CS & IT

ENGINEERING

Combinational Circuit

Lecture No. 8

By- CHANDAN SIR

TOPICS TO BE COVERED 01 HA

02 FA

03 HS

04 FS

05 Discussion

HALF ADDER

Two bit adder are known as half adder.

Step 1.

Sum= AB+AB

-AAR

Step 2.

A	В	Sum	Carry
0	0	0	0
0	1	1	0.
1	0	1	0
1	1	0	1

HALF ADDER

Step 3.

$$sum = \overline{AB} + A\overline{B} = A \oplus B$$
$$carry = AB$$

Step 4. Minimization

HALF ADDER

Step 5.

HA

NAND = 5

By NAND GATE

By NOR GATE

$$\overline{A}+\overline{S}=AB=CAMY$$
 $\overline{A}+\overline{S}=AB=CAMY$
 $\overline{AB+BB}=\overline{AB}$
 $\overline{AB+BB}=\overline{AB}$
 $\overline{AB+BB}=\overline{AB}$
 $\overline{AB+BB}=\overline{AB}$
 $\overline{AB+BB}=\overline{AB}$
 $\overline{AB+BB}=\overline{AB}$
 $\overline{AB+BB}=\overline{AB}$

HALF ADDER BY USING DECODER

Pw

a what is the value of fi and fz?

a what is the value of fi and fz?

AB
$$+C$$

AB $+C$

AB $+C$

AB $+C$

AB $+C$

AB $+C$

ADDER

Carry $\Rightarrow f_1 = \chi \oplus C$

FULL ADDER: >

Three bit adder are known as full adder.

$$\frac{0}{0}$$
 $\frac{0}{0}$
 $\frac{1}{0}$
 $\frac{1}{0}$
 $\frac{1}{0}$
 $\frac{1}{0}$
 $\frac{1}{0}$
 $\frac{1}{0}$
 $\frac{1}{0}$

. .

Step 1:

Full Adder

Pw

majority high input Logic

FULL ADDER

Step 2.

	A	В	C	Sum	Carry
0	0	0	0	0	0
T	0	0	1	1	0
2	0	1	0	1	0
3	0	1	1	O	1 ~
4	1	0	0	1	0
5	1	0	1	0	1
6	1	1	0	0	1 ,.
7	1	1	1	1	1.

Full Adder

FULL ADDER

Step 3. Sum (A, B, C) =
$$\overline{ABC} + \overline{ABC} + \overline{AB$$

Full adder by using NAND GATE

(AOB)OC

Full adder by using NOR GIATE

Full adder by using decoder

(AOB) OC AOBOC = Sum AOB. AtB (AOB)+L B (AOB)+L+ A+B T(A00)+C] [A+B]

Full subtractor

Pw

AB+ (AOB) = AB· (AOB) C (THB) (TABB)+c] (A+B) [AB+AB+C] AB+ AC+ AB+ BC AB+AC+BC 7 BOYYOW

(arry=
$$\Sigma M(3,5,6,7)$$

= $(ABB)(+AB$
= $AB+B(+AC$

Q.1

A full adder is implemented with two half adders and one OR gate. OR gate is used to derive the final carry function of full adder. In each half adder, $T_{sum} = 25$ ns and $T_{carry} = 20$ ns and $T_{OR} = 25$ ns. The minimum time required to derive both the sum and carry function of a full adder after applying the inputs is ____ ns

Two bit subtractor ore known as half subtractor.

Step - 1

Biff = ABB

Borrow = AB

Step - 1

Α	В	Diff.	Borrow
0	0	0	0
0	1	1	1
1	0	1	0
1	1	O	0

Step - 2

Step - 3

Diff. - A TB

Borrow - AB

Half-Subtractor using NAND gates

FULL SUBTRACTOR

FULL SUBTRACTOR

(A-B)-C

	INPUT			OUTPUT	
Α	В	С	D	B orrow	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	1	0	0	0	
1	1	1	1	1	

HA

Sum= ADB

Carry - AB

4.5

Diff - AOB

Borrow = AB

FA

Sum = A + BAC

Carry = AB+AC+BL

FS

Diff = ADBEC

BOTTOW: AB+ AC+BC

AMÁ

Pw

Thank you

Soldiers!

