

13281
U.S. PTO
042104

1 **METHOD FOR MANUFACTURING AN ADHESIVE SUBSTRATE WITH A**
2 **DIE-CAVITY SIDEWALL**
3 **FIELD OF THE INVENTION**

4 The present invention relates to a method for manufacturing a substrate assembly
5 with a die cavity to accommodate a semiconductor chip and, more particularly, to a
6 method for manufacturing an adhesive substrate with a die-cavity sidewall.

7 **BACKGROUND OF THE INVENTION**

8 In the field of semiconductor packages and modules, a substrate with a die cavity to
9 accommodate a semiconductor chip is rather common. The die cavity comprises a
10 die-cavity sidewall and a die-attached plane. For controlling the height of the die-cavity
11 sidewall and the coplanarity of the die-attached plane, the die-cavity sidewall and the
12 die-attached plane are manufactured from two different substrates firstly, then by using an
13 adhesive layer to laminate the substrate with a die-cavity sidewall and the substrate with a
14 die-attached plane for forming a laminated substrate assembly with a die cavity. As
15 disclosed in U.S. Pat. No. 6,506,626 and U.S. Pat. Application Publication No.
16 2001/0046725, the substrate with a die-attached plane is a ball grid array circuit board
17 and the substrate with a die-cavity sidewall is a metal stiffener or spacer circuit board,
18 both substrates are assembled to be a substrate assembly with a die cavity for
19 manufacturing a semiconductor package or module with a faceup die cavity. As
20 disclosed in U.S. Pat. No. 6,639,304 and U.S. Pat. No. 6,501,168, the substrate with a
21 die-attached plane is a metal plate or metal core. Moreover, the substrate with a
22 die-cavity sidewall is a circuit board with an opening or window. Both substrates are
23 assembled for manufacturing semiconductor package or module with facedown die
24 cavity.

25 Normally the adhesive layer used for laminating the two substrates mentioned above
26 is acrylate film, liquid adhesive or prepreg. When the adhesive layer is a solid type or
27 gummy type film such as acrylate film or prepreg, it is necessary to punch or route an

1 opening, then two substrates are laminated under the opening of the adhesive layer
2 aligned to the die-attached plane of the substrate. However, due to the nature of the
3 adhesive layer, the adhesive layer will stick to the tooling or attract unwanted particles
4 during processes, which caused extra cleaning problem for tooling and degradation of
5 adhesion. Moreover, the arcylate film is very sensitive to moisture and only can reach
6 JEDEC lever four. During the routing or punching processes, prepreg can be easily
7 damaged and formed lots of resin flakes or particles.

8 When using liquid adhesive as an adhesive layer for bonding the two substrates
9 mentioned above, as well known, the liquid adhesive needs to apply to the substrate with
10 a die-cavity sidewall or to the substrate with a die-attached plane via screen printing. In
11 order to avoid the contamination of liquid adhesive onto the die-cavity sidewall during
12 laminating the substrates, the liquid adhesive must have higher adhesion with proper
13 surface tension and viscosity. If the liquid adhesive contains solvent, after screen
14 printing, the liquid adhesive layer will need pre-bake or drying processes and then the
15 two substrates mentioned above are laminated and cured under higher temperatures.
16 During the curing processes, the curing conditions need extremely under control, any
17 mistakes may force the liquid adhesive layer to flow to the die-cavity sidewall or
18 die-attached plane and cause the coplanality issue for die attachment.

19 A method for manufacturing die cavity on a substrate is disclosed in U.S. Pat.
20 6,195,264. An adhesive layer with photosensitive material can be applied between the
21 metal stiffener and printed circuit board. A substrate assembly with a die cavity will be
22 formed after lamination since the adhesive layer with photosensitive material can be
23 exposed and developed, therefore, no residual of the adhesive layer can be found inside
24 the die cavity. However, the requirements for the adhesive layer with photosensitive
25 material should have an excellent photosensitivity and easy photo processing
26 characteristics, moreover, good thermal-setting properties, adhesion, and heat
27 conductivity. However, such kind of adhesive layer with photosensitive material is not

1 easy to get which is in higher cost.

SUMMARY OF THE INVENTION

3 A main purpose of the present invention is to supply a method for manufacturing an
4 adhesive substrate with a die-cavity sidewall. A substrate and a sacrificial film are
5 laminated together with a partially cured resin in-betweens. Then an aperture is routed
6 through the substrate, the partially cured resin, and the sacrificial film, then, a die-cavity
7 sidewall from the substrate is formed inside the aperture. Then by removing the
8 sacrificial film, the partially cured resin will be kept on the substrate, moreover, the
9 partially cured resin will not contaminate the die-cavity sidewall, at the same time, the
10 substrate will have good adhesion for laminating with the other substrate.

11 According to the present invention, a method for manufacturing an adhesive
12 substrate with a die-cavity sidewall includes, firstly, providing a substrate with an
13 attaching surface. At least a region for forming a die-cavity sidewall is defined on the
14 attaching surface of the substrate. Next, the substrate is laminated with a sacrificial film
15 with a partially cured resin in-betweens. An aperture is created corresponding to the
16 region and passes through the substrate, the partially cured resin, and the sacrificial film
17 by routing or punching, therefore, a die-cavity sidewall will be formed in the substrate.
18 The aperture can be formed by routing, punching or the other method. Thereafter, by
19 removing the sacrificial film, the partially cured resin is exposed on the substrate.
20 Therefore, the adhesive substrate with a die-cavity sidewall can be laminated with
21 another substrate with a die-attached plane to be a laminated substrate assembly with a
22 die cavity that can be manufacturing with low cost and implemented in either facedown
23 or faceup semiconductor packages or modules.

DESCRIPTION OF THE DRAWINGS

25 Fig. 1A to Fig. 1D are cross-sectional views of an adhesive substrate with a
26 die-cavity sidewall during manufacturing process in accordance with the first
27 embodiment of the present invention;

1 Fig. 2 is a three-dimensional view of a substrate forming with pre-cutting holes after
2 lamination in accordance with the first embodiment of the present invention;

3 Fig. 3 is a three-dimensional view of a substrate forming with apertures after
4 lamination in accordance with the first embodiment of the present invention;

5 Fig. 4 is a cross-sectional view of a semiconductor package comprising the adhesive
6 substrate with a die-cavity sidewall manufactured in accordance with the first
7 embodiment of the present invention;

8 Fig. 5A to Fig. 5D are cross-sectional views of an adhesive substrate with a
9 die-cavity sidewall during the manufacturing process in accordance with the second
10 embodiment of the present invention;

11 Fig. 6 is a cross-sectional view of a semiconductor package comprising the adhesive
12 substrate with a die-cavity sidewall manufactured in accordance with the second
13 embodiment of the present invention.

DETAIL DESCRIPTION OF THE INVENTION

15 Please refer to the drawings attached, the present invention will be described by
16 means of embodiments below. According to the present invention, the first embodiment
17 discloses a method for manufacturing an adhesive substrate with a die cavity sidewall.
18 As shown in Fig. 1A, firstly the first substrate 110 is provided. The first substrate 110
19 has the first surface 111 and the second surface 112. In this embodiment, the first
20 substrate 110 is a ball grid array (BGA) substrate for semiconductor package or module
21 with facedown die cavity. Normally, the first substrate 110 is a printed circuit board
22 made of BT resin. The first surface 111 is used to attach to the second substrate 210, is
23 shown in Fig. 4. The first surface 111 defines at least one region 113 for forming a
24 die-cavity sidewall. The second surface 112 has a plurality of bonding fingers 114 for
25 bonding wires and a plurality of ball pads 115 for solder balls.

26 Then, as shown in Fig. 1B, the first substrate 110 is laminated with a sacrificial film
27 120. The sacrificial film 120 may be a low cost, etchable metal film, such as copper foil.

1 Moreover, a partially cured resin 130 is formed between the first substrate 110 and the
2 sacrificial film 120 to form a laminated substrate. The partially cured resin 130 is cured
3 from 5 to 50%, and more particularly, the partially cured resin 130 is cured 5 to 15%.
4 After laminating the first substrate 110 with the sacrificial film 120, the partially cured
5 resin 130 is pressed via the sacrificial film 120 to have an uniform thickness. Therefore,
6 the formation of unwanted particles during processes and the contamination of the
7 partially cured resin 130 will be greatly reduced. Moreover, the partially cured resin
8 130 can be easily processing and will not stick to the tooling. The partially cured resin
9 130 has multi-stage thermosetting property, which can be partially cured (in B-stage)
10 under proper curing temperature and conditions. The partially cured resin 130 can be
11 made of epoxy resin, BT (Bismaleimide Triazine) resin or PI (Polyimide) resin. The
12 partially cured resin 130 can be prepreg containing glass fibers, preferably, the partially
13 cured resin 130 contains metal particles, such as silver particles, to enhance heat
14 conductivity of the partially cured resin 130.

15 Thereafter, as shown in Fig. 1C and Fig. 3, using routing or other through hole
16 forming methods, an aperture 140 is formed through the laminated substrate which is
17 made of the first substrate 110, the sacrificial film 120, and the partially cured resin 130.
18 Referring to Fig. 2, before routing the aperture 140, at least one pre-cutting hole 141 can
19 be formed at periphery of the region 113. The pre-cutting hole 141 was routed through
20 the first substrate 110, the partially cured resin 130, and the sacrificial film 120.
21 Preferably, the pre-cutting holes 141 are located at the corners of the region 113. Next,
22 the aperture 140 is formed by a routing machine, which is located corresponding to the
23 region 113 of the substrate 110. The aperture 140 is routed through the first substrate
24 110, the partially cured resin 130, and the sacrificial film 120 so that the first substrate
25 110 has a die-cavity sidewall 116 which is inside the aperture 140.

26 Thereafter, as shown in Fig. 1D, the sacrificial film 120 is removed to make the
27 partially cured resin 130 appear on the first surface 111 of the first substrate 110. The

1 sacrificial film 120 can be removed by etching or peeling methods. Moreover, the
2 partially cured resin 130 is formed prior to making the aperture 140, therefore, the
3 die-cavity sidewall 116 will not be contaminated by the partially cured resin 130.
4 Besides, the partially cured resin 130 with good adhesion is applied on the first surface
5 111 of the first substrate 110 by printing or the other, which is ready for laminating a
6 substrate with a die-attached plane.

7 The first substrate 110 with the die-cavity sidewalls 116 is laminated with a second
8 substrate 210 with a die-attached plane 211 to be a substrate assembly with a die cavity
9 which can be used to assembly a cavity-down semiconductor package or module. As
10 shown in Fig. 4, the cavity-down semiconductor package comprises the first substrate
11 110. The partially cured resin 130 is formed on the first surface 111 of the first
12 substrate 110 to adhere the second substrate 210 with a die-attached plane 211. After
13 laminating the first substrate 110 with the second substrate 210, the die-cavity sidewall
14 116 of the first substrate 110 and the die-attached plane 211 of the second substrate 210
15 constitute a die cavity for accommodating a semiconductor chip 220. During the
16 lamination of the first substrate 110 and the second substrate 210, the partially cured resin
17 130 will not overflow to contaminate the die-cavity sidewall 116 or the die-attached
18 plane 211. Therefore, there is no alignment problem for adhesive layers.

19 In this embodiment, the second substrate 210 with the die-attached plane 211 is a
20 metal heat spreader. The semiconductor chip 220 is attached to the die-attached plane
21 211 of the second substrate 210. Moreover, the chip 220 is inside the die-cavity
22 sidewall 116 of the first substrate 110, i.e., the semiconductor chip 220 is accommodated
23 inside the die cavity formed by the die-cavity sidewall 116 and the die-attached plane 211.
24 A plurality of bonding wires 230 are used to electrically connect a plurality of bonding
25 pads 221 of the semiconductor chip 220 with the bonding fingers 114 of the first
26 substrate 110. Thereafter, a package body 240 is formed inside the die cavity formed by
27 the die-cavity sidewall 116 and the die-attached plane 211. A plurality of solder balls

1 250 are bonded on the ball pads 115. Finally, a semiconductor package with facedown
2 die cavity is assembled.

3 Furthermore, in the present invention, the method of manufacturing an adhesive
4 substrate with a die-cavity sidewall can be implemented to assemble a laminated
5 substrate with a faceup die cavity. According to the second embodiment of the present
6 invention, as shown in Fig. 5A, the first substrate 310 is provided firstly. The first
7 substrate 310 has a first surface 311 and a second surface 312. In this embodiment, the
8 first substrate 310 is a metal plate used as a stiffener for semiconductor packages or
9 modules. There is at least one region 313 for forming a die-cavity sidewall on the first
10 surface 311. Thereafter, as shown in Fig. 5B, the first substrate 310 is laminated with a
11 sacrificial film 320. Moreover, a partially cured resin 330 is formed between the first
12 substrate 310 and the sacrificial film 320 so as to form a laminated substrate. The
13 surface of the sacrificial film 320 that contacts the partially cured resin 330 is a smooth
14 surface for easy peeling. The sacrificial film 320 may be a paper carrier or metal foil.

15 Then, as shown in Fig. 5C, the region 313 is punched off to form an aperture 340
16 through the laminated substrate including the first substrate 310, the sacrificial film 320,
17 and the partially cured resin 330. Therefore, a die-cavity sidewall 314 from the first
18 substrate 310 is formed inside the aperture 340. Thereafter, as shown in Fig. 5D, the
19 sacrificial film 320 is removed by the method of peeling or etching so that the partially
20 cured resin 330 on the first surface 311 of the first substrate 310 will be exposed.

21 Therefore, the first substrate 310 with the die-cavity sidewall 314, i.e., an adhesive
22 stiffener, formed by the method mentioned above is adhesive because that the partially
23 cured resin 330 is formed on the first substrate 310. The first substrate 310 with the
24 die-cavity sidewall 314 can be implemented on a semiconductor package or module with
25 a faceup die cavity, is shown in Fig. 6. A semiconductor package comprises the first
26 substrate 310. The partially cured resin 330 is formed on the first surface 311 of the
27 first substrate 310 to adhere the second substrate 410, such as a printed circuit board,

1 which has a die-attached plane 411. A die cavity consists of the die-attached plane 411
2 and the die-cavity sidewall 314 so as to accommodate a semiconductor chip 420.
3 Normally, after laminating the first substrate 310 with the second substrate 410, the
4 partially cured resin 330 can be completely cured. The semiconductor chip 420 is
5 attached to the die-attached plane 411 of the second substrate 410 and is positioned inside
6 the die-cavity sidewall 314 of the first substrate 310. A plurality of bonding wires 430
7 are used to electrically connect the bonding pads 421 of the semiconductor chip 420 with
8 the second substrate 410. Preferably, a heat spreader 440 can be adhered to the second
9 surface 312 of the first substrate 310. Then a plurality of solder balls 450 are bonded on
10 the second substrate 410. Finally, a semiconductor package or module with faceup
11 cavity is assembled.

12 The above description of embodiments of this invention is intended to be illustrative
13 and not limiting. Other embodiments of this invention will be obvious to those skilled in
14 the art in view of the above disclosure.

15

16

17

18

19

20

21

22

23

24

25

26

27