

Last Lecture

Linear Spatial Filtering
Convolution and Correlation

Last Lecture

Linear Spatial Filtering
Convolution and Correlation

Separable Kernels

Smoothing Filter

Spatial Sharpening

$$w(x,y)$$
 is separable if $w(x,y) = w_1(x)w_2(y)$

$$w = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} [1 \quad 1 \quad 1] = w_1 w_2 = w_1 \star w_2$$

Separable Kernels

$$w(x, y)$$
 is separable if $w(x, y) = w_1(x)w_2(y)$

$$w = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} [1 \quad 1 \quad 1] = w_1 w_2 = w_1 \star w_2$$

In general, if $w = w_1 \star w_2$, then

$$w \star f = (w_1 \star w_2) \star f = (w_2 \star w_1) \star f = w_2 \star (w_1 \star f) = (w_1 \star f) \star w_2$$

Separable Kernels

$$w(x,y)$$
 is separable if $w(x,y) = w_1(x)w_2(y)$

$$w = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} [1 \quad 1 \quad 1] = w_1 w_2 = w_1 \star w_2$$

In general, if $w = w_1 \star w_2$, then

$$w \star f = (w_1 \star w_2) \star f = (w_2 \star w_1) \star f = w_2 \star (w_1 \star f) = (w_1 \star f) \star w_2$$

Note: A kernel is separable if its rank is 1.

$$w = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \bigstar \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \bigstar \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \text{and} \qquad w = \frac{1}{9} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

Smoothing Spatial Filters

✓ Low pass filtering/smoothing/blurring, is a technique used to remove noise and other unwanted artifacts from images.

✓ Applied to various types of noise, e.g., salt-andpepper noise and Gaussian noise.

Smoothing Spatial Filters

✓ Low pass filtering/smoothing/blurring, is a technique used to remove noise and other unwanted artifacts from images.

✓ Applied to various types of noise, e.g., salt-andpepper noise and Gaussian noise.

- Average/Mean Smoothing
- Gaussian Smoothing
- Median Smoothing

Average/Mean Smoothing

✓ Determines the mean of the pixel values within an $n \times n$ kernel.

✓ The mean then replaces the pixel intensity of the center element.

✓ It is a low-pass uniform filter.

✓ Eliminating some of the noise in the image and smoothening the edges of the image.

Average/Mean Smoothing (Example)

Gaussian Smoothing

✓ Involves a weighted average of the surrounding pixels and has sigma σ as a parameter.

$$w(x,y) = \exp(-\frac{x^2 + y^2}{2\sigma^2})$$

w(-1,-1)	w(-1,0)	w(-1,1)
w(0, -1)	w(0,0)	w(0,1)
w(1, -1)	w(1,0)	w(1,1)

$$3 \times 3$$
 filter

Gaussian Smoothing (Cont.)

✓ The kernel used in Gaussian blurring represents a discrete approximation of a Gaussian distribution.

✓ The coefficients of the kernel decrease as the distance from the

center increases.

✓ It is a low-pass non-uniform filter.

Distance from the center

Gaussian Smoothing (Example)

✓ The image's brightness may not be preserved after applying a
Gaussian filter.

Median Smoothing

✓ The median filter calculates the median of the pixel intensities surrounded by the center pixel in an $n \times n$ kernel.

✓ The intensity of the center pixel is then replaced with a median.

✓ It helps in removing salt and pepper noise from the image.

✓ This preserves the edges of an image.

✓ It is a non-linear digital filtering technique.

Median Smoothing (Example)

Smoothing Challenges

✓ Trade-off between smoothing and detail preservation:

Finding the right balance between reducing noise and preserving the important details is challenging.

Over-smoothing

loss of important details and edges.

Under-smoothing → leaves noise and artifacts in the image.

✓ Computational complexity:

Some smoothing techniques are computationally expensive and take a long time to process large images or video streams.

✓ Parameter tuning:

Smoothing techniques have several parameters that need to be tuned for optimal performance.

E.g., kernel size, filter type, and sigma values.

Time-consuming and requires expertise in image processing.

Spatial Sharpening

Spatial harpening

Original Blurred image

After Sharpening

Spatial Sharpening

- ✓ Blur/Smooth the original image f to obtain image f
- ✓ Subtract/add the Laplacian of the blurred image f' to f

$$g(x,y) = f'(x,y) \mp c. \nabla^2 f'(x,y)$$

Intuitively?

Laplacian of an image?

Spatial Sharpening (Signals)

Spatial Sharpening

✓ Original signal

✓ Second derivative

✓ Original signal - Second derivative

First Image Derivatives

$$\frac{\partial f(x,y)}{\partial x} \approx f(x+1,y) - f(x,y)$$

$$\frac{\partial f(x,y)}{\partial y} \approx f(x,y+1) - f(x,y)$$

Second Image Derivatives

$$\frac{\partial^2 f(x,y)}{\partial^2 x} \approx f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f(x,y)}{\partial^2 v} \approx f(x,y+1) + f(x,y-1) - 2f(x,y)$$

Laplacian

$$\nabla^2 f(x,y) = \frac{\partial^2 f(x,y)}{\partial^2 x} + \frac{\partial^2 f(x,y)}{\partial^2 y}$$

$$\nabla^2 f(x, y) \approx f(x + 1, y) + f(x - 1, y) + f(x, y + 1) + f(x, y + 1) - 4f(x, y)$$

0	1	0
1	-4	1
0	1	0

Sharpening Spatial Filters

Variants of the Laplacian filter

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

0	-1	0
-1	4	-1
0	- 1	0

-1	-1	-1
-1	8	-1
-1	-1	-1

Sharpening Spatial Filters

Variants of the Laplacian filter

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

$$\begin{array}{c|cccc}
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0
\end{array}$$

use
$$c = -1$$
 for

use
$$c = +1$$
 for

$$g(x,y) = f'(x,y) + c.\nabla^2 f'(x,y)$$

Sharpening Spatial Filters (Example)

Sharpening

Original image f

blurred image f' Laplacian $\nabla^2 f'(x, y)$

$$f'(x,y) - 1.\nabla^2 f'(x,y)$$

$$f'(x,y) - 3.\nabla^2 f'(x,y)$$

Unsharp Masking

- ✓ Blur/Smooth the original image
- ✓ Subtract the blurred image from the original

$$f(x,y) - \overline{f(x,y)}$$

✓ Add the resulting mask to the original

$$g(x,y) = f(x,y) + k(f(x,y) - \overline{f(x,y)})$$

k = 1 unsharp masking

k > 1 highboost filtering

QUESTIONS & ANSWERS

