BROUILLON - À LA RECHERCHE DE RACINES N-IÈMES

CHRISTOPHE BAL

Document, avec son source $L^{A}T_{E}X$, disponible sur la page https://github.com/bc-writings/bc-public-docs/tree/main/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International ».

Table des matières

1.	Racine carré d'un petit naturel	2
2.	Racine cubique d'un petit naturel	3
3.	AFFAIRE À SUIVRE	4

Date: 10 Jan. 2025 - 11 Jan. 2025.

1. RACINE CARRÉ D'UN PETIT NATUREL

Fait 1.1. Étant donné connue la valeur de n^2 où $n \in [0;99]$, il est humainement assez facile de retrouver n.

Démonstration. Commençons par les carrés des petits naturels, c'est-à-dire ceux dans [0;9].

n										
n^2	0	1	4	9	16	25	36	49	64	81

Il semble évident que la connaissance du tableau précédent soit un passage obligé. Intéressonsnous maintenant aux chiffres des unités des carrés précédents.

n	0	1	2	3	4	5	6	7	8	9
Dernier chiffre de n^2	0	1	4	9	6	5	6	9	4	1

En oubliant la colonne évidente de zéros, nous constatons une « symétrie » relativement à la colonne des 5. On peut même retenir qu'un chiffre et son complément à 10 auront des carrés avec le même chiffre des unités.

Continuons notre analyse pour $n \in \llbracket 10; 99 \rrbracket$ en notant d le chiffre des unités de n, et u celui des unités, de sorte que n = 10d + u. Comme le cas u = 0 se résume par le tableau évident ci-dessous, nous allons finir la preuve avec $d \neq 0$ et $u \neq 0$.

n	0	10	20	30	40	50	60	70	80	90
n^2	0	100	400	900	1600	2500	3600	4900	6400	8100

Nous avons les calculs suivants de niveau seconde.

$$n^{2} = (10d + u)^{2}$$

$$= 100d^{2} + 20du + u^{2} (a + b)^{2} = a^{2} + 2ab + b^{2}$$

Comme $u \in [1; 9]$, nous savons que $u \ge 1$ et $u^2 \ge 1$. Nous avons des minorations similaires pour d. Ceci nous donne les implications logiques suivantes.

$$d \in [1; 9]$$
 et $u \in [1; 9]$

$$\stackrel{\text{donc}}{\Longrightarrow} d^2 \ge 1 \text{ et } du \ge 1$$

$$\stackrel{\text{donc}}{\Longrightarrow} 100d^2 \ge 100 \text{ et } 20du \ge 20$$

Le chiffre des unités de $n^2=100d^2+20du+u^2$ est donc celui de u^2 .

Passons à d le chiffre des dizaines. Considérerons par exemple $78^2=6084$. Le précédent tableau nous donne l'encadrement 4900<6084<6400, c'est-à-dire $70^2<6084<80^2$. Par stricte croissance de la fonction carré, nous constatons que le nombre de centaines nous permet de trouver la valeur de d sans aucune ambiguïté.

Donc, si nous savons juste que $n^2 = 6084$ avec $n \in [0;99]$, nous pouvons affirmer que $n = 7 \bullet$, puis, en nous aidant du premier tableau de cette preuve, comme 4 est le chiffre des unités de 6084, nous devinons que n = 72 ou n = 78. Il nous reste à faire le bon choix. L'idée est simple : il suffit de calculer 75^2 , ce qui est facile à faire via l'astuce suivante que nous admettrons.

- On calcule $7 \times 8 = 56$ où 8 = 7 + 1.
- 75^2 s'obtient en collant 25 à la suite de 56, d'où $75^2 = 5625$.

Finalement comme $72^2 < 75^2 < 6084$, le seul cas possible est de choisir n=78 pour obtenir $n^2=6084$.

Vérifions que nous avons compris en devinant la valeur de $n \in [0; 99]$ telle que $n^2 = 8649$.

- $\bullet\,$ Le nombre de centaines de 8649 est 86 qui est compris entre $81=9^2$ et $100=10^2\,,$ d'où $n=9\,\bullet\,.$
- 8649 se finit par 9 donc nous devons choisir entre n=93 et n=97.
- $95^2 = 9025$ via $9 \times 10 = 90$.
- Comme $8649 < 95^2$, forcément n = 93.

2. RACINE CUBIQUE D'UN PETIT NATUREL

Fait 2.1. Étant donné connue la valeur de n^3 où $n \in [0;99]$, il est humainement très facile de retrouver n.

Démonstration. Commençons par les cubes des petits naturels, c'est-à-dire ceux dans [0;9].

n	0	1	2	3	4	5	6	7	8	9
n^3	0	1	8	27	64	125	216	343	512	729

Il semble évident que la connaissance du tableau précédent soit un passage obligé. Intéressonsnous maintenant aux chiffres des unités des cubes précédents.

n	0	1	2	3	4	5	6	7	8	9
Dernier chiffre de n^3	0	1	8	7	4	5	6	3	2	9

Nous constatons quelque chose de fort sympathique : le chiffre des unités de n^3 est celui de n, exception faite pour les deux associations suivantes $2 \longleftrightarrow 8$ et $3 \longleftrightarrow 7$. Il n'y a aucune répétition dans la deuxième ligne du tableau!

Nous voilà prêt à analyser le cas restant de $n \in [10; 99]$ en notant d le chiffre des unités de n, et u celui des unités, de sorte que n = 10d + u. Comme le cas u = 0 se résume par le tableau évident ci-dessous, nous allons finir la preuve avec $d \neq 0$ et $u \neq 0$.

n	0	10	20	30	40	50	60	70	80	90
n^3	0	1000	8000	27000	64 000	125000	216 000	343 000	512 000	729 000

Nous avons les calculs suivants rédigés pour un niveau seconde.

$$n^{3} = (10d + u)^{3}$$

$$= (10d + u) (10d + u)^{2}$$

$$= (10d + u) (100d^{2} + 20du + u^{2})$$

$$= (10d + u) (100d^{2} + 20du + u^{2})$$

$$= 1000d^{3} + 200d^{2}u + 10du^{2} + 100d^{2}u + 20du^{2} + u^{3}$$

$$= 1000d^{3} + 300d^{2}u + 30du^{2} + u^{3}$$

Comme $u \in [1; 9]$, nous savons que $u \ge 1$, $u^2 \ge 1$ et $u^3 \ge 1$. Nous avons des minorations similaires pour d. Ceci nous donne les implications logiques suivantes.

$$d \in [1; 9] \quad \text{et} \quad u \in [1; 9]$$

$$\stackrel{\text{donc}}{\Longrightarrow} d^3 \ge 1 \quad , \quad d^2 u \ge 1 \quad \text{et} \quad du^2 \ge 1$$

$$\overset{\text{donc}}{\Longrightarrow} 1000d^3 \ge 1000 \ , \ 300d^2u \ge 300 \ \text{et} \ 30du^2 \ge 30$$

Le chiffre des unités de $n^3 = 1000d^3 + 300d^2u + 30du^2 + u^3$ est donc celui de u^3 , un chiffre facile à retrouver grâce au deuxième tableau au début de cette preuve.

Il reste à trouver d le chiffre des dizaines. Ceci est bien plus simple. Pour comprendre l'astuce, nous allons considérer $78^3 = 474\,552$. Le précédent tableau nous donne l'encadrement $343\,000 < 474\,552 < 512\,000$, c'est-à-dire $70^3 < 474\,552 < 80^3$. Par stricte croissance de la fonction cube, nous constatons que le nombre de cent-milliers nous permet de trouver la valeur de d sans aucune ambiguïté.

Vérifions que nous avons compris en devinant la valeur de $n \in [0; 99]$ telle que $n^3 = 300763$.

- 300 763 se finit par 3 donc, via $3 \longleftrightarrow 7$, nous savons que n = •7.
- Le nombre de cent-milliers de 300 763 est 300 qui est compris entre $216=6^3$ et $343=7^3$, d'où n=67.

3. AFFAIRE À SUIVRE...