

Neural Networks: Optimization Part 1

Intro to Deep Learning, Fall 2017

Story so far

- Neural networks are universal approximators
 - Can model any odd thing
 - Provided they have the right architecture

- We must train them to approximate any function
 - Specify the architecture
 - Learn their weights and biases
- Networks are trained to minimize total "error" on a training set
 - We do so through empirical risk minimization
- We use variants of gradient descent to do so
- The gradient of the error with respect to network parameters is computed through backpropagation

Recap: Gradient Descent Algorithm

- In order to minimize any function f(x) w.r.t. x
- Initialize:

$$-x^{0}$$

$$-k=0$$

• While $|f(x^{k+1}) - f(x^k)| > \varepsilon$ $-x^{k+1} = x^k - \eta \nabla_x f^T$ -k = k+1

Training Neural Nets by Gradient Descent

Total training error:

$$Err = \frac{1}{T} \sum_{t} Div(Y_t, d_t; W_1, W_2, ..., W_K)$$

- Gradient descent algorithm:
- Initialize all weights $W_1, W_2, ..., W_K$
- Do:
 - For every layer k, compute:

•
$$\nabla_{\mathbf{W}_k} Err = \frac{1}{T} \sum_t \nabla_{\mathbf{W}_k} Div(\mathbf{Y}_t, \mathbf{d}_t)$$

•
$$\mathbf{W}_k = \mathbf{W}_k - \eta \nabla_{\mathbf{W}_k} Err^T$$

Until *Err* has converged

Training Neural Nets by Gradient Descent

Total training error:

$$Err = \frac{1}{T} \sum_{t} Div(Y_t, d_t; W_1, W_2, ..., W_K)$$

- Gradient descent algorithm:
- Initialize all weights $W_1, W_2, ..., W_K$
- Do:
 - For every layer k, compute:

•
$$\nabla_{\mathbf{W}_k} Err = \frac{1}{T} \sum_{t} \nabla_{\mathbf{W}_k} Div(\mathbf{Y}_t, \mathbf{d}_t)$$

• $\mathbf{W}_k = \mathbf{W}_k - \eta \nabla_{\mathbf{W}_k} Err$

•
$$\mathbf{W}_k = \mathbf{W}_k - \eta \nabla_{\mathbf{W}_k} Err$$

Until Err has converged

Computing $Div(Y_t, d_t)$: Forward pass

Forward pass:

Initialize

$$\mathbf{y}_0 = \mathbf{x}$$

For k = 1 to N:
$$\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k \mid \mathbf{y}_k = \mathbf{f}_k(\mathbf{z}_k)$$

$$\mathbf{y}_k = \boldsymbol{f}_k(\mathbf{z}_k)$$

Output

$$Y = \mathbf{y}_N$$

Computing $Div(Y_t, d_t)$: The Backward Pass

- Set $\mathbf{y}_N = Y$, $\mathbf{y}_0 = \mathbf{x}$
- Initialize: Compute $\nabla_{\mathbf{y}_N} Div = \nabla_Y Div$
- For layer k = N downto 1:
 - Compute $J_{\mathbf{y}_k}(\mathbf{z}_k)$
 - Will require intermediate values computed in the forward pass
 - Recursion:

$$\nabla_{\mathbf{z}_k} Div = \nabla_{\mathbf{y}_k} Div. J_{\mathbf{y}_k}(\mathbf{z}_k)$$
$$\nabla_{\mathbf{y}_{k-1}} Div = \nabla_{\mathbf{z}_k} Div. \mathbf{W}_k$$

– Gradient computation:

$$\nabla_{\mathbf{W}_k} Div = \mathbf{y}_{k-1} \cdot \nabla_{\mathbf{z}_k} Div$$
$$\nabla_{\mathbf{b}_k} Div = \nabla_{\mathbf{z}_k} Div$$

Recap: Backpropagation for training

Initialize all weights and biases

$$(\mathbf{W}_1, \mathbf{b}_1, \mathbf{W}_2, \mathbf{b}_2, \dots, \mathbf{W}_N, \mathbf{b}_N)$$

- Do:
 - Initialize Err=0, for all $k: \nabla_{\mathbf{W}_k}Err=0$, $\nabla_{\mathbf{b}_k}Err=0$
 - For all t = 1:T
 - Forward pass : Compute
 - Output $Y(X_t)$
 - $Err += Div(Y_t, d_t)$
 - Backward pass: For all k compute:
 - $\nabla_{\mathbf{W}_k} \mathbf{Div}(\mathbf{Y}_t, \mathbf{d}_t); \nabla_{\mathbf{b}_k} \mathbf{Div}(\mathbf{Y}_t, \mathbf{d}_t)$
 - $\nabla_{\mathbf{W}_k} Err += \nabla_{\mathbf{W}_k} \mathbf{Div}(\mathbf{Y}_t, \mathbf{d}_t); \quad \nabla_{\mathbf{b}_k} Err += \nabla_{\mathbf{b}_k} \mathbf{Div}(\mathbf{Y}_t, \mathbf{d}_t)$
 - For all k, update:

$$\mathbf{W}_k = \mathbf{W}_k - \frac{\eta}{T} (\nabla_{\mathbf{W}_k} Err)^T; \qquad \mathbf{b}_k = \mathbf{b}_k - \frac{\eta}{T} (\nabla_{\mathbf{W}_k} Err)^T$$

Until Err has converged

Overall setup of a typical problem

Training data

- Provide training input-output pairs
- Provide network architecture
- Define divergence
- Backpropagation to learn network parameters

Onward

Onward

- Does backprop always work?
- Convergence of gradient descent
 - Rates, restrictions,
 - Hessians
 - Acceleration and Nestorov
 - Alternate approaches
- Modifying the approach: Stochastic gradients
- Speedup extensions: RMSprop, Adagrad

Does backprop do the right thing?

- Is backprop always right?
 - Assuming it actually find the global minimum of the divergence function?

Does backprop do the right thing?

- Is backprop always right?
 - Assuming it actually find the global minimum of the divergence function?
- In classification problems, the classification error is a non-differentiable function of weights
- The divergence function minimized is only a proxy for classification error
- Minimizing divergence may not minimize classification error

Backprop fails to separate where

perceptron succeeds

- Brady, Raghavan, Slawny, '89
- Simple problem, 3 training instances, single neuron
- Perceptron training rule trivially find a perfect solution

Backprop vs. Perceptron

- Back propagation using logistic function and L_2 divergence $(Div = (y-d)^2)$
- Unique minimum trivially proved to exist,
 Backpropagation finds it

Unique solution exists

- E.g. $u = f^{-1}(0.99)$ representing a 99% confidence in the class

$$w_x$$
. $1 + w_y$. $0 + b = u$
 w_x . $0 + w_y$. $1 + b = u$
 w_x . $-1 + w_y$. $0 + b = -u$

- Unique solution $(w_x = u, w_x = u, b = 0)$ exists
 - represents a unique line regardless of the value of u

Backprop vs. Perceptron

- Now add a fourth point
- t is very large (point near $-\infty$)
- Perceptron trivially finds a solution (may take t² iterations)

Notation:

 $y = \sigma(z)$ = logistic activation

(0,-t),(+1)

- Consider backprop:
- Contribution of fourth point to derivative of L₂ error:

$$div_4 = \left(1 - \sigma(-w_y t + b)\right)^2$$

$$\frac{d \ div_4}{dw_y} = 2\left(1 - \sigma(-w_y t + b)\right)\sigma'(-w_y t + b)t$$

$$\frac{d \ div_4}{db} = -2\left(1 - \sigma(-w_y t + b)\right)\sigma'(-w_y t + b)$$

Notation:

 $y = \sigma(z)$ = logistic activation

$$div_4 = \left(1 - \sigma(-w_y t + b)\right)^2$$

$$\frac{d \ div_4}{dw_y} = 2\left(1 - \sigma(-w_y t + b)\right)\sigma'(-w_y t + b)t$$

$$\frac{d \ div_4}{db} = 2\left(1 - \sigma(-w_y t + b)\right)\sigma'(-w_y t + b)t$$

- For very large positive t, $|w_y| > \epsilon$ (where $\mathbf{w} = [w_x, w_y, b]$)
- $(1 \sigma(-w_y t + b)) \rightarrow 1 \text{ as } t \rightarrow \infty$
- $\sigma'(-w_y t + b) \to 0$ exponentially as $t \to \infty$
- Therefore, for very large positive t

$$\frac{d\ div_4}{dw_y} = \frac{d\ div_4}{db} = 0$$

- The fourth point at (0, -t) does not change the gradient of the L_2 divergence near the optimal solution for 3 points
- The optimum solution for 3 points is also a broad local minimum (0 gradient) for the 4-point problem!
 - Will be trivially found by backprop nearly all the time

- Local optimum solution found by backprop
- Does not separate the points even though the points are linearly separable!

- Solution found by backprop
- Does not separate the points even though the points are linearly separable!
- Compare to the perceptron: Backpropagation fails to separate where the perceptron succeeds

Backprop fails to separate where perceptron succeeds

- Brady, Raghavan, Slawny, '89
- Several linearly separable training examples
- Simple setup: both backprop and perceptron algorithms find solutions

- Adding a "spoiler" (or a small number of spoilers)
- Perceptron finds the linear separator,

- Adding a "spoiler" (or a small number of spoilers)
 - Perceptron finds the linear separator,
 - Backprop does not find a separator
 - A single additional input does not change the loss function significantly

- Adding a "spoiler" (or a small number of spoilers)
 - Perceptron finds the linear separator,
 - Backprop does not find a separator
 - A single additional input does not change the loss function significantly

- Adding a "spoiler" (or a small number of spoilers)
 - Perceptron finds the linear separator,
 - For bounded w, backprop does not find a separator
 - A single additional input does not change the loss function significantly

- Adding a "spoiler" (or a small number of spoilers)
 - Perceptron finds the linear separator,
 - For bounded w, Backprop does not find a separator
 - A single additional input does not change the loss function significantly

So what is happening here?

- The perceptron may change greatly upon adding just a single new training instance
 - But it fits the training data well
 - The perceptron rule has low bias
 - Makes no errors if possible
 - But high variance
 - Swings wildly in response to small changes to input
- Backprop is minimally changed by new training instances
 - Prefers consistency over perfection
 - It is a low-variance estimator, at the potential cost of bias

Backprop fails to separate even when possible

- This is not restricted to single perceptrons
- In an MLP the lower layers "learn a representation" that enables linear separation by higher layers
 - More on this later
- Adding a few "spoilers" will not change their behavior

Backprop fails to separate even when possible

- This is not restricted to single perceptrons
- In an MLP the lower layers "learn a representation" that enables linear separation by higher layers
 - More on this later
- Adding a few "spoilers" will not change their behavior

Backpropagation

- Backpropagation will often not find a separating solution even though the solution is within the class of functions learnable by the network
- This is because the separating solution is not a feasible optimum for the loss function
- One resulting benefit is that a backprop-trained neural network classifier has lower variance than an optimal classifier for the training data

Variance and Depth

- Dark figures show desired decision boundary (2D)
 - 1000 training points, 660 hidden neurons
 - Network heavily overdesigned even for shallow nets
- Anecdotal: Variance decreases with
 - Depth
 - Data

10000 training instances

The Error Surface

The example (and statements)
 earlier assumed the loss
 objective had a single global
 optimum that could be found

Statement about variance is assuming global optimum

What about local optima

The Error Surface

Popular hypothesis:

- In large networks, saddle points are far more common than local minima
 - Frequency exponential in network size
- Most local minima are equivalent
 - And close to global minimum
- This is not true for small networks

- The slope is zero
- The surface increases in some directions, but decreases in others
 - Some of the Eigenvalues of the Hessian are positive; others are negative
- Gradient descent algorithms often get "stuck" in saddle points

The Controversial Error Surface

- Baldi and Hornik (89), "Neural Networks and Principal Component Analysis: Learning from Examples Without Local Minima": An MLP with a single hidden layer has only saddle points and no local Minima
- Dauphin et. al (2015), "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization": An exponential number of saddle points in large networks
- Chomoranksa et. al (2015), "The loss surface of multilayer networks": For large networks, most local minima lie in a band and are equivalent
 - Based on analysis of spin glass models
- Swirscz et. al. (2016), "Local minima in training of deep networks", In networks of finite size, trained on finite data, you can have horrible local minima
- Watch this space...

Story so far

- Neural nets can be trained via gradient descent that minimizes a loss function
- Backpropagation can be used to derive the derivatives of the loss
- Backprop is not guaranteed to find a "true" solution, even if it exists, and lies within the capacity of the network to model
 - The optimum for the loss function may not be the "true" solution
- For large networks, the loss function may have a large number of unpleasant saddle points
 - Which backpropagation may find

Convergence

- In the discussion so far we have assumed the training arrives at a local minimum
- Does it always converge?
- How long does it take?
- Hard to analyze for an MLP, but we can look at the problem through the lens of convex optimization

A quick tour of (convex) optimization

"I'm searching for my keys."

Convex Loss Functions

- A surface is "convex" if it is continuously curving upward
 - We can connect any two points above the surface without intersecting it
 - Many mathematical definitions that are equivalent
- Caveat: Neural network error surface is generally not convex
 - Streetlight effect

Convergence of gradient descent

- An iterative algorithm is said to converge to a solution if the value updates arrive at a fixed point
 - Where the gradient is 0 and further updates do not change the estimate
- The algorithm may not actually converge
 - It may jitter around the local minimum
 - It may even diverge
- Conditions for convergence?

Convergence and convergence rate

- Convergence rate: How fast the iterations arrive at the solution
- Generally quantified as

$$R = \frac{|f(x^{(k+1)}) - f(x^*)|}{|f(x^{(k)}) - f(x^*)|}$$

- $-x^{(k+1)}$ is the k-th iteration
- $-x^*$ is the optimal value of x
- If R is a constant (or upper bounded),
 the convergence is linear
 - In reality, its arriving at the solution exponentially fast

$$|f(x^{(k)}) - f(x^*)| = c^k |f(x^{(0)}) - f(x^*)|$$

Convergence for quadratic surfaces

$$Minimize E = \frac{1}{2}aw^2 + bw + c$$

$$w^{(k+1)} = w^{(k)} - \eta \frac{dE(w^{(k)})}{dw}$$

Gradient descent with fixed step size η to estimate scalar parameter w

- Gradient descent to find the optimum of a quadratic, starting from w^(k)
- Assuming fixed step size η
- What is the optimal step size
 η to get there fastest?

Convergence for quadratic surfaces

$$E = \frac{1}{2}aw^2 + bw + c$$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta \frac{dE(\mathbf{w}^{(k)})}{d\mathbf{w}}$$

Any quadratic objective can be written as

$$E = E(w^{(k)}) + E'(w^{(k)})(w - w^{(k)})$$
$$+ \frac{1}{2}E''(w^{(k)})(w - w^{(k)})^{2}$$

- Taylor expansion
- Minimizing w.r.t w, we get (Newton's method)

$$w_{min} = \mathbf{w}^{(k)} - E''(\mathbf{w}^{(k)})^{-1} E'(\mathbf{w}^{(k)})$$

Note:

$$\frac{dE(\mathbf{w}^{(k)})}{d\mathbf{w}} = E'(\mathbf{w}^{(k)})$$

 Comparing to the gradient descent rule, we see that we can arrive at the optimum in a single step using the optimum step size

$$\eta_{opt} = E''(\mathbf{w}^{(k)})^{-1}$$

With non-optimal step size

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta \frac{dE(\mathbf{w}^{(k)})}{d\mathbf{w}}$$

Gradient descent with fixed step size η to estimate scalar parameter w

- For $\eta < \eta_{opt}$ the algorithm will converge monotonically
- For $2\eta_{opt} > \eta > \eta_{opt}$ we have oscillating convergence
- For $\eta > 2\eta_{opt}$ we get divergence

For generic differentiable convex objectives

• Any differentiable convex objective E(w) can be approximated as

$$E \approx E(\mathbf{w}^{(k)}) + (w - \mathbf{w}^{(k)}) \frac{dE(\mathbf{w}^{(k)})}{dw} + \frac{1}{2}(w - \mathbf{w}^{(k)})^2 \frac{d^2E(\mathbf{w}^{(k)})}{dw^2} + \cdots$$

- Taylor expansion
- Using the same logic as before, we get (Newton's method)

$$\eta_{opt} = \left(\frac{d^2 E(\mathbf{w}^{(k)})}{dw^2}\right)^{-1}$$

• We can get divergence if $\eta \geq 2\eta_{opt}$

For functions of *multivariate* inputs

$$E = g(\mathbf{w})$$
, \mathbf{w} is a vector $\mathbf{w} = [w_1, w_2, ..., w_N]$

Consider a simple quadratic convex (paraboloid) function

$$E = \frac{1}{2}\mathbf{w}^T\mathbf{A}\mathbf{w} + \mathbf{w}^T\mathbf{b} + c$$

- Since $E^T = E$ (E is scalar), A can always be made symmetric
 - For **convex** *E* , **A** is always positive definite, and has positive eigenvalues
- When A is diagonal:

$$E = \frac{1}{2} \sum_{i} (a_{ii} w_i^2 + b_i w_i) + c$$

- The w_i s are uncoupled
- For convex (paraboloid) E, the a_{ii} values are all positive
- Just an sum of N independent quadratic functions

Multivariate Quadratic with Diagonal A

$$E = \frac{1}{2} \mathbf{w}^{T} \mathbf{A} \mathbf{w} + \mathbf{w}^{T} \mathbf{b} + c = \frac{1}{2} \sum_{i} (a_{ii} w_{i}^{2} + b_{i} w_{i}) + c$$

Equal-value contours will be parallel to the axis

Multivariate Quadratic with Diagonal A

$$E = \frac{1}{2} \mathbf{w}^{T} \mathbf{A} \mathbf{w} + \mathbf{w}^{T} \mathbf{b} + c = \frac{1}{2} \sum_{i} (a_{ii} w_{i}^{2} + b_{i} w_{i}) + c$$

- Equal-value contours will be parallel to the axis
 - All "slices" parallel to an axis are shifted versions of one another

$$E = \frac{1}{2}a_{ii}w_i^2 + b_iw_i + c + C(\neg w_i)$$

Multivariate Quadratic with Diagonal A

$$E = \frac{1}{2} \mathbf{w}^{T} \mathbf{A} \mathbf{w} + \mathbf{w}^{T} \mathbf{b} + c = \frac{1}{2} \sum_{i} (a_{ii} w_{i}^{2} + b_{i} w_{i}) + c$$

Equal-value contours will be parallel to the axis

15

All "slices" parallel to an axis are shifted versions of one another

$$E = \frac{1}{2}a_{ii}w_i^2 + b_iw_i + c + C(\neg w_i)$$

"Descents" are uncoupled

- The optimum of each coordinate is not affected by the other coordinates
 - I.e. we could optimize each coordinate independently
- Note: Optimal learning rate is different for the different coordinates

Vector update rule

$$\mathbf{w}^{(k+1)} \leftarrow \mathbf{w}^{(k)} - \eta \nabla_{\mathbf{w}} E$$

$$w_i^{(k+1)} = w_i^{(k)} - \eta \frac{dE\left(w_i^{(k)}\right)}{dw}$$

- Conventional vector update rules for gradient descent: update entire vector against direction of gradient
 - Note: Gradient is perpendicular to equal value contour
 - The same learning rate is applied to all components

Problem with vector update rule

$$\mathbf{w}^{(k+1)} \leftarrow \mathbf{w}^{(k)} - \eta \nabla_{\mathbf{w}} E^T$$

$$\mathbf{w}^{(k+1)} \leftarrow \mathbf{w}^{(k)} - \eta \nabla_{\mathbf{w}} E^{T} \qquad w_i^{(k+1)} = w_i^{(k)} - \eta \frac{dE\left(w_i^{(k)}\right)}{dw}$$

$$\eta_{i,opt} = \left(\frac{d^2E\left(w_i^{(k)}\right)}{dw_i^2}\right)^{-1} = a_{ii}^{-1}$$

The learning rate must be lower than twice the *smallest* optimal learning rate for any component

$$\eta < 2 \min_{i} \eta_{i,opt}$$

- Otherwise the learning will diverge
- This, however, makes the learning very slow
 - And will oscillate in all directions where $\eta_{i,opt} \leq \eta < 2\eta_{i,opt}$

Dependence on learning rate

Dependence on learning rate

•
$$\eta_{1,opt} = 1$$
; $\eta_{2,opt} = 0.91$; $\eta = 1.9 \, \eta_{2,opt}$

Convergence

- Convergence behaviors become increasingly unpredictable as dimensions increase
- For the fastest convergence, ideally, the learning rate η must be close to both, the largest $\eta_{i,opt}$ and the smallest $\eta_{i,opt}$
 - To ensure convergence in every direction
 - Generally infeasible
- Convergence is particularly slow if $\frac{\max\limits_{i}\eta_{i,opt}}{\min\limits_{i}\eta_{i,opt}}$ is large
 - The "condition" number is small

More Problems

- For quadratic (strongly) convex functions, gradient descent is exponentially fast
 - Linear convergence
 - Assuming learning rate is non-divergent
- For generic (Lifschitz Smooth) convex functions however, it is very slow

$$|f(w^{(k)}) - f(w^*)| \propto \frac{1}{k} |f(w^{(0)}) - f(w^*)|$$

And inversely proportional to learning rate

$$|f(w^{(k)}) - f(w^*)| \le \frac{1}{2\eta k} |w^{(0)} - w^*|$$

- Takes $O(1/\epsilon)$ iterations to get to within ϵ of the solution
- An inappropriate learning rate will destroy your happiness

The reason for the problem

- The objective function has different eccentricities in different directions
 - Resulting in different optimal learning rates for different directions
- Solution: Normalize the objective to have identical eccentricity in all directions
 - Then all of them will have identical optimal learning rates
 - Easier to find a working learning rate

Solution: Scale the axes

- Scale the axes, such that all of them have identical (identity) "spread"
 - Equal-value contours are circular
- **Note:** equation of a quadratic surface with circular equal-value contours can be written as

$$E = \frac{1}{2}\widehat{\mathbf{w}}^T\widehat{\mathbf{w}} + \widehat{\mathbf{b}}^T\widehat{\mathbf{w}} + c$$

Original equation:

$$E = \frac{1}{2}\mathbf{w}^T \mathbf{A} \mathbf{w} + \mathbf{b}^T \mathbf{w} + c$$

We want to find a (diagonal) scaling matrix S such that

$$S = \begin{bmatrix} s_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & s_N \end{bmatrix}, \quad \widehat{\mathbf{w}} = S\mathbf{w}$$

And

$$E = \frac{1}{2}\widehat{\mathbf{w}}^T\widehat{\mathbf{w}} + \widehat{\mathbf{b}}^T\widehat{\mathbf{w}} + \mathbf{c}$$

We have

$$E = \frac{1}{2} \mathbf{w}^T \mathbf{A} \mathbf{w} + \mathbf{b}^T \mathbf{w} + c$$

$$\widehat{\mathbf{w}} = \mathbf{S} \mathbf{w}$$

$$E = \frac{1}{2} \widehat{\mathbf{w}}^T \widehat{\mathbf{w}} + \widehat{\mathbf{b}}^T \widehat{\mathbf{w}} + c$$

$$= \frac{1}{2} \mathbf{w}^T \mathbf{S}^T \mathbf{S} \mathbf{w} + \widehat{\mathbf{b}}^T \mathbf{S} \mathbf{w} + c$$

Equating linear and quadratic coefficients, we get

$$S^TS = \mathbf{A}, \qquad \hat{\mathbf{b}}^TS = \mathbf{b}^T$$

• Solving: $S = A^{0.5}$, $\hat{b} = A^{-0.5}b$

We have

$$E = \frac{1}{2}\mathbf{w}^{T}\mathbf{A}\mathbf{w} + \mathbf{b}^{T}\mathbf{w} + c$$
$$\widehat{\mathbf{w}} = S\mathbf{w}$$

$$E = \frac{1}{2}\widehat{\mathbf{w}}^T\widehat{\mathbf{w}} + \widehat{\mathbf{b}}^T\widehat{\mathbf{w}} + \mathbf{c}$$

Solving for S we get

$$\widehat{\mathbf{w}} = \mathbf{A}^{0.5}\mathbf{w}, \qquad \widehat{\mathbf{b}} = \mathbf{A}^{-0.5}\mathbf{b}$$

We have

$$E = \frac{1}{2}\mathbf{w}^{T}\mathbf{A}\mathbf{w} + \mathbf{b}^{T}\mathbf{w} + c$$
$$\widehat{\mathbf{w}} = S\mathbf{w}$$

$$E = \frac{1}{2}\widehat{\mathbf{w}}^T\widehat{\mathbf{w}} + \widehat{\mathbf{b}}^T\widehat{\mathbf{w}} + \mathbf{c}$$

Solving for S we get

$$\widehat{\mathbf{w}} = \widehat{\mathbf{A}^{0.5}}\mathbf{w}, \qquad \widehat{\mathbf{b}} = \widehat{\mathbf{A}^{-0.5}}\mathbf{b}$$

The Inverse Square Root of A

For any positive definite A, we can write

$$\mathbf{A} = \mathbf{E} \mathbf{\Lambda} \mathbf{E}^{\mathrm{T}}$$

- Eigen decomposition
- E is an orthogonal matrix
- $-\Lambda$ is a diagonal matrix of non-zero diagonal entries
- Defining $A^{0.5} = E\Lambda^{0.5}$
 - Check $(\mathbf{A}^{0.5})^{\mathrm{T}}\mathbf{A}^{0.5} = \mathbf{E}\mathbf{\Lambda}\mathbf{E}^{\mathrm{T}} = \mathbf{A}$
- Defining $A^{-0.5} = E \Lambda^{-0.5}$
 - Check: $(\mathbf{A}^{-0.5})^{\mathrm{T}}\mathbf{A}^{-0.5} = \mathbf{E}\mathbf{\Lambda}^{-1}\mathbf{E}^{\mathrm{T}} = \mathbf{A}^{-1}$

Returning to our problem

$$E = \frac{1}{2}\widehat{\mathbf{w}}^T\widehat{\mathbf{w}} + \widehat{\mathbf{b}}^T\widehat{\mathbf{w}} + c$$

• Computing the gradient, and noting that $A^{0.5}$ is symmetric, we can relate $\nabla_{\widehat{\mathbf{w}}} E$ and $\nabla_{\mathbf{w}} E$:

$$\nabla_{\widehat{\mathbf{w}}} E = \widehat{\mathbf{w}}^T + \widehat{\mathbf{b}}^T$$

$$= \mathbf{w}^T \mathbf{A}^{0.5} + \mathbf{b}^T \mathbf{A}^{-0.5}$$

$$= (\mathbf{w}^T \mathbf{A} + \mathbf{b}^T) \mathbf{A}^{-0.5}$$

$$= \nabla_{\mathbf{w}} E \cdot \mathbf{A}^{-0.5}$$

Returning to our problem

$$E = \frac{1}{2}\widehat{\mathbf{w}}^T\widehat{\mathbf{w}} + \widehat{\mathbf{b}}^T\widehat{\mathbf{w}} + c$$

Gradient descent rule:

$$-\widehat{\mathbf{w}}^{(k+1)} = \widehat{\mathbf{w}}^{(k)} - \eta \nabla_{\widehat{\mathbf{w}}} E(\widehat{\mathbf{w}}^{(k)})^{T}$$

- Learning rate is now independent of direction
- Using $\hat{\mathbf{w}} = \mathbf{A}^{0.5}\mathbf{w}$, and $\nabla_{\hat{\mathbf{w}}}E(\hat{\mathbf{w}})^T = \mathbf{A}^{-0.5}\nabla_{\mathbf{w}}E(\mathbf{w})^T$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta \mathbf{A}^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^{T}$$

For non-axis-aligned quadratics...

$$E = \frac{1}{2}\mathbf{w}^T\mathbf{A}\mathbf{w} + \mathbf{w}^T\mathbf{b} + c$$

$$E = \frac{1}{2} \sum_{i} a_{ii} w_i^2 + \sum_{i \neq j} a_{ij} w_i w_j$$
$$+ \sum_{i} b_i w_i + c$$

- If A is not diagonal, the contours are not axis-aligned
 - Because of the cross-terms $a_{ij}w_iw_j$
 - The major axes of the ellipsoids are the *Eigenvectors* of A, and their diameters are proportional to the Eigen values of A
- But this does not affect the discussion
 - This is merely a rotation of the space from the axis-aligned case
 - The component-wise optimal learning rates along the major and minor axes of the equalcontour ellipsoids will be different, causing problems
 - The optimal rates along the axes are Inversely proportional to the eigenvalues of A

For non-axis-aligned quadratics...

- The component-wise optimal learning rates along the major and minor axes of the contour ellipsoids will differ, causing problems
 - Inversely proportional to the eigenvalues of A
- This can be fixed as before by rotating and resizing the different directions to obtain the same *normalized* update rule as before:

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta \mathbf{A}^{-1} \mathbf{b}$$

Generic differentiable multivariate

convex functions

Taylor expansion

$$E(\mathbf{w}) \approx E(\mathbf{w}^{(k)}) + \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)}) (\mathbf{w} - \mathbf{w}^{(k)}) + \frac{1}{2} (\mathbf{w} - \mathbf{w}^{(k)})^{T} H_{E}(\mathbf{w}^{(k)}) (\mathbf{w} - \mathbf{w}^{(k)}) + \cdots$$

Generic differentiable *multivariate* convex functions

Taylor expansion

$$E(\mathbf{w}) \approx E(\mathbf{w}^{(k)}) + \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)}) (\mathbf{w} - \mathbf{w}^{(k)}) + \frac{1}{2} (\mathbf{w} - \mathbf{w}^{(k)})^{T} H_{E}(\mathbf{w}^{(k)}) (\mathbf{w} - \mathbf{w}^{(k)}) + \cdots$$

- Note that this has the form $\frac{1}{2}\mathbf{w}^T\mathbf{A}\mathbf{w} + \mathbf{w}^T\mathbf{b} + c$
- Using the same logic as before, we get the normalized update rule

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E (\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

- For a quadratic function, the optimal η is 1 (which is exactly Newton's method)
 - And should not be greater than 2!

Minimization by Newton's method ($\eta = 1$)

Fit a quadratic at each point and find the minimum of that quadratic

Iterated localized optimization with quadratic approximations

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E (\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

$$-\eta=1$$

Minimization by Newton's method ($\eta = 1$)

Iterated localized optimization with quadratic approximations

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E (\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

$$-\eta=1$$

Minimization by Newton's method ($\eta = 1$)

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E (\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

$$-\eta=1$$

Minimization by Newton's method ($\eta = 1$)

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

$$-\eta=1$$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

$$-\eta=1$$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

$$-\eta=1$$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

$$-\eta=1$$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

$$-\eta=1$$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

$$-\eta=1$$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

$$-\eta=1$$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

$$-\eta=1$$

Issues: 1. The Hessian

Normalized update rule

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

- For complex models such as neural networks, with a very large number of parameters, the Hessian $H_E(\mathbf{w}^{(k)})$ is extremely difficult to compute
 - For a network with only 100,000 parameters, the Hessian will have 10¹⁰ cross-derivative terms
 - And its even harder to invert, since it will be enormous

Issues: 1. The Hessian

- For non-convex functions, the Hessian may not be positive semi-definite, in which case the algorithm can diverge
 - Goes away from, rather than towards the minimum

Issues: 1. The Hessian

- For non-convex functions, the Hessian may not be positive semi-definite, in which case the algorithm can diverge
 - Goes away from, rather than towards the minimum
 - Now requires additional checks to avoid movement in directions corresponding to –ve Eigenvalues of the Hessian

Issues: 1 – contd.

- A great many approaches have been proposed in the literature to approximate the Hessian in a number of ways and improve its positive definiteness
 - Boyden-Fletched-Goldfarb-Shanno (BFGS)
 - And "low-memory" BFGS (L-BFGS)
 - Estimate Hessian from finite differences
 - Levenberg-Marquardt
 - Estimate Hessian from Jacobians
 - Diagonal load it to ensure positive definiteness
 - Other "Quasi-newton" methods
- Hessian estimates may even be local to a set of variables
- Not particularly popular anymore for large neural networks...

Issues: 2. The learning rate

 Much of the analysis we just saw was based on trying to ensure that the step size was not so large as to cause divergence within a convex region

$$-\eta < 2\eta_{opt}$$

Issues: 2. The learning rate

- For complex models such as neural networks the loss function is often not convex
 - Having $\eta > 2\eta_{opt}$ can actually help escape local optima
- However always having $\eta > 2\eta_{opt}$ will ensure that you never ever actually find a solution

- Start with a large learning rate
 - Greater than 2 (assuming Hessian normalization)
 - Gradually reduce it with iterations

Decaying learning rate

- Typical decay schedules
 - Linear decay: $\eta_k = \frac{\eta_0}{k+1}$
 - Quadratic decay: $\eta_k = \frac{\eta_0}{(k+1)^2}$
 - Exponential decay: $\eta_k = \eta_0 e^{-\beta k}$, where $\beta > 0$
- A common approach (for nnets):
 - 1. Train with a fixed learning rate η until loss (or performance on a held-out data set) stagnates
 - 2. $\eta \leftarrow \alpha \eta$, where $\alpha < 1$ (typically 0.1)
 - 3. Return to step 1 and continue training from where we left off

Story so far : Convergence

- Gradient descent can miss obvious answers
 - And this may be a good thing
- Convergence issues abound
 - The error surface has many saddle points
 - Although, perhaps, not so many bad local minima
 - Gradient descent can stagnate on saddle points
 - Vanilla gradient descent may not converge, or may converge toooooo slowly
 - The optimal learning rate for one component may be too high or too low for others

Story so far : Second-order methods

- Second-order methods "normalize" the variation along the components to mitigate the problem of different optimal learning rates for different components
 - But this requires computation of inverses of secondorder derivative matrices
 - Computationally infeasible
 - Not stable in non-convex regions of the error surface
 - Approximate methods address these issues, but simpler solutions may be better

Story so far: Learning rate

- Divergence-causing learning rates may not be a bad thing
 - Particularly for ugly loss functions
- Decaying learning rates provide good compromise between escaping poor local minima and convergence

 Many of the convergence issues arise because we force the same learning rate on all parameters

Lets take a step back

$$\mathbf{w}^{(k+1)} \leftarrow \mathbf{w}^{(k)} - \eta \nabla_{\mathbf{w}} E$$

$$w_i^{(k+1)} = w_i^{(k)} - \frac{dE\left(w_i^{(k)}\right)}{dw}$$

- Problems arise because of requiring a fixed step size across all dimensions
 - Because step are "tied" to the gradient
- Lets try releasing these requirements

Derivative-inspired algorithms

 Algorithms that use derivative information for trends, but do not follow them absolutely

- Rprop
- Quick prop
- May appear in quiz

RProp

- Resilient propagation
- Simple algorithm, to be followed independently for each component
 - I.e. steps in different directions are not coupled
- At each time
 - If the derivative at the current location recommends continuing in the same direction as before (i.e. has not changed sign from earlier):
 - increas the step, and continue in the same direction
 - If the derivative has changed sign (i.e. we've overshot a minimum)
 - reduce the step and reverse direction

- Select an initial value \widehat{w} and compute the derivative
 - Take an initial step Δw against the derivative
 - In the direction that reduces the function

$$-\Delta w = sign\left(\frac{dE(\widehat{w})}{dw}\right)\Delta w$$

$$-\widehat{w} = \widehat{w} - \Delta w$$

- Compute the derivative in the new location
 - If the derivative has not changed sign from the previous location, increase the step size and take a step

$$\alpha > 1$$

•
$$\Delta w = \alpha \Delta w$$

•
$$\widehat{w} = \widehat{w} - \Delta w$$

- Compute the derivative in the new location
 - If the derivative has not changed sign from the previous location, increase the step size and take a step

•
$$\Delta w = \alpha \Delta w$$

•
$$\widehat{w} = \widehat{w} - \Delta w$$

- Compute the derivative in the new location
 - If the derivative has changed sign

E(w) Orange arrow shows direction of derivative, i.e. direction of increasing E(w) $\widehat{w}_0 \quad \widehat{w}_1 \quad \widehat{w}_2 \quad \widehat{w}_3$

- Compute the derivative in the new location
 - If the derivative has changed sign
 - Return to the previous location
 - $\widehat{w} = \widehat{w} + \Delta w$

- Compute the derivative in the new location
 - If the derivative has changed sign
 - Return to the previous location

•
$$\widehat{w} = \widehat{w} + \Delta w$$

β < 1

•
$$\Delta w = \beta \Delta w$$

- Compute the derivative in the new location
 - If the derivative has changed sign
 - Return to the previous location

•
$$\widehat{w} = \widehat{w} + \Delta w$$

β < 1

- $\Delta w = \beta \Delta w$
- Take the smaller step forward

•
$$\widehat{w} = \widehat{w} - \Delta w$$

- Compute the derivative in the new location
 - If the derivative has changed sign
 - Return to the previous location

•
$$\widehat{w} = \widehat{w} + \Delta w$$

β < 1

- $\Delta w = \beta \Delta w$
- Take the smaller step forward

•
$$\widehat{w} = \widehat{w} - \Delta w$$

Rprop (simplified)

- Set $\alpha = 1.2$, $\beta = 0.5$
- For each layer l, for each i, j:
 - Initialize $w_{l,i,j}$, $\Delta w_{l,i,j} > 0$,
 - $prevD(l, i, j) = \frac{dErr(w_{l,i,j})}{dw_{l,i,j}}$
 - $\Delta w_{l,i,j} = \operatorname{sign}(prevD(l,i,j)) \Delta w_{l,i,j}$
 - While not converged:
 - $w_{l,i,j} = w_{l,i,j} \Delta w_{l,i,j}$
 - $D(l,i,j) = \frac{dErr(w_{l,i,j})}{dw_{l,i,j}}$
 - If sign(prevD(l,i,j)) == sign(D(l,i,j)):
 - $\Delta w_{l,i,j} = \min(\alpha \Delta w_{l,i,j}, \Delta_{max})$
 - prevD(l,i,j) = D(l,i,j)
 - else:
 - $w_{l,i,j} = w_{l,i,j} + \Delta w_{l,i,j}$
 - $\Delta w_{l,i,j} = \max(\beta \Delta w_{l,i,j}, \Delta_{min}) \Delta w_{l,i,j}$

Ceiling and floor on step

Rprop (simplified)

- Set $\alpha = 1.2$, $\beta = 0.5$
- For each layer *l*, for each *i*, *j*:
 - Initialize $w_{l,i,j}$, $\Delta w_{l,i,j} > 0$,
 - $prevD(l, i, j) = \frac{dErr(w_{l,i,j})}{dw_{l,i,j}}$
 - $\Delta w_{l,i,j} = \operatorname{sign}(prevD(l,i,j)) \Delta w_{l,i,j}$
 - While not converged:
 - $w_{l,i,j} = w_{l,i,j} \Delta w_{l,i,j}$
 - $D(l,i,j) = \frac{dErr(w_{l,i,j})}{dw_{l,i,j}}$
 - If sign(prevD(l,i,j)) == sign(D(l,i,j)):
 - $\Delta w_{l,i,j} = \alpha \Delta w_{l,i,j}$
 - prevD(l,i,j) = D(l,i,j)
 - else:
 - $w_{l,i,j} = w_{l,i,j} + \Delta w_{l,i,j}$
 - $\Delta w_{l,i,j} = \beta \Delta w_{l,i,j}$

Obtained via backprop

Note: Different parameters updated independently

RProp

- A remarkably simple first-order algorithm, that is frequently much more efficient than gradient descent.
 - And can even be competitive against some of the more advanced second-order methods
- Only makes minimal assumptions about the loss function
 - No convexity assumption

QuickProp

Quickprop employs the Newton updates with two modifications

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

But with two modifications

QuickProp: Modification 1

- It treats each dimension independently
- For i=1:N $w_i^{k+1} = w_i^k E''(w_i^k|w_j^k, j \neq i)^{-1}E'(w_i^k|w_j^k, j \neq i)$
- This eliminates the need to compute and invert expensive Hessians

QuickProp: Modification 2

- It approximates the second derivative through finite differences
- For i = 1: N

$$w_i^{k+1} = w_i^k - D(w_i^k, w_i^{k-1})^{-1} E'(w_i^k | w_j^k, j \neq i)$$

This eliminates the need to compute expensive double derivatives

QuickProp

$$w^{(k+1)} = w^{(k)} - \left(\frac{E'(w^{(k)}) - E'(w^{(k-1)})}{\Delta w^{(k-1)}}\right)^{-1} E'(w^{(k)})$$

Finite-difference approximation to double derivative obtained assuming a quadratic E()

- Updates are independent for every parameter
- For every layer l, for every connection from node i in the $(l-1)^{\rm th}$ layer to node j in the $l^{\rm th}$ layer:

$$\Delta w_{l,ij}^{(k)} = \frac{\Delta w_{l,ij}^{(k-1)}}{Err'\left(w_{l,ij}^{(k)}\right) - Err'\left(w_{l,ij}^{(k-1)}\right)} Err'\left(w_{l,ij}^{(k)}\right)$$

$$w_{l,ij}^{(k+1)} = w_{l,ij}^{(k)} - \Delta w_{l,ij}^{(k)}$$

QuickProp

$$w^{(k+1)} = w^{(k)} - \left(\frac{E'(w^{(k)}) - E'(w^{(k-1)})}{\Delta w^{(k-1)}}\right)^{-1} E'(w^{(k)})$$

Finite-difference approximation to double derivative obtained assuming a quadratic E()

- Updates are independent for every parameter
- For every layer l, for every connection from node i in the $(l-1)^{\rm th}$ layer to node j in the $l^{\rm th}$ layer:

$$\Delta w_{l,ij}^{(k)} = \frac{\Delta w_{l,ij}^{(k-1)}}{Err'\left(w_{l,ij}^{(k)}\right) - Err'\left(w_{l,ij}^{(k-1)}\right)} \underbrace{Err'\left(w_{l,ij}^{(k)}\right)}_{Err'\left(w_{l,ij}^{(k)}\right)}$$

$$computed using \\ backprop$$

Quickprop

Prone to some instability for non-convex objective functions

 But is still one of the fastest training algorithms for many problems

Story so far : Convergence

- Gradient descent can miss obvious answers
 - And this may be a good thing
- Vanilla gradient descent may be too slow or unstable due to the differences between the dimensions
- Second order methods can normalize the variation across dimensions, but are complex
- Adaptive or decaying learning rates can improve convergence
- Methods that decouple the dimensions can improve convergence

A closer look at the convergence problem

 With dimension-independent learning rates, the solution will converge smoothly in some directions, but oscillate or diverge in others

A closer look at the convergence problem

 With dimension-independent learning rates, the solution will converge smoothly in some directions, but oscillate or diverge in others

Proposal:

- Keep track of oscillations
- Emphasize steps in directions that converge smoothly
- Shrink steps in directions that bounce around...

The momentum methods

- Maintain a running average of all past steps
 - In directions in which the convergence is smooth, the average will have a large value
 - In directions in which the estimate swings, the positive and negative swings will cancel out in the average
- Update with the running average, rather than the current gradient

 The momentum method maintains a running average of all gradients until the *current* step

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Err(W^{(k-1)})$$
$$W^{(k)} = W^{(k-1)} + \Delta W^{(k)}$$

- Typical β value is 0.9
- The running average steps
 - Get longer in directions where gradient stays in the same sign
 - Become shorter in directions where the sign keeps flipping

Training by gradient descent

- Initialize all weights $W_1, W_2, ..., W_K$
- Do:
 - For all i, j, k, initialize $\nabla_{W_k} Err = 0$
 - For all t = 1:T
 - For every layer *k*:
 - Compute $\nabla_{W_k} \mathbf{Div}(Y_t, d_t)$
 - Compute $\nabla_{W_k} Err += \frac{1}{T} \nabla_{W_k} \mathbf{Div}(Y_t, d_t)$
 - For every layer k:

$$W_k = W_k - \eta \nabla_{W_k} Err$$

Until *Err* has converged

Training with momentum

- Initialize all weights $W_1, W_2, ..., W_K$
- Do:
 - For all layers k, initialize $\nabla_{W_k} Err = 0$, $\Delta W_k = 0$
 - For all t = 1:T
 - For every layer *k*:
 - Compute gradient $\nabla_{W_k} \mathbf{Div}(Y_t, d_t)$

$$- \nabla_{W_k} Err += \frac{1}{T} \nabla_{W_k} \mathbf{Div}(Y_t, d_t)$$

For every layer k

$$\Delta W_k = \beta \Delta W_k - \eta \nabla_{W_k} Err$$
$$W_k = W_k + \Delta W_k$$

Until *Err* has converged

The momentum method

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Err(W^{(k-1)})$$

At any iteration, to compute the current step:

The momentum method

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Err(W^{(k-1)})$$

- At any iteration, to compute the current step:
 - First computes the gradient step at the current location

The momentum method

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Err(W^{(k-1)})$$

- At any iteration, to compute the current step:
 - First computes the gradient step at the current location
 - Then adds in the scaled previous step
 - Which is actually a running average

The momentum method

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Err(W^{(k-1)})$$

- At any iteration, to compute the current step:
 - First computes the gradient step at the current location
 - Then adds in the scaled previous step
 - Which is actually a running average
 - To get the final step

 Takes a step along the past running average after walking along the gradient

 The procedure can be made more optimal by reversing the order of operations..

- Change the order of operations
- At any iteration, to compute the current step:

- Change the order of operations
- At any iteration, to compute the current step:
 - First extend the previous step

- Change the order of operations
- At any iteration, to compute the current step:
 - First extend the previous step
 - Then compute the gradient step at the resultant position

- Change the order of operations
- At any iteration, to compute the current step:
 - First extend the previous step
 - Then compute the gradient step at the resultant position
 - Add the two to obtain the final step

Nestorov's method

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_{W} Err(W^{(k-1)} + \beta \Delta W^{(k-1)})$$
$$W^{(k)} = W^{(k-1)} + \Delta W^{(k)}$$

- Comparison with momentum (example from Hinton)
- Converges much faster

Training with momentum

- Initialize all weights $W_1, W_2, ..., W_K$
- Do:
 - For all layers k, initialize $\nabla_{W_k} Err = 0$, $\Delta W_k = 0$
 - For every layer k

$$W_k = W_k + \beta \Delta W_k$$

- For all t = 1:T
 - For every layer *k*:
 - Compute gradient $\nabla_{W_k} \mathbf{Div}(Y_t, d_t)$

$$- \nabla_{W_k} Err += \frac{1}{T} \nabla_{W_k} \mathbf{Div}(Y_t, d_t)$$

For every layer k

$$W_{k} = W_{k} - \eta \nabla_{W_{k}} Err$$
$$\Delta W_{k} = \beta \Delta W_{k} - \eta \nabla_{W_{k}} Err$$

Until *Err* has converged

Momentum and trend-based methods..

• We will return to this topic again, very soon...

Story so far : Convergence

- Gradient descent can miss obvious answers
 - And this may be a good thing
- Vanilla gradient descent may be too slow or unstable due to the differences between the dimensions
- Second order methods can normalize the variation across dimensions, but are complex
- Adaptive or decaying learning rates can improve convergence
- Methods that decouple the dimensions can improve convergence
- Momentum methods which emphasize directions of steady improvement are demonstrably superior to other methods

Coming up

- Incremental updates
- Revisiting "trend" algorithms
- Generalization
- Tricks of the trade
 - Divergences..
 - Activations
 - Normalizations