IMPLEMENTATION OF BOOLEAN LOGIC BY USING ARDUINO WITH ASSEMBLY

LAKIREDDY VEERASIVA REDDY

 $lakkired dy veer a sivared dy @gmail.com\\ FWC 22122~IITH-Future~Wireless~Communications~Assignment-2$

April 13, 2023

Contents

1	Problem	2
2	Introduction	2
3	Components	2
4	Implementation 4.1 Truth Table 4.2 K-map 4.3 Boolean Expression	3 3 4
5	IMPLEMENTATION 5.1 Procedure	4 4
6	Software	4

1 Problem

(GATE EC-2020)

Q.No 10 The figure (Fig.1) below shows a multiplexer where S_1 and S_0 are select lines, I_0 to I_3 are the input data lines, EN is the enable line, and F(P,Q,R) is the output, F is

Figure 1: Circuit

- 1. PQ + Q'R
- 2. P + QR'
- 3. PQ'R + P'Q
- 4. Q' + PR

2 Introduction

A 4×1 multiplexer has four data inputs I_3 , I_2 , I_1 and I_0 , two selection lines S_1 and S_0 and one output Y.One of these 4 inputs will be connected to the output based on the combination of inputs present at these two selection lines.

3 Components

Components	Value	Quantity
Resistor	220 Ohm	1
Arduino	UNO	1
Bread Board		1
Jumper Wires	M-M	10
LED		1

Table 1: Components

Implementation 4

We know that the output of a multiplexer is given as:

$$F = S_1'S_0'I_0 + S_1'S_0I_1 + S_1S_0'I_2 + S_1S_0I_3$$

$$F = P'Q'R + P'Q(0) + PQ'R + PQ(1)$$

$$F = P'Q'R + P'Q(0) + PQ'R + PQ(1)$$

$$F = P'Q'R + PQ'R + PQ$$

$$F = Q'R(P'+R) + PQ$$

$$F = Q'R + PQ : (P' + R = 1)$$

4.1 Truth Table

P	Q	\mathbf{R}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Table 2: Truth Table

4.2 K-map

K-map follows as:

Figure 2: K-map

4.3 Boolean Expression

By Solving the above K-map, we get a boolean equation as: F = PQ + Q'R

5 IMPLEMENTATION

Arduino	INPUT	OUTPUT
PIN		
2	Р	
3	Q	
4	R	
5		F

Table 3: Connections

5.1 Procedure

- 1. Connect the circuit as per the above table.
- 2. Connnect the one end of the resistor to a node of LED and cathode of LED to ground.
- 3. Connect the output pin to another end of resisor.
- 4. Connect inputs to Vcc for logic 1, ground for logic 0.
- 5. Execute the circuit using the below code.

6 Software

Now execute the following code and upload in arduino to see the results

 $https://github.com/SivaLakkireddy/FWC/blob/main/Assembly/code/assembly.asm \\ \\$