Find the least number which when divided by 12, 27 and 35 leaves 6 as a remainder?

To find the least number that, when divided by 12, 27, and 35, leaves a remainder of 6, we can follow these steps:

Adjust the divisors: Since the number leaves a remainder of 6, we can express the desired number (N) as: $[N = k \cdot (12, 27, 35) + 6]$ where (k) is a non-negative integer.

Calculate the least common multiple (LCM):

Prime factorization:

$$(12 = 2^2 \text{ times } 3^1)$$

 $(27 = 3^3)$
 $(35 = 5^1 \text{ times } 7^1)$

LCM is found by taking the highest power of each prime: [$\text{text{lcm}}(12, 27, 35) = 2^2 \times 3^3 \times 5^1 \times 7^1$]

Calculating the LCM: [$\text{text{lcm}}(12, 27, 35) = 4 \times 27 \times 5 \times 7$]

First, calculate (4 \times 27 = 108) Then, (108 \times 5 = 540)

Finally, (540 times 7 = 3780)

So, $(\text{text{lcm}}(12, 27, 35) = 3780)$.

Finding the least number: [$N = k \cdot \text{cdot } 3780 + 6$] The smallest value for (k) is 1: [$N = 1 \cdot \text{cdot } 3780 + 6$ = 3786]

Thus, the least number which, when divided by 12, 27, and 35, leaves a remainder of 6 is 3786.