Chapter 10 Calculation for Gear strength

10.1 Calculation of strength for Spur and Helical gears

There are calculations for Tooth bending strength (hereby called Bending strength), Surface durability and Scoring when considering gear strength. These are from ISO, JGMA, AGMA, DIN, BS and JSME. KG had developed and marketed KG-CALMET for easy searching of suitable KG STOCK GEARS by entering gear data, tooth strength (Bending strength and

Surface durability), profile generation, condition of engagement, Number of teeth and transfer torque. Now to introduce the selected calculation formula for Bending strength and Surface durability from formula extracted from JGMA (Japan Gear Manufacture Association Standard) as follows.

Calculation formula of Bending strength for Spur and Helical gears JGMA 401-01 (1974). Calculation formula of Surface durability for Spur and Helical gears JGMA 402-01 (1975).

1. Application range (common)

1.1 This standard is applied to Spur, Helical, Double helical and Internal gears that uses general industrial machinery transfer power.

Module : 1.5 to 25.0 mm
Reference pitch diameter : 25 to 3,200 mm
Circumferential velocity : Below 25m/s
Revolving velocity : Below 3,600 m⁻¹

Tooth profile of Spur and normal type of Helical gears as stipulated in JIS B 1701 (Involute tooth profile and dimensions). Also applicable to gears with Normal reference pressure angle of 22.5° and 25°

Accuracy : Accuracy classes 1

to 6 stipulated in JIS B 1702 (Accuracy for Spur and Helical gear).

- 1.2.1 This standard stipulates calculation for Bending allowable load and when determining designated dimension based on Tooth root bending stress.
- 1.2.2 This standard stipulates calculation for Tooth surface allowable load for a gear with designated dimension and for calculating specifications based on flank stress.

2 Definition

2.1 Bending strength

Bending allowable load for gear is Allowable tangential load on the Reference pitch circle based on Allowable tooth root bending stress of gears when transferring power during operation.

2.2 Surface durability

Surface durability is stipulated as capacity of load it can withstand and still provide necessary strength and enough safety for gear against progressive pitting. Therefore, meaning of Allowable flank load is Allowable tangential load on the Reference pitch circle determined in accordance to Surface durability of its gears when transferring power during operations.

3. Basic formula (common)

In regards to calculating Gear strength, the conversion formulas related to calculating Tangential load on Reference pitch circle, Nominal power and Nominal torque are as follows.

3.1 Nominal tangential load on Reference pitch circle *F_i*(kgf)

$$F_t = \frac{102P}{v} = \frac{1.95 \times 10^6 P}{dn}$$
(1)

Hereby

P: Nominal power (kW)

 υ : Circumferential velocity (m/s) on the Reference pitch circle

d: Reference pitch diameter (mm)

n: Revolving velocity (min⁻¹)

$$v = \frac{dn}{19100}$$
(2)

Or

$$F_t = \frac{2000T}{d} \qquad (3)$$

Hereby

T: Nominal torque (kgf • m)

3.2 Nominal power (kW)

$$P = \frac{F_{i}v}{102} = \frac{10^{-6}}{1.95}F_{i}dn \qquad (4)$$

3.3 Nominal torque (kgf • m)

$$T = \frac{F_t d}{2000}$$
(5)

Or

$$T = \frac{974P}{n} \qquad (6)$$

4. Calculation formula for Strength

4.1 Bending strength

Nominal tangential load on the Reference pitch circle is necessary as reference for calculating Bending strength. Therefore, Nominal tangential load on the Reference pitch circle should be equal or below Allowable tangential load on the Reference pitch circle, which is derived from calculating Allowable tooth root bending stress. Therefore,

$$F_t \le F_{\text{dim}}$$
 (7)

Hereby

Ft : Nominal tangential load on the Reference pitch circle (kgf)

F_{tlim}: Calculate Allowable tangential load (kgf) on the Reference pitch circle by selecting the smaller value from either pinion or gear.

On the other hand, Tooth root stress calculated from Nominal tangential load on the Reference pitch circle should be equal or below Allowable tooth root bending stress.

Therefore

$$\sigma_F \le \sigma_{F \text{lim}}$$
 (8)

Hereby

 $\sigma_{\rm F}$: Dedendum stress calculated from Nominal tangential load on Reference pitch circle (kgf/mm²)

 σ_{Flim} : Allowable tooth root bending stress (kgf/mm²)

4.1.1 Calculation for Allowable tangential load on the Reference pitch circle is as follow.

$$F_{\text{flim}} = \sigma_{\text{Flim}} \frac{m_n b}{Y_F Y_e Y_{\beta}} \left(\frac{K_L K_{FX}}{K_V K_O} \right) \frac{1}{S_F} \qquad (9)$$

Hereby

 m_n : Normal module (mm)

b : Facewidth (mm)

 Y_F : Form factor

 Y_{ε} : Load distribution factor

 Y_{β} : Helix angle factor

 K_L : Life factor

*K*_{FX}: Dimension factor for Tooth root stress

 K_{ν} : Dynamic factor

*K*₀ : Overload factor

SF: Safety factor for Tooth root bending damage

4.1.2 Calculation for Tooth root bending stress is as follow

$$\sigma_F = F_t \frac{Y_F Y_c Y_{\beta}}{m_n b} \left(\frac{K_V K_O}{K_L K_{FX}} \right) S_F \qquad (10)$$

4.2 Calculation for Surface durability

Nominal tangential load on the Reference pitch circle is necessary as reference for calculating Surface strength. Therefore, Nominal tangential load on the Reference pitch circle should be equal or below Allowable tangential load on the Reference pitch circle, which is derived from calculating Allowable Hertz stress. Therefore,

$$F_t \leq F_{\text{flim}}$$
 (11)

Hereby F_t : Nominal tangential load on the Reference pitch circle (kgf)

 $F_{t ext{lim}}$: Calculate Allowable tangential load (kgf) on the Reference pitch circle by selecting the smaller value (kgf) from either pinion or gear.

On the other hand, Hertz stress from Nominal tangential load on the Reference pitch circle should be equal or below Allowable hertz stress.

Therefore

$$\sigma_H \le \sigma_{H \text{lim}}$$
 (12)

Hereby

 σ_H : Hertz stress calculated from Nominal tangential load on Reference pitch circle (kgf/mm²)

 σ_{Hlim} : Allowable hertz stress ((kgf/mm²)

4.2.1 Calculation for Allowable tangential load on the Reference pitch circle is as follow.

$$F_{t \text{ lim}} = \sigma_{H \text{ lim}}^{2} d_{1}b_{H} \frac{u}{u \pm 1} \left(\frac{K_{HL}Z_{L}Z_{R}Z_{V}Z_{W}Z_{HX}}{Z_{H}Z_{M}} Z_{\varepsilon} Z_{\beta} \right)^{2} \times \frac{1}{K_{H\beta}K_{V}K_{O}} \frac{1}{S_{H^{2}}} \dots (13)$$

+/-: '+' indicate the engagement with both External gears. '-' for engagement with External and Internal gears.

Hereby

 d_1 : Reference pitch diameter for pinion (mm)

 b_H : Effective facewidth for Surface durability (mm)

u: Gear ratio

 Z_H : Zone factor

 Z_M : Elasticity factor

 Z_{ε} : Contact ratio factor

 Z_{β} : Helix angle factor

KHL: Life factor for Surface durability

 Z_L : Lubricating oil factor

 Z_R : Roughness factor

 Z_V : Lubricating speed factor

 Z_W : Work hardening factor

KHX: Dimension factor for Surface durability

 $K_{H\beta}$: Face load factor for Contact stress

Kv: Dynamic factor *Ko*: Overload factor

SH: Safety factor for Surface durability

4.2.2 Calculation for Hertz stress is as follows.

$$\sigma_{H} = \sqrt{\frac{F_{t}}{d_{1}b_{H}}} \frac{\mathbf{u} \pm 1}{\mathbf{u}} \frac{\mathbf{Z}_{H}\mathbf{Z}_{N}\mathbf{Z}_{c}\mathbf{Z}_{\beta}}{\mathbf{K}_{HL}\mathbf{Z}_{L}\mathbf{Z}_{R}\mathbf{Z}_{V}\mathbf{Z}_{W}\mathbf{K}_{HX}} \times \sqrt{\mathbf{K}_{H}\mathbf{E}_{K}\mathbf{E}_{K}\mathbf{E}_{C}} S_{H}$$
(14)

+/-:'+' indicate the engagement with both External gears. '-' for engagement with External and Internal gears.

5. Calculation formula for types of factor

5.1 How to obtain the types of factor using the calculation formula of Bending strength.

The following stipulates types of factor from calculation formula of Bending strength in previous paragraph.

5.1.1 Facewidth b

When Facewidths differs, assume wider Facewidth to be b_w and smaller Facewidth to be b_s . b_w - $b_s \leq m_n$, use actual Facewidth for calculations.

When $b_w - b_s > m_n$, b_s is used in formula $b_s + \text{mn}$ to calculation of Facewidth.

5.1.2 Form factor YF

Refer to Fig. 1 to find Form factor.

For Virtual number of teeth of spur gear for Helical gear, use following calculation formula.

$$z_v = \frac{z}{\cos^3 \beta} \tag{15}$$

For Form factor for Tooth profile excluding Fig. 1 please refer to this original standard.

5.1.3 Load distribution factor Y_{ε}

Calculating Load distribution factor using following formula.

$$Y_{\varepsilon} = \frac{1}{\varepsilon_{\alpha}}$$
 (16)

Hereby

 ε_{α} : Transverse contact ratio

Calculation formulas of Transverse contact ratio are as follows,

Spur gear :
$$\varepsilon_{\alpha} = \frac{\sqrt{r_{a1}^{2} - r_{b1}^{2}} + \sqrt{r_{a2}^{2} - r_{b2}^{2}} - a\sin{\alpha\omega}}{m\pi\cos{\alpha}} \cdots (17)$$
Helical gear : $\varepsilon_{\alpha} = \frac{\sqrt{r_{a1}^{2} - r_{b1}^{2}} + \sqrt{r_{a2}^{2} - r_{b2}^{2}} - a\sin{\alpha\omega}}{m\iota\pi\cos{\alpha}\iota} \cdots (18)$

Helical gear:
$$\varepsilon_{\alpha} = \frac{\sqrt{r_{\alpha 1}^2 - r_{b1}^2 + \sqrt{r_{\alpha 2}^2 - r_{b2}^2 - a \sin \alpha \omega t}}}{m_{\alpha} \pi \cos \alpha t} \cdots (18)$$

$$\cos^2 \beta_b = 1 - \sin^2 \beta \cdot \cos^2 \alpha_n \qquad (19)$$

Hereby

 γ_a : Tip (Outside) radius (mm)

 γ_b : Base radius (mm)

a : Centre distance (mm)

 α_w : Working pressure angle (°)

 α_{wt} : Transverse contact pressure angle (°)

 α : Reference pressure angle (°)

 α_n : Normal pressure angle (°)

 α_t : Transverse reference pressure angle (°)

 β : Reference pitch cylindrical helix angle (°)

 β_b : Base cylinder helix angle (°)

Subscript

1: Pinion

2 : Gear

Remark 1. Table 1 shows the Transverse contact ratio ε_{α} for Standard spur gear with Reference pressure angle 20°.

Remark 2. Use following formula to calculate approximate value of Y_{ε} for Helical gear.

$$\frac{\cos^2 \beta_b}{\varepsilon_a} = \frac{1}{\varepsilon_{an}} \tag{20}$$

However, obtain Transverse contact ratio $\varepsilon_{\alpha n}$ for Virtual spur gear from Table 1 by using Virtual number of teeth of spur gear zvI and zv2.

5.1.4 Helix angle factor Y_{β}

Calculate helix angle factor using following formula.

For
$$0^{\circ} \leq \beta \leq 30^{\circ}$$
 : $Y_{\beta} = 1 - \frac{\beta}{120}$ (21)

For
$$\beta \ge 30^{\circ}\beta$$
 : $Y_{\beta} = 0.75$ (22)

5.1.5 Life factor $K_{\rm L}$

Refer to Table 2 to obtain Life factor.

Table 2. Life factor K_L

Number of repeated	Hardness (1)(2) HB120 - 220	Hardness (2) Above HB221	Carburizing gear
Below 10,000	1.4	1.5	1.5
Approx. 100,000	1.2	1.4	1.5
Approx. 10 ⁶	1.1	1.1	1.1
Above 10 ⁷	1.0	1.0	1.0

Note (1) Steel casted gears to use this Table

Note (2) Core hardness is used for Induction hardened gear.

Meaning of repeated rotations is number of repeat during life span of gears. If uncertain, $K_L = 1.0$.

Table 1. Transverse contact ratio $arepsilon_{lpha}$ for Standard spur gear

5.1.6 Dimension factor K_{FX} for Tooth root stress With increased Tooth profile, Bending strength is influenced. At the moment, due to insufficient data Dimension factor will be 1.0.

5.1.7 Dynamic factor K_{ν}

Obtain Dynamic factor from Table 3 using gear accuracy and Circumferential speed on the Reference pitch circle.

Table 3. Dynamic factor K_{ν}

System of accura	cy from JIS B 1702		Circumferential speed on the Reference pitch circle (m/s)						
Tooth	profile	Below 1	Above 1.0 to	Above 3.0 to	Above 5.0 to	Above 8.0 to	Above 12.0 to	Above 18.0 to	
Normal	Modified	below I	below 3.0	below 5.0	below 8.0	below 12.0	below 18.0	below 25.0	
	1	-	-	1.0	1.0	1.1	1.2	1.3	
1	2	-	1.0	1.05	1.1	1.2	1.3	1.5	
2	3	1.0	1.1	1.15	1.2	1.3	1.5	-	
3	4	1.0	1.2	1.3	1.4	1.5	-	-	
4	-	1.0	1.3	1.4	1.5	-	-	-	
5	-	1.1	1.4	1.5	-	-	-	-	
6	-	1.2	1.5	-	-	-	-	-	

5.1.8 Overload factor Ko

Obtain Overload factor using following formula.

$$K_0 = \frac{\text{Actual tangential load}}{\text{Nominal tangential load}(F_i)}$$
 (23)

Use Table 4 to obtain Actual tangential load if uncertain of value.

Table 4. Overload factor Ko

Impact from motor side	Impact from load					
impact from motor side	Flat load	Average impact	Heavy impact			
Flat load (Electric, tur- bine, hydraulic motors)	1.0	1.25	1.75			
Light impact (Multi cylin- der engine)	1.25	1.5	2.0			
Average impact(Single cylinder engine)	1.5	1.75	2.25			

Note: If the impact from load is unknown, refer to Table 5.

5.1.9 Safety factor S_F for damage from Tooth root bending

Fixed value of Safety factor for damage from Tooth root bending is difficult to be determined due to various internal and external factors. Minimum factor of 1.2 is necessary.

5.1.10 Allowable Tooth root bending stress σ_{Flim}

Refer to Tables 9 and 10 for Allowable tooth root bending stress for gear with fixed load direction. For intermediate Hardness values in the tables shown, it is our recommendation to use interpolation values. When load direction is bi-directional, value of Allowable tooth root bending stress $\sigma_{\rm Flim}$ will be 2/3 of values in the table. For exmple, an idler gear or gear which alternates bi-directionally and for equal loads on either right or left teeth.

Value of hardness or core hardness uses centre of Tooth root.

Table 5. Classification of load for Driven machine

Name of Driven machine	Range	Name of Driven machine	Range	Name of Driven machine	Range
Agitator	М	Elevator	U	Petroleum refinery machinery	М
Blower	U	Extruder	U	Paper mill machinery	M
Brewing and Distillation apparatus	U	Fan (electric fan)	U	Timber mill machinery	Н
Vehicles	M	Fan (for industries)	M	Pump	M
Clarifier	U	Feeder	M	Rubber machinery (medium load)	M
Sorting Machine	M	Feeder (to and fro motion)	Н	Rubber machinery (heavy load)	Н
Ceramics industry machine (medium load)	M	Food machinery	M	Water treatment machine (light load)	U
Ceramics industry machine (heavy load)	Н	Hammer mill	Н	Water treatment machine (medium load)	M
Compressor	М	Hoist	M	Screen (fluid)	U
Conveyer (uniform load)	U	Machine tools (main drive)	M	Screen (gravel)	M
Conveyer (uniform load / heavy load)	M	Machine tools (supplementary drive)	U	Sugar plant machinery	M
Crane	U	Metalwork machinery	Н	Textile machinery	M
Crusher	Н	Rotary mill	M	Iron mill machinery (hot rolling)	Н
Dredger (Medium load)	M	Tumbler	Н	Iron mill machinery (cold rolling)	U
Dredger (heavy load)	Н	Mixer	M		

Note U: Uniform load, M: Medium impact, H: Heavy impact

5.2 How to obtain each factor based on calculation for Surface durability

Factors using calculation formulas based on Surface durability as mentioned above is defined below.

- 5.2.1 Effective facewidth for Surface durability b_H (mm) Obtain Effective facewidth for Surface durability from (a) and (b).
- (a) For different Facewidth between pinion and gear, select the narrower Facewidth as Effective facewidth.
- (b) For Facewidth with end relief at both ends, Effective facewidth is the narrower of the Facewidth deducted by such end relief areas.

5.2.2 Zone factor ZH

Calculation of Zone factor is as follows.

$$Z_{H} = \sqrt{\frac{2\cos\beta_{b}\cos\alpha_{wt}}{\cos^{2}\alpha_{t}\sin\alpha_{wt}}} = \frac{1}{\cos\alpha_{t}}\sqrt{\frac{2\cos\beta_{b}}{\tan\alpha_{wt}}}$$
(24)

 β_b : Base cylinder helix angle (°)

 α_{wt} : Transverse contact pressure angle (°)

 $\alpha_{\rm t}$: Transverse reference pressure angle (°)

(a) Obtain Zone factor from Fig. 3 with Normal reference pressure angle of 20° defined in JIS.

Fig. 3 Zone factor Z_H (Normal reference pressure angle $\alpha_n = 20^\circ$)

In Fig. 3, x: Rack shift coefficient (Normal rack shift coefficient for Helical gear and Superscript) 1 is Pinion and 2 is Gear.)

z: Number of teeth

 β : Reference pitch cylindrical helix angle (°)

(b) Factors from above formula and figure are defined as follows.

$$\beta_b = \tan^{-1}(\tan\beta\cos\alpha_t) \quad (25)$$

$$\operatorname{inv} \alpha_{wt} = 2\tan \alpha_n \left(\frac{x_1 \pm x_2}{z_1 \pm z_2} \right) + \operatorname{inv} \alpha_t \quad \dots$$

$$\alpha_t = \tan^{-1} (\tan \alpha_n / \cos \beta) \quad \dots$$
(26)

$$\alpha_t = \tan^{-1}(\tan \alpha_n / \cos \beta) \quad \dots \tag{27}$$

(c) Zone factor is based upon Curvature radius of flank at Pitch point. Therefore this factor is used for calculating Allowable load for flank. Due to Relative curvature radius at the worst load point is slightly smaller than that at Pitch point, such Zone factor cannot be use. These are Spur gear or Helical gear with extremely small Overlap ratio (ε_{β} < about 0.5) with below minimum number of teeth ($z \leq$ about 23) and small Rack shift coefficient. For such cases, please refer to 4.2.2 to check for Hertz stress at the worst load point.

5.2.3 Elasticity factor Z_M

Calculation of Elasticity factor is as follows.

$$Z_{\rm M} = \sqrt{\frac{1}{\pi \left(\frac{1 - \nu_1^2}{E_1} + \frac{1 - \nu_2^2}{E_2}\right)}} \quad(28)$$

Hereby

v : Poisson's ratio

E: Modulus of direct elasticity (Young's modulus) (kgf/mm²)

For Z_M , refer to Table 6 for combinations of main gear materials.

5.2.4 Contact ratio factor Z_E

Obtain Contact ratio factor using following formula (refer to Fig 4).

Spur gear :
$$Z_{\varepsilon} = 1.0$$
(29)

Fig. 4 Contact ratio factor

Table 6. Elasticity factor Z_M

	Ge	ear			Matin	g gear		
Materials	Vocabularies	Modulus of direct elasticity E kgf/mm²	Poisson's ratio	Materials	Vocabularies	Modulus of direct elasticity E kgf/mm²	Poisson's ratio	Elasticity factor Z_M (kgf/mm²) 0.5
				Structural steel	*(1)	21000		60.6
Church wal at a al	*(1)	21000		Casting steel	SC	20500		60.2
Structural steel	*(1)	21000		Spheroidal graphite iron	FCD	17600	0.3	57.9
				Gray iron casting	FC	12000		51.7
			0.2	Casting steel	SC	20500		59.9
Casting steel	SC	20500	0.3	Spheroidal graphite iron	FCD	17600		57.6
				Gray iron casting	FC	12000		51.5
Spheroidal	FCD	17600		Spheroidal graphite iron	FCD	17600		55.5
graphite iron	100	17000		Gray iron	FC	12000		50.0
Gray iron casting	FC	12000		Gray iron casting	FC	12000		45.8

Note(1) *Structural steel to be S \sim C, SNC, SNCM, SCr, SCM.

Helical gear : in case
$$Z_{\varepsilon} = \sqrt{1 - \varepsilon_{\beta} + \frac{\varepsilon_{\beta}}{\varepsilon_{\alpha}}} \quad \varepsilon \beta \leq 1 \cdots (30)$$

: in case $Z_{\varepsilon} = \sqrt{\frac{1}{\varepsilon_{\alpha}}} \quad \varepsilon \beta > 1 \cdots (31)$

Hereby

 ε_{α} : Transverse contact ratio (refer to Clause 5.1.3 and Reference 1)

 ε_{β} : Overlap ratio

5.2.5 Helix angle factor Z_{β}

Helix angle factor for Surface durability is difficult to accurately stipulate due to insufficient data. Calculation formula will be

$$Z_{\beta} = 1.0 \dots (32)$$

5.2.6 Life factor for Surface durability K_{HL} Obtain Life factor for Surface durability from Table 7

Table 7. Life factor of Surface durability

Number of repeated	Life factor for Surface durability
Below 10,000	1.5
About 100,000	1.3
About 10 ⁶	1.15
Above 10 ⁷	1.0

Remark 1. 'Repeated' is number of times of engaged rotation during life span.

Remark 2. Normally idler gear makes 2 engagements per rotation. However for engagements between different flanks for 1 rotation, it should be counted as 1 engagement.

Remark 3. For reversible rotation or similar conditions, number of rotation is from larger load applied to either flank.

If number of times is uncountable, life factor to be $K_{HL} = 1.0 \dots (33)$

5.2.7 Lubricating oil factor
$$Z_L$$

For the 2 types of gear stated below, obtain Lubricating oil factor from Fig. 5 based on Kinematic viscosity (cSt) at 50°C.

Fig. 5 Lubricating oil factor

- (1) Thermal refined gear (1): Use solid line in Fig. 5.
- (2) Surface hardened gear: Use broken line in Fig. 5.

Note (1) Thermal refined gear includes gear with quenching, tempering and normalizing.

Remark: Casting steel gear is equivalent to thermal refined gear.

5.2.8 Roughness factor Z_R

Find Roughness factor based on average roughness of flank $R_{\text{max}m}(\mu_m)$ from Fig. 6 for 2 types of gears. Use the following formula to obtain the average of maximum height of profile roughness of flank $R_{\text{max}m}$ from $R_{\text{max}1}$, $R_{\text{max}2}$ and centre distance a(mm). (Meaning of $R_{\text{max}1}$, $R_{\text{max}2}$ is Maximum height if profile roughness of flank inclusive of the effects of warm up and test run.)

$$R_{\max} = \frac{R_{\max 1} + R_{\max 2}}{2} \sqrt[3]{\frac{100}{a}} (\mu m) \quad(34)$$

- (1) Thermal refined gear (1): Use solid line in Fig. 6.
- (2) Surface hardened gear: Use broken line in Fig. 6. Refer to 5.2.7 for Note (1) and Remark

5.2.9 Lubricating speed factor Zv

Find Lubricating speed factor based on maximum height of profile roughness of flank $R_{maxm}(\mu_m)$ from Fig. 7 using either pinion or gears

- (1) Thermal refined gear (1): Use solid line in Fig. 7.
- (2) Surface hardened gear: Use broken line in Fig. 7. Refer to 5.2.7 for Note (1) and Remark

5.2.10 Work hardening factor Zw

Hardness ratio factor is applied to engagement between gear and pinion(1) which is hardened ground. Calculation for Work hardening factor Z_w is as follow. (Refer to Fig. 8)

$$Z_W = 1.2 - \frac{\text{HB}_2 - 130}{1700}$$
(35)

Hereby

HB₂: Hardness of gear flank (indicated by Brinell hardness)

However

Gear with conditions that cannot match above (35) and $130 \le HB_2 \le 470$, Pinion to be

$$Z_W = 1.0$$
(36)

Note (1) Flank roughness of pinion is $R_{\text{MAX1}} \leq 6\mu\text{m}$ when engaged with stipulated gear.

5.2.11 Dimension factor $K_{\rm HX}$ for Surface durability If Tooth profile and gear size increases, Surface durability also increases but has a tendency to increase disproportionately. Due to insufficient data at the moment Dimension factor

$$K_{\rm HX} = 1.0$$
 (37)

5.2.12 Face load factor for contact stress $K_{H\beta}$ Obtain Face load factor for contact stress for Surface durability using following formula.

- (a) If unable to estimate tooth contact conditions when load is applied to gear. Obtain Tooth trace load distribution factor from ratio (b/d_1) between Facewidth b and Reference diameter d_1 of pinion and from method of gear support from Table 8.
- (b) Satisfactory tooth contact when load is applied to gear.

Tooth trace load distribution factor $K_{H\beta}$ for Surface durability depends on level of modification compared to used load (reference value). When calculating modifications on Tooth trace for following cases, analyse all causes that influence Tooth bearing when load is applied. Apply modifications of Proper Tooth trace for gear, Helix angle, Axial parallelism. Warm up and test run is performed and confirm Tooth bearing is secured during operation.

$$K_{H\beta}=1.0 \sim 1.2$$
 (38)

5.2.13 Dynamic factor *Kv* (common)

Obtain Dynamic factor based on gear accuracy and Circumferential speed on the Reference pitch circle from 5.1.7 of Table 3.

5.2.14 Overload factor K_o (common) Obtain the overload factor from 5.1.8 - Table 4.

5.2.15 Safety factor for flank damage (Pitting) *SH* A minimum Safety factor for flank damage (Pitting) value of 1.15 is necessary even though it is difficult to find fixed value of internal and external factors.

Table 8. Face load factor for contact stress

	S	Supporting method									
h	Sı										
$\frac{b}{d_1}$	Balanced to both bearings	Bearing is on one side and stiffness of axis is increased.	Bearing is on one side and less stiffness of axis.	Unbalanced support							
0.2	1.0	1.0	1.1	1.2							
0.4	1.0	1.1	1.3	1.45							
0.6	1.05	1.2	1.5	1.65							
0.8	1.1	1.3	1.7	1.85							
1.0	1.2	1.45	1.85	2.0							
1.2	1.3	1.6	2.0	2.15							
1.4	1.4	1.8	2.1	-							
1.6	1.5	2.05	2.2	-							
1.8	1.8	-	-	-							
2.0	2.1	-	-	-							

Remark 1. *b* is Effective facewidth for Spur and Helical gears. For Double helical gear, *b* is length of facewidth inclusive of cutter groove at centre of gear.

Remark 2. Tooth contact has to be satisfactory without load.

Remark 3. Inapplicable to Idler gear and pinion (Idler) engaged with gears.

5.2.16 Allowable hertz stress σ_{Hlim}

Refer to Tables 9 \sim 12 to find the Allowable hertz stress. For values not listed, use interpolation. Meaning of flank's hardness is hardness near Pitch circle.

Table 9. Gear without surface hardening

		Hardne	ss of flank	Lower limit of		
Materials (Arrow n	narks are for references only)	НВ	HV	tensile strength kgf/mm² (reference)	σFlim kgf/mm²	σHlim kgf/mm²
	6627			37	10.4	34
	SC37 SC42			42	12.0	35
Casting steel	SC42 SC46			46	13.2	36
casting steel	SC49 _			49	14.2	37
	SCC3			55	15.8	39
				60	17.2	40
	↑	120	126	39	13.8	41.5
		130	136	42	14.8	42.5
		140	147	45	15.8	44
	S2 ⁵ C ♠	150	157	48	16.5	45
		160	167	51	17.6	46.5
		170	178	55	18.4	47.5
Carbon steel for structural	▼ S35C ↑ ↑	180	189	58	19.0	49
use with Normalizing	S43C	190	200	61	19.5	50
	S48C _	200	210	64	20	51.5
		210	221	68	20.5	52.5
	S53C	220	231	71	21	54
	♦ ♦ S58C	230	242	74	21.5	55
		240	252	77	22	56.5
	. +	250	263	81	22.5	57.5
	♠	160	167	51	18.2	51
		170	178	55	19.4	52.5
		180	189	58	20.2	54
		190	200	61	21	55.5
	│	200	210	64	22	57
	S3 ⁵ C ↑	210	221	68	23	58.5
		220	231	71	23.5	60
		230	242	74	24	61
Carbon steel for structural		240	252	77	24.5	62,5
use with Quenching and	S43C	250	263	81	25	64
Tempering		260	273	84	25.5	65.5
rempening	. ★ S53C S53C	270	284	87	26	67
	S58C	280	295	90	26	68.5
		290	305	93	26.5	70
	★↓	300	316	97		71
		310	327	100		72.5
	_ •	320	337	103		74
		330	347	106		75.5
		340	358	110		77
		350	369	113		78.5
		220	231	71	25	70
	↑	230	242	74	26	71.5
		240	252	77	27.5	73
		250	263	81	28.5	74.5
		260	273	84	29.5	76
		270	284	87	31	77.5
	SMn443	280	295	90	32	79
Alloy steel for structural	↑ ↑	290	305	93	33	81
use with Carburizing,	SNC836 -	300	316	97	34	82.5
Quenching and	SCM435	310	327	100	35	84
Tempering	SCM440	320	337	103	36.5	85.5
, 5		330	347	106	37.5	87
	-♥	340	358	110	39	88.5
		350	369	113	40	90
		360	380	117	41	92
		370	391	121		93.5
	.★	380	402	126		95
		390	413	130		96.5
		400	424	135		98

Table 9. Gear with High frequency induction hardening (continued)

		Conditions of Heat treatment	Core h	ardness	Flank hardness (1)	$\sigma F \lim^{(2)}$	σH lim
Materials (Arr	ow marks are for references only)	before High-frequency induction hardening	НВ	HV	HV	kgf/mm²	kgf/mm²
			160	167	Above 550	21	
	♦ \$43C	Normalizing	180	189	//	21	
	S48C _₩	INOTITIALIZITY	220	231	//	21.5	
	₩		240	252	//	22	
Carbon steel for			200	210	Above 550	23	
structural use	↑ ↑		210	221	//	23.5	
		Induction hardening and	220	231	//	24	
	S48C S43C	Tempering	230	242	//	24.5	
			240	252	//	25	
	* *		250	263	//	25	
			230	242	Above 550	27	
	↑ ↑		240	252	//	28	
	SCM440		250	263	//	29	
			260	273	//	30	
Alloy steel for	SMn443	Induction hardening and	270	284	//	31	
structural use	SNCM439	tempering	280	295	//	32	
	₹		290	305	//	33	
	_ ▼ SCM435		300	316	//	34	
	SNC836 ▼		310	327	//	35	
	₩		320	337	"	36.5	
					420		77
					440		80
					460		82
					480		85
		Normalizing			500		87
		110111141121119			520		90
					540		92
					560		93.5
					580		95
Carbon steel for	S43C		/		Above 600		96
structural use	S48C				500		96
					520		99
					540		101
					560		103
		Induction hardening and] ,		580		105
		Tempering	/		600		106.5
					620		107.5
					640		108.5
			/		660		109
			<u> </u>		Above 680		109.5
					500		109
					520		112
	SMn443				540		115
Allamateral fo	SCM435	Indication be obtained as			560		117
Alloy steel for structural use	SCM440	Induction hardening and Tempering	,	/	580 600		119 121
structural use	SNC836	rempering					
	SNCM439				620		123
					640 660		124 125
			/				
			V		Above 680		126

Note(1) When flank hardness is low, use σ_{Flim} value which is equivalent to gear without hardened surface.

Note(2) When gear has defects such as quenching cracks, insufficient hardening depth and uneven hardness, precaution is necessary as values of σ_{Flim} may become significantly lower compared with Tables 9 and 10. Values in Tables 9 and 10 are shown for full quenching at bottomland. Assuming insufficient quenching at bottomland, value will be 75% from Table 9 and 10.

Table 10. Gear with case hardening

** :		Effective carburizing	Core hardness (1)		Flank hardness	$\sigma F lim^{(2)}$	σH lim	
Materials (A	rrow marks are references only)	depth (2)	НВ	HV	HV	kgf/mm²	kgf/mm²	
			140	147		18.2		
			150	157		19.6		
			160	167		21		
			170	178		22		
			180	189		23		
			190	200		24		
				/	580		115	
					600		117	
Carbon steel for	S15C				620		118	
machine	S15CK				640		119	
structural use					660		120	
					680		120	
		Relatively shallow depth (A)	/	/	700		120	
					720		119	
			/		740		118	
					760		117	
			/		780		115	
			/		800		113	
		/	220	231	550	34	113	
	-XX	/	230	242		36		
	Γ	/	240	252		38		
	SCM415 SCM415		250	263		39		
		-	260	273		41		
	SCM420 - 1			270	284		42.5	
		- /	280	295		44.5		
		-	290	305		45		
			300	316		46 47		
			310	327				
	- Y	/	320	337		48		
	SNC815		330	347		49		
	-Y	. /	340	358		50		
	SNCM420		350	369		51		
		/	360	380		51.5		
-	Y	/	370	390	500	52	121	
				/	580		131	
					600		134	
Alloy steel for					620		137	
machine					640		138	
structural use					660		138	
		Relatively shallow depth (B)	/	/	680		138	
			/		700		138	
			/		720		137	
			/		740		136	
	SCM415(21)		/		760		134	
	SCM420(22)		/		780		132	
	SNC415(21)		<u>/</u>		800		130	
	SNC815(22)			/	580		156	
	SNCM420(23)				600		160	
	• •				620		164	
					640		166	
					660		166	
		Relatively deeper than above		/	680		166	
		В	/		700		164	
			/		720		161	
			/		740		158	
			/		760		154	
			/		780		150	
		I	/		800		146	

Note (1) Relatively shallow effective case depth refers to below A and relatively deeper depth refers to B or more. Meaning of Effective case depth is hardness of up to HV513 (HRC50). Depth for Ground gear is after process.

Module	2	1.5	2	3	4	5	6	8	10	15	20	25
Effective depth	Α	0.2	0.2	0.3	0.4	0.5	0.6	0.7	0.9	1.2	1.5	1.8
Lifective deptil	В	0.3	0.3	0.5	0.7	0.8	0.9	1.1	1.4	2.0	2.5	3.4

Remark: Especially in engagement between gears, we recommend providing bigger Safety factor *SH.*, starting point of Maximum inner shear-stress force at inner gear tooth from surface pressure of flank is deeper than the depth of Case hardening which affects effectiveness of Carburizing depth.

Table 11. Nitriding gear (1)

Materi	al	Flank hardness (reference)	σHlim kgf/mm	2
Nitriding SACM		Normal	120	
steel	Nitriding 645 and	Above HV 650	Sustained period of Nitriding treatment	130 - 140

Note (1) Applicable to gear with proper Nitriding depth and hardened surface for improving Surface durability. We recommend providing a larger safety factor than usual when Surface hardness is lower than above table. Starting point of Maximum shear-stress force at inner gear tooth is deeper than depth of Nitriding.

Table 13. Nitriding gear (1)

Material	Flank hardness (reference)	Core hardness		σF lim
		НВ	HV	kgf/mm²
Alloy steel for structural use without Nitriding steel	Above HV650	220	231	30
		240	252	33
		260	273	36
		280	295	38
		300	316	40
		320	337	42
		340	358	44
		360	380	46
Nitriding steel SACM645	Above HV650	220	231	32
		240	252	35
		260	273	38
		280	295	41
		300	316	44

Note (1) Applicable to gear with proper Nitriding depth for improving Surface durability. However Nitriding layer is extremely thin from Nitro-carburizing, use $\sigma_{f lim}$ value of the gear without hardened surface.

Table 12. Nitro-carburizing (1)

Material	Nitriding period (h)	σH lim kgf/mm ²			
		Relative curvature radius (mm)(2)			
		Below 10	10 - 20	Above 20	
Carbon steel and Alloy steel for structural use	2	100	90	80	
	4	110	100	90	
	6	120	110	100	

Note (1) Applicable to Salt bath and Gas Nitro-carburizing gears.

(2) Use Fig. 9 to obtain Relative curvature radius Remark. Use properly adjusted gear material for core.

Fig. 9 Relative curvature radius

