

Facultad de Ciencias

Universidad Autónoma de México Física Estadística

Tarea 1 - 28

Profesores:

Dr. Ricardo Atahualpa Solórzano Kraemer

Alumno: Sebastián González Juárez

sebastian_gonzalezj@ciencias.unam.mx

28. *Se lanzan 2 dados, uno negro y uno rojo. Considera los eventos:

A = Sale par en el dado negroB = Sale par en el dado rojoC = Sale par en la sumaDemuestra que por pares los eventos son independientes, pero de hecho no son independientes los 3 a la vez.

Sol.

X	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

X	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Primero veamos con más atención la probabilidad de los ventos,

$$P(A) = \frac{36}{66} = \frac{18}{36} = \frac{1}{2}, \qquad P(B) = \frac{63}{66} = \frac{18}{36} = \frac{1}{2}, \qquad P(C) = \frac{18}{36} = \frac{1}{2}$$

Vemos que todos los eventos tienen la misma probabilidad de suceder.

Independencia por pares. i. e. $P(I \cap I) = P(I)P(I)$

- AyB
$$\Rightarrow$$
 $P(A \cap B) = \frac{9}{36} = \frac{1}{4} = \frac{9}{36} = \frac{3}{6} = P(A)P(B) \Rightarrow P(A \cap B) = P(A)P(B) \blacksquare$
- AyC \Rightarrow $P(A \cap C) = \frac{9}{36} = \frac{1}{4} = \frac{9}{36} = \frac{3}{6} = P(A)P(C) \Rightarrow P(A \cap C) = P(A)P(C) \blacksquare$
- ByC \Rightarrow $P(B \cap C) = \frac{9}{36} = \frac{1}{4} = \frac{9}{36} = \frac{3}{6} = P(B)P(C) \Rightarrow P(B \cap C) = P(B)P(C) \blacksquare$

- Ay C ⇒
$$P(A \cap C) = \frac{9}{36} = \frac{1}{4} = \frac{9}{36} = \frac{33}{66} = P(A)P(C) \Rightarrow P(A \cap C) = P(A)P(C)$$
 ■

- By C ⇒
$$P(B \cap C) = \frac{9}{36} = \frac{1}{4} = \frac{9}{36} = \frac{33}{66} = P(B)P(C) \Rightarrow P(B \cap C) = P(B)P(C)$$

Si los tres eventos son independientes, debe cumplirse que: $P(I \cap J \cap K) = P(I)P(J)P(K)$

$$P(A \cap B \cap C) = \frac{9}{36} = \frac{1}{4}$$

$$P(A)P(B)P(C) = \frac{1}{2}\frac{1}{2}\frac{1}{2} = \frac{1}{8}$$

Por lo tanto, los 3 eventos nos son independientes, pues $P(A \cap B \cap C) \neq P(A)P(B)P(C)$