

THÉORIE DES BASES DE CONNAISSANCES HMIN312M

Marie-Laure MUGNIER (Univ. Montpellier)
Jean-François BAGET (Inria)

Equipe GraphIK (LIRMM & Inria)

https://team.inria.fr/graphik/

KNOWLEDGE REPRESENTATION AND REASONING (KR)

- A field historically at the heart of Artificial Intelligence
- Study formalisms (or languages) to
 - represent various kinds of human knowledge
 - do reasoning on these representations
- along the tradeoff expressivity / tractability of reasoning
- → KR languages based on **computational logic**

Mainly first-order logic (FOL)

Major conferences: IJCAI, AAAI, KR

KNOWLEDGE BASED SYSTEMS

Knowledge Base (KB)

Reasoning Services

 General knowledge on the application domain

« Cats are Mammals »

Ontology

Factual Knowledge
 Description of specific individuals, situations, ...

Félix is a Cat

Factbase, Database

Fundamental tasks

- Checking the consistency of the KB
- Computing answers to a query over the KB

. . .

Reasoning algorithms associated with the KR language

Knowledge expressed in a KR language

(EX: MEDICAL RECORDS)

Query (SQL, SPARQL, MongoDB ...)

Database (relational, RDF, NoSQL, ...)

ADDING AN ONTOLOGICAL LAYER

Query

« find all patients affected by a lung disease due to a bacteria »

A legionella is bacterial pneumonia

A bacterial pneumonia is a pneumonia

A pneumonia is a lung disease

A lung disease is a disease

A bacterial pneumonia is a bacterial disease

A bacterial disease is caused by a bacteria

If x is caused by y then x is due to y

If the diagnosis of a patient x contains a disease y then

x is affected by y

ID Patient Diagnosis

P « legionella »

Knowledge Base

JIAF 2019

ONTOLOGY-MEDIATED QUERY ANSWERING

```
q(x) = \exists y \exists z (Patient(x) \land isAffectedBy(x,y) \land LungDisease(y) \land dueTo(y,z) \land Bacteria(z))
```

« find all patients affected by a lung disease due to a bacteria »

```
Factbase = { Patient(P), Diagnosis(P,M), Legionella(M) } 

« The diagnosis for the patient P is legionella »
```

 \forall x (BacterialDisease(x) \rightarrow \exists y (hasCausativeAgent(x,y) \land Bacteria(y))) hence hasCausativeAgent(M,b) and Bacteria(b)

```
\forall x \forall y \text{ (hasCausativeAgent(x,y)} \rightarrow \text{dueTo(x,y))}
hence dueTo(M,b)
```

Answer : x = P

```
\forall x \forall y ((Diagnosis(x,y) \land Disease(y)) \rightarrow isAffectedBy(x,y))
hence isAffectedBy(P,M)
```

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

Adding an ontological layer on top of data

Query

1- Enrich the vocabulary

allowing to abstract from a specific data storage

2 - Infer new facts, not explicitely stored,

allowing for **incomplete data** representation

Knowledge base

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

3 – provide a **unified view** of multiple sources

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

Ontology **Factbase** (Boolean) conjunctive query q

Set of formulas O in a suitable FOL fragment

Set of atoms (« facts ») F

Find all answers to q

that are *logically entailed* by (O, F)

Knowledge base

Dans ce module

- Quels formalismes pour représenter ces connaissances ?
 - → langages à base de règles
 - qui sont des « fragments » de la logique du premier ordre classique règles à la Datalog, contraintes négatives règles existentielles
 - qui sortent de la logique classique

Datalog avec négation du monde clos Answer Set Programming (ASP) [sémantiques tolérantes aux inconsistances]

- Quelle est la complexité des raisonnements dans ces formalismes ?
- Quelles techniques algorithmiques ?