

Álgebra Lineal

Complemento ortogonal.Intersección y suma

Recuperamos un concepto importante para lo que sigue...

Producto escalar

Dados $u=(u_1,..,u_n)$ y $v=(v_1,..,v_n)$ dos vectores de \mathbb{R}^n , el producto escalar

$$u \cdot v = \sum_{i=1}^{n} u_i v_i$$

Recuperamos un concepto importante para lo que sigue...

Producto escalar

Dados $u = (u_1, ..., u_n)$ y $v = (v_1, ..., v_n)$ dos vectores de \mathbb{R}^n , el producto escalar

$$u \cdot v = \sum_{i=1}^{n} u_i v_i$$

Propiedades

Sean $u, v \in \mathbb{R}^n$, recordemos que

- $1 u \cdot v = v \cdot u$
- 2 $u \cdot u = ||u||^2$
- 3 $u \cdot (\alpha_1 v_1 + \cdots + \alpha_n v_n) = \alpha_1 u \cdot v_1 + \cdots + \alpha_n u \cdot v_n$
- 4 $u \cdot v = ||u|| \cdot ||v|| \cdot \cos \theta$, donde θ es el ángulo entre u y v
- 5 $u \perp v$ si y solo si $u \cdot v = 0$

Recuperamos un concepto importante para lo que sigue...

Producto escalar

Dados $u = (u_1, ..., u_n)$ y $v = (v_1, ..., v_n)$ dos vectores de \mathbb{R}^n , el producto escalar

$$u \cdot v = \sum_{i=1}^{n} u_i v_i$$

Propiedades

Sean $u, v \in \mathbb{R}^n$, recordemos que

- $1 \ \mu \cdot \nu = \nu \cdot \mu$
- $2 u \cdot u = ||u||^2$
- 3 $u \cdot (\alpha_1 v_1 + \cdots + \alpha_n v_n) = \alpha_1 u \cdot v_1 + \cdots + \alpha_n u \cdot v_n$
- 4 $u \cdot v = ||u|| \cdot ||v|| \cdot \cos \theta$, donde θ es el ángulo entre u y v
- 5 $u \perp v$ si y solo si $u \cdot v = 0$

Definición

Sea $\mathbb V$ un espacio vectorial y $S\subseteq V$, definimos el complemento ortogonal

$$S^{\perp} = \{ w \in \mathbb{V} : w \cdot v = 0 \text{ para todo } v \in S \}$$

Ejemplo Consideremos la recta

$$r = \langle (1, 1, 1) \rangle$$

Ejemplo Consideremos la recta

$$r = \langle (1,1,1) \rangle$$

Sabemos que un vector $(a, b, c) \in r$ si y solo si

$$(a,b,c)=\lambda(1,1,1)$$

Ejemplo Consideremos la recta

$$r = \langle (1,1,1) \rangle$$

Sabemos que un vector $(a, b, c) \in r$ si y solo si

$$(a,b,c)=\lambda(1,1,1)$$

Por lo tanto, un vector $(x, y, z) \in r^{\perp}$ si y solo si

$$(x, y, z) \cdot \underbrace{\lambda(1, 1, 1)}_{(a,b,c)} = 0$$

Ejemplo Consideremos la recta

$$r = \langle (1,1,1) \rangle$$

Sabemos que un vector $(a, b, c) \in r$ si y solo si

$$(a,b,c)=\lambda(1,1,1)$$

Por lo tanto, un vector $(x,y,z) \in r^{\perp}$ si y solo si

$$(x,y,z)\cdot\underbrace{\lambda(1,1,1)}_{(a,b,c)}=0$$

Utilizando las propiedades del producto escalar, se tiene que

$$(x, y, z) \cdot \lambda(1, 1, 1) = 0 \Leftrightarrow \lambda((x, y, z) \cdot (1, 1, 1)) = 0$$

Ejemplo Consideremos la recta

$$r = \langle (1,1,1) \rangle$$

Sabemos que un vector $(a, b, c) \in r$ si y solo si

$$(a, b, c) = \lambda(1, 1, 1)$$

Por lo tanto, un vector $(x, y, z) \in r^{\perp}$ si y solo si

$$(x,y,z)\cdot\underbrace{\lambda(1,1,1)}_{(a,b,c)}=0$$

Utilizando las propiedades del producto escalar, se tiene que

$$(x, y, z) \cdot \lambda(1, 1, 1) = 0 \Leftrightarrow \lambda((x, y, z) \cdot (1, 1, 1)) = 0$$

 $\Leftrightarrow (x, y, z) \cdot (1, 1, 1) = 0$

Ejemplo Consideremos la recta

$$r = \langle (1,1,1) \rangle$$

Sabemos que un vector $(a, b, c) \in r$ si y solo si

$$(a, b, c) = \lambda(1, 1, 1)$$

Por lo tanto, un vector $(x, y, z) \in r^{\perp}$ si y solo si

$$(x,y,z)\cdot\underbrace{\lambda(1,1,1)}_{(a,b,c)}=0$$

Utilizando las propiedades del producto escalar, se tiene que

$$(x,y,z) \cdot \lambda(1,1,1) = 0 \quad \Leftrightarrow \quad \lambda((x,y,z) \cdot (1,1,1)) = 0$$
$$\Leftrightarrow \quad (x,y,z) \cdot (1,1,1) = 0$$
$$\Leftrightarrow \quad x+y+z = 0$$

Ejemplo Consideremos la recta

$$r = \langle (1,1,1) \rangle$$

Sabemos que un vector $(a, b, c) \in r$ si y solo si

$$(a, b, c) = \lambda(1, 1, 1)$$

Por lo tanto, un vector $(x, y, z) \in r^{\perp}$ si y solo si

$$(x,y,z)\cdot\underbrace{\lambda(1,1,1)}_{(a,b,c)}=0$$

Utilizando las propiedades del producto escalar, se tiene que

$$(x, y, z) \cdot \lambda(1, 1, 1) = 0 \quad \Leftrightarrow \quad \lambda((x, y, z) \cdot (1, 1, 1)) = 0$$
$$\Leftrightarrow \quad (x, y, z) \cdot (1, 1, 1) = 0$$
$$\Leftrightarrow \quad x + y + z = 0$$

Es decir,

$$r^{\perp} = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$$

Propiedades del complemento ortogonal

Sea $\mathbb {V}$ un espacio vectorial de dimensión $\dim(\mathbb {V})=n$ y $S\subseteq\mathbb {V}$, entonces

$$1 (S^{\perp})^{\perp} = S$$

$$2 \ \mathbb{V} = S \oplus S^{\perp}$$

$$3 \ S \cap S^{\perp} = \{0\}$$

4 Si
$$B=\{v_1,..,v_k\}$$
 es base para S y $B'=\{v_{k+1},..,v_n\}$ es base para S^\perp

$$B = \{v_1, ..., v_k\} \cup \{v_{k+1}, ..., v_n\}$$

Es base para \mathbb{V} .

Propiedades del complemento ortogonal

Sea $\mathbb V$ un espacio vectorial de dimensión $\dim(\mathbb V)=n$ y $S\subseteq\mathbb V$, entonces

$$1 (S^{\perp})^{\perp} = S$$

$$2 \ \mathbb{V} = S \oplus S^{\perp}$$

$$3 \ S \cap S^{\perp} = \{0\}$$

4 Si $B=\{v_1,..,v_k\}$ es base para S y $B'=\{v_{k+1},..,v_n\}$ es base para S^\perp

$$B = \{v_1, ..., v_k\} \cup \{v_{k+1}, ..., v_n\}$$

Es base para \mathbb{V} .

Ejemplo Tomando el ejemplo anterior, vemos que

$$S = \langle (1,1,1) \rangle \text{ y } S^{\perp} = \{(x,y,z) \in \mathbb{R}^3 \colon x + y + z = 0\}$$

Geométricamente, lo vemos en el siguiente

Consideremos \mathbb{V} un espacio vectorial y $S = \langle v_1, ..., v_k \rangle$.

Consideremos \mathbb{V} un espacio vectorial y $S = \langle v_1, ..., v_k \rangle$.

Es decir,

$$v \in S \Leftrightarrow v = \alpha_1 v_1 + \cdots + \alpha_k v_k$$

Consideremos \mathbb{V} un espacio vectorial y $S = \langle v_1, ..., v_k \rangle$.

Es decir,

$$v \in S \Leftrightarrow v = \alpha_1 v_1 + \cdots + \alpha_k v_k$$

Notemos que

$$w \in S^{\perp} \Leftrightarrow w \cdot v = 0$$

Consideremos \mathbb{V} un espacio vectorial y $S = \langle v_1, ..., v_k \rangle$.

Es decir,

$$v \in S \Leftrightarrow v = \alpha_1 v_1 + \cdots + \alpha_k v_k$$

Notemos que

$$w \in S^{\perp} \Leftrightarrow w \cdot v = 0$$

 $\Leftrightarrow w \cdot (\alpha_1 v_1 + \dots + \alpha_k \cdot v_k) = 0$

Consideremos \mathbb{V} un espacio vectorial y $S = \langle v_1, ..., v_k \rangle$.

Es decir,

$$v \in S \Leftrightarrow v = \alpha_1 v_1 + \cdots + \alpha_k v_k$$

Notemos que

$$w \in S^{\perp} \Leftrightarrow w \cdot v = 0$$

$$\Leftrightarrow w \cdot (\alpha_1 v_1 + \dots + \alpha_k \cdot v_k) = 0$$

$$\Leftrightarrow \alpha_1 (w \cdot v_1) + \dots + \alpha_k (w \cdot v_k) = 0$$

Consideremos \mathbb{V} un espacio vectorial y $S = \langle v_1, ..., v_k \rangle$.

Es decir,

$$v \in S \Leftrightarrow v = \alpha_1 v_1 + \cdots + \alpha_k v_k$$

Notemos que

$$w \in S^{\perp} \Leftrightarrow w \cdot v = 0$$

$$\Leftrightarrow w \cdot (\alpha_1 v_1 + \dots + \alpha_k \cdot v_k) = 0$$

$$\Leftrightarrow \alpha_1 (w \cdot v_1) + \dots + \alpha_k (w \cdot v_k) = 0$$

Teorema

Sea \mathbb{V} un espacio vectorial y $S = \langle v_1, .., v_k \rangle$, son equivalentes:

$$1 \ w \in S^{\perp}$$

$$2 w \cdot v_i = 0 para 1 \le i \le k$$

¿Cómo calcular el complemento ortogonal?

Sea S el subespacio

$$S=\langle (1,0,-1),(1,1,0)\rangle$$

¿Cómo calcular el complemento ortogonal?

Sea S el subespacio

$$S = \langle (1,0,-1), (1,1,0) \rangle$$

Sabemos que todo vector $v \in S$ es de la forma

$$v = \alpha(1,0,-1) + \beta(1,1,0)$$

¿Cómo calcular el complemento ortogonal?

Sea S el subespacio

$$S = \langle (1,0,-1), (1,1,0) \rangle$$

Sabemos que todo vector $v \in S$ es de la forma

$$v = \alpha(1, 0, -1) + \beta(1, 1, 0)$$

Por lo tanto, un vector $(x,y,z) \in S^{\perp}$ si y solo si $(x,y,z) \cdot v = 0$

¿Cómo calcular el complemento ortogonal?

Sea S el subespacio

$$S = \langle (1,0,-1), (1,1,0) \rangle$$

Sabemos que todo vector $v \in S$ es de la forma

$$v = \alpha(1,0,-1) + \beta(1,1,0)$$

Por lo tanto, un vector $(x,y,z) \in S^{\perp}$ si y solo si $(x,y,z) \cdot v = 0$ Es decir

$$(x, y, z) \cdot (\alpha(1, 0, -1) + \beta(1, 1, 0)) = 0$$

¿Cómo calcular el complemento ortogonal?

Sea S el subespacio

$$S = \langle (1,0,-1), (1,1,0) \rangle$$

Sabemos que todo vector $v \in S$ es de la forma

$$v = \alpha(1,0,-1) + \beta(1,1,0)$$

Por lo tanto, un vector $(x, y, z) \in S^{\perp}$ si y solo si $(x, y, z) \cdot v = 0$ Es decir

$$(x, y, z) \cdot (\alpha(1, 0, -1) + \beta(1, 1, 0)) = 0$$

Utilizando las propiedades del producto escalar, bastará con pedir que

$$\begin{cases} (1,0,-1)\cdot(x,y,z) = 0\\ (1,1,0)\cdot(x,y,z) = 0 \end{cases}$$

¿Cómo calcular el complemento ortogonal?

Sea S el subespacio

$$S = \langle (1,0,-1), (1,1,0) \rangle$$

Sabemos que todo vector $v \in S$ es de la forma

$$v = \alpha(1,0,-1) + \beta(1,1,0)$$

Por lo tanto, un vector $(x, y, z) \in S^{\perp}$ si y solo si $(x, y, z) \cdot v = 0$ Es decir

$$(x, y, z) \cdot (\alpha(1, 0, -1) + \beta(1, 1, 0)) = 0$$

Utilizando las propiedades del producto escalar, bastará con pedir que

$$\begin{cases} (1,0,-1)\cdot(x,y,z)=0\\ (1,1,0)\cdot(x,y,z)=0 \end{cases} \Leftrightarrow \begin{pmatrix} 1 & 0 & -1\\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

¿Cómo calcular el complemento ortogonal?

Sea S el subespacio

$$S = \langle (1,0,-1), (1,1,0) \rangle$$

Sabemos que todo vector $v \in S$ es de la forma

$$v = \alpha(1,0,-1) + \beta(1,1,0)$$

Por lo tanto, un vector $(x, y, z) \in S^{\perp}$ si y solo si $(x, y, z) \cdot v = 0$ Es decir

$$(x, y, z) \cdot (\alpha(1, 0, -1) + \beta(1, 1, 0)) = 0$$

Utilizando las propiedades del producto escalar, bastará con pedir que

$$\begin{cases} (1,0,-1)\cdot(x,y,z)=0\\ (1,1,0)\cdot(x,y,z)=0 \end{cases} \Leftrightarrow \begin{pmatrix} 1 & 0 & -1\\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

Luego, bastará con ver que $S^{\perp} = N(A)$ donde A tiene en sus filas los generadores de S.

$$\begin{array}{ccc|c} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 \end{array}$$

De donde obtenemos que

$$(x,y,z) \in S^{\perp} \Leftrightarrow (x,y,z) = (z,-z,z)$$

De donde obtenemos que

$$(x,y,z) \in S^{\perp} \Leftrightarrow (x,y,z) = (z,-z,z)$$

Es decir,

$$S^{\perp} = \langle (1, -1, 1) \rangle$$

Sea \mathbb{V} un espacio vectorial, y sean S_1 , S_2 dos subespacios:

▷ Intersección

$$S_1 \cap S_2 = \{ v \in \mathbb{V} \colon v \in S_1 \land v \in S_2 \}$$

Sea \mathbb{V} un espacio vectorial, y sean S_1 , S_2 dos subespacios:

▷ Intersección

$$\textit{S}_1 \cap \textit{S}_2 = \{\textit{v} \in \mathbb{V} \colon \textit{v} \in \textit{S}_1 \land \textit{v} \in \textit{S}_2\}$$

Suma

$$S_1 + S_2 = \langle B_1 \cup B_2 \rangle = \{ v_1 + v_2 \colon v_1 \in S_1, v_2 \in S_2 \}$$

Sea \mathbb{V} un espacio vectorial, y sean S_1 , S_2 dos subespacios:

▷ Intersección

$$S_1 \cap S_2 = \{ v \in \mathbb{V} \colon v \in S_1 \land v \in S_2 \}$$

Suma

$$S_1 + S_2 = \langle B_1 \cup B_2 \rangle = \{ v_1 + v_2 \colon v_1 \in S_1, v_2 \in S_2 \}$$

¿Estos conjuntos son subespacios? ¿Por qué?

Las operaciones entre subespacios nos permiten crear nuevos subespacios

 \triangleright Intersección: Es el mayor subespacio contenido en S_1 y S_2 simultáneamente.

Las operaciones entre subespacios nos permiten crear nuevos subespacios

- \triangleright Intersección: Es el mayor subespacio contenido en S_1 y S_2 simultáneamente.
- \triangleright Suma: Es el menor subespacio que contiene tanto a S_1 como a S_2 .

Suma e Intersección de Subespacios

Las operaciones entre subespacios nos permiten crear nuevos subespacios

- \triangleright Intersección: Es el mayor subespacio contenido en S_1 y S_2 simultáneamente.
- hinspace Si $S_1=\langle B_1
 angle$ y $S_2=\langle B_2
 angle$ entonces $S_1+S_2=\langle B_1 \cup B_2
 angle$

Sean S_1 y S_2 dos subespacios de un espacio vectorial V.

$$S_1 \cap S_2 = \{ \vec{x} \in V : \vec{x} \in S_1 \text{ y } \vec{x} \in S_2 \}$$

Sean S_1 y S_2 dos subespacios de un espacio vectorial V.

$$S_1 \cap S_2 = \{ \vec{x} \in V : \vec{x} \in S_1 \text{ y } \vec{x} \in S_2 \}$$

1 $S_1 \cap S_2$ es un subespacio.

Sean S_1 y S_2 dos subespacios de un espacio vectorial V.

$$S_1 \cap S_2 = \{ \vec{x} \in V : \vec{x} \in S_1 \text{ y } \vec{x} \in S_2 \}$$

- 1 $S_1 \cap S_2$ es un subespacio.
- $2 \ S_1 \cap S_2 \neq \emptyset \ \text{dado que al menos} \ \vec{0} \in S_1 \cap S_2.$

Sean S_1 y S_2 dos subespacios de un espacio vectorial V.

$$S_1 \cap S_2 = \{ \vec{x} \in V : \vec{x} \in S_1 \text{ y } \vec{x} \in S_2 \}$$

- 1 $S_1 \cap S_2$ es un subespacio.
- 2 $S_1 \cap S_2 \neq \emptyset$ dado que al menos $\vec{0} \in S_1 \cap S_2$.

Si $A\vec{x}=0$ es un sistema de ecuaciones cartesianas de S_1 y $B\vec{x}=\vec{0}$ sistema de ecuaciones cartesianas de S_2 , entonces,

$$x \in S_1 \cap S_2 \Leftrightarrow \begin{cases} A\vec{x} = \vec{0} \\ B\vec{x} = \vec{0} \end{cases}$$

Por lo tanto $\begin{cases} A\vec{x} = \vec{0} \\ B\vec{x} = \vec{0} \end{cases} \quad \text{es un sistema de ecuaciones de } S_1 \cap S_2.$

Ejemplo Consideremos los subespacios vectoriales

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 : x + 2y - z = 0\}$$

 $S_2 = \{(x, y, z) \in \mathbb{R}^3 : -x - y + 3z = 0\}$

Determinar $S_1 \cap S_2$.

У

Ejemplo Consideremos los subespacios vectoriales

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 : x + 2y - z = 0\}$$

У

$$S_2 = \{(x, y, z) \in \mathbb{R}^3 : -x - y + 3z = 0\}$$

Determinar $S_1 \cap S_2$.

$$(x,y,z) \in S_1 \cap S_2 \Leftrightarrow \begin{cases} x+2y-z=0\\ -x-y+3z=0 \end{cases}$$

Ejemplo Consideremos los subespacios vectoriales

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 : x + 2y - z = 0\}$$

У

$$S_2 = \{(x, y, z) \in \mathbb{R}^3 : -x - y + 3z = 0\}$$

Determinar $S_1 \cap S_2$.

$$(x,y,z) \in S_1 \cap S_2 \Leftrightarrow \begin{cases} x+2y-z=0\\ -x-y+3z=0 \end{cases}$$

Resolviendo por Gauss-Jordan

$$\left(\begin{array}{ccc} 1 & 2 & -1 \\ -1 & -1 & 3 \end{array}\right) \xrightarrow{F_1 + F_2} \left(\begin{array}{ccc} 1 & 2 & -1 \\ 0 & 1 & 2 \end{array}\right) \xrightarrow{F_1 - 2F_2} \left(\begin{array}{ccc} 1 & 0 & -5 \\ 0 & 1 & 2 \end{array}\right)$$

Por lo tanto nos queda el sistema equivalente

$$\begin{cases} x - 5z = 0 \\ y + 2z = 0 \end{cases}$$

De donde
$$x = 5z$$
, $y = -2z$.

De donde x=5z , y=-2z. Los elementos de la intersección son de la forma

$$(x, y, z) = (5z, -2z, z) = z (5, -2, 1).$$

De donde x=5z ,y=-2z.Los elementos de la intersección son de la forma

$$(x, y, z) = (5z, -2z, z) = z(5, -2, 1).$$

Es decir la intersección es la recta

$$S_1 \cap S_2 = \{(x, y, z) \in \mathbb{R}^3 : (x, y, z) = t(5, -2, 1)\}.$$

De donde x=5z ,y=-2z.Los elementos de la intersección son de la forma

$$(x, y, z) = (5z, -2z, z) = z(5, -2, 1).$$

Es decir la intersección es la recta

$$S_1 \cap S_2 = \{(x, y, z) \in \mathbb{R}^3 : (x, y, z) = t(5, -2, 1)\}.$$

Una base del subespacio $S_1 \cap S_2$ es $\{(5,-2,1)\}$.

Consideremos S_1 y S_2 dos subespacios de un espacio vectorial V.

$$S_1+S_2=\left\{u\in V: u=v+w\text{, para alg\'un }v\in S_1\text{ y }w\in S_2\right\}.$$

Consideremos S_1 y S_2 dos subespacios de un espacio vectorial V.

$$S_1+S_2=\left\{u\in V:u=v+w\text{, para algún }v\in S_1\text{ y }w\in S_2\right\}.$$
 Si $S_1=\langle v_1,..,v_n\rangle$ y $S_2=\langle w_1,..,w_k\rangle$ entonces

$$u \in S_1 + S_2 \Leftrightarrow u = v + w \text{ donde } v \in S_1 \text{ y } w \in S_2$$

 $\Leftrightarrow u = \sum_{i=1}^n \lambda_i v_i + \sum_{j=1}^k \alpha_j w_j$
 $\Leftrightarrow u \in \langle \{v_1, ..., v_n\} \cup \{w_1, ..., w_k\} \rangle$

Es decir

$$S_1 + S_2 = \langle B_1 \cup B_2 \rangle.$$

Donde B_1 y B_2 son bases de S_1 y S_2 respectivamente. Lo que obtenemos uniendo las bases es un conjunto de generadores, luego habrá que estudiar si es o no base de $S_1 + S_2$.

Ejemplo Determinar la suma de los subespacios siguientes y una base de la suma.

$$S_1 = \langle (1,0,1), (2,1,2) \rangle$$
 y $S_2 = \langle (1,-1,0), (1,3,2) \rangle$.

Ejemplo Determinar la suma de los subespacios siguientes y una base de la suma.

$$S_1 = \langle (1,0,1), (2,1,2) \rangle$$
 y $S_2 = \langle (1,-1,0), (1,3,2) \rangle$.

Sabemos que

$$S_1 + S_2 = \langle (1,0,1), (2,1,2), (1,-1,0), (1,3,2) \rangle$$
.

Ejemplo Determinar la suma de los subespacios siguientes y una base de la suma.

$$S_1 = \langle (1,0,1), (2,1,2) \rangle$$
 y $S_2 = \langle (1,-1,0), (1,3,2) \rangle$.

Sabemos que

$$S_1 + S_2 = \langle (1,0,1), (2,1,2), (1,-1,0), (1,3,2) \rangle$$
.

Nota El conjunto de vectores (1,0,1),(2,1,2),(1,-1,0),(1,3,2) genera al subespacio suma, pero puede no ser una base de $S_1 + S_2$.

Ejemplo Determinar la suma de los subespacios siguientes y una base de la suma.

$$S_1 = \langle (1,0,1), (2,1,2) \rangle$$
 y $S_2 = \langle (1,-1,0), (1,3,2) \rangle$.

Sabemos que

$$S_1 + S_2 = \langle (1,0,1), (2,1,2), (1,-1,0), (1,3,2) \rangle$$
.

Nota El conjunto de vectores (1,0,1),(2,1,2),(1,-1,0),(1,3,2) genera al subespacio suma, pero puede no ser una base de $S_1 + S_2$. Supongamos que

$$\lambda_1(1,0,1) + \lambda_2(2,1,2) + \lambda_3(1,-1,0) + \lambda_4(1,3,2) = (0,0,0)$$

Ejemplo Determinar la suma de los subespacios siguientes y una base de la suma.

$$S_1 = \langle (1,0,1), (2,1,2) \rangle$$
 y $S_2 = \langle (1,-1,0), (1,3,2) \rangle$.

Sabemos que

$$S_1 + S_2 = \langle (1,0,1), (2,1,2), (1,-1,0), (1,3,2) \rangle$$
.

Nota El conjunto de vectores (1,0,1),(2,1,2),(1,-1,0),(1,3,2) genera al subespacio suma, pero puede no ser una base de $S_1 + S_2$. Supongamos que

$$\lambda_1(1,0,1) + \lambda_2(2,1,2) + \lambda_3(1,-1,0) + \lambda_4(1,3,2) = (0,0,0)$$

$$A = \left(\begin{array}{cccc} 1 & 2 & 1 & 1 \\ 0 & 1 & -1 & 3 \\ 1 & 2 & 0 & 2 \end{array}\right) \stackrel{Op.Elem}{\longrightarrow} \left(\begin{array}{cccc} 1 & 2 & 1 & 1 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & -1 & 1 \end{array}\right)$$

Ejemplo Determinar la suma de los subespacios siguientes y una base de la suma.

$$S_1 = \langle (1,0,1), (2,1,2) \rangle$$
 y $S_2 = \langle (1,-1,0), (1,3,2) \rangle$.

Sabemos que

$$S_1 + S_2 = \langle (1,0,1), (2,1,2), (1,-1,0), (1,3,2) \rangle$$
.

Nota El conjunto de vectores (1,0,1),(2,1,2),(1,-1,0),(1,3,2) genera al subespacio suma, pero puede no ser una base de $S_1 + S_2$. Supongamos que

$$\lambda_1(1,0,1) + \lambda_2(2,1,2) + \lambda_3(1,-1,0) + \lambda_4(1,3,2) = (0,0,0)$$

$$A = \left(\begin{array}{cccc} 1 & 2 & 1 & 1 \\ 0 & 1 & -1 & 3 \\ 1 & 2 & 0 & 2 \end{array}\right) \stackrel{Op.Elem}{\longrightarrow} \left(\begin{array}{cccc} 1 & 2 & 1 & 1 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & -1 & 1 \end{array}\right)$$

Los vectores L.I son $\{(1,0,1),(2,1,2),(1,-1,0)\}$ y por lo tanto

$$S_1 + S_2 = \{(1,0,1), (2,1,2), (1,-1,0)\}.$$

Ejemplo Determinar la suma de los subespacios siguientes y una base de la suma.

$$S_1 = \langle (1,0,1), (2,1,2) \rangle$$
 y $S_2 = \langle (1,-1,0), (1,3,2) \rangle$.

Sabemos que

$$S_1 + S_2 = \langle (1,0,1), (2,1,2), (1,-1,0), (1,3,2) \rangle$$
.

Nota El conjunto de vectores (1,0,1),(2,1,2),(1,-1,0),(1,3,2) genera al subespacio suma, pero puede no ser una base de $S_1 + S_2$. Supongamos que

$$\lambda_1(1,0,1) + \lambda_2(2,1,2) + \lambda_3(1,-1,0) + \lambda_4(1,3,2) = (0,0,0)$$

$$A = \left(\begin{array}{cccc} 1 & 2 & 1 & 1 \\ 0 & 1 & -1 & 3 \\ 1 & 2 & 0 & 2 \end{array}\right) \stackrel{Op.Elem}{\longrightarrow} \left(\begin{array}{cccc} 1 & 2 & 1 & 1 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & -1 & 1 \end{array}\right)$$

Los vectores L.I son $\{(1,0,1),(2,1,2),(1,-1,0)\}$ y por lo tanto

$$S_1 + S_2 = \{(1,0,1), (2,1,2), (1,-1,0)\}.$$

Además $S_1 + S_2$ forma todo \mathbb{R}^3