Lab09-Recursively Enumerable Set(2)

 ${\rm CS363\text{-}Computability}$ Theory, Xiaofeng Gao, Spring 2016

	* Please upload your assignment to FTP or submit a paper version on the next class * If there is any problem, please contact: steinsgate@sjtu.edu.cn * Name:Wenhao Zhu StudentId: 5130309717 Email: weehowe.z@gmail.com
1.	Suppose A is an r.e. set. Prove the following statements.
	(a) Show that the sets $\bigcup_{x \in A} W_x$ and $\bigcup_{x \in A} E_x$ are both r.e.
	Proof. As $x \in W_x$ is partially decidable. So there $\exists x \in A$ such that $z \in W_x$ is partially decidable. $\exists x \in A$ that $z \in W_x$ is equal to $x \in \bigcup_{x \in A} W_x$, so it is also partially decidable. Then
	the set $\bigcup_{x\in A} W_x$ is r.e. The same as $\bigcup_{x\in A} E_x$, we can prove in the same way.
	(b) Show that $\bigcap_{x \in A} W_x$ is not necessarily r.e. (<i>Hint</i> : $\forall t \in \mathbb{N} \text{ let } K_t = \{x : P_x(x) \downarrow \text{ in t steps}\}.$
	Show that for any t , K_t is recursive; moreover $K = \bigcup_{t \in \mathbb{N}} K_t$ and $\overline{K} = \bigcup_{t \in \mathbb{N}} \overline{K}_t$.)
	Proof. As we knnw $z \in \bigcap W_x$ means $\forall x \in A, z \in W_x, z \in W_x$ is partially decidable but
	$\forall x \in A$, however $z \in W_x$ is partially decidable, so the set is not necessarily decidable. \square
2.	Prove that $A \subseteq \mathbb{N}^n$ is r.e. iff $A = \emptyset$ or there is a total computable function $f : \mathbb{N} \to \mathbb{N}^n$ such that $A = Ran(\mathbf{f})$. (A computable function \mathbf{f} from \mathbb{N} to \mathbb{N}^n is an n -tuple $\mathbf{f} = (f_1, \ldots, f_n)$ where each f_i is a unary computable function and $\mathbf{f}(x) = (f_1(x), \ldots, f_n(x))$.)
	Proof. if $A = \emptyset$ then $x \in A$ is p.d. so A is r.e. If there is a total computable function $f: \mathbb{N} \to \mathbb{N}^n$ such that $A = Ran(\mathbf{f})$, then $A = (f_1(x), \dots, f_n(x))$. So N is m-reducable to A. Since N is r.e., A is also r.e.
3.	Suppose that f is a total computable function, A is a recursive set and B is an r.e.set. Show that $f^{-1}(A)$ is recursive and that $f(A)$, $f(B)$ and $f^{-1}(B)$ are r.e. but not necessarily recursive. What extra information about these sets can be obtained if f is a bijection?
	Proof. $x \in f^{-1}(A)$ is equal to $f(x) \in A$ and since A is recursive, then $f(x) \in A$ is decidable so $x \in f^{-1}(A)$ is decidable so $f^{-1}(A)$ is recursive. $x \in f(A)$ is equal to $\exists y \in N, y \in A$ and $f(y) = x$ and since $y \in A$ and $f(y) = x$ is decidable, it is partially decidable so $f(A)$ is r.e. $x \in f(B)$ is equal to $\exists y \in N, y \in B$ and $f(y) = x$, it is p.d. so $f(B)$ is r.e. Similarly we can prove $f^{-1}(B)$ is r.e. As f is a total computable function, if f is bijective, then $f(A)$ is recursive.
4.	A set D is the difference of r.e. sets $(d.r.e.)$ iff $D = A - B$ where A, B are both r.e
	(a) Show that the set of all d.r.e. sets is closed under the formation of intersection.
	Proof. For $\forall d.r.e$ set $M = A - B$ and $N = C - D$ where A,B,C,D are all r.e. $M \cap N = (A - B) \cap (C - D) = A \cap C + B \cap D - A \cap D - B \cap C$.so it is also $d.r.e$. Thus $d.r.e$ sets is closed under the formation of intersection.
	(b) Show that if $C_n = \{x \mid W_x = n\}$, then C_n is $d.r.e.$ for all $n \ge 0$.
	Proof. We can define a program that for numbers in N, if number $\in W_x$ more than n, then it will halt, otherwise we let it undefined. Thus it is d.r.e