Economic Analysis Macro - Class Notes

Michael Lin

October 8, 2020

1 Measurement

We focus on the major items of macroeconomic interest: Economic Activity, Inflation, Unemployment, Interest Rates

1.1 National Income Accounting

The Three Approaches to National Income Accounting

Product Approach: the dollar amount of output produced.

The current **market value** of all **final goods and services newly produced** in the domestic economy, during a specified period of time.

1. Market Value

- Not everything has a market **imputed values** must be used. Determined based on **production cost**. Example: Fire Department.
- Most non-market goods and services are not included. Example: Household services.
- Some market goods and services are not included. Example: Used goods.

2. Final Goods and Services

Goods and services that are not completely used up in the production process.

Expenditure Approach: the dollar amount spent by purchasers.

The **total spending** on **all final goods and services** produced in the domestic economy during a specified period of time.

$$Y = C + I + G + NX$$
 (The National Income Identity)

1. Consumption

Spending by domestic households on final goods and services.

2. Investment

Spending for new capital goods¹ (fixed investment) plus inventory investment.

3. Gov. Purchases of Goods and Services

Government Purchases of goods and services.

Government Transfer Payments are \underline{not} included in G. (Not payments for goods and services) Example: Medicare, Medicaid, Veterans' benefits and etc.

4. **Net Exports**: Exports - Imports

¹Capital goods are used to produce other goods and services.

Income Approach: the dollar incomes earned by production.

The **total income** earned by individuals and businesses in the economy.

The Five Income Measures

- National Income = Compensation of Employees + Other Income + Corporate Profits
- Gross National Product (GNP) = National Income + Depreciation
- Gross Domestic Product (GDP) = GNP + Net Factor Payments
- Private Disposable Income (PDI) = GDP + Net Factor Income + Transfer Payments from the Government + Interest Payments on Government Debt Taxes
- Net Government Income (NGI) = Taxes Government Transfer Payments Interest Payments on Government Debt

1.2 Inflation

Price Index

Measures the average level of prices for some specified set of goods and services relative to the prices in a specified base year.

Three Major Price Indices

• The Gross Domestic Product (GDP) Deflator:

$$P = 100 * \frac{\text{nominal GDP}}{\text{real GDP}}$$

• The Personal Consumption Expenditure (PCE) Deflator:

$$P = 100 * \frac{\text{nominal PCE}}{\text{real PCE}}$$

• The Consumer Price Index (CPI):

Measures the average prices of a specified basket of goods and services bought by consumers.

Measuring Inflation

Given the price index at time t, denoted as P_t , the inflation rate π_t is expressed as the following

$$\pi_t \approx \frac{P_t - P_{t-1}}{P_{t-1}}$$

Where with a little bit algebra, we derive the **Fisher Equation**

$$i \approx r + \pi$$

i stands for the nominal interest rate, and r is the real interest rate.

Unemployment

2 Aggregate Production and Productivity

When labor and capital are separately increased with the other held constant, the product increases by **diminishing increments**.

2.1 The Cobb-Douglas Production Function

Their assumptions for Y(K, L):

- ullet Output Y is a function of capital K and labor L
- Constant returns to scale:

If
$$K - m * K$$
 and $L - m * L$ then $Y - m * Y$

Their proposed solution:

$$Y = AK^{\alpha}L^{1-\alpha}$$
 (The Cobb-Douglas Production Function)

Shows how much output can be produced from given amounts of capital and labor with a given level of total-factor productivity A (also referred to as "technology").

Taking logs of both sides and subtract ln(L)

$$\ln(\frac{Y}{L}) = \ln A + \alpha \ln(\frac{K}{L})$$

Notice that we now have a linear equation that we can analyze

Figure 1

The production function can be drawn as either

- Output as a function of capital (As shown in Figure 1(b))
- Output as a function of labor

$$\begin{aligned} \text{MPK} &\equiv \frac{\partial Y}{\partial K} \\ &= \alpha A (\frac{L}{K})^{1-\alpha} \end{aligned} \qquad \text{(Marginal Product of Capital)}$$

2.2 Understanding Shocks

Consider the Cobb-Douglas Production Function

$$Y = AK^{\alpha}L^{1-\alpha}$$

When $AL^{1-\alpha}$ goes down, output goes down across all input K

Figure 2: Shock in $AL^{1-\alpha}$

Moveover, we can see that the slope of the post-shock production curve is smaller than the preshock curve, which indicates the decrease of *MPK*. As shown in Figure 2(b), this also indicates the decrease of **real rental cost of capital**.

Similarily, when AK^{α} goes down, we will have a lower output across all input of capital.

2.3 Full-Employment Output

Full-employment, or potential, output is the level of output when the labor market is in the long-run equilibrium.

$$Y^P = AK^{\alpha}L_S^{1-\alpha}$$

3 The Solow-Swan Model: Long-Run Growth

Over the decades, we discovered that the growth of GDP is roughly **linear** in the **logrithmic domain**.

$$ln(Y(t)) = c + g_Y t$$

Following this idea, we can get a model for describing the output at time t

$$Y(t) = Y(0)e^{g_Y t}$$

We can see that our log-linear fit is pretty reasonable. The fluctuations about the trend are referred to as **bussiness cycles**.

3.1 Where Does Growth Come From?

Let's begin with the Cobb-Douglas Production Function

$$Y = AK^{\alpha}L^{1-\alpha}$$

Taking the log of both sides, then take the derivative

$$\boxed{\frac{1}{Y}\frac{dY}{dt} = \frac{1}{A}\frac{dA}{dt} + \alpha\frac{1}{K}\frac{dK}{dt} + (1-\alpha)\frac{1}{L}\frac{dL}{dt}}$$

(Growth Accounting Formula)

Approximate the result with $\Delta t = 1$, we have

$$\frac{\Delta Y}{Y} = \frac{\Delta A}{A} + \alpha \frac{\Delta K}{K} + (1 - \alpha) \frac{\Delta L}{L}$$

Sometimes it's also written as $g_Y = g_A + \alpha g_K + (1 - \alpha)g_L$

For example, in the United States where $\alpha \approx 0.3$, we have

$$g_Y = g_A + 0.3g_K + 0.7g_L$$

This tells us how the growth of one or more of the variables in the production function attribute to the overall increase in output.

Research has shown that **productivity growth** is a more important source of variation in growth rates across countries than is growth in capital or labor(a.k.a. factor accumulation).

3.2 The Solow-Swan Model

The Solow-Swan Model was developed in 1950s to determine **capital accumulation**, which affects **economic growth**.

To derive this, we assume that a **constant fraction** s **of output** Y is saved, and the capital **depreciates at a constant rate** δ .

$$\frac{dK}{dt} = sAK^{\alpha}L^{1-\alpha} - \delta K$$
 (Capital Accumulation Equation)

The goal is to solve this differential equation so we get K as a function of t

We make the following assumptions:

• Replace total factor of productivity A with labor efficiency E, and assume that E(t) has a log-linear growth rate

$$E(t) = A(t)^{1/(1-\alpha)}$$

$$E(t) = E(0)e^{g_E t}$$

• Assume that L also grows in log-linear rate.

$$L(t) = L(0)e^{g_L t}$$

• Instead of examine the aggregate capital K, we look at the the **capital per worker per unit of worker efficiency**, denoted by κ . This is also referred to as **normalized capital**.

$$\kappa(t) = \frac{K(t)}{E(t)L(t)}$$

Plug in our expression for $\kappa(t)$, L(t), and E(t), we have the capital accumulation equation for κ

$$\frac{d\kappa}{dt} = s\kappa^{\alpha} - (g_E + g_L + \delta)\kappa$$

The solution $\kappa(t)$ is important because it is directly related to **per-capita income** by

$$\frac{Y(t)}{L(t)} = \kappa(t)^{\alpha} E(t)$$

Generally we have two solutions of interest

• The steady-state solution κ^*

$$\frac{d\kappa}{dt} = 0$$

• The general solution $\kappa(t)$

3.3 The Solutions

Stead-state Solution

Follows from the capital accumulation equation

$$\frac{d\kappa}{dt} = s\kappa^{\alpha} - (g_E + g_L + \delta)\kappa = 0$$

so

$$s\kappa^{\alpha} = (g_E + g_L + \delta)\kappa$$
$$\kappa^{1-\alpha} = \frac{s}{g_E + g_L + \delta}$$

and

$$\kappa^* = \left(\frac{s}{g_E + g_L + \delta}\right)^{\frac{1}{1 - \alpha}}$$

In the steady state, per-capita income is given by

$$\frac{Y(t)}{L(t)} = \kappa^*(t)^{\alpha} E(t) = \left(\frac{s}{g_E + g_L + \delta}\right)^{\frac{1}{1 - \alpha}} E(t)$$

and from which follows that

$$g_{Y/L} = g_E$$

In the steady state $\kappa(t) = \kappa^*$ and is not changing, so

$$\kappa(t) = \frac{K(0)e^{g_Kt}}{E(0)e^{g_Kt}L(0)e^{g_Kt}} = \frac{K(0)}{E(0)L(0)}e^{(g_K - g_E - g_L)t} = \kappa^*$$

Therefore $g_{Y/L} = g_E = g_K - g_L$

General Solution

The general solution can be written in 'gap' form

$$gap(t) = gap(0)e^{-t/\tau}$$

where

$$gap(t) = \kappa(t)^{1-\alpha} - \frac{s}{g_E + g_L + \delta}$$

Overtime gap(t) converges to 0, with the **half life** given by

$$t_{1/2} = \frac{\ln 2}{(1 - \alpha)(g_E + g_L + \delta)}$$

3.4 Shock Analysis

Three important components

• $\kappa^*(t)^{\alpha}E(t)$: The balanced growth

$$\kappa^* = \left(\frac{s}{q_E + q_L + \delta}\right)^{\frac{1}{1 - \alpha}}$$

• Y(t)/L(t): Per capita income

$$\frac{Y(t)}{L(t)} = \kappa(t)^{\alpha} E(t) = \left(\frac{K(t)}{E(t)L(t)}\right)^{\alpha} E(t)$$

 \bullet $t_{1/2}$: Half life – How fast per capita income converges to the balanced growth after a shock

$$t_{1/2} = \frac{\ln 2}{(1 - \alpha)(g_E + g_L + \delta)}$$