Comparação do desempenho de modelos propostos para o ajuste de dados de esportes coletivos

Mariana de Castro Pasqualini

2022-07-11

Introdução

Desde a década de 80, modelos estatísticos são aplicados em problemas relacionados à esportes. Um exemplo é prever o número de gols marcados por um time em uma partida de futebol, que podem ser modelados como dados de **contagem**.

Introdução

A distribuição de Poisson é uma das mais utilizadas para esse tipo de problema. Serão apresentados 6 modelos propostos na literatura para prever o número de gols nas partidas do Campeonato Brasileiro dos anos 2019.

Os modelos foram implementados no Stan, um software para amostrar modelos bayesianos, juntamente com o R.

O modelo de efeitos aleatórios proposto por Baio (2010) é definido da seguinte forma:

Seja $\mathbf{y}=(y_{g1},y_{g2})$ um um vetor de contagens, que são modelados como Poisson independentes condicionais aos parâmetros $\theta=(\theta_{g1},\theta_{g2})$

$$y_{gj}|\theta_{gj} \sim Poisson(\theta_{gj})$$

No qual j=1 representa o time jogando em casa e j=2 indica a equipe visitante. Assumindo um modelo de efeitos aleatórios com função de ligação log, temos:

$$\log \theta_{g1} = home + att_{h(g)} + def_{a(g)}$$
$$\log \theta_{g2} = att_{a(g)} + def_{h(g)}$$

Os índices h(g) representa o time que está jogando em casa no g-ésimo jogo e a(g) o visitante, indo de 1 a T=20.

Priori

A escolha das distribuições a priori dos parâmetros foi baseada no artigo e foram adaptadas para o Stan.

Parâmetros

- ightharpoonup home \sim Normal(0,10)
- ightharpoonup att_t \sim Normal($\mu_{\mathsf{att}}, \sigma_{\mathsf{att}}$)
- ightharpoonup def_t \sim Normal(μ_{def}, σ_{def})

Hiperparâmetros

- $ightharpoonup \mu_{att} \sim Normal(0, 10)$
- $ightharpoonup \mu_{def} \sim Normal(0,10)$
- $ightharpoonup \sigma_{att} \sim Cauchy(0, 2.5)^1$
- $ightharpoonup \sigma_{def} \sim Cauchy(0, 2.5)$

¹Gelman et al. (2008)

Como **restrição de identificabilidade** nos efeitos específicos de cada time, apenas para o último time foi definido que

$$att_{t=20} = 0 \ def_{t=20} = 0$$

e, portanto, o vigésimo time é referência para interpretação dos efeitos das outras equipes. Essa restrição foi aplicada para todos os modelos deste trabalho.

Simulação

Para verificar a implementação e qualidade de estimação dos modelos, foi feita uma simulação com 1000 banco de dados de tamanho 380, representando o número de jogos de um campeonato com 20 times.

Simulação

Uma única cadeia de Markov foi utilizada para obter as amostras da distribuição a posteriori, com 5000 iterações no total, sendo 2500 de warmup/burnin.

Dados

Os dados do Campeonato Brasileiro foram disponibilizados por Gomide e Gualberto no repositório **caRtola**, disponível no Github. O formato dos dados é o seguinte:

home_team	$away_team$	$home_score$	away_score	$home_team_index$	$away_team_index$
282	314	2	1	10	16
315	285	2	0	17	13
262	283	3	1	1	11
276	263	2	0	8	2
293	267	4	1	15	6
265	264	3	2	4	3

No ano de 2019, o topo da tabela foi formado, respectivamente, por:

Flamengo, Santos, Palmeiras e Grêmio

Já os times rebaixados foram:

► Cruzeiro, CSA, Chapecoense e Avaí

► Referência: Fortaleza

Time	Média Mediana		Desvio-padrão	5%	95%
Flamengo	0.546	0.547	0.149	0.300	0.794
Fluminense	-0.182	-0.182	0.179	-0.486	0.106
Palmeiras	0.218	0.217	0.159	-0.039	0.486
CSA	-0.513	-0.507	0.203	-0.863	-0.181
Time	Média	Mediana	Desvio-padrão	5%	95%
Flamengo	-0.111	-0.105	0.158	-0.374	0.144
Fluminense	-0.020	-0.021	0.152	-0.263	0.228
Palmeiras	-0.196	-0.193	0.161	-0.469	0.064
CSA	0.115	0.114	0.153	-0.135	0.371
Parâmetro	Média	Mediana	Desvio-padrão	5%	95%
home	0.412	0.411	0.069	0.299	0.53

Karlis (2003) propõe um modelo baseado na distribuição de Poisson bivariada, em que são definidas três variáveis aleatórias latentes X_1, X_2, X_3 que seguem, independentemente, uma Poisson com parâmetros $\lambda_1, \lambda_2, \lambda_3$.

Então, as variáveis aleatórias $X=X_1+X_3$ e $Y=X_2+X_3$ seguem conjuntamente uma distribuição de Poisson bivariada. Marginalmente, $E(X)=\lambda_1+\lambda_3$ e $E(Y)=\lambda_2+\lambda_3$. Ainda, $cov(X,Y)=\lambda_3$ e então tem-se uma medida de interdependência entre as variáveis aleatórias.

Utilizando o resultado anterior, podemos definir:

$$X_i \sim Poisson(\lambda_{1i} + \lambda_{3i})$$

 $Y_i \sim Poisson(\lambda_{2i} + \lambda_{3i})$

com *i* indicando o i-ésimo jogo. Daí, temos os preditores lineares definidos como:

$$\log(\lambda_{1i}) = \mu + home + att_{h_i} + def_{g_i}$$

 $\log(\lambda_{2i}) = \mu + att_{g_i} + def_{h_i}$
 $\log(\lambda_{3i}) = \alpha + \gamma_1 \alpha_{h_i}^{home} + \gamma_2 \alpha_{g_i}^{away}$

no qual as variáveis $dummy \ \gamma_1$ e γ_2 indicam quais efeitos queremos incluir na correlação entre o número de gols do time mandante e visitante.

Para o modelo 2 que estamos considerando, $\gamma_1=\gamma_2=0$. Ou seja, o parâmetro de correlação λ_{3i} depende apenas de um efeito fixo, α .

Originalmente, o artigo considera que o efeito de ataque e defesa para cada time é **fixo**, fazendo com que o modelo tenha um número muito grande de parâmetros. Por isso, o modelo proposto foi adaptado e ataque e defesa foram tratados como efeitos aleatórios, além da inclusão prioris para os parâmetros.

Priori

Parâmetros

- \blacktriangleright $\mu \sim Normal(0, 10)$
- ▶ home $\sim Normal(0, 10)$
- ightharpoonup att_t \sim Normal(0, σ_{att})
- ▶ $def_t \sim Normal(0, \sigma_{def})$
- $ightharpoonup lpha \sim Normal(0,1)$

Hiperparâmetros

- $ightharpoonup \sigma_{att} \sim Cauchy(0, 2.5)$
- $ightharpoonup \sigma_{def} \sim Cauchy(0, 2.5)$

Simulação

Uma simulação para o modelo 2 foi feita com 1000 banco de dados de tamanho 380, representando o número de jogos de um campeonato com 20 times.

Time	Média	Mediana	Desvio-padrão	5%	95%
Flamengo	1.164	1.130	0.340	0.697	1.756
Fluminense	-0.521	-0.418	0.581	-1.445	0.169
Palmeiras	0.654	0.616	0.331	0.178	1.233
CSA	-0.830	-0.754	0.567	-1.810	-0.088
Time	Média	Mediana	Desvio-padrão	5%	95%
Flamengo	-0.178	-0.150	0.281	-0.678	0.232
Fluminense	0.052	0.053	0.233	-0.326	0.435
Palmeiras	-0.238	-0.217	0.271	-0.722	0.164
CSA	0.246	0.238	0.240	-0.129	0.645

Baseado na definição do modelo 2, o modelo 3 é definido com $\gamma_1=1, \gamma_2=0$, com parâmetro de correlação λ_{3i} sendo a soma do efeito **fixo** α mais um efeito que depende do time **mandante**.

O modelo 4 inclui todos os efeitos na correlação: o efeito **fixo** α , um efeito que depende do time da **casa** e também um efeito para o time **visitante**. Assim, $\gamma_1=1, \gamma_2=1$.

Já o modelo 5 inclui apenas o efeito fixo e o efeito do time **visitante**, definido com $\gamma_1=0, \gamma_2=1.$

75 -50 -25 -

Time	Média	Mediana	Desvio-padrão	5%	95%
Flamengo	0.722	0.717	0.156	0.470	0.982
Fluminense	-0.212	-0.197	0.219	-0.595	0.122
Palmeiras	0.363	0.364	0.169	0.091	0.643
CSA	-0.464	-0.459	0.221	-0.840	-0.120
Time	Média	Mediana	Desvio-padrão	5%	95%
Flamengo	-0.061	-0.054	0.135	-0.296	0.152
Fluminense	-0.009	-0.006	0.148	-0.255	0.226
Palmeiras	-0.143	-0.133	0.149	-0.411	0.083
CSA	0.188	0.181	0.140	-0.026	0.423

O sexto modelo é uma extensão do modelo 1, incluindo uma mistura de 3 componentes, representando categorias das habilidades do time. A partir disso, o efeito de ataque e defesa são definidos em função do grupo que a equipe pertence.

O ataque e defesa seguem uma distribuição t-Student com 4 graus de liberdade, **ponderados** pela probababilidade do time pertencer a um dos três grupos: (1) final da tabela, (2) meio da tabela e (3) topo da tabela (Baio 2010).

$$egin{aligned} ext{att}_t &= \sum_{k=1}^3 \pi_{kt}^{ ext{att}} imes t(\mu_k^{ ext{att}}, au_k^{ ext{att}},
u) \ def_t &= \sum_{k=1}^3 \pi_{kt}^{ ext{def}} imes t(\mu_k^{ ext{def}}, au_k^{ ext{def}},
u) \end{aligned}$$

Priori

- lacksquare $\pi_{\mathsf{att}} \sim \mathsf{Dirichlet}([1,1,1]) \ \mathsf{e} \ \pi_{\mathsf{def}} \sim \mathsf{Dirichlet}([1,1,1])$
- ▶ home \sim Normal(0, 10)
- Para todos os grupos, $\sigma_{att} \sim \textit{Cauchy}(0, 2.5)$ e $\sigma_{\textit{def}} \sim \textit{Cauchy}(0, 2.5)$

Grupo 1

- $ightharpoonup \mu_1^{att} \sim truncNormal(0, 10, -3, 0)$
- $ightharpoonup \mu_1^{def} \sim truncNormal(0,10,0,3)$

Grupo 2

- $ightharpoonup \mu_2^{att} \sim truncNormal(0, 0.01)$
- $ightharpoonup \mu_2^{def} \sim truncNormal(0,0.01)$

Grupo 3

- $ightharpoonup \mu_3^{att} \sim truncNormal(0, 10, 0, 3)$
- ho $\mu_3^{def} \sim truncNormal(0, 10, -3, 0)$

As cadeias apresentaram problemas e foram ajustadas com parâmetros diferentes: 2 cadeias, thin = 5 e 10000 iterações.

Comparação: EQM

Time	Real	M1	M2	М3	M4	M5	M6
Atlético-MG	48	40	58	67	48	49	63
Atlético-PR	64	71	60	53	39	59	56
Avaí	20	39	25	26	43	21	30
Bahia	49	36	53	58	64	68	53
Botafogo	43	55	45	43	48	27	41
Ceará-SC	39	28	44	64	34	48	24
Chapecoense	32	45	49	34	36	48	32
Corinthians	56	39	62	57	49	44	50
Cruzeiro	36	42	45	38	41	39	46
CSA	32	30	41	29	30	41	46
Flamengo	90	76	72	85	70	80	72
Fluminense	46	45	49	42	67	55	41
Fortaleza	53	61	45	49	54	46	63
Goiás	52	57	33	53	54	43	39
Grêmio	65	61	51	59	69	69	77
Internacional	57	48	62	52	58	66	45
Palmeiras	74	66	76	75	71	69	52
Santos	74	78	77	68	71	61	78
São Paulo	63	73	48	58	40	53	73
Vasco	49	54	40	36	42	50	55
		99.7	98.6	79.6	149.1	95.9	125.4

Comparação: LOO-CV

- ▶ $elpd_{loo} = \sum_{i=1}^{n} \log p(y_i|y_{-i})$, onde $p(y_i|y_{-i}) = \int p(y_i|\theta)p(\theta|y_{-i}d\theta)$ é a densidade preditiva (Vehtari, Gelman, and Gabry 2015)
- ▶ $LOO_{ic} = -2 \times elpd_{loo}$
- Quanto menor, melhor

model	elpd_diff	se_diff	looic	se_looic
model1	0.000	0.000	2014.037	35.898
model6	-0.665	0.936	2015.367	35.467
model2	-1158.510	82.250	4331.057	195.930
model5	-2701.602	150.241	7417.241	331.722
model3	-2765.482	152.215	7545.002	335.825
model4	-4187.758	212.787	10389.553	456.748

Considerações

- ▶ Binomial negativa, para os casos de superdispersão
- ▶ Benz (2020) analisa o efeito de jogar em casa durante a pandemia
- Campeonatos de outros anos
- Outros esportes, como vôlei (Gabrio 2021)
- Limitações dos modelos baseados na Poisson bivariada
- Melhoria e correção do modelo de mistura

Referências

Baio, Marta, Gianluca e Blangiardo. 2010. "Bayesian Hierarchical Model for the Prediction of Football Results." *Journal of Applied Statistics* 37 (2): 253–64. https://doi.org/10.1080/02664760802684177.

Benz, Michael J., Luke S. e Lopez. 2020. "Estimating the Change in Soccer's Home Advantage During the Covid-19 Pandemic Using Bivariate Poisson Regression." https://doi.org/10.48550/ARXIV.2012.14949.

Gabrio, Andrea. 2021. "Bayesian Hierarchical Models for the Prediction of Volleyball Results." *Journal of Applied Statistics* 48 (2): 301–21. https://doi.org/10.1080/02664763.2020.1723506. Gelman, Andrew, Aleks Jakulin, Maria Grazia Pittau, and Yu-Sung Su. 2008. "A weakly informative default prior distribution for

Su. 2008. "A weakly informative default prior distribution for logistic and other regression models." *The Annals of Applied Statistics* 2 (4): 1360–83. https://doi.org/10.1214/08-AOAS191.

Statistics 2 (4): 1360–83.
https://doi.org/10.1214/08-AOAS191.
Karlis, Ioannis, Dimitris e Ntzoufras. 2003. "Analysis of Sports Data by Using Bivariate Poisson Models." Journal of the Royal Statistical Society: Series D. (The Statistician) 52 (3): 381–93.