2 Methoden zum Entwurf von Algorithmen

2 Methoden zum Entwurf von Algorithmen

- 2.1 Divide-and-Conquer
- 2.2 Greedy-Algorithmen
- 2.3 Dynamische Programmierung

Divide-and-Conquer

Gegeben sei Instanz \mathcal{I} eines Problems.

Löse $\ensuremath{\mathcal{I}}$ wie folgt:

Divide-and-Conquer

Gegeben sei Instanz \mathcal{I} eines Problems.

Löse ${\mathcal I}$ wie folgt:

1. Zerlege \mathcal{I} in Teilinstanzen $\mathcal{I}_1, \ldots, \mathcal{I}_k$ für ein $k \geq 1$.

Divide-and-Conquer

Gegeben sei Instanz \mathcal{I} eines Problems.

Löse \mathcal{I} wie folgt:

- 1. Zerlege \mathcal{I} in Teilinstanzen $\mathcal{I}_1, \ldots, \mathcal{I}_k$ für ein $k \geq 1$.
- 2. Löse die Teilinstanzen $\mathcal{I}_1, \ldots, \mathcal{I}_k$ (rekursiv).

Divide-and-Conquer

Gegeben sei Instanz \mathcal{I} eines Problems.

Löse \mathcal{I} wie folgt:

- 1. Zerlege \mathcal{I} in Teilinstanzen $\mathcal{I}_1, \ldots, \mathcal{I}_k$ für ein $k \geq 1$.
- 2. Löse die Teilinstanzen $\mathcal{I}_1, \ldots, \mathcal{I}_k$ (rekursiv).
- 3. Kombiniere die Lösungen von $\mathcal{I}_1, \dots, \mathcal{I}_k$ zu Gesamtlösung von \mathcal{I} .

Erstes Beispiel: Binäre Suche

```
// Suche in a[\ell \dots r] nach x
BINARYSEARCH(int[] a, int x, int \ell, int r)
```

```
1 if (\ell > r) return false;

2 int m = \ell + (r - \ell)/2;

3 if (a[m] < x)

4 return BinarySearch(a,x,m+1,r);

5 else if (a[m] > x)

6 return BinarySearch(a,x,\ell,m-1);

7 return true;
```

```
Suche nach x = 8
```

```
0 1 2 3 4 5 6 7 8
2 3 5 8 9 10131719
```

5

6

Erstes Beispiel: Binäre Suche

else if (a[m] > x)

return true:

```
// Suche in a[\ell \dots r] nach x

BINARYSEARCH(int[] a, int x, int \ell, int r)

1 if (\ell > r) return false;

2 int m = \ell + (r - \ell)/2;

3 if (a[m] < x)

4 return BinarySearch(a,x,m+1,r);
```

return BinarySearch($a,x,\ell,m-1$);

Erstes Beispiel: Binäre Suche

```
// Suche in a[\ell \dots r] nach x

BINARYSEARCH(int[] a, int x, int \ell, int r)

1 if (\ell > r) return false;
```

```
2 int m = \ell + (r - \ell)/2;
3 if (a[m] < x)
```

4 **return** BinarySearch(
$$a,x,m+1,r$$
);

5 else if
$$(a[m] > x)$$

6 **return** BinarySearch(
$$a,x,\ell,m-1$$
);

6

Erstes Beispiel: Binäre Suche

return true:

```
// Suche in a[\ell \dots r] nach x

BINARYSEARCH(int[] a, int x, int \ell, int r)

1 if (\ell > r) return false;

2 int m = \ell + (r - \ell)/2;

3 if (a[m] < x)

4 return BinarySearch(a,x,m+1,r);

5 else if (a[m] > x)
```

return BinarySearch($a,x,\ell,m-1$);

```
Suche nach x = 8

0 1 2 3 4 5 6 7 8

2 3 5 8 9 10131719

2 3 5 8 9 10131719

2 3 5 8 9 10131719
```

Theorem 2.1

Die Laufzeit von binärer Suche beträgt $O(\log n)$.

Theorem 2.1

Die Laufzeit von binärer Suche beträgt $O(\log n)$.

- Betrachte Aufruf von BINARYSEARCH mit Intervalllänge $z = r \ell + 1 > 0$.
 - z ungerade: rekursiver Aufruf mit Intervalllänge (z-1)/2
 - z gerade: rekursiver Aufruf mit Intervalllänge z/2-1 oder z/2
 - \Rightarrow rekursiver Aufruf mit Intervalllänge $\leq z/2$

Theorem 2.1

Die Laufzeit von binärer Suche beträgt $O(\log n)$.

- Betrachte Aufruf von BINARYSEARCH mit Intervalllänge $z = r \ell + 1 > 0$.
 - z ungerade: rekursiver Aufruf mit Intervalllänge (z-1)/2
 - z gerade: rekursiver Aufruf mit Intervalllänge z/2-1 oder z/2
 - \Rightarrow rekursiver Aufruf mit Intervalllänge $\leq z/2$
- nach k rekursiven Aufrufen Intervalllänge $\leq z/2^k$

Theorem 2.1

Die Laufzeit von binärer Suche beträgt $O(\log n)$.

- Betrachte Aufruf von BINARYSEARCH mit Intervalllänge $z = r \ell + 1 > 0$.
 - z ungerade: rekursiver Aufruf mit Intervalllänge (z-1)/2
 - z gerade: rekursiver Aufruf mit Intervalllänge z/2-1 oder z/2
 - \Rightarrow rekursiver Aufruf mit Intervalllänge $\leq z/2$
- nach k rekursiven Aufrufen Intervalllänge $\leq z/2^k$
- Für $K = \lfloor \log_2(n) \rfloor + 1$ gilt $n/2^K < 1$.
 - \Rightarrow Höchstens K rekursive Aufrufe bis Intervalllänge 0 erreicht ist.

Theorem 2.1

Die Laufzeit von binärer Suche beträgt $O(\log n)$.

- Betrachte Aufruf von BINARYSEARCH mit Intervalllänge $z = r \ell + 1 > 0$.
 - z ungerade: rekursiver Aufruf mit Intervalllänge (z-1)/2
 - z gerade: rekursiver Aufruf mit Intervalllänge z/2 1 oder z/2
 - \Rightarrow rekursiver Aufruf mit Intervalllänge $\leq z/2$
- nach k rekursiven Aufrufen Intervalllänge $\leq z/2^k$
- Für $K = \lfloor \log_2(n) \rfloor + 1$ gilt $n/2^K < 1$.
 - \Rightarrow Höchstens K rekursive Aufrufe bis Intervalllänge 0 erreicht ist.
- Abgesehen vom rekursiven Aufruf benötigt BINARYSEARCH konstante Laufzeit.

Theorem 2.1

Die Laufzeit von binärer Suche beträgt $O(\log n)$.

- Betrachte Aufruf von BINARYSEARCH mit Intervalllänge $z = r \ell + 1 > 0$.
 - z ungerade: rekursiver Aufruf mit Intervalllänge (z-1)/2
 - z gerade: rekursiver Aufruf mit Intervalllänge z/2-1 oder z/2
 - \Rightarrow rekursiver Aufruf mit Intervalllänge $\leq z/2$
- nach k rekursiven Aufrufen Intervalllänge $\leq z/2^k$
- Für $K = \lfloor \log_2(n) \rfloor + 1$ gilt $n/2^K < 1$.
 - ⇒ Höchstens K rekursive Aufrufe bis Intervalllänge 0 erreicht ist.
- Abgesehen vom rekursiven Aufruf benötigt BINARYSEARCH konstante Laufzeit.
- \Rightarrow insgesamt Laufzeit $O(\log n)$

MERGESORT:

Teile a in zwei Hälften, sortiere die Hälften unabhängig, vereinige die sortierten Hälften

MERGESORT:

Teile a in zwei Hälften, sortiere die Hälften unabhängig, vereinige die sortierten Hälften

```
// Sortiere a[\ell \dots r]

MERGESORT(int[] a, int \ell, int r)

1 if (\ell < r) {
2 int m = \ell + (r - \ell)/2;
3 MERGESORT(a,\ell,m);
4 MERGESORT(a,m + 1,r);
5 MERGE(a,\ell,m,r);
6 }
```

initialer Aufruf: MERGESORT(a, 0, n - 1)

MERGESORT:

Teile a in zwei Hälften, sortiere die Hälften unabhängig, vereinige die sortierten Hälften

```
// Sortiere a[\ell \dots r]

MERGESORT(int[] a, int \ell, int r)

1 if (\ell < r) {
2 int m = \ell + (r - \ell)/2;
3 MERGESORT(a,\ell,m);
4 MERGESORT(a,m + 1,r);
5 MERGE(a,\ell,m,r);
6 }
```

```
18937545
```

rekursive Aufrufe von Mergesort

initialer Aufruf:

MERGESORT:

Teile a in zwei Hälften, sortiere die Hälften unabhängig, vereinige die sortierten Hälften

```
// Sortiere a[\ell \dots r]

MERGESORT(int[] a, int \ell, int r)

1 if (\ell < r) {
2 int m = \ell + (r - \ell)/2;
3 MERGESORT(a,\ell,m);
4 MERGESORT(a,m + 1,r);
5 MERGE(a,\ell,m,r);
6 }
```


rekursive Aufrufe von Mergesort

initialer Aufruf:

MERGESORT:

Teile a in zwei Hälften, sortiere die Hälften unabhängig, vereinige die sortierten Hälften

```
// Sortiere a[\ell \dots r]

MERGESORT(int[] a, int \ell, int r)

1 if (\ell < r) {
2 int m = \ell + (r - \ell)/2;
3 MERGESORT(a,\ell,m);
4 MERGESORT(a,m + 1,r);
5 MERGE(a,\ell,m,r);
6 }
```


initialer Aufruf:

MERGESORT:

Teile a in zwei Hälften, sortiere die Hälften unabhängig, vereinige die sortierten Hälften

```
// Sortiere a[\ell \dots r]

MERGESORT(int[] a, int \ell, int r)

1 if (\ell < r) {
2 int m = \ell + (r - \ell)/2;
3 MERGESORT(a,\ell,m);
4 MERGESORT(a,m + 1,r);
5 MERGE(a,\ell,m,r);
6 }
```


initialer Aufruf:

MERGESORT:

Teile a in zwei Hälften, sortiere die Hälften unabhängig, vereinige die sortierten Hälften

```
// Sortiere a[\ell \dots r]
 MERGESORT(int[] a, int \ell, int r)
      if (\ell < r) {
            int m = \ell + (r - \ell)/2;
 3
            MERGESORT(a.\ell.m):
            MERGESORT(a, m + 1, r);
 5
            MERGE(a.\ell.m.r):
 6
```


MERGE

initialer Aufruf:

MERGESORT:

Teile a in zwei Hälften, sortiere die Hälften unabhängig, vereinige die sortierten Hälften

```
// Sortiere a[\ell \dots r]

MERGESORT(int[] a, int \ell, int r)

1 if (\ell < r) {
2 int m = \ell + (r - \ell)/2;
3 MERGESORT(a,\ell,m);
4 MERGESORT(a,m+1,r);
5 MERGE(a,\ell,m,r);
6 }
```


initialer Aufruf:

MERGESORT:

Teile a in zwei Hälften, sortiere die Hälften unabhängig, vereinige die sortierten Hälften

```
// Sortiere a[\ell \dots r]

MERGESORT(int[] a, int \ell, int r)

1 if (\ell < r) {
2 int m = \ell + (r - \ell)/2;
3 MERGESORT(a,\ell,m);
4 MERGESORT(a,m+1,r);
5 MERGE(a,\ell,m,r);
6 }
```

initialer Aufruf:

Mergesort(a, 0, n-1)


```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 1
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 2
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
 4
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m))  {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
       while (iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}
13
```

$$a = \frac{\ell \quad m \quad r}{1|3|8|9|4|5|5|7}$$

13

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 1
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
 3
 4
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m))  {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
```

while $(iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}$

```
a = \frac{\ell \quad m \quad r}{1 \mid 3 \mid 8 \mid 9 \mid 4 \mid 5 \mid 5 \mid 7}
left = \boxed{ }
```

riaht =

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 4
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m))  {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
       while (iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}
13
```

$$a = \frac{\ell \quad m \quad r}{1|3|8|9|4|5|5|7}$$

left = |1|3|8|9|

riaht =

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 1
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
 4
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
       int iL = 0; int iR = 0; int iA = \ell;
 6
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m)) {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
       while (iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}
13
```

$$a = \frac{\ell \quad m \quad r}{1 | 3 | 8 | 9 | 4 | 5 | 5 | 7}$$

left = |1|3|8|9|

 $right = \boxed{4 | 5 | 5 | 7}$

13

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
 4
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
       while ((iL < m - \ell + 1) \&\& (iR < r - m))  {
 7
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
```

while $(iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}$

 $a = \begin{bmatrix} 1 & 3 & 8 & 9 & 4 & 5 & 5 & 7 \end{bmatrix}$ iL $left = \begin{bmatrix} 1 & 3 & 8 & 9 \end{bmatrix}$ iR $right = \begin{bmatrix} 4 & 5 & 5 & 7 \end{bmatrix}$ iA

a =

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
 4
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m))  {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
       while (iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}
13
```

 $a = \boxed{1 \ 3 \ 8 \ 9 \ 4 \ 5 \ 5 \ 7}$ iL $left = \boxed{1 \ 3 \ 8 \ 9}$ iR $right = \boxed{4 \ 5 \ 5 \ 7}$ iA

a =

13

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
 4
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m)) {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
```

while $(iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}$

 $a = \boxed{1 \ 3 \ 8 \ 9 \ 4 \ 5 \ 5 \ 7}$ iL $left = \boxed{1 \ 3 \ 8 \ 9}$ iR $right = \boxed{4 \ 5 \ 5 \ 7}$ iA $a = \boxed{1 \ | \ | \ | \ | \ | \ | \ |}$

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 4
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m))  {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
       while (iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}
13
```

$$iL$$

$$left = \boxed{1 \mid 3 \mid 8 \mid 9}$$

$$iR$$

$$right = \boxed{4 \mid 5 \mid 5 \mid 7}$$

$$iA$$

 $a = \begin{bmatrix} 1 & 3 & 8 & 9 & 4 & 5 \end{bmatrix}$

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
 4
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m)) {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
       while (iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}
13
```

 $a = \begin{bmatrix} 1 & 3 & 8 & 9 & 4 & 5 & 5 & 7 \end{bmatrix}$ iL $left = \begin{bmatrix} 1 & 3 & 8 & 9 \end{bmatrix}$ iR $right = \begin{bmatrix} 4 & 5 & 5 & 7 \end{bmatrix}$ iA

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 4
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m))  {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
       while (iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}
13
```

iL $left = \boxed{1 \ 3 \ 8 \ 9}$ iR $right = \boxed{4 \ 5 \ 5 \ 7}$ iA

 $a = \begin{bmatrix} 1 & 3 & 8 & 9 & 4 & 5 \end{bmatrix}$

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
 4
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m))  {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
            else \{a[iA] = right[iR]; iA++; iR++; \}
 9
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
       while (iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}
13
```

 $a = \begin{bmatrix} 1 & 3 & 8 & 9 & 4 & 5 & 5 \end{bmatrix}$

 $left = \begin{bmatrix} 1 & 3 & 8 & 9 \end{bmatrix}$

right = |4|5|5|7

iΑ

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
 4
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m)) {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
       while (iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}
13
```

 $a = \begin{bmatrix} 1 & 3 & 8 & 9 & 4 & 5 & 5 & 7 \end{bmatrix}$ iL $left = \begin{bmatrix} 1 & 3 & 8 & 9 \end{bmatrix}$ iR $right = \begin{bmatrix} 4 & 5 & 5 & 7 \end{bmatrix}$ iA $a = \begin{bmatrix} 1 & 3 & 4 \end{bmatrix}$

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 4
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m)) {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
       while (iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}
13
```

 $a = \begin{bmatrix} 1 & 3 & 8 & 9 & 4 & 5 & 5 & 7 \end{bmatrix}$ iL $left = \begin{bmatrix} 1 & 3 & 8 & 9 \end{bmatrix}$ iR $right = \begin{bmatrix} 4 & 5 & 5 & 7 \end{bmatrix}$ iA $a = \begin{bmatrix} 1 & 3 & 4 \end{bmatrix}$

13

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
 4
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m)) {
            if (left[iL] \le right[iR]) { a[iA] = left[iL]; iA++; iL++; }
 8
            else \{a[iA] = right[iR]; iA++; iR++; \}
 9
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
```

while $(iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}$

iL $left = \boxed{1 \ 3 \ 8 \ 9}$ iR $right = \boxed{4 \ 5 \ 5 \ 7}$ iA

 $a = \begin{bmatrix} 1 & 3 & 8 & 9 & 4 & 5 & 5 \end{bmatrix}$

a = |1|3|4

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
 4
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m)) {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
       while (iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}
13
```

$$iL$$

$$left = \boxed{1 \ 3 \ 8 \ 9}$$

$$iR$$

$$right = \boxed{4 \ 5 \ 5 \ 7}$$

$$iA$$

 $a = \begin{bmatrix} 1 & 3 & 8 & 9 & 4 & 5 \end{bmatrix}$

a = |1|3|4|5

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 4
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m)) {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
       while (iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}
13
```

$$a = \boxed{1 \ 3 \ 8 \ 9 \ 4 \ 5 \ 5 \ 7}$$

$$iL$$

$$left = \boxed{1 \ 3 \ 8 \ 9}$$

$$iR$$

$$right = \boxed{4 \ 5 \ 5 \ 7}$$

$$iA$$

a = |1|3|4|5

13

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
 4
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m)) {
            if (left[iL] \le right[iR]) { a[iA] = left[iL]; iA++; iL++; }
 8
            else \{a[iA] = right[iR]; iA++; iR++; \}
 9
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
```

while $(iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}$

```
a = \boxed{1 \ 3 \ 8 \ 9 \ 4 \ 5 \ 5 \ 7}
iL
left = \boxed{1 \ 3 \ 8 \ 9}
iR
right = \boxed{4 \ 5 \ 5 \ 7}
iA
a = \boxed{1 \ 3 \ 4 \ 5 \ }
```

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
 4
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m)) {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
       while (iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}
13
```

a = 13894557 iL left = 1389 iR right = 4557

a = |1|3|4|5|5

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 4
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m)) {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
       while (iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}
13
```

 $a = \begin{bmatrix} 1 & 3 & 8 & 9 & 4 & 5 & 5 \end{bmatrix}$

left = 1 | 3 | 8 | 9

right = 4 | 5 | 5 | 7

a = |1|3|4|5|5

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 4
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m)) {
            if (left[iL] \le right[iR]) { a[iA] = left[iL]; iA++; iL++; }
 8
            else \{a[iA] = right[iR]; iA++; iR++; \}
 9
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
       while (iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}
13
```

a = 13894557 iL left = 1389 iR right = 4557

a = |1|3|4|5|5

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
 4
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m)) {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
       while (iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}
13
```

 $a = \begin{bmatrix} 1 & 3 & 8 & 9 & 4 & 5 & 5 \end{bmatrix}$

iR

iΑ

 $left = \begin{bmatrix} 1 & 3 & 8 & 9 \end{bmatrix}$

right = |4|5|5|7

a = |1|3|4|5|5

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
 4
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
       while ((iL < m - \ell + 1) \&\& (iR < r - m)) {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
       while (iL < m - \ell + 1) \{ a[iA] = Ieft[iL]; iA++; iL++; \}
12
       while (iR < r - m) \{ a[iA] = right[iR]; iA++; iR++; \}
13
```

 $a = \begin{bmatrix} 1 & 3 & 8 & 9 & 4 & 5 & 5 \end{bmatrix}$

iR

iΑ

 $left = \begin{bmatrix} 1 & 3 & 8 & 9 \end{bmatrix}$

right = |4|5|5|7

a = |1|3|4|5|5

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 4
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
       while ((iL < m - \ell + 1) \&\& (iR < r - m)) {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
       while (iL < m - \ell + 1) \{ a[iA] = Ieft[iL]; iA++; iL++; \}
12
       while (iR < r - m) \{ a[iA] = right[iR]; iA++; iR++; \}
13
```

$$a = \begin{bmatrix} 1 & 3 & 8 & 9 & 4 & 5 & 5 \end{bmatrix}$$

$$iL$$

$$left = \begin{bmatrix} 1 & 3 & 8 & 9 \end{bmatrix}$$

$$iR$$

$$right = \begin{bmatrix} 4 & 5 & 5 & 7 \end{bmatrix}$$

a = |1|3|4|5|5|7|8

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
 4
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
       while ((iL < m - \ell + 1) \&\& (iR < r - m)) {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
       while (iL < m - \ell + 1) \{ a[iA] = Ieft[iL]; iA++; iL++; \}
12
       while (iR < r - m) \{ a[iA] = right[iR]; iA++; iR++; \}
13
```

$$a = 1389455$$
 iL
 $left = 1389$
 iR
 $right = 4557$

a = |1|3|4|5|5|7|8|9

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 4
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
       while ((iL < m - \ell + 1) \&\& (iR < r - m)) {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL]; iA++; iL++; \}
       while (iR < r - m) \{ a[iA] = right[iR]; iA++; iR++; \}
13
```

$$a = \boxed{1389455}$$
 iL
 $left = \boxed{1389}$
 iB

a = |1|3|4|5|5|7|8|9

right = |4|5|5|7

```
MERGE(int[] a, int \ell, int m, int r)
      // Kopiere die beiden sortierten Teilfelder in left und right.
 1
 2
       int[] left = new int[m - \ell + 1]; int[] right = new int[r - m];
 3
       for (int i = 0; i < m - \ell + 1; i++) { left[i] = a[\ell + i]; }
 4
       for (int i = 0; i < r - m; i++) { right[i] = a[m+1+i]; }
 5
      // Solange beide Teilfelder noch Elemente enthalten, füge sie in a ein.
 6
       int iL = 0: int iR = 0: int iA = \ell:
 7
       while ((iL < m - \ell + 1) \&\& (iR < r - m)) {
            if (left[iL] \le right[iR]) \{ a[iA] = left[iL]; iA++; iL++; \}
 8
 9
            else \{a[iA] = right[iR]; iA++; iR++; \}
10
11
      // Füge die übrig gebliebenen Elemente eines Teilfeldes in a ein.
12
       while (iL < m - \ell + 1) \{ a[iA] = left[iL] : iA++: iL++: \}
       while (iR < r - m) \{ a[iA] = right[iR] : iA++: iR++: \}
13
```

 $a = \begin{bmatrix} 1 & 3 & 8 & 9 & 4 & 5 & 5 \end{bmatrix}$

iR

 $left = \begin{bmatrix} 1 & 3 & 8 & 9 \end{bmatrix}$

right = |4|5|5|7

a = |1|3|4|5|5|7|8|9

Laufzeit von MERGESORT

```
MERGESORT(int[] a, int \ell, int r)

1 if (\ell < r) {
2 int m = \ell + (r - \ell)/2;
3 MERGESORT(a,\ell,m);
4 MERGESORT(a,m + 1,r);
5 MERGE(a,\ell,m,r);
6 }
```

```
T(n) = Worst-Case-Laufzeit von
MERGESORT für Eingaben
mit n Zahlen
```

Laufzeit von MERGESORT

```
\begin{array}{ll} \text{MERGESORT}(\text{int}[\ ]\ a,\, \text{int}\ \ell,\, \text{int}\ r) \\ 1 & \text{if}\ (\ell < r)\ \{ \\ 2 & \text{int}\ m = \ell + (r-\ell)/2; \\ 3 & \text{MERGESORT}(a,\ell,m); \\ 4 & \text{MERGESORT}(a,m+1,r); \\ 5 & \text{MERGE}(a,\ell,m,r); \\ 6 & \} \end{array}
```

T(n) = Worst-Case-Laufzeit von
MERGESORT für Eingaben
mit n Zahlen

Es gilt: $T(n) \leq 2 \cdot T(n/2) + \text{Laufzeit von MERGE}$

Laufzeit von MERGESORT

```
\begin{array}{ll} \text{MERGESORT}(\textbf{int[]} \ a, \ \textbf{int} \ \ell, \ \textbf{int} \ r) \\ 1 & \textbf{if} \ (\ell < r) \ \{ \\ 2 & \textbf{int} \ m = \ell + (r - \ell)/2; \\ 3 & \text{MERGESORT}(a, \ell, m); \\ 4 & \text{MERGESORT}(a, m + 1, r); \\ 5 & \text{MERGE}(a, \ell, m, r); \\ 6 & \} \end{array}
```

T(n) = Worst-Case-Laufzeit von
MERGESORT für Eingaben
mit n Zahlen

Es gilt:

$$T(n) \le 2 \cdot T(n/2) + \text{Laufzeit von MERGE}$$

Laufzeit von MERGE: O(n) für n Zahlen

Laufzeit von MERGESORT

```
MERGESORT(int[] a, int \ell, int r)

1 if (\ell < r) {
2 int m = \ell + (r - \ell)/2;
3 MERGESORT(a,\ell,m);
4 MERGESORT(a,m+1,r);
5 MERGE(a,\ell,m,r);
6 }
```

Es gilt:

$$T(n) \le 2 \cdot T(n/2) + \text{Laufzeit von MERGE}$$

Laufzeit von MERGE: O(n) für n Zahlen

$$\Rightarrow T(n) \le 2 \cdot T(n/2) + cn$$
 für geeignete Konstante c

Laufzeit von MERGESORT

```
MERGESORT(int[] a, int \ell, int r)

1 if (\ell < r) {
2 int m = \ell + (r - \ell)/2;
3 MERGESORT(a,\ell,m);
4 MERGESORT(a,m+1,r);
5 MERGE(a,\ell,m,r);
6 }
```

Es gilt:

$$T(n) \le 2 \cdot T(n/2) + \text{Laufzeit von MERGE}$$

Laufzeit von MERGE: O(n) für n Zahlen

$$\Rightarrow T(n) \le 2 \cdot T(n/2) + cn$$
 für geeignete Konstante c

Außerdem
$$T(1) \leq c$$

Theorem 2.2

Die Laufzeit von MERGESORT liegt in $O(n \log n)$.

Theorem 2.2

Die Laufzeit von MERGESORT liegt in $O(n \log n)$.

Beweis:

Wir betrachten nur $n = 2^k$ für ein k.

Theorem 2.2

Die Laufzeit von MERGESORT liegt in $O(n \log n)$.

Beweis:

Wir betrachten nur $n = 2^k$ für ein k.

zu zeigen: $\exists n_0 \in \mathbb{N} : \exists c^* \in \mathbb{R} : \forall n \geq n_0 : T(n) \leq c^* \cdot n \log_2(n)$

Theorem 2.2

Die Laufzeit von MERGESORT liegt in $O(n \log n)$.

Beweis:

Wir betrachten nur $n = 2^k$ für ein k.

zu zeigen:
$$\exists n_0 \in \mathbb{N} : \exists c^\star \in \mathbb{R} : \forall n \geq n_0 : T(n) \leq c^\star \cdot n \log_2(n)$$

Wegen $log_2(1) = 0$ setzen wir $n_0 = 2$.

Theorem 2.2

Die Laufzeit von MERGESORT liegt in $O(n \log n)$.

Beweis:

Wir betrachten nur $n = 2^k$ für ein k.

zu zeigen:
$$\exists n_0 \in \mathbb{N} : \exists c^* \in \mathbb{R} : \forall n \geq n_0 : T(n) \leq c^* \cdot n \log_2(n)$$

Wegen $log_2(1) = 0$ setzen wir $n_0 = 2$.

Induktionsanfang: $T(2) \le c^* \cdot 2 \log_2(2)$ gilt für hinreichend großes c^* .

Induktionsschritt:

Induktionsschritt:

$$T(n) \leq 2 \cdot T(n/2) + cn$$

Induktionsschritt:

$$T(n) \le 2 \cdot T(n/2) + cn$$

 $\le 2 \cdot (c^* \cdot (n/2) \cdot \log_2(n/2)) + cn$

Induktionsschritt:

$$T(n) \le 2 \cdot T(n/2) + cn$$

 $\le 2 \cdot (c^* \cdot (n/2) \cdot \log_2(n/2)) + cn$
 $= c^* \cdot n \log_2(n/2) + cn$

Induktionsschritt:

$$T(n) \le 2 \cdot T(n/2) + cn$$

 $\le 2 \cdot (c^* \cdot (n/2) \cdot \log_2(n/2)) + cn$
 $= c^* \cdot n \log_2(n/2) + cn$
 $= c^* \cdot n(\log_2(n) - 1) + cn$

Induktionsschritt:

$$T(n) \le 2 \cdot T(n/2) + cn$$

 $\le 2 \cdot (c^* \cdot (n/2) \cdot \log_2(n/2)) + cn$
 $= c^* \cdot n \log_2(n/2) + cn$
 $= c^* \cdot n (\log_2(n) - 1) + cn$
 $= c^* \cdot n \log_2(n) - c^*n + cn$

Induktionsschritt:

Sei $n=2^k$ für k>1. Induktionsannahme $T(n/2)\leq c^{\star}\cdot (n/2)\log_2(n/2)$.

$$T(n) \le 2 \cdot T(n/2) + cn$$

 $\le 2 \cdot (c^* \cdot (n/2) \cdot \log_2(n/2)) + cn$
 $= c^* \cdot n \log_2(n/2) + cn$
 $= c^* \cdot n(\log_2(n) - 1) + cn$
 $= c^* \cdot n \log_2(n) - c^* n + cn$
 $\le c^* \cdot n \log_2(n)$

für c^* ≥ c

Induktionsschritt:

Sei $n=2^k$ für k>1. Induktionsannahme $T(n/2)\leq c^{\star}\cdot (n/2)\log_2(n/2)$.

$$T(n) \le 2 \cdot T(n/2) + cn$$

 $\le 2 \cdot (c^* \cdot (n/2) \cdot \log_2(n/2)) + cn$
 $= c^* \cdot n \log_2(n/2) + cn$
 $= c^* \cdot n(\log_2(n) - 1) + cn$
 $= c^* \cdot n \log_2(n) - c^*n + cn$
 $\le c^* \cdot n \log_2(n)$

für
$$c^{\star}$$
 ≥ c

Analog kann man auch $T(n) = \Omega(n \log n)$ argumentieren.

Falscher "Beweis" für T(n) = O(n):

Falscher "Beweis" für T(n) = O(n):

Induktionsanfang: T(1) = O(1)

Falscher "Beweis" für T(n) = O(n):

Induktionsanfang: T(1) = O(1)

Induktionsschritt: Sei $n = 2^k$ für ein $k \in \mathbb{N}$.

Induktionsannahme: $T(n/2) \le O(n/2)$

```
Falscher "Beweis" für T(n) = O(n):
Induktionsanfang: T(1) = O(1)
Induktionsschritt: Sei n = 2^k für ein k \in \mathbb{N}.
Induktionsannahme: T(n/2) \le O(n/2)
                                T(n) \leq 2T(n/2) + cn
                                     = O(n/2) + O(n)
                                     = O(n) + O(n)
                                     = O(n)
```

2.1.1 Mergesort

Falscher "Beweis" für
$$T(n) = O(n)$$
:

Induktionsanfang:
$$T(1) = O(1)$$

Induktionsschritt: Sei $n = 2^k$ für ein $k \in \mathbb{N}$.

Induktionsannahme: $T(n/2) \le O(n/2)$

$$T(n) \le 2T(n/2) + cn$$

$$= O(n/2) + O(n)$$

$$= O(n) + O(n)$$

$$= O(n)$$

Achtung: Dies zeigt lediglich die triviale Aussage

$$\exists n_0 \in \mathbb{N} : \forall n \geq n_0 : \exists c \in \mathbb{R} : T(n) \leq cn.$$

Matrixmultiplikation

Seien $A = (a_{ij})$ und $B = (b_{ij})$ reelle $n \times n$ -Matrizen und sei $C = A \cdot B$.

C ist ebenfalls $n \times n$ -Matrix $C = (c_{ij})$ mit

$$\forall i,j \in \{1,\ldots,n\} : \mathbf{c}_{ij} = \sum_{k=1}^{n} \mathbf{a}_{ik} \mathbf{b}_{kj}.$$

Matrixmultiplikation

Seien $A = (a_{ij})$ und $B = (b_{ij})$ reelle $n \times n$ -Matrizen und sei $C = A \cdot B$.

C ist ebenfalls $n \times n$ -Matrix $C = (c_{ij})$ mit

$$\forall i,j \in \{1,\ldots,n\} : \mathbf{c_{ij}} = \sum_{k=1}^{n} \mathbf{a_{ik}b_{kj}}.$$

Einfacher Algorithmus: Berechne *C* direkt gemäß Definition.

Matrixmultiplikation

Seien $A = (a_{ij})$ und $B = (b_{ij})$ reelle $n \times n$ -Matrizen und sei $C = A \cdot B$.

C ist ebenfalls $n \times n$ -Matrix $C = (c_{ij})$ mit

$$\forall i,j \in \{1,\ldots,n\} : \mathbf{c_{ij}} = \sum_{k=1}^{n} \mathbf{a_{ik}b_{kj}}.$$

Einfacher Algorithmus: Berechne C direkt gemäß Definition.

Laufzeit $\Theta(n^3)$

Divide-and-Conquer-Algorithmus SIMPLEPRODUCT:

Divide-and-Conquer-Algorithmus SIMPLEPRODUCT:

Zerlege *A*, *B*, *C* jeweils in vier $(n/2) \times (n/2)$ -Teilmatrizen:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \qquad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \qquad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

Divide-and-Conquer-Algorithmus SIMPLEPRODUCT:

Zerlege *A*, *B*, *C* jeweils in vier $(n/2) \times (n/2)$ -Teilmatrizen:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \qquad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \qquad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

Für diese Matrizen gilt:

$$\begin{aligned} C_{11} &= A_{11} \cdot B_{11} + A_{12} \cdot B_{21}, & C_{12} &= A_{11} \cdot B_{12} + A_{12} \cdot B_{22}, \\ C_{21} &= A_{21} \cdot B_{11} + A_{22} \cdot B_{21}, & C_{22} &= A_{21} \cdot B_{12} + A_{22} \cdot B_{22}. \end{aligned}$$

Divide-and-Conquer-Algorithmus SIMPLEPRODUCT:

Zerlege *A*, *B*, *C* jeweils in vier $(n/2) \times (n/2)$ -Teilmatrizen:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \qquad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \qquad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

Für diese Matrizen gilt:

$$\begin{aligned} C_{11} &= A_{11} \cdot B_{11} + A_{12} \cdot B_{21}, & C_{12} &= A_{11} \cdot B_{12} + A_{12} \cdot B_{22}, \\ C_{21} &= A_{21} \cdot B_{11} + A_{22} \cdot B_{21}, & C_{22} &= A_{21} \cdot B_{12} + A_{22} \cdot B_{22}. \end{aligned}$$

SIMPLEPRODUCT: Berechne C_{11} , C_{12} , C_{21} , C_{22} gemäß dieser Formeln.

Divide-and-Conquer-Algorithmus SIMPLEPRODUCT:

Zerlege A, B, C jeweils in vier $(n/2) \times (n/2)$ -Teilmatrizen:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \qquad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \qquad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

Für diese Matrizen gilt:

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21},$$
 $C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22},$ $C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21},$ $C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}.$

SIMPLEPRODUCT: Berechne C_{11} , C_{12} , C_{21} , C_{22} gemäß dieser Formeln.

Laufzeit:

$$T(n) = egin{cases} \Theta(1) & ext{falls } n = 1, \ 8T(n/2) + \Theta(n^2) & ext{falls } n = 2^k ext{ für } k \in \mathbb{N}. \end{cases}$$

STRASSEN(A,B)

- 1 Falls n = 1: berechne $A \cdot B$ mit einer Multiplikation und gib das Ergebnis zurück.
- 2 Ansonsten zerlege A und B wie oben beschrieben in jeweils vier $(n/2) \times (n/2)$ -Matrizen A_{ij} und B_{ij} .
- 3 Berechne die folgenden zehn $(n/2) \times (n/2)$ -Matrizen:

$$S_1 = B_{12} - B_{22},$$
 $S_2 = A_{11} + A_{12},$ $S_3 = A_{21} + A_{22},$ $S_4 = B_{21} - B_{11},$ $S_5 = A_{11} + A_{22},$ $S_6 = B_{11} + B_{22}$ $S_7 = A_{12} - A_{22},$ $S_8 = B_{21} + B_{22},$ $S_9 = A_{11} - A_{21},$ $S_{10} = B_{11} + B_{12}.$

4 Berechne rekursiv die folgenden Produkte von $(n/2) \times (n/2)$ -Matrizen:

$$P_1 = A_{11} \cdot S_1,$$
 $P_2 = S_2 \cdot B_{22},$ $P_3 = S_3 \cdot B_{11},$ $P_4 = A_{22} \cdot S_4,$ $P_5 = S_5 \cdot S_6,$ $P_6 = S_7 \cdot S_8,$ $P_7 = S_9 \cdot S_{10}.$

5 Berechne die Teilmatrizen von *C* wie folgt:

$$C_{11} = P_5 + P_4 - P_2 + P_6,$$
 $C_{12} = P_1 + P_2,$ $C_{21} = P_3 + P_4,$ $C_{22} = P_5 + P_1 - P_3 - P_7.$

Laufzeit von STRASSEN:

$$T(n) = egin{cases} \Theta(1) & ext{falls } n = 1, \ 7T(n/2) + \Theta(n^2) & ext{falls } n = 2^k ext{ für } k \in \mathbb{N}. \end{cases}$$

Laufzeit von STRASSEN:

$$T(n) = egin{cases} \Theta(1) & ext{falls } n = 1, \ 7T(n/2) + \Theta(n^2) & ext{falls } n = 2^k ext{ für } k \in \mathbb{N}. \end{cases}$$

Laufzeit von SIMPLEPRODUCT:

$$T(n) = egin{cases} \Theta(1) & ext{falls } n = 1, \ 8T(n/2) + \Theta(n^2) & ext{falls } n = 2^k ext{ für } k \in \mathbb{N}. \end{cases}$$

Laufzeit von STRASSEN:

$$T(n) = egin{cases} \Theta(1) & ext{falls } n = 1, \ 7T(n/2) + \Theta(n^2) & ext{falls } n = 2^k ext{ für } k \in \mathbb{N}. \end{cases}$$

Laufzeit von SIMPLEPRODUCT:

$$T(n) = egin{cases} \Theta(1) & ext{falls } n = 1, \ 8T(n/2) + \Theta(n^2) & ext{falls } n = 2^k ext{ für } k \in \mathbb{N}. \end{cases}$$

Lösung der Rekursionsgleichung: $T(n) = \Theta(n^3)$

Laufzeit von STRASSEN:

$$T(n) = egin{cases} \Theta(1) & ext{falls } n = 1, \ 7T(n/2) + \Theta(n^2) & ext{falls } n = 2^k ext{ für } k \in \mathbb{N}. \end{cases}$$

Lösung der Rekursionsgleichung: $T(n) = \Theta(n^{\log_2 7}) = O(n^{2,81})$

Laufzeit von SIMPLEPRODUCT:

$$T(n) = egin{cases} \Theta(1) & ext{falls } n = 1, \ 8T(n/2) + \Theta(n^2) & ext{falls } n = 2^k ext{ für } k \in \mathbb{N}. \end{cases}$$

Lösung der Rekursionsgleichung: $T(n) = \Theta(n^3)$

Rekursionsgleichungen für die Laufzeiten der betrachteten Algorithmen:

BINARYSEARCH:
$$T(n) = T(n/2) + \Theta(1)$$
,

MERGESORT:
$$T(n) = 2T(n/2) + \Theta(n)$$
,

SIMPLEPRODUCT:
$$T(n) = 8T(n/2) + \Theta(n^2)$$
,

STRASSEN:
$$T(n) = 7T(n/2) + \Theta(n^2)$$
.

Rekursionsbaum von MERGESORT: $T(n) = 2T(n/2) + \Theta(n)$

Addition der Laufzeiten aller Knoten:

$$T(n) \leq \sum_{i=0}^{\log_2 n} 2^i \cdot \frac{cr}{2^i}$$

Rekursionsbaum von MERGESORT: $T(n) = 2T(n/2) + \Theta(n)$

Addition der Laufzeiten aller Knoten:

$$T(n) \leq \sum_{i=0}^{\log_2 n} 2^i \cdot \frac{cn}{2^i}$$
$$= cn \sum_{i=0}^{\log_2 n} 1$$
$$= cn(\log_2 n + 1).$$

Rekursionsbaum von MERGESORT: $T(n) = 2T(n/2) + \Theta(n)$

Addition der Laufzeiten aller Knoten:

$$T(n) \le \sum_{i=0}^{\log_2 n} 2^i \cdot \frac{cn}{2^i}$$

$$= cn \sum_{i=0}^{\log_2 n} 1$$

$$= cn(\log_2 n + 1).$$

$$\Rightarrow T(n) = O(n \log n)$$

Rekursionsbaum von SIMPLEPRODUCT:

$$T(n) = 8T(n/2) + \Theta(n^2)$$

Rekursionsbaum von SIMPLEPRODUCT:

$$T(n) = 8T(n/2) + \Theta(n^2)$$

Höhe: $\log_2(n)$

Teilprobleme auf Level i: 8ⁱ

Rekursionsbaum von SIMPLEPRODUCT:

$$T(n) = 8T(n/2) + \Theta(n^2)$$

Höhe: $\log_2(n)$

Teilprobleme auf Level i: 8ⁱ

$$T(n) \leq \sum_{i=0}^{\log_2 n} 8^i \cdot c \left(\frac{n}{2^i}\right)^2$$

Rekursionsbaum von SIMPLEPRODUCT:

$$T(n) = 8T(n/2) + \Theta(n^2)$$

Höhe: $log_2(n)$

Teilprobleme auf Level i: 8ⁱ

$$T(n) \le \sum_{i=0}^{\log_2 n} 8^i \cdot c \left(\frac{n}{2^i}\right)^2$$
$$= cn^2 \sum_{i=0}^{\log_2 n} \frac{8^i}{2^{2i}}$$
$$= cn^2 \sum_{i=0}^{\log_2 n} 2^i$$

Rekursionsbaum von SIMPLEPRODUCT:

$$T(n) = 8T(n/2) + \Theta(n^2)$$

Höhe: $\log_2(n)$

Teilprobleme auf Level i: 8ⁱ

$$T(n) \le \sum_{i=0}^{\log_2 n} 8^i \cdot c \left(\frac{n}{2^i}\right)^2$$

$$= cn^2 \sum_{i=0}^{\log_2 n} \frac{8^i}{2^{2i}}$$

$$= cn^2 \sum_{i=0}^{\log_2 n} 2^i$$

$$= cn^2 (2^{\log_2(n)+1} - 1)$$

$$= O(n^3)$$

Rekursionsbaum von STRASSEN:

$$T(n) = 7T(n/2) + \Theta(n^2)$$

Rekursionsbaum von STRASSEN:

$$T(n) = 7T(n/2) + \Theta(n^2)$$

Höhe: $\log_2(n)$

Teilprobleme auf Level i: 7ⁱ

Rekursionsbaum von STRASSEN:

$$T(n) = 7T(n/2) + \Theta(n^2)$$

Höhe: $\log_2(n)$

Teilprobleme auf Level i: 7ⁱ

$$T(n) \leq \sum_{i=0}^{\log_2 n} 7^i \cdot c \left(\frac{n}{2^i}\right)^2$$

Rekursionsbaum von STRASSEN:

$$T(n) = 7T(n/2) + \Theta(n^2)$$

Höhe: $\log_2(n)$

Teilprobleme auf Level i: 7ⁱ

$$T(n) \le \sum_{i=0}^{\log_2 n} 7^i \cdot c \left(\frac{n}{2^i}\right)^2 = cn^2 \sum_{i=0}^{\log_2 n} \frac{7^i}{2^{2i}}$$
$$= cn^2 \sum_{i=0}^{\log_2 n} \left(\frac{7}{4}\right)^i$$

Rekursionsbaum von STRASSEN:

$$T(n) = 7T(n/2) + \Theta(n^2)$$

Höhe: $\log_2(n)$

Teilprobleme auf Level i: 7ⁱ

$$T(n) \le \sum_{i=0}^{\log_2 n} 7^i \cdot c \left(\frac{n}{2^i}\right)^2 = cn^2 \sum_{i=0}^{\log_2 n} \frac{7^i}{2^{2i}}$$
$$= cn^2 \sum_{i=0}^{\log_2 n} \left(\frac{7}{4}\right)^i = cn^2 \frac{\left(\frac{7}{4}\right)^{\log_2(n)+1} - 1}{\left(\frac{7}{4}\right) - 1}$$

$$\sum_{i=0}^{n} q^{i} = \frac{q^{n+1}-1}{q-1}$$
 für $q > 1$ und $n \in \mathbb{N}$

Rekursionsbaum von STRASSEN:

$$T(n) = 7T(n/2) + \Theta(n^2)$$

Höhe: $\log_2(n)$

Teilprobleme auf Level i: 7ⁱ

$$T(n) \le \sum_{i=0}^{\log_2 n} 7^i \cdot c \left(\frac{n}{2^i}\right)^2 = cn^2 \sum_{i=0}^{\log_2 n} \frac{7^i}{2^{2i}}$$

$$= cn^2 \sum_{i=0}^{\log_2 n} \left(\frac{7}{4}\right)^i = cn^2 \frac{\left(\frac{7}{4}\right)^{\log_2(n)+1} - 1}{\left(\frac{7}{4}\right) - 1}$$

$$= O\left(n^2 \left(\frac{7}{4}\right)^{\log_2 n}\right)$$

$$\sum_{i=0}^n q^i = rac{q^{n+1}-1}{q-1}$$
 für $q>1$ und $n\in\mathbb{N}$

Rekursionsbaum von STRASSEN:

$$T(n) = 7T(n/2) + \Theta(n^2)$$

Höhe: $\log_2(n)$

Teilprobleme auf Level i: 7ⁱ

$$T(n) \leq \sum_{i=0}^{\log_2 n} 7^i \cdot c \left(\frac{n}{2^i}\right)^2 = cn^2 \sum_{i=0}^{\log_2 n} \frac{7^i}{2^{2i}}$$

$$= cn^2 \sum_{i=0}^{\log_2 n} \left(\frac{7}{4}\right)^i = cn^2 \frac{\left(\frac{7}{4}\right)^{\log_2(n)+1} - 1}{\left(\frac{7}{4}\right) - 1}$$

$$= O\left(n^2 \left(\frac{7}{4}\right)^{\log_2 n}\right) = O(n^2 n^{\log_2(7/4)})$$

$$\sum_{i=0}^{n} q^{i} = \frac{q^{n+1}-1}{q-1} \text{ für } q > 1 \text{ und } n \in \mathbb{N}$$

$$a^{\log_2 b} = b^{\log_2 a} \text{ für } a, b > 1$$

Rekursionsbaum von STRASSEN:

$$T(n) = 7T(n/2) + \Theta(n^2)$$

Höhe: $log_2(n)$

Teilprobleme auf Level i: 7ⁱ

$$T(n) \leq \sum_{i=0}^{\log_2 n} 7^i \cdot c \left(\frac{n}{2^i}\right)^2 = cn^2 \sum_{i=0}^{\log_2 n} \frac{7^i}{2^{2i}}$$

$$= cn^2 \sum_{i=0}^{\log_2 n} \left(\frac{7}{4}\right)^i = cn^2 \frac{\left(\frac{7}{4}\right)^{\log_2(n)+1} - 1}{\left(\frac{7}{4}\right) - 1}$$

$$= O\left(n^2 \left(\frac{7}{4}\right)^{\log_2 n}\right) = O(n^2 n^{\log_2(7/4)})$$

$$= O(n^2 n^{\log_2(7) - 2})$$

$$= O(n^{\log_2 7}).$$

$$\sum_{i=0}^{n} q^{i} = \frac{q^{n+1}-1}{q-1} \text{ für } q > 1 \text{ und } n \in \mathbb{N}$$

$$a^{\log_2 b} = b^{\log_2 a} \text{ für } a, b > 1$$

Theorem 2.3

Seien $a \ge 1$ und b > 1 und $f: \mathbb{N} \to \mathbb{R}_{\ge 0}$.

Sei $T: \mathbb{N} \to \mathbb{R}$ mit $T(1) = \Theta(1)$ und für $n \ge 2$

$$T(n) = aT(n/b) + f(n).$$

Dabei steht n/b entweder für $\lceil n/b \rceil$ oder $\lfloor n/b \rfloor$.

Theorem 2.3

Seien $a \ge 1$ und b > 1 und $f: \mathbb{N} \to \mathbb{R}_{>0}$.

Sei $T: \mathbb{N} \to \mathbb{R}$ mit $T(1) = \Theta(1)$ und für $n \geq 2$

$$T(n) = aT(n/b) + f(n).$$

Dabei steht n/b entweder für $\lceil n/b \rceil$ oder $\lfloor n/b \rfloor$.

1. Falls $f(n) = O(n^{\log_b a - \varepsilon})$ für eine Konstante $\varepsilon > 0$ gilt, so gilt $T(n) = \Theta(n^{\log_b a})$.

Theorem 2.3

Seien $a \ge 1$ und b > 1 und $f: \mathbb{N} \to \mathbb{R}_{>0}$.

Sei $T: \mathbb{N} \to \mathbb{R}$ mit $T(1) = \Theta(1)$ und für $n \ge 2$

$$T(n) = aT(n/b) + f(n).$$

Dabei steht n/b entweder für $\lceil n/b \rceil$ oder $\lfloor n/b \rfloor$.

- 1. Falls $f(n) = O(n^{\log_b a \varepsilon})$ für eine Konstante $\varepsilon > 0$ gilt, so gilt $T(n) = \Theta(n^{\log_b a})$.
- 2. Falls $f(n) = \Theta(n^{\log_b a})$ gilt, so gilt $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.

Theorem 2.3

Seien $a \ge 1$ und b > 1 und $f: \mathbb{N} \to \mathbb{R}_{>0}$.

Sei $T: \mathbb{N} \to \mathbb{R}$ mit $T(1) = \Theta(1)$ und für $n \ge 2$

$$T(n) = aT(n/b) + f(n).$$

Dabei steht n/b entweder für $\lceil n/b \rceil$ oder $\lfloor n/b \rfloor$.

- 1. Falls $f(n) = O(n^{\log_b a \varepsilon})$ für eine Konstante $\varepsilon > 0$ gilt, so gilt $T(n) = \Theta(n^{\log_b a})$.
- 2. Falls $f(n) = \Theta(n^{\log_b a})$ gilt, so gilt $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.
- 3. Falls $f(n) = \Omega(n^{\log_b a + \varepsilon})$ für eine Konstante $\varepsilon > 0$ und $af(n/b) \le cf(n)$ für eine Konstante c < 1 und alle hinreichend großen n gilt, so gilt $T(n) = \Theta(f(n))$.

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

1. Falls $f(n) = O(n^{\log_b a - \varepsilon})$ für eine Konstante $\varepsilon > 0$ gilt, so gilt $T(n) = \Theta(n^{\log_b a})$.

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

1. Falls $f(n) = O(n^{\log_b a - \varepsilon})$ für eine Konstante $\varepsilon > 0$ gilt, so gilt $T(n) = \Theta(n^{\log_b a})$.

Beispiele

• $T(n) = 8T(n/2) + \Theta(n^2)$ (Rekursionsgleichung von SIMPLEPRODUCT)

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

1. Falls $f(n) = O(n^{\log_b a - \varepsilon})$ für eine Konstante $\varepsilon > 0$ gilt, so gilt $T(n) = \Theta(n^{\log_b a})$.

Beispiele

• $T(n) = 8T(n/2) + \Theta(n^2)$ (Rekursionsgleichung von SIMPLEPRODUCT) Es gilt a = 8 und b = 2 und $f(n) = n^2$.

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

1. Falls $f(n) = O(n^{\log_b a - \varepsilon})$ für eine Konstante $\varepsilon > 0$ gilt, so gilt $T(n) = \Theta(n^{\log_b a})$.

Beispiele

• $T(n) = 8T(n/2) + \Theta(n^2)$ (Rekursionsgleichung von SIMPLEPRODUCT)

Es gilt a = 8 und b = 2 und $f(n) = n^2$.

Damit gilt $n^{\log_b a} = n^3$ und $f(n) = n^2 = O(n^{\log_b a - \varepsilon})$ für $\varepsilon = 1$.

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

1. Falls $f(n) = O(n^{\log_b a - \varepsilon})$ für eine Konstante $\varepsilon > 0$ gilt, so gilt $T(n) = \Theta(n^{\log_b a})$.

•
$$T(n) = 8T(n/2) + \Theta(n^2)$$

(Rekursionsgleichung von SIMPLEPRODUCT)
Es gilt $a = 8$ und $b = 2$ und $f(n) = n^2$.
Damit gilt $n^{\log_b a} = n^3$ und $f(n) = n^2 = O(n^{\log_b a - \varepsilon})$ für $\varepsilon = 1$.
 $\Rightarrow T(n) = \Theta(n^{\log_b a}) = \Theta(n^3)$

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

2. Falls
$$f(n) = \Theta(n^{\log_b a})$$
 gilt, so gilt $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

2. Falls
$$f(n) = \Theta(n^{\log_b a})$$
 gilt, so gilt $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.

•
$$T(n) = kT(n/k) + n$$
 für $k \in \mathbb{N}$ mit $k \ge 2$

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

2. Falls
$$f(n) = \Theta(n^{\log_b a})$$
 gilt, so gilt $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.

•
$$T(n) = kT(n/k) + n$$
 für $k \in \mathbb{N}$ mit $k \ge 2$
Es gilt $a = b = k$ und $f(n) = n$.

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

2. Falls $f(n) = \Theta(n^{\log_b a})$ gilt, so gilt $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.

Beispiele

• T(n) = kT(n/k) + n für $k \in \mathbb{N}$ mit $k \ge 2$

Es gilt a = b = k und f(n) = n.

Damit gilt $n^{\log_b a} = n$ und $f(n) = n = \Theta(n^{\log_b a})$.

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

2. Falls
$$f(n) = \Theta(n^{\log_b a})$$
 gilt, so gilt $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.

•
$$T(n) = kT(n/k) + n$$
 für $k \in \mathbb{N}$ mit $k \ge 2$

Es gilt
$$a = b = k$$
 und $f(n) = n$.

Damit gilt
$$n^{\log_b a} = n$$
 und $f(n) = n = \Theta(n^{\log_b a})$.

$$\Rightarrow T(n) = \Theta(n \log n).$$

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

2. Falls $f(n) = \Theta(n^{\log_b a})$ gilt, so gilt $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.

•
$$T(n) = kT(n/k) + n$$
 für $k \in \mathbb{N}$ mit $k \ge 2$
Es gilt $a = b = k$ und $f(n) = n$.

Damit gilt
$$n^{\log_b a} = n$$
 und $f(n) = n = \Theta(n^{\log_b a})$.

$$\Rightarrow T(n) = \Theta(n \log n).$$

•
$$T(n) = T(2n/3) + 1$$

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

2. Falls $f(n) = \Theta(n^{\log_b a})$ gilt, so gilt $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.

Beispiele

- T(n) = kT(n/k) + n für $k \in \mathbb{N}$ mit $k \ge 2$
 - Es gilt a = b = k und f(n) = n.
 - Damit gilt $n^{\log_b a} = n$ und $f(n) = n = \Theta(n^{\log_b a})$.
 - $\Rightarrow T(n) = \Theta(n \log n).$
- T(n) = T(2n/3) + 1

Es gilt a = 1, b = 3/2 und f(n) = 1.

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

2. Falls $f(n) = \Theta(n^{\log_b a})$ gilt, so gilt $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.

Beispiele

•
$$T(n) = kT(n/k) + n$$
 für $k \in \mathbb{N}$ mit $k \ge 2$

Es gilt a = b = k und f(n) = n.

Damit gilt $n^{\log_b a} = n$ und $f(n) = n = \Theta(n^{\log_b a})$.

$$\Rightarrow T(n) = \Theta(n \log n).$$

•
$$T(n) = T(2n/3) + 1$$

Es gilt
$$a = 1$$
, $b = 3/2$ und $f(n) = 1$.

Damit gilt $n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1$ und $f(n) = 1 = \Theta(n^{\log_b a})$.

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

2. Falls $f(n) = \Theta(n^{\log_b a})$ gilt, so gilt $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.

•
$$T(n) = kT(n/k) + n$$
 für $k \in \mathbb{N}$ mit $k \ge 2$
Es gilt $a = b = k$ und $f(n) = n$.

Damit gilt
$$n^{\log_b a} = n$$
 und $f(n) = n = \Theta(n^{\log_b a})$.

$$\Rightarrow T(n) = \Theta(n \log n).$$

•
$$T(n) = T(2n/3) + 1$$

Es gilt
$$a = 1$$
, $b = 3/2$ und $f(n) = 1$.

Damit gilt
$$n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1$$
 und $f(n) = 1 = \Theta(n^{\log_b a})$.

$$\Rightarrow T(n) = \Theta(\log n).$$

Sei $T: \mathbb{N} \to \mathbb{R}$ mit $T(1) = \Theta(1)$ und T(n) = aT(n/b) + f(n) für $n \ge 2$.

3. Falls $f(n) = \Omega(n^{\log_b a + \varepsilon})$ für eine Konstante $\varepsilon > 0$ und $af(n/b) \le cf(n)$ für eine Konstante c < 1 und alle hinreichend großen n gilt, so gilt $T(n) = \Theta(f(n))$.

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

3. Falls $f(n) = \Omega(n^{\log_b a + \varepsilon})$ für eine Konstante $\varepsilon > 0$ und $af(n/b) \le cf(n)$ für eine Konstante c < 1 und alle hinreichend großen n gilt, so gilt $T(n) = \Theta(f(n))$.

•
$$T(n) = kT(n/k) + n\log_2 n$$
 für ein $k \in \mathbb{N}$ mit $k \ge 2$

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

3. Falls $f(n) = \Omega(n^{\log_b a + \varepsilon})$ für eine Konstante $\varepsilon > 0$ und $af(n/b) \le cf(n)$ für eine Konstante c < 1 und alle hinreichend großen n gilt, so gilt $T(n) = \Theta(f(n))$.

•
$$T(n) = kT(n/k) + n\log_2 n$$
 für ein $k \in \mathbb{N}$ mit $k \ge 2$
Es gilt $a = b = k$ und $f(n) = n\log_2 n$.

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

3. Falls $f(n) = \Omega(n^{\log_b a + \varepsilon})$ für eine Konstante $\varepsilon > 0$ und $af(n/b) \le cf(n)$ für eine Konstante c < 1 und alle hinreichend großen n gilt, so gilt $T(n) = \Theta(f(n))$.

Beispiele

• $T(n) = kT(n/k) + n \log_2 n$ für ein $k \in \mathbb{N}$ mit $k \ge 2$

Es gilt a = b = k und $f(n) = n \log_2 n$.

Zwar wächst $f(n) = n \log_2 n$ schneller als $n^{\log_b a} = n$, es kann jedoch trotzdem nicht der dritte Fall angewendet werden.

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

3. Falls $f(n) = \Omega(n^{\log_b a + \varepsilon})$ für eine Konstante $\varepsilon > 0$ und $af(n/b) \le cf(n)$ für eine Konstante c < 1 und alle hinreichend großen n gilt, so gilt $T(n) = \Theta(f(n))$.

- $T(n) = kT(n/k) + n\log_2 n$ für ein $k \in \mathbb{N}$ mit $k \ge 2$ Es gilt a = b = k und $f(n) = n\log_2 n$.
 - Zwar wächst $f(n) = n \log_2 n$ schneller als $n^{\log_b a} = n$, es kann jedoch trotzdem nicht der dritte Fall angewendet werden.
- $T(n) = 8T(n/2) + \Theta(n^4)$

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

3. Falls $f(n) = \Omega(n^{\log_b a + \varepsilon})$ für eine Konstante $\varepsilon > 0$ und $af(n/b) \le cf(n)$ für eine Konstante c < 1 und alle hinreichend großen n gilt, so gilt $T(n) = \Theta(f(n))$.

- T(n) = kT(n/k) + n log₂ n für ein k ∈ N mit k ≥ 2
 Es gilt a = b = k und f(n) = n log₂ n.
 Zwar wächst f(n) = n log₂ n schneller als n log_b a = n, es kann jedoch trotzdem nicht der dritte Fall angewendet werden.
- $T(n) = 8T(n/2) + \Theta(n^4)$ Es gilt a = 8 und b = 2 und $f(n) = n^4$.

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

3. Falls $f(n) = \Omega(n^{\log_b a + \varepsilon})$ für eine Konstante $\varepsilon > 0$ und $af(n/b) \le cf(n)$ für eine Konstante c < 1 und alle hinreichend großen n gilt, so gilt $T(n) = \Theta(f(n))$.

- $T(n) = kT(n/k) + n\log_2 n$ für ein $k \in \mathbb{N}$ mit $k \ge 2$ Es gilt a = b = k und $f(n) = n\log_2 n$.
 - Zwar wächst $f(n) = n \log_2 n$ schneller als $n^{\log_b a} = n$, es kann jedoch trotzdem nicht der dritte Fall angewendet werden.
- $T(n) = 8T(n/2) + \Theta(n^4)$ Es gilt a = 8 und b = 2 und $f(n) = n^4$.
 - Damit gilt $n^{\log_b a} = n^3$ und $f(n) = n^4 = \Omega(n^{\log_b a + \varepsilon})$ für $\varepsilon = 1$.

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

3. Falls $f(n) = \Omega(n^{\log_b a + \varepsilon})$ für eine Konstante $\varepsilon > 0$ und $af(n/b) \le cf(n)$ für eine Konstante c < 1 und alle hinreichend großen n gilt, so gilt $T(n) = \Theta(f(n))$.

- $T(n) = kT(n/k) + n \log_2 n$ für ein $k \in \mathbb{N}$ mit $k \ge 2$ Es gilt a = b = k und $f(n) = n \log_2 n$.
 - Zwar wächst $f(n) = n \log_2 n$ schneller als $n^{\log_b a} = n$, es kann jedoch trotzdem nicht der dritte Fall angewendet werden.
- $T(n) = 8T(n/2) + \Theta(n^4)$
 - Es gilt a = 8 und b = 2 und $f(n) = n^4$.
 - Damit gilt $n^{\log_b a} = n^3$ und $f(n) = n^4 = \Omega(n^{\log_b a + \varepsilon})$ für $\varepsilon = 1$.
 - Außerdem gilt $8f(n/2) = n^4/2 = f(n)/2$.

Sei
$$T: \mathbb{N} \to \mathbb{R}$$
 mit $T(1) = \Theta(1)$ und $T(n) = aT(n/b) + f(n)$ für $n \ge 2$.

3. Falls $f(n) = \Omega(n^{\log_b a + \varepsilon})$ für eine Konstante $\varepsilon > 0$ und $af(n/b) \le cf(n)$ für eine Konstante c < 1 und alle hinreichend großen n gilt, so gilt $T(n) = \Theta(f(n))$.

Beispiele

- $T(n) = kT(n/k) + n \log_2 n$ für ein $k \in \mathbb{N}$ mit $k \ge 2$
 - Es gilt a = b = k und $f(n) = n \log_2 n$.

Zwar wächst $f(n) = n \log_2 n$ schneller als $n^{\log_b a} = n$, es kann jedoch trotzdem nicht der dritte Fall angewendet werden.

- $T(n) = 8T(n/2) + \Theta(n^4)$
 - Es gilt a = 8 und b = 2 und $f(n) = n^4$.
 - Damit gilt $n^{\log_b a} = n^3$ und $f(n) = n^4 = \Omega(n^{\log_b a + \varepsilon})$ für $\varepsilon = 1$.
 - Außerdem gilt $8f(n/2) = n^4/2 = f(n)/2$.
 - $\Rightarrow T(n) = \Theta(f(n)) = \Theta(n^4).$