



# Introduction to Linear Regression

Algorithm Theory - Part Two OLS Equations





- Linear Regression OLS Theory
  - We know the equation of a simple straight line:
    - y = mx + b
      - m is slope
      - b is intercept with y-axis





- Linear Regression OLS Theory
  - We can see for y=mx+b there is only room for one possible feature x.
  - OLS will allow us to directly solve for the slope m and intercept b.
  - We will later see we'll need tools like gradient descent to scale this to multiple features.





- Let's explore how we could translate a real data set into mathematical notation for linear regression.
- Then we'll solve a simple case of one feature to explore OLS in action.
- Afterwards we'll focus on gradient descent for real world data set situations.





 Linear Regression allows us to build a relationship between multiple features to estimate a target output.

| Area m² | Bedrooms | Bathrooms | Price     |
|---------|----------|-----------|-----------|
| 200     | 3        | 2         | \$500,000 |
| 190     | 2        | 1         | \$450,000 |
| 230     | 3        | 3         | \$650,000 |
| 180     | 1        | 1         | \$400,000 |
| 210     | 2        | 2         | \$550,000 |





 We can translate this data into generalized mathematical notation...

X

У

| Area m² | Bedrooms | Bathrooms | Price     |
|---------|----------|-----------|-----------|
| 200     | 3        | 2         | \$500,000 |
| 190     | 2        | 1         | \$450,000 |
| 230     | 3        | 3         | \$650,000 |
| 180     | 1        | 1         | \$400,000 |
| 210     | 2        | 2         | \$550,000 |





 We can translate this data into generalized mathematical notation...

X y

| <b>x</b> <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | у         |
|-----------------------|----------------|----------------|-----------|
| 200                   | 3              | 2              | \$500,000 |
| 190                   | 2              | 1              | \$450,000 |
| 230                   | 3              | 3              | \$650,000 |
| 180                   | 1              | 1              | \$400,000 |
| 210                   | 2              | 2              | \$550,000 |





 We can translate this data into generalized mathematical notation...

|                             | ^                           |                             |                       |
|-----------------------------|-----------------------------|-----------------------------|-----------------------|
| <b>X</b> <sub>1</sub>       | X <sub>2</sub>              | X <sub>3</sub>              | у                     |
| x <sup>1</sup> ,            | x <sup>1</sup> <sub>1</sub> | x <sup>1</sup> ,            | y <sub>1</sub>        |
| x <sup>2</sup> <sub>1</sub> | x <sup>2</sup> <sub>1</sub> | x <sup>2</sup> <sub>1</sub> | y <sub>2</sub>        |
| x <sup>3</sup> <sub>1</sub> | x <sup>3</sup> <sub>1</sub> | x <sup>3</sup>              | <b>y</b> <sub>3</sub> |
| x <sup>4</sup> <sub>1</sub> | x <sup>4</sup> ,            | x <sup>4</sup> <sub>1</sub> | <b>y</b> <sub>4</sub> |
| x <sup>5</sup>              | x <sup>5</sup>              | x <sup>5</sup>              | y <sub>5</sub>        |

11





 Now let's build out a linear relationship between the features X and label y.

| ^                           |                             |                             | J                     |
|-----------------------------|-----------------------------|-----------------------------|-----------------------|
| <b>x</b> <sub>1</sub>       | X <sub>2</sub>              | X <sub>3</sub>              | у                     |
| x <sup>1</sup> <sub>1</sub> | x <sup>1</sup> ,            | x <sup>1</sup> ,            | y <sub>1</sub>        |
| x <sup>2</sup> <sub>1</sub> | x <sup>2</sup> <sub>1</sub> | x <sup>2</sup> <sub>1</sub> | y <sub>2</sub>        |
| x <sup>3</sup> <sub>1</sub> | x <sup>3</sup> <sub>1</sub> | x <sup>3</sup> ,            | <b>y</b> <sub>3</sub> |
| x <sup>4</sup> <sub>1</sub> | x <sup>4</sup> <sub>1</sub> | x <sup>4</sup> <sub>1</sub> | <b>y</b> <sub>4</sub> |
| x <sup>5</sup>              | x <sup>5</sup> ,            | x <sup>5</sup> ,            | <b>y</b> <sub>5</sub> |





 Now let's build out a linear relationship between the features X and label y.

|                       | X              |                |   |
|-----------------------|----------------|----------------|---|
| <b>x</b> <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | у |





Reformat for y = x equation

| У | X                     |                |                |
|---|-----------------------|----------------|----------------|
| у | <b>x</b> <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> |



 Each feature should have some Beta coefficient associated with it.







 This is the same as the common notation for a simple line: y=mx+b







 This is stating there is some Beta coefficient for each feature to minimize error.

$$\hat{y} = \beta_0 x_0 + \dots + \beta_n x_n$$





 We can also express this equation as a sum:







 Note the y hat symbol displays a prediction. There is usually no set of Betas to create a perfect fit to y!

$$\hat{y} = \sum_{i=0}^n eta_i x_i$$





Line equation:

$$\hat{y} = \sum_{i=0}^{} eta_i x_i$$







































- For simple problems with one X feature we can easily solve for Betas values with an analytical solution.
- Let's quickly solve a simple example problem, then later we will see that for multiple features we will need gradient descent.





• Recall that the equation of a line follows the form y = mx + b where





 Recall that the equation of a line follows the form y = mx + b where m is the slope of the line, and





Recall that the equation of a line follows the form y = mx + b where
 m is the slope of the line, and
 b is where the line crosses the y-axis
 when x=0 (b is the y-intercept)





- Recall that the equation of a line follows the form y = mx + b where
   m is the slope of the line, and
   b is where the line crosses the y-axis
   when x=0 (b is the y-intercept)
  - m>0
    positive slope





Recall that the equation of a line follows the form y = mx + b where
 m is the slope of the line, and
 b is where the line crosses the y-axis
 when x=0 (b is the y-intercept)









Recall that the equation of a line follows the form y = mx + b where
m is the slope of the line, and
b is where the line crosses the y-axis when x=0 (b is the y-intercept)











• In a linear regression, where we try to formulate the relationship between variables, y = mx + b becomes





• In a linear regression, where we try to formulate the relationship between variables, y = mx + b becomes

$$\hat{y} = b_0 + b_1 x$$

 Our goal is to predict the value of a dependent variable (y) based on that of an independent variable (x).





• How to derive  $b_1$  and  $b_0$ :



$$\widehat{y}=b_0+b_1x^{rac{1}{10}}$$

#### • How to derive $b_1$ and $b_0$ :

$$b_1 = \rho_{x,y} \frac{\sigma_y}{\sigma_x}$$

 $\rho_{x,y} = Pearson Correlation Coefficient$   $\sigma_x, \sigma_y = Standard Deviations$ 

https://en.wikipedia.org /wiki/Simple linear reg ression

$$\widehat{y}=b_0+b_1x^{rac{1}{2}}$$

#### • How to derive $b_1$ and $b_0$ :

$$b_1 = \rho_{x,y} \frac{\sigma_y}{\sigma_x}$$

 $\rho_{x,y} = Pearson Correlation Coefficient$   $\sigma_x, \sigma_y = Standard Deviations$ 

$$= \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}} \cdot \frac{\sqrt{\frac{\sum (y - \bar{y})^2}{n}}}{\sqrt{\frac{\sum (x - \bar{x})^2}{n}}} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$\widehat{y}=b_0+b_1x^{rac{1}{2}}$$

• How to derive  $b_1$  and  $b_0$ :

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$\widehat{y}=b_0+b_1x^{rac{1}{2}}$$

• How to derive  $b_1$  and  $b_0$ :

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$b_0 = \bar{y} - b_1 \bar{x}$$



## Limitations of Linear Regression



Anscombe's Quartet illustrates the pitfalls of relying on pure calculation.



### Limitations of Linear Regression



Anscombe's Quartet illustrates the pitfalls of relying on pure calculation.





## Limitations of Linear Regression



Anscombe's Quartet illustrates the pitfalls of relying on pure calculation.

Each graph results in the same calculated regression line.







 A manager wants to find the relationship between the number of hours that a plant

is operational in a week and weekly production.







• Here the independent variable x is hours of operation, and the dependent variable y

is production volume.







The manager develops the following table:

| Production<br>Hours (x) | Production<br>Volume (y) |
|-------------------------|--------------------------|
| 34                      | 102                      |
| 35                      | 109                      |
| 39                      | 137                      |
| 42                      | 148                      |
| 43                      | 150                      |
| 47                      | 158                      |





#### First, plot the data

| Production<br>Hours (x) | Production<br>Volume (y) |
|-------------------------|--------------------------|
| 34                      | 102                      |
| 35                      | 109                      |
| 39                      | 137                      |
| 42                      | 148                      |
| 43                      | 150                      |
| 47                      | 158                      |



Operating Hours per Week





#### First, plot the data Is there a linear pattern?

| Production<br>Hours (x) | Production<br>Volume (y) |
|-------------------------|--------------------------|
| 34                      | 102                      |
| 35                      | 109                      |
| 39                      | 137                      |
| 42                      | 148                      |
| 43                      | 150                      |
| 47                      | 158                      |



Operating Hours per Week





#### First, plot the data Is there a linear pattern?

| Production<br>Hours (x) | Production<br>Volume (y) |
|-------------------------|--------------------------|
| 34                      | 102                      |
| 35                      | 109                      |
| 39                      | 137                      |
| 42                      | 148                      |
| 43                      | 150                      |
| 47                      | 158                      |



Operating Hours per Week



| Production<br>Hours (x) | Production<br>Volume (y) |
|-------------------------|--------------------------|
| 34                      | 102                      |
| 35                      | 109                      |
| 39                      | 137                      |
| 42                      | 148                      |
| 43                      | 150                      |
| 47                      | 158                      |



| Production<br>Hours (x) | Production<br>Volume (y) |
|-------------------------|--------------------------|
| 34                      | 102                      |
| 35                      | 109                      |
| 39                      | 137                      |
| 42                      | 148                      |
| 43                      | 150                      |
| 47                      | 158                      |
| 40                      | 134                      |

$$\hat{y} = b_0 + b_1 x$$
 الم المعلم الم



| Production<br>Hours (x) | Production<br>Volume (y) | $(x-\overline{x})$ | $(y-\overline{y})$ |
|-------------------------|--------------------------|--------------------|--------------------|
| 34                      | 102                      | -6                 | -32                |
| 35                      | 109                      | -5                 | -25                |
| 39                      | 137                      | -1                 | 3                  |
| 42                      | 148                      | 2                  | 14                 |
| 43                      | 150                      | 3                  | 16                 |
| 47                      | 158                      | 7                  | 24                 |
| 40                      | 134                      |                    |                    |

$$\hat{y} = b_0 + b_1 x$$
 $\sum_{\bar{y} = \bar{y}} \frac{\sum_{\bar{y} = \bar{y}} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{\bar{y} = \bar{y}} (x_i - \bar{x})^2}$ 
 $b_1 = \frac{\sum_{\bar{y} = \bar{y}} (x_i - \bar{x})^2}{\sum_{\bar{y} = \bar{y}} (x_i - \bar{x})^2}$ 
 $b_0 = \bar{y} - b_1 \bar{x}$ 



| Production<br>Hours (x) | Production<br>Volume (y) | $(x-\bar{x})$ | $(y-\bar{y})$ | $(x-\overline{x})(y-\overline{y})$ |
|-------------------------|--------------------------|---------------|---------------|------------------------------------|
| 34                      | 102                      | -6            | -32           | 192                                |
| 35                      | 109                      | -5            | -25           | 125                                |
| 39                      | 137                      | -1            | 3             | -3                                 |
| 42                      | 148                      | 2             | 14            | 28                                 |
| 43                      | 150                      | 3             | 16            | 48                                 |
| 47                      | 158                      | 7             | 24            | 168                                |
| 40                      | 134                      |               |               |                                    |

$$\hat{y} = b_0 + b_1 x$$
 
$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$b_0 = \bar{y} - b_1 \bar{x}$$



| $\hat{y} = b_0 + b_1 x$ الاتصالات المعلمات $\sum (x_i - ar{x})(y_i - ar{y})$                |
|---------------------------------------------------------------------------------------------|
| $b_1 = \frac{\sum (x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$ $b_0 = \bar{y} - b_1 \bar{x}$ |

| Production<br>Hours (x) | Production<br>Volume (y) | $(x-\bar{x})$ | $(y-\bar{y})$ | $(x-\overline{x})(y-\overline{y})$ | $(x-\overline{x})^2$ |
|-------------------------|--------------------------|---------------|---------------|------------------------------------|----------------------|
| 34                      | 102                      | -6            | -32           | 192                                | 36                   |
| 35                      | 109                      | -5            | -25           | 125                                | 25                   |
| 39                      | 137                      | -1            | 3             | -3                                 | 1                    |
| 42                      | 148                      | 2             | 14            | 28                                 | 4                    |
| 43                      | 150                      | 3             | 16            | 48                                 | 9                    |
| 47                      | 158                      | 7             | 24            | 168                                | 49                   |
| 40                      | 134                      |               |               |                                    |                      |



| $\widehat{y} = b_0 + b_1 x$ الاتصالات المعلومات $\sum (x_i - ar{x})(y_i - ar{y})$ |
|-----------------------------------------------------------------------------------|
| $b_1 = \frac{1}{\sum (x_i - \bar{x})^2}$                                          |
| $b_0 = \bar{y} - b_1 \bar{x}$                                                     |

| Production<br>Hours (x) | Production<br>Volume (y) | $(x-\bar{x})$ | $(y-\bar{y})$ | $(x-\overline{x})(y-\overline{y})$ | $(x-\overline{x})^2$ |
|-------------------------|--------------------------|---------------|---------------|------------------------------------|----------------------|
| 34                      | 102                      | -6            | -32           | 192                                | 36                   |
| 35                      | 109                      | -5            | -25           | 125                                | 25                   |
| 39                      | 137                      | -1            | 3             | -3                                 | 1                    |
| 42                      | 148                      | 2             | 14            | 28                                 | 4                    |
| 43                      | 150                      | 3             | 16            | 48                                 | 9                    |
| 47                      | 158                      | 7             | 24            | 168                                | 49                   |
| 40                      | 134                      |               | Sum:          | 558                                | 124                  |



| $\hat{y} = b_0 + b_1 x$ $\sum_{(x, -\bar{x})} (x, -\bar{x})$           |
|------------------------------------------------------------------------|
| $b_1 = \frac{\sum (x_i - \bar{x})(y_i - y_j)}{\sum (x_i - \bar{x})^2}$ |
| $b_0 = \bar{y} - b_1 \bar{x}$                                          |

| Production<br>Hours (x) | Production<br>Volume (y) | $(x-\bar{x})$ | $(y-\overline{y})$ | $(x-\overline{x})(y-\overline{y})$       | $(x-\overline{x})^2$       |
|-------------------------|--------------------------|---------------|--------------------|------------------------------------------|----------------------------|
| 34                      | 102                      | -6            | -32                | 192                                      | 36                         |
| 35                      | 109                      | -5            | -25                | 125                                      | 25                         |
| 39                      | 137                      | -1            | 3                  | -3                                       | 1                          |
| 42                      | 148                      | 2             | 14                 | 28                                       | 4                          |
| 43                      | 150                      | 3             | 16                 | 48                                       | 9                          |
| 47                      | 158                      | 7             | 24                 | 168                                      | 49                         |
| 40                      | 134                      |               | Sum:               | 558                                      | 124                        |
|                         |                          |               |                    | $\Sigma(x-\overline{x})(y-\overline{y})$ | $\Sigma(x-\overline{x})^2$ |



# $\hat{y}=b_0+b_1x$ التصلات المعلومات وتكنبولوجيا المعلومات

 $b_0 = \bar{y} - b_1 \bar{x}$ 

| Production<br>Hours (x) | Production<br>Volume (y) |
|-------------------------|--------------------------|
| 34                      | 102                      |
| 35                      | 109                      |
| 39                      | 137                      |
| 42                      | 148                      |
| 43                      | 150                      |
| 47                      | 158                      |
| 40                      | 134                      |

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

| Sum: | 558                                      | 124                        |
|------|------------------------------------------|----------------------------|
|      | $\Sigma(x-\overline{x})(y-\overline{y})$ | $\Sigma(x-\overline{x})^2$ |



# $\hat{y}=b_0+b_1x$ تابة الاتصالات تكنولوجيا المعلومات

 $b_0 = \bar{y} - b_1 \bar{x}$ 

#### Run calculations:

| Production<br>Hours (x) | Production<br>Volume (y) |
|-------------------------|--------------------------|
| 34                      | 102                      |
| 35                      | 109                      |
| 39                      | 137                      |
| 42                      | 148                      |
| 43                      | 150                      |
| 47                      | 158                      |
| 40                      | 134                      |

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{558}{124} = 4.5$$

Sum: 558 124  $\Sigma(x-\bar{x})(y-\bar{y}) \quad \Sigma(x-\bar{x})^2$ 



# $\widehat{y}=b_0+b_1x$ الأخطى المعلومات وتكنولوجيا المعلومات

 $b_0 = \bar{y} - b_1 \bar{x}$ 

| Production<br>Hours (x) | Production<br>Volume (y) |
|-------------------------|--------------------------|
| 34                      | 102                      |
| 35                      | 109                      |
| 39                      | 137                      |
| 42                      | 148                      |
| 43                      | 150                      |
| 47                      | 158                      |
| 40                      | 134                      |

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{558}{124} = 4.5$$

$$b_0 = \bar{y} - b_1 \bar{x} = 134 - (4.5 \times 40) = -46$$





# $\widehat{y}=b_0+b_1x$ قارة الاتصالات علامات آمانو المعلومات آمانو

| Production<br>Hours (x) | Production<br>Volume (y) |
|-------------------------|--------------------------|
| 34                      | 102                      |
| 35                      | 109                      |
| 39                      | 137                      |
| 42                      | 148                      |
| 43                      | 150                      |
| 47                      | 158                      |
| 40                      | 134                      |

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{558}{124} = 4.5$$

$$b_0 = \bar{y} - b_1 \bar{x} = 134 - (4.5 \times 40) = -46$$

$$\widehat{y} = -46 + 4.5x$$

| Sum: | 558                                      | 124                        |
|------|------------------------------------------|----------------------------|
|      | $\Sigma(x-\overline{x})(y-\overline{y})$ | $\Sigma(x-\overline{x})^2$ |





Based on the formula, if the manager wants to

| Production<br>Hours (x) | Production<br>Volume (y) |
|-------------------------|--------------------------|
| 34                      | 102                      |
| 35                      | 109                      |
| 39                      | 137                      |
| 42                      | 148                      |
| 43                      | 150                      |
| 47                      | 158                      |

produce 125 units per week, the plant should run for:





#### Based on the formula, if the manager wants to

| Production<br>Hours (x) | Production<br>Volume (y) |
|-------------------------|--------------------------|
| 34                      | 102                      |
| 35                      | 109                      |
| 39                      | 137                      |
| 42                      | 148                      |
| 43                      | 150                      |
| 47                      | 158                      |

produce 125 units per week, the plant should run for:

$$\hat{y} = b_0 + b_1 x$$

$$125 = -46 + 4.5x$$

$$x = \frac{171}{4.5} = 38 \text{ hours per week}$$





- As we expand to more than a single feature however, an analytical solution quickly becomes unscalable.
- Instead we shift focus on minimizing a cost function with gradient descent.





 We can use gradient descent to solve a cost function to calculate Beta values!

$$\hat{y} = \sum_{i=0}^n eta_i x_i$$





 We'll work on developing a cost function to minimize in the next lectures!

$$\hat{y} = \sum_{i=0}^n eta_i x_i$$