LAr tests

FROM 03/07 TO 07/07

Lucas

Summary:

Date	Hour	Ice Formation	°C	Tension before any test (N)	Voltage (V)	Current (A)
<u>Mon –</u> <u>03/07</u>	13:35	None	A,B at -183,95°C (LAr) C -145 D -68	DS2:5 DS4:5 (relaxed)	DS2: 24 DS4: 24	DS2: 0.08 DS4: 0.09
<u>Tue – 04/07</u>	10:50	Intended	A, B LAr Temperature C -137.37 °C D -66,51°C	DS2:15 DS4:5 (not relaxed)	//	//
<u>Wed –</u> <u>05/07</u>	14:21	Intended	A, B LAr Temperature C -130.71 °C D -63,13 °C	DS2: 20 DS4: 5 (not relaxed)	//	//
<u>Fri – 07/07</u>	14:00	Same	A,B LAr Temperature C -121.33 °C D -60,8 °C	DS2: 25 DS4: 7 (not relaxed)	//	//

Current analysis

→ Motors used ~4% of the total time during LN2 tests

Temperature changes since Friday 30/06 at 9AM

- Monday 26/06:
 Start the heating process.
 Small heater placed in the tank.
- Thursday 29/06:
 Heating process
 accelerated: larger heater
 inside the tank, lid of the tank removed
- Friday 30/06:
 End of the active heating process, letting tank heat with ambient temperature.
- Monday 03/07:
 Filling of the cuve with LAr

Data file begins at: 2023-06-07 12:51:32 Data file finishes at: 2023-07-07 14:20:17

LAr in tank curve

Tank level decreasing linearly (around 4%/day)

Flushing LN2 to see effect on ice:

Time	Monday 03/07	Tuesday 04/07	Wednesday 05/07	Friday 07/07
Right Side (DS2)				
Left Side (DS4)				
T shaped gN2 pipe	NO	NO	NO	NO
gN2 Total flow	60 L/h	60L/h	120L/h	60L/h
LN2 in tube	None	None	None	None
%LN2 in tank*	61%	59%	54 %	??

^{*} No refill possible this time

Tension during stress test 03/07

- At beginning, tension very high
 - → Reposition of the motors to be in straightly in front of the cap centers
 - → Once again after adding humidity sensors
- Tension value about same value as LN2 testing
- → Tension value stable and comparable to LN2

Long stay test (one night)

Source left at D for 16h, no high tension after moving it back to A (DS4)

Humidity test 1/3

- Regularly moving source from D to A to D, for different gN2 flow values
- Left Humidity rising only if gN2 < 30L/h
- Right humidity rise only if gN2 < 120L/h
 - No difference 0 and 30 L/h
 - Regular drop from 30L/h (80%) to 120L/h (~0%)
- → No humidity changes for gN2 flow at 120 L/h, no matter movement of pseudo-source.

Humidity test 1/3 – Without moving source

- Vary gn2 flushing F and measure humidity when source at two positions: top-left (D), bottom (A)
- Determine F which remove humidity "instantly" (<=10min) → F_{threshold}
- Source Top-left: V_{before} small
 - \rightarrow 60 < F_{threshold} < 120 L/h
 - \rightarrow Measure : $F_{threshold} = 100L/h$
- Source Bottom: V_{before} larger
 - \rightarrow 120 < F_{threshold} < 250 L/h
 - \rightarrow Measure : $F_{threshold} = 150L/h$
 - → Assuming same scaling, F_{threshold} for DS20k with source at bottom might be around 300L/h

Humidity test 2/3

- Pseudo-source in position A
- Blow in tube from both sides to increase humidity at maximum and remove gN2
 Extreme nonrealistic scenario
- → After 5min, both humidity are at 100%
- \rightarrow A \rightarrow D \rightarrow A: +23N/+15N wrt normal
- After 15min, put back the top caps and gN2 at 120L/h
- → After 1h30, both humidities at 0%
- → A→ D → A: +20N/+15N wrt normal but back to normal after 3 times

CERN Run

Humidity test 3/3

- Pseudo-source in position B
- Blow in tube from both sides to increase humidity at maximum and remove gN2
 - = Extreme nonrealistic scenario
- → After 5min, both humidity are at 100%
- \rightarrow A \rightarrow D \rightarrow A: +12N/+11N wrt normal
- After 15min, put back the top caps and gN2 at 120L/h
- \rightarrow After 1h30, both humidities at 0%
- \rightarrow A \rightarrow HG* \rightarrow CG*: +12N/+9N wrt normal

*HG: Hot Garage

*CG: Cold Garage

CERN Run

Humidity test 3/3 – After night

- Pseudo-source in position Cold garage for 1 night
- \rightarrow CG* \rightarrow D \rightarrow A: +8N/+5N wrt normal

→ With long-time flushing, maximum tension due to ice formation decreases

*HG: Hot Garage
*CG: Cold Garage

Endoscope pictures

DS4

DS2

After long blowing (100% humidity)

After 1h 15mn of gN2 @120 l/mn

After 2nd long blowing (100% humidity)

Ice/Frost identification DS2

the stick

The top part is frost (~1mm thick)

Ice/Frost identification DS4

Frost pieces coming off

Frost pieces coming off

The top part is frost (~1mm thick)