Tipuri exerciții examen CN

February 18, 2022

Acest document este doar orientativ. El nu a fost întocmit (nici verificat) de titularul de curs, ci de Sebastian Ciobanu, fost student și actual profesor de laborator utilizând programa din anii universitari 2016-2017 și 2020-2021. Fiți prezenți la cursul din anul curent pentru a obține informații actuale legate de examen și de posibilele exerciții!

Examen CN: 3-4 exerciții = 2-3 în stilul celor de mai jos + unul mai greu care nu apare aici

Observație: semnele $\{...\}$ indică faptul că enunțul poate fi formulat cu oricare variantă cuprinsă între acolade.

Observație: semnul \times trebuie înlocuit cu un număr real.

Observație: semnul ? indică faptul că exercițiul este mai puțin important decât celelalte.

1 Capitol: Rezolvarea sistemelor liniare

1. Scrieti sistemul liniar

$$\begin{cases} \times x_1 + \times x_2 + \times x_3 = \times \\ \times x_1 + \times x_2 + \times x_3 = \times \\ \times x_1 + \times x_2 + \times x_3 = \times \end{cases}$$

în forma matriceală Ax = b, determinând A, b, x.

Curs 4

- 2. Fie $A = \begin{bmatrix} \times & 0 & 0 \\ \times & \times & 0 \\ \times & \times & \times \end{bmatrix}$ o matrice inferior triunghiulară, $b = \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix}$. Rezolvați sistemul Ax = b folosind metoda substituției directe.
- 3. Fie $A = \begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \end{bmatrix}$ o matrice superior triunghiulară, $b = \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix}$. Rezolvați sistemul Ax = b folosind metoda substituției inverse.
- 4. Fie $A = \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}, b = \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix}.$
 - (a) Rezolvați sistemul Ax = b folosind algoritmul de eliminare Gauss {
 - fără pivotare,
 - cu pivotare parțială,
 - cu pivotare totală

}.

- (b) ?Scrieți descompunerea LU a lui A folosindu-vă de subpunctul anterior. Scrieți matricele L, U, T_i . Scrieți și matricele P, I_{kl} acolo unde este cazul. (Curs 4+5)
- (c) Calculați det A.
- 5. Fie $A = \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}$, $b = \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix}$. Să se arate că sistemul Ax = b nu are soluție unică (A este singulară) folosind {
 - algoritmul de eliminare Gauss fără pivotare,
 - algoritmul de eliminare Gauss cu pivotare parțială,
 - algoritmul de eliminare Gauss cu pivotare totală

Curs 5

6. Fie
$$A = \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}, b = \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix}.$$

- (a) Calculați o descompunere LU a matricei A cu {
 - $l_{ii} = 1$,
 - $u_{ii} = 1$

} în felul următor: o {

- linie,
- coloană

 $\}$ din L, o $\{$

- linie,
- coloană

 $\} \dim U.$

(b) Să se rezolve sistemul liniar Ax = b folosind această descompunere și metodele substituției.

7. Fie
$$A = \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}$$
 o matrice simetrică și pozitiv definită, $b = \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix}$.

- (a) Verificați că într-adevăr A este pozitiv definită. Hint: Dacă este și simetrică, se poate verifica prin verificarea definiției, calculul valorilor proprii sau calculul de minori principali. Dacă nu, se va face prin verificarea definiției.
- (b) Calculați descompunerea Cholesky cu $l_{ii} > 0$ pentru A.
- (c) Să se rezolve sistemul liniar Ax=b folosind această descompunere și metodele substituției.

8. Fie
$$A = \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}$$
, $b = \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix}$. Să se arate că sistemul $Ax = b$ nu are soluție unică (A este singulară) folosind {

- LU (La LU nu este specificat în curs. La LU pivotul 0 indică A singulară.)+metodele substituției,
- Cholesky+metodeke substituției

Curs 6

9. Fie
$$A = \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}, b = \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix}.$$

- (a) Să se calculeze descompunerea QR pentru matricea A folosind algoritmul lui {
 - Householder (dacă o coloană este deja in forma superior triunghiulară, atunci puteți spune că matricea P de la acel pas este I),
 - Givens (dacă un element pe care dorim să-l facem 0 este deja 0, atunci puteți spune că matricea R_{ij} de la acel pas este I)
 - }. Scrieți matricele Q și R, dar și matricele de reflexie/rotație (depinde de algoritm) de la fiecare pas.
- (b) Să se rezolve sistemul liniar Ax = b folosind această descompunere și metoda substituției inverse.

10. Fie
$$A = \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}$$
, $b = \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix}$. Să se arate că sistemul $Ax = b$ nu are soluție unică (A este singulară) folosind {

• QR (La Givens nu este specificat în curs. La Givens matricea este singulară doar dacă la finalul pasului r elementul a_{rr} este 0. Elementul acesta se schimbă la fiecare înmulțire cu matricea de rotație din pasul r.) +metoda substituției inverse

Curs 7

11. (este inclus în rezolvarea exercițiului următor) Calculați A^{-1} , unde $A = \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}$, rezolvând sistemele liniare $Ax = e_j, j \in \{1, 2, 3\}$.

12. Fie
$$A = \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}, b = \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix}.$$

- (a) Să se calculeze matricea iterației M cu metoda {
 - fiind dată matricea B,
 - Jacobi,
 - Gauss-Seidel,
 - $\bullet\,$ relaxării succesive cu $\omega=\times\,$
 - }.
- (b) Să se studieze convergența metodei.
- (c) Pentru $x^{(0)} = \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix}$, să se calculeze $x^{(1)}$.

Capitol: Vectori și valori proprii $\mathbf{2}$

Curs 8

1. Fie
$$A = \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}$$
.

- (a) Scrieti polinomul caracteristic.
- (b) Determinați (de mână) valorile proprii și vectorii proprii corespunzătoare
- (c) Precizați multiplicitatea algebrică și geometrică a fiecărei valori pro-
- (d) Aplicați teorema lui Gershgorin pe acest exemplu.
- 2. Fie $A = \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}$ (de obicei, o matrice simetrică). Aplicați o iterație

din metoda puterii pe matricea A, folosind $u^{(0)} = \begin{vmatrix} \times \\ \times \\ \times \end{vmatrix}$ ca vector de start.

3. Fie
$$A = \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}$$
 (de obicei, o matrice simetrică). Aplicați o iterație

din metoda iterației inverse pe matricea A, folosind $u^{(0)} = \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix}$ ca vector

de start și $\mu = \times$. Rezolvarea sistemului liniar se va face cu algoritmul {

- de eliminare Gauss fără pivotare,
- de eliminare Gauss cu pivotare partială,
- de eliminare Gauss cu pivotare totală,
- LU+metodele substitutiei,
- Cholesky+metodele substituției,
- QR+metoda substitutiei inverse

4. Fie
$$A = \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}$$
.

(a) Aplicați o iterație a algoritmului QR pentru valori proprii, folosind pentru descompunerea QR algoritmul lui{

6

- i. Householder (dacă o coloană este deja in forma superior triunghiulară, atunci puteți spune că matricea P de la acel pas este I),
- ii. Givens (dacă un element pe care dorim să-l facem 0 este deja 0, atunci puteți spune că matricea R_{ij} de la acel pas este I)

}. (b) Verificați (de mână) faptul că $A^{(1)}$ are aceleași valori proprii ca A.

- 5. Fie $A=\begin{bmatrix}\times&\times&\times\\\times&\times&\times\\\times&\times&\times\end{bmatrix}$ o matrice în formă Hessenberg superioară.
 - (a) Aplicați o iterație a algoritmului QR pentru valori proprii, folosind pentru descompunerea QR algoritmul potrivit din punctul de vedere al eficientei.

Hint: E vorba de algoritmul lui Givens aplicat numai acolo unde nu sunt zerouri.

(b) Verificați (de mână) faptul că $A^{(1)}$ are aceleași valori proprii ca A.

3 Capitol: Rezolvarea sistemelor liniare (2)

Curs 9

- 1. Fie $A=\begin{bmatrix}\times&\times\\\times&\times\\\times&\times\end{bmatrix}$. Găsiți (de mână) descompunerea după valori singulare (SVD) a lui A.
- 2. Fie $A = \begin{bmatrix} \times & \times \\ \times & \times \\ \times & \times \end{bmatrix}$. Determinați pseudoinversa Moore-Penrose a lui A folosind {
 - descompunerea SVD,
 - formula $(A^{\top}A)^{-1}A$ (doar dacă rang A = 2)

}.

- 3. Fie $A = \begin{bmatrix} \times & \times \\ \times & \times \\ \times & \times \end{bmatrix}$, $b = \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix}$. Să se calculeze soluția în sensul celor mai mici pătrate folosind sistemul de ecuații normale. Rezolvați sistemul de ecuații normale folosind {
 - algoritmul de eliminare Gauss fără pivotare,
 - algoritmul de eliminare Gauss cu pivotare parțială,
 - algoritmul de eliminare Gauss cu pivotare totală,
 - LU+metodele substituției,
 - Cholesky+metodele substituției,
 - QR+metoda substitutiei inverse

} ca metodă de rezolvare a sistemelor liniare.

- 4. Fie $A = \begin{bmatrix} \times & \times \\ \times & \times \\ \times & \times \end{bmatrix}$, $b = \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix}$. Să se calculeze soluția în sensul celor mai mici pătrate folosind pseudoinversa Moore-Penrose. Determinați pseudoinversa Moore-Penrose a lui A folosind $\{$
 - descompunerea SVD,
 - formula $(A^{\top}A)^{-1}A$ (doar dacă rang A=2)

4 Capitol: Interpolare numerică

Curs 9+10

1. Fie tabelul $\begin{array}{c|cccc} x & \times & \times & \times & \times \\ \hline f(x) & \times & \times & \times & \times \end{array}$.

Să se aproximeze f(x), folosind {

- polinomul de interpolare Lagrange,
- forma Newton a polinomului de interpolare Lagrange + pentru calculul diferentelor divizate {
 - definiția (care este nerecursivă),
 - schema lui Aitken

},

- formula Neville pentru polinomul de interpolare Lagrange + pentru calculul diferențelor {
 - definiția (care este nerecursivă),
 - schema lui Aitken

},

- formula lui Newton progresivă pe noduri echidistante (doar dacă nodurile sunt echidistante) + pentru calculul diferențelor finite {
 - definiția (care este nerecursivă),
 - schema lui Aitken

},

- formula lui Newton regresivă pe noduri echidistante (doar dacă nodurile sunt echidistante) + pentru calculul diferențelor finite {
 - definiția (care este nerecursivă),
 - schema lui Aitken

},

• functii spline liniare continue

}.

2. Fie tabelul $\begin{array}{c|cccc} x & \times & \times & \times & \times \\ \hline f(x) & \times & \times & \times & \times \end{array}$.

Să se aproximeze f(x), folosind interpolarea în sensul celor mai mici pătrate folosind un polinom de grad {

- 1
- 2
- }. Rezolvarea sistemului liniar corespunzător se va face folosind {

- algoritmul de eliminare Gauss fără pivotare,
- algoritmul de eliminare Gauss cu pivotare parțială,
- algoritmul de eliminare Gauss cu pivotare totală,
- $\bullet~$ LU+metodele substituției,
- Cholesky+metodele substituției,
- $\bullet~\mathrm{QR}+\mathrm{metoda}$ substituției inverse

5 Capitol: Ecuații neliniare

Curs 11

- 1. Fie $f: \mathbb{R} \to \mathbb{R}$ $f(x) = \times$ o funcție neliniară. Dorim să rezolvăm ecuația f(x) = 0 pe intervalul $[\times, \times]$. Fie metoda bisecției (înjumătățirii intervalului).
 - (a) Stabiliți dacă este rezonabil să aplicați această metodă. Hint: Verificați dacă f este continuă și dacă f(a)f(b) < 0. Dacă nu, găsiți a, b corespunzători.
 - (b) Aplicati o iteratie a algoritmului.
- 2. Fie $f: \mathbb{R} \to \mathbb{R}$ $f(x) = \times$ o funcție neliniară. Dorim să rezolvăm ecuația f(x) = 0 pe intervalul $[\times, \times]$. Fie metoda tangentei (Newton-Raphson).
 - (a) Stabiliți dacă este rezonabil să aplicați această metodă. Hint: Verificați dacă f este continuă și dacă f(a)f(b) < 0 + f este derivabilă, f' este continuă Dacă nu, găsiti a, b corespunzători.
 - (b) Verificați presupozițiile teoremei de convergență. Alegeți x_0 conform teoremei de convergență.
 - (c) Aplicați o iterație a algoritmului pornind de la x_0 găsit anterior.
- 3. Fie $f: \mathbb{R} \to \mathbb{R}$ $f(x) = \times$ o funcție neliniară. Dorim să rezolvăm ecuația f(x) = 0 pe intervalul $[\times, \times]$. Fie metoda falsei poziții (coardei).
 - (a) Stabiliți dacă este rezonabil să aplicați această metodă. Hint: Verificați dacă f este continuă și dacă f(a)f(b) < 0. Dacă nu, găsiți a, b corespunzători.
 - (b) Verificați presupozițiile teoremei de convergență. Alegeți x_0 și \tilde{x} conform teoremei de convergență.
 - (c) Aplicați o iterație a algoritmului pornind de la x_0 și \tilde{x} găsite anterior.
- 4. Fie $f: \mathbb{R} \to \mathbb{R}$ $f(x) = \times$ o funcție neliniară. Dorim să rezolvăm ecuația f(x) = 0 pe intervalul $[\times, \times]$. Fie metoda secantei.
 - (a) Stabiliți dacă este rezonabil să aplicați această metodă. Hint: Verificați dacă f este continuă și dacă f(a)f(b) < 0. Dacă nu, găsiți a, b corespunzători.
 - (b) Conform teoremei de convergență locală, cum ar trebui ca se facă inițializarea x_0, x_1 ? Răspunsul va fi unul intuitiv. Răspuns: cât mai aproape de rădăcina căutată.
 - (c) Aplicați o iterație a algoritmului pornind de la $x_0 = \times$ și $x_1 = \times$.
- 5. Fie $p: \mathbb{R} \to \mathbb{R}$ f(x) = x un polinom. Dorim să rezolvăm ecuația p(x) = 0 (adică să căutăm o rădăcină a polinomului). Fie metoda lui Laguerre. Aplicați o iterație a algoritmului pornind de la $y_0 = x$.

6. Fie sistemul neliniar cu 3 ecuații și 3 necunoscute

$$\begin{cases} \times \cdots \times = \times \\ \times \cdots \times = \times \\ \times \cdots \times = \times \end{cases}$$

Pornind de la $x_0=\times$, aplicați o iterație din metoda lui Newton pentru rezolvarea acestui sistem. Rezolvarea sistemului liniar corespunzător se va face folosind {

- algoritmul de eliminare Gauss fără pivotare,
- algoritmul de eliminare Gauss cu pivotare parțială,
- algoritmul de eliminare Gauss cu pivotare totală,
- LU+metodele substituției,
- Cholesky+metodele substituției,
- QR+metoda substituției inverse

6 Capitol: Optimizare numerică

Curs 11+12

- 1. ?Fie funcția $f: \mathbb{R}^2 \to \mathbb{R}, f(x) = \times, x_k = \times, d_k = \times$. Suntem în contextul minimizării lui f și al algoritmului de descreștere.
 - (a) Verificați dacă d_k este o direcție de descreștere pentru f în x_k .
 - (b) Scrieți funcția $g(\alpha) = f(x_k + \alpha d_k)$.
 - (c) ?Minimizați (de mână) funcția $g(\alpha)$ și obțineți $\bar{\alpha}$.
 - (d) Pentru $\bar{\alpha} = \times$, obțineți x_{k+1} .
- 2. ?Fie funcția $g: \mathbb{R} \to \mathbb{R}, g(x) = \times$ pe care dorim să o minimizăm pe intervalul $[\times, \times]$. Pornind de la $a_0 = \times$ aplicați o iterație din {
 - metoda lui Newton,
 - metoda secantei,
 - aproximarea spline cubică

- 3. ?Fie funcția $f: \mathbb{R}^2 \to \mathbb{R}, f(x) = \times$ pe care dorim să o minimizăm, $x_k = \times$, $d_k = \times$. Verificați dacă $a = \times$ este acceptabil după regula lui Armijo, știind că $\epsilon = \times$, $\sigma = \times$.
- 4. ?Fie funcția $f: \mathbb{R}^2 \to \mathbb{R}, f(x) = \times$ pe care dorim să o minimizăm, $x_k = \times$, $d_k = \times$. Verificați dacă $a = \times$ este acceptabil și apoi acceptat după regula lui Goldstein, știind că $\epsilon = \times$.
- 5. ?Fie funcția $f: \mathbb{R}^2 \to \mathbb{R}, f(x) = \times$ pe care dorim să o minimizăm, $x_k = \times$, $d_k = \times$. Verificați dacă $a = \times$ este acceptabil după regula lui Wolfe, știind că $\epsilon = \times$.
- 6. Fie funcția $f: \mathbb{R}^2 \to \mathbb{R}, f(x) = \times, x_k = \times$. Suntem în contextul minimizării lui f și al metodei pantei maxime. Calculați direcția de descreștere d_k .
- 7. Fie functia $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x) = \times$ pe care dorim să o minimizăm.
 - (a) Calculati $\nabla f(x)$.
 - (b) Calculați $\nabla^2 f(x)$.
 - (c) Arătați că $\nabla^2 f(x)$ este pozitiv definită (notație $\nabla^2 f(x) > 0$), $\forall x \in \mathbb{R}^2$.
 - (d) Putem trage o concluzie legată de convexitatea lui f?
- 8. Fie funcția $f: \mathbb{R}^2 \to \mathbb{R}, f(x) = \times$ pe care dorim să o minimizăm.
 - (a) Calculați $\nabla f(x)$.

- (b) Calculați $\nabla^2 f(x)$.
- (c) Arătați că $\nabla^2 f(x)$ este pozitiv definită (notație $\nabla^2 f(x) > 0$), $\forall x \in \mathbb{R}^2$. Hint: Dacă este și simetrică, se poate verifica prin verificarea definiției, calculul valorilor proprii sau calculul de minori principali. Dacă nu, se va face prin verificarea definiției.
- (d) Putem trage o concluzie legată de convexitatea lui f? Hint: Da, este convexă.
- (e) Ce sistem de ecuații trebuie rezolvat ca să obținem $x^* = \arg\min_x f(x)$? Hint: $\nabla f(x) = 0$, datorită rezultatului de la subpunctul anterior.
- (f) Rezolvați sistemul de la subpunctul anterior. Dacă este vorba de un sistem liniar, atunci rezolvarea se va face prin: {
 - algoritmul de eliminare Gauss fără pivotare,
 - algoritmul de eliminare Gauss cu pivotare parțială,
 - algoritmul de eliminare Gauss cu pivotare totală,
 - LU+metodele substituției,
 - Cholesky+metodele substituției,
 - QR+metoda substituției inverse
 - }. Dacă sistemul este neliniar, atunci Pornind de la $x_0 = \times$, aplicați o iterație din metoda lui Newton pentru rezolvarea acestui sistem. Rezolvarea sistemului liniar corespunzător se va face folosind {
 - algoritmul de eliminare Gauss fără pivotare,
 - algoritmul de eliminare Gauss cu pivotare parțială,
 - algoritmul de eliminare Gauss cu pivotare totală,
 - LU+metodele substitutiei,
 - Cholesky+metodele substitutiei,
 - QR+metoda substituției inverse

9. Fie
$$A = \begin{bmatrix} \times & \times \\ \times & \times \end{bmatrix}$$
 o matrice simetrică și pozitiv definită, $b = \begin{bmatrix} \times \\ \times \end{bmatrix}$.

- (a) Verificați că într-adevăr A este pozitiv definită. Hint: Dacă este și simetrică, se poate verifica prin verificarea definiției, calculul valorilor proprii sau calculul de minori principali. Dacă nu, se va face prin verificarea definiției.
- (b) Menționați o funcție f care își atinge minimul în soluția sistemului Ax=b. Hint: $\min_x \frac{1}{2}x^\top Ax x^\top b.$
- (c) Verificați că într-adevăr $\nabla f(x) = Ax b$ și că $\nabla^2 f(x) = A$.
- (d) Pornind de la $x_0 = \times$, aplicați o iterație din {
 - metoda pantei maxime,

```
• metoda gradienților conjugați, folosind pentru \beta_k formula (ele sunt echivalente pentru cazul acesta, pătratic): {
```

- clasică/originală,
- Fletcher-Reeves,
- Polak-Ribière,
- Hestenes-Stiefel

}

} pentru minimizarea funcției f și, deci, și pentru rezolvarea sistemului liniar Ax=b.

- 10. Fie funcția $f: \mathbb{R}^2 \to \mathbb{R}, f(x) = \times$ (pătratică sau nu; *Hint:* $g_k \leftrightarrow \nabla f(x_k)$, $A \leftrightarrow \nabla^2 f(x_k)$.) pe care dorim să o minimizăm.
 - (a) Calculați $\nabla f(x)$.
 - (b) Calculati $\nabla^2 f(x)$.
 - (c) Pornind de la $x_0 = \times$, aplicați o iterație din {
 - metoda pantei maxime,
 - metoda gradienților conjugați, folosind pentru β_k formula: {
 - clasică/originală,
 - Fletcher-Reeves,
 - Polak-Ribière,
 - Hestenes-Stiefel

}.

- 11. Fie funcția $f: \mathbb{R}^2 \to \mathbb{R}, f(x) = \times$ pe care dorim să o minimizăm.
 - (a) Calculați $\nabla f(x)$.

}

- (b) Calculati $\nabla^2 f(x)$.
- (c) Pornind de la $x_0=\times$, aplicați o iterație din metoda lui Newton. Rezolvarea sistemului liniar corespunzător se va face folosind {
 - algoritmul de eliminare Gauss fără pivotare,
 - algoritmul de eliminare Gauss cu pivotare parțială,
 - algoritmul de eliminare Gauss cu pivotare totală,
 - LU+metodele substituției,
 - Cholesky+metodele substituției,
 - QR+metoda substituției inverse

- 12. Fie funcția $f: \mathbb{R}^2 \to \mathbb{R}, f(x) = \times$ (pătratică).
 - (a) Găsiți A, b astfel încât $f(x_1, x_2) = \frac{1}{2}x^{\top}Ax x^{\top}b + c$.

- (b) Minimizarea lui f se reduce la rezolvarea cărui sistem liniar?
- (c) Rezolvați sistemul liniar de la subpunctul anterior folosind {
 - algoritmul de eliminare Gauss fără pivotare,
 - algoritmul de eliminare Gauss cu pivotare parțială,
 - algoritmul de eliminare Gauss cu pivotare totală,
 - LU+metodele substituției,
 - Cholesky+metodele substituției,
 - QR+metoda substituției inverse