

Semidefinite Programming for Semi-Supervised Support Vector Machines

Joint work with Veronica Piccialli and Antonio M. Sudoso

Jan Schwiddessen

University of Klagenfu

- ▶ *n* data points $x_i \in \mathbb{R}^d$, i = 1, ..., n, centered around origin
- ▶ ℓ labeled points $\{(x_i, y_i)\}_{i=1}^{\ell}$ with $y_i \in \{-1, +1\}, i = 1, ..., \ell$
- ▶ $n \ell$ unlabeled points $\{x_i\}_{i=\ell+1}^n$

- ▶ *n* data points $x_i \in \mathbb{R}^d$, i = 1, ..., n, centered around origin
- ▶ ℓ labeled points $\{(x_i, y_i)\}_{i=1}^{\ell}$ with $y_i \in \{-1, +1\}, i = 1, ..., \ell$
- ▶ $n \ell$ unlabeled points $\{x_i\}_{i=\ell+1}^n$

- ▶ n data points $x_i \in \mathbb{R}^d$, i = 1, ..., n, centered around origin
- ▶ ℓ labeled points $\{(x_i, y_i)\}_{i=1}^{\ell}$ with $y_i \in \{-1, +1\}, i = 1, ..., \ell$
- ▶ $n \ell$ unlabeled points $\{x_i\}_{i=\ell+1}^n$

- ▶ n data points $x_i \in \mathbb{R}^d$, i = 1, ..., n, centered around origin
- ▶ ℓ labeled points $\{(x_i, y_i)\}_{i=1}^{\ell}$ with $y_i \in \{-1, +1\}, i = 1, ..., \ell$
- ▶ $n \ell$ unlabeled points $\{x_i\}_{i=\ell+1}^n$

- ▶ n data points $x_i \in \mathbb{R}^d$, i = 1, ..., n, centered around origin
- ▶ ℓ labeled points $\{(x_i, y_i)\}_{i=1}^{\ell}$ with $y_i \in \{-1, +1\}, i = 1, ..., \ell$
- ▶ $n \ell$ unlabeled points $\{x_i\}_{i=\ell+1}^n$

- ▶ n data points $x_i \in \mathbb{R}^d$, i = 1, ..., n, centered around origin
- ▶ ℓ labeled points $\{(x_i, y_i)\}_{i=1}^{\ell}$ with $y_i \in \{-1, +1\}, i = 1, ..., \ell$
- ▶ $n \ell$ unlabeled points $\{x_i\}_{i=\ell+1}^n$

- ▶ n data points $x_i \in \mathbb{R}^d$, i = 1, ..., n, centered around origin
- ▶ ℓ labeled points $\{(x_i, y_i)\}_{i=1}^{\ell}$ with $y_i \in \{-1, +1\}, i = 1, ..., \ell$
- ▶ $n \ell$ unlabeled points $\{x_i\}_{i=\ell+1}^n$

- ▶ n data points $x_i \in \mathbb{R}^d$, i = 1, ..., n, centered around origin
- ▶ ℓ labeled points $\{(x_i, y_i)\}_{i=1}^{\ell}$ with $y_i \in \{-1, +1\}, i = 1, ..., \ell$
- ▶ $n \ell$ unlabeled points $\{x_i\}_{i=\ell+1}^n$

- ▶ n data points $x_i \in \mathbb{R}^d$, i = 1, ..., n, centered around origin
- ▶ ℓ labeled points $\{(x_i, y_i)\}_{i=1}^{\ell}$ with $y_i \in \{-1, +1\}, i = 1, ..., \ell$
- ▶ $n \ell$ unlabeled points $\{x_i\}_{i=\ell+1}^n$

Nonconvex Quadratic Formulation of S3VMs

Reformulation Bai & Yan (2016)

min
$$x^{\top}Cx$$

s.t. $y_i x_i \ge 1$, $i = 1, ..., \ell$
 $x_i^2 \ge 1$, $i = \ell + 1, ..., n$
 $x \in \mathbb{R}^n$ (P)

- quadratic programming problem in continuous variables
- C positive definite, i.e., convex objective function
- nonconvex feasible set
- **bound constraints**: $y_i x_i \ge 1$ means either $x_i \le -1$ or $x_i \ge 1$

Nonconvex Quadratic Formulation of S3VMs

Reformulation Bai & Yan (2016)

min
$$x^{\top}Cx$$

s.t. $y_ix_i \ge 1$, $i = 1, ..., \ell$
 $x_i^2 \ge 1$, $i = \ell + 1, ..., n$
 $x \in \mathbb{R}^n$ (P)

- quadratic programming problem in continuous variables
- C positive definite, i.e., convex objective function
- nonconvex feasible set
- **bound constraints**: $y_i x_i \ge 1$ means either $x_i \le -1$ or $x_i \ge 1$

Overall goal: exact approach for (P) using branch-and-cut

Convex Relaxations

Quadratic programming (QP) relaxation

min
$$x^{\top}Cx$$

s.t. $y_i x_i \ge 1$, $i = 1, ..., \ell$ (QP)
 $x \in \mathbb{R}^n$

Convex Relaxations

Quadratic programming (QP) relaxation

min
$$x^{\top}Cx$$

s.t. $y_i x_i \ge 1, i = 1, ..., \ell$ (QP)
 $x \in \mathbb{R}^n$

Semidefinite programming (SDP) relaxation (Bai & Yan, 2016)

$$\begin{array}{ll} \min & \langle C, X \rangle \\ \text{s.t.} & y_i x_i \geq 1, \ i = 1, \dots, \ell \\ & X_{ii} \geq 1, \ i = \ell + 1, \dots, n \\ & \begin{pmatrix} 1 & x^\top \\ x & X \end{pmatrix} \succeq 0 \end{array} \tag{SDP}$$

Convex Relaxations

Quadratic programming (QP) relaxation

min
$$x^{\top}Cx$$

s. t. $y_i x_i \ge 1, i = 1, ..., \ell$ (QP)
 $x \in \mathbb{R}^n$

Semidefinite programming (SDP) relaxation (Bai & Yan, 2016)

$$\begin{array}{ll} \min & \langle \mathcal{C}, X \rangle \\ \text{s.t.} & y_i x_i \geq 1, \ i = 1, \dots, \ell \\ & X_{ii} \geq 1, \ i = \ell + 1, \dots, n \\ & \begin{pmatrix} 1 & x^\top \\ x & X \end{pmatrix} \succeq 0 \end{array} \tag{SDP}$$

Two goals:

- stronger SDP relaxation
- efficient algorithm to solve SDP relaxation

Global Optimization Problem

▶ compute box constraints $L_i \le x_i \le U_i$, i = 1, ..., n

Textbook-like form with box constraints

min
$$x^{\top}Cx$$

s.t. $L_i \leq x_i \leq U_i, i = 1, ..., n$
 $x_i^2 \geq 1, i = \ell + 1, ..., n$
 $x \in \mathbb{R}^n$

Global Optimization Problem

ightharpoonup compute box constraints $L_i \le x_i \le U_i, i = 1, ..., n$

Textbook-like form with box constraints

min
$$x^{\top}Cx$$

s.t. $L_i \leq x_i \leq U_i, i = 1, ..., n$
 $x_i^2 \geq 1, i = \ell + 1, ..., n$
 $x \in \mathbb{R}^n$

▶ add RLT cuts (Sherali & Adams, 1998) to SDP relaxation:

$$X_{ij} \ge \max\{U_i x_j + U_j x_i - U_i U_j, L_i x_j + L_j x_i - L_i L_j\}$$

$$X_{ij} \le \min\{L_i x_j + U_j x_i - L_i U_j, U_i x_j + L_j x_i - U_i L_j\}$$

Global Optimization Problem

▶ compute box constraints $L_i \le x_i \le U_i$, i = 1, ..., n

Textbook-like form with box constraints

min
$$x^{\top}Cx$$

s.t. $L_i \leq x_i \leq U_i, i = 1, ..., n$
 $x_i^2 \geq 1, i = \ell + 1, ..., n$
 $x \in \mathbb{R}^n$

▶ add RLT cuts (Sherali & Adams, 1998) to SDP relaxation:

$$X_{ij} \ge \max\{U_i x_j + U_j x_i - U_i U_j, L_i x_j + L_j x_i - L_i L_j\}$$

 $X_{ij} \le \min\{L_i x_j + U_j x_i - L_i U_j, U_i x_j + L_j x_i - U_i L_j\}$

- marginals-based bound tightening (Ryoo & Sahinidis, 1995)
- projecting box constraints:
 - $ightharpoonup L_i > -1 \Rightarrow L_i := \max\{L_i, 1\}$
 - $V_i < 1 \Rightarrow U_i := \min\{U_i, -1\}$

Change of variables: Burer-Monteiro factorization

$$\begin{pmatrix} 1 & x^{\top} \\ x & X \end{pmatrix} = V^{\top}V \text{ with } V = (v_0|v_1|\dots|v_n) \in \mathbb{R}^{k \times n}$$

Change of variables: Burer-Monteiro factorization

$$\begin{pmatrix} 1 & x^{\top} \\ x & X \end{pmatrix} = V^{\top}V \text{ with } V = (v_0|v_1|\dots|v_n) \in \mathbb{R}^{k \times n}$$

Nonconvex reformulation

For some $k \leq n$, (SDP) is equivalent to

min
$$\langle \bar{C}, V^{\top}V \rangle$$

s. t. $y_{i}v_{0}^{\top}v_{i} \geq 1$, $i = 1, ..., \ell$,
 $\|v_{i}\|^{2} \geq 1$, $i = \ell + 1, ..., n$,
 $\|v_{0}\|^{2} = 1$,
 $V = (v_{0}|v_{1}|...|v_{n}) \in \mathbb{R}^{k \times n}$, (*)

$$\bar{C} = \begin{pmatrix} 0 & 0 \\ 0 & C \end{pmatrix}.$$

Coordinate Descent: Column Updates

Updating column $i \neq 0$

Let $g=2\sum_{j\neq i}^n C_{ij}v_j$. Fixing all other columns, (*) reduces to

$$\begin{cases} & \min \quad C_{ii} \|v_i\|^2 + g^\top v_i \\ & \text{s.t.} \quad y_i v_0^\top v_i \ge 1, \end{cases}, \quad \text{if } i \in \{1, \dots, \ell\},$$

$$\begin{cases} & \min \quad C_{ii} \|v_i\|^2 + g^\top v_i \\ & \text{s.t.} \quad \|v_i\|^2 \ge 1, \end{cases}, \quad \text{if } i \in \{\ell + 1, \dots, n\}.$$

Coordinate Descent: Column Updates

Updating column $i \neq 0$

Let $g = 2 \sum_{j \neq i}^{n} C_{ij} v_{j}$. Fixing all other columns, (*) reduces to

$$\begin{cases} & \min \quad C_{ii} \|v_i\|^2 + g^\top v_i \\ & \text{s. t.} \quad y_i v_0^\top v_i \ge 1, \end{cases}, \quad \text{if } i \in \{1, \dots, \ell\},$$

$$\begin{cases} & \min \quad C_{ii} \|v_i\|^2 + g^\top v_i \\ & \text{s. t.} \quad \|v_i\|^2 \ge 1, \end{cases}, \quad \text{if } i \in \{\ell + 1, \dots, n\}.$$

Primal-dual solution

There is a closed-form primal-dual solution to both subproblems.

- Choose $k \leq \lceil \sqrt{2n} \rceil$.
- ② Initialize v_0, v_1, \ldots, v_n randomly on the unit sphere.
- **3** Repeat until done: update v_1, \ldots, v_n .

- Choose $k \leq \lceil \sqrt{2n} \rceil$.
- ② Initialize v_0, v_1, \ldots, v_n randomly on the unit sphere.
- **3** Repeat until done: update v_1, \ldots, v_n .
- ► robust and very fast
- \triangleright access to approximate dual solution (even if k too small)

- Choose $k \leq \lceil \sqrt{2n} \rceil$.
- ② Initialize v_0, v_1, \ldots, v_n randomly on the unit sphere.
- **3** Repeat until done: update v_1, \ldots, v_n .
- robust and very fast
- access to approximate dual solution (even if k too small)

Future work:

- further strengthen relaxation (disjunctive cuts?)
- convergence proof?
- partial Lagrangian approach to dualize cuts

- Choose $k \leq \lceil \sqrt{2n} \rceil$.
- ② Initialize v_0, v_1, \ldots, v_n randomly on the unit sphere.
- **3** Repeat until done: update v_1, \ldots, v_n .
- robust and very fast
- \triangleright access to approximate dual solution (even if k too small)

Future work:

- further strengthen relaxation (disjunctive cuts?)
- convergence proof?
- partial Lagrangian approach to dualize cuts

Thank you!