PICAT: Uma Linguagem de Programação Multiparadigma

Claudio Cesar de Sá

claudio.sa@udesc.br

Departamento de Ciência da Computação – DCC Centro de Ciências e Tecnológias – CCT Universidade do Estado de Santa Catarina – UDESC

4 de maio de 2019

Contribuições e Agradecimentos

- Miguel Alfredo Nunes
- Jeferson L. R. Souza
- Alexandre Gonçalves
- Hakan Kjellerstrand (http://www.hakank.org/picat/)
- Neng-Fa Zhou (http://www.picat-lang.org/)
- João Herique Faes Battisti
- Paulo Victor de Aguiar
- Rogério Eduardo da Silva
- Outros anônimos que auxiliaram na produção deste documento

- Definições
- Contexto de uso
- Estruturas de decisão
- Estruturas de repetição
- Iteradores
- Entrada e saídas
- Exemplos

 Ao contrário do Prolog, Picat apresenta conceitos e comandos da programação imperativa

- Ao contrário do Prolog, Picat apresenta conceitos e comandos da programação imperativa
- Esta maneira ameniza os obstáculos em se aprender uma linguagem com o paradigma lógico, tendo outros elementos conhecidos

- Ao contrário do Prolog, Picat apresenta conceitos e comandos da programação imperativa
- Esta maneira ameniza os obstáculos em se aprender uma linguagem com o paradigma lógico, tendo outros elementos conhecidos
- Assim, Picat apresenta estruturas clássicas como:
 - if-then-end, if-then-else-end, if-then-elseif-then-...end
 - foreach
 - while
 - do-while
 - Bem como a atribuição, ':=', já discutida

• Picat implementa uma estrutura condicional explícita (na programação em lógica, voce faz isto implicitamente)

- Picat implementa uma estrutura condicional explícita (na programação em lógica, voce faz isto implicitamente)
- Sua notação é:

```
if (Exp) then
Ações
else
Ações
:
end
```


- Picat implementa uma estrutura condicional explícita (na programação em lógica, voce faz isto implicitamente)
- Sua notação é:

```
if (Exp) then
Ações
else
Ações
:
end
```

 Onde Exp é uma expressão lógica avaliada como verdadeira ou falsa.

- Picat implementa uma estrutura condicional explícita (na programação em lógica, voce faz isto implicitamente)
- Sua notação é:

```
if (Exp) then
   Ações
else
   Ações
:
end
```

- Onde Exp é uma expressão lógica avaliada como verdadeira ou falsa.
- A última ação antes de um else ou end não deve ter vírgula nem ponto e vírgula ao final da linha.

- Picat implementa uma estrutura condicional explícita (na programação em lógica, voce faz isto implicitamente)
- Sua notação é:

```
if (Exp) then
   Ações
else
   Ações
:
end
```

- Onde Exp é uma expressão lógica avaliada como verdadeira ou falsa.
- A última ação antes de um else ou end não deve ter vírgula nem ponto e vírgula ao final da linha.
- Tem-se ainda o elseif que pode estar embutido no comando if-then-else-end

Exemplo: if-then-else-end

 Picat também implementa 3 estruturas de repetição: foreach, while e do-while

- Picat também implementa 3 estruturas de repetição: foreach, while e do-while
- O laço do foreach itera sobre termos simples e compostos

- Picat também implementa 3 estruturas de repetição: foreach, while e do-while
- O laço do foreach itera sobre termos simples e compostos
- O while repete um conjunto de ações enquanto uma condição for verdadeira.

- Picat também implementa 3 estruturas de repetição: foreach, while e do-while
- O laço do foreach itera sobre termos simples e compostos
- O while repete um conjunto de ações enquanto uma condição for verdadeira.
- A condição pode ser simples ou combinada: ver exemplos

- Picat também implementa 3 estruturas de repetição: foreach. while e do-while
- O laço do foreach itera sobre termos simples e compostos
- O while repete um conjunto de ações enquanto uma condição for verdadeira.
- A condição pode ser simples ou combinada: ver exemplos
- O laço do-while é análogo ao while, porém ele sempre executa pelo menos uma vez

Estruturas de Repetições: foreach

• Um laço foreach tem a seguinte forma:

```
foreach (E_1 in D_1, Cond_1, ..., E_n in D_n, Cond_n)

Metas

end
```


Estruturas de Repetições: foreach

Um laço foreach tem a seguinte forma:

```
foreach (E_1 in D_1, Cond_1, ..., E_n in D_n, Cond_n)

Metas

end
```

Esta notação é dada por:

- E_i é um padrão de iteração ou iterador.
- D_i é uma expressão de valor composto. Exemplo: uma lista de valores
- $Cond_i$ é uma condição opcional sobre os **iteradores** E_1 até E_i .
- O foreach pode conter múltiplos iteradores usando o "in" Caso isso ocorra, o compilador interpreta isso como diversos laços aninhados.

Exemplo: foreach

```
imp_tracejados (N) =>
     nl,
3
     foreach(I in 1..N)
       printf("=")
     end.
5
6
     nl.
  Picat > cl('backtracking_ex_02').
9 Compiling:: backtracking_ex_02.pi
10 ** Warning: singleton variables (backtracking_ex_02.pi, 50-55): I
11 backtracking_ex_02.pi compiled in 3 milliseconds
12 loading...
13
14 yes
15
16 Picat > imp_tracejados(30).
17
```


Estruturas de Repetições: while

• O laço do while tem a seguinte forma:

```
while (Cond)
   Metas
end
```

• Enquanto a expressão lógica Cond for verdadeira, o conjunto de Metas é executado.

Exemplo: while

Estruturas de Repetições: do-while

• O laço do-while tem a seguinte forma:

```
do

Metas

while (Cond)
```

 Ao contrário do while o iterador do-while vai executar Metas pelo menos uma vez antes de avaliar Cond.

Exemplo: do-while

Funções e Predicados Especiais

• Há algumas funções e predicados especiais em Picat que necessitam de algum cuidado.

Funções e Predicados Especiais

- Há algumas funções e predicados especiais em Picat que necessitam de algum cuidado.
- São elas: compreensão de listas/vetores, entrada de dados e saída de dados.
- Na verdade, já fizemos uso delas, porém sem a ênfase de que são funções ora predicados.

Compreensão de Listas e Vetores I

- A função de *compreensão de listas e vetores* é uma função especial que permite a fácil criação de listas ou vetores.
- Sua notação é:

$$[T : E_1 \text{ in } D_1, Cond_1, \ldots, E_n \text{ in } D_n, Cond_n]$$

- Onde, T é uma expressão adicionada a lista, cada E_i é um iterador sobre D_i, o qual é um termo ou expressão, e Cond_i é uma condição sobre cada iterador de E₁ até E_i.
- Há uma seção dedicada a listas. Voltaremos ao assunto.

Compreensão de Listas e Vetores II

 Esta função pode gerar um vetor também, a notação é um pouco diferente:

```
\{T: E_1 \text{ in } D_1, Cond_1, \ldots, E_n \text{ in } D_n, Cond_n\}
```

Neste caso, os delimitadores são { e } de um vetor

Compreensão de Listas e Vetores: Exemplo

```
main =>
 L = [(A, I) : A in [a, b], I in 1 ... 2],
 V = \{(I, A) : A \text{ in } [a, b], I \text{ in } 1 ... 2\},
 printf("\nL: %w \nV: %w\n", L, V),
 imp_vetor(V).
imp_vetor (M) =>
Tam = M.length, %% tamanho de M
  nl,
   foreach(I in 1 .. Tam )
     printf("V(%d):%w \t" , I, M[I] )
    end,
  nl.
%%%% $picat vetor_exemplo_01.pi
```


Leitura e Escrita I

- Picat tem diversas funções de leitura de valores, que serve tanto para ler de uma console stdin, como de um arquivo qualquer.
- Aos usuários de Prolog, aqui não precisamos do delimitador final de '.' ao final de uma leitura.
- Válido quando editamos no interpretador, o '.' final é opcional

Leitura e Escrita II

- As mais importantes são:
 - read_int(FD) = Int ⇒ Lê um Int do arquivo FD.
 - read_real(FD) = Real ⇒ Lê um Float do arquivo FD.
 - read_char(FD) = Char ⇒ Lê um Char do arquivo FD.
 - read_line(FD) = $String \Rightarrow L\hat{e}$ uma Linha do arquivo FD.
- Caso se deseja ler da console, padrão stdin, FD, o nome do descritor de arquivo, pode ser omitido.

- Os dois predicados mais importantes para saída de dados, são write e print.
- Cada um destes predicados tem três variantes, são eles:
 - write(FD, T) \Rightarrow Escreve um termo T no arquivo FD.
 - writeln(FD, T) ⇒ Escreve um termo T no arquivo FD, e pula uma linha ao final do termo.
 - writef(FD, F, A...) ⇒ Este predicado é usado para escrita formatada para um arquivo FD, onde F indica uma série de formatos para cada termo contido no argumento A.... O número de argumentos não pode exceder 10.

Leitura e Escrita IV

- Analogamente, para o predicado print, temos:
 - print(FD, T) \Rightarrow Escreve um termo T no arquivo FD.
 - println(FD, T) ⇒ Escreve um termo T no arquivo FD, e pula uma linha ao final do termo.
 - printf(FD, F, A...) ⇒ Este predicado é usado para escrita formatada para um arquivo FD, onde F indica uma série de formatos para cada termo contido no argumento A.... O número de argumentos não pode exceder 10.
- Caso queira escrever para stdout, o nome do FD, pode ser omitido.

Tabela de Formatação para Escrita

Apenas os mais importantes, há outros como: hexadecimal, notação científica, etc. Ver no apêndice do Guia do Usuário.

Especificador	Saída	
%%	Sinal de Porcentagem	
%с	Caráctere	
%d %i	Número Inteiro Com Sinal	
%f	Número Real	
%n	Nova Linha	
%s	String	
%u	Número Inteiro Sem Sinal	
%₩	Termo qualquer	

Comparação entre write e print

$\overline{Dados} \Rightarrow$	"abc"	[a,b,c]	'a@b'
write	[a,b,c]	[a,b,c]	'a@b'
writef	[a,b,c] (%s)	abc (%w)	'a@b' (%w)
print	abc	abc	a@b
printf	abc (%s)	abc (%w)	a@b (%w)

Condicionais

```
main =>
    X = read_int(),
    if(X <= 100) then
        println("X e menor que 100")
else
    println("X nao e menor que 100")
end.</pre>
```



```
main =>
    X = read_int(),
    println(x=X),
    while(X != 0)
          X := X - 1,
          println(x=X)
end
.
```

```
main =>
    X = read_int(),
    Y = X..X*3,
    foreach(A in Y)
        println(A)
    end.
```

Exemplos – Construindo Listas e Vetores

- Este exemplo reúne muitos conceitos desta seção.
- https://github.com/claudiosa/CCS/blob/master/picat/ input_output_exemplos/leitura_vetores_listas.pi

Exemplo – Leitura de Vetores

```
le vetor 01 ( V ) =>
  printf("\nDIGITE tamanho da entrada: "),
 Tam = read_int(),
  V = new_array( Tam ), % cria um vetor
  printf("\nDIGITE os %d VALORES do vetor:", Tam),
  foreach (I in 1..Tam)
        V[I] = read_int()
  end,
 printf("\nVETOR: %w ", V).
le_vetor_02 ( V ) =>
  printf("\nLendo um vetor qualquer de inteiros na linha: "),
 V = { to_int(W) : W in read_line().split() }.
 % OU
  %L = [ to_int(W) : W in read_line().split()],
 %V = to_array( L ).
```


Exemplo – Leitura de Listas

```
le_lista_01 ( L ) =>
 printf("\nLendo lista de inteiros na linha: "),
 L = [ to_int(W) : W in read_line().split()].
le_lista_02 (List) =>
    printf("\nLista inteiros e 0 encerra: "),
   L := \prod.
   E := read_int() ,
    while (E != 0)
       L := [E|L],
        E := read_int()
    end,
   List = L.
```

Volte neste exemplo após a seção de Listas.


```
$ picat leitura_vetores_listas.pi
DIGITE tamanho da entrada: 3
DIGITE os 3 VALORES do vetor: 3 4 5
VETOR LIDO: {3,4,5}
Lendo um vetor qualquer de inteiros na linha: 9 8 7 6
VETOR LIDO: {9,8,7,6}
Lendo lista de inteiros na linha: 1 2 3 4
LISTA LIDA: [1,2,3,4]
Lista inteiros e 0 encerra: 1 2 3 7 0 1 2 3 5
LISTA LIDA 2: [7,3,2,1]
.... removi algumas linhas em branco
```


Reflexões

• Esta seção avança na sintaxe do Picat e precisa ser praticada

Reflexões

- Esta seção avança na sintaxe do Picat e precisa ser praticada
- Como este conteúdo se assemelha as LPs clássicas, como exercício, voce está apto a fazer alguns algoritmos de outras linguagens.

Reflexões

- Esta seção avança na sintaxe do Picat e precisa ser praticada
- Como este conteúdo se assemelha as LPs clássicas, como exercício, voce está apto a fazer alguns algoritmos de outras linguagens.
- Se antes o Prolog era complicado para *entradas* e *saídas*, com Picat, tudo ficou semelhante as demais linguagens imperativas

- Esta seção avança na sintaxe do Picat e precisa ser praticada
- Como este conteúdo se assemelha as LPs clássicas, como exercício, voce está apto a fazer alguns algoritmos de outras linguagens.
- Se antes o Prolog era complicado para entradas e saídas, com Picat, tudo ficou semelhante as demais linguagens imperativas
- Cuidado: as funções de entradas e saídas, e outras do sistema como time, etc, nunca falham e nem aceitam backtracking definidas para elas. Em caso de falha do predicado que as contém, estas são silenciosas, apresentando um simples no ou false!

- Esta seção avança na sintaxe do Picat e precisa ser praticada
- Como este conteúdo se assemelha as LPs clássicas, como exercício, voce está apto a fazer alguns algoritmos de outras linguagens.
- Se antes o Prolog era complicado para entradas e saídas, com Picat, tudo ficou semelhante as demais linguagens imperativas
- Cuidado: as funções de entradas e saídas, e outras do sistema como time, etc, nunca falham e nem aceitam backtracking definidas para elas. Em caso de falha do predicado que as contém, estas são silenciosas, apresentando um simples no ou false!
- Felizmente os erros e problemas de sintaxe são prontamente acusados

- Esta seção avança na sintaxe do Picat e precisa ser praticada
- Como este conteúdo se assemelha as LPs clássicas, como exercício, voce está apto a fazer alguns algoritmos de outras linguagens.
- Se antes o Prolog era complicado para *entradas* e *saídas*, com Picat, tudo ficou semelhante as demais linguagens imperativas
- Cuidado: as funções de entradas e saídas, e outras do sistema como time, etc, nunca falham e nem aceitam backtracking definidas para elas. Em caso de falha do predicado que as contém, estas são silenciosas, apresentando um simples no ou false!
- Felizmente os erros e problemas de sintaxe são prontamente acusados
- Em https://github.com/claudiosa/CCS/tree/master/ picat/input_output_exemplos tem vários exemplos avançados de entradas e saídas

- Esta seção avança na sintaxe do Picat e precisa ser praticada
- Como este conteúdo se assemelha as LPs clássicas, como exercício, voce está apto a fazer alguns algoritmos de outras linguagens.
- Se antes o Prolog era complicado para entradas e saídas, com Picat, tudo ficou semelhante as demais linguagens imperativas
- Cuidado: as funções de entradas e saídas, e outras do sistema como time, etc, nunca falham e nem aceitam backtracking definidas para elas. Em caso de falha do predicado que as contém, estas são silenciosas, apresentando um simples no ou false!
- Felizmente os erros e problemas de sintaxe são prontamente acusados
- Em https://github.com/claudiosa/CCS/tree/master/ picat/input_output_exemplos tem vários exemplos avançados de entradas e saídas
- Mãos à obra!

