# TIME SERIES FORECASTING PROJECT BUSINESS REPORT

Sanjana M PGP-DSBA Online

### Table of Contents

| List of Figures                                                                                                                                                                                                                                                                                                                                                             | 3    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| List of Tables                                                                                                                                                                                                                                                                                                                                                              | 5    |
| Problem                                                                                                                                                                                                                                                                                                                                                                     | 6    |
| 1. Read the data as an appropriate Time Series data and plot the data                                                                                                                                                                                                                                                                                                       | 6    |
| Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.                                                                                                                                                                                                                                                                        | 8    |
| 3. Split the data into training and test. The test data should start in 1991                                                                                                                                                                                                                                                                                                | . 14 |
| 4. Build all the exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other additional models such as regression, naïve forecast models, simple average models, moving average models should also be built on the training data and check the performance on the test data using RMSE.                                     |      |
| 5. Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be no stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment. Note: Stationarity should be checked at alpha = 0.05. |      |
| 6. Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.                                                                                                                                                   |      |
| 7. Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.                                                                                                                                                                                                                          | .38  |
| 8. Build a table with all the models built along with their corresponding parameters and the respective RMSE values on the test data                                                                                                                                                                                                                                        | .45  |
| 9. Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands                                                                                                                                                                                             | .46  |
| 10. Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales                                                                                                                                                                                                                                    |      |

## List of Figures

| Figure 1: Sparkling wine graph                                        | 6  |
|-----------------------------------------------------------------------|----|
| Figure 2: Rose wine graph                                             | 7  |
| Figure 3: Sparkling wine-Monthly boxplot                              | 9  |
| Figure 4: Sparkling wine-Yearly boxplot                               | 9  |
| Figure 5: Rose wine-Monthly boxplot                                   | 10 |
| Figure 6: Rose wine-Yearly boxplot                                    | 10 |
| Figure 7: Sparkling wine additive decomposition                       | 12 |
| Figure 8: Rose wine additive decomposition                            |    |
| Figure 9: Sparkling wine multiplicative decomposition                 | 12 |
| Figure 10: Rose wine multiplicative decomposition                     | 13 |
| Figure 11: Linear regression on Sparkling data                        | 18 |
| Figure 12: Linear regression on Rose data                             | 18 |
| Figure 13: Linear regression-RMSE values                              | 18 |
| Figure 14: Naive for Sparkling wine                                   | 19 |
| Figure 15: Naive for Rose wine                                        | 19 |
| Figure 16: Simple average for Sparkling wine                          | 20 |
| Figure 17: Simple average for Rose wine                               | 20 |
| Figure 18: Moving averages for Sparkling wine                         | 22 |
| Figure 19: Moving averages for Rose wine                              | 22 |
| Figure 20: Moving average forecasts for Sparkling wine                | 23 |
| Figure 21: Moving average forecasts for Rose data                     | 23 |
| Figure 22: SES for Sparkling wine                                     | 25 |
| Figure 23: SES for Rose wine                                          | 25 |
| Figure 24: SES-RMSE values                                            | 26 |
| Figure 25: DES for Sparkling wine                                     | 27 |
| Figure 26: DES for Rose wine                                          | 27 |
| Figure 27: TES for Sparkling wine                                     | 29 |
| Figure 28: TES for Rose wine                                          |    |
| Figure 29: Rolling mean & Std deviation for Sparkling wine-Train data | 31 |
| Figure 30: Rolling mean & Std deviation for Sparkling wine-Test data  | 32 |
| Figure 31: Some ARIMA models                                          |    |
| Figure 32: AIC values for Sparkling wine                              | 33 |
| Figure 33: AIC values for Rose wine                                   | 34 |
| Figure 34: ARIMA Sparkling wine graph                                 | 37 |
| Figure 35: ARIMA Rose wine graph                                      |    |
| Figure 36: Autocorrelation for Sparkling wine                         | 38 |
| Figure 37: Partial Autocorrelation for Sparkling wine                 |    |
| Figure 38: Autocorrelation for Rose wine                              | 39 |
| Figure 39: Partial Autocorrelation for Rose wine                      | 39 |

| Figure 40: Manual ARIMA for Sparkling wine            | 40 |
|-------------------------------------------------------|----|
| Figure 41: Manual ARIMA for Rose wine                 | 40 |
| Figure 42: Manual ARIMA for Sparkling wine            | 41 |
| Figure 43: Manual ARIMA for Rose wine                 | 41 |
| Figure 44: Some models of SARIMA                      | 42 |
| Figure 45: Auto SARIMA summary for Sparkling wine     | 43 |
| Figure 46: Auto SARIMA summary for Rose wine          | 43 |
| Figure 47: Auto SARIMA for Sparkling wine-Graph       | 44 |
| Figure 48: Auto SARIMA for Rose wine-Graph            | 44 |
| Figure 49: Manual SARIMA model SUMMARY for Rose wine  | 45 |
| Figure 50: TES on full Sparkling wine                 | 47 |
| Figure 51: TES full Sparkling data prediction – Graph | 48 |
| Figure 52: TES full Sparkling data – Monthly Graph    | 48 |
| Figure 53: SARIMA full Rose data prediction-Graph     | 49 |
| Figure 54: SARIMA full Rose data – Monthly Graph      | 50 |
|                                                       |    |

#### List of Tables

| Table 1: Sparkling wine head                                   | 6  |
|----------------------------------------------------------------|----|
| Table 2: Rose wine head                                        | 6  |
| Table 3: Sparkling wine info                                   | 7  |
| Table 4: Rose wine info                                        | 7  |
| Table 5: Sparkling wine description                            | 8  |
| Table 6: Rose wine description                                 | 8  |
| Table 7: Sparkling wine with separate Year, Month              | 8  |
| Table 8: Rose wine with separate Year, Month                   | 9  |
| Table 9: Sparkling wine data monthly mean aggregate, year-wise | 11 |
| Table 10: Rose wine data monthly mean aggregate, year-wise     | 11 |
| Table 11: Sparkling wine train-test split                      | 14 |
| Table 12: Rose wine train-test split                           | 15 |
| Table 13: Linear regression-Train and Test head                | 16 |
| Table 14: Linear regression-Train and Test head                | 17 |
| Table 15: Naive-RMSE values                                    | 19 |
| Table 16: Simple average-RMSE values                           | 20 |
| Table 17: Moving average for Sparkling wine                    | 21 |
| Table 18: Moving average for Rose wine                         | 21 |
| Table 19: Moving averages-RMSE values                          | 24 |
| Table 20: SES for Sparkling and Rose wine data                 | 24 |
| Table 21: DES for Sparkling and Rose wine data                 | 26 |
| Table 22: Sparkling wine-RMSE value                            | 28 |
| Table 23: Rose wine-RMSE value                                 | 28 |
| Table 24: TES for Sparkling and Rose wine                      | 29 |
| Table 25: TES-RMSE value for Sparkling wine                    | 30 |
| Table 26: TES-RMSE value for Rose wine                         | 31 |
| Table 27: AIV values in ascending values for Sparkling wine    | 33 |
| Table 28: AIC values in ascending order for Rose wine          | 34 |
| Table 29: ARIMA model summary for Sparkling wine               | 35 |
| Table 30: ARIMA model summary for Rose wine                    | 35 |
| Table 31: Auto ARIMA Sparkling wine-RMSE value                 | 36 |
| Table 32: Auto ARIMA Rose wine-RMSE value                      | 36 |
| Table 33: SARIMA AIC values for Sparkling wine                 | 42 |
| Table 34: RMSE values for various models - Sparkling wine      | 46 |
| Table 35: RMSE values for various models - Rose wine           | 46 |
| Table 36: TES predict for 12 months for full Sparkling wine    | 47 |
| Table 37: SARIMA full Rose data                                | 49 |

### **Problem**

#### 1. Read the data as an appropriate Time Series data and plot the data.

Time series is a collection of observations of well-defined data items obtained through repeated measurements over time, Thus, it is a sequence of discrete-time series.

|            | Sparkling |
|------------|-----------|
| YearMonth  |           |
| 1980-01-01 | 1686      |
| 1980-02-01 | 1591      |
| 1980-03-01 | 2304      |
| 1980-04-01 | 1712      |
| 1980-05-01 | 1471      |

Table 1: Sparkling wine head

|            | Rose  |
|------------|-------|
| YearMonth  |       |
| 1980-01-01 | 112.0 |
| 1980-02-01 | 118.0 |
| 1980-03-01 | 129.0 |
| 1980-04-01 | 99.0  |
| 1980-05-01 | 116.0 |
|            |       |

Table 2: Rose wine head



Figure 1: Sparkling wine graph



Figure 2: Rose wine graph

Table 3: Sparkling wine info

```
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 187 entries, 1980-01-01 to 1995-07-01
Data columns (total 1 columns):
    # Column Non-Null Count Dtype
    ------
0 Rose 185 non-null float64
dtypes: float64(1)
memory usage: 2.9 KB
```

Table 4: Rose wine info

There are a total of 187 entries in both of the wine datas.

Original Sparkling wine data has 0 null, whereas, Rose wine has 2 nulls which is filled.

# 2. Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

Decomposition is a statistical job that involves breaking down the Time-Series data into many components and trend from a series of data.

Here decomposition has 4 parts: Original data, Trend, Seasonality and Residual

|       | Sparkling |
|-------|-----------|
| count | 187.000   |
| mean  | 2402.417  |
| std   | 1295.112  |
| min   | 1070.000  |
| 25%   | 1605.000  |
| 50%   | 1874.000  |
| 75%   | 2549.000  |
| max   | 7242.000  |

Table 5: Sparkling wine description

|       | Rose    |
|-------|---------|
| count | 185.000 |
| mean  | 90.395  |
| std   | 39.175  |
| min   | 28.000  |
| 25%   | 63.000  |
| 50%   | 86.000  |
| 75%   | 112.000 |
| max   | 267.000 |

Table 6: Rose wine description

|            | Sparkling | Year | Month |
|------------|-----------|------|-------|
| YearMonth  |           |      |       |
| 1980-01-01 | 1686      | 1980 | 1     |
| 1980-02-01 | 1591      | 1980 | 2     |
| 1980-03-01 | 2304      | 1980 | 3     |
| 1980-04-01 | 1712      | 1980 | 4     |
| 1980-05-01 | 1471      | 1980 | 5     |

Table 7: Sparkling wine with separate Year, Month

|            | Rose  | Year | Month |  |
|------------|-------|------|-------|--|
| YearMonth  |       |      |       |  |
| 1980-01-01 | 112.0 | 1980 | 1     |  |
| 1980-02-01 | 118.0 | 1980 | 2     |  |
| 1980-03-01 | 129.0 | 1980 | 3     |  |
| 1980-04-01 | 99.0  | 1980 | 4     |  |
| 1980-05-01 | 116.0 | 1980 | 5     |  |

Table 8: Rose wine with separate Year, Month



Figure 3: Sparkling wine-Monthly boxplot



Figure 4: Sparkling wine-Yearly boxplot



Figure 5: Rose wine-Monthly boxplot



Figure 6: Rose wine-Yearly boxplot

| Month | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Year  |        |        |        |        |        |        |        |        |        |        |        |        |
| 1980  | 1686.0 | 1591.0 | 2304.0 | 1712.0 | 1471.0 | 1377.0 | 1966.0 | 2453.0 | 1984.0 | 2596.0 | 4087.0 | 5179.0 |
| 1981  | 1530.0 | 1523.0 | 1633.0 | 1976.0 | 1170.0 | 1480.0 | 1781.0 | 2472.0 | 1981.0 | 2273.0 | 3857.0 | 4551.0 |
| 1982  | 1510.0 | 1329.0 | 1518.0 | 1790.0 | 1537.0 | 1449.0 | 1954.0 | 1897.0 | 1706.0 | 2514.0 | 3593.0 | 4524.0 |
| 1983  | 1609.0 | 1638.0 | 2030.0 | 1375.0 | 1320.0 | 1245.0 | 1600.0 | 2298.0 | 2191.0 | 2511.0 | 3440.0 | 4923.0 |
| 1984  | 1609.0 | 1435.0 | 2061.0 | 1789.0 | 1567.0 | 1404.0 | 1597.0 | 3159.0 | 1759.0 | 2504.0 | 4273.0 | 5274.0 |
| 1985  | 1771.0 | 1682.0 | 1846.0 | 1589.0 | 1896.0 | 1379.0 | 1645.0 | 2512.0 | 1771.0 | 3727.0 | 4388.0 | 5434.0 |
| 1986  | 1606.0 | 1523.0 | 1577.0 | 1605.0 | 1765.0 | 1403.0 | 2584.0 | 3318.0 | 1562.0 | 2349.0 | 3987.0 | 5891.0 |
| 1987  | 1389.0 | 1442.0 | 1548.0 | 1935.0 | 1518.0 | 1250.0 | 1847.0 | 1930.0 | 2638.0 | 3114.0 | 4405.0 | 7242.0 |
| 1988  | 1853.0 | 1779.0 | 2108.0 | 2336.0 | 1728.0 | 1661.0 | 2230.0 | 1645.0 | 2421.0 | 3740.0 | 4988.0 | 6757.0 |
| 1989  | 1757.0 | 1394.0 | 1982.0 | 1650.0 | 1654.0 | 1406.0 | 1971.0 | 1968.0 | 2608.0 | 3845.0 | 4514.0 | 6694.0 |
| 1990  | 1720.0 | 1321.0 | 1859.0 | 1628.0 | 1615.0 | 1457.0 | 1899.0 | 1605.0 | 2424.0 | 3116.0 | 4286.0 | 6047.0 |
| 1991  | 1902.0 | 2049.0 | 1874.0 | 1279.0 | 1432.0 | 1540.0 | 2214.0 | 1857.0 | 2408.0 | 3252.0 | 3627.0 | 6153.0 |
| 1992  | 1577.0 | 1667.0 | 1993.0 | 1997.0 | 1783.0 | 1625.0 | 2076.0 | 1773.0 | 2377.0 | 3088.0 | 4096.0 | 6119.0 |
| 1993  | 1494.0 | 1564.0 | 1898.0 | 2121.0 | 1831.0 | 1515.0 | 2048.0 | 2795.0 | 1749.0 | 3339.0 | 4227.0 | 6410.0 |
| 1994  | 1197.0 | 1968.0 | 1720.0 | 1725.0 | 1674.0 | 1693.0 | 2031.0 | 1495.0 | 2968.0 | 3385.0 | 3729.0 | 5999.0 |
| 1995  | 1070.0 | 1402.0 | 1897.0 | 1862.0 | 1670.0 | 1688.0 | 2031.0 | NaN    | NaN    | NaN    | NaN    | NaN    |

Table 9: Sparkling wine data monthly mean aggregate, year-wise

| Month | 1     | 2     | 3     | 4    | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| Year  |       |       |       |      |       |       |       |       |       |       |       |       |
| 1980  | 112.0 | 118.0 | 129.0 | 99.0 | 116.0 | 168.0 | 118.0 | 129.0 | 205.0 | 147.0 | 150.0 | 267.0 |
| 1981  | 126.0 | 129.0 | 124.0 | 97.0 | 102.0 | 127.0 | 222.0 | 214.0 | 118.0 | 141.0 | 154.0 | 226.0 |
| 1982  | 89.0  | 77.0  | 82.0  | 97.0 | 127.0 | 121.0 | 117.0 | 117.0 | 106.0 | 112.0 | 134.0 | 169.0 |
| 1983  | 75.0  | 108.0 | 115.0 | 85.0 | 101.0 | 108.0 | 109.0 | 124.0 | 105.0 | 95.0  | 135.0 | 164.0 |
| 1984  | 88.0  | 85.0  | 112.0 | 87.0 | 91.0  | 87.0  | 87.0  | 142.0 | 95.0  | 108.0 | 139.0 | 159.0 |
| 1985  | 61.0  | 82.0  | 124.0 | 93.0 | 108.0 | 75.0  | 87.0  | 103.0 | 90.0  | 108.0 | 123.0 | 129.0 |
| 1986  | 57.0  | 65.0  | 67.0  | 71.0 | 76.0  | 67.0  | 110.0 | 118.0 | 99.0  | 85.0  | 107.0 | 141.0 |
| 1987  | 58.0  | 65.0  | 70.0  | 86.0 | 93.0  | 74.0  | 87.0  | 73.0  | 101.0 | 100.0 | 96.0  | 157.0 |
| 1988  | 63.0  | 115.0 | 70.0  | 66.0 | 67.0  | 83.0  | 79.0  | 77.0  | 102.0 | 116.0 | 100.0 | 135.0 |
| 1989  | 71.0  | 60.0  | 89.0  | 74.0 | 73.0  | 91.0  | 86.0  | 74.0  | 87.0  | 87.0  | 109.0 | 137.0 |
| 1990  | 43.0  | 69.0  | 73.0  | 77.0 | 69.0  | 76.0  | 78.0  | 70.0  | 83.0  | 65.0  | 110.0 | 132.0 |
| 1991  | 54.0  | 55.0  | 66.0  | 65.0 | 60.0  | 65.0  | 96.0  | 55.0  | 71.0  | 63.0  | 74.0  | 106.0 |
| 1992  | 34.0  | 47.0  | 56.0  | 53.0 | 53.0  | 55.0  | 67.0  | 52.0  | 46.0  | 51.0  | 58.0  | 91.0  |
| 1993  | 33.0  | 40.0  | 46.0  | 45.0 | 41.0  | 55.0  | 57.0  | 54.0  | 46.0  | 52.0  | 48.0  | 77.0  |
| 1994  | 30.0  | 35.0  | 42.0  | 48.0 | 44.0  | 45.0  | 46.0  | 46.0  | 46.0  | 51.0  | 63.0  | 84.0  |
| 1995  | 30.0  | 39.0  | 45.0  | 52.0 | 28.0  | 40.0  | 62.0  | NaN   | NaN   | NaN   | NaN   | NaN   |

Table 10: Rose wine data monthly mean aggregate, year-wise



Figure 7: Sparkling wine additive decomposition



Figure 8: Rose wine additive decomposition



Figure 9: Sparkling wine multiplicative decomposition



Figure 10: Rose wine multiplicative decomposition

#### 3. Split the data into training and test. The test data should start in 1991.

The data is split into train and test. In time-series, the latest data is taken for testing. Data until the year 1990 is taken as training data.

Data from 1991 is taken as testing data.

This split is applied for both Sparkling wine and Rise wine datas.

Training datas have the shape (132, 3)

Testing datas have the shape (55, 3)

|            | Sparkling | Year | Month |
|------------|-----------|------|-------|
| YearMonth  |           |      |       |
| 1990-08-01 | 1605      | 1990 | 8     |
| 1990-09-01 | 2424      | 1990 | 9     |
| 1990-10-01 | 3116      | 1990 | 10    |
| 1990-11-01 | 4286      | 1990 | 11    |
| 1990-12-01 | 6047      | 1990 | 12    |

Train Data: (132, 3)

|            | Sparkling | Year | Month |
|------------|-----------|------|-------|
| YearMonth  |           |      |       |
| 1991-01-01 | 1902      | 1991 | 1     |
| 1991-02-01 | 2049      | 1991 | 2     |
| 1991-03-01 | 1874      | 1991 | 3     |
| 1991-04-01 | 1279      | 1991 | 4     |
| 1991-05-01 | 1432      | 1991 | 5     |

Test Data: (55, 3)

Table 11: Sparkling wine train-test split

|            | Rose  | Year | Month |
|------------|-------|------|-------|
| YearMonth  |       |      |       |
| 1990-08-01 | 70.0  | 1990 | 8     |
| 1990-09-01 | 83.0  | 1990 | 9     |
| 1990-10-01 | 65.0  | 1990 | 10    |
| 1990-11-01 | 110.0 | 1990 | 11    |
| 1990-12-01 | 132.0 | 1990 | 12    |

Train Data: (132, 3)

|            | Rose | Year | Month |
|------------|------|------|-------|
| YearMonth  |      |      |       |
| 1991-01-01 | 54.0 | 1991 | 1     |
| 1991-02-01 | 55.0 | 1991 | 2     |
| 1991-03-01 | 66.0 | 1991 | 3     |
| 1991-04-01 | 65.0 | 1991 | 4     |
| 1991-05-01 | 60.0 | 1991 | 5     |

Test Data: (55, 3)

Table 12: Rose wine train-test split

4. Build all the exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other additional models such as regression, naïve forecast models, simple average models, moving average models should also be built on the training data and check the performance on the test data using RMSE.

#### (a) Linear regression

#### For Sparkling wine:

Training Time instance: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132]

Test Time instance: [133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187]

Training data shape: (132, 3)

|            | Sparkling | Year | Month | time |
|------------|-----------|------|-------|------|
| YearMonth  |           |      |       |      |
| 1980-01-01 | 1686      | 1980 | 1     | 1    |
| 1980-02-01 | 1591      | 1980 | 2     | 2    |
| 1980-03-01 | 2304      | 1980 | 3     | 3    |
| 1980-04-01 | 1712      | 1980 | 4     | 4    |
| 1980-05-01 | 1471      | 1980 | 5     | 5    |
|            |           |      |       |      |

|            | Sparkling | Year | Month | time |
|------------|-----------|------|-------|------|
| YearMonth  |           |      |       |      |
| 1991-01-01 | 1902      | 1991 | 1     | 133  |
| 1991-02-01 | 2049      | 1991 | 2     | 134  |
| 1991-03-01 | 1874      | 1991 | 3     | 135  |
| 1991-04-01 | 1279      | 1991 | 4     | 136  |
| 1991-05-01 | 1432      | 1991 | 5     | 137  |

Table 13: Linear regression-Train and Test head

#### For Rose wine:

#### Training Time instance

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132]

#### Test Time instance

[133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 167, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187]

|                          | Rose         | Year         | Month      | time |
|--------------------------|--------------|--------------|------------|------|
| YearMonth                |              |              |            |      |
| 1980-01-01               | 112.0        | 1980         | 1          | 1    |
| 1980-02-01               | 118.0        | 1980         | 2          | 2    |
| 1980-03-01               | 129.0        | 1980         | 3          | 3    |
| 1980-04-01               | 99.0         | 1980         | 4          | 4    |
| 1980-05-01               | 116.0        | 1980         | 5          | 5    |
|                          |              |              |            |      |
|                          |              |              |            |      |
|                          | Rose         | Year         | Month      | time |
| YearMonth                | Rose         | Year         | Month      | time |
| YearMonth<br>1991-01-01  | Rose<br>54.0 | Year<br>1991 | Month<br>1 | time |
|                          |              |              |            |      |
| 1991-01-01               | 54.0         | 1991         | 1          | 133  |
| 1991-01-01<br>1991-02-01 | 54.0<br>55.0 | 1991<br>1991 | 1 2        | 133  |

Table 14: Linear regression-Train and Test head



Figure 11: Linear regression on Sparkling data



Figure 12: Linear regression on Rose data

|            | Test_Spark RMSE |
|------------|-----------------|
| Regression | 1389.135175     |
|            |                 |
|            | Test_Rose RMSE  |
| Regression | 15.262509       |

Figure 13: Linear regression-RMSE values

#### (b) Naïve's approach



Figure 14: Naive for Sparkling wine



Figure 15: Naive for Rose wine

#### Test\_Spark RMSE

| Regression | 1389.135175 |
|------------|-------------|
| NaiveModel | 3864.279352 |

#### Test\_Rose RMSE

| Regression | 15.262509 |
|------------|-----------|
| NaiveModel | 79.699093 |

#### (c) Simple Average



Figure 16: Simple average for Sparkling wine



Figure 17: Simple average for Rose wine

|            | Test_Spark RMSE |
|------------|-----------------|
| Regression | 1389.135175     |
| NaiveModel | 3864.279352     |
| SimpleAvg  | 1275.081804     |

|            | Test_Rose RMSE |
|------------|----------------|
| Regression | 15.262509      |
| NaiveModel | 79.699093      |
| SimpleAvg  | 53.440426      |

Table 16: Simple average-RMSE values

#### (d) Moving average

|            | Sparkling | Year | Month | Trailing_2 | Trailing_4 | Trailing_6  | Trailing_9  |
|------------|-----------|------|-------|------------|------------|-------------|-------------|
| YearMonth  |           |      |       |            |            |             |             |
| 1980-01-01 | 1686      | 1980 | 1     | NaN        | NaN        | NaN         | NaN         |
| 1980-02-01 | 1591      | 1980 | 2     | 1638.5     | NaN        | NaN         | NaN         |
| 1980-03-01 | 2304      | 1980 | 3     | 1947.5     | NaN        | NaN         | NaN         |
| 1980-04-01 | 1712      | 1980 | 4     | 2008.0     | 1823.25    | NaN         | NaN         |
| 1980-05-01 | 1471      | 1980 | 5     | 1591.5     | 1769.50    | NaN         | NaN         |
| 1980-06-01 | 1377      | 1980 | 6     | 1424.0     | 1716.00    | 1690.166667 | NaN         |
| 1980-07-01 | 1966      | 1980 | 7     | 1671.5     | 1631.50    | 1736.833333 | NaN         |
| 1980-08-01 | 2453      | 1980 | 8     | 2209.5     | 1816.75    | 1880.500000 | NaN         |
| 1980-09-01 | 1984      | 1980 | 9     | 2218.5     | 1945.00    | 1827.166667 | 1838.222222 |
| 1980-10-01 | 2596      | 1980 | 10    | 2290.0     | 2249.75    | 1974.500000 | 1939.333333 |

Table 17: Moving average for Sparkling wine

|            | Rose  | Year | Month | Trailing_2 | Trailing_4 | Trailing_6 | Trailing_9 |
|------------|-------|------|-------|------------|------------|------------|------------|
| YearMonth  |       |      |       |            |            |            |            |
| 1980-01-01 | 112.0 | 1980 | 1     | NaN        | NaN        | NaN        | NaN        |
| 1980-02-01 | 118.0 | 1980 | 2     | 115.0      | NaN        | NaN        | NaN        |
| 1980-03-01 | 129.0 | 1980 | 3     | 123.5      | NaN        | NaN        | NaN        |
| 1980-04-01 | 99.0  | 1980 | 4     | 114.0      | 114.50     | NaN        | NaN        |
| 1980-05-01 | 116.0 | 1980 | 5     | 107.5      | 115.50     | NaN        | NaN        |
| 1980-06-01 | 168.0 | 1980 | 6     | 142.0      | 128.00     | 123.666667 | NaN        |
| 1980-07-01 | 118.0 | 1980 | 7     | 143.0      | 125.25     | 124.666667 | NaN        |
| 1980-08-01 | 129.0 | 1980 | 8     | 123.5      | 132.75     | 126.500000 | NaN        |
| 1980-09-01 | 205.0 | 1980 | 9     | 167.0      | 155.00     | 139.166667 | 132.666667 |
| 1980-10-01 | 147.0 | 1980 | 10    | 176.0      | 149.75     | 147.166667 | 136.555556 |

Table 18: Moving average for Rose wine



Figure 18: Moving averages for Sparkling wine



Figure 19: Moving averages for Rose wine



Figure 20: Moving average forecasts for Sparkling wine



Figure 21: Moving average forecasts for Rose data

#### Test\_Spark RMSE

| Regression | 1389.135175 |
|------------|-------------|
| NaiveModel | 3864.279352 |
| SimpleAvg  | 1275.081804 |
| MovingAvg2 | 813.400684  |
| MovingAvg4 | 1156.589694 |
| MovingAvg6 | 1283.927428 |
| MovingAvg9 | 1346.278315 |
|            |             |

#### Test\_Rose RMSE

| Regression | 15.262509 |
|------------|-----------|
| NaiveModel | 79.699093 |
| SimpleAvg  | 53.440426 |
| MovingAvg2 | 11.529409 |
| MovingAvg4 | 14.448930 |
| MovingAvg6 | 14.560046 |
| MovingAvg9 | 14.724503 |

Table 19: Moving averages-RMSE values

#### (e) Simple Exponential Smoothing (SES)

```
{'smoothing_level': 0.049607360581862936,
 'smoothing_trend': nan,
'smoothing_seasonal': nan,
'damping_trend': nan,
'initial_level': 1818.535750008871,
 'initial_trend': nan,
 'initial_seasons': array([], dtype=float64),
 'use_boxcox': False,
 'lamda': None,
 'remove_bias': False}
{'smoothing_level': 0.0987493111726833,
 'smoothing_trend': nan,
 'smoothing_seasonal': nan,
 'damping_trend': nan,
 'initial_level': 134.38720226208358,
 'initial_trend': nan,
 'initial_seasons': array([], dtype=float64),
 'use_boxcox': False,
 'lamda': None,
 'remove_bias': False}
```

Table 20: SES for Sparkling and Rose wine data



Figure 22: SES for Sparkling wine



Figure 23: SES for Rose wine

#### Test\_Spark RMSE

| Regression | 1389.135175 |
|------------|-------------|
| NaiveModel | 3864.279352 |
| SimpleAvg  | 1275.081804 |
| MovingAvg2 | 813.400684  |
| MovingAvg4 | 1156.589694 |
| MovingAvg6 | 1283.927428 |
| MovingAvg9 | 1346.278315 |
| SES        | 1316.035487 |

#### Test\_Rose RMSE

| Regression | 15.262509 |
|------------|-----------|
| NaiveModel | 79.699093 |
| SimpleAvg  | 53.440426 |
| MovingAvg2 | 11.529409 |
| MovingAvg4 | 14.448930 |
| MovingAvg6 | 14.560046 |
| MovingAvg9 | 14.724503 |
| SES        | 36.775774 |

Figure 24: SES-RMSE values

#### (f) Double Exponential Smoothing (DES)

```
{'smoothing_level': 0.6885714285714285,
 'smoothing_trend': 9.99999999999999e-05,
'smoothing_seasonal': nan,
'damping_trend': nan,
'initial_level': 1686.0,
 'initial_trend': -95.0,
 'initial_seasons': array([], dtype=float64),
 'use_boxcox': False,
 'lamda': None,
 'remove_bias': False}
{'smoothing_level': 0.017549790270679714,
 'smoothing_trend': 3.236153800377395e-05,
 'smoothing_seasonal': nan,
 'damping_trend': nan,
'initial_level': 138.82081494774005,
 'initial_trend': -0.492580228245491,
 'initial_seasons': array([], dtype=float64),
 'use_boxcox': False,
 'lamda': None,
 'remove_bias': False}
```

Table 21: DES for Sparkling and Rose wine data



Figure 25: DES for Sparkling wine



Figure 26: DES for Rose wine

# Regression 1389.135175 NaiveModel 3864.279352 SimpleAvg 1275.081804 MovingAvg4 813.400684 MovingAvg4 1156.589694

Test\_Spark RMSE

| MovingAvg4 | 1156.589694 |
|------------|-------------|
| MovingAvg6 | 1283.927428 |
| MovingAvg9 | 1346.278315 |
| SES        | 1316.035487 |
| DES        | 2007.238526 |

Table 22: Sparkling wine-RMSE value

| Test_Rose | RMSE |
|-----------|------|
|-----------|------|

|            | _         |
|------------|-----------|
| Regression | 15.262509 |
| NaiveModel | 79.699093 |
| SimpleAvg  | 53.440426 |
| MovingAvg2 | 11.529409 |
| MovingAvg4 | 14.448930 |
| MovingAvg6 | 14.560046 |
| MovingAvg9 | 14.724503 |
| SES        | 36.775774 |
| DES        | 15.699312 |
|            |           |

Table 23: Rose wine-RMSE value

Here, we see that the Double Exponential Smoothing model has picked up the trend component as well. Our data has seasonality too so we will include one more smoothing parameter for seasonality which is gamma. We will use ETS(A, A, A) Holt Winter's linear method with additive trend and seasonality for Sparkling data and ETS(A, A, M) Holt Winter's linear method with additive trend and multiplicative seasonality for Rose wine data

#### (g) Triple Exponential Smoothing

```
{'smoothing_level': 0.11127227248079453,
 'smoothing trend': 0.012360804305088534,
 'smoothing seasonal': 0.46071766688111543,
 'damping trend': nan,
 'initial level': 2356.577980956387,
 'initial trend': -0.10243675533021725,
 'initial seasons': array([-636.23319334, -722.9832009 , -398.64410813, -473.43045416,
        -808.42473284, -815.34991402, -384.23065038,
                                                       72.99484403,
        -237.44226045, 272.32608272, 1541.37737052, 2590.07692296]),
 'use boxcox': False,
 'lamda': None,
 'remove bias': False}
{'smoothing_level': 0.0715106306609405,
 smoothing_trend': 0.04529179757535142,
 'smoothing_seasonal': 7.244325029450242e-05,
 'damping_trend': nan,
 'initial_level': 130.40839142502193,
 'initial_trend': -0.77985743179386,
 'initial_seasons': array([0.86218996, 0.977675 , 1.0687727 , 0.93403881, 1.050625 ,
       1.14410977, 1.25836944, 1.33937772, 1.26778766, 1.24131254,
       1.44724625, 1.99553681]),
 'use_boxcox': False,
 'lamda': None,
 'remove_bias': False}
```

Table 24: TES for Sparkling and Rose wine



Figure 27: TES for Sparkling wine



Figure 28: TES for Rose wine

| _    | _     |        |
|------|-------|--------|
| Loct | Roca  | RMSE   |
| 1631 | 11036 | KINISE |

| Regression | 15.262509 |
|------------|-----------|
| NaiveModel | 79.699093 |
| SimpleAvg  | 53.440426 |
| MovingAvg2 | 11.529409 |
| MovingAvg4 | 14.448930 |
| MovingAvg6 | 14.560046 |
| MovingAvg9 | 14.724503 |
| SES        | 36.775774 |
| DES        | 15.699312 |
| TES        | 20.132468 |

Table 25: TES-RMSE value for Sparkling wine

|            | Test_Spark RMSE |
|------------|-----------------|
| Regression | 1389.135175     |
| NaiveModel | 3864.279352     |
| SimpleAvg  | 1275.081804     |
| MovingAvg2 | 813.400684      |
| MovingAvg4 | 1156.589694     |
| MovingAvg6 | 1283.927428     |
| MovingAvg9 | 1346.278315     |
| SES        | 1316.035487     |
| DES        | 2007.238526     |
| TES        | 378.951023      |

Table 26: TES-RMSE value for Rose wine

From SES, DES and TES we can clearly see that forecast is the closest to the values from DES model

5. Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment.

Note: Stationarity should be checked at alpha = 0.05.

#### Dickey-Fuller Test:

DF test statistic for Sparkling dataset -1.360 DF test p-value is 0.6011 DF test statistic for Rose dataset -1.877 DF test p-value is 0.3427



Figure 29: Rolling mean & Std deviation for Sparkling wine-Train data

#### Results of Dickey-Fuller Test:

Test Statistic: -1.208926
p-value: 0.669744
#Lags Used 12.000000
Number of Observations Used: 119.000000
Critical Value (1%): -3.486535
Critical Value (5%): -2.886151
Critical Value (10%): -2.579896



Figure 30: Rolling mean & Std deviation for Sparkling wine-Test data

#### Results of Dickey-Fuller Test:

Test Statistic: -1.790189
p-value: 0.385343
#Lags Used 11.000000
Number of Observations Used: 43.000000
Critical Value (1%): -3.592504
Critical Value (5%): -2.931550
Critical Value (10%): -2.604066

6. Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.

```
Some parameter combinations for the Model...

Model: (0, 1, 1)

Model: (0, 1, 2)

Model: (1, 1, 0)

Model: (1, 1, 1)

Model: (1, 1, 2)

Model: (2, 1, 0)

Model: (2, 1, 1)

Model: (2, 1, 2)
```

Figure 31: Some ARIMA models

```
ARIMA(0, 1, 0) - AIC:2267.6630357855465

ARIMA(0, 1, 1) - AIC:2263.060015591336

ARIMA(0, 1, 2) - AIC:2234.408323131676

ARIMA(1, 1, 0) - AIC:2266.6085393190087

ARIMA(1, 1, 1) - AIC:2235.755094673383

ARIMA(1, 1, 2) - AIC:2234.5272004508324

ARIMA(2, 1, 0) - AIC:2260.365743968086

ARIMA(2, 1, 1) - AIC:2233.7776263084434

ARIMA(2, 1, 2) - AIC:2213.5092122831566
```

Figure 32: AIC values for Sparkling wine

|   | param     | AIC_Sparkling |
|---|-----------|---------------|
| 8 | (2, 1, 2) | 2213.509212   |
| 7 | (2, 1, 1) | 2233.777626   |
| 2 | (0, 1, 2) | 2234.408323   |
| 5 | (1, 1, 2) | 2234.5272     |
| 4 | (1, 1, 1) | 2235.755095   |
| 6 | (2, 1, 0) | 2260.365744   |
| 1 | (0, 1, 1) | 2263.060016   |
| 3 | (1, 1, 0) | 2266.608539   |
| 0 | (0, 1, 0) | 2267.663036   |

Table 27: AIV values in ascending values for Sparkling wine

```
ARIMA(0, 1, 0) - AIC:1333.1546729124348
ARIMA(0, 1, 1) - AIC:1282.3098319748312
ARIMA(0, 1, 2) - AIC:1279.6715288535806
ARIMA(1, 1, 0) - AIC:1317.3503105381492
ARIMA(1, 1, 1) - AIC:1280.5742295380064
ARIMA(1, 1, 2) - AIC:1279.8707234231922
ARIMA(2, 1, 0) - AIC:1298.6110341605004
ARIMA(2, 1, 1) - AIC:1281.5078621868543
ARIMA(2, 1, 2) - AIC:1281.8707222264356
```

Figure 33: AIC values for Rose wine

|   | param     | AIC_Rose    |
|---|-----------|-------------|
| 2 | (0, 1, 2) | 1279.671529 |
| 5 | (1, 1, 2) | 1279.870723 |
| 4 | (1, 1, 1) | 1280.57423  |
| 7 | (2, 1, 1) | 1281.507862 |
| 8 | (2, 1, 2) | 1281.870722 |
| 1 | (0, 1, 1) | 1282.309832 |
| 6 | (2, 1, 0) | 1298.611034 |
| 3 | (1, 1, 0) | 1317.350311 |
| 0 | (0, 1, 0) | 1333.154673 |

Table 28: AIC values in ascending order for Rose wine

Smaller the AIC value, better is the model.

The smallest AIC for Sparkling dataset is given by the model (2,1,2)

The smallest AIC for for Rose dataset is given by the model (0,1,2)

#### Sparkling Data:

#### SARIMAX Results

| Dep. Varia                                       | ble:           | Spark     | ling No.     | Observations: |         | 132        |    |
|--------------------------------------------------|----------------|-----------|--------------|---------------|---------|------------|----|
| Model:                                           |                |           | , 2) Log     |               |         | -1101.755  |    |
| Date:                                            |                | t, 17 Dec |              |               |         | 2213.509   |    |
| Time:                                            |                | 12:1      | 5:22 BIC     |               |         | 2227.885   |    |
| Sample:                                          |                | 01-01-3   | 1980 HQIC    |               |         | 2219.351   |    |
|                                                  |                | - 12-01-  | 1990         |               |         |            |    |
| Covariance                                       | Type:          |           | opg          |               |         |            |    |
|                                                  |                |           |              |               |         |            |    |
|                                                  | coef           | std err   | Z            | P> z          | [0.025  | 0.975]     |    |
|                                                  |                |           |              |               |         |            |    |
| ar.L1                                            | 1.3121         | 0.046     | 28.781       | 0.000         | 1.223   | 1.401      |    |
| ar.L2                                            | -0.5593        | 0.072     | -7.741       | 0.000         | -0.701  | -0.418     |    |
| ma.L1                                            | -1.9917        | 0.109     | -18.218      | 0.000         | -2.206  | -1.777     |    |
| ma.L2                                            | 0.9999         | 0.110     | 9.109        | 0.000         | 0.785   | 1.215      |    |
| sigma2                                           | 1.099e+06      | 1.99e-07  | 5.51e+12     | 0.000         | 1.1e+06 | 1.1e+06    |    |
| Ljung-Box (L1) (0): 0.19 Jarque-Bera (JB): 14.46 |                |           |              |               |         |            |    |
|                                                  | (LI) (Q):      |           |              |               | (36):   |            |    |
| Prob(Q):                                         | lasticity /U\  |           | 0.67<br>2.43 | Prob(JB):     |         | 0.6<br>0.6 |    |
|                                                  | lasticity (H): |           |              | Kurtosis:     |         | 4.6        |    |
| Prob(H) (1                                       | :wo-sided):    |           | 0.00         | Val. (0212)   |         | 4.6        | 10 |
|                                                  |                |           |              |               |         |            |    |

Table 29: ARIMA model summary for Sparkling wine

#### Sparkling Data:

# SARIMAX Results

| Dep. Variable:<br>Model:<br>Date:<br>Time:<br>Sample:         | ARIMA(2, 1<br>Sat, 17 Dec<br>12:1 | l, 2) Log<br>2022 AIC<br>L5:22 BIC<br>-1980 HQIC |                                                |         | 132<br>-1101.755<br>2213.509<br>2227.885<br>2219.351 |        |
|---------------------------------------------------------------|-----------------------------------|--------------------------------------------------|------------------------------------------------|---------|------------------------------------------------------|--------|
| Covariance Type:                                              |                                   | opg                                              |                                                |         |                                                      |        |
|                                                               | coef std err                      | Z                                                | P> z                                           | [0.025  | 0.975]                                               |        |
| ar.L1 1                                                       | .3121 0.046                       | 28.781                                           | 0.000                                          | 1.223   | 1.401                                                |        |
| ar.L2 -0                                                      | .5593 0.072                       | -7.741                                           | 0.000                                          | -0.701  | -0.418                                               |        |
| ma.L1 -1                                                      | .9917 0.109                       | -18.218                                          | 0.000                                          | -2.206  | -1.777                                               |        |
| ma.L2 0                                                       | .9999 0.110                       | 9.109                                            | 0.000                                          | 0.785   | 1.215                                                |        |
| sigma2 1.099                                                  | 9e+06 1.99e-07                    | 5.51e+12                                         | 0.000                                          | 1.1e+06 | 1.1e+06                                              |        |
| Ljung-Box (L1) (( Prob(Q): Heteroskedastici Prob(H) (two-side | ty (H):                           | 0.19<br>0.67<br>2.43<br>0.00                     | Jarque-Bera<br>Prob(JB):<br>Skew:<br>Kurtosis: | (JB):   | 14.46<br>0.00<br>0.61<br>4.08                        | Э<br>1 |

Table

#### Test\_Spark RMSE

| Regression         | 1389.135175 |
|--------------------|-------------|
| NaiveModel         | 3864.279352 |
| SimpleAvg          | 1275.081804 |
| MovingAvg2         | 813.400684  |
| MovingAvg4         | 1156.589694 |
| MovingAvg6         | 1283.927428 |
| MovingAvg9         | 1346.278315 |
| SES                | 1316.035487 |
| DES                | 2007.238526 |
| TES                | 378.951023  |
| Auto ARIMA (2,1,2) | 1299.979640 |
|                    |             |

Table 31: Auto ARIMA Sparkling wine-RMSE value

#### Test\_Rose RMSE

| Regression         | 15.262509 |
|--------------------|-----------|
| NaiveModel         | 79.699093 |
| SimpleAvg          | 53.440426 |
| MovingAvg2         | 11.529409 |
| MovingAvg4         | 14.448930 |
| MovingAvg6         | 14.560046 |
| MovingAvg9         | 14.724503 |
| SES                | 36.775774 |
| DES                | 15.699312 |
| TES                | 20.132468 |
| Auto ARIMA (0,1,2) | 57.109715 |
|                    |           |

Table 32: Auto ARIMA Rose wine-RMSE value



Figure 34: ARIMA Sparkling wine graph



Figure 35: ARIMA Rose wine graph

# 7. Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.



Figure 36: Autocorrelation for Sparkling wine



Figure 37: Partial Autocorrelation for Sparkling wine



Figure 38: Autocorrelation for Rose wine



Figure 39: Partial Autocorrelation for Rose wine

Here, we have taken alpha=0.05.

The Auto-Regressive parameter in an ARIMA model is 'p' which comes from the significant lag before which the PACF plot cuts-off to 0. The Moving-Average parameter in an ARIMA model is 'q' which comes from the significant lag before the ACF plot cuts-off to 0.

By looking at the above plots for Sparkling data, we can say that the PACF cuts off at 3 and ACF plot cuts-off at lag 2.

By looking at the above plots for Rose data, we can say that PACF cuts off at 4 and ACF plot cuts-off at lag 2.

# Sparkling Data:

## SARIMAX Results

| SARIMAX RESULCS         |               |            |           |               |          |           |      |
|-------------------------|---------------|------------|-----------|---------------|----------|-----------|------|
|                         |               |            |           |               |          |           |      |
| Dep. Varia              | ole:          | Spark.     | ling No.  | Observations: | :        | 132       |      |
| Model:                  |               | ARIMA(3, 1 | , 2) Log  | Likelihood    |          | -1109.476 |      |
| Date:                   | Sa            | t, 17 Dec  | 2022 AIC  |               |          | 2230.952  |      |
| Time:                   |               | 12:1       | 8:48 BIC  |               |          | 2248.204  |      |
| Sample:                 |               | 01-01-     |           |               |          | 2237.962  |      |
| Jumpic.                 |               | - 12-01-   | -         | •             |          | 2237.302  |      |
| Covenience              | Tunor         | - 12-01-   |           |               |          |           |      |
| Covariance              | Type:         |            | opg       |               |          |           |      |
|                         |               |            |           |               | -        |           |      |
|                         | coef          | std err    | Z         | P>   z        | [0.025   | 0.975]    |      |
|                         |               |            |           |               |          |           |      |
| ar.L1                   | -0.4155       | 0.043      | -9.746    | 0.000         | -0.499   | -0.332    |      |
| ar.L2                   | 0.3242        | 0.120      | 2.704     | 0.007         | 0.089    | 0.559     |      |
| ar.L3                   | -0.2603       | 0.077      | -3.362    | 0.001         | -0.412   | -0.109    |      |
| ma.L1                   | 0.0218        | 0.134      | 0.163     | 0.871         | -0.241   | 0.284     |      |
| ma.L2                   | -0.9780       | 0.141      | -6.918    | 0.000         | -1.255   | -0.701    |      |
| sigma2                  | 1.327e+06     | 1.94e-07   | 6.86e+12  | 0.000         | 1.33e+06 | 1.33e+06  |      |
| Ljung-Box               | <br>(L1) (0): | .=======   | 0.12      | Jarque-Bera   | (JB):    |           | 3.62 |
| Prob(Q):                |               | 0.73       | Prob(JB): | ,             |          | 0.16      |      |
| Heteroskedasticity (H): |               |            | Skew:     |               |          | 0.31      |      |
| Prob(H) (to             |               |            |           | Kurtosis:     |          |           | 3.52 |
| ========                |               |            |           |               |          |           |      |

Figure 40: Manual ARIMA for Sparkling wine

| Rose:                   |          |             |                         |               |         |          |
|-------------------------|----------|-------------|-------------------------|---------------|---------|----------|
|                         |          | SAF         | RIMAX Resu              | lts           |         |          |
|                         |          |             |                         |               |         |          |
| Dep. Varia              |          |             |                         | Observations: |         | 132      |
| Model:                  | Į.       | RIMA(4, 1,  | <ol> <li>Log</li> </ol> | Likelihood    |         | -635.859 |
| Date:                   | Sat      | , 17 Dec 20 | 22 AIC                  |               |         | 1285.718 |
| Time:                   |          | 12:18:      | 51 BIC                  |               |         | 1305.845 |
| Sample:                 |          | 01-01-19    | 980 HQIC                |               |         | 1293.896 |
|                         |          | - 12-01-19  | 99                      |               |         |          |
| Covariance              | Type:    | c           | pg                      |               |         |          |
|                         |          |             |                         |               |         |          |
|                         | coef     | std err     | Z                       | P>   z        | [0.025  | 0.975]   |
|                         |          |             |                         |               |         |          |
| ar.L1                   | -0.3838  | 0.923       | -0.416                  | 0.677         | -2.192  | 1.425    |
| ar.L2                   | 0.0046   | 0.258       | 0.018                   | 0.986         | -0.502  | 0.511    |
| ar.L3                   | 0.0414   | 0.113       | 0.366                   | 0.714         | -0.180  | 0.263    |
| ar.L4                   | -0.0054  | 0.177       | -0.031                  | 0.976         | -0.353  | 0.342    |
| ma.L1                   | -0.3239  | 0.933       | -0.347                  | 0.729         | -2.153  | 1.505    |
| ma.L2                   | -0.5407  | 0.874       | -0.619                  | 0.536         | -2.254  | 1.172    |
| sigma2                  | 951.1524 | 93.870      | 10.133                  | 0.000         | 767.170 | 1135.135 |
|                         |          |             |                         |               |         |          |
| Ljung-Box (L1) (Q):     |          | 0.02        | Jarque-Bera             | (JB):         | 32.85   |          |
| Prob(Q):                |          |             | 0.88                    | Prob(JB):     |         | 0.00     |
| Heteroskedasticity (H): |          | 0.37        | Skew:                   |               | 0.77    |          |
| Prob(H) (two-sided):    |          |             | 0.00                    | Kurtosis:     |         | 4.91     |
| ========                |          |             |                         |               |         |          |

Figure 41: Manual ARIMA for Rose wine



Figure 42: Manual ARIMA for Sparkling wine



Figure 43: Manual ARIMA for Rose wine

Manual ARIMA (3,1,2) RMSE value for test Sparkling: 1286.234646 Manual ARIMA (4,1,2) RMSE value for test Rose data: 37.017231

From the ACF plot we see a significant seasonal correlation after every 11th interval Setting the seasonality as 12 for the first iteration of the auto SARIMA model.

```
Examples of some parameter combinations for Model...
Model: (0, 1, 1)(0, 0, 1, 12)
Model: (0, 1, 2)(0, 0, 2, 12)
Model: (0, 1, 3)(0, 0, 3, 12)
Model: (1, 1, 0)(1, 0, 0, 12)
Model: (1, 1, 1)(1, 0, 1, 12)
Model: (1, 1, 2)(1, 0, 2, 12)
Model: (1, 1, 3)(1, 0, 3, 12)
Model: (2, 1, 0)(2, 0, 0, 12)
Model: (2, 1, 1)(2, 0, 1, 12)
Model: (2, 1, 2)(2, 0, 2, 12)
Model: (2, 1, 3)(2, 0, 3, 12)
Model: (3, 1, 0)(3, 0, 0, 12)
Model: (3, 1, 1)(3, 0, 1, 12)
Model: (3, 1, 2)(3, 0, 2, 12)
Model: (3, 1, 3)(3, 0, 3, 12)
```

Figure 44: Some models of SARIMA

|     | param     | seasonal      | AIC_Sparkling |
|-----|-----------|---------------|---------------|
| 115 | (1, 1, 3) | (0, 0, 3, 12) | 16.0          |
| 51  | (0, 1, 3) | (0, 0, 3, 12) | 591.111768    |
| 252 | (3, 1, 3) | (3, 0, 0, 12) | 1387.497014   |
| 220 | (3, 1, 1) | (3, 0, 0, 12) | 1387.788331   |
| 237 | (3, 1, 2) | (3, 0, 1, 12) | 1388.602616   |
|     |           |               |               |
| 19  | (0, 1, 1) | (0, 0, 3, 12) | 7427.391419   |
| 3   | (0, 1, 0) | (0, 0, 3, 12) | 7441.156432   |
| 195 | (3, 1, 0) | (0, 0, 3, 12) | 7503.735447   |
| 131 | (2, 1, 0) | (0, 0, 3, 12) | 7504.526807   |
| 67  | (1, 1, 0) | (0, 0, 3, 12) | 7508.163889   |

Table 33: SARIMA AIC values for Sparkling wine

### SARIMAX Results Dep. Variable: y No. Observations: 132 Model: SARIMAX(3, 1, 2)x(3, 0, [], 12) Log Likelihood -691.356 Sat, 15 Jan 2022 AIC Date: 1400.712 15:06:04 BIC Time: 1423.408 0 HQIC Sample: 1409.873 - 132 Covariance Type: opg -----coef std err z P>|z| [0.025 0.975] \_\_\_\_\_\_ ar.L1 -0.5564 1.286 -0.433 0.665 -3.076 1.963 ar.L2 -0.4446 0.737 -0.604 0.546 -1.888 0.999 ar.L3 -0.1011 0.552 -0.183 0.854 -1.182 0.980 ma.L1 -194.7064 7324.804 -0.027 0.979 -1.46e+04 1.42e+04 ma.L2 5766.2906 242.888 23.741 0.000 5290.239 6242.342 ar.S.L12 0.5585 0.100 5.595 0.000 0.363 0.754 ar.S.L24 0.2633 0.117 2.248 0.025 0.034 0.493 ar.S.L36 0.2511 0.108 2.326 0.020 0.040 0.463 sigma2 0.0059 0.001 8.274 0.000 0.005 0.007 \_\_\_\_\_ Ljung-Box (L1) (Q): 20.78 Prob(Q): 1.03 Skew: Heteroskedasticity (H): 0.51 0.94 Kurtosis: Prob(H) (two-sided): 5.09 \_\_\_\_\_\_

Figure 45: Auto SARIMA summary for Sparkling wine

#### SARIMAX Results Dep. Variable: y No. Observations: 132 y NO. ODSERVATIONS: Model: SARIMAX(3, 1, 1)x(3, 0, [1, 2], 11) Log Likelihood -437,103 Sat, 15 Jan 2022 AIC Date: 894.205 15:06:07 BIC Time: 919.744 Sample: 0 HQIC 904.525 - 132 Covariance Type: opg \_\_\_\_\_ P>|7| [0 025

|                         | coet     | std err | Z       | P> z        | [0.025  | 0.975]  |
|-------------------------|----------|---------|---------|-------------|---------|---------|
| ar.L1                   | 0.1884   | 0.121   | 1.551   | 0.121       | -0.050  | 0.426   |
| ar.L2                   | 0.0208   | 0.123   | 0.170   | 0.865       | -0.219  | 0.261   |
| ar.L3                   | 0.0146   | 0.140   | 0.104   | 0.917       | -0.259  | 0.288   |
| ma.L1                   | -0.9339  | 0.076   | -12.309 | 0.000       | -1.083  | -0.785  |
| ar.S.L11                | -0.2380  | 0.421   | -0.565  | 0.572       | -1.063  | 0.587   |
| ar.S.L22                | -0.0357  | 0.170   | -0.210  | 0.834       | -0.369  | 0.298   |
| ar.S.L33                | -0.0042  | 0.115   | -0.036  | 0.971       | -0.229  | 0.221   |
| ma.S.L11                | 0.1810   | 0.448   | 0.404   | 0.686       | -0.697  | 1.059   |
| ma.S.L22                | -0.1736  | 0.234   | -0.742  | 0.458       | -0.632  | 0.285   |
| sigma2                  | 565.7118 | 98.703  | 5.731   | 0.000       | 372.258 | 759.165 |
|                         |          |         |         |             |         |         |
| Ljung-Box (L1) (Q):     |          |         | 0.02    | Jarque-Bera | (JB):   | 0.17    |
| Prob(Q):                |          |         | 0.90    | Prob(JB):   |         | 0.92    |
| Heteroskedasticity (H): |          |         | 0.91    | Skew:       |         | -0.06   |
| Prob(H) (two-sided):    |          |         | 0.80    | Kurtosis:   |         | 3.17    |
|                         |          |         |         |             |         |         |

Figure 46: Auto SARIMA summary for Rose wine



Figure 47: Auto SARIMA for Sparkling wine-Graph



Figure 48: Auto SARIMA for Rose wine-Graph

AIC for sparkling data is the lowest for the model (3,1,2), also we saw the from ACF and PACG plots that the cut off of p and q are at 3 and 2 resp. so we conclude that the auto SARIMAX and the manual SARIMAX models are the same.

For Rose data let's build a model at the p and q cut off at 4, 2 respectively.

## SARIMAX Results

| Dep. Variab            |               |             |             |          |      | bservations: |         | 13       |
|------------------------|---------------|-------------|-------------|----------|------|--------------|---------|----------|
| Model:                 | SARI          | MAX(4, 1, 2 |             |          |      | ikelihood    |         |          |
| Date:                  |               | 2           | Sat, 15 Jan |          |      |              |         | 766.16   |
| Time:                  |               |             | 17:         | 16:38 I  |      |              |         | 796.29   |
| Sample:                |               |             |             |          | HQIC |              |         | 778.31   |
|                        | _             |             |             | - 132    |      |              |         |          |
| Covariance             | 31            |             |             | opg      |      |              |         |          |
|                        | coef          | std err     | z           | P> :     | z    | [0.025       | 0.975]  |          |
| ar.L1                  |               |             |             |          |      | -1.167       |         |          |
| ar.L2                  | -0.0111       | 0.159       | -0.070      | 0.9      | 44   | -0.322       | 0.300   |          |
| ar.L3                  | -0.1475       | 0.153       | -0.963      | 0.3      | 35   | -0.448       | 0.153   |          |
| ar.L4                  | -0.2441       | 0.108       | -2.269      | 0.0      | 23   | -0.455       | -0.033  |          |
|                        |               |             |             |          |      | -0.454       |         |          |
| ma.L2                  | -0.7649       | 0.183       | -4.185      | 0.0      | 90   | -1.123       | -0.407  |          |
| ar.S.L12               | 0.7669        | 0.165       | 4.637       | 0.0      | 90   | 0.443        | 1.091   |          |
| ar.S.L24               | 0.0839        | 0.148       | 0.565       | 0.5      | 72   | -0.207       | 0.375   |          |
| ar.S.L36               | 0.0765        | 0.093       | 0.824       | 0.4      | 10   | -0.106       | 0.259   |          |
|                        |               |             |             |          |      | -1.091       |         |          |
| ma.S.L24               | -0.2332       | 0.230       | -1.014      | 0.3      | 11   | -0.684       | 0.218   |          |
| sigma2                 | 181.2721      | 39.757      | 4.560       | 0.0      | 90   | 103.350      | 259.194 |          |
| =======<br>Ljung-Box ( | (L1) (Q):     |             | 0.04        | Jarque-I | Bera | (JB):        |         | <br>0.93 |
| Prob(Q):               |               |             | 0.85        | Prob(JB  | ):   | •            | (       | 0.63     |
| Heteroskeda            | asticity (H): |             | 1.24        |          |      |              | (       | a.25     |
| Prob(H) (tw            | vo-sided):    |             | 0.56        | Kurtosi: | 5:   |              |         | 2.99     |

Figure 49: Manual SARIMA model SUMMARY for Rose wine

Manual SARIMA (4,1,2)(3,0,0,2,12) RMSE value for test Rose data: 18.291551

8. Build a table with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

|                               | Test_Spark RMSE |
|-------------------------------|-----------------|
| Regression                    | 1389.135175     |
| NaiveModel                    | 3864.279352     |
| SimpleAvg                     | 1275.081804     |
| MovingAvg2                    | 813.400684      |
| MovingAvg4                    | 1156.589694     |
| MovingAvg6                    | 1283.927428     |
| MovingAvg9                    | 1346.278315     |
| SES                           | 1316.035487     |
| DES                           | 2007.238526     |
| TES                           | 473.152417      |
| Auto ARIMA (2,1,2)            | 1374.037009     |
| Manual ARIMA (3,1,2)          | 1379.049123     |
| Auto SARIMA (3,1,2)(3,0,0,12) | 1827.354980     |

Table 34: RMSE values for various models - Sparkling wine

|                                 | Test_Rose RMSE |
|---------------------------------|----------------|
| Regression                      | 15.262509      |
| NaiveModel                      | 79.699093      |
| SimpleAvg                       | 53.440426      |
| MovingAvg2                      | 11.529409      |
| MovingAvg4                      | 14.448930      |
| MovingAvg6                      | 14.560046      |
| MovingAvg9                      | 14.724503      |
| SES                             | 36.775774      |
| DES                             | 15.699312      |
| TES                             | 20.995338      |
| Auto ARIMA (0,1,2)              | 56.252559      |
| Manual ARIMA (4,1,2)            | 33.930983      |
| Auto SARIMA (3,1,1)(3,0,2,12)   | 38.034261      |
| Manual SARIMA (4,1,2)(3,0,2,12) | 18.291551      |
| Auto SARIMA (3,1,1)(3,0,2,12)   | 38.034261      |
| Manual SARIMA (4,1,2)(3,0,2,12) | 18.291551      |

Table 35: RMSE values for various models - Rose wine

9. Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.

Figure 50: TES on full Sparkling wine

|            | Sparkling Forecast | lower CI    | upper CI    |
|------------|--------------------|-------------|-------------|
| Time       |                    |             |             |
| 1995-08-31 | 1869.308465        | 1084.725597 | 2653.891334 |
| 1995-09-30 | 2395.901557        | 1611.318689 | 3180.484425 |
| 1995-10-31 | 3231.674754        | 2447.091886 | 4016.257623 |
| 1995-11-30 | 3910.933211        | 3126.350342 | 4695.516079 |
| 1995-12-31 | 6106.418347        | 5321.835478 | 6891.001215 |
| 1996-01-31 | 1249.948453        | 465.365584  | 2034.531321 |
| 1996-02-29 | 1579.006231        | 794.423363  | 2363.589099 |
| 1996-03-31 | 1818.420376        | 1033.837508 | 2603.003245 |
| 1996-04-30 | 1792.725965        | 1008.143097 | 2577.308834 |
| 1996-05-31 | 1637.530692        | 852.947823  | 2422.113560 |
| 1996-06-30 | 1571.584281        | 787.001412  | 2356.167149 |
| 1996-07-31 | 1958.453664        | 1173.870796 | 2743.036532 |

Table 36: TES predict for 12 months for full Sparkling wine



Figure 51: TES full Sparkling data prediction – Graph



Figure 52: TES full Sparkling data – Monthly Graph

For Rose dataset rolling avg shows the best RMSE, however since the window chosen was very small(2,4,6,9) it was natural it was going to work well on Test set. The other model which gave the best RMSE was TES and Manual SARIMAX (4,1,2)(3,0,2,12). We will built a final model on the entire Rose dataset using SARIMAX

| у          | mean      | mean_se   | mean_ci_lower | mean_ci_upper |
|------------|-----------|-----------|---------------|---------------|
| Time       |           |           |               |               |
| 1995-08-31 | 46.415270 | 11.969966 | 22.954568     | 69.875973     |
| 1995-09-30 | 48.793452 | 12.040545 | 25.194418     | 72.392487     |
| 1995-10-31 | 47.510293 | 12.109043 | 23.777006     | 71.243580     |
| 1995-11-30 | 56.270704 | 12.121642 | 32.512722     | 80.028685     |
| 1995-12-31 | 77.865599 | 12.122119 | 54.106682     | 101.624516    |
| 1996-01-31 | 28.708299 | 12.215011 | 4.767319      | 52.649280     |
| 1996-02-29 | 37.191667 | 12.375455 | 12.936221     | 61.447112     |
| 1996-03-31 | 42.403273 | 12.562727 | 17.780780     | 67.025767     |
| 1996-04-30 | 40.942663 | 12.729238 | 15.993815     | 65.891511     |
| 1996-05-31 | 36.442595 | 12.842775 | 11.271219     | 61.613971     |
| 1996-06-30 | 40.436958 | 12.934480 | 15.085843     | 65.788073     |
| 1996-07-31 | 49.550765 | 13.022823 | 24.026502     | 75.075029     |

Table 37: SARIMA full Rose data



Figure 53: SARIMA full Rose data prediction-Graph



Figure 54: SARIMA full Rose data – Monthly Graph

10. Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.

## Sparkling Wine data:

TES (Triple Exponential Smoothing) has worked the best for the forecast with lowest RMSE on test data You can see from the above chart that the forecast for next 12 months is slightly over the sales of the previous 12 months however, there isn't a considerable increase. Observed from the month wise bar plots previously, we can say that the sales of Sparkling wine tend to go up in last two months probably because it's a holiday season than the rest and its lowest around Jun and July ABC can take various measures to increase the sales towards the beginning and mid of the year, it can introduce promotional activities or discounts during the low sales period. ABC can tie up with events like concerts, weddings etc. and do some sponsorships to boost sales during the slack

## Rose Wine data:

We chose manual SARIMAX model to predict for the Rose wine data. The model was passed the cut offs found through ACF and PACF plots of q and p respectively and seasonality of 12 as the plots showed a patterned significance after 11 lags. You can see from the above plot for Rose wine data the forecast for 1996 is more or less same as of for 1995. Observed from the monthly bar plot sales shows an increasing trend from August towards December, it's on the lower side beginning of the year ABC can take sought promotional activities and implement some discounts during the first half of the year