General Points

- Use the course material located at:
 - Python Data Science Handbook
- Assignment 10 can be completed using previously covered material and content from the following chapters:
 - 00.00-Preface through 02.09-Structured Data NumPy
- After completing requirements, test to ensure all cells run correctly in the .ipynb file.
- Include appropriate markdown cells to identify the requirements below by number. See this example.
- Produce an .html file that shows the .ipynb after a successful test run.
 - o by File | Download as | HTML (.html).
- Test the .html file by opening it in a browser and ensure the content is produced correctly from the run in Jupyter Notebook.
- Submit BOTH the .ipynb and .html files to the appropriate link in Blackboard | Assignments. Submit the .html file as a .zip file to pass security settings. Submit other files individually.
- Submit any additional files required to complete the assignment.

Requirements

(Ensure that all Requirements are complete)

- 1. Using Jupyter Notebook (or similar tool), create a file named:
 - assignment-10.ipynb
- 2. Add an H1 markdown: "This is Assignment 10 <yournamehere>"
- 3. Create a one-dimensional NumPy array named one_d_array of 20 random numbers with values between 1 10. Demonstrate the following comparison operators as universal functions:
 - <, >, <=, >=, !=, and ==

- 4. Create a two-dimensional NumPy array named two_d_array size = (4,5) with values between 11 34. Demonstrate the following comparison operators as universal functions:
 - <, >, <=, >=, !=, and ==
 - count the values < 15
 - sum the values > 20
 - count the values >= 9 in each row
 - determine if *any* values < 12
 - determine if all values > 12
 - determine if all values in each column > 14
- 5. Using the *inches* array from Chapter 02.06, determine the number of values where:
 - 0.15 <= value <= 1.15
 - Use ~ and | to return the same number as & above
- 6. Using the *inches* array from Chapter 02.06, show the following:
 - Number of days without rain
 - Number of days with rain
 - Days with >= 1 inch of rain
- 7. Use Boolean masking on two_d_array to:
 - return a Boolean array where < 15
 - return an array of values < 15
- 8. Using the *inches* rain data and the following definition (pouring = (inches > 0.5)), output the following data:
 - Median precip on pouring days in 2014 (inches):
 - Median precip on summer days in 2014 (inches):
 - Maximum precip on summer days in 2014 (inches):
 - Median precip on non-summer pouring days in 2014 (inches):
- 9. In your own words, explain the difference between the keywords *and* and *or* and the operators & and |. When are the keywords used and when are the operators used?
- 10. Demonstrate fancy indexing with:

- one_d_array
- two d array
- 11. Demonstrate combined indexing with:
 - two_d_array and slicing
 - two_d_array and masking
- 12. Demonstrate the following using two_d_array:
 - sort each row
 - sort each column
 - partition the array such that the first three values in each column are the lowest values in that column
- 13. Produce a k-nearest neighbor plot using:
 - a 25 X 2 array
 - K = 3
- 14. Create a structured array named super_heroes using:
 - the dictionary method
 - NumPy data types for the element names
 - with the following element names:
 - i. name
 - ii. age
 - iii. birthplace
 - iv. super power
- 15. Use markdown to include a statement at the end of assignment-10.ipynb explaining your experiences with Assignment 10. Make this authentic (minimum of 2-3 sentences).

TEST – TEST your .ipynb file to ensure all requirements are met.

Produce an .html file from a *successful test run* of the .ipynb file. Ensure that the .html is produced correctly by opening it in a browser.

- Use the list above as a confirmation checklist.
- Not meeting all requirements = 0 points for the assignment.