Pseudo-code for LTBI screening model

Nathan Green 2019-01-22

Introduction

Describes a type of microsimulation and cost-effectiveness analysis using a synthetic cohort of recent immigrants to the UK. Much of the work is in setting up the cohort.

Pre-simulation setup

- Load in ETS/pre-screening dataset, denote by X
- Define simulation constants
 - Number of Monte-Carlo iterations, N
 - Age range for screening
 - Year cohort
 - Screen delay range, 5 years
 - Time horizon (default life-time 100 years)
- Define cost-effectiveness distributions
 - Willingness to pay
 - Secondary infections
 - Costs
 - QALY
 - Test performance
 - Effectiveness
 - Current year
- Create policy
- Define which subsets of cohort to target for screening
 - WHO incidence
 - All QALY?
 - All costs?
 - Treatment regimen
 - LTBI test
- Define scenario
 - Screening pathway probability distributions
 - Cost distributions
- Sample screening year unif[0, 5] for X
- Remove individuals from X according to
 - Simulation constants
 - Screening vear
- Join probability LTBI by incidence in country of origin and year
 - Sample realisations
- Calculate time to events from dates
- Create probability incidence curve
 - Append Sutherland and Lancet
- Generate TB progression times for LTBI individuals, consistent with other dates
- Join CFR for given age
 - Sample case fatality realisations, I_{cf}
- Calculate QALYs for TB cases from progression date to death for
 - Disease-free

- Cured
- Case fatality
- Status-quo i.e. either fatality or cured depending on I_{cf}
- Calculate future discounts at
 - Time of notification
 - Time of secondary infection (i.e. 1 year afterwards)
- Define decision tree object structures, denote d_{health} and d_{cost}

Simulation

- Set policy i=1
- Remove individuals from X according to f(X,i) = X'
- Calculate mean screening delay from entry to screening and associated discount
- Calculate proportion in each incidence group from X'
- Get treatment regimen from policy, t = treatment(i)
 - Get cost of treatment, cost(t)
 - Get effectiveness of treatment, eff(t)
- Substitute cost and probabilities in to d
 - Incidence groups
 - LTBI status
 - -eff(t)
 - cost(t)
 - GP incentives

Screening model

- Set scenario j=1
- Assign branch value for j to d_{health} and d_{cost}
- For d_{health} and d_{cost} and each iteration n = 1, ..., N
- Sample
 - Branch probabilities
 - Costs
 - Utilities/QALYs
- Calculate
 - Total expected values for cost c_1^s and QALYs q_1^s
 - Subpopulation probabilities, P, including LTBI to cured

TB model

- Set scenario j=1
- For each iteration n = 1, ..., N
- Sample TB treatment cost
- Calculate status-quo, with discounting

 - $\text{ Cost, } c_0^{tb} \\ \text{ QALYs, } q_0^{tb}$
- Get p = P(LTBI to cured)[n]
- Replace first p proportion of TB cases with disease-free individuals
- Calculate screened outputs, with discounting
 - Cost, c_1^{tb}
 - QALYs, q_1^{tb}
- Sum screening and TB costs and QALYs
 - $\begin{array}{l} \ c_1^s + c_1^{tb} \\ \ q_1^s + q_1^{tb} \end{array}$