TEST 3

Math 152 - Calculus II

Score: out of 100

Name:

Read all of the following information before starting the exam:

- You have 50 minutes to complete the exam.
- Show all work, clearly and in order, if you want to get full credit. Please make sure you read the directions for each problem. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Please box/circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has 7 problems and is worth 100 points. It is your responsibility to make sure that you have all of the pages!
- Good luck!

1. Determine whether the sequence converges, and if so find its limit.

(a)
$$\left\{ \frac{4n^3 - 2n + 1}{3n^3 + 2n^2 - 4} \right\}_{n=1}^{\infty}$$

SOL 1:
$$\lim_{n\to\infty} \frac{4n^3-2n+1}{3n^3+2n^2-4} = \lim_{n\to\infty} \frac{(4n^3-2n+1)(\frac{1}{n^2})}{(3n^3+2n^2-4)(\frac{1}{n^3})} = \lim_{n\to\infty} \frac{4-\frac{2}{n^2}+\frac{1}{n^3}}{3+\frac{2}{n}-\frac{4}{n^3}} = \frac{4}{3}$$

Sol 2: Let
$$f(x) = \frac{4x^3 - 2x + 1}{3x^2 + 2x^2 - 4}$$

$$\lim_{x \to \infty} \frac{4x^2 - 2x + 1}{3x^2 + 2x^2 - 4} \stackrel{\text{left}}{=} \lim_{x \to \infty} \frac{12x^2 - 2}{9x^2 + 4x} \stackrel{\text{left}}{=} \lim_{x \to \infty} \frac{24x}{18x + 4} = \lim_{x \to \infty} \frac{24}{18} = \frac{24}{18} = \frac{1}{18}$$

(b) $\left\{ \frac{(\ln n)^2}{3n} \right\}_{n=1}^{\infty}$

So $\lim_{x \to \infty} a_n = \frac{4}{3}$, converges

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{(\ln(x))^2}{3x} \stackrel{\text{left}}{=} \lim_{x \to \infty} \frac{2\ln(x) \cdot (\frac{1}{x})}{3} = \lim_{x \to \infty} \frac{2\ln(x)}{3} \stackrel{\text{left}}{=} \lim_{x \to \infty} \frac{2(\frac{1}{x})}{3} = 0$$

So $\lim_{x \to \infty} \frac{(\ln(n))^2}{3n} = 0$, converges

(c)
$$\left\{\frac{\cos(n)}{n^2}\right\}_{n=1}^{\infty}$$
 (*Hint*: use the Squeeze Theorem)

Notice that
$$\frac{-1}{n^2} \le \frac{\cos(n)}{N^2} \le \frac{1}{n^2}$$
, and $\lim_{n \to \infty} \frac{-1}{n^2} = 0$

Hence, by the Squeeze Thm.

$$\lim_{n \to \infty} \frac{\cos(n)}{n^2} = 0$$
and $\lim_{n \to \infty} \frac{1}{n^2} = 0$
 $\lim_{n \to \infty} \frac{\cos(n)}{n^2} = 0$

Converges

2. Show that the given sequence is strictly increasing or strictly decreasing.

$$\begin{cases}
\frac{5n}{3n+1} \\
\frac{5}{n+1}
\end{cases} \approx \begin{cases}
\frac{5n}{3n+1} \\
\frac{5(n+1)}{3n+1}
\end{cases} = \frac{5(n+1)}{3n+1}$$

$$= \frac{5(n+1)}{3n+1} - \frac{5n}{3n+1}$$

$$= \frac{(5n+5)}{3n+4} \cdot \frac{(3n+1)}{5n}$$

$$= \frac{(5n+5)}{3n+4} \cdot \frac{(3n+1)}{5n}$$

$$= \frac{(5n+5)(3n+1) - 5n(3n+4)}{(3n+1)}$$

3. Each series below is geometric. Determine both a and r. Then decide whether the series converges or diverges. If the series converges, then find its sum. If it diverges, write "NO SUM."

(a)
$$\sum_{k=1}^{\infty} \left(\frac{1}{\ln 2}\right)^{k-1}$$

$$a = \boxed{1}$$
 $r = \boxed{\frac{1}{\ln(2)}}$

since $\frac{1}{\ln(2)}$ >, 1 the series diverges so,

sum = $\boxed{NO SUM}$

(b)
$$\sum_{k=1}^{\infty} (-1)^{k-1} \frac{2^{3k}}{9^{k+1}} = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{8^k}{9^2 q^{k-1}} = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{8 \cdot 8}{9^2 q^{k-1}} = \sum_{k=1}^{\infty} (-1)^{k-1} \frac$$

4. Use the Divergence Test on each of the following to determine whether the given series diverges. If the test yields no conclusion, then be sure to say so. You must set up, evaluate, and interpret the correct limit to earn credit.

(a)
$$\sum_{n=1}^{\infty} \cos\left(\frac{2}{n}\right)$$

$$\lim_{n\to\infty} \cos\left(\frac{2}{n}\right) = \cos(0) = 1 \neq 0$$
 diverges

(b)
$$\sum_{n=1}^{\infty} \frac{n^5 + 3}{3n^6 - n^3 + 1}$$

$$\lim_{N\to\infty} \frac{n^{5}+3}{3n^{6}-n^{3}+1} = \lim_{N\to\infty} \frac{(n^{5}+3)(\frac{1}{n^{6}})}{(3n^{6}-n^{3}+1)(\frac{1}{n^{6}})} = \lim_{N\to\infty} \frac{\frac{1}{n}+\frac{3}{n^{6}}}{3-\frac{1}{n^{3}}+\frac{1}{n^{6}}} = \frac{0+0}{3-0+0}$$

5. Use the Integral Test to determine whether the given series converges or diverges. Clearly identify the function
$$f(x)$$
 you are embedding the sequence of terms into. You may assume that $f(x)$ is positive, decreasing and continuous for $x \ge 1$, so you do not need to verify this. Just use the integral test and state your conclusion.

$$\sum_{n=2}^{\infty} \frac{\ln n}{n}$$

Let
$$f(x) = \frac{\ln(x)}{x}$$

$$\int_{2}^{\infty} \frac{\ln(x)}{x} dx = \lim_{t \to \infty} \int_{2}^{t} \frac{\ln(x)}{x} dx$$

$$u = \ln(x) \implies u(2) = \ln(2)$$

$$u(4) = \ln(1)$$

$$\frac{du}{dx} = \frac{1}{x} \implies dx = x du$$

$$=\lim_{t\to\infty}\int_{\ln(2)}^{\ln(4)}\frac{u}{x}\cdot x\,du=\lim_{t\to\infty}\int_{\ln(2)}^{\ln(4)}u\,du=\lim_{t\to\infty}\left[\frac{u^2}{2}\right]_{\ln(2)}^{\ln(4)}$$

$$=\lim_{t\to\infty}\left[\frac{(\ln(4))^2}{2}-\frac{(\ln(2))^2}{2}\right]$$

6. Use the Limit Comparison Test to determine whether the given series converges or diverges. Clearly

write down what a_n and b_n are, compute the appropriate limit, determine the convergence or divergence of your comparison series $\sum_{n=1}^{\infty} b_n$, and then write your conclusion.

$$\sum_{n=1}^{\infty} \frac{5n}{n^4 + 1}$$

$$a_n = \frac{5n}{n^4 + 1}$$
 $b_n = \frac{5n}{n^4} = \frac{5}{n^3}$

$$\lim_{N\to\infty} \frac{a_{\Lambda}}{b_{\Lambda}} = \lim_{N\to\infty} \frac{\left(\frac{5n}{n^{4+1}}\right)}{\left(\frac{5}{n^{3}}\right)} = \lim_{N\to\infty} \left(\frac{5n}{n^{4+1}}\right) \cdot \left(\frac{n^{3}}{5}\right) = \lim_{N\to\infty} \frac{5n^{4}}{5n^{4}+5}$$

$$= \lim_{N\to\infty} \frac{\left(5_N^{4}\right)}{\left(5_N^{4}+5\right)} \frac{\left(\frac{1}{N^{4}}\right)}{\left(\frac{1}{N^{4}}\right)}$$

$$=\lim_{N\to\infty}\frac{5}{5+\frac{5}{N+1}}=\frac{5}{5+0}$$

diverges

Also, since
$$\sum_{n=1}^{\infty} \frac{5}{n^3} = 5 \sum_{n=1}^{\infty} \frac{1}{n^3}$$

Determine whether the following series converges or diverges. (Hint: there are many ways to do this

$$\frac{\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}}{\frac{1}{N^2 + 1}}$$
Campaisan Test:
$$\frac{1}{N^2 + 1} < \frac{1}{N^2}$$

Since
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 converges (it is a p-series with $p=2$)
$$\sum_{n=1}^{\infty} \frac{1}{n^2+1}$$
 also $\frac{1}{1}$ converges by the comparison test

limit compaison test

$$a_{n} = \frac{1}{N^{2}+1} \qquad b_{n} = \frac{1}{N^{2}}$$

$$\lim_{N \to \infty} \frac{a_{n}}{b_{n}} = \lim_{N \to \infty} \frac{\left(\frac{1}{N^{2}+1}\right)}{\left(\frac{1}{N^{2}}\right)} = \lim_{N \to \infty} \frac{1}{\left(\frac{1}{N^{2}}\right)} = \lim_{N \to \infty} \frac{1}{1 + \frac{1}{N^{2}}} = \frac{1}{1 + 0} = 1$$

finite and positive!

So Both series contage OR Both series divage

Since
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 converges (p-seies with p=2>1)

Both seres divige

 $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ also converges by the limit comparison test

Integral Test: consider
$$f(x) = \frac{1}{x^2+1}$$
 for $x \ge 1$. This function is continuous (rational with no positive $\left(\frac{1}{x^2+1} \frac{C}{K}\right) > 0$)

decreasing $\left(\frac{1}{x^2+1} \frac{C}{K}\right) = \frac{-2 \times C}{\left(x^2+1\right)^2 R_{\frac{1}{2}}} < 0$

$$\int_{1}^{\infty} \frac{1}{x^{2}+1} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}+1} dx = \lim_{t \to \infty} \left[+ a a^{-1}(x) \right]_{1}^{t} = \lim_{t \to \infty} \left[+ a a^{-1}(t) - + a a^{-1}(1) \right] = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$

$$\lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}+1} dx = \lim_{t \to \infty} \left[+ a a^{-1}(t) - + a a^{-1}(1) \right] = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$

$$\lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}+1} dx = \lim_{t \to \infty} \left[+ a a^{-1}(t) - + a a^{-1}(1) \right] = \frac{\pi}{4} - \frac{\pi}{4} = \frac{\pi}{4}$$

$$\lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}+1} dx = \lim_{t \to \infty} \left[+ a a^{-1}(t) - + a a^{-1}(1) \right] = \frac{\pi}{4} - \frac{\pi}{4} = \frac{\pi}{4}$$

$$\lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}+1} dx = \lim_{t \to \infty} \left[+ a a^{-1}(t) - + a a^{-1}(1) \right] = \frac{\pi}{4} - \frac{\pi}{4} = \frac{\pi}{4}$$

$$\lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}+1} dx = \lim_{t \to \infty} \left[+ a a^{-1}(t) - + a a^{-1}(t) \right] = \frac{\pi}{4} - \frac{\pi}{4} = \frac{\pi}{4}$$

$$\lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}+1} dx = \lim_{t \to \infty} \left[+ a a^{-1}(t) - + a a^{-1}(t) \right] = \frac{\pi}{4} - \frac{\pi}{4}$$

$$\lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}+1} dx = \lim_{t \to \infty} \left[+ a a^{-1}(t) - + a a^{-1}(t) \right] = \frac{\pi}{4} - \frac{\pi}{4}$$

$$\lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}+1} dx = \lim_{t \to \infty} \left[+ a a^{-1}(t) - + a a^{-1}(t) \right] = \frac{\pi}{4} - \frac{\pi}{4}$$