${\bf Vorlesung smitschrift}$

AGLA II

Prof. Dr. Damaris Schindler

Henry Ruben Fischer

Auf dem Stand vom 10. Juli 2020

Disclaimer

Nicht von Professor Schindler durchgesehene Mitschrift, keine Garantie auf Richtigkeit ihrerseits.

Inhaltsverzeichnis

1	Affir	ne Geometrie	7
	1.1	Was ist ein affiner Raum?	7
	1.2	Affine Abbildungen	12
	1.3	Durchschnitt und Verbindung affiner Räume	16
	1.4	Parallelprojektionen	
	1.5	Affine Koordinaten	25
	1.6	Das Teilverhältnis	
	1.7	Affinkombinationen	
	1.8	Affine Abbildungen und Matrizen, Fixpunkte	
	1.9	Kollineationen	38
		Quadriken	
	1.11	Euklidische affine Räume	60
2	Proj	ektive Geometrie	75
	2.1	Projektive Räume	75
	2.2	Projektive Abbildungen	83
	2.3	Zusammenhänge zwischen affiner und projektiver Geometrie	95
	2.4	Invarianten von Projektivitäten	102
	2.5	Hauptsatz der projektiven Geometrie	
	2.6	Dualität	124
		2.6.1 Dualräume	129
	2.7	Quadriken	135
3	Exkı	ırs: Exponentialabbildungen von Matrizen	152
4	Mult	tilineare Algebra	162
	4.1	Tensorprodukte	162
		4.1.1 Weitere Beispiele von Tensorprodukten	178
	4.2	Tensoralgebra	179

Vorlesungsverzeichnis

1	Di 21.04. 10:15																		7
2	Fr 24.10. 10:15																		16
3	Di 28.04. 10:15																		25
4	Di 05.05. 10:15																	,	32
5	Fr 08.05. 10:15																	2	40
6	Di 12.05. 10:15																	2	47
7	Fr 15.05. 10:15																	ļ	54
8	Di 19.05. 10:15																	(64
9	Fr 21.05. 10:15																	,	70
10	Di 26.05. 10:15																	,	75
11	Fr 29.05. 10:15																	8	83
12	Di 02.06. 10:15																	8	89
13	Fr 05.06. 10:15																	?	95
14	Di 09.06. 10:15																	10	02
15	Fr 12.06. 10:15																	10	09
16	Di 16.06. 10:15																	1.	17
17	Fr 19.06. 10:15																	1:	24
18	Di 23.06. 10:15																	1:	29
19	Fr 26.06. 10:15																	1:	35
20	Di 30.06. 10:15																	1	43
21	Fr 03.07. 10:15																	1!	51
22	Di 07.07. 10:15																	16	61
23	Do 09.07. 10:15																	16	69
24	Di 14 07 10:15	_																1'	78

Dateienverzeichnis

1	Was ist ein affiner Raum?	7
2	Affine Abbildungen und Unterräume	12
3	Durchschnitt und Verbindung affiner Räume	16
4	Parallelprojektionen	21
5	Affine Koordinaten und Koordinatensysteme	25
6	Teilverhältnis	30
7	Affinkombinationen	33
8	, 1	35
9	Kollineationen	38
10	Hauptsatz affine Geometrie	42
11	-	43
12	Quadriken zweiter Teil	51
13		60
14	Euklidische affine Räume Teil 2	66
15	Kongruenz	68
16	Ähnlichkeiten	68
17	Hauptachsentransformation Affinitäten	73
18	σ	75
19	Projektive Abbildungen	33
20	Projektive Basis	37
21	Projektivitäten beschrieben durch Matrizen	
22	Zentralprojektionen	92
23	Affine Projektive Geometrie	95
24	Afiine projektive Geometrie Teil 2)()
25	Doppelverhältnis)2
26	Berechnung Doppelverhältnis	
27	Desargues Pappos)9
28	Hauptsatz projektive Geometrie	14
29	Hauptsatz projektive Geometrie Teil 2	21
30	Dualität	24
31	Korrelationen	27
32	Dualräume	
33	Dualräume und Korrelationen	31

Dateienverzeichnis

34	Projektive Quadriken Teil 1
35	Projektive Quadriken Teil 2
36	Projektive Quadriken Teil 3
37	Exponentialabbildungen Matrizen
38	Tensorprodukte Teil 1
39	Tensorprodukte Teil 2
40	Tensorprodukte Teil 3
41	Tensoralgebra

Kapitel 1

Affine Geometrie

Vorlesung 1

Di 21.04. 10:15

§1.1 Was ist ein affiner Raum?

Datei 1: Was ist ein affiner Raum?

Beispiel 1.1.1 (aus der AGLA I). \mathbb{R}^2 , \mathbb{R}^3 . In diesen Räumen gibt es einen ausgezeichneten "Usprung".

Frage. Wie können wir eine affine Ebene / affine Räume modellieren, wobei alle Punkte gleichberechtigt sind?

Idee. Verwende affine Unterräume.

Beispiel 1.1.2. Sei K ein Körper, V ein K-Vektorraum, $W \subseteq V$ ein Untervektorraum und $v \in V$. Wir nennen X = v + W einen affinen Unterraum von V. X ist im Allgemeinen selbst kein Vektorraum unter der Addition in V, aber W "operiert" auf X.

Für $w \in W$ definieren wir die Abbildung

$$\tau_w \colon X \to X$$
$$p \mapsto p + w.$$

Sei

$$Bij(X) = \{ f : X \to X, f \text{ ist bijektiv } \}.$$

Dann ist $\tau_w \in \text{Bij}(X)$ für alle $w \in W$.

Bemerkung. $\mathrm{Bij}(X)$ ist eine Gruppe unter Verkettung von Abbildung. Wir erhalten eine Abbildung

$$\tau \colon W \to \operatorname{Bij}(X)$$

 $w \mapsto \tau_w.$

Lemma 1.1.1. Die Abbildung τ ist ein Gruppenhomomorphismus.

Beweis. Seien $w, w' \in W$ Dann

$$\tau_w \circ \tau_{w'} \colon X \to X$$
$$p \mapsto p + \underline{w' + w},$$

also

$$\tau(w) \circ \tau(w') = \tau_w \circ \tau_{w'} = \tau_{w+w'} = \tau(w+w').$$

Es gilt noch mehr:

für $p, q \in X$ besteht genau ein $w \in W$ mit $\tau_w(p) = q$.

Gruppenoperationen

Beispiel 1.1.3. Betrachte ein gleichseitiges Dreieck D und Spiegelungen / Drehungen die D auf sich selbst abbilden.

Diese formen eine Gruppe (welche?) und "operieren" auf D.

Definition 1.1.1. Sei X eine Menge und G eine Gruppe. Eine Operation von G auf X ist ein Homomorphismus von Gruppen

$$\tau \colon G \to \operatorname{Bij}(X)$$
$$g \mapsto \tau_g.$$

Bemerkung. τ ist ein Homomorphismus d.h. $\forall g, g' \in G$

$$\tau_g \circ \tau_{g'} = \tau_{gg'}.$$

Für $x \in X$ nennen wir

$$G(x) = \{ \tau_q(x) \mid g \in G \}$$

die Bahn von x unter G.

Beispiel 1.1.4. i) Sei G eine Gruppe und X=G die Linkstranslation $l\colon G\to \mathrm{Bij}(G)$ $g\mapsto l_g$ mit $l_g(x)=gx\quad\forall\,x\in G$ ist eine Gruppenoperation von G auf sich selbst. ii)

$$k \colon G \to \operatorname{Bij}(G)$$

 $g \mapsto k_g$

mit $k_g(x) = gxg^{-1} \quad \forall x \in G$ ist eine Gruppenoperation.

Frage. Sei $\tau \colon G \to \operatorname{Bij}(X)$ eine Gruppenoperation, $x,y \in X$. Wann gibt es ein $g \in G$ mit $\tau_g(x) = y$?

Definition. Sei $\tau \colon G \to \operatorname{Bij}(X)$ eine Gruppenoperation von G auf X. Wir nennen τ einfach transitiv, wenn $\forall \ x,y \in X$ genau ein $g \in G$ besteht mit

$$\tau_q(x) = y.$$

Beispiel. • Die Gruppenoperation aus Beispiel 1.1.3 ist *nicht* einfach transitiv

• Die Linkstranslation aus Beispiel 1.1.4 i) ist immer einfach transitiv.

Zurück zum Beispiel 1.1.2 (V K-Vektorraum, $W \subseteq V$ Untervektorraum, $v \in V$, X = v + W)

Wir haben Translationen definiert

$$\tau \colon W \to \operatorname{Bij}(X)$$

 $x \mapsto \tau_w$

mit $\tau_w \colon X \to X$, $p \mapsto p + w$. τ ist eine einfach transitive Gruppenoperation von W auf x.

Definition. Sei K ein Körper. Ein affiner Raum über K ist ein Tripel $(X, T(X), \tau)$ mit

- $X \neq \emptyset$ eine Menge
- T(X) ein K-Vektorraum
- $\tau: T(x) \to \text{Bij}(X)$ eine einfach transitive Gruppenoperation

Konvention. $X = \emptyset$ ohne Spezifikation von T(X), τ nennen wir auch einen affinen Raum.

Definition. Sei $(X, T(X), \tau)$ in affiner Raum über einem Körper K. Dann nennen wir $\dim_K T(X)$ die Dimension von X, schreiben auch dim X.

Ist $\dim X = 1$ bzw. $\dim(X) = 2$, dann nennen wir X eine affine Gerade bzw. affine Ebene.

Sei $(X, T(X), \tau)$ in affiner Raum, $p, q \in X$. Dann $\exists ! t \in T(X)$ mit $\tau_t(p) = q$. Schreibe $\overrightarrow{pq} = t \in T(X)$ als $\tau_{\overrightarrow{pq}}(p) = q$.

Wir erhalten eine Abbildung

$$\begin{array}{c} X\times X\to T(X)\\ (p,q)\mapsto \overrightarrow{pq}. \end{array}$$

Frage. Welche Eigenschaften hat die Abbildung $(p,q) \mapsto \overrightarrow{pq}$ in einem allgemeinen affinen Raum?

Lemma 1.1.2. Sei X ein affiner Raum, $p,q,r\in X$. Dann gilt $\overrightarrow{pq}+\overrightarrow{qr}=\overrightarrow{pr}$.

Beweis. $\tau \colon T(X) \to \operatorname{Bij}(X)$ ist ein Homomorphismus. Also gilt $\tau_{\overrightarrow{qr}} \circ \tau_{\overrightarrow{pq}} = \tau_{\overrightarrow{pq}+\overrightarrow{qr}}$. Es gilt damit $\tau_{\overrightarrow{pq}+\overrightarrow{qr}}(p) = r$. Also $\overrightarrow{pq}+\overrightarrow{qr}=\overrightarrow{pr}$.

Datei 2: Affine Abbildungen und Unterräume

§1.2 Affine Abbildungen

Seien V,W K-Vektorräume. In der AGLA I: lineare Abbildungen

$$F \colon V \to W$$

d. h. F respektiert die Vektorraum-Struktur

$$F(v_1 + v_2) = F(v_1) + F(v_2) \quad \forall v_1, v_2 \in V$$
$$F(\lambda v) = \lambda F(v) \quad \forall \lambda \in K \, \forall v \in V.$$

Frage. Was sind natürliche Abbildungen zwischen affinen Räumen?

Seien X, Y affine Räume über einem Körper K.

$$\overrightarrow{pq} \leadsto \overrightarrow{f(p)f(q)}.$$

$$T(X) \qquad T(Y)$$

Definition. Wir nennen eine Abbildung $f: X \to Y$ affin, wenn es eine K-lineare Abbildung $F: T(X) \to T(Y)$ gibt, sodass $\forall p, q \in X$ gilt

$$\overrightarrow{f(p)f(q)} = F(\overrightarrow{pq}).$$

Bemerkung. i) Es gibt im Allgemeinen verschiedene affine Abbildungen $f \colon X \to Y$, die zur gleichen linearen Abbildung $F \colon T(X) \to T(Y)$ gehören.

ii) Sei $p_0 \in X$ fest und $f: X \to Y$ affin.

Für $q \in X$ gilt

$$f(q) = \tau_{\overrightarrow{f(p_0)f(q)}}(f(p_0))$$
$$= \tau_{F(\overrightarrow{p_0q})}(f(p_0)).$$

Also bestimmen $f(p_0)$ und F zusammen die Abbildung $f: X \to Y$.

Beispiel. Seien V, W K-Vektorräume

$$X = (V, V, \tau), \quad Y = (W, W, \tau).$$

Eine affine Abbildung $f: V \to W$ ist eindeutig bestimmt durch f(0) und eine lineare Abbildung $F: V \to W$. Es gilt

$$f(v) = f(0) + F(v) \quad \forall v \in V.$$

Bemerkung / Übung. Eine affine Abbildung $f: X \to Y$ ist genau dann injektiv bzw. surjektiv bzw. bijektiv, wenn die zugehörige Abbildung $F: T(X) \to T(Y)$ es ist.

Definition. Wir nennen eine bijektive affine Abbildung $f: X \to Y$ eine Affinität.

Affine Unterräume

Beispiel (\mathbb{R}^2 als Vektorraum.). Untervektorräume von \mathbb{R}^2 sind \emptyset , $\{0\}$, \mathbb{R}^2 und Geraden durch 0.

Betrachte nun \mathbb{R}^2 als affinen Raum.

Idee. Wir wollen l und l' als affine Unterräume von \mathbb{R}^2 definieren, da die Verschiebung von l, l' jeweils Untervektorräume von \mathbb{R}^2 sind.

Definition. Sei $(X, T(X), \tau)$ in affiner Raum und $Y \subseteq X$. Wenn es einen Punkt $p_0 \in Y$ gibt, sodass

$$T(Y) := \{ \overrightarrow{p_0 q} \in T(X), q \in Y \}$$

ein Untervektorraum von T(X) ist, dann nennen wir Y einen affinen Unterraum von X.

Lemma 1.2.1. Sei $Y \subseteq X$ ein affiner Unterraum eines affinen Raumes $(X, T(X), \tau)$. Dann gilt

$$T(Y) = \{ \overrightarrow{pq} \in T(X), q \in Y \}$$

für jeden beliebigen Punkt $p \in Y$.

Beweis. Sei $p_0 \in Y$ ein fester Punkt mit

$$T(Y) = \{ \overrightarrow{p_0 q} \in T(X), q \in Y \}$$

Untervektorraum von T(X). Dann gilt für $p \in Y$

$$\{ \overrightarrow{pq} \mid q \in Y \} = \overrightarrow{pp_0} + \{ \overrightarrow{p_0q} \mid q \in Y \} = \overrightarrow{pp_0} + T(Y) = T(Y), \qquad \Box$$

da $\overrightarrow{pp_0} = -\overrightarrow{p_0p} \in T(Y)$.

Definition. Sei $Y\subseteq X$ ein affiner Unterraum. Wir nennen $\dim_K T(Y)$ die Dimension von Y und schreiben

$$\dim Y = \dim_K T(Y).$$

Vorlesung 2

Fr 24.10. 10:15

§1.3 Durchschnitt und Verbindung affiner Räume

Frage. Sei X ein affiner Raum, Y_1, Y_2 affine Unterräume von X. Sind $Y_1 \cap Y_2, Y_1 \cup Y_2$ auch affine Unterräume von X?

Datei 3: Durchschnitt und Verbindung affiner Räume

Lemma 1.3.1. Sei X ein affiner Raum, Y_i , $i \in I$, eine Familie von affinen Unterräumen von X.

Dann ist $Y := \bigcap_{i \in I} Y_i$ ein affiner Unterraum von X.

Wenn $Y \neq \emptyset$, dann gilt

$$T(Y) = \bigcap_{i \in I} T(Y_i).$$

Beweis. Falls $Y = \emptyset$:

Wir nehmen also an $Y \neq \emptyset$. Sei $p_0 \in Y$. Dann gilt:

$$T(Y) = \left\{ \overrightarrow{p_0 q}, q \in \bigcap_{i \in I} Y_i \right\}$$

$$= \bigcap_{i \in I} \left\{ \overrightarrow{p_0 q}, q \in Y_i \right\}$$

$$= \bigcap_{i \in I} T(Y_i).$$
Untervektorräume von $T(X)$

Also ist T(Y) ein Untervektorraum von T(X) und $T(Y) = \bigcap_{i \in I} T(Y_i)$.

Bemerkung. In obiger Notation ist $\bigcup_{i \in I} Y_i$ im Allgemeinen kein affiner Unterraum von X.

Frage. Finde den "kleinsten" affinen Unterraum von X, der $\bigcup_{i \in I} Y_i$ enthält! (z. B. $X \supseteq \bigcup_{i \in I} Y_i$, aber X ist im Allgemeinen nicht "minimal").

Definition. Sei X ein affiner Raum, Y_i , $i \in I$ affine Unterräume von X. Wir nennen

$$\bigcap_{Y\subseteq X \text{ aff. Unterraum}} Y$$

$$\bigcup_{i\in I} Y_i\subseteq Y$$

den Verbindungsraum der affinen Unterräume Y_i , $i \in I$. Schreibe $\bigvee_{i \in I} Y_i$.

$$X = \mathbb{R}^2$$
, $Y_1 \vee Y_2 = X$, $Y = Y_1 \vee Y_2$, $T(Y) = T(Y_1) + T(Y_2)$.

Beispiel.

Frage. Wie kann man im Allgemeinen $T(Y_1 \vee Y_2)$ aus $T(Y_1), T(Y_2)$ bestimmen?

Lemma 1.3.2. Sei X ein affiner Raum, $Y_1, Y_2 \neq \emptyset$ affine Unterräume von X.

a) Sei $Y_1 \cap Y_2 \neq \emptyset$. Dann gilt

$$T(Y_1 \vee Y_2) = T(Y_1) + T(Y_2).$$

b) Sei $Y_1 \cap Y_2 = \emptyset$, $p_1 \in Y_1, p_2 \in Y_2$ und $Y = p_1 \vee p_2$. Dann gilt:

$$T(Y_1 \vee Y_2) = (T(Y_1) + T(Y_2)) \oplus T(Y).$$

Beweis. a) Sei $p \in Y_1 \cap Y_2$. Dann gilt

$$T(Y_1) \cup T(Y_2) = \{ \overrightarrow{pq} \mid q \in Y_1 \cup Y_2 \}$$

$$\subseteq T(Y_1 \vee Y_2),$$

also $T(Y_1) + T(Y_2) \subseteq T(Y_1 \vee Y_2)$.

Sei $Y = \{ \tau_t(p) \mid t \in T(Y_1) + T(Y_2) \}$. Dann ist Y affiner Unterraum von X mit $Y_1 \cup Y_2 \subseteq Y$, also $Y_1 \vee Y_2 \subset Y$, also $Y_1 \vee Y_2 \subseteq Y$. Also gilt

$$T(Y_1 \vee Y_2) \subseteq T(Y) = T(Y_1) + T(Y_2).$$

Also $T(Y_1 \vee Y_2) = T(Y_1) + T(Y_2)$.

b)
$$Y_1 \cap Y_2 = \emptyset$$
, $p_1 \in Y_1$, $p_2 \in Y_2$, $Y = p_1 \vee p_2$.

Schreibe $Y_1 \vee Y_2 = Y_1 \vee Y \vee Y_2$ (verwende dazu $Y \subseteq Y_1 \vee Y_2$). Verwende a) und leite ab, dass gilt:

$$T(Y_1 \lor Y \lor Y_2) = T(Y_1) + T(Y \lor Y_2)$$

= $T(Y_1) + T(Y) + T(Y_2)$
= $(T(Y_1) + T(Y_2)) \stackrel{!}{\oplus} T(Y).$

Es gilt

$$T(Y) = \{ \lambda \overrightarrow{p_1 p_2} \mid \lambda \in K \}.$$

Wir wollen zeigen

$$(T(Y_1) + T(Y_2)) \cap T(Y) = \{ 0 \}.$$

Es genügt zu zeigen

$$\overrightarrow{p_1p_2} \notin T(Y_1) + T(Y_2).$$

Gegenannahme:

$$\overrightarrow{p_1p_2} = \overrightarrow{p_1y_1} + \overrightarrow{q_2p_2}$$

$$T(Y_1) \quad T(Y_2)$$

mit $q_1 \in Y_1, q_2 \in Y_2$.

Dann gilt

$$\overrightarrow{q_1q_2} = \overrightarrow{q_1p_1} + \overrightarrow{p_1p_2} + \overrightarrow{p_2q_2} = 0,$$

Als nächstes: $\dim(Y_1 \vee Y_2)$ ist durch $\dim_K T(Y_1 \vee Y_2)$ gegeben, also sollten wir aus Lemma 1.3.2 für $Y_1 \vee Y_2$ ableiten können.

Lemma 1.3.3. Sei X ein affiner Raum, $Y_1, Y_2 \neq \emptyset$ affine Unterräume von X.

- a) Sei $Y_1 \cap Y_2 \neq \emptyset$. Dann gilt $\dim(Y_1 \vee Y_2) = \dim(Y_1) + \dim(Y_2) \dim(Y_1 \cap Y_2)$.
- b) Sei $Y_1 \cap Y_2 = \emptyset$. Dann gilt

$$\dim(Y_1 \vee Y_2) = \dim(Y_1) + \dim(Y_2) - \dim(T(Y_1) \cap T(Y_2)) + 1.$$

Beweis. a) Aus Lemma 1.3.2 folgt

$$T(Y_1 \vee Y_2) = T(Y_1) + T(Y_2),$$

aus der Dimensionsformel für Untervektorräume folgt

$$\dim(Y_1 \vee Y_2) = \dim(T(Y_1 \vee Y_2))$$

$$= \dim(Y_1) + \dim(T(Y_2)) - \dim(T(Y_1) \cap T(Y_2))$$

$$= \dim(T(Y_1)) + \dim(T(Y_2)) - \dim(T(Y_1 \cap Y_2))$$

$$\stackrel{\uparrow}{\text{Lemma } 1.3.1}$$

$$= \dim Y_1 + \dim Y_2 - \dim Y_1 \cap Y_2.$$

b)
$$Y_1 \cap Y_2, p_1 \in Y_1, p_2 \in Y_2, Y = p_1 \vee p_2.$$

Dann ist

$$\dim Y = \dim(T(Y)) = 1.$$

Wir erhalten

$$\dim(Y_1 \vee Y_2) = \dim Y_1 + \dim Y_2 - \dim(T(Y_1) \cap T(Y_2)) + 1 \qquad \Box$$

Beispiel $(X = \mathbb{R}^3)$.

$$\dim(Y_1 \vee Y_2) = 1 + 1 - \underbrace{\dim(T(Y_1) \cap T(Y_2))}_{=1} + 1 = 2$$

$$\dim(Y_1 \vee Y_2) = 1 + 1 - 0 + 1 = 3$$

und $Y_1 \vee Y_2 = X$.

Datei 4: Parallelprojektionen

§1.4 Parallelprojektionen

Wiederholung (Projektionen aus der AGLA I). Beispiel.

Sei V ein K-Vektorraum, $W, W_1 \subset V$ K-Untervektorräume mit $V = W \oplus W_1$. Schreibe $v \in V$ in der Form $v = w + w_1$ und mit $w \in W$, $w_1 \in W_1$. Definiere

$$P_W \colon V \to W_1$$

$$v \mapsto w_1.$$

$$w + w_1$$

Ein paar Eigenschaften von P_W :

- $P_W: V \to W_1$ ist eine lineare Abbildung,
- $\operatorname{Ker} P_W = W$,
- $P_W|_{W_1} = \mathrm{Id}_{W_1}$.

Als Nächstes: Wir schränken P_W ein auf einen Untervektorraum W_0 von V.

Lemma 1.4.1. Sei V ein K-Vektorraum, $W, W_0, W_1 \subseteq V$ Untervektorräume mit $V = W \oplus W_0 = W \oplus W_1$.

Dann ist $P_W|_{W_0}\colon W_0\to W_1$ ein Isomorphismus (Notation wie oben).

Beweis. Es gilt $\dim W_0 = \dim W_1$ und es genügt zu zeigen, dass $P_W|_{W_0}$ injektiv ist.

Sei $P_W|_{w_0}=w_1$ für $w_0\in W_0,\,w_1\in W_1$. Dann ist $w_0=w+w_1$ mit $w\in W,\,w_1\in W_1,$ also

$$w_1 = w_0 - w \in W_0 \oplus W,$$

$$W_0 \longrightarrow W$$

und diese Zerlegung ist eindeutig.

Parallelprojektionen für affine Räume

Sei X ein affiner Raum (über einem Körper K), $Y_1 \subseteq X$ ein affiner Unterraum

Beispiel.

Sei $W \subseteq T(X)$ ein Untervektorraum mit $T(X) = T(Y_1) \oplus W$.

Ziel. Definiere eine Projektionsabbildung

$$\pi_W \colon X \to Y_1$$

"längs W".

Für $p \in X$ definiere

$$W(p) := \{ x \in X \mid \overrightarrow{px} \in W \}$$

Lemma 1.4.2. Notation wie oben. Für $p \in X$ gilt

$$\#(Y_1 \cap W(p)) = 1.$$

Beweis. Wir berechnen

$$\dim Y_1 \cap W(p)$$
.

Sei $x = \dim X$, verwende Lemma 1.3.3 b). Falls $Y_1 \cap W(p) = \emptyset$, dann

$$\dim Y_1 \vee W(p) = \dim Y_1 + \dim W(p) - \dim \underbrace{T(Y_1) \cap W}_{=\{0\}} + 1$$
$$= \dim(T(Y_1)) + \dim W + 1$$

 $\not z$ zu $Y_1 \vee W(p) \subseteq X,$ also ist $Y_1 \cap W(p) \neq \{\; 0\; \},$ und nach Lemma 1.3.3 a) gilt Folgendes:

$$\underbrace{\dim(Y_1 \vee W(p))}_{\text{ii}} = \dim Y_1 + \dim W(p) - \dim(Y_1 \cap W(p))$$
$$= n - \dim(Y_1 \cap W(p))$$

und nach Lemma 1.3.1

$$\dim Y_1 \vee W(p) = \dim(T(Y_1) + W)$$

$$= n,$$

also $\dim(Y_1 \cap W(p)) = 0$.

Wir definieren die Projektion längs W

$$\pi_W \colon \underset{Y_0}{\overset{\subseteq}{Y_0}} \to Y_1, \ p \mapsto W(p) \cap Y_1.$$

Satz 1.4.3. Sei X ein affiner Raum, $Y_1,Y_0\subseteq X$ affine Unterräume, $W\subseteq T(X)$ ein Untervektorraum mit

$$T(X) = W \oplus T(Y_0) = W \oplus T(Y_1).$$

Dann ist $\pi_W \colon X \to Y_1$ eine surjektive affine Abbildung und $\pi_w|_{Y_0} \colon Y_0 \to Y_1$ eine Affinität.

Beweis. Seien $p, q \in X$.

Dann gilt

$$\overrightarrow{pq} = \overrightarrow{p\pi_W(p)} + \overrightarrow{\pi_W(p)\pi_W(q)} + \overrightarrow{\pi_W(q)q} + \overrightarrow{\pi_W(q)q}$$

$$= \underbrace{\overrightarrow{p\pi_W(p)} + \overrightarrow{\pi_W(q)q}}_{\in W} + \underbrace{\overrightarrow{\pi_W(p)\pi_W(q)}}_{\in T(Y_1)},$$

also $\overrightarrow{\pi_W(p)\pi_W(q)} = P_W(\overrightarrow{pq}).$

 P_W ist surjektiv, also ist π_W eine surjektive affine Abbildung.

Der zweite Teil folgt aus Lemma 1.4.1.

Vorlesung 3

Di 28.04. 10:15

§1.5 Affine Koordinaten

Koordinaten in einem K-Vektorraum V. Sei $\dim(V) = n$ und v_1, \ldots, v_n eine Basis von V. Dann ist die Abbildung

Datei 5: Affine Koordinaten und Koordinatensysteme

$$\phi: K^n \to V$$

$$(x_1, \dots, x_n) \mapsto \sum_{i=1}^n x_i v_i$$

ein Isomorphismus von K-Vektorräumen. Jeder Punkt $v=\sum_{i=1}^n x_iv_i$ ist eindeutig bestimmt durch seine "Koordinaten"

$$\phi^{-1}(v) = (x_1, \dots, x_n) \in K^n.$$

Frage. Sei X ein affiner Raum über einem Körper K. Können wir auch hier die Lage eines Punkte $p \in X$ durch Angabe von "Koordinaten" bezüglich einer "Basis" beschreibe?

Beispiel / **Idee.** $X = \mathbb{R}^2$ als affiner Raum und Punkte $p_1, p_2 \in X$, sodass $\overrightarrow{p_0p_1}$, $\overrightarrow{p_0p_2}$ eine Basis ist für T(X). Dann können wir einen Punkt $p \in X$ beschreiben durch

$$p = \tau_{\overline{p_0p}}(p_0)$$

= $\tau_{\lambda \overline{p_0p_1} + \mu \overline{p_0p_2}}(p_0),$

falls $\overrightarrow{p_0p} = \lambda \overrightarrow{p_0p_1} + \mu \overrightarrow{p_0p_2}$ mit $\lambda, \mu \in \mathbb{R}$.

Wir erhalten eine Abbildung

$$\phi \colon \mathbb{R}^2 \to X$$
$$(\lambda, \mu) \mapsto \tau_{\lambda \overline{p_0 p_1^*} + \mu \overline{p_0 p_2^*}}(p_0),$$

die eine Affinität ist.

Wir formalisieren diese Konzepte für allgemeine affine Räume.

Definition. Sei X ein affiner Raum und $p_0, \ldots, p_n \in X$. Wir nennen (p_0, \ldots, p_n) affin unabhängig bzw. eine affine Basis, wenn die Vektoren $(\overline{p_0p_1}, \ldots, \overline{p_0p_n})$ in T(x) linear unabhängig sind bzw. eine Basis bilden.

Beispiele. i) In $X = \mathbb{R}^n$ ist $(0, e_1, \dots, e_n)$ eine affine Basis.

ii) $X = \mathbb{R}^n$ als affiner Raum, $v_1, \ldots, v_k \in \mathbb{R}^n$ linear unabhängig, $v_0 = 0$. Dann ist das Tupel (v_0, v_1, \ldots, v_k) affin unabhängig.

Frage. Kann man hier $v_0 \in \mathbb{R}^n$ beliebig nehmen?

- iii) $X=\mathbb{R}^2$ als affiner Raum. Dann gilt, dass für $v,w\in\mathbb{R}^2$ das Tupel (v,w) affin unabhängig ist gdw $v\neq w$.
- iv) X affiner Raum, $p_0 \in X$, (t_1, \ldots, t_n) Basis von T(X). Dann ist

$$(p_0, \tau_{t_1}(p_0), \ldots, \tau_{t_n}(p_0))$$

eine affine Basis von X.

Lemma 1.5.1. Sei X ein affiner Raum, $p_0, \ldots, p_n \in X$ und (p_0, \ldots, p_n) affin unabhängig. Sei $\sigma \in S_{n+1}$ eine Permutation von $\{0, \ldots, n\}$. Dann ist

$$(p_{\sigma(0)}, p_{\sigma(1)}, \ldots, p_{\sigma(n)})$$

affin unabhängig.

Beweis. Wir wollen zeigen, dass unter den Annahmen des Lemmas, die Vektoren

$$\overrightarrow{p_{\sigma(0)}p_{\sigma(1)}}, \dots, \overrightarrow{p_{\sigma(0)p_{\sigma(n)}}} \in T(X)$$

linear unabhängig sind.

Sei
$$\sigma(0) = i \in \{0, ..., n\}.$$

Dann müssen wir also zeigen, dass die Vektoren

$$\overrightarrow{p_ip_0}, \overrightarrow{p_ip_1}, \dots, \overrightarrow{p_ip_{i-1}}, \overrightarrow{p_ip_{i+1}}, \dots, \overrightarrow{p_ip_n}$$

linear unabhängig sind.

Seien $\lambda_0, \ldots, \lambda_{i-1}, \lambda_{i+1}, \ldots, \lambda_n \in K$ mit

$$\lambda_0 \overrightarrow{p_i p_0} + \lambda_1 \overrightarrow{p_i p_1} + \dots + \lambda_{i-1} \overrightarrow{p_i p_{i-1}} + \lambda_{i+1} \overrightarrow{p_i p_{i+1}} + \dots + \lambda_n \overrightarrow{p_i p_n} = 0.$$

Schreibe

$$\overrightarrow{p_ip_j} = \overrightarrow{p_ip_0} + \overrightarrow{p_0p_j} = \overrightarrow{p_0p_j} - \overrightarrow{p_0p_j}.$$

Wir erhalten

$$\lambda_1 \overline{p_0 p_1} + \dots + \lambda_{i-1} \overline{p_0 p_{i-1}} + \lambda_{i+1} \overline{p_0 p_{i+1}} + \dots + \lambda_n \overline{p_0 p_n}$$
$$-(\lambda_0 + \dots + \lambda_{i-1} + \lambda_{i+1} + \dots + \lambda_n) \overline{p_0 p_i} = 0$$

Aus der linearen Unabhängigkeit von $\overrightarrow{p_0p_1}, \dots, \overrightarrow{p_0p_n}$ folgt

$$\lambda_1 = \dots = \lambda_{i-1} = \lambda_{i+1} = \lambda_n = 0$$

und

$$+ \underbrace{\lambda_1 + \dots + \lambda_{i-1} + \lambda_{i+1} + \dots + \lambda_n}_{\lambda_0 = 0} = 0$$

Affine Basen und affine Abbildungen

Aus der AGLA I:

Seien V, W K-Vektorräume, $v_1, \ldots, v_n \in V$ eine Basis von V und $w_1, \ldots, w_n \in W$. Dann gibt es genau eine K-lineare Abbildung $\phi \colon V \to W$ mit

$$\phi(v_i) = w_i, \quad 1 \leqslant i \leqslant n.$$

Frage. Inwiefern sind affine Abbildungen zwischen affinen Räumen durch die Bilder einer affinen Basis bestimmt?

Satz 1.5.2. Seien X, Y affine Räume, (p_0, \ldots, p_n) eine affine Basis von X und $q_0, \ldots, q_n \in Y$. Dann gibt es genau eine affine Abbildung $f: X \to Y$ mit

$$f(p_i) = q_i, \quad 0 \leqslant i \leqslant n.$$

Die Abbildung f ist injektiv bzw. eine Affinität gdw das Tupel (q_0, \ldots, q_n) affin unabhängig bzw. eine affine Basis von Y ist.

Beweis. Eine affine Abbildung $f: X \to Y$ ist gegeben durch $f(p_0)$ für ein $p_0 \in X$ und eine lineare Abbildung

$$F \colon T(X) \to T(Y)$$

$$\overrightarrow{pq} \mapsto \overrightarrow{f(p)f(q)}.$$

Wir definieren F durch

$$F(\overrightarrow{p_0p_i}) = \overrightarrow{q_0q_i} \quad 1 \leqslant i \leqslant n. \tag{*}$$

 $\overrightarrow{p_0p_1},\ldots,\overrightarrow{p_0p_n}$ ist eine Basis von T(X), also gibt es genau ein lineare Abbildung

$$F: T(X) \to T(Y)$$

mit (*). Es gilt dann

$$f(p_i) = \tau_{\overline{f(p_0)}f(p_i)} f(p_0)$$

$$= \tau_{F(\overline{p_0}\overline{p_i})} f(p_0)$$

$$= \tau_{\overline{q_0}\overline{q_i}} q_0 = q_i \quad 1 \leqslant i \leqslant n.$$

f ist injektiv gdw F injektiv ist. F ist injektiv gdw $\overline{q_0q_1}, \ldots, \overline{q_0q_n}$ linear unabhängig sind. $\to f$ ist eine Affinität gdw F bijektiv ist. F ist bijektiv gdw $\overline{q_0q_1}, \ldots, \overline{q_0q_n}$ eine Basis von T(Y) ist.

Affine Koordinatensysteme

Sei X ein affiner Raum über einem Körper K, (p_0, p_1, \ldots, p_n) eine affine Basis von X. Nach Satz 1.5.2 gibt es genau eine Affinität

$$\phi \colon K^n \to X$$

mit $\phi(0) = p_0, \phi(e_1) = p_1, \dots, \phi(e_n) = p_n$ und zugehörige lineare Abbildung $\Phi \colon K^n \to T(X)$.

Einen Punkt $p \in X$ können wir dann beschreiben durch

$$p = \tau_{\overline{p_0}\overline{p}}(p_0).$$

Sei
$$\overrightarrow{p_0p} = \lambda_1 \overrightarrow{p_0p_1} + \cdots + \lambda_n \overrightarrow{p_0p_n}$$
 mit $\lambda_i \in K$, $1 \leq i \leq n$.

Dann ist

$$p = \tau_{\lambda_1 \overline{p_0 p_1} + \dots + \lambda_n \overline{p_0 p_n}}(p_0)$$

$$= \tau_{\lambda_1 \Phi(e_1) + \dots + \lambda_n \Phi(e_n)}(p_0)$$

$$= \tau_{\Phi(\lambda_1 e_1 + \dots + \lambda_n e_n)}(p_0),$$

oder
$$p = \phi((\lambda_1, \dots, \lambda_n)).$$

Definition. Sei X ein affiner Raum über einem Körper K. Wir nennen eine Affinität $\phi \colon K^n \to X$ ein affines Koordinatensystem in X. Seu $p_0 = \phi(0), p_1 = \phi(e_1), \ldots, p_n = \phi(e_n)$. Dann ist (p_0, \ldots, p_n) eine affine Basis von X.

Für $p \in X$ nennen wir

$$\phi^{-1}(p) = (x_1, \dots, x_n) \in K^n$$

den Koordinatenvektor von p bezüglich der affinen Basis (p_0, \ldots, p_n) und (x_1, \ldots, x_n) die Koordinaten von p bezüglich (p_0, \ldots, p_n) .

Datei 6: Teilverhältnis

§1.6 Das Teilverhältnis

Idee. Seien 3 Punkte p_0, p_1, p auf einer Gerade l (z. B. im \mathbb{R}^3) gegeben, $p_0 \neq p_1$.

Sei $\lambda = \frac{d(p,p_0)}{d(p_1,p_0)}$, mit d dem euklidischen Abstand, dann können wir die Lage von p auf l durch λ (und der Information, ob p "rechts oder links" von p liegt) bestimmen.

Definition. Sei X ein affiner Raum über K, $Y \subseteq X$ eine affine Gerade, $p_0, p_1, p \in Y$ und $p_0 \neq p_1$. Dann nennen wir das eindeutig bestimmte Element $\lambda \in K$ mit $p_0 \neq p_1 \neq k$ das Teilverhältnis von p_0, p_1, p . Schreibe $k = TV(p_0, p_1, p)$. In $char(K) \neq k$ nennen wir $k \neq k$ Mittelpunkt von $k \neq k$ wenn $k \neq k$ wenn $k \neq k$ TV $k \neq k$ nennen wir $k \neq k$ Mittelpunkt von $k \neq k$ wenn $k \neq k$ Weiner $k \neq k$ Nittelpunkt von $k \neq k$ wenn $k \neq k$ Weiner $k \neq k$ Nittelpunkt von $k \neq k$ Nittelpunkt von $k \neq k$ Weiner $k \neq k$ Nittelpunkt von $k \neq k$ Weiner $k \neq k$ Nittelpunkt von $k \neq k$ Ni

Bemerkungen. i) Es gilt $T(Y) = K\overrightarrow{p_0p_1}$. Damit ist λ wohldefiniert und existiert.

ii) p_0,p_1 ist eine affine Basis von ${\cal Y}.$ Damit existiert ein Koordinatensystem

$$\phi \colon K \to Y, \ \phi(0) = p_0$$
$$\phi(1) = p_1$$

und es gilt $TV(p_0, p_1, p) = \phi(p)^{-1}$.

Frage. Wie verhält sich das Teilverhältnis unter affinen Abbildungen?

Vorlesung 4

Di 05.05. 10:15

Lemma 1.6.1. Seien X, Y affine Räume und $f: X \to Y$ eine affine Abbildung, seien p_0, p_1, p Punkte in X, die auf einer Geraden liegen und $f(p_0) \neq f(p_1)$. Dann gilt

$$TV(f(p_0), f(p_1), f(p)) = TV(p_0, p_1, p).$$

Beweis. Sei $\lambda = \text{TV}(p_0, p_1, p)$, also $\overrightarrow{p_0p} = \lambda \overrightarrow{p_0p_1}$. Sei $F: T(X) \to T(Y)$ die zu f gehörige lineare Abbildung. Wir berechnen

$$\overrightarrow{f(p_0)f(p)} = F(\overrightarrow{p_0p}) \qquad \square$$

$$= F(\lambda p_0 p_1)$$

$$= \lambda F(p_0 p_1)$$

$$= \lambda \overrightarrow{f(p_0)f(p_1)}$$

Anwendung (Strahlensatz). Sei X ein affiner Raum über $K, p_0, p_1, p_2 \in X$ affin unabhängig. Sei

$$q_1 \in p_0 \lor p_1, \ q_1 \neq p_0$$

 $q_2 \in p_0 \lor p_2, \ q_2 \neq p_0.$

Wir nehmen an, dass $p_1 \vee p_2$ und $q_1 \vee q_2$ parallel sind in dem Sinn, dass

$$T(p_1 \vee p_2) = T(q_1 \vee q_2) \text{ in } T(X).$$

Dann gilt

$$TV(p_0, p_1, q_1) = TV(p_0, p_2, q_2).$$

Beweis. Sei Y diedurch p_0, p_1, p_2 aufgespannte Ebene. Dann gibt es ein affines Koordinatensystem $\phi \colon K^2 \to Y$ mit $\phi(0) = p_0, \phi(e_1) = p_1, \phi(e_2) = p_2$.

Sei

$$(\lambda, 0) = \phi^{-1}(q_1)$$

 $(0, \mu) = \phi^{-1}(q_2).$

Behauptung. $l_1 = \phi^{-1}(q_1) \vee \phi^{-1}(q_2)$ und $l_2 = \phi^{-1}(p_1) \vee \phi^{-1}(p_2)$ sind parallel.

Denn:

$$T(l_1) = K \overrightarrow{\phi^{-1}(q_1)\phi^{-1}(q_2)}$$

$$T(l_2) = K \overrightarrow{\phi^{-1}(p_1)\phi^{-1}(p_2)}.$$

Es ist $K\overline{p_1p_2} = K\overline{q_1q_2}$ und daher

$$K\Phi^{-1}(\overline{p_1p_2}) = K\Phi^{-1}(\overline{q_1q_2}).$$

$$K\overline{\phi^{-1}(q_1)\phi^{-1}(q_2)} K\overline{\phi^{-1}(p_1)\phi^{-1}(p_2)}$$

Aus der Parallelität von l_1, l_2 folgt $\lambda = \mu$.

Also

$$TV(\phi^{-1}(p_0), \phi^{-1}(p_1), \phi^{-1}(q_1)) = \lambda$$
$$= \mu = TV(\phi^{-1}(p_0), \phi^{-1}(p_2), \phi^{-1}(q_2))$$

und der Strahlensatz folgt aus Lemma 1.6.1.

Datei 7: Affinkombinationen

§1.7 Affinkombinationen

Beispiel. Seien $p_0, p_1 \in \mathbb{R}^2$, $p_0 \neq p_1$. Ziel: Beschreibe den affinen Unterraum $p_0 \vee p_1$ als Teilmenge des \mathbb{R}^2 . Sei $p \in p_0 \vee p_1$. Dann $\exists \lambda \in \mathbb{R}$ mit $\overrightarrow{p_0p} = \lambda \overrightarrow{p_0p_1}$ und als Vektoren im \mathbb{R}^2 gilt $p = p_0 + \lambda(p_1 - p_0)$. Es gilt

$$p_0 \vee p_1 = \{ (1 - \lambda)p_0 + \lambda p_1, \ \lambda \in \mathbb{R} \}.$$

Frage. Verallgemeinerung zu höherdimensionalen Räumen?

Definition. Seien $p_0, \ldots, p_k \in K^n$. Wir nennen eine Linearkombination

$$\lambda_0 p_0 + \lambda_1 p_1 + \cdots + \lambda_m p_m$$

mit $\lambda_i \in K$, $0 \le i \le m$ eine Affinkombination oder affin falls gilt $\lambda_0 + \lambda_1 + \cdots + \lambda_m = 1$.

Satz 1.7.1. Seien $p_0, \dots, p_m \in K^n$. Dann gilt

$$p_0 \vee \cdots \vee p_m = \left\{ \sum_{i=0}^m \lambda_i p_i \in K^n \ \lambda_0, \dots, \lambda_m \in K, \sum_{i=0}^m \lambda_i = 1 \right\}.$$

Beweis. Sei $Y = p_0 \vee \cdots \vee p_m \in K^n$. Es gilt

$$T(Y) = \underbrace{T(p_m)}_{=0} + T(p_0 \lor \cdots \lor p_{m-1}) + \underbrace{K\overline{p_0p_m}}_{=T(p_0 \lor p_m)}$$

$$= K\overline{p_0p_m} + T(p_0 \lor \cdots \lor p_{m-1})$$

$$= K\overline{p_0p_m} + \cdots + K\overline{p_0p_1}$$

$$\vdots$$

$$= K\overline{p_0p_m} + \cdots + K\overline{p_0p_1}$$

$$= (\overline{p_0p_1}, \dots, \overline{p_0p_m}).$$

Sei $p \in K^n$. Dann ist $p \in Y$ genau dann, wenn $\exists \lambda_1, \ldots, \lambda_m \in K$ mit

$$\overrightarrow{p_0p} = \lambda_1 \overrightarrow{p_0p_1} + \dots + \lambda_m \overrightarrow{p_0p_m}.$$

 $\operatorname{Im} K^n$ gilt dann also

$$p - p_0 = \lambda_1(p_1 - p_0) + \dots + \lambda_m(p_m - p_0)$$

oder

$$p = \lambda_0 p_0 + \lambda_1 p_1 + \dots + \lambda_m p_m$$

mit
$$\lambda_0 = 1 - \lambda_1 - \dots - \lambda_m$$
, d. h. $\sum_{i=0}^m \lambda_i = 1$.

Datei 8: Affine Abbildungen durch Matrizen, Fixpunkte

§1.8 Affine Abbildungen und Matrizen, Fixpunkte

Motivation. Seien V, W K-Vektorräume, $F: V \to W$ eine lineare Abbildung. Wenn wir für V und W Basen wählen, dann können wir die Abbildung F eindeutig durch eine Matrix beschreiben.

Frage. Inwiefern können wir affin Abbildung zwischen affinen Räumen durch Matrizen beschreiben?

Wahl von Basen in Vektorräumen \leftrightarrow Wahl von Koordinaten in affinen Räumen.

Seien X,Y affine Räume über $K, f: X \to Y$ eine affine Abbildung. Wähle affine Koordinatensysteme $\phi\colon K^n \to X$ und $\psi\colon K^m \to Y$.

Wir haben das folgende kommutative Diagramm

$$\begin{array}{ccc} K^n & \stackrel{\phi}{\longrightarrow} & X \\ \downarrow^g & \circlearrowleft & \downarrow^f \\ K^m & \stackrel{\psi}{\longrightarrow} & Y \end{array}$$

mit $g = \psi^{-1} \circ f \circ \phi$ affin. g ist affin, also besteht eine affine Abbildung $G \colon K^n \to K^m$ mit

$$g(x) - g(0) = G(x) \quad \forall x \in K^n.$$

G ist linear, also können wir G durch eine Matrix A ausdrücken.

$$g(x) = Ax + b \quad \forall x \in K^n.$$

mit b = g(0).

Frage. Wie können wir A berechnen gegeben eine affine Basis (p_0, \ldots, p_n) von K^n und $g(p_i), 0 \le i \le n$?

Wir betrachten die Matrizen $B \in \mathcal{M}_{m \times n}(K)$ bestehend aus den Spaltenvektoren $\overline{q_0q_1}, \ldots, \overline{q_0q_n}$ und $S \in \mathcal{M}_{n \times n}(K)$ bestehend aus den Spaltenvektoren $\overline{p_0p_1}, \ldots, \overline{p_0p_n}$. Dann gilt $A = B \cdot S^{-1}$ und $g(x) - g(p_0) = A(x - p_0)$, also g(x) = Ax + b mit $b = g(p_0) - Ap_0$.

Bemerkung. Wählen wir für p_0, \ldots, p_m die affine Basis $0, e_1, \ldots, e_n$, dann $S = \mathrm{Id}_{n \times n}$ und A = B.

Fixpunkte

Beispiel 1.8.1. Betrachte die affine Abbildung $f: K \to K$, K ein Körper, in der Matrizendarstellung gegeben durch $f(x) = 2x + 1 \stackrel{?}{=} x$.

Dann gibt es genau ein $x \in K$ mit f(x) = x, nämlich x = -1.

Definition. Sei X ein affiner Raum $f: X \to X$ eine affine Abbildung. Wir nennen

$$Fix(f) := \{ x \in X \mid f(x) = x \}$$

die Menge der Fixpunkte von f.

Frage. Welche Struktur hat Fix(f).

Beispiel 1.8.2. X affiner Raum.

$$\operatorname{Id} \colon X \to X$$
$$x \mapsto x$$

dann Fix(Id) = X.

Beispiel 1.8.3.
$$f: K^n \to K^n, x \mapsto \underbrace{x + p_0}_{\stackrel{?}{\underline{x}}} \text{ mit } p_0 \in K^n \setminus \{0\}, \text{ dann } \text{Fix}(f) = \varnothing.$$

Beispiel 1.8.4. Frage. Was sind die Fixpunkte einer Projektion?

Lemma 1.8.1. Fix $(f) \subseteq X$ ist ein affiner Unterraum.

Beweis. Falls $\text{Fix}(f) = \emptyset$ dann \checkmark . Sei also $\text{Fix}(f) \neq \emptyset$ und $p \in \text{Fix}(f)$, F die zu f gehörig lineare Abbildung.

Für $x \in Fix(f)$ gilt

$$\overrightarrow{px} = \overrightarrow{f(p)f(x)} = F(\overrightarrow{px}).$$

Umgekehrt folgt aus

$$\overrightarrow{px} = F(\overrightarrow{px}) = \overrightarrow{pf(x)},$$

dass x = f(x), also $x \in Fix(f)$.

Damit gilt

$$\{ \overrightarrow{px} \in T(X) \mid x \in Fix(f) \} = \{ \overrightarrow{px} \in T(X) \mid \overrightarrow{px} = F(\overrightarrow{px}) \}$$

und wir erkennen diese Menge als K-Untervektorraum von X.

Frage. Bestimmung von Fix(f) für eine beliebige affine Abbildung $f: X \to X$?

Nach Wahl eines Koordinatensystems können wir auf den Fall $X = K^n$ reduzieren und annehmen, dass f in Matrizendarstellung gegeben ist.

Sei also

$$f \colon \ K^n \to K^n$$
$$x \mapsto \underbrace{Ax + b}_{=x = \operatorname{Id}_n x}.$$

Dann gilt

$$\operatorname{Fix}(f) = \{ \, x \in K^n \mid (A - \operatorname{Id}_n) x = -b \, \}$$
 Einheitsmatrix der Dimension n :
$$\begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$$

Wir haben das Problem also reduziert auf das Lösen eines linearen Gleichungssystems.

Bemerkung. Daraus kann man auch Lemma 1.8.1 ableiten.

Beispiel 1.8.5.

$$f \colon K^n \to K^n$$

 $x \mapsto \lambda \operatorname{Id}_n x + b$

mit $\lambda \in K$.

Dann

$$Fix(f) = \{ x \in K^n \mid (\lambda - 1)x = -b \}.$$

Falls $\lambda - 1$ invertier bar ist $(\lambda \neq 1)$, gibt es genau einen Fixpunkt.

Definition. Sei $f: X \to X$ eine affine Abbildung mit zugehöriger linearer Abbildung $F: T(X) \to T(X)$. Wir nennen f eine Dilatation mit Faktor λ , falls gilt

$$F = \lambda \cdot \mathrm{Id}_{T(X)} \quad \lambda \in K.$$

Im Fall $\lambda = 1$ nennen wir f eine Translation.

Lemma 1.8.2. Sei $f: X \to X$ eine Dilatation mit Faktor $\lambda \neq 1$. Dann gilt

$$\# \operatorname{Fix}(f) = 1.$$

Beweis. Nach Wahl eines Koordinatensystems reduzieren wir das Problem auf Beispiel 1.8.5. $\hfill\Box$

Datei 9: Kollineationen

§1.9 Kollineationen

Sei $f: X \to X$ eine affine Abbildung eines affinen Raumes X, z. B. eine Affinität. Seien $p_1, p_2, p_3 \subset X$ in einer Geraden $\ell \subseteq X$ enthalten.

Dann liegen auch $f(p_1), f(p_2), f(p_3)$ auf einer Geraden.

Frage. Welche bijektiven Abbildungen $f: X \to X$ haben diese Eigenschaft?

Definition. Sei X ein affiner Raum und $p_1, p_2, p_3 \in X$. Wir nennen p_1, p_2, p_3 kollinear, wenn p_1, p_2, p_3 auf einer Geraden $\ell \subset X$ liegen. Wir nennen eine bijektive Abbildung $f \colon X \to X$ eine Kollineation, falls jede Gerade $\ell \subset X$ auf eine Gerade $f(\ell) \subset X$ abgebildet wird.

Beispiel 1.9.1. Affinitäten

Beispiel 1.9.2. Ist dim X = 1 und $f: X \to X$ bijektiv, dann ist f eine Kollineation.

Beispiel 1.9.3. Sei $X = \mathbb{C}^2$ als affiner Raum über \mathbb{C} .

$$f\colon \mathbb{C}^2 \to \mathbb{C}^2$$

$$(x,y) \mapsto \quad (\overline{x},\overline{y}).$$
 komplexe Konjugation

Dann ist f eine Kollineation. Das Bild einer Geraden

$$(x_0, y_0) + \mathbb{C}(x_1, y_1)$$

ist gegeben durch die Gerade

$$(\overline{x_0}, \overline{y_0}) + \mathbb{C}(\overline{x_1}, \overline{y_1}),$$

aber f ist keine Affinität!

Bemerkung. Die komplexe Konjugation

$$\mathbb{C} \to \mathbb{C}$$

$$x \mapsto \overline{x}$$

ist ein Automorphismus von dem Körper \mathbb{C} .

Vorlesung 5

Fr 08.05. 10:15

Definition. Sei K ein Körper. Wir nennen eine Bijektion $\alpha\colon K\to K$ einen Automorphismus von K falls gilt

$$\alpha(\lambda + \mu) = \alpha(\lambda) + \alpha(\mu) \quad \forall \lambda, \mu \in K$$

und

$$\alpha(\lambda \cdot \mu) = \alpha(\lambda) \cdot \alpha(\mu) \quad \forall \lambda, \mu \in K$$

Beispiel 1.9.4.

$$K = \mathbb{Q}(\sqrt{2}) = \left\{ x + y\sqrt{2} \mid x, y \in \mathbb{Q} \right\}$$

ist ein Körper und

$$\alpha \colon \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$$

 $x + y\sqrt{2} \mapsto x - y\sqrt{2}.$

Satz 1.9.1. Sei $\alpha \colon \mathbb{R} \to \mathbb{R}$ ein Automorphismus von \mathbb{R} . Dann gilt $\alpha = \mathrm{Id}_{\mathbb{R}}$.

Beweis. Sei $\alpha \colon \mathbb{R} \to \mathbb{R}$ ein Automorphismus.

1. Dann gilt

$$\alpha(0) = \alpha(0+0) = \alpha(0) + \alpha(0),$$

also $\alpha(0) = 0$.

2. Dann gilt

$$0 = \alpha(0) = \alpha(\lambda - \lambda) = \alpha(\lambda) + \alpha(-\lambda),$$

also
$$\alpha(-\lambda) = -\alpha(\lambda) \ \forall \lambda \in \mathbb{R}.$$

3. Dann gilt

$$\alpha(1) = \alpha(1 \cdot 1) = \alpha(1)\alpha(1),$$

also $\alpha(1) = 1$ und daher

$$\alpha(n) = n \ \forall n \in \mathbb{Z},$$

z.B.

$$\alpha(2) = \alpha(1+1) = \alpha(1) + \alpha(1) = 1 + 1 = 2.$$

4. Sei $p \in \mathbb{Z}$, $q \in \mathbb{N}$, dann gilt

$$q\alpha\left(\frac{p}{q}\right) = \alpha(q)\alpha\left(\frac{p}{q}\right) = \alpha\left(q\frac{p}{q}\right) = \alpha(p) = p,$$

also $\alpha\left(\frac{p}{q} = \frac{p}{q}\right)$ oder $\alpha(t) = t \quad \forall t \in \mathbb{Q}$.

5. Sei $\lambda \in \mathbb{R}_{>0}$. Dann $\exists \ \mu \in \mathbb{R} \text{ mit } \lambda = \mu^2 \text{ und}$

$$\alpha(\lambda) = \alpha(\mu^2) = \alpha(\mu) \cdot \alpha(\mu) > 0,$$

also

$$\alpha(\lambda) > 0 \quad \forall \lambda \subset \mathbb{R} > 0.$$

Wir zeigen nun $\alpha(\lambda) = \lambda \quad \forall \lambda \in \mathbb{R}.$

Gegenannahme

Sei $\lambda \in \mathbb{R}$ mit $\alpha(\lambda) \neq \lambda$. Wir diskutieren den Fall $\alpha(\lambda) < \lambda$ ($\alpha(\lambda) > \lambda$ geht genauso). Wähle $\frac{p}{q} \in \mathbb{Q}$ mit

$$\alpha(\lambda) < \frac{p}{q} < \lambda.$$

Dann gilt

$$\alpha(\lambda - \frac{p}{q}) = \alpha(\lambda) - \frac{p}{q} < 0$$

Eine Familie von Kollineationen

Idee. Wir verallgemeinern Beispiel 1.9.3, um eine größere Klasse an Kollineationen zu erhalten als Affinitäten.

Beispiel 1.9.5.

$$f: \mathbb{C}^2 \to \mathbb{C}^2$$

 $(x,y) \mapsto (\overline{x}, \overline{y})$

respektiert Addition, d.h.

$$f(z+z') = f(z) + f(z') \quad \forall z, z' \in \mathbb{C}^2,$$

und hat die Eigenschaft

$$f(\lambda z) = \overline{\lambda} f(z) \quad \forall \lambda \in \mathbb{C} \quad \forall z \in \mathbb{C}^2.$$

 \rightarrow Wir nennen f semilinear.

Definition. Seien V, W Vektorräume über einem Körper K. Wir nennen eine Abbildung $F: V \to W$ semilinear, wenn es einen Automorphismus α von K gibt, sodass gilt

- $F(v+v') = F(v) + F(v') \quad \forall v, v' \in V$
- $F(\lambda v) = \alpha(\lambda)F(v) \quad \forall \lambda \in K \ \forall v \in V.$

Definition. Seien X, Y affine Räume über einem Körper K. Wir nennen eine Abbildung

$$f: X \to Y$$

semiaffin, wenn es eine semilineare Abbildung $F: T(X) \to T(Y)$ gibt mit

$$\overrightarrow{f(p)f(q)} = F(\overrightarrow{pq}) \ \forall p, q \in X.$$

Falls f außerdem bijektiv ist, dann nennen wir f eine Semiaffinität.

Lemma 1.9.2. Sei $f: X \to X$ eine Semiaffinität eines affinen Raumes X. Dann ist f eine Kollineation.

Datei 10: Hauptsatz affine Geometrie

Beweisidee. Sei $\ell \subseteq X$ eine Gerade, $p_0 \in \ell$. Dann ist

$$T(\ell) = \{ \overrightarrow{p_0 x}, x \in \ell \} \subseteq T(x)$$

ein K-Untervektorraum mit

$$\dim_K T(\ell) = 1.$$

Sei $F: T(X) \to T(X)$ die zu f gehörige semilineare Abbildung.

Wir betrachten

$$T(f(\ell)) = \left\{ \overrightarrow{f(p_0)f(x)}, \overrightarrow{x \in \ell} \right\}$$
$$= \left\{ F(\overrightarrow{p_0x}), \overrightarrow{x \in \ell} \right\} = F(T(\ell)).$$

Dann ist auch $F(T(\ell)) \subseteq T(X)$ ein K-Untervektorraum der Dimension 1, also Übung

$$f(\ell) \subseteq X$$

eine Gerade. \Box

Frage. Gibt es Kollineationen, die keine Semiaffinität sind?

 \rightarrow Ja, z. B. für dim X = 1.

Hauptsatz der affinen Geometrie

Sei K ein Körper mit $\#K \geqslant 3$, X ein affiner Raum über K mit $\dim(X) \geqslant 2$ und $f: X \to X$ eine Kollineation. Dann ist f eine Semiaffinität.

Bemerkung. Aus Satz 1.9.1 folgt, dass über \mathbb{R} jede semilineare Abbildung linear ist.

Korollar 1.9.3. Sei X ein affiner Raum über \mathbb{R} mit $\dim(X) \geq 2$, $f: X \to X$ eine Kollineation. Dann ist f eine Affinität.

Datei 11: Quadriken erster Teil

§1.10 Quadriken

Motivation. Affine Unterräume der \mathbb{R}^n sind gegeben durch *lineare* Gleichungssysteme.

Jetzt:

Betrachte den Unterraum im \mathbb{R}^n , der entsteht als Lösungsmenge einer quadratischen Gleichung.

Beispiele (im \mathbb{R}^2). i) der Kreis

$$\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$

ii) Ellipsen, a, b > 0

$$E = \{ (x, y) \in \mathbb{R}^2 \mid ax^2 + by^2 = 1 \}$$

iii) Parabel

$$y = ax^2$$

iv) Hyperbeln, a, b > 0

$$ax^2 - by^2 = 1$$

v)
$$x^2 = 0$$

vi)
$$xy = 0$$

vii)
$$x^2 + y^2 = 0$$

Der Ursprung

Beispiele. Sei $Q \subseteq \mathbb{R}^2$ gegeben durch

$$x_1^2 + 2x_1x_2 + 2x_2^2 + 2x_1 = 0.$$

Erster Schritt: Entferne den "gemischten" Term x_1x_2 .

$$(x_1 + x_2)^2 + x_2^2 + 2x_1 = 0.$$

Nach der Koordinatentransformation

$$y_1 = x_1 + x_2$$
 $y_2 = x_2$

ist Q gegeben durch

$$y_1^2 + y_2^2 + 2y_1 \cdot 1 - 2y_2 \cdot 1 = 0.$$

Bemerkung. Wir können die obigen Gleichungen auch über anderen Körpern K betrachten, die Lösungsmenge hängt im Allgemeinen wesentlich von K ab, z. B. $x^2 + y^2 = 0$.

Frage. Was passier hier über \mathbb{C} , $\mathbb{Z}/p\mathbb{Z}$ für p prim?

Definition. Sei K ein Körper. Ein quadratisches Polynom über K in den Unbestimmten x_1, \ldots, x_n ist eine Ausdruck der Form

$$P(x_1,\ldots,x_n) = \sum_{1 \leqslant i,j \leqslant n} \alpha_{ij} x_i x_j + \sum_{1 \leqslant i \leqslant n} \alpha_{0i} x_i + \alpha_{00}.$$

mit $\alpha_{ij}, \alpha_{0i}, \alpha_{00} \in K \quad \forall 1 \leq i, j \leq n$

Bemerkung. Aus einem quadratischen Polynom P über K erhält man eine Abbildung

$$K^n \to K$$

 $(t_1, \dots, t_n) \mapsto P(t_1, \dots, t_n).$

Achtung. Zwei unterschiedliche Polynome P_1, P_2 müssen nicht notwenigerweise identisch sein, um dieselben Abbildung zu induzieren.

Beispiel. $K = \mathbb{F}_p = \mathbb{Z} / p\mathbb{Z}$. Körper mit p Elementen mit p prim, n = 1.

$$P_1 = x$$
$$P_2 = x^p.$$

Nach Fermats kleinem Satz gilt

$$t \equiv t^p \mod p \quad \forall t \in \mathbb{Z}/p\mathbb{Z}$$

Für p = 2 sind P_1, P_2 quadratische Polynome nach obiger Definition.

Definition. Wir nennen eine Teilmenge $Q \subseteq K^n$ eine Quadrik, falls Q definiert ist durch

$$Q = \{ (x_1, \dots, x_n) \in K^n \mid P(x_1, \dots, x_n) = 0 \}$$

für ein quadratisches Polynom P über K.

Beispiele. • $x_1^2 + \cdots + x_n^2 = 0$ über \mathbb{R} ergibt den Ursprung.

- $a_1x_1^2 + \cdots + a_nx_n^2 = 1, a_1, \cdots, a_n > 0$ über \mathbb{R} ergibt einen Ellipsoid.
- $K = \mathbb{R}, P = x_1^2 + 2x_1x_2 + 5x_2^2$. Dann ist

$$Q = \left\{ x_1, x_2 \in \mathbb{R}^2 \middle| \underbrace{(x_1, x_2) \begin{pmatrix} 1 & \underline{1} \\ \underline{1} & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0}_{P(x_1, x_2)} \right\}.$$

Frage. Wie können wir im Allgemeinen Quadriken in Matrizenschreibweise ausdrücken?

Vorlesung 6

Di 12.05. 10:15

Idee. Sei

$$P(x_1,\ldots,x_n) = \sum_{1 \le i \le j \le n} \alpha_{ij} x_i x_j + \sum_{1 \le i \le n} \alpha_{0i} x_i \cdot 1 + \alpha_{00} \cdot 1^2.$$

Wir schreiben

$$x' = \begin{pmatrix} 1 \\ x_1 \\ \vdots \\ x_n \end{pmatrix} \in K^{n+1}.$$

und (sei im Folgenden $char(K) \neq 2$)

$$A = \begin{pmatrix} a_{00} & a_{01} & \cdots & a_{0n} \\ a_{10} & a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n0} & a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

mit $a_{ii} = \alpha_{ii} \quad \forall 0 \leq i \leq n$.

$$a_{ij} = a_{ji} = \frac{1}{2}\alpha_{ij}$$
 für $0 \leqslant i < j \leqslant n$.

Es gilt dann

$$P(x_1, \dots, x_n) = {}^t x' A' x'$$

und

$$Q = \{ (x_1, \dots, x_n) \in K^n \mid {}^t x' A' x' = 0 \}.$$

Bemerkung. Die Matrix A' ist symmetrisch (nach Konstruktion).

Definition. In obiger Notation nennen wir A' di erweiterte Matrix zu P und x' den erweiterten Spaltenvektor zu x. Wir sagen, dass $A' \in \mathcal{M}_{(n+1)\times(n+1)}(K)$ die Quadrik Q beschreibt, wenn gilt

$$Q = \left\{ x \in K^n \mid {}^t x' A' x' = 0 \right\}.$$

Notation. Für P wie oben schreiben wir

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

für den "rein quadratischen" Anteil von P.

Bemerkung. Sei $Q \subseteq K^n$ eine Quadrik. Dann gibt es im Allgemeinen nicht nur eine erweiterte Matrix A' die Q beschreibt. Ist

$$Q = \{ (x_1, \dots, x_n) \in K^n \mid {}^t x' A' x' = 0 \},\$$

dann beschreibt auch $\lambda A'$ mit $\lambda \in K \setminus \{0\}$ die Quadrik Q.

Frage. Wie verhalten sich Quadriken unter Koordinatentransformationen / Affinitäten?

Beispiel. $K = \mathbb{Q}$. $P(x_1, x_2) = x_1^2 + x_2^2$.

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} y_1 + y_2 \\ y_2 + 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

$$P(x_1, x_2) = (y_1 + y_2)^2 + (y_2 + 1)^2$$

$$= y_1^2 + 2y_1y_2 + 2y_2^2 + 2y_2 + 1$$

ist wieder ein quadratisches Polynom.

Lemma 1.10.1. Sei K ein Körper mit $\operatorname{char}(K) \neq 2, Q \leqslant K^n$ eine Quadrik und $f \colon K^n \to K^n$ eine Affinität. Dann ist auch $f(Q) \subseteq K^n$ eine Quadrik.

Beweis. Sei Q gegeben durch das quadratische Polynom $P(x_1,\ldots,x_n)$, also

$$Q = \{ (x_1, \dots, x_n) \in K^n \mid P(x_1, \dots, x_n) = 0 \}.$$

Sei A' die erweiterte Matrix zu P und x' der erweiterte Spaltenvektor zu x. Dann gilt

$$Q = \{ (x_1, \dots, x_n \in K^n) \mid {}^t x' A' x' = 0 \}.$$

Als nächstes beschreibe den durch f gegebenen Koordinatenwechsel. f ist eine Affinität, also $\exists b \in K^n$ und $S \in GL_n(K)$ mit

$$f \colon K^n \to K^n$$

 $x \mapsto Sx + b.$

Sei
$$y = f(x)$$
, schreibe $y' = \begin{pmatrix} 1 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}$,
$$S' = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ b_1 & \vdots & S \\ b_n & & \end{pmatrix}.$$

Dann gilt y' = S'x'.

Bemerkung. S' ist invertierbar mit inverser Matrix

$$T' = (S')^{-1} = \begin{pmatrix} 1 & 0 \cdots & 0 \\ -S^{-1}b & S^{-1} \end{pmatrix},$$

d. h. x' = T'y'.

Es gilt

$$f(Q) = \{ f((x_1, \dots, x_n)) \in K^n \mid P(x_1, \dots, x_n) = 0 \}$$

$$= \{ y \in K^n \mid {}^t x' A' x' = 0 \}$$

$$= \{ y \in K^n \mid {}^t T' y' A' (T' y') = 0 \}$$

$$= \{ y \in K^n \mid {}^t y' \underbrace{T' A' T'}_{\text{symmetrische Matrix}} y' = 0 \},$$

also ist f(Q) eine Quadrik mit

$$P'(y_1,\ldots,y_n) = {}^ty'({}^tT'A'T')y'.$$

Bemerkung. Der Beweis von Lemma 1.10.1 zeigt wie sich eine beschreibende Matrix A' unter einer Koordinatentransformation ändert.

Frage. Sei Q eine Quadrik beschrieben durch eine erweiterte Matrix A'. Find eine Koordinatentransformation f der K^n , sodass f(Q) möglichst "einfach" beschrieben werden kann.

zweiter Schritt

Entferne lineare Terme

$$(y_1 + 1)^2 + (y_2 - 1)^2 - 2 = 0.$$

Nach der Koordinatentransformation

$$z_1 = y_1 + 1$$
 $z_2 = y_2 - 1$

erhalten wir $z_1^2+z_2^2=2$, oder nach skalieren mit $\sqrt{2}$

$$\sqrt{2}w_1 = z_1 \qquad \sqrt{2}w_2 = z_2$$
$$w_1^2 + w_2^2 = 1$$

Satz 1.10.2 (affine Hauptachsentransformation von reellen Quadriken). Sei $A' \in M_{(n+1)\times(n+1)}(\mathbb{R})$ eine symmetrische Matrix und die Quadrik $Q \subseteq \mathbb{R}^n$ gegeben durch

$$Q = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid {}^t x' A' x' = 0 \right\}.$$

Sei A der rein quadratische Anteil von A', $m = \operatorname{rang}(A)$ und $m' = \operatorname{rang}(A)'$. Dann gibt es eine Affinität $f \colon \mathbb{R}^n \to \mathbb{R}^n$, sodass f(Q) beschrieben wird durch eine der folgenden Gleichungen:

a) m = m':

$$y_1^2 + \dots + y_k^2 - y_{k+1}^2 - \dots - y_m^2 = 0$$

für ein $0 \le j \le m$.

b) m + 1 = m':

$$y_1^2 + \dots + y_k^2 - y_{k+1}^2 - \dots - y_m^2 = 1$$

für ein $0 \leq k \leq m$.

c) m + 2 = m':

$$y_1^2 + \dots + y_k^2 - y_{k+1}^2 - \dots - y_m^2 + 2_{y_{m+1}} = 0$$

für ein $0 \le k \le m$.

Frage / Übung 1.10.1. Warum gilt immer $m \leq m' \leq m + 2$?

Beweis zu Satz 1.10.2. Sei

$$A' = \begin{pmatrix} a_{00} & a_{01} & \cdots & a_{0n} \\ a_{10} & & & \\ \vdots & & A \\ a_{n0} & & & \end{pmatrix}.$$

mit $A \in \mathcal{M}_{n \times n}(\mathbb{R})$.

Schritt 1 Entferne gemischte Terme.

Idee. Wollen A in Diagonalgestalt bringen.

AGLA I: Orthogonalisierungssatz für reelle symmetrische Matrizen.

Wir erhalten eine invertierbare Matrix $T_1 \in \mathrm{GL}_n(\mathbb{R})$ mit

$${}^{t}T_{1}AT_{1} = \begin{pmatrix} I_{k} & 0 & 0 \\ 0 & -I_{m-k} & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

 I_l Einheitsmatrix der Dimension l, m = rang(A), k Zahl der positiven Eigenwerte von A (mit Vielfachheit).

Sei

$$T_1' = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & T_1 \\ 0 & & & \end{pmatrix}.$$

Dann gilt

$$A'_{1} := {}^{t}T'_{1}A'T'_{1}$$

$$= \begin{pmatrix} c_{00} & c_{01} \cdot \dots \cdot c_{0n} \\ c_{10} & I_{k} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ c_{n0} & 0 & 0 & 0 \end{pmatrix}$$

für $c_{00}, c_{01}, \dots, c_{0n}, c_{10}, \dots, c_{n0} \in \mathbb{R}$ mit $c_{i0} = c_{0i} \, \forall i$. Die durch A' bestimmte Quadrik ist gegeben durch

Datei 12: Quadriken zweiter Teil

$$y_1^2 + \dots + y_k^2 - y_{k+1}^2 - \dots - y_m^2 + 2(c_{01}y_1 + \dots + c_{0n}y_n) + c_{00} = 0.$$

Schritt 2 Reduzieren der linearen Terme. Sei

$$T_{2}' = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ -c_{10} & 1 & & & & \\ \vdots & & \ddots & & 0 \\ -c_{k0} & & \ddots & & 0 \\ c_{(k+1)0} & & & \ddots & & \\ \vdots & & & \ddots & & \\ c_{m0} & & & \ddots & & \\ 0 & & & & \ddots & \\ \vdots & & & & \ddots & \\ 0 & & & & \ddots & \\ \vdots & & & & \ddots & \\ 1 \end{pmatrix}$$

entsprechend dem Basiswechsel

$$y_i = \begin{cases} z_i - c_{i0} & 1 \leqslant i \leqslant k \\ z_i + c_{i0} & k < i \leqslant m \\ z_i & i > m. \end{cases}$$

Sei

Nach der durch $T_1^\prime T_2^\prime$ beschriebenen Koordinatentransformation ist Q gegeben durch

$$z_1^2 + \cdots + z_k^2 - z_{k+1}^2 - \cdots - z_m^2 + 2(c_{(m+1)0}z_{m+1} + \cdots + c_{n0}z_n) + d_{00}.$$

Fallunterscheidung

a)
$$d_{00} = c_{(m+1)0} = \dots = c_{n0} = 0.$$

b) $d_{00} \neq 0$, $c_{(m+1)0} = \cdots = c_{n0} = 0$. Nach eventuellem Multiplizieren der Matrix A' mit (-1) und Umordnen der Variablen z_i , können wir $d_{00} < 0$ annehmen.

Sei $\lambda = \sqrt{|d_{00}|}$ und definiere

$$T_3' = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & \lambda I_n \\ 0 & & & \end{pmatrix}.$$

Wir berechnen

$$A_3' \coloneqq {}^tT_3'A_2'T_3'.$$

Dann ist

$$A_3' = \begin{pmatrix} -\lambda^2 & 0 & \cdots & \cdots & 0 \\ 0 & \lambda^2 I_k & 0 & 0 \\ \vdots & & & & 0 \\ \vdots & & & & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Nach der zu $T_1't_2't_3'$ gehörigen Affinität und Division durch λ^2 wird Q gegeben durch

$$u_1^2 + \dots + u_k^2 - u_{k+1}^2 - u_m^2 = 1.$$

c) $c_{i0} \neq 0$ für mindestens ein $m+1 \leqslant i \leqslant n$. Nach Umordnen der Variablen z_i , $m+1 \leqslant i \leqslant n$ können wir annehmen, dass $c_{(m+1)0} \neq 0$ gilt. Betrachte die Koordinatentransformation $u_i = z_i, i \neq m+1$.,

$$2u_{m+1} = 2(c_{(m+1)0}z_{m+1} + \dots + c_{n0}z_n) + d_{00}.$$

Nach dieser Affinität wird Q beschrieben durch

$$u_1^2 + \dots + u_k^2 - u_{k+1}^2 - \dots - u_m^2 + 2u_{m+1} = 0.$$

Vorlesung 7

Fr 15.05. 10:15

Resultate der affinen Hauptachsentransformation im \mathbb{R}^2 : $m = \operatorname{rang}(A)$, $m' = \operatorname{rang}(A)'$.

a)
$$m = m'$$
:

$$m=m'=0$$
: Q gegeben durch $0=0$ \to Ebene \mathbb{R}^2 .

$$m=m'=1 \ x_1^2=0 \rightarrow , \mbox{doppelte} \mbox{``doppelte''}$$
 Gerade.

$$m = m' = 2 \ x_1^2 + x_2^2 = 0 \to \text{Punkt.}$$

$$x_1^2 - x_2^2 = 0 \rightarrow 2$$
 Geraden.
 $(x_1 + x_2)(x_1 - x_2)$

- b) m' = m + 1.
 - $m = 0 \ \rightarrow 0 = 1 \rightarrow \text{leere Menge}.$
 - $m=1~x_1^2=1~\rightarrow 2$ parallele Geraden

- $-x_1^2 = 1$ \rightarrow leere Menge.
- $m = 2 -x_1^2 x_2^2 = 1 \to \varnothing.$
- $x_1^2 x_2^2 = 1 \rightarrow \text{Hyperbel}.$

$$x_1^2 + x_2^2 = 1 \to \text{Kreis.}$$

$$m'=m+2.$$

$$m = 0$$
 $2x_1 = 0$ \rightarrow Gerade.

$$m=1$$
 $x_1^2+2x_2=0$ \rightarrow Parabel.

Bemerkung. Verschiedene dieser quadratischen Formen können als *Menge* die gleiche Quadrik $Q\subseteq\mathbb{R}^2$ beschreiben.

Beispiel.

$$\Big\{\,(x_1,x_2)\in\mathbb{R}^2\;\Big|\;x_1^2=0\;\Big\}=\Big\{\,(x_1,x_2)\subset\mathbb{R}^2\;\Big|\;2x_1=0\;\Big\}.$$

Definition. Wir nennen zwei Quadriken $Q_1, Q_2 \subseteq \mathbb{R}^n$ geometrisch äquivalent wenn es eine Affinität $f: \mathbb{R}^n \to \mathbb{R}^n$ gibt mit $f(Q_1) = Q_2$.

Frage. Klassifikation aller Quadriken über \mathbb{R} bis auf geometrische Äquivalenz?

Für eine Matrix $B \in M_{n \times n}(\mathbb{R})$ sei sign(B) = # positive Eigenwerte von B - # negative Eingenwerte von B die Signatur von B.

Satz 1.10.3 (Geometischer Klassifikationssatz (ohne Beweis)). Seien $Q_1, Q_2 \subset \mathbb{R}^n$ nichtleere Quadriken, die beschrieben werden durch erweiterte Matrizen A'_1, A'_2 mit rein quadratischen Anteilen A_1, A_2 . Seien Q_1, Q_2 nicht gleich an Hyperebenen.

Dann sind Q_1 und Q_2 geometrisch äquivalent gdw gilt

$$\operatorname{rang} A_1 = \operatorname{rang} A_2,$$

$$\operatorname{rang} A'_1 = \operatorname{rang} A'_2,$$

$$|\operatorname{sign} A_1| = |\operatorname{sign} A_2| \text{ und}$$

$$|\operatorname{sign} A'_1| = |\operatorname{sign} A'_2|.$$

Folgerung 1.10.1. Sei $Q \subset \mathbb{R}^n$ eine nichtleere Quadrik. Dann ist Q geometrisch äquivalent zu genau einer der folgenden Quadriken.

a)
$$x_1^2 + \dots + x_k^2 - x_{k+1}^2 - \dots - x_m^2 = 0, 0 \le k \le m, 2k - m \ge 0.$$

b)
$$x_1^2 + \dots + x_k^2 - x_{k+1}^2 - \dots - x_n^2 = 1, 1 \le k \le m.$$

c)
$$x_1^2 + \dots + x_k^2 - x_{k+1} - \dots - x_m^2 + 2x_{m+1} = 0, 1 \le k \le m \text{ und } 2k - m \ge 0.$$

Beispiele (Quadriken im \mathbb{R}^3). Typ a) $x_1^2 + x_2^2 - x_3^2 = 0$

Kegel

Typ b) • $x_1^2 + x_2^2 = 1$.

Kreiszylinder

•
$$x_1^2 + x_2^2 + x_3^2 = 1$$
.

Kugel

•
$$x_1^2 - x_2^2 + x_3^2 = 1$$
.

Zweischaliges Hyperboloid

•
$$x_1^2 + x_2^2 - x_3^2 = 1$$

Einschaliges Hyperboloid

Typ c)
$$x_1^2 + x_2^2 + 2x_3 = 0.$$

Elliptisches Paraboloid

Datei 13: Euklidische affine Räume

§1.11 Euklidische affine Räume

In einem allgemeinen affinen Raum X haben wir den Begriff von Gerade und parallelen Geraden (Sind $L, L' \subset X$ Geraden, dann sagen wir, dass L und L' parallel sind, falls T(L) = T(L')).

Frage. Können wir auch "Winkel" messen zischen zwei sich schneidenden Geraden?

Erinnerung. Sei V ein \mathbb{R} -Vektorraum. Ein Skalarprodukt auf V ist eine positiv-definite symmetrische Bilinearform

$$S \colon V \times V \to \mathbb{R}$$
.

Definition. Ein euklidischer affiner Raum ist ein reeller affiner Raum $(X, T(X), \tau)$ zusammen mit einem Skalarprodukt

$$\langle \cdot, \cdot \rangle \colon T(X) \times T(X) \to \mathbb{R}$$

auf dem Translationsvektorraum T(X).

Beispiel 1.11.1. Der \mathbb{R}^n als reeller affiner Raum mit dem Standard-Skalarprodukt

$$\langle \cdot, \cdot \rangle \colon T(X) \times T(X) \to \mathbb{R}$$

$$\begin{cases} & \text{if } & \text{if } \\ \mathbb{R}^n & \mathbb{R}^n \end{cases}$$

$$(x_1, \dots, x_n) \times (y_1, \dots, y_n) \mapsto \sum_{i=1}^n x_i y_i.$$

Beispiel 1.11.2. Die Lösungsmenge L im \mathbb{R}^n eines Systems von linearen Gleichungen $Ax = b, A \in \mathcal{M}_{m \times n}(\mathbb{R}), b \in \mathbb{R}^m$

mit dem aus dem \mathbb{R}^n induzierten Standard-Skalar
produkt auf $T(L) \leq \mathbb{R}^n$ Untervektorraum

$$\langle \cdot, \cdot \rangle \colon T(L) \times T(L) \to \mathbb{R}$$

 $(x, y) \mapsto \langle x, y \rangle.$

Frage. Definition von Abständen / Winkeln in einem euklidischen affinen Raum?

Definition 1.11.1. Sei X ein euklidischer affiner Raum. Wir definieren eine Normabbildung

$$\begin{aligned} \|\cdot\| \colon T(X) &\to \mathbb{R}_{\geqslant 0} \\ t &\mapsto \|t\| \coloneqq \sqrt{\langle t, t \rangle} \end{aligned}$$

und eine Metrik

$$d\colon \qquad X\times X\to \mathbb{R}_{\geqslant 0}$$

$$(p,q)\mapsto d(p,q)\coloneqq \|\overrightarrow{pq}\|.$$

Bemerkung. $\|\cdot\|$ ist eine Norm, da $\langle\cdot,\cdot\rangle$ ein Skalarprodukt ist. Man kann nachrechnen, dass d tatsächlich eine Metrik auf X ist, z. B.

$$d(p,q) = \|\overrightarrow{pq}\| = \|-\overrightarrow{qp}\| = |-1| \cdot \overrightarrow{qp} = d(q,p).$$

Definition. Sei X ein euklidischer affiner Raum, $p,q,q' \in X$ mit $p \neq q, q', L = p \vee q, L' = p \vee q'.$

Wir definieren den Winkel $\sphericalangle(L,L')$ zwischen den Geraden L,L' durch

$$\sphericalangle(L,L') = \arccos \frac{\left| \langle \overrightarrow{pq},\overrightarrow{pq'} \rangle \right|}{\|\overrightarrow{pq}\| \cdot \left\| \overrightarrow{pq'} \right\|} \in \left[0,\frac{\pi}{2}\right].$$

Bemerkung. Die Definition des Winkels $\sphericalangle(L,L')$ ist unabhängig von der Wahl der Elemente q,q' (solange $p\neq q,q'$).

Vorlesung 8

Di 19.05. 10:15

Lemma 1.11.1. Sei X ein euklidischer affiner Raum, $t \in T(X)$ und $\tau_t \colon X \to X$ die Translation um t. Seien $q, q' \in X$ und $L, L' \subseteq X$ Geraden mit $L \cap L' \neq \emptyset$. Dann gilt

$$d(\tau_t(p), \tau_t(q)) = d(p, q) \text{ und}$$
$$<(\tau_t(L), \tau_t(L')) = <(L, L').$$

Beweisidee. Verwende

$$\overrightarrow{\tau_t(p)\tau_t(q)} \stackrel{!}{=} \overrightarrow{pq},$$

also

$$d(\tau_t(p), \tau_t(q)) = \left\| \overrightarrow{\tau_t(p)\tau_t(q)} \right\| = \left\| \overrightarrow{pq} \right\| = d(p, q)$$

für beliebige Punkte $p, q \in X$ und $t \in T(X)$.

Winkel zwischen Geraden L, L'

$$\sphericalangle(L, L') = \arccos \frac{|\langle \overrightarrow{pq}, \overrightarrow{pq'} \rangle|}{\|\overrightarrow{pq}\| \|\overrightarrow{pq'}\|}.$$

$$\|\overrightarrow{\tau_t(p)\tau_t(q)}\|$$

$$\|\overrightarrow{\tau_t(p)\tau_t(q')}\|$$

also:

Translation um ein Element $t \in T(X)$ erhält Abstände und Winkel.

Nicht alle affinen Abbildungen haben diese Eigenschaft, z. B. $X=\mathbb{R}^2$ mit Standardskalarprodukt.

Frage. Welche Abbildungen zwischen euklidischen affinen Räumen erhalten Abstände?

Definition. Seien X, X' metrische Räume mit Metriken d, d' und $f: X \to X'$ eine Abbildung. Wir nennen f eine Isometrie, falls $\forall p, q \in X$ gilt

$$d'(f(p), f(q)) = d(p, q).$$

Frage. Welche Abbildungen zwischen euklidischen affinen Räumen erhalten Abstände? \rightarrow Wir können dies Frage auf affine Abbildungen reduzieren.

Satz 1.11.2. Seien X, Y euklidische affine Räume $f: X \to Y$ eine Isometrie. Dann ist f affin und injektiv.

Beweis. Sei $f: X \to X$ eine Isometrie und $p \in X$. Betrachte die Abbildung (mit T(X), T(Y) Vektorräumen mit Skalarprodukt)

$$F: T(X) \to T(Y)$$

$$\overrightarrow{px} \mapsto \overrightarrow{f(p)f(x)}.$$

Behauptung 1. F ist eine Isometrie.

Seien $x_1, x_2 \in X$.

$$||F(\overline{px_1}) - F(\overline{px_2})||_{T(Y)} = ||\overline{f(p)}f(x_1) \underbrace{-\overline{f(p)}f(x_2)}_{=\overline{f(x_2)}f(p)}||_{T(Y)}$$

$$= ||\overline{f(p)}f(x_1) + \overline{f(x_2)}f(p)||_{T(Y)}$$

$$= ||f(x_2)f(x_1)||_{T(Y)}$$

$$= ||\overline{f(x_2)}f(x_1)||_{T(Y)}$$

$$= d_Y(f(x_2), f(x_1))$$

$$= d_X(x_2, x_1) = \overline{x_2x_1}_{T(X)}$$

$$f \text{ ist Isometrie}$$

$$= ||\overline{px_1} - ||\overline{px_2}|||_{T(x)}.$$

Behauptung 2. Ist F linear, dann ist f affin. Seien $x_1, x_2 \in X$. Dann gilt

$$F(\overrightarrow{x_1x_2}) = F(\overrightarrow{x_1p} + \overrightarrow{px_2})$$

$$= F(-\overrightarrow{px_1} + \overrightarrow{px_2})$$

$$= -F(\overrightarrow{px_1}) + F(\overrightarrow{px_2})$$

$$\stackrel{\uparrow}{F \text{ ist linear}}$$

$$= -\overrightarrow{f(p)f(x_1)} + \overrightarrow{f(p)f(x_2)}$$

$$= \overrightarrow{f(x_1)f(x_2)}.$$

Also ist Abbildung

$$\overrightarrow{x_1x_2} \mapsto \overrightarrow{f(x_1)f(x_2)}$$

linear!

Es genügt also folgendes Lemma zu beweisen

Lemma 1.11.3. Seien V, W euklidisch Vektorräume, $F: V \to W$ eine Isometrie mit F(0) = 0. Dann ist F linear und injektiv.

Datei 14: Euklidische affine Räume Teil 2

Beweis von Lemma 1.11.3. F ist injektiv: Sei $v', v \in V$ mit F(v) = F(v'). Dann

$$0 = d_W(F(v), F(v')) = d_V(v, v'),$$
f Isometrie

also v = v'.

Zur Linearität von F: F ist Isometrie, also gilt $\forall v_1, v_2 \in V$

$$\underbrace{\|F(v_1) - F(v_2)\|_{d_W(F(v_1), F(v_2))}}_{d_V(v_1, v_2)} = \underbrace{\|v_1 - v_2\|_{d_V(v_1, v_2)}}_{d_V(v_1, v_2)}.$$

Aus F(0) = 0 folgt

$$||F(v)|| = ||v|| \quad \forall v \in V$$

Berechne für $v_1, v_2 \in V$:

$$||v_1 - v_2||^2 = \langle v_1 - v_2, v_1 - v_2 \rangle = ||v_1||^2 + ||v_2||^2 - 2\langle v_1, v_2 \rangle.$$

Es gilt auch

$$\underbrace{\|F(v_1) - F(v_2)\|^2}_{\|v_1 - v_2\|^2} = \underbrace{\|F(v_1)\|^2}_{\|v_1\|^2} + \underbrace{\|F(v_2)\|^2}_{\|v_2\|^2} - 2\langle F(v_1), F(v_2) \rangle.$$

Also folgt

$$\langle v_1, v_2 \rangle = \langle F(v_1), F(v_2) \rangle \quad \forall v_1, v_2 \in V.$$

Seien $v, v' \in V$.

$$\underbrace{\langle F(v+v') - F(v) - F(v') \rangle}_{\stackrel{?}{=}0}, F(v+v') - F(v) - F(v') \rangle = \langle F(v+v'), F(v+v') \rangle
- \langle F(v+v'), F(v) \rangle
- \cdots
+ \langle F(v'), F(v') \rangle
= \langle v+v', v+v' \rangle
- \langle v+v', v \rangle - \cdots
+ \langle v', v' \rangle
= \langle v+v'-v-v', v+v'-v-v' \rangle
= \langle v+v'-v-v', v+v'-v' \rangle
= \langle v+v'-v', v+v'-v' \rangle$$

also gilt F(v+v')=F(v)+F(v'). Multiplikation mit Skalaren. Sei $v\in V,\ \lambda\in\mathbb{R}$.

$$\begin{split} \langle F(\lambda v) - \lambda F(v), F(\lambda v) - \lambda F(v) \rangle &= \langle F(\lambda v), F(\lambda v) \rangle - 2 \langle F(\lambda v), \lambda F(v) \rangle \langle \lambda F(v), \lambda F(V) \rangle \\ &= \langle F(\lambda v), F(\lambda v) \rangle - 2 \lambda \langle F(\lambda v), F(v) \rangle + \lambda^2 \langle F(v), F(v) \rangle \\ &= \langle \lambda v, \lambda v \rangle - 2 \lambda \langle \lambda v, v \rangle + \lambda^2 \langle v, v \rangle = (\lambda^2 - 2\lambda^2 + \lambda^2) \langle v, v \rangle \\ &= 0, \end{split}$$

also
$$F(\lambda v) = \lambda F(v) \quad \forall \forall \lambda \in \mathbb{R} \quad \forall v \in V.$$

Datei 15: Kongruenz

Definition. Eine Isometrie $f: X \to X$ eines euklidischen affinen Raumes X nennen wir Kongruenz (also nach Satz 1.11.2 immer eine Affinität).

Lemma 1.11.4. Sei $f: X \to X$ eine Affinität eines euklidischen affinen Raumes X. Dann ist f eine Kongruenz genau dann, wenn die zugehörige lineare Abbildung $F: T(X) \to T(X)$ orthogonal ist.

Beweis. f ist Isometrie gdw

$$d(f(p), f(q)) = d(p, q) \quad \forall p, q \in X,$$

d.h. gdw

$$\|f(p)f(q)\| = \|\underbrace{\overrightarrow{pq}}_{\|F(\overrightarrow{pq})\|}\| \quad \forall \, p,q \in X.$$

Dies ist äquivalent dazu, dass F orthogonal ist (also das Skalarprodukt erhält)

Datei 16: Ähnlichkeiten

Bemerkung. Im \mathbb{R}^n mit Standardskalarprodukt sind Kongruenzen

$$f \colon \mathbb{R}^n \to \mathbb{R}^n$$

genau durch die Abbildungen der Form

$$f \colon x \mapsto \boxed{f(0) * A \cdot x} \quad \forall x \in \mathbb{R}^n$$

gegeben mit $A \in \mathcal{O}(n)\mathbb{R}$ orthogonal, d. h. $A^{-1} = {}^tA$. Slogan: "Kongruenz ~ orthogonale Abbildung + Translation".

Frage. Kongruenzen erhalten Winkel. Welche Affinitäten/ Abbildungen $f: X \to X$ eines euklidischen Raumes X haben diese Eigenschaft?

Beispiel. \mathbb{R}^2 mit Standardskalarprodukt.

erhält Winkel, aber nicht Abstände, d. h. ist keine Isometrie des \mathbb{R}^2 .

Definition. Sei X ein euklidischer affiner Raum, $f: X \to X$ eine Abbildung. Sei $\rho \in \mathbb{R}_{>0}$. Wir nennen f eine Ähnlichkeit mit (Ähnlichkeits-) Faktor ρ wenn $\forall p, q \in X$ gilt

$$d(f(p), f(q)) = \rho \cdot d(p, q).$$

Korollar 1.11.5 (aus Satz 1.11.2). Eine Ähnlichkeit $f: X \to X$ eines euklidischen affinen Raumes X ist eine Affinität.

Beweis. Sei $p_0 \in X$. Wir definieren eine Affinität

$$\rho^{-1}\colon X\to X$$

durch $\rho^{-1}(p_0) = p_0$ und

$$\tilde{\rho}$$
: $T(X) \to T(X)$
 $T(X) \ni v \mapsto \rho^{-1}v$.

Wir betrachten die Abbildung

$$\rho^{-1} \circ f \colon X \to X.$$

Behauptung. $\rho^{-1} \circ f$ ist eine Isometrie.

Seien $p, q \in X$. Dann gilt

$$d(\rho^{-1} \circ f(p), \rho^{-1}(f(q))) = \| \overrightarrow{\rho^{-1} \circ f(p)\rho^{-1} \circ f(q)} \|$$

also

$$\begin{split} d(\rho^{-1} \circ f(p), \rho^{-1}(f(q))) &= \left\| \rho^{-1} \overrightarrow{f(p)f(q)} \right\| \\ &= \rho^{-1} \left\| \overrightarrow{f(p)f(q)} \right\| \\ &= d(p, q), \end{split}$$

f ist Ähnlichkeit mit Faktor ρ

also ist nach Satz 1.11.2 $\rho^{-1} \circ f$ injektiv und affin. Damit ist auch f Affinität.

Vorlesung 9
Fr 21.05. 10:15

Eine Weitere Eignenschaft von Ähnlichkeiten:

Satz 1.11.6. Sei X ein euklidischer affiner Raum und $f: X \to X$ eine Ähnlichkeit mit Ähnlichkeitsfaktor $\rho \neq 1$. Dann besitzt f genau einen Fixpunkt.

Beweisidee. Nach obigem Korollar ist f eine Affinität. Sei $F: T(X) \to T(X)$ die zugehörige lineare Abbildung. Dann ist $\frac{1}{\rho}F$ orthogonal, also haben alle Eigenwerte von F Betrag ρ .

Nach Wahl eines Koordinatensystem wird f beschrieben durch

$$\mathbb{R}^n \to \mathbb{R}^n$$
$$x \mapsto \underbrace{Ax + b}_{\stackrel{?}{\underline{\cdot}}_T}.$$

mit $A \in \mathcal{M}_{n \times n}(\mathbb{R}), k \subset \mathbb{R}^n$ und Fixpunkten beschrieben durch

$$Ax + b = x$$

also $(A - I_n)x = -b$, da 1 kin Eigenwert von A ist, gilt $\det(A - I_n) \neq 0$.

Ähnlichkeiten erhalten Winkel. Gibt es noch weitere Affinitäten eines euklidischen affinen Raumes, die Winkel erhalten?

Definition. Sei X ein euklidischer affiner Raum, $L, L' \subseteq X$ Geraden mit $L \cap L' \neq \emptyset$. Wir nennen L und L' orthogonal, wenn gilt

$$\sphericalangle(L, L') = \frac{\pi}{2}.$$

Schriebe auch $L \perp L'$.

Satz 1.11.7. Sei X ein euklidischer affiner Raum und $f: X \to X$ eine Affinität mit der Eigenschaft, dass für alle Geraden L, L' mit $L \cap L' \neq \emptyset$ und $L \perp L'$ gilt, dass

$$f(L) \perp f(L')$$
.

Dann ist f eine Ähnlichkeit.

Beweis. Sei $F: T(X) \to T(X)$ die zugehörige bijektive lineare Abbildung. Seien $p, q, q' \in X$ mit $p \lor q = L, p \lor q' = L'$ und $L \perp L'$. Dann gilt $\sphericalangle(L, L') = \frac{\pi}{2}$, also

$$\arccos\frac{|\langle \overrightarrow{pq},\overrightarrow{pq'}\rangle|}{\|\overrightarrow{pq}\|\|\overrightarrow{pq'}\|} = \frac{\pi}{2}$$

d. h. $\langle \overrightarrow{pq}, \overrightarrow{pq'} \rangle = 0$.

Die Geraden f(L) und f(L') sind gegeben durch

$$f(p) \lor f(q) = f(L)$$
 $f(p) \lor f(q') = f(L')$

und wir können annehmen (wegen $f(L) \perp f(L')$), dass

$$\underbrace{\langle \overrightarrow{f(p)f(q)}, \overrightarrow{f(p)f(q')} \rangle}_{\langle F(\overrightarrow{pq}), F(\overrightarrow{pq'}) \rangle} = 0.$$

Es gilt also, dass für alle $v, w \in T(X)$ mit $\langle v, w \rangle = 0$ gilt $\langle F(v), F(w) \rangle = 0$. Wir haben den Beweis von Satz 1.11.7 auf folgendes Lemma reduziert.

Lemma 1.11.8. Sei V ein euklidischer Vektorraum, $F: V \to V$ ein Isomorphismus mit $F(v) \perp F(w)$ für alle $v, w \in V$ mit $v \perp w$. Dann existiert $\rho \in \mathbb{R}_{>0}$ s. d. $\frac{1}{\rho} \cdot F$ orthogonal ist.

Beweis. Sei $n = \dim(V)$ und v_1, \ldots, v_n eine Orthonormalbasis von V, d.h. $||v_i|| = 1$, $1 \le i \le n$ und $\langle v_i, v_\gamma \rangle = 0$ für $i \ne j$. Sei $\rho_i := ||F(v_i)||$, $1 \le i \le n$.

Fpr $i \neq j$ gilt

$$\langle v_i + v_j, v_i - v_j \rangle = \underbrace{\|v_i\|^2}_{=1} + \underbrace{\langle v_j, v_i \rangle}_{=0} - \underbrace{\langle v_i, v_j \rangle}_{=0} - \underbrace{\|v_j\|^2}_{=1} = 0,$$

also $v_i + v_j \perp v_i - v_j$. Nach Annahme gilt dann auch

$$\langle F(v_i), F(v_i) \rangle + \underbrace{\langle F(v_j), F(v_i) \rangle}_{=0, \text{ da } F(v_j) \perp F(v_i)} - \underbrace{\langle F(v_i), F(v_j) \rangle}_{=0} - \langle F(v_j), F(v_j) \rangle = \langle F(v_i + v_j), F(v_i - v_j) \rangle$$

Also gilt

$$||F(v_i)||^2 = ||F(v_j)||^2 \quad \forall i, j$$

und damit $\rho_i = \rho_j \quad \forall 1 \leqslant i, j \leqslant n$. Schreibe $\rho = \rho_i \quad \forall 1 \leqslant i \leqslant n$ für den gemeinsamen Wert. Dann ist die Abbildung $\frac{1}{\rho}F$ orthogonal, da v_1, \ldots, v_n auf die Orthonormalbasis $\frac{1}{\rho}F(v_1), \ldots, \frac{1}{\rho}F(v_n)$ abgebildet wird.

Sei $f: \mathbb{R}^n \to \mathbb{R}^n$ eine Affinität gegeben durch

$$x \mapsto Ax + b$$
 $A \in GL_n(\mathbb{R})$ $b \in \mathbb{R}^n$.

Im Obigen haben wir gesehen, dass gilt: f ist $Kongruenz \iff A$ ist orthogonal, f ist Ähnlichkeit $\frac{1}{\rho}A$ ist orthogonal für ein $\rho \geqslant 0$.

Frage. Wie können wir $A \in GL_n(\mathbb{R})$ für eine allgemeine Affinität f mit Hilfe von / bis auf eine orthogonale Matrix möglichst einfach ausdrücken?

Betrachte \mathbb{R}^n als euklidischen affinen Raum mit Standardskalarprodukt

Datei 17: Hauptachsentransformation Affinitäten

$$\langle \cdot, \cdot \rangle : \qquad \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_{\geq 0}$$
$$(x_1, \dots, x_n) \times (y_1, \dots, y_n) \mapsto \sum_{i=1}^n x_i y_i.$$

Satz 1.11.9 (Hauptachsentransformation von Affinitäten). Sei $f: \mathbb{R}^n \to \mathbb{R}^n$ eine Affinität gegeben durch $x \mapsto Ax + b$ mit $A \in GL_n(\mathbb{R}), b \in \mathbb{R}^n$. Dann gibt es orthogonale Matrizen $S, T \in O(n)$ und eine Diagonalmatrix

$$D = \begin{pmatrix} \alpha_1 & & 0 \\ & \alpha_2 & & 0 \\ & & \ddots & & \\ 0 & & & \ddots & \\ & & & & \alpha_n \end{pmatrix}$$

mit $\alpha_1, \ldots, \alpha_n > 0$, s. d.

$$A = SDT$$

d.h.

$$f(x) = SDTx + f(0).$$

Beweis. Wir bilden die Matrix $C = {}^{t}AA$.

 \bullet C ist symmetrisch, da

$${}^tC = {}^t({}^tAA) = {}^tA^{tt}A = {}^tAA = C.$$

• C ist positiv definit, denn I_n ist positiv definit und daher nach dem Sylvesterschen Trägheitsgesetz auch C. Aus der Hauptachsentransformation symmetrischer Matrizen (AGLA I) folgt, dass es eine Matrix $T \in O(n)$ mit

$$TC^{t}T = \begin{pmatrix} \beta_{1} & 0 \\ \ddots & \\ 0 & \beta_{n} \end{pmatrix},$$

 $\beta_1, \ldots, \beta_n > 0$. Wir definieren $\alpha_i = \sqrt{\beta_i}, 1 \leqslant i \leqslant n$ und

$$D \coloneqq \begin{pmatrix} \alpha_1 & & \\ & \ddots & \\ & & \ddots \\ & & & \alpha_n \end{pmatrix},$$

Dann gilt

$$T\underbrace{C}_{tAA}{}^{t}T = D^2 = {}^{t}DD,$$

also

$$I_n = \underbrace{{}^t A^{-1} {}^t T^t D}_{S} \underbrace{DT A^{-1}}_{{}^t S}.$$

Sei $S := {}^tA^{-1}{}^tT^tD$. Dann gilt ${}^tSS = I_n$ und $S \in \mathcal{O}(n)$ ist orthogonal. Wir erhalten ${}^tS = DTA^{-1}$ und A = SDT.

Korollar 1.11.10. Sei $f: \mathbb{R}^n \to \mathbb{R}^n$ ein Isomorphismus des Vektorraumes \mathbb{R}^n . Dann gibt es eine Orthonormalbasis $v_1, \ldots, v_n \in \mathbb{R}^n$, s. d. die Vektoren $F(v_1), \ldots, F(v_n)$ eine Orthogonalbasis bilden.

Beweis. Sei F bezüglich der Standardbasis der \mathbb{R}^n gegeben durch die Matrix $A \in \mathrm{GL}_n(\mathbb{R})$. Aus Satz 1.11.9 folgt, dass es orthogonale Matrizen $S, T \in \mathrm{O}(n)$ gibt mit A = SDT und

$$D = \begin{pmatrix} \alpha_1 & & 0 \\ & \ddots & \\ 0 & & \alpha_n \end{pmatrix},$$

 $\alpha_1, \ldots, \alpha_n > 0$ einer Diagonalmatrix. Sei $v_i = {}^tTe_i$, $1 \leq i \leq n$. T ist orthogonal, also auch tT und damit ist v_1, \ldots, v_n eine Orthonormalbasis des \mathbb{R}^n . Es gilt

$$F(v_i) = A^t T e_i$$

$$= SD \underbrace{I_n}_{T^t T} e_i$$

$$= SDe_i = S(\alpha_i e_i)$$

$$= \alpha_i S_{e_i}.$$

Die Matrix S ist orthogonal, also sind die Vektoren Se_1, \ldots, Se_n eine Orthonormalbasis. Da $\alpha_1, \ldots, \alpha_n > 0$, bilden $F(v_1), \ldots, F(v_n)$ eine orthogonal Basis der \mathbb{R}^n .

Beispiel.

Kapitel 2

Projektive Geometrie

§2.1 Projektive Räume

Vorlesung 10

Sei K ein Körper und

$$P(x_1,\ldots,x_n)\in K[x_1,\ldots,x_n]$$

ein quadratisches Polynom der Form

$$P(x_1, \dots, x_n) = \sum_{1 \le i \le j \le n} \alpha_{ij} x_i x_j$$

it $\alpha_{ij} \in K, \, 1 \leqslant i \leqslant j \leqslant n.$ Sei

$$Q = \{ (x_1, \dots, x_n) \in K^n \mid P(x_1, \dots, x_n) = 0 \}$$

die durch P beschriebene Quadrik.

Sei $\lambda \in \star *$. Dann gilt für $(x_1, \ldots, x_n) \in K^n$

$$(x_1,\ldots,x_n)\in Q\iff \lambda(x_1,\ldots,x_n)\in Q.$$

Denn $P(x_1, \ldots, x_n) = 0$ ist äquivalent zu

$$0 = \lambda^2 P(x_1, \dots, x_n) = \lambda^2 \sum_{1 \le i \le j \le n} \alpha_{ij} x_i x_j = \sum_{1 \le i \le j \le n} \alpha_{ij} (\lambda x_i) (\lambda x_j) = P(\lambda(x_1, \dots, x_n)).$$

Mit $(x_1, \ldots, x_n) \in Q$ ist also auch

$$\underbrace{K \cdot (x_1, \dots, x_n)}_{\{\lambda \cdot (x_1, \dots, x_n) \mid \lambda \in K\}} \subseteq Q$$

d.h. Q "besteht aus einer Vereinigung an Geraden".

Datei 18: Projektive Räume

Di 26.05. 10:15

Idee. Im projektiven Raum identifizieren wir die Punkte der Gerade $K \cdot (x_1, \dots, x_n)$ zu einem Punkt.

Definition. Sei K ein Körper und V ein K-Vektorraum. Wir definieren

$$\mathbb{P}(V) = \{ L \leq V \mid L \text{ ist eindimensionaler Untervektorraum von } V \}.$$

Beispiel. $V = \mathbb{R}^2$ als \mathbb{R} -Vektorraum.

$$\dim(\mathbb{P}(V)) = 1.$$

Bemerkung. Für $V = \{0\}$ erhalte

$$\dim(\mathbb{P}(V)) = \dim_K(V) - 1 = 0 - 1 = -1$$

und $\mathbb{P}(V) = \emptyset$.

Beispiel / Definition 2.1.1. Sei K ein Körper, $n \ge 0$. Dann ist $\mathbb{P}(K^{n+1})$ die Menge der Geraden durch den Ursprung im K^{n+1} . Wir bezeichnen

$$\mathbb{P}_n(K) := \mathbb{P}(K^{n+1})$$

als *n*-dimensionalen projektiven Raum über K. Weiter definieren wir die projektive Dimension von $\mathbb{P}(V)$ als $\dim(\mathbb{P}(V)) := \dim_K(V) - 1$.

Bemerkung. Für einen K-Vektorraum V haben wir immer eine Abbildung

$$V \setminus \{ \ 0 \ \} \to \mathbb{P}(V)$$
$$v \mapsto K \cdot v.$$

 $\mathbb{P}(\mathbb{R}^2), \sim \mathbb{R}^1 \cup \{ \infty \}$

Definition (homogene Koordinaten). $n \in \mathbb{Z}_{\geq 0}$. Sei K ein Körper und $L \in \mathbb{P}_n(K)$. Wir nennen ein Tupel

$$(x_0,\ldots,x_n)\in K^{n+1}\setminus\{\,0\,\}$$

homogene Koordinaten des Punktes $L \in \mathbb{P}_n(K)$, falls

$$K \cdot (x_0, \dots, x_n) = L.$$

Schreibe auch

$$(x_0:\ldots:x_n)\coloneqq K\cdot(x_0,\ldots,x_n).$$

Bemerkung. Die homogenen Koordinaten eines Punktes $L \in \mathbb{P}_n(K)$ sind nur bis auf Multiplikation mit $\lambda \in K^*$ eindeutig bestimmt, d. h. für $(x_0, \ldots, x_n), (y_0, \ldots, y_n) \in K^{n+1} \setminus \{0\}$ gilt

$$(x_0:\ldots:x_n)=(y_0:\ldots:y_n)$$

gdw

$$K(x_0, \dots, x_n) = K(y_0, \dots, y_n),$$

d.h. wenn $\exists \ \lambda \in K^{\star}$ mit

$$(x_0, \dots, x_n) = \lambda(y_0, \dots, y_n).$$

Unterräume eines projektiven Raums

Beispiel 2.1.1. $V = \mathbb{R}^3$, die Menge der Geraden $\mathbb{R} \cdot (0, v_1, v_2)$ mit $(v_1, v_2) \in \mathbb{R}^2 \setminus \{0\}$ "sieht genauso aus" wie

$$\mathbb{P}_1(\mathbb{R}) = \mathbb{P}(\mathbb{R}^2).$$

Wir wollen

$$\left\{ \left. \mathbb{R} \cdot (0, v_1, v_2) \right| (v_1, v_2) \in \mathbb{R}^2 \setminus \left\{ 0 \right\} \subseteq \mathbb{P}(\mathbb{R}^3) \right\}$$

als projektiven Unterraum erklären.

Definition. Sei V ein K-Vektorraum und $Z \subseteq \mathbb{P}(V)$. Wir nennen Z einen projektiven Unterraum von $\mathbb{P}(V)$, falls es einen K-Untervektorraum $W \leq V$ gibt mit $Z = \mathbb{P}(W)$. Wir nennen $Z \subseteq \mathbb{P}(V)$ eine

- (projektive) Gerade, wenn $\dim Z = 1$,
- (projektive) Ebene, wenn $\dim Z = 2$,
- (projektive) Hyperebene, wenn $\dim Z = \dim(\mathbb{P}(V)) 1$.

Bemerkung. Ist $Z \subseteq \mathbb{P}(V)$ ein projektiver Unterraum mit $Z = \mathbb{P}(W)$ für einen Untervektorraum $W \leq V$, so ist

$$W = \bigcup_{p \in Z} p$$

Vereinigung von Geraden in Z.

Zurück zum obigen Beispiel: $V = \mathbb{R}^3$, $W = \{ (0, x_1, x_2) \mid x_1, x_2 \in \mathbb{R}^3 \} \cong \mathbb{R}^2$. Dann ist $Z = \mathbb{P}(W) \subseteq \mathbb{P}(V)$ ein projektiver Unterraum. Was bleibt übrig, wenn wir $\mathbb{P}(\mathbb{R}^3) \setminus \mathbb{P}(W)$ betrachten?

 $\mathbb{P}(W)$: Geraden, die in der x_1 - x_2 -Ebene enthalten sind. Betrachte die affine Ebene

$$E = \{ (1, x_1, x_2) \mid x_1, x_2 \in \mathbb{R}^2 \} \subseteq \mathbb{R}^3.$$

Sei $L \in \mathbb{P}(V) \setminus \mathbb{P}(W)$. Dann gibt es genau einen Schnittpunkt $L \cap E$. Die Abbildung

$$\mathbb{P}(V) \setminus \mathbb{P}(W) \to E \cong \mathbb{R}^2$$
 als affiner Raum über \mathbb{R}
$$L \mapsto L \cap E$$

ist bijektiv.

Allgemein:

Sei K ein Körper und betrachte im K^{n+1} den Untervektorraum

$$W := \{ (x_0, \dots, x_n) \in K^{n+1} \mid x_0 = 0 \}.$$

Dann ist $H := \mathbb{P}(W) \subseteq \mathbb{P}_n(K)$ eine (projektive) Hyperebene. Falls

$$(y_0:\ldots:y_n)\in\mathbb{P}_n(K)\setminus H,$$

dann ist $y_0 \neq 0$, also ist

$$(y_0:\ldots:y_n)=\left(1:\frac{y_1}{y_0}:\ldots:\frac{y_n}{y_0}\right)$$

von der Form $(1:x_1:\ldots:x_n)$ mit $x_1,\ldots,x_n\in K$. Zwei Tupel $(x_1,\ldots,x_n)\neq (x_1',\ldots,x_n')\in K^n$ induzieren unterschiedliche Projektive Punkte im $\mathbb{P}_n(K)$.

$$(1:x_1:\ldots:x_n) \neq (1:x_1':\ldots:x_n') \in \mathbb{P}_n(K).$$

Aus

$$(1, x_1, \ldots, x_n) = \lambda(1, x'_1, \ldots, x'_n)$$

folgt $\lambda = 1$.

Wir erhalten eine Bijektion

$$\phi \colon K^n \to \mathbb{P}_n(K) \setminus H$$
$$(x_1, \dots, x_n) \mapsto (1 : x_1 : \dots : x_n)$$

und damit eine Einbettung

$$\iota \colon K^n \to \mathbb{P}_n(K)$$
$$(x_1, \dots, x_n) \mapsto (1 \colon x_1 \colon \dots \colon x_n),$$

die wir kanonische Einbettung des K^n in den $\mathbb{P}_n(K)$ nennen.

Dimensionsformel als nächstes Ziel

Lemma 2.1.1. Sei V ein K-Vektorraum und $(Z_i)_{i\in I}$ eine Familie projektiver Unterräume von $\mathbb{P}(V)$, $i\in I$ gibt es eine Familie projektiver Unterräume von $\mathbb{P}(V)$. Dann ist $\bigcap_{i\in I} Z_i$ in projektiver Unterraum von $\mathbb{P}(V)$.

Beweis. Zu jedem $Z_i \subseteq \mathbb{P}(V)$, $i \in I$, gibt es einen K-Untervektorraum $W_i \subseteq V$ mit $Z_i = \mathbb{P}(W_i)$. Es gilt

$$\bigcap_{i \in I} Z_i = \bigcap_{i \in I} \{ L \subseteq V \mid \text{Gerade mit } L \subseteq W_i \}
= \bigcap_{i \in I} \{ L \subseteq V \mid \text{Gerade } L \text{ mit } L \subseteq \bigcap_{i \in I} W_i \}
= \mathbb{P} \left(\bigcap_{i \in I} W_i \right)$$

$$\square$$

$$K-\text{Untervektorraum}$$

Beispiel 2.1.1. $V = \mathbb{R}^3$, also $\mathbb{P}(V) = \mathbb{P}_2(\mathbb{R})$ die projektive Ebene über \mathbb{R} .

$$\iota \colon \mathbb{R}^2 \to \mathbb{P}_2(\mathbb{R})$$

 $(x_1, x_2) \mapsto (1 : x_1 : x_2)$

kanonische Einbettung. Betrachte die projektiven Geraden

$$Z_1 = \{ (x_0 : x_1 : x_2) \in \mathbb{P}_2(\mathbb{R}) \mid x_1 = 0 \} = \mathbb{P}(W_1)$$

mit

$$W_1 = \left\{ (x_0, x_1, x_2) \in \mathbb{R}^3 \mid x_1 = 0 \right\}$$

und $Z_2 = \mathbb{P}(W_2)$ it

$$W_2 = \{ (x_0, x_1, x_2) \in \mathbb{R}^3 \mid x_0 = x_1 \}.$$

Seien $Y_1,Y_2\subseteq\mathbb{R}^2$ die affinen Geraden gegeben durch

$$Y_1 = \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1 = 0 \right\}$$
$$Y_2 = \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1 = 1 \right\}.$$

Dann ist $Z_1 = \iota(Y_1) \cup \{ (0:0:1) \}$ und $Z_2 = \iota(Y_2) \cup \{ (0:0:1) \}$. Es ist $Y_1 \cap Y_2 = \emptyset$. $(Y_1, Y_2 \text{ sind parallele Geraden})$, aber $Z_1 \cap Z_2 = \{ (0:0:1) \}$. "Wir sagen auch, die Geraden Z_1, Z_2 schneiden sich in dem unendlich fernen Punkt (0:0:1)".

Bemerkung. Die Vereinigung von projektiven Unterräumen eines projektiven Raumes $\dim(V)$ ist im Allgemeinen selbst kein projektiver Unterraum.

Frage. Seien Z_i , $i \in I$ projektive Unterräume von $\mathbb{P}(V)$. Finde den kleinsten projektiven Unterraum von $\mathbb{P}(V)$, der $\bigcup_{i \in I} Z_i$ enthält.

Definition. Sei V ein K-Vektorraum mit Z_i , $i \in I$ projektive Unterräume von $\mathbb{P}(V)$. Wir definieren den Verbindungraum

$$\bigvee_{i \in I} Z_i \coloneqq \bigcap_{\substack{Y \subseteq \mathbb{P}(V) \\ \text{proj. Unterraum} \\ \bigcup_{i \in I} Z_i \subseteq Y}} Y.$$

Bemerkung. $\bigvee_{i \in I} Z_i$ ist der kleinste projektive Unterraum Y von $\mathbb{P}(V)$ mit $\bigcup_{i \in I} Z_i \subseteq Y$.

Lemma 2.1.2. Sei V ein K-Vektorraum und $W_i, i \in I$ Untervektorräume von V. Dann gilt

$$\bigvee_{i \in I} \mathbb{P}(W_i) = \mathbb{P}\left(\sum_{i \in I} W_i\right).$$

Beweis. Es ist

$$\bigcup_{i \in I} \mathbb{P}(W_i) \subseteq \mathbb{P}\left(\sum_{i \in I} W_i\right).$$

Sei $Y = \mathbb{P}(W)$ ein projektiver Unterraum mit

$$\bigcup_{i\in I} \mathbb{P}(W_i) \subseteq Y$$

wobe
i $W\subseteq V$ ein $K\text{-}\mathrm{Untervektorraum}$ ist. Dann gilt

$$W_i = \bigcup_{p \in \mathbb{P}(W_i)} p \subseteq \bigcup_{p \in Y} p = W,$$

also $W_i \subseteq W \quad \forall i \in I. \ W$ ist K-Untervektorraum, also gilt dann auch $\sum_{i \in I} W_i \subseteq W$ und

$$\underbrace{\mathbb{P}(\sum_{i\in I} W_i)}_{\supseteq \mathbb{P}(W_i)} \subseteq \mathbb{P}(W).$$

Vorlesung 11

Fr 29.05. 10:15

Im BeispielBeispiel 2.1.1 haben wir angedeutet, dass sich zwei Geraden im $\mathbb{P}_2(\mathbb{R})$ immer schneiden. Ganz allgemein gilt folgender Satz.

Satz 2.1.3 (Dimensionsformel). Sei V ein K-Vektorraum und $Z_1, Z_2 \subseteq \mathbb{P}(V)$ projektive Unterräume. Dann gilt

$$\dim Z_1 \vee Z_2 = \dim Z_1 + \dim Z_2 - \dim(Z_1 \cap Z_2).$$

Falls dim Z_1 + dim $Z_2 \geqslant \dim \mathbb{P}(V)$, dann gilt $Z_1 \cap Z_2 \neq \emptyset$.

Beweis. Sei $Z_i = \mathbb{P}(W_i)$, $1 \leq i \leq 2$ mit $W_1, W_2 \leq V$ K-Untervektorräu me. Es gilt dann

$$\begin{split} \dim(Z_1 \vee Z2) &= \dim(\mathbb{P}(W_1 + W_2)) \\ &\stackrel{\uparrow}{\operatorname{Lemma}} 2.1.2 \\ &= \dim_K(W_1 + W_2) - 1 \\ &= \dim_K W_1 + \dim_K W_2 - \dim_K W_1 \cap W_2 \\ &\stackrel{\uparrow}{\operatorname{Dimensionsformel}} \text{ für Untervektorräume aus der AGLA I} \\ &= (\dim_K(W_1) - 1) + (\dim_K(W_2) - 1) - (\dim_K(W_1 \cap W_2) - 1) \\ &= \dim\mathbb{P}(W_1) + \dim\mathbb{P}(W_2) - \dim\underbrace{\mathbb{P}(W_1) \cap \mathbb{P}(W_2)}_{=\mathbb{P}(W_1 \cap W_2)} \end{split}$$
 Beweis von Lemma 2.1.1

$$= \dim Z_1 + \dim Z_2 - \dim Z_1 \cap Z_2.$$

Ist

$$\dim Z_1 + \dim Z_2 \geqslant \dim(\mathbb{P}(V)) \leqslant \dim(Z_1 \vee Z_2)$$

dann gilt dim $(Z_1 \cap Z_2) \geqslant 0$, also $Z_1 \cap Z_2 \neq \emptyset$.

Datei 19: Projektive Abbildungen

§2.2 Projektive Abbildungen

Sei K ein Körper, V, W K-Vektorraum und $F: V \to W$ eine K-lineare Abbildung.

Frage. Unter welchen Voraussetzungen induziert F eine Abbildung $\mathbb{P}(V) \to \mathbb{P}(W)$?

Wir wollen eine Abbildung $f: \mathbb{P}(V) \to \mathbb{P}(W)$ definieren durch

$$K \cdot v \mapsto \underbrace{K \cdot F(v)}_{F(K \cdot v)}$$

für $v \in V \setminus \{0\}$. $K \cdot F(v)$ ist ein wohldefiniertes Element in $\mathbb{P}(W)$ gdw $F(v) \neq 0$, d. h. wir müssen F injektive voraussetzen.

Definition. Sei K ein Körper V, W K-Vektorräume. Wir nennen ein Abbildung

$$f: \mathbb{P}(V) \to \mathbb{P}(W)$$

projektiv, wenn es eine injektive lineare Abbildung $F: \to W$ gibt mit

$$f(K \cdot v) = K \cdot F(v) \quad \forall v \in V \setminus \{0\}.$$

Schreibe $f = \mathbb{P}(F)$. Ist die projektive Abbildung f bijektiv, so nennen wir f Projektivität.

Bemerkung. Eine projektive Abbildung $f: \mathbb{P}(V) \to \mathbb{P}(W)$ ist immer injektiv.

Beispiel. Für $m \ge n$ betrachte die Einbettung

$$F \colon K^{n+1} \hookrightarrow K^{m+1}$$
$$(x_0, \dots, x_n) \mapsto (x_0, \dots, x_n, 0, \dots, 0).$$

F induziert eine projektive Abbildung

$$f: \mathbb{P}_n(K) \to \mathbb{P}_n(K)$$
$$(x_0: \dots : x_n) \mapsto (x_0: \dots : x_n: 0: \dots : 0).$$

Wir nennen f die kanonische Einbettung des $\mathbb{P}_n(K)$ in den $\mathbb{P}_m(K)$.

 $V=\mathbb{R}^3,\,\ell_0,\ell_1,\ell_2\in\mathbb{R}[x_0,x_1,x_2] \text{ linear unabhängige Linear$ $formen in } x_0,x_1,x_2,\,\text{d.\,h.}$

$$\ell_i(x_0, x_1, x_2) = \sum_{i=0}^{2} \alpha_{ij} x_j$$

mit $\alpha_{ij\in\mathbb{R}} \,\forall i,j$ und $\det(\alpha_{ij}) \neq 0$. Dann ist $f: \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$, $(x_0: x_1: x_2) \mapsto (\ell_0(\underline{x}): \ell_1(\underline{x}): \ell_2(\underline{x}))$ eine Projektivität der projektiven Ebene über \mathbb{R} . Als zugehörige lineare Abbildung können wir z. B.

$$F: \mathbb{R}^3 \to \mathbb{R}^3$$

$$\underbrace{(x_0, x_1, x_2)}_{x} \mapsto (l_0(\underline{x}), \ell_1(\underline{x}), \ell_2(\underline{x}))$$

wählen. Die Abbildung

$$F \colon (\underbrace{x_0, x_1, x_2}_x) \mapsto (5l_0(\underline{x}), 5\ell_1(\underline{x}), 5\ell_2(\underline{x}))$$

induziert die gleiche projektive

$$f = \mathbb{P}(F) = \mathbb{P}(F').$$

Allgemein:

Sei K ein Körper, V, W K-Vektorräume, $F \colon V \to W$ eine injektive lineare Abbildung und $\lambda \in K^*$. Dann ist

$$\mathbb{P}(F) = \mathbb{P}(\lambda F).$$

Frage. Gibt es "noch mehr" lineare Abbildungen $G: V \to W$ mit $\mathbb{P}(G) = \mathbb{P}(F)$?

Lemma 2.2.1. Notation wie oben. Seien $F, G: V \to W$ lineare injektive Abbildungen mit $\mathbb{P}(F) = \mathbb{P}(G)$. Dann ist $G = \lambda$ für ein $\lambda \in K^*$.

Beweis. Sei $\mathbb{P}(F) = \mathbb{P}(G)$ und $v_0 \in V \setminus \{0\}$. Dann gilt

$$K \cdot F(v_0) = \mathbb{P}(F)(Kv_0) = \mathbb{P}(G)(K \cdot v_0) = K \cdot G(v_0),$$

also $\exists \lambda \in K^*$ mit $G(v_0) = \lambda F(v_0)$. Sei $v \in V \setminus \{0\}$. Wir wollen zeigen, dass gilt

$$G(v) = \lambda F(v)$$
.

Fall a) $v = \alpha v_0$ mit $\alpha \in K$. Dann

$$G(v) = \alpha G(v_0) = \alpha \lambda F(v_0) = \lambda F(v).$$

Fall b) v und v_0 sind linear unabhängig. Sei

$$G(v) = \mu F(v) \quad \mu \in K^*$$

und

$$G(v + v_0) = vF(v + v_0) \quad v \in K^*.$$

G und F sind linear, also gilt

$$0 = G(v + v_0) - G(v) - G(v_0)$$

$$= v \underbrace{F(v + v_0)}_{F(v) + F(v_0)} - \mu F(v) - \lambda F(v_0)$$

$$0 = \underbrace{(v - \mu)}_{=0} F(v) + \underbrace{(v - \lambda)}_{=0} F(v_0).$$

F ist injektiv, also sind F(v), $F(v_0)$ linear unabhängig. Es folgt

$$v - \mu = v - \lambda = 0$$

und insbesondere $\mu = \lambda$ d. h.

$$G(v) = \lambda F(v) \quad \forall v \in V.$$

Bemerkung. Seien V,W K-Vektorräume und F eine nicht notwendigerweise injektive lineare Abbildung

$$F\colon V\to W$$
.

Dann ist $F(K \cdot v)$ für $v \in V$ genau dann eine Gerade in W wenn $F(v) \neq 0$. Damit induziert F eine Abbildung

$$f \colon \mathbb{P}(V) \setminus Z \to \mathbb{P}(W)$$
$$K \cdot v \mapsto K \cdot F(v)$$

 $mit Z = \mathbb{P}(\operatorname{Ker} F).$

Beispiel. Die lineare Abbildung

$$\mathbb{R}^3 \to \mathbb{R}^2$$
$$(x_0, x_1, x_2) \mapsto (x_0, x_1)$$

induziert die Abbildung

$$p: \mathbb{P}_2(\mathbb{R}) \setminus \{ (0:0:1) \} \to \mathbb{P}_1(\mathbb{R})$$

 $(x_0: x_1: x_2) \mapsto (x_0: x_1).$

Erinnerung (Beschreibung von affinen Abbildungen in der affinen Geometrie). Seien X,Y affine Räume über einem Körper K, $\dim(X)=n$ und p_0,\ldots,p_n affin unabhängige Punkte X. Seien $q_0,\ldots,q_n\in Y$. Dann gibt es genau eine affine Abbildung $f\colon X\to Y$ mit

$$f(p_i) = q_i \quad 0 \leqslant i \leqslant n.$$

Seien V, W K-Vektorräume. Auf wie vielen "unabhängigen" Punkten $p_i \in \mathbb{P}(V)$ muss man Bildpunkte $q_i \in \mathbb{P}(W)$ vorgeben, s. d. eine eindeutig bestimmte projektive Abbildung

$$f: \mathbb{P}(V) \to \mathbb{P}(W)$$

mit $f(p_i) = q_i \,\forall i$ besteht.

Beispiel. $V = K^{n+1}$. Sei

$$p_0 = (1:0:\dots:0)$$

 $p_1 = (0:1:\dots:0)$
 \vdots
 $p_n = (0:0:\dots:1)$

und $W = V, q_i = p_i \quad \forall 0 \leq i \leq n$. Seien $\lambda_0, \dots, \lambda_n \in K^*$. Dann ist

$$f_{(\lambda_0,\dots,\lambda_n)} \colon \mathbb{P}_n(K) \to \mathbb{P}_n(K)$$

 $(x_0:\dots:x_n) \mapsto (\lambda_0 x_0:\dots:\lambda_n x_n)$

eine Projektivität mit

$$f_{(\lambda_0,\dots,\lambda_n)}(p_i) = q_i$$

für $0 \le i \le n$, aber unterschiedliche Tupel $(\lambda_0, \dots, \lambda_n)$, (μ_0, \dots, μ_n) können unterschiedliche Projektivitäten $f_{(\lambda_0, \dots, \lambda_n)}$, $f_{(\mu_0, \dots, \mu_n)}$ induzieren. Z. B. ist

$$(\lambda_0:\ldots:\lambda_n)=f_{(\lambda_0,\ldots,\lambda_n)}(1:\ldots:1)\stackrel{?}{=}f_{(\mu_0,\ldots,\mu_n)}(1:\ldots:1)=(\mu_0,\ldots,\mu_n).$$

Das gilt genau dann, wenn $\exists a \in K^* \text{ mit } (\lambda_0, \dots, \lambda_n) = \alpha(\mu_0, \dots, \mu_n).$

Idee. Wir legen f fest durch die Bilder der n+2 Punkte

$$q_0, \dots, q_n$$
 $|| \qquad ||$
 $f(p_0) \qquad f(p_n)$

und f((1:...:1)).

Datei 20: Projektive Basis

Definition. Sei V ein K-Vektorraum und $p_0, \ldots, p_r \in \mathbb{P}(V)$. Wir nennen das Tupel (p_0, \ldots, p_r) projektiv unabhängig, wenn es linear unabhängige Vektoren $v_0, \ldots, v_r \in V$ gibt mit $p_i = Kv_i, 0 \le i \le r$.

Bemerkungen. Das Tupel (p_0, \ldots, p_r) ist projektiv unabhängig gdw $\dim(p_0 \vee \cdots \vee p_r) = r$.

Beispiel. Im $\mathbb{P}_n(K)$ sind die Punkte

$$p_0 = (1:0:\dots:0)$$

 \vdots
 $p_n = (0:0:\dots:1)$

projektiv unabhängig.

Definition. Sei V ein K-Vektorraum mit $\dim(V) = n$ und $p_0, \ldots, p_n, p_{n+1} \in \mathbb{P}(V)$. Wir nennen das (n+2)-Tupel (p_0, \ldots, p_{n+1}) projektive Basis von $\mathbb{P}(V)$, wenn je n+1 Punkte davon projektiv unabhängig sind.

Beispiel. $V = K^{n+1}$. Dann sind

$$p_0 = (1:0:\dots:0)$$

 \vdots
 $p_n = (0:0:\dots:1)$
 $p_{n+1} = (1:\dots:1)$

eine projektive Basis der $\mathbb{P}_n(K)$. Wir nennen p_0, \ldots, p_{n+1} auch kanonische projektive Basis des $\mathbb{P}(n)K$.

Lemma 2.2.2. Sei V ein K-Vektorraum und p_0, \ldots, p_{n+1} eine projektive Basis des $\mathbb{P}(V)$. Dann gibt es eine Basis v_0, \ldots, v_n von V, sodass gilt

$$p_i = Kv_i \quad 0 \le i \le n$$
$$p_{n+1} = K(v_0 + \dots + v_n).$$

Beweis. p_0, \ldots, p_n sind projektiv unabhängig, also gibt es eine Basis w_0, \ldots, w_n des K-Vektorraums V mit $p_i = K \cdot w_i$ $0 \le i \le n$. Sei $p_{n+1} = K \cdot w$ mit $w \in V \setminus \{0\}$. Dann $\exists \lambda_0, \ldots, \lambda_n \in K$ mit

$$w = \lambda_0 w_0 + \dots + \lambda_n w_n.$$

Behauptung. $\lambda_i \neq 0$ für $0 \leq i \leq n$.

Denn angenommen $\lambda_0 = 0$. Dann sind die Vektoren

$$w_0, \ldots, w_{j-1}, w_{j+1}, \ldots, w_n, w$$

linear abhängig 🖠 zu

$$p_0, \ldots, p_{j-1}, p_{j+1}, \ldots, p_n, p_{n+1}$$

projektiv unabhängig. Wähle nun $v_i = \lambda_i w_i$, $0 \le i \le n$.

Vorlesung 12

Di 02.06. 10:15

Eine Rechtfertigung der Definition des Begriffs "projektive Basis":

Satz 2.2.3. Seien V, W K-Vektorräume mit $\dim(V) = \dim(W) = n$ und (p_0, \ldots, p_{n+1}) bzw. q_0, \ldots, q_{n+1} projektive Basen von $\mathbb{P}(V)$ bzw. $\mathbb{P}(W)$.

Dann gibt es genau eine Projektivität

$$f: \mathbb{P}(V) \to \mathbb{P}(W)$$

mit $f(p_i) = q_i, 0 \le i \le n + 1$.

Bemerkung. Ist $\dim(V) = \dim(W)$, dann ist jede projektive Abbildung $f : \mathbb{P}(V) \to \mathbb{P}(W)$ eine Projektivität.

Beweis von Satz 2.2.3. Wähle nach Lemma 2.2.2 Basen v_0, \ldots, v_n von V und w_0, \ldots, w_n von W mit

$$p_i = Kv_i \quad 0 \leqslant i \leqslant n$$
$$p_{n+1} = K(v_0 + \dots + v_n)$$

und

$$q_i = Kw_i \quad 0 \leqslant i \leqslant n$$
$$q_{n+1} = K(w_0 + \dots + w_n).$$

Sei $f: \mathbb{P}(V) \to \mathbb{P}(W)$ eine projektive Abbildung mit $f(p_i) = q_i, \ 0 \leqslant i \leqslant n+1$ und $F: V \to W$ eine zugehörige lineare Abbildung. Aus $f(p_i) = q_i$ folgt für $0 \leqslant i \leqslant n$

$$f(p_i) = K \cdot F(v_i) = q_i = K \cdot w_i,$$

also $\exists \lambda_0, \ldots, \lambda_n \in K^*$ mit

$$F(v_i) = \lambda_i w_i \ 0 \leqslant i \leqslant n.$$

Aus

$$K \cdot F(v_0 + \dots + v_n) = f(p_{n+1}) = q_{n+1} = K \cdot (w_0 + \dots + w_n)$$

erhalten wir $\lambda_{n+1} \in K^*$ mit

$$\lambda_0 w_0 + \dots + \lambda_n w_n = F(v_0 + \dots + v_n) = \lambda_{n+1} (w_0 + \dots + w_n).$$

Die Vektoren $w_0, \dots, w_n \in W$ sind linear unabhängig, also ist

$$\lambda_{n+1} = \lambda_0 = \dots = \lambda_n.$$

Damit ist $F: V \to W$ als lineare Abbildung bis auf Skalieren mit $\lambda_{n+1} \in K^*$ eindeutig bestimmt und damit $f = \mathbb{P}(F)$ eindeutig bestimmt. Umgekehrt ist die Abbildung $F: W \to V$ gegeben durch $v_i \mapsto w_i$, $0 \leqslant i \leqslant n$ ein Isomorphismus und $\mathbb{P}(F): \mathbb{P}(V) \to \mathbb{P}(W)$ hat die Eigenschaft, dass

$$\mathbb{P}(F)(p_i) = q_i \quad 0 \leqslant i \leqslant n+1.$$

Frage. Können wir Projektivitäten durch Matrizen beschreiben (ähnlich wie wir es für affine Abbildungen zwischen affinen Räumen gesehen haben)?

Datei 21: Projektivitäten beschrieben durch Matrizen

→Wir benötigen die Wahl eines Koordinatensystems.

Sei V ein n+1-dimensionaler K-Vektorraum mit Basis v_0, v_1, \ldots, v_n . Dann ist

$$q_i = Kv_i \quad 0 \leqslant i \leqslant n$$

$$q_{n+1} = K(v_0 + \dots + v_n).$$

eine projektive Basis von $\mathbb{P}(V)$. Nach Satz 2.2.3 gibt es eine eindeutig bestimmte Projektivität

$$\varphi \colon \mathbb{P}_n(K) \to \mathbb{P}(V)$$

 $_{
m mit}$

$$\phi(p_i) = q_i \quad 0 \leqslant i \leqslant n+1,$$

wobei

$$p_0 = (1 : \dots : 0)$$

 \vdots
 $p_n = (0 : \dots : 1)$
 $p_{n+1} = (1 : \dots : 1)$

die kanonische Basis der $\mathbb{P}_n(K)$ ist.

Definition. Sei V ein K-Vektorraum und $n = \dim \mathbb{P}(V)$. Unter einem Koordinatensystem von $\mathbb{P}(V)$ verstehen wir eine Projektivität

$$f: \mathbb{P}_n(K) \to \mathbb{P}(V)$$
.

Ist $f(x_0 : \cdots : x_n) = p \in \mathbb{P}(V)$, dann nennen wir $(x_0 : \cdots : x_n)$ einen homogenen Koordinatenvektor von p.

Beschreibung von Projektivitäten durch Matrizen

Idee. Seien V, W K-Vektorräume mit $\dim(V) = n + 1$ und

$$f: \mathbb{P}(V) \to \mathbb{P}(W)$$

eine Projektivität. Wähle Koordinatensysteme

$$\mathbb{P}_n(K) \xrightarrow{g} \mathbb{P}_n(K)X$$

$$\varphi \downarrow \varphi \qquad \downarrow \psi$$

$$\mathbb{P}(V) \xrightarrow{f} \mathbb{P}(Y)$$

Dann ist $g = \psi^{-1} \circ f \circ \varphi$ Projektivität.

Ziel. Beschreibe g mit Hilfe der Sprache von Matrizen.

Sei

$$G \colon K^{n+1} \to K^{n+1}$$

ein Isomorphismus mit $g = \mathbb{P}(G)$ (G ist bis auf Multiplikation mit Skalaren $\neq 0$ eindeutig bestimmt).

Dann besteht eine Matrix $A \in GL_{n+1}(K)$ mit $G(\underline{x}) = \underline{x}$ für alle

$$x = (x_0, x_1, \dots, x_n) \in K^{n+1}$$
.

Sei $A = (a_{ij})_{0 \le i, j \le n}$. Es gilt

$$g(x_0:\ldots:x_n)=((a_{00}x_0+\cdots+a_{0n}x_n):(a_{10}x_0+\cdots+a_{1n}x_n):\ldots:(a_{n0}x_0+\cdots+a_{nn}x_n)).$$

Frage. Wie verhält sich g eingeschränkt auf $\iota(K^n)$?

Wir haben die kanonische Einbettung als

$$\iota \colon K^n \to \mathbb{P}_n(K) \setminus H$$
$$(x_1, \dots, x_n) \mapsto (1 \colon x_1 \colon \dots \colon x_n),$$

definiert, mit

$$H = \{ (y_0 : y_1 : \ldots : y_n) \in \mathbb{P}_n(K) \mid y_0 = 0 \}.$$

Es gilt für $(x_1, \ldots, x_n) \in K^n$.

$$g(\iota(x_1,\ldots,x_n)) = (a_{00} + a_{01}x_1 + \cdots + a_{0n}x_n : a_{10} + a_{11}x_1 + \cdots : \ldots : a_{n0} + a_{n1}x_1 + \cdots + a_{nn}x_n),$$

also $g(\iota(x_1,\ldots,x_n)) \in \iota(K^n)$ genau dann, wenn

$$a_{00} + a_{01}x_1 + \dots + a_{0n}x_n \neq 0 \tag{2.1}$$

und in dem Fall ist

$$g(\iota(x_1,\ldots,x_n)) = \left(\frac{a_{10} + a_{11}x_1 + \cdots + a_{1n}x_n}{a_{00} + a_{01}x_1 + \cdots + a_{0n}x_n}, \ldots, \frac{a_{n0} + a_{n1}x_1 + \cdots + a_{nn}x_n}{a_{00} + a_{01}x_1 + \cdots + a_{0n}x_n}\right).$$

Bemerkung. g induziert eine Abbildung

$$g|_{\iota(K^n)} \colon \iota(K^n) \to \iota(K^n) \subseteq \mathbb{P}_n(K)$$

genau dann, wenn

$$a_{01} = \cdots = a_{0n} = 0.$$

Datei 22: Zentralprojektionen

Zentralprojektionen in der projektiven Geometrie

Sei V ein K-Vektorraum, $W, W_1, W_2 \subseteq V$ K-Untervektorräume mit

$$V = W \oplus W_1 = W \oplus W_2$$
,

dann sind $Z=\mathbb{P}(W),\ Z_1=\mathbb{P}(W_1)$ und $Z_2=\mathbb{P}(W_2)$ projektive Unterräume von $\mathbb{P}(V)$ mit

- i) $Z \cap Z_1 = Z \cap Z_2 = \emptyset$ und
- ii) $Z \vee Z_1 = Z \vee Z_2 = \mathbb{P}(V)$.

Wir definieren eine Abbildung

$$f \colon Z_1 \to Z_2$$

 $p \mapsto (Z \lor p) \cap Z_2$

und nennen f Zentralprojektion.

Behauptung. Für $p \in Z_1$ gilt

$$\#((Z \vee p) \cap Z_2) = 1.$$

Denn wir berechnen

$$\dim((Z \vee p) \cap Z_2)$$

durch

$$\dim((Z \vee p) \cap Z_2) = \dim(Z \vee p) + \dim Z_2 - \dim(Z \vee p \vee Z_2)$$

$$\stackrel{\text{Dimensionsformel}}{= \dim(Z \vee p) + \dim Z_2 - \dim \mathbb{P}(V)}$$

$$= \dim Z + 1 + \dim Z_2 - \dim \mathbb{P}(V)$$

$$= 1 - 1 = 0$$

also schneiden $Z \vee p$ und Z_2 sich in genau einem Punkt.

Lemma 2.2.4. Die oben definierte Zentralprojektion f ist eine Projektivität.

Beweis. Notation wie oben. Betrachte die Projektion von K-Vektorräumen

$$P_W \colon V = W \oplus W_2 \to W_2$$

 $w + w_2 \mapsto w_2.$

Dann ist

$$P_W|_{W_1}\colon W_1\to W_2$$

ein Isomorphismus (siehe 1.4). Also erhalten wir eine Projektivität

$$\mathbb{P}(P_W|_{W_1}) \colon \mathbb{P}(W_1) \to \mathbb{P}(W_2).$$

Sei $p \in \mathbb{P}(W_1)$. Wir berechnen $\mathbb{P}(P_W|_{W_1})(p)$. Sei dazu $p = K \cdot w_1$ mit $w_1 \in W_1 \setminus \{0\}$. Schreibe $w_1 = w + w_2$ mit $w \in W$, $w_2 \in W_2$. Dann ist

$$\mathbb{P}(P_W|_{W_1})(p) = K \cdot w_2 \in Z_2.$$

Betrachte nun

$$(Z \lor p) \cap Z_2 = \mathbb{P}(W + K \cdot w_1) \cap \mathbb{P}(W_2)$$

$$= \mathbb{P}(W + K(w + w_2)) \cap \mathbb{P}(W_2)$$

$$= \mathbb{P}(W + K \cdot w_2) \cap \mathbb{P}(W_2)$$

$$= \mathbb{P}((W + K \cdot w_2) \cap W_2)$$

$$= \mathbb{P}(K \cdot W_2) = K \cdot w_2.$$

$$W \cap W_2 = \{0\}$$

Also ist

$$f(p) = K \cdot w_2 = \mathbb{P}(P_W|_{W_1})(p).$$

und damit

$$f = \mathbb{P}(P_W|_{W_1})$$

eine Projektivität.

Vorlesung 13

Fr 05.06. 10:15

Datei 23: Affine

Projektive

Geometrie

§2.3 Zusammenhänge zwischen affiner und projektiver Geometrie

Motivation. Im $\mathbb{P}_n(K)$ haben wir die kanonische Einbettung

$$\iota \colon K^n \to \mathbb{P}_n(K)$$
$$(x_1, \dots, x_n) \mapsto (1 : x_1 : \dots : x_n)$$

definiert und gesehen, dass K^n unter ι bijektiv auf $\mathbb{P}_n(K) \setminus \{x_0 = 0\}$ abgebildet wird.

Frage. Entferne in einem allgemeinen projektiven Raum $\mathbb{P}(V)$ eine Hyperebene H

- Inwiefern kann man $\mathbb{P}(V) \setminus H$ als affinen Raum auffassen?
- Inwiefern übertragen sich andere Strukturen, z.B. projektive Unterräume?

Satz 2.3.1. Sei V ein K-Vektorraum und $H \subseteq \mathbb{P}(V)$ eine Hyperebene. Setze $X := \mathbb{P}(V) \setminus H$. Dann gibt es einen K-Vektorraum T(X) und eine einfach transitive Gruppen-operation

$$\tau \colon T(X) \to \mathrm{Bij}(X),$$

sodass $(X, T(X), \tau)$ ein affiner Raum ist mitfolgenden Eigenschaften:

a) Ist $Z \in \mathbb{P}(V)$ ein projektiver Unterraum mit $Z \not\subseteq H$. Dann ist $Z \cap X \subseteq X$ ein affiner Unterraum von X und es gilt

$$\dim(Z \cap X) = \dim Z$$
$$\dim()Z \cap H = \dim Z - 1.$$

Datei 23: Affine Projektive Geometrie

Die Abbildung

$$\alpha \colon \left\{ \begin{array}{l} \text{proj. Unterr"aume von } \mathbb{P}(V), \text{ die } \\ \text{nicht in H enthalten sind} \end{array} \right\} \to \left\{ \begin{array}{l} \text{nicht-leere affine Unterr"aume von } \\ X \end{array} \right\}$$

ist bijektiv.

b) Sei $f: \mathbb{P}(V) \to \mathbb{P}(V)$ eine Projektivität mit f(H) = H. Dann ist $f|_X: X \to X$ eine Affinität. Die Abbildung

$$\beta\colon\{$$
 Projektivitäten f von $\mathbb{P}(V)$ mit $f(H)=H\;\}\to\{$ Affinitäten von $X\;\}$
$$f\mapsto f|_X$$

ist eine Bijektion.

Beweis. Konstruktion des affinen Raumes $(X,T(X),\tau)$ Sei $H=\mathbb{P}(W)$ mit $W\subseteq V$ ein K-Vektorraum. Wähle $v_0\in V\setminus W$ und definiere den affinen Unterraum

$$X' \coloneqq V_0 + W \subseteq V$$

mit (V, V, τ) als affiner Raum.

Translation

Wir definieren eine Abbildung

$$\sigma \colon X' \to X$$
$$X' \ni V \mapsto K \cdot v.$$

Für $x \in X'$ ist $K \cdot v \notin \mathbb{P}(W) = H$, da $v \in W$. Also ist $\sigma \colon X' \to X$ eine wohldefinierte Abbildung. Wir zeigen, dass σ eine Bijektion ist.

 σ ist injektiv: Seien $v, v' \in X'$ mit $K \cdot v = Kv'$. Dann wären v und v' linear abhängig, aber X' enthält keine linear abhängigen Vektoren.

 σ ist surjektiv Sei $p \in \mathbb{P}(V) \setminus H$ gegeben durch $p = K \cdot v$ mit $v \in V \setminus W$.

Behauptung. Dann ist

$$p \cap X' \neq \emptyset$$
.

Verwende die Dimensionsformel für affine Unterräume. Falls $X' \cap p = \emptyset$, dann

$$\dim(X' \vee p) = \dim X' + \dim p - \dim(T(X') \cap T(p)) + 1$$

$$= \dim(V) - 1 + 1 - \dim(\underbrace{W \cap K \cdot v}_{=\{0\}}) + 1$$

$$= \dim V - 0 + 1 \quad \oint_{\mathbb{R}}.$$

Also ist $p \cap X' \neq \emptyset$ und nach der Dimensionsformel für affine Unterräume folgt $\#(p \cap X') = 1$, und

Idee. Verwende σ um die Struktur von X' als affinen Raum auf X zu übetragen.

X' ist ein affiner Raum $(X', T(X'), \tilde{\tau})$ mit T(X') = W und Gruppenoperation

$$\tilde{\tau} : W \mapsto \operatorname{Bij}(X')$$

$$w \mapsto \tilde{\tau}_w$$

$$\tilde{\tau}_w : X \to X$$

$$x \mapsto w + x$$

Wir setzen T(X) = W und definieren eine Gruppenoperation

$$\tau \colon W \to \operatorname{Bij}(X)$$

 $w \mapsto \tau_w.$

durch

$$\tau_{w(p)} \coloneqq \sigma \left(\tilde{\tau}_w(\underbrace{\sigma^{-1}(p)}_{\in X'}) \right).$$

Dann ist $(X, T(X), \tau)$ affiner Raum und

$$\sigma \colon X' \to X$$

Affinität.

a) Sei $Z = \mathbb{P}(U)$ projektiver Unterraum von $\mathbb{P}(V)$ mit $U \leq V$ K-Untervektorraum und $Z \not\subseteq H$, also $Z \cap X \neq \emptyset$. Dann ist $X' \cap U$ affiner Unterraum von X' und

$$Z \cap X = \sigma(X' \cap U)$$

affiner Unterraum von X.

Berechnung von $\dim(Z \cap X)$ und $\dim(Z \cap H)$

Sei $\dim(V) = n + 1$. Es ist $X' \cap U \neq \emptyset$, also folgt von der affinen Dimensionsformel

$$n+1 = \dim(U \vee X') = \dim U + \underbrace{\dim n}_{=n} - \dim(U \cap X').$$

Es folgt

$$\dim(U \cap X') = \dim U - 1$$

und

$$\dim(Z \cap X) = \dim(\sigma(X' \cap U)) = \dim U - 1 = \dim_{\uparrow} Z.$$
 als projektiver Raum

Aus $Z \not\subseteq H$ folgt $Z \vee H = \mathbb{P}(V)$. Aus der projektiven Dimensionsformel folgt

$$n=\dim Z\vee H=\dim Z+\underbrace{\dim(H)}_{=n-1}-\dim Z\cap H,$$

also

$$\dim Z \cap H = \dim Z - 1.$$

Wir wollen zeigen, das

$$\alpha \colon \left\{ \begin{array}{l} \text{proj. Unterr"aume von } \mathbb{P}(V), \text{ die} \\ \text{nicht in H enthalten sind} \end{array} \right\} \to \left\{ \begin{array}{l} \text{nicht-leere affine Unterr"aume von} \\ X \end{array} \right\}$$

eine Bijektion ist. Wir konstruieren dazu eine Umkehrabbildung α' . Sei $\varnothing \neq Y \subseteq X$ affiner Unterraum und

$$Y' \coloneqq \sigma^{-1}(Y).$$

Dann ist Y' affiner Unterraum von X' und

$$T(Y') \subseteq T(X') = W$$

Untervektorraum. Sei $v \in Y'$. Definiere

$$U \coloneqq K \cdot v + T(Y').$$

Wegen $v \in Y' \subseteq X'$ gilt sogar $v \notin W$ und

$$U = K \cdot v \oplus T(Y').$$

Sei $\overline{Y} := \mathbb{P}(U)$. Dann ist \overline{Y} projektiver Unterraum von $\mathbb{P}(V)$. Sei

$$\alpha'(Y) := \overline{Y}.$$

Dann ist α' Umkehrabbildung zu α , denn

$$\alpha'(\alpha(Z)) = Z \cap X = Z$$

und

$$\alpha(\alpha'(Y)) = \overline{Y} \cap X = Y.$$

b) Sei $f: \mathbb{P}(V) \to \mathbb{P}(V)$ Projektivität mit $f = \mathbb{P}(F)$ für einen Isomorphismus $F: V \to V$. Wir nehmen an, dass f(H) = H, also F(W) = W nach Skalieren von F können wir annehmen, dass

$$F(v_0) \in X'$$
.

Es gilt dann

$$F(X') = X'.$$

Behauptung. $F|_{X'}\colon X'\to X'$ ist Affinität mit zugehöriger linearen AB Abbildung

$$F|_W\colon T(X')\to T(X').$$

denn: sind $x_1, x_2 \in X' \subseteq V$, dann

$$\overrightarrow{F|_{x'}(x_1)F|_{X'}(x_2)} = \overrightarrow{F(x_1)F(x_2)}$$

$$= F(x_2) - F(x_1)$$

$$= F(x_2 - x_1)$$

$$= F(\overrightarrow{x_1x_2}) \quad \checkmark$$

und F ist bijektiv.

Damit ist auch

$$f|_X \colon X \to X$$

Affinität, denn

$$f|_X = \sigma \circ F|_{x'} \circ \sigma^{-1}.$$

Wir müssen nun zeigen, dass die Abbildung

Datei 24: Afiine projektive Geometrie Teil 2

$$\beta\colon\{$$
 Projektivitäten f von $\mathbb{P}(V)$ mit $f(H)=H$ } \to { Affinitäten von X } $f\mapsto f|_X$

eine Bijektion ist. Wir konstruieren eine Umkehrabbildung β' . Sei $g\colon X\to X$ Affinität, mit zugehöriger linearer Abbildung

$$G \colon W \to W.$$

$$T(X) \quad T(X)$$

Wegen $v_0 \notin W$ gilt

$$V = W \oplus K \cdot v_0$$
.

Wir definieren einen Isomorphismus $\tilde{G} \colon V \to V$ durch

$$\tilde{G}|_{W} = G$$

$$\tilde{G}(v_0) = \sigma^{-1}(g(\sigma(v_0)))$$

und setzen $\overline{g} = \mathbb{P}(\tilde{G})$. Dann gilt $\overline{g}|_X = g$, $\overline{g}(H) = H$ und $\overline{f}|_X = f$, also ist $\beta^{-1}(g) = \overline{\beta}$ invers zu β .

Bemerkung (ohne Beweis). Im Satz 2.3.1 haben wir gezeigt, wie man das Komplement

$$\mathbb{P}(V) \setminus H \quad H \subset \mathbb{P}(V)$$
 Hyperebene

als affinen Raum verstehen kann. Man kann auch zeigen, dass jeder affine Raum Resultat solch einer Konstruktion ist. D. h. für einen beliebigen affinen $(X, T(X), \tau)$ gibt es einen projektiven Raum $\mathbb{P}(V)$, eine Hyperebene $H \subseteq \mathbb{P}(V)$ und eine Affinität

$$X \to \mathbb{P}(V) \setminus H$$
,

wobei $\mathbb{P}(V) \setminus H$ wie in Satz 2.3.1 als affiner Raum verstanden wird.

Vorlesung 14

Di 09.06. 10:15

§2.4 Invarianten von Projektivitäten

Datei 25: Doppelverhältnis

Erinnerung (Das Teilverhältnis in der affinenn Geometrie). X ein affiner Raum über $K, p_0 \neq p_1 \in X$. Dann ist (p_0, p_1) eine affine Basis für die affine Gerade

$$p_0 \vee p_1 =: Y$$
.

Es gibt ein eindeutig bestimmtes Koordinatensystem

$$\varphi \colon K \to Y$$

mit $\varphi(0) = p_0, \, \varphi(1) = p_1$. Für $p \in Y$ setzen wir

$$TV(p_0, p_1, p) = \varphi^{-1}(p).$$

Beispiel.

Wir können X in einen projektiven Raum $\mathbb{P}(V)$ übe K einbetten (siehe letzter Abschnitt).

Frage. Das Teilverhältnis bleibt mit Affinitäten invariant, giltdies auch für Projektivitäten, nach Einbettung in einen projektiven Raum?

Beispiel. Zentralprojektionen π

Im Allgemeinen wird das Teilverhältnis nicht unter Projektivitäten erhalten.

Frage. Konstruktion einer natürlichen projektiven Invarianten?

Idee. Wir verwenden projektive Koordinatensysteme statt affiner Koordinatensysteme.

Sei V ein K-Vektorraum und $Z \subseteq \mathbb{P}(V)$ eine projektive Gerade. Dann ist (p_0, p_1, p_2) eine projektive Basis von Z und es besteht ein eindeutig bestimmtes Koordinatensystem

$$\mathcal{K} := \mathbb{P}_1(K) \to Z$$

 $_{
m mit}$

$$\mathcal{K}(1:0) = p_0$$

$$\mathcal{K}(0:1) = p_1$$

$$\mathcal{K}(1:1) = p_2.$$

Sei $p \in \mathbb{Z}$. Wir definieren das Doppelverhältnis von p_0, p_1, p_2, p als

$$\mathrm{DV}(p_0, p_1, p_2, p) \coloneqq \mathcal{K}^{-1}(p) \in \mathbb{P}_1(K).$$

Beispiel. $Z = \mathbb{P}_1(K)$ mit $p_0 = (1:0), p_1 = (0:1), p_2 = (1:1)$. Dann ist

$$DV(p_0, p_1, p_2, (\lambda : \mu)) = (\lambda : \mu).$$

Das Doppelverhältnis ist invariant unter Projektivitäten:

Satz 2.4.1. Seien V, W K-Vektorräume und $f: \mathbb{P}(V) \to \mathbb{P}(W)$ eine Projektivität. Seien $p_0, p_1, p_2, p \in \mathbb{P}(V)$ Punkte, die in einer gemeinsamen Geraden enthalten sind und p_0, p_1, p_2 paarweise verschieden. Dann gilt

$$DV(p_0, p_1, p_2, p) = DV(f(p_0), f(p_1), f(p_2), f(p)).$$

Beweis. Sei $Z \subseteq \mathbb{P}(V)$ die Gerade mit $p_0, p_1, p_2, p \in Z$ und $Z' = f(Z) \subseteq \mathbb{P}(W)$. Sei $\mathcal{K} \colon \mathbb{P}_1(K) \to K$ das Koordinatensystem mit $\mathcal{K}(1:0) = p_0, \mathcal{K}(0:1) = p_1, \mathcal{K}(1:1) = p_2$.

Dann ist $f|_Z\colon Z\to Z'$ Projektivität und $\mathcal{K}'\coloneqq f|_Z\circ\mathcal{K}$ eine Projektivität mit

$$\mathcal{K}'(1:0) = f(p_0)$$

 $\mathcal{K}'(0:1) = f(p_1)$
 $\mathcal{K}'(1:1) = f(p_2).$

Also gilt

$$DV(f(p_0), f(p_1), f(p_2), f(p)) = \mathcal{K}'^{-1}(f(p))$$

$$= \mathcal{K}^{-1}(p)$$

$$= DV(p_0, p_1, p_2, p).$$

Datei 26: Berechnung Doppelverhältnis

Berechnung des Doppelverhältnisses aus homogenen Koordinaten

Sei K ein Körper und seien $p_0, p_1, p_2 \in \mathbb{P}_1(K)$ paarweise verschieden und $p_3 \in \mathbb{P}_1(K)$. Wir nehmen an, dass p_0, p_1, p_2, p_3 in homogenen Koordinaten

$$p_i = (\lambda_i : \mu_i), \quad 0 \leqslant i \leqslant 3$$

gegeben sind.

Ziel. Berechne $DV(p_0, p_1, p_2, p_3)$ aus $\lambda_0, \ldots, \lambda_3, \mu_0, \ldots, \mu_3$.

Schritt 1

Sei $\mathcal{K} \colon \mathbb{P}_1(K) \to \mathbb{P}_1(K)$ das Koordinatensystem gegeben durch

$$\mathcal{K}(1:0) = p_0$$

 $\mathcal{K}(0:1) = p_1$
 $\mathcal{K}(1:1) = p_2$.

Sei $A \colon K^2 \to K^2$ ein Isomorphismus mit Matrix $A \in \mathrm{GL}_2(K)$ und $\mathbb{P}(A) = \mathcal{K}$. Wir bestimmen explizit eine solche Matrix A. Aus

$$A \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in K^{\star} \cdot \begin{pmatrix} \lambda_0 \\ \mu_0 \end{pmatrix}$$

und

$$A\binom{0}{1} \in K^{\star}\binom{\lambda_1}{\mu_1}$$

folgt, dass es $\rho, \rho' \in K^*$ gibt mit

$$A = \begin{pmatrix} \rho \lambda_0 & \rho' \lambda_1 \\ \rho \mu_0 & \rho' \mu_1 \end{pmatrix}.$$

Aus $\mathcal{K}(1:1) = p_2$ folgt

$$\rho \lambda_0 + \rho' \lambda_1 = \rho'' \lambda_2
\rho \mu_0 + \rho' \mu_1 = \rho'' \mu_2$$
(*)

für ein $\rho'' \in K^*$. Das System (*) kann z. B. gelöst werden durch

$$\rho'' = \det \begin{pmatrix} \lambda_0 & \lambda_1 \\ \mu_0 & \mu_1 \end{pmatrix}$$

$$\rho = \det \begin{pmatrix} \lambda_2 & \lambda_1 \\ \mu_2 & \mu_1 \end{pmatrix}$$

$$\rho' = \det \begin{pmatrix} \lambda_0 & \lambda_1 \\ \mu_0 & \mu_1 \end{pmatrix}.$$

Dann ist

$$A = \begin{pmatrix} \lambda_0 \det \begin{pmatrix} \lambda_2 & \lambda_1 \\ \mu_2 & \mu_1 \end{pmatrix} & \lambda_1 \det \begin{pmatrix} \lambda_0 & \lambda_2 \\ \mu_0 & \mu_2 \end{pmatrix} \\ \mu_0 \det \begin{pmatrix} \lambda_2 & \lambda_1 \\ \mu_2 & \mu_1 \end{pmatrix} & \mu_1 \det \begin{pmatrix} \lambda_0 & \lambda_2 \\ \mu_0 & \mu_2 \end{pmatrix} \end{pmatrix}$$

und $K^{-1} \colon \mathbb{P}_1(K) \to \mathbb{P}_1(K)$ gegebene durch $K^{-1} = \mathbb{P}(A^{-1})$ mit

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} \mu_1 \det \begin{pmatrix} \lambda_0 & \lambda_2 \\ \mu_0 & \mu_2 \end{pmatrix} & -\lambda_1 \det \begin{pmatrix} \lambda_0 & \lambda_2 \\ \mu_0 & \mu_2 \end{pmatrix} \\ -\mu_0 \det \begin{pmatrix} \lambda_2 & \lambda_1 \\ \mu_2 & \mu_1 \end{pmatrix} & \lambda_0 \det \begin{pmatrix} \lambda_2 & \lambda_1 \\ \mu_2 & \mu_1 \end{pmatrix} \end{pmatrix}.$$

Wir berechnen

$$\mathcal{K}^{-1}(\lambda_3 : \mu_3) = K \cdot A^{-1} \begin{pmatrix} \lambda_3 \\ \mu_3 \end{pmatrix}$$

$$= K \cdot \begin{pmatrix} \det \begin{pmatrix} \lambda_0 & \lambda_2 \\ \mu_0 & \mu_2 \end{pmatrix} \cdot \det \begin{pmatrix} \lambda_3 & \lambda_1 \\ \mu_3 & \mu_1 \end{pmatrix} \\ \det \begin{pmatrix} \lambda_2 & \lambda_1 \\ \mu_2 & \mu_1 \end{pmatrix} \cdot \det \begin{pmatrix} \lambda_3 & \lambda_0 \\ \mu_3 & \mu_0 \end{pmatrix} \end{pmatrix}.$$

Wir formulieren das Resultat im folgenden Lemma:

Lemma 2.4.2. Seien $p_0, p_1, p_2, p_3 \in \mathbb{P}_1(K)$ mit p_0, p_1, p_2 paarweise verschieden und

$$p_i = (\lambda_i : \mu_i), \quad 0 \leqslant i \leqslant 3-$$

Dann gilt

$$DV(p_0, p_1, p_2, p_3) = \left(\det\begin{pmatrix} \lambda_2 & \lambda_0 \\ \mu_2 & \mu_0 \end{pmatrix} \det\begin{pmatrix} \lambda_3 & \lambda_1 \\ \mu_3 & \mu_1 \end{pmatrix} : \det\begin{pmatrix} \lambda_2 & \lambda_1 \\ \mu_2 & \mu_1 \end{pmatrix} \det\begin{pmatrix} \lambda_3 & \lambda_0 \\ \mu_3 & \mu_0 \end{pmatrix} \right).$$

Beispiel. Seien $p_0, p_1, p_2 \in \mathbb{P}_1(K)$ paarweise verschieden. Nach Lemma 2.4.2 ist

$$DV(p_0, p_1, p_2, p) = \begin{pmatrix} 0 & 1 \end{pmatrix}$$

genau dann, wenn

$$\det\begin{pmatrix} \lambda_3 & \lambda_1 \\ \mu_3 & \mu_1 \end{pmatrix} = 0$$

d. h. $(\lambda_3 : \mu_3) = (\lambda_1 : \mu_1)$. Wir erhalten also die Aussage zurück

$$DV(p_0, p_1, p_2, p) = (0:1)$$

genau dann, wenn $p_1 = p$.

Bemerkung. Aus Lemma 2.4.2 können wir weitere Symmetrieeigenschaften des Doppelverhältnisses ableiten. Seien dazu p_0, p_1, p_2, p paarweise verschieden. Dann ist z. B.

$$DV(p_0, p_1, p_2, p_3) = DV(p_1, p_0, p_3, p_2),$$

denn

$$DV(p_0, p_1, p_2, p_3) = (s:t)$$

ist äquivalent zu

$$DV(p_1, p_0, p_2, p_3) = (t : s).$$

Frage. Sei $n \ge 1$, $p_0, p_1, p_2, p_3 \in \mathbb{P}_n(K)$ in einer Geraden enthalten mit p_0, p_1, p_2 paarweise verschieden und

$$p_i = (x_0^{(i)} : x_1^{(i)} : \dots : x_n^{(i)}) \quad 0 \le i \le 3$$

in homogenen Koordinaten. Wie können wir aus den homogenen Koordinaten $DV(p_0, p_1, p_2, p_3)$ berechnen?

Idee. Sei $Z \subseteq \mathbb{P}_n(K)$ die projektive Gerade, die p_0, p_1, p_2, p_3 enthält. Verwende eine Zentralprojektion

$$f\colon Z\to \mathbb{P}_1(K)\subseteq \mathbb{P}_n(K)$$

einer der projektiven Unterräume $\mathbb{P}(\{(x_0,\ldots,x_n)\in K^{n+1}\mid x_k=0 \text{ für } k\not\in \{i,j\}\})$ für $i\neq j$

um das Problem auf den eindimensionalen Fall zurückzuführen durch

$$DV(p_0, p_1, p_2, p_3) = DV(f(p_0), f(p_1), f(p_2), f(p_3)).$$

Sei $Z = \mathbb{P}(W)$ mit $W \subseteq K^{n+1}$ 2-dimensionaler K-Untervektorraum. Sei für $i \neq j$

$$V_{ij} = \{ (x_0, \dots, x_n) \in K^{n+1} \mid x_k = 0 \text{ für } k \notin \{ i, j \} \}$$

und

$$\hat{V}_{ij} = \{ (x_0, \dots, x_n) \in K^{n+1} \mid x_i = x_j = 0 \}.$$

Dann ist $K^{n+1} = V_{ij} \oplus \hat{V}_{ij}$ und die Projektion

$$P \colon K_{ij}^{n+1} \to V_{ij}$$

$$V_{ij} \oplus \hat{V}_{ij}$$

induziert eine Zentralprojektion

$$f\colon Z\to \mathbb{P}(V_{ij})$$

genau dann, wenn

$$K^{n+1} = W \oplus \hat{V}_{ij}$$
.

Aus Dimensionsgründen ist dies äquivalent zu

$$K^{n+1} = W + \hat{V}_{ij}.$$

Lemma 2.4.3. Seien $p_0, p_1, p_2, p_3 \in \mathbb{P}_n(K)$ in einer Gerade enthalten und p_0, p_1, p_2 paarweise verschieden. Sei

$$p_k = (x_0^{(k)} : \dots : x_n^{(k)}) \quad 0 \le k \le 3$$

in homogenen Koordinaten.

Seien $1\leqslant i,j\leqslant n,\,i\neq j$ gegeben mit

$$\det \begin{pmatrix} x_i^{(0)} & x_i^{(1)} \\ x_j^{(0)} & x_j^{(1)} \end{pmatrix} \neq 0.$$

Dann gilt

$$DV(p_0, p_1, p_2, p_3) = \left(\det\begin{pmatrix} x_i^{(2)} & x_i^{(0)} \\ x_i^{(2)} & x_j^{(0)} \end{pmatrix} \det\begin{pmatrix} x_i^{(3)} & x_i^{(1)} \\ x_j^{(3)} & x_j^{(1)} \end{pmatrix} : \det\begin{pmatrix} x_i^{(2)} & x_i^{(1)} \\ x_j^{(2)} & x_j^{(1)} \end{pmatrix} \det\begin{pmatrix} x_i^{(3)} & x_i^{(0)} \\ x_j^{(3)} & x_j^{(0)} \end{pmatrix} \right).$$

Vorlesung 15

Fr 12.06. 10:15

Zusammenhang Doppelverhältnis ↔ **Teilverhältnis**

Seien $p_0, p_1, p_2, p_3 \in \mathbb{P}_1(K)$ paarweise verschieden und $p_i = (1 : \mu_i)$ für $0 \le i \le 3$ (wir schließen also hier den Punkt (0 : 1) aus). Dann gilt nach Lemma 2.4.2

$$DV(p_0, p_1, p_2, p_3) = \underbrace{\left(\underbrace{\mu_0 - \mu_2}_{\neq 0}(\mu_1 - \mu_3) : (\mu_1 - \mu_2)\underbrace{(\mu_0 - \mu_3)}_{\neq 0}\right)}_{\neq 0}$$
$$= \left(\frac{\mu_1 - \mu_3}{\mu_0 - \mu_3} : \frac{\mu_1 - \mu_2}{\mu_0 - \mu_2}\right)$$
$$= (TV(\mu_3, \mu_0, \mu_1) : TV(\mu_2, \mu_0, \mu_1)).$$

Also können wir in diesem Fall das Doppelverhältnis als "Verhältnis von Teilverhältnissen" verstehen.

Bemerkungen. Ist $p_0 = (0:1)$ und $p_i = (1:\mu_i)$ für $1 \le i \le 3$ paarweise verschieden, so gilt nach Lemma 2.4.2

$$DV(p_0, p_1, p_2, p_3) = (\mu_1 - \mu_3 : \mu_1 - \mu_2)$$
$$= \left(\frac{\mu_3 - \mu_1}{\mu_2 - \mu_1} : 1\right)$$
$$= (TV(\mu_1, \mu_2, \mu_3) : 1).$$

Datei 27: Desargues Pappos

Zwei Anwendungen des Doppelverhältnisses

Satz 2.4.4 (Desargues). Sei $\mathbb{P}(V)$ eine projektive Ebene und

$$p_1, p_2, p_3, p'_1, p'_2, p'_3$$

paarweise verschieden, sodass die Geraden

$$p_1 \vee p_1', p_2 \vee p_2', p_3 \vee p_3'$$

sich paarweise in einem gemeinsamen Punkt z schneiden.

Dann sind die Schnittpunkte

$$a := (p_1 \lor p_2) \cap (p'_1 \lor p'_2)$$

$$b := (p_2 \lor p_3) \cap (p'_2 \lor p'_3)$$

$$c := (p_3 \lor p_1) \cap (p'_3 \lor p'_1)$$

in einer Geraden enthalten.

Beweis. Sei

$$q := (p_1 \lor p_2) \cap (p_3 \lor p_3')$$

$$q' := (p_1 \lor p_2') \cap (p_3 \lor p_3')$$

$$r := (a \lor c) \cap (p_3 \lor p_3')$$

$$b' := (a \lor c) \cap (p_2 \lor p_3)$$

$$b'' := (a \lor c) \cap (p_2' \lor p_3')$$

Ziel. Wir zeigen b' = b'', denn dann ist

$$b'\cap b''\in (a\vee c)\cap \underbrace{(p_2\vee p_3)\cap (p_2'\vee p_3')}_b.$$

Die Punkte a, c und r, sind paarweise verschieden, es genügt also zu zeigen, dass

$$DV(a, c, r, b') = DV(a, c, r, b'').$$

Betrachte die Zentralprojektion

$$f_1: a \vee c \rightarrow a \vee p_1$$

mit Zentrum p_3 . Es folgt

$$DV(a, c, r, b') = DV(a, p_1, q, p_2).$$

Verwende als Nächstes die Zentralprojektion

$$f_2 \colon a \vee p_1 \to a \vee p'_1$$

mit Zentrum z und erhalte

$$DV(a, p_1, q, p_2) = DV(a, p'_1, q', p'_2)$$

und danach die Zentralprojektion

$$f_3 \colon a \vee p_1' \to a \vee c$$

mit Zentrum p'_3 . Dann ist

$$DV(a, p'_1, q', p'_2) = DV(a, c, r, b''),$$

also

$$DV(a, c, r, b') = DV(a, c, r, b'').$$

Satz 2.4.5 (Pappos). Seien $z,z'\subset \mathbb{P}(V)$ verschiedene Geraden in einer projektiven Ebene und

$$p_1, p_2, p_3, p'_1, p'_2, p'_3$$

paarweise verschiedene Punkte mit

$$p_1, p_2, p_3 \in Z$$

 $p'_1, p'_2, p'_3 \in Z'.$

Dann sind die Punkte

$$a := (p_1 \vee p_2') \cap (p_1' \vee p_2)$$
$$b := (p_2 \vee p_3') \cap (p_2' \vee p_3)$$
$$c := (p_3 \vee p_1') \cap (p_3' \vee p_1)$$

in einer Geraden enthalten.

Beweis. Wir definieren

$$r := Z \cap Z'$$

$$q := (a \lor c) \cap Z$$

$$q' := (a \lor c) \cap Z'$$

$$b' := (a \lor c) \cap (p_2 \lor p_3')$$

$$b'' := (a \lor c) \cap (p_2' \lor p_3).$$

Falls

$$r \in \{ p_1, p_2, p_3, p'_1, p'_2, p'_3 \},$$

z. B. $r=p_1$, dann sind a,b,c in der Geraden $p_1'\vee b$ enthalten. Ebenso können wir

$$a \in \{p_1, p_2, p_3, p'_1, p'_2, p'_3\}$$

Wir nehmen also an

$$a, r \notin \{ p_1, p_2, p_3, p'_1, p'_2, p'_3 \}.$$

Ziel. Zeige, dass b' = b''.

Wir verwenden Zentralprojektionen

$$f_1 \colon a \lor c \to \underbrace{p_1 \lor p_2}_Z$$

mit Zentrum p_3' ,

$$DV(q, c, q', b') = DV(q, p_1, r, p_2).$$

Danach

$$f_2 \colon \underbrace{p_1 \vee p_2}_Z \to Z'$$

mit Zentrum a,

$$DV(q, p_1, r, p_2) = DV(q', p'_2, r, p'_1).$$

Verwende dann die Zentralprojektion

$$f_3\colon Z'\to a\vee c$$

mit Zentrum p_3 ,

$$DV(q', p'_2, r, p'_1) = DV(q', b'', q, c).$$

Nach Symmetrie gilt

$$DV(q', b'', q, c) = DV(q, c, q', b'')$$

und damit b' = b''.

Datei 28: Hauptsatz projektive Geometrie

§2.5 Hauptsatz der projektiven Geometrie

Seien V, W K-Vektorräume und

$$f: \mathbb{P}(V) \to \mathbb{P}(W)$$

eine Projektivität. Ist $Z \subseteq \mathbb{P}(V)$ eine projektive Gerade, so ist auch

$$f(Z) \subseteq \mathbb{P}(W)$$

eine projektive Gerade.

Frage. Welche bijektiven Abbildungen

$$g \colon \mathbb{P}(V) \to \mathbb{P}(W)$$

haben die Eigenschaft, dass Geraden auf Geraden abgebildet werden?

Definition. Seien V, W K-Vektorräume und $g \colon \mathbb{P}(V) \to \mathbb{P}(W)$ eine bijektive Abbildung, sodass $\forall p, p' \in \mathbb{P}(V)$

$$f(p \vee p') \subseteq f(p) \vee f(p').$$

Dann nennen wir g Kollineation.

Beispiel. Sei K ein Körper mit Automorphismus α und $F: V \to W$ eine injektive lineare Abbildung, d. h.

$$F(v + v') = F(v) + F(v') \quad \forall v, v' \in V$$

$$F(\lambda v) = \alpha(\lambda)F(v) \quad \forall \lambda \in K \ \forall v \in V.$$

Dann induziert F eine Abbildung

$$\mathbb{P}(F) \colon \mathbb{P}(V) \% to \mathbb{P}(W)$$

$$\mathbb{P}(V) \ni K \cdot v \mapsto K \cdot F(v) \quad v \in V \setminus \{ \ 0 \ \}.$$

Definition. Seien V, W K-Vektorräume. Wir nennen eine Abbildung

$$f: \mathbb{P}(V) \to \mathbb{P}(W)$$

semiprojektiv, falls es eine injektive semilineare Abbildung $F: V \to W$ gibt mit

$$f = \mathbb{P}(F)$$
.

Falls f außerdem bijektiv ist, so nennen wir f Semiprojektivität.

Bemerkung. Ist $F: V \to W$ semilinear, so gilt

$$F(K \cdot v) = K \cdot F(v),$$

dnn

$$F(K \cdot v) = \{ F(\lambda v) \mid \lambda \in K \}$$

$$= \{ \alpha(\lambda)F(v) \mid \lambda \in K \}$$

$$= \{ \lambda F(v) \mid \lambda \in K \}$$

$$\alpha \text{ ist bijekti}$$

$$= K \cdot F(v).$$

Beispiel. Betrachte den Körper

$$\mathbb{Q}(\sqrt{2}) = \left\{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \right\}$$

mit Automorphismus

$$a + b\sqrt{2} \mapsto a - b\sqrt{2}$$
 $a, b \in \mathbb{O}$.

Dann ist

$$F: \mathbb{Q}(\sqrt{2})^3 \to \mathbb{Q}(\sqrt{2})^3$$

$$(a_1 + b_1\sqrt{2}, a_2 + b_2\sqrt{2}, a_3 + b_3\sqrt{2}) \mapsto (a_1 - b_1\sqrt{2}, a_2 - b_2\sqrt{2}, a_3 - b_3\sqrt{2})$$

$$(2.3)$$

eine semilineare Abbildung, die eine Semiprojektivität

$$\mathbb{P}(F) \colon \mathbb{P}_2(\mathbb{Q}(\sqrt{2})) \to \mathbb{P}_2(\mathbb{Q}(\sqrt{2}))$$

induziert.

Frage. Ist $\mathbb{P}(F)$ eine Projektivität über $\mathbb{Q}(\sqrt{2})$?

Lemma 2.5.1. Seien V, W K-Vektorräume, $f: \mathbb{P}(V) \to \mathbb{P}(W)$ eine semiprojektive Abbildung und $Z \subseteq \mathbb{P}(V)$ ein projektiver Unterraum. Dann ist $f(Z) \subseteq \mathbb{P}(W)$ ein projektiver Unterraum mit

$$\dim f(Z) = \dim Z.$$

Beweis. Sei $Z = \mathbb{P}(U)$ mit $U \leq V$ K-Untervektorraum,

$$\dim(U) = \dim Z + 1 = r.$$

Sei $F: V \to W$ injektiv, semilinear zum Automorphismus α und $f = \mathbb{P}(F)$. Sei $v_1, \ldots, v_r \in V$ eine Basis von U als K-Vektorraum. Wir berechnen

$$F(U) = F(K \cdot v_1 + \dots + Kv_r)$$

$$= \{ F(\lambda_1 v_1 + \dots + \lambda_r v_r) \mid \lambda_1, \dots, \lambda_r \in K \}$$

$$= \{ \alpha(\lambda_1) F(v_1) + \dots + \alpha(\lambda_r) F(v_r) \mid \lambda_1, \dots, \lambda_r \in K \} = \{ \lambda_1 F(v_1) + \dots + \lambda_r F(v_r) \mid \lambda_1, \dots, \lambda_r \in K \}$$

$$F \text{ ist semilinear}$$

$$= K \cdot F(v_1) + \dots + K \cdot F(v_r)$$

ist K-Untervektorraum on W. Es ist $\dim(F(U)) = r$, da F injektiv + semilinear ist. Verwende nun

$$f(Z) = \mathbb{P}(F(U)).$$

Satz 2.5.2 (Hauptsatz der projektiven Geometrie). Seien V, W K-Vektorräume mit $\dim(V) = \dim(W) \geqslant 3$ und $f \colon \mathbb{P}(V) \to \mathbb{P}(W)$ eine Kollineation. Dann ist f eine Semiprojektivität.

Bemerkung. Im Fall $K = \mathbb{R}$ folgt sogar, dass f eine Projektivität ist, d.h. für reelle projektive Räume der Dimension ≥ 2 sind die Begriffe Kollineation und Projektivität gleichbedeutend.

Vorlesung 16

Di 16.06. 10:15

Beweis von Satz 2.5.2. Im Folgenden sei K ein Körper, V, W K-Vektorräume mit $\dim(V) = \dim(W) \ge 3$ und $f : \mathbb{P}(V) \to \mathbb{P}(W)$ eine Kollineation.

Lemma 2.5.3. Seien $p_0, \ldots, p_r \in \mathbb{P}(V)$. Dann ist

$$f(p_0 \vee \cdots \vee p_r) \subseteq f(p_0) \vee \cdots \vee f(p_r).$$

Beweis. Induktion über r.

$$r = 0$$
 $f(p_0) \subseteq f(p_0) \checkmark$.

$$r \geqslant 1$$
 $p \in (p_0 \vee \cdots \vee p_{r-1}) \vee p_r$ mit $p_i = K \cdot v_i, v_i \in V, 0 \leqslant i \leqslant r$.

Dann ist

$$p_0 \vee \cdots \vee p_{r-1} \vee p_r = \mathbb{P}(K \cdot v_0 + \cdots + K \cdot v_r)$$

und

$$\exists p' \in p_0 \vee \cdots \vee p_{r_1} = \mathbb{P}(Kv_0 + \cdots + Kv_{r-1})$$

mit $p \in p' \vee p_r$. Dann gilt

$$f(p) \in f(p') \vee (p_r)$$

$$f \text{ ist Kollineation}$$

$$\in f(p_0) \vee \cdots \vee f(p_{r-1}) \vee f(p_r).$$

Lemma 2.5.4. Sei $\dim(V) = \dim(W) = n + 1$. Dann gibt es Basen v_0, \ldots, v_n von V und w_0, \ldots, w_n von W mit der Eigenschaft

$$f(K \cdot v_i) = K \cdot w_i \quad 0 \le i \le n$$

und

$$f(K \cdot (v_0 + v_i)) = K \cdot (w_0 + w_i) 1 \leqslant i \leqslant n.$$

Beweis. Wähl eine Basis v_0, \ldots, v_n von V und $w'_0, \ldots, w'_n \in W$, sodass

$$f(K \cdot v_i) = K \cdot w'_i \quad 0 \le i \le n.$$

Es ist

$$\mathbb{P}(W) = f(\mathbb{P}(V))$$

$$= f(K \cdot v_0 \vee \cdots \vee K \cdot v_n)$$

$$\subseteq f(K \cdot v_0) \vee \cdots \vee f(K \cdot v_n)$$
Lemma 2.5.3
$$= \mathbb{P}(K \cdot w'_0 + \cdots + K \cdot w'_n),$$

also ist w'_0, \ldots, w'_n eine Basis von W. Es gilt

$$K \cdot (v_0 + v_i) \in K \cdot v_0 \vee K \cdot v_i$$

also, da f Kollineation,

$$f(K \cdot (v_0 + v_i)) \in \underbrace{f(K \cdot v_0)}_{K \cdot w'_0} \vee \underbrace{f(K \cdot v_i)}_{K \cdot w'_i}$$
$$\in K \cdot w'_0 \vee K \cdot w'_i,$$

also $\exists \lambda_i, \mu_i \in K, 1 \leq i \leq n \text{ mit}$

$$f(K(v_0 + v_i)) = K(\mu_i w_0' + \lambda_i w_i')$$

= $K(w_0' + {\mu_i}^{-1} \lambda_i w_i')$.

Außerdem ist $\lambda_i, \mu_i \neq 0 \quad \forall i$, denn aus $\lambda_i = 0, \mu_i \neq 0$ folgt z. B.

$$f(K \cdot (v_0 + v_i)) = K \cdot w_0' = f(K \cdot v_0), \qquad \Box$$

Also ist $\lambda_i, \mu_i \in K^* \quad \forall 1 \leq i \leq n$.

Setze nun $w_0 := w_0'$ und $w_i = \underbrace{\lambda_i \mu_i^{-1}}_{\in K^*} w_i', 1 \leqslant i \leqslant n.$

Im Folgenden seien $v_0, \ldots, v_n \in V$ und $w_0, \ldots, w_n \in W$ wie in Lemma 2.5.4, d.h. v_0, \ldots, v_n ist Basis von V, w_0, \ldots, w_n ist Basis von W mit

$$f(K \cdot v_i) = K \cdot w_i \quad 0 \leqslant i \leqslant n$$

$$f(K \cdot (v_0 + v_i)) = K(w_0 + w_i) \quad 1 \leqslant i \leqslant n.$$

Lemma 2.5.5. Es gibt ein injektive Abbildung

$$\alpha \colon K \to K$$

mit $\alpha(0) = 0$, $\alpha(1) = 1$, und

$$f(K \cdot (v_0 + \lambda v_i)) = K \cdot (w_0 + \alpha(\lambda)w_i) \quad 1 \leqslant i \leqslant n \quad \forall \lambda \in K.$$

Beweis. Sei $1 \leq i \leq n$ fest, $\lambda \in K$. Setze

$$p = K(v_0 + \lambda v_i).$$

Dann ist $p \in K \cdot v_0 \vee K \cdot v_i$, also $f(p) \in K \cdot w_0 \vee K \cdot w_i$. Aus $p \neq K \cdot v_i$ folgt $f(p) \neq K \cdot w_i$ und es gibt $\alpha_i(\lambda) \in K$ mit

$$f(p) = K \cdot (w_0 + \alpha_i(\lambda)w_i).$$

Definiere $\alpha_i \colon K \to K$, $\lambda \mapsto \alpha_i(\lambda)$, α_i ist injektiv, denn für $\lambda_1 \neq \lambda_2$ ist

$$K \cdot (v_0 + \lambda_1 v_i) \neq K \cdot (v_0 \lambda_2 v_i).$$

Nach Konstruktion von $v_0, \ldots, v_n, w_0, \ldots, w_n$ gilt $\alpha_i(0) = 0$ und $\alpha_i(1) = 1$.

Wir zeigen nun $\alpha_i = \alpha_j$ für $1 \leq i, j \leq n$. Seien $i, j \subset \{1, \dots, n\}, i \neq j$. Für $\lambda \in K^*$ betrachte

$$p := K \cdot (v_i - v_j) = K \cdot (v_0 + \lambda v_i - (v_0 + \lambda v_j)).$$

Dann ist

$$p \in K \cdot v_i \vee K \cdot v_j$$

und

$$p \in K \cdot (v_0 + \lambda v_i) \vee K \cdot (v_0 + \lambda v_i),$$

also $f(p) \in K \cdot w_i \vee K \cdot w_i$ und

$$f(p) \in K(w_0 + \alpha_i(\lambda)w_i) \vee K \cdot (w_0 + \alpha_i(\lambda)w_i).$$

Sei $w \in W$ mit $f(p) = K \cdot w$. Dann $\exists \mu_i, \mu_j, \beta_i, \beta_j \in K$ mit

$$w = \mu_i w_i + \mu_j w_j$$

= $\beta_i (w_0 + \alpha_i(\lambda) w_i) + \beta_j (w_0 + \alpha_j(\lambda) w_j).$

Aus der linearen Unabhängigkeit von w_0, w_1, \ldots, w_n folgt

$$\beta_i = -\beta_j \quad \mu_i = \beta_i \alpha_i(\lambda) \quad \mu_j = \beta_j \alpha_j(\lambda),$$

also

$$f(p) = K \cdot (\alpha_i(\lambda)w_i - \alpha_i(\lambda)w_i).$$

p ist von $\lambda \in K^*$ unabhängig, also

$$f(p) = K \cdot (\alpha_i(1)w_i - \alpha_j(1)w_j)$$

= $K \cdot (w_i - w_j)$
= $K \cdot (\alpha_i(\lambda)w_i - \alpha_j(\lambda)w_j) \quad \forall \lambda \in K^*.$

Also
$$\alpha_i(\lambda) = \alpha_i(\lambda) \quad \forall \lambda \in K$$
.

Lemma 2.5.6. Notation wie oben. Seien $\lambda_1, \ldots, \lambda_n \in K$. Dann ist

$$f(K(v_0 + \lambda_1 v_2 + \dots + \lambda_n v_n)) = K \cdot (w_0 + \alpha(\lambda_1) w_1 + \dots + \alpha(\lambda_n) w_n).$$

Beweis. Wir zeigen induktiv für $1 \le r \le n$, dass

$$f(K \cdot (v_0 + \lambda_1 v_1 + \dots + \lambda_r v_r)) = K \cdot (w_0 + \alpha(\lambda_1) w_1 + \dots + \alpha(\lambda_r) w_r) \quad \lambda_1, \dots, \lambda_r \in K.$$

 $r = 1 \rightarrow \text{Lemma } 2.5.5 \checkmark$.

 $r \geqslant 2$ Sei

$$p := K \cdot (v_0 + \lambda_1 v_1 + \dots + \lambda_r v_r)$$

mit $\lambda_1, \ldots, \lambda_r \in K$. Dann ist

$$p \in K(v_0 + \lambda_1 v_1 + \dots + \lambda_{r-1} v_{r-1}) \vee K \cdot v_r$$

und

$$p \in K(v_0 + \lambda_r v_r) \vee K \cdot v_1 \vee \cdots \vee K \cdot v_{r-1},$$

also

$$f(p) \in K \cdot (w_0 + \alpha(\lambda_1)w_1 + \dots + \alpha(\lambda_{r-1}w_{r-1})) \vee K \cdot w_r$$

und

$$f(p) \in K(w_0 + \alpha(\lambda_r)w_r) \vee K \cdot w_1 \vee \cdots \vee K \cdot v_{r-1}.$$

Daraus folgt die Existenz von $\beta, \beta_1, \dots, \beta_{r-1} \in K$ mit

$$f(p) = K \cdot (w_0 + \alpha(\lambda_1)w_1 + \dots + \alpha(\lambda_{r-1})w_{r-1} + \beta \cdot w_r)$$

$$= \alpha(\lambda_r)$$

$$= K \cdot (w_0 + \alpha(\lambda_r)w_r + \beta_1w_1 + \dots + \beta_{r-1}w_{r-1} \to \beta = \alpha(\lambda_r).$$

Lemma 2.5.7. Sei $(\lambda_1, \ldots, \lambda_n) \in K^n \setminus \{0\}$. Dann ist

$$f(K \cdot (\lambda_1 v_1 + \dots + \lambda_n v_n)) = K(\alpha(\lambda_1) w_1 + \dots + \alpha(\lambda_n) w_n).$$

Beweis. Sei $(\lambda_1, \ldots, \lambda_n) \neq (0, \ldots, 0)$ und

$$p = K \cdot (\lambda_1 v_1 + \dots + \lambda_n v_n).$$

Es ist

$$f(p) \in K \cdot w_1 \vee \cdots \vee K \cdot w_n$$

und

$$f(p) \in K \cdot w_0 \vee K \cdot (w_0 + \alpha(\lambda_1)w_1 + \dots + \alpha(\lambda_n)w_n),$$

Datei 29: Hauptsatz

projektive Geometrie

Teil 2

denn

$$K \in Kv_0 \vee K(v_0 + \lambda_1 v_1 + \dots + \lambda_n v_n).$$

Also $\exists \beta_1, \ldots, \beta_n, \beta_0, \beta \in K$ mit

$$f(p) = K \cdot (\beta_1 w_1 + \dots + \beta_n w_n)$$

und

$$f(p) = K \cdot (\beta_0 w_0 + \beta(w_0 + \alpha(\lambda_1)w_1 + \dots + \alpha(\lambda_n)w_n)).$$

Es folgt $\beta_0 = -\beta$ und

$$f(p) = K \cdot (\alpha(\lambda_1)w_1 + \dots + \alpha(\lambda_n)w_n).$$

Lemma 2.5.8. Die Abbildung $\alpha \colon K \to K$ aus Lemma 2.5.5 ist ein Körperautomorphismus von K.

Erinnerung. $\alpha \colon K \to K$ ist injektiv, $\alpha(0) = 0$, $\alpha(1) = 1$,

$$f(K \cdot (v_0 + \lambda v_i)) = K(w_0 + \alpha(\lambda)w_i) \quad \forall \lambda \in K \ \forall 1 \leq i \leq n.$$

Beweis von Lemma 2.5.8. • α ist surjektiv. Für $\mu \in K$ ist

$$q := K \cdot (w_0 + \mu w_1) \in \mathbb{P}(W),$$

also

$$\exists p = K \cdot (\lambda_0 v_0 + \dots + \lambda_n v_n) \in \mathbb{P}(V)$$

mit f(p) = q, also $\lambda_0 \neq 0$, daher

$$p = K \cdot \left(v_0 + \frac{\lambda_1}{\lambda_0} v_1 + \dots + \frac{\lambda_n}{\lambda_0} v_n \right)$$

und

$$q = f(p) = K \cdot (w_0 + \mu w_1)$$

$$= K \cdot \left(w_0 + \alpha \left(\frac{\lambda_1}{\lambda_0} \right) w_1 + \dots + \alpha \left(\frac{\lambda_n}{\lambda_0} \right) w_n \right),$$
Lemma 2.5.6

und daher $\mu = \alpha \left(\frac{\lambda_1}{\lambda_0}\right)$.

• Wir zeigen $\alpha(\lambda + \mu) = \alpha(\lambda) + \alpha(\mu)$ $\lambda, \mu \in K$: Seien $\lambda, \mu \in K$. Dann ist

$$p := K \cdot (v_0 + (\lambda + \mu)v_1 + v_2) \in K \cdot (v_0 + \lambda v_1) \vee K(\mu v_1 + v_2).$$

Also gilt nach Anwendung on f

$$f(p) \in K \cdot (w_0 + \alpha(\lambda)w_1) \vee K(\cdot \alpha(\mu)w_1 + w_2),$$

also $\exists \beta, \beta' \in K$ mit

$$w_0 + \alpha(\lambda + \mu)w_1 + w_2) = \beta(w_0 + \alpha(\lambda)w_1) + \beta'(\alpha(\mu)w_1 + w_2),$$

denn

$$f(p) = K \cdot (w_0 + \alpha(\lambda + \mu)w_1 + w_2),$$

 w_0, w_1, w_2 sind linear unabhängig, also

$$\beta = 1 = \beta'$$

$$\alpha(\lambda + \mu) = \alpha(\lambda) + \alpha(\mu).$$

• Wir zeigen $\alpha(\lambda \cdot \mu) = \alpha(\lambda)\alpha(\mu) \quad \forall \lambda, \mu \in K$.

Für $\lambda = 0$ gilt

$$\alpha(0 \cdot \mu) = \alpha(0) = 0 = 0 \cdot \alpha(\mu) = \alpha(0) \cdot \alpha(\mu).$$

Wir können also annehmen, dass $\lambda \neq 0$.

Betrachte

$$p := K \cdot (v_0 + \lambda \mu v_1 + \lambda v_2) \in K \cdot v_0 \vee K(\mu v_1 + v_2).$$

Also

$$f(p) = K \cdot (w_0 + \alpha(\lambda \mu)w_1 + \alpha(\lambda)w_2) \in K \cdot w_0 \vee K \cdot (\alpha(\mu)w_1 + w_2).$$

Es gibt also $\beta, \beta' \in K$ mit

$$w_0 + \alpha(\lambda \mu)w_1 + \alpha(\lambda)w_2 = \beta w_0 + \beta'(\alpha(\mu)w_1 + w_2).$$

Daraus folgt
$$\beta = 1$$
, $\beta' = \alpha(\lambda)$ und $\alpha(\lambda \mu) = \underbrace{\alpha(\lambda)\alpha(\mu)}_{\beta'}$.

Lemma 2.5.9. Sei

$$(\lambda_0,\ldots,\lambda_n)\in K^{n+1}\setminus\{(0,\ldots,0)\}.$$

Dann ist

$$f(K \cdot (\underbrace{\lambda_0 v_0 + \dots + \lambda_n v_n}_{\in V})) = K \cdot (\alpha(\lambda_0) w_0 + \dots + \alpha(\lambda_n) w_n).$$

Beweis. Ist $\lambda_0=0,$ so verwende Lemma 2.5.7. Wir können also $\lambda\neq 0$ annehmen. Nach Lemma 2.5.6

$$f(K \cdot (\lambda_0 v_0 + \lambda_1 v_1 + \dots + \lambda_n v_n)) = f\left(K \cdot \left(v_0 + \frac{\lambda_1}{\lambda_0} v_1 + \dots + \frac{\lambda_n}{\lambda_0} v_n\right)\right)$$

$$= K \cdot \left(w_0 + \alpha \left(\frac{\lambda_1}{\lambda_0}\right) w_1 + \dots + \alpha \left(\frac{\lambda_n}{\lambda_0}\right) w_n\right)$$

$$= K \cdot \left(w_0 + \frac{\alpha(\lambda_1)}{\alpha(\lambda_0)} w_1 + \dots + \frac{\alpha(\lambda_n)}{\alpha(\lambda_0)} w_n\right)$$

$$= K \cdot \left(\alpha(\lambda_0) w_0 + \alpha(\lambda_1) w_1 + \dots + \alpha(\lambda_n) w_n\right). \quad \Box$$

$$= K \cdot (\alpha(\lambda_0) w_0 + \alpha(\lambda_1) w_1 + \dots + \alpha(\lambda_n) w_n). \quad \Box$$

Die Abbildung

$$F \colon V \to W$$
$$\lambda_0 v_0 + \dots + \lambda_n v_n \mapsto \alpha(\lambda_0) w_0 + \dots + \alpha(\lambda_n) w_n$$

ist semilinear und injektiv und es gilt $f = \mathbb{P}(F)$. Damit ist f eine Semiprojektivität und Satz 2.5.2 bewiesen.

Vorlesung 17 Datei 30: Dualität

Vorlesung 17

Fr 19.06. 10:15

§2.6 Dualität

Datei 30: Dualität

Sei K ein Körper und $L \subseteq \mathbb{P}_2(K)$ eine projektive Gerade. Seien (x_0, x_1, x_2) homogene Koordinaten in $\mathbb{P}_2(K)$ und $L = \mathbb{P}(U)$ mit $U \subseteq K^3$ ein 2-dimensionaler Untervektorraum. Dann gibt es $(a_0, a_1, a_2) \in K^3$, sodass $U \leq K^3$ gegeben ist durch

$$a_0x_0 + a_1x_1 + a_2x_2 = 0$$

und

$$L = \{ (x_0 : x_1 : x_2) \in \mathbb{P}_2(K) \mid a_0 x_0 + a_1 x_1 + a_2 x_2 = 0 \}.$$

Ist $\lambda \in K^*$, so definiert das Tupel $(\lambda a_0, \lambda a_1, \lambda a_2)$ ebenfalls die Gerade

$$L = \{ (x_0, x_1, x_2) \in \mathbb{P}_2(K) \mid \lambda a_0 x_0 + \lambda a_1 x_1 + \lambda a_2 x_2 = 0 \}.$$

Wir verstehen $(a_0:a_1:a_2)$ als Element in $\mathbb{P}_2(K)$ und erhalten eine Bijektion

{ projektive Geraden
$$L \subseteq \mathbb{P}_2(K)$$
 } \leftrightarrow { Punkte in $\mathbb{P}_2(K)$ } $L = \{ (x_0, x_1, x_2) \subseteq \mathbb{P}_2(K) \mid a_0 x_0 + a_1 x_1 + a_2 x_2 = 0 \} \leftrightarrow (a_0 : a_1 : a_2) \in \mathbb{P}_2(K).$

Ist $p = (x_0, x_1, x_2) \in \mathbb{P}_2(K)$ eine Punkt, so können wir die projektive Gerade

$$\{ (a_0 : a_1 : a_2) \in \mathbb{P}_2(K) \mid a_0 x_0 + a_1 x_1 + a_2 x_2 = 0 \}$$

zuordnen. Wir erhalten eine Bijektion

 $\varphi \colon \{ \text{ projektive Unterräume von } \mathbb{P}_2(K) \} \to \{ \text{ projektive Unterräume von } \mathbb{P}_2(K) \}$

$$\varnothing \mapsto \mathbb{P}_2(K)$$

$$\mathbb{P}_2(K) \mapsto \emptyset$$

$$L = \{ (x_0 : x_1 : x_2) \mid a_0 x_0 + a_1 x_1 + a_2 x_2 = 0 \} \mapsto (a_0 : a_1 : a_2)$$

$$\mathbb{P}_2(K) \ni (x_0 : x_1 : x_2) \mapsto \{ (a_0 : a_1 : a_2) \in \mathbb{P}_2(K) \mid a_0 x_0 + a_1 x_1 + a_2 x_2 = 0 \}.$$

Ist $p \in \mathbb{P}_2(K)$ und $L \subset \mathbb{P}_2(K)$ eine projektive Gerade, so gilt

$$p \in L \iff \varphi(L) \in \varphi(p)$$

Dualisierung des Satzes von Desargues.

Erinnerung (Satz von Desargues). Seien $p_1, p_2, p_3, p'_1, p'_2, p'_3 \in \mathbb{P}_2(K)$ paarweise verschiedene Punkte, sodass die Geraden $p_1 \vee p'_1, p_2 \vee p'_2, p_3 \vee p'_3$ sich paarweise in einem Punkt z schneiden. Dann liegen die Schnittpunkte

$$a \coloneqq (p_1 \vee p_2) \cap (p_1' \vee p_2')$$

$$b \coloneqq (p_2 \vee p_3) \cap (p_2' \vee p_3')$$

$$c \coloneqq (p_3 \vee p_1) \cap (p_3' \vee p_1')$$

auf einer gemeinsamen Geraden L.

Wir "dualisieren" den Satz von Desargues. Sei φ wie oben definiert. Setze

$$Z_i = \varphi(p_i) \quad 1 \leqslant i \leqslant 3$$

 $Z'_i = \varphi(p'_i) \quad 1 \leqslant i \leqslant 3.$

Dann sind $Z_1, Z_2, Z_3, Z_1', Z_2', Z_3'$ paarweise verschiedene Geraden mit

$$Z_1 \cap Z_1' = \varphi(p_1 \vee p_1')$$

$$Z_2 \cap Z_2' = \varphi(p_2 \vee p_2')$$

$$Z_3 \cap Z_3' = \varphi(p_3 \vee P_3').$$

Die Punkte $Z_1 \cap Z_1'$, $Z_2 \cap Z_2'$, $Z_3 \cap Z_3'$ sind enthalten in der Geraden $\varphi(Z)$, mit

$$z = (p_1 \vee p_1') \cap (p_2 \vee p_2') \cap (p_3 \vee p_3').$$

Weiter gilt

$$\phi((p_1 \lor p_2) \cap (p'_1 \lor p'_2)) = \varphi(p_1 \lor p_2) \lor \varphi(p'_1 \lor p'_2)$$

$$= (Z_1 \cap Z_2) \lor (Z'_1 \cap Z'_2)$$

$$\varphi(b) = (Z_2 \cap Z_3) \lor (Z'_2 \cap Z'_3)$$

$$\varphi(c) = (Z_3 \cap Z_1) \lor (Z'_3 \cap Z'_1).$$

Nach dem Satz von Desargues liegen a, b, c auf einer Geraden, d. h. $\varphi(a)$, $\varphi(b)$ und $\varphi(c)$ schneiden sich in einem Punkt.

Seien $Z_1, Z_2, Z_3, Z_1', Z_2', Z_3'$ paarweise verschiedene Geraden, sodass die Schnittpunkte $Z_1 \cap Z_1', Z_2 \cap Z_2', Z_3 \cap Z_3'$ paarweise verschieden sind und auf einer Geraden liegen. Dann gibt es paarweise verschiedene Punkt $p_1, p_2, p_3, p_1', p_2', p_3' \in \mathbb{P}_2(K)$, die die Annahmen des Satzes von Desargues erfüllen. WÄhle dazu

$$p_i := \varphi^{-1}(Z_i) \quad 1 \leqslant i \leqslant 3$$

 $p'_i := \varphi^{-1}(Z'_i) \quad 1 \leqslant i \leqslant 3.$

Satz 2.6.1 (Dualer Satz von Desargues). Seien $Z_1, Z_2, Z_3, Z_1', Z_2', Z_3'$ paarweise verschiedene Geraden, sodass die Schnittpunkte $Z_1 \cap Z_1', Z_2 \cap Z_2', Z_3 \cap Z_3'$ paarweise verschieden sind und auf einer Geraden liegen. Dann gehen die Geraden $(Z_1 \cap Z_2) \vee (Z_1' \cap Z_2'), (Z_2 \cap Z_3) \vee (Z_2' \cap Z_3'), (Z_3 \cap Z_1) \vee (Z_3' \cap Z_1')$ durch einen gemeinsamen Punkt.

Bemerkung. Nach Dualisierung erhalten wir also die Umkehrung zum Satz von Desargues.

Vorlesung 17 Datei 31: Korrelationen

Satz 2.6.2 (Brianchon). (dual zum Satz von Pappos) Seien $p, p' \in \mathbb{P}_2(K)$ unterschiedliche Punkte und $Z_1, Z_2, Z_3, Z_1', Z_2', Z_3' \subseteq \mathbb{P}_2(K)$ paarweise verschiedene Geraden

$$p = Z_1 \cap Z_2 \cap Z_3$$
$$p' = Z'_1 \cap Z'_2 \cap Z'_3.$$

Dann gehen die Geraden $(Z_1 \cap Z_2') \vee (Z_1' \cap Z_2)$, $(Z_2 \cap Z_3') \vee (Z_2' \cap Z_3)$ und $(Z_3 \cap Z_1') \vee (Z_3' \cap Z_1)$ durch einen gemeinsamen Punkt.

Beweis. Die Punkte $\varphi(Z_1), \varphi(Z_2), \varphi(Z_3), \varphi(Z_1'), \varphi(Z_2'), \varphi(Z_3')$ sind paarweise verschieden und es gilt

$$\varphi(Z_1), \varphi(Z_2), \varphi(Z_3) \in \varphi(p)$$

 $\varphi(Z_1'), \varphi(Z_2'), \varphi(Z_3') \in \varphi(p').$

Nach dem Satz von Pappos sind die Punkte

$$a := (\varphi(Z_1) \vee \varphi(Z_2')) \cap (\varphi(Z_1') \vee \varphi(Z_2))$$

$$b := (\varphi(Z_2) \vee \varphi(Z_3')) \cap (\varphi(Z_2') \vee \varphi(Z_3))$$

$$c := (\varphi(Z_3) \vee \varphi(Z_1')) \cap (\varphi(Z_3') \vee \varphi(Z_1))$$

in einer Geraden L enthalten. Es ist

$$a = \varphi(Z_1 \cap Z_2') \cap \varphi(Z_1' \cap Z_2)$$

= $\varphi((Z_1 \cap Z_2') \vee (Z_1' \cap Z_2)).$

Also gehen die Geraden $(Z_1 \cap Z_2') \vee (Z_1' \cap Z_2)$, $(Z_2 \cap Z_3') \vee (Z_2' \cap Z_3)$ und $(Z_3 \cap Z_1') \vee (Z_3' \cap Z_1)$ durch einen gemeinsamen Punkt.

Die an Anfang dieses Abschnitts konstruierte Bijektion

Datei 31: Korrelationen

$$\varphi \colon \{ \text{ projektive Unterräume von } \mathbb{P}_2(K) \} \to \{ \text{ projektive Unterräume von } \mathbb{P}_2(K) \}$$

ist eine Beispiel für eine Korrelation.

Definition. Sei $\mathbb{P}(V)$ ein projektiver Raum mit V ein K-Vektorraum. Schreibe $\mathcal{P}(V)$ für die Menge von projektiven Unterräumen von V. Wir nennen eine bijektive Abbildung

$$\sigma \colon \mathcal{P}(V) \to \mathcal{P}(V)$$

eine Korrelation in $\mathbb{P}(V)$, falls es für alle $Z, Z' \in \mathcal{P}(V)$ gilt

$$Z' \subseteq Z \iff \sigma(Z') \supset \sigma(Z).$$

Vorlesung 17 Datei 31: Korrelationen

Bemerkung. Ist $\varphi \colon \mathcal{P}(V) \to \mathcal{P}(V)$ eine Korrelation, dann auch σ^{-1} .

Lemma 2.6.3. Sei $\mathbb{P}(V)$ ein projektiver Raum, $\sigma \colon \mathcal{P}(V) \to \mathcal{P}(V)$ eine Korrelation und $Z, Z' \in \mathcal{P}(V)$ projektive Unterräume. Dann gilt

i)
$$\dim \sigma(Z) = \dim \mathbb{P}(V) - (\dim Z + 1)$$

ii)
$$\sigma(Z \cap Z') = \sigma(Z) \vee \sigma(Z')$$

iii)
$$\sigma(Z \vee Z') = \sigma(Z) \cap \sigma(Z')$$
.

Beweis. i) Sei $n := \dim \mathbb{P}(V)$, $k := \dim Z$. Wähle projektive Unterräume Z_i , $-1 \le i \le n$ mit $Z_{-1} = \emptyset$, $Z_k = Z$, $Z_n = \mathbb{P}(V)$ und dim $Z_i = i$, $-1 \le i \le n$ und

$$\varnothing = Z_{-1} \subseteq Z_0 \subseteq Z_1 \subseteq \cdots \subseteq Z_k \subseteq Z_{k+1} \subseteq \cdots \subseteq Z_n = \mathbb{P}(V).$$

Dann ist $Z_i \neq Z_{i+1}$ für $1 \leq i \leq n-1$ und

$$\sigma(Z_{-1}) \supseteq \sigma(Z_0) \supseteq \sigma(Z_1) \supseteq \cdots \supseteq \sigma(Z_k) \supseteq \cdots \supseteq \sigma(Z_n).$$

Da σ Bijektion ist, gilt $\sigma(Z_i) \neq \sigma(Z_{i+1}), -1 \leqslant i \leqslant n$, also dim $\sigma(Z_i) \geqslant \dim \sigma(Z_{i+1}) + 1$. Daraus folgt

$$\dim \sigma(Z) = \dim(\mathbb{P}(V)) - (\dim Z + 1).$$

ii) Seien $Z, Z' \in \mathcal{P}(V)$. Es ist $Z \cap Z' \subseteq Z, Z'$, also

$$\sigma(Z \cap Z') \supseteq \sigma(Z), \sigma(Z').$$

 $\sigma(Z \cap Z')$ ist projektiver Raum, also

$$\sigma(Z \cap Z') \supset \sigma(Z) \vee \sigma(Z')$$
.

Aus

$$\sigma(Z), \sigma(Z') \subseteq \sigma(Z) \vee \sigma(Z')$$

folgt nach Anwendung von σ^{-1}

$$Z \cap Z' \supset \sigma^{-1}(\sigma(Z) \vee \sigma(Z'))$$

und damit

$$\sigma(Z \cap Z') \subseteq \sigma(Z) \vee \sigma(Z')$$
.

iii) Es ist $Z, Z' \subseteq \sigma(Z) \cap \sigma(Z')$, also $\sigma(Z \vee Z') \subseteq \sigma(Z) \cap \sigma(Z')$. Wende nun σ^{-1} an auf $\sigma(Z) \cap \sigma(Z') \subseteq \sigma(Z)$, $\sigma(Z')$

und erhalte

$$Z \vee Z' \subseteq \sigma^{-1}(\sigma(Z) \cap \sigma(Z')),$$

also

$$\sigma(Z \vee Z') \subseteq \sigma(Z) \cap \sigma(Z').$$

Vorlesung 18

Di 23.06. 10:15

Frage. Wie können wir für einen allgemeinen projektiven Raum $\mathbb{P}(V)$ Korrelationen konstruieren?

Datei 32: Dualräume

2.6.1 Dualräume

Definition. Sei K ein Körper und V ein K-Vektorraum. Wir nennen

$$V^* \coloneqq \{ \varphi \colon V \to K \mid \varphi \text{ ist } K\text{-linear} \}$$

den Dualraum zu V.

Bemerkung. V^* ist selbst wieder ein K-Vektorraum.

Sei v_1, \ldots, v_n Basis von V und $i \in \{1, \ldots, n\}$. Dann gibt es eine eindeutig bestimmte ABbildung $v_i^* \in V^*$ mit

$$v_i^*(v_j) = \delta_{ij} \quad \forall \, 1 \leqslant j \leqslant n.$$

Lemma 2.6.4. Sei v_1, \ldots, v_n eine Basis des K-Vektorraums V. Dann ist v_1^*, \ldots, v_n^* (wie oben definiert) Basis von V^* .

Beweis. Sei $\varphi \in V^*$. Dann ist φ eindeutig bestimmt durch die Bilder $\varphi(v_i)$, $1 \leq i \leq n$. Sei

$$\varphi' = \varphi(v_1)v_1^* + \dots + \varphi(v_n)v_n^*.$$

Dann ist $\varphi'(v_i) = \varphi(v_i)$, $1 \le i \le n$, also $\varphi = \varphi'$ und v_1^*, \ldots, v_n^* spannen V^* auf. Seien umgekehrt $\lambda_1, \ldots, \lambda_n \in K$ mit

$$\lambda_1 v_1^* + \dots + \lambda_n v_n^* \equiv 0.$$

Dann gilt nach Auswertung auf v_i , $1 \leqslant \leqslant n$

$$(\lambda_1 v_1^{\star} + \dots + \lambda_n v_n^{\star})(v_i) = \lambda_i = 0.$$

Also sind $v_1^{\star}, \dots, v_n^{\star}$ linear unabhängig.

Bemerkung. Es gilt insbesondere

$$\dim(V) = \dim(V^*).$$

Definition. Sei V ein K-Vektorraum und $W\subseteq V$ ein K-Untervektorraum. Wir definieren den orthogonalen Raum

$$W^{\circ} := \{ \varphi \in V^{\star} \mid \varphi(W) = 0 \}.$$

Beispiel. Sei $V = K^3$ mit kanonischer Basis $e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)$ und dualer Basis e_1^*, e_2^*, e_3^* . Dann können wir jedes $\varphi \in V^*$ schreiben als $a_1e_1^* + a_2e_2^* + a_3e_3^*$ mit $(a_1, a_2, a_3) \in K^3$. Insbesondere $V^* \cong V$. Sei $W = \{ \lambda(x_1, x_2, x_3) \mid \lambda \in K \}$ für ein $(x_1, x_2, x_3) \in K^3 \setminus \{0\}$. Dann ist

$$W^{\circ} = \left\{ (a_1, a_2, a_3) \in K^3 \mid (a_1 e_1^{\star} + a_2 e_2^{\star} + a_3 e_3^{\star})(W) = 0 \right\}$$

$$= \left\{ (a_1, a_2, a_3) \in K^3 \mid (a_1 e_1^{\star} + a_2 e_2^{\star} + a_3 e_3^{\star}) \right\} (x_1, x_2, x_3) = 0$$

$$= \left\{ (a_1, a_2, a_3) \in K^3 \mid a_1 x_1 + a_2 x_2 + a_3 x_3 = 0 \right\}.$$

Lemma 2.6.5. Sei V ein K-Vektorraum und $U \subseteq V$ ein K-Untervektorraum. Dann gilt

$$\dim(U^{\circ}) = \dim(V) - \dim(U).$$

Beweis. Sei $k = \dim(U)$ und v_1, \ldots, v_k Basis von U. Seien $v_{k+1}, \ldots, v_n \in V$ so gewählt, dass v_1, \ldots, v_n Basis von V ist. Sei v_1^*, \ldots, v_n^* die zu v_1, \ldots, v_n duale Basis.

Behauptung 2.6.1. $U^{\circ} = \text{Span}(v_{k+1}^{*}, \dots, v_{n}^{*}).$

Sei $\varphi \in \operatorname{Span}(v_{k+1}^{\star}, \dots, v_n^{\star})$, d. h.

$$\varphi = \lambda_{k+1} v_{k+1}^{\star} + \dots + \lambda_n v_n^{\star}$$

mit $\lambda_{k+1}, \ldots, \lambda_m \in K$. Dann ist $\varphi(u) = 0 \quad \forall u \in U$, also $\varphi \in U^{\circ}$. Sei umgekehrt $\varphi \in U^{\circ}$. Schreibe $\varphi = \lambda_1 v_1^{\circ} + \cdots + \lambda_n v_n^{\circ}$ mit $\lambda_1, \ldots, \lambda_n \in K$. Da $\varphi \in U^{\circ}$, gilt

$$\varphi(v_i) = 0 \quad 1 \leqslant i \leqslant k,$$

also $\lambda_1 = \cdots = \lambda_k = 0$ und $\varphi \in \operatorname{Span}(v_{k+1}^*, \dots, v_n^*)$. Da v_{k+1}^*, \dots, v_n^* linear unabhängig sind, gilt

$$\dim(U^{\circ}) = n - k = \dim(V) - \dim(U). \qquad \Box$$

Frage. Was erhalten wir, wenn wir den Dualraum zum Dualraum $(V^*)^*$.

Definition. Sei V ein K-Vektorraum. Wir nennen $V^{\star\star} := (V^{\star})^{\star}$ den Bidualraum zu V. Sei $v \in V$. Dann induziert v eine Abbildung

$$V^{\star} \to K$$
$$\varphi \to \varphi(v).$$

Wir definieren damit die kanonische Abbildung

$$\iota \colon V \to V^{\star\star}$$
$$v \to w$$

durch $\iota_v(\varphi) = \varphi(v) \quad \forall v \in V^*$.

Satz 2.6.6. Sei V ein K-Vektorraum. Dann ist die kanonische Abbildung

$$\iota \colon V \to V^{\star\star}$$

ein Isomorphismus von Vektorräumen. Für jede Untervektorraum $W \leq V$ gilt

$$(W^{\circ})^{\circ} = \iota(W).$$

Beweis. ι ist injektiv. Sei $v \in V \setminus \{0\}$. Ergänze v zu einer Basis von V durch v, v_2, \ldots, v_n . Dann ist $v^*, v_2^*, \ldots, v_n^*$ Basis von V^* und $\iota_v(v^*) = v^*(v) = 1$, also $\iota_v \neq 0$. Es ist

$$\dim(V^{\star\star}) = \dim(V^{\star}) = V^{\star},$$

also ist ι ein Isomorphismus.

Sei $W \leq V$ ein K-Untervektorraum. Dann ist $\iota(W) \subseteq (W^{\circ})^{\circ}$, denn fpr $w \in W$ und $\varphi \in W^{\circ}$ gilt $\iota_w(\phi) = \varphi(w) = 0$. Es ist

$$\dim(W^{\circ}) = \dim(V^{\star}) - \dim(W^{\circ})$$
$$= \dim(V) - (\dim(V) - \dim(W))$$
$$= \dim(W),$$

also $\iota(W) = (W^{\circ})^{\circ}$.

Frage. Was bedeutet Dualität für die zu V und V^* gehörenden projektiven Räume?

Sei V ein K-Vektorraum mit dualem Vektorraum V^* . Elemente von $\mathbb{P}(V^*)$ haben die Form $K \cdot \varphi$ mit $\varphi \colon \to K$ eine lineare Abbildung $\neq 0$. Sei

$$W \coloneqq \{ v \in V \mid \varphi(v) = 0 \}.$$

Dann ist auch für $\lambda \in K \setminus \{0\}$

$$W = \{ v \in V : (\lambda \varphi)(v) = 0 \}$$

und $\mathbb{P}(W) \subseteq \mathbb{P}(V)$ ist eine projektive Hyperebene. Wir erhalten also eine Abbildung

$$\alpha \colon \mathbb{P}(V^*) \to \{ \text{ Hyperebenen in } \mathbb{P}(V) \}$$

 $K \cdot \varphi \mapsto \mathbb{P}(\{ v \in V \colon \varphi(v) = 0 \}).$

Die Abbildung α ist bijektiv, d. h.

Punkte in $\mathbb{P}(V^*) \leftrightarrow \text{Hyperebenen in } \mathbb{P}(V)$.

Datei 33: Dualräume und Korrelationen Idee. Wähle eine Projektivität

$$\mathbb{P}(V^{\star}) \cong \mathbb{P}(V)$$

oder etwas allgemeiner:

Sei $f: \mathbb{P}(V) \to \mathbb{P}(V^*)$ eine Semiprojektivität induziert durch eine semilineare bijektive Abbildung $F: V \to V^*$, d. h. $f = \mathbb{P}(F)$. Sei $Z \subseteq \mathbb{P}(V)$ projektiver Unterraum der Form $Z = \mathbb{P}(W)$ mit $W \leq V$ ein K-Untervektorraum.

Dann ist $F(W) \subseteq V^*$ ebenfalls K-Untervektorraum mit $\dim(W) = \dim(F(W))$ und $F(W)^{\circ} \subseteq V^{**}$ K-Untervektorraum der Dimension

$$\dim(F(W)^{\circ}) = \dim(V) - \dim(F(W)) = \dim(V) - \dim(W).$$

Wir verwenden die kanonische Abbildung $\iota\colon V\to V^{\star\star},$ um V und $V^{\star\star}$ mit einander zu identifizieren.

Dann ist

$$F(W)^{\circ} = \{ v \in V \mid \varphi(v) = 0 \quad \forall \varphi \in F(W) \}.$$

Wir definieren

$$\sigma_f \colon \mathcal{P}(V) \to \mathcal{P}(V)$$

 $Z = \mathbb{P}(W) \mapsto \mathbb{P}(F(W)^\circ).$

Lemma 2.6.7. Sei V ein K-Vektorraum und $f: \mathbb{P}(V) \to \mathbb{P}(V^*)$ eine Semiprojektivität, induziert durch eine bijektive semilineare Abbildung $F: V \to V^*$. Dann ist die Abbildung

$$\sigma_f \colon \mathcal{P}(V) \to \mathcal{P}(V)$$

 $Z = \mathbb{P}(W) \mapsto \mathbb{P}(F(W)^\circ).$

eine Korrelation.

Beweis. Seien $W, W' \leq V$ K-Untervektorraum mit

$$F(W)^{\circ} = F(W')^{\circ}$$
.

Dann ist

$$F(W) = (F(W)^{\circ})^{\circ} = (F(W')^{\circ})^{\circ} = F(W'),$$

also W = W' und σ_f ist injektiv.

Sei nun $U \leq V$ K-Untervektorraum. Dann ist

$$F^{-1}(U^{\circ}) \subseteq V \tag{2.4}$$

K-Untervektorraum mit

$$\sigma_f(\mathbb{P}(F^{-1}(U^\circ))) = \mathbb{P}(U)$$

also σ_f surjektiv.

Für zwei projektive Unterräume $Z = \mathbb{P}(W), Z' = \mathbb{P}(W') \in \mathcal{P}(V)$ gilt

$$Z' \subseteq Z \iff W' \subseteq W$$

$$\iff F(W') \subseteq F(W)$$

$$\iff F(W')^{\circ} \supseteq F(W)^{\circ}$$

$$\iff \sigma_f(Z') \supseteq \sigma_f(Z).$$

Beispiel. Sei $V = K^3$ mit Basis e_1, e_2, e_3 und e_1^*, e_2^*, e_3^* zugehörige Basis von V^* mit $e_i^*(e_i) = \delta_{ij}$. Sei $F: V \to V^*$, K-linear, gegeben durch

$$e_i \mapsto e_i^* \quad 1 \leqslant i \leqslant 3$$

und

$$f = \mathbb{P}(F) \colon \mathbb{P}(V) \to \mathbb{P}(V^*).$$

$$\mathbb{P}_2(K) \qquad \mathbb{P}_2(K)$$

Dann ist $\sigma_f \colon \mathcal{P}(V) \to \mathcal{P}(V)$ die am Anfang diesen Abschnitts verwendete Korrelation.

Satz 2.6.8. Sei V ein K-Vektorraum mit $\dim_K(V) \geqslant 3$. Dann ist die Abbildung

$$\beta$$
: { Semiprojektivitäten $f: \mathbb{P}(V) \to \mathbb{P}(V^*)$ } \to { Korrelationen $\sigma: \mathcal{P}(V) \to \mathcal{P}(V)$ } $f \mapsto \sigma_f$

bijektiv. (Notation wie oben).

Beweisidee. Wir konstruieren eine Umkehrabbildung

$$\gamma \colon \{ \text{ Korrelationen } \sigma \colon \mathcal{P}(V) \to \mathcal{P}(V) \} \to \{ \text{ Semiprojektivitäten } f \colon \mathbb{P}(V) \to \mathbb{P}(V^*) \}.$$

Sei $\sigma \colon \mathcal{P}(V) \to \mathcal{P}(V)$ eine Korrelation und $p \in \mathbb{P}(V)$. Nach Lemma 2.6.3 ist

$$\dim(\sigma(p)) = \dim(\mathcal{P}(V)) - 1,$$

also $\sigma(p) \subseteq \mathbb{P}(V)$ Hyperebene. Wir erhalten also eine Abbildung

$$f_{\sigma} := \mathbb{P}(V) \to \mathbb{P}(V^{\star})$$

 $p \mapsto \sigma(p)$

indem wir Hyperebenen in $\mathbb{P}(V)$ mit Punkten in $\mathbb{P}(V^*)$ wie oben identifizieren.

Ziel. Zeige, dass f_{σ} eine Semiprojektivität ist.

Seien $p_0, p_1, p_2 \in \mathbb{P}(V)$ in einer Geraden $L \subseteq \mathbb{P}(V)$ enthalten. Dann $\sigma(p_0), \sigma(p_1), \sigma(p_2) \supseteq \sigma(L)$, wobei $\dim(\sigma(L)) = \dim(\mathbb{P}(V)) - 2$. Also sind $\sigma(p_0), \sigma(p_1), \sigma(p_2)$ kollinear.

Es folgt, dass f_0 eine Kollineation ist und nach dem Hauptsatz der projektiven Geometrie ist f_0 Semiprojektivität. Definiere $\gamma(\sigma) \coloneqq f_{\sigma}$. Dann ist γ Umkehrabbildung zu β . \square

Vorlesung 19

Fr 26.06. 10:15

§2.7 Quadriken

Sei K ein Körper und $Z\subseteq \mathbb{P}_n(K)$ ein projektiver Unterraum. Dann ist $Z=\mathbb{P}(W)$ für $Z\subseteq \mathbb{P}_n(K)$ ein projektiver Unterraum. Dann ist $Z=\mathbb{P}(W)$ für $W\leq K^{n+1}$ ein K-Untervektorraum. Sei W gegeben durch

Datei 34: Projektive Quadriken Teil 1

$$W = \left\{ (x_0, \dots, x_n) \in K^{n+1} \mid a_{i0}x_0 + \dots + a_{in}x_n = 0, \quad 1 \le i \le r \right\}$$

für Koeffizienten $a_{ij} \in K$, $1 \leq i \leq r$, $0 \leq j \leq n$. Wir können Z auffassen als

$$Z = \{ (\underbrace{(x_0 : \dots : x_n)}_{\in \mathbb{Z}}) \in \mathbb{P}_n(K) : a_{i0}x_0 + \dots + a_{in}x_n = 0 \quad 1 \leqslant i \leqslant r \}.$$

Frage. Was passiert, wenn wir die *linearen* Formen $a_{i0}x-0+\cdots+a_{in}x_n$ durch allgemeine Polynome in x_0,\ldots,x_n ersetzen.

In diesem Abschnitt: r=1 und wir ersetzen die Linearform $a_{10}x_0 + \cdots + a_{1n}x_n = 0$ durch ein quadratisches Polynom.

Definition. Sei K ein Körper. Wir nenne einen Ausdruck der Form

$$P(x_0,\ldots,x_n) = \sum_{0 \le i \le j \le n} \alpha_{ij} x_i x_j$$

mit $\alpha_{ij} \in K$, $0 \le i \le j \le n$ ein homogenes Polynom zweiten Grades / eine quadratische Form in den Unbestimmten x_0, \ldots, x_n .

Beispiel. $x_0^2 + x_1^2 - x_2^2$ ist ein homogenes Polynom zweiten Grades, aber $x_0^2 + x_1^2 + 2x_2$ nicht.

Bemerkungen. i) Quadratische Formen in den Unbestimmten x_0, \ldots, x_n können parametisiert werden durch Tupel

$$(\alpha_{ij})_{0 \leqslant i \leqslant j \leqslant n} \in K^{\binom{n+2}{2}},$$

also durch $\frac{1}{2}(n+2)8(n+1)$ Koeffizienten.

ii) Jedes Polynom $P(x_0,\ldots,x_n)\in K[x_0,\ldots,x_n]$ induziert eine Abbildung

$$K^{n+1} \to K \tag{2.5}$$

$$K^{n+1} \ni (t_0, \dots, t_n) \mapsto P(t_0, \dots, t_n) = \sum_{0 \leqslant i \leqslant j \leqslant n} \alpha_{ij} t_i t_j \in K$$
 (2.6)

Sei $P(x_0,\ldots,x_n)$ eine quadratische Form und betrachte die Nullstellenmenge

$$X = \{ (x_0, \dots, n) \in K^{n+1} \mid P(x_0, \dots, x_n) = 0 \}.$$

Für $(x_0, \ldots, x_n) \in X \setminus \{0\}$ ist dann die gesamte Gerade $K \cdot (x_0, \ldots, x_n)$ in X enthalten, denn für $\lambda \in K$ ist

$$P(\lambda x_0, \dots, \lambda x_n) = \lambda^2 \underbrace{P(x_0, \dots, x_n)}_{=0} = 0$$

Definition. Wir nennen eine Teilmenge $C \subseteq K^{n+1}$ ein Kegel falls für jedes $(x, \ldots, x_n) \in C$ und $\lambda \in K$ gilt

$$(\lambda x_0, \dots, \lambda x_n) \in C.$$

Bemerkung. Jeder Kegel $C \neq \emptyset$ enthält $(0, \dots, 0)$.

Beispiel 2.7.1. Sei $P = x_0^2 + x_1^2 - x_2^2$ und

$$C = \left\{ (x_0, x_1, x_2) \in K^3 \mid P(x_0, x_1, x_2) = 0 \right\}.$$

Dann ist C ein Kegel.

Beispiel 2.7.2. Sei $Y \subseteq K^2$ und

$$X := \left\{ (ty_1, ty_2, t) \in K^3 \mid t \in K, \ (y_1, y_2) \in Y \right\}.$$

Dann ist $X \subseteq K^3$.

Sei $C\subseteq K^{n+1}$ ein Kegel. Dann definieren wir

$$\mathbb{P}(C) := \{ K \cdot v \in \mathbb{P}_n(K) \mid K \cdot \subseteq C \}.$$

Definition. Sei $P(x_0, ..., x_n)$ ein homogenes Polynom zweiten Grades mit Koeffizienten in einem Körper K,

$$C := \{ (x_0, \dots, x_n) \in K^{n+1} \mid P(x_0, \dots, x_n) = 0 \}.$$

Dann nennen wir $Q := \mathbb{P}(C)$ eine (projektive) Quadrik.

Bemerkung. Ist $P(x_0, \ldots, x_n)$ eine quadratische Form, dann schreiben wir auch

$$Q = \{ (x_0 : \ldots : x_n) \in \mathbb{P}_n(K) \mid P(x_0, \ldots, x_n) = 0 \}.$$

Konvention. Sei für den Rest des Abschnitts 2.7 K ein Körper mit $\operatorname{char}(K) \neq 2$.

Matrixdarstellung von projektiven Quadriken

Beispiel. Betrachte die projektive Quadrik

$$Q = \left\{ (x_0 : x_1 : x_2) \in \mathbb{P}_2(K) \mid x_0^2 + x_1^2 = x_2^2 \right\}$$

Dann können wir Q auch schreiben als $Q = \mathbb{P}(C)$ mit

$$C = \left\{ (x_0, x_1, x_2) \in K^3 \middle| \begin{array}{l} x_0^2 + x_1^2 - x_2^2 = \begin{pmatrix} x_0 & x_1 & x_2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} = 0 \right\}.$$

Im Allgemeinen: Sei

$$P(x_0,\ldots,x_n) = \sum_{0 \leqslant i \leqslant j \leqslant n_i x_j}$$

ein homogenes Polynom zweiten Grades über einem Körper K (char $K \neq 2$). Wir definieren eine Matrix

$$A = (\alpha_{ij})_{0 \le i, j \le n} \in \mathcal{M}_{(n+1) \times (n+1)}(K)$$

durch

$$\alpha_{ij} = \begin{cases} \alpha_{ii} & i = j \\ \frac{1}{2}\alpha_{ij} & i < j \\ \frac{1}{2}\alpha_{ji} & i > j. \end{cases}$$

Schreibe $\underline{x} = (x_0, \dots, x_n) \in K^{n+1}$. Dann ist

$$P(x_0,\ldots,x_n)={}^t\underline{x}A\underline{x}.$$

Sei $Q = \mathbb{P}(C)$ mit

$$C = \left\{ \underline{x} \in K^{n+1} \mid {}^{t}\underline{x}A\underline{x} = 0 \right\}$$

und

$$Q = \left\{ (x_0 : \dots : x_n) \mathbb{P}_n(K) \mid {}^t \underline{x} A \underline{x} = 0 \right\}.$$

Bemerkung. i) Für $\lambda \in K^*$ gilt auch

$$Q = \left\{ (x_0 : \ldots : x_n) \in \mathbb{P}_n(K) \mid {}^t\underline{x}(\lambda \cdot A)\underline{x} = 0 \right\}.$$

ii) Wir können A als symmetrische Bilinearform S auffassen, indem wir

$$S(\underline{x}, y) = {}^{t}\underline{x}A\underline{x}$$

setzen für $\underline{x}, y \in K^{n+1}$.

Lemma 2.7.1. Sei K ein Körper, char $K \neq 2$, $f: \mathbb{P}_n(K) \to \mathbb{P}_n(K)$ eine Projektivität und $Q \subseteq \mathbb{P}_n(K)$ eine Quadrik. Dann ist auch $f(Q) \subseteq \mathbb{P}_n(K)$ eine Quadrik.

Beweis. Sei $f = \mathbb{P}(F)$ für einen Vektorraumisomorphismus $F \colon K^{n+1} \to K^{n+1}$. Sei $S \in \operatorname{GL}_{n+1}(K)$ die Matrix, die F in der Standardbasis beschreibt, d. h. $F(\underline{x}) = S \cdot \underline{x} \quad \forall \, \underline{x} \in K^{n+1}$. Sei $A \in \operatorname{M}_{(n+1)\times(n+1)}(K)$ eine symmetrische Matrix, sodass gilt

$$Q = \left\{ (x_0, \dots, x_n) \in \mathbb{P}_n(K) \mid {}^t\underline{x}Ax\underline{x} = 0 \right\}.$$

Dann ist $f(Q) = \mathbb{P}(F(C))$ mit

$$F(C) = \left\{ F(x_0, \dots, x_n) \in K^{n+1} \mid {}^t x A \underline{x} = 0 \right\}$$

$$= \left\{ \underbrace{S \cdot \underline{x}}_{=} \in K^{n+1} \mid {}^t \underline{x} A \underline{x} = 0 \right\}$$

$$= \underline{y} \Longrightarrow \underline{x} = S^{-1} \underline{y}$$

$$= \left\{ \underline{y} \in K^{n+1} t y^t S^{-1} A S^{-1} \underline{y} = 0 \right\}.$$

Die Matrix ${}^tS^{-1}AS^{-1}$ ist symmetrisch und es ist

$$f(Q) = \{ (x_0 : \ldots : x_n) \in \mathbb{P}_n(K) \mid P'(\underline{x}) = 0 \}$$

$$mit P'(\underline{x}) = {}^{t}\underline{x}{}^{t}S^{-1}AS^{-1}\underline{x}.$$

Ziel. Verwende Koordinatentransformation $f: \mathbb{P}_n(K) \to \mathbb{P}_n(K)$ wie in Lemma 2.7.1 um eine projektive Quadrik Q in "möglichst einfacher Form" zu beschreiben.

Ist $Q = \{ (x_0, \dots, x_n) \in \mathbb{P}_n(K) \mid {}^t\underline{x}A\underline{x} = 0 \}$ für eine symmetrische Matrix $A \in \mathcal{M}_{(n+1)\times(n+1)}(K)$, so suchen wir eine Transformationsmatrix $T \in GL_{n+1}(K)$, sodass

$$^{t}TAT$$

möglichst einfache Gestalt hat.

Bemerkung. Für $K = \mathbb{R}$ entspricht dies einem Basiswechsel für die symmetrische Bilinearform $s(\underline{x}, y) := {}^t\underline{x}Ay$.

Datei 35: Projektive Quadriken Teil 2

Hauptachsenform

Satz 2.7.2. Sei $Q \subseteq \mathbb{P}_n(\mathbb{R})$ eine Quadrik. Dann gibt es eine Koordinatentransformation

$$f: \mathbb{P}_n(\mathbb{R}) \to \mathbb{P}_n(\mathbb{R})$$

und ganze Zahlen $-1 \leq k \leq m \leq n$, sodass

$$f(Q) = \left\{ (x_0 : \dots : x_n) \in \mathbb{P}_n(\mathbb{R}) \mid x_0^2 + \dots + x_k^2 - x_{k+1}^2 - \dots - x_m^2 = 0 \right\}.$$

Zu einer Quadrik $Q \subset \mathbb{P}_n(\mathbb{C})$ gibt es eine Koordinatentransformation $g \colon \mathbb{P}_n(\mathbb{C}) \to \mathbb{P}_n(\mathbb{C})$ und eine ganze Zahl $-1 \leqslant m \leqslant n$ mit

$$g(Q) = \{ (x_0 : \dots : x_n) \in \mathbb{P}_n(\mathbb{C}) \mid x_0^2 + \dots + x_m^2 = 0 \}$$

Bemerkung. Im Fall $K=\mathbb{R}$ kann man Satz 2.7.2 aus der Hauptachsenform für symmetrische reelle Matrizen ableiten. Allgemeiner zeigen wir folgendes Resultat:

Lemma 2.7.3. Sei K ein Körper mit char $K \neq 2$, V ein K-Vektorraum der Dimension n und $s \colon V \times V \to K$ eine symmetrische Bilinearform. Dann existiert eine Basis $v_1, \ldots, v_n \in V$ mit

$$s(v_i, v_j) = 0 \quad i \neq j.$$

Beweis. Induktion nach $\dim(V) = n$.

$$n = 0, n = 1 \ \checkmark.$$

 $n \geqslant \mathbb{E}$ all a) s(v,v) = 0 für alle $v \in V$. Für beliebige $v_1, v_2 \in V$ berechnen wir

$$s(v_1, v_2) = \frac{1}{2} \left(\underbrace{s(v_1 + v_2, v_1 + v_2)}_{=0} - \underbrace{s(v_1, v_0)}_{=0} - \underbrace{s(v_2, v_2)}_{=0} \right) = 0.$$

Wähle nun eine beliebige Basis für V.

Fall b) Es existiert eine Vektor $v_1 \in V$ mit $s(v_1, v_1) \neq 0$. Sei

$$W := \{ w \in V \mid s(v_1, w) = 0 \}.$$

Behauptung 2.7.1. Es gilt $V = K \cdot v_1 \oplus W$.

denn:

- $K \cdot v_1 \cap W = \{ 0 \}$
- für $v \in V$ ist $\tilde{v} = \frac{s(v_1, v)}{s(v_1, v_1)} \cdot v_1 \in K \cdot v_1$ und

$$S(v_1, v - \tilde{v}) = s(v_1, v) - s(v_1, v_1) \cdot \frac{s(v_1, v)}{(v_1, v_1)} = 0$$

also $v - \tilde{v} \in W$ und $v \in K \cdot v_1 + W$.

Aus $V = Kv_1 \oplus W$ folgt

$$\dim(W) = n - 1.$$

Nach Induktionsannahme existiert eine Basis v_2,\dots,v_n von W mit $s(v_i,v_j)=0$ für $2\leqslant i,j\leqslant n$. Nach Konstruktion von W gilt auch

$$s(v_i, v_j) = 0 \quad 1 \leqslant i, j \leqslant n$$

und v_1, \ldots, v_n ist Basis von V.

Vorlesung 20

Di 30.06. 10:15

Beweis von Satz 2.7.2. Sei K ein Körper mit char $K \neq 2$, $A \in \mathcal{M}_{(n+1)\times(n+1)}(K)$ eine symmetrische Matrix und

$$Q = \left\{ (x_0 : \dots : x_n) \in \mathbb{P}_n(K) \mid {}^t\underline{x}A\underline{x} = 0 \right\}.$$

Sei $s\colon K^{n+1}\times K^{n+1}\to K$ die durch $s(\underline{x},\underline{y}):={}^t\underline{x}A\underline{y}$ definierte symmetrische Bilinearform. Nach Lemma 2.7.3 existiert eine Basis v_0,\dots,v_n von K^{n+1} mit

$${}^{t}\underline{v}_{i}A\underline{v}_{i} = s(v_{i}, v_{j}) = 0 \quad i \neq j \ 0 \leqslant i, j \leqslant n.$$

Fall $K=\mathbb{R}$ Nach Permutation der Indizes $0\leqslant i\leqslant n$ können wir annehmen, dass es ganze Zahlen $-1\leqslant k\leqslant m\leqslant n$ gibt mit

$${}^{t}v_{i}Av_{i} = \begin{cases} > 0 & 0 \leqslant i \leqslant k \\ < 0 & k+1 \leqslant i \leqslant m \\ = 0 & m+1 \leqslant i \leqslant n. \end{cases}$$

Setze

$$\underline{w}_i \coloneqq \begin{cases} \frac{1}{\sqrt{|t_{v_i} A v_i|}} v_i & 0 \leqslant i \leqslant m \\ v_i & m+1 \leqslant i \leqslant n. \end{cases}$$

Definiere eine Matrix $S \in GL_{n+1}(K)$ durch $S^{-1} = (\underline{w}_0, \dots, \underline{w}_n)$. Dann induziert S einen Isomorphismus $F \colon K^{n+1} \to K^{n+1}$ und die Projektivität $f = \mathbb{P}()$ hat die Eigenschaft

$$f(Q) = \{ (y_0 : \dots : y_n) \in \mathbb{P}_n(K) \mid y_0^2 + \dots + y_k^2 - y_{k+1}^2 - \dots - y_m^2 = 0 \}.$$

Fall $K=\mathbb{C}$ Nach Permutation der Indizes $0\leqslant i\leqslant n$ können wir annehmen, dass es eine ganze Zahl $-1\leqslant m\leqslant n$ gibt mit

$${}^{t}v_{i}Av_{i} = \begin{cases} \neq 0 & 0 \leqslant i \leqslant m \\ = 0 & m < i \leqslant n. \end{cases}$$

Wähle $\lambda_i \in C^*$, $0 \leq i \leq m$, mit

$$\lambda_i^2(\underbrace{v_i A v_i}_{\neq 0}) = 1.$$

Setze

$$\underline{w}_i = \begin{cases} \lambda_i v_i & 0 \leqslant i \leqslant m \\ v_i & m < i \leqslant n. \end{cases}$$

Definiere wie oben

$$S^{-1} = := (\underline{w}_0, \dots, \underline{w}_n) \in GL_{n+1}(\mathbb{C}). \tag{2.7}$$

Die zu pNiceMatrixS gehörende Koordinatentransformation hat dann die Eigenschaft

$$f(Q) = \{ (y_0 : \dots : y_n) \in \mathbb{P}_n(\mathbb{C}) \mid y_0^2 + \dots + y_m^2 = 0 \}.$$

Lemma 2.7.3 ist auch für Körper $K \neq \mathbb{R}, \mathbb{C}$ nützlich.

Beispiel. Sei p eine Primzahl $\neq 2$ und $K = \mathbb{Z} / p\mathbb{Z}$. Betrachte eine Quadrik $Q \subseteq \mathbb{P}_n(K)$ gegeben durch

$$Q = \left\{ (x_0 : \dots : x_n) \in \mathbb{P}_n(K) \mid {}^t\underline{x}A\underline{x} = 0 \right\}$$

mit einer symmetrischen Matrix

$$A \in \mathcal{M}_{n+1 \times n+1}(\mathbb{Z}/p\mathbb{Z}).$$

Nach Lemma 2.7.3 gibt es ein Koordinatentransformation

$$f: \mathbb{P}_n(\mathbb{Z}/p\mathbb{Z}) \to \mathbb{P}_n(\mathbb{Z}/p\mathbb{Z}),$$
 (2.8)

sodass

$$f(Q) = \left\{ (y_0 : \dots : y_n) \in \mathbb{P}_n(K) \mid {}^t \underline{y} \underline{D} \underline{y} = 0 \right\}$$

mit einer Diagonalmatrix

$$D = \begin{pmatrix} \beta_0 & & 0 \\ & \ddots & \\ 0 & & \beta_n \end{pmatrix},$$

 $\beta_i \in K, 0 \leqslant i \leqslant n.$ Sei $\Gamma = \{\, x^2 \mid x \in K^\star \,\} \subseteq K^\star.$ Dann ist $|\Gamma| = \frac{p-1}{2},$ denn die Abbildung

$$K^{\star} \to \Gamma$$
 $x \mapsto x^2$

ist ein Gruppenhomomorphismus mit Kern { ± 1 } und induziert eine Bijektion

$$K^{\star} \setminus \{ \pm 1 \} \rightarrow \Gamma$$
.

In der Matrix D können wir die Indizes so umordnen, dass es ganze Zahlen $-1 \leqslant k \leqslant m \leqslant n$ gibt mit

$$\beta \begin{cases} \in \Gamma & 0 \leqslant i \leqslant k \\ \in K^* \setminus \Gamma & k+1 \leqslant i \leqslant m \\ = 0 & m+1 \leqslant i \leqslant n. \end{cases}$$

Für $0 \le i \le k$ wähle $\lambda_i \in K^*$ mit $\beta_i = \lambda_i^2$. Sei $r \in K^* \setminus \Gamma$. Für $k + 1 \le i \le m$ wähle $\lambda_i \in K$ mit $\beta_i = r\lambda_i^2$. Setze

$$y_i := \lambda_i^{-1} z_i \quad 0 \leqslant i \leqslant m$$

 $y_i := z_i \quad m < i \leqslant n.$

Nach Anwendung dieser Koordinatentranformation hat die Quadrik Q die Form

$$\{(z_0:\ldots:z_n)\in\mathbb{P}_n(K)\mid z_0^2+\cdots+z_k^2+r(z_{k+1}^2+\cdots+z_m^2)=0\}.$$

Bemerkung. In Satz 2.7.2 können wir jede Quadrik $Q \subseteq \mathbb{P}_n(\mathbb{R})$ nach einer Koordinatentranformation auf eine der Formen

Datei 36: Projektive Quadriken Teil 3

$$x_0^2 + \dots + x_k^2 - x_{k+1}^2 - \dots - x_m^2 = 0$$
 (*)

mit $-1 \le k \le m \le n$ reduzieren.

Unterschiedliche Polynome (*) können die gleiche Quadrik Q beschreibe. Sei $-1 \le m \le n$ fest und z. B. führt dann k=m auf

$$Q = \left\{ (x_0 : \dots : x_n) \in \mathbb{P}_n(\mathbb{R}) \mid x_0^2 + \dots + x_m^2 = 0 \right\}$$

= \{ (x_0 : \dots : x_n) \in \mathbb{P}_n(\mathbb{R}) \ | \dots = \dots = x_m = 0 \}
= \{ (x_0 : \dots : x_n) \in \mathbb{P}_n(\mathbb{R}) \ | \dots - x_0^2 - \dots - x_m^2 = 0 \},

dies entspricht der Wahl k = -1 und m wie oben.

Definition. Wir nennen zwei Quadriken $Q, Q' \subseteq \mathbb{P}_n(K)$ geometrisch äquivalent, wenn es eine Projektivität $f: \mathbb{P}_n(K) \to \mathbb{P}_n(K)$ gibt mit f(Q) = Q'.

Ziel 2.7.1. Klassifiziere Quadriken $Q \subseteq \mathbb{P}_n(K)$ für $K = \mathbb{R}, \mathbb{C}$ bis auf geometrische Äquivalenz.

Lemma 2.7.4. Sei $K = \mathbb{R}$ oder $K = \mathbb{C}$, V ein K-Vektorraum und

$$s, s' \colon V \times V \to K$$

symmetrische Bilinearformen. Sei angenommen

$$C := \{ v \in V \mid s(v, v) = 0 \}$$

= \{ v \in V \| s'(v, v) = 0 \}.

Angenommen, es gibt Elemente $v_0 \in C$, $w \in V$ mit

$$S(v_0, w) \neq 0.$$

Dann $\exists \rho \in K^* \text{ mit } S' = \rho \cdot S.$

Beispiel. $K = \mathbb{R}, V = \mathbb{R}^{n+1},$

$$s(\underline{x}, y) = \lambda_0 x_0 y_0 + \lambda_1 x_1 y_1 + \dots + \lambda_m x_m y_m$$

mit $m \leq n$ und $\lambda_0, \ldots, \lambda_m > 0$. Dann ist

$$C = \left\{ x \in \mathbb{R}^{n+1} \mid \lambda_0 x_0^2 + \dots + \lambda_m x_m^2 = 0 \right\}$$
$$= \left\{ x \in \mathbb{R}^{n+1} \mid x_0 = \dots = x_m = 0 \right\}$$

und jede Bilinearform

$$s'(\underline{x}, y) = \lambda'_0 x_0 y_0 + \dots + \lambda'_m x_m y_m$$

mit $\lambda'_0, \ldots, \lambda'_m$ induziert den gleichen Kegel C.

Bemerkung. Seien s, V wie in Lemma 2.7.4 Setzte

$$V_0 := \{ v \in V \mid s(v, w) = 0 \quad \forall w \in W \}.$$

Dann gilt $V_0 \subseteq C = \{ v \in V \mid s(v, v,) = 0 \}$ und $V_0 \subseteq V$ ist K-linearer Untervektorraum. Die Existenz von $v_0 \in C$, $w \in V$ mit $s(v_0, w) \neq 0$ ist dann äquivalent zu $V_0 \subseteq C$.

Beweis. Sei $K = \mathbb{R}$ oder $K = \mathbb{C}$ und setze

$$q(v) := s(v, v), \quad q'(v) := s'(v, v) \quad \forall v \in V.$$

Sei $v_0 \in C$, sodass $s(v_0, w) \neq 0$ für mindestens ein $w \in V$. Für $w \in V$ definiere die Gerade

$$g_w := \{ w + \lambda v_0 \mid \lambda \in K \}.$$

Wir berechnen die Schnittpunkte von g_w mit C. Es ist

$$w + \lambda v_0 \in C \iff q(\underbrace{2 + \lambda v_0}) = 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow$$

Es gilt $|g_w \cap C| = 1$ genau dann, wenn $s(v_0, w) \neq 0$. Wir können genauso mit s' anstatt s argumentieren und erhalten

$$s(v_0, w) = 0 \iff s'(v_0, w) = 0$$

für $w \in V$.

Definiere

$$H := \{ w \in V \mid s(v_0, w) = 0 \}$$
$$= \{ w \in V \mid s'(v_0, w) = 0. \}$$

H ist eine Hyperebene. Also $\exists \ \rho \in K^{\star}$ mit

$$s'(v_0, w) = \rho \cdot s(v_0, w) \quad \forall w \in V.$$
(1)

Nach obigen Überlegungen hat für $w \in V$ die Gleichung

$$2\lambda s(v_0, w) + q(w) = 0$$

die gleiche Lösungsmenge wie

$$2\lambda s'(v_0, w) + q'(w) = 0.$$

Daraus folgt

$$s(v_0, w)q'(w) = s'(v_0, w)q(w) \quad \forall w \in W.$$
(2)

Aus (2) und (2) folgt

$$q'(w) = \rho \cdot q(w) \quad \forall w \in V \setminus H.$$

Betrachte die Funktion

$$h: V \to K$$

 $w \mapsto q'(w) - \rho q(w).$

hit stetig und erfüllt $h|_{W\backslash H}=0.$ Daraus folgt $h(w) \quad \forall\, w\in W,$ also $q'(w)=\rho\cdot q(w) \ \forall\, w\in V.$

Für beliebige Vektoren $v, w \in V$ berechnen wir

$$s'(v,w) = \frac{1}{2}(s'(v+w,v+w) - s'(v,v) - s'(w,w))$$

$$= \frac{1}{2}(q'(v+w) - q'(v) - q'(w))$$

$$= \frac{1}{2}\tau(q(v+w) - q(v) - q(w))$$

$$= \rho(s(v,w)).$$

Definition / **Erinnerung.** Si $A \in M_{n \times n}(\mathbb{R})$ eine symmetrische Matrix. Wir definieren die Signatur von A als

sign A := #positive Eigenwerte von A - #negative Eigenwerte von A (2.10) (jeweils mit Vielfachheit).

Satz 2.7.5 (Klassifikations-Theorem für reelle und komplexe projektive Quadriken). Sei $K = \mathbb{R}$ oder $K = \mathbb{C}$ und $A_1, A_2 \in \mathrm{M}_{(n+1)\times(n+1)\times(n+1)\times(n+1)}(K)$ symmetrische Matrizen. Definiere

$$Q_i := \left\{ (x_0 : \dots : x_n) \in \mathbb{P}_n(K) \mid {}^t\underline{x}A_i\underline{x} = 0 \right\} \ i = 1, 2.$$

Fall $K = \mathbb{R}$ Die Quadriken Q_1 und Q_2 sind geometrisch äquivalent genau dann, wenn

$$\operatorname{rang} A_1 = \operatorname{rang} A_2$$

und

$$|\operatorname{sign} A_1| = |\operatorname{sign} A_2|.$$

Fall $K=\mathbb{C}\ Q_1$ und Q_2 sind geometrisch äquivalent genau dann, wenn

$$\operatorname{rang} A_1 = \operatorname{rang} A_2$$

Korollar 2.7.6. Jede Quadrik in $\mathbb{P}_n(\mathbb{R})$ zu genau einer der Quadriken

$$\left\{ (x_0 : \dots : x_n) \in \mathbb{P}_n(\mathbb{R}) \mid x_0^2 + \dots + x_k^2 - x_{k+1}^2 - \dots - x_m^2 = 0 \right\}$$

mit $-1\leqslant \frac{m-1}{2}\leqslant k\leqslant m\leqslant n$ geometrisch äquivalent.

Jede Quadrik in $\mathbb{P}_n(\mathbb{R})$ zu genau einer der Quadriken

$$\left\{ (x_0: \dots : x_n) \in \mathbb{P}_n(\mathbb{R}) \mid x_0^2 + \dots + x_m^2 = 0 \right\}$$

mit $-1 \le m \le n$ geometrisch äquivalent.

Beweis von Satz 2.7.5 für $K = \mathbb{R}$. Seien $A_1, A_2 \in M_{(n+1)\times(n+1)\times(n+1)\times(n+1)}(\mathbb{R})$ symmetrische Matrizen mit rang $A_1 = \operatorname{rang} A_2$ und $|\operatorname{sign} A_1| = |\operatorname{sign} A_2|$. Nach dem Satz über die Hauptachsentransformation reeller symmetrischer Matrizen, existieren $S_1, S_2 \in \operatorname{GL}_{n+1}(\mathbb{R})$ mit

$$B_i := {}^tS_i^{-1}A_iS_i^{-1},$$

und

$$B_i = \begin{pmatrix} I_{k_i+1} & 0 & 0\\ 0 & -I_{m_i-k_i} & 0\\ 0 & 0 & 0 \end{pmatrix}$$

wobei $-1 \leq k_i \leq m_i \leq n$ und I_l die l-dimensionale Einheitsmatrix ist.

Nach dem Sylversterschen Trägheitssatz (AGLA I) folgt

$$m_1 + 1 = \operatorname{rang} A_1 = \operatorname{rang} A_2 = m_2 + 1.$$

und

$$|2k_1 + 1 - m_1| = |\operatorname{sign}(A_1)| = |\operatorname{sign}(A_2)| = |2k_2 + 1 - m_2|.$$

Sei $m = m_1 = m_2$ und k gegeben durch

$$2k + 1 - m = |2k_1 + 1 - m| = 2|2k_2 + 1 - m|.$$

Dann sind

$$Q_i = \{ (x_0 : \dots : x_n) \in \mathbb{P}_n(\mathbb{R}) \mid {}^t x A_i{}^t x = 0 \} \quad i = 1, 2$$

geometrisch äquivalent zu

$$Q = \left\{ (x_0 : \dots : x_n) \in \mathbb{P}_n(\mathbb{R}) \mid x_0^2 + \dots + x_k^2 - x_{k-1}^2 - \dots - x_m^2 = 0 \right\}.$$

Seien Q_1 , Q_2 geometrisch äquivalent. Wir können annehmen, dass Q_1 gegeben ist durch

$$Q_1 = \left\{ (x_0 : \dots : x_n) \in \mathbb{P}_n(\mathbb{R}) \mid x_0^2 + \dots + x_k^2 - x_{k+1}^2 - \dots - x_m^2 = 0 \right\}$$

mit $-1 \leqslant \frac{m-1}{2} \leqslant k \leqslant m \leqslant n$, d. h.

$$Q_1 = \left\{ (x_0 : \dots : x_j) \in \mathbb{P}_n(\mathbb{R}) \mid {}^t\underline{x}A_1\underline{x} = 0 \right\}$$

mit

$$A_1 = \begin{pmatrix} I_{k+1} & 0 & 0 \\ 0 & I_{m-k} & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Sei

$$Q_2 = \left\{ (x_0 : \ldots : x_n) \in \mathbb{P}_n(\mathbb{R}) \mid {}^t\underline{x}A_2\underline{x} = 0 \right\}$$

und $f: \mathbb{P}_n(\mathbb{R}) \to \mathbb{P}_n(\mathbb{R})$ eine Projektivität mit $f(Q_2) = Q_1$. Dann gibt es $T \in GL_{n+1}(\mathbb{R})$, sodass

$$f(Q_2) = \left\{ (x_0 : \dots : x_n) \in \mathbb{P}_n(\mathbb{R}) \mid {}^t\underline{x}{}^tTA_2T\underline{x} = 0 \right\}.$$

Sei $A' := {}^tTA_2T$. Sei $k \neq m$. Dann ist $0 \leqslant k < m$ und die Vektoren

$$v_0 := (\underbrace{)}_{m \text{ Einträge1},0,\dots,n,1,0,\dots,0}$$

 $w := (1,0,\dots,0)$

erfüllen

$${}^{t}v_{0}A_{1}v_{0} = 0$$
 ${}^{t}v_{0}A_{1}w = 1.$

Aus Lemma 2.7.4 folgt, dass

$$A' = \rho A_1 \quad \rho \in \mathbb{R}^*.$$

Es ist

$$\operatorname{rang} A' = \operatorname{rang}(A_1)$$
$$|\operatorname{sign} A'| = |\operatorname{sign} A_1|$$

und nach dem Sylversterschen Trägheitsgesetz folgt

$$\operatorname{rang} A_2 = \operatorname{rang} A' = \operatorname{rang} A_1$$

und

$$|\operatorname{sign} A_2| = |\operatorname{sign} A'| = |\operatorname{sign} A_1|.$$

Sei k=m, also

$$Q_{1} = \left\{ (x_{0} : \dots : x_{n}) \in \mathbb{P}_{n}(\mathbb{R}) \mid x_{0}^{2} + \dots + x_{m}^{2} = 0 \right\}$$
$$= \left\{ (x_{0} : \dots : x_{n}) \in \mathbb{P}_{n}(\mathbb{R}) \mid x_{0} = \dots = x_{m} = 0 \right\}$$

projektiver Unterraum der Dimension n-m-1. Also ist auch $f(Q_2)$ projektiver Unterraum der Dimension n-m-1. Daraus folgt

$$\operatorname{rang}(A') = |\operatorname{sign} A'| = m + 1$$

und nach dem Sylversterschen Trägheitsgesetz

$$\operatorname{rang} A_2 = \operatorname{rang} A' = m + 1 = \operatorname{rang} A_1$$
$$|\operatorname{sign} A_2| = |\operatorname{sign} A'| = m + 1 = |\operatorname{sign} A_1|.$$

Vorlesung 21

Fr 03.07. 10:15

Kapitel 3

Exkurs: Exponentialabbildungen von Matrizen

Datei 37: Exponentialabbildungen Matrizen

Motivation (mathematisches Pendel).

$$F_{\rm tan} = -mg \sin \alpha(t)$$
.

Für kleine Winkel $\alpha(t)$ ersetze $\sin\alpha(t)$ durch $\alpha(t)$ und erhalte

$$\alpha''(t) = -g\alpha(t).$$

Sei $v(t) = \alpha'(t)$ und erhalte

$$\begin{pmatrix} \alpha'(t) \\ v'(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -g & 0 \end{pmatrix} \begin{pmatrix} \alpha(t) \\ v(t) \end{pmatrix}.$$

Allgemeiner sei $A \in \mathcal{M}_{n \times n}(\mathbb{C}), y_0 \in \mathbb{C}^n$.

Ziel. Finde eine differenzierbare FUnktion $y \colon \mathbb{R} \to \mathbb{C}^n$ mit $\frac{dy}{d} = A \cdot y(t)$ und $y(0) = y_0$.

Spezialfall (n = 1). Setze $(t) = y_0 e^{\bigcap_{A = t}^{\mathbb{C}\mathbb{R}} t}$.

Idee $(n \ge 1)$. Definiere

$$e^{At} := \sum_{i=0}^{\infty} \frac{A^i t^i}{i!}$$

 $(A^0 := I_n)$ und setze $y(t) = e^{At}y_0$.

Formal:

$$\frac{d}{dt} \sum_{i=0}^{\infty} \frac{A^{i}t^{i}}{i!} = \sum_{i=0}^{\infty} \underbrace{\frac{A^{A^{i-1}}}{A^{i}} t^{i-1}}_{i!} = A \sum_{i=0}^{\infty} \frac{A^{i}t^{i}}{i!}.$$
 (3.1)

Frage. Unter welchen Voraussetzungen konvergiert die Reihe

$$\sum_{i=0}^{\infty} \frac{A^i t^i}{i!}?$$

 \to Wie kann man e^{At} für $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ berechnen? \to Berechne $\frac{d}{dt}e^{At}$.

Sei im Folgenden $K = \mathbb{R}$ oder $K = \mathbb{C}$.

Definition. Für $A \in M_{n \times n}(K)$ definiere

$$e^A := \sum_{k=0}^{\infty} \frac{A^k}{k!} = I_n + A + \frac{A^2}{2} + \frac{A^3}{6} + \cdots$$

Weiter definiere $A^0 := I_n$ für alle $A \in \mathcal{M}_{n \times n}(K)$.

Lemma 3.0.1. Sei $A \in \mathrm{M}_{n \times n}(K)$. Dann ist die Reihe $\sum_{k=0}^{\infty} \frac{A^k}{k!}$ absolut konvergent (bzgl. einer Norm auf $\mathrm{M}_{n \times n}(K)$).

Beweis. $M_{n\times n}(K) \simeq K^{n^2}$ als K-Vektorraum, als ind alle Normen auf $M_{n\times n}(K)$ äquivalent. Sei $\|\cdot\|$ die Operatornorm auf $M_{n\times n}(K)$, d. h.

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$$

mit ||x|| und ||Ax|| der euklidischen Norm. Für $A, B \in M_{n \times n}(K)$ ist

$$||AB|| \leqslant ||A|| \cdot ||B||.$$

Also gilt

$$\left\| \sum_{k=K_1}^{K_2} \frac{A^k}{k!} \right\| \leqslant \sum_{k=K_1}^{K_2} \underbrace{\frac{\|A\|^k}{\|A^k\|}}_{k!}$$

$$\leqslant \sum_{k=K_1}^{K_2} \underbrace{\frac{\|A\|^k}{\|A\|^k}}_{k!} \to 0 \quad (K_1 \to \infty),$$

also ist $\sum_{k=0}^{\infty} \frac{A^k}{k!}$ absolut konvergent.

Korollar 3.0.2. Sei $A \in \mathcal{M}_{n \times n}(K)$ und $\varphi \colon \mathbb{R} \to \mathcal{M}_{n \times n}(K)$ gegeben durch $t \mapsto e^{tA}$. Dann ist φ eine differenzierbare Kurve mit

$$\frac{d}{dt}e^{tA} = Ae^{tA}.$$

Beweis. Nach der absoluten Konvergenz gilt

$$\frac{d}{dt} \sum_{k=0}^{\infty} \frac{(tA)^k}{k!} = \frac{d \sum_{k=0}^{\infty} \frac{t^k A^k}{k!}}{dt}$$
$$= \sum_{k=0}^{\infty} k \frac{t^{k-1} A^k}{k!}$$
$$= Ae^{tA}$$

Weitere Eigenschaften der Exponentialabbildung

Lemma 3.0.3. Seien $A, B \in M_{n \times n}(K)$ und $T \in GL_n(K)$. Dann gilt

- a) $e^0 = I_n$.
- b) $e^{tA} = t(e^{A})$ bzw. $\overline{e^{A}} = e^{\overline{A}}$ (für $A \in M_{n \times n}(C)$).
- c) $e^{TAT^{-1}} = Te^AT^{-1}$.
- d) $e^{A+B} = e^A \cdot e^B$ für $A, B \in \mathcal{M}_{n \times n}(K)$ mit AB = BA.
- e) e^A ist invertierbar mit $\left(e^A\right)^{-1}=e^{-A}$ und $e^{mA}=\left(e^A\right)^m$ für $n\in\mathbb{Z}.$

Beweis. a)

$$e^0 := \sum_{k=0}^{\infty} \frac{0^k}{k!} = I_n,$$

da $A^0 := I_n$ für alle $A \in M_{n \times n}(K)$.

b)

$$e^{tA} = \sum_{k=0}^{\infty} \frac{(tA)^k}{k!}$$
$$= \sum_{k=0}^{\infty} \frac{t(A^k)}{k!}$$
$$= t\left(\sum_{k=0}^{\infty} \frac{A^k}{k!}\right)$$
$$= t(e^A),$$

genauso für $e^{\overline{A}}$.

c)

$$e^{TAT^{-1}} = \sum_{k=0}^{\infty} \frac{(TAT^{-1})^k}{k!}$$
$$= \sum_{k=0}^{\infty} \frac{TA^kT^{-1}}{k!}$$
$$= Te^AT^{-1}.$$

d) Sei AB = BA. Betrachte

$$e^{A+B} = \sum_{k=0}^{\infty} \frac{(A+B)^k}{k!}$$

$$= \sum_{k=0}^{\infty} \sum_{l=0}^{k} \binom{k}{l} \frac{A^l B^{k-l}}{k!}$$

$$AB = BA$$

$$= \sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{A^l B^{k-l}}{l!(k-l)!}$$

$$= \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} \frac{A^l B^{k-l}}{l! (k-l)!}$$
$$= \sum_{l=0}^{\infty} \sum_{l'=0}^{\infty} \frac{A^l}{l!} \frac{B^{l'}}{(l')!} = e^A \cdot e^B$$

e) Für $m \ge 0$ folgt

$$e^{mA} = \left(e^A\right)^m$$

induktiv aus d), denn (m-1)A und A kommutieren. Weiter ist

$$I_n = e^0 = e^{A-A} = e^A \cdot e^{-A}$$

nach d) also $e^{-A} = (e^A)^{-1}$.

Bemerkungen. • Insbesondere

$$e^A \in \mathrm{GL}_n(K)$$

für alle $A \in M_{n \times n}(K)$.

• Im Allgemeinen ist $e^{A+B} \neq e^A \cdot e^B$. Betrachte z. B.

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Nachrechnen ergibt

$$e^{A+B} = I_3 + A + B + \frac{1}{2}C$$

und

$$e^A \cdot e^B = (I_3 + A)(I_3 + B)$$

= $I_3 + A + B + C$.

Satz 3.0.4. Seien $A, B \in \mathcal{M}_{n \times n}(K)$ fest und $t \in \mathbb{R}$. Dann gilt für $|t| \leq 1$

$$e^{tA}e^{tB} - e^{t(A+B)} = \frac{t^2}{2}(AB - BA) + O(t^3).$$

Beweis. Aus der Reihenentwicklung erhalten wir

$$e^{t(A+B)} = I_n + t(A+B) + \frac{t^2}{2}(A+B)^2 + \underbrace{\sum_{k=3}^{\infty} \frac{t^k (A+B)^k}{k!}}_{=O(t^3)}$$
$$= I_n + t(A+B) + \frac{t^2}{2}(A^2 + AB + BA + B^2) + O(t^3)$$

und

$$e^{tA}e^{tB} = \left(I_n + tA + \frac{t^2}{2}A^2 + O(t^3)\right)\left(I_n + tB + \frac{t^2}{2}B^2 + O(t^3)\right)$$
$$= I_n + tA + tB + t^2AB + \frac{1}{2}t^2(A^2 + B^2) + O(t^3).$$

Beispiele (zur Berechnung der Exponentialabbildung). i) Sei $D \in M_{n \times n}(K)$ eine Diagonalmatrix mit

$$D = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}.$$

Dann ist

$$e^D = \begin{pmatrix} e^{\lambda_1} & 0 \\ & \ddots & \\ 0 & & e^{\lambda_n} \end{pmatrix}.$$

ii) Sei
$$A = \begin{pmatrix} 0 & \beta \\ -\beta & 0 \end{pmatrix}$$
 mit $\beta \in \mathbb{R}$. Dann ist
$$A^2 = \begin{pmatrix} -\beta^2 & 0 \\ 0 & -\beta^2 \end{pmatrix} = -\beta^2 \cdot I_2$$
$$A^3 = -\beta^2 A$$
$$A^4 = \beta^4 I_2.$$

Also

$$e^{A} = \sum_{k=0}^{\infty} \frac{A^{k}}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^{2k+1}}{(2k+1)!} + \sum_{k=0}^{\infty} \frac{A^{2k}}{(2k)!}$$

$$= \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} (-1)^{k} \beta^{2k} A + \sum_{k=0}^{\infty} \frac{1}{(2k)!} (-1)^{k} \beta^{2k} I_{2},$$

also

$$e^{A} = \sin(\beta) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + \cos(\beta) I_{2}$$
$$= \begin{pmatrix} \cos(\beta) & -\sin(\beta) \\ \sin(\beta) & \cos(\beta) \end{pmatrix}.$$

iii) Sei $A \in M_{n \times n}(\mathbb{C})$ gegeben durch

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & 0 \\ \vdots & & & & \ddots & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}.$$

Dann ist

$$A^{2} = \begin{pmatrix} 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & \ddots & \ddots & 1 \\ \vdots & & & & \ddots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}, \quad A^{n} = 0$$

und

$$e^{tA} = \begin{pmatrix} 0 & t & \frac{t^2}{2} & \cdots & \frac{t^{n-1}}{(n-1)!} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \frac{t^2}{2} \\ \vdots & & & \ddots & t \\ 0 & \cdots & \cdots & 0 \end{pmatrix}.$$

Frage. Wie kann man für eine allgemeine Matrix $A \in M_{n \times n}(\mathbb{C})$ die Exponentialabbildung e^A explizit berechnen?

Idee. Reduziere nach Konjugation auf die Beispiele i) und iii).

Erinnerung (Jordansche Normalform). Sei $A \in M_{n \times n}(\mathbb{C})$ mit paarweise verschiedenen Eigenwerten $\lambda_1, \ldots, \lambda_k$. Dann gibt es eine invertierbare Matrix $T \in GL_n(\mathbb{C})$ mit

$$T^{-1}AT = \begin{pmatrix} \lambda_1 I_{r_1} + N_1 \\ & \ddots \\ & & \lambda_k I_{r_k} + N_k \end{pmatrix},$$

wobei $r_1 + \cdots + r_k = n$ und

$$N_{i} = \begin{pmatrix} 0 & * & 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & 0 \\ \vdots & & & & \ddots & * \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}$$
(3.2)

 $mit * \in \{0, 1\}.$

Anwendung auf die Berechnung des Exponentialabbildung

Sei $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ und $T \in GL_n(\mathbb{C})$ mit $T^{-1}AT = D + N$ mit

$$D = \begin{pmatrix} \lambda_1 & & & & & & \\ & \ddots & & & & & \\ & & \lambda_1 & & & \\ & & & \ddots & \\ & & & \lambda_k & & \\ 0 & & & \lambda_k & & \\ 0 & & & & \lambda_k \end{pmatrix}$$

$$N = \begin{pmatrix} 0 & * & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \vdots \\ \vdots$$

mit $* \in \{0,1\}$. Dann DN = ND.

Wir erhalten

$$e^{tA} = e^{T(t(D+N))T^{-1}}$$

= $Te^{t(D+N)}T^{-1}$
= $Te^{tD+tN}T^{-1}$
= $Te^{tD} \cdot e^{tN}T^{-1}$

Für e^{tD} und e^{tN} verwende die Beispiele i) und iii)

Eine weitere Folgerung aus der Jordanschen Normalform

Definition. Sei $A = (a_{ij})_{1 \leq i,j \leq n} \in M_{n \times n}(\mathbb{C})$. Setze $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$.

Bemerkung. Es gilt

$$\operatorname{tr}(AB) = \operatorname{tr}(BA) \quad \forall A, B \in M_{n \times n}(\mathbb{C}).$$

Lemma 3.0.5. Sei $A \in M_{n \times n}(\mathbb{C})$. Dann ist

$$\det e^A = e^{\operatorname{tr} A}.$$

Beweis. Sei $T \in \mathrm{GL}_n(\mathbb{C})$, sodass $T^{-1}AT = D + N$ in Jordanscher Normalform ist. Es ist

$$tr(A) = tr(TT^{-1}A) = tr(T^{-1}AT) = tr(D+N)$$

und

$$\det e^A = \det e^{T(D+N)T^{-1}} = \det \left(T e^{D+N} T^{-1} \right) = \det e^{D+N}.$$

Es genügt also das Lemma für D+N nachzuweisen. Sei

$$D = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}, \quad \lambda_i \in \mathbb{C}.$$

Direkte Rechnung ergibt

$$\det e^{D+N} = e^{\lambda_1} \cdots e^{\lambda_n} = e^{\lambda_1 + \dots + \lambda_n} = e^{\operatorname{tr}(D+N)}.$$

Vorlesung 22

Di 07.07. 10:15

Kapitel 4

Multilineare Algebra

§4.1 Tensorprodukte

Datei 38: Tensorprodukte Teil

Erinnerung. Sei K ein Körper und V, W K-Vektorräume. Wir nennen eine Abbildung

$$\varphi \colon V \times W \to K$$

$$(v, w) \mapsto \varphi(v, w)$$

bilinear, wenn $\forall v, v' \in V, w, w' \in W, \lambda \in K$ gilt

$$\varphi(v + v', w) = \varphi(v, w) + \varphi(v', w)$$

$$\varphi(v, w + w') = \varphi(v, w) + \varphi(v, w')$$

$$\varphi(\lambda v, w) = \lambda \varphi(v, w) = \varphi(v, \lambda w).$$

Beispiele. i) $V = W = K^n$, $A \in M_{n \times n}(K)$. Dann ist

$$\varphi \colon K^n \times K^n \to K$$
$$(\underline{x}, \underline{y}) \mapsto {}^t\underline{x}A\underline{y}$$

bilinear.

ii) $V = W = K^2$ Interpretiere $V \times W$ als $M_{2\times 2}(K)$. Dann ist

$$\varphi \colon V \times W \to K$$

$$(\underline{x},\underline{y}) \mapsto \det(\underline{x},\underline{y})$$
 Spaltenvektoren

bilinear.

iii) Sei V ein K-Vektorraum mit Dualraum V^* . Die Abbildung

$$V^* \times V \to K$$
$$(\varphi, v) \mapsto \varphi(v)$$

ist bilinear.

iv) Sei $V = W = M_{n \times n}(K)$. Die Abbildung

$$\varphi \colon V \times W \to V$$

$$(A, B) \mapsto AB$$

ist nach obiger Definition nur für n=1 eine bilineare Abbildung.

Wir verallgemeinern den Begriff "bilineare Abbildung" zu

Definition. Sei K ein Körper und U, V, W K-Vektorräume. Wir nennen eine Abbildung

$$\varphi \colon V \times W \to U$$

bilinear, falls für jedes $v \in V$ und $w \in W$ die Abbildungen

$$\varphi_V \colon W \to U \quad w \mapsto \varphi(v, w)$$

 $\varphi_W \colon V \to U \quad u \mapsto \varphi(v, w)$

Wir schreiben

$$\mathrm{Bil}(V,W;U) \coloneqq \{ \, \varphi \colon V \times W \to U \mid \varphi \text{ ist bilinear } \}.$$

Bemerkungen. i) Bil(V, W; U) ist ein K-Vektorraum mit

$$(\varphi_1 + \varphi_2)(v, w) := \varphi_1(v, w) + \varphi_2(v, w)$$
$$(\lambda \varphi)(v, w) = \lambda \varphi(v, w).$$

ii) Seien V,W,U,U' K-Vektorräume, $\varphi\colon V\times W\to U$ bilinear und $\psi\colon U\to U'$ linear. Dann ist die Abbildung

$$\psi \circ \varphi \colon V \bigcup W \to U'$$

bilinear.

iii) (Beispiel) Sei K ein Körper,

$$V = W = \{ P(x) \in K[x] \mid \operatorname{grad} P(x) \leqslant d \}.$$

und

$$U = \{ P(x) \in K[x] \mid \operatorname{grad} P(x) \leqslant 2d \}.$$

Dan sind U, V, W K-Vektorräume der Dimension

$$\dim(V) = \dim(W) = d+1$$
$$\dim(U) = 2d+1$$

mit Basen $1, x, \ldots, x^d$ bzw. $1, x, \ldots, x^{2d}$. Die Abbildung

$$\varphi \colon V \times W \to U$$
$$(P,Q) \mapsto P \cdot Q$$

ist bilinear.

iv) V = K[x], W = K[y] als ∞ -dimensionale K-Vektorräume, U = K[x, y]. Betrachte

$$\varphi \colon V \times W \to U$$

 $(P(x), Q(y)) \mapsto P(x)Q(y).$

Dann ist φ eine bilineare Abbildung.

Erinnerung. Eine K-lineare Abbildung $f: V \to W$ ist eindeutig bestimmt durch die Bilder $f(v_1), \ldots, f(v_n)$, falls v_1, \ldots, v_n eine Basis von V ist.

Frage. Welche Daten muss man angeben um eine bilineare Abbildung $\varphi \colon V \times W \to U$ eindeutig zu beschreiben?

Idee. Sei vv_1, \ldots, v_n Basis von V und w_1, \ldots, w_m Basis von W. Schreibe $v \in V$ und $w \in W$ als

$$v = \sum_{i=1}^{n} \lambda_i v_i$$

$$w = \sum_{j=1}^{m} \mu_j w_j$$

mit $\lambda_1, \ldots, \lambda_n, \mu_1, \ldots, \mu_m \in K$. Dann ist

$$\varphi(v, w) = \varphi\left(\underbrace{\sum_{i=1}^{n} \lambda_{i} v_{i}}_{v}, \underbrace{\sum_{j=1}^{m} \mu_{j} w_{j}}_{w}\right)$$

$$= \sum_{i=1}^{n} \lambda_{i} \sum_{j=1}^{m} \mu_{j} \varphi_{j} \varphi(v_{i} w_{j})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_{i} \mu_{j} \varphi(v_{i}, w_{j}),$$

d. h. $\varphi(v, w)$ ist eindeutig bestimmt sobald wir $\varphi(v_i, w_j)$, $1 \leq ileqn$, $1 \leq j \leq m$ kennen. Wählen wir $\varphi(v_i, w_j) \in U$ beliebig (für einen K-Vektorraum U), dann ist die Abbildung

$$V \times W \to U$$

$$\left(\sum_{i=1}^{n} \lambda_{i} v_{i}, \sum_{j=1}^{m} \mu_{j} w_{j}\right) \mapsto \sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_{i} \mu_{j} \varphi(v_{i} w_{j})$$

bilinear.

Lemma 4.1.1. Sei K ein Körper, V, W, U endlich-dimensionale K-Vektorräume mit Basen $v_1, \ldots, v_n \in V$ und $w_1, \ldots, w_m \in W$. Seien $u_{ij \in U}$ für $1 \leq i \leq n, 1 \leq j \leq m$. Dann gibt es genau eine bilineare Abbildung

$$\varphi \colon V \times W \to U$$

mit der Eigenschaft

$$\varphi(v_i, w_j) = u_{ij} \quad \forall 1 \leqslant i \leqslant n \ 1 \leqslant j \leqslant m.$$

Frage. Gibt es eine vergleichbare Beschreibung für ∞ -dimensionale Vektorräume?

Definition. Sei V ein K-Vektorraum, I eine beliebige Indexmenge und $v_i \in V \quad \forall i \in I$. Wir definieren

$$\mathrm{Span}_K(v_i)_{i\in I}\coloneqq \bigg\{\sum_{i\in I} \lambda_i v_i, \ \ \lambda_i\in K \quad \, \forall\, i\in I \ \bigg| \ \lambda_i=0 \text{ für alle bis auf endlich viele } i\in I \ \bigg\}.$$

Bemerkung. Span_K $(v_i)_{i \in I} \subseteq V$ ist ein K-Untervektorraum.

Beispiel. Sei
$$V = K[t]$$
, $I = \mathbb{Z}_{\geq 0}$, $v_i = t^i$, $t^0 := 1$. Dann ist

$$\operatorname{Span}_K(v_i)_{i \in I} = K[t].$$

Definition. Sei V ein K-Vektorraum $(v_i)_{i\in I}$ eine Familie von Elementen $v_i \in V$. Wir nennen $(v_i)_{i\in I}$ linear unabhängig, falls jede endliche Teilfamilie von $(v_i)_{i\in I}$ linear unabhängig ist.

Beispiel. In V=K[t] ist die Familie $(t^{2i})_{i\geqslant 0}$ linear unabhängig.

Definition. Sei V ein K-Vektorraum und $v_i \in V$ für $i \in I$. Wir nennen $(v_i)_{i \in I}$ Erzeugendensystem von V, falls

$$V = \operatorname{Span}_K(v_i)_{i \in I}.$$

Weiter nennen wir $(v_i)_{i\in I}$ Basis von V, falls $(v_i)_{i\in I}$ linear unabhängig und eine Erzeugendensystem ist.

Beispiel. $(t^i)_{i\geq 0}$ ist Basis von K[t].

Satz 4.1.2 (ohne Beweis). Jeder Vektorraum besitzt eine Basis.

Wir können Lemma 4.1.1 verallgemeinern zu

Lemma 1'. Sei K ein Körper, V, W, U K-Vektorräume, $(v_i)_{i \in I}$ Basis von V und $(w_i)_{i \in I}$ Basis von W. Seien $u_{ij} \in U \quad \forall i \in I \ \forall j \in J$. Dann gibt es genau eine bilineare Abbildung $\varphi \colon V \times W \to U$ mit

$$\varphi(v_i, w_j) = u_{ij} \quad \forall i \in I, \ j \in J.$$

Beweis. Es gilt $V = \operatorname{Span}_K(v_i)_{i \in I}$, d. h. jedes $v \in V$ kann man schreiben in der Form

$$v = \sum_{i \in I} \lambda_i v_i \quad \lambda_i \in K$$

mit $\lambda_i = 0$ für alle $i \in I$ außerhalb einer endlichen Teilmenge von I.

Notation. Wir schreiben $\sum_{i \in I} \lambda_i v_i$ für eine Summe in der nur endlich viele $\lambda_i \neq 0$ sind.

Sei $\varphi \colon V \times W \to U$ eine bilineare Abbildung mit

$$\varphi(v_i, w_j) = u_{ij} \quad \forall i \in I, \ j \in J.$$

Seien $v \in V$, $w \in W$ beliebig. Dann ist

$$\sum_{i \in I}' \lambda_i v_i$$

und

$$w = \sum_{j \in J}' \mu_j w_j$$

mit $\lambda_i, \mu_j \in K \quad \forall i \in I, \ j \in J$. Nach der Bilinearität von φ gilt

$$\varphi(v, w) = \varphi\left(\sum_{i \in I}' \lambda_i v_i, \sum_{j \in J}' \mu_j w_j\right)$$
$$= \sum_{i \in I}' \lambda_i \varphi\left(v_i, \sum_{j \in J}' \mu_j w_j\right)$$
$$= \sum_{i \in I}' \sum_{j \in J}' \lambda_i \mu_j \varphi(v_i, w_j).$$

Es gibt also höchstens eine bilineare Abbildung $\varphi \colon V \times W \to U$ mit $\varphi(v_i, w_j) = u_{ij} \quad \forall i \in I, \ j \in J$. Umgekehrt definiert

$$\varphi \colon V \times W \to U$$

$$\left(\sum_{i \in I}' \lambda_i v_i, \sum_{j \in J}' \mu_j w_j\right) \mapsto \sum_{i,j}' \lambda_i \mu_j u_{ij}$$

eine solche Abbildung.

Datei 39: Tensorprodukte Teil

Erinnerung. Ist $f: V \to W$ eine K-lineare Abbildung zwischen den K-Vektorräumen V, W, so ist $f(V) \subseteq W$ ein K-Untervektorraum.

Achtung. Für bilineare Abbildungen $\varphi \colon V \times W \to U$ muss $\varphi(V \times W) \subseteq U$ im Allgemeinen kein K-Untervektorraum von U sein.

In Beispiel iii)

$$U = \{ P(x) \in K[x], \operatorname{grad} P(x) \leq 2d \}$$

$$\varphi \colon V \times W \to U$$

$$(P(x), Q(x)) \mapsto P(x) \cdot Q(x).$$

Dann ist $\varphi(x^i, x^j) = x^{i+j}$ für $0 \le i, j \le d$ und

$$\operatorname{Span}_K(\operatorname{Im}\varphi) = U,$$

aber z. B. über $K = \mathbb{Q}, d = 1$

$$U \ni t^2 + 3 \not\in \operatorname{Im} \varphi.$$

Beispiel. iii)

$$\begin{split} \varphi \colon K[x] \times K[y] &\to K[x,y] \\ (P(x),Q(y)) &\mapsto P(x)Q(y), \\ \varphi(x^i,y^j) &= x^i y^j \quad \forall \, i,j \in \mathbb{Z}_{\geqslant 0} \end{split}$$

und $x^iy^j,\ i,j\in\mathbb{Z}_{\geqslant 0}$ spannen K[x,y] als K-Vektorraum auf, aber das Polynom $xy+1\not\in \mathrm{Im}\, \varphi.$

Bemerkung. Die Abbildung

$$\psi \colon K[x] \times K[y] \to K[z]$$

 $(P(x), Q(y)) \mapsto P(z)Q(z).$

faktorisiert über φ aus Beispiel iii), d.h. es gibt ein kommutatives Diagramm

$$K[x] \times K[y] \xrightarrow{\varphi} K[x, y]$$

$$\downarrow^{f}$$

$$K[z]$$

mit der linearen Abbildung

$$f \colon K[x,y] \to K[z]$$

 $P(x,y) \mapsto P(z,z) \in K[z].$

Auch jede andere bilineare Abbildung

$$\tilde{\psi} \colon K[x] \times K[y] \to U$$

in einem K-Vektorraum U faktorisiert über φ .

Vorlesung 23

Do 09.07. 10:15

Definition. Sei K ein Körper, V, W, T K-Vektorräume und $\eta: V \times W \to T$ eine bilineare Abbildung. Wir sagen, dass η die universelle Eigenschaft \otimes hat, falls gilt: Für jeden K-Vektorraum U und jede bilineare Abbildung $\varphi: V \times W \to U$ gibt es genau eine lineare Abbildung $f: T \to U$, sodass $\varphi = f \circ \eta$, d. h. das Diagramm

kommutiert.

Bemerkung. Hat $\eta: V \times W \to T$ die universelle Eigenschaft \otimes , so gilt $\operatorname{Span}_K(\operatorname{Im} \varphi) = T$.

Beispiel. Sei V = K und W ein K-Vektorraum. Dann hat die Abbildung

$$\eta \colon K \times W \to W$$

$$(\lambda, w) \mapsto \lambda \cdot w$$

die universelle Eigenschaft \otimes . Für eine beliebige bilineare Abbildung $\varphi \colon K \times W \to U$ setze

$$f \colon W \to U$$

 $w \mapsto \varphi(1, w).$

Dann gilt für alle $\lambda \in K$, $w \in W$

$$f(\eta(\lambda, w)) = f(\lambda w) = \lambda f(w) = \lambda \varphi(1, w) = \varphi(\lambda, w),$$
 \(\varphi\) bilinear

also kommutiert das Diagramm

$$K \times W \xrightarrow{\eta} W$$

$$\downarrow f$$

$$U$$

Lemma 4.1.3. Seien V, W, T, \tilde{T} K-Vektorräume und $\eta: V \times W \to T$, $\tilde{\eta}: V \times \to \tilde{T}$ bilineare Abbildungen mit der universellen Eigenschaft \otimes .

Dann gibt es einen Isomorphismus $f: T \to \tilde{T}$ von K-Vektorräumen mit $f \circ \eta = \tilde{\eta}$.

Beweis. Nach der universellen Eigenschaft \otimes von η und $\tilde{\eta}$ gibt es lineare Abbildung

$$f: T \to \tilde{T}, \quad g: \tilde{T} \to T,$$

sodass

kommutiert, d. h. $f \circ \eta = \tilde{\eta}$ und $\eta = g \circ \tilde{\eta}$, also folgt $(f \circ g) \circ \tilde{\eta} = \tilde{\eta}$, und das Diagramm

$$V \times W \xrightarrow{\tilde{\eta}} \tilde{T} \downarrow_{f \circ g}$$

kommutiert. Nach der universellen Eigenschaft \otimes on $\tilde{\eta}$ folgt $f \circ g = \operatorname{Id}_{\tilde{T}}$. Ebenso gilt $f \circ f = \operatorname{Id}_T$.

Frage. Seien V, W K-Vektorräume. Gibt es immer eine bilineare Abbildung $\eta: V \times W \to T$ in einem K-Vektorraum T mit der universellen Eigenschaft \otimes ?

Idee. Sind V, W endlich-dimensionaler Vektorräume mit Basen $v_1, \ldots, v_n \in V$ und $1, \ldots, w_m \in W$, dann ist eine bilineare Abbildung $\varphi \colon V \times W \to U$ eindeutig bestimmt durch die Bilder $\varphi(v_i, w_j)$ (für einen K-Vektorraum U).

Verwende die Tupel $(v_{ii}w_j)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}$ als Basis für den K-Vektorraum T mit der bilinearen Abbildung

$$\eta \colon V \times W \to T$$

$$(v_i, w_j) \mapsto (v_i, w_j).$$

Satz 4.1.4. Seien V, W K-Vektorräume. Dann gibt es einen K-Vektorraum T und eine bilineare Abbildung $V \times W \to T$, welche die universelle Eigenschaft \otimes hat. Falls $\dim(V), \dim(W) < \infty$, dann gilt $\dim(T) = (\dim(V))(\dim(W))$.

Beweis. Sei $(v_i)_{i\in I}$ Basis von V und $(w_j)_{j\in J}$ Basis on W.

Setze

$$T \coloneqq \{ \ \tau \colon I \times J \to K \mid \tau(i,j) \neq 0 \text{ für ur endlich viele } (i,j) \in I \times J \ \}.$$

Dann ist T ein K-Vektorraum unter punktweiser Addition / Multiplikation mit Skalaren

$$(\lambda \tau)(i,j) = \lambda \tau(i,j)$$

$$(\tau + \tau')(i,j) = \tau(i,j) + \tau'(i,j) \quad \forall \tau, \tau' \in T \quad \forall \lambda \in K \ (i,j) \in I \times J.$$

Definiere $\tau_{i_0,j_0} \in T$ für $(i_0,j_0) \in I \times J$ durch

$$\tau_{i_0,j_0}(i,j) = \begin{cases} 1 & (i,j) = (i_0,j_0) \\ 0 & (i,j) \neq (i_0,j_0). \end{cases}$$

Dann ist

$$T = \operatorname{Span}_K((\tau_{ij})_{(i,j) \in T \times I}),$$

denn für $\tau \in T$ ist.

$$\tau = \sum_{(i,j)\in I} \underbrace{\tau(i,j)}_{\in K} \underbrace{\tau_{ij}}_{T}.$$

Die Familie $(\tau_{ij})_{(i,j)\in I\times J}$ ist linear unabhängig, denn aus

$$\sum_{(\rangle,|)\in\mathcal{I}\times\mathcal{J}}' \lambda_{ij}\tau_{ij} = 0$$

folgt

$$\underbrace{\sum_{(i,j)\in I\times J}' \lambda_{ij}\tau_{ij}(i',j')}_{\lambda_{i',j'}} = 0 \quad \forall (i',j')\in I\times J,$$

also $\lambda_{ij} = 0 \quad \forall (i,j) \in I \times J$. Damit ist $(\tau_{ij})_{(i,j) \in I \times J}$ Basis von T. Falls $\dim(V), \dim(W) < \infty$ gilt insbesondere

$$\dim(T) = (\dim(V))(\dim(W)).$$

Sei $\eta: V \times W \to T$ die eindeutig bestimmte lineare Abbildung mit

$$\eta(v_i, w_i) = \tau_{ij} \quad \forall (i, j) \in I \times J.$$

wir zeigen:

 $\eta\colon V\times W\to T$ hat die universelle Eigenschaft. Sei $\varphi\colon V\times W\to U$ eine bilineare Abbildung in einen K-Vektorraum U, setze

$$u_{ij} := \varphi(v_i, w_j) \quad \forall (i, j) \in I \times J$$

und sei $f: T \to U$ die eindeutig bestimmte lineare Abbildung mit $f(\tau_{ij}) = u_{ij} \quad \forall (i,j) \in I \times J$. Seien $v \in W$ und schreibe

$$v = \sum_{i \in I}' \lambda_i v_i$$
$$w = \sum_{j \in J}' \mu_j w_j$$

mit $\lambda_i, \mu_j \in K, i \in I, j \in J$. Dann gil

$$(f \circ \eta)(v, w) = f\left(\sum_{\substack{i \in I \\ j \in J}} \lambda_i \mu_j \eta(v_i, w_j)\right)$$

$$\uparrow \text{ ist bilinear}$$

$$= f\left(\sum_{\substack{i \in I \\ j \in J}} \lambda_i \mu_j \tau_{ij}\right)$$

$$= \sum_{\substack{(i,j) \in I \times J \\ f \text{ linear}, f(\tau_{ij}) = u_{ij}}} \lambda_i \mu_j u_{ij}$$

$$= \sum_{\substack{(i,j) \in I \times J \\ (i,j) \in I \times J}} \lambda_i \mu_j \varphi(v_i, w_j)$$

$$= \varphi(v, w),$$

$$\varphi \text{ bilinear}$$

also $f \circ \nu = \varphi$, d. h.

$$V\times W \xrightarrow{\eta} T \\ \downarrow f \\ U$$

kommutiert.

Ist $g\colon T\to U$ eine weitere K-lineare Abbildung $\varphi=g\circ \eta,$ dann gilt

$$u_{ij} = \varphi(v_i, w_j) = g(\tau_{ij}) \quad \forall (i, j) \in I \times J,$$

also
$$f = g$$
.

Definition. Seien V, W K-Vektorräume. Ein Tensorprodukt von V auf W ist eine bilineare Abbildung $\eta: V \times W$ in einem K-Vektorraum T, welche die universelle Eigenschaft \otimes hat.

Datei 40: Tensorprodukte Teil Schreibe auch

$$\otimes \colon V \times W \to V \otimes W$$

für das bis auf Isomorphie eindeutig bestimmte Tensorprodukt von V und W.

Für $v \in V$, $w \in W$ schreibe $v \otimes w$ für $\otimes (v, w)$.

Beispiele. • Sei V = W = K[t]. Dann ist

$$V \otimes W = K[t] \otimes K[t]$$

$$\simeq K[t_1, t_2]$$

$$\otimes \colon V \times W \to t_1[t_2].$$

ist gegeben durch

$$t^i \otimes t^j = t_1^i t_2^j, \quad i, j \geqslant 0.$$

- Sei $W=\mathbb{R}^n$ und $V=\mathbb{C},\,K=\mathbb{R}.$ Dann ist die bilineare Abbildung

$$\eta \colon \mathbb{C} \times \mathbb{R}^n \to \mathbb{C}^n$$

$$(\lambda, x) \mapsto \lambda x$$

ein Tensorprodukt von \mathbb{C} und \mathbb{R}^n , also

$$\mathbb{C} \otimes \mathbb{R}^n = \mathbb{C}^n$$
.

Wir betrachten \mathbb{C}^n als 2n-dimensionalen Vektorraum mit Basis

Bemerkung. Seien V, W K-Vektorräume und $\otimes : V \times W \to V \otimes W$ ein Tensorprodukt. Im Allgemeinen hat nicht jedes Element aus $V \otimes W$ die Form $v \otimes w$ für $\in V$, $w \in W$. Sei z. B. V = W ein K-Vektorraum $2 \leq \dim(V) < \infty$ und v_1, v_2, \ldots, v_n Basis von V. Dann ist

$$v_1 \otimes v_2 + v_2 \otimes_1 \in V \otimes V$$
.

Angenommen

$$v_1 \otimes v_2 + v_2 \otimes v_1 = v \otimes w$$

mit $v, w \in V$. Schreibe $v = \sum_{i=1}^{n} \lambda_i v_i, w = \sum_{j=1}^{n} \mu_j w_j$. Dann ist

$$v_1 \otimes_2 + v_2 \otimes v_1 = \bigotimes \left(\sum_{i=1}^n \lambda_i v_i, \sum_{j=1}^n \mu_j v_j \right)$$
$$= \sum_{i=1}^n \sum_{j=1}^n \lambda_i \mu_j v_i \otimes v_j.$$

Die Elemente $v_i \otimes v_j$, $1 \leqslant i, j \leqslant n$, bilden eine Basis von $V \otimes W$, also folgt nach Koeffizientenvergleich $\lambda_1 \mu_1 = 0$, $\lambda_1 \mu_2 = 1$, $\lambda_2 \mu_1 = 1$, $\lambda_2 \mu_2 = 0$, $\not z$.

Weitere Eigenschaften des Tensorprodukts

Lemma 4.1.5. Seien V, W K-Vektorräume mit Tensorprodukt $\otimes : V \times W \to V \otimes W$. Dann gilt für $v, v' \in V, w, w' \in W, \lambda \in K$, dass

i)

$$v \otimes w + v' \otimes w = (v + v') \otimes w$$

 $v \otimes w + \otimes w' = v \otimes (w + w')$

ii)
$$(\lambda \cdot v) \otimes w = v \otimes (\lambda w) = \lambda(v \otimes w)$$
.

Beweis. Folgt aus der Bilinearität der Abbildung $\otimes(v,w)=v\otimes w$.

Lemma 4.1.6. Seien V, W K-Vektorräume mit Tensorprodukt

$$\otimes : V \times W \to V \otimes W$$
.

 $v_1,\dots,v_n\in V,\,w_1,\dots,w_n\in W$ und v_1,\dots,v_n linear unabhängig mit

$$\sum_{i=1}^{n} v_i \otimes w_i = 0$$

in $V \otimes W$. Dann gilt $w_0 = 0, 1 \leq i \leq n$.

Beweis. Für $1 \leq i \leq n$ definiere lineare Abbildungen $f_i \colon V \to K$ mit $f_i(v_j) = \delta_{ij}$, $1 \leq i, j \leq n$. Seien $g_i \colon W \to K$, $1 \leq i \leq n$, beliebige lineare Abbildungen. Setze

$$\varphi(v,w) \coloneqq \sum_{i=1}^{n} f_i(v)g_i(w).$$

Dann ist $\varphi \colon V \times W \to K$ bilinear, also $\exists !$ lineare Abbildung $h \colon \otimes W \to K$ mit $\phi = h \circ \otimes$.

d.h.

$$0 = h(\sum_{i=1}^{n} v_i \otimes w_i)$$

$$= \sum_{i=1}^{n} h(v_i \otimes w_i)$$

$$= \sum_{i=1}^{n} \phi(v_i, w_i)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \underbrace{f_j(i)}_{\delta_{ij}} g_j(w_i)$$

$$= \sum_{i=1}^{n} g_i(w_i). \qquad (*)$$

Da (*) für alle linearen Abbildungen

$$g_i \colon W \to K, \quad 1 \leqslant i \leqslant n$$

gilt, folgt
$$w_i = 0, 1 \leq i \leq n$$
.

Korollar 4.1.7. Seien V, W K-Vektorräume mit Tensorprodukt

$$\otimes \colon V \times W \to V \otimes W$$

und $v \in V \setminus \{0\}, w \in W \setminus \{0\}$. Dann ist $v \otimes w \neq 0$ in $V \otimes W$.

Eine alternative Konstruktion des Tensorprodukts

Seien V, W K-Vektorräume. Definiere

$$F(V\times W)\coloneqq\bigoplus_{(v,w)\in V\times W}K\cdot\gamma_{(v,w)},$$

den freien Vektorraum erzeugt durch $(v,w) \in V \times W$. Sei $N(V,W) \subseteq F(V \times W)$ der Untervektorraum aufgespannt durch die Elemente

$$\gamma_{(\lambda v_1 + \mu v_2, w)} - \lambda \gamma_{(v_1, w)} - \mu \gamma_{(v_2, w)}$$
$$\gamma_{(v, \lambda w_1 + \mu w_2)} - \lambda \gamma_{(v, w_1)} - \mu \gamma_{v, w_2}$$

für $\lambda, \mu \in K$, $v_{1,2} \in V$, $w, w_1 + w_2 \in W$. Sei

$$T := F(V \times W) / N(V, W)$$

und

$$\pi := F(V \times W) \to T$$

die Projektionsabbildung.

Definiere

$$s\eta \colon V \times W \to T$$

$$(v,w) \mapsto \pi(\gamma_{(v,w)}).$$

Behauptung 4.1.1. η ist bilinear.

Sei $w \in W$ fest, $v_1, v_2 \in V$, $\lambda, \mu \in K$. Dann gilt

$$\begin{split} \eta(\lambda v_1 + \mu v_2, w) &= \pi \Big(\gamma_{(\lambda v_1 + \mu v_2, w)} \Big) \\ &= \pi \underbrace{ (\gamma_{(\lambda v_1 + \mu v_2, w)} - \lambda \gamma_{(v_1, w)} - \mu \gamma_{(v_2, w)})}_{\in N(V, W)} + \lambda \gamma_{(v_1, w)} + \mu \gamma_{(v_2, w)} \Big) \\ &= \pi \Big(\lambda \gamma_{(v_1, w)} + \mu \gamma_{(v_2, w)} \Big) \\ &= \lambda \eta(v_1, w) + \mu \eta(v_2, w). \end{split}$$

Ebenso ist η im zweiten Argument linear.

Behauptung. Die Abbildung

$$\eta \colon V \times W \to T$$

hat die universelle Eigenschaft \otimes . Sei $\varphi \colon V \times W \to U$ eine bilineare Abbildung in einen K-Vektorraum U. Sei

$$g \colon F(V \times W) \to U$$

die eindeutig bestimmte lineare Abbildung mit

$$g(\gamma_{(v,w)}) = \phi(v,w) \quad \forall (v,w) \in V \times W.$$

Da φ bilinear ist, folgt

$$N(V, W) \subseteq \text{Kern}(g)$$
.

Also induziert g eine Abbildung

$$\bar{g} \colon F(V \times W) / N(V, W) \to U$$

und das Diagramm

$$V \times W \xrightarrow{\eta} \overbrace{F(V \times W) / N(V, W)}^{T}$$

$$\downarrow^{\bar{g}}$$

$$U$$

kommutiert, denn für $(v, w) \in V \times W$ ist

$$\bar{g}(\eta(v,w)) = \bar{g}\Big(\pi\Big(\gamma_{(v,w)}\Big)\Big) = \gamma\Big(\gamma_{(v,w)}\Big) = \varphi(v,w).$$

Sei $f\colon T\to U$ eine weiter K-lineare Abbildung mit $f\circ \eta=\varphi.$ Dann ist

$$\phi(v, w) = f(\pi(\gamma_{(v,w)})) \quad \forall (v, w) \in V \times W.$$

Die Elemente $\pi(\gamma_{(v,w)})$ erzeugen T für $(v,w) \in V \times W$, also ist f eindeutig bestimmt.

Vorlesung 24

Di 14.07. 10:15

4.1.1 Weitere Beispiele von Tensorprodukten

Beispiel 4.1.1. Seien V,W K-Vektorräume mit Dualräumen V^\star,W^\star . Für $\varphi\in V^\star,$ $\psi\in W^\star$ definiert

$$\varphi \cdot \psi \colon V \times W \to K$$

$$(v, w) \mapsto \varphi(v)\psi(w)$$

eine bilineare Abbildung. Also gibt es genau eine lineare Abbildung

$$\varphi,\psi\colon V\otimes W\to K$$

 $mit \ \varphi \cdot \psi = f_{\varphi,\psi \circ \otimes}.$

Insbesondere gilt $\forall v \subset V, w \in W$

$$f_{\varphi,\psi}(v\otimes w)=\varphi(v)\psi(w).$$

Es ist $f_{\varphi,\psi} \in (V \otimes W)^*$. Wir erhalten eine Abbildung

$$V^* \times W^* \to (V \otimes W)^*$$

 $(\phi, \psi) \mapsto f_{(\varphi, \psi)},$

die bilinear ist, also besteht genau eine lineare Abbildung

$$\alpha \colon V^{\star} \otimes W^{\star} \to (V \otimes W)^{\star}.$$

Bemerkung. Nach obiger Definition gilt

$$\alpha(\varphi \otimes \psi)(v \otimes w) = f_{\varphi,\psi}(v \otimes w) = \varphi(v)\psi(w) \quad \forall v \in V, \ w \in W, \ \varphi \in V^*, \ \psi \in W^*.$$

Bemerkung. Seien V, W K-Vektorräume mit Dualraum V^* von V. Für $\varphi \in V^*$ und $w \in W$ erhalten wir eine lineare Abbildung

$$V \to W$$
$$v \mapsto \underbrace{\varphi(v)}_{\in K} \cdot w.$$

Die Abbildung

Menge von K-linearen Abbildungen $V \to W$

$$V^{\star} \times W \to \widetilde{\operatorname{Hom}_{K}(V, W)}$$
$$(\varphi, w) \mapsto \varphi(\cdot) \cdot w$$

$$\beta \colon V^* \otimes W \to \operatorname{Hom}_K(V, W)$$
$$\varphi \otimes w \mapsto \varphi(\cdot) \cdot w.$$

Satz 4.1.8. Seien V, W endlich-dimensionale K-Vektorräume. Dann sind die oben definierten Abbildungen

$$\alpha \colon V^{\star} \otimes W^{\star} \to (V \otimes W)^{\star}.$$

und

$$\beta \colon V^{\star} \otimes W \to \operatorname{Hom}_K(V, W)$$

Isomorphismen von K-Vektorräumen.

ist bilinear, induziert also eine lineare Abbildung.

Beweis. Seien v_1, \ldots, v_n Basis von V und w_1, \ldots, w_n Basis von W mit dualen Basen v_1^*, \ldots, v_m^* und w_1^*, \ldots, w_n^* . Dann ist $v_i^* \otimes w_j^*, \leqslant i \leqslant m, \ 1 \leqslant j \leqslant n$ Basis von $V^* \otimes W^*$. Sei $(v_i \otimes w_j)_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}}^*$ die duale Basis zu $v_i \otimes w_j, \ 1 \leqslant i \leqslant m, \ 1 \leqslant j \leqslant n$. Wir berechnen

$$\alpha(v_i^* \otimes w_j^*)(v_k \otimes w_l) = v_i^*(v_k)w_j^*(w_l)$$
$$= \delta_{ik}\delta_{jl}$$
$$= (v_i \otimes w_j)^*(v_k \otimes w_l),$$

also $\alpha(v_i^{\star} \otimes w_j^{\star}) = (v_i \otimes w_j)^{\star}$ und α Isomorphismus.

Zur Abbildung β : FÜr $v_k \in V$ gilt, $1 \leq k \leq m$

$$\beta(v_i^{\star} \otimes w_i)(v_k) = v_i^{\star}(v_k)w_i.$$

Die Abbildungen $v_i^*(\cdot)w_j$, $1 \le i \le m$, $1 \le j \le n$, bilden eine Basis von Hom(V, W), also ist β ein Isomorphismus.

§4.2 Tensoralgebra

Sei V ein K-Vektorraum, dann ist $V \otimes V$ selbst wieder K-Vektorraum, und wir können $V \otimes (V \otimes V)$ bilden. Sei $h \colon V \otimes (V \otimes V) \to U$ eine K-lineare Abbildung in einen K-Vektorraum U. Betrachte folgendes kommutatives Diagramm.

Datei 41: Tensoralgebra

$$V \times (V \times V) \xrightarrow{\text{(Id,}\otimes)} V \times (V \otimes V) \xrightarrow{\otimes} V \otimes (V \otimes V)$$

$$\downarrow h_1 \qquad \downarrow h$$

$$U$$

mit $h_1 = H \circ \otimes$, $h_2 = h_1 \circ (\operatorname{Id}, \otimes)$. Dann ist h_1 bilinear, und h_2 linear in jeder Komponente, d. h. für $v_1, v_2 \in V$ sind die Abbildungen $h_2(v_1, v_2, \cdot), h_2(v_1, \cdot, v_2), h_2(\cdot, v_1, v_2) \colon V \to U$ linear.

Frage. Gibt es einen "universellen" Vektorraum W, sodass jede multilineare Abbildung

$$\varphi \colon V_1 \times \cdots \times V_k \to U$$

eindeutig über W faktorisiert?

$$V_1 \times \cdots \times V_k \longrightarrow W$$

$$\downarrow f$$

$$\downarrow f$$

$$\downarrow f$$

$$\downarrow f$$

Definition. Seien V_1, \ldots, V_k, W K-Vektorräume und

$$\varphi \colon V_1 \times \cdots \times V_k \to W$$

eine Abbildung. Wir nennen φ multilinear, wenn für jedes $1 \leqslant i \leqslant k$ und für beliebige Elemente $v_j \in V_j, j \neq i$, die Abbildung

$$\varphi(v_1, \dots, v_{i-1}, \cdot, v_{i+1}, \dots, v_k) \colon V_i \to W$$

$$v_i \mapsto \varphi(v_1, \dots, v_k)$$

K-linear ist.

Beispiel. Sei $V_i = K^n$, $1 \le i \le n$. Dann ist die Abbildung

$$\varphi \colon \overbrace{V_1 \times \cdots \times V_n}^{=\mathcal{M}_{n \times n}(K)} \to K$$

$$\underbrace{(\underline{x_1}, \dots, \underline{x_n})}_{\uparrow} \mapsto \det(\underline{x_1}, \dots, \underline{x_n})$$
Spaltenvektoren

multilinear.

Bemerkung. Ist $\eta\colon V_1\times\cdots\times V_k\to W$ multilinear und $f\colon W\to U$ linear für K-Vektorräume $V_1,\ldots,V_k,W,U,$ so ist die Abbildung

$$f \circ \eta \colon V_1 \times \cdots \times V_k \to U$$

wieder multilinear.

Datei 41: Tensoralgebra

Definition. Seien V_1, \ldots, V_k K-Vektorräume. Wir sagen, dass eine multilineare Abbildung

$$\eta: V_1 \times \cdots V_k \to W$$

in einen K-Vektorraum W die universelle Eigenschaft \otimes hat, falls es für jede multilineare Abbildung

$$\varphi \colon V_1 \times \cdots \times V_k \to U$$

genau eine lineare Abbildung $f: W \to U$ gibt mit $\varphi = f \circ \eta$.

$$V_1 \times \cdots \times V_k \xrightarrow{\eta} W$$

$$\downarrow \exists ! f$$

$$U.$$

Satz 4.2.1. Seien V_1, \ldots, V_k K-Vektorräume. Dann gibt es einen bis auf Isomorphie eindeutig bestimmten K-Vektorraum $V \otimes \cdots \otimes V_k$ mit einer multilinearen Abbildung

$$\otimes: V_1 \times \cdots \times V_k \to V_1 \otimes \cdots \otimes V_k$$

welche die universelle Eigenschaft ⊗hat.

Ist $\dim(V_i) < \infty$, $1 \le i \le k$, und sind $v_1^{(i)}, \ldots, v_{n_i}^{(i)}$ Basen von V_i für $1 \le i \le k$, so bilden die Elemente $\otimes \left(v_{j_1}^{(1)}, \ldots, v_{j_k}^{(k)}\right)$ mit $1 \le j_i \le n_i$ eine Basis von $V_1 \otimes \cdots \otimes V_k$. Insbesondere gilt

$$\dim(V_1 \otimes \cdots \otimes V_k) = \prod_{i=1}^k \dim(V_i).$$

Bemerkungen. i) Wir nennen den bis auf Isomorphie eindeutig bestimmten K-Vektorraum $V_1 \otimes \cdots \otimes V_k$ aus Satz 4.2.1 das Tensorprodukt aus V_1, \ldots, V_k und schreiben

$$v_1 \otimes \cdots \otimes v_k = \otimes (v_1, \dots, v_k)$$

für $v_i \in V_i$, $1 \leq i \leq k$ l.

ii) Beweis geht analog zum Fall k=2. Verwende im Fall $\dim(V_i)<\infty,\ 1\leqslant i\leqslant k,$ dass jede multilineare ABbildung

$$\varphi \colon V_1 \times \cdots \times V_k \to U$$

eindeutig bestimmt ist durch die Bilder

$$\varphi\left(v_{j_1}^{(1)},\ldots,v_{j_k}^{(k)}\right) \quad 1 \leqslant j_i \leqslant n_i.$$

Datei 41: Tensoralgebra

Beispiel. Sei K ein Körper und $V_i = K[t], 1 \le i \le k$. Dann ist

$$K[t] \otimes \cdots \otimes K[t] \cong K[t],$$

wobei

$$t^{i_1} \otimes \cdots \otimes t^{i_k} \mapsto t_1^{i_1} \cdot t_2^{i_2} \cdots t_k^{i_k}.$$

Lemma 4.2.2. Seien U, V, W K-Vektorräume. Dann gibt es einen Isomorphismus

$$f: U \otimes V \otimes W \to^{\sim} (U \otimes V) \otimes W \tag{4.2}$$

mit der Eigenschaft

$$f(u \otimes v \otimes w) = (u \otimes v) \otimes w \quad \forall u \in U, v \in V, w \in W.$$

Beweis. Die Abbildungen

$$U \times V \times W \to (U \otimes V) \otimes W$$
$$(u, v, w) \mapsto (u \otimes v) \otimes w \quad \forall u \in U, \ v \in V, \ w \in W$$

ist multilinear, also gibt es genau eine lineare Abbildung

$$f: U \otimes V \otimes W \to (U \otimes V) \otimes W$$

 $_{
m mit}$

$$f(u \otimes v \otimes w) = (u \otimes v) \otimes w \quad \forall u \in U, v \in V, w \in W.$$

Füt $w \in W$ ist die Abbildung

$$\alpha_w \colon U \times V \to U \otimes V \otimes W$$
$$(u, v) \mapsto U \otimes v \otimes w$$

bilinear, also gibt es eine lineare Abbildung

$$q_w \colon U \otimes V \to U \otimes V \otimes W$$

mit

$$g_w(u \otimes v) = u \otimes v \otimes v \otimes w \quad \forall \in U.$$

Die Abbildung

$$\varphi \colon (U \otimes V) \times \to U \otimes V \otimes W$$
$$(u \otimes v, w) \mapsto g_w(u \otimes v)$$

Datei 41: Tensoralgebra

ist bilinear, induziert also eine lineare Abbildung

$$g: (U \otimes V) \otimes W \to U \otimes V \otimes W$$

mit der Eigenschaft

$$g((u \otimes v) \otimes w) = g_w(u \otimes v) = u \otimes v \otimes w \quad \forall u \in U, \ v \in V, \ w \in W.$$

Also ist

$$f \circ g = \mathrm{Id}_{(U \otimes) \otimes}$$

$$g \circ f = \mathrm{Id}_{U \otimes V \otimes W}$$

und f, g sind inverse Isomorphismen.

Bemerkungen. i) Die Abbildung f aus Lemma 4.2.2 ist eindeutig bestimmt.

ii) Etwas Allgemeiner gilt: Sind V_1, \ldots, V_{k+l} K-Vektorräume, dann gibt es einen eindeutig bestimmten Isomorphismus

$$f: V_1 \otimes \cdots \otimes V_{k+1} \to (V_1 \otimes \cdots \otimes V_k) \otimes (V_{k+1} \otimes \cdots \otimes V_{k+1})$$

mit

$$f(v_1 \otimes \cdots \otimes v_{k+l}) = (v_1 \otimes \cdots \otimes v_k) \otimes (v_{k+1} \otimes \cdots \otimes v_{k+1}) \quad \forall v_i \in V_i, \ 1 \leqslant i \leqslant k+l.$$

Notation. Für $k\geqslant 2$ und V ein K-Vektorraum schreiben wir $\left(\otimes^k V,\otimes\right)$ für das Tensorprodukt

$$\underbrace{V\times\cdots\times V}_{k \text{ Faktoren}}\to^{\otimes} \underbrace{V\otimes\cdots\otimes V}_{\otimes^{k}V}.$$

Wir setzen $\otimes^1 \coloneqq V, \otimes^0 V \coloneqq K$. Für $k,l \geqslant 0$ gibt es eine eindeutig bestimmte bilineare Abbildung

$$\otimes^{k}V \times \otimes^{l}V \to \otimes^{k+l}V$$
$$(v_{1} \otimes \cdots \otimes v_{k}, v_{k+1} \otimes \cdots \otimes v_{k+l}) \mapsto v_{1} \otimes \cdots \otimes v_{k+l} \quad \forall v_{i} \in V \ 1 \leqslant i \leqslant k+l.$$

Idee. Konstruiere einen K-Vektorraum erzeugt durch Tensoren $v_1 \otimes \cdots \otimes v_k$, für $k \geqslant 1$, in dem man Tensoren $v_1 \otimes \cdots \otimes v_k$ und $v_{k+1} \otimes \cdots \otimes v_{k+1}$ "multiplizieren" kann.

Definition. Für einen K-Vektorraum V definieren wir

$$T(V) := \bigoplus_{k=0}^{\infty} \otimes^k V$$

als direkte Summe der K-Vektorraum $\otimes^k V$ und nennen T(V) die Tensoralgebra von V.

Bemerkung. Elemente in T(V) haben die Form

$$(x_0, x_1, x_2, \dots) \in \bigoplus_{k=0}^{\infty} \otimes^k V$$

mit $x_k \in \otimes^k$, $k \geqslant 0$ und $x_n = 0$ für $n \geqslant N$ mit einem $N \in \mathbb{N}$. Die Abbildung

$$\iota \colon \otimes^k V \to T(V)$$

$$x \mapsto (0, \dots, 0, \underset{\uparrow}{x}, 0, \dots)$$

$$k + 1\text{-te Stelle}$$

nennen wir kanonische Einbettung des $\otimes^k V$ in die Tensoralgebra T(V). Es gilt dann

$$T(V) = \sum_{k=0}^{\infty} \underbrace{\iota(\otimes^k V)}_{\subseteq T(V)}.$$

Wir schreiben auch

$$T(V) = \sum_{k=0}^{\infty} \otimes^k V.$$

Definition. Wir definieren eine bilineare Abbildung

$$\beta \colon T(V) \times T(V) \to T(V)$$
$$\left((x_k)_{k \geqslant 0}, (=) * y_{k k \geqslant 0} \right) \mapsto \sum_{k,l \geqslant 0} x_k \otimes y_k.$$

Beispiele. i) Sei dim(V) = n und v_1, \ldots, v_n Basis on V. Dann ist

$$v_{i_1} \otimes \cdots \otimes v_{i_k} \ 1 \leqslant i_1, \ldots, i_k \leqslant n$$

Basis von $\otimes^k V$ und $\dim(\otimes^k V) = n^k$. Sein $K\langle t_1, \ldots, t_n \rangle$ der Polynomring in den nicht-kommutativen Variablen t_1, \ldots, t_n . Dann ist

$$T(V) \to K\langle t_1, \dots, t_n \rangle$$
$$v_{i_1} \otimes \dots \otimes v_{i_k} \mapsto t_{i_1} t_{i_2} \cdots t_{i_n}$$

ein Isomorphismus von K-Vektorräumen.

ii) Sei V = K. Dann ist

$$\dim(\otimes^k V) = (\dim_K(K))^k = 1$$

und die Abbildung

$$\underbrace{T(K) \to K[t]}_{k\text{-fach}} \mapsto t^k$$

ein Isomorphismus von K-Vektorräume.

Vorlesung 24

Datei 41: Tensoralgebra

Definition. Sei A ein K-Vektorraum über einem Körper mit einer bilinearen Abbildung $A \times A \to A$. Dann nennen wir A eine K-Algebra.

Beispiel. • Die Tensoralgebra T(V) ist eine K-Algebra mit der bilinearen Abbildung

$$\beta \colon T(V) \times T(V) \to T(V).$$

- K[t] mit bilinearer Abbildung

$$K[t] \times K[t] \to K[t]$$
$$(P(t), Q(t)) \mapsto P(t)Q(t)$$

• $M_{n\times n}(K)$ mit Matrix multiplikation als bilinearer Abbildung.