

جامعة الزقازيق - كلية الهندسة - قسم هندسة الحاسبات والمنظومات

CSE100 الحاسبات والبرمجة ١

د/ عمرو زامل

المحاضرة 4: مقدمه لقوالب بناء الحاسب

عن المقرر

لا تنسی quiz	المقرر: الحاسبات والبرمجة ١ التقييم والدرجات
5	أعمال الفصل (quiz الاسبوع ٦و٧)
10	امتحان نصف العام (الاسبوع ٨ او ٩)
5	المشاركة والتفاعل والحضور
20	امتحان الشف <i>وي</i> (Smart)
60	التحريري

المجموع

نتيجة استبيان المحاضرة الثالثة

ما هو الموضوع الذي لم تفهم اثناء المحاضرة

28 responses

حكمة

نتعلم من البحث عن أجابات الأسئلة التى لا نعرفها أكثر مما نتعلمه من معرفة الأجابة

الأهداف لليوم

المحاضرة الرابعه

مقدمه لقوالب بناء الحاسب

البوابات المنطقية

جبر بول وقواعده

الدوائر المنطقية

Switching Circuits

القوالب الرئيسيه لبناء الحاسب

AND

$$z \leftarrow Logic Gates$$
 البوابات المنطقية Logic Gates البوابات المنطقية

Truth Table جدول الحقيقه

الدخل		الذرج
X	у	Z
0	0	0
0	1 0	
1	0	0
1	1	1

۳) التعبير البولي Boolean Expressions

$$z = x \cdot y = x y$$

القوالب الرئيسيه لبناء الحاسب

AND

الدخل		الخرج	
X	У	Z	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

OR

الدخل		الغرج
X	У	Z
0	0	0
0	1	1
1	0	1
1	1	1

NOT

X	Z
0	1
1	0

$$z = x \cdot y = x y$$

$$z = x + y$$

$$z = \overline{x} = x'$$

$$x$$
 y
 $-z$

$$x$$
 y
 $-z$

$$x \longrightarrow z$$

المنطق الثنائي (Binary Logic)

• البوابات المنطقيه :Logic gates

- (a) Three-input AND gate
- (b) Four-input OR gate

القوالب الرئيسيه لبناء الحاسب

الدخل		الخرج
$X \mid Y \mid$		Z
0	0	1
0	1	1
1	0	1
1	1	0

$$Z = \overline{x \cdot y}$$

الدخل		الخرج
$X \mid y \mid$		Z
0	0	1
0	1	0
1	0	0
1	1	0

$$Z = \overline{x + y}$$

الدخل		الخرج
X	y	\boldsymbol{Z}
0	0	0
0	1	1
1	0	1
1	1	0

$$Z = x \oplus y$$

Summary

Logical Gates	Symbol	Truth Table
AND		A B AB 0 0 0 0 1 0 1 0 0 1 1 1
OR		A B A+B 0 0 0 0 1 1 1 0 1 1 1 1
NOT		A A A O O O O O O O O O O O O O O O O O
NAND		A B AB 0 0 1 0 1 1 1 0 1 1 1 0
NOR		A B A+B 0 0 1 0 1 0 1 0 0 1 1 0
XOR		A B A+B 0 0 0 0 1 1 1 0 1 1 1 0
XNOR		A B AB 0 0 1 0 1 0 1 0 0 1 1 1

جبر بول وقواعده

جبر بول

- قام بوضع هذا العلم جورج بول في القرن الثامن عشر معتمد علي التعامل مع المتغيرات الثنائيه.
 - -يستخدم في تبسيط الدوال(المعادلات) التي تعبر عنها بالمتغيرات الثنائية.
- المتغيرات الثنائيه: هي التي تقبل قيم ثنائيه كـ (1/0 or true/false or yes/no or high/low)

قواعد جبر بول

$$\overline{\overline{B}} = B$$

$$\bar{\bar{B}} = \bar{B}$$

$$A . 0 = 0$$

$$A . 1 = A$$

$$A \cdot A = A$$

$$A \cdot A = 0$$

$$A \oplus 0 = A$$

$$B + \bar{B}A = B + A$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$A + 0 = A$$

$$A + 1 = 1$$

$$A + A = A$$

$$A + \overline{A} = 1$$

$$A \oplus 1 = \overline{A}$$

قانون

نظریة دمورجان:

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

اثبات قانون دمور جان

 $\overline{A \cdot B} = \overline{A} + \overline{B}$ اثيت باستخدام جدول التحقيقات truth Table

Α	В	AB	(AB)'
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

A'	B'	A' + B'
1	1	1
1	0	1
0	1	1
0	0	0

بالمثل يمكن ان تثيت باقي قوانين جبر بول باستخدام جدول التحقيقات

$$B + \overline{B}A = B + A$$
 $A \oplus 1 = \overline{A}$ $\overline{A + B} = \overline{A} \cdot \overline{B}$

$$A \oplus 1 = \overline{A}$$

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

باستخدام جبر بول أثبت أن:

$$(\overline{A} + \overline{B})(A + B) = A \overline{B} + \overline{A}B$$

$$(\overline{A} + \overline{B})(A + B)$$

$$= \overline{A}A + \overline{A}B + \overline{B}A + \overline{B}B$$

$$= 0$$

$$= 0 + \overline{A}B + \overline{B}A + 0$$

$$= \overline{A}B + \overline{B}A$$

أمثلة

باستخدام جبر بول بسط الصيغ الاتيه وارسمها قبل وبعد التسيط:

$$F = (A + \bar{B})(A + C)$$

$$F = \overline{AA} + AC + \overline{B}A + \overline{B}C$$

$$= A + AC + \bar{B}A + \bar{B}C$$

$$= A(1 + C + \overline{B}) + \overline{B}C \quad A \quad B \quad C$$

$$= A + \bar{B}C$$

امتله أوجد قيمة F لجميع القيم المحتمله للمتغيرات:

101

F=ABC+AB

	الدخل				الخرج
Α	В	C	AB' C	AB	F
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	1	0	1
1	1	0	0	1	1
1	1	1	0	1	1

الدخل			الذرج
Α	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

• اوجد المعادلة من جدول التحقيقات

طبق نظریة دي مورجان (وبسط الدائرة)
$$\overline{AB}\left(\overline{CD} + \overline{AC}\right)$$

$$\overline{AB} + (\overline{CD} + \overline{AC})$$

$$\overline{AB} + (\overline{CD} \cdot \overline{AC})$$

$$(\overline{A} + \overline{B}) + (\overline{C} + \overline{D}) \cdot (\overline{A} + \overline{C})$$

$$\overline{A} + \overline{B} + (\overline{C} + \overline{D}) \cdot (\overline{A} + \overline{C})$$

$$AB(CD + \overline{A}C)$$

$$\overline{A} + \overline{B} + (\overline{C} + \overline{D}).(A + \overline{C})$$

$$\overline{A} + \overline{B} + \overline{C}A + \overline{C}\overline{C} + \overline{D}A + \overline{D}\overline{C}$$

$$\overline{A} + \overline{B} + \overline{C} A + \overline{C} + \overline{D}A + \overline{D}\overline{C}$$

$$\overline{A} + \overline{B} + \overline{C} (A + 1 + \overline{D}) + \overline{D}A$$

$$\overline{A} + \overline{B} + \overline{C} + \overline{D}A$$

أرسم الدائرة المنطقيه التي تحقق الصيغه التاليه قبل التبسيط وبعده، ثم قارن بين الدائرتين من حيث عدد البوابات المستخدمه؟

$$F = \left(A\overline{B}C + AB\overline{C} + ABC\right)$$