BORRADOR

SOLUCIONARIO PRÁCTICA CALIFICADA Nº2 - FUNDAMENTOS DE FÍSICA

(3,5 puntos) Un auto se mueve en línea recta sobre el eje x (considere que +x apunta hacia la derecha). Inicialmente, el auto parte del reposo desde el origen de coordenadas en $t=0\,s$ y se mueve hacia la izquierda hasta alcanzar una rapidez de 4 m/s después de recorrer 40 metros. Luego, se mueve con velocidad constante por 5 segundos (entre $t=t_1$ y $t=t_2$). Finalmente, disminuye su rapidez a ritmo constante hasta detenerse en $t=t_f$ después de haber recorrido 140 metros en total. Es decir, desde que parte del reposo hasta que se detiene recorre 140 metros

Primer tramo:

-) tramo de velocidad constantes:

.) trano de descrelarción:

a) En el primer tramo de su movimiento, la aceleración del auto (a_x) en m/s está dada por:

b) En el tercer tramo de su movimiento, la aceleración del auto (a_x) en m/s está dada por:

BORRADOR

c) Sabemos que el auto empieza a moverse con velocidad constante en $t=t_1$. Este tiempo en segundos es igual a:

d) Un segundo después de partir (en $t=1\,s$), la posición del auto (x) en metros está dada por:

En el primerframo, la enación de la posición está dada por:

e) Veintidós segundos después de partir (en $t=22\,s$), la posición del auto (x) en metros está dada por:

- ·) la posición en t= 205 es X(201= -40m
- ·) Par condición del problema, el móvil tiene V che en t € (20:25]

f) Sabemos que el auto se detiene en el tiempo final $t=t_f$. Este tiempo final en segundos es igual a:

g) Desde que parte del reposo hasta que se detiene en $t=t_f$, la velocidad media del auto (v_{med-x}) en m/s está dada por:

BORRADOR

f) En $t=t_{encuentro}$, la posición de la bicicleta (x) en metros está dada por:

PC2 - Segunda Parte (5 Puntos)

Dos partículas se mueven sobre el eje x. La partícula A parte del reposo en t = 0 h desde la posición x = 30 km y acelera a ritmo constante hasta alcanzar una velocidad dada por v = 20 km/h después de 2 horas.

- 15+ lo(12,075-5) = 55,75m

Por otro lado, la partícula B parte desde el reposo en $t=1\,h$ de una posición $x_{_{OB}}$ desconocida y acelera a ritmo constante hasta alcanzar una velocidad dada por $v_{_{3}}=-20\,\frac{km}{km}$ cuando ha recorrido una distancia de 20 km (en $t=t_{_{1}}$). En ese instante ($t=t_{_{1}}$), deja de acelerar de manera que su rapidez se mantiene constante.

Finalmente, se sabe que en t = 4 h, ambos móviles se cruzan. En ese instante, la aceleración de la partícula A cambia de manera que su rapidez empieza a disminuir 8 km/h cada hora.

- a) (1,0) Escriba la ley de movimiento de A desde t = 0 h hasta t = 5 h.
- b) (2,0) Escriba la ley de movimiento de B desde t = 0 h hasta t = 5 h.
- c) (2,0) En un solo diagrama, realice el gráfico posición-tiempo de ambos móviles desde t = 0 h hasta t = 5 h.

IMPORTANTE: RECUERDE QUE TODA RESPUESTA DEBE ESTAR DEBIDAMENTE JUSTIFICADA. SU PROCEDIMIENTO DEBE SER LEGIBLE, CLARO Y ORDENADO. DE LO CONTRARIO, NO SERÁ REVISADO.

LOS GRÁFICOS DEBEN ESTAR APROXIMADAMENTE A ESCALA, Y DEBE INDICAR PUNTOS CLAVE COMO LAS POSICIONES Y TIEMPOS INICIALES Y FINALES DE CADA TRAMO.

