Homework Set #5

Due 3rd December 2022, before 11:59pm. Submit your solutions to Gradescope with Entry Code:**57DN5B**

Problem 1 (CAPACITY PER UNIT COST)

Consider a DMC with cross-over probability $W_{Y|X}(\cdot|\cdot)$ with input $x \in \mathcal{X}$ and output $y \in \mathcal{Y}$. It costs c(x) to send symbol $x \in \mathcal{X}$ over the channel. Assume that c(x) > 0, $\forall x \in \mathcal{X}$.

For some $x \in \mathcal{X}$, let us define the information divergence between $W_{Y|X=x}$ (which we write as $W_{Y|X}$ for shorthand) and P_Y as

$$D(W_{Y|X} \parallel P_Y) \stackrel{\triangle}{=} \sum_{y \in \mathcal{Y}} W_{Y|X}(y|x) \log \frac{W_{Y|X}(y|x)}{P_Y(y)}.$$

Note that $D(W_{Y|X} \parallel P_Y)$ is still a function of $x \in \mathcal{X}$.

(a) Given any distribution P_Y , show that for any choice of input distribution $\tilde{P}_X(x)$,

$$\frac{\sum_{x \in \mathcal{X}} \tilde{P}_X(x) D(W_{Y|X} \parallel P_Y)}{\sum_{x \in \mathcal{X}} \tilde{P}_X(x) c(x)} \le \max_{x \in \mathcal{X}} \frac{D(W_{Y|X} \parallel P_Y)}{c(x)}$$

Hint: You may use the following fact. For a,b,c,d>0 with $\frac{a}{b}\leq \frac{c}{d}$, we always have $\frac{a}{b}\leq \frac{a+c}{b+d}\leq \frac{c}{d}$.

(b) Let \tilde{P}_X and P_X be arbitrary input distributions and let $\tilde{P}_Y(y) = \sum_{x \in \mathcal{X}} \tilde{P}_X(x) W_{Y|X}(y|x)$ and $P_Y(y) = \sum_{x \in \mathcal{X}} P_X(x) W_{Y|X}(y|x)$ be the resulting output distributions. Show that

$$\sum_{x \in \mathcal{X}} \tilde{P}_X(x) D(W_{Y|X} \parallel P_Y) - \sum_{x \in \mathcal{X}} \tilde{P}_X(x) D(W_{Y|X} \parallel \tilde{P}_Y) \ge 0,$$

indicating when it is satisfied with equality, and then conclude that

$$\frac{\sum_{x \in \mathcal{X}} \tilde{P}_X(x) D(W_{Y|X} \parallel \tilde{P}_Y)}{\sum_{x \in \mathcal{X}} \tilde{P}_X(x) c(x)} \le \max_{x \in \mathcal{X}} \frac{D(W_{Y|X} \parallel P_Y)}{c(x)}$$

Hint: Use properties of information divergence (Kullback-Leibler distance) or Jensen's inequality.

(c) Suppose we are given an input distribution $P_X^*(x)$ such that

$$\frac{D(W_{Y|X} \parallel P_Y^*)}{c(x)} \le \lambda, \ \forall x \in \mathcal{X}$$

and

$$\frac{D(W_{Y|X} \parallel P_Y^*)}{c(x)} = \lambda, \ \forall x : P_X^*(x) > 0$$

where $P_{Y}^{*}(y) = \sum_{x} P_{X}^{*}(x) W_{Y|X}(y|x)$.

Using part (b) show that for any $\tilde{P}_X(x)$, and $\tilde{P}_Y(y) = \sum_{x \in \mathcal{X}} \tilde{P}_X(x) W_{Y|X}(y|x)$,

$$\frac{\sum_{x \in \mathcal{X}} \tilde{P}_X(x) D(W_{Y|X} \parallel \tilde{P}_Y)}{\sum_{x \in \mathcal{X}} \tilde{P}_X(x) c(x)} \le \lambda$$

with equality if and only if $\tilde{P}_Y(y) = P_Y^*(y)$.

(d) Using the result found in (c), what can you conclude about the optimizing input distribution for finding the capacity per unit cost C_{cost} , defined as,

$$C_{\text{cost}} = \max_{P_X(x)} \frac{I(X;Y)}{\mathbb{E}[c(X)]}.$$

Problem 2 (Maximal differential entropy distributions)

(a) Suppose we have

$$Z = Z_1 + Z_2,$$

$$\mathbb{E}(Z_1^2) \le \sigma^2, \mathbb{E}(Z_2^2) \le \sigma^2,$$

and Z_1 and Z_2 are independent of each other. What is the maximal differential entropy of Z, and what joint distribution of Z_1 and Z_2 achieves this?

(b) Now suppose

$$Z = \sum_{i=1}^{L} Z_i,$$
 where $\mathbb{E}(Z_i^2) \leq \sigma^2, \forall i$

Let $\{Z_i\}$ be independent of each other. What is the maximal differential entropy of Z, and what joint distribution of $\{Z_i\}$ achieves this?

(c) Now suppose we still have (1), and $\{Z_i\}$ can be dependent. What is the maximal differential entropy of Z, and what joint distribution of $\{Z_i\}$ achieves this?

Problem 3 (Gaussian Channel with multiple looks)

A transmitter is communicating to a receiver over Gaussian channels.

(a) Consider two noisy versions of the transmitted signal X are received as shown in Fig. 1, where

$$Y_1 = X + Z_1$$
$$Y_2 = X + Z_2$$

where Z_1, Z_2 are independent Gaussian noises both of variance σ^2 , i.e., $Z_1, Z_2 \sim \mathcal{N}(0, \sigma^2)$. The transmit signal is constrained to have an average power of P. Find the capacity of this channel and describe how do you achieve it.

Figure 1: Two look Gaussian channels

(b) Now, suppose we have two independent transmitters available as shown in Fig. 2, from which we can transmit signals X_1 and X_2 respectively. Also, there is an overall power constraint, *i.e.*, the total power from X_1 and X_2 is constrained to be P. Suppose the transmitted signals are received through four channels with noise Z_1 , Z_2 , Z_3 , and Z_4 , *i.e.*,

$$Y_1 = X_1 + Z_1$$

 $Y_2 = X_1 + Z_2$
 $Y_3 = X_2 + Z_3$
 $Y_4 = X_2 + Z_4$

As before Z_i are all independent of each other and Gaussian. We further assume that $Z_1, Z_2 \sim \mathcal{N}(0, \sigma_1^2)$, and $Z_3, Z_4 \sim \mathcal{N}(0, \sigma_2^2)$. Find the optimization problem for the channel capacity.

Figure 2: Two look Parallel Gaussian channels

	$\hat{x} = 0$	$\hat{x} = E$	$\hat{x} = 1$
x = 0	0	1	∞
x = 1	∞	1	0

Table 1: Values of $d(x, \hat{x})$ for problem 6(b)

- (c) Determine the optimal power allocation to each transmitter, the capacity of the channel, and describe how do we achieve the capacity.
- (d) If P=3 and $\sigma_1^2=2$, then find σ_2^2 such that we do not transmit through Transmitter 2.

Problem 4 (Erasure side-information for rate-distortion)

Consider $X \sim \text{Bernoulli } (\frac{1}{2})$, and let Y be an "erased" version of the source X, i.e., $Y \in \{0, E, 1\}$,

$$Y_i = \begin{cases} X_i & \text{with probability } 1 - p \\ E & \text{with probability } p \end{cases}$$

Let Y be available to both the source encoder as well as the source decoder. It is easy to derive the *conditional* rate-distortion function, exactly like we did in class, by conditioning the encoder and decoder on the available side-information Y. This can be easily shown to be:

$$R_{X|Y}(D) = \min_{p(\hat{x}|x,y): \mathbb{E}[d(x,\hat{x})] \le D} I(X; \hat{X}|Y)$$

- (a) Consider the Hamming distortion measure, and find the conditional rate-distortion function for this source with the available side-information, *i.e.*, evaluate $R_{X|Y}(D)$. *Hint:* Note that this does not need extensive calculations.
- (b) Suppose the reconstruction itself can produce an erased version of the source, i.e., $\hat{x} \in \hat{\mathcal{X}} = \{0, E, 1\}$, and the distortion measure be given by the matrix in Table 1. Calculate the conditional rate distortion function for this source.

Problem 5 (RATE DISTORTION)

Consider two independent Gaussian sources X_1, X_2 , where $X_1 \sim \mathcal{N}(0,2)$ and $X_2 \sim \mathcal{N}(0,1)$. We use the distortion measure $d(\underline{X}, \underline{\hat{X}}) = ||\underline{X} - \underline{\hat{X}}||^2 = \sum_{i=1}^2 \left|X_i - \hat{X}_i\right|^2$ for vectors $\underline{X} = [X_1, X_2], \underline{\hat{X}} = [\hat{X}_1, \hat{X}_2]$.

- (a) For the distortion $D = \frac{5}{2}$, find the optimization problem for the rate distortion function R(D).
- (b) Determine how will you achieve the rate-distortion function R(D) in (a).
- (c) Now, consider the Gaussian sources $Y_1 \sim \mathcal{N}(0, \frac{3}{2})$ and $Y_2 \sim \mathcal{N}(0, \frac{3}{2})$ are correlated with the correlation coefficient $\rho = \frac{1}{3}$, *i.e.*, the covariance matrix $K_{\underline{Y}}$ of $\underline{Y} = [Y_1, Y_2]$ is given by

$$K_{\underline{Y}} = \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix}$$

For the same distortion $D = \frac{5}{2}$, describe how will you achieve the rate-distortion function R(D).

Can you transform the sources $\underline{Y} = [Y_1, Y_2]$ in a manner to obtain a situation similar to independent parallel Gaussian sources?