SECTION 2

SECTION OBJECTIVES

- Identify several forms of energy.
- Calculate kinetic energy for an object.
- Apply the work-kinetic energy theorem to solve problems.
- Distinguish between kinetic and potential energy.
- Classify different types of potential energy.
- Calculate the potential energy associated with an object's position.

kinetic energy

the energy of an object that is due to the object's motion

extension

Integrating Health

Visit go.hrw.com for the activity "Energy Costs of Walking and Running."

Figure 4

The work done on an object by a constant force equals the object's mass times its acceleration times its displacement.

Energy

KINETIC ENERGY

Kinetic energy is energy associated with an object in motion. **Figure 4** shows a cart of mass m moving to the right on a frictionless air track under the action of a constant net force, **F**, acting to the right. Because the force is constant, we know from Newton's second law that the cart moves with a constant acceleration, **a**. While the force is applied, the cart accelerates from an initial velocity v_i to a final velocity v_f . If the cart is displaced a distance of Δx , the work done by **F** during this displacement is

$$W_{net} = F\Delta x = ma\Delta x$$

When you studied one-dimensional motion, you learned that the following relationship holds when an object undergoes constant acceleration:

$$v_f^2 = v_i^2 + 2a\Delta x$$
$$a\Delta x = \frac{v_f^2 - v_i^2}{2}$$

Substituting this result into the equation $W_{net} = ma\Delta x$ gives

$$W_{net} = m \left(\frac{v_f^2 - v_i^2}{2} \right)$$

$$W_{net} = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$$

Kinetic energy depends on speed and mass

The quantity $\frac{1}{2} mv^2$ has a special name in physics: **kinetic energy.** The kinetic energy of an object with mass m and speed v, when treated as a particle, is given by the expression shown on the next page.

