Real Analysis Qualifying Exam Spring 1992

In what follows (X, \mathcal{A}, μ) is an arbitrary measure space and λ is Lebesgue outer measure on \mathbb{R} . Prove all of your assertions.

- **1.** (a) Find a necessary and sufficient condition that $\alpha, \beta \in \mathbb{C}$ satisfy $|\alpha + \beta| = |\alpha| + |\beta|$.
 - (b) Find a necessary and sufficient condition that $f, g \in L_1(\mu)$ satisfy.

$$\int |f+g|d\mu = \int |f|d\mu + \int |g|d\mu.$$

2. (a) Show why it is impossible to construct a bounded Lebesgue measurable $f:[0,1]\to\mathbb{R}$ for which there is some $\alpha>0$ such that

$$\int_0^1 |f - g| d\lambda > \alpha$$

for every Riemann integrable $g:[0,1]\to\mathbb{R}$.

- (b) Can such an f be found if we take $\alpha = 0$? Why?
- **3.** (a) Construt Lebesgue measurable functions f_n , $f:[0,1]\to\mathbb{C}(n=1,2,\dots)$ such that $\lim_{n\to\infty}\int_0^1|f-f_n|d\lambda=0$ but we don't have $f_n\to f\lambda$ a.e.
 - (b) What positive result about pointwise convergence follows from convergence in L_1 -norm?
- **4.** Let ν be a countably additive measure on a (not necessarily σ) algebra \mathcal{E} of subsets of X. For $T \subset X$, define

$$\nu^*(T) = \inf \left\{ \sum_{n=1}^{\infty} \nu(E_n) : (E_n)_{n=1}^{\infty} \subset \mathcal{E} \text{ and } T \subset \bigcup_{n=1}^{\infty} E_n \right\}.$$

Prove that

- (a) ν^* is an outer measure on X,
- (b) $E \in \mathcal{E} \Rightarrow E$ is ν^* -measurable,
- (c) $E \in \mathcal{E} \Rightarrow \nu^*(E) = \nu(E)$.
- **5.** Let F be a subset of [0,1] that is not Lebesgue measurable.
 - (a) Is it possible that $\lambda([0,1]\backslash F)=0$? Why?
 - (b) Is it possible that $\lambda(F) = 1$? Why?
- **6.** Let F be any subset of [0,1] (possible nonmeasurable) and let $\{I_1,I_2,\ldots,I_n\}$ be a partition of [0,1] into subintervals. Must it be true that

$$\lambda(F) = \sum_{k=1}^{n} \lambda(F \cap I_k)?$$

Why?

7. Let $f_n, f: X \to \mathbb{C}$ be \mathcal{A} -measurable with $f_n \to f$ μ -a.e. as $n \to \infty$. Suppose there exists $g \in L_1^+(\mu)$ with $|f_n| \le g$ μ -a.e. for every $n \ge 1$. Fix $\varepsilon > 0$ and define

$$A_N = \bigcup_{n=N}^{\infty} \{ x \in X : |f(x) - f_n(x)| \ge \varepsilon \}.$$

Prove that $\mu(A_N) \to 0$ as $N \to \infty$.

8. Let C be Cantor's ternary set and let ψ be Lebesgue's singular function. Suppose that $x \in C$ but x is not the left-hand endpoint of an open interval disjoint from C. Prove that

$$D^+\psi(x) = +\infty.$$

Recall the definition:

$$D^+\psi(x) = \overline{\lim_{t \to x^+} \frac{\psi(t) - \psi(x)}{t - x}}.$$