Midterm Review

Two Parts to the Midterm

Online exam (on Blackboard)

Available starting 12 Oct

On Blackboard

Duration: ~ 1.5 hours

You will have 48-hour window to take it

Once started, clock starts running

Questions: ~20-25

Forensic Evaluation

Assigned after due date of Assign04b_rds (16 Oct)

Will perform forensic analysis of disk image

Duration: 5 days

Logistics

Nominal date:

Wednesday, 12 October

Question Types

Matching

Multiple Choice

Fill in the Blank

Fill in Multiple Blanks

Calculation

Reference Material

You are responsible for the following material:

Material in all lecture slides

Additional articles

E.g., "The Impact of Full Disk Encryption on Digital Forensics"

Nelson text:

Chapters 1-4

Chapter 5 (pp 195-203)

Carrier text:

Chapters 1-5

Topics

Topics Covered

Data Organization

Digital Forensics Basics

Computer Investigations

Crime and Incident Processing

Forensic Laboratory and Investigator Certification

Data Acquisition and Image Creation

Mass Storage

Rotating Magnetic Drives

SSD

Volumes and Partitions

MBR

GPT

Data Organization

Binary, Decimal and Hex

Data sizes

Strings & Character Encoding

Data Structures

Flag Values

Reference:

Carrier Text: Chapter 2 / Data Organization section

Digital Forensics Basics

Digital forensics discipline

Know what (digital) forensics is

Know what (digital) forensics isn't

Related disciplines

Investigations triad

History of forensics

The law and digital forensics

Professional conduct

Types of forensic investigations

From Nelson text

From lecture

Computer Investigations

Investigation Procedure

Assess the case

Plan investigation

Secure evidence

Gather evidence

Analyze evidence

Complete case

Chain of custody

Acquiring digital evidence

Forensic Laboratory and Investigator Certification

Computer/digital forensic laboratory certification

ASCLD, others

Computer/digital forensic investigator certification

IACIS, HTCN, others

Internet Crime Complaint Center (IC³)

Uniform Crime Reports (UCRs)

Forensic Laboratories

Home-based

Mid-size

Large/regional

Forensic workstations

Needs and criteria (high level)

Business case for developing a Forensics Lab

Data Acquisition and Image Creation

Image formats suitable for evidence

Raw (dd), .e01, AFF, etc.

Data acquisition

Planning for image acquisition

Acquisition methods

Local

Remote Network Acquisition

Acquisition tools

Validating data acquisitions

RAID acquisitions

Tools

Hidden disk areas

HPA

DCO

Data Acquisition and Image Creation

Forensic images

Meaning and requirements for making forensic image

Hash functions

Which are used most commonly

Why two are used

Tools you know that are capable of making forensic images

Forensic analysts should work from forensic copies, not originals

Mass Storage

```
Microprocessor Architecture
    IA32
Hard Disk Drives
    Hardware composition
         Platters, spindles, read/write heads, etc.
    Magnetic storage
    Disk architectures
         ATA (PATA, SATA, ATAPI)
         SCSI
    Disk organization (physical formatting)
         Tracks, sectors, cylinders
    Addressing
         CHS, Extended CHS
         LBA
    Locking/Unlocking ATA devices
```

Mass Storage - continued

Solid State Drives (SSDs) (aka Flash)

History

Basic hardware technology NAND

Data organization

Pages, blocks, etc.

Advantages/disadvantages vs. HDDs

Wear leveling

Different strategies (dynamic/static)

Garbage Collection

Key characteristics of SSDs

Fast reads/slow writes/very slow erases

Error correcting

SSD File Systems

Mechanisms employed to offset SSD limitations

Effect of these mechanisms on digital forensic investigations

Volumes and Partitions

BIOS

Role in booting computer Relationship to MBR (see below)

Volume

How volumes relate to partitions

Linux vs. Windows

Volume spanning

Volume analysis

Partitioning schemes

Overlays, detecting deleted partitions, etc.

Partition

How partitions relate to volumes

Partition tables

MBR

GPT

Volumes and Partitions - continued

MBR (detail)

Different partition types

Limitations

MBR and the boot process

Typical

Multiple OSs

Boot sector virus

Tools to analyze

GPT

Advantages over MBR

EFI vs. BIOS

GPT Volume Layout

GPT Partitions

Tools to analyze

Forensic Analysis

Basics

Date available to students:

After Sunday, 16 October

What you will receive

A scenario

Posted on Blackboard

Raw disk image

Uploaded to your student folder on the R: shared drive

It will be located in a folder called "Midterm"

Different students will receive different disk images

What you will submit

A single zip file containing

A description of the artifacts you found, including how you found them (e.g., what tools you used, what options, where you looked, etc.)

The artifacts that you obtained from the disk image

You will have 5 days to complete it

Forensics Analysis

Scenario and Disk Image

The scenario will give you

Background

Hints as to what to look for

Tools you may have to use to forensically examine image

Autopsy

Winhex

FTK Imager

OSForensics

dd

mmls

Gpart

Preparation

Assign04b_rds will give you good practice for this

This forensic analysis will also be good prep for the forensic analysis portion of your final

Forensics Analysis

Skills and Knowledge

Skills and knowledge you will need to analyze image

Tool use. E.g.,

Know how to load in disk image

Know how to have tool interpret image as disk

Read hex dumps

Interpret tool output

Determine partitions

MBR

GPT

Deleted

Analyze unallocated space

Recover deleted files

Extract artifacts from disk image