The claims remain pending with no amendment, and listings of claims in the application:

Listing of Claims:

- 1. (previously presented) A digital signature method to be performed by a computer based on braid group conjugacy problem, parameters involved in this method comprising a signatory (S), a signature verifying party (V), a message (M) needing signature, a braid group $B_n(l)$ divided into a left subgroup $LB_m(l)$ and a right subgroup $RB_{n-l-m}(l)$, an integer n for a number of generators in the braid group $B_n(l)$, an integer m for a number of generators in a left subgroup $LB_m(l)$, an integer l for an upper bound of a length of a braid, a one way hash function l from bit sequence $\{0,1\}$ *to braid groups l for an upper bound of a signature method comprising the following steps of:
- Step 1. the signatory (S) selecting a braid x generated from the left subgroup $LB_m(l)$, a second braid x' generated from the braid group $B_n(l)$, and a third braid a generated from the braid group $B_n(l)$, by the computer, wherein the computer is adapted to making them meet $x'=a^{-l}xa$, moreover, with known x and x', it being impossible to find a in calculation, and considering braid pair (x',x) as a public key of signatory (S), a as a private key of signatory (S);
- Step 2. signatory (S) using hash function h for message (M) needing signature, by the computer, wherein the computer is adapted to get y=h(M) from the braid group $B_n(l)$;
- Step 3. generating a braid b from the right subgroup $RB_{n-1-m}(l)$ at random, by the computer, wherein the computer is adapted to signing the message (M) with the private key a and a generated random braid b to obtain $Sign(M)=a^{-1}byb^{-1}a$; and
- Step 4. the signatory (S) outputting, by the computer, message (M) and a signature of message (M) Sign(M).
- 2. (previously presented) The digital signature method based on braid group conjugacy problem according to claim 1, wherein generating the public key braid pair (x',x) and the private key braid a of signatory (S) in said step 1 comprises the following steps of:
 - Step 1a. selecting a distance d between system parameter braid groups public key pairs; Step 1b. representing x into a left canonical form $x=\Delta^u \pi_1 \pi_2 ... \pi_l$;
 - Step 1c. selecting a braid b at random to belong to a set B_n (5 l)

Step 1d. calculating $x = b^{-1}xb$, a=b;

Step 1e. generating a bit at random, if 1, calculating x = decycling(x), $a = a\pi_l$; if not 1, calculating x = cycling(x), $a = a\tau^u(\pi_l)$;

Step 1f. judging whether x' belongs to SSS(x) and whether $l(x') \le d$, if all the conditions are yes, outputting the braid pair(x, x') as the public key, a as the private key; if either of them is not, performing step 1e.

3. (previously presented) The digital signature method based on braid group conjugacy problem according to claim 1, wherein the process for obtaining $y=h(M) \in B_n(l)$ by using the hash function h in said step 2 comprises the following steps of:

4. (previously presented) The digital signature method based on braid group conjugacy problem according to claim 1, wherein a integer n for the number of generators in a braid group is in the range of $20\sim30$, an upper value of the braid length is l=3, d=4, and an left subgroup n-m=4.

5.-7. (canceled)

8. (previously presented) A method for digital signature to be performed by a computer configured to calculate data based on braid groups conjugacy problem and verification thereof, parameters involved in this method comprising a signatory (S), a signature verifying party (V), a message (M) needing signature, a braid group $B_n(l)$ divided into a left subgroup $LB_m(l)$ and a right subgroup $RB_{n-1-m}(l)$, an integer n for a number of generators in the braid group $B_n(l)$, an integer m for a number of generators in the left subgroup $LB_m(l)$, an integer l for an upper bound of a length of a braid, a one way hash function l mapped from bit sequence l for a braid groups l for an upper braid groups l f

Step 1. the signatory (S) selecting a braid x generated from the left subgroup $LB_m(l)$, a second braid x' generated from the braid group $B_n(l)$, and a third braid a generated from the braid group $B_n(l)$, by the computer, wherein the computer is adapted to making them meet

 $x'=a^{-1}xa$, moreover, with known x and x', it is impossible to find a in calculation, and considering braid pair (x',x) as a public key of signatory (S), a as a private key of signatory (S);

- Step 2. signatory (S) using a hash function h for message (M) needing signature, by the computer, wherein the computer is adapted to get y=h(M) from the braid group $B_n(l)$;
- Step 3. generating a braid b from the right subgroup $RB_{n-1-m}(l)$ at random, by the computer, wherein the computer is adapted to signing the message (M) with the private key a and the braid b generated randomly to obtain $Sign(M) = a^{-1}byb^{-1}a$;
- Step 4. the signatory (S) outputting, by the computer, the message (M) and its signature Sign(M) to the signature verifying party (V);
- Step 5. the signature verifying party (V) obtaining, by the computer, the public key of signatory (S) after receiving the message (M) and the signature of message (M) Sign(M) transmitted from signatory (S);
- Step 6. calculating message M, by the computer, wherein the computer is adapted to calculate message M by employing a system parameter hash function h, to obtain y=h(M);
 - Step 7. judging whether sign(M) and y are conjugate or not, by the computer, wherein the computer is adapted to perform the judging; if not, sign(M) is an illegal signature, the verification fails; if yes, perform step 8; and
- Step 8. calculating sign(M) x' and xy, by the computer, wherein the computer is adapted to calculate sign(M) x' and xy by using the obtained public key of signatory (S), and judging whether they are conjugate or not, if not, sign(M) is an illegal signature, and the verification fails; if yes, sign(M) is a legal signature of message (M).
- 9. (previously presented) The method according to claim 8, wherein generating the public key braid pair (x',x) and private key braid a of signatory (S) in said step 1 comprises the following steps of:
 - Step 1a. selecting a distance d between system parameter braid groups public key pair;
 - Step 1b. representing x into left canonial form $x = \Delta^u \pi_1 \pi_2 ... \pi_l$;
 - Step 1c. selecting a braid b at random to belong to set B_n (5 l)
 - Step 1d. calculating $x = b^{-1}xb$, a=b;
- Step 1e. generating a bit at random, if 1, calculating x = decycling(x'), $a = a\pi_l$; if not 1, calculating x = cycling(x'), $a = a\tau^u(\pi_l)$; and

- Step 1f. judging whether x' belongs to SSS(x) and whether $l(x') \le d$, if all conditions are yes, outputting the braid pair(x, x') as the public key, a as the private key; if either of them is not, performing step 1e.
- 10. (previously presented) The method according to claim 8, wherein the process for obtaining $y=h(M) \in B_n(l)$ by using hash function h in said step 2 comprises the following steps of:
- Step 2a. selecting an ordinary hash function H, with a length of its output H(M) is l [log(2,n!)I, then dividing H(M) into l sections $R_I||R_2||\dots||R_I|$ in equal at one time; and Step 2b. corresponding Ri to a permutation braid Ai, then calculating h(M) = A1*A2...Al, that is the h(M) required.
- 11. (previously presented) The method according to claim 8, wherein n for the number of the generation braids in the braid group is in the range of $20\sim28$, an upper value of the braid length is l=3, d=4, and an left subgroup n-m=4.
- 12. (previously presented) The method according to claim 8, wherein algorithm BCDA is employed in judging whether sign(M) and y are conjugate or not in step 7 and judging whether sign(M) x' and xy are conjugate or not in step 8.
- 13. (previously presented) The digital signature method based on braid group conjugacy problem according to claim 2, wherein a integer n for the number of generators in a braid group is in the range of 20~28, an upper value of the braid length is l=3, d=4, and an left subgroup n-m=4.
- 14. (previously presented) The digital signature method based on braid group conjugacy problem according to claim 3, wherein a integer n for the number of generators in a braid group is in the range of 20~28, an upper value of the braid length is l=3, d=4, and an left subgroup n-m=4.
- 15. (previously presented) The method according to claim 9, wherein n for the number of the generation braids in the braid group is in the range of 20~28, an upper value of the braid length is l=3, d=4, and an left subgroup n-m=4.
- 16. (previously presented) The method according to claim 10, wherein n for the number of the generation braids in the braid group is in the range of 20~28, an upper value of the braid length is l=3, d=4, and an left subgroup n-m=4.