- Normal forms are used to measure the "goodness" of a relation.
- 4 Types: 1NF, 2NF, 3NF and BCNF(Boyce-Codd Normal Form)

• Conditions to check relation is in BCNF or not:

- 1. First find a minimum Fd's set Fmin.
- 2. Then find key for the given Fd's set.
- 3. If in all Fd's left side is a key then we say BCNF otherwise not.

• Conditions to check relation is in 3NF or not:

- 1. First find a minimum Fd's set Fmin.
- 2. Then find key for the given Fd's set.
- 3. If in all Fd's left side is a key or right side is a prime attribute then we say 3NF otherwise not.

• User Relation:

User: (User Id, Name, Gender, Date_Of_Birth, Area, City, State, Phone_No, Email, password)

F_{min}:

User Id -> Name User Id -> Password

User_Id -> City

Let we choose X = { User_Id }. And find closure of X.

X+ = {User_Id,Name,Gender, Date_Of_Birth,Area,City,State,Phone_No,Email,password }

In here X^+ contains all attributes of relation.

Thus, **Primary key** = {User_Id }.

For every FD's $A \rightarrow B$ in F_{min} , A is a key.

So we say that User is in **BCNF**.

• Movies Relation:

```
Movies: ( Movie_Name, Release_Date_, Movie_Duration, Budget )

Fmin:
{Movie_Name, Release_Date_} -> Movie_Duration
{_Movie_Name, Release_Date_} -> Budget

Let we choose X = { Movie_Name, Release_Date_}. And find closure of X.

X+ = {_Movie_Name, Release_Date_, Movie_Duration, Budget }

In here X+ contains all attributes of relation.

Thus, Primary key = { Movie_Name, Release_Date_}.

For every FD's A → B in Fmin, A is a key.

So we say that Movies is in BCNF.
```

• Theatre Relation:

Theatre: (<u>Theatre_Id</u>, Theatre_Name, No_Of_Screens, Helpline_NO, Theatre_Owner_Name, Area, City, State, Rating)

F_{min}:

Theatre_Id -> Theatre_Id -> Area

 Theatre_Id -> Helpline_NO Theatre_Id -> State

Theatre_Id -> Theatre_Owner_Name Theatre_Id -> Rating

Let we choose X = { Theatre Id }. And find closure of X.

 $X^+ = \{ \text{_Theatre_Id}, \text{Theatre_Name}, \text{No_Of_Screens}, \text{Helpline_NO}, \text{Theatre_Owner_Name}, \text{Area, City, State}, \text{Rating } \}$

In here X^+ contains all attributes of relation.

Thus **Primary key** = { Theatre_Id }.

For every FD's $A \rightarrow B$ in F_{min} , A is a key.

So we say that Theatre is in **BCNF**.

Artist Relation:

Atrist: (Artist Id, Name, Gender, DOB, No_Of_Movies, Networth, Spouse)

 \mathbf{F}_{min} :

Artist_Id -> Name Artist_Id -> No_Of_Movies

Artist_Id -> Gender Artist_Id -> Networth

Artist_Id -> DOB Artist_Id -> Spouse

Let we choose X = { Artist_Id }. And find closure of X.

X+ = { Artist_Id, Name, Gender, DOB, No_Of_Movies, Networth, Spouse }

In here X^+ contains all attributes of relation.

```
Thus Primary key = { Artist_Id }.

For every FD's A \rightarrow B in F<sub>min</sub>, A is a key.

So we say that Artist is in BCNF.
```

Role Relation:

```
Role: (Role Name, Movie Name, Release Date, Artist Id)
```

```
Let we choose X ={ Role_Name, Movie_Name, Release_Date, Artist_Id }. And find closure of X. X^+ = \{ Role_Name, Movie_Name, Release_Date, Artist_Id \}
In here X^+ contains all attributes of relation.
```

Thus **Primary key** = { Role_Name, Movie_Name, Release_Date, Artist_Id }.

There is **no FD** in this relation because **key contains all attributes** of the relation.

So we say that Role is in **BCNF**.

• Genre Relation:

```
Genre: (Movie_Name,Release_Date,Genre_Type )
```

```
Let we choose X ={ Movie_Name,Release_Date,Genre_Type }. And find closure of X.
```

X+ = { Movie_Name,Release_Date,Genre_Type }

In here X^+ contains all attributes of relation.

Thus **Primary key** = { Movie_Name,Release_Date,Genre_Type }.

There is **no FD** in this relation because **key contains all attributes** of the relation.

So we say that Genre is in **BCNF**.

• Language Relation:

Language: (Movie Name, Release Date, Language Name)

Let we choose X ={ Movie_Name,Release_Date,Language_Name }. And find closure of X.

 $X^+ = \{ Movie Name, Release Date, Language Name \}$

In here *X*⁺ contains all attributes of relation.

Thus **Primary key** = { Movie_Name,Release_Date,Language_Name }.

There is **no FD** in this relation because **key contains all attributes** of the relation.

So we say that Language is in **BCNF**.

• Show Relation:

Show: (<u>Show_Id</u>, Show_Date, Show_Time, Screen_No, Movie_Name, Release_Date, Theatre_Id, Cost_Of_Silver_Class, Cost_Of_Gold_Class, Cost_Of_Diamond_Class)

\mathbf{F}_{min} :

Show_Id -> Show_Date Show_Id -> Show_Time

Show_Id -> Screen_No Show_Id -> Movie_Name

Show_Id -> Release_Date Show_Id -> Theatre_Id

Show_Id -> Cost_Of_Diamond _Class

Let we choose X = { Show_Id }. And find closure of X.

```
X^+ = \{ Show\_Id, Show\_Date, Show\_Time, Screen\_No, Movie\_Name, Release\_Date, Theatre\_Id, Cost\_Of\_Silver\_Class, Cost\_Of\_Gold\_Class, Cost\_Of\_Diamond\_Class \}

In here X^+ contains all attributes of relation.

Thus, Primary key = \{ Show\_Id \}.

For every FD's A \rightarrow B in F<sub>min</sub>, A is a key.

So we say that Show is in BCNF.
```

• Seat Relation:

```
Seat: ( Seat_No, Screen_No, Theatre_Id, Type_Of_Seat )

Fmin:

{Seat_No, Screen_No, Theatre_Id }-> Type_Of_Seat

Let we choose X = { Seat_No, Screen_No, Theatre_Id }. And find closure of X.

X+ = {Seat_No, Screen_No, Theatre_Id, Type_Of_Seat }

In here X+ contains all attributes of relation.

Thus Primary key = { Seat_No, Screen_No, Theatre_Id }.

For every FD's A → B in Fmin, A is a key.

So we say that Seat is in BCNF.
```

• Screen Relation:

```
Screen: ( <u>Screen_No, Theatre_Id</u>, Total_No_Of_Silver_Seats, Total_No_Of_Gold_Seats, Total_No_Of_Diamond_Seats)
```

```
\mathbf{F}_{\min}:
        { Screen_No, Theatre_Id } -> Total_No_Of_Silver_Seats
        { Screen_No, Theatre_Id } -> Total_No_Of_Diamond_Seats
        { Screen_No, Theatre_Id } -> Total_No_Of_Gold_Seats
        Let we choose X = { Screen_No, Theatre_Id }. And find closure of X.
        X+ = { Screen_No, Theatre_Id, Total_No_Of_Silver_Seats, Total_No_Of_Gold_Seats,
Total_No_Of_Diamond_Seats }
        In here X^+ contains all attributes of relation.
        Thus Primary key = { Screen_No, Theatre_Id }.
        For every FD's A \rightarrow B in F<sub>min</sub>, A is a key.
        So we say that Screen is in BCNF.
        Reviews Relation:
        Reviews: ( <u>User Id, Movie Name, Release Date</u>, Rating, Comments )
        F_{min}:
        { User_Id, Movie_Name, Release_Date } -> Rating
        { User_Id, Movie_Name, Release_Date } -> Comments
        Let we choose X = { User_Id, Movie_Name, Release_Date }. And find closure of X.
        X^+ = \{ \text{ User Id, Movie Name, Release Date, Rating, Comments } \}
```

```
In here X^+ contains all attributes of relation.
```

```
Thus Primary key = { User_Id, Movie_Name, Release_Date }.
```

For every FD's A \rightarrow B in F_{min}, A is a key.

So we say that Reviews is in **BCNF**.

Booking Relation:

```
Booking: ( Theatre_Id, Screen_No, Seat_No, User_Id, Show_Id, User_UPI_ID, Theatre_UPI_ID )
```

```
F<sub>min</sub>:
```

```
{ Theatre_Id, Screen_No, Seat_No, User_Id, Show_Id } -> User_UPI_ID

{ Theatre_Id, Screen_No, Seat_No, User_Id, Show_Id } -> Theatre_UPI_ID

{ Show_Id } -> { Theatre_Id }

{ Show_Id } -> { Screen_No}
```

X+ = {_Theatre_Id, Screen_No, Seat_No, User_Id, Show_Id, User_UPI_ID, Theatre_UPI_ID }

In here X^+ contains all attributes of relation.

Thus **Primary key** = { Theatre_Id, Screen_No, Seat_No, User_Id, Show_Id }.

There are total 4 FD's In F_{min} .

For **some** FD's $A \rightarrow B$ in F_{min} , A is a key.

Rest of the FD's A->B where A is not a key then B is Prime attribute.

Prime attributes: { Theatre Id, Screen No, Seat No, User Id, Show Id }

In 3rd FD Theatre_Id and 4th Screen_No both are prime attributes.

So we say that Reviews is in 3NF.