

Recommendation App —— Restaurant Decision Tool For Two!

Outline

- Introduction (Ariani)
- Project Dataset (Muru)
 - Understanding the Features
 - EDA
- Restaurant Recommendation Algorithms
 - TF-IDF/NLTK (Elsa)
 - Doc2Vec Methods (Erin)
 - Collaborative Filtering/Hybrid (Ariani)
- Results and Comparison of Methods (Eric)
- Ok Foodie! App Demonstration (Muru)
- Conclusions & Future Directions

Ever had this conversation?

Big Data - The Abundance of Options

Paradox of Choice

- Modern consumers are inundated with choices.
- Retailers and content providers offer a huge selection of products, with unprecedented opportunities to meet a variety of special needs and tastes.
- Matching consumers with the most appropriate products is key to enhancing user satisfaction and loyalty.
- Personalized recommendation systems have become a keen interest for companies to enhance their market share.
- Good personalized recommendations add another dimension to a user's experience.
- Many companies combine collaborative & content based methods.

Round 12

Competition to use data in innovative ways

Users, Businesses, Reviews, Tips, Check-ins, Photos

From 10 metro areas in 2 countries

"Unsupervised Foodies"
Project Focus:
Las Vegas Restaurants

Why Las Vegas?

Exploratory Data Analysis

Exploratory Data Analysis

6153 restaurants in Las Vegas, 4064 are currently open; 3020 have > 25 reviews

Who are the Users?

- Average rating is 3.8 stars
- 80% of the reviewers only write 5 reviews
- Yelp Elite users are more influential and considered extremely active prolific users, therefore their reviews should have more weight.
- Yelp users with friends are more likely to trust their friend's opinions on a restaurant.

App Workflow Yelp Data Set 2 Restaurant Preferences Restaurant + Location List of Restaurants Reviews with Location Info 2 Options from Local Restaurant List NLP Business Model Details Ok Foodie! Restaurant Similarities Ranked Recommendations Filter with User Preferences & Location

Yelp and the 1/9/90 rule: Approach (unknown users)

Content (item) -based recommendation

Similarity based on text vectorization

Pre-processing

Document-to-vector models (Word Embedding)

Document Similarity

- Tokenize
- Lemmatize
- Filter stop words
- Filter infrequent words

Frequency based Embedding:

- Count vector
- TF-IDF (NLTK, Gensim)
- Co-occurrence vector (GloVe)

Prediction based Embeddings:

 Word2Vec & Doc2Vec (Neural networks, Gensim)

2. Rank restaurants

TF-IDF weighted sum of embedding vectors

- Reduce dimensionality: PCA (75500,300) → (75500, 8)
- > t-SNE (75500, 2)
- Feed into collaborative filtering model

- Bad reviews
- Good reviews

Natural Language Processing with Neural Networks

Word Vectors

Hidden layer of neural network

Word representation transformed to probability distribution of nearby words

Paragraph/Document Vectors

Fixed-length feature representations of contextual meaning from text of any length

Inferring Similarities From Words

Find similarities from word frequencies:

- menu items
- service quality

Comparable Options

Inferring Similarities Through Context

Find deeper meaning within the reviews:

- menu items
- service quality
- uniqueness
- reputation
- 'cult' status
- high ratings
- customer base

NLP Vectorization of Yelp Reviews

Using GenSim Doc2Vec Module:

Joining Forces

User-based filtering

Item-based filtering

Using Matrix Factorization

- Collaborative filtering analyzes relationships between users and interdependencies among products to identify new user-item associations.
- Matrix Factorization is a mathematical tool used to discover the latent (hidden) interactions between users and restaurants, driving the raw data (which we understand as tastes and preferences).
- Matrix factorization is the breaking down of one matrix into a product of multiple matrices.

Matrix Factorization

m = number of users, n = number of items choose d, the number of features

Using Collaborative Filtering for Two

The matrix factorization model provides a rank and predicted score for each user and restaurant.

L	Js	e	r	A
•	, .			$\boldsymbol{-}$

Name	Score	Rank
Incognito Wraps	4.413172	1
Taco Naco	4.348425	2
Kame Omakase	4.327258	3
Chef @ Your Home	4.319013	4

User B

Name	Score	Ranks
Taco Naco	4.327258	1
Pollos El Dorado	4.32112	2
Incognito Wraps	4.319013	3
Kame Omakase	4.310336	4

Recommendation

Name	Rank
Taco Nacho	3
Incognito Wraps	4
Kame Omakase	7

Model comparison - collaborative filtering

Model	RMSE
Baseline	1.01601
+ Feature Engineering	0.9556
+ NLP	0.82792

Comparison of Approaches

- Collaborative filtering prediction easy to evaluate
- Unsupervised learning lacks direct evaluation metric
- Use collaborative filtering to evaluate new user recommendations
- Intuition: match new user to existing user(s) that rated choice similarly
- Predict all ratings using collaborative filtering
- Compute average ratings among similar users
- Estimate quality of recommendations across models

Model evaluation: overview

- Use selected restaurants as starting point
- Sample set of restaurant pairs to simulate input from app
- For any given restaurant combination:
 - Identify existing Yelp users that also like the input choices
 - Select top 25 users with highest demeaned rating for each
- Identify restaurants that comparison group likes
- Compute probability both "unknown" users would like recommendations
- Iterate over sample

Model evaluation: parameters

- We explored several parameters
- Comparison group should also like input choice
 - Star rating threshold for comparison group
- Tokenized review distribution can vary a lot across reviews
 - Mean versus median aggregation of individual reviews
 - Weighting tokenized reviews differently

Model evaluation: tf-idf based on nltk

What is the probability that both individuals like the recommendation?

	Review filters			
	None	3+	4+	5 only
Median, no weights	0.034062	0.034062	0.034062	0.020609
Median, weighted	0.059977	0.059977	0.059977	0.020340
Mean, no weights	0.032545	0.032545	0.032545	0.019433
Mean, weighted	0.200828	0.200828	0.200828	0.058580

Density of nltk recommendation quality

Product Demo

Conclusions & Next Steps

- Continue Model Refinement:
 - o Incorporate larger samples of dataset to improve accuracy and personalization
 - Add text from user tips to NLP models
- Scale Up:
 - DataBricks/PySpark
 - Include more cities from the Yelp Challenge DataSet
 - Link to Yelp API
- Next Generation:
 - Mobile app
 - Personalized recommendations for registered Yelp users
 - Optimizing models based on user selections

Acknowledgements

- Yelp
- NYC DS Academy Teaching Staff
- Teaching Assistants (Dragos)
- Our Patient Friends & Families

Questions and Suggestions

Final Product

