Epidemiology: Measures of Disease Occurrence and Effect

Dr. Wan Nor Arifin

Biostatistics and Research Methodology Unit Universiti Sains Malaysia wnarifin@usm.my / wnarifin.github.io

Last update: Jun 25, 2024

Outlines

- Introduction
- Measures of Disease Frequency
- Measures of Effect

Learning outcomes

- Understand and differentiate numerator vs denominator
- Understand and differentiate ratio, proportion and rate
- Understand and differentiate measures of disease occurrence
- Understand and differentiate measures of effect

Introduction

Terms

- Numerator
 - "case"
 - Dividend

numerator denominator

- Denominator
 - "population at risk"
 - Population size
 - Divisor

Terms

Ratio

<u>а</u> b

• e.g. Odds

Proportion

$$\frac{a}{a+b}$$

- e.g. Prevalence, Risk
- Range: 0 to 1
- Usually in %

Rate

time observed

- Incidence rate
- Usually per thousands population

Measures of Occurrence

Prevalence

- Quantifies cases (new + existing) at a point / period of time
- Cross-sectional study
- Measures:
 - Point prevalence
 - Period prevalence

Point Prevalence

$$P = \frac{C}{N}$$

C = # cases at time point

N = Population size at time point

Period Prevalence

$$PP = \frac{C+I}{N}$$

C = # existing cases at the beginning of a time period

I = # new cases during the time period

N = Population size for the time period

Example

Prevalence of diabetes among adults in Malaysia 18.3% (NHMS 2019)

Incidence

- Quantifies new cases that develop over a period of time
- Cohort study requires follow-up to keep track of new cases
- Measures:
 - Risk (a.k.a. cumulative incidence)
 - Incidence rate (a.k.a incidence density)

Risk

$$R = \frac{I}{N}$$

C = # new cases during follow-upN = # persons at risk(disease-free subjects at the start of follow-up)

Incidence rate

$$IR = \frac{I}{PT}$$

l = # new cases during follow-up

N = Person-time (person-years, -months of exposure)(total time disease-free persons are followed-up)

Incidence rate

$$IR = \frac{I}{N}$$

I = # new cases in one year

N = Mid-term population for the year

Example

7-day incidence rate of COVID-19 in Malaysia was 26.6 per 100,000 population (Jayaraj et al., 2021)

Prevalence vs Incidence

Table 1. Summary of characteristics of measures of disease frequency

	Prevalence	Incidence	
Represents Use	Existing cases at a time point - Reflects disease burden - Can be used for planning of health care facilities	New cases over a period - Assessment of disease aetiology - Identification of risk factors	
		Risk	Incidence rate
Synonyms	Prevalence proportion	Cumulative incidence Incidence proportion	Incidence density Hazard
Range Interpretation	0–1 (0–100%) Proportion	0–1 (0–100%) Probability	0 to infinity Reciprocal of waiting time

^{*}Table 1 in Noordzij et al. (2010)

Measures of Effect

Relative

- Relative risk
 - Risk ratio
 - Incidence rate ratio
- Odds ratio

Relative risk

		Lung cancer		Marginal
		Yes		Marginal total
Exposure	Smoker	125	125	250
	Non- smoker	125	375	500

Risk of lung CA for smoker = 125/250 = 0.5Risk of lung CA for non-smoker = 125/500 = 0.25Risk ratio = 0.5/0.25 = 2

Odds ratio

		Exposure		
		Smoker	Non- smoker	*
Lung	Yes	125	125	*
	No	125	375	*

Odds of being smoker in lung CA = 125/125 = 1Odds of being smoker in no lung CA = 125/375 = 0.333Odds ratio = 1/0.333 = 3

Odds ratio

		Lung cancer		*
		Yes	No	
Exposure	Smoker	125	125	*
	Non- smoker	125	375	*

Odds of lung CA in smoker = 125/125 = 1 Odds of lung CA in non-smoker = 125/375 = 0.333 Odds ratio = 1/0.333 = 3!!! Same as previous table. Uniqueness of odds ratio.

Absolute

• Risk difference (Attributable risk)

Risk (exposed) – Risk (unexposed)

• Rate difference (Attributable rate)

Rate (exposed) – Rate (unexposed)

Risk difference & NNT

	Lung cancer		cancer	Marginal
		Yes	No	total
Exposure	Smoker	125	125	250
	Non- smoker	125	375	500

Risk of lung CA for smoker = 125/250 = 0.5Risk of lung CA for non-smoker = 125/500 = 0.25Risk difference = 0.5 - 0.25 = 0.25

References

Jager, K. J., Zoccali, C., Kramar, R., & Dekker, F. W. (2007). Measuring disease occurrence. Kidney international, 72(4), 412-415.

Jayaraj, V. J., Rampal, S., Ng, C. W., & Chong, D. W. Q. (2021). The epidemiology of COVID-19 in Malaysia. The Lancet Regional Health–Western Pacific, 17.

Noordzij, M., Dekker, F. W., Zoccali, C., & Jager, K. J. (2010). Measures of disease frequency: prevalence and incidence. Nephron Clinical Practice, 115(1), c17-c20.

Pai, M. (2007). Measuring disease occurrence & association. Lecture note. McGill University, Montreal.

Tripepi, G., Jager, K. J., Dekker, F. W., & Zoccali, C. (2010). Measures of effect in epidemiological research. Nephron Clinical Practice, 115(2), c91-c93.

Tripepi, G., Jager, K. J., Dekker, F. W., Wanner, C., & Zoccali, C. (2007). Measures of effect: relative risks, odds ratios, risk difference, and 'number needed to treat'. Kidney international, 72(7), 789-791.

Acknowledgment

AP Dr Najib Majdi Yaacob, Lecture note: Measurement of disease occurrence