电路习题课 1

一、 补充知识

电阻率(resistivity)是用来表示各种物质电阻特性的物理量。在温度一定的情况下,材料的电阻为:

$$R = \rho \frac{L}{S}$$

其中的 ρ 就是电阻率, L 为材料的长度, S 为材料的横截面积。需要注意的是:

- 电阻率和电阻是两个不同的概念。
- 电阻率 ρ 不仅和导体的材料有关,还和导体的温度有关。

二、 例题

1. 已知某导体单位体积内的自由电荷数为 n,自由电荷的定向移动速度为 v,自由电荷的电荷量为 q,导体的横截面积为 S。试证明电流的微观表达式: I=nSqv

$$V = S \cdot vt$$

$$Q = V \cdot n \cdot q = S \cdot vt \cdot n \cdot q$$

$$I = \frac{U}{t} = \frac{S \cdot v + n q}{t} = n Sq v$$

A. $\frac{R}{1000}$

B. $\frac{R}{100}$

C. 100R

D. 10000R

$$R \cdot P = \frac{L}{s}$$

$$\frac{R'}{R} = \frac{\frac{1002}{\frac{L}{5}}}{\frac{L}{5}}$$
 = $\frac{10000}{5}$

3. (3选)如图所示, R_1 和 R_2 是材料、厚度相同、表面为正方形的导体板,但 R_1

的尺寸比 R_2 的尺寸大,在导体两端加相同的电压,通过两导体的电流方向如图所

示,则下列说法中正确的是(

- A. R_1 中的电流小于 R_2 中的电流
- B. R_1 中的电流等于 R_2 中的电流

- C. R_1 比 R_2 中自由电荷定向移动的速率大
- D. R_1 比 R_2 中自由电荷定向移动的速率小

- (多选)研究某导体的伏安特性曲线,通电后其电流 I 与所加电压 U 的变化图 线如图所示,P 为图线上一点,PQ 为 U 轴的垂线,PM 为 I 轴的垂线,则下列说 法中正确的是(
- A. 随着所加电压的增大,该电阻的阻值增大
- B. 随着所加电压的增大,该电阻的阻值减小
- C. 对应 P 点的电阻值 $R = \frac{U_1}{I_2}$
- D. 对应 P 点的电阻值 $R = \frac{U_1}{I_1 I_2}$

5. 关于欧姆定律,下列说法中不正确的是(

A. 由关系式 $R=\frac{U}{I}$ 可知,导体的电阻跟导体两端的电压成正比,跟导体的电流强度成反比 $\begin{cal}igg| \begin{cal}igg| \b$

- B. 关系式 $R = \frac{U}{I}$ 表明使导体通过一定的电流所需的电压越高,则导体的电阻越大
- C. 由公式 $I = \frac{U}{R}$ 可知,导体中的电流强度跟导体两端的电压成正比,跟导体的电阻成反比
- D. 由关系式 U=IR 可知,对于一个确定的导体来说,通过的电流越大,那么导体两端的电压也越大

6. 某导线的电阻为 160Ω ,将它对折起来使用,它的电阻变为 40Ω ,如果将它均匀地拉长到原来的 2 倍,则它的电阻为 60Ω .

7. 已知电子的电量为 e,若氢原子的核外电子绕核做半径为 r 的匀速圆周运动,线速度大小为 v,则电子的转动周期为 $T = \frac{\lambda_{X} V}{V}$;电子绕核的运动可等效为环形电流,则电子运动的等效电流为 eV

$$I = \frac{Q}{t} = \frac{e}{7} = \frac{e}{2\pi r} = \frac{ev}{2\pi r}$$