Análisis del recurso eólico usando R en zonas no interconectadas (ZNI) del departamento de Nariño (Colombia).

Omar Ernesto Cabrera Rosero¹ and Andrés Darío Pantoja Bucheli²

¹ Universidad de Buenos Aires omarcabrera@udenar.edu.co ² Universidad de Nariño ad_pantoja@udenar.edu.co

Palabras Claves: Energías Alternativas · Energía Eólica · R.

El uso de energías renovables para suministrar energía eléctrica en regiones aisladas y/o rurales presenta la ventaja de contar con el recurso energético en el lugar de emplazamiento, disminuyendo no solo la contaminación sino los costos de adquisición, transporte de combustible y costos asociados a la extensión de redes. Sin embargo, para instalar aerogeneradores es necesario conocer el comportamiento del recurso eólico para determinar la energía que es capaz de entregar el viento en la zona donde se quiere implementar. Se analizaron 225 series de tiempo de viento suministradas por Vaisala 3TIER [2] a 50 y 120 metros, con informarción de 15 años, resolución horaria y espaciadas cada 5 kms. Se utilizó el paquete bReeze [1], el cual tiene una colección de funciones para analizar, visualizar e interpretar datos de viento y calcular la producción de energía potencial de las turbinas eólicas. La tabla 1 muestra el resultado resumido del potencial energético anual de las series de tiempo. Todo este trabajo es reproducible para hacer un análisis exploratorio del recurso eólico de cualquier región.

Tabla 1. Resumen ponencial energético

_	Estación	Latitud	Longitud	Velocidad del	Viento	Weibull A	Weibull k	Contenido Energético	AEP Total	Capacidad
			-		(m/s)			(kWh/m2/a)	(MWh/a)	-
1	41 -	-8755813	221580.4		6.38	7.144	3.003	1955	12045	0.183
2	31 -	8761814	239580.2		6.35	7.108	3.029	1919	11847	0.18
3	42 -	8755813	227580.9		6.286	7.038	3.016	1867	11515	0.175
4	5 -	8779814	167580.7		6.205	6.966	2.828	1865	11354	0.173
5	9 -	8779814	197580.3		6.218	6.957	3.058	1792	11045	0.168
225	177 -	-8695813	137580.4		2.813	3.152	2.970	168	724	0.011

Referencias

- 1. Graul, C., Poppinga, C.: bReeze: Functions for Wind Resource Assessment (2014), http://cran.r-project.org/package=bReeze, r package version 0.4-0
- 2. Inc, V.: V. 3tier, wind time series and prospecting. In: V. 3TIER, Wind Time Series and Prospecting (2011), http://www.vaisala.com/en/energy/