TEHNIČKO VELEUČILIŠTE U ZAGREBU ELEKTROTEHNIČKI ODJEL

MATEMATIKA 2

Poglavlje 1. Neodređeni integral

Poglavlje 2. Određeni integral

Poglavlje 3. Nepravi integrali

Mr.sc. Petronila Lokner

SADRŽAJ

NEC	ODREĐENI INTEGRAL	1
1.1	Definicija neodređenog integrala	1
1.2	Osnovna svojstva neodređenog integrala	2
1.3	Tablica neodređenih integrala	3
1.4	Metode integriranja	4
1.4.1	Direktno integriranje	4
	Metoda supstitucije	6
	<i>3</i>	
	1 3 5 3	
1.5	Integral racionalne funkcije	
1.5.1	Integrali oblika $\int \frac{P_0(x)}{Q_1(x)} dx$	19
1.5.2	$O_2(x)$	19
1.5.3	Integrali oblika $\int \frac{P_1(x)}{Q_2(x)} dx$	21
1.5.4	\mathcal{E} 3.1	
1.5.6	•	
1.6	Integriranje trigonometrijskih funkcija	29
1.6.1	Integrali oblika $\int R(\sin x, \cos x) dx$	29
1.6.2	Integrali oblika $\int \sin^n x dx$ i $\int \cos^n x dx$	34
1.6.3		
1.6.4	•	
1.6.5	Integrali oblika $\int \sin ax \sin bx dx$, $\int \sin ax \cos bx dx$ i $\int \cos ax \cos bx dx$	40
1.6.6	Zadaci za vježbu	41
OD	REĐENI INTEGRAL	44
2.1	Definicija određenog integrala	44
2.2	Osnovna svojstva određenog integrala	46
2.3		
	1.1 1.2 1.3 1.4 1.4.1 1.4.2 1.4.3 1.4.4 1.4.5 1.5 1.5.1 1.5.2 1.5.3 1.5.4 1.5.5 1.5.6 1.6.1 1.6.2 1.6.3 1.6.4 1.6.5 1.6.6 ODI 2.1 2.2	1.1 Definicija neodređenog integrala 1.2 Osnovna svojstva neodređenog integrala 1.3 Tablica neodređenih integrala 1.4 Metode integriranja 1.4.1 Direktno integriranje 1.4.2 Metoda supstitucije 1.4.3 Zadaci za vježbu 1.4.4 Metoda parcijalne integracije 1.4.5 Zadaci za vježbu 1.5 Integral racionalne funkcije 1.5.1 Integrali oblika $\int \frac{P_0(x)}{Q_1(x)} dx$ 1.5.2 Integrali oblika $\int \frac{P_0(x)}{Q_2(x)} dx$ 1.5.3 Integrali oblika $\int \frac{P_1(x)}{Q_2(x)} dx$ 1.5.4 Integrianje prave racionalne funkcije 1.5.5 Integriranje prave racionalne funkcije 1.5.6 Zadaci za vježbu 1.6 Integriranje trigonometrijskih funkcija 1.6.1 Integrali oblika $\int S(\sin x, \cos x) dx$ 1.6.2 Integrali oblika $\int S(\sin x, \cos x) dx$ 1.6.3 Zadaci za vježbu 1.6.4 Integrali oblika $\int \sin^n x dx$ i $\int \cos^n x dx$ 1.6.5 Integrali oblika $\int \sin^n x \cos^n x dx$ 1.6.5 Integrali oblika $\int \sin^n x \cos^n x dx$ 1.6.6 Zadaci za vježbu ODREĐENI INTEGRAL 2.1 Definicija određenog integrala 2.2 Osnovna svojstva određenog integrala

2	.5	Parcijalna integracija kod određenog integrala	53
2	.6	Zadaci za vježbu	54
3	NEI	PRAVI INTEGRALI	54
3	.1	Integrali nad neomeđenim intervalima	55
3	.2	Integrali neomeđenih funkcija	58

1 NEODREĐENI INTEGRAL

Neka je f realna funkcija zadana na segmentu [a, b]. Ako funkcija f ima derivaciju u svakoj točki otvorenog intervala $I = \langle a, b \rangle$, onda je time definirana jedna nova funkcija $x \to f'(x)$, za svaki $x \in I$.

Na primjer, sinus funkcija ima derivaciju za svaki $x \in \mathbb{R}$ i ako je $x \in \mathbb{R}$, onda je $(\sin x)' = \cos x$, tj.derivacijom sinusa definirana je nova kosinus funkcija.

Postavlja se sada suprotan problem. Za zadanu funkciju $f: \langle a, b \rangle \to \mathbb{R}$, da li postoji funkcija $F: \langle a, b \rangle \to \mathbb{R}$, takva da je F'(x) = f(x), za svaki $x \in \langle a, b \rangle$?

Odgovor na to pitanje i određivanje funkcije F je sadržaj ovog poglavlja.

1.1 Definicija neodređenog integrala

Definicija 1. Neka je f realna funkcija zadana na $I = \langle a, b \rangle$. Svaku funkciju F nazivamo **primitivnom funkcijom** ili **antiderivacijom** funkcije f na intervalu I, ako za svaki $x \in I$ vrijedi da je F'(x) = f(x).

Primjer 1. F(x) = x3 je primitivna funkcija funkcije f(x) = 3x2, jer je

$$F'(x) = (x3)' = 3x2 = f(x).$$

Primjer 2. F(x) = arctgx je primitivna funkcija funkcije $f(x) = \frac{1}{1+x^2}$, jer je $\frac{1}{1+x^2}$

$$F'(x) = (arctgx)' = \frac{1}{1+x^2} = f(x).$$

Ako je $f(x) = e^x$, onda je $F_1(x) = e^x + 5$, ali i $F_2(x) = e^x - 1$, jer je $F_1'(x) = F_2'(x) = f(x)$. Sljedi da je $F_1(x) - F_2(x) =$ konstanta. Dakle svake dvije primitivne funkcije neke zadane funkcije razlikuju se za konstantu. To znači da ako znamo jednu primitivnu funkciju F neke funkcije f, drugu primitivnu funkciju možemo naći dodavanjem proizvoljne konstante.

Definicija 2. Skup svih primitivnih funkcija dane funkcije f na intervalu $I = \langle a, b \rangle$ nazivamo **neodređenim integralom** funkcije f na intervalu I.

Neodređeni integral funkcije f označavamo s

$$\int f(x)dx.$$

Dakle je

$$\int f(x)dx = \{F(x) + c : x \in \mathbb{R}\}\$$

što kraće pišemo u obliku

$$\int f(x)dx = F(x) + c, c \in \mathbb{R}.$$

Primjer 3. a) Budući da je (x)' = 1, to je funkcija F(x) = x primitivna funkcija funkcije f(x) = 1, pa je

$$\int 1 dx = \int dx = x + c, c \in \mathbb{R}.$$

b) Kako je $(tgx)' = \frac{1}{\cos^2 x}$, to je F(x) = tgx antiderivacija funkcije $f(x) = \frac{1}{\cos^2 x}$, pa je

$$\int \frac{1}{\cos^2 x} dx = tgx + c, c \in \mathbb{R}.$$

c) Kako je (cosx)' = -sinx, to je F(x) = cosx antiderivacija funkcije f(x) = -sinx. Dakle je

$$\int (-\sin x)dx = \cos x + c, c \in \mathbb{R}.$$

1.2 Osnovna svojstva neodređenog integrala

Iz definicije neodređenog integrala i svojstava derivacije sljedi:

- 1. $\frac{d}{dx} (\int f(x) dx) = f(x)$, tj. derivacija bilo koje primitivne funkcije F(x) + c je jednaka f(x).
- $2. \int \frac{df}{dx} dx = f(x) + c.$
- 3. $\int af(x)dx = a \int f(x)dx$, a je konstanta.
- 4. $\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx.$

Svojstva 1. i 2. pokazuju da su deriviranje i integriranje na neki način jedan drugom inverzni. Svojstva 3. i 4. pokazuju da neodređeni integral ima svojstvo «linearne funkcije». Naime neka funkcija *f* je linearna, ako za nju vrijedi da je:

$$f(ax) = af(x)$$

$$f(x+y) = f(x) + f(y).$$

Ilustrirajmo navedena svojstva sljedećim primjerom.

Primjer 4.

$$\frac{d}{dx} \left(\int \sin x dx \right) = \frac{d}{dx} \left(-\cos x + c \right) = \sin x$$

$$\int \frac{d\sin x}{dx} dx = \int \cos x dx = \sin x + c$$

$$\int 8x^2 dx = 8 \int x^2 dx = 8 \frac{x^3}{3} + c_1$$

$$\int (x^3 + \cos x - \frac{1}{x} - e^x) dx = \int x^3 dx + \int \cos x dx - \int \frac{1}{x} dx - \int e^x dx = \frac{x^4}{4} + \sin x - \ln x - e^x + c_2.$$

1.3 Tablica neodređenih integrala

1.
$$\int 0 dx = c$$

$$2. \qquad \int 1dx = x + c$$

3.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c, (n \neq -1)$$

4.
$$\int \frac{dx}{x} = \ln|x| + c, \ (x \neq 0) \ (\text{Na svakom intervalu koji ne sadrži } x = 0)$$

5.
$$\int a^{x} dx = \frac{a^{x}}{\ln a} + c, (a > 0 \text{ i } a \neq 1)$$

$$6. \qquad \int e^x dx = e^x + c$$

$$7. \qquad \int \sin x dx = -\cos x + c$$

8.
$$\int \cos x dx = \sin x + c$$

9.
$$\int \frac{dx}{\cos^2 x} = tgx + c, (x \neq (2k+1)\frac{\pi}{2}, k \in \mathbb{Z})$$

10.
$$\int \frac{dx}{\sin^2 x} = -ctgx + c, (x \neq k\pi, k \in \mathbb{Z})$$

11.
$$\int ctgx dx = \int \frac{\cos x}{\sin x} dx = \ln|\sin x| + c, (x \neq k\pi, k \in \mathbb{Z})$$

12.
$$\int tgx dx = \int \frac{\sin x}{\cos x} dx = -\ln|\cos x| + c, (x \neq (2k+1)\frac{\pi}{2}, k \in \mathbb{Z})$$

13.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + c$$

14.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + c$$

15.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + c, |x| < a$$

16.
$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + c, a \neq 0$$

17.
$$\int shx dx = \int \frac{e^x - e^{-x}}{2} dx = chx + c = \frac{e^x + e^{-x}}{2} + c$$

18.
$$\int chx dx = \int \frac{e^x + e^{-x}}{2} dx = shx + c = \frac{e^x - e^{-x}}{2} + c$$

$$19. \qquad \int \frac{dx}{sh^2x} = -cthx + c$$

$$20. \qquad \int \frac{dx}{ch^2x} = thx + c$$

$$21. \qquad \int thx dx = \ln|chx| + c$$

22.
$$\int cthxdx = \ln|shx| + c.$$

Određivanje primitivne funkcije F za zadanu funkciju f nije uvijek tako jednostavno. Čak za jednostavne funkcije kao što su e^{-x^2} , $\sin x^2$, $\frac{\sin x}{x}$ primitivna funkcija nije ni jedna od poznatih elementarnih funkcija. Integrale takvih funkcija nije jednostavno izračunati i za njih kažemo da **nisu elementarni**, a za funkciju F za koju je F(x) jedna od takvih funkcija kažemo da nije elementarna. Evo nekoliko takvih integrala:

$$\int e^{-x^2} dx$$
, $\int \frac{\sin x}{x} dx$, $\int \sin x^2 dx$, $\int \frac{dx}{\ln x}$.

1.4 Metode integriranja

1.4.1 Direktno integriranje

Najjednostavnija metoda integriranja je direktno integriranje, gdje koristimo osnovna svojstva i tablicu neodređenih integrala.

Primjer 5. Direktnim integriranjem nađimo sljedeće integrale:

a)
$$\int \left(x^3 + \frac{3}{x^5} + \frac{5}{x} - \frac{2}{\cos^2 x} + 5^x\right) dx = \frac{x^4}{4} + 3\frac{x^{-4}}{4} + 5\ln x - 2tgx + \frac{5^x}{\ln 5} + c$$

b)
$$\int (\sqrt{x} + 3\sqrt[3]{x} - \frac{1}{5}\sqrt[8]{x^7}) dx = \int (x^{\frac{1}{2}} + 3x^{\frac{1}{3}} - \frac{1}{5}x^{\frac{7}{8}}) dx = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 3\frac{x^{\frac{4}{3}}}{\frac{4}{3}} - \frac{1}{5}\frac{x^{\frac{15}{8}}}{\frac{15}{8}} + c =$$

$$= \frac{2}{3}\sqrt{x^3} + \frac{9}{4}\sqrt[3]{x^4} - \frac{8}{75}\sqrt[8]{x^{15}} + c$$

c)
$$\int \frac{x^5 - 2x^4 + 3\sqrt{x} - \sqrt[3]{x^2} + 5}{\sqrt{x}} dx = \int x^{\frac{9}{2}} dx - 2\int x^{\frac{7}{2}} dx + 3\int dx - \int x^{\frac{1}{6}} dx + 5\int x^{-\frac{1}{2}} dx = \int x^{\frac{1}{2}} dx + 3\int dx - \int x^{\frac{1}{6}} dx + 5\int x^{-\frac{1}{2}} dx = \int x^{\frac{1}{2}} dx + 3\int dx - \int x^{\frac{1}{6}} dx + 5\int x^{-\frac{1}{2}} dx = \int x^{\frac{1}{2}} dx + 3\int dx - \int x^{\frac{1}{6}} dx + 5\int x^{\frac{1}{2}} dx = \int x^{\frac{1}{2}} dx + 3\int dx - \int x^{\frac{1}{6}} dx + 5\int x^{\frac{1}{2}} dx = \int x^{\frac{1}{2}} dx + 3\int dx - \int x^{\frac{1}{6}} dx + 5\int x^{\frac{1}{2}} dx = \int x^{\frac{1}{2}} dx + 3\int dx - \int x^{\frac{1}{6}} dx + 5\int x^{\frac{1}{2}} dx = \int x^{\frac{1}{2}} dx + 3\int dx - \int x^{\frac{1}{6}} dx + 5\int x^{\frac{1}{2}} dx = \int x^{\frac{1}{2}} dx + 3\int dx - \int x^{\frac{1}{6}} dx + 5\int x^{\frac{1}{2}} dx = \int x^{\frac{1}{2}} dx + 3\int dx - \int x^{\frac{1}{6}} dx + 5\int x^{\frac{1}{2}} dx = \int x^{\frac{1}{6}} dx + 3\int x^{\frac{$$

$$=\frac{2}{11}x^{\frac{11}{2}}-2\frac{2}{9}x^{\frac{9}{2}}+3x-\frac{6}{7}x^{\frac{7}{6}}+5\cdot2x^{\frac{1}{2}}+c=\frac{2}{11}\sqrt{x^{11}}-\frac{4}{9}\sqrt{x^{9}}+3x-\frac{6}{7}\sqrt[6]{x^{7}}+10\sqrt{x}+c$$

d)
$$\int \left(1 - \frac{1}{x^2}\right)^3 \sqrt{x} \sqrt{x} dx = \int \left(1 - \frac{1}{x^2}\right) \left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} dx = \int \left(1 - \frac{1}{x^2}\right) x^{\frac{1}{2}} dx = \int x^{\frac{1}{2}} dx - \int x^{-\frac{3}{2}} dx = \int x^{\frac{3}{2}} dx = \int x^{\frac{3}{2}}$$

$$= \frac{2}{3}x^{\frac{3}{2}} + 2x^{-\frac{1}{2}} + c = \frac{2}{3}\sqrt{x^3} + 2\sqrt{x} + c$$

e)
$$\int \left(2^x - \frac{3}{4}e^x + \frac{5}{\sqrt{4 - x^2}}\right) dx = \int 2^x dx - \frac{3}{4} \int e^x dx + 5 \int \frac{dx}{\sqrt{4 - x^2}} = \frac{2^x}{\ln x} - \frac{3}{4}e^x + 5 \arcsin \frac{x}{2} + c$$

f)
$$\int \left(\frac{2}{\sqrt{x^2+4}} - shx + \frac{1}{ch^2x}\right) dx = 2\int \frac{dx}{\sqrt{x^2+4}} - \int shx dx + \int \frac{dx}{ch^2x} = 1$$

$$=2\ln\left|x+\sqrt{x^2+4}\right|-chx+thx+c$$

g)
$$\int \frac{dx}{3x^2 - 12} = \frac{1}{3} \int \frac{dx}{x^2 - 4} = \frac{1}{3} \frac{1}{2 \cdot 2} \ln \left| \frac{x - 2}{x + 2} \right| + c$$

h)
$$\int \frac{3dx}{6+13x^2} = \frac{3}{13} \int \frac{dx}{\frac{6}{13} + x^2} = \frac{3}{13} \frac{1}{\sqrt{\frac{6}{13}}} \arctan \left(\frac{x}{\sqrt{\frac{6}{13}}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} \arctan \left(\sqrt{\frac{13}{6}} \right) + c = \frac{3}{13} \sqrt{\frac{13}{6}} + c =$$

$$= \frac{3}{\sqrt{78}} \operatorname{arctg}(\sqrt{\frac{13}{6}}x) + c.$$

Primjer 6. Transformacijom podintegralne funkcije, a zatim direktnim integriranjem rješimo sljedeće integrale:

a)
$$\int \sin^2 x dx = \int \frac{1 - \cos 2x}{2} dx = \frac{1}{2} \int dx - \frac{1}{2} \int \cos 2x dx = \frac{1}{2} x - \frac{1}{2} \frac{\sin 2x}{2} + c$$

b)
$$\int \cos^2 x dx = \int \frac{1 + \cos 2x}{2} dx = \int \frac{1}{2} dx + \int \frac{\cos 2x}{2} dx = \frac{1}{2} x + \frac{1}{2} \frac{\sin 2x}{2} + c$$

c)
$$\int \sin^2 x \cos^2 x dx = \int \frac{\sin^2 2x}{4} dx = \frac{1}{4} \int \frac{1 - \cos 4x}{2} dx = \frac{1}{8} x - \frac{1}{8} \frac{\sin 4x}{4} + c$$

d)
$$\int \frac{1}{\sin^2 x \cos^2 x} dx = \int \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x} dx = \int \frac{dx}{\cos^2 x} + \int \frac{dx}{\sin^2 x} = tgx - ctgx + c$$

e)
$$\int tg^{2}xdx = \int \frac{\sin^{2} x}{\cos^{2} x}dx = \int \frac{1 - \cos^{2} x}{\cos^{2} x}dx = \int \frac{dx}{\cos^{2} x} - \int dx = tgx - x + c$$

1.4.2 Metoda supstitucije

Ako primitivnu funkciju F funkcije f odnosno $\int f(x)dx$ ne možemo naći direktnim integriranjem pokušavamo to napraviti metodom supstitucije: uvođenjem nove varijable ili nove funkcije. Dakle, pokušava se uvesti neka supstitucija $x = \varphi(t)$ kojom se dani integral svodi na tablični ili je jednostavniji za izračunavanje od polaznog.

Primjer 7. Rješimo sljedeće primjere uvođenjem odgovarajuće nove varijable:

a)
$$\int e^{ax} dx = \begin{vmatrix} ax = t, adx = dt, \\ dx = \frac{dt}{a} \end{vmatrix} = \int e^{t} \frac{dt}{a} = \frac{1}{a} e^{t} = \frac{1}{a} e^{ax} + c$$

b)
$$\int \sin(ax+b)dx = \begin{vmatrix} ax+b=t, adx=dt, \\ dx = \frac{1}{a}dt \end{vmatrix} = \frac{1}{a}\int \sin tdt = -\frac{1}{a}\cos t + c = -\frac{1}{a}\cos(ax+b) + c$$

c)
$$\int \frac{\ln x}{x} dx = \left| \ln x = t, \frac{1}{x} dx = dt \right| = \int t dt = \frac{t^2}{2} + c = \frac{\ln^2 x}{2} + c$$

d)
$$\int 2^{\cos x} \sin dx = \begin{vmatrix} \cos x = t \\ -\sin x dx = dt \end{vmatrix} = -\int 2^t dt = -\frac{2^t}{\ln 2} + c = \frac{-2^{\cos x}}{\ln 2} + c$$

e)
$$\int \frac{2e^x}{\sqrt{1 - e^{2x}}} dx = \left| e^x = t, e^x dx = dt \right| = \int \frac{2dt}{\sqrt{1 - t^2}} = 2\int \frac{dt}{\sqrt{1 - t^2}} = 2\arcsin t + c = 0$$

 $= 2 \arcsin e^x + c$

f)
$$\int \frac{\cos x dx}{1 + \sin^2 x} = \begin{vmatrix} \sin x = t \\ \cos x dx = dt \end{vmatrix} = \int \frac{dt}{1 + t^2} = \operatorname{arctgt} = \operatorname{arctg}(\sin x) + c$$

g)
$$\int \frac{xdx}{4+x^4} = \begin{vmatrix} x^2 = t, 2xdx = dt, \\ xdx = \frac{1}{2}dt \end{vmatrix} = \frac{1}{2} \int \frac{dt}{4+t^2} = \frac{1}{2} \cdot \frac{1}{2} \arctan \frac{t}{2} + c = \frac{1}{4} \arctan \frac{x^2}{2} + c$$

h)
$$\int \frac{x^4}{-5 + 8x^5} dx = \begin{vmatrix} -5 + 8x^5 = t, 40x^4 dx = dt \\ x^4 dx = \frac{1}{40} dt \end{vmatrix} = \frac{1}{40} \int \frac{dt}{t} = \frac{1}{40} \ln t + c = \frac{1}{40} \ln(-5 + 8x^5) + c$$

i)
$$\int \frac{x^4 dx}{\sqrt{x^{10} - 2}} = \begin{vmatrix} x^5 = t \\ 5x^4 dx = dt \end{vmatrix} = \frac{1}{5} \int \frac{dt}{\sqrt{t^2 - 2}} = \frac{1}{5} \ln \left| t + \sqrt{t^2 - 2} \right| + c = \frac{1}{5} \ln \left| x^5 + \sqrt{x^{10} - 2} \right| + c.$$

j)
$$\int \frac{ctg(\ln x)}{x} dx = \left| \ln x = t \Rightarrow \frac{dx}{x} = dt \right| = \int ctgt dt = \int \frac{\cos t}{\sin t} dt = \left| \sin t = z, \cos t dt = dz \right| = \int \frac{\cos t}{\sin t} dt$$

$$= \int \frac{dz}{z} = \ln z = \ln \sin t = \ln \sin \ln x + c.$$

Primjer 8. Metodom supstitucije rješimo sada nešto složenije primjere:

a)
$$\int x\sqrt{x-4}dx = \begin{vmatrix} x-4=t^2, x=t^2+4 \\ dx=2tdt \end{vmatrix} = \int (t^2+4)(t^2+4)(t^2+4t^2)dt = \int (t^4+4t^2)dt = \int (t^4+4t^4)(t^4+4t^4)dt = \int (t^4+4t^4)(t^4+4t^4)(t^4+4t^4)dt = \int (t^4+4t^4)(t^4+4t^4)(t^4+4t^4)(t^4+4t^4)(t^4+4t^4)(t^4+4t^4)(t^4+4t^4)(t^4+4t^4)(t^4+4t^4)(t^4+4t^4)(t^4+4t^4)(t^4+4t^4)(t^4+$$

$$=2\int t^4 dt + 8\int t^2 dt = \frac{2}{5}t^5 + \frac{8}{3}t^3 + c = \frac{2}{5}(x-4)^{\frac{5}{2}} + \frac{8}{3}(x-4)^{\frac{3}{2}} + c$$

b)
$$\int \frac{\ln x dx}{x\sqrt{1+\ln x}} = \left| \frac{1+\ln x = t^2}{dx} \right| = \int \frac{t^2-1}{t} 2t dt = 2\int (t^2-1) dt = \frac{2}{3}t^3 - 2t + c = 1$$

$$= \frac{2}{3} (1 + \ln x)^{\frac{3}{2}} - 2\sqrt{1 + \ln x} + c = \frac{2}{3} \sqrt{(1 + \ln x)^3} - 2\sqrt{1 + \ln x} + c$$

c)
$$\int \frac{\sin 2x dx}{\sqrt{3 - \cos^4 x}} = \begin{vmatrix} \cos^2 x = t \\ -2\cos x \sin x dx = dt \end{vmatrix} = -\int \frac{dt}{\sqrt{3 - t^2}} = -\arcsin \frac{t}{\sqrt{3}} + c = \sin 2x = -dt$$

$$=-\arcsin\frac{\cos^2 x}{\sqrt{3}}+c$$

d)
$$\int \frac{x \arcsin x^2}{\sqrt{1-x^4}} dx = \left| \arcsin x^2 = t \Rightarrow \frac{1}{\sqrt{1-x^4}} 2x dx = dt \right| = \frac{1}{2} \int t dt = \frac{1}{2} \frac{t^2}{2} = \frac{1}{4} \arcsin^2 x^2 + c$$

$$e) \int \frac{dx}{\sin 2x} = \begin{vmatrix} \sin 2x = 2\sin x \cos x = 2\frac{\sin x}{\cos x} \cos^2 x = 2tgx \cos^2 x, \\ tgx = t, \frac{dx}{\cos^2 x} dx = dt \end{vmatrix} = \frac{1}{2} \int \frac{dx}{tgx \cos^2 x} = \frac{1}{2} \int \frac{dt}{t} = \frac{1}{2} \int \frac{dx}{t} dx = \frac{1}{2} \int \frac{dx$$

$$= \frac{1}{2} \ln|t| + c = \frac{1}{2} \ln|tgx| + c$$

f)
$$\int \frac{dx}{1+e^x} = \int \frac{e^x dx}{e^x (1+e^x)} = \begin{vmatrix} 1+e^x = t, e^x dx = dt \\ e^x = t+1 \end{vmatrix} = \int \frac{dt}{t(t-1)} = \int \left(\frac{1}{t-1} - \frac{1}{t}\right) dt = \int \frac{dt}{t(t-1)} =$$

$$= \int \frac{dt}{t-1} - \int \frac{dt}{t} = \ln|t-1| - \ln|t| + c = \ln e^x - \ln(1+e^x) + c = x - \ln(1+e^x) + c$$

$$g) \int \frac{1}{2^{x}} th 2^{1-x} dx = \begin{vmatrix} 2^{1-x} = t, 2 \cdot 2^{-x} = t \Rightarrow \frac{1}{2^{x}} = \frac{t}{2}, \\ -2^{1-x} \ln 2 dx = dt, -22^{-x} \ln 2 dx = dt \end{vmatrix} = -\frac{1}{2 \ln 2} \int th t dt = -\frac{1}{2 \ln 2} \int \frac{sht}{cht} dt = \frac{t}{2 \ln 2} \int \frac{sht}{$$

$$= -\frac{1}{2\ln 2} \int \frac{d(cht)}{cht} = -\frac{1}{2\ln 2} \ln cht = -\frac{1}{2\ln 2} \ln ch2^{1-x} + c$$

h)
$$\int \sqrt{\frac{1-x}{1+x}} dx = \int \frac{1-x}{\sqrt{1-x^2}} dx = \int \frac{dx}{\sqrt{1-x^2}} - \int \frac{xdx}{\sqrt{1-x^2}} = \arcsin x - J_1, \text{ gdje je}$$

$$J_{1} = \int \frac{xdx}{\sqrt{1 - x^{2}}} = \begin{vmatrix} 1 - x^{2} = t^{2}, -2xdx = 2tdt \\ xdx = -tdt \end{vmatrix} = -\int \frac{tdt}{t} = -t + c = -\sqrt{1 - x^{2}} + c, \text{ pa je}$$

$$\int \sqrt{\frac{1-x}{1+x}} dx = \arcsin x + \sqrt{1-x^2} + c$$

i)
$$\int \frac{dx}{x^2 \sqrt{1+x^2}} = \left| \frac{1}{x} = t, -\frac{1}{x^2} dx = dt \right| = -\int \frac{dt}{\sqrt{1+\frac{1}{t^2}}} = -\int \frac{t}{\sqrt{t^2+1}} dt =$$

$$= \left| t^2 + 1 = z^2, 2t dt = 2z dz \right| = -\int \frac{z dz}{z} = -\int dz = -z = -\sqrt{t^2+1} = -\sqrt{1+\frac{1}{x^2}} = -\frac{\sqrt{x^2+1}}{x} + c$$

$$j) \int \frac{dx}{\sqrt{-x^2-4x-3}} = \int \frac{dx}{\sqrt{-(x^2+4x+3)}} = \int \frac{dx}{\sqrt{-[(x+2)^2-1]}} = \left| \frac{x+2=t}{dx=dt} \right| = \int \frac{dt}{\sqrt{1-t^2}} = c$$

 $= \arcsin t + c = \arcsin(x+2) + c$

Metoda supstitucije može se sastojati i u uvođenju nove funkcije, kao što se to vidi u sljedećem primjeru:

Primjer 9.

a)
$$\int \sqrt{1-x^2} dx = \begin{vmatrix} x = \sin t, ax = \cos t dt \\ t = \arcsin x \end{vmatrix} = \int \sqrt{1-\sin^2 t} \cos t dt = \int \cos^2 t dt = \int \cos^2 t dt$$

$$= \frac{1}{2}t + \frac{1}{4}\sin 2t = \frac{1}{2}\arcsin x + \frac{1}{4}2x\sqrt{1-x^2} + c$$

b)
$$\int \frac{x}{\sqrt{x^2 - 1}} dx = \begin{vmatrix} x = \frac{1}{\cos x}, \cos t = \frac{1}{x}, \\ dx = -\frac{\sin t}{\cos^2 t} \end{vmatrix} = \int \frac{\frac{1}{\cos t}}{\sqrt{\frac{1}{\cos^2 t} - 1}} \cdot \frac{\sin t}{\cos^2 t} dt =$$

$$= \int \frac{\sin t}{\cos^3 t} \frac{\cos t}{\sqrt{1 - \cos^2 t}} dt = \int \frac{dt}{\cos^2 t} = tgt = \frac{\sqrt{1 - \cos^2 t}}{\cos t} = \frac{\sqrt{1 - \frac{1}{x^2}}}{\frac{1}{x}} + c = \sqrt{x^2 - 1} + c.$$

Uočite da smo navedeni integral mogli puno brže rješiti supstitucijom kao u zadatku 8 h): ako je $x^2 - 1 = t^2$, tada je xdx = tdt, pa je

$$\int \frac{xdx}{\sqrt{x^2 - 1}} = \int \frac{tdt}{t} = \int dt = t = \sqrt{x^2 - 1} + c.$$

Isto tako, može se uočiti da je: $\frac{d}{dx} \left[\sqrt{x^2 - 1} + c \right] = \frac{1}{2\sqrt{x^2 - 1}} 2x = \frac{x}{\sqrt{x^2 - 1}}$, pa se integral napamet mogao rješiti, ako se zna dobro derivirati.

Za integrale koji u podintegralnoj funkciji sadrže $\sqrt{x^2-1}$, često se koriste hiperbolne supstitucije. Kod takvih supstitucija koriste se sljedeće osnovne relacije:

$$ch^{2}t - sh^{2}t = 1$$

$$sh^{2}t = \frac{ch2t - 1}{2}$$

$$ch^{2}t = \frac{ch2t + 1}{2}$$

$$sh2t = 2shtcht$$

$$ch2t = ch^{2}t + sh^{2}t$$

Tada bi $\int \frac{xdx}{\sqrt{x^2 - 1}}$, koristeći hiperbolnu supstituciju x = cht, odakle je dx = shtdt, prešao u

$$\int \frac{cht}{\sqrt{ch^2t-1}} \cdot shtdt = \int \frac{cht}{\sqrt{sh^2t}} shtdt = \int chtdt = sht = \sqrt{ch^2t-1} = \sqrt{x^2-1} + c.$$

c)
$$\int \frac{dx}{(x^2+1)\sqrt{1+x^2}} = \left| x = tgt, dx = \frac{1}{\cos^2 t} dt \right| = \int \frac{1}{\cos^2 t} \frac{1}{(tg^2t+1)\sqrt{1+tg^2t}} dt =$$

Koristeći trigonometrijske transformacije:

$$\sin t = \frac{tgt}{\sqrt{1 + tg^2 t}} = \frac{x}{\sqrt{1 + x^2}}$$
$$\cos t = \frac{1}{\sqrt{1 + tg^2 t}} = \frac{1}{\sqrt{1 + x^2}}$$

sljedi da je dani integral jednak

$$\int \frac{1}{\cos^2 t} \frac{\cos^2 t}{1} \frac{\cos t}{1} dt = \int \cos t dt = \sin t = \frac{x}{\sqrt{1+x^2}} + c$$

d)
$$\int \cos^3 x \sqrt{\sin x} dx = \int (1 - \sin^2 x) \sqrt{\sin x} \cos x dx = \begin{vmatrix} \sin x = t^2, \cos x dx = 2t dt \\ \cos^2 x = 1 - \sin^2 x \end{vmatrix} =$$

$$= \int (1-t^4)t^2t dt = 2\int (1-t^4)t^2 dt = 2\int t^2 dt - 2\int t^6 dt = \frac{2}{3}t^3 - \frac{2}{7}t^7 = \frac{1}{3}t^3 + \frac{1}$$

$$= \frac{2}{3}\sin^{\frac{3}{2}}x - \frac{2}{7}\sin^{\frac{7}{2}}x + c = \frac{2}{3}\sqrt{\sin^{3}x} - \frac{2}{7}\sqrt{\sin^{7}x} + c$$

e)
$$\int \sqrt{(x^2 - 1)^3} dx = |x = cht, dx = shtdt| = \int \sqrt{(ch^2 t - 1)^3} shtdt = \int sh^4 tdt = \int \left(\frac{ch2t - 1}{2}\right)^2 dt =$$

$$= \frac{1}{4} \int ch^2 2tdt - \frac{2}{4} \int ch2tdt + \frac{1}{4} \int dt = \frac{1}{8} \int (ch4t + 1)dt - \frac{1}{2} \frac{sh2t}{2} + \frac{1}{4}t = \frac{1}{8} \frac{sh4t}{4} + \frac{1}{8}t - \frac{1}{4}sh2t + \frac{1}{4}t =$$

$$= \frac{1}{32} sh4t - \frac{1}{4} sh2t + \frac{3}{8}t + c = \frac{1}{32} 2sh2tch2t - \frac{1}{4} 2sht cht + \frac{3}{8} archx + c =$$

$$= \frac{1}{16} 2shtcht(2ch^2 t - 1) - \frac{1}{2} \sqrt{ch^2 t - 1}cht + \frac{3}{8} \ln(x + \sqrt{x^2 - 1}) + c =$$

$$= \frac{1}{8} \sqrt{x^2 - 1} (2x^3 - x) - \frac{1}{2} x \sqrt{x^2 - 1} + \frac{3}{8} \ln(x + \sqrt{x^2 - 1}) + c = \frac{1}{8} \sqrt{x^2 - 1} (2x^3 - 5x) + \frac{3}{8} \ln(x + \sqrt{x^2 - 1}) + c$$

Kod nekih integrala, koje smo stavili u tablicu neodređenih integrala, primitivna funkcija nije baš odmah vidljiva. Integral 12. u tablici može se jednostavno objasniti supstitucijom:

Primjer 10.

$$\int tgxdx = \int \frac{\sin x}{\cos x}dx = \begin{vmatrix} \cos x = t \\ -\sin xdx = dt \end{vmatrix} = -\int \frac{dt}{t} = -\ln t = -\ln\cos x + c.$$

1.4.3 Zadaci za vježbu

1. Direktnim integriranjem izračunajte sljedeće neodređene integrale

a)
$$\int (2+x^{2})^{3} dx$$
e)
$$\int \frac{2^{x+1} - 5^{x-1}}{10^{x}} dx$$
b)
$$\int x^{2} (3-x)^{4} dx$$
f)
$$\int \frac{e^{3x} + 1}{e^{x} + 1} dx$$
c)
$$\int (x^{4} - \sqrt{x} + x^{3} \sqrt{x} + x^{\frac{1}{2}}) dx$$
g)
$$\int \frac{x^{2} + 3}{x^{2} - 1} dx$$
h)
$$\int ctg^{2} x dx$$

2. Metodom supstitucije riješite sljedeće jednostavne

a)
$$\int \frac{dx}{(x-2)^3}$$

e)
$$\int \frac{x^2 dx}{(8x^3 + 27)^{\frac{2}{3}}}$$

b)
$$\int \sqrt[5]{1-x} dx$$

f)
$$\int \frac{\ln^3 x}{x} dx$$

c)
$$\int x\sqrt[3]{x-2}dx$$

g)
$$\int \frac{xdx}{5+x^4}$$

d)
$$\int \frac{2x-3}{1-x} dx$$

h)
$$\int (x^2 - 3)^5 \sqrt{x^3 - 9x} dx$$

3. Metodom supstitucije izračunajte nešto složenije sljedeće neodređene integrale

a)
$$\int \frac{dx}{x \ln x \ln(\ln x)}$$

d)
$$\int \frac{\cos x + 1}{\sin x + x} dx$$

g)
$$\int \frac{arctg^3 x}{1+x^2} dx$$

b)
$$\int \sin \frac{1}{x} \frac{dx}{x^2}$$

e)
$$\int \frac{\sin x dx}{\sqrt{2 + \cos x}}$$

h)
$$\int \frac{arctg\sqrt{x}}{\sqrt{x}} \frac{1}{1+x} dx$$

c)
$$\int \cos^5 x \sin^4 x$$

f)
$$\int \frac{dx}{\sin^2 x \sqrt[4]{ctgx}}$$

Rješenja

1.

a)
$$\frac{x^7}{7} + \frac{6}{5}x^5 + 4x^3 + 8x + c$$

b)
$$\frac{x^7}{7} - 2x^6 + \frac{54}{5}x^5 - 27x^4 + 27x^3 + c$$

c)
$$\frac{x^5}{5} - \frac{2}{3}\sqrt{x^3} + \frac{3}{7}\sqrt[3]{x^3} - \frac{1}{x} + c$$

d)
$$\frac{4}{5}x\sqrt[4]{x} - \frac{24}{17}x\sqrt[12]{x^5} + \frac{4}{3}\sqrt[4]{x^3} + c$$

e)
$$-\frac{2}{\ln 5}5^{-x} + \frac{1}{5\ln 2}2^{-x} + c$$

- f) $\frac{1}{2}e^{2x} e^x + x + c$
- g) $x + 2\ln\frac{x-1}{x+1} + c$
- h) -x ctgx + c
- 2.
- a) $-\frac{1}{2(x-2)^2} + c$
- b) $-\frac{5}{6}(1-x)^{\frac{6}{5}}+c$
- c) $\frac{3}{7}(x-2)^{\frac{7}{3}} + \frac{3}{2}(x-2)^{\frac{4}{3}} + c$
- $d) \qquad -2x + \ln(1-x) + c$
- e) $\frac{1}{8}\sqrt[3]{8x^3 + 27} + c$
- $f) \qquad \frac{1}{4} \ln^4 x + c$
- g) $\frac{\sqrt{5}}{10} \operatorname{arctg} \frac{x^2}{\sqrt{5}}$
- h) $\frac{5}{18} \sqrt[5]{(x^3 9x)^6}$
- 3.
- a) ln(ln(lnx))+c
- b) $\cos \frac{1}{x} + c$
- c) $\frac{1}{5}\sin^5 x \frac{2}{7}\sin^7 x + \frac{1}{3}\sin^9 x + c$
- d) $\ln(\sin x + x) + c$
- e) $-2\sqrt{2+\cos x}+c$

$$f) \qquad -\frac{4}{3}\sqrt[4]{ctg^3x} + c$$

g)
$$\frac{arctg^4x}{4} + c$$

h)
$$arctg^2 \sqrt{x} + c$$
.

1.4.4 Metoda parcijalne integracije

Često se kod traženja primitivne funkcije f(x), koja se ne može naći direktnim integriranjem ili supstitucijom, koristi metoda parcijalne integracije.

Neka su $u, v: \langle a, b \rangle \to \mathbb{R}$ diferencijabilne funkcije na otvorenom intervalu $\langle a, b \rangle$

Za derivaciju produkta dviju diferencijabilnih funkcija u(x) i v(x) vrijedi da je

$$[u(x)\cdot v(x)]' = u'(x)\cdot v(x) + u(x)\cdot v'(x)$$

Odavde sljedi

$$u(x)\cdot v'(x) = [u(x)\cdot v(x)]' - u'(x)\cdot v(x)$$

Integriranjem sljedi:

$$\int u(x) \cdot v'(x) dx = \int \left[u(x) \cdot v(x) \right]' dx - \int u'(x) \cdot v(x) dx = u(x) \cdot v(x) - \int u'(x) \cdot v(x) dx$$

Integriranje primjenom napisane formule zove se **parcijalna integracija** s tim da napisane derivacije i napisani integrali postoje (dovoljno je uzeti da su u i v neprekidno derivabilne funkcije).

Kako je

$$u'(x)dx = du$$

 $v'(x)dx = dv$

kraći oblik formule za parcijalnu integraciju glasi:

$$\int u \cdot dv = u \cdot v - \int v \cdot du .$$

Očito se metodom parcijalne integracije ne rješava dani neodređeni integral, već se problem $\int u dv$ svodi na problem $\int v du$ uz neki izbor u i dv. Taj izbor mora biti takav da $\int v du$ bude jednostavniji ili barem isto toliko težak kao i početni $\int u dv$.

Ako se parcijalnom integracijom dobije složenija podintegralna funkcija, primjenjuje se ili drugi izbor u i dv ili druga metoda za rješavanje danog integrala.

Metoda parcijalne integracije se često koristi i zahtjeva određenu vještinu, koja se stječe samo vježbanjem.

Primjer 11.

a)
$$\int xe^x dx = \begin{vmatrix} u = x, du = dx, \\ dv = e^x dx, v = e^x \end{vmatrix} = xe^x - \int e^x dx = xe^x - e^x + c = (x-1)e^x + c;$$

b)
$$\int x^2 e^{\frac{x}{2}} dx = \begin{vmatrix} u = x^2, du = 2x dx, dv = e^{\frac{x}{2}} dx, \\ v = \int e^{\frac{x}{2}} dx = \left| \frac{x}{2} = t, dx = 2 dt \right| = \int e^{\frac{x}{2}} dx = 2 \int e^t dt = 2 e^t = 2 e^{\frac{x}{2}} \end{vmatrix} = 2x^2 e^{\frac{x}{2}} - \int 2e^{\frac{x}{2}} 2x dx = 2 \int e^{\frac{x}{2}} dx = 2 \int e^{\frac{x}{$$

$$= 2x^{2}e^{\frac{x}{2}} - 4\int xe^{\frac{x}{2}}dx + c = \begin{vmatrix} u = x, du = dx \\ \frac{x}{dv} = e^{\frac{x}{2}}dx, v = \int e^{\frac{x}{2}}dx = 2e^{\frac{x}{2}} \end{vmatrix} = 2x^{2}e^{\frac{x}{2}} - 4\left(\frac{x}{2xe^{\frac{x}{2}}} - 2\int e^{\frac{x}{2}}dx\right) = 0$$

$$2x^{2}e^{\frac{x}{2}} - 4\left(2xe^{\frac{x}{2}} - 4e^{\frac{x}{2}}\right) = 2x^{2}e^{\frac{x}{2}} - 8xe^{\frac{x}{2}} + 16e^{\frac{x}{2}} + c;$$

c)
$$\int e^x \sin 3x dx = \begin{vmatrix} u = \sin 3x, du = 3\cos 3x dx \\ dv = e^x dx, v = \int e^x dx = e^x \end{vmatrix} = e^x \sin 3x - 3 \int e^x \cos 3x dx = \begin{vmatrix} u = \cos 3x, du = -3\sin 3x dx \\ dv = e^x dx, v = e^x dx \end{vmatrix} = e^x \sin 3x - 3 \int e^x \cos 3x dx = \begin{vmatrix} u = \cos 3x, du = -3\sin 3x dx \\ dv = e^x dx, v = e^x dx \end{vmatrix} = e^x \sin 3x - 3 \int e^x \cos 3x dx = \begin{vmatrix} u = \cos 3x, du = -3\sin 3x dx \\ dv = e^x dx, v = e^x dx \end{vmatrix} = e^x \sin 3x - 3 \int e^x \cos 3x dx = \begin{vmatrix} u = \cos 3x, du = -3\sin 3x dx \\ dv = e^x dx, v = e^x dx \end{vmatrix} = e^x \sin 3x - 3 \int e^x \cos 3x dx = \begin{vmatrix} u = \cos 3x, du = -3\sin 3x dx \\ dv = e^x dx, v = e^x dx \end{vmatrix} = e^x \sin 3x - 3 \int e^x \cos 3x dx = \begin{vmatrix} u = \cos 3x, du = -3\sin 3x dx \\ dv = e^x dx, v = e^x dx \end{vmatrix} = e^x \sin 3x - 3 \int e^x \cos 3x dx = \begin{vmatrix} u = \cos 3x, du = -3\sin 3x dx \\ dv = e^x dx, v = e^x dx \end{vmatrix} = e^x \sin 3x - 3 \int e^x \cos 3x dx = \begin{vmatrix} u = \cos 3x, du = -3\sin 3x dx \\ dv = e^x dx, v = e^x dx \end{vmatrix} = e^x \sin 3x - 3 \int e^x \cos 3x dx = e^x \sin 3x dx = e^x \cos 3x dx$$

$$= e^{x} \sin 3x - 3 \Big[e^{x} \cos 3x + 3 \int e^{x} \sin 3x dx \Big] = e^{x} \sin 3x - 3 e^{x} \cos 3x - 9 \int e^{x} \sin 3x dx$$

Iz dobivene jadnakosti, koju smo dobili primjenom dvostruke parcijalne integracije, sljedi:

$$10\int e^x \sin 3x dx = e^x \sin 3x - 3e^x \cos 3x,$$

odakle je:

$$\int e^{x} \sin 3x dx = \frac{e^{x}}{10} (\sin 3x - 3\cos 3x) + c;$$

d)
$$\int x^2 \cos 2x dx = \begin{vmatrix} u = x^2, du = 2x dx \\ dv = \cos 2x dx, v = \int \cos 2x dx = \frac{1}{2} \sin 2x \end{vmatrix} = \frac{x^2}{2} \sin 2x - \int x \sin 2x dx = \frac{1}{2} \sin 2x + \frac{1}{2} \sin 2x = \frac{1}{2} \sin 2x + \frac{1}{2} \sin 2x = \frac{1$$

$$= \begin{vmatrix} u = x, du = dx, dv = \sin 2x dx \\ v = \int \sin 2x dx = -\frac{\cos 2x}{2} \end{vmatrix} = \frac{x^2}{2} \sin 2x - \left(-\frac{x \cdot \cos 2x}{2} + \frac{1}{2} \int \cos 2x dx \right) = \frac{x^2}{2} \sin 2x - \left(-\frac{x \cdot \cos 2x}{2} + \frac{1}{2} \int \cos 2x dx \right) = \frac{x^2}{2} \sin 2x - \left(-\frac{x \cdot \cos 2x}{2} + \frac{1}{2} \int \cos 2x dx \right) = \frac{x^2}{2} \sin 2x - \left(-\frac{x \cdot \cos 2x}{2} + \frac{1}{2} \int \cos 2x dx \right) = \frac{x^2}{2} \sin 2x - \left(-\frac{x \cdot \cos 2x}{2} + \frac{1}{2} \int \cos 2x dx \right) = \frac{x^2}{2} \sin 2x - \left(-\frac{x \cdot \cos 2x}{2} + \frac{1}{2} \int \cos 2x dx \right) = \frac{x^2}{2} \sin 2x - \left(-\frac{x \cdot \cos 2x}{2} + \frac{1}{2} \int \cos 2x dx \right) = \frac{x^2}{2} \sin 2x - \left(-\frac{x \cdot \cos 2x}{2} + \frac{1}{2} \int \cos 2x dx \right) = \frac{x^2}{2} \sin 2x - \left(-\frac{x \cdot \cos 2x}{2} + \frac{1}{2} \int \cos 2x dx \right) = \frac{x^2}{2} \sin 2x - \left(-\frac{x \cdot \cos 2x}{2} + \frac{1}{2} \int \cos 2x dx \right) = \frac{x^2}{2} \sin 2x - \left(-\frac{x \cdot \cos 2x}{2} + \frac{1}{2} \int \cos 2x dx \right) = \frac{x^2}{2} \sin 2x - \left(-\frac{x \cdot \cos 2x}{2} + \frac{1}{2} \int \cos 2x dx \right) = \frac{x^2}{2} \sin 2x - \frac{x^2}{2} + \frac{x^2}{2} \sin 2x - \frac{x^2}{2} + \frac{x^2}{2} +$$

$$= \frac{x^2}{2}\sin 2x + \frac{x}{2}\cos 2x - \frac{1}{4}\sin 2x + c.$$

Općenito integrali oblika $F(x) = \int e^{\alpha x} \cos \beta x dx$, α , $\beta \in \mathbb{R}$, α , $\beta \neq 0$, rješavaju se parcijalnom integracijom u kojoj uzimamo da je eksponencijalna funkcija u, a trigonometrijska v, sljedi:

$$\begin{vmatrix} u = e^{\alpha x}, du = \alpha e^{\alpha x} dx \\ \cos \beta x dx = dv, v = \frac{\sin \beta x}{\beta} \end{vmatrix}$$

Odatle je

$$F(x) = \frac{e^{\alpha x} \sin \beta x}{\beta} - \frac{\alpha}{\beta} \int e^{\alpha x} \sin \beta x dx.$$

Ponovnom primjenom parcijalne integracije sa istim izborom u i v:

$$e^{\alpha x} = u, du = \alpha e^{\alpha x}$$
$$\sin \beta x dx = dv, v = -\frac{\cos \beta x}{\beta}$$

sljedi da je:

$$F(x) = \frac{e^{\alpha x} \sin \beta x}{\beta} - \frac{\alpha}{\beta} \left[-\frac{e^{\alpha x} \cos \beta x}{\beta} + \frac{\alpha}{\beta} \int e^{\alpha x} \cos \beta x dx \right] = \frac{e^{\alpha x} \sin \beta x}{\beta} + \frac{\alpha}{\beta^2} e^{\alpha x} \cos \beta x - \frac{\alpha^2}{\beta^2} F(x)$$

Odatle je

$$\frac{\alpha^2 + \beta^2}{\beta^2} F(x) = \frac{\beta \sin \beta x + \alpha \cos \beta x}{\beta^2} e^{\alpha x},$$

odnosno

$$F(x) = \frac{e^{\alpha x}}{\alpha^2 + \beta^2} (\beta \sin \beta x + \alpha \cos \beta x) + c.$$

e)
$$\int x^{3} arct g x dx = \begin{vmatrix} u = arct g x, du = \frac{dx}{1+x^{2}} \\ x^{3} dx = dv, v = \frac{x^{4}}{4} \end{vmatrix} = \frac{x^{4} arct g x}{4} - \frac{1}{4} \int \frac{x^{4}}{1+x^{2}} dx = \frac{x^{4} arct g x}{4} - \frac{1}{4} \int \frac{x^{4}}{1+x^{2}} dx = \frac{x^{4} arct g x}{4} - \frac{1}{4} \int \frac{x^{4}}{1+x^{2}} dx = \frac{x^{4} arct g x}{4} - \frac{1}{4} \int \frac{x^{4}}{1+x^{2}} dx = \frac{x^{4} arct g x}{4} - \frac{1}{4} \int \frac{x^{4}}{1+x^{2}} dx = \frac{x^{4} arct g x}{4} - \frac{1}{4} \int \frac{x^{4}}{1+x^{2}} dx = \frac{x^{4} arct g x}{4} - \frac{1}{4} \int \frac{x^{4}}{1+x^{2}} dx = \frac{x^{4} arct g x}{4} - \frac{1}{4} \int \frac{x^{4}}{1+x^{2}} dx = \frac{x^{4} arct g x}{4} - \frac{1}{4} \int \frac{x^{4}}{1+x^{2}} dx = \frac{x^{4} arct g x}{4} - \frac{1}{4} \int \frac{x^{4}}{1+x^{2}} dx = \frac{x^{4} arct g x}{4} - \frac{1}{4} \int \frac{x^{4}}{1+x^{2}} dx = \frac{x^{4} arct g x}{4} - \frac{1}{4} \int \frac{x^{4}}{1+x^{2}} dx = \frac{x^{4} arct g x}{4} - \frac{x^{4}}{4} - \frac{x^{$$

Jer je:

$$\frac{x^4}{x^2+1} = x^2 - 1 + \frac{1}{x^2+1}$$

sljedi da je

$$\int x^3 arct gx dx = \frac{x^4 arct gx}{4} - \frac{1}{4} \left[\int x^2 dx - \int dx + \int \frac{dx}{x^2 + 1} \right] =$$

$$=\frac{x^4arctgx}{4}-\frac{1}{4}\frac{x^3}{3}+\frac{1}{4}x-\frac{1}{4}arctgx+c=\frac{1}{4}(x^4-1)arctgx+\frac{1}{12}(3x-x^3)+c\;.$$

Primjer 12. a)
$$\int \ln^2 x dx = \begin{vmatrix} u = \ln^2 x, du = 2 \frac{\ln x}{x} dx \\ dv = dx, v = x \end{vmatrix} = x \ln^2 x - 2 \int \ln x dx = \begin{vmatrix} u = \ln x, du = \frac{dx}{x} \\ dv = dx, v = x \end{vmatrix} = dx$$

$$= x \ln^2 x - 2 \left(x \ln x - \int \frac{x dx}{x} \right) = x \ln^2 x - 2 \left(x \ln x - x \right) = x \ln^2 x - 2x \ln x + 2x + c ;$$

b)
$$\int \sin \ln x dx = \begin{vmatrix} u = \sin \ln x, du = \cos \ln x \frac{dx}{x} \\ dv = dx, v = x \end{vmatrix} = x \sin \ln x - \int x \cos \ln x \frac{dx}{x} = x \sin \ln x - \int \cos \ln x \, dx = x \cos \ln x + x \cos$$

$$= \begin{vmatrix} u = \cos \ln x, du = -\sin \ln x \frac{dx}{x} \\ dv = dx, v = x \end{vmatrix} = x \sin \ln x - \left(x \cos \ln x + \int x \sin \ln x \frac{dx}{x}\right) = x \sin \ln x - x \cos \ln x + \int \sin \ln x dx$$

Odatle je

$$2\int \sin \ln x dx = x \sin \ln x - x \cos \ln x,$$

odnosno

$$\int \sin \ln x dx = \frac{x}{2} (\sin \ln x - \cos \ln x) + c ;$$

c)
$$\int \sqrt{x} \ln^2 x dx = \begin{vmatrix} u = \ln^2 x, du = 2 \ln x \frac{dx}{x} \\ dv = \sqrt{x} dx, v = \frac{2}{3} x^{\frac{3}{2}} \end{vmatrix} = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{2}{3} \int x^{\frac{3}{2}} \cdot 2 \ln x \frac{dx}{x} = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \int x^{\frac{1}{2}} \ln x dx = \frac{2}{3} x^{\frac{3}{2}} \ln x dx$$

$$= \left| \begin{aligned} u &= \ln x, du = \frac{dx}{x} \\ dv &= \sqrt{x} dx, v = \frac{2}{3} x^{\frac{3}{2}} \end{aligned} \right| = \frac{2}{3} x^{\frac{3}{2}} \ln^2 x - \frac{4}{3} \left[\frac{2}{3} x^{\frac{3}{2}} \ln x - \frac{2}{3} \int x^{\frac{3}{2}} \frac{dx}{x} \right] =$$

$$=\frac{2}{3}x^{\frac{3}{2}}\ln^2 x - \frac{8}{9}x^{\frac{3}{2}}\ln x + \frac{8}{9}\int x^{\frac{1}{2}}dx = \frac{2}{3}x^{\frac{3}{2}}\ln^2 x - \frac{8}{9}x^{\frac{3}{2}}\ln x + \frac{16}{27}x^{\frac{3}{2}} + c =$$

$$= \frac{2}{27} \sqrt{x^3} \left(9 \ln^2 x - 12 \ln x + 8 \right) + c;$$

d)
$$\int \frac{xdx}{\cos^2 x} = \begin{vmatrix} x = u, dx = du, \\ \frac{dx}{\cos^2 x} = dv, v = tgx \end{vmatrix} = xtgx - \int tgxdx = xtgx + \ln\cos x + c.$$

1.4.5 Zadaci za vježbu

1. Metodom parcijalne integracije izračunajte sljedeće jednostavne neodređene integrale:

- a) $\int x \ln(x^2 1) dx$
- b) $\int x^2 \sin 2x dx$
- c) $\int arctgx dx$
- $d) \int x^3 e^{-x^2} dx$
- e) $\int e^{-x} \sin dx$
- f) $\int x^2 \arccos x dx$
- g) $\int x^2 e^x dx$

Rješenja:

a)
$$\frac{1}{2}(x^2-1)\ln(x^2-1)-\frac{1}{2}x^2+c$$

b)
$$\frac{1-2x^2}{4}\cos 2x + \frac{x}{2}\sin 2x + c$$

c)
$$xarctgx - \frac{1}{2}\ln(1+x^2) + c$$

d)
$$-\frac{x^2+1}{2}e^{-x^2}+c$$

$$e) -\frac{e^{-x}}{2}(\sin x + \cos x) + c$$

f)
$$-\frac{2+x^2}{9}\sqrt{1-x^2} + \frac{x^3}{3}\arccos x + c$$

g)
$$(x^2-2x-2)e^x+c^2$$

2. Različitim metodama izračunajte sljedeće nešto teže neodređene integrale:

a)
$$\int e^{x+\ln x} dx$$

b)
$$\int \frac{x \cos x}{\sin^3 x} dx$$

c)
$$\int \frac{\arcsin x}{\sqrt{1+x}} dx$$

d)
$$\int x^2 \ln \frac{1-x}{1+x} dx$$

e)
$$\int \arccos^2 x dx$$

Rješenja

a)
$$e^{x}(x-1)+c$$

b)
$$-\frac{1}{2}\left(\frac{x}{\sin^2 x} + ctgx\right) + c$$

c)
$$2\sqrt{1+x} \arcsin x + 4\sqrt{1-x} + c$$

d)
$$-\frac{1}{3}x^2 - \frac{1}{3}\ln(1-x^2) + \frac{x^3}{3}\ln\frac{1-x}{1+x} + c$$

e)
$$x \arccos^2 x - 2\sqrt{1-x^2} \arccos x - 2x + c$$

1.5 Integral racionalne funkcije

Integriranje racionalne funkcije $\int \frac{P_n(x)}{Q_m(x)} dx$, gdje su $P_n(x)$ i $Q_m(x)$ polinomi n-tog odnosno m-tog stupnja, započet ćemo sa najjednostavnijim slučajem:

1.5.1 Integrali oblika $\int \frac{P_0(x)}{Q_1(x)} dx$

Integrali oblika $\int \frac{P_0(x)}{Q_1(x)} dx$, gdje je P0(x) = A i Q1(x) = ax + b.

$$\int \frac{A}{ax+b} dx = \left| ax+b = t, adx = dt \right| = \frac{A}{a} \int \frac{dt}{t} = \frac{A}{a} \ln(ax+b) + c.$$

1.5.2 Integrali oblika $\int \frac{P_0(x)}{Q_2(x)} dx$

Integrali oblika $\int \frac{P_0(x)}{Q_2(x)} dx$, gdje je $P_0(x) = A$ i $Q_2(x) = ax^2 + bx + c$.

$$\int \frac{A}{ax^2 + bx + c} dx$$

rješavamo tako da $Q_2(x) = ax^2 + bx + c$ napišemo u obliku punog kvadrata

$$a(u^{2} + k^{2})$$

$$a(u^{2} - k^{2})$$

$$a(k^{2} - u^{2}) = -a(u^{2} - k^{2})$$

a zatim supstitucijom dobijemo ili tablični integral broj 13 ili 14.

Primjer 13.

a)
$$\int \frac{dx}{x^2 + 4x + 8} = \int \frac{dx}{(x+2)^2 + 4} = |x+2| = t, dx = dt| = \int \frac{dt}{t^2 + 4} = \frac{1}{2} \arctan \frac{x+2}{2} + c;$$

b)
$$\int \frac{dx}{x^2 + 3x - 4} = \int \frac{dx}{\left(x + \frac{3}{2}\right)^2 - \frac{9}{4} - 4} = \int \frac{dx}{\left(x + \frac{3}{2}\right)^2 - \frac{25}{4}} = \left|x + \frac{3}{2} = t, dx = dt\right| =$$

$$= \frac{1}{2 \cdot \frac{5}{2}} \ln \frac{x + \frac{3}{2} - \frac{5}{2}}{x + \frac{3}{2} + \frac{5}{2}} + c = \frac{1}{5} \ln \frac{2x - 2}{2x + 8} + c = \frac{1}{5} \ln \frac{x - 1}{x + 4} + c;$$

c)
$$\int \frac{dx}{x^2 + 6x + 25} = \int \frac{dx}{(x+3)^2 - 9 + 25} = \int \frac{dx}{(x+3)^2 + 16} = |x+3| = t, dx = dt| = t$$

$$= \int \frac{dt}{t^2 + 16} = \frac{1}{4} \arctan \frac{t}{4} = \frac{1}{4} \arctan \frac{x+3}{4} + c;$$

d)
$$\int \frac{dx}{3x^2 + 6x + 25} = \frac{1}{3} \int \frac{dx}{x^2 + 2x + \frac{25}{3}} = \frac{1}{3} \int \frac{dx}{(x+1)^2 - 1 + \frac{25}{3}} = \frac{1}{3} \int \frac{dx}{(x+1)^2 + \frac{22}{3}} = \begin{vmatrix} x+1=t \\ dx = dt \end{vmatrix} = \frac{1}{3} \int \frac{dx}{(x+1)^2 + \frac{25}{3}} = \frac{1}{3} \int \frac{$$

$$= \frac{1}{3} \int \frac{dt}{t^2 + \frac{22}{3}} = \frac{1}{3} \sqrt{\frac{3}{22}} \operatorname{arctg} \frac{t}{\sqrt{\frac{22}{3}}} = \frac{1}{3} \sqrt{\frac{3}{22}} \operatorname{arctg} \sqrt{\frac{3}{22}} (x+1) + c;$$

1.5.3 Integrali oblika $\int \frac{P_1(x)}{Q_2(x)} dx$

Integrali oblika $\int \frac{P_1(x)}{Q_2(x)} dx$, gdje je $P_1(x) = Ax + B$ i $Q_2(x) = ax^2 + bx + c$, tada integral

$$\int \frac{Ax+B}{ax^2+bx+c} dx$$

rješavamo tako da prvo $P_1(x)$ napišemo kao diferencijal $Q_2(x)$, na taj način će prvi integral uvjek biti $\ln Q_2(x)$, a drugi ili 13. ili 14. tablični integral.

Primjer 14.

a)
$$\int \frac{2x+1}{x^2 - 4x + 8} dx = \left| d(x^2 - 4x + 8) = (2x - 4) dx \right| = \int \frac{2x - 4 + 5}{x^2 - 4x + 8} dx =$$

$$= \int \frac{2x - 4}{x^2 - 4x + 8} dx + \int \frac{5}{x^2 - 4x + 8} dx = \left| x^2 - 4x + 8 = t, (2x - 4) dx = dt \right| = \int \frac{dt}{t} + 5 \int \frac{dx}{(x - 2)^2 + 4} =$$

$$= \ln(x^2 - 4x + 8) + 5 \frac{1}{2} \arctan \frac{x - 2}{2} + c = \ln(x^2 - 4x + 8) + \frac{5}{2} \arctan \frac{x - 2}{2} + c;$$
b)
$$\int \frac{5x + 2}{x^2 + 2x + 10} dx = \left| d(x^2 + 2x + 10) = (2x + 2) dx \right| = 5 \int \frac{2x + 2 - 2 + \frac{2}{5}}{x^2 + 2x + 10} dx =$$

$$= 5 \int \frac{2x + 2}{x^2 + 2x + 10} dx - 8 \int \frac{dx}{x^2 + 2x + 10} = \left| d(x^2 + 2x + 10) = (2x + 2) dx \right| = 5 \int \frac{dt}{t} - 8 \int \frac{dx}{(x + 1)^2 + 9} =$$

$$= 5 \ln(x^2 + 2x + 10) - 8 \cdot \frac{1}{3} \arctan \frac{x + 1}{3} + c = 5 \ln(x^2 - 4x + 8) - \frac{8}{3} \arctan \frac{x + 1}{2} + c.$$

1.5.4 Integriranje prave racionalne funkcije

Integriranje prave racionalne funkcije $\frac{P_n(x)}{Q_m(x)}$, n < m, provodimo tako da je rastavljamo na parcijalne razlomke.

Ako je polinom $Q_m(x)$ prave racionalne funkcije $\frac{P_n(x)}{Q_m(x)}$ dan u faktoriziranom obliku

$$Q_m(x) = (x - x_1)^{k_1} \cdot (x - x_2)^{k_2} \cdot \cdots (x - x_l)^{k_l} \cdot (ax^2 + bx + c)^{r_1} \cdot \cdots (ex^2 + fx + g)^{r_m}$$

Tada se $\frac{P_n(x)}{Q_m(x)}$ može napisati kao zbroj parcijalnih razlomaka, odnosno

$$\int \frac{P_n(x)}{Q_m(x)} = \int \frac{A_1}{x - x_1} dx + \dots + \int \frac{A_{k_1}}{(x - x_1)^{k_1}} dx + \int \frac{B_1}{x - x_2} dx + \dots + \int \frac{B_{k_2}}{(x - x_2)^{k_2}} dx + \dots + \int \frac{C_1}{x - x_1} dx + \dots + \int \frac{C_{k_l}}{(x - x_l)^{k_l}} dx + \int \frac{D_1 x + E_1}{ax^2 + bx + c} dx + \dots + \int \frac{D_n x + E_n}{(ax^2 + bx + c)^n} dx + \dots + \int \frac{F_1 x + G_1}{ex^2 + fx + g} dx + \dots + \int \frac{F_{r_m} x + G_{r_m}}{(ex^2 + fx + g)^{r_m}} dx,$$

gdje su $A_1, ..., A_{k_1}, ..., C_1, ..., C_{k_l}, D_1, ..., D_{r_1}, ..., G_1, ..., G_{r_m}$ konstante koje se određuju metodom neodređenih koeficijenata.

Primjer 15.

a)
$$\int \frac{x-3}{x^3 - x} dx = \int \frac{x-3}{x(x-1)(x+1)} dx.$$

Rastav podintegralne funkcije je:

$$\frac{x-3}{x(x-1)(x+1)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1}.$$

Množenjem sa zajedničkim nazivnikom sljedi:

$$x-3 = Ax^2 - A + Bx^2 + Bx + Cx^2 - Cx$$

Izjednačavanjem koeficijenata uz iste potencije polinoma na lijevoj i desnoj strani jednakosti dobivamo sustav:

$$A + B + C = 0$$
$$B - C = 1$$
$$-A = -3$$

Sljedi da je A = 3. Zbrajanjem prve dvije jednadžbe i uvrštavanjem A = 3, sljedi da je B = -1 i C = -2. Sada je

$$\frac{x-3}{x(x-1)(x+1)} = \frac{3}{x} - \frac{1}{x-1} - \frac{2}{x+1},$$

pa je

$$\int \frac{x-3}{x^3-x} dx = 3\int \frac{dx}{x} - \int \frac{dx}{x-1} - 2\int \frac{dx}{x+1} = 3\ln x - \ln(x-1) - 2\ln(x+1) + c = \ln \frac{x^3}{(x-1)\cdot(x+1)^2} + c$$
gdje smo u drugom integralu koristili supstituciju $x-1=t$ i u trećem integralu $x+1=z$.

b)
$$\int \frac{3x^2 + x - 2}{(x - 1)(x^2 + 1)} dx.$$

Rastav podintegralne funkcije na parcijalne razlomke je:

$$\frac{3x^2 + x - 2}{(x+1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+c}{x^2+1} = \frac{1}{x-1} + \frac{2x+3}{x^2+1}.$$

Množenjem sa zajedničkim nazivnikom sljedi:

$$3x^2 + x - 2 = Ax^2 + A + Bx^2 - Bx + Cx - C.$$

Ako izjednačimo koeficijenata uz iste potencije polinoma na lijevoj i desnoj strani jednakosti dobivamo:

$$A + B = 3$$

 $-B + C = 1$
 $A - C = -2$

Zbrajanjem prve dvije jednadžbe dobivamo A + C = 4. Zbrajanjem s trećom jednadžbom sljedi: A = 1, B = 2, C = 3.

Sada je

$$\frac{3x^2 + x - 2}{(x+1)(x^2+1)} = \frac{1}{x-1} + \frac{2x+3}{x^2+1},$$

pa je

$$\int \frac{3x^2 + x - 2}{(x - 1)(x^2 + 1)} dx = \int \frac{dx}{x + 1} + \int \frac{2x + 3}{x^2 + 1} = \ln(x + 1) + \int \frac{2x}{x^2 + 1} dx + 3\int \frac{dx}{x^2 + 1} = \ln(x + 1) + \ln(x^2 + 1) + 3arctgx + c,$$

gdje smo u prvom integralu koristili supstituciju x + 1 = t, a u drugom $x^2 + 1 = z$.

c)
$$\int \frac{x-2}{x^3 + 2x^2} dx = \int \frac{x-2}{x^2(x+2)} dx.$$

Rastav podintegralne funkcije na parcijalne razlomke je:

$$\frac{x-2}{x^2(x+2)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+2}.$$

Množenjem sa zajedničkim nazivnikom sljedi:

$$x-2 = Ax^2 + 2Ax + Bx + 2B + Cx^2$$
.

Izjednačavanjem koeficijenata uz iste potencije, dobijemo sljedeći sustav:

$$A + C = 0$$
$$2A + B = 1$$
$$2B = -2.$$

Odatle proizlazi da je A = 1, B = -1, C = -1. Prema tome je:

$$\int \frac{x-2}{x^2(x+2)} dx = \int \frac{1}{x} dx - \int \frac{1}{x^2} dx - \int \frac{1}{x+2} dx = \ln x + \frac{1}{x} - \ln(x+2) + c$$

1.5.5 Integriranje neprave racionalne funkcije

Integriranje neprave racionalne funkcije $\frac{P_n(x)}{Q_m(x)}$, $n \ge m$

Ako je stupanj polinoma brojnika veći ili jednak stupnju polinoma nazivnika, uvijek ćemo prvo podjeliti brojnik s nazivnikom:

$$P_n(x) : O_m(x) = C_{n-m}(x) + R(x),$$

Gdje je $C_{n-m}(x)$ polinom (n-m) stupnja, a $R(x) = \frac{ostatak}{Q_m(m)}$ je prava racionalna funkcija.

Primjer 16. a)
$$I = \int \frac{x^3 + 10x^2 + 40x + 39}{x^2 + 8x + 20} dx$$
.

Djeljenjem polinama brojnika s onim u nazivniku sljedi:

$$\frac{x^3 + 10x^2 + 40x + 39}{x^2 + 8x + 20} = x + 2 + \frac{4x - 1}{x^2 + 8x + 20}$$

pa je

$$I = \frac{x^2}{2} + 2x + \int \frac{4x - 1}{(x + 4)^2 + 4} dx =$$

$$= \left| d(x^2 + 8x + 20) = (2x + 8)dx \right| = \frac{x^2}{2} + 2x + 2\int \frac{2x + 8 - 8 - \frac{1}{2}}{x^2 + 8x + 20} dx =$$

$$= \frac{x^2}{2} + 2x + 2\int \frac{2x + 8}{x^2 + 8x + 20} dx - 17\int \frac{1}{x^2 + 8x + 20} dx = \left| x^2 + 8x + 20 \right| = t, (2x + 8)dx = dt \right| =$$

$$= \frac{x^2}{2} + 2x + 2\int \frac{dt}{t} - 17\int \frac{dx}{(x + 4)^2 + 4} = \left| \frac{x + 4 = z}{dx = dz} \right| = \frac{x^2}{2} + 2x + 2\ln t - 17\int \frac{dz}{z^2 + 4} =$$

$$= \frac{x^2}{2} + 2x + 2\ln(x^2 + 8x + 20) - \frac{17}{2} \arctan \frac{x + 4}{2} + c.$$

$$= \frac{x^2}{2} + 2x + 2\ln(x^2 + 8x + 20) - \frac{17}{2} \arctan \frac{x + 4}{2} + c.$$

b)
$$I = \int \frac{x^4 - 3x^3 - 11x^2 + 4x + 15}{x^3 - 5x^2 - x + 5} dx$$

Djeljenjem polinoma brojnika sa polinomom u nazivniku sljedi:

$$x^4 - 3x^3 - 11x^2 + 4x + 15: (x^3 - 5x^2 - x + 5) = x + 2 + \frac{x + 5}{x^3 - 5x^2 - x + 5}$$

pa je

$$I = \int x dx + 2 \int dx + \int \frac{x+5}{x^3 - 5x^2 - x + 5} dx = \frac{x^2}{2} + 2x + I_1$$

Gdje je I_1 je prava racionalna funkcija, koju da bi integrirali moramo rastaviti na parcijalne razlomke:

$$\frac{x+5}{x^3-5x^2-x+5} = \frac{x+5}{(x-1)(x+1)(x-5)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{x-5}.$$

Množenjem jednakosti sa zajedničkim nazivnikom sljedi da je:

$$x + 5 = (A + B + C)x^{2} + (-4A - 6B)x + (-5A + 5B - C).$$

Izjednačavanjem koeficijenata uz iste potencije polinoma na lijevoj i desnoj strani dobivamo sustav:

$$A + B + C = 0$$

 $-4A - 6B = 1$
 $-5A + 5B - C = 5$

Zbrajanje prve i treće jednadžbe, a zatim novo dobivene jednadžbe i druge sljede koeficijenti:

$$A = -\frac{3}{4}$$
, $B = \frac{1}{3}$, $C = \frac{5}{12}$, pa je

$$I_1 = \int \frac{x+5}{x^3 - 5x^2 - x + 5} dx = \int \frac{x+5}{(x-1)(x+1)(x-5)} dx =$$

$$= -\frac{3}{4} \int \frac{dx}{x-1} + \frac{1}{3} \int \frac{dx}{x+1} + \frac{5}{12} \int \frac{dx}{x-5} = -\frac{3}{4} \ln(x-1) + \frac{1}{3} \ln(x+1) + \frac{5}{12} \ln(x-5) + c_1.$$

Dakle je

$$I = \frac{x^2}{2} + 2x - \frac{3}{4}\ln(x-1) + \frac{1}{3}\ln(x+1) + \frac{5}{12}\ln(x-5) + c.$$

Primjer 17. Integral oblika $F_n(x) = \int \frac{dx}{(x^2 + a^2)^n}$, $(n = 1, 2, 3,; a \neq 0)$ koji se jako često pojavljuje ćemo posebno razmotriti. Krenimo sa parcijalnom integracijom:

$$u = \frac{1}{(x^2 + a^2)^n}, du = -\frac{2nx}{(x^2 + a^2)^{n+1}} dx$$
$$dx = dv, v = x$$

tada je

$$F_n(x) = \int \frac{dx}{(x^2 + a^2)^n} = \frac{x}{(x^2 + a^2)^n} + 2n \int \frac{x^2}{(x^2 + a^2)^{n+1}} dx =$$

$$= \frac{x}{(x^2 + a^2)^n} + 2n \int \frac{(x^2 + a^2) - a^2}{(x^2 + a^2)^{n+1}} dx = \frac{x}{(x^2 + a^2)^n} + 2n \int \frac{dx}{(x^2 + a^2)^n} - 2na^2 \int \frac{dx}{(x^2 + a^2)^{n+1}} =$$

$$= \frac{x}{\left(x^2 + a^2\right)^n} + 2nF_n(x) - 2na^2F_{n+1}(x).$$

Sljedi da je:

$$F_n(x) = \frac{x}{(x^2 + a^2)^n} + 2nF_n(x) - 2na^2F_{n+1}(x),$$

odakle je:

$$F_{n+1}(x) = \frac{1}{2na^2} \frac{x}{\left(x^2 + a^2\right)^n} + \frac{2n-1}{2na^2} F_n(x) .$$

Kako je za n = 1, $F_1(x)$ tablični integral tj.:

$$F_1(x) = \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + c,$$

to je

$$F_2(x) = \frac{1}{2a^2} \frac{x}{x^2 + a^2} + \frac{1}{2a^2} F_1(x) = \frac{1}{2a^2} \frac{x}{x^2 + a^2} + \frac{1}{2a^3} \operatorname{arctg} \frac{x}{a} + c.$$

Primjer 18. Rješimo jedan složeniji primjer u kojem ćemo iskoristiti rekurzivnu formulu iz primjera 17:

$$F(x) = \int \frac{x^3 + x^2 + 2}{(x^2 + 2)^2} dx.$$

Prvo ćemo podintegralnu funkciju rastaviti na parcijalne razlomke tako da je:

$$\frac{x^3 + x^2 + 2}{(x^2 + 2)^2} = \frac{Ax + B}{(x^2 + 2)^2} + \frac{Cx + D}{x^2 + 2}.$$

Da bismo odredili koeficijente A, B, C, D, pomnožit ćemo cijelu jednadžbu s $(x^2 + 2)^2$. Time dobivamo:

$$x^3 + x^2 + 2 = Cx^3 + Dx^2 + (A + 2C)x + B + 2D$$

Izjednačavanjem koeficijenata uz iste potencije polinoma s lijeve i s desne strane jednakosti dobivamo sustav

$$C = 1$$

$$D = 1$$

$$A + 2C = 0$$

$$B + 2D = 2$$

Odatle je

$$A = -2$$
, $B = 0$, $C = 1$, $D = 1$.

Sljedi da je

$$F(x) = \int \left[\frac{-2x}{(x^2 + 2)^2} + \frac{x + 1}{x^2 + 2} \right] dx = -\int \frac{2x}{(x^2 + 2)^2} dx + \int \frac{x}{x^2 + 2} dx + \int \frac{dx}{x^2 + 2} =$$

$$= \left| x^2 + 2 \right| = t, 2x dx = dt = -\int \frac{dt}{t^2} dt + \int \frac{dt}{t} dt + \int \frac{dt}{t} dt = -\int \frac{dt}{t} dt + \int \frac{dt}{t} dt + \int \frac{dt}{t} dt = -\int \frac{dt}{t} dt + \int \frac{dt}{t} dt + \int \frac{dt}{t} dt + \int \frac{dt}{t} dt = -\int \frac{dt}{t} dt + \int \frac{dt}{t} dt +$$

Primjer 19.
$$I = \int \frac{xdx}{\left(x^2 - 2x + 2\right)^2} = \int \frac{xdx}{\left((x-1)^2 + 1\right)^2} = \left|x - 1 = t, dx = dt\right| = \int \frac{t+1}{\left(t^2 + 1\right)^2} dt = \int \frac{tdt}{\left(t^2 + 1\right)^2} + \int \frac{dt}{\left(t^2 + 1\right)^2} = I_1 + I_2,$$

gdje je

$$I_1 = \int \frac{tdt}{(t^2 + 1)^2} = \begin{vmatrix} t^2 + 1 = z \\ 2tdt = dz \end{vmatrix} = \frac{1}{2} \int \frac{dz}{z^2} = -\frac{1}{2z} = -\frac{1}{2(t^2 + 1)} + c_1,$$

 $I_2 = \int \frac{dt}{(t^2+1)^2}$ je prema rekurzivnoj formuli $F_{n+1}(x) = \frac{1}{2na^2} \frac{x}{\left(x^2+a^2\right)^n} + \frac{2n-1}{2na^2} F_n(x)$ u varijabli t, a za n=1 i a=1 jednak:

$$I_2 = \frac{t}{2(t^2+1)} + \frac{1}{2} arctg \ t + c_2.$$

Dakle je

$$I = -\frac{1}{2(t^2+1)} + \frac{t}{2(t^2+1)} + \frac{1}{2}arctgt + c = \frac{t-1}{2(t^2+1)} + \frac{1}{2}arctgt + c =$$

$$= \frac{x-2}{2(x-1)^2+1} + \frac{1}{2}arctg(x-1) + c = \frac{x-2}{2x^2-4x+4} + \frac{1}{2}arctg(x-1) + c$$

1.5.6 Zadaci za vježbu

a)
$$\int \frac{2x-1}{x^2-4x+8} dx$$

b)
$$\int \frac{x^3 + 1}{x(x^3 - 8)} dx$$

c)
$$\int \frac{x-5}{(x-1)(x-2)^2} dx$$

d)
$$\int \frac{3x^2 + x - 2}{(x - 1)(x^2 + 1)} dx$$

e)
$$\int \frac{x^3 - x^2 + 2x + 3}{x^2 + 3x + 2} dx$$

Rješenja:

a)
$$\ln(x^2 - 4x + 8) + \frac{3}{2} \arctan \frac{x-2}{2} + c$$

b)
$$\frac{3}{8}\ln(x^3-8)-\frac{1}{8}\ln x+c$$

c)
$$-4\ln(x-1)+\frac{3}{x-2}+c$$

d)
$$\ln(x-1) + \ln(x^2+1) + 3\arctan x + c$$

e)
$$\frac{x^2}{2} - 4x + \ln \frac{(x+2)^{13}}{x+1} + c$$
.

1.6 Integriranje trigonometrijskih funkcija

1.6.1 Integrali oblika $\int R(\sin x, \cos x) dx$

Integrali oblika $\int R(\sin x, \cos x) dx$, gdje je R racionalna funkcija koja ovisi o sinx i cosx, supstitucijom tg $\frac{x}{2} = t$ (tzv. univerzalna supstitucija), se svode na integrale $\int \frac{P_n(t)}{Q_m(t)} dt$, tj. racionalne funkcije u varijabli t.

Ako je tg $\frac{x}{2} = t$ tada je

$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} = \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{\sin^2\frac{x}{2} + \cos^2\frac{x}{2}} = \frac{2tg\frac{x}{2}}{1 + tg^2\frac{x}{2}} = \frac{2t}{1 + t^2}$$

$$\cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{1 - tg^2 \frac{x}{2}}{1 + tg^2 \frac{x}{2}} = \frac{1 - t^2}{1 + t^2}$$

Ako je
$$tg \frac{x}{2} = t$$
, tada je $\frac{x}{2} = arctgt$, odakle je $dx = \frac{2dt}{1+t^2}$.

Primjer 20. Koristeći se univerzalnom supstitucijom rješite sljedeće integrale:

a)
$$\int \frac{dx}{2\sin x - \cos x + 3} = \int \frac{\frac{2dt}{1 + t^2}}{2\frac{2t}{1 + t^2} - \frac{1 - t^2}{1 + t^2} + 3} = 2\int \frac{\frac{dt}{1 + t^2}}{\frac{4t - 1 + t^2 + 3 + 3t^2}{1 + t^2}} = 2\int \frac{dt}{4t^2 + 4t + 2} = 2\int \frac{dt}{1 + t^2} = 2\int$$

$$= \frac{1}{2} \int \frac{dt}{t^2 + t + \frac{1}{2}} = \frac{1}{2} \int \frac{dt}{\left(t + \frac{1}{2}\right)^2 + \frac{1}{4}} = arctg \frac{t + \frac{1}{2}}{\frac{1}{2}} + c = arctg(2t + 1) + c = arctg(2tg \frac{x}{2} + 1) + c$$

b)
$$I = \int \frac{dx}{\cos x} = \int \frac{\frac{2dt}{1+t^2}}{\frac{1-t^2}{1+t_2}} = \int \frac{2dt}{1-t^2} = 2\frac{1}{2}\ln\frac{1+t}{1-t} = \ln\frac{1+tg\frac{x}{2}}{1-tg\frac{x}{2}} + c;$$

Integral *I* možemo rješiti i drugom trigonometrijskom supstitucijom, nakon što smo transformirali podintegralnu funkciju:

$$I = \int \frac{\cos x dx}{\cos^2 x} = \int \frac{\cos x dx}{1 - \sin^2 x} = \left| \sin x = t, \cos x dx = dt \right| = \int \frac{dt}{1 - t^2} = \frac{1}{2} \ln \frac{1 + t}{1 - t} = \frac{1}{2} \ln \frac{1 + \sin x}{1 - \sin x} = \ln \sqrt{\frac{1 + \sin x}{1 - \sin x}} + c;$$

Čini se kao da su rješenja različita. To se često događa kod integrala trigonometrijskih funkcija. Jednostavnom transformacijom može se pokazati da su rješenja ista:

$$\frac{1}{2}\ln\frac{1+\sin x}{1-\sin x} = \frac{1}{2}\ln\frac{1+\frac{2tg\frac{x}{2}}{1+tg^2\frac{x}{2}}}{1-\frac{2tg\frac{x}{2}}{1+tg\frac{2x}{2}}} = \frac{1}{2}\ln\frac{1+tg^2\frac{x}{2}+2tg\frac{x}{2}}{1+tg^2\frac{x}{2}-2tg\frac{x}{2}} = \frac{1}{2}\ln\frac{\left(1+tg\frac{x}{2}\right)^2}{\left(1-tg\frac{x}{2}\right)^2} = \ln\frac{1+tg\frac{x}{2}}{1-tg\frac{x}{2}}.$$

c)
$$\int \frac{1+\sin x}{\sin x \cdot \cos^2 \frac{x}{2}} dx = \int \frac{2(1+\sin x)}{\sin x (1+\cos x)} = 2\int \frac{1+\frac{2t}{1+t^2}}{\frac{2t}{1+t^2} \left(1+\frac{1-t^2}{1+t^2}\right)} \frac{2dt}{1+t^2} =$$

$$= \int \left(t+2+\frac{1}{t}\right)dt = \frac{t^2}{2} + 2t + \ln t + c = \frac{1}{2}tg\frac{x}{2} + 2tg\frac{x}{2} + \ln tg\frac{x}{2} + c.$$

d)
$$\int \frac{1-\sin x + \cos x}{1+\sin x - \cos x} dx = \int \frac{1-\frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2}}{1+\frac{2t}{1+t^2} - \frac{1-t^2}{1+t^2}} \frac{2dt}{1+t^2} =$$

$$=2\int \frac{1+t^2-2t+1-t^2}{1+t^2+2t-1+t^2} \frac{dt}{1+t^2} = 2\int \frac{1-t}{t(t+1)(1+t^2)} dt.$$

Rastavimo podintegralnu funkciju na parcijalne razlomke:

$$\frac{1-t}{t(t+1)(t^2+1)} = \frac{A}{t} + \frac{B}{t+1} + \frac{Ct+D}{t^2+1},$$

tj.

$$1 - t = (A + B + C)t^{3} + (A + C + D)t^{2} + (A + B + D)t + A.$$

Iz te jednakosti proizlazi da je A = 1, B = -1, C = 0 i D = -1. Pa je

$$\int \frac{1 - \sin x + \cos x}{1 + \sin x - \cos x} dx = 2 \left[\int \frac{dt}{t} - \int \frac{dt}{t+1} - \int \frac{dt}{t^2 + 1} \right] =$$

$$= 2\left[\ln t - \ln(t+1) - arctgt + c\right] = 2\left[\ln tg\frac{x}{2} - \ln(tg\frac{x}{2} + 1) - \frac{x}{2} + c\right] = 2\ln\frac{tg\frac{x}{2}}{tg\frac{x}{2} + 1} - x + c.$$

Često se umjesto univerzalne supstitucije $tg\frac{x}{2} = t$, radi jednostavnosti koriste i sljedeće trigonometrijske supstitucije:

1. $\cos x = t$, ako podintegralna funkcija $R(\sin x, \cos x)$ mjenja predznak, kada se promjeni predznak svakoj funkciji $\sin x$ koja se pojavljuje u podintegralnoj funkciji tj. ako je

$$R(-\sin x, \cos x) = -R(\sin x, \cos x);$$

2. $\sin x = t$, ako podintegralna funkcija $R(\sin x, \cos x)$ mjenja predznak, kada se promjeni predznak svakoj funkciji $\cos x$ koja se pojavljuje u podintegralnoj funkciji tj. ako je

$$R(\sin x, -\cos x) = -R(\sin x, \cos x);$$

3. tgx = t, ako podintegralna funkcija $R(\sin x, \cos x)$ ne mjenja predznak, kada se promjeni predznak svakoj funkciji $\sin x$ i $\cos x$ koje se pojavljuju u podintegralnoj funkciji tj. ako je

$$R(-\sin x, -\cos x) = R(\sin x, \cos x).$$

Kod supstitucije tgx = t:

$$\sin x = \frac{tgx}{\sqrt{1 + tg^2 x}} = \frac{t}{\sqrt{1 + t^2}} i \cos x = \frac{1}{\sqrt{1 + tg^2 x}} = \frac{1}{\sqrt{1 + t^2}},$$

I kako je $x = \operatorname{arctg} t$ sljedi $dx = \frac{dt}{1+t^2}$.

Primjer 21. Korištenjem odgovarajućih supstitucija rješite sljedeće integrale trigonometrijskih funkcija:

a)
$$\int \frac{\sin x - \sin^3 x}{\cos 2x} dx$$
.

b) $\int \frac{\cos^3 x + \cos^5 x}{\sin^2 x - \sin^4 x} dx$

Ako promjenimo predznak funkciji sinx u podintegralnoj funkciji, dobivamo

$$\frac{-\sin x - (-\sin x)^{3}}{\cos^{2} x - (-\sin x)^{2}} = -\frac{\sin x - \sin^{3} x}{\cos^{2} x - \sin^{2} x}$$

tj. $R(-\sin x, \cos x) = -R(\sin x, \cos x)$, pa je najbolje koristiti supstituciju $\cos x = t$, a tada je $-\sin x \, dx = dt$

$$\int \frac{\sin x (1 - \sin^2 x)}{\cos^2 x - \sin^2 x} dx = -\int \frac{2 - t^2}{2t^2 - 1} dt = \frac{1}{2} \int \frac{2t^2 - 4}{2t^2 - 1} dt = \frac{1}{2} \left[\int \frac{2t^2 - 1}{2t^2 - 1} dt - \int \frac{3dt}{2t^2 - 1} \right] =$$

$$= \frac{1}{2} \int dt - \frac{3}{2} \int \frac{dt}{2t^2 - 1} = \frac{1}{2} t - \frac{3}{4} \int \frac{dt}{t^2 - \frac{1}{2}} = \frac{1}{2} t - \frac{3}{4} \frac{1}{\sqrt{2}} \ln \frac{2t - \sqrt{2}}{2t + \sqrt{2}} + c =$$

$$= \frac{1}{2} \cos x - \frac{3}{4} \frac{1}{\sqrt{2}} \ln \left| \frac{2 \cos x - \sqrt{2}}{2 \cos x + \sqrt{2}} \right| + c ;$$

Ako promjenimo predznak svakoj funkciji cos*x* koja se pojavljuje u podintegralnoj funkciji, dobivamo

$$\frac{(-\cos x)^3 + (-\cos x)^5}{\sin^2 x - \sin^4 x} = -\frac{\cos^3 x + \cos^5 x}{\sin^2 x - \sin^4 x},$$

tj. $R(\sin x, -\cos x) = -R(\sin x, \cos x)$. Kako je podintegralna funkcija pri toj promjeni predznaka $\cos x$ promjenila predznak, koristimo supstituciju $\sin x = t$, $\cos x \, dx = dt$. Sljedi da je

$$\int \frac{\cos^3 x + \cos^5 x}{\sin^2 x - \sin^4 x} dx = \int \frac{\cos^2 x (1 + \cos^2 x) \cos x}{\sin^2 x - \sin^4 x} dx = \int \frac{(1 - \sin^2 x) (2 - \sin^2 x) \cos x}{\sin^2 x - \sin^4 x} dx =$$

$$= \int \frac{(1 - t^2) (2 - t^2)}{t^2 - t^4} dt = \int \frac{(1 - t^2) (2 - t^2)}{t^2 (1 - t^2)} dt = \int \left(\frac{2}{t^2} - 1\right) dt = -\frac{2}{t} - t + c = -\frac{2}{\sin x} - \sin x + c;$$

c)
$$\int \frac{\cos x}{\sin^3 x - \cos^3 x} dx$$

Ako promjenimo predznak svakoj funkciji sinx i cosx koja se pojavljuje u podintegralnoj funkciji dobivamo

$$\frac{-\cos x}{(-\sin x)^3 - (-\cos x)^3} = \frac{-\cos x}{-(\sin^3 x - \cos^3 x)} = \frac{\cos x}{(\sin^3 x - \cos^3 x)},$$

tj. $R(-\sin x, -\cos x) = R(\sin x, \cos x)$. Kako podintegralna funkcija pri toj promjeni predznaka $\sin x$ i $\cos x$ nije promjenila predznak, koristimo supstituciju tgx = t,

za koju je onda

$$\sin x = \frac{t}{\sqrt{1+t^2}}$$
, $\cos x = \frac{1}{\sqrt{1+t^2}}$ i $dx = \frac{dt}{1+t^2}$.

Sljedi da je

$$\int \frac{\cos x}{\sin^3 x - \cos^3 x} dx = \int \frac{\frac{1}{\sqrt{1+t^2}}}{\frac{t^3}{\sqrt{(1+t^2)^3}} - \frac{1}{\sqrt{(1+t^2)^3}}} \frac{dt}{1+t^2} = \int \frac{1}{t^3 - 1} dt$$

Rastavom podintegralne funkcije na parcijalne razlomke je

$$\frac{1}{t^3 - 1} = \frac{1}{(t - 1)(t^2 + t + 1)} = \frac{A}{t - 1} + \frac{Bt + C}{t^2 + t + 1}$$

Množenjem sa zajedničkim nazivnikom sljedi

$$1 = At^{2} + At + A + Bt^{2} - Bt + Ct - C.$$

Izjednačavanjem koeficijenata uz iste potencije polinama na lijevoj i desnoj strani sljedi sustav

$$A + B = 0$$
$$A - B + C = 0$$
$$A - C = 1$$

Odatle je
$$A = \frac{1}{3}$$
, $B = -\frac{1}{3}$ i $C = -\frac{2}{3}$, pa je

$$\int \frac{1}{t^3 - 1} dt = \frac{1}{3} \int \frac{dt}{t - 1} - \frac{1}{3} \int \frac{t + 2}{t^2 + t + 1} dt = \frac{1}{3} \ln(t - 1) - \frac{1}{6} \int \frac{2t + 4}{t^2 + t + 1} dt = \frac{1}{3} \ln(t - 1)$$

$$= \frac{1}{3}\ln(t-1) - \frac{1}{6}\int \frac{2t+1+3}{t^2+t+1}dt = \frac{1}{3}\ln(t-1) - \frac{1}{6}\int \frac{2t+1}{t^2+t+1}dt - \frac{1}{6}\int \frac{3}{t^2+t+1}dt =$$

$$= \frac{1}{3}\ln(t-1) - \frac{1}{6}\ln(t^2 + t + 1) - \frac{1}{\sqrt{3}}\arctan\frac{2t+1}{\sqrt{3}} =$$

$$= \frac{1}{3}\ln(tgx-1) - \frac{1}{6}\ln(tg^2x + tgx + 1) - \frac{1}{\sqrt{3}}\arctan\frac{2tgx+1}{\sqrt{3}} + c.$$

d)
$$I = \int tg^5 x dx = \begin{vmatrix} tgx = t, x = arctgt \\ dx = \frac{dt}{1+t^2} \end{vmatrix} = \int \frac{t^5}{t^2+1} dt$$

Djeljenjem polinoma brojnika i polinoma nazivnika dobivamo:

$$t^5: (t^2+1) = t^3 - t + \frac{t}{t^2+1},$$

pa je

$$I = \int \left(t^3 - t + \frac{t}{t^2 + 1}\right) dt = \frac{t^4}{4} - \frac{t^2}{2} + \frac{1}{2} \ln(t^2 + 1) = \frac{tg^4 x}{4} - \frac{tg^2 x}{2} + \frac{1}{2} \ln(tg^2 x + 1) + c.$$

1.6.2 Integrali oblika $\int \sin^n x dx$ i $\int \cos^n x dx$

$$\int \sin^n x dx,$$

$$\int \cos^n x dx, \ n \in \mathbb{N}, n \ge 2,$$

mogu se rješiti koristeći rekurzivne formule

a)
$$\int \sin^n x dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x dx$$

b)
$$\int \cos^n x dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x dx$$
.

Dokaz navedenih rekurzivnih formula se može provesti parcijalnom integracijem.

Dokaz za b):

$$I_{n} = \int \cos^{n} x dx = \int \cos^{n-1} x \cos x dx = \begin{vmatrix} u = \cos^{n-1} x, du = (n-1)\cos^{n-2} x \cdot (-\sin x) dx \\ dv = \cos x dx, v = \sin x \end{vmatrix} =$$

$$= \cos^{n-1} x \cdot \sin x + (n-1) \int \cos^{n-2} x \cdot \sin^{2} x dx =$$

$$= \cos^{n-1} x \cdot \sin x + (n-1) \int \cos^{n-2} x \cdot (1 - \cos^2 x) dx =$$

$$= \cos^{n-1} x \cdot \sin x + (n-1) \int \cos^{n-2} x dx - (n-1) \int \cos^n x dx.$$

Dakle je

$$I_n = \cos^{n-1} x \cdot \sin x + (n-1)I_{n-2} - (n-1)I_n$$

pa je

$$I_n + (n-1)I_n = \cos^{n-1} x \cdot \sin x + (n-1)I_{n-2}$$

odnosno

$$nI_n = \cos^{n-1} x \cdot \sin x + (n-1)I_{n-2}$$

odakle je

$$I_n = \frac{1}{n} \cos^{n-1} x \cdot \sin x + \frac{n-1}{n} I_{n-2}.$$

Primjer 22.

a)
$$\int \cos^6 x dx = \frac{1}{6} \cos^5 x \cdot \sin x dx + \frac{5}{6} \int \cos^4 x dx =$$

Ponovnom primjenom rekurzivne formule na $\int \cos^4 x dx$, sljedi da je

$$\int \cos^6 x dx = \frac{1}{6} \cos^5 x \sin x + \frac{5}{6} \left[\frac{1}{4} \cos^3 x \sin x + \frac{3}{4} \int \cos^2 x dx \right] =$$

$$= \frac{1}{6} \cos^5 x \sin x + \frac{5}{24} \cos^3 x \sin x + \frac{3}{4} \int \cos^2 x dx =$$

i ponovnom primjenom na $\int \cos^2 x dx$ je

$$\int \cos^6 x dx = \frac{1}{6} \cos^5 x \sin x + \frac{5}{24} \cos^3 x \sin x + \frac{3}{4} \frac{1}{2} \cos x \sin x + \frac{1}{2} \int dx =$$

$$= \frac{1}{6} \cos^5 x \cdot \sin x + \frac{5}{24} \cos^3 x \cdot \sin x + \frac{3}{16} \sin 2x + \frac{1}{2} x + c.$$

b) $\int \sin^4 x dx$ može se rješiti na sljedeći način:

$$\int \sin^4 x dx = \int (\sin^2 x)^2 dx = \int \left(\frac{1 - \cos 2x}{2}\right)^2 dx = \frac{1}{4} \int (1 - 2\cos 2x + \cos^2 2x) dx = \int (\sin^4 x dx)^2 dx = \int (\sin^4 x d$$

$$= \frac{1}{4} \left[x - 2 \frac{\sin 2x}{2} + \int \frac{1 + \cos 4x}{2} dx \right] = \frac{1}{4} x - \frac{1}{4} \sin 2x + \frac{1}{8} x + \frac{\sin 4x}{32} = + c =$$

$$= \frac{3}{8} x - \frac{1}{4} \sin 2x + \frac{1}{16} \sin 2x \cos 2x = \frac{3}{8} x - \frac{1}{4} \sin 2x + \frac{1}{8} \sin x \cos x \left(\cos^2 x - \sin^2 x\right) =$$

$$= \frac{3}{8} x - \frac{1}{4} \sin 2x + \frac{1}{8} \sin x \cos^3 x - \frac{1}{8} \sin^3 x \cos x =$$

$$= \frac{3}{8} x - \frac{1}{4} \sin 2x + \frac{1}{8} \sin x \cos x \left(1 - \sin^2 x\right) - \frac{1}{8} \sin^3 x \cos x =$$

$$= \frac{3}{8} x - \frac{3}{16} \sin 2x - \frac{1}{4} \sin^3 x \cdot \cos x + c.$$

Primjenom rekurzivne relacija imali bi da je:

$$\int \sin^4 x dx = -\frac{1}{4} \sin^3 x \cdot \cos x + \frac{3}{4} \int \sin^2 x dx =$$

$$= -\frac{1}{4} \sin^3 x \cdot \cos x + \frac{3}{4} \left(-\frac{1}{2} \sin x \cos x + \frac{1}{2} \int dx \right) = -\frac{1}{4} \sin^3 x \cdot \cos x - \frac{3}{16} \sin 2x + \frac{3}{8} x + c.$$

c) $\int \sin^5 x dx$ može se rješiti na sljedeći način:

$$\int \sin^5 x dx = \int \sin^4 x \sin x dx = -\int (1 - \cos^2 x) d(\cos x) = -\int (1 - 2\cos^2 x + \cos^4 x) d(\cos x) =$$

$$= -\cos x + 2\frac{\cos^3 x}{3} - \frac{\cos^5 x}{5} + c,$$

ili rekurzijom

$$\int \sin^5 x dx = -\frac{1}{5} \sin^4 x \cdot \cos x + \frac{4}{5} \int \sin^3 x dx =$$

$$= -\frac{1}{5} \sin^4 x \cdot \cos x + \frac{4}{5} \left(-\frac{1}{3} \sin^2 x \cos x + \frac{2}{3} \int \sin x dx \right) = -\frac{1}{5} \sin^4 x \cdot \cos x - \frac{4}{15} \sin^2 x \cos x - \frac{8}{15} \cos x + c$$

Isti oblik rješenja zahtjevao bi više vremena za transformiranje jednog u drugo nego samo izračunavanje integrala.

1.6.3 Zadaci za vježbu

1.

a)
$$\int \frac{dx}{\sin x}$$

b)
$$\int \frac{dx}{5 + 4\cos x}$$

c)
$$\int \frac{dx}{5 + 4\sin x}$$

$$d) \int \frac{\sin x}{\sin x + \cos x} dx$$

e)
$$\int \frac{\sin^3 x + 1}{\cos^2 x} dx$$

f)
$$\int \frac{(\sin x - \cos x)^2}{\sin 2x} dx$$

g)
$$\int \cos^5 x dx$$

h)
$$\int \sin^6 x dx$$

Rješenja

1.

a)
$$\ln tg \frac{x}{2} + c$$

b)
$$\frac{2}{3} \operatorname{arctg} \frac{\operatorname{tg} \frac{x}{2}}{3}$$

c)
$$\frac{2}{3} \operatorname{arctg} \frac{\operatorname{tg} \frac{x}{2} + 4}{3}$$

d)
$$\frac{1}{2}\ln(1+tgx) + \frac{x}{2} - \frac{1}{4}\ln(1+tg^2x) + c$$

e)
$$\frac{1}{\cos x} + \cos x + tgx$$

f)
$$\frac{1}{2} \ln t g x - x$$

g)
$$\sin x - \frac{2}{3}\sin^3 x + \frac{1}{5}\sin^5 x$$

h)
$$\frac{5}{16}x - \frac{1}{4}\sin 2x + \frac{3}{64}\sin 4x + \frac{1}{48}\sin^3 2x$$

1.6.4 Integrali oblika $\int \sin^m x \cos^n x dx$

Integrali oblika

$$I_{m,n} = \int \sin^m x \cos^n x dx, m, n \in Z$$

mogu se rješiti primjenom rekurzivnih formula:

$$I_{m,n} = \frac{\sin^{m+1} x \cos^{n-1} x}{m+n} + \frac{n-1}{m+n} \int \sin^m x \cos^{n-2} x dx$$
ili
$$I_{m,n} = \frac{\sin^{m-1} x \cos^{n+1} x}{m+n} + \frac{m-1}{m+n} \int \sin^{m-2} x \cos^n x dx$$

Integrali oblika $I_{m,n} = \int \sin^m x \cos^n x dx$, $m, n \in \mathbb{Z}$ mogu se rješiti i pogodnim transformacijama podintegralne funkcije u ovisnosti o tome da li su m i n parni brojevi ili je barem jedan od njih neparan prirodan broj.

Ako je bar jedan eksponent m ili n neparan i veći od nule, onda se koristi supstitucija $\sin x = t$ ili $\cos x = t$, uz korištenje osnovne trigonometrijske jednakosti: $\sin^2 x + \cos^2 x = 1$.

Ako su *m*≥0 i *n*≥0 parni brojevi onda podintegralnu funkciju možemo transformirati pomoću poznatih trigonometrijskih formula:

$$\sin x \cos x = \frac{\sin 2x}{2}$$

$$\sin^2 x = \frac{1 - \cos 2x}{2}, \cos^2 x = \frac{1 + \cos 2x}{2}.$$

Pimjer 23.

a)
$$\int \sin^2 x \cos^3 x dx = \int \sin^2 x \cos^2 x \cos x dx = \int \sin^2 x (1 - \sin^2 x) d(\sin x) =$$

$$= \int (\sin^3 x - \sin^4 x) d(\sin x) = |\sin x = t, d(\sin x) = \cos x dx = dt| = \frac{\sin^4 x}{4} - \frac{\sin^5 x}{5} + c.$$

b)
$$\int \sin^2 x \cos^4 x dx = \int (\sin x \cos x)^2 \cdot \cos^2 x dx = \frac{1}{4} \int \sin^2 2x \frac{1 + \cos 2x}{2} dx =$$

$$= \frac{1}{8} \left[\int \sin^2 2x dx + \int \sin^2 2x \cos 2x dx \right] = \frac{1}{8} \left[\int \frac{1 - \cos 4x}{2} dx + \frac{1}{2} \int \sin^2 2x d(\sin 2x) \right] =$$

$$= \left| \sin 2x = t, d(\sin 2x) \right| = 2 \cos 2x dx = \frac{1}{16} \left(x - \frac{\sin 4x}{4} \right) + \frac{1}{16} \frac{\sin^3 2x}{3} + c.$$

Primjer 24. Rješimo jedan teži primjer.

$$\int \frac{\sin^2 x}{\cos^3 x} dx = \int \frac{\sin^2 x \cos x}{\cos^4 x} dx = \left| \sin x = t, \cos x dx = dt \right| = \int \frac{t^2 dt}{\left(1 - t^2 \right)^2} =$$

Podintegralnu funkciju rastavimo na parcijalne razlomke:

$$\frac{t^2}{(1-t)^2(1+t)^2} = \frac{A}{(1-t)^2} + \frac{B}{1-t} + \frac{C}{(1+t)^2} + \frac{D}{1+t}.$$

Množenjem jadnakosti sa $(1-t)^2(1+t)^2$ je

$$t^{2} = A(1+t)^{2} + B(1-t)(1+t)^{2} + C(1-t)^{2} + D(1+t)(1-t)^{2},$$

odakle izjednačavanjem koeficijenata uz iste potencije polinoma na lijevoj i desnoj strani sljedi sustav

$$-B + D = 0$$

 $A - B + C - D = 1$
 $2A + B - 2C - D = 0$
 $A + B + C + D = 0$

Odakle je
$$A = C = \frac{1}{4}$$
, $B = D = -\frac{1}{4}$.

Prema tome je

$$\int \frac{\sin^2 x}{\cos^3 x} dx = \frac{1}{4} \frac{1}{1-t} + \frac{1}{4} \ln(1-t) + \frac{1}{4} \frac{-1}{1+t} - \frac{1}{4} \ln(1+t) + c =$$

$$= \frac{1}{2} \frac{\sin x}{\cos^2 x} + \frac{1}{4} \ln \frac{1-\sin x}{1+\sin x} + c.$$

$$\sin^2 x = \frac{tgx}{\sqrt{1 + tg^2 x}} \Rightarrow \sin^2 x = \frac{tg^2 x}{1 + tg^2 x}$$

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

$$\cos x = \frac{1}{\sqrt{1 + tg^2 x}} \Rightarrow \cos^2 x = \frac{1}{1 + tg^2 x}$$

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

1.6.5 Integrali oblika $\int \sin ax \sin bx dx$, $\int \sin ax \cos bx dx$ i $\int \cos ax \cos bx dx$

Integrali oblika:

$$\int \sin ax \sin bx dx ,$$

$$\int \sin ax \cos bx dx ,$$

 $\int \cos ax \cos bx dx,$

gdje je $a, b \in \mathbb{R}$, $a \neq b$, se mogu rješiti tako da se podintegralna funkcija transformira pomoću jedne od sljedećih formula:

$$\sin ax \sin bx = \frac{1}{2} \left[\cos(a-b)x - \cos(a+b)x \right]$$

$$\sin ax \cos bx = \frac{1}{2} \left[\sin(a-b)x + \sin(a+b)x \right]$$

$$\cos ax \cos bx = \frac{1}{2} \left[\cos(a-b)x + \cos(a+b)x \right].$$

Primjer 25.

a) $\int \sin 5x \cos x dx$

Jer je

$$\sin 5x \cos x = \frac{1}{2} \left[\sin 4x + \sin 6x \right],$$

$$\int \sin 5x \cos x dx = \frac{1}{2} \left[\int \sin 4x dx + \int \sin 6x dx \right] = -\frac{1}{8} \cos 4x - \frac{1}{12} \cos 6x + c.$$

b) $\int \sin 3x \sin 5x dx$

Jer je

$$\sin 3x \sin 5x = \frac{1}{2} \left[\cos 2x - \cos 8x \right]$$

$$\int \sin 3x \sin 5x dx = \frac{1}{2} \left[\int \cos 2x dx - \int \cos 8x dx \right] = \frac{1}{4} \sin 2x - \frac{1}{16} \sin 8x + c.$$

Poglavlje 1. Neodređeni integral

c) $\int \cos 2x \cos 3x dx$

Jer je

$$\cos 2x \cos 3x = \frac{1}{2} \left[\cos x + \cos 5x \right]$$

 $\int \cos 2x \cos 3x dx = \frac{1}{2} \left[\int \cos x dx + \int \cos 5x dx \right] = \frac{1}{2} \sin x + \frac{1}{10} \sin 5x + c.$

1.6.6 Zadaci za vježbu

a)
$$\int \sin^2 x \cos^4 x dx$$

b)
$$\int \sin 2x \cos^5 2x dx$$

c)
$$\int \frac{\sin^3 x}{\cos x} dx$$

$$d) \int \frac{\cos^3 x}{\sin^2 x} dx$$

e)
$$\int tg^3 x dx$$

f)
$$\int \sin 5x \cos x dx$$

g)
$$\int \frac{dx}{\sin^4 x \cos^2 dx}$$

$$h) \int \frac{dx}{\sin^3 x \cos^5 x}$$

Rješenja

a)
$$\frac{x}{16} - \frac{\sin 4x}{64} + \frac{\sin^3 2x}{48}$$

b)
$$-\frac{1}{12}\cos^6 2x$$

e)
$$\frac{tg^2x}{2} + \ln \cos x$$

c)
$$\frac{\cos^2 x}{2} - \ln \cos x$$

$$d)-\frac{1+\sin^2 x}{\sin x}$$

f)
$$-\frac{1}{8}\cos 4x - \frac{1}{12}\cos 6x + c$$

g)
$$tgx - 2ctgx - \frac{1}{3}ctg^3x$$

h)
$$\frac{tg^4x}{4} + \frac{3}{2}tg^2x - \frac{1}{2}ctg^2x + 3\ln tgx + c$$

2 ODREĐENI INTEGRAL

2.1 Definicija određenog integrala

Promatrajmo skup T točaka ravnine koji je odozgo omeđen grafom neprekidne funkcije y = f(x) definirane na I = [a, b], pravcima x = a i x = b i, segmentom [a, b] osi x, kao na slici 1. Takav skup zovemo krivocrtni trapez. Postavlja se pitanje kako naći površinu tog skupa T?

Osnovna pretpostavka je neprekidnost funkcije

$$f: [a, b] \to \mathbb{R}$$

i njezine pozitivnosti tj. da je

$$f(x) \ge 0$$
, za svako $x \in I$.

U svrhu određivanja površine tako definiranog skupa T, podjelimo interval [a, b], a < b, na n djelova točkama $x_1, x_2, \ldots, x_{n-1}, x_n$, tako da je

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$$
.

Takvom podjelom dobili smo intervale

$$[x_0, x_1], [x_1, x_2], \ldots, [x_{k-1}, x_k], [x_{n-1}, x_n].$$

Na svakom intervalu odeberimo bilo koju točku

$$t_k \in [x_{k-1}, x_k], k = 1, ..., n.$$

Sa T_1 označimo pravokutnik kojemu je jedna stranica duljina intervala $[x_0, x_1]$, tj. $x_1 - x_0$, a druga duljine $f(t_1)$. Općenito sa T_k označavamo pravokutnik kojemu je jedna stranica duljina intervala $[x_{k-1}, x_k]$, tj. $x_k - x_{k-1}$, a druga duljine $f(t_k)$ za k = 1, 2, ..., n. Površina pravokutnika T_k jednaka je

$$P(T_k) = f(t_k) \cdot (x_k - x_{k-1}), k = 1, 2, ..., n.$$

Slika 2.

Površina skupa T tada će približno biti jednaka zbroju površina pravokutnika $P(T_1), P(T_2), \dots, P(T_{n-1}), P(T_n)$, tj.

$$P(T) \approx \sum_{k=1}^{n} f(t_k) \cdot (x_k - x_{k-1}).$$
 (1)

Suma (1) naziva se **integralna suma** funkcije f na intervalu [a, b].

Ako interval [a, b] dijelimo na sve veći i veći broj intervala, duljina $x_k - x_{k-1}$ svakog od njih će biti sve manja i težiti prema 0. Intuitivno je jasno da će pri tom suma površina pravokutnika $P(T_1), P(T_2), \ldots, P(T_{n-1}), P(T_n)$ sve bolje i bolje aproksimirati ukupnu površinu P(T) skupa T. Limes integralne sume u (1) kada $n \to +\infty$, a $(x_k - x_{k-1}) \to 0$ za svaki $k = 1, 2, \ldots, n$, zovemo **određenim integralom funkcije** f na [a, b] i pišemo

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(t_{k})(x_{k} - x_{k-1}).(2)$$

Uvođenje pojma integrala pripisuje se Newtonu i Leibnizu, iako se osnovna ideja prepoznaje već kod starogrčkih matematičara. Međutim, Cauchy je prvi dokazao da za neprekinute funkcije postoji dani limes. Riemann je definiciju (2) proširio na širu klasu funkcija koje nisu nužno neprekinute, na tzv. Riemann integrabilne funkcije.

Za ograničenu funkciju $f: [a, b] \to \mathbb{R}$, kažemo da je **Riemann integrabilna** na [a, b] ako limes (2) postoji i ako ne ovisi ni o načinu podjele intervala [a, b], ni o izboru točaka t_k .

Integral u (2) nazivat ćemo **Riemannovim integralom** ili samo **određenim integralom** funkcije f na [a, b], označavati sa:

$$\int_{a}^{b} f(x)dx,$$

i čitati "određeni integral funkcije f od a do b". Funkcija f naziva se podintegralna funkcija, a je donja, a b gornja granica integracije. Vidimo iz (2) da je $\lim_{n\to\infty}\sum_{k=1}^n$ zamjenjen s \int_a^b , $f(t_k)$ zamjenjen je s f(x), a oznaka dx dolazi od

$$\Delta x_k = x_k - x_{k-1}$$

tj. od duljine intervala [x_{k-1}, x_k].

Određeni integral $\int_{a}^{b} f(x)dx$ u (2) definirali smo za a < b.

Za a > b i a = b definiramo

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx i$$

$$\int_{a}^{a} f(x)dx = 0$$

Iz same definicije određenog integrala slijedi da je

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt = \int_{a}^{b} f(y)dy,$$

tj. varijablu po kojoj integriramo možemo označiti kako želimo.

2.2 Osnovna svojstva određenog integrala

1.
$$\int_{a}^{b} c \cdot f(x) dx = c \int_{a}^{b} f(x) dx, c \in \mathbb{R},$$

2.
$$\int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx,$$

3.
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx, \ a < c < b.$$

Geometrijsku interpretaciju svojstva 3. ilustrira sljedeća slika

4. Ako je $f(x) \le g(x)$, za svaki $x \in [a, b]$, onda je i

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx.$$

Prva tri svojstva proizlaze direktno iz definicije određenog integrala.

Svojstvo 4. sljedi iz činjenice da ako je $f(x) \le g(x)$ za $x \in [a, b]$, onda je i

$$\sum_{k=1}^{n} f(t_k)(x_k - x_{k-1}) \le \sum_{k=1}^{n} g(t_k)(x_k - x_{k-1}).$$

Kako ista nejednakost vrijedi i za limese, iz definicije (2) sljedi da je

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx.$$

Iz svojstva 4. sljedi da ako je $f(x) \le 0$ na [a, b], onda je i

$$\int_{a}^{b} f(x)dx \le 0.$$

Napomena:

Ako je f ograničena i integrabilna funkcija na [a, b] i ako f poprima i negativne vrijednosti, onda je

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} |f(x)|dx.$$

Slika 4.

Definicija određenog integrala (2) geometrijski je prirodna i teorijski vrlo važna, ali je kod računanja određenog integrala gotovo neupotrebljiva. Za računanje određenog integrala koristimo se Leibniz–Newtonova formulom, najvažnijom formulom diferencijalnog i integralnog računa.

Teorem 1. Neka je $I \subseteq \mathbb{R}$ otvoreni interval i $f: I \to \mathbb{R}$ neprekinuta funkcija.

- 1. Za svaki interval $[a, b] \subset I$ postoji $\int_a^b f(x)dx$.
- 2. Funkcija *f* ima primitivnu funkciju na *I*.
- 3. Ako je F bilo koja primitivna funkcija od f na I, onda je

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a).$$
 (3)

Formula (3) naziva se **Leibniz–Newtonova** formula. Iz (3) vidimo da je za računanje određenog integrala, kao i kod neodređenog, potrebno znati naći primitivnu funkciju. Zato je potrebno dobro uvježbati postupak deriviranja, a onda i antideriviranja.

Primjer 1. Primjenom Leibniz–Newtonova formule nađimo sljedeće određene integrale elementarnih funkcija:

a)
$$\int_{0}^{1} x^{3} dx = \frac{x^{4}}{4} \Big|_{0}^{1} = \frac{1}{4} - 0 = \frac{1}{4};$$

b)
$$\int_{-1}^{1} x^2 dx = \frac{x^3}{3} \Big|_{-1}^{1} = \frac{1}{3} - \frac{(-1)^3}{3} = \frac{2}{3};$$

c)
$$\int_{0}^{\pi} \sin x dx = -\cos x \Big|_{0}^{\pi} = -\cos \pi + \cos 0 = -(-1) + 1 = 2;$$

d)
$$\int_{0}^{1} \frac{dx}{1+x^{2}} = arctgx \Big|_{0}^{1} = arctg1 - arctg0 = \frac{\pi}{4} - 0 = \frac{\pi}{4};$$

e)
$$\int_{0}^{2} e^{x} dx = e^{x} \Big|_{0}^{2} = e^{2} - e^{0} = e^{2} - 1;$$

f)
$$\int_{1}^{e} \frac{dx}{x} = \ln x \Big|_{1}^{e} = \ln e - \ln 1 = 1 - 0 = 1;$$

g)
$$\int_{0}^{\pi} \sin^{2} x dx = \int_{0}^{\pi} \frac{1 - \cos 2x}{2} dx = \frac{1}{2} \left[x - \frac{\sin 2x}{2} \right]_{0}^{\pi} = \frac{1}{2} \left[\pi - \frac{\sin 2\pi}{2} - 0 + \frac{\sin 0}{2} \right] = \frac{\pi}{2};$$

Primjer 2. Izračunajmo sljedeće određene integrale:

a)
$$\int_{0}^{8} (1 + \sqrt{2x} + \sqrt[3]{x}) dx = \left(x + \sqrt{2} \frac{2}{3} x^{\frac{3}{2}} + \frac{3}{4} x^{\frac{4}{3}} \right)_{0}^{8} =$$

$$= \left(8 + \frac{2\sqrt{2}}{3} 16\sqrt{2} + \frac{3}{4} \cdot 16 \right) = 8 + 16 \left(\frac{4}{3} + \frac{3}{4} \right) = 8 + 16 \cdot \frac{25}{12} = \frac{124}{3};$$

b)
$$\int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \frac{dx}{\sqrt{1-x^2}} = \arcsin x \int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} = \arcsin \frac{\sqrt{2}}{2} - \arcsin(-\frac{\sqrt{2}}{2}) = \frac{\pi}{4} - (-\frac{\pi}{4}) = \frac{\pi}{2};$$

c)
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{dx}{1-x^2} = \frac{1}{2} \ln \frac{1+x}{1-x} \Big|_{-\frac{1}{2}}^{\frac{1}{2}} = \frac{1}{2} \left[\ln \frac{\frac{3}{2}}{\frac{1}{2}} - \ln \frac{\frac{1}{2}}{\frac{3}{2}} \right] = \frac{1}{2} \ln 3^2 = \ln 3;$$

d)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{\cos^2 x} = tgx \Big|_{-\frac{\pi}{4}}^{\frac{\pi}{4}} = tg\frac{\pi}{4} - tg(-\frac{\pi}{4}) = 1 + 1 = 2;$$

e)
$$\int_{2}^{3} \frac{x+1}{x} dx = \int_{2}^{3} (1+\frac{1}{x}) dx = x \Big|_{2}^{3} + \ln x \Big|_{2}^{3} = 3 - 2 + \ln 3 - \ln 2 = 1 + \ln \frac{3}{2}$$

2.3 Metoda supstitucije kod određenog integrala

U određenom integralu $\int_a^b f(x)dx$, kod zamjene varijabli naročito treba paziti da se i granice a i b, koje se odnose na varijablu x, promjene i nađu odgovarajuće granice novo uvedene varijable.

Primjer 3. Metodom supstitucije rješimo sljedeće određene integrale:

a)
$$\int_{0}^{4} x^{3} \sqrt{x^{2} + 9} dx = \int_{0}^{4} x^{2} \sqrt{x^{2} + 9} \cdot x dx = \begin{vmatrix} x^{2} + 9 = t^{2}, 2x dx = 2t dt \\ x = 0 \Rightarrow t = 3 \\ x = 4 \Rightarrow t = 5 \end{vmatrix} = \int_{3}^{5} (t^{2} - 9) \cdot t \cdot t dt = 0$$

$$=\left(\frac{t^5}{5}-9\frac{t^2}{2}\right)_{3}^{5}=625-\frac{225}{2}-\frac{243}{5}+\frac{81}{2}=\frac{1412}{5};$$

b)
$$\int_{1}^{e} \frac{\sin \ln x}{x} dx = \begin{vmatrix} \ln x = t, \frac{1}{x} dx = dt \\ x = 1 \Rightarrow t = \ln 1 = 0 \\ x = e \Rightarrow t = \ln e = 1 \end{vmatrix} = \int_{0}^{1} \sin t dt = -\cos t = -\cos 1 + \cos 0 = 1 - \cos 1;$$

c)
$$\int_{0}^{\frac{\pi}{2}} \cos x \sin^{2} x dx = \begin{vmatrix} \sin x = t, \cos x dx = dt \\ x = 0 \Rightarrow t = \sin 0 = 0 \\ x = \frac{\pi}{2} \Rightarrow t = \sin \frac{\pi}{2} = 1 \end{vmatrix} = \int_{0}^{1} t^{2} dt = \frac{t^{3}}{3} \Big|_{0}^{1} = \frac{1}{3};$$

d)
$$\int_{0}^{\ln 2} \frac{e^{x} - 1}{\sqrt{e^{x} - 1}} dx = \int_{0}^{\pi} (e^{x} - 1) dx = \begin{vmatrix} e^{x} - 1 = t^{2}, e^{x} dx = 2t dt, dx = \frac{2t dt}{t^{2} + 1} \\ e^{x} = t^{2} + 1 \\ x = 0 \Rightarrow t^{2} = e^{0} - 1 = 0 \Rightarrow t = 0 \\ x = \ln 2 \Rightarrow t^{2} = e^{\ln 2} - 1 = 2 - 1 = 1 \Rightarrow t = 1 \end{vmatrix}$$

$$=2\int_{0}^{1} t \frac{tdt}{t^{2}+1} = 2\int_{0}^{1} \frac{t^{2}+1-1}{t^{2}+1} dt = 2\int_{0}^{1} (1 - \frac{1}{t^{2}+1}) dt = 2[t - arctgt]_{0}^{1} =$$

$$= 2[1 - arctg1 - 0 + arctg0] = 2(1 - \frac{\pi}{4}) = 2 - \frac{\pi}{2};$$

e)
$$\int_{e}^{e^{2}} \frac{dx}{x \ln^{3} x} = \begin{vmatrix} \ln x = t, \frac{dx}{x} = dt \\ x = 0 \Rightarrow t = \ln e = 1 \\ x = e^{2} \Rightarrow t = \ln e^{2} = 2 \end{vmatrix} = \int_{1}^{2} \frac{dt}{t^{3}} = -\frac{1}{2t^{2}} \Big|_{1}^{2} = \frac{3}{8}.$$

2.4 Zadaci za vježbu

1. Metodom supstitucije rješite sljedeće određene integrale:

a)
$$\int_{0}^{4} x \sqrt{x^2 + 9} dx$$
; d) $\int_{\ln 3}^{\ln 5} \frac{1}{e^{-1}} dx$

d)
$$\int_{\ln 3}^{\ln 5} \frac{e^x dx}{e^{2x} - 6e^x + 13};$$
 g)
$$\int_{0}^{\frac{\pi}{2}} \cos t \sin^3 t dt;$$

b)
$$\int_{\frac{1}{2}}^{\frac{2}{\pi}} \frac{1}{x^2} \sin \frac{1}{x} dx;$$

e)
$$\int_{1}^{e} \frac{dx}{x\sqrt{1-\ln^{2}x}};$$

$$h) \qquad \int_0^3 \frac{dx}{2x+3} \, .$$

c)
$$\int_{\sqrt{\pi}}^{\sqrt{2\pi}} x \sin(x^2 + \pi) dx;$$

f)
$$\int_{2}^{3} \frac{zdz}{1+z^2};$$

Rješenja

a)
$$\frac{98}{3}$$

d)
$$\frac{\pi}{8}$$

$$g) \qquad \frac{1}{5}$$

h) $\frac{1}{2} \ln 3$.

e)
$$\frac{\pi}{2}$$
;

f)
$$\frac{1}{2}\ln 2$$
;

2.5 Parcijalna integracija kod određenog integrala

Parcijalnu integraciju možemo primjeniti i na određene intagrale. Iz Newton – Leibnizove formule (3) i iz

$$\int [u'(x)v(x) + u(x)v'(x)]dx = u(x)v(x) + c$$

sljedi da je

$$\int_{a}^{b} \left[u'(x)v(x) + u(x)v'(x) \right] dx = u(b)v(b) - u(a)v(a) = u(x)v(x) \Big|_{a}^{b}$$

Odatle je

$$\int_a^b u(x)v'(x)dx = u(x)v(x)\Big|_a^b - \int_a^b u'(x)v(x)dx,$$

što opet kraće zapisujemo:

$$\int_{a}^{b} u dv = \left(u \cdot v\right) \Big|_{a}^{b} - \int_{a}^{b} v du \,. \tag{4}$$

Primjer 4. Primjenom parcijalne integracije izračunajmo sljedeće određene integrale:

a)
$$\int_{1}^{e^{2}} \frac{\ln x}{x^{2}} dx = \begin{vmatrix} u = \ln x, dv = \frac{dx}{x} \\ dv = \frac{dx}{x^{2}}, v = \frac{1}{x} \end{vmatrix} = -\frac{\ln x}{x} \Big|_{1}^{e^{2}} - \int_{1}^{e^{2}} (-\frac{1}{x}) \frac{dx}{x} = -\frac{\ln x}{x} \Big|_{1}^{e^{2}} + \int_{1}^{e^{2}} \frac{dx}{x^{2}} = -\frac{\ln x}{x} \Big|_{1}^{e^{2}} + \frac{1}{x} \Big|_{1}^{e^{2}}$$

$$= -\frac{\ln e^2}{e^2} + \frac{\ln 1}{1} - \frac{1}{x} \Big|_{1}^{e^2} = -\frac{2}{e^2} - \frac{1}{e^2} + 1 = 1 - \frac{3}{e^2};$$

b)
$$\int_{0}^{1} \arcsin x dx = \begin{vmatrix} u = \arcsin x dx, du = \frac{dx}{\sqrt{1 - x^{2}}} \\ dv = dx, v = x \end{vmatrix} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x \arcsin x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^{2}}} = x$$

$$\begin{vmatrix} 1 - x^2 = t^2, -2x dx = 2t dt \\ x = 0 \Rightarrow t = 1 \\ x = 1 \Rightarrow t = 0 \end{vmatrix} = \arcsin 1 + \int_0^1 dt = \frac{\pi}{2} - 1;$$

c)
$$\int_{0}^{1} x \ln(x+3) dx = \begin{vmatrix} u = \ln(x+3) \Rightarrow du = \frac{1}{x+3} dx \\ dv = x dx \Rightarrow v = \frac{x^{2}}{2} \end{vmatrix} = \left[\ln(x+3) \cdot \frac{x^{2}}{2} \right]_{0}^{1} - \int_{0}^{1} \frac{x^{2}}{2} \frac{dx}{x+3} =$$

$$= \frac{1}{2} \ln 4 - \frac{1}{2} \int_{0}^{1} \frac{x^{2}}{x+3} dx = \frac{1}{2} \ln 4 - \frac{1}{2} \int_{0}^{1} (x-3+\frac{9}{x+3}) dx = \frac{1}{2} \ln 4 - \frac{1}{2} \left[\frac{x^{2}}{2} - 3x + 9 \ln(x+3) \right]_{0}^{1} =$$

$$= \frac{1}{2} \ln 4 - \frac{1}{2} \left[\frac{1}{2} - 3 + 9 \ln 4 - 9 \ln 3 \right] = \frac{1}{2} \ln 4 + \frac{5}{4} - \frac{9}{2} \ln 4 + \frac{9}{2} \ln 3 = \frac{5}{4} - 4 \ln 4 + \frac{9}{2} \ln 3;$$

$$d) \int_{0}^{\ln 5} \frac{e^{x} \sqrt{e^{x} - 1}}{e^{x} + 3} dx = \begin{vmatrix} e^{x} - 1 = t^{2}, e^{x} dx = 2t dt, dx = \frac{2t dt}{t^{2} + 1} \\ x = 0 \Rightarrow t = 0, x = \ln 5 \Rightarrow t = 2 \end{vmatrix} = \int_{0}^{2} \frac{t \cdot 2t dt}{t^{2} + 1 + 3} =$$

$$= 2 \int_{0}^{2} \frac{t^{2} + 4 - 4}{t^{2} + 4} dt = 2 \int_{0}^{2} \frac{t^{2} + 4}{t^{2} + 4} dt + 2 \int_{0}^{2} \frac{-4}{t^{2} + 4} dt = 2t \Big|_{0}^{2} - 8 \cdot \frac{1}{2} \operatorname{arctg} \frac{t}{2} \Big|_{0}^{2} =$$

$$=2\int_{0}^{1}\frac{1}{t^{2}+4}dt=2\int_{0}^{1}\frac{1}{t^{2}+4}dt+2\int_{0}^{1}\frac{1}{t^{2}+4}dt=2t\left|-8\cdot\frac{1}{2}\right|ardt$$

$$=4-4 arctg1 = 4-4 \cdot \frac{\pi}{4} = 4-\pi$$
.

2.6 Zadaci za vježbu

1. Primjenom parcijalne integracije izračunajte sljedeće određene integrale:

a)
$$\int_{\sqrt{2}}^{\sqrt{3}} x \ln(x^2 - 1) dx$$
; c) $\int_{0}^{1} \ln(x + 1) dx$;

b)
$$\int_{1}^{e} \frac{\ln^{2} x}{x^{2}} dx;$$
 d)
$$\int_{0}^{8} (x-3)e^{x^{2}-6x} dx.$$

Riešenja

a)
$$\ln 2 - \frac{1}{2}$$
; c) $\ln 4 - 1$

b)
$$2-\frac{5}{e}$$
; d) $\frac{1}{2}(e^{16}-1)$.

3 NEPRAVI INTEGRALI

Integral nenegativne funkcije f na intervalu [a, b], $\int_a^b f(x)dx$, jednak je površini onog područja

ispod grafa funkcije f, i znad osi x, koje se nalazi između x = a i x = b. Ako pustimo da b ode u beskonačnost, područje postaje neomeđeno, kao što se vidi na sljedećoj slici:

Slika 1

Osjenčan dio ravnine ispod grafa je neograničen, pa se na prvi pogled čini da je i njegova površina beskonačna. To je u nekim slučajevima točno, ali može biti i krivi zaključak, jer je najveći dio tog skupa toliko tanak da mu je površina zanemarivo mala.

Primjer 1. a) Izračunajmo integral

$$\int_{2}^{b} \frac{dx}{\sqrt{x}},$$

koji je jednak površini područja koje se proteže nad intervalom [2, b], do grafa funkcije $f(x) = \frac{1}{\sqrt{x}}$. Što se događa kada $b \to \infty$?

Kako je

$$\int_{2}^{b} \frac{dx}{\sqrt{x}} = \left(2\sqrt{x}\right)\Big|_{2}^{b} = 2\sqrt{b} - 2\sqrt{2},$$

kada $b \to \infty$, integral također teži u beskonačnost jer je $\lim_{b \to \infty} \sqrt{b} = \infty$. Dakle je

$$\lim_{b\to\infty}\int_{2}^{b}\frac{1}{\sqrt{x}}dx=\lim_{b\to\infty}\left(2\sqrt{x}\right)\Big|_{2}^{b}=\lim_{b\to\infty}\left(2\sqrt{b}+2\sqrt{2}\right)=\infty.$$

Međutim, prva misao da je površina neomeđena područja beskonačna, kao ni ovaj primjer koji to potvrđuje, ne smiju nas zavarati. Primjer koji sljedi jasno će nam pokazati da površina neomeđena područja može biti konačna.

Mr.sc. Petronila Lokner

b) Izračunajmo integral

$$\int_{1}^{b} \frac{dx}{x^{2}},$$

koji je jednak površini područja koje se proteže nad intervalom [1, b], do grafa funkcije $f(x) = \frac{1}{x^2}$. Što se događa kada $b \to \infty$? Kolika je površina područja koje se proteže nad neomeđenim intervalom [1, ∞ >, do grafa funkcije $y = \frac{1}{x^2}$? Kako je

$$\int_{1}^{b} \frac{dx}{x^{2}} = \left(-\frac{1}{x}\right)\Big|_{1}^{b} = \left(-\frac{1}{b} + 1\right),$$

kada $b \to \infty$, jer je $\lim_{b \to \infty} \frac{1}{b} = 0$, integral $\int_{1}^{b} \frac{dx}{x^2}$ teži prema 1, dakle je

$$\lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x^{2}} = \lim_{b \to \infty} \left(-\frac{1}{x} \right) \Big|_{1}^{b} = \lim_{b \to \infty} \left(-\frac{1}{b} + 1 \right) = 1.$$

Naime, graf funkcije $f(x) = \frac{1}{\sqrt{x}}$ pod a) se približava osi x sporije nego graf funkcije $f(x) = \frac{1}{x^2}$ pod b) pa je površina ispod njega beskonačna.

Ovaj nas primjer upućuje na to da granice određenih integrala budu ∞ , pa npr. $\lim_{b\to\infty} \int_1^b \frac{dx}{x^2}$ u gornjem primjeru, označimo sa $\int_1^\infty \frac{dx}{x^2}$ i uvedemo kao novu vrstu tzv. nepravih integrala na neomeđenim intervalima.

3.1 Integrali nad neomeđenim intervalima

Ako je f(x) integrabilna na [a, b] za svaki b > a i ako postoji konačni limes

$$\lim_{b\to +\infty} \int_{a}^{b} f(x) dx$$

onda se taj limes naziva **nepravi integral** funkcije f na skupu $[a, +\infty)$ i označava se s

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx.$$
 (1)

U tom slučaju još se kaže da

$$\int_{a}^{\infty} f(x)dx$$

konvergira. Ako limes u definiciji nepravog integrala ne postoji ili je jednak $\pm \infty$, onda kažemo da integral

$$\int_{a}^{\infty} f(x)dx$$

divergira (ili ne postoji).

Slično, ako je f(x) integrabilna na [a, b], za svaki a i b i ako postoji konačni limes

$$\lim_{a\to -\infty}\int_{a}^{b}f(x)dx$$

onda se taj limes naziva **nepravi integral** funkcije f na skupu $\langle -\infty, b \rangle$ i označava se s

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx.$$
 (2)

Također se u tom slučaju kaže da

$$\int_{-\infty}^{b} f(x) dx$$

konvergira, a ako limes iz definicije ne postoji ili je jednak ±∞, kaže se da

$$\int_{-\infty}^{b} f(x) dx$$

divergira ili ne postoji.

Ako je f(x) integrabilna na [a, b], za svaki a i b i ako postoje konačni limesi

$$\lim_{a\to -\infty}\int_{a}^{c} f(x)dx \ i \lim_{b\to \infty}\int_{c}^{b} f(x)dx, c\in \mathbb{R},$$

onda postoji nepravi integral

$$\int_{-\infty}^{+\infty} f(x) dx$$

koji definiramo kao

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx = \lim_{a \to -\infty} \int_{a}^{c} f(x)dx + \lim_{b \to \infty} \int_{c}^{b} f(x)dx.$$
 (3)

gdje je *c* bilo koja točka tog intervala.

Ako je u tim izrazima limes desne strane konačan, određen broj, kaže se da integral konvergira, a ako takav broj ne postoji, da integral divergira.

Primjer 2. Izračunajmo sljedeće neprave integrale:

a)
$$\int_{0}^{\infty} \frac{dx}{1+x^{2}} = \lim_{b \to \infty} \int_{0}^{b} \frac{dx}{1+x^{2}} = \lim_{b \to \infty} \left(arctgx \right) \Big|_{0}^{b} = \lim_{b \to \infty} \left(arctgb - arctg0 \right) = \frac{\pi}{2} - 0 = \frac{\pi}{2}.$$

Drugim rječima, površina ispod krivulje

$$f(x) = \frac{1}{1+x^2}$$

od 0 do ∞ je jednaka $\frac{\pi}{2}$.

b)
$$\int_{-\infty}^{0} e^{x} dx = \lim_{\alpha \to -\infty} \int_{\alpha}^{0} e^{x} dx = \lim_{\alpha \to -\infty} \left(e^{x} \right) \Big|_{\alpha}^{0} = \lim_{\alpha \to -\infty} \left(1 - e^{\alpha} \right) = 1.$$

Površina ispod krivulje

$$f(x) = e^x$$

od $-\infty$ do 0 jednaka je 1.

c)
$$\int_{-\infty}^{0} x e^{-x^{2}} dx = \lim_{\alpha \to -\infty} \int_{\alpha}^{0} x e^{-x^{2}} dx = \left| -x^{2} = t, x dx = -\frac{1}{2} dt \right| = \lim_{\alpha \to -\infty} \left(-\frac{1}{2} e^{-x^{2}} \right) \Big|_{\alpha}^{0} = \lim_{\alpha \to -\infty} \left(-\frac{1}{2} + \frac{1}{2} e^{-\alpha^{2}} \right) = -\frac{1}{2}, \text{ integral konvergira.}$$

d)
$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 2} = \lim_{a \to -\infty} \int_{a}^{0} \frac{dx}{(x+1)^2 + 1} + \lim_{b \to \infty} \int_{0}^{b} \frac{dx}{(x+1)^2 + 1} =$$

$$= \lim_{a \to -\infty} \left[arctg(x+1) \right]_{a}^{0} + \lim_{b \to \infty} \left[arctg(x+1) \right]_{0}^{b} =$$

$$= \lim_{a \to -\infty} \left[arctg 1 - arctg(a+1) \right] + \lim_{b \to \infty} \left[arctg(b+1) - arctg 1 \right] = \frac{\pi}{4} - \left(-\frac{\pi}{2} \right) + \frac{\pi}{2} - \frac{\pi}{4} = \pi.$$

Postoji i drugi tip nepravog integrala. Ako graf od f ima vertikalnu asimptotu u rubnoj točki intervala [a, b], onda integral

$$\int_{a}^{b} f(x)dx$$

nije definiran na uobičajen način, jer funkcija nije omeđena u okolini te rubne točke, $tj. f(x) \to +\infty$ ili $-\infty$, kada $x \to a$ ili $x \to b$. I tu se susrećemo s površinom neomeđena područja, što se proteže nad intervalom [a, b] ispod grafa funkcije f.

Područje je ovog puta neomeđeno u smjeru osi y. Njegovu površinu opet možemo pronaći kao limes pravih integrala, a njega ćemo opet zvati nepravim integralom.

Dakle postoje dva tipa nepravog integrala: ili područje integracije [a, b] nije konačno ili f(x) nije konačna na danom području integracije.

3.2 Integrali neomeđenih funkcija

Promotrimo prvo slučaj kada je funkcija f neomeđena na lijevom kraju intervala [a, b],tj.

$$\lim_{x\to a} f(x) = \pm \infty.$$

Ako je funkcija integrabilna za sve $x \in \langle a, b \rangle$ i ako postoji konačan limes

$$\lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x) dx$$

onda se taj limes zove **nepravi integral** funkcija f na $\langle a, b \rangle$ i označava se kao obični integral

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x)dx.$$
 (4)

U tom slučaju, reći ćemo da nepravi integral

$$\int_{a}^{b} f(x) dx$$

konvergira, a u suprotnom da divergira.

Ako je funkcija f neomeđena na desnom kraju intervala [a, b],tj.

$$\lim_{x \to b} f(x) = \pm \infty$$

i ako je integrabilna za sve $x \in [a, b)$, a postoji konačan limes

$$\lim_{\varepsilon\to 0}\int_{a}^{b-\varepsilon}f(x)dx,$$

onda se taj limes zove **nepravi integral** funkcija f na [a, b) i označava kao obični integral

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} f(x)dx.$$
 (5)

I u ovom slučaju kažemo da nepravi integral konvergira, a ako je limes u danoj definiciji jednak $\pm \infty$ ili ne postoji, kažemo da integral divergira, tj. ne postoji.

Geometrijska interpretacija nepravog integrala funkcije f na [a, b), kada f nije ograničena u b je osjenčani dio na slici

Slika 2

Promotrimo sada i slučaj kada je podintegralna funkcija neograničena u nekoj točki $c \in \langle a, b \rangle$, tj.

$$\lim_{x \to a} f(x) = \pm \infty$$

Tada se integral $\int_a^b f(x)dx$ rastavlja točkom $c \in \langle a, b \rangle$, na dva integrala

$$\int_{a}^{c} f(x)dx \, \mathrm{i} \int_{c}^{b} f(x)dx \, .$$

koji su nepravi prama prethodnim definicijama.

Mr.sc. Petronila Lokner

Dakle definiramo

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a}^{c-\varepsilon} f(x)dx + \lim_{\varepsilon \to 0} \int_{c+\varepsilon}^{b} f(x)dx,$$
 (6)

kao nepravi integral.

Ako su limesi na desnoj strani konačni kažemo da integral

$$\int_{a}^{b} f(x) dx$$

konvergira, a ako takav broj ne postoji integral divergira.

Geometrijska interpretacija ovog integrala je površina osjenčanog lika na sljedećoj slici:

Slika 3

Primjer 3. Ispitajmo konvergenciju sljedećih nepravih integrala:

a)
$$\int_{0}^{2} \frac{dx}{\sqrt{4 - x^{2}}} = \left| \lim_{x \to 2} \frac{1}{\sqrt{4 - x^{2}}} = \infty \right| = \lim_{\varepsilon \to 0} \int_{0}^{2 - \varepsilon} \frac{dx}{\sqrt{4 - x^{2}}} = \lim_{\varepsilon \to 0} (\arcsin \frac{x}{2}) \Big|_{0}^{2 - \varepsilon} =$$

$$= \lim_{\varepsilon \to 0} \left[\arcsin \frac{2 - \varepsilon}{2} - \arcsin 0 \right] == \lim_{\varepsilon \to 0} \left[\arcsin \frac{2 - \varepsilon}{2} - 0 \right] = \arcsin 1 = \frac{\pi}{2};$$

Iako je lik neograničen, vidimo da je površina konačna i jednaka $\frac{\pi}{2}$. Dakle

$$\int_{0}^{2} \frac{dx}{\sqrt{4-x^2}}$$

konvergira.

b)
$$\int_{0}^{1} \ln x dx = \left| \lim_{x \to 0} \ln x = -\infty \right| = \lim_{\varepsilon \to 0} \int_{0+\varepsilon}^{1} \ln x dx = \lim_{\varepsilon \to 0} \left[x \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln 1 - 1 - \varepsilon \ln \varepsilon + \varepsilon \right] = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln x - x \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left[1 \ln$$

$$= -1 - \lim_{\varepsilon \to 0} \varepsilon \ln \varepsilon = -1 - \lim_{\varepsilon \to 0} \frac{\ln \varepsilon}{\frac{1}{\varepsilon}} = -1 - \lim_{\varepsilon \to 0} \frac{\frac{1}{\varepsilon}}{-\frac{1}{\varepsilon^2}} = -1 + \lim_{\varepsilon \to 0} \varepsilon = -1.$$

Integral

$$\int_{0}^{1} \ln x dx$$

konvergira.

c)
$$\int_{-1}^{1} \frac{dx}{x^{2}} = \left| \lim_{x \to 0} \frac{1}{x^{2}} = \infty \right| = \int_{-1}^{0} \frac{dx}{x^{3}} + \int_{0}^{1} \frac{dx}{x^{2}} = \lim_{\varepsilon \to 0} \int_{-1}^{0-\varepsilon} \frac{dx}{x^{2}} + \lim_{\varepsilon \to 0} \int_{0+\varepsilon}^{1} \frac{dx}{x^{2}} = \lim_{\varepsilon \to 0} \left(-\frac{1}{x} \right) \Big|_{-1}^{-\varepsilon} + \lim_{\varepsilon \to 0} \left(-\frac{1}{x} \right) \Big|_{\varepsilon}^{-\varepsilon} = \left[\lim_{\varepsilon \to 0} \left(\frac{1}{\varepsilon} - 1 \right) + \lim_{\varepsilon \to 0} \left(-1 + \frac{1}{\varepsilon} \right) \right] = \infty, \text{ pa}$$

$$\int_{-1}^{1} \frac{dx}{x^2}$$

divergira. Dakle, površinu ne možemo izračunati tj. beskonačna je.

d)
$$\int_{-1}^{1} \frac{dx}{x^{3}} = \left| \lim_{x \to 0} \frac{1}{x^{3}} = \infty \right| = \int_{-1}^{0} \frac{dx}{x^{3}} + \int_{0}^{1} \frac{dx}{x^{3}} = \lim_{\varepsilon \to 0} \int_{-1}^{0-\varepsilon} \frac{dx}{x^{3}} + \lim_{\varepsilon \to 0} \int_{0+\varepsilon}^{1} \frac{dx}{x^{3}} = \lim_{\varepsilon \to 0} \left(-\frac{1}{2x^{2}} \right) \Big|_{-1}^{-\varepsilon} + \lim_{\varepsilon \to 0} \left(\frac{-1}{2x^{2}} \right) \Big|_{\varepsilon}^{1} = \frac{1}{2} \left[\lim_{\varepsilon \to 0} \left(\frac{1}{\varepsilon^{2}} - 1 \right) + \lim_{\varepsilon \to 0} \left(1 - \frac{1}{\varepsilon^{2}} \right) \right] = 0;$$

e)
$$\int_{0}^{8} \frac{dx}{\sqrt[3]{x}} = \left| \lim_{x \to 0} \frac{1}{\sqrt[3]{x}} \right| = \infty = \lim_{\varepsilon \to 0} \int_{\varepsilon}^{8} \frac{dx}{\sqrt[3]{x}} = \lim_{\varepsilon \to 0} \left(\frac{3}{2} x^{\frac{2}{3}} \right) \Big|_{\varepsilon}^{8} = \frac{3}{2} \lim_{\varepsilon \to 0} \left(4 - \varepsilon^{\frac{2}{3}} \right) = \frac{3}{2} \cdot 4 = 6.$$

Primjer 4. Izračunajmo sljedeći određeni integral supstitucijom $tg \frac{x}{2} = t$.

$$\int_{0}^{\pi} \frac{1}{5 + 4\cos x} dx.$$

Uz navedenu supstituciju znamo da je $\cos x = \frac{1-t^2}{1+t^2}$ i $dx = \frac{dt}{1+t^2}$.

Sada promjenimo još i granice:

za
$$x = 0$$
 sljedi da je $t = tg0 = 0$, a za $x = \pi$ je $t = tg\frac{\pi}{2} = \infty$.

Tada je

$$\int_{0}^{\pi} \frac{1}{5 + 4\cos x} dx = \int_{0}^{\infty} \frac{1}{5 + 4\frac{1 - t^{2}}{1 + t^{2}}} \frac{2dt}{1 + t^{2}} = 2\int_{0}^{\infty} \frac{dt}{t^{2} + 9}.$$

Dakle, dobili smo nepravi integral, kojeg možemo rješiti prema (1) pomoću limesa:

$$\int_{0}^{\infty} \frac{dt}{t^{2}+9} = \lim_{b \to \infty} \int_{0}^{b} \frac{dt}{t^{2}+9} = \frac{1}{3} \lim_{b \to \infty} \left(arctg \, \frac{t}{3} \right) \Big|_{0}^{b} = \frac{1}{3} \lim_{b \to \infty} \left(arctg \, \frac{b}{3} - arctg \, 0 \right) = \frac{1}{3} \frac{\pi}{2} - 0 = \frac{\pi}{6},$$

pa je

$$\int_{0}^{\pi} \frac{1}{5 + 4\cos x} dx = \frac{\pi}{3}.$$

3.3. Zadaci za vježbu

1. Izračunati sljedeće neprave integrale:

a)
$$\int_{-\infty}^{0} \frac{dx}{x^2 + 4}$$
; c) $\int_{-\infty}^{+\infty} \frac{dx}{(x^2 + 1)^2}$;

c)
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)^2};$$

e)
$$\int_{0}^{\frac{1}{2}} \frac{dx}{x \ln^{2} x}$$
; g) $\int_{0}^{2} \frac{dx}{\sqrt[3]{(1-x)^{2}}}$

$$g) \int_{0}^{2} \frac{dx}{\sqrt[3]{(1-x)^{2}}}$$

b)
$$\int_{0}^{+\infty} \frac{arctgx}{x^2 + 1} dx$$
;

b)
$$\int_{0}^{+\infty} \frac{arctgx}{x^2 + 1} dx$$
; d) $\int_{0}^{1} x \ln^2 x dx$;

f)
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}};$$

2. Pokazati da sljedeći nepravi integrali divergiraju:

a)
$$\int_{1}^{\infty} \frac{\ln(1+x)}{x} dx$$

c)
$$\int_{1}^{\infty} \frac{1+x^2}{x^3} dx$$

e)
$$\int_{-1}^{0} \frac{dx}{x^2}$$

b)
$$\int_{2}^{\infty} \cos x dx$$

d)
$$\int_{0}^{5} \frac{dx}{x^{7}}$$

Rješenja:

1.

- a) $\frac{\pi}{4}$; c) $\frac{\pi}{2}$; e) $\frac{1}{\ln 2}$; g) b) $\frac{\pi^2}{8}$; d) $\frac{1}{4}$; f) $\frac{\pi}{2}$;
 - 6.

Mr.sc. Petronila Lokner