Introduction

Polynôme du second degré

Définition 1. On appelle polynôme du second degré toute expression pouvant s'écrire sous la forme développée réduite

$$ax^2 + bx + c$$

où a, b et c sont des réels avec $a \neq 0$.

El Indiquez si c'est un polynôme du second degré. Le cas échéant déterminez a, b et c.

a.
$$4x^2 - 5x + 2$$

$$\mathbf{b.} \ -3x^2 + 7x$$

c.
$$\frac{4x^2}{5} - 12$$

d.
$$3x^2 + 7 - 3x^2 + 4x$$

e.
$$5x(x+2)$$

f.
$$(x+3)(x-4)$$

g.
$$(x+2)^2$$

h.
$$(3x+7)(3x-7)$$

g.
$$(x+2)^2$$

n.
$$(3x + t)(3x - 10x^2 + 9x - 2)$$

i.
$$2(x-3)^2$$

j.
$$\frac{10x^2 + 8x - 3}{2}$$

l. $-7x + 6 - 5x^2$

$$k, \frac{1}{2}$$

1.
$$-7x + \overset{2}{6} - 5x^2$$

m.
$$11x \times 5x$$

n.
$$3(2x+1)(8-x)$$

Définition 2. On appelle *racine* du polynome du second degré $ax^2 + bx + c$ toute solution de l'équation

$$ax^2 + bx + c = 0$$

E2 Déterminez les racines.

- a. 2(x-3)(x+4) b. 5(2x-8)(x-5) c. (x-2)(7-x) d. (6x+3)(2x-1)

- E3 Déterminez une racine évidente.
- $egin{array}{lll} {\sf a.} & 3x^2 6x & {\sf b.} & 5x^2 4x 1 \ {\sf c.} & 5x^2 + 4x 1 & {\sf d.} & x^2 + 3x 10 \end{array}$

Propriété 1. Si un polynôme du second degré $ax^2 + bx + c$ admet deux racines distinctes x_1 et x_2 , alors il peut s'écrire sous la forme factorisée suivante

$$a(x-x_1)(x-x_2)$$

Ecrivez le polynôme sous forme

- **a.** Les racines de $7x^2 + 7x 42$ sont -3 et 2.
- **b.** Les racines de $-3x^2 + 3x + 6$ sont -1 et 2.
- **c.** Les racines de $x^2-9x+20$ sont 4 et 5.
- **d.** Les racines de $2x^2-5x-3$ sont 3 et $-\frac{1}{2}$.

E5 Déterminez la forme $a(x-x_1)(x-x_2)$.

- a. (3x+9)(x-5)b. (x+8)(5x-10)c. (7-x)(x-3)d. (x+4)(-x-8)e. (2x+4)(3x-6)f. 7(4x-8)(x-3)
- **E6** Déterminez la forme $a(x-x_1)(x-x_2)$.

- a. $3x^2-6x$ b. $-5x^2+35x$
- c. $3x^2 147$

- d. $-2x^2 + 6$
- e. (x-3)(2x+7)+(x-3)(3-x)
- f. (2x-5)(x+6)-(x+6)(x-5)

Propriété 2. Si un polynôme du second degré $ax^2 + bx + c$ admet une seule racine appelée racine double x_0 , alors il peut s'écrire sous la forme factorisée suivante

$$a(x-x_0)^2$$

E7 Les polynômes du second degré suivants possèdent une racine double. Factorisez par apuis utilisez une identité remarquable pour les écrire sous la forme factorisée.

- a. $7x^2 42x + 63$ b. $-2x^2 + 8x 8$ c. $5x^2 + 40x + 80$ d. $-3x^2 6x 3$

Propriété 3. Si un polynôme du second degré $ax^2 + bx + c$ admet deux racines alors :

- la somme des racines est $-\frac{b}{a}$
- le produit des racines est $\frac{c}{a}$

E8 Les racines des polynômes du second degré suivants sont entières. Déterminez les racines en utilisant le produit et la somme des racines.

- a. $2x^2 10x + 12$ b. $3x^2 3x 60$ c. $x^2 + 10x + 21$ d. $-x^2 5x + 24$

Propriété 4. Tout polynôme du second degré $ax^2 + bx + c$ peut s'écrire sous la forme dite canonique

$$a\left(x-lpha
ight)^{2}+eta$$

où α et β sont des réels.

E9 Voici la forme canonique de plusieurs polynômes du second degré. Déterminez lpha et eta.

- a. $3(x-2)^2+5$ b. $-2(x+3)^2-4$ c. $4(x+1)^2-3$ d. $6x^2-12$ e. $-5(x-4)^2+7$ f. $-(x-5)^2$

ElO Voici plusieurs polynômes du second degré. Déterminez la forme canonique de chacun d'eux en utilisant une identité remarquable.

- a. $-2(x^2-4x+4)+9$
- **b.** $3(x^2+12x+36)-27$
- c. $-4(x^2-18x+81)+64$
- d. $5(x^2+10x+25)-100$

E11 Voici plusieurs polynômes du second degré. Déterminez la forme canonique de chacun d'eux en mettant en évidence une identité remarquable.

- a. $x^2 6x + 24$ b. $x^2 + 8x 6$ c. $x^2 + 16x + 89$ d. $x^2 18x 80$

Second degré polynôme du second degré ax^2+bx+c le nombre

$$\Delta = b^2 - 4ac$$

a. $2x^2-3x+1$ c. $4x^2-4x+1$

a.
$$2x^2 - 3x + 1$$

$$\begin{array}{c} {\tt b.} \ 3x^2 + 5x - 2 \\ {\tt d.} \ x^2 + 3x + 3 \end{array}$$

c.
$$4x^2 - 4x + 1$$

$$x^2 + 3x + 3$$