Convert the base 10 real number 117. 78125 into

A. Base **2**

B. Base **8** _____

C. Base **16** _____

1 . 1

Convert the base 10 real number 117. 78125 into

- **B**. Base **8** _____
- **C**. Base **16**

Convert the base 10 real number 117. 78125 into

- **B**. Base **8** _____
 - 7 5 . C 8
- **C**. Base **16**

For the following 16 bit sequence:

A. What is the base 10 value if the sequence is a signed 2's complement 16 bit integer ??

$$2 + 8 + 32 + 64 + 1 = -107$$

B. Add the following 2's complement 16 bit integer sequence to the sequence shown in part **A**. above, and express the answer as a base 10 signed value:

0 000 000 001 001 101

$$1 + 4 + 8 + 64 = +77$$
 $-107 + 77 = -30$

The following 2 byte sequence represents a C variable declared as: unsigned short int var1;

that is located in memory at bytes 3000 and 3001 as shown:

Mem adr	Bi	it c	on	teı	nt			
3000	0	0	0	0	0	1	0	1
3001	1	0	0	0	0	1	0	1

- A. What is the **base 10** value if the sequence is found in a big endian machine?
- B. What is the base 10 value if the sequence is found in a little endian machine?
 34053
- C. Assuming that var1 from above is stored in a little endian machine int var2 = var1;

Mem adr	Bit content
6000	0000 0101
6001	1000 0101
6002	0000 0000
6003	0000 0000

For the base 10 real number 101.21875

0 1 1 0 0 1 0 1 . 0 0 1 1 1 1 IEEE 754 shift 6 places, increase zero (ex 127) exponent by 6

IBM shift 8 places, increase zero (ex 64) exponent by 2

15 POINTS

For the base 10 real number 101.21875
 A. Show the IEEE 754 32 bit normalized floating point bit representation

B. Show the **IBM** 32 bit normalized floating point **bit representation**

C. Show the **IEEE 754** 32 bit normalized floating point **bit representation** of the number **after** it has been **multiplied by 32**

