# 计算机组成原理

刘松波

(第二讲)

哈工大计算学部 模式识别与智能系统

## 1.1 计算机系统简介

一、计算机的软硬件概念

1. 计算机系统

计算机的实体, 如主机、外设等 如主机、外设等 软件 由具有各类特殊功能 的信息(程序)组成

#### 2. 计算机的解题过程

1.1



计算机

#### 1.1

#### 二、计算机系统的层次结构

高级语言

汇编语言

操作系统

机器语言

微指令系统





## 三、计算机体系结构和计算机组成

1.1

有无乘法指令

计算机。体系结构

程序员所见到的计算机系统的属性概念性的结构与功能特性

(指令系统、数据类型、寻址技术、I/0机理)

计算机 组成 实现计算机体系结构所体现的属性

(具体指令的实现)

如何实现乘法指令



## 1.2 计算机的基本组成

- 一、冯·诺依曼计算机的特点
  - 1. 计算机由五大部件组成
  - 2. 指令和数据以同等地位存于存储器, 可按地址寻访
  - 3. 指令和数据用二进制表示
  - 4. 指令由操作码和地址码组成
  - 5. 存储程序
  - 6. 以运算器为中心



#### 冯·诺依曼计算机硬件框图

1.2





#### 二、计算机硬件框图

#### 1. 以存储器为中心的计算机硬件框图



#### 2. 现代计算机硬件框图

1.2





#### 三、计算机的工作步骤

**1.2** 

#### 1. 上机前的准备

- 建立数学模型
- 确定计算方法

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \cdots$$

$$y_{n+1} = \frac{1}{2} (y_n + \frac{x}{y_n}) (n = 0, 1, 2, \cdots)$$

• 编制解题程序

程序 —— 运算的 全部步骤

指令 —— 每 一个步骤

计算  $ax^2 + bx + c = (ax + b)x + c$ 取x 至运算器中 取x 至运算器中 乘以x 在运算器中 乘以a 在运算器中 乘以a 在运算器中 在运算器中 加 $\boldsymbol{h}$ 乘以x 在运算器中 存 $ax^2$  在存储器中 在运算器中 取b 至运算器中 加c乘以x 在运算器中  $max^2$  在运算器中 2022/8/24 加c 在运算器中

## 指令格式举例

|        |           | _                                           |
|--------|-----------|---------------------------------------------|
| 操作码    | 地址码       |                                             |
| 取数     | α         | $[\alpha] \longrightarrow ACC$              |
| 000001 | 000001000 |                                             |
| 存数     | β         | $[ACC] \rightarrow \beta$                   |
| 加      | γ         | $[ACC]+[\gamma] \longrightarrow ACC$        |
| 乘      | δ         | $[ACC] \times [\delta] \longrightarrow ACC$ |
| 打印     | σ         | [σ] → 打印机                                   |
|        |           |                                             |

## 计算 $ax^2 + bx + c$ 程序清单

**1.2** 

| 指令和数据存于                         |        |            | 注释                        |  |
|---------------------------------|--------|------------|---------------------------|--|
| 主存单元的地址                         | 操作码    | 地址码        | 7土作                       |  |
| 0                               | 000001 | 0000001000 | 取数x至ACC                   |  |
| 1                               | 000100 | 0000001001 | 乘a得ax,存于ACC中              |  |
| 2                               | 000011 | 0000001010 | 加b得ax+b,存于ACC中            |  |
| 3                               | 000100 | 0000001000 | 乘x得(ax+b)x,存于ACC中         |  |
| 4                               | 000011 | 0000001011 |                           |  |
| 5                               | 000010 | 0000001100 | 将 $ax^2 + bx + c$ ,存于主存单元 |  |
| 6                               | 000101 | 0000001100 | 打印                        |  |
| 7                               | 000110 |            | 停机                        |  |
| 8                               |        | x          | 原始数据x                     |  |
| 9                               |        | a          | 原始数据a                     |  |
| 10                              | b      |            | 原始数据b                     |  |
| 11                              | c      |            | 原始数据c                     |  |
| <sup>2</sup> 022/8/24 <b>12</b> |        |            | 存放结果 1                    |  |

#### 2. 计算机的解题过程

1.2

(1)存储器的基本组成

存储体

MAR | MDR |

主存储器

存储体 - 存储单元 - 存储元件

大楼 - 房间 - 床位(无人/有人)

存储单元 存放一串二进制代码

存储字 存储单元中二进制代码的组合

存储字长 存储单元中二进制代码的位数

每个存储单元赋予一个地址号

按地址寻访



#### 1.2

### (1)存储器的基本组成

存储体

MAR MI

MDR

主存储器

MAR 存储器地址寄存器 反映存储单元的个数

MDR 存储器数据寄存器 反映存储字长



设 MAR=4位 MDR=8位 存储单元个数 16

存储字长8

### (2)运算器的基本组成及操作过程



|    | ACC       | MQ         | X   |
|----|-----------|------------|-----|
| 加法 | 被加数<br>和  |            | 加数  |
| 减法 | 被减数差      |            | 减数  |
| 乘法 | 乘积高位      | 乘数<br>乘积低位 | 被乘数 |
| 除法 | 被除数<br>余数 | 商          | 除数  |

## ① 加法操作过程



指令 加 M
初态 ACC 被加数
[M] → X
[ACC]+[X] → ACC

## ② 减法操作过程



指令 减 M 初态 被减数 ACC  $[\mathbf{M}] \longrightarrow$  $[ACC]-[X] \longrightarrow ACC$ 

## ③ 乘法操作过程



指令 乘 M 被乘数 初态 ACC  $[M] \longrightarrow MQ$  $[ACC] \longrightarrow X$  $0 \longrightarrow ACC$  $[X] \times [MQ] \longrightarrow ACC // MQ$ 

## ④ 除法操作过程





## (3)控制器的基本组成

1.2



 完成 { 取指令
 PC

 一条 { 分析指令 IR

 指令 { 执行指令 CU

PC 存放当前欲执行指令的地址, 具有计数功能(PC)+1→PC

IR 存放当前欲执行的指令

# (4) 主机完成一条指令的过程 以取数指令为例



# (4) 主机完成一条指令的过程 以存数指令为例



- 将程序通过输入设备送至计算机
- 程序首地址 → PC
- 启动程序运行
- 取指令  $PC \rightarrow MAR \rightarrow M \rightarrow MDR \rightarrow IR$  ,  $(PC) + 1 \rightarrow PC$
- 分析指令 OP(IR) → CU
- 执行指令 Ad(IR) → MAR → M → MDR → ACC

•

- 打印结果
- **停机**

# 1.3 计算机硬件的主要技术指标

CPU一次能处理数据的位数 1. 机器字长 与 CPU 中的 寄存器位数 有关

古普森法  $T_{\rm M} = \sum_{i=1}^{n} f_i t_i$ 

2. 运算速度 <

MIPS 每秒执行百万条指令

FLOPS 每秒浮点运算次数 CPI 执行一条指令所需时钟周期数

#### 3. 存储容量 存放二进制信息的总位数

存储单元个数×存储字长 容量 **MDR** MAR 1 K×8位 **10** 主存容量 64 K×32位 **32** 16 如  $2^{13}$  b= 1 KB- $2^{21}b = 256 \text{ KB}$ 字节数 辅存容量 **80 GB** 



第1篇 概论



第2篇 计算机系统的硬件结构



第3篇 CPU



# 第2章 计算机的发展及应用

2.1 计算机的发展史

2.2 计算机的应用

2.3 计算机的展望

## 2.1 计算机的发展史

一、计算机的产生和发展

1946年 美国 ENIAC 1955年退役

十进制运算

18 000 多个电子管

1500 多个继电器

150 千瓦

30 吨

1500 平方英尺

5000 次加法 / 秒

用手工搬动开关和拔插电缆来编程



#### 2.1



世界上第一台电子计算机 ENIAC(1946)

#### 硬件技术对计算机更新换代的影响

2.1

| 代        | 时间        | 硬件技术         | 速度/(次/秒)    |
|----------|-----------|--------------|-------------|
| _        | 1946—1957 | 电子管          | 40 000      |
|          | 1958—1964 | 晶体管          | 200 000     |
| $\equiv$ | 1965—1971 | 中小规模<br>集成电路 | 1 000 000   |
| 四        | 1972—1977 | 大规模<br>集成电路  | 10 000 000  |
| 五        | 1978一现在   | 超大规模<br>集成电路 | 100 000 000 |

# 第一台von Neumann 系统结构的计算机 2.1



## IBM System / 360

## 2.1



## 2.1

## 二、微型计算机的出现和发展

| 微处理器芯片   | 1971年 | 存储器芯片       | 1970年 |
|----------|-------|-------------|-------|
| 4位(4004) |       | 256位        |       |
| 8位       |       | 1K位         |       |
| 16位      |       | <b>4K</b> 位 |       |
| 32位      |       | 16K位        |       |
| 64位      |       | 64K位        |       |

4M位 16M位 64M位

256K位

1M位

#### Intel 公司的典型微处理器产品

2.1

| 8080               | 8位     | 1974年 |               |
|--------------------|--------|-------|---------------|
| 8086               | 16位    | 1979年 | 2.9 万个晶体管     |
| 80286              | 16位    | 1982年 | 13.4 万个晶体管    |
| 80386              | 32位    | 1985年 | 27.5 万个晶体管    |
| 80486              | 32位    | 1989年 | 120.0 万个晶体管   |
| Pentium            | 64位(准) | 1993年 | 310.0 万个晶体管   |
| <b>Pentium Pro</b> | 64位(准) | 1995年 | 550.0 万个晶体管   |
| Pentium II         | 64位(准) | 1997年 | 750.0 万个晶体管   |
| Pentium III        | 64位(准) | 1999年 | 950.0 万个晶体管   |
| Pentium IV         | 64位    | 2000年 | 4 200.0 万个晶体管 |

目前 芯片上可集成 超过 30亿 个晶体管

#### Moore 定律



Intel 公司的缔造者之一 Gordon Moore 提出

微芯片上集成的

晶体管数目每三年翻两番

2022/8/24

## 三、软件技术的兴起和发展

2.1

#### 1. 各种语言

机器语言 面向机器

汇编语言 面向机器

高级语言 面向问题

FORTRAN 科学计算和工程计算

PASCAL 结构化程序设计

C++ 面向对象

Java 适应网络环境

#### 2. 系统软件

语言处理程序

汇编程序 编译程序 解释程序

操作系统

**DOS UNIX Windows** 

服务性程序

装配 调试 诊断 排错

数据库管理系统 数据库和数据库管理软件

网络软件

## 3. 软件发展的特点

- (1) 开发周期长
- (2) 制作成本昂贵
- (3) 检测软件产品质量的特殊性

软件是程序以及开发、使用和

维护程序所需要的所有文档

# 2.2 计算机的应用

- 一、科学计算和数据处理
- 二、工业控制和实时控制
- 三、网络技术
  - 1. 电子商务
  - 2. 网络教育
  - 3. 敏捷制造

四、虚拟现实

五、办公自动化和管理信息系统

六、CAD/CAM/CIMS

七、多媒体技术

八、人工智能

## 2.3 计算机的展望

一、计算机具有类似人脑的一些超级智能功能

要求计算机的速度达1015/秒

- 二、芯片集成度的提高受以下三方面的限制
  - 芯片集成度受物理极限的制约
  - 按几何级数递增的制作成本
  - 芯片的功耗、散热、线延迟



#### 三、?替代传统的硅芯片

1. 光计算机

利用光子取代电子进行运算和存储

2. DNA生物计算机

通过控制DNA分子间的生化反应

3. 量子计算机

利用原子所具有的量子特性