

MODULE 5-GLOBAL ETHICAL ISSUES

GLOBALIZATION

Globalization means integration of countries through commerce, transfer of technology, and exchange of information and culture. In a way, it includes acting together and interacting economies through trade, investment, loan, development schemes and capital across countries. In a different sense, these flows include knowledge, science, technology, skills, culture, information, and entertainment, besides direct human resource, tele-work, and outsourcing. This interdependence has increased the complex tensions and ruptures among the nations. For the engineers, the issues such as multinational organizations, computer, internet functions, military development and environmental ethics have assumed greater importance for their very sustenance and progress.

MULTINATIONAL CORPORATIONS

Organisations who have established business in more than one country, are called multinational corporation. The headquarters are in the home country and the business is extended in many host countries. The Western organizations doing business in the less-economically developed (developing, and overpopulated) countries gain the advantage of inexpensive labor, availability of natural resources, conducive-tax atmosphere, and virgin market for the products. At the same time, the developing countries are also benefited by fresh job opportunities, jobs with higher remuneration and challenges, transfer of technology, and several social benefits by the wealth developed. But this happens invariably with some social and cultural disturbance. Loss of jobs for the home country, and loss or exploitation of natural resources, political instability for the *host* countries are some of the threats of globalization.

1 International Human Rights

To know what are the moral responsibilities and obligations of the multinational corporations perating in the host countries, let us discuss with the framework of rights ethics. Common minimal rights are to be followed to smoothen the transactions when the engineers and employers of MNCs have to interact at official, social, economic and sometimes political levels. At international level, the organizations are expected to adopt the minimum levels of (a) values, such as mutual support, loyalty, and reciprocity,

(b) the negative duty of refraining from harmful actions such as violence and fraud, and (c) basic fairness and practical justice in case of conflicts.

The ten international rights to be taken care of, in this context are:

- 1. Right of freedom of physical movement of people
- 2. Right of ownership of properties
- 3. Freedom from torture
- 4. Right to fair trial on the products
- 5. Freedom from discrimination on the basis of race or sex. If such discrimination against women or minorities is prevalent in the host country, the MNC will be compelled to accept.MNCs may opt to quit that country if the human rights violations are severe.
- 6. Physical security. Use of safety gadgets have to be supplied to the workers even if the laws of the host country do not suggest such measures.
- 7. Freedom of speech and forming association
- 8. Right to have a minimum education
- 9. Right to political participation
- 10. Right to live and exist (i.e., coexistence). The individual liberty and sanctity of the human life are to be respected by all societies.

2 Technology Transfer

It is a process of moving technology to a new setting and implementing it there. Technology includeshardware (machines and installations) and the techniques (technical, organizational, and managerial skills and procedures). It may mean moving the technology applications from laboratory to the field/factory or from one country to another. This transfer is effected by governments, organizations,

universities, and MNCs.

3 Appropriate Technology

Identification, transfer, and implementation of most *suitable* technology for a set of new situations, is called *appropriate technology*. Technology includes both hardware (machines and installations) and software (technical, organizational and managerial skills and procedures). Factors such as economic, social, and engineering constraints are the causes for the modification of technology. Depending on the availability of resources, physical conditions (such as temperature, humidity, salinity, geographical location, isolated land area, and availability of water), capital opportunity costs, and the human value

system (social acceptability) which includes their traditions, beliefs, and religion, the appropriateness is to be determined.

For example, small farmers in our country prefer to own and use the power tillers, rather than the high-powered tractors or sophisticated harvesting machines. On the other hand, the latest technological device, the cell phones and wireless local loop phones have found their way into remote villages and hamlets, than the landline telephone connections. Large aqua-culture farms should not make the existing fishermen jobless in their own village.

The term *appropriate* is value based and it should ensure fulfillment of the human needs and protection of the environment.

4 How Appropriate is Aptech?

- 1. A case against the technology transfer is that the impact of borrowed or transferred technology has been threatening the environment beyond its capacity and sustainable development of the host countries. Large plantations that orient their efforts to exports leave the small farmers out of jobs and at the mercy of the foreign country. For example, geneticallymodified cotton have shown sufficient disturbance in Europe and Africa. This has made the European Union to oppose the entry of G.M. cotton into Europe.
- 2. The high technology has contributed to large-scale migration from villages to the cities where corporations are located, leading to the undesirable side-effects of overcrowding of cities, such as the scarcity of water, insanitation, poverty, and the increase in crimes.
- 3. The term 'appropriate' should emphasize the social acceptability and environmental protection of the host countries, and this need to be addressed while transferring technology. Thus, we confirm the view that engineering is a continual social experimentation with nature.

5 MNCs and Morality

The economic and environmental conditions of the home and host countries may vary. But the multinational institutions have to adopt appropriate measures not to disturb or dislocate the social and living conditions and cultures of the home countries. A few principles are enlisted here:

- 1. MNC should respect the basic human rights of the people of the host countries.
- 2. The activities of the MNC should give economic and transfer technical benefits, and implement welfare measures of the workers of the host countries.
- 3. The business practices of the multinational organisations should improve and promote morally justified institutions in the host countries.
- 4. The multinationals must respect the laws and political set up, besides cultures and promote the cultures of the host countries.
- 5. The multinational organisations should provide a fair remuneration to the employees of the host countries. If the remuneration is high as that of home country, this may create tensions and if it is too low it will lead to exploitation.

6. Multinational institutions should provide necessary safety for the workers when they are engaged in hazardous activities and 'informed consent' should be obtained from them.

Adequate compensation should be paid to them for the additional risks undertaken.

Ethical Balance

Should an organization adopt the rules and practices of the host country fully and face dangers and other serious consequences or adopt strictly their own country's standards and practices in the host country?

There is a saying, "When in Rome do as Romans do". Can this be applied in the case of MNCs? This is called *ethical relativism*. The actions of corporation and individuals that are accepted by law, custom and other values of a society can be morally right in that society. It is morally false, if it is illogical. It means, the corporation (and the engineers) functioning in other countries must understand their law, customs, and beliefs and act in line with those prevailing in that country. This will lead to disaster if the country is a developing one where the safety standards are given a go-bye. Laws and conventions are not morally self-sustaining. In a overpopulated country, the loss of human lives may not physically affect them, but the tragedy cast shadow for over decades, as it happened in Bhopal in 1984. This will be criticized from the points of view of human rights, public welfare, and respect to people.

On the other hand, the organizations may practice laws of the home country, without adjustments to the host culture. This stand is called *ethical absolutism*. This is again false, since the moral principles in a different culture come into conflicts, and implementation in the 'hostile' culture is almost impossible.

Hence, MNCs may adopt ethical *relationalism* (*contexualism*) as a compromise. Moral judgments are made in relation to the factors prevailing locally, without framing rigid rules. The judgments should be contextual and in line with the customs of other cultures. The *ethical pluralism* which views more than one justifiable moral solution is also adaptable. This principle accepts cultural diversity and respects the legitimate cultural differences among individuals and groups, of the host country.

ENVIRONMENTAL ETHICS

Environmental ethics is the study of (a) moral issues concerning the environment, and (b) moral perspectives, beliefs, or attitudes concerning those issues.

Engineers in the past are known for their negligence of environment, in their activities. It has become important now that engineers design eco-friendly tools, machines, sustainable products, processes, and projects. These are essential now to (a) ensure protection (safety) of environment (b) prevent the degradation of environment, and (c) slow down the exploitation of the natural resources, so that the future generation can survive.

The American Society of Civil Engineers (ASCE) code of ethics, has specifically requires that "engineers shall hold paramount the safety, health, and welfare of the public and shall strive to comply with the principles of sustainable development in the performance of professional duties" The term

sustainable development emphasizes on the investment, orientation of technology, development and functioning of organizations to meet the present needs of people and at the same time ensuring the future generations to meet their needs.

Compaq Computer Corporation (now merged with HP) was the leader, who exhibited their commitment to environmental health, through implementation of the concept of 'Design for environment'on their products, unified standards all over the world units, and giving priority to vendors with a record of environmental concern.

Engineers as experimenters have certain duties towards environmental ethics, namely:

- 1. *Environmental impact assessment*: One major but sure and unintended effect of technology is wastage and the resulting pollution of land, water, air and even space. Study how the industry and technology affects the environment.
- 2. Establish standards: Study and to fix the tolerable and actual pollution levels.
- 3. Counter measures: Study what the protective or eliminating measures are available for immediate implementation
- 4. *Environmental awareness*: Study on how to educate the people on environmental practices, issues, and possible remedies.

Disasters

1. Plastic Waste Disposal

In our country, several crores of plastic bottles are used as containers for water and oil, and plastic bags are used to pack different materials ranging from vegetables to gold ornaments. Hardly any of these are recycled. They end up in gutters, roadsides, and agricultural fields. In all these destinations, they created havoc. The worse still is the burning of plastic materials in streets and camphor along with plastic cover in temples, since they release toxic fumes and threaten seriously the air quality. Cities and local administration have to act on this, collect and arrange for recycling through industries.

2. e-Waste Disposal

The parts of computers and electronic devices which have served its useful life present a major environmental issue for all the developing countries including India. This scrap contains highly toxic elements such as lead, cadmium, and mercury. Even the radioactive waste will lose 89% of its toxicity after 200 years, by which time it will be no more toxic than some natural minerals in the ground. It will lose 99% of its remaining toxicity over the next 30,000 years. The toxic chemical agents such as mercury, arsenic, and cadmium retain toxicity undiminished for ever.

But these scraps are illegally imported by unscrupulous agencies to salvage some commercially valuable inputs. Instead of spending and managing on the scrap, unethical organizations sell them to countries such as India. This is strictly in violation of the Basel Convention of the United Nations Environment Program, which has banned the movement of hazardous waste. A recent report of the British Environment Agency, has revealed that the discarded computers, television sets, refrigerators, mobile phones, and electrical equipments have been dispatched to India and Pakistan in large uantity, for ultimate disposal in environmentally-unacceptable ways and at great risk to the health of the labour.

Even in the West, the electronic junk has been posing problems. Strong regulation including (a)pressure on industries to set up disassembling facilities, (b) ban on disposal in landfill sites, (c) legislation for recycling requirements for these junk and (d) policy incentives for eco-friendly design are essential for our country. The European Union through the Waste Electrical and Electronic Equipment (WEEE) directive has curbed the e-waste dumping by member countries and require manufacturers to implement methods to recover and recycle the components.

Indian Government expressed its concern through a technical guide on environmental management for IT Industry in December, 2004. It is yet to ratify the ban on movement of hazardous waste according to the Basel Convention. A foreign news agency exposed a few years back, the existence of a thriving e-waste disposal hub in a suburb of New Delhi, operating in appallingly dangerous conditions. Our country needs regulations to define waste, measures to stop illegal imports, and institutional structures to handle safe disposal of domestic industrial scrap.

3. Industrial Waste Disposal

There has been a lot of complaints through the media, on (a) against the Sterlite Copper Smelting land in Thuthukkudi (1997) against its pollution, and (b) when Indian companies imported the discarded French Warship Clemenceau for disposal, the poisonous *asbestos* compounds were expected to pollute the atmosphere besides exposing the labor to a great risk, during the disposal. The government did not act immediately. Fortunately for Indians, the French Government intervened and withdrew the ship, and the serious threat was averted!

4. Depletion of Ozone Layer

The *ozone* layer protects the entire planet from the ill-effects of ultraviolet radiation and is vital for all living organisms in this world. But it is eaten away by the Chloro-fluro-carbons (CFC) such as *Freon* emanating from the refrigerators, air conditioners, and aerosol can spray. This has caused also skin cancer to sun-bathers in the Western countries. Further NO and NO2 gases were also found to react with the ozone. Apart from engineers, the organizations, laws of the country and local administration and market mechanisms are required to take up concerted efforts to protect the environment.

5. Global Warming

Over the past 30 years, the Earth has warmed by 0.6 °C. Over the last 100 years, it has warmed by 0.8 °C. It is likely to push up temperature by 3 °C by 2100, according to NASA's studies. The U.S.administration has accepted the reality of global climate change, which has been associated with stronger hurricanes, severe droughts, intense heat waves and the melting of polar ice. Greenhouse gases, notably carbon dioxide emitted by motor vehicles and coal-fired power plants, trap heat like the glass walls of a greenhouse, cause the Earth to warm up. Delegates from the six countries — Australia, China, India, Japan, South Korea and US met in California in April 2006 for the first working session of the Asia-Pacific Partnership on Clean Development and Climate. These six countries account for about half of the world's emissions of climate-heating greenhouse gases. Only one of the six, Japan, is committed to reducing greenhouse gas emissions by at least 5.2 per cent below 1990 levels by 2012 under the Kyoto Agreement.

About 190 nations met in Germany in the middle of May 2006 and tried to bridge vast policy gaps between the United States and its main allies over how to combat climate change amid growing evidence that the world is warming that could wreak havoc by stoking more droughts, heat waves, floods, more powerful storms and raise global sea levels by almost a meter by 2100.

6. Acid Rain

Large emissions of sulphur oxides and nitrous oxides are being released in to the air from the thermal power stations using the fossil fuels, and several processing industries. These gases form compounds with water in the air and precipitates as rain or snow on to the earth. The acid rain in some parts of the world has caused sufficient damage to the fertility of the land and to the human beings.

Human-centered Environmental Ethics

This approach assumes that only human beings have inherent moral worth duly to be taken care of. Other living being and ecosystems are only instrumental in nature. Utilitarianism aims to maximize good consequences for human beings. Most of the goods are engineered products made out of natural resources. Human beings have also (a) recreational interests (enjoy leisure through mountaineering, sports, and pastimes), (b) aesthetic interests (enjoy nature as from seeing waterfalls and snow-clad mountains), (c) scientific interests to explore into nature or processes, and (d) a basic interest to survive, by preservation as well as conservation of nature and natural resources. Rights ethicists favor the basic rights to live and right to liberty, to realise the right to a live in a supportive environment. Further, virtue ethics stresses importance of prudence, humility, appreciation of natural beauty, and gratitude to the mother nature that provides everything.

However, the nature-centered ethics, which ensures the worth of all living beings and organisms, seems to be more appropriate in the present-day context. Many Asian religions stress the unity with nature, rather than domination and exploitation. The Zen Buddhism calls for a simple life with compassion towards humans and other animals. Hinduism enshrines the ideal of oneness (advaitha) in and principle of *ahimsa* to all living beings. It identifies all the human beings, animals, and plants as divine. The eco-balance is the need of the hour and the engineers are the right experimenters to achieve this

COMPUTER ETHICS

Computer ethics is defined as

- (a) Study and analysis of nature and social impact of computer technology,
- (b) Formulation and justification of policies, for ethical use of computers. This subject has become relevant to the professionals such as designers of computers, programmers, system analysts, system managers, and operators. The use of computers have raised a host of moral concerns such as free speech, privacy, intellectual property right, and physical as well as mental harm. There appears to be no conceptual framework available on ethics, to study and understand and resolve the problems in computer technology.

Types of Issues

Different types of problems are found in computer ethics.

1. Computer as the Instrument of Unethical Acts

- (a) The usage of computer replaces the job positions. This has been overcome to a large extent by readjusting work assignments, and training everyone on computer applications such as word processing, editing, and graphics.
- (b) Breaking privacy. Information or data of the individuals accessed or erased or the ownership changed.
- (c) Defraud a bank or a client, by accessing and withdrawing money from other's bank account.

2. Computer as the Object of Unethical Act

The data are accessed and deleted or changed.

- (a) *Hacking*: The software is stolen or information is accessed from other computers. This may cause financial loss to the business or violation of privacy rights of the individuals or business. In case of defense information being hacked, this may endanger the security of the nation.
- (b) Spreading virus: Through mail or otherwise, other computers are accessed and the files are erased or contents changed altogether. 'Trojan horses' are implanted to distort the messages and files beyond recovery. This again causes financial loss or mental torture to the individuals. Some hackers feel that they have justified their right of free information or they do it for fun. However, these acts are certainly unethical.
- (c) *Health hazard*: The computers pose threat during their use as well as during disposal. These are discussed in # 5.3.2 and # 5.2.1, respectively, in detail.

3. Problems Related to the Autonomous Nature of Computer

- (a) Security risk: Recently the Tokyo Stock Exchange faced a major embarrassment. A seemingly casual mistake by a junior trader of a large security house led to huge losses including that of reputation. The order through the exchange's trading system was to sell one share for 600,000
- Yen. Instead the trader keyed in a sale order for 600,000 shares at the rate of one Yen each. Naturally the shares on offer at the ridiculously low price were lapped up. And only a few buyers agreed to reverse the deal! The loss to the securities firm was said to be huge, running into several hundred thousands. More important to note, such an obvious mistake could not be corrected by some of the advanced technology available. For advanced countries like Japan who have imbibed the latest technology, this would be a new kind of learning experience.
- (b) Loss of human lives: Risk and loss of human lives lost by computer, in the operational control of military weapons. There is a dangerous instability in automated defense system. An unexpected error in the software or hardware or a conflict during interfacing between the two, may trigger a serious attack and cause irreparable human loss before the error is traced. The Chinese embassy was bombed by U.S. military in Iraq a few years back, but enquiries revealed that the building was shown in a previous map as the building where insurgents stayed.
- (c) In flexible manufacturing systems, the autonomous computer is beneficial in obtaining continuous monitoring and automatic control.

Various issues related to computer ethics are discussed as follows:

Computers In Workplace

The ethical problems initiated by computers in the workplace are:

- 1. Elimination of routine and manual jobs. This leads to unemployment, but the creation of skilled and IT-enabled service jobs are more advantageous for the people. Initially this may require some upgradation of their skills and knowledge, but a formal training will set this problem right. For example, in place of a typist, we have a programmer or an accountant.
- 2. Health and safety: The ill-effects due to electromagnetic radiation, especially on women and pregnant employees, mental stress, wrist problem known as Carpel Tunnel Syndrome, and backpain due to poor ergonomic seating designs, and eye strain due to poor lighting and flickers in the display and long exposure, have been reported worldwide. Over a period of long exposure, these are expected to affect the health and safety of the people. The computer designers should take care of these aspects and management should monitor the health and safety of the computer personnel.
- 3. Computer failure: Failure in computers may be due to errors in the hardware or software. Hardware errors are rare and they can be solved easily and quickly. But software errors are very serious as they can stop the entire network. Testing and quality systems for software have gained relevance and importance in the recent past, to avoid or minimize these errors.

Property Issues

The property issues concerned with the computers are:

- 1. Computers have been used to extort money through anonymous telephone calls.
- 2. Computers are used to cheat and steal by current as well as previous employees.
- 3. Cheating of and stealing from the customers and clients.
- 4. Violation of contracts on computer sales and services.
- 5. Conspiracy as a group, especially with the internet, to defraud the gullible, stealing the identity and to forge documents.
- 6. Violation of property rights: Is the software a property? The software could be either a Program (an algorithm, indicating the steps in solving a problem) or a Source code (the algorithm in a general computer language such as FORTAN, C and COBOL or an Object code (to translate the source code into the machine language). How do we apply the concept of property here? This demands a framework for ethical judgments.

Property is what the laws permits and defines as can be owned, exchanged, and used. The computer hardware (product) is protected by patents. The software (idea, expression) is protected by copyrights and trade secrets. But algorithms can not be copyrighted, because the mathematical formulas can be discovered but not owned. The object codes which are not intelligible to human beings can not be copyrighted.

Thus, we see that reproducing multiple copies from one copy of (licensed) software and distribution or sales are crimes. The open source concepts have, to a great extent, liberalized and promoted the use of computer programs for the betterment of society.

Computer Crime

The ethical features involved in computer crime are:

1. Physical Security

The computers are to be protected against theft, fire, and physical damage. This can be achieved by proper insurance on the assets.

2. Logical security

The aspects related are (a) the privacy of the individuals or organizations, (b) confidentiality, (c) integrity, to ensure that the modification of data or program are done only by the authorized persons, (d) uninterrupted service. This is achieved by installing appropriate uninterrupted power supply or back-up provisions, and (e) protection against hacking that causes dislocation or distortion. Licensed anti-virus packages and firewalls are used by all computer users to ensure this protection. Passwords and data encryption have been incorporated in the computer software as security measures. But these have also been attacked and bye-passed. But this problem is not been solved completely.

Major weaknesses in this direction are: (a) the difficulty in tracing the evidence involved and (b)

absence of stringent punishment against the crime. The origin of a threat to the Central Government posted from an obscure browsing center, remained unsolved for quite a long time. Many times, such crimes have been traced, but there are no clear *cyber laws* to punish and deter the criminals.

MORAL LEADERSHIP

Engineers provide many types of leadership in the development and implementation of technology, as managers, entrepreneurs, consultants, academics and officials of the government. Moral leadership is not merely the dominance by a group. It means adopting reasonable means to motivate the groups to achieve morally desirable goals. This leadership presents the engineers with many challenges to their moral principles.

Moral leadership is essentially required for the engineers, for the reasons listed as follows:

- 1. It is leading a group of people towards the achievement of global and objectives. The goals as well as the means are to be moral. For example, Hitler and Stalin were leaders, but only in an instrumental sense and certainly not on moral sense.
- 2. The leadership shall direct and motivate the group to move through morally desirable ways.
- 3. They lead by thinking ahead in time, and morally creative towards new applications, extension and putting values into practice. 'Morally creative' means the identification of the most important values as applicable to the situation, bringing clarity within the groups through proper communication, and putting those values into practice.
- 4. They sustain professional interest, among social diversity and cross-disciplinary complexity. They contribute to the professional societies, their professions, and to their communities. The moral leadership in engineering is manifested in leadership within the professional societies. The professional societies provide a forum for communication, and canvassing for change within and by groups.
- 5. *Voluntarism*: Another important avenue for providing moral leadership within communities,by the engineers is to promote services without fee or at reduced fees (pro bono) to the needy groups. The professional societies can also promote such activities among the engineers.

This type of voluntarism (or philanthropy) has been in practice in the fields of medicine, law and education. But many of the engineers are not self-employed as in the case of physicians and lawyers. The business institutions are encouraged to contribute a percentage of their services as free or at concessional rates for charitable purposes.

6. *Community service*: This is another platform for the engineers to exhibit their moral leadership. The engineers can help in guiding, organising, and stimulating the community towards morally- and environmentally-desirable goals. The corporate organizations have come forward to adopt villages and execute many social welfare schemes, towards this objective.

The Codes of Ethics promote and sustain the ethical environment and assist in achieving the ethical goals in the following manner:

- 1. It creates an environment in a profession, where ethical behavior is the basic criterion.
- 2. It guides and reminds the person as to how to act, in any given situation.
- 3. It provides support to the individual, who is being pressurized or tortured by a superior or employer, to behave unethically.
- 4. Apart from professional societies, companies and universities have framed their own codes of ethics, based on the individual circumstances and specific mission of the organisations.

These codes of conduct help in employees' awareness of ethical issues, establish, and nurture a strong corporate ethical culture.

ENGINEERS AS MANAGERS

1 Characteristics

The characteristics of engineers as managers are:

- 1. Promote an ethical climate, through framing organization policies, responsibilities and by personal attitudes and obligations.
- 2. Resolving conflicts, by evolving priority, developing mutual understanding, generating various alternative solutions to problems.
- 3. Social responsibility to stakeholders, customers and employers. They act to develop wealth as well as the welfare of the society. Ethicists project the view that the manager's responsibility is only to increase the profit of the organization, and only the engineers have the responsibility to protect the safety, health, and welfare of the public. But managers have the ethical responsibility to produce safe and good products (or useful service), while showing respect for the human beings who include the employees, customers and the public. Hence, the objective for the managers and engineers is to produce valuable products that are also profitable.

2 Managing Conflicts

In solving conflicts, force should not be resorted. In fact, the conflict situations should be tolerated, understood, and resolved by participation by all the concerned. The conflicts in case of project managers arise in the following manners:

- (a) Conflicts based on schedules: This happens because of various levels of execution, priority and limitations of each level.
- (b) Conflicts arising out of fixing the priority to different projects or departments. This is to be arrived at from the end requirements and it may change from time to time.
- (c) Conflict based on the availability of personnel.
- (d) Conflict over technical, economic, and time factors such as cost, time, and performance level.
- (e) Conflict arising in administration such as authority, responsibility, accountability, and logistics required.
- (f) Conflicts of personality, human psychology and ego problems.
- (g) Conflict over expenditure and its deviations.

Most of the conflicts can be resolved by following the principles listed here:

1. People

Separate people from the problem. It implies that the views of all concerned should be obtained. The questions such as what, why, and when the error was committed is more important than to know who committed it. This impersonal approach will lead to not only early solution but also others will be prevented from committing errors.

2. Interests

Focus must be only on interest i.e., the ethical attitudes or motives and not on the positions (i.e., stated views). A supplier may require commission larger than usual prevailing rate for an agricultural product.

But the past analysis may tell us that the material is not cultivated regularly and the monsoon poses some additional risk towards the supply. Mutual interests must be respected to a maximum level. What is right is more important than who is right!

3. Options

Generate various options as solutions to the problem. This helps a manager to try the next best solution should the first one fails. Decision on alternate solutions can be taken more easily and without loss of time.

4. Evaluation

The evaluation of the results should be based on some specified objectives such as efficiency, quality, and customer satisfaction. More important is that the means, not only the goals, should be ethical.

CONSULTING ENGINEERS

The consulting engineers work in private. There is no salary from the employers. But they charge fees from the sponsor and they have more freedom to decide on their projects. Still they have no absolute freedom, because they need to earn for their living. The consulting engineers have ethical responsibilities different from the salaried engineers, as follows:

1. Advertising

The consulting engineers are directly responsible for advertising their services, even if they employ other consultants to assist them. But in many organisations, this responsibility is with the advertising executives and the personnel department.

They are allowed to advertise but to avoid deceptive ones. Deceptive advertising such as the following are prohibited:

- (a) By white lies.
- (b) Half-truth, e.g., a product has actually been tested as prototype, but it was claimed to have been already introduced in the market. An architect shows the photograph of the completed building with flowering trees around but actually the foundation of the building has been completed and there is no real garden.
- (c) Exaggerated claims. The consultant might have played a small role in a well-known project. But they could claim to have played a major role.
- (d) Making false suggestions. The reduction in cost might have been achieved along with the reduction in strength, but the strength details are hidden.
- (e) Through vague wordings or slogans.

2. Competitive Bidding

It means offering a price, and get something in return for the service offered. The organizations have a pool of engineers. The expertise can be shared and the bidding is made more realistic. But the individual consultants have to develop creative designs and build their reputation steadily and carefully, over a period of time. The clients will have to choose between the reputed organizations and proven qualifications of the company and the expertise of the consultants. Although competent, the younger consultants are thus slightly at a disadvantage.

3. Contingency Fee

This is the fee or commission paid to the consultant, when one is successful in saving the expenses for the client. A sense of honesty and fairness is required in fixing this fee. The NSPE Code III 6 (a) says that the engineers shall not propose or accept a commission on a contingent basis where their judgment may be compromised.

The fee may be either as an agreed amount or a fixed percentage of the savings realized. But in the contingency fee-agreements, the judgment of the consultant may be biased. The consultant may be tempted to specify inferior materials or design methods to cut the construction cost. This fee may motivate the consultants to effect saving in the costs to the clients, through reasonably moral and technological means.

4. Safety and Client's Needs

The greater freedom for the consulting engineers in decision making on safety aspects, and difficulties concerning truthfulness are the matters to be given attention. For example, in design-only projects, the consulting engineers may design something and have no role in the construction. Sometimes, difficulties may crop-up during construction due to non-availability of suitable materials, some shortcuts in construction, and lack of necessary and adequate supervision and inspection. Properly-trained supervision is needed, but may not happen, unless it is provided. Further, the contractor may not understand and/or be willing to modify the original design to serve the clients best.

A few on-site inspections by the consulting engineers will expose the deficiency in execution and save the workers, the public, and the environment that may be exposed to risk upon completion of the project.

The NSPE codes on the advertisement by consultants provide some specific regulations. The following are the activities prohibited in advertisement by consultant:

- 1. The use of statement containing misrepresentation or omission of a necessary fact.
- 2. Statement intended or likely to create an unjustified expectation.
- 3. Statement containing prediction of future (probable) success.

4. Statement intended or likely to attract clients, by the use of slogans or sensational language format.

ENGINEERS AS EXPERT WITNESS

Frequently engineers are required to act as consultants and provide expert opinion and views in many legal cases of the past events. They are required to explain the causes of accidents, malfunctions and other technological behavior of structures, machines, and instruments, e.g., personal injury while using an instrument, defective product, traffic accident, structure or building collapse, and damage tothe property, are some of the cases where testimonies are needed. The focus is on the past. The functions of eye-witness and expert-witness are different as presented in the Table 5.1.

Table 5.1 Eye-witness and expert-witness

Eye-witness	Expert-witness
Eye-witness gives evidence on only what has been seen or heard actually (perceived facts)	 Gives expert view on the facts in their area of their expertise
	 Interprets the facts, in term of the cause and effect relationship
	 Comments on the view of the opposite side
	 Reports on the professional standards, especially on the precautions when the product is made or the service is provided

The engineers, who act as expert-witnesses, are likely to abuse their positions in the following manners:

1. Hired Guns

Mostly lawyers hire engineers to serve the interest of their clients. Lawyers are permitted and required to project the case in a way favorable to their clients. But the engineers have obligations to thoroughly examine the events and demonstrate their professional integrity to testify only the truth in the court. They do not serve the clients of the lawyers directly. The hired guns forward white lies and distortions, as demanded by the lawyers. They even withhold the information or shade the fact, to favor their clients.

2. Money Bias

Consultants may be influenced or prejudiced for monitory considerations, gain reputation and make a fortune.

3. Ego Bias

The assumption that the own side is innocent and the other side is guilty, is responsible for this behavior.

An inordinate desire to serve one's client and get name and fame is another reason for this bias.

4. Sympathy Bias

Sympathy for the victim on the opposite side may upset the testimony. The integrity of the consultants will keep these biases away from the justice. The court also must obtain the balanced view of both sides, by examining the expert witnesses of lawyers on both sides, to remove a probable bias.

Duties

- 1. The expert-witness is required to exhibit the responsibility of *confidentiality* just as they do in the consulting roles. They can not divulge the findings of the investigation to the opposite side, unless it is required by the court of law.
- 2. More important is that as witness they are *not required to volunteer* evidence favorable to the opponent. They must answer questions truthfully, need not elaborate, and remain neutral until the details are asked for further.
- 3. They should be *objective* to discover the truth and communicate them honestly.
- 4. The stand of the experts depends on the *shared understanding* created within the society. The

legal system should be respected and at the same time, they should act in conformance with the professional standards as obtained from the code of ethics.

5. The experts should earnestly be *impartial* in identifying and interpreting the observed data, recorded data, and the industrial standards. They should not distort the truth, even under pressure. Although they are hired by the lawyers, they do not serve the lawyers or their clients. They serve the justice. Many a time, their objective judgments will help the lawyer to put up the best defense for their clients. For the advisors on policy making or planning, a shared understanding on balancing the conflicting responsibilities, both to the clients and to the public, can be effected by the following roles or models:

1. Hired Gun

The prime obligation is shown to the clients. The data and facts favorable to the clients are highlighted,

and unfavorable aspects are hidden or treated as insignificant. The minimal level of interest is shown for public welfare.

2. Value-neutral Analysts

This assumes an impartial engineer. They exhibit conscientious decisions, impartiality i.e., without bias, fear or favor, and absence of advocacy.

3. Value-guided Advocates

The consulting engineers remain honest (frank in stating all the relevant facts and truthful in interpretation of the facts) and autonomous (independent) in judgement and show paramount importance to the public (as different from the hired guns).

CODES OF ETHICS

National Society of Professional Engineers

Preamble

Engineering is an important and learned profession. As members of this profession, engineers are expected to exhibit the higher standards of honesty and integrity. Engineering has a direct and vital impact on the quality of life for all people. Accordingly, the services provided by engineers require honesty, impartiality, fairness, and equity, and must be dedicated to the protection of then public health, safety, and welfare. Engineer must perform under a standard of professional behavior that requires adherence to the highest principles of ethical conduct.

I Fundamental Canons

Engineers in the fulfillment of their professional duties shall

- 1. hold paramount the safety, health, and welfare of the public.
- 2. perform services only in areas of their competence.
- 3. issue public statements only in objective and truthful manner.
- 4. act for each employer or client as faithful agents or trustees.
- 5. avoid deceptive acts.
- 6. conduct themselves honorably, responsibly, ethically, and lawfully so as to enhance the honor, reputation, and usefulness of the profession.

II Rules of Practice

1. Engineers shall hold paramount the safety, health, and welfare of the public.

- (a) If engineers' judgment is overruled under circumstances that endanger life or property, they shall notify their employer or client and such other authority as may be appropriate.
- (b) Engineers shall approve only those engineering documents that are in conformity with applicable standards.
- (c) Engineers shall not reveal facts, data, or information without prior consent of the client or employer except as authorized or required by law or this code.
- (d) Engineers shall not permit the use of their name or associate in business ventures with any person or firm that they believe are engaged in fraudulent or dishonest enterprise.
- (e) Engineers shall not aid or abet the unlawful practice of engineering by a person or firm.
- (f) Engineers having knowledge of any alleged violation of this Code shall report thereon to appropriate professional bodies and when relevant, also to public authorities, and cooperate with the proper authorities in furnishing such information or assistance as may be required.
- 2. Engineers shall perform services only in the areas of their competence.
- (a) Engineers shall undertake assignments only when qualified by education or experience in the specific technical fields involved.
- (b) Engineers shall not affix their signatures to any plans or documents dealing with the subject matter in which they lack competence, nor to any plan or document not prepared under their direction and control.
- (c) Engineers may accept assignments and assume responsibility for coordination of an entire project and sign and seal the engineering documents for the entire project, provided that each technical segment is signed and sealed only by the qualified engineers who prepared the segment.
- 3. Engineers shall issue public statements only in an objective and truthful manner.
- (a) Engineers shall be objective and truthful in professional reports, statements, or testimony. They shall include all relevant and pertinent information in such reports, statements, or testimony, which should bear the date indicating when it was current.
- (b) Engineers may express publicly technical options that are founded upon knowledge of the facts and competence in the subject matter.
- (c) Engineers shall issue no statements, criticisms, or arguments on technical matters that are inspired or paid for by interested parties on prefaced their comments by explicitly identifying the interested parties on whose behalf they are speaking and by revealing the existence of any interest the engineers may have in the matters.
- 4. Engineers shall at for each employer or client as faithful agents or trustees
- (a) Engineers shall disclose all known or potential conflicts of interest that could influence or appear to influence their judgment or the quality of their services.
- (b) Engineers shall not accept compensation, financial or otherwise, from more than one party for services on the same project, or for services pertaining to the same project, unless the circumstances are fully disclosed and agreed to by all interested parties.
- (c) Engineers shall not solicit or accept financial or other valuable consideration, directly or indirectly, from outside agents on connection with the work for which they are responsible.
- (d) Engineers in public service as members, advisers, or employees of a governmental or quasi-governmental body or department shall not participate in decisions with respect to services solicited or provided by them or their organizations in private or public engineering practice.
- (e) Engineers shall not solicit or accept a contract from a governmental body on which a principal or officer of their organization serves as a member.
- 5. Engineers shall avoid deceptive acts
- (a) Engineers shall not falsify their qualifications or permit misrepresentation of their or their associate's qualifications. They shall not misrepresent or exaggerate their responsibility in or for the subject matter of prior assignments. Brochures or other presentations incident to the solicitation of employment shall not misrepresent pertinent facts concerning employers, employees, associates, joint ventures, or past accomplishments.
- (b) Engineers shall not offer, give, solicit or receive, either directly or indirectly, any contribution to influence the award of a contract by public authority, or which may be reasonably construed by the public as having the effect of intent to influence the awarding of a contract. They shall not offer any gift or other valuable consideration in order to secure work. They shall not pay a commission, percentage, or brokerage fee in order to secure work, except to a bonafide employee or established commercial or marketing agencies retained by them.

III Professional Obligations

- 1. Engineers shall be guided in all their relation by the highest standards of honesty and integrity.
- (a) Engineers shall acknowledge their errors and shall not distort or alter the facts.
- (b) Engineers shall advice their clients or employers when they believe a project will not be successful.
- (c) Engineers shall not accept outside employment to the detriment of their regular work or interest. Before accepting any outside engineering employment they will notify their employers.
- (d) Engineers shall not attempt to attract an engineer from another employer by false or misleading pretenses.
- (e) Engineers shall not promote their own interest at the expense of the dignity and integrity of the profession.
- 2. Engineers shall at all times strive to serve the public interest.
- (a) Engineers shall seek opportunities to participate in civic affairs, career guidance for youths, and work for the advancement of the safety, health, and well-being of their community.
- (b) Engineers shall not complete, sign, or seal plans and/or specifications that are not in conformity with applicable engineering standards. If the client or employer insists on such unprofessional conduct, they shall notify the proper authorities and withdraw from further service on the project.
- (c) Engineers shall endeavour to extend public knowledge and appreciation of engineering and its achievements.
- 3. Engineers shall avoid all conduct or practice that deceives the public.
- (a) Engineers shall avoid the use of statements containing a material mis-representation of fact or omitting a material fact.
- (b) Consistent with the foregoing, engineers may advertise for recruitment of personnel.
- (c) Consistent with foregoing, engineers may prepare articles for the lay or technical press, but such articles shall not imply credit to the author for work performed by other.
- 4. Engineers shall not disclose, without consent, confidential information concerning the business affairs or technical processes of any present or former client or employer, or public body on which they serve.
- (a) Engineers shall not, without the consent of all interested parties, promote or arrange for new employment or practice in connection with a specific project for which the engineer has gained particular and specialized knowledge.
- (b) Engineers shall not, without the consent of all interested parties, participate in or represent in adversary interest in connection with a specific project or proceeding in which the engineer has gained particular specialized knowledge on behalf of a former client or employer.
- 5. Engineers shall not be influenced in their professional duties by conflicting interests.
- (a) Engineers shall not accept financial or other consideration including free engineering designs, from material or equipment suppliers for specifying their product.
- (b) Engineers shall not accept commission or allowances, directly or indirectly, from contractors or other parties dealing with clients or employers of the engineer in connection with work for which the engineer is responsible.
- 6. Engineers shall not attempt to obtain employment or advancement or professional engagements by untruthfully criticizing other engineers, or by other improper methods.
- (a) Engineers shall not request, propose, or accept a commission on a contingent basis under circumstances in which their judgement may be compromised.
- (b) Engineers in salaried positions shall accept part-time engineering work only to the extent consistent with policies of the employer and in accordance with ethical consideration.
- (c) Engineers shall not, without consent, use equipment, supplies, laboratory, or office facilities of an employer to carry on outside private practice.
- 7. Engineers shall not attempt to injure, maliciously or falsely, directly or indirectly, the professional reputation, prospects, practice, or employment of other engineers. Engineers who believe others are guilty of unethical or illegal practice shall resent such information to the proper authority for action.
- (a) Engineers in private practice shall not review the work of another engineer for the same client, except with the knowledge of such engineer, or unless the connection of such engineer with the work has been terminated.
- (b) Engineers in governmental, industrial, or educational employment are entitled to review and evaluate the work of other engineers when so required by their employment duties.
- (c) Engineers in sales or industrial employ are entitled to make engineering comparisons or represented products with products of other suppliers.

- 8. Engineers shall accept personal responsibility for their professional activities, provided,however, the engineers may seek indemnification for services arising out of their practice for other than gross negligence, where the engineer's interests can not otherwise be protected.
- (a) Engineers shall conform to state registration laws in the practice of engineering.
- (b) Engineers shall not use association with a non-engineer, a corporation, or partnership as a 'cloak' for unethical acts.
- 9. Engineers shall give credit for engineering work to those to whom credit is due, and will recognize the proprietary interests of others.
- (a) Engineers shall, whenever possible, name the person or persons who may be individually responsible for designs, inventions, writings, or other accomplishments.
- (b) Engineers using designs supplied by a client recognize that the designs remain the property of the client and may not be duplicated by the engineer for others, without the express permission.
- (c) Engineers before undertaking work for others in connection with which the engineer may make improvements, plans, designs, inventions, or other records that may justify copyrights or patents, should enter into a positive agreement regarding ownership.
- (d) Engineers' designs, data, records, and notes referring exclusively to an employer's work are the employer's property. The employer should indemnify the engineer for use of the information for any purpose other than the original purpose.
- (e) Engineers shall continue their professional development throughout their careers and should keep current in their specialty fields by engaging in professional practice, participating in continuing education course, reading in the technical literature, and attending professional meetings and seminars

