Final assignment

It is required to submit a short report in order to receive the course diploma (3ECTS)! Please follow the slides through the four steps in order to prepare the report. The report should include a combination of text, images of the Modelica models, and plots.

NOTE: If you're not interested in receiving the course diploma, you are not required to submit the report.

Assumptions and hints:

Room:

- Use the ISO13790 model from the Buildings Library
- The room has four exterior wall, a roof and a floor. Constructions details are shown in the table

Exterior wall

U-value = $0.25 \text{ W/m}^2\text{K}$

Roof

U-value = $0.15 \text{ W/m}^2\text{K}$

Floor

U-value = $0.11 \text{ W/m}^2\text{K}$ b = 0.5

Windows

U-value = 0.9 W/m²K g-factor = 0.5 Frame fraction = 0.01

Internal gains (sensible)

From 00:00 to 8:00 = 600 W From 8:00 to 18:00 = 240 W From 18:00 to 24:00 = 600 W

Weather file

Chicago

Air change rate

 $0.4 h^{-1}$

Building mass

Medium

Heat transfer coefficient

 $3.45 \text{ W/m}^2\text{k}$

STEP 1: Plot the indoor air temperature in the room from day 0 to day 31 (January). What's the minimum air temperature in the room?

Assumptions and hints:

Add a ventilation system with a constant supply of air mass flow rate of 0.05 kg/s

STEP 2: Plot the indoor air temperature in the room. What's the minimum air temperature in the room?

Final assignment

Add a heating system with a radiator (Tsup=70°C, Tret, 50°C) to keep indoor air temperature at 20°C. Assume a Q_nom = 7kW for sizing the system. Use a PI controller to vary the water mass flow rate.

Final assignment

Add a heat recovery unit with effectiveness of 0.8

SOLUTIONS

I haven't solved the assignment myself (on purpose!), so the results below are average values from previous years' students. If your results fall within this range, you can assume they're likely acceptable \bigcirc

STEP1: Minimum temperature between -1 and -4°C

STEP2: Minimum temperature with ventilation system between -5 and -9°C

STEP3: Heating energy use between 2100 and 2300 kWh

STEP4: Heating energy use with heat recovery unit between 1300 and 1600 kWh / Savings approx. 700-800 kWh