

ЭТИКЕТКА <u>СЛКН.431116.003 ЭТ</u>

Микросхема интегральная 564 ГГ1В

Функциональное назначение – Генератор с фазовой автоподстройкой частоты

Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Обозначение вывода	Назначение вывода	№ вывода	Обозначение вывода	Назначение вывода
1	QF	Выход "фазовый импульс"	9	IG	Вход генератора
2	Q0	Выход фазового компаратора	10	QDM	Выход демодулятора
3	IC	Вход компараторный	11	R1	Вывод для подключения резистора R1
4	QG	Выход генератора	12	R2	Вывод для подключения резистора R2
5	INH	Вход запрета генератора	13	Q1	Выход фазового компаратора
6	C1.1	Вывод для подключения конденсатора C1	14	IS	Вход сигнальный
7	C1.2	Вывод для подключения конденсатора C2	15	Uz	Вывод для подключения внутреннего стабилитрона
8	OV	Общий	16	U_{CC}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25 \pm 10)^{\circ}$ C) Таблица 1

Цантионородию поромотро, отнично намородия, роздим намородия	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
$ \begin{array}{l} 1. \ Bыходное \ напряжение \ низкого \ уровня, \ B, \ при: \\ U_{CC} = 5 \ B, \ U_{IL} = 0 \ B, \ U_{IH} = 5 \ B \\ U_{CC} = 10 \ B, \ U_{IL} = 0 \ B, \ U_{IH} = 10 \ B \\ U_{CC} = 15 \ B, \ U_{IL} = 0 \ B, \ U_{IH} = 15 \ B \end{array} $	$ m U_{OL}$		0,01 0,01 0,01
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 5 \; B$ $U_{CC} = 10 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 10 \; B$ $U_{CC} = 15 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 15 \; B$	U _{ОН}	4,99 9,99 14,99	
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC} = 5 \text{ B, U}_{IL} = 1,5 \text{ B, U}_{IH} = 3,5 \text{ B}$ $U_{CC} = 10 \text{ B, U}_{IL} = 3,0 \text{ B, U}_{IH} = 7,0 \text{ B}$ $U_{CC} = 15 \text{ B, U}_{IL} = 4,0 \text{ B, U}_{IH} = 11,0 \text{ B}$	U _{OL max}		0,5 1,0 1,5
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC} = 5 \text{ B, U}_{IL} = 1,5 \text{ B, U}_{IH} = 3,5 \text{ B}$ $U_{CC} = 10 \text{ B, U}_{IL} = 3,0 \text{ B, U}_{IH} = 7,0 \text{ B}$ $U_{CC} = 15 \text{ B, U}_{IL} = 4,0 \text{ B, U}_{IH} = 11,0 \text{ B}$	$ m U_{OHmin}$	4,5 9,0 13,5	- - -

Продолжение таблицы 1			Ι ,
5. Ток потребления, мкА, при:	2	3	4
U_{IL} = 0 B, U_{IH} = U_{CC} , при этом по выводу 14: U_I = 0 В или U_{CC} по выводу 5: U_I = U_{CC} , вывод 15 не подключен U_{CC} = 5 В U_{CC} = 10 В U_{CC} = 15 В	I_{CC1}	- - -	20 40 80
6. Ток потребления, мкА, при: $U_{IL}\!=\!0\ B,U_{IH}\!=\!U_{CC},\text{при этом по выводу 5:}\ U_{I}\!=\!U_{CC}$ выводы 14 и 15 не подключены $U_{CC}\!=\!5\ B$ $U_{CC}\!=\!10\ B$ $U_{CC}\!=\!15\ B$	I _{CC2}	- - -	100 500 1500
7. Входной ток низкого уровня, мкА, при: $U_{CC} = 15 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 15,0 \; B$	I_{IL}	-	/-0,1/
8. Входной ток высокого уровня, мкА, при: $U_{\rm CC} = 15~{\rm B}, U_{\rm IL} = 0~{\rm B}, U_{\rm H} = 15,0~{\rm B}$	I_{IH}	-	0,1
9. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 \text{ B, } U_{IL} = 0 \text{ B, } U_{IH} = 5 \text{ B, } U_{O} = 0,4 \text{ B} \\ U_{CC} = 10 \text{ B, } U_{IL} = 0 \text{ B, } U_{IH} = 10 \text{ B, } U_{O} = 0,5 \text{ B} \\ U_{CC} = 15 \text{ B, } U_{IL} = 0 \text{ B, } U_{IH} = 15 \text{ B, } U_{O} = 1,5 \text{ B} \\ \end{cases}$	I_{OL}	0,51 1,3 3,4	- - -
10. Выходной ток высокого уровня, мА, при: U _{CC} = 5 B, U _{IL} = 0 B, U _{IH} = 5 B, U _O = 4,6 B U _{CC} = 5 B, U _{IL} = 0 B, U _{IH} = 5 B, U _O = 2,5 B U _{CC} = 10 B, U _{IL} = 0 B, U _{IH} = 10 B, U _O = 9,5 B U _{CC} = 15 B, U _{IL} = 0 B, U _{IH} = 15 B, U _O = 13,5 B	${ m I}_{ m OH}$	/-0,51/ /-1,6/ /-1,3/ /-3,4/	- - -
11. Выходной ток низкого уровня в состоянии "выключено", мкА, при: $U_{CC}=15~B,~U_{IL}=0~B,~U_{IH}=15~B,~U_O=0~B$	I _{OZL}	-	/-0,4/
12. Выходной ток высокого уровня в состоянии "выключено", мкА, при: U_{CC} = 15 B, U_{IL} = 0 B, U_{IH} = 15 B, U_{O} = 15 B	I_{OZH}	-	0,4
13. Разность напряжений на входе генератора и выходе демодулятора, B, при: U_{CC} = 5 B, 10 B, 15B; I_L = 25 мкA	Δ ^U	минус 2,5	-
14. Чувствительность компараторов по сигнальному входу, мВ, при: $f_{\rm IS}{=}100~{\rm к}\Gamma {\rm u}$ $U_{\rm CC}{=}5~{\rm B}$ $U_{\rm CC}{=}10~{\rm B}$ $U_{\rm CC}{=}15~{\rm B}$	$S_{(IS)}$	- - -	360 660 1800
15. Входное сопротивление (по сигнальному входу), мОм, при: $U_{CC} = 5 \; B \\ U_{CC} = 10 \; B \\ U_{CC} = 15 \; B$	R _I	1,0 0,2 0,1	- - -
$16.$ Максимальная частота генерации, м Γ ц, при: $R_1 = 10 \ \kappa O_M, \ R_2 = \ \infty, \ \ U_{IG} = U_{CC}, \ C_L = 50 \ \pi \Phi$ $U_{CC} = 5 \ B$ $U_{CC} = 10 \ B$ $U_{CC} = 15 \ B$	$ m f_{gmax l}$	0,30 0,60 0,80	- - -
17. Максимальная частота генерации, м Γ ц, при: $R_1 = 5 \text{ кOm}, R_2 = \infty, U_{IG} = U_{CC}, C_L = 50 \text{ п}\Phi$ $U_{CC} = 5 \text{ B}$ $U_{CC} = 10 \text{ B}$ $U_{CC} = 15 \text{ B}$	$ m f_{gmax2}$	0,5 1,0 1,4	- - -
18. Время перехода при включении и выключении, нс, при: $U_{CC} = 5 \; B, \; C_L = 50 \; \pi \Phi$ $U_{CC} = 10 \; B, \; C_L = 50 \; \pi \Phi$ $U_{CC} = 15 \; B, \; C_L = 50 \; \pi \Phi$	t _{THL} , t _{TLH}	- - -	200 100 80
19. Время задержки распространения при переходе из состояния высокого уровня в состояние «выключено», нс, при: $R_L=1~\text{кOM},~C_L=50~\text{п}\Phi$ $U_{CC}=5~\text{B}$ $U_{CC}=10~\text{B}$ $U_{CC}=15~\text{B}$	t _{PHZ}	-	450 200 190
20. Время задержки распространения при переходе из состояния низкого уровня в состояние «выключено», нс, при: $R_L = 1 \text{ кOM, } C_L = 50 \text{ пФ} \\ U_{CC} = 5 \text{ B} \\ U_{CC} = 10 \text{ B} \\ U_{CC} = 15 \text{ B}$	$t_{\rm PLZ}$	- - -	570 260 190

Продолжение таблицы 1			
1	2	3	4
21. Время задержки распространения при включении, нс, при: $U_{CC} = 5 \; B, C_L = 50 \; \text{п} \Phi$ $U_{CC} = 10 \; B, C_L = 50 \; \text{п} \Phi$ $U_{CC} = 15 \; B, C_L = 50 \; \text{п} \Phi$	$t_{ m PHL}$	- - -	450 200 130
22. Время задержки распространения при выключении, нс, при: $U_{CC} = 5 \; B, C_L = 50 \; \pi \Phi$ $U_{CC} = 10 \; B, C_L = 50 \; \pi \Phi$ $U_{CC} = 15 \; B, C_L = 50 \; \pi \Phi$	$t_{ m PLH}$	- - -	700 300 200
23. Входная емкость, $\pi \Phi$, $\pi \mu$: $U_{CC} = 5$ B, $U_{I} = 0$ B для выводов 3 и 5 для вывода 14	C _I	- -	7,5 15,0
24. Динамический ток потребления, мкА, при: $R_1 = 1 \text{ мОм}, \ R_2 = \infty, \ f_g = 10 \text{ к}\Gamma ц, \ U_{IG} = 0,5 U_{CC}, \\ U_{CC} = 5 \text{ B} \\ U_{CC} = 10 \text{ B} \\ U_{CC} = 15 \text{ B}$	I _{OCC}	- - -	28 160 400

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г, серебро г, в том числе:

золото г/мм
на 16 выводах, длиной мм серебро г/мм
на 16 выводах, длиной мм.
Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ С не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC}=5B\pm10\%$ - не менее $120000\,$ ч.

 Γ амма — процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.

3 ГАРАНТИИ ПРЕДПРИЯТИЯ – ИЗГОТОВИТЕЛЯ

3.1 Гарантии предприятия – изготовителя – по ОСТ В 11 0398 – 2000:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ГГ1В соответствуют техническим условиям	бК0.347.064 – 33 ТУ/ 02 и признаны годными для эксплуатации
Приняты по от от (дата)	
Место для штампа ОТК	Место для штампа ВП
Место для штампа «Перепроверка произведена	
Приняты по от (извещение, акт и др.) (дата)	
Место для штампа ОТК	Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.