Part 1 MCQ (50%)

Directions: Circle the letter that corresponds to the correct answer. There is only one correct answer for each question. You do not need to show your work.

(5pts)Problem 1

Let a_n be the sequence defined by

$$\begin{cases} a_1 = \frac{2}{3} \\ a_{n+1} = \frac{a_n + 1}{2a_n + 1} \end{cases}$$

$$a_4 = (a) \frac{29}{41}$$
 $(b) \frac{3}{7}$ $(c) \frac{21}{61}$ $(d) \frac{1}{2}$ (e) Does not exist

(5pts)Problem 2

$$\lim_{n \to \infty} \left(4 - 2 \frac{n!}{n^n} \right) \left(\frac{3n+1}{4n} \right) =$$

$$(a) 3 \qquad (b) \frac{3}{4} \qquad (c) -\frac{1}{8} \qquad (d) \frac{3}{16} \qquad (e) \frac{1}{4}$$

(5pts)Problem 3

Which of the following is TRUE about the series $\sum_{n=1}^{\infty} \left(\frac{-3n}{n+1}\right)^{2n}$

- (a) It is divergent
- (b) It is absolutely convergent
- (c) It is conditionally convergent
- (d) It is a geometric series
- (e) It is a divergent geometric series

(5pts)Problem 4

The series $\sum_{n=1}^{\infty} 2^{n+1} \cdot 3^{1-2n}$ is

- (a) convergent and its sum is $\frac{12}{7}$
- (b) convergent and its sum is 6
- (c) convergent and its sum is $\frac{4}{9}$
- (d) convergent and its sum is $\frac{3}{8}$
- (e) divergent

(5pts)Problem 5

If

$$a_1 + a_2 + a_3 + \dots + a_N = \pi - 4e^{-N}$$
,

then $\sum_{n=1}^{\infty} a_n =$

(a)
$$\pi$$
 (b) $\pi - 4$ (c) 4 (d) $\pi - 1$ (e) $4e^{-\frac{\pi}{4}}$

(5pts)Problem 6

Let S and S_N be respectively the sum and the N-th partial sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} 4$. The smallest number of terms N such that $|S-S_N| < 0.01$ is equal to

- (a) 20
- (b) 25
- (c) 30
- (d) 50
- (e) 15

(5pts)Problem 7

The sum of the series $\sum_{n=1}^{\infty} (-1)^n \frac{\pi^{2n}}{n!}$ is

- $(a) \qquad \frac{1}{e^{\pi^2}}$
- (b) $e^{\sqrt{\pi}}$
- (c) $e^{2\pi}$
- (d) $-\pi^2$
- (e) ∞

(5pts)Problem 8

The series $\sum_{n=1}^{\infty} \left(\frac{1}{n+2} - \frac{1}{n} \right)$ is

- (a) convergent and its sum is $\frac{-3}{2}$
- (b) convergent and its sum is $\frac{1}{3}$
- (c) convergent and its sum is -1
- (d) convergent and its sum is $\frac{1}{2}$
- (e) divergent

(5pts)**Problem 9** The series $\sum_{n=0}^{\infty} \frac{e^n}{n!}$

- (a) converges by the ratio test
- (b) diverges by the ratio test
- (c) diverges by the limit comparison test
- (d) diverges by the divergence test
- (e) diverges by the integral test

(5pts)Problem 10

Use the basic Maclaurin series formulas to evaluate the improper integral

$$\int_0^\infty \sum_{n=0}^\infty \left(-1\right)^n \frac{x^n}{n!} dx$$

- (a) 1
- (*b*) -1
- (c) 0
- (d) π
- (e) diverges

Part 2 Written Questions (50%)

(10pts)Problem 1

Find the interval of convergence of the power series

$$\sum_{n=0}^{\infty} \frac{(-3)^n (x-1)^n}{\sqrt{n+1}}$$

Solution

Center c = 1

$$\lim_{n \to \infty} \left| \frac{(-3)^{n+1} (x-1)^{n+1}}{\sqrt{n+2}} \frac{\sqrt{n+1}}{(-3)^n (x-1)^n} \right|$$

$$= 3 |x-1|$$

$$R = \frac{1}{3}$$
 (3pts) $c - R = 1 - \frac{1}{3} = \frac{2}{3}$, $c + R = 1 + \frac{1}{3} = \frac{4}{3}$ (2pts)

• When $x = \frac{2}{3}$, the series becomes

$$\sum_{n=0}^{\infty} \frac{(-3)^n \left(\frac{2}{3} - 1\right)^n}{\sqrt{n+1}} = \sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}} \text{ diverges} \qquad (2pts)$$

• When $x = \frac{2}{3}$, the series becomes

$$\sum_{n=0}^{\infty} \frac{(-3)^n \left(\frac{4}{3} - 1\right)^n}{\sqrt{n+1}} = \sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$$
 converges by the alternating series test (2pts)

Interval of convergence
$$=(\frac{2}{3}, \frac{4}{3}]$$
 (1pt)

Find the Maclaurin series of $f(x) = x \cos(x^3)$.

Solution

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \quad \text{for all } x. \quad (3\text{pts})$$

$$x\cos(x^3) = x\sum_{n=0}^{\infty} \frac{(-1)^n (x^3)^{2n}}{(2n)!}$$
 (4pts)

$$= \sum_{n=0}^{\infty} \frac{(-1)^n x^{6n+1}}{(2n)!}$$
 (3pts)

Find the power series representation of $f(x) = \frac{x^2}{4 + x^3}$ and the corresponding interval of convergence.

Solution

$$\frac{1}{4+x^3} = \frac{1}{4} \left(\frac{1}{1+\frac{x^3}{4}} \right) \\
= \frac{1}{4} \left(\frac{1}{1-\left(-\frac{x^3}{4}\right)} \right) \\
= \frac{1}{4} \sum_{n=0}^{\infty} \left(-\frac{x^3}{4} \right)^n \quad \text{when} \quad \left| \left(-\frac{x^3}{4} \right) \right| < 1 \quad (\mathbf{5pts}) \\
= \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} x^{3n} \quad \text{when} \quad \left| x^3 \right| < 4 \\
f(x) = \frac{x^2}{4+x^3} = x^2 \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} x^{3n} \quad \text{when} \quad |x| < \sqrt[3]{4} \\
f(x) = \frac{x^2}{4+x^3} = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} x^{3n+2} \quad \text{when} \quad |x| < \sqrt[3]{4} \quad ((\mathbf{3pts}) + (\mathbf{2pts}))$$

Find the sum of the first three terms of the Taylor series of $f(x) = \ln(1+x^2)$ centered at c=2.

Solution

The Taylor series of f(x) centered at 2 is given by

$$f(2) + \frac{f'(2)}{1!}(x-2) + \frac{f''(2)}{2!}(x-2)^2 + \dots \quad (\mathbf{1pt})$$

$$f(x) = \ln(1+x^2), \quad f(2) = \ln 5$$

$$f'(x) = \frac{2x}{1+x^2}, \quad \frac{f'(2)}{1!} = \frac{4}{5}$$

$$f''(x) = \frac{2(1+x^2) - 4x^2}{(1+x^2)^2}$$

$$= \frac{2-2x^2}{(1+x^2)^2}, \quad \frac{f''(2)}{2!} = \frac{1}{2}\frac{-6}{25} = \frac{-3}{25}$$

The sum of the first three terms of the Taylor series of $f(x) = \ln(1+x^2)$ centered at c=2 is

$$\ln 5 + \frac{4}{5}(x-2) - \frac{3}{25}(x-2)^2$$
 ((3pts) + (3pts) + (3pts))

Find the radius of convergence of the power series

$$\sum_{n=0}^{\infty} \frac{x^{2n}}{n!}$$

Solution

Center c = 0.

$$\lim_{n \to \infty} \left| \frac{x^{2(n+1)}}{(n+1)!} \frac{n!}{x^{2n}} \right| = \lim_{n \to \infty} \left| \frac{x^{2n+2}}{(n+1)n!} \frac{n!}{x^{2n}} \right|$$
 (3pts)
$$= \lim_{n \to \infty} \left| \frac{x^2}{(n+1)} \right| = 0$$
 (2pts)

 $R = \infty$ (5pts)