Dept. of Electrical & Computer Engineering

Digital Computer Arithmetic ECE 666

Part 3
Sequential Algorithms for Multiplication and Division

Israel Koren
Spring 2004

ECE666/Koren Part.3 .1 Copyright 2004 Koren

Sequential Multiplication

- ♦ X, A multiplier and multiplicand
- $\bigstar X = Xn 1Xn 2...X0$; $A = \alpha n 1\alpha n 2...\alpha 1\alpha 0$
- ★Xn-1, an-1 sign digits (sign-magnitude or complement methods)
- ♦ Sequential algorithm n-1 steps
- ♦ Step j multiplier bit x_j examined; product x_jA added to $P^{(j)}$ previously accumulated partial product $(P^{(0)} = 0)$

$$P^{(j+1)} = (P^{(j)} + x_j \cdot A) \cdot 2^{-1} ; \qquad j = 0, 1, 2, \dots, n-2$$

◆ Multiplying by 2⁻¹ - shift by one position to the right - alignment necessary since the weight of X_{j+1} is double that of X_j

ECE666/Koren Part.3 .2 Copyright 2004 Koren

Sequential Multiplication - Proof

◆ Repeated substitution

$$\begin{split} P^{(n-1)} &= (P^{(n-2)} + x_{n-2} \cdot A) \cdot 2^{-1} \\ &= \left((P^{(n-3)} + x_{n-3} \cdot A) \cdot 2^{-1} + x_{n-2} \cdot A \right) \cdot 2^{-1} = \cdots \\ &= \left(x_{n-2} 2^{-1} + x_{n-3} 2^{-2} + \cdots + x_0 2^{-(n-1)} \right) \cdot A \end{split}$$

$$= \left(\sum_{j=0}^{n-2} x_j \ 2^{-(n-1-j)} \ \right) \cdot A = \mathbf{2}^{-(n-1)} \left(\sum_{j=0}^{n-2} x_j \ 2^j \right) \cdot A \end{split}$$

♦ If both operands positive (Xn-1=an-1=0) -

$$U = 2^{n-1} \cdot P^{(n-1)} = (\sum_{j=0}^{n-2} x_j \ 2^j) \cdot A = X \cdot A$$

♦ The result is a product consisting of 2(n-1) bits for its magnitude

Number of product bits

♦ Maximum value of U - when A and X are maximal

$$U_{max} = (2^{n-1} - 1)(2^{n-1} - 1) = 2^{2n-2} - 2^n + 1 = 2^{2n-3} + (2^{2n-3} - 2^n + 1)$$

♦ Last term positive for $n \ge 3$, therefore

$$2^{2n-3} < U_{max} < 2^{2n-2}$$
; $n \ge 3$

- 2n-2 bits required to represent the value 2n-1 bits with the sign bit
- ♦ Signed-magnitude numbers multiply two magnitudes and generate the sign separately (positive if both operands have the same sign and negative otherwise)

Negative operands

- ♦ For two's and one's complement distinguish between multiplication with a negative multiplicand A and multiplication with a negative multiplier X
- ♦ If only multiplicand is negative no need to change the previous algorithm only add some multiple of a negative number that is represented in either two's or one's complement

ECE666/Koren Part.3 .5 Copyright 2004 Koren

Multiplication - Example

- ♦ A negative, two's complement, X positive, 4 bits
- ◆ Product 7 bits, including sign bit
- Registers are 4 bits long a double-length register required for storing the final product

A		1	0	1	1				-5
X	\times	0	0	1	1				3
$P^{(0)} = 0$		0	0	0	0				
$x_0 = 1 \implies \text{Add } A$	+	1	0	1	1				
		1	0	1	1				
Shift		1	1	0	1	1			
$x_1 = 1 \implies \operatorname{Add} A$	+	1	0	1	1				
		1	0	0	0	1			
Shift		1	1	0	0	0	1		
$x_2 = 0 \Rightarrow \text{Shift only}$		1	1	1	0	0	0	1	-15

- ♦ Vertical line separates most from least significant half - each stored in a single-length register
 - * Bits in least significant half not used in the add operation

Least significant half of product

- Only 3 bit positions are utilized least significant bit position unused - not necessarily final arrangement
- ♦ The 3 bits can be stored in 3 rightmost positions
- ♦ Sign bit of second register can be set in two ways
 - * (1) Always set sign bit to 0, irrespective of sign of the product, since it is the least significant part of result
 - * (2) Set sign bit equal to sign bit of first register
- ◆ Another possible arrangement -
 - * Use all four bit positions in second register for the four least significant bits of the product
 - * Use the rightmost two bit positions in the first register
 - * Insert two copies of sign bit into remaining bit positions

Copyright 2004 Koren

Negative Multiplier - Two's Complement

- ◆ Each bit considered separately sign bit (with negative weight) treated differently than other bits
- ◆ Two's complement numbers -

$$X = -x_{n-1} \ 2^{n-1} + \widetilde{X}$$
 ; $\widetilde{X} = \sum_{j=0}^{n-2} x_j 2^j$

♦ If sign bit of multiplier is ignored -

$$U = \widetilde{X} \cdot A = (X + x_{n-1} \cdot 2^{n-1}) \cdot A = X \cdot A + A \cdot x_{n-1} \cdot 2^{n-1}.$$

 $\bigstar X \cdot A$ is the desired product - if $X_{n-1}=1$ - a correction is necessary

$$X \cdot A = U - A \cdot x_{n-1} \cdot 2^{n-1}$$

lacktriangle The multiplicand A is subtracted from the most significant half of U

Negative Multiplier - Example

 Multiplier and multiplicand - negative numbers in two's complement

A		1	0	1	1				-5
X	\times	1	1	0	1				-3
$x_0 = 1 \Rightarrow \operatorname{Add} A$		1	0	1	1				
Shift		1	1	0	1	1			
$x_1 = 0 \Rightarrow \text{Shift only}$		1	1	1	0	1	1		
$x_2 = 1 \implies \text{Add } A$	+	1	0	1	1				
		1	0	0	1	1	1		
Shift		1	1	0	0	1	1	1	
$x_3 = 1 \Rightarrow \text{Correct}$	+	0	1	0	1				
		0	0	0	1	1	1	1	+15

♦ In correction step, subtraction of multiplicand is performed by adding its two's complement

Negative Multiplier - One's Complement

$$X = -x_{n-1}(2^{n-1} - ulp) + \widetilde{X}$$

and

$$X \cdot A = U - x_{n-1} \cdot 2^{n-1} \cdot A + x_{n-1} \cdot ulp \cdot A$$

- ♦ If $x_{n-1}=1$, start with $P^{(0)}=A$ this takes care of the second correction term $x_{n-1} \cdot ulp \cdot A$
- \blacklozenge At the end of the process subtract the first correction term $\times_{n-1} \cdot 2^{n-1} \cdot A$

ECE666/Koren Part.3 .10 Copyright 2004 Koren

Negative Multiplier - Example

♦ Product of 5 and -3 - one's complement

A		0	1	0	1				5
X	\times	1	1	0	0				-3
$x_3 = 1 \implies P^{(0)} = A$		0	1	0	1				
$x_0 = 0 \Rightarrow \text{Shift}$		0	0	1	0	1			
$x_1 = 0 \Rightarrow \text{Shift}$		0	0	0	1	0	1		
$x_2 = 1 \implies \text{Add } A$	+	0	1	0	1				
		0	1	1	0	0	1		
Shift		0	0	1	1	0	0	1	
$x_3 = 1 \Rightarrow \text{Correct}$	+	1	0	1	0	1	1	1	
		1	1	1	0	0	0	0	-15

- ◆ As in previous example subtraction of first correction term - adding its one's complement
- ◆Unlike previous example one's complement has to be expanded to double size using the sign digit - a double-length binary adder is needed

ECE666/Koren Part.3 .11 Copyright 2004 Koren

Sequential Division

- Division the most complex and time-consuming of the four basic arithmetic operations
- ♦ In general, result of division has two components
- ♦ Given a dividend X and a divisor D, generate a quotient Q and a remainder R such that
- $A \times X = Q \cdot D + R$ (with R < D)
- ♦ Assumption X,D,Q,R positive
- ♦ If a double-length product is available after a multiply and we wish to allow the use of this result in a subsequent divide, then
- * x may occupy a double-length register, while all other operands stored in single-length registers

ECE666/Koren Part.3 .12 Copyright 2004 Koren

Overflow & Divide by zero

- \blacklozenge Q \leq largest number stored in a single-length register (\lt 2ⁿ⁻¹ for a register with n bits)
- ♦1. X < 2ⁿ⁻¹ D otherwise an overflow indication must be produced by arithmetic unit
- ◆ Condition can be satisfied by preshifting either
 X or ▷ (or both)
- Preshifting is simple when operands are floatingpoint numbers
- \blacklozenge 2. D \neq 0 otherwise a divide by zero indication must be generated
- ♦ No corrective action can be taken when D=0

ECE666/Koren Part.3 .13 Copyright 2004 Koren

Division Algorithm - Fractions

- ♦ Assumption dividend, divisor, quotient, remainder are fractions - divide overflow condition is X<D</p>
- ♦ Obtain $Q=0.q_1 \cdots q_m$ (m=n-1) sequence of subtractions and shifts
- ♦ Step i remainder is compared to divisor D if remainder larger quotient bit $q_{i=1}$, otherwise 0
- ♦ ith step $r_i = 2r_{i-1} q_iD$; i=1,2,...,m
- $ightharpoonup r_i$ is the new remainder and r_{i-1} is the previous remainder ($r_0=X$)
- ◆ qi determined by comparing 2ri-1 to D the most complicated operation in division process

ECE666/Koren Part.3 .14 Copyright 2004 Koren

Division Algorithm - Proof

♦ The remainder in the last step is rm and repeated substitution of the basic expression yields

$$r_m = 2r_{m-1} - q_m \cdot D$$

$$= 2(2r_{m-2} - q_{m-1} \cdot D) - q_m \cdot D = \cdots$$

$$= 2^m r_0 - (q_m + 2q_{m-1} + \cdots + 2^{m-1}q_1) \cdot D$$

◆ Substituting ro=X and dividing both sides by 2 m results in

$$r_m 2^{-m} = X - (q_1 2^{-1} + q_2 2^{-2} + \dots + q_m 2^{-m}) \cdot D;$$

- ♦ hence $r_m 2^{-m} = X Q \cdot D$ as required
- ◆ True final remainder is R=r_m2^{-m}

ECE666/Koren Part.3 .15 Copyright 2004 Koren

Division - Example 1 - Fractions

- * X=(0.100000)2=1/2
- * D=(0.110)2=3/4
- * Dividend occupies double-length reg.
- * X<D satisfied
- ♦ Generation of 2ro
 - no overflow

$r_0 = X$			0	.1	0	0	0	0	0	
$2r_0$		0	1	.0	0	0	0	0		$set q_1 = 1$
Add -D	+	1	1	.0	1	0				
$r_1 = 2r_0 - D$		0	0	.0	1	0	0	0		
$2r_1$		0	0	.1	0	0	0			$set q_2 = 0$
$r_2 = 2r_1$		0	0	.1	0	0	0			
$2r_2$		0	1	.0	0	0				set $q_3 = 1$
Add -D	+	1	1	.0	1	0				
$r_3 = 2r_2 - D$		0	0	.0	1	0				

- ♦ An extra bit position in the arithmetic unit needed
- ♦ Final result : Q=(0.101)2=5/8
- $Arr R=r_m 2^{-m}=r_32^{-3}=1/4 \cdot 2^{-3}=1/32$
- Quotient and final remainder satisfy $X=Q \cdot D + R = 5/8 \cdot 3/4 + 1/32 = 16/32 = 1/2$
- ◆ Precise quotient is the infinite binary fraction 2/3=0.1010101 · · ·

Division Algorithm - Integers

♦ Same procedure; Previous equation rewritten -

$$2^{2n-2}X_F = 2^{n-1}Q_F \cdot 2^{n-1}D_F + 2^{n-1}R_F$$
 (XF, DF, QF, RF -fractions)

- lacktriangle Dividing by 2²ⁿ⁻² yields $X_F = Q_F \cdot D_F + 2^{-(n-1)} R_F$
- ♦ The condition X < 2 n-1 D becomes XF < DF
- ♦ X=01000002=32; D=01102=6
- ♦ Overflow condition X<2ⁿ⁻¹D is tested by comparing the most significant half of X, 0100, to D, 0110
- ♦ The results of the division are Q=01012 = 5 and R=00102=2
- ♦ In final step the true remainder R is generated no need to further multiply it by 2⁻⁽ⁿ⁻¹⁾

ECE666/Koren Part.3 .17 Copyright 2004 Koren

Restoring Division

◆ Comparison - most difficult step in division

 $q_i = 0$

- ♦ Robertson diagram shows that if r_{i-1}<D, q_i is selected so that r_i<D</p>
- ♦ Since ro=X<D R<D
- m subtractions, m shift operations, an average of m/2 restore operations
 - * can be done by retaining a copy of the previous remainder avoiding the time penalty

ECE666/Koren Part.3 .18 Copyright 2004 Koren

Nonrestoring Division - Remainder

- ◆ Alternative quotient bit correction and remainder restoration postponed to later steps
- ◆ Restoring method if 2r_{i-1}-D<0 remainder is restored to 2r_{i-1}
- ◆ Then shifted and D again subtracted, obtaining 4ri-1-D process repeated as long as remainder negative
- Nonrestoring restore operation avoided
- ♦ Negative remainder 2r_{i-1}-D<0 shifted, then corrected by adding D, obtaining 2(2r_{i-1}-D)+D=4r_{i-1}-D
- ♦ Same remainder obtained with restoring division

ECE666/Koren Part.3 .19 Copyright 2004 Koren

Nonrestoring Division - Quotient

- ♦ Correcting a wrong selection of quotient bit in step i next bit, q_{i+1} , can be negative $\overline{1}$
- ♦ If q_i was incorrectly set to 1 negative remainder select $q_{i+1}=\overline{1}$ and add D to remainder
- ♦ Instead of qi qi+1=10 (too large) qi qi+1=11=01
- ♦ Further correction if needed in next steps
- ♦ Rule for qi:

$$q_i = \begin{cases} 1 & \text{if } 2r_{i-1} \ge 0\\ \bar{1} & \text{if } 2r_{i-1} < 0 \end{cases}$$

Nonrestoring Division - Diagram

- ♦ Simpler and faster than selection rule for restoring division 2ri-1 compared to 0 instead of to D
- ♦ Same equation for remainder $q_i = 2r_{i-1} q_iD$
- ♦ Divisor D subtracted if 2ri-1 > 0, added if < 0

- *qi selected so |ri|<D
- * q≠0 at each step, either addition or subtraction is performed

♦ Exactly m add/subtract and shift operations

Nonrestoring Division - Example 1

 $2r_0$

 r_1

 $2r_1$

 $r_0 = X$

Add - D

(1)

(2)

(4)

(5)

- X=(0.100000)2=1/2
- $\bullet D=(0.110)2=3/4$
- ◆ Final remainder as before
- ♦ Q=0.111=0.1012=5/8

.0

0.

.1

0

 $set q_1 = 1$

set $q_2 = 1$

- ♦ Graphical representation
 - * Horizontal lines
 - add ±D
 - Diagonal linesmultiply by 2

Nonrestoring Division - Advantage

- ◆ Important feature of nonrestoring division easily extended to two's complement negative numbers
- ♦ Generalized selection rule for qi -

$$q_i = \begin{cases} 1 & \text{if } 2r_{i-1} \text{ and } D \text{ have the same sign} \\ \bar{1} & \text{if } 2r_{i-1} \text{ and } D \text{ have opposite signs} \end{cases}$$

♦ Remainder changes signs during process - nothing special about a negative dividend X

ECE666/Koren Part.3 .23 Copyright 2004 Koren

Nonrestoring Division - Example 2

$$X=(0.100)2=1/2$$

$$\bullet D=(1.010)_2=-3/4$$

$r_0 = X$			0	.1	0	0	
$2r_0$		0	1	.0	0	0	set $q_1 = \bar{1}$
$\operatorname{Add}D$		1	1	.0	1	0	
$\overline{r_1}$		0	0	.0	1	0	
$2r_1$		0	0	.1	0	0	$set q_2 = \bar{1}$
$\operatorname{Add}D$	+	1	1	.0	1	0	
r_2		1	1	.1	1	0	
$2r_2$		1	1	.1	0	0	set $q_3 = 1$
Add -D	+	0	0	.1	1	0	
$\overline{r_3}$	_	0	0	.0	1	0	

- ♦ Final quotient Q=0.111=0.1012=-0.1012=-5/8 =1.011 in two's complement
- ♦ Final remainder = 1/32 same sign as the dividend X

ECE666/Koren Part.3 .24 Copyright 2004 Koren

Nonrestoring Division - sign of remainder

- ♦ Sign of final remainder same as dividend
- ♦ Example dividing 5 by 3 Q=1, R=2, not Q=2, R=-1 (although |R|<D)
- ♦ If sign of final remainder different from that of dividend correction needed results from quotient digits being restricted to $1,\overline{1}$
- ◆ Last digit can not be 0 an "even" quotient can not be generated

ECE666/Koren Part.3 .25 Copyright 2004 Koren

Nonrestoring Division - Example 3

- ♦ Final remainder negative dividend positive
- \blacklozenge Correct final remainder by adding D to r_3 1.110+0.110=0.100
- ◆ Correct quotient Qcorrected = Q ulp
- ♦ Q=0.111 Qcorrected=0.1102=3/4

Nonrestoring Division - Cont.

- ♦ If final remainder and dividend have opposite signs correction needed
- ◆ If dividend and divisor have same sign remainder rm corrected by adding D and quotient corrected by subtracting ulp
- ◆ If dividend and divisor have opposite signs subtract D from rm and correct quotient by adding ulp
- ◆ Another consequence of the fact that 0 is not an allowed digit in non-restoring division need for correction if a 0 remainder is generated in an intermediate step

ECE666/Koren Part.3 .27 Copyright 2004 Koren

Nonrestoring Division - Example 4

- **♦** X=1.1012=-3/8
- **♦** D=0.1102=3/4
- ♦ Correct result of division Q=-1/2; R=0

$r_0 = X$			1	.1	0	1	
$2r_0$		1	1	.0	1	0	$set q_1 = \bar{1}$
$\operatorname{Add}D$	+	0	0	.1	1	0	
$\overline{r_1}$		0	0	.0	0	0	zero remainder
$2r_1$		0	0	.0	0	0	set $q_2 = 1$
Add -D	+	1	1	.0	1	0	
$\overline{r_2}$		1	1	.0	1	0	
$2r_2$		1	0	.1	0	0	set $q_3 = \bar{1}$
$\operatorname{Add}D$	+	0	0	.1	1	0	
$\overline{r_3}$		1	1	Ω	1	0	

- ◆ Although final remainder and dividend have same sign correction needed due to a zero intermediate remainder
- ♦ This must be detected and corrected -
- ightharpoonup r3(corrected) = r3+D=1.010+0.110=0.000
- ♦ Correcting the quotient Q=0.111=0.101 by subtracting ulp: Q(corrected) = 0.1002=-1/2

ECE666/Koren Part.3 .28 Copyright 2004 Koren

Generating a Two's Complement Quotient in Nonrestoring Division

- Converting from using $1,\overline{1}$ to two's complement
- ◆ Previous algorithms require all digits of quotient before conversion starts - increasing execution time
- ◆Preferable conversion on the fly serially from most to least significant digit as they become available
- Quotient digit assumes two values single bit sufficient for representation - 0 and 1 assigned to 1 and 1
- ♦ Resulting binary number 0.p1...pm
 (pi=1/2(qi+1))

ECE666/Koren Part.3 .29 Copyright 2004 Koren

Conversion Algorithm

- ♦ Step 1: Shift number one bit position to left
- ♦ Step 2: Complement most significant bit
- ♦ Step 3: Shift a 1 into least significant position
- ♦ Result (1-p1).p2p3...pm1 has same numerical value as original quotient Q
- ◆Proof: Value of above sequence in two's complement -

$$-(1-p_1)2^0 + \sum_{i=2}^m p_i 2^{-i+1} + 2^{-m}$$

♦ Substituting pi=1/2(qi+1) -

$$q_1 2^{-1} - 2^{-1} + \sum_{i=2}^{m} (q_i + 1) 2^{-i} + 2 = q_1 2^{-1} - (2^{-1} - 2^{-m}) + \sum_{i=2}^{m} q_i 2^{-i} + \sum_{i=2}^{m} 2^{-i}.$$

♦ Last term = 2^{-1} - 2^{-m}

$$= q_1 2^{-1} + \sum_{i=2}^{m} q_i 2^{-i} = \sum_{i=1}^{m} q_i 2^{-i} = Q_i$$

Conversion Algorithm - Example

- ♦ Algorithm can be executed in a bit-serial fashion
- ◆ Example X=1.101; D=0.110
- ♦ Instead of generating the quotient bits $.\overline{1}1\overline{1}$ generate the bits (1-0).101=1.101
- ◆ After correction step Q-ulp=1.100 correct representation of -1/2 in two's complement
- ♦ Exercise The same on-the-fly conversion algorithm can be derived from the general SD to two's complement conversion algorithm presented before

ECE666/Koren Part.3 .31 Copyright 2004 Koren

Square Root Extraction - Restoring

- ♦ The conventional completing the square method for square root extraction is conceptually similar to restoring division
- ♦ X the radicant a positive fraction;
 Q=(0.q1 q2...qm) its square root
- lacktriangle The bits of Q generated in m steps one per step
- $lack Q_i = \sum_{k=1}^i q_k 2^{-k}$ partially developed root at step i

(Qm=Q); ri - remainder in step i

♦ Calculation of next remainder -

$$r_i = 2r_{i-1} - q_i \cdot (2Q_{i-1} + q_i 2^{-i}).$$

♦ Square root extraction can be viewed as division with a changing divisor - $\hat{D_i} = (2Q_{i-1} + q_i 2^{-i})$

ECE666/Koren Part.3 .32 Copyright 2004 Koren

Square Root Extraction - Cont.

- ♦ First step remainder=radicand X ; Q0=0
- ◆ Performed calculation -

$$r_1 = 2r_0 - q_1(0 + q_12^{-1}) = 2X - q_1(0 + q_12^{-1})$$

♦ To determine qi in the restoring scheme - calculate a tentative remainder

$$2r_{i-1} - (2Q_{i-1} + 2^{-i})$$

- $\phi q_1.q_2 ... q_{i-1}01 = 2Q_{i-1}+2^{-i} \text{simple to calculate}$
- ♦ If tentative remainder positive its value is stored in ri and qi=1
- ♦ Otherwise ri=2ri-1 and qi=0

Proof of Algorithm

◆ Repeated substitution in the expression for rm -

$$r_m = 2r_{m-1} - q_m(2Q_{m-1} + q_m 2^{-m})$$

$$= 2^2 r_{m-2} - 2q_{m-1}(2Q_{m-2} + q_{m-1}) - q_m(2Q_{m-1} + q_m 2^{-m})$$

$$\vdots$$

$$= 2^m \cdot r_0 - 2^m \left[(q_1 2^{-1})^2 + (q_2 2^{-2})^2 + \dots + (q_m 2^{-m})^2 \right]$$

$$- 2^m \left[2q_2 2^{-2} q_1 2^{-1} + \dots + 2q_m 2^{-m} \sum_{i=1}^{m-1} q_i 2^{-i} \right]$$

$$= 2^m X - 2^m \left(\sum_{i=1}^m q_i 2^i \right)^2 = 2^m (X - Q^2).$$

♦ Dividing by 2^m results in the expected relation with r_m2^{-m} as the final remainder

Example - Square root (Restoring)

♦ X=0.10112=11/16=176/256

- ♦ Q=0.11012=13/16
- \Rightarrow Final remainder=2⁻⁴ r_4 =7/256=X-Q²=(176-169)/256

ECE666/Koren Part.3 .35 Copyright 2004 Koren

Different Algorithm - Nonrestoring

♦ Second algorithm - similar to nonrestoring division

$$q_i = \begin{cases} 1 & \text{if } 2r_{i-1} \ge 0\\ \bar{1} & \text{if } 2r_{i-1} < 0 \end{cases}$$

♦ Example -

♦ Square root -

$r_0 = X$		0	.0	1	1	0	0	1	
$2r_0$		0	.1	1	0	0	1	0	set $q_1 = 1, Q_1 = 0.1$
$-(0+2^{-1})$ -		0	.1	0	0	0	0	0	
$\overline{r_1}$		0	.0	1	0	0	1	0	
$2r_1$		0	.1	0	0	1	0	0	set $q_2 = 1$, $Q_2 = 0.11$
$-(2Q_1+2^{-2})$ -	0	1	.0	1	0	0	0	0	and the second s
r_2	1	1	.0	1	0	1	0	0	
$2r_2$	1	0	.1	0	1	0	0	0	$ set q_3 = \bar{1}, Q_3 = 0.11\bar{1} $
$+(2Q_2-2^{-3}) +$	0	1	.1	0	$\bar{1}$	0	0	0	
r_3	0	0	.0	0	0	0	0	0	

- ♦ Converting the digits of Q to two's complement representation similarly to nonrestoring division
- ♦ Faster algorithms for square root extraction exist