Soit $(F_n)_{n\in\mathbb{N}}$ la suite définie par $F_0=0, F_1=1$ et pour tout $n\geq 0$

$$F_{n+2} = F_{n+1} + F_n$$
.

- 1. Montrer que pour tout $n \in \mathbb{N}$ on a : $\sum_{k=1}^{n} F_{2k+1} = F_{2n+2}$ et $\sum_{k=1}^{n} F_{2k} = F_{2n+1} 1$.

 - 2. Montrer que pout tout $n \in \mathbb{N}$ on a $\sum F_k^2 = F_n F_{n+1}$.
 - 3. (a) On note $\varphi = \frac{1+\sqrt{5}}{2}$ et $\psi = \frac{1-\sqrt{5}}{2}$. Montrer que $\varphi^2 = \varphi + 1$ et $\psi^2 = \psi + 1$.
 - (b) Montrer que l'expression explicite de F_n st donnée par $F_n = \frac{1}{\sqrt{5}}(\varphi^n \psi^n)$.
 - (c) En déduire que $\lim_{n\to\infty} \frac{F_{n+1}}{F_n} = \varphi$.