1 실험 설계 개요

주어진 실험 계획에서 4개 요소에서 (DMEM 농도, 미세조류 추출물 농도, 성장인 자 1 농도, 성장인자 2 농도) FBS 농도 최소화, 세포 증식률 최대화 조건 탐색 x 일반적인 방법으로 모든 조합을 실험하는 경우 3*4*4*4*4=768가지 조합을 실험해봐야 함.

FBS 농도에 따라 Table 1과 같이 Block을 설정함. 각 Block은 Table 2에서 요소별 수준 조합으로 실험을 진행함. 이 경우 필요한 실험의 수는 4*Block 별 실험 수임.

FBS 농도								
0	0.5	1	2					
Block1	Block2	Block3	Block4					

Table 1: FBS 농도별 Block 설정

요소		2	수준	
DMEM		0.5	0.75	1
미세조류 추출물	0	2	4	6
성장인자 1	0	5	10	15
성장인자 2	0	5	10	15

Table 2: Block 설정

2 Block의 실험 설계

Block 별 실험 수를 최소화하기 위해 다음과 같은 방법을 시도할 수 있음.

• 선별 반응설계 : 2 수준 별 요소를 중복없이 조합하여 실험을 진행함.

• 반응표면실험 : 연속형 요인의 양구간 끝과 중점을 조합하여 실험을 진행함.

3 minitab을 이용한 실험 설계

 \min tab은 웹에서 이용가능. 부분 요인설계, 다수준 요인설계, Box-Benheken 설계 진행함.

▦ 워크시트 1

부분 요인 설계

설계 요약

요인: 4 기본설계: 4,8 해: IV 런: 8 반복실함: 1 부분: 1/2 블럭: 1 중앙점(전체): 0

	C1	C2	СЗ	C4	C5	C6	C7	C8
	표준 순서	런 순서	중앙점	블럭	DMEM	미세조류 추출물	성장인자 1	성장인자 2
1	2	1	1	1	1.0	0	0	15
2	7	2	1	1	0.5	6	15	0
3	3	3	1	1	0.5	6	0	15
4	6	4	1	1	1.0	0	15	0
5	8	5	1	1	1.0	6	15	15
6	4	6	1	1	1.0	6	0	0
7	1	7	1	1	0.5	0	0	0
8	5	8	1	1	0.5	0	15	15

다수준 요인 설계

설계 요약

요인: 4 반복실험: 1 기본 런: 192 전체 런 수: 192 기본 블럭: 1 전체 블럭 수: 1

	C1	C2	С3	C4	C5	C6	C7	C8	
	표준 순서	런 순서	점 유형	블럭	DMEM	미세조류 추	성장인자 1	성장인자 2	
1	30	1	1	1	0.50	2	15	5	
2	71	2	1	1	0.75	0	5	10	
3	35	3	1	1	0.50	4	0	10	
4	21	4	1	1	0.50	2	5	0	
5	1	5	1	1	0.50	0	0	0	
6	4	6	1	1	0.50	0	0	15	
7	97	7	1	1	0.75	4	0	0	
8	187	8	1	1	1.00	6	10	10	
9	105	9	1	1	0.75	4	10	0	
10	62	10	1	1	0.50	6	15	5	
11	176	11	1	1	1.00	4	15	15	
12	6	12	1	1	0.50	0	5	5	
13	177	13	1	1	1.00	6	0	0	

설계 요약

요인: 4 반복실험: 1 기본 런: 28 전체 런 수: 28 기본 블럭: 1 전체 블럭 수: 1

C1 班준 순서 頁 1 24 2 23	C2 런 순서 1	C3 점 유형	C4 블럭	C5 DMEM	C6	C7	C8
1 24			블럭	DMEM			
	1			DIVILIVI	미세조류 추출물	성장인자 1	성장인자 2
2 23		2	1	0.75	6	7.5	15.0
2 20	2	2	1	0.75	0	7.5	15.0
3 27	3	0	1	0.75	3	7.5	7.5
4 19	4	2	1	0.50	3	15.0	7.5
5 11	5	2	1	0.50	3	7.5	15.0
6 5	6	2	1	0.75	3	0.0	0.0
7 9	7	2	1	0.50	3	7.5	0.0
8 28	8	0	1	0.75	3	7.5	7.5
9 3	9	2	1	0.50	6	7.5	7.5
10 21	10	2	1	0.75	0	7.5	0.0
11 18	11	2	1	1.00	3	0.0	7.5
12 14	12	2	1	0.75	6	0.0	7.5
13 1	13	2	1	0.50	0	7.5	7.5

4 JMP를 이용한 실험 설계

부분 요인설계, Box-Benheken 설계 진행함.

무문 요인설계, B	ох-веппеке	11 결거					
• • •			주효과 선별	설계			
▼ 주효과 선별 설계 ▶ 설계 주효과 선별 설계		DMEM	미세조류 추출물	성장인자 1	성장인자 2	세포 성장 속도	
▶ 선별	1	0.5	0	0	15	•	
▶ 모형▶ 설계 평가	2	1	0	15	0	•	
DOE 대화상자	3	0.5	6	0	0	•	
202 11-10 1	4	0.5	0	15	0	•	
	5	1	0	0	15	•	
C CI(C (O)	6	0.5	0	15	15	•	
▽ 열(5/0)	7	1	6	0	0	•	
Q	8	1	6	15	15	•	
✓ DMEM ★	9	1	0	0	0	•	
□ 미세조류 추출물 *□ 성장인자 1 *	10	0.5	6	15	0	•	
■ 성장인자 2 ★	11	1	6	15	15	•	
◢ 세포 성장 속도 ★	12	0.5	6	0	15	•	
▼ 행							
모든 행 12							
선택됨 0 제외 0							
제외 0 숨김 0							
라벨 항목 0							

5 결론

- JMP가 minitab에 비해 더 많은 설계 옵션 제공
- 동일한 실험 설계에 대해서는 프로그램 관계 없이 동일한 결과 제공
- 현재 실험 수준에서는 오픈 소스 사용으로 실험 설계 및 분석 대체 가능함