Билет 98

Автор1,, АвторN
22 июня 2020 г.

Содержание

0.1	Билет 98: Неравенство А	4 дамара	_	 _		 	_	 	 							 	1
0.1	Billier oc. Hepabellerbo i	тданара.	•	 •	•	 	•	 •	 	•	 •	 •	•	•	•	 •	-

Билет 98 СОДЕРЖАНИЕ

0.1. Билет 98: Неравенство Адамара.

Еще один пример для метода множителей Лагранжа.

Пример Неравенство Адамара.

Дана матрица A, суммы квадратов строк равны $h_1^2, h_2^2, \ldots, h_n^2$. Тогда $|\det A| \leqslant h_1 h_2 \ldots h_n$.

Доказательство.

$$A = \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nn} \end{pmatrix}$$

Запишем условия для матрицы A

$$\Phi_k(x) = \sum_{i=1}^n x_{kj}^2 - h_k^2 = 0$$

Функция которую мы хотим максимизировать $f(x) = \det A$

Поймем, что экстремум существует. $\Phi_k(x)$ – сфера в n мерном пространстве, а это компактное множество, а значит все условия тоже компакт. f(x) – непрерывная функция на компакте, значит есть минимум и максимум.

$$F(x) = \det - \sum_{k=1}^{n} \lambda_k \Phi_k(x).$$

$$\partial F$$

$$\frac{\partial F}{\partial x_{ij}} = 0$$

Разберемся, что такое $\frac{\partial \Phi_k}{\partial x_{ij}}$

$$\frac{\partial \Phi_k}{\partial x_{ij}} = 0$$
, если $i \neq k$

$$rac{\partial \Phi_k}{\partial x_{ij}} = 2x_{ij}, \ {
m ec}$$
ли $i=k$

Разберемся, что такое $\frac{\partial \det}{\partial x_{ij}}$

$$\frac{\partial \det}{\partial x_{ij}} = \frac{\partial}{\partial x_{ij}} \left(\sum_{k=1}^n x_{ik} \cdot A_{ik}\right) = A_{ij}$$
, где A_{ik} – алгебраические дополнения.

$$0 = \frac{\partial F}{\partial x_{ij}} = A_{ij} - \lambda_i \cdot 2x_{ij} \Rightarrow A_{ij} = 2\lambda_i x_{ij} \Rightarrow \det = \sum_{k=1}^n x_{ik} A_{ik} = \sum_{k=1}^n x_{ik} 2\lambda_i x_{ik} = 2\lambda_i h_i^2 \Rightarrow \lambda_i = \det A_{ij} = \sum_{k=1}^n x_{ik} A_{ik} = \sum_{k=1}^n x_{ik} 2\lambda_i x_{ik} = 2\lambda_i h_i^2 \Rightarrow \lambda_i = \det A_{ij} = \sum_{k=1}^n x_{ik} A_{ij} = \sum$$

$$\frac{\det}{2h_i^2} \Rightarrow A_{ij} = \frac{\det}{h_{ij}} x_{ij} \Rightarrow \frac{A_{ij}}{\det} = \frac{x_{ij}}{h_i^2}$$

Заметим, что наше уравнение можно доказать, только при $h_i=1$, т.к. если умножить строку на t, то и определитель увеличится в t раз, тогда если мы все строчки разделим на их длины, то все длины будут равны 1, а неравенство не изменится.

$$\Rightarrow \frac{A_{ij}}{\det} = x_{ij} \Rightarrow (A^{-1})^T = A \Rightarrow A^{-1} = A^T$$

$$1 = \det AA^{-1} = \det A \det A^{-1} = \det A \det A^{T} = (\det A)^{2} \Rightarrow \det A = \pm 1$$

Для экстремумов верно, значит верно и для всех.