LA PIU' LUNGA SOTTOSEQUENZA COMUNE (LONGEST COMMON SUBSEQUENCE : LCS)

- · APPLICAZIONI BIOLOGICHE
 - CONFRONTO DNA DI DIVERSI ORGANUMI
- STRUTTURA DNA: FORMATA DA UNA STRINGA DI MOLECOLE
 DETTE BASI (ca. 3.2 x 109)
- BASI : A DENINA (A)
 - CITOSINA (C)
 - GUANINA (G)
 - TIMINA (T)
- QUINDI IL DNA DI UN ORGANISMO PUÒ ESSERE RAPPRESENTATO COME UNA STRINGA NELL'ALFABETO (A, C, G,T)
- LA CORRELAZIONE TRA DUE ORGANISMI PUD' ESSERE "MISURATA" CON IL GRADO DI SOMIGLIANZA DEI LORO DNA

$S_1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA$ $S_2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA$ $S_3 = GTCGTCGGAAGCCGGCCGAA$

VI SOND VARI CRITERI DI SOMIGLIANZA:

- _ UNO DEI DUE FILAMENTI E'SOTTOSTRINGA DELL'ACTRO
 [STRING MATCHING]
- IL NUMERO DI MODIFICHE DA FARE AD UNO DEI

 DUE FILAMBUTI DI DNA PER OTTENERE L'ALTRO

 E' "PICCOLO"

 [DISTAUZA DI EDIT]
- C'E' UN "LUNGO" FILAMENTO, S3, LE CUI BASI

 COMPATIONO SIA IN S, CHE IN S2 (NELLO

 STESSO ORDINE, ANCHE SE IN POSIZIONI NON

 NECESSARIAMENTE CONSECUTIVE)

 [LCS]

UNA SOTTOSEQUENZA DI UNA SEQUENZA DATA X E' UNA SEQUENZA OTTENUTA CANCELLANDO DA X 25RO O PIÙ ELEMENTI (MANTENENDO L'ORDINE). PIÙ PLECISATIONTE, SE X= X1 X2 ... Xm, UNA SEQUENZA Z = Z, Z, ... ZK E' UNA SOTTOS EQUENZA DI X SE ESISTE UNA SEQUENZA (in,iz,...,ix) DI INDICI TALE CHE: X= ... Xi, ... Xi, ... Xi, ... Xi, ... Xi, ... - 15 v, 6 v2 6 ... < i6 5 m 2= 2, 22 ... Zh. $-2j=x_{ij}$, PER OGNI j=1,2,...,kESEMPIO MA X = ABCBDAB.

ALLORA Z = BCDB E' UNA SOTTOSEQUENZA DI X

CORRISPONDENTE ALLA SEQUENZA DI INDICI (2,3,5,7)

DEF DATE DUE SEQUENZE X E Y, DICIAMO CHE Z E'

UNA SOTTOSEQUENZA COMUNE DI X E Y SE Z

E' UNA SOTTOSEQUENZA DI ENTRAMBE LE SEQUENZE X E Y

ESEMPLO

DATE X = ABCBDAB Y = BDCABA,

- LA SEQUENZA Z= B C A E' UNA SOTTOSEQUENZA

 COMUNE DI X E Y .
- O TUTTAVIA B C A NON E' LA PIÙ LUNGA

 SOTTOSEQUENZA COMUNE DI X E Y, IN QUANTO

 B C B A, B C A B, B D A B SONO

 SOTTOSEQUENZE COMUNI DI X E Y (DI LUNGHEZZA

 MASSIMA).

PROBLEMA DELLA PIÙ LUNGA SOMMOSEQUENZA COMUNE:

DATE DUE SEQUENZE X E Y DETERMINARE UNA SOTTOSEQUENZA DI LUNGHEZZA MASSIMA (LCS) CHE SIA COMUNE A X E Y.

1 2 3 4 5 6

SOLUZIONE MEDIANTE RICERCA ESAUSTIVA

E' ESPONENZIALE IN min (IXI, IYI), IN QUANTO UNA SEQUENZA DI LUNGHEZZA M HA ESATTAMENTE 2m SOTTOSE QUEUZE,

COMPLESSITA': ()(mox(|x|,|Y|).2 min(|x1,(Y)))

· IL PROBLEMA DELLA LCS PUÒ ESSERE RISOLTO IN MODO EPPICIENTE UTILIZZANDO LA PROGRAMMAZIONE DINAMICA

FASE 1: CARATTERIZZAZIONE DELLA PIÙ LUNGA SOTTOJEQUENZA COMUNE

NOTAZIONE DATA UNA SERUENZA $X = x_1 x_2 \dots x_m$,

PONIAMO $X_i := x_1 x_2 \dots x_i$,

PER $i = 0,1,2,\dots,m$,

INOLTRE PER OGNI SIMBOLO a DELL'ALFABETTO

PONIAMO $X a := x_1 x_2 \dots x_m a$

ESEMPLO: SE X = ABCBDAB, ALLORA $X_4 = A$, $X_4 = ABCB$, $X_0 = E$ (SEQUENZA VUOTA) $X_3D = ABCD$, ECC.

TEOREMA (SOTTOSTRUTTURA OTTIMA DI UNA LCS)

SIANO DATE DUE SEQUENZE
$$X = x_1 x_2 ... x_m$$
 $Y = y_1 y_2 ... y_n$

TALI CHE $m \ge 1 \in n > 1$,

 $E SLA = 2 = 2 \cdot 2 \cdot ... \cdot 2 \cdot L$

UNA LCS DI $X \in Y$.

1. SE $x_m = y_m$, ALLORA

 $-2_k = x_m = y_m \in V_m = V$

UNA SOTTOSEQUENZA COMUNE DI Xm-1 & Ym-11 SE ZLI NON FOSSE DI LUNGEZZA MASSIMA, ESISTEREBBE W LCS DI Xm-1 & Ym-1 TALE CHE |W|> |Z_1, |, MA, ALLORA Warm SAREBBE UNA SOTTOSERVENZA COMUNE DI X & Y, ASSURDO IN QUANTO |Wxm |> |2 | E 2 E' UNA LCS PI

(2) SE ZE + 2m ALLORA Z E' UNA SOTTOSERVENZA

xm & ym comune DI Xm-1 & Y.

SE ESISTESSE UNA SOTTOSEQUENZA COMUNE W
DI Xm-1 E Y TALE CHE |W|>|Z|, (10'
SAREBBE ASSURDO IN QUANTO W SAREBBE A
MAGGIOR RAGIONE UNA SOTTOSEQUENZA
COMUNE DI X E Y (DI LUNGHEZZA MAGGIORE
DI QUELLA DELLA LCS Z).

(3) SE ZL + YM ALLORA Z E' UNA SOTTS SEQUENZA
CONUNE DI X E YM-1.

SE ESISTESSE UNA SOTTS SEQUENZA CONUNE W DI X E Y_{m-1} TALE CHE |W|>|2|, POICHE! W SAREBBE ANCHE UNA SOTTS SEQUENZA CONUNE X E Y, VERREBBE CONTRADOETTA

LA MASSIMALITA' DI 121.

SPAZLO DEI SOTTOPROBLEMI

$$(X_{1}Y) = (X_{m_{1}}Y_{m}) \longmapsto (X_{m-1}, Y_{m-1}) / (X_{m}, Y_{m-1}) / (X_{m-1}, Y_{m})$$

$$(X_{m-1}, Y_{m-1}) \longmapsto (X_{m-2}, Y_{m-2}) / (X_{m-1}, Y_{m-2}) / (X_{m-2}, Y_{m-1})$$

$$(X_{m}, Y_{m-1}) \longmapsto (X_{m-1}, Y_{m-2}) / (X_{m}, Y_{m-2}) / (X_{m-1}, Y_{m-1})$$

$$(X_{m-1}, Y_{m}) \longmapsto (X_{m-2}, Y_{m-1}) / (X_{m-1}, Y_{m-1}) / (X_{m-2}, Y_{m})$$

$$\vdots$$

SPAZIO DEI SOTTOPROBLEMI

DAL PRECEDENTE TEOREMA SEQUE CHE LO SPAZIO PEI SOTTOPROBLEMI E' {(Xi,Yj): OLICM, OLJEM? LA CUI CARDINALITA' E' O(mm),

FASE 2: SOLUZIONE RICORSIVA

DEFINIAMO CCI, J), PER OSISME OSJEM, COME LA LUNGHEZZA DI UNA LCS DI XI E Y; I IN VIRTU DELLA SOTTOSTRUTTURA OTTIMA SI HA

$$c[i,j] = \begin{cases} 0 & \text{se} & i=0 & \text{o} & j=0 \\ c[i-1,j-1]+1 & \text{se} & i,j>0 & \text{e} & x_i=y_j \\ m_{\delta}x(c[i,j-1],c[i-1,j]) & \text{se} & i,j>0 & \text{e} & x_i\neq y_j \end{cases}$$

- NUMERO n_4 DI SOTTO PLOBLEMI UTILI 22ATI IN UNA =1 SOLUZIONE OTTIMA
- NUMBRO N2 DI SCELTE PER DETERMINARE QUALI < 2 SOTTOPPOBLEMI UTILIZZARE

FASE 3: CALCOLO DELLA LUNGHEZZA DI UNA LCS

LCS_LENGTH (X,Y)

$$m:= length[X]$$
 $n:= length[Y]$
 $for i:= 1 to m do$
 $cci,o):= 0$

for $j:= 0 to m do$
 $cco,j):= 0$
 $for i:= 1 to m do$
 $for i:= 1 to m do$
 $cci,j):= cci-1,j-1]+1;$
 $cci,j):= cci-1,j-1]+1;$

RICORSIVA

COMPLESSITA' DI LCS_LENGTH: (mm)

	LCS	S_LENGTH (X,Y) CALC	OLA LA TABELLA,
		0 1 2 3 4 5 6 u. B D C A B A	DA QUESTA SI
		y _j B D C A B A	EVINCE SUBITO CHE
0	χį	0 0 0 0 0	LA LUNGHEZZA DI UNA
1	A	0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LCS E' 4
2	В	0 1 1 2 2	
3	C	0 1, 1, 2 2 12 12	
4	В	0 R1 1 12 2 3 3	
5	D	0 1 1 82 12 13 13	Z= BCBA
6	A	0 1 12 12 3 13 4	BCAB
7	B	0 8, 12-12 13 84-14	BD A B

PRINT_LCS (b, X, m, m)

		0	L	2	3	4	5	6
		y,j	B	D	C	A	B	A
0	χį	0	0	0	0	0	0	0
1	A	(d)	1º0	10	10	RI	1	ì
2	В	0			\$ -	1	2	2
3	C	0	/r,	71	2	2	2	2
	В	0	R	1,/	12	2/	3	3
4 5	D	0	1	RZ	12	12/	13)	13
6	A	0	r ₁	1/2	12	3	13	4
7	B	0	R	12	12	13	Rc4/	14
		V	d					
		B	(ß			
						-	4	

E' UNA LCS

ESERCIZI

- 15.4-4 SPIEGARE COME CALCOLARE LA LUNGHEZZA DI UNA LCS
 UTILIZZANDO SOLTANTO 2 min (m, m) POSIZIONI NELLA
 TABELLA C PIÙ UNO SPAZIO O(1) AGGIUNTIVO,
 RISOLVERE LO STESSO PROBLEMA UTILIZZANDO min (m, m)
 POSIZIONI PIÙ UNO SPAZIO O(1) AGGIUNTIVO,
- 15.4-5 PROGETTARE UN ALGORITMO $O(m^2)$ PER TROVARE UNA PIÙ LUNGA SOTTOSEQUENZA CRESCENTE DI UNA SEQUENZA DI N NUMERI

15.4-4 SPIEGARE COME CALCOLARE LA LUNGHEZZA DI UNA LCS
UTILIZZANDO SOUTANTO 2 min (m, n) POSIZIONI NELLA
TABELLA C PIÙ UNO SPAZIO O(1) AGGIUNTIVO,
RISOLVERE LO STESSO PROBLEMA UTILIZZANDO min (m, n)
POSIZIONI PIÙ UNO SPAZIO O(1) AGGIUNTIVO,

	В	D	C	A	B	A
Α						
B						
С						
B						
D						
Α						
В						

0	0	0	0	O	O	0
0	O	Ð	0	1	1	1
D	l	1	l	1	2	2
Ð	J	J	2	2	2	2
0	l	l	2	2	3	3
Ð	-	2	2	2	3	3
0	1	2	2	3	3	4
Ð	l	2	2	3	4	4

15.4-4 SPIEGARE COME CALCOLARE LA LUNGHEZZA DI UNA LCS
UTILIZZANDO SOLTANTO 2 min (m, n) POSIZIONI NELLA
TABELLA C PIÙ UNO SPAZIO O(1) AGGIUNTIVO,
RISOLVERE LO STESSO PROBLEMA UTILIZZANDO min (m, n)
POSIZIONI PIÙ UNO SPAZIO O(1) AGGIUNTIVO,

		В	D	C	A	B	Α							
Α	0	1	1	C	1	2	2	0	0	D	0	1	1	4
B								O	l	1	l	1	2	•
C								Ð	ļ	Ţ	2	2	2	
B								0	l	l	1	l	3	
D								Ð	1	2	2	2	3	
Α														
B								Ð	l	2	2	3	4	(
	0	ſ	(2	2	2	2							

15.4-5 PROGETTARE UN ALGORITMO $O(n^2)$ PER TROVARE UNA PIÙ LUNGA SOTTOSEQUENZA CRESCENTE DI UNA SEQUENZA DI N NUMERI

SIA S UNA SERUENZA DI NUMERI

- ORDINARE LA SEQUENZA S ELIMINANDO LE RIPETIZIONI.

SIA SI LA SEQUENZA OTTENUTA

- CERCARE LA LCS DI S ED S..

COMPLESSITA: O(m2)