Stat 134: Bivariate Normal

Adam Lucas

Dec 4th, 2019

Conceptual Review

- 1. The definition of the bivariate normal distribution.
- 2. The construction of the bivariate normal random variable (the decomposition representation).
- 3. Conditional distributions for the bivariate normal distribution.
- 4. Linear transformation of the multivariate normal distribution.

Problem 1

Let *X* and *Y* have bivariate normal distribution with parameters μ_X , μ_Y , σ_X^2 , σ_Y^2 , and ρ .

- 1. Predict Y given X = x.
- 2. Find $\mathbb{P}(Y > y | X = x)$.
- 3. Find $\mathbb{P}(Y > \mu_Y, X > \mu_X)$.
- 4. Find $\mathbb{E}(Y|a < X < b)$, where a < b.

Problem 2

Let
$$X \sim N(\mu_X, \sigma_X^2)$$
 and $Y \sim N(\mu_Y, \sigma_Y^2)$.

- 1. If *X* and *Y* have bivariate normal distribution with correlation ρ , show that $\rho = 0$ if and only if X, Y are independent.
- 2. Find a counter-example such that X and Y are uncorrelated but they are not independent.