Teorema 9.2.1 (Criteriul de stabilitate pentru sisteme liniare) Fie sistemul liniar (9.9). Atunci punctul de echilibru O(0,0) este:

- (a) local stabil \iff Re $\lambda \leq 0$ pentru orice λ valoare proprie matricii A, egalitatea cu 0 având loc pentru valori proprii simple.
- (b) asimptotic stabil \iff Re $\lambda < 0$ pentru orice λ valoare proprie matricii A.
- (c) instabil \iff există λ o valoare proprie matricii A cu $\operatorname{Re} \lambda > 0$ sau $\operatorname{Re} \lambda = 0$ şi λ nu este valoare proprie simplă.

Clasificarea punctului de echilibru O(0,0):

Spunem că punctul de de echilibru O(0,0) este:

(i) de tip nod dacă $\lambda_1, \lambda_2 \in \mathbb{R}$ și $\lambda_1 \cdot \lambda_2 > 0$

Nod instabil, cazul $\lambda_1 > 0$ și $\lambda_2 > 0$.

Nod asimptotic stabil, cazul $\lambda_1 < 0$ şi $\lambda_2 < 0$.

(ii) de tip şa dacă $\lambda_1, \lambda_2 \in \mathbb{R}$ şi $\lambda_1 \cdot \lambda_2 < 0$

Punctul de tip şa, cazul $\lambda_1, \lambda_2 \in \mathbb{R}$ şi $\lambda_1 \cdot \lambda_2 < 0$. Punctul de tip şa este întotdeauna instabil.

(iii) de tip focus dacă $\lambda_{1,2} = \alpha \pm i\beta \in \mathbb{C}$ și $\alpha \neq 0$

Focus instabil, cazul $\lambda_{1,2} = \alpha \pm i\beta \in \mathbb{C}$ şi $\alpha > 0$.

Focus asimptotic stabil, cazul $\lambda_{1,2} = \alpha \pm i\beta \in \mathbb{C} \text{ şi } \\ \alpha < 0.$

(iv) de tip centru dacă $\lambda_{1,2} = i\beta \in \mathbb{C}$

Punctul de tip centru, cazul $\lambda_{1,2} = i\beta \in \mathbb{C}$. Punctul de tip centru este întordeauna local stabil.

Teorema 9.2.2 (Criteriul de stabilitate în primă aproximație pentru sisteme) Fie sistemul neliniar (9.1) și $X^*(x^*, y^*) \in \mathbb{R}^2$ un punct de echilibru corespunzător. Atunci:

- (a) Dacă Re $\lambda < 0$ pentru orice λ valoare proprie matricii $J_f(x^*, y^*)$ atunci punctul de echilibru $X^*(x^*, y^*)$ este local asimptotic stabil.
- (b) Dacă există λ o valoare proprie matricii $J_f(x^*, y^*)$ cu $\operatorname{Re} \lambda > 0$ atunci punctul de echilibru $X^*(x^*, y^*)$ este instabil.