Diseño y construcción de un stage de translación en x, y y z automatizado

J. Barbosa¹

¹Departamento de Física Universidad de los Andes

Sustentación, Diciembre 2017

J. Barbosa Diciembre 2017 1 / 15

Contenido

- Introducción
- Fabricación y resultados
 - Modelo 1
 - Modelo 2
 - Modelo 3
- Conclusiones

J. Barbosa

2 / 15

Introducción

Construcción.

Automatización.

3 / 15

J. Barbosa

- Motores de escobillas
- Servo motores
- Motores de paso

J. Barbosa Mau

4 / 15

Protocolo UART

Microcontrolador

J. Barbosa

Fabricación y resultados

Tres modelos fueron diseñados, solo dos fueron probados.

Construído a partir de un sistema de lectura de CD.

Resultados obtenidos usando el primer stage. Se observa la primera línea horizontal de la letra E impresa sobre papel.

8 / 15

Aislamiento de los motores al sistema usando correas de transporte.

Se requiere un motoreductor.

Además de las piezas de impresión, también fue necesario adquirir:

- 12 Tornillos M3 de 10 mm.
- 2 Tornillos 15/32" de 100 mm.
- 1 Tornillo 15/32" de 50 mm.
- 12 Tuercas M3.
- 6 Tuercas 15/32".

Distancia disponible de movimiento en cada dirección del stage

Eje	Distancia (cm)
X	$\textbf{3.42} \pm \textbf{0.01}$
У	3.90 ± 0.01
Z	1.31 ± 0.01

El movimiento de los motores se lleva a cabo por el microcontrolador quien recibe información del computador usando protocolo UART.

Movimiento mínimo en cara dirección:

Eje	Distancia (μm)
x	1.55
у	1.49
z	1.60

Variación y rapidez en función de la resolución para el eje x y y, correspondientemente.

Optimización del enfoque con la construcción de un plano.

Conclusiones

- Tres modelos distintos fueron propuestos.
- Obtención de una imagen de 7 bits.
- Implementación de la librería Mauscope, escrita en Python.
- Resolución de movimientos de hasta 1.49 μ m.
- Velocidades de 73 μ m/s hasta 176 μ m/s.

Referencias

- Abramowitz, Mortimer. and Michael W. Davidson. *Microscope Stages*. 2015. URL: https://micro.magnet.fsu.edu/primer/anatomy/stage.html.
- Coskun, Ahmet F., Ting-Wei Su, and Aydogan Ozcan. "Wide field-of-view lens-free fluorescent imaging on a chip". In: Lab on a Chip 10.7 (2010), p. 824. ISSN: 1473-0197. DOI: 10.1039/b926561a. URL: http://xlink.rsc.org/?DOI=b926561a.
- Greenbaum, Alon et al. "Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy". In:

 Nature Methods 9.9 (2012), pp. 889-895. ISSN: 1548-7091. DOI: 10.1038/nmeth.2114. URL:

 http://www.nature.com/doifinder/10.1038/nmeth.2114.
- Kim, Oliver. What are the advantages of a mechanical stage? 2008. URL: Whataretheadvantagesofamechanical stage?.
- Zhang, Yu Shrike et al. "Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications". In: Scientific Reports 6.1 (2016), p. 22691. ISSN: 2045-2322. DOI: 10.1038/srep22691. URL: http://www.nature.com/articles/srep22691.

15 / 15

J. Barbosa Mauscope