Binary Number Systems

Digital Electronics — Lecture 2 8/23/2023

Intro

- Software (typically from a high level programming language), abstracts certain computational functions to make writing code more feasible
- the next step will be the assembly process, written in pure references of transistor processes
- transistor switching

Binary Numer Systems

There are three types of number systems \rightarrow Decimal, Binary, Hexadecimal

Bits

A **bit** is simply a single binary value. These are the following notations for increases in the number of bits.

- 8 bits \rightarrow 1 byte
- 16 bits \rightarrow 1 words, 2 bytes
- 32 bits \rightarrow 2 words, 4 bytes (floats)
- 64 bits \rightarrow 2 longs, 4 words, 8 bytes (double in programming)

64 bits are usually called a long long in hardware. Additionally, $B \rightarrow$ bytes (8B is 8 bytes), and $b \rightarrow$ bits, (4b is 4 bits).

- 2^n , where n is the number os bits, is the number of possible values that could be represented by said number of bits. This entails
 - Min and max number a binary
 - possible input combination to a digital circuit

Number System

Numbers in everyday use are reffered to as **Decimal Numbers**

$$7,392 = (7*10^3) + (3*10^2) + (9*10^1) + (2*10^0)$$

Value of $\# = V_0(B^d) + V_0(B^d) + V_0(B^d)$... Where V is the value of a digit, B is the base, and d is the digit's place.

Binary systems are base 2, only compirsed of the value 1 & 0. Hexadecimal an doctal numvers are base 16 and 8 respectively. Hex digits have 16 values, and octal digits have 8 values.

Subscripts to the right most of a digit denotes its base.

- $1101_{10} \to \text{base } 10$
- $1101_2 \rightarrow \text{base } 2$

Converting Binary to decimal

Raise the value to the power of it's place. $10011011 \downarrow [V_0(B^d) + V_0(B^d) + V_0(B^d)...]$

$$2^7 * 1 + 2^6 * 0 + 2^5 * 0 + 2^4 * 1 + 2^3 * 1 + 2^2 * 0 + 2^1 * 1 + 2^0 * 1$$

- LSB \rightarrow least Significant Bit
- $MSB \rightarrow Most Siginficant Bit$

*If the LSB is 1, the decimal number is odd, if 0 it's even.

Converting Decimal to Binary

- Divide decimal number by 2 and remainder is binary value
- Continue to divide result by 2 using remainder as binary value
- Stop when no more division can occur

10:
$$10/2 = 0$$
 (LSB), $5/2 = 1$, $2/2 = 0$, $1/2 = 1$

Hexidecimal

Hex is a convenient way of expressing very large Numbers. One digit is 4 bits and the digits range from 0 - F (16 values). A 0x prefix denotes a Hex value (0x90FBE).

Decimal	4-Bit Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Converting between Decimal, Binary, and Hex

- Split the Binary number into groups of four, padding any remaining space with 0s

 101111
 0010 1111
- Replace them with their corresponding Hex value (table will be provided during assessments) 2 F 0x2F

Converting from Decimal to Hex is the same process, just in reverse, or you can use the remainder divisor method with 16 as the base (LSB \rightarrow MSB).

Given 590

$$\frac{590}{16} = 36 \ r \ 14(E), \ \frac{36}{16} = 2 \ r \ 4, \ \frac{2}{16} = 0 \ r \ 2$$
$$\therefore 590_{10} = 0x24E$$

This process reversed yields $Hexadecimal \rightarrow Decimal$.

Octal

Octal is a predecesor to Hex, representing 8 possible values (0-7) within each digit. It was useful in the era of data being stored in multiples of 3 (3 bits represent one octal digit).

$$1111 \to 001 \ 111 \to 1 \ 7 \to 17_8$$

Decimal	Octal	Binary
0	0	0
1	1	1
2	2	10
3	3	11
4	4	100
5	5	101
6	6	110
7	7	111

 \rightarrow LSB

Given 370

$$\frac{370}{8} = 46 \ r \ 2, \ \frac{46}{8} = 5 \ r \ 6, \ \frac{5}{8} = 0 \ r \ 5$$
$$\therefore \ 370_{10} = 562_8$$

Signed v. Unsigned

 $Positive\ Binary\ numbers \rightarrow \texttt{Unsigned}\ \ \texttt{value}\ |\ Negitive\ binary\ numbers \rightarrow \texttt{Singed}\ \ \texttt{value}.$

- Signed binary number: MSB bit is 0 for positive or 1 for negative.
- Signed-Magnitude Notation: 1 bit is used for sign and the rest represent the binary number.

3

- -An unsigned 4-bit number represents decimal 0-15
- -A signed magnitude 4-bit number represents decimal -7 to 7