

# ΣΤΑΤΙΣΤΙΚΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2020-2021 3° ΣΕΤ ΑΣΚΗΣΕΩΝ ΓΡΗΓΟΡΙΑΔΟΥ ΓΕΩΡΓΙΑ ,3160029

# ΑΣΚΗΣΗ 1 (α)

Πραγματοποιούμε άπειρες ρίψεις και παίρνουμε δείγμα από αυτές με n = 50 ρίψεις. Έστω X οι κορώνες και Y τα γράμματα με X = 29 και Y = 21.

Χ > 15 και Υ >15 άρα τα δεδομένα μας είναι κατάλληλα.

$$\hat{p} = \frac{X}{n} = \frac{29}{50} = 0.58$$
 ,  $\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.58*0.42}{50}} = 0.069$ 

Για διάστημα εμπιστοσύνης C=95% έχουμε z\*=1.96 οπότε το ζητούμενο διάστημα είναι  $\hat{p}\pm z_*\sigma_{\hat{p}}=[0.4431$  , 0.7168]

# <u>ΑΣΚΗΣΗ 1 (β)</u>

Δίπλευρος έλεγχος  $H_0$ : p = 0.5, Αφού το ζάρι είναι δίκαιο άρα η συχνότητα εμφάνισης κορώνας είναι ½.

Στατικός έλεγχος z = 
$$\frac{0.58-0.5}{\sqrt{\frac{0.5(1-0.5)}{50}}}$$
 = 1.1313 άρα p-value = 2Φ(-|z|) = 0.25. To

p-value είναι μικρή τιμή άρα δε θα μπορούσαμε να απορρίψουμε την μηδενική υπόθεση με σιγουριά.

#### ΑΣΚΗΣΗ 1 (γ)

 $N \ge \frac{z_*^2}{4m^2} = \frac{1.96^2}{4*0.01^2} = 9604$  Άρα θα έπρεπε να πραγματοποιήσει 9604 ρίψεις.

#### ΑΣΚΗΣΗ 2

Το μέγεθος του δείγματος που χρησιμοποιείται για τις δημοσκοπήσεις είναι ανεξάρτητο από το μέγεθος του πληθυσμού, καθώς σύμφωνα με τον τύπο  $n \geq \frac{z_*^2}{4m^2}$  το πρώτο εξαρτάται μόνο από το περιθώριο λάθους m και το επίπεδο εμπιστοσύνης. Άρα και για τις δημοσκοπήσεις στις H.Π.Α ο αριθμός των 1100 ατόμων είναι αρκετός.

# ΑΣΚΗΣΗ 3 (α)

Έστω  $p_1$  το ποσοστό των καπνιστών που είναι άνδρες και  $p_2$  που είναι γυναίκες.

 $\Delta$ ίπλευρος έλεγχος  $H_0$ :  $p_1 = p_2$ 

Έχουμε  $n_1$  = 30 το πλήθος των αντρών και  $n_2$  = 30 το πλήθος των γυναικών.

Επίσης  $\widehat{p_1}$ = 12/30 = 0.4 το ποσοστό των αντρών που καπνίζουν και  $\widehat{p_2}$ = 14/30 = 0.46 το ποσοστό των γυναικών που καπνίζουν. Επίσης  $\widehat{p}=\frac{12+14}{60}$  = 0.43

Στατιστικός έλεγχος z = 
$$\frac{0.4-0.46}{\sqrt{\frac{0.43(1-0.4)}{30} + \frac{0.43(1-0.46)}{30}}} = -0.521$$

Άρα το p-value = 0.60 το οποίο είναι αρκετά μεγάλο οπότε δε μπορούμε να απορρίψουμε τη μηδενική υπόθεση . Αυτό σημαίνει ότι υπάρχει σχέση μεταξύ φύλου και καπνίσματος.

# ΑΣΚΗΣΗ 3 (β)

Το ζητούμενο διάστημα εμπιστοσύνης είναι:

$$\widehat{p_1} - \widehat{p_2} \, \pm z * \sqrt{\frac{\widehat{p_1}(1 - \widehat{p_1})}{n1} + \frac{\widehat{p_2}(1 - \widehat{p_2})}{n2}} = 0.4 - 0.46 \pm 1.96 \sqrt{\frac{0.4(1 - 0.4)}{30} + \frac{0.46(1 - 0.46)}{30}} =$$

[-0.194, 0.061]

# ΑΣΚΗΣΗ 3 (γ)

Έστω ο έλεγχος Ηο: Το φύλο δεν έχει σχέση με το κάπνισμα

Ha : Το φύλο έχει σχέση με το κάπνισμα

#### ΠΙΝΑΚΑΣ ΣΥΝΑΦΕΙΑΣ

| ΦΥΛΟ     | ΚΑΠΝΙΣΤΗΣ | ΜΗ ΚΑΠΝΙΣΤΗΣ |    |
|----------|-----------|--------------|----|
| ΑΝΤΡΕΣ   | 12        | 18           | 30 |
| ΓΥΝΑΙΚΕΣ | 14        | 16           | 30 |
|          | 26        | 34           | 60 |

# <u>ΑΣΚΗΣΗ 3 (δ)</u>

| ΦΥΛΟ     | ΚΑΠΝΙΣΤΗΣ | ΜΗ ΚΑΠΝΙΣΤΗΣ |    |
|----------|-----------|--------------|----|
| ΑΝΤΡΕΣ   | 13        | 17           | 30 |
| ΓΥΝΑΙΚΕΣ | 13        | 17           | 30 |
|          | 26        | 34           | 60 |

Στατιστικός έλεγχος 
$$X^2 = \frac{(12-13)^2}{13} + \frac{(18-17)^2}{17} + \frac{(14-13)^2}{13} + \frac{(16-17)^2}{17} \approx 0.07 + 0.058 + 0.07 + 0.058 \approx 0.256$$

#### ΑΣΚΗΣΗ 4 (α)

Θέλουμε να μάθουμε αν παρασκευάζονται περισσότερα κόκκινα smarties από ότι μπλε, άρα μας ενδιαφέρει ο υποπληθυσμός των κόκκινων και μπλε smarties. Έστω p το ποσοστό των κόκκινων και 1-p των μπλε κουφέτων.

Ενδιαφερόμαστε να μάθουμε αν τα κόκκινα smarties είναι περισσότερα οπότε θα πάρουμε μονόπλευρο έλεγχο υπόθεσης  $H_0: p = \frac{1}{2}$ ,  $H_a: p > \frac{1}{2}$ .

Από τα δεδομένα της εκφώνησης έχουμε ότι:

n = 19 + 15 = 34, X = 19 και 
$$\hat{p} = \frac{X}{n} = \frac{19}{34} = 0.5588$$
.

Θεωρούμε ότι η συσκευασία αποτελεί ένα τυχαίο δείγμα με τα smarties που φτιάχνονται, δηλαδή ότι ο τρόπος με τον οποίο αναμιγνύονται τα χρώματα είναι τυχαίος.

Ο στατιστικός έλεγχος είναι 
$$z = \frac{\hat{p} - 0.5}{\sqrt{\frac{0.5(1 - 0.5)}{n}}} = 0.686$$
 και το p-value = 2Φ(-

|z|)=0.4902.

Αφού η τιμή του p-value δεν είναι πολύ μικρή, η μηδενική υπόθεση είναι αποδεκτή.

Άρα, δεν υπάρχει σημαντική διαφορά στον αριθμό των κόκκινων και μπλε κουφέτων.

# ΑΣΚΗΣΗ 4 (β)

Θέλουμε να δούμε αν η κατανομή των χρωμάτων είναι η ίδια σε σχέση με αυτή του 2009.

Θα εφαρμόσουμε τον χ² έλεγχο καλής προσαρμογής:

 $H_0$ : η κατανομή των χρωμάτων καφέ, κόκκινο, κίτρινο, μπλε και πράσινο είναι 19.8%, 17.8%, 17.6%, 19.6% και 25.2% αντίστοιχα,

 $H_{\alpha}$ : η κατανομή των χρωμάτων είναι διαφορετική.

Από τα δεδομένα προκύπτει ο ακόλουθος πίνακας:

|         | Δεδομένα | Αναμενόμενες Τιμές |
|---------|----------|--------------------|
| Καφέ    | 22       | 15.84              |
| Κόκκινο | 19       | 14.24              |
| Κίτρινο | 16       | 14.08              |
| Μπλέ    | 15       | 15.68              |
| Πράσινο | 8        | 20.16              |

Με τη βοήθεια της R βρίσκουμε ότι p-value= 0.02, το οποίο είναι αρκετά μικρό για να ισχύει η μηδενική υπόθεση. Άρα η κατανομή των χρωμάτων είναι διαφορετική σε σχέση με το 2009.

#### ΑΣΚΗΣΗ 4 (γ)

Θα θεωρήσουμε ότι η συσκευασία των M&Ms αποτελεί ένα τυχαίο δείγμα από τον πληθυσμό των κουφέτων της συγκεκριμένης μάρκας. Θα ελέγξουμε αν τα δείγματα των smarties και των M&Ms προήλθαν από πληθυσμούς με την ίδια κατανομή χρωμάτων. Για αυτό τον έλεγχο θα χρησιμοποιήσουμε έναν χ² έλεγχο για ομοιογένεια.

 $H_0$ : οι πληθυσμοί των smarties και των M&Ms είναι ομοιογενείς.  $H_\alpha$ : οι πληθυσμοί δεν είναι ομοιογενείς.

Από τα δεδομένα προκύπτει ο ακόλουθος πίνακας συνάφειας:

|         | smarties | M&Ms |     |
|---------|----------|------|-----|
| Καφέ    | 22       | 10   | 32  |
| Κόκκινο | 19       | 12   | 31  |
| Κίτρινο | 16       | 20   | 36  |
| Μπλέ    | 15       | 9    | 24  |
| Πράσινο | 8        | 5    | 13  |
|         | 80       | 56   | 136 |

Με τη βοήθεια της R βρίσκουμε ότι ο στατιστικός έλεγχος είναι  $\chi^2$  = 4.626, οι βαθμοί ελευθερίας = 4 και p-value= 0.3278.

Το p-value είναι αρκετά μεγάλο ώστε να μην απορριφθεί η μηδενική υπόθεση, οπότε οι κατανομές των χρωμάτων στα smarties και τα M&Ms είναι ίδιες.