

Departamento de Física

Física I Equilíbrio

Questões:

Q1 - Considere o haltere representado na figura, com massas m e 2m. A força $\vec{F_1}$ actua na massa m com a direcção e sentido indicados. É possível encontrar uma força $\vec{F_2}$ que, actuando na massa 2m, faça com que o haltere se desloque com movimento de translação puro, isto é, sem rotação? Em caso afirmativo, desenhe o vector que representa $\vec{F_2}$, tendo em conta que o seu comprimento deve indicar correctamente o módulo de $\vec{F_2}$ relativamente a $\vec{F_1}$. Em caso negativo, justifique.

Q2 - As forças $\vec{F_1}$ e $\vec{F_2}$ possuem o mesmo módulo e estão aplicadas nos cantos de uma placa quadrada. É possível encontrar uma força $\vec{F_3}$ que, aplicada a um ponto apropriado da placa, consiga, só por si, que a placa esteja em equilíbrio (de translação e rotação, simultaneamente)? Em caso afirmativo, desenhe-a, na posição e com o comprimento e orientação correctos. Em caso negativo, dê uma justificação.

- Q3 Uma caixa alta e uma caixa baixa com iguais massas são colocadas lado a lado, sem se tocar, sobre um plano inclinado. Ao aumentarmos o ângulo do plano inclinado, qual das duas caixas tombará primeiro? Explique.
 - Q4 Acha que o centro de gravidade e o centro de massa do Cristo Rei coincidem? Justifique.
 - Q5 Que espécie de deformação apresenta um cubo de gelatina quando treme?

Problemas:

P1 - Um estudante tem o seu carro atolado na neve. Tendo estudado Física, ele amarra uma extremidade de uma corda forte ao carro e a outra extremidade da corda ao tronco de uma árvore que está próxima, deixando a corda um pouco bamba. O estudante exerce então uma força \vec{F} no centro da corda numa direcção perpendicular à linha carro-árvore, como se mostra na figura. Sendo a corda inextensível e o módulo da força aplicada 500 N, determine a força exercida no carro. (Presuma a condição de equilíbrio).

- P2 Uma escada de densidade uniforme e com massa m está encostada contra uma parede vertical sem atrito fazendo um ângulo de $60\,^{\circ}$. A base da escada está em repouso sobre uma superfície horizontal com coeficiente de atrito estático $\mu_s=0.40$. Um estudante com massa M=2m tenta subir a escada. Que fracção do comprimento L da escada terá o estudante atingido quando a escada começa a escorregar?
- P3 Uma tábua uniforme de comprimento $6.0\,\mathrm{m}$ e massa $30\,\mathrm{kg}$ está colocada horizontalmente sobre um andaime, com $1.5\,\mathrm{m}$ da tábua suspensa fora do andaime. Qual a distância que um pintor de $70\,\mathrm{kg}$ pode andar sobre a parte suspensa da tábua antes desta virar?
- P4 Um tubarão de 10000 N está pendurado por uma corda numa barra de 4.00 m que pode rodar em torno da sua base. Determine a tensão na corda quando o sistema se encontra na posição indicada na figura. Determine também as forças horizontal e vertical exercidas na base da barra. (Despreze o peso da barra).

P5 - Quando uma pessoa está de pé na ponta do pé, este tem uma posição como indicado na figura (a). O peso total do corpo \vec{w} é suportado pela força \vec{n} exercida pelo chão na ponta do pé. Um modelo mecânico para esta situação é apresentado na figura (b), onde \vec{T} é a força exercida pelo tendão de Aquiles no pé e \vec{R} é a força exercida pela tíbia no pé. Determine os valores de \vec{T} , \vec{R} e θ quando $w=700\,\mathrm{N}$.

