Runtimes

November 18, 2021

We will analyze two datasets to evaluate the empirical behavior of the algorithm: one in which the divisor size m is held constant and the dividend size n varies, and the other in which the dividend size n is held constant and the divisor size m varies.

Assuming arithmetic operations have complexity $\mathcal{O}(m)$, we expect to see behavior approximately modeled by

$$F_1(n,m) = m(n-m) = nm - m^2$$

For constant m, we expect to observe a positive linear relationship between n and runtime:

$$F(n) \approx n$$

For constant n, we expect to observe an inverse quadratic relationship between m and runtime:

$$F(m) \approx -m^2 + m$$

```
[85]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from scipy.stats import skew, kurtosis, kurtosistest
import statsmodels.api as sm
import statsmodels.formula.api as smf
from scipy.stats import shapiro
%matplotlib inline
```

0.1 F(n): Variable Dividend Size - $n = \{12, 13, ..., 10000\}, m = 10$

[86]:	return_value	dividend_size	divisor_size	runtime	len_diff
0	1	12	10	0	2
1	1	12	10	0	2
2	1	13	10	0	3
3	1	15	10	0	5
4	1	16	10	0	6
	•••	•••			
9984	1	9995	10	18	9985
9985	1	9997	10	18	9987
9986	1	9998	10	18	9988
9987	1	9999	10	19	9989
9988	1	10000	10	18	9990

[9989 rows x 5 columns]

0.1.1 F(n) Plot - Fit 1st Order Polynomial to Dataset - $F(n) \approx n$

We observe a positive, approximately linear relationship with a fair amount of longer runtimes.

```
[87]: results = smf.ols(formula='runtime ~ len_diff', data=dividend_df).fit()
    dividend_df['regression'] = results.fittedvalues
    dividend_df['error'] = dividend_df['runtime'] - dividend_df['regression']
    # print(shapiro(dividend_df['error']))
    plt.scatter(dividend_df['len_diff'], dividend_df['runtime'], color='red')
    plt.title('F(n): m = 10, n = 12 to 10000')
    plt.xlabel('Dividend Size (n)')
    plt.ylabel('Runtime (ms)')
    plt.plot(dividend_df['dividend_size'], dividend_df['regression'], color='blue')
    print(results.summary())
    plt.savefig('dividend.png')
```

OLS Regression Results

=======================================	-==========		=======================================
Dep. Variable:	runtime	R-squared:	0.956
Model:	OLS	Adj. R-squared:	0.956
Method:	Least Squares	F-statistic:	2.150e+05
Date:	Thu, 18 Nov 2021	<pre>Prob (F-statistic):</pre>	0.00
Time:	09:29:31	Log-Likelihood:	-15699.
No. Observations:	9989	AIC:	3.140e+04
Df Residuals:	9987	BIC:	3.142e+04
Df Model:	1		
Covariance Type:	nonrobust		
=======================================	.==========		=======================================
COE	ef std err	t P> t	[0.025 0.975]

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.3513	0.023	-15.065	0.000	-0.397	-0.306
len_diff	0.0019	4.04e-06	463.724	0.000	0.002	0.002

16689.004	Durbin-Watson:	1.249
0.000	Jarque-Bera (JB):	17734449.205
11.236	Prob(JB):	0.00
208.194	Cond. No.	1.15e+04
	0.000 11.236	0.000 Jarque-Bera (JB): 11.236 Prob(JB):

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.15e+04. This might indicate that there are strong multicollinearity or other numerical problems.

0.1.2 F(n) Runtime Histogram

```
[88]: plt.hist(dividend_df['runtime'], bins=50)
[88]: (array([464., 535., 522., 569., 452., 644., 553., 548., 412., 520., 544.,
                                                                     29., 19.,
             559., 550., 564., 549., 529., 681., 367., 268., 58.,
               11.,
                      9.,
                           6.,
                                  3.,
                                        2.,
                                              2., 5.,
                                                          1.,
                                                                3.,
                                                                            2.,
                                                          0.,
                0.,
                           3.,
                                  0.,
                                        0.,
                                            0.,
                                                   0.,
                           0.,
                                 0.,
                0.,
                      0.,
                                        0.,
                                             1.]),
```

```
array([ 0. , 0.98, 1.96, 2.94, 3.92, 4.9 , 5.88, 6.86, 7.84, 8.82, 9.8 , 10.78, 11.76, 12.74, 13.72, 14.7 , 15.68, 16.66, 17.64, 18.62, 19.6 , 20.58, 21.56, 22.54, 23.52, 24.5 , 25.48, 26.46, 27.44, 28.42, 29.4 , 30.38, 31.36, 32.34, 33.32, 34.3 , 35.28, 36.26, 37.24, 38.22, 39.2 , 40.18, 41.16, 42.14, 43.12, 44.1 , 45.08, 46.06, 47.04, 48.02, 49. ]), <a list of 50 Patch objects>)
```


0.1.3 F(n) Runtime Skew & Kurtosis

```
[89]: print(f'Runtime skew = {skew(dividend_df["runtime"])}')
print(f'Runtime kurtosis {kurtosis(dividend_df["runtime"], fisher=False)}')
```

Runtime skew = 0.1981395618499291 Runtime kurtosis 2.654086484509155

0.1.4 F(n) Regression t-Values

[90]: print(results.tvalues)

Intercept -15.064792 len_diff 463.723667

dtype: float64

0.1.5 F(n) Regression Percent Error Distribution

0.1.6 F(n) Regression Percent Error Sample Statistical Moments

Sample moments indicate high peak with large tails, and slight negative skew - a tendency to underestimate runtimes.

```
[92]: print('1st ORDER REGRESSION PERCENT ERROR:')
print(f'Mean = {round(np.mean(dividend_df["pct_err"]), 3)}')
print(f'Variance = {round(np.var(dividend_df["pct_err"]), 3)}')
print(f'Skew = {round(skew(dividend_df["pct_err"]), 3)}')
```

```
print(f'Kurtosis = {round(kurtosis(dividend_df["pct_err"]), 3)}')
     1st ORDER REGRESSION PERCENT ERROR:
     Mean = 0.115
     Variance = 3121.917
     Skew = -0.498
     Kurtosis = 33.683
[93]: dividend_df['pct_err'].describe()
[93]: count
               9989.000000
                   0.114648
      mean
      std
                 55.876918
      min
               -447.558716
      25%
                 -2.854447
      50%
                   1.594036
      75%
                   5.373618
      max
                 452.320859
      Name: pct_err, dtype: float64
     0.2 F(m): Variable Divisor Size - m = \{2, 3, ..., 9999\}, n = 10000
[94]: divisor_df = pd.read_csv('divisor_log.txt', header=None)
      divisor_df = pd.DataFrame(divisor_df[0].str.split().tolist()).astype(int)
      divisor_df.columns = ['return_value', 'dividend_size', 'divisor_size', 'runtime']
      divisor_df
[94]:
            return_value
                           dividend_size
                                           divisor_size
                                                          runtime
      0
                                    10000
                                                       2
                        1
                                                                6
                                                                7
      1
                        1
                                    10000
                                                       3
      2
                        1
                                    10000
                                                       4
                                                                9
      3
                                    10000
                                                       5
                                                                10
                        1
      4
                        1
                                    10000
                                                       6
                                                               12
      9993
                        1
                                    10000
                                                    9995
                                                               92
                        1
                                    10000
                                                    9996
                                                               92
      9994
                        1
      9995
                                    10000
                                                    9997
                                                                92
      9996
                        1
                                    10000
                                                    9998
                                                                89
      9997
                                    10000
                                                    9999
                                                               89
      [9998 rows x 4 columns]
```

0.2.1 F(m) Plot: Fit 2nd Order Polynomial to Dataset - $F(m) \approx -m^2 + m$

We observe a negative quadratic relationship with a trace amount of extreme runtimes.

OLS Regression Results

	========				=======	========
Dep. Variable:	runtime		R-so	quared:	0.993	
Model:		OLS	Adj	. R-squared:		0.993
Method:	Least So	quares	F-s	tatistic:		7.029e+05
Date:	Thu, 18 Nov 2021		Prol	b (F-statist	0.00	
Time:	09:	29:32	Log-	-Likelihood:	-59863.	
No. Observations:		9998	AIC	:		1.197e+05
Df Residuals:		9995	BIC	:		1.198e+05
Df Model:		2				
Covariance Type:	noni	robust				
=======================================	========		=====		======	=========
======						
	coef	std 6	err	t	P> t	[0.025
0.975]						
	11 0540	0.0	005	2 000	0 000	16 000
Intercept -5.580	-11.2542	2.0	895	-3.888	0.000	-16.928
divisor_size	1.5413	0 (001	1153.020	0.000	1.539
1.544	1.5415	0.0	001	1155.020	0.000	1.559
divisor_size_square	-0.0002	1 200-	-07 -	-1185.474	0.000	-0.000
-0.000	0.0002	1.236	01	1103.474	0.000	0.000
=======================================	=========	:=====:	=====	========	=======	=========
Omnibus:	2050	3.866	Durl	bin-Watson:		0.991
Prob(Omnibus):	0.000		Jar	Jarque-Bera (JB):		198180670.199
Skew:	16.702			Prob(JB):		0.00
Kurtosis:		91.922		d. No.		1.34e+08
	=========				=======	=========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.34e+08. This might indicate that there are strong multicollinearity or other numerical problems.

0.2.2 F(m) Runtime Histogram

```
[96]: plt.hist(divisor_df['runtime'], bins=30)

[96]: (array([3.320e+02, 4.080e+02, 4.320e+02, 4.470e+02, 4.680e+02, 5.020e+02, 5.290e+02, 5.990e+02, 6.510e+02, 6.890e+02, 5.840e+02, 1.206e+03, 1.940e+03, 1.117e+03, 7.800e+01, 1.000e+01, 3.000e+00, 1.000e+00, 0.000e+00, 1.000e+00, 0.000e+00, 0.000e+00, 1.000e+00]),
    array([6.0000000e+00, 2.95166667e+02, 5.84333333e+02, 8.73500000e+02, 1.16266667e+03, 1.45183333e+03, 1.74100000e+03, 2.03016667e+03, 2.31933333e+03, 2.60850000e+03, 2.89766667e+03, 3.18683333e+03, 3.47600000e+03, 3.76516667e+03, 4.05433333e+03, 4.34350000e+03, 4.63266667e+03, 4.92183333e+03, 5.21100000e+03, 5.50016667e+03, 5.78933333e+03, 6.07850000e+03, 6.36766667e+03, 6.65683333e+03, 6.94600000e+03, 7.23516667e+03, 7.52433333e+03, 7.81350000e+03, 8.10266667e+03, 8.39183333e+03, 8.68100000e+03]),
<a href="mailto:array([3.320e+02, 4.0540000e+03])"><a href="mailto:array([3.320e+02, 4.0540000e+03])"><a href="mailto:array([3.320e+02, 4.0540000e+03])"><a href="mailto:array([3.320e+02, 4.0540000e+03])"><a href="mailto:array([3.320e+02, 4.0540000e+03])"><a href="mailto:array([3.320e+02, 4.05400000e+03])"><a href="mailto:array([3.320e+02, 4.05400000e+03]"><a href="mailto:array([3.320000e+0
```


0.2.3 F(m) Runtime Skew & Kurtosis

```
[97]: print(f'Runtime skew = {skew(divisor_df["runtime"])}')
print(f'Runtime kurtosis {kurtosis(divisor_df["runtime"], fisher=False)}')
```

Runtime skew = -0.5906818055727012Runtime kurtosis 2.1884923856929657

0.2.4 F(m) Regression t-Values

[98]: print(results.tvalues)

```
Intercept -3.888035
divisor_size 1153.020022
divisor_size_square -1185.473905
dtype: float64
```

0.2.5 F(m) Regression Percent Error Distribution

```
[99]: divisor_df['runtime'] = divisor_df['runtime'].replace(0, .1)
divisor_df['pct_err'] = 100*(divisor_df['regression'] - divisor_df['runtime'])/

→divisor_df['runtime']
```

```
plt.hist(divisor_df['pct_err'], bins=100)
plt.title('Divisor Regression Percent Error Histogram')
plt.xlabel('Percent Error')
plt.ylabel('Occurrences')
plt.savefig('divisor_hist.png')
```


0.2.6 F(m) Regression Percent Error Sample Statistical Moments

Sample moments indicate extremely high peak with very large tails, and strong negative skew - tendency to underestimate runtimes \P

```
[100]: print(f'Mean = {round(np.mean(divisor_df["pct_err"]), 3)}')
    print(f'Variance = {round(np.var(divisor_df["pct_err"]), 3)}')
    print(f'Skew = {round(skew(divisor_df["pct_err"]), 3)}')
    print(f'Kurtosis = {round(kurtosis(divisor_df["pct_err"]), 3)}')

Mean = -0.584
    Variance = 35.824
    Skew = -16.527
    Kurtosis = 469.98

[101]: divisor_df['pct_err'].describe()
```

```
[101]: count
              9998.000000
      mean
                 -0.583528
      std
                  5.985617
      min
               -236.202631
      25%
                 -1.337240
      50%
                  1.022642
      75%
                  1.655003
                  3.176226
      max
      Name: pct_err, dtype: float64
```