บทที่ 2-2

การแก้ปัญหากำหนดการเชิงเส้นด้วยวิธีกราฟ

วัตถุประสงค์ของบทเรียน

- > เข้าใจสมมติฐานเบื้องต้นและคุณสมบัติพื้นฐานของกำหนดการเชิงเส้น Linear Programming (LP)
- > สร้างตัวแบบกำหนดการเชิงเส้นแทนปัญหาได้
- ใช้กราฟเป็นเครื่องมือในการหาผลลัพธ์ของตัวแบบกำหนดการเชิงเส้นที่มีสองตัวแปรได้

เนื้อหาบทเรียน

- ประเภทของการแก้ปัญหากำหนดการเชิงเส้น
- ขั้นตอนการแก้ปัญหาด้วยวิธีกราฟ
- 🗲 ตัวอย่างกำหนดการเชิงเส้นและวิธีการแก้ปัญหาด้วยกราฟ

แบ่งประเภทการแก้ปัญหา

- > การแก้ปัญหา LP ด้วยวิธีกราฟเพื่อแก้ปัญหาค่าสูงสุด
- > การแก้ปัญหา LP ด้วยวิธีกราฟเพื่อแก้ปัญหาค่าต่ำสุด

การแก้ปัญหาด้วยวิธีกราฟ

- เป็นหนึ่งในวิธีการแก้ปัญหาสมการเชิงเส้น นอกเหนือจากการแก้สมการหาค่า ตัวแปรด้วยวิธีการทางคณิตศาสตร์ หรือการใช้หลักการซิมเพล็กซ์
- จากการแก้ปัญหาด้วยวิธีกราฟเราสามารถพิจารณาทางเลือกคำตอบได้จำนวน ไม่มาก

<u>ตัวอย่างที่ 1</u> การแก้ปัญหากำหนดการเชิงเส้น 2 ตัวแปรด้วยวิธีกราฟ

Maximize :
$$Z = 25 X_1 + 20 X_2$$

Subject To:
$$10X_1 + 15X_2 \leq 1,710$$

$$5X_1 + 3X_2 \leq 540$$

$$X_1, X_2 \geq 0$$

ข้นตอนที่หนึ่ง

> สร้างกราฟ 2 มิติ

มิติที่ 1 ลากแกนแนวนอนแทนตัวแปร **X1**

มิติที่ 2 ลากแกนแนวตั้งแทนตัวแปร **X2**

ข้นตอนที่สอง

> เปลี่ยนฟังก์ชั่นเงื่อนไขบังคับจากรูปแบบอสมการเป็นรูปแบบสมการ

ขั้นตอนที่สอง (ต่อ) ตัวอย่างการแปลงอสมการ

จากอสมการ
$$10X_1 + 15X_2 \leq$$

1,710 _____ 1

แปลงสู่รูปสมการ ได้แก่

$$10X_1 + 15X_2 =$$

จากอสมการ
$$5X_1 + 3X_2 \leq$$

$$5X_{1} + 3X_{2}$$

แปลงสู่รูปสมการ ได้แก่

$$5X_1 + 3X_2$$

ข้นตอนที่สาม

 หาจุดตัดระหว่างฟังก์ชั่นเงื่อนไขบังคับทุกอันกับแกนแนวนอน และแนวตั้งของกราฟ

ตัวอย่างการหาจุดตัดบนแกนแนวตั้งของสมการที่ 1

ตัวอย่างการหาจุดตัดบนแกนแนวนอนของสมการที่ 1

หาจุดตัดกับแกนแนวนอน คือ (171,0)

ตัวอย่างการหาจุดตัดบนแกนแนวตั้งของสมการที่ 2

ตัวอย่างการหาจุดตัดบนแกนแนวนอนของสมการที่ 2

ข้นตอนที่สี่

> หาจุดตัดระหว่างเส้นฟังก์ชั่นเงื่อนไขบังคับที่ตัดกันในกราฟ

ตัวอย่างหาจุคตัด

$$10 X_1 + 15 X_2 = 1,710 ____ 1$$

 $5 X_1 + 3 X_2 = 540 ____ 2$

พิจารณาสมการที่ 2 คูณด้วย 2 จะได้ว่า

$$10 X_1 + 6 X_2 = 1,080$$

พิจารณาสมการที่ 1 ลบออกด้วยสมการที่ 3 จะได้ว่า

$$10 X_1 + 15 X_2 - 10 X_1 - 6 X_2 = 1,710 - 1,080$$

$$9 X_2 = 630$$

$$X_2 = 70$$

ตัวอย่างหาจุดตัด (ต่อ)

แทนค่า
$$X_2 = 70$$
 ลงไป สมการที่ 1 หรือ 3 จะได้ว่า $10 \ X_1 + 15 \ (70) = 1,710$ _____1. $10 \ X_1 = 660$ $X_1 = 66$ จุดตัดที่ได้ คือ $(66,70)$

ข้นตอนที่ห้า

- > หาพื้นที่น่าจะเป็นผลเฉลย (Feasible Area)
- > หาจุดตัดยอดมุมของพื้นที่ดังกล่าว (Corner Points)

ตัวอย่างการหาพื้นที่ผลเฉลย(Feasible Area)

ตัวอย่างหาค่าจุดมุม (Corner Point)

```
จุดมุมของปัญหานี้คือ
```

(0, 114)

(66,70)

(108, 0)

ข้นตอนที่ห้า

- > หาผลเฉลยที่เหมาะสมที่สุด (The Optimal Solution)
- > ด้วยวิธีการแทนค่าจุดตัดยอดมุมลงไปในฟังก์ชั่นวัตถุประสงค์

ตัวอย่างการหาผลเฉลยที่ดีที่สุด

จากฟังก์ชั่นวัตถุประสงค์ Maximize :
$$Z = 25 \, \mathrm{X}_1 + 20 \, \mathrm{X}_2$$
 แทน (0 , 114) : $Z = 25$ (0) + 20 (114) = 2,280 แทน (66 , 70) : $Z = 25$ (66) + 20 (70) = 3,050 แทน (108 , 0) : $Z = 25$ (108) + 20 (0) = 2,160 สรุปว่า ผลเฉลยที่เหมาะสมที่สุด คือ (66 , 70)

ข้นตอนที่หก

พิจารณาสรุปผล จะได้ว่า

- ต้องผลิตสินค้าชนิดที่ 1 จำนวน 66 ชิ้น
- ผลิตสินค้าชนิดที่ 2 จำนวน 70 ชิ้น
- ทำให้ได้กำไรสูงสุดเท่ากับ 3,050 บาท

ข้อสังเกตุ

วิธีแก้ปัญหากำหนดการเชิงเส้นด้วยวิธีกราฟข้างต้น

- > ใช้ได้กับการแก้ปัญหาค่าสูงสุดและต่ำสุด
- ใช้พิจารณาแก้ปัญหาที่มีตัวแปรเพียง 2 ตัวแปร

Graphical Solution of a LP With Two Variables

- > ข้อดีของการใช้กราฟ คือ สามารถใช้แก้ปัญหากำหนดการเชิงเส้นที่มีตัว แปรที่ต้องตัดสินใจ 2 ตัวแปร โดยการใช้กราฟสองมิติได้
- ข้อเสีย คือ ในกรณีที่พื้นที่ผลลัพธ์เป็นรูปหลายเหลี่ยมที่มีจุดมุมหลายจุด จะทำให้เสียเวลาในการคำนวณมาก อีกทั้งการใช้กราฟแก้ปัญหายังไม่ สามารถใช้ได้กับการแก้ปัญหาที่มีตัวแปรที่ต้องตัดสินใจมากกว่า 3 ตัวแปร

<u>ตัวแบบเชิงเส้นของโจทย์ปัญหา</u> Flair Furniture Company

Objective Function

Maximize profit P = \$7T + \$5C

Subject to constraints:

 $4T + 3C \le 240$ (carpentry constraint) $2T + 1C \le 100$ (painting constraint) $C \le 60$ (chairs limit constraint) $T \ge 0$ (non-negativity constraint on tables) $C \ge 0$ (non-negativity constraint on chairs)

Graphical Solution of a LP With Two Variables

- 1. ลากแกนแนวนอน แทนตัวแปรตัวที่ 1 (T) และ ลากแกนแนวตั้งแทนตัวแปรตัวที่ 2 (C)
- 2. เปลี่ยนฟังก์ชั่นเงื่อนไขบังคับ จากรูปแบบอสมการเป็นรูปแบบสมการ
- 3. หาจุดตัดระหว่างฟังก์ชั่นเงื่อนไขบังคับทุกอันกับแกนแนวนอนและแนวตั้ง
- 4. หาพื้นที่ผลลัพธ์ที่น่าจะเป็นผลเฉลย (Feasible Area)
- 5. หาจุดตัดระหว่างเส้นฟังก์ชั่นเงื่อนไขบังคับที่ตัดกันของพื้นที่ผลลัพธ์ที่ได้จากข้อ 4.
- 6. หาผลเฉลยที่เหมาะสมที่สุด (The Optimal Solution) ด้วยวิธีการแทนค่าจุดตัดยอด มุมลงไปในฟังก์ชั่นวัตถุประสงค์

Carpentry Time Constraint

Carpentry Time Constraint

หาพื้นที่ผลลัพธ์ โดยสมมติจุดใดๆ เพื่อ ทดสอบ โดยสังเกตได้ว่าจุดใดๆที่อยู่บนเส้น จะ เป็นไปตามเงื่อนไขเช่น (30,40)

•ทดสอบ จุด(30,20)

$$4(30) + 3(20) \le 240 \, \underline{939}$$

•ทดสอบ จุด(70,40)

ดังนั้นพื้นที่แรเงาจะอยู่ใต้เส้นกราฟ

Step 1

Painting Time Constraint

เปลี่ยนฟังก์ชั่นเงื่อนไขบังคับ จากรูปแบบอสมการเป็นรูปแบบสมการ ได้ดังนี้

$$2T + 1C = 100$$

แทน T = 0 จะได้

$$2(0) + 1C = 100$$

$$C = 100$$

ดังนั้น จุดตัดกับแกนแนวตั้ง คือ (0,100)

Step 3

หาพื้นที่ผลลัพธ์ โดยสมมติจุดใดๆ เพื่อทดสอบ เหมือนเงื่อนไขก่อนหน้า (Carpentry Time Constraint) จะได้ว่าพื้นที่ แรงจาะอยู่ใต้เส้นกราฟ

Chair Limit Constraint and Feasible Solution Area

FIGURE 2.4

Feasible Solution Region for the Flair Furniture Company Problem

พื้นที่ผลลัพธ์ที่เป็นไปได้ จะ ถูกกำหนดโดยเงื่อนไขบังคับ ทั้ง 3 แสดงได้ดังรูป

Graphical Solution: *Isoprofit Line Solution Method*

- ผลเฉลยเหมาะที่สุด จะเป็นจุดภายในพื้นที่แรเงา ที่ให้ค่ากำไรสูงสุด
- อาจมีผลเฉลยที่เป็นไปได้มากกว่าหนึ่งผลเฉลยภายในบริเวณพื้นที่แรเงา ดังนั้นในการเลือกจุดที่ดีที่สุดที่จะให้ค่าผลกำไรสูงที่สุดทำได้โดย
- > กำหนดให้ฟังก์ชันวัตถุประสงค์ (\$7T + \$5C) เท่ากับค่าสมมติค่าหนึ่ง โดยค่านั้นจะต้อง สอดคล้องกับจุด ซึ่งอยู่ภายในพื้นที่แรเงา
- > ลากเส้นฟังก์ชั่นวัตถุประสงค์ซึ่งเท่ากับค่าที่กำหนด โดยจะได้กราฟเป็นเส้นตรง

Isoprofit Line Solution Method

จากฟังก์ชั่นวัตถุประสงค์ คือ

$$\$7 T + \$5 C = Z$$

- เลือกสมมติค่า Z ให้เท่ากับค่าหนึ่ง
- \succ ตัวอย่างเช่น เลือกค่า Z ให้เท่ากับ \$210 คังนั้นจะได้ว่า \$7 T + \$5 C = \$210

Isoprofit Line Solution Method

การวาดกราฟของเส้นแสดงผลกำไร ทำได้โดย:

กำหนดให้ $\underline{T=0}$ และแก้สมการฟังก์ชั่นวัตถุประสงค์ เพื่อหาค่า C

 \circ ให้ T=0 จะ ได้ว่า \$7(0)+\$5C=\$210 หรือ $\underline{C=42}$

กำหนดให้ $\underline{C} = \underline{0}$ และแก้สมการฟังก์ชั่นวัตถุประสงค์ เพื่อหาค่า T

Isoprofit Line Solution Method

FIGURE 2.5

Isoprofit Line of \$210 Plotted for the Flair Furniture Company

จากรูปจะเห็นว่า ค่า Z=210 ที่เราเลือก ยังไม่ใช่ค่าสูงสุดที่เป็นไปได้

จากนั้นทำการเลือกสมมติค่า Z ให้สูงขึ้น เพื่อหาว่าเป็นผลเฉลยที่เหมาะสมหรือไม่

<u>Isoprofit Line Solution Method</u>

FIGURE 2.6

Isoprofit Lines of \$280 and \$350 Plotted for the Flair Furniture Company

จากรูปนี้ แสดงให้เห็นถึง เส้น Isoprofit lines ต่างๆ เมื่อเลือกกำหนดค่า Z ให้เท่ากับ \$350 และ \$280 ซึ่ง จะเห็นว่าทุกเส้นจะขนานกับเส้นผลกำไรแรกที่ กำหนดให้ Z= \$210

การหาผลเฉลยที่เหมาะที่สุด Optimal Solution

ผลเฉลยที่เหมาะที่สุด
(Optimal Solution):
อยู่ที่จุดมุมหมายเลข 4
คือ: T = 30 (โต๊ะ) และ C
= 40 (เก้าอี้) โดยได้รับ

แล้วเส้นที่ทำให้ได้กำไร = 420 ???

กำไร เท่ากับ \$410

Optimal Solution

จากกราฟจะเห็นได้ว่า ผลเฉลยเหมาะที่สุด จะอยู่ที่จุดสูงสุดในพื้นที่แรเงา โดยจะเห็นว่า อยู่ที่จุดตัดกันระหว่าง เงื่อนไขบังคับด้านการประกอบงานไม้ (carpentry constraints) กับเงื่อนไขบังคับด้านงานทาสี (painting constraints):

- O สมการ Carpentry constraint คือ: 4T + 3C = 240 ----- ป
- สมการ Painting constraint คือ: 2T + 1C = 100 ---- ②

หากเราแก้สมการเพื่อหาจุดตัดของกราฟเงื่อนไขบังคับทั้งสอง (ที่จุดหมายเลข 4) จะได้ผลเฉลยที่เหมาะสมที่ให้ค่ากำไร สูงสุด *ทำได้ดังนี้*

- \odot นำ $\textcircled{2}\times2$ จะได้ 4T+2C=200 และ นำไปลบกับ 0 จะได้ว่า C=40
- \bigcirc นำค่า C = 40 ที่ได้ไปแทนใน \bigcirc เพื่อหาค่า T จะได้ T = 30

T = 30 (โต๊ะ) และ <math>C = 40 (เก้าอี้) โดยได้รับกำไร เท่ากับ \$410

จุดตัดของกราฟเงื่อนไขบังคับทั้งสองจะได้ผลเฉลยที่เหมาะสม ที่ให้ค่ากำไรสูงสุด

FIGURE 2.4

Feasible Solution Region for the Flair Furniture Company Problem

Corner Point Solution Method

- Corner Point Property คำตอบของปัญหาที่ เหมาะสมของปัญหากำหนดการเชิงเส้นมักจะเกิดขึ้นที่ จุดมุม
- > จากรูปจะทำให้ทราบบริเวณพื้นที่ของผลลัพธ์ที่ เป็นไปได้สำหรับโจทย์ที่กำหนด ซึ่งบริเวณดังกล่าวมี จุดมุม 5 จุด คือจุด ①,②,③,④ และ ⑤ ตามลำดับ
- >ในการหาว่าจุดใดที่ให้กำไรมากที่สุด ทำได้โดยนำค่า คู่ลำดับของจุดมุมแต่ละจุดไปคำนวณหาค่ากำไร ใน ฟังก์ชั่นวัตถุประสงค์

Corner Point Solution Method

A Minimization LP Problem with Graph

ปัญหากำหนดการเชิงเส้นหลายๆปัญหา ที่มีฟังก์ชันวัตถุประสงค์ เพื่อหาค่าต่ำสุด เช่น

- > ร้านอาหารต้องการจัดตารางการทำงานของพนักงาน ให้ทำงานได้ตามที่ต้องการ โดยจ้าง พนักงานจำนวนน้อยที่สุด
- ผู้ผลิตอาจจะต้องการส่งสินค้าของตนจากโรงงานหลายๆโรงงาน ไปยังคลังสินค้าที่อยู่ในหลายๆที่
 โดยให้ค่าใช้จ่ายในการขนส่งน้อยที่สุด
- >โรงพยาบาลอาจจะต้องการวางแผนรายการอาหารให้กับคนไข้ โดยคนไข้ต้องได้รับสารอาหารตามเกณฑ์มาตรฐาน โดยให้เกิดต้นทุนการซื้ออาหารต่ำที่สุด

Example of a Two Variable MinimizationLP Problem

Holiday Meal Turkey Ranch

ต้องการเลือกซื้ออาหารสำหรับไก่งวง 2 ยี่ห้อ โดยมีต้นทุนต่ำที่สุด อาหารสัตว์แต่ละยี่ห้อมีสารอาหาร 3 ชนิด ได้แก่ โปรตีน, วิตามิน และธาตุเหล็ก

Brand A 1 ปอนด์ ประกอบด้วย:

- โปรตีน 5 หน่วย
- วิตามิน 4 หน่วย
- ธาตุเหล็ก 0.5 หน่วย

Brand B 1 ปอนด์ ประกอบด้วย:

- โปรตีน 10 หน่วย
- วิตามิน 3 หน่วย
- ธาตุเหล็ก 0 หน่วย

Holiday Meal Turkey Ranch

ต้นทุนของอาหาร Brand A เท่ากับ \$0.02 ต่อปอนค์ ส่วน **Brand B** มี**ต้นทุน** \$0.03 ต่อปอนค์ เจ้าของกิจการต้องการอาหารที่มีต้นทุนต่ำที่สุด โดยอาหารยี่ห้อนั้นจะต้องมีสารอาหารแต่ละชนิดขั้นต่ำ ตามที่ ใก่งวงจะต้องใด้รับในแต่ละเดือน ดังข้อมูลในตาราง

	COMPOSITION OF EACH POUND OF FEED (OZ)		MANAGAMANA
INGREDIENT	BRAND A FEED	BRAND B FEED	MINIMUM MONTHLY REQUIREMENT PER TURKEY (OZ)
Protein	5	10	90
Vitamin	4	3	48
Iron	1/2	0	1½
Cost per pound	2 cents	3 cents	

Solving LP Problems

```
ปัญหา คือ: Minimize cost (in cents) Z = 2A + 3B
```

subject to constraints:

$$5A + 10B \ge 90$$
 (protein constraint)

$$4A + 3B \ge 48$$
 (vitamin constraint)

$$0.5A \ge 1.5$$
 (iron constraint)

$$A, B \ge 0$$
 (nonnegativity)

Formulation of LP Problem:

Minimize cost (in cents) Z = 2A + 3B

Subject to:

$$5A + 10B \ge 90$$
 (ข้อจำกัดด้านปริมาณโปรตีนขั้นต่ำ) $4A + 3B \ge 48$ (ข้อจำกัดด้านปริมาณวิตามินขั้นต่ำ) $0.5A \ge 1.5$ (ข้อจำกัดด้านปริมาณธาตุเหล็กขั้นต่ำ) $A \ge 0, \ B \ge 0$ (ตัวแปรต้องไม่ติดลบ)

โดยที่:

A แทน ปริมาณของอาหาร Brand A หน่วยเป็นปอนด์

B แทน ปริมาณของอาหาร Brand B หน่วยเป็นปอนด์

Graphical Solution of Holiday Meal Turkey Ranch Problem

กราฟแสดงเงื่อนไขบังคับ:

Isocost Line Method

Isocost Line Method

เส้น Isocost จะถูกขยับลงมาทางด้านซ้ายล่างขนานเส้นแสดงต้นทุนที่ 54 cent ลงไปใกล้กับจุดกำเนิด

จากรูปแสดงจุดสุดท้ายที่เส้น *isocost* สัมผัส โดยที่ยังอยู่ภายในบริเวณแรเงา(ผลลัพธ์ที่เป็นไปได้) คือจุดมุมหมายเลข ②

Isocost Line Method

หาพิกัดของจุดตัดหมายเลข ② ที่สมการ เงื่อนไขบังคับทั้งสองตัดกัน จะได้ว่า

$$A = 8.4$$
 และ $B = 4.8$ ดังนั้นผลเฉลยที่ทำให้เกิดค่าใช้จ่ายต่ำที่สุด คือ:

$$2A + 3B = (2)(8.4) + (3)(4.8)$$

= 31.2 cents

Corner Point Solution Method

```
จุด ① ที่ (A = 3, B = 12)
 ∘ ต้นทุนคือ 2(3) + 3(12) = 42 cents
จุด ② ที่ (A = 8.4, b = 4.8)
 ∘ ต้นทุนคือ 2(8.4) + 3(4.8) = <u>31.2 cents</u>
จุด ③ ที่ (A = 18, B = 0)
 ∘ ต้นทุนคือ (2)(18) + (3)(0) = 36 cents
ผลเฉลยที่เหมาะสมที่มีต้นทุนต่ำที่สุดคือ:
จุดมุมที่ 2,
ต้นทุน = 31.2 cents
```


Summary of Graphical Solution Methods

- 1. วาดกราฟเส้นของแต่ละสมการเงื่อนไขบังคับ
- 2. หาพื้นที่ผลลัพธ์ที่เป็นไปได้ ซึ่งพื้นที่ดังกล่าวจะต้องเป็นไปตาม เงื่อนใจบังคับของปัญหาทุกเงื่อนใจ
- 3. เลือกวิธีการหาผลเฉลย จากการวาดกราฟ จากนั้นจึงทำการหาผลเฉลย
 - 1. วิธีหาจุดมุม (Corner Point Method)
 - 2. วิธีลากเส้นผลกำไร (Isoprofit) หรือเส้นต้นทุน (Isocost)

Summary of Graphical Solution Methods (Continued)

Corner Point Method

- หาจุดตัด ที่เป็นมุมของพื้นที่ผลลัพธ์ที่เป็นไปได้ โดยการดูจากกราฟ หรือโดยการแก้ สมการ
- > คำนวณหาผลกำไร หรือต้นทุน โดยการแทนค่าจุดตัดต่างๆ ลงในฟังก์ชันวัตถุประสงค์
- > หาผลเฉลยที่เหมาะที่สุด โดยเลือกจุดมุมที่ให้ค่ากำไรสูงสุด หรือให้ค่าต้นทุนต่ำสุด

Summary of Graphical Solution Methods (continued)

Isoprofit or Isocost Method

- > เลือกค่ากำไรหรือค่าต้นทุนหนึ่งค่า และวาดเส้นกราฟกำไร/เส้นกราฟต้นทุน เพื่อแสดงให้เห็นถึงความชันของกราฟ
- สำหรับปัญหาการหาค่าสูงสุด ให้ทำการขยับเส้นกราฟขึ้นไปทางด้านขวา จนกระทั่งสัมผัสกับขอบหรือจุดมุมของ พื้นที่ผลลัพธ์ที่เป็นไปได้
- **สำหรับปัญหาค่าต่ำสุด** ให้ทำการขยับเส้นกราฟลงไปทางด้านซ้าย จนกระทั่งสัมผัสกับขอบหรือจุดมุมของพื้นที่ ผลลัพธ์ที่เป็นไปได้
- หาผลเฉลยที่เหมาะสมได้จากจุดพิกัด ที่เส้นกราฟกำไรหรือเส้นกราฟต้นทุนสัมผัสเป็นจุดสุดท้ายของบริเวณพื้นที่ผลลัพธ์ที่เป็นไปได้
- > นำผลเฉลยที่ได้แทนลงในฟังก์ชันวัตถุประสงค์ เพื่อหาค่ากำไรหรือต้นทุนที่เหมาะสมที่สุด

Special Situations in Solving LP Problems

Redundancy: เงื่อนไขข้อจำกัดซ้ำซ้อนเกิดขึ้นในกรณีที่มีเงื่อนไขข้อจำกัดบางเงื่อนไข ที่ไม่มีผลทำ ให้พื้นที่แรเงา (พื้นที่ผลลัพธ์ที่เป็นไปได้) เปลี่ยนแปลง

Maximize Profit = 2X + 3Y

subject to:

$$X + Y \le 20$$

$$2X + Y \le 30$$

$$X \leq 25$$

$$X, Y \geq 0$$

Special Situations in Solving LP Problems

Infeasibility: เกิดขึ้นเมื่อปัญหาการโปรแกรมเชิงเส้นนั้นไม่มีผลเฉลยที่เป็นไปตามเงื่อนไขข้อบังคับทั้งหมด

$$X + 2Y \le 6$$
$$2X + Y \le 8$$
$$X \ge 7$$

No Solution หรือไม่มีผลลัพธ์ที่เป็นไปได้

Special Situations in Solving LP Problems

Unboundedness: เกิดขึ้นในกรณีที่ปัญหาการโปรแกรมเชิงเส้นนั้นไม่มีผลเฉลยที่จำกัด จึงไม่สามารถ หาผลเฉลยได้

Alternate Optimal Solutions

ปัญหาการ โปรแกรมเชิงเส้นอาจ**มีผลเฉลยที่เหมาะสมมากกว่าหนึ่ง**ผลเฉลย ใน กรณีที่

- เส้นกราฟ isoprofit (หรือเส้นกราฟ isocost) ขนานไปกับเส้นกราฟเงื่อนไข บังคับ (constraint)ใดเงื่อนไขหนึ่งในปัญหา
- หรือกล่าวอีกนัยหนึ่งคือ เมื่อเส้น isoprofit (หรือเส้น isocost) มีความชั้น เท่ากับความชั้นของเส้นกราฟที่แทนเงื่อนไขบังคับ

Example: Alternate Optimal Solutions

Maximize profit = \$3x + \$2ySubject to: $6X + 4Y \le 24$ $X \le 3$ $X, Y \ge 0$

Example: Alternate Optimal Solutions

ที่ระดับกำไร \$12,ตำแหน่งของ
เส้นกราฟ isoprofit จะทาบทับ
อยู่บนเส้นเงื่อนไขบังคับแรก
พอดี

หมายความว่า ค่าของตัวแปร X และ y ณ จุดใดๆบนเส้นนี้ที่อยู่ ระหว่างจุดหมายเลข ① และ จุดหมายเลข ② จะทำให้เกิดกำไร สูงสุดเท่ากับ \$12 ได้เท่ากัน

ผลเฉลยที่เหมาะที่สุดมีหลายผลลัพธ์

Summary

- > ตัวแบบกำหนดการเชิงเส้น (Linear programming : LP) ใช้ในการหาผลเฉลยที่ เหมาะสมที่สุดตามวัตถุประสงค์ ภายใต้เงื่อนไขบังคับที่กำหนด
- การหาผลเฉลยของตัวแบบกำหนดการเชิงเส้นที่มีเพียงสองตัวแปร สามารถทำได้โดยใช้วิธี
 สร้างกราฟ
- > การหาผลเฉลยของตัวแบบกำหนดการเชิงเส้นที่มีตัวแปรตัดสินใจและเงื่อนไขบังคับหลายๆ เงื่อนไข สามารถทำได้โดยใช้วิธีซิมเพล็กซ์ (Simplex algorithm)
- > เครื่องมือที่ช่วยในการหาผลเฉลยของตัวแบบกำหนดการเชิงเส้น ได้แก่ Solver ใน โปรแกรม Excel หรือโปรแกรม QM for Windows

A&D