Digital Logic Families

Digital Logic Families

- ICs are also classified based on their specific circuit technology, known as *digital logic family*.
- Each family has its own basic electronic components (NAND, NOR, and NOT gates), used to build complex digital circuits.
- Various digital logic families have been introduced and used over the years.

Digital Logic Families (in chronological order)

earliest,

now obsolete

→ widely used

- RTL: Resistor-Transistor Logic
- DTL: Diode-Transistor Logic
- TTL: Transistor-Transistor Logic
- ECL: Emitter-coupled Logic
 — high-speed operation
- MOS: Metal-Oxide Semiconductor → compact
- CMOS: Complementary MOS
 - Low power dissipation, currently the MOST DOMINANT
- BiCMOS: Bipolar CMOS
 - CMOS and TTL for additional current/speed
- GaAs: Gallium-Arsenide very high-speed operation

Defining Characteristics of Digital Logic Families

- Fan-in: # of gate inputs.
- *Fan-out:* # of standard loads a gate's output can drive.
- Noise margin: max external noise tolerated.
- *Power dissipation:* power consumed by the gate (dissipated as heat).
- *Propagation delay:* time required for an input signal change to be observed at an output line.

Fan-Out Computation

Measurement of Propagation Delay

Signals for Evaluating Noise Margin

Power Dissipation (PD)

- Expressed in Milliwatts
- PD= $V_{CC} * I_{CC}$
- $I_{CC}(avg)=(I_{CCH}+I_{CCL})/2$

TTL LOGIC FAMILY

(a) Inverter circuit

(a) Inverter circuit

Silicon npn Transistor Characteristics

(a) Inverter circuit

$$RC = 1k\Omega$$
, $RB = 22k\Omega$, $\beta = 50$

$$VCC = 5V$$
, find Vo for

$$Vi = 0.2V$$
 and $Vi = 5V$

BJT Characteristics

- Base-Emitter voltage less than 0.6V; I_B = 0
 : Cut-Off region
- > Base-Emitter voltage more than 0.6V, transistor starts conducting active region $I_C = \beta I_B$
- ightharpoonup Maximum collector current $I_C = V_{CC}/R_C$

- ➤ In the cut-off region $V_{BE} < 0.6V$, V_{CE} open circuit, I_{C} , I_{B} negligible
- > In the active region V_{BE} about 0.7 V_{CE} wide range and $I_{C} = \beta I_{B}$
- > In the saturation region V_{BE} hardly changes, V_{CE} = 0.2V

TTL Series name	Prefix
Standard	74
Low-power	74 L
High-speed	74H
Schottky	74S
Low-power Schottky	74LS
Advanced Schottky	74AS
Advanced Low power- Schottky	74ALS
Fast	74 F

Three Types of TTL gates

- Open - collector output

- Totem- pole output

- Three- state output

Open-Collector TTL Gate

Open-Collector TTL Gate

- Output impedance of a gate is resistive plus Capacitive load
- For output low to high transition C charges exponentially through RC
- ightharpoonup R is R_L (external) in open collector
- With active pull-up delay can be reduced

TTL Gate with Totem-Pole Output

MOS Transistor

(a) p-channel

(b) n-channel

Basic Structure of MOS Transistor

(a) p-channel

(b) n-channel

Symbols for MOS Transistors

(a) Inverter

(b) NAND gate

n-channel MOS Logic Circuits

Design the logic Using NMOS

$$Z = (A(D+E) + BC)'$$

(a) Inverter

(b) Logical model

CMOS inverter

CMOS Logic Circuits

Design the logic Using CMOS

$$Z = (A(D+E) + BC)'$$

