AE 240/713/240M End-semester Examination Weight: 20% Time: 0900-1100 Hrs. Exam is open notes (including hand-written).

April 28, 2021 Venue: Online – Moodle Only calculator is allowed.

- Q.1 A spacecraft with $m_* = 100$ kg needs to form a circular orbit at 200 km altitude using a two-stage rocket. If the rocket uses same propellant of $I_{sp} = 300s$ as well as same structural ratio, ' ϵ ', of 0.1 for both the stages, determine stage-wise mass configuration, m_{si} , m_{pi} & lift-off mass, m_0 to achieve the desired V*, assuming a 10% loss of ideal energy due to gravity. ($R_E = 6.378 \times 10^6 m$, $\mu = 3.986 \times 10^{14}$ m³s⁻², $g_0 = 9.81$ m/s²). (4)
- Q.2 A spacecraft weighing 2500 kg and flying at an angle of 3.0° with local horizon during its terminal phase needs to become parallel to local horizon over a horizontal distance of 30 km. Determine the constant velocity (V₀) at which the required gravity turn manoeuvre must be performed, along with the time taken for it. Also determine the propellant burn rate at the start of the manoeuvre, if a fuel of $I_{sp} = 300s$ is to be used and approximate fuel mass that must be carried for this manoeuvre. (Hint: You may assume flat earth. Also, $g_0 = 9.81 \text{ m/s}^2$)
- Q.3 A satellite with perigee of 522 km altitude and apogee of 20022 km altitude needs to make a 90° plane change when the spacecraft reaches its apogee. Determine the ' ΔV ' required for the above manoeuvre and compare it with velocity impulse if a parabola is used for the inclination change? ($R_E = 6.378 \times 10^6 \text{m}$, $\mu = 3.986 \times 10^{14} \text{ m}^3 \text{s}^{-2}$).
- Q.4 A Spacecraft has an orbit around Earth with perigee altitude of 500 km and apogee altitude of 40,000 km and its communication range is less than 1000 km. Determine the time interval during which it is in contact with the ground stations and the corresponding mean and actual angular travel that it has done during this interval. ($R_E = 6.378 \times 10^6 \text{m}$, $\mu = 3.986 \times 10^{14} \text{ m}^3 \text{s}^{-2}$). (5)
- Q.5 Two geocentric ellipses have aligned major axes and their perigees are on the same side of earth. For first ellipse $r_p = 7 \times 10^6$ m and e = 0.3, while for the second ellipse $r_p = 32 \times 10^6$ m and e = 0.5. Find the total impulse required to complete the transfer as well as the time taken to complete it. ($R_E = 6.378 \times 10^6$ m, $\mu = 3.986 \times 10^{14}$ m³s⁻²).

PAPER ENDS