Paralelni računarski sistemi

SIMD

SIMD

- * Vektorska izračunavanja mogu biti obavljena i pomoću SIMD računara:
 - SIMD računari koriste prostorni paralelizam kod obavljanja vektorskih instrukcija
 - postoji više identičnih procesnih elemenata (PE) koji jednovremeno izvršavaju istu instrukciju nad različitim elementima nekog polja.
- * SIMD računar je sinhrono polje PE-ova čijim radom upravlja upravljačka jedinica (CU control unit)
 - u jednom trenutku svi PE-ovi obavljaju jednu instrukciju nad različitim skupom ulaznih podataka
 - ➤ SIMD računarom se postiže paralelizam u obradi podataka, a ne u izvršenju instrukcija
 - ➤ SIMD se specijalno projektuju za obavljenje vektorskih izračunavanja mašine specijalne namene koje se dodaju host računaru kao akceleratori za vektorska izračunavanja

SIMD

- * Javljaju se u dve osnovne arhitekturne konfiguracije:
 - 1. Procesorska polja koriste RAM memorije
 - 2. Asocijativni procesori koriste sadržajno adresibilne (asocijativne) memorije.

Procesorska polja

* Dve varijante:

- sa distribuiranom memorijom
- sa zajedničkom (deljivom) memorijom

Procesorska polja sa distribuiranom memorijom

Procesorska polja sa distribuiranom memorijom

* n=2^m sinhronih PE-ova čijim radom upravlja CU

- PE je aritmetičko-logička jedinica sa pridruženim radnim registrima i lokalnom memorijom za smeštanje distribuiranih podataka
- memorija CU služi za pamćenje programa i skalarnih podataka
 - > sistemski i korisnički programi se izvršavaju pod kontrolom CU
 - > korisnički programi se pune u CU iz hosta
 - > CU dekodira instrukcije i odredjuje gde se izvršavaju:
 - skalarne instrukcije i instrukcije upravljačkog tipa izvršavaju se u CU
 - vektorske instrukcije se distribuiraju svim PE-ovima preko upravljačke magistrale
 - vektorski operandi se distribuiraju u lokalne memorije PE-ova preko magistrale za podatke

Procesorska polja sa distribuiranom memorijom

- Za upravljanje statusom PE koristi se maskiranje (pasiva/aktivan)
- Razmena podataka izmedju PE-ova ostvaruje se preko sprežne mreže
 - > radom sprežne mreže upravlja CU preko instrukcija za rutiranje
- * Procesorsko polje je spregnuto sa host računarom preko CU.
 - Host upravlja radom celog sistema
 - F-ja hosta:
 - ➤ U/I aktivnosti
 - ➤ kompajlirannje programa
 - ➤ loadovanje programa u CU
 - > upravljanje resursima

Procesorska polja sa deljivom memorijom

Procesorska polja sa deljivom memorijom

- * Postoji n=2^m PE-ova i *p* memorijskih modula (obično su *n* i *p* uzajamno prosti)
- * Lokalne memorije su zamenjene paralelnim memorijskim modulima kojima mogu pristupati svi PE-ovi preko sprežne mreže
 - f-ja sprežne mreže je ostvarivanje veze izmedju PE i memorijskog modula za što veći broj parova procesormemorija bez konflikata.

Procesorska polja

- * Većina procesorskih polja je sa distribuiranom memorijom
 - ILLIAC IV 64 PE
 - MasPar MP-1 od 1024 do 16384 PE-ova (32 PE na čipu)
 - Connection Machine CM-2 64K 1-bitnih PE-ova (16 PE na čipu)
 - DAP610 4K PE (64 PE na čipu)
 - BSP 16 PE i 17 memorijskih modula (deljiva memorija)

Izgled PE sa distribuiranom memorijom

- * R_{1i}, R_{2i}, R_{3i} radni registri
- * A_i adresni registar
- * I_i indeksni registar
 - (za adresiranje lokalne memorije zajedno sa A_i)
- * T_i registar za komunikaciju spregnut sa drugim T registrima preko sprežne mreže
- * S_i statusni registar (0 Pe pasivan/ 1 PE aktivan)
- * ADR_i m-bitna adresa PE-a

Maskiranje PE

- * Svaka maska deli skup PE-ova na
 - podskup aktivnih
 - podskup pasivnih
- * Nekim načinima maskiranja moguće je maskirati proizvoljne podskupove PE.
 - Direktno maskiranje (ILLIAC IV)
 - > omogućava maskiranje proizvoljnog podskupa
 - sadržaj registra maske odredjuje kompilator nakon prevodjenja svake instrukcije
 - > CU emituje sadržaj vektora maske zajedno sa svakom instrukcijom

Maskiranje PE

* maskiranje pomoću adrese PE

- n=2^m PE, m-bitna maska
- svaka pozicija u maski može imati vrednost 0,1,X
- aktivni su oni PE čija se adresa poklapa sa maskom
- PRIMER: n=8 PE, maska 1X0

 → 110 i 100, aktivni
- nije moguće maskirati proizvoljni podskup PE

* Maskiranje podacima – dinamičko maskiranje

- maske predstavljaju implicitni rezultat naredbe uslovnog grananja u zavisnosti od podatka koji je lokalni za PE
- Kada se naredba uslovnog grananja emituje od strane CU, svaki PE je obavlja nad različitim podacima, pa rezultat može biti različit u svakom PE.
 - > maske se dobijaju naredbom WHERE oblika
 - where (uslov) do niz_nar_A elsewhere niz_naredbi_B
 - > svaki PE postavlja svoj interni flag na 0 ili 1
 - emituje se niz_naredbi_A
 - komplementira se flag
 - emituje se niz_naredbi_B
- * maskiranje po podacima se može koristiti u kombinaciji sa drugim načinima maskiranja

Primer

* Naći sve parcijalne sume S(k) prvih k komponenti vektora $V=[V_i]_{n \times 1}$, za svako k=0,1,...,n-1.

$$S(k) = \sum_{i=0}^{k} V_i, \quad k = 0,1,...,n-1$$

- * Izračunavanje je moguće obaviti u \log_2 n koraka ako postoji n PE-ova
 - Jedan korak podrazumeva razmenu podataka i izračunavanje (sabiranje)

Primer – nast.

- * n=8, naći S(0),...., S(7)
- * Inicijalno u lok. memoriji svakog PE se nalazi po jedan element vektora
 - 1. Korak: $PE_i \rightarrow PE_{i+1}$, za i=0,1,...,6 (PE7 maskiran) $W_i := V_i + V_{i+1}$ (PE0 maskiran)
 - 2. Korak: $PE_i \rightarrow PE_{i+2}$ za i=0, 1,...,5 (PE6, PE7 maskirani) $W_i := W_i + W_{i-2}$ za i=2,...,7 (PE0, PE1 maskirani)
 - 3. Korak: $PE_i \rightarrow PE_{i+4}$, za i=0,1,2,3 (PE4 PE7 maskirani) Vi W_i := $W_i + W_{i-4}$ za i=4,...,7 (PE0- PE3 maskirani)

SIMD

Sprežne mreže

Sprežne mreže

- * Služe za povezivanje
 - PE i PE
 - PE i memorijskih modula
- * Statičke SM veze izmednju PE su fiksne i ne mogu se menjati u toku izvršenja programa
- * Dinamičke SM veze izmedju PE-ova nisu striktno dodeljene, već se mogu menjati u toku rada postavljenjem aktivnih mrežnih komponenti (komutacioni elementi)
 - jednostepene
 - višestepene

Parametri SM

- * Dijametar SM maksimalno minimalno rastojanje izmedju dva čvora u mreži
- * proširljivost dali se čvorovi mogu dodavati?
- * Redundantnost koloko puteva postoji izmedju svakog para čvorova
- * rutiranje koliko je komplikovano
- * propusnost koliko podataka u jedinici vremena
- * latentnost koliko je vremena potrebno da se podatak prenese od čvora do čvora

Statičke SM

- * Jednodimenzionalne (linearne)
- * dvodimenzionalne
- * trodimenzionalne

Statičke SM

- * Linearne
 - dijametar n-1
- * Ring
 - dijametar n/2
- * Zvezda (star)
 - dijametar 2
- * Rešetka (mesh)
 - dijametar $O(\sqrt{n})$
- * Stablo
 - dijametar 2log*n*
- * potpuno povezana
 - dijametar 1
- * Hiperkub
 - dijametar log*n*

Statičke mreže

Linearno polje (1D polje)

Br. čvorova = N

Dijametar = N-1

Rutiranje - samorutirajuće

U procesu komunikacije svaki čvor zna kome da pošalje primljenu poruku

čvor i poredi svoj ID sa odredišnim ID

if dest.ID >, pošalji → if dest ID <, pošalji ←

Statičke mreže

Ring

dobija se povezivanjem krajnjih čvorova u 1D polju

Br čvorova = N, dijametar = n/2

Statičke mreže

Mesh - rešetka (2D polja)

Br.čvorova
$$N = m \times n$$

Rutiranje

Izvor poredi prvo broj vrste svog i odredišnog čvora

```
if Dest vrsta <, pošalji ↑ if Dest vrsta >, pošalji ↓
```

Zatim poredi redne brojeve kolona

```
if Dest kol >, pošalji >
if Dest kol <, pošalji <
```

Hiperkub

- * broj čvorova stepen 2
- * Adrese čvorova 0, 1, ..., 2^k-1
- * Čvor *i* povezan direktno sa *k* čvorova čije se adrese razlikuju samo na jednoj bitskoj poziciji.

4D Hypercube or Binary 4-Cube

Rutiranje u hiperkubu

Algoritam:

- Ne ka je s(i) adresa izvora, d(i) adresa odredišta i $\sigma(i)$ adresa čvora koji je na putu od s(i) do d(i)
- Uporediti bitove adresa d(i) sa $\sigma(i)$ s leva u desno
- Identifikovati prvu bit poziciju na kojoj se ove dve adrese razlikuju
- Proslediti paket susedu n(i) tako da se adrese n(i) i $\sigma(i)$ razlikuju samo na uočenoj bitskoj poziciji.

```
> Npr. s(i)=(1,0,1,0), d(i)=(0,1,0,1) ide preko čvorova
> (1,0,1,0) -> (0,0,1,0) -> (0,1,1,0) -> (0,1,0,0) -> (0,1,0,1)
```

Dinamičke SM - jednostepene

- * Sastoji se od N ulaznih i N izlaznih jedinica (N je broj PE)
 - ulazne jedinice DMUX 1xD
 - izlazne jedinice MUX Mx1
 - > 1<=D,M<=N, za D=M=N crossbar SM
 - recirkularne –podaci mogu da kruže više puta kroz mrežu da stignu od izvora do odredišta
 - broj kruženja zavisi od povezanosti (što je veće D i M veća je povezanost)

Sprežne funkcije

* Dinamičke SM se definišu skupom sprežnih funkcija

- Sprežna f-ja Sf preslikava adresu X jednog PE u adrseu Sf(X) drugog PE sa kojim se ostvaruje povezivanje
 - kada se speržna f-ja primeni na adresu jedne komponente sistema, dobija se adresa druge komponente koja može direktno primiti podatak
 - ➤ Da bi se preneo podatak od jednog PE do drugog PE mora se izvršiti programirana sekvenca jedne ili više sprežnih f-ja
 - Kod SIMD sistema svi aktivni PE-ovi moraju izvršavati istu sprežnu f-ju u datom trenutku
 - > Sprežne f-je su deo SIMD programa

Primeri SM: rešetka (ILLIAC IV)

* Definisana sa 4 sprežne f-je:

- $M_{+1}(x) = (x+1) \mod N$
- $M_{-1}(x)=(x-1) \mod N$
- $\bullet \ \mathsf{M}_{+r}(\mathsf{x}) = (\mathsf{x} + \mathsf{r}) \mathsf{mod} \mathsf{N}$
- $M_{-r}(x)=(x-r) \mod N$, $r=\sqrt{N}$
- za N=64 dobija se ILLIAC IV SM

Primer: rešetka za N=16

 $* M_{+1}(x)=(x+1) \mod 16$

Primer: rešetka za N=16 (nast.)

 $* M_{-1}(x)=(x-1) \mod 16$

Primer: rešetka za N=16 (nast.)

 $* M_{+4}(x)=(x+4) \mod 16,$

Primer: rešetka za N=16 (nast.)

 $* M_{-4}(x)=(x-4) \mod 16,$

SM mešanje zamena (shuffle-excange)

* F-ja mešanja odgovara savršenom mešanju špila karata

$$S(b_{m-1},b_{m-2},...,b_1,b_0) = b_{m-2},...,b_1,b_0,b_{m-1}$$

* F-ja zamene

$$E(b_{m-1},b_{m-2},\ldots,b_1,b_0)=b_{m-1},b_{m-2},\ldots,b_1,\overline{b_0}$$

Mešanje-zamena primer

Primer – izračunavanje vrednosti polinima

$$P(n) = \sum_{i=0}^{n} a_i x^i$$

- * Izračunavanje je moguće obaviti procesorskim poljem sa N=n+1 PE spregnutim SM mešanje-zamena u 2log// koraka:
 - dve faze:
 - 1. svaki PE računa a_ixⁱ
 - 2. svi PE vrše sumiranje dobijenih rezultata i dobijaju P(x)
 - posmatraju se sadržaji 3 registra: registar koeficijenata, Ai, registar promenljive x, registar maske, Mi

* I faza (množenje) for j:=1 to logNfor i:=0 to N-1 do inparallel if Mi=1 then Ai:=Ai*xendif; x := x * x;shuffle(Mi); endfor; endfor; Mi je registar maske (Mi=1

znači da je PE aktivan)

```
# II faza (sabiranje)
for j:=1 to logN
for i:=0 to N-1 do inparallel
Ti:=Ai;
shuffle(Ti);
Ai:=Ti;
exchange(Ti);
Ai:=Ai+Ti;
enfor;
endfor;
```

Ti je transportni registar čiji se sadržaj razmenjuje u komunikaciji

I faza - množenje

Figure 5.9 Steps for the computation of the $a_{i}x^{i}$. (a) Initial values. (b) Values after step 1. (c) Values after step 2. (d) Values after step 3.

II faza - sabiranje

	Node 0	Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7
Initial values	a ₀	a ₁ x	a_2x^2	a ₃ x ³	a ₄ x ⁴	a ₅ x ⁵	a ₆ x ⁶	a ₇ x ⁷
Step 1 Shuffle Exchange	$a_0 \\ a_0 + a_4 x^4$	a_4x^4 $a_0 + a_4x^4$			$a_2 x^2$ $a_2 x^2 + a_6 x^6$	a_6x^6 $a_2x^2 + a_6x^6$	a_3x^3 $a_3x^3 + a_7x^7$	$a_7 x^7$ $a_3 x^3 + a_7 x^7$
Step 2. Shuffle	$a_0 + a_4 x^4$	$a_2x^2 + a_6x^6$	$a_0 + a_4 x^4$	$a_2x^2 + a_6x^6$	$a_1x + a_5x^5$	$a_3x^3 + a_7x^7$	$a_1x + a_5x^5$	$a_3x^3 + a_7x^7$
	Node 0		Node 1		Node 2		Node 3	
Exchange	$a_0 + a_4 x^4 + a_2 x^2 + a_6 x^6$		$a_0 + a_4 x^4 + a_2 x^2 + a_6 x^6$		$a_0 + a_4 x^4 + a_2 x^2 + a_6 x^6$		$a_0 + a_4 x^4 + a_2 x^2 + a_6 x^6$	
	Node 4		Node 5		Node 6		Node 7	
	$a_1x + a_5x^5 + a_3x^3 + a_7x^7$		$a_1x + a_5x^5 + a_3x^3 + a_7x^7$		$a_1 x + a_5 x^5 + a_3 x^3 + a_7 x^7$		$a_1 x + a_5 x^5 + a_3 x^3 + a_7 x^7$	
Step 3.	Node 0		Node 1		Node 2		Node 3	
Shuffle.	$a_0 + a_4 x^4 + a_2 x^2 + a_6 x^6$		$a_1x + a_5x^5 + a_3x^3 + a_7x^7$		$\frac{a_0 + a_4 x^4 + a_2 x^2 + a_6 x^6}{a_0 + a_4 x^4 + a_2 x^2 + a_6 x^6}$		$a_1x + a_5x^5 + a_3x^3 + a_7x^7$	
	Node 4		Node 5		Node 6		Node 7	
	$a_0 + a_4 x^4 + a_2 x^2 + a_6 x^6$		$a_1x + a_5x^5 + a_3x^3 + a_7x^7$		$a_0 + a_4 x^4 +$	$a_2x^2 + a_6x^6$	$a_1x + a_5x^5$	$+ a_3 x^3 + a_7 x^7$
	Node 0				Node 1			
Exchange	$a_0 + a_4 x^4 + a_2 x^2 + a_6 x^6 + a_1 x + a_5 x^5 + a_3 x^3 + a_7 x^7$			$a_0 + a_4 x^4 + a_2 x^2 + a_6 x^6 + a_1 x + a_5 x^5 + a_3 x^3 + a_7 x^7$				
	Node 2				Node 3			
	$a_0 + a_4 x^4 + a_2 x^2 + a_6 x^6 + a_1 x + a_5 x^5 + a_3 x^3 + a_7 x^7$				$a_0 + a_4 x^4 + a_2 x^2 + a_6 x^6 + a_1 x + a_5 x^5 + a_3 x^3 + a_7 x^7$			
	Node 4				Node 5			
	$a_0 + a_4 x^4 + a_2 x^2 + a_6 x^6 + a_1 x + a_5 x^5 + a_3 x^3 + a_7 x^7$				$a_0 + a_4 x^4 + a_2 x^2 + a_6 x^6 + a_1 x + a_5 x^5 + a_3 x^3 + a_7 x^7$			
	Node 6				Node 7			
	$a_0 + a_4 x^4 + a_5 x^2 + a_6 x^6 + a_1 x + a_5 x^5 + a_3 x^3 + a_7 x^7$				$a_0 + a_4 x^4 +$	$-a_2x^2 + a_6x^6 -$	$+ a_1 x + a_5 x^5 +$	$-a_3x^3 + a_7x^7$

values for k_1 and k_0 ; rather, the total number of nodes is defined. A two-dimensional mesh with $k_1 = k_0 = n$ is usually referred to as a *mesh* with N nodes, where $N = n^2$. For example, Figure 5.12 shows a mesh with 16 nodes. From this point forward, the term

Kub mreža

* Definisana sa m=log₂N sprežnih f-ja

$$C_i(b_{m-1},...,b_i,...b_1,b_0) = b_{m-1},...,\overline{b_i},...b_1,b_0,$$

 $i = 0,1,...,m-1$

Višestepene SM

- * Sastoje se od komutacionih elemenata (KE) i komunikacionih kanala
- * KE čine stepene mreže
- * Veze izmedju stepena su fiksne
- * KE se mogu dinamički postavljati da bi se ostvarila veza izmedju željenog ulaza i izlaza
- * Višestepenu SM karakteriše
 - izgled KE
 - način povezivanja susednih stepena
 - način upravljanja

Komutacioni element

* U opštem slučaju može imati a ulaza i b izlaza

- a, b teorijski ne moraju biti jednaki
- najčešće je a=b=2^k, k>=1
- sa brojem ulaza i izlaza raste složenost KE, pa je najčešće a=b=2 (tipa 2x2)
- KE tipa 2x2
 - ➤ dvofunkcijski
 - > četvorofunkcijski

Izgled dvo-funkcijskog KE

S=0, direktno S=1, ukršteno

Višestepene SM

- * Višestepena SM koja treba da poveže N=2^m PE-ova sastoji se od log₂N=m stepena i N/2 KE u svakom stepenu.
- * U odnosu na strategiju upravljanja mogu se razlikovati mreže sa:
 - individualnim upravljanjem stepena (potrebno je m linija za upravljanje)
 - individualno upravljanje KE (potrebno je N/2*m linija za upravljanje)
 - nezavisno upravljanje na nivou grupe u jednom stepenu

Višestepena kub mreža (generalizovani kub)

- * Sastoji se od log₂N=m stepena i N/2 KE
- * Svaki stepen realizuje jednu sprežnu f-ju kub mreže
 - Stepen S₀ –sprežnu f-ju C₀
 - Stepen S₁ –sprežnu f-ju C₁
 - Stepen S_{m-1} –sprežnu f-ju C_{m-1}
 - Stepeni su označeni od izlaza ka ulazu sa S₀,..., S_{m-1}

Generalizovani kub –primer N=8

Generalizovani kub - osobine

- * Može povezati proizvoljni par PE
- * Jedinstveni put izmedju svakog para izvor-odredište
- * Blokirajuća mreža mogu nastupiti konflikti

Generalizovani kub – odredjivanje puta poruka

* Jedan-na-jedan

- pomoću EX-OR zaglavlja
- pomoću odredišne adrese
- * Jedan izvor u 2^k odredišta (emisija)
 - varijanta EX-OR

* Odreddjivanje puta pomoću EX-OR zaglavlja

- poruci se dodaje zaglavlje dužine m bitova (2^m PE-ova)
 - zaglavlje se dobija primenom EX-OR operacija na binarnim adresama izvora i odredišta
 - \triangleright adresa izvora $S=s_{m-1}s_{m-2}...s_1s_0$
 - → adresa odredišta D=d_{m-1}d_{m-2}...d₁d₂
 - \gt zaglavlje T=S \oplus D= $t_{m-1}t_{m-2}...t_1t_0$
 - da bi se odredio položaj KE (direktno ili ukršteno) u stepenu i, potrebno je ispitati t_i

$$t_i = \begin{cases} 0, & diredktno \\ 1, & ukrsteno \end{cases}$$

Odredjivanje puta - primer

S=2= 010, D=4= 100, T=010 \oplus 100=110= $t_2t_1t_0$ (ukršteno, ukršteno, direktno)

Zašto ovo funkcioniše?

- * Odgovor se krije u strukturi SM i definiciji sprežnih funkcija:
 - Ako se S i D razlikuju na i-toj bit poziciji, s_i⊕d_i=t_i =1, neophodno je primeniti sprežnu f-ju C_i da bi se ostvarilo povezivanje (preslikavanje) izvora S i odredišta D
 - Postavljanje KE u stepenu i u položaj ukršteno implementira sprežnu f-ju C_i
 - Ako se adrese S i D ne razlikuju u i-toj bit poziciji, s_i⊕d_i=t_i =0,
 f-ja C_i ne treba da se primeni
 - postavljanjem prekidača u položaj direktno f-ja C_i se ne implementira
- * Dobra osobina ovog načina odredjivanja puta
 - na osnovu poruke sa zaglavljem moguće je odrediti odakle je poruka pristigla jer važi S=T⊕D
 - korisno ako je potrebno potvrdjivanje prispelih poruka

Odredjivanje puta na osnovu adrese odredišta

* Kao zaglavlje može se koristiti adresa odredišta

$$d_{i} = \begin{cases} 0, & gornji \ izlaz \ KE \\ 1, & donji \ izlaz \ KE \end{cases}$$

* Primer:

- S=2= 010, D=4= 100 ⇒ donji izlaz, gornji izlaz, gornji izlaz
- Osobine
 - moguće je na osnovu zaglavlja utvrditi da li poruka stiže po korektnom mrežnom izlazu (poredjenjem adrese odredišta i zaglavlja poruke)
 - nije moguće odediti adresu izvora (problem ako je potrebno potvrdjivanje)

Primer – odredjivanje puta na osnovu odredišne adrese

Zašto ovo funkcioniše: gornji izlaz u stepenu i na i-toj bit poziciji uvek ima vrednost 0, a donji izlaz vrednost 1

Odredjivanje puta za slučaj emisije

- * Koristi se proširena šema sa EX-Or zaglavljem
 - da bi emisija bila moguća broj odredišta mora biti stepen dvojke, 2^j
 - odredišne adrese se moraju razlikovati na j pozicija, a poklapati na m-j pozicija
 - PRIMER
 - > S adresa izvora, E i F adrese odredišta
 - \triangleright Individualna zaglavlja za destinacije E i F, $T_E=S\oplus E$, $T_F=S\oplus F$
 - > S=101 (5), E=100 (4), F=110 (6), T_E=001, T_F=011
 - Zaglavlja se slažu u svim bit pozicijama izuzev na mestu gde se razlikuju odredišne adrese
 - putevi kroz mrežu su identični u stepenu 2, granaju se (dolazi do emisije) u stepenu 1, i paralelni su na dalje (koriste isto postavljanje KE u stepenu 0)
 - Da bi se odredilo zaglavlje za slučaj emisije potrebno je poznavati informaciju o putu pre i posle grananja i tačke grananja
 - Zaglavlje za slučaj emisije odredjeno je skupom {R,B}
 - » $R=r_{m-1}...r_1r_0$ sadrži informaciju o putua, $B=b_{m-1}...b_1b_0$ informacije o tačkama grananja

Odredjivanje puta za slučaj emisije -nast.

- * I T_E i T_F sadrže informaciju o putu, pa se za R može odabrati bilo koji, npr. $R = T_E$.
- * Da bi se odredilo $B=b_{m-1}...b_1b_0$ potrebno je naći $B=T_E\oplus T_F=E\oplus F$
 - Za S=101 (5), E=100 (4), F=110 (6), $\{R=001, B=E \oplus F=010\}$
 - Da bi se odredilo u koiji položaj se postavlja KE u stepenu i potrebno je ispitati r_i i b_i.
 - ➤ ako je b_i=1, r_i se ignoriše i obavlja se emisija (grnja ili donja)
 - > b_i=0, r_i se koristi da se odredi položaj KE

Emisija iz PE₅ u PE₄ i PE₆

Emisija iz PE₅ u PE₂, PE₃, PE₆ PE₇

R=S ⊕ D2=101 ⊕010=111, B=D2 ⊕D7=010 ⊕111=101 kada se odredjuje B potrebno je potražiti ⊕odredišnih adresa koje se razlikuju na svim dozvoljenim pozicijama

Omega mreža

- * Sastoji se od log₂N=m stepena i N/2 KE
- * Veze izmedju stepena su ostvarene po principu savršenog mešanja, a KE obavljaju f-ju zamene kada su postavljeni u položaj ukršteno

$$S(b_{m-1}, b_{m-2}, \dots, b_1, b_0) = b_{m-2}, \dots, b_1, b_0, b_{m-1}$$

$$E(b_{m-1}, b_{m-2}, \dots, b_1, b_0) = b_{m-1}, b_{m-2}, \dots, b_1, \overline{b_0}$$

* Put poruke se odredjuje na osnovu EX-OR adrese izvora i odredišta po istom principu kao kod generalizovanog kuba

Omega mreža – primer za N=8

T=S ⊕D=010 ⊕100=110 (ukršteno, ukršteno, direktno)

Generalizovani kub sa ekstra stepenom(ESC)

- * Ako nastupi greška na nekom kom. kanalu ili u KE, vezu izmedju odredjenog para izvor-odredište nije moguće uspostaviti (jer postoji jedinstveni put)
- * Problem je moguće rešti dodavanjem ekstra stepena na ulaz mreže (stepen Sm)
 - ekstra stepen obavlja sprežnu f-ju C₀
 - potrebno je dodati i MUX i DMUX na ulaze ekstra stepena (stepena m) i poslednjeg stepena (stepena 0)
 - sada postoje dva stepena koji obavljaju spr. f-ju C₀
 - dodavanjem ekstra stepena dobijaju se dva puta izmedju svakog para izvor-odredište koji ne koriste iste KE i kom. kanale u stepenima 1,2,...,m-1
 - mreža postaje otporna na jednostruke greške

ESC

ESC

- * Mreža je normalno konfigurisana da je stepen m premošćen, a stepen 0 aktivan
- * analiza greške
 - mreža se testira za poznate test oblike
 - ako se detektuje jednostruka greška preduzimaju se sledeće akcije
 - ➤ ako je greška u stepenu m, stepen 0 je aktivan
 - ➤ ako je greška u stepenu 0, stepen 0 je premošćen a m aktivan
 - ➤ ako je greška u stepenu i, 0<i<m, stepeni 0 i m su aktivni</p>
 - kada su stepeni 0 i m aktivni u mreži postoje dva disjunktna puta izmedju svakog izvora i odredišta (primarni i sekundarni)
 - ightharpoonup Zaglavlje za primarni put $T_p = 0t_{m-1}...t_1t_0$
 - \succ Zaglavlje za sekundarni put $T_s = 1t_{m-1}...t_1\bar{t}_0$

ESC

zeleno – primarni put, žuto – sekundarni put

Pitanja?