Python Defect Predictor

Demo – 29 Oct 2021

Agenda

- Problem Statement
- Planning
- Python Predictor
 - Wine quality predictor using logistical regression (Hrishikesh/Sai).
 - Wafer defect predictor using image classification (Vibhav).
- Conclusion/Reflections

Problem Statement

Defect prediction which can differentiate between levels of defects with an accuracy indicator.

Planning

Wine Quality Predictor using Logistical regression

Aim: Predict the quality of white wine

https://www.kaggle.com/piyushagni5/white-wine-quality

Wine Quality Predictor using Logistical Regression

ML Algorithm

Wine Quality Predictor using Logistical Regression

DEMO

Wine Quality Predictor using Logistical Regression

Cost function and Confusion Matrix

Wafer defect predictor using image classification

Aim: Identify the defect on the wafer map

Wafer Map Datasets

- Obtained through Electrical Tests
- 38000 Images in the dataset
- <u>Training Images</u> Defect data of mixed type wafer map
 - 0: Blank spot , 1: Electrical test passed, 2: Test fail
 - Data shape 52x52
- <u>Training Labels</u> Mixed-type wafer map defect label
 - 8 dimensions (corresponding 8 single type defects)
- https://www.kaggle.com/co1d7era/mixedtype-wafer-defect-datasets

Wafer defect predictor using image classification

Wafer Map Defects

• https://www.kaggle.com/co1d7era/mixedtype-wafer-defect-datasets

Methodology

Wafer defect predictor using image classification

DEMO

Results

- Training Accuracy 70%
- Testing Accuracy 66%

Future Work

- Wafer Defect Detector
- Increase Accuracy
- Classifiers on Mobile App
- Model Size v/s Accuracy

Thank You