Reversible Networks make 3D Image-to-Image Translation Memory-Efficient

Chest CT Super-resolution and Domain-adaptation using Memory-efficient 3D Reversible GANs

Tycho F.A. van der Ouderaa [1, 2], Daniel E. Worrall [2], Bram van Ginneken [1]

[1] Radboud UMC

[2] University of Amsterdam

HOW REVGAN WORKS

OBJECTIVE

Image-to-image translation losses from Pix2pix [2] for paired and CycleGAN [3] for unpaired:

$$egin{aligned} L_{ ext{paired}}(F,G) &= L_{ ext{GAN}}(G,D_X) + L_{ ext{GAN}}(F,D_Y) \ &+ \lambda(L_{ ext{L1}}(F,X,Y) + L_{ ext{L1}}(G,X,Y)) \end{aligned}$$

$$egin{aligned} L_{ ext{unpaired}}(F,G) &= L_{ ext{GAN}}(G,D_X) + L_{ ext{GAN}}(F,D_Y)) \ &+ \lambda L_{ ext{cyc}}(G,F) \end{aligned}$$

INTRO

Reversible layers can be effectively used to make image-to-image models more memory-efficient.

This allows us to train deep models on memory-intensive **3D medical data**.

PROS

- Equivalent or improved performance
- More memory-efficient
- Works in 3D

CONS

 Trade-off between computation time and memory savings

RESULTS: MEMORY-EFFICIENCY

Depth	Model	Activations (Ours)	Activations (Naive)
0	630.0	$+\ 2312.4$	(+ 2316.6)
1	644.0	$+\ {f 2312.4}$	(+2719.2)
2	652.0	$+\ {f 2312.4}$	(+3919.3)
4	700.0	$+\ {f 2312.4}$	(+4319.2)
8	748.0	$+\ {f 2312.4}$	(+5519.5)

Table 1: Memory usage (MiB) of 3D-RevGAN (lower is better)

REVERSIBLE LAYERS

For the core we use reversible residual layers using a technique known as *additive coupling* [4, 5]:

Figure 1b: Inverse additive coupling

RESULTS: QUANTITATIVE PERFORMANCE

Model	Super-resolution (LR \rightarrow HR)			Domain-adaptation (B50f→B30f)		
	MAE	PSNR	SSIM	MAE	PSNR	SSIM
Unpaired	0.24 ± 0.007	15.43 ± 0.39	0.44 ± 0.008	0.14 ± 0.003	14.56 ± 0.22	0.28 ± 0.004
${\rm Unpaired}{+}2{\rm R}$	0.23 ± 0.014	16.43 ± 0.44	0.50 ± 0.024	0.13 ± 0.003	17.44 ± 0.20	0.29 ± 0.003
Paired	0.18 ± 0.001	15.89 ± 0.16	0.46 ± 0.008	0.14 ± 0.001	18.29 ± 0.15	0.33 ± 0.007
Paired+2R	0.15 ± 0.000	18.19 ± 0.08	0.48 ± 0.008	0.10 ± 0.001	23.24 ± 0.16	0.46 ± 0.009

Table 2: Quantitative results on super-resolution and domain-adaptation tasks

RESULTS: QUALITATIVE PERFORMANCE

Figure 2: Qualitative results on super-resolution task

SUPER-RESOLUTION DATASET

18 train volumes and 5 test volumes.

Total 671 (±49) slices of size 1024 × 1024.

High-end Canon CT scanner (Aquilion ONE).

Train for 125 epochs on 128×128×128 patches.

Normalized to [-1, 1], uniformly from [-1150, 350] HU.

Down-sampling 4 times in z-dim, 2 times in x-dim and y-dim.

DOMAIN-ADAPTATION DATASET

17 train volumes and 3 test volumes from NLST Dataset. Siemens scanner in both smooth (B30f) and sharper (B50f) reconstruction kernel.

Each scan contains an average of 169 (±14.7) axial 512×512 slices.

We train for 125 epochs on 64×64×64 patches. Normalized to [-1, 1], uniformly from [-1150, 350] HU.

PROJECT WEBSITE

The full paper, code and contact information can be found on the project website: https://tychovdo.github.io/RevGAN/midl/

REFERENCES

[1] Tycho F.A. van der Ouderaa, Daniel E. Worrall. "Reversible GANs for Memory-efficient Image-to-Image Translation", in CVPR 2019.

[2] Phillip Isola, et al. "Image-to-Image Translation with Conditional Adversarial Networks", in CVPR 2017.[3] Jun-Yan Zhu, et al. "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks" in ICCV 2017.

[4] L. Dinh, D. Krueger, and Y. Bengio. "NICE: Non-linear

independent components estimation", 2015. [5] Aidan N. Gomez, et al. "The Reversible Residual Network: Backpropagation Without Storing Activations", in NIPS 2017.

