$$P(a) = a^5 + 2a^4 + 2a^3 + 4a^2 + a + 2$$

$$7(a) = \frac{a^2 + 7a + 10}{a^6 + 2a^4 - a^2 - 2}$$

$$T(D) = \frac{D+5}{D^5 - D^7 + 3D^3 - 3D^2 + 2D - 1}$$

Determine how many polos are in the LHP, RHP & ju asus.

$$T(R) = \frac{\rho^2 + 3\rho - 4}{\rho^4 + 4\rho^3 + 5\rho^2 + 8\rho + 6}$$

14. Consider the following routh table. Notice the D' row was originally all zeros. Tell how many poles are in the RHP, ZHP & jw axis

	1		. , L	(
57	1	2	-)	- 2
56	1	2	-1	-2
55	3	4	-1	0
54	1	-1	-3	0
5 3	7	8	0	0
s 2	-15	-21	0	0
s'	- 9	0	0	10
5 °	-21	0	0	1 0
	ļ		1	

19, Repeat (18) For

34. Consider the following system

+ \(\bigcirc \frac{K}{\lambda(0+1)(\D+2)(\D+5)} \)

(a) find K for stability
(b) find K for Marginal Stability
(c) Find the actual location of the
closed loop poles when the system
is marginally stable.