4)
a.Class distribution was equal in both training and testing datasets.following are the histograms of the both data

1 b
By changing the no of neurons in the hidden layer we can observe that the loss is decreasing and the model is performing better .By increasing the number of hidden units our model loss is reducing which is our model is performing better.

2 a

 $2\;\mbox{b}$. By increasing the learning rate we can observe that our model is converging quickly

2 1 Test accuracy for different activation functions

ReLu	0.8940476190476191
Tanh	0.8448412698412698
Linear	0.8579365079365079

4 . Total layers = 5 No of hidden layers =3 6.

ReLu	0.8075396825396826
Tanh	0.8547619047619047
Linear	0.82777777777777
Sigmoid	0.8865079365079365

Observed above testing accuracies using sklearn's MLPClassifier Sklearn was using adam optimiser where as we used batch gradient descent .However accuracies are not matching with our own model

5. Highest accuracy was observed in relu activation function

