stat240 notes

Fall 2021

1 Counting

1.1 Theorem. Number of subsets of size k The number of subsets of size k selected from a set of size n are:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

1.2 Theorem. Counting with repeated symbols/objects If we have n_i symbols of type i with i = 1, 2, ..., k with

$$n_1 + n_2 + \ldots + n_k = n$$

Then the number of arrangements using all the symbols is:

$$\binom{n}{n_1} \binom{n-n_1}{n_2} \binom{n-n_1-n_2}{n_3} \cdots \binom{n_k}{n_k}$$

$$= \frac{n!}{n_1! n_2! \cdots n_k!}$$

1.3 Theorem. Hyper geometric identity

$$\sum_{x=0}^{\infty} \binom{a}{x} \binom{b}{n-x} = \binom{a+b}{n}$$

Proof.

$$(1+y)^{a+b} = (1+y)^a (1+y)^b$$

$$= \sum_{k=0}^{a+b} \binom{a+b}{k} y^k = \sum_{i=0}^a \binom{a}{i} y^i \sum_{j=0}^b \binom{b}{j} y^j$$

The coefficient of y^k on the left hand side is $\binom{a+b}{k}$ and the coefficient of y^k on the right hand side is

$$\sum_{i=0}^{a} \binom{a}{i} \binom{b}{k-i}$$

both coefficients must be equal.

1.4 Theorem. Exponential series

$$e^t = \sum_{n=0}^{\infty} \frac{t^n}{n!}$$

2 Probability rules

2.1 Theorem. Set properties

(1) Distribution law:

$$A(B \cup C) = AB \cup AC$$

(2) Morgan's Laws:

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

2.2 Definition. Probability rules

- (1) P(S) = 1 where S is the full sample space.
- (2) For any event $A, 0 \le P(A) \le 1$.
- (3) If A and B are events with $A \subseteq B$ then $P(A) \leq P(B)$
- (4) Addition Law:

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

(5) Complement events

$$P(A) = 1 - P(A^c)$$

2.3 Definition. Independent events 2 A, B events are independent $\iff P(AB) = P(A)P(B)$

3 Conditional Probability

3.1 Definition. Probability A occurs given B has occurred

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

3.2 Theorem. Multiplication Theorem For n events A_1, A_2, \ldots, A_n we have

$$P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2 | A_1) P(A_3 | A_2 A_1) P(A_4 | A_3 A_2 A_1) \cdots P(A_n | A_1 A_2 \cdots A_{n-1})$$

3.3 Theorem. Total probability For any event A we have

$$P(A) = P(AB) + P(AB^c)$$

In general if we have a partition A_1, A_2, \ldots , of S, then

$$P(B) = P(BS = \sum_{i=1}^{\infty} P(A_iB) = \sum_{i=1}^{\infty} P(A_i)P(B|A_i)$$

3.4 Theorem. Bayes formula

$$P(A_i|B) = \frac{P(A_iB)}{P(B)} = \frac{P(A_i)P(B|A_i)}{P(B)} = \frac{P(A_i)P(B|A_i)}{\sum_{i=1}^{\infty} P(A_i)P(B|A_i)}$$

When $A_1, A_2, ...$ is a partition of S and $P(B) \neq 0$.

 ${
m stat}240~{
m notes}$

4 Discrete Random Variables

4.1 Definition. Random variable A random variable X over $\mathcal S$ is a function

$$X:\mathcal{S} \to \mathbb{R}$$

$$X = X(\omega) , \ \omega \in \mathcal{S}$$

4.2 Definition. Probability mass function

$$f(x_i) = P[X = x_i], i = 1, 2, \dots$$

Some properties of pmf

$$\sum_{\text{all }x} f(x) = 1$$

4.3 Definition. cumulative distribution function

$$F(x) = P[X \le x] \ \forall x \in \mathbb{R}$$

Where

$$(X \le x) = \{\omega : X(\omega) \le x , \ \omega \in \mathcal{S}\}\$$

Some properties of cdf:

- (1) Non-decreasing $x_1 \leq x_2 \Rightarrow F(x_1) \leq F(x_2)$
- (2) Bounded $0 \le F(x) \le 1$
- (3) Limits using the monotone convergence theorem we have

$$\lim_{x \to \infty} F(x) = 1$$

$$\lim_{x \to -\infty} F(x) = 0$$

We can calculate f(x) using F(x) if X takes integer values then

$$f(x) = P[X = x] = P[X \le x] - P[X \le x - 1] = F(x) - F(x - 1)$$

$$F(x) = \sum_{u \le x} f(u)$$

4.1 Bernoulli trials and related random variables

4.4 Definition. Bernoulli trials Experiments with only 2 outcomes Success/Failure. Let B = Sucess with P(B) = p. Then $B^c = \text{Failure}$ with $P(B^c) = 1 - p$.

4.5 Definition. Bernoulli Random Variable Let $X = X(\omega) = 1$ if $\omega = B$ otherwise $X(\omega) = 0$ if $\omega = B^c$. So the pmf of X is

$$f(1) = p$$

$$f(0) = 1 - p$$

The distribution is

$$f(x) = p^x (1 - p)^{1 - x}$$

Where $x \in \{0, 1\}$

4.2 Binomial distribution

If we repeat independent Bernoulli trials with the same probability of success p, each n times then let X be the number of successes among n trials.

4.6 Theorem. Binomial distribution If $X \sim \text{Binomial}(n, p)$ then the pmf is given by

$$f(x) = P[X = x] = \binom{n}{x} p^x (1-p)^{n-x}$$

4.3 Hypergeometric Distribution

If we have a collection of N objects which can be classified into 2 types success (S) and failure. If there are r successes and N-r failures. Pick n objects at random without replacement. Let X be the number of successes obtained, X has a hyper-geometric distribution.

$$X \sim \text{Hypergeometric}(N, r, n)$$

4.7 Theorem. hyper-geometric distribution If $X \sim \text{Hypergeometric}(N, r, n)$ then the pmf is given by

$$f(x) = P[X = x] = \frac{\binom{r}{x} \binom{N-r}{n-x}}{\binom{N}{n}}$$

Proof. $\#S = \binom{N}{n}$ total ways of choosing n objects. First we choose x successes from the total r and then choose the rest n-x from the N-r failures. Using the product rule we get the pmf.

4.4 Negative Binomial Distribution

The experiment has two distinct outcomes S and F which is repeated independently with $P(S) = \mathbf{p}$. Continue doing the experiment until we get \mathbf{k} successes. Then let X be the number of failures before the k-th success is obtained then X has a Negative Binomial Distribution.

$$X \sim \text{NBinomial}(k, p)$$

There will be x + k trials where we get x failures and k successes then we stop. The last trial must be a success. So in the first x + k - 1 trials we need x failures and k - 1 successes.

The number of ways to get that is $\binom{x+k-1}{x}$ we choose the x failures and the rest must be successes.

4.8 Theorem. Negative Binomial Distribution If $X \sim \text{NBinomial}(k, p)$ then the pmf is given by

$$f(x) = P[X = x] = {x+k-1 \choose x} p^k (1-p)^x$$

4.5 Geometric distribution

Consider the Negative Binomial Distribution with k = 1. That is we only need 1 success. So we repeat the trials until we get the first success.

$$X \sim \text{Geo}(p)$$

4.9 Theorem. Geometric Distribution If $X \sim \text{Geo}(p)$ then the pmf is given by

$$f(x) = P[X = x] = p(1-p)^x$$

Proof. k = 1 in Negative Binomial Distribution.

4.6 Poisson distribution

4.6.1 Limit of Binomial

The Poisson distribution happens as a limiting case of the binomial distribution. That is $n \to \infty$ and $p \to 0$. We can keep $\mu = np$ fixed while $n \to \infty$ this forces $p \to 0$. Then the limit for the $pmf\ f(x)$ is given by

$$f(x) = \frac{\mu^x e^{-\mu}}{x!}$$

4.6.2 Poisson Distribution from Poisson Process

Consider an event that occurs in random points in time with the following conditions:

- Independence The number of occurrences of the event in non-overlapping intervals is independent
- Individuality For a small interval $[T, T + \Delta t]$ we have

$$P[$$
 Two or more events in $[T, T + \Delta t)] = o(\Delta t)$

• Homogeneity events occur at a uniform rate λ over time.

Any process with these 3 conditions is called a **Poisson process**.

4.10 Theorem. Poisson Process In a poisson process with a rate of occurrence λ the number of occurrences X in a time interval t has a Poisson distribution. The pmf is given by

$$f(x) = P[X = x] = \frac{(\lambda t)^x e^{-\lambda t}}{x!}$$

5 Expected Value and Variance

5.1 Definition. Expected Value Let X be a discrete random variable with range A and $pmf\ f(x)$ then the expected value of X is

$$E(X) = \sum_{x \in A}^{x} f(x)$$

5.2 Theorem. Law of unconscious statistician

$$E(g(X)) = \sum_{x \in A} g(x) f(x)$$

5.3 Theorem. Linearity of Expectation

$$E(a \cdot g(X) + b) = aE(g(X)) + b$$

5.4 Definition. Variance Let $\mu = E(X)$ then the variance is given by

$$Var(X) = E[(X - \mu)^2]$$

5.5 Theorem. Variance properties Let $\sigma^2 = Var(X)$ then

(1)
$$\sigma^2 = E(X^2) - E(X)^2$$

(2)
$$Var(aX + b) = a^{2}Var(X)$$

5.6 Theorem. Expected and Variance value for common distributions

- (1) $X \sim \text{Bernoulli}(p)$ then E(X) = p and Var(X) = p(1-p)
- (2) $X \sim \text{Binomial}(n, p)$ then E(X) = np and Var(X) = np(1 p)
- (3) $X \sim \text{Geometric}(p)$ then $E(X) = \frac{1-p}{p}$ and $\text{Var}(X) = \frac{(1-p)^2}{p^2} + \frac{1-p}{p}$
- (4) $X \sim NB(k,p)$ then $E(X) = \frac{k(1-p)}{p}$ and $Var(X) = \frac{k(1-p)}{p^2}$
- (5) $X \sim \text{Hypergeometric}(N, M, n)$ then $E(x) = \frac{nM}{N}$
- (6) $X \sim \text{Poisson}(\mu)$ then $E(x) = \mu$ and $\text{Var}(X) = \mu$.

6 Multivariate Distributions

6.1 Joint and marginal pmf

Joint probability functions for more then 1 variables are defined as:

$$f(x_1, x_2, \dots, x_n) = P[X_1 = x_1 \land X_2 = x_2 \land \dots \land X_n = x_n]$$
$$= P[X_1 = x_1, X_2 = x_2, \dots, X_n = x_n]$$

 $f(x_1,\ldots,x_n)$ is called the joint probability function of (X_1,\ldots,X_n)

6.1 Definition. Properties of Joint Probability function

(1)
$$\sum_{\text{all}(x_1,\dots,x_n)} f(x_1,\dots,x_n) = 1$$

$$(2) f(x_1, \dots, x_n) \ge 0 \ \forall (x_1, \dots, x_n)$$

6.2 Definition. Marginal probability function Marginal probability function for a single variable X or Y denoted by $f_X(x)$ and $f_Y(y)$ are

$$f_X(x) = \sum_{\text{all}(y)} f(x, y)$$

$$f_Y(y) = \sum_{\text{all}(ux} f(x, y)$$

where f(x, y) is the joint probability function for X, Y.

6.1.1 Conditional pmf

6.3 Definition. Conditional pmf The conditional pmf of X given Y = y is

$$f_X(x|y) = \frac{f(x,y)}{f_Y(y)}$$
, Given $f_Y(y) > 0$

6.1.2 Independent random variables

6.4 Definition. Independent random variables Two random variables X, Y are independent if

$$P[X = x, Y = y] = P[X = x] \cdot P[Y = y]$$

Or $f(x,y) = f_X(x)f_Y(y)$ for all (x,y).

6.5 Theorem. Vandermonde's Convolution Formula

$$\binom{n+m}{k} = \sum_{j=0}^{k} \binom{n}{j} \binom{m}{k-j}$$

7 Multivariate Distributions

7.1 Trinomial Distribution

There are 3 possible outcomes A, B, C with

$$P[A] = p_1, P[B] = p_2, P[C] = p_3$$

 $p_1 + p_2 + p_3 = 1$

The joint pmf when $x_1 + x_2 + x_3 = n$ is given by

$$P[X_1=x_1,X_2=x_2,X_3=x_3] = \frac{n!}{x_1!x_2!x_3!}p_1^{x_1}p_2^{x_2}p_3^{x_3}$$

the marginal distribution is

$$X_1 \sim \text{Binomial}(n, p_1); X_2 \sim \text{Binomial}(n, p_2); X_3 \sim \text{Binomial}(n, p_3);$$

7.2 Multinomial Distribution

Each trial for $k \geq 2$ has possible outcomes A_1, \ldots, A_k with $P[A_i] = p_i$. Such that $\sum p_i = 1$. If we have

$$\sum X_i = n$$

Then the joint pmf is

$$(X_1, \dots, X_k) \sim \text{Multinomial}(n, p_1, \dots, p_k)$$

$$P[X_1 = x_1, \dots, X_k = x_k) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \dots p_k^{x_k}$$

8 Multivariate Expectation

8.1 Theorem. The law of unconscious statistician If $(X_1, X_2) \sim f(x_1, x_2)$ then

$$E(g(X_1, X_2)) = \sum_{x_1} \sum_{x_2} g(x_1, x_2) f(x_1, x_2)$$

8.2 Theorem. Properties of Expectation

- (1) E(X + Y) = E(X) + E(Y)
- (2) E(aX + bY + c) = aE(X) + bE(Y) + c
- (3) if X and Y are independent then

$$E[h(X)g(Y)] = E[h(X)]E[g(Y)]$$

8.1 Covariance

8.3 Definition. Covariance

$$Cov(X,Y) = E[(X - EX)(Y - EY)]$$
$$= E(XY) - (EX)(EY)$$

8.4 Definition. Varriance

$$Var(X + Y) = Var(X) + Var(Y) + Cov(X, Y)$$
$$Var(aX + bY + c) = a^{2}Var(X) + 2abCov(X, Y) + b^{2}Var(Y)$$

8.5 Theorem. Multinational co-variance If $(X_1, \ldots, X_k) \sim \text{Multinomial}(n, p_1, \ldots, p_k)$ then

$$Cov(X_i, X_j) = -np_ip_j$$

8.2 Correlation coefficient

8.6 Definition.

$$\rho = \frac{\mathrm{Cov}(X,Y)}{\sqrt{\mathrm{Var}(X)}\sqrt{\mathrm{Var}(Y)}}$$

 $|\rho| \le 1$ and $|\rho| = 1$ if and only if Y = aX + b.

 ${
m stat}240~{
m notes}$

8.3 Expectation and Variance results

8.7 Theorem. General result

(1)
$$E(\sum c_i X_i) = \sum c_i E(X_i)$$

(2)
$$\operatorname{Var}(\sum c_i X_i) = \sum c_i^2 \operatorname{Var}(X_i) + \sum_{i < j} c_i c_j \operatorname{Cov}(X_i, X_j)$$

(3) If
$$X_1, \ldots, X_n$$
 are independent then $\operatorname{Var}(\sum c_i X_i) = \sum c_i^2 \operatorname{Var}(X_i)$

9 Continuous probability distributions

9.1 Definition. Probability density function (PDF) X has pdf, where

$$f(x) \ge 0$$

$$x \in (-\infty, \infty)$$

$$P[a \le X \le b] = \int_a^b f(x) dx$$

$$a \le b$$

9.2 Definition. Cumulative distribution function (CDF) X has cdf, where

$$F(x) = P[X \le x] = \int_{-\infty}^{x} f(t) dt$$

- (1) $0 \le F(x) \le 1$
- (2) $F(x_1) \le F(x_2)$ if $x_1 < x_2$
- (3) If f(x) is continuous at x then $\frac{\mathrm{d}F(x)}{\mathrm{d}x}=f(x)$

9.1 Change of variables

Suppose $X \sim f(x)$ and let Y = h(X). If h(X) has a unique inverse or $h(\cdot)$ is one-to-one then the pdf of Y is given by

$$g(y) = f(h^{-1}(y)) \left| \frac{\mathrm{d}}{\mathrm{d}y} h^{-1}(y) \right|$$

Proof.

$$g(y) = \frac{\mathrm{d}}{\mathrm{d}y} F(h^{-1}(y)) = F'(h^{-1}(y)) \left| \frac{\mathrm{d}}{\mathrm{d}y} h^{-1}(y) \right| = f(h^{-1}(y)) \left| \frac{\mathrm{d}}{\mathrm{d}y} h^{-1}(y) \right|$$

9.2 Commonly used continuous distributions

9.3 Exponential distribution

 $X \sim \text{EXP}(\lambda)$

- (1) The pdf is $f(x) = \frac{\lambda}{e^{\lambda x}} \ x \ge 0, \lambda > 0$
- (2) The cdf is

$$F(x) = \int_{-\infty}^{x} \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}$$
 $x > 0$

$$F(x) = 0 x \le 0$$

(3) Memory less property

$$P[X > t + s | X > s] = P[X > t]$$

(4) Can be used to model waiting time. Suppose λ is the intensity parameter of a Poisson process. Let X be the waiting time for the next event.

$$F(x) = 1 - P(X > x) = 1 - P[\text{No events in } [0, x)] = 1 - \frac{e^{-\lambda x}(\lambda x)^0}{0!} = 1 - e^{-\lambda x}$$

9.4 Gamma distribution

 $X \sim \text{GAM}(\alpha, \beta)$

(1) The pdf is

$$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} \exp\left(\frac{-x}{\beta}\right)$$

9.5 Uniform distribution

 $X \sim \text{UNIF}(a, b)$ then the pdf is

$$f(x) = \frac{1}{b-a}$$

the cdf is

$$F(x) = \frac{x - a}{b - a}$$

9.6 Beta distribution

Beta function:

$$B(\alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1)\Gamma(\alpha_2)}{\Gamma(\alpha_1 + \alpha_2)}$$

(1) pdf is given by

$$f(x) = \frac{1}{B(\alpha_1, \alpha_2)} x^{\alpha_1 - 1} (1 - x)^{\alpha_2 - 1}$$

10 Expectation and Variance of continuous random variables

10.1 Definition. Expectation and variance

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
$$Var(X) = \int_{-\infty}^{\infty} [x - E(X)]^2 f(x) dx$$

11 Moments and moment generating function

11.1 **Definition.** If X is a random variable then the moment generating function is

$$M_X(t) = E(e^{tX})$$
 Given it exists for $t \in (-h, h)$

11.1 Joint MGF

11.2 Definition. Joint MGF For two random variables X, Y the joint MGF is

$$M_{X,Y}(t_1, t_2) = E(e^{t_1 X + t_2 Y})$$

= $\iint_{\mathbb{R}^2} e^{t_1 x} e^{t_2 y} f(x, y) dx dy$

if the joint expectation exists for $t_1 \in (-h_1, h_1)$ and $t_2 \in (-h_2, h_2)$ $M_X(t) = M_{X,Y}(t, 0)$ and $M_Y(t) = M_{X,Y}(0,t)$

11.3 Theorem. MGF of linear function Suppose X has $mgf\ M_X(t)$ for $t\in (-h,h)$. Let Y=aX+b then

$$M_Y(t) = e^{bt} M_X(at)$$
 $t \in \left(-\frac{h}{|a|}, \frac{h}{|a|}\right)$

12 Properties of MGF

12.1 Theorem. Moments Suppose X has MGF $M_X(t)$. Then $M_X(0)=1$ and

$$E(X^k) = M_X^{(k)}(0)$$

12.2 Theorem. Joint Moments Suppose X, Y are random variables with joint MGF $M_{X,Y}(t_1, t_2)$. Then

$$E(X^{j}Y^{k}) = \frac{\partial^{j+1}}{\partial t_{1}^{j}\partial t_{2}^{k}} M_{X,Y}(t_{1}, t_{2}) \bigg|_{(t_{1}, t_{2}) = (0, 0)}$$

12.3 Theorem. MGF Independence Two random variables X, Y are independent if and only if

$$M_{X,Y}(t_1, t_2) = M_X(t_1)M_Y(t_2)$$

12.4 Theorem. Sum of independent random variables If $Y = X_1 + X_2$ then

$$M_Y(t) = M_1(t)M_2(t)$$

13 Convergence in probability

13.1 Definition. Convergence in probability $X_n \stackrel{p}{\to} b$ if for any $\varepsilon > 0$ we have

$$\lim_{n \to \infty} P[|X_n - b| \ge \varepsilon] = 0$$

13.2 Theorem. Convergence of Sum and product If $X_n \stackrel{p}{\to} a$ and $Y_n \stackrel{p}{\to} b$ then

$$X_n + Y_n \xrightarrow{p} a + b$$
$$X_n Y_n \xrightarrow{p} ab$$

13.3 Theorem. Markov's inequality For random variable X with finite $E(|X|^k)$,

$$P[|X| \ge c] \le \frac{E[|X|^k]}{c^k}$$

13.1 Weak Law of large numbers

13.4 Theorem. Weak Law of large numbers Suppose X_i 's are iid with $EX_i = \mu$ and $VarX_i = \sigma^2 < \infty$ then

$$\bar{X} = \sum_{n=1}^{n} \frac{X_i}{n}$$

$$\bar{X} \stackrel{p}{\to} \mu$$

14 Convergence in distribution

14.1 Definition. Convergence in distribution $X_n \stackrel{d}{\to} X$ if

$$\lim_{n \to \infty} F_n(x) = F(x)$$

All all continuity points of F

where $F_n(x) = P[X_n \le x]$ and F is the CDF of X

14.1 e limit

14.2 Theorem. e limit If b is a real constant and $\lim_{n\to\infty}\psi(n)=0$ then

$$\lim_{n\to\infty}\left[1+\frac{b}{n}+\frac{\psi(n)}{n}\right]^n=e^b$$

14.2 MGF for limiting distributions

14.3 Theorem. MGF Convergence theorem Let X_1, X_2, \ldots, X_n and let $M_1(t), M_2(t), \ldots, M_n(t), \ldots$ be the MGF. Let X be a random variable with MGF M(t) if there exists h > 0 such that

$$\lim_{n \to \infty} M_n(t) = M(t) \qquad \qquad t \in (-h, h)$$

then $X_n \stackrel{d}{\to} X$

 ${
m stat}240~{
m notes}$

15 Central limit theorem

15.1 Theorem. Central limit theorem Suppose X_i are iid with $EX_i = \mu$ and $VarX_i = \sigma^2 < \infty$ then

$$\frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \xrightarrow{d} Z \sim N(0, 1)$$

Equivalently

(1)
$$S_n = \sum X_i \stackrel{d}{\to} N(n\mu, n\sigma^2)$$

(2)
$$\bar{X} = \frac{1}{n} \sum X_i \stackrel{d}{\to} N(\mu, \frac{\sigma^2}{n})$$

 ${\rm stat240\ notes}$ Thaqib M

CDF Not in notes

Name	PDF	E(X)	Var(X)	MGF $(M(t))$
Exponential $(X \sim EXP(\lambda))$	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{1}{1-\frac{t}{\lambda}}$ for $t < \lambda$
Gamma $(X \sim Gamma(\alpha, \beta))$	$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{\frac{-x}{\beta}}$	$\alpha \cdot \beta$	$\alpha \cdot \beta^2$	$\frac{1}{(1-\beta t)^{\alpha}}$ for $t < \frac{1}{\beta}$
Beta $(X \sim Beta(\alpha, \beta))$	$f(x) = \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	-

Useful

IID for distribution

1 If $Y \sim BN(n, p)$ then

$$Y = \sum_{i=1}^{n} X_i \qquad X_i \stackrel{\text{iid}}{\sim} Bernoulli(p)$$

2 If $Y \sim POI(n)$ then

$$Y = \sum_{i=1}^{n} X_i \qquad X_i \stackrel{\text{iid}}{\sim} \text{POI}(1)$$

3 If $Y \sim GAMMA(\alpha, \beta)$ then

$$Y = \sum_{i=1}^{n} X_{i} \qquad X_{i} \stackrel{\text{iid}}{\sim} GAMMA(1, \beta)$$

4 If $Y \sim NB(k, p)$ then

$$Y = \sum_{i=1}^{k} X_i \qquad X_i \stackrel{\text{iid}}{\sim} Geo(p)$$

Assignment Theorems:

15.2 Theorem. A4Q7 If $\{X_1, X_2, \dots, X_n, \dots\}$ is a sequence of random variables and $E(X_n) = \mu$ and $Var(x_n) = \sigma_n^2$ with

$$\lim_{n\to\infty}\mu_n=\mu$$

$$\lim_{n\to\infty}\sigma_n^2=0$$

Then

$$X_n \stackrel{p}{\to} X = \mu$$