Obligatorisk øving 2025 TFY4165 Termisk fysikk. Institutt for fysikk, NTNU.

Innleveringsfrist på blackboard: 31.10.25.

Isotermer og Joule-Thomson-koeffisient med van der Waals tilstandsligning

Innledning

I denne øvingen skal vi studere van der Waals isotermer for N_2 . Vi skal også beregne Joule-Thomson-koeffisienten som funksjon av trykk og temperatur med van der Waals tilstandsligning.

Oppgaver

a) Isotermer:

- Finn verdier for van der Waals parametrene a og b for N_2 .
- \bullet Framstill van der Waals isotermer i ett og samme pV-diagram for temperaturer fra og med 86 K til og med 286 K med 40 K mellomrom.
- Inkluder ideell gass isotermen ved 286 K i samme figur. Bruk en annen farge eller kurvetype som gjør det lett å skille denne isotermen fra van der Waals isotermene.
- Lag en pen figur med angivelse av enheter på aksene, f eks bar og L. Et passende intervall for molart volum V kan være fra 0.06 L til 0.60 L. Bruk lineær akse for p og logaritmisk akse for V.

b) Joule–Thomson–koeffisienten:

- Bruk van der Waals tilstandsligning for N_2 til å beregne $\mu_{\rm JT}$ for en serie med trykk- og temperaturverdier som dekker hele inversjonskurven i pT-planet.
- Lag en pen figur som inneholder inversjonskurven $p_{\text{inv}}(T)$, samt verdier for μ_{JT} illustrert med en passende fargeskala (2D colormap). Bruk enhet K/bar for μ_{JT} og en verdi for C_p basert på ideell gass.