TERMODINÂMICA (EQE-363) Prof. Frederico W. Tavares

1) Uma corrente (corrente 1) de 10 lbm/s de vapor a 85 psia e 500 0 F passa por uma turbina (com eficiência de 80%) e produz uma corrente 2 a 14,7 psia. A corrente 2 é misturada à corrente 3 (14,7 psia e 101,7 0 F) em um trocador de calor de contato direto (perfeitamente isolado), produzindo uma corrente 4 que deve sair como líquido saturado. Encontre as propriedades termodinâmicas (T, P, H e S) das correntes e calcule a quantidade, em lbm/s, da corrente 3 que deve ser utilizada no processo.

S PRESS PSIA		SAT		SAT STEAM	TEMPERATURE, 600	DEG F	800	900	1000	1100	1200
AT TEMP)							750.3	809.9	869.5	929.0	988.6
01.74)	> DHS	0.016 69.73 69.73 0.13	51 33 104 110 26	33.60 44.1 95.8 1.9781	631 1 1219 3 1336 1 2.2708	690 7 1256 7 1384 5 2 3144	750.3 1294.9 1433.7 2.3551	1334.0 1483.8 2.3934	1374.0 1534.9 2.4296	1414.9 1586.8 2.4640	456.7 639.7 2.4969
52.24)	*DEM	0.01 130.18 130.20 0.23	64 106 111	73.532 53.1 31.1 1.8443	125. 1 1219. 2 1335. 9 2. 0932	138.1 1256.5 1384.3 2.1369	150.0 1294.8 1433.5 2.1776	161.9 1333.9 1483.7 2.2159	173.9 1373.9 1534.7 2.2621	185 .8 1414 .8 1586 .7 2 .2866	197 7 456 7 639 6 2 3194
10 193.21)	¥ D I S	0.01 161.23 161.26 0.28	56 10 11	36.420 72.3 43.3 1.7879	53.03 1218.9 1335.5 2.0166	69.00 1256.4 1384.0 2.0603	74.98 1294.6 1433.4 2.1011	80.94 1333.7 1483.5 2.1394	86.91 1373.8 1534.6 2.1757	92.87 1414.7 1586.6 2.2101	98.84 456.6 639.5 2.2430
14.696 212.00)	>UES	0.01 180.12 180.17 0.31	67 10 11	26.799 77.6 50.5 1.7568	42.86 1218.7 1335.2 1.9739	46,93 1256,2 1383,8 2,0177	51.00 1294.5 1433.2 2.0685	55.06 1333.6 1483.4 2.0969	59. 13 1373. 7 1534. 5 2. 1331	63 . 19 1414 .6 1586 .5 2 . 1676	67.25 1456.5 1639.4 2.2005
2 ¹⁶ (03)	STU	0.01 181.16 181.21 0.31	67 10 11	26 290 77 9 50 9 1 7552	41.99 1218.7 1335.2 1.9717	45.98 1256.2 1383.8 2.0155	49.96 1294.5 1433.2 2.0563	53.95 1333.6 1483.4 2.0946	57.93 1373.7 1534.5 2 1309	61.90 1414.6 1586.5 2.1653	65.88 1456.5 1639.4 2.1982
TABLE C.4.	\$	UPERHEATE	D STEA	M ENGLISH	UNITS (Cont	inued)					22 122
ABS PRESS PS1A			SAT	SAT	TEMPERAT	URE, DEG F					
(SAT TEMP))		ATER	STEAM	340	360	380	400	420	450	500
80 (312.04)		U 281 H 282	0.0176 .89 15 0.4534	5,471 1102.1 1183.1 1,6208	5.71 1114.0 1198.6 1.64	5 5.86 1122.3 1209.4 06 1.66	1220 0	1230.5	1240.8	1256 1	7.0 1177.4 1281.3 1.7
(316, 26)		V 286 H 286 S 0	0.0176 0.24 0.52 0.4590	5.167 1102.9 1184.2 1.6159	5,36 1113.1 1197.5 1,63	5.55 1121.5 1208.4 1.64	1219 1	5.84 1137.8 1229.7 192 1.67	1240 1	1255.5	1177.0 1280.8 1.7
90		V 0	0.0177	4.895 1103.7	5.06 1112.3	1 5.20	05 5.35 1129.1	6 5.506 1137.2	5.662	5.869 1157 2	5.2 1176.7

- 2) O enchimento rápido de um tanque pode ser considerado como um processo adiabático. Supondo que o tanque se encontra vazio no início do processo e que as propriedades da corrente de alimentação não variam durante o enchimento, calcule a quantidade de massa alimentada a um tanque de 100 ft³ Dados: corrente de alimentação contém 10% (em peso) de liquido a 80 psia.
- 3) O mesmo problema anterior, mas supondo que o tanque encontra-se inicialmente com vapor saturado a 15 psia.

Dados: corrente de alimentação contém 10% (em peso) de liquido a 80 psia. Volume do tanque de 100 ft³.