A rendre pour le vendredi 24 novembre.

Problème 1. Autour de la suite de Fibonacci.

On s'intéresse dans ce problème à la suite de l'ibonacci, ainsi qu'à certaines de ses propriétés vargées

On definit la suite de Pibonacci, notée $(P_n)_{n\in\mathbb{N}}$, par :

$$F_{0}=0$$
, $F_{1}=1$, et $\forall n \in \mathbb{N}, F_{n+2}=F_{n+1}+F_{n}$.

Partie I : Premières propriétés

- 1. Prouver que Vn eN, F, eN et Vn ≥ 5, F, ≥ n.
- Précisor la monotonio de la suite $(F_n)_{n}$ os. À partir de quel rang est-elle strictement e russante
- 3. Montrer par récurrence simple l'identité de Cassini :

Qu'en déduire sur le fait que la fraction $rac{F_n}{F_{n+1}}$ est ou non irréductible?

4. Prouver la formule de Dinet :

$$\forall n \in \mathbb{N}, \quad F_n = \frac{1}{\sqrt{6}} \left(q^n - \left(-\frac{1}{q} \right)^n \right).$$

où $\varphi = \frac{1+\sqrt{6}}{2}$ ost le nombre d'or.

Remarque : Il est fortement conseillé de ne pas utiliser, dans les prochaînes questions, l'expression du terme général de F_{N} qui vient d'être trauvée. Il sera plus utile d'utiliser les relations de récurrence vérifiées par (F_n).

Partie II : Calculs de sommo

- 0. En faisant apparaître une somme télescopique, calculer $S_n = \sum\limits_{k=0}^n F_k$
- 7. De même, calculer $I_n = \sum_{k=0}^{\infty} F_{2k+1}$.
- 8. Soit $P_n = \sum_{k=0}^n F_{2k}$. Exprimer à l'aide d'une terme de la sulte (S_n) la somme $P_n + I_n$. En déduire que $P_n = F_{2n+1} 1$.
- 9. Simplifier Fn+2Fn+1-Fn+1Fn

En déduire une expression simple de $\sum_{k=0}^{\infty} F_{k+1}^2$ puis de $C_n = \sum_{k=0}^{\infty} F_{k}^2$.

En déduire la valeur de $E_{\pi} = \sum_k t$

Partie III : Fibonacci et Pascal

- (a) Simplefor 1
- (h) A quelle condition nur k a-to
- 13 Comptage dans le triangle de On rappelle que vn . N', Vb c [1].

- (a) Pronver que l'est le seul n
- (b) Determiner tous les nombre
- (c) Donner 2 exemples de nomi

(d) Douber un exemple de nom

- (e) Danmer 2 exemples de nom
- (D Denner un exemple de nom
- (g) Calcular (75). Quien dedun On pourra se respelies de la
- 14. Soit n & N. Montrer por réceure 15. Soil (n, m) EN. Manuer per n On rappelle que () = 0 f or n . Blustrer graphspeament ofthe

England Frank Transfer

10. Calculer la somme double
$$D_n = \sum_{i=0}^n \sum_{j=0}^i F_j$$
 de deux manières différentes.

En déduire la valeur de En =
$$\sum_{k=0}^{n} k \Gamma_k$$
.

Partie III : Fibonacci et Pascal

12. Four $k \ge 3$, on pose $a = \mathbb{F}_k \mathbb{F}_{k+1}$ et $b = \mathbb{F}_k \mathbb{F}_{k-1}$.

Simplifier
$$\frac{\binom{n}{l-1}}{\binom{n-1}{d}}$$
.

(b) A quelle condition sur & s-t-on $\binom{a}{b-1} = \binom{a-1}{b}$?

13. Comptage dans le triangle de Pascal.

On rappelle que $\forall n \in \mathbb{N}^*$, $\forall k \in [1, n-1]$, $\binom{n}{k} \ge k$. On pourra utiliser ce résultat sans le redémonteur

- (a) Prouver que 1 est le seul nombre qui apparaît une infinité de fois dans le triangle de Pascal.
- (b) Déterminer tous les nombres qui n'apparaissent qu'une seule fois dans le triangle.
- (c) Donner 2 exemples de nombres qui apparaissent exactement 2 fois dans le triangle de Pascal.
- (d) Donner un exemple de nombre qui apparaît exactement 3 lois dans le triangle de Pascal.
- (e) Donner 2 exemples de nombre qui apparaissent exactement 4 fois dans le triangle de Pascal.
- (g) Calculer $\binom{78}{2}$. Qu'en déduire? (f) Donner un exemple de nombre qui apparaît au moins 6 fois dans le triangle.

On pourra se rappeler de la question 12b.

Mustrer graphiquement cette propriété dans le triangle de Pascal. Id. Soit $n \in \mathbb{N}^*$. Montrer par récurrence double, et à l'aide de la relation de Pascal que $\mathbb{F}_n = \sum_{n=1}^{n-1} \binom{n-1-k}{k}$

15. Solt (n, m) ∈ №. Montrer par récurrence et à l'aide de la relation de Pascal que On rappelle que $\binom{n}{k} = 0$ pour n < k et pour k < 0.

$$\sum_{k=0}^{n} \binom{n}{k} F_{m+k} = F_{m+2n}.$$

Partie IV : Théorème de Zeckendorf

Cette partie est facultative.

On souhaite ici démontrer le théorème suivant :

Tout entier naturel n non nul s'écrit de manière unique sous la forme :

$$n = F_{k_1} + F_{k_2} + \dots + F_{k_p}$$

où $p \in \mathbb{N}^*$ et $k_1 \ge k_2 + 2$, $k_2 \ge k_3 + 2$, ..., $k_{p-1} \ge k_p + 2$ et $k_p \ge 2$. Une suite $(F_{k_1}, F_{k_2}, \dots, F_{k_p})$ est alors appelée une Z-décomposition de n.

Rappel des premières valeurs de la suite de Fibonacci :

												The state of the s	Ì					
2584	1597	987	610	377	233	144	89	55	34	13 21		8	5	2 3	1	1	0	1.4
				1		Section of Land					т	1	1	1	'	•)	7
18	17	16	15	14	13	12	11	10	e	α	1	0	0	9	1	1	0	2
									,	,	7	,	7	_	0	1	0	6

2023, à savoir $F_{17}=1597$. On retranche alors F_{17} à 2023, ce qui donne 2023 – $F_{17}=426$ et on itère le Exemple: Prenons n=2023. Dans la suite $(F_n)_{n\in\mathbb{N}}$, on prend le plus grand terme inférieur ou égal à On trouve ainsi $2023 = F_{17} + F_{14} + F_9 + F_7 + F_3$. processus. $F_{14} = 377 \le 426 < F_{15} = 610$, puis $426 - F_{14} = 49$, etc. Pour déterminer la décomposition d'un nombre n, on applique un algorithme de type glouton.

- 16. Déterminer la Z-décomposition de n = 1152 et de n = 1789.
- Existence. En suivant la démarche développée dans l'exemple, montrer l'existence de la Zdécomposition de tout nombre n de N°.

Ne pas oublier la condition de non-consécutivité des indices k_1 ..., k_p

- 18. Unicité.
- Prouver à l'aide de la partie Π que la somme de nombres de Fibonacci d'une Z-décomposition d'un entier n, dont le plus grand élément est F_{k_1} , est strictement inférieure à F_{k_1+1} .
- (b) En déduire l'unicité de la décomposition.

Exercice 1. Bonus : Les organisateurs têtes en l'air.

Cet exercice n'est pas évalué.

deuxième et p_3 points au troisième, où p_1 , p_2 et p_3 sont trois entiers vérifiant $p_1 > p_2 > p_3 > 0$. Il n'y Pour chacune des épreuves, les organisateurs ont attribués p_1 points au vainqueur, p_2 points au Une récente compétition d'athlétisme n'a eu que trois participants : Alphonse, Bobette et Charlotte. jamais d'égalité.

ps. Toutefois, on sait qu'au total, Alphonse a eu 22 points, et Bobette et Charlotte ont fini chacune Malheureusement, les organisateurs ont perdus leurs dossiers, et n'ont plus les valeurs de p_1 , p_2 et

BChant que Bobette a gagné l'épreuve du 100m, qui a fini second à l'épreuve de saut en hauteur? d'épreuves la compétition a-t-elle comportées?