Conversion from OR to RR or RD

Ehsan Karim: ehsank.com

15 August 2020

Contents

1	Not	ations		1
2	Functions			
	2.1	OR to	RD	. 2
	2.2	OR to	o RR	. 2
3	Testing the Function			
	3.1	OR to	o RD	. 2
		3.1.1	Option 1	. 2
		3.1.2	Option 2	. 3
	3.2	OR to	o RR	. 4
		3.2.1	Option 1	. 4
		3.2.2	Option 2	. 5
		3.2.3	Option 3	. 6
4	Working with a data			
	4.1	Titani	ic data	. 7
		4.1.1	OR	. 7
		4.1.2	RD	. 8
		4.1.3	RR	
5	Ref	erence	es es	10

1 Notations

- OR = Odds ratio
- RR = Risk ratio
- RD = Risk difference
- p0 = Background event rate (e.g., for unexposed group)
- p1 = Risk for experiencing event for exposed group
- O0 = Background odds of experiencing events
- O1 = Odds for experiencing event for exposed group

2 Functions

2.1 OR to RD

Following ref 1

```
OR2RD <- function(OR,p0){
    00 = p0/(1-p0)
    RD = 00*(OR-1)/( (1+OR*00)*(1+00) )
    return(RD)
}</pre>
```

2.2 OR to RR

Following ref 1

```
OR2RR <- function(OR,p0){
    00 = p0/(1-p0)
    RD = 00*(OR-1)/( (1+OR*00)*(1+00) )
    RR = (RD+p0)/p0
    return(RR)
}</pre>
```

Following ref 2

```
OR2RRx <- function(OR,p0){
    00 = p0/(1-p0)
    01 = OR*00
    p1 = 01/(1+01)
    RR = p1/p0
    return(RR)
}</pre>
```

Following ref 3

```
OR2RRy <- function(OR,p0){
    RR = OR/(1 - p0 + (OR * p0))
    return(RR)
}</pre>
```

3 Testing the Function

3.1 OR to RD

3.1.1 Option 1

Using derivation by a student: Liang Xu.

3.1.2 Option 2

3.2 OR to RR

3.2.1 Option 1

3.2.2 Option 2

3.2.3 Option 3

4 Working with a data

4.1 Titanic data

4.1.1 OR

##
Logistic regression predicting survived

```
##
## OR(95%CI) P(Wald's test) P(LR-test)
## sex (cont. var.) 0.1 (0.08,0.13) < 0.001 < 0.001
##
## Log-likelihood = -679.3609
## No. of observations = 1313
## AIC value = 1362.7217</pre>
```

4.1.2 RD

- The outcome variable is survived
- sex variable is considered as the exposure variable: Female category is the reference category, and hence considered here as the background population to calculate p0.
- Stating values were identified by grid search (e.g., using for loop within plausible values)

```
tablex <- table(titanic$sex,titanic$survived)</pre>
tablex
##
##
              0
                   1
##
     female 156 307
            708 142
     male
survival.rate = tablex[,"1"]/sum(tablex[,"1"])
survival.rate
##
      female
                   male
## 0.6837416 0.3162584
p0 <- survival.rate[1]</pre>
p0
##
      female
## 0.6837416
OR2RD(OR=est.OR[2],p0=p0)
##
       female
## -0.5031861
fit.RD <- glm(survived \sim sex, start = c(.1, -.01),
                          family = binomial("identity"), data = titanic)
fit.RD
##
## Call: glm(formula = survived ~ sex, family = binomial("identity"),
##
       data = titanic, start = c(0.1, -0.01))
##
## Coefficients:
## (Intercept)
                     sexmale
```

```
0.6631
                    -0.4960
##
##
## Degrees of Freedom: 1312 Total (i.e. Null); 1311 Residual
## Null Deviance:
                        1687
## Residual Deviance: 1359 AIC: 1363
4.1.3 RR
OR2RR(OR=est.OR[2],p0=p0)
##
      female
## 0.2640699
OR2RRx(OR=est.OR[2],p0=p0)
     sexmale
## 0.2640699
OR2RRy(OR=est.OR[2],p0=p0)
     sexmale
## 0.2640699
require(sjstats)
or_to_rr(or=est.OR, p0=p0)
## (Intercept)
                    sexmale
     1.1842080
                 0.2640699
  • Stating values were identified by grid search (e.g., using for loop within plausible values)
fit.RR <- glm(survived ~ sex, start=c(-1,.5),</pre>
                          family = binomial("log"), data = titanic)
fit.RR
##
## Call: glm(formula = survived ~ sex, family = binomial("log"), data = titanic,
       start = c(-1, 0.5)
##
##
## Coefficients:
## (Intercept)
                    sexmale
##
       -0.4109
                    -1.3785
##
## Degrees of Freedom: 1312 Total (i.e. Null); 1311 Residual
## Null Deviance:
## Residual Deviance: 1359 AIC: 1363
```

exp(coef(fit.RR))

```
## (Intercept) sexmale
## 0.6630670 0.2519486
```

5 References

- 1. Popham, F. (2016). Converting between marginal effect measures from binomial models. International journal of epidemiology, 45(2), 590-591.
- 2. StatsToDo: Odd and Risk Interconversion Explained
- 3. Get relative risks estimates from logistic regressions or odds ratio values