta_3 = ... = \beta_k = 0; H_1: at least one $\beta \neq 0$$$

- ② $H_0: R^2 = 0$; $H_1: R^2 \neq 0$
- The F-test is identical to before
- Calculate F-statistic and compare with critical F-value
- Reject or do not reject null hypothesis

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + \dots + \beta_k X_{ki} + u_i$$

- We will use F-Tests again to check the overall significance of the model
- There are two ways to write down the hypotheses:

1
$$H_0: \beta_2 = \beta_3 = ... = \beta_k = 0$$
; $H_1: at least one $\beta \neq 0$$

- ② $H_0: R^2 = 0$; $H_1: R^2 \neq 0$
- The F-test is identical to before
- Calculate F-statistic and compare with critical F-value
- Reject or do not reject null hypothesis

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + ... + \beta_k X_{ki} + u_i$$

- We will use F-Tests again to check the overall significance of the model
- There are two ways to write down the hypotheses:

1
$$H_0: \beta_2 = \beta_3 = ... = \beta_k = 0; H_1: at least one $\beta \neq 0$$$

- ② $H_0: R^2 = 0$; $H_1: R^2 \neq 0$
- The F-test is identical to before
- Calculate F-statistic and compare with critical F-value
- Reject or do not reject null hypothesis

Example: educational attainment model

$$S_i = \beta_1 + \beta_2 ASVABC_i + \beta_3 SM_i + \beta_4 SF_i + u_i$$

Note:

 S_i : schooling years of the i^{th} respondent $ASVABC_i$: the ability score of the i^{th} respondent SM_i : the highest grade completed by the mother of the i^{th} respondent SF_i : the highest grade completed by the father of the i^{th} respondent

Step 1. State the null and alternative hypotheses

Null Hypothesis $H_0: \beta_2=\beta_3=...=\beta_k=0 \text{ or } H_0: R^2=0$ Alternative Hypothesis $H_1:$ at least one $\beta\neq 0$ or $H_1:R^2\neq 0$

Step 2. Select the significance level. Significance level $\alpha = 5\%$

$$S_i = \beta_1 + \beta_2 ASVABC_i + \beta_3 SM_i + \beta_4 SF_i + u_i$$

Step 3. Select and calculate the test statistics

Test the entire regression model, so use *F* statistic. Two ways:

Option 1.
$$F(k-1, n-k) = \frac{ESS/(k-1)}{RSS/(n-k)} = \frac{\frac{ESS}{TSS}/(k-1)}{\frac{RSS}{TSS}/(n-k)}$$

k: number of regression coefficients in the model, including the intercept *n*: number of observations in the model, sample size

Using ESS and RSS we get by using anova() command in R

```
> anova(educfit)
Analysis of Variance Table

Response: S

Df Sum Sq Mean Sq F value Pr(>F)
ASVABC 1 1007.00 1007.00 198.283 < 2.2e-16 ***
SM 1 112.38 112.38 22.128 0.000003312 ***
SF 1 115.68 115.68 22.778 0.000002396 ***
Residuals 496 2518.97 5.08

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '.' 1

F(k-1,n-k) = F(4-1,500-4) = \frac{ESS/(k-1)}{RSS/(n-k)} = \frac{(1007.00+112.38+115.68)/(4-1)}{2518.97/(500-4)} = 81.06
```

$$S_i = \beta_1 + \beta_2 ASVABC_i + \beta_3 SM_i + \beta_4 SF_i + u_i$$

Step 3. Select and calculate the test statistics

Option 2.
$$F(k-1, n-k) = \frac{ESS/(k-1)}{RSS/(n-k)} = \frac{\frac{ESS}{TSS}/(k-1)}{\frac{RSS}{TSS}/(n-k)} = \frac{R^2/(k-1)}{(1-R^2)/(n-k)}$$

k: number of regression coefficients in the model, including the intercept n: number of observations in the model, sample size Using R^2 from when using summary() command in R

$$F(k-1, n-k) = F(4-1, 500-4) = \frac{R^2/(k-1)}{(1-R^2)/(n-k)} = \frac{0.329/(4-1)}{(1-0.329)/(500-4)} = 81.06$$

Step 4. Set the decision rule.

$$k = 4, n = 500.$$
 $F_{crit,5\%}(4 - 1,500 - 4) = F_{crit,5\%}(3,496) = 2.62$

Step 5. Make statistical decisions.

$$F = 81.06 > F_{crit.5\%}(3,496) = 2.62$$

We can reject the null $H_0: \beta_2 = \beta_3 = ... = \beta_k = 0$ or $H_0: R^2 = 0$.

Our model is statistically significant at 5% level.

Student Task

 We set up a model to identify the impact of attendance (attend), submitted homework (hwrte) and ability (ACT) on the final exam mark (final) at an American University. We get to following results:

$$final_i = \beta_1 + \beta_2 attend_i + \beta_3 hwrte_i + \beta_4 ACT_i + u_i$$

- Use an F-test to determine the overall statistical significance of the estimated model.
- Number of observations in the model, sample size n = 674
- The critical *F*-value at the 5% significance level is 2.6.

```
> anova(markfit)
Analysis of Variance Table

Response: final
Df Sum Sq Mean Sq F value Pr(>F)
attend 1 329.4 329.39 17.8108 0.0002776 ***
hwrte 1 71.7 71.72 3.8783 0.04933 *
ACT 1 2232.8 2232.81 120.7341 < 2.2e-16 ***
Residuals 670 12390.7 18.49
---
Signif. codes: 0 **** 0.001 *** 0.01 ** 0.05 *, 0.1 * 1
```