EKF and Smoothing-based UAV Positioning Using UWB and IMU Fusion

Jungwon Kang¹, **Kunwoo Park**¹, Gunho Sohn¹, Mozhdeh Shahbazi², Patrick Ménard³

¹York University ²University of Calgary ³Centre de géomatique du Québec

June 19 2018

Contents

- 1. Introduction
- 2. EKF vs Smoothing for UAV Positioning Using UWB & IMU
- 3. Experimental Results
- 4. Conclusion & Future Work

1. Introduction

UAV application in GPS-denied environment

- Indoor application
- Bridge, Tunnel, Chimney inspection
- High-rise building inspection

Difficulties of Maneuvering a Drone in GPS-denied environment

Alternative Sensors for UAV Positioning

- Image-based Camera: highly sensitive to the surroundings
- Ranging-based UWB sensor: resistant to severe multipath

Skybotix VI-Sensor

PX4FLOW optical flow camera board

Time Domain PulsOn 440

Decawave TREK1000

Ultra-Wideband-Based positioning

- Robust to multipath and non-line-of-sight (NLOS) effects
- cm-level ranging error
- Wide range applicable
- Light weight, low power consumption

Related Works

UWB Sole System K. Guo 2016, B. Dewberry 2016

- Issue 1: Estimation of UWB station position
- Issue 2: Trilateration & Kalman Filter

Filtering based

GPS-UWB Coupled System K. Hausman 2016, J. Wang 2016

- Issue 1: Relative coordination between W and S
- Issue 2: Fusion of W-based pose and S-based one

Range-Only SLAM F. Fabresse 2015

- Issue 1: Initialization with Gaussian mixture model
- Issue 2: Range-Only Simultaneous localization and mapping

Smoothing based

Graph Optimization Approach c. Wang, 2018

Research objective

- Comparison between two algorithms
- A Comparison of SLAM Algorithms with Range Only Sensors [F. Herranz, 2014]
- Incremental Smoothing vs. Filtering for Sensor Fusion on an Indoor UAV [S. Lange, 2013]
- Which one is the best methodology for UAV positioning?
- Accuracy, Robustness, Speed...etc.

2. EKF vs Smoothing for UAV Positioni ng Using UWB & IMU

- 2.1 Filtering & Smoothing
- 2.2 EKF & Smoothing for UAV Positioning Using UWB & IMU

Filtering & Smoothing (1/2)

Filtering

- Summarizing all experience with respect to the last pose, using a state vector and the associated covariance matrix (→ Eliminating all past poses)
- Following the 'predict / correct' approach

 x_i : vehicle pose at time i

 m_k : kth landmark

Filtering & Smoothing (2/2)

Smoothing

- Minimizing the total least-squares cost function.
- Solving for the constraints between poses and landmarks.
- Can result in a globally consistent solution.

EKF & Smoothing for UAV Positioning Using UWB & IMU (1/2)

- Filtering
 - EKF

UAV pose state

$$\mathbf{X} = \begin{bmatrix} \boldsymbol{v} \\ \boldsymbol{\alpha}^b \\ \boldsymbol{\Omega}^b \\ \boldsymbol{p} \\ \boldsymbol{q} \end{bmatrix} \overset{\blacktriangleleft}{\longleftarrow} \text{3D linear velocity of UAV}$$

$$\overset{\bullet}{\longleftarrow} \text{3D bias of accelerometers in UAV body frame}$$

$$\overset{\bullet}{\longleftarrow} \text{3D bias of gyroscopes in UAV body frame}$$

$$\overset{\bullet}{\longleftarrow} \text{3D Coordinates of the UAV}$$

$$\overset{\bullet}{\longleftarrow} \text{Any minimal representation of 3D rotation matrix}$$

Control input

$$u = \begin{bmatrix} \boldsymbol{\alpha}^S \\ \boldsymbol{\Omega}^S \end{bmatrix}$$
 Angular rates measured by IMU

UWB measurement model

$$r_{\mathsf{t}} = \|\boldsymbol{p} - \boldsymbol{p}^{UWB}\| + \eta_t$$

EKF & Smoothing for UAV Positioning Using UWB & IMU (2/2)

Smoothing

Building a Factor Graph & doing inference by iSAM2

Building a factor
Inference

Finding optimal estimate \hat{x}

$$\hat{\mathbf{x}} = arg \min_{\mathbf{x}} (\prod_i f_i(\mathbf{x}_i))$$

IMU Factor

$$f^{IMU}(\mathbf{x}_{i,}\mathbf{x}_{i-1}, \mathbf{c}_{i}) \triangleq d(\mathbf{x}_{i} - h(\mathbf{x}_{i-1}, \mathbf{c}_{i-1}, \mathbf{\Omega}_{i,} \boldsymbol{\alpha}_{i}))$$
$$f^{bias}(\mathbf{c}_{i}, \mathbf{c}_{i-1}) \triangleq d(\mathbf{c}_{i} - g(\mathbf{c}_{i-1}))$$

UWB Factor

$$f^{UWB}(\mathbf{x}_i) \triangleq d(\mathbf{x}_i - h(r_i))$$

3. Experimental Results

- 3.1 Simulation Results
- 3.2 Experiment Preparation with Real Systems

Simulation

Setup

Virtual IMU & UWB data generation and its application to each method

 ν :linear velocity

 ω : angular velocity (in world frame)

 Ω : angular velocity, $\sigma_{\Omega}=0.5 rad/s$

 α : linear acceleration, $\sigma_{\alpha}=0.1m/s^2$

r : UWB range, $\sigma_r = 0.05 m$

Axes configuration *Excerpted from [I. Sa, 2017]

Ground truth trajectory (Simulating spiral trajectory)

Simulation Result (1/3)

Result Movie

Simulation Result (2/3)

UAV Orientation & Translation

EKF
Smoothing

Absolute error over time

 $roll(\phi)$, $pitch(\theta)$, $yaw(\psi)$

Simulation Result (3/3)

- UAV Orientation & Translation
 - RMS error

	roll (rad)	pitch (rad)	yaw (rad)	x (m)	y (m)	z (m)
EKF	0.0478	0.0544	0.0467	0.0392	0.0407	0.0790
Smoothing	0.1344	0.0459	0.0651	0.0352	0.0253	0.0893

Experiment Preparation with Real Systems (1/5)

DJI Matrice 100 with Payload

DJI Matrice 100

Experiment Preparation with Real Systems (2/5)

- ROS Package for Data Logging Using DJI Matrice 100
 - Developed using ROS Kinetic in Ubuntu 16.04

Screenshot of Rviz (ROS visualization tool)

Experiment Preparation with Real Systems (3/5)

UWB

Time Domain PulsOn 440

Website	http://www.timedomain.com/products/pulson-440/			
Dim/Weight	56 x 103 x 18mm, 45g			
Input Voltage	4.5 to 48V DC			
Interface	Ethernet, USB, Serial, SPI, CAN			
Performanc e	accuracy: 2.1cm, data rate: 125 Hz			
Max Range	300 m to 1100 m			

Experiment Preparation with Real Systems (4/5)

Indoor Space for Experiment

Experiment Preparation with Real Systems (5/5)

Ground Control Station

4. Conclusion & Future Work

Conclusion & Future Work

Conclusion

- Implemented EKF and smoothing based UAV localization algorithms using UWB and IMU data
- Validated through simulation.
 (However, it is not enough. We will need more further analysis.)

Future Work

- Further analysis on comparison of EKF and Smoothing
- Validation using real experiment data