Group 2

Data Cleaning

1. Convert all times to a timezone-aware datetime format

2. Merging with Weather Data

3. Removed potential non-stationary data(2022 Seattle Alaska Issue)

4. Heavy Snowstorm during holiday season

Feature Engineering

- New Features: 1) Flight duration
 - 2) Time of day(late night, morning, noon, afternoon, night)
 - 3) Sky condition(CLR, FEW, SCT, BKN, OVC)
- Label Encoding: Airline type, DepAirport, ArrAirport

- Final Features: Airline_Type, Flight_Duration, Depart/Arrive Airport, Day of Week, Depart/Arrive
 Time, Sky Condition, Relative Humiditiy, Temperature, Windspeed, Visibility, Delay Time
 - Total 21 Features based on the information will be easy to collect from passengers

Task1: Tips to avoid cancellation flight during holiday seasons

Visualized Category Features: (Chi-Squared Test) ALL features are significant.

Airline_Type, Depart/Arrive Airport, Day of Week, Depart/Arrive Time, Sky Condition

Task1:

Task1:

Continuous Features: Flight Duration, Relative Humidity, Temperature, Wind Speed, Visibility

A T-Test was used to determine the significance of these features in relation to flight cancellations.

Result:

All of the P-Value less than 0.05 (Significant!!!)

Logistics Regression

Before Balanced Accuracy: 0.98 AUC = 0.73

After Balanced Accuracy: 0.73 AUC = 0.76

Logistic Coefficient

Results:

Before Balanced:

One units of Visibility increase, the probability of cancellation will decrease about 13% One units of Windspeed increase, the probability of cancellation will increase 9% After Balanced:

One units of Visibility increase, the probability of cancellation will decrease about 7% One units of Windspeed increase, the probability of cancellation will increase 10.7%

Task2: Tips to arrive early or on time

Random Forest

Category in to 6 types:

- 1. Small Early (< 15 mins)
- 2. Medium Early (15-45 mins)
- 3. Large Early (> 45mins)
- 4. Small Delay (<15 mins)
- 5. Medium Delay (15-45 mins)
- 6. Large Delay (> 45 mins)

Task2:

Feature Importance

What we find out the feature importance?

Flight Duration?!?!?

Wind Speed?!?!?

Visibility?!?!?

Task3: Prediction Model for Arrival Times

- Balancing data

Large early(0.3%): 28461 samples

resample:28461 * 6

Task3: Prediction Model for Arrival Times

- Model Performance

Model	Accuracy	Micro-F1
RF	0.395	0.376
XGBoost	0.385	0.367
LightGBM	0.383	0.362

- Why low performance?

Shiny App

https://jirenlu.shinyapps.io/flight_prediction/