```
In [94]: import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn import preprocessing,svm
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
   from sklearn.preprocessing import StandardScaler
   from sklearn.linear_model import Ridge,RidgeCV,Lasso
```

In [95]: df=pd.read_csv(r"C:\Users\pucha\Downloads\Advertising.csv")
df

Out[95]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

200 rows × 4 columns

```
In [96]: df.head()
```

Out[96]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9

In [97]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 4 columns):
```

```
# Column Non-Null Count Dtype
------
0 TV 200 non-null float64
1 Radio 200 non-null float64
2 Newspaper 200 non-null float64
3 Sales 200 non-null float64
```

dtypes: float64(4)
memory usage: 6.4 KB

```
In [98]: df.tail(12)
```

Out[98]:

TV	Radio	Newspaper	Sales
286.0	13.9	3.7	20.9
18.7	12.1	23.4	6.7
39.5	41.1	5.8	10.8
75.5	10.8	6.0	11.9
17.2	4.1	31.6	5.9
166.8	42.0	3.6	19.6
149.7	35.6	6.0	17.3
38.2	3.7	13.8	7.6
94.2	4.9	8.1	14.0
177.0	9.3	6.4	14.8
283.6	42.0	66.2	25.5
232.1	8.6	8.7	18.4
	286.0 18.7 39.5 75.5 17.2 166.8 149.7 38.2 94.2 177.0 283.6	286.0 13.9 18.7 12.1 39.5 41.1 75.5 10.8 17.2 4.1 166.8 42.0 149.7 35.6 38.2 3.7 94.2 4.9 177.0 9.3 283.6 42.0	286.0 13.9 3.7 18.7 12.1 23.4 39.5 41.1 5.8 75.5 10.8 6.0 17.2 4.1 31.6 166.8 42.0 3.6 149.7 35.6 6.0 38.2 3.7 13.8 94.2 4.9 8.1 177.0 9.3 6.4 283.6 42.0 66.2

```
In [99]: df=df[['TV','Radio','Sales','Newspaper']]
df.columns=['tv','radio','sales','newspaper']
```

In [100]: df.head(10)

Out[100]:

	tv	radio	sales	newspaper
0	230.1	37.8	22.1	69.2
1	44.5	39.3	10.4	45.1
2	17.2	45.9	12.0	69.3
3	151.5	41.3	16.5	58.5
4	180.8	10.8	17.9	58.4
5	8.7	48.9	7.2	75.0
6	57.5	32.8	11.8	23.5
7	120.2	19.6	13.2	11.6
8	8.6	2.1	4.8	1.0
9	199.8	2.6	15.6	21.2

In [101]: df.describe()

Out[101]:

	tv	radio	sales	newspaper
count	200.000000	200.000000	200.000000	200.000000
mean	147.042500	23.264000	15.130500	30.554000
std	85.854236	14.846809	5.283892	21.778621
min	0.700000	0.000000	1.600000	0.300000
25%	74.375000	9.975000	11.000000	12.750000
50%	149.750000	22.900000	16.000000	25.750000
75%	218.825000	36.525000	19.050000	45.100000
max	296.400000	49.600000	27.000000	114.000000

```
In [102]: sns.lmplot(x="radio",y="sales",data=df,order=2,ci=None)
```

Out[102]: <seaborn.axisgrid.FacetGrid at 0x20e1f8c9b40>

In [103]: df.fillna(method='ffill',inplace=True)

```
In [104]: x=np.array(df['radio']).reshape(-1,1)
y=np.array(df['sales']).reshape(-1,1)
df.dropna(inplace=True)

In [105]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.5)
```

```
In [106]: sns.pairplot(df)
```

Out[106]: <seaborn.axisgrid.PairGrid at 0x20e1f917580>


```
In [107]: sns.displot(df['sales'])
```

Out[107]: <seaborn.axisgrid.FacetGrid at 0x20e1f8c9990>


```
In [108]: sns.displot(df['tv'])
```

Out[108]: <seaborn.axisgrid.FacetGrid at 0x20e21a41a20>


```
In [109]: df500=df[:][50:500]
sns.lmplot(x="radio",y="sales",data=df500,order=1)
```

Out[109]: <seaborn.axisgrid.FacetGrid at 0x20e1f9177f0>


```
In [110]: df500.fillna(method='ffill',inplace=True)
    x=np.array(df['radio']).reshape(-1,1)
    y=np.array(df['sales']).reshape(-1,1)
    df.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regression:",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='r')
    plt.show()
```

Regression: 0.14284532571622577

In [113]: sns.displot((y_test),bins=50);

In [114]: sns.pairplot(df,x_vars=['tv','radio','newspaper'],y_vars='sales',height=7,aspect=0.7,kind='reg')

Out[114]: <seaborn.axisgrid.PairGrid at 0x20e1e7ea1d0>


```
In [115]: plt.figure(figsize=(10,10))
sns.heatmap(df.corr(),annot=True)
```

Out[115]: <Axes: >


```
In [116]: features = df.columns[0:2]
    target = df.columns[-1]
    #X and y values
    x = df[features].values
    y = df[target].values
    #splot
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=17)
    print("The dimension of x_train is {}".format(x_train.shape))
    print("The dimension of x_test is {}".format(x_test.shape))
    #Scale features
    scaler = StandardScaler()
    x_train = scaler.fit_transform(x_train)
    x_test = scaler.transform(x_test)
```

21/31

The dimension of x_{train} is (140, 2) The dimension of x_{tst} is (60, 2)

```
In [117]: lr = LinearRegression()
          #Fit model
          lr.fit(x_train, y_train)
          #predict
          #prediction = lr.predict(X test)
          #actual
          actual = y test
          train score lr = lr.score(x train, y train)
          test score lr = lr.score(x test, y test)
          print("\nLinear Regression Model:\n")
          print("The train score for lr model is {}".format(train_score_lr))
          print("The test score for lr model is {}".format(test score lr))
          Linear Regression Model:
          The train score for lr model is 0.08820570968809427
          The test score for lr model is 0.17667256011867194
In [118]: ridgeReg = Ridge(alpha=10)
          ridgeReg.fit(x train,y train)
          #train and test scorefor ridge regression
          train score ridge = ridgeReg.score(x train, y train)
          test score ridge = ridgeReg.score(x test, y test)
          print("\nRidge Model:\n")
          print("The train score for ridge model is {}".format(train_score_ridge))
          print("The test score for ridge model is {}".format(test score ridge))
          Ridge Model:
          The train score for ridge model is 0.08784976325183447
          The test score for ridge model is 0.1684728204438981
```

MY PROJECT


```
Tadio -
```

```
In [121]: print("\nLasso Model: \n")
lasso=Lasso(alpha=10)
lasso.fit(x_train,y_train)
train_score_ls=lasso.score(x_train,y_train)
test_score_ls=lasso.score(x_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is {}".format(test_score_ls))
```

Lasso Model:

The train score for 1s model is 0.0
The test score for 1s model is -0.0003547334659412815

```
In [122]: pd.Series(lasso.coef_,features).sort_values(ascending=True).plot(kind="bar")
Out[122]: <Axes: >
             0.04
             0.02
             0.00
           -0.02
           -0.04
```

```
In [123]: from sklearn.linear_model import LassoCV
    lasso_cv=LassoCV(alphas=[0.0001,0.001,0.01,0.1,1,10],random_state=0).fit(x_train,y_train)
    print(lasso_cv.score(x_train,y_train))
    print(lasso_cv.score(x_test,y_test))
```

radio

0.08414370280677297
0.16155807938746747

≥

```
In [125]: #plot size
    plt.figure(figsize = (10, 10))
    #add plot for ridge regression
    plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,color='red',label=r'Ridge; $\
    #add plot for lasso regression
    plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='blue',label=r'lasso; $\alpha = #add plot for linear model
    plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='green',label='Linear Regress
    #rotate axis
    plt.xticks(rotation = 90)
    plt.legend()
    plt.title("Comparison plot of Ridge, Lasso and Linear regression model")
    plt.show()
```

Comparison plot of Ridge, Lasso and Linear regression model


```
In [131]: from sklearn.linear_model import RidgeCV
    ridge_cv=RidgeCV(alphas=[0.0001,0.001,0.01,1,10]).fit(x_train,y_train)
    print("The train score for ridge model is {}".format(ridge_cv.score(x_train,y_train)))
    print("The test score for ridge model is {}".format(ridge_cv.score(x_test,y_test)))
```

The train score for ridge model is 0.08784976325183436 The test score for ridge model is 0.16847282044389655

```
In [ ]:
```