

Rua Recife, 2283 – Centro - 85.810-031 Cascavel - PR Fone: (45) 3392-1200

Fone: (45) 3392-1200 http://www.pr.senac.br/

NOTAS DE AULA

Curso: Tecnologia em Análise e Desenvolvimento de Sistemas - TADS		Período Letivo: 2023-2	
Disciplina: Lógica Computacional e Estatística		Professor (a): Ederson Schmeing	
Data: 17/08/2023	Turma: 2	Turno: Noturno	
Observação:			

Título: Logica proposicional: Classificação das proposições. Tautologia, Contradição e Contingência.

Tautologia: Uma proposição composta formada por duas ou mais proposições P,Q,R,..., será uma tautologia se ela for sempre verdadeira, independentemente dos valores lógicos das proposições P,Q,R,..., que a compõem. Para saber se uma proposição composta é uma Tautologia, construiremos a sua tabela verdade. Então, se a última coluna da tabela verdade só apresentar **verdadeiro**, então estaremos diante de uma Tautologia.

P	$\neg P$	$P \land \neg P$	$\neg(P \land \neg P)$

Contradição: Uma proposição composta formada por duas ou mais proposições P,Q,R,..., será uma contradição se ela for sempre falsa, independentemente dos valores lógicos das proposições P,Q,R,..., que a compõem. Ou seja, construindo a tabela verdade de uma proposição composta, se todos os resultados da última coluna forem **falsos**, então estaremos diante de uma contradição.

P	$\neg P$	$P \Leftrightarrow \neg P$

TAUTOLOGIA é sempre toda V, a negação de uma **TAUTOLOGIA** é sempre uma **CONTRADIÇÃO** que é toda F, e vice-versa.

Faculdade SENAC

Rua Recife, 2283 – Centro - 85.810-031 Cascavel - PR

Fone: (45) 3392-1200 http://www.pr.senac.br/

Contingência: Uma proposição composta será uma contingência sempre que não for uma **tautologia** ou uma **contradição**. Você pegará a proposição composta e construirá a sua tabela verdade. Se você verificar que aquela proposição não é uma tautologia, e não é uma contradição, então, ela será uma contingência.

P	$\neg P$	$P \Rightarrow \neg P$

Exercício de Fixação

Determinar quais das fórmulas abaixo são tautologias, contradições ou contingências.

a)
$$(P \Rightarrow (P \land Q)) \Leftrightarrow P$$

P	Q	$P \wedge Q$	$(P \Rightarrow (P \land Q))$	$(P \Rightarrow (P \land Q)) \Leftrightarrow P$

b)
$$(\neg P \Leftrightarrow \neg Q) \lor (P \Rightarrow Q)$$

c)
$$(P \lor \neg P) \Rightarrow (Q \lor \neg Q)$$

Faculdade SENAC

Rua Recife, 2283 – Centro - 85.810-031 Cascavel - PR

Fone: (45) 3392-1200 http://www.pr.senac.br/

$$\mathsf{d}) (P \vee \neg Q) \Rightarrow (P \wedge Q)$$

e)
$$\neg ((P \Rightarrow Q) \lor (\neg P \lor \neg Q))$$

f)
$$(P \Rightarrow R) \Leftrightarrow (P \land Q) \lor (Q \lor R)$$