Datascience 3.0 Introduction to Machine learning in Python

Nemanja Mićović nemanja_micovic@matf.bg.ac.rs machinelearning.matf.bg.ac.rs

Faculty of Mathematics, University of Belgrade

November 19, 2017

Table of contents

Machine learning introduction

Supervised learning
Linear regression
K-Nearest neighbours
Logistic regression

Unsupervised learning

Reinforcement learning

Table of contents

Machine learning introduction

Supervised learning

Linear regression K-Nearest neighbours

Logistic regression

Unsupervised learning

Reinforcement learning

About Machine learning

- ► Field of Artificial Intelligence
- Very active research field today
- ► Has acomplished amazing results
- ▶ Built on multiple mathematical disciplines

About Machine learning

Famous definition by Tom M. Mitchell

► A computer program is said to learn from **experience E** with respect to some class of **tasks T** and **performance measure P** if its performance at tasks in T, as measured by P, improves with **experience E**

What is the goal of Machine learning?

- ▶ To create models able to generalize
- ▶ To give a theoretical base of generalization
- ▶ To solve a whole class of problems difficult for deterministic algorithms

Some result of Machine learning

- ▶ 1992 TD-Gammon, computer program develoepd by Gerald Tesauro able to play backgammon
- ▶ 2011 IBM's Watson wins in quiz Jeopardy!
- ▶ 2012 Google X creates system able to recognize cats on video recordings
- ▶ 2015 Classification error for images reduced to 3.6% (5-10% is the error made by humans)
- ▶ 2016 Google creates AlphaGo, agent able to play Go who beats the world champion 4:1
- ▶ 2017 AlphaGo plays against its 2016 version and wins 100/100 games

Applications of Machine learning

- Autonomous driving
- Bioinformatics
- Social networks
- Algorithm porfolio
- Playing video games
- Image classification
- Recognizing handwritting
- Natural language processing
- ► Generating optimization algorithms [Andrychowicz et al., 2016]
- Generating images

- Computer vision
- Detecting credit card frauds
- Data mining
- Medical assistance and assesment
- Marketing
- Targeted marketing
- Controlling robots
- Economy
- Speach recognition
- ► Recommendation systems

But why is it so successful and popular today?

- ► There is serious amount of mathematics behind [Murphy, 2012, Bishop, 2006, Hastie et al., 2001, Shalev-Shwartz and Ben-David, 2014, Vapnik, 1995]
- ► Today we have big amounts of data
- ▶ We also have graphical cards with thousands of processors
 - ► They allow us to get extremely high levels of parallelization
- Industry and academia complement each other
 - Our meeting here today is the evidence of that :)

Types of machine learning

- Supervised learning
- Unsupervised learning
- ► Reinforcement learning

Table of contents

Machine learning introduction

Supervised learning
Linear regression
K-Nearest neighbours
Logistic regression

Unsupervised learning

Reinforcement learning

Supervised learning

- ► Our main focus today
- ▶ We are given attributes $x_1, x_2, ...x_n$
- ▶ Using them, we need to predict target variable *y*
- We want to create a model that will approximate $f(x_1, x_2, ..., x_n) = y$
- ▶ So we need to create a function $f \approx f$

Regression

- ► Target variable *y* is continuous
- ▶ Trying to predict temperature (y) using pressure (x)

Figure: Linear regression (wikipedia)

Classification

- ► Target variable *y* is discreete
- ▶ Trying to predict gender (y) using weight (x_1) and height (x_2)

Figure: Classification example 1

Figure: Classification example 2 (Sachin Joglekar's blog)

Linear regression

▶ We construct the model in the following form:

$$f_w(x) = w_0 + w_1 x_1 + w_2 x_2 + ... + w_n x_n$$

 $f_w(x) = w_0 + \sum_{i=1}^n w_i x_i$

▶ We calculate model accuracy using the following formula¹:

Loss(w) =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - f_w(x_i))^2$$

¹Which is usually called *Mean squared error*

Linear regression - minimization problem

- ▶ We have lots of different models
- Every tuple $(w_0, w_1, ..., w_n)$ defines a different model
- ▶ What is the *best*² one?
- ► Model that makes the smallest mistake on the data we have is *generally* great for us!
- ▶ But how do we find such model?

²Using term *best* is tricky here, but let's stick with it for now.

Linear regression - minimization problem

- Actually, that's not so difficult to do, we can derive the following equation with a bit of algebra
- ▶ Let's assume for simplicity that we have only one attribute *x*
- x_i is the i-th dataset element
- ▶ y_i is the target value for i-th dataset element

$$w = (X^{\top}X)^{-1}X^{\top}Y$$

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \\ 1 & x_N \end{bmatrix} Y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_N \end{bmatrix}$$

Linear regression - minimization problem

So what's the problem then?

- ▶ Matrix multiplication lowest complexity so far $O(n^{2.373})$ [Gall, 2014]
- ▶ Matrix inverse lowest complexity so far $O(n^{2.373})$
- ▶ Storing big³ matrix $n \times m$ in memory: O(nm)

³non sparse, we can store sparse matrices more efficiently

Linear regression - gradient descent

- ► How does our error function generally look?
- ▶ Which point has the smaller error, A or B?

Figure: An example of the error function

Linear regression - gradient descent

Can we somehow descend into the function minimum?

Yes!

But how?

- Calculate gradient of the error function with respect to w
- ▶ This vector *points* into the direction of the fastest function growth

Figure: Blue arrows represent function gradients

Linear regression - gradient descent

Gradient descent algorithm:

- ► Repeat until convergence
 - $w_j := w_j \mu \frac{\partial}{\partial w_i} Loss(w), j \in \{1, 2, ..., n\}$

Figure: An example of the steps made by the gradient descent algorithm (github.com/joshdk)

Linear regression - (R)MSE

Mean

$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

► Mean squared error (MSE)

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - f_w(x_i))^2$$

► Root mean squared error (RMSE)

$$\sqrt{\frac{1}{N}\sum_{i=1}^{N}(y_i-f_w(x_i))^2}$$

Linear regression - R^2

- Coefficient of determination, mostly called R²
- ▶ It is the **proportion of the variation** in the **dependent** variable that is predictable from the **independent** variable(s)
- We can say that it determines how much of variability has our model managed to explain
- \blacktriangleright What is the minimum of R^2 ?
- \blacktriangleright What is the maximum of R^2 ?

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (f_{w}(x_{i}) - y_{i})^{2}}{\sum_{i=1}^{N} (\bar{y} - y_{i})^{2}}$$

Linear regression - coding time

▶ Let's code linear regression in scikit-learn

Linear regression - overfitting

► Analyze the following images⁴

Figure: Linear regression 1

Figure: Linear regression 2

⁴Images taken from book *P. Janičić*, *M. Nikolić*, *Artificial Intelligence*

► Given 3 models, which one do you prefer in respect to black points (dataset samples)?

Figure: Examples of underfitting and overfitting

Underfitting

▶ A situation in which our model is not flexible enough in order to capture the essence of a phenomena

Overfitting

► A situation in which our model is too flexible and it fits too well towards the training data we feed it

▶ If $MSE_{train} = 0$, are we always happy?

- ▶ If $MSE_{train} = 0$, are we always happy?
 - ▶ Not really, we probably have overfitted quite a bit

- ▶ If $MSE_{train} = 0$, are we always happy?
 - ▶ Not really, we probably have overfitted quite a bit
- ▶ If $MSE_{test} = 0$, are we mostly happy?

- ▶ If $MSE_{train} = 0$, are we always happy?
 - ▶ Not really, we probably have overfitted quite a bit
- ▶ If $MSE_{test} = 0$, are we mostly happy?
 - ▶ Indeed we are, if we have a decent representable test set

- ▶ If $MSE_{train} = 0$, are we always happy?
 - ▶ Not really, we probably have overfitted quite a bit
- ▶ If $MSE_{test} = 0$, are we mostly happy?
 - ▶ Indeed we are, if we have a decent representable test set
- ▶ If we have underfitting, which one will be bigger, MSE_{train} or MSE_{test} ?

- ▶ If $MSE_{train} = 0$, are we always happy?
 - ▶ Not really, we probably have overfitted quite a bit
- ▶ If $MSE_{test} = 0$, are we mostly happy?
 - ▶ Indeed we are, if we have a decent representable test set
- ▶ If we have underfitting, which one will be bigger, MSE_{train} or MSE_{test} ?
 - They will both be rather large

- ▶ If $MSE_{train} = 0$, are we always happy?
 - ▶ Not really, we probably have overfitted quite a bit
- ▶ If $MSE_{test} = 0$, are we mostly happy?
 - Indeed we are, if we have a decent representable test set
- ▶ If we have underfitting, which one will be bigger, MSE_{train} or MSE_{test} ?
 - They will both be rather large
- ▶ If we have overfitting, which one will be bigger, MSE_{train} or MSE_{test} ?

- ▶ If $MSE_{train} = 0$, are we always happy?
 - ▶ Not really, we probably have overfitted quite a bit
- ▶ If $MSE_{test} = 0$, are we mostly happy?
 - Indeed we are, if we have a decent representable test set
- ▶ If we have underfitting, which one will be bigger, MSE_{train} or MSE_{test} ?
 - They will both be rather large
- ▶ If we have overfitting, which one will be bigger, MSE_{train} or MSE_{test} ?
 - $ightharpoonup MSE_{test} > MSE_{train}$

Figure: Graph showing the difference between underfitting and overfitting

Linear regression - How to battle underfitting?

- ► Take a more flexible model
- ▶ Instead of $f_w(x) = w_0 + w_1x_1 + x_2x_2$ take $g_w(x) = w_0 + w_1w_2x_1 + w_1^2x_1 + w_2^2x_2$
- Usually easier to solve then overfitting
- ▶ There is a wide variety of flexible models, and we can always complicate things⁵

⁵As in life and mathematics...

Linear regression - How to battle overfitting?

Regularization

- It allows us to control model complexity
- ▶ Term λ controls the *intensity* of regularization
- ightharpoonup There are multiple options to pick from for function Ω
- ► Interesting tutorial: https://www.analyticsvidhya.com/blog/2016/01/complete-tutorial-ridge-lasso-regression-python/
- ▶ We modify the minimization problem into:

$$\min_{w} \frac{1}{N} \sum_{i=1}^{N} (y_i - f_w(x_i))^2 + \lambda \Omega(w)$$

Linear regression - Ridge regularization

- Very commong regularization function
- ▶ It forces optimization algorithms not to increase model coefficients too much
- ▶ If coefficients get increased, then the sum of their squares rise a lot

$$\Omega(w) = \|w\|_2^2 = \sum_{i=1}^n w_i^2$$

Using ridge, we obtain the following minimization problem

$$\min_{w} \frac{1}{N} \sum_{i=1}^{N} (y_i - f_w(x_i))^2 + \lambda \sum_{i=1}^{n} w_i^2$$

Linear regression - coding time

▶ Let's code ridge regression in scikit-learn

K-Nearest neighbours (kNN)

- ▶ Simple yet sometimes powerful classification algorithm
- ▶ K inside name comes from parameter k
- ▶ *k* determines the number of neighbours we check when classifying an instance

► How much is *k*?

Figure: kNN example (image taken from [Janičić and Nikolić, 2017]

► How much is *k*?

5

Figure: kNN example (image taken from [Janičić and Nikolić, 2017]

- ► How much is *k*?
 - **>** 5
- ▶ What is the class of A?

Figure: kNN example (image taken from [Janičić and Nikolić, 2017]

- ▶ How much is k?
 - **>** 5
- ▶ What is the class of A?
 - Red

Figure: kNN example (image taken from [Janičić and Nikolić, 2017]

- \blacktriangleright How much is k?
 - **>** 5
- ▶ What is the class of A?
 - Red
- ▶ What is the class of B?

Figure: kNN example (image taken from [Janičić and Nikolić, 2017]

- \blacktriangleright How much is k?
 - **5**
- ▶ What is the class of A?
 - Red
- ▶ What is the class of B?
 - Red

Figure: kNN example (image taken from [Janičić and Nikolić, 2017]

Figure: kNN example (image taken from Burton DeWilde's blog

ightharpoonup In linear regression, we represented our model with coefficients w

- ightharpoonup In linear regression, we represented our model with coefficients w
- ▶ What is the model in the kNN classifier?

- ightharpoonup In linear regression, we represented our model with coefficients w
- ▶ What is the model in the kNN classifier?
 - ightharpoonup There is no such thing, we only need to know k

- ▶ In linear regression, we represented our model with coefficients w
- ▶ What is the model in the kNN classifier?
 - ightharpoonup There is no such thing, we only need to know k
- ► How do we train the model?

- ▶ In linear regression, we represented our model with coefficients w
- ▶ What is the model in the kNN classifier?
 - ► There is no such thing, we only need to know *k*
- ► How do we train the model?
 - ▶ We don't, but every time we must calculate neighbours for a new instance

kNN - distances

- ▶ There are multiple functions we can use to calculate distances
- Assume we are given points $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$
- Minkowski

$$\left(\sum_{i=1}^n(|x_i-y_i|)^q\right)^{\frac{1}{q}}$$

► Manhattan (q = 1)

$$\sum_{i=1}^{n} |x_i - y_i|$$

► Euclidean distance (q = 2)

$$\sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

kNN - Curse of dimensionality

- Our intuition is bad for high dimensionals spaces
- ▶ When dimensionality increases, the volume of space increases really fast
- ▶ This can make our dataset very sparse
- ► Essentially, we number of dataset instances required increases exponentially with the dimensionality
- ► This is very bad for kNN

Classification - important metrics

- ▶ TP (true positive): those that are positive and our model was correct
- ► TN (true negative): those that are negative and our model was correct
- ▶ FP (false positive): those that are negative and our model was wrong
- ► FN (false negative): those that are negative and our model was wrong
- Accuracy

$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

Precision

$$Precision = \frac{TP}{TP + FP}$$

Recall score

$$Recall = \frac{TP}{TP + FN}$$

 $ightharpoonup F_1$ score

$$F_1 = \frac{2TP}{2TP + FP + FN}$$

Logistic regression

Logistic regression

- ► Classification algorithm
- ▶ By design, similar to linear regression
- ▶ We want to approximate p(y|x)

$$f_w(x) = w_0 + \sum_{i=1}^n w_i x_i$$

• $f_w(x)$ is not in interval [0,1]

Logistic regression - sigmoid function

Figure: Graph of the sigmoid function

Logistic regression - loss function

▶ We define the loss function as following (check [Bishop, 2006, Murphy, 2012] for details)

$$Loss(w) = -\sum_{i=1}^{N} N \log p_w(y_i|x_i) = -\sum_{i=1}^{N} [y_i \log f_w(x_i) + (1-y_i) \log(1-f_w(x_i))]$$

Logistic regression - minimization problem

▶ We end up with the following minimization problem

$$\min_{w} - \sum_{i=1}^{N} [y_i \log f_w(x_i) + (1-y_i) \log(1-f_w(x_i))]$$

▶ Which is a convex function with a global minimum

Logistic regression - examples

Figure: Example taken from www.helloacm.com

Figure: Example taken from statsblogs.com

Linear regression - coding time

▶ Let's code logistic regression in scikit-learn

Table of contents

Machine learning introduction

Supervised learning

Linear regression K-Nearest neighbours

Logistic regression

Unsupervised learning

Reinforcement learning

Table of contents

Machine learning introduction

Supervised learning

Linear regression K-Nearest neighbours

Logistic regression

Unsupervised learning

Reinforcement learning

Bibliography I

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T., Shillingford, B., and de Freitas, N. (2016).

Learning to learn by gradient descent by gradient descent.

ArXiv e-prints.

Bishop, C. M. (2006).

Pattern Recognition and Machine Learning (Information Science and Statistics).

Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Gall, F. L. (2014).

Powers of tensors and fast matrix multiplication.

CoRR, abs/1401.7714.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning. Springer Series in Statistics. Springer New York Inc., New York, NY, USA.

Bibliography II

Janičić, P. and Nikolić, M. (2017).

Artificial Intelligence.

Matematički fakultet.

Murphy, K. P. (2012).

Machine Learning: A Probabilistic Perspective.

The MIT Press.

Shalev-Shwartz, S. and Ben-David, S. (2014). *Understanding Machine Learning: From Theory to Algorithms*.

Cambridge University Press, New York, NY, USA.

Vapnik, V. N. (1995).

The Nature of Statistical Learning Theory.

Springer-Verlag New York, Inc., New York, NY, USA.