

Nous innovons pour votre réussite!

Cours d'Optique geometrique

Filière CPI1

Semestre S2

Nous innovons pour votre réussite!

Introducuon generale

Pourquoi doit on étudier l'optique?

Nous innovons pour votre réussite!

Introducuon generale

Pourquoi doit on étudier l'optique?

Optique et nutrition: quel lien?

- Une nouvelle étude sur le rôle des oméga 3 et la sécheresse oculaire de grande ampleur a été conduite récemment: Les acides gras représentent un des suppléments les plus importants dans le traitement de l'œil sec.
- Du point de vue des vitamines c'est toujours la vitamine A et la vitamine E qui sont les plus importantes au niveau de l'œil sec.
- Une carence sévère en vitamine A qui n'existe pas sous nos latitudes, conduit à une xérophtalmie (insuffisance totale de larmes)

Nous innovons pour votre réussite!

Introduction générale OBJECTIFS DU COURS

Savoirs

Définition du vocabulaire associé :

- Aux ondes
- •Aux lois de la réflexion et de la réfraction
- •Aux lentilles minces
- •À la fibre optique

et Savoirs Faire

Appliquer les lois de la réflexion et de la réfraction sur des exemples simples

Construire géométriquement l'image d'un objet à travers une lentille mince convergente

Construire géométriquement le trajet d'un rayon lumineux dans une fibre optique à saut d'indice.

Nous innovons pour votre réussite

L'optique

... Ce que perçoit l'œil

Une science vieille de 2000 ans

- Grecs:
- Aristote (384-322 av JC) : éther (pas de vide)
- Euclide (325-265 av JC) : loi de la réflexion, rayon lumineux
- Ptolémée (100-170 ap JC) : étude de la réfraction (pas la loi)
- Héron d'Alexandrie (100 ap. J.-C.) : trajet le plus court
- Arabes:
- Ibn Al-Haytham (965-1039) : concept d'image, formation des images /l'œil
- 13^{ème} siècle: miroirs, besicles, arc-en-ciel
- 17^{ème} siècle : débat sur la nature ondulatoire/corpusculaire de la lumière
- 1609 : Galilée: lunette, microscope
- 1611 : loi de la réfraction (Willebrordus Snellius), lunette astronomique / Kepler
- 1637 : Dioptrique de Descartes: formulation mathématique des lois de l'optique
- 20ème siècle : complémentarité → optique physique mécanique quantique, électromagnétisme

Nous innovons pour votre réussite!

STRATÉGIES PÉDAGOGIQUES

- * deux heures de cours magistral par semaine.
- ❖ De nombreux exemples seront faits en classe pour permettre aux étudiants de bien assimiler la théorie et les techniques présentées au cours.
- Deux heures seront consacrées à l'analyse de problèmes et d'applications pertinentes. L'étudiant est alors en mesure d'évaluer objectivement son degré d'acquisition des connaissances et d'y apporter les correctifs appropriés.
- Des séances en laboratoire complètent l'apprentissage des concepts fondamentaux. 8 heures

Nous innovons pour votre réussite!

PLAN DU COURS

Semaine 1	Chapitre 1: Notion de rayon lumineux			
Semaine 2	Travaux dirigés : sur les rayons lumineux			
Semaine 3	Chapitre 2: Réflexion – réfraction			
Semaine 4 & 5	Travaux dirigés sur : Sur le chapitre2			
Semaine 6	Examen partiel 1			
Semaine 7	Chapitre 3: Formation des images			
Semaine 8 & 9	Travaux dirigés sur : le chapitre 3			
Semaine 10	Chapitre 4: Lentilles minces			
Semaine 11	Travaux dirigés sur : le chapitre 4			
Semaine 12	Chapitre 5: Miroirs sphériques			
Semaine 13	Travaux dirigés sur : le chapitre 5			
Semaine 14	Examen partiel 2			

Nous innovons pour votre réussite!

TRAVAUX PRATIQUES(8H)

- 1. Réfraction de la lumière
- 2. Focométrie
- 2. Goniométrie et prisme

Nous innovons pour votre réussite!

Chapitre I:

Sources de lumières, notions de rayons lumineux

Nous innovons pour votre réussite !

En premier temps on expliquera la propagation de la lumière, en deuxième temps la différence entre les sources de lumières primaires et secondaires et en troisième temps on définira quatre sources de lumières:

Les sources d'incandescence
Les sources de bioluminescence
Les sources de fluorescence
Les sources de chimioluminescence

Nous innovons pour votre réussite !

La propagation

La lumière se propage en ligne droite jusqu'à ce qu'elle frappe un objet

Un faisceau lumineux est un ensemble de rayon lumineux

Pour voir un objet, il faut qu'il soit éclairé et qu'il diffuse de la lumière

Nous innovons pour votre réussite!

Les sources primaires

Les sources de lumières primaires produisent de la lumière par elle-même

Exemple:

- Soleil
- Feux d'artifices
- Éclairs

Nous innovons pour votre réussite!

Les sources secondaires

•Les sources de lumière secondaires sont des objets qui renvoient une partie de la lumière qu'ils reçoivent

Exemple:

- Lac
- Pomme
 - Terre

Nous innovons pour votre réussite

Les sources d'incandescence

Objet tellement chauffé qu'il produit de la lumière visible

Flammes ou ampoules électriques

Une durée de vie de 6 à 15 fois moins longue que celle des ampoules fluorescentes

Transforme 70% de son énergie en chaleur et 30% en lumière

Nous innovons pour votre réussite!

Les sources de fluorescence

Particules qui absorbent l'énergie ultraviolette

Tube fluorescent utilise beaucoup moins d'énergie que les ampoules incandescentes

Mercure qui absorbe l'énergie ultraviolette Transforme 80% de son énergie en lumière et 20% en chaleur

Nous innovons pour votre réussite !

Les sources de bioluminescence

Réaction chimique produite dans le corps d'un être vivant

Les animaux marins qui l'utilisent s'en servent pour attirer leurs proies

Mais elle est aussi utilisé comme moyen de

Nous innovons pour votre réussite!

Propagation de la lumière

La lumière, les rayons lumineux se propagent en ligne droite dans le vide.

La lumière n'a pas besoin de support matériel pour se propager.

La lumière se propage dans le vide à la vitesse de la lumière :

$$c = 299792458 \text{ m/s}$$

Durée de propagation Terre-Lune : 1,2 s Terre-Soleil : 8 mn

Rien ne peut aller plus vite que la lumière (dans le vide).

Ondes progressives

Onde

- Perturbation d'un milieu dans lequel elle se propage
 - Onde mécanique (corde, liquide, ondes sonores,...)
 - Onde électro-magnétique
- Seule la perturbation se déplace, pas le milieu
 - Grandes vitesses de déplacement

□ Progressive

- La perturbation se propage dans l'espace
 - Doit être fonction du temps et de l'espace

Nous innovons pour votre réussite !

La lumiere:

• La lumière visible fait partie d'une grande famille de phénomènes de même nature: les ondes électromagnétiques.

• La lumière naturelle est donc une <u>superposition</u> d'ondes électromagnétiques de <u>différentes</u> <u>longueurs d'ondes</u> (couleurs).

Ondes électro-magnétiques

- □ Equations de Maxwell (1831-1879)
 - Unifie les lois de l'électromagnétisme
 - Fournit une solution à l'équation d'ondes
- □ Solution: 2 ondes harmoniques transverses

$$\mathbf{E} = E_0 \cos \left[2\pi \left(\frac{t}{T} - \frac{z}{\lambda} \right) \right] \mathbf{u_x}$$

$$\mathbf{B} = B_0 \cos \left[2\pi \left(\frac{t}{T} - \frac{z}{\lambda} \right) \right] \mathbf{u_y}$$

☐ Intensité $I \square E_0^2$

Onde électromagnétique

Des sources diverses créent un champ électromagnétique (\vec{E} et \vec{B}) qui est défini en tout point de l'espace M(x,y,z) à tout instant t. Les variations spatiales et temporelles de ce champ définissent une onde électromagnétique.

La vitesse de propagation v dépend de la nature du milieu (dans le vide elle est maximale est égale à c).

Pour une onde polarisée rectilignement, de sont orthogonaux entre eux et dans un plan fixe.

Une telle onde se propageant vers les x positifs avec une vitesse **v** pourra avoir la forme générale :

$$E = A \cos \left[\omega \left(t - \frac{x}{v}\right) + \varphi\right]$$

A est l'amplitude de l'onde ;

w est la fréquence circulaire ou pulsation. Elle est reliée à la période T et à la fréquence ν de la radiation par les relations :

$$T = \frac{2\pi}{\omega} \quad \text{et} \qquad v = \frac{1}{T} = \frac{\omega}{2\pi}$$
$$-\frac{\omega X}{v} + \varphi \quad \text{est la phase au point x.}$$

A un instant donné, E est une fonction sinusoïdale de x.

La distance λ entre deux maxima ou deux minima successifs est appelée **longueur d'onde**.

On a alors les relations : $\frac{\omega\lambda}{V} = 2\pi$

ce qui définit la longueur d'onde : $\lambda = vT$

ou en l'exprimant avec la fréquence v de la radiation :

$$\lambda = \frac{\mathsf{v}}{\mathsf{v}}$$

Spectre

Il est important de situer le phénomène lumineux visible dans l'échelle des longueurs d'ondes ou des fréquences.

Le domaine **visible** s'étend approximativement de 0,4 à 0,7 µm

Caractère corpusculaire

C'est **Einstein**, en 1905, qui pour rendre compte des effets photoélectriques a introduit la notion de corpuscule de lumière ou photon; l'énergie de la lumière se propage par quanta d'énergie hv :

(h = $6,62\times10^{-34}$ J/s est la constante de Planck et v la fréquence du rayonnement).

Ce modèle corpusculaire ne rend pas compte de l'aspect ondulatoire de la lumière.

On ne l'utilise que si le nombre de photons mis enjeu est très faible.

 Dans un milieu matériel la lumière se propage plus lentement ; sa vitesse dépend du type de milieu, c'est à dire de l'indice de propagation du milieu :

$$V = \frac{C}{n}$$

Milieu	Indice n		
Vide	1		
Air	1,00027=1		
Eau	1,33		
Verre courant	1,5		
Verre à fort indice	1,6 <n<1,8< td=""></n<1,8<>		
cristal de Lustre	1,9		
Diamant	2,4		

Nous innovons pour votre réussite!

• La longueur d'onde (λ) est la plus petite distance, mesurée suivant l'axe de propagation, entre deux points de l'onde ayant les mêmes caractéristiques. La longueur d'onde est par exemple la distance entre deux maxima ou deux minima successifs.

$$\lambda = cT = \frac{c}{v}$$

C = 299792458 ms⁻¹ T période de l'onde v sa fréquence

Nous innovons pour votre réussite !

L'indice de réfraction n :

n est constant dans les milieux homogènes

Loi de Cauchy.

avec A et B positifs

 $n(\lambda) = A + \frac{B}{\lambda^2}$

n dépend de ρ
Loi de Gladstone

$$n(\rho) = 1 + k\rho$$

 ρ la masse volumique du milieu

$$k \ge 0$$

Principes d'optique géométrique

- Principe de Fermat:
- « Le trajet suivi par la lumière est celui pour lequel le chemin optique est stationnaire ou extrémal. »
- © Les rayons lumineux n'interagissent pas entre eux
- Dans un milieu homogène transparent et isotrope, les rayons lumineux suivent une trajectoire rectiligne
- le chemin suivi est indépendant du sens de parcours. Cela signifie que si l'on inverse le sens de propagation de la lumière, un rayon lumineux suit le même chemin même à travers une surface de séparation entre 2 milieux.
- à l'interface entre 2 milieux différents, le trajet d'un faisceau lumineux est régi par les lois de Snell-Descartes

Nous innovons pour votre réussite

L'optique géométrique est une approximation... : ce que l'on suppose

- $\lambda \rightarrow 0$; propagation rectiligne dans milieu homogène i.e. λ petit par rapport aux instruments de mesure
- √ ∃ des rayons lumineux indépendants les uns des autres
- ✓ Dans un milieu homogène, transparent et isotrope, les rayons lumineux sont des lignes droites.
- ✓ A la surface de séparation de deux milieux, les rayons lumineux obéissent aux lois de Snell-Descartes.
- ✓ Principe du retour inverse de la lumière

Nous innovons pour votre réussite

L'optique géométrique est une approximation... : ce que l'on suppose

Fondements de l'optique géométrique déduits du Principe de Fermat

 principe du moindre temps selon lequel la lumière suit le trajet de plus courte durée

[utilise chemin optique défini par la théorie ondulatoire de la lumière...]

= chemin optique δL = n(I) δI extrémal (minimal/maximal)

Nous innovons pour votre réussite!

Un critère simple, qui ne sera pas justifié ici repose sur la comparaison entre la dimension caractéristique D d'un obstacle placé sur le trajet de la lumière et la longueur d'onde λ , et offre le choix suivant :

	Optique géométrique	Optique ondulatoire	Optique quantique
Validité	$D >> \lambda$	$D \le \lambda$	$D << \gamma$
Préoccupations	Rayon lumineux, réflexion, réfraction, dispersion, photométrie	Ondes lumineuses, interférence, diffraction, diffusion	Processus atomiques, vibrations des molécules
Apparition	17 ^{éme}	19 ^{éme}	$20^{ m \acute{e}me}$

Nous innovons pour votre réussite!

Indice optique d'un milieu transparent

Un milieu est transparent s'il permet la propagation de la lumière, sans absorption.

Pour les milieux matériels, la transparence dépend de la longueur d'onde du rayonnement. C'est le cas des isolants comme les verres qui sont transparents dans le visible, mais absorbent l'infrarouge lointain et l'ultraviolet. Il n'y a que le vide qui soit transparent à toute longueur d'onde.

Nous innovons pour votre réussite!

L'indice optique n d'un milieu transparent est défini par :

$$\eta = \frac{C}{V}$$

où c est la vitesse de propagation de la lumière dans le vide, et v la vitesse de propagation de la phase de l'onde dans le milieu.

C'est un nombre sans dimension, toujours supérieur à 1. Plus n est grand, plus le milieu est dit réfringent.

L'indice n du milieu est généralement donné pour la radiation jaune ($\lambda = 589$ nm), ce qui correspond à un indice absolu moyen sur le spectre visible.

Milieu	Air	Eau	Crown	Flint	Diamant
Indice n	1,003	~1,33	~1,52	~1,67	2,42

Nous innovons pour votre réussite!

Un milieu transparent dont l'indice optique dépend de la longueur d'onde est dit dispersif. C'est en fait le cas de tous les milieux matériels, même si la variation d'indice peut parfois être négligée sur un petit domaine spectral.

Pour la plupart des milieux utilisés en optique, l'indice $n(\lambda)$ peut s'exprimer selon la formule empirique de Cauchy:

$$n = a + \frac{b}{\lambda^2}$$

où a et b sont des constantes positives; bour le verre, a ~ 1.5 et b

 m^2 .

Nous innovons pour votre réussite!

Le principe de Fermat

Le chemin optique

Soient A et B deux points aux extrémités d'un trajet sur un rayon lumineux et un point M de ce rayon où la vitesse de la lumière est notée v(M).

La durée de parcours de l'élément dl = MM' est :

$$dt = \frac{dl}{v(M)} = \frac{n(M) dl}{c}$$

$$n(M) = \frac{c}{v(M)}$$

Pendant cette durée dt, la lumière parcourt dans le vide le trajet :

$$dL = cdt = n(M) dl$$

car

Nous innovons pour votre réussite!

On appelle *chemin optiqui*ong du trajet AB l'expression :

$$L_{AB} = \int_{AB} n(M) d\ell$$

Unité: L étant une longueur s'exprime en mètres.

Enoncé du principe de Fermat

Ce principe est indépendant de la nature ondulatoire de la lumière et permet de bâtir toute l'optique "géométrique" à partir de la seule notion de rayon lumineux.

Parmi tous les trajets possibles entre A et B, un seul est emprunté par la lumière :

Pierre de Fermat (1601 – 1665)

Nous innovons pour votre réussite!

"Le trajet effectivement suivi par un rayon lumineux entre deux points A et B est tel que le temps de parcours de la lumière entre ces deux points est stationnaire "

Stationnaire signifie que pour une variation δM du point M, la variation de chemin optique $\delta L = L' - L$ (pour deux chemins optiques infiniment voisins L et L') est un infiniment petit par rapport à $|\delta M|$.

Dans la plupart des cas, cette stationnarité correspond à un minimum.

Nous innovons pour votre réussite!

Premières conséquences

Propagation rectiligne dans un milieu homogène

Dans un milieu homogène, n = cte, par suite :

$$L_{AB} = n \widehat{AB}$$

et on sait que l'arc AB minimal est la ligne droite.

Nous innovons pour votre réussite!

Retour inverse de la lumière

Soit entre A et B le chemin optique L_{AB} . Nous pouvons écrire :

$$L_{AB} = \int_{Ab} n(M) dl = \int_{Ab} n(M)(-dl) = \int_{Ab} n(M) dl'$$

ceci, si dl' correspond à un élément de trajet orienté de B vers A , donc : $L_{AB} = L_{BA}$

Ces deux trajets sont stationnaires; le trajet suivi par la lumière ne dépend pas du sens de parcours.

Nous innovons pour votre réussite!

L'optique géométrique est une approximation... : ce que l'on néglige

Interférences et diffraction (phénomènes liés à la nature ondulatoire de la lumière)

Bulles de savon : couleurs interférentielles

Diffraction de la lumière sur un CD

Limite de validité du modèle géométrique

Nous plaçons devant le rayonnement directif d'un laser, un diaphragme à ouverture circulaire variable.

La loi de propagation rectiligne est une loi limite, valable dans le cas des longueurs d'onde faibles devant les dimensions des diaphragmes des systèmes optiques.

diaphragme

écran

L'expérience de Young

C'est en 1801 que Thomas Young (1773-1829) démontra la nature ondulatoire de la lumière et réalisa sa fameuse expérience de la double fente de Young.

a) Expérience de la double fente de Young. b) Si la lumière était constituée de particules, nous devrions nous attendre à voir deux lignes brillantes sur l'écran de visualisation derrière les fentes. c) Young observa plusieurs lignes.

L'expérience de Young

 Un dispositif à deux fentes (dispositif de Young), éclairé par un faisceau de lumière cohérente, produira une figure d'interférence formée de franges brillantes et sombres.

Caractère ondulatoire

Le modèle ondulatoire s'est progressivement imposé devant l'impossibilité du modèle géométrique à expliquer des phénomènes tel que la diffraction, l'arc-en-ciel, le bleu du ciel...

Interférences et diffraction (phénomènes liés à la nature ondulatoire de la lumière)

Bulles de savon : couleurs interférentielles

Diffraction de la lumière sur un CD

Nous innovons pour votre réussite !

L'optique géométrique est une approximation... : ce que l'on néglige

• Stigmatisme: 1 objet → système optique → 1 image

Système non stigmatique

→ Conditions de Gauss: rayons quasi axiaux

Nous innovons pour votre réussite!

Réflexion de la lumière

Réflexion sur une surface métallique bien polie (d'aspect brillant)

L'angle de réflexion, a_r est égal à l'angle d'incidence, a_i.

Nous innovons pour votre réussite!

Réfraction de la lumière

Nous innovons pour votre réussite!

La réflexion totale

Dispersion de la lumière

L'indice du milieu varie avec la couleur : c'est un milieu dispersif.

Si la lumière est composée de plusieurs couleurs, son passage de l'air dans ce milieu va provoquer la décomposition de cette lumière.

L'ensemble des couleurs de cette lumière forme son spectre.

L'absorption de la lumière

En général, tous les milieux absorbent la lumière de façon plus ou moins importante suivant la couleur.

Cette absorption provoque un échauffement du milieu ou du matériau. La lumière réfléchie est aussi affaiblie.

Pratiquement, tous les milieux diffusants sont absorbants

Le rayonnement du soleil

