Angewandte Mathematik Differentialrechnung

Univ.-Prof. Dr. Matthias Harders
Dr. Marcel Ritter
Sommersemester 2022

Inhalt

- Einführung
- Ableitungsregeln
- Partielle Ableitungen
- Extrema
- Optimierung

Angewandte Mathematik für die Informatik – SS2022

universi innsbrud

Definitionen

Differenzenguotient

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{\Delta f}{\Delta x}$$

bzw. mit $x_1 = x_0 + h$

$$\frac{f(x_0+h)-f(x_0)}{h}$$

Angewandte Mathematik für die Informatik – SS2022

Definitionen

Existiert der Wert

$$\lim_{h \to 0} \frac{f\left(x_0 + h\right) - f\left(x_0\right)}{h} = f'\left(x_0\right)$$

dann ist f an x_0 differenzierbar (Differential quotient an x_0)

- Funktion f ist differenzierbar, falls $f'(x) \ \forall x \in D$ existiert
- Die Funktion f' ist die erste Ableitung der Funktion f

Angewandte Mathematik für die Informatik – SS2022

Definitionen

• Gleichung der Tangente in x_0

$$g(x) = f'(x_0)(x - x_0) + f(x_0)$$

 Nicht alle Funktionen sind überall differenzierbar, z.B.

$$x \to \sqrt{x}, \qquad x \in \mathbb{R}_0^+$$

(anschaulich: bei x = 0 wird Tangente senkrecht)

Angewandte Mathematik für die Informatik – SS2022

Berechnung Ableitung

■ Beispiel: Bestimmen der Ableitung von $x \to x^2$, $x \in \mathbb{R}$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - (x)^2}{h}$$
$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h}$$
$$= \lim_{h \to 0} 2x + h = 2x$$

• Ableitung f' ist Gerade g(x) = 2x

universita innsbruck

Angewandte Mathematik für die Informatik – SS202

Notation

Schreibweisen für erste Ableitung

$$f' = \frac{df}{dx} = \frac{d}{dx}f$$
 für $f(x)$

$$y' = \frac{dy}{dx} = \frac{d}{dx}y$$
 für $y(x)$

$$x' = \frac{dx}{dt} = \frac{d}{dt}x = \dot{x}$$
 für $x(t)$ (Funktion von Zeit t)

(Lagrange) (Leibniz) (Newton)

Angewandte Mathematik für die Informatik – SS2022

universinnsbro

Ableitungsregeln

- Für differenzierbare Funktionen f, g mit Konstanten $a,b,k \in \mathbb{R}$ gilt:
 - Konstante Funktionen (a)' = 0
 - Potenzfunktionen $\left(x^{k}\right)' = kx^{k-1}$
 - Summenregel $\left(af \pm bg\right)' = af' \pm bg'$
 - Produktregel $(f \cdot g)' = f' \cdot g + f \cdot g'$

Angewandte Mathematik für die Informatik – SS202

Ableitungsregeln

• Für differenzierbare Funktionen f, g mit Konstanten $a,b,k \in \mathbb{R}$ gilt:

- Quotientenregel
$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$$

(z.B. Kehrwert)
$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$

- Kettenregel
$$(f \circ g)' = (f(g(x)))' = f'(g(x)) \cdot g'(x)$$

Angewandte Mathematik für die Informatik – SS2022

Angewandte Mathematik für die miormatik – 552022

Ableitungsregeln

Beispiele:

$$(\sqrt{x})' = (x^{1/2})' = \frac{1}{2}x^{(1/2)-1} = \frac{1}{2}x^{-1/2} = \frac{1}{2}\frac{1}{x^{1/2}} = \frac{1}{2\sqrt{x}}$$

$$\left(\sqrt{1+x^2}\right)' = \left(\left(1+x^2\right)^{1/2}\right)' = \frac{1}{2}\left(1+x^2\right)^{-1/2} \cdot 2x = \frac{x}{\sqrt{1+x^2}}$$

$$(x^{3}(3x^{2}-5))' = (x^{3})'(3x^{2}-5) + x^{3}(3x^{2}-5)'$$
$$= 3x^{2}(3x^{2}-5) + x^{3}6x$$
$$= 9x^{4} - 15x^{2} + 6x^{4} = 15x^{4} - 15x^{2}$$

Angewandte Mathematik für die Informatik – SS202

Weitere Elementare Ableitungen

Kreisfunktionen

$$(\sin x)' = \cos x$$
 $(\cos x)' = -\sin x$

lacksquare Exponentialfunktionen, u.a. zur Basis $a\in\mathbb{R}^+$

$$(a^x)' = \ln a \cdot a^x$$
 $(e^x)' = e^x$ $(e^{f(x)})' = e^{f(x)} f'(x)$

• Logarithmusfunktionen, mit $x \in \mathbb{R}^+$; Beispiele mit $\ln(.)$

$$\left(\ln\left(f\left(x\right)\right)\right)' = \frac{f'(x)}{f(x)} \qquad \left(\ln x\right)' = \frac{1}{x}$$

Angewandte Mathematik für die Informatik – SS2022

Anwendungsbeispiel – Newton-Verfahren

- Newton-Verfahren zur Nullstellenberechnung, für differenzierbare Funktion $f: \mathbb{R} \to \mathbb{R}$
- Finde $x_i \in \mathbb{R}$: $f(x_i) = 0$
- Iterationsvorschrift $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$ (mit gewähltem Startwert x_0)

(iterieren bis $|f(x_n)| < \varepsilon$)

Anwendungsbeispiel – Newton-Verfahren

- Iteration konvergiert nicht für alle Startwerte
- Beispiel: für Funktion $f(x) = x^3 2x + 2$ und Startwert $x_0 = 0$ oszilliert das Verfahren zwischen 0 und 1
- Generell: Startwert sollte nahe bei Nullstelle sein (auch sollte $f'(x_0) \neq 0$ sein; ggfs. neu wählen)
- Konvergenz quadratisch, d.h. Anzahl richtiger Stellen in Näherung der Nullstelle verdoppelt sich je Schritt
- Kann auch angewandt werden zur Bestimmung eines Schnittpunkts zweier beliebiger Funktion f(x), g(x), durch Berechnung der Nullstelle f(x) - g(x) = 0

Angewandte Mathematik für die Informatik - SS2022

Höhere Ableitungen

- Wenn eine Funktion f und ihre Ableitung $f': D \to \mathbb{R}$, in $x_0 \in \mathbb{R}$ differenzierbar sind, dann sagt man f ist in x_0 zweimal differenzierbar
- Abbildung $f'': D \to \mathbb{R}: x \to (f')'(x)$ ist die 2. Ableitung
- *n*-te Ableitung einer Funktion: $f^{(n)}(x)$

Beispiel:
$$f(x) = f^{(0)}(x) = x^3 + 2x^2 + 3x + 4$$

 $f'(x) = f^{(1)}(x) = 3x^2 + 4x + 3$

$$f''(x) = f^{(2)}(x) = 6x + 4$$

 $f'''(x) = f^{(3)}(x) = 6$

$$f''''(x) = f^{(4)}(x) = 0$$

Notation

Schreibweisen für zweite Ableitung

$$f'' = \frac{d}{dx} \left(\frac{df}{dx} \right) = \frac{d}{dx} \frac{d}{dx} (f) = \frac{d^2 f}{dx^2} = f^{(2)} \qquad \text{für } f(x)$$

$$y'' = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2} \quad \text{für } y(x)$$

$$x'' = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{d^2x}{dt^2} = \ddot{x} \text{ für } x(t)$$
 (Funktion von Zeit t)

(Lagrange) (Leibniz) (Newton)

Angewandte Mathematik für die Informatik – SS2022

Beispiel - Höhere Ableitungen

- Partikelsysteme: Bestimmung der Bewegung von Partikeln über das zweite Newtonsche Gesetz $\mathbf{f} = \mathbf{ma}$
- Kinematische Parameter der Partikel in 3D:

- Position
$$\mathbf{x}(t) = (x(t) \ y(t) \ z(t))^T$$

- Geschwindigkeit
$$\mathbf{v}(t) = \dot{\mathbf{x}}(t) = \frac{d\mathbf{x}(t)}{dt}$$

Multivariate Funktionen

■ Funktionen können Abbildungen von mehreren Veränderlichen sein $f: \mathbb{R}^n \to \mathbb{R}^k$, $n,k \in \mathbb{N}$

$$\mathbf{x} = (x_1, \dots, x_n) \rightarrow (f_1(\mathbf{x}), \dots, f_k(\mathbf{x}))$$

- Je nach Dimension bezeichnet man diese als skalar (k = 1) oder vektorwertig (k > 1)
- Beispiele:

$$\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}$$

$$(x,y) \rightarrow \sqrt{1-x^2-y^2}$$

(2D Vektor zu 2D Vektor)

(Halbkugel, Radius 1)

Angewandte Mathematik für die Informatik – SS2022

20

Graphische Darstellung

• Darstellung skalarer Funktionen auf \mathbb{R}^2 über Fläche/ Funktionsgraphen in 3D, und/oder mittels Konturlinien

 $f(x, y) = x^2 + y^2$

univerate.

@igs

Angewandte Mathematik für die Informatik – SS2022

Partielle Ableitung

• Für eine skalare multivariate Funktion $f: \mathbb{R}^n \to \mathbb{R}$ ist die partielle Ableitung definiert als Ableitung der Funktion nach einer der Variablen

$$x_i \rightarrow (\xi_1, \dots, x_i, \dots, \xi_n)$$

- Es werden alle Werte $\xi_{j\neq i}$ festgehalten, d.h. somit als konstant betrachtet (es ergibt sich eine Ableitung einer Funktion einer Variablen)
- Diese partielle Ableitung wird notiert als $\frac{\partial f}{\partial x}$
- Das Symbol ∂ deutet speziell auf partielle
 Ableitungen hin (gesprochen: "d" oder "del")

Angewandte Mathematik für die Informatik – SS2022

2

Visualisierung – Partielle Ableitungen

 Partielle Ableitungen ausgewertet in Punkt x geben die dortige Steigung in eine Koordinatenrichtung an

Notation

• Erste partielle Ableitungen, z.B. für Funktion u(x, y)

$$\frac{\partial u}{\partial x} = \frac{\partial}{\partial x} u(x, y) = u_x \qquad \frac{\partial u}{\partial y} = \frac{\partial}{\partial y} u(x, y) = u_y$$

• Höhere partielle Ableitungen, z.B. für Funktion f(x, y)

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2}{\partial x^2} f = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} f \right) = f_{xx} \qquad \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2}{\partial y^2} f = f_{yy}$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2}{\partial x \partial y} f = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} f \right) = \left(f_y \right)_x = f_{yx} \qquad \frac{\partial^2 f}{\partial y \partial x} = f_{xy}$$

Angewandte Mathematik für die Informatik – SS2022

innsb

Beispielrechnungen

Gegeben sei eine multivariate Funktion

$$f(x, y, z) = xy^{2}(x+2z)^{3}$$

Beispiele partieller Ableitungen

$$\frac{\partial f}{\partial y} = 2xy \left(x + 2z \right)^3$$

$$\frac{\partial f}{\partial z} = 3xy^2 \left(x + 2z \right)^2 \cdot 2$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \frac{\partial f}{\partial y} = \frac{\partial}{\partial x} \left(2xy \left(x + 2z \right)^3 \right)$$

$$= 2y(x+2z)^{3} + 2xy3(x+2z)^{2}$$

Angewandte Mathematik für die Informatik – SS2022

Satz von Schwarz

- Die Reihenfolge der Ausführung partieller Ableitungen nach einzelnen Variablen kann vertauscht werden (bei entsprechend mehrfach stetig differenzierbaren Funktionen mehrerer Variablen)
- $f(x, y, z) = xy^{2}(x+2z)^{3}$ Beispiel: $\frac{\partial^2 f}{\partial x \partial y} = 2y(x+2z)^3 + 2xy3(x+2z)^2$ $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \frac{\partial f}{\partial x} = \frac{\partial}{\partial y} \left(y^2 \left(x + 2z \right)^3 + xy^2 3 \left(x + 2z \right)^2 \right)$ $=2y(x+2z)^3+2xy3(x+2z)^2$

Angewandte Mathematik für die Informatik - SS2022

Gradient

- Der Gradient ist ein mathematischer Operator (hier speziell ein Differentialoperator) der auf eine multivariate skalare Funktion angewandt werden kann
- Er ist gegeben durch die Anordnung aller ersten partiellen Ableitungen in einem Vektor
- Beispiel in 2D:

$$\nabla f = \operatorname{grad} f = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) f = \left(\frac{\partial}{\partial x}f, \frac{\partial}{\partial y}f\right) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

("Nabla" Zeichen)

(Gradient-Operator)

Gradient

- Durch den Gradienten wird ein Skalarfeld in ein Vektorfeld umgewandelt
- Die Gradientenvektoren zeigen in die Richtung des größten Anstiegs an einem Punkt einer Funktion

Anwendungsbeispiel

 Kantendetektion über Annäherung des Gradientenfeldes mit dem Sobel-Operator

@igs

Angewandte Mathematik für die Informatik – SS2022

Globale Extrema

■ Funktion $f: D \to \mathbb{R}$, $x_0 \in D \subset \mathbb{R}$ hat in x_0 ein globales Maximum (bzw. Minimum), genau dann wenn $\forall x \in D: f(x) \leq f(x_0)$ (bzw. $f(x) \geq f(x_0)$)

Lokale Extrema

■ Funktion $f: D \to \mathbb{R}$, $x_0 \in D \subset \mathbb{R}$ hat in x_0 ein lokales Maximum (bzw. Minimum), genau dann wenn $\exists \varepsilon > 0$: $\forall x \in D$: mit $|x_0 - x| < \varepsilon$: $f(x) \le f(x_0)$ (bzw. $f(x) \ge f(x_0)$)

Lokale Extrema

• Gegeben sei Funktion $f:[a,b] \to \mathbb{R}$; falls f in $x_0 \in]a,b[$ ein lokales Extremum (Maximum/Minimum) aufweist und in x_0 differenzierbar ist, dann folgt $f'(x_0) = 0$

Angewandte Mathematik für die Informatik - SS2022

32

Lokale Extrema

- Beachte: die Umkehrung des Satzes gilt nicht, d.h. nur aus $f'(x_0) = 0$ folgt nicht Existenz eines Extremums
- Beispiel: Für Funktion $f(x) = x^3$ ist $f'(x) = (x^3)' = 3x^2$, Ableitung hat Nullstelle bei $x_0 = 0$, aber kein Extremum

Beachte: für ein x₀ am Rand von einem Intervall [a,b] gilt der Satz auch nicht, da der Limes (siehe Definition
 Ableitung) dort nicht definiert ist

Stetigkeit von Funktionen

■ Eine Funktion $f: D \to \mathbb{R}$, $D \subset \mathbb{R}$ ist stetig in $x_0 \in \mathbb{R}$, genau dann wenn $\lim_{x \to x_0} f(x) = f(x_0)$ (anschaulich: der Graph kann ohne "Absetzen", im Definitionsbereich, gezeichnet werden)

Beispiele:

Angewandte Mathematik für die Informatik – SS2022

34

Sätze zu Funktionen

■ Funktion $f:[a,b] \to \mathbb{R}$ sei stetig, sowie $f(a) \cdot f(b) < 0$; dann gilt: $\exists c \in]a,b[:f(c)=0$

Angewandte Mathematik für die Informatik – SS2022

Sätze zu Funktionen

■ Zwischenwertsatz: Funktion $f:[a,b] \to \mathbb{R}$ sei stetig, sowie f(a) < C < f(b) oder f(a) > C > f(b); dann gilt:

Angewandte Mathematik für die Informatik – SS2022

26

Sätze zu Funktionen

■ Satz von Rolle: Funktion $f:[a,b] \to \mathbb{R}$ sei stetig und in]a,b[differenzierbar, sowie f(a)=f(b); dann gilt $\exists \ x_0 \in]a,b[:f'(x_0)=0$

Angewandte Mathematik für die Informatik – SS2022

Sätze zu Funktionen

■ Mittelwertsatz: Funktion $f: [a,b] \to \mathbb{R}$ sei stetig und in]a,b[differenzierbar; dann gilt $\exists x_0 \in]a,b[$:

Angewandte Mathematik für die Informatik – SS2022

38

Sätze zu Funktionen

- Monotonie: Funktion $f:[a,b] \to \mathbb{R}$ sei stetig und in a,b differenzierbar; dann gilt
 - 1) falls $\forall x \in [a,b]: f'(x) \ge 0 \Rightarrow f$ monoton steigend
 - 2) falls $\forall x \in]a,b[:f'(x) \le 0 \Rightarrow f$ monoton fallend
 - 3) falls $\forall x \in]a,b[:f'(x)=0 \Rightarrow f \text{ konstant}$
- Hinweis: ein Limes bei Funktionen z.B. der Art $\frac{f(x)}{g(x)}$ kann manchmal von der Form $\frac{0}{0}$ oder $\frac{\infty}{\infty}$ sein;

hier kann die Regel von Bernoullie-L'Hospital angewandt werden (später mehr dazu)

@igs

Angewandte Mathematik für die Informatik – SS2022

Art eines Extremums

- Gegeben sei Funktion $f: [a,b] \to \mathbb{R}$, differenzierbar auf]a,b[und mit einem Extremum bei $x_0 \in]a,b$ [
- Ist auch f' auf]a,b[differenzierbar, dann gilt
 - $-x_0$ ist ein Maximum, genau dann wenn $f''(x_0) < 0$
 - $-x_0$ ist ein Minimum, genau dann wenn $f''(x_0) > 0$
- Falls für eine *n*-mal differenzierbare Funktion gilt $f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$ und $f^{(n)}(x_0) \neq 0$, dann ist
 - für gerade n bei x_0 ein Maximum (bzw. ein Minimum), bei $f^{(n)}(x_0) < 0$ (bzw. $f^{(n)}(x_0) > 0$)
 - für ungerade n bei x_0 kein Extremum

Angewandte Mathematik für die Informatik - SS2022

Art eines Extremums – Visualisierung

Angewandte Mathematik für die Informatik - SS2022

Rechenbeispiel

Art der lokalen Extrema der Funktion

$$f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 2x + 1$$

Untersuchung der Nullstellen der ersten Ableitung

$$f'(x) = x^2 - x - 2 = (x+1)(x-2)$$
 $x_{0,1} = -1$ $x_{0,2} = 2$

Verhalten zweiter Ableitung an Nullstellen

$$f''(x) = 2x - 1$$

$$f''(x_{0,1}) = -3 < 0$$
 (Maximum)

$$f''(x_{0,2}) = 3 > 0$$
 (Minimum)

Angewandte Mathematik für die Informatik – SS2022

42

Krümmung und Wendepunkte

- Generell kann eine Funktion linksgekrümmt (konvex), rechtsgekrümmt (konkav), oder ohne Krümmung sein
- An einem Wendepunkt wechselt die Krümmung einer Funktion y_{a1}

Angewandte Mathematik für die Informatik – SS2022

Krümmung und Wendepunkte

- Gegeben sei eine Funktion $f:[a,b] \to \mathbb{R}$, zweimal differenzierbar auf]a,b[, sowie $x_0 \in]a,b[$
- Wenn f bei x_0 einen Wendepunkt aufweist, dann hat f' dort ein Extremum, somit also $f''(x_0) = 0$
- Beachte: der Umkehrschluss gilt nicht, z.B. $f(x) = x^4$
- Eine Linkskrümmung liegt vor wenn $f''(x_0) > 0$, eine Rechtskrümmung wenn $f''(x_0) < 0$
- An einem Wendepunkt wechselt f " das Vorzeichen
- Wie zuvor, falls notwendig, Betrachtung h\u00f6herer Ableitungen als hinreichendes Kriterium

Angewandte Mathematik für die Informatik – SS2022

44

Anwendungsbeispiel

- Gegeben sei ein Kreis mit Radius r, sowie ein spezielles gleichschenkeliges Trapez, das diesen berührt
- Gesucht: Winkel θ für den die graue Differenzfläche beider Formen minimal wird (siehe Skizze)

Angewandte Mathematik für die Informatik – SS2022

Anwendungsbeispiel

- Bezeichne Seitenlängen Trapez mit a und b, sowie l, und Höhe mit h
- Fläche Trapez $A_{tr} = \frac{1}{2}(a+b) \cdot h$, Fläche Kreis $A_{kr} = \pi \cdot r^2$
- Minimiere Differenzfläche $A = A_{tr} A_{kr}$

$$0 < \theta \le \frac{\pi}{2}$$

$$r > 0$$

Angewandte Mathematik für die Informatik – SS2022

Anwendungsbeispiel

- Parameter reduzieren: es gilt h = 2r, sowie a+b=2l (Satz von Pitot)
- Rechtwinkeliges Dreieck: $l = \frac{2r}{\sin \theta}$

Angewandte Mathematik für die Informatik – SS2022

Anwendungsbeispiel

Resultierende Funktion der Fläche nach Einsetzen

$$A(\theta) = \frac{4r}{\sin \theta} r - \pi r^2 = 4r^2 \frac{1}{\sin \theta} - \pi r^2$$

• Erste Ableitung nach Winkel θ , Nullstelle finden

$$A'(\theta) = -4r^{2} \frac{1}{\sin^{2} \theta} \cos \theta \qquad 0 < \theta \le \frac{\pi}{2}$$
$$A'(\theta) = 0 \Leftrightarrow \cos \theta = 0 \Leftrightarrow \theta = \frac{\pi}{2} \qquad r > 0$$

• Zweite Ableitung nach Winkel θ

$$A''(\theta) = 4r^2 \frac{\cos^2 \theta + 1}{\sin^3 \theta} \qquad A''\left(\frac{\pi}{2}\right) = 4r^2 > 0 \quad \text{(Minimum)}$$

Angewandte Mathematik für die Informatik – SS2022

47

Anwendungsbeispiel

- Gegeben sei ein Kreis mit Radius r, sowie ein spezielles gleichschenkeliges Trapez, das diesen berührt
- Gesucht: Winkel θ für den die graue Differenzfläche beider Formen minimal wird (siehe Skizze)

$$0 < \theta \le \frac{\pi}{2}$$
$$r > 0$$

(minimal für $\theta = \frac{\pi}{2}$)

Angewandte Mathematik für die Informatik – SS2022

Einige Hilfreiche Weblinks

- WolframAlpha Onlinedienst aufbauend auf Mathematik-Softwarepaket Mathematica https://www.wolframalpha.com/examples/mathema tics/
- GeoGebra (ursprünglich in Salzburg entwickelt) Interaktive Onlineanwendung für Geometrie, Algebra, Analysis, Statistik, etc. https://www.geogebra.org/m/FACt3ZVK

Vorlesungsplan

Datum	Thema	Proseminar
11.03.22	Einführung, Grundlagen, Funktionen	(Beginn zuvor am 8.3.)
18.03.22	Differentialrechnung	
25.03.22	Integralrechnung	
01.04.22	Differentialgleichungen	
08.04.22	Weitere Funktionen	
Osterferien		
29.04.22	Reihen und Folgen	
06.05.22	Numerische Auswertung von Funktionen	
13.05.22	Lösung von Gleichungssystemen	
20.05.22	Interpolation	
27.05.22	Zufallszahlen	
03.06.22	Komplexe Zahlen	
10.06.22	Klausurvorbereitung	
01.07.22	Klausur	

Angewandte Mathematik für die Informatik - SS2022