Atomové jádro, elektronový obal

http://z-moravec.net/chemie/zaklady-chemie/

Atomové jádro

- Atomové jádro je tvořeno protony a neutrony
- Prvek je látka skládající se z atomů se stejným počtem protonů
- Nuklid je systém tvořený prvky se stejným počtem neutronů
- $\triangleright A_{7}X$
 - A nukleonové číslo počet nukleonů (protonů a neutronů) v jádře
 - Z protonové číslo počet protonů v jádře
- ► Relativní atomová hmotnost je dána hmotnostním poměrem atomových hmotností jednotlivých izotopů prvku.
- ► Chlor: ³⁵Cl (75,529 %), ³⁷Cl (24,471 %)
- ► $Ar(CI) = w(^{35}CI) \cdot A(^{35}CI) + w(^{37}CI) \cdot A(^{37}CI) = 0,75529 \cdot 34,97 + 0,24471 \cdot 36,97 = 35,45$

Stabilita atomových jader

- Na stabilitu má vliv velikost vazebné energie jádra a poměr mezi počtem protonů a neutronů. U lehkých jader je poměr zhruba 1:1, se vzrůstajícím protonovým číslem dochází ke zvyšování přebytku neutronů
- Vazebná energie je energie, která se uvolní při vzniku jádra z volných nukleonů
- Nejvíce stabilních jader má protonové i neutronové číslo sudé, např. ¹²₆C, ¹⁶₈O, ...
- Naopak kombinace lichého protonového a neutronového čísla je u stabilních jader vzácná, známe pouze čtyři: ¹₁H, ⁶₃Li, ¹⁰₅B a ¹⁴₇N

Radioaktivní rozpady

- Pokud je v jádru nadbytek neutronů nebo protonů, jádro se přemění na stabilnější.
 - \blacktriangleright α rozpad rozpad charakteristický pro těžší jádra, dojde k uvolnění α -částice (jádro $^4_2{\rm He}^{2+}$), vzniklé jádro má protonové číslo menší o 2 a nukleonové o 4
 - ightharpoonup $^{226}_{88}$ Ra \longrightarrow $^{222}_{86}$ Rn + $^{4}_{2}$ He
 - V případě nadbytku neutronů může dojít k rozpadu neutronu na proton a elektron, během přeměny se uvolňuje částice $\beta^ \binom{0}{-1}e^-$)
 - $ightharpoonup {}^{32}_{15}P \longrightarrow {}^{32}_{16}S + {}^{0}_{-1}e$
 - V případě nadbytku protonů může dojít k rozpadu protonu na neutron a pozitron, během přeměny se uvolňuje částice β^+ $\binom{0}{+1}e^+$)
 - ightharpoonup $^{11}_{6}C \longrightarrow ^{11}_{5}B + ^{0}_{+1}e$
 - Nadbytek protonů v jádře může být kompenzován i pomocí elektronového záchytu, kdy proton pohltí elektron a vznikne neutron
 - ightharpoonup⁷₄Be + $_{-1}^{0}$ e \longrightarrow $_{3}^{7}$ Li

Jaderné reakce

- Poločas rozpadu doba, za kterou dojde k rozpadu poloviny jader v systému
- Pravděpodobnostní veličina
- Charakteristika nestabilních jader, pohybuje se od zlomků sekund až po milióny let
- $ightharpoonup rac{dN}{dt} = -\lambda N$
- $ightharpoonup N(t) = N_0 e^{-\lambda t}$
- $t_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = \tau \ln 2$
 - N počet částic
 - N₀ počet částic na počátku
 - λ rozpadová konstanta
 - lacksquare au doba života jádra $au=rac{1}{\lambda}$

Elektronový obal

- ► Elektrony vázané k atomovému jádru
- ► Elektronový obal tvoří asi 0,01 % hmotnosti atomu, ale tvoří většinu jeho objemu
- ► Poloměr elektronového obalu je řádově 10⁻¹⁰ m
- ► Elektrony vykazují dualitu chování, v důsledku Heisenbergova principu neurčitosti nelze přesně určit polohu elektrou v atomu, proto popisujeme pouze pravděpodobnost výskytu elektronu
- Počet elektronů v obalu atomu (elektroneutrální částice) je shodný s počtem protonů v jádře
- Elektrony se v obalu pohybují v prostoru vymezeném řešením Schrödingerovy rovnice, tento prostor označujeme jako atomový orbital
- Valenční elektrony elektrony v poslední zaplněné slupce obalu, účastní se chemických dějů

Elektronový obal

- ► Elektron v atomu můžeme popsat čtyřmi kvantovými čísly
 - Hlavní kvantové číslo (n) popisuje příslušnost orbitalu do elektronové slupky – velikost orbitalu. Nabývá hodnot větších než 0.
 - ▶ Vedlejší kvantové číslo (I) popisuje tvar orbitalu. Často se používá označení pomocí písmen: s, p, d, f, g, h, ... Nabývá hodnot v intervalu < 0, n-1 >.
 - Magnetické kvantové číslo (m) popisuje prostorovou orientaci orbitalu. Nabývá hodnot v intervalu < -1; 1 >.
 - Spinové kvantové číslo (s) nepopisuje orbital, ale spin elektronu v orbitalu. Nabývá hodnot ±½.
- ▶ Pauliho princip výlučnosti v atomu nemohou existovat dva elektrony, které by měly shodná všechna čtyři kvantová čísla, musí se lišit alespoň spinem, tzn. že do jednoho atomového orbitalu se vejdou maximálně dva elektrony.
- ▶ **Výstavbový (Aufbau) princip** elektrony zaplňují orbitaly od energeticky nejnižších. První jsou zaplňovány volné orbitaly s nejnižším součtem n+l.

Elektronová konfigurace

- Popisuje zaplnění atomových orbitalů elektrony
- Orbitaly jsou zaplňovány v pořadí: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p
- d-orbitaly se zaplňují až po zaplnění s-orbitalu s hlavním kvantovým číslem (n+1), např. 3d orbital se začne plnit až po 4s
- ► Zápis elektronové konfigurace: C: 1s² 2s² 2p²; P: 1s² 2s² 2p⁶ 3s² 3p³
- Zkrácený zápis elektronové konfigurace: C: [He] 2s² 2p²; P: [Ne] 3s² 3p³
- U nepřechodných prvků (s a p blok PSP) je zaplňování orbitalů dáno jejich energetickým pořadím. Sb: [Kr] 4d¹⁰ 5s² 5p³
- U přechodných (d blok) a vnitřně přechodných (f blok) prvků nacházíme výjimky a nepravidelnosti v pořadí zaplňování orbitalů

Elektronová konfigurace

► Změna pořadí energetických hladin

Vyšší stabilita zpola zaplněných d-orbitalů

- U prvků 6. a 11. skupiny dochází k přeskoku jednoho elektronu z orbitalu s do orbitalu d, tím vzniká konfigurace se zpola nebo zcela zaplněným d-orbitalem.
- ► Cr: [Ar] 3d⁵ 4s¹
- ► Cu: [Ar] 3d¹⁰ 4s¹
- ► U f-prvků (lanthanoidy a aktinoidy) je elektronová konfigurace (n-2)f¹⁻¹⁴(n-1)d⁰⁻¹ns²
- ► Gd: [Xe] 4f⁷ 5d¹ 6s²
- ► U: [Rn] 5f³ 6d¹ 7s²

Elektronová konfigurace iontů

- ▶ Při vzniku *kationtů* se uvolňují elektrony z HOMO orbitalu (Highest Occupied Molecular Orbital nejvyšší obsazený molekulový orbital).
- Při vzniku aniontů elektrony vstupují do LUMO orbitalu (Lowest Unoccupied Molecular Orbital - nejnižší neobsazený molekulový orbital).

Na	[Ne] 3s ¹	Na ⁺	[Ne] (3s ⁰)
Ва	[Xe] 3s ²	Ba ²⁺	[Xe]
Fe	[Ar] 3d ⁶ 4s ²	Fe ³⁺	[Ar] 3d ⁵
Cu	[Ar] 3d ¹⁰ 4s ¹	Cu ²⁺	[Ar] 3d ⁹
S	[Ne] 3s ² 3p ⁴	S ²⁻	[Ne] $3s^2 3p^6 \equiv [Ar]$
CI	[Ne] 3s ² 3p ⁵	CI ⁻	$[Ne] 3s^2 3p^6 \equiv [Ar]$