31/235,31/19, B01J 2/16

A 61 K 9/22 A 61 J 3/00 // A61K 31/52,31/17,

712095 A1

(2) Aktenzeichen: P 37 12 095.6 (2) Anmeldetag: 10. 4. 87 (3) Offenlegungstag: 20. 10. 88

o ordeneigentum

(1) Anmelder:

Lentia GmbH Chem. u. pharm. Erzeugnisse - Industriebedarf, 8000 München, DE

② Erfinder:

Korsatko, Werner, Dr.et Mag.pharm. (Univ. Dozent); Korsatko-Wabnegg, Brigitta, Dr.et Mag.pharm. (Univ.), Graz, AT

66) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 29 17 037 C2
DE 36 25 548 A1
DE 34 17 576 A1
DE 34 17 576 A1
DE 26 20 456 A1
DE-GM 66 02 562

US-Z: Chemcial Abstracts, 1986, Vol.105, Ref. 85056g;

(A) Bindemittelfreies Granulat mit verzögerter Wirkstoffabgabe

Bindemittelfreies Granulat zur oralen und parenteralen Applikation mit verzögerter Wirkstofffreisetzung, bestehend aus einem pharmazeutischen Wirkstoff oder dessen Granulat und einem Überzug von 1 bis 20 Gew.-% Poly-D(-)-3-hydroxybuttersäure bezogen auf des Gesamtgewicht und ein Verfahren zu dessen Herstellung.

DE 37 12 095 🖊

DED I AVAILABLE COPY

37 12 095 OS

Patentansprüche

1. Bindemittelfreies Granulat zur oralen und parenteralen Applikation mit verzögerter Wirkstofffreisetzung bestehend aus einem pharmazeutischen Wirkstoff oder dessen Granulat und Poly-D(-)-3-hydroxybuttersäure, dadurch gekennzeichnet, daß der Wirkstoff oder dessen Granulat mit einer Menge von 1 bis 20 Gew.-% Poly-D(-)-3-hydroxybuttersäure bezogen auf das Gesamtgewicht, überzogen ist.

2. Bindemittelfreies Granulat nach Anspruch 1, dadurch gekennzeichnet, daß der Wirkstoff oder dessen Granulat mit einer Menge von 1 bis 15% Poly-D(-)-3-hydroxybuttersäure bezogen auf das Gesamtge-

wicht, überzogen ist.

3. Bindemittelfreies Granulat nach Anspruch 2, dadurch gekennzeichnet, daß der Wirkstoff oder dessen Granulat mit einer Menge von 3 bis 10% Poly- D(-)-3-hydroxybuttersäure bezogen auf das Gesamtgewicht, überzogen ist.

4. Bindemittelfreies Granulat nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Molge-

wicht der eingesetzten Poly-D(-)-3-hydroxybuttersäure zwischen 50.000 und 800.000 liegt.

5. Bindemittelfreies Granulat nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Molgewicht der verwendeten Poly-D(-)-3-hydroxybuttersäure zwischen 100.000 und 400.000 liegt. 6. Bindemittelfreies Granulat nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Wirkstoff Celiprololhydrochlorid ist.

7. Bindemittelfreies Granulat nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß es durch eine

Wirbelschichtgranulierung hergestellt wurde.

8. Verfahren zur Herstellung eines bindemittelfreien Granulates zur oralen oder parenteralen Applikation mit verzögerter Wirkstofffreisetzung bestehend aus Poly-D(-)-3-hydroxybuttersäure und einem pharmazeutischen Wirkstoff, dadurch gekennzeichnet, daß der pharmazeutische Wirkstoff oder dessen Granulat in einem aufbauenden Granulationsverfahren mit einer Lösung von Poly-D(-)-3-hydroxybuttersäure besprüht und das Lösungsmittel verdampft wird.

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das aufbauende Granulationsverfahren ein

Wirbelschichtgranulierungsverfahren ist.

10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß das bindemittelfreie Granulat zu einer Arzneiform verpreßt wird.

30

10

15

20

25

Beschreibung

Die Erfindung betrifft ein bindemittelfreies Granulat mit verzögerter Wirkstoffabgabe.

Es ist bekannt, daß es für bestimmte Wirkstoffe von Vorteil ist, Arzneiformen herzustellen, die den Wirkstoff über einen langanhaltenden Zeitraum kontinuierlich abgeben. Für eine Anzahl pharmakologisch wirksamer Substanzen sind daher galenische Darreichungsformen mit einer verzögerten Wirkstoffabgabe für die orale, parenterale und topische Applikation entwickelt worden.

Eine solche Retardwirkung kann man beispielsweise durch Überziehen von Pulvern und Granulaten mit Acrylharzlacken erreichen. Diese Überzüge und üblicherweise auch die zu überziehenden Arzneiformen enthalten zusätzliche Hilfs- und Füllstoffe, vor allem sind jedoch Acrylharzlacke körperfremde Substanzen und

biologisch nicht abbaubar.

Nach US-PS 37 73 919 können bestimmte, biologisch abbaubare Polymere, nämlich Polyglykolsäure, Polymilchsäure und Copolymerisate von Milch- und Glykolsäure zur Herstellung von Retardformen verwendet werden. Die Herstellung dieser Retardformen kann dabei A) durch Beschichten wie Sprühtrocknen, Fließbettschichten oder Mikroeinkapseln, B) durch Einbetten ("embedding") oder C) durch enges Vermischen, wie Lösen von Wirkstoff und Polymer in einem Lösungsmittel und Verdampfen des Lösungsmittels erfolgen. In den Beispielen ist allerdings nur die Herstellung von Retardformen durch "embedding" beschrieben, daß heißt, das Polylactid wird geschmolzen, der Wirkstoff eingebracht und in der Schmelze suspendiert, die Schmelze erstarren gelassen und in kleine Partikel zerrieben. Bei dieser Methode besteht jedoch die Gefahr, daß der Wirkstoff thermisch zersetzt wird. Weiters zeigt sich beim Nacharbeiten der dort im allgemeinen Teil unter A) beschriebenen Methode des Wirbelschichtgranulierens, daß sich die dort angegebenen Polyactide für Wirbelschichtgranulierung nicht eignen, da die Polymerlösung beim Versprühen in unterschiedlichen Konzentrationen und unter Verwendung unterschiedlicher Lösungsmittel immer Fäden zog und kein gleichmäßiger Überzug des Wirkstoffes erhalten werden konnte.

Aus EP-A-01 08 882 ist bekannt, Poly-D(-)-3-hydroxybuttersäure, im folgenden Poly-HB genannt, als polymeres Trägermaterial zu verwenden, wobei die Poly-HB direkt mit dem Wirkstoff vermischt und zu Tabletten verpreßt wird, in denen der Wirkstoff gleichmäßig in einem Poly-HB-Gerüst verteilt ist. Zur Erzielung einer Retardwirkung von mehreren Stunden sind jedoch mindestens 20 Gew.-% Poly-HB notwendig. Dies ist insbesondere für Arzneimittel, die hochdosiert werden müssen und deshalb große Wirkstoffmengen enthalten, von Nachteil. Darüber hinaus gibt es Problemarzneistoffe, die ungünstige osmotische Eigenschaften haben, so daß erst bei über 50 Gew.-% Poly-HB Anteil eine stabile Matrix aufgebaut und eine gute Retardwirkung erzielt werden kann. Tabletten, die z.B. 200 mg Wirkstoff enthalten, müssen demnach bei dieser Methode mit mindestens 200 mg Poly-HB vermischt werden. Die dabei entstehenden Tabletten von über 400 mg Gewicht sind so groß, daß ihre Einnahme für den Patienten schon unangenehm und sogar beschwerlich ist. Es stellte sich daher die Aufgabe, Retardtabletten herzustellen, die nur geringe Mengen an biologisch abbaubarem, polymeren Material bei gleichzeitig hoher Retardwirkung enthalten, wodurch eine große Wirkstoffmenge in einer relativ

kleinen Retardtablette enthalten ist. Es wurde nun gefunden, daß es möglich ist, ausgehend von einem Wirkstoff oder dessen Granulat mit Hilfe

OS 37 12 095

von Poly-HB ein bindemittelfreies Granulat herzustellen, das nur mit einer geringen Menge an Poly-HB überzogen ist, das gleichzeitig gute Retardwirkung aufweist und ohne Zusatz von Hilfsstoffen zu Tabletten verpreßbar ist.

Gegenstand der Erfindung ist demnach ein bindemittelfreies Granulat zur oralen und parenteralen Applikation mit verzögerter Wirkstofffreisetzung bestehend aus einem pharmazeutischen Wirkstoff oder dessen Granulat und Poly-D(-)-3-hydroxybuttersäure, dadurch gekennzeichnet, daß das Wirkstoffgranulat mit einer Menge von 1 bis 20 Gew.-% Poly-D(-)-3-hydroxybuttersäure bezogen auf das Gesamtgewicht, überzogen ist.

von 1 bis 20 Gew. % Poly-D(-)-3-hydroxybuttersäure bezogen auf das Gesamtgewicht, überzogen ist.

Das erfindungsgemäße Granulat besteht nur aus dem Wirkstoff oder dessen. Granulat, welche mit einem bestimmten Anteil an Poly-HB überzogen sind. Es besitzt gute Fließeigenschaften und kann überraschenderweise ohne zusätzliche Hilfs- oder Füllstoffe problemlos zu Tabletten verpreßt werden.

Man kann prinzipiell jeden Wirkstoff oder dessen Granulat einsetzen und erhält so umfassende Anwendungsmöglichkeiten. Ein Beispiel hierfür ist der Wirkstoff 7-Hydroxyethyltheophyllin. Eine besondere Bedeutung kommt der Erfindung bei Tabletten mit großen Wirkstoffmengen zu, da sich die Tablettengröße durch den reduzierten Poly-HB-Gehalt erheblich verringern läßt. Beispiele für solche Wirkstoffe sind Celiprololhydrochlorid, Hexobendindihydrochlorid, Ibuprofen, Diclofenac-Na, etc.

Die erzielte Retardwirkung ist einerseits von den physikalischen Eigenschaften des verwendeten Wirkstoffes abhängig, andererseits von der Dicke des Überzuges mit Poly-HB sowie vom Molekulargewicht der verwendeten Poly-HB. Je dicker der Überzug und/oder je höher das Molekulargewicht der verwendeten Poly-HB sind, desto langsamer wird der Wirkstoff freigesetzt, so daß für jeden Wirkstoff 2 Parameter zur Erreichung einer gewünschten Retardzeit zur Verfügung stehen. Der Überzug an Poly-HB beträgt 1 bis 20 Gew.-% bezogen auf das Gesamtgewicht des Granulates, bevorzugt 1 bis 15 Gew.-%. Besonders bevorzugt ist der Bereich von 3 bis 10 Gew.-%.

Es ist ein wesentliches Kennzeichen der Erfindung, daß viel Wirkstoff mit wenig Poly-HB umhüllt werden kann, wobei trotzdem gute Retardeigenschaften erreicht werden.

Das Abbauprodukt der Poly-HB, die D(-)-3-Hydroxybuttersäure ist eine körpereigene Substanz und kann daher keine Nachteile im Metabolismus haben.

Die verwendete Poly-HB stellt man beispielsweise nach EP-A-01 49 774 biotechnologisch durch aerobe Kultivierung eines Mikroorganismus der Gattung Alcaligenes her. Zur Herstellung des erfindungsgemäßen Granulates wird üblicherweise eine Poly-HB eines Molekulargewichtes von etwa 50.000 bis etwa 800.000 verwendet, wobei der Bereich von 100.000 bis 400.000 besonders bevorzugt ist.

Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung eines bindemittelfreien Granulates, das dadurch gekennzeichnet ist, daß ein pharmazeutischer Wirkstoff oder dessen Granulat in einem Granulierungsverfahren mit einer Lösung von Poly-D(—)-3-hydroxybuttersäure besprüht und das Lösungsmittel verdampft wird

In diesem Verfahren wird Poly-HB in einem für sie geeigneten Lösungsmittel wie beispielsweise Methylenchlorid oder Chloroform gelöst. Die Menge des Lösungsmittels ist abhängig von der Art des Lösungsmittels, vom Molekulargewicht der verwendeten Poly-HB und von der Sprühtemperatur. Die Sprühtemperatur beträgt etwa zwischen 35 und 50°C. Der Wirkstoff wird als Pulver oder als Granulat eingesetzt und anschließend durch ein beliebiges aufbauendes Granulationsverfahren mit einer Lösung von Poly-HB besprüht, worauf nach Verdampfen des Lösungsmittels das erfindungsgemäße Granulat erhalten wird.

Besonders vorteilhaft ist der Einsatz der Wirbelschichtgranulierung, denn bei diesem Verfahren werden alle Verfahrensschritte in demselben Behälter ausgeführt. Der Wirkstoff oder dessen Granulat wird vorgelegt und mit einer Poly-HB-Lösung besprüht. Durch Zufuhr von Luft oder Inertgas wird eine Wirbelschicht aufgebaut und erhalten, wobei der Wirkstoff oder dessen Granulat unter Abdampfen des Lösungsmittels mit einer dünnen Schicht von Poly-HB überzogen wird.

Es entsteht ein poröses Granulat von sphärischer Form, das ohne Zusatz von Bindemitteln oder sonstigen Hilfsstoffen zu Komprimaten beliebiger Form verpreßt werden kann.

Beispiel 1

100 g Celiprololhydrochlorid-Granulat wurde im Wirbelschichtgranulierungsbehälter vorgelegt und mit 300 ml einer Lösung von 6 g Poly-D(—)-3-hydroxybuttersäure in Chloroform (2%ige Lösung) vom Molekulargewicht 142.935 mit einem Sprühdruck von 1 bar und bei einer Temperatur von 40°C besprüht. Durch Einblasen von Luft wurde dabei eine Wirbelschicht aufgebaut und das Lösungsmittel abgedampft, wobei das Granulat mit einem dünnen Überzug von Poly-HB versehen wurde.

Der Gehalt des Wirbelschichtgranulates (WSG) an Poly-HB betrug 5 bis 6% bezogen auf das Gesamtgewicht. Aus dem entstandenen Granulat wurden mit einem Druck von 2,5 t, das entspricht 245,3 N/mm², Tabletten hergestellt.

Schüttvolumen des WSG: Rüttelvolumen des WSG:

3,8 ml/g 3,09 ml/g

Tablettengröße:

d = 9.2 mm h = 4.2 mm218,8 mg $\pm 5.3 \text{ mg} (\pm 2.4\%)$

Durchschnittsgewicht der Tabletten:

10.61 km

Bruchfestigkeit:

19,61 kp

In analoger Weise wurden auch Granulat und Tabletten für die Beispiele 2 bis 9 hergestellt.

65

60

45

50

OS 37 12 095

Tabelle I

5	Beispiel	Wirkstoff	Molekulargewicht Poly-HB	% Poly-HB	Lösungsmittel	Sprühtemperatur °C
J						
	1	Celiprololhydrochlorid	142,935	5—6	CHCl₃	40 ⁻
	2	Celiprololhydrochlorid	142.935	4-5	CHCl₃	40
	3	Celiprololhydrochlorid	278.726	2-3	CHCl ₃	40
10	4	Celiprololhydrochlorid	278.726	3-4	CHCl₃	40
10	5	Celiprololhydrochlorid	604.691	1-2	CHCl ₃	40
	6	7-Hydroxyethyltheophyllin	•	1	CHCl ₃	40
	7	Hexobendindihydrochlorid		1	CHCl ₃	40
	0	Ibuprofen	604.691 ⁻	ī	CHCl ₃	40
15	8 9	Diclofenac-Na	604.691	i	CHCl₃	40

In vitro Wirkstofffreigabe

Zur Messung der Retardeigenschaften der Celiprolohydrochlorid-Tabletten (Beispiele 1 bis 5) wurden die Tabletten in 100 ml 0,9%iger Natriumchloridlösung bei 37°C in verschlossenen Braunglasflaschen geschüttelt und in Abständen von 30 bzw. 60 Minuten auf die freigesetzte Wirkstoffmenge untersucht. Auch die Halfchange Methode, bei der der pH-Wert kontinuierlich innerhalb von 8 Stunden von pH 1,3 auf pH 7,3 erhöht wird, wobei in Abständen wie oben die Wirkstofffreisetzung gemessen wird, wurde zur Überprüfung angewandt und brachte gleiche Ergebnisse. Die quantitative analytische Erfassung von Celiprolol erfolgte spektralphotometrisch in geeigneter Verdünnung bei 324 nm. Die Retardeigenschaften der Tabletten mit den anderen Wirkstoffen (Beispiele 6 bis 9) wurden nach der Half-change Methode bestimmt. Die quantitative, analytische Erfassung erfolgte spektralphotometrisch (7-Hydroxyethyltheophyllin: 273 nm, Hexobendindihydrochlorid: 266 nm, Ibuprofen: 264 nm, Diclofenac-Na: 275 nm).

Tabelle II

	Bei- spiele	Freigesetzte Wirkstoffmenge in Gew% bezogen auf den Gesamtgehalt										
35		Zeit (h) 0,5	1	2	3	4	5	6	7	8	24	
	1	17,46	26,33	40,62	52,29	58,81	64,87	70,26	77,36	80,49	··· 95,53·	
	2	26,42	42,72	63,05	76,74	86,06	92,15	94,73	_	_	98,77	
40-	3	22,08	34,96	55,66	68,94	76,69	84,19	88,62	91,76	92,68	98,38.	
40	4	17,91	27,60	42,26	54,37	61,41	71,36	75,82	81,39	86,52	99,99	
	5	28,06	47,08	69,44	83,82	89,88	95,61	95,88	· - ···	_	97,31	
	6	_	24,61	41,05	56,80	61,77	69,43	75,43	_	85,31	_	
	7	_	14,70	27,21	41,34	48,88	58,72	67,40	_	77,73	_	
45	8	_	1,11	1,64	5,49	8,82	13,14	16,89	_	24,08	_	
73	9	_			5,50	9,78	13,71	29,03	_	42,62	· -	

30