Recap from last time

$$\rho_N(h) = \rho_N(0) e^{-\left(\frac{mgh}{k_B T}\right)}$$

$$P(h) = P(0)e^{-\left(\frac{mgh}{k_BT}\right)}$$

 $\frac{mgh}{k_BT}$ must be dimensionless, and so $\frac{k_BT}{mg}$ must have dimensions of h -> scale height, h_0 (at which $P(h_0) = P(0)e^{-1}$)

Recap from last time

We have already established that the number density (number of fluid molecules per unit volume), $\rho_N(0)$, can be related to atmospheric pressure, $P_{at}(=P(0))$, by

$$\rho_N(0) = \frac{P_{at}}{k_B T}$$

If we wanted to determine the total number of gas molecules, N, in our slab of atmosphere (with surface area A), we can integrate across all possible heights, $h = 0 \rightarrow h \equiv \infty$,

$$A\int\limits_{0}^{\infty}\rho_{N}(h)\,\mathrm{d}h=N$$

Isothermal model meets probability

We can then, through solving the integral, relate the total number, N, to the number density $\rho_N(0)$:

$$\rho_N(0) = \frac{N}{Ah_0} \qquad \text{With } h_0 = \frac{k_B T}{mg}$$

Here, we can see that $\rho_N(0)$ is in fact the average number density of the slab of atmosphere between h=0 and $h=h_0$

We can then define a new quantity, $Pr(h) = \frac{A\rho_N(h)}{N}$, which is therefore the contribution from one molecule

Isothermal model meets probability

As $A \int_0^\infty \rho_N(h) dh = N$, we can show that

$$\int_0^\infty Pr(h) dh = \frac{A}{N} \int_0^\infty \rho_N(h) dh = \frac{N}{N} = 1$$

Thus, it is clear that the quantity Pr(h) is in some way a probability (normalised to be equal to 1 between 0 and infinity)

The quantity Pr(h) dh gives the probability of finding a given molecule between h and $h + \mathrm{d}h$

Probability density functions

We can show that the probability, Pr(h), can be related to easily measurable quantities:

$$Pr(h) = \frac{mg}{k_B T} e^{-\left(\frac{mgh}{k_B T}\right)} = \frac{1}{9020} e^{-\left(\frac{h}{9020}\right)}$$

```
m = 28 \text{ amu}

g = 9.81 \text{ ms}^{-1}

T = 298 \text{ K}

k_B = 1.38 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1}
```


Probability density functions

$$Pr(h) = \frac{1}{9020} e^{-\left(\frac{h}{9020}\right)}$$

Without any microscopic information regarding the motion of these molecules, we can gather the information we're interested in just from this distribution

Probability density functions

$$Pr(h) = \frac{1}{9020} e^{-\left(\frac{h}{9020}\right)}$$

Q1: For a random molecule in the atmosphere, what is the probability that it can be found above 8 km?

Q2: At any given time, what proportion of molecules in the atmosphere have a height greater than 8 km?

Q3: Averaged over a long timescale, what fraction of the time does a particular molecule spend at an altitude > 8 km?

Identical questions!

A:
$$Pr(h > 8 \text{ km}) = \int_{8 \text{ km}}^{\infty} Pr(h) dh = 0.41$$

More PDF examples

Roughly, what is the probability of finding a particle between 9 km and 10 km?

A: ~ 0.04

Boltzmann factors

Remember that the quantity $\frac{mgh}{k_BT}$ must be dimensionless... what physically does it mean?

mgh = (gravitational) potential energy

 k_BT = thermal energy

$$Pr(h) = \frac{A\rho_N(h)}{N} = \frac{mg}{k_B T} e^{-\left(\frac{mgh}{k_B T}\right)}$$

$$Pr(E_i) \propto e^{-\frac{E_i}{k_B T}}$$

This is the Boltzmann factor – gives the probability of measuring a certain energy state at a given temperature

Boltzmann factors

$$Pr(E_i) \propto e^{-\frac{E_i}{k_B T}}$$

As temperature increases, rate of decay decreases

Can describe continuous energy distributions (e.g. gravitational potential energy)...

... and discrete ones!

Simple quantum system

A simple atom/molecule with two energy levels, E₀ and E₁

What is the probability of finding the atom/molecule in the state E_0 ?

$$Pr(E_0) = Ce^{-\frac{E_0}{k_B T}}$$

$$Pr(E_1) = Ce^{-\frac{E_1}{k_B T}}$$

Simple quantum system

By requiring normalisation of the probability, we can determine the constant \mathcal{C} and so

$$Pr(E_i) = \frac{e^{-\frac{E_i}{k_B T}}}{e^{-\frac{E_0}{k_B T}} + e^{-\frac{E_1}{k_B T}}}$$

Interesting cases: 1)
$$T \to 0$$
 : $Pr(E_0) = 1$, $Pr(E_1) = 0$
2) $T \to \infty$: $Pr(E_0) = 0.5$, $Pr(E_1) = 0.5$ (unbiased)

Low and high temperature limits

Interesting cases: 1) $T \to 0 : Pr(E_0) = 1$, $Pr(E_1) = 0$ $k_BT \ll E_1 - E_0$ 2) $T \to \infty : Pr(E_0) = 0.5$, $Pr(E_1) = 0.5$ (unbiased) $k_BT \gg E_1 - E_0$ Usual cases $k_BT \approx E_1 - E_0$

Negative temperatures

$$Pr(E_i) = \frac{e^{-\frac{E_i}{k_B T}}}{e^{-\frac{E_0}{k_B T}} + e^{-\frac{E_1}{k_B T}}}$$

If $T = -\tau$, where τ is some positive number, then

$$Pr(E_i) = \frac{e^{\frac{E_i}{k_B \tau}}}{e^{\frac{E_0}{k_B \tau}} + e^{\frac{E_1}{k_B \tau}}}$$

Negative temperatures

$$Pr(E_i) = \frac{e^{-\frac{E_i}{k_B T}}}{e^{-\frac{E_0}{k_B T}} + e^{-\frac{E_1}{k_B T}}}$$

If $T = -\tau$, where τ is some positive number, then

$$Pr(E_i) = \frac{e^{\frac{E_i}{k_B \tau}}}{e^{\frac{E_0}{k_B \tau}} + e^{\frac{E_1}{k_B \tau}}}$$

Higher energy levels have more particles than lower energy states!

https://cdn.gophotonics.com/community/2_638143915518458924.jpg

https://cdn.gophotonics.com/community/1_638143915198140988.jpg

More complicated quantum systems

For an atomic system with 2 levels E_0 and E_1 (with $E_1 < E_0$), we have

$$Pr(E_i) = \frac{e^{-\frac{E_i}{k_B T}}}{e^{-\frac{E_0}{k_B T}} + e^{-\frac{E_1}{k_B T}}}$$

Increasing to N levels, we have

s, we have
$$e^{-\frac{E_i}{k_BT}}$$

$$Pr(E_i) = \frac{e^{-\frac{E_i}{k_BT}}}{e^{-\frac{E_j}{k_BT}}}$$

$$2) T \rightarrow \infty : Pr(E_0) = 1,$$

$$Pr(E_{n!=0}) = 0$$

$$2) T \rightarrow \infty : Pr(E_0) = 1/N,$$

$$Pr(E_{n!=0}) = 1/N$$
(unbiased)

Interesting cases:

1)
$$T \to 0 : Pr(E_0) = 1$$
,
 $Pr(E_{n!=0}) = 0$

2)
$$T
ightarrow : Pr(E_0) = 1/N$$
, $Pr(E_{n!=0}) = 1/N$ (unbiased)

Example question

A type of atom has 4 possible energy levels, $E_0 = 0$, $E_1 = 0.08$ meV, $E_2 = 0.24$ meV and $E_3 = 0.48$ meV

For a single mole of atoms with a temperature at 50 K, how many of the atoms are in the E_2 (second excited state)?

$$Pr(E_i) = \frac{e^{-\frac{E_i}{k_B T}}}{e^{-\frac{E_j}{k_B T}}} = \frac{e^{-\frac{E_2}{50k_B}}}{e^{-\frac{E_j}{50k_B}}} = \frac{e^{-\frac{E_2}{50k_B}}}{e^{-\frac{E_0}{50k_B}} + e^{-\frac{E_1}{50k_B}} + e^{-\frac{E_2}{50k_B}} + e^{-\frac{E_2}{50k_B}}}$$

Degeneracies

In reality, electrons in atoms can have the same energy in multiple ways (spin up vs spin down, for example).

The is a degeneracy of 2 (we can fit two electrons) in the n=1 subshell, 8 in the n=2 etc

Boltzmann factor changes accordingly:

$$Pr(E_i) \propto g(E)e^{-\left(\frac{E_i}{\kappa_B T}\right)}$$

 $Pr(E_i) \propto g(E) e^{-(\kappa_B T)}$ n = 1, g(E) = 2; n = 2, g(E) = 8... g(E) represents the degeneracy

