Cálculo Lambda Tipado (1/3)

¿Qué es el Cálculo Lambda?

- Modelo de computación basado en funciones
 - ▶ da origen a la programación funcional
- Introducido por Alonzo Church en 1934
- Computacionalmente completo (i.e. Turing completo)

Expresiones de tipos de λ^b

Las expresiones de tipos (o simplemente tipos) de λ^b son

$$\sigma, \tau$$
 ::= Bool | $\sigma \to \tau$

Descripción informal:

- ▶ Bool es el tipo de los booleanos,
- $\sigma \to \tau$ es el tipo de las funciones de tipo σ en tipo τ

Términos de λ^b

Sea $\mathcal X$ un conjunto infinito enumerable de variables y $x\in\mathcal X$. Los términos de λ^b están dados por

```
M,P,Q ::= true

| false

| if M then P else Q

| M N

| \lambda x : \sigma . M

| x
```

Términos de λ^b

Descripción informal:

- true y false son las constantes de verdad,
- ▶ if M then P else Q es el condicional,
- ► M N es la aplicación de la función denotada por el término M al argumento N.
- $ightharpoonup \lambda x : \sigma.M$ es una función cuyo parámetro formal es x y cuyo cuerpo es M
- x es una variable de términos,

Ejemplos

- $\triangleright \lambda x$: Bool.x
- λx : Bool.if x then false else true
- \blacktriangleright $\lambda f : \sigma \to \tau.\lambda x : \sigma.f x$
- $(\lambda f : Bool \rightarrow Bool.f \ true)(\lambda y : Bool.y)$
- ► x y

Variables ligadas y libres

Una variable puede ocurrir libre o ligada en un término. Decimos que "x" ocurre libre si no se encuentra bajo el alcance de una ocurrencia de " λ x". Caso contrario ocurre ligada.

► λx : Bool.if \underbrace{x}_{ligada} then true else false

• λx : Bool. λy : Bool.if true then \underbrace{x}_{ligada} else \underbrace{y}_{ligada} • λx : Bool.if \underbrace{x}_{ligada} then true else \underbrace{y}_{libre} • $(\lambda x$: Bool.if \underbrace{x}_{ligada} then true else false) \underbrace{x}_{ligada}

Variables libres: Definición formal

$$FV(x) \stackrel{\mathrm{def}}{=} \{x\}$$

$$FV(true) = FV(false) \stackrel{\mathrm{def}}{=} \emptyset$$

$$FV(if M \text{ then } P \text{ else } Q) \stackrel{\mathrm{def}}{=} FV(M) \cup FV(P) \cup FV(Q)$$

$$FV(MN) \stackrel{\mathrm{def}}{=} FV(M) \cup FV(N)$$

$$FV(\lambda x : \sigma.M) \stackrel{\mathrm{def}}{=} FV(M) \setminus \{x\}$$

Sistema de tipado

► Sistema formal de deducción (o derivación) para caracterizar un subconjunto de los términos llamados tipados.

 $M:\sigma$

Términos de λ^b

Sea $\mathcal X$ un conjunto infinito enumerable de variables y $x\in\mathcal X$. Los términos de λ^b están dados por

```
M ::= x
\mid true
\mid false
\mid if M then P else Q
\mid \lambda x : \sigma.M
\mid M N
```

Sistema de tipado

Un contexto de tipado es un conjunto de pares $x_i : \sigma_i$, anotado $\{x_1 : \sigma_1, \ldots, x_n : \sigma_n\}$ donde los $\{x_i\}_{i \in 1...n}$ son distintos. Usamos letras Γ, Δ, \ldots para contextos de tipado.

Un juicio de tipado es una expresión de la forma $\Gamma \rhd M$: σ que se lee:

"el término M tiene tipo σ asumiendo el contexto de tipado Γ "

El significado de $\Gamma \rhd M : \sigma$ se establece a través de la introducción de axiomas y reglas de tipado.

Axiomas de tipado de λ^b

$$\frac{}{\Gamma \rhd \textit{true} : \textit{Bool}} \text{(T-True)} \qquad \frac{}{\Gamma \rhd \textit{false} : \textit{Bool}} \text{(T-False)}$$

$$\frac{x : \sigma \in \Gamma}{\Gamma \rhd x : \sigma} \text{(T-Var)}$$

Reglas de tipado de λ^b

$$\frac{\Gamma \rhd M : Bool \quad \Gamma \rhd P : \sigma \quad \Gamma \rhd Q : \sigma}{\Gamma \rhd if \quad M \quad then P \quad else \quad Q : \sigma} (\text{T-IF})$$

$$\frac{\Gamma, x : \sigma \rhd M : \tau}{\Gamma \rhd \lambda x : \sigma.M : \sigma \to \tau} (\text{T-Abs}) \qquad \frac{\Gamma \rhd M : \sigma \to \tau \quad \Gamma \rhd N : \sigma}{\Gamma \rhd M N : \tau} (\text{T-App})$$

Sistema de tipado

- Si Γ ▷ M : σ puede derivarse usando los axiomas y reglas de tipado decimos que es derivable.
- ▶ Decimos que M es tipable si el juicio de tipado $\Gamma \rhd M$: σ puede derivarse, para algún Γ y σ .

Resultados básicos

Unicidad de tipos

Si $\Gamma \rhd M : \sigma$ y $\Gamma \rhd M : \tau$ son derivables, entonces $\sigma = \tau$

Weakening+Strengthening

Si $\Gamma \rhd M : \sigma$ es derivable y $\Gamma \cap \Gamma'$ contiene a todas las variables libres de M, entonces $\Gamma' \rhd M : \sigma$

Semántica

lacktriangle Vamos a definir una semántica operacional para λ^b

¿Qué es semántica operacional?

- Consiste en
 - interpretar a los términos como estados de una máquina abstracta y
 - definir una función de transición que indica, dado un estado, cuál es el siguiente estado
- ► Significado de un término *M*: el estado final que alcanza la máquina al comenzar con *M* como estado inicial
- Formas de definir semántica operacional
 - Small-step: la función de transición describe un paso de computación
 - Big-step (o Natural Semantics): la función de transición, en un paso, evalúa el término a su resultado

Semántica operacional

La formulación se hace a través de juicios de evaluación

$$M \rightarrow N$$

que se leen: "el término M reduce, en un paso, al término N"

- ► El significado de un juicio de evaluación se establece a través de:
 - Axiomas de evaluación: establecen que ciertos juicios de evaluación son derivables.
 - Reglas de evaluación establecen que ciertos juicios de evaluación son derivables siempre y cuando ciertos otros lo sean.

Semántica Operacional - Expr. booleanas

Valores

 $V ::= true \mid false$

Semántica Operacional - Expr. booleanas

$$\frac{1}{\text{if true then } M_2 \text{ else } M_3 \to M_2} \text{(E-IFTrue)}$$

$$\frac{1}{\text{if false then } M_2 \text{ else } M_3 \to M_3} \text{(E-IFFALSE)}$$

$$\frac{1}{\text{if } M_1 \text{ then } M_2 \text{ else } M_3 \to \text{if } M_1' \text{ then } M_2 \text{ else } M_3} \text{(E-IFFALSE)}$$

Ejemplos

 $\frac{}{\textit{if false then false else true}} \underbrace{\frac{\text{(E-IFFALSE)}}{\textit{if (if false then false else true) then false else true}}}_{\textit{if true then false else true}} \underbrace{\text{(E-IF)}}_{\textit{observar que}}$

▶ No existe M tal que $true \rightarrow M$ (idem con false).

Ejemplos

if true then (if false then false else true) else true

→ if true then true else true

La estrategia de evaluación corresponde con el orden habitual en lenguajes de programación.

- 1. Primero evaluar la guarda del condicional
- 2. Una vez que la guarda sea un valor, seguir con la expresión del then o del else, según corresponda

Propiedades

Lema (Determinismo del juicio de evaluación en un paso) Si $M \to M'$ y $M \to M''$, entonces M' = M''

Propiedades

Una forma normal es un término que no puede evaluarse más (i.e. M tal que no existe $N,\ M \to N$)

Lema

Todo valor está en forma normal

- ► No vale el recíproco: ejemplos
 - ▶ if x then true else false
 - ▶ X
 - true false

Evaluación en muchos pasos

El juicio de evaluación de muchos pasos \rightarrow es la clausura reflexiva, transitiva de \rightarrow . Es decir, la menor relación tal que

- 1. Si $M \to M'$, entonces $M \to M'$
- 2. $M \rightarrow M$ para todo M
- 3. Si $M \rightarrow M'$ y $M' \rightarrow M''$, entonces $M \rightarrow M''$

Evaluación en muchos pasos - Propiedades

Lema (Unicidad de formas normales)

Si $M \rightarrow U$ y $M \rightarrow V$ con U, V formas normales, entonces U = V

Lema (Terminación)

Para todo M existe una forma normal N tal que M woheadrightarrow N

Semántica operacional de λ^b

Valores

$$V ::= true \mid false \mid \lambda x : \sigma.M$$

Todo término bien-tipado y cerrado de tipo

- ▶ Bool evalúa, en cero o más pasos, a true, false
- $ightharpoonup \sigma
 ightharpoonup au$ evalúa, en cero o más pasos, a $\lambda x:\sigma.M$, para alguna variable x y término M

Semántica operacional de λ^b

Juicio de evaluación en un paso

$$\frac{M_1 \to M_1'}{M_1 M_2 \to M_1' M_2} (\text{E-APP1} / \mu)$$

$$\frac{M_2 \to M_2'}{(\lambda x : \sigma.M) M_2 \to (\lambda x : \sigma.M) M_2'} (\text{E-APP2} / \nu)$$

$$\frac{(\lambda x : \sigma.M) V \to (\text{E-APPABS} / \beta)}{(\lambda x : \sigma.M) V \to (\text{E-APPABS} / \beta)}$$

Sustitución

$$M\{x \leftarrow N\}$$

- "Sustituir todas las ocurrencias libres de x en el término M por el término N"
- Operación importante que se usa para darle semántica a la aplicación de funciones (entre otras)
- Es sencilla de definir pero requiere cuidado en el tratamiento de los ligadores de variables (i.e. con " λx ")

Sustitución

```
x\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} N
a\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} a \text{ si } a \in \{true, false\} \cup \mathcal{X} \setminus \{x\}
(if M \text{ then } P \text{ else } Q)\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} if M\{x \leftarrow N\}
then P\{x \leftarrow N\}
else Q\{x \leftarrow N\}
(M_1 M_2)\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} M_1\{x \leftarrow N\} M_2\{x \leftarrow N\}
(\lambda y : \sigma.M)\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} ?
```

Captura de variables

"Sustituir la variable x por el término z"
$$(\lambda z : \sigma.x)\{x \leftarrow z\} = \lambda z : \sigma.z$$

- ▶ ¡Hemos convertido a la función constante λz : σ .x en la función identidad!
- **El** problema: " λz : σ " capturó la ocurrencia libre de z
- Hipótesis: los nombres de las variables ligadas no son relevantes
 - ▶ la ecuación de arriba debería ser comparable con $(\lambda w : \sigma.x)\{x \leftarrow z\} = \lambda w : \sigma.z$
- Conclusión: Para definir (λy : σ.M){x ← N} asumiremos que la variable ligada y se renombró de tal manera que no ocurre libre en N

α -equivalencia

- Dos términos M y N que difieren solamente en el nombre de sus variables ligadas se dicen α-equivalentes
- ightharpoonup lpha-equivalencia es una relación de equivalencia
- ightharpoonup De aquí en más identificaremos términos lpha-equivalentes.

- $\lambda x : Bool.x =_{\alpha} \lambda y : Bool.y$
- λx : Bool. $y =_{\alpha} \lambda z$: Bool.y
- $\blacktriangleright \lambda x$: Bool. $y \neq_{\alpha} \lambda x$: Bool.z
- $\blacktriangleright \lambda x$: Bool. λx : Bool. $x \neq_{\alpha} \lambda y$: Bool. λx : Bool.y

Sustitución - Revisada

$$x\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} N$$

$$a\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} a \quad \text{si } a \in \{\text{true}, \text{false}\} \cup \mathcal{X} \setminus \{x\}$$

$$(\text{if } M \text{ then } P \text{ else } Q)\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} \text{ if } M\{x \leftarrow N\} \text{ then } P\{x \leftarrow N\}$$

$$else \ Q\{x \leftarrow N\}$$

$$(M_1 M_2)\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} M_1\{x \leftarrow N\} M_2\{x \leftarrow N\}$$

$$(\lambda y : \sigma.M)\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} \lambda y : \sigma.M\{x \leftarrow N\} \ x \neq y, \ y \notin FV(N)$$

- 1. NB: la condición $x \neq y$, $y \notin FV(N)$ siempre puede cumplirse renombrando apropiadamente
- 2. Técnicamente, la sust. está definida sobre clases de lpha-equivalencia de términos

Semántica operacional de λ^b

Juicio de evaluación en un paso

$$\frac{M_1 \to M_1'}{M_1 M_2 \to M_1' M_2} (\text{E-App1} / \mu)$$

$$\frac{M_2 \to M_2'}{(\lambda x : \sigma.M) M_2 \to (\lambda x : \sigma.M) M_2'} (\text{E-App2} / \nu)$$

$$\frac{(\lambda x : \sigma.M) \bigvee \to M\{x \leftarrow \bigvee\}}{(\lambda x : \sigma.M) \bigvee \to M\{x \leftarrow \bigvee\}}$$

Además de (E-IFTRUE), (E-IFFALSE), (E-IF)

Estado de error

- Estado (=término) que no es un valor pero en el que la evaluación está trabada
- Representa estado en el cual el sistema de run-time en una implementación real generaría una excepción

Ejemplos

- ▶ if x then M else N
 - ► Obs: no es cerrado
- ► true M
 - ► Obs: no es tipable

Objetivo de un sistema de tipos

Garantizar la ausencia de estados de error

► Si un término cerrado está bien tipado (y termina!), entonces evalúa a un valor

Corrección

Corrección = Progreso + Preservación

Progreso

Si *M* es cerrado y bien tipado entonces

- 1. M es un valor
- 2. o bien existe M' tal que $M \rightarrow M'$

La evaluación no puede trabarse para términos cerrados, bien tipados que no son valores

Preservación

Si $\Gamma \rhd M : \sigma \lor M \to N$, entonces $\Gamma \rhd N : \sigma$

La evaluación preserva tipos

Tipos y términos de λ^{bn}

$$\sigma ::= Bool \mid Nat \mid \sigma \rightarrow \rho$$

$$M ::= \ldots \mid 0 \mid succ(M) \mid pred(M) \mid iszero(M)$$

Descripción informal:

- ightharpoonup succ(M): evaluar M hasta arrojar un número e incrementarlo
- ightharpoonup pred(M): evaluar M hasta arrojar un número y decrementar
- iszero(M): evaluar M hasta arrojar un número, luego retornar true/false según sea cero o no

Tipado de λ^{bn}

Agregamos a los axiomas y regla de tipado de λ^b los siguientes:

$$\frac{\Gamma \rhd M : \mathit{Nat}}{\Gamma \rhd \mathit{Nat}} (\mathrm{T}\text{-}\mathrm{Zero})$$

$$\frac{\Gamma \rhd M : \mathit{Nat}}{\Gamma \rhd \mathit{succ}(M) : \mathit{Nat}} (\mathrm{T}\text{-}\mathrm{Succ}) \qquad \frac{\Gamma \rhd M : \mathit{Nat}}{\Gamma \rhd \mathit{pred}(M) : \mathit{Nat}} (\mathrm{T}\text{-}\mathrm{Pred})$$

$$\frac{\Gamma \rhd M : \mathit{Nat}}{\Gamma \rhd \mathit{iszero}(M) : \mathit{Bool}} (\mathrm{T}\text{-}\mathrm{IsZero})$$

Valores y evaluación en un paso de λ^{bn} (1/2)

Valores

$$V ::= \ldots \mid \underline{n} \text{ donde } \underline{n} \text{ abrevia } succ^n(0).$$

Juicio de evaluación en un paso (1/2)

$$egin{aligned} rac{M_1
ightarrow M_1'}{succ(M_1)
ightarrow succ(M_1')} & ext{(E-Succ)} \ \hline \ rac{m_1
ightarrow M_1}{pred(0)
ightarrow 0} & rac{M_1
ightarrow M_1'}{pred(M_1)
ightarrow pred(M_1')} & ext{(E-PredSucc)} \end{aligned}$$

Valores y evaluación en un paso de $\lambda^{bn}(2/2)$

Juicio de evaluación en un paso (2/2)

$$rac{iszero(0)
ightarrow true}{(ext{E-IsZeroZero})}$$
 $rac{iszero(\underline{n+1})
ightarrow false}{M_1
ightarrow M_1'} ext{(E-IsZeroSucc)}$
 $rac{M_1
ightarrow M_1'}{iszero(M_1)
ightarrow iszero(M_1')} ext{(E-IsZero)}$

Además de los juicios de evaluación en un paso de λ^b .

Tipos y términos de $\lambda^{\dots r}$

Sea $\mathcal L$ un conjunto de etiquetas

$$\sigma ::= \ldots \mid \{I_i : \sigma_i^{i \in 1..n}\}$$

- ► {nombre : String, edad : Nat}
- ► {persona : {nombre : String, edad : Nat}, cuil : Nat}

 $\{\textit{nombre}: \textit{String}, \textit{edad}: \textit{Nat}\} \neq \{\textit{edad}: \textit{Nat}, \textit{nombre}: \textit{String}\}$

Tipos y términos de $\lambda^{\dots r}$

$$M ::= \ldots |\{I_i = M_i | i \in 1..n\}| M.I$$

Descripción informal:

- ▶ El registro $\{I_i = M_i^{i \in 1..n}\}$ evalúa a $\{I_i = V_i^{i \in 1..n}\}$ donde V_i es el valor al que evalúa M_i , $i \in 1..n$
- ▶ M.I: evaluar M hasta que arroje $\{I_i = V_i^{i \in 1..n}\}$, luego proyectar el campo correspondiente

Ejemplos

- ▶ λx : Nat. λy : Bool. $\{edad = x, esMujer = y\}$
- ▶ λp : {edad : Nat, esMujer : Bool}.p.edad
- $(\lambda p : \{edad : Nat, esMujer : Bool\}.p.edad)$ $\{edad = 20, esMujer = false\}$

Tipado de $\lambda^{\dots r}$

$$\frac{\Gamma \rhd M_i : \sigma_i \quad \text{para cada } i \in 1..n}{\Gamma \rhd \{I_i = M_i \stackrel{i \in 1..n}{\}} : \{I_i : \sigma_i \stackrel{i \in 1..n}{\}} } \text{ (T-Rcd)}$$

$$\frac{\Gamma \rhd M : \{l_i : \sigma_i \stackrel{i \in 1..n}{} \} \quad j \in 1..n}{\Gamma \rhd M.l_j : \sigma_j} \text{(T-Proj)}$$

Semántica operacional de $\lambda^{\dots r}$

Valores

$$V ::= \ldots |\{I_i = V_i | i \in 1...n\}$$

Semántica operacional de $\lambda^{\dots r}$

$$\frac{j \in 1..n}{\{l_i = V_i^{i \in 1..n}\}.l_j \to V_j} \text{(E-ProjRcd)}$$

$$\frac{M \to M'}{M.l \to M'.l} \text{(E-Proj)}$$

$$\frac{M_{j} \to M'_{j}}{\{l_{i} = V_{i} \ ^{i \in 1..j-1}, l_{j} = M_{j}, l_{i} = M_{i} \ ^{i \in j+1..n}\}} \to \{l_{i} = V_{i} \ ^{i \in 1..j-1}, l_{j} = M'_{j}, l_{i} = M_{i} \ ^{i \in j+1..n}\}$$

Tipos y términos de $\lambda^{...let}$

$$M ::= \ldots \mid let \ x : \sigma = M \ in \ N$$

Descripción informal:

- ▶ let $x : \sigma = M$ in N: evaluar M a un valor V, ligar x a V y evaluar N
- ► Mejora la legibilidad
- La extensión con let no implica agregar nuevos tipos

Ejemplo

- let $x : Nat = \underline{2}$ in succ(x)
- ▶ pred (let $x : Nat = \underline{2} \text{ in } x$)
- ▶ let $x : Nat = \underline{2}$ in let $x : Nat = \underline{3}$ in x

Tipado de $\lambda^{\dots let}$

$$\frac{\Gamma\rhd M:\sigma_1\quad \Gamma,x:\sigma_1\rhd N:\sigma_2}{\Gamma\rhd \mathit{let}\ x:\sigma_1=M\ \mathit{in}\ N:\sigma_2}\left(\text{T-Let}\right)$$

Semántica operacional de $\lambda^{\dots let}$

$$\frac{\textit{M}_1 \rightarrow \textit{M}_1'}{\textit{let } x : \sigma = \textit{M}_1 \textit{ in } \textit{M}_2 \rightarrow \textit{let } x : \sigma = \textit{M}_1' \textit{ in } \textit{M}_2} \text{ (E-Let)}$$

$$\frac{\textit{let } x : \sigma = \textit{V}_1 \textit{ in } \textit{M}_2 \rightarrow \textit{M}_2 \{x \leftarrow \textit{V}_1\}}{\textit{let } x : \sigma = \textit{V}_1 \textit{ in } \textit{M}_2 \rightarrow \textit{M}_2 \{x \leftarrow \textit{V}_1\}}$$