

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE MG CAMPUS SÃO JOÃO EVANGELISTA

ELETROMAGNETISMO - FORÇA MAGNÉTICA

PROFESSOR: CLEONIR COELHO SIMÕES

MAGNETISMO

IMÃ OU MAGNETO: Dispositivo capaz de atrair Fe, Co, Ni (ferromagnéticos)

Magnetita (ímã natural) Fe₂O₃ (Nd Fe₂B) Mirreral descoberto na Magnésia (Ásia)

Imã artificial (Ferro, Cobalto, Níquel)

Imã artificial de Neodímio

CAMPO MAGNÉTICO

PÓLOS DE UM ÍMÃ

PROPRIEDADES

FERROMAGNETISMO, PARAMAGNETISMO E DIAMAGNETISMO

FERROMAGNETISMO

<u>Materiais Ferromagnéticos</u> – as substâncias compõem esse grupo apresentam características bem diferentes das características dos materiais paramagnéticos e diamagnéticos. Esses materiais se imantam fortemente se colocados na presença de um campo magnético. É possível verificar, experimentalmente, que a presença de um material ferromagnético altera fortemente o valor da intensidade do campo magnético. São substâncias ferromagnéticas somente o ferro, o cobalto, o níquel e as ligas que são por essas substâncias. Os materiais ferromagnéticos são muito utilizados quando se deseja obter campos magnéticos de altas intensidades.

DIAMAGNETISMO

<u>Materiais Diamagnéticos</u> – são materiais que se colocados na presença de um campo magnético tem seus ímãs elementares orientados no sentido contrário ao sentido do campo magnético aplicado. Assim, estabelece-se um campo magnético na substância que possui sentido contrário ao campo aplicado. São substâncias diamagnéticas: o bismuto, o cobre, a prata, o chumbo, etc

<u>PARAMAGNETISMO</u>

Materiais Paramagnéticos - são materiais que possuem elétrons desemparelhados e que, quando na presença de um campo magnético, se alinham, fazendo surgir dessa forma um ímã que tem a capacidade de provocar um leve aumento na intensidade do valor do campo magnético em um ponto qualquer. Esses materiais são fracamente atraídos pelos ímãs. São materiais paramagnéticos: o alumínio, o magnésio, o sulfato de cobre, etc

Magnetismo terrestre

Campo magnético da Terra: 30 microteslas (próximo ao equador)
60 microteslas (próximo aos polos magnéticos)

Magnetismo e animais

Fonte: http://navegandopela-fisica.blogspot.com.br/2012/05/influencia-do-campo-magnetico-na-rota.html

Magnetismo e animais

- Em direção ao norte magnético "north-seeking" (maioria)
- Em direção ao sul magnético "south seeking".

Fonte: http://www.if.ufrj.br/~pamn/BIONANOTEC.pdf

Experiência de Oersted

Uma corrente elétrica induz, em um condutor, o surgimento de um campo magnético (imã).

CAMPO MAGNÉTIDO DE UM CONDUTOR RETILÍNEO PERCORRIDO POR CORRENTE

<u>Lei de Ampère – condutor</u> retilíneo

$$\int B \circ ds = \mu_0 i$$

NÃO COPIE

B – modulo do vetor campo magnético

 μ_0 – Permeabilidade magnética – $4\pi x 10^{-7}$ T.m/A

ds – Elemento de caminho de integração

i – módulo da corrente que circula pelo condutor

<u>Lei de Ampère – condutor</u> retilíneo

$$B = \frac{\mu_0}{2\pi} \frac{i}{d}$$

- B modulo do vetor campo magnético
- μ_0 Permeabilidade magnética $4\pi \times 10^{-7}$ T.m/A
- d Distância do ponto ao condutor (em linha reta)
- i módulo da corrente que circula pelo condutor

Representação do campo magnético criado por um condutor retilíneo

ESPIRA CIRCULAR

$$B = \mu_0 \cdot i$$

$$2R$$

CAMPO NO CENTRO DA ESPIRA
CIRCULAR DE RAIO R

ESPIRA CIRCULAR

REGRA DA MÃO DIREITA

SOLENOIDE OU BOBINA

Solenóide do experimento

UM SOLENOIDE É UM CONJUNTO DE ESPIRAS DE FIO ENROLADAS SOBRE UM NÚCLEO DE QUALQUER FORMA, MAS GERALMENTE CILÍNDRICO.

SOLENOIDES

SOLENOIDES

VÁRIAS ESPIRAS LADO A LADO SEM SOBREPOSIÇÃO (CAMADA ÚNICA).

$$B = N \cdot \frac{\mu_o \cdot i}{2 \cdot R}$$

SOLENOIDE DE CAMADA ÚNICA OU BOBINA CHATA

N - Número de espiras e R é o raio das espiras

SOLENOIDES

SOLENOIDE DE CAMADA ÚNICA OU BOBINA CHATA

- N Numero de espiras do solenoide.
- L Comprimento efetivo do solenoide (espiras)

Aplicações para o eletromagnetismo

Hendrik Antoon Lorentz (1853 - 1920)

FORÇA SOBRE CARGA NO INTERIOR DE UM CAMPO MAGNÉTICO

FORÇA MAGNÉTICA SOBRE CARGAS EM MOVIMENTO NO INTERIOR DE UM CAMPO MAGNÉTICO

MÓDULO:

 $F_m = q.v.B$

DIREÇÃO:

-Perpendicular as linhas do campo magnético

SENTIDO: REGRA DA MÃO DIREITA

REGRA DA MÃO DIREITA OU REGRA DO TAPA

INDICA O SENTIDO DA FORÇA QUE ATUA EM UMA CARGA QUE SE MOVA NO INTERIOR DE UM CAMPO MAGNÉTICO

FORÇA SOBRE CARGA

Trajetória de uma carga em movimento no interior do campo magnético.

FORÇA SOBRE CARGA

Trajetória de uma carga em movimento no interior do campo magnético.

EXERCÍCIO

Uma partícula carregada negativamente penetra com

velocidade $v = 2 \cdot 10^3 \text{ m/s}$ no ponto X de um campo magnético uniforme,

descrevendo a trajetória semicircular XY da figura.

Sendo o módulo de sua carga elétrica igual a 5µC e sua massa igual a 10g, determine:

a) a intensidade, direção e sentido do vetor indução magnética que fez a partícula descrever a trajetória indicada;

b) o tempo neces rso.

FORÇA SOBRE CARGA

Trajetória de uma carga em movimento no interior do campo magnético.

FORÇA SOBRE CARGA

Trajetória Helicoidal - Aspecto de Mola.

FORÇA MAGNÉTICA EM UM FIO PERCORRIDO POR CORRENTE ELÉTRICA

F = B.I.L.sen a

FORÇA SOBRE FIO PERCORRIDO POR CORRENTE

<u>APLICAÇÕES</u>

https://javalab.org/en/dc_motor_2_en/

FORÇA SOBRE FIOS PARALELOS

ELETROMAGNETISMO

TRANSFORMADORES

$$\frac{V1}{N1} = \frac{V2}{N2}$$

V1.i1 = V2.i2

TRANSFORMADORES

ELETROMAGNETISMO

TRANSFORMADORES

Para evitar perdas durante a transmissão da eletricidade, aumenta-se a ddp e reduz-se a corrente.