* Definize Ll e dimoteure che mon è RE.

l'insieme l'insieme un tali codificate di turing che non accetta come input
le mocchine codificate de u non accetta l'input u.

Intuitivamente, Id non è RE insuento non existe alcuma TM che accetti... DIM

- 2 Clame P, NP, PS, RP, 2M definizioni) (+RE RICORSIVI)
- Dimostrare che se existe una cidusione polinomiale da P1 a P2 e P2 ENP e P1 E P1-completi adora P2 e NP-co)
- 4 Descrivere una T.M. che evends rel mastro il numero » (>2) scritto in Ginario ri arcresta con il numero m+2 scritto in Cinario.
- 2) La clarse dei problemi P(polinomiali) i quelle clarse di problemi per cui existe un polinomio T(N) tale che L=L(M) per una macchino di turinoprodeterministica di complemita in tempo T(N).

 In linguargio L=1 mello clarse NP se existe una NTM L=1 una complemita polinomiale in tempo L=1 tale che L=1 (M) e in M mon ci somo requinare di morse più lughe di L=1 (M).

ORALE: Teorema di Rice: enunciato e dimostrazione. Dimostrazione della Savich con pseudocadice.

*	Da N a N + 2
	2 6 3
3	11 -> 101
4	100 -> 110
5	131 3 111
6	110 -> 1000
*	111 -> 1001
154	1111 -> 10001
24	11011 - 11101
	100000 34 100010
32	100000 - 700010
36	100100 - 100110

	0	11 \$	В	evimo Bit
90	(90,0,R)	(91,1P))
91	(9,,0,0)	(4, 4, R)	(92,8,2)	surrimento della stringa
92	(1, 0, L)	(93,1,2)		solto dell'aliane
93	(92,1,2)	(98,0,2)	-	Accetta ne 0,
94	(92,1,2)	(94,0,2	(92,1,1)	permuta si
				ļ
	{			1

Da N a N - 2

(3) 11 ->f) 101
(4) 100 -> (2) 10
(B) 101->(3)11
(6) 110 -> (4) 100
(+) 111 ->(s) 101
(15) 1111->(13) 1101
(27) 11011 -> (25) 11001
(32) 100000 -> (30) 11110
(36) 100100 -> (34) 100010
(61) 1111 91 -> (50) 111010
11111
(40)101000 ANANTIONNAM (38) 000110
(34) 4 10 0 1 1 0
(x2) 100 10 00 -
(+0)1000 d 10
(+0/10000

- le primo cit lo salti

- le secondo lo permenti

- pe è un 1 esci

- re è uno 0 prosegui

- comi mo lo permeti e

- el primo no 1 eo permeti

ed esci.