Logistic regression interpretation

Class activity, Part I

https://sta214-f22.github.io/class_activities/ca_lecture4.html

$$\logigg(rac{\widehat{\pi}_i}{1-\widehat{\pi}_i}igg) = -2.901 + 0.0036~Score_i$$

Calculate the odds ratio comparing odds of acceptance for a student with a GRE score of 701 to a student with a GRE score of 700.

$$\logigg(rac{\widehat{\pi}_i}{1-\widehat{\pi}_i}igg) = -2.901 + 0.0036 \ Score_i$$

Calculate the odds ratio comparing odds of acceptance for a student with a GRE score of 701 to a student with a GRE score of 700.

$$rac{e^{-2.901+0.0036\cdot701}}{e^{-2.901+0.0036\cdot700}} = 1.0036$$

This is the same odds ratio as comparing a 601 GRE to a 600 GRE!

$$\log\!\left(rac{\widehat{\pi}_i}{1-\widehat{\pi}_i}
ight) = -2.901 + 0.0036~Score_i$$

Odds ratio for increasing GRE by one point:

Scare -> Scare +1

odos ratio:
$$e \times p - 2.901 + 0.0036 (Scare + 1)$$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$
 $e \times p - 2.901 + 0.0036 (Scare + 1)$

if
$$x$$
 is close to $0 \Rightarrow e^{x} \approx 1+x$

why?

Taylor series for e^{x} (around 0):

 $e^{x} = 1+x+x^{2}+x^{3}+x^{4}$

~ 1 + X

layled series for
$$C$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!}$$

$$f = x \text{ is close to 0,}$$

$$f = x \text{ is close to 0,}$$

$$f = x \text{ is close to 0,}$$

Interpreting coefficients

$$\log\left(\frac{\widehat{\pi}_i}{1-\widehat{\pi}_i}\right) = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$$

Interpretation of $\widehat{\beta}_1$:

- \blacksquare A one unit increase in x is associated with an increase of $\widehat{\beta}_1$ in the log odds
- \blacksquare A one unit increase in x is associated with an increase in the odds by a factor of $\exp\{\widehat{\beta}_1\}$

How do you think we interpret $\widehat{\beta}_0$?

Interpreting coefficients

$$\log\left(\frac{\widehat{\pi}_i}{1-\widehat{\pi}_i}\right) = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$$

Interpretation of $\widehat{\beta}_1$:

- \blacksquare A one unit increase in x is associated with an increase of $\widehat{\beta}_1$ in the log odds
- \blacksquare A one unit increase in x is associated with an increase in the odds by a factor of $\exp\{\widehat{\beta}_1\}$

Interpretation of $\widehat{\beta}_0$:

- lacktriangle The estimated log odds when x=0 are \widehat{eta}_0
- lacktriangle The estimated odds when x=0 are $\exp\{\widehat{eta}_0\}$

Fitting logistic regression in R K generalized linear model gre_glm <- (glm)(admit ~ gre, data = grad_app, family = binomial) <- specifies logistic regression (binery response) ## ## ## ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ignere for now ## (Dispersion parameter for binomial family taken to be 1) ## Null deviance; 499.98 on 399 degrees of freedom ## Residual deviance: 486.06 on 398 degrees of freedom (ATC:) 490.06 ## ##(AIC:) 490.06

Number of Fisher Scoring iterations: 4

##

8/15

Class activity, Part II

https://sta214-f22.github.io/class_activities/ca_lecture4.html

$$\log\!\left(rac{\widehat{\pi}_i}{1-\widehat{\pi}_i}
ight) = -4.358 + 1.051~GPA_i$$

What is the change in the odds of acceptance associated with an increase of 1 point in GPA?

$$\log\!\left(rac{\widehat{\pi}_i}{1-\widehat{\pi}_i}
ight) = -4.358 + 1.051~GPA_i$$

What is the change in the odds of acceptance associated with an increase of 1 point in GPA?

An increase of 1 point in GPA is associated with an increase in the odds of acceptance by a factor of $\exp\{1.051\}=2.861$

$$\log \left(rac{\widehat{\pi}_i}{1 - \widehat{\pi}_i}
ight) = -4.358 + 1.051 \ GPA_i$$

What is the estimated probability that a student with a GPA of 3.5 is accepted?

$$\log\!\left(rac{\widehat{\pi}_i}{1-\widehat{\pi}_i}
ight) = -4.358 + 1.051~GPA_i$$

What is the estimated probability that a student with a GPA of 3.5 is accepted?

$$\frac{e^{-4.358+1.051(3.5)}}{1+e^{-4.358+1.051(3.5)}}\approx 0.336$$

The logistic regression model assumes that the change in odds associated with an increase of 1 point in GPA is constant. Is the change in *probability* also constant?

The logistic regression model assumes that the change in odds associated with an increase of 1 point in GPA is constant. Is the change in *probability* also constant?

No:

+ GPA = 2.0, estimated probability =
$$0.095$$

+ GPA = 3.0, estimated probability = 0.231
+ GPA = 4.0, estimated probability = 0.462
 $0.462 - 0.231 = 0.23$

$$\frac{6.462}{6.231} = 2$$