TD1

Statistique Mathématique

2021/2022

Université de Sousse

HEC

Institut des Hautes Études Commerciales de Sousse Niveau: M1

Finance & Actuariat

Enseignant:

Mohamed Essaied Hamrita

mhamrita@gmail.com

https://github.com/Hamrita

Exercice 1

Une urne contient une boule blanche et une boule noire.

- 1) On effectue des tirages avec remise jusqu'à obtention d'une boule blanche. Déterminer la loi de probabilité du nombre N de tirages, puis calculer $\mathbb{E}(N)$ et $\mathbb{V}(N)$. Déterminer sa fonction génératrice des moments.
- 2) Mêmes questions si on remet une boule noire en plus après chaque tirage d'une boule noire. Calculer alors $\mathbb{P}(N > n)$, $n \in \mathbb{N}^*$.

Exercice 2

Lors d'un examen oral, on vous demande de tirer les trois sujets que vous aurez à traiter dans une urne qui en contient dix. Parmi ces dix sujets, il y en a 3 que vous ne connaissez pas. Soit X la variable aléatoire qui représente le nombre de sujets qui vous seront inconnus à l'issue de ce tirage. Calculer les probabilités des différentes valeurs possibles de X et en déduire $\mathbb{E}(X)$.

Exercice 3

Pour être sélectionné aux Jeux olympiques, un athlète doit réussir deux fois à dépasser les minima fixés par sa fédération. Il a une chance sur trois de réussir à chaque épreuve à laquelle il participe. On note X la variable aléatoire qui représente le nombre d'épreuves auxquelles il devra participer pour être sélectionné.

- 1) Déterminer la loi de probabilité de *X*.
- 2) Si cet athlète ne peut participer qu'à quatre épreuves maximum, quelle est la probabilité qu'il soit sélectionné?

Exercice 4

Soit *X* une variable aléatoire de densité définie par :

$$f(x) = \frac{1}{x\sqrt{2\pi\theta}} \exp\left(-\frac{(\ln x)^2}{2\theta}\right)$$
, pour $x > 0$ et $\theta > 0$

- 1) Déterminer la loi de probabilité de la variable aléatoire $Y = \ln X$.
- 2) En déduire la fonction génératrice des moments de la variable aléatoire Y.

Exercice 5

Soit *X* une variable aléatoire de densité (θ et λ deux réels strictement positifs) :

$$f(x) = \begin{cases} \frac{1}{\theta} \exp\left(-\frac{x - \lambda}{\theta}\right) & \text{si } x > \lambda \\ 0 & \text{sinon} \end{cases}$$

- 1) Calculer $\mathbb{E}(X)$ et $\mathbb{V}(X)$ puis déterminer la fonction de répartition F de X.
- 2) Déterminer la loi de probabilité de la v.a. $Y = \min\{X_1, ..., X_n\}$, où $X_1, ..., X_n$ sont des v.a. indépendantes et de même loi que X.

Exercice 6

Soit X une v.a telle que $X \sim \gamma(\frac{1}{2}, \frac{1}{2})$. Reconnaître la loi de X et déterminer la loi de $Y = \sqrt{X}$.

Exercice 7

Soit $X \sim \gamma(\alpha, \lambda)$.

- 1) Déterminer la fonction génératrice des moments, $\phi(t)$, de la v.a X. En déduire $\mathbb{E}(X)$ et $\mathbb{V}(X)$.
- 2) Soient $Z \sim N(0,1)$ et $Y = Z^2$. Déterminer la loi de la v.a Y et donner $\mathbb{E}(Y)$ et $\mathbb{V}(Y)$.
- 3) On suppose que $\alpha \in \mathbb{N}$. Déterminer la loi de la variable aléatoire $W = 2\lambda X$. En déduire $\mathbb{E}(W)$ et $\mathbb{V}(W)$.
- 4) Soient $Z_1, Z_2, ..., Z_n$ des v.a indépendantes et de même loi N(0,1), i.e $Z_i \stackrel{iid}{\sim} N(0,1)$. Soit $Q = \sum_{i=1}^n Z_i^2$. Déterminer la densité de Q et donner $\mathbb{E}(Q)$ et $\mathbb{V}(Q)$.