Лабораторная работа 2.1.6 Эффект Джоуля-Томсона

Шерхалов Денис Б02-204

21 марта 2023 г.

Цель работы: 1) Определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры; 2) вычисление по результатам опытов коэффициентов Ван-дер-Ваальса «а» и «b».

В работе используются: трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; микровольтметр; балластный баллон; манометр.

1. Введение

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля—Томсона демонстрирует отличие исследуемого газа от идеального.

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой. Трубка 1 хорошо теплоизолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки 2 в область с атмосферным давлением P_2 . Перепад давления $\Delta P = P_1 - P_2$ из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля–Томсона определяется по разности температуры газа до и после перегородки.

Рассмотрим стационарный поток газа между произвольными сечениями I и II трубки (до перегородки и после нее). Пусть, для определенности, через трубку прошел 1 моль углекислого газа; μ — его молярная масса. Молярные объемы газа, его давления и отнесенные к молю внутренние энергии газа в сечениях I и II обозначим соответственно V_1 , P_1 , U_1 и V_2 , P_2 , U_2 . Для того чтобы ввести в трубку объем V_1 , над газом нужно совершить работу $A_1 = P_1V_1$. Проходя через сечение II, газ сам совершает работу $A_2 = P_2$ V_2 . Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right). \tag{1}$$

В уравнении (1) учтено изменение как внутренней (первые члены в скобках), так и кинетической (вторые члены в скобках) энергии газа. Подставляя в (1) написанные выражения

для A_1 и A_2 и перегруппировывая члены, найдем

$$H_1 - H_2 = (U + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu \left(v_2^2 - v_1^2 \right)$$
 (2)

Сделаем несколько замечаний. Прежде всего отметим, что в процессе Джоуля—Томсона газ испытывает в пористой перегородке существенное трение, приводящее к ее нагреву. Потери энергии на нагрев трубки в начале процесса могут быть очень существенными и сильно искажают ход явления. После того как температура трубки установится и газ станет уносить с собой все выделенное им в пробке тепло, формула (1) становится точной, если, конечно, теплоизоляция трубки достаточно хороша и не происходит утечек тепла наружу через ее стенки.

Второе замечание связано с правой частью (2). Процесс Джоуля–Томсона в чистом виде осуществляется лишь в том случае, если правой частью можно пренебречь, т. е. если макроскопическая скорость газа с обеих сторон трубки достаточно мала. У нас сейчас нет критерия, который позволил бы установить, когда это можно сделать. Поэтому мы отложим на некоторое время обсуждение вопроса о правой части (2), а пока будем считать, что энтальпия газа не меняется.

Рассмотрим выражение:

$$\mu_{\text{Д-T}} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_p} \tag{3}$$

Из формулы (3) видно, что эффект Джоуля—Томсона для не очень плотного газа зависит от соотношения величин a и b, которые оказывают противоположное влияние на знак эффекта. Если силы взаимодействия между молекулами велики, так что превалирует «поправка на давление», то основную роль играет член, содержащий a, и

$$\frac{\Delta T}{\Delta P} > 0,$$

то есть газ при расширении охлаждается ($\Delta t < 0$ так как всегда $\Delta P < 0$). В обратном случае (малые а):

$$\frac{\Delta T}{\Delta P} < 0,$$

то есть газ нагревается ($\Delta t < 0$ так как по-прежнему $\Delta P < 0$).

Этот результат нетрудно понять из энергетических соображений. Как мы уже знаем, у идеального газа эффект Джоуля-Томсона отсутствует. Идеальный газ отличается от реального тем, что в нем можно пренебречь потенциальной энергией взаимодействия молекул. Наличие этой энергии приводит к охлаждению или нагреванию реальных газов при расширении. При больших а велика энергия притяжения молекул. Это означает, что потенциальная энергия молекул при их сближении уменьшается, а при удалении — при расширении газа — возрастает. Возрастание потенциальной энергии молекул происходит за счет их кинетической энергии — температура газа при расширении падает. Аналогичные рассуждения позволяют понять, почему расширяющийся газ нагревается при больших значениях b.

Как следует из формул, при температуре T_i коэффициент $\mu_{\text{д-т}}$ обращается в нуль. Используя связь между коэффициентами a и b и критической температурой, найдем:

$$T_{\text{инв}} = \frac{2a}{bR}, \qquad T_{\text{инв}} = \frac{27}{4}T_{\text{кр}}$$
 (4)

При температуре $T_{\text{инв}}$ эффект Джоуля–Томсона меняет знак: ниже температуры инверсии эффект положителен ($\mu_{\text{д-т}} > 0$, газ охлаждается), выше $T_{\text{инв}}$ эффект отрицателен ($\mu_{\text{д-т}} < 0$, газ нагревается).

Рис. 1: Схема установки для изучения эффекта Джоуля-Томсона

2. Выполнение

- 1. Убедившись в том, что термостат залит водой, а все электрические приборы заземлены. Установим на контактном термометре температуру регулирования, близкую к комнатной $T_1 = T_{\kappa} = 20.80^{\circ}C$.
- 2. Включим вольметр и иземерим паразитные ЭДС при $\Delta P = 0$, получим $U_0 = 1$ мкВ. Откроем регулирующий вентиль В настолько, чтобы избыточное давление составило $\Delta P = 4$ бар. Теперь будем постепенно понижая давление, выжидать установления равновесия и снимать показания вольтметра. Провести соответствующие измерения удалось 4 раза. Далее $\Delta U = 1$ мкВ
- 3. В результате построения Графиков №1-4 соответственно по Таблицам №1-4 имеем такие соотношения (Таблица №5):

Таблица 1: Измерение при $T_1=20.80^{\circ}C,~\alpha_{\frac{\text{мкB}}{\circ}C}=40.3,~\delta T=0.02^{\circ}C$

ΔP , бар	4.0	3.5	3.0	2.5	2.0
$U-U_0$, мкВ	-118	-97	-75	-56	-37
ΔT , °C	-2.93	-2.41	-1.86	-1.39	-0.92

Таблица 2: Измерение при $T_2=30.00^{\circ}C,~\alpha_{\frac{\text{мкB}}{\circ}C}^{\text{мкB}}=41.15,~\delta T=0.02^{\circ}C$

ΔP , бар	4.0	3.5	3.0	2.5	2.0
$U-U_0$, мкВ	-111	-90	-65	-48	-34
ΔT , °C	-2.70	-2.19	-1.58	-1.17	-0.83

4. Теперь по Таблице №5 построим Графиков №5 $\mu(T^{-1})$.

$$k = -670 \frac{K^2}{6 \text{ap}}, \quad k_{min} = -976 \frac{K^2}{6 \text{ap}}, \quad k_{max} = -390 \frac{K^2}{6 \text{ap}}, \quad \Delta k = 293 \frac{K^2}{6 \text{ap}}, \quad \varepsilon_k \approx 43.7\%$$

Таблица 3: Измерение при $T_3=40.00^{\circ}C,~\alpha_{~^{\circ}C}^{\text{мкB}}=42.05,~\delta T=0.02^{\circ}C$

ΔP , бар	4.0	3.5	3.0	2.5	2.0
$U-U_0$, мкВ	-103	-84	-65	-43	-30
ΔT , °C	-2.45	-2.00	-1.55	-1.02	-0.71

Таблица 4: Измерение при $T_4=50.00^{\circ}C,~\alpha_{\frac{\text{мкB}}{\circ}C}=42.9,~\delta T=0.02^{\circ}C$

ΔP , бар	4.4	4.0	3.5	3.0	2.5
$U-U_0$, мкВ	-106	-94	-76	-60	-41
ΔT , °C	-2.47	-2.19	-1.77	-1.40	-0.96

Таблица 5: Коэффициенты наклона графиков $\Delta T(\Delta P)$ при различных температурах

Номер	$T, ^{\circ}C$	$\mu, \frac{K}{6ap}$	$\mu_{min}, \frac{K}{6ap}$	$\mu_{max}, \frac{K}{6ap}$	$\Delta \mu, \frac{K}{\text{fap}}$
1	20.80	-1.01	-0.96	-1.06	0.05
2	30.00	-0.95	-0.89	-0.98	0.05
3	40.00	-0.89	-0.83	-0.91	0.04
4	50.00	-0.80	-0.76	-0.84	0.04

$$c = 1.26 \frac{K}{6ap}$$
, $c_{min} = 0.37 \frac{K}{6ap}$, $c_{max} = 2.26 \frac{K}{6ap}$, $\Delta c = 0.95 \frac{K}{6ap}$, $\varepsilon_c \approx 74.7\%$

Далее воспользуемся формулой (3):

$$k = \frac{2a}{c_p R} \Rightarrow a = \frac{k c_p R}{2} = (1.11 \pm 0.48) \frac{\Pi a \cdot M^6}{MOJI b^2}$$

$$c = \frac{b}{c_p} \implies b = c c_p = (5.04 \pm 3.76) \cdot 10^{-4} \frac{\text{M}^3}{\text{моль}}$$

Используя формулу (4), по полученным параметрам газа Ван-дер-Ваальса вычислим:

$$T_{\text{инв}} = \frac{2a}{bR} = 530 \,\text{K}, \quad \Delta T_{\text{инв}} = \frac{2}{R} \left(\frac{\Delta a \, b + \Delta b \, a}{b^2} \right) = 625 \,\text{K}, \quad \varepsilon_{T_{\text{инв}}} \approx 117.9\%$$

3. Вывод

Полученные нами в результате эксперимента значения для a и b получились довольно сильно отличающимися от теоретических значений a^* и b^* для углекислого газа.

$$a = (1.11 \pm 0.48) \frac{\Pi a \cdot m^6}{MOJb^2}, \quad \varepsilon_a \approx 43.7\%, \quad a^* = 0.36 \frac{\Pi a \cdot m^6}{MOJb^2}$$
$$b = (5.04 \pm 3.76) \cdot 10^{-4} \frac{m^3}{MOJb}, \quad \varepsilon_b \approx 74.7\%, \quad b^* = 0.42 \cdot 10^{-4} \frac{m^3}{MOJb}$$

Полученное из значений a и b значение $T_{\text{инв}}$ получилось так же сильно отличающимся от теоретического $T_{\text{инв}}^*$:

$$T_{\text{инв}} = (530 \pm 625) \,\text{K}, \quad \varepsilon_{T_{\text{инв}}} \approx 117.9\%, \quad T_{\text{инв}}^* = 2053 \,\text{K}$$

Проведя этот эксперимент, мы удостоверились в неприменимости модели Ван-дер-Ваальса в данной лабораторной работе. Полученные зависимости оказались линейны, как и предсказывала теория, но характеризующие коэффициенты этих зависимостей разительно отличаются от теоретических предсказаний.

Рис. 2: График №1

Рис. 3: График N_2

Рис. 4: График №3

Рис. 5: График $N_{2}4$

Рис. 6: График №5