Равномерная непрерывность функции

Определение. Функция $f: E \to \mathbb{R}$ называется равномерно непрерывной на множестве $D \subset E$, если

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x_1, x_2 \in D: \ |x_1 - x_2| < \delta \ \Rightarrow \ |f(x_1) - f(x_2)| < \varepsilon.$$

Полезно сравнить определения равномерной непрерывности и непрерывности функции на множестве. Функция $f:E\to\mathbb{R}$ непрерывна на множестве $D\subset E$, если она непрерывна в каждой точке $x_0\in D$, то есть

$$\forall x_0 \in D \ \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x \in D: \ |x - x_0| < \delta \ \Rightarrow \ |f(x) - f(x_0)| < \varepsilon.$$

Отличие определения равномерной непрерывности от непрерывности на множестве состоит в том, что в определении равномерной непрерывности число δ зависит только от ε , тогда как в определении непрерывности функции δ зависит от ε и от точки x_0 .

Пример 1. Рассмотрим функцию $f(x) = \frac{1}{1+x^2}$ на множестве $[0, +\infty)$. Докажем, что на этом множестве данная функция будет равномерно непрерывна.

Возьмем произвольное число $\varepsilon>0$ и два значения аргумента из промежутка $[0,+\infty)$ и составим разность

$$f(x') - f(x'') = \frac{1}{1 + x'^2} - \frac{1}{1 + x''^2} = \frac{x''^2 - x'^2}{(1 + x'^2)(1 + x''^2)} = \frac{(x'' - x')(x' + x'')}{(1 + x'^2)(1 + x''^2)}.$$

Оценим модуль этой разности, используя неравенство между средним арифметическим и средним геометрическим $\left(x \leq \frac{1+x^2}{2}\right)$:

$$|f(x') - f(x'')| \le \left(\frac{x'}{1 + x'^2} + \frac{x''}{1 + x''^2}\right) \cdot |x' - x''| \le \left(\frac{1}{2} + \frac{1}{2}\right) |x' - x''| = |x' - x''|.$$

Отсюда следует, что, если взять $\delta=\varepsilon$, то из неравенства $|x'-x''|<\delta$ будет следовать неравенство $|f\left(x'\right)-f\left(x''\right)|<\varepsilon$, что и требовалось доказать. О

Лемма. Если функция равномерно непрерывна на множестве D, то она непрерывна на этом множестве.

Доказательство. Пусть $x_0 \in D$. Так как функция f равномерно непрерывна на D, то по $\varepsilon > 0$ найдется $\delta > 0$, что для любых $x_1, x_2 \in D$: $|x_1 - x_2| < \delta$ будет выполнено $|f(x_1) - f(x_2)| < \varepsilon$. В частности, для $x_1 = x_0$ это утверждение верно, что и означает непрерывность f в точке x_0 .

Обратное, вообще говоря, неверно.

Пример 2. Пусть $f(x) = x^2$ и $G = [0, +\infty)$. Отметим, что данная функция будет непрерывной в каждой точке данного промежутка. Докажем, что эта непрерывность не будет равномерной на G.

Возьмем два значения аргумента $x' = n + \frac{1}{n}$ и x'' = n $n \in \mathbb{N}$, которые будут принадлежать заданному промежутку. Тогда будет справедливо неравенство

$$|f(x') - f(x'')| = |x'^2 - x''^2| = \frac{1}{n} \left(2n + \frac{1}{n}\right) > 2.$$

Следовательно, если взять $\varepsilon_0 = 2$, то, какое бы число $\delta > 0$ мы ни взяли, мы сможем найти число $n \in \mathbb{N}$ такое, что $|x' - x''| = \frac{1}{n} < \delta$, но при этом $|f(x') - f(x'')| > \varepsilon_0$. Это означает, что равномерной непрерывности функции на данном промежутке нет.

Теорема (Кантора). Функция, непрерывная на отрезке [a,b], равномерно непрерывна на нем. Доказательство. Возьмем $\varepsilon > 0$ и, пользуясь непрерывностью функции на [a,b], для каждой точки $x_0 \in [a,b]$ найдем окрестность $U_{\delta_{x_0}}(x_0)$ так, что

$$\forall x \in [a, b]: |x - x_0| < \delta_{x_0} \Rightarrow |f(x) - f(x_0)| < \frac{\varepsilon}{2}.$$

Множество окрестностей $U_{\delta_x/2}, x \in [a,b]$ образует покрытие отрезка [a,b] из которого, по теореме Бореля–Лебега, можно выделить конечное покрытие

$$U_{\delta_{x_1}/2}, \ U_{\delta_{x_2}/2}, ..., U_{\delta_{x_n}/2}.$$

Пусть $\delta = \min\left(\frac{\delta_{x_1}}{2},...,\frac{\delta_{x_n}}{2}\right)$. Возьмем $x',x'' \in [a,b]$ и $|x'-x''| < \delta$. Найдется окрестность $U_{\delta_{x_i}/2},$ содержащая x'. Тогда

$$|x'' - x_i| \le |x'' - x'| + |x' - x_i| < \delta + \frac{\delta_{x_i}}{2} < \delta_{x_i},$$

то есть $x', x'' \in U_{\delta_{x_i}}$. Но тогда

$$|f(x') - f(x'')| \le |f(x') - f(x_0)| + |f(x_0) - f(x'')| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

что и означает равномерную непрерывность f на [a,b].

Заметим, что в условии Теоремы отрезок нельзя заменить на интервал или полуинтервал.

Отрицание определения. Функция f не является равномерно непрерывной на множестве D, если

$$\exists \varepsilon > 0: \ \forall \delta > 0 \ \exists x_1, x_2 \in D: \ |x_1 - x_2| < \delta, \ |f(x_1) - f(x_2)| \ge \varepsilon.$$

Пример 3. Функция f(x) = 1/x непрерывна на (0,1), но не является равномерно непрерывной на нем.

Возьмем $x_1 = \frac{1}{n}, x_2 = \frac{1}{2n}$. Так как

$$|x_1 - x_2| = \frac{1}{2n} \to 0,$$

то эту разность можно сделать сколь угодно малой, выбрав достаточно большое n. В то же время,

$$|f(x_1) - f(x_2)| = 2n - n = n$$

становится сколь угодно большим и не может быть $< \varepsilon$.