Лабораторная работа 1.1.4

"Измерение интенсивности космического излучения"

Муляревич Андрей Игоревич

12 сентября 2021 г.

Краткое описание и цель работы: Измерение интенсивности космического излучения с помощью счетчика Гейгера-Мюллера. Длительность эксперимента 1 час 6 мин 40 сек. Для проведения эксперемента используется устоновка со счетчиком СГС-6, результаты работы которого обробатывает подключенный к нему компьютер. Счетчик СГС-6 представляет собой полый металлический циллиндр(катод) и металлическую нить(анод), проходящую вдоль оси циллинда. Полость заполнена газом. Когда заряженная частица проходит через газ, она вызывает его ионизацию, в итоге происходит пробой, информация о котором записывается в компьютере

Цель экспиремента: применение методов обработки экспирементальных данных для изучения интенсивности излучения радиационного фона

Порядок выполнения экспиремента:

- 1. Включаем питание компьютера и установки. После загрузки компьютера запускаем программу STAT и таким образом начинаем проведение основного эксперимента.
- 2. В результате демонстрационного эксперимента убеждаемся, что при увеличении числа измерений:
 - (а) Измеряемая велечина флуктуирует;
 - (b) Флуктуации среднего значения измеряемой величины уменьшаются, и среднее значение выходит на постоянную величину;

- (c) Флуктуации велечины погрешности среднего значения уменьшаются, а сама величина убывает;
- (d) Флуктуации величины погрешности отдельного измерения уменьшаются, и погрешность отдельного измерения (погрешность метода) выходит на постоянную величину.
- 3. Переходим к основному эксперименту: измерение плотности потока космического излучения за 20 секунд (результаты набрались с момента включения компьютера). На компьютере проведем обработку, аналогичную сделанной в демонстрационном эксперименте. Результаты приведены в табл. 1.
- 4. Разбиваем результаты из табл. 1 в порядке их получения на группы по 2, что соответствует произведению $N_2=100$ измерений числа частиц за интервал времени, равный 40 с. Результаты приведем в табл. 2.
- 5. Приведем данные ддя построения гистограмм распределения числа срабатываний счетчика за 10 с и 40 с в таблицах табл. 3 и табл. 4 соответственно.
- 6. Так же приведем гистограммы распределений среднего числа отсчетов за 10 и 40 с. (Рис. 1, 2)
- 7. Используя формулы

$$\overline{n}_1 = \frac{1}{N_1} \sum_{i=1}^{N_1} n_i$$

$$\overline{n}_2 = \frac{1}{N_2} \sum_{i=1}^{N_2} n_i$$

$$\overline{n}_3 = \frac{1}{N_3} \sum_{i=1}^{N_3} n_i$$

- 8. Определим среднее число срабатываний счетчика за 10, 20 и 40 с соответственно.
- 9. Найдем среднеквадратичные ошибки σ отдельных измерений по формулам:

$$\sigma_1 = \sqrt{\frac{1}{N_1 - 1} \sum_{i=1}^{N_1} (n_i - \overline{n}_1)^2}$$

$$\sigma_2 = \sqrt{\frac{1}{N_2 - 1} \sum_{i=1}^{N_2} (n_i - \overline{n}_2)^2}$$

$$\sigma_3 = \sqrt{\frac{1}{N_3 - 1} \sum_{i=1}^{N_3} (n_i - \overline{n}_3)^2}$$

и убедимся в справедливости формул для примерного значения σ :

$$\sigma_{1}^{'} pprox \sqrt{\overline{n}_{1}}$$

$$\sigma_{2}^{'} \approx \sqrt{\overline{n}_{2}}$$

$$\sigma_{3}^{'} \approx \sqrt{\overline{n}_{3}}$$

10. найдем ошибки всех измерений σ'' по формулам

$$\sigma_1'' = \sqrt{\frac{1}{(N_1 - 1)N_1} \sum_{i=1}^{N_1} (n_i - \overline{n}_1)^2}$$

$$\sigma_2'' = \sqrt{\frac{1}{(N_2 - 1)N_2} \sum_{i=1}^{N_2} (n_i - \overline{n}_2)^2}$$

$$\sigma_3'' = \sqrt{\frac{1}{(N_3 - 1)N_3} \sum_{i=1}^{N_3} (n_i - \overline{n}_3)^2}$$

- 11. Зафикисруем все полученные ошибки и среднии значения срабатываний в табл. 5.
- 12. Определим долю случаев, когда отклонения не превышают σ_i и $2\sigma_i$, и сравним с теоретическими оценками (табл. 6).
- 13. Посчитаем относительную ошибку по формуле

$$\varepsilon_{\overline{n}_1} = \frac{\sigma_{\overline{n}_1}}{\overline{n}_1} 100\%$$

$$\varepsilon_{\overline{n}_2} = \frac{\sigma_{\overline{n}_2}}{\overline{n}_2} 100\%$$

$$\varepsilon_{\overline{n}_3} = \frac{\sigma_{\overline{n}_3}}{\overline{n}_3} 100\%$$

14. из табл. 6 следует, что $n_{t=10c}=12.46\pm0,18, \varepsilon_{\overline{n}_1}=1,4\%,\ n_{t=20c}=26,6\pm0,36, \varepsilon_{\overline{n}_2}=1,4\%,\ n_{t=40c}=53,11\pm0,61, \varepsilon_{\overline{n}_3}=1,2\%$

Таблица 1: **Число срабатываний счетчика за 10 сек**

№ опыта	1	2	3	4	5	6	7	8	9	10
0:	30	26	23	25	28	31	28	20	29	30
10:	27	17	23	21	23	20	26	27	21	26
20:	27	30	22	27	31	23	22	28	24	24
30 :	22	29	25	25	26	26	18	30	32	31
40:	35	22	32	20	26	12	22	22	20	21
50 :	18	26	20	21	27	25	21	24	30	28
60:	33	31	25	20	22	21	19	18	25	27
70:	16	18	28	24	24	24	21	19	24	25
80:	30	22	28	16	23	30	26	21	23	27
90:	27	39	26	19	26	25	25	22	22	21
100:	34	26	20	31	18	28	20	25	27	28
110:	32	21	15	34	23	27	25	30	30	25
120:	22	22	22	24	15	27	22	32	30	32
130:	30	16	23	25	19	23	31	26	24	29
140:	22	27	18	27	41	28	17	22	30	25
150 :	19	29	28	23	27	26	15	19	26	31
160:	33	29	23	13	26	25	31	22	27	20
170:	22	32	36	31	15	18	22	27	25	25
180:	18	21	29	27	28	28	31	31	24	24
190:	19	23	29	30	22	22	22	27	35	25

Таблица 2: Число срабатываний счетчика за 40 сек

№ опыта	1	2	3	4	5	6	7	8	9	10
0	56	48	59	48	59	43	44	43	53	47
10	57	49	54	50	48	51	50	52	48	63
20	57	52	38	44	41	44	41	52	45	58
30	64	45	43	37	52	34	52	48	40	49
40	52	44	53	47	50	66	45	51	47	43
50	60	51	46	45	55	53	49	50	55	55
60	44	46	42	54	62	46	48	42	57	53
70	49	45	69	39	55	48	51	53	34	57
80	62	36	51	53	47	54	67	33	49	50
90	39	56	56	62	48	41	59	44	49	60

Таблица 3: Данные для построения гистограммы распределения числа срабатываний счетчиков за 10 с

Число импульсов	Число случаев	Доля случаев
3	1	0,0025
4	2	0,005
5	1	0,0025
6	11	0,0275
7	12	0,03
8	18	0,045
9	40	0,1
10	39	0,0975
11	45	0,1125
12	46	0,115
13	39	0,0975
14	33	0,0825
15	33	0,0825
16	21	0,0525
17	24	0,06
18	14	0,035
19	9	0,0225
20	7	0,0175
21	3	0,0075
22	1	0,0025
23	1	0,0025

Таблица 4: Данные для построения гистограммы распределения числа срабатываний счетчиков за 40 сек

числа срабатыва	IIII C ICI IIIKOD	3a 40 cck
Число импульсов	Число случаев	Доля случаев
33	1	0.01
34	2	0.02
36	1	0.01
37	1	0.01
38	1	0.01
39	1	0.01
40	2	0.02
41	3	0.03
42	2	0.02
43	4	0.04
44	7	0.07
45	5	0.05
46	4	0.04
47	4	0.04
48	8	0.08
49	6	0.06
50	5	0.05
51	5	0.05
52	6	0.06
53	6	0.06
54	3	0.03
55	4	0.04
56	3	0.03
57	4	0.04
58	1	0.01
59	3	0.03
60	2	0.02
62	3	0.03
63	1	0.01
64	1	0.01
66	1	0.01
67	1	0.01
69	1	0.01

Таблица 5: **Ошибки и средние значения**

	\overline{n}	σ	$\sigma^{'}$	$\sigma^{''}$	$\varepsilon_{\overline{n}}$
1	12.47	3.54	3.53	0,18	1.40
2	24.93	5.10	5.00	0,35	1.42
3	49.86	6.89	7.06	0,61	1.38

Таблица 6: **Процент попадания точек в промежуток среднего значения с учетом погрешности**

Значение	Ошибка	Число случаев	Доля случаев,%	Теоретическая оценка,%
$\overline{n}_1 = 12.465$	$\pm \sigma_1 = \pm 3.54$	286	71	68
	$\pm 2\sigma_1 = \pm 7.08$	389	97	95
$\overline{n}_2 = 24.93$	$\pm \sigma_2 = \pm 5.10$	138	69	68
	$\pm 2\sigma_2 = \pm 10.20$	192	96	95
$\overline{n}_3 = 49.86$	$\pm \sigma_3 = \pm 6.89$	68	68	68
	$\pm 2\sigma_3 = \pm 13.78$	96	96	95