

Construyendo arquitecturas zero trust sobre entornos cloud

José Manuel Ortega Candel

Agenda

- Introducción a DevSecOps y modelado de amenazas
- Modelo de confianza cero(zero trust) en la nube
- Mejoras prácticas a nivel de permisos y estrategias de seguridad al trabajar en entornos cloud
- Herramientas de análisis orientadas al pentesting en entornos cloud

DevOps vs. DevSecOps

https://www.cidersecurity.io/wp-content/uploads/2022/06/Top-10-CICD-Security-Risks-.pdf

Top 10 CI/CD Security Risks	CICD-SEC-2 CICD-SEC-3 CICD-SEC-4	Insufficient Flow Control Mechanisms Inadequate Identity and Access Management Dependency Chain Abuse Poisoned Pipeline Execution (PPE) Insufficient PBAC (Pipeline-Based Access Controls)
•	CICD-SEC-6 CICD-SEC-7 CICD-SEC-8 CICD-SEC-9	Insufficient Credential Hygiene Insecure System Configuration Ungoverned Usage of 3rd Party Services Improper Artifact Integrity Validation Insufficient Logging and Visibility

- CICD-SEC-1: Insufficient Flow Control Mechanisms
- CICD-SEC-2: Inadequate Identity and Access Management
- CICD-SEC-3: Dependency Chain Abuse
- CICD-SEC-4: Poisoned Pipeline Execution (PPE)
- CICD-SEC-5: Insufficient PBAC (Pipeline-Based Access Controls)
- CICD-SEC-6: Insufficient Credential Hygiene
- CICD-SEC-7: Insecure System Configuration
- CICD-SEC-8: Ungoverned Usage of 3rd Party Services
- CICD-SEC-9: Improper Artifact Integrity Validation
- CICD-SEC-10: Insufficient Logging and Visibility

Modelado de amenazas

Modelado de amenazas

 El beneficio inmediato y más importante de implementar el modelado de amenazas es identificar las amenazas que pueden aparecer a lo largo del proceso de diseño para que se puedan implementar las contramedidas adecuadas.

Risk-based

Adaptive

DATA AND CONTEXT

(USERS, DEVICES AND THINGS)

INSIGHT AND POLICY ENGINE

INTELLIGENT AUTHENTICATION

 Zero Trust es un paradigma de ciberseguridad centrado en la protección de los recursos y la premisa de que la confianza nunca se otorga implícitamente, sino que debe evaluarse continuamente.

 El enfoque inicial debería estar en restringir los recursos para aquellos que necesitan acceder y otorgar sólo los privilegios mínimos necesarios para cumplir sus objetivos.

- Desarrollo de aplicaciones
- Aprovisionamiento de infraestructura
- Conectividad de servicios
- Autenticación de personas

¿Qué están intentando proteger?

• ¿De quién intentan protegerlo?

- Uso de arquitecturas proxy
- Proteger los datos mediante políticas granulares basadas en el contexto
- Reducir el riesgo eliminando la superficie de ataque
- Acciones de defensa y protección

- Todas las entidades de una red suponen una amenaza
- Acceso a los recursos basado en autenticar y autorizar tanto el usuario como al host que va a acceder

- Ninguna parte de la red es confiable. Debemos actuar como si el atacante estuviese siempre presente.
- Nunca confiar en la conexión a la red. Cualquier conexión que se establezca es insegura.
- **Verificar explícitamente**. Siempre hay que verificar, nunca confiar.
- **Privilegios mínimos**. Restringir los recursos para aquellos únicamente que necesitan acceder.
- Microsegmentación. Aplicar políticas dinámicas basadas en información de contexto.
- **Visibilidad**. Es importante inspeccionar y evaluar continuamente los riesgos.

National Institute of Standards and Technology

Punto Cumplimiento Política (PDP)

Fuente: NIST SP 800-207

"responsable de monitorizar conexiones entre sujetos y recursos"

NIST Special Publication 800-207

Zero Trust Architecture

Scott Rose Oliver Borchert Stu Mitchell Sean Connelly

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-207

Table of Contents

1	Intro	ductio	on	1	
	1.1	1.1 History of Zero Trust Efforts Related to Federal Agencies			
	1.2	1.2 Structure of This Document			
2	Zero Trust Basics			4	
	2.1	Tolloto of Edio 11dot			
	2.2	A Zero Trust View of a Network			
3	Logical Components of Zero Trust Architecture				
	3.1	.1 Variations of Zero Trust Architecture Approaches			
		3.1.1	ZTA Using Enhanced Identity Governance	11	
		3.1.2	ZTA Using Micro-Segmentation	12	
		3.1.3	ZTA Using Network Infrastructure and Software Defined Pe	rimeters. 12	
	3.2 Deployed Variations of the Abstract Architecture				
			Device Agent/Gateway-Based Deployment		
		3.2.2	Enclave-Based Deployment	14	
		3.2.3	Resource Portal-Based Deployment	15	
		3.2.4	Device Application Sandboxing	16	
	3.3	Trust	Algorithm	17	
		3.3.1	Trust Algorithm Variations	19	
	3.4 Network/Environment Components		ork/Environment Components	21	

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf

Uso de soluciones de IAM

- Normalización de las identidades en la organización
- Funcionalidades que garantizan unas políticas de contraseñas apropiadas
- Ágil aprovisionamiento de usuarios
- Privileged Session Management(PSM)
- Monitorizar en tiempo real las sesiones de los usuarios
- Si cualquier credencial se ve comprometida, se puede gestionar la revocación de secretos o sesiones

Uso de soluciones de IAM

- Gobernanza de identidades: gestiona el ciclo de vida de la cuenta de usuario, incluidos los derechos y su concesión.
- Gestión de acceso: controla las políticas de acceso unificado a menudo con la activación de la conexión única (SSO) y la autenticación multifactor (MFA).
- Servicios de directorio: gestión y sincronización de credenciales centralizadas y consolidadas.
- Aprovisionamiento de usuarios: automatiza la creación y la asignación de nuevas cuentas de usuario.
- Análisis de identidades: detecta y evita actividades de identidad sospechosas mediante el aprendizaje automático.
- Conexión única (SSO): consolida la contraseña de usuario y las credenciales de una única cuenta con una activación de contraseña segura para simplificar el acceso a los servicios.
- Autenticación multifactor (MFA): incrementa la autenticación con controles secundarios para garantizar la autenticidad de los usuarios y reducir la exposición a credenciales robadas.
- Autenticación basada en riesgos: utiliza algoritmos para calcular los riesgos de las acciones de los usuarios. Bloquea y denuncia actividades calificadas de alto riesgo.
- Administración y gobernanza de identidades (IGA): reduce el riesgo asociado a un acceso y privilegios excesivos mediante el control de derechos.

Estrategias de seguridad entornos cloud

https://cloudcustodian.io

https://cloudcustodian.io

https://github.com/prowler-cloud/prowler

- Prowler es una herramienta de seguridad de código abierto para realizar evaluaciones de las mejores prácticas de seguridad de AWS y Azure
- Permite realizar auditorías, respuesta a incidentes, monitorización continua, hardening y gestionar la revocación de secretos.


```
aws configure
```

```
export AWS_ACCESS_KEY_ID="ASXXXXXXXX"
export AWS_SECRET_ACCESS_KEY="XXXXXXXXXX"
export AWS_SESSION_TOKEN="XXXXXXXXXXX"
```


arn:aws:iam::aws:policy/SecurityAudit

arn:aws:iam::aws:policy/job-function/ViewOnlyAccess

- JSON: /Users/user/Documents/prowler-repos/prowler/output/prowler-output-1

6-20221202125330.ison

Principales servicios de seguridad en AWS

AWS WAF

Protect your web applications from common web exploits

AWS Shield

Managed DDoS protection

Amazon Guard Duty

A threat detection service that continuously monitors for compromised accounts, anomalous behavior, and malware

AWS Secrets Manager

Store credentials, API keys, tokens, and other secrets securely

AWS KMS

Create and control the cryptographic keys that protect your data

Amazon Inspector

An automated security vulnerability management service that continually evaluates your resources for software vulnerabilities and unintended network exposure

Principales servicios de seguridad en AWS

Mejores prácticas de seguridad

TEAM B

Mejores prácticas de seguridad

- Funciones y permisos de IAM
- Funciones y permisos específicos de Cloud Compose
- Uso compartido restringido al dominio (DRS)

Conclusiones

- Estrategia de empresa a largo plazo
- Gestión centralizada de la seguridad
- Solución centrada en la identidad del usuario

Conclusiones

- Zero Trust Container Security
- https://more.suse.com/zero-trust-security-for-dummies.html

Conclusiones

- How to Enable Zero Trust Security for Your Data Center
- https://www.brighttalk.com/webcast/10903/235239

low to Enable Zero Trust Security for your Data Center

hn Kindervag

ce President and Principal Analyst, Forrester Research

iGracias!

¿Preguntas?

@jmortegac

https://www.linkedin.com/ /in/jmortega1

https://jmortega.github.io

