Parallel construction for model-adaptive convex bounding polyhedron

TANG Lei, SHI Kanle, YONG Junhai. etc

CG&CAD, School of Software, Tsinghua University

2014-01-22

- 1 引言
- 2 模型适应的凸包围多面体构造算法
 - 问题定义及算法流程
 - ■截面法向的生成
 - 搜索截面及求交
- 3 实验与分析
 - 凸包围多面体的生成速度
 - 凸包围多面体的紧致程度
 - 凸包围多面体的简单应用
- 4 主要参考文献
- 5 FAQ

包围体在计算机图形学和计算几何领域中应用广泛, 常用于加速几何求交、光线跟踪和碰撞检测等多种算法.

Figure 1: 各种各样的包围体[1]

综合来看:

k-DOP[2] 方向固定且有限,不同模型其截面方向一致, 不够紧致.

凸包 很(最)紧致, 但面片数量太多, 复杂度0(n log n).

本文目标:

紧致 能够自适应模型

快速 利用GPU加速

灵活 通过参数 k 调节简单性和紧致性

- 2 模型适应的凸包围多面体构造算法
 - 问题定义及算法流程

 - ■搜索截面及求交
- - 凸包围多面体的生成速度
 - 凸包围多面体的紧致程度
 - 凸包围多面体的简单应用

问题的定义

由 k 个截面构成的凸包围多面体称为凸包围 k 面体(k-Convex Bounding Polytope, 简称 k-CBP), 可通过 k 个半空间定义:

$$\begin{cases} k-CBP = \bigcap_{i=1}^{k} H_{i} \\ H_{i} = \left\{ p \in \mathbb{R}^{3} \middle| n_{i} \cdot p \leq w_{i}, w_{i} \in \mathbb{R} \right\}, \end{cases}$$
 (1)

其中, n_i 是半空间 H_i 的法向, 方向指向包围体外部, w_i 是输入点集中沿 n_i 方向投影的最大值.

算法流程

Figure 2: 算法流程图

法向 结合近似内凸包和 k-means 截面 GPU 中沿各法向搜索切点构造截面 交点 截面对偶映射求得交点 •00

- 2 模型适应的凸包围多面体构造算法

 - 截面法向的生成
 - 搜索截面及求交
- - 凸包围多面体的生成速度
 - 凸包围多面体的紧致程度
 - 凸包围多面体的简单应用

截面法向的生成

近似凸包的构造

Figure 3: 二维近似内凸包的构造

构造近似内凸包[3],算法复杂度为 $0(n + \xi)$, 扩展到三维为 $0(n + \xi^2 \log \xi)$,然后利用 k-means 聚类. 截面法向的生成

k-means 聚类

Figure 4: 通过聚类确定法向

聚类初始方向(均匀分布). 距离度量(余弦), 聚类更新中心点时将面片的面积作为权重即 $\mathbf{c}_i = \frac{\sum_{i=1}^{i=n} \omega_i \cdot \mathbf{n}_i}{\sum_{i=1}^{i=n} \omega_i}$, 其中 \mathbf{c}_i 为第 i 类的中心点, ω_i 为法向 \mathbf{n}_i 所在面片对应的面积.

- 1 引言
- 2 模型适应的凸包围多面体构造算法
 - ■问题定义及算法流程
 - ■截面法向的生成
 - ■搜索截面及求交
- 3 实验与分析
 - 凸包围多面体的生成速度
 - 凸包围多面体的紧致程度
 - 凸包围多面体的简单应用
- 4 主要参考文献
- 5 FAG

搜索截面及求交

搜索截面

等效于寻找最大投影值,即对每个法向 n_i,从输入模型的所有点中寻找最大投影值的点作为切点进而确定 n_i 对应的截面.时间复杂度为 0(k·n),其中 k 为法向数量,n 为模型所含点数.各法向的计算相互独立,借助 GPU 并行加速.

Figure 5: 并行规约求最大投影值

000

求交算法

法向 n(a,b,c) 及平面上一点 $p(x_0,y_0,z_0)$ 确定,转化为平面方程 $ax + by + cz = ax_0 + by_0 + cz_0 = d$, $d \neq 0$. 对偶映射后的点为 p'(a/d,b/d,c/d),对这 k 个映射点求凸包,凸包平面映射回原来的交点,时间复杂度为 $0(k \log k)$. 亦可直接通过枚举所有每 3 个平面交于 1 点的情况,然后排除在平面外部的交点,剩下的构成 k-CBP 的顶点,时间复杂度为 $0(k^3)$ [4].

- - ■搜索截面及求交
- 3 实验与分析
 - 凸包围多面体的生成速度
 - 凸包围多面体的紧致程度
 - 凸包围多面体的简单应用

凸包围多面体的生成速度

Figure 6: 本文算法与 CPU 算法对比Budda(31k), Dinosaur(40k), Alice(224k), Bugatti(1011k)

图 6 中横纵坐标分别代表多面体面数和运行时间, 其中虚线代表搜索截面的过程, 实线为构造凸包围多面体总体耗时. 当模型点数量较大时, 搜索截面的过程占据了算法绝大多数时间, 且随着凸包围多面体的面数 k 值增加而线性增长, 这与搜索截面时间复杂度(0(k·n))一致, 截面求交过程的时间复杂度为0(k log k), 当点数量极大时, 实线虚线几乎重合即求交等步骤耗时相比整体算法而言几乎可忽略.

Table 1: 本文算法与文献[5]算法对比

实验与分析 000● 0000 000

k	Apple(8118 points)			Bugatti (1010815 points)		
n.	SSE ⁵ (ms)	k-CBP(ms)	Speedup	SSE(ms)	k-CBP(ms)	Speedup
6	0.4	0.12	3. 20	24. 2	3. 20	7. 56
16	0.9	0.26	3.43	44.5	8.44	5. 27
26	1.4	0.41	3.38	66. 5	13.65	4.87
36	1.9	0.52	3.65	91.1	18.34	4.97
46	2.5	0.67	3.74	119.5	24. 13	4.95
56	2.9	0.79	3.66	138. 4	28.86	4.80
66	3. 5	0.95	3.69	170.6	34. 10	5.00
76	4.0	1.08	3.70	197. 1	39.85	4.95
86	4.5	1.22	3.69	219.8	45.08	4.88
106	5. 4	1.49	3.62	267.8	55. 52	4.82
136	6.8	1.92	3.54	342.9	71.24	4.81
156	7. 7	2.17	3. 55	411.3	81.18	5.07
186	9.3	2.60	3.58	479.4	97.39	4.92
206	10. 5	2.85	3.68	523.0	106.87	4.89

点数量较小时, 能够提高 3-4 倍速度, 模型变大, 加速比更大, Bugatti 模型的提速达到 4-8 倍.

实验与分析 0000 •000

- - ■搜索截面及求交
- 3 实验与分析
 - 凸包围多面体的生成速度
 - 凸包围多面体的紧致程度
 - 凸包围多面体的简单应用

凸包围多面体的紧致程度

Figure 7: 紧致程度对比: k-DOP v.s k-CBP Apple(8k), Budda(31k), Dinosaur(40k), Alice(224k) 紧致程度用凸包与凸包围多面体的体积之比来量化.

Table 2: k-CBP 与 QuickHull 凸包算法比较

Model	f(CHull)	f (k-CBP)	au (k-CBP)	t(CHull(ms))	t(k-CBP(ms))
Apple	499	30	93.67%	5. 5	1.30
Budda	1608	46	92.39%	21.3	2.86
Dinosaur	1240	44	93.34%	22.6	1.99
Alice	1332	44	93.92%	85.8	8. 47
Bugatti	24654	44	95. 06%	688. 7	25. 41

 τ (k-CBP) 为凸包围多面体的紧致程度. 与凸包相比, 本文算法在大大简化包围体平面数量的同时能保持较好的紧致程度, 下图为可视化结果.

Figure 8: k-CBP 与凸包对比

- - ■搜索截面及求交
- 3 实验与分析
 - 凸包围多面体的生成速度
 - 凸包围多面体的紧致程度
 - 凸包围多面体的简单应用

Figure 9: k-CBP 应用于碰撞检测示例

图中模型 1 与 2、2 与 3 的包围盒分别相交, 而其 16-CBP 仅 1 与 2 相交, 实际模型仅 1 与 2 相交. 不同数量的模型(模型位置和旋转角度随机生成)测试结果如下表所示.

Table 3: k-CBP 和包围盒应用于碰撞检测结果对比

n	c (Box)	c (16-CBP)	t (Box)	t (16-CBP)	r(Box)	r (k-CBP)	n(Model)
10	0.1	1.8	26. 0	0. 1	0.00 %	100.00%	0
30	0.2	2.9	134.0	70.0	45. 45%	83.33%	5
50	0.5	4.8	506.0	255. 2	46.34%	86.36%	19
70	0.4	4.8	901.1	492.5	44. 16%	80.95%	34
90	0.7	5. 7	1324.0	734. 7	41.82%	73.02%	46
100	0.7	7.8	1481.0	870.7	43.31%	75.34%	55
150	1.0	9.8	4153.1	2473.0	42.98%	70.75%	150
200	1.6	12.8	8049.3	4430.9	41.02%	71.32%	281

其中 r(Box), r(16-CBP)分别表示包围盒、16-

CBP 的命中率即用实际模型相交的数量除以包围体检测出来相交的数量. 模型和凸包围多面体是否相交都采用了普通 AABB 树的方式进行判断.

主要参考文献 I

- [1] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann, W. Strasser, et al., "Collision detection for deformable objects," in Computer Graphics Forum, Wiley Online Library, vol. 24, 2005, pp. 61-81.
- [2] J. T. Klosowski, M. Held, J. S. Mitchell,
 H. Sowizral, and K. Zikan, "Efficient collision
 detection using bounding volume hierarchies of
 k-dops," IEEE Transactions on Visualization and
 Computer Graphics, vol. 4, no. 1, pp. 21-36, 1998.

主要参考文献 II

- [3] J. L. Bentley, F. P. Preparata, and M. G. Faust, "Approximation algorithms for convex hulls," Communications of the ACM, vol. 25, no. 1, pp. 64-68, 1982.
- [4] C. Ericson, Real-time collision detection. San Francisco, CA: Morgan Kaufmann Publishers, 2005.
- [5] M. Karlsson, O. Winberg, and T. Larsson, "Parallel construction of bounding volumes," in The Annual Swedish Computer Graphics Association Conference(SIGRAD), 2010, pp. 65-69.

Thank you!

FAQ

FAQ