Collaborators: None

Sources: Lecture Notes; https://en.wikipedia.org/wiki/Quantum Zeno effect

Q3 Quantum Anti-Zeno Effect

Assume you have a single qubit that you know is in the state $| 0 \rangle$. You wish to change its state to $| 1 \rangle$. You have the ability to build any measurement device, and use it as many times as you want. How can you almost surely get the qbit's state changed to $| 1 \rangle$?

Remark: More specifically, given $\varepsilon > 0$, build a quantum circuit that outputs a qbit | 1) with probability at least $1 - \varepsilon$. You are not allowed to apply gates (or rotations) to your qubit.

Ans: To change the state of a single qubit from $| 0 \rangle to | 1 \rangle$ with a probability of at least $1 - \epsilon$, without using quantum gates, you can employ a probabilistic measurement strategy. Here's a step-by-step approach:

Strategy for Changing Qubit State

- 1. **Measurement Setup**: Design 2 measurement devices that measures the qubit in the $\{ | + \rangle \ and \ | \rangle \}$ basis; and $\{ | 0 \rangle \ and \ | 1 \rangle \}$ basis respectively.
- 2. **Initial Measurement**: Measure the qubit in the $|+\rangle$, $|-\rangle$ basis and then in $|0\rangle$ and $|1\rangle$ basis:
 - Whatever the result is whether $|+\rangle$ or $|-\rangle$ initially, do nothing and then measure the intermediate output in $|0\rangle$ and $|1\rangle$ basis.
 - The input | 0⟩ has equal chance of outputting | +⟩ and | -⟩ in the first measurement. Be it | +⟩ or | -⟩, the next measurement in | 0⟩ and | 1⟩ basis also has equal chance of outputting | 0⟩ and | 1⟩.
 - So, the

Probability(Single Measurement Final output = | 1\) = Probability(| 0\) turning | +\) * Probability(| +\) turning | 1\) + Probability(| 0\) turning | -\) * Probability(| -\) turning | 1\) = $\frac{1}{2} * \frac{1}{2} + \frac{1}{2} * \frac{1}{2} = \frac{1}{2}$

3. **Repeat Measurements**: Repeat the measurement process after getting | 0⟩. Each time you get a result of | 0⟩, you have a 50% chance that the qubit is in state | 1⟩ after the next measurement.

Probability(Final output = | 1) after atmost N measurements) = $1 - \frac{1}{2^N}$

4. **Stopping Criterion**: Continue this process until we are confident that the probability of the qubit being in state $| 1 \rangle$ is at least $1 - \epsilon$.

$$1 - \frac{1}{2^N} \ge 1 - \epsilon \quad \implies N \le -\log_2 \epsilon$$

After repeating this measurement for sufficiently large number of times, we can almost be sure to get $| 1 \rangle$ as output.