Total	No	o. of Questions : 8] SEAT No.			
P3914		SEAT NO.			
P39	14	[Total No. of Pages : 2			
		B.E. (Electrical)			
EHVACTRANSMISSION					
(2015 Pattern) (Semester-I) (Elective-II) (403144)					
		(2020 2 000 2) (2000 2) (100 2 11)			
		[Max. Marks : 70			
		ions to the candidates:			
	<i>!)</i>	Attempt Q. 1 or Q. 2, Q. 3 or Q. 4, Q.5 or Q. 6, Q. 7 or Q. 8.			
	2) 3)	Neat diagrams must be drawn wherever necessary. Figures to the right indicate full marks.			
	1) 1)	Assume suitable data, if required.			
	5)	Use of calculator is allowed.			
01)	ر.	Every the concept of the velling vyeves and denive evenession for			
Q1)	a)	Explain the concept of travelling waves and derive expression for equations of travelling waves. [8]			
	b)	Describe the measures taken to minimize the damage due to different			
	- /	types of vibrations of the transmission line. [8]			
	c)	The field strength on the surface of a sphere of 1 cm radius is equal to			
		the corona inception gradient in air of 30 KV/cm. Find the charge on the			
		sphere. [4]			
		OR			
<i>Q2)</i>	a)	Derive expression for inductance of multi conductor lines and state			
,		Maxwell's coefficients. [8]			
	b)	Prove that a one 750 KV line power handling capacity of a.c. transmission			
	,	line carry as much power as four 400 KV circuits for equal distance of			
		transmission. [6]			
	c)	A charge of 25 µC is placed at a distance of 5 m from the center of a			
	,	sphere. The radius of a sphere is 1.5 m. Calculate the magnitude, polarity			
		and location of a point charge Q2 which will make the sphere at zero			
		potential. [6]			
<i>Q3</i>)	a)	Derive the expression for electrostatic induction on unenergized circuit			
20)	<i>~,</i>	of a double circuit line. [7]			

OR

ii) Animals

iii) Plants

Discuss the effects of high electrostatic field on:

b)

i)

Humans

[9]

[556	51]-5	2	
		> > > >	
	c)	Brief, the line insulation design based upon transient over voltages. [6]
	b)		6] 61
	b)		6] 61
Q8)	a)	OR Explain detail classification of cables and mention typical insulation.	
	,	properties of SF6 gas as an insulating material used in cables.	6]
	c)	Name the materials used for insulation in EHV cables and state the	
	b)	Define $\tan \delta$ loss factor and derive an expression for insulation resistant of a cable.	ce 6]
Q7)	a)	Write note on various properties of XLPE used in EHV cables.	6]
	b)	State and explain at least 4 formulae for power loss due to corona. [8]
Q6)	a)	With the help of simple block diagram, explain the audible noise measuring circuit in EHV AC lines.	ng [8]
		OR OR	
	b)	Draw a charge-voltage diagram and derive an expression $Pc = 1/2 \text{ KC } (Vm^2-Vo^2)$ for corona loss.	on 8]
		ii) Visual corona voltage	
		i) Disruptive corona voltage	
Q5)	a)	Explain formation of corona and define terms:	8]
		iii) Let-go currents	
		ii) Secondary shock current	
	U)	i) Primary shock current	9]
	b)		7] (0)
Q 4)	a)	Explain the concept of insulated ground wire and explain the purpos	