Санкт-Петербургский государственный университет

Программная инженерия Кафедра Системного программирования

Слесарев Илья Дмитриевич

Интеграция модуля чата в проект CrossCon

Курсовая работа

Научный руководитель: ст. преп. Немешев М. Х.

Рецензент:

Разработчик "Ланит-Терком" Федотовский П. В.

SAINT-PETERSBURG STATE UNIVERSITY

Software Engineering department

Slesarev Ilya Dmitrievich

Integration of the chat module into the project CrossCon

Course Work

Scientific supervisor: senior lecturer Nemeshev M. H.

 $\label{eq:Reviewer:Reviewer:Pedotovskiy P. V.}$ Developer "Lanit-Terkom" Fedotovskiy P. V.

Оглавление

Ві	ведение	4				
1.	Обзор	6				
	1.1. IRC	6				
	1.2. SIP	6				
	1.3. XMPP	7				
	1.4. Matrix	7				
2.	2. Постановка задачи					
3.	Реализация	11				
	3.1. Выбор языка для реализации	11				
	3.2. Реализация библиотеки	11				
За	аключение	12				
Ст	тисок литературы	13				

Введение

Организация конференций - это сложный, длительный и достаточно ресурсозатратный процесс. Логистика при работе с размещением участников, расположением помещений, потоками, регистрациями, возвратом денег — количество задач бесконечно. Необходимо предусмотреть все детали, чтобы конференция была подготовлена и проведена на высшем уровне.

Помимо подготовки к конференции, которая заключается в поиске места проведения мероприятия, рассылке приглашений слушателям и докладчикам и других организационных моментов, сложности существуют и непосредственно в процессе проведения. Например, зачастую организаторам необходимо связаться со слушателями и сообщить какие-либо изменения времени, аудитории и т.п., или слушателям хочется обсудить тему, близкую к докладу, скооперироваться для посещения определенного доклада.

Организаторы конференций по-разному решают данные проблемы. У некоторых есть веб сервисы для отслеживания расписания и мессенджеры/страницы в социальных сетях для связи внутри конференции, у других для того, чтобы узнать расписание докладов, нужно заглянуть в листовку. Для решения подобных задач в организации конференций в компании ЛАНИТ - Терком было разработано кроссплатформенное приложение CrossCon.

CrossCon – мобильное приложение, разработанное для научной конференции Список, с поддержкой платформ Android, iOS и WinPhone. Однако также реально сделать его адаптивным под другие конференции в таком виде, чтобы для применения требовались минимальные усилия.

CrossCon предоставляет следующие возможности:

- Лента новостей
- Просмотр расписания на каждый день
- Описаний секций и пленарных докладов

Рис. 1: Приложение СПИСОК

Реализовано приложение на языке C# с использованием Xamarin. Forms и облачных технологий Microsoft Azure.

Таким образом большая часть задач, которые ставятся при организации конференции, была решена. Однако остались те пункты, которые связаны с контактом между участниками и организаторами. Зачастую внутри конференции необходима оперативная связь, если же мессенджеры установлены не у всех, то приложения для конференции (в част. СПИСОК) скорее всего скачаны у большинства посетителей мероприятия.

Так появилась идея реализации чата внутри приложения для конференций.

1. Обзор

На данный момент существует большое количество протоколов для передачи текстовых данных, которые можно было бы использовать для реализации необходимого инструмента:

- IRC (Internet Relay Chat)
- SIP (Session Initiation Protocol)
- (XMPP) мессенджер Jabber
- Matrix

Каждый из них обладает своими плюсами и минусами.

1.1. IRC

IRC - протокол прикладного уровня для обмена сообщениями между пользователями в режиме реального времени. Является клиент-серверной системой.

Протокол достаточно прост, однако излишне наполнен различными функциями, которые не нужны для простой связи в приложении. Впервые описан в RFC 1459. [3] Согласно спецификации протокола, IRC-сеть - это группа серверов, соединенных между собой. Таким образом, если произойдет обрыв связи между IRC - серверами, то в результате некоторое количество пользователей отключится от канала.

1.2. SIP

SIP - протокол установления сеанса. Это протокол передачи данных, который описывает способы установления и завершения обмена мультимедийным контентом (в част. мгновенными сообщениями).

SIP - один из протоколов, лежащих в основе Voice over IP. Описан в RFC 3261. [4] SIP очень похож на протокол HTTP, используемый для Web приложений, или на SMTP (обмен почтовыми сообщениями).

Пользователи могут принимать участие в существующих сеансах связи, приглашать других пользователей и быть приглашенными ими к новому сеансу связи. Также имеется возможность устанавливать связь как с определенным пользователем, так и с группой пользователей.

1.3. XMPP

XMPP - расширяемый протокол обмена сообщениями и информацией о присутствии. Система мгновенных сообщений XMPP является федеративной, расширяемой и открытой. Любой желающий может открыть свой сервер мгновенного обмена сообщениями, регистрировать на нём пользователей и взаимодействовать с другими серверами XMPP.[6]

Однако передаваемая информация с помощью этого протокола слишком избыточна. Как правило, более 70 % межсерверного трафика XMPP составляют сообщения о присутствии, из них половина по-просту ненужна. Из-за этого целесообразность использования протокола XMPP для решения нашей проблемы невелика.

Рис. 2: XMPP сеть между серверами jabber.org и draugr.de

1.4. Matrix

Matrix - протокол для обмена сообщениями между пользователями в режиме реального времени. Позволяет передавать как текстовые

сообщения, так и сообщения других форматов (картинки, голосовые сообщения, файлы, видео). Осущеставляется поддержка как групповых, так и приватных чатов (в том числе поддерживается модерация и разделение прав). Протокол распространяется в открытом виде, то есть открыт исходный код как серверов (Synapse, Pallium, Rume и других), так и клиентов.

Основными плюсами протокола Matrix является особенная архитектура (клиент-сервер-сервер-клиент) и федеративность. Архитектура данного протокола особенно важна для мобильных устройств, потому что в отличии от полностью децентрализованных систем, на клиента не ложится вся нагрузка по построению и поддержанию связей с близлежащими узлами, что экономит их траффик и заряд батареи, ведь необходимо поддерживать связь только со своим сервером.

Полезность федеративности покажу на следующей ситуации. Пользователь с мобильного клиента подключился к каналу. А сервер, через который "ходил" пользователь, отказал в работе, тогда система продолжит работать, так как нет центрального сервера. На данный момент пользователь регистрируется на конкретном сервере (Однако разработчиками протокола планируется и эту часть сделать непривязанно к серверу), а при дальнейшем пользовании "ходит" через другие сервера.

Рис. 3: Архитектура на примере одной комнаты

На рисунке (Рис. 3) изображено то, как каждый клиент связан с

определенным сервером и отправляет сообщения через него.

На основе анализа приведенных выше протоколов была составлена следующая таблица (Табл. 1), где плюсами и минусами указаны положительные и отрицательные стороны того или иного протокола соответственно. В следствие чего, для реализации чата в приложении для работы с конференциями был выбран протокол Matrix.

Таблица 1: Представленные протоколы

Протокол	Групповые	Простота	Федеративность	Архитектура
	чаты	реализации		
IRC	+	+	-	клиент-сервер
SIP	+	-	-	клиент (он же сервер)
XMPP	+	-	+	клиент-сервер
Matrix	+	+	+	клиент-сервер-сервер-клиент

2. Постановка задачи

Целью данной работы является реализация инструмента для связи с докладчиками и слушателями внутри приложения. Для ее достижения поставлены следующие задачи:

- выбор протокола
- реализация библиотеки для работы с протоколом
- интеграция написанной библиотеки в приложение
 - реализация одной общей комнаты конференции
 - реализация чата для каждой секции

3. Реализация

3.1. Выбор языка для реализации

Приложение CrossCon реализовано на языке C#[5] с использованием платфрмы Xamarin. Forms. Это кроссплатформенное приложение, и поэтому для поддержания платформ Android, iOS и WinPhone необходимо было реализовать библиотеку для работы с протоколом чата также в кроссплатформенном виде. В виду этого было принято решение разрабатывать библиотеку на языке C# с использованием платформы .Net Core.

.NET Core — это универсальная платформа разработки, которая поддерживается корпорацией Майкрософт и сообществом .NET на сайте GitHub. Она является кроссплатформенной, поддерживает Windows, Mac OS и Linux и может использоваться на устройствах, в облаке, во внедренных системах и в сценариях Интернета вещей.[2]

3.2. Реализация библиотеки

Выбор протокола Matrix был удачным с точки зрения написания библиотеки. Открытое и полное API позволяет полностью написать свой клиент для работы с протоколом. [1] Несмотря на относительную "молодость" протокола, уже было реализовано несколько библиотек на других языках программирования, но протокол достаточно динамичен и в некоторых реализациях, уже сейчас есть методы, которые не поддерживаются в виду устаревания их в официальном API разработчиков Matrix.

Заключение

В ходе выполнения работы были получены следующие результаты. Написана библиотека для работы с протоколом, поддерживается:

- отправка и чтение сообщений
- некоторые модераторские возможности
 - создание комнаты
 - * получение параметров и участников комнаты
 - * общее состояние комнаты
 - запрет на вход в комнату
 - приглашение в комнату и присоединение к комнате
 - принудительное завершение сессии пользователя
 - возможность "забыть" комнату

Расширение функций библиотеки было упрощено тем, что при текущем проектировании имеется возможность без изменения написанного кода, добавляя минимум дополнительного кода, добавлять новые функции для работы с комнатами и пользователями.

Также реализован прототип работы с библиотекой на платформе .Net Core.

Список литературы

- [1] Matrix. Client-Server API. URL: http://matrix.org/docs/spec/client_server/r0.2.0.html.
- [2] Microsoft. Документация по .Net Core // Документация Microsoft. URL: https://docs.microsoft.com/ru-ru/dotnet/articles/core/ (дата обращения: 24.05.2017).
- [3] RFC. Internet Relay Chat Protocol. URL: https://www.ietf.org/rfc/rfc1459.txt.
- [4] RFC. SIP: Session Initiation Protocol.— URL: https://www.ietf.org/rfc3261.txt.
- [5] Richter Jeffrey. CLR via C# (4th Edition). -2006.
- [6] Wikipedia. XMPP // Extensible Messaging and Presence Protocol.— URL: https://en.wikipedia.org/wiki/XMPP.