4134к Костяков Никита Андреевич

Вариант 3

Формулы:

Размах R= max-min=582-537=45

Длина частичного интервала: = R/8=45/8=5,7

Мода =557(чаще всего встречается)

Медиана = (30ый элемент + 31 элемент)/2 = (557+557)/2=557

Выборочное среднее(Xв) =
$$\frac{\sum Xi*Ni}{60}$$
 =557,16

Выборочная дисперсия(Dв) =
$$\frac{\sum Ni(Xi-X_B)^2}{60}$$
 = 106

Исправленная выборочная дисперсия $(S^2) = \frac{60*DB}{59} = 108$

CKO=
$$\sqrt{S^2}$$
=10,3

 $\Phi(Ui) = = HOPM.PAC\Pi(ячейка;0;1;0)$

$$N'i=\frac{60*8}{S}(\Phi(Ui))$$

$$Pi = \frac{N*h}{\sigma\sqrt{2\pi}} * e^{-U^2/2}$$

$$\alpha = 0.2$$

$$z_i = \frac{x_i - m_x}{}$$

$$\begin{aligned} \mathbf{Z}_{i} &= \frac{x_{i} - m_{x}}{\sigma} \\ \mathbf{Z}_{i+1} &= \frac{x_{i+1} - m_{x}}{\sigma} \end{aligned}$$

$$P_i = \Phi(z_{i+1})$$
 - $\Phi(z_i)$

$$Xi^2 = \frac{(N'i*Ni)^2}{Ni}$$

Хэмп=
$$\sum Xi^2 = 0.225$$

Точность оценки =
$$\frac{t_y*S}{\sqrt{60}}$$
 =0,637578

Доверительный интервал = $554,3 < m_x$ ' < 559,8

Ход решения

1. Ранжировать данные по величине и найти размах выборки.

Размах R= max-min=582-537=45

1. Ранжировать д	данные по величине и найти размах выборки.	
537	Минимальное значение	537
538	Максимальное занчение	582
538	Размах выборки	45
539		
541		
542		
542		
542		
545		
545		
547		
547		
549		
549		
551		
552		
552		
552		
552		
553		
ггэ		

2. Преобразовать точечный вариационный ряд в интервальный с числом интервалов 8.

Длина частичного интервала: = R/8=45/8=5,625

2. Преоб	разовать точе	чный вари	ационный	ряд в инте	ервальный	<mark>і с числом</mark>	интервало	в 8.
Длинна интервала		5,625						
Номер интервала	1	2	3	4	5	6	7	8
границы:	542,625	550,625	556,625	562,625	568,625	574,625	581,625	587,625
минимальное	537	545	551	557	563	569	576	582
	538	545	552	557	563	570	577	
	538	547	552	557	565	571		
	539	547	552	557	565	572		
	541	549	552	557	566	573		
	542	549	553	558	566	574		
	542		553	558	567			
	542		554	559	567			
			554	559				
			554	559				
			556	560				
			556	560				
				560				
				561				
				561				
				562				
				562				
ni	8	6	12	17	8	6	2	1
середина интервала	539,867848	546,9951	553,2458	559,0535	565,2461	571,4949	576,4996	582
Накопленные частоты	8	14	26	43	51	57	59	60
Относительная частота	0,1336	0,1002	0,2004	0,2839	0,1336	0,1002	0,0334	0,0167

Построить полигон, гистограмму и сопоставление выравнивающих и эмпирических частот:

4. Найти	выборочные	моду	И	медиану.
----------	------------	------	---	----------

	4. Найти	выборочн	ые моду и	медиану	
Мода	557				
Медиана	557				

Мода =557(чаще всего встречается)

Медиана = (30ый элемент + 31 элемент)/2 = (557+557)/2=557

5. Найти выборочное среднее, дисперсию и СКО.

	5. I	Найти выбо	орочное ср	реднее, ди	сперсию и	СКО.		·
Номер интервала	1	2	3	4	5	6	7	8
Середина интервала хі	539,867848	546,9951	553,2458	559,0535	565,2461	571,4949	576,4996	582
ni	8	6	12	17	8	6	2	1
xi*ni	4318,94279	3281,971	6638,949	9503,909	4521,969	3428,969	1152,999	582
xi^2*ni	2331658,35	1795222	3672970	5313193	2556025	1959638	664703,5	338724
Сумма xi*ni	33429,709							
Сумма xi^2*ni	18632135,4							
Выборочное среднее	557,161817							
Выборочная дисперсия	106,299718							
Исправленная дисперсия	108,101409							
Исправленное среднее к	10,3971827							

Выборочное среднее(Xв) =
$$\frac{\sum Xi*Ni}{60}$$
 =557,16

Выборочная дисперсия(Dв) =
$$\frac{\sum Ni(Xi-XB)^2}{60}$$
 = 106

Исправленная выборочная дисперсия $(S^2) = \frac{60*DB}{59} = 108$

CKO=
$$\sqrt{S^2}$$
=10,3

6. Проверить гипотезу о нормальном распределении генеральной совокупности с помощью критерия Пирсон на уровне значимости α .

Объединим 1-ый со 2-ым и 7-ой с 8-ым как малочисленные:

$$\alpha = 0,2$$

$$Z_{i} = \frac{x_{i} - m_{x}}{\sigma}$$

$$Z_{i+1} = \frac{x_{i+1} - m_{x}}{\sigma}$$

$$P_i = \Phi(z_{i+1}) - \Phi(z_i)$$

 $n'=N*Pi$

Xi	X_{i+1}	$\mathbf{n_i}$	z i	\mathbf{z}_{i+1}	$\Phi(z_i)$	$\Phi(\textbf{z}_{i+1})$	P_{i}	n _i '	$\frac{(n_i - n_i')^2}{n_i'}$
537	548,4	12	-∞	-0,82	-0,5	-0,294	0,206	12,366	0,011
548,4	554,1	12	-0,82	-0,28	-0,294	-0,11	0,184	11,016	0,088
554,1	559,8	12	-0,28	0,26	-0,11	0,103	0,213	12,774	0,047
559,8	565,5	11	0,26	0,8	0,103	0,288	0,186	11,13	0,002
565,5	571,2	7	0,8	1,34	0,288	0,41	0,122	7,308	0,013
571,2	582,6	6	1,34	∞ +	0,41	0,5	0,09	5,406	0,065
Сумма		60					1		0,225

$$Xi^2 = \frac{(N'i*Ni)^2}{N'i}$$

Хэмп=
$$\sum Xi^2 = 0.23$$

При проверке гипотезы о нормальном распределении генеральной совокупности k=s-3, где s число интервалов.

$$\chi^{2}$$
'при $k=3$ и $\alpha=0,2$ равен 4,642

Следовательно: $\chi^2 < \chi^{2'}$

7. Найти доверительный интервал для математического ожидания генеральной совокупности с надежностью γ .

$$\gamma = 0.95$$
; N = 60

$$m_x - t \frac{\sigma}{\sqrt{N}} < m_x' < m_x + t \frac{\sigma}{\sqrt{N}}$$

t при $\gamma = 0,95$ и N = 60 будет равно 2,0.

Подставим и получим:

$$554,3 < m_x' < 559,8$$

Найдём доверительный интервал для математического ожидания генеральной совокупности с надежностью у при известной дисперсии.

По формуле:

$$\bar{x} - \frac{\sigma t_y}{\sqrt{n}} < m_x' < \bar{x} + \frac{\sigma t_y}{\sqrt{n}}$$

t при
$$\gamma = 0.95$$

$$t_{\gamma} = \frac{0.95}{2} = 0.475$$

Находим

Вывод:

Так как $\chi^2 < \chi^{2'}$ можно сказать, что теория о нормальном распределении генеральной совокупности не опровергнута

Числа распределены по нормальному закону распределения распределения (554,4 < m' < 559,7; 10,7). Математическое ожидание генеральной совокупности попадает в интервал (554,4 < m' < 559,7).

Доверительный интервал для математического ожидания генеральной совокупности с надежностью при известной дисперсии входит в диапазон доверительного интервала для неизвестной дисперсии