0.1 Déterminer la loi de mouvement dans le cas où les efforts extérieurs sont connus – TEC

Exercice 1 - Pompe à palettes *

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe). De plus, on note :

- $G_1 = A$ le centre d'inertie du solide $\mathbf{1}$, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathfrak{R}}$ sa matrice d'inertie;
- G_2 le centre d'inertie du solide $\mathbf{2}$ tel que $\overrightarrow{BG_2} = -\ell \overrightarrow{i_1}$, m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$ sa ma-

trice d'inertie

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide 1, $F_h \overrightarrow{i_1}$ l'action du fluide sur 2 (le fluide agissant sur les solides 1 et 2). L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice **??**.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble **1+2**.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble **1+2**.

Question 4 *Déterminer* $\mathcal{E}_c(1+2/0)$.

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir 1.

Exercice 2 - Pompe à pistons radiaux * C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \ \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \ \overrightarrow{j_0}$ et $\overrightarrow{AC} = \lambda(t) \ \overrightarrow{j_0}$. De plus, $e = 10 \, \text{mm}$ et $R = 20 \, \text{mm}$. Le contact entre $\mathbf{1}$ et $\mathbf{2}$ en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre $\mathbf{0}$ et $\mathbf{2}$. De plus, on note :

• $G_1 = B$ le centre d'inertie du solide $\mathbf{1}$, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$ sa matrice d'inertie;

• G_2 le centre d'inertie du solide $\mathbf{2}$ tel que $\overrightarrow{CG_2} = \ell \overrightarrow{j_0}$, m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathfrak{F}_2}$ sa ma-

trice d'inertie.

On note $C_m k_0$ le couple moteur agissant sur le solide $\mathbf{1}$, $F_h \overrightarrow{j_0}$ l'action du fluide sur $\mathbf{2}$ (le fluide agissant sur les solides $\mathbf{1}$ et $\mathbf{2}$) et $F_r \overrightarrow{j_0}$ l'action du ressort sur $\mathbf{2}$ (un ressort étant positionné entre les solides $\mathbf{0}$ et $\mathbf{2}$ afin d'assurer le maintien du contact entre 1 et 2 en I). L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice **??**.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble **1+2**.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble **1+2**.

Question 4 *Déterminer* $\mathcal{E}_c(1+2/0)$.

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir 2.

Exercice 3 - Système bielle manivelle ** C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$, $\overrightarrow{CB} = L \overrightarrow{i_2}$ et $\overrightarrow{AC} = \lambda(t) \overrightarrow{j_0}$. De plus, on note :

• $G_1 = A$ le centre d'inertie du solide 1, m_1 sa masse

- $G_1 = A$ le centre d'inertie du solide 1, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{R}_{\bullet}}$ sa matrice d'inertie;
- G_2 le centre d'inertie du solide $\mathbf{2}$ tel que $\overrightarrow{CG_2} = \frac{L}{2} \overrightarrow{i_2}$, $m_2 \text{ sa masse et } I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix} \text{ sa ma-}$

trice d'inertie;

• G_3 le centre d'inertie du solide $\mathbf{3}$ tel que $\overrightarrow{CG_3} = L_3 \overrightarrow{j_0}$, m_3 sa masse et $I_{G_3}(2) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\mathscr{R}_3}$ sa matrice d'inertie.

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide 1, $F_h \overrightarrow{j_0}$ l'action du fluide sur 3. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice **??**.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble **1+2+3**.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble **1+2+3**.

Question 4 *Déterminer* \mathcal{E}_c (1+2+3/0).

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir 3.

Exercice 4 - Pompe oscillante *

C2-09

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} = H \overrightarrow{j_0}$. De plus, R = 10 mm et H = 60 mm. Par ailleurs, on note $\overrightarrow{CB} = \lambda(t) \overrightarrow{i_2}$. De plus, on note :

- G_1 le centre d'inertie du solide $\mathbf{1}$ tel que $\overrightarrow{AG_1} = \frac{R}{2} \overrightarrow{i_1}$, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathscr{R}_1}$ sa matrice d'inertie;
- G_2 le centre d'inertie du solide $\mathbf{2}$ tel que $\overrightarrow{CG_2} = \ell \overrightarrow{i_2}$, m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\Re_2}$ sa matrice d'inertie
- G_3 le centre d'inertie du solide $\mathbf{3}$ tel que $\overrightarrow{BG_3} = -a\overrightarrow{i_2}$, m_3 sa masse et $I_{G_3}(2) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\mathcal{R}}$ sa

matrice d'inertie.

On note $C_m \vec{k_0}$ le couple moteur agissant sur le solide **2**, $F_h \overrightarrow{i_2}$ l'action du fluide sur **3** (le fluide agissant sur le solides **2** et **3**). L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice **??**.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble **1+2+3**.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble **1+2+3**.

Question 4 *Déterminer* \mathcal{E}_c (1+2+3/0).

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir 4.

Exercice 5 - Barrière Sympact *

matrice d'inertie.

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$ et $R = 40 \, \text{mm}$. De plus, on note :

- G_1 le centre d'inertie du solide $\mathbf 1$ tel que $\overrightarrow{CG_1} = \frac{R}{2} \overrightarrow{i_1}$, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathscr{R}_1}$ sa ma-
- trice d'inertie;
 G_2 le centre d'inertie du solide $\mathbf{2}$ tel que $\overrightarrow{G_2} = a \overrightarrow{i_2} + b \overrightarrow{j_2}$, m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathscr{R}_2}$ sa

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide 1 et $C_r \overrightarrow{k_0}$ le couple exercé par un ressort de torsion agissant sur les solides $\mathbf{0}$ et $\mathbf{2}$). L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice ??.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble 1+2.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble 1+2.

Question 4 *Déterminer* $\mathcal{E}_c(1+2/0)$.

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir 5.

Exercice 6 - Barrière Sympact avec galet ** C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} =$ \overrightarrow{R}_{i_1} . De plus, $H = 120 \,\mathrm{mm}$ et $R = 40 \,\mathrm{mm}$. De plus, on note:

• G_1 le centre d'inertie du solide 1 tel que $\overrightarrow{CG_1} = \frac{R}{2} \overrightarrow{i_1}$, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{R}_1}$ sa ma- on the contraction of the contrac trice d'inertie;

• G_2 le centre d'inertie du solide **2** tel que $\overrightarrow{G_2} = a \overrightarrow{i_2} +$ $b \overrightarrow{j_2}$, m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$ sa

matrice d'inertie;

• $G_3 = B$ le centre d'inertie du solide **3**, m_3 sa masse et $I_{G_3}(3) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\Re_2}$ sa matrice d'inertie.

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide 1 et $C_r \overrightarrow{k_0}$ le couple exercé par un ressort de torsion agissant sur les solides 0 et 2). L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g j_0$.

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice ??.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble **1+2+3**.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble 1+2+3.

Question 4 *Déterminer* \mathcal{E}_c (1+2+3/0).

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir 6.

Exercice 7 - Poussoir *

C2-09

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = L\overrightarrow{i_0} + H\overrightarrow{j_0}$, $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$. De plus, H = 120 mm, $L = 40 \,\mathrm{mm}$. De plus, on note :

• G_1 le centre d'inertie du solide 1 tel que $\overrightarrow{AG_1} = R\overrightarrow{i_1}$, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$ sa ma-

• G_2 le centre d'inertie du solide 2 tel que $\overrightarrow{CG_2}$ = $-\ell b \overrightarrow{j_0}$, m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$

sa matrice d'inertie.

trice d'inertie:

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice ??.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble 1+2.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble 1+2.

Question 4 *Déterminer* $\mathcal{E}_c(1+2/0)$.

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir 7.

Exercice 8 - Système 4 barres **

C2-09 Pas de corrigé pour cet exercice.

On a:

- $\overrightarrow{OA} = a\overrightarrow{x_1} f\overrightarrow{y_1}$ avec a = 355 mm et f = 13 mm;
- $\overrightarrow{AB} = b \overrightarrow{x_2}$ avec $b = 280 \,\mathrm{mm}$;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$ avec $c = 280 \,\text{mm}$;
- $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$ avec d = 89.5 mm et e = 160 mm. De plus, on note:

- G_1 le centre d'inertie du solide $\mathbf{1}$ tel que $\overrightarrow{OG_1} = L\overrightarrow{x_1}$, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathscr{R}_1}$ sa matrice d'inertie;
- G_2 le centre d'inertie du solide ${\bf 2}$ tel que $\overrightarrow{AG_2}=\frac{b}{2}\overrightarrow{x_2}$, m_2 sa masse et $I_{G_2}(2)=\begin{pmatrix}A_2&0&0\\0&B_2&0\\0&0&C_2\end{pmatrix}_{\mathscr{R}_2}$ sa ma-
- trice d'inertie; • G_3 le centre d'inertie du solide **3** tel que $\overrightarrow{CG_3} = \frac{c}{2} \overrightarrow{x_3}$,

$$m_3$$
 sa masse et $I_{G_3}(3) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\mathscr{R}_3}$ sa ma-

trice d'inertie.

On note $C_m k_0$ le couple moteur agissant sur le solide 1. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{z_0}$.

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice **??**.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble **1+2+3**.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble **1+2+3**.

Question 4 *Déterminer* \mathcal{E}_c (1+2+3/0).

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir 8.

Exercice 9 - Maxpid ***

C2-09 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Par ailleurs $a=107.1\,\mathrm{mm},\ b=80\,\mathrm{mm},\ c=70\,\mathrm{mm},\ d=80\,\mathrm{mm}$. Le pas de la vis est de 4 mm. De plus, on note :

- $G_1 = B$ le centre d'inertie du solide $\mathbf{1}$, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{R}}$ sa matrice d'inertie;
- G_2 le centre d'inertie du solide $\mathbf{2}$ tel que $\overrightarrow{BG_2} = L\overrightarrow{x_1}$, m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathscr{R}_2}$ sa ma-

trice d'inertie;

- $G_3 = C$ le centre d'inertie du solide **3**, m_3 sa masse et $I_{G_3}(3) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\Re_3}$ sa matrice d'inertie;
- G_4 le centre d'inertie du solide $\mathbf{4}$ tel que $\overrightarrow{DG_4} = L_4 \overrightarrow{x_4}$, m_4 sa masse et $I_{G_4}(4) = \begin{pmatrix} A_4 & 0 & 0 \\ 0 & B_4 & 0 \\ 0 & 0 & C_4 \end{pmatrix}_{\mathscr{R}_4}$ sa matrice d'inertie;.

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide 1. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{y_0}$. On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice ??.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble **1+2+3+4**.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble **1+2+3+4**.

Question 4 Déterminer \mathcal{E}_c (1+2+3+4/0).

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir 9.