University of Groningen

INTRODUCTION TO DATA SCIENCE

Assignment 7: Text Analysis

Group 16:

Otte TJEPKEMA (s3237184) José RODRIGUES (s4169328) Andrei MICULITA (s4161947) Robert RIESEBOS (s3220672)

October 21, 2019

Contents

1	Part A - LSA Search	2
2	Part B - Term Weightings	9
	2.1 Matlab code	11

1 Part A - LSA Search

(a) To create the query vector, i.e. the vector containing the term frequency for each term in the query, we loop over the list of tokens q and for each token we call search_for_term() on the InvertedIndex object. If it returns a tuple that's not None we increment the frequency of the term in the query vector, at the corresponding index. Passing the query "Human Computer Interaction" results in the query vector: [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0].

```
def create_query_vector(self, q):
   ret_q = [0.0 for i in range(self.I.get_total_terms())]
    # This is where we ensure the query text is tokenized and
    \rightarrow processed the same as the text was in the Inverted
    \hookrightarrow Index (we use the same function call). It's important
    → any terms we introduce as a query are in the same
    → format as what can be found in the semantic space (if
    \rightarrow they are there at all).
    q = self.I.process_text(q)
    # Create a query vector
    for t in q:
        w, index_of_t = self.I.search_for_term(t)
        if index_of_t is not None:
            ret_q[index_of_t] += 1
    # If our semantic space was generated from an initial
    → weighted A matrix1 than we would need to weight our
       query vector the same way. You'd do that here.
    ##
    ret_q = self.fold_in_query(ret_q)
   return ret_q
```

Once the query vector is constructed we call fold_in_query() with the query vector as argument, in order to transform it into the semantic space (by folding it in to its linear space). This is done using the formula given in the assignment: transformed query vector = $\bar{q}^T T S^{-1}$. In code this translates to looping over the number of terms and amount of ranks, and multiplying the passed query vector q with T and S_inv. This method transforms the query vector listed above in

to the following vector: [-0.138, 0.0276, -0.0529, 0.614, -0.142, -0.456, 0.261, 0.00335, -0.236] (numbers rounded to three significant digits to prevent cluttering the report).

```
def fold_in_query(self, q):
   # new query is qTS^{-1}
   no_terms = self.T.shape[0]
   rank = self.T.shape[1]
    # Create vector for folded in query
   fol_q = [0.0 for i in range(rank)]
    # The T matrix will have as many rows as corresponds to
    → terms but will have *rank* number of columns. Perform
      the calculation as outlined above.
    # Can you optimise this further using the S_inv array in
    → the constructor?
    # Multiply q by T and scale by S^{-1}
    \# qT = q @ self.T
    \# fol_q = qT @ self.S_inv
   for i in range(rank):
       for j in range(no_terms):
           fol_q[i] += q[j] * self.T[j][i] * self.S_inv[i]
   return fol_q
```

(b) To compare the similarity of the query that's transformed into the SVD vector space with a document we complete the cosine_with_doc method which returns the cosine similarity score between the two vectors. To do so we first reduce the dimensionality of the query and document vectors by only taking the first max_dimension values and rows respectively. Then both vectors are scaled using the S vector from the SVD. Next the magnitudes of both scaled vectors is calculated using numpy's linalg.norm() function. Finally, in order to calculate the cosine similarity score, we use a loop to calculate the dot product of query_scaled and document_scaled divided by the product of magnitudes for normalization. Which equates to the formula given in the assignment:

$$cos(\theta) = \frac{\vec{q} \cdot D_i^\top}{||\vec{q}|| \ ||D_i^\top||}$$

def cosine_with_doc(self, q, doc):

```
# Dimensionality reduction
query = q[:self.max_dimension]
document = self.Dt[:self.max_dimension, doc]
# Scaling
query_scaled = query * self.S[:self.max_dimension]
document_scaled = document * self.S[:self.max_dimension]
\# m_q and m_d are the magnitudes of the query and document
\rightarrow vectors
m_q = np.linalg.norm(query_scaled)
m_d = np.linalg.norm(document_scaled)
# This would be the dot product of q*S [dot] Dt[*]*S[doc]
calc = 0.0
# Can you optimise this further using the S_sq array
→ generated in the constructor?
# Calculate cosine similarity score
for i in range(self.max_dimension):
    calc += (query_scaled[i] * document_scaled[i]) / (m_q *
    \hookrightarrow m_d)
return calc
```

The results of comparing the transformed query vector with all documents are shown in table 1 below.

Document	Cosine similarity score
C3	0.998
C4	0.987
C5	0.908
M1	-0.124
M2	-0.106
M3	-0.099
M4	0.050

Table 1: Similarities between query and documents in semantic space

(c) Finally we implement the method cosine_with_term that does the same as the previous cosine_with_doc method but it compares two terms instead of a query in semantic space and a document. Hence the code is the same apart from where the query and document are

selected and reduced in dimensionality. Here, instead both terms are selected from the T vector with the dimensionality corresponding to max_dimension.

```
def cosine_with_term(self, t1, t2):
    # Dimensionality reduction
    term_1 = self.T[t1, :self.max_dimension]
    term_2 = self.T[t2, :self.max_dimension]
    # Scaling
    term_1_scaled = term_1 * self.S[:self.max_dimension]
    term_2_scaled = term_2 * self.S[:self.max_dimension]
    \# m_t1 and m_t2 are the magnitudes of the term vectors
   m_t1 = np.linalg.norm(term_1_scaled)
   m_t2 = np.linalg.norm(term_2_scaled)
    # This would be the dot product of t1*S [dot] t2*S
    calc = 0.0
    \# Can you optimise this further using the S_sq array
    → generated in the constructor?
    # Calculate cosine similarity score
    for i in range(self.max_dimension):
        calc += (term_1_scaled[i] * term_2_scaled[i]) / (m_t1 *
        \rightarrow m_t2)
   return calc
```

The results of comparing all terms with each other are given in the tables below.

term: computer	cos	term: eps	cos
computer	1.000	computer	0.888
eps	0.888	eps	1.000
graph	0.210	graph	-0.264
human	0.874	human	1.000
interface	0.919	interface	0.997
minors	0.226	minors	-0.248
response	0.987	response	0.801
survey	0.793	survey	0.423
system	0.946	system	0.989
$_{ m time}$	0.987	$_{ m time}$	0.801
trees	0.169	trees	-0.304
user	1.000	user	0.900

term: graph	cos	term: human	cos
computer	0.210	computer	0.874
eps	-0.264	eps	1.000
graph	1.000	graph	-0.291
human	-0.291	human	1.000
interface	-0.193	interface	0.995
minors	1.000	minors	-0.275
response	0.366	response	0.784
survey	0.762	survey	0.398
system	-0.119	system	0.985
$_{ m time}$	0.366	$_{ m time}$	0.784
trees	0.999	trees	-0.330
user	0.182	user	0.888
			ı

\cos	term: minors	\cos
0.919	$\overline{\hspace{1cm}}$ computer	0.226
0.997	eps	-0.248
-0.193	graph	1.000
0.995	human	-0.275
1.000	interface	-0.177
-0.177	minors	1.000
0.842	response	0.381
0.488	survey	0.773
0.997	system	-0.102
0.842	time	0.381
-0.234	trees	0.998
0.929	user	0.198
		•
	0.919 0.997 -0.193 0.995 1.000 -0.177 0.842 0.488 0.997 0.842 -0.234	0.919 computer 0.997 eps -0.193 graph 0.995 human 1.000 interface -0.177 minors 0.842 response 0.488 survey 0.997 system 0.842 time -0.234 trees

term: response	cos	term: survey	cos
computer	0.987	computer	0.793
eps	0.801	eps	0.423
graph	0.366	graph	0.762
human	0.784	human	0.398
interface	0.842	interface	0.488
minors	0.381	minors	0.773
response	1.000	response	0.881
survey	0.881	survey	1.000
system	0.881	system	0.552
$_{ m time}$	1.000	$_{ m time}$	0.881
trees	0.326	trees	0.735
user	0.982	user	0.775

erm: system	cos	term: $time$	cos
computer	0.946	computer	0.987
eps	0.989	eps	0.801
graph	-0.119	graph	0.366
human	0.985	human	0.784
interface	0.997	interface	0.842
minors	-0.102	minors	0.381
response	0.881	response	1.000
survey	0.552	survey	0.881
system	1.000	system	0.881
$_{ m time}$	0.881	$_{ m time}$	1.000
trees	-0.160	trees	0.326
user	0.955	user	0.982

term: trees	cos	term: user	\cos
computer	0.169	computer	1.000
eps	-0.304	eps	0.900
graph	0.999	graph	0.182
human	-0.330	human	0.888
interface	-0.234	interface	0.929
minors	0.998	minors	0.198
response	0.326	response	0.982
survey	0.735	survey	0.775
system	-0.160	system	0.955
$_{ m time}$	0.326	time	0.982
trees	1.000	trees	0.141
user	0.141	user	1.000

2 Part B - Term Weightings

(a) **TF-IDF** We start with the matrix A, where A_{ij} corresponds to the number of times term i appears in document j. This matrix uses a term frequency model (TF).

$$A = \begin{bmatrix} 1.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 & 1.00 \\ 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 1.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 1.00 & 2.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0$$

Next we will apply two weighing schemes to this matrix. We start with Term Frequency - Inverse Document Frequency (TF-IDF), which is given by

$$A_{ij} = f_{ij} \log \left(\frac{n}{\sum_{j} \chi(f_{ij})} \right)$$

where

 f_{ij} = The term frequency of term i in document j $\chi(\nu) = 1$ if $\nu > 0$, 0 otherwise (binary indicator) n = Total number of documents

note also that \sum_{j} indicates the sum over one row of the matrix. To apply this formula a simple matlab script was made, which can be seen in section 2.1. Since we are dealing with matrices a nested for loop was used. To calculate the $\sum_{j} \chi(f_{ij})$ term, the number of nonzero entries in row i was taken. The result of this loop gives us a matrix

containing the TF-IDF terms, which we call matrix B.

$$B = \begin{bmatrix} 1.50 & 1.50 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.50 & 1.50 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.10 & 1.10 & 1.10 \\ 1.50 & 0.00 & 0.00 & 1.50 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.50 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.50 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.50 & 0.00 & 0.00 & 1.50 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.50 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.50 \\ 0.00 & 1.10 & 1.10 & 2.20 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.50 & 0.00 & 0.00 & 1.50 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.50 & 0.00 & 0.00 & 1.50 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.50 & 0.00 & 0.00 & 1.50 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.10 & 1.10 & 0.00 & 1.10 & 1.10 & 1.10 & 1.10 & 0.00 \\ 0.00 & 1.10 & 1.10 & 0.00 & 1.10 & 0.00 & 0.00 & 0.00 & 0.00 \end{bmatrix}$$

(b) **Log-Entropy** Finally we apply the log entropy weighing scheme, which is given by

$$A_{ij} = \log (1 + f_{ij}) \left[1 + \left(\sum_{j} \frac{p_{ij} \log (p_{ij})}{\log (n)} \right) \right]$$

where

 f_{ij} = The term frequency of term i in document j

$$p_{ij} = \frac{f_{ij}}{\sum_{j} f_{ij}}$$

Proportion of term i in document j with respect

to the total frequency count of f_{ij}

n = Total number of documents

where again \sum_{j} implies a sum over the columns of matrix A. The Log-Entropy matrix was also calculated with the matlab script. To simplify the calculation another matrix containing the p_{ij} terms was first computed. After that we can easily compute the Log-Entropy matrix by using a nested for loop. Note that wen $A_{ij} = 0$, $p_{ij} \log p_{ij} = 0 * -\infty$, which is not defined, to solve this we use the limit definition

$$\lim_{x \to 0} x \log (x) = 0$$

which can be found using l'Hospital's rule. Therefore we replace the $0 * -\infty$ elements with 0. This gives us the matrix containing Logentropy elements, which we call matrix C

```
0.47 \quad 0.47 \quad 0.00 \quad 0.00
                                                          0.00
                                0.00 \quad 0.00
                                             0.00
                                                   0.00
                   0.47
      0.00
            0.00
                         0.47
                                0.00
                                      0.00
                                             0.00
                                                   0.00
                                                          0.00
      0.00
            0.00
                   0.00
                         0.00
                                0.00
                                      0.00
                                             0.35
                                                   0.35
                                                          0.35
                                      0.00
                                                          0.00
      0.47
            0.00
                   0.00
                         0.47
                                0.00
                                             0.00
                                                   0.00
      0.47
            0.00
                   0.47
                          0.00
                                0.00
                                      0.00
                                             0.00
                                                   0.00
                                                          0.00
      0.00
            0.00
                   0.00
                          0.00
                                0.00
                                      0.00
                                             0.00
                                                   0.47
                                                          0.47
C =
      0.00
            0.47
                   0.00
                          0.00
                                0.47
                                      0.00
                                             0.00
                                                   0.00
                                                          0.00
      0.00
            0.47
                   0.00
                         0.00
                                0.00
                                      0.00
                                             0.00
                                                   0.00
                                                          0.47
      0.00
            0.37
                   0.37
                         0.58
                                      0.00
                                             0.00
                                                   0.00
                                                          0.00
                                0.00
      0.00
            0.47
                   0.00
                         0.00
                                0.47
                                      0.00
                                             0.00
                                                   0.00
                                                          0.00
      0.00
                                0.00
                                      0.35
                                                          0.00
            0.00
                   0.00
                          0.00
                                             0.35
                                                   0.35
      0.00
            0.35
                   0.35
                         0.00
                                0.35
                                      0.00
                                             0.00
                                                   0.00 \quad 0.00
```

2.1 Matlab code

```
%Construct matrix A
A = [1,1,0,0,0,0,0,0,0]
     0,0,1,1,0,0,0,0,0;
     0,0,0,0,0,0,1,1,1;
     1,0,0,1,0,0,0,0,0;
     1,0,1,0,0,0,0,0,0;
     0,0,0,0,0,0,0,1,1;
     0,1,0,0,1,0,0,0,0;
     0,1,0,0,0,0,0,0,1;
     0,1,1,2,0,0,0,0,0;
     0,1,0,0,1,0,0,0,0;
     0,0,0,0,0,1,1,1,0;
     0,1,1,0,1,0,0,0,0];
%Construct matrix B for TF-IDF
[nrow,ncol] = size(A);
B = zeros(nrow,ncol);
for i = 1:nrow
    sumChi = sum(any(A(i,:),1));
    for j = 1:ncol
        B(i,j) = A(i,j)*log(ncol/sumChi);
    end
end
%Construct matrix C for Log-Entropy
```

```
C = zeros(nrow,ncol);
P = zeros(nrow,ncol); %Create p_ij elements in matrix P
for i = 1:nrow
    sumf = sum(A(i,:));
    for j = 1:ncol
       P(i,j) = A(i,j)/sumf;
    end
end
for i = 1:nrow
    pij = P(i,:);
    log_pij = log(P(i,:));
    log_pij(log_pij==-Inf) = 0;
    sumterm = sum(pij.*log_pij);
    for j = 1:ncol
        C(i,j) = log(1+A(i,j))*(1+sumterm/log(ncol));
    \quad \text{end} \quad
end
```