Module 4 Graphics in R

Module 4: Graphics in R

No.	Topics	
1	Creating Graphs Parameters Basic Graphics	
2	Grammar of Graphics: ggplot()	
3	Lattice Graphics	
4	Save Graphs	

1. Creating Graphs

- The oldest graphics systems in R is known as 'base graphic'.
- Packages: grid; advance package: lattice, ggplot
- When plot is executed, a new graphic window pops up. If another plot is executed, the current graphic is replaced with a new graphic.
- Can be used to examine:
 - Marginal distributions
 - Relationships between variables
 - Summary of very large dat

cont...

Some parameters:

- ylim: set the range/scale of y axis; xlim: set the range of x axis
- ylab: set the legend title of y axis; xlab: set tht legend title of x axis
- main: set the main title of graphs
- sub: set the sub title, with smaller font
- Line type with lty = (see Fig. 1) and lwd to set the width (default = 1)
- pch: set the symbol
- type: set the line type for functions plot(), points() and lines()
- mfrow: number of plots per row, column (plots are filled row-wise)
- mfcol: number of plots per row, column (plots are filled column-wise)
- oma: the outer margin size (default is 0)
- las: orientation of the axis labels on the plot
- beside=TRUE: values in each column to be plotted side-by-side
- legend=TRUE/FALSE: to add legend in the top right

Figure 1: Line Type

Figure 2: Symbol

cont...

- col: set the colours
 - Options for colors (see table)

option	description
col	Default plotting color. Some functions (e.g. lines) accept a vector of values that are recycled.
col.axis	color for axis annotation
col.lab	color for x and y labels
col.main	color for titles
col.sub	color for subtitles
fg	plot foreground color (axes, boxes - also sets col= to same)
bg	plot background color

- To check for colours, use this command:
 - colours()
 - palette() #standard colours
 - rainbow(n) #it gives you the colour hex code
 - hsv(): hue, saturation and value
 - Hex RGB: red = "#FF0000"
 - Must choice the colours carefully
 - Visible to everyone

cont...

cex: to control text and symbol size

option	description	
cex	number indicating the amount by which plotting text and symbols should be scaled relative to the default. 1=default, 1.5 is 50% larger, 0.5 is 50% smaller, etc.	
cex.axis	magnification of axis annotation relative to cex	
cex.lab	magnification of x and y labels relative to cex	
cex.main	magnification of titles relative to cex	
cex.sub	magnification of subtitles relative to cex	

— Control the margin and graph size:

option	description
mar	numerical vector indicating margin size c(bottom, left, top, right) in lines. default = $c(5, 4, 4, 2) + 0.1$
mai	numerical vector indicating margin size c(bottom, left, top, right) in inches
pin	plot dimensions (width, height) in inches

Creating Graphs: Parameters cont...

– Font:

option	description	
foret	Integer specifying font to use for text.	
font	1=plain, 2=bold, 3=italic, 4=bold italic, 5=symbol	
font.axis	font for axis annotation	
font.lab	font for x and y labels	
font.main	font for titles	
font.sub	font for subtitles	
	font point size (roughly 1/72 inch)	
ps	text size=ps*cex	
family	font family for drawing text. Standard values are "serif", "sans", "mono", "symbol". Mapping is device dependent.	

– Sample command:

```
    # Type family examples - creating new mappings plot(1:10,1:10,type="n") windowsFonts(
        A=windowsFont("Arial Black"),
        B=windowsFont("Bookman Old Style"),
        C=windowsFont("Comic Sans MS"),
        D=windowsFont("Symbol")
)
text(3,3,"Hello World Default")
text(4,4,family="A","Hello World from Arial Black")
text(5,5,family="B","Hello World from Bookman Old Style")
text(6,6,family="C","Hello World from Comic Sans MS")
```

IT Academy Program

Creating Graphs: Parameters cont...

- Control the layout with par()
 - attach(mtcars)
 - When a data set is attach, we can access to the variables directly with its name. For e.g.: mpg instead of mtcars\$mpg
 - par(mfrow=c(2,2))
 - let the display layout like a matrix with row = 2 and column = 2
 - plot(wt,mpg, main="Scatterplot of wt vs. mpg")
 - plot(wt,disp, main="Scatterplot of wt vs disp")

cont...

- More about layout:
 - eglayout<-matrix(1:4, 2, 2)</pre>
 - layout(eglayout)
 - layout.show(4)
 - layout(matrix(1:6, 3, 2))
 - layout.show(4)
 - layout(matrix(1:6, 2, 3))
 - layout.show(6)
 - layout(matrix(c(1:3, 3), 2, 2))
 - layout.show(3)
 - layout(mat, widths=c(1, 3), heights=c(3, 1))
 - We can set the height and width
 - layout.show(4)

Creating Graphs: Parameters cont...

— Type − p, l, b, o, h, s:

Creating Graphs: Basic Graphics

plot() is the main graphing function

- Can automatically produce simple plot for vector, data frames or functions
- x < -seq(1,10)
- $y<-x^2-10*x$
- plot(x,y)
- plot(women\$height)
- plot(women\$height, col="red1") #put in colours
- plot(women\$height, women\$weight, xlab="height", ylab="weight", col="tomato1") #label the axis
- plot(women\$height, women\$weight, xlab="height", ylab="weight", main="Average Height & Weights for American WOmen",col="tomato1") #put in main title
- plot(women\$height, women\$weight, xlab="height", ylab="weight", main="Average Height & Weights for American WOmen",pch = 2,col="tomato1") #change the plot symbol through pch

```
> methods("plot")
 [1] plot.acf*
                          plot.data.frame*
                                              plot.decomposed.ts*
 [4] plot.default
                          plot.dendrogram*
                                              plot.density*
[7] plot.ecdf
                                              plot.formula*
                          plot.factor*
[10] plot.function
                          plot.hclust*
                                              plot.histogram*
[13] plot.HoltWinters*
                          plot.isorea*
                                              plot.lm*
[16] plot.medpolish*
                                              plot.ppr*
                          plot.mlm*
[19] plot.prcomp*
                          plot.princomp*
                                              plot.profile.nls*
[22] plot.spec*
                          plot.stepfun
                                              plot.stl*
[25] plot.table*
                                              plot.tskernel*
                          plot.ts
[28] plot.TukevHSD*
   Non-visible functions are asterisked
```


Creating Graphs: Basic Graphics cont...

- Add a line with abline() function
 - x<-c(1,2,3)
 - y<-c(1,3,8)
 - plot(x,y)
 - Imout<- $Im(y^x)$ #Im contains the slope and intercept of the fitted line
 - abline(lmout) # the graph will show the dots and line together
- To add more lines by using lines()
 - lines(c(1.5,2.5),c(3,3))
 - #connect the dots but do not want the dots:
 - plot(x,y,type="l")
- Use the density function with plot() and lines()
 - summary(women) #let us check the data
 - #observe the minimum and maximum values
 - d1=density(women\$height, from=0, to=200)
 - d2=density(women\$weight, from=0, to=200)
 - plot(d1,main="",xlab="")
 - lines(d2)
 - #the graphs is meaningful if we have another men data sets for comparison
 - text(49,0.06,"height") # to label the line
 - Trick to obtain the coordinate:
 - Use locator()
 - locator(1) #tell R you will click in one place in the graph
 - #The coordinate is generated and now you can put in the label with text()

Creating Graphs: Basic Graphics cont...

- Plot a histogram by hist()
 - The parameter breaks is key
 - Specifies the no of categories to plot or
 - Specifies the breakpoints for each category
 - hist(VADeaths, ylim=c(0,10), ylab="Deaths per 1000", main="Death rates in Virgina", col=c("red1","blue1","brown1","seagreen1"))
- Plot a bar chart
 - barplot(VADeaths, beside=TRUE, legend=TRUE, ylim=c(0,90), ylab="Deaths per 1000", main="Death rates in Virginia", col=rainbow(6))
- Dot chart:
 - dotchart(VADeaths, xlim=c(0,75),xlab="Deaths per 1000",main="Death rates in Virginia")
- Pie charts
 - groupsizes<-c(18,30,32,10,10)</p>
 - labels<-c("A","B","C","D", "E")</pre>
 - pie(groupsizes,labels, col=rainbow(5))

Creating Graphs: Basic Graphics cont...

- Box plots
 - boxplot(Sepal.Length~Species, data=iris, ylab="Sepal length(cm)", main="Iris measurements",boxwex=0.5)

2. Grammar of Graphics: ggplot()

- ggplot2(): the grammar of graphics, i.e. gg which is used to create graph in a creative way
- Applicable to data frame only
 - To initialise ggplot():
 - ggplot(dataframe, aes(x, y,))
 - ggplot(dataframe)
 - ggplot()
 - Fundamental parameters of ggplot():
 - aes: aesthetics, to define how your data are presented visually. A variable may control where points appear, the colour or shape of a point, the height of a bar and so on.
 - geom these are the geometric objects. Do you need bars, points, lines?
 - Statistics these are the functions like linear regression
 - Scales To modify axes and colors
 - scale_y_continuous() Set name, breaks, labels, limits of y-axis
 - scale_x_log10() log transform the x-axis
 - scale_colour_manual() Specify colors for geoms
 - scale_fill_discrete() Specify colors for geoms
 - facets these are the groups in your data. Faceting by gender would cause the graph to repeat for the two genders.
 - theme to have more precise control

Grammar of Graphics: ggplot() cont...

- Try the following commands:
 - install.packages("ggplot2")
 - library(ggplot2)
 - Iris<-iris</p>
 - ggplot(data=Iris,aes(x=Sepal.Width, y=Sepal.Length)) + geom_point() + theme minimal()
 - check the relation between Sepal length and Speal width: theme_minimal() is used to adjust the appearance of the plots
 - ggplot(data=Iris,aes(x=Sepal.Width, y=Sepal.Length,color=Species)) + geom_point() + theme_minimal()
 - marked the Species by different colours
 - ggplot(data=Iris,aes(x=Sepal.Width, y=Sepal.Length,color=Species)) + geom_point() +geom_smooth() + theme_minimal()
 - Add a trend line to visualize the general trend through geom_smooth()
 - options(repr.plot.width = 10, repr.plot.height = 6)# to adjust size of plots
 - ggplot(data=Iris,aes(x=Sepal.Width, y=Sepal.Length,color=Species)) + geom_point() + geom_smooth(se=FALSE) +facet_wrap(~Species) +theme_minimal()
 - Off the grey trend using se=FALSE, and split the diplay of graph according to species

Grammar of Graphics: ggplot() cont...

Box plot:

- options(repr.plot.width = 5, repr.plot.height = 4)
- ggplot(data=Iris,aes(x=Species, y=Petal.Length,color=Species)) + geom boxplot() +theme minimal()+ theme(legend.position="none")

Histogram: best way to show frequency

- ggplot(data=Iris,aes(x=Sepal.Length)) + geom_histogram() +theme_minimal()
- ggplot(data=Iris,aes(x=Sepal.Length)) + geom histogram(binwidth=0.3) +theme minimal()
 - Set the bin width
- ggplot(data=Iris,aes(x=Sepal.Length,fill=Species)) + geom_histogram() +theme_minimal()
 - Put in colours based on Species
- ggplot(data=Iris,aes(x=Sepal.Length,fill=Species)) + geom_histogram() +theme_minimal() +facet_wrap(~Species)
 - Split the histogram according to species

Density curve:

- ggplot(data=Iris,aes(x=Sepal.Length,color=Species)) + geom_density() +theme_minimal()
- ggplot(data=Iris,aes(x=Petal.Width,y=Petal.Length,color=Species)) +geom_density2d()+ theme minimal()

Add in statistic:

— ggplot(iris, aes(x=Sepal.Length, y=Sepal.Width, color=Species)) + geom_point() + stat_smooth(method="lm")

With scale:

- ggplot(data=iris, aes(x=Sepal.Length, y=Sepal.Width, color=Species)) + geom_point(size=3) + scale_colour_manual(values=c("red","blue","yellow"))

Grammar of Graphics: ggplot() cont...

- Large data set is a challenge to visualise them
- Type the following commands:
 - pretest2 <- round(rnorm(n=5000, mean=80, sd=5))</pre>
 - posttest2 <- round(pretest2 + rnorm(n=5000, mean=3, sd=3))</p>
 - pretest2 [pretest2 > 100] <- 100</pre>
 - posttest2[posttest2 > 100] <- 100</p>
 - temp <- data.frame(pretest2,posttest2)</p>
 - Create a data set with 5000 points
 - ggplot(temp, aes(pretest2, posttest2), size=2, position = position_jitter(x = 2,y = 2)) + geom_jitter(colour=alpha("black",0.15))
 - Colouring with transparency call alpha under geom_jitter
 - ggplot(temp, aes(x=pretest2, y=posttest2)) + geom_point(size=1) +
 geom_density2d()
 - Clearer view of points

4. Save Graphs

- To save a graph with basic save function in R:
 - png(file="bowling.png", width=400, height=400)
 - -x < -1:10 >
 - $-y < -(x 5)^2 >$
 - plot(y ~ x, type="b", xlab="Frame", ylab="Bowling score")
 - dev.off() #find the file in your working directory

Save Graphs cont...

Function for saving graphic output (see Table):

Function	Output
pdf("filename.pdf")	PDF file
win.metafile("filename.wmf")	Windows metafile
png("filename.png")	PBG file
jpeg("filename.jpg")	JPEG file
bmp("filename.bmp")	BMP file
postscript("filename.ps")	PostScript file

Save Graphs cont...

- Default graphic device in R is your computer screen
- Using ggplot2 package:
- my_plot<-ggplot(iris, aes(x=Sepal.Length, y=Sepal.Width, color=Species)) + geom_point() + stat_smooth(method="lm")
- ggsave("my_plot.jpg",my_plot,height=4,width=4, units="in")
 - You can specify the resolution, filename, dimensions etc
 - The above ggsave is save at the working directory (unless specified)

Save Graphs cont...

Use the feature of Rstudio:

Need to set the format of image, detail of size and

shape

Exercise 4.1 - 20 minutes

- Create a data frame which contain the data
- Compute the density of Exam1 and Exam2 separately.
- Then, plot the data of Exam1 and Exam2.
- Save the graph.

Exam 1	Exam 2	Quiz
2.0	3.3	4.0
3.3	2.0	3.7
4.3	4.0	4.0
2.3	0.0	3.3
2.3	1.0	3.3
3.3	3.7	4.0

