Note Title 3/30/2015

P \$U	P_\$R	P & Cu
\$1.	\$10 1-p\$R	\$C .
1-p\$d	bond	
any security	***************************************	of the security

the "underlying" the "derivative"

$$C = \frac{1}{R} \left[\frac{R-d}{u-d} C_u + \frac{u-R}{u-d} C_d \right]$$

$$= \frac{1}{R} \left[\widehat{p} C_u + (1-\widehat{p}) C_d \right]$$

$$\widehat{p} = \frac{R-d}{u-d}$$

Notice the logic:

	irrelevant	relevant
_	1	1000000
•	P	· u, d
	and the	• 0
•	exact type of the underlying	* N
•	exact type of the	· (Cu, Col):
-	exact type of the derivative (call,	the payoff of the
	put, future,	the payoff of the derivative contingent
	exotic denvatives	
	etc.)	the underlying
		0.1
	nop, bu	t P
	•	· · · · · · · · · · · · · · · · · · ·

Aside: The underlying itself can be a derivative product. A Standard example is "option on future".

· Does this (probability?) \$\bar{p}\$ have a deeper meaning?

Notice: P is the unique value such that

Financial interpretation:

P is the probability so that the expected return of the stock is the same as the risk-free (bond) return.

Would you invest in such a stock?

O X	risk-adverse	risk-seeking	risk-neutral
7>P	hmm maybe	Yea!	Yes
P=P	no!	hmm maybe	don't care
P<6	no way!	hmm maybe	no

i.e "risk-neutral"

If p=p and you don't care about risk, then the stock is just as good an investment as the risk-free bond.

Hence the terminology:

P is called the risk-neutral probability (66 the Stock.)

A suggestive notation:

In above, we use the property that the market is linear and complete, i.e. every payoff (Cu, Cv) can be replicated by a linear combination of Stock and bonds.

See: [Luenberger, 2nd edition, Ch11]

for a more in-depth discussion of these concepts.

Perhaps at this point the more important thing to remember is:

long

hedges" a short position in the derivetive

Note: When y < 0 and >e>0 (which is the case for a call option), we are borrowing \$\forall from the bank to finance part of the stock position.

multiperiod options:

again, define the risk-neutral probability
$$P = \frac{R-d}{u-d}$$

The no-arbitrage price of the derivative is determined by:

Note: the derivative price is determined backward in time.

Similar for any number of periods.

Why does it guarantee no-arbitrage?

The (dynamically readjusted) portfolio perfectly replicates the payoff of the derivative,

So the no-arbitrary price of the derivative must be the price of the portfolio at time O.

[See class demo]

Example:

Consider a 3-period stock with So = \$4 (initial Stock price) u=2, d=1/2

Interest rate: 25% per period, so R=1+14

Let's price an ATM European call option on this stock, i.e. K= \$4

at time i

S(ddd) = 0.5

Aside: The 23 paths of the Stock market at time 3: uuu uud We may write 5(u) =8, SW=2 duu S(uu)= 16 S(ud) = S(du) = 4 vad S(dd) = 1 dud ddu S(uuu)=32S(uud) = S(udu) = S(duu) = 8ddd S(udd) = S(dud) = S(ddu) = 2

risk-neutral probability
$$\beta = \frac{R-d}{u-d} = \frac{54-1/2}{2-1/2} = \frac{1}{2}$$

Payoff of call option at time 3:

 $C(uuu) = 28$
 $C(uuu) = C(udu) = C(duu) = 4$
 $C(uud) = C(duu) = C(duu) = 0$
 $C(uud) = C(duu) = C(ddu) = 0$
 $C(uud) = C(duu) = C(ddu) = 0$
 $C(uud) = C(uuu) = C(uuu) = 0$
 $C(uud) = C(uuu) = C(uuu) = 0$
 $C(uuu) = C(uuu) = 0$
 $C(uuu) = C(uuu) = 0$
 $C(uuu) = 0$
 $C(uu$

If we buy this call on a unit of 100 shares
of stock, max profit = \$2800 - \$256 max loss = \$256
max 1855 - \$ 256
Now, the trickiest:
why should the option be priced in this way?
If the call is priced above \$2.56, you
short the call, collect the premium.
Use \$256 to long the
dynamic hedging portfolio You would not gain or loss anything
in the positions no matter
what happens to the stock market.
Riskless profit: Premium + 256 > 0
If the call is priced below \$2.56, you
long the call and shork the
dynamic hedging portfolio (You collect \$256
here to finance the long call position)
you would not gain or loss anything
in the positions no matter
what happens to the stock market.
Riskless profit: 256 - Premum>0
P <256
£ 256

with a twist, this binomial lattice model can also be used to price American (i.e. allowing early exercise) put option.

The logic may be a bit tricky, but the algorithm is very simple:

At each node:

- 1. Calculate the value of the put using the discounted risk-neutral formula.
- 2. Calculate the value that would be obtained by immediate exercise of the put
 - 3. select the larger of the 2 values

Note: If the stock price drops to 0 and K >0, then exercising the put now is clearly optimal.

Payoff

Payoff

ob a put:

option

You can make \$K

(=maximum payoff

of the option)

K

now, why wait?

This clearly shows that when the price of the underlying drops significantly, then early exercising is actually optimal.

Example:

Consider again a 2-period stock with $S_0 = \$4$ (initial Stock price) u=2, d=1/2

Interest rate: 25% per period, so R=1+14

Let's price an European and an American put option on this Stock, i.e. K=\$\$5

Payoff of option:
max (K-83,0)

stock/option:

$$S_{1}(uu) = 16 / 0 = P_{1}(uu)$$

$$S_{2}(uu) = 16 / 0 = P_{1}(uu)$$

$$S_{3}(uu) = S_{2}(uu) = S_{2}(uu) = 4/1 = P_{1}(uu)$$

$$S_{1}(uu) = 2$$

$$S_{2}(uu) = 1/4 = P_{1}(uu)$$

$$S_{2}(uu) = 1/4 = P_{1}(uu)$$

European put prices:

$$P_{1}(w) = 0$$

$$P_{1}(w) = 0.4$$

$$P_{2}(ud) = P_{2}(dw) = 1$$

$$P_{0} = 0.46$$

$$P_{1}(d) = P_{2}(dd) = 4$$

> Exercise: what is the dynamic hedging portfolion that replicates the payoff of the option

American put prices:

$$V_1(u) = \max(0, \xi(\frac{1}{2}\cdot 0 + \xi \cdot 1)) = 0.4$$

$$V_1(d) = \max(3, \frac{4}{5}(\frac{1}{2}\cdot 1+\frac{1}{2}\cdot 4)) = 3$$

Q: What is the rationale behind this pricing algorithm?

what if the option is priced above or below \$1.36?

Claim:

If you long the American put, it is to your best interest to exercise the put at time 1 if the stock goes down at time 1,

You don't need a crystal ball to see the the optimal exercise time.

If the stock is down at time 1, compare

- Describe (early) you pocket \$3.

 Now, if you just keep the \$3, you may regret that you exercise too early in case the stock gaes down again. But: you can use 2 of the 3 dollars to build the replicating portfolio

 -\$2 stock \$1
- 2) You don't exercise, at time 2 you get
 \$1

·出什

Which one is better?

. If you know that there are option traders
· If you know that there are option traders out there who don't understand this logic
and don't exercise at the optimal time,
then you can make a riskless profix out
of them.
How?

See:	Example_Binomial_Lattice.m		
uses t	uses binprice () in the financial 'tool box.		
Pressing	g issue:		
How	can the binomial lattice		
mod	can the binomial lattice lel be useful for modelling al asset prices?		
re	al asset prices?'		
This	is to be addressed next.		