Diszkrét matematika II. vizsga

 $minta\ feladatsor$

Név: Neptun kód:

	pontszám
Beugró	/15
Fogalmak	/27
Kvíz	/36
Bizonyítások	/22
Összesen	/100

A vizsga két részből, írásbeli és szóbeli, áll. A szóbeli részen való részvétel feltétele, hogy az 1. részből (Beugró) legalább 12 pontot **és** összesen 40 pontot szerezzen. Az írásbeli részre 90 perc áll rendelkezésére.

- 1. Beugró $(5 \times 3 \text{ pont, kérdéseken belül részpont nincs})$
- 1. Definiálja a legnagyobb közös osztót! Mi lesz (12, 18)?
- 2. Definiálja a kongruencia relációt! Mondjon példát két különböző x egészre, mely teljesíti az $x \equiv 3 \mod 4$ relációt!
- 3. Mondja ki a Kinai maradéktételt! Megoldható-e az

$$\left. \begin{array}{l} x \equiv 1 \mod 2 \\ x \equiv 2 \mod 3 \end{array} \right\}$$

Ha igen, adja meg az összes megoldást, ha nem, indokoljon!

- 4. Definiálja az Euler-féle φ függvényt! Mi lesz $\varphi(6)$?
- 5. Mondja ki a polinom foka és gyökeinek száma közötti összefüggést! Hány gyöke lehet az $f=x^5+x+1\in\mathbb{Q}[x]$ polinomnak?

2. Fogalmak $(9 \times 3 \text{ pont})$

- 1. Definiálja a legnagyobb közös osztót egész számok körében!
- 2. Definiálja a lineáris diofanktikus egyenlet fogalmát egész számok körében!
- 3. Definiálja a kongruencia fogalmát egész számok körében!
- 4. Írja le a bővített eukildeszi algoritmust polinomok körében!
- 5. Mondja ki a kongruencia és az alapműveletek közötti összefüggésre vonatkozó tételt!
- 6. Mondja ki a Lagrange interpolációra vonatkozó tételt és írja le az interpolációt!
- 7. Definiálja a prefix kód fogalmát!
- 8. Mondja ki a Singleton-korlátot tetszőleges (nem feltétlen lináris) kódokra!
- 9. Definiálja a szisztematikus kódolás fogalmát!
- 3. Kvíz (9 kérdés, jó válasz 4 pont, rossz válasz -1 pont)

- 1. Legyenek p,q különböző prímszámok. Ekkor az Euler-féle φ függvény a következő tulajdonságot teljesíti
 - a) $\varphi(p) + \varphi(q) = \varphi(p+q)$
 - b) $\varphi(p) + \varphi(q) = \varphi(p \cdot q)$
 - c) $\varphi(p) \cdot \varphi(q) = \varphi(p+q)$
 - d) $\varphi(p) \cdot \varphi(q) = \varphi(p \cdot q)$
- 2. A g=3generátor modulo 17, és $\log_3 2=14.$ Mennyi lesz $\log_3 12$
 - a) 4
 - b) 5
 - c) 13
 - d) 28
- 3. A Diffie-Hellman kulcscsere protokoll során az egyik részvevő (Alice) a következő adatokat küldi el publikus csatornán
 - a) p prímszámot, g generátort modulo p és g^a mod p-t valamely a számra;
 - b) egy k hosszú véletlen 0-1 sorozatot;
 - c) p és q prímek esetén a $p \cdot q$ szorzatot és az e titkosító exponenst, melyre $(a, \varphi(pq)) = 1$;
 - d) a protokoll során Alice nem küld el publikus csatornán adatokat.
- 4. Legyen $f,g \in \mathbb{R}[x]$ két polinom. Ekkor
 - a) $\deg f + \deg g = \deg(f+g)$
 - b) $\deg f + \deg g = \deg(f \cdot g)$
 - c) $\deg f \cdot \deg g = \deg(f+g)$
 - d) $\deg f \cdot \deg g = \deg(f \cdot g)$
- 5. Legyen f és g két 100-ad fokú polinom. Nagyságrendileg hány maradékos osztással lehet f és g legnagyobb közös osztóját kiszámolni?
 - a) 10
 - b) 100
 - c) 1000
 - d) 10000
- 6. Hány olyan $f \in \mathbb{Z}_5[x]$ 4-ed fokú polinom van, melyre f(0) = 1, f(1) = 2, f(2) = 3, f(3) = 4,
 - a) 1
 - b) 4
 - c) 16
 - d) 64.
- 7. Egy φ függvény kódolás, ha
 - a) injektív
 - b) ha a betűnkénti kódolás egyértelműen dekodólható
 - c) ha a φ által indukált kódszavak prefixmentesek
 - d) ha a φ által indukált kódszavak lineáris alteret alkotnak

- 8. Melyik állítás nem igaz
 - a) minden vesszős kód felbontható
 - b) minden egyenletes kód prefix kód
 - c) minden vesszős kód egyenletes
 - d) minden prefix kód felbontható.
- 9. Legyen $d(\mathbf{u}, \mathbf{v})$ a Hamming távolság. Melyik állítás igaz
 - a) minden minden **u**-hoz és $\varepsilon > 0$ értékhez létezik **v**, hogy $d(\mathbf{u}, \mathbf{v}) < \varepsilon$;
 - b) ha $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{u}, \mathbf{c}) + d(\mathbf{c}, \mathbf{v})$, akkor $\mathbf{u}, \mathbf{c}, \mathbf{v}$ egy egyenesen vannak;
 - c) $d(\mathbf{u}, \mathbf{v}) = \sqrt{(u_1 v_1)^2 + \dots + (u_n v_n)^2}$
 - d) egyik sem a fentiek közül.

4. Tételek bizonyítása (22 pont)

(A tétel kimondásáért nem jár pont.)

- 1. Bizonyítsa be az Euler-Fermat tételt! (12 pont)
- 2. Bizonyítsa be, hogy a prefix kódok felbonthatóak! (10 pont)