$30~\mathrm{Ekim}~2017$

Lecture Notes Chapter 8 Digital Modulation Methods in an Additive White Gaussian Noise Channel

Channel
• AWGN: Simplest model for channel impairments
• Advantages of Digital Transmission:
• Digital Transmission: Binary data is mapped to analog waveforms
• A finite number of analog waveforms are used
• Reason of using analog waveforms:
• Will first consider baseband transmission
\bullet In reality communications occur in a pass band , away from $f=0$
• Binary data is mapped to the
 Phase of the carrier signal Frequency of the carrier signal
- Both phase and amplitude of the carrier
• In this chapter we concentrate on the transmission of a single symbol.
8.1 Geometric Representation of Signal Waveforms
• Suppose we want to send block of 6 bits.
• There are bit combinations

 \bullet In digital transmission we assign each bit sequence to a different analog signal.

• So different analog signals are needed.
• What should the receiver do?
- Compare the received signal to these 64 signals?
- There is a simpler way
 Most of the time the 64 signals can be written as a combination of 1 or 2 base signals.
- Then the receiver calculates the projection of the received signal on these 2 signals.
 Much simpler and systematic.
 Now we will learn to determine minimal a set of base signals corresponding to a set of signals.
• In order to send k bits, we need $M=2^k$ different analog signals $s_m(t), 1 \leq m \leq M$
• We can express these M signals as linear combinations of N orthonormal signals $\psi_n(t)$
 What is orthonormal? orthogonal: and normal There are infinite possible choices of orthonormal basis sets
• Systematic way: Gram-Schmidt Orthonormalization
Gram-Schmidt Orthonormalization Procedure
• Begin with $s_1(t)$ and normalize it to find $\psi_1(t)$
• Take $s_2(t)$ and
– compute its projection on $\psi_1(t)$
- compute $s_2(t) - c_{21}\psi_1(t)$ to yield
– Normalize $d_2(t)$ to find $\psi_2(t)=$

• Take $s_k(t)$ and

- compute its projection on $\psi_1(t), \ldots, \psi_{k-1}(t)$

- compute $s_k(t) - \sum_{i=1}^{k-1} c_{ki} \psi_i(t)$ to yield

– Normalize $d_k(t)$ to find $\psi_k(t) =$

• If at any step $d_k(t)$ then no new $\psi(t)$

Example 8.1.1: Apply Gram-Schmit procedure to these signals.

- Expressing $s_m(t)$ as a vector in the ψ space.
- Find the projections of $s_m(t)$ on each $\psi_n(t)$:
- So $s_m(t) =$
- Energy of $s_m(t)$: $\mathcal{E}_m =$
- Vector:

Example 8.1.2: Determine the vector representations of $s_m(t)$ in the previous example. Solution:

A set of signals and their orthogonalization

Most of the time a convenient orthonormal basis set can be found without using Gram-Schmidt method.

A set of signals and their orthogonalization

8.4 M-Ary Digital Modulation

Binary modulation: Transmit one bit at a time. Two signal waveforms are required

- Binary antipodal and binary orthogonal are two main binary modulation schemes.
- Others are special cases of these two.
- 1 bit/symbol
- Some examples

M-ary modulation: Use M different waveforms. Transmit $k = \log_2 M$ bits at a time.

$$R_{s} = \frac{1}{T}$$

$$R_{b} = kR_{s} = \boxed{ }$$

$$T_{b} = \boxed{ }$$

8.4.1 Optimal Receiver for M-ary Signals in AWGN

$$r(t) = s_m(t) + n(t), 0 \le t \le T, m = 1, 2, ..., M$$
 $n(t)$ is

Signal Demodulator:

Receiver is divided into two such as

 T_b = bit interval T = symbol interval

M-ary bit and symbol intervals

- 1. Demodulator
- 2. Detector

M-ary signal waveform can be represented as

$$s_m(t) = \sum_{k=1}^{N} s_{mk} \Psi(t), 0 \le t \le T, m = 1, ..., M$$

Signal can be represented as a vector

Demodulator: CORRELATOR.

Correlation type demodulator

$$\int_{0}^{T} r(t)\Psi_{k}(t) =$$

$$=$$

$$y_{k} =$$

$$\mathbf{y} = \mathbf{s}_{m} + \mathbf{n}$$

$$r(t) =$$

$$=$$

$$n'(t) =$$

n'(t) is orthogonal to every dimension of the signal waveform (s_{mk}) , so it is irrelevant.

So, N noise components are uncorrelated and independent. Distribution is Correlator output:

Distribution of y_k is: y_k is also independent of n'(t)

Another type of demodulator: MATCHED FILTER

Matched Filter: Impulse Response matched to the signal waveform Signal s(t): matched filter h(t)=s(T-t)

Matched Filter example

$$s(t) * s(T - t) = \int_0^t s(\tau)s(T - t + \tau)$$

Shetch:

Maximizes the output SNR. Output SNR depends on the energy of the matched filter but not on the signal waveform itself.

In the frequency domain:

What about the noise component?

Example 8.4.1: Consider 4-PAM. Determine the PDF of the received signal at the output of the correlator and sketch its PDF.

Solution:

Matched Filter type demodulator

Example 8.4.1: Consider M-4 orthogonal signaling. Determine the PDF of the received

Examples of orthogonal signaling:
1. Pulse position modulation
2. Frequency Shift Keying
Solution:
Optimum Detector The problem is::
$\arg\max_{m=1,\dots,M} P(\texttt{signal m was transmitted} \mathbf{r})$
"Find the most likely transmitted waveform, given the demodulator output" This is Maximum A Posteriori Probability (MAP) detector

signal at the output of the correlator and sketch its PDF.

Signal constellation, noise cloud and received vector (M=4, N=3)

$$P(\mathbf{s}_m|\mathbf{y}) = \frac{f(\mathbf{y}|\mathbf{s}_m)P(\mathbf{s}_m)}{f(\mathbf{y})}$$
 where $f(\mathbf{y}) = \sum_{m=1}^M f(\mathbf{y}|\mathbf{s}_m)P(\mathbf{s}_m)$ so the problem is
$$\max_m \frac{f(\mathbf{y}|\mathbf{s}_m)P(\mathbf{s}_m)}{f(\mathbf{y})}$$
 Simplification
$$f(\mathbf{y}|\mathbf{s}_m) = \prod_{k=1}^N \frac{1}{\sqrt{\pi N_o}} e^{(y_k - s_{mk})^2/N_o}$$
 take logarithm:
$$\ln f(\mathbf{y}|\mathbf{s}_m) = \prod_m \frac{1}{m}$$

14

$D(\mathbf{y}, \mathbf{s}_m)$ is the	
Example 8.4.3: Consider binary PAM. Signal points are $s_1 = -s_2 = \sqrt{\epsilon_b}$. Prior proba-	
bilities are unequal (i.e. $P(s_1) \neq P(s_2)$) Determine the metric.	
Solution:	
MAP detection minimizes the probability of error.	
8.4.1a Probability of error for binary PAM	
5.4.1a 1 105a5inty of circl for binary 171vi	
Output of demodulator is	
Assume equiprobable signaling	
Assume $s_1(t)$ was transmitted. Then demodulator output is	

8.4.2 A Union Bound on the Probability of Error

For binary equiprobable signaling (which is)

8.5 M-ary Pulse Amplitude Modulation

$$s_m(t) = s_m \Psi(t), 0 \le t \le T, m = 1, 2, ..., M$$

$$s_m = (2m - 1 - M)d$$

$$Average symbole nergy \epsilon_s =$$

$$Average bit energy \epsilon_b =$$

Solution:		
.1 Carrier Modula	ted PAM for bandpass c	hannels (M-ary ASK)
		,
gular baseband PAM s	ted PAM for bandpass classing to the state of the state o	,
gular baseband PAM s		,
gular baseband PAM s	gnal is multiplied with a cosine to	,
gular baseband PAM s	gnal is multiplied with a cosine to	,
gular baseband PAM s t This is like a t The occupied bandwidtl t t	gnal is multiplied with a cosine to is $s_m(t) \cos(2\pi f_c t), m = 1,, M$	o make it bandpass
gular baseband PAM signals for the second part $u_m(t)$ $u_m(t)$	gnal is multiplied with a cosine to is $= s_m(t)\cos(2\pi f_c t), m = 1,, M$ $= s_m \sqrt{2}\Psi(t)\cos(2\pi f_c t), m = 1,$	o make it bandpass
gular baseband PAM signals for the second part $u_m(t)$ $u_m(t)$	gnal is multiplied with a cosine to is $s_m(t) \cos(2\pi f_c t), m = 1,, M$	o make it bandpass
gular baseband PAM signals for the second pandwidth $u_m(t)$ $u_m(t)$ s_m	is	o make it bandpass
egular baseband PAM signal PAM s	gnal is multiplied with a cosine to is $= s_m(t)\cos(2\pi f_c t), m = 1,, M$ $= s_m \sqrt{2}\Psi(t)\cos(2\pi f_c t), m = 1,$	o make it bandpass

8.5.2 Demodulation and Detection of Bandpass PAM

The re	ceived sig	nal is corr	elated wit	h			
THC TC	cerved sign		ciaica wii	11			
The	e result is						
The	e detector	decides a	ccording t	о			
8.5.3	Probab	oility of	Error f	or M-F	$^{ m PAM}$		
Err						ılator outp ng greater	
SKE	; uCII.						

$$y = s_{m} + n$$

$$P_{M} = \frac{M - 2}{M} P(|y - s_{m}| > d) + \frac{2}{M} P(y - s_{m} > d)$$

$$= \begin{bmatrix} & & & \\ & &$$

Distance parameter d can be related to the average symbol energy ϵ_{av} as,

In terms of the average bit energy ϵ_{bav}

$$P_M =$$

Example 8.5.3: Using the figure below, determine the approximate SNR/bit required to achieve a SER of $P_M = 10^{-6}$ for M=2,4,8.

Phase Shift Keying

Each analog waveform has equal energy. Equally-spaced on a circle around the origin of the constellation diagram.

Bit error rate for PAM: The horizontal axis is $\frac{\epsilon_{bav}}{N_o}$ (in dB). Every extra 1 bit/symbol requires extra 4dB SNR. For better spectral efficiency we need more transit power.

Special case: For rectangular pulse

$$\begin{aligned} & u_m(t) &= \sqrt{\frac{2\epsilon_s}{T}}\cos(2\pi f_c t + \frac{2\pi m}{M}), 0 \leq t \leq Tm = 1,..., M \\ & \epsilon_{bav} &= \frac{\epsilon_{av}}{\log_2 M} \\ & General case &: & \text{Pulse} g_T(t) \\ & u_m(t) &= g_T(t)\cos(2\pi f_c t + \frac{2\pi m}{M}), 0 \leq t \leq Tm = 1,..., M \end{aligned}$$
 where e cosine e c

expanding the ${\tt cosine} u_m(t)$ =

Sketch the modulator:

Example of a 4-PSK $\,$

8.6.1 Geometric representation of M-PSK Signals

For general pulse $g_T(t)$ Sketch the constellation for M=2,4,8

 d_{min} plays an important role in determining the error probability

Example 8.6.1: For M=8 PSK determine how many dB the transmitted energy must be increased to achieve the same d_{min} as M=4.

Solution:

L		

8.6.2 Demodulation and Detection of PSK Signals

Optimal detector: Compute the phase of the detector output (

and find the signal \mathbf{s}_m whose phase is closest to

8.6.3 Probability of Error for Phase Coherent PSK

Let $s_0 = (\sqrt{\epsilon_s}, 0)$ be transmitted

Demodulator output is $(y_1, y_2) = (\sqrt{\epsilon_s} + n_c, n_s)$. Then the phase of **y** is checked. Error probability is about the phase being $\theta > \pi/M$ or $\theta < -\pi/M$. The pdf of Θ is complicated, and exact error probability calculation requires numerical integration.

For M=2: equivalent to 2PAM (antipodal signaling) $p_2 = Q(\sqrt{\frac{2\epsilon_b}{N_o}})$

For M=4: We have two 2PSK signals (one in the horizontal and the other in the vertical axis of the constellation)

$$P_4 = 1 - (1 - P_2)^2$$

$$= 1 - \left[1 - Q(\sqrt{\frac{2\epsilon_b}{N_o}})\right]^2$$

$$= \boxed{}$$
 for high SNR $=$

For general M: An approximate approach:

For high SNR: Each point in the constellation can be mixed with only the nearest neighbors:

8.7 Quadrature Amplitude Modulated Digital Signals

For M-PSK analog waveforms have the same energy		
In the constellation diagram		
In M-QAM we don't have this	s constraint.	
Like PSK		

$$u_{m}(t) = Amcg_{T}(t)\cos(2\pi f_{c}t) - A_{ms}g_{T}(t)\sin(2\pi f_{c}t), m = 1, ..., M$$

$$u_{mn}(t) = A_{m}g_{T}(t)\cos(2\pi f_{c}t + \theta_{n}), m = 1, ..., M_{1}, n = 1, ..., M_{2}$$

$$M_{1} = 2^{k_{1}}$$

$$M_{2} = 2^{k_{2}}$$

$$M = M_{1} + M_{2} =$$

Bit error rate for PSK: The horizontal axis is $\frac{\epsilon_{bav}}{N_o}$ (in dB). Every extra 1 bit/symbol requires extra 4dB SNR. For better spectral efficiency we need more transit power.

8.7.1 Geometric Representation of QAM Signals

16QAM Constellation. It's like modulating the two quadrature carriers by 4PAM

Functional block diagram of QAM

Example 8.7.1: Determine the average energy of the below QAM contellations Solution:

Example QAM constellations

Example 8.7.1

8.7.2 Demodulation and Detection of QAM Signals

$$\begin{array}{rcl} r(t) & = & Amcg_T(t)\cos(2\pi f_c t) - A_{ms}g_T(t)\sin(2\pi f_c t) + n(t) \\ \text{Cross correlated} & = & \text{by}\Psi_1(t)\text{and}\Psi_2(t) \\ & \mathbf{y} & = & \mathbf{s}_m + \mathbf{n} \\ & = & \\ D(\mathbf{y},\mathbf{s}_m) & = & \\ \end{array}$$

Optimum detector selects the signal corresponding to the smallest value of $D(\mathbf{y}, \mathbf{s}_m)$

8.7.3 Probability of Error for QAM

Two 4-point QAM Constellations

A circular 16QAM constellation. Actually rectangular QAM constellations are preferred, as they are much easier to generate (two PAM signals).

When k is ${ t even} P_M^{QAM}$	=	$1 - (1 - P_{\sqrt{M}}^{PAM})$
	=	
When k is $\mathtt{odd}P_{M}^{QAM}$	=	
	=	
$\label{eq:compare_def} \text{Compare with MPSK}: P_{M}^{PSK}$	=	
Ratio of the arguments $\!R\!$	=	
Comment:		

Figure 7.62 Probability of a symbol error for QAM.

 ${\rm QAM}$ symbol error rate graphs. Determine the required increase in transmit energy for each extra bit/symbol

End-of-chapter problems: 8.1-8.40