Mini-Problems 7

- 1. Suppose that $w=x^2y+e^{z+\sin(x)}+\log(x)$ and $x=e^t,\,y=\sqrt{t},\,z=\log(t)$. Calculate dw/dt both by using the chain rule, and directly by writing w explicitly as a function of t and make sure your answers agree.
- **2.** Let $f: \mathbb{R}^3 \to \mathbb{R}^2$, $g: \mathbb{R}^2 \to \mathbb{R}^2$ and $h: \mathbb{R}^2 \to \mathbb{R}^3$ be functions such that $g(x,y) = (x^3y + 2y, 1 + xe^y)$, $f = (f_1, f_2)$ where $f_1(x,y,z) = 2x + 3y + 5z$, f_2 depends only on x, $\partial_1 f_2(1,0,1) = 3$, f(1,0,1) = (0,0) and

$$Dh_{(0,1)} = \begin{pmatrix} 0 & 1 \\ -1 & 3 \\ 0 & 1 \end{pmatrix}.$$

Compute $D(h \circ g \circ f)_{(1,0,1)}$ and the Jacobian of $h \circ g \circ f$ at (1,0,1).

- **3.** Let k be an integer. A function $f: \mathbb{R}^n \to \mathbb{R}$ is called homogeneous of degree k if $f(\lambda x) = \lambda^k f(x)$ for all $\lambda \in \mathbb{R}$ and $x \in \mathbb{R}^n$. Prove that if f is homogeneous of degree k then $x \cdot \nabla f(x) = kf(x)$.
- **4.** Consider a function $f: \mathbb{R}^n \to \mathbb{R}$ and define $g(x_1, \ldots, x_n) = f(x_1 x_2, x_2 x_3, \ldots, x_n x_1)$. Show that $\sum_{i=1}^n \partial_i g = 0$.