Final Exam

Michael Nameika

- 1. (10 pts) Let H be a Hilbert space and let $T:H\to H$ be a bijective bounded linear operator. Prove that
 - (a) $(T^{-1})^*$ exists on H.
 - (b) $(T^*)^{-1}$ exists on H and $(T^*)^{-1} = (T^{-1})^*$.

Proof: (a) Since H is a Hilbert space and T is bijective and bounded, we have that T^{-1} exists, and by the bounded inverse theorem, T^{-1} is bounded. Then by the existence theorem of Hilbert-adjoint operators, we have that $(T^{-1})^*$ exists.

(b) We have that T^* exists by the existence theorem of Hilbert-adjoint operators. To show that $(T^*)^{-1}$ exists, we show that $\mathcal{N}(T^*) = \{\mathbf{0}\}$. Let $x, y \in H$ with $x \neq 0$ and $y \in \mathcal{N}(T^*)$. Then

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$

= $\langle x, 0 \rangle$
= 0

so that $Tx \perp y$ hence $y \in \mathcal{R}(T)^{\perp}$. But since T is bijective, we have $\overline{\mathcal{R}(T)} = \mathcal{R}(T) = H$ and by the direct sum decomposition for Hilbert spaces, we have

$$H = \mathcal{R}(T) \oplus \mathcal{R}(T)^{\perp}$$
$$= H \oplus \mathcal{R}(T)^{\perp}$$
$$\implies \mathcal{R}(T)^{\perp} = \{\mathbf{0}\}$$

so that $y = \mathbf{0}$, and so $\mathcal{N}(T^*) = \{\mathbf{0}\}$ and T^* is hence injective and so $(T^*)^{-1}$ exists. We now show that $(T^*)^{-1} = (T^{-1})^*$. Let $x \in H$. We wish to show $T^*(T^{-1})^*x = x$. Well, notice

$$\begin{split} \langle T^*(T^{-1})^*x,x\rangle &= \langle T^*x,T^{-1}x\rangle \\ &= \langle x,TT^{-1}x\rangle \\ &= \langle x,x\rangle \end{split}$$

thus $(T^*)^{-1} = (T^{-1})^*$.

- 2. (15 pts) (a) Let X and Y be Banach spaces. Let $T_n: X \to Y$ be a sequence of bounded linear operators. Assume that $(T_n x)$ converges for every $x \in X$.
 - (i) Prove that the sequence of operator norms ($||T_n||$) is bounded.

Proof: Since $(T_n x)$ converges for every $x \in X$, we have that for each x, $(T_n x)$ is bounded, that is,

$$||T_n x|| \le c_x$$

for some $c_x = c(x) > 0$. Then by the bounded inverse theorem, we have that $(||T_n||)$ is bounded.

(ii) Prove that $Tx = \lim_{n \to \infty} T_n x$ defines a bounded linear operator $T: X \to Y$.

Proof: By hypothesis, since $T_n x$ converges for every $x \in X$, we have that $Tx = \lim_{n \to \infty} T_n x$ exists and is well-defined by uniqueness of limits. We now show that T is linear. Let $x, y \in X$ and α be any scalar. Now notice

$$T(\alpha x + y) = \lim_{n \to \infty} T_n(\alpha x + y)$$

$$= \lim_{n \to \infty} T_n(\alpha x) + \lim_{n \to \infty} Ty$$
(Linearity of Limits)
$$= \lim_{n \to \infty} \alpha T_n x + Ty$$
(Linearity of T_n)
$$= \alpha \lim_{n \to \infty} T_n x + Ty$$
(Linearity of Limits)
$$= \alpha Tx + Ty$$
(Def. of T)

so that T is linear. What remains is to show that T is bounded. Well, since the sequence ($||T_n||$) is bounded by part (a), we have that T is bounded since for some M > 0,

$$||T_n|| \leq M$$

hence, letting $n \to \infty$, we have

$$||T|| \leq M$$
.

(b) Let $T_n: \ell^2 \to \ell^2$ be defined by $T_n x = (\xi_1, \dots, \xi_n, 0, 0, \dots)$, for $x = (\xi_j)$. Prove that the hypothesis of part (a) is satisfied, yet for the limit T of part (a)(ii), we have $||T_n - T|| = 1$ for all n.

Proof: Note that ℓ^2 is a Banach space and T_n is bounded since

$$||T_n x|| = ||(\xi_1, \xi_2, \dots, \xi_n, 0, 0, \dots)||$$

$$\leq ||x||$$

$$\implies ||T_n|| \leq 1.$$

Now, $(T_n x)$ clearly converges for any $x \in \ell^2$ since, as $n \to \infty$,

$$\lim_{n \to \infty} T_n x = (\xi_1, \xi_2, \xi_3, \dots) = x.$$

Now, notice that

$$||(T_n - T)x|| = ||(0, 0, \dots, \xi_{n+1}, \dots)|| \le ||x||$$

so that

$$||T_n - T|| \le 1.$$

For the lower bound, take, for each n, $x_n = (0, 0, ..., 1, 0, ...)$, all zeros except a 1 in the $(n+1)^{\text{th}}$ position. Then notice that $T_n x_n = 0$ and Tx = x and that ||x|| = 1 so that

$$||(T_n - T)x|| = ||x|| = 1$$

and we have

$$||T_n - T|| = 1.$$

3. (20 pts) (a) Let $T_n: \mathbb{C}^n \to \mathbb{C}^n$ be defined by $T_n x = \left(0, \frac{\xi_1}{1}, \frac{\xi_2}{2}, \dots, \frac{\xi_{n-1}}{n-1}\right)$, where $x = (\xi_1, \dots, \xi_n)$. Find all eigenvalues and eigenvectors of T_n and their algebraic and geometric multiplicities.

(b) Let $T: \ell^2 \to \ell^2$ be defined by $Tx = \left(0, \frac{\xi_1}{1}, \frac{\xi_2}{2}, \frac{\xi_3}{3}, \dots\right)$, where $x = (\xi_1, \xi_2, \dots)$. Show that T has no eigenvalues, and that $\lambda = 0$ is a spectral value.

(c) Prove that the operator $T: \ell^2 \to \ell^2$ of part (b) is a compact linear operator but is *not* a self-adjoint linear operator.

Proof: (a) Let λ be an eigenvalue of T_n and $x = (\xi_1, \xi_2, \dots, \xi_n)$ be an associated eigenvector. Then

$$T_n x = \lambda x$$

$$\implies \left(0, \xi_1, \frac{\xi_2}{2}, \dots, \frac{\xi_{n-1}}{n-1}\right) = (\lambda \xi_1, \lambda \xi_2, \dots, \lambda \xi_n)$$

which yields

$$0 = \lambda \xi_1$$

$$\xi_1 = \lambda \xi_2$$

$$\frac{\xi_2}{2} = \lambda \xi_3$$

$$\vdots$$

$$\frac{\xi_{n-1}}{n-1} = \lambda \xi_n$$

which, for $\lambda \neq 0$ gives us $x = \mathbf{0}$, which is not an eigenvector by definition. Now, if $\lambda = 0$, the above system of equations is satsified with $x = (0, 0, \dots, 0, \xi_n)$. Now, since $\dim \mathbb{C}^n = n$, we have that T_n has n eigenvalues (counting multiplicity), so that $\lambda = 0$ has algebraic multiplicity n with geometric multiplicity 1 since $x = (0, 0, \dots, \xi_n)$ is the only associated eigenvector.

(b) Suppose that T has an eigenvalue λ and let $x = (\xi_1, \xi_2, ...)$ be an associated eigenvector. Then we have

$$Tx = \lambda x$$

$$\implies \left(0, \xi_1, \frac{\xi_2}{2}, \frac{\xi_3}{3}, \dots\right) = (\lambda \xi_1, \lambda \xi_2, \lambda \xi_3, \dots)$$

$$\implies 0 = \lambda \xi_1$$

$$\xi_1 = \lambda \xi_2$$

$$\frac{\xi_2}{2} = \lambda \xi_3$$

$$\vdots$$

which, if $\lambda \neq 0$ yields $x = \mathbf{0}$ which is not an eigenvector by definition. If $\lambda \neq 0$, we get $\xi_1 = 0 \implies \xi_2 = 0 \implies \xi_3 = 0...$ which yields $x = \mathbf{0}$, which is not an eigenvector by definition. Thus, T has no eigenvalues. Now, to show that $\lambda = 0$ is a spectral value, we show that $\lambda = 0$ is an approximate eigenvalue, and then by problem $\mathbf{II.1}(b)$ from homework 12, we have that $\lambda \in \sigma(T)$. Define the sequence (x_n) by $x_n = (\xi_1, \xi_2, ...)$ with $\xi_k = \delta_{kn}$, the Dirac delta. Notice

$$||x_n|| = \left(\sum_{k=1}^{\infty} |\delta_{kn}|^2\right)^{1/2}$$

and that

$$||Tx_n - \lambda x_n|| = ||Tx_n||$$
$$= \frac{1}{n+1} \to 0$$

so that $\lambda = 0$ is an approximate eigenvalue and is thus in the spectrum of T.

(c) Define the sequence of linear operators (T_n) by $T_n x = \left(0, \xi_1, \frac{\xi_2}{2}, \dots, \frac{\xi_n}{n}, 0, 0, \dots\right)$ and notice that $\dim(\mathcal{R}(T_n)) = n$ so that each T_n is a compact linear operator. Now, notice that

$$\|(T - T_n)x\| = \left\| \left(0, 0, \dots, 0, \frac{\xi_{n+1}}{n+1}, \dots \right) \right\|$$

$$\leq \frac{\|x\|}{n+1}$$

$$\to 0$$

so that (T_n) defines a sequence of compact linear operators that converge uniformly to T in the operator norm, hence T is a compact linear operator.

4. (15 pts) Let (q_j) be a bounded sequence of real numbers. Define $T:\ell^2\to\ell^2$ by $y=Tx,\,x=(\xi_j),\,y=(\eta_j),\,\eta_j=q_j\xi_j,\,j=1,2,\ldots$ Verify the hypothesis of Theorem 9.1-2 for T. Then apply the criterion (2) of this theorem, that characterizes the resolvent set, to prove that the spectrum of the operator T is the closure of its set of eigenvalues. What are these eigenvalues?

Proof: Note that ℓ^2 is a Hilbert space. Notice that T is a bounded linear operator since (q_j) is a bounded sequence, that is there exists some M > 0 such that $|q_j| \leq M$ for all $j \in \mathbb{N}$ and

$$||Tx||^2 = \sum_{n=1}^{\infty} |q_j \xi_j|^2$$

$$\leq M^2 \sum_{n=1}^{\infty} |\xi_j|^2$$

$$= M^2 ||x||^2$$

$$\implies ||Tx|| \leq M ||x||.$$

Additionally, T is self-adjoint since

$$\langle Tx, y \rangle = \sum_{n=1}^{\infty} (q_j \xi_j) \overline{\eta_j}$$

$$= \sum_{n=1}^{\infty} \xi_j (q_j \overline{\eta_j})$$

$$= \sum_{n=1}^{\infty} \xi_j \overline{(q_j \eta_j)}$$

$$= \langle x, Ty \rangle.$$

$$(q_j \in \mathbb{R})$$

Thus, the hypothesis of theorem 9.1-2 is satisfied. We now find the eigenvalues of T. I claim that the eigenvalues of T are simply q_j for $j \in \mathbb{N}$ since, for $x_j = (\xi_1, \xi_2, \dots)$, with $\xi_k = \delta_{jk}$, we have that

$$Tx_j = (0, 0, \dots, q_j, 0, \dots)$$
$$= q_i x_i.$$

To see that there are no other eigenvalues, suppose there exists $\lambda \neq q_j$ for $j \in \mathbb{N}$ such that $Tx = \lambda x$, $x \neq x_j$, which gives us

$$(q_1\xi_1, q_2\xi_2, \dots) = (\lambda\xi_1, \lambda\xi_2, \dots)$$

which yields

$$q_1\xi_1 = \lambda \xi_1$$
$$q_2\xi_2 = \lambda \xi_2$$
$$\vdots$$

hence, either $x=\mathbf{0}$ which is not an eigenvector by definition, or $\lambda=q_1=q_2=\cdots$ so that (q_j) must be a constant sequence with $\lambda=q_1$ contrary to our hypothesis. Thus, the only eigenvalues are q_j . We now use (2) of the same theorem to show that the spectrum is the closure of the eigenvalues. Define $Q=\{q_j\mid j\in\mathbb{N}\}$ be the set of all elements of the given sequence and let $\lambda\notin\overline{Q}$. In particular, λ is not a limit point of Q, so there exists some $\varepsilon>0$ such that

$$|\lambda - q| \ge \varepsilon, \quad q \in Q.$$

Now let $x \in \ell^2$, $x = (\xi_1, \xi_2, ...)$ and consider $(T - \lambda I)x$:

$$\|(T - \lambda)x\|^2 = \|Tx - \lambda x\|^2$$

$$= \|((q_1 - \lambda)\xi_1, (q_2 - \lambda)\xi_2, \dots)\|^2$$

$$= \sum_{n=1}^{\infty} |(q_n - \lambda)\xi_n|^2$$

$$\geq \varepsilon^2 \sum_{n=1}^{\infty} |\xi_n|^2$$

$$\implies \|(T - \lambda I)\| \geq \varepsilon \|x\|$$

so that by theorem 9.1-2, $\lambda \in \rho(T)$. We note that the above inequality does not hold if λ is a limit point of Q, so that $\sigma(T) = \overline{Q}$, as desired.

- 5. (parts (a)-(c), 15 pts) Let $T: H \to H$ be a bounded linear operator on a Hilbert space H.
 - (a) Show that $\mathcal{R}(T) \perp \mathcal{N}(T^*)$, meaning that, for all y in the range of T and all z in the null-space of the Hilbert adjoint T^* we have $y \perp z$.
 - (b) Suppose in addition that T is self-adjoint and the range $\mathcal{R}(T)$ is dense in H. Prove that T is injective.
 - (c) Verify that the linear operator $T: \ell^2 \to \ell^2$ defined by $T(\xi_j) = (\xi_j/j)$ is bounded, self-adjoint, injective, and has dense range, but is *not* surjective.
 - (d) (extra credit, 5 pts) Suppose T is bounded and self-adjoint but not injective. Let $x \in \mathcal{N}(T)$ with $x \neq \mathbf{0}$, and let $\epsilon > 0$ be given. Suppose there exists $u \in H$ such that z = x Tu satisfies $||z|| \leq \epsilon$. Prove that then $||x|| \leq \epsilon$ as well. Show that this result offers a means to prove part (b). Hint: Consider $\langle x, x z \rangle$.

Proof: (a) Let $y \in \mathcal{R}(T)$. Then there exists some $x \in H$ such that Tx = y. Let $z \in \mathcal{N}(T^*)$ and consider

$$\langle y, z \rangle = \langle Tx, z \rangle$$

= $\langle x, T^*z \rangle$
= $\langle x, 0 \rangle$
= 0

since y and z were chosen arbitrarily, we have that $\mathcal{R}(T) \perp \mathcal{N}(T^*)$, as desired.

(b) Suppose that T is not injective. Then let $x \in \mathcal{N}(T)$ with $x \neq \mathbf{0}$. Take $y \in H$, $y \notin \mathcal{N}(T)$ and consider

$$\langle Tx, y \rangle = \langle 0, y \rangle = 0$$

but since T is self-adjoint,

$$\langle Tx, y \rangle = \langle x, Ty \rangle$$
$$= 0$$

so that $x \perp Ty$. But since $\mathcal{R}(T)$ is dense in H, we have that $\mathcal{R}(T)^{\perp} = \{0\}$. Additionally, by part (a), we have that, along with the fact that T is self-adjoint,

$$\mathcal{R}(T) \perp \mathcal{N}(T)$$
.

Thus, $\mathcal{N}(T) \subseteq \mathcal{R}(T)^{\perp} = \{\mathbf{0}\} \implies \mathcal{N}(T) = \{\mathbf{0}\}$ a contradiction. Hence T is injective.

(c) Let $x \in \ell^2$ with $x = (\xi_1, \xi_2, \dots)$ and notice $Tx = (\xi_1, \frac{\xi_2}{2}, \dots)$. Then note that, for any $j \in \mathbb{N}$,

$$\left|\frac{\xi_j}{j}\right| \le |\xi_j|.$$

Thus

$$||Tx|| \le ||x||$$

and so T is bounded. Now let $x \in \mathcal{N}(T)$, $x = (\xi_1, \xi_2, \dots)$ and notice

$$Tx = \left(\xi_1, \frac{\xi_2}{2}, \frac{\xi_3}{3}, \dots\right)$$
$$= (0, 0, \dots)$$
$$\implies \xi_1 = 0$$
$$\xi_2 = 0$$

:

so that $x = \mathbf{0}$ and so $\mathcal{N}(T) = \{\mathbf{0}\}$. Thus T is injective. We now show that T is self-adjoint. Let $x, y \in \ell^2$ with $x = (\xi_1, \xi_2, \dots), y = (\eta_1, \eta_2, \dots)$. Recall that the inner product on ℓ^2 is defined by

$$\langle x, y \rangle = \sum_{k=1}^{\infty} \xi_k \overline{\eta_k}$$

and so

$$\langle Tx, y \rangle = \sum_{k=1}^{\infty} \frac{\xi_k}{k} \overline{\eta_k}$$
$$= \sum_{k=1}^{\infty} \xi_k \frac{\overline{\eta_k}}{k}$$
$$= \sum_{k=1}^{\infty} \xi_k \overline{\left(\frac{\eta_k}{k}\right)}$$
$$= \langle x, Ty \rangle$$

so that T is self-adjoint. To see that T is not surjective, notice that $x = (1, \frac{1}{2}, \frac{1}{3}, \dots) \in \ell^2$ since

$$||x||^2 = \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty.$$

But note that the preimage of x is $y=(1,1,1,\ldots)\notin\ell^2$. Hence, $x\notin\mathcal{R}(T)$ and T is thus not surjective. Finally, we show that $\mathcal{R}(T)$ is dense in ℓ^2 . Let $x\in\ell^2$ with $x=(\xi_1,\xi_2,\ldots)$. Define $x_n=(\xi_1,2\xi_2,3\xi_3,\ldots,n\xi_n,0,0,\ldots)$ and notice

$$Tx_n = (\xi_1, \xi_2, \dots, \xi_n, 0, 0, \dots)$$

and that

$$\sum_{k=1}^{n} |k\xi_k|^2 < \infty$$

so that $x_n \in \ell^2$ for each $n \in \mathbb{N}$. Notice that

$$||T(x - x_n)||^2 = ||(0, 0, \dots, 0, \xi_{n+1}, \dots)||^2$$
$$= \sum_{k=n+1}^{\infty} |\xi_k|^2$$

and since $x \in \ell^2$, the sequence of partial sums $\left(s_n = \sum_{k=1}^n |\xi_k|^2\right)$ converges, so that for any $\varepsilon > 0$, there exists some $N \in \mathbb{N}$ such that whenever n > N, $|s_n - s|^2 < \varepsilon$ where $s = \lim_{n \to \infty} s_n$. And notice that $|s_n - s| = ||T(x - x_n)||$ so that for n > N,

$$||T(x-x_n)||^2 < \varepsilon$$

and so $\mathcal{R}(T)$ is dense in ℓ^2 , as desired.

6. (15 pts) Let X be a Banach space and let $T: X \to X$ be a bounded linear operator such that $T^2 = T$. Such an operator is said to be *idempotent*. Assume $T \neq \mathbf{0}$ and $T \neq I$. Show that the spectrum of T is the two-point set $\sigma(T) = \{0, 1\}$. To proceed, find an explicit closed formula for $(T - \lambda I)^{-1}$ whenever $\lambda \neq 0, 1$ by formally applying (9) of Sec. 7.3 for $\lambda > 1$.

Hint: (9) collapses to a form $A_{\lambda}I + B_{\lambda}T$ for explicit expressions A_{λ} and B_{λ} in λ . Verify algebraically that this linear combination represents $(T - \lambda I)^{-1}$ for any $\lambda \neq 0, 1$. For instance, find that $(T + I)^{-1} = I - \frac{1}{2}T$.

Proof: We first consider the case $\lambda > 1$. By (9) of section 7.3-4, we have

$$R_{\lambda} = -\frac{1}{\lambda} \sum_{j=0}^{\infty} \left(\frac{1}{\lambda} T \right)^{j}$$

which yields

$$R_{\lambda} = -\frac{1}{\lambda} \left(I + \sum_{j=1}^{\infty} \left(\frac{1}{\lambda} T \right)^{j} \right)$$

$$= -\frac{1}{\lambda} \left(I + T \sum_{j=1}^{\infty} \left(\frac{1}{\lambda} \right)^{j} \right)$$

$$= -\frac{1}{\lambda} \left(I + T \left(\frac{\frac{1}{\lambda}}{1 - \frac{1}{\lambda}} \right) \right)$$

$$= -\frac{1}{\lambda} \left(I + \frac{1}{\lambda - 1} T \right).$$
(*T* idempotent)

This formula suggests a form for R_{λ} for $\lambda \neq 1, 0$. We show that this does indeed define R_{λ} for $\lambda \neq 1, 0$. Notice

$$\begin{split} -\frac{1}{\lambda}\left(I + \frac{1}{\lambda - 1}T\right)\left(T - \lambda I\right) &= -\frac{1}{\lambda}T + \frac{1}{\lambda - \lambda^2}T + I - \frac{1}{1 - \lambda}T \\ &= -\frac{1}{\lambda}T + I + T\left(\frac{1 - \lambda}{\lambda - \lambda^2}\right) \\ &= -\frac{1}{\lambda}T + I + \frac{1}{\lambda}T \\ &= I \end{split}$$

and

$$\begin{split} (T - \lambda I) \left(-\frac{1}{\lambda} \left(I + \frac{1}{\lambda - 1} T \right) \right) &= -\frac{1}{\lambda} (T - \lambda I) \left(I + \frac{1}{\lambda - 1} T \right) \\ &= -\frac{1}{\lambda} \left(T - \lambda I + \frac{1}{\lambda - 1} T - \frac{\lambda}{\lambda - 1} T \right) \\ &= -\frac{1}{\lambda} \left(T - \lambda I + \left(\frac{1 - \lambda}{\lambda - 1} \right) T \right) \\ &= -\frac{1}{\lambda} (T - \lambda I - T) \\ &= -\frac{1}{\lambda} (-\lambda I) \\ &= I \end{split}$$

hence

$$R_{\lambda} = -\frac{1}{\lambda} \left(I + \frac{1}{\lambda - 1} T \right)$$

for $\lambda \neq 1, 0$. Note that R_{λ} is bounded since

$$||R_{\lambda}x|| = \left\| -\frac{1}{\lambda} \left(I + \frac{1}{\lambda - 1} T \right) x \right\|$$

 $\leq \frac{1}{|\lambda|} ||x|| + \frac{1}{|\lambda - 1|} ||T|| ||x||.$

Further, R_{λ} is defined on all of X since $\mathcal{D}(T) = \mathcal{D}(I) = X$. Thus, whenever $\lambda \neq 1, 0, \lambda \in \rho(T)$. Hence, $\sigma(T) = \{0, 1\}$

as desired.