Aula 22 – O Teorema do Valor Médio

Metas da aula: Estabelecer o Teorema do Extremo Interior, estudar a relação da derivada com o crescimento local de funções, e apresentar a propriedade do valor intermediário das funções derivadas. Estabelecer o Teorema do Valor Médio e apresentar algumas de suas aplicações, tais como no estudo dos valores extremos locais de funções e na obtenção de desigualdades.

Objetivos: Ao final desta aula, você deverá ser capaz de:

- Saber o significado do Teorema do Extremo Interior e algumas de suas aplicações. Conhecer as relações entre a derivada e o crescimento local de funções e a propriedade o valor intermediário das funções derivadas.
- Saber o significado do Teorema do Valor Médio e algumas de suas aplicações, tais como no estudo dos valores extremos locais de funções e na obtenção de desigualdades.

Introdução

O principal resultado que veremos nesta aula é o Teorema do Valor Médio, que relaciona os valores de uma função com os de sua derivada. Esse é sem dúvida um dos resultados mais úteis de toda a Análise Real. Para provar o Teorema do Valor Médio, precisaremos primeiro estabelecer o Teorema do Extremo Interior. Este último justifica a prática de se examinar os zeros da derivada para encontrar os extremos locais de uma função no interior de seu intervalo de definição. O Teorema do Extremo Interior também é usado para demonstrar a propriedade do valor intermediário exibida pelas derivadas de funções diferenciáveis ao longo de intervalos.

O Teorema do Extremo Interior

Iniciaremos nossa aula com o enunciado e a demonstração do Teorema do Extremo Interior, que justifica a prática de se examinar os zeros da derivada para encontrar os extremos locais de uma função.

Recordemos que, se I é um intervalo, diz-se que a função $f: I \to \mathbb{R}$ tem um **máximo local** em $\bar{x} \in I$ se existe uma vizinhança $V := V_{\delta}(\bar{x})$ de \bar{x} tal que $f(x) \leq f(\bar{x})$ para todo $x \in V \cap I$. Neste caso também dizemos que \bar{x} é um **ponto de máximo local de** f. Analogamente, dizemos que f

tem um **mínimo local** em $\bar{x} \in I$ se existe uma vizinhança $V := V_{\delta}(\bar{x})$ de \bar{x} tal que $f(x) \geq f(\bar{x})$ para todo $x \in V \cap I$. Recordemos também que por definição $V_{\delta}(\bar{x}) = (\bar{x} - \delta, \bar{x} + \delta)$. Dizemos que f tem um **extremo local** em $\bar{x} \in I$ se ela tem um máximo local ou um mínimo local em \bar{x} .

Diz-se que o ponto \bar{x} é um **ponto interior de** I se \bar{x} não é um extremo de I ou, equivalentemente, se existe uma vizinhança $V_{\delta}(\bar{x})$ tal que $V_{\delta}(\bar{x}) \subset I$.

Teorema 22.1 (Teorema do Extremo Interior)

Seja $I \subset \mathbb{R}$ um intervalo, $\bar{x} \in I$, e $f: I \to \mathbb{R}$ diferenciável em \bar{x} .

- (i) Se \bar{x} não é o extremo à direita de I, então $f'(\bar{x}) > 0$ implica que existe $\delta > 0$ tal que $f(x) > f(\bar{x})$ para $\bar{x} < x < \bar{x} + \delta$. Por outro lado, $f'(\bar{x}) < 0$ implica que existe $\delta > 0$ tal que $f(x) < f(\bar{x})$ para $\bar{x} < x < \bar{x} + \delta$
- (ii) Se \bar{x} não é o extremo à esquerda de I, então $f'(\bar{x}) < 0$ implica que existe $\delta > 0$ tal que $f(x) > f(\bar{x})$ para $\bar{x} \delta < x < \bar{x}$. Por outro lado, $f'(\bar{x}) > 0$ implica que existe $\delta > 0$ tal que $f(x) < f(\bar{x})$ para $\bar{x} \delta < x < \bar{x}$.
- (iii) Se \bar{x} é um ponto interior de I e f tem um extremo local em \bar{x} , então $f'(\bar{x}) = 0$.

Prova: (i) Suponhamos que \bar{x} não é o extremo à direita de I. Inicialmente, consideremos o caso em que $f'(\bar{x}) > 0$. Neste caso, como

$$\lim_{x \to \bar{x}} \frac{f(x) - f(\bar{x})}{x - \bar{x}} = f'(\bar{x}) > 0,$$

segue do Teorema 13.5 (na discussão sobre desigualdades e limites de funções) que existe um $\delta > 0$ tal que se $x \in I$ e $0 < |x - \bar{x}| < \delta$, então

$$\frac{f(x) - f(\bar{x})}{x - \bar{x}} > 0. \tag{22.1}$$

Como \bar{x} não é o extremo à direita de I, podemos obter $\delta > 0$ suficientemente pequeno tal que vale (22.1) e $(\bar{x}, \bar{x} + \delta) \subset I$. Sendo assim, se $\bar{x} < x < \bar{x} + \delta$, então

$$f(x) - f(\bar{x}) = (x - \bar{x}) \cdot \frac{f(x) - f(\bar{x})}{x - \bar{x}} > 0,$$
 (22.2)

ou seja, $f(x) > f(\bar{x})$ para $\bar{x} < x < \bar{x} + \delta$.

No caso em que $f'(\bar{x}) < 0$, teremos a desigualdade oposta, isto é, '<' em lugar de '>', tanto em (22.1) como em (22.2). Isso nos dará que $f(x) < f(\bar{x})$ para $\bar{x} < x < \bar{x} + \delta$, como afirmado.

A demontração de (ii) é inteiramente análoga a de (i) e ficará para você como exercício.

(iii) Seja \bar{x} um ponto interior de I tal que f é diferenciável em \bar{x} e tem um extremo local em \bar{x} . Para fixar idéias, suponhamos que \bar{x} é um ponto de máximo local de f. Se $f'(\bar{x}) > 0$, então o ítem (i) nos dá uma contradição com o fato de \bar{x} ser um máximo local. Por outro lado, se $f'(\bar{x}) < 0$, então o ítem (ii) nos dá uma contradição com o fato de f ter um máximo local em \bar{x} . Logo, devemos ter $f'(\bar{x}) = 0$. O caso em que \bar{x} é mínimo local segue de maneira semelhante (como?).

O ítem (iii) do Teorema 22.1 é o que se refere diretamente ao ponto de extremo interior. Observe que uma função $f:I\to\mathbb{R}$ pode ter um extremo local num ponto \bar{x} sem que exista $f'(\bar{x})$. Um exemplo disso é o caso da função f(x):=|x|, para $x\in I:=[-1,1]$. Observe também que se o extremo local \bar{x} não for um ponto interior de I, então pode existir $f'(\bar{x})$ com $f'(\bar{x})\neq 0$. Um exemplo desta última afirmação é dado pela função f(x):=x, para $x\in I:=[0,1]$, onde $\bar{x}=0$ é um ponto de mínimo e $\bar{x}=1$ é um ponto de máximo.

A seguir, como primeira aplicação do Teorema 22.1, vamos estabelecer a propriedade do valor intermediário exibida pela derivada de função diferenciável em todo ponto de um intervalo I=[a,b]. Esse resultado é devido ao matemático francês Gaston Darboux (1842-1917) que a ele empresta seu nome. Já vimos que a propriedade do valor intermediário é exibida pelas funções contínuas. O curioso é que a derivada de uma função diferenciável num intervalo [a,b] pode não ser contínua nesse intervalo!

Teorema 22.2 (Teorema de Darboux)

Se f é diferenciável em I = [a, b] com $f'(a) \neq f'(b)$ e se k é um número qualquer entre f'(a) e f'(b), então existe pelo menos um ponto $c \in (a, b)$ tal que f'(c) = k.

Prova: Para fixar idéias, suponhamos que f'(a) < k < f'(b). Definimos g em I por g(x) := kx - f(x) para $x \in I$. Como g é contínua, ela assume um valor máximo em I. Como g'(a) = k - f'(a) > 0, segue do Teorema 22.1(i) que o máximo de g não ocorre em x = a. Similarmente, como g'(b) = k - f'(b) < 0, segue do Teorema 22.1(ii) que o máximo de g não ocorre em x = b. Portanto, g assume seu máximo em algum ponto interior $c \in (a, b)$. Então, do Teorema 22.1(iii) temos que 0 = g'(c) = k - f'(c). Logo, f'(c) = k.

Exemplos 22.1

1. A função $g:[-1,1]\to\mathbb{R}$ definida por

$$g(x) := \begin{cases} 1 & \text{para } 0 < x \le 1 \\ 0 & \text{para } x = 0, \\ -1 & \text{para } -1 \le x < 0, \end{cases}$$

que é a restrição da função sinal a I := [-1, 1], claramente não satisfaz a propriedade do valor intermediário. Por exemplo, 0 = g(0) < 1/2 <1 = g(1), mas não existe $c \in (0,1)$ tal que $g(c) \neq 1/2$. Portanto, pelo Teorema de Darboux, não existe uma função f difenciável em [-1, 1]tal que f'(x) = q(x) para todo $x \in [-1, 1]$.

2. Por outro lado, já vimos que a função $f: I:=[-1,1] \to \mathbb{R}$, definida por $f(x) := x^2 \operatorname{sen}(1/x)$ é diferenciável em I. Sua derivada é a função $g: I \to \mathbb{R}$ dada por $g(x) := 2x \operatorname{sen}(1/x) - \cos(1/x)$ que, apesar de descontínua em x=0, satisfaz a propriedade do valor intermediário (veja Figura **22.1**).

Figura 22.1: A função $q(x) = 2x \sin(1/x) - \cos(1/x)$.

O Teorema do Valor Médio

A seguir estabeleceremos um resultado famoso conhecido como Teorema de Rolle, cujo nome faz referência ao matemático francês Michel Rolle (1652– 1719). Trata-se de um caso particular do Teorema do Valor Médio que lhe é, na verdade, equivalente.

Teorema 22.3 (Teorema de Rolle)

Seja $f:[a,b] \to \mathbb{R}$ uma função contínua no intervalo fechado I:=[a,b] que é diferenciável em todo ponto do intervalo aberto (a,b) e satisfaz f(a)=f(b)=0. Então existe ao menos um ponto $\bar{x}\in(a,b)$ tal que $f'(\bar{x})=0$.

Prova: Se f se anula identicamente em I, então qualquer $\bar{x} \in (a,b)$ satisfaz a conclusão. Logo, vamos assumir que f não se anula identicamente. Trocando f por -f se necessário, podemos supor sem perda de generalidade que f é positiva em algum ponto de (a,b). Pelo Teorema do Máximo-Mínimo 16.2, f assume o valor $\sup\{f(x):x\in I\}>0$ em algum ponto $\bar{x}\in I$. Como f(a)=f(b)=0, o ponto \bar{x} deve pertencer ao intervalo aberto (a,b). Logo, $f'(\bar{x})$ existe. Como f tem um máximo relativo em \bar{x} , concluímos do Teorema do Extremo Interior 22.1(iii) que $f'(\bar{x})=0$. (Veja Figura 22.2).

Figura 22.2: O Teorema de Rolle.

Como uma consequência do Teorema de Rolle, obtemos o fundamental Teorema do Valor Médio.

Teorema 22.4 (Teorema do Valor Médio)

Suponhamos que f é contínua num intervalo fechado I := [a, b], e que f é diferenciável em todo ponto do intervalo aberto (a, b). Então existe ao menos um ponto $\bar{x} \in (a, b)$ tal que

$$f(b) - f(a) = f'(\bar{x})(b - a). \tag{22.3}$$

Prova: Consideremos a função φ definida em I por

$$\varphi(x) := f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Observe que φ é simplesmente a diferença entre f e a função cujo gráfico é o segmento de reta ligando os pontos (a, f(a)) e (b, f(b)); veja Figura 22.3. As hipóteses do Teorema de Rolle são satisfeitas por φ já que esta é contínua em [a,b], diferenciável em (a,b), e $\varphi(a)=\varphi(b)=0$. Portanto, existe um ponto $\bar{x} \in (a,b)$ tal que

$$0 = \varphi'(\bar{x}) = f'(\bar{x}) - \frac{f(b) - f(a)}{b - a}.$$

Logo, $f(b) - f(a) = f'(\bar{x})(b - a)$.

Figura 22.3: O Teorema do Valor Médio.

A seguir damos algumas aplicações do Teorema do Valor Médio que mostram como esse resultado pode ser utilizado para retirar conclusões sobre a natureza de uma função f a partir de informação sobre sua derivada f'.

Teorema 22.5

Suponhamos que f é contínua no intervalo fechado I := [a, b], diferenciável no intervalo aberto (a,b), e f'(x)=0 para todo $x\in(a,b)$. Então f é constante em I.

Prova: Mostraremos que f(x) = f(a) para todo $x \in I$. De fato, dado $x \in I$, com x > a, aplicamos o Teorema do Valor Médio a f sobre o intervalo fechado [a,x]. Obtemos que existe um ponto $\bar{x} \in (a,x)$, dependendo de x, tal que $f(x) - f(a) = f'(\bar{x})(x - a)$. Como $f'(\bar{x}) = 0$ por hipótese, concluímos que f(x) - f(a) = 0, ou seja, f(x) = f(a), como afirmado.

Corolário 22.1

Suponhamos que f e g são contínuas em I := [a, b], diferenciáveis em (a, b), e que f'(x) = g'(x) para todo $x \in (a,b)$. Então existe uma constante $C \in \mathbb{R}$ tal que f(x) = g(x) + C para todo $x \in I$.

Prova: Basta considerar a função h := f - g e aplicar o Teorema 22.5.

Teorema 22.6

Seja $f: I \to \mathbb{R}$ diferenciável no intervalo I. Então:

- (i) f é não-decrescente em I se, e somente se, $f'(x) \ge 0$ para todo $x \in I$.
- (ii) f é não-crescente em I se, e somente se, $f'(x) \leq 0$ para todo $x \in I$.

Prova: (i) Suponhamos que $f'(x) \ge 0$ para todo $x \in I$. Se $x_1, x_2 \in I$ satisfazem $x_1 < x_2$, então aplicamos o Teorema do Valor Médio a f no intervalo fechado $J := [x_1, x_2]$ para obter um ponto $\bar{x} \in (x_1, x_2)$ tal que

$$f(x_2) - f(x_1) = f'(\bar{x})(x_2 - x_1).$$

Como $f'(\bar{x}) \geq 0$ e $x_2 - x_1 > 0$, segue que $f(x_2) - f(x_1) \geq 0$, ou seja, $f(x_1) \leq f(x_2)$, o que prova que f é não-decrescente.

Para provar a recíproca, suponhamos que f é diferenciável e não-decrescente em I. Logo, dado qualquer ponto $\bar{x} \in I$, para todo $x \in I$ com $x \neq \bar{x}$ temos $(f(x) - f(\bar{x}))/(x - \bar{x}) \geq 0$ (por quê?). Logo, pelo Teorema 13.3 concluímos que

$$f'(\bar{x}) = \lim_{x \to \bar{x}} \frac{f(x) - f(\bar{x})}{x - \bar{x}} \ge 0.$$

(ii) A prova da parte (ii) é semelhante e será deixada para você como exercício.

Observação 22.1

Note que um argumento idêntico ao da prova do Teorema 22.6 mostra que se f'(x) > 0 para todo $x \in I$, então f é crescente em I, isto é, $x_1 < x_2$ implica $f(x_1) < f(x_2)$ para $x_1, x_2 \in I$. No entanto, a recíproca dessa afirmação não é verdadeira, ou seja, é possível ter f crescente num intervalo I com f' se anulando em alguns pontos de I. Por exemplo, a função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) := x^3$ é crescente em \mathbb{R} , mas f'(0) = 0. Claramente, uma observação análoga vale para funções decrescentes.

Teorema 22.7 (Teste da Primeira Derivada)

Seja f contínua no intervalo I := [a, b] e seja c um ponto interior de I. Suponhamos que f é diferenciável nos intervalos abertos (a, c) e (c, b).

- (i) Se existe uma vizinhança $(c \delta, c + \delta) \subset I$ tal que $f'(x) \geq 0$ para $c - \delta < x < c$ e $f'(x) \le 0$, então f tem um máximo local em c.
- (ii) Se existe uma vizinhança $(c \delta, c + \delta) \subset I$ tal que $f'(x) \leq 0$ para $c - \delta < x < c$ e $f'(x) \ge 0$ para $c < x < c + \delta$, então f tem um mínimo local em c.

Prova: (i) Se $x \in (c - \delta, c)$, então segue do Teorema do Valor Médio que existe $\bar{x} \in (x,c)$, dependendo de x, tal que $f(c) - f(x) = f'(\bar{x})(c-x)$. Como $f'(\bar{x}) \geq 0$ concluímos que $f(x) \leq f(c)$ para $x \in (c - \delta, c)$. Similarmente, segue do Teorema do Valor Médio e da hipótese f'(x) < 0 para $x \in (c, c + \delta)$ que $f(x) \leq f(c)$ para $x \in (c, c + \delta)$. Portanto, $f(x) \leq f(c)$ para todo $x \in (c - \delta, c + \delta)$, de modo que f tem um máximo local em c.

(ii) A prova de (ii) é inteiramente análoga e ficará para você como exercício.

Observação 22.2

A recíproca do Teste da Primeira Derivada 22.7 não é válida. Por exemplo, a função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) := x^2(\text{sen}(1/x) + 2)$ se $x \neq 0$ e f(0) := 0é diferenciável em todo \mathbb{R} e satisfaz f(x) > 0 se $x \neq 0$, já que $|\sin(1/x)| < 1$. Em particular, 0 é um ponto de mínimo local. A derivada de f é dada por $f'(x) := 2x(\text{sen}(1/x) + 2) - \cos(1/x)$ se $x \neq 0$ e f'(0) = 0. Assim, se $x_k :=$ $1/(2k\pi)$ para $k \in \mathbb{N}$, temos $x_k \to 0$, quando $k \to \infty$, e $f'(x_k) < 0$ para todo k suficientemente grande, já que $\cos(1/x_k) = 1$ e $\lim (2x_k(\sin(1/x_k) + 2)) = 0$. Por outro lado, se $z_k := 2/((2k+1)\pi)$ para $k \in \mathbb{N}$, temos $z_k \to 0$ quando $k \to \infty$, e $f'(z_k) > 0$ para todo $k \in \mathbb{N}$, já que $z_k > 0$, $\cos(1/z_k) = 0$ e $sen(1/z_k) = 1$. Portanto, existem pontos arbitrariamente próximos de 0 para os quais f' é negativa e pontos arbitrariamente próximos de 0 para os quais f' é positiva.

Aplicações do Teorema do Valor Médio em desigualdades

A seguir estabeleceremos uma aplicação do Teorema do Valor relacionada com funções Lipschitz. Concluiremos depois dando outros exemplos de aplicações desse resultado para a obtenção de desigualdades.

Teorema 22.8

Seja $f: I \to \mathbb{R}$ diferenciável em todo ponto do intervalo I. Se existe C > 0 tal que $|f(x)| \le C$ para todo $x \in I$, então $|f(x) - f(y)| \le C|x - y|$, para todos $x, y \in I$.

Prova: Dados $x, y \in I$, pelo Teorema do Valor Médio existe $\bar{x} \in (x, y)$ tal que $f(x) - f(y) = f'(\bar{x})(x - y)$. Logo,

$$|f(x) - f(y)| \le |f'(\bar{x})||x - y| \le C|x - y|,$$

já que, por hipótese, $|f'(\bar{x})| \leq C$.

Exemplos 22.2

1. Como já foi dito anteriormente, as funções trigonométricas sen x e $\cos x$ satisfazem $D \sec x = \cos x$ e $D \cos x = -\sec x$. Além disso vale a relação fundamental $(\sec x)^2 + (\cos x)^2 = 1$, donde segue que $|\sec x| \le 1$ e $|\cos x| \le 1$. Esses fatos serão provados rigorosamente em aulas futuras. Do Teorema ?? segue que $|\sec x - \sec y| \le |x - y|$ para todos $x, y \in \mathbb{R}$. Em particular, tomando $x \ge 0$ e y = 0 obtemos

$$-x \le \operatorname{sen} x \le x$$
 para todo $x \ge 0$.

2. A função exponencial $f(x) := e^x$ tem derivada $f'(x) = e^x$ para todo $x \in \mathbb{R}$. Logo, f'(x) > 1 para x > 0 e 0 < f'(x) < 1 para x < 0. A partir dessas relações, provaremos a desigualdade

$$e^x \le 1 + x \quad \text{para } x \in \mathbb{R},$$
 (22.4)

com igualdade ocorrendo se, e somente se, x = 0.

Se x=0, como $e^0=1$, claramente vale a igualdade. Se x>0, aplicamos o Teorema do Valor Médio à função f no intervalo [0,x], o que nos dá

$$e^x - 1 = e^{\bar{x}}x$$
 para algum $\bar{x} \in (0, x)$.

Segue daí que $e^x - 1 > x$, ou seja, $e^x > 1 + x$ se x > 0. Se x < 0, aplicando o Teorema do Valor Médio à função f no intervalo [x, 0], de novo obtemos $e^x > 1 + x$. Portanto, temos $e^x > 1 + x$ para todo $x \neq 0$.

3. (Desigualdade de Bernoulli) Para qualquer $\alpha \in \mathbb{R}$, define-se a função $f(x) := x^{\alpha}$ para x > 0 por

$$x^{\alpha} := e^{\alpha \log x}$$
.

Usando o fato já mencionado, a ser provado em aula futura, de que $D \log x = 1/x$ para x > 0, juntamente com a Regra da Cadeia, obtemos

$$(x^{\alpha})' = (e^{\alpha \log x})' = e^{\alpha \log x} \cdot \frac{\alpha}{x}$$
$$= \alpha e^{\alpha \log x} e^{-\log x} = \alpha e^{(\alpha - 1) \log x}$$
$$= \alpha x^{\alpha - 1},$$

o que estende a fórmula que havíamos estabelecido anteriormente para α racional. Usando isso provaremos a desigualdade de Bernoulli que estabelece que para todo $\alpha > 1$ vale

$$(1+x)^{\alpha} \ge 1 + \alpha x \qquad \text{para todo } x > -1, \tag{22.5}$$

com igualdade valendo se, e somente se, x = 0. Observe que para $\alpha = 1$ vale trivialmente a igualdade para todo $x \in \mathbb{R}$; por isso esse caso é descartado.

Essa desigualdade foi estabelecida anteriormente para $\alpha \in \mathbb{N}$, usando Indução Matemática. Vamos estendê-la a todo $\alpha \in \mathbb{R}$ tal que $\alpha > 1$ usando o Teorema do Valor Médio.

Se $q(x) := (1+x)^{\alpha}$, então $q'(x) = \alpha(1+x)^{\alpha-1}$. Se x > 0, aplicamos o Teorema do Valor Mádio a g no intervalo [0,x], obtendo g(x)-g(0)= $g'(\bar{x})x$ para algum $\bar{x} \in (0, x)$, ou seja,

$$(1+x)^{\alpha} - 1 = \alpha(1+\bar{x})^{\alpha-1}x.$$

Como $\bar{x} > 0$ e $\alpha - 1 > 0$, segue que $(1 + \bar{x})^{\alpha - 1} > 1$ e portanto $(1 + x)^{\alpha} >$ $1 + \alpha x$.

Se -1 < x < 0, um aplicação semelhante do Teorema do Valor Médio à função g no intervalo [x,0] nos dá novamente $(1+x)^{\alpha} > 1 + \alpha x$ (por quê?).

Como o caso x=0 resulta em igualdade, concluímos que vale (22.5) com igualdade ocorrendo se, e somente se, x = 0.

4. Se $0 < \alpha < 1$, a > 0 e b > 0, então vale a desigualdade

$$a^{\alpha}b^{1-\alpha} \le \alpha a + (1-\alpha)b, \tag{22.6}$$

onde a igualdade vale se, e somente se, a = b. Vamos provar essa afirmação usando o Teorema do Valo Médio. Essa desigualdade pode ser provada também usando-se a concavidade da função logaritmo, que veremos mais tarde.

A desigualdade (22.6) e a afirmação sobre a ocorrência da igualdade serão obtidas como conseqüência da afirmação de que vale a desigualdade

$$x^{\alpha} \le \alpha x + (1 - \alpha)$$
 para todo $x \ge 0$ e $0 < \alpha < 1$, (22.7)

valendo a igualdade se, e somente se x=1, tomando-se x=a/b, a>0,b>0 (como?).

Provaremos então a desigualdade (22.7) e a afirmação correspondente a validade da igualdade. Consideremos a função $g(x) = \alpha x - x^{\alpha}$, com $x \geq 0$, $0 < \alpha < 1$. Temos $g'(x) = \alpha(1 - x^{\alpha - 1})$, de modo que g'(x) < 0 para 0 < x < 1 e g'(x) > 0 para x > 1. Conseqüentemente, se $x \geq 0$, então $g(x) \geq g(1)$ e g(x) = g(1) se, e somente se, x = 1, o que é equivalente a desigualdade (22.7) e a afirmação sobre a ocorrência da igualdade (por quê?).

Exercícios 22.1

- 1. Seja I um intervalo e $f: I \to \mathbb{R}$ diferenciável em I. Mostre que se f' nunca se anula em I, então ou f'(x) > 0 para todo $x \in I$ ou f'(x) < 0 para todo $x \in I$. [Dica: Use o Teorema de Darboux.]
- 2. Seja I um intervalo, $g: I \to \mathbb{R}$ e $\bar{x} \in I$ um ponto interior de I. Mostre que se existem os limites laterais $L_- := \lim_{x \to \bar{x}_-} g(x)$ e $L_+ := \lim_{x \to \bar{x}_+} g(x)$ e $L_- \neq L_+$, então g não é a derivada de nenhuma função $f: I \to \mathbb{R}$. [Dica: Use o Teorema de Darboux.]
- 3. Para cada uma das seguintes funções, encontre os pontos de extremo local, os intervalos nos quais a função é crescente e aqueles nos quais a função é decrescente.
 - (a) $f(x) := x^2 3x + 5 \text{ para } x \in \mathbb{R}.$
 - (b) $f(x) := x^3 3x 4 \text{ para } x \in \mathbb{R}.$
 - (c) $f(x) := x^4 + 2x^2 4 \text{ para } x \in \mathbb{R}.$
 - (d) $f(x) := x + 1/x \text{ para } x \neq 0.$
 - (e) $f(x) := \sqrt{x} 2\sqrt{x+2} \text{ para } x > 0.$
 - (f) $f(x) := 2x + 1/x^2$ para $x \neq 0$.

4. Sejam a_1, a_2, \ldots, a_n números reais e seja f definida em $\mathbb R$ por

$$f(x) := \sum_{i=1}^{n} (x - a_i)^2.$$

Encontre o único ponto de mínimo local para f.

- 5. Sejam a > b > 0 e $n \in \mathbb{N}$ satisfazendo $n \ge 2$. Prove que $a^{1/n} b^{1/n} < (a b)^{1/n}$. [Dica: Mostre que $f(x) := x^{1/n} (1 x)^{1/n}$ é decrescente para $x \ge 1$, e tome os valores de f em 1 e a/b.]
- 6. Use o Teorema do Valor Médio e os fatos já mencionados sobre a função exponencial para provar a desigualdade

$$e^a - e^b \le e^a(a - b)$$
 para todos $a, b \in \mathbb{R}$.

- 7. Use o Teorema do Valor Médio para provar que $(x-1)/x < \log x < x-1$ para x > 1. [Dica: Use o fato de que $D \log x = 1/x$ para x > 0.]
- 8. Seja $f:[a,b] \to \mathbb{R}$ contínua em [a,b] e diferenciável em (a,b). Mostre que se $\lim_{x\to a} f'(x) = A$, então f'(a) existe e é igual a A. [Dica: Use a definição de f'(a) e o Teorema do Valor Médio.]
- 9. Seja I um intervalo e $f: I \to \mathbb{R}$ diferenciável em I. Mostre que se f' é positiva em I, então f é crescente em I.