Géométrie pour la 3D

Se donner des outils pour résoudre des problèmes géométriques.

Concevoir des algorithmes efficaces et robustes :

- Complexité
- Précision numérique
- Strucure et certification

I - Polygone et Polyèdre

- 1 Polygone (2D)
- a Définition

définition:

Soient $P_0, P_1, \ldots, P_{n+1}$, une suite de points ordonnés et cyclique $(P_n=P_0)$.

Soient $E_0 = P_0P_1, \ldots, E_i = P_iP_{i+1}, \ldots, E_{n-1} = E_{n-1}E_0$ et E l'ensemble ordonné des segments fermés, incluant des points d'extrémité. Les segments définissent un polygone P.

Si et seulement si,

• L'intersection de deux segments adjacents est un point :

$$E \ i \ \cap E \ i-1 \ = P \ i+1 \ , i=0 \to n-1$$

• L'intersection de deux segments non adjacents est vide :

$$E \ i \ \cap E \ j = \varnothing, i \neq i+1$$

Pour la suite, un polygone est un bord de la région.

Orientation: On prendra le sens trigonométrique dans ce cours.

Propriété :

- Théorème de Jordan : Une courbe fermée simple divise le plan en deux régions, ou en deux composantes, son intérieur et sont extérieur.
- Concavité
 - concave : Ange intérieur inférieur à pi rad(180 deg)
 - convexe : tout ce qui n'est pas concave

Figure 1: Polygone concave

b - Localisation d'un point dpar rapport à un polygone

1. Méthode des angles

Figure 2: Localisation d'un point par les anges

- $\bullet\,$ La somme des angles est égale à 360 si le point est à l'intérieur du polygone
- La somme des angles est égale à 0 si le point est à l'extérieur
- 2. Méthode de l'index

Théorème: Soit un polygone et D une droite ne passant ni par un sommet ni par un arrête. Alors la droite D coupe P en un nombre de point pair, Q_1, \ldots, Q_{n-1} , tous distincts

Définition : Soit $M(x,y) \in \mathbb{R}^2, \notin P$ On appelle **index** de M par apport à P. Selon une demi-droite Δ issue de M et passant par P

Théorème : La parité de I p(M) ne dépends pas du choix de la demi-droite Δ :

- M est à l'intérieur de P si I P $(M)[2] \equiv 1$
- M est à l'extérieur de P si I P $(M)[2] \equiv 0$

Figure 3: Localisation d'un point par index

2 - Polygone (3D)

Théorème de Jordan:

Le complémentaire dans \mathbb{R}^3 d'un polyèdre à deux composantes connexes, l'une bornée (intérieur) et l'autre infini (extérieur).

Définition : Un polyèdre est un ensemble de polygones $P_1,\,\ldots,\,P_f$ de \mathbb{R}^3 tel que

- 1. La condition géométrique est $int(P\ i\)\cap int(P\ j\), i\neq j\ (nb:int(P\ i\)$ est une face)
- 2. Conditions topologique:
 - \bullet Toute arrête de polygone P_i appartient à exactement deux polygones adjacents.
 - \bullet Tout sommet de tout polygone P_i appartient à au moins deux polygones

a - Localisation d'un point dpar rapport à un polygone

1. Méthode des angles

Si un point est dans le polyèdre, la somme des angles est égale à 0

2. Méthode de l'index

Idem que pour les polygones 2D

b - Représentation du polyèdre

les polyèdres sont représentés par les faces, ces faces sont représentées par les somets et arrêtes.

$$F \ 1 \ = (S \ 1 \ ,...,S \ j \), \ \dots, \ F \ i \ = \dots$$

$$E = E \ 1 \ (S \ 1 \ S \ 2 \), ..., E \ n \ (S \ n-1S \ 0 \)$$