Minterns Continued)

2-variable system A,B

3-variable system A,B,C

not miniterms: A, B, efc.
(missing literals)

not miniterms: AC B, BC, etc.

Sum terms and maxterns

- · Sum term can be a single literal
- · or the Oring of 2 or more literals

2- mariable suctous

3 chasiella sustant

· Analogous to a minterm, a maxterm contains the sum of all system variables.

Z = VICE ICLOSE XISTEM		2 red lette 2 h 2 tener		
maxterms:	ĀtĒ	Ã+ B+ C	A+ B+c	
	Ā+B	$\widehat{A} + \widehat{B} + C$	A+B+C	
	A+B	A+B+C	A+ B+ C	
	A+13	Ă+B+C	A+B+C	

Boolean operator precedence

- 1. NOT Chighest precedence)
- 2. AND
- 3. OR (lawest precedence)

· Parenthesized expressions can force precedence

e.g.,
$$A \cdot B + C \longrightarrow (AB)$$
 Ored with $C \longrightarrow (B+C)$ And ed with $A \rightarrow (B+C)$

Sum-of-products form

A sum-of-products (SOP) expression contains the Oring of one or more product terms

E.g., AB (a single product term)

AB + B+ ACD

ABC + ABC + ABC

A + B + C (sum of 3 single-literal product terms)

Not SOP expressions:

ABC + BCD + ACD
- overall, not sop, but yes to what's under the bar!

The canonical SDP form

A special case of SOP expressions where all product terms are misterns

E.g., for a 3-variable system A, B, C

F = ABC + ABC + ABE - all product terms are miniterms

Truth tables, minterms, and canonical forms

A very simple and important relationship between all these, This relationship allows us to determine a logic function from a truth table.

Consider F = A(A) B (exclusive - or function)

			TRUE	
Truth table:	Row	A B	mintern	F
	٥	0 0	Ê	Ō
	1	0 J	ĀB	<u> </u>
	2	(0	A B	l
	3) (AB	D
	J.		, re	

number rows corresponding to binary counting order of A,B in each row, list the mintern that evaluates to TRUE for A and B on that row

~ minterns are designated Mo, Mi, Mz, Mz

Then gather the minterns on all rows in which F= 1.

A compact expression for the canonical SOP:

Example: Write the canonical 50P expression for the Cout bit in a 1-bit full adder

			TRUE	
Touth table:	Row	A B Cin	minterm	Cart
	0	000	ĀĪĒC;	0
	l	001	AB Ci	D
	2	0 1 0	AB Cin	0
	3	011	I BCin	
	4	100	A B C	Đ
	5	101	A B Cià	(
	6	(1)	AB Cin	1
	7	111	ABCm	
			**	

Pick off and sum the minterns for which Cout = 1.

$$C_{out} = \widehat{A}BC_{in} + \widehat{A}BC_{in} + \widehat{A}BC_{in} + \widehat{A}BC_{in}$$
or $C_{out} = \sum_{i} (m_{3}, m_{5}, m_{6}, m_{7})$

$$= \sum_{i} (3, 5, 6, 7)$$