

機器學習期末報告 Kaggle競賽-鐵達尼號生存預測

第3組 11024113侯亮羽 11024333邱寶樟 11024144李奕呈

Kaggle競賽-鐵達尼號生存預測

根據鐵達尼號乘客資料預測生還者,使用train.csv進行生還者預測。

• 特徵名稱說明

PassengerId: 乘客代碼 SibSp: 配偶、親屬

Survived: 生存 Parch: 家長、小孩

Pclass: 票價等級 Ticket: 票號

Name: 姓名 Fare: 票價

Sex: 性別 Cabin:座艙號碼

Age: 年齡 Embarked:登船點

引入資料、觀察數值

檢查存活率—存活、死亡人數

print(data['Survived'].value_counts())
sns.set_theme()
sns.countplot(data, x='Survived')

0 549 1 342

檢查存活率—性別

sns.countplot(data, x='Sex', hue='Survived')
display(data[['Sex', 'Survived']].groupby(['Sex'], as_index=False).mean().round(3))

	Sex	Survived
0	female	0.742
1	male	0.189

檢查存活率——年齡

age_survied = sns.FacetGrid(data, col='Survived', hue='Survived', height=5, aspect=1) age_survied.map(sns.histplot, 'Age', bins=20, kde=False)

資料預處理

丟棄不必要的資料

dropped_data = data.drop(["PassengerId", "Name", "Ticket", "Cabin"], axis=1)
dropped_data.head()

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.0	1	0	7.2500	S
1	1	1	female	38.0	1	0	71.2833	С
2	1	3	female	26.0	0	0	7.9250	S
3	1	1	female	35.0	1	0	53.1000	S
4	0	3	male	35.0	0	0	8.0500	S

初始資料vs丟棄後的資料

初始資料

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

Data	COTAIIII3 (COC	ai iz coiumis).				
#	Column	Non-Null Count	Dtype			
0	PassengerId	891 non-null	int64			
1	Survived	891 non-null	int64			
2	Pclass	891 non-null	int64			
3	Name	891 non-null	object			
4	Sex	891 non-null	object			
5	Age	714 non-null	float64			
6	SibSp	891 non-null	int64			
7	Parch	891 non-null	int64			
8	Ticket	891 non-null	object			
9	Fare	891 non-null	float64			
10	Cabin	204 non-null	object			
11	Embarked	889 non-null	object			
dtypes: float64(2), int64(5), object(5)						

memory usage: 83.7+ KB

丟棄後的資料

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total & columns).

Data	columns (rocal & columns):						
#	Column	Non-	-Null Count	Dtype			
0	Survived	891	non-null	int64			
1	Pclass	891	non-null	int64			
2	Sex	891	non-null	object			
3	Age	714	non-null	float64			
4	SibSp	891	non-null	int64			
5	Parch	891	non-null	int64			
6	Fare	891	non-null	float64			
7	Embarked	889	non-null	object			
d±vn	oci floate	4/21	in+64/4)	object(2)			

dtypes: float64(2), int64(4), object(2)

memory usage: 55.8+ KB

填補資料

• 數值資料:以「中位數」取代

• 類別資料:以「眾數」取代

dropped_data['Age'] =
 dropped_data['Age'].fillna(dropped_data['Age'].median())

dropped_data['Embarked'] =
 dropped_data['Embarked'].fillna(dropped_data['Embarked']
.mode().iloc[0])

dropped_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 8 columns): Column Non-Null Count Dtype Survived 891 non-null int64 Pclass 891 non-null int64 891 non-null object Sex 891 non-null float64 Age SibSp 891 non-null int64 891 non-null int64 Parch 891 non-null float64 Fare Embarked 891 non-null object

dtypes: float64(2), int64(4), object(2) memory usage: 55.8+ KB

處理類別資料

· 「類別」資料進行 One Hot Encoder

dropped_data = pd.get_dummies(dropped_data, drop_first=True).astype('float64')
dropped_data.head(2)

	Survived	Pclass	Age	SibSp	Parch	Fare	Sex_male	Embarked_Q	Embarked_S
0	0.0	3.0	22.0	1.0	0.0	7.2500	1.0	0.0	1.0
1	1.0	1.0	38.0	1.0	0.0	71.2833	0.0	0.0	0.0

尋找相關性

Correlation Heatmap

- 0.75

- 0.50

- 0.25

- 0.00

− −0.25

-0.50

- −0.75

-1.00

dropped_data.corr()
plt.figure(figsize=(10, 8), dpi=300)
heatmap = sns.heatmap(dropped_data.corr(),
vmin=-1, vmax=1, annot=True,cmap='Blues')
heatmap.set_title('Correlation Heatmap',
fontdict={'fontsize':20}, pad=10)

Pclass Fare -0.5495 dtype: float64

資料標準化

from sklearn.preprocessing import MinMaxScaler ss = MinMaxScaler() X_scaled = ss.fit_transform(dropped_data.iloc[:, 1:]) pd.DataFrame(X_scaled, columns = dropped_data.columns[1 :])

	Pclass	Age	SibSp	Parch	Fare	Sex_male	Embarked_Q	Embarked_S
0	1.0	0.271174	0.125	0.000000	0.014151	1.0	0.0	1.0
1	0.0	0.472229	0.125	0.000000	0.139136	0.0	0.0	0.0
2	1.0	0.321438	0.000	0.000000	0.015469	0.0	0.0	1.0
3	0.0	0.434531	0.125	0.000000	0.103644	0.0	0.0	1.0
4	1.0	0.434531	0.000	0.000000	0.015713	1.0	0.0	1.0
886	0.5	0.334004	0.000	0.000000	0.025374	1.0	0.0	1.0
887	0.0	0.233476	0.000	0.000000	0.058556	0.0	0.0	1.0
888	1.0	0.346569	0.125	0.333333	0.045771	0.0	0.0	1.0
889	0.0	0.321438	0.000	0.000000	0.058556	1.0	0.0	0.0
890	1.0	0.396833	0.000	0.000000	0.015127	1.0	1.0	0.0

891 rows × 8 columns

分層取樣訓練與測試集

```
from sklearn.model_selection import train_test_split
```

X_train, X_test, y_train, y_test = train_test_split(X_scaled, dropped_data.iloc[:, 0], test_size=0.2, random_state=42, stratify=dropped_data.iloc[:, 0])

print('y_train data: ', y_train.value_counts(normalize=True))
print('\n\ny_test data: ', y_test.value_counts(normalize=True))

y_train data: Survived

0.0 0.616573

1.0 0.383427

Name: proportion, dtype: float64

y_test data: Survived

0.0 0.614525

1.0 0.385475

Name: proportion, dtype: float64

訓練與預測模型

Logistic regression

```
Fitting 10 folds for each of 5 candidates, totalling 50 fits {'C': 1}
Logistic regression training score: 0.801
Logistic regression testing score: 0.793
```


Decision tree

find the optimal 'max_depth'

```
all score = []
for i in range(1, 15, 1):
  tree_clf = DecisionTreeClassifier(max_depth=i, random_state=42)
  score = cross val score(tree clf, X train, y train, cv=10).mean()
  all_score.append([i,score])
all score = np.array(all score)
max_score = np.where(all_score==np.max(all_score[:,1]))[0][0]
print("max_depth, cross_val_score:",all_score[max_score])
plt.figure(figsize=[20,5])
plt.plot(all score[:,0],all score[:,1])
plt.xlabel('max_depth', fontsize=15, labelpad=10)
plt.ylabel('cross val score', fontsize=15, labelpad=20)
plt.show()
```


Decision tree

find the optimal 'max_depth'

Decision tree

find the optimal hyperparameters

```
params = {
  'max depth':np.arange(3, 6),
  'min samples split':np.arange(2, 5),
  'min samples leaf':np.arange(2, 6),
tree clf = DecisionTreeClassifier(random state=42)
tree grid search cv = GridSearchCV(tree clf, params, n jobs=-1, verbose=1, cv=10,
scoring='roc auc')
tree_grid_search_cv.fit(X_train, y_train)
print(tree_grid_search_cv.best_params_)
print('Decision Tree training score: %.3f' % tree_grid_search_cv.score(X_train, y_train))
print('Decision Tree testing score: %.3f' % tree grid search cv.score(X test, y test))
```

```
Fitting 10 folds for each of 36 candidates, totalling 360 fits {'max_depth': 4, 'min_samples_leaf': 4, 'min_samples_split': 2} Decision Tree training score: 0.888 Decision Tree testing score: 0.818
```


Random Forest

```
params = {
    'max_depth':np.arange(3, 6),
    'min_samples_split':np.arange(2, 5),
    'min_samples_leaf':np.arange(1, 3),
}

rnd_clf = RandomForestClassifier(random_state=42)
rnd_grid_search_cv = GridSearchCV(rnd_clf, params, n_jobs=-1, verbose=1, cv=10,
scoring='roc_auc')
rnd_grid_search_cv.fit(X_train, y_train)
print(rnd_grid_search_cv.best_params_)
print('Random Forest training score: %.3f' % rnd_grid_search_cv.score(X_train, y_train))
print('Random Forest testing score: %.3f' % rnd_grid_search_cv.score(X_test, y_test))
```

```
Fitting 10 folds for each of 18 candidates, totalling 180 fits {'max_depth': 5, 'min_samples_leaf': 1, 'min_samples_split': 3} Random Forest training score: 0.912 Random Forest testing score: 0.841
```


XGboost

```
params = {
  'n_estimators': range(2, 11),
  'learning rate': [.1, .2, .3],
  'colsample bytree': [.6, .7, .8],
  'max depth':range(2, 5),
  'subsample': [.7, .8, .9],
  'min child weight':range(1,3)
xgb clf = xgb.XGBClassifier(random state=42)
xgb_grid_search_cv = GridSearchCV(xgb_clf, params, n_jobs=-1, verbose=1, cv=10, scoring='roc_auc')
xgb grid search cv.fit(X train, y train)
print(xgb grid search cv.best params )
print('XGBoost training score: %.3f' % xgb grid search cv.score(X train, y train))
print('XGBoost testing score: %.3f' % xgb grid search cv.score(X test, y test))
```

```
Fitting 10 folds for each of 1458 candidates, totalling 14580 fits {'colsample_bytree': 0.8, 'learning_rate': 0.1, 'max_depth': 4, 'min_child_weight': 1, 'n_estimators': 8, 'subsample': 0.7} XGBoost training score: 0.902 XGBoost testing score: 0.833
```

Adaboost

```
params = {
    'n_estimators': range(80, 100),
    'learning_rate': [0.1, 0.2, 0.3]
}

ada_clf = AdaBoostClassifier(random_state=42)
    ada_grid_search_cv = GridSearchCV(ada_clf, params, n_jobs=-1, verbose=1, cv=10, scoring='roc_auc')
    ada_grid_search_cv.fit(X_train, y_train)
    print(ada_grid_search_cv.best_params_)
    print('AdaBoost training score: %.3f' % ada_grid_search_cv.score(X_train, y_train))
    print('AdaBoost Tree testing score: %.3f' % ada_grid_search_cv.score(X_test, y_test))
```

```
Fitting 10 folds for each of 60 candidates, totalling 600 fits {'learning_rate': 0.1, 'n_estimators': 87}
AdaBoost training score: 0.885
AdaBoost Tree testing score: 0.833
```


統整與結論

比對不同模型 testing score 的數值

```
acc_log = log_grid_search_cv.score(X_test, y_test)
acc_tree = tree_grid_search_cv.score(X_test, y_test)
acc_rnd = rnd_grid_search_cv.score(X_test, y_test)
acc_xgb = xgb_grid_search_cv.score(X_test, y_test)
acc_ada = ada_grid_search_cv.score(X_test, y_test)

model = pd.DataFrame({
    'Model':['Logistic Regression', 'Decision Tree', 'Random Forest', 'XGBoost', 'AdaBoost'],
    'Score':[acc_log, acc_tree, acc_rnd, acc_xgb, acc_ada]
})
model.sort_values(by='Score', ascending=False)
```

	Model	Score
2	Random Forest	0.841238
3	XGBoost	0.833465
4	AdaBoost	0.832543
1	Decision Tree	0.818116
0	Logistic Regression	0.793296

比對不同模型的 F1-score

```
from sklearn.metrics import f1_score
y_pred_log = log_reg.predict(X_test)
f1 log = f1 score(y test, y pred log)
y_pred_tree = tree_grid_search_cv.predict(X_test)
f1 tree = f1 score(y test, y pred tree)
y pred rnd = rnd grid search cv.predict(X test)
f1 rnd = f1 score(y test, y pred rnd)
y_pred_xgb = xgb_grid_search_cv.predict(X_test)
f1_xgb = f1_score(y_test, y_pred_xgb)
y_pred_ada = ada _grid_search_cv.predict(X_test)
f1_ada = f1_score(y_test, y_pred_ada)
```



```
model2 = pd.DataFrame({
   'Model':['Logistic Regression', 'Decision Tree', 'Random Forest', 'XGBoost', 'AdaBoost'],
   'F1-score':[f1_log, f1_tree, f1_rnd, f1_xgb, f1_ada]
})
model2.sort_values(by='F1-score', ascending=False)
```

	Model	F1-score
4	AdaBoost	0.721805
0	Logistic Regression	0.713178
2	Random Forest	0.694915
1	Decision Tree	0.672566
3	XGBoost	0.672566

比對不同模型的 ROC 與 AUC

```
from sklearn.metrics import roc_curve, auc
log_y_score = log_grid_search_cv.predict_proba(X_test)[:, 1]
log fpr, log tpr, thresholds = roc curve(y test, log y score)
tree_y_score = tree_grid_search_cv.predict_proba(X_test)[:, 1]
tree fpr, tree tpr, thresholds = roc curve(y test, tree y score)
rnd y score = rnd grid search cv.predict proba(X test)[:, 1]
rnd fpr, rnd tpr, thresholds = roc_curve(y_test, rnd_y_score)
xgb_y_score = xgb_grid_search_cv.predict_proba(X_test)[:, 1]
xgb_fpr, xgb_tpr, thresholds = roc_curve(y_test, xgb_y_score)
ada_y_score = ada_grid_search_cv.predict_proba(X_test)[:, 1]
ada fpr, ada tpr, thresholds = roc curve(y test, ada y score)
```


參考資料

- [資料分析&機器學習]第4.1講:Kaggle競賽-鐵達尼號生存預測(前 16%排名),2017
 https://medium.com/jameslearningnote/資料分析-機器學習-第4-1講-kaggle競賽-鐵達尼號生存預測-前16-排名-a8842fea7077
- [機器學習專案] Kaggle競賽-鐵達尼號生存預測(Top 3%), 2018
 https://yulongtsai.medium.com/https-medium-com-yulongtsai-titanic-top3-8e64741cc11f
- Titanic-Machine Learning from Disaster 鐵達尼號生存預測資料分析篇[資料分析與機器學習系列], 2023
 https://hackmd.io/@Go3PyC86QhypSl7kh5nA2Q/Hk4nXFYkK

Thanks for listening!