VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Databázové systémy (IDS) 2022 Projektová dokumentace Projekt č.: 28

> Denis Karev Vladislav Mikheda

Obsah

1	Popis zadání	2
2	Model případů užití (Use Case Diagram)	3
3	Datový model (ERD)	4
4	Realizace generalizace/specializace	5
5	Triggery	5
6	Procedury	5
7	Index, Explain Plan	6
8	Materializovaný pohled	7

1 Popis zadání

Nemocnice¹:

Navrhněte Datové model a model případu užití malé nemocnice, který by poskytoval základní údaje o lékařích, sestrách či pacientech, kteří jsou a byli hospitalizováni do nemocnice. IS uchovává informace o všech těchto hospitalizacích, přičemž pacient může ve stejný okamžik hospitalizován pouze na jednom oddělení nemocnice. Při každé hospitalizaci je mu určen jeho ošetřující lékař. Lékaři mohou pracovat na více odděleních zároveň. Na každém oddělení má lékař určitý úvazek, telefon atd., zatímco sestry pracují pouze na jednom oddělení. V rámci pobytu v nemocnici může pacient podstoupit různá vyšetření, která byla provedena na určitém oddělení ve stanoveném čase a provedl ji určitý lékař, který také zapisuje výsledky vyšetření do IS. Dále mu mohou být podávány různé léky, každé podávání léku má určité detaily (kdy se podává, kolikrát apod.). Zaměřte se i na otázku ochrany dat tak, aby měl každý lékař přístup pouze k potřebným údajům.

¹Zadaní je inspirováno projektem IUS

2 Model případů užití (Use Case Diagram)

Obrázek 1: Model případů užití

Obrázek 2: Datové model

4

4 Realizace generalizace/specializace

V ERD od entity Employee (Personál) vztahem generalizace/specializace jsou odvedeny dvě entity: Doctor (Lékař), Nurs (Zdravotní sestá).

Při převodě do tabulky v databázi to bylo vyřešeno vytvořením tabulky pro nadtyp a také pro podtypy s primárním klíčem nadtypu. Taková možnost byla zvolena protože potřebujeme dvě různé tabulky pro lékaře a zdravotní sestru. Tabulka personál je využita k ukládání společné informací. Při rozšíření databáze například přidáním tabulky maséru není potřeba nic měnit jen přidat novou tabulku.

Emp	loyee			Doctor Nurse					
ID	first_name	famely_name	birth_number	ID	ph_number	email	med_spec	ID	specialization

5 Triggery

Byly vytvořeny dva triggery: DEPARTMENT_MANAGER_HISTORY_T a DOCTOR_DEPARTMENT_HISTORY. Tyto triggery jsou určeny pro logging některých změn v tabulkách.

DEPARTMENT_MANAGER_HISTORY_T se vyvolá po změně MANAGER_ID v tabulce DEPARTMENTS. Tento trigger uloží zkratku oddělení, čas změny, ID starého a nového manažera oddělení do tabulky DEPARTMENT_MANAGER_HISTORY.

Druhý trigger se aktivuje po přidaní nových dát, změně zkratky oddělení nebo mazaní dát z tabulky DOCTORS_DEPARTMENTS. Tento trigger využije několik proměnných, protože obsah: NEW a:OLD se mění v závislosti na typu operace. Na konci DOCTOR_DEPARTMENT_HISTORY vkládá nový záznam do tabulky DOCTOR_DEPARTMENT_HISTORY.

6 Procedury

Byly vytvořeny dvě procedury: CREATE_EMPLOYEE a ASSIGN_DOCTORS. Procedura CREATE_EMPLOYEE má následující IN parametry:

- 1. IN_IS_DOCTOR BOOLEAN, je-li nový zaměstnanec doktorem.
- 2. IN_BIRTH_NUMBER rodné číslo.
- 3. IN_FIRST_NAME jmeno.

- 4. IN_FAMILY_NAME příjmení.
- 5. IN_SPECIALIZATION VARCHAR, specializace.
- 6. IN_DEPARTMENT zkrátka oddělení.
- 7. IN_PHONE_NUMBER telefonní číslo, je volitelným parametrem.
- 8. IN_EMAIL email, je volitelným parametrem.

Tato procedura na začátku vytvoří nový záznam v tabulce EMPLOYEES. Potom v závislosti na typu zaměstnance vytvoří nové záznamy v příslušných tabulkách.

Procedura ASSIGN_DOCTORS nemá žádné parametry. Tato procedura přiřadí každé hospitalizace bez doktoru (tj. DOCTOR_ID = NULL) lékaře s příslušného oddělení. Procedura používá kurzor, který odkazuje na hospitalizace bez doktorů. Pro každý záznam z kurzoru, ASSIGN_DOCTORS vybere náhodného lékaře (pro náhodný vyber se používá ORDER BY DBMS_RANDOM.RANDOM()) a přiřadí ho.

7 Index, Explain Plan

Indexy mohou být nastaveny za účelem zrychlení provádění konkrétního dotazu. Indexy je potřeba přidávat ne na prázdnou tabulku, ale již s nějakými daty, je lepší, když jsou zřídka aktualizovány. Pro indexaci byl zvolen dotaz množství různých léků, které pacienti potřebují. Pro zjištění jak se dotaz vykonává využijeme Explain Plan

l I	d	I	Operation	I	Name	Rov	٧S	1	Bytes	I	Cost (%CPU)	Time
		-											
	0	1	SELECT STATEMENT	- 1		1	2	1	24	I	6	(17)	00:00:01
	1	I	HASH GROUP BY	- 1		1	2	1	24	I	6	(17)	00:00:01
	2	1	NESTED LOOPS	- 1		1	2	1	24	I	5	(0)	00:00:01
	3	1	NESTED LOOPS	I		1	2	1	24	I	5	(0)	00:00:01
	4	Ī	TABLE ACCESS FULL	I	DRUG_PRESCRIPTIONS	1	2	1	16	I	3	(0)	00:00:01
*	5	Ī	INDEX UNIQUE SCAN	I	SYS_C001641914	1	1	T		I	0	(0)	00:00:01
*	6	ī	TABLE ACCESS BY INDEX	ROWID	HOSPITALIZATIONS	T	1	Т	4	ī	1	(0)	00:00:01

Z plánu lze vidět že jde zpracovaní select dotazů a na začátku bude provedeno grupování položek a pak bude prováděn Procházení každé položky v tabulce drug_prescriptions, a lze vidět že byly využity indexy které samostatné přidala databáze, pomocí nich je provedeno pouze procházení stromu, dál už bude využit ukazatel na údaje v tabulce.

Pro zrychlení dotazu byly zvoleny 2 indexy, první pro sloupce date_disch, id v tabulce hospitalization, druhý pro ABBREVIATION, id_hosp v tabulce drug_prescriptions.

l I	d	1	Operatio	n	- 1	Name		Rows		В	ytes	I	Cost	(%CPU)	Time
	0	1	SELECT S	TATEMENT	- 1		- 1		2		82	I	1	(0)	00:00:01
	1	1	SORT GR	OUP BY NO	SORT		-1	:	2		82	I	1	(0)	00:00:01
	2	1	NESTED	LOOPS	- 1		-1	:	2		82	I	1	(0)	00:00:01
	3	1	INDEX	FULL SCA	N I	DRUG_PRE_INDEX			2		38	I	1	(0)	00:00:01
*	4	T	INDEX	RANGE SO	AN I	HOSP_INDEX	П		1		22	Т	0	(0)	00:00:01

Lze vidět že procházení tabulek s využitím indexu zrychli dotazovaní.

8 Materializovaný pohled

Byly vytvořeny dva materializovaných pohledy, byly využity BUILD IMMEDIATE co naplní pohled při vytváření, pro první bylo vyžito REFRESH COMPLETE ON DEMAND aktualizuje se přepočítáním definujícího dotazu materializovaného pohledu, pro aktualizace je využit postup DBMS_MVIEW.REFRESH. V druhém materializovaném pohledu je využito REFRESH COMPLETE ON COMMIT. Což vyžaduje využití COMMIT, co ukončí transakci a uloží změny.