Міністерство освіти і науки України Харківський національний університет імені В.Н. Каразіна Факультет комп'ютерних наук

КУРСОВА РОБОТА

з дисципліни «Теорія алгоритмів»

Тема: Задача про хід коня

Виконав студент 2 курсу Групи КС-21 Клочко Андрій Володимирович Перевірив: доц. Щебенюк В.С ______

3MICT

ВСТУП	3
РОЗДІЛ 1 ХІД КОНЯ	4
1.1 Для тих, хто не знайомий з шахами	4
1.2 Загальні відомості задачі про хід коня	4
1.3 Зв'язок задачі про хід коня з теорією графів	5
1.4 Види маршрутів ходу коня	5
РОЗДІЛ 2 МЕТОДИ ВИРІШЕННЯ ЗАДАЧІ ПРО ХІД КОНЯ	7
2.1 Основні методи вирішення задачі про хід коня	7
2.2 Метод Ейлера	7
2.3 Метод Вандермонда	11
2.4 Метод Варнсдорфа	11
РЕЗУЛЬТАТИ РОБОТИ	12
ПЕРЕЛІК ДЖЕРЕЛ ПОСИЛАНЬ	13

ВСТУП

Об'єкт – Задача про хід коня.

Предмет – Методи вирішення задачі про хід коня. Алгоритмічні методи вирішення задачі про хід коня.

Мета – Дослідити методи вирішення задачі про хід коня. Порівняти між собою методи вирішення Ейлера, Вандермонда, Варнсдорфа та програмно реалізувати і порівняти метод повного перебору та метод Варнсдорфа.

РОЗДІЛ 1 ХІД КОНЯ

1.1 Для тих, хто не знайомий з шахами

Для людини, яка не знайома з шахами, кінь ходить два квадрати горизонтально та один квадрат вертикально, або два квадрати вертикально та один квадрат горизонтально. В простолюдді буквою кінь ходить «буквою Г» (англ. версія «L»). Приклад ходу коня показано на рисунку 1.1.1.

Рисунок 1.1.1 – Приклад ходу коня в шахах

1.2 Загальні відомості задачі про хід коня

Дуже велика кількість математичних задач і головоломок виникає при появі на дошці шахових фігур. Серед завдань, пов'язаних з їх маршрутами, найзнаменитішою ϵ задача про хід коня.

Вона формулюється наступним чином: «Обійти конем всі клітинки шахівниці, займаючи кожне з них рівно один раз»

Особлива популярність завдання пояснюється тим, що у XVIII і XIX століттях нею займалися багато математиків, в тому числі великий Леонард Ейлер, який присвятив їй мемуари "Розв'язання одного цікавого питання, який, здається, не підпорядковується жодному дослідженню". Хоча задача була відома і до Ейлера, лише він вперше звернув увагу на її математичну сутність, і тому завдання часто пов'язують з його ім'ям [1].

1.3 Зв'язок задачі про хід коня з теорією графів

З точки зору теорії графів завдання про хід коня є окремим випадком важливої проблеми — знаходження Гамільтонового шляху у графі, тобто шляху, що проходить через всі його вершини по одному разу. Цим і пояснюється популярність завдання про хід коня в літературі з теорії графів, при цьому розглядається «граф коня» (рис. 1.3.1).

Рисунок 1.3.1 – Граф зв'язків між чарунками шахівниці

Завдання знаходження Гамільтонового шляху в графі є, у свою чергу, окремим випадком так званої задачі комівояжера, до якої зводяться найрізноманітніші завдання одного з найважливіших розділів прикладної математики — дослідження операцій. Потрібно знайти найкоротший шлях комівояжера, за яким він повинен об'їхати ряд міст (пов'язаних між собою деяким числом доріг), відвідавши кожен з них по одному разу. Звичайно, перш за все тут виникає питання, чи може комівояжер взагалі об'їхати всі міста з одноразовим відвідуванням кожного з них. Таким чином, можна вважати, що курсова робота присвячена подорожам по шахівниці «конякомівояжера» [2].

1.4 Види маршрутів ходу коня

Бувають два види маршрутів ходу коня:

1) Замкнуті

2) Незамкнуті

При замкнутому проході коня потрібно відвідати всі поля шахівниці, після чого повернутися в початкове поле. Замкнуті маршрути існують на дошках $N \times N$ для всіх парних сторін дошки $N \ge 6$.

Незамкнутий варіант відрізняється від замкнутого тим, що в ньому не потрібно повертатися в початкову позицію. Незамкнуті маршрути існують на квадратних дошках $N \times N$ для всіх $N \geq 5$.

РОЗДІЛ 2 МЕТОДИ ВИРІШЕННЯ ЗАДАЧІ ПРО ХІД КОНЯ

2.1 Основні методи вирішення задачі про хід коня

Існує доволі багато різних методів вирішення цієї задачі, але в своїй курсовій роботі я хотів би зупинитися на трьох основних методах, а саме:

- 1) Метод Ейлера
- 2) Метод Вандермонда
- 3) Метод Варисдорфа

2.2 Метод Ейлера

Ейлер починав з випадкового переміщення коня над дошкою, поки доступних ходів більше не ставало. Останні клітинки, які не потрапили під хід коня він помічав їх як а,b,.... Його метод полягав у встановленні певних правил, за якими ці мічені клітини можуть бути вставлені на хід коня, і також правила для повторного введення рішення. Також метод Ейлера дозволяє зробити за незамкнутого шляху коня, зробити замкнутий за допомогою деяких перетворень, які ми розглянемо трішки пізніше [3].

Візьмемо приклад шляху, утвореного конем, з чотирма клітинками, що залишилися порожніми. Позначимо ці клітинка як a, b, c, d (рис. 2.2.1).

55	58	29	40	27	44	19	22
60	39	56	43	30	21	26	45
57	54	59	28	41	18	23	20
38	51	42	31	8	25	46	17
53	32	37	a	47	16	9	24
50	3	52	33	36	7	12	15
1	34	5	48	Ь	14	C	10
4	49	2	35	6	11	d	13

Рисунок 2.2.1 – Незавершений шлях коня

Нам потрібно переробити незавершений шлях від 1 до 60 в завершений замкнутий тур коня.

3 клітинки 1 можна піти в клітинку р, де р дорівнює 32, 52 або 2. 3 клітинки 60 можна піти в клітинку q, де q дорівнює 29, 59 або 51.

Якщо будь-яке зі значення р та q відрізняється на 1, ми можемо переробити шлях.

В нашому випадку p=52, q=51. Тому числа від 52 до 60 включно записуємо на дошці в оберненому порядку (рис 2.2.2). Як результат, маємо незавершений замкнутий шлях від 1 до 60.

57	54	29	40	27	44	19	22
52	39	56	43	30	21	26	45
55	58	53	28	41	18	23	20
38	51	42	31	8	25	46	17
59	32	37	a	47	16	9	24
50	3	60	33	36	7	12	15
1	34	5	48	b	14	C	10
4	49	2	35	6	11	d	13

Рисунок 2.2.2 – Перетворення маршруту в незавершений замкнутий Наступним кроком потрібно додати клітинки a, b, c, d до нашого

маршруту.

В новому шляху, чарунка 60 посилається на чарунки 51, 53, 41, 25, 7, 5, або 3.

Не важливо яку з цих клітино ми візьмемо, але краще взяти клітинку 51, щоб вже з неї продовжити шлях в a, b та d.

Щоб це зробити, нам потрібно збільшити кожне число в клітинці на різницю останньої клітинки з обраною нами, отже 60 - 51 = 9 (рис. 2.2.3).

66	63	38	49	36	53	28	31
61	48	65	52	39	30	35	54
64	67	62	37	50	27	32	29
47	60	51	40	17	34	55	26
68	41	46	a	56	25	18	33
59	12	69	42	45	16	21	24
10	43	14	57	<i>b</i>	23	C	19
13	58	11	44	15	20	d	22

Рисунок 2.2.3 – Збільшенні на 9 всі числа

Тепер заміняємо всі числа від 61 до 69 на числа від 1 до 9 включно, що в результаті дасть нам шлях від 1 до 60, в якому ми можемо продовжити свій хід в клітинки a, b, d (рис 2.2.4).

6	3	38	49	36	53	28	31
1	48	5	52	39	30	35	54
4	7	2	37	50	27	32	29
47	60	51	40	17	34	55	26
8	41	46	61	56	25	18	33
59	12	9	42	45	16	21	24
10	43	14	57	62	23	C	19
13	58	11	44	15	20	63	22

Рисунок 2.2.4 – Залучення клітинок a, b, d до шляху коня Нам залишається залучити клітинку с до нашого шляху.

Клітинка с посилається на клітинку 25, а клітинка 63 на 24. Ми можемо використати метод, яким користувались раніше щоб знову переробити шлях від 63 до 25 задом наперед. В результаті ми отримуємо хід до клітинки с та повний незамкнутий маршрут коня (рис. 2.2.5).

6	3	50	39	52	35	60	57
1	40	5	36	49	58	53	34
4	7	2	51	38	61	56	59
41	28	37	48	17	54	33	62
8	47	42	27	32	63	18	55
29	12	9	46	43	16	21	24
10	45	14	31	26	23	64	19
13	30	11	44	15	20	25	22

Рисунок 2.2.5 – Повний незамкнутий маршрут коня

Як вже раніше згадувалося, метод Ейлера дозволяє зробити замкнутий шлях з незамкнутого. Для прикладу візьмемо незамкнутий маршрут коня на рисунку 2.2.5.

Нам потрібно зробити чарунку 64 ближче до чарунки 1. Зробимо це за допомогою чарунки 28 яка посилається на чарунку 1 та 27.

Запишемо шлях від 1 до 27 задом наперед (рис. 2.2.6).

22	25	50	39	52	35	60	57
27	40	23	36	49	58	53	34
24	21	26	51	38	61	56	59
41	28	37	48	11	54	33	62
20	47	42	1	32	63	10	55
29	16	19	46	43	12	7	4
18	45	14	31	2	5	64	9
15	30	17	44	13	8	3	6

Рисунок 2.2.6 – Шлях від 1 до 27 задом наперед

3 чарунки 1 можна піти в чарунки 26, 38, 54, 12, 2, 14, 16, 28. З чарунки 64 можна піти в чарунки 13, 43, 64, 55.

Чарунки 13 та 14 підходять нам через те, що у них різниця дорівнює 1. Отже записуємо хід від чарунки 1 до чарунки 13 задом наперед та отримуємо замкнутий шлях (рис. 2.2.7) [4].

22	25	50	39	52	35	60	57
27	40	23	36	49	58	53	34
24	21	26	51	38	61	56	59
41	28	37	48	3	54	33	62
20	47	42	13	32	63	4	55
29	16	19	46	43	2	7	10
18	45	14	31	12	9	64	5
15	30	17	44	1	6	11	8

Рисунок 2.2.7 – Повний замкнутий шлях коня

2.3 Метод Вандермонда

2.4 Метод Варнсдорфа

Правило Варнсдорфа формулюється так: наступний хід коня потрібно робити на клітинку, звідки існує найменша кількість можливих ходів. Якщо клітинок з однаковою кількістю ходом декілька, то можна вибрати будь-яку.

На практиці це реалізується, наприклад, наступним чином. Перед кожним ходом коня визначається «рейтинг» найближчих доступних полів, на яких кінь ще не побував, і на які він може перейти за один хід. Рейтинг поля визначається числом найближчих доступних з нього полів. Чим менше рейтинг, тим він краще. Потім робиться хід на поле з найменшим рейтингом (на любому з таких, якщо їх кілька), і так далі, покаже куди ходити.

Цей алгоритм відноситься до класу жадібних алгоритмів з евристичним методом вирішення.

Евристика завжди працює на дошках від 5х5 до 76х76 клітинок, при більших розмірах дошки, може зайти в глухий кут. Крім того, базуючись на правилах алгоритму, не дає всіх можливих рішень (тобто ходів коня) [5].

РЕЗУЛЬТАТИ РОБОТИ

ПЕРЕЛІК ДЖЕРЕЛ ПОСИЛАНЬ

- 1) Knight's tour // wikipedia. URL: https://en.wikipedia.org/wiki/Knight%27s_tour. Дата звернення: 13.11.2020.
- 2) Задача о ходе коня. Связь задачи о ходе коня с теорией графов. URL: https://forany.xyz/a-16?pg=8. Дата звернення: 13.11.2020.
- 3) Rediscovery of the Knight's Problem. Euler 1759. URL: https://www.mayhematics.com/t/1b.htm. Дата звернення: 19.11.2020.
- 4) Colleen Raimondi. Презентація: The Knight's Tour. Euler's Method. URL: http://academics.smcvt.edu/jellis-monaghan/combo2/Archive/Combo%20s03/special%20topics%2003/The%20Knights%20Tour.ppt. Дата звернення: 19.11.2020
- 5) Обход доски шахматным конём. Правило Варнсдорфа. URL: http://algolist.manual.ru/maths/combinat/knight.php. Дата звернення: 13.11.2020.