

3.在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按0分计。

4.实验报告文件以PDF格式提交。

院系	计算机学院	班 级	计算机科学与技术 1 班
学号	21307035		
学生	邓栩瀛		

【实验题目】计算机网络实验期末考核

【实验目的】综合运用本学期学习内容解决问题

【实验内容】

- (1) R2 通过任意一个以太网口用于通过校园网连接外部 Internet。请设计方案并实现该任务。
- (2) R1 为内部路由器, R1 与 R2 之间通过以太网口实现连接,请配置相应的参数。
- (3) R1 内部 IP 地址为 192. 168. 2. 0/24, 并划分了 3 个 VLAN, VLAN 子网地址段如图所示, PC 的地址请自行决定。
- (4) 交换机之间采用双链路实现冗余备份,并以 S2 作为根交换机,请配置相应的参数并测试。测试方法:查看每台交换机的角色以及端口角色,并通过拔掉网线实现拓扑变化时的快速收敛。
- (5) VLAN99 为监控管理 VLAN,接入交换机 S1 的端口 1-10 分配给 VLAN10,端口 11-20 分配给 VLAN20,接入层交换机和汇聚层交换 S2 机的端口 21 都在 VLAN99。测试方法:同一 VLAN 内可以相互 ping 通,不同 VLAN 内不能互通。
- (6) 对汇聚交换机 S2 进行配置,实现不同 VLAN 的互访。测试方法:各个 PC 能 ping 通。
- (7) 交换机 S2、路由器 R1 和 R2 配置动态路由协议 RIP,并设计方案使 R1 内部主机能够访问 R2 连接校园网的网口地址。测试:内部主机能够通过 ping 通 R2 外部网口。
- (8) 配置 R2 的 NAT, 使内部主机能够访问外部互联网。

【实验拓扑】

Statu

up

up

up

up

no address

【实验记录】

PC 配置

	PC1	PC2	PC3	PC4
IP 地址	192. 168. 2. 34	192. 168. 2. 66	192. 168. 2. 100	192. 168. 2. 99
子网掩码	255. 255. 255. 224	255. 255. 255. 224	255. 255. 255. 224	255. 255. 255. 224
网关	192. 168. 2. 33	192. 168. 2. 65	192. 168. 2. 97	192. 168. 2. 97

步骤 1: R2 通过任意一个以太网口用于通过校园网连接外部 Internet

进入路由器 R2 端口 0/1 的端口模式,配置端口的 IP 地址

11-RSR20-2#con

Enter configuration commands, one per line. End with CNTL/Z.

11-RSR20-2(config)#interface gi 0/0

11-RSR20-2(config-if-GigabitEthernet 0/0)#ip address 172.16.11.2 255.255.0.0

11-RSR20-2(config-if-GigabitEthernet 0/0)#exit

在路由器 R2 上配置静态路由

11-RSR20-2(config)#ip route 0.0.0.0 0.0.0.0 172.16.0.1

11-RSR20-2(config)#exit

测试: 202.116.64.8 为某外部 Internet 地址, R2 通过以太网口访问成功

11-RSR20-2#ping 202.116.64.8

Sending 5, 100-byte ICMP Echoes to 202.116.64.8, timeout is 2 seconds:

< press Ctrl+C to break >

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/10 ms

步骤 2: R1 与 R2 之间通过以太网口实现连接

路由器 R1 配置

11-RSR20-1(config)#int s2/0 11-RSR20-1(config-if-Serial 2/0)#ip address 202.101.1.1 255.255.255.0 11-RSR20-1(config-if-Serial 2/0)#ex 11-RSR20-1(config)#show ip interface brief Interface IP-Address(Pri) IP-Address(Sec) Protocol Serial 2/0 202, 101, 1, 1/24 no address up SIC-3G-WCDMA 3/0 no address no address down GigabitEthernet 0/0 no address no address down GigabitEthernet 0/1 no address no address

no address

VLAN 1 down

查看路由器 R1 的路由表

11-RSR20-1(config)#show ip route

down

Codes: C - connected, S - static, R - RIP, B - BGP

0 - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set

C 202.101.1.0/24 is directly connected, Serial 2/0

C 202.101.1.1/32 is local host.

路由器 R2 配置


```
11-RSR20-1(config)#int s2/0
11-RSR20-1(config-if-Serial 2/0)#ip address 202.101.1.1 255.255.255.0 11-RSR20-1(config-if-Serial 2/0)#ex
11-RSR20-1(config)#show ip interface brief
Interface
                                    IP-Address(Pri)
                                                           IP-Address(Sec)
                                                                                   Statu
                   Protocol
Serial 2/0
                                    202.101.1.1/24
                                                           no address
                                                                                   up
SIC-3G-WCDMA 3/0
                                    no address
                                                            no address
                                                                                   up
{\tt GigabitEthernet~0/0}
                                    no address
                                                            no address
                                                                                   up
                    down
GigabitEthernet 0/1
                                    no address
                                                           no address
                    down
VLAN 1
                                    no address
                                                           no address
                                                                                   up
```

查看路由器 R2 的路由表

```
11-RSR20-1 (config)#show ip route

Codes: C - connected, S - static, R - RIP, B - BGP
0 - OSFF, IA - OSFF inter area
N1 - OSFF NSSA external type 1, N2 - OSFF NSSA external type 2
E1 - OSFF external type 1, E2 - OSFF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set
C 202.101.10/24 is directly connected, Serial 2/0
202.101.11/32 is local host.
```

路由器 R1 连通 R2

```
| 11-RSR20-1#ping 202.101.1.1
| Sending 5, 100-byte ICMP Echoes to 202.101.1.1, timeout is 2 seconds:
| < press Ctrl+C to break > | !!!!! | Success rate is 100 percent (5/5), round-trip min/avg/max = 50/58/60 ms | B由器 R2 连通 R1 | | 11-RSR20-2#ping 202.101.1.2 | Sending 5, 100-byte ICMP Echoes to 202.101.1.2, timeout is 2 seconds:
| < press Ctrl+C to break > | | |
```

Success rate is 100 percent (5/5), round-trip min/avg/max = 50/56/60 ms

步骤 3: 划分 3 个 VLAN

交换机 S1 的配置

 $\Pi\Pi\Pi\Pi$

```
11-S5750-1#con
Enter configuration commands, one per line. End with CNTL/Z.
11-S5750-1(config)#vlam 10
11-S5750-1(config-vlam)#interface gi 0/1
11-S5750-1(config-if-GigabitEthernet 0/1)#switchport access vlam 10
11-S5750-1(config)#vlam 20
11-S5750-1(config)-vlam)#exit
11-S5750-1(config)#interface gi 0/11
11-S5750-1(config)#interface gi 0/11
11-S5750-1(config-if-GigabitEthernet 0/11)#switchport access vlam 20
11-S5750-1(config-if-GigabitEthernet 0/11)#exit
11-S5750-1(config-if-GigabitEthernet 0/11)#exit
11-S5750-1(config-if-GigabitEthernet 0/11)#switchport access vlam 99
11-S5750-1(config-vlam)#interface gi 0/21
11-S5750-1(config-if-GigabitEthernet 0/21)#switchport access vlam 99
```

查看交换机 S1 的 VLAN 表

11-S5750-1(config)#show vlan VLAN Name	Status	Ports
1 VLAN0001	STATIC	Gi0/2, Gi0/3, Gi0/4, Gi0/5 Gi0/6, Gi0/7, Gi0/8, Gi0/9 Gi0/10, Gi0/12, Gi0/13, Gi0/14 Gi0/15, Gi0/16, Gi0/17, Gi0/18 Gi0/19, Gi0/20, Gi0/22, Gi0/23 Gi0/24, Gi0/25, Gi0/26, Gi0/27 Gi0/28
10 VLAN0010 20 VLAN0020 99 VLAN0099	STATIC STATIC STATIC	Gi0/1 Gi0/1 Gi0/11 Gi0/21


```
11-S5750-2#conf
Enter configuration commands, one per line. End with CNTL/Z.
11-S5750-2(config)#vlan 99
11-S5750-2(config)witheriace gi 0/21
11-S5750-2(config)#interface gi 0/21
11-S5750-2(config-if-GigabitEthernet 0/21)#switchport access vlan 99
11-S5750-2(config-if-GigabitEthernet 0/21)#exit
11-S5750-2(config)#vlan 99
11-S5750-2(config-vlan)#exit
11-S5750-2(config-vlan)#exit
11-S5750-2(config-vlan)#exit
```

查看交换机 S2 的 VLAN 表

11-S5750-2(config)#show vlan VLAN Name	Status	Ports
1 VLAN0001	STATIC	Gi0/1, Gi0/2, Gi0/3, Gi0/4 Gi0/5, Gi0/6, Gi0/7, Gi0/8 Gi0/9, Gi0/10, Gi0/11, Gi0/12 Gi0/13, Gi0/14, Gi0/15, Gi0/16 Gi0/17, Gi0/18, Gi0/19, Gi0/20 Gi0/22, Gi0/23, Gi0/24, Gi0/25
35 VLAN0035 99 VLAN0099	STATIC STATIC	Gi0/26, Gi0/27, Gi0/28 Gi0/21

步骤 4: 交换机之间采用双链路实现冗余备份,并以 S2 作为根交换机,配置相应的参数并测试 开启生成树协议,其中,指定生成树协议的类型为 RSTP

交换机 S1 的配置

查看交换机 S1 的生成树配置信息

```
11-S5750-1(config)#show spanning-tree
StpVersion: RSTP
SysStpStatus: ENABLED
MaxAge: 20
HelloTime: 2
ForwardDelay: 15
BridgeMaxAge: 20
BridgeMaxAge: 20
BridgeHoltOime: 2
BridgeForwardDelay: 15
MaxHops: 20
TxHoldCount: 3
PathCostMethod: Long
BPDUGuard: Disabled
BPDUFilter: Disabled
BPDUFilter: Disabled
LoopGuardDef: Disabled
BridgeAddr: S869. 6c15. 5512
Priority: 32768
TimeSinceTopologyChange: 0d:0h:1m:44s
TopologyChanges: 1
DesignatedRoot: 32768. 5869. 6c15. 5510
RootCost: 20000
RootPort: GigabitEthernet 0/23
```

交换机 S2 的配置

```
11-S5750-2(config)#interface range gi 0/23-24
11-S5750-2(config-if-range)#switchport mode trunk
11-S5750-2(config-if-range)#switchport mode trunk
11-S5750-2(config)#spanning-tree
Enable spanning-tree.
11-S5750-2(config)#*Dec 23 11:30:27: %SPANTREE-6-RCVDTCBPDU: Received to bpdu on port GigabitEthernet 0/24 on MSTO.
*Poec 23 11:30:27: %SPANTREE-6-RCVDTCBPDU: Received inferior BPDU on port GigabitEthernet 0/23 on MSTO.
*Dec 23 11:30:27: %SPANTREE-6-RCVDTCBPDU: Received to bpdu on port GigabitEthernet 0/23 on MSTO.
*Dec 23 11:30:27: %SPANTREE-5-TOPOTRAP: Topology Change Trap for instance 0.
*Dec 23 11:30:28: %SPANTREE-6-RCVDTCBPDU: Received to bpdu on port GigabitEthernet 0/23 on MSTO.
*Dec 23 11:30:29: %SPANTREE-5-TOPOTRAP: Topology Change Trap for instance 0.

*Dec 23 11:30:29: %SPANTREE-5-TOPOTRAP: Topology Change Trap for instance 0.
```


查看交换机 S2 的生成树配置信息

|11-S5750-2(config)#show spanning-tree

StpVersion: RSTP SysStpStatus : ENABLED

MaxAge: 20 HelloTime : 2 ForwardDelay: BridgeMaxAge : 20 BridgeHelloTime : 2 BridgeForwardDelay: 15

MaxHops: 20 TxHoldCount: 3

PathCostMethod : Long BPDUGuard : Disabled BPDUFilter : Disabled LoopGuardDef : Disabled BridgeAddr : 5869.6c15.5510

Priority: 32768 TimeSinceTopologyChange : Od:Oh:1m:48s

TopologyChanges: 3 DesignatedRoot: 32768.5869.6c15.5510

RootCost : 0 RootPort : 0

查看未拔线的交换机 S1 的端口 0/23 的状态

11-S5750-1(config)#show spanning-tree interface gi 0/23

PortAdminPortFast : Disabled PortAdmanPortFast: Disabled
PortOperFortFast: Disabled
PortOperAutoEdge: Enabled
PortOperAutoEdge: Disabled
PortOperLinkType: auto
PortOperLinkType: point-to-point
PortBPDUGuard: Disabled
PortBPDUFilter: Disabled
PortGuardmode: None
PortState: forwarding
PortBPDUFilter: Disabled
PortGuardmode: None
PortState: forwarding

PortPriority: 128
PortDesignatedRoot: 4096.5869.6c15.5510
PortDesignatedCost: 0
PortDesignatedBridge: 4096.5869.6c15.5510 PortDesignatedPortPriority: 128 PortDesignatedPort: 23 PortForwardTransitions: 3

PortAdminPathCost: 20000 PortOperPathCost: 20000 Inconsistent states: normal PortRole: rootPort

查看未拔线的交换机 S1 的端口 0/24 的状态

11-S5750-1(config)#show spanning-tree interface gi 0/24

PortAdminPortFast : Disabled PortOperPortFast : Disabled PortAdminAutoEdge : Enabled PortOperAutoEdge : Disabled PortAdminLinkType : auto PortOperLinkType : point-to-point PortBPDUGuard : Disabled PortBPDUFilter : Disabled PortGuardmode : None PortState : discarding

PortPriority: 128 PortDesignatedRoot: 4096.5869.6c15.5510 PortDesignatedCost: 0
PortDesignatedBridge: 4096.5869.6c15.5510 PortDesignatedPortPriority: 128

PortDesignatedPort: 24 PortForwardTransitions PortAdminPathCost : 20000 PortOperPathCost : 20000 Inconsistent states : normal PortRole : alternatePort

对未拔线的交换机 S2 设置优先级为 4096, 并验证交换机 S2 的优先级

11-S5750-2(config) #spanning-tree priority 4096
11-S5750-2(config) #*Dec 23 11:33:47: %SPANTREE-6-RCVDTCBPDU: Received to bpdu on port GigabitEthernet 0/23 on MSTO. *Dec 23 11:33:48: %SPANTREE-6-RCVDTCBPDU: Received to bpdu on port GigabitEthernet 0/23 on MSTO.

11-S5750-2(config)#exit

11-S5750-2#*Dec 23 11:33:51: %SYS-5-CONFIG_I: Configured from console by console

11-S5750-2#show spanning-tree

StpVersion : RSTP SysStpStatus : ENABLED

MaxAge: 20 HelloTime : 2 ForwardDelay: 15 BridgeMaxAge: 20

BridgeHelloTime : 2 BridgeForwardDelay: 15

MaxHops: 20 TxHoldCount : 3 PathCostMethod : Long BPDUGuard : Disabled BPDUFilter : Disabled LoopGuardDef : Disabled

BridgeAddr : 5869.6c15.5510

Priority: 4096 TimeSinceTopologyChange : Ud: Oh: 3m: 7s TopologyChanges: 3 DesignatedRoot: 4096.5869.6c15.5510

RootCost : 0 RootPort : 0

交换机 S1 拔端口 0/23 的线,并查看生成树的配置信息

11-S5750-1(config)#show spanning-tree

StpVersion: RSTP SysStpStatus : ENABLED

MaxAge: 20 HelloTime : 2 ForwardDelay: 15 BridgeMaxAge : 20 BridgeHelloTime: 2 BridgeForwardDelay: 15

MaxHops: 20 TxHoldCount: 3 PathCostMethod : Long BPDUGuard : Disabled BPDUFilter : Disabled LoopGuardDef : Disabled BridgeAddr : 5869.6c15.5512

Priority: 32768

TimeSinceTopologyChange: 0d:0h:0m:7s

TopologyChanges: 3

DesignatedRoot: 4096.5869.6c15.5510

RootCost : 20000

RootPort : GigabitEthernet 0/24

显示交换机 S1 端口 0/23 的状态

11-S5750-1(config)#show spanning-tree interface gi 0/23 no spanning tree info available for GigabitEthernet 0/23.

显示交换机 S1 端口 0/24 的状态

11-S5750-1(config)#sho spanning-tree interface gi 0/24

PortAdminPortFast : Disabled PortOperPortFast : Disabled PortAdminAutoEdge : Enabled PortOperAutoEdge : Disabled PortAdminLinkType : auto PortOperLinkType : point-to-point

PortBPDUGuard : Disabled PortBPDUFilter : Disabled PortGuardmode : None

PortState : forwarding PortPriority : 128

PortDesignatedRoot: 4096.5869.6c15.5510 PortDesignatedCost: 0

PortDesignatedBridge : 4096.5869.6c15.5510

PortDesignatedPortPriority: 128

PortDesignatedPort: 24 PortForwardTransitions : 4 PortAdminPathCost : 20000 PortOperPathCost : 20000 Inconsistent states : normal

PortRole : rootPort

交换机 S2 拔端口 0/23 的线,并查看生成树的配置信息

11-S5750-2#show spanning-tree

StpVersion: RSTP SysStpStatus : ENABLED

MaxAge : 20 HelloTime : 2 ForwardDelay: 15 BridgeMaxAge : 20 BridgeHelloTime : 2 BridgeForwardDelay: 15

MaxHops: 20 TxHoldCount: 3 PathCostMethod : Long BPDUGuard : Disabled BPDUFilter : Disabled LoopGuardDef : Disabled BridgeAddr : 5869.6c15.5510

Priority: 4096

TimeSinceTopologyChange : Od:Oh:Om:9s

TopologyChanges: 5

DesignatedRoot: 4096.5869.6c15.5510

RootCost : 0 RootPort : 0

显示交换机 S2 端口 0/24 的状态

11-S5750-2#show spanning-tree interface gi 0/24

PortAdminPortFast : Disabled PortOperPortFast : Disabled ${\tt PortAdminAutoEdge} \ : \ {\tt Enabled}$ PortOperAutoEdge : Disabled PortAdminLinkType : auto

PortOperLinkType : auto
PortBPDUGuard : Disabled
PortBPDUFilter : Disabled
PortGuardmode : None PortState : forwarding PortPriority: 128

PortDesignatedRoot: 4096.5869.6c15.5510 PortDesignatedCost: 0

PortDesignatedBridge : 4096.5869.6c15.5510

PortDesignatedPortPriority: 128

PortDesignatedPort: 24 PortForwardTransitions : PortAdminPathCost : 20000 PortOperPathCost : 20000 Inconsistent states : normal PortRole : designatedPort

交换机 S1 拔端口 0/24 的线,并查看生成树的配置信息

11-S5750-1(config)#show spanning-tree

StpVersion : RSTP SysStpStatus : ENABLED MaxAge: 20 HelloTime : 2 ForwardDelay: 15

BridgeMaxAge : 20 BridgeHelloTime : 2 BridgeForwardDelay: 15 MaxHops: 20

TxHoldCount: 3 PathCostMethod : Long BPDUGuard : Disabled BPDUFilter : Disabled LoopGuardDef : Disabled BridgeAddr : 5869.6c15.5512

Priority: 32768

TimeSinceTopologyChange : Od:Oh:Om:14s

TopologyChanges: 5 DesignatedRoot: 4096.5869.6c15.5510

RootCost: 20000 RootPort: GigabitEthernet 0/23

显示交换机 S1 端口 0/23 的状态

11-S5750-1(config)#show spanning-tree interface gi 0/23

PortAdminPortFast : Disabled PortOperPortFast : Disabled PortAdminAutoEdge : Enabled PortOperAutoEdge : Disabled PortAdminLinkType : auto FortAmmininkType: auto
PortOperLinkType: point-to
PortBPDUGuard: Disabled
PortBPDUFilter: Disabled
PortGuardmode: None
PortState: forwarding

PortPriority: 128 PortDesignatedRoot: 4096.5869.6c15.5510 PortDesignatedCost: 0 PortDesignatedBridge : 4096, 5869, 6c15, 5510

PortDesignatedPortPriority: 128 PortDesignatedPort: 23 PortForwardTransitions PortAdminPathCost : 20000 PortOperPathCost : 20000 Inconsistent states : normal PortRole : rootPort

交换机 S2 拔端口 0/24 的线,并查看生成树的配置信息

11-S5750-2#show spanning-tree

StpVersion: RSTP SysStpStatus : ENABLED

MaxAge : 20 HelloTime : 2 ForwardDelay: 15 BridgeMaxAge : 20 BridgeHelloTime : 2 BridgeForwardDelay: 15

MaxHops: 20 TxHoldCount : PathCostMethod : Long BPDUGuard : Disabled BPDUFilter : Disabled LoopGuardDef : Disabled BridgeAddr : 5869.6c15.5510

Priority: 4096

TimeSinceTopologyChange : Od:Oh:Om:4s

TopologyChanges: 7

DesignatedRoot: 4096.5869.6c15.5510

RootCost : 0 RootPort : 0

显示交换机 S2 端口 0/23 的状态

11-S5750-2#show spanning-tree interface gi 0/23

PortAdminPortFast : Disabled PortOperPortFast : Disabled PortAdminAutoEdge : Enabled PortOperAutoEdge : Disabled PortAdminLinkType : auto PortOperLinkType : point-to-point PortBPDUGuard : Disabled

PortBPDUFilter : Disabled PortGuardmode : None PortState : forwarding PortPriority: 128

PortDesignatedRoot : 4096.5869.6c15.5510

PortDesignatedCost: 0

PortDesignatedBridge: 4096.5869.6c15.5510

PortDesignatedPortPriority: 128 PortDesignatedPort: 23 ${\tt PortForwardTransitions} \ :$ PortAdminPathCost : 20000 PortOperPathCost: 20000 Inconsistent states : normal PortRole : designatedPort

步骤 5: ⅥLAN99 为监控管理 ⅥLAN,接入交换机 S1 的端口 1-10 分配给 ⅥLAN10,端口 11-20 分配给

VLAN20,接入层交换机和汇聚层交换 S2 机的端口 21 都在 VLAN99

交换机1的配置:

创建 VLAN 10,将端口 0/1-10 划分到 VLAN 10 中

11-S5750-1 (config)#vlan 10

11-55750-1(config-vlan)#name sa*Dec 22 06:12:18: %LLDP-4-CREATEREM: Port GigabitEthernet 0/24 created one new neighbor, Chassis ID is 5869.6c15.5510, Port ID is Gi0/24.

11-S5750-1(config-vlan)#name sales

11-S5750-1(config-vlam)#exit 11-S5750-1(config)#inter range gi 0/1-10 11-S5750-1(config-if-range)#switchport access vlam 10

11-S5750-1 (config-if-range)#exit

创建 VLAN 20,将端口 0/11-20 划分到 VLAN 20 中

11-S5750-1(config)#vlan 20

11-S5750-1(config-vlan)#name eng 11-S5750-1(config-vlan)#exit 11-S5750-1(config)#inter range gi 0/11-20

11-S5750-1(config-if-range)#switchport access vlan 20 11-S5750-1(config-if-range)#exit

创建 VLAN 99, 将端口 0/21 划分到 VLAN 99 中

11-S5750-1(config)#vlan 99

11-55750-1(config-vlan)#name manager 11-55750-1(config-vlan)#exit 11-55750-1(config)#interface gi 0/21

11-S5750-1(config-if-GigabitEthernet 0/21)#switchport access vlan 99 11-S5750-1(config-if-GigabitEthernet 0/21)#exit

查看交换机 S1 的 VLAN

11-S5750-1(config)#show vlan

VLAN	Name	Status	Ports
1	VLAN0001	STATIC	GiO/22, GiO/23, GiO/24, GiO/25 GiO/26, GiO/27, GiO/28
10	sales	STATIC	GiO/1, GiO/2, GiO/3, GiO/4 GiO/5, GiO/6, GiO/7, GiO/8 GiO/9, GiO/10, GiO/23, GiO/24
20	eng	STATIC	GiO/11, GiO/12, GiO/13, GiO/14 GiO/15, GiO/16, GiO/17, GiO/18 GiO/19, GiO/20, GiO/23, GiO/24
99	manager	STATIC	GiO/21, GiO/23, GiO/24

交换机 S2 的配置:

创建 VLAN 99, 将端口 0/21 划分到 VLAN 99 中

11-S5750-2(config)#vlan 99

11-S5750-2(config-vlan)#name manager

11-S5750-2(config-vlan)#exit

11-S5750-2(config)#interface gi 0/21

11-S5750-2(config-if-GigabitEthernet 0/21)#switchport access vlan 99

11-S5750-2(config-if-GigabitEthernet 0/21)#exit

查看交换机 S2 的 VLAN

11-S5750-2(config)#show vlan

VLAN	Name	Status	Ports
1	VLAN0001	STATIC	Gi0/1, Gi0/2, Gi0/3, Gi0/4 Gi0/5, Gi0/6, Gi0/7, Gi0/8 Gi0/9, Gi0/10, Gi0/11, Gi0/12 Gi0/13, Gi0/14, Gi0/15, Gi0/16 Gi0/17, Gi0/18, Gi0/19, Gi0/20 Gi0/22, Gi0/23, Gi0/24, Gi0/25 Gi0/26, Gi0/27, Gi0/28
	VLAN0035	STATIC	Gi0/23, Gi0/24
99	manager _	STATIC	GiO/21, GiO/23, GiO/24

在同一 VLAN 内的 PC 可以相互 ping 通,例如

在 VLAN99 内, 192. 168. 2. 100 ping 192. 168. 2. 99

```
C:\Users\D502>ping 192.168.2.99
正在 Ping 192.168.2.99 具有 32 字节的数据:
来自 192.168.2.99 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.2.99 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.2.99 的回复: 字节=32 时间=1ms TTL=128
来自 192.168.2.99 的回复: 字节=32 时间=1ms TTL=128
192.168.2.99 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 1ms,平均 = 0ms
```

在不同 VLAN 内的 PC 不能互通,例如

192. 168. 2. 100 (VLAN 99) ping 192. 168. 2. 66 (VLAN 20)

C:\Users\D502>ping 192.168.2.66 正在 Ping 192.168.2.66 具有 32 字节的数据: 请求超时。 请求超时。 请求超时。 请求超时。 192.168.2.66 的 Ping 统计信息: 数据包:已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),

步骤 6: 对汇聚交换机 S2 进行配置,实现不同 VLAN 的互访

在交换机 S2 上创建虚拟端口 VLAN 10, 配置虚拟端口的 IP 地址及子网掩码, 打开虚拟端口

```
11-S5750-2(config)#vlan 10
11-S5750-2(config)#vlan 10
11-S5750-2(config)#int vlan 10
11-S5750-2(config)#int vlan 10
11-S5750-2(config)#int vlan 10
11-S5750-2(config-if-VLAN 10)#*Dec 23 20:23:06: %LINEPROTO-5-UPDOWN: Line protocol on Interface VLAN 10, changed state to up.
11-S5750-2(config-if-VLAN 10)#ip address 192.168.2.33 255.255.255.224
11-S5750-2(config-if-VLAN 10)#no shut
11-S5750-2(config-if-VLAN 10)#exit
```

创建虚拟端口 VLAN 20, 配置虚拟端口的 IP 地址及子网掩码, 打开虚拟端口

创建虚拟端口 VLAN 35, 配置虚拟端口的 IP 地址及子网掩码, 打开虚拟端口

```
| 11-S5750-2(config)#int vlan 35
| 11-S5750-2(config-if-VLAN 35)#ip*Dec 23 20:24:14: %LINEPROTO-5-UPDOWN: Line protocol on Interface VLAN 35, changed state to up.

% Incomplete command.

| 11-S5750-2(config-if-VLAN 35)#ip address 192.168.2.129 255.255.255.224

| 11-S5750-2(config-if-VLAN 35)#no shut

| 11-S5750-2(config-if-VLAN 35)#exit
```

创建虚拟端口 VLAN 99, 配置虚拟端口的 IP 地址及子网掩码, 打开虚拟端口

查看交换机 S2 的 VLAN

11-S5750-2(config)#show vlan VLAN Name	Status	Ports
1 VLANO001	STATIC	Gi0/2, Gi0/3, Gi0/4, Gi0/5 Gi0/6, Gi0/7, Gi0/8, Gi0/9 Gi0/10, Gi0/11, Gi0/12, Gi0/13 Gi0/14, Gi0/15, Gi0/16, Gi0/17 Gi0/18, Gi0/19, Gi0/20, Gi0/22 Gi0/23, Gi0/24, Gi0/25, Gi0/26 Gi0/27, Gi0/28
10 VLAN0010 20 VLAN0020 35 VLAN0035 99 VLAN0099 11-55750-2(config)#	STATIC STATIC STATIC STATIC	Gi0/23, Gi0/24 Gi0/23, Gi0/24 Gi0/1, Gi0/23, Gi0/24 Gi0/21, Gi0/23, Gi0/24

所有 PC 之间可以相互 ping 通,例如:

192. 168. 2. 34 ping 192. 168. 2. 99


```
C:\Users\D502>ping 192.168.2.99

正在 Ping 192.168.2.99 具有 32 字节的数据:
来自 192.168.2.99 的回复: 字节=32 时间<1ms TTL=127

192.168.2.99 的 Ping 统计信息:
数据包: 已发送 = 4. 已接收 = 4, 丢失 = 0 (0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 0ms,平均 = 0ms
```

192.168.2.34 ping 192.168.2.66

```
C:\Users\D502>ping 192.168.2.66
正在 Ping 192.168.2.66 具有 32 字节的数据:
来自 192.168.2.66 的回复: 字节=32 时间<1ms TTL=127
来自 192.168.2.66 的回复: 字节=32 时间<1ms TTL=127
来自 192.168.2.66 的回复: 字节=32 时间<1ms TTL=127
来自 192.168.2.66 的回复: 字节=32 时间=1ms TTL=127
192.168.2.66 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 1ms,平均 = 0ms
```

192. 168. 2. 66 ping 192. 168. 2. 34

```
C:\Users\D502>ping 192.168.2.34

正在 Ping 192.168.2.34 具有 32 字节的数据:
来自 192.168.2.34 的回复: 字节=32 时间<1ms TTL=127
来自 192.168.2.34 的回复: 字节=32 时间<1ms TTL=127
来自 192.168.2.34 的回复: 字节=32 时间<1ms TTL=127
来自 192.168.2.34 的回复: 字节=32 时间=1ms TTL=127
来自 192.168.2.34 的回复: 字节=32 时间=1ms TTL=127

192.168.2.34 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 4, 丢失 = 0 (0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 1ms,平均 = 0ms
```

192.168.2.66 ping 192.168.2.99

```
C:\Users\D502>ping 192.168.2.99

正在 Ping 192.168.2.99 具有 32 字节的数据:
来自 192.168.2.99 的回复: 字节=32 时间<1ms TTL=127
来自 192.168.2.99 的回复: 字节=32 时间<1ms TTL=127
来自 192.168.2.99 的回复: 字节=32 时间=1ms TTL=127
来自 192.168.2.99 的回复: 字节=32 时间=1ms TTL=127
来自 192.168.2.99 的回复: 字节=32 时间=1ms TTL=127

192.168.2.99 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 1ms,平均 = 0ms
```

192. 168. 2. 99 ping 192. 168. 2. 34

```
C:\Users\D502>ping 192.168.2.34
正在 Ping 192.168.2.34 具有 32 字节的数据:
来自 192.168.2.99 的回复: 无法访问目标主机。
192.168.2.34 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),
```

192. 168. 2. 99 ping 192. 168. 2. 66


```
C:\Users\D502>ping 192.168.2.66
正在 Ping 192.168.2.66 具有 32 字节的数据:
来自 192.168.2.99 的回复: 无法访问目标主机。
192.168.2.66 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),
```

步骤 7: 交换机 S2、路由器 R1 和 R2 配置动态路由协议 RIP,并设计方案使 R1 内部主机能够访问 R2

连接校园网的网口地址

交换机 S2 配置 RIPv2 路由协议, 申明本设备的直连网段

```
|11-S5750-2(config)#router rip
11-S5750-2(config-router)#version 2
11-S5750-2(config-router)#network 192.168.2.128 255.255.255.224
11-S5750-2(config-router)#network 192.168.2.96 255.255.255.224
11-S5750-2(config-router)#network 192.168.2.32 255.255.255.224
11-S5750-2(config-router)#network 192.168.2.64 255.255.255.224
11-S5750-2(config-router)#
路由器 R1 配置 RIPv2 路由协议,同时,关闭路由信息的自动汇总功能
11-RSR20-1#con
Enter configuration commands, one per line. End with CNTL/Z.
11-RSR20-1(config)#router rip
11-RSR20-1(config-router)#version 2
11-RSR20-1 (config-router) #no auto-summary
11-RSR20-1(config-router)#network 202.101.1.0 255.255.255.0
11-RSR20-1(config-router)#network 192.168.2.128 255.255.255.224
11-RSR20-1 (config-router)#exit
查看路由 R1 的路由表
11-RSR20-1(config)#show ip route
Codes: C - connected, S - static, R - RIP, B - BGP
       O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default
Gateway of last resort is no set
C
     192.168.2.0/24 is directly connected, GigabitEthernet 0/0
     192.168.2.1/32 is local host.
С
     202.101.1.0/24 is directly connected, Serial 2/0
     202.101.1.2/32_is local host.
```

路由器 R2 配置 RIPv2 路由协议,同时,关闭路由信息的自动汇总功能

11-RSR20-2#con

Enter configuration commands, one per line. End with CNTL/Z. 11-RSR20-2(config)#router rip 11-RSR20-2(config-router)#version 2 11-RSR20-2(config-router)#no auto-summary 11-RSR20-2(config-router)#network 172.16.0.0 255.255.0.0 11-RSR20-2(config-router)#network 202.101.1.0 255.255.255.0 11-RSR20-2(config-router)#exit

查看路由 R2 的路由表

11-RSR20-2(config)#show ip route

```
Codes: C - connected, S - static, R - RIP, B - BGP
        O - OSPF, IA - OSPF inter area
        {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
        ia - IS-IS inter area, * - candidate default
Gateway of last resort is 172.16.0.1 to network 0.0.0.0
     0.0.0.0/0 [1/0] via 172.16.0.1
С
     172.16.0.0/16 is directly connected, GigabitEthernet 0/0
     172.16.11.2/32 is local host.
C
     192.168.2.32/27 [120/3] via 172.16.7.2, 00:00:47, GigabitEthernet 0/0
R
     192.168.2.128/27 [120/2] via 172.16.7.2, 00:00:47, GigabitEthernet 0/0
С
     202.101.1.0/24 is directly connected, Serial 2/0
     202.101.1.1/32 is local host.
```

R1 内部主机能够访问 R2 连接校园网的网口地址

```
C:\Users\D502>ping 172.16.11.2
正在 Ping 172.16.11.2 具有 32 字节的数据:
来自 172.16.11.2 的回复: 字节=32 时间=20ms TTL=64
来自 172.16.11.2 的回复: 字节=32 时间=4ms TTL=64
来自 172.16.11.2 的回复: 字节=32 时间=1ms TTL=64
来自 172.16.11.2 的回复: 字节=32 时间=1ms TTL=64
来自 172.16.11.2 的回复: 字节=32 时间=1ms TTL=64
172.16.11.2 的 Ping 统计信息:
数据包: 已发送 = 4、已接收 = 4、丢失 = 0(0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 1ms,最长 = 20ms,平均 = 6ms
```

步骤 8: 配置 R2 的 NAT, 使内部主机能够访问外部互联网

```
11-RSR20-2(config)#int gi0/1
11-RSR20-2(config-if-GigabitEthernet 0/1)#ip nat inside
11-RSR20-2(config-if-GigabitEthernet 0/1)#ex
11-RSR20-2(config)#int gi0/0
11-RSR20-2(config-if-GigabitEthernet 0/0)#ip nat outside
11-RSR20-2(config-if-GigabitEthernet 0/0)#ex
11-RSR20-2(config)#router rip
11-RSR20-2(config-router)#default-information originate
11-RSR20-2(config-router)#ex
```

配置静态转换

```
| 11-RSR20-2(config)#ip nat inside source static 192.168.2.34 172.16.11.21 | 11-RSR20-2(config)#ip nat inside source static 192.168.2.66 172.16.11.22 | 11-RSR20-2(config)#ip nat inside source static 192.168.2.99 172.16.11.23 | 11-RSR20-2(config)#ip nat inside source static 192.168.2.100 172.16.11.24
```

内部主机能够访问外部互联网

```
C:\Users\D502>ping 202.116.64.8

正在 Ping 202.116.64.8 具有 32 字节的数据:
来自 202.116.64.8 的回复: 字节=32 时间=19ms TTL=248
来自 202.116.64.8 的回复: 字节=32 时间=3ms TTL=248
来自 202.116.64.8 的回复: 字节=32 时间=5ms TTL=248
来自 202.116.64.8 的回复: 字节=32 时间=5ms TTL=248
来自 202.116.64.8 的回复: 字节=32 时间=4ms TTL=248

202.116.64.8 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 3ms,最长 = 19ms,平均 = 7ms
```