Wyznaczanie stosunku $\kappa = C_p/C_V$ dla powietrza metodą Clementa i Desromesa

Laboratorium fizyki nr 2

Karolina Dadej, Joanna Dagil

Data pomiarów: 20.03.2015 Data prezentacji: 27.03.2025

Teoria

Wielkość κ jest stosunkiem ciepła molowego właściwego mierzonego przy stałym ciśnieniu do ciepła molowego właściwego mierzonego przy stałej objętości.

W celu określenia κ należy zmierzyć różnice ciśnień w układzie w trakcie przemiany adiabatycznej i izochorycznej.

Zasada pomiaru

$$\kappa = rac{\Delta p_{ad}}{\Delta p_{iz}} = rac{p(h_1)}{p(h_1) - p(h_2)} = rac{
ho g h_1}{
ho g h_1 -
ho g h_2)} = rac{h_1}{h_1 - h_2}$$

Pomiary

nr pomiaru	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
prawa (cm)	22,1	22	22,1	22	22,1	22,2	22	22,3	22,1	21,9	21,9	22,1	22	22,2	21,8
lewa (cm)	7,3	7,4	7,4	7,4	7,3	7,2	7,4	7,1	7,5	7,8	7,7	7,6	7,7	7,7	8,1
h_1 (cm)	14,8	14,6	14,7	14,6	14,8	15	14,6	15,2	14,6	14,1	14,2	14,5	14,3	14,5	13,7
prawa (cm)	17	16,5	16,6	16,4	16,5	16,4	16,3	16,2	16,8	15,8	16,7	16,6	16,5	17,3	16,7
lewa (cm)	12,3	12,4	12,8	13	12,8	12,9	13,1	13,1	12,8	13,9	12,9	13,1	13,1	12,5	13,2
h_2 (cm)	4,7	4,1	3,8	3,4	3,7	3,5	3,2	3,1	4	1,9	3,8	3,5	3,4	4,8	3,5
κ	1,4653	1,3905	1,3486	1,3036	1,3333	1,3043	1,2807	1,2562	1,3774	1,1557	1,3654	1,3182	1,3119	1,4948	1,3431

16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
21,9	22	22,1	22	21,8	22,1	22,1	21,8	21,9	22,3	22	22	22	21,9	21,9
8,1	7,9	7,8	8	8,2	7,7	7,8	8,2	8	7,7	7,9	7,9	8	8,1	8,1
13,8	14,1	14,3	14	13,6	14,4	14,3	13,6	13,9	14,6	14,1	14,1	14	13,8	13,8
17,1	17,3	17,5	16,9	16,3	17,2	17,1	16,9	17,4	17,1	17,2	17	17	17,1	17,5
12,9	12,6	12,4	13,1	13,6	12,5	12,8	13	12,5	12,8	12,7	13	13	12,8	12,4
4,2	4,7	5,1	3,8	2,7	4,7	4,3	3,9	4,9	4,3	4,5	4	4	4,3	5,1
1,4375	1,5000	1,5543	1,3725	1,2477	1,4845	1,4300	1,4021	1,5444	1,4175	1,4688	1,3960	1,4000	1,4526	1,5862

Wartość rzeczywista z pomiarów

Jako estymator wartości rzeczywistej wielkości κ użyjemy średnią arytmetyczną tej wielkości z poszczególnych pomiarów.

Średnia arytmetyczna

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{\kappa} = 1,39144735$$

Błąd losowy pomiaru

Jako estymator błędu losowego pomiaru użyjemy średniego błędu kwadratowego wartości średniej.

Średni błąd kwadratowy wartości średniej

$$s_{\overline{x}} = \frac{s}{\sqrt{n}} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n(n-1)}}$$

$$s_{\overline{\kappa}}=0,01797975233$$

Wyniki końcowe

Wyniki pomiarowe:

$$\overline{\kappa} = 1,39144735$$

Rozrzut pomiarowy:

$$s_{\overline{\kappa}} = 0,01797975233$$

Zatem przedział (1,37346760; 1,40942710) zawiera wartość rzeczywistą z prawdopodobieństwem 0,68, przedział (1,35548785; 1,42740686) zawiera wartość rzeczywistą z prawdopodobieństwem 0,95, przedział (1,33750810; 1,44538661) zawiera wartość rzeczywistą z

przedział (1,33/50810; 1,44538661) zawiera wartość rzeczywistą z prawdopodobieństwem 0,997,

Według instrukcji do ćwiczeń pomiarowych:

$$\kappa = 1, 4$$