| 따름이 대여 수 예측

비어플 프로젝트 6조

김기호 배정민 이가영

2021.10.23

목차

 1

 분석 목적 및 데이터 소개

2 **데이터 전처리** 3 **모델링**

4결론 및 활용방안

분석목적

- 서울시 따릉이의 이용률이 증가함에 따라 서울시 대응책이 필요해짐
- 따릉이 이용현황에 대한 데이터를 분석하여 서울시민들의 편의성 증대 목적
- 2017년 4~5월 마포구 따릉이 정보를 통해 6월의 따릉이 대여 수를 예측

변수 소개

Train/Test Data

- Id : 고유 id
- Hour : 시간
- Hour_bef_temperature : 1시간 전 기온
- Hour_bef_precipitation : 1시간 전 비가 오지 않았으면 0,

비가 왔으면 1

- Hour_bef_windspeed : 1시간 전 평균 풍속
- Hour_bef_humidity : 1시간 전 습도
- Hour_bef_visibility: 1시간 전 가시성
- Hour_bef_ozone : 1시간 전 오존
- Hour_bef_pm10 : 1시간 전 미세먼지(pm10)
- Hour_bef_pm2.5 : 1시간 전 미세먼지(pm2.5)
- Count : 따릉이 대여 수 (목적변수)

기상청 외부 데이터

- 지점 : 지점 번호
- 지점명 : 지점 도사 아름
- 일시 : 연도-월-일 시간
- 기온 : 해당 일시의 기온
- 강수량: 해당 일시의 강수량
- 풍속 : 해당 일시의 풍속(평균)
- 습도 : 해당 일시의 습도
- 시정: 해당 일시의 시정

Train Data

id	hour	hour_bef_ temperature	hour_bef_ precipitation	hour_bef_ windspeed	hour_bef_ humidity	hour_bef_ visibility	hour_bef_ ozone	hour_bef_ pm10	hour_bef_ pm2.5	count
3	20	16.3	1.0	1.5	89.0	576.0	0.027	76.0	33.0	49.0
6	13	20.1	0.0	1.4	48.0	916.0	0.042	73.0	40.0	159.0
2178	21	20.7	0.0	3.7	37.0	1395.0	0.082	71.0	36.0	216.0
2179	17	21.1	0.0	3.1	47.0	1973.0	0.046	38.0	17.0	170.0

1459개의 행과 11개 변수

Test Data

id	hour	hour_bef_ temperature	hour_bef_ precipitation	hour_bef_ windspeed	hour_bef_ humidity	hour_bef_ visibility	hour_bef_ ozone	hour_bef_ pm10	hour_bef_ pm2.5
0	7	20.7	0.0	1.3	62.0	954.0	0.041	44.0	27.0
1	17	30.0	0.0	5.4	33.0	1590.0	0.061	49.0	36.0
2166	16	27.0	0.0	1.6	46.0	1956.0	0.032	40.0	26.0
2177	8	22.3	0.0	1.0	63.0	1277.0	0.007	30.0	24.0

715개의 행과 10개 변수

기상청 외부 데이터

지점	지점명	일시	기온	강수량	풍속	습도	시정
108	서울	2017-03-31 23:00	5.3	NA	2.2	79	2000
108	서울	2017-04-01 0:00	4.9	NA	1.5	81	2000
108	서울	2017-06-30 22:00	24.6	NA	1.9	70	701
108	서울	2017-06-30 23:00	24.2	NA	1.9	70	670

2185개의 행과 8개 변수

단일 변수 시각화

기온과 습도는 종형 분포이며, 기온의 경우 정규분포의 형태와 유사하다.

단일 변수 시각화

시정은 많은 값이 2000에 몰려 있다.

시정

단일 변수 시각화

세 변수 모두 오른쪽으로 꼬리가 긴 형태의 분포를 나타낸다.

단일 변수 시각화

따릉이 대여 수의 단일 분포는 쌍봉 형태를 띈다. 오른 쪽으로 꼬리가 긴 형태의 분포이다.

다중 변수 시각화

따릉이 대여 수

시간에 따른 따름이 대여 수 분포를 보면 8시와 18시를 기준으로 대여 수 증감이 두드러진다.

문제상황-결측치

Test Data

id	hour	hour_bef_ temperature	hour_bef_ precipitation					hour_bef_ pm10	hour_bef_ pm2.5
1943	19	NA	NA	NA	NA	NA	NA	NA	NA

Test Data 행 중에서 날씨와 기상상황이 누락된 행이 존재

정보가 누락된 Train Data를 제거하지 않고 활용해야 한다고 판단

기상청 외부 데이터로 대응 시켜 누락된 학습용 데이터 결측치 대체

문제상황-결측치

기상청 외부 데이터로 대응 시킨 후

id	hour.x	hour.y	date	day	hour_bef_ temperature	hour_bef_ windspeed	hour_bef_ humidity	hour_bef_ visibility	hour_bef_ precipitation. X	hour_bef_ precipitation. y	hour_bef_ ozone	hour_bef_ pm10	hour_bef_ pm2.5	count	일시
1420	0	99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	39	NA
1553	18	99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	NA
1451	17	17	2017-05- 30	화요일	29.8	3.9	12	2000	0	NA	0.058	40	11	215	2017-05-30 17:00
983	16	16	2017-05- 03	수요일	30	3.2	16	1183	0	NA	0.1	70	38	304	2017-05-03 16:00

대응이 되지 않은 시간대 일부 존재

기온, 습도, 시정, 풍속 변수 값의 누락으로 대응되지 않은 시간대는 0시와 18시임

문제해결

0시가 존재하지 않는 4월 1일과 4월 6일의 따름이 대여 수

전후 시간대와 함께 비교한 결과, 누락된 0시는 4월 1일의 0시임을 유추할 수 있다

따라서, 직접 대체

문제해결

18시가 존재하지 않는 4월 5일의 따름이 대여 수

전후 시간대와 함께 비교한 결과, 누락된 18시 역시 4월 5일의 18시임을 유추할 수 있다

따라서, 직접 대체

문제상황-결측치

특정 변수에 결측치 다수 존재

결측변수와 상관계수가 가장 높은 변수로 결측변수 대체 이 때, 그룹별 통계량 값을 이용하여 결측치 대체

단변량 상관계수

- hour_bef_windspeed와 hour의 상관계수: 0.46
- hour_bef_ozone와 hour_bef_temperature의 상관계수: 0.53
- hour_bef_pm2.5와 hour_bef_visibility의 상관계수: -0.63
- hour_bef_pm10와 hour_bef_pm2.5의 상관계수: 0.53

문제해결

시간에 대한 풍속 분포

hour_bef_windspeed와 hour의 상관계수: 0.46 hour 그룹 별 hour_bef_windspeed의 중앙값으로 대체

	hour	hour_bef_windspeed
그룹 번호	구간	중앙값
1	0	2
2	1	1.65
3	2	1.45
4	3	1.50
21	20	3.25
22	21	2.90
23	22	2.50
24	23	2.10

문제해결

hour_bef_ozone와 hour_bef_temperature의 상관계수: 0.53 hour_bef_temperature그룹 별 hour_bef_ozone의 중앙값으로 대체

hour_bef_te	hour_bef_ozone	
그룹 번호	구간	중앙값
1	10 이하	0.0235
2	10 초과 15 이하	0.0340
3	15 초과 20 이하	0.0380
4	20 초과 25 이하	0.0510
5	25 초과	0.0650

문제해결

시정에 대한 pm2.5 분포

hour_bef_pm2.5와 hour_bef_visibility의 상관계수 : -0.63 hour_bef_visibility그룹 별 hour_bef_windspeed의 중앙값으로 대체

ho	ur_bef_visibility	hour_bef_pm2.5
그룹 번호	구간	중앙값
1	100 미만	26
2	100 초과 200 이하	29
3	200 초과 300 이하	60
4	300 초과 400 이하	35.5
18	1700 초과 1800 이하	28.5
19	1800 초과 1900 이하	24
20	1900 초과 2000 미만	21
21	2000	19

문제해결

hour_bef_pm10와 hour_bef_pm2.5의 상관계수: 0.53 hour_bef_pm2.5그룹 별 hour_bef_pm10의 중앙값으로 대체

h	our_bef_pm2.5	hour_bef_pm10
그룹 번호	구간	중앙값
1	10 미만	20
2	10 초과 20 이하	35
3	20 초과 30 이하	44
4	30 초과 40 이하	60
		72
18	60 초과 70 이하	78.5
19	70 초과 80 이하	86
20	80 초과	94

파생변수 생성

외부데이터 반영으로 요일을 특정이 가능해짐

평일/주말 여부에 따라 특징이 존재

평일은 출퇴근 시간에 급증 주말은 오후 시간대에 증가했다가 감소

파생변수 weekend 생성

파생변수 생성

기존의 강수 여부 변수

기상청 외부데이터로 대응시킨 결과 이진 변수 형태가 아닌 수치형 변수 형태로 강수 정보가 존재함

더 많은 정보를 담고 있는 수치형 변수를 대신 활용

사용한 알고리즘

Random Forest

- 앙상블 기법의 대표 모델
- 결정트리와 bagging 결합 모델 과적합을 방지하고 안정성 높음
- 스케일에 구애받지 않음
- 다중공선성 영향이 적음

XGBOOST

- 경사 부스팅 알고리즘을 기반으로 하여 강력한 예측 성능을 제공
- 대용량 데이터셋에 대해서도 빠르고 효율적인 학습이 가능
- 모델의 복잡도를 제어하기 위해 정규화 기법과 조기 종료(early stopping) 기능을 제공하여 과적합 방지

사용한 알고리즘

SVM

- SVM은 주어진 데이터를 가장 잘 분리하는 경계를 찾는 것을 목표로 함
- 과적합에 대한 저항력이 강함
- 이상치에 대한 영향력이 작으며, 데이터 분포에 크게 의존하지 않음
- 고차원 데이터를 처리할 수 있고, 커널(kernel) 함수를 통해 다양한 형태의 비선형 함수를 사용가능
- SVM은 볼록 최적화(convex optimization) 문제로 정식화되어 있어 결과가 최적값에 근접

LGBM

- 경사 부스팅 알고리즘을 기반으로 하여 강력한 예측 성능을 제공
- 잎(leaf)-wise 방식을 사용하여 대규모 데이터셋에서도 빠른 학습 속도를 제공
- 히스토그램 기반의 결정 트리 학습 알고리즘을 사용하기 때문에 기존의 알고리즘보다 훨씬 효율적인 메모리 사용량을 가지며 성능을 제공
- Gradient-Based One-Side Sampling (GOSS)와 Exclusive Feature Bundling (EFB)이라는 두 가지 혁신적인 기술을 사용하여 높은 정확성 유지

모델 구성

모델 평가를 위해 Train Data를 다시 train set과 test set으로 분리

하이퍼 파라미터

Grid Search 기법

조절가능한 매개변수들로 하여금 가능한 모든 조합을 시도하여 최적의 하이퍼파라미터를 찾는 방법

최종 모델 선정

Dacon에 제출한 RMSE 결과로 평가

모델 종류	RANDOM FOREST REGRESSOR	XGBOOST	SVM
데이콘 결과	30.58	30.87	53.42
순위	1	2	3

RANDOMFOREST REGRESSOR로 최종 모델 선정

변수중요도 결과

hour(시간), hour_bef_temperature(기온), weekend(주말여부) 순으로 모델에 반영됨

결론 및 활용방안

결론1

평일 출퇴근, 등하교 시간대에 상대적으로 따릉이 대여 수요가 많다

결론2

주말에는 낮 시간대에 따름이 수요가 많다

결론3

기온이 높아질수록 따릉이 수요가 올라가는 경향이 있다.

결론 및 활용방안

활용방안1

평일 출퇴근, 등하교 시간대 전후로 따릉이 점검시간 확보(주요 시간은 피하기)

활용방안2

주말 낮 시간에는 다중이용시설 근처에 따릉이 배치 늘리기

활용방안3

온도에 높아짐에 따라 따릉이 이용객의 수가 증가하므로 여름에는 사설업체와 협력하여 사설 자전거 추가 배치

감사합니다