Learning to Trade via Direct Reinforcement by John Moody and Matthew Saffell

presented by Dustin Boswell

April 23, 2003

Reinforcement Learning Methods

Value Learning

- Learns a value function V(state, action)
- Optimal action is implicit: $a^* = \arg \max_a V(state, a)$
- Ex: Q-Learning, TD-Learning, Advantage Updating
- Suitable in environments where rewards are not immediate:
 Grid World, Checkers

Reinforcement Learning Methods

Value Learning

- Learns V(state, action)
- Optimal action is implicit.
- Ex: Q-Learning
- Suitable for delayed rewards

Direct Reinforcement Learning

- No value function
- Learns action policy directly
- Ex: Recurrent Reinforcement Learning (RRL) given by Moody
- Suitable in environments where rewards are immediate: Control problems, stock markets

Computational Finance Methods

Typical Approach

- Learn to predict future prices
- 2) Take into account transaction costs, risk, etc...
- 3) Make trading decision

Direct Approach

1) Learn to predict future 1) Learn trading strategy

Notation

- ullet Our agent trades fixed quantities of a security z.
- \bullet The price series is $\{z_1,z_2,\dots z_t,\dots z_T\}$ and corresponding price changes $r_t=z_t-z_{t-1}$
- At each time step, our position is $F_t \in \{long, neutral, short\} = \{+1, 0, -1\}$

Notation (cont.)

- We wish to learn a trading strategy $F_t = F(\theta_t; F_{i < t}, I_t)$ θ is the set of parameters we are learning $I_t = \{z_{i < t}, etc...\}$ is our **Information** at time t
- For example, a system with m+1 "autoregressive inputs": $F_t = sign(uF_{t-1} + v_0r_t + v_1r_{t-1} + \cdots v_mr_{t-m} + w)$ $\theta = \{u, v_i, w\}$
- Whatever functional form used, $F(\theta)$ must be differentiable $(dF/d\theta)$.

Profit & Wealth

- Daily Return: $R_t = r_t \cdot F_{t-1} \delta |F_t F_{t-1}|$ δ is the transaction cost
- Total Profits: $P_T = \sum_{t=1}^T R_t$ i.e. no reinvesting
- Wealth: $W_T = W_0 + P_T$
- Utility: $U_T = U(R_1, \dots R_T; W_0)$ Ex: $U_T = W_T$ measures profit without regard to risk

Measuring Utility: Sharpe Ratio

- Let U_T be the Sharpe Ratio: $S_T = \frac{Average(R_t)}{StandardDeviation(R_t)}$
- ullet To maximize U_T , we will need an expression for dU_T/dR_t .
- But dS_T/dR_t is hard to work with.
- Instead, Moody comes up with an approximation...

Approximating the Sharpe Ratio

• First, let us define "exponential moving estimates" $A_t = E(R_t)$ and $B_t = E(R_t^2)$.

$$A_{t} = A_{t-1} + \eta \Delta A_{t} \quad (\frac{dA_{t}}{d\eta} = \Delta A_{t} = R_{t} - A_{t-1})$$

$$B_{t} = B_{t-1} + \eta \Delta B_{t} \quad (\frac{dB_{t}}{d\eta} = \Delta B_{t} = R_{t}^{2} - B_{t-1})$$

- η^{-1} is the size of the window. (Moody sets $\eta = 0.01$.)
- So now we define the Sharpe Ratio in terms of these estimates.

$$S_t = \frac{A_t}{(B_t - A_t^2)^{1/2}} \approx \frac{Ave(R_t)}{Std(R_t)}$$

Approximating the Sharpe Ratio (cont.)

• Now Taylor expand S_t about η (not obvious why, but it helps the algebra).

$$S_t \approx S_{t-1} + \eta \frac{dS_t}{d\eta}|_{\eta=0} + O(\eta^2)$$

• Ignore $O(\eta^2)$. Notice only the center term depends on R_t .

This lets us say
$$\frac{dS_t}{dR_t} pprox \frac{d}{dR_t} \eta D_t$$

$$D_t \equiv \frac{dS_t}{d\eta} = \frac{d}{d\eta} \frac{A_t}{(B_t - A_t^2)^{1/2}}$$

$$D_t \equiv \frac{B_{t-1}\Delta A_t - \frac{1}{2}A_{t-1}\Delta B_t}{(B_{t-1} - A_{t-1}^2)^{3/2}}$$

Measuring Utility: Sharpe Ratio (cont.)

• Finally, we arrive at

$$\frac{dD_t}{dR_t} = \frac{B_{t-1} - A_{t-1}R_t}{(B_{t-1} - A_{t-1}^2)^{3/2}}$$

• Hence we've gotten our expression :

$$\frac{dU_t}{dR_t} = \frac{dS_t}{dR_t} \approx \eta \frac{dD_t}{dR_t}$$

ullet Notice the largest improvement to U_t is when

$$R_t^* = B_{t-1}/A_{t-1}$$

ullet So the Sharpe Ratio penalizes gains larger than $R_t^*!$

Measuring Utility: Sterling Ratio

• $Sterling_T = \frac{\text{Average Yearly Return}}{\text{Maximum Draw Down}}$

• $MDD = \max_{i < j} (z_i - z_j)$ where $j - i \le 1$ year

 Useful for mutual fund managers wanting to minimize displeased customers

Unfortunately, difficult to deal with analytically

Measuring Utility: Double Deviation Ratio

•
$$DDR_T = \frac{Average(R_t)}{DD_T}$$

•
$$DD_T = \left(\frac{1}{T} \sum_{t=1}^{T} min\{R_t, 0\}^2\right)^{1/2}$$

 \bullet DDR rewards large average positive returns, penalizes "risky" (large negative) returns

Learning Parameters through Gradient Ascent

• Given $F_t(\theta)$ we want to adjust θ to maximize U_T :

$$\frac{dU_T(\theta)}{d\theta} = \sum_{t=1}^{T} \frac{dU_T}{dR_t} \left\{ \frac{dR_t}{dF_t} \frac{dF_t}{d\theta} + \frac{dR_t}{dF_{t-1}} \frac{dF_{t-1}}{d\theta} \right\}$$

$$\Delta\theta = \rho \frac{dU_T(\theta)}{d\theta} \qquad (\rho \text{ is the learning rate })$$

- $\frac{dU_T}{dR_t}$: we saw this from before
- $\frac{dR_t}{dF_t}$: easy to determine
- $\frac{dF_t}{d\theta}$: $\frac{dF_t}{d\theta} = \frac{\partial F_t}{\partial \theta} + \frac{\partial F_t}{\partial F_{t-1}} \frac{dF_{t-1}}{d\theta}$ recursively ...

Training to make forecasts

Training with labeled data (example trades).

RRL "Direct Reinforcement" Approach

Empirical Results: Data Sets Used

DataSet	Goal
1) Artificial Time Series	Show the system can learn
2) Foreign Exchange Data	Show the system can learn a profitable strategy on real data
3) S&P and Treasury Bill	Show RRL is better than Q-Learning

1) Artificial Data

- Data is designed to have a "tradeable structure"
- They generate log-normal random walks, but with autoregressive trends:

Trend variable:
$$\beta(t) = \alpha\beta(t-1) + \nu(t)$$

Log price: $p(t) = p(t-1) + \beta(t-1) + \epsilon(t)$

- \bullet $\epsilon(t)$, $\nu(t)$ are "noise" terms with zero mean, unit variance
- \bullet $\alpha < 1$ sets how the "autoregressiveness"
- $z_t = exp(p(t))$ is used to generate 10,000-point price series.

1) Artificial Data - System Details

• The trading function has autoregressive inputs (matches the data):

$$F_t = sign(uF_{t-1} + v_0r_t + v_1r_{t-1} + \cdots v_7r_{t-7} + w)$$

- Transaction cost: $\delta = 0.5\%$
- Learns to maximize the Differential Sharpe Ratio

Artificial Prices, and Results

Histograms of Artificial Data and Results

Artificial Data (continued)

- How do transaction costs affect trading performance?
- Repeat the previous experiments 100 times...

try
$$\delta = 0.2\%, 0.5\%, 1.0\%$$

- Hypothesis: lower costs should allow:
 - more trading
 - more profits
 - better Sharpe Ratio

Boxplots of how transaction costs affect **profits**

Boxplots of how transaction costs affect **trading frequency**

Boxplots of how transaction costs affect **Sharpe Ratio**

2) Foreign Exchange Data

- US Dollar vs. British Pound
- 8 months of data (half-hour quotes) during 1996
- Same autoregressive inputs as Artificial Data experiment? (the paper was unclear)
- The system is trained to maximize the Downside Deviation Ratio.
- Transaction cost is the bid-ask spread (which has a typical average but is not fixed).

Foreign Exchange Prices, and Results

Foreign Exchange Result Summary

• 15% annualized return, Sharpe Ratio of 2.3

• (S&P index gets roughly 15% return, Sharpe < 1)

 Trading frequency: trades are made roughly once every 5 hours

• It's difficult to say how well this would have done in real world environment (since you can't simulate all market frictions).

3) US Stock Market Data: Q-Trader against RRL-Trader

- S&P vs. Treasury Bill
- 25 years of data: 1970-1994
- System is trained on previous 20 years (sliding window)
- ullet The Information I_t also includes macroeconomic data
- Also implement Q-Learning (actually, a variant called Advantage Updating) to compare.

Q-Trader vs. RRL-Trader Results

Q-Trader vs. RRL-Trader Results (continued)

Conclusions

 Moody makes the case that RRL is better than Q-Learning for trading since it is a simpler approach.

(Simpler is better - a recurring theme in this class.)

- I'm not sure I agree personally with some of his methods.
- Moody has set up an interesting method for learning directly, but hasn't addressed the problem of choosing a good trading model.