Metric spaces

Lecture 6

Mathematics - 1st year, English

Faculty of Computer Science, UAIC

e-mail: corina.forascu@gmail.com

facebook: Corina Forăscu (group: FII - Matematica (2017-2018))

November 6, 2018

Outline of the lecture

- Definition. Properties
- Open sets. Closed sets
 - Neighbourhoods
 - Open sets
 - Closed sets
 - Boundedness
- The interior and the closure of a set. Limit points
 - The interior of a set
 - The closure of a set
 - Limit points
- Sequences in metric spaces

Distance

If $P(x_P, y_P, z_P)$ and $Q(x_Q, y_Q, z_Q)$ are two points in space, the *distance* between P and Q (or *length* of the segment PQ) is

$$d(P, Q) = \sqrt{(x_P - x_Q)^2 + (y_P - y_Q)^2 + (z_P - z_Q)^2}.$$

Metric spaces

Definition

Let $X \neq \emptyset$. A function $d: X \times X \to \mathbb{R}_+$ is called a *distance* or a *metric* on X if:

- (D_1) $d(x, y) = 0 \Leftrightarrow x = y, \forall x, y \in X;$
- (D₂) $d(x, y) = d(y, x), \forall x, y \in X$ (symmetry);
- (D₃) $d(x, z) \le d(x, y) + d(y, z)$, $\forall x, y, z \in X$ (triangle property).

In this case, the couple (X, d) is called a *metric space*.

Proposition

Let (X, d) be a metric space. Then:

- i) $d(x_0, x_n) \le d(x_0, x_1) + d(x_1, x_2) + \cdots + d(x_{n-1}, x_n), \ \forall n \in \mathbb{N}^*, \ \forall x_0, x_1, \dots, x_n \in X;$
- ii) $|d(x,z)-d(y,z)| \leq d(x,y), \forall x,y,z \in X;$
- iii) $|d(x,y) d(x',y')| \le d(x,y') + d(x',y)$, $\forall x,y,x',y' \in X$ (quadrilateral inequality).

In linear spaces, some distances come from norms.

Definition

Let $(V,\|\cdot\|)$ be a normed space. Then the mapping $\mathrm{d}:V imes V o \mathbb{R}_+$ defined by

$$d(x,y) := ||x - y||, \ x, y \in \mathbb{R}$$

is a metric, called the *metric induced* by the norm $\|\cdot\|$.

November 6, 2018

Corina Forăscu (Iași) Lecture 6

Examples

1. On \mathbb{R} , the application $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ defined by

$$d(x,y) := |x - y|, \ x, y \in \mathbb{R}$$

is a distance, called the *canonical distance* in \mathbb{R} .

2. On \mathbb{R}^n , the metric induced by the Euclidean norm is called the *Euclidean metric* on \mathbb{R}^n and is denoted by d_2 . We have

$$d_2(\mathbf{x}, \mathbf{y}) := \|\mathbf{x} - \mathbf{y}\|_2 = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2},$$

for $\mathbf{x} = (x_1, ..., x_n), \ \mathbf{y} = (y_1, ..., y_n) \in \mathbb{R}^n$.

3. Let, for $p\in [1,+\infty)$, the application $\|\cdot\|_p:\mathbb{R}^n\to\mathbb{R}_+$ be defined by

$$\|\mathbf{x}\|_{p} := \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}, \ \mathbf{x} = (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n}.$$

Then $\|\cdot\|_p$ is a norm.

Indeed, the triangle property is equivalent to

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{1/p}$$

which is precisely the Minkowski inequality.

We can also introduce a norm on \mathbb{R}^n even in the case $p=+\infty$, by

$$\|\mathbf{x}\|_{\infty} := \max_{1 \leq i \leq n} |x_i|, \ \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

The metric induced on \mathbb{R}^n by the *p*-norm is called *Minkowski distance* and is denoted by d_p . So we have

$$\mathbf{d}_{p}(\mathbf{x},\mathbf{y}) := \left\|\mathbf{x} - \mathbf{y}\right\|_{p} = \left\{ \begin{array}{ll} \left(\left|x_{1} - y_{1}\right|^{p} + \dots + \left|x_{n} - y_{n}\right|^{p}\right)^{1/p}, & p \in [1, +\infty); \\ \\ \max\left\{\left|x_{1} - y_{1}\right|, \dots, \left|x_{n} - y_{n}\right|\right\}, & p = +\infty, \end{array} \right.$$

for $\mathbf{x} = (x_1, ..., x_n), \ \mathbf{y} = (y_1, ..., y_n) \in \mathbb{R}^n$.

- The metric d_1 is sometimes called the *taxi-cab distance* or *Manhattan distance*.
- The metric d_{∞} is also called *Chebyshev distance*.
- If n = 1: $d_p(x, y) = |x y|$, $\forall x, y \in \mathbb{R}$, $\forall p \in [1, +\infty]$.

4. The application $\tilde{\mathbf{d}}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+$, defined by

$$\tilde{\mathbf{d}}(\mathbf{x}, \mathbf{y}) := \sum_{k=1}^{n} \frac{1}{2^{k}} \cdot \frac{|x_{k} - y_{k}|}{1 + |x_{k} - y_{k}|},$$

for $\mathbf{x}=(x_1,\ldots,x_n),\ \mathbf{y}=(y_1,\ldots,y_n)\in\mathbb{R}^n$ is a distance on \mathbb{R}^n , but is not norm-induced, because the function $\mathbf{x}\mapsto \tilde{\mathbf{d}}(\mathbf{x},\mathbf{0})$ lacks the homogeneity property.

5. Let X be a non-empty set. The function $\mathrm{d}:X\times X\to\mathbb{R}_+$, defined by

$$d(x,y) := \begin{cases} 0, & x = y; \\ 1, & x \neq y, \end{cases}$$

for $x, y \in X$, is a metric on X, called the *discrete metric* on X.

6. On $\overline{\mathbb{R}}$ we can consider the metric d defined by

$$d(x, y) := |arctg x - arctg y|, x, y \in \overline{\mathbb{R}}$$

(we have extended the function arctg on $\overline{\mathbb{R}}$ by $\operatorname{arctg}(-\infty) := -\pi/2$, $\operatorname{arctg}(+\infty) := \pi/2$).

November 6, 2018

Uniform norm

Definition

Let E be a non-empty set and $\mathscr{B}(E)$ be the space of bounded functions $f:E\to\mathbb{R}$ (i.e. $\mathrm{Im}\, f$ is a bounded set). We set $\|\cdot\|_{\sup}:\mathscr{B}(E)\to\mathbb{R}_+$ defined by

$$||f||_{\sup} := \sup_{x \in E} |f(x)|.$$

Then $\|\cdot\|_{\sup}$ is a norm on $\mathscr{B}(E)$, called the *uniform norm* or *sup-norm*. The metric induced by $\|\cdot\|_{\sup}$ is called the *uniform distance*, denoted d_{\sup} .

Definition

• Let X be a non-empty set. We say that two metrics d and d' on X are equivalent if there exist two constants $c_1, c_2 > 0$ such that

$$c_1 d'(x, y) \le d(x, y) \le c_2 d'(x, y), \ \forall x, y \in X.$$

• Let $(V, +, \cdot)$ be a linear space. We say that two norms $\|\cdot\|$ and $\|\cdot\|'$ are equivalent if there exist two constants $c_1, c_2 > 0$ such that

$$c_1 \|\mathbf{x}\|' \leq \|\mathbf{x}\| \leq c_2 \|\mathbf{x}\|'$$
, $\forall \mathbf{x} \in V$.

Of course, if two norms on V are equivalent, so are the induced metrics.

Theorem

On \mathbb{R}^n , all the norms $\|\cdot\|_p$ with $p \in [1, +\infty]$ are equivalent.

In fact, we have, for all $\mathbf{x} \in \mathbb{R}^n$ and $p \in [1, +\infty)$

$$\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_{p} \le n^{1/p} \|\mathbf{x}\|_{\infty}.$$

4□ > 4□ > 4 = > 4 = > = 900

November 6, 2018

Corina Forăscu (Iași)

Balls and spheres

Definition

Let (X, d) be a metric space, $x_0 \in X$ an arbitrary point and r > 0 a real number.

The set

$$B(x_0; r) := \{ x \in X \mid d(x, x_0) < r \}$$

is called the *open ball* of radius r and center x_0 .

• The set

$$\bar{B}(x_0; r) := \{ x \in X \mid d(x, x_0) \le r \}$$

is called the *closed ball* of radius r and center x_0 .

• The set

$$S(x_0; r) := \{x \in X \mid d(x, x_0) = r\}$$

is called the *sphere* of radius r and center x_0 .

Neighbourhoods

Definition

Let (X, d) be a metric space and $x_0 \in X$ an arbitrary point. We say that a subset V of X is a *neigbourhood* of x_0 if there exists r > 0 such that $B(x_0; r) \subseteq V$. We denote the family of all neigbourhoods of x_0 by $\mathscr{V}(x_0)$.

Proposition

Let (X, d) be a metric space, $x \in X$ and V, V', U subsets of X.

- i) If $V \in \mathcal{V}(x)$ and $V \subseteq U$, then $U \in \mathcal{V}(x)$.
- ii) If $V, V' \in \mathcal{V}(x)$, then $V \cap V' \in \mathcal{V}(x)$.
- iii) If $V \in \mathscr{V}(x)$, then $x \in V$.
- iv) If $V \in \mathcal{V}(x)$, then there exists $W \in \mathcal{V}(x)$ such that $V \in \mathcal{V}(y)$, $\forall y \in W$.

It can be proven that the above four properties fully characterize the family of neigbourhoods $\mathscr{V}(x)$ of all $x \in X$.

Corina Forăscu (Iași) Lecture 6 November 6, 2018

<ロト <部ト < 注 ト < 注 ト

Theorem

Let (X,d) be a metric space, $x_0 \in X$ an arbitrary point and r>0 a real number. Then

$$B(x_0; r) \in \mathscr{V}(x), \ \forall x \in B(x_0; r).$$

Definition

Let (X, d) be a metric space and $x_0 \in X$ an arbitrary point. We say that a family $\mathscr{U}(x_0)$ is a *system of neigbourhoods* of x_0 if

- $\mathscr{U}(x_0) \subseteq \mathscr{V}(x_0)$;
- for every $V \in \mathscr{V}(x_0)$ there exists $U \in \mathscr{U}(x_0)$ such that $U \subseteq V$.

It is obvious that $\{B(x_0;r)\}_{r\in\mathbb{R}_+^*}$ is a system of neigbourhoods of x_0 . In fact, even $\left\{B(x_0;\frac{1}{n})\right\}_{n\in\mathbb{N}^*}$ is a system of neigbourhoods of x_0 .

Open sets

Definition

Let (X, d) be a metric space. A susbset D of X is called an *open set* if it is a neighbourhood for every element of D, *i.e.*

$$\forall x \in D, \ \exists r > 0 : B(x; r) \subseteq D.$$

Examples.

- **1.** For any $x \in X$ and any r > 0, the open ball B(x;r) is an open set. In particular, if X is $\mathbb R$ and d is the Euclidean distance, then the interval $(x-\varepsilon,x+\varepsilon)$ is an open set for every $x \in \mathbb R$ and $\varepsilon > 0$. This implies that every open interval (a,b) with $a,b \in \mathbb R$ with a < b is an open set.
- **2.** The interval (-1,2] is not open in \mathbb{R} . Indeed, (-1,2] is not a neighbourhood of 2, since $(2-\varepsilon,2+\varepsilon) \not\subseteq (-1,2]$ for every $\varepsilon > 0$.
- **3.** The sets $(0,1) \times (2,4)$ and

$$\left\{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \neq 4 \right\}$$

are open in \mathbb{R}^2 (endowed with the Euclidean distance).

Topologies

Proposition

Let $X \neq \emptyset$ and two metrics d, d' on X. If d and d' are equivalent, then any open set with respect to the metric d is open with respect to the metric d'.

- The collection of all open sets of a metric space (X, d) is called the *topology* on X induced by d.
- The topologies induced by two equivalent metrics are the same.
- Therefore, the topologies induced by d_p with $p \in [1, +\infty]$ are the same topology, called the *usual topology* on \mathbb{R}^n .

Theorem

Let (X, d) be a metric space. Then:

- i) an arbitrary union of open sets is an open set;
- ii) an intersection of two open sets is an open set;
- iii) every open set can be written as an union of open balls;
- iv) \emptyset and X are open sets.

Closed sets

Definition

Let (X, d) be a metric space. A subset F of X is called a *closed set* if $C_A = X \setminus A$ is an open set.

Proposition

Let (X, d) be a metric space. Then:

- i) an arbitrary intersection of closed sets is a closed set;
- ii) a union of two closed sets is a closed set;
- iii) ∅ and X are closed sets.

Examples.

- **1.** Every closed interval [a, b] with $a, b \in \mathbb{R}$ with $a \le b$ is a closed subset of \mathbb{R} . In particular, $\{a\}$ is a closed set.
- **2.** There are sets in \mathbb{R} which are neither open nor closed, for instance (1,2].
- **3.** The sets $[0,1] \times [2,4]$ and $\{(x_1,x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \ge 4\}$ are closed in \mathbb{R}^2 (endowed with the Euclidean distance).

Boundedness

Definition

Let (X, d) be a metric space, $x_0 \in X$ and A, B two non-empty subsets of X.

• The *distance* from x_0 to A is defined as

$$d(x_0, A) := \inf \{ d(x_0, x) \mid x \in A \}.$$

The distance between A and B is defined as

$$d(A, B) := \inf \{ d(x, y) \mid x \in A, y \in B \}.$$

• The diameter of A is defined as

$$\rho(A) := \sup \left\{ d(x, y) \mid x, y \in A \right\}.$$

- The diameter of A is an element from $[0, +\infty]$.
- If we set by convention inf $\emptyset = +\infty$ and $\sup \emptyset = 0$, we can allow A and B to be \emptyset , so we get

 $d(x_0,\emptyset) = d(A,\emptyset) = d(\emptyset,B) = +\infty \text{ and } \rho(\emptyset) = 0.$

Proposition

Let (X, d) be a metric space and $A, B \subseteq X$.

- i) If $A \subseteq B$ then $\rho(A) \le \rho(B)$.
- ii) $\rho(A) = 0$ if and only if $A = \emptyset$ or $A = \{x\}$ for some $x \in X$.

Definition

Let (X, \mathbf{d}) be a metric space. We say that a subset A of X is bounded if $\rho(A) < +\infty$. Otherwise (i.e., $\rho(A) = +\infty$), we say that A is unbounded.

Proposition

- i) Let (X, d) be a metric space. A subset A of X is bounded if and only if there exist $x_0 \in X$ and r > 0 such that $A \subseteq B(x_0; r)$.
- ii) Let $(V, \|\cdot\|)$ be a normed space. A subset A of V is bounded (with respect to the induced metric) if and only if there exists r > 0 such that

$$||x|| < r, \ \forall x \in A.$$

→□▶→□▶→□▶→□▶ □ 少Qで

The interior of a set

Definition

Let (X, d) be a metric space and A a subset of X.

- i) We say that an element $x \in X$ is an *interior point* of A if there exists r > 0 such that $B(x; r) \subseteq A$ (in other words, $A \in \mathcal{V}(x)$).
- ii) We call the *interior* of A the set of all interior points of A, denoted \mathring{A} or int A.

Examples. We consider the space \mathbb{R} endowed with the Euclidean metric.

1. If $a, b \in \mathbb{R}$ with a < b, then

$$int(a, b) = int(a, b) = int[a, b) = int[a, b] = (a, b).$$

2. The set \mathbb{Q} of all rational numbers has no interior points $(\mathring{\mathbb{Q}} = \emptyset)$, since for every $x \in \mathbb{Q}$ and $\varepsilon > 0$, $(x - \varepsilon, x + \varepsilon) \not\subseteq \mathbb{Q}$, because every non-empty interval contains also irrational numbers.

Theorem

Let (X, d) be a metric space. Then:

- i) $\mathring{A} \subseteq A$, $\forall A \subseteq X$;
- ii) $A \text{ is open} \Leftrightarrow \mathring{A} = A, \ \forall A \subseteq X;$
- iii) $A \subseteq B \Rightarrow \mathring{A} \subseteq \mathring{B}, \ \forall A, B \subseteq X;$
- iv) $\widehat{A \cap B} = \mathring{A} \cap \mathring{B}, \ \forall A, B \subseteq X;$
- v) $\mathring{A} \cup \mathring{B} \subseteq \widehat{A \cup B}, \ \forall A, B \subseteq X.$

Corina Forăscu (Iași)

The exterior of a set

Definition

Let (X, d) be a metric space and A a subset of X.

- We say that an element $x \in X$ is an exterior point of A if x is an interior point of $C_A = X \setminus A$.
- We call the exterior of A the set of all exterior points of A, denoted ext A.

Proposition

Let (X, d) be a metric space, $x \in X$ and A a subset of X. Then $x \in \operatorname{ext} A$ if and only if there exists $V \in \mathscr{V}(x)$ such that $V \cap A = \emptyset$.

The closure of a set

Definition

Let (X, d) be a metric space and A a subset of X.

- We say that an element $x \in X$ is a *closure point* of A if for every neigbourhood V of x we have $V \cap A \neq \emptyset$.
- We call the *closure* of A the set of all closure points of A, denoted \overline{A} or cl A;
- We say that A is dense (in X) if $\overline{A} = X$.

Proposition

Let (X, d) be a metric space, $x \in X$ and A a subset of X. Then $x \in \overline{A}$ if and only if there exists r > 0 such that $B(x; r) \cap A \neq \emptyset$.

Examples. We consider the space \mathbb{R} endowed with the Euclidean metric.

1. If $a, b \in \mathbb{R}$ with a < b, then

$$\overline{(a,b)} = \overline{(a,b]} = \overline{[a,b)} = \overline{[a,b]} = [a,b].$$

←□▶←□▶←□▶←□▶ □ 900

November 6, 2018

Corina Forăscu (Iași) Lecture 6

2. We have $\overline{\mathbb{Q}} = \mathbb{R}$, since for every $x \in \mathbb{Q}$ and $\varepsilon > 0$, $(x - \varepsilon, x + \varepsilon) \cap \mathbb{Q} \neq \emptyset$, because every non-empty interval contains rational numbers. According to the previous definition, \mathbb{Q} is dense in \mathbb{R} .

Theorem

Let (X, d) be a metric space. Then:

- i) $A \subseteq \overline{A}$, $\forall A \subseteq X$;
- ii) A is closed $\Leftrightarrow \overline{A} = A$, $\forall A \subseteq X$;
- iii) $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$, $\forall A, B \subseteq X$;
- iv) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$, $\forall A, B \subseteq X$;
- v) $\overline{A \cup B} = \overline{A} \cup \overline{B}$, $\forall A, B \subseteq X$;
- $\text{vi}) \ \overline{C_A} = C_{\mathring{A}}, \ \mathring{\widehat{C_A}} = C_{\overline{A}}.$

Corina Forăscu (Iași)

Lecture 6

The boundary of a set

Definition

Let (X, d) be a metric space and A a subset of X. We call the *boundary* of A the set

$$\partial A = \operatorname{Fr} A := \overline{A} \setminus \mathring{A}.$$

Examples. Again, let us consider the Euclidean on \mathbb{R} .

1. If $a, b \in \mathbb{R}$ with a < b, then

$$Fr(a, b) = Fr(a, b) = Fr[a, b) = Fr[a, b] = \{a, b\}.$$

2. We have $\operatorname{Fr} \mathbb{Q} = \mathbb{R}$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 釣९○

Corina Forăscu (Iași)

Limit points

Definition

Let (X, d) be a metric space and A a subset of X.

- We say that an element $x \in X$ is a *limit point* of A if for every neigbourhood V of x we have $V \cap (A \setminus \{x\}) \neq \emptyset$.
- We call the *derived set* of A the set of all limit points of A, denoted A'.

Theorem

Let (X, d) be a metric space. Then:

- i) $A' \subseteq \overline{A} = A \cup A'$, $\forall A \subseteq X$;
- ii) $\overline{A} = A \Leftrightarrow A' \subseteq A, \ \forall A \subseteq X;$
- iii) $A \subseteq B \Rightarrow A' \subseteq B'$, $\forall A, B \subseteq X$;
- iv) $(A \cup B)' = A' \cup B'$, $\forall A, B \subseteq X$.

Isolated points

Definition

Let (X, d) be a metric space and A a subset of X.

- An element $x \in A \setminus A'$ is called an *isolated point* of A.
- We call the discrete part of A the set of all isolated points of A, i.e. $A \setminus A'$.
- We say that A is *discrete* if every element of A is an isolated point, i.e. $A \cap A' = \emptyset$.

November 6, 2018

Corina Forăscu (Iași) Lecture 6

Sequences in metric spaces

Let $X \neq \emptyset$. A sequence $(x_n)_{n \in \mathbb{N}}$ in X is a function $x : \mathbb{N} \to X$.

Definition

Let (X, d) be a metric space and $(x_n)_{n \in \mathbb{N}}$ a sequence in X.

- We say that $(x_n)_{n\in\mathbb{N}}$ is bounded if the set $\{x_n\}_{n\in\mathbb{N}}$ is bounded.
- We say that $(x_n)_{n\in\mathbb{N}}$ is *convergent* if there exists $x\in X$ such that

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} \in \mathbb{N}, \ \forall n \geq n_{\varepsilon} : d(x_n, x) < \varepsilon.$$

(i.e. $d(x_n, x) \xrightarrow[n \to \infty]{} 0$). In this case, we will note $\lim_{n \to \infty} x_n = x$, $x_n \xrightarrow{d} x$, $x_n \xrightarrow{X} x$ or even $x_n \to x$; the element x will be called the *limit* of $(x_n)_{n \in \mathbb{N}}$.

• We say that $(x_n)_{n\in\mathbb{N}}$ is Cauchy or fundamental if

$$\forall \varepsilon > 0$$
, $\exists n_{\varepsilon} \in \mathbb{N}$, $\forall m, n \geq n_{\varepsilon} : \operatorname{d}(x_m, x_n) < \varepsilon$ or, equivalently,

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} \in \mathbb{N}, \ \forall n \geq n_{\varepsilon}, \ \forall p \in \mathbb{N}^* : d(x_{n+p}, x_n) < \varepsilon.$$

As in the case of real sequences, one can prove that the limit of a sequence in a metric space is unique.

Proposition

Let (X, d) be a metric space and $(x_n)_{n \in \mathbb{N}}$ a convergent sequence in X. Then $(x_n)_{n \in \mathbb{N}}$ is Cauchy.

- The converse of this result is not true, *i.e.* not every Cauchy sequence in an arbitary metric space is convergent.
- For instance, X=(0,1) with the usual distance (d(x,y):=|x-y|): the sequence $(1/n)_{n\in\mathbb{N}^*}$ is Cauchy, but is not convergent.

Theorem

Let (X, d) be a metric space, $x \in X$ and A a subset of X. Then:

- i) $x \in \overline{A}$ if and only if there exists a sequence $(x_n)_{n \in \mathbb{N}} \subseteq A$ such that $x_n \stackrel{d}{\to} x$;
- ii) $x \in A'$ if and only if there exists a sequence $(x_n)_{n \in \mathbb{N}} \subseteq A \setminus \{x\}$ such that $x_n \stackrel{d}{\to} x$.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶

Sequences in Euclidean spaces

Theorem

Let \mathbb{R}^m , $m \ge 1$ be endowed with the Euclidean metric d_2 and $(\mathbf{x}_n)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R}^m with

$$\mathbf{x}_n = (x_n^1, x_n^2, \dots, x_n^m), \ \forall n \in \mathbb{N}$$

- i) The sequence $(\mathbf{x}_n)_{n\in\mathbb{N}}$ is bounded if and only if all the sequences $(x_n^i)_{n\in\mathbb{N}}$, $1\leq i\leq m$, are bounded.
- ii) The sequence $(\mathbf{x}_n)_{n\in\mathbb{N}}$ is convergent if and only if all the sequences $(x_n^i)_{n\in\mathbb{N}}$, $1 \leq i \leq m$, are convergent. In this case, if $\mathbf{x} := \lim_{n \to \infty} \mathbf{x}_n$ and $x^i := \lim_{n \to \infty} x_n^i$, $1 \leq i \leq m$, then $\mathbf{x}_n = (x^1, x^2, \dots, x^m)$.
- iii) The sequence $(\mathbf{x}_n)_{n\in\mathbb{N}}$ is Cauchy if and only if all the sequences $(x_n^i)_{n\in\mathbb{N}}$, $1\leq i\leq m$, are Cauchy.

Corina Forăscu (lași) Lecture 6 November 6, 2018

<ロト <部ト < 注 ト < 注 ト

Sequences in spaces of functions

Theorem

Let $E \neq \emptyset$. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence in $\mathscr{B}(E)$.

i) The sequence $(f_n)_{n\in\mathbb{N}}$ is bounded with respect to the metric d_{sup} if and only if it is uniformly bounded, i.e.

$$\exists M > 0, \forall n \in \mathbb{N}, \ \forall x \in E : |f(x)| < M.$$

- ii) The sequence $(f_n)_{n\in\mathbb{N}}$ is convergent with respect to the metric d_{sup} if and only if it is uniformly convergent. Moreover, for a function $f\in \mathscr{B}(E)$, $f_n \stackrel{d_{sup}}{\longrightarrow} f \Leftrightarrow f_n \stackrel{u}{\longrightarrow} f$.
- iii) The sequence $(f_n)_{n\in\mathbb{N}}$ is Cauchy with respect to the metric d_{sup} if and only if it is a uniform Cauchy sequence.

Complete metric spaces

Definition

- A metric space (X, d) is called a *complete* metric space if every Cauchy sequence in X is convergent.
- A normed space $(V, \|\cdot\|)$ is called a *Banach space* if V is complete with respect to the induced metric.
- A prehilbertian space (V, ⟨·,·⟩) is called a Hilbert space if V is a Banach space with respect to the induced norm.
- $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_2)$ is a Hilbert space.
- Also, if E is a non-empty set, then $\mathscr{B}(E)$, endowed with the uniform norm, is a Banach space.

- W. G. Chinn, N. E. Steenrod, *Introducere în topologie*, Editura Tehnică, București, 1981.
- S.-O. Corduneanu, *Capitole de analiză matematică*, Ed. Matrix Rom, București, 2010.
- O. Costinescu, *Elemente de topologie generală*, Editura Tehnică, București, 1969.
- T. W. Körner, *Metric and Topological Spaces*, DPMMS, University of Cambridge, 2014.
- L.C. Li, Basic Topology, Pensylvania State University, 2010.
- D. Lehmann, *Initiation à la Topologie Générale*, Ellipses Marketing, 2004.
- R. Luca-Tudorache, *Analiză matematică*, Ed. Tehnopress, Iași, 2005.
- S. A. Morris, *Topology without Tears*, University of South Australia, 2015.
- E. Popescu, Analiză matematică, Ed. Matrix Rom, București, 2006.
- A. Precupanu, *Bazele analizei matematice*, Editura Polirom, Iași, 1998.

Corina Forăscu (Iași) Lecture 6 November 6, 2018

イロト イ御ト イラト イラト