Page 1 MA398 Assignment 3 a) R=-(L+D) U det (R-NI) = det((-L+0) U-NI) = 0 Define AX:= XL+ND+U =) det(A) = det(XL+XD+U) = 0 Dnon-singular =) det (A1) = 0 =) IN (I must always be the course and so we have convergence

b)
$$Ax = b$$

$$A = \left(a_{11} - \dots - a_{1n} \right)$$

$$\vdots$$

$$a_{n1} - \dots - a_{nn}$$

$$x = \begin{cases} x, \\ \vdots \\ x_n \end{cases}$$
 $b = \begin{cases} b, \\ \vdots \\ b_n \end{cases}$

$$A = L + D + V$$

$$L = \left(\begin{array}{c} 0 \\ \alpha_{21} \end{array} \right)$$

$$\left(\begin{array}{c} \alpha_{n_1} & \cdots & \alpha_{n_{n-1}} \\ 0 \end{array} \right)$$

$$U = \begin{pmatrix} 0 & \alpha_{12} - \alpha_{1n} \\ 0 & -\alpha_{m+1n} \end{pmatrix}$$

pto

$$\Rightarrow$$
 $(L+0+V)x = b$

$$=)(\omega(L+U)+\omega D)x=\omega b$$

$$\Rightarrow \omega D = (\omega - 1)D + D$$

. forward substitution

$$= \sum_{\alpha \in \mathcal{C}_{i}} (1 - \omega) \alpha_{i}^{(k)} + \omega \left(b_{i} - \sum_{\alpha \in \mathcal{C}_{i}} \alpha_{i}^{(k+1)} - \sum_{\alpha \in \mathcal{C}_{i}} \alpha_{i}^{(k)} \alpha_{i}^{(k)}\right)$$

c) One reason is that Gauss-Seidel converges faster Ci.e. in fewer iterations). This means that G-S will be closer to the true result of Xps. whin a finite number of iterations (call this iter).

If G-S and Jacobi both converge in m, n

great iterations st. m, n 7 it, G-S will be

closer to	the corre	ot value	A X	due to
the juster	conversions.		7 2	

The reason for the futer conversion of G-S when compared to Jacobi is that in the algorithm for G-S, values are updated during one tender the current iteration, whereas with Jacobi, values are only ever updated on the next iterative step, leading to Jacobi taking a greater number of iterations to reach the result.

d) See:

501.m

I modified Jacobi mélhod given in the question to make this.

I also made both Bhath Jacobi melliod and So R method return the result xip at each step k. (ran in method)

$$b = \begin{pmatrix} 1 \\ \vdots \end{pmatrix} n$$

$$n=1$$
 $A = (4.1)$
 $= 11A1b = 4.1$

$$n=2$$

$$A = \begin{pmatrix} 4.12 \\ 2 & 4.1 \end{pmatrix}$$

$$1|A|_{L} = 6.1$$

for (ii) - (v) please also see MA398-ASSignment 3_E Exercise 1e. m (1) see matlab and graph 11 Collector verges and so is unformly bounded in n iii) see mattas code and graphs Regardless of n, 87-5 takes 265 devalers Jack is 838 for 178 and 840 for Pro en = Preo $e_p = 3c - x_p$ $e_0 = x - x_0$ in this coest $x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ =) eo = @x =) x-xp=RRx $= R^{k} = x^{-1}(x - x_{k})$ $= R^{k} = (x^{-1}(x - x_{k}))^{k} = (x^{-1}x - x^{-1}x_{k})^{k}$ DR = (I - x xn) & c should tend to 0 Should evenluly be O, like the grudient is so IIRID is as expected.

2. See:
MA398_Assignment3_Exercise 2.m

SD.m

CG.M

SD.m is steepest descent CG.m is conjugate gradient

The algorithms in the notes suggest that within the loop, it is checked if $||r^{(k-1)}||_2 \leq \varepsilon_r$ then return $x^{(k-1)}$.

Hatlab dossn't really work like this, so my while (cop runs for the opposite condition. (i.e. $||r^{(k-1)}|| > \varepsilon_r$)

Similarly done for SD and C.G.

The residual norms vs. R for steepest descent are greater than those for gradient dexent.

This would imply that gradient descent is "better" and this ambe analysed. It does seem to convege to the correct result for x in this case. This, of course, also depends on the given tolerance. Matlab's inbuilt cgs() method uses a tolerance of 1×10⁻⁶, which I have decided to use for both my spland get cg methods. (Declared outside of the fundion)

With this tolerance, the copets at algorithm takes
59 iterations to reach a satisfying result for x, wheres
50 does not reach it within 100 iterations.

I plotted 2 sets of graphs. One for the residual norms against R and of set and got cog

The second set is the plot of 11e (1) /11e(0) 1/4
In the notes: Theorem 25.2 stats
$ e^{(k)} _{A} \leq \left(\sqrt{1-\frac{1}{K_{2}(A)}}\right)^{k} e^{(k)} _{A}$
=> e(10) _A / e(0) _A \ \(\sqrt{\sqrt{1-\text{k}_2(A)}}\) sod
and 1 20 in the eff
Neorem 25.4 states similarly states results in
$\frac{ e^{(n)} _{A} \leq 2\left(\frac{N_{K(A)}+1}{N_{K_{2}A}-1}\right)^{k} + \left(\frac{N_{K(A)}+1}{N_{K_{2}(A)}-1}\right)^{-1}}{ e^{(n)} _{A}} \leq 2\left(\frac{N_{K(A)}+1}{N_{K_{2}A}-1}\right)^{k} + \left(\frac{N_{K(A)}+1}{N_{K_{2}(A)}-1}\right)^{-1}$
So I have decided to plot each side of
So I have decided to plot each side of the negrothers against eachother.
They should both be bounded between Oand 1.
$ e^{(k)} = A^{-1}r^{(k)} $
$=) e^{(k)} _A = A^{-1}r^{(k)} _A$
= J <en, a'r'="" a<="" alen="J<en" td=""></en,>
$\overline{\mu} = \sqrt{(r^{(k)})^{T}(r^{(k)})}$
So $\ e^{(n)}\ _A$ can be calculated like this
1/e ⁽⁰⁾ // _A
17

From analysing the value of 1/e 1/1/4 ag	ages and
11601/4	
it's bound, we can see that the me holds. This can be visualised by a ple	equality always
holds. This can be visualised by a ple	<i>t</i> .
*	

Chebysher recurrence formula Costs = & Plan & Planel Pm(2) = zPm-1(2) - Pm-2(2) Inited values P2(2) = 22-1 $2k = 2\cos\left(\frac{kx}{m+1}\right)$ k=1,...,mSo now we can obtain the eigenvalues of Mm from our defu. It. =) $\lambda_R = d - 2\beta^2 y^{\frac{1}{2}} \cos(\frac{h\pi}{m+1}) \quad k = 1, ..., m$ Due to symmetry, of me can sun λR = d ± 2β2y2 cos(m+1) R=1, ...mp So AR = d +2 NBY cos (m+1) So for ga a) eigenvalues are: B, 8 = a > NBS = a $= \lambda_{R} = d + 2a\cos\left(\frac{n\pi}{m+1}\right)$ b) B=a, 8=b, d=d =) In = d+2 Nab cos (m+1)

tigen rector by properties of eigenvalues and eigenvectors, ne (A-ARI) XR =0 where &p is the eigen rector The jth row is given by axpj-1 + (d - /p)xpj + axpj+1 =0 We can shift the indices to obtain axxi +(d-1) xxi+ + axxi+2 =0 j=1...,m-1 Again a difference equation. I think it would be more interesting to use another method to solve this. I propose using the unitateral 2 toursform. Doing this resultes in aXp(Z) + (d-xp)(ZXp(Z)-ZXpo)+a(Z2Xp(Z)

 $a \times_{R}(z) + (d - \lambda_{R})(z \times_{R}(z) - z \times_{RO}) + a(z^{2} \times_{R}(z) - z^{2} \times_{RO} - z \times_{RI})$ = 0Setting $\times_{RI} = 0$ $\Rightarrow \times_{RI} = 0$

Define arbitrary constant Mp 84. Xx1=17x 70
Eigenvectors can be scaled so this is fine, de
We sow be e:
(recoveringines pres equation)
We now have: (recoveringing previous) $(x + 2(d - \lambda_p) + 2^2 a) = (d - \lambda_p) + 2 x_p + a + 2 x_p + 2$
=) $X_{p}(z) (\alpha + (d - 1)z + 4az^{2}) = 2M_{p}$
$\Rightarrow X_{R}(z) = z n_{R}$
$(\alpha + (d - \lambda_k) + \alpha z^2)$
Finding inverse transform of Xp gives us agentedos
$Z_{\pm} = -(cl - \lambda_R) \pm \sqrt{(cl - \lambda_R)^2 - 4a^2}$
Za
& Since 1/2 - dA - La cus (KI)
=) d-1/k-2a cos(k)
· · · · · · · · · · · · · · · · · · ·
-) Subinto 2+ girs
$7 + = \frac{cos(hx) + in1 - cos(hx)}{}$
$Zt = Cos(\frac{k\pi}{mtl}) + i\sqrt{1-cos^2(\frac{k\pi}{mtl})}$
- 1-1k7 L /k7
$\Rightarrow z_{\pm} = \cos\left(\frac{kT}{m+1}\right) \pm i\sin\left(\frac{kT}{m+1}\right)$
A

$$X_{p}(z) = zn_{p}$$
 $= zn_{k} \left(\frac{A}{z-z_{+}} \frac{B}{z-z_{-}}\right)$ $= a+(d-\lambda_{p})z+az^{2}$

$$A = \underline{1} = \underline{1}$$

$$z_{+}-z_{-} = \underline{1}$$

$$z_{+}-z_{-} = \underline{1}$$

$$z_{+}\sin\left(\frac{y_{+}x_{+}}{m_{+}}\right)$$

$$= 2 \times p(z) = 2 \times p \left(\frac{1}{z - z_{+}} - \frac{1}{z - z_{-}} \right)$$

$$= 2 \times p(z) = 2 \times p \left(\frac{1}{z - z_{+}} - \frac{1}{z - z_{-}} \right)$$

$$=\frac{N_R}{4 \sin \left(\frac{R^2}{m+1}\right)^2} \left(\frac{\sin \left(\frac{R^2}{m+1}\right)^2}{\sin \left(\frac{R^2}{m+1}\right)^2} + \frac{1}{\sin \left(\frac{2RTt}{m+1}\right)^2} + \frac{1}{\sin \left(\frac{R^2}{m+1}\right)^2} + \frac{1}$$

$$-) \chi_{Rj} = Sin(jR) \qquad j = 1, ..., m \quad (a)$$

$$(x_n; = x_j)$$

ppt

Jor da 6 ove:

b)
$$x_j = \left(\frac{b}{a}\right)^{k_z} \sin\left(\frac{jk_z}{mtl}\right)$$