Logbook de Análise de Dados: Espectroscopia Raio-X e Óptica Fina

LFEA — Departamento de Física — MEFT — IST 02-03-2018

Espectroscopia Raio-X: Cristalografia

I Expressões e Valores Importantes

Lei de Bragg:

$$n\lambda = 2d\sin\theta \implies d = \frac{n\lambda}{2\sin\theta}$$
 , $\delta d = \frac{n\lambda\cos\theta}{2\sin^2\theta}\delta\theta$ (1)

Espaçamento entre planos:

$$d = \frac{a_0}{\sqrt{h^2 + k^2 + l^2}} \tag{2}$$

	$E ext{ (keV)}$	$\lambda \text{ (pm)}$
K_{α}	17.443	71.080
K_{β}	19.651	63.095

Tabela 1: Valores de E e λ do Mo tabelados

Constantes de Rede:

$$a_0(\text{NaCl}) = 564.02 \text{ pm}$$
 $a_0(\text{LiF}) = 403.51 \text{ pm}$ $a_0(\text{Si}) = 543.10 \text{ pm}$ $a_0(\text{Al}) = 404.95 \text{ pm}$

II Método de Ajustes

Expressão utilizada:

$$C = \frac{N}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} + ax + b \tag{3}$$

Em que C são as contagens obtidas para cada ângulo, que se obtêm multiplicando a taxa de contagem obtida no laboratório pelo tempo de aquisição em cada ângulo. Note-se que a variável x representa, no caso do NaCl, o comprimento de onda e, no caso dos outros cristais, o ângulo de incidência. Para o erro de C fez-se \sqrt{C} . Utilizou-se uma recta para modular o sinal de background (Bremsstrahlung) porque apesar de globalmente se assemelhar a uma exponencial negativa (depois da subida inicial), como os picos são bastante localizados, a aproximação linear é bastante concordante.

III NaCl - Calibração

III.I Dados dos ajustes

Converteram-se os ângulos de incidência em comprimento de onda recorrendo à expressão (1), uma vez que o valor de 2d para o NaCl é assumido desde início como conhecido (apresentado acima). Para cada ordem de difracção foi utilizado o valor de n correspondente, pelo que a conversão de ângulo em comprimento de onda é feita seccionalmente. A conversão do desvio padrão para FWHM (largura a meia altura), também apresentada nas tabelas, é dada por:

$$FWHM = 2\sqrt{2\ln(2)}\sigma \qquad \qquad \sigma_{FWHM} = 2\sqrt{2\ln(2)}\sigma_{\sigma} \tag{4}$$

	N (pm · ctgs)	σ (pm)	FWHM (pm)	$\mu \text{ (pm)}$	δ (%)
K_{α}	73044 ± 334	1.3858 ± 0.0061	3.263 ± 0.014	71.2364 ± 0.0073	0.22
K_{β}	24019 ± 270	1.336 ± 0.016	3.146 ± 0.038	63.331 ± 0.016	0.37

Tabela 2: Primeira Ordem

	N (pm · ctgs)	σ (pm)	FWHM (pm)	$\mu \text{ (pm)}$	δ (%)
K_{α}	8786 ± 75	0.6254 ± 0.0050	1.473 ± 0.012	71.2100 ± 0.0061	0.18
K_{β}	3101 ± 59	0.717 ± 0.016	1.688 ± 0.038	63.196 ± 0.016	0.16

Tabela 3: Segunda Ordem

	N (pm · ctgs)	σ (pm)	FWHM (pm)	$\mu \text{ (pm)}$	δ (%)
K_{α}	1294 ± 25	0.4442 ± 0.0086	1.046 ± 0.020	71.1504 ± 0.0096	0.10
K_{β}	275 ± 17	0.320 ± 0.023	0.754 ± 0.054	63.389 ± 0.024	0.47

Tabela 4: Terceira Ordem

	$N \text{ (pm} \cdot \text{ctgs)}$	σ (pm)	FWHM (pm)	$\mu \text{ (pm)}$	δ (%)
K_{α}	191 ± 10	0.370 ± 0.021	0.871 ± 0.049	71.064 ± 0.022	0.02
K_{β}	34 ± 8	0.249 ± 0.068	0.59 ± 0.16	63.137 ± 0.073	0.07

Tabela 5: Quarta Ordem

Todos os centróides têm um desvio ao valor tabelado menor que 0.5%, que será então uma estimativa (por excesso, porque só 1 em 8 desvios é que se aproxima de 0.5%, o do K_{β} da $3^{\rm a}$ ordem) para o erro associado à calibração do sistema.

Calcula-se também a potência resolutiva em cada ordem de difracção para cada pico, dada por $R = \frac{\lambda}{\Delta \lambda} = \frac{\mu}{FWHM}$.

Ordem	K_{α}	K_{β}
1	21.83	20.13
2	48.34	37.44
3	68.02	84.07
4	81.59	107.01

Tabela 6: Resoluções

III.II Ficheiros com dados importantes referentes ao NaCl

 $NaCl_2D.txt$

IV Método para a Identificação do Plano de Corte nos restantes cristais

A partir dos valores de λ dados na Tabela 1 e dos dados experimentais (centróides em θ), e com recurso a (1), tira-se o d experimental para o cristal considerado.

Depois, faz-se a média dos d obtidos para cada ordem, se fizer sentido (se forem todos parecidos), de modo a ter-se um \overline{d} para se estudar os planos cristalinos. Depois, com recurso a (2), e tendo a_0 tabelado, encontram-se as melhores combinações (h, k, l) e descobre-se o plano.

V LiF

Figura 2: Espectro Total do LiF

V.I Resultados dos Ajustes

Os dados foram obtidos no laboratório com $\Delta\theta=0.1^\circ$ e $\Delta t=10$ s.

Tabelas dos dados de ajuste:

	μ (°)	FWHM	$\sigma(^{\circ})$
K_{α}	10.100 ± 0.004	0.3014	0.125 ± 0.005
K_{β}	8.960 ± 0.014	0.299	0.137 ± 0.015

Tabela 7: Primeira Ordem

	μ (°)	FWHM	$\sigma(^{\circ})$
K_{α}	20.620 ± 0.003	0.32	0.134 ± 0.003
K_{β}	18.22 ± 0.01	0.33	0.159 ± 0.012

Tabela 8: Segunda Ordem

	μ (°)	FWHM	$\sigma(^{\circ})$
K_{α}	31.88 ± 0.01	0.39	0.145 ± 0.014
K_{β}	28.01 ± 0.02	0.23	0.137 ± 0.033

Tabela 9: Terceira Ordem

V.II Plano de Corte

n=1:

 $K_{lpha}\!\!: d = 202.62 \pm 0.079 \; \mathrm{pm}$ $K_{eta}\!\!: d = 202.54 \pm 0.314 \; \mathrm{pm}$

n=2:

 K_{α} : $d = 201.87 \pm 0.028$ pm K_{β} : $d = 201.77 \pm 0.107$ pm

n=3:

 K_{α} : $d = 201.9 \pm 0.057 \text{ pm}$ K_{β} : $d = 201.52 \pm 0.132 \text{ pm}$

 $\overline{d} = 202.04 \pm 0.120 \text{ pm}$

Usando a expressão (2), tem-se: $\sqrt{h^2 + k^2 + l^2} = 1.99 \approx 2$, logo:

(h,k,l) possível: (2,0,0), que dá um $d_{teor}=201.76$, havendo um desvio de $\delta d=0.14\%$ entre o valor experimental e teórico.

V.III Ficheiros com dados importantes referentes ao LiF

 $LiF_2D.txt$

VI Si

Figura 3: Espectro Total do Si

III Resultados dos Ajustes

Os dados foram obtidos no laboratório com $\Delta\theta=0.1^\circ$ e $\Delta t=10$ s.

Tabelas dos parâmetros de ajuste da equação (3):

_		$a \text{ (ctgs/}^{\circ})$	b (ctgs)	$N \text{ (ctgs } \cdot \circ)$	$\mu(^{\circ})$	$\sigma(^{\circ})$
	K_{α}	-32.040 ± 6.105	913.540 ± 97.802	485.290 ± 9.854	15.118 ± 0.002	0.116 ± 0.002
	K_{β}	-7.066 ± 5.934	536.417 ± 78.140	123.496 ± 7.587	13.375 ± 0.007	0.121 ± 0.009

Tabela 10: Primeira Ordem (picos mais bem definidos do espectro)

	$a \text{ (ctgs/}^{\circ})$	b (ctgs)	$N \text{ (ctgs } \cdot \circ)$	$\mu(^{\circ})$	$\sigma(^{\circ})$
K_{α}	-8.281 ± 1.288	424.238 ± 39.840	128.655 ± 6.200	31.535 ± 0.010	0.189 ± 0.012
K_{β}	-4.275 ± 4.313	322.601 ± 116.68	49.052 ± 5.080	27.691 ± 0.012	0.117 ± 0.013

Tabela 11: Segunda Ordem

Os valores de μ são utilizados em (1) substituindo-se no θ .

VI.II Plano de Corte

n=1:

 K_{α} : $d = 136.269 \pm 0.018 \text{ pm}$ K_{β} : $d = 136.378 \pm 0.070 \text{ pm}$

n=2:

 K_{α} : $d = 135.903 \pm 0.039$ pm K_{β} : $d = 135.775 \pm 0.054$ pm

 $\bar{d} = 136.081 \pm 0.045 \text{ pm}$

Usando a expressão (2), tem-se: $\sqrt{h^2 + k^2 + l^2} = 3.99 \approx 4$, logo:

(h,k,l) possível: (4,0,0), que dá um $d_{teor}=135.775$, havendo um desvio de $\delta d=0.2\%$ entre o valor experimental e teórico.

VI.III Ficheiros com dados importantes referentes ao Si

 $Si_2D.txt$

VII Al

Figura 4: Espectro Total do Al

VII.I Resultados dos Ajustes

Os dados foram obtidos no laboratório com $\Delta\theta = 0.1^{\circ}$.

Tabelas dos parâmetros de ajuste da equação (3):

	$a \text{ (ctgs/}^{\circ})$	b (ctgs)	$N \text{ (ctgs} \cdot \circ)$	$\mu(^{\circ})$	$\sigma(^{\circ})$
K_{α}	-1090.55 ± 54.32	13499.5 ± 500.5	2827.20 ± 69.82	9.971 ± 0.002	0.227 ± 0.005
K_{β}	-	1370.88 ± 26.62	472.029 ± 37.488	8.816 ± 0.010	0.246 ± 0.016

Tabela 12: Primeira Ordem, $\Delta t_{\alpha} = 20 \text{ s}, \, \Delta t_{\beta} = 10 \text{ s}$

Na tabela acima, o K_{β} não tem o parâmetro a associado porque se ajustou a gaussiana adicionada de uma constante de offset vertical (b) ao invés da recta, dado que os dados experimentais de background se comportavam como constantes na região referida.

	$a \text{ (ctgs/}^{\circ})$	b (ctgs)	$N \text{ (ctgs} \cdot \circ)$	$\mu(^{\circ})$	$\sigma(^{\circ})$
K_{α}	-156.019 ± 3.385	3470.75 ± 64.24	544.373 ± 52.963	20.492 ± 0.022	0.564 ± 0.038
K_{β}	-	-	-	-	-

Tabela 13: Segunda ordem, $\Delta t_{\alpha}=10~\mathrm{s}$

Na tabela acima, apenas se apresenta o pico K_{α} dado que este era o único distinguível para a segunda ordem. Os valores de μ são utilizados em (1) substituindo-se no θ .

VII.II Plano de Corte

n=1:

 K_{α} : $d = 205.256 \pm 0.041$ pm K_{β} : $d = 205.841 \pm 0.232$ pm

n=2:

 K_{α} : $d = 203.041 \pm 0.209 \text{ pm}$

 $\bar{d} = 204.713 \pm 0.161 \text{ pm}$

Usando a expressão (2), tem-se: $\sqrt{h^2 + k^2 + l^2} = 1.98 \approx 2$, logo:

(h,k,l) possível: (2,0,0), que dá um $d_{teor}=202.475$, havendo um desvio de $\delta d=1.1\%$ entre o valor experimental e teórico.

 $Al_2D.txt$

VIII Identificação de um cristal desconhecido

Figura 5: Espectro Total do Cristal Desconhecido

VIII.I Resultados dos Ajustes

Os dados foram obtidos no laboratório com $\Delta\theta=0.1^\circ$ e $\Delta t=10$ s.

		$a \text{ (ctgs/}^{\circ})$	b (ctgs)	$N \text{ (ctgs} \cdot \circ)$	$\mu(^{\circ})$	$\sigma(^{\circ})$
	K_{α}	-508.629 ± 15.529	6620.09 ± 168.60	2326.66 ± 19.14	10.441 ± 0.001	0.110 ± 0.001
ſ	K_{β}	-306.803 ± 49.736	4323.27 ± 438.26	762.263 ± 23.035	9.287 ± 0.002	0.116 ± 0.003

Tabela 14: Primeira Ordem $(t_{aq} = 5 \text{ min } 10 \text{ s})$

	$a \text{ (ctgs/}^{\circ})$	b (ctgs)	$N \text{ (ctgs } \cdot \circ)$	$\mu(^{\circ})$	$\sigma(^{\circ})$
K_{α}	-16.872 ± 3.336	593.918 ± 68.094	214.383 ± 6.861	21.070 ± 0.004	0.125 ± 0.005
K_{β}	-31.884 ± 13.046	871.86 ± 234.80	63.225 ± 8.386	18.660 ± 0.011	0.111 ± 0.015

Tabela 15: Segunda Ordem $(t_{aq_{\alpha}} = 5 \text{ min } 10 \text{ s}, t_{aq_{\beta}} = 2 \text{ min } 30 \text{ s})$

VIII.II Obtenção dos parâmetros de rede a_0

Neste caso, a_0 é desconhecido, portanto calcula-se d pelo mesmo método (tendo os centróides μ em θ das tabelas anteriores). De seguida, experimentam-se vários valores de (h,k,l) e calculam-se os respectivos a_0 , comparando com valores tabelados.

Obtenção do d médio (\overline{d}) :

n=1:

 K_{α} : $d = 196.112 \pm 0.019 \text{ pm}$ K_{β} : $d = 195.486 \pm 0.042 \text{ pm}$

n=2:

 $K_{\alpha} \colon d = 197.715 \pm 0.036 \text{ pm}$ $K_{\beta} \colon 197.202 \pm 0.112 \text{ pm}$

 $\overline{d} = 196.629 \pm 0.052 \text{ pm}$

Experimentação de vários índices de Miller

Utilizou-se a expressão:

$$a_0 = \overline{d}\sqrt{h^2 + k^2 + l^2}$$
 , $\delta a_0 = \delta \overline{d}\sqrt{h^2 + k^2 + l^2}$ (5)

Decidiu-se considerar valores de índices de Miller tais que a raiz da soma dos seus quadrados não fosse superior a 4, dado que este já equivale a um valor elevado de a_0 (786.516 pm) para o \bar{d} obtido e, portanto, o cirstal a encontrar tem, certamente, valores de (h,k,l) compreendidos nesta região. De notar que na tabela, não existem os valores de $\sqrt{7}$ e $\sqrt{15}$, porque não há forma de $h^2 + k^2 + l^2$ ser 7 ou 15, com h,k,l compreendidos entre 0 e 4.

$\sqrt{h^2 + k^2 + l^2}$	1	$\sqrt{2}$	$\sqrt{3}$	2	$\sqrt{5}$	$\sqrt{6}$	$\sqrt{8}$
	196.629	278.075	340.571	393.258	439.676	481.641	556.151
a_0	土	\pm	\pm	±	±	±	±
(pm)	0.052	0.074	0.090	0.104	0.116	0.127	0.147

$\sqrt{h^2 + k^2 + l^2}$	3	$\sqrt{10}$	$\sqrt{11}$	$\sqrt{12}$	$\sqrt{13}$	$\sqrt{14}$	4
a .	589.887	621.795	652.145	681.143	708.956	735.718	786.516
a_0	土	土	土	土	土	土	
(pm)	0.156	0.164	0.172	0.180	0.187	0.195	0.208

Tabela 16: Valores da constante de rede a_0 para vários índices de Miller

Retiram-se duma tabela de constantes de rede conhecidas¹ os valores próximos dos intervalos de incerteza de alguns a_0 experimentais, para comparação:

Cristal	Pt	HfN e NbN	NaCl	InP	PbS
$a_0 \text{ (pm)}$	391.200	439.200	564.020	586.870	593.620
Cristal	KCl	NaI	KBr	KI	$EuTiO_3$
$a_0 \text{ (pm)}$	629.000	647.000	660.000	707.000	781.000

Tabela 17: Valores tabelados de a_0 de alguns cristais

Por observação do cristal que foi posto na montagem, pode-se confirmar que era de aspecto baço e esbranquiçado. Assim, Pt, que é um metal puro, foi excluído como potencial cirstal mistério, bem como HfN, NbN, InP, PbS, e EuTiO₃, pela pouca semelhança em termos visuais com o cristal manuseado no laboratório.

Sobram NaCl, KCl, NaI, KBr e KI, que têm todos a mesma estrutura (FCC).

O NaCl é um forte candidato, dado que, estando o seu a_0 no intervalo de incerteza ao que corresponde um valor de $\sqrt{h^2 + k^2 + l^2} = \sqrt{8}$, os valores de h,k,l que satisfazem essa equação são do tipo (2,2,0). Atentando às regras de selecção para a estrutura do NaCl, vê-se que constitui uma hipótese válida, dado que os 3 valores são pares.

O KCl, no entanto, não pode ser o cristal mistério porque, dado que está associado ao valor de $\sqrt{10}$, o (h,k,l) teria que ser do tipo (3,1,0) ou seja, uma junção de números pares e ímpares, o que viola as condições para esta estrutura.

Já para o NaI é possível, dado que $\sqrt{11}$ pode ser resultado de (h,k,l) = (3,1,1) em que todos são ímpares.

O KBr está na mesma situação do NaI, já que partilham a mesma estrutura.

Finalmente, o KI não é uma hipótese válida dado que $\sqrt{13}$ é obtido com índices de Miller do tipo (3,2,0), que tem números pares e ímpares.

Escolha Final

Pesando os argumentos apresentados anteriormente e o facto de, no guia, estar explícito que se usariam dois cristais NaCl com cortes diferentes, conclui-se que o cristal mistério é o NaCl com índices de Miller (2,2,0).

IX Reflectividade Relativa

Comparar as contagens dos outros cristais com as do NaCl (2,0,0), utilizando os picos de 1ª ordem apenas. Não se usa a radiação Bremsstrahlung porque os dados das zonas que não os picos foram retirados de maneira diferente $(\Delta\beta$ maior e Δt menor). Só se usa a primeira ordem porque, para além de no alumínio não ser visível a segunda ordem, no silício e no NaCl (2,2,0) a segunda é a úlltima visível, e por vezes com algum esforço, estando mais sujeita a erros e flutuações estatísticas.

¹Lattice constants for various materials at 300 K, Lattice Constant, Wikipedia

Cristal	Contagens $(K_{\alpha} + K_{\beta})$	Reflectividade (%)
NaCl	97063	100
LiF	10942	11.3
Si	608	0.6
Al	3299	3.40
Unknown	3089	3.18

Tabela 18: Reflectividade dos cristais relativamente ao NaCl

X Reflectividade Absoluta

Comparando as contagens totais do cristal de NaCl, num range de ângulos dos 2° aos 25° , com as contagens relativas à emissão da fonte sem cristal, diretamente para o detetor, em torno dos 0° , obtemos:

Cristal	Contagens Totais	Reflectividade (%)
NaCl	608.1	$\frac{608.1}{14549} \approx 4.18\%$
Fonte (sem cristal)	14549	$\frac{14549}{14549} \sim 4.1670$

Tabela 19: Reflectividade absoluta do NaCl

Espectroscopia Atómica: Efeito de Zeeman

I Verificação da condição de interferência

Interessa o comportamento da posição relativa das riscas em função do número da risca. Assim, note-se que os valores absolutos das posições são pouco relevantes, são apenas valores de referência tendo em conta o equipamento utilizado na medição. Um desvio no valor da posição igual em todos os pontos é controlado por um parâmetro independende no ajuste que se segue. Como o instrumento utilizado na medição das distâncias tinha uma certa folga (às vezes ao tirar a mão o ponteiro mexia imenso, sendo que a mira não), definiu-se o erro de cada posição como 0.01 mm, que é a menor divisão da escala.

Aos pontos obtidos ajustou-se uma expressão do tipo $y = a\sqrt{bx - e} + c$

Risca	Posição (mm)
1	-0.07 ± 0.01
2	0.24 ± 0.01
3	0.49 ± 0.01
4	0.68 ± 0.01
5	0.88 ± 0.01
6	1.05 ± 0.01
7	1.19 ± 0.01
8	1.33 ± 0.01

Tabela 20: Posição das riscas sem campo magnético

Figura 6: Ajuste

a	b	e	χ^2/ngl
$(7.82 \pm 0.21) \cdot 10^{-4}$	$(-8.92 \pm 0.78) \cdot 10^{-4}$	-0.102 ± 0.166	0.64

Tabela 21: Parâmetros de ajuste - Condição de interferência

O parâmetro e é compatível com 0, pelo que a aproximação de e=0 tomada na preparação é válida. O χ^2/ngl está ligeiramente baixo, pelo que o erro pode ter sido sobrestimado. Ver-se-á no resto da análise.

II Desdobramento das riscas com aplicação de campo magnético

Como são necessários valores de campo magnético correspondentes a intensidades de corrente diferentes do fornecido no guia, fez-se um ajuste linear aos pontos da tabela para poder fazer a conversão. Os dados da tabela não têm erro explicitado. Contudo, como os campos magnéticos dependem linearmente da intensidade de corrente, o ajuste linear é necessariamente um modelo válido

(assume-se que não se está perante nenhum caso extremo em que os materiais têm respostas não lineares). Assim, escolheu-se o erro associado aos valores de campo magnético apresentados na tabela (igual para todos) de modo a se ter $\chi^2/ngl \approx 1$, obtendo-se uma estimativa para os erros associados as valores de campo magnético fornecidos (valor final de 0.005 T).

Do ajuste a B = aI + b tem-se $(\sigma_B = \sqrt{(a\sigma_I)^2 + (I\sigma_a)^2 + \sigma_b^2})$:

a(T/A)	b(T)	χ^2/ngl
$(3.256 \pm 0.031) \cdot 10^{-2}$	$(1.536 \pm 0.390) \cdot 10^{-2}$	1.002

Tabela 22: Parâmetros de ajuste - Campo magnético vs Intensidade de corrente

Cálculo das diferenças de frequência entre riscas, $\Delta \nu$ Tem-se:

$$\Delta \lambda = \frac{\delta a}{\Delta a} \frac{\lambda^2 \sqrt{n^2 - 1}}{2d(n^2 - 1)} \qquad \sigma_{\Delta \lambda} = \Delta \lambda \sqrt{\left(\frac{\sigma_{\delta a}}{\delta a}\right)^2 + \left(\frac{\sigma_{\Delta a}}{\Delta a}\right)^2}$$
 (6)

Nesta equação, com a variação do campo magnético, apenas δa varia. Usou-se primeiro os dados de observação longitudinal, por apenas se verem 2 riscas e, por ser mais fácil de as distinguir, haver, a priori, uma confiança maior nos dados medidos. Indica-se a posição da risca superior. δa obtém-se subtraindo essa posição à posição inicial da risca, 0.13 mm.

 Δa é simplesmente a distância entre 2 riscas sem aplicação de campo magnético (considera-se a distância entre a 1ª e 2ª riscas observadas). $\Delta a = 0.31 \pm 0.01$ mm. Sabendo d = 4.04 mm, $\lambda = 643.8$ nm e n = 1.4567 pode-se então calcular $\Delta \lambda$ para cada campo aplicado. Tem-se também:

$$\Delta \nu = \frac{c\Delta \lambda}{\lambda^2} \qquad \qquad \sigma_{\Delta \nu} = \Delta \nu \frac{\sigma_{\Delta \lambda}}{\Delta \lambda}$$

Podendo-se calcular, então, o desvio em frequências provocado pelo campo magnético. O erro para δa foi obtido por propagação quadrática, tendo-se $\sigma_{\delta a} \approx 0.014$ mm.

$I \pm 0.1 (A)$	$\delta a \pm 0.014 \text{ (mm)}$	$\Delta\lambda \text{ (pm)}$	$\Delta \nu \ ({\rm s}^{-1})$	B (T)
3.8	0.040	6.25 ± 2.20	$(4.52 \pm 1.59) \cdot 10^9$	0.1391 ± 0.0052
6.0	0.050	7.81 ± 2.20	$(5.65 \pm 1.59) \cdot 10^9$	0.2107 ± 0.0054
9.0	0.060	9.37 ± 2.21	$(6.78 \pm 1.60) \cdot 10^9$	0.3084 ± 0.0058
12.0	0.070	10.94 ± 2.21	$(7.92 \pm 1.60) \cdot 10^9$	0.4061 ± 0.0063
15.0	0.080	12.50 ± 2.22	$9.05 \pm 1.61 \cdot 10^9$	0.5038 ± 0.0069
18.0	0.080	12.50 ± 2.22	$9.05 \pm 1.61 \cdot 10^9$	0.6014 ± 0.0075
19.4	0.090	14.06 ± 2.23	$(10.18 \pm 1.62) \cdot 10^9$	0.6470 ± 0.0079

Tabela 23: Dados de desdobramento em 2 riscas

Como se tem:

$$\Delta \nu = \frac{e}{m} \frac{B}{4\pi}$$

Pode-se ajustar os dados obtidos a uma recta para tentar obter uma estimativa para $\frac{e}{m}$, e razão entre a carga e a massa de um electrão. Ajustou-se então uma recta da forma:

Figura 7: Ajuste - Observação longitudinal de B

a (C/kg)	$c (s^{-1})$	χ^2_{ngl}
$(1.30 \pm 0.43) \cdot 10^{11}$	$(3.42 \pm 1.49) \cdot 10^9$	0.06

Tabela 24: Parâmetros de ajuste - Observação longitudinal de B

De facto, os erros parecem sobrestimados, uma vez que o χ^2_{ngl} está demasiado pequeno. Contudo, no laboratório o instrumento de medida tem oscilações muito grandes, tanto assim que houve várias medições que tiveram de ser repetidas várias vezes, pelo que considerar a menor divisão da escala como erro de posição medida não parece de todo exagerado. O parâmetro a corresponde ao valor experimental obtido para a razão entre a carga e a massa do electrão. Obteve-se um desvio ao valor teórico $(e/m \approx 1.759 \cdot 10^{11} \text{ C/kg})$ de cerca de 26%. O valor de c é compatível com 0 a 3σ . Não sendo um valor muito alto, também não é muito baixo, podendo evidenciar um sistemático. Sabe-se que existe um não contabilizado pelo facto das riscas sem aplicação de campo magnético, na verdade estarem sobre acção de um campo residual, uma vez que a fonte de corrente utilizada não começava em 0 A, mas por volta dos 0.4 A.

II.I Repetição do processo para 3 riscas observáveis (observação transversal)

Posição inicial da risca: 0.13 mm

$I \pm 0.1 (A)$	$\delta a \pm 0.014 \; (\mathrm{mm})$	$\Delta\lambda$ (pm)	$\Delta \nu \ ({\rm s}^{-1})$	B (T)
6.8	0.070	10.94 ± 2.21	7.92 ± 1.60	0.2368 ± 0.0055
7.5	0.070	10.94 ± 2.21	7.92 ± 1.60	0.2596 ± 0.0056
11.0	0.080	12.50 ± 2.22	9.05 ± 1.61	0.3735 ± 0.0061
14.0	0.090	14.06 ± 2.23	10.18 ± 1.62	0.4712 ± 0.0067
16.5	0.100	15.62 ± 2.24	11.31 ± 1.62	0.5526 ± 0.0072
19.0	0.100	15.62 ± 2.24	11.31 ± 1.62	0.6340 ± 0.0078

Tabela 25: Dados de desdobramento em 3 riscas

Figura 8: Ajuste - Observação transversal de B

Dados obtidos do ajuste:

a	(C/kg)	$c (s^{-1})$	χ^2_{nal}
(1.21 =	$\pm 0.57) \cdot 10^{11}$	$(5.56 \pm 2.01) \cdot 10^9$	0.03

Tabela 26: Parâmetros de ajuste - Observação transversal de B

Obteve-se um desvio ao valor teórico de $\approx 31\%$. A discussão dos resultados para o parâmetro c e para o χ^2/ngl é uma repetição do que foi dito no caso anterior.

II.II FSR e Poder Resolutivo

Como no caso de observação longitudinal do campo magnético era mais fácil ver as riscas (por serem apenas 2), o que fez com que se distinguisse separação entre riscas mais cedo que no caso da observação transversal, usa-se apenas esse caso para efeitos de cálculo de poder resolutivo e free spectral range.

Tem-se então, de acordo com a Tabela (23), que a separação de riscas foi detectada a 3.8 \pm 0.1 A que, com o valor medido de $\delta a = 0.04 \pm 0.01$ mm, se traduz em $\Delta \lambda = 6.25 \pm 2.20$ pm. Como o comprimento de onda emitido pelo laser é de 643.8 nm, então tem-se, para o poder resolutivo: $R = \frac{\lambda}{\Delta \lambda} \approx 1.03 \cdot 10^5$

De modo a determinar o Free Spectral Range, avalia-se o significado do mesmo. Este corresponde à distância em frequência entre repetições do espectro. Neste caso, corresponde à distância entre 2 riscas consecutivas quando não há aplicação de campo

Espectroscopia Fina: Interferómetro Fabry-Perot

I Amplitude de deslocamento do Piezo

Para se obter ΔL , calculou-se primeiro a amplitude em tensão ΔV aplicada ao piezo. Para tal, com o conjunto de dados tirado, simplesmente subtrairam-se as tensões máximas às mínimas, para cada um dos grupos de dados e fez-se a média, dado que os valores são diferentes, devido ao ruído electrónico existente.

Finalmente, para ter ΔL , é necessário estabelecer uma relação com ΔV . Para tal, utiliza-se o Free Spectral Range (FSR) em unidades de comprimento e em unidades de tensão. Para o FSR $_V$ (em Volts), faz-se novamente a média, nos grupos de dados, das diferenças dos mesmos picos sucessivos. O FSR em unidades de comprimento de onda é dado por: FSR = $\frac{\lambda}{2}$, com $\lambda = 638.2$ nm.

A relação final fica, portanto:

$$\Delta L = \frac{\lambda}{2} \frac{1}{\text{FSR}_V} \Delta V \quad , \qquad (\delta \Delta L)^2 = \frac{\lambda^2}{4} \frac{1}{(\text{FSR}_V)^2} \left(\frac{1}{(\text{FSR}_V)^2} (\Delta V)^2 (\delta \text{FSR}_V)^2 + (\delta \Delta V)^2 \right) \tag{7}$$

No decurso da experiência utilizaram-se 2 lasers (de potências 2 mW e 20 mW) e, como tal, de modo a poderem-se recolher os dados no registador, o circuito eléctrico foi alterado o que tornou o ΔV substancialmente diferente nestes 2 casos. Portanto, fez-se a devida distinção e o cálculo dos dois ΔL referentes a cada laser.

I.I Laser de 2 mW

$$\Delta V = \frac{8.96 + 8.97 + 8.96 + 9.02 + 9.01 + 9 + 9.02 + 9.02 + 9.02}{9} = 8.998 \pm 0.038 \text{ V}$$

$$\text{FSR}_V = \frac{5.02 + 4.765 + 4.57 + 4.83 + 5.08 + 4.75 + 4.72 + 4.54 + 5.19}{9} = 4.83 \pm 0.36 \text{ V}$$

$$\Delta L = 594.5 \pm 44.4 \text{ nm}$$

I.II Laser de 20 mW

$$\Delta V = \frac{7.81 + 7.82 + 7.81 + 7.86 + 7.86 + 7.86}{6} = 7.837 \pm 0.027 \text{ V}$$

$$\text{FSR}_V = \frac{3.31 + 3.74 + 3.62 + 3.44 + 3.32 + 3.5}{6} = 3.49 \pm 0.25 \text{ V}$$

$$\Delta L = 716.6 \pm 51.4 \text{ nm}$$

II FSR e Finesse

Para se obter a finesse experimental, calculou-se através de um ajuste o FSR e o FWHM, utilizando-se então:

$$f = \frac{FSR}{FWHM} \tag{8}$$

II.I Laser 2mW

II.I.1 Distância L1 $(7.60 \pm 0.02 \text{ cm})$

Para dois modos, obtiveram-se os seguintes dados:

Pico	FWHM (V)	FSR (V)
1	0.627	4794 0.002
2	0.713	4.784 ± 0.003

Tabela 27: Dados relativos ao ajuste para 2 modos (2mW, L1)

Figura 9: Ajuste para 2 modos (2mW, L1)

Fazendo a média:

$$f_{2modos} = \frac{f_1 + f_2}{2} = \frac{\frac{FSR}{FWHM_1} + \frac{FSR}{FWHM_2}}{2} \approx 7.168 \pm 0.005$$
 (9)

Para três modos, obtiveram-se os seguintes dados:

Pico	FWHM (V)	FSR (V)
1	0.652	4.557 ± 0.004
2	0.628	$\begin{bmatrix} 4.557 \pm 0.004 \end{bmatrix}$

Tabela 28: Dados relativos ao ajuste para 3 modos (2mW, L1)

Figura 10: Ajuste para 3 modos (2mW, L1)

Fazendo a média:

$$f_{3modos} = \frac{f_1 + f_2}{2} = \frac{\frac{FSR}{FWHM_1} + \frac{FSR}{FWHM_2}}{2} \approx 7.127 \pm 0.006$$
 (10)

Por fim, para obter f_{L1} faz-se: $\frac{f_{2modos}+f_{3modos}}{2}$, obtendo-se $f_{L1}=7.148\pm0.004$

II.I.2 Distância L2 $(4.06 \pm 0.02 \text{ cm})$

Para dois modos, obtiveram-se os seguintes dados:

Pico	FWHM (V)	FSR (V)
1	0.462	3.472 ± 0.004
2	0.507	0.472 ± 0.004

Tabela 29: Dados relativos ao ajuste para 2 modos (2mW, L2)

Figura 11: Ajuste para 2 modos (2mW, L2)

2 Fazendo a média:

$$f_{2modos} = \frac{f_1 + f_2}{2} = \frac{\frac{FSR}{FWHM_1} + \frac{FSR}{FWHM_2}}{2} \approx 7.185 \pm 0.008$$
 (11)

Para três modos, obtiveram-se os seguintes dados:

Pico	FWHM (V)	FSR (V)
1	0.483	3.444 ± 0.003
2	0.434	0.444 ± 0.003

Tabela 30: Dados relativos ao ajuste para 3 modos (2mW, L2)

Figura 12: Ajuste para 3 modos (2mW, L2

2

Fazendo a média:

$$f_{3modos} = \frac{f_1 + f_2}{2} = \frac{\frac{FSR}{FWHM_1} + \frac{FSR}{FWHM_2}}{2} \approx 7.534 \pm 0.007$$
 (12)

Por fim, para obter f_{L2} faz-se: $\frac{f_{2modos}+f_{3modos}}{2}$, obtendo-se $f_{L2}=7.359\pm0.005$.

II.I.3 Comparação com o valor teórico

Obtém-se o valor teórico para a finesse através do seguinte cálculo, dependente apenas da refletividade $R = r^2 = 0.8$:

$$f = \frac{\pi r}{1 - r^2} = \frac{\pi \sqrt{R}}{1 - R} = 14.05 \tag{13}$$

Faz-se então a média entre o valor de f_{L1} obtido para a primeira distância entre espelhos, e de f_{L2} obtido para a segunda distância entre espelhos:

$$f_{exp} = \frac{f_{L1} + f_{L2}}{2} = 7.253 \pm 0.003 \tag{14}$$

Por fim, obtem-se o desvio face ao valor teórico através de:

$$\delta f = \frac{f_{teorico} - f_{exp}}{f_{teorico}} = 48.4\% \tag{15}$$

II.II Laser 20 mW

II.II.1 Distância L1

Para quatro modos, obtiveram-se os seguintes dados:

Pico	FWHM (V)	FSR (V)
1	0.360	2 500 ± 0 002
2	0.292	3.508 ± 0.002

Tabela 31: Dados relativos ao ajuste para 4 modos (20mW, L1)

Figura 13: Ajuste para 4 modos (20mW, L1)

Fazendo a média:

$$f_{4modos} = \frac{f_1 + f_2}{2} = \frac{\frac{FSR}{FWHM_1} + \frac{FSR}{FWHM_2}}{2} \approx 10.872 \pm 0.006$$
 (16)

Para cinco modos, obtiveram-se os seguintes dados:

Pico	FWHM (V)	FSR (V)
1	0.304	3.437 ± 0.001
2	0.271	3.431 ± 0.001

Tabela 32: Dados relativos ao ajuste para 5 modos (20mW, L1)

Figura 14: Ajuste para 5 modos (20mW, L1)

Fazendo a média:

$$f_{5modos} = \frac{f_1 + f_2}{2} = \frac{\frac{FSR}{FWHM_1} + \frac{FSR}{FWHM_2}}{2} \approx 12.017 \pm 0.004$$
 (17)

Por fim, para obter f_{L1} faz-se: $\frac{f_{4modos} + f_{5modos}}{2}$, obtendo-se $f_{L1} = 11.444 \pm 0.004$

II.II.2 Distância L2

Devido à potência do laser e à redução da distância L, foi observado um declínio acentuado na resolução, sendo que no que se esperava obter quatro ou cinco modos, obteve-se apenas um modo (os quatro estão presentes, porém a baixa resolução apenas nos pemite distinguir um). Como tal obteve-se então o seguinte:

Pico	FWHM (V)	FSR (V)
1	0.847	3.4856 ± 0.0002
2	0.812	0.4650 ± 0.0002

Tabela 33: Dados relativos ao ajuste para 20mW, L2

Figura 15: Ajuste para 20mW, L2

Fazendo a média:

$$f_{1modo} = \frac{f_1 + f_2}{2} = \frac{\frac{FSR}{FWHM_1} + \frac{FSR}{FWHM_2}}{2} \approx 4.204 \pm 0.002$$
 (18)

sendo que neste caso,

$$f_{L_2} = f_{1modo} = 4.204 \pm 0.002 \tag{19}$$

II.II.3 Comparação com o valor teórico

Faz-se então a média entre o valor de f_{L1} obtido para a primeira distância entre espelhos, e de f_{L2} obtido para a segunda distância entre espelhos:

$$f_{exp} = \frac{f_{L1} + f_{L2}}{2} = 7.824 \pm 0.002 \tag{20}$$

Por fim, obtem-se o desvio face ao valor teórico através de:

$$\delta f = \frac{f_{teorico} - f_{exp}}{f_{teorico}} = 44.3\% \tag{21}$$

III Potência Resolutiva, A

Para calcular a potência resolutiva A, usou-se o FSR no domínio das frequências, dado por:

$$FSR_L = \frac{c}{2L}$$
 , $\delta FSR_L = \frac{c}{2L^2}\delta L$ (22)

sendo então A dado por:

$$A = \frac{\nu}{FSR_L} \cdot f_L \tag{23}$$

onde $\nu = \frac{c}{\lambda}$.

III.I 2 mW

Para a primeira distância entre espelhos L1, obteve-se:

$$A_{L1} = \frac{\nu}{FSR_{L1}} \cdot f_{L1} = (2.352 \pm 0.012) \times 10^6 \tag{24}$$

sendo que para a segunda distância entre espelhos L2, se obteve:

$$A_{L2} = \frac{\nu}{FSR_{L2}} \cdot f_{L2} = (1.582 \pm 0.012) \times 10^6$$
 (25)

III.II 20 mW

Para a primeira distância entre espelhos L1, obteve-se:

$$A_{L1} = \frac{\nu}{FSR_{L1}} \cdot f_{L1} = (3.798 \pm 0.018) \times 10^6$$
 (26)

sendo que para a segunda distância entre espelhos L2, se obteve:

$$A_{L2} = \frac{\nu}{FSR_{L2}} \cdot f_{L2} = (0.911 \pm 0.007) \times 10^6 \tag{27}$$

IV Espaçamento entre modos

As conversões das distâncias de Volt para Hz (de modo a ter termo de comparação com o valor do fornecedor) são feitas segundo:

$$d(\mathrm{Hz}) = \frac{\mathrm{FSR}_L}{\mathrm{FSR}} d(\mathrm{V}) \quad , \qquad \text{em que } \mathrm{FSR}_L \text{ \'e o j\'a definido acima } (1.974 \cdot 10^9 \text{ Hz}) \text{ e FSR \'e o obtido pelos ajustes} \tag{28}$$

$$(\delta d(\mathrm{Hz}))^2 = (d(\mathrm{Hz}))^2 \left[\left(\frac{\delta \mathrm{FSR}_L}{\mathrm{FSR}_L} \right)^2 + \left(\frac{\delta d(\mathrm{V})}{d(\mathrm{V})} \right)^2 + \left(\frac{\delta \mathrm{FSR}}{\mathrm{FSR}} \right)^2 \right]$$
(29)

IV.I Laser de 2 mW

Utilizaram-se os dados referentes a L1, com FSR = 4.784 ± 0.003 V para 2 modos e FSR = 4.557 ± 0.004 V para 3 modos.

Modos	2	3
Distância (V)	1.65 1.39 1.3 1.55 1.41 1.59 1.52 1.48 1.35 1.29	1.49 1.47 1.52 1.44 1.63 1.37 1.44 1.42 1.42 1.38 1.55
Média Dist (V)	1.45 ± 0.20	1.47 ± 0.16
Média Dist (MHz)	$598 \pm 6.8 \cdot 10^{-3}$	$637 \pm 4.8 \cdot 10^{-3}$
Espaçamento Médio (MHz)	617.5 ±	$5.8 \cdot 10^{-3}$

Tabela 34: Valores usados para o cálculo do espaçamento entre modos do Laser de 2 mW

Comparando com o valor teórico apresentado no guia (614 MHz), verifica-se a existência de um desvio de 0.6%.

IV.II Laser de 20 mW

 $FSR = 3.508 \pm 0.002 \text{ V para 4 modos}$

Modos	4
Distância (V)	0.72 0.60 0.63 0.62 0.60 0.58 0.62 0.56 0.62 0.53 0.60 0.53 0.66 0.57 0.53 0.55 0.60 0.59 0.61 0.59 0.61 0.51 0.65 0.53 0.56 0.43 0.53 0.70 0.52 0.55
Espaçamento Médio (V)	0.59 ± 0.16
Espaçamento Médio (MHz)	$332 \pm 8.1 \cdot 10^{-3}$

Tabela 35: Valores usados para o cálculo do espaçamento entre modos do Laser de 20 mW

V Banda de Ganho

V.I Laser de 2 mW

Para obter uma estimativa da curva de ganho, ajustou-se uma gaussiana com um parâmetro independente aos pontos perto dos picos de cada modo (não podia ser só ao pico porque é preciso ter mais pontos que parâmetros livres), assumindo que o threshold do laser está a cerca da meia altura da gaussiana. Para fixar isso, atribui-se ao parâmetro independente o valor simétrico do valor mais alto nos pontos considerados (esse ponto corresponde a uma estimativa para o centróide, sendo que por o porâmetro independente com o valor simétrico força a gaussiana a passar em zero na sua meia altura). Por estas razões escolheu-se fazer esta estimativa num conjunto de dados onde fossem visíveis 3 modos, uma vez que num caso minimamente simétrico como esse a estimativa do centróide da gaussiana é melhor do que se só se tivesse a trabalhar com 2 modos.

Figura 16: Estimativa da curva de ganho - Laser de 2 mW

$$FWHM = 2\sqrt{2\ln(2)}\sigma$$

Obteve-se um desvio padrão $\sigma \approx 1.45 \text{ V} \Rightarrow FWHM \approx 3.41 \text{ V} \Rightarrow FWHM \approx 1.48 \cdot 10^9 \text{ s}^{-1}$. Isto representa um desvio ao valor teórico (1.5 GHz)^[2] de $\approx 1.33\%$.

V.II Laser de 20 mW

Figura 17: Estimativa da curva de ganho - Laser de 20 mW

Obteve-se um desvio padrão $\sigma \approx 0.787~{\rm V} \Rightarrow FWHM \approx 1.85~{\rm V} \Rightarrow FWHM \approx 8.01 \cdot 10^8~{\rm s}^{-1}$. No entanto é notória aqui a presença de um erro. Contudo o ajuste para mais modos da maneira descrita acima é muito mais complicado, uma vez que é necessário que o máximo da gaussiana tenha o valor simétrico do termo independente para forçar a meia altura a passar em 0. Com mais "clusters" de pontos esta tarefa é mais complicada, pelo que a estimativa não é muito boa neste caso. Sabe-se, contudo, que é uma estimativa por defeito. Obtém-se ume erro teórico de $\approx 47\%$, o que realça a dificuldade de analisar a largura da banda de ganho deste laser comparativamente ao anterior, menos potente.

 $^{^2} http://www.phys.unm.edu/msbahae/Optics\%20 Lab/HeNe\%20 Laser.pdf$

A Fazer para a Apresentação

- Espaçamento dos modos do laser de 20 mW (após obtenção do valor do fabricante)
- Repetição da última secção (Banda de Ganho) para mais grupos de dados
- Comparações entre os vários instrumentos/métodos
- No Fabry-Perot, comparar qualidade dos dados quando a rampa de tensão sube mais devagar/depressa