Derivation reduction of metarules in meta-interpretive learning

Andrew Cropper & Sophie Tourret

Input	Output
Examples Background knowledge Bias	Logic program

Biases

- Mode declarations (Progol, ILASP, Aleph, XHAIL, ...)
- Metarules (Metagol, MIL-Hex, ∂ILP, ProPPR, Clint, MOBAL ...)

Metarules

∃PQ∀AB	$P(A,B) \leftarrow Q(A,B)$	
∃PQR∀AB	$P(A,B) \leftarrow Q(A),R(A,B)$	
∃PQR∀ABC	$P(A,B) \leftarrow Q(A,C),R(C,B)$)

Metarules

$$P(A,B) \leftarrow Q(A,B)$$

 $P(A,B) \leftarrow Q(A),R(A,B)$
 $P(A,B) \leftarrow Q(A,C),R(C,B)$

P,Q,R are **existentially** quantified **second-order** variables A,B,C are **universally** quantified **first-order** variables

Input Output % background parent(ann,amy)← parent(amy,amelia)← % example grandparent(ann,amelia)← % metarule $P(A,B) \leftarrow Q(A,C), R(C,B)$

Input Output grandparent(A,B)← % background parent(ann,amy)← parent(A,C), parent(C,B) parent(amy,amelia)← % example grandparent(ann,amelia)← P\granparent, Q\parent, R\parent % metarule $P(A,B) \leftarrow Q(A,C), R(C,B)$

Why?

Completeness

cannot learn grandparent/2 with only $P(X) \leftarrow Q(X)$

Efficiency

more metarules = larger hypothesis space

Usability

Users do not want to provide metarules

Remove redundant metarules [ILP14]

The Horn clause C is **entailment redundant** in the Horn theory T \cup {C} when T \models C

```
C1 = h(A,B)←s(A,B)

C2 = h(A,B)←s(A,B),u(B)

C3 = h(A,B)←s(A,B),u(A,B)

C4 = h(A,B)←s(A,B),u(A,B),v(A,B)
```

C1 =
$$h(A,B) \leftarrow s(A,B)$$

C2 = $h(A,B) \leftarrow s(A,B), u(B)$
C3 = $h(A,B) \leftarrow s(A,B), u(A,B)$
C4 = $h(A,B) \leftarrow s(A,B), u(A,B), v(A,B)$

$$\{C1\} \models \{C2,C3,C4\}$$

Entailment reduction of metarules [ILP14]

```
P(A,B) \leftarrow Q(A,B)
P(A,B) \leftarrow Q(B,A)
P(A,B) \leftarrow Q(A,C), R(B,C)
P(A,B) \leftarrow Q(A,C), R(C,B)
P(A,B) \leftarrow Q(B,A), R(A,B)
P(A,B) \leftarrow Q(B,A), R(B,A)
P(A,B) \leftarrow Q(B,C), R(A,C)
P(A,B) \leftarrow Q(B,C), R(C,A)
P(A,B) \leftarrow Q(C,A), R(B,C)
P(A,B) \leftarrow Q(C,A), R(C,B)
P(A,B) \leftarrow Q(C,B), R(A,C)
P(A,B) \leftarrow Q(C,B), R(C,A)
```

Entailment reduction of metarules [ILP14]

```
C1 = P(A,B) \leftarrow Q(A,B)

C2 = P(A,B) \leftarrow Q(A,B), R(A)

C3 = P(A,B) \leftarrow Q(A,B), R(A,B)

C4 = P(A,B) \leftarrow Q(A,B), R(A,B), S(A,B)
```

C1 =
$$P(A,B) \leftarrow Q(A,B)$$

C2 = $P(A,B) \leftarrow Q(A,B), R(A)$
C3 = $P(A,B) \leftarrow Q(A,B), R(A,B)$
C4 = $P(A,B) \leftarrow Q(A,B), R(A,B), S(A,B)$

$$\{C1\} \models \{C2,C3,C4\}$$

C1 =
$$P(A,B) \leftarrow Q(A,B)$$

C2 = $P(A,B) \leftarrow Q(A,B), R(A)$
C3 = $P(A,B) \leftarrow Q(A,B), R(A,B)$
C4 = $P(A,B) \leftarrow Q(A,B), R(A,B), S(A,B)$

$$\{C1\} \models \{C2,C3,C4\}$$

father(A,B)←parent(A,B),male(A) ★

The Horn clause C is **derivationally redundant** in the Horn theory T \cup {C} when T \vdash C

SLD-resolution

```
C1 = P(A,B) \leftarrow Q(A,B)

C2 = P(A,B) \leftarrow Q(A,B), R(A)

C3 = P(A,B) \leftarrow Q(A,B), R(A,B)

C4 = P(A,B) \leftarrow Q(A,B), R(A,B), S(A,B)
```

C1 =
$$P(A,B) \leftarrow Q(A,B)$$

C2 = $P(A,B) \leftarrow Q(A,B), R(A)$
C3 = $P(A,B) \leftarrow Q(A,B), R(A,B)$
 $C4 = P(A,B) \leftarrow Q(A,B), R(A,B), S(A,B)$

$$\{C1,C2,C3\} \vdash \{C4\}$$

father(A,B)←parent(A,B),male(A) ✓

While there is a clause in T such that T - $\{C\} \vdash_k C$: Set T = T - $\{C\}$

Connected clauses

body literals are connected to the head literal

 H^2_{m}

restriction on literal arity

$$P(A,B) \leftarrow Q(A,B) \checkmark$$

 $P(A) \leftarrow Q(A,B), R(B) \checkmark$

$$P(A,B,C) \leftarrow Q(A,B,C) \times P(A) \leftarrow Q(A,B,C), R(B,C) \times P(A) \leftarrow Q(A,B,C) \times P(A) \leftarrow Q(A,C) \times P(A) \leftarrow Q(A,C) \times P($$

$$H^{2=}_{m}$$

$$P(A,B) \leftarrow Q(A,B) \checkmark$$

 $P(A,B) \leftarrow Q(A,C),R(C,B) \checkmark$

$$P(A) \leftarrow Q(A) \Leftrightarrow$$

 $P(A,B) \leftarrow Q(A,B), R(B) \Leftrightarrow$

Ha_2

restriction on number of body literals

$$P(A,B) \leftarrow Q(A,B) \checkmark$$

 $P(A) \leftarrow Q(A,B,C),R(B,C) \checkmark$

$$P(A) \leftarrow Q(A), R(A), S(A) \times$$

 $P(A,B) \leftarrow Q(A), R(B), S(A,B) \times$

$$H_{2}=$$

$$P(A) \leftarrow Q(A) \times P(A,B) \leftarrow Q(A,B), R(B) \times$$

Exactly-two connected

each first-order variable appears exactly twice

Idea

- 1. Run derivation reduction with a SLD-resolution depth bound of 10 on sub-fragments of an infinite fragment.
- 2. Study the results.

$$E^{2}=_{5}$$

E-reduction	D-reduction
$P(A,B) \leftarrow Q(B,A)$	$P(A,B) \leftarrow Q(B,A)$
$P(A,B) \leftarrow Q(A,C), R(C,B)$	$P(A,B) \leftarrow Q(A,C), R(C,B)$

$$E^{2}=_{5}$$

E-reduction	D-reduction
$P(A,B) \leftarrow Q(B,A)$ $P(A,B) \leftarrow Q(A,C),R(C,B)$	$P(A,B) \leftarrow Q(B,A)$ $P(A,B) \leftarrow Q(A,C) P(C,B)$

Same as ILP14 paper

$$E^{2=}_2 \vdash E^{2=}_{\infty}$$

E-reduction	D-reduction
$P(A) \leftarrow Q(A)$	$P(A) \leftarrow Q(A)$
$P(A) \leftarrow Q(A,B), R(B)$	$P(A) \leftarrow Q(A,B), R(B)$
$P(A,B) \leftarrow Q(B,A)$	$P(A,B) \leftarrow Q(B,A)$
$P(A,B) \leftarrow Q(A), R(B)$	$P(A,B) \leftarrow Q(A), R(B)$
$P(A,B)\leftarrow Q(A,C),R(C,B)$	$P(A,B)\leftarrow Q(A,C),R(C,B)$

E-reduction	D-reduction
$P(A) \leftarrow Q(A)$	$P(A) \leftarrow Q(A)$
$P(A) \leftarrow Q(A,B), R(B)$	$P(A) \leftarrow Q(A,B), R(B)$
$P(A,B) \leftarrow Q(B,A)$	$P(A,B) \leftarrow Q(B,A)$
$P(A,B) \leftarrow Q(A),R(B)$	$P(A,B) \leftarrow Q(A), R(B)$
$P(A,B)\leftarrow Q(A,C),R(C,B)$	$P(A,B)\leftarrow Q(A,C),R(C,B)$

$$E^2_2 \vdash E^2_\infty \checkmark$$

Two connected

each first-order variable appears at least twice (i.e. prevents singleton variables)

 $K^{2=}_5$ two connected

$K^{2=}_5$ two connected

E-reduction	D-reduction
$P(A,B) \leftarrow Q(B,A)$	$P(A,B) \leftarrow Q(B,A)$
$P(A,B)\leftarrow Q(A,C),R(C,B)$	$P(A,B)\leftarrow Q(A,C),R(C,B)$
	$P(A,B)\leftarrow Q(A,B),R(A,B)$
	$P(A,B)\leftarrow Q(A,B),R(A,C),S(C,D),T(C,D)$
	$P(A,B)\leftarrow Q(A,C),R(A,C),S(B,D),T(B,D)$
	P(A,B)+Q(A,C),R(A,D),S(B,C),T(B,D),U(C,D)

$K^{2}=_5$ two connected

E-reduction	D-reduction
$P(A,B) \leftarrow Q(B,A)$	$P(A,B) \leftarrow Q(B,A)$
$P(A,B)\leftarrow Q(A,C),R(C,B)$	$P(A,B)\leftarrow Q(A,C),R(C,B)$
	$P(A,B)\leftarrow Q(A,B),R(A,B)$
	$P(A,B)\leftarrow Q(A,B),R(A,C),S(C,D),T(C,D)$
	$P(A,B)\leftarrow Q(A,C),R(A,C),S(B,D),T(B,D)$
	$P(A,B)\leftarrow Q(A,C),R(A,D),S(B,C),T(B,D),U(C,D)$

$$K^{2}=_{2} \not\vdash K^{2}=_{\infty} \bigstar$$

K^2_5 two connected

K^2_5 two connected

E-reduction	D-reduction
$P(A) \leftarrow Q(A)$	$P(A) \leftarrow Q(A)$
$P(A) \leftarrow R(A,B), Q(A,B)$	$P(A) \leftarrow R(A,B), Q(A,B)$
	$P(A) \leftarrow Q(A), R(A)$
	$P(A) \leftarrow Q(B), R(A,B)$
$P(A,B) \leftarrow Q(B,A)$	$P(A,B) \leftarrow Q(B,A)$
$P(A,B)\leftarrow Q(A),R(B)$	$P(A,B) \leftarrow Q(A), R(B)$
$P(A,B)\leftarrow Q(A,C),R(C,B)$	$P(A,B)\leftarrow Q(A,C),R(C,B)$
	$P(A,B) \leftarrow Q(A,B), R(A,B)$
	$P(A,B) \leftarrow Q(A), R(A,B)$
	$P(A,B)\leftarrow Q(A,C),R(A,D),S(C,B),T(B,D),U(C,D)$

K^2_5 two connected

E-reduction	D-reduction
$P(A) \leftarrow Q(A)$	$P(A) \leftarrow Q(A)$
$P(A) \leftarrow R(A,B), Q(A,B)$	$P(A) \leftarrow R(A,B), Q(A,B)$
	$P(A) \leftarrow Q(A), R(A)$
	$P(A) \leftarrow Q(B), R(A,B)$
$P(A,B)\leftarrow Q(B,A)$	$P(A,B) \leftarrow Q(B,A)$
$P(A,B)\leftarrow Q(A),R(B)$	$P(A,B) \leftarrow Q(A), R(B)$
$P(A,B)\leftarrow Q(A,C),R(C,B)$	$P(A,B)\leftarrow Q(A,C),R(C,B)$
	$P(A,B) \leftarrow Q(A,B), R(A,B)$
	$P(A,B) \leftarrow Q(A), R(A,B)$
	$P(A,B)\leftarrow Q(A,C),R(A,D),S(C,B),T(B,D),U(C,D)$

$$K^{2}_{2} \not\vdash K^{2}_{5} = 3$$

K₂⁵ two connected

E-reduction	D-reduction
$P(A) \leftarrow Q(A)$	$P(A) \leftarrow Q(A)$
$P(A) \leftarrow R(A,B), Q(A,B)$	$P(A) \leftarrow R(A,B), Q(A,B)$
	$P(A) \leftarrow Q(A), R(A)$
	$P(A) \leftarrow Q(B), R(A,B)$
$P(A,B) \leftarrow Q(B,A)$	$P(A,B) \leftarrow Q(B,A)$
$P(A,B)\leftarrow Q(A),R(B)$	$P(A,B) \leftarrow Q(A),R(B)$
$P(A,B) \leftarrow Q(A,C), R(C,B)$	$P(A,B) \leftarrow Q(A,C), R(C,B)$
	$P(A,B) \leftarrow Q(A,B), R(A,B)$
	$P(A,B) \leftarrow Q(A), R(A,B)$
	$P(A,B) \leftarrow Q(A,C), R(A,D), S(C,B), T(B,D), U(C,D)$

K²=∞ cannot be reduced **★**

Why not?

 $P_0(x_1, x_2) \leftarrow P_1(x_1, x_3), P_2(x_1, x_4), P_3(x_2, x_3), P_4(x_2, x_4), P_5(x_3, x_4)$

Does it matter?

1. TRAINS GOING EAST

2. TRAINS GOING WEST

Accuracies

Task	E-reduction	D-reduction	D*-reduction
T1	95 ± 1	100 ± 0	100 ± 0
T2	99 ± 1	100 ± 0	100 ± 0
Т3	56 ± 3	96 ± 2	96 ± 2
T4	69 ± 4	96 ± 2	96 ± 2
T5	59 ± 3	93 ± 3	93 ± 3
T6	50 ± 1	96 ± 3	96 ± 3
T7	68 ± 4	95 ± 2	95 ± 2
T8	54 ± 3	60 ± 3	90 ± 3

Learning times

Task	E-reduction	D-reduction	D*-reduction
T1	0.01 ± 0	0 ± 0	0 ± 0
T2	0.01 ± 0	0 ± 0	0 ± 0
Т3	431 ± 59	0.01 ± 0	0.01 ± 0
T4	300 ± 68	0 ± 0	0.01 ± 0
T5	427 ± 60	1 ± 0.3	1 ± 0.41
T6	600 ± 0	1 ± 0.41	1 ± 0.42
T7	917 ± 535	1 ± 0.27	1 ± 0.36
T8	487 ± 51	360 ± 67	26 ± 5

```
% target program
f(X):-has_car(X,C1),
    long(C1),
    two_wheels(C1),
    has_car(X,C2),
    long(C2),
    three_wheels(C2).
```

```
% E-reduction
f(A):-has_car(A,B),f1(A,B).
f1(A,B):-has_car(A,C),f2(C,B).
f2(A,B):-long(A),three_wheels(B).
```

```
% D-reduction
f(A):-f1(A),f2(A).
f1(A):-has_car(A,B),three_wheels(B).
f2(A):-has_car(A,B),roof_open(B).
```

```
% D*-reduction
f(A):-f1(A),f2(A).
f1(A):-has_car(A,B),three_wheels(B).
f2(A):-has_car(A,B),f3(B).
f3(A):-long(A),two_wheels(A).
```

```
% target program
f(X):-
    has_car(X,C1),
    long(C1),
    two_wheels(C1),
    has_car(X,C2),
    long(C2),
    three_wheels(C2).
```

```
% D*-reduction
f(A):-
    has_car(A,B),
    three_wheels(B),
    has_car(A,C),
    long(C),
    two_wheels(C).
```

Todo

- Study derivation reduction problem
- Other fragments
 - Triadics
 - Connected
- Unconstrained resolution