CLAIMS

 A material for an organic electroluminescence device comprising a compound represented by the following general formula
 (1):

wherein Ar₁ to Ar₄ each represent a benzene residue;

 R_1 to R_6 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 40 ring atoms, a substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 ring carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, a substituted or unsubstituted or unsubstituted aralkyl group having 7 to 40 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, a substituted or unsubstituted or unsubstituted alkylamino group having 1 to 40 carbon atoms, a substituted or unsubstituted arylamino group having 6 to 40 carbon atoms, a substituted or unsubstituted arylamino group having 6 to 40 carbon atoms, a substituted or unsubstituted aralkylamino group having 7 to 40 carbon atoms, or a group represented by Cz below, and when each of R_1 to R_8 bond to its adjacent carbon atom, each

of R_1 to R_8 and its adjacent carbon atom may bond to each other to form a saturated or unsaturated cyclic structure;

Cz represents a group expressed by the following general formula (2a) or (2b):

$$R_{14}$$
 A
 R_{15}
 $(2 a)$

wherein $\bf A$ represents a single bond, $-(CR_9R_{10})_n$ -, $-(SiR_{11}R_{12})_n$ -, $-NR_{13}$ -, -0-, or -S-, $\bf n$ represents an integer of 1 to 3, R_9 to R_{15} each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, a substituted or unsubstituted heterocyclic group having 3 to 40 ring atoms, a substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 ring carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, a substituted or unsubstituted or unsubstituted or unsubstituted aralkyl group having 7 to 40 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, a substituted or unsubstituted alkylamino group having 1 to 40 carbon

atoms, a substituted or unsubstituted arylamino group having 6 to 40 carbon atoms, or a substituted or unsubstituted aralkylamino group having 7 to 40 carbon atoms; and a couple of R_9 and R_{10} or a couple of R_{11} and R_{12} may bond each other to form a saturated or unsaturated cyclic structure;

X represents a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 40 ring atoms, a substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 ring carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 40 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, a substituted or unsubstituted alkenyl alkylamino group having 1 to 40 carbon atoms, a substituted or unsubstituted or unsubstituted or unsubstituted arylamino group having 6 to 40 carbon atoms, or a substituted or unsubstituted arylamino group having 7 to 40 carbon atoms;

provided that, when at least one of Ar_1 to Ar_4 represents m-phenylene or o-phenylene, or when all of Ar_1 to Ar_4 each represent p-phenylene in the general formula (1), at least one of R_1 to R_8 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 ring carbon atoms, or the above group represented by Cz.

- 2. A material for an organic electroluminescence device according to claim 1, wherein Ar_2 and Ar_3 each independently represent m-phenylene or o-phenylene, and Ar_4 each represent p-phenylene in the general formula (1).
- 3. A material for an organic electroluminescence device according to claim 1, wherein Ar_1 and Ar_4 each independently represent m-phenylene or o-phenylene, and Ar_2 and Ar_3 each represent p-phenylene in the general formula (1).
- 4. A material for an organic electroluminescence device according to claim 1, wherein Ar_1 and Ar_4 each independently represent m-phenylene, and R_1 or R_7 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 ring carbon atoms, or the group represented by Cz in the general formula (1).
- 5. A material for an organic electroluminescence device according to claim 1, wherein the group represented by Cz in the general formula (1) comprises a substituted or unsubstituted carbazolyl group, or a substituted or unsubstituted 9-phenylcarbazolyl group.
- 6. A material for an organic electroluminescence device according to claim 1, wherein the compound represented by the general

formula (1) is a host material for an organic electroluminescence device.

- 7. An organic EL device comprising an organic thin film layer composed of one or more layers including at least a light-emitting layer being sandwiched between a cathode and an anode, wherein at least one layer of the organic thin film layer comprises the material for an organic electroluminescence device according to any one of claims 1 to 6.
- 8. An organic electroluminescence device according to claim 7, wherein the light-emitting layer comprises the material for an organic electroluminescence device as a host material.
- 9. An organic electroluminescence device according to claim 8, wherein the light-emitting layer is composed of one or more host material and one or more phosphorescent metal complex.
- 10. An organic electroluminescence device according to claim 7, wherein a reducing dopant is added to an interfacial region between the cathode and the organic thin film layer.
- 11. An organic electroluminescence device according to claim7, further comprising an electron-injecting layer between the

light-emitting layer and the cathode, wherein the electron-injecting layer has a nitrogen atom-containing derivative as an essential component.