NOTIONS DE BASES SUR LATEX

TSOPTIO FOUGANG Lesly

M.Sc. in Physics

Sous la direction de Serge Guy NANA ENGO

Professeur

Laboratoire de Physique Nucléaire, Atomique, Moléculaire et Biophysique Université de Yaoundé 1

31 mars 2022

1/36

Objectif Général et Objectifs Spécifiques visés

Objectif Général

Favoriser l'utilisation de LATEX et Jupyter

Objectifs Spécifiques

- Savoir écrire une équation
- Savoir écrire une matrice

Plan de l'exposé

- Présentation LATEX
- Symboles LATEX
- Équations
 - Équations numérotées
 - Équations non numérotées
 - Systèmes d'équations
 - Équations sur plusieurs lignes
 - Plusieurs équations sur une ligne
 - Aligner les égalités sur plusieurs lignes lors de la résolution des équations
- Matrices
 - Écrire une P-matrice
 - Écrire une b-matrice
 - Écrire une B-matrice
 - Écrire une v-matrice
 - Écrire une b-matrice

Qu'est-ce-que LATEX

LATEX est une collection de macro-commandes qui permet de concevoir des documents

- Développé dans les années 1980 par Leslie LAMPORT
- Très utilisé dans les domaines techniques et scientifiques pour la production de documents

Figure – Leslie Lamport

4□ > 4♂ > 4 ≥ > 4

Philosophie de LATEX

De part son monde de saisie, LATEX se distingue des autres logiciels de type WYSIWYG comme Microsoft Word, et Libre Office Writer

- Formatage semi-automatisé
- Qualité typographique professionnelle
- Mode mathématique permettant de composer les formules mathématiques complexes

Pourquoi rédiger en LATEX?

- Facile
- Professionnel
- Hors de contrôle

Outils logiciels pour écrire du LATEX

Distribution TeX Live, MikTeX

• Editeur de texte TeXmaker, TeXstudio.....

Lesly TSOPTIO FOUGANG

Fichiers LATEX

- .tex fichier du document source L^ATEX contenant les commandes (texte, symboles, expressions mathématiques)
- dvi fichier résultant de la compilation standard
- .ps ou .pdf fichier destiné à la publication
- .bib ou .bbl fichier pour la gestion de la bibliographie
- .aux, .toc ou .idx fichier pour générer les références.

Types de documents LATEX

- report
- article
- book
- letter
- beamer

Commandes pour régler la taille des caractères

```
tiny (minuscule) \Rightarrow
                                           essai
  scriptsize (très petit) ⇒
                                          essai
footnotesize (assez petit) ⇒
                                          essai
       small (petit) \Rightarrow
                                         essai
   normalsize (normal) \Rightarrow
                                         essai
       large (grand) \Rightarrow
                                         essai
                                        essai
   LARGE (plus grand) \Rightarrow
                                       essai
      huge (énorme) ⇒
                                      essai
       Huge (géant) \Rightarrow
```


Commandes pour régler le style des caractères

```
textbf ( "Bold" ou Gras) ⇒
                                          essai
textit ou emph ("Italic" ou Italique) ⇒
                                           essai
underline ("Underlined" ou Souligné) ⇒
                                           essai
```


Quelques symboles mathématiques LATEX

α	\alpha	θ	\theta	0	0	v	\upsilon
β	\beta	ϑ	\vartheta	π	\pi	ϕ	\phi
γ	\gamma	ι	\iota	ω	\varpi	φ	\varphi
δ	\delta	κ	\kappa	ρ	\rho	χ	\chi
ϵ	\epsilon	λ	\lambda	ϱ	\varrho	ψ	\psi
ε	\varepsilon	μ	\mu	σ	\sigma	ω	\omega
ζ	\zeta	ν	\nu	ς	\varsigma		
η	\eta	ξ	\xi	τ	\tau		
Γ	\Gamma	Λ	\Lambda	Σ	\Sigma	Ψ	\Psi
Δ	\Delta	Ξ	\Xi	Υ	\Upsilon	Ω	\Omega
Θ	\Theta	П	\Pi	Φ	\Phi		

Figure - Alphabet Grec

Quelques symboles mathématiques LATEX

Figure – Opérateurs n-aires

Quelques symboles mathématiques LATEX

Figure - Flèches

Équations numérotées l

Theorem

\begin{equation} contenu... \end{equation}

Example

Écrire sous Jupyter

$$A(f \leftarrow i) = \sum A_n(f \leftarrow i) \tag{1}$$

Équations numérotées II

Solution

```
\begin{equation}
A(f\gets i)=\sum_{n} A_{n}(f\gets i)
\end{equation}
```


Équations non numérotées l

Theorem

\begin{equation*}
contenu...
\end{equation*}

Example

Écrire sous Jupyter

$$A(f \leftarrow i) = \sum_{n} A_n(f \leftarrow i)$$

17 / 36

Équations non numérotées II

Solution

```
\begin{equation*}
A(f\gets i)=\sum_{n} A_{n}(f\gets i)
\end{equation*}
```

Autre méthode

On peut aussi utiliser pour les équations non numérotées le double "\$"

Systèmes d'équations I

Theorem

```
\begin{equation*}
\begin{cases}
a + b &{pour l'alignement} = c \\ {pour aller à la ligne}
aa + bb & = bb
\end{cases}
\end{equation*}
```

Example

Écrire sous Jupyter

$$\begin{cases} 2x + 4 &= 5 \\ 7x + 3 &= 8 \end{cases}$$

Systèmes d'équations II

Autre méthode

Une autre méthode consiste a utilisé \$

```
$$\begin{cases}
2x+4 & =5 \\
7x+3 & = 8
\end{cases}$$
```


Équations sur plusieurs lignes l

Theorem

```
\begin{equation}
\begin{split}
a...&{Pour l'alignement} \\ {Aller à la ligne}
& {Continuer sur une nouvelle ligne}
\end{split}
\end{equation}
```


Équations sur plusieurs lignes II

Example

Écrire sous Jupyter l'expression de la quatorzième fonction fonction d'état d'un oscillateur harmonique simple est donnée par

$$\psi_n(x) = \frac{\sqrt{600}e^{-x/2}}{4324320\sqrt[4]{2}} (135135x - 540540x^2 + 540540x^3 - 205920x^7 + 34320x^9 - 2496x^{11} + 64x^{13})$$

Équations sur plusieurs lignes III

Solution

```
\begin{equation*}
\begin{split}
\psi_{n}(x)=&\frac{\sqrt{600}e^{-x/2}}{4324320\sqrt[4]{2}}
(135135x-540540x^2+540540x^3\\
&-205920x^7+34320x^9-2496x^{11}+64x^{13})
\end{split}
\end{equation*}
```


Plusieurs équations sur une ligne I

Theorem

```
\begin{equation}
\begin{split}
a... \quad{Pour un petit espace}
ou \qquad{pour un grand espace}
b..., \quad c..
\end{split}
\end{equation}
```

Example

$$(A\dagger)^{\dagger} = A, \qquad (\lambda A + \mu B)^{\dagger} = B^{\dagger} \mu^{\star} + A \dagger \lambda^{\star}, \qquad (AB)^{\dagger} = B^{\dagger} A^{\dagger}$$

Plusieurs équations sur une ligne II

Solution

```
\begin{equation*}
\begin{split}
(A\dagger)^{\dagger}= A, \qquad
(\lambda A+\mu B)^{\dagger}=B^{\dagger} \mu^{\star}
+ A{\dagger} \lambda^{\star}, \qquad
(AB)^{\dagger}= B^{\dagger}A^{\dagger}
\end{split}
\end{equation*}
```


Plusieurs équations sur une ligne III

Autre méthode

Une autre méthode consiste a utilisé l'environnement align

```
\begin{align}
& (A\dagger)^{\dagger}= A, &&
(\lambda A+\mu B)^{\dagger}=B^{\dagger} \mu^{\star}
+ A{\dagger} \lambda^{\star}, &
(AB)^{\dagger}= B^{\dagger}A^{\dagger}
\end{align}
```

$$(A\dagger)^{\dagger} = A, \qquad (\lambda A + \mu B)^{\dagger} = B^{\dagger} \mu^{\star} + A \dagger \lambda^{\star}, \qquad (AB)^{\dagger} = B^{\dagger} A^{\dagger}$$

Aligner les égalités sur plusieurs lignes lors de la résolution des équations |

Theorem

```
\begin{equation}
\begin{split}
a..&{Pour l'alignement}=b..\\{Aller à la ligne}
&= c..\\ &=d
& {Continuer sur une nouvelle ligne}
\end{split}
\end{equation}
```


Aligner les égalités sur plusieurs lignes lors de la résolution des équations II

Example

$$\begin{split} P(+) &= \langle \psi | P_+ | \psi \rangle \\ &= \frac{1}{6} \left(\langle 0 | + \sqrt{5} \langle 1 | \right) \frac{1}{2} \left(| 0 \rangle \langle 0 | + | 0 \rangle \langle 1 | + | 1 \rangle \langle 0 | + | 1 \rangle \langle 1 | \right) \frac{1}{6} \left(| 0 \rangle + \sqrt{5} | 1 \rangle \right) \\ &= \frac{1}{12} \left(\langle 0 | + \sqrt{5} \langle 1 | \right) \left(1 + \sqrt{5} \right) \left(| 0 \rangle + \sqrt{5} | 1 \rangle \right) \\ &= \frac{1}{12} \left(6 - 2\sqrt{5} \right) \end{split}$$

Aligner les égalités sur plusieurs lignes lors de la résolution des équations III

Solution

```
\begin{equation*}
\begin{split}
P(+)&=\langle\psi|P_{+}|\psi\rangle\\ &= \dfrac{1}{6}
\left(\langle 0|+\sqrt{5}\langle 1|\right)\dfrac{1}{2} \left(\left(|0\rangle +\sqrt{5}|1\rangle\right)\\ &= \dfrac{1}{12}\\end{equation*}
```


Écrire une P-matrice I

Theorem

```
\begin{pmatrix}
a & b & c \\
d & e & f \\
g & i & j
\end{pmatrix}
```

Example

$$\begin{pmatrix} 2 & 4 & 6 \\ 5 & 6 & 7 \\ 2 & 4i & 9 \end{pmatrix}^{\dagger}$$

Écrire une P-matrice II

Solution

```
\begin{equation*}
\begin{pmatrix}
2& 4 & 6 \\
5 & 6 & 7 \\
2 & 4i & 9
\end{pmatrix}^\dagger
\end{equation*}
```


Écrire une b-matrice I

Theorem

```
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & i & j
\end{bmatrix}
```

Example

$$\begin{bmatrix} 2 & 4 & 6 \\ 5 & 6 & 7 \\ 2 & 4i & 9 \end{bmatrix}^{\dagger}$$

Écrire une B-matrice I

Theorem

```
\begin{Bmatrix}
a & b & c \\
d & e & f \\
g & i & j
\end{Bmatrix}
```

Example

$$\begin{cases} 2 & 4 & 6 \\ 5 & 6 & 7 \\ 2 & 4i & 9 \end{cases}^{\dagger}$$

Écrire une v-matrice |

Theorem

```
\begin{vmatrix}
a & b & c \\
d & e & f \\
g & i & j
\end{vmatrix}
```

Example

Écrire une V-matrice I

Theorem

```
\begin{Vmatrix}
a & b & c \\
d & e & f \\
g & i & j
\end{Vmatrix}
```

Example

$$\begin{vmatrix}
2 & 4 & 6 \\
5 & 6 & 7 \\
2 & 4i & 9
\end{vmatrix}$$

Fin de la présentation

Merci pour votre attention