

Modeling Techniques exercises

Mirco Pezzoli

Switched resistive circuit

- Recall Simulink and Simscape basics
- Build small circuit
- Launch simulink with ssc_new('exercise_1')

- a) Use Simscape to build a simple circuit made up of:
 - One resistor with arbitrary resistance
 - One DC voltage generator
- b) Add a switch to the circuit:
 - Initially opened
 - Closes at 0.5s

User defined signal generator

- Build a circuit with:
 - One resistor with arbitrary resistance (es. 1000Ω)
 - One current generator with custom signal
 - Asymmetric triangle wave
 - Length 1.515 ms
 - Turning point at 1/5 of its length
 - Use scope to visualize the input

 HINT: use simulink signal builder to define two signals corresponding to the rising and decreasing part of the triangle.

Switched circuit with user defined signal generator

- Combine the results of exercise 1 and exercise 2 in a single circuit
 - One resistor with arbitrary resistance (es. 1000Ω)
 - One current generator with custom signal
 - Use scope to visualize the input
 - Use scope to visualize the voltage at the resistor
 - Change commuting time and comment the results

Plucked string modeling

A plucked string can be modelled as a circuit with a transmission line.

- a) Model the left side of the circuit
 - Insert a resistor in place of the transmission line
 - Check the results with Simscape viewer
- b) Model the right side in another file
 - Symmetric input signal
 - Inspect the current using scope

Plucked string modeling

A plucked string can be modelled as a circuit with a transmission line.

- c) Combine the two parts:
 - Connect the two circuits
 - Add a transmission line with:
 - Delay 1.515 ms
 - Impedance 2000Ω
 - Inspect the signal using scope
- Comment the results

Simple guitar model

We model the guitar as a plate and air cavity

- Controlled voltage generator:
 - Input signal: damped square wave
 - $V_{\text{in}} = \text{sgn}(\sin(2\pi f_0 t)) e^{-\beta t}$, with $f_0 = 300 \text{ Hz}$ and $\beta = 3$
 - Output signal: current at the probe position
 - Simulation time 5s
- Use to Workspace module to export the current I
- Call the simulation in a script
- Resample the time series object
- Plot the signal, its spectrum magnitude and phase
- Listen to the results and save it on the disk

Complete guitar model

Implement the complete guitar model presented on the slides

- a) Model the 20 resonances
 - Do no to consider the string modeling
 - Substitute it with a voltage generator
 - Use the damped square of exercise_5 as input signal
- b) Add the string model
 - Substitute the voltage generator with the string model
- Use the values given in the next slide scheme
- Write a matlab script that
 - Executes the model
 - Plot the signal
 - Play the signal
 - Save it on disk
- Comment the results. What's the difference with respect to the simple model?

