

Image Segmentation

Dr. Divya Mishra

Advanced Computer Science and Engineering School of Computing and Informatics

Email: dm_acse@vignan.ac.in

> Fundamentals

- Image segmentation divides an image into connected regions that share some similarities within each region and some differences in adjacent regions.
- The goal is to find individual objects in an image.
- Two things to consider in segmentation:
 - 1. Similarity: Similarity due to pixel intensity, color, or texture.
- 2. **Differences** are sudden changes (discontinuities) in any of these, but especially sudden changes in intensity along a boundary line called an edge.

Let Complete Area of Sinage -> R

An image Can be partitioned into multiple

Regions -> R, R2, R3 ---- Rn

Characterstics of Segmentation

(D) If Subregions are Combined, original region can be obtained.

$$R_1 U R_2 U R_3 - - R_n = R$$
 $R_1 U R_2 U R_3 - - R_n = R$
 $R_1 U R_3 U R_3 - - R_n = R$

(2) Subregione Ri Should be Campected. Means a region Cannot be open ended during the tracing process. 35 Regions R1/R2/---Rn do not share any Common property. $R_{t} \cap R_{j} \neq \emptyset$ for all \$4j', where $i \neq j$

> Types of Segmentation

- Semantic segmentation: Segments out a broad boundary of objects belonging to a particular class. For example, tongue image segmentation is a lightweight semantic segmentation that uses binary image processing to separate the tongue from the rest of the image.
- Instance segmentation: It provides a segment map for each object it views in the image without any idea of the class the object belongs to.
- Panoptic segmentation: This technique combines instance and semantic segmentation tasks to provide segment maps of all the objects of any particular class in the image.

Semantic Segmentation vs. Instance Segmentation vs. Panoptic Segmentation

(a) Image

(b) Semantic Segmentation

(c) Instance Segmentation

(d) Panoptic Segmentation

V7 Labs

Image source:

https://www.v7labs.com/blog/imagesegmentation-guide

Point, Line and Edge Detection

- There are three kinds of discontinuities in intensity:
- 1. Point
- 2. Line and
- 3. Edges

 The most common way to look for discontinuities is to scan a small mask over the image. The mask determines which kind of discontinuity to look for.

Point detection

$$R = w_1 z_1 + w_2 z_2 + ... + w_9 z_9 = \sum_{i=1}^{9} w_i z_i$$

$|R| \ge T$

where T: a nonnegative threshold

Point Mask

-1	-1	-1	
-1	8	-1	
-1	-1	-1	

FIGURE 10.2

- (a) Point detection mask.
- (b) X-ray image of a turbine blade with a porosity.
- (c) Result of point detection.
- (d) Result of using Eq. (10.1-2). (Original image courtesy of X-TEK Systems Ltd.)

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

Line detection

• For digital images, there are only three-point straight lines that are horizontal, vertical, or diagonal (+ 0 or (+,- 45) degrees)

-1	-1	-1	-1	-1	2	-1	2	-1	2	-1	-1
2	2	2	-1	2	-1	-1	2	-1	-1	2	-1
-1	-1	-1	2	-1	-1	-1	2	-1	-1	-1	2
H	orizon	tal		+45°			Vertica	ıl		-45°	

Line Mask

Edge detection

- First-order derivatives:
 - The gradient of an image f(x,y) at location (x,y) is defined as the vector:

$$abla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} rac{\partial f}{\partial x} \\ rac{\partial f}{\partial y} \end{bmatrix}$$

- The magnitude of this vector: $\nabla f = \text{mag}(\nabla \mathbf{f}) = \left[G_x^2 + G_y^2\right]^{1/2}$ The direction of this vector: $\alpha(x, y) = \tan^{-1}\left(\frac{G_y}{G_x}\right)$

Gradient Operators (Edge detection)

Gradient Operators (Edge detection)

Prewitt masks for detecting diagonal edges

0	1	1	
-1	0	1	
-1	-1	0	

-1	-1	0
-1	0	1
0	1	1

Prewitt

Sobel masks for detecting diagonal edges

0	1
-1	0
-2	-1

-2	-1	0
-1	0	1
0	1	2

a b

Sobel

Detection of Discontinuities: Gradient Operators: Example of Edge detection

a b

FIGURE 10.10

(a) Original image. (b) $|G_x|$, component of the gradient in the x-direction. (c) $|G_y|$, component in the y-direction. (d) Gradient image, $|G_x| + |G_y|$.

$$\nabla f \approx |G_x| + |G_y|$$

Detection of Discontinuities:

- Second-order derivatives: (The Laplacian)
 - The Laplacian of an 2D function f(x,y) is defined as

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

- Two forms in practice:

FIGURE 10.13

Laplacian masks used to implement Eqs. (10.1-14) and (10.1-15),respectively.

0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

Thresholding

 Assumption: the range of intensity levels covered by objects of interest is different from the background.

$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) > T \\ 0 & \text{if } f(x,y) \leq T \end{cases}$$

$$\sum_{t=1}^{T} \frac{1}{T_{2}} = \sum_{t=1}^{T} \frac{1}{T_{2}} = \sum_{t=1}$$

FIGURE 10.26 (a) Gray-level histograms that can be partitioned by (a) a single threshold, and (b) multiple thresholds.

> Application of Thresholding

FIGURE 10.37

(a) Original image. (b) Image segmented by local thresholding. (Courtesy of IBM Corporation.)

Region-based Segmentation: Basic formulation Summary

- Let R represent the entire image region.
- Segmentation is a process that partitions R into subregions, R_1, R_2, \ldots, R_n , such that

(a)
$$\bigcup_{i=1}^{n} R_i = R$$

- (b) R_i is a connected region, i = 1, 2, ..., n
- (c) $R_i \cap R_j = \phi$ for all i and $j, i \neq j$
- (d) $P(R_i) = \text{TRUE for } i = 1, 2, ..., n$
- (e) $P(R_i \cup R_j) = \text{FALSE}$ for any adjacent regions R_i and R_j

where $P(R_k)$: a logical predicate defined over the points in set R_k

For example: $P(R_k)$ =TRUE if all pixels in R_k have the same gray level.

Thank You