EdX and its Members use cookies and other tracking technologies for performance, analytics, and marketing purposes. By using this website, you accept this use. Learn more about these technologies in the <u>Privacy Policy</u>.

<u>Course</u> > <u>Unit 3:</u> ... > <u>6 Deco</u>... > 15. Pro...

15. Properties of the matrix exponential Some properties and computation

X

MIT180312016-V027200

No comments

o:00 / 9:28

▶ 2.0x

4》

₹.

CC

"

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u>

Download Text (.txt) file

Properties of the matrix exponential

1. $e^{oldsymbol{0}}=I$ (here $oldsymbol{0}$ is the zero matrix)

Proof:
$$e^{oldsymbol{0}} = oldsymbol{\mathrm{I}} + oldsymbol{0} + rac{oldsymbol{0}^2}{2!} + \cdots = oldsymbol{\mathrm{I}}$$

2.
$$\frac{d}{dt}e^{\mathbf{A}t} = \mathbf{A}e^{\mathbf{A}t}$$

Proof:. Take the derivative of $e^{\mathbf{A}t}$ term by term.

- 3. If ${f AB}={f BA}, ext{ then } e^{{f A}+{f B}}=e^{{f A}}e^{{f B}}.$ Here are a few (but not all) special cases when ${f AB}={f BA}:$
 - $\mathbf{A} = c\mathbf{I}$
 - $\mathbf{B} = -\mathbf{A}$
 - $\mathbf{B} = \mathbf{A}^{-1}$

Warning: In general, this fails, that is, if $AB \neq BA$, then usually $e^{A+B} \neq e^A e^B$, since there are counterexamples ever for real 2x2 matrices.

4. If
$$\mathbf{A} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$
, then $e^{\mathbf{A}} = \begin{pmatrix} e^{\lambda_1} & 0 \\ 0 & e^{\lambda_2} \end{pmatrix}$.
 Proof: $\mathbf{A}^2 = \begin{pmatrix} \lambda_1^2 & 0 \\ 0 & \lambda_2^2 \end{pmatrix}$, $\mathbf{A}^3 = \begin{pmatrix} \lambda_1^3 & 0 \\ 0 & \lambda_2^3 \end{pmatrix}$, and so on. Thus

$$e^{\mathbf{A}}=\mathbf{I}+\mathbf{A}+rac{\mathbf{A}^2}{2!}+\cdots=egin{pmatrix}1+\lambda_1+rac{\lambda_1^2}{2!}+\cdots&0\0&1+\lambda_2+rac{\lambda_2^2}{2!}+\cdots\end{pmatrix}=egin{pmatrix}e^{\lambda_1}&0\0&e^{\lambda_2}\end{pmatrix}.$$

(A similar statement holds for diagonal matrices of any size.)

5. Given ${f A}$ is **diagonalizable**, that is,

$$\mathbf{A} = \mathbf{SDS}^{-1},$$

where ${f D}$ is the diagonal matrix of eigenvalues and ${f S}$ is the invertible matrix whose columns are eigenvectors:

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$$

$$\mathbf{S} = egin{pmatrix} \mid & \mid & \cdots & \mid \ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \ \mid & \mid & \cdots & \mid \end{pmatrix} \qquad ext{where } \mathbf{v}_i ext{ corresponds to } \lambda_i.$$

Then

$$e^{\mathbf{A}} = \mathbf{S}e^{\mathbf{D}}\mathbf{S}^{-1}.$$

Proof: Expand $e^{\mathbf{A}}$ as a power series and use the followin cancellations for each term:

$$\mathbf{A}^n = \mathbf{SD} \underbrace{\mathbf{S}^{-1} \mathbf{S}}_{\text{cancels}} \cdots \underbrace{\mathbf{S}^{-1} \mathbf{SD} \mathbf{S}^{-1} \mathbf{S}}_{\text{cancels}} \cdots \underbrace{\mathbf{S}^{-1} \mathbf{SD} \mathbf{S}^{-1}}_{\text{cancels}} = \mathbf{SD}^n \mathbf{S}^{-1}.$$

6. $e^{\mathbf{A}t} = \mathbf{X}(t)\mathbf{X}(0)^{-1}$ for any fundamental matrix \mathbf{X} .

Proof: Both $e^{\mathbf{A}t}$ and $\mathbf{X}(t)\mathbf{X}(0)^{-1}$ satisfy the matrix differential equation $\dot{\mathbf{Y}}=\mathbf{AY}$ and the same initial conditions $\mathbf{Y}(0) = \mathbf{I}$. The uniqueness and existence theorem then guarantees these to be the same. (You can also think of the columns of $e^{{f A}t}$ separately and apply the existence and uniqueness theorem.)

Use the matrix exponential to find the solution to the system Problem 15.1

$$\dot{x} = 2x + y$$

$$\dot{y} = 2y$$

satisfying x(0) = 5 and y(0) = 7.

Solution: This is
$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$$
 with $\mathbf{A} := \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$. Write $\mathbf{A} = \mathbf{D} + \mathbf{N}$ with $\mathbf{D} := \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ (diagonal) and $\mathbf{N} := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Then $\mathbf{N}^2 = \mathbf{0}$, so

$$e^{\mathbf{N}t} = \mathbf{I} + \mathbf{N}t = egin{pmatrix} 1 & t \ 0 & 1 \end{pmatrix}.$$

Then ${f D}t$ and ${f N}t$ commute (a scalar times ${f I}$ commutes with any matrix of the same size), so

$$egin{aligned} e^{\mathbf{A}t} &= e^{\mathbf{D}t+\mathbf{N}t} \ &= e^{\mathbf{D}t}e^{\mathbf{N}t} \ &= \left(egin{aligned} & e^{2t} & 0 \ 0 & e^{2t} \end{array}
ight) \left(egin{aligned} & 1 & t \ 0 & 1 \end{array}
ight) \ &= \left(egin{aligned} & e^{2t} & te^{2t} \ 0 & e^{2t} \end{array}
ight) \ &= \left(egin{aligned} & e^{2t} & te^{2t} \ 0 & e^{2t} \end{array}
ight) \left(egin{aligned} & 5 \ 7 \end{array}
ight) \ &= \left(egin{aligned} & 5e^{2t} & te^{2t} \ 0 & e^{2t} \end{array}
ight) \left(egin{aligned} & 5 \ 7 \end{array}
ight) \ &= \left(egin{aligned} & 5e^{2t} & + 7te^{2t} \ 7e^{2t} \end{array}
ight). \end{aligned}$$

Remark: The matrix exponential is a fundamental matrix even when $\bf A$ is deficient, as in the example above.

Compute the exponential matrix

0.5/1 point (graded)

Compute the exponential matrix $e^{\mathbf{A}}$ for $\mathbf{A} = \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$.

(Enter [a,b;c,d] for the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. That is, use commas to separate entries within the same row and **semicolon** to separate rows, and **square bracket** the entire matrix. Similarly for larger matrices.)

$$e^{\mathbf{A}} = [0.2088333, 2.7182818; 2.7182818, 0.2088333]$$

Answer: [cosh(1)/e^2, sinh(1)/e^2; sinh(1)/e^2,cosh(1)/e^2]

Solution:

Since **A** is symmetric, it is diagonalizable. Observe that

$$\mathbf{A} = -2\mathbf{I} + \mathbf{B}$$
 where $\mathbf{B} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

and

$$(-2\mathbf{I})\mathbf{B} = \mathbf{B}(-2\mathbf{I}).$$

This implies that $e^{{f A}t}\,=\,e^{-2{f I}}e^{{f B}}.$ Let us compute $e^{{f B}}:$

$$e^{\mathbf{B}} = \mathbf{I} + \mathbf{B} + \frac{\mathbf{B}^{2}}{2} + \frac{\mathbf{B}^{3}}{3!} + \frac{\mathbf{B}^{4}}{4!} + \cdots \qquad \left(\mathbf{B} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right)$$

$$= \mathbf{I} + \mathbf{B} + \frac{\mathbf{I}}{2} + \frac{\mathbf{B}}{3!} + \frac{\mathbf{I}}{4!} + \cdots \qquad \text{since } \mathbf{B}^{2} = \mathbf{I}$$

$$= \mathbf{I} \left(1 + \frac{1}{2} + \frac{1}{4!} + \cdots\right) + \mathbf{B} \left(1 + \frac{1}{3!} + \frac{1}{5!} + \cdots\right)$$

$$= \mathbf{I} \cosh(1) + \mathbf{B} \sinh(1) = \begin{pmatrix} \cosh(1) & \sinh(1) \\ \sinh(1) & \cosh(1) \end{pmatrix}.$$

Therefore,

$$e^{\mathbf{A}t} \; = \; e^{-2\mathbf{I}} egin{pmatrix} \cosh(1) & \sinh(1) \ \sinh(1) & \cosh(1) \end{pmatrix} = e^{-2} egin{pmatrix} \cosh(1) & \sinh(1) \ \sinh(1) & \cosh(1) \end{pmatrix}.$$

Submit

You have used 3 of 3 attempts

1 Answers are displayed within the problem

15. Properties of the matrix exponential

Hide Discussion

Topic: Unit 3: Solving systems of first order ODEs using matrix methods / 15. Properties of the matrix exponential

Add a Post

© All Rights Reserved

Show all posts ▼	by recent activity ▼
? There is no t in the question There is no t in the question.	2
Please note that in solving this problem, I used a different approach, namely exploiting this	2 property e^A
■ <u>Typo at answer box</u>	2
? Grader Problem Legave the numerical value of the correct solution in my three attempts and was marked wro	5 ong. Help! Th
■ BCH formula	1
Verify the grader I think something is going wrong with the grader. If you try the matlab command expm (A) or the matlab command expm (B) or the matlab co	2 or calculating
Learn About Verified Certificates	