# A Differentiable POGLM with Forward-Backward Message Passing

Chengrui Li, Weihan Li, Yule Wang, Anqi Wu @ GaTech CSE



#### Contents

- 1. Partially observable generalized linear model (POGLM)
- 2. Variational inference (VI)
  - Inference methods
  - Sampling schemes
- 3. Experiments



## 1 Partially observable generalized linear model (POGLM)



#### Introduction

- The partially observable generalized linear model (POGLM) is a powerful tool for understanding neural connectivity under the assumption of existing hidden neurons.
- POGLM itself is a difficult problem.
- Two main issues and our contributions:
  - The gradient estimator used in variational inference (VI).
  - The sampling scheme of the variational model.
- Comprehensive experiments on one synthetic and two real-world datasets.



### **POGLM**

• V visible neurons and H = N - V hidden neurons.



visible/hidden spike counts 
$$\begin{bmatrix} \boldsymbol{x}_t \\ \boldsymbol{z}_t \end{bmatrix} \sim \operatorname{Pois} \begin{pmatrix} \begin{bmatrix} \boldsymbol{f}_t \\ \boldsymbol{g}_t \end{bmatrix} \end{pmatrix}$$
 visible/hidden firing rates

$$\begin{bmatrix} \boldsymbol{f}_t \\ \boldsymbol{g}_t \end{bmatrix} = \sigma \left( \begin{bmatrix} \boldsymbol{b}_V \\ \boldsymbol{b}_H \end{bmatrix} + \begin{bmatrix} \boldsymbol{W}_{V \leftarrow V} & \boldsymbol{W}_{V \leftarrow H} \\ \boldsymbol{W}_{H \leftarrow V} & \boldsymbol{W}_{H \leftarrow H} \end{bmatrix} \left( \sum_{l=1}^{L} \psi_l \begin{bmatrix} \boldsymbol{x}_{t-l} \\ \boldsymbol{z}_{t-l} \end{bmatrix} \right) \right)$$
bias weight convolved history

- Observed variable: visible spike train  $X = [x_1, ..., x_T]^T \in \mathbb{N}^{T \times V}$ .
- Latent variable: hidden spike train  $\mathbf{Z} = [\mathbf{z}_1, ..., \mathbf{z}_T]^{\mathrm{T}} \in \mathbb{N}^{T \times H}$ .
- Generative parameter set:  $\theta = \{ \boldsymbol{b} \in \mathbb{R}^{V+H}, \boldsymbol{W} \in \mathbb{R}^{(V+H)\times (V+H)} \}$ .



## 2 Variational inference (VI)



## Variational inference (VI)

- Variational model  $q(\mathbf{Z}|\mathbf{X};\phi)$  parameterized by  $\phi$ .
- Inference methods:  $z_t \sim \text{Pois}(g_t)$ .
- Sampling schemes:  $g_t$  = function(X;  $\phi$ ).
- Evidence lower bound:

$$ELBO(X; \theta, \phi) = \mathbb{E}_q[\ln p(X, Z; \theta) - \ln q(Z|X; \phi)]$$



## Inference methods: Gradient estimators

|                                                                                    | score function                                                                                                                                                        | pathwise                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| distribution                                                                       | any distribution                                                                                                                                                      | continuous distribution with reparameterization trick $\mathbf{Z} \mathbf{X}; \phi = r(\boldsymbol{\epsilon} \mathbf{X}; \phi)$                                                                                                       |
| samples                                                                            | $\left\{\mathbf{Z}^{(k)}\right\}_{k=1}^{K} \sim q(\mathbf{Z} \mathbf{X};\phi)$                                                                                        | $\left\{\boldsymbol{\epsilon}^{(k)}\right\}_{k=1}^K \sim R(\boldsymbol{\epsilon})$                                                                                                                                                    |
| $\frac{\partial \mathrm{ELBO}(\boldsymbol{X};\theta,\phi)}{\partial \phi} \approx$ | $\frac{\partial}{\partial \phi} \frac{-1}{2K} \sum_{k=1}^{K} \left[ \ln p(\mathbf{X}, \mathbf{Z}^{(k)}; \theta) - \ln q(\mathbf{Z}^{(k)}   \mathbf{X}; \phi) \right]$ | $\frac{\partial}{\partial \phi} \frac{1}{K} \sum_{k=1}^{K} \left[ \ln p(\mathbf{X}, r(\boldsymbol{\epsilon}^{(k)}   \mathbf{X}; \phi); \theta) - \ln q(r(\boldsymbol{\epsilon}^{(k)}   \mathbf{X}; \phi)   \mathbf{X}; \phi) \right]$ |



## Inference methods: Relaxation

Poisson truncate at an Pois
$$(g)$$
 upperbound  $M$  Categorical reparameterization approximation  $GS(\pi(g); \tau)$ 

Truncation:

$$\pi(g) = \left(1 - \sum_{m=1}^{M-1} \frac{g^m e^g}{m!}, \frac{g^1 e^g}{1!}, \dots, \frac{g^{M-1} e^g}{(M-1)!}\right)$$

Gumbel-Softmax soft spike:

$$\tilde{\mathbf{z}}_{t,h} = (\tilde{z}_{t,h,0}, \dots, \tilde{z}_{t,h,M-1}) \sim GS(\boldsymbol{\pi}(g_{t,h}); \tau)$$

• Equivalent soft spike count:

$$z_{t,h} = \sum_{m=0}^{M-1} m \cdot \tilde{z}_{t,h,m}$$



### Inference methods: Candidate distributions

• Replace the distribution  $\mathbb{P}[z;g]$  in the generative and variational model with the following distributions governed by  $\mathbb{E}[z]=g$ .



| distribution                                           | can pathwise |
|--------------------------------------------------------|--------------|
| Pois(g)                                                | X            |
| $Cat({m{\pi}}(g))$                                     | X            |
| $GS(\boldsymbol{\pi}(g); \tau)$                        | <b>✓</b>     |
| $\operatorname{Exp}\left(\frac{1}{g}\right)$           | <b>✓</b>     |
| $\operatorname{Ray}\left(\sqrt{\frac{2}{\pi}}g\right)$ | <b>✓</b>     |
| $HN(\sqrt{\frac{\pi}{2}}g)$                            | <b>'</b>     |

## Sampling schemes



- Three message passing designs where c mimicking the bias b, and A mimicking the weight W.
- Forward-self (FS)

• 
$$\boldsymbol{g}_t = \sigma \left( \boldsymbol{c}_H + \boldsymbol{A}_{H \leftarrow V} \left( \sum_{l=1}^L \psi_l \boldsymbol{x}_{t-l} \right) + \boldsymbol{A}_{H \leftarrow H} \left( \sum_{l=1}^L \psi_l \boldsymbol{z}_{t-l} \right) \right)$$

- $\phi = \{c_H \in \mathbb{R}^H, A_{H \leftarrow V} \in \mathbb{R}^{H \times V}, A_{H \leftarrow H} \in \mathbb{R}^{H \times H}\}$
- Forward (F)
  - $\boldsymbol{g}_t = \sigma \left( \boldsymbol{c}_H + \boldsymbol{A}_{H \leftarrow V} \left( \sum_{l=1}^L \psi_l \boldsymbol{x}_{t-l} \right) \right)$
  - $\phi = \{c_H \in \mathbb{R}^H, A_{H \leftarrow V} \in \mathbb{R}^{H \times V}\}$
- Forward-backward (FB)
  - $\boldsymbol{g}_t = \sigma \left( \boldsymbol{c}_H + \boldsymbol{A}_{H \leftarrow V} \left( \sum_{l=1}^L \psi_l \boldsymbol{x}_{t-l} \right) + \boldsymbol{A}_{V \leftarrow H} \left( \sum_{l=1}^L \psi_l \boldsymbol{x}_{t+l} \right) \right)$
  - $\phi = \{ \boldsymbol{c}_H \in \mathbb{R}^H, \boldsymbol{A}_{H \leftarrow V} \in \mathbb{R}^{H \times V}, \boldsymbol{A}_{V \leftarrow H} \in \mathbb{R}^{V \times H} \}$



## 3 Experiments



#### Method combinations

- 7 inference methods
  - Poisson (Pois)
  - Categorical (Cat)
  - Gumbel-Softmax-score (GS-s)
  - Gumbel-Softmax-pathwise (GS-p)
  - Exponential (Exp)
  - Rayleigh (Ray)
  - Half-normal (HN)

- 3 variational sampling schemes
  - Forward (F)
  - Forward-self (FS)
  - Forward-backward (FB)



## Synthetic

- 3-visible-2-hidden.
- High likelihood and low weight error for differentiable inference methods (GS-pathwise, Exp, Ray, HN) with FB sampling schemes.
- Fast runtime for forward (F) and forward-backward (FB).



## Synthetic

• Better convergence for differentiable inference methods.





## Synthetic

• Differentiable inference methods × FB have better parameter estimation, especially in the hidden to visible block.



## Retinal ganglion neurons (Pillow & Scott, 2012)

- Neuron 1-16: OFF cell. Neuron 17-27: ON cell.
- 20 minutes of a visual task on a mouse.
- Assuming  $H \in \{1,2,3\}$  hidden neurons.



Figure 5. The test log-likelihood (LL) of different method combinations under  $H \in \{1, 2, 3\}$  hidden neurons. The dashed black line represents the test LL of the fully observed GLM as the baseline.

## Retinal ganglion neurons (Pillow & Scott, 2012)

- The learned weight matrix.
- The learned one hidden representative from Exp × FB serves as a negative feed back regulating unit.



## Primary visual cortex (cncrs: PVC-5)

- Primary visual cortex (V1) recordings from a macaque monkey over a 15-minute duration without presenting any stimuli.
- Only 3 visible neurons
- Assuming  $H \in \{1, ..., 9\}$  hidden neurons. Containing cases where  $H \gg V$ .



Figure 7. The curves of the test log-likelihood (LL) v.s. the number of hidden neurons H, for different method combinations.

## Summary

- We proposes a differentiable version of the partially observable generalized linear model (POGLM), in which the pathwise gradient estimator becomes applicable when doing variational inference (VI).
- The new forward-backward message passing sampling scheme is faster and more expressive.
- Note that the relaxation from Gumbel-Softmax distribution to general continuous distributions loses the meaning of  $\boldsymbol{Z}$  as representing spike counts, but can produce better performance. This is worth to be investigated in the future.



## Thanks for listening!

