

SEQUENCE LISTING

<10> Max-Planck-Gesellschaft z.
Förd. d. Wissenschaften

<120> Plants With Modified Gene Expression

<130> DEBE:005US

<140> 10/030,386

<140> 2002-01-02

<150> PCT/DE00/02233

<151> 2000-07-03

<150> DE 199 30 570.6

<151> 1999-07-02

<160> 8

<170> PatentIn Ver. 2.1

<210> 1

<211> 3389

<212> DNA

<213> *Arabidopsis thaliana*

<400> 1

actagttgac cacatgaact aaaccttcttg gacaatcatc aatggacaca tggtagcttt 60
gatttgctgt gaattttgtt tatctctca gataattatc actttcttgt ttatgcctac 120
aatatatattt atggttttaga gttttgtttt acgattttgg atttaatggaa taaagattag 180
ggatttgaggg tttgagtttta gggtaaggaa attaggcttt agttagatgt ctcaagggtt 240
taaggtttac acaccacaaa ccatttgctt gtgtcaacaa cattgtatca tattttcaaa 300
aaaattttgc tgaaggaccc ttgtattgata tatataaaggc gaaactgtttg gataagttt 360
tgtggacaat atatatttggat tacataattt gaaacatagt ttaatatctg atattttgtt 420
gaaatataata atactactta gttttaaata tatagtattt catatgtatgc gaaactgtttg 480
gataagtttta cgtggacaaat atatatttgc tacataattt ggaacatagt ttaatatttgc 540
atattttgtt ggaatataata attctactta cgcttaataa tttttatttgc aattttttttt 600
tttcataataa tgtgaactgt ttgaatatgt ttacatggac aatataatattt ggatacataa 660
ttaggaacat agtttaataat ctgatatttgc ttggaaatataatatttgc ttaagcttaa 720
atatttttat ttgatataat atttgactta aacatttttgc ttgtatttttttgc ctaaatttttgc 780
acagatctta ccattaattt ttaacttgc ttgttgc ttttttttttgc aatttttttttgc 840
tttagtaatttgc gcaacaaaat taattttatctt cctgttttttgc ttcccttctca cctttataa 900
ggtaaaatgg tcataaaaatc agtaaaaaaag gtggaaaatgt gcccactccc tcaaaatgtt 960
cataaacgtc caaacttctt ccataaatgc ctttttttttgc aacattccat atagattata 1020
acttattata ggttataact tattatatttgc acgttatttttttgc ttttttttttgc tatttttttttgc 1080
cacacaatca aatattttaa tcacaaaaat ttatttttttttgc aacatttttttttgc ttttttttttgc 1140
tgcaataaca tattatatttgc ttgttttttttgc tgcaacaaca tatttttttttgc ctacgaatct 1200
ccttttttttgc ttttttttttgc aacaacatgtt gtttttttttgc tttagcttgc tatttttttttgc 1260
tataataatc taaagtttttttgc ttgttttttttgc caaatttttttttgc aaccaatcat 1320
agagttggta ttgttttttttgc ttgttttttttgc atatataatc tgaatatcgat gtttttttttgc 1380
atgacaattt atatggcgat ttttttttttgc ttgttttttttgc ttttttttttgc ttttttttttgc 1440
acttaatacttgc taaatcacc aatttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 1500
catatctaattt cttttttttttgc tcaataaaaga ttgttttttttgc caaatttttttttgc ttttttttttgc 1560
attaatatttgc tacatagatt ttgttttttttgc agctgttttttgc aaaatccattt aataaaaacta 1620

atacggatc	tttattgatc	atgttaacatg	aattattcat	gtatatacaa	ttgaccctat	1680
taattttgca	taaatttcaa	cttggcaat	tcattgattt	tgttaaccgt	taattctgct	1740
aatttcacaa	ttctcttgta	cgcctaaaat	ttatgcgtat	tatcgattt	atatgcaaat	1800
atcgaagaat	ttatagttt	atatagtaga	aatgaaggta	tttgc当地	gagttctaacc	1860
gtgaaataac	actaattaat	taatttagat	ttgaacctac	agagattcga	cttgatccac	1920
ttgaaaaatt	catttactct	actaatttgg	ttactccatg	gaccatgatt	atgctattct	1980
gttaggactct	aacaactgac	ttgacacaat	ctctttcgta	aacaataatg	ggttatattt	2040
ttttgtttt	tttttcgga	caaattagcc	acggttgctt	agaccatttt	gtagttctta	2100
tcttgaatca	aagtctcagc	aaaaaaaaaa	aaaaaaaaacgc	ttaaatccac	tagctagact	2160
acgactacgt	tgtttaaatg	ttttttta	aatacaatac	attgaagtt	aatatttgaa	2220
taaagaaaat	ctaatcagca	tgtatacagt	atattagaag	taataacttga	tcagaaaaat	2280
aacatacaat	aataaaataa	aaaaaaaaatt	atgttagttt	ttggaatat	tataattctta	2340
ctttcaatca	aaataactaa	aagaaataaa	atcttcacac	atagtggtaa	taattggcta	2400
gtatgaatat	tgaattgtgg	agaccggca	taatatttga	ctaggcagaa	attattgata	2460
tgtactaagt	taataaacctt	gcaaaagaaat	tcttttagt	aaacgtgtac	atttgtaaaa	2520
acagatttaa	cactaaatct	tgacttgtat	atactattaa	ttattcctt	tctcttattt	2580
gtatgtcaaa	tctagtgttt	acaaaaccag	aggtgttgc	cgttagagag	agaattaaac	2640
aacttacata	cataaaaaac	ataacccaaa	aaaataataa	taatgcattct	tccataataa	2700
taataatatg	aattcaacat	tagcattcat	ttcatttaccc	aaatccgaaa	tttcatttgc	2760
taaaatttaat	acaatttgtat	tgtaaaaag	ctaaaaagctt	acgtttatgc	caaagatagt	2820
caaaacctg	caatgacaaa	gttgccaaaa	tcttgaagag	tttggtccac	aaaatttaag	2880
gttcttgc	ttccactcta	tttataggca	aagagatgag	acagagaaga	ttaaattact	2940
tcttaacaaa	gggtgtttt	actcaaccac	atgcatttctc	aagtgtctgc	tcctcacatt	3000
cccccaagatt	cccatttact	cacttctcta	tttggtagct	aagtccacaca	atatgattct	3060
aaattttttt	acacattatt	cgtttgttc	acacttgctt	tcgactttcg	taaacctata	3120
tagttcatcc	aatatttattc	ggtaaattcg	atatttatca	atctttattc	tcgttaggtt	3180
aaggagacga	ttgatacgtg	ggatctactt	acgttatctgc	atgatttattt	gttataaaag	3240
ttattgcaaa	cattaaatta	ctttcataga	gagcaatcat	tatattaagg	taatttaatt	3300
ttattatata	tagtcaagat	ttaaaggaat	aaagaaaaga	ttctcaaaaac	atttcatctc	3360
tctccaacaa	ctattcacca	cattcaatg				3389

<210> 2
<211> 912
<212> DNA
<213> *Arabidopsis thaliana*

```
<400> 2
atggagtcac caccactata cgagatatcc tcaagctttt cttctgaaaa accttagacac 60
catttcaat cccttgatct ctcccctaac ctcaccaaaa actcttgtat caacaatacc 120
ctaatttgagc ctttaccgct tattgatcgc ataaacttga actcaaacct agacctaacc 180
cctaattccct tgatgcgga agaaggagag caagaggagg aagaagaaga agaagaagac 240
cgtaagtgg acgtggactt acacatcgcc cttcctgggt ttggtaaacc aagcaatgtat 300
gctaaacagc tgaagaagag aaatggaaag gagatcgcca catatgacgc cgaaaaaggc 360
atcgagaatg aactttccgg aaaggcatac tggatccccgg cgccggagca aattctcata 420
gggttcactc atttttcttg ccatgtatgc ttcaagacat tcaatcgcta caacaatctt 480
cagatgcaca tgggggggacaa tggttcacaa tacaggaaag gaccggagtc actgaaaggc 540
acacagccac gagccatgtt agggatccct tgttactgtt gcgttgaagg gtgcaggAAC 600
cacattgacc atcctcggtt caagccactg aaagacttta ggacgctcca aacgcactac 660
aaacgcaaac acggacacaa acccttctcg tgtcgccttt gcggtaagct tttggctgtc 720
aaggggcatt ggcgaacacaa tgagaagaat tggggaaaac gttgggtttg cgttgcgg 780
tctgatTTTA aacacaaacg ttctttaag gaccatgtt aaggcgttgg gtctggtcat 840
gggccttatac caactgggtt gtttgaagag caggcttcta attcatctgt ctccgagact 900
ttgtttttttt aa 912
```

<210> 3
<211> 303
<212> PRT
<213> *Arabidopsis thaliana*

<400> 3
Met Glu Ser Pro Pro Leu Tyr Glu Ile Ser Ser Ser Ser Ser Glu
1 5 10 15

Lys Pro Arg His His Phe Gln Ser Leu Asp Leu Phe Pro Asn Leu Asn
20 25 30

Gln Asn Ser Cys Ile Asn Asn Thr Leu Ile Glu Pro Leu Pro Leu Ile
35 40 45

Asp Arg Ile Asn Leu Asn Ser Asn Leu Asp Leu Asn Pro Asn Pro Leu
50 55 60

Tyr Ala Glu Glu Gly Glu Gln Glu Glu Glu Glu Glu Glu Glu Asp
65 70 75 80

Arg Glu Val Asp Val Asp Leu His Ile Gly Leu Pro Gly Phe Gly Lys
85 90 95

Pro Ser Asn Asp Ala Lys Gln Leu Lys Lys Arg Asn Gly Lys Glu Ile
100 105 110

Ala Thr Tyr Asp Ala Gly Lys Gly Ile Glu Asn Glu Leu Ser Gly Lys
115 120 125

Ala Tyr Trp Ile Pro Ala Pro Glu Gln Ile Leu Ile Gly Phe Thr His
130 135 140

Phe Ser Cys His Val Cys Phe Lys Thr Phe Asn Arg Tyr Asn Asn Leu
145 150 155 160

Gln Met His Met Trp Gly His Gly Ser Gln Tyr Arg Lys Gly Pro Glu
165 170 175

Ser Leu Lys Gly Thr Gln Pro Arg Ala Met Leu Gly Ile Pro Cys Tyr
180 185 190

Cys Cys Val Glu Gly Cys Arg Asn His Ile Asp His Pro Arg Ser Lys
195 200 205

Pro Leu Lys Asp Phe Arg Thr Leu Gln Thr His Tyr Lys Arg Lys His
210 215 220

Gly His Lys Pro Phe Ser Cys Arg Leu Cys Gly Lys Leu Leu Ala Val
225 230 235 240

Lys Gly Asp Trp Arg Thr His Glu Lys Asn Cys Gly Lys Arg Trp Val
245 250 255

Cys Val Cys Gly Ser Asp Phe Lys His Lys Arg Ser Leu Lys Asp His
260 265 270

Val Lys Ala Phe Gly Ser Gly His Gly Pro Tyr Pro Thr Gly Leu Phe
275 280 285

Glu Glu Gln Ala Ser Asn Ser Ser Val Ser Glu Thr Leu Phe Phe
290 295 300

<210> 4

<211> 1816

<212> DNA

<213> *Arabidopsis thaliana*

<400> 4

atggagtcac caccactata cgagatatcc tcaagctctt cttctgaaaa acctagacac 60
catttccaat cccttgatct ctcccttaac ctcaacaaa actcttgat caacaatacc 120
ctaattgagc ctttaccgct tattgatcgc ataaacttga actcaaacct agacctaaac 180
cctaattccct tgtatgcgga agaaggagag caagaggagg aagaagaaga agaagaagac 240
cgtaagtgg acgtggactt acacatcgcc ctccctgggt ttggtaaacc aagcaatgat 300
gctaaacagc tgaagaagag aaatgggaag gagatcgcca catatgacgc cgaaaaaggc 360
atcgagaatg aactttccgg aaaggcatac tggatcccgg cgccggagca aatttcata 420
gggttcaactc atttttcttg ccatgtatgc ttcaagacat tcaatcgcta caacaatctt 480
caggtacgag tcaatatac tcatgcgcatt tgctttcca tgcacaaaca tatataataa 540
attcatctta tagagttata tctccggatc taatgttatg agtttattca tatctatata 600
tatacatata tatatatata tatatatata attctgaatt tatttgataa 660
aagctaaaca accaggattt aatagatgat ttacctttgg atcttattat acaatttaca 720
aatttaatca agtcaactaa tcgtgatttta attactttt tttgtaagaa gagttggtaa 780
tatatatattt tatggtatg ttttcatgaa aataattcat cacaacttt tacatttt 840
taatgcctta actaaagctg aattcgaaaa agttgaaata aattatctac taagatttga 900
ttgactatag ttttaatag ttttcttttc tcataatata attatcatag tagtcaaaac 960
atttgattca aacttaaata cacagatttc ttgaatgaaa cattactatg ctggtaat 1020
aatatgattt taaggaacca tgttatttca ttttattact taaggaaacc ttttgggg 1080
tttgtgactc taaatattat gaatatagat gcacatgtgg ggacatgggtt cacaatacag 1140
gaaaggaccg gagtcactga aaggcacaca gccacgagcc atgttaggga tcccttggta 1200
ctgctgcgtt gaagggtgca ggaaccacat tgaccatctt cgttccaagc cactgaaaga 1260
ctttaggacg ctccaaacgc actacaaacg caaacacgga cacaacccct tctcgtgtcg 1320
ccttgcggg aagctttgg ctgtcaaggcg cgattggcga acacatgaga agaattgtgg 1380
aaaacgttgg gtttgcgtt gcgggtctga ttttaaacac aaacgttctc ttaaggacca 1440
tgttaaggcg tttgggtctg gtcatgggcc ttatccaaact gggttgggtt aagagcaggc 1500
ttcttaattca tctgtctccg agactttgtt tttttaatt tgggcatttt tttcttcgc 1560
ttatgaaata tctatttact ttagaaaaat aataatgtgg tatctaatttgc ttccaaatta 1620
ggaacacgaa gtgtaccatt atattttca tcactacaaa ttttatttgc agaaaattat 1680
cattaattgt ctcgttaaag atagaatagg gtttgcattt atcaaataattt aaaaacagat 1740
caatacaaaaa ttgaccatgc atatgcactt gaatatttgc atttcttgc gatgtatct 1800
cattcaagaa aagctt 1816

<210> 5

<211> 383

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

Peptide

<400> 5
Met Thr Asp Pro Tyr Ser Asn Phe Phe Thr Asp Trp Phe Lys Ser Asn
1 5 10 15

Pro Phe His His Tyr Pro Asn Ser Ser Thr Asn Pro Ser Pro His Pro
20 25 30

Leu Pro Pro Val Thr Pro Pro Ser Ser Phe Phe Phe Pro Gln Ser
35 40 45

Gly Asp Leu Arg Arg Pro Pro Pro Pro Thr Pro Pro Pro Ser Pro
50 55 60

Pro Leu Arg Glu Ala Leu Pro Leu Leu Ser Leu Ser Pro Ala Asn Lys
65 70 75 80

Gln Gln Asp His His Asn His Asp His Leu Ile Gln Glu Pro Pro
85 90 95

Ser Thr Ser Met Asp Val Asp Tyr Asp His His His Gln Asp Asp His
100 105 110

His Asn Leu Asp Asp Asp Asp His Asp Val Thr Val Ala Leu His Ile
115 120 125

Gly Leu Pro Ser Pro Ser Ala Gln Glu Met Ala Ser Leu Leu Met Met
130 135 140

Ser Ser Ser Ser Ser Arg Thr Thr His His His Glu Asp Met
145 150 155 160

Asn His Lys Lys Asp Leu Asp His Glu Tyr Ser His Gly Ala Val Gly
165 170 175

Gly Gly Glu Asp Asp Asp Glu Asp Ser Val Gly Gly Asp Gly Cys
180 185 190

Arg Ile Ser Arg Leu Asn Lys Gly Gln Tyr Trp Ile Pro Thr Pro Ser
195 200 205

Gln Ile Leu Ile Gly Pro Thr Gln Phe Ser Cys Pro Val Cys Phe Lys
210 215 220

Thr Phe Asn Arg Tyr Asn Asn Met Gln Met His Met Trp Gly His Gly
225 230 235 240

Ser Gln Tyr Arg Lys Gly Pro Glu Ser Leu Arg Gly Thr Gln Pro Thr
245 250 255

Gly Met Leu Arg Leu Pro Cys Tyr Cys Cys Ala Pro Gly Cys Arg Asn
260 265 270

Asn Ile Asp His Pro Arg Ala Lys Pro Leu Lys Asp Phe Arg Thr Leu

275 280 285

Gln Thr His Tyr Lys Arg Lys His Gly Ile Lys Pro Phe Met Cys Arg
290 295 300

Lys Cys Gly Lys Ala Phe Ala Val Arg Gly Asp Trp Arg Thr His Glu
305 310 315 320

Lys Asn Cys Gly Lys Leu Trp Tyr Cys Ile Cys Gly Ser Asp Phe Lys
325 330 335

His Lys Arg Ser Leu Lys Asp His Ile Lys Ala Phe Gly Asn Gly His
340 345 350

Gly Ala Tyr Gly Ile Asp Gly Phe Asp Glu Glu Asp Glu Pro Ala Ser
355 360 365

Glu Val Glu Gln Leu Asp Asn Asp His Glu Ser Met Gln Ser Lys
370 375 380

<210> 6

<211> 441

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
Peptide

<400> 6

Met Leu Phe Ser Thr Val Leu Ser His Arg Thr Leu Tyr Ile Leu Thr
1 5 10 15

Cys Pro Asn Thr Leu Ile His Ser Tyr Thr His Pro His Ile His Ala
20 25 30

Tyr Leu Ala Phe Thr Gly Phe Leu Thr Gln Leu His His Leu Glu Ile
35 40 45

Ser Cys Leu Leu Leu Phe Phe Ser Leu Ser Ser Leu Leu Lys Leu
50 55 60

Met Ala Asp Pro Asp Cys Ile Phe Arg Asn Gly Tyr Val Asp Tyr Tyr
65 70 75 80

Asn Tyr Ser Phe Asn Tyr Ala Thr Ser Leu Ser Arg Ile Tyr Asn Ser
85 90 95

His Asp Ser Phe Phe Phe Pro Gln Ser Gly Asp Leu Arg Arg Pro
100 105 110

Pro Pro Pro Pro Thr Pro Pro Ser Pro Pro Leu Arg Glu Ala Leu
115 120 125

Pro Leu Leu Ser Leu Ser Pro Ala Asn Thr Gln Gln Asp His His His
 130 135 140

Asn His Asp His Leu Ile Gln Glu Pro Pro Ser Thr Ser Met Asp Val
 145 150 155 160

Asp Tyr Asp His His His Gln Asp Asp His His Asn Leu Asp Asp Asp
 165 170 175

Asp His Asp Val Thr Val Ala Leu His Ile Gly Leu Pro Ser Pro Ser
 180 185 190

Ala Gln Glu Met Ala Ser Leu Leu Met Met Ser Ser Ser Ser Ser Ser
 195 200 205

Ser Arg Thr Thr His His His Glu Asp Met Asn His Lys Lys Asp Leu
 210 215 220

Asp His Glu Tyr Ser His Gly Ala Val Gly Gly Glu Asp Asp Asp
 225 230 235 240

Glu Asp Ser Val Gly Gly Asp Gly Gly Cys Arg Ile Ser Arg Leu Asn
 245 250 255

Lys Gly Gln Tyr Trp Ile Pro Thr Pro Ser Gln Ile Leu Ile Gly Pro
 260 265 270

Thr Gln Phe Ser Cys Pro Val Cys Phe Lys Thr Phe Asn Arg Tyr Asn
 275 280 285

Asn Met Gln Met His Met Trp Gly His Gly Ser Gln Tyr Arg Lys Gly
 290 295 300

Pro Glu Ser Leu Arg Gly Thr Gln Pro Thr Gly Met Leu Arg Leu Pro
 305 310 315 320

Cys Tyr Cys Cys Ala Pro Gly Cys Arg Asn Asn Ile Asp His Pro Arg
 325 330 335

Ala Lys Pro Leu Lys Asp Phe Arg Thr Leu Gln Thr His Tyr Lys Arg
 340 345 350

Lys His Gly Ile Lys Pro Phe Met Cys Arg Lys Cys Gly Lys Ala Phe
 355 360 365

Ala Val Arg Gly Asp Trp Arg Thr His Glu Lys Asn Cys Gly Lys Leu
 370 375 380

Trp Tyr Cys Ile Cys Gly Ser Asp Phe Lys His Lys Arg Ser Leu Lys
 385 390 395 400

Asp His Ile Lys Ala Phe Thr Asn Gly His Gly Ala Tyr Gly Ile Asp
 405 410 415

Gly Phe Asp Glu Glu Asp Glu Pro Ala Ser Glu Val Glu Gln Leu Asp

420

425

430

Asn Asp His Glu Ser Met Gln Ser Lys
435 440

<210> 7
<211> 299
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Peptide

<400> 7
Met Ser Asn Pro Ala Cys Ser Asn Leu Phe Asn Asn Gly Cys Asp His
1 5 10 15

Asn Ser Phe Asn Tyr Ser Thr Ser Leu Ser Tyr Ile Tyr Asn Ser His
20 25 30

Gly Ser Tyr Tyr Tyr Ser Asn Thr Thr Asn Pro Asn Tyr Ile Asn His
35 40 45

Thr His Thr Thr Ser Thr Ser Pro Asn Ser Pro Pro Leu Arg Glu Ala
50 55 60

Leu Pro Leu Leu Ser Leu Ser Pro Ile Arg His Gln Glu Gln Gln Asp
65 70 75 80

Gln His Tyr Phe Met Asp Thr His Gln Ile Ser Ser Ser Asn Phe Leu
85 90 95

Asp Asp Pro Leu Val Thr Val Asp Leu His Leu Gly Leu Pro Asn Tyr
100 105 110

Gly Val Gly Glu Ser Ile Arg Ser Asn Ile Ala Pro Asp Ala Thr Thr
115 120 125

Asp Glu Gln Asp Gln Asp His Asp Arg Gly Val Glu Val Thr Val Glu
130 135 140

Ser His Leu Asp Asp Asp Asp His His Gly Asp Leu His Arg Gly
145 150 155 160

His His Tyr Trp Ile Pro Thr Pro Ser Gln Ile Leu Ile Gly Pro Thr
165 170 175

Gln Phe Thr Cys Pro Leu Cys Phe Lys Thr Phe Asn Arg Tyr Asn Asn
180 185 190

Met Gln Asn Asn Ile Asp His Pro Arg Ala Lys Pro Leu Lys Asp Phe
195 200 205

Arg Thr Leu Gln Thr His Tyr Lys Arg Lys His Gly Ser Lys Pro Phe
210 215 220

Ala Cys Arg Met Cys Gly Lys Ala Phe Ala Val Lys Gly Asp Trp Arg
225 230 235 240

Thr His Glu Lys Asn Cys Gly Lys Leu Trp Tyr Cys Ser Cys Gly Ser
245 250 255

Asp Phe Lys His Lys Arg Ser Leu Lys Asp His Val Lys Ala Phe Gly
260 265 270

Asn Gly His Val Pro Cys Gly Ile Asp Ser Phe Gly Gly Asp His Glu
275 280 285

Asp Tyr Tyr Asp Ala Ala Ser Asp Ile Glu Gln
290 295

<210> 8

<211> 54

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
Peptide

<400> 8

Gln Met His Met Trp Gly His Gly Arg Glu Tyr Arg Lys Gly Pro Glu
1 5 10 15

Ser Leu Lys Gly Thr Gln Thr Val Ala Leu Leu Lys Val Pro Cys Tyr
20 25 30

Cys Ala Ala Gly Cys Arg Asn Ser Val Ser His Pro Arg Ala Arg Pro
35 40 45

Leu Lys Asp Phe Arg Thr
50

SEQ2-4align_051124MS.txt

ID4 (TT1 genomic DNA, lower case) vs. SEQ ID2 (TT1 CDS, upper case)

1	atggagtccaccactatacgagatatcctcaagctttcttgcggaaa	50
1	ATGGAGTCACCACCACTATACGAGATATCCTCAAGCTTTCTTGTGAAAA	50
51	accttagacaccattccaatcccttgatctcttccctaaccctcaacccaaa	100
51	ACCTAGACACCATTCCAATCCCTTGATCTCTTCCCTAACCTAACCCAAA	100
101	actcttgtatcaacaataccctaattgagccttaccgcttattgatgcgc	150
101	ACTCTTGTATCAACAATACCCCTAATTGAGCCTTACCGCTTATTGATGC	150
151	ataaaacttgaactcaaaccctagacctaaccctaattccctgtatgcgga	200
151	ATAAAACTTGAACTCAAACCTAGACCTAACCCCTAACCTGTATGCGGA	200
201	acaaggagagcaagaggagagaagaagaagaagaagaccgtgaagtgg	250
201	AGAAGGAGAGCAAGAGGAGGAAGAAGAAGAAGAAGAAGACCGTGAAGTGG	250
251	acgtggacttacacatcgcccttcgtttggtaaaccacaaagcaatgat	300
251	ACGTGGACTTACACATCGCCCTTCCTGGTTTGGTAAACCAAGCAATGAT	300
301	gctaaacagctgaagaagagaaatggaaaggagatcgccacatatgacgc	350
301	GCTAAACAGCTGAAGAAGAGAAATGGAAAGGAGATGCCACATATGACGC	350
351	cggaaaaggcatcgagaatgaactttccggaaaggcatactggatcccg	400
351	CGGAAAAGGCATCGAGAATGAACCTTCCGAAAGGCATACTGGATCCCG	400
401	cgcggagcaaattctcatagggttcaactcattttcttgccatgtatgc	450
401	CGCCGGAGCAAATTCTCATAGGGTTCACTCATTTTCTTGCATGTATGC	450
451	ttcaagacattcaatcgctacaacaatcttcaggta....tatagat	1110
451	TTCAAGACATTCAATCGCTACAACAATCTTCAAG.....AT	485
1111	gcacatgtggggacatggttcacaatacaggaaaggaccggagtcactga	1160
486	GCACATGTGGGGACATGGTTACAATACAGGAAAGGACCGGAGTCAGTA	535
1161	aaggcacacagccacgagccatgttagggatcccttgcgttactgcgtt	1210
536	AAGGCACACAGCCACGAGCCATGTTAGGGATCCCTTGTACTGCTGCGTT	585
1211	gaagggtgcaggaaccacattgaccatcctcggttcaagccactgaaaga	1260
586	GAAGGGTGCAGGAACCACATTGACCATCCTCGTTCAAGCCACTGAAAGA	635
1261	ctttaggacgcctccaaacgcactacaacgcacacccgttccatgcgtt	1310
636	CTTTAGGACGCTCCAAACGCACAAACACGGACACAAACCCCT	685
1311	tctcggtgcgttgcgttaagctttggctgtcaaggcgattggcga	1360
686	TCTCGTGTGCGCTTGCCTAAGCTTTGGCTGTCAAGGGCGATTGGCGA	735
1361	acacatgagaagaattgtggaaaacgttgggttgcgttgcgttctga	1410

SEQ2-4align_051124MS.txt

36	ACACATGAGAAGAATTGTGGAAAACGTTGGGTTTGCCTTGCGTTCTGA	785
1411	ttttaaacacaaacgttctcttaaggaccatgttaaggcgttgggctg	1460
786	TTTTAAACACAAACGTTCTCTTAAGGACCATGTTAAGGCCTTGGGCTG	835
1461	gtcatgggccttatccaactggttgttgaagagcaggcttctaattca	1510
836	GTCATGGGCCTTATCCAAC TGTTGAAGAGCAGGCTTCTAATTCA	885
1511	tctgtctccgagactttgttttttaatttg.....agttt >>>> 279 >>>> \	1816
886	TCTGTCTCCGAGACTTTGTTTTTAA	912

Note Best alignment is between forward est and forward genome, and splice sites imply forward gene

Exon	483	100.0	1	483		1	483
+Intron	-20	0.0	484	1108			
Exon	429	100.0	1109	1537		484	912
Span	892	100.0	1	1537		1	912
Segment	483	100.0	1	483		1	483
Segment	429	100.0	1109	1537		484	912

Alignment Score: 892