Predicting Ames Iowa House Prices

GA DSI Project 2 Julia Kelman

How can we get the best predictions?

Problem Statement

Real estate, Rental & Leasing:

4 Industry contributing to Iowa
Gross Domestic Product

We are a **property management company** looking to expand to the lowa market.

The **Portfolio feature** for our App allows individuals who own real estate properties to **track the value of their homes**.

We need to predict house prices with the highest level of accuracy for the portfolio feature of our App.

We plan to **solve** this problem by using the **Ames Housing Dataset** to build a **regression model** able to predict house prices with the highest R^2 and lowest RMSE.

This model will **inform** which **features** our employees should record during their monthly **inspections**.

Data: The origin

From: Ames Iowa Assessor's Office

Assessment of individual residential properties sold in Ames, IA from 2006 to 2010

2930 Observations81 Variables

Workflow

- Nulls
- Correcting data types
- Reformating non-numeric features
 - Feature engineering
- Dummying categorical features
- VIsualization to identify trends
 - Determining X, y
 - Log y
 - Data scaling
 - Baseline model
- Linear Regression, Lasso, Ridge
 - Calculating R^2, RMSE
 - Visualization

EDA part 1:

Top 10 Features with strongest correlation to Sale Price:

- 1. Overall Quality
- 2. External Quality
- 3. Above ground living area
 - 4. Kitchen Quality
 - 5. Garage Area
 - 6. Garage Cars
 - 7. Total Basement Sq Ft
 - 8. 1st Floor Sq Ft
 - 9. Basement Quality
- 10. True Total Rooms Above Ground

EDA part 2:

Investigating Sale Price Distribution

- Right Skew
- Take the log of sale price in our model

Modeling

X: Every feature except Id, PID, Sale Price, and features included in engineered feature

Y: log(Sale Price)

75 Features:

- 73 Original
- 2 Engineered:
 - \circ Age (Yr sold Yr remodeled)
 - True Total Rooms Above Ground (TotRms Abv Gr + Full Bath + Half Bath)

4 Models:

- Baseline
- Linear Regression
- Ridge
- Lasso

Model Selection

Based on R² and RMSE

	Baseline	Ridge	Lasso
R-squared	Train: 0.0	Train: 0.9297	Train: 0.9256
	Test: -0.0136	Test: 0.8960	Test: 0.9141
RMSE	Train: 79,558	Train: 19,213	Train: 18,972
	Test: 85,053	Test: 26,091	Test: 23,558

Model Selection

Based on R² and RMSE

	Baseline	Ridge	Lasso
R-squared	Train: 0.0	Train: 0.9297	Train: 0.9256
	Test: -0.0136	Test: 0.8960	Test: 0.9141
RMSE	Train: 79,558	Train: 19,213	Train: 18,972
	Test: 85,053	Test: 26,091	Test: 23,558

- 91% of the variation in sale price is explained by our model (relative to our baseline)
 - True prices are approximately \$23,500 from predicted value

Model Evaluation: Our Predictions

Observations:

Good predictions for both the **training** and **testing** data

Findings:

Potential for improvement for higher price range

Model Evaluation: Residuals

Observations:

Acceptable **residuals** for houses with prices **below \$250,000**

Findings:

Potential for improvement for higher price range

Model Evaluation: Features

Top 5 Features with strongest coefficients:

- 1. Above Ground Living Area
 - 2. Overall Quality
 - 3. Year Built
 - 4. Overall Condition
- 5. Finished Basement Sq Ft

A 1 unit increase in those features leads to the biggest expected increase in sale price (all else held constant)

Conclusion

Recommendation

References

- 1. https://www.iowadatacenter.org/quickfacts
- 2. http://jse.amstat.org/v19n3/decock/DataDocumentation.txt

Lasso Regression model with **all features** included gives us the **highest predictive power**.

Create **procedure** for employees to **collect data on those variables** during visits.

Only 17 features are subject to change after initial assessment.

