Задание №6

Приближённое вычисление интегралов при помощи квадратурных формул Наивысшей Алгебраической Степени Точности (КФ НАСТ)

Теоретический блок:

- 1. знать, что такое Алгебраическая Степень Точности КФ, двустороннюю оценку для АСТ ИКФ в случае знакопостоянного веса;
- 2. знать, чему равна наивысшая АСТ КФ с N узлами;
- 3. знать формулировку теоремы о КФ гауссова типа (или КФ НАСТ);
- 4. знать алгоритм построения КФ НАСТ с весом;
- 5. знать теорему о погрешности КФ НАСТ;
- 6. из теории ортогональных многочленов знать определение и свойства ортогональных многочленов.

Практический блок:

Параметры задачи: пределы интегрирования – a, b (запрашивать у пользователя; вводятся с клавиатуры), функции $\rho(x)$ и f(x) (описать в коде программы).

- 1. Написать программу, позволяющую вычислить приближенно $\int_a^b \rho(x) f(x) \, \mathrm{d}x$ при помощи составной КФ Гаусса с N узлами с числом промежутков деления [a,b] равным m (N и m параметры задачи, запрашивать у пользователя; вводятся с клавиатуры).
 - **Выводить на печать** исходные параметры N и m; узлы и коэффициенты исходной КФ Гаусса в количестве N штук. Полученное значение интеграла (не менее 12 знаков после запятой).
- 2. Реализовать приближенное вычисление $\int_a^b \rho(x) f(x) \, \mathrm{d}x$ при помощи КФ типа Гаусса (КФ НАСТ) с 2-мя узлами.

Выводить на печать все промежуточные вычисления: моменты весовой функции, ортогональный многочлен, узлы и коэффициенты построенной КФ HACT.

Сделать проверку на коэффициенты и точность $K\Phi$ на одночлене x^3 .

Вывести полученное значение интеграла (не менее 12 знаков после запятой). Сравнить полученное значение со значением по составной КФ Гаусса с N узлами.

Варианты тестовых задач

$$[a, b] = [0, 1], \ f(x) = \sin(x), \ \rho(x) = \sqrt{x}.$$

$$[a, b] = [0, 1], f(x) = \sin(x), \rho(x) = x^{1/4}.$$

Bариант 3

$$[a, b] = [0, 1], f(x) = \sin(x), \rho(x) = \frac{1}{\sqrt{x}}.$$

Вариант 4

$$[a, b] = [0, 1], \ f(x) = \sin(x), \ \rho(x) = x^{-1/4}.$$

Вариант 5

$$[a, b] = [0, 1], f(x) = \sin(x), \rho(x) = -\ln(x).$$

Вариант 6

$$[a, b] = [0, 1], f(x) = \sin(x), \rho(x) = -x \ln(x).$$

Вариант 7

$$[a, b] = [0, 1], f(x) = \sin(x), \rho(x) = |x - 0.5|.$$

Bариант 8

$$[a, b] = [0, 1], f(x) = \sin(x), \rho(x) = e^x.$$

Bариант 9

$$[a, b] = [0, 1], \ f(x) = \sin(x), \ \rho(x) = \frac{1}{x+0.1}.$$

Вариант 10

$$[a, b] = [0, 1], f(x) = \sin(x), \rho(x) = \sqrt{1 - x}.$$

Вариант 11

$$[a, b] = [0, 1], f(x) = \sin(x), \rho(x) = \cos(x).$$

Вариант 12

$$[a, b] = [0, 1], f(x) = \sin(x), \rho(x) = \sin(2x).$$

Вариант 13

$$[a, b] = [0, 1], f(x) = \sin(x), \rho(x) = e^{-x}.$$

Вариант 14

$$[a, b] = [0, 1], f(x) = \sin(x), \rho(x) = \cos^2(x).$$

Вариант 15

$$[a, b] = [0, 1], \ f(x) = \sin(x), \ \rho(x) = \sqrt{\frac{x}{1-x}}.$$