Homework 4

Samuel Lindskog

September 19, 2024

Problem 1

Let $E \subseteq \mathbb{R}^n$ be bounded. Then there exists $b \in \mathbb{R}$ with b > 0 such that for all $f, g \in E$ we have d(f,g) < b. Let $x = (x_1, \dots, x_n) \in E$ with $x_{mabs} = \max(\{|x_i|\}_{i=1}^n)$ and $l = b + x_{mabs}$. Suppose to the contrary that $E \not\subseteq [-l, l]^n$. Then there exists $y = (y_1, \dots, y_n) \in E$ such that $y \notin [-l, l]^n$, so there exists $k \in \mathbb{N}$ with $k \le n$ such that $|y_k| > l$. It follows that

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

$$\geq \sqrt{(x_k - y_k)^2}.$$

Because $|y_k| = l + a$ for some $a \in \mathbb{R}$ with a > 0, it follows that

$$\sqrt{(x_k - y_k)^2} = |x_k \pm (b + x_{mabs} + a)|$$

$$\geq |\pm (b + a)|$$

$$> b.$$

This contradicts the fact that d(x, y) < b.

Problem 2

Suppose $[-l, l]^n \subseteq \mathbb{R}^n$ with l > 0, let $c = \lceil \frac{ln}{\epsilon} \rceil$, let $k \in \mathbb{N}$ with $k \le n$, let $\epsilon \in \mathbb{R}$ with $\epsilon > 0$, and A a set of n-tuples with

$$A = \{(a_1, \dots, a_n) \mid a_k = \frac{i\epsilon}{n}, -c \le i \le c, \ i \in \mathbb{Z}\}$$

Suppose $x = (x_1, \ldots, x_n) \in [-l, l]^n$. For all x there exists $y = (y_1, \ldots, y_n) \in A$ such that for all $j \in \mathbb{N}$ with $j \le n$ we have component x_j of x and component y_j of y with $|x_j - y_j| < \frac{\epsilon}{n}$. It follows from the triangle inequality that $d(x, y) < \epsilon$, so $x \in B(y, \epsilon)$, and $\bigcap_{\alpha \in A} B(\alpha, \epsilon)$ a cover for [-l, l], and therefore is totally bounded.

Problem 3

Because \mathbb{Q} is equinumerous with \mathbb{N} , and thus \mathbb{Q}^n is equinumerous with \mathbb{N} , it suffices to show that each open set in \mathbb{R}^n is the union of rational-radius open balls centered at elements in \mathbb{Q}^n . Because each real number can be expressed as the limit of a series of rational numbers, \mathbb{Q}^n is dense in \mathbb{R}^n . If U is an open set in \mathbb{R}^n , then for each $y_1 \in U$ there exists $r_1 \in \mathbb{R}, r_1 > 0$ such that $B(y_1, r_1) \subseteq U$. But because \mathbb{Q}^n is dense in \mathbb{R}^n there exists $q \in \mathbb{Q}^n$ such that $d(y_1, q) < r_1/2$, and thus if $r_2 \in \mathbb{Q}$ and $d(y_1, q) < r_2 < r_1/2$ then $y_1 \in B(q, r_2) \subseteq B(y_1, r_1)$. Therefore U, and by extension all open sets in \mathbb{R}^n , are the union of rational-radius open balls centered at elements in \mathbb{Q}^n .