Симплекс метод решения задач линейного программирования: типичный пример и алгоритм

Понятие и алгоритм симплекс мтода

Симплекс метод с симплексными

таблицами

<u>Симплекс метод с алгебраическими</u> преобразованиями

Понятие и алгоритм симплекс метода

Симплекс метод - это метод последовательного перехода от одного базисного решения (вершины многогранника решений) системы ограничений задачи линейного программирования к другому базисному решению до тех пор, пока функция цели не примет оптимального значения (максимума или минимума).

Симплекс-метод является универсальным методом, которым можно решить любую задачу линейного программирования, в то время, как <u>графический метод</u> пригоден лишь для системы ограничений с двумя переменными.

Симплекс метод был предложен американским математиком Р.Данцигом в 1947 году, с тех пор для нужд промышленности этим методом нередко решаются задачи линейного программирования с тысячами переменных и ограничений.

Перед тем, как перейти к алгоритму симплекс метода, несколько определений.

Всякое неотрицательное решение системы ограничений называется **допустимым решением**.

Пусть имеется система m ограничений с n переменными (m < n).

Допустимым базисным решением является решение, содержащее *т* неотрицательных **основных** (**базисных**) переменных и *n* - *т* **неосновных** (небазисных, или **свободных**) переменных. Неосновные переменные в базисном решении равны нулю, основные же переменные, как правило, отличны от нуля, то есть являются положительными числами.

Любые *m* переменных системы *m* линейных уравнений с *n* переменными называются **основными**, если определитель из коэффициентов при них отличен от нуля. Тогда остальные *n* - *m* переменных называются **неосновными** (или **свободными**).

Алгоритм симплекс метода

- **Шаг 1**. Привести задачу линейного программирования к канонической форме. Для этого перенести свободные члены в правые части (если среди этих свободных членов окажутся отрицательные, то соответствующее уравнение или неравенство умножить на 1) и в каждое ограничение ввести дополнительные переменные (со знаком "плюс", если в исходном неравенстве знак "меньше или равно", и со знаком "минус", если "больше или равно").
- **Шаг 2**. Если в полученной системе *m* уравнений, то *m* переменных принять за основные, выразить основные переменные через неосновные и найти соответствующее базисное решение. Если найденное базисное решение окажется допустимым, перейти к допустимому базисному решению.
- Шаг 3. Выразить функцию цели через неосновные переменные допустимого базисного решения. Если отыскивается максимум (минимум) линейной формы и в её выражении нет неосновных переменных с отрицательными (положительными) коэффициентами, то критерий оптимальности выполнен и полученное базисное решение является оптимальным решение окончено. Если при нахождении максимума (минимума) линейной формы в её выражении имеется одна или несколько неосновных переменных с отрицательными (положительными) коэффициентами, перейти к новому базисному решению.
- **Шаг 4**. Из неосновных переменных, входящих в линейную форму с отрицательными (положительными) коэффициентами, выбирают ту, которой соответствует наибольший (по модулю) коэффициент, и переводят её в основные. Переход к шагу 2.

Важные условия

- Если допустимое базисное решение даёт оптимум линейной формы (критерий оптимальности выполнен), а в выражении линейной формы через неосновные переменные отсутствует хотя бы одна из них, то полученное оптимальное решение не единственное.
- Если в выражении линейной формы имеется неосновная переменная с отрицательным коэффициентом в случае её максимизации (с положительным в случае минимизации), а во все уравнения системы ограничений этого шага указанная переменная входит также с отрицательными коэффициентами или отсутствует, то линейная форма не ограничена при данной системе ограничений. В этом случае её максимальное (минимальное) значение

Далее разберём всё же типичный пример, когда система ограничений является совместной и имеется конечный оптимум, причём единственный.

Симплекс метод с симплексными таблицами

Путём построения симплексных таблиц решить задачу линейного программирования намного проще, чем путём алгебраических преобразований, который показан в следующем параграфе. Симплексные таблицы очень наглядны. Существует несколько разновидностей правил работы с симплексными таблицами. Мы разберём правило, которое чаще всего называется правилом ведущего столбца и ведущей строки.

Пример. Найти максимум функции $F = x_1 + 2x_2$ при ограничениях

$$\begin{cases} -x_1 + 2x_2 \ge 2 \\ x_1 + x_2 \ge 4 \\ x_1 - x_2 \le 2 \\ x_2 \le 6 \end{cases}$$

$$x_1 \ge 0$$
, $x_2 \le 0$

Решение.

Вводим добавочные неотрицательные переменные x_3 , x_4 , x_5 , x_6 и сводим данную систему неравенств к эквивалентной ей системе уравнений

$$\begin{cases} -x_1 + 2x_2 - x_3 & = 2 \\ x_1 + x_2 - x_4 & = 4 \\ x_1 - x_2 + x_5 & = 2 \\ x_2 + x_6 = 6 \end{cases}$$

$$x_j \ge 0 \quad (j = 1, 2, ..., 6).$$

Это было сделано с соблюдением следующего правила: если в первоначальном ограничении знак "меньше или равно", то добавочную переменную нужно прибавлять, а если "больше или равно", то добавочную переменную нужно отнимать.

Введённые добавочные переменные принимаем за основные (базисные). Тогда x_1 и x_2 - неосновные (свободные) переменные.

Выразив основные (базисные) переменные через неосновные (свободные), получим

$$\begin{cases} x_3 = -2 - (x_1 - 2x_2) \\ x_4 = -4 - (-x_1 - x_2) \\ x_5 = 2 - (x_1 - x_2) \\ x_6 = 6 - (x_2) \end{cases}$$

Функцию цели также выразим через неосновные (свободные) переменные:

$$F = 0 - \left(-x_1 - 2x_2 \right)$$

Из коэффициентов при переменных (неизвестных) построим первую симплексную таблицу.

Таблица 1					
Базисные	Свободные члены	Свободные неизвестные		Вспомогательные	
неизвестные		X1	X2	коэффициенты	
Х3	-2	1	-2		
X4	-4	-1	-1		
X5	2	1	-1		
X6	6	0	1		
F	0	-1	-2		

Последнюю строку таблицы, в которой записаны функция цели и коэффициенты при свободных переменных в ней, будем называть в индексной строкой.

Полученное решение не оптимально, так как в индексной строке коэффициенты при свободных переменных отрицательны. То есть оптимальным будет то решение, в котором коэффициенты при свободных переменных в индексной строке будут больше или равны нулю.

Для перехода к следующей таблице найдём наибольшее (по модулю) из чисел |-1| и |-2|. Это число 2. Поэтому ведущий столбец - тот столбец, в котором записано x_2

Для определения ведущей строки находим минимум отношений свободных членов к элементам ведущего столбца, причём если в числителе положительное число, а в знаменателе отрицательное, отношение считается равным бесконечности.

Итак.

$$\min\{2, 4, \infty, 6\} = 2.$$

Поэтому ведущая строка - та, в которой записано x_3

Ведущим элементом, таким образом, является -2.

Составляем вторую симплексную таблицу.

Новый базисный элемент x_2 вписываем первой строкой, а столбец, в котором стояло x_2 , вписываем новую свободную переменную x_3

Заполняем первую строку. Для этого все числа, стоящие в ведущей строке таблицы 1, делим на ведущий элемент и записываем в соответствующий столбец первой строки таблицы 2, кроме числа, стоящего в ведущем столбце, куда записывается величина, обратная ведущему элементу (то есть, единица, делённая на ведущий элемент).

Заполняем столбец вспомогательных коэффициентов. Для этого числа ведущего столбца таблицы 1, кроме ведущего элемента, записываем с противоположными знаками в графу вспомогательных коэффициентов таблицы 2.

Таблица 2					
Базисные	Свободные члены	Свободные неизвестные		Вспомогательные	
неизвестные		X1	X3	коэффициенты	
X2	1	-1/2	-1/2		
X4	-3	-3/2	-1/2	1	
X5	3	1/2	-1/2	1	
X6	5	1/2	1/2	-1	
F	2	-2	-1	2	

Для получения остальных строк таблицы 2 числа, уже стоящие в первой строке этой таблицы, умножаем на вспомогательный коэффициент, стоящий в заполняемой строке, и к результату прибавляем число из таблицы 1, стоящее в той же строке при соответствующей переменной.

Например, для получения свободного члена второй строки число 1 умножаем на 1 и прибавляем из таблицы 1 число -4. Получаем -3. Коэффициент при x_1 во второй строке находим так же: $-\frac{1}{2} \bullet 1 - 1 = -\frac{3}{2}$. Так как в предыдущей таблице отсутствует столбец с новой свободной переменной x_3 , то коэффициент второй строки в столбце новой свободной переменной x_3 будет $-\frac{1}{2} \bullet 1 + 0 = -\frac{1}{2}$ (то есть из таблицы 1 прибавляем 0, так как в таблице 1 столбец с x_3 отсутствует).

Так же заполняется и индексная строка:

$$1 \cdot 2 + 0 = 2$$

$$-\frac{1}{2} \cdot 2 - 1 = -2$$

$$-\frac{1}{2} \cdot 2 + 0 = -1.$$

Полученное таким образом решение вновь не оптимально, так как в индексной строке коэффициенты при свободных переменных вновь отрицательны.

Для перехода к следующей симплексной таблице найдём наибольшее (по модулю) из чисел |-2| и |-1|, то есть, модулей коэффициентов в индексной строке. Это число 2. Поэтому ведущий столбец - тот столбец, в котором записано x_1 .

Для поиска ведущей строки найдём минимум отношений свободных членов к элементам ведущей строки. Получаем:

$$\min\{\infty, 2, 6, 10\} = 2.$$

Следовательно, ведущая строка - та, в которой записано x_4 , а ведущим элементом является -3/2.

Составляем третью симплексную таблицу

Новую базисную переменную x_1 записываем первой строкой. В столбец, в котором было x_1 , вписываем новую свободную переменную x_4 .

Первая строка:

$$-3: \left(-\frac{3}{2}\right) = 2$$

$$1: \left(-\frac{3}{2}\right) = -\frac{2}{3}$$

$$-\frac{2}{2}: \left(-\frac{3}{2}\right) = \frac{1}{3}.$$

Вспомогательные коэффициенты:

$$\frac{1}{2}$$
; $-\frac{1}{2}$; $-\frac{1}{2}$; 2

Таблица 3						
Базисные	Свободные	Свободные неизвестные		Вспомогательные		
неизвестные	члены	X4	Х3	коэффициенты		
X1	2	-2/3	1/3			
X2	2	-1/3	-1/3	1/2		
X5	2	1/3	-2/3	-1/2		
X6	4	1/3	1/3	-1/2		
F	6	-4/3	-1/3	2		

Вычисление остальных строк на примере второй строки:

$$2 \bullet \frac{1}{2} + 1 = 2$$

$$-\frac{2}{3} \bullet \frac{1}{2} + 0 = -\frac{1}{3}$$

$$\frac{1}{3} \bullet \frac{1}{2} - \frac{1}{2} = -\frac{1}{3}.$$

Полученное решение вновь не оптимальное, поскольку коэффициенты при свободных неизвестных в индексной строке вновь отрицательные.

Для перехода к четвёртой симплексной таблице найдём наибольшее из чисел $\left|-\frac{4}{3}\right|$ и $\left|-\frac{1}{3}\right|$. Это число $\frac{4}{3}$.

Следовательно, ведущий столбец - тот, в котором записано x_4 .

Для нахождения ведущей строки найдём минимум модулей отношений свободных членов к элементам ведущего столбца:

$$\min \{ \infty, \infty, 6, 12 \} = 6.$$

Поэтому ведущая строка - та, в которой записано x_5 , а ведущий элемент 1/3.

В четвёртой симплексной таблице новую базисную переменную x_4 записываем первой строкой. В столбец, где было x_4 , записываем новую свободную переменную x_5 .

Первая строка:

$$2: \frac{1}{3} = 6$$

$$1: \frac{1}{3} = 3$$

$$-\frac{2}{3}: \frac{1}{3} = -2.$$

Вспомогательные коэффициенты:

$$\frac{2}{3}$$
; $\frac{1}{3}$; $-\frac{1}{3}$; $\frac{4}{3}$.

Таблица 4					
Базисные	Свободные члены	Свободные неизвестные		Вспомогательные	
неизвестные		X5	Х3	коэффициенты	
X4	6	3	-2		
X1	6	2	-1	2/3	

X2	4	1	-1	1/3
X6	2	-1	1	-1/3
F	14	4	-3	4/3

Вычисление остальных строк на примере второй строки:

$$6 \cdot \frac{2}{3} + 2 = 6$$

$$3 \bullet \frac{2}{3} + 0 = 2$$

$$-2 \bullet \frac{2}{3} + \frac{1}{3} = -1.$$

Полученное решение так же не оптимально, но оно уже лучше предыдущих, так как один из коэффициентов при свободных переменных в индексной строке неотрицателено.

Для улучшения плана перейдём к следующей симплексной таблице.

Найдём наибольшее из чисел 4 и |-3|. Это число 4. Следовательно, ведущий столбец x_5 .

Для нахождения ведущей строки найдём

$$\min\{2, 3, 4, \infty\} = 2.$$

Следовательно, ведущая строка - та, в которой записано x_4 . Но x_3 и x_4 уже были вместе среди свободных переменных. Поэтому для перевода очередной переменной из свободных в базисные выбираем другой ведущий столбец - тот, в котором записано x_3 .

$$\min \{ \infty, \infty, \infty, 2 \} = 2.$$

Следовательно, ключевая строка - та, в которой записано x_6 , а ведущий элемент 1.

В пятой симплексной таблице новую базисную переменную x_3 записываем первой строкой. В столбец, где было x_3 , записываем новую свободную переменную x_6 .

Первая строка:

$$\frac{2}{1} = 2$$

$$-\frac{1}{1} = -1$$

$$\frac{1}{1} = 1.$$

Вспомогательные коэффициенты:

2; 1; 1; 3.

Таблица 5						
Базисные	Свободные члены	Свобо		Вспомогательные		
неизвестные		X5	X6	коэффициенты		
Х3	2	-1 1				
X4	10			2		
X1	8			1		
X2	6			1		
F	20	1	3	3		

Попробуем сразу узнать, не является ли решение оптимальным. Поэтому для остальных строк вычислим только свободные члены (чтобы узнать значения базисных переменных при равенстве свободных переменных нулю) и коэффициенты при свободных переменных в индексной строке.

Свободные члены:

- во второй строке $2 \cdot 2 + 6 = 10$;
- в третьей строке 2 1 + 6 = 8;
- в четвёртой строке $2 \cdot 1 + 4 = 6$.

Индексная строка:

 $2 \cdot 3 + 14 = 20$

 $-1 \bullet 3 + 4 = 1$

 $1 \bullet 3 + 0 = 3$.

Смотрим в симплексную таблицу 5. Видим, что получено оптимальное решение, так как коэффициенты при свободных неизвестных в индексной строке неотрицательны.

Ответ:

$$F_{\text{max}} = 8 + 2 \bullet 6 = 20$$
$$x_1 = 8$$

 $x_2 = 6$.

Симплекс метод с алгебраическими преобразованиями

Решим алгебраическими преобразованиями тот же пример, что и в предыдущем параграфе. Следует отметить, что при решении этой разновидностью симплекс метода лучше не записывать функцию цели в виде $F = 0 - \left(-x_1 - 2x_2\right)$, так как при этом легко запутаться в знаках. Но в этом случае пункт алгоритма, определяющий

критерий оптимальности, будет модифицирован следующим образом.

Если отыскивается максимум (минимум) линейной формы и в её выражении нет неосновных переменных с положительными (отрицательными) коэффициентами, то критерий оптимальности выполнен и полученное базисное решение является оптимальным - решение окончено. Если при нахождении максимума (минимума) линейной формы в её выражении имеется одна или несколько неосновных переменных с положительными (отрицательными) коэффициентами, перейти к новому базисному решению.

Пример. Найти максимум функции $F = x_1 + 2x_2$ при ограничениях

$$\begin{cases} -x_1 + 2x_2 \ge 2 \\ x_1 + x_2 \ge 4 \\ x_1 - x_2 \le 2 \\ x_2 \le 6 \end{cases}$$
$$x_1 \ge 0, x_2 \le 0$$

Решение.

Шаг I. Вводим добавочные неотрицательные переменные x_3 , x_4 , x_5 , x_6 и сводим данную систему неравенств к эквивалентной ей системе уравнений

$$\begin{cases} -x_1 + 2x_2 - x_3 & = 2 \\ x_1 + x_2 - x_4 & = 4 \\ x_1 - x_2 + x_5 & = 2 \\ x_2 + x_6 = 6 \end{cases}$$

$$x_j \ge 0 \quad (j = 1, 2, ..., 6).$$

Введённые добавочные переменные принимаем за основные, так как в этом случае базисное решение системы легко находится. Тогда x_1 и x_2 - неосновные переменные.

Выразив основные переменные через неосновные, получим

$$\begin{cases} x_3 = -2 - x_1 + 2x_2 \\ x_4 = -4 + x_1 + x_2 \\ x_5 = 2 - x_1 + x_2 \\ x_6 = 6 - x_2 \end{cases}$$

Следовательно, данному разбиению переменных на основные и неосновные соответствует базисное решение (0; 0; -2; -4; 2; 6), которое является недопустимым (две переменные отрицательны), а поэтому оно не оптимальное. От этого базисного решения перейдём к улучшенному.

Чтобы решить, какую переменную следует перевести из неосновных в основные, рассмотрим любое из двух имеющихся уравнений последней системы с отрицательными свободными членами, например второе. Оно показывает, что в основные переменные можно перевести x_1 и x_2 , так как в этом уравнении они имеют

положительные коэффициенты (следовательно, при их увеличении, а это произойдёт, если переведём любую из них в основные переменные, переменная x_4 увеличится).

Попробуем перевести в основные переменную x_1 . Чтобы установить, какую переменную следует перевести из основные в неосновные, найдём абсолютную величину наименьшего отношения свободных членов системы к коэффициентам при x_1 . Имеем $x_1 = \min\{\infty; 4/1; 2/1; \infty\} = 2$. Оно получено из третьего уравнения, показывающего, что в неосновные нужно перевести переменную x_5 , которая в исходном базисном решении положительна. Следовательно, полученное базисное решение, как и исходное, содержит две отрицательные компоненты, т. е. при переходе к такому базисному решению улучшения не произойдёт.

Если же перевести в основные переменную x_2 , то наименьшее отношение свободных членов к коэффициентам при x_2 составит $x_2 = \min\{2/2, 4/1; \infty; 6/1\} = 1$. Оно получено из первого уравнения, в котором свободный член отрицателен. Следовательно, переводя x_2 в основные, а x_3 в неосновные переменные, мы получим базисное решение, в котором число отрицательных компонент на единицу меньше, чем в исходном. Поэтому остановимся на этой возможности: переводим x_2 в основные, а x_3 в неосновные переменные. Поэтому в приведённой выше системе уравнений выделенным оказалось первое уравнение.

Шаг II.

Основные переменные x_2 , x_4 , x_5 , x_6 , неосновные переменные x_1 , x_3 .

Выразим новые основные переменные через новые неосновные, начиная с выделенного на шаге I уравнения. В результате получим

$$\begin{cases} x_2 = 1 + 0.5x_1 + 0.5x_3 \\ x_4 = -3 + 1.5x_1 + 0.5x_3 \\ x_5 = 3 - 0.5x_1 + 0.5x_3 \\ x_6 = 5 - 0.5x_1 - 0.5x_3 \end{cases}$$

Следовательно, имеем новое базисное решение (0; 1; 0; –3; 3; 5), которое также является недопустимым, а поэтому не оптимальным. Но в нём, как мы и предвидели, только одна переменная отрицательна (а именно x_4).

От полученного базисного решения необходимо перейти к другому. Рассмотрим уравнение с отрицательным свободным членом, т. е. второе уравнение. Оно показывает, что в основные переменные можно перевести x_1 и x_3 . Переведём в основные переменные x_1 . Найдём наименьшее из абсолютных величин отношений свободных системы коэффициентам членов К при Имеем $x_1 = \min\{\infty; 3/1, 5; 3/0, 5; 5/0, 5\} = 2$. Значит, в неосновные переменные нужно перенести x_{4} . Так как наименьшее отношение получено из второго уравнения, то его выделяем. В новом базисном решении уже не окажется отрицательных компонент, т. е. оно является допустимым.

В особых случаях решение завершается на ІІ шаге: это, например, случаи, когда максимум целевой функции - бесконечность и когда система не имеет ни одного решения.

Шаг III.

Основные переменные: x_1 , x_2 , x_5 , x_6 , неосновные переменные: x_3 , x_4 . Выразив основные переменные через неосновные, получим

$$\begin{cases} x_1 = 2 - (1/3) x_3 + (2/3) x_4 \\ x_2 = 2 + (1/3) x_3 + (1/3) x_4 \\ x_3 = 2 + (2/3) x_3 - (1/3) x_4 \\ x_6 = 4 - (1/3) x_3 - (1/3) x_4 \end{cases}$$

Новое базисное решение имеет вид (2; 2; 0; 0; 2; 4). Является ли оно оптимальным, можно установить, если выразить линейную форму через неосновные переменные рассматриваемого базисного решения. Сделав это, получим $F = 6 + (1/3)x_3 + (4/3)x_4$. Так как мы ищем максимум линейной формы, а нашли лишь одно допустимое решение, то продолжим перебор.

Переводим в число основных переменную x_4 , имеющую больший положительный коэффициент. Находим $x_4 = \min\left\{\infty; \; \infty; \; 2/\left(1/3\right); \; 4/\left(1/3\right)\right\} = 6$. Это наименьшее отношение получено из третьего уравнения системы, поэтому его выделяем. Оно показывает, что при $x_4 = 6$ переменная $x_5 = 0$ и поэтому перейдёт в число неосновных.

В некотором особом случае решение завершается на III шаге: это случай, когда оптимальное решение - не единственное.

Шаг IV.

Основные переменные: x_1 , x_2 , x_4 , x_6 , неосновные переменные: x_3 , x_5 . Выразив основные переменные через неосновные, получим

$$\begin{cases} x_1 = 6 + x_3 - 2x_5 \\ x_2 = 4 + x_3 - x_5 \\ x_4 = 6 + 2x_3 - 3x_5 \\ \hline x_6 = 2 - x_3 + x_5 \end{cases}$$

Линейная форма, выраженная через те же неосновные переменные, примет вид $F = 14 + 3x_3 - 4x_4$. Продолжим перебор для поиска максимума.

Увеличение линейной формы возможно при переходе к новому базисному решению, в котором переменная x_3 является основной. Находим $x_3 = \min\{\infty; \infty; \infty; 2/1\} = 2$. Это наименьшее отношение получено из четвёртого уравнения системы и показывает, что при $x_3 = 2$ переменная $x_6 = 0$ и переходит в число неосновных.

Шаг V.

Основные переменные: x_1 , x_2 , x_3 , x_4 , неосновные переменные: x_5 , x_6 . Выразив основные переменные через неосновные, получим

$$\begin{cases} x_1 = 8 - x_5 - x_6 \\ x_2 = 6 - x_6 \\ x_3 = 2 + x_5 - x_6 \\ x_4 = 10 - x_5 - 2x_6 \end{cases}$$

Линейная форма, выраженная через неосновные переменные нового базисного решения, имеет вид $F = 20 - x_5 - 3x_6$. Критерий оптимальности для случая максимизации линейной формы выполнен. Следовательно, базисное решение (8, 6, 2, 10, 0, 0) является оптимальным, а максимум линейной формы $F_{\max} = 20$