W11 – Kody nadmiarowe, zastosowania w transmisji danych - dodatek

Uwagi dot. projektu

Plan wykładu

1. Symulacyjne badanie systemu transmisji cyfrowej

2. Modele binarnego kanału transmisji danych

3. Protokoły ARQ

Symulacyjne badanie systemu transmisji

Zakładamy model kanału transmisji danych

• Problem:

- Jak dobrać kod nadmiarowy / protokół (ARQ, FEC, ...) w celu uzyskania wymaganego BER
- Jaki jest koszt wymagany dla poprawy BER (nadmiar przesyłanych danych)

Symulacyjne badanie systemu transmisji

- Modele binarnego kanału transmisji danych
 - BSC Binary symmetric channel
 - Model Gilberta
 - BEC Binary erasure channel

BSC – Binary symmetric channel

- Nadajnik wysyła bit
- Odbiornik:
 - odbiera nadany bit z prawdopodobieństwem 1-p
 - odbiera bit przeciwny z prawdopodobieństwem p (zakładamy małą wartość p)

BEC – Binary erasure channel

- Nadajnik wysyła bit
- Odbiornik:
 - odbiera nadany bit z prawdopodobieństwem 1-p
 - odbiera sygnał, że bit nie dotarł z prawdopodobieństwem p (zakładamy małą wartość p)

Model Gilberta

Model dwustanowy

- W stanie D generowane błędy pojedyncze z małym prawdopodobieństwem p_D
- W stanie Z występują błędy niezależne z prawdopodobieństwem $p_Z >> p_D$
- Prawdopodobieństwa przejść pomiędzy stanami: p_{DZ} i p_{ZD} .

Zastosowania kodów nadmiarowych

- FEC Forward Error Correction
 - dekoder wykorzystuje informację nadmiarową do skorygowania błędów
 - kod korekcyjny np. potrajanie bitów (0 000, 1 111)
 - dekoder stosuje algorytm głosujący
- Systemy hybrydowe ARQ z FEC w celu zmniejszenia liczby retransmisji

Zastosowania kodów nadmiarowych

- ARQ Automatic Repeat Request
 - koder dodaje informację nadmiarową do bloku danych
 - dekoder sprawdza czy pakiet został przesłany poprawnie, jeśli nie – wysyłane jest żądanie ponownej transmisji bloku (kanał zwrotny → różne protokoły ARQ)
 - kod detekcyjny np. bit parzystości dodawany do bloku o długości n
 - w systemach ARQ wykorzystywane są kody CRC

Protokoły CRC w systemach ARQ -- zalety:

- Operacje kodowania i dekodowania zajmują tyle samo czasu (są to te same operacje), realizowane przez prosty koder/dekoder
- Dla bloków o różnej długości ten sam koder

Możliwości detekcyjne CRC-m

Jeśli błędny blok otrzymany przez dekoder jest wektorem kodowym – błąd niewykrywalny

 Dla kodu CRC-m zastosowanego dla bloków długości n, dla BER w kanale = p, prawdopodobieństwo takiego błędu wynosi:

$$\mathbf{n} \cdot \mathbf{p} \cdot 2^{-m}$$

np. dla n=500, p=
$$10^{-4}$$
, m=8 pr = $2 \cdot 10^{-4}$
n=500, p= 10^{-4} , m= 16 pr = $7.6 \cdot 10^{-7}$

Systemy ARQ

- Stop-and-Wait (SAW)
- Bo-back-N (GBN)
- Selective Repeat (SR)

Stop-and-Wait (SAW)

- Nadajnik nadaje blok i oczekuje na odpowiedź
- Po odebraniu:
 - ACK wysyła następny blok
 - NACK ponownie wysyła blok

- Brak konieczności buforowania danych i numerowania bloków
- Wada: niska szybkość efektywna (czasy oczekiwania na potwierdzenia)

Go-back-N (GBN)

- Nadajnik nadaje bloki bez oczekiwania na potwierdzenie
- Odbiornik po odebraniu błędnego bloku wysyła NACK i nr błędnego bloku N
- Odbiornik cofa się do bloku N, rozpoczyna transmisję ponownie od bloku N

- Szybszy niż protokół SAW
- Wady: konieczność buforowania danych w nadajniku, przy opóźnieniach na łączu musimy retransmitować wiele bloków

Selective Repeat (SR)

- Nadajnik nadaje bloki bez oczekiwania na potwierdzenie
- Odbiornik po odebraniu błędnego bloku wysyła NACK i nr błędnego bloku N
- Odbiornik buforuje odbierane bloki, czekając na ponowne wysłanie bloku N
- Nadajnik po otrzymaniu NACK i N wysyła ponownie blok nr N

- Stosowany dla kanałów o dużym BER
- Konieczność buforowania danych w nadajniku i odbiorniku,