		<u> </u>

Agradecimientos

Contenido

т.	1. Illuroduccion		1
	1.1. Confort and building energy co	onsumption \dots	. 1
	1.2. Evaporative cooling		. 1
	1.3. Buildings simulations and Ene	rgyPlus	. 1
	1.4. Motivation		. 1
2.	2. Methodology		3
	2.1. Project description		. 3
	2.2. Cafeteria modeling		. 3
	2.3. Numerical experiments		. 3
	2.4. Validation process		. 3
3.	3. Results		5
4.	4. Conclusions		7

vi Contenido

Lista de Figuras

Introducción

1.1. Confort and building energy consumption

1.2. Evaporative cooling

- What is it? and where it is applied
- Diference between direct and indirect
- Current technology

1.3. Buildings simulations and EnergyPlus

- Importance of building simulations
- EnergyPlus description

1.4. Motivation

- Evaporative cooling in EnergyPlus
- Pappit description (?)

2 Introducción

Methodology

- 2.1. Project description
- 2.2. Cafeteria modeling
- 2.3. Numerical experiments
- 2.4. Validation process

4 Methodology

Results

6 Results

Conclusions

8 Conclusions