Publication number: DE4410093 (C1)

Process for the direct reduction of materials containing iron oxides

		Cited documents:
Publication date:	1995-03-09	enca accaments
Inventor(s):	BRESSER WOLFGANG [DE]; HIRSCH MARTIN DR ING [DE]; SAATCI ALPAYDIN DR [DE]	DE2700427 (A1)
Applicant(s):	METALLGESELLSCHAFT AG [DE]	WO9202646 (A1)
Classification:		WO3202040 (A1)
- international:	C21B13/00; C21B13/00; (IPC1-7): C21B13/14; C22B1/10; C22B5/14	
- European:	C21B13/00B	
Application number:	DE19944410093 19940324	
Priority number(s):	DE19944410093 19940324	
Abstract of DE 4410 The present inventio	093 (C1) n describes a process for the direct reduction of materials containing iron or	kides in fluidised
i ne present inventio	n describes a process for the direct reduction of materials containing iron or	ciaes in fluidised

beds with circulation of reduction gas, wherein a) the materials containing iron oxides are charged into a circulating fluidised bed, hot reduction gas is passed in as fluidising so, the suspension discharged from the fluidised-bed reactor is substantially freed of solid in a recirculation cyclone and the solid separated off is returned to the fluidised-bed reactor, b) solid is introduced into a classical fluidised bed, hot reduction gas is passed in as fluidising gas, the residual oxygen is reacted and the iron content is converted to the extent of <50% into Fe3C and the product is taken off, c) a substream of the off-gas is conducted away according to (a), and, after enrichment by addition of reducing gas and heating as circulation gas, the remaining substream of the off-gas is conducted away according to (a) partly sit fluidising gas into the fluidised bed according to (b).

Data supplied from the esp@cenet database — Worldwide

PATENTAMT

Aktenzeichen: Anmeldetag:

P 44 10 093.0-24 24. 3.94

Offenlegungstag: Veröffentlichungstag

der Patenterteilung: 9. 3.95

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Metallgesellschaft AG, 60323 Frankfurt, DE

(74) Vertreter:

Rieger, H., Dr., Rechtsanw., 60323 Frankfurt

(72) Erfinder:

Bresser, Wolfgang, 63762 Großostheim, DE; Hirsch, Martin, Dr.-Ing., 61381 Friedrichsdorf, DE; Saatci, Alpaydin, Dr., 60386 Frankfurt, DE

6 Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> DE 27 00 427 A1 32 247 US-RE wo 92 02 646 A1

(5) Verfahren zur Direktreduktion von Eisenoxide enthaltenden Stoffen

Die vorliegende Erfindung beschreibt ein Verfahren zur Direktreduktion von Eisenoxide enthaltenden Stoffen in Wirbelschichten mit Kreislaufführung von Reduktionsgas, wobei

a) die Eisenoxide enthaltenden Stoffe in eine zirkulierende Wirbelschicht chargiert werden, heißes Reduktionsgas als Fluidisierungsgas eingeleitet wird, die aus dem Wirbelschichtreaktor ausgetragene Suspension im Rückführzyklon weitgehend von Feststoff befreit und der abgeschiedene Feststoff in den Wirbelschichtreaktor zurückgeleitet wird, b) Feststoff in eine klassische Wirbelschicht geleitet wird, heißes Reduktionsgas als Fluidisierungsgas eingeleitet wird. der restliche Sauerstoff abgebaut und der Eisengehalt zu < 50% in Fe₃C überführt wird und das Produkt abgezogen wird

c) ein Teilstrom des Abgases gemäß (a) abgeführt wird, der restliche Teilstrom des Abgases gemäß (a) nach einer Aufstärkung durch Zugabe von reduzierendem Gas und Aufheizung als Kreislaufgas zum Teil als Fluidisierungsgas in die Wirbelschicht gemäß (a) und zum Teil in die Wirbelschicht gemäß (b) geleitet wird.

Beschreibung

Die Erfindung betrifft ein Verfahren zur Direktreduktion von Eisenoxide enthaltenden Stoffen in Wirbelschichten mit Kreislaufführung von Reduktionsgas.

Bei der Direktreduktion von feinkörnigen, Eisenoxide enthaltenden Stoffen wie Eisenerze, Eisenerzkonzentrate oder Eisenoxide enthaltende Zwischenprodukte mittels reduzierender Gase in einer Wirbekschicht wird ein Eisenschwammprodukt (DRI) erzeugt, das pyrophore Eigenschaften aufweist und deshalb eine Nachbehandlung erforder:

Es wurden auch Verfahren zur Direktreduktion solcher Stoffe zu Eisenschwamm und Aufkohlung zu Fe₂C 10 vorgeschlagen. Das Fe₃C-haltige Produkt ist nicht pyrophor und kann ohne Nachbehandlung gelagert und transportiert werden. Außerdem enthält es ausreichend Kohlenstoff für die Reduktion von restlichem Eisenoxid und zur Erzeugung von Wärme für das Einschmelzen des Fe₅C-haltigen Produktes.

Aus der DE-OS 27 00 427 und dem USA-Patent Nr. Re 32247 ist ein Verfahren zur Erzeugung von Fe₃C bekannt, bei dem feinkörniges Eisenoxid in einer klassischen Wirbelschicht zu Fe₂C umgesetzt wird. Als Fluidisierungsgas wird ein heißes reduzierendes Gas in die Wirbelschicht geleitet. Das Fluidisierungsgas enthält H2, CO, CH4, CO2, N2 und H2O. Vorzugsweise wird das Verhältnis zwischen H2 und den kohlenstoffhaltigen Bestandteilen so eingestellt, daß der Wasserstoff die Reduktion zu metallischem Eisen und der Kohlenstoff die Aufkohlung zu Fe3C bewirkt. In diesem Fall fällt als gasförmiges Reaktionsprodukt nur Wasser an, das aus dem Abgas durch Kondensation abgeschieden werden kann. Das Verhältnis von H2 zu gebildetem Wasser wird zwischen 2,5:1 und 8:1 gehalten und die Verhältnisse von CO zu CO2 und H2 zu H2O werden im wesentlichen im Gleichgewicht mit CH4 gehalten. Das Verhältnis von CO zu CO2 soll vorzugsweise zwischen 1:1 bis 4:1 betragen. Die Abgase der Wirbelschicht enthalten 58,3 bis 77% H2, 0,5% N2, 5,2 bis 7,9% CH4, 8,9 bis 21,4% CO, 2,0 bis 6,8% CO2, Rest Wasserdampf, wobei das Fe3C-Produkt 4,35 bis 8,96% C enthält. Die Temperatur in der Wirbelschicht soll zwischen 482 und 704° liegen, wobei der Bereich zwischen 549 und 632°C besonders günstig ist. Das Abgas wird nach der Abkühlung in einem indirekten Wärmetauscher in einem Wäscher mit Wasser unter dem Taupunkt des Wasserdampfes abgekühlt, wobei der Wasserdampfgehalt weitgehend auskondensiert und gleichzeitig Staub ausgewaschen wird. Das gereinigte Abgas wird in dem Wärmetauscher vorgewärmt, dann in einem Aufheizer weiter aufgeheizt und nach Regeneration durch Zugabe von reduzierenden Gasen im Kreislauf wieder als Fluidisierungsgas in den Wirbelschichtreaktor geleitet. Das Fe3C-Produkt wird direkt in einen Ofen zur Stahlerzeugung chargiert, dessen Abgas zur Aufstärkung des Kreislaufgases verwendet wird. In einer klassischen Wirbelschicht erfolgt eine sehr schnelle Verteilung von frischem Material im Wirbelschichtbett, Dadurch enthält das ausgetragene Material immer einen Teil von unreagiertem oxidischem Material. Außerdem kann der Druckabfall vom Windkasten zum Wirbelbett unterschiedlich sein, so daß eine ungleichmäßige Gasverteilung erfolgt.

33 Aus der US-PS 5,118,479 ist ein Verfahren bekannt, das die oben beschriebenen Nachteile der normalen klasischen Wirbelschicht vermeiden soll Nach diesem Verfahren werden im Reaktor der klasischen Wirbelschicht vermeiden soll Nach diesem Verfahren werden im Reaktor der klasischen Wirbelschicht senkrecht und parallel zueinander mehrere Bleche mit Abstand zueinander angeordnet, Jedes Blech ist alterniterend an einem Ende einen Spalt zur Wand des Reaktors frei. Dadurch fließt das frisch aufgegebene Material labyrinhartig vom Eintrag zum Austrag. Das Fluidisterungsgass soll vorzugsweise (in Mol-96) enthalten: bis 20%, vorzugsweise 5 bis 10% CO; bis 50%, torzugsweise 25 bis 50% CO; bis 50% h; orzugsweise 25 bis 50% CO; orzugsweise 10 bis 10% vorzugsweise 15 bis 20% vorzugsweise 50 bis 50% H;; ob 50% h; bis 20% vorzugsweise 30 bis 50% CO; bis 20% Die Temperatur des eingeleitenen Fluidisterungsgasses beträfgt 500 bis 50°C, vorzugsweise 50 bis 60°C. Das Feg-C-Produkt wird mit einer Temperatur von 490 bis 710°C, vorzugsweise 550 bis 60°C, das Feg-C-Produkt wird mit einer Temperatur von 490 bis 710°C, vorzugsweise 50 bis 600°C, bis 50°C, vorzugsweise 50 bis 600°C, bis 50°C, vorzugsweise 50°C, bis 60°C, bis 60°C, ausgetragen. Auch in einer klassischen Wirbelschicht mit den beschriebenen Einbauten herrschen schlechte Reaktorsbedingungen infolge der relativ geringen Geschwindigkeiten. Für eine große Durchsatzmenge ist ein Reaktor mit großem Durchmesser erforderlich, wodurch eine gleichmäßige Gaswerteilung noch schwieriger wird.

30 Aus der WÖ 92/02646 ist 'es bekannt, mindestens einen Teil des frischen Materials vor der Aufgabe in die klassische Wirbelschicht in oxidierender Aumosphäre vonzuwärmen. Die Vorwärmung erfolgt auf 500 bis 900°C. Durch die Vorwärmung soll Fe₂O₄ wenigstens teilweise zu Fe₂O₃ oxidiert werden, Sulfidschwefel und Wasser entfernt und die Beschickung vorgewärmten werden. Die Reduktion und Aufkohlung des vorgewärmten Materials erfolgt in einer klassischen Wirbelschicht mit der vorstehend beschriebenen labyrinthartigen Führung des Materials

Der Erfindung liegt die Aufgabe zugrunde, eine möglichst weitgehende Reduktion in relativ geringer Zeit und wirtschaftlicher Weise zu ermöglichen, wobei ein Produkt mit geringerem Kohlenstoffgehalt gegenüber Fe₃C erhalten wird.

Die Lösung dieser Aufgabe erfolgt erfindungsgemäß dadurch, daß

65

a) in einer ersten Reduktionsstufe die Eisenoxide enthaltenden Stoffe in den Wirbelschichtreaktor eines zirkulierenden Wirbelschichtsystems chargiert werden, heißes Reduktionsgas als Fluidisierungsgas in den Wirbelschichtreaktor eingeleitet wird, eine Vorreduktion der Eisenoxide erfolgt, die aus dem Wirbelschichreaktor ausgetragene Suspension im Rückführzyklon der zirkulierenden Wirbelschicht weitgehend von Feststoff befreit und der abgeschiedene Feststoff in den Wirbelschichtreaktor derart zurückgeleitet wird, daß innerhalb der zirkulierenden Wirbelschicht der stündliche Feststoffundum mindestens das Fünffache des im Wirbelschichtreaktor befindlichen Feststoffgewichts beträgt,

b) Feststoff aus der ersten Reduktionsstufe in einer zweiten Reduktionsstufe in eine klassische Wirbel-

schicht geleitet wird, heißes Reduktionsgas als Fluidisierungsgas in die klassische Wirbelschicht geleitet wird, der restliche Sauerstoff abgebaut und der Eisengehalt zu < 50% in Fe₅C überführt wird, das Abgas aus der klassischen Wirbelschicht als Sekundärgas in den Wirbelschichtreaktor gemäß (a) geleitet und aus der klassischen Wirbelschicht das Produkt abgezogen wird,

c) das Abgas aus dem Rückführzyklon gemäß (a) unter den Taupunkt abgekühlt und Wasser aus dem Abgas auskondensiert wird,

d) ein Teilstrom des Abgases abgeführt wird,

e) der restliche Teilstrom nach einer Regeneration durch Zugabe von reduzierendem Gas und Aufheizung als Kreislaufgas zum Teil als Fluidsierungsgas in den Wirbelschichtreaktor der ersten Reduktionsstufe gemäß (a) und zum Teil in die Wirbelschicht der zweiten Reduktionsstufe gemäß (b) geleitet wird.

Das System der zirkulierenden Wirbelschicht besteht aus einem Wirbelschichtreaktor, einem Abscheider zum Abscheiden von Feststoff aus der aus dem Wirbelschichtreaktor ausgetretenen Suspension — im allgemeinen einem Rückführzyklon — und einer Rückführeitung für den abgeschiedenen Feststoff in den Wirbelschichtreaktor. Das Prinzip der zirkulierenden Wirbelschicht zeichnet sich dadurch aus, daß im Unterschied zur "klassischen" Wirbelschicht, bei der eine dichte Phase durch einen deutlichen Dichtesprung von dem darüber befindischen Gasraum getrennt ist, Verteilungszustände ohne definierte Grenzschicht vorliegen. Ein Dichtesprung zwischen dichter Phase und darüber befindlichen Stauraum ist nicht vorhanden, jedoch nimmt innerhalb des Reaktors die Feststoffkousentration von unten nach oben ständig ab. Aus dem oberen Teil des Reaktors wird eine Gas-Feststoff-Suspension ausgetragen. Bei der Definition von Betriebsbedingungen über die Kennzahlen 200 non Froude und Archimedes ergeben sich folgende Bereiche:

$$0.1 \le 3/4 \cdot Fr^2 \cdot \frac{gg}{g_k - gg} \le 10$$
,

35

55

bzw.

 $0.01 \le Ar \le 100$.

wobei

$$Ar = \frac{d_k^3 \cdot g \left(\int k - \int g \right)}{g \cdot y^2} \quad \text{und}$$

$$Fr^2 = \frac{u^2}{g \cdot d_k}$$

sind.

Es bedeuter

u die relative Gasgeschwindigkeit in m/sec

Ar die Archimedes-Zahl

Fr die Froude-Zahl

ρg die Dichte des Gases in kg/m3

ok die Dichte des Feststoffteilchens in kg/m3

dk den Durchmesser des kugelförmigen Teilchens in in

v die kinematische Zähigkeit in m²/sec

g die Gravitationskonstante in m/sec2.

Die Vorreduktion in der zirkulierenden Wirbelschicht erfolgt auf einen Reduktionsgrad von etwa 60 bis 90%. In diesem Bereich wird der vom jeweiligen Reduktionsverhalten des Erzes abhängige optimale Wert in bezug 60 auf die Ausnutzung des Reduktionsgases eingestellt. Die Temperatur im Reaktor der zirkulierenden Wirbelschicht wird auf etwa 550 bis 650°C eingestellt.

Der Teil des Feststoffs, der aus der ersten Reduktionsstufe in die zweite Reduktionsstufe geleitet wird, kann aus der Rückführleitung der zirkulierenden Wirbelschich der aus dem Wirbelschichtreaktor der zirkulierenden Wirbelschicht entnommen werden. Die Aufgabe des Feststoffs in den Wirbelschichtreaktor der zweiten 68 Reduktionsstufe erfolgt auf einer Seite, die der Seite des Abzuges des Produktes gegenüberliegt. Die Überführung des Eisengehaltes in < 50% FesC erfolgt in der klassischen Wirbelschicht. Die Temperatur in der klassischen Wirbelschicht wird auf etwa 550 bis 60°C eingestellt. Das Abgas der klassischen Wirbelschicht wird als

44 10 093

Sekundärgas in den Wirbelschichtreaktor der zirkulierenden Wirbelschicht in einer Höhe von bis 30% der Höhe des Reaktors über dem Boden eingeleitet. Das Abgas aus dem Rückführzyklon der zirkulierenden Wirbelschicht wird soweit abgekühlt, daß der Wasserdampfgehalt im Gas auf unter etwa 1,5% gesenkt wird. Die Kühlung erfolgt im allgemeinen in einem Wäscher unter Eindüsung von kaltem Wasser. Dabei wird gleichzeitig auch 5 restlicher Staub aus dem Gas ausgewaschen. Das Volumen des Teilstroms des Abgases, der abgeführt wird, wird so eingestellt, daß im Kreislaufgas keine Anreicherung von Stickstoff eintritt, der mit dem Aufstärkungsgas eingebracht wird. Als Aufstärkungsgas wird im allgemeinen aus Erdgas hergestelltes H2 enthaltendes Gas, das auch CO enthalten kann, verwendet. Das aufgestärkte Kreislaufgas wird wieder komprimiert, aufgeheizt und dann zum Teil in die erste und zum Teil in die zweite Reduktionsstufe geleitet. Der Feststoff kann vor der Aufgabe in den Wirbelschichtreaktor der zirkulierenden Wirbelschicht vorgewärmt werden. Dies geschieht unter oxidierenden Bedingungen. Wenn der Feststoff aus Magnetit (Fe₃O₄) besteht oder größere Mengen davon enthält, ist eine vorherige Oxidation zu Hämatit (Fe₂O₃) erforderlich.

Die Vorteile der Erfindung bestehen darin, daß der größere Teil der Reduktion in der zirkulierenden Wirbelschicht erfolgt, d. h. in einem Reaktor mit relativ kleinem Durchmesser und ohne Einbauten mit gleichmäßiger Strömung. Durch den sehr guten Stoff- und Wärmeaustausch in der zirkulierenden Wirbelschicht kann die Reaktion mit relativ kurzer Verweilzeit in einer kleinen Einheit durchgeführt werden. Die restliche Reduktion und eine mögliche, teilweise Aufkohlung, die eine längere Verweilzeit erfordern, erfolgt in der klassischen Wirbelschicht, die jedoch infolge der geringen restlichen Reaktion gegenüber einer vollständigen Reaktion in der klassischen Wirbelschicht wesentlich kleiner gehalten werden kann. Durch die erfindungsgemäße Gas- und feststoffseitige Koppelung der beiden Wirbelschichten wird das Verfahren mit einer partiellen Gegenstromfüh-

rung durchgeführt, wodurch ein höherer Gasumsatz bzw. ein geringerer Gasverbrauch erzielt wird.

Die Vorteile des erfindungsgemäßen Verfahrens liegen darin, daß der H2-Gehalt im Reduktionsgas erhöht werden kann, wodurch geringere Kreislaufgasmengen für die Reduktion erforderlich sind. Gemäß diesem Verfahren kann die Verweilzeit in der zweiten Reduktionsstufe, die üblicherweise etwa neun Stunden beträgt, auf etwa fünf Stunden verringert werden. Aufgrund der geringeren Menge des Kreislaufgases wird auch die für die Kompression erforderliche Energie entsprechend bis zu 50% eingespart. Das nach der zweiten Reduktionsstufe erhaltene Produkt kann in brikettierter Form wie Schrott transportiert und chargiert werden. Aufgrund der geringeren Kohlenstoffmenge in dem erhaltenen Produkt, können größere Anteile, bis zu 100% einer Gesamtcharge, im Elektrolichtbogenofen eingesetzt werden.

Eine vorzugsweise Ausgestaltung der Erfindung besteht darin, daß 50 bis 80% des Kreislaufgases als Fluidisierungsgas in die klassische Wirbelschicht der zweiten Reduktionsstufe gemäß (b) geleitet und das restliche Kreislaufgas als Fluidisierungsgas in den Wirbelschichtreaktor der zirkulierenden Wirbelschicht gemäß (a) geleitet und die Fluidisierungsgase mit einem H2-Gehalt von 85 bis 95 Vol.-% eingestellt werden. Dadurch erfolgt in der zweiten Reduktionsstufe ein hohes Angebot an frischem Reduktionsgas, und der im Abgas der zweiten Reduktionsstufe vorhandene Überschuß kann in der ersten Reduktionsstufe optimal ausgenutzt werden. Der Kohlenstoffgehalt in dem Produkt nach der zweiten Reduktionsstufe beträgt 0 bis 0,1 Gew.-%. Der Vorteil dieser erfindungsgemäßen Ausgestaltung liegt darin, daß noch höhere H2-Gehalte und dadurch noch geringere Kreislaufgasmengen verwendet werden. Die Ausgestaltung führt zu einer weiteren Verringerung der Abmessungen der Reaktoren und erbringt eine weitere Einsparung für die elektrische Energie bei der Kompres-40 sion der Kreislaufgase.

Eine vorzugsweise Ausgestaltung der Erfindung besteht darin, daß 50 bis 80% des Kreislaufgases als Fluidisierungsgas in die klassische Wirbelschicht der zweiten Reduktionsstufe gemäß (b) geleitet und das restliche Kreislaufgas als Fluidisierungsgas in den Wirbelschichtreaktor der zirkulierenden Wirbelschicht gemäß (a) geleitet und die Fluidisierungsgase mit einem H2-Gehalt von 50 bis 85 Vol.-% eingestellt werden. Nach dieser erfindungsgemäßen Ausgestaltung wird in wirtschaftlicher Weise, in geringer Zeit ein weitgehend reduziertes Produkt mit einem Fe₃C-Gehalt von < 50% erhalten, das gut brikettiert und leicht transportiert werden kann.

Eine vorzugsweise Ausgestaltung der Erfindung besteht darin, daß die Fluidisierungsgase mit einem H2-Gehalt von 50 bis 75 Vol.-% eingestellt werden. Mit diesen bevorzugten Maßnahmen wird ein Produkt erhalten, das besonders wirtschaftlich hergestellt und besonders gut brikettiert werden kann.

Eine vorzugsweise Ausgestaltung der Erfindung besteht darin, daß der Druck in der ersten Reduktionsstufe gemäß (a) und der zweiten Reduktionsstufe gemäß (b) so eingestellt wird, daß der Druck im oberen Teil des Wirbelschichtreaktors der zirkulierenden Wirbelschicht gemäß (a) 1,5 bis 6 bar beträgt. Das gesamte System der ersten und zweiten Reduktionsstufe steht dabei unter einem entsprechenden Druck, wobei der Druck des Gases vor dem Eintritt in die Wirbelschichten entsprechend höher ist. Dieser Druckbereich ergibt besonders günstige 55 Ergebnisse, obwohl prinzipiell auch mit höherem Druck gearbeitet werden kann.

Eine vorzugsweise Ausgestaltung der Erfindung besteht darin, daß die klassische Wirbelschicht gemäß (b) in einem Reaktor mit rechteckigem Querschnitt mit einem Verhältnis von Länge zu Breite von mindestens 2: 1 und quer angeordneten Überlauf-Wehren für den Feststoff angeordnet ist. Die Überlauf-Wehre sind parallel zu den Schmalseiten des Reaktors angeordnet. Sie erstrecken sich vom gasdurchlässigen Boden bis kurz unterhalb der Oberfläche des Wirbelbettes. Der Feststoff fließt von der Eintragsseite über die Wehre zur Austragsseite. Durch die schlanke und lange Form des Reaktors und die Überlauf-Wehre wird eine Rückvermischung von stärker reduziertem Feststoff mit weniger reduziertem Feststoff weitgehend vermieden, so daß eine sehr gute Endreduktion und Aufkohlung erzielt wird.

Eine Ausgestaltung der Erfindung besteht darin, daß die Eisenoxide enthaltenden Stoffe vor dem Einsatz in den Wirbelschichtreaktor der zirkulierenden Wirbelschicht gemäß (a) in einem oder mehreren Suspensions-Wärmeaustauschern vorgewärmt und/oder mit dem Abgas der zirkulierenden Wirbelschicht vorreduziert werden. Das zur Vorreduktion verwendete Abgas wird nach dem Rückführzyklon vor der Kühlung unter den Taupunkt gemäß (c) entnommen. Diese Vorreduktion vor der eigentlichen Vorreduktion gemäß (a) ergibt eine

noch bessere Ausnutzung des Reduktionsgases und damit höhere Durchsatzleistung.

Eine bevorzugte Ausgestaltung der Erfindung besteht darin, daß das gemäß Verfahrensstufe (b) erhaltene Produkt brikettiert, vorzugsweise heiß brikettiert wird.

Die Erfindung wird anhand der Figur und der Beispiele näher erläutert.

Figur

Über Leitung (1) wird das feinkörnige Erz in den Venturi-Vorwärmer (2) chargiert. Über Leitung (3) wird die Suspension in den Zyklon (4) geleitet, wo eine Trennung von Gas und Feststoff erfolgt. Der abgeschiedene Feststoff wird über Leitung (5) in den Venturi-Vorwärmer (6) geleitet. Über Leitung (7) wird Brennstoff und über Leitung (8) Verbrennungsluft in die Brennkammer (9) geleitet. Über Leitung (10) werden die heißen Verbrennungsgase in den Venturi-Vorwärmer (6) geleitet. Über Leitung (11) wird die Suspension in den Zyklon (12) geleitet, wo eine Trennung von Feststoff und Gas erfolgt. Das Gas wird über Leitung (13) in den Venturi-Vorwärmer (2) geleitet. Das Gas aus dem Zyklon (4) wird über Leitung (14) in ein Filter (15) geleitet, aus dem über Leitung (16) das gereinigte Gas und über Leitung (17) der abgeschiedene Staub abgeführt wird. Der im Zyklon (12) abgeschiedene Feststoff wird über Leitung (17a) in den Bunker (18) geleitet, aus dem er über Leitung (19) in den Schneckenförderer (20) abgezogen und von dort über Leitung (21) in den Wirbelschichtreaktor (22) der zirkulierenden Wirbelschicht geleitet wird. Aus dem Wirbelschichtreaktor (22) wird über Leitung (23) die Gas-Feststoff-Suspension in den Rückführzyklon (24) geleitet. Der abgeschiedene Feststoff wird über Leitung (25) in den Wirbelschichtreaktor (22) zurückgeleitet. Über Leitung (26) wird das Gas aus dem Rückführzyklon in den Wärmetauscher (27) geleitet. Das abgekühlte Gas wird über Leitung (28) in den Wäscher (29) geleitet, dort unter den Taupunkt des Wasserdampfes abgekühlt und der Wasserdampfgehalt weitgehend entfernt. Das gereinigte Gas wird über Leitung (30) in den Wärmetauscher (27) geleitet. Über Leitung (31) wird reduzierendes Gas zur Aufstärkung zugemischt. Über Leitung (32) wird das vorgewärmte Reduktionsgas in den Aufheizer (33) geleitet und dort auf die für den Prozeß erforderliche Temperatur aufgeheizt. Das aufgeheizte Gas verläßt den Aufheizer (33) über Leitung (34) und wird zum Teil als Fluidisierungsgas über die Leitungen (35) in den Wirbelschichtreaktor (36) der klassischen Wirbelschicht geleitet und zum anderen Teil über Leitung (37) als Fluidisierungsgas in den Wirbelschichtreaktor (22) der zirkulierenden Wirbelschicht geleitet. Aus dem Wirbelschichtreaktor (22) der zirkulierenden Wirbelschicht wird über Leitung (38) Feststoff in den Wirbelschichtreaktor (36) der klassischen Wirbelschicht geleitet. Das staubhaltige Abgas aus dem Wirbelschichtreaktor (36) der klassischen Wirbelschicht wird über Leitung (39) in den Zyklon (40) geleitet. Der abgeschiedene Staub wird über Leitung (41) in den Wirbelschichtreaktor (36) zurückgeführt und das Gas wird über Leitung (42) als Sekundärgas in den Wirbelschichtreaktor (22) der zirkulierenden Wirbelschicht eingeleitet. Aus dem Wirbelschichtreaktor (36) der klassischen Wirbelschicht wird über Leitung (43) das Produkt in die Brikettieranlage (44) geleitet und dort brikettiert und über Leitung (45) abgeführt. Über Leitung (46) wird Wasser in den Wäscher (29) geleitet und über Leitung (47) abgeführt. Über die Leitungen (48) werden Brennstoff und Verbrennungsluft in den Aufheizer (33) geleitet. Die Verbrennungsgase werden über Leitung (49) abgeführt. Über Leitung (50) wird ein Teilstrom aus dem Kreislaufgas entfernt, der eine Anreicherung von Stickstoff im Kreislaufgas verhindert.

Beispiele

Beispiel 1

Über Leitung (1) wurden 61,2 t/h feuchtes Erz mit 7,8% Feuchte dem Venturi-Vorwärmer (2) chargiert. Über Leitung (7) wurden 1 500 Nm³h Erdgas und über Leitung (8) 21 000 Nm³h Luft in die Brennkammer (9) geleitet. Im Filter (15) wurden über die Leitung (21) 26 t/h Staub abgerennt. Über die Leitung (21) wurden 54,2 t/m 4500°C vorgewärmtes Erz in den Wirbelschichtreaktor (22) der zirkulierenden Wirbelschicht (ZWS) geleitet. Der Druck am Austritt aus dem Wirbelschichtreaktor (22) betrug 4 bar. Die Reduktionstemperatur betrug 630°C Der Wirbelschichtreaktor (23) batte einen Durchmesser von 3 m.

Aus dem Wirbelschichtreaktor (22) wurden über Leitung (38) 40,6 t/h vorreduziertes Material mit 70% Metallisierungsgrad in den Wirbelschichtreaktor (36) geleitet. Der Wirbelschichtreaktor (36) hatte eine Länge von 12 m und eine Breite von 4 m.

Aus dem Wirbelschichtreaktor (36) wurden über die Leitung (43) 36,8 t/h Produkt mit einem Metallisierungsgrad von 92% in die Brikettieranlage (44) geleitet und dort brikettiert.

Das Produkt hatte einen Kohlenstoffgehalt von 0,05 Gew.-%. Über die Leitung (26) wurden 182 000 Nm²/h Abgas mit 79% H₂ 1 29% H₂O und 9% N₂ in den Wärmetauscher (27) geleitet und dort auf 120° C abgekühlt. Das abgekühlt Gas wurde in dem Wäscher (29) auf 28° C abgekühlt. Nach Zumischen von 23 000 Nm²/h Frischgas mit einem H₂-Gehalt von 97% über die Leitung (31) wurde das Gas mit einer Zusammensetzung von 91% H₂, 0,6% H₂O und 8.4% N₂ in den Wärmetauscher (27) geleitet und auf 520° C aufgeheitz. Nach weiterer Auflreitung im Auflteizer (33) wurden 70% der Gase in den Reaktor (36) der klassischen Wirbelschicht als Fluidisierungsgas geleitet. Die restlichen 30% der Gase wurden über die Leitung (37) als Fluidisierungsgas in den Reaktor (22) der zirkulierenden Wirbelschicht seleitet.

Beispiel 2

Über Leitung (1) wurden 61.2 v/h feuchtes Erz mit 7,8% Feuchte dem Venturi-Vorwärmer (2) chargiert. Über Leitung (7) wurden 1500 Nm³/h Erdgas und über Leitung (8) 21 000 Nm³/h Lift in die Bremtkammer (9) geleitet. Im Filter (15) wurden über die Leitung (17) 2.6 v/h Staub abgetrennt. Über die Leitung (12) wurden 54.2 v/h auf

500°C vorgewärmtes Erz in den Wirbelschichtreaktor (22) der ZWS geleitet. Der Druck am Austritt aus dem Wirbelschichtreaktor (22) betrug 4 bar. Die Reduktionstemperatur betrug 630°C. Der Wirbelschichtreaktor (22) hat einen Durchmesser von 4 m.

Aus dem Wirbelschichtreaktor (22) wurden über Leitung (38) 40,6 t/h vorreduziertes Material mit 70% Metallisierungsgrad in den Wirbelschichtreaktor (36) geleitet. Der Wirbelschichtreaktor (36) hatte eine Länge von 21 m und eine Breite von 4 m.

Aus dem Wirbelschichtreaktor (36) wurden über die Leitung (43) 37,6 t/h Produkt mit 63% metallischem Eisen, 30% Fe₃C und 6% Fe₃C₃ und Rest Gangart in die Brikettieranlage (44) geleitet und dort brikettieran 150% H₂, 8% H₂O, 9% N₃, 31% CH₄ und 2% CO + CO₂ in den Wärmetauscher (27) geleitet und dort auf 120°C abgekühlt. Das abgekühlte Gas wurde in dem Wäscher (29) auf 28°C abgekühlt. Nach Zumischen von 24 000 Nm³/h Prischgas mit einem H₂-Gehalt von 90%, 3% CH₄, 4% CO und 3% H₂O über die Leitung (31), wurde das Gas mit einer Zusammensetzung von 57% H₂, 0,6% H₂O, 9% N₂, 31% CH₄ und 2,4% CO + CO₂ in den Wärmetauscher (27) geleitet und auf 520°C aufgeheitz. Nach weiterer Aufheizung im Aufheizer (33) wurden 70% der Gase in den Reaktor (36) der klassischen Wirbelschicht als Fluidisierungsgas geleitet. Die restlichen 30% der Gase myden über die Leitung (37) als Fluidisierungsgas in den Reaktor (36) der ziksusierenden Wirbelschicht geleitet.

Patentansprüche

- 1, Verfahren zur Direktreduktion von Eisenoxide enthaltenden Stoffen in Wirbelschichten mit Kreislaufführung von Reduktionsgas, wobei
 - a) in einer ersten Reduktionsstufe die Eisenoxide enthaltenden Stoffe in den Wirbelschichtevaktor eines zirkulierenden Wirbelschichtsystems chargiert werden, heiße Reduktionsgas als Fludisierungsgas in den Wirbelschichtweaktor eingeleitet wird, eine Vorreduktion der Eisenoxide erfolgt, die aus dem Wirbelschichtreaktor ausgetragene Suspension im Rückführzyklon der zirkulierenden Wirbelschichtweitgehend von Feststoff befreit und der abgeschiedene Feststoff in den Wirbelschichtreaktor derart zurückgeleitet wird, daß innerhalb der zirkulierenden Wirbelschicht der stündliche Festsoffunlauf mindestens das Pfunffache des im Wirbelschichtreaktor befindlichen Feststoffigewichts beträge.
 - b) Feststoff aus der ersten Reduktionsstufe in einer zweiten Reduktionsstufe in eine klassische Wirbelschicht geleitet wird, heißes Reduktionsgas als Fluidisierungsgas in die klassische Wirbelschicht geleitet wird, der restliche Sauerstoff abgebaut und der Eisengehalt zu < 50% in Fe₂C überführt wird, das Abgas aus der klassischen Wirbelschicht als Sekundärgas in den Wirbelschichtreaktor gemäß (a) geleitet und aus der klassischen Wirbelschicht das Produkt abgezogen wird.
 - c) das Abgas aus dem Rückführzyklon gemäß (a) unter den Taupunkt abgekühlt und Wasser aus dem Abgas auskondensiert wird.
 - d) ein Teilstrom des Abgases abgeführt wird.

25

35

65

- e) der restliche Teilstrom nach einer Regenerierung durch Zugabe von reduzierendem Gas und Aufheizung als Kreislaufgas zum Teil als Fuldisierungsgas in den Wirebeischichtraktor der ersten Reduktionsstufe gemäß (a) und zum Teil in die Wirbelschicht der zweiten Reduktionsstufe gemäß (b) geleitet wird.
- 2. Verfahren nach Anspruch I, dadurch gekennzeichnet, daß 50 bis 80% des Kreislaufgases als Fluidisierungsgas in die klassische Wirbelschicht der zweiten Reduktionsstufg gemäß (b) geleitet und das restliche Kreislaufgas als Fluidisierungsgas in den Wirbelschichtreaktor der zirkulierenden Wirbelschicht gemäß (a) geleitet und die Fluidisierungsgase mit einem H-2-Cehalt von 85 bis 95 Vol.-% eingestellt werden.
- 3. Verfahren nach Anspruch I, dadurch gekennzeichnet, daß 50 bis 80% des Kreislaufgases als Fluidisierungsgas in die klassische Wirbelschicht der zweiten Reduktionsstufe gemäß (b) geleitet und das restliche Kreislaufgas als Fluidisierungsgas in den Wirbelschichtreaktor der zirkulierenden Wirbelschicht gemäß (a) geleitet und die Fluidisierungsgase mit einem H₂-Gehalt von 50 bis 85 Vol. % eingestellt werden.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Fluidisierungsgase mit einem H₂-Gehalt von 50 bis 75 Vol.-% eingestellt werden.
 - 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Druck in der ersten Reduktionsstufe gemäß (a) und der zweiten Reduktionsstufe gemäß (b) so eingestellt wird, daß der Druck im oberen Teil des Wirbelschichtreaktors der zirkulierenden Wirbelschicht gemäß (a) 1,5 bis 6 bar beträgt. 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die zweite Reduktionsstufe in
- Verlaufer nach erheiten der Ausgrücher 1903, Audentung gesehnzekennlet, und die zweite Reduktionsstulle in der klassischen Wirbelschicht gemäß (b) in einem Reaktor mit rechteckigem Querschnitt mit einem Verhältnis von Länge zu Breite von mindestens 2:1 und quer angeordneten Überlauf-Wehren für den Feststoff durchgeführt wird.
 - 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Eisenoxide enthaltenden Stoffe vor dem Einsatz in den Wirbelschichtreaktor der zirkulierenden Wirbelschicht gemaß (a) in einem oder mehreren Suspensions-Wärmetauschern vorgewärmt und/oder mit dem Abgas der zirkulierenden Wirbelschicht vorreduziert werden.
 - 8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß das gemäß Verfahrensstufe (b) erhaltene produkt brikettiert, vorzugsweise heiß brikettiert wird.

Hierzu 1 Seite(n) Zeichnungen

6

- Leerseite -

Nummer: DE 44 10 093 C1
Int. Cl.⁶: C 21 B 13/14
Veröffentlichungstag: 9. März 1995

