

Instituto Superior de Ciências e Tecnologia de Moçambique

Licenciatura em Engenharia Informática

Disciplina: Álgebra linear e geometria analítica

Base do espaço vectorial

Vamos considerar alguns exemplos

1) Dados os vectores u = (2,3), v = (1, -2) e w = (7,0)O vector w é uma combinação linear dos vectores u e v w = 2 u+3 $v \leftrightarrow (7,0) = 2(2,3)+3(1,-2)$

Podemos dizer que estes vectores são LD

2) Dados os vectores u = (2,3) e v = (-1,4)Será que existe um número λ , tal que $\lambda u = v$? $\lambda (2,3) = (-1,4)$ $2\lambda = -1 \rightarrow \lambda = -\frac{1}{2}$ e $3\lambda = 4 \rightarrow \lambda = \frac{4}{3}$ Isto é impossível, logo estes vectores são **LI**

Este é o principal conceito para a formação de uma base.

Definição:

Base é um conjunto linearmente independente de vectores do espaço vectorial que gera o espaço através de combinação linear dos elementos da base, isto é;

Um conjunto B= $\{v_1, v_2,..., v_n\} \subset V$ é uma base do espaço vectorial V se:

- a) B é Linearmente independente
- b) B gera $V \leftrightarrow (v_1, v_2,..., v_n) = V$

Exemplos:

- 1) $B = \{(1,0), (0,1)\}\$ é uma base de IR^2 , denominada base canónica. De facto:
- a) B é LI porque $\alpha_1(1,0) + \alpha_2(0,1) = (0,0) \Leftrightarrow \alpha_1 = \alpha_2 = 0$
- b) $\forall (x, y) \in RI^2$, $(x, y) = \alpha_1(1,0) + \alpha_2(0,1)$

Isto é, qualquer vector de IR² pode ser escrito como combinação linear dos dois vectores.

- 2) $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ é uma base de IR^3 , denominada base canónica.
- 3) O conjunto $B = \{1\}$ é uma base de IR, porque todo número real pode ser escrito como combinação linear de 1.

x = 1. x então 1 gera o espaço IR.

Alem disso, se a.1 = 0 então a = 0, logo o conjunto B = {1} é **LI**

4) O conjunto $\{(1,-1),(-2,2),(1,0)\}$ não é uma base de IR^2 porque os vectores são LD.

Isto é, um dos vectores é combinação linear dos outros.

$$(-2,2) = -2(1,-1) + 0(1,0)$$

- 5) $B = \{(1,0) \text{ e } (1,1)\}$ é base do IR^2 porque:
 - a) BéLI

$$\alpha_1(1,0) + \alpha_2(1,1) = (0,0) \Leftrightarrow (\alpha_1 + \alpha_2, \alpha_2) = (0,0) \Leftrightarrow \alpha_1 = \alpha_2 = 0$$

b)
$$\forall (x, y) \in IR^2$$
, $(x, y) = \alpha_1(1,0) + \alpha_2(1,1) = (\alpha_1 + \alpha_2, \alpha_2) \Rightarrow \alpha_2 = y e \alpha_1 = x - y$

Isto é, qualquer vector de IR² pode ser escrito como combinação linear dos dois vectores.

Qualquer vector genérico $\mathbf{v} = (\mathbf{x} - \mathbf{y}) \mathbf{v}_1 + \mathbf{y} \mathbf{v}_2$ gera o \mathbb{R}^2

Exercicicios:

- 1) Mostra que o conjunto $A = \{(1,2), (3,5)\}$ é uma base de IR^2 .
- 2) Mostra que o conjunto $B = \{(1,1,1), (1,1,0), (1,0,0)\}$ é uma base de IR^3
- 3) Verifica se os conjuntos seguintes são bases de IR²
 - a) $A = \{(2,3) \text{ e } (-4,-6)\}$
 - b) $B = \{(1,1) e(1,-1)\}$
 - c) $C = \{(1,2) e (3,5)\}$

Componentes de um vector

Seja B = $\{v_1, v_2, ..., v_n\}$ uma base de um espaço vectorial V.

 $\forall v \in V, v = a_1v_1 + a_2v_2 + ... + a_nv_n$. Os reais $a_1, a_2, ..., a_n$ são chamados de componentes ou coordenadas de v na base B e representa-se por $v_B = (a_1, a_2, ..., a_n)$.

Exemplos:

1) Consideremos as bases: $A = \{ (1,0), (0,1) \}$ e $B = \{ (2,0), (1,3) \}$ do IR^2 e o vector v = (8,6). As componentes do vector v na base $A(v_A)$ e na base $B(v_B)$ são:

$$v_A = 8(1,0) + 6(0,1) \leftrightarrow v_A = (8,6)$$
; $v_B = 3(2,0) + 2(1,3) \leftrightarrow v_B = (3,2)$

2) Escrever o vector v = (-2,8) na base $B = \{(1,3) \in (2,-1)\}$

Exercício: Escrever o vector v = (3,6) na base $B = \{(1,0) \in (1,3)\}$

Mudança de base

A cada base, corresponde um sistema de coordenadas, realizar uma mudança de base, é substituir o sistema de coordenadas por outro.

Vamos ver alguns exemplos:

1) Dados os conjuntos: $A = \{(-1,2), (3,-1)\}$ e $B = \{(1,-1), (2,0)\}$ bases do IR^2 . Sabendo que $v_A = (4,3)$, calcule as coordenadas do vector v na base B.

O vector v na base B obtém -se:

 $\mathbf{v_B} = \mathbf{M}$. $\mathbf{v_A}$ onde \mathbf{M} é a matriz de mudança de base de A para B dada por $\mathbf{M} = \mathbf{B^{\text{-1}}}$. \mathbf{A}

O papel da matriz de mudança de base é transformar as componentes de um vector \vec{v} na base A em componentes do mesmo vector na base B.

Passos:

1° Escrever cada base na forma matricial

$$A = \{(-1,2), (3,-1)\}$$
 $A = \begin{bmatrix} -1 & 3 \\ 2 & -1 \end{bmatrix}$

B = {(1,-1), (2,0)} B=
$$\begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}$$

2° Calcular a matriz inversa de B

Det B=
$$\begin{vmatrix} 1 & 2 \\ -1 & 0 \end{vmatrix} = 2 \longrightarrow B^{-1} = \frac{1}{2} \begin{bmatrix} 0 & -2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

3° Calcular matriz de mudança de base de A para B

$$M = B^{-1}$$
. $A \rightarrow M_B^A = \begin{bmatrix} 0 & -1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} -1 & 3 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ \frac{1}{2} & 1 \end{bmatrix}$

4° Calcular o vector v na base B

$$v_B = M \cdot v_A \rightarrow v_B = \begin{bmatrix} -2 & 1 \\ \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} -5 \\ 5 \end{bmatrix}$$
 então $v_B = (-5, 5)$

2) Dadas as bases: $A = \{ (1,3), (3,6) \}$ e $B = \{ (1,2), (-1,-1) \}$ do IR^2 . Sabendo que $v_B = (4,5)$, calcule v_{A} .

O vector v na base A é obtido: $v_A = M$. v_B onde M é a matriz de mudança de base dada por

$$M = A^{-1}. B$$

Passos:

$$\mathbf{1}^{\circ}$$
 Escrever cada base na forma matricial; $A = \begin{bmatrix} 1 & 3 \\ 3 & 6 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$

2° Calcular a matriz inversa de A

Det
$$A = \begin{vmatrix} 1 & 3 \\ 3 & 6 \end{vmatrix} = -3$$
 \longrightarrow $A^{-1} = -\frac{1}{3} \begin{bmatrix} 6 & -3 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1 & -\frac{1}{3} \end{bmatrix}$

3° Calcular matriz de mudança de base de B para A

$$M = A^{-1}. B \rightarrow M_A^B = \begin{bmatrix} -2 & 1 \\ 1 & -\frac{1}{3} \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix}$$

4° Calcular o vector v na base A

$$V_A = M \cdot v_B \rightarrow v_A = \begin{bmatrix} 0 & 1 \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$$
 assim $v_A = (5,-2)$

Mudança de Base de A para B

$$\mathbf{v}_{\mathbf{B}} = \mathbf{M} \cdot \mathbf{v}_{\mathbf{A}}$$

Onde M é a matriz de mudança de base

$$M = B^{-1}$$
. A

Mudança de Base de B para A

$$\mathbf{v_A} = \mathbf{M^{-1}} \cdot \mathbf{v_B}$$

Onde M⁻¹é a matriz de mudança de Base

$$M^{-1} = A^{-1} \cdot B$$

Conclusão: As matrizes de mudança de base de A para B e de B para A são inversas. Isto é; $\mathbf{M}.\mathbf{M}^{-1}=\mathbf{I}$

Exercícios

- 1) Sabendo que $A = \{(1,2),(-3,-5)\}$ e $B = \{(1,1),(1,0)\}$ são base do espaço IR^2 determine:
 - a) $v_{B,}$ sabendo que v_{A} = (-1, 1) b) $v_{A,}$ sabendo que v_{B} = (2,-1)
- 2) Dadas as bases $A = \{(1,3),(1,-2)\}$ e $B = \{(3,5),(1,2)\}$ espaço IR^2 . Calcule:
 - a) A matriz de mudança de base de A para B.
 - b) A matriz de mudança de base de B para A.
 - c) Sabendo que v_A = (3, 2) . Calcular $v_{B.}$
 - d) Sabendo que $v_B = (5, -10)$, calcular $v_{A.}$