

La derivada y sus aplicaciones (II)

Tema 2

La derivada y sus aplicaciones (II)

Extremos locales de funciones de dos variables

Sea f una función real de q variables reales.

DEFINICIÓN: El número real *f(a)* se llama **máximo relativo** de *f* (y el punto *a* se llama lugar donde se alcanza ese máximo relativo) si:

- El punto a esta en el interior del dominio *D* de la función *f*
- Existe algún entorno B_{δ} del punto a tal que: $f(p) \leq f(a)$ para todo punto p en B_{δ}

DEFINICIÓN: El número real *f(a)* se llama **mínimo relativo** de *f* (y el punto *a* se llama lugar donde se alcanza ese mínimo relativo) si:

- El punto a esta en el interior del dominio *D* de la función *f*
- Existe algún entorno B_{δ} del punto a tal que: $f(p) \ge f(a)$ para todo punto p en B_{δ}

EXTREMOS RELATIVOS: son los MÁXIMOS y MÍNIMOS RELATIVOS

f(a) y f(b) son máximos relativos, f(c) no es ni máximo ni mínimo relativo

(a) es mínimo relativo pero f(c) no, porque c no es interior a D.

DEFINICIÓN:

Punto crítico de f, es un punto a tal que:

- a está en el interior del dominio D de f
- f es diferenciable en a
- Jf(a) es nulo: las derivadas parciales de f en a son todas 0.

TEOREMA:

Si *f*(*a*) es un extremo relativo de *f* y si *f* es diferenciable en *a* entonces, *a* es un punto crítico de *f*.

En la figura a, b y c son puntos críticos.

- a y b son extremos relativos pero c no lo es.
- Los planos tangentes en los tres puntos son horizontales.
- c se llama "punto silla": es un punto crítico pero no es extremo relativo.

Si en *a* hay extremo relativo (máximo o mínimo) entonces, o bien *f* no es diferenciable en *a* o bien *a* es un punto crítico. (Dónde buscar máx. y mín.)

Si *a* es un punto crítico entonces, o bien es un extremo relativo o bien es un punto silla.

En funciones de dos variables, los puntos críticos pueden ser máximos, mínimos o punto de silla.

¿Cómo saber cuando es cada uno? Con el criterio de la segunda derivada.

Criterio de la segunda derivada

Si en el punto (a, b) tenemos que sus derivadas parciales son cero:

Entonces:

mínimo local si
$$G > 0$$
 y $f_{xx}(a,b) > 0$
máximo local si $G > 0$ y $f_{xx}(a,b) < 0$
punto de silla si $G < 0$

$$G = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$$

Ejemplo: Determine los valores máximo y mínimo locales y punto de ensilladura de la función

$$f(x) = xy - 2x - y$$

Calculamos las derivadas parciales

$$\frac{\partial f}{\partial x} = y - 2; \quad \frac{\partial f}{\partial y} = x - 1$$

Igualamos a cero y obtenemos y = 2; x = 1. Luego tenemos un punto crítico en (1,2).

Calculemos las derivadas parciales segundas

$$f_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = 0; f_{yy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0;$$
$$f_{xy} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = 1 = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = f_{yx}$$

Calculemos las derivadas parciales segundas

$$f_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = 0; f_{yy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0;$$
$$f_{xy} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = 1 = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = f_{yx}$$

Calculamos

$$G = f_{xx}f_{yy} - f_{xy}^{2} = -1 < 0$$

por lo tanto la función no presenta ni un máximo ni mínimo local el punto crítico (1,2), es un punto de ensilladura.

La derivada y sus aplicaciones (II)

- Extremos locales de funciones de dos variables
- Teorema de Rolle, Valor Medio y Cauchy

Teorema de Rolle. Interpretación geométrica

Si una función y = f(x) cumple que:

- Es continua en el intervalo cerrado [a, b].
- Es derivable en su interior (a, b).
- f(a) = f(b).

Entonces existe al menos un punto $c \in (a, b)$ tal que f '(c) = 0.

Geométricamente este teorema expresa que una función que cumpla las hipótesis anteriores va a tener, al menos, un punto (c, f(c)) en el que la tangente es horizontal.

Teorema de Rolle: Demostración

Si una función y = f(x) cumple que: Es continua en el intervalo cerrado [a, b]. Es derivable en su interior (a, b), y f(a) = f(b). Entonces existe al menos un punto $c \in (a, b)$ tal que f'(c) = 0.

Demostración:

- Si f es continua en [a,b] ⇒ f
 tiene un máximo absoluto M y un mínimo absoluto m en [a,b].
 ∀ x ∈ [a,b] m≤f(x)≤M.
- $\exists x_1 \in [a,b] \Rightarrow f(x_1) = M$. $\exists x_2 \in [a,b] \Rightarrow f(x_2) = m$.
- Si $m=M \Rightarrow \forall x \in [a,b]$ m=f(x)=M es decir, la función es constante, y eso implica que f'(x)=0.
- Si m < M y f(a) = f(b) implica solo uno de los puntos x_1 y x_2 , pueden coincidir con a o b y el otro corresponde al interior del intervalo (a,b). Si, por ejemplo, es si x_2 quien pertenece a (a,b) y $m = f(x_2)$ entones:
 - 1) $\forall x \in (a,b)$ $f(x_2) \leq f(x)$ y hay un mínimo relativo en x_2 .
 - 2) f es derivable por hipótesis.
- Si la derivada en los mínimos relativos, si existe, es cero, entonces de 1) y 2) se deduce que $f'(x_2)=0$, como queríamos demostrar.

EJEMPLO 1

• Estudiar si se verifica el **teorema de Rolle** en el intervalo [0, 3] de la función:

$$f(x) = \begin{cases} 2x & si \ 0 \le x \le 1 \\ -x + 3 & si \ 1 \le x \le 3 \end{cases}$$

• En primer lugar comprobamos que la función es continua en x = 1.

$$f(1) = 2$$
 $\lim_{x \to 1^{-}} 2x = 2$ $\lim_{x \to 1^{+}} (-x + 3) = 2$

• En segundo lugar comprobamos si la función es derivable en x = 1.

$$f'(x) = \begin{cases} 2 & si \ 0 < x \le 1 \\ -1 & si \ 1 < x < 3 \end{cases} \qquad f'(1^{-}) \neq f'(3^{+})$$

• Como las derivadas laterales no coinciden, la función no es derivable en el intervalo (0, 3) y por tanto no se cumple el teorema de Rolle.

EJEMPLO 2

Demostrar que la ecuación $2x - \cos x - \sin x = 0$ tiene exactamente una solución.

Sea $f(x) = 2x - \cos x - \sin x$. Tenemos que demostrar que la función f toma el valor θ exactamente una vez.

Vemos claramente que la función f es continua y derivable.

Como f(0) = -1 y $f(1) = 2 - \cos 1 - \sin 1 > 0$, la función f toma el valor 0 en el intervalo (0,1) por el Teorema de los Valores Intermedios.

Si la función f toma el valor 0 dos veces o más, la ecuación f'(x) = 0 tiene también soluciones por el Teorema de Rolle.

$$f'(x) = 0 \Leftrightarrow 2 + \operatorname{sen} x - \cos x = 0$$

La ecuación no tiene ninguna solución pues 2+sen x-cos x > 0 para todo x. Por lo tanto, la ecuación original tiene solo una solución.

Teorema del valor medio o de Lagrange

Si una función y = f(x) cumple que:

- Es continua [a, b].
- Es derivable (a, b).

Entonces existe al menos un punto $c \in (a, b)$ tal que: $f(b) - f(a) = (b - a) \cdot f'(c)$. Es decir: $f'(c) = \frac{f(b) - f(a)}{b - a}$

- Geométricamente: si una función que cumple las hipótesis anteriores va a ha tener al menos un punto (c, f(c)) en el que la tangente es paralela a la secante que pasa por los puntos (a, f(a)) y (b, f(b)).
- Analíticamente: si una función cumple las hipótesis anteriores, en algún punto c ∈(a,b) la razón incremental o tasa de variación media (f(b) f(a)) / (b a), es igual a la derivada en dicho punto.

Pendiente de AB:
$$\frac{f(b) - f(a)}{b - a}$$

$$f'(c) = f'(c') = \frac{f(b) - f(a)}{b - a}$$

c y c' son los puntos que verifican el teorema

Teorema del valor medio o de Lagrange: Demostración

Si una función y = f(x) cumple que: Es continua [a, b], y es derivable (a, b). Entonces existe al menos un punto $c \in (a, b)$ tal que $f(b) - f(a) = (b - a) \cdot f'(c)$.

- Definamos una función auxiliar $g(x) = f(x) + h \cdot x$, $h \in \mathbb{R}$.
- g es continua en [a,b] por ser suma de funciones continuas.
 g es derivable en (a,b) por ser suma de funciones derivables.
- Queremos que g(a) sea igual a g(b) para aplicar el teorema de Rolle $f(a) + h \cdot a = f(b) + h \cdot b \implies f(a) f(b) = h \cdot b h \cdot a = h \cdot (b a)$
- $h = \frac{f(a) f(b)}{b a}$ => por el teorema de Rolle, existe $c \in (a,b)$ tal g'(c) = 0
- Por definición de g(x): g'(x) = f'(x) + h, g'(c) = f'(c) + h = 0 luego f'(c) = -hy por tanto:

$$f'(c) = -h = \frac{f(b) - f(a)}{b - a}$$

• EJEMPLO 1

- ¿Se puede aplicar el **teorema de Lagrange** a $f(x) = x^3$ en [-1, 2]?
- f(x) es continua en [−1, 2] y derivable en (−1, 2) por tanto se puede aplicar el **teorema del valor medio**:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$\frac{8-(-1)}{2-(-1)} = f'(c)$$
 $f'(c) = 3$ $3c^2 = 3$

$$C = 1 \in (-1, 2) \qquad C = -1 \notin (-1, 2)$$

Y la solución válida es c=1

EJEMPLO 2

- ¿Se puede aplicar el **teorema de Lagrange** a $f(x) = x x^3$ en [1, 3]?
- f(x) es continua en [1, 3] y derivable en (1, 3) por tanto se puede aplicar el **teorema del valor medio**:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

•
$$1 - 3c^2 = -12 \rightarrow 13 = 3c^2 \rightarrow c^2 = 13/3 \rightarrow c = \pm 2,08$$

Y la solución válida es c = 2'08

Teorema de Cauchy o del valor medio generalizado

Si f y g son funciones continuas en [a, b] y derivables en (a, b), existe un punto $c \in (a, b)$ tal que:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)} \text{ si } g(b) \neq g(a) \text{ y } g'(c) \neq 0$$

Demostración: Sea h(x) = f(x) + kg(x)

- 1. h es continua en [a,b] por ser suma de funciones continuas en [a,b].
- 2. h es derivable en (a,b) por ser suma de funciones derivables en (a,b).
- 3. Queremos que h(a)=h(b) para aplicar el teorema de Rolle.

$$f(a)+kg(a)=f(b)+kg(b), \quad k(g(a)-g(b))=f(b)-f(a) \quad k=\frac{f(b)-f(a)}{g(a)-g(b)}$$

De 1), 2) y 3) por el teorema de Rolle $\exists c \in (a,b)$ tal que h'(c) = 0.

•
$$h'(x)=f'(x)+kg'(x)$$
 $h'(c)=f'(c)+kg'(c)=0$ $f'(c)/g'(c)=-k$

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

EJEMPLO 1

- Comprobar si se cumplen las hipótesis del teorema de Cauchy para las funciones:
- $f(x) = x^3$
- g(x) = x + 3, en el intervalo [0, 2].
- Las funciones f(x) y g(x) son continuas en el intervalo [0, 2] y derivables en (0, 2), por ser funciones polinómicas.
- Y además $g(0) \neq g(2)$.

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)} \qquad g(b)-g(a) \neq 0$$
$$g'(c) \neq 0$$

- 8-0 $3c^2$ $----- \Rightarrow 4 = 3c^2 \Rightarrow c^2 = 4/3 \Rightarrow c = 2/\sqrt{3} = 1,1547$
- Se puede aplicar el **teorema de Cauchy**, siendo c = 1,1547

La derivada y sus aplicaciones (II)

- Extremos locales de funciones de dos variables
- Teorema de Rolle, Valor Medio y Cauchy
- Regla de L'Hôpital

Sean f(x) y $g(x)\neq 0$ derivables en u con $g'(u)\neq 0$, para u igual a a, 0, $+\infty$ ó $-\infty$, si f(u)=g(u)=0 entonces

$$\lim_{x \to u} \frac{f(x)}{g(x)} = \lim_{x \to u} \frac{f'(x)}{g'(x)}$$

Demostración:

$$\lim_{x \to u} \frac{f(x) - f(u)}{g(x) - g(u)} = \lim_{x \to u} \frac{\frac{f(x) - f(u)}{x - u}}{\frac{g(x) - g(u)}{x - u}} = \frac{\lim_{x \to u} \frac{f(x) - f(u)}{x - u}}{\lim_{x \to u} \frac{g(x) - g(u)}{x - u}}$$

Si
$$u \in (-\infty, +\infty)$$
: $\frac{f'(u)}{g'(u)}$ Si $u = \pm \infty$: $\lim_{x \to u} \frac{f'(x)}{g'(x)}$

Indeterminaciones *0/0*: $\lim_{x \to u} \frac{f(x)}{g(x)} = \frac{0}{0} = \lim_{x \to u} \frac{f'(x)}{g'(x)}$

Indeterminaciones ∞/∞ : $\lim_{x\to u} \frac{f(x)}{g(x)} = \frac{\infty}{\infty} = \lim_{x\to u} \frac{f'(x)}{g'(x)}$

$$\frac{\infty}{\infty} = \lim_{x \to u} \frac{f(x)}{g(x)} = \lim_{x \to u} \frac{1}{g(x)} \cdot \lim_{x \to u} \frac{f(x)}{1} = \frac{1}{\infty} \cdot \frac{\infty}{1} = 0 \cdot \frac{1}{0} = \frac{0}{0}$$

Indeterminaciones $0 \cdot \infty$ $\phi \times 0$:

$$\lim_{x \to u} f(x)g(x) = \lim_{x \to u} \frac{f(x)}{1/g(x)} \quad \text{\'o} \quad \lim_{x \to u} \frac{g(x)}{1/f(x)}$$

Ya que:

$$\lim_{x \to u} f(x)g(x) = 0 \cdot \infty = \lim_{x \to u} \frac{f(x)}{1/g(x)} = \frac{0}{0} = \lim_{x \to u} \frac{g(x)}{1/f(x)} = \frac{\infty}{\infty}$$

$$\lim_{x \to u} f(x)g(x) = \infty \cdot 0 = \lim_{x \to u} \frac{f(x)}{1/g(x)} = \frac{\infty}{\infty} = \lim_{x \to u} \frac{g(x)}{1/f(x)} = \frac{0}{0}$$

Indeterminaciones 1^{∞} , ∞^0 ó 0^0 :

$$A = \lim_{x \to u} \left[f(x)^{g(x)} \right]$$

$$\ln A = \ln \left(\lim_{x \to u} \left[f(x)^{g(x)} \right] \right)$$

$$\ln A = \lim_{x \to u} \left(\ln \left[f(x)^{g(x)} \right] \right) = \lim_{x \to u} \left(g(x) \ln \left[f(x) \right] \right) = 0 \cdot \infty = M$$

$$\ln A = M$$

$$A = e^{M}$$

$$\lim_{x \to 0} \frac{2 \operatorname{sen} x}{x}$$

$$\lim_{x \to 0} \frac{2 \operatorname{sen} x}{x} = \frac{0}{0} \Longrightarrow \lim_{x \to 0} \frac{2 \operatorname{cos} x}{1} = 2$$

$$\lim_{x \to 0} \left[\operatorname{sen} \frac{x}{2} \operatorname{ctg} x \right]$$

$$\lim_{x \to 0} \left[\operatorname{sen} \frac{x}{2} \operatorname{ctg} x \right] = 0 \cdot \infty \Rightarrow \lim_{x \to 0} \frac{\operatorname{sen} \frac{x}{2}}{\tan x} = \frac{0}{0}$$

$$\lim_{x \to 0} \frac{\sin \frac{x}{2}}{\tan x} = \frac{0}{0} \Rightarrow \lim_{x \to 0} \frac{\frac{1}{2} \cos \frac{x}{2}}{\frac{1}{\cos^2 x}} = \frac{1}{2}$$

$$\lim_{x \to 1} x^{\frac{1}{x-1}}$$

$$\lim_{x \to 1} x^{\frac{1}{x-1}} = 1^{\infty} = A \Longrightarrow \ln \left(\lim_{x \to 1} x^{\frac{1}{x-1}} \right) = \ln A$$

$$\ln A = \lim_{x \to 1} \ln \left(x^{\frac{1}{x-1}} \right) = \lim_{x \to 1} \frac{\ln x}{x-1} = \frac{0}{0} \Rightarrow \lim_{x \to 1} \frac{1/x}{1} = \lim_{x \to 1} x = 1$$

$$\ln A = 1 \Rightarrow A = e$$

Ejemplos (I)

$$1.-\lim_{\substack{x \to 0}} \frac{e^{x}-x-1}{x(e^{x}-1)} = \lim_{\substack{x \to 0}} \frac{e^{x}-1}{e^{x}-1+xe^{x}} = \lim_{\substack{x \to 0}} \frac{e^{x}}{2e^{x}+xe^{x}} = \frac{1}{2}$$

$$1.-\lim_{\substack{x \to 0}} \frac{e^{x}-x-1}{x(e^{x}-1)} = \lim_{\substack{x \to 0}} \frac{e^{x}-1}{2e^{x}+xe^{x}} = \frac{1}{2}$$

$$1.-\lim_{\substack{x \to 0}} \frac{e^{x}-x-1}{x(e^{x}-1)} = \lim_{\substack{x \to 0}} \frac{e^{x}-1}{2e^{x}+xe^{x}} = \frac{1}{2}$$

$$1.-\lim_{\substack{x \to 0}} \frac{e^{x}-x-1}{x(e^{x}-1)} = \lim_{\substack{x \to 0}} \frac{e^{x}-1}{2e^{x}+xe^{x}} = \frac{1}{2}$$

$$1.-\lim_{\substack{x \to 0}} \frac{e^{x}-x-1}{x(e^{x}-1)} = \lim_{\substack{x \to 0}} \frac{e^{x}-1}{x(e^{x}-1)} = \lim_{\substack{x \to 0}} \frac{e^{x}-1}{x(e$$

Indet
$$\frac{x}{0}$$
 Indet $\frac{x}{0}$ Indet $\frac{x}{0$

La derivada y sus aplicaciones (II)

- Extremos locales de funciones de dos variables
- Teorema de Rolle y del Valor Medio
- Regla de L'Hôpital
- Análisis de gráficas

Análisis de la gráfica de una función

• Intersección con los ejes x e y:

$$x=0$$
 $y=0$

- Simetría:
 - Par (o respecto al eje y). f(-x)=f(x)

$$f(-x) = (-x)^4 - 3(-x)^2 + 4 = x^4 - 3x^2 + 4 = f(x)$$

Impar (o respecto al origen).f(-x)=-f(x)

$$f(-x) = (-x)^5 - 3(-x)^3 = -x^5 + 3x^3 = -f(x)$$

Análisis de la gráfica de una función

- Dominio
- Continuidad
 - Concepto de uniformemente continuo
- Asíntotas verticales
 - Si para un límite finito tiende a infinito
- Derivabilidad
- Extremos relativos
 - Ínfimo/Supremo=máx/mín(cotas infer/super)
- Concavidad
- Puntos de inflexión
- Asíntotas horizontales (Límites al infinito)
- Límites infinitos al infinito

Estrategia para analizar la gráfica

- 1. Determinar el dominio y rango de la función.
- 2. Determinar las intersecciones, asíntotas y simetría de la gráfica.
- 3. Localizar los valores de x para los cuales f'(x) y f''(x) son cero o no existen.
- 4. Usar los resultados para determinar extremos relativos y puntos de inflexión.

Ejemplo

$$f(x) = \frac{2(x^2 - 9)}{x^2 - 4}$$

Dominio Simetría Intersección en x Intersección en y Asíntotas verticales Asíntotas horizontal Primera derivada Segunda derivada Puntos críticos Máximos relativos Mínimos relativos Puntos de inflexión Intervalos de prueba

Ejemplo

$$f(x) = \frac{2(x^2 - 9)}{x^2 - 4}$$

Dominio: La recta real salvo discontinuidad en 2 y -2

Simetría: Respecto al eje y (Par)

Intersección en x: (-3,0) y (3,0)

Intersección en y: (0,9/2)

Asíntotas verticales: x=-2 y x=2

Asíntotas horizontal: *y*=2

Primera derivada

Segunda derivada

Puntos críticos

Máximos relativos

Mínimos relativos

Puntos de inflexión

Intervalos de prueba

Ejemplo

$$f(x) = \frac{2(x^2 - 9)}{x^2 - 4}$$

Dominio: La recta real salvo discontinuidad en 2 y -2

Simetría: Respecto al eje y (Par)

Intersección en x: (-3,0) y (3,0)

Intersección en y: (0,9/2)

Asíntotas verticales: *x*=-2 y *x*=2

Asíntotas horizontal: y=2

Primera derivada

Segunda derivada

Puntos críticos

Máximos relativos

Mínimos relativos

Puntos de inflexión

Intervalos de prueba

$$f'(x) = \frac{20x}{(x^2 - 4)^2}$$

$$f''(x) = \frac{-20(3x^2 + 4)}{(x^2 - 4)^3}$$

Ejemplo

$$f(x) = \frac{2(x^2 - 9)}{x^2 - 4}$$

Dominio: La recta real salvo discontinuidad en 2 y -2

Simetría: Respecto al eje y (Par)

Intersección en x: (-3,0) y (3,0)

Intersección en y: (0,9/2)

Asíntotas verticales: *x*=-2 y *x*=2

Asíntotas horizontal: y=2

Primera derivada

Segunda derivada

Puntos críticos: x=-2, x=0 y x=2

Máximos relativos: Ninguno

Mínimos relativos: *x*=0

Puntos de inflexión: Ninguno

Intervalos de prueba: $(-\infty, -2), (-2, 0), (0, 2), (2, \infty)$

$$f'(x) = \frac{20x}{(x^2 - 4)^2}$$

$$f''(x) = \frac{-20(3x^2 + 4)}{(x^2 - 4)^3}$$

Ejemplo

$$f(x) = \frac{2(x^2 - 9)}{x^2 - 4}$$

	f(x)	f'(x)	f''(x)	Características
$-\infty < x < -2$		-	-	Dec., cóncava hacia abajo
x = -2	Indef.	Indef.	Indef.	Asíntota vertical
-2 < x < 0		-	+	Dec., cóncava hacia arriba
x = 0	$\frac{9}{2}$	0	+	Mínimo relativo
0 < x < 2		+	+	Cre., cóncava hacia arriba
x = 2	Indef.	Indef.	Indef.	Asíntota vertical
$2 < x < \infty$		+	-	Cre., cóncava hacia abajo

La derivada y sus aplicaciones (II)

- Extremos locales de funciones de dos variables
- Teorema de Rolle y del Valor Medio
- Regla de L'Hôpital
- Análisis de gráficas
- Problemas de optimización (máximos y mínimos)

Problemas de optimización

La resolución y cálculo del problema implica la determinación de los valores Máximo y Mínimo.

Estrategia para resolución

- 1. Identificar todas las cantidades dadas (datos) y las que se van a determinar (variables). Elaborar dibujo.
- 2. Escribir la ecuación a optimizar.
- 3. Reducir la ecuación a una sola variable independiente.
- 4. Determinar el dominio admisible de la ecuación (intervalos de valores que tienen sentido).
- 5. Determinar el valor máximo o mínimo (aplicar las técnicas de cálculo vistas).
- 6. Interpretar los resultados y rechazar los absurdos.

Determinar la altura *h* y radio *r* del cilindro con mayor volumen posible circunscrito en una esfera de radio *a*:

Relación entre la altura *h*, radio *r* de la base del cilindro y el radio *a* de la esfera al estar circunscrito el cilindro a la esfera:

$$r^2 = a^2 - \left(\frac{h}{2}\right)^2$$

Volumen del cilindro:

$$V = \pi \cdot r^2 h$$

$$V(h) = \pi \cdot \left(a^2 - \frac{h^2}{4}\right)h$$

Problema 1

La función *V(h)* tiene sentido solo de *0* a *2a*:

$$V(h) = \pi \cdot \left(a^2 - \frac{h^2}{4}\right)h \qquad h \in [0, 2a]$$

$$V(h) = \pi \cdot \left(9 - \frac{h^2}{4}\right)h$$

$$h \in [0,6]$$

Localización de los puntos críticos:

$$V(h) = \pi \cdot \left(a^2 - \frac{h^2}{4}\right)h \quad h \in [0, 2a]$$

$$V'(h) = \pi \left(a^2 - \frac{3}{4}h^2\right) \qquad \left(a^2 - \frac{3}{4}h^2\right) = 0 \Rightarrow h = \frac{2a}{\sqrt{3}}$$

$$h = 0$$

$$h = \frac{2a}{\sqrt{3}}$$

$$h = 2a$$

$$V(h) = 0$$

$$V(h) = \frac{4}{3\sqrt{3}} a\pi$$

$$V(h) = 0$$

Problema 1

Sustituimos el h que proporciona el V(h) máximo para obtener r:

$$r^{2} = a^{2} - \frac{h^{2}}{4} = a^{2} - \frac{4a^{2}}{4 \cdot 3} = \frac{3a^{2} - a^{2}}{3}$$

El radio del cilindro es:
$$r = \sqrt{\frac{2}{3}}a$$

Su altura es:
$$h = \frac{2a}{\sqrt{3}}$$

Y su volumen:
$$V = \frac{4}{3\sqrt{3}}a\pi$$

Se desea construir un rectángulo que tenga un perímetro de 80 cm. ¿Cuáles deben ser su largo y ancho de manera que el área sea máxima?

Se desea construir un rectángulo que tenga un perímetro de 80 cm. ¿Cuáles deben ser su largo y ancho de manera que el área sea máxima?

- Sea a el ancho
- Sea / el largo
- Y sea A el área
- Tenemos que 2a+2l=80, de donde a=40-l
- La función del área será A(I)=al=(40-I)I

La función *A(I)* tiene sentido solo de *0* a *40*:

$$A(l) = 40l - l^2$$
 $l \in [0,40]$

Buscamos su máximo:

$$A'(l) = 40 - 2l = 0$$

$$l = 20$$

$$A(20) = 800 - 400$$

$$a = 40 - 20 = 20$$

Problema 3

Hallar dos números tales que su suma sea 24 y su producto sea el mayor posible.

Hallar dos números tales que su suma sea 24 y su producto sea el mayor posible.

Resolución:

Sean x e y los dos números pedidos.

Ecuación Principal: Producto: P = x.y (dos incógnitas) Ecuación Auxiliar : Suma: 24 = x + y

Despejamos "y" de la E. Auxiliar: y = 24 - xSustituimos su valor en la E. Principal: P = x(24-x)

O sea $P = 24x - x^2$, derivamos e igualamos a cero P' = 24 - 2x = 0; y resolvemos: $24 = 2x \rightarrow x = 12 \rightarrow$ Como $y = 24 - x = 24 - 12 = 12 \rightarrow x = y = 12$ es la solución.

Problema 4

Hallar las dimensiones que debe tener un rectángulo inscrito en una circunferencia de 5 cm de radio para que el área del mismo sea la mayor posible.

Problema 4

Hallar las dimensiones que debe tener un rectángulo inscrito en una circunferencia de 5 cm de radio para que el área del mismo sea la mayor posible.

Resolución:

Rectángulos inscritos en una determinada circunferencia hay infinitos, pero sólo uno de ellos tendrá un área mayor que los demás.

Ecuación Principal: Area \rightarrow A = a.b

(hay dos incógnitas, a y b) Ecuación Auxiliar :

$$10^2 = a^2 + b^2$$

por Pitágoras.

Continuación

Despejamos "a" de la E. Auxiliar: $a = \sqrt{(100 - b^2)}$

Sustituimos su valor en la E. Principal : $A = b \sqrt{(100 - b^2)}$

Introducimos b dentro de la raíz para facilitar la derivada:

$$A = \sqrt{(100b^2 - b^4)} = (100b^2 - b^4)^{1/2}$$
 derivamos e igualamos a cero

A' =
$$(1/2)$$
 ($100b^2 - b^4$)^{1/2 - 1} ($200b - 4b^3$) = 0; o sea:

$$(200b - 4b^3) / 2 (100b^2 - b^4)^{1/2} = 0$$

Problema 5

Se decide construir una caja que tiene la forma de un prisma rectangular con un volumen de 1000 centímetros cúbicos. Encuentra las dimensiones x, y, z de la caja de modo que la superficie total de las 6 caras de la caja sea mínima.

Solución:

El área total de las seis caras es A = 2xy + 2yz + 2zx y el volumen V = xyz = 1000

Despejando z de V y sustituyendo en A obtenemos

$$A(x, y) = 2xy + 2y(\frac{1000}{xy}) + 2x(\frac{1000}{xy}) = 2xy + \frac{2000}{x} + \frac{2000}{y}$$

Calculamos las derivadas parciales e igualamos a cero

$$f_x = 2y - \frac{2000}{x^2} = 0$$
; $f_y = 2x - \frac{2000}{y^2} = 0$

Resolviendo las ecuaciones

$$2yx^2 = 2000$$
; $2xy^2 = 2000 \rightarrow x = 10 \ e \ y = 10$

Solución:

Calculamos las derivadas segundas

$$f_{xx}(x,y) = \frac{4000}{x^3}$$
; $f_{yy}(x,y) = \frac{4000}{y^3}$; $f_{xy}(x,y) = 2 = f_{yx}(x,y)$

Calculando G

$$G = f_{xx}(10,10) f_{yy}(10,10) - (f_{yx}(10,10))^2 = 4 * 4 - 2 = 14$$

Tenemos G > 0; $f_{xx}(10,10) > 0$ luego el punto es un mínimo.