EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES

VIDEO ANALYSIS

OPEN CV FOR VIDEO PROCESSING

Date	13 November 2022
Team ID	PNT2022TMID13306
Project Name	Emerging Methods for Early Detection of Forest Fires

Importing The ImageDataGenerator Library

import keras from keras.preprocessing.image import ImageDataGenerator

Define the parameters/arguments for ImageDataGenerator class

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,rot ati on_range=180,zoom_range=0.2, horizontal_flip=True) test_datagen=ImageDataGenerator(rescale=1./255)

Applying ImageDataGenerator functionality to trainset

x_train=train_datagen.flow_from_directory(r'/content/drive/MyDriv e/Dataset/train_set',target_size=(128,128),batch_size=32, class_mode='binary')

Found 436 images belonging to 2 classes.

Applying ImageDataGenerator functionality to testset

x_test=test_datagen.flow_from_directory(r'/content/drive/MyDrive / Dataset/test_set',target_size=(128,128),batch_size=32, class mode='binary')

Found 121 images belonging to 2 classes.

Import model building libraries

#To define Linear initialisation import Sequential from keras.models import Sequential

#To add layers import Dense from keras.layers import Dense

#To create Convolution kernel import Convolution2D from keras.layers import Convolution2D

#import Maxpooling layer from keras.layers import MaxPooling2D

#import flatten layer

from keras.layers import Flatten

```
import warnings
warnings.filterwarnings('ignore')
Initializing the model
model=Sequential()
Add CNN Layer
model.add(Convolution2D(32,
(3,3),input shape=(128,128,3),activation='relu'))
#add maxpooling layer
model.add(MaxPooling2D(pool size=(2,2)))
#add flatten layer
model.add(Flatten())
Add Hidden Layer
 #add hidden layer
 model.add(Dense(150,activation='relu'))
#add output layer
model.add(Dense(1,activation='sigmoid') )
Configure the learning process
model.compile(loss='binary_crossentropy',optimizer="adam",metrics=[
"ac curacy"])
Train the model
model.fit generator(x train, steps per epoch=14, epochs=10, validation
da ta=x test, validation steps=4)
Epoch 1/10
14/14 [======] - 97s 7s/step - loss:
```

```
1.3060 - accuracy: 0.7775 - val loss: 0.5513 -
val accuracy: 0.8512
Epoch 2/10
14/14 [======] - 26s 2s/step - loss:
0.3178 - accuracy: 0.8807 - val loss: 0.1299 -
val accuracy: 0.9421
Epoch 3/10
14/14 [======] - 26s 2s/step - loss:
0.2226 - accuracy: 0.9106 - val loss: 0.1311 -
val accuracy: 0.9421
Epoch 4/10
14/14 [======] - 31s 2s/step - loss:
0.1836 - accuracy: 0.9174 - val loss: 0.1129 -
val accuracy: 0.9339
Epoch 5/10
14/14 [======] - 30s 2s/step - loss:
0.1675 - accuracy: 0.9243 - val loss: 0.0925 -
val accuracy: 0.9669
Epoch 6/10
14/14 [======] - 26s 2s/step - loss:
0.1884 - accuracy: 0.9289 - val loss: 0.1287 -
val accuracy: 0.9339
Epoch 7/10
14/14 [======] - 28s 2s/step - loss:
0.1724 - accuracy: 0.9335 - val loss: 0.0926 -
val accuracy: 0.9752
Epoch 8/10
14/14 [======] - 26s 2s/step - loss:
0.1510 - accuracy: 0.9404 - val loss: 0.0757 -
val accuracy: 0.9752 Epoch 9/10
0.173 - accuracy: 0.9174 - val loss: 0.0537 -
val accuracy: 0.9835
0.154 -
```

2s/step - loss: 6

accuracy: 0.9312 - val loss: 0.0573 -

val accuracy: 0.9835

<keras.callbacks.History at 0x7f05d66a9c90>

Save The Model

model.save("forest1.h5")

Predictions

#import load_model from keras.model from keras.models import load_model #import image class from keras

fromtensorflow.keras.

preprocessing
import image
#import numpy
import numpy as np
#import cv2
import cv2
#load the saved model
model=load_model("fores
t1.h5")
img=image.load_img(r'/co
ntent/drive/MyDrive/Data
set/te st_set/forest/
0.48007200_1530881924
_final_forest.jpg')

```
x=image.img to array(img) res =
 cv2.resize(x, dsize=(128, 128),
 interpolation=cv2.INTER CUBIC)
 #expand the image shape
 x=np.expand di ms(res,axis=0)
 pred= model.predict(x)
 1/1 [=====
 126ms/step pred array([[0.]],
 dtype=float32) OpenCV
 For Video Processing
pip install twilio
Looking in indexes: https://pypi.org/simple, https://us-
python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: twilio in
/usr/local/lib/python3.7/dist-packages (7.15.1)
Requirement already satisfied: pytz in /usr/local/lib/python3.7/dist-
packages (from twilio) (2022.5)
Requirement already satisfied: requests>=2.0.0 in
/usr/local/lib/python3.7/dist-packages (from twilio) (2.23.0)
Requirement already satisfied: PyJWT<3.0.0,>=2.0.0 in
/usr/local/lib/python3.7/dist-packages (from twilio) (2.6.0) Requirement
           satisfied:
                         urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1
already
/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0- >twilio)
(1.24.3)
Requirement already satisfied: certifi>=2017.4.17 in
/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio)
(2022.9.24)
Requirement already satisfied: idna<3,>=2.5 in
/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio)
(2.10)
Requirement already satisfied: chardet<4,>=3.0.2 in
/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio)
```

```
(3.0.4)
pip install playsound
Looking in indexes: https://pypi.org/simple, https://us-
python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: playsound in
/usr/local/lib/python3.7/dist-packages (1.3.0)
#import opency library
import cv2
#import
numpy
import numpy as np
#import image function from keras
from keras.preprocessing import image
#import load model from
keras
from keras.models
import load model
#import client from twilio API
from twilio.rest
import Client
#import playsound package
from playsound
import playsound
WARNING:playsound:playsound is relying on another python
subprocess. Please use 'pip install pygobject' if you want playsound to
run more efficiently.
#load the saved model
model=load model("forest1.h
5")
#definevideo
video=cv2.VideoCapture(0)
#define the features
name=['forest','with fire']
```