

Statistiques des séries temporelles

Théorème d'Herglotz, filtrage des processus

Partie I

Rappel: stationnarité au second ordre

Roland Badeau

Roland Badeau

Processus du second ordre

- Définition (processus du second ordre)
 - Le processus $X=(X_t)_{t\in\mathbb{Z}}$ à valeurs dans \mathbb{C} est dit du second ordre si et seulement si $\forall t \in \mathbb{Z}, \mathbb{E}[|X_t|^2] < +\infty$
 - Tout processus du second ordre admet une fonction moyenne $\mu(t) = \mathbb{E}[X_t]$ et une fonction d'autocovariance définie sur $\mathbb{Z} \times \mathbb{Z}$ par

$$\Gamma(s,t) = \operatorname{cov}(X_s, X_t) = \mathbb{E}[(X_s - \mu(s))(\overline{X_t - \mu(t)})].$$

- Soit Γ la fonction d'autocovariance d'un processus du second ordre indexé par $\mathbb Z$ à valeurs dans $\mathbb C$. Elle vérifie :
 - 1. Symétrie hermitienne : $\forall (s,t) \in \mathbb{Z}^2$, $\Gamma(s,t) = \overline{\Gamma(t,s)}$;
 - 2. Type positif: $\forall n \in \mathbb{N}^*, \forall a_1 \dots a_n \in \mathbb{C}$,

- Définition (processus stationnaire au second ordre)
 - Soient $\mu \in \mathbb{C}$ et $\gamma : \mathbb{Z} \to \mathbb{C}$. Un processus $(X_t)_{t \in \mathbb{Z}}$ à valeurs dans \mathbb{C} est dit stationnaire au second ordre, ou stationnaire au sens faible, ou encore stationnaire au sens large (SSL), de movenne μ et de fonction d'autocovariance γ si et seulement si :
 - a) X est un processus du second ordre : $\forall t \in \mathbb{Z}, \mathbb{E}[|X_t|^2] < +\infty$;
 - b) $\forall t \in \mathbb{Z}, \mathbb{E}[X_t] = \mu$;
 - c) $\forall (s,t) \in \mathbb{Z}^2$, $\operatorname{cov}(X_s, X_t) = \gamma(s-t)$.
- Propriété : tout processus du second ordre stationnaire au sens strict est aussi stationnaire au second ordre

Roland Badeau

三彩星間 Fonction d'autocovariance

Proposition

- La fonction d'autocovariance $\gamma:\mathbb{Z}\to\mathbb{C}$ d'un processus stationnaire au second ordre vérifie les propriétés suivantes :
 - 1. Symétrie hermitienne : $\forall h \in \mathbb{Z}, \ \gamma(-h) = \overline{\gamma(h)}$;
 - 2. Type positif: $\forall n \in \mathbb{N}^*, \forall a_1 \dots a_n \in \mathbb{C}$,

$$\sum_{s=1}^n \sum_{t=1}^n a_s \gamma(s-t) \overline{a_t} \geq 0.$$

Définition (matrice de covariance)

Contexte public

• La matrice de covariance Γ_n de *n* valeurs consécutives $X_1 \dots X_n$ d'un processus stationnaire au second ordre possède une structure de Toeplitz, caractérisée par la relation $(\Gamma_n)_{i,j} = \gamma(i-j)$.

- Exemple (bruit blanc faible)
 - On note $(X_t) \sim BB(0, \sigma^2)$ tout processus stationnaire au second ordre de fonction d'autocovariance $\gamma(h) = \sigma^2 \delta(h)$.
- Exemple (bruit blanc fort)
 - On note $(X_t) \sim IID(0, \sigma^2)$ toute suite de variables aléatoires IID, centrées et de variance σ^2 .
 - Tout bruit blanc fort est aussi un bruit blanc faible.
- Exemple : processus harmonique
 - Le processus $X_t = A\cos(\lambda_0 t + \phi)$ (où A est une v.a. réelle centrée de variance $\sigma^2 < +\infty$ et ϕ est une v.a. uniforme sur $(-\pi, \pi]$ indépendante de A) est un processus stationnaire au second ordre centré qui admet pour fonction d'autocovariance

 $\gamma(h) = \frac{1}{2}\sigma^2\cos(\lambda_0 h).$

Roland Badeau

Partie II

Théorème d'Herglotz

Théorème d'Herglotz

- Soit \mathbb{T} le torre $(-\pi, \pi]$ et $\mathcal{B}(\mathbb{T})$ la tribu borélienne associée.
- Théorème (Herglotz)
 - Une suite $(\gamma(h))_{h\in\mathbb{Z}}$ est de type positif si et seulement si il existe une unique mesure positive ν sur $(\mathbb{T}, \mathcal{B}(\mathbb{T}))$ telle que

$$orall h \in \mathbb{Z}, \; \gamma(h) = \int_{\mathbb{T}} \mathsf{e}^{ih\lambda}
u(\mathsf{d}\lambda)$$

- Définition (mesure spectrale et densité spectrale de puissance)
 - Lorsque γ est la fonction d'autocovariance d'un processus stationnaire au second ordre, ν est appelée mesure spectrale du processus.
 - Si de plus ν admet une densité $f(\nu(d\lambda) = f(\nu)d\nu)$, alors f est appelée densité spectrale de puissance (DSP) du processus

Roland Badeau

Propriété des processus harmoniques

- Corollaire du théorème d'Herglotz
 - Une suite $(\gamma(h))_{h\in\mathbb{Z}}$ à valeurs complexes telle que $\sum\limits_{h\in\mathbb{Z}}|\gamma(h)|^2<+\infty$ est de type positif si et seulement si la fonction de $L^2(\mathbb{T})$ définie par $f(\lambda)=\frac{1}{2\pi}\sum\limits_{h\in\mathbb{Z}}\gamma(h)e^{-ih\lambda}$ est positive presque partout dans \mathbb{T} .
- Exemple (bruit blanc)
 - La fonction d'autocovariance du bruit blanc est $\gamma(h) = \sigma^2 \delta(h)$
 - La densité spectrale correspondante est $f(\lambda) = \frac{\sigma^2}{2\pi}$
- Contre-exemple : processus harmonique
 - Le processus $X_t = A\cos(\lambda_0 t + \phi)$ admet pour mesure spectrale $\nu(d\lambda) = \frac{1}{4}\sigma^2(\delta_{\lambda_0}(d\lambda) + \delta_{-\lambda_0}(d\lambda))$, mais il n'admet pas de DSP.

S'il existe un rang n pour lequel la matrice de covariance Γ_n est non inversible, alors le processus correspondant X_t est prédictible dans le sens où il existe a₁ . . . a_l ∈ ℂ avec l ≤ n − 1 tels que X_t = ∑^l_{k=1} a_kX_{t-k} p.s.

Proposition

 Soit γ(h) la fonction d'autocovariance d'un processus stationnaire au second ordre. On suppose que γ(0) > 0 et γ(h) → 0 quand h → +∞. Alors ∀n ∈ N*, la matrice Γ_n est de rang plein et donc inversible.

Roland Badeau

Roland Badeau

Partie III

Filtrage des processus

Théorème de filtrage des processus

Soit $(\psi_k)_{k\in\mathbb{Z}}$ une suite absolument sommable : $\sum_{k\in\mathbb{Z}} |\psi_k| < +\infty$. Soit $(X_t)_{t\in\mathbb{Z}}$ un processus aléatoire tel que $\sup_{t\in\mathbb{Z}} \mathbb{E}[|X_t|] < +\infty$. Alors, $\forall t\in\mathbb{Z}$, la suite $Y_{n,t} = \sum_{k=-n}^n \psi_k X_{t-k}$ converge presque sûrement, quand n tend vers $+\infty$, vers une limite Y_t notée

$$Y_t = \sum_{k \in \mathbb{Z}} \psi_k X_{t-k}$$
.

De plus, $\forall t \in \mathbb{Z}$ la v.a. Y_t est intégrable : $\mathbb{E}[|Y_t|] < +\infty$, et la suite $(Y_{n,t})_{n \in \mathbb{N}}$ converge vers Y_t dans $L^1(\Omega, \mathcal{A}, \mathbb{P})$:

$$\lim_{n\to+\infty}\mathbb{E}[|Y_{n,t}-Y_t|]=0.$$

Si $\sup_{t\in\mathbb{Z}}\mathbb{E}[|X_t|^2]<+\infty$, alors $\forall t\in\mathbb{Z},\,\mathbb{E}[|Y_t|^2]<+\infty$ et la suite $(Y_{n,t})_{n\in\mathbb{N}}$ converge en moyenne quadratique vers la v.a. Y_t , i.e.

Théorème de filtrage des processus

Soit $(\psi_k)_{k\in\mathbb{Z}}$ une suite absolument sommable : $\sum_{k\in\mathbb{Z}} |\psi_k| < +\infty$. Soit $(X_t)_{t\in\mathbb{Z}}$ un processus stationnaire au second ordre de moyenne $\mu_X = \mathbb{E}[X_t]$ et de fonction d'autocovariance $\gamma_X(h) = \operatorname{cov}(X_{t+h}, X_t)$. Alors le processus $Y_t = \sum_{k\in\mathbb{Z}} \psi_k X_{t-k}$ est stationnaire au second ordre, de moyenne $\mu_Y = \mu_X \sum_{k\in\mathbb{Z}} \psi_k$, de fonction d'autocovariance

$$\gamma_{\mathsf{Y}}(h) = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \psi_j \overline{\psi_k} \gamma_{\mathsf{X}}(h+k-j),$$

et de mesure spectrale

$$\nu_{\mathsf{Y}}(\mathsf{d}\lambda) = |\psi(\mathsf{e}^{-i\lambda})|^2 \nu_{\mathsf{X}}(\mathsf{d}\lambda),$$

où
$$\psi(e^{-i\lambda}) = \sum_{k \in \mathbb{Z}} \psi_k e^{-ik\lambda}$$
.

Page 13 / 13

l Badeau

