Chapter 1 Binary Systems

Digital Systems Binary Numbers Number Base Conversion Octal and Hexadecimal Number **Complements Signed Binary Numbers Binary Codes Binary Storage and Registers Binary Logic**

Binary Systems

- Digital Age
- Digital computers
 - Many scientific, industrial and commercial applications
 - Space program
- Digital systems
 - Telephone switching exchanges
 - Digital Camera, Mobile Phone
 - Electronic Calculators, PDA's, Tabs
 - Digital TV
- Discrete information-processing systems
- Why binary?
 - Reliability: A transistor circuit is either on or off (two stable states)

Digital Computer

- The digital computer is one of the most well known digital systems.
- The digital computer consists of the following components:
 - Memory unit
 - Central processing unit
 - Input and output units
- The digital computer can perform both arithmetic and logical operations.

A digital computer

Outputs: CRT, LCD, modem, speakers

- stored program
- control unit
- arithmetic computations and logical operations

Digital Systems

- Digital Systems represent systems that understand, represent and manipulate discrete elements.
 - A discrete element is any set that has a finite number of elements, for example 10 decimal digits, 26 letters of the alphabet, etc.
- Discrete elements are represented by signals, such as electrical signals (voltages and currents)
- The signals in most electronic digital systems use two discrete values, termed binary.
- Digital System takes a set of discrete information inputs and discrete internal information (system state) and generates a set of discrete information outputs.

Digital System

Signals

- A collection of information variables mapped to some physical quantity
- For digital systems, the quantities take on discrete values
- Two level, or binary values are the most prevalent values in digital systems
- The binary values are represented abstractly by digits 0 and 1
- Other physical signals represented by 1 and 0?

- CPU Voltage

Disk
 Magnetic Field Direction

- CD Surface Pits/Light

Dynamic RAM Electrical Charge

Why Digital Components?

- Why do we choose to use digital components?
 - The main reason for using digital components is that they can easily be programmed, allowing a single hardware unit to be used for many different purposes
 - Advances in circuit technology decrease the price of technology dramatically
 - Digital integrated circuits can perform at speeds of hundreds of millions of operations per second
 - Error-checking and correction can be used to ensure the reliability of the machine

Binary Digits

- A binary digit, called a bit, is represented by one of two values: 0 or 1.
 - Discrete elements can be represented by groups of bits called binary codes.
 For example the decimal digits 0 to 9 are represented as follows:

Decimal	Binary Code
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Differing Bases

- In order to represent numbers of different bases, we surround a number in parenthesis and then place a subscript with the base of the number
 - A decimal number (9233)₁₀
 - A binary number $(11011)_2$
 - A base 5 number $(3024)_5$
- Decimal number digits are 0 through 9
- Binary number digits are 0 through 1
- Base (radix) r number digits are 0 through r 1

Commonly Occurring Bases

Name	Radix	Digits (0 through r-1)
Binary	2	0,1
Octal	8	0,1,2,3,4,5,6,7
Decimal	10	0,1,2,3,4,5,6,7,8,9
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Decimal Numbers

- A decimal number such as 5723 represents a quantity equal to:
 - 5 thousands
 - 7 hundreds
 - 2 tens
 - 3 ones
- Or, it can be written as:

$$-5 \times 10^{3} + 7 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0}$$

- The 5, 7, 2, and 3 represent coefficients.
- The decimal number system is said to be of base or radix 10 because it uses the 10 digits (0..9) and the coefficients are multiplied by powers of 10.

Binary Numbers

- The binary system contains only two values in the allowed coefficients (0 and 1).
- The binary system uses powers of 2 as the multipliers for the coefficients.
- For example, we can represent the binary number 10111.01 as:
 - $-1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2} = 23.25$

Understanding Binary Numbers

- Binary numbers are made of <u>binary digits</u> (bits):
 - 0 and 1
- How many items does a binary number represent?
 - $(1011)_2 = 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 = (11)_{10}$
- What about fractions?
 - (110.10)₂ = 1x2² + 1x2¹ + 0x2⁰ + 1x2⁻¹ + 0x2⁻²
- Group of eight bits is called a byte
 - (11001001)₂
- Group of four bits is called a nibble
 - **(1101)**₂
- Group of sixteen bits is called a half word
 - (1011011010011001)₂
- Group of thirty two bits is called a word
- Group of sixty four bits is called a double word

Understanding Binary Numbers (Contd.....)

- MSB most significant bit
- LSB least significant bit
- Bit numbering

- Each digit (bit) is either 1 or 0
- Each bit represents a power of 2

Why Use Binary Numbers?

Fig. 1-3 Example of binary signals

Easy to represent 0 and 1 using electrical values.

Possible to tolerate noise.

Easy to transmit data

Easy to build binary circuits.

Powers of Two

n	2 ⁿ	n	2 ⁿ	n	2 ⁿ
0	1	8	256	16	65,536
1	2	9	512	17	131,072
2	4	10	1,024	18	262,144
3	8	11	2,048	19	524,288
4	16	12	4,096	20	1,048,576
5	32	13	8,192	21	2,097,152
6	64	14	16,384	22	4,194,304
7	128	15	32,768	23	8,388,608

n	2 ⁿ						
0	1	16	65,536	32	4,294,967,296	48	281,474,976,710,656
1	2	17	131,072	33	8,589,934,592	49	562,949,953,421,312
2	4	18	262,144	34	17,179,869,184	50	1,125,899,906,842,620
3	8	19	524,288	35	34,359,738,368	51	2,251,799,813,685,250
4	16	20	1,048,576	36	68,719,476,736	52	4,503,599,627,370,500
5	32	21	2,097,152	37	137,438,953,472	53	9,007,199,254,740,990
6	64	22	4,194,304	38	274,877,906,944	54	18,014,398,509,482,000
7	128	23	8,388,608	39	549,755,813,888	55	36,028,797,018,964,000
8	256	24	16,777,216	40	1,099,511,627,776	56	72,057,594,037,927,900
9	512	25	33,554,432	41	2,199,023,255,552	57	144,115,188,075,856,000
10	1,024	26	67,108,864	42	4,398,046,511,104	58	288,230,376,151,712,000
11	2,048	27	134,217,728	43	8,796,093,022,208	59	576,460,752,303,423,000
12	4,096	28	268,435,456	44	17,592,186,044,416	60	1,152,921,504,606,850,000
13	8,192	29	536,870,912	45	35,184,372,088,832	61	2,305,843,009,213,690,000
14	16,384	30	1,073,741,824	46	70,368,744,177,664	62	4,611,686,018,427,390,000
15	32,768	31	2,147,483,648	47	140,737,488,355,328	63	9,223,372,036,854,780,000

n	2 ⁿ	n	2 ⁿ	n	2 ⁿ	n	2 ⁿ	
0	1	16	65,536	32	4,294,967,296	48	281,474,976,710,656	
1	2	17	131,072	33	8,589,934,592	49	562,949,953,421,312	
2	4	18	262,144	34	17,179,869,184	50	1,125,899,906,842,620	
3	8	19	524,288	35	34,359,738,368	51	2,251,799,813,685,250	
4	16	20	1,048,576	36	68,719,476,736	52	4,503,599,627,370,500	
5								
6	32 bits wide word can store an unsigned magnitude							
7	4,294,967,295 = (4 GB -1)							
8		64 bits wide word can store an unsigned magnitude						
9		18,446,744,073,709,600,000 = (18 PB -1)						
10								
11								
12	4.006	20						
12	4,096	28	268,435,456	44	17,592,186,044,416	60	1,152,921,504,606,850,000	
13	4,096 8,192	29	268,435,456 536,870,912	44 45	17,592,186,044,416 35,184,372,088,832	61	1,152,921,504,606,850,000 2,305,843,009,213,690,000	
	,		, ,					

Important powers of 2

- 2¹⁰ is referred to as Kilo, called "K"
- 2²⁰ is referred to as Mega, called "M"
- 2³⁰ is referred to as Giga, called "G"
- 2⁴⁰ is referred to as Tera, called "T"
- 2⁵⁰ is referred to as Peta, called "P"
- 2⁶⁰ is referred to as Exha, called "E"

Octal Numbers

- The octal number system is a base-8 system that contains the coefficient values of 0 to 7.
- The octal system uses powers of 8 as the multipliers for the coefficients.
- For example, we can represent the octal number 72032 as:

$$7 \times 8^4 + 2 \times 8^3 + 0 \times 8^2 + 3 \times 8^1 + 2 \times 8^0 = (29722)_{10}$$

Hexadecimal Numbers

- The hexadecimal number system is a base-16 system that contains the coefficient values of 0 to 9 and A to F. The letters A through F represent the coefficient values of 10, 11, 12, 13, 14, and 15, respectively.
- The hexadecimal system uses powers of 16 as the multipliers for the coefficients.
- For example, we can represent the hexadecimal number C34D as:
 - $12 \times 16^3 + 3 \times 16^2 + 4 \times 16^1 + 13 \times 16^0 = (49997)_{10}$

Number Examples

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Conversion between bases

r-Decimal Conversion

- Conversion of a number in base r to decimal is done by expanding the number in a power series and adding all the terms.
- For example, (C34D)₁₆ is converted to decimal:

12 X
$$16^3 + 3$$
 X $16^2 + 4$ X $16^1 + 13$ X $16^0 = (49997)_{10}$

• (11010.11)₂ is converted to decimal:

$$1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} = 26.75$$

• In general (Number)_r =
$$\left(\sum_{i=0}^{i=n-1} a_i \bullet r^i\right) + \left(\sum_{j=-m}^{j=-1} a_j \bullet r^j\right)$$

(Integer Portion) + (Fraction Portion)

Decimal-r Conversion

- If a decimal number has a radix point, it is necessary to separate the number into an integer part and a fraction part.
- The conversion of a decimal integer into a number in base-r is done by dividing the number and all successive quotients by r and accumulating the remainders in reverse order of computation.
- For example, to convert decimal 13 to binary:

	Integer Quotient		Remainder	Coefficient
13/2 =	6	+	1	$a_0 = 1$
6/2 =	3	+	0	$a_1 = 0$
3/2 =	1	+	1	$a_{2} = 1$
1/2 =	0	+	1	$a_{3} = 1$

Answer
$$(13)_{10} = (a_3 a_2 a_1 a_0)_2 = (1101)_2$$

Example

Convert (37)₁₀ to binary

Division	Quotient	Remainder
37 / 2	18	1
18 / 2	9	0
9/2	4	1
4/2	2	0
2/2	1	0
1/2	0	1

$$(37)_{10} = 100101$$

Decimal-r Conversion (converting fraction)

- To convert the fraction portion repeatedly multiply the fraction by the radix and save the integer digits that result. The process continued until the fraction becomes 0 or the number of digits have sufficient accuracy. The new radix fraction digits are the integer digits in computed order.
- For example convert fraction (0.6875)₁₀ to base 2

```
0.6875 * 2 = 1.3750 integer = 1

0.3750 * 2 = 0.7500 integer = 0

0.7500 * 2 = 1.5000 integer = 1

0.5000 * 2 = 1.0000 integer = 1
```

Answer = $(0.1011)_2$

Example

• When converting fractions, we must use multiplication rather than division. The new radix fraction digits are the integer digits in *computed order*.

	Intege	•	Fraction	Coefficent
$0.8432 \times 2 =$	1	+	0.6864	$a_{-1} = 1$
$0.6864 \times 2 =$	1	+	0.3728	$a_{-2} = 1$
$0.3728 \times 2 =$	0	+	0.7456	$a_{-3} = 0$
$0.7456 \times 2 =$	1	+	0.4912	$a_{-4} = 1$
$0.4912 \times 2 =$	0	+	0.9824	$a_{-5} = 0$
$0.9824 \times 2 =$	1	+	0.9648	$a_{-6} = 1$
0.9648 X 2 =	1	+	0.9296	$a_{-7} = 1$
	_			

Continue until fraction becomes 0 or until sufficient accuracy.

$$(0.8432)_{10} = (0.a_{-1}a_{-2}a_{-3}a_{-4}a_{-5}a_{-6}a_{-7})_2 = (0.1101011)_2$$

Example:

- Convert 0.8125 decimal to binary.
 - To convert the decimal
 0.8125 to binary, we multiply
 by the radix 2.
 - $-(0.1101)_2$

```
.8125
× 2
1.6250
```

$$\begin{array}{c} .6250 \\ \times 2 \\ 1.2500 \end{array}$$

$$\begin{array}{c} .2500 \\ \times & 2 \\ 0.5000 \end{array}$$

Decimal to Octal Conversion

In converting decimal to octal we must divide by 8.

Integer Remainder Coefficent Quotient
$$35/8 = 4 + 3/8 \quad a_0 = 3 \\ 4/8 = 0 + 4/8 \quad a_1 = 4$$
 $(35)_{10} = (a_1a_0)_8 = (43)_8$

Converting Fractions (Decimal to Octal)

 Decimal to Octal fraction conversion takes the same approach but it multiplies by the base 8.

	Integ	er	Fraction	Coefficent
0.8432 X 8 =	6	+	0.7456	$a_{-1} = 6$
0.7456 X 8 =	: 5	+	0.9648	$a_{-2} = 5$
0.9648 X 8 =	. 7	+	0.7184	$a_{-3} = 7$
0.7184 X 8 =	5	+	0.7472	a ₋₄ = 5
0.7472 X 8 =	5	+	0.9776	$a_{-5} = 5$
0.9776 X 8 =	. 7	+	0.8208	$a_{-6} = 7$
0.8208 X 8 =	6	+	0.5664	a ₋₇ = 6

Continue until fraction becomes 0 or until sufficient accuracy.

$$(0.8432)_{10} = (0.a_{-1}a_{-2}a_{-3}a_{-4}a_{-5}a_{-6}a_{-7})_8 = (0.6575576)_8$$

Converting Decimal to Hexadecimal

 The conversion of a decimal integer into hexadecimal is done by dividing the number and all successive quotients by 16 and accumulating the remainders in reverse order of computation.

Division	Quotient	Remainder
422 / 16	26	6
26 / 16	1	A
1 / 16	0	1

$$(422)_{10} = (1A6)_{16}$$

Binary, Octal and Hexadecimal

- Conversions between binary, octal and hexadecimal have an easier conversion method.
 - Each octal digit represents 3 binary digits.
 - Each hexadecimal digit represents 4 binary digits.

```
(11\ 010\ 101\ 111\ 111\ .\ 101\ 110\ 01)_2 = (32577.561)_8
3\ 2\ 5\ 7\ 7\ 5\ 6\ 1
(11\ 0101\ 0111\ 1111\ .\ 1011\ 1001)_2 = (357F.B9)_{16}
3\ 5\ 7\ F\ B\ 9
```

Binary to Octal and back

Binary to Octal:

- Group the binary digits into three bit groups starting at the radix point and going both ways, padding with zeros as needed (at the ends).
- Convert each group of three bits to an equivalent octal digit.

Octal to Binary:

- It is done by reversing the preceding procedure
- Restate the octal as three binary digits
- Start at the radix point and go both ways, padding with zeros as needed.

Examples

```
    Convert (10110001101011.11110000011)<sub>2</sub> to Octal

  = 010 110 001 101 011 . 111 100 000 110
  = 2 6 1 5 3 . 7 4
                                           6
 = (26153.7406)_{8}
 Convert (673.124)<sub>8</sub> to binary
  = 110 111 011 . 001 010 100
 = (110111011.001010100)_{2}
                                 011 010 100 011 011
 Convert (11010100011011) <sub>2</sub>
  to Octal
                                        2 4 3
                                                         3
```

Binary to Hexadecimal and back

Binary to Hexadecimal:

- Group the binary digits into four bit groups starting at the radix point and going both ways, padding with zeros as needed (at the ends)
- Convert each group of four bits to an equivalent hexadecimal digit

Hexadecimal to Binary:

- It is done by reversing the preceding procedure
- Restate the hexadecimal as four binary digits
- Start at the radix point and go both ways, padding with zeros as needed

Examples

```
    Convert (10110001101011.11110010)<sub>2</sub> to hexadecimal
    = 0010 1100 0110 1011 . 1111 0010
```

$$= (2C6B.F2)_{16}$$

- Convert (306.D)₁₆ to binary
 - **= 0011 0000 0110. 1101**
 - $= (001100000110.1101)_2$
- Convert (11010100011011) $_{2}$ to hexadecimal

Base-r Arithmetic

- Arithmetic operations with numbers in base r follow the same rules as for decimal numbers.
- When a base other than 10 is used, one must remember to use only the r-allowable digits.
- The following are some examples:

```
augend: 110011 minuend: 110101 multiplicand: 1011
addend: <u>+100011</u> subtrahend: <u>-100111</u> multiplier: <u>X 101</u>
1010110 001110 00000
<u>1011</u>
110111
```

Arithmetic Rules

- The sum of two digits are calculated as expected but the digits of the sum can only be from the r-allowable coefficients.
- Any carry in a sum is passed to the next significant digits to be summed.
- In subtraction the rules are the same but a borrow adds r (where r is the base) to the minuend digit.

Binary Addition

Given two binary digits (X,Y), a carry in (Z) we get the following sum (S) and carry (C):

Carry in (Z) of 0:

Carry in (Z) of 1:

Binary Addition Examples

Binary Subtraction

Subtraction Table

$$0 - 0 = 0$$

 $0 - 1 = 1$ and borrow 1
 $1 - 0 = 1$
 $1 - 1 = 0$

- The borrow process works:
- Decimal subtraction:

$$-1 \times 10^{n} = 10 \times 10^{n-1}$$

Binary subtraction:

$$-1 \times 2^{n} = 2 \times 2^{n-1}$$

Binary Subtraction Example

Binary Multiplication and Division

Multiplication table

$$0 \times 0 = 0$$

 $0 \times 1 = 0$
 $1 \times 0 = 0$

$$1 \times 1 = 1$$

Χ				1	0	1	0
	0	_	0	0 1 0	1	0 1	0

Binary division is similar to decimal division

Complements

Complements are used to simplify subtraction operations. We do subtraction by adding.

$$A - B = A + (-B)$$

- There are two types:
 - The radix complement, called the r's complement.
 - The diminished radix complement, called the (r-1)'s complement.

Diminished Radix Complement (DRC)

 Given a number N in base r having n digits, the (r-1)'s complement of N is defined as:

$$(r^{n}-1)-N$$

Decimal numbers are in base-10.

$$(r-1) = (10-1) = 9.$$

The 9's complement would be defined as:

$$(10^n - 1) - N$$

So, to determine the 9's complement of 52:

$$(10^2 - 1) - 52 = 47$$

 Another example is to determine the 9's complement of 3124:

$$(10^4 - 1) - 3124 = 6875$$

Finding Diminished Radix Complement (DRC)

- The DRC or (r-1)'s complement of decimal number is obtained by subtracting each digit from 9
- The (r-1)'s complement of octal or hexadecimal number is obtained by subtracting each digit from 7 or F, respectively
- The DRC (1's complement) of a binary number is obtained by subtracting each digit from 1. It can also be formed by changing 1's to 0's and 0's to 1's

DRC for Binary Numbers

 For binary numbers r = 2 and (r-1) = 1. So, the 1's complement would be defined as:

$$(2^n - 1) - N$$

To determine the 1's complement of 1000101:

$$(2^7 - 1) - 1000101 = 0111010$$

To determine the 1's complement of 11110111101:

$$(2^{11} - 1) - 11110111101 = 00001000010$$

 Note that 1's complement can be done by switching all 0's to 1's and 1's to 0's.

Radix Complement

 The r's complement of an n-digit number N in base-r is defined as:

$$r^n - N$$
 - for $N \neq 0$
0 - for $N = 0$

- We may obtain r's complement by adding 1 to (r-1)'s complement. Since rⁿ N = [(rⁿ 1) N]+1
- 10's complement of 3229 is:

$$10^4 - 3229 = 6771$$

2's complement of 101101 is:

$$2^6 - 101101 = 010011$$

 Note that to determine 2's complement, leave the least significant 0's and the first 1 unchanged and then switch the remaining 1's to 0' and 0's to 1's.

2's Complement

- Another method to find 2's complement is
 - Complement (reverse) each bit
 - Add 1
- Example:

Starting value	0000001
Step 1: reverse the bits	11111110
Step 2: add 1 to the value from Step 1	11111110 +00000001
Sum: two's complement representation	11111111

Note that 00000001 + 111111111 = 000000000

Signed Binary Numbers

Decimal	Signed-2's	Signed-1's	Signed
	complement	complement	Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0		1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000		