AI+BD ML Lab. Day 5

Transfer Learning

YoungIn Kim <youngkim21@postech.edu>

- 1. Understanding Transfer Learning
- 2. Understanding more about CNN Deep model
- 3. Make Code!

Goals

Backgrounds

For your information & reminding

More Data, High Intelligence

Collecting data is the most difficult thing

Collecting data is the most difficult thing

How to solve?

Collecting data is the most difficult thing

- Transfer Learning
- Self-supervised Learning
- Semi-supervised Learning

•

1000 Class, 14 million Data

Why don't we REUSE this model?

Why don't we REUSE this model?

Why don't we REUSE this model?

Fine Tuning!

4

Transfer Learning

CNN Architecture

MODEL ZOO

This page lists model archives that are pre-trained and pre-packaged, ready to be served for inference TorchServe. To propose a model for inclusion, please submit a pull request.

Special thanks to the PyTorch community whose Model Zoo and Model Examples were used in generating model archives.

Model	Туре	Dataset	Size	Download	Sample Input	Mode mode
AlexNet	Image Classification	ImageNet	216 MB	.mar	kitten.jpg	Eager
Densenet161	Image Classification	ImageNet	106 MB	.mar	kitten.jpg	Eager
Resnet18	Image Classification	ImageNet	41 MB	.mar	kitten.jpg	Eager
VGG11	Image Classification	ImageNet	471 MB	.mar	kitten.jpg	Eager
Squeezenet 1_1	Image Classification	ImageNet	4.4 MB	.mar	kitten.jpg	Eager
MNIST digit classifier	Image Classification	MNIST	4.3 MB	.mar	0.png	Eager

https://pytorch.org/serve/model_zoo.html

It's coding time

Let's fill the I.P.Y.N.B

Full code:

https://git.io/aibd-tl-5-full

from torchvision import models

https://pytorch.org/vision/stable/models.html


```
# In order to see the power of transfer learning, let the size of data by 1/10
def minimize(num):
   mini = []
   for data in train_data:
       mini.append(data)
       num -= 1
       if num == 0: break
   return mini
train_data_mini = minimize(4500)
valid_data_mini = minimize(500)
test_data_mini = minimize(1000)
```


- 1 # Model structure check
- 2 Summary(models.resnet18(pretrained = True).to(device), (3, 224, 224))

Layer (type)	Output Shape	Param #
Conv2d-1	[-1, 64, 112, 112]	9,408
BatchNorm2d-2	[-1, 64, 112, 112]	128
ReLU-3	[-1, 64, 112, 112]	0
MaxPool2d-4	[-1, 64, 56, 56]	0
Conv2d-5	[-1, 64, 56, 56]	36,864
BatchNorm2d-6	[-1, 64, 56, 56]	128
ReLU-7	[-1, 64, 56, 56]	0
Conv2d-8	[-1, 64, 56, 56]	36,864
BatchNorm2d-9	[-1, 64, 56, 56]	128
ReLU-10	[-1, 64, 56, 56]	0
BasicBlock-11	[-1, 64, 56, 56]	0
Conv2d-12	[-1, 64, 56, 56]	36,864
BatchNorm2d-13	[-1, 64, 56, 56]	128
ReLU-14	[-1, 64, 56, 56]	0
Conv2d-15	[-1, 64, 56, 56]	36,864
BatchNorm2d-16	[-1, 64, 56, 56]	128
Rel II-17	Γ-1. 64. 56. 56]	۵


```
# Model
def set_parameter_requires_grad(model, feature_extracting):
   if feature_extracting:
        for param in model.parameters():
            param.requires_grad = False
def init_model(model_name, num_classes, feature_extract, use_pretrained=True):
   global net, loss fn, optim
    # get CNN model from PyTorch Model Zoo
   if model name == "resnet":
        """ Resnet18
       net = models.resnet18(pretrained=use_pretrained)
        set_parameter_requires_grad(net, feature_extract)
        # Parameters of newly constructed modules have requires_grad=True by default
       num_ftrs = net.fc.in_features
       net.fc = nn.Linear(num_ftrs, num_classes)
       input_size = 224
```

```
# Training Initialization
init_model(model_name='resnet', num_classes=10, feature_extract=False, use_pretrained=True)
```



```
# Training Initialization
```

init_model(model_name='resnet', num_classes=10, feature_extract=False, use_pretrained=True)

```
Test accuracy = 0.814484126984127
Test loss = 0.7271402364685422
```

Training Initialization

init_model(model_name='resnet', num_classes=10, feature_extract=True, use_pretrained=True)