시계열자료분석팀

5팀

김민주

박준영

곽동길

강서진

황호성

INDEX

0. 1주차 복습 4. MA 모형

1. 모형의 식별 5. ARMA 모형

2. 선형 과정 6. 모형의 적합 절차

3. AR 모형 7. 2주차 정리

0

1주차 복습

정리

시계열 자료

관측치들 간 dependency 有

규칙요소

추세 / 순환 / 계절성

불규칙요소

우연 변동

덧셈 분해

$$X_t = m_t + s_t + Y_t$$

정리

관측치들 간 dependency 有

정리 | 정상성

정상성

시계열 자료의 확률적 성질이 '시차'에만 의존

i

현실에서는 주로 약정상성을 이용!

<약정상성의 조건> $E[X_t]^2 < \infty, \forall t \in \mathbb{Z}$	2차적률 有, 시점 t에 관계없이 일정
$E[X_t] = m, \forall t \in Z$	평균 = 상수, 시점 t에 관계없이 일정
$\gamma_x(r,s) = \gamma_x(r+h,s+h),$ $\forall r,s,h \in Z$	공분산은 시차 t에 의존, 시점 t와 무관

정리 | 정상성

정상성

시계열 자료의 확률적 성질이 '시차'에만 의존

정리 | 정상화

정상화

비정상 시계열을 정상 시계열로 변환

분산 일정 X

로그(Log) 변환

제곱근 (Square Root) 변환

Box-Cox 변환

평균 일정 X

회귀 (Regression)

평활 (Smoothing)

차분 (Differencing)

정리 | 정상화

정상화

비정상 시계열을 정상 시계열로 변환

정리 | 정상성 검정

자기공분산함수 (ACVF)

$$\gamma_X(h) = Cov(X_t, X_{t+h}) = E[(X_t - \mu)(X_{t+h} - \mu)]$$

자기상관함수 (ACF)

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} = Corr(X_t, X_{t+h}) = \frac{Cov(X_t, X_{t+h})}{\sqrt{Var(X_t)}\sqrt{Var(X_{t+h})}}$$

정리 | 정상성 검정

평균 = 0, 분산 = σ^2

백색잡음 $WN(0,\sigma^2)$

자기상관이 존재하지 않는 시계열

자기상관 검정	ACF plot
정규성 검정	QQ plot / KS Test / Jarque-Bera Test
정상성 검정	KPSS Test / ADF Test / PP Test

정리 | 정상성 검정

평균 = 0, 분산 = σ^2

백색잡음 $WN(0,\sigma^2)$

자기상관이 존재하지 않는 시계열

자기상관 **모든 백색잡음은 정상 시계열이지만**,

모든 정상 시계열이 백색잡음은 아님을 주의 Rd 검정 QQ plot / KS Test / Jarque-Bera Test

정상성 검정

KPSS Test / ADF Test / PP Test

1

모형의 식별

정상화 과정 이후 남아있는 오차가 WN/IID를 만족해야 함

WN/IID를 만족하지 않을 때, 이를 추정하기 위해 시계열 모형 필요

시계열 모형의 필요성

ightharpoonup 오차항 Y_t 의 공분산 행렬

$$\Gamma = \begin{pmatrix} Cov(Y_1, Y_1) & Cov(Y_1, Y_2) & \cdots & Cov(Y_1, Y_n) \\ \vdots & \vdots & \vdots & \vdots \\ Cov(Y_n, Y_1) & Cov(Y_n, Y_2) & \cdots & Cov(Y_n, Y_n) \end{pmatrix}$$

ightharpoonup 오차항 Y_t 의 공분산 행렬

$$\Gamma = \begin{pmatrix} Cov(Y_1, Y_1) & Cov(Y_1, Y_2) & \cdots & Cov(Y_1, Y_n) \\ \vdots & \vdots & \vdots & \vdots \\ Cov(Y_n, Y_1) & Cov(Y_n, Y_2) & \cdots & Cov(Y_n, Y_n) \end{pmatrix}$$

▶ 시차를 이용한 오차항 Y_t 의 공분산 행렬

$$\Gamma = \begin{pmatrix} \gamma(0) & \gamma(1) & \cdots & \gamma(n-1) \\ \gamma(1) & \gamma(0) & \cdots & \gamma(n-2) \\ \vdots & \vdots & \vdots & \vdots \\ \gamma(n-1) & \gamma(n-2) & \cdots & \gamma(0) \end{pmatrix}$$

정상성 조건 ③ 자기공분산은 시차에만 의존 - 클린업 1주차 참고

ightharpoonup 오차항 Y_t 가 백색잡음(WN)일 때

$$\Gamma = \begin{pmatrix} \gamma(0) & 0 & \cdots & 0 \\ 0 & \gamma(0) & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \gamma(0) \end{pmatrix}$$

만약 오차항 Y_t 가 백색잡음이라면, 대각요소를 제외한 모든 요소가 0

▶ 오차항 *Y_t*가 백색잡음(WN)일 때

$$\Gamma = \begin{pmatrix} \gamma(0) & 0 & \cdots & 0 \\ 0 & \gamma(0) & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \gamma(0) \end{pmatrix}$$

만약 오차항 Y_t 가 백색잡음이라면, 대각요소를 제외한 모든 요소가 0

분산만 추정하여 공분산 행렬 구할 수 있음

▶ 오차항 *Y_t*가 백색잡음(WN)일 때

But 오차항 Y_t 가 백색잡음이 아니라면, 확률변수 간 상관관계 존재

ightharpoonup 오차항 Y_t 가 백색잡음(WN)이 아닐 때

$$\Gamma = \begin{pmatrix} \gamma(0) & \gamma(0) & \cdots & \gamma(n-1) \\ \gamma(0) & \gamma(0) & \cdots & \gamma(n-1) \\ \vdots & \vdots & \vdots & \vdots \\ \gamma(n-1) & \gamma(n-2) & \cdots & \gamma(0) \end{pmatrix}$$

▶ 오차항 *Y_t*가 백색잡음(WN)일 때

But 오차항 Y_t 가 백색잡음이 아니라면, 확률변수 간 상관관계 존재

▶ 오차항 *Y_t*가 백색잡음(WN)이 아닐 때

$$\Gamma = \begin{pmatrix} \gamma(0) & \gamma(0) & \cdots & \gamma(n-1) \\ \gamma(0) & \gamma(0) & \cdots & \gamma(n-1) \\ \vdots & \vdots & \vdots & \vdots \\ \gamma(n-1) & \gamma(n-2) & \cdots & \gamma(0) \end{pmatrix}$$

◎ 표본자기공분산함수(SACVF)

$$\hat{\gamma}_{Y}(h) = \frac{1}{n} \sum_{j=1}^{n-h} (Y_{j} - \bar{Y})(Y_{j+h} - \bar{Y})$$

표본자기공분산함수를 통한 추정의 경우,

시차 h에 따라 추정의 정확도가 달라질 수 있다는 단점 존재

▶ 오차항
$$Y_t$$
가 백 $\stackrel{\square}{\longrightarrow} h \uparrow \rightarrow (n-h) \downarrow$, 정확도 \downarrow

$$\Gamma = \begin{pmatrix} \gamma(0) & \gamma(0) & \cdots & \gamma(n-1) \\ \gamma(0) & \gamma(0) & \cdots & \gamma(n-1) \\ \vdots & \vdots & \vdots & \vdots \\ \gamma(n-1) & \gamma(n-2) & \cdots & \gamma(0) \end{pmatrix}$$

◎ 표본자기공분산함수(SACVF)

$$\hat{\gamma}_{Y}(h) = \frac{1}{n} \sum_{j=1}^{n-h} (Y_{j} - \bar{Y})(Y_{j+h} - \bar{Y})$$

표본자기공분산함수를 통한 추정의 경우,

시차 h에 따라 추정의 정확도가 달라질 수 있다는 단점 존재

 \triangleright 오차항 Y_t 가 백 $\stackrel{\text{def}}{\longrightarrow} h \uparrow \rightarrow (n-h) \downarrow$, 정확도 \downarrow

남아있는 오차가 IID나 WN이 아닐 때를 추정하기 위해 시계열 모형 필요

시계열 모형의 판단기준

시계열 모형의 판단기준

자기상관함수 ACF (Autocorrelation Function) 부분자기상관함수 PACF (Partial Autocorrelation Function)

시계열 모형의 판단기준 | [1] 자기상관함수 (ACF)

자기상관함수 ACF

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} = Corr(X_t, X_{t+h}) = \frac{Cov(X_t, X_{t+h})}{\sqrt{Var(X_t)}\sqrt{Var(X_{t+h})}}$$

시차가 *h*인 시계열 간의 상관관계 의미 정상성을 만족한다면 시차에만 의존하는 특징

시계열 모형의 판단기준 | [1] 자기상관함수 (ACF)

자기상관함수 ACF

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} = Corr(X_t, X_{t+h}) = \frac{Cov(X_t, X_{t+h})}{\sqrt{Var(X_t)}\sqrt{Var(X_{t+h})}}$$

★ ACF의 특징

1)
$$p(0) = 1 (:: \gamma(0) = var(X_t))$$

2)
$$p(-h) = p(h)$$

3)
$$|\gamma(h)| \le r(0)$$
 for all $h \in Z \rightarrow |p(h)| \le 1$

시계열 모형의 판단기준 | [2] 부분자기상관함수 (PACF)

부분자기상관함수 PACF

$$X_t$$
와 X_{t+k} 의 상관관계를 구할 때, 그 둘 사이에 존재하는 $\{X_{t+1}, X_{t+2}, \cdots, X_{t+k-1}\}$ 의 영향을 제외하고 구한 상관계수

부분상관계수

$$\rho_{XY,Z} = \frac{E[X - E(X|Z)][Y - E(Y|Z)]}{\sqrt{(E[X - E(X|Z)]^2 E[Y - E(Y|Z)]^2)}} = \rho(X^*, Y^*)$$

시계열 모형의 판단기준 | [2] 부분자기상관함수 (PACF)

부분자기상관함수 PACF

 X_t 와 X_{t+k} 의 상관관계를 구할 때, 그 둘 사이에 존재하는 $\{X_{t+1}, X_{t+2}, \cdots, X_{t+k-1}\}$ 의 영향을 제외하고 구한 상관계수

더 나은 **부분자기상관함수** 이해를 위해, 예시를 통해 **부분상관계수**를 먼저 알아보자!

시계열 모형의 판단기준 | [2] 부분자기상관함수 (PACF)

부분자기상관함수 PACF

$$X_t$$
와 X_{t+k} 의 상관관계를 구할 때, 그 둘 사이에 존재하는 $\{X_{t+1}, X_{t+2}, \cdots, X_{t+k-1}\}$ 의 영향을 제외하고 구한 상관계수

부분상관계수

$$\rho_{XY,Z} = \frac{E[X - E(X|Z)][Y - E(Y|Z)]}{\sqrt{(E[X - E(X|Z)]^2 E[Y - E(Y|Z)]^2)}} = \rho(X^*, Y^*)$$

시계열 모형의 판단기준 | [2] 부분자기상관함수 (PACF)

부분상관계수 예시

X: 아이스크림 판매량, Y: 범죄발생건수, Z: 인구수 $Z \uparrow \Rightarrow X \uparrow \& Y \uparrow \Rightarrow X$ 와 Y의 상관계수 \uparrow

Z의 영향을 제거한 X 와 Y의 상관계수를 구해야 함

부분상관계수

$$\rho_{XY,Z} = \frac{E[X - E(X|Z)][Y - E(Y|Z)]}{\sqrt{(E[X - E(X|Z)]^2 E[Y - E(Y|Z)]^2)}} = \rho(X^*, Y^*)$$

시계열 모형의 판단기준 | [2] 부분자기상관함수 (PACF)

부분상관계수 예시

X: 아이스크림 판매량, Y: 범죄발생건수, Z: 인구수 $Z \uparrow \Rightarrow X \uparrow \& Y \uparrow \Rightarrow X$ 와 Y의 상관계수 \uparrow Z의 영향을 제거한 X 와 Y의 상관계수를 구해야 함

시계열 모형의 판단기준 | [2] 부분자기상관함수 (PACF)

부분상관계수 예시

X: 아이스크림 판매량, Y: 범죄발생건수, Z: 인구수 $Z \uparrow \Rightarrow X \uparrow \& Y \uparrow \Rightarrow X$ 와 Y의 상관계수 \uparrow Z의 영향을 제거한 X 와 Y의 상관계수를 구해야 함

순수한 영향력을 알 수 없음

부분상관계수 개념을 사용하면 순수한 영향력을 알 수 있음!

시간에 따라 증가

시계열 모형의 판단기준부분성관계수요 각 항의 의미

부분상관계수 에시

$$\rho_{XY,Z} = \frac{X : O \mid O_E[X] = E(X|Z)][Y - E(Y|Z)]}{\sqrt{(E[X] - E(X|Z)]^2 E[Y] - E(Y|Z)]^2}} = \rho(X^*, Y^*)$$

Z의 영향을 제거한 X 와 Y의 상관계수를 구해야 함

- 1) 조건부 기댓값 E(X|Z): X가 Z에 의해 설명되는 부분
- 2) 조건부 기댓값 E(Y|Z): Y가 Z에 의해 설명되는 부분
- $(3) X^* = X E(X|Z)$: X에서 Z의 영향력을 제거하고 남은 부분
- 4) $Y^* = Y E(Y|Z)$: Y에서 Z의 영향력을 제거하고 남은 부분
- \Rightarrow X와 Y의 부분상관계수: $\rho_{XY,Z} = \rho_{X^*Y^*}$

시계열 모형의 판단기준 | [2] 부분자기상관함수 (PACF)

부분자기상관함수 PACF

자기 자신과의 부분상관계수

즉, 중간값들의 효과를 제거한 순수한 X_t 와 X_{t+h} 의 관계

시계열 모형의 판단기준 | [2] 부분자기상관함수 (PACF)

부분자기상관함수(PACF)는 일반적으로 $\alpha(k)$, k = lag로 표현

부분자기상관함수 PACF 정의

$$\alpha(0) = Corr(X_1, X_1) = 1$$

$$\alpha(1) = Corr(X_1, X_2) = \rho(1)$$

$$\alpha(k) = Corr(X_{k+1} - P_k^* X_{k+1}, X_1 - P_k^* X_1), k \ge 2$$

시계연 대

시계열 모형의 판단기준 | [2] 부분자기상관함수 (PACF)

부분자기상관함수(PACF)는 일반적으로 $\alpha(k)$, k = lag로 표현

부분자기상관함수 PACF 정의

$$\alpha(0) = Corr(X_1, X_1) = 1$$

$$\alpha(1) = Corr(X_1, X_2) = \rho(1)$$

$$\alpha(k) = Corr(X_{k+1} - P_k^* X_{k+1}, X_1 - P_k^* X_1), k \ge 2$$

$$\Rightarrow P_k^* X_{k+1} = Best \, Linear \, Predictor \, on \{1, X_2, \cdots, X_k \}$$

$$\Rightarrow P_1^* X_{k+1} = Best \, Linear \, Predictor \, on \{1, X_2, \cdots, X_k\}$$

* BLP(Best Linear Predictor)는 뒤에서 다루겠지만, 지금은 $\{1, X_2, \dots, X_k\}$ 가 X_1 과 X_{k+1} 에 미치는 영향 정도로 생각

시계열 모형의 판단기준 | [2] 부분자기상관함수 (PACF)

부분자기상관함수 PACF의 주요 아이디어

중간값들의 영향력을 선형회귀로 추정하여 제거하는 것

 X_1, \cdots, X_{k+1} 을 이용한 X_{k+1} 회귀식

$$X_{k+1} = \phi_{11} X_k + \epsilon_{k+1}$$

$$X_{k+1} = \phi_{21}X_k + \phi_{22}X_{k-1} + \epsilon_{k+1}$$

•

$$X_{k+1} = \phi_{k1}X_k + \phi_{k2}X_{k-1} + \dots + \phi_{kk}X_1 + \epsilon_{k+1}$$

시계열 모형의 판단기준 | [2] 부분자기상관함수 (PACF)

부분자기상관함수 PACF의 주요 아이디어

중간값들의 영향력을 선형회귀로 추정하여 제거하는 것

 $ightharpoonup X_1, \cdots, X_{k+1}$ 을 이용한 X_{k+1} 회귀식

$$X_{k+1} = \phi_{11}X_k + \epsilon_{k+1}$$

$$X_{k+1} = \phi_{21}X_k + \phi_{22}X_{k-1} + \epsilon_{k+1}$$
:

$$X_{k+1} = \phi_{k1}X_k + \phi_{k2}X_{k-1} + \dots + \phi_{kk}X_1 + \epsilon_{k+1}$$

시계열 모형의 판단기준 | [2] 부분자기상관함수 (PACF)

▶ X_1, \dots, X_{k+1} 을 이용한 X_{k+1} 회귀식

$$\begin{split} X_{k+1} &= \phi_{11} X_k + \epsilon_{k+1} \\ X_{k+1} &= \phi_{21} X_k + \phi_{22} X_{k-1} + \epsilon_{k+1} \\ &\vdots \\ X_{k+1} &= \phi_{k1} X_k + \phi_{k2} X_{k-1} + \dots + \phi_{kk} X_1 + \epsilon_{k+1} \end{split}$$

ightharpoonup 오차항을 최소화 하는 방법으로 X_{k+1} 의 추정값 BLP 구하기

$$\hat{X}_{k+1} = \arg\min_{\phi} E(X_{k+1} - \phi_{k1}X_k - \phi_{k2}\phi_{k-1} - \dots - \phi_{kk}X_1)^2$$

시계열 모형의 판단기준 | [2] 부분자기상관함수 (PACF)

회귀식의 계수인 ϕ_{kk} 는 $\{X_2, \cdots, X_k\}$ 가 고정되어 있을 때, X_{k+1} 과 X_1 간의 선형적인 상관관계를 나타내는 수치

따라서 PACF는 다음과 같이 정의

$$X_{k+1} = \phi_{k1} X_k \alpha(k) = \phi_{kk}, k \ge 1_{\phi_{kk} X_1 + \phi_{k+1}}$$

ightharpoonup 오차항을 최소화 하는 방법으로 X_{k+1} 의 추정값 BLP 구하기

 $X_{k+1} = \phi_{21}X_k + \phi_{22}X_{k+1} + \epsilon_{k+1}$

$$\hat{X}_{k+1} = \arg\min_{\phi} E(X_{k+1} - \phi_{k1}X_k - \phi_{k2}\phi_{k-1} - \dots - \phi_{kk}X_1)^2$$

2

선형 과정

Linear process (선형 과정)

선형 과정 Linear process

 $\{Z_t\} \sim WN(0,\sigma^2)$ 들의 선형결합으로 표현된 X_t 가 선형 과정

선형 과정식

$$X_t = \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j}$$

* 이때 선형결합의 계수는 $\sum_i |\psi_i| < \infty$ (absolutely summable) 조건을 만족해야 함

Linear proce되계열을 전형과정으로 표현하는 이유?

호향여사자를 이용한 서형 과정 표현

1) 공분산 계산이 편리함
$$X_t = \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j} = \psi(B) Z_t, \text{ where } \psi(B) = \sum_{j=-\infty}^{\infty} \psi_j B^j Cov(a_1 Z_1 + a_2 Z_2 + a_3 Z_3, b_2 Z_2 + b_3 Z_3) = a_2 b_2 + a_3 b_3$$
$$\because \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j} = \sum_{j=-\infty}^{\infty} \psi_j B^j Z_t = (\sum_{j=-\infty}^{\infty} \psi_j B^j) Z_t$$
$$Cov(a_1 Z_1, a_2 Z_2 + a_3 Z_3) = 0$$

위 식과 같이 index가 동일한 경우만 계산해 공분산 구할 수 있음

- 2) 해석이 용이하고 추정방법이 잘 발달됨 (Regression/Linear algebra)
- 3) 정상 확률 과정의 선형 결합이 다시 정상 확률 과정 조건을 만족함
- 4) 약한 의미의 정상 확률 과정이 선형 과정의 합과 결정적 과정으로 표현됨
 * 이때 선형결합의 계수는 Σ_j|ψ_j| < ∞ (absolutely summable) 조건을 만족해야함
 (Wold decomposition)

3

AR 모형

정의

AR 모형 Auto-Regressive Model

현 시점의 관측값을 과거 시점의 관측값과

현 시점의 오차의 선형결합 형태로 표현한 모형

 $Z_t \sim WN(0, \sigma^2)$

$$AR(1): X_t = \phi_1 X_{t-1} + Z_t$$

$$AR(p): X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \cdots + \phi_p X_{t-p} + Z_t$$

AR(p)에서 p는 몇 시점 전까지의 관측값을 사용했는지를 나타내는 모수

정의

AR 모형 Auto-Regressive Model

현 시점의 관측값을 과거 시점의 관측값과

현 시점의 오차의 선형결합 형태로 표현한 모형

관측값을 자기 자신의 과거로 회귀시킨다는 의미에서 '자기회귀 모형' 이라고 부름

P시점 전까지의 관측값으로 나타낸 선형결합 (X_t) 은 후향연산자를 사용해 표현가능

 $X_{t-1} = BX_{t_t}$ 에서 B가 후항연산자

$$X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \dots + \phi_{p}X_{t-p} + Z_{t}$$

$$= \phi_{1}BX_{t} + \phi_{2}B^{2}X_{t} + \dots + \phi_{p}B^{p}X_{t} + Z_{t}$$

$$= (1 + \theta_{1}B + \theta_{2}B^{2} + \dots + \theta_{q}B^{q})Z_{t}$$

$$Z_t = (1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p) X_t$$

P시점 전까지의 관측값으로 나타낸 선형결합 (X_t) 은 후향연산자를 사용해 표현가능

 $X_{t-1} = BX_{t_t}$ 에서 B가 후항연산자

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \cdots + \phi_p X_{t-p} + Z_t$$

$$= \phi_1 B X_t + Z_t^b \mathcal{M}^2$$
 대해 표현 $+\phi_p B^p X_t + Z_t$

$$= (1 + \theta_1 B + \theta_2 I) + \cdots + \theta_q B^q) Z_t$$

$$Z_t = (1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p) X_t$$

P시점 전까지의 관측값으로 나타낸 선형결합 (X_t) 은 후향연산자를 사용해 표현가능

 $X_{t-1} = BX_{t_i}$ 에서 B가 후항연산자

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \cdots + \phi_p X_{t-p} + Z_t$$

$$AR(p) = \begin{cases} AR(p) & = \forall b \forall d \in A \\ = \phi_1 B X_t + \phi_2 B X_t + \cdots + \phi_p B X_t + Z_t \end{cases}$$

$$= (1 + \theta_1 B + \theta_2 + \cdots + \theta_q B^q) Z_t$$

$$Z_t = (1 - \phi_1 B - \phi_2 B^2 - \cdots - \phi_p B^p) X_t$$

AR(p)를 나타낸 식들 정리

정의를 이용해 나타낸 식 만축값으로 나타낸 선형결합 (X_t) 은

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \cdots + \phi_p X_{t-p} + Z_t$$

 $X_{t-1} = BX_t$ 에서 B가 후항연산자

후향연산자를 이용해 나타낸 식

$$X_t = \phi_1 B X_t + \phi_2 B^2 X_t + \dots + \phi_p B^p X_t + Z_t$$

특성방정식을 이용해 나타낸 식

$$Z_t = \phi(B)X_t$$

AR 모형의 두 가지 조건

- 1 정상성(Stationarity) : 시계열의 확률적 특성이 시점에 의존하지 않는 특성
- 2 인과성(Causality): t 시점의 관측값이 과거시점의 오차항으로 설명되는 특성

$$\rightarrow \psi_j = 0, \forall j < 0 \leftrightarrow X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$$

선형과정 X_t 가 위 조건을 만족할 때, X_t 는 인과성을 가짐!

AR 모형의 두 가지 조건

- AR 모형이 어떻게 <mark>정상성</mark>과 <mark>인과성을 만족하는</mark>지
- 2 인과성(Causality) AR(1) 모형을 통해 알아보자!

$$\rightarrow \psi_j = 0, \forall j < 0 \leftrightarrow X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$$

선형과정 X_t 가 위 조건을 만족할 때, X_t 는 인과성을 가짐!

$$X_{t} = \phi_{1}X_{t-1} + Z_{t}$$

$$= \phi_{1}(\phi_{1}X_{t-2} + Z_{t-1}) + Z_{t}$$

$$= \phi_{1}^{2}X_{t-2} + \phi_{1}Z_{t-1} + Z_{t}$$

$$= \phi_{1}^{2}(\phi_{1}X_{t-3} + Z_{t-2}) + \phi_{1}Z_{t-1} + Z_{t}$$

$$= \phi_{1}^{3}X_{t-3} + \phi_{1}^{2}Z_{t-2} + \phi_{1}Z_{t-1} + Z_{t}$$

$$\vdots$$

$$\vdots$$

$$= \phi_{1}^{M+1}X_{t-M-1} + \sum_{j=0}^{M} \phi_{1}^{j}Z_{t-j}$$

AR(1) 식을 위와 같이 과거 시점의 관측값과 오차들의 선형결합으로 정리할 수 있음 But 인과성을 만족하기 위해서는 오차항만으로 관측값을 설명해야함

$$X_t = \phi_1 X_{t-1} + Z_t$$

$$= \phi_1(\phi_1 X_{t-2} + Z_{t-1}) + Z_t$$

$$= \phi_1^2 X_{t-2} + \phi_1 Z_{t-1} + Z_t$$
인과성의 만족 여부는 ϕ_1 의 범위에 따라 달라지는데,

 $= \phi_1^{M+1} X_{t-M-1} + \sum_{j=0}^{M} \phi_1^{j} Z_{t-j}$

식을 통해 확인해보자!

AR(1) 식을 위와 같이 과거 시점의 관측값과 오차들의 선형결합의 But 인과성을 만족하기 위해서는 오차항만으로 관측값을

i) $|\phi_1| < 1$

$$X_{t} = \phi_{1}^{M+1} X_{t-M-1} + \sum_{j=0}^{M} \phi_{1}^{j} Z_{t-j}$$

 $M \to \infty$ 이면 $\phi_1^{M+1}X_{t-M-1} \to 0$ 으로 수렴, 나머지 부분은 $\sum_{j=0}^M \phi_1^j Z_{t-j}$ 이 됨

즉, 오차항(Z_t) 의 선형결합만 남아 인과성 만족

또한 정상 시계열의 선형결합은 여전히 정상 시계열임을 확인했으므로 정상성 역시 만족!

ii)
$$|\phi_1| = 1$$

$$X_t = X_{t-1} + \varepsilon_t$$
 or $X_t = X_{t-1} + \varepsilon_t$

대표적인 비정상 확률 과정 중 하나인 확률보행과정(random walk process) $|\phi_1|=1$ 일 때는 인과성과 정상성 모두 만족하지 못함

iii) $|\phi_1| > 1$

$$X_t = \phi_1 X_{t-1} + Z_t = \dots = \phi_1^{M+1} X_{t-M-1} + \sum_{j=0}^M \phi_1^j Z_{t-j}$$

위 식에서 $\phi_1^{M+1}X_{t-M-1}$ 부분을 제거하지 못해 인과성을 만족하지 못함!

정리하자면, AR모형은 정상성과 인과성이 모두 만족되는

 $|\phi_1| < 1$ 이 성립할 때만 사용할 수 있음

그리고 이는 $\phi(B) = 0$ 의 근의 절댓값이 1보다 커야한다'와 동치

위 식에서 $\phi_{+}^{M+1}X_{t-M-1}$ 부분을 제거하지 못해 인과성을 만족하지 못함!

AR 모형의 ACF

AR(1) 모형을 이용한 ACF 계산

계산의 편의를 위해 $E(X_t) = 0$ 가정

[1] ACF식을 유도하기 위해 양변에 X_{t-h} 곱하기

$$X_{t} = \phi_{1}X_{t-1} + Z_{t}$$

$$X_{t}X_{t-h} = \phi_{1}X_{t-1}X_{t-h} + Z_{t}X_{t-h}$$

AR 모형의 ACF

계산의 편의를 위해 $E(X_t) = 0$ 가정

AR(1) 모형을 이용한 ACF 계산

[1] ACF식을 유도하기 위해 양변에 X_{t-h} 곱하기

$$X_{t} = \phi_{1}X_{t-1} + Z_{t}$$

$$X_{t}X_{t-h} = \phi_{1}X_{t-1}X_{t-h} + Z_{t}X_{t-h}$$

[2] 기댓값을 취해 ACF 식 구하기

$$\gamma(h) = \phi_1 \gamma(h-1) + Cov(Z_t, X_{t-h}) = \phi_1 \gamma(h-1)$$

$$(\because Cov(Z_t, X_{t-h}) = Cov(Z_t, \phi_1^{M+1} X_{t-M-1} + \sum_{j=0}^{M} \phi_1^{j} Z_{t-h-j} = 0)$$

$$\gamma(h) = \phi_1 (\phi_1 \gamma(h-2)) = \dots = \phi_1^{h} \gamma(0)$$

$$\frac{\gamma(h)}{\gamma(0)} = \phi_1^{h} = \rho(h)$$

AR 모형의 ACF

AR(1)모형을 이용한 ACF 계산

[1] ACF식을 유도하기 위해 양변에 X_{t-h} 를 곱함

앞서 정상성을 만족하기 위해서 $|\phi_1| < 1$ 가 되어야 함을 확인했기 때문에, h가 커짐에 따라 AR 모형의 ACF는 지수적으로 감소함을 알 수 있음

[2] 기닷값을 위해 ACE 작을 구암

$$\gamma(h) = \phi_{1}\gamma(h-1) + Cov(Z_{t}, X_{t-h}) = \phi_{1}\gamma(h-1)$$

$$(\because Cov(Z_{t}, X_{t-h}) = Cov(Z_{t}, \phi_{1}^{M+1}X_{t-M-1} + \sum_{j=0}^{M} \phi_{1}^{j}Z_{t-j} = 0)$$

$$\gamma(h) = \phi_{1}(\phi_{1}\gamma(h-2)) = \phi_{1}^{h}\gamma(0)$$

$$\frac{\gamma(h)}{\gamma(0)} = \phi_{1}^{h} = \rho(h)$$

AR 모형의 PACF

AR(p) 모형을 이용한 PACF 유도

AR(p)는 X_{k+1} 을 p 시점 이전 값들로만 표현한 것

$$\hat{X}_{k+1} = \phi_1 X_k + \phi_2 X_{k-1} + \dots + \phi_p X_{k+1-p}$$

$$\hat{X}_{k+1} = \phi_1 X_k + \phi_2 X_{k-1} + \dots + \phi_p X_{k+1-p} + 0 X_{k-p} + \dots + 0 X_1$$

AR 모형의 PACF

AR(p) 모형을 이용한 PACF 유도

AR(p)는 X_{k+1} 을 p 시점 이전 값들로만 표현한 것

$$\hat{X}_{k+1} = \phi_1 X_k + \phi_2 X_{k-1} + \dots + \phi_p X_{k+1-p}$$

$$\hat{X}_{k+1} = \phi_1 X_k + \phi_2 X_{k-1} + \dots + \phi_p X_{k+1-p} + 0 X_{k-p} + \dots + 0 X_1$$

$$\alpha(0) \coloneqq 1$$

$$\alpha(p) = \phi_p$$

$$\alpha(k) = 0 \text{ if } k > p$$

 $\alpha(0)$ 의 경우 중간 시점이 없기 때문에!

AR 모형의 PACF

AR(p)모형을 이용한 PACF 유도

$$\hat{X}_{k+1} = \phi_1 X_k + \phi_1 X_k + \dots + \phi_p X_{k+1-p}$$

$$\hat{X}_{k+1} = \phi_1 X_k + \phi_1 X_k + \dots + \phi_p X_{k+1-p} + 0 X_{k-p} + \dots + 0 X_1$$

즉, AR 모형의 PACF는 p 시차 전 까지만 존재하며, p 이후로는 모두 0이 됨이를 "AR(p) 모형의 PACF는 시차 p 이후에 절단된다"라고 표현함

$$\alpha(0) \coloneqq 1$$

$$\alpha(p) = \phi_p$$

$$\alpha(k) = 0 \text{ if } k > p$$

 $\alpha(0)$ 의 경우 중간 시점이 없기 때문에!

AR 모형의 ACF & PACF

AR 모형의 ACF & PACF

p(위 그림에서는 1)이후에 절단

4

MA 모형

정의

MA(Moving Average) 이동평균모형

현 시점의 관측값을 과거 시점의 오차항만을 이용해 설명하는 모형

$$MA(1): X_t = Z_t + \theta_1 Z_{t-1}$$

$$MA(q): X_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \dots + \theta_q Z_{t-q}$$

 $Z_t \sim WN(0, \sigma^2)$

MA모형도 AR모형과 같이 <mark>후향연산자를</mark> 이용해 표현가능

$$X_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \dots + \theta_q Z_{t-q}$$

$$= Z_t + \theta_1 B Z_t + \theta_2 B^2 Z_t + \dots + \theta_q B^q Z_t$$

$$= (1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q) Z_t$$

$$Z_t = (1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q) X_t$$

MA모형도 AR모형과 같이 <mark>후향연산자</mark>를 이용해 표현가능

$$X_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \cdots + \theta_q Z_{t-q}$$

$$= Z_t + \theta_1 B' Z_t \text{- M} \text{대해 표현} \cdot \cdot + \theta_q B^q Z_t$$

$$= (1 + \theta_1 B + \theta_2 B^2 + \cdots + \theta_q B^q) Z_t$$

$$Z_t = (1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q) X_t$$

MA모형도 AR모형과 같이 <mark>후향연산자</mark>를 이용해 표현가능

$$X_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \cdots + \theta_q Z_{t-q}$$

$$= Z MA(q) 의 특성방정식 (= \theta(B)) B^q Z_t$$

$$= (1 + \theta_1 B + \theta_2 B^2 + \cdots + \theta_q B^q) Z_t$$

$$Z_t = (1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q) X_t$$

MA 모형의 조건 : 정상성, 인과성, 가역성

MA 모형의 세 가지 조건

- 1 정상성(Stationarity) : 시계열의 확률적 특성이 시점에 의존하지 않는 특성
- 2 인과성(Causality): t 시점의 관측값이 <mark>과거시점의 오차항으로 설명되는</mark> 특성
- ③ 가역성(Invertibility) : t 시점의 오차항이 <mark>과거시점의 관측값으로 설명되는</mark> 특성 $\to \sum_{j=0}^{\infty} \left| \pi_j \right| < \infty$ 인 $\left\{ \pi_j \right\}$ 가 존재하며, 아래 식을 만족할 때 가역성을 가짐

$$Z_t = \sum_{j=0}^{\infty} \pi_j X_{t-j} \text{ for all } t$$

 Z_t 에 대한 식을 X_t 에 대한 식으로 표현할 수 있는지를 따지는 조건이라고 이해하면 편함!

MA 모형의 조건: 정상성, 인과성, 가역성

MA모형은 백색잡음을 만족하는 오차의 선형결합이기 때문에,

자연스럽게 인과성과 정상성을 만족

- 1 정상성(Stationarity) : 시계열의 확률적 특성이 시점에 의존하지 않는 특성
- 2 인과성(Causality): t 시점의 관측값이 과거시점의 오차항으로 설명되는 특성

가역성의 조건 만족 여부만 확인하면 됨!

3 가역성(Invertibility) : t 시점의 오차항이 <mark>과거시점의 관측값으로 설명되는</mark> 특성 $\to \sum_{j=0}^{\infty} \left| \pi_j \right| < \infty \ 0 \ \left\{ \pi_j \right\}$ 가 존재하며, 아래 식을 만족할 때 가역성을 가짐

$$Z_t = \sum_{j=0}^{\infty} \pi_j X_{t-j} \text{ for all } t$$

 Z_r 에 대한 식을 X_r 에 대한 식으로 표현할 수 있는지를 따지는 조건이

MA(1) 모형을 통한 가역성 조건 확인

$$X_{t} = Z_{t} + \theta Z_{t-1} = (1 + \theta B)Z_{t}$$

$$(1 + \theta B)^{-1}X_{t} = Z_{t}$$

$$(1 + \theta B)^{-1} = \frac{1}{1 - (-\theta B)} = 1 - \theta B + \theta B^{2} - (\theta B)^{3} + \cdots$$

MA(1) 식을 위와 같이 무한등비급수의 합 형태로 표현할 수 있음 따라서 가역성 조건 역시 $|\theta| < 1$ 일 때만 성립하며, 이는 특성방정식 $\theta(B) = 0$ 의 근이 절댓값 1보다 커야 한다는 조건과 동치

✓ MA(1) 모형의 ACF 계산 과정

[1] MA(1) 모형 양변에 X_{t-h} 곱하기

$$X_{t-h}X_t = X_{t-h}(Z_t + \theta_1 Z_{t-1}) = X_{t-h}Z_t + \theta_1 X_{t-h}Z_{t-1}$$

$$\gamma(h) = Cov(X_{t-h}, Z_t + \theta_1 Z_{t-1}) = Cov(Z_{t-h}, +\theta_1 Z_{t-h-1}, Z_t + \theta_1 Z_{t-1})$$

✓ MA(1) 모형의 ACF 계산 과정

[1] MA(1) 모형 양변에 X_{t-h} 곱하기

$$X_{t-h}X_t = X_{t-h}(Z_t + \theta_1 Z_{t-1}) = X_{t-h}Z_t + \theta_1 X_{t-h}Z_{t-1}$$

[2] 기댓값 취하기

$$\gamma(h) = Cov(X_{t-h}, Z_t + \theta_1 Z_{t-1}) = Cov(Z_{t-h}, +\theta_1 Z_{t-h-1}, Z_t + \theta_1 Z_{t-1})$$

✓ MA(1) 모형의 ACF 계산 과정

[3] h의 범위에 따른 $\gamma(h)$ 확인

i) h = 0

$$\gamma(0) = Cov(Z_t, +\theta_1 Z_{t-1}, Z_t + \theta_1 Z_{t-1}) = \sigma^2 + \theta_1^2 \sigma^2 = (1 + \theta_1^2)\sigma^2$$

ii) h = 1
$$\gamma(1) = Cov(Z_{t-1}, +\theta_1 Z_{t-2}, Z_t + \theta_1 Z_{t-1}) = \theta_1 \sigma^2$$

iii)
$$h \ge 2$$

$$\gamma(h) = Cov(Z_{t-h}, +\theta_1 Z_{t-h-1}, Z_t + \theta_1 Z_{t-1}) = 0$$

MA(1) 모형의 ACF 계산 과정

[3] h = 0 $\gamma(0) = Cov(Z_{\rho}(k)) = \frac{\gamma_{k}}{\gamma_{0}} = \begin{cases} \frac{\theta}{(1+\theta^{2})}, & \sigma^{2} \neq k = 1 \\ 0, & k \geq 2 \end{cases}$ ii) h = 0 $\gamma(1) = Cov(Z_{t-1}, +\theta_{1}Z_{t-2}, Z_{t} + \theta_{1}Z_{t-1}) = \theta_{1}\sigma^{2}$

iii) h ≥ 2

 $\gamma(h) > ov(Z_{t-h}, +\theta_1 Z_{t-h-1}, Z_t + \theta_1 Z_{t-1}) = 0$

ACF는 시차 q = 1이후에 단절!

Crammer 공식을 이용한 MA 모형의 PACF에 대한 자세한 증명은 시계열 2주차 교안 참고!

MA(1) 모형의 PACF

$$\alpha(k) = \phi_{kk} = \frac{-(-\theta)^k}{(1 + \theta^2 + \dots + \theta^{2k})}, \qquad k \ge 1$$

MA모형은 $|\theta| < 1일$ 때 성립하므로, 위 식은 시차 k가 커질수록 0에 수렴

5

ARMA 모형

AR 모형과 MA 모형의 쌍대성

AR 모형과 MA 모형의 쌍대성

유한차수의 AR 모형은 무한차수의 MA 모형, 유한차수의 MA 모형은 무한차수의 AR 모형으로 표현 가능

→ 서로에 의해 표현될 수 있는 특성

1) $AR(1) \rightarrow MA(\infty)$

$$\begin{split} X_t &= \phi_1 X_{t-1} + Z_t \\ &= \phi_1 (\phi_1 X_{t-2} + Z_{t-1}) + Z_t = \phi_1^2 X_{t-2} + \phi_1 Z_{t-1} + Z_t \\ &= \phi_1^2 \; (\phi_1 X_{t-3} + Z_{t-2}) + \phi_1 Z_{t-1} + Z_t = \phi_1^3 X_{t-3} + \phi_1^2 Z_{t-2} + \phi_1 Z_{t-1} + Z_t \\ &= \cdots = \phi_1^{M+1} X_{t-M-1} + \sum_{j=0}^M \phi_1^j Z_{t-j} \end{split}$$

AR 모형과 MA 모형의 쌍대성

AR 모형과 MA 모형의 쌍대성

유한차수의 AR 모형은 무한차수의 MA 모형, 유한차수의 MA 모형은 무한차수의 AR 모형으로 표현 가능

→ 서로에 의해 표현될 수 있는 특성

$$X_t = \sum_{j=0}^\infty \phi_1^j Z_{t-j}$$
로 MA 모형이 됨

$$= \phi_1(\phi_1 X_{t-2} + Z_{t-1}) + Z_t = \phi_1^2 X_{t-2} + \phi_1 Z_{t-1} + Z_t$$

$$= \phi_1(\phi_1 X_{t-2} + Z_{t-1}) + Z_t = \phi_1^2 X_{t-2} + \phi_1 Z_{t-1} + Z_t$$

$$= \phi_1^2 (\phi_1 X_{t-3} + Z_{t-2}) + \phi_1 Z_{t-1} + Z_t = \phi_1^3 X_{t-3} + \phi_1^2 Z_{t-2} + \phi_1 Z_{t-1} + Z_t$$

$$= \phi_1^{M+1} X_{t-M-1} + \sum_{j=0}^{M} \phi_1^j Z_{t-j}$$

AR 모형과 MA 모형의 쌍대성

$$2) \mathsf{MA}(1) \to \mathsf{AR}(\infty)$$

$$X_t = \theta_1 B Z_t + Z_t$$

$$X_t = (1 + \theta_1 B) Z_t \to Z_t = \frac{1}{1 - (-\theta_1 B)} X_t$$

$$\therefore (1 - \theta_1 B + \theta_1^2 B^2 - \cdots) X_t = Z_t$$

$$\Rightarrow X_t - \theta_1 B X_t + \theta_1^2 B^2 X_t - \cdots = Z_t$$

$$X_t = \theta_1 B X_t - \theta_1^2 B^2 X_t + \cdots + Z_t$$

MA 모형을 현재시점까지 관측값과 현재시점의 오차항으로 표현 가능

→ AR 모형

ARMA 모형을 사용하는 이유

AR 모형 또는 MA 모형만으로 시계열 자료를 설명할 경우, 모수 p나 q가 너무 커질 위험 존재

→ 효율성이 떨어지고, 해석이 어렵다는 단점

ARMA 모형은 AR(p) 모형과 MA(q) 모형을 모두 포함

모수의 절약이 가능

ARMA 모형

ARMA 모형

$$X_{t} - \phi_{1}X_{t-1} - \phi_{2}X_{t-2} - \dots - \phi_{p}X_{t-p} = Z_{t} + \theta_{1}Z_{t-1} + \theta_{2}Z_{t-2} + \dots + \theta_{q}Z_{t-q}$$

ARMA 특성방정식

$$\begin{split} X_t - \phi_1 X_{t-1} - \phi_2 X_{t-2} - \cdots - \phi_p X_{t-p} &= Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \cdots \theta_q Z_{t-q} \\ X_t - \phi_1 B X_t - \phi_2 B^2 X_t - \cdots - \phi_p B^p X_t &= Z_t + \theta_1 B Z_t + \theta_2 B^2 Z_t + \cdots \theta_q B^q Z_t \\ (1 - \phi_1 B - \phi_2 B^2 - \cdots - \phi_p B^p) X_t &= (1 + \theta_1 B + \theta_2 B^2 + \cdots \theta_q B^q) Z_t \\ \phi(B) X_t &= \theta(B) Z_t \end{split}$$

ARMA 모형

ARMA 모형

 $X_{t} - \phi_{1}X_{t-1} - \phi_{2}X_{t-2} - \dots - \phi_{p}X_{t-p} = Z_{t} + \theta_{1}Z_{t-1} + \theta_{2}Z_{t-2} + \dots + \theta_{q}Z_{t-q}$

AR 모형의 특성방정식

MA 모형의 특성방정식

ARMA 특성방정식 —

$$\frac{X_t - \phi_1 B X_t - \phi_2 B^2 X_t - \dots - \phi_p B^p X_t}{X_t - \phi_1 B X_t - \phi_2 B^2 X_t - \dots - \phi_p B^p X_t} = Z_t + \theta_1 B Z_t + \theta_2 B^2 Z_t + \dots + \theta_q B^q Z_t$$

$$\frac{(1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p) X_t}{(1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q) Z_t}$$

$$\phi(B)X_t = \theta(B)Z_t$$

ARMA 모형의 조건

AR & MA 모형의 조건 세 가지

1. 정상성 2. 인과성 3. 가역성

모두 만족해야 함

식별성

주어진 파라미터 조합에 대해 단 하나의 모형이 대응되는 특성

ARMA 모형 | 식별성

$$[X_t = Z_t]$$

$$(1-\phi B)=(1+\theta B)\Leftrightarrow \phi=-\theta$$
를 만족하는 ARMA (1,1) &

 $: WN(0, \sigma^2)$

정상성, 인과성, 가역성 세 조건만으로 모형 식별이 어려움

 $\rightarrow \phi + \theta \neq 0$ 즉, 식별성 조건 추가 필요

두 그래프 모두 절단되지 않고 지수적으로 감소한다는 한계점 존재

두 그래프 모두 절단되지 않고 지수적으로 감소한다는 한계점 존재

6

모형의 적합 절차

모형 적합 | ① 모형 식별

[1] 사용할 모형과 차수 결정

AR & MA: ACF와 PACF 그래프의 절단되는 특징

→ p와 q 차수까지 쉽게 결정 가능

VS

ARMA: ACF와 PACF 모두 지수적 감소

→ Information Criteria 사용 필요

모형 적합 | ① 모형 식별

[1] 사용할 모형과 차수 결정

AR & MA: ACF와 PACF 그래프의 절단되는 특징

→ p와 q 차수까지 쉽게 결정 가능

VS

ARMA: ACF와 PACF 모두 지수적 감소

→ Information Criteria 사용 필요

į

 $Information\ Criteria = \{Goodness\ of\ fit + model\ complexity\}$

가장 작은 IC 값을 가지는 모형을 선택

모형 적합 | ① 모형 식별

Information Criteria

AIC (Akaike Information Criteria)

$$2\ln L_n(\hat{\theta}) + 2(p+q+1)$$

AICC (AIC bias corrected)

$$2 \ln L_n(\hat{\theta}) + \frac{2(p+q+1)n}{n-(p+q+1)+1}$$

Bayesian Information Criterion

$$2\ln L_n(\hat{\theta}) + (p+q+1)\ln n$$

모형 적합 | ② 모수 추정

[2] 모수 추정

모수의 차수를 결정했다면, 모수 ϕ , θ , σ^2 를 추정해야 함

최대가능도추정법 (MLE)

관측된 시계열의 결합확률밀도함수인 모수의 가능도함수를 최대화하는 모수의 추정량을 구함

최소제곱법 (LSE)

오차의 제곱합이 가장 작게 되도록 하는 모수의 추정량을 구함

적률추정법 (MME/MoM) 모집단의 적률을 상용하는 표본의 적률로 대체한 후, 방정식을 풀어 모수의 추정량을 구함

모형 적합 | ③ 모형 진단

[3] 모형 진단

모형이 적합한지 진단. 모수에 대한 검정/잔차에 대한 검정

모수에 대한 검정

- 1) 모형의 조건을 만족하는지 확인
 - 정상성과 가역성 조건 만족 여부
 - 식별성 만족 여부
- 2) 모수의 유효성 확인
 - 모수≠ 0인지 확인

모형 적합 | ③ 모형 진단

잔차에 대한 검정

- 1) 추세, 계절성, 이상치 없는지 확인
- 2) WN $(0, \sigma^2)$ 을 따르는지 확인
 - 잔차에 대한 ACF, PACF 그래프
 - Ljung-Box test / McLeod-Ll test /
 Different sign test
- 3) 정규성을 만족하는지 확인
 - 잔차의 QQ plot
 - Jarque-Bera test

모형 적합 | ④ 예측

[4] 예측

과거의 모든 정보를 알고 있다고 가정하는 infinite한 방법과 알고 있는 자료를 사용해 예측하는 finite한 방법

실제로 주로 사용되는 방식이므로 이를 클린업에서 다룸

가지고 있는 데이터의 선형결합을 활용해 미래 예측

$$P_b X_{n+h} = a_0 * 1 + a_1 X_n + a_2 X_{n-1} + \dots + a_n X_1$$
 \rightarrow n개의 자료를 가지고 n + h 시점 예측

모형 적합 | ④ 예측

계수 $\{a_0, a_1, \cdots, a_n\}$ 는

MSPE(Mean Squared Prediction Error)를 최소화하는 방향으로 추정

$$MSPE = \mathbb{E}[X_{n+h} - P_n X_{n+h}]^2$$

= $\mathbb{E}[X_{n+h} - (a_0 * 1 + a_1 X_n + a_2 X_{n-1} + \dots + a_n X_1)]^2$

회귀분석 LSE와 동일한 계산 방식

가지고 있는 데이터의 **선형결합**을 활용해 미래 예측

$$P_b X_{n+h} = a_0 * 1 + a_1 X_n + a_2 X_{n-1} + \dots + a_n X_1$$

→ n개의 자료를 가지고 n + h 시점 예측

7

2주차 정리

정리 | 시계열 모형의 필요성

정상화 과정 이후 남아있는 오차가 WN/IID를 만족해야 함

오차가 WN/IID가 아닐 때, 이를 추정하기 위해 시계열 모형 필요

정리 | 선형과정 모형 [1] AR (자기회귀 모형)

자기회귀 모형 AR

$$AR(p): X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \dots + \phi_{p}X_{t-p} + Z_{t}$$

$$= \phi_{1}BX_{t} + \phi_{2}B^{2}X_{t} + \dots + \phi_{p}B^{p}X_{t-p} + Z_{t}$$

$$= \phi(B)X_{t}$$

 $|\phi_1| < 1$ 조건 만족해야 함 후향연산자를 이용해 나타낸 식인 경우, $\phi(B) = 0$ 의 근의 절댓값 > 1 만족해야 함

정리 | 선형과정 모형 [1] AR (자기회귀 모형)

☑ AR 모형의 조건

정상성(Stationarity)	시계열의 확률적 특성이 시점에 의존하지 않는 특성
인과성(Causality)	t 시점의 관측값이 과거시점의 오차항으로 설명되는 특성

☑ AR 모형의 ACF & PACF

ACF	지수적으로 감소되는 양상
PACF	p 이후에 절단되는 양상

정리 | 선형과정 모형 [2] MA (이동평균 모형)

이동평균 모형 MA

$$MA(q): X_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \dots + \theta_q Z_{t-q}$$

$$= Z_t + \theta_1 B Z_t + \theta_2 B^2 Z_t + \dots + \theta_q B^q Z_t$$

$$= \theta(B) Z_t$$

Ē

 $|\theta| < 1$ 조건 만족해야 함

후향연산자를 이용해 나타낸 식인 경우,

 $\theta(B) = 0$ 의 <mark>근의 절댓값 > 1</mark> 만족해야 함

정리 | 선형과정 모형 [2] MA (이동평균 모형)

☑ MA 모형의 조건

정상성(Stationarity)	시계열의 확률적 특성이 시점에 의존하지 않는 특성
인과성(Causality)	t 시점의 관측값이 과거시점의 오차항으로 설명되는 특성
가역성(Invertibility)	t 시점의 오차항이 과거시점의 관측값으로 설명되는 특성

☑ MA 모형의 ACF & PACF

ACF	q 이후로 절단되는 양상
PACF	0으로 수렴되는 양상

정리 | 선형과정 모형 [3] ARMA (AR+MA)

ARMA 모형의 정의

$$ARMA(p,q): \phi(B)X_t = \theta(B)Z_t$$

☑ ARMA 모형의 조건

정상성(Stationarity)	시계열의 확률적 특성이 시점에 의존하지 않는 특성
인과성(Causality)	t 시점의 관측값이 과거시점의 오차항으로 설명되는 특성
가역성(Invertibility)	t 시점의 오차항이 과거시점의 관측값으로 설명되는 특성
식별성(Identifiability)	$\phi + \theta \neq 0$

정리 | 선형과정 모형 [3] ARMA (AR+MA)

☑ ARMA 모형의 ACF & PACF

ACF	지수적으로 감소되는 양상
PACF	0으로 수렴하는 양상

p와 q 선정에 문제 발생 모형 식별을 위한 추가적인 방법 필요

정리 | 모형의 적합 절차

흐름 정리

시계열 자료 분석 흐름 정리

감사합니다

