Университет ИТМО

Лабораторная работа №5 «Асинхронный обмен данными с ВУ»

по дисциплине: Основы профессиональной деятельности Вариант: <u>3420</u>

Выполнил: Неграш Андрей, Р3130

Проверил: Перминов Илья Валентинович

1) Задание

Лабораторная работа №5

По выданному преподавателем варианту разработать программу асинхронного обмена данными с внешним устройством. При помощи программы осуществить ввод или вывод информации, используя в качестве подтверждения данных сигнал (кнопку) готовности ВУ.

- 1. Программа осуществляет асинхронный вывод данных на ВУ-3
- Программа начинается с адреса 0AA₁₆. Размещаемая строка находится по адресу 5F3₁₆.
 Строка должна быть представлена в кодировке ISO-8859-5.
- Орика должна овтв представлена в кодировке 100-00039-0.
 Фрима графставления строми в ламяти: АДР1: СИМВ1 СИМВ2 АДР2: СИМВ3 СИМВ4 ... СТОП_СИМВ.
 Ввод или вывод строки должен быть завершен по символу с кодом 0A (NL).

2) Текст программы

Адрес	Код команды	Мнемоника	Комментарии		
0AA	0200	CLA	Очистка аккумулятора		
0AB	A812	LD (IP+18)	Загрузка символов		
0AC	0680	SWAB	Сдвиг символа		
0AD	0600	SXTB	Расширение знака байта		
0AE	7E10	CMP IP+10	Сравнение со стоп-символом		
0AF	1306	OUT 6	Вывод символа		
0B0	F00C	BEQ IP+12	Если равны - выход		
0B1	1207	IN 7	Ожидание получения сигнала "готов"		
0B2	2F40	AND 40	Бит 6 SR == 0 («Готов» нажата?)		
0B3	F0FD	BEQ IP-3	Нет - переход к ожиданию сигнала		
0B4	AA09	LD (IP+9)	Загрузка символов		
0B5	0600	SXTB	Расширение знака байта		
0B6	7E08	CMP IP+8	Сравнение со стоп-символом		
0B7	1306	OUT 6	Вывод символа		
0B8	F004	BEQ IP+4	Если равны - выход		
0B9	1207	IN 7	Ожидание получения сигнала "готов"		
OBA	2F40	AND 40	Бит 6 SR == 0 («Готов» нажата?)		
OBB	F0FD	BEQ IP-3	Нет - переход к ожиданию сигнала		
OBC	CEEE	BR IP-18	Переход к новой ячейке памяти		

OBD	0100	HLT	Остановка тактового генератора			
OBE	5F3	ADDR	Адрес текущего элемента			
OBF	000A	EN	Стоп-символ			

3) Описание программы:

Асинхронный вывод заданной строки в кодировке ISO-8859-5 на ВУ-3

Область представления:

ADDR 11 - разрядные целые беззнаковые числа.

Диапазон значений: 0 ... 2 ¹¹ - 1

Область допустимых значений исходных данных и результата и функции: ADDR [5F3; 7FF]

Расположение программы, исходных данных и результата в памяти БЭВМ:

- 0AA 0BD адреса команд программы
- ОВЕ Адрес текущих 2 символов
- ОВ Е Стоп-символ
- 5F3 символы 1-2, 5F4 символы 3-4, 5F5 символ 5 и стоп-символ

Адреса первой и последней исполняемой команды в памяти БЭВМ

- ОАА адрес первой исполняемой команды
- OBD адрес последней исполняемой команды

4) Слово, коды его символов и текст исходной программы на языке Ассемблера БЭВМ:

ORG 0x0AA
START: CLA
S1: LD (ADDR)
SWAB
SXTB
CMP EN
OUT 6
BEQ STOP
LOAD: IN 7
AND #0x40
BEQ LOAD

S2: LD (ADDR)+
SXTB
CMP EN
OUT 6
BEQ STOP
LOAD2: IN 7

буква	код			
С	C1			
Д	D4			
а	D0			
ч	E7			
а	D0			
Л	BB			
а	D0			
б	D1			
Ы	EB			

AND #0x40 BEQ LOAD2

BR S1 STOP: HLT

ADDR: WORD \$X1 EN: WORD 0x000A

ORG 0x5F3

X1: WORD 0xC1D4 X2: WORD 0xD0E7 X3: WORD 0xD0BB X4: WORD 0xD0D1 X5: WORD 0xEB0A

5) Трассировка

Выполняемая		Содержимое регистров процессора после выполнения команды							
команда									
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	NZVC
0AA	0200	0AB	0200	0AA	0200	000	00AA	0000	0100
0AB	A812	0AC	A812	5F3	7374	000	0012	7374	0000
0AC	0680	0AD	0680	0AC	0680	000	00AC	7473	0000
0AD	0600	0AE	0600	0AD	0600	000	00AE	0073	0000
0AE	7E10	0AF	7E10	0AF	000A	000	0010	0073	0001
0AF	1306	0B0	1306	0AF	1306	000	00AF	0073	0001
0B0	F00C	0B1	F00C	0B0	F00C	000	00C0	0073	0001
0B1	1207	0B2	1207	0B1	1207	000	00B1	0000	0001
0B2	2F40	0B3	2F40	0B2	0040	000	0040	0000	0101
0B3	F0FD	0B4	F0FD	0B3	F0FD	000	FFFD	0000	0101
0B4	AA09	0B5	AA09	5F3	7374	000	0009	7374	0001
0B5	0600	0B6	0600	0B5	0600	000	00B5	0074	0001
0B6	7E08	0B7	7E08	0BF	000A	000	0008	0074	0001
0B7	1306	0B8	1306	0B7	1306	000	00B7	0074	0001
0B8	F004	0B9	F004	0B8	F004	000	00B8	0074	0001
0B9	1207	OBA	1207	0B9	1207	000	00B9	0000	0001
OBA	2F40	OBB	2F40	0BA	0040	000	0040	0000	0101
OBB	F0FD	OBC	F0FD	OBB	F0FD	000	FFFD	0000	0101
0BC	CEEE	OBD	CEEE	ОВС	00AB	000	FFEE	0040	0001
0BD	0100	0BE	0100	0BD	0100	000	00BD	0000	0100

6) Вывод:

В ходе выполнения лабораторной работы я познакомился с организацией ввода-вывода базовой ЭВМ. Написал программу на ассемблере БЭВМ.