Zusammenfassung Altklausurfragen Lineare Algebra

Zusammenfassung einiger Altklausuren aus Lineare Algebra - alle Angaben ohne Gewähr.

▼ 1.1 Allgemeine Aussagen

- 1. Lineare Gleichungssysteme, Körper, Matrizen
- Korrekte Aussagen

Entscheiden Sie:

- Alle Elementarmatrizen sind invertierbar.
- Besitzt eine Matrix A in Zeilenstufenform mehr Spalten als Pivots, so besitzt das homogene LGS mit A als Koeffizientenmatrix eine nicht-triviale Lösung.
- Wenn ein homogenes LGS nur die triviale Lösung besitzt, besitzt jedes inhomogene System mit derselben Koeffizientenmatrix eine Lösung.
- igspace Jede Multiplikation einer Matrix A mit einer invertierbaren Matrix von links entspricht einer endlichen Abfolge von elementaren Zeilenumformungen an A.
- ✓ Jede invertierbare Matrix über einem Körper ist ein Produkt von Elementarmatrizen.
- ✓ Jede invertierbare Matrix ist ein Produkt von Elementarmatrizen.
- ✓ Jede elementare Zeilenumformung einer Matrix lässt sich durch Multiplikation mit einer invertierbaren Matrix von links erreichen.
- Mit Hilfe von elementaren Zeilenumformungen lässt sich jede Matrix mit Einträgen aus einem Körper in Zeilenstufenform bringen.
- igspace Die Lösungsmenge eines homogenen LGS in m Variablen über dem Körper K ist ein Untervektorraum des K^m .

N Falsche Aussagen

Entscheiden Sie:

- N Die einzige quadratische Matrix in reduzierter Zeilenstufenform ist die Einheitsmatrix.
- 🚫 Die Summe zweier Lösungen eines inhomogenen LGS ist stets wieder eine Lösung.
- $igcolon{K}{igcolon}$ Besitzt eine Matrix A (über dem Körper K) mehr Zeilen als Spalten, so besitzt das homogene LGS mit A als Koeffizientenmatrix nur die triviale Lösung.
- igotimes Besitzt eine Matrix A in Zeilenstufenform mehr Spalten als Pivots, so besitzt jedes inhomogene LGS mit A als Koeffizientenmatrix eine Lösung
- 🚫 Jedes inhomogene System linearer Gleichungen besitzt mindestens eine Lösung.
- 🚫 Ist der Rang einer Matrix (über einem Körper) gleich ihre Spaltenanzahl, so besitzt das von ihr definierte homogene LGS eine nicht triviale Lösung.
- igotimes Ist der Rang einer Matrix A echt kleiner als ihre Zeilenanzahl, so besitzt jedes inhomogene LGS $\,$ mit A $\,$ als Koeffizientenmatrix eine Lösung. $\,$

Korrekte Aussagen

Sei K ein Körper. Entscheiden Sie:

- $ightharpoonup A \in GL_M(K) \Rightarrow rang(A) = m$
- $ightharpoonup A \in GL_m(K) \Leftrightarrow det(A)
 eq 0$
- $ightharpoonup A \in GL_m(K) \Leftrightarrow A^2 \in GL_m(K)$
- $igwedge A\in Mat_m(\mathbb{R})$ und $rang(A)=m\Rightarrow A\in GL_m(\mathbb{R})$
- $ightharpoonup GL_m(\mathbb{R})$ bildet mit der Multiplikation von Matrizen eine Gruppe.

- $igspace GL_m(K)$ ist eine Gruppe bzgl. Matrixmultiplikation.
- $igwedge Mat_m(\mathbb{R})$ bildet mit der bekannten Multiplikation von Matrizen eine Gruppe
- $igwedge Mat_m(\mathbb{R})$ bildet mit der bekannten Multiplikation von Matrizen eine abelsche Gruppe.
- $igwedge Mat_m(K)$ bildet mit der bekannten Addition und Multiplikation von Matrizen einen
- Es gibt einen Körper mit genau 23 Elementen.
- 🗸 Es gibt einen Körper mit 17 Elementen.
- Es gibt einen Körper mit genau 41 Elementen.
- Es gibt einen Körper mit genau 29 Elementen.
- $\mathbb{Z}/8\mathbb{Z}$ ist ein Körper (mit der bekannten Addition und Multiplikation)
- lacksquare In $\mathbb{Z}/9\mathbb{Z}$ gibt es Elemente a,b
 eq 0 mit ab=0.
- 🗸 In einem Körper besitzt jedes Element außer der Null ein multiplikativ Inverses.
- $\mathbb{Z}/7\mathbb{Z}$ ist ein Ring (mit der bekannten Addition und Multiplikation) (sogar ein Körper)
- $igspace \mathbb{Z}$ ist ein kommutativer Ring (mit der bekannten Addition und Multiplikation).
- \mathbb{Z} ist ein Ring (mit der bekannten Addition und Multiplikation).
- $\bigvee \mathbb{Q}$ ist ein Körper (mit der bekannten Addition und Multiplikation).
- Der Betrag einer komplexen Zahl ist stets eine reelle Zahl.
- lacksquare Für $a,b\in\mathbb{Q}$ folgt aus ab=0 immer a=0 oder b=0.
- lacksquare Für jedes $a\in\mathbb{Q}^x$ gilt $a^{-1}
 eq 0$
- lacksquare Für $A\in GL_M(K)$ gilt $A^{-1}\in GL_m(K)$.
- lacksquare Für $z\in\mathbb{C}$ gilt $z-ar{z}=2iIm(z)$
- \checkmark Es gilt $\mathbb{C}^x = \mathbb{C} \setminus \{0\}$.
- lacksquare Für $z\in\mathbb{C}$ gilt $|z|^2$ = $zar{z}$
- lacksquare Für $a\in\mathbb{C}$ folgt aus $a^2=0$ immer a =0

N Falsche Aussagen

Sei K ein Körper. Entscheiden Sie:

- \bigcirc $GL_m(K)$ ist eine Gruppe bzgl. Addition von Matrizen.
- $\bigcirc A \notin GL_m(K) \Rightarrow det(A) \neq 0$
- $igwedge Mat_2(\mathbb{R})$ bildet mit der bekannten Addition und Multiplikation von Matrizen einen kommutativen Ring.
- $igwedge Mat_4(K)$ bildet mit der bekannten Addition und Multiplikation von Matrizen einen Körper.
- $igwedge \mathbb{Z}/9\mathbb{Z}$ ist ein Körper (mit der bekannten Addition und Multiplikation).
- $igotimes Z/6\mathbb{Z}$ ist ein Körper (mit der bekannten Additon und Multiplikation).
- \bigcirc $\mathbb{Z}/15\mathbb{Z}$ ist ein Körper (mit der bekannten Addition und Multiplikation).
- $igotimes \mathbb{Z}/4\mathbb{Z}$ ist ein Körper (mit der bekannten Additon und Multiplikation).
- igwedge $\mathbb Z$ ist ein Körper (mit der bekannten Addition und Multiplikation).
- 🚫 In einem Körper können Elemente mehr als ein multiplikativ Inverses besitzen.
- 🚫 In einem Körper kann jedes Element multiplikativ invertiert werden.
- N In einem Körper besitzt jedes Element ein multiplikativ Inverses.
- $igcolon{igchi}{igcolon}$ Für $a,b\in\mathbb{C}ackslash\{0\}$ kann ab=0 gelten.
- igwedge Für $z\in\mathbb{C}ackslash\{0\}$ gilt $zar{z}=rac{1}{|z|^2}$
- igwedge Für $z,z'\in\mathbb{C}$ gilt $Im(zz')=Im(z)\cdot Im(z')$
- igwedge Für jedes $A\in Mat_m(K)$ existiert ein $n\in\mathbb{N}$ mit $A^n=0$.
- igwedge Für jedes $A\in Mat_m(K)$ existiert ein $n\in\mathbb{N}$ mit $A^n=I_m$
- \mathbb{N} Für $a \in \mathbb{C} \setminus \{0\}$ kann $a^2 = 0$ gelten.
- igwedge Für $z\in\mathbb{C}$ gilt $Re(z^2)=Re(z)^2$
- igwedge $\mathbb N$ ist ein Ring (mit der bekannten Addition und Multiplikation).
- \bigcirc Es gilt $\mathbb{Q}^x = \mathbb{Q} (\mathbb{Q}^x = \mathbb{Q} \setminus \{0\})$

Y

Sei K ein Körper. Entscheiden Sie, ob für alle $A \in Mat_{m,n}(K)$ und $b \in K^m$ gilt:

- lacksquare ist $c\in L(A,b)$ und $d\in L(A,0)$, so ist $c-d\in L(A,b)$
- lacksquare ist $c\in L(A,b)$ und $d\in L(A,0)$, so ist $c+d\in L(A,b)$
- lacksquare ist $c\in L(A,0)$ und $d\in L(A,b)$, so ist $c+d\in L(A,b)$
- lacksquare ist $c\in L(A,0)$ und $\lambda\in K$, so ist $\lambda c\in L(A,0)$
- igspace ist $c\in L(A,b)$ und $\lambda\in K$, so ist $\lambda c\in L(A,0)$
- lacksquare sind $c,d\in L(A,0)$, so ist $c+d\in L(A,0)$
- lacksquare sind $c,d\in L(A,b)$, so ist $c-d\in L(A,0)$

N Falsche Aussagen

Sei K ein Körper. Entscheiden Sie, ob für alle $A \in Mat_{m,n}(K)$ und $b \in K^m$ gilt:

- $igcite{igcircle}$ sind $c,d\in L(A,b)$, so ist $c+d\in L(A,0)$
- $igstyle{igstyle igwedge}$ sind $x,y\in L(A,b)$, so ist $x-y\in L(A,b)$
- $igcite{igcircle}$ ist $c\in L(A,b)$ und $\lambda\in K$, so ist $\lambda c\in L(A,b)$
- igwedge aus n=m folgt $L(A,b)
 eq\emptyset$
- igotimes aus $L(A,0)
 eq \{0\}$ folgt $L(A,b)
 eq \emptyset$
- igcolon 2 aus $L(A,0)=\{0\}$ folgt $L(A,b)
 eq \emptyset$
- igotimes es gilt $b\in L(A,b)$
- $\bigcirc L(A,b+c) = c + L(A,b)$
- $\bigcirc x, y \in L(A, b)$, so ist $x y \in L(A, b)$
- $igcite{igcircle}$ es gilt $L(A,b)=\{b+a|a\in L(A,0)\}$

2. Vektorräume und lineare Abbildungen

Korrekte Aussagen

Sei K ein Körper und V ein endlich-dimensionaler K-Vektorraum. Entscheiden Sie:

- $\bigvee V$ ist endlich erzeugt.
- ightharpoonup V ist endlich dimensional.
- ightharpoonup V besitzt eine Basis.
- ightharpoonup Die Dimension von V ist endlich.
- igspace Jede Basis eines Untervektorraums von V lässt sich zu einer Basis von V ergänzen.
- lacksquare Jedes minimale Erzeugendensystem von V ist eine Basis von V.
- \checkmark Jede Basis von V ist ein Erzeugendensystem von V.
- igwedge Jedes System linear unabhängiger Vektoren von V lässt sich zu einer Basis von V ergänzen
- igspace Je zwei Basen von V bestehen aus gleich vielen Vektoren.

Nalsche Aussagen

Sei K ein Körper und V ein endlich-dimensionaler K-Vektorraum. Entscheiden Sie:

- igcolon V Jedes Erzeugendensystem von V ist eine Basis von V .
- $igcolon {igcolor}$ Jede minimale linear unabhängige Teilmenge von V ist eine Basis von V .
- igotimes V hat unendlich viele Elemente.
- igotimes Je zwei Erzeugendensysteme von V bestehen aus gleich vielen Vektoren.

Sei V ein K-Vektorraum und $v_1,\ldots,v_m\in V$. Entscheiden Sie:

- lacksquare Es ist $Span_K(\{v_1,\ldots,v_m\})$ ein Untervektorraum von V .
- igspace Es ist $Span_K(\{v_1,\ldots,v_m\})$ der kleinste Untervektorraum von V, welcher alle v_i enthält.
- igspace Es ist $Span_K(\{v_1,\ldots,v_m\})$ der kleinste Untervektorraum von V, der v_1,\ldots,v_m enthält.
- $igspace{1mm}$ Aus $dim_K(Span_K(\{v_1,\ldots,v_m\}))=m$ folgt, dass v_1,\ldots,v_m linear unabhängig sind.

!? Es ist $Span_K(\{v_1,\ldots,v_m\})$ die Menge aller linear unabhängiger Teilmengen von v_1,\ldots,v_m .

!? Die Dimension von $Span_K(\{v_1,\ldots,v_m\})$ ist höchstens m.

N Falsche Aussagen

Sei V ein K-Vektorraum und $v_1,\ldots,v_m\in V$. Entscheiden Sie:

- igcirc Es ist $Span_K(\{v_1,\ldots,v_m\})$ ein Untervektorraum von K^m .
- igotimes Es ist $Span_K(\{v_1,\ldots,v_m\})$ die Vereinigung aller Untervektorräume von V, welche v_1,\ldots,v_m enthalten.
- igwedge Aus $dim_K(V)=m$ folgt $V=Span_K(\{v_1,\ldots,v_m\})$

Korrekte Aussagen

Sei V ein K-Vektorraum und $U_1, U_2 \subseteq V$ Untervektorräume. Entscheiden Sie:

igspace Es ist $U_1\cap U_2$ der größte in U_1 und U_2 enthaltene Untervektorraum.

Nalsche Aussagen

Sei V ein K-Vektorraum und $U_1, U_2 \subseteq V$ Untervektorräume. Entscheiden Sie:

- igcolon S Es ist $U_1 \cup U_2$ steht ein Untervektorraum von V.
- igcit S Es gilt stets $dim_K(U_1+U_2)-dim_K(U_1)=dim_K(U_1)+dim_K(U_2)$
- igotimes Aus $U_1
 eq V$ und $U_2
 eq V$ folgt $U_1+U_2
 eq V$

Korrekte Aussagen

Sei V ein endlich-dimensionaler Vektorraum und $\varphi:V\to V$ eine lineare Abbildung. Entscheiden Sie:

- ightharpoonup Wenn arphi injektiv ist, ist arphi ein Isomorphismus.
- lacksquare Wenn arphi surjektiv ist, ist arphi auch injektiv.
- igwedge Wenn $oldsymbol{arphi}$ injektiv ist, ist $oldsymbol{arphi}$ auch surjektiv.
- lacksquare Es kann dim(Kern(arphi)) < dim(Bild(arphi)) gelten.
- lacksquare Aus dim(Bild(arphi)) < dim(V) folgt, dass arphi nicht injektiv ist.
- lacksquare Es ist Kern(arphi) ein Untervektorraum von V .
- lacksquare Es ist Bild(arphi) ein Untervektorraum von V .
- ightharpoonup Es gilt dimBild(arphi)=dim(V)-dimKern(arphi).
- lacksquare Es gilt stets dim $Bild(arphi) \leq dim \ V.$

!? Aus dim Kern(arphi)>0 folgt, dass arphi nicht surjektiv ist. "und auch nicht injektiv" =

ightharpoonup Aus dim Kern(arphi)=0 folgt, dass arphi surjektiv ist.

!? Aus $Kern(\varphi)=\{0\}$ folgt, dass φ invertierbar ist.

N Falsche Aussagen

Sei V ein endlich-dimensionaler Vektorraum und $\varphi:V\to V$ eine lineare Abbildung. Entscheiden Sie:

- $\bigotimes \varphi$ ist ein Isomorphismus.
- \bigcirc Es ist φ stets surjektiv.
- igcit S Es kann dim V < dim Bild(arphi) gelten.
- igcolongle Aus dim(Kern(arphi)) < dim V folgt, dass arphi nicht surjektiv ist.
- igcit S Es gilt stets dim $Bild(arphi) < dim \ V$.

!? Aus $dim(Kern(\varphi)) < dimV$ folgt, dass φ nicht injektiv ist.

3. Determinante und Eigenwerte

Korrekte Aussagen

Sei K ein Körper und $m \in \mathbb{N}$ beliebig. Entscheiden Sie:

- ightharpoonup Für $A,B\in Mat_m(K)$ gilt $det(A\cdot B)=det(A)\cdot det(B)$.
- lacksquare Es gilt $det(AB) = det(A) \cdot det(B)$ f+r alle $A, B \in Mat_m(K)$.
- lacksquare Für $A\in Mat_m(K)$ mit det(A)
 eq 0 gilt $A\in GL_m(K)$.
- lacksquare Die Determinante $det: Mat_m(K)
 ightarrow K$ ist K-linear in jeder Spalte.
- $ightharpoonup det(A)
 eq 0 \Rightarrow A \in GL_m(K).$

!? Aus det(A)
eq 0 folgt $L(A,b)
eq \emptyset$ für alle $b \in K^m$

!? Es gilt $det(A^{-1})=det(A)^{-1}$ für alle $A\in GL_m(K)$.

🚫 Falsche Aussagen

Sei K ein Körper und $m \in \mathbb{N}$ beliebig. Entscheiden Sie:

 $igcolon{igchi}{igcolon}$ Es gilt $det(A^{-1}) = -det(A)$ für alle $A \in GL_m(K)$.

 $igcolon{igchi}{igcolon}$ Es gilt $det(A^{-1})=det(A)$ für alle $A\in GL_m(K)$.

igcirc Die Determinante $det: Mat_m(K)
ightarrow K$ ist eine K-lineare Abbildung.

ODIE Determinante einer Matrix ändert sich beim Vertauschen zweier verschiedener Spalten nicht.

ODie Determinante einer Matrix ändert sich unter elementaren Zeilenumformungen nicht.

igcirc Für $A\in Mat_m(K)$ mit det(A)
eq 0 gilt $L(A,b)=\emptyset$ für mindestens ein $b\in K^m$. !? Es gilt det(A)=det(-A) für alle $A\in Mat_m(K)$.

Korrekte Aussagen

Entscheiden Sie:

lacksquare Es gilt $det(A)A^{-1}=A^{adj}$ für alle $A\in GL_7(\mathbb{R}).$

✓ Die Determinante einer unteren Dreiecksmatrix ist das Produkt ihrer Diagonaleinträge.

 \checkmark Der Rang einer Matrix ist die größte Größe einer quadratischen Untermatrix mit Determinante $\neq 0$.

 $igspace{\begin{picture}(100,0) \put(0,0){\line(0,0){100}} \put(0,0){\lin$

 $igwedge A \in Mat_2(\mathbb{Z}/2\mathbb{Z})$ ist genau da,, invertierbar, wenn det(A)=1 gilt.

lacksquare Für $a_1,a_2,a_3\in\mathbb{C}^3$ gilt $det(a_1,a_2,a_3)=-det(a_3,a_2,a_1)$

$$ightharpoonup$$
 es gilt $det \begin{pmatrix} 1 & -2 & 3 \ -4 & 5 & -6 \ 7 & -8 & 9 \end{pmatrix} = 0$

Nalsche Aussagen

Entscheiden Sie:

- $igwedge A \in Mat_2(\mathbb{Z}/3\mathbb{Z})$ ist genau dann invertierbar, wenn det(A)=1 gilt.
- $igtriangleq A \in Mat_2(\mathbb{Z}/5\mathbb{Z})$ ist genau dann invertierbar, wenn det(A)=1 oder det(A)=2.
- O Die Determinante einer Diagnonalmatrix ist stets ungleich Null.
- O Die Determinante einer oberen Dreiecksmatrix ist Null.
- O Die Determinante einer Matrix ist das Produkt ihrer Diagnonaleinträge.
- ODie Leibnitzformel zur Berechnung von Determinanten gilt nur für Matrizen der Größe 3.
- O Die Regel von Sarrus gilt für Matrizen der Größe 4.
- O Der Rang einer Matrix ist die größte Größe einer quadratischen Untermatrix mit Determinante = 0.
- igwedge Hat eine Matrix Rang 2, so hat jede 2 imes 2-Untermatrix Determinante null.
- igcep Für $a_1,a_2,a_3\in\mathbb{C}^3$ gilt $det(a_1,a_2,a_3)=det(a_3,a_2,a_1).$

!? Für $a_1,a_2,a_3\in\mathbb{C}^3$ gilt $det(a_1,a_2,a_3)=-det(a_2,a_3,a_1)$

- igcep Für $A\in Mat_m(K)$ gilt $A^{adj}\in Mat_{m-1}(K)$.

- $igcolon{igchi}{igcolon}$ Es gilt $A\cdot A^{adj}=I_2$ für alle $A\in GL_2(\mathbb{R}).$
- igcep Es gilt $A\cdot A^{adj}=I_2$ für alle $A\in Mat_2(\mathbb{R})$.

!? Für $a_1,a_2,a_3\in\mathbb{C}^3$ und $\sigma\in S_3$ gilt $det(a_{\sigma(1)},a_{\sigma(2)},a_{\sigma(3)})=sgn(\sigma)det(a_1,a_2,a_3)$

Korrekte Aussagen

Sei K ein Körper, V ein K-Vektorraum und $\varphi:V\to V$ eine K-lineare Abbildung. Entscheiden Sie:

- igspace Die Menge $\{v\in V|arphi(v)=v\}$ ist ein Untervektorraum von V.
- lacksquare Die Menge $\{v\in V|arphi(v)=2v\}$ ist ein Untervektorraum von V.

igsep arphi muss in Knicht unbedingt einen Eigenwert haben.

igvee arphi hat höchstens endlich viele verschiedene Eigenwerte.

igspace Die Menge $\{v\in V|arphi(v)=-v\}$ ist ein Untervektorraum von V.

lacksquare Für $A\in Mat_m(K)$ sind die Nullstellen des charakteristischen Polynomy p_A genau die Eigenwerte von μ_A .

 $lacksquare A = egin{pmatrix} 1 & -1 \ -1 & 1 \end{pmatrix}$ besitzt $\mu_A: \mathbb{Q}^2 o \mathbb{Q}^2$ den Eigenwert 2.

N Falsche Aussagen

Sei K ein Körper, V ein K-Vektorraum und arphi:V o V eine K-lineare Abbildung. Entscheiden Sie:

igcolon arphi besitz in K mindestens einen Eigenwert.

$$igcep$$
 Für $A=egin{pmatrix}1&1\-1&1\end{pmatrix}$ besitzt $\mu_A:\mathbb{Q}^2 o\mathbb{Q}^2$ den Eigenwert 1.

$$igcep$$
 Für $A=egin{pmatrix} -1 & 1 \ 1 & -1 \end{pmatrix}$ besitzt $\mu_A:\mathbb{Q}^2 o\mathbb{Q}^2$ den Eigenwert 2.

▼ 1.2 Aufgabenbezogene Aussagen

1. Lineare Gleichungssysteme, Körper, Matrizen

Entscheiden Sie für:

$$A=egin{pmatrix}1&0&1\-1&1&0\1&-1&1\end{pmatrix}\in Mat_3(\mathbb{R})$$

 $igwedge A\in GL_3(\mathbb{R})$ o "ist die Matrix invertierbar"

$$lap{rang}(A)=3$$

 $lue{lue}$ Jedes inhomogene LGS mit Koeffizientenmatrix A besitzt eine Lösung.

Nalsche Aussagen

 \bigcirc A lässt sich mit elementaren Zeilenumformungen nicht zur Einheitsmatrix I_3 transformieren.

$$\bigcirc rang(A) = 2$$

Entscheiden Sie für:

$$A=egin{pmatrix} 0 & 1 & i \ -i & 1 & i \ 1 & 1 & 0 \end{pmatrix} \in Mat_3(\mathbb{C})$$

Korrekte Aussagen

ightharpoonup Der Lösungsraum L(A,0) hat Dimension 3. "Rang 3" ightharpoonup in Zeilenstufenform bringen, Nullzeilen abziehen

Nalsche Aussagen

igotimes Es gibt ein $b\in\mathbb{C}^3$ mit $L(A,b)=\emptyset$ "wenn Rang < Unbekannte, dann wahr"

 \bigcirc Der Rang von A ist 2.

Entscheiden Sie für:

$$A=egin{pmatrix}1&-1&1\2&0&1\-1&-1&-1\end{pmatrix}\in Mat_3(\mathbb{Q})$$

Korrekte Aussagen

igwedge A ist invertierbar über $\mathbb Q.$

 $lue{lue}$ Das homogene LGS mit Koeffizientenmatrix A besitzt nur die triviale Lösung.

N Falsche Aussagen

 $igcolon{igchi}{igcolon}$ Es gibt $b\in\mathbb{Q}^3$ mit $L(A,b)=\emptyset$

igwedge lässt sich mit elementaren Zeilenumformungen auf eine Zeilenstufenform mit genau 2 Pivots bringen.

Entscheiden Sie für:

$$A=egin{pmatrix}1&-i&i\ i&-1&2\-1&-i&0\end{pmatrix}\in Mat_3(\mathbb{C})$$

Korrekte Aussagen

igwedge A ist invertierbar über $\mathbb C.$

 $lue{lue}$ Das homogene LGS mit Koeffizientenmatrix A besitzt nur die triviale Lösung.

N Falsche Aussagen

igcep Es gibt $b\in\mathbb{C}^3$ mit $L(A,b)=\emptyset$.

igwedge lässt sich mit elementaren Zeilenumformungen auf eine Zeilenstufenform mit genau 2 Pivots bringen.

$$A = egin{pmatrix} 1 & -1 & 0 & 1 \ 2 & -1 & 1 & 0 \ 0 & -1 & -1 & 1 \ 1 & 1 & 1 & 1 \end{pmatrix} \in Mat_4(\mathbb{Q})$$

Korrekte Aussagen

lacksquare A ist invertierbar über $\mathbb Q.$

Nalsche Aussagen

 \bigcirc A lässt sich mit elementaren Zeilenumformungen auf eine Zeilenstufenform mit genau 3 Pivots bringen.

 $igcite{b} \in \mathbb{Q}^4$ mit $L(A,b) = \emptyset$.

 $igcolon {
m O}$ Das homogene LGS mit Koeffizientenmatrix A besitzt mehr als nur die triviale Lösung.

2. Vektorräume und lineare Abbildungen

Korrekte Aussagen

Entscheiden Sie, ob die folgenden Teilmengen von $V=\mathbb{R}[t]$ jeweils \mathbb{R} -Untervektorräume sind (bzgl. Addition und skalaren Multiplikation)

$$+: p_1(7) + p_2(7) = 0 + 0 = 0$$

$$\cdot$$
: $p(7) \cdot k = 0 \cdot k = 0 \times$

 $\blacktriangledown \{p \in V | p' = 0\}$

$$+: \quad p_1'+p_2'=0+0=0 o p'=0$$
 (konstante Funk abgeleitet immer 0)

$$\cdot: \qquad p' \cdot k = 0 \cdot k = 0 \rightarrow p' = 0 \checkmark$$

Y

Entscheiden Sie, ob die folgenden Teilmengen von $V=\mathbb{Q}[t]$ jeweils \mathbb{Q} -Untervektorräume sind (bzgl. Addition und skalaren Multiplikation)

$$\{f \in V | f(1) = 0\}$$

$$\bigvee \{p \in V | p'(1) = 0\}$$

$$\[\bigvee \{ p \in V | p(7) = 0 \} \]$$

$$\[\bigvee \{ p \in V | p(-1) = 0 \} \]$$

$$\[\bigvee \{ p \in V | p(-4) = 0 \} \]$$

$$lacksquare \{p \in V | p(a)
eq 0 ext{ für alle } 0 < a \in \mathbb{Q}\}$$

N Falsche Aussagen

Entscheiden Sie, ob die folgenden Teilmengen von $V=\mathbb{R}[t]$ jeweils \mathbb{R} -Untervektorräume sind (bzgl. Addition und skalaren Multiplikation)

$$+: p_1(0) + p_2(0) = 2 + (-1) = 1 \times$$

$$\bigcirc \{p \in V | p(a) > 0 \text{ für alle } a \in [0,1] \}$$

$$+: p_1(a) + p_2(a) = 1 + 1 = 2 \rightarrow p(a) > 0$$

$$\cdot: p(a) \cdot k = 1 \cdot 0 = 0 \to p(a) > 0 X$$

Entscheiden Sie, ob die folgenden Teilmengen von $V=\mathbb{Q}[t]$ jeweils \mathbb{Q} -Untervektorräume sind (bzgl. Addition und skalaren Multiplikation)

$$\bigcirc$$
 $\{p \in V | p \text{ hat in } [0,1] \text{ eine Nullstelle} \}$

$$\mathop{!?}\left\{ p\in V|p'=t\right\}$$

!?
$$\{p \in V | p(a) \geq 0 \text{ für alle } a \in [0,1] \}$$

$$igwedge \{p \in V | p(a)
eq 0 ext{ für alle } a \in [0,1] \}$$

Entscheiden Sie, ob folgende Abbildungen linear sind:

$$igspace arphi: \mathbb{Q}^2 o \mathbb{Q}^2; (x,y)^t \mapsto (x+y,y)^t$$

$$lacksquare arphi: \mathbb{Q}[t] o \mathbb{Q}^1; p \mapsto p(-1)$$

$$lacksq arphi: \mathbb{R}^2 o \mathbb{R}^2; (x,y)^t \mapsto (x-y,y)$$

$$lacksq arphi: \mathbb{R}^2 o \mathbb{R}^2; (x,y)^t \mapsto (2x-y,3y)$$

$$igspace arphi: \mathbb{R}[t] o \mathbb{R}[t]; p \mapsto p'$$

$$igspace arphi: \mathbb{R}[t] o \mathbb{R}[t]; p \mapsto p' + p(1)$$

$$lacksquare arphi: \mathbb{R}[t] o \mathbb{R}[t]; p \mapsto p + p'$$

$$igvee arphi: arphi^1 o \mathbb{R}^1; a \mapsto -a$$

$$lacksquare arphi: \mathbb{R}[t] o \mathbb{R}[t]; p \mapsto p(0)$$

$$igspace arphi: \mathbb{R}[t] o \mathbb{R}; p \mapsto p(0)$$

N Falsche Aussagen

Entscheiden Sie, ob folgende Abbildungen linear sind:

$$igotimes arphi: \mathbb{Q}[t] o \mathbb{Q}[t]; p \mapsto p + t$$

$$igotimes arphi: \mathbb{O}^1 o \mathbb{O}^2; a \mapsto (a, a \cdot a)^t$$

$$igotimes arphi: \mathbb{R}^2 o \mathbb{R}^1; (a,b)^t \mapsto a^2 + b$$

$$igotimes arphi: \mathbb{R}^1 o \mathbb{R}^1; a \mapsto 7a-1$$

$$igotimes arphi: \mathbb{R}^2 o \mathbb{R}^1; (a,b)^t \mapsto a-b^2$$

$$igotimes arphi: \mathbb{R}^1 o \mathbb{R}^1; a \mapsto a+1$$

$$igotimes arphi: \mathbb{R}^2 o \mathbb{R}^2; (x,y)^t \mapsto (x-y,y+1)$$

$$igotimes arphi: \mathbb{R}^1 o \mathbb{R}^2; a \mapsto (a,a^2)$$

▼ 1.3 Allgemeine Beweisaufgaben

Sei W ein Vektorraum, $\varphi:W\to W$ eine lineare Abbildung und $w_1,w_2\in W$:

- $lue{oldsymbol{arphi}}$ Sind w_1,w_2 linear unabhängig, dann auch $w_1,w_1+w_2.$
- lacksquare Sind $\varphi(w_1), \varphi(w_2)$ linear unabhängig, so auch w_1, w_2 .
- igwedge Aus w_1,w_2 linear unabhängig, folgt $arphi(w_1)
 eq arphi(w_2)$.

!? Aus $arphi(w_1)
eq arphi(w_2)$ folgt, dass w_1, w_2 linear unabhängig.

Sei V ein \mathbb{R} -Vektorraum, arphi:V o V eine lineare Abbildung und $v_1,v_2\in$ $V \setminus \{0\}$:

- igspace Sind $arphi(v_1), arphi(v_2)$ linear unabhängi, so auch v_1, v_2 .
- !? Aus $\varphi(v_1)=v_1$ folgt, dass φ nichttrivialen Kern hat.
- !? Aus $arphi(v_1)=arphi(v_2)$ folgt $v_2-v_1\in Bild(arphi)$

Sei V ein Vektorraum, arphi:V o V eine lineare Abbildung und $v_1,v_2\in V$:

- igspace Aus $arphi(v_1)=7v_1$ und $arphi(v_2)=7v_2$ folgt arphi(v)=7v für alle $v\in Span\{v_1,v_2\}$
- $igstylesymbol{
 odo} v_2 v_1 \in Kern(arphi)$ folgt $arphi(v_1) = arphi(v_2)$

!? Sind v_1,v_2 linear unabhängig, so auch $arphi(v_1),arphi(v_2)$

lacksquare Sind $arphi(v_1), arphi(v_2)$ linear unabhängig, so auch v_1, v_2

Sei V ein Vektorraum, arphi:V o V eine lineare Abbildung und $v_1
eq v_2\in V$:

- igspace Sind $arphi(v_1), arphi(v_2)$ linear unabhängig, so auch v_1, v_2
- $igvee v_1, v_2$ linear unabhängig, dann auch $v_1, v_1 + v_2$.
- igwedge Aus $arphi(v_1)=v_2$ und $arphi(v_2)=v_1$ folgt, dass v_1,v_2 linear unabhängig sind.

!? Aus $arphi(v_1)=arphi(v_2)$ folgt $v_2-v_1\in Kern(arphi)$.

Sei V ein K-Vektorraum, arphi:V o V eine lineare Abbildung und $v,w\in V$:

- igspace Sind arphi(v),arphi(w) linear unabhängig, so auch v,w .
- igspace Aus $Span(\{v,w\}) = Span(\{v\})$ folgt, dass v,w linear abhängig sind.

!? Aus $\varphi(v)=w$ und $\varphi(w)=v$ folgt $dim_K(span_K(\{v,w\})=2.$

!? Aus $v-w\in Kern(arphi)$ folgt arphi(v)=arphi(w)

Sei K ein Körper und $A\in Mat_m(K)$ mit $A^2=A$. Entscheiden Sie:

- $igwedge A \in GL_m(K)$
- igwedge Es gilt $m \leq 2$
- igcirc Es gibt keine Matrizen mit $A^2=A$
- \bigcirc Es gilt $det(A+A)=det(A)^2$
- $\bigcirc A = I_m ext{ oder } A = 0$
- A hat Diagonalgestalt
- \bigcirc rang(A) = m
- lacksquare Es gilt $A^8=A$
- $lap{det}(A) \in \{0,1\}$
- lacksquare Es gilt $det(A^{adj})=det(A)^{m-1}$

!? Aus rang(A) < m folgt BA = 0 für ein $0
eq B \in Mat_m(K)$

Sei K ein Körper und $A\in Mat_m(K)$ und $n\in\mathbb{N}$,mit $A^n=0.$ Entscheiden Sie:

- ightharpoonup Es gilt det(A)=0.
- $lap{rang}(A) < m$
- lacksquare Aus $A^2v=Av$ folgt Av=0
- igcirc Es gibt keine Matrizen mit $A^n=0$

!? Es gilt rang(A) = n

Sei K ein Körper und $A\in Mat_m(K)$ und $n\in \mathbb{N}$,mit $A^n=I_m.$ Entscheiden Sie:

- A hat Diagonalgestalt.
- igcep Es gilt $n \leq m$
- igcit S Es gibt keine Matrizen mit $A^n = I_m$ für ein $n \in \mathbb{N}$