Факультет компьютерных технологий и прикладной математики Кафедра вычислительных технологий 02.03.02

Алгоритмы цифровой обработки мультимедиа

Лабораторная работа № 5 Выявление движения на видео.

Работа будет осуществляется средствами языка Python 3.10 и IDE PyCharm2022.1.2 с учебной лицензией. Для работы необходимо установить библиотеку opency.

В рамках данной лабораторной работы будет рассматриваться решение задачи детекции движения на видео.

Решение задачи будем выстраивать исходя из следующего алгоритма:

- начать чтение из файла, прочитать первый кадр, перевести в чернобелый цвет и применить размытие Гаусса;
 - подготовить файл для записи;
- далее начать цикл, который завершиться по завершению файла, внутри этого цикла:
 - скопировать старый кадр;
 - прочитать новый кадр, перевести в чернобелый цвет, применить размытие Гаусса;
 - если чтение неуспешно, остановить цикл;
 - найти разницу между двумя кадрами в отдельный фрейм (frame_diff) cv2.absdiff;
 - провести операцию двоичного разделения для фрейма (frame_diff) cv2.threshold;

- найти контуры объектов для фрейма (frame_diff) cv2.findContours;
- пройтись по контурам объектов для фрейма (frame_diff) и найти контур площадью большей, чем наперед заданный параметр cv2.contourArea;
- если такой контур найден, значит было движение, записать кадр в файл;
 - отобразить видео.

Для реализации данного алгоритма необходимо изучить четыре новых метода:

cv2.absdiff, описание доступно по ссылке https://docs.opencv.org/4.x/d2/de8/group_core_array.html#ga6fef31bc8c4071cb c114a758a2b79c14

 cv2.threshold,
 описание
 доступно
 по
 ссылке

 https://docs.opencv.org/4.x/d7/d1b/group__imgproc__misc.html#gae8a4a146d1ca
 78c626a53577199e9c57

cv2.findContours, описание доступно по ссылке https://docs.opencv.org/4.x/d3/dc0/group imgproc shape.html#gadf1ad6a0b829 47fa1fe3c3d497f260e0

cv2.contourArea, описание доступно по ссылке https://docs.opencv.org/4.x/d3/dc0/group_imgproc_shape.html#ga2c759ed9f497 https://docs.opencv.org/4.x/d3/dc0/group_imgproc_shape.html#ga2c759ed9f497

Задание 1 (самостоятельно). Реализовать метод, который читает видеофайл и записывает в один файл только ту часть видео, где в кадре было движение, можно воспользоваться примерами.

Задание 2 (самостоятельно). Провести эксперименты, выбирая различные значения параметров: размытие Гаусса, граница разделения для метода threshold, площадь минимального объекта, подобрать оптимальные значения параметров для данного видео.

Контрольные вопросы

- 1. Опишите алгоритм выявления движения на видео.
- 2. Опишите особенности применения новых для Вас методов.

Формат оценивания выполнения заданий на лабораторной работе:

- оценка «+» ставится на лабораторной работе, если студент выполняет задания 1 на занятии, но не успевает его закончить;
- оценка «удовлетворительно» ставится на лабораторной работе, если студент выполняет задание 1;
- оценка «хорошо» ставится на лабораторной работе, если студент выполняет все задачи;
- оценка «отлично» ставится на лабораторной работе, если студент отвечает правильно на все теоретические вопросы.

Если студент сдаёт работу позже, то применяется формат оценивания, указанный в документе «Структура лаб АЦОМ», то есть необходим отчет, гит и полноценная защита лабораторной работы.