Classifier Uncertainty Beyond Calibration

Sébastien Melo, Gaël Varoquaux, and Marine Le Morvan.

The Need for Trustworthy Confidence

 For black-box models in high-stakes settings: need to know the uncertainty behind a decision = confidence scores.

The Need for Trustworthy Confidence

- For black-box models in high-stakes settings: need to know the uncertainty behind a decision = confidence scores.
- Simple metrics (e.g. accuracy) aren't enough: need to evaluate the probabilistic quality of the confidence scores.

The Need for Trustworthy Confidence

- For black-box models in high-stakes settings: need to know the uncertainty behind a decision = confidence scores.
- Simple metrics (e.g. accuracy) aren't enough: need to evaluate the probabilistic quality of the confidence scores.

The Need for Trustworthy Confidence

- For black-box models in high-stakes settings: need to know the uncertainty behind a decision = confidence scores.
- Simple metrics (e.g. accuracy) aren't enough: need to evaluate the probabilistic quality of the confidence scores.

Decomposing Uncertainty

 Proper scoring rules: measure confidence score vs class output. Decomposed into:

The Need for Trustworthy Confidence

- For black-box models in high-stakes settings: need to know the uncertainty behind a decision = confidence scores.
- Simple metrics (e.g. accuracy) aren't enough: need to evaluate the probabilistic quality of the confidence scores.

- Proper scoring rules: measure confidence score vs class output. Decomposed into:
 - Aleatoric Loss: Irreducible error from task randomness.

The Need for Trustworthy Confidence

- For black-box models in high-stakes settings: need to know the uncertainty behind a decision = confidence scores.
- Simple metrics (e.g. accuracy) aren't enough: need to evaluate the probabilistic quality of the confidence scores.

- Proper scoring rules: measure confidence score vs class output. Decomposed into:
 - Aleatoric Loss: Irreducible error from task randomness.
 - Epistemic Loss: Reducible error from the model's lack of knowledge. This is what we need to look at!

The Need for Trustworthy Confidence

- For black-box models in high-stakes settings: need to know the uncertainty behind a decision = confidence scores.
- Simple metrics (e.g. accuracy) aren't enough: need to evaluate the probabilistic quality of the confidence scores.

- Proper scoring rules: measure confidence score vs class output. Decomposed into:
 - Aleatoric Loss: Irreducible error from task randomness.
 - Epistemic Loss: Reducible error from the model's lack of knowledge. This is what we need to look at!
- Epistemic loss: two key components:

The Need for Trustworthy Confidence

- For black-box models in high-stakes settings: need to know the uncertainty behind a decision = confidence scores.
- Simple metrics (e.g. accuracy) aren't enough: need to evaluate the probabilistic quality of the confidence scores.

- Proper scoring rules: measure confidence score vs class output. Decomposed into:
 - Aleatoric Loss: Irreducible error from task randomness.
 - Epistemic Loss: Reducible error from the model's lack of knowledge. This is what we need to look at!
- Epistemic loss: two key components:
 - Calibration Loss: Predicted probabilities and event frequencies don't match: large literature.

The Need for Trustworthy Confidence

- For black-box models in high-stakes settings: need to know the uncertainty behind a decision = confidence scores.
- Simple metrics (e.g. accuracy) aren't enough: need to evaluate the probabilistic quality of the confidence scores.

- Proper scoring rules: measure confidence score vs class output. Decomposed into:
 - Aleatoric Loss: Irreducible error from task randomness.
 - Epistemic Loss: Reducible error from the model's lack of knowledge. This is what we need to look at!
- Epistemic loss: two key components:
 - Calibration Loss: Predicted probabilities and event frequencies don't match: large literature.
 - Grouping Loss: Variance in true probability for samples that were given the same confidence score: one known estimator.

Our Results: Better Estimators for Better Decisions

1. More Sample-Efficient Estimators

 We introduce binning-free estimators for the grouping loss and its associated decision risk.

Figure 1: Our estimator converges faster and more tightly than prior work.

Our Results: Better Estimators for Better Decisions

1. More Sample-Efficient Estimators

 We introduce binning-free estimators for the grouping loss and its associated decision risk.

Figure 1: Our estimator converges faster and more tightly than prior work.

2. Improved Individual Decisions with LLM Cascades

 We use our risk estimates as a per-query quality score to build intelligent LLM cascades.

Figure 2: Our cascade improves accuracy while reducing cost compared to baselines.