Anticipation du nombre de passagers dans le métro New-Yorkais

AUMAGY Léa BOUKHALFA Abdeldjallil BOUCHNEB Hedi M2 EBDS

January, 2024

Sommaire

- Introduction
- Matériels et méthodes
 - La base de données Subway
 - Méthodologie
- 3 Analyse exploratoire des variables
 - Tendance de la variable explicative 'Ridership'
 - Effet temporels et météorologique sur la variable 'Ridership'
- 4 Analyse des prédictions
 - Méthodes paramétriques
 - Méthodes non paramétriques basées sur des arbres de décisions
 - Analyse comparative des méthodes de prédiction
 - Prédiction sur le long terme
- Conclusion

Introduction

- La mobilité urbaine, un enjeu majeur de ces dernières années.
- Hausse de l'utilisation des transports en communs.
- NYC, une ville dynamique, des milliers de passagers chaque jour par stations.

La base de données Subway

- Introduction
- Matériels et méthodes
 - La base de données Subway
 - Méthodologie
- 3 Analyse exploratoire des variables
 - Tendance de la variable explicative 'Ridership'
 - Effet temporels et météorologique sur la variable 'Ridership'
- 4 Analyse des prédictions
 - Méthodes paramétriques
 - Méthodes non paramétriques basées sur des arbres de décisions
 - Analyse comparative des méthodes de prédiction
 - Prédiction sur le long terme
- Conclusion

La base de données Subway

Sources:

- https://new.mta.info/open-data
- https://weatherdownloader.oikolab.com/

Informations sur la base de données :

- du 01/02/2022 au 31/01/2023
- 4034110 observations
- 6 variables temporelles
- 5 variables de la MTA
- 8 variables météorologique

Range	eIndex: 4034110 entries, 0 to	4834189
	columns (total 24 columns):	4004200
	Column	Dtype
Θ	Date	datetime64[ns]
1	Hour	int64
2	Ridership	int64
3	Station_complex_id	int64
4	Station complex	object
5	Booth	object
6	Line	object
7	Borough	object
8	Structure	object
9	Latitude	float64
10	Longitude	float64
11	Temperature_Celsius	float64
12	Dewpoint_Temperature_Celsius	float64
13	Humidex_Index_Celsius	float64
14	Wind_Speed_ms	float64
15	Surface_Solar_Radiation_Wm2	float64
16	Total_Cloud_Cover	float64
17	Total_Precipitation_mm	float64
18	Snowfall_mm	float64
19	Month	int64
20	Day	int64
21		object
22	Season	object
23	Holidays	object

Méthodologie

- Introduction
- Matériels et méthodes
 - La base de données Subway
 - Méthodologie
- 3 Analyse exploratoire des variables
 - Tendance de la variable explicative 'Ridership'
 - Effet temporels et météorologique sur la variable 'Ridership'
- 4 Analyse des prédictions
 - Méthodes paramétriques
 - Méthodes non paramétriques basées sur des arbres de décisions
 - Analyse comparative des méthodes de prédiction
 - Prédiction sur le long terme
- Conclusion

Méthodologie

- Analyse exploratoire des données
- Modèles paramétriques
 - Régression Linéaire
 - Lasso avec l'interprétabilité SHAP
- Modèles non-paramétriques basés sur des arbres de décision
 - Arbre de décision
 - ► Fôret aléatoire
 - XGBoost avec GridSearchCV
- Métrique pour l'évaluation des modèles
 - ► Coefficient de détermination : R²
 - Calculs des MSE
 - Analyse de l'ajustement des modèles

Tendance de la variable explicative 'Ridership'

- Introduction
- Matériels et méthodes
 - La base de données Subway
 - Méthodologie
- 3 Analyse exploratoire des variables
 - Tendance de la variable explicative 'Ridership'
 - Effet temporels et météorologique sur la variable 'Ridership'
- 4 Analyse des prédictions
 - Méthodes paramétriques
 - Méthodes non paramétriques basées sur des arbres de décisions
 - Analyse comparative des méthodes de prédiction
 - Prédiction sur le long terme
- Conclusion

Tendance de la variable explicative 'Ridership'

Figure: Évolution du nombre de passager dans le métro par jour

Effet temporels et météorologique sur la variable 'Ridership'

- Introduction
- Matériels et méthodes
 - La base de données Subway
 - Méthodologie
- 3 Analyse exploratoire des variables
 - Tendance de la variable explicative 'Ridership'
 - Effet temporels et météorologique sur la variable 'Ridership'
- 4 Analyse des prédictions
 - Méthodes paramétriques
 - Méthodes non paramétriques basées sur des arbres de décisions
 - Analyse comparative des méthodes de prédiction
 - Prédiction sur le long terme
- Conclusion

Analyse exploratoire des variables

Figure: Moyenne du nombre de passagers selon le jour de la semaine

Figure: Moyenne du nombre de passagers par saison et selon la température

Méthodes paramétriques

- Introduction
- Matériels et méthodes
 - La base de données Subway
 - Méthodologie
- 3 Analyse exploratoire des variables
 - Tendance de la variable explicative 'Ridership'
 - Effet temporels et météorologique sur la variable 'Ridership'
- 4 Analyse des prédictions
 - Méthodes paramétriques
 - Méthodes non paramétriques basées sur des arbres de décisions
 - Analyse comparative des méthodes de prédiction
 - Prédiction sur le long terme
- Conclusion

Modèle de régression linéaire : Matrice de corrélation

Figure: Matrice de corrélation

Modèle de régression linéaire : Test ANOVA

Table: Anova test

Variables	Df	Sum Sq	F	PR(>F)	
Line	1	2.032544×10^{12}	27922.7644	< 2e-16	***
Temperature_Celsius	1	6.997178×10^{10}	961.2611	< 2e-16	***
Wind_Speed_ms	1	2.861850×10^{10}	393.1564	< 2e-16	***
Surface_Solar_Radiation_Wm2	1	6.573409×10^{11}	9030.4449	< 2e-16	***
Total_Cloud_Cover	1	2.217556×10^{10}	304.6443	< 2e-16	***
Total_Precipitation_mm	1	1.005597×10^{10}	138.1474	< 2e-16	***
Snowfall_mm	1	8.425009×10^6	0.1157	0.7337	
Month	1	6.214168×10^{10}	853.6925	< 2e-16	***
Day	1	4.899301×10^{5}	0.0067	0.9346	
Day_Of_Week	1	4.346407×10^{10}	597.1025	< 2e-16	***
Hour	1	1.088130×10^{11}	1494.8560	< 2e-16	***
Season	1	1.453564×10^9	19.9688	< 2e-16	***
Holidays	1	5.943270×10^9	81.6477	< 2e-16	***
Residual	288255	2.098255×10^{13}			*

Modèle de régression linéaire : Résultats

Table: Résultats de la régression linéaire

Variable	Coefficient	Std Error	t-value	P> t	
Line	-248.1484	1.936	-128.180	< 2e-16	***
Temperature_Celsius	8.7950	2.370	3.711	< 2e-16	***
Wind_Speed_ms	53.3168	10.774	4.949	< 2e-16	***
Surface_Solar_Radiation_Wm2	7.4786	0.102	73.544	< 2e-16	***
Total_Cloud_Cover	1166.4839	49.654	23.492	< 2e-16	***
Total_Precipitation_mm	248.1586	46.435	5.344	< 2e-16	***
Month	315.1912	5.561	56.679	< 2e-16	***
Day_Of_Week	315.7359	9.230	34.207	< 2e-16	***
Hour	146.0407	3.357	43.502	< 2e-16	***
Season	576.4821	16.602	34.724	< 2e-16	***
Holidays	2050.4478	42.937	47.755	< 2e-16	***
R-squared	0.364				
Adjusted R-squared	0.364				
F-statistic	1.052e+04				
Prob (F-statistic)	0.000				
No. Observations		20178	38		

Table: Résultats des métriques

Metric	Value
R-squared (R2)	0.1399
Mean Squared Error (Training Set)	73,427,412.26
Mean Squared Error (Validation Set)	75,162,060.17
Difference in MSE	1,734,647.91

4□ → 4両 → 4 三 → 4 三 → 9 Q (~)

Méthode de réduction de l'information : Lasso

Figure: Valeurs SHAP

Table: Résultats des métriques

Metric	Value
R-squared (R2)	0.1531
Mean Squared Error (Training Set)	72,265,076.42
Mean Squared Error (Validation Set)	74,014,456.83
Difference in MSE	1,749,380.41

Méthodes non paramétriques basées sur des arbres de décisions

- Introduction
- Matériels et méthodes
 - La base de données Subway
 - Méthodologie
- 3 Analyse exploratoire des variables
 - Tendance de la variable explicative 'Ridership'
 - Effet temporels et météorologique sur la variable 'Ridership'
- 4 Analyse des prédictions
 - Méthodes paramétriques
 - Méthodes non paramétriques basées sur des arbres de décisions
 - Analyse comparative des méthodes de prédiction
 - Prédiction sur le long terme
- Conclusion

Arbre de décision

Figure: Decision Tree

Table: Résultats des métriques

Metric	Value
R-squared (R2)	0.448
Mean Squared Error on training set	46836557.0131
Mean Squared Error on validation set	48227885.596
The difference between the two MSE	1391328.583

Forêts aléatoires

Figure: Variables importantes

Table: Résultats des métriques

Metric	Value
R-squared (R2)	0.982
Mean Squared Error (Training Set)	289476.611
Mean Squared Error (Validation Set)	1582498.791
Difference in MSE	1293022.180

Extreme Gradient Boosting (XGBoost)

Choix des hyperparamètres selon GridSearchCV:

• Taux d'apprentissage : 0.2

• Nombre d'arbres : 300

• Profondeur des arbres : 6

Table: Résultats des métriques

Métriques	Valeurs
R-squared (R2)	0.979
Mean Squared Error (Training Set)	1469527.953
Mean Squared Error (Validation Set)	1833577.636
Difference in MSE	364049.683

Analyse comparative des méthodes de prédiction

- Introduction
- Matériels et méthodes
 - La base de données Subway
 - Méthodologie
- 3 Analyse exploratoire des variables
 - Tendance de la variable explicative 'Ridership'
 - Effet temporels et météorologique sur la variable 'Ridership'
- 4 Analyse des prédictions
 - Méthodes paramétriques
 - Méthodes non paramétriques basées sur des arbres de décisions
 - Analyse comparative des méthodes de prédiction
 - Prédiction sur le long terme
- Conclusion

Analyse des métriques d'évaluation

Table: Comparaison des métriques

Modèles	R^2	MSE_train	MSE_test	Ajustement
Régression Linéaire	0.14	73427412.26	75162060.17	1734647.91
Lasso	0.15	72265076.42	74014456.83	1749380.41
Arbre de décision	0.45	46836557.01	48227885.60	1391328.58
Forêts aléatoires	0.98	290870.44	1627931.11	1337060.67
XGBoost	0.98	1469527.95	1833577.64	364049.68

Analyse des métriques d'évaluation

Figure: Valeurs réelles vs. prédites

Prédiction sur le long terme

- Introduction
- Matériels et méthodes
 - La base de données Subway
 - Méthodologie
- 3 Analyse exploratoire des variables
 - Tendance de la variable explicative 'Ridership'
 - Effet temporels et météorologique sur la variable 'Ridership'
- 4 Analyse des prédictions
 - Méthodes paramétriques
 - Méthodes non paramétriques basées sur des arbres de décisions
 - Analyse comparative des méthodes de prédiction
 - Prédiction sur le long terme
- Conclusion

Prédiction sur l'année 2023

Conclusion

