Congratulations! You passed!

Latest Submission received 100% Grade 100%

To pass 70% or higher

Go to next item

1. In the training set below, what is $x_4^{(3)}$? Please type in the number below (this is an integer such as 123, no decimal

1/1 point

Size in feet²	Number of bedrooms	Number of floors	Age of home in years	Price (\$) in \$1000's
X ₁	X ₂	Хз	Хų	
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

30	
\bigcirc Correct Yes! $x_4^{(3)}$ is the 4th feature (4th column in the table) of the 3rd training example (3rd row in the table).	

2. 1/1 point $Which of the following are potential benefits of vectorization? \ Please choose the best option.$ O It makes your code run faster O It can make your code shorter O It allows your code to run more easily on parallel compute hardware All of the above **⊘** Correct Correct! All of these are benefits of vectorization! 3. True/False? To make gradient descent converge about twice as fast, a technique that almost always works is to 1/1 point double the learning rate alpha. O True False

⊘ Correct

Doubling the learning rate may result in a learning rate that is too large, and cause gradient descent to fail to find the optimal values for the parameters \boldsymbol{w} and \boldsymbol{b} .