

J1033 U.S. PRO
09/803119
03/09/01

Beschreibung

Verfahren zur Datenübertragung in einem Kommunikationsnetzwerk mit Ringstruktur

5

Die Erfindung betrifft ein Verfahren zur gemeinsamen Datenübertragung von digitalen Quell- und Steuerdaten zwischen Datenquellen und Datensenken, die Teilnehmer eines unidirektional betriebenen Kommunikationsnetzwerkes mit

10 Ringstruktur sind.

Verfahren dieser Art werden heute überall dort eingesetzt, wo verschiedenenartige elektronische und elektrische Geräte, die zum Zwecke der Datenkommunikation untereinander Informationen

15 austauschen sollen, in teilweise komplizierter Weise mittels Daten- und Steuerleitungen miteinander verbunden sind. So kann beispielsweise im Audiobereich die Datenkommunikation zwischen miteinander vernetzten Datenquellen einerseits - zum Beispiel CD-Spieler, Radioempfänger, Kassettenrecorder, 20 Mikrophone - und den damit verbundenen Datensenken andererseits - beispielsweise Verstärker-Lautsprecher-Kombinationen - durch ein oben beschriebenes Verfahren gesteuert werden.

25

Die verschiedenartigen Netzteilnehmer eines solchen Kommunikationsnetzwerkes sind mit Datenleitungen in einer Weise miteinander verbunden, dass der Datenstrom nacheinander jeden der Teilnehmer des Kommunikationsnetzwerkes passiert. Es entsteht dann ein Kommunikationsnetzwerk mit Ringstruktur 30 mit besonderen Vorteilen insbesondere für mobile Anwendungen, beispielsweise bei Verwendung in einem Kraftfahrzeug, oder bei Anwendung im Haushalt, beispielsweise einem Multimedianetzwerk. Die für das oben genannte Verfahren typische Datenübertragung ermöglicht eine einfache Verbindung 35 von Datenquellen und Datensenken, die typischerweise kontinuierlich Daten senden bzw. empfangen. Die Datenübertragung erfolgt zumeist synchron zu einem

Taktsignal, da die heutigen Qualitätsanforderungen, beispielsweise im Automobilbereich, im Allgemeinen nur bei synchroner Datenübertragung mit akzeptablem Aufwand erfüllt werden können.

5

Bei vielen Kommunikationsnetzwerken weisen dessen Netzteilnehmer dieselbe Abtastfrequenz sowie dieselbe Datenbreite wie das Kommunikationsnetzwerk selbst auf. Bei der Datenübertragung stellt ein als Datenquelle fungierender Teilnehmer abgetastete Daten bereit und überträgt diese in Form einer Bitgruppe auf ein entsprechendes Datenfeld des Kommunikationsnetzwerkes. Ein adressierter Netzteilnehmer kann anschließend diese soeben gesendete Bitgruppe über das Kommunikationsnetzwerk auslesen.

15

An viele Kommunikationsnetzwerke mit Ringstruktur wird jedoch zunehmend die Anforderung gestellt, dass deren Abtastfrequenz sehr viel größer ist als die jeweilige Abtastfrequenz der Netzteilnehmer. Ein solches Kommunikationsnetzwerk ist das sogenannte MOST-Netzwerk (Media Oriented Synchronous Tranceiver Network), das insbesondere im Automobilbereich Verwendung findet und das typischerweise ein ganzzahliges Vielfaches der Abtastfrequenz der angeschlossenen Teilnehmer aufweist. Jeweils ein Netzteilnehmer mit niedriger

25

Abtastfrequenz transferiert hier Daten auf das MOST-Netzwerk. Da die Abtastrate dieses Teilnehmers ein Bruchteil der Abtastrate des Netzwerkes beträgt, ist das Kommunikationsnetzwerk nach der Datenübertragung eines Datenbursts des sendenden Netzteilnehmers für die restliche Zeitdauer eines Zeitintervalls, welches der sendende Teilnehmer benötigt, nicht ausgelastet. Während dieser Zeit ist jedoch das Kommunikationsnetzwerk für die übrigen Netzteilnehmer blockiert, wodurch Auslastungskapazität des Kommunikationsnetzwerkes verschenkt wird. Die Auslastung des Kommunikationsnetzwerk beträgt in diesem Fall nur maximal ein dem Bruchteil entsprechenden Anteil seiner maximalen Datenübertragungskapazität.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur gemeinsamen Datenübertragung von digitalen Quell- und Steuerdaten zwischen Datenquellen und Datensenken,

5 die Teilnehmer eines unidirektional betriebenen Kommunikationsnetzwerkes mit Ringstruktur sind, bereitzustellen, das eine effizientere Auslastung der Datenübertragungskapazität zulässt.

10 Erfindungsgemäß wird diese Aufgabe durch ein Verfahren zur Datenübertragung mit den Merkmalen des Patentanspruchs 1 gelöst, das heißt durch ein gattungsgemäßes Verfahren, bei dem Quell- und Steuerdaten in einem Format übertragen werden, das eine getaktete Folge von einzelnen

15 Bitgruppen gleicher Bitbreite vorschreibt, die in einem kontinuierlichen Datenstrom übertragen werden, jeweils bestimmte, durch das Format vorgegebene Bitpositionen reserviert sind,

20 bei dem die Teilnehmer Daten jeweils mit einer ersten Abtastfrequenz abtasten und das Kommunikationsnetzwerk Daten mit einer zweiten Abtastfrequenz, die ein ganzzahliges Vielfaches der ersten Abtastfrequenz ist, abtastet,

25 bei dem innerhalb jeder Bitgruppe mindestens ein zusammenhängender Bereich mit einer vorgegebenen Anzahl von Bitpositionen für Quelldaten reservierbar ist und der/die zusammenhängenden Bereich(e) jeweils einen Anfang und eine definierte Länge aufweisen und jeweils einer Teilnehmeradresse zugeordnet sind,

30 bei dem mindestens einem zusammenhängenden Bereich innerhalb einer Bitgruppe jeweils eine signifikante Bitposition zugeordnet ist, die bei einem der Teilnehmer auf einen ersten logischen Pegel gesetzt wird und bei allen übrigen Teilnehmern auf einen entgegengesetzten, zweiten logischen Pegel gesetzt wird.

35 Mit der vorliegende Erfindung ist es möglich, eine höhere Effizienz bei der Datenübertragung zu bewirken, indem

gewährleistet werden kann, dass theoretisch sämtliche am Kommunikationsnetzwerk angeschlossene Teilnehmer gleichzeitig Daten über das Kommunikationsnetzwerk übertragen können. In diesem Fall kann das Kommunikationsnetzwerk sehr effektiv
5 ausgelastet werden.

Die vorliegende Erfindung eignet sich insbesondere für ein Kommunikationsnetzwerk, bei dem die Abtastfrequenz der angeschlossenen Teilnehmer mit der Abtastfrequenz des
10 Netzwerkes synchronisiert ist. Es wäre selbstverständlich auch denkbar, dass diese Abtastfrequenzen nicht miteinander synchronisiert sind, sondern die zweite Abtastfrequenz eine beliebige Phasenverschiebung gegenüber der ersten Abtastfrequenz aufweist. Diese beliebige Phasenverschiebung,
15 die z. B. 10% der Schwingungsdauer der zweiten Abtastfrequenz betragen kann, gewährleistet eine höhere Flexibilität bei der Datenübertragung. In diesem Fall sollte jedoch der die Daten empfangende Teilnehmer, beispielsweise ein Transceiver,
Mittel zur Datenpufferung aufweisen.
20

Die nachfolgende Beschreibung des erfindungsgemäßen Verfahrens wurde anhand eines speziell ausgestalteten Kommunikationsnetzwerkes, nämlich einem MOST-Netzwerk mit vier bzw. acht angeschlossenen Teilnehmern, die jeweils eine viermal so geringe Abtastfrequenz wie die Abtastfrequenz des
25 Kommunikationsnetzwerkes aufweisen, beschrieben.

Vorteilhafterweise können an dem Kommunikationsnetzwerk auch eine beliebige Anzahl der oben genannten Teilnehmer angeschlossen sein. Darüber hinaus kann die Abtastfrequenz des Kommunikationsnetzwerkes vorteilhafterweise auch ein beliebiges Vielfaches der Abtastfrequenz der angeschlossenen
30 Teilnehmer aufweisen.

In einer vorteilhaften Ausgestaltung ist ein signifikantes Bit vorgesehen, welches einen signifikanten Teilnehmer des Kommunikationsnetzwerkes definiert, wodurch aufgrund der ringartigen Struktur des Kommunikationsnetzwerkes sämtliche
35

anderen Teilnehmer ebenfalls eindeutig bestimmt sind. Dieses signifikante Bit ist im vorliegenden Ausführungsbeispiel als LSB-Bit ausgebildet, kann jedoch auch als beliebig andere Bitposition ausgebildet sein.

5 Das Kommunikationsnetzwerk eignet sich besonders vorteilhaft zur Datenübertragung von Audiosignalen, da insbesondere hier die effiziente Ausnutzung des Kommunikationsnetzwerkes auf Kosten einer einzelnen Bitposition vorzuziehen ist. Der Verlust dieser einzelnen Bitposition kann insbesondere bei
10 Audiosignalen verschmerzt werden, da es hier nur zu einer geringfügigen Einbuße der Qualität der ausgelesenen Daten kommt.

15 Das erfindungsgemäße Verfahren eignet sich besonders vorteilhaft in einem als MOST-Netzwerk ausgebildeten Kommunikationsnetzwerk, das typischerweise in einem Kraftfahrzeug oder auch im Haushalt verwendet wird.

20 Weitere vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind den Unteransprüchen, der folgenden Beschreibung und den Figuren entnehmbar.

Die Erfindung wird nachfolgend anhand der in den Figuren der Zeichnung angegebenen Ausführungsbeispiele näher erläutert.

25 Es zeigt dabei:

Fig. 1 ein ringförmiges Kommunikationsnetzwerk mit vier Netzteilnehmern;

30 Fig. 2 das für das erfindungsgemäße Verfahren verwendete Datenübertragungsformat in einem ringförmigen Kommunikationsnetzwerk;

35 Fig. 3 schematisch die Datenübertragung bei vier Netzteilnehmern mittels eines Kommunikationsnetzwerkes mit vierfacher Abtastfrequenz;

Fig. 4 schematisch die Datenübertragung bei acht Netzwerkteilnehmern mittels eines Kommunikationsnetzwerkes mit vierfacher Abtastfrequenz.

In allen Figuren der Zeichnung sind gleiche bzw. funktionsgleiche Elemente mit gleichen Bezugszeichen versehen worden.

10 Fig. 1 zeigt ein ringförmiges Netzwerk 1, das im vorliegenden Fall als MOST-Netzwerk ausgebildet ist. Das Netzwerk 1 umfasst vier Netzwerkteilnehmer 10, 11, 12, 13, wobei einer der Teilnehmer 10 als Taktgenerator ausgebildet ist. Die vier
 15 Teilnehmer 10, 11, 12, 13 sind über unidirektionale betreibbare Datenleitungen 14, 15, 16, 17 miteinander ringförmig derart verbunden, dass ein Datenstrom von einem zum anderen Teilnehmer 10, 11, 12, 13 im Uhrzeigersinn stattfinden kann. Die physikalische Richtung der
 20 Datenübertragung ist in Fig. 1 durch Pfeile auf den Datenleitungen 14, 15, 16, 17 dargestellt worden.

Fig. 2 zeigt das für das erfindungsgemäße Verfahren verwendete Datenübertragungsformat in einem ringförmigen
 25 Kommunikationsnetzwerk entsprechend Figur 1. In Fig. 2 ist mit 2 eine Bitgruppe, die auch Frame genannt wird, bezeichnet.

Im vorliegenden Ausführungsbeispiel umfasst die Bitgruppe 2
 30 64 Bytes, das heißt 512 Bits, was ein geradzahliges Vielfaches der Längen von Bitgruppen in bekannten Übertragungsformaten für synchrone Daten ist, so dass wegen der einfachen Umwandelbarkeit Kompatibilität mit diesen Formaten gegeben ist. Die Bitgruppe 2 kann jedoch auch eine
 35 beliebig andere Bitgröße aufweisen.

Die Bitgruppe 2 enthält eine Präambel 21, die insbesondere Daten enthält, die einer PLL-Schaltung eines Netzteilnehmers das Aufsynchonisieren auf einen empfangenen Takt ermöglicht.

- 5 An die Präambel 21 schließt sich ein Datenfeld 22 für synchrone Daten an. Das Datenfeld 22 kann – muss jedoch nicht notwendigerweise – in mehrere Teilbitgruppen 23 gleicher Datenbreite, die jeweils einem bestimmten Teilnehmer zugeordnet sind, unterteilt sein. Diese Zuordnung zwischen
- 10 den Teilbitgruppen 23 und den jeweiligen Teilnehmern wird typischerweise ebenfalls in der Präambel 21 festgelegt. Das Datenfeld 22 in Fig. 2 weist im vorliegenden Ausführungsbeispiel zwei Teilbitgruppen 23 auf. Mindestens eine der Teilbitgruppen 23 weist an der niedrigstwertigen
- 15 Bitposition 23a eine einzelne Bitposition auf, die nachfolgend auch als LSB-Bit 23a (Least Significant Bit) bezeichnet wird. Diese einzelne Bitposition 23a kann jedoch auch an beliebig anderer Stelle der Teilbitgruppe, beispielsweise an der höchstwertigen Bitposition (MSB-Bit, 20 Most Significant Bit), angeordnet sein.

An das Datenfeld 22 für synchrone Daten schließt sich typischerweise, jedoch nicht notwendigerweise, ein weiteres Datenfeld 24 für asynchrone Daten an. Dieses Datenfeld 24 für asynchrone Daten dient dem Zweck, eine möglichst flexible Datenübertragung, bei der die Datenbreite der zu übertragenden Daten eine variable Breite aufweist, zwischen den Teilnehmern zu ermöglichen. Dem Datenfeld 24 schließt sich ein Kontroll- und Steuerfeld 25 an, welches unter

- 25 anderem Kontroll- und Steuerbits zur Steuerung der Datenübertragung aufweist.

Die in Fig. 2 dargestellte Bitgruppe 2 wurde zugunsten einer übersichtlichen Darstellung nicht maßstabsgetreu dargestellt.

35

Um in einem Kommunikationsnetzwerk entsprechend Figur 1 Daten zwischen der Vielzahl von miteinander verbundenen Teilnehmern

10, 11, 12, 13 übertragen zu können, kann ein Bereich innerhalb einer Bitgruppe 2, der für die Quelldaten reserviert ist, die in einem kontinuierlichen Datenstrom übertragen werden, in mehrere Teilbitgruppen 23 gleicher 5 Länge unterteilt werden, wobei abhängig von den Steuerdaten die jeder Teilbitgruppe 23 zugewiesenen Quelldaten einem bestimmten Teilnehmer 10, 11, 12, 13 zugeordnet werden können.

10 Das genaue erfindungsgemäße Verfahren zur Datenübertragung in einem Kommunikationsnetzwerk mit Ringstruktur wird nachfolgend anhand der Figuren 3 und 4 näher erläutert. Der besseren Übersichtlichkeit halber wurden die in Fig. 2 gezeigten, dem Datenfeld 22 nachgeschalteten Felder 24, 25 in 15 Fig. 3 und 4 nicht dargestellt.

Fig. 3 zeigt anhand von acht über das Kommunikationsnetzwerk 1 nacheinander gesendeter Bitgruppen 2, dass heißt Frame n bis Frame n+7, das erfindungsgemäße Verfahren zur 20 Datenübertragung mit vier Netzteilnehmern 10..13. Für das in Fig. 3 dargestellte Datenübertragungsverfahren wird ein Kommunikationsnetzwerk entsprechend Fig. 1 verwendet, das heißt ein Kommunikationsnetzwerk 1 mit vier angeschlossenen Teilnehmern 10..13. Die von den Teilnehmern 10..13 25 übertragenen Daten weisen eine Datenbreite von 16 Bit auf. Die Abtastfrequenz f1 des Kommunikationsnetzwerkes 1 ist im vorliegenden Ausführungsbeispiel viermal so hoch wie die Abtastfrequenz f2 der Teilnehmer 10..13. Da die Abtastfrequenz f2 der Teilnehmer 10..13 somit in etwa ein 30 Viertel der Abtastfrequenz f1 des Kommunikationsnetzwerkes 1 ist, können die Daten eines speziellen Teilnehmers 10 bei jeder vierten Bitgruppe 2 übertragen werden. In der Zwischenzeit können die übrigen drei Teilnehmer 11..13 auf derselben Position einer anderen Bitgruppe 2 Daten 35 übertragen. Auf diese Weise erfolgt eine Datenübertragung effektiv in jeder der vier aufeinanderfolgenden Bitgruppen 2.

Allerdings können hier zur Datenkommunikation lediglich fünfzehn Bits verwendet werden, da hier das LSB-Bit 23a benötigt wird, um einen signifikanten Teilnehmer 10 zu kennzeichnen. Zur Kennzeichnung wird das LSB-Bit 23a bei 5 diesem signifikanten Teilnehmer 10 auf einen hohen logischen Pegel "1" gesetzt, während das LSB-Bit 23a bei den übrigen Teilnehmern 11..13 einen entgegengesetzten, niedrigen logischen Pegel "0" aufweist. Diese Vorgehensweise stellt sichert, dass aufgrund der unidirektionalen Datenübertragung 10 des ringförmig ausgebildeten Kommunikationsnetzwerkes 1 die einzelnen Teilnehmer 10..13 und damit die entsprechenden Daten eindeutig identifiziert werden können. Zwar wird hier für die Datenübertragung ein Bit verloren, jedoch ist dies akzeptabel, da durch das erfindungsgemäße Verfahren eine im Vergleich dazu sehr viel höhere Effizienz der 15 Datenübertragung gewährleistet werden kann.

Darüber hinaus kann insbesondere bei der Datenübertragung von digital abgetasteten Audiosignalen, wie dies typischerweise 20 bei den eingangs genannten MOST-Netzwerken stattfindet, auf ein einzelnes Bit bei der Datenübertragung verzichtet werden, ohne dadurch eine signifikante Qualitätseinbuße hinnehmen zu müssen.

25 Fig. 4 zeigt ein weiter entwickeltes Verfahren zur Datenübertragung, bei dem innerhalb einer Bitgruppe 2 neben dem 15 Bit breiten Datenfeld 23, das durch das LSB-Bit 23a gekennzeichnet ist, ein separates, zweites Datenfeld 23, das 30 16 Bit breit ist, übertragen wird. Das entsprechende Kommunikationsnetzwerk 1 kann in diesem Fall für bis zu acht Teilnehmer 10..17 ausgelegt sein. Für dieses zweite Datenfeld 23 ist vorteilhafterweise kein LSB-Bit 23a zur Kennzeichnung erforderlich, da aufgrund der ringförmigen Struktur des Kommunikationsnetzwerkes 1, das unidirektional betrieben 35 wird, alle Teilnehmer 10..17 eindeutig identifizierbar sind, wenn ein einzelner Teilnehmer 10, wie bereits oben erwähnt, eindeutig identifiziert ist. In diesem Fall ist Teilnehmer 10

über das LSB-Bit 23a, welches auf "1" gesetzt ist, eindeutig identifiziert. Die übrigen Teilnehmer 11..17 des Kommunikationsnetzwerkes 1 sind damit ebenfalls eindeutig bestimmt, zum Beispiel Teilnehmer 10 zusammen mit Teilnehmer 5 14, Teilnehmer 11 zusammen mit Teilnehmer 15, etc. Der die Daten empfangende Teilnehmer 10..17 hat somit lediglich das Erscheinen des auf "1" gesetzte LSB-Bits 23a für den Teilnehmer 10 zu bestimmen und die entsprechenden nachfolgenden Bitgruppen 2 zu zählen, um die Daten des 10 entsprechend gewünschten Teilnehmers 10..17 auslesen zu können.

Patentansprüche

1. Verfahren zur gemeinsamen Datenübertragung von digitalen Quell- und Steuerdaten zwischen Datenquellen und Datensenken, 5 die Teilnehmer (10, 11, 12, 13) eines unidirektional betriebenen Kommunikationsnetzwerkes (1) mit Ringstruktur sind,
 - wobei Quell- und Steuerdaten in einem Format übertragen werden, das eine getaktete Folge von einzelnen Bitgruppen (2) 10 gleicher Bitbreite vorschreibt, die in einem kontinuierlichen Datenstrom übertragen werden, jeweils bestimmte, durch das Format vorgegebene Bitpositionen reserviert sind,
 - wobei die Teilnehmer (10, 11, 12, 13) Daten jeweils mit einer ersten Abtastfrequenz abtasten und das 15 Kommunikationsnetzwerk Daten mit einer zweiten Abtastfrequenz, die ein ganzzahliges Vielfaches der ersten Abtastfrequenz ist, abtastet,
 - wobei innerhalb jeder Bitgruppe (2) mindestens ein zusammenhängender Bereich (23) mit einer vorgegebenen Anzahl 20 von Bitpositionen für Quelldaten reservierbar ist und der/die zusammenhängende(n) Bereich(e) jeweils einer Teilnehmeradresse zugeordnet sind,
 - wobei mindestens einem zusammenhängenden Bereich (23) innerhalb einer Bitgruppe (2) jeweils eine signifikante 25 Bitposition (23a) zugeordnet ist, die bei einem der Teilnehmer (10, 11, 12, 13) auf einen ersten logischen Pegel („1“) gesetzt wird und bei allen übrigen Teilnehmern auf einen entgegengesetzten, zweiten logischen Pegel („0“) gesetzt wird.
- 30 2. Verfahren nach Anspruch 1, durch gekennzeichnet, dass die erste Abtastfrequenz und die zweite Abtastfrequenz zu einem Taktsignal synchronisiert sind.
- 35 3. Verfahren nach einem der vorstehenden Ansprüche,

d a d u r c h g e k e n n z e i c h n e t, dass mindestens einem Teilnehmer (10, 11, 12, 13) die zweite Abtastfrequenz eine beliebige Phasenverschiebung gegenüber der ersten Abtastfrequenz aufweist.

5

4. Verfahren nach einem der vorstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass das Vielfache der ersten Abtastfrequenz genau der Anzahl der Teilnehmer (10, 11, 12, 13) des Kommunikationsnetzwerkes (1) entspricht.

10

5. Verfahren nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, dass die Anzahl der Teilnehmer (10, 11, 12, 13) des Kommunikationsnetzwerkes (1) ein ganzzahliges Vielfaches des Vielfachen der ersten Abtastfrequenz ist.

15

6. Verfahren nach einem der vorstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die signifikante Bitposition innerhalb des zusammenhängenden Bereiches die niedrigstwertige Bitposition (LSB-Bit) für Quelldaten ist.

20

7. Verfahren nach einem der vorstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die Teilnehmer (10, 11, 12, 13) des Kommunikationsnetzwerkes (1) mindestens zum Teil als Mikrophoneinheiten ausgebildet sind, wobei von den zugeordneten Mikrophoneinheiten die entsprechenden analogen Audiosignale abgetastet werden und dem Kommunikationsnetzwerk (1) in Form von digitalen Signalen zugeführt werden.

25

8. Verwendung eines Verfahrens nach einem der vorstehenden Ansprüche,

30

d a d u r c h g e k e n n z e i c h n e t, dass das Kommunikationsnetzwerk (1) als MOST-Netzwerk zur Verwendung in einem Kraftfahrzeug und/oder im Haushalt ausgebildet ist.

Zusammenfassung

Verfahren zur Datenübertragung in einem Kommunikationsnetzwerk mit Ringstruktur

5 Die Erfindung betrifft ein Verfahren zur gemeinsamen Datenübertragung von digitalen Quell- und Steuerdaten zwischen Datenquellen und Datensenken, die Teilnehmer eines unidirektional betriebenen Kommunikationsnetzwerkes mit

10 Ringstruktur sind, bei dem Quell- und Steuerdaten in einem Format übertragen werden, das eine getaktete Folge von einzelnen Bitgruppen gleicher Bitbreite vorschreibt, die in einem kontinuierlichen Datenstrom übertragen werden, jeweils bestimmt, durch das Format vorgegebene Bitpositionen

15 reserviert sind, bei dem die Teilnehmer Daten jeweils mit einer ersten Abtastfrequenz abtasten und das Kommunikationsnetzwerk Daten mit einer zweiten Abtastfrequenz, die ein ganzzahliges Vielfaches der ersten Abtastfrequenz ist, abtastet, bei dem innerhalb jeder

20 Bitgruppe mindestens ein zusammenhängender Bereich mit einer vorgegebenen Anzahl von Bitpositionen für Quelldaten reservierbar ist und der/die zusammenhängenden Bereich(e) jeweils einen Anfang und eine definierte Länge aufweisen und jeweils einer Teilnehmeradresse zugeordnet sind, bei dem

25 mindestens einem zusammenhängenden Bereich innerhalb einer Bitgruppe jeweils eine signifikante Bitposition zugeordnet ist, die bei einem der Teilnehmer auf einen ersten logischen Pegel gesetzt wird und bei allen übrigen Teilnehmern auf einen entgegengesetzten, zweiten logischen Pegel gesetzt wird.

30

Figur 4

Bezugszeichenliste

1 Kommunikationsnetzwerk
10 (erster, signifikanter) Teilnehmer, Taktgeber
5 11..13 (weitere) Teilnehmer
14..17 Datenübertragungsleitungen

2 Bitgruppe
21 Präambel
10 22 Datenfeld (für synchrone Daten)
23 Teilbitgruppen
23a signifikantes Bit, LSB-Bit
24 Datenfeld (für asynchrone Daten)
25 Kontroll-/Steuerfeld

15

J1033 U.S. PRO
09/803119
03/09/01

FIG 1

FIG 2

FIG 3

FIG 4

	Teilnehmer 10	Teilnehmer 14
Frame n	xxxx xxxx xxxx xxx1	xxxx xxxx xxxx xxxx
	Teilnehmer 11	Teilnehmer 15
Frame n+1	xxxx xxxx xxxx xxx0	xxxx xxxx xxxx xxxx
	Teilnehmer 12	Teilnehmer 16
Frame n+2	xxxx xxxx xxxx xxx0	xxxx xxxx xxxx xxxx
	Teilnehmer 13	Teilnehmer 17
Frame n+3	xxxx xxxx xxxx xxx0	xxxx xxxx xxxx xxxx
	Teilnehmer 10	Teilnehmer 14
Frame n+4	xxxx xxxx xxxx xxx1	xxxx xxxx xxxx xxxx
	Teilnehmer 11	Teilnehmer 15
Frame n+5	xxxx xxxx xxxx xxx0	xxxx xxxx xxxx xxxx
	Teilnehmer 12	Teilnehmer 16
Frame n+6	xxxx xxxx xxxx xxx0	xxxx xxxx xxxx xxxx
	Teilnehmer 13	Teilnehmer 17
Frame n+7	xxxx xxxx xxxx xxx0	xxxx xxxx xxxx xxxx
	21	2
		23
		23a
		23