План на 3 модуль (или 2 сем...)

- 1. Множества
- 2. ЧУМ
- 3. Исчисление высказываний
- 4. Исчисление предикатов
- 5. Теория кодирования

Почитать можно А. Х. Шеня

Множества

- 1. $x \in A$; $y \notin A$
- 2. Арифметика множеств: \bigcup , \bigcap , \setminus , \triangle
- 3. Q
- 4. $A = \{a, b, c\}; B = \{d\} \bigcup A$
- 5. $A \subset B \Leftrightarrow \forall x \in A \Rightarrow x \in B$

Remark 0.1.

Чисто синтаксически вот такой бред: $\{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\}$ имеет смысл

X – множество: $X \neq \emptyset$. Рассмотрим $x \in X$

Term(x) – проблема, потому что мы не знаем, к каким характеристикам обращаемся и вообще не понятно, что мы выбрали

Спасают аксиомы ZFC

Definition 0.1. Равномощность

A, B – равномощны $\Leftrightarrow \exists f : A \to B$ – биекция

А что с бесконечностями? Давайте возьмем функцию $f:N \to 2N$

Хотя множество четных чисел – подмножество всех, но они равномощны, т.к. f – биекция

Definition 0.2. Характеристическая функция

$$X$$
 — множество. Есть $\chi:X\to\{0,1\},$ т.е. $\chi(x)=\begin{cases}1,\ x\in X\\0,\ x\not\in X\end{cases}$ — характеристическая функция

A пусть $X \subset Y$

- произведение характеристических функций X и Y это характеристическая функция $X \cap Y$
- $1 \chi(x)$ характеристическая функция дополнения X
- $max(\chi_X(x),\chi_Y(x))$ характеристическая функция $X\bigcup Y$
- $|X| = \sum_{x \in Y} \chi_X(x)$

Example 0.1.

Возьмем 2^N ; $B=\{0,1\}$ и B^∞

Равномощны ли они? Берем $x \in 2^N$, теперь $b_i = \begin{cases} 1, & i \in x \\ 0, & i \notin x \end{cases}$

Definition 0.3. Счетное множество

X – счетное, если X равномощно N

Example 0.2.

Например, множество целых чисел счетно, т.к. $x \in Z \Rightarrow \begin{cases} 2x, & x \ge 0 \\ -2x+1, & x < 0 \end{cases}$

Proposition 0.1.

- 1. X счетно и $Y \subset X \Rightarrow Y$ или счетно, или конечно
- 2. X бесконечно. Тогда $\exists Y$ счетное: $Y \subset X$
- 3. $X_1, \ldots X_n \ldots$ конечные или счетные. Тогда $\bigcup X_i$ конечное или счетное

Доказательство:

1. X — счетно, т.е. соответствует последовательности $\{x_1, \dots x_n \dots\} = \xi$ Возьмем $\xi \cdot \xi(Y)$. Т.е. что-то типа $\{0, 0 \dots x_{i_1}, 0 \dots x_{i_2}, 0 \dots\}$ который равносилен $y_1, y_2, \dots y_n \dots = Y$

В свою очередь эта штука либо конечна, либо счетна, т.к. счетен X

- 2. Просто выбираем по 1 элементу из X. Если они кончатся на каком-то шаге X не бесконечно
- 3. Рисуем табличку. Берем элемент (1, 1), потом (1, 2), потом (2, 1), потом (1, 3) и так далее. То есть по диагоналям. Так переберем вообще все элементы (если не понятно, погуглите метод Кантора)

Exercise 0.1.

В качестве следствия попробуйте построить явную биекцию между множеством рациональных чисел и натуральных

2

Theorem 0.1.

A – бесконечно, B – нбчс, т.е. B – конечно или счетно

 $A \bigcup B$ равномощно A

Доказательство:

 $\exists Y \subset A$ — счетное

Y и $Y \bigcup B$ – равномощны

 $A \bigcup B = (A \backslash Y) \bigcup (Y \bigcup B)$

 $A = Y \cup J(A \setminus Y)$

Биекция между Y и $Y\bigcup B$ сущесвтует, значит A и $A\bigcup B$ равномощны

Example 0.3.

[0;1] и $B^{\infty}.$ Равномощны ли? Да. Последовательность единиц и нулей – это бинпоиск числа