Fractais e L-Systems

Apresentado por: Adriel Costa, Edson Cassiano, Eduardo Marinho, Fernanda Lustosa e Samuel Morais

Tópicos

O que são L-Systems?

Definindo um L-System

Autômato com Pilha

Geração de Cadeias

Checagem de Cadeias

Resultados

Referências

O que são L-Systems?

• Sistema formal para modelar padrões e crescimento.

Componentes:

Figura 1. Curva de Koch: um exemplo clássico de fractal gerado por L-Systems, onde cada iteração adiciona complexidade ao padrão inicial.

Definindo um L-System

Variáveis	F, G	Desenha um traço longo
	f, g	Desenha um traço curto
Constantes	+	Altera o ângulo para a esquerda
	-	Altera o ângulo para a direita
	[Determina o início de um ramo
]	Determina o fim de um ramo
	Т	Aumenta a espessura do traço

	t	Diminui a espessura do traço
	r	Altera a cor do traço para vermelho
	g	Altera a cor do traço para verde
	b	Altera a cor do traço para azul
Axioma	Definido pelo usuário	
Regras de Produção	Definido pelo usuário	

Autômato com Pilha

Alfabeto de Entrada:

$$\Sigma = \{F, f,], [, r, g, b, +, -, T, t\}$$

Alfabeto da Pilha:

$$\Gamma = \{F, f, [,]\}$$

Geração de Cadeias

Entrada de Dados e Validação

O usuário fornece o número de iterações, ângulo e axioma. Os símbolos do axioma são validados em relação ao alfabeto permitido.

Produção Iterativa de Cadeias

Em cada iteração do algoritmo todas as variáveis da cadeia são substituídas conforme as regras definidas pelo usuário.

Renderização da Cadeia Final

A biblioteca <u>turtle</u> é utilizada para interpretar os símbolos do L-System e mapeá-los para ações de desenho.

Checagem de Cadeias

 Axioma, cadeia esperada, regras de prdução e número de iterações são as informações recebidas pelo programa. A pilha é preenchida com as variáveis e as regras são aplicadas recursivamente até atingir o número de iterações. Quando a pilha e a cadeia são consumidas a correspondência entre elas é verificada.

Resultados

Figura 2. Resultado gerado a partir de 3 iterações, com ângulo igual a 60 e axioma "Ff". Regras de produção utilizadas: $F \rightarrow F[+F]F[-F][F]$; $f \rightarrow f[+f]f[-f][f]$.

Figura 3. Resultado gerado a partir de 4 iterações, com ângulo igual a 90 e axioma "F". Regras de produção utilizadas: F -> rf[+bF]-gF.

Figura 4. Resultado gerado a partir de 4 iterações, com ângulo igual a 120 e axioma "F-G-G". Regras de produção utilizadas: F-> F-G+F+G-F; G-> GG.

Figura 5. Resultado gerado a partir de 4 iterações, com ângulo igual a 60 e axioma "F". Regras de produção utilizadas:

<u>F -> G-F-G; G -> F+G+F.</u>

Referências

WIKIPEDIA. L-system. Disponível em: https://en.wikipedia.org/wiki/L-system. Acesso em: 02 dez. 2024.

PRUSINKIEWICZ, Przemyslaw; LINDENMAYER, Aristid. The Algorithmic Beauty of Plants. 1. ed. New York: Springer-Verlag, 1990. Cap. 1, p. 1-18.

Obrigado!