Define

So $S_{\lambda}(y) = y + \lambda$

$$S_{1\lambda}(y) = \arg\min_{\theta \ge 0} \frac{1}{2} \theta^2 - (y - \lambda)\theta$$

$$S_{2\lambda}(y) = \arg\min_{\theta \le 0} \frac{1}{2} \theta^2 - (y + \lambda)\theta$$

Then $S_{\lambda}(y)$ is one of $S_{1\lambda}(y)$ and $S_{2\lambda}(y)$ which gives the smaller target function. Assuming $\lambda > 0$. When $y > \lambda$,

$$S_{1\lambda}(y) = y - \lambda$$

$$S_{2\lambda}(y) = 0$$

$$\frac{1}{2}S_{1\lambda}(y)^2 - (y - \lambda)S_{1\lambda}(y) - \frac{1}{2}S_{2\lambda}(y)^2 + (y + \lambda)S_{2\lambda}(y) = -\frac{1}{2}(y - \lambda)^2 < 0$$
So $S_{\lambda}(y) = y - \lambda$
If $-\lambda < y < \lambda$

$$S_{1\lambda}(y) = 0$$

$$S_{2\lambda}(y) = 0$$
So $S_{\lambda}(y) = 0$
If $y < \lambda$

$$S_{1\lambda}(y) = 0$$

$$S_{2\lambda}(y) = y + \lambda$$

$$\frac{1}{2}S_{1\lambda}(y)^2 - (y - \lambda)S_{1\lambda}(y) - \frac{1}{2}S_{2\lambda}(y)^2 + (y + \lambda)S_{2\lambda}(y) = \frac{1}{2}(y + \lambda)^2 > 0$$