ESERCIZI SULLE DERIVATE PARZIALI (I).

1. Si calcolino tutte le derivate parziali delle seguenti funzioni:

$$x^{(y^z)}, \qquad (x^y)^z.$$

- 2. Per ciascuna delle seguenti funzioni, si calcoli (se esiste):
 - (a) Il gradiente $\nabla f(x_0, y_0)$;
 - (b) Il differenziale $df_{(x_1,y_1)}$;
 - (c) La derivata direzionale $\frac{\partial f}{\partial (v_1, v_2)}$ nel generico punto (x, y);
 - (d) L'equazione del piano tangente alla superficie z=f(x,y) nel punto $(x_2,y_2,f(x_2,y_2)).$

	2/		, ,	, ,	
Į	f(x,y)	(x_0, y_0)	(x_1,y_1)	(x_2, y_2)	(v_1, v_2)
i	$\sin(xy)$	(1,0)	$(\frac{\pi}{2}, 1)$	$(7, \frac{\pi}{7})$	(3,2)
ii	$\log(x^2 + y^2)$	(1,1)	(-1,0)	(2,1)	(2,-1)
iii	e^{x+2y}	(0,0)	(1,0)	(2, -1)	(1, -3)
iv	$\tan(x^3y)$	$(1, \frac{\pi}{4})$	(1, 2)	(1,1)	(1, -3)
v	$\frac{x+y}{x^4+y^4+1}$	(1,-1)	(0,1)	(-2,1)	(5,2)
vi	$\arctan \frac{x}{y}$	(-1,1)	$(\sqrt{3}, 1)$	(0,1)	(3,4)
vii	$\log(\cos(x+y))$	$(\frac{\pi}{8},\frac{\pi}{8})$	$(0, \frac{\pi}{4})$	$(\frac{\pi}{3}-1,1)$	(2,0)
viii	$\frac{\cos x}{y}$	$(\frac{\pi}{3}, 1)$	(0,1)	$(\frac{\pi}{3}, 2)$	(1,-1)
ix	$e^{\frac{x+y}{x+1}}$	(1,2)	(-1, 2)	(1,0)	(0,3)
x	$\sqrt{y^2 + \cos^2(x)}$	$(\frac{\pi}{3}, 1)$	$(\frac{\pi}{2}, 0)$	(0,2)	(-1, -4)

3. Per ciascuna delle seguenti, si calcoli la derivata $\frac{dh}{dt}(t_0)$ dove h(t)=f(l(t)) usando la regola di derivazione delle funzioni composte:

	f(x,y)	$l(t) = (l_1(t), l_2(t))$	t_0
i	$x^3 + y^3 + 1$	$(t\cos t, t\sin t)$	3
ii	e^{x+y}	$(t^3, \log(t^2+1))$	2
iii	$3x^2 + 3y^2$	$(\cos 2t, \sin 2t)$	100

- 4. Si determinino le derivate parziali di f(x,y) = g(h(x,y)) (usando la regola di derivazione delle funzioni composte) dove
 - (a) $h(x,y) = (3x^2 + \cos(xy), y + 2x^3), \quad g(s,t) = e^s \cos t;$
 - (b) $h(x,y) = (\frac{x}{y+1}, \sin y, \cos y), \quad g(r,s,t) = r^2 + s^2 + t^2;$

- (c) $h(x,y) = (xy, y\cos x, x\log y, y), \quad g(r, s, t, u) = \log sr + \cos tu + s + t;$
- 5. Si derminino tutti i punti di \mathbb{R}^2 per cui almeno una delle derivate direzionali della seguente funzione è non zero:

$$f(x,y) = \begin{cases} 0 & \text{se } x \neq y \\ x & x = y \end{cases}$$

Dimostrare che in (0,0), f è continua, ha tutte le derivate direzionali ma non è differenziabile.

- 6. Si determini il luogo dei punti di ${f R}^2$ per cui l'angolo tra il vettore (3,-1) e il gradiente della funzione $f(x,y)=x^6y+3$ è pari a $\pi/6$ radianti.
- 7. Si determinino i punti stazionari delle seguenti funzioni:
 - (a) $f(x,y) = x^2 + (y-1)^3$;
 - (b) $f(x,y) = xy^3 + y$;
 - (c) $f(x,y,z) = (x-1)^3 + (y-2)^2 + \cos z$.
- 8. Si risolvano le seguenti equazioni differenziali usando il metodo (se possibile) dei differenziali esatti

(a)
$$\left(3x^2e^{x^3+y^2}+y^2\right)dx+\left(2ye^{x^3+y^2}+2xy\right)dy=0;$$

(b)
$$\left(1 + 2xe^{x^2+y}\right) dx + \left(e^{x^2+y} - \sin y\right) dy = 0$$

(c)
$$\left(y + \frac{3x^2}{2\sqrt{x^3 + y^3 + 1}}\right) dx + \left(x + \frac{3y^2}{2\sqrt{x^3 + y^3 + 1}}\right) dy = 0$$

(d)
$$\left(3x^2 + \frac{2x}{x^2+y^2}\right) dx + \left(\frac{2y}{x^2+y^2} + \frac{1}{1+y^2}\right) dy = 0$$

- 9. Si calcoli la matrice Hessiana in un generico punto delle seguenti funzioni:
 - (a) $f(x,y) = x^3y + \cos(y^2 + x)$;
 - (b) $f(x,y,z) = ||(x,y,z)|| = \sqrt{x^2 + y^2 + z^2};$
 - (c) $f(x,y,z) = \log(x^2 + y^2 + 1);$
 - (d) $f(x,y) = \arctan(x^2 + 2y + 1);$
 - (e) $f(x,y) = e^{\frac{x+y}{x-y}}$.