컴퓨터그래픽스

김준호

Visual Computing Lab.

국민대학교 소프트웨어학부

- Affine Space & Homogeneous Coordinates
- Linear transformations
- Model transformations
- View transformations

Transformations

Affine Space & Homogeneous Coordinates

OpenGL ES uses Homogeneous coordinate System

- Graphics cards support homogeneous coordinates
 - 4x1 vectors for 3D points & 3D vectors

$$oldsymbol{p} = egin{bmatrix} p_1 \ p_2 \ p_3 \ 1 \end{bmatrix} oldsymbol{v}$$
 =

- In general, the following holds (if a \neq 0, w \neq 0)
 - It is related to projective geometry

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \equiv \begin{bmatrix} ax \\ ay \\ az \\ aw \end{bmatrix} \equiv \begin{bmatrix} x/w \\ y/w \\ z/w \\ 1 \end{bmatrix}$$

Affine Space

- The affine space contains three types of object
 - Scalars
 - Vectors
 - Points
- Why affine space?
 - We need to clearly distinguish the concepts of vectors and points
 - There was no strong differences in vectors and points, especially in high school

Affine Space

- Scalar ⊕ Vector ⊕ Point
- Operations
 - Vector-vector addition
 - Scalar-vector multiplication
 - Point-vector addition
 - Scalar-scalar opertions
- For any point define
 - $-1 \bullet P = P$
 - 0 P = 0 (zero vector)

Scalars

- Scalars represent the concept of quantity
 - Ex) 7, 3.14, -1, ...
 - Combined with two basic operations
 - Addition
 - Multiplication
- Scalars alone have no geometric propoerties

Vectors

- A vector is a quantity of two attributes
 - Direction
 - Magnitute
- A vector usually represented with a directed line segment

- Examples include
 - Force
 - Velocity

Vector Operations

- scalar * vector
 - Ex) 2**v**, −**v**, ...
 - Result: a vector
- vector + vector
 - Ex) $\mathbf{u} + \mathbf{w}$
 - Result: a vector
- Products
 - Dot product
 - Ex) u w
 - Result: a scalar
 - Physical meaning: amount of projection
 - Cross product
 - Ex) u x w
 - Result: a vector
 - Physical meaning: amount of rotation

Vectors Lack Point

- The following vectors are identical
 - Same length and magnitute

- (Scalars + Vectors) are insufficient for representing geometry
 - Need points

Points

- Location in space
- Operations allowed between points and vectors
 - Point-point subtraction yields a vector
 - P Q = v
 - P+Q → no physical meaning
 - Equivalent to point-vector addtion

•
$$Q + v = P$$

Homogeneous Coordinates

- Homogeneous coordinate systems clearly distinguish the concepts of vectors and points
 - nD point is represented with a (n+1)D vector, whose last component is 1
 - nD vector is represented with a (n+1)D vector, whose last component is 0
- Example) 2D points, 2D vectors → 3D vectors
 - $p = [3 \ 2 \ 1]^T$
 - $\mathbf{v} = [3\ 2\ 0]^{\mathsf{T}}$

Homogeneous Coordinates

Homogeneous coordinates hold the operations of affine space

```
- E.g.) P = [3 \ 2 \ 1]^T, Q = [1 \ 1 \ 1]^T, v = [2 \ 1 \ 0]^T
```

- $\mathbf{v} = \mathbf{P} \mathbf{Q} = [3\ 2\ \mathbf{1}]^{\mathsf{T}} [1\ 1\ \mathbf{1}]^{\mathsf{T}} = [2\ 1\ \mathbf{0}]^{\mathsf{T}}$
- $P = Q + v = [1 \ 1 \ 1]^T + [2 \ 1 \ 0]^T = [3 \ 2 \ 1]^T$
- 2v
- 3Q

Why Homogeneous Coordinate?

- Graphics cards support homogeneous coordinates
 - 4x1 vectors for 3D points & 3D vectors

$$m{p} = egin{bmatrix} p_1 \ p_2 \ p_3 \ 1 \end{bmatrix} \qquad m{v} = egin{bmatrix} v_1 \ v_2 \ v_3 \ 0 \end{bmatrix}$$

- 4x4 matrices for
 - GL_MODELVIEW_MATRIX, GL_PROJECTION_MATRIX, GL_TEXTURE_MATRIX
 - Note: OpenGL ES represents a matrix in the column-major way

$$\mathbf{M} = \begin{bmatrix} m_1 & m_5 & m_9 & m_{13} \\ m_2 & m_6 & m_{10} & m_{14} \\ m_3 & m_7 & m_{11} & m_{15} \\ m_4 & m_8 & m_{12} & m_{16} \end{bmatrix}$$

Linear Transformations

Transformation (변환)

- In computer graphics, transformation refers to
 - Change of shape
 - Linear transformation: line to line
 - Non-linear transformation: line to curve

Linear transformation

http://mathinsight.org/determinant linear transformation

Non-linear transformation

Linear Transformation (선형 변환)

- It can be represented as linear a matrix
- Standard transformation
 - Translation / Rotation / Scaling
- Composition of linear transformation is linear

Translation (이동)

- Move (translate, displace) a point to a new location
 - Translation of an object: every point displaced by same vector

- Displacement determined by a vector d
 - Three degrees of freedom for **d**, in 3D case: $\mathbf{d} = (d_x, d_y, d_z)$
 - x' = x + d

Translation (이동)

- Translation matrix T
 - Translation can also be expressed by using a 4x4 matrix T in homogeneous coordinates
 - x'=Tx

•
$$T = T(d_{x'}, d_{y'}, d_{z}) =$$

$$\begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- glTranslate(d_x, d_v, d_z)
- This form is better for H/W implementation

Translation (이동) 행렬의 해석: Homogeneous Coordinate 활용

$$\mathbf{T}(d_x, d_y, d_z) = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{3 \times 3} & \mathbf{d} \\ \mathbf{0}^T & 1 \end{bmatrix} = \mathbf{T}(\mathbf{d}) = \mathbf{T}_{\mathbf{d}}$$

• 단,
$$\mathbf{d} = (d_x, d_y, d_z)$$
.

Translation about Points or Vectors

Translation about Points

- 위치 $\mathbf{p} = (p_x, p_y, p_z)$ 를 $\mathbf{d} = (d_x, d_y, d_z)$ 만큼 이동
 - Homogeneous coordinate 이용

$$\mathbf{T_d} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{3 \times 3} & \mathbf{d} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{p} + \mathbf{d} \\ 1 \end{bmatrix}$$

- Homogeneous coordinate 이용치 않은 경우

•
$$p + d$$

Translation about Vectors

- 벡터 $\mathbf{v} = (v_x, v_y, v_z)$ 를 $\mathbf{d} = (d_x, d_y, d_z)$ 만큼 이동
 - Homogeneous coordinate 이용한 경우

$$\mathbf{T_d} \begin{bmatrix} \mathbf{v} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{3 \times 3} & \mathbf{d} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{v} \\ 0 \end{bmatrix}$$

- Homogeneous coordinate 이용치 않은 경우

Rotation (회전)

- Consider rotation about the origin by θ degrees
 - Radius stays the same, angle increases by θ

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Rotation (회전) 행렬의 해석

- 2차원 회전 행렬 해석
 - 고교과정에서 배운 내용에 대한 재해석

Rotation (회전) 행렬의 해석: Homogeneous Coordinate 활용

- 2차원 회전 행렬 해석
 - Homogeneous coordinate를 이용한 해석

Rotation (회전) 행렬의 해석: Homogeneous Coordinate 활용

2D Rotation of Points

- 위치 $\mathbf{p} = (p_x, p_y) = \theta$ 만큼 회전
 - Homogeneous coordinate를 이용한 해석

$$\mathbf{R}(\theta) \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}(\theta)_{2 \times 2} & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}(\theta)_{2 \times 2} \mathbf{p} \\ 1 \end{bmatrix} \quad \mathbf{R}(\theta) \begin{bmatrix} \mathbf{v} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{R}(\theta)_{2 \times 2} & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{R}(\theta)_{2 \times 2} \mathbf{v} \\ 0 \end{bmatrix}$$

- Homogeneous coordinate 이용치 않은 경우
 - $\mathbf{R}(\theta)_{2\times 2}\mathbf{p}$

2D Rotation of Vectors

- 벡터 $\mathbf{v} = (v_x, v_y) = \theta$ 만큼 회전
 - Homogeneous coordinate를 이용한 해석

$$\mathbf{R}(\theta) \begin{bmatrix} \mathbf{v} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{R}(\theta)_{2 \times 2} & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{R}(\theta)_{2 \times 2} \mathbf{v} \\ 0 \end{bmatrix}$$

- Homogeneous coordinate 이용치 않은 경우
 - $\mathbf{R}(\theta)_{2\times 2}\mathbf{v}$

Rotation (회전)

- General rotation about the origin
 - A rotation by θ rotation an arbitrary axis **u**
 - Quaternion can express general rotation
 - $\mathbf{x}' = \mathbf{R}_{\mathbf{H}}(\theta)\mathbf{x}$
 - where,

• glRotate(θ , u_x , u_y , u_z), where $\mathbf{u} = (u_x, u_y, u_z)$

Rotation (회전) 행렬의 해석: Homogeneous Coordinate 활용

3D Rotation of Points

- 위치 $\mathbf{p} = (p_x, p_y, p_z)$ 를 원점 기준, \mathbf{u} 축을 중심으로 θ 만큼 회전
 - Homogeneous coordinate를 이용한 해석

$$\mathbf{R}_{\mathbf{u}}(\theta) \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{\mathbf{u}}(\theta)_{3 \times 3} & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{\mathbf{u}}(\theta)_{3 \times 3} \mathbf{p} \\ 1 \end{bmatrix}$$

- Homogeneous coordinate 이용치 않은 경우

•
$$\mathbf{R}_{\mathbf{H}}(\theta)_{3\times 3}\mathbf{p}$$

3D Rotation of Vectors

- 벡터 $\mathbf{v} = (v_x, v_y, v_z)$ 를 원점 기준, \mathbf{u} 축을 중심으로 θ 만큼 회전
 - Homogeneous coordinate를 이용한 해석

$$\mathbf{R}_{\mathbf{u}}(\theta) \begin{bmatrix} \mathbf{v} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{\mathbf{u}}(\theta)_{3 \times 3} & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{\mathbf{u}}(\theta)_{3 \times 3} \mathbf{v} \\ 0 \end{bmatrix}$$

- Homogeneous coordinate 이용치 않은 경우
 - $\mathbf{R}_{\mathbf{u}}(\theta)_{3\times 3}\mathbf{v}$

Scaling (확대축소)

- Scaling matrix S
 - Expand or contract along each axis (fixed point of origin)
 - x'=Sx

•
$$S = S(s_{x'}, s_{y'}, s_{z}) =$$

$$egin{bmatrix} s_x & 0 & 0 & 0 \ 0 & s_y & 0 & 0 \ 0 & 0 & s_z & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

• glScale(s_x, s_y, s_z)

Scale (확대축소) 행렬의 해석: Homogeneous Coordinate 활용

$$\mathbf{S}(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{3 \times 3}(\mathbf{s}) & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix} = \mathbf{S}(\mathbf{s}) = \mathbf{S}_{\mathbf{s}}$$

•
$$\Box$$
, $\mathbf{s} = (s_x, s_y, s_z)$.

Scale (확대축소) 행렬의 해석: Homogeneous Coordinate 활용

3D Scale of Points

- 위치 $\mathbf{p} = (p_x, p_y, p_z)$ 를 원점 기준으로 \mathbf{x} 축으로 S_x 배, \mathbf{y} 축으로 S_y 배, \mathbf{z} 축으로 S_z 배 확대 축소
 - Homogeneous coordinate를 이용한 해석

$$\mathbf{S}(s_x, s_y, s_z) \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{3 \times 3}(\mathbf{s}) & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{3 \times 3}(\mathbf{s})\mathbf{p} \\ 1 \end{bmatrix}$$

- Homogeneous coordinate 이용치 않은 경우
 - $S_{3\times3}(s)p$

3D Scale of Vectors

- 벡터 $\mathbf{v} = (v_x, v_y, v_z)$ 를 원점 기준으로 \mathbf{x} 축으로 S_x 배, \mathbf{y} 축으로 S_y 배, \mathbf{z} 축으로 S_z 배 확대 축소
 - Homogeneous coordinate를 이용한 해석

$$\mathbf{S}(s_x, s_y, s_z) \begin{bmatrix} \mathbf{v} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{3 \times 3}(\mathbf{s}) & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{3 \times 3}(\mathbf{s})\mathbf{v} \\ 0 \end{bmatrix}$$

- Homogeneous coordinate 이용치 않은 경우
 - $\mathbf{R}_{\mathbf{u}}(\theta)_{3\times 3}\mathbf{v}$

Model Transformations

Composite Transformation (합성 변환)

- We can composite transformation by multiplying matrices of rotation, translation, and scaling.
 - Example:
 - 1) Uniformly scale 2x: S = S(2,2,2)
 - 2) Rotate -30 degrees by +z axis: $R = R_z(-30)$
 - 3) Translate by (2, 1, 0): T = T(2,1,0)
 - x' = T(R(Sp)) = TRSx
 - x: original object
 - x': transformed object

Composite Transformation (합성 변환)

- We can composite transformation by multiplying matrices of rotation, translation, and scaling.
 - Example:
 - 1) Uniformly scale 2x:
 - 2) Rotate -30 degrees by +z axis:
 - 3) Translate by (2, 1, 0):
 - x' = T(R(Sp)) = TRSx
 - x: original object
 - x': transformed object

Rotation about a Fixed Point other than the Origin

- Rotation: originally, a fixed point is the origin
 - Example
 - Rotate 30 degrees by +z axis: $R = R_z(30)$
- But, ration about a general fixed point \mathbf{p}_f is necessary, in general

Rotation about a Fixed Point other than the Origin

- Composite transformation
 - Move fixed point to origin
 - Rotate
 - Move fixed point back
- $\mathbf{x}' = \mathbf{T}(\mathbf{p}_f)\mathbf{R}_{\mathbf{v}}(\theta)\mathbf{T}(-\mathbf{p}_f)\mathbf{x}$

```
glTranslate(pfx, pfy, pfz); // \mathbf{T}(\mathbf{p}_f)
glRotate(theta, vx, vy, vz); // \mathbf{R}_{\mathbf{v}}(\theta)
glTranslate(-pfx, -pfy, -pfz); // \mathbf{T}(-\mathbf{p}_f)
glDrawElements(...); // \mathbf{x}
```


Scale about a Fixed Point other than the Origin

- Scaling: originally, a fixed point is the origin
 - Example
 - Uniformly scale 2x: **S**(2,2,2)
- But, scaling about a general fixed point p_f is necessary, in general

Scale about a Fixed Point other than the Origin

- Composite transformation
 - Move fixed point to origin
 - Scale
 - Move fixed point back
- $\mathbf{x}' = \mathbf{T}(\mathbf{p}_f)\mathbf{S}(s_x, s_y, s_z)\mathbf{T}(-\mathbf{p}_f)\mathbf{x}$

```
glTranslate(pfx, pfy, pfz); // \mathbf{T}(\mathbf{p}_f)
glScale(sx, sy, sz); // \mathbf{S}(s_x, s_y, s_z)
glTranslate(-pfx, -pfy, -pfz); // \mathbf{T}(-\mathbf{p}_f)
glDrawElements(); // \mathbf{x}
```


Instancing

- In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size
- We apply an instance transformation to its vertices to
 - Scale
 - Orient
 - Locate

Instancing

Instanced rendering (<u>youtube</u>)

Scene graph for instancing

Advanced Transformation

Transformations for Hierarchical Objects

Solar System

- An example of hierarchical objects
 - How can we design transformations for hierarhical objects

(video, youtube)

Sun – Earth – Moon

- Sun
- Earth
 - rotating itself
 - orbiting around the sun
- Moon
 - rotating itself
 - orbiting around the earth

- Moon
 - Modeling the moon

- Moon
 - Modeling the moon
 - Rotating itself

- Earth Moon
 - The moon is orbiting around the earth

$$\mathbf{x}_{\text{earth}} = \mathbf{T}_{\text{moon}} (\mathbf{d}_{\text{e-m}} \cos \theta, \mathbf{d}_{\text{e-m}} \sin \theta) \mathbf{R}_{\text{moon}} \mathbf{x}_{\text{moon}}$$

- Sun Earth
 - The earth is orbiting around the sun

$$\mathbf{x}_{\text{sun}} = \mathbf{T}_{\text{earth}} (\mathbf{d}_{\text{s-e}} \cos \phi, \mathbf{d}_{\text{s-e}} \sin \phi) \mathbf{R}_{\text{earth}} \mathbf{x}_{\text{earth}}$$

Sun – Earth – Moon

- Sun Earth Moon
 - $-\mathbf{x}_{sun} = \mathbf{T}_{earth}(\mathbf{d}_{s-e}\cos\phi, \mathbf{d}_{s-e}\sin\phi)\mathbf{R}_{earth}\mathbf{x}_{earth}$
 - $-\mathbf{x}_{\text{earth}} = \mathbf{T}_{\text{moon}}(\mathbf{d}_{\text{e-m}}\cos\theta, \mathbf{d}_{\text{e-m}}\sin\theta)\mathbf{R}_{\text{moon}}\mathbf{x}_{\text{moon}}$

Transformation of the Earth w.r.t. the frame of the Sun

$$\mathbf{x}_{\text{sun}} = \mathbf{T}_{\text{earth}} (\mathbf{d}_{\text{s-e}} \cos \phi, \mathbf{d}_{\text{s-e}} \sin \phi) \mathbf{R}_{\text{earth}} \mathbf{x}_{\text{earth}}$$

Transformation of the Moon w.r.t. the frame of the Sun

$$\mathbf{x}_{\text{sun}} = \mathbf{T}_{\text{earth}} (\mathbf{d}_{\text{s-e}} \cos \phi, \mathbf{d}_{\text{s-e}} \sin \phi) \mathbf{R}_{\text{earth}} \mathbf{T}_{\text{moon}} (\mathbf{d}_{\text{e-m}} \cos \theta, \mathbf{d}_{\text{e-m}} \sin \theta) \mathbf{R}_{\text{moon}} \mathbf{x}_{\text{moon}}$$

- Moon
 - Modeling the moon


```
void draw_moon()
{
   glEnableClientState(GL_VERTEX_ARRAY);
   glEnableClientState(GL_COLOR_ARRAY);
   glVertexPointer(...);
   glColorPointer(...);
   glDrawElements(...);
   glDiableClientState(GL_VERTEX_ARRAY);
   glDiableClientState(GL_COLOR_ARRAY);
}
```

- Moon
 - Modeling the moon
 - Rotating itself


```
void draw_earth_system()
{
    // ...
    glRotatef(...);    // rotating the Moon
    draw_moon();
}
void draw_moon() { // ... glDrawElements(); ... }
```

- Earth Moon
 - The moon is orbiting around the earth

```
\mathbf{x}_{\text{earth}} = \mathbf{T}_{\text{moon}} (\mathbf{d}_{\text{e-m}} \cos \theta, \mathbf{d}_{\text{e-m}} \sin \theta) \mathbf{R}_{\text{moon}} \mathbf{x}_{\text{moon}}
```

```
void draw_earth_system()
{
   draw_earth();

   glTranslatef(...); // orbiting around the Earth
   glRotatef(...); // rotating the Moon
   draw_moon();
}

void draw_moon() { // ... glDrawElements(); ... }
void draw_earth() { // ... glDrawElements(); ... }
```


- Sun Earth
 - The earth is orbiting around the sun

$$\mathbf{x}_{\text{sun}} = \mathbf{T}_{\text{earth}} (\mathbf{d}_{\text{s-e}} \cos \phi, \mathbf{d}_{\text{s-e}} \sin \phi) \mathbf{R}_{\text{earth}} \mathbf{x}_{\text{earth}}$$


```
void draw_sun_system()
{
   draw_sun();

   glTranslatef(...); // orbiting around the Sun
   glRotatef(...); // rotating the Earth system
   draw_earth_system();
}

void draw_moon() { // ... glDrawElements(); ... }
void draw_earth() { // ... glDrawElements(); ... }
void draw_sun() { // ... glDrawElements(); ... }
```

Sun – Earth – Moon

$$\mathbf{x}_{\text{earth}} = \mathbf{T}_{\text{moon}} (\mathbf{d}_{\text{e-m}} \cos \theta, \mathbf{d}_{\text{e-m}} \sin \theta) \mathbf{R}_{\text{moon}} \mathbf{x}_{\text{moon}}$$

$$\mathbf{x}_{\text{sun}} = \mathbf{T}_{\text{earth}} (\mathbf{d}_{\text{s-e}} \cos \phi, \mathbf{d}_{\text{s-e}} \sin \phi) \mathbf{R}_{\text{earth}} \mathbf{x}_{\text{earth}}$$


```
void draw_sun_system()
  draw sun();
  glTranslatef(...); // orbiting around the Sun
  glRotatef(...); // rotating the Earth system
  draw earth system();
void draw earth system()
  draw earth();
  glTranslatef(...); // orbiting around the Earth
                   // rotating the Moon
  glRotatef(...);
  draw_moon();
void draw_moon() { // ... glDrawElements(); ... }
void draw earth() { // ... glDrawElements(); ... }
                   { // ... glDrawElements(); ... }
void draw sun()
```

View Transformations

Coordinate System (Frame)

- A Coordinate system (or frame) consists of a set of basis vectors and an origin
 - A set of basis vectors: v₁, v₂, ..., v_n
 - An origin:
- How to representing a vector **u** and a point **p** w.r.t. a given coordinate system?

Coordinate System (Frame)

- Consider a set of basis vectors and an origin
 - \mathbf{v}_{1} , \mathbf{v}_{2} , ..., \mathbf{v}_{n}
 - c
- A vector u is written
 - $\mathbf{u} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + ... + \alpha_n \mathbf{v}_n + 0 \cdot \mathbf{o}$
 - The list of scalars, $\{\alpha_1, \alpha_2, \alpha_n, 0\}$ is the representation of **u** w.r.t. the given coordinate system
- A point **p** is written
 - $\mathbf{p} = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + ... + \beta_n \mathbf{v}_n + 1 \cdot \mathbf{o}$
 - The list of scalars, $\{\beta_1, \beta_2, \dots, \beta_n, 1\}$ is the representation of **p** w.r.t . the given coordinate system

$$\boldsymbol{u} = [\alpha_1 \quad \alpha_2 \quad \cdots \quad \alpha_n]^T = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$

$$m{p} = [eta_1 \quad eta_2 \quad \cdots \quad eta_n]^T = egin{bmatrix} eta_1 \ eta_2 \ dots \ eta_n \end{bmatrix}$$

Coordinate System (Frame)

- In OpenGL ES, we just care about *orthonormal* frames
 - Ortho means that the basis vectors are orthogonal to each other
 - x-axis \perp y-axis \perp z-axis
 - normal means that the length of each basis vector is 1
 - The unit length of each axis is equal to 1

- Initially, OpenGL ES camera coordinate is as follows
 - Center of projection (COP) is placed in the origin
 - Right direction is the positive direction of x-axis
 - Up direction is the positive direction of y-axis
 - Viewing direction is the negative direction of z-axis

- When we apply gluLookAt()
 - Rotate the camera frame on the world frame: \mathbf{R}_{c}
 - Translate the camera frame on the world frame: T_c
 - Therefore, $V = T_c R_c$ and gluLookAt() generates $V^{-1} = R_c^{-1} T_c^{-1}$

- When we apply gluLookAt()
 - Rotate the camera frame on the world frame: R_c
 - Translate the camera frame on the world frame: T_c
 - Therefore, $V = T_c R_c$ and gluLookAt() generates $V^{-1} = R_c^{-1} T_c^{-1}$

- When we apply gluLookAt()
 - Rotate the camera frame on the world frame: R_c
 - Translate the camera frame on the world frame: T_c
 - Therefore, $V = T_c R_c$ and gluLookAt() generates $V^{-1} = R_c^{-1} T_c^{-1}$

- When we apply gluLookAt()
 - Rotate the camera frame on the world frame: R_c
 - Translate the camera frame on the world frame: T_c
 - Therefore, $V = T_c R_c$ and gluLookAt() generates $V^{-1} = R_c^{-1} T_c^{-1}$

- When we apply gluLookAt()
 - Rotate the camera frame on the world frame: R_c
 - Translate the camera frame on the world frame: T_c
 - Therefore, $V = T_c R_c$ and gluLookAt() generates $V^{-1} = R_c^{-1} T_c^{-1}$

Revisiting Composite Transformation

Composite Transformation (합성 변환)

- We can composite transformation by multiplying matrices of rotation, translation, and scaling.
 - Example:
 - 1) Uniformly scale 2x:
 - 2) Rotate -30 degrees by +z axis:
 - 3) Translate by (2, 1, 0):
 - x' = T(R(Sp)) = TRSx
 - x: original object
 - x': transformed object

Composite Transformation (합성 변환)

• Composite transformation w/ "scale, rotation, and then translation"

$$\mathbf{T_d}\mathbf{R_u}(\theta)\mathbf{S_s} = \begin{bmatrix} \mathbf{I}_{3\times3} & \mathbf{d} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R_u}(\theta)_{3\times3} & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{S}_{3\times3} & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{S}\mathbf{R_u}(\theta)_{3\times3} & \mathbf{d} \\ \mathbf{0}^T & 1 \end{bmatrix}$$

- When we apply gluLookAt()
 - Rotate the camera frame on the world frame: \mathbf{R}_{c}
 - Translate the camera frame on the world frame: T_c
 - Therefore, $V = T_c R_c$ and gluLookAt() generates $V^{-1} = R_c^{-1} T_c^{-1}$

- When we apply gluLookAt()
 - Rotate the camera frame on the world frame: R_c
 - Translate the camera frame on the world frame: T_c
 - Therefore, $V = T_c R_c$ and gluLookAt() generates $V^{-1} = R_c^{-1} T_c^{-1}$

ViewMatrix V⁻¹

$$\mathbf{V} = \mathbf{T_d} \mathbf{R_u}(\theta) = \begin{bmatrix} \mathbf{I_{3 \times 3}} & \mathbf{d} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R_u}(\theta)_{3 \times 3} & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R_u}(\theta)_{3 \times 3} & \mathbf{d} \\ \mathbf{0}^T & 1 \end{bmatrix}$$

$$\mathbf{V}^{-1} = \mathbf{R}_{\mathbf{u}}^{-1}(\theta)\mathbf{T}_{\mathbf{d}}^{-1} = \mathbf{R}_{\mathbf{u}}^{T}(\theta)\mathbf{T}_{\mathbf{d}}^{-1} = \begin{bmatrix} \mathbf{R}_{\mathbf{u}}^{T}(\theta)_{3\times3} & \mathbf{0} \\ \mathbf{0}^{T} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3\times3} & -\mathbf{d} \\ \mathbf{0}^{T} & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{R}_{\mathbf{u}}^{T}(\theta)_{3\times3} & -\mathbf{R}_{\mathbf{u}}^{T}(\theta)_{3\times3}\mathbf{d} \\ \mathbf{0}^{T} & 1 \end{bmatrix}$$