Relatório 1 Elementos de Sistemas

Construindo um circuito lógico com transistores discretos.

Ano: 2018

Local: São Paulo, SP, Brasil

Organização: Insper

Relatório 1 Elementos de Sistemas

Relatório 1 Elementos de Sistemas

Construindo um circuito lógico com transistores discretos.

Ano: 2018

Local: São Paulo, SP, Brasil

Organização: Insper

Supervisores Docentes: Rafael Corsi Ferrão

Autores Estudantes: Matteo Iannoni, Wesley Silva, Giullia Passarelli, Alexandre

Edington, Vinicius Lima e Bruno Arthur Cesconetto

Resumo

O objetivo do exercício que esse relatório descreve era de montar um circuito lógico utilizando transistores discretos. O circuito deveria ter saída equivalente à equação lógica fornecida no pdf da atividade¹, apresentada a seguir:

$$Q = A.B + B.C$$

O circuito foi simulado antes de ser implementado fisicamente. A validação do circuito foi feita na simulação e na montagem física do circuito².

¹ https://github.com/Insper/Z01/blob/master/A-Transistores/A-Transistores.pdf

² O vídeo de validação do circuito está disponível no link: https://youtu.be/87BJev1Loxs

Introdução

Um circuito lógico tem uma saída que depende de uma ou algumas entradas. São usados transistores para tornar possível que a saída seja uma variável dependente das entradas. Hoje em dia o uso de transistores como é feito nesse projeto não é usual, posto que os componentes tomam muito espaço e estão muito sujeitos a agentes externos como umidade. Esse uso de transistores é justificado para o exercício de aprendizado da funcionalidade deles como portas lógicas justamente por aumentar em algumas ordens de grandeza a escala do que acontece em um processador para obter uma saída dado algumas entradas; nessa escala, na qual o circuito é visível a olho nu, é possível saber por observação exatamente o que acontece no circuito.

Desenvolvimento

Metodologia

Na montagem do circuito usamos transistores, protoboards e leds. Nós montamos o circuito a partir da equação dada no pdf das instruções. No circuito, os transistores conectados em série funcionam como AND's e os transistores conectados em paralelo funcionam como OR's. Para sabermos o que esperar de saída da montagem, nós montamos uma tabela verdade da equação que nos foi fornecida.

$$Q = B.(\bar{A} + C)$$

Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Material e equipamento usados

Nós usamos transistores discretos para agirem como o controle das entradas, a forma com a qual conectamos os transistores define que tipo de porta lógica eles formam.

Para comportar todo o circuito foi usada uma protoboard. A protoboard nos permitiu montar o circuito e testar a simulação que fizemos usando software.

Montagem do circuito

É possível ver no circuito cada uma das entradas; azul sendo a entrada B; Amarelo sendo a entrada A; Verde sendo a entrada C.

Divisão do trabalho

Como esse projeto foi pouco complexo, não foi necessário haver uma divisão hyper granular do trabalho, porém, as tarefas foram muito bem definidas. A montagem do circuito e a simulação dele foi feita pelo Wesley Silva; o Bruno Arthur Cesconetto ajudou a fazer a simulação. A tabela verdade foi feita pela Giulia Passarelli e o Alexandre Edington, que ajudou também na filmagem do vídeo de validação. O outro membro que participou da filmagem da validação foi o Vinicius Lima, que também fez o diagrama de blocos lógicos. Por último, o Matteo lannoni foi o autor deste relatório.