Advanced Network Technologies

4G LTE

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Dr. Wei Bao | Lecturer School of Computer Science

4G/5G cellular networks

- the solution for wide-area mobile Internet
- widespreachdeiglannentPusgect Exam Help
 - more mobile-broadband-connected devices than fixed-broadband-connected devices (2019) Driver (2019) D
 - 4G availability: 97% of time in Korea, 90% in US
- transmission rates up to 100 s Mbps
- technical standards: 3rd Generation Partnership Project (3GPP)
 - wwww.3gpp.org
 - 4G: Long-Term Evolution (LTE) standard

4G/5G cellular networks

similarities to wired Internet

- edge/core distinction, but both below to same the Project Fixam Help
- global cellular network: a ser "identity" (via SIM card network of networks://powcoder.com)
- widespread use of protocols we've studied: HT#PPDNSEC TCP, UDP, IP, etc.
- separation of data/control planes, SDN, tunneling
- interconnected to wired Internet

differences from wired Internet

- different wireless link layer
 - uşer "identity" (via SIM card)
- module hat powcoder users subscribe to a cellular provider
 - "home network" versus roaming on visited nets
 - global access, with authentication infrastructure, and inter-carrier settlement

PDN: Packet Data Network

Base station:

at "edge" of carrier's networkAssignment

 manages wireless radio resources, mobile deviges in its coverage area ("cell")

 coordinates device authentication with other dd Wechat elements

- similar to WiFi AP but:
 - active role in user mobility
 - coordinates with nearly base stations to optimize radio use
- LTE jargon: eNode-B

- other routers:
 - extensive use of tunneling

gateway router

provides NAT services

- device handover between cells
- tracking/paging device location
- path (tunneling) setup from mobile device to P-GW

LTE: data plane control plane separation

LTE data plane protocol stack: first hop

LTE data plane protocol stack: first hop

Application Transport IΡ Packet Data Convergence Radio Link Medium Access Physical

Packet Data

Convergence

Radio kink Medium Acces

Physical -

base station

LTE radio access network:

downstream channel: FDM, TDM within ssignment Projecter x ahande prom - orthogonal frequency division multiplexing)

> /powcouthpoonal" minimal interference between channels

VeChatupstream: FDM, TDM similar to OFDM each active mobile device allocated two or more 0.5 ms time slots over 12 frequencies

> scheduling algorithm not standardized up to operator

100's Mbps per device possible

LTE data plane protocol stack: packet core

GTP-U: user data

GTP-C: control

tunneling:

He mobile datagram

LIP GPRS Tunneling

Coder.com Protocol (GTP), sent inside UDP datagram

appropriate coder to S-GW

- S-GW re-tunnels datagrams to P-GW
- supporting mobility: only tunneling endpoints change when mobile user moves

LTE data plane: associating with a BS

- BS broadcasts primary synch signal every 5 ms on all frequencies

 BSs from multiple carriers may be broadcasting synch signals
- mobile finds a primary synchrsignal then locates 2nd synch signal on this freq.
 - mobile then finds info broadcast by BS: channel bandwidth, configurations; BS's cellular carrier info
 - mobile may get info from multiple base stations, multiple cellular networks
- mobile selects which BS to associate with (e.g., preference for home carrier)
 - more steps still needed to authenticate, establish state, set up data plane

LTE mobiles: sleep modes

as in WiFi, Bluetoqthtp. T.F./pobile may put radio to "sleep" to conserve battery:

- light sleep: after AQQ's Weechfain activityoder
 - wake up periodically (100's msec) to check for downstream transmissions
- deep sleep: after 5-10 secs of inactivity
 - mobile may change cells while deep sleeping need to re-establish association

Global cellular network: a network of IP networks

Mobility in 4G networks: major mobility tasks

- - MME configures forwarding tunnels for mobile
 - visited, home network establish tunnels from home P-GW to mobile
- mobile handover:
 - mobile device changes its point of attachment to visited network

Configuring LTE control-plane elements

- > Mobile communicates Avith o Whatia po voctod plane channel
- > MME uses mobile's IMSI info to contact mobile's home HSS
 - retrieve authentication, encryption, network service information
 - home HHS knows mobile now resident in visited network
- > BS, mobile select parameters for BS-mobile data-plane radio channel

Configuring data-plane tunnels for mobile

Mobility manager > S-GW to BS tunnel: when Home Subscriber mobile changes base nment stations, simply change network P-G S-GW endpoint IP address of os://powcoder.comet tunnel P-GW Visited S-GW to home P-GWAdd WeChat powcoder tunnel: implementation of network Streaming server indirect routing

 tunneling via GTP (GPRS tunneling protocol): mobile's datagram to streaming server encapsulated using GTP inside UDP, inside datagram

Handover between BSs in same cellular network

- 3 source BS informs mobile of new BS
 - mobile can now send via new BS handover looks complete to mobile
- source BS stops sending datagrams to mobile, instead forwards to new BS (who forwards to mobile over radio channel)

Handover between BSs in same cellular network

- 6 target BS ACKs back to source BS: handover complete, source BS can release resources
- mobile's datagrams now flow through new tunnel from target BS to S-GW

- goal: 10x increase in peak bitrate, 10x decrease in latency, 100x increase in traffic capacity over 4G
- 5G NR (new saignment Project Exam Help
 - two frequency bands: FR1 (450 MHz-6 GHz) and FR2 (24 GHz-52 GHz): millimeter wave representations with the millimeter wave representation of the
 - not backwards-compatible with 4G
 - MIMO: multiple diedio Na Canthatapowcoder
- millimeter wave frequencies: much higher data rates, but over shorter distances
 - pico-cells: cells diameters: 10-100 m
 - massive, dense deployment of new base stations required

Advanced Network Technologies

Mobile Network Analysis, Erlang B, Erlang C

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Dr. Wei Bao | Lecturer School of Computer Science

Review of M/M/1 and M/M/m/m Queue

M/M/m/m Queue Model

time"

New arrivals will be dropped if all channels are occupied.

Q: What is the probability if a new arrival is dropped?

 P_s

Poisson arrival sees time average.

Erlang B formula, or Erlang loss formula, the formula for the blocking probability Project Exam Help

$$P_{s} = \frac{\frac{\text{https://powcoder.com}}{\sum_{s=0}^{s} (\lambda \psi \mu)^{n} / n!} \text{Erlang B Formula}}{\sum_{s=0}^{s} (\lambda \psi \mu)^{n} / n!} \text{Erlang B Formula}$$

 P_{S} is also called grade of service (GOS).

Erlang B formula for system design

Q1 (Performance Evaluation): Given traffic load (λ / μ) , number of channels (S), calculate blocking probability P_S

A: Directly apply Erlang B formula Exam Help

Q2 (Traffic Shaping) tt friyep blocking prohability, number of channels, calculate max traffic load

A: Solve the value of Ald Weschatang Beforeniula; using Erlang table/chart.

Q3 (Channel Reservation): Given blocking probability, traffic load, calculate the number of channels needed A: Solve the value of S by Erlang B formula; using Erlang

table/chart.

Erlang: a dimensionless unit used as a measure of offered load

The average number of concurrent calls measured over a time Assignment Project Exam Help

unit.

Total Contact Centre Erlangs = 1 + 0.5 + 0.5 = 2.0 Erlangs

Erlang: In our model

λ: average number of arrivals per unit time. Assignment Project Exam Help

1/μ: average champs!//poldingertimen

Traffic load is λ/μ AlddgWeChat powcoder

- Assume there are 10 channels.
- Assume each user uses the channel for 6 minutes (0.1 hour).

 Assignment Project Exam Help
- What is the arbitrate carc be supported for 0.5% blocking probability? Add We Chat powcoder


```
\lambda/\mu=4 and 1/\mu \equiv 0.1 hour Project Exam Help \lambda=40 units/hour https://powcoder.com
```

Add WeChat powcoder

- Consider a base station
 - An average call lasts two minutes
 Assignment Project Exam Help
 1500 calls per hour on average

 - the probability of browing detocking more than 1%.
- How many channels do have people oder

$$\lambda$$
=1500 units/hour
 $1/\mu = 1/30$ hour
 $\lambda/\mu = 50$ Erlang

channels needed.

(More accurate calculation is 64)

Queue Model with Handover

- User will use the channel for t,
 where t follows exponential
 distribution (mean 1/μ)
- > S channels.

How to block/drop calls?

arrival. Higher penalty enment Project Exam Help

Guard channel approach!

https://powcodergcorded channels

WeChat powers arrivals are accepted.

- L, S-1] active users, new arrivals are blocked, handover arrivals are accepted.
- S or more active users. new arrivals are blocked, handover arrivals are dropped.

Guard channel approach

New arrival blocking probability $P_b = P_L + P_{L+1} + ... + P_S$

Handover dropping probability $P_d = P_s$

$$P_{i} = \frac{\frac{((\lambda_{n} + \lambda_{h}) / \mu)^{i} / i!}{\sum_{n=0}^{L} ((\lambda_{n} + \lambda_{h}) / \mu)^{n} / n! + \sum_{n=L+1}^{S} ((\lambda_{n} + \lambda_{h}) / \mu)^{L} (\lambda_{h} / \mu)^{n-L} / n!}{\sum_{n=0}^{L} ((\lambda_{n} + \lambda_{h}) / \mu)^{n} / n! + \sum_{n=L+1}^{S} ((\lambda_{n} + \lambda_{h}) / \mu)^{L} (\lambda_{h} / \mu)^{n-L} / n!} \quad 0 \le i \le L$$

Calculate the $L \le i \le S$ case by yourself

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

System design problem

Q1 (Performance Evaluation): Given traffic load $(\lambda_n, \lambda_h, \text{ and } \mu)$, number of channels (L and S), calculate probabilities $(P_b \text{ and } P_d)$

Assignment Project Exam Help Q2 (Traffic Shaping): Given required probabilities $(P_b \text{ and } P_d)$ number of channels that P_b ware traffic load

Q3 (Channel Reservation): Given required probabilities (P_b and P_d), traffic load, calculate the number of channels needed

S is also given, calculate the optimal L

An arriving unit will need to wait if all servers are busy (it is not blocked)

Examples: Call centers

M/M/m quesignment Project Exam Help

 P_{w} : The probability that a new arrival has to wait (cannot be served immediately).

 P_w : The probability that a new arrival has to wait (cannot be served immediately). Erlang C formula

Assighnent Project Exam Help

$$P_{w} = \frac{\frac{\mu}{\mu} \cdot \frac{y}{s!} \frac{S - \lambda / \mu}{S - \lambda / \mu}}{\frac{\lambda}{dd} \frac{W}{e} \cdot \frac{Chat}{\mu} \cdot \frac{powcoder}{S - \lambda / \mu}}{\frac{N}{n=0} \mu \cdot \frac{h!}{n} \cdot \frac{h!}{\mu} \cdot \frac{h!}{n} \cdot \frac{h!}{$$

 P_{w} is grade of service (GOS).

Advanced Network Technologies

Mobile Network Analysis, Bit Error Detection and Correction

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Dr. Wei Bao | Lecturer School of Computer Science

Bit Error Detection and Recovery

EDC= Error Detection and Correction bits (redundancy)

D = Data protected by error checking, may include header fields

Error detection not 100%_reliable!

o protocologiamsentale popular protocologia protocologia

larger EDC field yields better detection and correction

Modulo 2 operation

- Binary, modulo 2 domain
- >addition, subtraction
- 1+1=0, 1-1=0 Assignment Project Exam Help
- **-** 1+0=1, 1-0=1
- 0+1=1, 0-1=1 https://powcoder.com
- 0+0=0, 0-0=0 Add WeChat powcoder
- >"-", "+", are equivalent to, XOR, ⊕
- >11+11=00: no carry over
- >Multiplication
- 11*100=11*2²=1100 (left shift 2 bits)
- 11*11=11*10+11*1=110+11=101

Single Bit Parity:

Detect single bit errors

odd number of '1's -> 1https://powcoder.com

even number of '1's -> 0 Add WeChat powcoder

total number of '1's -> even

Parity Checking

Bit Check in Matrix format

Linear Block Code: Generalized Parity Check

Bit Check in Matrix format

generated nutrice Chat powcoder

$$dG=c$$

1*k vector k*n matrix 1*n vector

Linear Block Code: Generalized Parity Check

-) k data bits
- n-k parity bits
- code rate: k/n

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Linear Block Code: Decoding

paritycheck matrix H

$$GH^T=0$$

Linear Block Code: Decoding

$$cH^T = dGH^T = 0$$

Not 0? Error detected