第一章

累積和

応用問題	2.1			·				2
応用問題	2.2	•	•	•	•	·	•	4
応用問題	2.3	•		•	•	•		7
店田問題	2 /							Q

2.1

問題 BO6:Lottery

(難易度:★2相当)

この問題を解く最も単純な方法は全探索です。L 回目から R 回目までのアタリの数・ハズレの数を for 文で数えると、計算量 O(R-L) で「アタリとハズレどちらが大きいか」という質問に答えることができます。

しかし、本問題の制約は $N,Q \leq 100000$ であるため、残念ながら実行時間制限に間に合いません。一体どうすれば良いのでしょうか。

累積和を使おう

i	0	1	2	3	4	5	6	7
Atari[i]	0	0 _+	1 1 +	¹ 2	2 _+	¹ 3	3	3
Hazre[i]	0 _+	¹ 1	1	1 _+	¹ 2	2 _+	¹ 3 ⁺	¹ 4
結果		×	0	0	×	0	*	*

すると、L 回目から R 回目までのアタリの数・ハズレの数は、それぞれ以下のようにして計算することができます。

アタリの数: Atari[R]-Atari[L-1]ハズレの数: Hazre[R]-Hazre[L-1]

したがって、次ページの解答例のような実装をすると、高速に答えを出すことができます。計算量は O(N+Q) です。

◆ 解答例(C++)

```
#include <iostream>
    using namespace std;
    int N, A[100009];
    int Q, L[100009], R[100009];
    int Atari[100009], Hazre[100009];
    int main() {
        // 入力
        cin >> N;
        for (int i = 1; i <= N; i++) cin >> A[i];
        cin >> Q;
13
        for (int i = 1; i <= Q; i++) cin >> L[i] >> R[i];
        // アタリの個数・ハズレの個数の累積和を求める
        Atari[0] = 0;
        Hazre[0] = 0;
        for (int i = 1; i <= N; i++) {</pre>
            Atari[i] = Atari[i - 1]; if (A[i] == 1) Atari[i] += 1;
            Hazre[i] = Hazre[i - 1]; if (A[i] == 0) Hazre[i] += 1;
        }
        // 質問に答える
        for (int i = 1; i <= Q; i++) {
            int NumAtari = Atari[R[i]] - Atari[L[i] - 1];
            int NumHazre = Hazre[R[i]] - Hazre[L[i] - 1];
            if (NumAtari > NumHazre) cout << "win" << endl;</pre>
            else if (NumAtari == NumHazre) cout << "draw" << endl;</pre>
           else cout << "lose" << endl;</pre>
        }
        return 0;
32
   }
```

※Python のコードはサポートページをご覧ください

問題 BO7: Convenience Store 2 (難易度:★3相当)

この問題では、t=0,1,...,T-1 について「時刻 t+0.5 には何人働いているのか Answer[t]」を求める必要があります。

それでは、Answer[t] の値はどうやって計算すれば良いのでしょうか。時刻 L から時刻 R まで働く人については、t=L,L+1,...,R-1 について「時刻 t+0.5 の労働者数」を 1 だけ増やすので、以下のプログラムによって正しく計算することができます。

```
1 // 入力
2 cin >> T >> N;
3 for (int i = 1; i <= N; i++) cin >> L[i] >> R[i];
4
5 // 答えを求める
6 for (int i = 0; i < T i++) Answer[i] = 0;
7 for (int i = 1; i <= N; i++) {
8  for (int j = L[i]; j < R[i]; j++) Answer[j] += 1;
9 }
10
11 // 出力
12 for (int d = 0; d < T; d++) cout << Answer[d] << endl;
```

しかし、このプログラムの計算量は O(NT) です。本問題の制約は $N,T \le 10^5$ であるため、残念ながら実行時間制限に間に合いません。

★ 差分を計算しよう

そこで、各時刻の労働者数 Answer[t] の代わりに、**労働者数の前の時刻と の差分 B[t]** を計算することを考えます。時刻 L から時刻 R まで働く人については、B[L] に +1 して B[R] に -1 すれば良いです。

t	0	1	2	3	4	5	6	7
(労働者数)			+1	+1	+1	+1		
差分 B[t]			+1				-1	

すると、B[t] の累積和が求めるべき答え Answer[t] になります。たとえば N=2,T=10,(L,R)=(2,6),(3,9) の場合は下図のように計算できます。

したがって、この問題を高速に解くプログラムは、以下の解答例のように実装することができます。計算量は O(N+T) であり、実行時間制限には余裕を持って間に合います。

◆ 解答例(C++)

```
for (int i = 1; i <= N; i++) {
    B[L[i]] += 1;
    B[R[i]] -= 1;
}

// 累積和をとる
Answer[0] = B[0];
for (int d = 1; d <= T; d++) Answer[d] = Answer[d - 1] + B[d];

// 出力
for (int d = 0; d < T; d++) cout << Answer[d] << endl;
return 0;
}
```

※Python のコードはサポートページをご覧ください

問題 BO8: Counting Points

(難易度:★4相当)

まず考えられる解法は、それぞれの点について「x 座標が a 以上 c 以下であり、y 座標が b 以上 d 以下であるかどうか」を直接調べることです。

しかしこの解法では、1 つの質問に答えるのに計算量 O(N) かかってしまいます。質問の個数は Q 個なので、全体の計算量は O(NQ) となり、残念ながら実行時間制限に間に合いません。

二次元累積和を考えよう

本問題では点の座標 X_i, Y_i が 1 以上 1500 以下の整数となっているので、以下のような配列 S[i][j] (大きさ約 1500×1500) を用意します。

S[i][j]: 座標(i,j)には何個の点が存在するか?

たとえば、点が座標 (1,1),(3,4),(4,3) に存在する場合、配列 S[i][j] は下図左側のようになります。

そこで、質問の答えである「x 座標が a 以上 c 以下であり、y 座標が b 以上 d 以下である点の個数」は、下図右側のような長方形領域の総和となるため、**二次元累積和**を使って計算することができます。

1 2 3 4	5
1 1 0 0 0	0
2 0 0 0 0	0
3 0 0 0 1	0
4 0 0 1 0	0
5 0 0 0 0	0

配列 S[i][j] の値

答えはどの部分の総和か?

具体的には、配列 S[i][j] の二次元累積和を T[i][j] とするとき、質問の答えは次の式で表すことができます。

```
T[c][d] + T[a-1][b-1] - T[a-1][d] - T[c][b-1]
```

したがって、以下の解答例のようなプログラムにより、計算量 0(1) で各質問に答えることができます。

解答例(C++)

```
#include <iostream>
using namespace std;
// 入力で与えられる変数
int N, X[100009], Y[100009];
int Q, A[100009], B[100009], C[100009], D[100009];
// 各座標にある点の数 S[i][j]、二次元累積和 T[i][j]
int S[1509][1509];
int T[1509][1509];
int main() {
    // 入力
    cin >> N;
    for (int i = 1; i <= N; i++) cin >> X[i] >> Y[i];
    cin >> Q;
    for (int i = 1; i <= Q; i++) cin >> A[i] >> B[i] >> C[i] >> D[i];
    // 各座標にある点の数を数える
    for (int i = 1; i <= N; i++) S[X[i]][Y[i]] += 1;</pre>
    // 累積和をとる
    for (int i = 0; i <= 1500; i++) {
        for (int j = 0; j <= 1500; j++) T[i][j] = 0;
    for (int i = 1; i <= 1500; i++) {
        for (int j = 1; j \le 1500; j++) T[i][j] = T[i][j - 1] + S[i][j];
    for (int i = 1; i <= 1500; i++) {
        for (int j = 1; j \le 1500; j++) T[i][j] = T[i - 1][j] + T[i][j];
    }
    // 答えを求める
    for (int i = 1; i <= Q; i++) {
        cout << T[C[i]][D[i]] + T[A[i] - 1][B[i] - 1] - T[A[i] - 1][D[i]] -
T[C[i]][B[i] - 1] << endl;
    return 0;
}
```

※Python のコードはサポートページをご覧ください

問題 BO9: Papers

(難易度:★4相当)

まずは以下の配列を考えます。T[i][j] が 1 以上になっている (i,j) の個数が、求めるべき答え(紙が 1 枚以上置かれている領域の面積)です。

T[i][j]: 座標(i+0.5, j+0.5) には何枚の紙が置かれているか?

たとえば、隅の座標が $(1,1)\cdot(3,3)$ である紙と、隅の座標が $(2,2)\cdot(4,4)$ である紙が置かれている場合、T[i][j]の値は下図右側のようになります。

	0	1	2	3	4
0	0	0	0	0	0
1	0	1	1	0	0
2	0	1	2	1	0
3	0	0	1	1	0
4	0	0	0	0	0

配列 T[i][j] の値

◆ T[i][j] の計算

それでは、T[i][j] の値はどうやって計算すれば良いのでしょうか。もちろん、それぞれの紙について「対応する部分に +1 をする」という方法でも上手くいきますが、計算に時間がかかってしまいます。

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	1	1	0	0
0	0	0	0	0	0	1	1	0	0	0	1	+2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	r <mark>t</mark>	Ļ	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

そこで 67 ページ (2.4 節) で説明したように、四隅に +1/-1 する操作を行った後、最後に二次元累積和を取ると、より高速に T[i][j] の値を計算することができます。具体例を以下に示します。

以上のアルゴリズムを実装すると、解答例のようになります。+1/-1 を加算する位置が、問題 A09 と微妙に異なることに注意してください。

たとえば問題 A09 では配列の (c+1,d+1) 番目に +1 をしていますが、 今回は配列の (c,d) 番目に +1 をしています。

解答例(C++)

```
#include <iostream>
using namespace std;
// 入力で与えられる変数
int N;
int A[100009], B[100009], C[100009], D[100009];
// 座標 (i+0.5, j+0.5) に置かれている紙の数 T[i][j]
int T[1509][1509];
int main() {
    // 入力
    cin >> N;
    for (int i = 1; i <= N; i++) cin >> A[i] >> B[i] >> C[i] >> D[i];
    // 各紙について +1/-1 を加算
    for (int i = 0; i <= 1500; i++) {
        for (int j = 0; j <= 1500; j++) T[i][j] = 0;
    for (int i = 1; i <= N; i++) {</pre>
        T[A[i]][B[i]] += 1;
        T[A[i]][D[i]] -= 1;
        T[C[i]][B[i]] -= 1;
        T[C[i]][D[i]] += 1;
    }
```

※Python のコードはサポートページをご覧ください