	<pre># parece que no hay valores nulos y el tipo de dato de las columnas es float <class 'pandas.core.frame.dataframe'=""> RangeIndex: 506 entries, 0 to 505 Data columns (total 14 columns): # Column Non-Null Count Dtype </class></pre>
In [5]: Out[5]:	memory usage: 55.5 KB boston.isnull().sum() # no hay nulos
In [6]: Out[6]:	TAX 0 PTRATIO 0 B 0 LSTAT 0 MEDV 0 dtype: int64 CRIM ZN INDUS CHAS NOX RM AGE DIS RAD count 506.000000 506.00000 506.000000 506.000000 506.000000 506.00000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.0000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.0
In [7]:	min 0.006320 0.000000 0.460000 0.000000 0.385000 3.561000 2.900000 1.129600 1.000000 187.00 25% 0.082045 0.000000 5.190000 0.000000 0.449000 5.885500 45.025000 2.100175 4.000000 279.00 50% 0.256510 0.000000 9.690000 0.000000 0.538000 6.208500 77.500000 3.207450 5.000000 330.00 75% 3.677083 12.500000 18.100000 0.000000 0.624000 6.623500 94.075000 5.188425 24.000000 666.00 max 88.976200 100.000000 27.740000 1.000000 0.871000 8.780000 100.000000 12.126500 24.000000 711.00 # dividimos el dataframe en dos, las variables independientes por un lado y las dependientes por un lado y la las dependientes por un lado y las
In [8]:	Función que representa gráficos de dispersión de las variables en X en función a la variable Y ''' fig_tot = (len(X.columns)) fig_por_fila = 4. tamanio_fig = 4. num_filas = int(np.ceil(fig_tot/fig_por_fila)) plt.figure(figsize=(fig_por_fila*tamanio_fig+5, num_filas*tamanio_fig+5)) c = 0 for i, col in enumerate(X.columns): plt.subplot(num_filas, fig_por_fila, i+1) sns.scatterplot(x=X[col], y=Y) plt.title('%s vs %s' % (col, 'target'))
In [9]:	plt.ylabel('Target') plt.xlabel(col) plt.show() relaciones_vs_target(X, Y, return_type='axes') # Podemos ver que con la variable RM(Número promedio de habitaciones por vivienda) tiene un relacion lineal positiva bastante fuerte # y con LSTAT(Porcentaje de menor estatus de la población) tiene una relacion lienal negati a fuerte CRIM vs target ZN vs target INDUS vs target CHAS vs target CHAS vs target
	## 30
n [10]:	Histogramas de las variables independientes plt.figure(figsize=(18, 20)) n = 0 for i, column in enumerate(X.columns): n+=1
	plt.subplot(5, 5, n) sns.distplot(X[column], bins=30) plt.title('Distribución var {}}'.format(column)) plt.show() Distribución var CRIM Distribución var ZN O25 O25 O20 O15 O10 O30 O25 O20 O30 O30 O30 O30 O30 O30 O30
	Distribución var RM Distribución var AGE D
n [11]:	<pre>X_normalizado = (X-X.mean())/X.std() plt.figure(figsize=(15,7)) ax = sns.boxplot(data=X_normalizado) ax.set_xticklabels(ax.get_xticklabels(),rotation=90) plt.title(u'Representación de cajas de las variables independientes X') plt.ylabel('Valor de la variable normalizada') _ = plt.xlabel('Nombre de la variable') Representación de cajas de las variables independientes X 10 - *</pre>
	solor de la variable normalizada A John Carlos de la variable normaliza
n [12]:	Matriz de correlaciones: Matriz de correlaciones = boston.corr(method='pearson')
	plt.xticks(range(n_ticks), boston.columns, rotation='vertical') plt.yticks(range(n_ticks), boston.columns) plt.colorbar(plt.imshow(matriz_correlaciones, interpolation='nearest',
	CHAS - NOX -
n [13]:	# tabla de clasificacion de variables mas correlacionadas de mas a menos correlaciones_target = matriz_correlaciones.values[-1, : -1] indices_inversos = abs(correlaciones_target[:]).argsort()[: : -1] diccionario = {}
ut[13]:	<pre>for nombre, correlacion in zip(boston.columns[indices_inversos], list(correlaciones_target indices_inversos])): diccionario[nombre] = correlacion pd.DataFrame.from_dict(diccionario, orient='index', columns=['Correlación con la target'])</pre>
	NOX -0.427321 CRIM -0.388305 RAD -0.381626 AGE -0.376955 ZN 0.360445 B 0.333461 DIS 0.249929 CHAS 0.175260
n [14]: In []:	ESTANDADIZACION DE DE COME
	<pre>Division en train y test de los datos X_train, X_test, Y_train, Y_test = train_test_split(X_estandarizado, Y, test_size=0.2, rand m_state=0)</pre>
n [23]:	<pre>obj_escalar = StandardScaler() X_estandarizado = obj_escalar.fit_transform(X) Division en train y test de los datos X_train, X_test, Y_train, Y_test = train_test_split(X_estandarizado, Y, test_size=0.2, rand)</pre>
n [23]: n [24]: n [26]: n [31]:	<pre>Obj_escalar = StandardScaler() X_estandarizado = obj_escalar.fit_transform(X) Division en train y test de los datos X_train, X_test, Y_train, Y_test = train_test_split(X_estandarizado, Y, test_size=0.2, rand m_state=0) En vez de usar sklearn vamos a utilizar Keras y Tensorflow, ya que son mas avanzados. # funcion para la construccion de un modelo de regresion de redes neuronales con Kerasy Tensorflow def constructor_modelo(): # Definición del modelo modelo = keras.Sequential([layers.Dense(64, activation='relu', input_shape=[X_train.shape[1]]), layers.Dense(64, activation='relu'), layers.Dense(64, activation='relu'), layers.Dense(64)]) # Definición del optimizador optimizer = tf.keras.optimizers.RMSprop(0.001) # Compilación del modelo modelo.compile(loss='mse',</pre>
n [23]: n [24]: n [26]: n [31]:	Division en train y test de los datos X_train, X_test, Y_train, Y_test = train_test_split(X_estandarizado, Y, test_size=0.2, rand m_state=0) En vez de usar sklearn vamos a utilizar Keras y Tensorflow, ya que son mas avanzados. # funcion para la construccion de un modelo de regresion de redes neuronales con Kerasy Tensorflow modelo = keras. Sequential([
n [23]: n [24]: n [26]: n [31]: ut[31]:	Division en train y test de los datos X_train, X_test, Y_train, Y_test = train_test_split(X_estandarizado, Y, test_size=0.2, randmistate=0) En vez de usar sklearn vamos a utilizar Keras y Tensorflow, ya que son mas avanzados. # funcion para la construccion de un modelo de regresion de redes neuronales con Kerasy Tensorflow para la construccion de un modelo de regresion de redes neuronales con Kerasy Tensorflow de constructor_modelo(): # funcion para la construccion de un modelo de regresion de redes neuronales con Kerasy Tensorflow de constructor_modelo(): # funcion para la construccion de un modelo de regresion de redes neuronales con Kerasy Tensorflow de constructor_modelo(): # constructor_modelo(): # Definición de la evidelo # Entrenamos (esta activation="relu", input_shape=[X_train.shape[1]]), layers.Dense(1)]) # Definición del optimizador * optimizer = tf. keras. optimizers. RMSprop(8.001) # Compilación del modelo # Constructor_modelo() # Entrenamos el modelo # Constructor_modelo() # Constructor
n [23]: n [24]: n [26]: n [31]: ut[31]:	Division en train y test de los datos X_train, X_test, Y_train, Y_test = train_test_split(X_estandarizado, Y, test_size=0.2, rand m.state=0) En vez de usar sédeam vamos a utilizar Keras y Tensorflow, ya que son mas avanzados. # funcion para la construccion de un modelo de regresion de redes neuronales con Kerasy Tensorflow profilom # befinicion doi: modelo modelo
n [23]: n [24]: n [26]: n [31]: n [32]:	Division en train y test de los datos X.train, X.test, Y.train, Y.test = train_test_split(X.estandarizade, Y, test_size=0.2, rand m.train processor Test Test
n [23]: n [24]: n [25]: n [26]: n [31]: n [32]:	Division en train y test de los datos X train, X test, Y train, Y test = train test split(x estandarizado, V, test size-0.2, rado (Linkers) X train, X test, Y train, Y test = train test split(x estandarizado, V, test size-0.2, rado (Linkers) X train, X test, Y train, Y test = train test split(x estandarizado, V, test size-0.2, rado (Linkers) # (unctuo para la comercación de un audelo de regression de redes noureacles con Kerany Tendrollando (Linkers) # (unctuo para la comercación de un audelo de regression de redes noureacles con Kerany Tendrollando (Linkers) # (unctuo para la comercación de un audelo de regression de redes noureacles con Kerany Tendrollando (Linkers) # (unctuo para la comercación (Linkers) # (un construcción audelo) # (un construcción del optimizado (Linkers) # (un construcción del optimizado
n [23]: n [24]: n [26]: n [31]: n [32]:	bbj esociar = Standar Mobiler () X. estandar Jacob = obj. esociar Till. (renterior(x)) Division en train y test de los datos X. train, X. test, Y. train, Y. test = train_test_epili(X_estandarizado, Y, test_element_x, rad m_statem) En vez de user sedera entro al utilizar Krashy Tesocron, ya que sen mas averazos. A function para la construcción de un medels de regresso de reces outronales den Arrasy Tes estandarizado del noveloción el Portinación del noveloción el Portinación del noveloción el Portinación del superiolation el portinación del superiolation del superiolation del superiolation del entro superiolation del entro superiolation del su
n [23]: n [24]: n [25]: n [26]: n [31]: n [32]:	Division en train y test de los datos X.7240, X 1951, Y 17410, Y 1941 = 17410 [est split(X estandar/bodo, Y, test size-1.7, rout The various values wares andre Konsy Divisions pages on machanous. X.7240, X 1951, Y 17410, Y 1941 = 17410 [est split(X estandar/bodo, Y, test size-1.7, rout The various values wares andre Konsy Divisions pages on machanous. X.7240, X 1951, Y 17410, Y 1941 = 17410 [est split(X estandar/bodo, Y, test size-1.7, rout The various values wares andre Konsy Divisions pages on machanous. X.7240, X 1951, Y 17410, Y 1941 = 17410 [est split(X estandar/bodo, Y, test size-1.7, rout The various values wares and under Konsy Divisions pages on machanous. X.7240, X 1951, Y 17410, Y 1941 = 17410 [est split(X estandar/bodo, Y, test size-1.7, rout The various values wares and under the large of test split(X estandar/bodo, Y, test size-1.7, rout The consideration of test split(X estandar/bodo, X estandar/bodo,
n [23]: n [24]: n [25]: n [26]: n [31]: n [32]:	Division en train y test de los datos X_crato. X_crato. Y_crato. Y_crato. Y_crato. Y_crato. Y_crato. Y_crato. X_crato. X_crato. X_crato. X_crato. X_crato. Y_crato. Y_crato. Y_crato. Y_crato. X_crato.
n [23]: n [24]: n [25]: n [26]: n [31]: n [32]:	Obj. Account - Standardscaler() Division en train y test de los datos * Train, % Lest, y train, Y test - train lest split(* especialistically, y, test size=0.2, read and an advantage of test split(* especialistically, y, test size=0.2, read and an advantage of test split(* especialistically, y, test size=0.2, read and an advantage of test split(* especialistically, y, test size=0.2, read and advantage of test split(* especialistically, y, test size=0.2, read and advantage of test split(* especialistically, y, test size=0.2, read and especialistically, and especialis
n [23]: n [24]: n [25]: n [26]: n [31]: n [32]:	Division en train y test de los datos Kitana, y fant, Y faran, Y cent en train test estat de manacionale, Y, test stratella, red Annacional de contrata de la contrata de la colonia de manacionale, Y, test stratella, red Annacional de contrata de la contrata de la colonia de registrata de reda manacionale Proces de contrata de contrata de la colonia de registrata de reda manacionale Borre Bergin de Contrata de la contrata de la colonia de registrata de reda manacionale Borre Bergin de Contrata de la colonia de la colonia de registrata de reda manacionale Borre Bergin de la colonia del colonia de la colonia del colonia de la colonia de la colonia del colonia de la colonia del colonia de la colonia del
n [23]: n [24]: n [25]: n [26]: n [31]: n [32]:	Division en train y test de los datos Signary Aller, Varian, Varian, Varian, Valent, Varian,
n [23]: n [24]: n [25]: n [31]: n [32]: n [32]:	Division en train y test de los datos A catal. A catal. A catal. A catal. A catal catal place parameters of catal place par
n [23]: n [24]: n [25]: n [31]: n [32]: n [32]:	Division on train y test de los datos Establishados II de social de constante de los datos Latinos Allan Tarina Y test de los datos Cartinos Allan Tarina Y test datos Cartinos All
n [23]: n [24]: n [25]: n [31]: n [32]: n [32]:	Division on train y test de los datos Filiados Sunta Sulva Fallana, Turada e valada para (Cura andre valada, T., test planeta). Filiados Sulva Fallana, Turada e valada para (Cura andre valada, T., test planeta). Filiados Sulva Fallana, Turada e valada para (Cura andre
n [23]: n [24]: n [25]: n [31]: n [32]: n [32]:	Division entrain y test de los datos Figures de la constitución de la
n [23]: n [24]: n [25]: n [31]: n [32]: n [32]:	Division en train y test de los datos Division en train y test de los datos Entre de la company de la company de la constanta de la company de la constanta de la company de la compan
n [23]: n [24]: n [26]: n [31]: n [32]: n [33]:	Division on training that is done does not seem to the second of the sec
n [23]: n [24]: n [26]: n [31]: n [32]: n [33]:	Division en train y test de los datos ** Seguida de la Carta de l
n [23]: n [24]: n [33]: n [33]: n [33]: n [33]:	Division en train y test de los datos ***Control Control Cont
n [23]: n [24]: n [33]: n [33]: n [33]: n [33]:	President on train y tout do los datos Consequentes (1)
n [23]: n [23]: n [23]: n [33]: n [33]: n [33]: n [33]:	Control of the Management of the Section of the Sec

PROBLEMA DE REGRESION CON REDES NEURONALES

boston = pd.DataFrame(boston_dataset.data, columns=boston_dataset.feature_names)

DIS RAD TAX PTRATIO

B LSTAT MEDV

24.0

15.3 396.90 4.98

17.8 396.90 9.14 21.6

In [42]: import pandas as pd
 pd.options.display.max_columns = 500
 import numpy as np
 from sklearn.neural_network import MLPClassifier
 from sklearn.preprocessing import StandardScaler
 from sklearn.model_selection import train_test_split, GridSearchCV
 import matplotlib.pyplot as plt
 import seaborn as sns
 import sklearn.metrics as metrics
 import warnings
 warnings.filterwarnings('ignore')

from sklearn.neural_network import MLPRegressor
import multiprocessing

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from sklearn.metrics import mean_squared_error

CRIM ZN INDUS CHAS NOX RM AGE

In [2]: from sklearn.datasets import load_boston
boston_dataset = load_boston()

boston.head()

Out[2]:

from sklearn.model_selection import RandomizedSearchCV
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer

boston['MEDV'] = boston_dataset.target # faltaba esta columna

0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0

1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0