1.5 - 4

(a). Show that T1 and T2 are equivalent statistics if, and only if, we can write T2 = H(T1) for some 1-1 transformation H of the range of T1 into the range of T2. Which of the following statistics are equivalent? (Prove or disprove.)

If $T_2 = H(T_1)$ for some 1-1 transformation H of the range of T_1 into the range of T_2 , then

when
$$T_1(x) = T_1(y)$$
, $T_2(x) = H(T_1(x)) = H(T_1(y)) = T_2(y)$;

when
$$T_2(x) = T_2(y)$$
, $H(T_1(x)) = T_2(x) = T_2(y) = H(T_1(y))$; then T_1 and T_2 are equivalent.

If T_1 and T_2 are equivalent, then $\exists H$ make $T_2 = H(T_1)$ is a 1-1 transformation of the range of T_1 into the range of T_2 .

Therefore, T_1 and T_2 are equivalent statistics $\iff T_2 = H(T_1)$.

(b). $\prod_{i=1}^{n} x_i$ and $\sum_{i=1}^{n} \log x_i$, $x_i > 0$

 $T_2(x) = \sum_{i=1}^n \ln x_i = \ln(\prod_{i=1}^n x_i) = \ln(T_1), \ x_i > 0. \ H(x) = \ln x \text{ is a 1-1 transformation of } T_1 \in (0, \infty) \text{ into } T_2 \in (-\infty, \infty).$

Thus,
$$T_1$$
 and T_2 are equivalent.

(c). $\sum_{i=1}^{n} x_i$ and $\sum_{i=1}^{n} \log x_i$, $x_i > 0$

$$T_2(x) = \sum_{i=1}^n \ln x_i = T_1(\ln(x)) \neq T_1(x), x_i > 0.$$

There is not a H that can do a 1-1 transformation of the range of T_1 into the range of T_2 .

Thus, T_1 and T_2 are not equivalent.

(d).
$$(\sum_{i=1}^n x_i, \sum_{i=1}^n x_i^2)$$
 and $(\sum_{i=1}^n x_i, \sum_{i=1}^n (x_i - \bar{x})^2)$

Let
$$T_1 = (T_{11} = \sum_{i=1}^n x_i, T_{12} = \sum_{i=1}^n x_i^2)$$
, then

$$T_{21} = \sum_{i=1}^{n} x_i = T_{11}$$

$$T_{22} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - 2\bar{x} \sum_{i=1}^{n} x_i + n(\bar{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{2}{n} (\sum_{i=1}^{n} x_i)^2 + \frac{1}{n} (\sum_{i=1}^{n} x_i)^2 = T_{12} - \frac{1}{n} T_{11}^2$$

His a 1-1 transformation of the range of T_1 into the range of T_2 . Thus, T_1 and T_2 are equivalent.

(e).
$$(\sum_{i=1}^n x_i, \sum_{i=1}^n x_i^3)$$
 and $(\sum_{i=1}^n x_i, \sum_{i=1}^n (x_i - \bar{x})^3)$

Let
$$T_1 = (T_{11} = \sum_{i=1}^n x_i, T_{12} = \sum_{i=1}^n x_i^3)$$
, then

$$T_{21} = \sum_{i=1}^{n} x_i = T_{11}$$

$$T_{22} = \sum_{i=1}^{n} (x_i - \bar{x})^3 = \sum_{i=1}^{n} x_i^3 - 3\bar{x} \sum_{i=1}^{n} x_i^2 + 3\bar{x}^2 \sum_{i=1}^{n} x_i - n(\bar{x})^3 =$$

$$\sum_{i=1}^{n} x_i^3 - \frac{3}{n} \sum_{i=1}^{n} x_i \sum_{i=1}^{n} x_i^2 + \frac{3}{n^2} (\sum_{i=1}^{n} x_i)^3 - \frac{1}{n^2} (\sum_{i=1}^{n} x_i)^3 = T_{12} - \frac{3}{n} T_{11} \sum_{i=1}^{n} x_i^2 + \frac{2}{n^2} T_{11}^3$$

There is not statistics in T_1 can represent $\sum_{i=1}^n x_i^2$. There is not a H that can do a 1-1 transformation of the range of T_1 into the range of T_2 . Thus, T_1 and T_2 are not equivalent.

1.5-6 Let X take on the specified values $v_1,...,v_k$ with probabilities $\theta_1,...,\theta_k$, respectively.

Suppose that $X_1,...,X_n$ are independently and identically distributed as X. Suppose that $\theta = (\theta_1,...,\theta_k)$ is unknown and may range over the set $\Theta = \{(\theta_1,...,\theta_k) : \theta_i \geq 0, 1 \leq i \leq k, \sum_{i=1}^k \theta_i = 1\}$. Let N_j be the number of X_i which equal v_j .

(a). What is the distribution of $(N_1, ..., N_k)$?

 $(N_1,..,N_k) \sim$ Multinomial Distribution

$$f_{\vec{\theta}}(\vec{n}) = n! \prod_{i=1}^k \frac{\theta_i^{n_i}}{n_i!} \mathbf{1}_{\{\sum N_i = n\}}$$
, where n_i =the number of times we get outcome $i = 1, ..., k$

(b). Show that $\mathbf{N} = (N_1, ..., N_{k-1})$ is sufficient for θ .

$$\begin{array}{l} f_{\vec{\theta}}(\vec{N}) = n! \prod_{i=1}^k (N_i!)^{-1} \exp[\sum_{i=1}^k N_i \ln \theta_i] \mathbf{1}_{\{\sum N_i = n\}} = h(\vec{N}) \exp[\sum_{i=1}^k \eta_i(\vec{\theta}) T_i(\vec{N}) - B(\vec{\theta})], \text{ where } \chi = \{\vec{N} \in \{0,..,n\}^k | \sum N_i = n\} \end{array}$$

$$h(\vec{N}) = n! \prod_{i=1}^k (N_i!)^{-1} \mathbf{1}_{\{\sum N_i = n\}}, \, B(\vec{\theta}) = 0$$

$$\eta_i(\vec{\theta}) = (\ln \theta_1, .., \ln \theta_k),$$

 $T(\vec{N}) = (N_1, ..., N_k)$ is a n.s.s of the family.

$$T(\vec{N}) = (N_1, ..., N_{k-1}, n - \sum_{i=1}^{k-1} N_i)$$
 is equivalent with $(N_1, ..., N_{k-1})$. Therefore **N** is sufficient for θ .

1.5-7 Let $X_1,...,X_n$ be a sample from a population with density $p(x,\theta)$ given by

$$p(x,\theta) = \begin{cases} \frac{1}{\sigma} \exp\{-\frac{x-\mu}{\sigma}\} & if x \ge \mu \\ 0 & o.w. \end{cases}$$
 Here $\theta = (\mu, \sigma)$ with $-\infty < \mu < \infty, \sigma > 0$.

(a) Show that $\min(X_1,..,X_n)$ is sufficient for μ when σ is fixed.

When σ is fixed, $p(x_{1:n}, \mu) = \sigma^{-n} \exp\left[-\frac{\sum_{i=1}^n x}{\sigma}\right] \exp\left[\frac{n\mu}{\sigma}\right] \prod_{i=1}^n \mathbf{1}_{\{x_i \ge \mu\}}$, where

$$h(x) = \sigma^{-n} \exp\left[-\frac{\sum_{i=1}^{n} x}{\sigma}\right], g(T(x), \mu) = \exp\left[\frac{n\mu}{\sigma}\right] \prod_{i=1}^{n} \mathbf{1}_{\{x_i > \mu\}}$$

 $\mathbf{1}_{\{x_{(1)} \geq \mu\}}$ contains all the information about μ , then

 $T(x) = \min(X_1, ..., X_n)$ is sufficient for μ when σ is fixed.

• Another method is that $p(x_{1:n}|t)$ is free of μ

$$X \sim Expo(\mu, 1/\sigma), \ F_{\mu,\sigma}(x) = 1 - e^{-(x-\mu)/\sigma},$$

$$\min(X_1, ..., X_n) = X_{(1)} = n\frac{1}{\sigma}e^{-(x-\mu)/\sigma}[1 - (1 - e^{-(x-\mu)/\sigma})]^{n-1} = \frac{n}{\sigma}e^{-n(x-\mu)/\sigma}$$

$$p(x_{1:n}|t) = \frac{1}{n\sigma^{n-1}}e^{\frac{1}{\sigma}(\sum x_i - nx)} \text{ is free of } \mu$$

(b) Find a one-dimensional sufficient statistic for σ when μ is fixed.

When
$$\mu$$
 is fixed, $p(x_{1:n}, \sigma) = \sigma^{-n} \exp[-\frac{\sum_{i=1}^{n} x}{\sigma} + \frac{n\mu}{\sigma}] \prod_{i=1}^{n} \mathbf{1}_{\{x_i \ge \mu\}}$, where $h(x) = \prod_{i=1}^{n} \mathbf{1}_{\{x \ge \mu\}}$,

$$g(T(x), \sigma) = \sigma^{-n} \exp\left[-\frac{\sum_{i=1}^{n} x}{\sigma} + \frac{n\mu}{\sigma}\right], \text{ then}$$

$$T(x) = \sum_{i=1}^{n} x_i$$
 is sufficient for σ when μ is fixed.

• Another method is that $p(x_{1:n}|t)$ is free of σ

$$X \sim Expo(\mu, 1/\sigma), F_{\mu,\sigma}(x) = 1 - e^{-(x-\mu)/\sigma},$$

 $Y = X - \mu \sim Exp(1/\sigma), T = \sum Y_i \sim Gamma(n, \sigma)$
 $p(x_{1:n}|t) = \Gamma(n)t^{1-n}$ is free of σ

(c) Exhibit a two-dimensional sufficient statistic for θ .

$$p(x_{1:n}, \mu, \sigma) = \sigma^{-n} \exp\left[-\frac{\sum_{i=1}^{n} x}{\sigma} + \frac{n\mu}{\sigma}\right] \prod_{i=1}^{n} \mathbf{1}_{\{x_i \ge \mu\}}, \text{ where } h(x) = 1,$$

$$g(T(x), \mu, \sigma) = \sigma^{-n} \exp\left[-\frac{\sum_{i=1}^{n} x}{\sigma} + \frac{n\mu}{\sigma}\right] \prod_{i=1}^{n} \mathbf{1}_{\{x_{(1)} \ge \mu\}}, \text{ then}$$

$$T(x) = (x_{(1)}, \sum_{i=1}^{n} x_i)$$
 is a two-dimensional sufficient statistic for θ .

1.5-9 Let $X_1,...,X_n$ be a sample from a population with density

$$f_{\theta}(x) = \begin{cases} a(\theta)h(x) & if \theta_1 \leq x \leq \theta_2 \\ 0 & o.w. \end{cases} \text{ where } h(x) \geq 0, \ \theta = (\theta_1, \theta_2) \text{ with } -\infty < \theta_1 \leq \theta_2 < \infty, \text{ and } a(\theta) = 0$$

 $[\int_{\theta_1}^{\theta_2} h(x) dx]^{-1}$ is assumed to exist. Find a two-dimensional sufficient statistic for this problem and apply your result to the $U[\theta_1, \theta_2]$ family of distributions.

Let
$$H'(x) = h(x)$$
, $a(\theta) = [\int_{\theta_1}^{\theta_2} h(x) dx]^{-1} = [H(\theta_2) - H(\theta_1)]^{-1}$

$$f_{\theta_1,\theta_2}(x_{1:n}) = \prod_{i=1}^n [a(\theta)h(x)\mathbf{1}_{\{x \in [\theta_1,\theta_2]\}}] = \prod_{i=1}^n [\mathbf{1}_{\{x \in [\theta_1,\theta_2]\}}][H(\theta_2) - H(\theta_1)]^{-n} \prod_{i=1}^n h(x), \text{ where } h(\theta_1) = \frac{1}{n} \int_{\theta_1}^{\theta_1} [a(\theta)h(x)\mathbf{1}_{\{x \in [\theta_1,\theta_2]\}}] dx$$

$$g(T(x), \theta_1, \theta_2) = \prod_{i=1}^n [\mathbf{1}_{\{x \in [\theta_1, \theta_2]\}}] [H(\theta_2) - H(\theta_1)]^{-n},$$

$$h'(x) = \prod_{i=1}^{n} h(x)$$

 $\mathbf{1}_{\{x_{(n)} \leq \theta_2\}} \mathbf{1}_{\{x_{(1)} \geq \theta_1\}}$ contains all the information about θ , then

$$T(x) = (x_{(1)}, x_{(n)})$$
 is a two-dimensional sufficient statistic for θ .

For
$$U[\theta_1, \theta_2]$$
, let $h(x) = 1$, $a(\theta) = (\theta_2 - \theta_1)^{-1}$

$$f_{\theta_1,\theta_2}(x_{1:n}) = \prod_{i=1}^n [a(\theta)h(x)\mathbf{1}_{\{x\in[\theta_1,\theta_2]\}}] = \prod_{i=1}^n [\mathbf{1}_{\{x\in[\theta_1,\theta_2]\}}][\theta_2 - \theta_1]^{-n} \prod_{i=1}^n 1$$
, where

$$g(T(x), \theta_1, \theta_2) = \prod_{i=1}^n [\mathbf{1}_{\{x_{(n)} \le \theta_2\}} \mathbf{1}_{\{x_{(1)} \ge \theta_1\}}] [\theta_2 - \theta_1]^{-n},$$

$$h'(x) = 1$$

$$T(x) = (x_{(1)}, x_{(n)})$$
 is a two-dimensional sufficient statistic for θ in the $U[\theta_1, \theta_2]$ family.

1.6-1 Prove the assertions of Table 1.6.1

		$\eta(\theta)$	T(x)
$N(\mu, \sigma^2)$	σ^2 fixed	μ/σ^2	x
	μ fixed	$-1/2\sigma^2$	$(x-\mu)2$
$\Gamma(p,\lambda)$	p fixed	$-\lambda$	x
	λ fixed	(p-1)	$\log x$
$\beta(r,s)$	r fixed	(s-1)	$\log(1-x)$
	s fixed	(r-1)	$\log x$

For Normal distribution,

$$f_{\mu}(x) = \exp\left[\underbrace{\frac{\mu}{\sigma^2}}_{\eta(\mu)} \underbrace{x}_{T(x)} - \underbrace{\left(\frac{\mu^2}{2\sigma^2} + \ln\left(\sqrt{2\pi}\sigma\right)\right)}_{B(\mu)}\right] \underbrace{\exp\left[-\frac{x^2}{2\sigma^2}\right] \mathbf{1}_{\{x \in \mathbb{R}\}}}_{h(x)}$$
(When σ^2 fixed)

$$f_{\sigma^2}(x) = \exp\left[\underbrace{-\frac{1}{2\sigma^2}}_{\eta(\sigma^2)}\underbrace{(x-\mu)^2}_{T(x)} - \underbrace{\ln\left(\sqrt{2\pi}\sigma\right)}_{B(\sigma^2)}\right]\underbrace{\mathbf{1}_{\{x \in \mathbb{R}\}}}_{h(x)}$$
 (When μ fixed)

For Gamma distribution,

$$f_{\lambda}(x) = \exp\left[\frac{\lambda}{\eta(\lambda)} \underbrace{x}_{T(x)} - \frac{1}{-\ln(\frac{\lambda^{p}}{\Gamma p})}\right] \underbrace{x^{p-1} \mathbf{1}_{\{x \in (0,\infty)\}}}_{h(x)}$$
 (When p fixed)

$$f_p(x) = \exp\left[\underbrace{(p-1)\ln(x)}_{\eta(p)} - \underbrace{-\ln(\frac{\lambda^p}{\Gamma p})}_{B(p)}\right] \underbrace{\exp[-\lambda x] \mathbf{1}_{\{x \in (0,\infty)\}}}_{h(x)}$$
 (When λ fixed)

For Beta distribution,

$$f_s(x) = \exp[\underbrace{(s-1) \ln(1-x)}_{\eta(s)} - \underbrace{\ln(B(r,s))}_{B(s)}] \underbrace{x^{r-1} \mathbf{1}_{\{x \in (0,1)\}}}_{h(x)}$$
 (When r fixed)

$$f_r(x) = \exp[\underbrace{(r-1) \ln(x)}_{\eta(r)} - \underbrace{\ln(B(r,s))}_{E(r)}] \underbrace{(1-x)^{s-1} \mathbf{1}_{\{x \in (0,1)\}}}_{h(x)}$$
 (When s fixed)

1.6-3 Let X be the number of failures before the first success in a sequence of Bernoulli trials

with probability of success θ . Then $P_{\theta}[X = k] = (1 - \theta)^k \theta, k = 0, 1, 2, ...$ This is called the geometric distribution $(G(\theta))$.

(a) Show that the family of geometric distributions is a one-parameter exponential family with T(x) = x. For Geometric distribution,

$$P_{\theta}(X=k) = \exp[\underbrace{\ln(1-\theta)}_{\eta(\theta)} \underbrace{k}_{T(k)} - \underbrace{-\ln(\theta)}_{B(\theta)}] \underbrace{\mathbf{1}_{\{k \in (0,1,2,..)\}}}_{h(k)}$$

Thus, geometric distributions is a one-parameter exponential family with T(x) = x

(b) Deduce from Theorem 1.6.1 that if $X_1, ..., X_n$ is a sample from $G(\theta)$, then the distributions of $\sum_{i=1}^n X_i$ form a one-parameter exponential family.

$$P_{\theta}(X_{1:n}) = \prod_{i=1}^{n} P_{\theta}[X = x] = \exp[\underbrace{\ln(1-\theta)}_{\eta(\theta)} \underbrace{\sum_{i=1}^{n} x_{i}}_{T(x)} - \underbrace{-n\ln(\theta)}_{B(\theta)}] \underbrace{\prod_{i=1}^{n} \mathbf{1}_{\{x \in (0,1,2,..)\}}}_{h(x)}$$

 $\sum_{i=1}^{n} X_i$ is a sufficient statistic for θ for a one-parameter exponential family. By theorem 1.6.1, the family of the distribution of $\sum_{i=1}^{n} X_i$ is a one-parameter exponential family, whose p.m.f may be written as $h^*(t) \exp[\eta(\theta)t - B(\theta)]$ for a suitable h^* .

(c) Show that $\sum_{i=1}^{n} X_i$ in part (b) has a negative binomial distribution with parameters (n,θ) defined by $P_{\theta}[\sum_{i=1}^{n} X_i = k] = \binom{n+k-1}{k}(1-\theta)^k\theta^n$, k=0,1,2,... (The negative binomial distribution is that of the number of failures before the nth success in a sequence of Bernoulli trials with probability of success θ .) Hint: By Theorem 1.6.1, $P_{\theta}[\sum_{i=1}^{n} X_i = k] = c_k(1-\theta)^k\theta^n$, $0 < \theta < 1$. If $\sum_{k=0}^{\infty} c_k\omega^k = \frac{1}{(1-\omega)^n}$, $0 < \omega < 1$, then $c_k = \frac{1}{k!} \frac{d^k}{d\omega^k} (1-\omega)^{-n} \Big|_{\omega=0}$

To find p.m.f of this distribution, let $\sum_{k=1}^n c_k (1-\theta)^k \theta^n = 1, 0 < \theta < 1$

let
$$\omega = 1 - \theta$$
, $\sum_{k=1}^{n} c_k \omega^k = \theta^{-n}$, $0 < \omega < 1$, then $c_k = \frac{1}{k!} \frac{d^k}{d\omega^k} (1 - \omega)^{-n} \Big|_{\omega=0}$

$$\frac{d'}{d\omega'}(1-\omega)^{-n} = (-n)(-1)(1-\omega)^{-n-1} = n(1-\omega)^{-n-1}$$
$$\frac{d^2}{d\omega^2}(1-\omega)^{-n} = (-n-1)(-1)n(1-\omega)^{-n-2} = (n+1)n(1-\omega)^{-n-2}$$

 $\frac{d^k}{d\omega^k}(1-\omega)^{-n} = (-n-k+1)(-1)\cdots(n+1)n(1-\omega)^{-n-k} = \left[\prod_{i=1}^k (n+i-1)\right](1-\omega)^{-n-k}$

$$\left. \frac{d^k}{d\omega^k} (1 - \omega)^{-n} \right|_{\omega = 0} = \prod_{i=1}^k (n+i-1) = \prod_{i=0}^{k-1} (n+i)$$

$$c_k = \frac{1}{k!} \frac{d^k}{d\omega^k} (1 - \omega)^{-n} \Big|_{\omega = 0} = \frac{1}{k!} \prod_{i=0}^{k-1} (n+i) = \frac{(n+k-1)!}{k!(n-1)!} = \binom{n+k-1}{k}$$

Therefore, $P_{\theta}[\sum_{i=1}^{n} X_i = k] = \binom{n+k-1}{k} (1-\theta)^k \theta^n, k = 0, 1, 2, \dots$

1.6-5 Show that the following families of distributions are two-parameter exponential families and identify the functions η , B, T, and h.

(a) The beta family.

$$f_{r,s}(x) = \exp\left[\underbrace{(r-1)\ln(x) + (s-1)\ln(1-x)}_{\eta(r,s)T(x)} - \underbrace{\ln(B(r,s))}_{B(r,s)}\right] \underbrace{\mathbf{1}_{\{x \in (0,1)\}}}_{h(x)}$$

The beta family is a two-parameter exponential family with $\eta(r,s)=(r-1,s-1)^T;\ T(x)=(\ln(x),\ln(1-x));$ $B(r,s)=\frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)};\ h(x)=\mathbf{1}_{\{x\in(0,1)\}}$

(b) The gamma family.

$$f_{p,\lambda}(x) = \exp\left[\underbrace{-\lambda x + (p-1)\ln x}_{\eta(p,\lambda)T(x)} - \underbrace{-\ln(\frac{\lambda^p}{\Gamma p})}_{B(p,\lambda)}\right] \underbrace{\mathbf{1}_{\{x \in (0,\infty)\}}}_{h(x)}$$

The gamma family is a two-parameter exponential family with $\eta(p,\lambda) = (-\lambda,(p-1))^T$; $T(x) = (x,\ln(x))$; $B(p,\lambda) = -\ln(\frac{\lambda^p}{\Gamma p})$; $h(x) = \mathbf{1}_{\{x \in (0,\infty)\}}$

1.6-7 Let $X = ((X_1, Y_1), ..., (X_n, Y_n))$ be a sample from a bivariate normal population.

Show that the distributions of X form a five-parameter exponential family and identify η, B, T , and h.

$$f(X,Y) = \exp\left[-\frac{1}{2(1-\rho^2)} \left[\sum_{i=1}^{n} \left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2\rho \sum_{i=1}^{n} \left(\frac{x-\mu_X}{\sigma_X}\right) \left(\frac{y-\mu_Y}{\sigma_Y}\right) + \sum_{i=1}^{n} \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right] - n \ln(2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2})\right] \mathbf{1}_{\{x,y\in\mathbb{R}^n\}}$$

$$= \exp\left[-\frac{\sum x^2}{2(1-\rho^2)\sigma_X^2} + \frac{\sum x}{(1-\rho^2)} \left(\frac{\mu_X}{\sigma_X^2} - \frac{\mu_Y\rho}{\sigma_X\sigma_Y}\right) + \frac{\rho\sum xy}{(1-\rho^2)\sigma_X\sigma_Y} + \frac{\sum y}{(1-\rho^2)} \left(\frac{\mu_Y}{\sigma_Y^2} - \frac{\mu_X\rho}{\sigma_X\sigma_Y}\right) - \frac{\sum y^2}{2(1-\rho^2)\sigma_Y^2}\right]$$

$$+ \exp\left[-n\left(\frac{1}{2(1-\rho^2)} \left(\frac{\mu_X^2}{\sigma_X^2} - \frac{2\rho\mu_X\mu_Y}{\sigma_X\sigma_Y} + \frac{\mu_Y^2}{\sigma_Y^2}\right) + \ln(2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2})\right)\right] \underbrace{\mathbf{1}_{\{x,y\in\mathbb{R}^n\}}}_{h(x)}$$

where

$$\eta(\rho, \mu_X, \mu_Y, \sigma_X, \sigma_Y) = \left\{ -\frac{1}{2(1-\rho^2)\sigma_X^2}, \frac{1}{(1-\rho^2)} (\frac{\mu_X}{\sigma_X^2} - \frac{\mu_Y \rho}{\sigma_X \sigma_Y}), \frac{\rho}{(1-\rho^2)\sigma_X \sigma_Y}, \frac{1}{(1-\rho^2)} (\frac{\mu_Y}{\sigma_Y^2} - \frac{\mu_X \rho}{\sigma_X \sigma_Y}), -\frac{1}{2(1-\rho^2)\sigma_Y^2} \right\}^T$$

$$T(x, y) = (\sum x^2, \sum x, \sum xy, \sum y, \sum y^2); h(x) = \mathbf{1}_{\{x, y \in \mathbb{R}^n\}}$$

$$nB(\rho, \mu_X, \mu_Y, \sigma_X, \sigma_Y) = n \left(\frac{1}{2(1-\rho^2)} (\frac{\mu_X^2}{\sigma_X^2} - \frac{2\rho\mu_X \mu_Y}{\sigma_X \sigma_Y} + \frac{\mu_Y^2}{\sigma_Y^2}) + \ln(2\pi\sigma_X \sigma_Y \sqrt{1-\rho^2}) \right)$$

$$\rho \in (0, 1), \mu_X \in \mathbb{R}, \mu_Y \in \mathbb{R}, \sigma_X \in \mathbb{R}^+, \sigma_Y \in \mathbb{R}^+$$

$$x \in \mathcal{X} \subset \mathbb{R}^n, y \in \mathcal{Y} \subset \mathbb{R}^n$$

2.1-1 Consider a population made up of three different types of individuals occurring in the Hardy-Weinberg proportions θ^2 , $2\theta(1-\theta)$ and $(1-\theta)^2$, respectively, where $0 < \theta < 1$.

(a) Show that $T_3 = N_1/n + N_2/2n$ is a frequency substitution estimate of θ .

$$E[T_3] = E[N_1/n + N_2/2n] = E[\hat{p}_1] + \frac{1}{2}E[\hat{p}_2] = \theta^2 + \frac{1}{2} \cdot 2\theta(1 - \theta) = \theta$$

 T_3 is a frequency substitution estimate of θ .

(b) Using the estimate of (a), what is a frequency substitution estimate of the odds ratio $\frac{\theta}{1-\theta}$?

For
$$\hat{p}_3 = 1 - \frac{N_1}{n} - \frac{N_2}{n}$$

Let $g(\frac{N_1}{n}, \frac{N_2}{n}) = (1 - \frac{N_1}{n} - \frac{N_2}{n})^{-\frac{1}{2}} - 1 = (\hat{p}_3)^{-\frac{1}{2}} - 1$ convert to 1-patametric function.
$$E[g(\frac{N_1}{n}, \frac{N_2}{n})] = E[\frac{1}{\sqrt{\hat{p}_3}} - 1] = \frac{1}{\sqrt{E[\hat{p}_3]}} - 1 = \frac{1}{\sqrt{(1-\theta)^2}} - 1 = \frac{\theta}{1-\theta}$$

 $T(X_1, X_2) = g(\frac{N_1}{n}, \frac{N_2}{n})$ is a frequency substitution estimate of the odds ratio $\frac{\theta}{1-\theta}$

(c) Suppose X takes the values -1, 0, 1 with respective probabilities p1, p2, p3 given by the Hardy-Weinberg proportions. By considering the first moment of X, show that T_3 is a method of moment estimate of θ

$$\mu_1(\theta) = E_{\theta}[X^1] = \sum_{j=1}^3 p_j x_j = p_1 x_1 + p_2 x_2 + p_3 x_3 = \theta^2 \cdot (-1) + 2\theta (1-\theta) \cdot 0 + (1-\theta)^2 \cdot 1 = 1 - 2\theta$$

$$\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n x_i^1 = \frac{1}{n} (N_1 x_1 + N_2 x_2 + N_3 x_3) = \frac{1}{n} [N_1 \cdot (-1) + N_2 \cdot 0 + (n - N_1 - N_2) \cdot 1] = 1 - 2(\frac{N_1}{n} + \frac{N_2}{2n}) = 1 - 2T_3$$

Since $E[\hat{\mu}_1] = 1 - 2E[T_3] = 1 - 2\theta = \mu_1$, T_3 is a method of moment estimate of θ .

- **2.1-9 Suppose X** = $(X_1,...,X_n)$ where the X_i are independent $N(0,\sigma^2)$.
 - (a) Find an estimate of σ^2 based on the second moment.

$$\mu_2(\sigma^2) = E_{\sigma^2}[X^2] = V[X] + E[X] = \sigma^2$$
$$E[\hat{\mu}_2] = E[\frac{1}{n} \sum_{i=1}^n x_i^2] = \mu_2(\sigma^2) = \sigma^2$$

Therefore, $\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}$ is an estimate of σ^{2} based on the second moment.

(b) Construct an estimate of σ using the estimate of part (a) and the equation $\sigma = \sqrt{\sigma^2}$.

Let $T_2 = \sqrt{\hat{\mu}_2} = \sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2}$ is a 1-1 transformation in $(0, \infty)$. Therefore T_2 and $\hat{\mu}_2$ are equivalent statistics.

$$E\left[T_{2}\right] = E\left[\sqrt{\hat{\mu}_{2}}\right] = \sqrt{E\left[\hat{\mu}_{2}\right]} = \sqrt{E\left[\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}\right]} = \sqrt{\sigma^{2}} = \sigma, \quad x \in (0, \infty)$$

Therefore, $\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}}$ is an estimate of σ based on the second moment.

(c) Use the empirical substitution principle to construct an estimate of σ using the relation $E(|X_1|) = \sigma \sqrt{2/\pi}$.

If
$$X \sim N(0, \sigma^2)$$
, then $|X| \sim \text{half-normal } (\sigma \sqrt{\frac{2}{\pi}}, \sigma^2 (1 - \frac{2}{\pi}))$. We have $\mu_1(\sigma) = E_{\sigma}[|X_1|] = \sigma \sqrt{\frac{2}{\pi}}$

Let $T_1 = \sqrt{\frac{\pi}{2}}\hat{\mu}_1 = \sqrt{\frac{\pi}{2}}\frac{1}{n}\sum_{i=1}^n |x_i|$ is a 1-1 transformation in \mathbb{R} . Therefore T_1 and $\hat{\mu}_1$ are equivalent statistics.

$$E[T_1] = E\left[\sqrt{\frac{\pi}{2}} \frac{1}{n} \sum_{i=1}^{n} |x_i|\right] = \sqrt{\frac{\pi}{2}} \frac{1}{n} \sum_{i=1}^{n} E[|x_i|] = \sqrt{\frac{\pi}{2}} \mu_1(\sigma) = \sigma$$

By the empirical substitution principle, $\sqrt{\frac{\pi}{2}} \frac{1}{n} \sum_{i=1}^{n} |x_i|$ is an estimate of σ based on the first moment.

2.1-15 Hardy-Weinberg with six genotypes.

In a large natural population of plants (Mimulus guttatus) there are three possible alleles S, I, and F at one locus resulting in six genotypes labeled SS, II, FF, SI, SF, and IF. Let θ_1, θ_2 , and θ_3 denote the probabilities of S, I, and F, respectively, where $\sum_{j=1}^{3} \theta_j = 1$. The Hardy-Weinberg model specifies that the six genotypes have probabilities

Let N_j be the number of plants of genotype j in a sample of n independent plants, $1 \le j \le 6$ and $\hat{p}_j = N_j/n$. Show the frequency plug-in estimates of θ_1, θ_2 , and θ_3

$$\theta_1^2 + \theta_1 \theta_2 + \theta_1 \theta_3 = \theta_1 (\theta_1 + \theta_2 + \theta_3) \underset{\theta_j = 1}{=} \theta_1 \implies \hat{\theta}_1 = \hat{p}_1 + \frac{1}{2} \hat{p}_4 + \frac{1}{2} \hat{p}_5$$

$$\theta_2^2 + \theta_1 \theta_2 + \theta_2 \theta_3 = \theta_2 (\theta_1 + \theta_2 + \theta_3) \underset{\theta_j = 1}{=} \theta_2 \implies \hat{\theta}_2 = \hat{p}_2 + \frac{1}{2} \hat{p}_4 + \frac{1}{2} \hat{p}_6$$

$$\theta_3^2 + \theta_1 \theta_3 + \theta_2 \theta_3 = \theta_3 (\theta_1 + \theta_2 + \theta_3) \underset{\theta_j = 1}{=} \theta_3 \implies \hat{\theta}_3 = \hat{p}_3 + \frac{1}{2} \hat{p}_5 + \frac{1}{2} \hat{p}_6$$

2.2-12 Let $X_1,...,X_n,n\geq 2$, be independently and identically distributed with density

$$f(x,\theta) = \frac{1}{\sigma} \exp\left[-\frac{x-\mu}{\sigma}\right], x \ge \mu$$
, where $\theta = (\mu, \sigma^2), -\infty < \mu < \infty, \sigma^2 > 0$.

(a) Find maximum likelihood estimates of μ and σ^2 .

$$L(\theta) = (\frac{1}{\sigma})^n \exp[-\frac{\sum_{i=1}^n (x_i - \mu)}{\sigma}] \mathbf{1}_{\{x_i \ge \mu\}} = \exp[-\frac{1}{\sigma} \sum_{i=1}^n x_i + \frac{n\mu}{\sigma} - n \ln \sigma] \mathbf{1}_{\{x_i \ge \mu\}}$$

Given σ , $L(\mu)$ is monotone increasing in μ , $\sup L(\mu)$ is equivalent to $\max \mu \leq x_i$, thus $\hat{\mu} = X_{(1)}$ is the maximum likelihood estimaters of μ

Given μ

$$l(\theta) = -\frac{1}{\sigma} \sum_{i=1}^{n} x_i + \frac{n\mu}{\sigma} - n \ln \sigma$$

$$l'(\sigma) = \frac{1}{\sigma^2} \sum_{i=1}^{n} x_i - \frac{n\mu}{\sigma^2} - \frac{n}{\sigma} \stackrel{set}{=} 0$$

$$\hat{\sigma} = \frac{1}{n} \sum_{i=1}^{n} x_i - \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i - x_{(1)}$$

For $n \geq 2, \frac{1}{n} \sum_{i=1}^{n} x_i - x_{(1)} > 0, \ \hat{\sigma} \in (0, \infty)$ then

 $\hat{\sigma}^2 = h(\hat{\sigma}) = (\hat{\sigma})^2$ is a 1-1 transformation on $\hat{\sigma} \in (0, \infty)$, $\hat{\sigma}^2$ and $\hat{\sigma}$ are equivalent statistics.

Therefore,

$$\hat{\sigma}^2 = \left(\frac{1}{n} \sum_{i=1}^n x_i - x_{(1)}\right)^2$$

(b) Find the maximum likelihood estimate of $P_{\theta}[X_1 \ge t]$ for $t > \mu$. Hint: You may use Problem 2.2.16(b).

$$F_X = \int_{\mu}^{x} \frac{1}{\sigma} \exp[-\frac{x-\mu}{\sigma}] \mathbf{1}_{\{x \ge \mu\}} dx = 1 - \exp[-\frac{x-\mu}{\sigma}]$$

Define $\omega = q(t, \mu, \sigma) = P_{\theta}[X_1 \ge t] = 1 - F_X(t) = \exp[-\frac{1}{\sigma}(t - \mu)]$ which is an one to one transformation.

Since $(x_{(1)}, \bar{x} - x_{(1)})$ are MLE of (μ, σ) ,

 $\hat{\omega} = q(t,\hat{\mu},\hat{\sigma}) = \exp[-\tfrac{1}{\hat{\sigma}}(t-\hat{\mu})] = \exp[-\tfrac{t-x_{(1)}}{\bar{x}-x_{(1)}}] \text{ is the maximum likelihood estimate of } P_{\theta}[X_1 \geq t] \text{ for } t > \mu$

2.2-13 Let $X_1,...,X_n$ be a sample from $\mathbf{a}U[\theta-\frac{1}{2},\theta+\frac{1}{2}]$ distribution.

Show that any T such that $X_{(n)} - \frac{1}{2} \le T \le X_{(1)} + \frac{1}{2}$ is a maximum likelihood estimate of θ . (We write U[a,b] to make $p(a) = p(b) = (b-a)^{-1}$ rather than 0.)

$$p_{\theta}(x) = \frac{1}{\theta + \frac{1}{2} - \theta - \frac{1}{2}} \mathbf{1}_{\{\theta - \frac{1}{2} \le x \le \theta + \frac{1}{2}\}} = \mathbf{1}_{\{\theta - \frac{1}{2} \le x \le \theta + \frac{1}{2}\}}$$

$$L(\theta) = \prod_{i=1}^{n} \mathbf{1}_{\{\theta - \frac{1}{2} \le x_{(i)} \le \theta + \frac{1}{2}\}} = \prod_{i=1}^{n} \mathbf{1}_{\{\theta - \frac{1}{2} \le x_{(1)}, x_{(n)} \le \theta + \frac{1}{2}\}} = \mathbf{1}_{\{\theta \le x_{(1)} + \frac{1}{2}, x_{(n)} - \frac{1}{2} \le \theta\}} = \mathbf{1}_{\{x_{(n)} - \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2}\}}$$

To maximum $L(\theta)$ is equivalent to let $X_{(n)} - \frac{1}{2} \le \theta \le X_{(1)} + \frac{1}{2}$, which is a MLE of θ .

2.3-3 Consider the Hardy-Weinberg model with the six genotypes given in Problem 2.1.15.

Let $\Theta = \{(\theta_1, \theta_2) : \theta_1 > 0, \theta_2 > 0, \theta_1 + \theta_2 < 1\}$ and let $\theta_3 = 1 - (\theta_1 + \theta_2)$. In a sample of n independent plants, write $x_i = j$ if the ith plant has genotype j, $1 \le j \le 6$. Under what conditions on $(x_1, ..., x_n)$ does the MLE exist? What is the MLE? Is it unique?

 N_i be the number of plants of genotype j in a sample of n independent plants. $\sum N_i = n$. Let

$$t_0 = N_4 + N_5 + N_6$$

$$t_1 = 2N_1 + N_4 + N_5$$

$$t_2 = 2N_2 + N_4 + N_6$$

$$t_3 = 2n - t_1 - t_2 = 2n - (2N_1 + N_4 + N_5) - (2N_2 + N_4 + N_6) = 2N_3 + N_5 + N_6$$

$$\begin{split} L(\theta_1, \theta_2, \theta_3 | x_{1:n}) &= (\theta_1^2)^{N_1} (\theta_2^2)^{N_2} (\theta_3^2)^{N_3} (2\theta_1\theta_2)^{N_4} (2\theta_1\theta_3)^{N_5} (2\theta_2\theta_3)^{N_6} \\ &= \exp\left[\left(N_4 + N_5 + N_6 \right) \ln 2 + \left(2N_1 + N_4 + N_5 \right) \ln \theta_1 + \left(2N_2 + N_4 + N_6 \right) \ln \theta_2 + \left(2N_3 + N_5 + N_6 \right) \ln \theta_3 \right] \\ &= \exp\left[t_0 \ln 2 + t_1 \ln \theta_1 + t_2 \ln \theta_2 + t_3 \ln \theta_3 \right] \end{split}$$

Substitude θ_3 with $1-\theta_1-\theta_2$ and t_3 with $2n-t_1-t_2$

$$L(\theta_1, \theta_2 | x_{1:n}) = \exp\left[t_0 \ln 2 + t_1 \ln \theta_1 + t_2 \ln \theta_2 + (2n - t_1 - t_2) \ln(1 - \theta_1 - \theta_2)\right]$$

$$L(\theta_1, \theta_2 | x_{1:n}) = \underbrace{2^{t_0}}_{h(x)} \exp \left[\underbrace{t_1 \ln \frac{\theta_1}{1 - \theta_1 - \theta_2} + t_2 \ln \frac{\theta_2}{1 - \theta_1 - \theta_2}}_{T(\vec{x}) \cdot \eta(\vec{\theta})} - \underbrace{2n \ln \frac{1}{1 - \theta_1 - \theta_2}}_{A(\eta)} \right]$$

which is a 2-parameter exponential family.

$$l(\theta_1, \theta_2) = t_0 \ln 2 + t_1 \ln \theta_1 + t_2 \ln \theta_2 + t_3 \ln(1 - \theta_1 - \theta_2)$$

$$\frac{\partial}{\partial \theta_1} l(\theta_1, \theta_2) = \frac{t_1}{\theta_1} + \frac{-t_3}{1 - \theta_1 - \theta_2} \stackrel{set}{=} 0$$

$$\frac{\partial}{\partial \theta_2} l(\theta_1, \theta_2) = \frac{t_2}{\theta_2} + \frac{-t_3}{1 - \theta_1 - \theta_2} \stackrel{set}{=} 0$$

$$\frac{\partial^2}{\partial \theta_1^2} l(\theta_1, \theta_2) = \frac{-t_1}{\theta_1^2} + \frac{-t_3}{(1 - \theta_1 - \theta_2)^2} < 0$$

$$\frac{\partial^2}{\partial \theta_2^2} l(\theta_1, \theta_2) = \frac{-t_2}{\theta_2^2} + \frac{-t_3}{(1 - \theta_1 - \theta_2)^2} < 0$$

$$\frac{\partial^2}{\partial \theta_1 \partial \theta_2} l(\theta_1, \theta_2) = \frac{-t_3}{(1 - \theta_1 - \theta_2)^2}$$

$$\begin{split} [\frac{\partial^2}{\partial \theta_1^2} l(\theta_1, \theta_2)] [\frac{\partial^2}{\partial \theta_2^2} l(\theta_1, \theta_2)] &= \left(\frac{-t_1}{\theta_1^2} + \frac{-t_3}{(1 - \theta_1 - \theta_2)^2}\right) \cdot \left(\frac{-t_2}{\theta_2^2} + \frac{-t_3}{(1 - \theta_1 - \theta_2)^2}\right) \\ &= \frac{t_1 t_2}{\theta_1^2 \theta_2^2} + (\frac{t_1}{\theta_1^2} + \frac{t_2}{\theta_2^2}) \frac{t_3}{(1 - \theta_1 - \theta_2)^2} + \left[\frac{-t_3}{(1 - \theta_1 - \theta_2)^2}\right]^2 \\ &> \left[\frac{-t_3}{(1 - \theta_1 - \theta_2)^2}\right]^2 \\ &= [\frac{\partial^2}{\partial \theta_1 \partial \theta_2} l(\theta_1, \theta_2)]^2 \end{split}$$

Therefore, the likelihood function is strictly concave and the unique MLEs exist. The MLE solutions are

$$\begin{cases} \hat{\theta}_1 = \frac{t_1}{2n} = \frac{2N_1 + N_4 + N_5}{2n} \\ \hat{\theta}_2 = \frac{t_2}{2n} = \frac{2N_2 + N_4 + N_6}{2n} \\ \hat{\theta}_3 = \frac{t_3}{2n} = \frac{2N_3 + N_5 + N_6}{2n} \end{cases}$$

2.3-12 Let $X_1,..,X_n$ be i.i.d. $\frac{1}{\sigma}f_0(\frac{x-\mu}{\sigma}),\ \sigma>0, \mu\in R$, and assume for $w\equiv -\log f_0$ that $\omega''>0$ so that w is strictly convex, $\omega(\pm\infty)=\infty$.

(a) Show that, if $n \ge 2$, the likelihood equations $\sum_{i=1}^n w'(\frac{X_i - \mu}{\sigma}) = 0$; $\sum_{i=1}^n \left[\frac{(X_i - \mu)}{\sigma} w'(\frac{X_i - \mu}{\sigma}) - 1\right] = 0$ have a unique solution $(\hat{\mu}, \hat{\sigma})$.

$$L(\mu, \sigma) = \prod_{i=1}^{n} \frac{1}{\sigma} f_0(\frac{x_i - \mu}{\sigma})$$
$$l(\mu, \sigma) = n \ln(\frac{1}{\sigma}) + \sum_{i=1}^{n} \ln f_0(\frac{x_i - \mu}{\sigma}) = n \ln(\frac{1}{\sigma}) - \sum_{i=1}^{n} \omega(\frac{x_i - \mu}{\sigma})$$

By Hint (b) Reparametrize by $a = \frac{1}{\sigma}$, $b = \frac{\mu}{\sigma}$ and consider varying a, b successively.

By Hint (a) The function $D(a,b) = \sum_{i=1}^{n} w(aX_i - b) - n \log a$ is strictly convex in (a,b) and $\lim_{(a,b)\to(a_0,b_0)} D(a,b) = \infty$ if either $a_0 = 0$ or ∞ or $b_0 = \pm \infty$,

By Hint (ii) If $\frac{\partial^2 D}{\partial a^2} > 0$, $\frac{\partial^2 D}{\partial b^2} > 0$ and $\frac{\partial^2 D}{\partial a^2} \frac{\partial^2 D}{\partial b^2} > (\frac{\partial^2 D}{\partial b \partial b})^2$, then D is strictly convex.

Check The function $D(a,b) = \sum_{i=1}^{n} w(aX_i - b) - n \log a$

$$\frac{\partial D}{\partial a} = -\frac{n}{a} + \sum_{i=1}^{n} w'(ax_i - b)(x_i)$$

$$\frac{\partial^2 D}{\partial a^2} = \frac{n}{a^2} + \sum_{i=1}^{n} w''(ax_i - b)(x_i^2) > 0$$

$$\frac{\partial D}{\partial b} = \sum_{i=1}^{n} w'(ax_i - b)(-1)$$

$$\frac{\partial^2 D}{\partial b^2} = \sum_{i=1}^{n} w''(ax_i - b) > 0$$

$$\frac{\partial D^2}{\partial a \partial b} = \sum_{i=1}^{n} w''(ax_i - b)(-x_i)$$

$$\left[\frac{\partial^2 D}{\partial a^2}\right] \left[\frac{\partial^2 D}{\partial b^2}\right] = \left[\frac{n}{a^2} + \sum_{i=1}^n w''(ax_i - b)(x_i^2)\right] \cdot \sum_{i=1}^n w''(ax_i - b)$$

$$= \frac{n}{a^2} \sum_{i=1}^n w''(ax_i - b) + \left[\sum_{i=1}^n w''(ax_i - b)\right]^2 (x_i^2)$$

$$> \left[\sum_{i=1}^n w''(ax_i - b)(x_i)\right]^2 = \left[\frac{\partial D^2}{\partial a \partial b}\right]^2$$

The function D(a,b) is strictly convex in (a,b) and $\lim_{(a,b)\to(a_0,b_0)}D(a,b)=\infty$, if either $a_0=0$ or ∞ or $b_0=\pm\infty$

$$l(\mu, \sigma) = n \ln(a) - \sum_{i=1}^{n} \omega(ax_i - b) = -D(a, b)$$

Therefore, $l(\mu, \sigma)$ is strictly concave in (μ, σ) By Hint (i) If a strictly convex function has a minimum, it is unique. The equations have a unique solution $(\hat{\mu}, \hat{\sigma})$ to get a maximum for $L(\mu, \sigma)$

$$\frac{\partial}{\partial \mu} l(\mu, \sigma) = \sum_{i=1}^{n} \omega' \left(\frac{x_i - \mu}{\sigma}\right) \frac{-1}{\sigma} \stackrel{set}{=} 0$$

$$\frac{\partial}{\partial \sigma} l(\mu, \sigma) = \frac{-n}{\sigma} + \sum_{i=1}^{n} \omega' \left(\frac{x_i - \mu}{\sigma}\right) \cdot \frac{x_i - \mu}{\sigma^2} = \frac{1}{\sigma} \sum_{i=1}^{n} \left[\frac{(x_i - \mu)}{\sigma} w' \left(\frac{x_i - \mu}{\sigma}\right) - 1\right] \stackrel{set}{=} 0$$

$$\sum_{i=1}^{n} w'(\frac{X_i - \hat{\mu}}{\hat{\sigma}}) = 0$$
$$\sum_{i=1}^{n} \left[\frac{(X_i - \hat{\mu})}{\hat{\sigma}} w'(\frac{X_i - \hat{\mu}}{\hat{\sigma}}) - 1 \right] = 0$$

(b) Give an algorithm such that starting at $\hat{\mu}^0 = 0, \hat{\sigma}^0 = 1, \hat{\mu}^{(i)} \to \hat{\mu}, \hat{\sigma}^{(i)} \to \hat{\sigma}$.

Using Coordinate-Ascent Algorithm, get the unique solution of $(\hat{\mu}^{(i)}, \hat{\sigma}^{(i)})$ by solving

$$\begin{split} \sum_{i=1}^n w'(\frac{X_i - \hat{\mu}^{(1)}}{\hat{\sigma}^{(0)}}) &= 0 & \text{plugin} \hat{\sigma}^0, \text{ get } \hat{\mu}^{(1)} \\ \sum_{i=1}^n [\frac{(X_i - \hat{\mu}^{(1)})}{\hat{\sigma}^{(1)}} w'(\frac{X_i - \hat{\mu}^{(1)}}{\hat{\sigma}^{(1)}}) &= n & \text{plugin} \hat{\mu}^{(1)}, \text{get} \hat{\sigma}^{(1)} \\ & \cdots \\ \sum_{i=1}^n w'(\frac{X_i - \hat{\mu}^{(i)}}{\hat{\sigma}^{(i-1)}}) &= 0 & \text{plugin} \hat{\sigma}^{(i-1)}, \text{ get } \hat{\mu}^{(i)} \\ \sum_{i=1}^n [\frac{(X_i - \hat{\mu}^{(i)})}{\hat{\sigma}^{(i)}} w'(\frac{X_i - \hat{\mu}^{(i)}}{\hat{\sigma}^{(i)}})] &= n & \text{plugin} \hat{\mu}^{(i)}, \text{ get } \hat{\sigma}^{(i)} \end{split}$$

Using **Newton-Raphson Method**, get the unique solution of $(\hat{\mu}^{(i)}, \hat{\sigma}^{(i)})$ by solving

$$\begin{split} \hat{\mu}^{(i)} &= \hat{\mu}^{(i-1)} + \frac{l(\mu,\sigma)}{\frac{\partial}{\partial \mu} l(\mu,\sigma)} = \hat{\mu}^{(i-1)} + \frac{n \ln(\frac{1}{\sigma^{(i-1)}}) - \sum_{i=1}^{n} \omega(\frac{x_i - \mu^{(i-1)}}{\sigma^{(i-1)}})}{\sum_{i=1}^{n} w'(\frac{X_i - \hat{\mu}^{(i-1)}}{\hat{\sigma}^{(i-1)}})} \quad \text{plugin} \hat{\mu}^{(i-1)} \text{ and } \hat{\sigma}^{(i-1)}, \text{ get } \hat{\mu}^i \\ \hat{\sigma}^{(i)} &= \hat{\sigma}^{(i-1)} + \frac{l(\mu,\sigma)}{\frac{\partial}{\partial \sigma} l(\mu,\sigma)} = \hat{\sigma}^{(i-1)} + \frac{n \ln(\frac{1}{\sigma^{(i-1)}}) - \sum_{i=1}^{n} \omega(\frac{x_i - \mu^{(i-1)}}{\hat{\sigma}^{(i-1)}})}{\sum_{i=1}^{n} \left[\frac{(X_i - \hat{\mu}^{(i-1)})}{\hat{\sigma}^{(i-1)}} w'(\frac{X_i - \hat{\mu}^{(i-1)}}{\hat{\sigma}^{(i-1)}}) - 1\right]} \quad \text{plugin} \hat{\mu}^{(i-1)} \text{ and } \hat{\sigma}^{(i-1)}, \text{ get } \hat{\sigma}^{(i)} \end{split}$$

By **Theorem 2.4.2**, f_0 is the canonical exponential familiy generated by (T, h), the natural parameter space ε is open and the family is of rank k. Set $t_0 = T(x)$, $t_0 \in C_T^0$, $\hat{\eta}^{(i)} = (\hat{\mu}^{(i)}, \hat{\sigma}^{(i)}) \to \hat{\eta} = (\hat{\mu}, \hat{\sigma})$ as $i \to \infty$

(c) Show that for the logistic distribution $F_0(x) = [1 + \exp\{-x\}]^{-1}$, w is strictly convex and give the likelihood equations for μ and σ . (See Example 2.4.3.)

$$F_0'(\frac{x-\mu}{\sigma}) = \frac{1}{\sigma}f_0(\frac{x-\mu}{\sigma}) = \frac{1}{\sigma}\frac{\exp[-\frac{x-\mu}{\sigma}]}{(1+\exp[-\frac{x-\mu}{\sigma}])^2}$$

$$\omega = -\ln f_0(x) = 2\ln(1 + \exp[-\frac{x - \mu}{\sigma}]) + \frac{x - \mu}{\sigma}$$

Check w is strictly convex.

$$\frac{\partial \omega}{\partial x} = \frac{1}{\sigma} - \frac{2 \exp\left[-\frac{x-\mu}{\sigma}\right]}{\sigma \left(1 + \exp\left[-\frac{x-\mu}{\sigma}\right]\right)} = \frac{1 - \exp\left[-\frac{x-\mu}{\sigma}\right]}{\sigma \left(1 + \exp\left[-\frac{x-\mu}{\sigma}\right]\right)}$$
$$\frac{\partial^2 \omega}{\partial x^2} = \frac{2 \exp\left[-\frac{x-\mu}{\sigma}\right]}{\sigma^2 \left(1 + \exp\left[-\frac{x-\mu}{\sigma}\right]\right)^2} = \frac{2}{\sigma^2} f_0(x) > 0$$

Therefore, w is strictly convex. By part (a), $l(\mu, \sigma) = -\sum_{i=1}^{n} \omega$ is strictly concave in (μ, σ) . The likelihood equations for μ and σ are

$$\begin{split} \sum_{i=1}^n w'(\frac{X_i - \hat{\mu}}{\hat{\sigma}}) &= \sum_{i=1}^n \frac{1 - \exp[-\frac{x_i - \hat{\mu}}{\hat{\sigma}}]}{\hat{\sigma}(1 + \exp[-\frac{x_i - \hat{\mu}}{\hat{\sigma}}])} = 0 \\ \sum_{i=1}^n [\frac{(X_i - \hat{\mu})}{\hat{\sigma}} w'(\frac{X_i - \hat{\mu}}{\hat{\sigma}}) - 1] &= \sum_{i=1}^n \left[\frac{(x_i - \hat{\mu})(1 - \exp[-\frac{x_i - \hat{\mu}}{\hat{\sigma}}])}{\hat{\sigma}^2(1 + \exp[-\frac{x_i - \hat{\mu}}{\hat{\sigma}}])} - 1 \right] = 0 \end{split}$$

$$\begin{split} \frac{\partial \omega}{\partial \mu} &= -\frac{1}{\sigma} + \frac{2 \exp[-\frac{x-\mu}{\sigma}]}{\sigma(1 + \exp[-\frac{x-\mu}{\sigma}])} = \frac{1}{\sigma} \left\{ 2 \exp[-\frac{x-\mu}{\sigma}] F_0(x) - 1 \right\} = \frac{\exp[-\frac{x-\mu}{\sigma}] - 1}{\sigma(1 + \exp[-\frac{x-\mu}{\sigma}])} \\ \frac{\partial^2 \omega}{\partial \mu^2} &= \frac{2 \exp[-\frac{x-\mu}{\sigma}]}{\sigma^2(1 + \exp[-\frac{x-\mu}{\sigma}])^2} = \frac{2}{\sigma^2} f_0(x) > 0 \\ \frac{\partial \omega}{\partial \sigma} &= \frac{x-\mu}{\sigma^2} \left\{ -1 + \frac{2 \exp[-\frac{x-\mu}{\sigma}]}{1 + \exp[-\frac{x-\mu}{\sigma}]} \right\} = \frac{x-\mu}{\sigma^2} \left\{ 2 \exp[-\frac{x-\mu}{\sigma}] F_0(x) - 1 \right\} = \frac{(x-\mu)(\exp[-\frac{x-\mu}{\sigma}] - 1)}{\sigma^2(1 + \exp[-\frac{x-\mu}{\sigma}])} \\ \frac{\partial^2 \omega}{\partial \sigma^2} &= \frac{2(x-\mu)^2 \exp[-\frac{x-\mu}{\sigma}] + 2\sigma(x-\mu)(1 - \exp[-\frac{x-\mu}{\sigma}])}{\sigma^4 \left(1 + \exp[-\frac{x-\mu}{\sigma}]\right)^2} > 0 \\ \frac{\partial \omega^2}{\partial \mu \partial \sigma} &= \frac{2(x-\mu) \exp[-\frac{x-\mu}{\sigma}] + \sigma(1 - \exp[-\frac{x-\mu}{\sigma}])}{\sigma^3(1 + \exp[-\frac{x-\mu}{\sigma}])^2} \end{split}$$

$$\begin{split} & [\frac{\partial^{2}\omega}{\partial\mu^{2}}][\frac{\partial^{2}\omega}{\partial\sigma^{2}}] = \frac{2\exp[-\frac{x-\mu}{\sigma}]}{\sigma^{2}(1+\exp[-\frac{x-\mu}{\sigma}])^{2}} \cdot \frac{2(x-\mu)^{2}\exp[-\frac{x-\mu}{\sigma}] + 2\sigma(x-\mu)(1-\exp[-\frac{x-\mu}{\sigma}])}{\sigma^{4}\left(1+\exp[-\frac{x-\mu}{\sigma}]\right)^{2}} \\ & < \frac{4(x-\mu)^{2}\exp[-2\frac{x-\mu}{\sigma}] + 4\sigma(x-\mu)\exp[-\frac{x-\mu}{\sigma}](1-\exp[-\frac{x-\mu}{\sigma}]) + \sigma^{2}(1-\exp[-\frac{x-\mu}{\sigma}])^{2}}{\sigma^{6}\left(1+\exp[-\frac{x-\mu}{\sigma}]\right)^{4}} \\ & = \left[\frac{2(x-\mu)\exp[-\frac{x-\mu}{\sigma}] + \sigma(1-\exp[-\frac{x-\mu}{\sigma}])}{\sigma^{3}(1+\exp[-\frac{x-\mu}{\sigma}])^{2}}\right]^{2} \\ & = [\frac{\partial\omega^{2}}{\partial\mu\partial\sigma}]^{2} \end{split}$$

HW₆

2.4-1 EM for bivariate data.

- (a) In the bivariate normal Example 2.4.6, complete the E-step by finding $E(Z_i|Y_i)$, $E(Z_i^2|Y_i)$ and $E(Z_iY_i|Y_i)$.
- (b) In Example 2.4.6, verify the M-step by showing that $E_{\theta} \mathbf{T} = (\mu_1, \mu_2, \sigma_1^2 + \mu_1^2, \sigma_2^2 + \mu_2^2, \rho \sigma_1 \sigma_2 + \mu_1 \mu_2)$.

2.4-6 Consider a genetic trait that is directly unobservable but will cause a disease among a certain proportion of the individuals that have it.

For families in which one member has the disease, it is desired to estimate the proportion θ that has the genetic trait. Suppose that in a family of n members in which one has the disease (and, thus, also the trait), X is the number of members who have the trait. Because it is known that $X \ge 1$, the model often used for X is that it has the conditional distribution of a $\mathcal{B}(n,\theta)$ variable, $\theta \in [0,1]$, given $X \ge 1$.

- (a) Show that $P(X=x|X\geq 1)=\frac{\binom{n}{x}\theta^x(1-\theta)^{n-x}}{1-(1-\theta)^n}, x=1,...,n$, and that the MLE exists and is unique.
- (b) Use (2.4.3) to show that the Newton-Raphson algorithm gives $\hat{\theta}_1 = \tilde{\theta} \frac{\tilde{\theta}(1-\tilde{\theta})[1-(1-\tilde{\theta})^n]\{x-n\tilde{\theta}-x(1-\tilde{\theta})^n\}}{n\tilde{\theta}^2(1-\tilde{\theta})^n[n-1+(1-\tilde{\theta})^n]-[1-(1-\tilde{\theta})^n]^2[(1-2\tilde{\theta})x+n\tilde{\theta}^2]}$, where $\tilde{\theta} = \hat{\theta}_{old}$ and $\hat{\theta}_1 = \hat{\theta}_{new}$, as the first approximation to the maximum likelihood estimate of θ .
- (c) If n = 5, x = 2, find $\hat{\theta}_1$ of (b) above using $\theta = x/n$ as a preliminary estimate.