Семинар 2

Тренируемия в построении фазовогх портретов для систем с одной степенью свободы.

Пример 1 Гармонический осумляюр - это грузик М на пружинке с идеальной силой упругости = -kx, = -kx, = -kx, = -kx, = -kx

Потенциальная энергие силы упругости:

$$V(x) = -\int F_{yup}(x) dx = \frac{kx^2}{2}$$

Baron coxpanence meprice mulet bug:

$$= \frac{m\dot{x}^2}{2} + \frac{kx^2}{2}$$

Tpaque V(x):

разовал кривал, отвечающая значению энергии Е

Pazobour non Tret:

точка равновесия отвечает значению энергии E=0

nobopota

Удобно ришвать фазового портрет под гради-2 мом потенциальной экергии V(x) (см. рис. вверху Коншентарии крисуниу:

1) Точка покод x=0 и x=0 отвечает точке миницина потенунальной эпергии:

U(0) = 0 U'(0) > 0To ocobas Touka apayoboro noptpeta Tuna "yentp".

Эта точка - отденьная дразовая траектория.

2) Останьные физовые кривые - этипсы const = $E_0 = \frac{mx^2}{2} + \frac{kx^2}{2}$

Touku $x_{1/2} = \pm \sqrt{\frac{2E_0}{K}}$ na stux opazoborx kpubox ebrevotas Toukasen nobspota (V(x1,2)=E0,

3) Kaxgae grazobae upubas uneet chou Mureu aya u maxcuaya $\dot{x}_{12} = \pm \sqrt{\frac{E_0}{2m}}$ 6 toure oc=0 musuayua notenyuanovoit mepricer V(x)

4) Точное обизее решение уравнения дви-жения пармонического осущилетора mix = Fynp uneer long: $x(t) = X_{cos}(\sqrt{x} t - y_{o})$

3 gens you Xo = TE onpegemental Hayans-

Период обращения (3) ногим данногим задачи. по фазовой кривои:

 $T = 2\pi \sqrt{2}$, $rge \omega = \sqrt{\frac{K}{m}} = \sqrt{\frac{0'(0)}{m}}$ (*)

что соглащется с общей теорией (см. стр 5 лекуши). В слугае произвольного потенянала U(x) β oxpectuoette ero numerangua $χ_0: U(χ_0)=0$, $U'(x_0)>0$, gropuyra (*) bornormeetal upu δnu xerro. Doraxem ee.

| yab = x - x - точка в шалой окрестности хо. Движение происходит по фазовой кривой отвечающей значению эпериш E=U(xo)+AE нешкого большему О(осо). В терминах перешенной Д № закок сохранения эпертии системы имеет вид:

 $U(x_0 + \Delta x) + \frac{M\Delta x}{Q} = E = U(x_0) + \Delta E$

U(x) 6 oupermour xo go 2 nopegua no bx Pazraras

 $\frac{U''(\alpha_0)\Delta x^2}{2} + \frac{M\Delta x^2}{2} = \Delta E + O(\Delta x)^2$ willie :

Приближенное решение этого дирура:

 $\Delta x(t) = X_{\circ} \cos \left(\sqrt{\frac{y''(x_{\circ})}{m}} + 4_{\circ} \right),$

OTKY ga wellen $T \cong 2\pi$, rge $\omega = \sqrt{\frac{U''(x_0)}{m}}$

Пример 2: Гармонический осщинегор "вверх тормашками", то есть система с потекциarou $U(x) \sim -x^2$. Предъевим физическую реализацию этой системы. Это бусинка на вращающемия в плоскости хесткой, невесомой, падком (нет трения) стержие. Стержень запренлен в начале координат ИСО (инерщальной системы отстета), вращается под действием внешней сильг. Угол новорота стержие - известнае функция врешени У(t), Масса бусинки-т. Уравиение Ньютока qие бусинки $m \vec{r} = \vec{N}$, rge N - cura peakyuu crepxua, NIT (Tpenus HeT). Удобно уравнение Ньютока переписать в попериой системи координат: rge QuN - Benurusen Certopol ru N. Boomersen: r = pep + pyeq T = (= (= 9 4) = + (2 9 9 + 9 4) = 4

Уравиения Ньютока в номеркого координатах;

$$\vec{e}_{\varphi}$$
: $m(\dot{\varphi} - \dot{\varphi}\dot{\varphi}^2) = 0$
 \vec{e}_{φ} : $m(\dot{\varphi} - \dot{\varphi}\dot{\varphi}^2) = N$

Первое уравнение служит для определения закона движения бусинки по стержню: Р(+) (4(+) нам uzbectka).

Bropoe ypabrience nozboneet zatem borruchurt cury peakyun crep*HQ N(+).

Бусинка движетия по запону:

$$\dot{g} = g \dot{\varphi}^2$$

Если теперь вогбрать закон равконеркого Spangerine crepxice L= wt, to

$$Q = ω^2 Q$$
 $Q = ω^2 Q^2$

Ποτεκιζιανδιαθ σπερτικέ στού αυνοι $U(g) = 2$.

Το μ είτο οαзиметор "ββερχ τοριμανικάμια".

Это и есть осщиметор "вверх торшашками".

Закон сохранения эперии в этой системе unlet bug

 $E = \frac{m \dot{x}^2}{2} - \frac{\omega^2 \alpha^2}{2}$ tyr un zamenum oбозначение перешенной $g \mapsto \infty$.

nentze. Brexatt no nyry b torky keyvoù - (7) ruboro pabnobecul $x = \dot{x} = 0$ za kokernoe breuns Menoza. Baro umen 5 paznoux grajoboix траекторий, ответающих значению энергии E=0.

- 2) The suprum E1<0 gbuxenue cucremor hpouckogut no runep some (cm. puc.). Takux Kaxgae us runepoon uneli гинербол - 2 штуки. τονική ποβοροτα $x_{1,2}$: $V(x_{1,2}) = E_1$. D'buxenue no каждой фазовой кривой происхедит на полупрамой $x < \alpha_1 (x > \alpha_2)$.
 - 3) Tpu oneprun E2>0 glantenue Toxe npoucxoдит по 2-м гинерболам (см. рис.). Однако это движение не ограничено по перешению х. Зато у этих двух дразовых кривых есть точки шикимума/максимума - хз/ха. Этот Экстренци скорости слугается ровко над тогкой локального экстремума x=0 потенциальной энер-
- 4) Beprémas « cenaparpucam: uz gropany nor (**) ctp. 6 zaknoyaem, 200 gills yzna & ux naknona tg $\chi = \pm \sqrt{\frac{\omega^2}{m}} = \pm \sqrt{-\frac{V''(o)}{m}}$, 4το corracyeras c οδωρεί τερρινεί (cm. cτρ. 5 λεκμιν).

Уравнения движений осуплетора "вверх торшаш- 8 ками" решапотия явно:

a) Pemenne gue
$$E > 0$$
 (ne obusee)
 $x(t) = \pm \sqrt{\frac{m}{\omega^2}} \hat{x}_0 \operatorname{sh}(\sqrt{\frac{\omega^2}{m}} t)$

с начальногии условиями $\chi(0) = 0$ $\dot{\chi}(0) =$

$$δ) Pemenne gus $E<0$ (He oδusee)
$$x(t) = ± xo ch(\sqrt{\frac{ω^2}{m}t}) c κανα πο κονων$$$$

yeroleneum $x(0) = \pm x_0$, $\dot{x}(0) = 0$.

b) Pemerare gue
$$E = 0$$
 - cenaparpube $x(t) = x_0 e^{\pm \sqrt{\frac{\omega^2}{m}}t}$

Kak bugum, gbuxenne no cenapatpuce 6 бескомечкость $(\pm \infty)$, либо в тогиц мецстой гивого равновешя (x=0) происходит бескомечно долго-

Thumpy 3 Obuggum "nexoponum" crysan, Korga
$$0''=0$$
 в точке экстренция. Например $V(x)=-x^4$

Замон сохранение эперии:

$$\frac{m\dot{x}^2}{2} - x^4 = \Xi$$

Tpaque U(x) Ja KOKETHOE BREUN Payobour noptper: Ta υτα ιςα gbu x eτας 6 το τω γαβνο веше x=0 δесно негно gorro. Ocobar Torka $x = \dot{x} = 0$ (\Rightarrow kutpenym V(x) ym x = 0) He kraccuquyupyeta, nocuoray 0"(0) = 0. Ио задача может боть решена евко. Cenaparpular $|\dot{x} = \pm \sqrt{\frac{2}{m}} x^2 \pmod{E=0}$ это параболья. Угол их наклона к оси Ог в Torke negerourn boro pabuoleane $x = \dot{x} = 0$ Hyrebou. Barron gleuxenuer no cenaparpuce: $\frac{1}{x(t)} = \frac{1}{x(0)} \mp \sqrt{\frac{2}{m}} t$ Bugno, 470 ja konernoe breux $t = \sqrt{\frac{1}{2}} \frac{1}{x(0)}$ Pactusa moxet yûth Ha beckonernocts А вот в тогку неустой гивого равновения гастица движета всё равно беснонетно долго.

имичной фазовый портрет.

1) U(x) une et no kannore numeragnor b τ . x_1 u $x_2 - 3\tau v$ nozugun y croù zu boro pabuobenne

 $E_1 = U(x_1) - глобальный шикишум <math>U(x)$. Этому уровню эпергии соот ветствует Δ дразован траентория-тогка устой гивого равновения в x_1 .

 $E_2 = U(x_2)$ — не глобальный шинилизи. Пошиль оразовой траентории — тогки устой гивого равновеща в x_2 , этому уровню эперии соответствует еще

Зашкнутая фазовая трасиюрия, окрумаюwas torky pabrobeaux 21. 900 - kpubais c точками поворота алиаг. Boers gul E2 - gbe grajoboux tpaeutopum.

2) U(x) uneet rokarbubai makannya nya x=0U(0) = E3. Fromy ypobono meprin coorbeactbyет сепаратриса, именощия тогку поворота в, слева и не ограниченная справа. Torvoir negatouruboro pabuobecun $x = \dot{x} = 0$

сепаратриса бъетия на 3 компонента сыезпос Tu. Boero gule y pobre surprum E3 uneen 4 grazo-boex Tpaexto pun (gru a torky regordi reboro pabrobe cens

- 3) Tpa zuarenuex snepzem E: E/ E E = unicem одну замкнутую фазовую трамиюрию, оборагиваномуния вощуг от (зелёния на портрете)
- 4) Mpu E: E2< E< O umeen 2 zamkny Tox gazo-Box Tpaextopue, oборанивающием вокруг хих (красные на портрете)
- 5) The E: OKEK Es upabas us stux gbyx Traекторий разинкается и уходит ка $+\infty$ по x. $\pm =0$ - горизонтальная ашинтота графика $U(\infty)$. Всё равно оразовогх кривогх -2. (чёрные на портрете).
- 6) Tpu E: E> E3. gbe kpuborx "ckneubavorus boging. Она ограничена слева и не ограничена справа.