【选必三 有机】【一化辞典】炔烃(重要)

炔烃的结构与其物理性质

- 1. 炔烃的官能团: 名称为碳碳三键, 结构简式为—C≡C—
- 2. 通式: 炔烃只含有一个碳碳三键时, 其通式一般表示为 $C_nH2_{n-2}(n\geq 2)$ 。
- 3. 熔、沸点随碳原子数的增加而递增,其中碳原子数小于等于4的炔烃是气态烃,最简单的炔烃是

乙炔的结构

乙炔的结构特点:分子中碳原子采取 sp 杂化,碳原子和氢原子间均以单键(σ 键)相连接,碳原子和碳原子之间以三键($1 \uparrow \sigma$) 个 σ 键和 $2 \uparrow \sigma$ 个 σ 键)相连接,相邻两个键之间的夹角为 180° ,分子为直线形结构。

分子式	最简式	电子式	结构式
结构简式	键线式	球棍模型	空间填充模型
		0	

最简单的炔烃: 乙炔

- •乙炔(俗称电石气)是最简单的炔烃。乙炔是无色、无臭的气体,微溶于水,易溶于有机溶剂。
- •乙炔的实验室制法:
- ① 发生装置:用饱和食盐水代替水的作用是减缓碳化钙(CaC2)与水反应的速率,实验原理为:
- ② 硫酸铜溶液的作用是除去 H₂S 等杂质气体, 防止 H₂S 等气体干扰乙炔性质的检验
- ③ 乙炔能使酸性高锰酸钾溶液褪色
- 4) 乙炔能使溴的四氯化碳溶液褪色
- ⑤ E 处对乙炔点燃,产生的现象为火焰明亮, 伴有浓烈黑烟(点燃前检验其纯度,防止爆炸)

乙炔的化学性质

- 1. 加成反应:
- (2) 乙炔在一定条件下能与氢气、氯化氢和水等物质发生加成反应。

①
$$HC$$
= $CH + H_2 \xrightarrow{\text{@kN}} CH_2$ = CH_2

②
$$HC$$
 $\equiv CH + HCl$ $\xrightarrow{\text{#ich}}$ CH_2 $\rightleftharpoons CHCl$

说明: 乙炔与水加成后的产物乙烯醇不稳定(CH2=CH-OH), 很快转化为乙醛

2. 加聚反应:

乙炔可发生加聚反应,得到聚乙炔,聚乙炔可用于制备导电高分子材料。

$$n$$
CH ≡ CH $\xrightarrow{\text{@den}}$ $\xrightarrow{\text{Head}}$ CH=CH $\xrightarrow{\text{In}}$

3. 氧化反应:

现象:火焰明亮、冒出浓烈黑烟在氧气中燃烧时,氧炔焰的温度可达 3000 ℃以上,因此常用它来焊接或切割金属

(2)与强氧化剂反应: 乙炔能被 KMnO₄氧化,使酸性 KMnO₄溶液褪色

 $2KMnO_4+C_2H_2+3H_2SO_4 \rightarrow K_2SO_4+2MnSO_4+2CO_2+4H_2O$

烷烃、烯烃、炔烃的结构和化学性质的比较

名称	烷烃	烯烃	炔烃				
通式	$C_nH_{2n+2}(n\geq 1)$	$C_nH_{2n}(n\geq 2)$	$C_nH_{2n-2}(n\geq 2)$				
代表物	CH ₄	CH ₂ =CH ₂	СН≡СН				
结构特点	共价单键;饱和烃	含碳碳双键;不饱和烃	含碳碳三键;不饱和烃				
物理通性 随着碳原子数的增多: 气态→液态→固态; 沸点逐渐升高,相对密度逐渐增大。 密度均比水小,均难溶于水							

名称		烷烃	烯烃	炔烃
化学性	取代反应	光照卤代	——————————————————————————————————————	—
	加成反应	_	能与H ₂ 、X ₂ 、HX、H ₂ O、HCN等	
	氧化反应	燃烧,火焰较明亮	燃烧,火焰明亮 伴有黑烟	燃烧,火焰很明亮 伴有浓烈的黑烟
		不反应	能使酸性KMnO ₄ 溶液褪色	
	加聚反应		能发生	
鉴别 不能使溴水和酸性KMnO ₄ 溶液褪色		均能使溴水和酸性KMnO ₄ 溶液褪色		