14.0 Copyright 1985-2015 StataCorp LP Statistics/Data Analysis StataCorp 4905 Lakeway Drive College Station, Texas 77845 USA Special Edition 800-STATA-PC http://www.stata.com 979-696-4600 stata@stata.com 979-696-4601 (fax) Single-user Stata perpetual license: Serial number: 10699393 Licensed to: John Sufe Notes: 1. Unicode is supported; see help unicode advice. 2. Maximum number of variables is set to 5000; see help set maxvar. . use "C:\Users\johnz\Desktop\第三次.dta" . do "C:\Users\johnz\Desktop\计量第三次作业.do" . set more off . gen Y=log(RealGDP) . gen t = n. tsset t time variable: t, 1 to 252 delta: 1 unit . gen d Y = d.Y(1 missing value generated) . gen Y d Y = 400 * d Y(1 missing value generated)

.

. drop if Year < 1955

(32 observations deleted)

. drop if Year > 2009

(0 observations deleted)

. sum d Y

Variable	Obs	Mean	Std. Dev.	Min	Max
+					
d_Y	220	.0077219	.0092819	0274444	.0385857

. sum Y_d_Y

Variable	Obs	Mean	Std. Dev.	Min	Max
+					
Y_d_Y	220	3.088771	3.712768	-10.97775	15.43427

The mean growth rate is 3.09%

The standard deviation of $\triangle Yt$ is 3.71%

. $corrgram Y_d_Y, lags(4)$

Unit free

0 1-1 0 1
ocorrelation] [Partial Autocor]
-
1
t - -

.

. arima Y_d_Y , ar(1)

The coefficient is 0.339, which is statistically significantly different from zero. The 95% significance interval is (0.229,0.448)

(setting optimization to BHHH)

Iteration 0: log likelihood = -587.12944 Iteration 1: log likelihood = -587.10593 Iteration 2: log likelihood = -587.10403 Iteration 3: log likelihood = -587.1039 Iteration 4: log likelihood = -587.10389

Sample:
$$33 - 252$$
 Number of obs = 220
Wald chi2(1) = 36.83

$$Log likelihood = -587.1039 Prob > chi2 = 0.0000$$

OPG [95% Conf. Interval] Y d Y | Coef. Std. Err. P>|z| Y_d_Y cons | 3.111904 .3578132 8.70 0.0002.410603 3.813205 ARMA ar | L1. | .3389078 .0558427 6.07 0.000.2294582 .4483574 /sigma | 3.48824 .131526 26.52 0.000 3.230454 3.746026

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

. estat ic

Akaike's information criterion and Bayesian information criterion

Model		. ,	ll(model)	df	AIC	BIC
.	220		-587.1039		1180.208	1190.389

Note: N=Obs used in calculating BIC; see [R] BIC note.

. arima Y d Y, ar(2)

The coefficient is 0.112, which is statistically significantly different from zero at a 5% confidence level, but not significant at a %1 level. Yes, this model is preferred to the AR(1) model (setting optimization to BHHH)

Iteration 0: log likelihood = -595.33066 Iteration 1: log likelihood = -595.31296 Iteration 2: log likelihood = -595.31061 Iteration 3: log likelihood = -595.31026 Iteration 4: log likelihood = -595.31022

(switching optimization to BFGS)

Iteration 5: $\log \text{ likelihood} = -595.31022$

ARIMA regression

Sample:
$$33 - 252$$
 Number of obs = 220
Wald chi2(1) = 14.03
Log likelihood = -595.3102 Prob > chi2 = 0.0002

OPG Y d Y | Coef. Std. Err. P>|z|[95% Conf. Interval] Y_d_Y cons | 3.103701 .3205067 9.68 0.0002.47552 3.731883 **ARMA** ar | L2. | .2118108 .05655553.75 0.000.100964 .32265773.621119 .1319396 27.45 0.000 3.362522 3.879716 /sigma |

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

. estat ic

Akaike's information criterion and Bayesian information criterion

Model		, ,	AIC	BIC
.		-595.3102	1196.62	1206.801

Note: N=Obs used in calculating BIC; see [R] BIC note.

. $arima Y_d_Y$, ar(3)

(setting optimization to BHHH)

Iteration 0: log likelihood = -599.96976
Iteration 1: log likelihood = -599.95846
Iteration 2: log likelihood = -599.9574
Iteration 3: log likelihood = -599.95727
Iteration 4: log likelihood = -599.95726

ARIMA regression

Sample: 33 - 252

Number of obs = 220Wald chi2(1) = 0.77

Log likelihood = -599.9573

Prob > chi2 = 0.3811

	 Y_d_Y +	Coef.	OPG Std. Err.	Z	P> z		Interval]
Y_d_Y	_cons		.2687297	11.50	0.000	2.56466	3.618061
ARMA	-	1					
	ar L3. +	.0526163	.0600759	0.88	0.381	0651303	.1703629
	/sigma			25.42	0.000	3.413674	3.984178

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

. estat ic

Akaike's information criterion and Bayesian information criterion

•		ll(model)	AIC	BIC
.		-599.9573	1205.915	1216.095

Note: N=Obs used in calculating BIC; see [R] BIC note.

. arima Y_d_Y , ar(4)

(setting optimization to BHHH)

Iteration 0: log likelihood = -600.26231
Iteration 1: log likelihood = -600.25662
Iteration 2: log likelihood = -600.25616
Iteration 3: log likelihood = -600.25611

ARIMA regression

Sample: 33 - 252 Number of obs = 220 Wald chi2(1) = 0.00

	 	Coef.	OPG Std. Err.	z	P> z	 [95% Conf. I	ntervall
							incer vari
Y_d_Y							
	_cons	3.089513	.2554137	12.10	0.000	2.588911	3.590115
ARMA	-						
	ar						
	L4.	.0017235	.0603721	0.03	0.977	1166036	.1200506
	+						
	/sigma	3.704077	.1424072	26.01	0.000	3.424964	3.98319

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

. estat ic

Akaike's information criterion and Bayesian information criterion

Model			AIC	BIC
.		-600.2561	1206.512	1216.693

Note: N=Obs used in calculating BIC; see [R] BIC note.

. varsoc Y_d_Y

AIC: 2 BIC: 1

Selection-order criteria

Sample: 37 -	252				Number	of obs	=	216
+								
	LR		lf p	FPE		HQl	IC S.	BIC
0 -588.168				13.6999	 5.45526	5.46158	5.47089	1
	24.954*	1	0.000	12.3187	5.34899	5.36162*	5.38025*	
2 -574.347	2.6877	-		12.2795*	5.34581*	5.36475	5.39269	
	.5178	1		12.3641	5.35267	5.37792	5.41518	
4 -573.995	.18792	1	0.665	12.4683	5.36106	5.39263	5.43919	
+						+		

 $Endogenous: \ Y_d_Y$

Exogenous: _cons

.

. dfuller Y_d_Y , trend

Dickey-Fuller test for unit root Number of obs = 219

		Interpolated Dickey-Fuller								
	Test	1% Critical	5% Critical	10% Critical						
	Statistic	Value	Value	Value						
Z(t)	-10.643	-4.000	-3.434	-3.134						

MacKinnon approximate p-value for Z(t) = 0.0000

The t-statistic is -10.643, which is smaller than 1% critical value. Therefore the null hypothesis that Yt has a unit root is rejected, namely, Yt is stationary around a deterministic trend.

•