Magnetics Example

Inclination and Declination

- If field direction is going into the ground, is inclination +ve or -ve?
- What is the range of declinations the Earth can have?
- What direction is inclination = +60 and declination = -45?
- What direction is inclination = -30 and declination 180?

Magnetics as Dipoles or Charges

Inducing field has incl. = 60, decl. = 0 and strength = 50,000 nT. Draw and label Bo

N

If the magnetic susceptibility is 0.05 SI, compute the magnetization in the:

Easting:

Northing:

Upward:

 Block has remanence of 1.4 A/m at an incl = 45 and decl. = 180. Compute the total magnetization in the:

Easting:

Northing:

Upward:

Magnetics as Dipoles or Charges

 If the block has a side length of 2 m, what is the total magnetic charge on the top of the block?

Draw the anomaly

DC Resistivity Example

You are doing a dipole-dipole survey

Voltage due to current electrode: $V=rac{
ho I}{2\pi r}$

Electric potential and electric field: $\, {f E} = -
abla {f V} \,$

$$\mathbf{E} = -\nabla \mathbf{V}$$

Draw potential on Earth's surface due to a dipole current electrode

Draw the equi-potentials and current path in ground

Draw the current path if there is a conductive target

Draw the build-up of charges and secondary potential

Boundary condition for normal currents

$$\left(\frac{1}{\sigma_2} - \frac{1}{\sigma_1}\right) \mathbf{J_n} = \left(\rho_2 - \rho_1\right) \mathbf{J_n} = \frac{\tau}{\varepsilon_0}$$

Electric potential due to charges

$$\mathbf{V}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{N} \frac{Q_i}{\mathbf{r_i}}$$

Sketch primary and secondary potentials near receiver

M N

Voltage measurement

$$\Delta V = V_N - V_M$$

Apparent resistivity

$$\rho_a = \frac{\Delta V}{IG}$$

- Is Vs adding to or opposing Vo?
- How does this impact apparent resistivity?

Sketch sounding data over this conductor

 $\log(
ho_a)$

Sketch profiling data over this conductor

 $\log(\rho_a$

Electromagnetics

We have a vertical coaxial survey geometry over a target

The target is modeled as an LR circuit

If the radius of the transmitter loop is 50 cm, the amplitude of the current is 2 A and the coil has 5 turns, what is its dipole moment?

Is the transmitter and receiver well-coupled or null-coupled?

The transmitter carries an oscillating current.
The frequency and the properties of the target loop are such that the **inductance** is **0.5**

What is the phase lag between the primary and induced current?

$$\alpha = \frac{\omega L}{R}$$

$$\psi = \frac{\pi}{2} + \tan^{-1} \left(\frac{\omega L}{R} \right)$$

Will the response have a large in-phase or quadrature component?

If the radius of the transmitter loop is 50 cm, the amplitude of the current is 2 A and the coil has 5 turns, what is its dipole moment?

Sketch the anomaly. They halfway point between Tx and Rx is the data location

$\frac{H_s}{H_p}$		

The Return of Mt. Isa

Mt. Isa (Setup)

- Objective: Local sulphide mineralization within Native Bee Siltstone
- Other info: A geological cross-section

(N:12200m).

pected at Mount Isa

Mt. Isa (Properties)

Simplified (log) conductivity distribution expected at Mount Isa (N:12200m).

Rock Unit	Conductivity	Resistivity ($\Omega \cdot m$)	Chargeability
Native Bee Siltstone	Moderate	Moderate (~10)	Low
Moondarra Siltstone	Moderate	Moderate (~10)	Low
Breakaway Shale	Very High	Very Low (~0.1)	Low-None
Mt Novit Horizon	High	Low (~1)	High
Surprise Creek Formation	Low	High (~1000)	None
Eastern Creek Volcanics	Low	High (~1000)	None

Planning my survey (Synthetic Modeling)

Mt. Isa (Survey and Data)

Mt. Isa (Processing)

Apparent resistivity data (ρ_a)

Resistivity model (ρ)

Integrated chargeability data (d_{IP})

Chargeability model (η)

A: Surprise creek (low σ , low η)

A: Surprise creek (low σ , low η)

B: Moondarra and Native Bee siltstones (moderate σ, low η)

A: Surprise creek (low σ , low η)

B: Moondarra and Native Bee siltstones (moderate σ, low η)

C and D: Breakaway shales (high σ, low η)

A: Surprise creek (low σ , low η)

B: Moondarra and Native Bee siltstones (moderate σ, low η)

C and D: Breakaway shales (high σ, low η)

E and F: Mt. Novit horizon (high σ , high η)

A: Surprise creek (low σ , low η)

B: Moondarra and Native Bee siltstones (moderate σ, low η)

C and D: Breakaway shales (high σ, low η)

E and F: Mt. Novit horizon (high σ , high η)

G: Possible mineralization (high σ, high η)