Jacob S. Prince

jacob.samuel.prince@gmail.com linkedin.com/in/jacobprince jacob-prince.github.io

EDUCATION

Harvard University

Cambridge, MA

 $\operatorname{Ph.D.}$ Candidate in Psychology (Cognition, Brain, and Behavior)

September 2021 – present

Advisors: Dr. Talia Konkle and Dr. George Alvarez

Yale University

New Haven, CT

B.S. in Cognitive Science, GPA: 3.70/4.00

September 2014 – December 2018

Thesis: "Covert metrics of conscious visual perception: pupil, microsaccade and blink dynamics"

RESEARCH EXPERIENCE

Carnegie Mellon University, Dept. of Psychology

Pittsburgh, PA

Research Associate — Advisor: Dr. Michael Tarr

September 2019 - August 2021

Developed GLMsingle, a user-friendly fMRI preprocessing toolbox for accurate single-trial response estimation; achieved significant SNR boosts in large-scale NSD and BOLD5000 datasets.

Harvard University, Dept. of Psychology

Cambridge, MA

Undergraduate Researcher — Advisor: Dr. Talia Konkle

May 2018 - August 2019

Tested theories of information processing in visual cortex using neural networks. Implemented new analysis routines the study of category selectivity in ANNs, with comparison to brain ROIs.

Yale School of Medicine, Dept. of Neurology

New Haven, CT

Undergraduate Researcher — Advisor: Dr. Hal Blumenfeld

May 2016 - May 2018

Developed covert measure of conscious perception using machine learning and pupillometry. Modeled disruption of conscious function in epilepsy via seizure-induced changes in EEG and behavior.

MANUSCRIPTS

- 1. **Prince**, **JS**., Fajardo, G., Alvarez, GA., Konkle, T. (2024). Manipulating dropout reveals an optimal balance of efficiency and robustness in biological and machine visual systems. *ICLR* 2024. https://openreview.net/forum?id=ADDCErFzev.
- 2. **Prince**, **JS.**, Alvarez, GA., Konkle, T. (2023). A unifying contrastive coding framework for visual category representation in the human brain. Under review at *Science Advances*. https://doi.org/10.1101/2023.08.04.551888.
- 3. Conwell, C., **Prince**, **JS**., Alvarez, GA., Konkle, T. (2023). What can 1.8 billion regressions tell us about the pressures shaping high-level visual representation in brains and machines? Under review at *Nature Communications*. https://doi.org/10.1101/2022.03.28.485868.
- 4. Vinken, K., **Prince**, **JS**., Konkle, T., Livingstone, M. (2023). The neural code for 'face cells' is not face specific. *Science Advances*. https://doi.org/10.1126/sciadv.adg1736.
- 5. **Prince, JS.**, Charest, I., Kurzawski, JW., Pyles, JA., Tarr, MJ., Kay, KN. (2022). Improving the accuracy of single-trial fMRI response estimates using GLMsingle. *eLife*. https://doi.org/10.7554/eLife.77599.

- 6. Jain, N., Wang, A., Henderson, MH., Lin, R., **Prince**, **JS.** ... Wehbe L. (2022). Selectivity for food in human ventral visual cortex. *Nature Communications Biology*. https://doi.org/10.1038/s42003-023-04546-2.
- Allen, EJ., St-Yves, G., Wu, Y., Breedlove, JL., Prince, JS. ... Kay KN. (2022). A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Nature Neuroscience. https://doi.org/10.1038/s41593-021-00962-x.
- 8. Kronemer, SI., Aksen, M., Ding, Z., Ryu, JH., Xin, Q., Ding, Z., **Prince, JS**...Blumenfeld, H. (2022). Human visual consciousness involves large scale cortical and subcortical networks independent of task report and eye movement activity. *Nature Communications*. https://doi.org/10.1038/s41467-022-35117-4.

Conference Proceedings

- 1. **Prince, JS.**, Conwell, C., Konkle, T. (2024). Large datasets: a Swiss Army knife for diverse research aims in neuroAI. Accepted symposium **talk** at "Large-scale visual neural datasets: where do we go from here?"; to present at Vision Sciences Society, May 17-24, St. Pete Beach, FL.
- 2. Prince, JS., Hamblin, C., Alvarez, GA., Konkle, T. (2024). Interpreting distributed population codes with feature-accentuated visual encoding models. Submitted to Vision Sciences Society, May 17-24, St. Pete Beach, FL.
- 3. Prince, JS., Fajardo, G., Alvarez, GA., Konkle, T. (2023). Manipulating category selectivity and information distribution in visual recognition systems using dropout. Talk presented at the Conference on Cognitive Computational Neuroscience, Aug 24-27, Oxford, UK.
- 4. Conwell, C., **Prince**, **JS.**, Alvarez, GA., Konkle, T. (2023). The Unreasonable Effectiveness of Word Models in Predicting High-Level Visual Cortex Responses to Natural Images. **Poster** presented at the Conference on Cognitive Computational Neuroscience, Aug 24-27, Oxford, UK.
- Conwell, C., Prince, JS., Hamblin, C., Alvarez, GA. (2023). Controlled assessment of CLIP-style language-aligned vision models in prediction of brain & behavioral data. Poster presented at the Workshop on Understanding Foundation Models, ICLR 2023, May 1-5, Kigali, Rwanda.
- 6. **Prince**, **JS.**, Alvarez, GA., Konkle, T. (2023). Lesioning category-selective units *in silico* yields functionally specialized deficits. **Poster** presented at the Vision Sciences Society, May 19-24, St. Pete Beach, FL.
- Conwell, C., Prince, JS., Alvarez, GA., Konkle, T. (2023). Language Models of Visual Cortex: Where do they
 work? And why do they work so well where they do? Poster presented at the Vision Sciences Society, May 19-24,
 St. Pete Beach, FL.
- 8. **Prince**, **JS.**, Konkle, T. (2022). Neural and computational evidence that category-selective visual regions are facets of a unified object space. **Talk** presented at the Vision Sciences Society, May 13-18, St. Pete Beach, FL.
- Conwell, C., Prince, JS., Alvarez, G., Konkle, T. (2022). What can 5.17 billion regression fits tell us about artificial models and the human visual system? Poster presented at the Vision Sciences Society, May 13-18, St. Pete Beach, FL.
- 10. Conwell, C., **Prince**, **JS.**, Kay, K., Alvarez, GA., Konkle, T. (2022). Opportunistic experiments on a large-scale survey of diverse artificial vision models in prediction of 7T human fMRI data. **Poster** presented at the Conference on Cognitive Computational Neuroscience, August 25-28, San Francisco, CA.
- 11. Vinken, K., **Prince**, **JS**., Konkle, T., Livingstone, M. (2022). Common encoding axes for face-selectivity and non-face objects in macaque face cells. **Poster** presented at the Conference on Cognitive Computational Neuroscience, August 25-28, San Francisco, CA.
- 12. **Prince, JS.**, Charest, I., Kurzawski, JW., Pyles, JA., Tarr, MJ., Kay, KN. (2021). GLMsingle: a turnkey solution for accurate single-trial fMRI response estimates. **Poster** presented at the Virtual Vision Sciences Society, May 21-26. Video: www.tinyurl.com/jp-vss2021.

- 13. **Prince, JS.**, Konkle, T. (2020). Computational evidence for integrated rather than specialized feature tuning in category-selective regions. **Talk** presented at the Virtual Vision Sciences Society, June 19-24. Video: www.tinyurl.com/jp-vss2020.
- 14. Kallmayer, A., **Prince**, **JS**., Konkle, T. (2020). Comparing representations that support object, scene, and face recognition using deepnet trajectory analysis. **Poster** presented at the Virtual Vision Sciences Society, June 19-24.
- 15. McCafferty, CP., Gruenbaum, BF., Vincent, P., Tung, R., Kratochvil, ZB., **Prince, JS**... Blumenfeld, H. (2019). Mechanisms of absence seizures explored by functional MRI, EEG, behavior and neuronal changes in an awake rodent model. **Poster** presented at the American Epilepsy Society, December 6-10, Baltimore, MD.
- 16. **Prince**, **JS.**, Konkle, T. (2019). Relating category-selective regions in biological and artificial neural networks. **Poster** presented at the Vision Sciences Society, May 17-22, St. Pete Beach, FL.
- 17. Kronemer, SI., Aksen, M., Kwon, H., Micek, C., Christison-Lagay, K., Forman, S., **Prince, JS**...Blumenfeld, H. (2018). Early and late electrophysiological changes to visual conscious perception. **Poster** presented at the Society for Neuroscience, November 3-7, San Diego, CA.
- 18. Aksen, M., Kronemer, SI., **Prince, JS**...Blumenfeld, H. (2018). Pupil dynamics as a covert measure of conscious perception in a visual no report paradigm. **Poster** presented at the Society for Neuroscience, November 3-7, San Diego, CA.
- 19. **Prince**, **JS**...Blumenfeld, H. (2017). Machine learning to predict conscious visual perception using pupillary dynamics. **Poster** presented at the Society for Neuroscience, November 11-15, Washington, D.C.

INVITED TALKS

INVITED INDIX	
• Bissell Grogan Symposium, The Brimmer and May School, Newton MA The promise and pitfalls of AI for visual recognition.	Jan. 16, 2024
• Visual Inference Lab, Columbia University (PI: Nikolaus Kriegeskorte) A unifying contrastive coding framework for visual category representation in the human brain.	Jan. 5, 2024
• Vision and Computational Cognition Group, Max Planck Institute (PI: Martin Hebart) A unifying contrastive coding framework for visual category representation in the human brain.	Dec. 21, 2023
• Brains Minds and Machines Summer Course, Marine Biological Laboratory, Woods Hole Quantifying dataset diversity with brain-guided curriculum learning.	Aug. 23, 2023
• University of Minnesota – Dept. of Psychology Perception Lunch GLMsingle: A toolbox for accurate single-trial fMRI response estimates.	Feb. 21, 2023
• MIT Brain and Cognitive Sciences – Computational Tutorial Series GLMsingle: a toolbox for improving single-trial fMRI response estimates. Recording: https://cbmm.mit.edu/video/glmsingle-toolbox-improving-single-trial-fmri-response-e	April 29, 2022 estimates.
• University of Minnesota – Computational Visual Neuroscience Laboratory (PI: Kendrick Kay) Data-driven fMRI denoising enhances cross-dataset representational stability and boosts image d	Sept. 25, 2020 ecodability.

- Natural Scenes Dataset Conference 2020 (online)

 GLMsingle: a turnkey solution for accurate single-trial fMRI estimates.

 Aug. 12, 2020
- University of California, Irvine Visual Perception and Neuroimaging Lab (PI: Emily Grossman) Mar. 18, 2020 The effect of fMRI design and preprocessing paradigms on SNR and temporal autocorrelation.
- Carnegie Mellon University VisCog Group (PIs: M.Behrmann, D.Plaut, M.Tarr, B.Nozari, B.Mahon) Feb. 3, 2020

 An overview of large-scale neuroimaging datasets and implications for the study of high level vision.

Grants and Awards

- National Defense Science and Engineering Graduate (NDSEG) Fellowship

 Award Term: 2022-2024
- Elsevier/Vision Research Travel Award

Vision Sciences Society 2020

• Rising Stars Travel Grant: Shared Visual Representations in Humans and Machines Workshop

NeurIPS 2019

ACTIVITIES AND SERVICE

- Brains, Minds, and Machines Summer Course, Marine Biological Laboratory, Woods Hole

 August 2023

 Attended intensive month-long summer school, completed project assessing whether human visual representational dimensions can guide the selection of useful training samples for object recognition ANNs.
- Mentor, Harvard Prospective Ph.D. & RA Event in Psychology (PPREP)

 Sept. 2021 present Provide career guidance and CV/essay feedback to 3 students (per year) from historically minoritized groups in STEM who are applying to graduate school, lab manager, and/or research assistant positions.
- TA, Computational Methods in Human Neuroscience (NSCI 258, Prof. Nick Turk-Browne, Yale) Spring 2019

 Assisted with creation and debugging of Python workbooks with focus on ML-driven computational fMRI analyses.

 Mentored students and reinforced key concepts from lecture during weekly office hours.
- Journal and conference reviewing: Imaging Neuroscience; Conference on Cognitive Computational Neuroscience; SVHRM Workshop @ NeurIPS; Re-Align Workshop @ NeurIPS.

SKILLS

- Programming: Python (PyTorch, FFCV, Sklearn, PyCortex, Nilearn, BrainIAK), MATLAB, R, C, Bash, Slurm
- Laboratory: fMRI, scalp/intracranial EEG, eye-tracking, pupillometry, sensory/behavioral task administration
- Spoken Languages: Spanish (proficient), Hebrew (proficient), French (familiar)
- Hobbies: Classical and jazz piano, rec sports (basketball, tennis), strategy games (chess, poker)