Sources of GeV Photons and the Fermi Results

Chuck Dermer (NRL)

- 1. GeV instrumentation and the GeV sky with the Fermi Gammaray Space Telescope
- 2. First Fermi Catalog of Gamma Ray Sources and the Fermi Pulsar Catalog
- 3. First Fermi AGN Catalog
- 4. Relativistic jet physics and blazars
- 5. γ rays from cosmic rays in the Galaxy
- 6 γ rays from star-forming galaxies and clusters of galaxies, and the diffuse extragalactic γ -ray background
- 7. Microquasars, radio galaxies, and the extragalactic background light
- 8. Fermi Observations of Gamma Ray Bursts
- 9. Fermi acceleration ավերա-իլցի գրբացչ cosmig բաջոթան Fermi

15-20

First Fermi AGN Catalog

EGRET Legacy

66 hi-confidence ($>5\sigma$) sources associated with AGNs (Hartman et al. 1999)

[31 > 10σ sources (total) (10 at |b|> 10°)]

All 66 associated with radio-loud AGNs—blazars + 1 radio galaxy

23% with BL Lac objects

77% with flat spectrum radio quasars

 $z_{max} = 2.286$

Blazars:

optically violently variable (OVV; 50% in a dark flat radio spectrum (α_r >-0.5 at GHz frequence high optical polarization (> few %) superluminal motion

Dermer

Saas-Fee Lecture 3

15-20

BL Lac and FSRQ: (our)

- classify an **Getal and B**L Lac if the equivalent width (EW) of the strongest optical emission line is < 5 Å, e.g., [O II] $\lambda 3727$ and [O III] $\lambda 5007$ classification of higher-redshift sources will preferentially use lines at shorter wavelengths (e.g., Ly α $\lambda 1216$ and C IV $\lambda 1549$) than for low-redshift sources (e.g., Mg II $\lambda 2798$ and H α $\lambda 6563$).
- □ a Ca II H/K break ratio C < 0.4,
- □ Wavelength coverage satisfies $(\lambda_{max} \lambda_{min})/\lambda_{max} > 1.7$ so that at least one strong emission line would have been detected if it were present.
- Sources for which no optical spectrum or of insufficient quality to determine the optical classification are listed as "unknown type"

Saas-Fee Lecture 3

15-20

Radio Galaxies and Blazars

AGN Unification Paradigm

(Urry and Padovani 1995)

γ-Ray Blazars and Radio Galaxies

□ LAT Bright AGN Sample (LBAS); First year LAT AGN Catalog (1LAC)

30

LBAS: subset of 0FGL w/ 205 sources

TS >100 (>10 σ)

106 |b|>10° sources

assc. w/ AGNs

1FGL TS > 25

1451 sources

1043 |b|>10° sources

1LAC

TS >25 (> 4.1σ)

671 assc. w/ 709 AGN

(663 hi-conf. associations)

(300 BL Lacs, 296 FSRQ, 4 AGN, 72 unknown)

3EG (EGRET):

 $10 > 10\sigma$ |b|> 10° sources

66 > 5 σ blazars

LBAS: 3 month source list: 2008 Aug 4 - Oct

11 AC: 1 year catalon: 2008 Aug A = 2000

1 year Fermi GeV sky

Dermer

Saas-Fee Lecture 3

15-20

Associations (not Identifications)

- Depends primarily on spatial coincidence
- Catalogs used:
 - CRATES: Combined Radio all-Sky Targeted Eight GHz Survey
 - 11,000 |b|>10° flat-spectrum with positions, 8.4 GHz flux densities, α_r
 - CGRaBS: Gandidate Gamma-Ray Blazar Survey
 - 1625 CRATES sources with similar radio and X-ray properties as EGRET blazars
 - BZCAT

Associating AGNs in the 1LAC

- □ TS map using point fit
- Elliptical fits to the 95% confidence contou
 - 18 month EGRET sky surey: 0.62°
 - High-latitude 1FGL sources: 0.15°
 - LBAS source: 0.09°

- Not complete Not flux-limited
- **Not uniform**
- □ 671 assc. w/ 709 AGN
- Clean sample of 599 AGN (expect ~11 false positives)
- □ 51 low-latitude
- □ 109 AGN "affiliations" for 104 high-latitude souces

Compare 5σ two-week limit for

EGRET $\simeq 150 \times 10^{-9} - 250 \times 10^{-9}$

 5σ Flux limit as a function of sky location,

Saas-Fee Lecture 3 Γ

Major Types of Fermi AGN

Abdo et al. 2010, Apj, 710, 1271

- □ FSRQs vs. BL Lacs
- Unknown
- □ NLSy1 RG
- Non-blazar AGN

Dermer

Saas-Fee Lecture 3

15-20

Properties of 1LAC

- □ Small number of non-blazar sources
 - 6 RG, 3 starburst (incl. NGC 4945), 2 SSRQs, 5 NLRGs, 10 "RQ", other "oddballs" Redshift distributions peaking at z \approx 1 FSRQs, at low redshift for BL Lacs

- A high HSP/LSP ratio among BL Lacs
- Little evidence for differe ាំ variability properties for ខ្ទុំ ² FSRQs and BL Lacs
- Strong correlation between₆
 photon spectral index and_{1.4}
 blazar class

Photon Index vs. Flux

Redshift Distribution

- □ LBAS Redshifts Similar to EGRET distributions
- Compare with distribution of WMAP blazars (1 Jy at 41 GHz)

Redshift Distribution

- □ Red: FSRQ; cyan: LSP BL Lac; gray: ISP BL Lac; blue: LSP BL Lac; magenta: radio
 - galaxies

- Strong selection biases to detect soft spectrum sources at given flux level
- Heavily biased against steep spectrum faint sources; therefore flat spectrum faint sources over-represented

Dermer

Saas-Fee Lecture 3

15-20

Spectral Index Distribution

□ Sampling separate FSRQ and BL Lac populations

Luminosity vs. Redshift

Saas-Fee Lecture 3

Dermer

15-20 15

Blazar Sequence

- Searching for the Hertzsprung-Russell Diagram in blazar studies
- □ Inverse correlation between E_{peak} and luminosity
- □ Cooling model with external radiation for FSRQs (Ghisellini et al. 1998)
- □ Selection biases from 2 Jy FSRQs (Wall & Peacock catalog), 1 Jy BL Lac (radio selected), and Einstein Slew Survey (X-ray selected) (Giommi et al. 1999; Padovani et al. 2003, Padovani 2007)

Dermer

Saas-Fee Lecture 3

15-20

Selection Biases to the Blazar Sequence

- □ Increased sensitivity of Fermi to high-peaked low-luminosity BL Lacs (Giommi, private comm.)
- Large number
 of BL Lacs
 without redshift:
 are these high
 luminosity?
- Outliers

Dermer

Saas-Fee Lecture 3

15-20

Understanding the Blazar Sequence

- Origin of the sequence
 - Galaxy evolution
 - Elliptical hosts of blazars
 - BZ effect
- Evolutionary behavior of FSRQs and BL Lacs
 - reduction of fuel from surrounding gas and dust

(Cavaliere and d'Elia 2002; Böttcher and Dermer 2002)

- In accord with unification of radio galaxies and blazars
- □ Where do NLRLSy1s fit?

See Abdo et al. 2009, ApJ, 699, 976

15-20

Cooling Model for the Blazar Sequence Preliminary: not for distribution

PKS 1510-089 z = 0.361

Difficulties of cooling model; e.g., Begelman, Fabian, & Rees (2008)

Preliminary: not for distribution

Mrk 421 z = 0.031

Radio/γ ray Correlations

Radio/γ-ray correlation important in population studies

γ-ray Population Studies

Stecker and Salamon (1996) assuming radio-y correlation

Chiang and Mukherjee (1997) Narumoto and Totani (2005)

RLF $\rho_r(P_r, z) = 10^{-8.15} \left\{ \left[\frac{P_r}{P_c(z)} \right]^{0.83} + \left[\frac{P_r}{P_c(z)} \right]^{1.96} \right\}^{-1}$

$$\gamma \mathbf{LF} \\ \rho_{\gamma}(P_{\gamma f}, z) = (1 - \zeta) \eta \rho_{r} \left(\frac{P_{\gamma f}}{\kappa}, z \right) + \zeta \eta \rho_{r} \left(\frac{P_{\gamma f}}{A \kappa}, z \right)$$

y-ray Population Studies with Luminosity Function

Physical Model of Blazars for Population

Redshift and Flux Distribution of EGRET blazars, separated into 46 FSRQs and 14 BL Lac Objects (BLs).

Uniform exposure: EGRET all-sky survey: Fichtel et al. (1994): 1EG

Fit required positive evolution of FSRQs, negative evolution of BL Lacs consistent with blazar sequence (Dermer 2007)

Dermer

Saas-Fee Lecture 3

15-20

Comparison of Predictions for GLAST/Fermi

15-20 25

1LAC Highlights

The First Catalog of Active Galactic Nuclei Detected by the *Fermi* Large Area Telescope

- □ ~90% success rate in correlating high-latitude bright Fermi sources with AGNs
- Bright extragalactic γ-ray sky dominated by radio-loud AGNs/blazars
- □ Larger fraction of BL Lacs to total than found with EGRET
- $\ ^\square$ Much harder GeV spectra with BL Lacs ($\Gamma \cong 2.0$) than FSRQs ($\Gamma \cong 2.40$)
- \square Mean redshifts of BL Lacs ($z \simeq 0.1$) vs. FSRQs ($z \simeq 1$)
- □ Only ~30% of LBAS detected with EGRET
- Only weak correlation between peak γ-ray flux and radio flux density
- \Box V/V_{max} test reveals strong positive evolution for FSRQs
- □ Combined emission between (7 10) × 10-8 ph cm-2 s-1 make up ~7% of EGRET extragalactic unresolved background

Backup Slides

Log N – Log S and Extragalactic γ -Ray Intensity

SAMPLE	# Objects	α	Aa	EDB fraction ^b
$\mathrm{All^c}$	121	2.59 ± 0.12	$2.62{\pm}0.24$	7.2%
Blazars	106	$2.50{\pm}0.12$	$2.24\pm0.22(\pm0.24)$	6.1%
FSRQs	57	$2.60{\pm}0.14$	$2.15\pm0.28(\pm0.32)$	3.1% d
BL Lacs	42	$2.34{\pm}0.15$	$0.41{\pm}0.06(\pm0.06)$	1.0%

 $^{\rm a}$ In units of $10^4\,{\rm cm}^2~{\rm s~deg}^{-2}$.

^bFraction of the EGRET diffuse extragalactic background (Sreekumar et al. 1998) resolved into sources by LAT for $4 \times 10^{-8} < F_{100} < 10^{-7} \, \mathrm{ph \ cm^{-2} \ s^{-1}}$.

^cIncludes all sources except 7 pulsars and 4 anti-associated objects.

 $^{\rm d} \rm The$ lower limit of integration in Eq. 7 has been set to $6\times 10^{-8}\,\rm ph~cm^{-2}~s^{-1}.$

Dermer

Saas-Fee Lecture 3

15-20

Luminosity Function

□ Redshift-dependent luminosity function

Dermer

Saas-Fee Lecture 3