Wzory na OF-a

Maciej Ziobro

Spis treści

1	Kin	ematyka	6		
	1.1	Wektor położenia	6		
	1.2	Wektor przemieszczenia	6		
	1.3	Prędkość średnia	6		
	1.4	Prędkość chwilowa	6		
	1.5	Przyspieszenie średnia	6		
	1.6	Przyspieszenie chwilowe	6		
	1.7	Ruch jednostajnie przyspieszony (a = const)	6		
	1.8	Ruch jednostajny po okręgu	7		
	1.9	Obroty	7		
	1.10	Praca i energia w ruchu obrotowym; przyjmując, że zmienia siętylko			
		energia kinetyczna	8		
	1.11	Obrót ze stałym przyspieszeniem kątowym	8		
	1.12	Toczenie	9		
	1.13	Toczenie po równi pochyłej	9		
	1.14	Moment siły \rightarrow M, Moment pędu $\rightarrow l$ i II z.d. dla ruchu obrotowego	9		
	1.15	Rzut pionowy	10		
	1.16	Rzut poziomy	10		
	1.17	Rzut ukośny	10		
2	Dynamika 12				
	2.1	II Zasada Dynamiki Newtona	11		
	2.2	II Zasada Dynamiki Newtona w układzie nieinercjalnym	11		
	2.3	I Zasada Dynamiki Newtona w układzie nieinercjalnym	11		
	2.4	Siła Tarcia i Opór Powietrza	11		
	2.5	Pęd i Popęd	12		
	2.6	Ciąg zderzeń np. pocisków z nieruchomą ścianą	12		
3	Praca, Moc, Energia 12				
	3.1	Zamiana energii wewnętrznej na mechaniczną przez siłę zewnętrzną	13		
	3.2	Zderzenia - ogólnie	13		
	3.3	Zderzenie całkowicie niesprężyste	13		
	3.4	Zderzenie sprężyste	14		
	3.5	Zderzenie w dwóch wymiarach	14		

4	Ukła	ady cząstek				
	4.1	środek masy układu kilku cząstek				
	4.2	II Zasada Dynamiki Newtona dla układu cząstek				
	4.3	Pęd i zachowanie pędu dla układu cząstek, w układzie izolowanym				
	4.4	Rakieta				
5	Rów	rnowaga				
6	Sprę	zystość				
7	Grav	witacja				
8	Płyny					
	8.1	Podnośnik/Prasa hydrauliczna				
	8.2	Płyny Doskonałe				
9	Drgania					
	9.1	Ruch Harmoniczny				
	9.2	Wahadło Torsyjne				
	9.3	Wahadła, Ruch po okręgu				
	9.4	Ruch Harmoniczny Tłumiony				
	9.5	Drgania Wymuszone i Rezonans				
10	Fale	I				
	10.1	Fala w Napiętej Linie				
	10.2	Równanie Falowe				
	10.3	Interferencja fal				
	10.4	Wskazy				
	10.5	Fale Stojące i Rezonans				
11	Fale	II				
	11.1	Fala Dźwiękowa				
	11.2	Źródła dźwięku w muzyce				
	11.3	Dudnienia				
	11.4	Efekt Dopplera				
	11.5	Prędkości Nadźwiękowe, Fale Uderzeniowe				
12	Terr	nodynamika				
	12.1	Niektóre szczególne przypadki I Zasady Termodynamiki				

13	Kinetyczna Teoria Gazów	26
	13.1 Dla stałej objętości	28
	13.2 Dla stałego cisnienia	28
14	Entropia i II Zasada Termodynamiki	29
	4.1 Silnik Carnota	29
	4.2 Chłodziarki	30
15	Elektrodynamika	30
	15.1 Prawo Coulomba	30
	15.2 Pole Elektryczne	30
	15.3 Prawo Gaussa	32
	15.4 Potnecjał Elektryczny	32
	15.5 Pojemność elektryczna	34
	15.6 Prąd i opór elektryczny	35
	15.7 Obwody elektryczne	36
	15.8 Pole magnetyczne	37
	15.9 Zjawisko indukcji i indukcyjności	39
	5.10Drgania elektromagnetyczne i prąd zmienny	40
	$15.10.1\mathrm{Drgania}$ obwodu LC	40
	$15.10.2\mathrm{Drgania}$ tłumione w obwodzie RLC	41
	15.10.3 Obciążenie czysto oporowe	41
	15.10.4 Obciążenie czysto pojemnościowe	42
	$15.10.5\mathrm{Obciążenie}$ czysto indukcyjne	42
	$15.10.6\mathrm{Podsumowanie}$ trzech obwodów	42
	$15.10.7\mathrm{Obw\acute{o}d}$ szeregowy RLC	43
	15.10.8 Moc w obwodach prądu zmiennego	43
	15.10.9 Transformatory	44
	5.11Równania Maxwella: magnetyzm materii	44
	15.11.1 Równania Maxwella	44
	15.11.2 Magneztyzm materij	44

1 Kinematyka

1.1 Wektor położenia

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k} \tag{1.1}$$

1.2 Wektor przemieszczenia

$$\Delta \vec{r} = \vec{r_2} - \vec{r_1} \tag{1.2}$$

1.3 Prędkość średnia

$$v_{sr} = \frac{\Delta x}{\Delta t} = \frac{\Delta \vec{r}}{\Delta t} \tag{1.3}$$

1.4 Prędkość chwilowa

$$v = \lim_{\Delta t \to 0} \frac{\Delta r}{\Delta t} = \frac{\mathrm{d}r}{\mathrm{d}t} \tag{1.4}$$

$$\vec{v} = \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = v_x \hat{i} + v_y \hat{j} + v_z \hat{k} = \frac{\mathrm{d}x}{\mathrm{d}t} \hat{i} + \frac{\mathrm{d}y}{\mathrm{d}t} \hat{j} + \frac{\mathrm{d}z}{\mathrm{d}t} \hat{k}$$
(1.4.2)

1.5 Przyspieszenie średnia

$$a_{sr} = \frac{\Delta v}{\Delta t} \tag{1.5}$$

1.6 Przyspieszenie chwilowe

$$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2x}{\mathrm{d}t^2} \tag{1.6}$$

1.7 Ruch jednostajnie przyspieszony (a = const)

$$v = v_0 + at (1.7)$$

$$x - x_0 = v_0 t + \frac{1}{2} a t^2 (1.7.2)$$

$$v^2 = v_0^2 + 2a(x - x_0) (1.7.3)$$

$$x - x_0 = \frac{1}{2}(v_0 + v)t \tag{1.7.4}$$

$$x - x_0 = vt - \frac{1}{2}at^2 (1.7.5)$$

1.8 Ruch jednostajny po okręgu

$$a_d = \frac{v^2}{R} = \omega^2 R \tag{1.8}$$

$$F_d = m\frac{v^2}{R} \tag{1.8.2}$$

$$T = \frac{2\pi R}{v} \tag{1.8.3}$$

1.9 Obroty

 θ to miara łukowa kąta

$$\theta = \frac{s}{r} \tag{1.9}$$

 Δt to średnia prędkość kątowa

$$\omega_{sr} = \frac{\Delta}{\theta} \tag{1.9.2}$$

chwilowa prędkość kątowa

$$\omega = dv\theta t \tag{1.9.3}$$

średnie przyspieszenie kątowa

$$\alpha_{sr} = \frac{\Delta\omega}{\Delta t} \tag{1.9.4}$$

chwilowe przyspieszenie kątowe

$$\alpha = \frac{\mathrm{d}\omega}{\mathrm{d}t} \tag{1.9.5}$$

 $\theta \rightarrow rad$

$$s = \theta r \tag{1.9.6}$$

 $\omega \rightarrow \,$ odnosi się do kąta w radianach

$$v = \omega r \tag{1.9.7}$$

$$T = \frac{\pi r}{v} = \frac{2\pi}{\omega} \tag{1.9.8}$$

przypieszenie kątowe w mierze łukowej

$$\varepsilon = \frac{\mathrm{d}\omega}{\mathrm{d}t} = \frac{\mathrm{d}^2\alpha}{\mathrm{d}t^2} \tag{1.9.9}$$

miara łukowa, $a_{rad} \rightarrow$ składowa radialna

$$a_{rad} = \frac{v_2}{r} = \omega^2 r \tag{1.9.10}$$

 $I \rightarrow$ moment bezwładności

$$E_k = \sum_{i=1}^{n} \frac{1}{2} m_i v_i = \left(\sum_{i=1}^{n} \frac{1}{2} m_i r_i^2\right) \omega^2 = \frac{1}{2} I \omega^2$$
 (1.9.11)

$$I = \sum m_i r_i^2 = \int r^2 dm \tag{1.9.12}$$

$$M = (r)(F\sin(\phi)) = rF_{st} \tag{1.9.13}$$

 $M \, \to \, {\rm Moment}$ bezwładności; $F_{st} \to \, {\rm składowa}$ styczna siły

$$M = (r)(F\sin\phi) = rF_{st} \tag{1.9.14}$$

układ cząstek

$$L = I\omega = const \tag{1.9.15}$$

$$M_{wyp} = I\alpha \tag{1.9.16}$$

 $r_{\perp} \; \rightarrow \; {\rm Odległość}$ osi obrotu od prostej wzdłuż, której leży \vec{F}

$$M = (r \sin \phi)(F) = (r_{\perp})(F) \tag{1.9.17}$$

Twierdzenie Steinera, $I_{SM} \to \text{moment}$ bezwładności ciała względem osi równoległej do danej i przechodzącej przez śM

$$I = I_{SM} + mh^2 (1.9.18)$$

1.10 Praca i energia w ruchu obrotowym; przyjmując, że zmienia siętylko energia kinetyczna

 $\theta \to \text{położenie kątowe}$

$$\Delta E_k = \frac{1}{2} I(\Delta \omega)^2 = \int_{\theta_{pocz}}^{\theta_{konc}} M d\theta$$
 (1.10)

$$P = M\omega \tag{1.10.2}$$

Dla stałego M

$$\Delta E_k = M(\theta_{konc} - \theta_{pocz}) \tag{1.10.3}$$

1.11 Obrót ze stałym przyspieszeniem kątowym

$$\omega = \omega_0 + \alpha t \tag{1.11}$$

$$\theta - \theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2 \tag{1.11.2}$$

$$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0) \tag{1.11.3}$$

$$\theta - \theta_0 = \frac{1}{2}(\omega_0 + \omega)t \tag{1.11.4}$$

$$\theta - \theta_0 = \omega t - \frac{1}{2}\alpha t^2 \tag{1.11.5}$$

1.12 Toczenie

$$v_{SM} = \omega R \tag{1.12}$$

$$E_k = \frac{1}{2} I_{SM} \omega^2 + \frac{1}{2} m v_{SM}^2 \tag{1.12.2}$$

$$E_{k \ ruchu \ obrotowego} = \frac{1}{2} I_{SM} \omega^2 \tag{1.12.3}$$

$$E_{k \ ruchu \ postepowego} = \frac{1}{2} m v_{SM}^2 \tag{1.12.4}$$

Toczenie się bez poślizgu

$$a_{SM} = \alpha R \tag{1.12.5}$$

1.13 Toczenie po równi pochyłej

$$a_{SM,x} = \frac{g \sin \alpha}{1 + \frac{I_{SM}}{m \cdot P^2}} \tag{1.13}$$

1.14 Moment siły \rightarrow M, Moment pędu \rightarrow l i II z.d. dla ruchu obrotowego

$$\vec{M} = \vec{r} \times \vec{F} \tag{1.14}$$

$$M = rF\sin\phi = r_{\perp}F = rF_{\perp} \tag{1.14.2}$$

$$\vec{l} = \vec{r} \times \vec{p} = m(\vec{r} \times \vec{v}) \tag{1.14.3}$$

$$l = rmv \sin \phi = rp_{\perp} = rmv_{\perp} = r_{\perp}p = r_{\perp}mv \tag{1.14.4}$$

$$\vec{M_{wyp}} = \frac{d\vec{l}}{dt} \tag{1.14.5}$$

 $L \; \rightarrow \; \text{układ}$ cząstek

$$\vec{L} = \sum_{i=1}^{n} \vec{l_i} \tag{1.14.6}$$

$$\vec{M_{wyp}} = \frac{d\vec{L}}{dt} \tag{1.14.7}$$

układ cząstek

$$L = I\omega = const \tag{1.14.8}$$

$$I_{pocz}\omega_{pocz} = I_{konc}\omega_{konc} \tag{1.14.9}$$

$$\Delta L_x = \Delta L_y = \Delta L_z = 0 \tag{1.14.10}$$

1.15 Rzut pionowy

$$y = h_0 + v_0 t - \frac{gt^2}{2} (1.15)$$

1.16 Rzut poziomy

$$y = \frac{gx^2}{2v_0^2} \tag{1.16}$$

$$v_x = const = v_0 \cos \alpha \tag{1.16.2}$$

$$v_{0y} = 0 (1.16.3)$$

$$v_y = gt (1.16.4)$$

1.17 Rzut ukośny

$$v_x = v_0 \cos \alpha \tag{1.17}$$

$$v_{0y} = v_0 \sin \alpha \tag{1.17.2}$$

$$t_w = \frac{v_{0y}}{g} {(1.17.3)}$$

$$t_c = 2t_w = 2\frac{v_{0y}}{q} (1.17.4)$$

$$h_{max} = v_{0y}t_w = \frac{(v_0 \sin \alpha)^2}{2g}$$
 (1.17.5)

$$l = v_x t_c \tag{1.17.6}$$

$$y = h_0 + x \tan \alpha - \frac{gx^2}{2v_x^2} \tag{1.17.7}$$

2 Dynamika

$$a_{SM,x} = \frac{g \sin \alpha}{1 + \frac{I_{SM}}{mR^2}} \tag{2.0}$$

2.1 II Zasada Dynamiki Newtona

$$F_{wyp} = ma (2.1)$$

$$F_{wyp\ x} = ma_x \tag{2.1.2}$$

$$F_{wyp\ y} = ma_y \tag{2.1.3}$$

$$F_{wyp\ z} = ma_z \tag{2.1.4}$$

2.2 II Zasada Dynamiki Newtona w układzie nieinercjalnym

wypadkowa sił rzeczywistych

$$\vec{F_{wyp_{rz}}} + \vec{F_b} = m\vec{a} \left(\vec{F_{wyp_{rz}}} \right) \tag{2.2}$$

2.3 I Zasada Dynamiki Newtona w układzie nieinercjalnym

$$\vec{F_{wyp_{rz}}} + \vec{F_b} = 0 \tag{2.3}$$

2.4 Siła Tarcia i Opór Powietrza

 $C \to współczynnik oporu; \mu \to wspłczynnik tarcia; \rho \to gęstość$

$$f_{s max} = \mu_s N \tag{2.4}$$

$$f_k = \mu_k N \tag{2.4.2}$$

$$D = \frac{1}{2}C\rho Sv^2 \tag{2.4.3}$$

Siła Bezwładności

$$F_b = -ma (2.4.4)$$

Siła Coriolisa, $\omega \to \text{prędkość kątowa}$

$$F_C = 2m(\vec{v} \times \vec{\omega}) \tag{2.4.5}$$

2.5 Pęd i Popęd

$$\vec{p} = m\vec{v} \tag{2.5}$$

$$\vec{J} = \Delta \vec{p} = \vec{F_{sr}} = \int_{t_0}^{t_k} \vec{F}(t)dt\Delta t \qquad (2.5.2)$$

$$\vec{F_{wyp}} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} \tag{2.5.3}$$

2.6 Ciąg zderzeń np. pocisków z nieruchomą ścianą

 $n \to \text{liczba zderze}$ n

$$J = -n\Delta p \tag{2.6}$$

$$F_{sr} = \frac{J}{\Delta t} = -\frac{n\Delta p}{\Delta t} = -\frac{n}{\Delta t} m\Delta = -\frac{nm}{\Delta t} \Delta v$$
 (2.6.2)

3 Praca, Moc, Energia

$$_{k}=\frac{1}{2}mv^{2}\tag{3.0}$$

$$W = \Delta E = \vec{F}\vec{d} = Fd \cos \alpha = F_x d \tag{3.0.2}$$

 $W_g \to \text{praca siły grawitacji}$

$$W_q = mgd\cos\alpha = -\Delta E_p \tag{3.0.3}$$

praca siły zachowawczej

$$\Delta E_p = -W_{F_z} = -\int_{x_0}^{x_1} F_z(x) dx(W_{F_z})$$
(3.0.4)

$$F(x) = -\frac{\mathrm{d}E_p(x)}{\mathrm{d}x} \tag{3.0.5}$$

 $\vec{F_s}$ —siła sprężystości; k — współczynnik sprężystości

$$\vec{F_s} = -k\vec{d} \tag{3.0.6}$$

$$W_s = \frac{1}{2}kx_0^2 - \frac{1}{2}kx_k^2 \tag{3.0.7}$$

$$W_s = \int_{x_0}^{x_1} F_x(x) dx + \int_{y_0}^{y_1} F_y(x) dy + \int_{z_0}^{z_1} F_z(x) dz$$
 (3.0.8)

Praca wykonana nad układem w obecności siły tarcia

$$W = \Delta E_{mech} + \Delta E_{term} = \Delta E_{mech} + f\vec{k}d \tag{3.0.9}$$

moc średnia

$$P_{sr} = \frac{W}{\Delta t} \tag{3.0.10}$$

moc chwilowa

$$P = \frac{\mathrm{d}W}{\mathrm{d}t} = \vec{F}\vec{v} \tag{3.0.11}$$

3.1 Zamiana energii wewnętrznej na mechaniczną przez siłę zewnętrzną

 $d \rightarrow$ przemieszczenie środka masy

$$\Delta E_{mech} = \Delta E_k + \Delta E_p = Fd\cos\alpha \tag{3.1}$$

3.2 Zderzenia - ogólnie

$$\vec{p} = const \tag{3.2}$$

$$\frac{m_1}{m_2} = -\frac{\Delta v_1}{\Delta v_2} \tag{3.2.2}$$

$$m_1 v_{1pocz} + m_2 v_{2pocz} = m_1 v_{1konc} + m_2 v_{2konc}$$
 (3.2.3)

3.3 Zderzenie całkowicie niesprężyste

$$m_1 v_{1pocz} + m_2 v_{2pocz} = m_1 v_{1konc} + m_2 v_{2konc}$$
(3.3)

3.4 Zderzenie sprężyste

$$\Delta E = 0 \tag{3.4}$$

$$v_{1konc} = \frac{m_1 - m_2}{m_1 + m_2} v_{1pocz} + \frac{2m_2}{m_1 + m_2} v_{2pocz}$$
 (3.4.2)

$$v_{2konc} = +\frac{2m_1}{m_1 + m_2} v_{1pocz} + \frac{m_2 - m_1}{m_1 + m_2} v_{2pocz}$$
(3.4.3)

3.5 Zderzenie w dwóch wymiarach

 $\alpha \to \mathrm{kat}$ początkowy; $\theta \to \mathrm{kat}$ końcowy analiza w osi x

$$m_1 v_{1pocz} \cos \alpha_1 + m_2 v_{2pocz} \cos \alpha_1 = m_1 v_{1konc} \cos \theta_1 + m_2 v_{2konc} \cos \theta_2 \tag{3.5}$$

analiza w osi y

$$m_1 v_{1pocz} \sin \alpha_1 + m_2 v_{2pocz} \sin \alpha_1 = m_1 v_{1konc} \sin \theta_1 + m_2 v_{2konc} \sin \theta_2$$
 (3.5.2)

4 Układy cząstek

4.1 środek masy układu kilku cząstek

środek masy ciała jednorodnego, $n \to \text{liczba}$ cząstek

$$x_{SM} = \frac{1}{m_u} \sum_{i=1}^{n} x_i m_i; \quad y_{SM} = \frac{1}{m_u} \sum_{i=1}^{i=1} y_i m_i; \quad z_{SM} = \frac{1}{m_u} \sum_{i=1}^{n} z_i m_i$$
 (4.1)

4.2 II Zasada Dynamiki Newtona dla układu cząstek

$$\vec{F}_{wyp} = m_u \vec{a}_{SM} \tag{4.2}$$

4.3 Pęd i zachowanie pędu dla układu cząstek, w układzie izolowanym

$$\vec{p} = m_u \vec{a_{SM}} \tag{4.3}$$

$$\vec{p} = const \tag{4.3.2}$$

$$\vec{F_{wyp,x}} = 0 \implies \vec{p_x} = const$$
 (4.3.3)

4.4 Rakieta

siła ciągu silnika, $R\to$ spalanie paliwa; $v_{wzgl}\to$ szybkość gazów względem rakiety

$$T = Rv_{wzql} = m_u a (4.4)$$

$$v_k - v_p = \Delta v = v_{wzgl} \ln \frac{m_{u \ pocz}}{m_{u \ konc}} \tag{4.4.2}$$

5 Równowaga

warunki równowagi statycznej ciała, gdy $v=0 \wedge \omega=0$

$$\vec{P} = 0 oraz \vec{L} = 0 \tag{5.0}$$

warunki równowagi ciała

$$\vec{M_wyp} = 0 \land \vec{F_wyp} = 0 \tag{5.0.2}$$

gdy $\vec{g_i} = \vec{g_j}$ dla każdegoi i j

$$X_{SM} = x_{SC} \tag{5.0.3}$$

6 Sprężystość

Rozciąganie i ściskanie, $F\to$ wartość siły, $S\to$ pole przekroju prostopadłego do kierunku, $E\to$ moduł Younga, $frac\Delta LL\to$ względna zmiana długości \vec{F}

$$\frac{F}{S} = E \frac{\Delta L}{L} \tag{6.0}$$

Ścinanie, $F\to$ wartość siły, $S\to$ pole przekroju równoległego do kierunku \vec{F} , $G\to$ moduł ścinania, $\Delta x\to$ przemieszczenie częsci ciała w kierunku działania sił $L\to$ długość prostopadła do kierunku siły

$$\frac{F}{S} = G\frac{\Delta x}{L} \tag{6.0.2}$$

Naprężenie objętościowe, $p\to$ wartość siły, $S\to$ pole przekroju równoległego do kierunku $\vec{F},\, K\to$ moduł ścinania, $\frac{\Delta V}{V}\to$ względna zmiana objętości

$$p = K \frac{\Delta V}{V} \tag{6.0.3}$$

7 Grawitacja

Gdzie stała grawitacyjna $G=6,67\times 10^{-11}~N\frac{m^2}{kg^2}$ $F=G\frac{m_1m_2}{r^2} \eqno(7.0)$

Ciało w kształcie jednorodnej kulistej powłkoki przyciąga cząstke znajdującą na zewnątrz powłoki, tak jakby masa powłokibyła w jej środku masy

$$a_g = \frac{GM}{r^2} \tag{7.0.2}$$

$$g = a_q - \omega^2 R \tag{7.0.3}$$

Siła ciązenia wewnątrz kuli, $R \to \operatorname{promień}$ kuli, $r \to \operatorname{odległość}$ ciała od środka kuli

$$F = \frac{GmM}{R^3}r\tag{7.0.4}$$

grawitacyjna energia potencjalna

$$E_p = -\frac{GMm}{r} \tag{7.0.5}$$

grawitacyjna energia potencjalna

$$E_p = -\frac{Gm_1m_2}{r} - \frac{Gm_2m_3}{r} - \frac{Gm_1m_3}{r}$$
 (7.0.6)

$$F = -\frac{GMm}{r^2} \tag{7.0.7}$$

$$v = \sqrt{\frac{2GM}{R}} \tag{7.0.8}$$

I Prawo Keplera: Wszystkie planety poruszają się po orbitach w kształcie elipsie, w której ognisku jest słońce

II Prawo Keplera: Linia łącząca planetę ze słońcem zakreśla w jednakowych odstępach czasu jednakowe pola powierzchni w płaszczyźnie orbity, czyli:

$$const = \frac{\mathrm{d}S}{\mathrm{d}t} = \frac{1}{2}r^2\omega = \frac{L}{2m} \tag{7.0.9}$$

III Prawo Keplera: $T \to \text{okres}$ ruchu każdej planety na orbicie słońca, $M \to \text{masa}$ ciała wokół, którego krąży planeta $r \to \text{promień}$ albo półoś wielka - a. Dla satelity o masie m orbitującej wokół ciała niebieskiego o masie M na orbicie o promieniu r, w przypadku orbity eliptycznej o półosi wilkiej a

$$T^2 = \frac{4\pi^2 r^3}{GM} \tag{7.0.10}$$

$$E_p = -\frac{GMm}{r} \tag{7.0.11}$$

$$E_k = \frac{GMm}{2r} \tag{7.0.12}$$

dla orbity kołowej $E_m = -E_k$

$$E_m = -\frac{GMm}{2r} \tag{7.0.13}$$

8 Płyny

gęstość próbki o stałej gęstości

$$\rho = \frac{m}{V} \tag{8.0}$$

$$p = \frac{F}{S} \tag{8.0.2}$$

 p_2 i p_1 to ciśnienia na odpowiednio y_2 i $y_1, \, \mathrm{gdzie} \,\, y_1 > y_2$

$$p_2 = p_1 + \rho g(y_1 - y_2) \tag{8.0.3}$$

8.1 Podnośnik/Prasa hydrauliczna

$$\Delta p = \frac{F_{wej}}{S_{wej}} = \frac{F_{wyj}}{S_{wyj}} \tag{8.1}$$

$$V = S_{wej} d_{wej} = S_{wyj} d_{wyj} (8.1.2)$$

$$W = F_{wej}d_{wej} = F_{wyj}d_{wyj} \tag{8.1.3}$$

Prawo Archimedesa

$$F_w = m_{wp}g = V_c \rho_{wp}g \tag{8.1.4}$$

$$F_{ciezar\ pozorny} = F_{ciezar} - F_w \tag{8.1.5}$$

8.2 Płyny Doskonałe

 R_V to szybkość przepływu objętości, równanie ciągłości, strumień objętościowy

$$R_V = Sv = const (8.2)$$

Strumień masy

$$R_m = \rho R_V = \rho Sv = const \tag{8.2.2}$$

Równanie Bernoulliego, $y, v, p \rightarrow \text{poziom}, \text{prędkość}, ciśnienie }$

$$p + \frac{1}{2}\rho v^2 + \rho gy = const \tag{8.2.3}$$

9 Drgania

9.1 Ruch Harmoniczny

$$T = \frac{1}{f} = 2\pi f \tag{9.1}$$

częstość kołowa

$$\omega = \frac{2\pi}{T} \tag{9.1.2}$$

położenie od czasu, $x_m\to$ amplituda, $\omega t+\phi\to$ faza drgań, $\omega\to$ częstość kołowa, $\phi\to$ faza początkowa, \to gdy $t_0=0$: $x_0=x_m\to\phi=0$

$$x(t) = x_m \cos(\omega t + \phi) \tag{9.1.3}$$

$$x_0 = -x_m \to \phi = \pi rad \tag{9.1.4}$$

$$v(t) = x'(t) = -\omega x_m \sin(\omega t + \phi)$$
(9.1.5)

$$a(t) = v(t)' = x''(t) = -\omega^2 x_m \cos(\omega t + \phi) = -\omega^2 x(t)$$
 (9.1.6)

amplituda zmian prędkości

$$v_m = \omega x_m \tag{9.1.7}$$

ampltuda zmian przyspieszenia

$$a_m = \omega^2 x_m \tag{9.1.8}$$

$$x(t) = x(t + kT) \tag{9.1.9}$$

$$F = -\left(m\omega^2\right)x\tag{9.1.10}$$

prawo Hooke'a

$$F = -kx (9.1.11)$$

$$k = m\omega^2 \tag{9.1.12}$$

$$\omega = sqrt\frac{k}{n} \tag{9.1.13}$$

$$T = 2\pi sqrt \frac{k}{n} \tag{9.1.14}$$

$$E_k = \frac{1}{2}mv^2 (9.1.15)$$

$$E_p = \frac{1}{2}kx^2 = \frac{1}{2}kx_m^2 \sin^2(\omega t + \phi)$$
 (9.1.16)

$$E = E_k + E_p = \frac{1}{2}kx_m^2 (9.1.17)$$

9.2 Wahadło Torsyjne

 $\kappa \to \text{moment kierujący}$

$$T = 2\pi \sqrt{\frac{I}{\kappa}} \tag{9.2}$$

$$M = -\kappa\theta \tag{9.2.2}$$

9.3 Wahadła, Ruch po okręgu

Wahadła matematycznego przy małym kącie

$$T = \sqrt{\frac{I}{mgL}} \tag{9.3}$$

wahadło fizyczne, przy małym kącie, $h \to \operatorname{odległość}$ środka masy od osi obrotu

$$T = \sqrt{\frac{I}{mgh}} \tag{9.3.2}$$

9.4 Ruch Harmoniczny Tłumiony

 $b \to \mathrm{stała}$ tłumienia

$$\vec{F_o} = -b\vec{v} \tag{9.4}$$

częstość kołowa oscylatora tłumionego

$$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}} \tag{9.4.2}$$

$$x(t) = x_m e^{\frac{-bt}{2m}} \cos(\omega' t + \phi) \tag{9.4.3}$$

Dla małego b

$$E(t) \approx \frac{1}{2}kx_m^2 e^{\frac{-bt}{2m}} \tag{9.4.4}$$

9.5 Drgania Wymuszone i Rezonans

Drgania wymuszone

$$x(t) = x_m \cos(\omega_{wym} t + \phi) \tag{9.5}$$

Rezonans

$$\omega = \omega_{wym} \tag{9.5.2}$$

$$v_m, a_m, x_m \text{ jest najwieksze } gdy \ \omega = \omega_{wym}$$
 (9.5.3)

10 Fale I

Fale sinusoidalne, $y_m \to \text{amplituda}$

$$y(x,t) = y_m \sin(kx - \omega t + \phi) \tag{10.0}$$

Fala przeciwna do danej wyżej

$$y(x,t) = y_m \sin(kx + \omega t + \phi) \tag{10.0.2}$$

Wzór ogólny, $k \to$ liczba falowa, $x \to$ położenie, $y(x,t) \to$ przemieszczenie

$$y(x,t) = y_m \sin(kx \pm \omega t + \phi) \tag{10.0.3}$$

Liczba falowa, $\lambda \to d$ ługość fali

$$k = \frac{2\pi}{\lambda} \tag{10.0.4}$$

Częstość kołowa

$$\omega = \frac{2\pi}{T} \tag{10.0.5}$$

$$f = \frac{1}{T} = \frac{\omega}{2\pi} \tag{10.0.6}$$

$$kx - \omega t = const \tag{10.0.7}$$

$$v = \frac{\omega}{k} = \frac{\lambda}{T} = \lambda f \tag{10.0.8}$$

10.1 Fala w Napiętej Linie

 $\mu \to$ gęstość liniowa liny, $T \to$ wartość siły naprężenia w linie

$$v = \sqrt{\frac{T}{\mu}} \tag{10.1}$$

$$\mu = \frac{m}{l} \tag{10.1.2}$$

$$P_{sr} = \frac{1}{2}\mu v\omega^2 y_m^2 (10.1.3)$$

Prędkość poprzeczna elementu

$$u = -\omega y_m \cos(kx - \omega t) \tag{10.1.4}$$

$$dE_k = \frac{1}{2}dmu^2 (10.1.5)$$

10.2 Równanie Falowe

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial y}{\partial t} \tag{10.2}$$

10.3 Interferencja fal

Zasada superpozycji fal

$$y(x,t) = y_1(x,t) + y_2(x,t)$$
(10.3)

Fala wypadkowa dla dwóch fal w których,

$$k_1 = k_2, \ \omega_1 = \omega_2, \ f_1 = f_2, \ y_{m1} = y_{m2}$$
. Ponad to: $(2y_m \cos\left(\frac{1}{2}\phi\right)) \rightarrow$ amplituda, oraz $\sin\left(kc - \omega t + \frac{1}{2}\phi\right) \rightarrow$ czynnik oscylacyjny

$$y(x,t) = \left(2y_m \cos\left(\frac{1}{2}\phi\right)\right) \sin\left(kc - \omega t + \frac{1}{2}\phi\right)$$
 (10.3.2)

10.4 Wskazy

Dana jest fala $y_1(x,t) = y_{m1} \sin(kx - \omega t)$. Długość wskazu wynosi y_m , a jego prędkość kątowa wynosi ω . Długość składowej y wskazu jestrówna przemieszczeniu punktu w danej chwili. Dana jest fala $y_2(x,t) = y_{m2} \sin(kx - \omega t + \phi)$ kąt miedzy wskazami fali 1 i fali 2 to ϕ . Sumą tych fal jest fala: $y(x,t) = y_m \sin(kx - \omega t + \beta) \rightarrow$ fala wypadkowa, gdzie β to faza poczatkowa. Ponad to wskazem fali wypadkowej jest suma wskazów fal składowych

10.5 Fale Stojace i Rezonans

Fala stojąca w linie umocowanej na obu końcach

$$y(x,t) = 2y_m \sin(kx) \cos(\omega t) \tag{10.5}$$

Amplituda w puncie x

$$2y_m \sin(kx) \tag{10.5.2}$$

Dla dowolnego $n \neq 0$ dla n = 1 dr
ganie podstawowe, dla n = 2 druga harmoniczna itd. D

$$f = \frac{v}{\lambda} = n \frac{v}{2L} \tag{10.5.3}$$

11 Fale II

11.1 Fala Dźwiękowa

Prędkość dźwięku, $B \to \text{moduł}$ ściśliwości ośrodka

$$v = \sqrt{\frac{B}{\rho}} \tag{11.1}$$

Względna zmiana objętości $\Delta V/V$ wywoływana przez zmiane ciśnienia Δp

$$B = -\frac{\Delta p}{\Delta V/V} \tag{11.1.2}$$

przemieszczenie podłużne selementu masy, $s_m \to$ amplituda, $k = \frac{2\pi}{\lambda},\, \omega = 2\pi f$

$$s(x,t) = s_m \cos(kx - \omega t) \tag{11.1.3}$$

Zmiana ciśnienia względem ciśnienia równowagi

$$\Delta p = \Delta p_m \sin(kx - \omega t) \tag{11.1.4}$$

Amplituda zmian ciśnienia

$$\Delta p_m = v \rho \omega s_m \tag{11.1.5}$$

Fale wysłane w tych samych fazach i w podobnych kierunkach, gdzie ΔL to różnica dróg przebytych

$$\phi = \frac{\Delta L}{\lambda} 2\pi \tag{11.1.6}$$

Warunek całkowcie konstruktywnej interferencji dla każdego $m \in \mathbb{N}$

$$\phi = m(2\pi) \ lub \ \frac{\Delta L}{\lambda} = m \tag{11.1.7}$$

Natęrzenie fali, $P \to \text{moc}$ fali, $S \to \text{pole}$ powierzchni do której dociera fala

$$I = \frac{P}{S} \tag{11.1.8}$$

$$I = \frac{1}{2}\rho v\omega^2 a_m^2 \tag{11.1.9}$$

W odeległości r o źródła o mocy P_{zr}

$$I = \frac{P_{zr}}{4\pi r^2} \tag{11.1.10}$$

Głośność dźwięku, gdzie I_0 jest standardowym natężeniem dźwięku

$$\beta = (10 \ dB) \log \ \frac{I}{I_0} \tag{11.1.11}$$

$$I_0 = 10^{-12} \frac{W}{m^2} \tag{11.1.12}$$

Natężenie dźwięku pochodzące ze źródła liniowego, jak iskra przeskakująca o L

$$I = \frac{P}{S} = \frac{P_{zr}}{2\pi rL} \tag{11.1.13}$$

11.2 Źródła dźwięku w muzyce

 $v\to$ prędkość dzwięku w ośrodku będącym w środku rury, $L\to$ długość rury Rura obustronnie otwarta, dla każdego $n\in\mathbb{N}\ \to$

$$f = \frac{nv}{2L} \tag{11.2}$$

Rura jednostronnie otwarta, dla każdego $n \in \mathbb{N}$

$$f = \frac{(2n+1)v}{4L} \tag{11.2.2}$$

Struna, n-ta harmoniczna

$$L = \frac{n\lambda}{2} \tag{11.2.3}$$

11.3 Dudnienia

Powstaja gdy odbieramy dwie fale o nieznacznie róniacych sie częstotliwościach f_1 i f_2

Częstotliwość docierania dźwiękuów dudnienia

$$f_{ddudn} = f_1 - f_2 (11.3)$$

Częstotliwość dźwięku dudnienia

$$f_d = \frac{f_1 + f_2}{2} \tag{11.3.2}$$

11.4 Efekt Dopplera

Częstetliwość fali rejestrowanej przez detektor, gdy źródło przemieszcza się z prędkością v_S a detektor z prędkością v_D , gdzie $v \to$ prędkość dźwięku w ośrodku. Gdy detektor ze źródłem zbliżają się do siebie f' > f, a gdy oddalają się f' < f i tak należy dobrać znaki

$$f' = f \frac{v \pm v_D}{v \pm v_S} \tag{11.4}$$

11.5 Prędkości Nadźwiękowe, Fale Uderzeniowe

 $v_S \to \text{prędkość ciała}, v \to \text{prędkość dźwięku w ośrodku}$ Kąt Macha (połowa kąta wierzchołkowego stożka Macha)

$$\sin \theta = \frac{v}{v_S} \tag{11.5}$$

Liczba Macha

$$\frac{v_S}{v} \tag{11.5.2}$$

12 Termodynamika

Termometr gazowy

$$T = (273, 16K) \left(\lim_{ilosc \ gazu \rightarrow 0} \frac{p}{p_3} \right)$$
 (12.0)

Punkt potrójny wody

$$T_3 = 273, 16K (12.0.2)$$

Przliczanie z K na ${}^{o}C$

$$T_C = (T - 273, 15)^{\circ}C (12.0.3)$$

Przliczanie z ${}^{o}C$ na ${}^{o}C$

$$T_F = \left(\frac{9}{5}T_C + 32\right)^o F \tag{12.0.4}$$

Zmiana objętości V przy zmianie temperatury o ΔV

$$\Delta V = V \beta \Delta T \tag{12.0.5}$$

Współczynnik rozszerzalności cieplnej liniowej i objętościowej

$$\beta = 3\alpha \tag{12.0.6}$$

Zmiana objętości L przy zmianie temperatury o ΔL

$$\Delta L = L\alpha \Delta T \tag{12.0.7}$$

$$1 \ cal = 4,1868 \ J$$
 (12.0.8)

Związek zmiany tempertauryz pochłonietym ciepłem,
gdzie $Q\to$ pochłoniete ciepło, $C\to$ pojemność cieplna,
 $c\to$ ciepło własciwe

$$Q = C(T_k - T_p) = cm(T_k - T_p) = cm\Delta T$$
 (12.0.9)

ciepło, które trzeba dostarczyć ciału o masie m i cieple przemiany c aby nastąpiła zmianna stanu skupienia

$$q = c_p m \tag{12.0.10}$$

$$Q > 0 \to T_O > T_U \tag{12.0.11}$$

Praca gazu który zwiększa i zmiejsza swoją objętość

$$W = \int_{V_2}^{V_k} p dV (12.0.12)$$

I Zasada Termodynamiki, $W_u,\ W_o\ \to$ praca układu i wykonana nad układem

$$\Delta E_w = Q - W_u + W_o \tag{12.0.13}$$

12.1 Niektóre szćzególne przypadki I Zasady Termodynamiki

Przemiana adiabatyczna

$$Q = 0 \implies \Delta E_W = -W \tag{12.1}$$

Przemiana ze stałą objętością

$$W = 0 \implies \Delta E_W = Q \tag{12.1.2}$$

Przemiana - cykl zamkniety

$$\Delta E_W = 0 \implies Q = W \tag{12.1.3}$$

Przemiana - rozprężanie swobodne

$$Q = W = 0 \implies \Delta E_W = 0 \tag{12.1.4}$$

Strumień ciepła przepływającego przez płytke, gdzie S i L toPole powierzchni oraz grubość płytki, a k to przwodność cieplna materiału

$$P_{prze} = \frac{Q}{t} = kS \frac{T_G - T_Z}{L} \tag{12.1.5}$$

moc promieniowania cieplnego, gdzie $\sigma=5,6704$ 10^{-8} $\frac{W}{m^2K^4}$ \to stała Stefana-Boltzmanna, $\varepsilon\to$ zdolność emisyjna powierzchni ciała, $T\to$ jego temperatura bezwzględna

$$P_{prze} = \sigma \varepsilon S T^4 \tag{12.1.6}$$

Moc absorbowania z otoczenia o temperaturze T_O

$$P_{abs} = \sigma \varepsilon S T_O^4 \tag{12.1.7}$$

Opór cieplny

$$R = \frac{L}{kS} \tag{12.1.8}$$

Strumień ciepła przepływającego przez i płytek

$$P_{prze} = S \frac{T_G - T_Z}{\sum L_i / k_i} \tag{12.1.9}$$

13 Kinetyczna Teoria Gazów

Liczba Avogarda

$$N_A = 6,02.10^{23} mol^{-1} (13.0)$$

Masa molowa, $m \to \text{masa cząsteczek}$

$$M = mN_A \tag{13.0.2}$$

Próbka substancji o masie M_{pr} , złożona z N cząsteczek, zawiera n moli substancji

$$n = \frac{N}{N_A} = \frac{M_p r}{M} = \frac{M_{pr}}{m N_A} \tag{13.0.3}$$

Rówananie stanu gazu doskonałego, $n \to \text{liczba moli gazu}$

$$pV = nRT (13.0.4)$$

Stała gazowa

$$R = 8.31 \frac{J}{mol \cdot K} \tag{13.0.5}$$

Stała Boltzmanna

$$pV = NkT \rightarrow k = \frac{R}{N_A} = 1,38 \cdot 10^{-23} \frac{J}{K}$$
 (13.0.6)

Praca gazu wykonana w wyniku przemiany izotermicznej

$$W = nRT \ln \frac{V_k}{V_p} \tag{13.0.7}$$

Praca gazu przy stałej objętości i ciśnieniu

$$W = 0 \tag{13.0.8}$$

Praca gazu, dopuszczając zmiane temperatury

$$W = \int_{V_p}^{V_k} p dV \tag{13.0.9}$$

$$p = \frac{nMv_{sr.kw.}^2}{3V} = \frac{nMv_{x\ sr.kw.}^2}{3V}$$
 (13.0.10)

$$v_{sr.kw.}^2 = \sqrt{(v^2)_{sr}} \tag{13.0.11}$$

$$v_{sr.kw.}^2 = \sqrt{\frac{3RT}{M}}$$
 (13.0.12)

$$E_{k \ sr} = \frac{1}{2}mv^2 sr.kw. \tag{13.0.13}$$

Średnia energia ruchu postepowego na cząsteczke, w zależności od T

$$E_{k \ sr} = \frac{3}{2}kT^2 \tag{13.0.14}$$

Średnia droga swobodna λ , czyli odległość pokonywana średnio przez cząsteczke między kolejnymi zderzeniami, gdzie: $\frac{N}{V} = \frac{p}{kT} \rightarrow$ liczba cząsteczek na jednostke objętości, $d \rightarrow$ średnica cząstek

$$\lambda = \frac{1}{\sqrt{2}\pi d^2 \ N/V} \tag{13.0.15}$$

Rozkład prędkości Maxwella

$$P(v) = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} v^2 e^{\left(-Mv^2\right)/(2RT)}$$
 (13.0.16)

$$v_{sr} = \sqrt{\frac{8RT}{\pi M}} \tag{13.0.17}$$

Prędkości najbardziej prawdopodobna

$$v_P = \sqrt{\frac{2RT}{M}} \tag{13.0.18}$$

$$v_{sr.kw.}^2 = \sqrt{\frac{3RT}{M}}$$
 (13.0.19)

Ułamek czastek o predkości od v_1 do v_2

$$\int_{v_1}^{v_2} P(v) dv \tag{13.0.20}$$

Ułamek cząstek o prędkości z przeciału dv o środku w v

$$P(v)dv (13.0.21)$$

Energia wewnętrzna dowolnego gazu doskonałego

$$E_w = nC_V T \tag{13.0.22}$$

13.1 Dla stałej objętości

$$\Delta E_w = Q = nC_V \Delta T \tag{13.1}$$

gaz jednoatomowy, gdzie C_V to molowe ciepło własciwe przy stałym V

$$C_V = \frac{3}{2}R = 12,5J/(mol \cdot K)$$
 (13.1.2)

13.2 Dla stałego cisnienia

Molowe ciepło własciwe C_p przy stałym p

$$Q = nC_p \Delta T \tag{13.2}$$

$$W = p\Delta V = nR\Delta T \tag{13.2.2}$$

$$C_p = C_V + R \tag{13.2.3}$$

Dla dowolnego gazu jednoatomowego

$$C_p = \frac{5}{2}R {13.2.4}$$

Każdy rodzaj cząstek charakteryzuje pewna ilość stopni swobody f, które dają cząsteczce niezależne sposoby przechowywania energii. Na każdy stopień swobody przypada średnio energia równa $\frac{1}{2}kT$ na cząsteczke, lub $\frac{1}{2}RT$ w przeliczeniu na mol

$$C_V = \frac{f}{2}R\tag{13.2.5}$$

$$E_w = \frac{f}{2}nRT\tag{13.2.6}$$

Dla gazu jednoatomowego

$$f = 3 \tag{13.2.7}$$

Dla gazu dwuatomowego

$$f = 5 \tag{13.2.8}$$

Dla gazu wieloatomowego, gdzie wynik jest niedoszacowany

$$f = 6 \tag{13.2.9}$$

Rozprężanie adiabatyczne

$$pV^{\gamma} = const \tag{13.2.10}$$

$$\gamma = \frac{C_p}{C_V} \tag{13.2.11}$$

14 Entropia i II Zasada Termodynamiki

Rozprężanie swobodne

$$pV = const (14.0)$$

$$TV^{\gamma-1} = const (14.0.2)$$

Definicja zmiany entropi

$$\Delta S = \int_{pocz}^{konc} \frac{dQ}{T} \tag{14.0.3}$$

$$\Delta S = \frac{Q}{T} \tag{14.0.4}$$

Zmiana entropii w przmianie izotermicznej rzy małej zmianie temperatury

$$\Delta S = \frac{Q}{T_{cr}} \tag{14.0.5}$$

Entropia układu zamkniętego wzrasa w przemianach nieodwracalnych i nie zmiania się w odwracalnych

Druga Zasada Termodynamiki

$$\Delta S \geqslant 0 \tag{14.0.6}$$

14.1 Silnik Carnota

Sprawność dowolnego silnika

$$\eta = \frac{W}{Q_G} \tag{14.1}$$

Sprawność silnika Carnota

$$\eta = 1 - \frac{Q_Z}{Q_W} = 1 - \frac{T_Z}{T_W} \tag{14.1.2}$$

14.2 Chłodziarki

Współczynnik wydajności dowolnej chłodziarki

$$K = \frac{Q_Z}{W} \tag{14.2}$$

Współczynnik wydajności chłodziarki Carnota

$$K_C = \frac{T_Z}{T_G - T_Z} {14.2.2}$$

15 Elektrodynamika

15.1 Prawo Coulomba

Prawo Coulomba

$$\vec{F_C} = k \frac{q_1 q_2}{r^2} \hat{r} \tag{15.1}$$

Stała elektryczna

$$k = \frac{1}{4\pi\varepsilon_0} = 8,9910^9 \frac{Nm^2}{C^2} \tag{15.1.2}$$

Przenikalność elektryczna próżni

$$\varepsilon_0 = 8,8510^{-12} \frac{C^2}{Nm^2} \tag{15.1.3}$$

$$C = A * s \tag{15.1.4}$$

Natężenie prądu

$$I = \frac{\mathrm{d}q}{\mathrm{d}t} \tag{15.1.5}$$

Wartość ładunku elementarnego

$$e = 1,60210^{-19}C\tag{15.1.6}$$

15.2 Pole Elektryczne

Natężenie pola elektrycznego w danym punkcie, czyli stosunek siły działającej na ładunek próbny q_0 do tego ładunku

$$\vec{E} = \frac{\vec{F}}{q_0} \tag{15.2}$$

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{r} \tag{15.2.2}$$

$$E = \frac{F}{q_0} = \frac{1}{4\pi\varepsilon_0} \frac{|q|}{r^2}$$
 (15.2.3)

$$\vec{E_{wyp}} = \frac{\vec{F_{wyp}}}{q_0} = \int_{i=1}^n \vec{E_n}$$
 (15.2.4)

Dipol elektryczny względem punktu P na osi o odległości z od środka dipola i o odległosci d między cząstkami

$$E = \frac{q}{2\pi\varepsilon_0 z^3} \frac{d}{\left(1 - \left(\frac{d}{2z}\right)^2\right)^2}$$
 (15.2.5)

Dipol elektryczny dla dużych odległości

$$E = \frac{1}{2\pi\varepsilon_0} \frac{qd}{z^3} \tag{15.2.6}$$

Elektryczny moment dipolowy

$$\vec{p} = qd \tag{15.2.7}$$

Pole naładowanego pierścienia na jego osi

$$E = \frac{qz}{4\pi\varepsilon_0(z^2 + R^2)^{3/2}}$$
 (15.2.8)

Pole naładowanego pierścienia daleko od niego

$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{z^2} \tag{15.2.9}$$

Pole naładowanej tarczy o promieniu R, na jej osi w odległości z

$$E = \frac{\sigma}{2\varepsilon_0} \left(1 - \frac{z}{\sqrt{z^2 + R^2}} \right) \tag{15.2.10}$$

Pole naładowanej tarczy o promieniu R, gdzie $R \to \infty$

$$E = \frac{\sigma}{2\varepsilon_0} \tag{15.2.11}$$

Ładunek w polu elektrycznym

$$\vec{F} = q\vec{E} \tag{15.2.12}$$

Moment siły działający na dipol

$$\vec{M} = \vec{p} \times \vec{E} \tag{15.2.13}$$

Wartość momentu siły działającego na dipol

$$M = pE\sin\theta \tag{15.2.14}$$

Energia potencjalna dipola

$$E_p = -\vec{p} \cdot \vec{E} = -pE \cos \theta \tag{15.2.15}$$

15.3 Prawo Gaussa

Całkowity strumień elektryczny

$$\Phi = \int \vec{E} \cdot d\vec{S} \tag{15.3}$$

Jednorodne pole, płaska powierzchnia

$$\Phi = (E \cos \theta)S \tag{15.3.2}$$

Wypadkowy strumień (kółko oznacza całkowanie po wszytkich powierchniach płaszczyzny)

$$\Phi = \oint \vec{E} \cdot d\vec{S} \tag{15.3.3}$$

Prawo Gaussa, spełnione w próżni i w przybliżeniu w powietrzu

$$q_{wewn} = \varepsilon_0 \Phi = \varepsilon_0 \oint \vec{E} \cdot d\vec{S}$$
 (15.3.4)

Pole elektryczne na powierzchni przewodnika na małe powierchni przewodnika walcowego (na tyle małej aby uznac ja za płaską)

$$E = \frac{\sigma}{\varepsilon_0} \tag{15.3.5}$$

Naładowana linia prosta, gdzie r to odległość od lini

$$\frac{\lambda}{2\pi\varepsilon_0 r} \tag{15.3.6}$$

Naładowana płaszczyzna pomijając zakrzywienie pola na brzegach

$$E = \frac{\sigma}{2\varepsilon_0} \tag{15.3.7}$$

Naładowna powłoka kulista, gdzie $r\leqslant R\to {\rm odległo}$ ść od środka powłoki

$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \tag{15.3.8}$$

Naładowana powłkoa kulista, gdzie r < R

$$E = 0 \tag{15.3.9}$$

Jendorody rozkład sferyczny ładunek, gdzie $r < R, \, r \to$ promień powierzchni Gaussa, $R \to$ Promień rozkładu ładunku, $q \to$ cały ładunek

$$E = \left(\frac{q}{4\pi\varepsilon_0 R^3}\right) r \tag{15.3.10}$$

15.4 Potnecjał Elektryczny

Elektryczna energia potencjalna

$$E_p = qV (15.4)$$

Przenesienie cząstki z punktu o potnecjale ${\cal V}_p$ do punktu o potencjale ${\cal V}_k$

$$\Delta E_p = q\Delta V = q(V_k - V_p) \tag{15.4.2}$$

Zmiana energi kinetycznej w związku z pokoniem różnicy potencjałów

$$\Delta E_k = -q\Delta V = -q(V_k - V_p) \tag{15.4.3}$$

Praca siły zewnątrznej

$$\Delta E_k = -\Delta E_p + W_{zew} = -q\Delta V + W_{zew} \tag{15.4.4}$$

Elektronowolty - energia

$$1eV = 1,602 \cdot 10^{-19} J \tag{15.4.5}$$

Obliczanie potencjału na podstawie pola, całka po drodze cząstki

$$\Delta V = -\int_{p}^{k} \vec{E} \cdot d\vec{s} \tag{15.4.6}$$

Pole jednorodene

$$\Delta V = -E\Delta x \tag{15.4.7}$$

Potencjał elektryczny naładowanej cząstki

$$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r} \tag{15.4.8}$$

Dla n naładowanych cząstek

$$V_n = \sum_{i=1}^n V_i = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^n \frac{q}{r}$$
 (15.4.9)

Potencjał elektryczny dipolu

$$V = \frac{1}{4\pi\varepsilon_0} \frac{p \cos \theta}{r^2} \tag{15.4.10}$$

Potencjał pola ładunku o ciągłym rozkładzie

$$V = \int dV = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r}$$
 (15.4.11)

Potencjał elektryczny naładowanej lini w oległości d o długości L

$$V = \int dV = \frac{\lambda}{4\pi\varepsilon_0} \ln\left[\frac{L + (L^2 + d^2)^{1/2}}{d}\right]$$
 (15.4.12)

Potencjał elektryczny naładowanej tarczy w punkcie na protsej przechodzącej przez środek tarczy i do niej prostopadłej w odległości z

$$V = \int dV = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{z^2 + R^2} - z \right)$$
 (15.4.13)

Składowa natężenia pola w kierunku x na podstawie potencjału

$$\vec{E_x} = \frac{\partial V}{\partial x} \tag{15.4.14}$$

Całkowita energia potencjalna układu czastek jest sumą energi potencjalnych każdej pary naładowanych cząstek

Elektryczna energia potencjalna układu dwuch czastek

$$E_p = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r} \tag{15.4.15}$$

Nadmiar ładunku umieszczony na izolowanym przewodniku rozkłada się na powierzchni tego przewodnika w tak, że wszytkie punkty tego przewodnikauzyskują ten sam potencjałnawet jeśli przewodnik posiada wnęke

15.5 Pojemność elektryczna

Pojemnośc elektryczna - proporcja ładunku i napięcia

$$q = UC (15.5)$$

Związek pola elektrycznego z ładunkiem na okładkach kondensatora

$$\varepsilon_0 \oint \vec{E} \cdot d\vec{s} = q \tag{15.5.2}$$

Związek zmiany potencjału z ładunkiem na okładkach kondensatora, całka po dowolnej drodze z jednej okładki kondensatora na drugą

$$V_k - V_p = -\int_p^k \vec{E} \cdot d\vec{s} \tag{15.5.3}$$

Pojemność elektryczna kondensatora płaskiego, gdzie d to odległość między okładkami a S to ich powierzchnia

$$C = \frac{\varepsilon_0 S}{d} \tag{15.5.4}$$

Pojemność elektryczna kondensatora walcowego

$$C = 2\pi\varepsilon_0 \frac{L}{\ln\left(b/a\right)} \tag{15.5.5}$$

Pojemność elektryczna kondensatora kulistego

$$C = 4\pi\varepsilon_0 \frac{ab}{b-a} \tag{15.5.6}$$

Izolowana kula jako kondensator

$$C = 4\pi\varepsilon_0 R \tag{15.5.7}$$

Kondensatory połaczone równolegle

$$C_{rw} = \sum_{j=1}^{n} C_j \tag{15.5.8}$$

Kondensatory połączone szeregowo

$$\frac{1}{C_{rw}} = \sum_{j=1}^{n} \frac{1}{C_j} \tag{15.5.9}$$

Energia potencjalna naładowanego kondensatora

$$E_p = \frac{q^2}{2C} = \frac{1}{2}CU^2 \tag{15.5.10}$$

Gęstość energi, czyli energia na jednostke objętości w polu elektrycznym

$$u = \frac{1}{2}\varepsilon_0 E^2 \tag{15.5.11}$$

Prawo Gaussa w dielektryku

$$\varepsilon_0 \oint \varepsilon_r \vec{E} \cdot d\vec{S} = q \tag{15.5.12}$$

15.6 Prąd i opór elektryczny

Defnicja natężenia prądu

$$I = \frac{\mathrm{d}q}{\mathrm{d}t} \tag{15.6}$$

Gęstość prądu \vec{J}

$$I = \int \vec{J} \cdot d\vec{S} \tag{15.6.2}$$

Gęstość prądu, gdy przepływ prądu przez powierzchnię jest stały

$$J = \frac{I}{S} \tag{15.6.3}$$

Prędkość unoszenia dryftu, gdzie n to liczba nośników na jednostke objętości w przewodniku o długości L i polu powierzchni S

$$\vec{J} = (ne)\vec{v_d} \tag{15.6.4}$$

Opór elektryczny

$$R = \frac{U}{I} \tag{15.6.5}$$

Opór elektryczny właściwy materiału

$$\rho = \frac{E}{I} \tag{15.6.6}$$

Opór elektryczny właściwy materiału w postaci wektorowej

$$\vec{E} = \rho \vec{J} \tag{15.6.7}$$

Przewodność elektryczna właściwa

$$\sigma = \frac{1}{\rho} \tag{15.6.8}$$

Opór elektryczny

$$R = \rho \frac{L}{c} \tag{15.6.9}$$

Opór własciwy ρ w zależności z temperaturą, gdzie T_0 to temperatura odniesienia a ρ_0 to ρ w T_0 , a α to współczynnik temperaturowy oporu własciwego materiału

$$\rho - \rho_0 = \rho_0 \alpha (T - T_0) \tag{15.6.10}$$

Moc elektryczna

$$P = IU \tag{15.6.11}$$

Rozpraszanie energi termcznej w oporniku

$$P = I^2 R = \frac{U^2}{R} \tag{15.6.12}$$

Zakładając, że elektrony przewodnictwa w metalu są swobodne i mogą poruszać się jak czasteczki w gazie możemy wyprowadzić wyrażnie opisujące opór własciwy metalu, gdzie n to liczba elektronów swobodnych w jednostce objętości i τ jest średnim czasem między zdeżeniami elektronów, a m to masa elektronu

$$\rho = \frac{m}{e^2 n \tau} \tag{15.6.13}$$

15.7 Obwody elektryczne

Definicja SEM, gdzie dW to praca nad ładunkiem jednostkowym prezenosząc go z jednego bieguna na drugi

$$\mathcal{E} = \frac{\mathrm{d}W}{\mathrm{d}q} \tag{15.7}$$

I w zalezności od \mathcal{E}

$$I = \frac{\mathcal{E}}{R} \tag{15.7.2}$$

Pierwsze prawo Kirchhoffa. Suma natężeń wpływających do dowolnego węzła musić być sumą natężeń wypływających z tego węzła

Drugie prawo Kirchhoffa. Algebraiczna suma zmian potencjałów napotykanych przy pełnym przejściu oczka musi być 0 N oporników połączonych szeregowo

$$R_{rw} = \sum_{j=1}^{n} R_j \tag{15.7.3}$$

Moc źródła SEM

$$P_{SEM} = I\mathcal{E} \tag{15.7.4}$$

N oporników połączonych szeregowo

$$\frac{1}{R_{rw}} = \sum_{j=1}^{n} \frac{1}{R_j} \tag{15.7.5}$$

Ładowanie kondensatora

$$q = C\mathcal{E}\left(1 - e^{-t/RC}\right) \tag{15.7.6}$$

Ładowanie kondensatora

$$I = \frac{\mathrm{d}q}{\mathrm{d}t} = \left(\frac{\mathcal{E}}{R}\right)e^{-t/RC} \tag{15.7.7}$$

Ładownay kondensator upływie długiego czasu zachowuje się jak przerwa w obwodzie a poczatkowo jak przewodnik bez oporu

Napięcie - Ładowanie kondensatora

$$U_C = \frac{q}{C} = \mathcal{E}\left(1 - e^{-t/RC}\right) \tag{15.7.8}$$

Stała czasowa kondensatora - w ciągu czasu τ ładunek na kondensatorze wzrasta z 0 do do 63% końcowej wartości $C\mathcal{E}$

$$\tau = RC \tag{15.7.9}$$

Rozładowanie kondensatora

$$q(t) = q_0 e^{-t/RC} (15.7.10)$$

Rozładowywanie kondensatora

$$I = \frac{\mathrm{d}q}{\mathrm{d}t} = -\left(\frac{q_0}{RC}\right)e^{-t/RC} \tag{15.7.11}$$

15.8 Pole magnetyczne

Wektor induckji magnetycznej

$$\vec{F}_B = q\vec{v} \times \vec{B} \tag{15.8}$$

Wartość induckji magnetycznej

$$F_B = |q|vB\sin\theta \tag{15.8.2}$$

$$1T = \frac{N}{A \cdot m} \tag{15.8.3}$$

Pole magnetyczne ziemii

$$B_Z = 10^{-4}T (15.8.4)$$

Czątka naładowana o masie m i ładunku |q| o prędkości \vec{v} prostopadłej do \vec{B} będzie porszać się po okręgu o promieniu r

$$r = \frac{mv}{|q|B} \tag{15.8.5}$$

Czestotliwość f i czestość kołowa ω oraz okres T tego ruchu

$$f = \frac{\omega}{2\pi} = \frac{1}{T} = \frac{|q|B}{2\pi m} \tag{15.8.6}$$

Częstotliwość cyklotronu

$$\pi = \pi_{gen} \tag{15.8.7}$$

Siła działając an przewodnik z prądem

$$\vec{F}_B = I\vec{L} \times \vec{B} \tag{15.8.8}$$

Zakrzywiony przewodnik z prądem

$$d\vec{F}_B = Id\vec{L} \times \vec{B} \tag{15.8.9}$$

Na cewke w jednorodnym polu magnetycznym \vec{B} o N zwojach i polu przekroju S przez którą płynie prąd I działa moment siły M

$$\vec{M} = \vec{\mu} \times \vec{B} \tag{15.8.10}$$

Moment magnetyczny cewki

$$\mu = NIS \tag{15.8.11}$$

Energia potencjalna

$$E_p(\theta) = -\vec{\mu} \cdot \vec{B} \tag{15.8.12}$$

Stała magnetyczna w próżni

$$\mu_0 = 4\pi 10^{-7} \frac{T \cdot m}{A} \tag{15.8.13}$$

prawo Biota-Savarta

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{s} \times \hat{r}}{r^2} \tag{15.8.14}$$

Długi przewód prostoliniowy

$$B = \frac{\mu_0 I}{2\pi R} \tag{15.8.15}$$

Prostoliniowy przewód ograniczony z jednej strony

$$B = \frac{\mu_0 I}{4\pi R} \tag{15.8.16}$$

W środku łuku okręgu

$$B = \frac{\mu_0 I \phi}{2\pi R} \tag{15.8.17}$$

Siła działająca na dwa przewody równoległe, gdzie d to odległość

$$F_{ba} = I_b L B_a \sin 90^\circ = \frac{\mu_0 L I_a I_b}{2\pi d}$$
 (15.8.18)

Prawo Ampère'a, gdzie I_p to natęzenie prądu przepływajace przez powierzchnię objęta konturem całkowania

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I_p \tag{15.8.19}$$

Solenoid idealny gdzie n to liczba zwojów na jednostke długości

$$B = \mu_0 I n \tag{15.8.20}$$

Toroid, gdzie N to liczba zwojów

$$B = \frac{\mu_0 I N}{2\pi} \frac{1}{2} \tag{15.8.21}$$

15.9 Zjawisko indukcji i indukcyjności

Strumień magnetyczny

$$\Phi_B = \int \vec{B} \cdot d\vec{S} \tag{15.9}$$

 $\vec{B} \perp S$, \vec{B} jednorodne

$$\Phi_B = BS \tag{15.9.2}$$

Prawo Faradaya, & to indukowana SEM

$$\mathcal{E} = -\frac{\mathrm{d}\Phi_B}{\mathrm{d}t} \tag{15.9.3}$$

Cewka o N zwojach

$$\mathcal{E} = -N \frac{\mathrm{d}\Phi_B}{\mathrm{d}t} \tag{15.9.4}$$

Reguła Lenza. Prąd indukowany płynie w takim kierunku, że pole magnetyczne wytworzone przez ten prąd przeciwdziała zmianie strumienia magnetycznego, która ten prąd indukuje

Prawa Faradaya 2

$$\oint \vec{E} \cdot d\vec{s} = -\frac{\mathrm{d}\Phi_B}{\mathrm{d}t} \tag{15.9.5}$$

Defincja indukcyjności cewki, gdzie N to liczba zwojów

$$L = \frac{N\Phi_B}{I} \tag{15.9.6}$$

Indukcyjność solenoidu na jednostke długości

$$\frac{L}{l} = \mu_0 n^2 S {15.9.7}$$

Indukcyjność solenoidu

$$L = \frac{N\Phi_B}{I} \tag{15.9.8}$$

SEM samoindukcji

$$\mathcal{E}_L = -L \frac{\mathrm{d}I}{\mathrm{d}t} \tag{15.9.9}$$

Obwód RL

$$\mathcal{E} = L\frac{\mathrm{d}I}{\mathrm{d}t} + RI\tag{15.9.10}$$

Wzrost natężenia prądu w RL

$$I = \frac{\mathcal{E}}{R} \Big(1 - e^{-t/\tau_L} \Big) \tag{15.9.11}$$

Stała czasowa

$$\tau_L \tag{15.9.12}$$

Zmniejszanie się natężenia prądu gdy nagle zostanie odpięte źródło

$$I(t) = \frac{\mathcal{E}}{r}e^{-t/\tau_L} = I_0 e^{-t/\tau_L}$$
(15.9.13)

Energia magnetyczna

$$E_B = \frac{1}{2}LI^2 (15.9.14)$$

Gęstość energii matgnetycznej

$$\mu_B = \frac{B^2}{2\mu_0} \tag{15.9.15}$$

Indukcja wzajemna dwóch cewek gdzie M to indukcjyjność wzajemna

$$\mathcal{E}_2 = -M \frac{\mathrm{d}I_1}{\mathrm{d}t} \tag{15.9.16}$$

$$M_{21} = M_{12} = M (15.9.17)$$

15.10 Drgania elektromagnetyczne i prąd zmienny

15.10.1 Drgania obwodu LC

$$E_E = \frac{q^2}{2C} {15.10}$$

$$E_B = \frac{LI^2}{2} (15.10.2)$$

$$\omega = \frac{1}{\sqrt{LC}} \tag{15.10.3}$$

$$L\frac{\mathrm{d}^2 q}{\mathrm{d}t^2} + \frac{q}{C} = 0 \tag{15.10.4}$$

$$q = q_{max}\cos(\omega t + \phi) \tag{15.10.5}$$

$$I = \frac{\mathrm{d}q}{\mathrm{d}t} = -\omega q_{max} \sin(\omega t + \phi) = -I_{max} \sin(\omega t + \phi) \tag{15.10.6}$$

$$I_{max} = \omega q_{max} \tag{15.10.7}$$

$$E_E = \frac{q_{max}^2}{2C} \cos^2(\omega t + \phi)$$
 (15.10.8)

$$E_B = \frac{q_{max}^2}{2C} \sin^2(\omega t + \phi)$$
 (15.10.9)

15.10.2 Drgania tłumione w obwodzie RLC

Częstość kołowa drgań tłumionych

$$\omega' = \sqrt{\omega^2 - (R/2L)^2} \tag{15.10.10}$$

$$E = E_B + E_E = \frac{q^2}{2C} + \frac{LI^2}{2} \tag{15.10.11}$$

$$\frac{\mathrm{d}E}{\mathrm{d}t} = -I^2R\tag{15.10.12}$$

$$L\frac{\mathrm{d}^2 q}{\mathrm{d}t^2} + R\frac{\mathrm{d}q}{\mathrm{d}t} + \frac{q}{c} \tag{15.10.13}$$

$$q = q_{max}e^{-Rt/2L}\cos(\omega't + \phi) \tag{15.10.14}$$

$$E_E = \frac{q_{max}^2}{2C} e^{-Rt/L} \cos^2(\omega' t + \phi)$$
 (15.10.15)

Drgania w szeregowym obwodzie RLC wymuszone przez zewnętrzną E

$$\mathcal{E} = \mathcal{E}_{max} \sin(\omega_w t) \tag{15.10.16}$$

Natężenie pradu płynące w takim obwodzie

$$I = I_{max}\sin(\omega_w t - \phi) \tag{15.10.17}$$

15.10.3 Obciążenie czysto oporowe

$$U_{Rmax} = I_{Rmax}R \tag{15.10.18}$$

$$U_R = U_{Rmax}\sin(\omega_w t) = \mathcal{E}_{Rmax}\sin(\omega_w t) \tag{15.10.19}$$

$$I_R = I_{Rmax}\sin(\omega_w t - \psi) \tag{15.10.20}$$

$$\psi = 0 \tag{15.10.21}$$

15.10.4 Obciążenie czysto pojemnościowe

Rektancja pojemnościowa

$$X_C = \frac{1}{\omega_w C} \tag{15.10.22}$$

$$U_C = U_{Cmax}\sin(\omega_w t) \tag{15.10.23}$$

$$I_C = \omega_w C U_{maxC} \cos(\omega_w t) \tag{15.10.24}$$

$$I_C = I_{Cmax} \sin(\omega_w t - \phi) \tag{15.10.25}$$

$$U_{cmax} = I_{Cmax} X_C \tag{15.10.26}$$

$$\phi = -90^{\circ} = \pi/2 \ rad \tag{15.10.27}$$

15.10.5 Obciążenie czysto indukcyjne

Rektancja indukcyjna

$$X_L = \omega_w L \tag{15.10.28}$$

$$U_L = U_{Lmax}\sin(\omega_w t) \tag{15.10.29}$$

$$I_L = -\left(\frac{U_{Lmax}}{\omega_w L}\right) \cos(\omega_w t) \tag{15.10.30}$$

$$I_L = I_{Lmax} \sin(\omega_w t - \phi) \tag{15.10.31}$$

$$U_{Lmax} = I_{Lmax} X_L \tag{15.10.32}$$

$$\phi = 90^{\circ} = \pi/2 \ rad \tag{15.10.33}$$

15.10.6 Podsumowanie trzech obwodów

Natężenie I_R w takiej samej fazie jak napięcie U_R Natężenie I_C wyprzedza napięcie U_C o 90° Natężenie I_C opóźnia się względem napięcia U_C o 90°

15.10.7 Obwód szeregowy RLC

Przyłożona SEM

$$\mathcal{E} = \mathcal{E}_{max} \sin(\omega_w t) \tag{15.10.34}$$

$$I = I_{max}\sin(\omega_2 t - \phi) \tag{15.10.35}$$

Impendancja obwodu

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
 (15.10.36)

$$I_{max} = \frac{\mathcal{E}_{max}}{Z} \tag{15.10.37}$$

Faza początkowa, kąt między wskazami

$$\tan \phi = \frac{X_L - X_C}{R} \tag{15.10.38}$$

Obwód o charakterze indukcyjnym, I_{max} wiruje za wskazem \mathcal{E}_{max}

$$X_L > X_C, \ \phi > 0$$
 (15.10.39)

Obwód o charakterze pojemnościowym, I_{max} wiruje przed wskazem \mathcal{E}_{max}

$$X_L < X_C, \ \phi < 0$$
 (15.10.40)

Obwód w rezonansie, I_{max} wiruje razem ze wskazem \mathcal{E}_{max}

$$X_L = X_C, \ \phi = 0$$
 (15.10.41)

Rezonans w obwodzie RLC, maksymalne I

$$\omega_w = \omega = \frac{1}{\sqrt{LC}} \tag{15.10.42}$$

15.10.8 Moc w obwodach prądu zmiennego

Moc chwilowa

$$P = I_{max}^2 \sin^2(\omega_w t - \phi)$$
 (15.10.43)

Moc średnia

$$P_{sr} = \left(\frac{I_{max}}{\sqrt{2}}\right) = I_{sk}^2 R = \mathcal{E}_{sk} U_{sk} \cos \phi \tag{15.10.44}$$

Wartość skuteczna natężenia

$$I_{sk} = \frac{I_{max}}{\sqrt{2}} \tag{15.10.45}$$

Wartość skuteczna prądu

$$U_{sk} = \frac{U_{max}}{\sqrt{2}} \tag{15.10.46}$$

Wartość skuteczna SEM

$$\mathcal{E}_{sk} = \frac{\mathcal{E}_{max}}{\sqrt{2}} \tag{15.10.47}$$

Współczynnik mocy $\rightarrow \cos \phi$

15.10.9 Transformatory

Transformacja napięcia

$$U_w = U_p \frac{N_w}{N_p} {15.10.48}$$

Transformacja prądu

$$I_w = I_p \frac{N_p}{N_w} {15.10.49}$$

15.11 Równania Maxwella: magnetyzm materii

Natężenie prądu przesunięcia

$$I_{prz} = \varepsilon_0 \tag{15.11}$$

15.11.1 Równania Maxwella

Prawo Gaussa dla elektryczności

$$\oint \vec{E} \cdot d\vec{S} = \frac{q_{wewn}}{\varepsilon_0}$$
(15.11.2)

Prawo Gaussa dla magnetyczności

$$\oint \vec{B} \cdot d\vec{S} = 0 \tag{15.11.3}$$

Prawo Faradaya

$$\oint \vec{E} \cdot d\vec{s} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} \tag{15.11.4}$$

Prawo Ampère'a - uogulnione

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 \varepsilon_0 \frac{\mathrm{d}\Phi}{\mathrm{d}t} + \mu_0 I_p \tag{15.11.5}$$

15.11.2 Magneztyzm materii

Zależność spinowego momentu pędu (zwanego spinem) \vec{S} oraz spinowego momentu magnetycznego $\vec{\mu}_s$

$$\vec{\mu}_S = -\frac{e}{m}\vec{S} \tag{15.11.6}$$

Składowa spinu \vec{S}_x może przyjmować tylko dwie wartości, gdzie h to stała plancka

$$\vec{S}_z = m_s \frac{h}{2\pi} \quad m_s = \pm \frac{1}{2}$$
 (15.11.7)

Z faktu poniżej wynika podobna zależność dla spinowego momentu magnetycznego

$$\mu_{s,z} = \pm \frac{eh}{4\pi m} = \pm \mu_B \tag{15.11.8}$$

Magneton Bohra

$$\mu_B = \frac{eh}{4\pi m} \tag{15.11.9}$$

Energia elektronu w pol magnetycznym \vec{B}

$$E_p = -\vec{\mu}_s \cdot \vec{B} \tag{15.11.10}$$

Zależność orbitalnego momentu pędu \vec{L}_{orb} oraz orbitalnego momentu magnetycznego $\vec{\mu}_{orb}$ elektronu w atomie

$$\vec{\mu}_{orb} = -\frac{e}{2m} \vec{L}_{orb} \tag{15.11.11}$$

Orbitalny moment pędu

$$\vec{L}_{orb} = m_l \frac{h}{2\pi} \quad m_l = 0, \pm 1, \pm 2, \pm 3, \pm max$$
 (15.11.12)

Diamagnetyzm.

Diamagnetyki przejawiają własciwości magnetyczne tylko w zewnętrznym polu magnetycznym stają się one wtedy dipolami skierowanymi przeciwnie do pola, znajdujące się w niejednorodnym polu magnetycznym wypychanę są do obszarów słabszego pola

Paramagnetyzm.

Paramagnetyki przejawiają własności magnetyczne w zalęzności od stopnia namagnesowania M, znajdujące się w niejednorodnym polu magnetycznym przyciągane są do obszarów silniejszego pola

$$M = \frac{zmierzony\ moment\ magnetyczny}{V}$$
 (15.11.13)

Dla małych wartości B_{zew}/T , gdzie Tjest temperaturą, a Cstałą Curie

$$M = C \frac{B_{zew}}{T} \tag{15.11.14}$$

Ferromagnetyzm.

Ferromagnetyki to materiały o silnych i trwałych własciwościach magnetycznych, znajdujące się w niejednorodnym polu magnetycznym przyciągane są do obszarów silniejszego pola

Ferromagnetyzm znika gdy temperatura przekroczy Temperature Curie

$$T_{C Fe} = 1043K$$
 (15.11.15)

Pierścień Rowlanda

$$B_0 = \mu_0 I_P n \tag{15.11.16}$$

$$B = B_0 + B_M (15.11.17)$$