Group Number		Name		Type
List Number		Surname		
Student ID		Signature		$oldsymbol{\Lambda}$
E-mail				$igcap \Lambda$

ATTENTION: There is normally only one correct answer for each question and each correct answer is equal to 1 point. Only the answers on your answer sheet form will be evaluated. Please be sure that you have marked all of your answers on the answer sheet form by using a pencil (not pen).

Questions 1-2

A ball of mass m and radius r (moment of inertia $I_{cm} = \frac{2}{5}mr^2$) is placed on the inside of a frictionless circular track of radius R_0 as shown in the figure. It starts from rest at the vertical edge of the track, and since there is no friction, it slides down without rotation.

- 1. What will be the speed of its center of mass when it reaches the lowest point B of the
 - (b) $\sqrt{4g(R_0-r)}$ (c) $\sqrt{4g(R_0+r)}$ (d) $\sqrt{2g(R_0+r)}$ (e) $\sqrt{2g(R_0-r)}$ (a) 0
- 2. The horizontal section of the track starting from B is a surface with coefficient of kinetic friction μ_k . If the ball starts to roll without slipping after traveling a distance d, what is the expression for the coefficient of kinetic friction in terms of the given parameters?
 - (b) $\frac{5(R_0-r)}{49d}$ (c) $\frac{5(R_0-r)}{64d}$ (d) $\frac{24(R_0-r)}{49d}$ (e) $\frac{3(R_0-r)}{8d}$

Questions 3-6

An object with mass m is initially at rest at the origin x=0. At time t=0 it starts to accelerate with a changing acceleration along the +x direction. At time t=T it is at the point $x=x_T$ and its speed is measured as $v(T)=v_T$.

- **3.** How much work is done by the force to accelerate the object during the time interval T?
 - (a) $-\frac{1}{2}mv_T^2$ (b) 0 (c) $\frac{1}{2}mv_T^2$ (d) mv_T^2 (e) $-mv_T^2$
- **4.** What is the average power supplied by the force during the time interval T?
 - (a) $\frac{2mv_T^2}{T}$ (b) $\frac{mv_T^2}{2T}$ (c) 0 (d) $\frac{mv_T^2}{4T}$ (e) $\frac{mv_T^2}{T}$
- 5. If the force accelerating the object is of the form $F(t) = F_0 \left(1 \frac{t}{T}\right)$ for $0 \le t \le T$, what is the power supplied by the force at
 - (a) $\frac{mv_T^2}{4T}$ (b) $\frac{mv_T^2}{2T}$ (c) 0 (d) $\frac{2mv_T^2}{T}$ (e) $\frac{mv_T^2}{T}$
- **6.** Find the expressions for v_T and x_T in terms of F, m, and T
 - (a) $v_T = \frac{F_0 T}{2m}$, $x_T = \frac{F_0 T^2}{m}$ (b) $v_T = \frac{F_0 T}{m}$, $x_T = \frac{F_0 T^2}{2m}$ (c) $v_T = \frac{F_0 T}{2m}$, $x_T = \frac{F_0 T^2}{3m}$ (d) $v_T = \frac{F_0 T}{2m}$, $x_T = \frac{F_0 T^2}{2m}$

Questions 7-9

A cylinder of mass M is free to slide on a frictionless horizontal shaft passing through its axis. A ball of mass m is attached to the cylinder by a massless string of length ℓ . Initially, both the cylinder and the ball are at rest, with the center of the cylinder at a perpendicular distance x_0 from the y-axis, and the ball displaced by an angle $\theta = \pi/2$ to the right relative to the vertical. Use the coordinate system indicated in the figure and assume that the motion takes place on the xy- plane.

- **7.** What is the initial x-coordinate of the center of mass of the system?
 - (a) $x_{cm} = x_0 + \frac{2M\ell}{M+m}$ (b) $x_{cm} = x_0 + \frac{2m\ell}{M+m}$ (c) $x_{cm} = x_0 + \frac{m\ell}{M+m}$ (d) $x_{cm} = x_0 + \frac{M\ell}{M+m}$ (e) $x_{cm} = x_0 + \frac{m\ell}{2(M+m)}$
- 8. If the ball is released from its initial position $(x_0 + \ell, d)$ with zero initial velocity, what will be its coordiates (x', y') when it is at the bottom of its swing, i.e., when $\theta = 0$?
 - (a) $x' = x_0 + \frac{m\ell}{M+m}$, $y' = \ell + d$ (b) $x' = x_0 + \frac{M\ell}{M+m}$, $y' = \ell + 2d$ (c) $x' = x_0 + \frac{m\ell}{M+m}$, $y' = \ell + \frac{d}{2}$ (d) $x' = x_0 + \frac{2M\ell}{M+m}$, $y' = \ell + \frac{d}{2}$ (e) $x' = x_0 + \frac{2m\ell}{M+m}$, $y' = \ell + d$
- **9.** Find the velocities of the ball v_B and the cylinder v_C when $\theta = 0$.
 - (a) $v_B = \sqrt{\frac{2Mg\ell}{M+m}}$, $v_C = \sqrt{\frac{2m^2g\ell}{M(M+m)}}$ (b) $v_B = \sqrt{\frac{Mg\ell}{M+m}}$, $v_C = \sqrt{\frac{m^2g\ell}{M(M+m)}}$ (c) $v_B = \sqrt{\frac{Mg\ell}{M+m}}$, $v_C = \sqrt{\frac{2m^2g\ell}{M(M+m)}}$ (d) $v_B = \sqrt{\frac{2mg\ell}{M+m}}$, $v_C = \sqrt{\frac{2M^2g\ell}{M+m}}$, $v_C = \sqrt{\frac{2M^2g\ell}{M(M+m)}}$

Page 1 of 2 Exam Type A

Questions 10-12

A uniform rod of mass $M = 0.6 \ kq$ and length $L = 1 \ m$ with a point mass $m = 0.3 \ kq$ attached to its free end is rotating with angular speed $\omega_0 = 10.0 \ rad/s$ about the z-axis, as shown in the figure.

10. Find the rotational inertia of the system about point P in units of kgm^2 . (For a uniform rod of

mass M and length L, $I_{cm} = \frac{1}{12}ML^2$) (a) 0.5 (b) 2.0 (c) 1.0 (d) 2.5 (e) 1.5

11. Another point mass 2m moving in the plane of rotation collides perpendicularly in the direction of the rotation of the sticks to the rod at a distance 2L/3 form point P with a linear speed $3\omega_0L$. What is the angular momentum vector relative to point P just after the collision in units of kgm^2/s ?

(a) $19\hat{k}$ (b) $15\hat{k}$ (c) $21\hat{k}$ (d) $23\hat{k}$ (e) $17\hat{k}$

12. What is the angular speed of the system just after the collision in rad/s? (a) $\frac{270}{17}$ (b) $\frac{510}{23}$ (c) $\frac{290}{13}$ (d) $\frac{410}{19}$ (e) $\frac{310}{29}$

Questions 13-16

A massless spring with spring constant k is attached at one end of a block of mass M that is at rest on a frictionless horizontal table. The other end of the spring is fixed to a wall. A bullet of mass m_b is fired into the block from the left with a speed v_0 and comes to rest in the block.

13. What is the speed of the block-bullet system immediately after the collision?

(a) $\frac{m_b}{m_b + M} v_0$ (b) $\sqrt{\frac{m_b}{m_b + M}} v_0$ (c) $\frac{m_b}{M} v_0$ (d) $\sqrt{\frac{m_b + M}{m_b}} v_0$ (e) $\frac{m_b + M}{m_b} v_0$

14. Find the amplitude of the resulting simple harmonic motion.

(a) $\sqrt{\frac{1}{k m_b}} (m_b + M) v_0$ (b) $\sqrt{\frac{1}{k (m_b + M)}} m_b v_0$ (c) $\sqrt{\frac{(m_b + M)}{m_b}} v_0$ (d) $\sqrt{\frac{1}{k M}} m_b v_0$ (e) $\sqrt{\frac{m_b}{(m_b + M)}} v_0$

15. How long does it take the block to first return to the position x = 0?

(a) $\frac{\pi}{2}\sqrt{\frac{m_b+M}{k}}$ (b) $2\pi\sqrt{\frac{m_b+M}{k}}$ (c) $\pi\sqrt{\frac{k}{m_b+M}}$ (d) $\frac{\pi}{4}\sqrt{\frac{m_b+M}{k}}$ (e) $\pi\sqrt{\frac{m_b+M}{k}}$

16. What is the maximum acceleration of the block?

(a) $\sqrt{\frac{k}{m_b+M}}v_0$ (b) $\sqrt{\frac{km_b}{m_b+M}}v_0$ (c) $\sqrt{\frac{km_b}{(m_b+M)^2}}v_0$ (d) $\sqrt{\frac{km_b^2}{(m_b+M)^3}}v_0$ (e) $\sqrt{\frac{k(m_b+M)}{m_b^2}}v_0$

Questions 17-20

A small object of mass m is launched from the surface of the Earth with a speed of v_0 in a direction perpendicular to the Earths surface.

17. What is the total mechanical energy of the object at its starting point in terms of m, v_0 , the radius of the Earth R, the mass of the Earth M, and the gravitational constant G?

(a) $\frac{1}{2}mv_0^2$ (b) $\frac{1}{2}mv^2 + \frac{GMm}{R^2}$ (c) $\frac{1}{2}mv^2 - \frac{GMm}{R^2}$ (d) $\frac{1}{2}mv_0^2 + \frac{GMm}{R}$ (e) $\frac{1}{2}mv_0^2 - \frac{GMm}{R}$

18. Find an expression for the speed v of the object at a height h = R (i.e., a distance 2R from Earth's center).

(a) $\sqrt{v_0^2 - \frac{GM}{2R}}$ (b) $\sqrt{v_0^2 - \frac{3GM}{R}}$ (c) $\sqrt{v_0^2 - \frac{2GM}{R}}$ (d) $\sqrt{v_0^2 - \frac{GM}{R}}$ (e) $\sqrt{v_0^2 - \frac{GM}{3R}}$

19. Now consider a different situation where the object is placed in a circular orbit at a height h = R (i.e., a distance 2R from Earth's center). Find the speed the object needs to be in a circular orbit at that height.

(b) $\sqrt{\frac{GM}{3R}}$ (c) $\sqrt{\frac{3GM}{R}}$ (d) $\sqrt{\frac{GM}{2R}}$ (e) $\sqrt{\frac{GM}{R}}$

20. Find the period of the object in this circular orbit at that height.

(a) $4\pi\sqrt{\frac{R^3}{2GM}}$ (b) $4\pi\sqrt{\frac{2R^3}{GM}}$ (c) $2\pi\sqrt{\frac{R^3}{2GM}}$ (d) $\pi\sqrt{\frac{R^3}{GM}}$ (e) $2\pi\sqrt{\frac{R^3}{GM}}$