# The multivariate normal (MVN) distribution

This is the most important continuous joint distribution, and is often a natural choice for modelling multivariate data.

For each of these individually, we would probably choose a (univariate) normal distribution as our model, and the multivariate normal distribution provides a way of modelling the way that they vary together where each of the marginal distributions is univariate normal.

### The independent bivariate case

Consider two independent random variables U and V each following respectively (univariate) normal distributions.

Say  $U \sim \mathit{N}(\mu_1, \sigma_1^2)$  and  $V \sim \mathit{N}(\mu_2, \sigma_2^2)$  with p.d.f.'s

$$f_U(u) = \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{(u-\mu_1)^2}{2\sigma_1^2}\right\}$$

and

$$f_V(v) = \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left\{-\frac{(v-\mu_2)^2}{2\sigma_2^2}\right\}$$

# Joint p.d.f.

By independence, the joint p.d.f. of U and V is given by the product of the individual p.d.f.s,  $f_{U,V}(u,v) = f_U(u)f_V(v)$ , so  $f_{U,V}(u,v)$  is

$$\frac{1}{2\pi\sigma_1\sigma_2} \exp\left\{-\frac{1}{2} \left[ \frac{(u-\mu_1)^2}{\sigma_1^2} + \frac{(v-\mu_2)^2}{\sigma_2^2} \right] \right\}$$

for  $(u, v)^T \in \mathbb{R}^2$ .

This is a first example of a multivariate normal.

# Contour plot



### The general bivariate case

Let the random vector  $(U, V)^T$  be defined as in the previous section, with both means zero and both variances 1, so that

$$f_{U,V}(u,v) = rac{1}{2\pi} \exp\left\{-rac{1}{2}\left[u^2+v^2
ight]
ight\}.$$

Let

$$S = \begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix}$$

be a non-singular  $2 \times 2$  matrix.

Let  $\boldsymbol{\mu} = (\mu_1, \mu_2)^T$  be a 2-vector.

#### **Transformation**

We now consider the random vector

$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = S \begin{pmatrix} U \\ V \end{pmatrix} + \boldsymbol{\mu}.$$

We can consider this as a transformation of the random vector  $\begin{pmatrix} U \\ V \end{pmatrix}$ , and so we can use the theory given in section 2.4.

#### Forward and inverse transformations

The forward transformation is given by

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = S \begin{pmatrix} u \\ v \end{pmatrix} + \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}.$$

The inverse transformation is given by

$$\begin{pmatrix} u \\ v \end{pmatrix} = S^{-1} \begin{pmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{pmatrix}.$$

### Jacobian

Using the form of the inverse matrix, we can re-write the inverse transformation as

$$u = rac{1}{\det S} \Big( s_{22} (x_1 - \mu_1) - s_{12} (x_2 - \mu_2) \Big) \ v = rac{1}{\det S} \Big( - s_{21} (x_1 - \mu_1) + s_{11} (x_2 - \mu_2) \Big).$$

The Jacobian of the inverse transformation is  $|1/\det S|$ .

# Transformed p.d.f.

Hence the joint p.d.f. of  $X_1$  and  $X_2$ ,  $f_{X_1,X_2}(x_1,x_2)$ , is

$$\frac{1}{2\pi |\det S|} \exp \left\{ -\left( \left[ s_{22}(x_1 - \mu_1) - s_{12}(x_2 - \mu_2) \right]^2 + \left[ -s_{21}(x_1 - \mu_1) + s_{11}(x_2 - \mu_2) \right]^2 \right) / 2(\det S)^2 \right\},\,$$

which can be rearranged as

$$\frac{1}{2\pi |\det S|} \exp \left\{ \left( \sigma_2^2 (x_1 - \mu_1)^2 + \sigma_1^2 (x_2 - \mu_2)^2 - 2\sigma_{12} (x_1 - \mu_1) (x_2 - \mu_2) \right) / 2(\det S)^2 \right\},$$

where  $\sigma_1^2 = s_{11}^2 + s_{12}^2$ ,  $\sigma_2^2 = s_{21}^2 + s_{22}^2$  and  $\sigma_{12} = s_{22}s_{12} + s_{21}s_{11}$ .

#### Mean vector

The transformation we have used is linear, so we can also use the theory of section 2.5 to work out the mean vector and covariance matrix of  $(X_1, X_2)^T$ .

They are

$$E\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = S\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$

and ...

#### Covariance matrix

$$\Sigma = \operatorname{Cov} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = S \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} S^T = SS^T$$

$$= \begin{pmatrix} s_{11}^2 + s_{12}^2 & s_{22}s_{12} + s_{21}s_{11} \\ s_{22}s_{12} + s_{11}s_{21} & s_{21}^2 + s_{22}^2 \end{pmatrix}$$

$$= \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix},$$

where  $\sigma_1^2, \sigma_2^2, \sigma_{12}$  are defined as above.

(So  $\sigma_1^2$  and  $\sigma_2^2$  really are the variances of  $X_1$  and  $X_2$ , and  $\sigma_{12}$  really is their covariance, as suggested by the choice of notation.)

#### General form

Note that  $\det \Sigma = \det(SS^T) = (\det S)^2$ , so we can replace  $|\det S|$  by  $\sqrt{\det \Sigma}$  in the above.

As det  $\Sigma = \sigma_1^2 \sigma_2^2 - \sigma_{12}^2$ , we can re-write the joint p.d.f.  $f_{X_1,X_2}$  as

$$\frac{1}{2\pi\sqrt{\sigma_1^2\sigma_2^2 - \sigma_{12}^2}} \exp\left\{ \left( \sigma_2^2(x_1 - \mu_1)^2 - 2\sigma_{12}(x_1 - \mu_1)(x_2 - \mu_2) + \sigma_1^2(x_2 - \mu_2)^2 \right) / 2(\sigma_1^2\sigma_2^2 - \sigma_{12}^2) \right\},$$

for all  $\mathbf{x} = (x_1, x_2)^T \in \mathbb{R}^2$ .

#### **Notation**

By analogy with the univariate case we write  $\mathbf{X} \sim N_2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ , where  $\boldsymbol{\mu} = (\mu_1, \mu_2)^T$  and

$$\Sigma = \left(\begin{array}{cc} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{array}\right),\,$$

the covariance matrix.

We say that the random vector  $\mathbf{X}$  follows the bivariate normal distribution with mean vector  $\boldsymbol{\mu}$  and covariance matrix  $\boldsymbol{\Sigma}$ .

#### Matrix form

Note that the joint p.d.f. can also be written in terms of the matrix  $\boldsymbol{\Sigma}$  as

$$f(\mathbf{x}_1, \mathbf{x}_2) = \frac{1}{2\pi (\det(\mathbf{\Sigma}))^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}.$$

# Family of bivariate normals

This p.d.f. can be defined for any symmetric positive definite  $2\times 2$  matrix  $\Sigma$ . (See notes for explanation.)

For a  $2\times 2$  symmetric matrix, being positive definite is equivalent to  $\sigma_1^2,\sigma_2^2>0$  and  $\sigma_{12}^2<\sigma_1^2\sigma_2^2$ .

If  $\Sigma$  is a diagonal matrix, so  $\sigma_{12}=0$ , then we recover the independent case.

#### Contours

The contours of f are concentric ellipses centred on  $\mu$ .



$$\mu_1 = -1, \mu_2 = 3, \sigma_1 = 2, \sigma_2 = 4, \sigma_{12} = -3$$

### Marginal distributions are normal

Taking marginal distributions preserves normality.

To see this, using the derivation of the bivariate normal we can write the components of a bivariate normal random vector  $\mathbf{X}$  as  $X_1 = s_{11}U + s_{12}V + \mu_1$  and  $X_2 = s_{21}U + s_{22}V + \mu_2$  where U and V are independent standard normal random variables.

The theory of the univariate normal distribution now tells us that the marginal distributions of the components are univariate normals:  $X_1 \sim N(\mu_1, \sigma_1^2)$  and  $X_2 \sim N(\mu_2, \sigma_2^2)$ .

It is also possible to use the method of section 2.2.2 directly, see exercise 33(a).

### Correlation, covariance, and independence

If the components of a bivariate normal have covariance (and thus correlation) zero, then they are independent.

This can be seen by letting  $\sigma_{12}=0$  in the form for the p.d.f. of a multivariate normal; the joint p.d.f. then factorises into two univariate normal p.d.f.s.

(It is important to remember that this result does **not** hold for random variables in general. It is possible to find pairs of random variables which are not independent but have correlation zero; see for example Exercise 24.)

### Linear transformations of the bivariate normal

Suppose  $\mathbf{X} \sim N_2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ , for some known mean vector  $\boldsymbol{\mu}$  and covariance matrix  $\boldsymbol{\Sigma}$ .

For any non-singular  $2 \times 2$  matrix A and for any  $2 \times 1$  vector  $\mathbf{b}$  define the linear transformation  $\mathbf{Y} = A\mathbf{X} + \mathbf{b}$ .

### Normality preserved

We know that  $\mathbf{X} = S\mathbf{U} + \boldsymbol{\mu}$  for some matrix S and vector  $\boldsymbol{\mu}$ , where  $\mathbf{U} \sim N_2(\mathbf{0}, I)$ .

So we can write

$$\mathbf{Y} = AS\mathbf{U} + A\boldsymbol{\mu} + \mathbf{b}.$$

Hence  $\mathbf{Y}$  itself has a bivariate normal distribution with mean vector

$$\mu_Y = E(\mathbf{Y}) = A\mu + \mathbf{b} = AE(\mathbf{X}) + \mathbf{b}$$

and covariance matrix

$$AS(AS)^T = ASS^TA^T = A\operatorname{Cov}(\mathbf{X})A^T.$$

#### 2D to 1D

We can replace A here by a row vector,  $\mathbf{b} = b$  by a scalar, so giving  $Y = A\mathbf{X} + b$  as a scalar.

Normality is again preserved, and the mean and the variance of Y are

$$\mu_Y = E(Y) = AE(\mathbf{X}) + b,$$
  
 $\sigma_Y^2 = \text{Var}(Y) = A \text{Cov}(\mathbf{X})A^T$ 

giving a univariate normal distribution

$$\mathbf{Y} \sim N(\mu_Y, \sigma_Y^2).$$

### Example

**Example 23**: Transformations of the bivariate normal

#### Conditional distributions are normal

Taking conditional distributions preserves normality, so that if  $\mathbf{X} \sim N_2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$  then the conditional distribution of  $X_2$  given  $X_1 = x_1$  is a univariate normal distribution.

In fact, conditional on  $X_1 = x_1$ ,  $X_2$  is normally distributed with mean

$$\mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x_1 - \mu_1)$$

and variance  $(1 - \rho^2)\sigma_2^2$ .

(Full derivation in notes)

### Conditional expectation and variance

A particular consequence of the above result is that

$$E(X_2|X_1) = \mu_2 + \rho \frac{\sigma_2}{\sigma_1}(X_1 - \mu_1)$$

and

$$Var(X_2|X_1) = (1 - \rho^2)\sigma_2^2.$$

The conditional expectation depends linearly on  $X_1$  and the conditional variance does not depend upon  $X_1$ .

# Example

Example 24: Conditional distributions for bivariate normal

### Higher dimensions

We now generalise to higher dimensions.

Given a vector,  $\mu$ , of length k and a  $k \times k$  positive definite symmetric matrix  $\Sigma$  we can define the function

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{k/2} (\det(\Sigma))^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}.$$

It can be shown that this does indeed define a joint p.d.f. for any choice of  $\mu$  and  $\Sigma$ ; this can be derived from the independent case by using a suitable transformation much as for the bivariate case.

# **Terminology**

The joint distribution so specified is called the **multivariate** normal distribution  $N(\mu, \Sigma)$  or  $N_k(\mu, \Sigma)$ .

It may be shown that it does indeed have mean vector  $\mu$  and covariance matrix  $\Sigma$ .

### Transformations of the multivariate normal

Let  $\mathbf{X} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma})$  and consider a transformation of the form

$$\mathbf{Y} = A\mathbf{X} + \mathbf{b}$$

where A is a  $m \times k$  matrix with  $m \le k$  and A is of full rank m so that  $\mathbf{Y}$  has non-singular covariance matrix.

If m=k, so that A is a square matrix, then essentially the same argument as in section 2.6.5 for the bivariate case shows that

$$\mathbf{Y} \sim N_k(A\boldsymbol{\mu} + \mathbf{b}, A\Sigma A^T).$$

Preservation of normality extends to the case where m < k, where

$$\mathbf{Y} \sim N_m(A\boldsymbol{\mu} + \mathbf{b}, A\Sigma A^T).$$

### Marginal distributions

In particular this property implies that all **marginal** distributions are (multivariate) normal.

For example if k = 5 and we take m = 2,  $\mathbf{b} = 0$  and

$$A = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}\right)$$

then we see that the marginal joint distribution of  $X_1$  and  $X_2$  is multivariate normal.

As in the bivariate case, it is also possible to show this by integrating out variables.

### Further properties of the multivariate normal

Conditional distributions preserve multivariate normality:

The conditional distribution of a set of the components, given values for the remaining components, will have a multivariate normal distribution.

Components are independent if and only if their covariance is zero; again note that this is a special property of the multivariate normal.

#### Hard to calculate

Recall that the (univariate) normal p.d.f. cannot be integrated explicitly and that normal probabilities have to be approximated numerically and tabulated or evaluated using a computer package.

Multivariate normal probabilities are even more difficult to evaluate unless the region of interest takes a special shape.

### Example

**Example 25**: Transforming a multivariate normal