Ce document ¹ contient quelques exercices corrigés sur le raisonnement par récurrence. Il peut contenir quelques bugs ... Merci de me les signaler cuvelier@math.univ-paris13.fr

1 Raisonnement par récurrence

Exercice 1.1

Montrez par récurrence que pour tout $n \in \mathbb{N}$

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}.$$

Correction Exercice Soit $n \in \mathbb{N}$. On note \mathcal{P} la propriété portant sur n

$$\mathcal{P}(n): \left(\sum_{k=0}^{n} k = \frac{n(n+1)}{2}\right).$$

Nous allons démontrer par récurrence que $\forall n \in \mathbb{N}, \mathcal{P}(n)$ est vraie.

Initialisation: Montrons que $\mathcal{P}(0)$ est vraie.

On a
$$\sum_{k=0}^{0} k = 0$$
 et $\frac{0(0+1)}{2} = 0$. Donc $\mathcal{P}(0)$ est vraie.

Itération : Soit $n \in \mathbb{N}$. Supposons $\mathcal{P}(n)$ vraie et montrons alors que $\mathcal{P}(n+1)$ est vraie. Pour que $\mathcal{P}(n+1)$ soit vraie il faut démontrer que

$$\sum_{k=0}^{n+1} k = \frac{(n+1)(n+2)}{2}.$$

On a

$$\sum_{k=0}^{n+1} k = \left(\sum_{k=0}^{n} k\right) + (n+1)$$

$$= \frac{n(n+1)}{2} + (n+1), \text{ car } \mathcal{P}(n) \text{ est vraie}$$

$$= \frac{n(n+1) + 2(n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2}.$$

 \Diamond

 $\mathcal{P}(n+1)$ est donc vraie.

Conclusion: On a donc démontrer par récurrence que $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

Exercice 1.2

Montrez par récurrence que pour tout $n \in \mathbb{N}$

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

1. Version du 23 novembre 2018 à 14:05

Correction Exercice Soit $n \in \mathbb{N}$. On note \mathcal{P} la propriété portant sur n

$$\mathcal{P}(n): \left(\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}\right).$$

Nous allons démontrer par récurrence que $\forall n \in \mathbb{N}, \mathcal{P}(n)$ est vraie.

Initialisation: Montrons que $\mathcal{P}(0)$ est vraie.

On a
$$\sum_{k=0}^{0} k^2 = 0$$
 et $\frac{0(0+1)(2\times 0+1)}{6} = 0$. Donc $\mathcal{P}(0)$ est vraie.

Itération : Soit $n \in \mathbb{N}$. Supposons $\mathcal{P}(n)$ vraie et montrons alors que $\mathcal{P}(n+1)$ est vraie. Pour que $\mathcal{P}(n+1)$ soit vraie il faut démontrer que

$$\sum_{k=0}^{n+1} k^2 = \frac{(n+1)(n+2)(2(n+1)+1)}{6}.$$

On a

$$\sum_{k=0}^{n+1} k^2 = \left(\sum_{k=0}^n k^2\right) + (n+1)^2$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^2, \text{ car } \mathcal{P}(n) \text{ est vraie}$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6}$$

$$= \frac{(n+1)(2n^2 + n + 6n + 6))}{6}$$

$$= \frac{(n+1)(2n^2 + 7n + 6)}{6}$$

$$= \frac{(n+1)(n+2)(2n+3)}{6} = \frac{(n+1)(n+2)(2(n+1) + 1)}{6}.$$

 $\mathcal{P}(n+1)$ est donc vraie.

Conclusion: On a donc démontrer par récurrence que $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

 \Diamond

Exercice 1.3

Montrez par récurrence que pour tout $n \in \mathbb{N}$

$$\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4}.$$

Correction Exercice Soit $n \in \mathbb{N}$. On note \mathcal{P} la propriété portant sur n

$$\mathcal{P}(n): \left(\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4}\right).$$

Nous allons démontrer par récurrence que $\forall n \in \mathbb{N}, \mathcal{P}(n)$ est vraie.

Initialisation: Montrons que $\mathcal{P}(0)$ est vraie.

On a
$$\sum_{k=0}^{0} k^3 = 0^3 = 0$$
 et $\frac{0^2(0+1)^2}{4} = 0$. Donc $\mathcal{P}(0)$ est vraie.

Itération : Soit $n \in \mathbb{N}$. Supposons $\mathcal{P}(n)$ vraie et montrons alors que $\mathcal{P}(n+1)$ est vraie. Pour que $\mathcal{P}(n+1)$ soit vraie il faut démontrer que

$$\sum_{k=0}^{n+1} k^3 = \frac{(n+1)^2 (n+2)^2}{4}.$$

On a

$$\sum_{k=0}^{n+1} k^3 = \left(\sum_{k=0}^n k^3\right) + (n+1)^3$$

$$= \frac{n^2(n+1)^2}{4} + (n+1)^3, \text{ car } \mathcal{P}(n) \text{ est vraie}$$

$$= \frac{n^2(n+1)^2 + 4(n+1)^3}{4}$$

$$= \frac{(n+1)^2(n^2 + 4(n+1))}{4}$$

$$= \frac{(n+1)^2(n+1)^2}{4}.$$

 $\mathcal{P}(n+1)$ est donc vraie.

Conclusion : On a donc démontrer par récurrence que $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

 \Diamond

Exercice 1.4

Montrez par récurrence que pour tout $n \in \mathbb{N}$,

$$\forall x \in \mathbb{R} \setminus \{1\}, \sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}.$$

Correction Exercice Soit $n \in \mathbb{N}$. On note \mathcal{P} la propriété portant sur n

$$\mathcal{P}(n): \left(\forall x \in \mathbb{R} \setminus \{1\}, \sum_{k=0}^{n} x^k = \frac{1-x^{n+1}}{1-x}\right).$$

Nous allons démontrer par récurrence que $\forall n \in \mathbb{N}, \mathcal{P}(n)$ est vraie.

Initialisation: Montrons que $\mathcal{P}(0)$ est vraie.

Soit
$$x \in \mathbb{R} \setminus \{1\}$$
. On a $\sum_{k=0}^{0} x^k = x^0 = 1$ et $\frac{1-x^{0+1}}{1-x} = \frac{1-x}{1-x} = 1$. Donc $\mathcal{P}(0)$ est vraie.

Itération : Soit $n \in \mathbb{N}$. Supposons $\mathcal{P}(n)$ vraie et montrons alors que $\mathcal{P}(n+1)$ est vraie. Pour que $\mathcal{P}(n+1)$ soit vraie il faut démontrer que

$$\forall x \in \mathbb{R} \setminus \{1\}, \sum_{k=0}^{n+1} x^k = \frac{1 - x^{n+2}}{1 - x}.$$

On a, pour tout $x \in \mathbb{R} \setminus \{1\}$,

$$\sum_{k=0}^{n+1} x^k = \left(\sum_{k=0}^n x^k\right) + x^{n+1}$$

$$= \frac{1 - x^{n+1}}{1 - x} + x^{n+1}, \text{ car } \mathcal{P}(n) \text{ est vraie}$$

$$= \frac{1 - x^{n+1} + (1 - x)x^{n+1}}{1 - x}$$

$$= \frac{1 - x^{n+1} + x^{n+1} - x^{n+2}}{1 - x} = \frac{1 - x^{n+2}}{1 - x}.$$

 $\mathcal{P}(n+1)$ est donc vraie.

Conclusion : On a donc démontrer par récurrence que $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

 \Diamond

Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathbb{Z} définie par

$$u_0 = 1, \ u_1 = 4 \text{ et } \forall n \in \mathbb{N}, \ u_{n+2} = 2u_{n+1} - u_n.$$
 (1)

Q. 1 En calculant les premiers termes, conjecturez une formule pour la suite u_n qui ne soit pas récurrente.

Q. 2 Démontrez cette formule par récurrence (forte?)

Correction Exercice

Q. 1 On a

u_0	u_1	u_2	u_3	u_4	u_5	
1	4	7	10	13	17	

On a alors

$$u_0 = 1 \text{ et } u_{n+1} = u_n + 3, \ \forall n \in \mathbb{N}$$

ce qui donne en formule ne dépendant que de n

$$u_n = 3n + 1, \ \forall n \in \mathbb{N}.$$

Q. 2 La suite (u_n) est définie par la formule de récurrence :

$$\forall n \geqslant 2, \ u_n = 2u_{n-1} + u_{n-2}.$$

Démonstration 1 : par récurrence forte. On note \mathcal{P} la propriété portant sur $n \geq 2$ (2 est le premier indice où la formule de récurrence intervient dans le calcul de u_n).

$$\mathcal{P}(n): u_n = 3n + 1.$$

On peut aussi noter que $\mathcal{P}(0)$ et $\mathcal{P}(1)$ sont vraies mais ce n'est pas utile pour la démonstration par récurrence forte que nous allons utiliser.

Initialisation: Montrons que $\mathcal{P}(2)$ est vraie.

On a $u_0 = 1$, $u_1 = 4$ (par définition) et $u_2 = 2u_1 - u_0 = 7$. Comme $3 \times 2 + 1 = 7$, $\mathcal{P}(2)$ est vérifiée.

Itération : Soit $n \ge 2$. Supposons que, $\forall k \le n, \mathcal{P}(k)$ vraie (récurrence forte) et montrons alors que $\mathcal{P}(n+1)$ est vraie.

Pour que $\mathcal{P}(n+1)$ soit vraie il faut démontrer que si la suite u_n est définie par (1) alors $u_{n+1} = 3(n+1) + 1$.

Le terme n+1 de la suite est défini par

$$u_{n+1} = 2u_n - u_{n-1}$$

Comme $\mathcal{P}(n)$ et $\mathcal{P}(n-1)$ sont vraies (hypothèse de récurrence forte), on a $u_n=3n+1$ et $u_{n-1}=3(n-1)+1$. On a alors

$$u_{n+1} = 2u_n - u_{n-1}$$

= $2(3n+1) - (3(n-1)+1)$
= $6n+2-3n+2 = 3(n+1)+1$

 $\mathcal{P}(n+1)$ est donc vraie.

Conclusion: On a donc démontrer par récurrence forte que $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

Démonstration 2 : par récurrence double. Dans l'équation (1) le calcul de u_n est possible en connaissant u_{n-1} et u_{n-2} . On note \mathcal{Q} la propriété portant sur $n \ge 2$

$$Q(n)$$
: $(u_n = 3n + 1)$ et $(u_{n-1} = 3(n-1) + 1)$.

Nous allons démontrer par récurrence que $\forall n \geq 2, \ \mathcal{Q}(n)$ est vraie.

Initialisation: Montrons que Q(2) est vraie.

On a $u_0 = 1$, $u_1 = 4$ (par définition) et $u_2 = 2u_1 - u_0 = 7$. Comme $3 \times 1 + 1 = 4$, et $3 \times 2 + 1 = 7$, Q(2) est vérifiée.

Itération : Soit $n \ge 2$. Supposons que $\mathcal{Q}(n)$ vraie et montrons alors que $\mathcal{Q}(n+1)$ est vraie. Pour que Q(n+1) soit vraie il faut démontrer que

$$u_{n+1} = 3(n+1) + 1$$
 et $u_n = 3n + 1$.

Or $\mathcal{Q}(n)$ vraie entraine que $u_n = 3n + 1$ et $u_{n-1} = 3(n-1) + 1$. Le terme n+1 de la suite étant défini par $u_{n+1} = 2u_n - u_{n-1}$ on obtient alors

$$u_{n+1} = 2u_n - u_{n-1}$$

$$= 2(3n+1) - (3(n-1)+1)$$

$$= 6n+2-3n+2 = 3(n+1)+1$$

Q(n+1) est donc vraie.

Conclusion : On a donc démontrer par récurrence double que Q(n) est vraie pour tout $n \in \mathbb{N}$.

Exercice 1.6

On considère la suite $(a_n)_{n\in\mathbb{N}}$ définie par

$$\left\{ \begin{array}{l} a_0 = a_1 = 1 \\ \forall n \in \mathbb{N}^*, \ a_{n+1} = a_n + \frac{2}{n+1} a_{n-1}. \end{array} \right.$$

Démontrer que, pour tout $n \in \mathbb{N}^*$, $1 \le a_n \le n^2$.

Correction Exercice La suite (a_n) est définie par la formule de récurrence :

$$\forall n \geqslant 2, \ a_n = a_{n-1} + \frac{2}{n-1}a_{n-2}.$$

Démonstration 1 : par récurrence forte. Soit \mathcal{P} la propriété portant sur $n \geq 2$ (2 est le premier indice où la formule de récurrence intervient dans le calcul de u_n).

$$\mathcal{P}(n): 1 \leq a_n \leq n^2.$$

Nous allons démontrer par récurrence forte que $\forall n \geq 2, \mathcal{P}(n)$ est vraie.

Initialisation: Montrons que $\mathcal{P}(2)$ est vraie.

On a $a_0 = a_1 = 1$ et, puisque $a_2 = a_0 + \frac{2}{1+1}a_1 = 2$, on a aussi $1 \le a_2 \le 2^2$. $\mathcal{P}(2)$ est donc vraie.

Itération : Soit $n \ge 2$. Supposons que, $\forall k \in \mathbb{N}, 2 \le k \le n, \mathcal{P}(k)$ vraie (récurrence forte) et montrons alors que $\mathcal{P}(n+1)$ est vraie.

Comme $\mathcal{P}(n)$ et $\mathcal{P}(n-1)$ sont vraies, on a

$$1 \le a_n \le n^2 \text{ et } 1 \le a_{n-1} \le (n-1)^2$$

et on doit en déduire que

$$1 \leqslant a_{n+1} \leqslant (n+1)^2$$
.

• Montrons tout d'abord que $a_{n+1} \ge 1$. Par définition, on a

$$a_{n+1} = a_n + \frac{2}{n}a_{n-1}$$

Comme $a_{n-1} \ge 1$ on a $\frac{2}{n}a_{n-1} \ge 0$ et donc

$$a_{n+1} \geqslant a_n \geqslant 1 \text{ car } a_n \geqslant 1.$$

• Montrons ensuite que $a_{n+1} \leq (n+1)^2$. On a

$$a_{n+1} = a_n + \frac{2}{n}a_{n-1}$$

$$\leq n^2 + \frac{2}{n+1}(n-1)^2$$

$$= \frac{(n+1)n^2 + 2(n-1)^2}{n+1}$$

$$= \frac{n^3 + 3n^2 - 4n + 2}{n+1}$$

Il reste donc à démontrer que

$$\frac{n^3 + 3n^2 - 4n + 2}{n+1} \le (n+1)^2 = \frac{(n+1)^3}{n+1}$$

c'est à dire comme $1/(n+1) \ge 0$

$$(n+1)^3 - (n^3 + 3n^2 - 4n + 2) \ge 0.$$

Or on a

$$(n+1)^3 - (n^3 + 3n^2 - 4n + 2)$$

$$= (n^3 + 3n^2 + 3n + 1) - (n^3 + 3n^2 - 4n + 2)$$

$$= 7n - 1 \ge 0 \text{ car } n \ge 1$$

ce qui donne

$$a_{n+1} \le \frac{n^3 + 3n^2 - 4n + 2}{n+1} \le \frac{(n+1)^3}{n+1} = (n+1)^2.$$

 $\mathcal{P}(n+1)$ est donc vraie.

Conclusion : On a donc démontrer par récurrence forte que $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$. Démonstration 2 : par récurrence double. Soit \mathcal{Q} la propriété portant sur $n \geqslant 1$

$$Q(n): 1 \le a_n \le n^2 \text{ et } 1 \le a_{n+1} \le (n+1)^2.$$

Nous allons démontrer par récurrence que $\forall n \geq 1, Q(n)$ est vraie.

Initialisation: Initialisation: Montrons que Q(1) est vraie.

On a $1 \leqslant a_1 = 1 \leqslant 1^2$ et, puisque $a_2 = a_0 + a_1 = 2$, on a aussi $1 \leqslant a_2 \leqslant 2^2$.

Itération : Soit $n \in \mathbb{N}^*$. Supposons que $\mathcal{Q}(n)$ vraie et montrons alors que $\mathcal{Q}(n+1)$ est vraie. On a déjà $1 \leq a_{n+1} \leq (n+1)^2$. D'autre part, on a

$$a_{n+2} \geqslant a_{n+1} \geqslant 1$$

 et

$$a_{n+2} \le (n+1)^2 + \frac{2}{n+2}n^2 = \frac{(n+1)^2(n+2) + 2n^2}{n+2} = \frac{n^3 + 6n^2 + 5n + 2}{n+2}.$$

Mais,

$$(n+2)^2 = \frac{(n+2)^3}{n+2} = \frac{n^3 + 6n^2 + 12n + 8}{n+2} \geqslant \frac{n^3 + 6n^2 + 5n + 2}{n+2}.$$

Q(n+1) est donc vraie.

Conclusion: On a donc démontrer par récurrence double que Q(n) est vraie pour tout $n \ge 1$.

Exercice 1.7

On définit une suite $(v_n)_{n\in\mathbb{N}}$ de \mathbb{N} par $v_0=1$ et,

$$\forall n \ge 1, \quad v_{n+1} = v_0 + \ldots + v_n = \sum_{k=0}^n v_k.$$
 (2)

Montrez par récurrence forte que pour tout $n \ge 1$, on a $v_n = 2^{n-1}$.

Correction Exercice On peux noter que (2) s'écrit aussi sous la forme

$$\forall n \geqslant 1, \quad v_n = v_0 + \ldots + v_{n-1} = \sum_{k=0}^{n-1} v_k.$$
 (3)

De plus, nous avons démontré dans l'exercice 7.5 que

$$\forall x \in \mathbb{R} \setminus \{1\}, \ \forall n \in \mathbb{N}, \quad \sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}. \tag{4}$$

On note \mathcal{P} la propriété portant sur $n \ge 1$ (1 est le premier indice où la formule de récurrence intervient dans le calcul de v_n).

$$\mathcal{P}(n): v_n = 2^{n-1}.$$

On va démontrer par récurrence forte que, pour tout $n \ge 1$, $\mathcal{P}(n)$ est vraie.

Initialisation: Montrons que $\mathcal{P}(1)$ est vraie.

On a $v_0 = 1$ et

$$v_1 = \sum_{k=0}^{1-1} v_k = v_0 = 1.$$

Donc $\mathcal{P}(1)$ est vérifiée.

Itération : Soit $n \ge 1$. Supposons que, $\forall k \in \mathbb{N}, 1 \le k \le n, \mathcal{P}(k)$ vraie (récurrence forte) et montrons alors que $\mathcal{P}(n+1)$ est vraie.

Pour que $\mathcal{P}(n+1)$ soit vraie il faut démontrer que si la suite v_n est définie par (2) alors $v_{n+1} = 2^n$. Par définition, on a

$$v_{n+1} = \sum_{k=0}^{n} v_k = v_0 + \sum_{k=1}^{n} v_k$$

Or $v_0 = 1$ et par hypothèse de récurrence forte, on a pour tout $k \in \mathbb{N}^*$, $k \leq n$, $v_k = 2^{k-1}$. On obtient donc

$$v_{n+1} = 1 + \sum_{k=1}^{n} 2^{k-1}$$
$$= 1 + \sum_{j=0}^{n-1} 2^{j}$$

En appliquant (4) avec $x = 2 \neq 1$, on a

$$v_{n+1} = 1 + \frac{1 - 2^n}{1 - 2} = 2^n.$$

 $\mathcal{P}(n+1)$ est donc vraie.

Conclusion : On a donc démontrer par récurrence forte que $\mathcal{P}(n)$ est vraie pour tout $n \ge 1$.