Module 2 Lesson 3 - Multiple Regression


```
56
57
58
59
60 # center quantitative IVs for regression analysis
61 sub1['numbercigsmoked_c'] = (sub1['numbercigsmoked'] - sub1['numbercigsmoked'].mean())
62
63 print (sub1['numbercigsmoked_c'].mean())
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
```



```
42 # bivariate bar graph
43 seaborn.factorplot(x="MAJORDEPLIFE", y="NDSymptoms", data=sub2, kind="bar", ci=None)
44 plt.xlabel('Major Life Depression')
45 plt.ylabel('Mean Number Nicotine Dependence Symptoms')
48 # center quantitative IVs for regression analysis
49 sub1['numbercigsmoked_c'] = (sub1['numbercigsmoked'] - sub1['numbercigsmoked'].mean())
51 print (sub1['numbercigsmoked c'].mean())
54 reg2 = smf.ols('NDSymptoms ~ MAJORDEPLIFE + numbercigsmoked c', data=sub1).fit()
55 print (reg2.summary())
56
59
68
61
62
63
64
65
66
67
68
69
```

70

```
IPython console
    Console 2/A [X]
In [25]: reg2 = smf.ols('NDSymptoms ~ MAJORDEPLIFE + numbercigsmoked c', data=sub1).fit()
    ...: print (reg2.summary())
    ....
                            OLS Regression Results
Dep. Variable:
                           NDSymptoms
                                        R-squared:
                                                                          0.132
                                  OLS Adj. R-squared:
Model:
                                                                          0.131
                        Least Squares F-statistic:
Method:
                                                                          99.87
Date:
                     Fri, 23 Oct 2015 Prob (F-statistic):
                                                                       4.28e-41
Time:
                             13:47:53 Log-Likelihood:
                                                                        -2593.9
No. Observations:
                                 1313
                                                                          5194.
                                        AIC:
Of Residuals:
                                 1310
                                        BIC:
                                                                          5209.
Df Model:
                                    2
Covariance Type:
                            nonrobust
                                                         P>|t|
                                                                    [95.0% Conf. Int.]
                                std err
                        coef
                                                         0.000
Intercept
                      2.1946
                                  0.056
                                             38.940
                                                                       2.084
                                                                                 2.305
MAJORDEPLIFE
                      1.3424
                                  8.109
                                             12.327
                                                         0.000
                                                                       1.129
                                                                                 1.556
numbercigsmoked c
                      0.0358
                                  0.006
                                                                       0.025
                                                                                 0.047
                                              6.432
                                                         0.000
Omnibus:
                                70.355
                                        Durbin-Watson:
                                                                          2.066
Prob(Omnibus):
                                0.000
                                       Jarque-Bera (JB):
                                                                         50.154
Skew:
                                0.372
                                       Prob(JB):
                                                                       1.29e-11
Kurtosis:
                                 2.398
                                        Cond. No.
                                                                           20.4
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
```

8 X

reg3 = smf.ols('NDSymptoms ~ DYSLIFE', data=sub1).fit() print (reg3.summary())

```
...:
                           OLS Regression Results
Dep. Variable:
                          NDSymptoms
                                      R-squared:
                                                                       0.023
Model:
                                 OLS Adj. R-squared:
                                                                       0.022
                       Least Squares F-statistic:
Method:
                                                                       30.35
                    Fri, 23 Oct 2015 Prob (F-statistic):
                                                                    4.34e-08
Date:
Time:
                            13:49:37
                                      Log-Likelihood:
                                                                     -2679.2
No. Observations:
                                1317
                                      AIC:
                                                                       5362.
Df Residuals:
                                1315
                                      BIC:
                                                                       5373.
Of Model:
Covariance Type:
                         nonrobust
                                                          [95.0% Conf. Int.]
                coef
                        std err
                                               P>|t|
Intercept
              2.4785
                          0.053
                                    46,958
                                               0.000
                                                             2.375
                                                                       2.582
              1.1378
DYSLIFE
                          0.207
                                    5.509
                                               0.000
                                                             0.733
                                                                       1.543
                                      Durbin-Watson:
Omnibus:
                             123.634
                                                                       2.079
Prob(Omnibus):
                               0.000
                                      Jarque-Bera (JB):
                                                                      63.384
Skew:
                                      Prob(JB):
                                                                    1.72e-14
                               0.374
Kurtosis:
                               2.228
                                      Cond. No.
                                                                        4.07
```

Warnings:

W W ... [277]

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

a

reg4 = smf.ols('NDSymptoms ~ DYSLIFE + MAJORDEPLIFE', data=sub1).fit() print (reg4.summary())

```
ULS Regression Results
Dep. Variable:
                           NDSymptoms
                                         R-squared:
                                                                           0.106
Model:
                                   OLS
                                         Adj. R-squared:
                                                                           0.105
                        Least Squares F-statistic:
Method:
                                                                           78.23
                     Fri, 23 Oct 2015 Prob (F-statistic):
Date:
                                                                        7.98e-33
Time:
                             13:53:26 Log-Likelihood:
                                                                         -2620.2
No. Observations:
                                  1317
                                         AIC:
                                                                           5246.
Df Residuals:
                                  1314
                                         BIC:
                                                                           5262.
Of Model:
Covariance Type:
                            nonrobust
                                                    P> t
                                                                [95.0% Conf. Int.]
                   coef
                            std err
Intercept
                 2.1808
                             0.057
                                        38.152
                                                    0...000
                                                                  2.069
                                                                             2.293
DYSLIFE
                                                   0.098
                 0.3477
                             0.210
                                         1.656
                                                                  -0.064
                                                                             0.760
MAJORDEPLIFE
                 1.2993
                             0.117
                                        11.103
                                                                  1.070
                                                                             1.529
Omnibus:
                                70.772
                                         Durbin-Watson:
                                                                           2.061
Prob(Omnibus):
                                                                          51.246
                                0.000
                                         Jarque-Bera (JB):
Skew:
                                 0.380
                                         Prob(JB):
                                                                        7.45e-12
Kurtosis:
                                         Cond. No.
                                                                            4.61
                                 2.402
```

Warnings:

Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [28]:

ľ

reg5 = smf.ols('NDSymptoms ~ DYSLIFE + MAJORDEPLIFE + numcigsmoked_c + age_c + SEX", data=sub1).fit() print (reg4.summary())

荆		01	S Regress	ion Results			
	Dep. Variable:	ND5	Symptoms	R-squared:		0.136	
	Model:		OLS	Adj. R-square	ed:	0.133	
	Method:	Least	Squares	F-statistic:		41.08	
	Date:	Fri, 23 (Oct 2015	Prob (F-stat:	istic):	2.39e-39	
	Time:		13:56:07	Log-Likelihoo	od:	-2591.2	
	No. Observations:		1313	AIC:		5194.	
	Df Residuals:		1307	BIC:		5226.	
	Df Model:		5				
	Covariance Type:	no	onrobust				
	**************	coef	std err	t	P> t	[95.0% Conf.	Int.
	Intercept	2.2550	0.156	14.480	0.000	1.949	2.56
	DYSLIFE			1.316			1000
				11.161	\$752.91.Ta.Ta	1.069	
	numbercigsmoked_c			6.257		0.024	
	age_c			-1.886			7.717
	SEX	-0.0439		-0.442	0.658	-0.238	0.15
	********	********	*******	**********		******	
	Omnibus:			Durbin-Watson		2.075	
	Prob(Omnibus):			Jarque-Bera	(38):	48.596	
	Skew:		0.361	Prob(38):		2.80e-11	
	Kurtosis:		2.394	Cond. No.		38.5	

				ion Results			
	Oep. Variable:			R-squared:		0.130	
	Nodels					0.235	
	Methods			F-statistics		41.98	
	Oaties	Fr1, 23 0		Prob (F-stati		2.396-39	
				Log-Likelihoo			
	No. Observations:					5194	
	Of Residuals:		1387	BIC:		-5726.	
	Of Model: Covariance Type:						
1							
П		coef	std err	t	P> t	[95.0% Conf.	Int.]
П	Intercept	2,2550	0.156	14.480	0.000	1.949	2.561
н	DYSLIFE	0.2746	0.209	1.316	0.188	-0.135	0.684
ш	MAJORDEPLIFE	1.2975	0.116	11.161	0.000	1.069	1.526
ш	numbercigsmoked_c	0.0353	0.006	6.257	0.000	0.024	0.046
н	age_c	-0.0400	0.022	-1.806	0.071	-0.083	0.003
ш	SEX	-0.0439	0.099	-0.442	0.658	-0.238	0.151
	***********	*****	*******	*********	*****	**********	
	Contibus:					2,875	
						48,596 2,86e-11	
			2.194	Cond. Bb.		30.5	

Module 2 Lesson 4 - Confidence Intervals

		S Regress	ion Results			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Fri, 23 (OLS Squares oct 2015		stic):	0.134 0.133 41.08 2.39e.33 -2591.2 5194. 5226.	
		std err		P> t	[95.0% Conf	25-26-05-65
Intercept DYSLIFE MAJORDEPLIFE numbercigsmoked_c age_c SEX	0.2746 1.2975 0.0353 -0.0400	0.209 0.116 0.005 0.022		0.188 0.000 0.000	1.949 -0.135 1.069 0.024 -0.083 -0.238	2.561 0.684 1.526 0.046 0.003 0.151
Omnibus: Prob(Omnibus): Skew: Kuntosis:		0.000 0.361	Ourbin-Watson Jarque-Hera (Prob(38): Cond. No.		2.075 48.596 2.60e-11 38.5	

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Permusions: RN End-of-lines: CRLF Encoding: MTF-R

Line: #1 Column: 1 Memory: 28.2

ep. Variable:	ND5	Symptoms	R-squared:		0.136	
Model:	17.55		Adj. R-square	d:	0.133	
Method:	Least		F-statistic:		41.08	
Date:			Prob (F-stati	stic):	2.39e-39	
Time:			Log-Likelihoo	人とコンストンの表示とと	-2591.2	
No. Observations:		1313	100		5194.	
Df Residuals:		1307	BIC:		5226.	
Df Model:		5				
Covariance Type:	no	onrobust				

	coef	std err	t	P> t	[95.0% Conf.	Int.]
Intercept	2.2550			0.000	1.949	2.561
DYSLIFE	0.2746	0.209	1.316	0.188	-0.135	0.684
MAJORDEPLIFE			11.161	OVERES.	1.069	1.526
numbercigsmoked_c	0.0353	0.006	6.257	0.000	0.024	0.046
age_c	-0.0400	0.022	-1.806	0.071	-0.083	0.003
SEX	-0.0439	0.099	-0.442	0.658	-0.238	0.151
***************************************					*************	
Omnibus:		69.558	Durbin-Watson	11	2.075	
Prob(Omnibus):			Jarque-Bera (JB):	48.596	
Skew:		0.361	Prob(JB):		2.80e-11	
Kurtosis:		2.394	Cond. No.		38.5	
	**********		*********		***********	

= =

Permissions: RW End-of-lines: CRLF Encoding: UTF-8 Line: 81 Column: 1 Memory: 28 %

Module 3 Lesson 3 - Polynomial Regression


```
23 del I
 24
 25 sub1 = data[['urbanrate', 'femaleemployrate', 'internetuserate']].dropna()
 26
28 scat1 = seaborn.regplot(x="urbanrate", y="femaleemployrate", scatter=True, data=sub1)
29 plt.xlabel('Urbanization Rate')
30 plt.ylabel('Female Employment Rate')
32 scat1 = seaborn.regplot(x="urbanrate", y="femaleemployrate", scatter=True, order=2, data=sub1)
33 plt.xlabel('Urbanization Rate')
a 34 plt.ylabel('Female Employment Rate')
36 # center quantitative IVs for regression analysis
37 sub1['urbanrate_c'] = (sub1['urbanrate'] - sub1['urbanrate'].mean())
38 sub1['internetuserate c'] = (sub1['internetuserate'] - sub1['internetuserate'].mean())
40 reg1 = smf.ols('femaleemployrate ~ urbanrate c', data=sub1).fit()
41 print (reg1.summary())
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
```

remute improvious 1 - paintos recommentation from the provider 11 cirol 3-

```
Console 1/A
                     Console 2/A 🔯
In [21]: reg1 = smf.ols('femaleemployrate ~ urbanrate c', data=sub1).fit()
    ...: print (regl.summary())
                           OLS Regression Results
Dep. Variable:
                    femaleemployrate
                                     R-squared:
                                                                       0.092
Model:
                                 OLS
                                      Adj. R-squared:
                                                                       0.086
Method:
                                     F-statistic:
                     Least Squares
                                                                       16.69
                    Fri, 23 Oct 2015 Prob (F-statistic):
                                                                    6.84e-05
Date:
                            14:41:44 Log-Likelihood:
Time:
                                                                     -678.68
No. Observations:
                                 167
                                       AIC:
                                                                       1361.
Df Residuals:
                                       BIC:
                                                                       1368.
                                 165
Df Model:
Covariance Type:
                           nonrobust
                                                            [95.0% Conf. Int.]
                         std err
                                                 P>|t|
                 coef
Intercept
            47.6024
                           1.095
                                  43.416
                                                             45,438
                                                                       49.767
urbanrate c
              -0.1927
                           0.047
                                     -4.886
                                                              -8.286
                                                                       -0.100
                                                 0.000
Omnibus:
                               2.347 Durbin-Watson:
                                                                       1.868
Prob(Omnibus):
                                     Jarque-Bera (JB):
                               0.309
                                                                       2,409
Skew:
                              -0.269
                                     Prob(JB):
                                                                       0.300
Kurtosis:
                               2.763
                                       Cond. No.
                                                                        23.2
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
In [22]:
                         End-of-lines: CRLF
                                          Encoding: UTF-8
         Permissions: Rhi
                                                                   Line: 58
                                                                             Column: 1
                                                                                         Memory: 22 %
```

```
Console 2/A 🔯
    Console 1/A
In [21]: reg1 = smf.ols('femaleemployrate ~ urbanrate_c', data=sub1).fit()
    ...: print (regl.summary())
                           OLS Regression Results
Dep. Variable:
                    femaleemployrate
                                                                       0.092
                                      R-squared:
Model:
                                 OLS
                                      Adj. R-squared:
                                                                        0.000
Method:
                     Least Squares F-statistic:
                                                                        16.69
                    Fri, 23 Oct 2015 Prob (F-statistic):
                                                                     6.84e-05
Date:
                            14:41:44 Log-Likelihood:
Time:
                                                                      -678.68
No. Observations:
                                 167
                                       AIC:
                                                                       1361.
Df Residuals:
                                       BIC:
                                                                       1368.
                                 165
Df Model:
Covariance Type:
                           nonrobust
                                                 P>|t|
                                                            [95.0% Conf. Int.]
                 coef
                         std err
Intercept
              47.6024
                          1.096
                                  43.416
                                                 0.000
                                                              45,438
                                                                       49.767
urbanrate c
              -0.1927
                           0.047
                                     -4.086
                                                 0.000
                                                              -0.286
                                                                        -0.100
Omnibus:
                               2.347 Durbin-Watson:
                                                                       1.868
Prob(Omnibus):
                               0.309 Jarque-Bera (JB):
                                                                        2.409
Skew:
                              -0.269
                                      Prob(J8):
                                                                        0.300
Kurtosis:
                                       Cond. No.
                               2.763
                                                                         23.2
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
In [22]:
                         End-of-lines: CRLF
                                           Encoding: UTF-8
         Permissions: RM
                                                                   Line: 58
                                                                              Column: 1
                                                                                         Memory: 22 %
```

```
32 scat1 = seaborn.regplot(x="urbanrate", y="femaleemployrate", scatter=True, order=2, data=sub1)
33 plt.xlabel('Urbanization Rate')
34 plt.ylabel('Female Employment Rate')
36 # center quantitative IVs for regression analysis
37 sub1['urbanrate c'] = (sub1['urbanrate'] - sub1['urbanrate'].mean())
38 sub1['internetuserate c'] = (sub1['internetuserate'] - sub1['internetuserate'].mean())
40 reg1 = smf.ols('femaleemployrate ~ urbanrate c', data=sub1).fit()
41 print (reg1.summary())
42
43
44 # regression model with second order polynomial (quadratic term)
45 reg2 = smf.ols('femaleemployrate ~ urbanrate c + I(urbanrate c**2)', data=sub1).fit()
46 print (reg2.summary())
58
```

Dep. Variable: Model:		pyrate	R-50	quared:		0.160	
		OLS		R-squared	i:	0.150	
Method:	Least So	quares		atistic:		15.60	
Date:	Fri, 23 Oct			(F-statis	tic):	6.30e-07	
Time:		45:30		Likelihood	4.0	-672.19	
No. Observations:		167	AIC:			1350.	
Of Residuals:		164	BIC:	Ê		1360.	
Of Model:		2					
Covariance Type:	none	robust					

	coef	std	err	t	P> t	[95.0% Conf	f. Int.]
Intercept	43.8428	3777	478	29.659	0.000		46.762
urbanrate_c	-0.1751		846	-3.827	0.000		-0.085
I(urbanrate_c ** 2)	0.0070	9.	992	3.641	0.000	0.003	0.011

Omnibus:		3.627	100000	in-Watson:		1.898	
Prob(Omnibus):		0.163		ue-Bera ()	18):	3.677	
Skew:		0.351		(JB):		0.159	
(urtosis:		2.811	Conc	i. No.		1.08e+03	

* In [24]:

Permissions: RW End-of-lines: CRLF Encoding: UTF-8 Line: 58 Column: 1

Memory: 22 %

Dep. Variable:	femaleemplo	yrate	R-squ	ared:		0.160	
Model:		OLS		R-squared:		0.150	
Method:	Least So	quares	F-sta	tistic:		15.60	
Date:	Fri, 23 Oct	2015	Prob	(F-statist	ic):	6.30e-07	
Time:	14:	45:30	Log-L	ikelihood:	10	-672.19	
No. Observations:		167	AIC:			1350.	
Df Residuals:		164	BIC:			1360.	
Df Model:		2					
Covariance Type:	nonr	robust					
	coef	std e	err	t	P> t	[95.0% Conf	. Int.
Intercept	43.8428	1.4	178	29.659	0.000	40.924	46.76
urbanrate_c	-0.1751	0.0	346	-3.827	0.000	-0.266	-0.085
I(urbanrate_c ** 2)	0.0070	0.6	992	3.641	0.000	0.003	0.01
Omnibus:	**********	3.627	Durbi	n-Watson:		1.898	
Prob(Omnibus):		0.163		e-Bera (JB):	3.677	
Skew:		0.351	5 3 1 5 7 1	the second secon	1.00	0.159	
		2.811	Cond.	3 3 7 75 137		1.08e+03	

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.08e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [24]:

End-of-lines: CRLF Encoding: UTF-8 Column: 1 Memory: 22 % Permissions: RW Line: 58

× 2 -

Overfitting

Overfitting

Module 3 Lesson 4 - Evaluating Model Fit, part 1


```
84 # center quantitative IVs for regression analysis
 85 sub1['urbanrate_c'] = (sub1['urbanrate'] - sub1['urbanrate'].mean())
 86 sub1['internetuserate_c'] = (sub1['internetuserate'] - sub1['internetuserate'].mean())
 87 sub1[["urbanrate_c", "internetuserate_c"]].describe()
 89 reg1 = smf.ols('femaleemployrate ~ urbanrate_c', data=sub1).fit()
 90 print (regl.summary())
91
 92 # regression model with second order polynomial (quadratic term)
 93 reg2 = smf.ols('femaleemployrate ~ urbanrate c + I(urbanrate c = 2)', data=subl).fit()
 94 print (reg2.summary())
 96 # adding internet use rate extanatory variable
 97 reg3 = smf.ols('femaleemployrate ~ urbanrate c + I(urbanrate c**2) + internetuserate c',
                data=sub1).fit()
98
99 print (reg3.summary())
100
                                                          Bartlett's Test
101
182
                    DFFITS Statistic
103
                                                 Variance Inflation Factor
                Kolmogorov-Smirnoff Test
164
185
106
107
108
109
      Durbin-Watson Test
110
111
112
113
114
115
116
```

```
84 # center quantitative IVs for regression analysis
 85 sub1['urbanrate_c'] = (sub1['urbanrate'] - sub1['urbanrate'].mean())
 86 sub1['internetuserate_c'] = (sub1['internetuserate'] - sub1['internetuserate'].mean())
 87 sub1[["urbanrate_c", "internetuserate_c"]].describe()
 89 reg1 = smf.ols('femaleemployrate ~ urbanrate_c', data=sub1).fit()
90 print (regl.summary())
91
92 # regression model with second order polynomial (quadratic term)
93 reg2 = smf.ols('femaleemployrate ~ urbanrate c + I(urbanrate c**2)', data=sub1).fit()
 94 print (reg2.summary())
95
96 # adding internet use rate exlanatory variable
97 reg3 = smf.ols('femaleemployrate ~ urbanrate c + I(urbanrate c**2) + internetuserate c',
                  data=sub1).fit()
98
99 print (reg3.summary())
100
101
102
103
104
```

Femaleemployrate =
$$\beta_0 + \beta_1$$
 (urbanrate) + β_2 (urbanrate) + β_3 (internetuserate) + ϵ

ep. Variable:	femaleemplo			0.180		
Model:			j. R-squared	:	0.165	
Method:			statistic:	11.92		
ate:			ob (F-statis	4.25e-07		
ime:	17:		g-Likelihood	-670.17		
lo. Observations:	167		C:	1348.		
of Residuals:		163 BI	:C:		1361.	
f Model:		3				
ovariance Type:	nonr	obust				
	coef	std err	t	P> t	[95.0% Con	f. Int.]
tercept	43.9886	1.467	29.991	0.000	41.092	46.885
banrate_c	-0.2600		-4.186	0.000	-0.383	
urbanrate_c ** 2)		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3.523	0.001		0.016
ternetuserate_c	0.1038		2.000	0.047	0.001	0.206
**************************************		2 027 0	rbin-Watson:		1.893	
nibus: ob(Omnibus):			rque-Bera (J		2.000	
ew:		0.361 Ja		D/-	0.368	
urtosis:			nd. No.		1.09e+03	
11 10515.		2,903 (mu. No.		1.090703	

End-of-lines: CRLF

Permissions: RW

Encoding: UTF-8

Line: 136

Column: 1

Memo

```
97 reg3 = smf.ols('femaleemployrate ~ urbanrate c + I(urbanrate c**2) + internetuserate c',
 98
                 data=sub1).fit()
 99 print (reg3.summary())
100
101
102
     Regression diagnostic plots
106
107 #Q-Q plot for normality
108 fig1=sm.qqplot(reg3.resid, line='r')
189
110
111
112
113
114
115
116
117
118
                   What we're looking for is to see if
119
120
                     the points follow a straight line.
121
122
```

```
97 reg3 = smf.ols('femaleemployrate ~ urbanrate_c + I(urbanrate_c**2) + internetuserate_c',
 98
                 data=sub1).fit()
99 print (reg3.summary())
100
101
102
    Regression diagnostic plots
106
107 #Q-Q plot for normality
108 fig1=sm.qqplot(reg3.resid, line='r')
189
110
111
112
113
114
115
116
117
118
                  Meaning that the model estimated
119
120
                 residuals are what we would expect
121
122
```

```
97 reg3 = smf.ols('femaleemployrate ~ urbanrate c + I(urbanrate c**2) + internetuserate c',
                  data=sub1).fit()
 98
 99 print (reg3.summary())
100
101
102
     Regression diagnostic plots
106
197 #Q-Q plot for normality
108 fig1=sm.qqplot(reg3.resid, line='r')
189
110
111
112
113
114
115
116
117
118
                             if the residuals were
119
120
                             normally distributed.
121
122
```


Module 3 Lesson 5 - Evaluating Model Fit, part 2

© Creative Commons, 2015


```
Las figi-sm.qqplot(reg3.resid, line- r)
  stdres=pandas.DataFrame(reg3.resid_pearson)
  figz-pitioist(stdras, -, is-
 1 1 = plt.mdsline(y=0, column '-')
ist plt.ylabel("Standardized Casidisl")
115 plt: vlabel( | Observation | Number()
Lin print(fig2)
```

```
Behalestradourste
```

print(fig1)

print(fig2)

stdres-pandas.DataFrame(reg3.resid_pearson)

additional regression diagnostic plots

fig3 = sm.graphics.plot_regress_exog(reg3, "internetuserate_c", fig=fig3)

9 Fig2-plt.plot(stdnes, 'o', is='None')

plt.ylabel('Standardized Kesidual')
plt.xlabel('Observation Number')

fig3 = plt.figure(figsize(12,8))

1 = plt.axhline(y=0, color='r')

```
STREET XI
```



```
Behalestradourste
```

print(fig1)

print(fig2)

stdres-pandas.DataFrame(reg3.resid_pearson)

additional regression diagnostic plots

fig3 = sm.graphics.plot_regress_exog(reg3, "internetuserate_c", fig=fig3)

9 Fig2-plt.plot(stdnes, 'o', is='None')

plt.ylabel('Standardized Kesidual')
plt.xlabel('Observation Number')

fig3 = plt.figure(figsize(12,8))

1 = plt.axhline(y=0, color='r')

```
STREET XI
```


Regression Plots for internetuserate_c

Regression Plots for internetuserate_c


```
60 l = plt.axhline(y=0, color='r')
61 plt.ylabel('Standardized Residual')
62 plt.xlabel('Observation Number')
63 print(fig2)
56 # additional regression diagnostic plots
  fig3 = plt.figure(figsize(12,8))
  fig3 = sm.graphics.plot regress exog(reg3, "internetuserate c", fig=fig3)
71 # leverage plot
72 fig4=sm.graphics.influence_plot(reg3, size=8)
73 print(fig4)
78
```

Finally, we can examine a leverage plot to identify observations that have

```
60 l = plt.axhline(y=0, color='r')
61 plt.ylabel('Standardized Residual')
62 plt.xlabel('Observation Number')
63 print(fig2)
56 # additional regression diagnostic plots
  fig3 = plt.figure(figsize(12,8))
                                          "internetuserate_c", fig=fig3)
  fig3 = sm.graphics.plot_regress_exog(reg3,
  # leverage plot
  fig4=sm.graphics.influence_plot(reg3, size=8)
73 print(fig4)
78
                      an unusually large influence on
                 the estimation of the predicted value of
```

```
60 1 = plt.axhline(y=0, color='r')
61 plt.ylabel('Standardized Residual')
62 plt.xlabel('Observation Number')
63 print(fig2)
66 # additional regression diagnostic plots
67 fig3 = plt.figure(figsize(12,8))
68 fig3 = sm.graphics.plot regress exog(reg3, "internetuserate c", fig=fig3)
71 # leverage plot
  fig4=sm.graphics.influence_plot(reg3, size=8)
73 print(fig4)
78
                  of how much the predicted scores for
                    the other observations would differ
```

```
60 1 = plt.axhline(y=0, color='r')
61 plt.ylabel('Standardized Residual')
62 plt.xlabel('Observation Number')
63 print(fig2)
66 # additional regression diagnostic plots
67 fig3 = plt.figure(figsize(12,8))
                                           "internetuserate_c", fig=fig3)
68 fig3 = sm.graphics.plot_regress_exog(reg3,
71 # leverage plot
72 fig4=sm.graphics.influence_plot(reg3, size=8)
73 print(fig4)
78
                        if the observations in question
                     were not included in the analysis.
```

```
60 1 = plt.axhline(y=0, color='r')
61 plt.ylabel('Standardized Residual')
62 plt.xlabel('Observation Number')
63 print(fig2)
66 # additional regression diagnostic plots
67 fig3 = plt.figure(figsize(12,8))
                                          "internetuserate_c", fig=fig3)
68 fig3 = sm.graphics.plot_regress_exog(reg3,
71 # leverage plot
72 fig4=sm.graphics.influence_plot(reg3, size=8)
73 print(fig4)
78
                        The leverage always takes on
                       values between zero and one.
```

```
60 1 = plt.axhline(y=0, color='r')
61 plt.ylabel('Standardized Residual')
62 plt.xlabel('Observation Number')
63 print(fig2)
66 # additional regression diagnostic plots
67 fig3 = plt.figure(figsize(12,8))
68 fig3 = sm.graphics.plot regress exog(reg3, "internetuserate c", fig=fig3)
71 # leverage plot
72 fig4=sm.graphics.influence_plot(reg3, size=8)
73 print(fig4)
78
                     A point with zero leverage has no
                       effect on the regression model.
```

```
60 l = plt.axhline(y=0, color='r')
61 plt.ylabel('Standardized Residual')
62 plt.xlabel('Observation Number')
63 print(fig2)
66 # additional regression diagnostic plots
67 fig3 = plt.figure(figsize(12,8))
68 fig3 = sm.graphics.plot regress exog(reg3, "internetuserate c", fig=fig3)
71 # Leverage plot
72 fig4=sm.graphics.influence plot(reg3, size=8)
73 print(fig4)
78
                      And outiliers are observations with
```

residuals greater than 2 or less than -2.

```
0 l = plt.axhline(y=0, color='r')
plt.ylabel('Standardized Residual')
plt.xlabel('Observation Number')
print(fig2)
fig3 = plt.figure(figsize(12,8))
Fig3 = sm.graphics.plot_regress_exog(reg3,
                                            "internetuserate c', fig-fig3)
 # leverage plot
 fig4=sm.graphics.influence_plot(reg3, size=8)
 print(fig4)
```

but this time we use the code influence_plot.

```
0 l = plt.axhline(y=0, color='r')
plt.ylabel('Standardized Residual')
plt.xlabel('Observation Number')
print(fig2)
fig3 = plt.figure(figsize(12,8))
Fig3 = sm.graphics.plot regress_exog(reg3,
                                            "internetuserate c", fig=fig3)
 # Leverage plot
 fig4=sm.graphics.influence_plot(reg3, size=8)
 print(fig4)
```

Size=8 is an option to make the points on the plot smaller than the default size so

```
0 l = plt.axhline(y=0, color='r')
plt.ylabel('Standardized Residual')
plt.xlabel('Observation Number')
print(fig2)
fig3 = plt.figure(figsize(12,8))
Fig3 = sm.graphics.plot_regress_exog(reg3,
                                            "internetuserate c', fig-fig3)
 # leverage plot
 fig4=sm.graphics.influence_plot(reg3, size=8)
 print(fig4)
```

78

that they're easier to distinguish.

