Sensor de Humedad de Suelo (Módulo resistivo)

El sensor de humedad de suelo utilizado en este proyecto permite medir de forma aproximada el nivel de humedad presente en el terreno o en el agua del sustrato. Su funcionamiento se basa en la conductividad eléctrica: la cantidad de agua presente en el medio modifica su capacidad de conducir electricidad, permitiendo así estimar su humedad relativa.

Este tipo de sensor es económico y sencillo, siendo muy utilizado en proyectos agrícolas, de jardinería o de automatización de riego.

Funcionamiento

El sensor consta de dos partes:

Sonda de humedad:

Consiste en dos varillas metálicas que se introducen en el suelo. Cuanta mayor cantidad de agua haya en el sustrato, mayor será la conductividad eléctrica entre ambas varillas.

Módulo amplificador (módulo azul):

Este módulo convierte la pequeña variación de conductividad en una señal eléctrica que puede ser leída por el microcontrolador. Dispone de dos salidas:

- AO (analógica): entrega un voltaje proporcional a la humedad detectada.
- DO (digital): permite establecer un umbral de activación mediante un potenciómetro.

En este proyecto se ha utilizado la salida **analógica (AO)**, ya que permite obtener una lectura más precisa y continua del nivel de humedad.

Valores que entrega

El microcontrolador ESP32 lee la señal analógica a través de su conversor ADC de 12 bits (rango de 0 a 4095). La relación entre la lectura y el estado de humedad es:

Lectura ADC	Estado del suelo aproximado	
0 - 800	Muy húmedo	
800 - 2000	Húmedo	
2000 - 3000	Seco	
3000 - 4095	Muy seco	

Estos rangos pueden variar ligeramente en función del tipo de tierra, la profundidad de la sonda y las condiciones específicas, por lo que es recomendable realizar una calibración experimental en el entorno real de trabajo.

Aplicaciones

- Sistemas de riego automático.
- Monitorización de cultivos.
- Control de humedad en invernaderos.
- Sistemas de agricultura de precisión.

Pin del módulo	Función	Conexión en el ESP32
VCC	Alimentación	3.3V (también puede funcionar a 5V)
GND	Tierra	GND
AO	Salida analógica	GPIO 35 (pin ADC)

Ventajas

- Bajo coste.
- Fácil de instalar.
- Compatible con microcontroladores de 3.3V como el ESP32.

Limitaciones

- Es un sensor resistivo, por lo que con el tiempo puede degradarse por corrosión si permanece mucho tiempo sumergido o en suelos muy húmedos.
- Proporciona valores relativos, no humedad absoluta en %.
- Requiere calibración para ajustar correctamente los rangos de humedad en cada tipo de suelo.

Código

Con este código, si has conectado todo como se ha explicado arriba, deberías ser capaz de leer los valores que arroja este sensor conectado a un ESP32.

```
#define HUMEDAD_PIN 35  // Pin ADC conectado a AO

void setup() {
    Serial.begin(115200);
    analogReadResolution(12);  // Rango 0-4095
}

void loop() {
    int valorHumedad = analogRead(HUMEDAD_PIN);
    float voltaje = valorHumedad * 3.3 / 4095.0;

    Serial.print("Lectura ADC: ");
    Serial.print(valorHumedad);
    Serial.print(" - Voltaje: ");
    Serial.print(voltaje, 2);
    Serial.println(" V");

    delay(1000);
}
```