

Mechanics of Materials I: Fundamentals of Stress & Strain and Axial Loading

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 37 Learning Outcome

 Calculate principal strains, maximum shear strain, and the orientation of principal planes based on strain gage rosette measurements

A 45° strain rosette was placed on the surface of a critical point on an engineering part. The following were measured:

$$\varepsilon_a = 350 \,\mu \frac{mm}{mm}$$

$$\varepsilon_b = 400 \,\mu \frac{mm}{mm}$$

$$\varepsilon_c = 600 \, \mu \frac{mm}{mm}$$
 Gage a was aligned with the x-axis.

a) Determine the in-place strains \mathcal{E}_x , \mathcal{E}_y , γ_{xy}

Georgia

A 45° strain rosette was placed on the surface of a critical point on an engineering part. The following were measured:

$$\varepsilon_a = 350 \,\mu \frac{mm}{mm}$$

$$\varepsilon_b = 400 \,\mu \frac{mm}{mm}$$

$$\varepsilon_c = 600 \,\mu \frac{mm}{mm}$$

a) Determine the in-place strains $\mathcal{E}_{x}, \, \mathcal{E}_{y}, \, \gamma_{xy}$

b) Using Mohr's Circle, find the

$$_{\text{sy}} = -150 \,\mu \, rad$$

ANS

b) Using Mohr's Circle, find the $\gamma_{xy} = 150 \, \mu \, rad$ principal strains and the maximum shear strain at that point, and find the orientation of the principal planes from the given x-y axes. $\varepsilon_{\rm r} = 350 \,\mu$

 \mathcal{E}

Georgia Tech

 $\varepsilon_{\rm v} = 600 \, \mu \frac{mm}{m}$

mm

 $=150\,\mu$ rad

mm $\varepsilon_{y} = 600 \,\mu \frac{mm}{}$ mm

mm

mm

$$\varepsilon_{y} = 600 \,\mu \frac{mm}{mm}$$

$$\gamma_{xy} = -150 \,\mu \quad rad$$

b) Using Mohr's Circle, find the $\gamma_{xy} = 150 \,\mu$ radprincipal strains and the maximum shear strain at that point, and find the orientation of the principal planes from the given x-y axes. $\varepsilon_{r} = 350 \,\mu^{2}$

$$\varepsilon_{y} = 600 \, \mu \frac{mm}{mm}$$

$$||\mathbf{r}|| = 600 \, \mu \frac{mm}{mm}$$

$$||\mathbf{r}|| = 600 \, \mu \frac{mm}{mm}$$

mm

Georgia Tech

 $\varepsilon_{\rm y} = 600 \,\mu \frac{mm}{m}$

 $\gamma_{xy} = -150 \,\mu \, rad$

 $\varepsilon_y = 600 \, \mu \frac{mm}{}$

