iiiSORPRENDENTE!!!

Cualquier página del libro de Carl Sagan " COSMOS " puede ser sorprendente para un profano, que de Astronomía somos la casi totalidad.

Pero hay algunas páginas o parte de ellas que bien merecen conservarse en cualquier cuaderno de notas.

He aquí algunas:

La segunda estrella más brillante de la constelación de Andrómeda, llamada Beta Andromedae, está a setenta y cinco años luz de distancia. La luz mediante la cual la vemos se ha pasado setenta y cinco años atravesando las tinieblas del espacio interestelar en su largo viaje a la Tierra. Si ocurriera el hecho improbable de que Beta Andromedae hubiera volado en mil pedazos el martes pasado no lo sabríamos hasta dentro de setenta y cinco años, porque esta importante información que viaja a la velocidad de la luz necesitaría setenta y cinco años para cruzar las enormes distancias interestelares. Cuando la luz con la cual vemos ahora a esa estrella inició su largo viaje, el joven Albert Einstein, que trabajaba en la oficina suiza de patentes, había acabado de publicar aquí en la Tierra su histórica teoría de la relatividad espacial.

El espacio y el tiempo están entretejidos. No podemos mirar hacia el espacio sin mirar hacia atrás en el tiempo. La luz se desplaza con mucha rapidez . Pero el espacio está muy vacío y las estrellas están muy separadas. Distancias de setenta y cinco años luz o inferiores son muy pequeñas comparadas con otras distancias de la Astronomía. Del Sol al centro de la Vía Láctea hay 30.000 años luz. De nuestra galaxia a la galaxia espiral más cercana, M31, también en la constelación de Andrómeda, hay 2.000.000 años luz. Cuando la luz que vemos actualmente de M31 partió de allí hacia la Tierra no había hombres en nuestro planeta, aunque nuestros antepasados estaban evolucionando rápidamente hacia nuestra forma actual. La distancia de la Tierra a los quasars más remotos es de ocho o diez mil millones de años luz. Los vemos tal como eran antes de la acumulación que creó la Tierra, antes que se formara la Vía Láctea. 1

Para hacer una tarta de manzana necesitamos harina, manzanas, una pizca de esto y de aquello y el calor del horno. Los ingredientes están constituidos por átomos: carbono, oxigeno, hidrógeno y unos cuantos más. ¿De dónde provienen estos átomos? Con excepción del hidrógeno, todos están hechos en estrellas. Una estrella es una especie de cocina cósmica dentro de la cual se cuecen átomos de hidrógeno y se forman átomos más pesados. Las estrellas se condensan a partir de gas y de polvo interestelares los cuales se componen principalmente de hidrógeno. Pero el hidrógeno se hizo en el Big Bang, la explosión que inició el Cosmos. Para poder hacer una tarta de manzana a partir de cero hay que inventar primero el universo.

Supongamos que cogemos una tarta de manzana y la cortamos por la mitad; tomemos una de las dos partes y cortémosla por la mitad; y continuemos así con el espíritu de Demócrito. ¿Cuántos cortes habrá que dar hasta llegar a un átomo solo? La respuesta

es unos noventa cortes sucesivos. Como es lógico no hay cuchillo lo bastante afilado, la tarta se desmigaja y en todo caso el átomo sería demasiado pequeño para verlo sin aumento. Pero éste es el sistema para llegar a él.

La naturaleza del átomo se entendió por primera vez en la Universidad de Cambridge en Inglaterra en los cuarenta y cinco años centrados en 1910: uno de los sistemas seguidos fue disparar contra átomos piezas de átomos y observar cómo rebotaban. Un átomo típico tiene una especie de nube de electrones en su exterior. Los electrones están cargados eléctricamente, como su nombre indica. La carga se califica arbitrariamente de negativa. Los electrones determinan las propiedades químicas del átomo: el brillo del oro, la sensación fría del hierro, la estructura cristalina del diamante de carbono. El núcleo está dentro, en lo profundo del átomo, oculto muy por debajo de la nube de electrones, y se compone generalmente de protones cargados positivamente y de neutrones eléctricamente neutros. Los átomos son muy pequeños: un centenar de millones de átomos puestos uno detrás de otro ocuparían una longitud igual a la punta del dedo meñique. Pero el núcleo es cien mil veces más pequeño todavía lo que explica en cierto modo que se tardara tanto en descubrirlo. Sin embargo, la mayor parte de la masa de un átomo está en su núcleo; los electrones comparados con él no son más que nubes de pelusilla en movimiento. Los átomos son en su mayor parte espacio vacío. La materia se compone principalmente de nada.²

Los átomos sintetizados en los interiores de las estrellas acaban normalmente devueltos al gas interestelar. Las gigantes rojas finalizan con sus atmósferas exteriores expulsadas hacia el espacio; las nebulosas planetarias son las fases finales de estrellas de tipo solar que hacen saltar su tapadera. Las supernovas expulsan violentamente gran parte de su masa al espacio. Los átomos devueltos son, como es lógico, los que se fabrican más fácilmente en las reacciones termonucleares de los interiores de las estrellas: el hidrógeno se fusiona dando helio, el helio da carbono, el carbono da oxígeno, y después en estrellas de gran masa, y por sucesivas adiciones de más núcleos de helio, se construyen neón, magnesio, silicio, azufre, etc.: adiciones que se realizan por pasos, dos protones y dos neutrones en cada paso hasta llegar al hierro. La fusión directa del silicio genera también hierro: un par de átomos de silicio cada uno con ventiocho protones y neutrones se funden a una temperatura de miles de millones de grados y hacen un átomo de hierro con cincuenta y seis protones y neutrones.

Todos éstos son elementos químicos familiares. Sus nombres nos suenan. Estas reacciones nucleares no generan fácilmente erbio, hafnio, disprosio, praseodimio o itrio, sino los elementos que conocemos en la vida diaria, elementos devueltos al gas interestelar, donde son recogidos en una generación subsiguiente de colapso de nube y formación de estrella y planeta. Todos los elementos de la Tierra, excepto el hidrógeno y algo de helio, se cocinaron en una especie de alquimia estelar hace miles de millones de años en estrellas que ahora son quizás enanas blancas inconspicuas al otro lado de la galaxia Vía Láctea. El nitrógeno de nuestro ADN, el calcio de nuestros dientes, el hierro de nuestra sangre, el carbono de nuestras tartas de manzana se hicieron en los interiores de estrellas en proceso de colapso. Estamos hechos, pues, de sustancia estelar.

Algunos de los elementos raros se generan en la misma explosión de supernova. El hecho de que tengamos una relativa abundancia de oro y de uranio en la Tierra se debe únicamente a que hubo muchas explosiones de supernovas antes de que se formara el sistema solar. Otros sistemas planetarios pueden tener cantidades diferentes de nuestros elementos raros. ¿Existen quizás planetas cuyos habitantes exhiben, orgullosos, pendientes de niobio y brazaletes de protactinio, mientras que el oro es una curiosidad de laboratorio? ¿Mejorarían nuestras vidas si el oro y el uranio fueran tan oscuros y poco importantes en la Tierra como el praseodimio?

El origen y la evolución de la vida están relacionados del modo más íntimo con el origen y evolución de las estrellas. En primer lugar la materia misma de la cual estamos compuestos, los átomos que hacen posible la vida fueron generados hace mucho tiempo y muy lejos de nosotros en estrellas rojas gigantes.

Notas:

- 1. "COSMOS" de Carl Sagan .-Página 198
- ² "COSMOS" de Carl Sagan.- Página 218
- ³. Se había pensado antes que los protones estaban distribuidos uniformemente a través de la nube de electrones, y no concentrados en un núcleo de carga positiva en el centro. Emest Rutherford descubrió en Cambridge el núcleo cuando algunas de las partículas de bombardeo rebotaron en la dirección en que habían llegado. Rutherford comentó: "Era el acontecimiento más increíble que había presenciado en nú vida. Era casi tan increíble como si al disparar un proyectil (de cañón) de 15 pulgadas contra una delgada hoja de papel rebotara y volviera hacia él. "
- 4. "COSMOS" de Carl Sagan.- Página 233