Auto Regressive (AR) processes AR(1) or Markov process X = \$ X + -1 + 6 + , 6 + ~ WN(0,02) CV(EF, X = = 0 + 1>0 unlike MA, fimite order, processes, AR processes are not always stationary Note that for AR(1) process with $\phi = 1$ is a random walk and as we have already discussed it is non-stationary

Further, for 191>1 the series explodes and hence

Com't be stationary Note that $X^{f} = \phi X^{f-1} + \epsilon^{f}$ $= \phi(\phi x_{t-2} + \epsilon_{t-1}) + \epsilon_t$ $= \phi^{2} X_{t-2} + \phi \in_{t-1} + \epsilon_{E}$ $= \phi^{*}(\phi x_{t-3} + \epsilon_{t-2}) + \phi \epsilon_{t-1} + \epsilon_{t}$ $= \phi^3 X_{t-3} + \phi^2 E_{t-2} + \phi E_{t-1} + E_{t}$

 $= \phi^{t} \times_{0} + \phi^{t-1} \in_{l} + - - - + \in_{t}$ Starting from any arbitrary Xo, sexus would explose 1<101 rt

If {Xt] is obdionary, then $\Lambda(X^{f}) = \Lambda(\varphi X^{f-1} + e^{f}) = \varphi_{\Lambda}(X^{f-1}) + \Lambda(e^{f})$

> J. 6 2x = \$ 2x + 25 => $T_{\chi}^{2} = Y_{\chi}(0) = \frac{T^{2}}{1-\phi^{2}} \leftarrow 1\phi(1)$ is a valid.

region for this For an AR(1) process 101<1 is the region for shallonarity Alternate formulation for stationarity:

$$\phi(B) \times_{E} = E_{E}$$

$$\phi(B) = 1 - \phi B$$

(ansider rost of $\phi(z)=0$; i.e. $1-\phi = 0 \Rightarrow z = \frac{1}{\phi}$ 10/<1 (=) roots of \$(2)=0 lie outside unit ircle

Note: Condition for stationarity of AR is usually in terms of the above

Consider a coraniance réalionary AR(1)
$$X_{t} = \phi X_{t-1} + \varepsilon_{t}$$

$$E(X_t) = E(\phi X_{t-1} + \epsilon_t)$$

$$u_x = \phi u_x$$

$$= E(\uparrow, X^{f+1}, X^{f}) = E(X^{f+1}, X^{f})$$

$$= E(\phi X_{t} + \varepsilon_{t+1}) X_{t}$$

$$= \phi \sigma_{\chi}^{2} + O \left(\omega_{V}(\varepsilon_{b}, X_{b-i}) = O + i > O \right)$$

$$Y_{X}(2) = C_{0V}(X_{t+2}, X_{t}) = E(X_{t+2}X_{t})$$

$$= E \left(\phi X_{t+1} + \epsilon_{t+2} \right) X_{t}$$

$$= \phi_{\chi}(1) = \phi_{\chi} \frac{1-\phi_{\chi}}{\Delta_{\chi}}$$

$$\frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{$$

$$=\phi^{h} \times_{t+h-h} + \phi^{h-1} \in_{t+1} + \dots + \in_{t+h}$$

$$= \int_{X}^{h} (h) = E(X_{E+h} \times E)$$

$$= \int_{1-\phi^{2}}^{h} f(h) = \int_{X}^{h} (-h) = \int_{1-\phi^{2}}^{h} f(h) = \int_{1-\phi^{$$

ACF
$$P_{X}(h) = \begin{cases} 1, & h = 0 \\ \phi^{|h|} & \text{if } h \neq 0 \end{cases}$$

Note: unlike MA(q), AR process's ACVF/ACF does not cut off (to zero) beyond the lag order of the model

Note: $\forall h>0$ $\uparrow_{\chi(h)=E(\chi_{t+h}\chi_{t})}$ $= E(\phi\chi_{t+h-\uparrow}+\epsilon_{t+h})\chi_{t}$ $= \phi \chi_{\chi(h-1)}$

1.e. $\Upsilon_{\chi}(h) = \phi \Upsilon_{\chi}(h-1) - (*)$ 1.e. the ACVF solvisties relationship similar to the data eqⁿ

The ators eg" (*) is called the Yule-Walker eg".

AR(2) process or Ywe process

$$X_{t} = \phi_{1} X_{t-1} + \phi_{2} X_{t-2} + \epsilon_{t}; \quad \epsilon_{t} \sim WN(0, e^{2})$$

$$\phi(B) X_{t} = \epsilon_{t}$$

$$\phi(B) = 1 - \phi_{1} B - \phi_{2} B^{2}$$

AR(2) procen is Matienary if rosts of $\phi(2) = 0$ all lie outside the unit circle

i.e. rosts of $y^{-}-\phi_{1}z-\phi_{2}z^{2}=0$ lie outside unit einde i.e. rosts of $y^{-}-\phi_{1}y-\phi_{2}=0$ lie inside unit eincle let π , $L\pi_{2}$ be the rosts of $y^{-}-\phi_{1}y-\phi_{2}=0$

$$|\Pi_{i}| < 1$$
; $i=1,2$, $1f$

$$\frac{\phi_{1} \pm \sqrt{\phi_{1}^{2} + 4\phi_{2}}}{2} < 1$$

The 2 roots are $\pi_{1} = \frac{\phi_{1} + \sqrt{\phi_{1}^{2} + 4\phi_{2}}}{2} \downarrow \pi_{2} = \frac{\phi_{1} - \sqrt{\phi_{1}^{2} + 4\phi_{2}}}{2}$

Case 1: Roots are real

$$(ii) \qquad (ii) \qquad (ii)$$

(i) =>
$$\sqrt{\phi_1^2 + 4\phi_2}$$
 < 2 - ϕ_1
 $\phi_1^2 + 4\phi_2$ < 4 + $\phi_1^2 - 4\phi_1$
1.2. $1-\phi_1 - \phi_2 > 0$ — (1)

(ii) =>
$$-2 < \phi_1 - \sqrt{\phi_1^2 + 4\phi_2}$$

 $(2+\phi_1)^2 > \phi_1^2 + 4\phi_2$
i.e. $1+\phi_1 - \phi_2 > 0$ (2)

Also
$$\pi_1 + \pi_2 = \phi_1 \& -\pi_1 \pi_2 = \phi_2$$
 $|\pi_1| < 1 \Rightarrow |\phi_2| < 1$

Case 2: Roots are complex

$$\Pi_{1} = a + ib = \frac{\phi_{1} + \sqrt{\phi_{1}^{2} + 4\phi_{2}}}{2}$$

$$\Pi_{2} = a - ib = \frac{\phi_{1} - \sqrt{\phi_{1}^{2} + 4\phi_{2}}}{2}$$

$$\alpha = \frac{\phi_{1}/2}{2} \quad ib = \frac{\sqrt{\phi_{1}^{2} + 4\phi_{2}}}{2}$$

$$= \frac{1}{2} \quad b = \frac{-\sqrt{-\phi_{1}^{2} - 4\phi_{2}}}{2}$$

$$\alpha^{2} + b^{2} = -\phi_{2}$$

$$|\Pi_{1}| < 1 = 1 + \phi_{2} > 0$$

