Projekt Universal Actuator Drive **Dokumentation**

Diplomingeniør Elektronik Bachelorprojekt efterår 2017

Ingeniørhøjskolen Aarhus Universitet Vejleder: Arne Justesen

19. december 2017

Nicolai H. Fransen Studienr. 201404672 Jesper Kloster Studienr. 201404571

Indhold

In	dhol	d		2				
1	Kra	Kravspecifikation						
	1.1	Aktørl	beskrivelse	. 4				
		1.1.1	Aktør: Bruger	. 5				
		1.1.2	Aktør: Thermal Knife load	. 5				
		1.1.3	Aktør: Pyro load	. 5				
	1.2	Fully o	dressed use cases	. 6				
			Use case 1 - Aktiver Thermal Knife load					
		1.2.2	Use case 2 - Aktiver Pyro load	. 7				
	1.3	Ikke-fı	funktionelle krav	. 8				
2	Acc	epttest		9				
	2.1	Tests.		. 9				
		2.1.1	Test af ikke-funktionelle krav	. 10				

1 Kravspecifikation

Kravene til produktet er prioriteret ved brug af MoSCoW metoden. Her er kravene for produktet inddelt i fire kategorier, hvor de vigtigste elementer er prioriteret højest. **Must** benævner de krav som er vigtigst at opfylde, og som er absolut nødvendigt for produktet. **Should** er de krav produktet bør opfylde. **Could** er kravene som produktet evt. kunne opfylde, hvis projektets tidsramme tillader det. **Won't** er krav som ikke vil blive opfyldt inden for projektets tidsrammer, men evt. kan tages med i senere iterationer.

Følgende opdeling viser kravene udvalgt for dette projekt:

Must - Have et funktionsdygtigt power-modul

- Ikke påvirke andre moduler ved fejl

- Have et termisk design, kompatibelt med vakuum

- Underbygges med en P-Spice model

Should - Have programmerbar udgangsstrøm og -spænding

- Have stabil regulering

- Have overstrømsbeskyttelse på udgangen

- Have overspændingsbeskyttelse på udgangen

Could – Have mulighed for brug til mere end to forskellige typer loads

- Konstrueres med EEE komponenter

Won't – Have feedback til brugeren når valgt load er aktiveret

- Have galvanisk adskillelse

Figur 1.1: Aktør-kontekst diagram

Figur 1.2: Use case diagram

1.1 Aktørbeskrivelse

I det følgende afsnit beskrives systemets aktører. Ved hver aktør angives typen, samt en kort beskrivelse af aktørens funktion og/eller hvordan de påvirker systemet.

5

1.1.1 Aktør: Bruger

Type:

Primær

Beskrivelse:

Brugeren interagerer med systemet, ved at indstille den ønskede load type.

1.1.2 Aktør: Thermal Knife load

Type:

Sekundær

Beskrivelse:

Thermal Knife load er en load type, hvor et varmelegeme opvarmes langsomt. Denne type bruges til at skære reb over, og derved udløse diverse bevægelige dele.

1.1.3 Aktør: Pyro load

Type:

Sekundær

Beskrivelse:

Pyro load er en load type, hvor en glødetråd opvarmes hurtigt. Denne type bruges til at detonere en krudtladning, og derved sprænge en bolt, som frigør diverse bevægelige dele.

1.2 Fully dressed use cases

1.2.1 Use case 1 - Aktiver Thermal Knife load

Mål:

At aktivere Thermal Knife load

Initiering:

Brugeren

Aktører:

Brugeren (Primær)

Thermal Knife load (Sekundær)

Referencer:

Ingen

Samtidige forekomster:

En

Forudsætning:

Hverken Use case 1 eller Use case 2 er under udførelse

Resultat:

Thermal knife load er aktiveret

Hovedscenarie:

- 1. Brugeren vælger Thermal knife load
- 2. Systemet indstiller strøm og spænding til Pyro load
- 3. Systemet aktiverer Thermal knife load

1.2.2 Use case 2 - Aktiver Pyro load

Mål:

Aktiver Pyro load

Initiering:

Bruger

Aktører:

Bruger (Primær) Pyro load (Sekundær)

Referencer:

Ingen

Samtidige forekomster:

En

Forudsætning:

Hverken Use case 1 eller Use case 2 er under udførelse

Resultat:

Pyro load er aktiveret

Hovedscenarie:

- 1. Brugeren vælger Pyro load
- 2. Systemet indstiller strøm og spænding til Pyro load
- 3. Systemet aktiverer Pyro load

1.3 Ikke-funktionelle krav

I dette afsnit beskrives de ikke-funktionelle krav. Her opstilles f.eks. krav om præcision, brugervenlighed samt produktets dimensioner.

- Inputspændingen skal være mellem 26-100V
- Der må maksimalt trækkes en peak-strøm fra inputkilden på 150% af inputstrømmen
- Skal opretholde en outputspænding på op til 21V, $\pm 2\%$ ved 2,5A $\pm 5\%$
- Skal opretholde en outputstrøm op til 5A $\pm 5\%$, ved 15V $\pm 2\%$
- Der må maksimalt være en ripple-spænding på 50mV pk-pk
- Der må maksimalt være switching spikes på 100mV pk-pk
- Skal kunne omsætte op til 75W
- Skal operere med et tab på maksimalt 5W
- Skal implementeres i et volumen mindre end 17x75x100mm på forsiden af PCB'et, samt 3x75x100mm på bagsiden af PCB'et
- Skal kunne operere med en omgivelsestemperatur mellem -35°C og 65°C
- Skal have stabil regulering med 10dB gain og 50 graders fasemargin ved:
 - 21V/2,5A ved høj og lav indgangsspænding $5A/3\Omega$ ved høj og lav indgangsspænding
- Reguleringen skal have en risetime på maksimalt 0,5ms
- Reguleringen skal have et overshoot på maksimalt 5%

2 Accepttest

2.1 Tests

Use case under test	Use case 1 - Aktiver Thermal Knife load				
Scenarie		Hoveds	scenarie		
Prækondition	Hverken Use case 1 eller Use case 2 er under udførelse				
Step	Handling	Forventet	Faktisk	Vurdering	
1	Brugeren	Reb bliver			
	vælger Ther-	brændt over			
	mal Knife				
	load				

Tabel 2.1: Test for Use case 1 - Start bil - Hovedscenarie

Use case under test	Use case 2 - Aktiver Pyro load				
Scenarie	Hovedscenarie				
Prækondition	Hverken Use case 1 eller Use case 2 er under udførelse				
Step	Handling	Forventet	Faktisk	Vurdering	
1	Brugeren	Krudtladning			
	vælger Pyro	bliver an-			
	load	tændt			

Tabel 2.2: Test for Use case 1 - Start bil - Hovedscenarie

2.1.1 Test af ikke-funktionelle krav

Krav	Test	Forventet	Resultat	Vurdering
		resultat		
Input-	Indgangs-	Indgangs-		
spændingen	spændingen	spændingen		
skal være mel-	måles med et	er mellem		
lem 26-100V	voltmeter	26-100V		
Der må mak-	Udgangen	Peakstrømmen		
simalt trækkes	belastes af en	overstiger ik-		
en peak-strøm	3Ω modstand,	ke 150% af		
fra inputkilden	og der måles	steady state		
på 150% af in-	strøm på ind-	strømmen		
putstrømmen	gangen med			
	oscilloskop			
Skal opret-	Der indsættes	Spændingen		
holde en	en load på 5Ω	ligger på		
outputspæn-	og udgangs-	$12.5V\pm2\%$ og		
ding på op til	strøm og	strømmen på		
$21V \pm 2\%$ ved	-spænding	$2.5A \pm 5\%$		
$2.5A \pm 5\%$	måles med			
	oscilloskop			
Skal oprethol-	Der indsættes	Spændingen		
de en output-	en load på 5Ω	ligger på		
strøm op til 5A	og udgangs-	$15V \pm 2\%$ og		
\pm 5% ved 15V	strøm og	strømmen på		
$\pm2\%$	-spænding	$3A \pm 5\%$		
	måles med			
	oscilloskop			

2.1. TESTS 11

Krav	Test	Forventet resultat	Resultat	Vurdering
Bilen skal ha-	Bilen placeres	Vægten er un-		
ve en maksi-	på en vægt	der 2 kg		
mal vægt på 2				
kg				
Bilen skal måle	Der afmåles et	Bilen kan aflæ-		
sin fart med	vejbanestykke	se og indstille		
en opløsning	på 20m og	sin fart med en		
på 0,5 km/t	et på 10m i	opløsning på		
og bilen skal	forlængelse	0,5 km/t		
kunne indstille	af hinanden.			
sin fart med en	Bilen indstilles			
opløsning på	til forskellige			
0,5 km/t	hastigheder fra 0 km/t til			
	13 km/t i trin			
	af 0,5 km/t.			
	Idet bilen pas-			
	serer de første			
	20m startes et			
	stopur og stop-			
	pes idet den			
	har bevæget			
	sig yderligere			
	10m. Der af-			
	læses fart ud			
	fra driftsstatus			
	i løbet af de			
	sidste 10m.			