Reg. No	. :	***************************************

Name :

Sixth Semester B.Sc. Degree Examination, March 2021

First Degree Programme under CBCSS

Mathematics

Core Course

MM 1644 : ABSTRACT ALGEBRA – II (2015-2017 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. Each carries 1 mark.

- 1. Determine whether the map $\phi: GL(n, \mathbb{R}) \to \mathbb{R}$ given by $\phi(A) = tr(A)$ is a homomorphism, where, $GL(n,\mathbb{R})$ is the multiplicative group of all invertible $n \times n$ matrices.
- 2. Find the order of $(\mathbb{Z}_4 \times \mathbb{Z}_2)/\langle (2,1) \rangle$
- 3. Find the solution of the congruence $36x \equiv 15 \pmod{24}$, if it exists.
- 4. Find the order of the ring $M_2(\mathbb{Z}_2)$
- 5. Find a solution of the quadratic equation $x^2 + 2x + 4 = 0$ in the ring \mathbb{Z}_6
- 6. Find the number of zero divisors in the ring \mathbb{Z}_4
- 7. Compute the product (12)(16) in \mathbb{Z}_{24}

- 8. State whether true or false: "Z is a subfield of Q"
- 9. Find all ideals of \mathbb{Z}_{12}
- . 10. Find the characteristic of the ring $\mathbb{Z}_6 \times \mathbb{Z}_{15}$

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions from this Section. Each carries 2 marks.

- 11. Let $\phi: G \to G'$ be a group homomorphism of G onto G'. Prove that G' is abelian if G is abelian.
- 12. Find ker ϕ and $\phi(3)$ for $\phi: \mathbb{Z}_{10} \to \mathbb{Z}_{20}$ such that $\phi(1) = 8$.
- 13. Let $\phi: G \to G'$ be a group homomorphism, show that if |G| is finite, then $|\phi[G]|$ is finite and is a divisor of |G|.
- 14. Find the order of $5 + \langle 4 \rangle$ in $\mathbb{Z}_{12}/\langle 4 \rangle$
- 15. Show that A_n is a normal subgroup of S_n and compute S_n/A_n
- 16. Prove that the factor group of a cyclic group is cyclic.
- 17. Compute the factor group $(\mathbb{Z}_4 \times \mathbb{Z}_6)/\langle 0, 2 \rangle$
- 18. Let H be a normal subgroup of an abelian group G. Then show that G/H is abelian.
- 19. Describe all ring homomorphisms of \mathbb{Z} into \mathbb{Z} .
- 20. Find the remainder when 3⁴⁷ is divided by 23.
- 21. Describe all units in the ring $\mathbb{Z} \times \mathbb{Z}$
- 22. Let R be a commutative ring with unity of characteristic 3. Compute and simplify $(a+b)^6$ for $a,b \in R$.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions from this Section. Each carries 4 marks.

- 23. Prove that a group homomorphism $\phi: G \to G'$ is a one-one map if and only if $\ker \phi = \{e\}$
- 24. Let $\phi: G \to H$ be a group homomorphism. Show that $\phi[G]$ is abelian if and only if, for every $x, y \in G$ we have $xyx^{-1}y^{-1} \in \ker \phi$.
- 25. Show that arbitrary intersection of normal subgroups of a group G is again a normal subgroup.
- 26. Show that the characteristic of an integral domain must be either zero or a prime *p*.
- 27. Find the last two digits in the decimal representation of 3256.
- 28. Show that for every integer n, the number $n^{33} n$ is divisible by 15.
- 29. Let $d = \gcd(a, m)$. Prove the congruence $ax \equiv b \pmod{m}$ has a solution if and only if d/b
- 30. Show that the group homomorphism $\phi: G \to G'$ where |G| is prime must either be trivial or a one-one map
- 31. State and prove Fermat's Little Theorem.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions from this Section. Each carries 15 marks.

- 32. Let R be a ring that contains at least two elements. Suppose for each non-zero $a \in R$, there exists a unique $b \in R$ such that aba = a.
 - (a) Show that R has no divisors of zero.
 - (b) Show that bab = b.
 - (c) Show that R has unity.
 - (d) Show that R is a division ring.

- 33. (a) Show that all automorphisms of a group G form a group under function composition.
 - (b) Show that the inner automorphisms of a group G form a normal subgroup of the group of all automorphisms of G under function composition.
- 34. State and prove fundamental theorem of Ring Homomorphism.
- 35. Prove that
 - (a) Every field is an Integral Domain.
 - (b) Every finite integral domain is a field.
 - (c) If p is a prime, then \mathbb{Z}_p has no divisors of zero.

 $(2 \times 15 = 30 \text{ Marks})$