Multi-model Maintenance Scheduling Christian Brunbjerg Jespersen

Technical University of Denmark

Introduction

Operation

Research Questions

- 1. How to implement a scheduling system that can coordinate in real-time 2.
- 3.Can you coordinate metaheuristics based on different mathematical models in real-time

Solution Method Orchestrator Communication Type Channels Tac Stra SharedSolution Atomic Pointer Swap In Sup Metaheurics Mutex lock O_1 O_3 O_2 Channels SchedulingEnvironment

Case Study: Total Energies

The proposed system has been developed in collaboration with Total Energies to help optimize there maintenace scheduling operations.

Results

- Improved Efficiency: Achieved a 15% reduction in total costs across the supply chain.
- Stakeholder Satisfaction: Increased satisfaction scores among all actors by 20%.
- Collaborative Strategies: Developed joint policies that benefit all parties.

Future Work

- Extend the approach to international supply chains.
- Incorporate real-time data analytics for dynamic decision-making.
- Explore applications in other sectors like healthcare and transportation.

Conclusion

Methodology

1 Strategic

Meta variables:	
$s \in S$	(1
$ au \in [0, \infty]$	(2
Minimize:	
$\sum \sum strategic_value_{wp}(au) \cdot lpha_{wp}(au)$	
$w \in W(\tau) \ p \in P(\tau)$	
$+\sum_{P(\cdot)}\sum_{pr(\cdot)} strategic_penalty \cdot \epsilon_{pr}(au)$	
$+\sum_{p \in P(\tau)} \sum_{w1 \in W(\tau)} \sum_{w2 \in W(\tau)} clustering_value_{w1,w2} \cdot \alpha_{w1p}(\tau) \cdot \alpha_{w2p}(\tau)$	(3
Subject to:	
$\sum_{w \in W(\tau)} work_order_work_{wr} \cdot \alpha_{wp}(\tau) \leq resource_{pr}(\tau, \beta(\tau)) + \epsilon_{pr}(\tau) \forall p \in P(\tau) \forall r \in R(\tau)$	(4
$\sum_{w \in W(\tau)} \alpha_{wp}(\tau) = 1 \forall p \in P(\tau)$	(5
$w \in W(au)$	•
$\alpha_{wp}(\tau) = 0 \forall (w, p) \in exclude(\tau)$	(6
$\alpha_{wp}(\tau) = 1 \forall (w, p) \in include(\tau)$	(7
$\alpha_{wp}(\tau) \in \{0,1\} \forall w \in W(\tau) \forall p \in P(\tau)$	(8
$\epsilon_{pr}(\tau) \in \mathbb{R}^+ \forall p \in P(\tau) \forall r \in R(\tau)$	(9

2 Tactical

Meta variables:	
s = S	(10)
lpha(au)	(11)
$ au \in [0, \infty]$	(12)
Minimize:	
$\sum_{o \in O(\tau, \alpha(\tau))} \sum_{d \in D(\tau)} tactical_value_{do}(\tau) \cdot \beta_{do}(\tau) + \sum_{r \in R(\tau)} \sum_{d \in D(\tau)} tactical_penalty \cdot \mu_{rd}(\tau)$	(13)
Subject to:	
$\sum_{\tau \in C(r, \tau(\tau))} work_o(\tau) \cdot \beta_{do}(\tau) \leq tactical_resource_{dr}(\tau) + \mu_{rd}(\tau) \forall d \in D(\tau) \forall r \in R(\tau)$	(14)
$o \in O(au, lpha(au)) \ latest_finish_o(au)$	
$\sum_{o} \sigma_{do}(au) = duration_o(au) \forall o \in O(au, lpha(au))$	(15)
$d=earliest_start_o(au)$	
$\sum \sigma_{d^*o}(\tau) = duration_o(\tau) \cdot \eta_{do}(\tau) \forall o \in O(\tau, \alpha(\tau)) \forall d \in D(\tau)$	(16)
$d^* \in D_{duration_O(au)}(au)$	
$\sum \eta_{do}(\tau) = 1, \forall d \in D(\tau)$	
$o \in O(\tau, \alpha(\tau))$	
$\sum_{o} d \cdot \sigma_{do1}(\tau) + \Delta_o(\tau) = \sum_{o} d \cdot \sigma_{do2}(\tau) \forall (o1, o2) \in finish_start_{o1, o2}$	(17)
$d \in D(\tau) \qquad \qquad d \in D(\tau)$	(10)
$\sum_{d \in D(\tau)} d \cdot \sigma_{do1}(\tau) = \sum_{d \in D(\tau)} d \cdot \sigma_{do2}(\tau) \forall (o1, o2) \in start_start_{o1, o2}$	(18)
$\beta_{do}(\tau) \leq number_o(\tau) \cdot operating_time_o \forall d \in D(\tau) \forall o \in O(\tau, \alpha(\tau))$	(19)
$\beta_{do}(\tau) \in \mathbb{R} \qquad \forall d \in D(\tau) \forall o \in O(\tau, \alpha(\tau))$	(20)
$\mu_{rd}(\tau) \in \mathbb{R} \qquad \forall r \in R(\tau) \forall d \in D(\tau)$	(21)
$\sigma_{do}(\tau) \in \{0, 1\}$ $\forall d \in D(\tau) \ \forall o \in O(\tau, \alpha(\tau))$	(22)
$ \eta_{do}(\tau) \in \{0, 1\} \qquad \forall d \in D(\tau) \forall o \in O(\tau, \alpha(\tau)) $	(23)
$\Delta_o(\tau) \in \{0,1\} \forall o \in O(\tau, \alpha(\tau))$	(24)

3 Supervisor

Meta variables:	
$z \in Z$	(25)
lpha(au)	(26)
heta(au)	(27)
$ au \in [0, \infty]$	(2
Maximize:	
$\sum supervisor_value_{at}(\tau, \lambda_t(\tau), \Lambda_t(\tau)) \cdot \gamma_{at}(\tau)$	(29)
$a \in A(\tau, \alpha(\tau)) \ t \in T(\tau)$	
Subject to:	
$\sum_{a} \rho_a(\tau) = work_o(\tau) \forall o \in O(\tau, \alpha(\tau))$	(30)
$a \in A_o(au, lpha(au))$	(0.1)
$\sum \gamma_{at}(\tau) = \phi_o(\tau) \cdot number_o(\tau) \forall o \in O(\tau, \alpha(\tau))$	(31)
$t \in T(\tau) \ a \in A_o(\tau, \alpha(\tau))$	
$\sum \phi_o(\tau) = O_w(\tau, \alpha(\tau)) \forall w \in W(\tau, \alpha(\tau))$	(32)
$o \in O_{w}(\overline{\tau}, \alpha(\tau))$	
$\sum \gamma_{at}(\tau) \le 1 \forall o \in O(\tau, \alpha(\tau)) \forall t \in T(\tau)$	(33)
$a \in A_o(\tau, \alpha(\tau))$	
$\gamma_{at}(\tau) \leq feasible_{at}(\theta(\tau)) \forall o \in O(\tau, \alpha(\tau)) \forall t \in T(\tau)$	(34)
$\gamma_{at}(\tau) \in \{0,1\} \forall o \in O(\tau, \alpha(\tau)) \forall t \in T(\tau)$	(35)
$\rho_a(\tau) \in [lower_activity_work_a(\tau), work_a(\tau)] \forall a \in A(\tau, \alpha(\tau))$	(36)

4 Operational

Meta variables:	(37) (38) (39)	
$t \in T(\tau)$ $\alpha(\tau)$ $\gamma(\tau)$ $\tau \in [0, \infty]$		
		(40)
		Maximize:
	\sum $\delta_{ak}(au)$	(41)
$a \in A(\tau, \gamma_t(\tau)) \ k \in K(\gamma(\tau))$		
Subject to:		
$\sum_{k \in K(\gamma(\tau))} \delta_{ak}(\tau) \cdot \pi_{ak}(\tau) = activity_work_a(\tau, \rho(\tau)) \cdot \theta (\tau) \forall a \in A(\tau, \gamma_t(\tau))$	(42)	
$\lambda_{a21}(\tau) \ge \Lambda_{a1last(a1)}(\tau) + preparation_{a1,a2} \forall a1 \in A(\tau, \gamma_t(\tau)) \forall a2 \in A(\tau, \gamma_t(\tau))$	(43)	
$\lambda_{ak}(\tau) \ge \Lambda_{ak-1}(\tau) - constraint_limit \cdot (2 - \pi_{ak}(\tau) + \pi_{ak-1}(\tau))$		
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(44)	
$\delta_{ak}(\tau) = \Lambda_{ak}(\tau) - \lambda_{ak}(\tau) \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(45)	
$\lambda_{ak}(\tau) \ge event_{ie} + duration_{ie} - constraint_limit \cdot (1 - \omega_{akie}(\tau))$		
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau)$	(46)	
$\Lambda_{ak}(\tau) \leq event_{ie} + constraint_limit \cdot \omega_{akie}(\tau)$		
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau)$	(47)	
$\lambda_{a1}(\tau) \ge time_window_start_a(\beta(\tau)) \forall a \in A(\tau, \gamma_t(\tau))$	(48)	
$\Lambda_{alast(a)}(\tau) \leq time_window_finish_a(\beta(\tau)) \forall a \in A(\tau, \gamma_t(\tau))$	(49)	
$\pi_{ak}(\tau) \in \{0,1\} \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(50)	
$\lambda_{ak}(\tau) \in [availability_start(\tau), availability_finish(\tau)]$		
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(51)	
$\Lambda_{ak}(\tau) \in [availability_start(\tau), availability_finish(\tau)]$		
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(52)	
$\delta_{ak}(\tau) \in [0, work_{a_to_o(a)}(\tau)] \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(53)	
$\omega_{akie}(\tau) \in \{0,1\} \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau)$	(54)	
$\theta_a(\tau) \in \{0,1\} \forall a \in A(\tau, \gamma_t(\tau))$	(55)	

ter