Antony MADALENO, Étudiant M2-IIA

- Rappels imagerie multispectrale
- Caractérisation de Filtres et LED
- Reconstruction RGB Naïve
- Estimation de Spectre
- Reconstruction Spectre vers RGB
- Les espaces RGB

- Rappels imagerie multispectral
- Caractérisation de Filtres et LED
- Reconstruction RGB Naïve
- Estimation de Spectre
- Reconstruction Spectre vers RGB
- Les espaces RGB

Filtre

Camera Multispectrale	
	Caméra à capteur mosaïqué

	Capteur mosaïqué	Filtre	LED
Temps acquisition	Instantané	Lent	Très lent
Resolution Spatiale	Limité	Fine	Fine
Resolution Spectrale	Limité	Fine	Fine

Bande 1 et Caractérisation Filtre Bande 1

Bande 2 et Caractérisation Filtre Bande 2

Bande 3 et Caractérisation Filtre Bande 3

Bande 4 et Caractérisation Filtre Bande 4

Bande 5 et Caractérisation Filtre Bande 5

Bande 6 et Caractérisation Filtre Bande 6

^{*} Les images afficher sont normalisé pour une meilleur visualisation

- Rappels imagerie multispectrale
- Caractérisation de Filtres et LED
- Reconstruction RGB Naïve
- Estimation de Spectre
- Reconstruction Spectre vers RGB
- Les espaces RGB

Caractérisation de Filtre / LED et Reconstruction d'images D65 Panneau de LED Spectrophotomètre Filtre Patch Blanc Caractérisation de filtre à l'aide d'un spectrophotomètre 8

d'un spectrophotomètre

Mettre photo du montage mis en place pour faire l'acquisition des caractéristique spectrale des LED

- Rappels imagerie multispectrale
- Caractérisation de Filtres et LED
- Reconstruction RGB Naïve
- Estimation de Spectre
- Reconstruction Spectre vers RGB
- Les espaces RGB

Mettre photo du montage pour l'acquisition de images avec filtres

ImViA

Montage pour capture à caméra monochromatique et LED contrôlables

- Rappels imagerie multispectrale
- Caractérisation de Filtres et LED
- Reconstruction RGB Naïve
- Estimation de Spectre
- Reconstruction Spectre vers RGB
- Les espaces RGB

Application d'estimation spectrale

Nous cherchons à approcher le spectre cible à partir d'une somme de spectre mesurer

$$S_{cible} = \sum_{i=0}^{n} K_i \times S_i$$

• S_{cible} : spectre cible

S_i: i^{ème} spectre de capture

• N : le nombre de spectre de capture

K_i: i^{ème} coefficient, ces termes sont à calculer

Spectres de capture

N vecteurs comportant les intensité es échantillonnées de nos LED sur un intervalle de longueurs d'ondes

Spectre Cible

1 vecteurs d'intensité échantillonné sur un intervalle de longueurs d'ondes

$$S_{cible} = \sum_{i=0}^{n} K_i \times S_i$$

$$\begin{pmatrix} L_0 & L_1 & L_{..} & L_n \end{pmatrix} = \begin{pmatrix} K_0 \\ K_1 \\ ... \\ K_n \end{pmatrix} \times \begin{pmatrix} I_{00} & I_{10} & I_{.0} & I_{m0} \\ I_{01} & I_{11} & I_{.1} & I_{m1} \\ I_{0.} & I_{1.} & I_{..} & I_{m.} \\ I_{0n} & I_{1n} & I_{.n} & I_{mn} \end{pmatrix}$$

$$\begin{pmatrix} K_0 \\ K_1 \\ \dots \\ K_n \end{pmatrix} = \begin{pmatrix} L_0 & L_1 & L_{\dots} & L_n \end{pmatrix} \times \begin{pmatrix} I_{00} & I_{10} & I_{.0} & I_{m0} \\ I_{01} & I_{11} & I_{.1} & I_{m1} \\ I_{0.} & I_{1.} & I_{\dots} & I_{m.} \\ I_{0n} & I_{1n} & I_{.n} & I_{mn} \end{pmatrix}^{-1}$$

Spectres de capture

Spectre Cible

Résultat de l'estimation

^{*} Dans nôtre cas nous utilisons une méthode de résolution au moindre carré non nuls (non nulle least square)

- Rappels imagerie multispectrale
- Caractérisation de Filtres et LED
- Reconstruction RGB Naïve
- Estimation de Spectre
- Reconstruction Spectre vers RGB
- Les espaces RGB

$$X = \int_{\lambda} x(\lambda) \times P(\lambda) d\lambda$$

Ρ(λ)

$$Y = \int_{\Omega} y(\lambda) \times P(\lambda) d\lambda$$

$$Z = \int_{\Omega} z(\lambda) \times P(\lambda) d\lambda$$

$$(R \ G \ B) = (X \ Y \ X) \times \begin{pmatrix} 2.041 & -0.564 & -0.344 \\ -0.969 & 1.876 & 0.041 \\ 0.013 & -0.118 & 1.015 \end{pmatrix}$$

Matrice de convertion XYZ vers Adobe RGB

Spectre vers XYZ

XYZ vers RGB

- Rappels imagerie multispectrale
- Caractérisation de Filtres et LED
- Reconstruction RGB Naïve
- Estimation de Spectre
- Reconstruction Spectre vers RGB
- Les espaces RGB

Adobe RGB

Primaire Rouge = (0.640, 0.330)Primaire Verte = (0.215, 0.710)Primaire Bleu = (0.150, 0.060)

sRGB

Primaire Rouge = (0.640, 0.330)Primaire Verte = (0.300, 0.600)Primaire Bleu = (0.150, 0.060)

Gamut sRGB et Adobe RGB

$$X_r = x_r / y_r \qquad X_g = x_g / y_g \qquad X_b = x_b / y_b$$

$$Y_r = 1$$
 $Y_g = 1$ $Y_b = 1$

$$Z_r = \frac{(1 - x_r - y_r)}{y_r}$$
 $Z_g = \frac{(1 - x_g - y_g)}{y_g}$ $Z_b = \frac{(1 - x_b - y_b)}{y_b}$

$$\begin{pmatrix} S_r \\ S_g \\ S_b \end{pmatrix} = \begin{pmatrix} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{pmatrix} \times \begin{pmatrix} X_w \\ Y_w \\ Z_w \end{pmatrix}$$

Où X_w, Y_w, Z_w correspondent au blanc de référence de l'espace liés à l'illuminant de celui-ci

Gamut sRGB et Adobe RGB

Passage de RGB vers coordonnée de chromaticité

RGB: [120, 255, 50]

$$M_{sRGB} = \begin{pmatrix} 0.412 & 0.358 & 0.180 \\ 0.213 & 0.715 & 0.072 \\ 0.019 & 0.119 & 0.950 \end{pmatrix}$$

$$0.34 = \frac{149.73}{149.73 + 211.48 + 80.12}$$

$$0.50 = \frac{211.48}{149.73 + 211.48 + 80.12}$$

$$M_{adobe} = \begin{pmatrix} 0.577 & 0.186 & 0.188 \\ 0.297 & 0.627 & 0.075 \\ 0.027 & 0.070 & 0.991 \end{pmatrix}$$

$$0.32 = \frac{126.07}{126.07 + 199.27 + 70.64}$$

$$0.48 = \frac{199.27}{126.07 + 199.27 + 70.64}$$

Gamut sRGB et Adobe RGB

La correction gamma est effectuée lors du passage de l'espace colorimétrique XYZ à l'espace RGB pour compenser les différences de réponse non linéaires entre les écrans d'ordinateur et la vision humaine.

γ = 1.0

y = 5.0

Table rappel des coordonnées des primaires de différents espaces RGB (Bruce Lindbloom)

Name	Gamma	Reference White	Red Primary		Green Primary			Blue Primary			Volume	Lab Gamut	Coding	
			x	у	Υ	х	у	Y	х	у	Y	(ΔE ³)	Efficiency %	Efficiency %
Lab Gamut	-	D50	-	-	-	-	-	-	-	-	-	2,381,085	97.0	35.1
Adobe RGB (1998)	2.2	D65	0.6400	0.3300	0.297361	0.2100	0.7100	0.627355	0.1500	0.0600	0.075285	1,208,631	50.6	100.0
Apple RGB	1.8	D65	0.6250	0.3400	0.244634	0.2800	0.5950	0.672034	0.1550	0.0700	0.083332	798,403	33.5	100.0
Best RGB	2.2	D50	0.7347	0.2653	0.228457	0.2150	0.7750	0.737352	0.1300	0.0350	0.034191	2,050,725	77.6	96.5
Beta RGB	2.2	D50	0.6888	0.3112	0.303273	0.1986	0.7551	0.663786	0.1265	0.0352	0.032941	1,717,450	69.3	99.0
Bruce RGB	2.2	D65	0.6400	0.3300	0.240995	0.2800	0.6500	0.683554	0.1500	0.0600	0.075452	988,939	41.5	100.0
CIE RGB	2.2	Е	0.7350	0.2650	0.176204	0.2740	0.7170	0.812985	0.1670	0.0090	0.010811	1,725,261	64.3	96.1
ColorMatch RGB	1.8	D50	0.6300	0.3400	0.274884	0.2950	0.6050	0.658132	0.1500	0.0750	0.066985	836,975	35.2	100.0
Don RGB 4	2.2	D50	0.6960	0.3000	0.278350	0.2150	0.7650	0.687970	0.1300	0.0350	0.033680	1,802,358	72.1	98.8
ECI RGB v2	L*	D50	0.6700	0.3300	0.320250	0.2100	0.7100	0.602071	0.1400	0.0800	0.077679	1,331,362	55.3	99.7
Ekta Space PS5	2.2	D50	0.6950	0.3050	0.260629	0.2600	0.7000	0.734946	0.1100	0.0050	0.004425	1,623,899	65.7	99.5
NTSC RGB	2.2	С	0.6700	0.3300	0.298839	0.2100	0.7100	0.586811	0.1400	0.0800	0.114350	1,300,252	54.2	99.9
PAL/SECAM RGB	2.2	D65	0.6400	0.3300	0.222021	0.2900	0.6000	0.706645	0.1500	0.0600	0.071334	849,831	35.7	100.0
ProPhoto RGB	1.8	D50	0.7347	0.2653	0.288040	0.1596	0.8404	0.711874	0.0366	0.0001	0.000086	2,879,568	91.2	87.3
SMPTE-C RGB	2.2	D65	0.6300	0.3400	0.212395	0.3100	0.5950	0.701049	0.1550	0.0700	0.086556	758,857	31.9	100.0
sRGB	≈2.2	D65	0.6400	0.3300	0.212656	0.3000	0.6000	0.715158	0.1500	0.0600	0.072186	832,870	35.0	100.0
Wide Gamut RGB	2.2	D50	0.7350	0.2650	0.258187	0.1150	0.8260	0.724938	0.1570	0.0180	0.016875	2,164,221	77.6	91.9

