UNCERTAINTY and DATA ANALYSIS Spring Semester 2009-2010

Homework No: 4 – Date Due: 31.05.2010 till 17:00

- **1.** Only 24 pile settlements were observed from a very large group of piles and their mean and standard deviation are reported as 7.00 mm and 2.64 mm, respectively.
 - a) Construct 98% confidence interval for the true mean (population mean) of the pile settlements.
 - b) Construct 99% confidence interval for the population standard deviation.
 - c) If you are asked to check whether population mean for the settlement of piles is different from 10mm at 2% significance level, what would your answer be? Explain.
- 2. The weekly maximum flood heights (X) of a river are recorded over a period of 50 weeks with the average maximum weekly height of 672 cm. The true standard deviation (population standard deviation) of the original observations is 15 cm.
 - *a*) Construct 95% confidence interval for the true mean of the weekly maximum flood height. What is the length of confidence interval?
 - b) Referring to part (a), how many weeks should the river be observed such that the true mean height can be estimated in a length not greater than 5 cm from the average maximum weekly height (i.e. $|\bar{x}-\mu| \le 5$ cm)?
- **3**. A manufacturer for the quality control investigates 5 car parts and records the following frequencies for the number of defective car parts:

Number of Defective Car Parts, x	0	1	2	3	4	5
Frequencies	2	1	1	1	0	0

- a) Can we say that underlying probability distribution of the defected car parts is a binomial distribution with n = 5 and $\theta = 0.10$ at the 5% significance level of using both goodness of fit test (χ^2 test) and Kolmogorov-Smirnov test (K-S test)?
- **b**) Can we say that the underlying probability distribution of the defected car parts is a binomial distribution with n = 5 at the 5% significance level using goodness of fit test (χ^2 -test) and Kolmogorov-Smirnov test (K-S test)?

4. The following data are the observed stress (X) at the onset of inelastic strain of a certain material:

Class Interval (MPa)	90-95	95-100	100-105	105-110	110-115	115-120
Frequency	4	19	39	23	12	3

- a) For the above sample data estimate the population mean and standard deviation.
- **b**) Construct 99 % confidence interval for the population mean (true mean) of the stress at the onset of inelastic strain.
- c) Construct 95% confidence interval for the population standard deviation (true standard deviation) of the stress at the onset of inelastic strain.
- d) Can we say that the frequency distribution of the stress at the onset of inelastic strain is normally distributed at the 5% significance level using goodness of fit test (χ^2 -test) and Kolmogorov-Smirnov test (K-S test)?

5. The following data for regional precipitation and the augmented reservoir storage are as follows:

Precipitation, X (cm)	62.5	42.7	48.5	55.2	58.1
Reservoir Storage (m ³)	15,100	12,250	13,000	13,750	14,220

- a) Plot the data above on a scatter diagram. If it suggests that there is correlation between the variables X and Y then obtain the linear regression line of Y on X.
- b) Find the coefficient of determination and correlation coefficient of X and Y. What information they give about the data?
- c) Obtain the confidence interval for the slope of the regression line that you have obtained in part (c) at 1% significance level.
- d) Compute the 95% prediction interval for the reservoir storage when precipitation is 50 cm.