

Enchiridion Physica

Andreas Hemmetter

22. Dezember 2017

$$\delta S = \delta \int_{t_1}^{t_2} dt \mathcal{L} = 0 \qquad \frac{\partial F^{\alpha\beta}}{\partial x^{\alpha}} = \frac{4\pi}{c} j^{\beta}$$
$$S = k_B \ln \Omega \qquad i\hbar \frac{\partial \psi}{\partial t} = \hat{H} \psi$$

Inhaltsverzeichnis				5	Optik		33
_					5.1	Wärmestrahlung	33
1		chanik	3		5.2	Strahlenoptik	35
	1.1	Kinematik des Massenpunktes	3		5.3	Elektromagnetische Wellen	
	1.2	Dynamik des Massenpunktes	3		5.4	Interferenz	37
	1.3	Linearimpuls	4		5.5	Beugung und Dispersion	38
	1.4	Energie	4		5.6	Leiteroperatoren und kohärente	
	1.5	Mechanik	5			Zustände	
	1.6	Drehungen	6		5.7	Kohärenz	
	1.7	Zentralkraftfeld und Gravitation	7		5.8	Optische Elemente	
	1.8	Mehrteilchensysteme	8		5.9	Absorption	41
	1.9	Relativitätstheorie	9			Nichtlineare Optik	
	1.10		11			Laserphysik	
		Schwingungen und Wellen	12			Emission und Photolumineszenz	
		Lagrange	13		5.13	2-Niveau-System	42
	1.13	Hamilton	14		0		
	a, i	* 4*1	4 F	6	•	ntenmechanik	43
2		istik	15		6.1	Wellenfunktion	
	2.1	Wahrscheinlichkeitsverteilungen	15		6.2	Zeitabhängige Schrödingergleichung	
	2.2	Grundlagen	16		6.3	Hilbertraum	
	2.3	Dichteoperator	16		6.4	Thermodynamik und QM	
	2.4	Entropie	16		6.5	Heisenberg	46
	2.5	Ensembles	17		6.6	Schrödinger	
3	The	rmodynamik	18		6.7	Tunneleffekt	
J	3.1	Grundbegriffe	18		6.8	Quantenmechanischer Oszillator	
	3.2	Hauptsätze			6.9	Grundlagen	47
	0.2	3.2.1 0. Hauptsatz		7	Ato	m- und Molekülphysik	49
		3.2.2 1. Hauptsatz	19	•		Grobstruktur	49
		3.2.3 2. Hauptsatz	20		7.1	Feinstruktur	51
		3.2.4 3. Hauptsatz	20		7.3	Hyperfeinstruktur	52
	3.3	Thermodynamische Potentiale	21		7.4	Mehrelektronensysteme	$\frac{52}{52}$
	0.0	Thermodynamisene i oventiale	21		7.4	Rotation und Schwingung von	92
4	Elek	ktrodynamik	22		1.5	zweiatomigen Molekülen	53
	4.1	Grundlagen	22		7.6	Emission und Absorption	54
	4.2	Maxwell-Gleichungen	22		7.7	Drehimpuls und Magnetismus	54
	4.3	Elektrostatik	23		7.8	Zeeman-Effekt	54
	4.4	Gleichspannung	25		7.9	Wasserstoff	54
	4.5	Wechselspannung	26		7.10		54
	4.6	Leitungstheorie	27			Hund'sche Regeln	
	4.7	Drude- und Lorentzmodell	27		1.11	Trand sene regent	01
	4.8	Plasmonik	27	8	Fest	körperphysik	56
	4.9	Magnetostatik	28		8.1	Kristallstruktur	57
	4.10	Magnetodynamik	29		8.2	Phononen	58
	4.11		29		8.3	Thermische Eigenschaften	
		Energie und Impuls im EM-Feld	30		8.4	Elektrische Eigenschaften	59
		Zeitabhängige Felder	31		8.5	Halbleiter	60
		EM-Felder in Substanzen	32		8.6	magnetische Eigenschaften	60

9	\mathbf{Ker}	nphysik	62		A.8 Geometrie	39
	9.1	Kerne	62		A.9 Integration	70
	9.2	Kernreaktionen	62		A.10 Delta-Funktion	70
	9.3	Zerfälle und Übergänge	63			
	9.4	Wechselwirkung von Strahlung mit		В	B Chemie 7	7 1
		Materie	63		B.1 Orbitale	71
	9.5	Zerfallsreihen	63		B.2 Stöchiometrie	74
	9.6	Kernspaltung	63		B.3 Kristalle	74
	9.7	Kernfusion	63		B.4 Chemische Thermodynamik 7	75
			0.4		B.5 Gasgesetze	75
10	Teil	chenphysik	64		B.6 Lösung	76
ΔΊ	PPEI	NDIX	66		B.7 Reaktionskinetik	76
7 X .3		NDIX	00		B.8 Redox-Reaktionen	76
\mathbf{A}	Mat	the	66		B.9 Elektrochemie	77
	A.1	Vektoralgebra	66			
	A.2	Matrizen	66	\mathbf{C}	C Konstanten, Abkürzungen, Einhei-	
	A.3	Reihen	67		ten und Eselsbrücken 7	78
	A.4	Vektoranalysis	67		C.1 Abkürzungen	78
	A.5	Komplexanalysis	67		C.2 Konstanten	78
	A.6	Laplace-Transformation	68		C.3 Eselsbrücken	78
	A.7	Fourier-Transformation	68		C.4 Einheiten	79

1 Mechanik

1.1 Kinematik des Massenpunktes

schiefer Wurf
$$y(x) = -\frac{g}{2v_0^2 \cdot \cos^2(\alpha)}x^2 + \tan(\alpha)x + y_0$$

Steigzeit
$$T_s = \frac{v_0}{q} \sin(\alpha)$$

Wurfhöhe
$$h = \frac{v_0^2}{2g} \sin^2(\alpha)$$

Wurfweite
$$R = \frac{v_0^2}{q} \sin^2(\alpha)$$

max. Wurfweite
$$\alpha_{max} = \arcsin \frac{v_0}{\sqrt{2v_0^2 + 2gy_0}}$$

1.2 Dynamik des Massenpunktes

Luftreibung
$$F_R = \frac{1}{2}c_W A\rho v^2$$

Torsionsfederkraft
$$F_D = -D \cdot \varphi$$

Lorentzkraft
$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

Schubkraft Rakete
$$F_S = -\frac{dm}{dt}u$$

Radialkraft
$$F_R = -m\omega^2 r = -m\frac{v^2}{r}$$

Coulombkraft
$$\vec{F}_{1,2} = \frac{q_1 \cdot q_2}{4\pi\varepsilon_0 r_{12}^2} \cdot \frac{r_{12}^2}{r_{12}}$$

Corioliskraft
$$F_C = 2m(\vec{v} \times \vec{\omega})$$

Stokesreibung
$$\vec{F} = -\alpha \dot{\vec{r}}$$

Gleitreibung
$$\vec{F} = -\mu F_{\perp} \hat{r}$$

Newtonreibung
$$\vec{F} = -\beta v^2 \hat{r}$$

Kraft aus Potential
$$\vec{F} = -\vec{\nabla}V$$

1. Newton'sches Axiom:
$$\vec{F} = 0 \rightarrow \vec{v} = const.$$

2. Newton'sches Axiom:
$$\vec{F} = m\vec{a} = \frac{d\vec{p}}{dt}$$

3. Newton's
ches Axiom:
$$\vec{F}_{A \to B} = -\vec{F}_{B \to A}$$

 $\vec{F}(\vec{r})$ ist konservativ, falls:

•
$$\vec{F} = \vec{F}(r)$$

•
$$\vec{\nabla} \times \vec{F} = 0$$

•
$$\exists V(\vec{r}) : \vec{F} = -\vec{\nabla}V$$

• Arbeit
$$-\int_C d\vec{r} \cdot \vec{F}$$
 wegunabhängig

$$\bullet - \oint_C d\vec{r} \cdot \vec{F} = 0$$

$$\vec{F}' = \vec{F} - m\dot{\vec{\omega}} \times \vec{r} - 2m\vec{\omega} \times \dot{\vec{\omega}}' - m\vec{\omega} \times (\vec{\omega} \times \vec{r})$$

g: Fallbeschleunigung $[\frac{m}{s^2}]$, c_W : Luftreibungskoeffizient, D: Direktionsmoment [Nm], q: elektrische Ladung [C], E: elektrisches Feld $[\frac{V}{m}]$, B: magnetische Flussdichte [Am], ε_0 : elektrische Feldkonstante $[\frac{As}{Vm}]$

1.3 Linearimpuls

Impuls $\vec{p} = m\vec{v}$

elastischer Stoß Übertrag $~\Delta v = 2 \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$

Stoßwinkel harte Kugeln $\sin(\alpha) = \left(\frac{d}{2r}\right)$

Raketengleichung $\Delta v = I_{sp}g \cdot \ln \frac{m}{m_0}$

Vis-Viva-Gleichung $v^2 = \gamma M(\tfrac{2}{r} - \tfrac{1}{a})$

1.4 Energie

Arbeit $W = \vec{F} \cdot \vec{s} = -\int \vec{F} dx$

Arbeitselement $\delta W = -\vec{F} \cdot d\vec{r}$

Gesamtenergie E = T + V

Kinetische Energie $E_{kin} = \frac{m}{2}v^2$

Höhenenergie $E_{pot} = mgh$

Spannenergie $E_{spann} = \frac{1}{2}kx^2$

Reibungswärme Energie $E_R = F_R s$

Thermische Energie $E_{therm} = \frac{f}{2}k_BT$

Torsionsenergie $E_{tors} = \frac{1}{2}D\varphi^2$

Rotationsenergie $E_{rot} = \frac{1}{2} J_A \omega^2$

Leistung $P = \frac{\Delta W}{\Delta t} = \vec{F} \cdot \vec{v}$

Leistung $P = \frac{dW}{dt}$

 $[\]overline{d}$: Stoßparameter, r: Kugeldurchmesser, \overline{I}_{sp} : spezifischer Impuls, m_0 : Trockenmasse, a: durchschnittliche Halbachse, γ : Gravitationskonstante, k: Federkonstante $\frac{N}{m}$, D: Federkonstante $\left[\frac{N}{rad}\right]$, J_A : Trägheitsmoment um andere Achse $\left[\text{kgm}^2\right]$

Mechanik 1.5

mech.	Spannung	$\sigma =$	$\frac{F}{A}$
-------	----------	------------	---------------

Verformung
$$\epsilon = \frac{\delta}{l_0}$$

Young-Modulus
$$E = \frac{\sigma}{\epsilon}$$

$$E = \frac{\sigma(F_2 - F_1)l_0}{(\delta_2 - \delta_1)A}$$

Deformation
$$\delta = \frac{Fl_0}{AE}$$

Biegung Balken im Zentrum
$$\Delta_{max} = \frac{Fl^3}{48E}$$

Biegung Balken, gleichmäßig
$$\Delta_{max} = \frac{5\omega l^4}{384E}$$

Ideale Kraftersparnis
$$IMA = \frac{d_E}{d_R}$$

Wirkliche Kraftersparnis
$$AMA = \frac{F_R}{F_E}$$

Flaschenzug
$$IMA = \frac{\text{gezogene Länge}}{\text{bewegte Länge}}$$

Schiefe Ebene
$$IMA = \frac{l}{h}$$

Keil
$$IMA = \frac{l}{h}$$

Schraube
$$IMA = \frac{U}{\text{pitch}}$$

Zahnradsystem
$$GR_{tot} = (\frac{B}{A})(\frac{D}{C})$$

Statik-Bedingung
$$\sum_{i} \vec{F}_{i} = 0, \sum_{i} \vec{M}_{i} = 0$$

Kompressionsmodul
$$K = -V \frac{dp}{dV}$$

Kompressionsmodul
$$K = \frac{E}{3(1-2\nu)}$$

Kompressionskoeff.
$$\kappa = \frac{1}{K}$$

Schubmodul
$$G = \frac{E}{2(1+\nu)}$$

Schubspannung
$$\tau = G \tan \gamma$$

Poissonzahl
$$\nu = \frac{\Delta d/d}{\Delta l/l}$$

Übersetzungsverhältnis
$$GR = \frac{N_{out}}{N_{in}} = \frac{d_{out}}{d_{in}} = \frac{\omega_{out}}{\omega_{in}} = \frac{t_{out}}{t_{in}}$$

Flaschenzugverhältnis
$$FR = \frac{d_{out}}{d_{in}} = \frac{\omega_{in}}{\omega_{out}} = \frac{t_{out}}{t_{in}}$$

Was man an Kraft spart, muss man an Weg zusetzen.

Pulley IMA = N

 $[\]delta$: Längenänderung [m], A: Angriffsfläche [m²], Δ_{max} maximale Deformation im Zentrum [m], ω : Kraft auf ganzen Balken $\left[\frac{N}{m}\right]$, d_E , F_E : Eingangsseite (effort), d_R , F_R : Ausgangsseite (reaction), pitch: Hubhöhe bei einer Umdrehung [m], U: Umfang [m], N: Anzahl Zähne, t: Drehmoment, K: Kompressionsmodul $\left[\frac{N}{m^2}\right]$, G: Schubmodul $\left[\frac{N}{m^2}\right]$, γ : Schubwinkel, ν: Poissonzahl (Querkontraktionszahl)

1.6 Drehungen

Bogenlängenelement	$\Delta s = r \cdot \Delta \varphi$	Trägheitsmoment	J_S
Winkelgrößen	$T = \frac{2\pi}{\omega} = \frac{2\pi r}{v} = \frac{1}{f}$	Massepunkt	mr^2
Tangentialgeschwindigkeit	$\vec{v} = \vec{\omega} imes \vec{r}$	Vollzylinder	$rac{1}{2}mr^2$
Tangentialbeschleunigung	$\vec{\alpha_t} = \vec{\alpha} \times \vec{r}$	Hohlkugel	$\frac{1}{2}m(r_2^2 - r_1^2)$
Radialbeschleunigung	$\vec{\alpha_r} = \omega^2 \cdot \vec{r} = \frac{v^2}{r}$	Vollkugel	$\frac{2}{5}mr^2$
Gesamtdrehmoment	$J_S = \sum_i m_i r_i^2$	Hohlkugel	$\frac{2}{3}mr^2$
Steiner'scher Satz	$J_A = J_S + ms^2$	Stab um	$\frac{1}{12}ml^2$
Massenschwerpunkt	$ec{r}_M = rac{\sum_i m_i ec{r}_i}{\sum_i m_i}$	Schwerpunkt	12 1111
Bewegungsgleichung Drehung	$\varphi(t) = \frac{1}{2}\alpha t^2 + \omega_0 t + \varphi_0$	Stab um Ende	$\frac{1}{3}ml^2$
Drehmoment	$\vec{M} = \dot{\vec{L}} = \vec{r} \times \vec{F}$		
Drehmoment (Betrag)	$M = F \cdot r \cdot \sin(\varphi) = J_A \ddot{\varphi}$	Translation Rot	tation
Drehimpuls	$\vec{L} = m\vec{r} \times \vec{v}$	$\vec{a} = \dot{\vec{v}} = \ddot{\vec{x}}$ $\vec{\alpha} =$	$= \dot{ec{\omega}} = \ddot{ec{arphi}}$
		$W = -\int F_x dx W$	$=-\int M_A d\varphi$
		$P = F_x v_x$ $P =$	$=M_A\omega$
		$\vec{p} = m \cdot \vec{v}$ L_A	$=J_A\omega$

r: Radius, T: Periodenlänge, ω : Winkelgeschwindigkeit, α : Winkelbeschleunigung, J: Trägheitsmoment um Achse oder Schwerpunkt

1.7 Zentralkraftfeld und Gravitation

7 , 1	11 C
Zentral	ikrait

 $\vec{F} = f(\vec{r}, \dot{\vec{r}}, t) \cdot \hat{r}$

Flächenüberstreichung

$$\Delta A = \frac{L}{2m} \Delta t$$

2. Keplersches Gesetz

$$\frac{dA}{dt} = \frac{1}{2}r^2\dot{\phi} = \frac{L}{2m} = const.$$

f2

a2

f3

2

fl (sun)

planet 1

Δν'

planet 2

3. Kepler'sches Gesetz

$$\frac{T^2}{a^3} = \frac{4\pi^2}{\gamma M} = const.$$

Gravitationspotential

$$V = -\frac{\gamma Mm}{r}$$

Gravitationskraft

$$\vec{F}_{G12} = -\gamma \frac{m_1 \cdot m_2}{r_{12}^2} \cdot \frac{\vec{r}_{12}}{r_{12}}$$

Gesamtenergie

$$E = \frac{1}{2}mv^2 - \gamma \frac{m \cdot m_0}{r} = const.$$

1. kosmische Geschwindigkeit

$$v_1 = \sqrt{\frac{2\gamma M}{R}}$$

2. kosmische Geschwindigkeit

$$v_2 = \sqrt{\frac{\gamma M}{R}}$$

Umlaufzeit

$$T_S(h) = 2\pi \sqrt{\frac{R}{g}(1 + \frac{h}{R})^3}$$

Bahngeschwindigkeit

$$v(h) = \sqrt{gR\left(\frac{1}{1 + \frac{h}{R}}\right)}$$

Ellipse

$$e^2 = a^2 - b^2$$

numerische Exzentrität

$$\varepsilon = \frac{e}{a}$$

Rutherford

$$\Theta=2\arcsin\frac{1}{\sqrt{1+\frac{4E^2s^2}{\alpha^2}}}$$

differentieller Wirkungsquerschnitt

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{16E^2} \frac{1}{\sin^4 \frac{\Theta}{2}}$$

totaler Wirkungsquerschnitt

$$\sigma_{tot} = 2\pi \frac{\alpha^2}{16E^2} \int_0^{\pi} \frac{\sin\Theta d\Theta}{\sin^4\frac{\Theta}{2}}$$

A: überstrichene Fläche, L: Drehimpulsbetrag, $\dot{\phi}$: Winkelgeschwindigkeit, a: große Halbachse, M: Masse des größeren Körpers, γ : Gravitationskonstante, R: Radius Erde, h: Höhe des Orbits, e: Exzentrizität, Θ: Streuwinkel, Ω : Raumwinkel, σ : Wirkungsquerschnitt

1.8 Mehrteilchensysteme

Bewegungsgleichung $m_i \ddot{\vec{r}}_i = \vec{F}_i^{(ex)} + \sum_i \vec{F}_{ij}$

Reduzierte Masse $\mu = \frac{m_1 m_2}{m_1 + m_2}$

Schwerpunktssatz $M\vec{R} = \vec{F}^{(ex)}$

Schwerpunkt $\vec{R} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2}$

Impulssatz $\dot{\vec{p}} = \vec{F}^{ex}$

Drehmoment $\dot{\vec{L}} = \sum_i \vec{r_i} \times \vec{F_i}^{ex}$

kinetische Energie $T = \sum_{i} \frac{1}{2} m_i \dot{\vec{r}}_i \cdot \dot{\vec{r}}_i$

konservative Kräfte $\frac{dT}{dt} = -\frac{dV}{dt}$

Schwerpunktsbewegung $\vec{R}(t) - \frac{\vec{p}}{M}t = \vec{R}(0) = const.$

Virialsatz $2\langle T \rangle = \langle \sum_i \vec{r_i} \cdot \nabla_i V \rangle$

Gesamtenergie $\frac{M}{2}\dot{\vec{r}}_0^2 + \frac{1}{2}\sum_i m_i(\vec{\omega} \times \vec{r}_i)^2$

Drehimpuls $\vec{L} = \overleftrightarrow{J} \vec{\omega}$

Rotationsenergie $T_R = \frac{1}{2}\vec{\omega} \cdot \vec{L}$

Trägheitstensor $J_{lm} = \int d^3r \rho(\vec{r}) (\delta_{lm} \vec{r}^2 - x_l x_m)$

Drehmoment $\vec{M} = \overleftrightarrow{J} \dot{\vec{\omega}} + \vec{\omega} \times \overleftrightarrow{J} \vec{\omega}$

Präzession $\omega_P = \frac{mgr}{J\omega}$

Jede 3D-Transformation mit Fixpunkt kann als Rotation um eine Achse beschrieben werden. (Jeder Rotationsmatrix mit Fixpunkt hat Eigenwerte ± 1 .)

EULER'SCHER SATZ

1.9 Relativitätstheorie

$$\gamma = \frac{1}{\sqrt{1-\beta^2}} > 1$$
 und $\beta = \frac{v}{c} < 1$

$$\vec{r} = \vec{V}t + \vec{r}', t = t'$$

$$\frac{d}{dt} = \left(\frac{d}{dt}\right)' + \vec{\omega} \times$$

Addition von Geschw.
$$v_{tot} = \frac{v_1 + v_2}{1 + \frac{v_1 + v_2}{2}} < c$$

$$v_{tot} = \frac{v_1 + v_2}{1 + \frac{v_1 v_2}{c^2}} <$$

$$x\prime = \gamma(x - v_x t)$$
 $x = \gamma(x\prime + v_x t)$

$$y' = y$$

$$y = y'$$

$$t' = \gamma (t - v_x \frac{x}{c^2})$$
 $t = \gamma (t' + v_x \frac{x'}{c^2})$

metrischer Tensor

$$a^{\mu} = g^{\mu\nu} a_{\nu}$$

 $a_{\mu} = g_{\mu\nu}a^{\mu}$

allg. Lorentztrafo

$$\underline{x}_{\mu} = L_{\mu}^{\ \nu} x_{\nu} \text{ und } \underline{x}^{\mu} = L_{\ \nu}^{\mu} x^{\nu}$$

kontravariant

$$(a^0, a^1, a^2, a^3) = (a^0, \vec{a})$$

kovariant

$$(a_0, a_1, a_2, a_3) = (a^0, -\vec{a})$$

Skalarprodukt

$$a_{\mu}b^{\mu} = a^{\mu}b_{\mu} = a^{0}b^{0} - \vec{a}\cdot\vec{b}$$

Betragsquadrat

$$a_{\mu}a^{\mu} = (a^0)^2 - \vec{a} \cdot \vec{a}$$

Vierervektorquadrat $s^2 = c^2 t^2 - \vec{r}^2$

$$s^2 = c^2 t^2 - \vec{r}^2$$

$$\Delta s^2 > 0$$
:

$$\Delta s^2 = 0$$
:

$$\Delta s^2 < 0$$
:

$$u^0 = \gamma c \text{ und } \vec{u} = \gamma \vec{v}$$

$$u_{\mu}u^{\mu}=c^2$$

$$a_{\mu}a^{\mu} = -\gamma^4 \left[\gamma^2 \left(\frac{\vec{v}}{c} \cdot \vec{a} \right)^2 + \vec{a}^2 \right]$$

$$q_{\mu}a^{\mu} = \begin{pmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \end{pmatrix}$$

$$g^{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \text{ und } L^{\mu}_{\nu} = \begin{pmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 $[\]gamma$: Lorentzfaktor

Gesamtenergie
$$E^2 = m_0^2 c^4 + c^2 p^2$$

relativistische Energie
$$E = \gamma m_0 c^2$$

relativistischer Impuls
$$p = \gamma m_0 v$$

Zeit
dilatation
$$\Delta t = \gamma \Delta \tau$$

Lorentzkontraktion
$$l = \frac{l_0}{\gamma}$$

Newton
$$m\frac{du^{\mu}}{d\tau} = ma^{\mu} = K^{\mu}$$

Kraft
$$\vec{K} = \gamma \vec{F}, \, K^0 = \gamma \frac{\vec{F} \cdot \vec{v}}{c}$$

Lagrange
$$\frac{d}{d\tau} \frac{\partial \mathcal{L}}{\partial u^{\mu}} - \frac{\partial \mathcal{L}}{\partial x^{\mu}} = 0$$

Divergenz
$$\frac{\partial x^{\mu}}{\partial x^{\mu}} = 4$$

Nabla
$$(\partial_0, \partial_1, \partial_2, \partial_3) = (\frac{1}{c} \frac{\partial}{\partial t}, \vec{\nabla})$$

$$(\partial^0, \partial^1, \partial^2, \partial^3) = (\frac{1}{c} \frac{\partial}{\partial t}, -\vec{\nabla})$$

em. Feld
$$\mathscr{L} = \frac{m}{2}v^2 + \frac{q}{c}\vec{v}\cdot\vec{A} - q\phi$$

Vektorpotential
$$(A_0, A_1, A_2, A_3) = (\phi, -\vec{A})$$

Invarianten
$$E^2 + H^2, \vec{E} \cdot \vec{H}$$

Dopplereffekt
$$\omega' = \omega_s (1 - \beta) \gamma$$

$$E_y = \gamma (E_y' + \beta H_z'), H_y = \gamma (H_y' - \beta E_z')$$

$$E_z = \gamma (E_z' - \beta H_y'), \ H_z = \gamma (H_z' + \beta E_y')$$

$$\varphi = \gamma(\varphi' + \beta A_x'), A_x' = \gamma(A_x - \frac{\beta}{c}\varphi)$$

1.10 Fluide

Druck	$p = \frac{F}{A}$	$A_2 = v_2$ (s_2)	F ₂
Dichte	$ ho = rac{m}{V}$ dynam.	$F_1 \longrightarrow V_1 \longrightarrow V_2 \longrightarrow V_1$	h ₂
Bernoulli-Gesetz	$ \underbrace{p_0}^{\text{stat.}} + \underbrace{\frac{1}{2}\rho v^2}_{\text{pot.}} + \underbrace{\rho gy}_{\text{pot.}} = cons $	t	(1 - ^D /D ^D)
Kontinuitätsgleichung	$A_1 v_1 = A_2 v_2 = I = \frac{dV}{dt}$	$u(r) = u_{\text{max}}$	(1-r/K)
Archimedisches Prinzip	$F_A = m_F g = \rho_F V_K g$		R
Volumenstrom Rohr	$\dot{V} = \frac{\pi r^4 \Delta p}{8\eta l}$		<u></u>
Reibung Rohrströmung	$F_R = 8\pi \eta l \bar{v}$		u_{\max}
laminarer Strömungswiderst.	$F_R = 6\pi \eta r v$	Shape	Drag
Höhenformel	$p(z) = p_0 \cdot e^{-\frac{\rho_0 gz}{p_0}}$	Sphere → Co	efficient 0.47
Dichtebestimmung	$ ho_K = ho_F \cdot rac{ \vec{F_{G,L}} }{ \vec{F_{G,L}} - \vec{F_{G,F}} }$	Spriere	
Oberflächenspannung	$\sigma = \frac{dW}{dA} = \frac{F}{2l}$	Half-sphere—→	0.42
Kapillareffekt	$h = \frac{2\sigma\cos(\varphi)}{\rho rg}$	Cone —	0.50
		Cube ——	1.05
		$_{ ext{Cube}}^{ ext{Angled}}$	0.80
		Long Cylinder ──	0.82
		Short Cylinder → □	1.15

Measured Drag Coefficients

Streamlined___ Body

Streamlined Half-body

A: Querschnittsfläche Rohr, I: Volumenstrom, g: Fallbeschleunigung, η : dynamische Viskosität [Pa s], σ : Oberflächenspannung $[\frac{N}{m}]$, h: Steighöhe, φ : Winkel Oberfläche mit Gefäßwand

1.11 Schwingungen und Wellen

$$\ddot{x} + \underbrace{2\gamma\dot{x}}_{\text{Dämpfung}} + \omega_0^2 x = \underbrace{\omega_0^2 x_0 \sin(\omega_A t)}_{\text{Anregung}}$$

harm. Schw. $x(t) = x_m \cos(\omega t + \alpha)$

Frequenz $\omega = \sqrt{\omega_0^2 - \gamma^2}$

Schwebung $\Delta \omega = \omega_1 - \omega_2$

Pot.näherung $V(x) \cong V(x_0) + \frac{1}{2}\kappa(x - x_0)^2$

$$k = \frac{2\pi}{\lambda}$$

$$c = \frac{\omega}{k} = \lambda f = \frac{\lambda}{T}$$

Welle, 1D $y(x,t) = y_m \sin(kx - \omega t)$

Gütefaktor $Q = \frac{\omega_0}{\Delta \omega}$

Gesamtenergie $E_{ges} = \frac{k}{2}A^2$

Abklingende Energie $E = E_0 e^{-\frac{t}{\tau}}$

Transmissonskoeff. $T = \frac{2v_2}{v_2 + v_1}$

Reflexionskoeff. $R = \frac{v_2 - v_1}{v_2 + v_1}$

Absorptionskoeff. A = 1 - R - T

Mittlere Leistung $P_{gem} = \frac{1}{2}\mu v\omega^2 y_m^2$

Schallgeschwindigkeit $v = \sqrt{\frac{K}{\rho}}$

Schall Druckdifferenz $\Delta p_m = v \rho \omega s_m$

Schallintensität $I = \frac{1}{2}\rho v\omega^2 s_m^2, I = \frac{P_S}{4\pi r^2}$

sW, feste Enden $f = \frac{v}{\lambda} = \frac{nv}{2l}$

sW, loses Ende $f = \frac{v}{\lambda} = \frac{nv}{4l}$

Mach'scher Kegel (halb) $\sin(\alpha) = \frac{c_S}{v} = \frac{1}{Ma}$

Reibung $F_R = -b\dot{z}, \ \gamma = \frac{b}{2m}$

 $[\]gamma$: Dämpfungsterm, K: Kompressionsmodul, ρ : Dichte, P_S : Schallleistung, v: Geschwindigkeit des Körpers, c_s : Schallgeschwindigkeit, Ma: Mach-Zahl, b: Reibungskoeffizient

1.12 Lagrange

skleronom (rheonom) $\frac{\partial f}{\partial t} = (\neq)0$

Freiheitsgrade S = 3N - p

Bewegungsgleichung $m_i \ddot{\vec{r}}_i = \vec{Z}_i + \vec{K}_i$

virtuelle Verrückung $\delta \vec{r}_i(t) = \vec{r}_i'(t) - \vec{r}_i(t)$

d'Alembert $\sum_{i} (\vec{K}_{i} - \dot{\vec{p}}_{i}) \cdot \delta \vec{r}_{i} = 0$

generalisierte Kräfte $Q_j = \sum_{i=1}^N \vec{K}_i \cdot \frac{\partial \vec{r}_i}{\partial a_i}$

d'Alembert (gen.) $\sum_{i=1}^{S} \left\{ \frac{d}{dt} \frac{\partial T}{\partial \dot{q}_{i}} - \frac{\partial T}{\partial q_{i}} - Q_{j} \right\} \delta q_{j} = 0$

holonom $\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_{j}} - \frac{\partial T}{\partial q_{j}} = Q_{j}$

Gleichgewicht $\sum_{i} Q_i \delta q_i = 0$

Lagrange-Gl. 2. Art $\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_j} - \frac{\partial \mathcal{L}}{\partial q_j} = 0$

L-F. em. Feld $\mathscr{L} = \frac{1}{2}m\dot{\vec{r}}^2 - q(\phi + \dot{\vec{r}} \cdot \vec{A})$

Euler'sche Gleichung $\frac{\partial f}{\partial y} - \frac{d}{dx} \frac{\partial f}{\partial y'} = 0$

konjugierter Impuls $p_j = \frac{\partial \mathcal{L}}{\partial \dot{q}_j}$

zyklische Koord. $\frac{\partial \mathcal{L}}{\partial q_i} = 0$

Hamilton-Fkt. $H = \sum_{i} p_{j} \dot{q}_{j} - \mathcal{L}$

Tot. Zeitabl. H-F. $\frac{dH}{dt} = 0 = \frac{\partial H}{\partial t}$

Ray. Dissip.fkt. $P = \sum_{i=1}^{N} \int_{0}^{v_i} dv_i' R_i(v_i')$

Reibungskräfte $Q_j^{(R)} = -\frac{\partial P}{\partial \dot{q}_i}$

Lagrange-Gl. 1. Art $\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} - \frac{\partial \mathcal{L}}{\partial q_i} = \sum_{\nu=1} k \lambda_{\nu} a_{\nu j}$

Lösungsschema Lagrange: Zwangsbedingungen aufstellen \Rightarrow Bewegung in generalisierten Koordinaten ausdrücken \Rightarrow TF \Rightarrow kinetische und potentielle Energie aufstellen \Rightarrow Lagrange-Funktion $\mathscr L$ aufstellen \Rightarrow Lagrange-Gleichung.

Noether-Theorem: Zu jeder kontinuierlichen Symmetrie eines physikalischen Systems gehört eine Erhaltungsgröße.

Zeit homogenH = const., Raum homogen $\vec{p} = const.$, Raum isotrop $\vec{L} = const.$

$$\delta \mathcal{S} = \delta \int_{t_1}^{t_2} dt \mathcal{L} = \mathbf{0}$$

Weltformel

N: Teilchenzahl, p: Zwangsbedingungen, S: Wirkung

1.13 Hamilton

Poissonkl. mit H
$$\frac{df}{dt} = \{f, H\} + \frac{\partial f}{\partial t}$$

Beliebige Poissonkl.
$$\{f,g\}_{\vec{q},\vec{p}} = \sum_{j=1}^{S} \left(\frac{\partial f}{\partial q_j} \frac{\partial g}{\partial p_j} - \frac{\partial f}{\partial p_j} \frac{\partial f}{\partial q_j} \right)$$

$$f$$
 Erhaltungsgröße $\{f, H\} = 0$

$$f, g$$
 erhalten $\{f, g\}$ auch.

•
$$\{f,g\}_{\vec{q},\vec{p}} = \{f,g\}_{\vec{O},\vec{P}}$$

•
$$\{f, f\} = 0$$

•
$$\{f,g\} = -\{g,f\}$$

•
$$\{f+g,h\} = \{f,h\} + \{g,h\}$$

•
$$\{fg,h\} = f\{g,h\} + \{f,h\}g$$

•
$$\{\{f,g\}h\} + \{\{g,h\},f\} + \{\{h,f\},g\} = 0$$

$$F_{1}(\vec{q}, \vec{Q}, t) \quad p_{j} = \frac{\partial F_{1}}{\partial q_{j}} \quad P_{j} = -\frac{\partial F_{1}}{\partial Q_{j}}$$

$$F_{2}(\vec{q}, \vec{P}, t) \quad p_{j} = -\frac{\partial F_{2}}{\partial q_{j}} \quad Q_{j} = \frac{\partial F_{2}}{\partial P_{j}}$$

$$F_{3}(\vec{p}, \vec{Q}, t) \quad q_{j} = -\frac{\partial F_{3}}{\partial p_{j}} \quad P_{j} = -\frac{\partial F_{3}}{\partial Q_{j}}$$

$$F_{4}(\vec{p}, \vec{P}, t) \quad q_{j} = -\frac{\partial F_{4}}{\partial p_{j}} \quad Q_{j} = \frac{\partial F_{4}}{\partial P_{j}}$$

Schema Hamilton:
$$q_j \Rightarrow \text{TF} \Rightarrow \text{KE+PE}$$

 $\Rightarrow p_j \Rightarrow \text{auflösen nach } \dot{q}_j \Rightarrow \mathcal{L} \Rightarrow \text{Le-}$
gendre $\Rightarrow \text{KG} \Rightarrow \int$

$$\{q_i, q_j\} = 0$$

$$\{p_i, p_j\} = 0$$

$$\{q_i, p_j\} = \delta_{ij}$$

fund. Poissonklammern

Phasentransformation ist kanonisch im weiteren Sinne, wenn:

- $\forall H \ \exists \tilde{H} \colon \vec{Q}, \vec{P}$ erfüllen mit \tilde{H} die kanonischen Gleichungen.
- $\delta \int_{t_1}^{t_2} dt \left(\sum_j P_j \dot{Q}_j \tilde{H} \right) = 0$
- $\sum_{j} p_{j}\dot{q}_{j} H = c\left(\sum_{j} P_{j}\dot{Q}_{j} \tilde{H}\right) + \frac{dF_{1}}{dt}$
- fund. Poissonklammern erfüllt

Legendre 1
$$g(u) = f(x) - ux = f(x) - x \frac{df}{dx}$$

Legendre 2
$$g(x,v) = f(x,y) - vy = f(x,y) - y(\frac{\partial f}{\partial y})_x$$

Legendre H
$$H = p\dot{q} - L = p\dot{q}^* - \mathscr{L}^*$$

Liouville'scher Satz $\frac{d\rho}{dt} = 0$

2 Statistik

$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$
$\ln(n!) = n\ln(n) - n$
STIRLING-FORMEL

2.1 Wahrscheinlichkeitsverteilungen

2.1 Wallisti	ieiiiiciikeitsvert	tenungen	
Wahrscheinlichke	it für Ereignis i	$p_i = \lim_{N \to \infty} \frac{N_i}{N}$	
Realitätsbedingu	ng	$\sum_{i} p_i = 1$	
Addition von Wa	hrscheinlichkeiten	$P(i \lor j) = P_{i+j} = P_i + P_j$	
Multiplikation vo	n Wahrscheinlichkeit	en $P(i \wedge j) = P_{ij} = P_i \cdot P_j$	
Charakteristische	Funktion	$\varphi(k) = \int \exp(ikx)w(x)dx$	
r-tes Moment aus	s charakt. Funktion	$\bar{x^r} = (-i)^r \frac{\mathrm{d}^r}{\mathrm{d}k^r} \varphi(k) _{k=0}$	
Binomialkoeffizie	nten	$\binom{N}{n} = \frac{N!}{(N-n)!n!}$	
Gesetz der große	n Zahlen	$\frac{\Delta A}{\bar{A}} \longrightarrow 0$	
	diskrete Verteilung	kontinuierliche Verteilung	
Norm 1	$\sum_i p_i$	$\int w(x)dx$	
Mittelwert \bar{x}	$\langle x \rangle = \sum_{i} x_i p_i$	$\int xw(x)dx$	
r-tes Moment $\bar{x^r}$	$\sum_{i} x_{i}^{r} p_{i} \neq \bar{x}^{r}$	$\int x^r w(x) dx$	
Varianz $(\Delta x)^2$	$\bar{x^2} - \bar{x}^2$	$\int x^2 w(x) dx - (\int x w(x) dx)^2$	
	Binomalverteilung	Normalverteilung	Poissonverteilung
Verteilung $P(n)$	$\binom{N}{n}p^nq^{N-n}$	$\frac{1}{\sqrt{2\pi}\sigma}\exp{-\frac{(n-\bar{n})^2}{2\sigma^2}}$	$\frac{\lambda^n}{n!}e^{-\lambda}$
Mittelwert \bar{n}	pN	pN	pN
Varianz $(\Delta n)^2$	pqN	pqN	pN
Gültigkeit	exakt	$\bar{n} = Np \gg 1 \text{ und } N - \bar{n} = Nq \gg 1$	$p \ll \text{ und } n \ll N$

2.2 Grundlagen

Ein **Mikrozustand** oder ein reiner Zustand r beschreibt ein System vollständig, ohne jeglichen Informationsverlust.

Ein **Makrozustand** oder gemischter Zustand $\{P_r\}$ beschreibt ein System unvollständig und ist durch die Angabe der Wahrscheinlichkeiten P_r , mit denen bestimmte Mikrozustände r eines Systems vorkommen können, festgelegt.

Erreichbare Mikrozustände sind alle die Zustände, die in einem gegebenen Makrozustand vorkommen können bzw. mit diesem verträglich sind. Sie müssen grundsätzlich abzählbar sein.

In einem abgeschlossenen System (E, V, N = const., d.h. mikrokanonisches Ensemble) im Gleichgewicht sind alle Ω erreichbaren Zustände r gleichwahrscheinlich, d.h. es gilt $P_r = \frac{1}{\Omega}$

Planck-Zelle
$$\tau = (2\pi\hbar)^f = h^f$$

Gibbs-Faktor
$$\frac{1}{N!}$$

Ergodenhypothese
$$\bar{A}^T = \bar{A}$$

Statistische Entropie
$$S = k \ln \Omega$$

Volumen N-dimensionale Kugel
$$V_N(R) = \frac{\pi^{N/2}}{()\frac{N}{2})!}R^N$$

thermische Wellenlänge
$$\lambda = \frac{h}{\sqrt{2\pi mkT}}$$

2.3 Dichteoperator

Dichteoperator
$$\hat{\rho} = \sum_{r} P_r |\psi_r\rangle \langle \psi_r|$$

2.4 Entropie

Fundamentalpostulat: Im Gleichgewicht eines abgeschlossenen Systems ist die Entropie maximal.

Extremalprinzip: Im Gleichgewicht ist für alle Systeme die Entropie maximal: dS=0

Entropie	
Thermodynamisch	dQ = TdS
Statistisch	$S = k \ln \Omega(E, X)$
Informationstheoretisch	$S = -k \sum_{i} w_i \ln w_i$
im Quantensystem	$S = -k \operatorname{tr}(\hat{\rho} \ln \hat{\rho}) = -k \langle \ln \hat{\rho} \rangle$
im klassischen System	$S = -k \int dq dp \rho(q, p) \ln[\tau \rho(q, p)]$

2.5 Ensembles

Ein **Ensemble** ist ein gedachtes Kollektiv vieler gleichartiger Systeme, in dem die zugänglichen Mikrozustände mit geforderten Nebenbedingung verträglich sind, mit bestimmten Wahrscheinlichkeiten vorkommen und den Makrozustand beschreiben. Im thermodynamischen Limit $(N \longrightarrow \infty, V \longrightarrow \infty, \frac{N}{V} = \text{const.})$ sind alle Ensembles identisch und liefern die gleichen thermodynamischen Beziehungen.

Ensemble	Konstanten	Variablen	$ ho_n$	Zustandssumme	Dichteoperator $\hat{\rho}$
Gen. kanonisches E.					
Mikrokanonisches E.	E, N, V	E, N, V	$rac{1}{\Omega}$	$\sum_{r:E-\Delta E \le E_r \le E} 1$	$\frac{1}{\Omega}\sum_{r}\left \Phi_{r}\right\rangle \left\langle \Phi_{r}\right $
Kanonisches E.	$\langle E \rangle$, N, V	T, N, V	$\frac{e^{-\beta E_T}}{Z}$	$\sum_{r} e^{-\beta E_r} = \operatorname{tr} e^{-\beta \hat{H}}$	$\frac{e^{-\beta \hat{H}}}{Z}$
Großkanonisches E.	$\langle E \rangle, \langle N \rangle, V$	T, μ, V	$\frac{e^{-\beta(E_r - \mu N_r)}}{Y}$	$\sum_{r} e^{-\beta(E_r \mu N_r)}$	$\frac{e^{-\beta(\hat{H}-\mu\hat{N})}}{Y}$

3 Thermodynamik

 ${}^{\circ}K$

3.1 Grundbegriffe

 $^{\circ}C$

				\sim \sim \sim
$^{\circ}C$	С	C + 273, 15	$\frac{9}{5}C + 32$	H F
$^{\circ}K$	K - 273, 15	K	$\frac{9}{5}(K-273.15)+32$	
$^{\circ}F$	$\frac{5}{9}(F-32)$	$\frac{5}{9}(F-32)+273,15$	F	-p G T
		pV = nRT	Wärmekapazität	dQ = CdT
ideal	les Gas	$=k_BNT$	Wärmemenge	$Q = C \cdot \Delta T$
1-	C	$= N_A n k_B T$ $(p + \frac{an^2}{V^2}(V - bn))$	innere Energie	$\Delta U = Q + W$
геан	es Gas	= nRT	Entropieänderung	$\oint dS = 0$
Kom	npressionsarbei	it $W = -\int_{V_1}^{V_2} p dV$	reversibler Prozess	$dS_{rev} = \frac{dQ_{rev}}{T}$
Pois	son-Konstante	$\gamma = C_p/C_V$	WG Wärmemaschine	$\eta_C = \frac{ W }{Q_w} = \frac{Q_w + Q_k}{Q_w} = \frac{T_w - T_k}{T_w}$
Gasl	konstante	$R = C_p - C_V$	Kältemaschine	$C_L = \frac{Q_k}{W} = \frac{Q_k}{ Q_w - Q_k} = \frac{T_k}{T_w - T_k}$
adia	batische Zst.gl	$. TV^{\gamma-1} = const.$	Wärmepumpe	$C_L = \frac{ Q_w }{W} = \frac{ Q_w }{ Q_w - Q_k} = \frac{T_w}{T_w - T_k}$

Entropie

Entropie

 ${}^{\circ}F$

 $-S \mid \mathbf{U} \mid V$

 $\Delta S = C_V \cdot \ln \frac{T_2}{T_1} + nR \cdot \ln \frac{V_2}{V_1}$

 $S = k_B \cdot \ln P^{-1} = k_B \cdot \ln \Omega(M)$

adiabatische Zst.gl.

Wirkungsgrad

Wärmestrom
$$I = \frac{dQ}{dt} = \lambda A \frac{dT}{dx}$$

Wärmedichte
$$j = \frac{\dot{Q}}{A} = \lambda \frac{\Delta T}{l}$$

Längenausdehnung
$$dl = \alpha l dT$$

Volumenausdehnung
$$dV = \gamma V dT$$

$$E_{kin} = \frac{1}{2}m\bar{v}^2$$

 $PV^{\gamma} = const.$

 $\eta = \frac{\Delta W}{Q}$

Thermische Energie
$$=\frac{3}{2}k_BT$$
 (pro Tlc.)
 $=\frac{1}{2}RT$ (pro Mol)

Druck $p = \frac{F_{\perp}}{A}$

R: Gaskonstante = 8.314 $\frac{\rm J}{\rm Kmol},~k_B$: Boltzmannkonstante, N_A : Avogadrozahl, C_p,C_V : Wärmekapazität bei konstantem Druck/Volumen

Hauptsätze 3.2

3.2.1 0. Hauptsatz

Für jedes thermodynamische System existiert eine intensive Zustandsgröße, die Temperatur T. Ihre Gleichheit ist notwendige Voraussetzung für das thermische Gleichgewicht zweier Systeme.

3.2.2 1. Hauptsatz

Für jedes thermodynamische System existiert eine extensive Zustandsgröße, die innere Energie E (=U). Sie ändert sich nur durch Austausch von Arbeit A und Wärme Q mit der Umgebung: dU = dA + dQ

Volumenänderung

$$d_V E = dA = -pdV$$

Impulsänderung

$$d\vec{p}E = \vec{v}d\vec{p}$$

Drehimpulsänderung

$$d_{\vec{L}}E = \vec{\omega}d\vec{L}$$

Magnetisierungsänderung $d_{\vec{M}}E = \vec{B}d\vec{M}$

$$d\vec{R} = \vec{B}d\vec{M}$$

Ladungsänderung

$$d_Q E = \varphi dQ$$

Polarisationsänderung

$$\vec{d}_{\vec{P}}E = \vec{E}d\vec{P}$$

Teilchenzahländerung

$$d_N E = \mu dN$$

Gibbs-Form

$$dE = dQ = pdV + \mu dN$$

Prozess

adiabatisch
$$Q = 0, \Delta U = -W$$

isochor

$$W = 0, \Delta U = Q$$

Kreisprozess

$$\Delta U = 0, Q = W$$

freie Ausdeh.

$$\Delta U=0, Q=W$$

3.2.3 2. Hauptsatz

Für jedes thermodynamische Sysem existiert eine extensive Zustandsgröße, die Entropie S. Bei reversiblen Zustandsänderungen ändert sich die Entropie durch die mit der Umgebung ausgetauschten Wärmemenge. Bei irreversiblen Zustandsänderungen im abgeschlossenen System nimmt sie grundsätzlich zu: $dS \geq \frac{dQ}{T}$

Sommerfeld: Jedes thermodynamische System besitzt eine extensive Zustandsgröße S, die Entropie. Ihre Zunahme (Abnahme) dS bei reversiblen Zustandsänderungen berechnet man, indem man die zugeführte (abgeführte) Wärmemenge dQ durch die bei dieser Gelegenheit definierten absoluten Temperatur dividiert.

Clausius: Es gibt keinen thermodynamischen Prozess, der nur darin besteht, dass Wärme von einem System mit Temperatur T_1 zu einem System mit Temperatur T_2 übertragen wird (mit $T_1 < T_2$).

Kelvin: Es gibt keinen thermodynamischen Prozess, der nur darin besteht, dass Wärme in Arbeit umgewandelt wird.

Carnot: Es gitb keine Wärmekraftmaschine, die effizienter als ein Carnot-Prozess ist.

Planck: Es ist unmöglich, eine periodisch arbeitende Maschine zu konstruieren, die nichts weiter bewirkt, als das Heben einer Last (d.h. Arbeit abgibt) und Abkühlung eines Wärmereservoirs.

3.2.4 3. Hauptsatz

Für jedes thermodynamische System nähert sich die Entropie S ihrem kleinstmöglichen Wert am absoluten Nullpunkt unabhängig von Druck, Volumen, Aggregatszustand, etc. an. Der absolute Nullpunkt der Temperatur ist durch keinen endlichen Prozess, sondern nur asymptotisch erreichbar.

$$S(T, X_i) \xrightarrow{T \to 0} S_0(X_i) = 0 \text{ und } \left(\frac{\partial S(T, X_i)}{\partial (X_i)}\right)_T \xrightarrow{T \to 0} 0$$

3.3 Thermodynamische Potentiale

Potential	Natürliche Var.	Grundgleichung	Euler-Gleichung
Energie U	S, V, N	$dE = TdS - pdV + \mu dN$	$E = T \cdot S - p \cdot V + \mu \cdot N$
Freie Energie F	T, V, N	$dF = -SdT - pdV + \mu dN$	$F = -pV + \mu N$
Enthalpie H	S, p, N	$dH = TdS + Vdp + \mu dN$	$H = TS + \mu N$
Freie Enthalpie G	T, p, N	$dG = -SdT + Vdp + \mu dN$	$G = \mu N$
Gibbs'sche	T, V, μ	$dJ = -SdT - pdV - Nd\mu$	J = -pdV
Freie Energie J			
Entropie S	E, V, N	$dS = \frac{1}{T}(dE + pdV - \mu dN)$	$\frac{1}{T}(E + pV - \mu N)$

Potential		Zustandsgleichungen	
Energie U	$T = (\frac{\partial E}{\partial S})_{V,N}$	$p = -(\frac{\partial E}{\partial V})_{S,N}$	$\mu = (\frac{\partial E}{\partial N})_{S,V}$
Freie Energie F	$S = -(\frac{\partial F}{\partial T})_{V,N}$	$p = -(\frac{\partial F}{\partial V})_{T,N}$	$\mu = (\frac{\partial F}{\partial N})_{T,V}$
Enthalpie H	$T = (\frac{\partial H}{\partial S})_{p,N}$	$V = (\frac{\partial H}{\partial p})_{S,N}$	$\mu = (\frac{\partial H}{\partial N})_{S,p}$
Freie Enthalpie G	$S = -(\frac{\partial G}{\partial T})_{p,N}$	$V = (\frac{\partial G}{\partial p})_{T,N}$	$\mu = (\frac{\partial G}{\partial N})_{T,p}$
Gibbs'sche Freie Energie ${\cal J}$	$S = -(\frac{\partial J}{\partial T})_{V,\mu}$	$p = -(\frac{\partial J}{\partial V})_{T,\mu}$	$N = -(\frac{\partial J}{\partial \mu})_{T,V}$

$$SdT - Vdp + Nd\mu = 0$$

GIBBS-DUHAM-RELATION

Elektrodynamik 4

Grundlagen 4.1

$$I = \dot{q} = \int_A \vec{\jmath} \cdot d\vec{A} = \frac{qU}{l\rho}$$

Kontinuitätsgleichung $\nabla \vec{\jmath} = -\frac{\partial}{\partial t} \rho$

$$\nabla \vec{\jmath} = -\frac{\partial}{\partial t} \rho$$

Stromdichte

$$\vec{\jmath} = \sigma_{el} \vec{E} = \rho \vec{v}$$

Lorentzkraft

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

Lorentz kraft dichte

$$\vec{f} = \rho \vec{E} + \vec{\jmath} \times \vec{B}$$

b)

4.2 Maxwell-Gleichungen

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{B} = \mu_0 \vec{\jmath} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

$$\oint d\vec{A} \cdot \vec{E} = \frac{1}{\varepsilon_0} \iiint \rho dV$$

$$\oint d\vec{r} \cdot \vec{E} = -\frac{d}{dt} \iint d\vec{A} \cdot \vec{B}$$

$$\iint d\vec{A} \cdot \vec{E} = \frac{1}{\varepsilon_0} \iiint \rho dV \qquad \qquad \iint d\vec{A} \cdot \vec{B} = 0$$

$$\oint d\vec{r} \cdot \vec{E} = -\frac{d}{dt} \iint d\vec{A} \cdot \vec{B} \qquad \qquad \oint d\vec{r} \cdot \vec{B} = \mu_0 \iint d\vec{A} \cdot \vec{\jmath} + \frac{1}{c^2} \frac{d}{dt} \iint d\vec{A} \cdot \vec{E}$$

4.3 Elektrostatik

elektrostatische Kraft	$\vec{F} = q\vec{E}$
Ladungsdichte Punktladung	$\rho(\vec{r}) = Q \cdot \delta(\vec{r} - \vec{r}')$
Zwei Punktladungen	$\vec{F} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2} \hat{e}_r$
Dipolmoment	$\vec{p} = q\vec{d}$
Drehmoment E-Feld	$ec{M} = ec{p} imes ec{E}$
Dipolmoment	$\vec{p} = \int dV \rho(\vec{r}) \vec{r}$
potentielle Energie Dipol	$W_{pot} = -\vec{p} \cdot \vec{E}$
Kraft auf Dipol	$\vec{F} = \vec{p} \cdot \nabla \vec{E}$
induzierter Dipol	$\vec{p} = \alpha \vec{E}$
Polarisierbarkeit	$\alpha = \frac{3\varepsilon_0}{N} \frac{\varepsilon - 1}{\varepsilon + 2}$
Polarisation	$\vec{P} = N\vec{p}_{ind} = \varepsilon_0 \chi \vec{E}_D$
Dielelektrizitätskonstante	$\varepsilon = 1 + \chi = 1 + \frac{3N\alpha}{3\varepsilon_0 - N\alpha}$
Polarisationsladungen	$\nabla \cdot \vec{P} = -\rho_{pol}$
Quadrupolmoment	$\overleftrightarrow{D} = \int dV \rho(\vec{r}) (3\vec{r} \circ \vec{r} - \mathbb{1}r^2)$
Eigenschaften von \overleftrightarrow{D} :	$D_{ij} = D_{ji}$ $\operatorname{tr} \overleftrightarrow{D} = \int dV (3\vec{r}^2 - 3\vec{r}^2) = 0$
Potential	$ec{E} = - abla arphi$
Poisson-Gleichung	$\Delta \varphi = -\frac{\rho}{\varepsilon_0}$
Laplace-Gleichung	$\Delta \varphi = 0$
Ladungsdichte	$ \rho(\vec{r},t) = \frac{dq}{dV} $
E-Feld von ρ	$E = \frac{1}{4\pi\varepsilon_0} \int_V \frac{\rho dV}{r^2}$
elektrisches Potential	$\varphi_{el} = \int_A \vec{E} \cdot dA$
Spannung	$U = \int_{\varphi_1}^{\varphi_2} \vec{E} \cdot d\vec{s}$
Flächenladungsdichte	$\sigma = \frac{Q}{A}$

 $Q = \iint \sigma dA$

 $Ober fl\"{a} chen ladung$

Energiedichte	(nur E)	$w_{el} = \frac{1}{2}\varepsilon_0 E^2$
---------------	---------	---

diel. Versch.
dichte
$$\vec{D} = \varepsilon \varepsilon_0 \vec{E}_{Vak} + \vec{P}$$

Energiedichte Dielektrika
$$w_{el} = \frac{\varepsilon \varepsilon_0}{2} \cdot E^2 = \frac{1}{2} E \cdot D$$

Ladung
$$Q = CU$$

E-Feld im Kond.
$$E = \frac{U}{d} = \frac{\sigma}{\varepsilon_0}$$

Energie im Kond.
$$W = \frac{1}{2}CU^2$$

Plattenkondensator
$$C = \varepsilon_0 \cdot \frac{A}{d}$$

Kugelkondensator
$$C = 4\pi\varepsilon_0 r$$

Zylinderkondensator
$$C = \frac{2\pi\varepsilon_0 l}{\ln(r_2/r_1)}$$

Geometrie	Potential ϕ	Feld E
Punktladung	$rac{1}{4\piarepsilon_0}rac{q}{r}$	$\frac{q}{4\pi\varepsilon_0 r^2}$
Unendliche Linienladung	$\frac{1}{2\pi\varepsilon_0}\lambda\ln\frac{r_B}{r}$	$rac{1}{4\piarepsilon_0}rac{2\lambda}{r_\perp}$
Achse geladener Ring	$\frac{1}{4\pi\varepsilon_0} \frac{q}{\sqrt{z^2 + a^2}}$	$\frac{1}{4\pi\varepsilon_0} \frac{qz}{(z^2 + a^2)^{3/2}}$
Kreisscheibe	$\frac{1}{2\varepsilon_0}\sigma z \left(\sqrt{1 + \frac{r_S^2}{z^2}} - 1\right)$	$\frac{\sigma}{2\varepsilon_0} \left(1 - \left(1 + \frac{r^2}{z^2}\right)^{-1}\right)$
Unendliche Ebene	$\phi_0 - \frac{1}{2\varepsilon_0}\sigma \left x \right $	$\frac{\sigma}{2arepsilon_0}$
Kugelschale	$rac{1}{4\piarepsilon_0}rac{q}{r}$	$\frac{1}{4\pi\varepsilon_0}\frac{q}{r^2}$
Dipol	$rac{ec{p}\cdotec{r}}{4\piarepsilon_0r^3}$	$rac{1}{4\piarepsilon_0}\cdotrac{3(ec{p}\cdotec{r})ec{r}-ec{p}r^2}{p^5}$

4.4 Gleichspannung

Ohm'sches Gesetz	U = R	$\cdot I$
------------------	-------	-----------

Knotensatz
$$\sum_{k} I_{k} = 0$$

Maschensatz
$$\sum_{k} U_{k} = 0$$

Leistung
$$P = UI = I^2R = \frac{U^2}{R}$$

Widerstand
$$R = \frac{l}{\sigma \cdot A} = \rho \frac{l}{A}$$

Flächenwiderstand
$$R_S = \frac{\rho}{d} = R \frac{B}{L}$$

elektrische Arbeit
$$W = qU = Pt$$

Wirkungsgrad
$$\eta = \frac{P_{out}}{P_{in}}$$

Leitwert
$$G = 1/\rho$$

$$R$$
 in Serie
$$R_{ges} = \sum_{i} R_{i}$$

$$R$$
 parallel
$$\frac{1}{R_{ges}} = \sum_{i} \frac{1}{R_{i}}$$

$$C$$
 in Serie
$$\frac{1}{C_{ges}} = \sum_{i} \frac{1}{C_{i}}$$

$$C$$
 parallel
$$C_{ges} = \sum_{i} C_{i}$$

Temperaturabhängigkeit R $\Delta R = R_0 \alpha \Delta T$

Kapazitätsgleichung
$$I_C = C \frac{dU_C}{dt}$$

Induktivitätsgleichung $U_L = L \frac{dI_L}{dt}$

4.5 Wechselspannung

	^	
komplexe Spannung	U =	$Ue^{i\varphi_n}$

effektive Spannung
$$U_{eff} = \frac{U_m}{\sqrt{2}}$$

Wirkleistung
$$U_{\mathrm{eff}} \cdot I_{\mathrm{eff}} \cdot \cos \varphi$$

Scheinwiderstand Serie
$$Z = R = iX$$

Scheinwiderstand parallel
$$Y = G = iB$$

Scheinleistung
$$S = P + iQ$$

Trafo
$$U_2 n_1 = U_1 n_2$$

Wellengleichung
$$\ddot{I} + \frac{R}{L}\dot{I} + \frac{1}{LC}I = f(t)$$

Frequenz
$$\omega_0 = \sqrt{\frac{1}{LC}}$$

Resonanzfrequenz
$$\omega_{res} = \sqrt{\omega_0^2 - 2\delta^2}$$

L	R	С
$U_L = L \cdot \frac{dI}{dt}$	$U_R = R \cdot I$	$U_C = \frac{1}{C} \int I dt$
$= \omega L I_m \cos(\omega t + \frac{\pi}{2})$	$= R \cdot I_m \cos(\omega t)$	$= \frac{1}{\omega C} I_m \cos(\omega t - \frac{\pi}{2})$
$X_L = \omega L$	R	$X_C = \frac{1}{\omega C}$
$arphi=+rac{\pi}{2}$	$\varphi = 0$	$arphi=-rac{\pi}{2}$

4.6 Leitungstheorie

Leiterschleife
$$\dot{U}_i = R_i \dot{I}_i + \frac{I_i}{C_i} + \sum_k L_{ik} \ddot{I}_k$$

Leistung
$$N = UI = RI^2 + \frac{d}{dt} \left(\frac{1}{2}LI^2 + \frac{1}{2}\frac{Q^2}{C} \right)$$

Drahtwelle
$$\frac{\partial u}{\partial r} + rI + l\dot{I} = 0$$

Ladungsbilanz
$$\rho \dot{U} + \frac{\partial I}{\partial x} + gU = 0$$

Telegraphengleichung
$$\frac{\partial^2 I}{\partial x^2} - \rho l \frac{\partial^2 I}{\partial t^2} - (\rho r + g l) \frac{\partial I}{\partial t} - g r I = 0$$

Wellenwiderstand
$$U = \pm lv_0 I = \pm \sqrt{\frac{l}{\rho}} I$$

Ideale Leitung
$$v_0^2 = \frac{1}{\rho l}$$

Nicht-idealer Leiter
$$\Delta \vec{E} - \mu \sigma \dot{\vec{E}} = 0, \ \Delta \vec{j} - \mu \sigma \dot{\vec{j}} = 0$$

Widerstand bei Skin-Effekt
$$Z = \frac{El}{I}$$

Wechselstromwiderstand
$$\frac{Z}{l} = \frac{(1-i)k_0}{2\pi r\sigma} = \frac{1-i}{2\pi r} \sqrt{\frac{\mu\omega}{2\sigma}}$$

4.7 Drude- und Lorentzmodell

4.8 Plasmonik

Permittivität
$$\varepsilon=1-\frac{\omega_p^2}{\omega^2+i\gamma\omega}$$
 Volumenplasmon $\varepsilon=0,\,\omega=\omega_p$

Dämpfung
$$\varepsilon' = \frac{\omega_p^2 \gamma}{\omega(\omega^2 + \gamma^2)}$$
 Flächenplasmon $\varepsilon = -1, \, \omega = \frac{\omega_p}{\sqrt{2}}$

Stromdichte
$$\vec{j} = \frac{n \cdot q^2 \cdot \tau_s}{m} \vec{E}$$
 LSPR $\varepsilon = -2, \ \omega = \frac{\omega_p}{\sqrt{3}}$

Geschwindigkeit
$$v = \frac{q}{m}\tau E$$

Driftgeschw.
$$\vec{v}_D = \frac{q \cdot \tau}{m} \cdot \vec{E} = \frac{\sigma}{n \cdot q} \cdot \vec{E}$$

Plasmafrequenz
$$\omega_p^2 = \frac{Ne^2}{\varepsilon_0 m}$$

Absorptionskoeff.
$$\alpha(\omega) = \frac{2\omega}{c}k(\omega)$$

skin depth
$$d = 1/\alpha$$

4.9 Magnetostatik

	→ →
mag. Dipolmoment	$\vec{\mu}_m = I \cdot \vec{A} = \frac{q}{2m} \cdot \vec{L}$

B-Feld
$$\vec{B} = \frac{\mu_0}{4\pi} \frac{1}{r^5} 3(\vec{m} \cdot \vec{r}) \vec{r} - mr^2$$

Vektorpotential
$$\vec{A}(\vec{r}) = \frac{\mu_0 I}{4\pi} \vec{A}_r \times \frac{\vec{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{r}}{r^3}$$

Drehm. B-Feld
$$\vec{M} = \vec{\mu}_m \times \vec{B}$$

potentielle Energie Dipol
$$E_{pot} = -\vec{\mu}_m \cdot \vec{B}$$

Bohr'sches Magneton
$$\mu_B = \frac{e \cdot \hbar}{2m_e}$$

Magnetisierung
$$\vec{M} = \chi \cdot \vec{H} = \frac{d\vec{\mu}}{dV} = \frac{1}{\mu_0} \vec{B}_0$$

mag. Suszeptibilität
$$\mu = 1 + \chi$$

Ladung auf Umlaufbahn
$$\vec{m} = I \cdot \vec{A_p} = \frac{1}{2} \frac{Q}{m} \vec{L}$$

Dipolmoment allg. Stromverteilung
$$\vec{m} = \frac{1}{2} \int dV \vec{r} \times \vec{\jmath}(\vec{r})$$

magnetische Flussdichte
$$-\Delta \vec{A} = \mu_0 \vec{j}$$

Vektorpotential
$$\vec{B} = \nabla \times \vec{A}$$

Coulomb-Eichung
$$\nabla \cdot \vec{A} = 0$$

Biot-Savart
$$\vec{B} = -\frac{\mu_0 I}{4\pi} \int \frac{d\vec{l} \times \vec{r}}{r^2}$$

mag. Fluss
$$\phi_m = \int_A \vec{B} \cdot d\vec{A}$$

allg. Vektorpotential
$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{dV' \vec{\jmath}(\vec{r}')}{|\vec{r}-\vec{r}'|}$$

allg. Flussdichte
$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{dV' \vec{\jmath}(\vec{r}) \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3}$$

Induktivität
$$L_{ik} = \frac{\mu_0}{4\pi} \oint d\vec{r}' \oint d\vec{r}' \frac{1}{|\vec{r} - \vec{r}'|}$$

Selbstinduktivität
$$L_{ik} = L_{ki}$$

Kraft von Leiterelement
$$d\vec{F} = I \cdot (d\vec{l} \times \vec{B})$$

Kraft auf Leiter
$$\vec{F} = \vec{B}Il$$

Hall-Spannung
$$U_H = \vec{b} \cdot \vec{E}_H = \frac{I \cdot B}{n \cdot c \cdot d} = R_H \frac{B}{b} I$$

Zyklotron
$$\frac{q}{m}vB = \frac{v^2}{r}$$

Geometrie	ϕ	Feld E
Leiter	$\frac{\mu_0 I}{2\pi r}$	
Schleife (z-Achse)	$\frac{\mu_0}{4\pi} \frac{2\pi r^2 I}{(z^2 + r^2)^{3/2}}$	
Schleife	$\frac{\mu_0}{4\pi} \sum_{n} I_n \int \frac{d\vec{r}' \times \vec{r} - \vec{r}' }{ \vec{r} - \vec{r}' ^3}$	
lange Spule	$rac{\mu_0 n I}{l}$	
dichte Spule	$\frac{\mu_0}{2\pi} \frac{nI}{r}$	

4.10 Magnetodynamik

Selbstinduktion $\phi_m = LI$

Induktionsspannung $U_{ind} = -L\dot{I} = vBl$

Energie im mag. Feld $W_{mag} = \frac{1}{2}LI^2$

Selbstinduktivität Zylinder $L = \mu_0(\frac{n}{l})^2 Al$

Gegeninduktion $L = \frac{\phi_{12}}{I_1} = \frac{\phi_{21}}{I_2}$

Energiedichte $w_{mag} = \frac{1}{2}\mu_0 H^2 = \frac{1}{2\mu}B^2$

Curie-Gesetz $C = \kappa T$

4.11 Elektromagnetische Wellen

Wellengleichung $\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \Delta\right)\vec{E} = \Box\vec{E} = 0$

vollständige Lösung $u = u_1(x - ct) + u_2(x + ct)$

Dispersion Vakuum $\omega^2 = c^2 \vec{k}^2$

Phasengeschwindigkeit $v_{ph} = \frac{\omega}{k}$

Gruppengeschwindigkeit $v_{gr} = \frac{\partial \omega}{\partial k}$

Wellengleichung FT $\hat{k} \times \vec{E} = c\vec{B}$

ebene Welle $\vec{E} = \vec{E}_0 e^{i(\vec{k}\cdot\vec{r} - \omega t)}$

elliptisch polarisiert $\vec{E}_0 = \vec{E}_1 + i\vec{E}_2$

4.12 Energie und Impuls im EM-Feld

Energiedichte	$w_{em} = \frac{1}{2}(ED + BH)$
Difficulting	ω_{em} $_{5}(EE+EH)$

Poynting-Vektor
$$\vec{S} = \frac{1}{\mu_0} (\vec{E} \times \vec{B})$$

Änderung der Energiedichte
$$\nu_{em} = -\vec{j} \cdot \vec{E}$$

Poynting-Theorem
$$\frac{\partial w}{\partial t} + \nabla \cdot \vec{S} = -\vec{j} \cdot \vec{E}$$

Ohm'sches Gesetz
$$\vec{\jmath} = \sigma \vec{E}$$

Energie
$$W_{em} = \frac{1}{2} \int dV \rho \varphi$$

Thomson's
cher Satz
$$W_c$$
 nimmt im GG Extr. an

Energie Magnetfeld
$$W_m = \frac{1}{2} \sum_i I_i \Phi_i$$

Selbstenergie Leiterschleife
$$W_m = \frac{1}{I^2} \int dV \frac{\vec{B}^2}{\mu_o} = \frac{\Phi}{I}$$

Energiestromdichte Welle
$$\vec{S}_p = c\hat{k}\omega$$

Impulsbilanz
$$\frac{\partial \vec{g}}{\partial t} + \nabla \cdot \overleftrightarrow{T} = -\vec{f}_L$$

Impuls
dichte
$$\vec{g} = \varepsilon_0(\vec{E} \times \vec{B})$$

$$\overrightarrow{T} = \varepsilon_0(\frac{1}{2}\vec{E}\mathbb{1} - \vec{E} \circ \vec{B})$$

Impulsstromdichte
$$+ \frac{1}{\mu_0} (\frac{1}{2} \vec{B} \mathbb{1} - \vec{B} \circ \vec{B})$$

Kraftdichte
$$\vec{f_l} = \rho \vec{E} + \vec{\jmath} \times \vec{B}$$

Strahlungsdruck
$$P = \frac{w}{3}$$

mittlere Leistung hD
$$\bar{P}_{em} = \frac{p^2}{12\pi\varepsilon_0\varepsilon c^3}\omega^4$$

Magnetfeldvektor
$$\vec{B}_0 = \frac{1}{\omega}(\vec{k} \times \vec{E}_0) = \frac{1}{c}(\vec{e}_k \times \vec{E}_0)$$

$$W_c = \alpha \frac{Q^2}{8\pi\varepsilon_0 a}$$

Energie in Kugel
$$\alpha = \frac{6}{5}$$
 homogene Kugel

$$\alpha=1$$
für Hohlkugel

anisotropes Medium
$$\vec{D} = \varepsilon_0 (1 + \chi) \vec{E}$$

Zeitabhängige Felder 4.13

$$\vec{B} = \nabla \times \vec{A}$$

$$\vec{E} = -\nabla \varphi - \dot{\vec{A}}$$

Vierer-Potential-Transformation	$\vec{A} \longrightarrow \vec{A}' + \nabla \chi, \ \varphi \longrightarrow \varphi' = \varphi - \partial_t \chi$
---------------------------------	--

Lorenz-Eichung
$$\frac{1}{c^2}\partial_t \varphi + \nabla \cdot \vec{A} = 0$$

damit
$$\Box \varphi = \frac{\rho}{\varepsilon_0}, \Box \vec{A} = \mu_0 \vec{\jmath}$$

retardierte Potentiale
$$\Box u = \rho$$

retardierte Potentiale (Lsg.)
$$\varphi(\vec{r},t) = \frac{1}{4\pi\varepsilon_0} \int dV' \frac{\rho(\vec{r'},t-\frac{|\vec{r}-\vec{r'}|}{c})}{|\vec{r}-\vec{r'}|}$$
ret. A:
$$\vec{A}(\vec{r},t) = \frac{\mu_0}{4\pi} \int dV' \frac{\vec{\jmath}(\vec{r'},t-\frac{|\vec{r}-\vec{r'}|}{c})}{|\vec{r}-\vec{r'}|}$$

ret. A:
$$\vec{A}(\vec{r},t) = \frac{\mu_0}{4\pi} \int dV' \frac{\vec{\jmath}(\vec{r}',t-\frac{|r-r|}{c})}{|\vec{r}-\vec{r}'|}$$

Stromdichte:
$$\vec{J}(t) = \int dV \vec{\jmath}(\vec{r},t) = \dot{\vec{p}}$$

Fernfeld
$$\vec{E}(\vec{r},t) = c\vec{B} \times \vec{n}$$

Energieabstrahlung Hertz'scher Dipol
$$\left| \vec{S}_p \right| = \frac{\mu_0}{16\pi^2 c} \frac{1}{r^2} (\ddot{\vec{p}}^2 \sin^2 \vartheta)$$

Zeitmittel abgestrahlte Leistung
$$\bar{N} = \frac{\mu_0 \omega^2 \bar{p}_0^2}{12\pi c}$$

Energieabstrahlung
$$\vec{S}_p = \hat{n} \frac{\mu_0}{16\pi^2 c} \frac{(\vec{q} \times \hat{n})^2}{r^2}$$

Strahlungbremskraft
$$\vec{F_s} = \tfrac{Q^2}{4\pi c^3 \varepsilon_0} \ddot{\vec{R}}$$

4.14 EM-Felder in Substanzen

Polarisation
$$\vec{P} = \chi_e \varepsilon_0 \vec{E}$$

Magnetisierung
$$\vec{M} = \chi'_{m \mu_0} \vec{B}$$

Verschiebungsdichte
$$\vec{D} = \varepsilon_0 \varepsilon_r \vec{E}$$
$$= \varepsilon \vec{E} = (1 + \chi_e) \varepsilon_0 \vec{E}$$

Magnetfeld
$$\vec{H} = (1 - \chi'_m) \frac{1}{\mu_0} \vec{B}$$

Flussdichte
$$\vec{B} = \frac{\mu_0}{1 - \chi_m'} \vec{H}$$

Ströme
$$\vec{j} = \vec{j_k} + \vec{j_L} + \vec{j_P} + \vec{j_M}$$

Magnetisierungsstrom
$$\vec{\jmath}_M = \nabla \times \vec{M}$$

Mag.strom
$$\nabla \cdot \vec{\jmath}_M = 0$$

Brechungsindex
$$n = \sqrt{\varepsilon_0 \mu_0} = \frac{c_0}{c}$$

Energiestromdichte
$$\vec{S} = \vec{E} \times \vec{H}$$

Impuls
dichte
$$\vec{g} = \vec{D} \times \vec{B} = \tfrac{n^2}{c_0^2} \vec{S}_p$$

Clausius-Mosotti
$$\left|\frac{\varepsilon_r - 1}{\varepsilon_r + 2}\right| = \frac{\kappa}{3}$$

Supraleiter
$$\sigma = \infty, \vec{B} = 0$$

1. London-Gleichung
$$\frac{\partial \vec{j}_s}{\partial t} = \frac{n_s * \cdot e *^2}{m *} \vec{E}$$

2. London-Gleichung
$$\nabla \times \vec{\jmath}_S + \frac{n_s * \cdot e *^2}{m *} \vec{B} = 0$$

$$\nabla \cdot \vec{D} = \rho_{\text{frei}}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{H} = \mu_0 \vec{J}_{\text{frei}} + \frac{\partial \vec{D}}{\partial t}$$

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$$

$$\vec{H} = \frac{1}{\mu_0} \vec{B} - \vec{M}$$

$$\hat{n}(\vec{D}_2 \vec{D}_1) = \sigma_o$$

$$\hat{n}(\vec{B}_2 \vec{B}_1) = 0$$

$$\hat{n} \times (\vec{E}_2 \vec{E}_1) = 0$$

$$\hat{n} \times (\vec{H}_2 \vec{H}_1) = \vec{k}$$

5 Optik

5.1 Wärmestrahlung

Strahlungsgesetz $S = \sigma T^4$

Wien'sches Verschiebungsg. $\lambda_{max}T = 2,898$ mmK

Planck's ches Strahlungsg. $W(\lambda,T) = \frac{hc^3}{\lambda^5 \exp{(hc/\lambda k_BT)} - 1}$

Boltzmann-Verteilung $P_n = \frac{\exp{-\beta E_n}}{\sum_n \exp{-\beta E_n}}$

Teilchenzahl $\langle n \rangle = \frac{1}{\exp \beta \hbar \omega - 1}$

Dichteoperator $\hat{\rho} = \sum_{n} \frac{\langle n \rangle^n}{(1 + \langle n \rangle)^{1+n}} |n\rangle \langle n|$

Spectrum of Solar Radiation (Earth)

5.2 Strahlenoptik

Brechungsindex $n = \frac{c}{v} = \sqrt{\varepsilon_r \mu_r}$

optische Pfadlänge $\Delta = nd = ct$

Reflexionsgesetz $\alpha_1 = \alpha_2$

Brechungsgesetz $n_1 \sin \alpha_1 = n_2 \sin \alpha_2$

Strahlverengung $\Delta b = \frac{\cos \alpha_2}{\cos \alpha_1}$

kritischer Winkel $\sin \alpha_C = \frac{n_1}{n_2}$

Brewster-Winkel: $\tan \alpha_B = \frac{n_2}{n_1}$

Abweichung $\frac{n_2}{n_1} = \frac{\sin\frac{1}{2}(\alpha + \delta_m)}{\sin\frac{1}{2}\alpha}$

dünnes Prisma $\frac{n_2}{n_1} = \frac{\alpha + \delta_m}{\alpha}$

Gauss'sche Formel $\frac{n_1}{q} + \frac{n_2}{b} = \frac{n_2 - n_1}{r}$

Linsengleichung $\frac{1}{g} + \frac{1}{b} = \frac{1}{f}$

Linsenschleiferformel $\frac{1}{f} = (n-1)(\frac{1}{r_1} - \frac{1}{r_2} + \frac{(n-1)d}{nr_1r_2})$

Strahlen $M \to M, P \leftrightarrow B$

Vergrößerung $V = \frac{B}{G} = -\frac{b}{g}$

Dioptrie P = 1/f[m]

Vergrößerung Linse $V_L = \frac{s_0}{f} = \frac{\sigma}{\sigma_0}$

Vergrößerung Mikroskop $V_M = V_{Ob}V_{Ok} = -\frac{l}{f_{Ob}}\frac{s_0}{f_{Ok}}$

Vergrößerung Teleskop $V_T = -\frac{f_{Ob}}{f_{Ok}}$

Spiegelgleichung $\frac{1}{f} = -\frac{2}{r}$

Astigmatismus-Positionen $\frac{1}{g} + \frac{1}{i_T} = -\frac{2}{r \cos \alpha}$

 $\frac{1}{g} + \frac{1}{i_S} = -\frac{2\cos\alpha}{r}$

 $[\]varepsilon_r$: relative Permittivität im Medium, μ_r : relative Permeabilität im Medium, d: Länge, α : Einfalls-/Austrittswinkel, g: Gegenstandsweite, b: Bildweite, f: Brennweite, r: Krümmungsradius, d: Linsendicke, M: Mittelpunktsstrahl, P: Parallelstrahl, B: Brennstrahl

5.3 Elektromagnetische Wellen

Phase	yt - kx
-------	---------

Phasengeschw.
$$v_{ph} = \frac{\omega}{k}$$

Dopplereffekt (n.r.)
$$f' = f(1 + \frac{v}{c})$$

Gruppengeschw.
$$v_{gr} = \frac{\partial \omega}{\partial k}$$

Wellenvektor
$$\vec{k} = \frac{2\pi}{\lambda}\hat{e}$$

Poyntingvektor
$$\vec{S} = \frac{1}{\mu_0} (\vec{E} \times \vec{B})$$

Strahlungsdruck
$$p_S = I/c$$

Intensität
$$I = \frac{P}{A} = |\vec{S}|$$

Impuls
$$p = \frac{W}{c}$$

Wellengleichung
$$\nabla^2 \vec{E} - \frac{1}{c^2} \ddot{\vec{E}} = \Box \vec{E} = 0$$

Ebene, monochr. Welle
$$\vec{E} = \vec{E}_0 \exp[i(\vec{k}\vec{r} - \omega t + \varphi)]$$

$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = \frac{\omega}{k} = \lambda \cdot f$$

$$k = \frac{2\pi}{\lambda}, \, \omega = 2\pi f = \frac{2\pi}{T}$$

$$D_{n,1} = D_{n,2}, E_{t,1} = E_{t,2}$$

$$B_{n,1} = B_{n,2}, H_{t,1} = H_{t,2}$$

Grenzflächenbedingungen

5.4 Interferenz

Young konstruktiv $x = m\lambda \frac{D}{d}$

Young destruktiv $x = (m + \frac{1}{2})\lambda \frac{D}{d}$

Fresnel'sches Biprisma $\lambda = \frac{\Delta xd}{B+C}$

Intensität bei Interferenz $I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\theta$

Michelson-Interferometer $I = 1 + \cos \theta = 1 + \cos(\frac{2\pi d}{\lambda})$

Zeitmittel $\langle f(t) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(t) dt$

VAN CITTERT-ZERNIKE-THEOREM

Beugung und Dispersion 5.5

Beugung	langer	Spalt
Dougung	ianger	Spare

$$I = A_0^2 \frac{\sin^2 \beta}{\beta^2}$$

$$\beta = \frac{1}{2}kb\sin\Theta$$

$$A_0 = \frac{ab}{x}$$

Einfall unter i

$$\beta = \frac{b\pi(\sin i + \sin \Theta)}{\lambda}$$

Beugung rechteckiger Spalt

$$I \sim b^2 l^2 \frac{\sin^2 \beta}{\beta^2} \frac{\sin^2 \gamma}{\gamma^2}$$

Rayleigh-Krit. rechteckige Ap. $\Theta = \frac{\lambda}{b}$

$$\Theta = \frac{\lambda}{b}$$

Rayleigh-Krit. runde Ap.

$$\Theta = 1.22 \frac{\lambda}{D}$$

Beugungsgitter

$$d(\sin i + \sin \Theta) = m\lambda$$

Winkeldispersion

$$\frac{\Delta\Theta}{\Delta\lambda} = \frac{m}{d\cos\Theta}$$

Auflösung Gitter

$$\Delta\Theta = \frac{\lambda}{Nd\cos\Theta}$$

Resolving Power

$$RP = \frac{\omega}{\delta\omega} = \frac{\nu}{\delta\nu} = \frac{\lambda}{\delta\lambda}$$

Fresnel

$$R_n = \sqrt{n\lambda L}$$

Fresnel-Zone Fläche

$$A = \pi \lambda L$$

Fresnellinse, fok. L.

$$l = \frac{R_1^2}{\lambda}$$

 $d \sim \lambda/2$

Auflösungsgrenze

5.6 Leiteroperatoren und kohärente Zustände

Vernichtungsop.	$\hat{a}\psi_n = \sqrt{n}\psi_{n-1}$
vermentangsop.	$\omega \varphi n - \nabla n \varphi n - 1$

Erzeugungsop.
$$\hat{a}^{\dagger}\psi_n = \sqrt{n-1}\psi_{n-1}$$

Vernichtungsop.
$$\hat{a} = \frac{1}{\sqrt{2}} (\xi + \frac{d}{d\xi})$$

Erzeugungsop.
$$\hat{a}^{\dagger} = \frac{1}{\sqrt{2}} (\xi - \frac{d}{d\xi})$$

Kommutator
$$[a, a^{\dagger}] = 1$$

Teilchenzahlop.
$$\hat{N} = a^{\dagger}a = \hat{N}^{\dagger}$$

Identität
$$aa^{\dagger} - a^{\dagger}a = 1$$

Hamiltonian hO
$$\hbar\omega(a^{\dagger}a+1/2)$$

auf Teilchenzahlzustand
$$\hat{a} |n\rangle = \sqrt{n} |n-1\rangle$$

$$\hat{a}^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle$$

Vakuumzustand
$$\hat{a} |0\rangle = 0$$

Quantisierung EM-Feld
$$\vec{A}_k = \sqrt{\frac{\hbar}{2\varepsilon_0 V \omega_k}} \hat{a}_k \vec{e}_k$$

$$ec{A}_k^* = \sqrt{rac{\hbar}{2arepsilon_0 V \omega_k}} \hat{a}_k^\dagger ec{e}_k$$

5.7 Kohärenz

Gesamtintensität
$$I = I_1 + I_2 + 2\sqrt{I_1I_2}\Re[k_1k_2\gamma^1(x_1,x_2)]$$

Korrelationsfunktion
$$\Gamma_{12}(\tau) = \Re\{\frac{1}{T}\int_0^T \vec{E}_1(t) \cdot \vec{E}_2^*(t+\tau)dt\}$$

Lorentzpuls
$$\gamma^{(1)} = \exp -i\omega_0 \tau \exp -|\tau|/\tau_c$$

Gaußpuls
$$\gamma^{(1)} = \exp{-i\omega_0 \tau} \exp{-\frac{\pi}{2}(\frac{\tau}{\tau_c})^2}, \ \tau_c = \frac{\sqrt{8\pi \ln 2}}{\Delta \omega}$$

Kohärenzlänge
$$l_c = c \langle \tau_0 \rangle = \frac{c}{\Delta \nu}$$

Frequenzbandbreite
$$\Delta \omega = \frac{2\pi}{\tau_0}$$

Linienbreite
$$\Delta \lambda = \frac{\lambda_0^2}{l_c}$$

Kohärenzlänge
$$l_t = \frac{\lambda r}{s} = \frac{\lambda}{\theta_s} \text{ mit } \theta_s \text{ Winkelauflösung}$$

$$l_t$$
 runde Quelle: $l_t = \frac{1,22\lambda}{\theta_s}$

Kontrast
$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{2\sqrt{I_1 I_2} \cdot \left| \gamma^1 \right|}{I_1 + I_2}$$

Kontrast (gleiche Amp.)
$$V = |\gamma_{12}|$$

Kohärenz 2. Ordnung
$$\gamma^2(\tau) = \frac{\langle I(t)I(t+\tau)\rangle}{\langle I(t)\rangle^2}$$

5.8 Optische Elemente

Phasenplatte
$$H = \hbar(\omega + \phi)\hat{a}^{\dagger}\hat{a}$$

effektive Phasenverschiebung
$$\phi t = \varphi$$

Strahlteiler
$$H = \hbar \chi (\hat{a}^{\dagger} \hat{b} + \hat{b}^{\dagger} \hat{a})$$

Parametrische Fluoreszenz
$$H_i = \hbar G(\hat{a}_1^{\dagger} \hat{a}_2^{\dagger} \exp i\varphi + \hat{a}_1 \hat{a}_2 \exp -i\varphi)$$

Parameter
$$r = Gt = \frac{Gl}{v}$$

squeezed state
$$\sigma_Q^2 \sigma_P^2 \ge 1 \text{ mit } \sigma_Q^2 \ne \sigma_P^2$$

5.9 Absorption

Lambert-Beer'sches Gesetz $I(x) = I_0 e^{-\alpha x}$

Absorptionskoeff. $\alpha(\omega) = \frac{2\omega}{c}k(\omega)$

Plasmafrequenz $\omega_p^2 = \frac{4\pi n e^2}{m}$

Produktion freier Ladungen $\frac{\partial n}{\partial t} = D \frac{\partial^2 n}{\partial z^2} + G - R$

Erzeugungsrate $G = \frac{\alpha(1-R)}{\hbar\omega\tau_p}Q\exp[-\int_0^z\alpha dz']$

free carrier thermalization rate $\frac{1}{\tau_{e,e}} = K \frac{(\pi k_B T)^2 + \epsilon^2}{1 + \exp(-\epsilon/(k_B T))}$

Auger-Relaxionsrate $R_C = Cn^3$

Heizen mit CW-Laser $\rho C_p \frac{\partial T}{\partial t} = \nabla (\kappa \nabla T) + \frac{\partial Q}{\partial t}$

Temperatur
verteilung $T(r) \sim \exp[-r^2/l_{tot}^2]$

Ausdehnung Temperaturspot $l_{tot} = l_{em} + l_T$

Ausdehnung Heizspot $l_{em} \sim \lambda/\Im(n)$

Ausdehnung Wärmeleitung $l_T \sim \sqrt{\tau_p D}$

Heizen mit fs-Laser $C_e \frac{\partial T_e}{\partial t} = \nabla [\kappa_e \nabla T_e] - \Gamma_{e-ph} [T_e - T] + Q$

 $C\tfrac{\partial T}{\partial t} = \nabla[\kappa \nabla T] - \Gamma_{e-ph}[T_e - T]$

5.10 Nichtlineare Optik

Polarisation (Antwort) $P = \varepsilon_0 \chi^1 E + \varepsilon_0 \chi^2 E^2 + \varepsilon_0 \chi^3 E^3 + \dots$

Phasengleichheit $\vec{k} = \vec{k}_1 + \vec{k}_2$

Wellengleichung $\nabla \times (\nabla \times E) = \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} + \frac{4\pi}{c^2} \frac{\partial^2 P_l}{\partial t^2} + \frac{4\pi}{c^2} \frac{\partial^2 P_{nl}}{\partial t^2}$

Verschiebungsdichte $\vec{D} = \vec{E} + 4\pi \vec{P}$

Kerr-Effekt $n = n_0 + n_2 I$

Intensität im n.l. Medium $I_2(l) \sim \gamma_2^2 I_0^2 l^2 (\frac{\sin(\Delta k l/2)}{\Delta k l/2})^2$

5.11 Laserphysik

räumliche Kohärenz zufällige Quelle $r_c = \frac{\lambda z}{a}$

räumliche Kohärenz Laser $r_c \sim a$

Divergenz pertiell kohärenter Strahlen $\Theta = \lambda/\sqrt{S}$

Divergenz kohärenter Strahl $\Theta = \lambda/D$

Mittlere Leistung $\hat{P} = E \cdot RR$

Peakleistung $P_{peak} = E/\tau$

Fluence $F = E/s = 4E/\pi D^2$

Intensität $I = F/\tau = E/D^2\tau$

5.12 Emission und Photolumineszenz

5.13 2-Niveau-System

6 Quantenmechanik

6.1 Wellenfunktion

Schrödingergl. $i\hbar \frac{\partial}{\partial t} \psi = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi + V \psi$

de Broglie-Relation $p=\bar{k}$

Wahrscheinlichkeitsdichte $|\psi|^2 dx$

Normierung $\int_{-\infty}^{\infty} |\psi|^2 dx = 1$

Impuls $p = \frac{\hbar}{i} \frac{\partial}{\partial x}$

Ortserwartungswert $\langle x \rangle = \int_{-\infty}^{\infty} \psi^* x \psi dx$

Geschwindigkeiterw. $\langle v \rangle = \int_{-\infty}^{\infty} \psi^*(\frac{\hbar}{im} \frac{\partial}{\partial x}) \psi dx$

Unschärferelation $\sigma_x \sigma_{p_x} \ge \hbar/2$

6.2 Zeitabhängige Schrödingergleichung

Zeitunabg. SG
$$i\hbar \frac{\partial}{\partial t} \psi = \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x)\right) \psi$$

Separationsansatz
$$\psi(x,t) = \phi(x)f(t)$$

Lögung für
$$E$$
 $i\hbar \frac{d}{dt}f(t) = Ef(t)$

Lösung für
$$E$$

$$(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V)\phi(x) = E\phi(x)$$

Lösung
$$\psi(x,t) = \phi(x) \exp(-\frac{i}{\hbar}Et)$$

angeregte Zustände
$$n=1,2,...$$
 Knoten

$$\phi$$
 stetig

Stetigkeit
$$\frac{d\varphi}{dx} \text{ stetig, wenn } V \text{ endlich}$$

Asym. unendliches Kastenpotential

Energien
$$E_n = \frac{\hbar^2 \pi^2}{2ma^2} n^2$$

Wellenfunktionen
$$\phi_n(x) = \sqrt{\frac{2}{a}}\sin(\frac{n\pi}{a}x)$$

Freies Teilchen

Potential
$$V(x) = 0$$

Wellenfunktion
$$\psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dk \phi(k) \exp(i[kx - \hbar k^2 t/2m])$$

Delta-Potential

Potential
$$V(x) = -\alpha \delta(x)$$

Bedingung
$$E < 0, \alpha > 0$$

Wellenfunktion
$$\frac{\sqrt{m\alpha}}{\hbar} \exp(-\frac{m\alpha}{\hbar^2} |x|)$$

Energien
$$E = -\frac{m\alpha^2}{2\hbar^2}$$

Reflexionskoeff.
$$R = 1/(1 + \frac{2\hbar^2 E}{m\alpha^2})$$

Transmissionskoeff.
$$T = 1/(1 + \frac{m\alpha^2}{2\hbar^2 E})$$

Harmonischer Oszillator

Potential
$$V(x) = \frac{m\omega^2}{2}x^2$$

Energien
$$E_n = (n+1/2)\hbar\omega$$

Wellenfunktionen
$$\phi_n(x) = A_n(a^+)^n \exp(-\frac{m\omega}{2\hbar}x^2)$$

Leiteroperatoren
$$a_{+} = \frac{1}{\sqrt{2m}} (\frac{\hbar}{i} \frac{d}{dx} + im\omega x)$$

$$a_{-} = \frac{1}{\sqrt{2m}} \left(\frac{\hbar}{i} \frac{d}{dx} - im\omega x \right)$$

Hamiltonian
$$H = a_- a_+ - \hbar \omega / 2$$

Impuls
$$p = \sqrt{\frac{m}{2}}(a_+ + a_-)$$

Ort
$$x = i\sqrt{\frac{1}{2m\omega^2}}(a_- - a_+)$$

Kanonische Kommutatorrel.
$$[x, p] = i\hbar$$

Kommutator
$$a_{-}, a_{+}$$
 $[a_{-}, a_{+}] = \hbar \omega$

Virialsatz
$$\frac{1}{2}\langle E \rangle = \langle T \rangle = \langle V \rangle$$

6.3 Hilbertraum

Vektoren $|\alpha\rangle$ im C-Vektorraum

Skalarprodukt $\langle \alpha | \beta \rangle = \int \alpha^*(x)\beta(x)dx$

hermitscher Operator $\langle \alpha | A\beta \rangle = \langle A\alpha | \beta \rangle$

quadratintegrabel $\int_{-\infty}^{+\infty} \psi^*(x)\psi(x)dx < \infty$

Messgröße $\langle A \rangle = \langle \psi | A | psi \rangle$

Varianz $\sigma^2 = \langle A^2 \rangle - \langle A \rangle^2$

Projektionsoperator $P = P^2$

Wahrscheinlichkeit $|c_n| = |\langle e_n | \psi \rangle|^2$

Heisenberg'sche Unschärfe $\sigma_A^2 \sigma_B^2 \ge (\frac{1}{2i} \langle [A, B] \rangle)^2$

totale Zeitableitung $\frac{d}{dt}\langle A\rangle = \frac{i}{\hbar}\langle [H,A]\rangle + \langle \frac{\partial A}{\partial t}\rangle$

$$[A, B] = AB - BA$$

$$[A,B] + [B,A] = 0$$

$$[A,A] = 0$$

$$[A, B + C] = [A, C] + [B, C]$$

$$[A,BC] = [A,B]C + B[A,C]$$

$$[AB, C] = [A, C]B + A[B, C]$$

$$[A, [B, C]] + [C, [A, B]] + [B, [C, A]] = 0$$

$$[A, B^n] = nB^{n-1}[A, B]$$

$$[A^n, B] = nA^{n-1}[A, B]$$

$$e^A B e^{-A} = B + [A, B] + \frac{1}{2!} [A, [A, B]] +$$

$$\frac{1}{3!}[A, [A, [A, B]]]$$

$$\{A, B\} = AB + BA$$

6.4 Thermodynamik und QM

Energiequantisierung $E_n = nh\nu$

Bohr $\frac{Ze^2}{4\pi\varepsilon_0 r_n^2} = m\omega^2 r_n$

Drehimpuls $p_{\varphi_n} = n\hbar = L_n$

Wellenfunktion $\psi(\vec{r},t) = \psi_0 \cdot \exp[i(\vec{k} \cdot \vec{r} - \omega t)]$

Photoeffekt Grenzwellenlänge $\lambda_G = \frac{hc}{W_A}$

Duane+Hund $U \cdot \lambda_{min} = \frac{hc}{e} = 1240 \text{Vnm}$

charakt. Spektrum $\Delta E = h\nu$

Bremsstrahlung en.reichstes Quant $E = Ue = \frac{hc}{\lambda_m in}$

Comptonstreuung $\lambda_f = \frac{h}{m_0 c} (1 - \cos \theta) + \lambda_i$ Rückstreuung

 $\lambda_c = \frac{h}{m_0 c} = 2,43 \text{pm}$

Exp. Abfall $N(t) = N_0 \cdot \exp(-\lambda t) \text{ mit } \lambda = \ln 2/T_{1/2}$

6.5 Heisenberg

$$\Delta x \cdot \Delta p_x \ge \hbar/2$$

Aufenthaltswahrsch. in Δx $P_{\Delta x} = \int_{x_0}^{x_1} \psi^2(x) dx$

 $\Delta k \cdot \Delta x = 2\pi$

6.6 Schrödinger

unendlicher Potentialtopf von 0 bis a $\psi_n(x) = \sqrt{\frac{2}{a}} \sin(\frac{n\pi}{a}x)$

n-te Energie $E_n = n^2 \frac{h^2}{8ma^2}$

unendl. Pot.topf von -a bis a $\psi_n(x) = \sqrt{\frac{1}{2a}} \cos(\frac{(n+1/2)\pi}{a}x)$

Erw.wert $\langle x \rangle = \int_0^a x \cdot |\psi(x,t)|^2 dx$

Randbedingungen ψ, ψ' bei x = 0, x = a stetig

Normierung $1 = \int_0^a |\psi|^2 dx$

Transmissionskoeff. $E > V_0: T = \frac{4E(E-V_0)}{4E(E-V_0) + V_0^2 \cdot \sin^2(k_2 a)}$

 $E < V_0$: $T = \frac{4E(E - V_0)}{4E(E - V_0) + V_0^2 \cdot \sinh^2(k_2 a)}$

Transmission $\lambda_E = \frac{h}{\sqrt{2m(E-V_0)}}$

dunnow $k_2 = \frac{\sqrt{2m(E-V_0)}}{\hbar}$

Reflektion $R = \frac{(k_1 - k_2)^2}{(k_1 + k_2)^2}$

harm. Osz. $E_0 = \frac{1}{2}\hbar\omega_0$

$$i\hbar\frac{\partial}{\partial t}\psi = -\frac{\hbar^2}{2m}\Delta\psi + V\psi$$

$$\hat{H}\psi = E\psi$$

6.7 Tunneleffekt

6.8 Quantenmechanischer Oszillator

6.9 Grundlagen

$$(-\frac{\hbar^2}{2m}\nabla^2 + V)\psi = i\hbar\frac{\partial}{\partial t}\psi$$

totaler W.querschnitt
$$\sigma = \frac{pA}{N_{\text{target}}}$$

diff. W.querschnitt
$$\left(\frac{d\sigma}{d\Omega}\right)_{\vartheta} = \left(\frac{dp}{d\Omega}\right)_{\vartheta} \left(\frac{A}{N_{\text{target}}}\right)$$

für Zählraten
$$\Delta p = \frac{f_{\Omega}}{f_0}$$

axial
symmetrisch
$$(\frac{d\sigma}{d\Omega})_{\vartheta} = \frac{b}{\sin\vartheta} \left| \frac{db}{d\vartheta} \right|$$

Stoßparameter
$$b = \frac{Z_1 Z_2 e^2}{8\pi\varepsilon_0 E_{kin}} \cot \frac{\vartheta}{2}$$

kA
$$f_{\Omega} = \mu f_0 \frac{d\sigma}{d\Omega} \Delta \Omega$$

Rutherford-Streuung
$$(\frac{d\sigma}{d\Omega})_{\vartheta} \sim \frac{1}{\sin^4(\frac{\vartheta}{2})}$$

H-Spektrum
$$\frac{1}{\lambda} = R_{\infty} \left(\frac{1}{n_a^2} - \frac{1}{n_b^2} \right) \text{ mit } R_{\infty} = \frac{m_e e^4}{8\varepsilon_0^2 h^3 c} = 109677 \text{cm}^{-1}$$

Serien Lyman
$$(n_a = 1, \text{UV})$$
, Balmer $(2, \text{V})$, Paschen $(3, \text{IR})$, Brackett (4) , Pfund

Rydberg-Konstante
$$R = \frac{R_{\infty}}{1 + \frac{m_e}{M}}$$

Bohr'sche Quantenbedingung
$$l = n\hbar$$

Radius
$$r_n = \frac{h^2 \varepsilon_0}{\pi \mu e^2} \frac{n^2}{Z}$$
 Feinstrukturkonst.

$$\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c} \approx \frac{1}{137}$$

reduz. Masse
$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

Energieeigenwerte
$$E_n = \frac{\mu e^4}{8\varepsilon_n^2 h^2} \frac{1}{n^2} = \frac{E_0}{n^2}$$

relat.
$$E = \sqrt{m_0^2 c^4 + p^2 c^2}$$

Coulomb-Pot.
$$V = -\frac{Ze^2}{4\pi\varepsilon nr}$$

kA
$$\omega_n = \frac{v_n}{r_n} = \frac{e^4 m}{16\pi^2 \varepsilon_0^2 \hbar^2 n^3}$$

Bohr'sche Postulate:

- 1. \exists diskrete Bahnen mit E_n , auf denen sich e^- strahlungsfrei bewegen können
- 2. Strahlungsemission/-absorption findet an Übergängen statt mit $hf = \Delta E$ und $E_n = R_{\infty} \frac{hc}{n^2}$
- 3. Korrespondenzprinzip

Extraktion von E und p
$$E\psi = -i\hbar \frac{\partial}{\partial t}\psi, \ \vec{p}\psi = -i\hbar \nabla \psi$$

$$E_{ges} = \frac{p^2}{2m} + eV(\vec{r}) \rightarrow -\frac{\hbar^2}{2m}\nabla^2 + eV(\hat{r}) = \hat{H}$$

$$\hat{L} = \hat{r} \times \hat{p}$$

$$[\hat{H}, \hat{L}_i] = 0, [\hat{H}, \hat{L}^2] = 0, [\hat{L}_i, \hat{L}_j] = i\hbar \hat{L}_k$$

$$\hat{L}^2 |Y_{l,m}(\theta,\varphi)\rangle = l(l+1)\hbar^2 |Y_{l,m}(\theta,\varphi)\rangle$$

$$\hat{L}_z |Y_{l,m}(\theta,\varphi)\rangle = m\hbar |Y_{l,m}(\theta,\varphi)\rangle$$

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{\hat{L}^2}{r^2 \hbar^2}$$

$$\hat{H} = \sum \hat{H}_i(x_i) \Rightarrow \psi(\vec{r}) = \Pi \psi_i(x_i)$$

$$E = \frac{\hbar^2}{2m} (q_1^2 + q_2^2 + q_3^2)$$

$$Y_{l,m}(\theta,\varphi) = e^{im\varphi} \cdot P_l^m(\cos\theta)$$

HERE GOES QT2

7 Atom- und Molekülphysik

7.1 Grobstruktur

 $V(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r}$ Potential $\left\{-\frac{\hbar^2}{2m}\left[\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial}{\partial r}) - \frac{\hat{L}^2}{\hbar^2r^2}\right] + V(r)\right\}\psi(\vec{r}) = E\psi(\vec{r})$ SG $\psi_{E,l,m} = R_{E,l}(r) \cdot Y_{l,m}(\theta,\varphi)$ Ansatz: $R_{E,l}(r) = \frac{u_{E,l}(r)}{r}$ weiter mit $\Rightarrow \{-\frac{\hbar^2}{2m}\frac{d}{dr} + \frac{l(l+1)\hbar^2}{2mr^2} + V(r)\}u_{E,l}(r) = Eu_{E,l}(r)$ dann $W(r)dr = 4\pi r^2 |\psi(r, \vartheta, \varphi)|^2 dr$ Energie $W = \frac{4}{a_0^3} \int_b^c r^2 \exp(\frac{-2r}{a_0}) dr =$ für H in 1s $4\frac{}{a_0^3[\exp(\frac{-2r}{a_0})(\frac{-a_0r^2}{2}-\frac{a_0^2r}{2}-\frac{a_0^3}{4})]}$ $r_m = \frac{a_0}{Z}$ Max bei $\langle r \rangle = \frac{4}{a_0^3} \int_0^\infty r^3 \exp(\frac{-2r}{a_0}) dr = \frac{4}{a_0^3} \left[\exp(\frac{-2r}{a_0}) \left(\frac{-a_0 r^3}{2} - \frac{3a_0^2 r^2}{4} - \frac{a_0^3 r}{4} - \frac{3a_0^4}{8} \right) \right]$ Erwartungswert Ort

7.2 Feinstruktur

kA

kΑ

Bahndrehimpuls	$ec{l}=ec{r} imesec{p}=m_eec{r} imesec{v}$
mag. Moment	$\vec{\mu} = I\vec{A} = -\frac{1}{2}e\vec{r} imes \vec{v}$
damit	$ec{\mu} = -rac{e}{2m}ec{l}$
in homog. B-Feld	$E = -\vec{\mu} \cdot \vec{B}, \ \vec{M} = \vec{\mu} \times \vec{B}$
normaler Zeeman-Effekt	Aufspaltung in $(2l+1)$ äquidistante Energieniveaus
Kreiselgleichung	$\frac{d\vec{\mu}}{dt} = -\frac{e}{2m}\vec{\mu}\times\vec{B}$ Kreiselgleichung mit Präzessionsfre
mag. Dipol	$ec{\mu}_l = -rac{e\hbar}{2m_e}rac{ec{l}}{\hbar} = \mu_Brac{ec{l}}{\hbar}$
Kernmagneton	$\mu_K = \frac{e\hbar}{2m_p} << \mu_B$
allg. Drehimpuls	$\vec{\mu}_{l,s} = g_{l,s} \mu_B \frac{(\vec{l}, \vec{s})}{\hbar}$
Stern-Gerlach:	neutrale Ag-Atome durch inhomog. B -Feld
Kraft im Stern-Gerlach	$F_z = \mu_z \frac{\partial B_z}{\partial z} \to \text{zwei Werte}$
innerer Drehimpuls	$s = \frac{1}{2}\hbar$
mag. Spinmoment	$\vec{\mu}_s = g_s \mu_B rac{ec{s}}{\hbar}$
Kommutator Spin	$[\hat{S}_i,\hat{S}_j]=i\hbar\hat{S}_k,[\hat{S}^2,\hat{S}_z]=0$
Gesamtdrehimpuls	$j = \left \vec{l} + \vec{s} \right = j(j+1)$
Magnetfeld Bahndrehimpuls	$ec{B} = rac{\mu_0 Ze}{8\pi m_e r^3} ec{l}$
WW-Energie Spin-Bahn-Kopplung	$\Delta E_{ls} = g_s \mu_B \frac{\mu_0 Ze}{8\pi\hbar m_e r^3} (\vec{s} \cdot \vec{l})$
kA	$\vec{s} \cdot \vec{l} = \frac{1}{2} (\vec{\jmath}^2 - \vec{l}^2 - \vec{s}^2)$
Energie Spin-Bahn-Kopplung	$E_{nlj} = E_n + \frac{a}{2}(j(j+1) - l(l+1) - s(s+1))$ mit a
Energieaufspaltung Spin-Bahn-Kopplung	$\Delta E_{ls} = -E_n \frac{Z^2 \alpha^2}{nl(l+1)}$
anormaler Zeeman-Effekt (2 $j + 1$, nicht äquidistant)	$\Delta E_{m_j,m_j-1} = g_j \mu_B B$
Gyromagnetisches Verhältnis	$g_j = 1 + \frac{j(j+1) + s(s+1) - l(l+1)}{2j(j+1)}$
kA	$\Delta m_j = \pm 1$: zirkular
kA	$\Delta m = 0$: linear zu B
Bezeichnung	$n^{2s+1}X_j$
Spin-Bahn-Kopplungskonstante	$a = \frac{\mu_0 Z e^2 \hbar^2}{8\pi m_e^2 r^3}$
kA	$\Delta E = \frac{Ze^2\mu_0}{8\pi m_e^2 r^3}$

 $52 B = \frac{ma}{\hbar^2 e} \sqrt{l(l+1)}\hbar$

 $\vec{i}^2 = \vec{l}^2 + \vec{s}^2 + 2\vec{l}\vec{s}$

7.3 Hyperfeinstruktur

Kernspin $|I| = \sqrt{I(I+1)}\hbar$

mag. Dipol $\mu_I = g_I \mu_K \frac{I}{\hbar}$

Gesamtdrehimpuls $\vec{F} = \vec{j} + \vec{I}$

Energieverschiebung $\Delta E_{HFS} = \frac{A}{2}[F(F+1) - j(j+1) - I(I+1)]$

 $A = \frac{g_I \mu_K B_j}{\sqrt{j(j+1)}}$

Zahl $N(t) = N_0 \exp(-\frac{\Gamma}{\hbar}t)$

Lebensdauer $\tau = \frac{\hbar}{\Gamma}$

Auswahlregeln Wasserstoff:

 $\Delta l = \pm 1$

 $\Delta m_l = 0, \pm 1$

 $\Delta m_s = 0$

 $\Delta j = 0, \pm 1 \text{ außer } 0 \to 0$

7.4 Mehrelektronensysteme

Ortswellenfkt $\Psi^{s/a} = \psi_1(a)\psi_2(b) \pm \psi_2(a)\psi_1(b)$

mit $\vec{S} = \vec{s_1} + \vec{s_2}$, Singulett: S=0, Triplett: S=1

gesamt: $\Psi = \Psi_{ab}(r_{1,2},\vartheta_{1,2},\varphi_{1,2})\chi(S,M_s)$

- 1. Hund'sche Regel: Grundzustand hat maximalen Spin
- 2. bis zu halbgefüllte Schalen haben minimales J
- 3. mehr als habgefüllte Schalen haben maximales J

Starke Kopplung zwischen l_i und l_j bzw. s_i und s_j : L-S-Kopplung (leicht): $\vec{J} = \vec{L} + \vec{S}$ sonst j-j-Kopplung (schwer): $\vec{J} = \sum \vec{j}$

Auswahlregeln: $\Delta S = 0$

 $\Delta L = \pm 1, 0 \text{ außer } 0 \to 0$

$$\Delta J=\pm 1,0$$
außer $0\rightarrow 0$

Für L, S, J gilt:

$$L = l_1 + l_2, ..., |l_1 - l_2|$$

$$S = 0, 1$$

$$J=L+S,...,\left\vert L-S\right\vert$$

Parahelium: ψ sym. (Singulett), Orthohelium: χ sym. (Triplett)

Titan: $(Ar)3d^24s^2$

7.5 Rotation und Schwingung von zweiatomigen Molekülen

kA	$E_n = h\nu(n + \frac{1}{2})$
kA	$E_J = BJ(J+1)$
kA	$E_{n,J} = h\nu(n + \frac{1}{2}) + BJ(J+1)$
kA	$\omega = \sqrt{\frac{k}{\mu}}$
kA	$\omega = \sqrt{\frac{g}{l}}$
Rotationsenergie	$E_{rot} = \frac{1}{2} \frac{L^2}{I}$
2-atomiges Molekül	$I = \mu r^2$

Eigenschaft	mit Ruhemasse	masselos
Ruhemasse	m_0	0
Geschwindigkeit	v_T	c
Masse	m	$m = \frac{E}{c^2} = \frac{p}{c} = \frac{\hbar k}{c}$
Impuls	$p = mv_T \text{ oder} = \frac{mv}{\sqrt{1 - (\frac{v}{c})^2}}$	$p = \frac{E}{c} = \frac{\hbar}{k} = \frac{\hbar 2\pi}{\lambda}$
Energie	$E = mc^2 = \sqrt{p^2c^2 + m_0^2c^4}$	$E = mc^2$
Drehimpuls	$ec{L}=ec{r} imesec{p}$	$\vec{s} = \pm h$
Frequenz	$\omega = \frac{E}{\hbar} = \frac{mc^2}{\hbar}$	$\omega = \frac{E}{\hbar}$
Wellenlänge	$\lambda = rac{h}{p}$	$\lambda = \frac{hc}{E} = \frac{c}{f}$
Phasengeschwindigkeit	$v_{ph} = \frac{c^2}{v_T} = 2v_{ph}$	$v_{ph} = c$
Gruppengeschwindigkeit	$v_{gr} = v_T$	$v_{gr} = c$

	1		1
Allgemein konstruktiv	$d = m\lambda$	d: Laufwegunterschied	Max
Allgemein destruktiv	$d = (m - \frac{1}{2})\lambda$	d: Laufwegunterschied	Min
Mehrere Strahlen	$2nd\cos\theta = m\lambda_0$	n: Brechungsindex	Max
Fabry-Perot-Interferometer	$2nd = m\lambda_0$	d: Plattenabstand	Max
Fraunhofer, Einfachspalt	$b\sin\theta = m\lambda$	n: Ordnung, b: Spaltbreite	Min
Fraunhofer, Auflösungsgrenze	$Dn\sin\theta = 1,22\lambda = D \cdot NA$	D: Durchmesser	
Fraunhofer, Doppelspalt	$\Delta \lambda = h \sin \theta$	h: Spaltabstand	Max
Fraunhofer, Beugungsgitter	$m\lambda = h\sin\theta$	h: Gitterkonstante	Max
Gitterauflösung	$mh\cos\theta\Delta\theta = \lambda$	h: Gitterkonstante	Max
Laue-Verfahren	$m\lambda = D\sin\alpha$	α : Einfallswinkel, D: Gitterabstand	Max
Bragg-Verfahren	$m\lambda = 2D\sin\theta$	wie oben	Max
Elektronenwellen	$D\sqrt{8m_0E}\sin\theta = mh$	D: Gitterabstand	Max
Dünne Schicht, Reflexion	$2dn = m\lambda$	m: Ordnung, n: Brechungsindex	Min
Gitterauflösung	$\lambda = mN\Delta\lambda$	m: Ordnung, N: ausgeleuchtete Linien	
Dünne Schicht, Brechzahl	$n = \frac{\lambda_1 \lambda_2}{\lambda_1 - \lambda_2} \cdot \frac{1}{2d}$	anstatt von 1 ggf. 2,3,4,	Min

7.6 Emission und Absorption

7.7 Drehimpuls und Magnetismus

7.8 Zeeman-Effekt

7.9 Wasserstoff

7.10 Moleküle

7.11 Hund'sche Regeln

8 Festkörperphysik

Translationsvektor $\vec{T} = h\vec{a}_1 + k\vec{a}_2 + l\vec{a}_3$

primitiv kleinste EZ, enthält einen Gitterpunkt

Richtung kleinste ganzz. [h, k, l]

Netzebene 1. Schnittpunkte mit Achsen, 2. Kehrwerte, 3. erweitern auf ganze Zahl, =

Höhe Tetraeder $1/3\sqrt{6}a$

Röntgen $\lambda = \frac{hc}{eU} = \frac{1,24 \text{ nm}}{eU[\text{keV}]}$

Elektronen $\lambda = \frac{_{1,226~\mathrm{nm}}}{\sqrt{U~\mathrm{V}]}}$

Neutronen $\lambda = \frac{0.9045 \text{ nm}}{\sqrt{U[\text{mV}]}}$

Wellenvektor $\vec{k} = \frac{2\pi}{\lambda} \vec{e}, \ \vec{p} = \hbar \vec{k}, \ |\vec{p}| = \hbar |\vec{k}| = \frac{\hbar \omega}{c}$

Bragg $n\lambda = 2d\sin\theta$

Gitter $d\sin\theta = n\lambda$

erlaubte Wellenvektoren $|\Delta \vec{k}| = n \frac{2\pi}{d} \text{ mit } \vec{k} - \vec{k}' = \Delta \vec{k}$

kA $f(x) \sim a_0 + \sum_{n=1}^{\infty} \left(a_n \cos(\frac{2\pi}{L}nx) + b_n \sin(\frac{2\pi}{L}nx)\right)$

mit $a_0 = \frac{1}{L} \int_0^L f(x) dx, \ a_n = \frac{2}{L} \int_0^L f(x) \cos(\frac{2\pi}{L} nx) dx$

komplex: $f(x) \sim \sum_{n=-\infty}^{\infty} c_n e^{i(2\pi/L)nx}$

mit $c_n = \frac{1}{L} \int_0^L f(x) e^{-i(2\pi/L)nx} dx$

kA $n(\vec{r}) = \sum_{\vec{G}} n_G \exp(i\vec{G} \cdot \vec{r})$

mit $\vec{G} = h\vec{b}_1 + k\vec{b}_2 + l\vec{b}_3$

reziproke Gitterbasisvektoren $\vec{b}_1 = 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{\vec{a}_1(\vec{a}_2 \times \vec{a}_3)}$

rezipr. $\operatorname{sc} \leftrightarrow \operatorname{sc}, \operatorname{hcp} \leftrightarrow \operatorname{hcp}, \operatorname{bcc} \leftrightarrow \operatorname{fcc}$

Bragg-Bedingung $\Delta \vec{k} = \vec{G}, \, \vec{k}^2 = \vec{k}'^2 = (\vec{k} + \vec{G})^2$

umformuliert $2\vec{k}\cdot\vec{G}+\vec{G}^2=0$

kA $d_{hkl} = \frac{2\pi}{|\vec{h}_1 + k\vec{b}_2 l\vec{b}_3|} = \frac{2\pi}{|\vec{G}|}$

rechtwinklig $d = \frac{1}{\sqrt{(h/a)^2 + (k/b)^2 + (l/c)^2}}$

kA $S_G = \sum_{i=1}^{Z} f_i \exp(-i2\pi(hx_i + ky_i + lz_i))$

kA $f_i = \int dV n_i(\vec{\rho}) \exp(-i\vec{G}\vec{\rho}), \ \vec{\rho} = \vec{r} - \vec{r_i}$

Drehkristall $c = \frac{m\lambda}{\sin\arctan\frac{y_m}{r_F}}$ 57

bcc 2f für h+l+l gerade, 0 für h+k+l ungerade

8.1 Kristallstruktur

Translationsvektor $T = u_1\vec{a}_1 + u_2\vec{a}_2 + u_3\vec{a}_3$

primitive Zelle enthält nur einen Gitterpunkt

Bindungen

Lennard-Jones
$$V = \gamma \left[e^{-r/r_0} - \left(\frac{r_0}{r}\right)^6\right] \sim 1/2m\omega^2(r - r_m)^2 - V_0$$

kA
$$R_0 = 1,09\sigma$$

8.2 Phononen

Dispersions relation	$\omega^2 = \frac{2C}{M}(1 - \cos(ka))$
Disp.	$\omega = \sqrt{\frac{4C}{M}} \sin(\frac{1}{2}ka) $
kürzestes λ	=2a
Gruppengeschwindigkeit	$\frac{d\omega}{dk} = v_G = \sqrt{\frac{Ca^2}{M}}$
kleine k	$\omega_0^2 = 2C(\frac{1}{M_1} + \frac{1}{M_2})$
kA	$\omega_a^2 = \frac{2C}{M_1 + M_2} k^2 a^2$
$k = \pi/a$	$\omega_0^2 = \frac{2C}{M_1}, \omega_a^2 = \frac{2C}{M_2}$
N Atome	3 akust., $(3N-3)$ opti.
Schall	$E = \frac{\sigma l}{\Delta l}$
kA	$\mu = -\frac{\Delta d/d}{\Delta l/l}$
kA	$v_{long} = \sqrt{\frac{E(1-\mu)}{\rho(1-\mu-2\mu^2)}}$
kA	$v_{trans} = \sqrt{\frac{E}{2\rho(1+\mu)}}$
kA	$E_{osz} = (n + \frac{1}{2})\hbar\omega$
kA	$E_{kin} = \frac{1}{4}\rho V A^2 \omega^2 \cos^2(\omega t)$
kA	$A^2 = \frac{4(n+1/2)\hbar}{\rho V\omega}$
kA	V(x+T) = V(x), T = na
kA	$V(x) = \sum_{G>0} 2V_G \cos(Gx)$
Ansatz	$\psi(x) = \sum_{k} C_k \exp(ikx) \text{ mit } k = n2\pi/L$
kA	$(\frac{\hbar^2}{2m}k^2 - E)C_k + \sum_G V_G C_{k-G} = 0$

8.3 Thermische Eigenschaften

Planck:
$$\langle n \rangle = \frac{1}{\exp(\hbar\omega/kT)-1}$$

$$k_F = (3\pi^2 \frac{N}{V})^{1/3}$$

$$E_F = \frac{\hbar^2 k_F^2}{2m}$$

$$T_F = \frac{E_F}{k_B}$$

$$mv_F = \hbar k_F$$

$$U = \int_0^\infty f(\varepsilon) D(\varepsilon) \varepsilon d\varepsilon$$

$$\begin{aligned} &2\text{D: } k_F = \sqrt{2\pi N/V} \\ &D(\omega) = \frac{Vk^2}{2\pi^2} \frac{dk}{d\omega} \sim \frac{V\omega^2}{2\pi^2V^3} \\ &\omega_D^3 = 6\pi^2 v^3 N/V = (\frac{3N}{4\pi V})^{1/3} v_s \\ &C_V = \frac{12}{5}\pi^4 Nk (\frac{T}{\Theta_D})^3 \text{ bei tiefen T, Gitter} \\ &\text{Wärmeleitung: } j_v = -K\frac{dT}{dx} \text{ mit } K = \frac{1}{3}c_V v l \\ &l = v_F \tau = \frac{\hbar k_F}{ne^2 \rho} \\ &c_V = \pi^2/2nk^2T/E_F \\ &C_V = \gamma T + AT^3 \\ &\gamma = \pi^3/3k^2D(E_F) \\ &\Theta_D = \frac{\hbar v_s}{2k} (\frac{6N}{\pi V})^{1/3} \\ &\hat{H}\psi(x) = -\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} + V(x) = E\psi(x) \\ &\psi_n(x) = A\sin(\frac{2\pi}{\lambda}x) \\ &n\lambda/2 = L \\ &E_n = \frac{\hbar^2}{2m} (\frac{n\pi}{L})^2, \ N \ \text{für Fermi} \\ &f(E,T) = \frac{1}{\exp((E-\mu)/kT)+1} \\ &\text{freies e-Gas: } N = \vec{k}_F^3 \frac{V}{2\pi^2} \\ &E_F = \frac{\hbar^2}{2m} (\frac{3\pi^2N}{V})^{2/3} \\ &k_F = (\frac{3\pi^2N}{V})^{1/3} \\ &D(E) = \frac{V}{2\pi^2} (2m/\hbar)^{3/2} \sqrt{E} \\ &C_V = \frac{1}{3}\pi^2 k^2 D(E_F)T = m\frac{Vk^2}{3\hbar} (\frac{3\pi^2N}{V})^{1/3}T \\ &f_B = \frac{2nv_G}{\lambda} \end{aligned}$$

8.4 Elektrische Eigenschaften

$$\begin{split} v_D &= \frac{e\tau E}{m_e} \\ \rho &= \frac{m_e n_e \tau}{e^2} \\ j &= env_D \\ \langle r^2 \rangle &= 3a_0^3 = \frac{4}{a_0^3} \int \exp(-2r/a_0) r^4 dr \\ \rho &= \frac{1}{\sigma} = \frac{m}{ne^2 \tau} \\ R_H &= -\frac{1}{ne} \\ K_{el} &= \frac{\pi^2 n k_B^2 T \tau}{3m} \\ \text{Mandelung-Konst. 1D: } \alpha &= 2 \ln 2 \end{split}$$

8.5 Halbleiter

$$\frac{1}{m^*} = \frac{1}{h^2} \frac{d^2E}{dk^2}$$

$$D(E) = \frac{1}{2\pi^2} (\frac{2m^*}{h^2})^{1/2} (E - E_L)^{1/2}$$

$$n = 2(\frac{m^*kT}{2\pi\hbar^2})^{3/2} \exp(\frac{\mu - E_L}{kT}) \text{ Leitungsband}$$
 Massenwirkungsgesetz: $pn = 4(\frac{kT}{2\pi\hbar^2})^3 (m_e m_h)^{3/2} \exp(\frac{-(E_L - E_V)}{kT})$ Eigenleitung: $p = n$, damit: $\mu = \frac{1}{2} (E_L - E_V) + \frac{3}{4} kT \ln(m_h/m_e)$ Drude-Beweglichkeit: $\mu = \frac{v}{E} = \frac{e\tau}{m}$
$$\sigma = ne\mu_e + pe\mu_h$$

$$a_0^* = \frac{m\varepsilon}{m^*} a_0, E_1^* = \frac{m^*}{m\varepsilon^2} E_1$$
 mit Ionen: $n = (n_0 N_D)^{1/2} \exp(-E_D/kT)$ mit $n_0 = 2(\frac{m_e kT}{2\pi\hbar^2})^{3/2}$
$$eU_d \sim kT \exp(\frac{N_D N_A}{n_i^2})$$
 Verarmungsschicht: $d = \sqrt{\frac{8\pi\varepsilon_0}{e}} (1/N_A + 1/N_D) U_D$
$$\varepsilon(\omega) = 1 - \frac{\omega_p^2}{\omega^2}$$

$$\omega_p = \sqrt{\frac{ne^2}{\varepsilon_0 m}}$$

$$\Delta E = n\hbar \omega_p$$

$$v = \sqrt{\frac{m}{3M}} \text{ (M: Ionenmasse)}$$

$$I(U) = I_0(\exp(eU/kT) - 1)$$

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon \varepsilon_0 \vec{E}$$

$$1/k_s \sim 0, 5(n_0/a_0^3)^{-1/6}$$

$$\varphi(r) = 1/4\pi \varepsilon_0 \frac{q}{r} e^{-k_s r}$$

8.6 magnetische Eigenschaften

$$\frac{d\vec{k}}{dt} = -\frac{e}{\hbar} \nabla_k \vec{E} \times \vec{B}$$

$$\vec{F} = -e\vec{v} \times \vec{B}$$

$$\hbar \vec{k} = -e\vec{r} \times \vec{B}$$

$$\phi_n = (n + \gamma) \frac{h}{e} \text{ mit } \frac{h}{e} = 4, 14 \cdot 10^{-7} Tm^2$$

$$\omega_c = \frac{eB}{m}$$

$$\vec{B} = \mu_0 (\vec{H} + \vec{M}) = \mu \mu_0 \vec{H}$$

$$\omega_L = \frac{eB}{2m}$$

$$I = (-Ze) \frac{\omega_L}{2\pi}$$

$$|\vec{\mu}| = -\frac{Ze^2B}{4m} \langle \vec{r}^2 \rangle$$

$$\chi = \frac{\mu_0 N/VZe^2}{6m} \langle \rho^2 \rangle$$

$$\vec{\mu} = -\tfrac{e}{2m} \vec{L}$$

$$M = \frac{N\mu_B^2 B}{kT}$$
 bzw T_F für freies e-Gas

$$E_{pot} = -\frac{e}{2m}L_z B$$

$$\mu_B = \frac{e\hbar}{2m}$$

Curie:
$$\chi_M(T) = \frac{Np^2\mu_B^2}{3kT} = C/T$$

$$mit p = g\sqrt{j(j+1)}$$

Curie-Weiß:
$$\chi_M = \frac{C}{T - T_C}$$

Antiferromagnet:
$$\chi_M = \frac{2C}{T + T_N}$$

$$\lambda_c = \sqrt{rac{m_e}{\mu_0 n q^2}}$$

9 Kernphysik

9.1 Kerne

$$\begin{split} &M(A,Z) = NM_n + ZM_p + Zm_e - a_v A - a_s A^{2/3} - a_c \frac{Z^2}{A^{1/3}} - a_a \frac{(A-2Z)^2}{A} + \frac{\delta}{A^{1/2}} \\ &a_v = 16, \ a_s = 18, \ a_c = 0, 7, \ a_a = 23, \ \delta = \pm 12 \ \text{oder 0 MeV} \\ &\rho_n = 0, 17Nuk/fm^3 = 3 \cdot 10^{17}kg/m^3 \\ &\text{Alpha: } T = \exp(-2\kappa\Delta r) \ \text{mit } \kappa = \sqrt{2m|E-V|}/\hbar \\ &F(q^2) = \int e^{iqx/\hbar}f(x)d^3x \\ &\text{radialsymmetrisch: } F(q^2) = 4\pi \int f(r) \frac{\sin|q|r/\hbar}{|q|r/\hbar}r^2dr \\ &R = 1, 21fm \cdot A^{1/3} \\ &L = 4\pi \frac{\hbar pc^2}{\Delta m^2c^4} \\ &\text{Kugel mit diffusem Rand: } \rho(r) = \rho(0) \frac{1}{1+e^{(r-c)/a}} \\ &c = 1, 07fmA^{1/3}, \ a = 0, 54fm \\ &dN = (2s+1) \frac{V}{(2\pi\hbar)^3}d^3\vec{p} \\ &\text{kugelsymm: } d^3\vec{p} = 4\pi p^2dp \\ &\text{Zustandssumme: } N = \frac{V}{3\pi^2\hbar^3}p_F^3 \\ &\text{Fermi-Energie: } \varepsilon_F = \frac{p_F^2}{2m_N} = \frac{\hbar^2}{2m_N}(3\pi^2\frac{N}{V})^{2/3} \\ &E_{kin} = E_Z + E_N = \frac{3}{5}(Z\frac{\hbar^2}{2m_N}(3\pi^2\frac{Z}{V})^2 + N\frac{\hbar^2}{2m_N}(3\pi^2\frac{N}{V})^{2/3}) \\ &\text{mag. Zahlen: } 2, 8, 20, 28, 50, 82, 126 \end{split}$$

9.2 Kernreaktionen

$$Q = E_a - E_e$$

$$N(t) = N(0)e^{-\lambda t}$$

$$T_{1/2} = \tau \ln 2$$

$$\Gamma = \frac{1}{\tau} = \lambda$$

$$E_{\alpha}^{kin} = \frac{M_D}{M_{\alpha} + M_D} Q \sim \frac{A-4}{A} Q$$

$$f = \frac{v}{2R}$$

$$\gamma = \frac{2Z}{\sqrt{E_{\alpha}[MeV}} - \frac{3}{2} \sqrt{ZR[fm]}$$

$$\ln \tau = 2\gamma + const$$

$$B(A, Z) = \alpha A + \delta + \beta Z + \gamma Z^2$$

$$\alpha = a_V - a_s A^{-1/3} - a_A$$

$$\beta = 4a_A$$

$$\begin{split} \gamma &= -\frac{4a_A}{A} - \frac{a_C}{A^{1/3}} \\ Q_{\beta^-} &= B(A,Z+1) - B(A,Z) + m_n - m_p - m_e \\ Q_{\beta^+} &= B(A,Z-1) - B(A,Z) - m_n + m_p - m_e \\ Q_{EC} &= Q_{\beta^+} - B(A,Z) - 2m_e - \varepsilon \\ \text{Ellipse: } a &= R(1-\varepsilon), b = R(1-\frac{\varepsilon}{2}) \\ \frac{Z^2}{A} &\geq \frac{2a_s}{a_c} \approx 40 \\ P &= E_{sp} \sigma_s \phi_N N_{U-235} \\ \sigma &= \frac{r_b}{\phi_n} \end{split}$$

- 9.3 Zerfälle und Übergänge
- 9.4 Wechselwirkung von Strahlung mit Materie
- 9.5 Zerfallsreihen
- 9.6 Kernspaltung
- 9.7 Kernfusion

10 Teilchenphysik

Kinematik

$$s = (\sum E)^{2} - (\sum p)^{2}$$

$$N = \sigma \int L(t)dt, L = f \frac{n_{1}n_{2}}{A} = f \frac{n_{1}n_{2}}{4\pi\sigma_{x}\sigma_{y}}$$

$$E = \gamma mc^{2}$$

$$\vec{p} = \gamma m\vec{\beta}$$

$$s = (p_{1} + p_{2})^{2} = (p_{3} + p_{4})^{2}$$

$$t = (p_{1} - p_{3})^{2} = (p_{2} - p_{4})^{2}$$

$$u = (p_{1} - p_{4})^{2} = (p_{2} - p_{3})^{2}$$

$$y = 1/2 \ln \frac{E + p_{z}}{E - p_{z}}$$

$$\eta = -\ln \tan \Theta/2$$

$$s = 4E^{2}, t = -2E^{2}(1 - \cos \Theta^{*}), u = -2E^{2}(1 + \cos \Theta^{*})$$

$$\gamma = (1 - \beta)^{-1/2}$$

$$E^{2} - \vec{p}^{2} = m^{2} = p^{2} = p^{\mu}p_{\mu}$$

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$$

Schwache WW

$$\begin{split} \psi'(\vec{x},t) &\to \hat{P}\psi(\vec{x},t) = \psi(-\vec{x},t) \\ m_W &= 1/2g_W v \\ m_Z &= 1/2v\sqrt{g_W^2 + g'^2} \\ \cos\Theta_w &= \frac{g_W}{\sqrt{g_W^2 + g'^2}} \\ \sin\Theta_w &= \frac{g'}{\sqrt{g_W^2 + g'^2}} \\ \alpha &= \frac{e^2}{4\pi} \\ v &= \frac{2m_W}{g_W} \\ e &= g'\cos\Theta_w = g_W\sin\Theta_w \\ p + p &\to D + e^+ + \nu_e \\ P(\nu_e\nu_e) &= 1 - 4|U_{e1}0^2|U_{e2}|^2\sin^2\Delta_{21} - (1,3) - (2,3) \\ \min t \Delta_{ij} &= \frac{\phi_j - \phi_i}{2} = \frac{m_j^2 - m_i^2}{4E_\nu} L \\ (d,s,b) &= V_{CKM}^{*T}(d',s',b') \\ \text{damit: } s &= V_{us}^*|d'\rangle + V_{cs}^*|s'\rangle + V_{ts}^*|b'\rangle \\ V^{-1} &= V^* \text{ unit \"{ar}} \end{split}$$

Higgs-Mechanismus

$$L = 1/2(\partial^{\mu}\phi)(\partial_{\mu}\phi) - V(\phi)$$

$$V(\phi) = 1/2\mu^2\phi^2 + 1/4\lambda\phi^4$$

$$\phi_{min} = \pm v \pm \sqrt{\frac{-\mu^2}{\lambda}}$$

$$m_H = 2\lambda v^2$$

Lebensdauer: $\Gamma = 4~{\rm MeV}$

Prod: $gg \to H$

Zerf: $H \to b\bar{b}$, $H \to \gamma\gamma$

Detektoren

stabil: >10 mm
$$e, \mu, \gamma, \nu, p, n, \pi^{\pm}, K^{\pm}$$

instabil:
$$\tau^{\pm}, t, W, Z, H, \pi^0, B^{\pm}, ...$$

Bethe-Bloch:
$$-\langle \frac{dE}{dx} \rangle = \frac{4\pi\hbar^2\alpha^2}{m_e} n \frac{Q^2}{\beta^2} \left[\ln \frac{2\beta^2\Gamma^2 m_e c^2}{I} - \beta^2 \right]$$

$$n = \frac{Z\rho}{Am_{amu}}$$

$$1amu = 1,66 \cdot 10^{-27} \text{ kg}$$

Cherenkov:
$$\cos \Theta = \frac{1}{n\beta}$$

$$\frac{p_T}{GeV/c} = 0, 3\frac{B}{T}\frac{r}{m}$$

$$p = \frac{p_T}{\sin \lambda}$$

Mesonenmasse:
$$M = \sum M_q + \Delta M_{SS}$$

$$\Delta M_{SS} = \frac{4M_q^2 \cdot 160MeV}{M_1 M_2} \frac{1}{2} (s(s+1) - s_1(s_1+1) - s_2(s_2+1))$$

$$M_q = m_u + 300 MeV \approx 310 MeV, M_s \approx 480$$

$$r_E = \frac{M}{Q} \frac{v^2}{E}$$

$$r_M = \frac{M}{Q} \frac{v}{B}$$

$$\omega_c = \frac{Q}{M}B$$

A Mathe

A.1 Vektoralgebra

$$\vec{a} \cdot \vec{b} = ab \cos \varphi$$

$$(\vec{a} \times \vec{b})^2 = a^2 b^2 - (\vec{a} \cdot \vec{b})^2$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b})$$

$$\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = 0$$

$$\vec{a} = \vec{a}_{\parallel} + \vec{a}_{\perp} = \vec{n} \cdot (\vec{n} \cdot \vec{a}) + (\vec{n} \times \vec{a}) \times \vec{n}$$

$$\varepsilon_{ikl}\varepsilon_{lmn} = \delta_{im}\delta_{kn} - \delta_{in}\delta_{km}$$

$$\varepsilon_{ikl}\varepsilon_{klm} = 2\delta_{im}$$

$$\delta_{ii} = 3$$

$$\delta_{il}\delta_{lk}=\delta_{ik}$$

$$\delta_{jl}\delta_{lm}\delta_{mn}\delta_{nk} = \delta_{jk}$$

A.2 Matrizen

$$A^{T} = A_{ji}$$

 $A^{\dagger} = (A^{*})^{T}$
 $(A^{T})^{-1} = (A^{-1})^{T}$

$$(\alpha A^{-1})^{-1} = \frac{1}{\alpha} A^{-1}$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

hermitesch
$$A = A^{\dagger}$$

unitär
$$A^{\dagger} = A^{-1}$$

$$\operatorname{tr} A = \sum_{i} A_{ii}$$

$$tr(A+B) = tr A + tr B$$

$$\operatorname{tr}(\alpha A) = \alpha \operatorname{tr} A$$

$$\det A^T = \det A$$

$$\det(AB) = \det A \det B$$

$$\det(A^{-1}) = \frac{1}{\det A}$$

$$\det(\alpha A) = |\alpha|^n \det A$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$\exp(A) = \sum_{n = n} \frac{1}{n!} A^n$$

Spalten tauschen: -1

Multiplizieren mit n: n

Bild von
$$L = \{y = Lx | x \in V\}$$

Kern von L:
$$kerL = \{x \in V | Lx = 0\}$$

$$\dim(L) + \dim(\ker L) = \dim V$$

Cramer'sche Regel: $x_i = \frac{\det(A_i)}{\det A}$ wobei für A_i die

i-te Spalte in A durch b ausgetauscht ist

Rotationsmatrix $\begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix}$

$$[A, B] = AB - BA$$

$$[A,B]^\dagger = [B^\dagger,A^\dagger]$$

A.3 Reihen

geom. Reihe:
$$\frac{1}{1-q} = \sum_{n=1}^{\infty} q^{n-1}$$
 $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$
 $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$
 $\sinh(x) = \frac{1}{2} (e^x - e^{-x})$
 $\cosh(x) = \frac{1}{2} (e^x + e^{-x})$
 $\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$
 $\sin(x) = \frac{1}{2i} (e^{ix} - e^{-ix})$
 $\cos(x) = \frac{1}{2} (e^{ix} + e^{-ix})$

Taylor-Entwicklung: $f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{1}{2}f''(x_0)(x-x_0)^2 + \frac{1}{3!}f'''(x_0)(x-x_0)^3 + \dots$

A.4 Vektoranalysis

$$\nabla (AB) = A \times (\nabla \times B) + B \times (\nabla \times A) + (A\nabla)B + (B\nabla)A$$

$$\nabla \times (B \times C) = B(\nabla C) - C(\nabla B)$$

$$\nabla \cdot \nabla \times A = 0$$

$$\vec{F}(\vec{r}) = -\nabla V(\vec{r}) \Leftrightarrow \nabla \times \vec{F} = 0$$

$$\nabla (\vec{a} \cdot \vec{b}) = \vec{a} \times (b) + \vec{a} \times (\vec{a}) + (\vec{a} \cdot \nabla)\vec{b} + (\vec{b} \cdot \nabla)\vec{a}$$

$$\nabla \cdot (\vec{a} + \vec{b}) = \nabla \cdot \vec{a} + \nabla \cdot \vec{b}$$

$$\nabla \cdot (g\vec{F}) = g\nabla \cdot \vec{F} + (\nabla g) \cdot \vec{F}$$

$$\nabla \times \nabla \times \vec{F} = \nabla \nabla \cdot \vec{F} - \Delta \vec{F}$$

$$\nabla \cdot (\nabla \times \vec{F}) = \nabla \cdot \nabla \times \vec{F} = 0$$

$$\nabla (\nabla \cdot \vec{F}) = \nabla \cdot (\nabla \circ \vec{F})$$

$$\nabla r = \frac{\vec{r}}{r}$$

$$\nabla \cdot \vec{r} = 3$$

$$\nabla \times \vec{r} = 0$$

$$\nabla f(r) = f'(r)\hat{r}$$

$$\nabla \times f(r)\vec{r} = 0$$

$$\nabla \circ \vec{r} = 1$$

$$\nabla^2 r = \frac{2}{r}$$

A.5 Komplexanalysis

$$\begin{aligned} |z| &= \sqrt{a^2 + b^2}, \ \varphi = \tfrac{b}{a} & f(z) &= \Re f(z) + i \Im f(z) = U(x,y) + i V(x,y) \\ |z_1 z_2| &= |z_1| \, |z_2| & \operatorname{Cauchy-Riemann DGL:} \ \tfrac{\partial U}{\partial x} &= \tfrac{\partial V}{\partial y}, \ \tfrac{\partial U}{\partial y} &= -\tfrac{\partial V}{\partial x} \\ z_1 z_2 &= a_1 a_2 - b_1 b_2 + i (a_1 b_2 + a_2 b_1) & \operatorname{harmonisch:} \ \Delta f &= 0 \ \operatorname{harmonisch:} \ \tfrac{\partial^2 U}{\partial x^2} + \tfrac{\partial^2 U}{\partial y^2} &= \tfrac{\partial^2 V}{\partial x^2} + \tfrac{\partial^2 V}{\partial y^2} &= 0 \\ e^{ix} &= \cos x + i \sin x & \operatorname{Residum:} \ \oint_C f(z) dz &= 2\pi i \sim_i \operatorname{res}(f, z_i) \\ z &= \sqrt[n]{r} \exp(i \tfrac{\varphi}{+} \tfrac{2\pi k}{n}) & f(z_0) &= \tfrac{1}{2\pi i} \oint_C \tfrac{f(z)}{z - z_0} dz \\ a + ib &= r \exp(i \varphi) & \operatorname{Residum:} \ \operatorname{res} &= \tfrac{1}{(m-1)!} \lim_{z \to z_0} (\tfrac{\mathrm{d}^{m-1}}{\mathrm{dz^{m-1}}} ((z - z_0)^m f(z))) \end{aligned}$$

A.6 Laplace-Transformation

A.o Laplace-Transformation

$$F(p) = \int_0^\infty f(t)e^{-pt}dt$$

$$L(f'(t)) = -f(0) + pF(p)$$

$$L(f''(t)) = -f'(0) - pf(0) + p^2F(p)$$

$$f(t) = \frac{1}{2\pi i} \int_{\sigma - i\omega}^{\sigma + i\omega} F(p) e^{pt} dp = \sum_{i} res(F(p_i)e^{pt}, p_i)$$

A.7 Fourier-

Transformation

$$\int_{-\infty}^{\infty} d\omega \ e^{i\omega(t-t')} = 2\pi\delta(t-t')$$
$$F(f'(t))(\omega) = i\omega\tilde{f}(\omega)$$

$$L(x) \ L(\alpha f) \ L(e^{\alpha t}) \ L(\cosh(\alpha t)) \ L(\sinh(\alpha t)) \ L(\sin(\alpha t)) \ L(\sin(\alpha t)) \int_{-\infty}^{\infty} g(\omega) \exp(-i\omega t) d\omega$$

$$\frac{1}{p^2} \ \alpha L(f) \ \frac{1}{p-\alpha} \ \frac{1}{p} \ \frac{p}{p^2-\alpha^2} \ \frac{\alpha}{p^2-\alpha^2} \ g(\omega) = \frac{\alpha}{p^2+\alpha^2} \int_{-\infty}^{\infty} f(t) \exp(i\omega t) dt$$

$$f(t) = \sum_{-\infty}^{\infty} g_n \exp(-i\omega_0 nt)$$

$$g_n = \frac{1}{T} \int_{t}^{t-T} f(t) \exp(i\omega_0 nt) dt$$

$$f(x) \qquad g(\omega)$$

$$1 \qquad 2\pi\delta(\omega)$$

$$x^{n} \qquad 2\pi i^{n}\delta^{(n)}(\omega)$$

$$x^{-n} \qquad \frac{\pi(-i)^{n}\omega^{n-1}sign(\omega)}{(n-1)!}$$

$$sign(x) \qquad \frac{2}{i\omega}$$

$$|x| \qquad \frac{-2}{\omega^{2}}$$

$$x^{n}sign(x) \qquad \frac{2n!}{(i\omega)^{n+1}}$$

$$\delta(x) \qquad 1$$

$$\delta^{(n)}(x) \qquad (i\omega)^{n}$$

$$e^{-a|x|} \qquad \frac{2a}{a^{2}+\omega^{2}}$$

$$e^{-ax^{2}} \qquad \sqrt{\frac{\pi}{a}}e^{-\omega^{2}/(4a)}$$

$$\cos(ax) \qquad \pi(\delta(\omega+a)+\delta(\omega-a))$$

$$\sin(ax) \qquad i\pi(\delta(\omega+a)-\delta(\omega-a))$$

$$\cos(ax^{2}) \qquad \sqrt{\frac{\pi}{a}}\cos(\frac{\omega^{2}}{4a}-\frac{\pi}{4})$$

$$\sin(ax^{2}) \qquad \sqrt{\frac{\pi}{a}}\cos(\frac{\omega^{2}}{4a}+\frac{\pi}{4})$$

A.8 Geometrie

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y \qquad \qquad \sin^2(x) = (1 - \cos(2x))/2$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y \qquad \qquad \cos^2(x) = (1 + \cos(2x))/2$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y} \qquad \qquad \tan^2(x) = \frac{1 - \cos(2x)}{1 + \cos(2x)}$$

$$\sin x \sin y = \frac{1}{2}(\cos(x - y) - \cos(x + y)) \qquad \qquad \sin x + \sin y = 2\sin(\frac{x + y}{2})\cos(\frac{x - y}{2})$$

$$\cos x \cos y = \frac{1}{2}(\cos(x - y) + \cos(x + y)) \qquad \qquad \sin x - \sin y = 2\cos(\frac{x + y}{2})\sin(\frac{x - y}{2})$$

$$\sin x \cos y = \frac{1}{2}(\cos(x + y) + \sin(x - y)) \qquad \qquad \cos x + \cos y = 2\cos(\frac{x + y}{2})\cos(\frac{x - y}{2})$$

$$\cos x \sin y = \frac{1}{2}(\sin(x + y) - \sin(x - y)) \qquad \qquad \cos x - \cos y = -2\sin(\frac{x + y}{2})\sin(\frac{x - y}{2})$$

Kugelkoordinaten:

Zylinderkoordinaten:

$$x = \rho \cos \varphi, \ y = \rho \sin \varphi, z = z \qquad x = r \sin \vartheta \cos \varphi, \ y = r \sin \vartheta \sin \varphi, z = r \cos \vartheta$$

$$\rho = \sqrt{x^2 + y^2}, \varphi = \arctan \frac{x}{y}, \ z = z \qquad r = \sqrt{x^2 + y^2 + z^2}, \varphi = \arctan \frac{y}{x}, \ \vartheta = \arctan \frac{\varrho}{z}$$

$$d\vec{r} = d\rho \hat{\rho} + \rho d\varphi \hat{\varphi} + dz \hat{z} \qquad d\vec{r} = dr \hat{r} + r d\vartheta \hat{\vartheta} + r \sin \vartheta d\varphi \hat{\varphi}$$

$$dV = \rho d\rho d\varphi dz \qquad dV = r^2 \sin \vartheta dr d\vartheta d\varphi$$

Ecken - Kanten + Flächen = 2EULER-CHARAKTERISTIK

A.9 Integration

partiell:
$$\int uv' = uv - \int u'v$$

 $\int dx \frac{f'(x)}{f(x)} = \ln|f(x)|$
 $\int dx e^{f(x)} = e^{f(x)}$

$$\oint_{C=\partial S} d\vec{r} \; \psi(\vec{r}) = \int_{S} d\vec{S} \; (\nabla \times \psi(\vec{r}))$$

Stokes'scher Satz

$$\oint_{S=\partial V} d\vec{S} \ \psi(\vec{r}) = \int_{V} dV \ \psi(\vec{r})$$

Gauß'scher Satz

A.10 Delta-Funktion

$$\int_{-\infty}^{\infty} dx f(x) \delta(x - x_0) = f(x_0)$$

$$\delta(-x) = \delta(x)$$

$$\delta(ax) = \frac{1}{|a|} \delta(x)$$

$$\delta(h(x)) = \frac{1}{|h'(x)|} \delta(x - x_0)$$

$$\int_{-\infty}^{\infty} dx f(x) \delta'(x - x_0) = -f'(x_0)$$

$$\Theta'_H(x) = \delta(x)$$

$$\int_{-\infty}^{x} dx' \delta(x' - x_0) = \Theta(x - x_0)$$

B Chemie

B.1 Orbitale

Orbitale gleicher Energie werden zuerst mit einzelnen Elektronen besetzt und später mit dem antiparallelen Elektron aufgefüllt.

Hund'sche Regel

Zwei Elektronen können nicht in jeder Quantenzahl (n,l,m,s) übereinstimmen.

Pauli-Prinzip

n	l	m	\mathbf{S}
Haupt-	Neben-	Magnet-	Spin-
$1, 2, \dots$	0,, n-1	-l,,l	$\pm \frac{1}{2}$
Schale	Orbital	Orientierung	Spinrichtung
K, L, M,	. s, p, d, f	x, y z	up/down
B Bor C Kohlenstoff N Stickstoff O Sauerstoff F Fluor	1s ² 1s ² 2s ¹ 1s ² 2s ² 1s ² 2s ² 2p ¹	1s 2s 2p 3 1	s 3p

B.2 Stöchiometrie

$$m_{Edukte} = m_{Produkte}$$

Gesetz von der Erhaltung der Masse

Elemente in einer chemische Verbindung kommen immer im gleichen konstanten Masseverhältnis vor.

GESETZ DER KONSTANTEN
PROPORTIONEN

Die Massenanteile der Elemente in allen chemischen Verbindungen gleicher Elemente stehen in einem ganzzahligen Verhältnis.

GESETZ DER MULTIPLEN
PROPORTIONEN

Molare Masse: $m[g] = n[mol] \cdot M[g/mol]$ $N_A = 6,02217 \cdot 10^{23} = \text{N in } 12\text{g}^{-12}\text{C}$ amu: $1\text{u} = 1,6606 \cdot 10^{-24}\text{g} = \frac{1}{12}m(^{12}\text{C})$

Atommasse: $M = m_A N_A$

 $\begin{array}{ll} \text{Massenkonz.} & \beta(X)[g/l] = \frac{m(X)[g]}{V[l]} \\ \text{Vol.konz.} & \sigma(X)[ml/l] = \frac{V(X)[ml]}{V[l]} \\ \text{Stoffmengenkonz.} & c(X)[mol/l] = \frac{n(X)[mol]}{V[l]} \\ \text{Eigenschaft} & \text{Periode} \leftrightarrow & \text{Gruppe} \updownarrow \\ \\ \text{Atomradius} & \uparrow & \downarrow \\ \end{array}$

 Eigenschaft
 Periode \leftrightarrow Gruppe \updownarrow

 Atomradius
 \uparrow \downarrow

 Ionisierungsenergie
 \downarrow \uparrow

 Elektronenaffinität
 \downarrow \uparrow

 Elektronegativität
 \downarrow \uparrow

 Metallcharakter
 \downarrow \uparrow

B.3 Kristalle

Ionenkristalle:	I		
	CsCl-Typ	NaCl-Typ	ZnS-Typ
r^+/r^-	> 0,73	0,73-0,41	< 0,41
Koordinationszahl	8	6	4
Anordnung	kubisch	oktaedrisch	tetraedrisch

Metallkristalle:

	Mg-Typ	Cu-Typ	W-Typ
Koordinationszahl	12	12	8
Kugelpackung	hexagonal-dicht	kubisch-dicht	kubisch-
			raumzentriert
Raumausfüllung	74%	74%	68%
Beispiele	Mg, Ti, Co, Zn	Cu, Ni, Al, Ag	W, Na, Cr, Fe

B.4 Chemische Thermodynamik

Die Enthalpieänderung ist vom Reaktionsweg unabhängig.

GESETZ VON HESS

$$\Delta G = \Delta H - T \Delta S$$

GIBBS-HELMHOLTZ-GLEICHUNG

Enthalpie
$$\Delta H_R^{\circ} = \sum n_P \Delta H_{f,P}^{\circ} - \sum n_E \Delta H_{f,E}^{\circ}$$

endotherme Reaktion, $\Delta H > 0$

Entropie $\Delta S_R^{\circ} = \sum n_P \Delta S_P^{\circ} - \sum n_E \Delta S_E^{\circ}$

exotherme Reaktion, $\Delta H < 0$

Freie Energie
$$\Delta G_R^{\circ} = \sum n_P \Delta G_{f,P}^{\circ} - \sum n_E \Delta G_{f,E}^{\circ}$$

B.5 Gasgesetze

$$pV = nRT$$

IDEALE GASGLEICHUNG

$$p/T = const$$

GESETZ VON GAY-LUSSAC

$$V/T = const$$

GESETZ VON CHARLES

$$n/V = const$$

Gesetz von Avogadro

B.6 Lösung

$$p = k_H c_l$$

GESETZ VON HENRY

p: Partialdruck Substanz, c_l : Konz. der Lösung

Molarität
$$\frac{n(X)[mol]}{V(\text{L\"osung})[l]}$$

Molalität $\frac{n(X)[mol]}{m(\text{L\"osungsmittel})[kg]}$

Massenprozent $\frac{m(X)[kg]}{m(\text{L\"osung})[kg]} \cdot 100\%$

B.7 Reaktionskinetik

$$K_C = \frac{c_C^{\nu(C)} \cdot c_D^{\nu(D)}}{c_A^{\nu(A)} \cdot c_B^{\nu(B)}}$$

Massenwirkungsgesetz

(Konzentrationen oder Partialdrücke)

für
$$\nu$$
 A + ν B \Longrightarrow ν C + ν D

K >> 1: Gleichgewicht bei Produkten

K = 1: Glgw. bei gleicher Konzentration

K << 1: Reaktion läuft nicht ab

Reaktionsgeschwindigkeit: $r = \frac{\Delta c}{\Delta t}$

Übt man auf ein chemisches System im Gleichgewicht einen Zwang aus, so reagiert es so, dass die Wirkung des Zwanges minimal wird.

PRINZIP VON LE CHÂTELIER

$$K = e^{-\frac{E_A}{RT}}$$

ARRHENIUS-GLEICHUNG

 E_A : Aktivierungsenergie

B.8 Redox-Reaktionen

1. Reaktionsgleichung aufstellen

$$PbO_2 + Mn^{2+} \longrightarrow MnO_4^- + Pb^{2+}$$

2. Oxidationszahlen bestimmen

$$_{4}$$
,Pb $_{2}$,O2 + $_{2}$,Mn $^{2+}$ \longrightarrow $_{7}$,Mn $_{2}$,O $_{4}$ $^{-}$ + $_{2}$,Pb $^{2+}$

3. Herausfinden, welche Stoffe reduziert (Ox.zahlen nehmen ab) und welche oxidiert (Ox.zahlen nehmen zu) werden

Mn²⁺ wird oxidiert (von +II auf +VII)

 $\ensuremath{\mathsf{PbO}}_2$ wird reduziert (von +IV auf +II)

4. Teilreaktionen formulieren

Oxidation: 2,Mn²⁺ \longrightarrow 7,Mn-2,O₄

Reduktion:4,Pb-2,O2 \longrightarrow 2,Pb²⁺

5. Ladungsausgleich

$$2,\text{Mn}^{2+} \longrightarrow 7,\text{Mn-2},\text{O}_4^- - 5\,\text{e}^-$$

 $4,\text{Pb-2},\text{O2} + 2\,\text{e}^- \longrightarrow 2,\text{Pb}^{2+}$

6. Auf geeignetes Vielfaches bringen und addieren

$$5 \, \text{PbO}_2 + 2 \, \text{Mn}^{2+} \longrightarrow 2 \, \text{MnO}_4^{-} + 5 \, \text{Pb}^{2+}$$

• Saures Milieu: Auf der Seite mit zu wenig Sauerstoff Wasser addieren, auf der Seite mit zu wenig Wasserstoff Hydronium-Ionen (bzw. H⁺) addieren

$$5 \text{ PbO}_2 + 2 \text{ Mn}^{2+} + 4 \text{ H}^+ \longrightarrow 2 \text{ MnO}_4^- + 5 \text{ Pb}^{2+} + 2 \text{ H}_2 \text{O}$$

• Basisches Milieu: genauso, aber am Schluss Hydroxid-Ionen (OH⁻) (auf beiden Seiten) addieren, um H⁺zu neutralisieren.

B.9 Elektrochemie

$$E = E_0 + \frac{0,059}{n} \log \frac{c(Ox)}{c(Red)}$$

NERNST'SCHE GLEICHUNG

$$m = \frac{Mq}{zF}$$

1. UND 2. FARADAY-GESETZ

mit F: Faraday-Konstante

C Konstanten, Abkürzungen, Einheiten und Eselsbrücken

C.1 Abkürzungen

hO harmonischer Oszillator

sK starrer Körper

CMS center of mass system

iG ideales Gas

bb schwarzer Körper

mP mathematisches Pendel

C.2 Konstanten

Lichtgeschwindigkeit $c = 299792458 \frac{m}{s}$ Bohr'sches Magneton $\mu_B = \frac{e\hbar}{2m_e} = 9,27 \times 10^{-24} J/T = 5,79 \times 10^{-5} eV/T$ Vakuumpermeabilität $\mu_0 = 4\pi \times 10^{-7} \frac{Vs}{Am}$

Gasvolumen bei STP: $V = nV_m$ mit $V_m = 22, 41/\text{mol}$

R = 8,314 J/mol K

C.3 Eselsbrücken

 $1eV = 8065, 541cm^{-1}$

 $\hbar c = 197 \; \mathrm{eVnm}$

$$\lambda = \frac{12\text{Å}}{\sqrt{U}}$$

Erdmasse: $6 \cdot 10^{24} kg$

$$h=2\pi\cdot 10^{-34}Js,\, \hbar=10^{-34}Js$$

thermische Energie Raumtemperatur: 300K = 25meV

$$k_B = \frac{25}{300} \cdot 10^{-3} \frac{eV}{K}$$

hc = 1240eVnm

$$m_e = 9,11 \cdot 10^{-31} kg$$

Sekunden pro Jahr: $\pi \cdot 10^7$

 m_p/m_e : 2000

$$1\frac{km}{s} = \frac{parsec}{Ma}$$

$$m_p[g] = \frac{1}{N_A} = \frac{1}{6,022 \cdot 10^{23}}$$

C.4 Einheiten