Resumen de teoría de Análisis en \mathbb{R}

Números reales $(\mathbb{R}, +, \cdot, <)$

Axiomas de cuerpo

 S_1 . Conmutatividad de la suma: a+b=b+a

 $S_2.$ Asociatividad de la suma: $(a+b)+c=a+(b+c) \label{eq:suma:equation}$

 $S_3.$ Existencia del elemento neutro de la suma: $\exists 0 \in \mathbb{R}$ tal que a+0=0+a=a

 S_4 . Existencia de inverso de la suma: $\forall a \in \mathbb{R}, \ \exists (-a) \in \mathbb{R}$ tal que a+(-a)=0

 $P_1.$ Conmutatividad del producto: $a\cdot b = b\cdot a$

 P_2 . Asociatividad del producto: a(bc) = (ab)c

 P_3 . Existencia del elemento neutro del producto: $a \cdot 1 = 1 \cdot a = a$

 P_4 . Existencia de inverso del producto (excepto para cero): $\forall a \neq 0, \exists a^{-1} \text{ tal que}$ $a \cdot a^{-1} = a^{-1} \cdot a = 1$

* Distributividad del producto respecto de la suma: $a(b+c) = ab + ac \label{eq:ab}$

Axiomas de orden

 O_1 . Tricotomía: $\forall a, b \in \mathbb{R}$, $a < b \lor a = b \lor a > b$

 O_2 . Transitividad: $a < b, b < c \Rightarrow a < c$

 O_3 . Monotonía de la suma: $a < b \Rightarrow a + c < b + c$

 $O_4.$ Monotonía del producto: $a < b, c > 0 \Rightarrow ac < bc$

Axioma de completitud Si A es un conjunto no vacío de \mathbb{R} , $A \subset \mathbb{R}$ y A es acotado superiormente,

entonces existe $c = \sup A$, el supremo de A. También conocido como axioma del supremo.

Cota superior: Sea $A \subset \mathbb{R}$, C es una cota superior de A si $\forall a \in A, a \leq C$.

Cota inferior: $\forall a \in A, a \geq C$.

Supremo: c es el supremo de A si cumple ambas condiciones:

c es una cota superior de A c es la menor de las cotas de A: $\forall a \in A, a < k \Rightarrow k > c$

Supremo (definición equivalente) c es el supremo de A si:

c es una cota de A

 $\forall \varepsilon > 0, \exists a \in A \text{ tal que } a > c - \varepsilon$

El principio de Arquímedes: Si $a \in \mathbb{R}$, existe $n \in \mathbb{N}$ tal que n > a.

Consecuencias de la completitud de \mathbb{R} :

Entre dos números reales siempre se puede encontrar un racional y un irracional.

Unicidad del supremo e

ínfimo: útil para probar que existe un solo número con una propiedad.

Potencias de base y exponente real.

Teoremas notables

- Si $A \subset \mathbb{R} \Rightarrow \inf A \leq \sup A$
- Si $A \subset \mathbb{R}$, inf $A = \sup A \Rightarrow$ $A = \{a\}, a \in \mathbb{R}$

Valor absoluto

$$|a| = \begin{cases} a, & a \ge 0 \\ -a, & a < 0 \end{cases}$$

Propiedades básicas del valor absoluto

- $|a| \le b \Leftrightarrow -b \le a \le b, b \ge 0$
- Definición equivalente: $\sqrt{a^2} = |a|$
- Multiplicidad: $|ab| = |a| \cdot |b|$, $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$
- Módulo o tamaño: $a \leq |a|$

Límites infinitos

Sea (a_n) una sucesión.

- $\begin{array}{ll} \bullet & \lim\limits_{n \to \infty} a_n = +\infty \Leftrightarrow \forall M > \\ 0, \exists n_0 \in \mathbb{N}, n \geq n_0 \Rightarrow a_n > M \end{array}$
- $\begin{array}{l} \bullet & \lim\limits_{n \to \infty} a_n = -\infty \Leftrightarrow \forall M > \\ 0, \exists n_0 \in \mathbb{N}, n \geq n_0 \Rightarrow a_n < \\ -M \end{array}$
- $\lim_{n \to \infty} |a_n| = +\infty$

Sucesión monótona:

Una sucesión es monótona si es creciente o decreciente.

Si es creciente: $a_n \leq a_{n+1}$; si es decreciente: $a_n \geq a_{n+1}$.

Criterio de convergencia:
 Si (a_n) es monótona y acotada, entonces (a_n) converge.
 Si no es acotada, entonces:

Si no es acotada, entonces: $(a_n) \to +\infty$ si es creciente, $(a_n) \to -\infty$ si es decreciente.

Caracterización del supremo por sucesiones

Sea $A \subset \mathbb{R}$, $A \neq \emptyset$, acotado superiormente.

 $s=\sup A$ si: 1. ses cota superior de A2. \exists una sucesión $(a_n)\subset A$ tal que $a_n\to s$

Álgebra de límites infinitos

• $\lim_{n\to\infty} r^n =$

$$\begin{cases} 0, & |r| < 1 \\ +\infty, & r > 1 \\ \text{no existe}, & r = -1 \end{cases}$$

•
$$\lim_{n \to \infty} \frac{P(n)}{G(n)} = \begin{cases} \infty, & \deg P > \deg G \\ 0, & \deg P < \deg G \end{cases}$$

$$c, & \deg P = \deg G$$

Sucesiones

Una sucesión (a_n) es una función $a:\mathbb{N}_0\to\mathbb{R}.$

Límite de sucesión:

 $\lim_{n\to\infty}a_n=l\text{ si }\forall \varepsilon>0, \exists n_0\in\mathbb{N}\text{ tal }$ que $n\geq n_0\Rightarrow |a_n-l|<\varepsilon.$

• El límite, si existe, es único.

Cota de una sucesión:

 (a_n) es acotada si $\exists M>0$ tal que $|a_n|< M.$

Condición necesaria de convergencia:

Si (a_n) converge (tiene límite), entonces es acotada.

Teoremas notables:

- $\begin{array}{l} \bullet \ \, \mathrm{Si} \,\, (a_n) \to l \,\, \mathrm{y} \,\, l > b \Rightarrow \\ \\ \exists n_0, n \geq n_0 \Rightarrow a_n > b \end{array}$
- $\begin{array}{c} \bullet \ \, \mathrm{Si} \, \left(a_n \right) \to l \; \mathrm{y} \, \, l < b \Rightarrow \\ \exists n_0, n \geq n_0 \Rightarrow a_n < b \end{array}$
- Si $(a_n) \to l$ y $a_n \le b \Rightarrow l \le b$

Teorema del Sandwich:

Si (a_n) , (b_n) , (c_n) son succesiones tales que

$$\begin{split} & \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = l \text{ y} \\ & a_n \le b_n \le c_n, \\ & \text{entonces } \lim_{n \to \infty} b_n = l. \end{split}$$

Álgebra de límites

Sean (a_n) , (b_n) sucesiones convergentes con límites l_1, l_2 :

- $\bullet \ \lim (a_n+b_n)=l_1+l_2$
- $\bullet \ \lim (a_nb_n)=l_1l_2$

- $\lim(ka_n) = kl_1$
- $\lim \left(\frac{a_n}{b_n}\right) = \frac{l_1}{l_2}$, si $l_2 \neq 0$
- $\lim |a_n| = |l_1|$
- $\lim \sqrt[n]{a_n} = 1$
- $\lim r^n = 0, |r| < 1$

Encajes de intervalos

Definición: $I_n = [a_n, b_n], \ a_n \leq b_n$ tal que $I_{n+1} \subset I_n$ Se hace más chico a medida que n crece.

Longitud del intervalo:

$$l(I_n) = b_n - a_n$$

Teorema del encaje de intervalos:

Si
$$\lim_{n\to\infty} l(I_n) = 0 \Rightarrow \bigcap_{n=1}^{\infty} I_n = \{x\},\$$

 x existe v es único.

Este teorema es útil para subsecuencias y equivale al axioma del supremo.

Definición de subsecuencia:

 (a_{n_k}) es una subsecuencia de (a_n) si (n_k) es una sucesión estrictamente creciente de números naturales y

$$a_{n_k}=a_n, n\in K, K\subset \mathbb{N}.$$

Teorema de

Bolzano-Weierstrass:

Toda sucesión acotada tiene una subsecuencia convergente.

Teorema de convergencia de subsecuencias:

Toda sucesión (a_n) es convergente con límite l si y sólo si toda subsecuencia de (a_n) es convergente con límite l.

Sucesiones de Cauchy:

Equivalente a límite por definición. Una sucesión (a_n) es de Cauchy si $\forall \varepsilon>0, \exists n_0, m_0\in\mathbb{N}$ tal que $|a_n-a_m|<\varepsilon.$

Propiedades de las sucesiones

de Cauchy: * Toda sucesión de Cauchy es acotada.

- * Una sucesión es convergente si y sólo si es de Cauchy.
- \ast Si (a_n) es de Cauchy y

 $\label{eq:anomaly} \lim_{n\to\infty}a_{n_k}=a, \, \text{entonces} \,\, (a_n)$ converge con $\lim a_n=a.$

En esencia, permite reescribir una sucesión de Cauchy para hallar su límite.

Norega~p.129

Teorema de Bolzano-Weierstrass

Toda sucesión acotada tiene una subsecuencia convergente. Esta es una consecuencia del Teorema de encaje de intervalos.

Convergencia de subsecuencias

Una sucesión (a_n) es convergente si y sólo si toda subsecuencia (a_{n_k}) es convergente al mismo límite.

Este teorema permite demostrar que una sucesión no es convergente, encontrando dos subsecuencias que no converjan o converjan a distinto límite.

Exponencial – definición inductiva

- $a^0 = 1$
- $a^{n+1} = a^n \cdot a, n > 0$
- $a^{-n} = 1/a^n$, definición para negativos.

Exponencial – extensión a racionales

- $a^{m/n} = \sqrt[n]{a^m}$
- $a^{r+s} = a^r \cdot a^s$,
- $a^{m \cdot n} = (a^m)^n$

Propiedades fundamentales del exponente racional

(se extienden a los reales mediante la definición por supremo)

- Producto de potencias: $a^r a^s = a^{r+s}$
- Potencia de potencia: $(a^r)^s = a^{rs}$
- Cociente de potencias: $a^r/a^s = a^{r-s}$
- Exponencial de producto: $(ab)^r = a^r b^r$
- Normalización: $a^1 = a$, $a^0 = 1$

Definición de exponencial – exponente real

$$a^r = \sup\{a^q : q \in \mathbb{Q}, q < r\}$$

$$a^r=\inf\{a^q:q\in\mathbb{Q},q>r\}$$

De esta definición se desprende que el exponente es único.

Al poder trabajar con racionales dentro del conjunto, se heredan las propiedades del exponencial.

El número e, 2 < e < 3

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

Logaritmo natural

 $f(x) = e^x$ es biyectiva.

- Definición por supremo: $\log(y) = \sup\{x \in \mathbb{R} : e^x < y\},$ y > 0
- Función inversa de e^x

Propiedades fundamentales:

- * $\log(ab) = \log(a) + \log(b)$
- * $\log(a^b) = b \log(a)$

Desigualdades notables

- Designaldad de Bernoulli: $(1+h)^n \ge 1+nh, h > -1$
- Desigualdad del triángulo: $|a+b| \le |a| + |b|$ $|\sum a_i| \le \sum |a_i|$
- Desigualdad de Cauchy-Schwarz:

- Sean a_1, a_2, \dots, a_n y $b_1, b_2, \dots, b_n \text{ números reales:}$ $(\sum a_i b_i)^2 \leq (\sum a_i^2)(\sum b_i^2)$
- Desigualdad de la media aritmética y geométrica (AM-GM):

$$\begin{aligned} a_1 + a_2 + \cdots + a_n &\geq \\ n \sqrt[n]{a_1 a_2 \dots a_n} \\ \text{para dos números:} \\ \frac{a+b}{2} &\geq \sqrt{ab} \end{aligned}$$

• Desigualdad del triángulo invertida:

$$||x| - |y|| \le |x - y|$$

- AM–GM de cuadrados: $\frac{a^2+b^2}{2} \geq \sqrt{a^2b^2} = |ab|$
- Designaldad del triángulo - variación para límites: $|x| = |x+y-y| \le |x-y| + |y|$

Técnicas comunes para límites por definición: * Acotar con desigualdad triangular.

Si
$$f(x) \to L \Rightarrow |f(x) - L| \le$$

$$|f(x) - g(x)| + |g(x) - L| *$$
 Sucesiones cuadráticas o polinómicas: AM–GM generalizada o Cauchy–Schwarz.

Ejemplo: $a_n=1/\sqrt{n}$ * Límites con potencias: desigualdad de Bernoulli.

Ejemplo: $a_n = (1 + 1/n)^n$

Productos notables y propiedades típicas

- Diferencia de cuadrados: $a^2 - b^2 = (a - b)(a + b)$
- Binomio de Newton: $(a+b)^m = \sum_{i=0}^m {m \choose i} a^{m-i} b^i$
- Factorización de diferencias:

$$a^{k} - b^{k} = (a - b) \sum_{i=0}^{m-1} a^{k-1-i} b^{i}$$

• Serie geométrica:

$$1 + a + a^2 + \dots + a^n = \frac{a^{n+1}-1}{a-1}, a \neq 1$$

- Serie aritmética: $1+2+\cdots+n=\frac{n(n+1)}{2}$
- Tamaño del conjunto potencia: $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$
- Desigualdad trigonométrica notable: $\sin x \le x \le \tan x$ para $x \in (0, \pi/2)$ Propiedad clave para probar
- Identidades pitagóricas: $\sin^2 x + \cos^2 x = 1$, $\tan^2 x + 1 = \sec^2 x$, $1 + \cot^2 x = \csc^2 x$

 $\lim_{x \to 0} \frac{\sin x}{x} = 1$

- Ángulos dobles: $\sin 2x = 2 \sin x \cos x$ $\cos 2x = \cos^2 x - \sin^2 x$
- Suma de ángulos: $\sin(x+y) = \\
 \sin x \cos y + \cos x \sin y \\
 \cos(x+y) = \\
 \cos x \cos y - \sin x \sin y$
- Identidad de potencias: $\sin^2 x = \frac{1-\cos 2x}{2},$ $\cos^2 x = \frac{1+\cos 2x}{2}$

Límites de funciones reales

Definición de límite:

Sea $f:(a,b) \to \mathbb{R}$, se dice que $\lim_{x \to a} f(x) = l \text{ si}$ $\forall \varepsilon > 0, \exists \delta > 0 \text{ tal que}$ $0 < |x-a| < \delta \Rightarrow |f(x)-l| < \varepsilon.$

• El límite, si existe, es único.

Teorema del Sandwich:

Sean f, g, h funciones definidas en (a, b), salvo quizás en $x_0 \in (a, b)$, con: 1. $\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = l$ 2. $g(x) \le f(x) \le h(x)$

Entonces $\lim_{x \to x_0} f(x) = l$.

Lema de orden en límites:

Suponga que $\lim_{x \to x_0} f(x) = l$.

i) Si
$$b < l \Rightarrow \exists \delta > 0, 0 <$$

$$|x - x_0| < \delta \Rightarrow f(x) > b$$

ii) Si
$$b > l \Rightarrow \exists \delta > 0, 0 <$$

$$|x - x_0| < \delta \Rightarrow f(x) < b$$

Composición de funciones para límites:

Sean f,g funciones $(a,b) \to \mathbb{R}$, excepto quizás en $x_0 \in (a,b)$ y $f:(c,d) \to \mathbb{R}$, excepto quizás en $y_0 \in (c,d)$ con $g(x) \neq y_0$ para $x = x_0$ y $\lim_{x \to x_0} g(x) = y_0$, $\lim_{y \to y_0} f(y) = l$ $\Rightarrow \lim_{x \to x_0} (f \circ g)(x) = l$

Este teorema permite hacer cambio de variable en un límite, calcular dos límites más simples para obtener un límite más complicado.

Álgebra de límites

Sean f,g funciones tales que $\lim_{x\to a} f(x) = l_1$ y $\lim_{x\to a} g(x) = l_2$. Entonces:

- $\lim_{x\to a} (f(x) + g(x)) = l_1 + l_2$
- $\lim_{x\to a} (f(x)g(x)) = l_1l_2$
- Si $l_2 \neq 0 \Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{l_1}{l_2}$
- $\lim_{x\to a}(f(x))^n=l_1^n$, para $n\in\mathbb{N}$

Definición de límite alternativa, por sucesiones

Sea f una función definida en (a,b), salvo quizás en $x_0 \in (a,b)$. Las siguientes proposiciones son equivalentes:

$$i) \lim_{x \to x_0} f(x) = l$$

ii)
$$\forall (x_n)$$
 tal que
$$\lim_{n \to \infty} x_n = x_0, \, x_n \neq x_0, \, \text{se}$$
 verifica que
$$\lim_{n \to \infty} f(x_n) = l$$

Este teorema es útil para probar que una función no tiene límite cuando $x \to x_0$, encontrando dos sucesiones $(x_n) \to x_0$ tales que $f(x_n)$ no sean convergentes o converjan a distinto límite.

Límites laterales de funciones

Estas definiciones recorren $x \to x_0$ por izquierda o por derecha.

• Por la derecha:

$$x \rightarrow x_0^+ \Rightarrow |x-x_0| = x-x_0$$

• Por la izquierda:

$$x \to x_0^- \Rightarrow |x - x_0| = x_0 - x$$

Límite por la derecha:

$$\begin{split} & \lim_{x \to x_0^+} f(x) = l \text{ si y s\'olo si} \\ & \forall \varepsilon > 0, \exists \delta > 0, 0 < x - x_0 < \delta \Rightarrow \\ & |f(x) - l| < \varepsilon \end{split}$$

Límite por la izquierda:

$$\begin{split} &\lim_{x \to x_0^-} f(x) = l \text{ si y s\'olo si} \\ &\forall \varepsilon > 0, \exists \delta > 0, 0 < x_0 - x < \delta \Rightarrow \\ &|f(x) - l| < \varepsilon \end{split}$$

Propiedad de límite lateral:

Sea f una función real, las siguientes afirmaciones son equivalentes:

$$i) \lim_{x \to x_0} f(x) = l$$

ii)
$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = l$$

En ambos casos, $i\rightarrow ii$, $ii\rightarrow i$, se demuestra directamente al ser consecuencia de propiedades del valor absoluto.

Límites infinitos

Un límite es infinito si podemos achicar o agrandar f(x) tanto como queramos cuando $x \to x_0$.

$$\begin{array}{l} \bullet & \lim_{x \to x_0} f(x) = +\infty \Leftrightarrow \forall M > \\ 0, \exists \delta > 0, 0 < |x - x_0| < \delta \Rightarrow \\ f(x) > M \end{array}$$

$$\begin{split} \bullet & & \lim_{x \to x_0} f(x) = -\infty \Leftrightarrow \forall M > \\ 0, \exists \delta > 0, 0 < |x - x_0| < \delta \Rightarrow \\ f(x) < -M \end{split}$$

El límite infinito sin signo se considera:

$$\lim_{x \to x_0} |f(x)| = +\infty$$

Estas definiciones se pueden extender a límites laterales.

- $\begin{array}{l} \bullet & \lim_{x \to x_0^+} f(x) = +\infty \Leftrightarrow \forall M > \\ 0, \exists \delta > 0, 0 < x x_0 < \delta \Rightarrow \\ f(x) > M \end{array}$
- $\begin{array}{l} \bullet & \lim_{x \to x_0^-} f(x) = +\infty \Leftrightarrow \forall M > \\ 0, \exists \delta > 0, 0 < x_0 x < \delta \Rightarrow \\ f(x) > M \end{array}$

Límites al infinito

- $\lim_{x \to +\infty} f(x) = l \Leftrightarrow \forall \varepsilon > 0, \exists K > 0, x > K \Rightarrow |f(x) l| < \varepsilon$
- $\lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow \forall M > 0, \exists K > 0, x > K \Rightarrow f(x) > M$

Continuidad de funciones reales

Definición de continuidad:

Sea $f:(a,b)\to\mathbb{R}$ y $x_0\in(a,b),$ se dice que f es continua en x_0 si

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Además, si f es continua para todo $x \in (a, b)$, decimos que es continua en (a, b).

Acutación de función continua:

Si $a < f(x_0) < b, f$ es continua, entonces existe un $\delta > 0$ tal que

$$|x - x_0| < \delta \Rightarrow a < f(x) < b$$

Este teorema no tiene nombre propio en la bibliografía, pero resulta útil para probar otros teoremas más fuertes. (Norega, p.202)

Composición de funciones continuas:

Si g es continua en x_0 y f es continua en $g(x_0)$, entonces $f \circ g$ es continua en x_0 .

Álgebra de funciones continuas:

Sean f y g funciones continuas en x_0 , las siguientes funciones son continuas en x_0 :

- (f+g)(x)
- $(f \cdot g)(x)$
- $\frac{f}{g}(x)$ dado que $g(x) \neq 0$

Funciones continuas notables:

* P(x), donde P(x) es un polinomio con coeficientes reales de grado $n \in \mathbb{N}$, es continua en \mathbb{R} . * a^x en \mathbb{R} , $\log x$ es continua en x > 0 * $\sin x$, $\cos x$

Clasificación de continuidad

• Evitable: si se puede redefinir una función en la discontinuidad para obtener una función continua.

- Primera especie: los límites laterales difieren.
- Segunda especie: cualquier otro caso; por ejemplo, $\sin(1/x)$ cuando $x \to 0$, los límites laterales no existen.

Funciones continuas en intervalo cerrado:

Sea f una función, se dice que f es continua en [a,b] si es continua en (c,d), con $[a,b] \subset (c,d)$.

Propiedades de funciones continuas en intervalos

cerrados: * Una función continua en [a,b] es acotada en [a,b]. * Una función continua en [a,b] alcanza mínimo y máximo en [a,b].

Teorema de Bolzano:

Si f es una función continua en [a,b] y f(a)<0, f(b)>0, entonces existe un $c\in(a,b)$ tal que f(c)=0.

Nota:

 $c = \sup\{x \in [a, b] : f(x) < 0\}$ y f(c) = 0, porque f(c) < 0 y f(c) > 0 conducen al absurdo.

Teorema de valor intermedio

Una generalización del teorema de

Bolzano.

Si f es continua en [a,b] y $f(a) < f(b), \text{ sea } d \in (f(a),f(b)),$ entonces existe $c \in (a,b)$ tal que f(c) = d.

Ley de conservación de signo:

Sea $f:(a,b)\to\mathbb{R}$ continua en $x_0\in(a,b)$ y $f(x_0)\neq0$, entonces existe un $\delta>0$ tal que

$$|x - x_0| < \delta \Rightarrow f(x) \neq 0$$

Continuidad de función inversa:

Si $f:[a,b]\to [f(a),f(b)]$ es biyectiva, continua y monótona, entonces $f^{-1}:[f(a),f(b)]\to [a,b]$ es continua.

Continuidad uniforme:

Sea $f:A\to\mathbb{R},\ A\subset\mathbb{R}.$ Se dice que f es uniformemente continua si

$$\forall \varepsilon > 0, \exists \delta > 0, |x - x'| < \delta \Rightarrow |f(x) - f(x')| < \varepsilon$$

Teorema de Heine-Cantor:

Si f es una función continua en [a,b], entonces es uniformemente continua en [a,b].