Question Number	Scheme	Marks	
6 (a)	$\frac{\sin C}{10} = \frac{\sin 28}{6}$	M1	
	$\sin C = 10 \times \frac{\sin 28}{6} \qquad C = 51.49^{\circ}$	A1	
	$\angle DBC = 180 - 2 \times 51.49 = 77.0^{\circ}$ (or $\angle DBC = 2(90 - 51.49) = 77.0^{\circ}$)	M1A1 (4	l)
(b)	$\angle ABD = 23.49^{\circ}$	B1	
	$\frac{AD}{\sin 23.49} = \frac{10}{\sin 128.51} \text{ or } = \frac{6}{\sin 28}$ or $AD^2 = 6^2 + 10^2 - 2 \times 6 \times 10 \cos 23.49$	M1	
	AD = 5.093 = 5.09 (cm)	A1 (3)	
(c)	Area = $\frac{1}{2} \times 10 \times 6 \sin 100.51$, = 29.49 = 29.5 (cm ²)	M1A1,A1 (3	
7		<u> </u>	<u>. 1</u>
(a)	radius = $\sqrt{(3-2)^2 + (3-1)^2} = \sqrt{5}$ (= 2.236)	M1A1 (2	2)
(b)	B is $(1,-1)$	B1, B1 (2	2)
(c)	$DE = \sqrt{2^2 + 4^2} = \sqrt{20} = 2\sqrt{5}$: diameter (or find the mid-point of DE)	M1A1 (2	2)
(d)	$CP = \sqrt{(x-2)^2 + (y-1)^2}$	M1A1 (2	2)
(e)	$CP^2 = 5 = (x-2)^2 + (y-1)^2$	M1	
	$x^2 - 4x + y^2 - 2y = 0 $	A1 (2	2)
		[10]	