NI 6132/6133 Specifications

This document lists the I/O terminal summary and specifications for the NI 6132/6133.

For the most current edition of this document, refer to ni.com/manuals. Refer to the DAQ Getting Started Guide for more information about accessing documents on the NI-DAQ CD.

Note With NI-DAQmx, National Instruments has revised its terminal names so they are easier to understand and more consistent among NI hardware and software products. The revised terminal names used in this document are usually similar to the names they replace. For a complete list of Traditional NI-DAQ terminal names and their NI-DAQmx equivalents, refer to the *Terminal Name Equivalents* table in the *S Series Help*.

Table 1. I/O Terminal Summary

Terminal Name	Terminal Type and Direction	Impedance Input/ Output	Protection (Volts) On/Off	Source (mA at V)	Sink (mA at V)	Rise Time (ns)	Bias
AI <07>	AI	100 MΩ in parallel with 10 pF	35/25	_	_	_	±16 nA ±35 nA
AI GND	_	_	_	_	_	_	_
D GND	_	_		_	_		_
+5 V	_	0.1 Ω 0.45 Ω	Short-circuit to ground	1 A			_
P0.<07>	DIO	_	$V_{CC} + 0.5$	13 at (V _{CC} – 0.4)	24 at 0.4	1.1	50 kΩ pu
EXTSTROBE*	DO	_	_	3.5 at (V _{CC} – 0.4)	5 at 0.4	1.5	50 kΩ pu
PFI 0/ AI START TRIG	DIO	_	$V_{CC} + 0.5$	3.5 at (V _{CC} – 0.4)	5 at 0.4	1.5	50 kΩ pu
PFI 1/ AI REF TRIG	DIO	_	$V_{CC} + 0.5$	3.5 at (V _{CC} – 0.4)	5 at 0.4	1.5	50 kΩ pu
PFI 2	DIO	_	$V_{CC} + 0.5$	3.5 at (V _{CC} – 0.4)	5 at 0.4	1.5	50 kΩ pu
PFI 3/ CTR 1 SOURCE	DIO	_	$V_{CC} + 0.5$	3.5 at (V _{CC} – 0.4)	5 at 0.4	1.5	50 kΩ pu
PFI 4/ CTR 1 GATE	DIO	_	$V_{CC} + 0.5$	3.5 at (V _{CC} – 0.4)	5 at 0.4	1.5	50 kΩ pu
CTR 1 OUT	DO	_	_	3.5 at (V _{CC} – 0.4)	5 at 0.4	1.5	50 kΩ pu
PFI 5	DIO	_	$V_{CC} + 0.5$	3.5 at (V _{CC} – 0.4)	5 at 0.4	1.5	50 kΩ pu

 Table 1. I/O Terminal Summary (Continued)

Terminal Name	Terminal Type and Direction	Impedance Input/ Output	Protection (Volts) On/Off	Source (mA at V)	Sink (mA at V)	Rise Time (ns)	Bias
PFI 6	DIO	_	$V_{CC} + 0.5$	3.5 at (V _{CC} – 0.4)	5 at 0.4	1.5	50 kΩ pu
PFI 7/ AI SAMP CLK	DIO		$V_{CC} + 0.5$	3.5 at (V _{CC} – 0.4)	5 at 0.4	1.5	50 kΩ pu
PFI 8/ CTR 0 SOURCE	DIO	_	$V_{CC} + 0.5$	3.5 at (V _{CC} – 0.4)	5 at 0.4	1.5	50 kΩ pu
PFI 9/ CTR 0 GATE	DIO	_	$V_{CC} + 0.5$	3.5 at (V _{CC} – 0.4)	5 at 0.4	1.5	50 kΩ pu
CTR 0 OUT	DO	_	_	3.5 at (V _{CC} – 0.4)	5 at 0.4	1.5	50 kΩ pu
FREQ OUT	DO	_	_	3.5 at (V _{CC} – 0.4)	5 at 0.4	1.5	50 kΩ pu
AI = Analog Input Note : The tolerance		Digital Input/Out pull-up resistors	•	gital Output lue might range	pu = pull-u between 17 k	•	Ω.

Specifications

The following specifications are typical at 25 $^{\circ}\text{C}$ unless otherwise noted.

Analog Input		Max working voltage for all analog	g input channels
Input Characteristics Number of channels NI 6132 NI 6133		Positive input (AI +) Negative input (AI –)	Measurement Category I
Type of ADC Resolution		Categories II, III, and IV Overvoltage protection	
Sampling rate Maximum Minimum	2.5 MS/s per channel	(AI +, AI -) Input current during overvoltage conditions	
Input impedance AI – to AI GND		Input FIFO size NI 6132 NI 6133	
AI + to AI GND	100 M Ω in parallel with 10 pF	Data transfers	DMA, interrupts, programmed I/O
Input bias current	±2 pA typ, ±25 pA max	DMA mode	Scatter-gather
Input offset current	±1 pA typ, ±10 pA max	DC Transfer Characteristics	
Input coupling	DC	INL	±0.6 LSB typ, ±1 LSB max
		DNL	±0.25 typ, ±0.75 max, no missing codes

Absolute Accuracy

Reading) (ppm/°C) 151 25	Reference 3) Tempco 5	(ppm of Range)	rempco (ppm of Range/°C)	(ppm of Range)	Noise, σ (μVrms)	Accuracy at Full Scale ¹ (μV) 4660	Sensitivity ² (μV) 432.0
25	5	40	43	122	546	2440	218.4
25	5	47	61	122	305	1370	122.0
25	5	45	78	122	172	740	8.89

AbsoluteAccuracy = Reading · (GainError) + Range · (OffsetError) + NoiseUncertainty

Gain Error = Residual Al Gain Error + Gain Tempco · (TempChange From Last Internal Cal) + Reference Tempco · (TempChange From Last External Cal) $OffsetError = Residual AIOffsetError + OffsetTempco \cdot (TempChangeFromLastInternalCal) + INL_Error + OffsetError + OffsetTempco \cdot (TempChangeFromLastInternalCal) + INL_Error + OffsetTempco \cdot (TempChangeFromLastInternalCal) + INC_Error + OffsetTempco \cdot (TempChangeFromLastInter$

NoiseUncertainty = RandomNoise · 3

For a coverage factor of 3 \sigma and averaging 100 points.

Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

TempChangeFromLastExternalCal = 10 °C TempChangeFromLastInternalCal = 1 °C

number_of_readings = 100

CoverageFactor = 3σ

For example, on the 10 V range, the absolute accuracy at full scale is as follows:

 $GainError = 151 \text{ ppm} + 25 \text{ ppm} \cdot 1 + 5 \text{ ppm} \cdot 10$ OffsetError = 47 ppm + 39 ppm \cdot 1 + 122 ppm

OffsetError = 208 ppmGainError = 226 ppm

NoiseUncertainty = $320 \mu V$ NoiseUncertainty = $\frac{1,080 \mu V \cdot 3}{1}$ Absolute Accuracy = $4,660 \,\mu\text{V}$ AbsoluteAccuracy = $10 \text{ V} \cdot (\text{GainError}) + 10 \text{ V} \cdot (\text{OffsetError}) + \text{NoiseUncertainty}$

² Sensitivity is the smallest voltage change that can be detected. It is a function of noise.

Dynamic Characteristics

Phase mismatch±2° at 1 MHz

Table 2. NI 6132/6133 Analog Input Dynamic Characteristics

Input Range	Bandwidth ¹ (MHz)	SFDR Typ ² (dB)	CMRR ³ (dB)	System Noise ⁴ (LSB _{rms})	Crosstalk ⁵ (dB)	THD (dB at 10 kHz)
±10 V	1.3	95	70	0.78	-74	-101.1
±5 V	1.3	95	70	0.79	-74	-102.5
±2.5 V	1.25	96	70	0.86	-74	-102.2
±1.25 V	1.25	94	70	0.95	-74	-102.1

 $^{^{1}\,\}text{--}3\text{ dB}$ frequency for input amplitude at 10% of the input range (–20 dB)

² Measured at 100 kHz with twelfth-order bandpass filter after signal source

 $^{^3}$ DC to 60 Hz

 $^{^4}$ LSB $_{rms}$, including quantization

⁵ DC to 100 kHz

Typical Performance Graphs

Stability				Min source pulse duration
Recommended warm-up time	.15 min			Min gate pulse duration
Calibration Level	5.000 V (±2	5 mV)		Data transfers
	(actual value EEPROM)	stored in		DMA modes
Temperature coefficient	.±5.0 ppm/°C	max		Triggers
Long-term stability	$.\pm 15 \text{ ppm/}\sqrt{1}$,000 h		Analog Trigger
Digital I/O				Source
Number of channels	.8 input/outpu	ıt		Level
Compatibility	.TTL/CMOS			Slope
Table 3. Digital Lo	gic Levels			Resolution
Level	Min	Max	_	Hysteresis
Input low voltage	0.0 V	0.8 V		Bandwidth (–3 dB)
Input high voltage	2.0 V	5.0 V		, , ,
Input low current ($V_{in} = 0 \text{ V}$)	2.0 V			Digital Trigger Compatibility
		-320 μΑ		Response
Input high current $(V_{in} = 5 V)$		10 μΑ		•
Output low voltage ($I_{OL} = 24 \text{ mA}$		0.4 V		Pulse width
Output high voltage ($I_{OH} = 13 \text{ m/s}$	4.35 V	_		RTSI Trigger Lines (PCI
Power-on state	Input (high-i	mnedance)		Trigger lines <06>
Data transfers		•		RTSI clock
Data (IdiisiCis	programmed	-		PXI Trigger Bus (PXI On
Input buffer	.2,044 bytes			Trigger lines <06>
Output buffer	.2,044 bytes			Star trigger
Transfer rate (1 word = 8 bits)	.10 Mwords/s			Bus Interface
Timing I/O				Type
Number of channels	.2 up/down			Power Requirement
	counter/times	,		+5 VDC (±5%)
	1 frequency s	scaler		NI 6132 NI 6133
Resolution Counter/timers	24 bits			
Frequency scaler				+3.3 V NI 6132
Compatibility				NI 6133
Base clocks available				-12 VDC
Counter/timers	.20 MHz, 100) kHz		NI 6132
Frequency scaler				NI 6133

Base clock accuracy±0.01%

Max source frequency20 MHz

Power available at I/O connector.... +4.65 to +5.25 VDC

at 1 A

Physical

Dimensions (not including connectors)

NI PCI-6132/6133	31.2 cm \times 10.6 cm
	$(12.3 \text{ in.} \times 4.2 \text{ in.})$
NI PXI-6132/6133	16.0 cm × 10.0 cm
	$(6.3 \text{ in.} \times 3.9 \text{ in.})$

Environmental

Operating temperature 0 to 50 $^{\circ}\text{C}$
Storage temperature –20 to 70 $^{\circ}\text{C}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Maximum altitude2,000 m
Pollution Degree2
Indoor use only.

Safety

The NI 6132/6133 devices are designed to meet the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CAN/CSA-C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label, or visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Electromagnetic Compatibility

The NI 6132/6133 devices are designed to meet the requirements of the following standards of EMC for electrical equipment for measurement, control, and laboratory use:

- EN 61326 EMC requirements; Minimum Immunity
- EN 55011 Emissions; Group 1, Class A
- CE, C-Tick, ICES, and FCC Part 15 Emissions; Class A

Note For EMC compliance, operate this device according to product documentation.

CE Compliance

This product meets the essential requirements of applicable European Directives, as amended for CE marking, as follows:

- 73/23/EEC; Low-Voltage Directive (safety)
- 89/336/EEC; Electromagnetic Compatibility Directive (EMC)

Note Refer to the Declaration of Conformity (DoC) for this product for any additional regulatory compliance information. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of their life cycle, all products *must* be sent to a WEEE recycling center. For more information about WEEE recycling centers and National Instruments WEEE initiatives, visit ni.com/environment/weee.htm.

AI 0 —	34 68	AI 0 +
Al 1 +	33 67	AI 0 GND
AI 1 GND	32 66	Al 1 –
AI 2 –	31 65	Al 2 +
AI 3 +	30 64	AI 2 GND
AI 3 GND	29 63	AI 3 –
Al 4 + ¹	28 62	NC
AI 4 GND ¹	27 61	AI 4 – ¹
AI 5 – ¹	26 60	Al 5 + ¹
AI 6 + ¹	25 59	AI 5 GND ¹
AI 6 GND ¹	24 58	AI 6 – ¹
AI 7 – 1	23 57	Al 7 + ¹
NC	22 56	AI 7 GND ¹
NC	21 55	NC
NC	20 54	NC
P0.4	19 53	D GND
D GND	18 52	P0.0
P0.1	17 51	P0.5
P0.6	16 50	D GND
D GND	15 49	P0.2
+5 V	14 48	P0.7
D GND	13 47	P0.3
D GND	12 46	AI HOLD COMP
PFI 0/AI START TRIG	11 45	EXT STROBE*
PFI 1/AI REF TRIG	10 44	D GND
D GND	9 43	PFI 2/AI CONV CLK
+5 V	8 42	PFI 3/CTR 1 SOURCE
D GND	7 41	PFI 4/CTR 1 GATE
PFI 5	6 40	CTR 1 OUT
PFI 6	5 39	D GND
D GND	4 38	PFI 7/AI SAMP CLK
PFI 9/CTR 0 GATE	3 37	PFI 8/CTR 0 SOURCE
CTR 0 OUT	2 36	D GND
FREQ OUT	1 35	D GND
NC	C = No Conn	ect
11	NC on NI 61	32
	1 NI 6132/6	

Figure 1. NI 6132/6133 Pinout

National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section on $\mathtt{ni.com/legal}$ for more information about National Instruments trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products, refer to the appropriate location: Help*Patents in your software, the patents.txt file on your CD, or ni.com/patents.