Decision Trees & Ensemble Methods

Decision trees: nonlinear; greedy, top-down, recursive partitioning

Looking for a split
$$s_p$$
: $s_p(j,t) = (\underbrace{\{x|x_j < t, x_j \in R_p\}}_{R_1}, \underbrace{\{x|x_j \geq t, x_j \in R_p\}}_{R_2})$

Define L(R): loss on region R

Given C classes, define \hat{p}_c to be the proportion of examples in R that are of class C

Objective: $\max L(R_p) - (L(R_1) + L(R_2))$

Uses cross entropy loss: $L_{cross} = -\Sigma_c (\hat{p_c} \cdot \log_2 \hat{p_c})$

Regularization of decision trees:

- 1. min leaf size
- 2. max depth
- 3. max number of nodes
- 4. min decrease in loss
- 5. pruning with validation set

Runtime: n examples, f features, d depth (usually $d < log_2 n$)

Test time O(d)

Train time: O(nfd) since each point is part of O(d) nodes, cost of point at each node is O(f)

Strength: 1. easy to explain; 2. interpretable; 3. categorical variables; 4. fast

Weakness: 1. no additive structure; 2. high variance, easy to overfit; 3. due to 1, $2 \rightarrow low$ predictive accuracy

Ensembling

Take x_i 's which are random variables (RV) that are independent identically distributed (i.i.d.),

$$Var(x_i) = \sigma^2$$
 , $Var(ar{x}) = rac{\sigma^2}{n}$

Drop independence assumption, so now x_i 's are i.d., x_i 's correlated by p,

$$Var(ar{X}) = p\sigma^2 + rac{1-p}{n}\sigma^2$$

Ways to ensemble:

- 1. different algorithms
- 2. different training sets
- 3. bagging (e.g. random forests)
- 4. boosting (e.g. Adaboost, xgboost)

Bagging - Bootstrap AGGregatING

True population P, Training set S~P

Assume P=S, Booststrap samples $Z_1,\,...,\,Z_M\sim {
m S}$

Train model G_m on Z_m ,

$$G(m) = rac{\Sigma_{m=1}^M G_m(x)}{M}$$

Bias-Variance Analysis: $Var(ar{X}) = p\sigma^2 + rac{1-p}{n}\sigma^2$

Bootstrapping is driving down p, more $M \rightarrow$ less variance; bias slightly increases

DT are high variance low bias, ideal fit for bagging → random forests

Boosting

Decrease bias, addictive

Adaboost: Determine for classifier G_m a weight $lpha_m=\log(rac{1-err_m}{err_m})$, then $G(x)=\Sigma lpha_m G_m$