8.11 Prevalenza mancinismo 2 (domanda in formato esame)

Il 10% è delle persone sono mancine. Ci chiediamo se la caratteristica sia ereditaria. Eseguiamo il seguente esperimento. Selezioniamo un campione di 1000 persone con almeno un genitore mancino e misuriamo la frequenza di mancini. Otteniamo 112 mancini.

Domande

- 1. Qual è l'potesi nulla?
- 2. Qual è l'potesi alternativa?
- 3. Che test possiamo fare?
- 4. Qual'è il p-valore ottenuto dai dati?
- 5. Possiamo rigettare l'ipotesi nulla con una significatività del $\alpha = 5\%$?

Risposte

- 1. p = 10% dove p è la prevalenza di mancini tra i figli di genitori mancini
- 2. p > 10%
- 3. Test binomiale a una coda
- 4. il p-valore è 1 pbinom(112,1000,0.1) (0.095)
- 5. no, perché α < p-valore.

N.B per 3-5, altre risposte corrette sono possibili (se coerenti).

```
Si assumano noti i valori delle seguenti funzioni
```

```
\begin{aligned} \operatorname{pbinom}\left(\mathbf{x},\mathbf{n},\mathbf{p}\right) = & P(X \leq x), \operatorname{per} X \sim B(n,p) \\ \operatorname{pnorm}\left(\mathbf{z}\right) = & P(Z \leq z), \operatorname{per} Z \sim N(0,1) \end{aligned} \qquad \qquad \operatorname{qbinom}\left(\alpha,\mathbf{n},\mathbf{p}\right) = \mathbf{x}, \operatorname{dove} P(X \leq x) = \alpha \operatorname{per} X \sim B(n,p) \\ \operatorname{qnorm}\left(\alpha\right) = & z, \operatorname{dove} P(Z \leq z) = \alpha \operatorname{per} Z \sim N(0,1) \\ \operatorname{pt}\left(\mathbf{t},\mathbf{n}\right) = & P(T \leq t) \operatorname{per} Z \sim t(n) \\ \operatorname{qt}\left(\alpha,\mathbf{n}\right) = & z, \operatorname{qove} P(T \leq t) = \alpha \operatorname{per} T \sim t(n) \\ \operatorname{pchisq}\left(\mathbf{q},\mathbf{k}\right) = & P(Q \leq q), \operatorname{per} Q \sim \chi_k^2 \end{aligned} \qquad \qquad \operatorname{qchisq}\left(\alpha,\mathbf{k}\right) = & z, \operatorname{qove} P(Q \leq q) = \alpha \operatorname{per} Q \sim \chi_k^2 \end{aligned}
```

9.1 Test a una coda

Si sospetta che una certa terapia faccia aumentare la pressione diastolica. Nella popolazione generale la pressione diastolica ha distribuzione $N(\mu_0, \sigma^2)$ con $\mu_0 = 75$ e $\sigma = 9.5$.

Assumiamo che tra i pazienti in terapia la pressione diastolica sia distribuita normalmente con media ignota μ e con la stessa deviazione standard della popolazione generale. Vogliamo testare le seguenti ipotesi:

 $H_0: \mu = \mu_0$

 $H_A: \mu > \mu_0$

Il test consiste nel misurare la pressione ad un campione di n pazienti e di questi dati calcolare la media. Abbiamo quindi la seguente statistica

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Dove X_i è la v.a. che dà la pressione dell'*i*-esimo paziente del campione. Rigetteremo H_0 se il valore ottenuto è suporiore ad un certo x_α che vogliamo fissare in modo che l'errore I tipo risulti uguale ad α . Quindi x_α dev'essere tale che x_α tale che $\Pr(\bar{X} > x_\alpha) = \alpha$.

Se H_0 è vera, $\bar{X} \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$.

Se H_A è vera, $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ per qualche $\mu > \mu_0$.

Qui rappresentiamo gli errori del I e II tipo per campioni di dimensione n=20 e n=40 e con un x_{α} scelto in moto tale da avere $\alpha=5\%$. Per gli errori del II tipo prendiamo $\delta=5$.

.

9.3 Crescita media

In condizioni ottimali l'incremento proporzionale di una certa cultura in una fissata unità di tempo ha media $\mu_0=3.1$ e deviazione standard $\sigma=1.2$. Vogliamo progettare un test per decidere se la crecita di una data cultura sia sub-ottimale. Assumiamo che la distribuzione sia normale e che in condizioni sub-ottimali la deviazione standard sia la stessa. (Queste assunzioni sono abbastanza irragionevoli, ma portiamo pazienza.)

Domande:

- Preleviamo n=9 campioni, e misuriamo la crescita in un'unità di tempo. E calcoliamo la media campionaria \bar{x} . Quanto dev'essere x_{α} per poter affermare che con significatività $\alpha=1\%$ che siamo in condizioni sub-ottimali quando $\bar{x}< x_{\alpha}$?
- 2 Dato x_{α} comer sopra. Qual'è la probabilità di un errore del II tipo se l'effect size è $\delta=0.5$?

Risposte:

- 1 Vogliamo $1\% = \Pr(\bar{X} \le x_{\alpha}) \operatorname{con} \bar{X} \sim N(\mu_{0}, \sigma/\sqrt{n}).$ Quindi $x_{\alpha} = \operatorname{qnorm}(0.01, 3.1, 0.4) = 2.17$
- 2 $\beta = \Pr(\bar{X} \le x_{\alpha}) \text{ con } \bar{X} \sim N(\mu_{0} \delta, \sigma/\sqrt{n}).$ Quindi $\beta = \text{pnorm}(2.17, 2.6, 0.4) = 0.14.$

9.4 Una coda, p-valore.

Z-test

Supponiamo di ottenere $\bar{x}=78.0$ da un campione di dimensione n=20. Il p-valore di questa misura è $\Pr(\bar{X} \geq 78) = 1 - \Pr(\bar{X} \leq 78)$.

Numericamente $\Pr(\bar{X} \leq \bar{x})$ si può calcolare usando la funzione pnorm (x, m, s) . Nel nostro caso i valori sono $x = \bar{x}$, $m = \mu_0$, $e = \sigma/\sqrt{n}$.

Nel caso di un test a due code, se H_A fosse stata $\mu_0 \neq \mu$, il p-valore diventa esattamente il doppio che per il test ad una coda (qui sotto differisce numericamente a causa degli arrotondamenti).

.

9.5 Mean weight (domanda in formato esame)

Boys of a certain age are known to have a mean weight of 85 pounds and standard deviation 10.6 pounds. A complaint is made that the boys living in a municipal children's home are overfed. As one bit of evidence, 25 boys (of the same age) are weighed and found to have a mean weight of 88.94 pounds. Assume the same standard deviation as in the general the population (the unrealistic part of this example).

Domande

- 1. Qual è l'potesi nulla?
- 2. Qual è l'potesi alternativa?
- 3. Che test possiamo fare?
- 4. Qual'è il p-valore ottenuto dai dati?
- 5. Possiamo rigettare l'ipotesi nulla con una significatività del $\alpha = 5\%$?

Risposte Definiamo:

```
\mu_0 = 85
\sigma = 10.6
n = 25
```

 $ar{x} = 88.94$ 1. $\mu = \mu_0$.

- 2. $\mu > \mu_0$
- 3. *z*-test
- 4. il p-valore è 1-pnorm (z) dove $z=\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}$. (0.03) Lo stesso risultato si ottienre con 1-pnorm ($\bar{x},\mu_0,\sigma/\sqrt{n}$), ma non è tra le possibilità elencate in calce.
- 5. si, perché p-valore $< \alpha$.

```
Si assumano noti i valori delle seguenti funzioni
```

```
\begin{aligned} \operatorname{pbinom}\left(\mathbf{x},\mathbf{n},\mathbf{p}\right) = & P(X \leq x), \operatorname{per} X \sim B(n,p) \\ \operatorname{pnorm}\left(\mathbf{z}\right) = & P(Z \leq z), \operatorname{per} Z \sim N(0,1) \\ \operatorname{pt}\left(\mathbf{t},\mathbf{n}\right) = & P(T \leq t) \operatorname{per} Z \sim t(n) \end{aligned} \qquad \begin{aligned} \operatorname{qbinom}\left(\alpha,\mathbf{n},\mathbf{p}\right) = & \mathbf{x}, \operatorname{dove} P(X \leq x) = \alpha \operatorname{per} X \sim B(n,p) \\ \operatorname{qnorm}\left(\alpha\right) = & \mathbf{z}, \operatorname{dove} P(Z \leq z) = \alpha \operatorname{per} Z \sim N(0,1) \\ \operatorname{qt}\left(\alpha,\mathbf{n}\right) = & \mathbf{t}, \operatorname{dove} P(T \leq t) = \alpha \operatorname{per} T \sim t(n) \\ \operatorname{pchisq}\left(\mathbf{q},\mathbf{k}\right) = & P(Q \leq q), \operatorname{per} Q \sim \chi_k^2 \end{aligned} \qquad \end{aligned}
```