UE 6
INITIATION À LA CONNAISSANCE DU
MÉDICAMENT

Conception du Médicament: Identification d'une molécule à visée thérapeutique

Pr JM Senard

Identification d'une molécule à visée thérapeutique

- Processus long, coûteux et encadré sur le plan juridique, administratif et éthique.
- · Trois étapes principales:
 - -1/ Identification d'une cible pertinente
 - 2/ identification de molécules actives sur la cible
 - 3/ sélection des molécules compatibles avec une développement ultérieur chez homme

Identification d'une molécule à visée thérapeutique

1/ Identification d'une cible pertinente

· Une double logique:

- Scientifique

- Economique

Identification d'une molécule à visée thérapeutique

1/ Identification d'une cible pertinente

· Logique scientifique

- a/ La cible est modifiée au cours d'un processus pathologique:
 - Modification de l'activité ou de l'expression des éléments d'une voie de signalisation ou d'une voie métabolique

VEGF: vascular endothelial growth factor

Identification d'une molécule à visée thérapeutique

1/ Identification d'une cible pertinente

· Logique scientifique

- a/ La cible est modifiée au cours d'un processus pathologique:
 - Études « sans a priori »
 - Études transcriptomiques
 - » Identification d'ARN spécifiquement induits ou réprimés
 - Études protéomiques
 - » Identification de protéines
 - · Marqueurs de maladies
 - · Responsables de la maladie...

Identification d'une molécule à visée thérapeutique

1/ Identification d'une cible pertinente

- · Logique scientifique
 - b/ La modification expérimentale de la cible reproduit (ou prévient) la maladie dans des modèles pertinents:
 - Invalidation de la cible:
 - Animaux Knock out (KO):
 - » Ex: KO du récepteur V2 de l'ADH prévient l'hypertension artérielle au cours de la polykystose rénale
 - Développement d'antagonistes V2 de l'ADH: les « vaptans »
 - » Ex: KO du récepteur AT1 de l'angiotensine II et pression sanguine artérielle
 - Développement d'antagonistes AT1: les « sartans »
 - ARN silencer (siRNA): empêche la traduction d'un ARN spécifique
 - · Surexpression de la cible: moins utilisée

Les modèles ont des limites: compensation génique, effets lignée-dépendants...

Identification d'une molécule à visée thérapeutique

1/ Identification d'une cible pertinente

· Logique économique

- a/ Médico-économique:
 - Existe-t-il un marché potentiel dans la sphère thérapeutique envisagée?
 - Cancers
 - Maladies cardiovasculaires et métaboliques
 - Démences
 - Il y a-t-il un besoin « non couvert »?
 - Des médicaments efficaces sont-ils déjà disponibles?
 - Si oui, leur efficacité est-elle suffisante?

Identification d'une molécule à visée thérapeutique

1/ Identification d'une cible pertinente

· Logique économique

- b/ Logique financière:
 - Quelle est la concurrence et la part de marché potentielle?
 - Quel coût pour le développement ?
 - Moyens techniques à mettre en œuvre
 - Compétences et expertises des acteurs impliqués
 - · Quels bénéfices potentiels?
 - Taille du marché: France, Europe, Monde (USA, Japon,
 UE): > 80% du marché mondial
 - Prix de vente

Identification d'une molécule à visée thérapeutique (Ex: olicéridine)

- · Cible: douleur per et post-opératoire
 - Taille du marché (12 millions d'anesthésies générales par an en France)
 - · Anesthésique général
 - · Analgésique
 - Curare
 - Analgésie, facteur de risque de:
 - Décès par dépression respiratoire per-opératoire et postopératoire
 - · Prolongation du séjour en « salle de réveil »
 - Prolongation du séjour à l'hôpital...
 - De nombreux médicaments disponibles
 - morphine
 - fentanyl
 - sufentanyl
 - · Remifentanyl ...

Identification d'une molécule à visée thérapeutique (Ex: olicéridine)

- · Cible: douleur per et post-opératoire
 - Besoins non couverts:
 - Analgésie sans dépression respiratoire (7%)
 - Quelles stratégies pour la douleur per et postopératoires?
 - Diminuer les opiacés
 - Analgésie sans opiacés: quelques médicaments d'efficacité modérée
 - · Analgésie balancée: opiacés + autre antalgique
 - · Analgésie loco-régionale
 - Bénéfices potentiels ?
 - Importants (taille du marché): 840 000 en France
 - · Prix plus élevé que les médicaments disponibles

Identification d'une molécule à visée thérapeutique

- Processus long, coûteux et encadré sur le plan juridique, administratif et éthique.
- · Trois étapes principales:
 - 1/ Identification d'une cible pertinente
 - 2/ identification de molécules actives sur la cible
 - 3/ sélection des molécules compatibles avec une développement ultérieur chez homme

Identification d'une molécule à visée thérapeutique

- · A. Les origines des molécules médicamenteuses
 - Substances d'origine « naturelle »
 - · Origine minérale
 - Métaux (sels d'or, calcium, magnésium, fer, iode, antimoine, lithium),
 - Isotopes radioactifs (radiopharmaceutiques),
 - Argiles (hydroxyle d'aluminium)...
 - · Origine végétale (chimiothèques naturelles)
 - Morphine, acide salicylique,
 - anticancéreux
 - tonicardiaques, ...
 - Origine animale
 - Extraits glandulaires (insuline, enzymes pancréatiques)
 - Toxines (serpents, scorpions, mollusques)

Identification d'une molécule à visée thérapeutique

2/ Découverte de nouvelles molécules

· A. Les origines des molécules médicamenteuses

- Origine synthétique

A partir de substances endogènes (histamine et anti-H2)

- A partir de médicaments déjà connus (adrénaline/isoprénaline et β -bloquants)
 - » « mee-too drugs »: peu de risques mais peu d'innovation
 - » Ex: fentanyl, alfentanyl, sufentanyl, remifentanyl...

· Chimie combinatoire

- Permet de générer, par combinaison au hasard, des millions de molécules originales
- Utilisée pour le criblage à haut débit
- Modélisation: synthèse assistée par ordinateur

Identification d'une molécule à visée thérapeutique

- A. Les origines des molécules médicamenteuses
 - Origine « biotechnologique »
 - · Protéines recombinantes:
 - Hormones: hormone de croissance, insuline...
 - Facteurs de croissance: Erythropoïétine
 - · Chimères:
 - Anticorps monoclonaux: ximab, xumab, zumab, mumab
 - Récepteurs solubles: etanercept
 - Vaccins...

Identification d'une molécule à visée thérapeutique

- B. Les stratégies de découverte
 - a/ l'empirisme et/ou la curiosité:
 - L'ethnopharmacologie: pharmacognosie
 - étudie les médecines traditionnelles et en particulier l'utilisation de substances naturelles à partir desquelles on identifie et purifie le principe actif;
 - » Ex: l'acide salicylique et l'aspirine
 - L'observation des effets secondaires en clinique:
 - Effets latéraux:
 - » Propriétés antimigraineuses des antagonistes bêta-adrénergiques
 - » Propriétés antidépressives de l'iproniazide (antituberculeux)
 - Effets indésirables:
 - » action antihypertensive de la clonidine (mousse à raser)...
 - L'analyse des effets toxiques
 - La nitroglycérine (dynamite): effets toxiques pour les ouvriers des usines d'armement (vasodilatation) transposés au traitement des maladies cardiaques (angine de poitrine, infarctus du myocarde)
 - b/ le hasard et ou la serendipity:
 - · La pénicilline (Sir Fleming)
 - · Les bêta-bloquants...

Identification d'une molécule à visée thérapeutique

2/ Découverte de nouvelles molécules

- B. Les stratégies de découverte
 - c/ A partir de concepts physiopathologiques:
 - Dans l'hypertension artérielle ou l'insuffisance cardiaque il existe une hyperactivité du système rénine-angiotensinealdostérone

 Un excès de cholestérol augmente le risque de maladies cardiovasculaires:

Identification d'une molécule à visée thérapeutique

- B. Les stratégies de découverte
 - d/ A partir de modèles:
 - Cellulaires (trop simples)
 - Avantages: simple, peu couteux, facilement modifiables...
 - Inconvénients: cellules modifiées pour les besoins de la culture, dérive au cours du temps, pas de prise en compte de l'environnement (matrice, autres cellules du tissu...)
 - · Organes isolés (compliqués)
 - Avantages: prise en compte de l'environnement tissulaire
 - Inconvénients: difficiles à obtenir et à maintenir en survie
 - Animaux (pas toujours transposables à l'Homme):
 - Modifiés génétiquement (modèles simplifiés)
 - Souches spéciales (ex: rat SHR)
 - Recevant un traitement imitant la maladie humaine
 - » Ex: perfusion d'angiotensine et HTA...

Identification d'une molécule à visée thérapeutique

- B. Les stratégies de découverte
 - e/ modélisation moléculaire:
 - · Cristallisation de la cible
 - · Mutagenèse dirigée
 - Définition et modélisation de la « poche» de liaison...
 - Approximation du pharmacophore
 - Simulation informatique.

Récepteur D2 et 1 ligand

Identification d'une molécule à visée thérapeutique

- Processus long, coûteux et encadré sur le plan juridique, administratif et éthique.
- · Trois étapes principales:
 - 1/ Identification d'une cible pertinente
 - 2/ identification de molécules actives sur la cible
 - 3/ sélection des molécules compatibles avec une développement ultérieur chez homme

Identification d'une molécule à visée thérapeutique

3/ screening et sélection des nouvelles molécules

Objectif:

 identifier la molécule idéale parmi tous les candidats en vue d'un développement chez l'Homme

Trois étapes:

- Screening	primaire	1000

- Screening secondaire3-4
- Sélection du candidat médicament 1

Identification d'une molécule à visée thérapeutique 3/ screening et sélection des nouvelles molécules

- · Screening primaire: premier filtre
 - Objectifs:
 - trouver les structures chimiques dotées d'activité sur la cible retenue (molécules « touches »)
 - Orienter la synthèse de nouvelles molécules plus actives (molécules « têtes de série »)
 - Eliminer les substances peu actives ou dont l'effet est délétère
 - Les tests
 - Simples, rapides, fiables, reproductibles
 - Peu coûteux et éthiquement acceptables

• Ex: études de liaison de ligand radioactif
Ligand radiomarqué
Molécule touche

Tête de série

Identification d'une molécule à visée thérapeutique

3/ screening et sélection des nouvelles molécules

Screening secondaire:

- Objectifs:
 - Tester les « têtes de séries » actives en utilisant des tests pharmacologiques orientés:

-Les tests

- Effet sur animal normal
- · Effet sur des modèles physiopathologiques
 - Génétiques (souches particulières, animaux transgéniques)
 - Déclenchés expérimentalement...

Identification d'une molécule à visée thérapeutique

3/ screening et sélection des nouvelles molécules

· Sélection du candidat médicament:

- Objectifs:
 - Choisir la molécule qui va entrer en développement:
- Sur quelles bases?
 - Caractéristiques physicochimiques qui conditionnent la voie d'administration
 - · Par similitude à des structures chimiques non toxiques
 - · Par rapport à la sélectivité pour la cible retenue
 - Par rapport à l'activité
 - Intensité
 - Durée...

Identification d'une molécule à visée thérapeutique

· A l'issue de cette phase « risquée »:

- 1/ dépôt de brevet sur le candidat retenu (et aussi souvent sur l'ensemble des têtes de séries)
 - Durée du brevet: 20 ans
 - A l'expiration: la molécule « tombe » dans le domaine public (médicaments génériques)
- 2/ début de l'évaluation « toxicologique » afin de déterminer si la molécule sera utilisable chez l'homme.....