一阶谓词演算自然推演系统K_L

王捍贫

北京大学信息科学技术学院软件研究所

复习 — 一阶语言

坐生成的一阶语言:

个体变元 个体常元 谓数 量词

● 符号库:

联结词 辅助符号

公式: 公式自由与约束

复习 — 推演系统N_ℒ的构成

给定非逻辑符号集 \mathcal{L} , $N_{\mathcal{L}}$ 的构成如下:

- 形式语言:
 - 坐生成的一阶语言
- 形式推理:
 - 形式公理: ∅
 - 形式规则: 15条
 - (1)-(10) 如N

形式推演系统 $K_{\mathscr{L}}$

如 $N_{\mathscr{L}}$ 与N相对应一样, $K_{\mathscr{L}}$ 与P相对应.

给定非逻辑符号集 \mathcal{L} , $K_{\mathcal{L}}$ 的构成如下:

- 形式语言:
 - £生成的一阶语言的一个子语言。
- 形式推理:
 - 形式公理: 7条(3+4)
 - 形式规则: 1条

$K_{\mathscr{L}}$ 的构成:符号库

任意给定非逻辑符号集 \mathcal{L} . $K_{\mathcal{L}}$ 的符号库如下:

- 1. 非逻辑符号: 《上中符号.
- 2. 逻辑符号:
 - (2.1) 个体变元符号: x_0, x_1, x_2, \cdots .
 - (2.2) 量词符号: ∀ .
 - (2.3) 联结词符号: ¬, → .
 - (2.4) 辅助符号:),,,(...

K∠的构成: 项

任意给定非逻辑符号集 \mathcal{L} . $K_{\mathcal{L}}$ 的项归纳定义如下:

- (1.1) 个体变元与个体常元为 $K_{\mathscr{L}}$ 的项.
- (1.2) 若 t_1, t_2, \cdots, t_m 为 $K_{\mathscr{L}}$ 的项, f^m 为 $K_{\mathscr{L}}$ 的一个m元函数变元符号,则 $f^m(t_1, t_2, \cdots, t_m)$ 为 $K_{\mathscr{L}}$ 的项.

$K_{\mathscr{L}}$ 的构成: 公式

任给定非逻辑符号集 \mathcal{L} , $K_{\mathcal{L}}$ 的公式归纳定义如下:

- - 一一 原于公式

关于K_L公式的注记

 $K_{\mathscr{L}}$ 的形式语言是 $N_{\mathscr{L}}$ 的形式语言的一个子语言,因而它们使用很多相同概念和约定,如:

- 自由与约束;
- 括号省略规则;
- P中公式在 K_L 中的代入实例

$K_{\mathscr{L}}$ 公式的简写

$$(\alpha \lor \beta)$$
为 $(\neg \alpha \rightarrow \beta)$ 的简写;

$$(\alpha \wedge \beta)$$
为 $(\neg(\alpha \rightarrow \neg\beta))$ 的简写;

$$(\alpha \leftrightarrow \beta)$$
为 $(\neg((\alpha \to \beta) \to \neg(\beta \to \alpha)))$ 的简写;

$$(\exists x)\alpha$$
为 $(\neg(\forall x)\neg\alpha)$ 的简写.

Kg的构成:形式公理

- (K1) $\alpha \rightarrow (\beta \rightarrow \alpha)$
- (K2) $(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$
- (K3) $(\neg \alpha \rightarrow \neg \beta) \rightarrow (\beta \rightarrow \alpha)$
- (K4) $\forall x\alpha \rightarrow \alpha(x/t)$, 若t对x在 α 中自由.
- (K5) $\alpha \to \forall x\alpha$, 若x不在 α 中自由出现.
- (K6) $\forall x(\alpha \rightarrow \beta) \rightarrow (\forall x\alpha \rightarrow \forall x\beta)$
- (K7) 若 α 是 $K_{\mathcal{L}}$ 的一个公理,则 $(\forall x)\alpha$ 也为 $K_{\mathcal{L}}$ 的一个公理.
- 注: Kg的公理也是归纳定义的。

K∠的构成: 形式规则

K_L的证明序列

K光中公式的一个有限序列

$$\alpha_1, \alpha_2, \cdots, \alpha_n$$

称为 $K_{\mathcal{L}}$ 的一个证明序列,如果每个 α_i (1 $\leq i \leq n$)都满足下列条件之一:

- (1) α_i 是K $_{\mathcal{L}}$ 的一个公理; 或
- (2) α_i 是由某两个 α_j , α_k (1 $\leq j, k < i$)应用(M)得到的.

此时,称 α_n 为 $K_{\mathscr{L}}$ 的一个内定理,记为 $\vdash_{K_{\mathscr{L}}} \alpha_n$,或简写为 $\vdash \alpha_n$.

代如实例

定理5

设 α 为P的一个内定理, α' 是 α 在 $K_{\mathcal{L}}$ 中的 一个代入实例, 则 $\vdash_{\mathbf{K}_{\mathcal{L}}} \alpha'$

定理6

- (1) 若 $\vdash_{\mathbf{K}_{\mathcal{L}}} \alpha \rightarrow \beta$, 且 $\vdash_{\mathbf{K}_{\mathcal{L}}} \alpha$, 则 $\vdash_{\mathbf{K}_{\mathcal{L}}} \beta$.
- (2) 若 $\vdash_{\mathbf{K}_{\mathcal{L}}} (\alpha \to \beta)$, 且 $\vdash_{\mathbf{K}_{\mathcal{L}}} (\beta \to \gamma)$, 则 $\vdash_{\mathbf{K}_{\mathcal{L}}} (\alpha \to \gamma)$.

此命题中的(1)仍记为(M), (2)仍记为(Tr).

例14

若t对x在 α 中自由,则: $\vdash \alpha(x/t) \rightarrow \exists x\alpha$.

证: 因为 $(\neg \alpha)(x/t) = \neg (\alpha(x/t))$, 从而

$$(1) \vdash \forall x(\neg \alpha) \rightarrow (\neg \alpha)(x/t) \tag{K4}$$

(2)
$$\vdash \forall x(\neg \alpha) \rightarrow \neg (\alpha(x/t))$$

$$(3) \vdash (\forall x(\neg \alpha) \to \neg (\alpha(x/t)))$$
$$\to (\alpha(x/t) \to \neg \forall x(\neg \alpha))$$

(命题内定理)

$$(4) \qquad \vdash \alpha(x/t) \to \neg \, \forall x(\neg \, \alpha) \tag{M}$$

即: $\vdash \alpha(x/t) \rightarrow \exists x \alpha$

定理7

若 $\vdash_{\mathbf{K}_{\mathcal{L}}} \alpha$, 则 $\vdash_{\mathbf{K}_{\mathcal{L}}} \forall x \alpha$.

证: 因 $\vdash_{\mathbf{K}_{\mathcal{L}}} \alpha$, 故存在 $\mathbf{K}_{\mathcal{L}}$ 中公式序列:

$$\alpha_1, \alpha_2, \cdots, \alpha_n \ (= \alpha)$$

为 α 的一个证明序列.

下对
$$i$$
 (1 $\leq i \leq n$) 归纳证明: $\vdash_{\mathbf{K}_{\mathcal{L}}} \forall x \alpha_i$ (*)

(1) 当i=1时, α_1 为一个公理,从而 $\forall x\alpha_1$ 也为一个公理,故 $\vdash_{\mathbf{K}_{\mathcal{L}}} \forall x\alpha_1$.

(2) 设i < k时, (*)成立,下证i = k时(*)也成立.

(2.1) 若 α_k 仍为公理, 仿(1)可证.

 $\vdash_{\mathbf{K}_{\mathcal{L}}} \forall x \alpha_l$ (归纳假设)

 $\vdash_{\mathbf{K}_{\mathcal{L}}} \forall x \alpha_j$ (归纳假设)

 $\vdash_{\mathbf{K}_{\mathcal{L}}} \forall x (\alpha_l \to \alpha_k) \tag{归纳假设}$

$$\vdash_{\mathbf{K}_{\mathcal{L}}} \forall x (\alpha_l \to \alpha_k) \to (\forall x \alpha_l \to \forall x \alpha_k)$$

$$\vdash_{\mathbf{K}_{\mathcal{L}}} \forall x \alpha_l \to \forall x \alpha_k$$
(K6).

$$\vdash_{\mathbf{K}_{\mathcal{L}}} \forall x \alpha_k.$$
 (定理6)

归纳证毕, (*)成立, 从而 $\vdash_{\mathbf{K}_{\mathcal{L}}} \forall x \alpha_n$, 即 $\vdash_{\mathbf{K}_{\mathcal{L}}} \forall x \alpha$.

思考题: $\vdash_{\mathbf{K}_{\mathcal{L}}} \alpha \to \forall x \alpha$ 成立否?

例15(1)

若x不在 α 中自由出现, 则 $\vdash \forall x(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \forall x\beta).$

证:

因
$$\vdash_P (p \to (q \to r)) \to ((s \to q) \to (p \to (s \to r))).$$
 $\forall x(\alpha \to \beta) \leadsto p, \quad \forall x\alpha \leadsto q, \quad \forall x\beta \leadsto r, \quad \alpha \leadsto s$ 得:
 $\vdash_{\mathbf{K}_{\mathcal{L}}} (\forall x(\alpha \to \beta) \to (\forall x\alpha \to \forall x\beta))$
 $\to ((\alpha \to \forall x\alpha) \to (\forall x(\alpha \to \beta) \to (\alpha \to \forall x\beta))).$

$$\vdash_{\mathbf{K}_{\mathcal{L}}} \forall x(\alpha \to \beta) \to (\forall x \alpha \to \forall x \beta), \tag{K6}$$

$$\vdash_{\mathbf{K}_{\mathcal{L}}} (\alpha \to \forall x \alpha) \to (\forall x(\alpha \to \beta) \to (\alpha \to \forall x \beta)).$$

$$\vdash_{\mathbf{K}_{\mathcal{L}}} \alpha \to \forall x \alpha. \tag{K5} x 不在 \alpha 中 自 由 出 现$$

$$\vdash_{\mathbf{K}_{\mathcal{L}}} \forall x(\alpha \to \beta) \to (\alpha \to \forall x \beta).$$

例15(2)

若x不在 α 中自由出现, 则 $\vdash (\alpha \rightarrow \forall x\beta) \rightarrow \forall x(\alpha \rightarrow \beta)$

$$\vdash_{\mathbf{K}_{\mathcal{L}}} \forall x (A \to B).$$
 (定理7)
 $\vdash_{\mathbf{K}_{\mathcal{L}}} \forall x (A \to B) \to (A \to \forall x B).$ (1)
 x 不在 A 中自由出现

$$\vdash_{\mathbf{K}_{\mathcal{L}}} A \to \forall x B$$
,
 $\vdash_{\mathbf{K}_{\mathcal{L}}} (\alpha \to \forall x \beta) \to \forall x (\alpha \to \beta)$.

例16(1)

若
$$\vdash \alpha \rightarrow \beta$$
,
则 $\vdash \forall x \alpha \rightarrow \forall x \beta$ 。

证:

$$(1) \quad \vdash \alpha \rightarrow \beta \tag{题设}$$

$$(2) \quad \vdash \forall x(\alpha \to \beta) \tag{定理7}$$

$$(3) \qquad \vdash \forall x(\alpha \to \beta) \to (\forall x\alpha \to \forall x\beta) \qquad (K6)$$

$$(4) \qquad \vdash \forall x \alpha \to \forall x \beta \tag{M}$$

例16(2)

若ト
$$\alpha \to \beta$$
,
则ト $\exists x \alpha \to \exists x \beta$.
证:
(1) ト $\alpha \to \beta$
(2) ト $(\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$ (命题内定理)
(3) ト $\neg \beta \to \neg \alpha$ (*M*)
(4) ト $\forall x \neg \beta \to \forall x \neg \alpha$ (1)
(5) ト $(\forall x \neg \beta \to \forall x \neg \alpha)$ (1)
 $\rightarrow (\neg \forall x \neg \alpha \to \neg \forall x \neg \beta)$ (*M*)

 $\exists x \alpha \rightarrow \exists x \beta$

Kz中有前提的推演

定义

设Γ是 $K_{\mathcal{L}}$ 的一个公式集(不一定有限). $K_{\mathcal{L}}$ 中公式的一个有限序列 α_1 , α_2 , ···, α_n 称为 $K_{\mathcal{L}}$ 中由前提Γ推出 α_n 的一个证明序列, 如果每个 α_i (1 ≤ i ≤ n) 都满足下列条件之一:

- (i) $\alpha_i \in \Gamma$.
- (ii) α_i 是一个公理.
- (iii) α_i 是由 α_j , α_k ($1 \leq j$, $k \leq i$) 用(M)得到. 此时也称在 $\mathbf{K}_{\mathcal{L}}$ 中由前提 Γ 可推出 α_n , 记为 $\Gamma \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha_n$, 或 $\Gamma \vdash \alpha_n$.

K_L中有前提推演的简单性质

- (1) $\vdash_{\mathbf{K}_{\mathcal{L}}} \alpha$ 的充要条件是: 对 $\mathbf{K}_{\mathcal{L}}$ 的任一个公式集Γ, $\Gamma \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha$.
- (2) 设 Σ , α 分别是P 中公式集与公式, $\Sigma \cup \{\alpha\}$ 的公式中出现的命题变元符号都在 p_0 , p_1 , \cdots , p_n 之中, 将 Σ 与 α 中的 p_0 , p_1 , \cdots , p_n 分别替换为 $K_{\mathcal{L}}$ 中公式 α_0 , α_1 , \cdots , α_n , 得到 $K_{\mathcal{L}}$ 的公式集 Σ' 与 α' . 若 $\Sigma \vdash_P \alpha$, 则 $\Sigma' \vdash_{K_{\mathcal{L}}} \alpha'$.

- (3) 若 $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha$, $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha \rightarrow \beta$, 则 $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \beta$.
- (4) 若 $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha \rightarrow \beta$, $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \beta \rightarrow \gamma$, 则 $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha \rightarrow \gamma$.
- (5) 若 $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha$, 而x是一个不在 Σ 的 任何公式中自由出现的一个个体变元符号,则 $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \forall x \alpha$.

性质(5)的证明

证: 只要对定理7的证明作些修改即可。

因 Σ ⊢_{**K**_L} α ,则存在**K**_L中 公式序列:

$$\alpha_1, \alpha_2, \cdots, \alpha_n \ (= \alpha)$$

为在前题 Σ 下推出 α 的一个证明.

下对
$$i$$
 (1 $\leq i \leq n$) 归纳证明: $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \forall x \alpha_i$ (*)

(1) 当i = 1时, α_1 为一个公理或 $\alpha_1 \in \Sigma$.

- (2) 设i < k时, (*)成立,下证i = k时(*)也成立.

由归纳假设得 $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \forall x \alpha_{l}$, $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \forall x \alpha_{j}$, 即:

 $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \forall x (\alpha_l \rightarrow \alpha_k).$

又由于 $\mathbf{K}_{\mathcal{L}} \forall x(\alpha_l \to \alpha_k) \to (\forall x \alpha_l \to \forall x \alpha_k)$ (K6).

故: $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \forall x(\alpha_l \rightarrow \alpha_k) \rightarrow (\forall x \alpha_l \rightarrow \forall x \alpha_k)$

由性质(2)知 $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \forall x \alpha_l \rightarrow \forall x \alpha_k$, $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \forall x \alpha_k$.

归纳证毕, 从而 $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \forall x \alpha_n$, 即: $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \forall x \alpha$.

例17

若x不在 β 中自由出现,

则
$$\{\forall x(\alpha \rightarrow \beta), \neg \beta\} \vdash \forall x \neg \alpha$$

证:

$$(1) \quad \forall x(\alpha \to \beta) \tag{前提}$$

(2)
$$\forall x(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \beta)$$
 (*K*4)

$$(3) \quad \alpha \to \beta \tag{M}$$

(4)
$$(\alpha \rightarrow \beta) \rightarrow (\neg \beta \rightarrow \neg \alpha)$$
 (命题重言式)

$$(5) \quad \neg \beta \rightarrow \neg \alpha \tag{M}$$

$$(6) \neg \beta \qquad \qquad (前提)$$

$$(7) \quad \neg \alpha \tag{M}$$

$$(8) \quad \forall x \neg \alpha \qquad \qquad (性质(4))$$

Kz的演绎定理

 Σ , $\alpha \vdash_{\mathbf{K}_{\mathcal{L}}} \beta$ 当且仅当 $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha \rightarrow \beta$.

证明与P中演绎定理的证明非常类似,只须将其中的"P的公式"改为" $K_{\mathcal{L}}$ 的公式"即可.

例15的重新证明

证明: $\{\alpha \rightarrow \forall x\beta, \alpha\} \vdash \beta$ 证: (1) $\alpha \rightarrow \forall x\beta$ (前提) $(2) \alpha$ (前提) (3) $\forall x\beta$ (M) (4) $\forall x\beta \rightarrow \beta$ (*K*4) $(5) \beta \qquad (M)$ 由演绎定理得: $\{\alpha \rightarrow \forall x\beta\} \vdash \alpha \rightarrow \beta$. 由性质(4)得: $\{\alpha \rightarrow \forall x\beta\} \vdash \forall x(\alpha \rightarrow \beta)$

再由演绎定理得: $\vdash (\alpha \rightarrow \forall x\beta) \rightarrow \forall x(\alpha \rightarrow \beta)$.

(注意: x不在 $\alpha \rightarrow \forall x\beta$ 中自由出现)

例19

若x不在 β 中自由出现,

证明
$$\vdash_{\mathbf{K}_{\mathcal{L}}} \forall x(\alpha \to \beta) \to (\exists x \alpha \to \beta)$$

证:

由例17得
$$\{\forall x(\alpha \rightarrow \beta), \neg \beta\} \vdash \forall x \neg \alpha.$$

从而
$$\{\forall x(\alpha \rightarrow \beta)\} \vdash \neg \beta \rightarrow \forall x \neg \alpha.$$

$$\overrightarrow{\text{m}} \vdash (\neg \beta \rightarrow \forall x \neg \alpha) \rightarrow (\neg \forall x \neg \alpha \rightarrow \beta)$$

$$t t \{ \forall x (\alpha \to \beta) \} \vdash (\neg \beta \to \forall x \neg \alpha) \to (\neg \forall x \neg \alpha \to \beta)$$

由性质(1)知
$$\{\forall x(\alpha \rightarrow \beta)\}$$
 $\vdash \neg \forall x \neg \alpha \rightarrow \beta$.

$$\exists \exists \{ \forall x (\alpha \rightarrow \beta) \} \vdash \exists x \alpha \rightarrow \beta.$$

故
$$\vdash \forall x(\alpha \rightarrow \beta) \rightarrow (\exists x \alpha \rightarrow \beta)$$

作业

p.560(p.185)

20. (1), (3), (5)

21. (2), (4)

谢谢