<u>Simbolismo trasformazione</u> ==> EQUAZIONE CHIMICA

- nel corso di una reazione la massa si mantiene costante
- il numero di atomi dello stesso elemento non si modifica nel corso della reazione

BILANCIAMENTO REAZIONI (semplici)

- 1) considerare un elemento alla volta
- 2) bilanciare (cioè uguagliare il n° di atomi a ds e sn) per primo l'elemento che compare nel minimo numero di composti
- bilanciare per ultimo l'elemento che compare nel massimo numero di composti

Esempio: reazione di combustione = combustibile con comburente (di solito O_2) combustibili: in genere idrocarburi CxHy

Propano e ossigeno formano anidride carbonica e acqua

$$C_3H_8 + O_2 \rightarrow CO_2 + H_2O$$
 $C_3 ---> 3 C$
 $C_3H_8 + O_2 \rightarrow 3 CO_2 + H_2O$
 $C_3H_8 + O_2 \rightarrow 3 CO_2 + 4 H_2O$
 $C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$
 $C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$
 $C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$

G. Sotgiu 2

Informazioni in una equazione chimica:

- a) identità delle sostanze chimiche (≡ formule)
- b) rapporti molari (≡ coefficienti stechiometrici)

Previsioni sulle moli prodotte

proporzione coefficienti stechiometrici

G. Sotgiu 3

Equazioni chimiche *Esempio*

La soda caustica NaOH viene peparata industrialmente secondo la reazione

$$Na_2CO_3 + Ca(OH)_2 \rightarrow CaCO_3 + 2 NaOH$$

Mettendo a reagire 1,0 kg di Na₂CO₃ calcolare:

- a) il peso di Ca(OH)₂ necessario per la reazione di tutto Na₂CO₃
- b) il peso in grammi di NaOH ottenuto

Risoluzione

PF
$$(Na_2CO_3) = 23.2 + 12.1 + 16.3 = 106$$

$$n(Na_2CO_3) = \frac{q(Na_2CO_3)}{PF} = \frac{1000}{106} = 9,43mol$$

- a) rapporti stechiometrici tra Na_2CO_3 e $Ca(OH)_2$ 1:1 quindi $n(Ca(OH)_2) = 9,43 \text{ mol} \quad q(Ca(OH)_2) = 9,43.74,09 = 698,67 \text{ g}$
- b) rapporti stechiometrici tra Na₂CO₃ e NaOH 1:2 quindi

1:2=n (Na₂CO₃) :n (NaOH)
n(NaOH) =
$$2 \cdot 9.43 = 18.86$$
 mol q = $18.86 \cdot 40.0 = 754.4$ g

Rendimento (o resa) di reazione:

prodotti

$$resa = \frac{q_{effettiva}}{q_{teorica}} \cdot 100$$

perdite (reazioni collaterali, etc)

II Fe_2O_3 (P.F. = 159,6) reagisce con CO per dare Fe (P.A. = 55,8) secondo la reazione:

$$Fe_2O_3 + 3 CO ---> 2 Fe + 3 CO_2$$

A partire da 1,00 Kg di Fe₂O₃ si sono ottenuti 0,470 Kg di ferro; calcolare la resa della reazione.

Calcolo massa teorica (stechiometrica)

Calcolo moli: $n(Fe_2O_3) = q/PF = 1000/159,6 = 6,266 \text{ mol}$

Rapporto molare: 1 mole di Fe₂O₃ ==> 2 moli di Fe

Calcolo moli: $n(Fe) = 2 \cdot n(Fe_2O_3) = 2 \cdot 6,266 = 12,53 \text{ mol}$

Calcolo massa teorica: q(Fe) = n(Fe) • PF (Fe) = 12,53 • 55,8 = 699,2 g

$$resa = \frac{q_{effettiva}}{q_{teorica}} \cdot 100 = \frac{470,0}{699,2} \cdot 100 = 67,22\%$$

Situazione generale

Se i reagenti sono mescolati in certe quantità date Esempio: reazione tra 100,0 g di propano ed 100,0 g di ossigeno

$$C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$$

reagente	PF	massa (g)	moli
C_3H_8	44	100,0	2,27
O_2	32	100,0	3,12

reagenterapporto
stechiometrico C_3H_8 1 O_2 5

il rapporto in moli è diverso dal rapporto stechiometrico uno dei due reagenti è presente con un numero di moli superiore a quello necessario per uguagliare il rapporto stechiometrico

REATTIVO IN ECCESSO

l'altro reagenti è presente con con un numero di moli inferiore a quello necessario per uguagliare il rapporto stechiometrico

MA

REATTIVO IN DIFETTO

per far reagire tutto il propano servirebbero di O_2 un numero teorico di moli pari a $1:5 = n_{(C3H8)}: n_{(O2)}^T = 5 \cdot n_{(C3H8)} = 11,35 \text{ mol} > 3,12$

alternativa

per far reagire tutto l'ossigeno servirebbero di C_3H_8 un numero teorico di moli pari a 1:5 = $n_{(C3H8)}^T$: $n_{(O2)}^T$ $n_{(C3H8)}^T$ = $n_{(O2)}^T$ /5 = 0,624 mol < 2,27

	reattivo
C_3H_8	eccesso
02	limitante

Situazione generale

Conseguenze:

- quando il reattivo in difetto finisce, la reazione non va più avanti;quindi il reattivo in difetto LIMITA la reazione detto perciò <u>REATTIVO LIMITANTE</u>
- le moli formate dei prodotti sono proporzionali alle moli del reattivo in difetto che quindi LIMITA (blocca) la reazione. La reazione cioè termina quando finisce il reattivo in difetto

Procedura stechiometrica:

- 1. riconoscimento reattivo limitante
- 2. utilizzo dell'informazione per:
 - calcolo moli (e masse) prodotti
 - calcolo moli (e massa) reattivo in eccesso residuo
- a) calcolo della massa di CO₂ prodotta

rapporto stechiometrico CO_2 e O_2 n(CO_2):n(O_2)= 3:5

$$n_{CO2} = n_{O2} \cdot 3/5 = 3,12 \cdot 3/5 = 1,87 \text{ mol}$$
 $q_{CO2} = n_{CO2} \cdot PF_{CO2} = 1,87 \cdot 44 = 82,3 \text{ g}$

b) calcolo della massa di H₂O prodotta

rapporto stechiometrico H_2O e O_2 $n(H_2O)$: $n(O_2)$ = 4:5

$$n_{H2O} = n_{O2} \cdot 4/5 = 3.12 \cdot 4/5 = 2.51 \,\text{mol}$$
 $q_{H2O} = n_{H2O} \cdot PF_{H2O} = 2.51 \cdot 18 = 45.2 \,\text{g}$

c) calcolo della massa di C₃H₈ rimasta

propano che ha reagito n_{02} • 1/5 = 3,12 · 1/5 = 0,624 mol moli di propano rimaste: 2,27 – 0,624 = 1,646 mol quantità di propano rimasta: 1,646 · 44 = 72,5 g

$$q_{\text{(totale finale)}} = q_{\text{CO2}} + q_{\text{H2O}} + q_{\text{(C3H8 rimasto)}} = 82,3 + 45,2 + 72,5 \text{ g} = 200,0 \text{ g}$$

Analisi indiretta

Mediante opportune reazioni è possibile risalire al rapporto (incognito) in cui due o più componenti sono presenti in una certa miscela. Risulta fondamentale il bilancio stechiometrico delle reazioni.

Esempio:

Una lega metallica composta da ferro (PA=55,8) e cromo (PA=52) del peso di 10,0 g viene trattata con H_2SO_4 <u>in eccesso</u> provocando la conversione <u>completa</u> dei metalli nei corrispondenti solfati. Si ottiene alla fine delle reazioni una miscela di FeSO₄ (PF=151,8) e $Cr_2(SO_4)_3$ (PF=392) del peso di 28,26 g. Determinare la composizione percentuale in peso della lega

note:

- due componenti della miscela iniziale senza alcuna relazione stechiometrica
- entrambi risultano consumati completamente al termine delle reazioni

8

Analisi indiretta

Esempio:

Una lega metallica composta da ferro (PA=55,8) e cromo (PA=52) del peso di 10,0 g viene trattata con H_2SO_4 <u>in eccesso</u> provocando la conversione <u>completa</u> dei metalli nei corrispondenti solfati. Si ottiene alla fine delle reazioni una miscela di FeSO₄ (PF=151,8) e $Cr_2(SO_4)_3$ (PF=392) del peso di 28,26 g. Determinare la composizione percentuale in peso della lega

1° PASSO: determinazione coefficienti stechiometrici delle reazioni

Quindi:

x moli di Fe trasformate in x moli di FeSO₄

y moli di Cr trasformate in y/2 moli di $Cr_2(SO_4)_3$

Analisi indiretta

Esempio:

Una lega metallica composta da ferro (PA=55,8) e cromo (PA=52) del peso di 10,0 g viene trattata con H_2SO_4 <u>in eccesso</u> provocando la conversione <u>completa</u> dei metalli nei corrispondenti solfati. Si ottiene alla fine delle reazioni una miscela di FeSO₄ (PF=151,8) e $Cr_2(SO_4)_3$ (PF=392) del peso di 28,26 g. Determinare la composizione percentuale in peso della lega

2° PASSO: 2 incognite <===> necessità di due equazioni

$$\begin{cases} x \cdot 55, 8 + y \cdot 52 = 10 \\ x \cdot 151, 8 + (y/2) \cdot 392 = 28,26 \end{cases} \begin{cases} x = 0,161 \text{ mol} \\ y = 0,019 \text{ mol} \end{cases}$$

Infine

$$\begin{cases} q(Fe)=0,161 \cdot 55,8=8,98 \text{ g} \\ q(Cr)=0,019 \cdot 52=1,02 \text{ g} \end{cases} \begin{cases} \%(Fe)=\frac{8,98}{10} \cdot 100 = 89,8\% \\ \%(Cr)=\frac{1,02}{10} \cdot 100 = 10,2\% \end{cases}$$

G. Sotgiu