

Edson Prestes

Árvores

Uma árvore é um grafo conexo aciclico, ou seja, um grafo conexo sem ciclos.

Uma folha é um vértice de grau 1.

Uma floresta é um grafo que não contém ciclos.

Uma árvore é uma floresta conexa.

Todo componente de uma floresta é uma árvore.

Árvores

Teorema: Para um grafo G=(V,A) de n-vértices (n>0), as seguintes afirmações são verdadeiras (e caracterizam uma árvore com n vértices).

- a) G é conexo e não possui ciclos
- b) G é conexo e tem n-1 arestas
- c) G tem n-1 arestas e nenhum ciclo
- d) Para dois vértices u,v tem exatamente um caminho entre u e v.

Trazer a prova na próxima aula

Árvores

Cada aresta de uma árvore é uma aresta de corte.

A adição de uma aresta em uma árvore forma exatamente um ciclo.

Cada grafo conexo **que é árvore** contém exatamente uma spanning tree. Uma spanning tree de um Grafo é *um subgrafo que é árvore e que contém todos os nós de G*.

Uma spanning forest é obtida quando o grafo não é conexo. Ela consiste em uma floresta de spanning tree.

Árvores

O diâmetro de uma árvore é calculado de forma similar ao de um grafo que nãoa é árvore. Ele corresponde a maior distância entre qualquer par de vértices, ou seja,

$$diam(G) = \max_{u,v \in V(G)} d(u,v)$$

A excentricidade de um vértice u é a maior distância entre u e qualquer vértice de G, ou seja, $\epsilon(u) = \max_{v \in V(G)} d(u,v)$

O raio de um Grafo G é denotado por

$$\min_{u \in V(G)} \epsilon(u)$$

Árvores

O centro de um grafo G é o subgrafo induzido pelos vértices de excentricidade mínima. O centro de uma árvore é um vértice ou uma aresta.

Encontre a excentricidade de cada vértice, o raio e o centro do grafo abaixo.

$$\begin{aligned} diam(G) &= \max_{u,v \in V(G)} d(u,v) \\ \epsilon(u) &= \max_{v \in V(G)} d(u,v) \\ \operatorname{Raio}(G) &= \min_{u \in V(G)} \epsilon(u) \end{aligned}$$

Árvores

Sabemos que com um ou dois vértices apenas uma árvore pode ser formada.

Entretanto com três vértices podemos formar três árvores.

Com quatro vértices temos quatro estrelas e doze caminhos (eliminando os automorfismos) totalizando 16 árvores.

Se tivermos cinco vértices temos 125 árvores.

Cayley demonstrou que para um conjunto de n vértices distintos existem nº-2 árvores associadas.

Cada uma das árvores pode ser codificada por uma lista de comprimento n-2, chamada Código Prüfer.

Esta lista permite-nos determinar de forma unívoca a árvore em questão.

Árvores – Código Prüfer

Este algoritmo recebe como entrada uma árvore T com um conjunto S de n vértices.

A cada passo, o algoritmo remove a folha b_i com menor rótulo e armazena o seu vizinho, a_i.

Isto é feito até restar apenas uma única aresta.

Ao final do processo, teremos uma (n-2)-upla com os não folhas de T.

A partir desta tupla e do conjunto S é possível recuperar a árvore T.

Calcule o código Prüfer da árvore abaixo

Árvores – Código Prüfer

A cada passo, o algoritmo remove a folha b_i com menor rótulo e armazena o seu vizinho, a_i

Iteração	S	Sel	Viz
0	$\{1,2,3,4,5,6,7,8\}$	Ø	Ø
1	$\{1,3,4,5,6,7,8\}$	{2}	{7}
2	$\{1,4,5,6,7,8\}$	$\{2,3\}$	$\{7, 4\}$
3	$\{1,4,6,7,8\}$	$\{2,3,5\}$	$\{7,4,4\}$
4	$\{1,6,7,8\}$	$\{2,3,5,4\}$	$\{7,4,4,1\}$
5	$\{1,7,8\}$	$\{2,3,5,4,6\}$	$\{7,4,4,1,7\}$
6	$\{1,8\}$	$\{2,3,5,4,6,7\}$	$\{7,4,4,1,7,1\}$

O código Prüfer da árvore acima é (7,4,4,1,7,1)

Árvores

A recuperação da árvore a partir do código prüfer é como segue.

Inicialmente são criadas uma sequência e um conjunto de vértices: a sequência S que representa o código Prüfer e o conjunto V dos vértices que não aparecem no código Prüfer.

Em seguida contruimos uma floresta com todos os vértices da árvore em questão. A cada passo, pegamos o primeiro elemento, a_1 , de S e o menor elemento m de V e criamos a aresta (a_1,m) .

Removemos tanto a₁ quanto m de seus locais de origem. Se após este processo a₁ não aparecer mais em S, então o incluimos em V. O processo é repetido até que S seja o conjunto vazio. Quando S for o conjunto vazio unimos os dois vértices que sobraram em V.

Recupere a árvore associada ao código Prüfer (7,4,4,1,7,1)

Árvores

Iteração	S	V	Arestas
0	$\{7,4,4,1,7,1\}$	$\{2,3,5,6,8\}$	Ø
1	${4,4,1,7,1}$	$\{3, 5, 6, 8\}$	(7,2)
2	$\{4, 1, 7, 1\}$	$\{5,6,8\}$	(7,2),(4,3)
3.a	$\{1, 7, 1\}$	$\{6, 8\}$	(7,2),(4,3),(4,5)
3.b	$\{1,7,1\}$	$\{6, 8, 4\}$	(7,2),(4,3),(4,5)
4	{7, 1}	$\{6,8\}$	(7,2),(4,3),(4,5),(1,4)
5.a	{1}	{8}	(7,2),(4,3),(4,5),(1,4),(7,6)
5.b	[{1}	{8,7}	(7,2), (4,3), (4,5), (1,4), (7,6)
6.a	Ø	{8}	(7,2),(4,3),(4,5),(1,4),(7,6)
	d	653	(1,7)
6.b	Ø	{8,1}	(7,2), (4,3), (4,5), (1,4), (7,6)
	, a	(0.4)	(1,7)
6.c	Ø	$\{8,1\}$	(7,2),(4,3),(4,5),(1,4),(7,6)
			(1,7)(1,8)

Árvores – Código Prüfer

Dado um conjunto de inteiros positivos $d_1, d_2, ..., d_n$ totalizando 2n-2 (2n-2, deve-se ao fato de que uma árvore com n vértices possui exatamente n-1 arestas.Logo, a soma dos graus de cada vértice é igual a 2(n-1)) então existem

$$\frac{(n-2)!}{\Pi(d_i-1)!}$$

árvores com um conjunto de n vértices tal que o grau do vértice i é d_i

Prova: Observe que cada vértice não folha x é registrado no código prüfer exatamente d_x -1 vezes no código prüfer, pois ele tem d_x vértices vizinhos e após a remoção de seus d_x -1 vizinhos "folha", ele será folha de seu último vizinho. Logo ele aparecerá d_x -1 vezes.

O código prüfer possui n-2 elementos e pode ter (n-2)! permutações, entretanto devido a repetição de alguns vértices, teremos várias permutações iguais. Para cada vértice x que aparece no código, teremos $(d_x-1)!$ permutações iguais. Logo a retirada destes elementos iguais é dada por

$$\frac{(n-2)!}{\Pi(d_i-1)!}$$

Árvores – Código Prüfer

Considere o seguinte conjunto de vértices $S=\{1,2,3,4,5,6,7\}$ e os graus em ordem de cada elemento de $S=\{3,1,2,1,3,1,1\}$.

Quantas árvores podemos gerar a partir deste conjunto?

Considerando que temos como vértices não folha os vértices {1,3,5} teremos

$$\frac{(n-2)!}{(d_1-1)!(d_3-1)!(d_5-1)!} = \frac{5!}{2!1!2!} = 30.$$

Árvores. Alguns exemplos podem ser vistos abaixo

Árvores – Spanning Tree

Teorema: O número de árvores enraizadas com vértices não distintos é definido pela seguinte função geradora

$$T(x) = x \prod_{r=1}^{\infty} (1 - x^r)^{-T_r}$$

Onde T_r é o número de árvores enraizadas com r vértices

Teorema: O número de árvores não enraizadas com vértices não distintos é definido por

$$t(x) = T(x) - \frac{1}{2}(T^{2}(x) - T(x^{2}))$$

Trabalho: calcular a quantidade de árvores enraizadas e não enraizadas com vértices não distintos usando 2,3,4,5 e 6 vértices

Árvores – Spanning Tree

Teorema: Dado um grafo G simples com um conjunto de vértices $V=\{v_1, v_2, ..., v_n\}$ faça $a_{i,j}$ ser o número de arestas entre os vértices v_i e v_j . Construa uma matriz Q quadrada de ordem \mathbf{n} de forma que a entrada Q(i,j) seja igual a

- $a_{i,j}$ se $i \neq j$ e igual a $d(v_i)$ se i=j. Se Q* é a matriz obtida removendo a linha s e coluna t de Q, então o número de spanning trees de G é igual a

$$(-1)^{s+t} | Q^* |$$

Determine o número de spanning trees do grafo abaixo

Árvores – Spanning Tree

M

a b c d

a 3 4 -1 -1

b -1 3 -1 -1

c -1 1 2 0

d -1 -1 0 2

Removendo linha e coluna c

		a	b	d
	a	3	-1	-1
	b	-1	3	-1
	4	_1	_1	2

0*

Grau dos vértices

Quantidade de arestas

$$\longrightarrow$$
 (-1) ³⁺³ | Q*|= (-1) ³⁺³ (18-1-1-(3+2+3))=8

Árvores – Spanning Tree

Liste as 8 spanning trees do grafo.

Árvores – Algoritmo de Kruskal

O algoritmo de Kruskal permite determinar a spanning tree de custo mínimo. Este custo corresponde à soma dos pesos (distância, tempo, qualidade, ...) associados a cada aresta do grafo.

O algoritmo recebe como entrada **um grafo G conexo** com pesos e monta um **grafo desconexo G'**, o qual corresponde a uma floresta de árvores composta unicamente pelos vértices de G.

Em seguida, ele ordena **as arestas de G** em ordem crescente e seleciona a cada instante a de menor peso. A aresta selecionada é marcada, para não ser analisada mais tarde, e verificada se pode ser adicionada ao grafo G' de forma a não gerar ciclos.

O processo termina quando G' estiver conexo.

Árvores – Algoritmo de Kruskal

Determine a *spanning tree* de custo mínimo no grafo abaixo usando o algoritmo de Kruskal

Árvores – Algoritmo de Kruskal

Árvores – Algoritmo de Kruskal

Árvores – Algoritmo de Dijkstra

O algoritmo de Dijkstra é usado para determinar a menor rota entre duas posições em um grafo. Ele assume que o caminho entre dois vértices, u e v, é composto sempre dos menores caminhos entre dois vértices quaisquer componentes do caminho.

O algoritmo considera um grafo G (ou dígrafo) com arestas de pesos positivos e um vértice inicial \mathbf{u} . O peso da aresta formada pelos vértices \mathbf{u} e \mathbf{v} é $\mathbf{w}(\mathbf{u},\mathbf{v})$. Se \mathbf{u} e \mathbf{v} não são adjacentes então $\mathbf{w}(\mathbf{u},\mathbf{v}) = \infty$

Ele considera que existe um conjunto **S** de vértices tal que o menor caminho a partir de **u** até cada vértice de **S** é conhecido.

Árvores – Algoritmo de Dijkstra

ľ	Iteração	S	u	a	b	С	d	e
	0	$\{u\}$	0	1	3	∞	∞	∞
	1	$\{ua\}$	0	1	3	5	6	∞
3	2	$\{uab\}$	0	1	3	5	6	∞
'	3	$\{uabc\}$	0	1	3	5	6	11
ľ	4	$\{uabcd\}$	0	[1]	3	5	6	8
ĺ	5	$\{uabcde\}$	0	1	3	5	6	8

Inicialmente, $S=\{u\}$, t(u)=0, t(z)=w(u,z) para $z \neq u$.

A cada iteração seleciona-se um vértice $v = \arg\min_{z \notin S} t(z)$ e adiciona-o a S.

Em seguida, as arestas a partir de v, (v,z), são exploradas e para cada $z \notin S$, a nova distância aproximada t(z) é atualizada com

$$\min\{t(z), t(v)+w(v,z)\}.$$

O processo continua até S=V(G) ou até $t(z)=\infty$ para todo $z\notin S$.