Übung 1: Algorithmen und Datenstrukturen

Theodor Bajusz	7159556	X	X	X	X	
Valerij Dobler	7068135	X	X	X	X	
Matz Radloff	6946325	Х	Х	Х	X	
Robin Wannags	6948409	Х	Х	Х	X	

16. November 2020

Aufgabe 1

Betrachten Sie zwei Algorithmen A und B für das gleiche Problem. Algorithmus A benötigt bei einer Eingabe der Größe n genau $2n^2$ Basisoperationen, während Algorithmus B genau $100n\lceil log_2n\rceil$ Basisoperationen benötigt. Betrachten Sie zwei Computer C_1 und C_2 . Computer C_1 (Supercomputer) kann pro Sekunde $4, 16 \cdot 10^{17}$ Basisoperationen durchführen. Computer C_2 (Handy) kann hingegen nur $3 \cdot 10^{11}$ Basisoperationen pro Sekunde durchführen.

$\mathbf{a})$

Wie lange braucht Algorithmus A auf beiden Computern, um ein Problem der Größe $n_1=200, n_2=2.7\cdot 10^9$ und $n^3=10^{16}$ zu lösen? (Lösungen in Sekunden)

n_i	200	$2,7 \cdot 10^9$	10^{16}		
-	ca. $1,92 \cdot 10^{-13}$		l '		
C_2	ca. $2,67 \cdot 10^{-7}$	$4,86 \cdot 10^7$	ca. $6,67 \cdot 10^{20}$		

b)

Wie lange braucht Algorithmus B auf beiden Computern, um ein Problem der Größe $n_1=200, n_2=2.7\cdot 10^9$ und $n_3=10^{16}$ zu lösen?

n_i	200	$2,7 \cdot 10^{9}$	10^{16}	
C_1	ca. $3,85 \cdot 10^{-13}$	ca. $2,08 \cdot 10^{-5}$	ca. 130	
C_2	ca. $5,33 \cdot 10^{-7}$	28,8	$1,8 \cdot 10^{8}$	

c)

Für welche Problemgrößen ist Algorithmus A schneller und für welche ist Algorithmus B schneller, wenn beide Algorithmen auf dem gleichen Computer laufen?

Algorithmus A ist für die Eingabe n=200 schneller. Bei den größeren Eingaben ist jeweils Algorithmus B schneller.

Aufgabe 2

Betrachten Sie das Problem Zweit-Kleinstes-Element

- Eingabe: Ein Array A[1, ..., n] von $n \ge 2$ Zahlen
- Ausgabe: Ein Index i, sodass es einen Index $j \neq i$ gibt mit $A[j] \leq A[i]$ und für alle Indizes $k \in \{1, 2, ..., n\} \setminus \{j\}$ gilt $A[k] \geq A[i]$.

a)

Beschreiben Sie in Pseudocode einen Algorithmus der das Problem Zweit-Kleinstes-Element löst. (3 Punkte)

Algorithm 1: ZweitKleinstesElement(A)

```
Result: Das zweit kleinste Element
 1 if A[1] \leq A[2] then
       min \leftarrow 1
       i \leftarrow 2
 4 else
      min \leftrightarrow i
 6 c \leftarrow 3
 7 while c \le length(A) do
       if A[c] \leq A[min] then
            i \leftarrow min
 9
           min \leftarrow c
10
       else if A[c] < A[i] then
11
         i \leftarrow c
12
       else
13
           NOP
14
       c + +
15
16 return i
```

NOP: No-Operation

b)

Beweisen Sie die Korrektheit Ihres Algorithmus mit Hilfe einer geeigneten Schleifeninvariante.

```
Behauptung. Kandidat für I(c, i, min)

A[i] = min\{ A[j] \mid j \in \{1, 2, \dots, c-1\} \setminus min \}
```

Beweis. Durch Schleifeninvariante

- 1. Initialisierung: O.b.d.A.: $A[1] \leq A[2] \implies i=2, min=1$, sonst analog Somit gilt nach Zeile 6:
 - I(c, i, min) = I(3, 2, 1)

- I(3,2,1): " $A[2] = min\{A[j] \mid j \in \{1,2,\ldots,3-1\} \setminus 1\} = min\{A[2]\}$ "
- 2. Erhaltung: In Iteration c soll gelten:
 - Annahme: I(c, i, min) nach Zeile 7
 - Ziel: I(c+1, i, min) nach Zeile 15
 - nach Zeile 8:

$$A[c] \leq A[min] = min\{A[1], \dots, A[c-1]\}$$

$$\implies A[c] = min\{A[1], \dots, A[c]\}$$

$$\implies A[i] = min\{A[j] \mid j \in \{1, 2, \dots, c\} \setminus c\}$$

$$\iff I(c+1, i, min) \text{ schon nach Zeile } 10, \text{ weil } i \leftarrow min \text{ und } min \leftarrow c$$

• nach Zeile 11:

$$\begin{array}{l} A[i] > A[c] > A[min] = min\{A[1], \ldots, A[c]\} \\ \Longrightarrow A[c] = min\{\ A[j] \mid j \in \{1, 2, \ldots, c\} \setminus min\} \\ \Longrightarrow I(c+1, i, min) \text{ nach Zeile } 12, \text{ weil } i \leftarrow c \end{array}$$

- nach Zeile 13 impliziert $A[min] = min\{A[1], \dots, A[c]\} \land A[i] = min\{A[j] \mid j \in \{1, 2, \dots, c\} \setminus min\}$ $\implies I(c+1, i, min)$
- also: I(c+1, i, min) nach Zeile 14
- 3. Terminierung:
 - Ende letzter Schleifendurchlauf: c = length(A)
 - nach Zeile 15 gilt also $I(length(A)+1,i,min) \\ \iff A[min]=min\{A[1],\ldots,A[c]\} \land A[i]=min\{\ A[j]\ |\ j\in\{1,2,\ldots,c\}\setminus min\}$
 - gilt folglich auch vor Zeile 16

c)

Analysieren Sie die worst-case Laufzeit des formulierten Algorithmus.

Zeile	Laufzeit			
1	$\mathcal{O}(1)$			
2	$\mathcal{O}(1)$			
3	$\mathcal{O}(1)$			
4	$\mathcal{O}(1)$			
5	$\mathcal{O}(1)$			
6	$\mathcal{O}(1)$			
7	$\sum_{i=2}^{n} \mathcal{O}(i)$			
8	$\mathcal{O}(1)$			
9	$\mathcal{O}(1)$			
10	$\mathcal{O}(1)$			
11	$\mathcal{O}(1)$			
12	$\mathcal{O}(1)$			
13	$\mathcal{O}(1)$			
14	$\mathcal{O}(1)$			
15	$\mathcal{O}(1)$			
17	$\mathcal{O}(1)$			
	·	0.7		

$$\stackrel{Theorem2.7}{\Longrightarrow} T(n) = \mathcal{O}(1) + \mathcal{O}(n-2) \cdot (8 \cdot \mathcal{O}(1)) + \mathcal{O}(1) = \mathcal{O}(n)$$

Da wir immer über jedes Element des Arrays iterieren müssen, ist die asymptotische Laufzeit gleichzeitig die best- und worst-case Laufzeit unseres Algorithmus. Die Laufzeit ist nicht ausschlaggebend variabel.

Aufgabe 3

Zeigen Sie, dass $(ln(x))^k = O(x^{\epsilon})$. Hierbei sind k, ϵ Konstanten größer Null. Ein möglicher Hinweis: Zeigen Sie die Aussage zunächst für k = 1.

Beweis.

$$lim_{x\to\infty} \frac{x^{\epsilon}}{(ln(x))^k} = lim_{x\to\infty} \frac{e^{x^{\epsilon}}}{e^{(ln(x))^k}} = lim_{x\to\infty} \frac{e^{x^{\epsilon}}}{x} \xrightarrow{(*)} \infty$$

(*) Da $f(x) = e^{x^{\epsilon}}$ exponentiell wächst und $g(x) = x \cdot k$ hingegen nur linear.

Aufgabe 4

Ordnen Sie die folgenden Funktionen gemäß Ihres asymptotischen Wachstums und begründen Sie Ihre Antwort:

$$f_1(n) = 3^n$$
, $f_2(n) = n \cdot \ln(n)$, $f_3(n) = 2^n$, $f_4(n) = e^{\log_2(n)}$, $f_5(n) = n^n$, $f_6(n) = n^{3/2}$, $f_7(n) = n!$

Wir wollen nun beweisen, dass

$$f_4(n) \in o(f_2(n)) \land f_2(n) \in o(f_6(n)) \land f_6(n) \in o(f_3(n))$$

$$\land f_3(n) \in o(f_1(n)) \land f_1(n) \in o(f_7(n)) \land f_7(n) \in o(f_5(n))$$

gilt.

Behauptung. $f_4 \in o(f_2) \iff e^{\log_2(n)} \in o(n \cdot ln(n))$

Beweis.

$$f_4(n) = e^{\log_2(n)} = e^{\frac{\ln(n)}{\ln(2)}} = n^{\frac{1}{\ln(2)}}, \quad f_2(n) = n \cdot \ln(n)$$

$$\lim_{n \to \infty} \frac{f_2(n)}{f_4(n)} = \lim_{n \to \infty} \frac{n \cdot \ln(n)}{n^{\frac{1}{\ln(2)}}} = \lim_{n \to \infty} n^{1 - \frac{1}{\ln(2)}} \cdot \ln(n) \to \infty$$

Behauptung. $f_2 \in o(f_6) \iff n \cdot ln(n) \in o(n^{\frac{3}{2}})$

Beweis.

$$f_2(n) = n \cdot \ln(n), \quad f_6(n) = n^{\frac{3}{2}} = n^1 \cdot n^{\frac{1}{2}} = n \cdot \sqrt{n}$$
$$\lim_{n \to \infty} \frac{f_6(n)}{f_2(n)} = \lim_{n \to \infty} \frac{n \cdot \sqrt{n}}{n \cdot \ln(n)} = \lim_{n \to \infty} \frac{\sqrt{n}}{\ln(n)}$$

Da beide Terme divergieren, kann man nach L'Hôspital beide Terme ableiten und die Grenzwerte stimmen überein.

$$\stackrel{\frac{d}{dn}}{=} lim_{n\to\infty} \frac{n}{2\sqrt{n}} \stackrel{\frac{d}{dn}}{=} lim_{n\to\infty} \frac{2\sqrt{n}}{2} = lim_{n\to\infty} \sqrt{n} \to \infty$$

Behauptung. $f_6 \in o(f_3) \iff n^{\frac{3}{2}} \in o(2^n)$

Beweis.

$$\lim_{n\to\infty} \frac{f_3(n)}{f_6(n)} = \lim_{n\to\infty} \frac{2^n}{n^{\frac{3}{2}}}$$

Da beide Terme divergieren, kann man nach L'Hôspital beide Terme ableiten und die Grenzwerte stimmen überein.

$$\stackrel{\frac{d}{dn}}{=} lim_{n\to\infty} \frac{2^n ln(2)}{\frac{3\sqrt{n}}{2}} = lim_{n\to\infty} \frac{2^{n+1} ln(2)}{3\sqrt{n}}$$

Wir wenden wieder den H'Hôspital an.

$$\stackrel{\frac{d}{dn}}{=} lim_{n\to\infty} \frac{2^{n+1} ln^2(2)\sqrt{n}}{3} \to \infty$$

Behauptung. $f_3 \in o(f_1) \iff 2^n \in o(3^n)$

Beweis.

$$\lim_{n\to\infty} \frac{f_1(n)}{f_3(n)} = \lim_{n\to\infty} \frac{3^n}{2^n} = \lim_{n\to\infty} \left(\frac{3}{2}\right)^n \to \infty$$

Behauptung. $f_1 \in o(f_7) \iff 3^n \in o(n!)$

Beweis.

Induktionsbehauptung: $\forall n \in \mathbb{N}_{>6} : 3^n < n!$

Induktionsanfang: n = 7: $3^7 = 2187$ $7! = 5040 \checkmark$

Induktionsvoraussetzung: Für ein beliebiges, aber festes n>6 gilt: $3^n< n!$ Induktionsschritt: $3^{n+1}<(n+1)!\iff 3\cdot 3^n<(n+1)\cdot n!$ durch Division beider Seiten der Ungleichung mit 3 bekommen wir raus $\underbrace{3^n< n!}_{IB}<\underbrace{\frac{n+1}{3}\cdot n!}$. Da der Bruch $\frac{n+1}{3}$ nach

Induktionsvoraussetzung größer 1 ist, folgt daraus die Induktionsbehauptung.

Behauptung. $f_7 \in o(f_5) \iff n! \in o(n^n)$

Beweis.

$$\lim_{n\to\infty} \frac{f_5(n)}{f_7(n)} = \lim_{n\to\infty} \frac{n^n}{n!} = \lim_{n\to\infty} \underbrace{\frac{n}{2} \frac{n}{3} \dots \underbrace{\frac{n}{2}}_{>1} \dots \underbrace{\frac{n}{n}}_{=1}}_{=1} \to \infty$$

