Lógica Digital (1001351)

Circuitos Sequenciais: Máquinas de Estados Finitos

Prof. Edilson Kato kato@ufscar.br

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Maurício Figueiredo mauricio@ufscar.br

Prof. Roberto Inoue rsinoue@ufscar.br

Departamento de Computação Universidade Federal de São Carlos

Atualizado em: 29 de maio de 2019

Troca de Valores entre Registradores

Figure 6.10 System for Example 6.1.

Máquina de Estados Finitos

Figure 6.11 State diagram for Example 6.1.

Tabela de Estados

Present	Next state		Outputs							
state	w = 0	w = 1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done	
A	A	В	0	0	0	0	0	0	0	
В	C	C	0	0	1	0	0	1	0	
C	D	D	1	0	0	1	0	0	0	
D	A	A	0	1	0	0	1	0	1	

Figure 6.12 State table for Example 6.1.

Tabela de Atribuição de Estados

	Present	Next state									
	state	w = 0	w = 1	1 Outputs							
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done	
A	0 0	0 0	0 1	0	0	0	0	0	0	0	
В	0 1	10	10	0	0	1	0	0	1	0	
C	10	1 1	1 1	1	0	0	1	0	0	0	
D	1 1	0 0	0 0	0	1	0	0	1	0	1	

$$R1_{out} = R2_{in} = \overline{y}_1 y_2$$

$$R1_{in} = R3_{out} = Done = y_1 y_2$$

$$R2_{out} = R3_{in} = y_1 \overline{y}_2$$

Expressões de próximo estado

$$Y_1 = w\bar{y}_1 + \bar{y}_1 y_2$$

$$Y_2 = y_1 \bar{y}_2 + \bar{y}_1 y_2$$

Figure 6.14 Derivation of next-state expressions for Figure 6.13.

Circuito resultante

Tabela de Atribuição de Estados (alternativa)

	Present	Present Next state		Outputs							
	state	w = 0	w = 1								
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done	
A	0 0	0.0	0 1	0	0	0	0	0	0	0	
В	0 1	1 1	1 1	0	0	1	0	0	1	0	
C	1 1	10	10	1	0	0	1	0	0	0	
D	10	0 0	0 0	0	1	0	0	1	0	1	

Figure 6.18 Improved state assignment for the state table in Figure 6.12.

Expressões de próximo estado

$$Y_1 = w\bar{y}_2 + y_1\bar{y}_2$$

$$Y_2 = y_1$$

Figure 6.19 Derivation of next-state expressions for Figure 6.18.

One-hot encoding

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3 y_2 y_1$	$Y_3Y_2Y_1$	$Y_3 Y_2 Y_1$	Z
A	0 0 1	001	010	0
В	010	0 0 1	100	0
C	100	001	100	1

Figure 6.20 One-hot state assignment for the state table in Figure 6.4.

$$Y_1 = \overline{w}$$

$$Y_2 = wy_1$$

$$Y_3 = w\overline{y}_1$$

$$z = y3$$

One-hot encoding

	Present state			Outputs							
	$y_4 y_3 y_2 y_1$	$Y_4Y_3Y_2Y_1$	$Y_4Y_3Y_2Y_1$	$R1_{out}$	$R1_{in}$	R2 _{out}	$R2_{in}$	R3 _{out}	$R3_{in}$	Done	
A B	0001	0001	0010	0	0	0	0	0	0	0	
С	$0\ 0\ 1\ 0 \\ 0\ 1\ 0\ 0$	$0100 \\ 1000$	$0\ 1\ 0\ 0$ $1\ 0\ 0$	1	0 0	0	1	0	0	0	
D	1000	0001	0001	0	1	0	0	1	0	1	

Figure 6.21 One-hot state assignment for the state table in Figure 6.12.

$$Y_1 = \overline{w}y_1 + y_4$$
 $R1_{out} = R2_{in} = y_3$ $R1_{in} = R3_{out} = Done = y_4$ $Y_4 = y_3$ $R2_{out} = R3_{in} = y_2$

Bibliografia

▶ Brown, S. & Vranesic, Z. - Fundamentals of Digital Logic with Verilog Design, 3rd Ed., Mc Graw Hill, 2009

Lógica Digital (1001351)

Circuitos Sequenciais: Máquinas de Estados Finitos

Prof. Edilson Kato kato@ufscar.br

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Maurício Figueiredo mauricio@ufscar.br

Prof. Roberto Inoue rsinoue@ufscar.br

Departamento de Computação Universidade Federal de São Carlos

Atualizado em: 29 de maio de 2019

