Number Theory for Information Security

D C Jinwala, _{PhD} <u>dcj@svnit.ac.in</u>, <u>http://www.svnit.ac.in/dcj/</u>

Department of Computer Engineering,
S V National Institute of Technology, Surat

1

Contents

- Quick Review of Modular Arithmetic
- Congruences, Exponentiation
- Review of Groups, Rings, Fields
- Galois Fields
- Euler's Totient Function
- Euler's Phi Function
- Fermat's Little Theorem
- Euler's Theorem
- Generator, Order of a group

One-to-one & onto functions

- def: one-to-one:
 - □ A function is 1-1, if each element in the codomain Y is the image of at most one element in the domain X.
- def: onto:
 - □ A function is onto, if each element in the codomain Y is the image of at least one element in the domain X. A function $f: X \to Y$ is onto, if Im(f) = Y.

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

3/66

3

Tutorial#1

- Consider a function F whose domain-range are f: {a,b,c,d,e,f...z}
 - \rightarrow {0,1,2,3,4,5.....25} with the definition as follows: $f(i^{th} \text{ letter of alphabet}) = i-1$

Analyze whether this function is one-to-one and onto or not?

■ Consider a function g whose domain-range are g: {binary bit strings of length 4} → {binary bit strings of length 3} with the definition as follows:

$$g(b_1b_2b_3b_4) = b_1b_2b_4$$

Analyze whether this function is one-to-one and onto or not?

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

Bijection of a function

- def: If a function $f: X \to Y$ is 1-1 and Im(f) = Y, then f is called a bijection.
- Obser<u>n</u>1: If f: $X \to Y$ is 1-1 then f: $X \to Im(f)$ is a bijection
 - \square i.e. if f: X \rightarrow Y is 1-1 and X and Y are finite sets of the same size. Why the latter ?

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

5/66

5

Inverse of a function

- def: If f is a bijection from X to Y,
 - then there exists a bijection g from Y to X also i.e.
 - \Box for each $y \in Y$, g(y) = x, where $x \in X$ and f(x) = y.
 - □ Then, the function g so obtained from f is called the inverse function of f i.e $g = f^{-1}$

Bijection & inverse of a function (contd)

Let $X = \{a,b,c,d,e\}$ and $Y = \{1,2,3,4,5\}$ and let f be defined such that

$$f(a) = 5$$
, $f(b) = 3$, $f(c)=4$, $f(d)=1$, $f(e)=2$, then

- □ f is one-to-one
- \square Since Im(f) = {1,2,3,4,5} = Y, f is onto and it is bijection
- □ The inverse function of f can be formed by defining a g such that.....
- □ If f is a bijection, so is f⁻¹
- Bijections are the heart of the crytography.....Why?

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

7/66

7

Bijection & inverse of a function (contd)

- In cryptography,
 - □ bijections are used to as a tool for encryption and the
 - inverse are used for decryption
 - □ Why bijections are required for encryption?

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

Tutorial#3: Bijection Functions

- Are the DES or the AES the symmetric key cryptography algorithms bijections?
- Is the RSA function a bijection?

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

9/66

9

Ciphers and the property of Determinism

- AES, DES, RC5.....are these ciphers deterministic or probabilistic?
- Determinism and Semantic Security
- How to introduce probabilistic nature in cipher implementation ?

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

10/66

13

One way functions

- def: A function f: $X \rightarrow Y$ is called a one way function
 - \Box if f(x) is easy to compute for all x \in X, but
 - of for "essentially all" elements of $y \in Im(f)$, it is computationally infeasible to find any $x \in X$, such that f(x)=y.

One way function (contd)

- Illustration: Let $X = \{1,2,3,....16\}$ and let $f(x) = r_x$ for all $x \in X$, where r_x is the remainder when 3^x is divided by 17. What is then f(x)?
- Is it feasible to compute f(x) from x ?

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1
```

• Is it feasible to compute x from f(x)?

 $Mr\ D\ C\ Jinwala,\ CS614,\ Machine\ Learning\ in\ Security,\ MTech-I\ (2nd\ Sem),\ DoCSE,\ SVNIT,\ Surat,\ Spring\ 2022-23$

5/66

15

The Trapdoor oneway functions

- Illustration: Let
 - primes p = 48611 and q = 53993, number n = pq = 2624653723 and let X = $\{1,2,3,4,...n-1\}$.
 - □ let a function $f_x = r_x$ be defined for each $x \in X$, where r_x is the remainder when x^3 is divided by n.
 - \circ e.g. f(248991) = 1981394214 as
 - $2489991^3 = 5881949859 * n + 1981394214$
 - \Box IS it easy to compute the value of f(x) given x ?
- Finding the reverse ...i.e. is it easy to compute x given f(x)?
 - Computation of modular cuberoot with modulus n
 - □ if the factors of n are unknown and large then it is a difficult problem.
- Such functions are the trapdoor oneway functions......

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

The Trapdoor oneway functions (contd)

- def: a function f: $X\rightarrow Y$ is a trapdoor one way function, it is one-way function
 - \square with the additional property that given some extra trapdoor information it becomes feasible to find for any given $y \in Im(f)$, an $x \in X$, such that f(x)=y.
- In the example above, knowing p and q (each five digits long), it is easy to invert the function.
- What should be the length of digits in p and q to make it infeasible?
 - □ at least 100 digits
 - □ well-known integer factorization problem.
- The existence of such functions is difficult to rigoroulsy prove, mathematically.

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

17/66

17

Modular Arithmetic

- Any integer a can be expressed as a = qn + r; $0 \le r < n$; $q = \lfloor a/n \rfloor$
 - e.g. in modulo 7 arithematic, $11 = 1 \times 7 + 4$ i.e. r = 4 and
 - **-11 = ?**
 - \Box -11 = -2 x 7 + 3 to yield r = 3.
- def: modulo operator "a mod n" is defined as the remainder b
 - u when a is divided by n, b is called the residue of a mod n
 - ullet usually choose the smallest positive remainder as residue $0 \le b$ $\le n-1$
 - □ the process is known as modulo reduction

Congruent modulo n

- Finite fields have become increasingly important in cryptography.
- Two integers a and b are said to be **congruent modulo n** if (a mod n) = (b mod n)
 - \Box i.e. when divided by *n*, a & b have the same remainder
 - □ i.e. when n divides b-a
 - \bullet e.g. (100 mod 11) = (34 mod 11)
 - \Box denoted as $100 \equiv 34 \mod 11$
 - Is $-12 \equiv -5 \mod 7$ true?
 - Is $2 \equiv 9 \mod 7$ true?
 - Is $73 \equiv 4 \mod 23$ true?
 - Is $21 \equiv -9 \mod 10$ true?

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

9/66

19

Tutorial #4:

- State whether true or false:
 - □ Is $13 \equiv 523 \mod 17$?
 - □ Is $-15 \equiv 6 \mod 7$ true?
 - □ Is $-14 \equiv 1 \mod 3$ true?
 - □ Is $73 \equiv 4 \mod 23$ true?
 - □ Is $21 \equiv -9 \mod 10$ true?
 - □ Is $82 \equiv 1 \mod 9$ true?
 - □ Is $-82 \equiv 1 \mod 9$ true?
 - □ Is $63 \equiv 8 \mod 11$ true?
 - □ Is $-63 \equiv 3 \mod 11$ true?
 - □ Is $121 \equiv 1 \mod 15$ true
 - □ Is $-119 \equiv 1 \mod 15$ true?

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

20/66

Congruence

- Congruence modulo n is an equivalence relation on the integers.
- What is an equivalence relation?
- Congruence modulo n is an equivalence relation on the integers.....given the three properties are true. Which ones?
 - any integer is congruent to itself modulo n (reflexivity). How?
 - $a \equiv b \mod n$ implies that $b \equiv a \mod n$ (symmetry). How?
 - □ $a \equiv b \mod n$ and $b \equiv c \mod n$ implies that $a \equiv c \mod n$ (transitivity). How?

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

21/66

21

Z_n - The integers modulo n

- def: The set of integers modulo n i.e. Z_n is the set of (equivalence classes of) integers $\{0,1,2,\ldots,n-1\}$.
- All the operations in Z_n viz.
 - multiplication, addition and subtraction are performed modulo n.
 - \Box e.g. $Z_{25} = \{0,1,2,3,\ldots 24\}$. Then,
 - $6+14 = ? \text{ in } Z_{25}$
- $14+14 = ? in Z_{25}$
- $15+35 = ? \text{ in } Z_{25}$
- $20+32 = ? \text{ in } Z_{25}$
- \Box e.g. $Z_{49} = \{0,1,2,3,...48\}$. Then
 - $21+23 = ? in Z_{49}$
 - $35 + 35 = ? \text{ in } Z_{49}$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

The additive inverse

- The additive inverse of a number a in modular arithmetic is the integer y such that x + y = 0 mod n.
- e.g. addition arithmetic modulo 8 is as shown in the table.
- What are the AIs of 1, 2, 3, 5 in modulo 8?

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNTT, Surat, Spring 2022-23

23

23

The multiplicative inverse

- The multiplicative inverse of a number a is a number b such that a * b = 1 mod n.
 - □ if exists, it is unique
- e.g. the table shows the multiplication modulo 7
- unlike additive inverse, the multiplicative inverse of a number may not exist e.g.
 - \Box what are the MIs of 2,3,4?
 - □ what are the MIs of 4 in modulo 8?

X	0	1	2	3	4	5	6

0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-2:

24

Abstract Algebra

- Finite fields
 - □ are of increasing importance in cryptography
 - AES, Elliptic Curve, IDEA, Public Key
 - concern with operations on "numbers" where
 - what constitutes a "number" and the type of operations varies considerably
 - □ start with concepts of groups, rings, fields from abstract algebra

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

25/66

25

Group

- A Group is a set of elements or "numbers" with some operation * such that
 - closure: whose result is also in the set
 - \blacksquare associative law: (a.b).c = a.(b.c)
 - \Box has identity e: e.a = a.e = a
 - □ has inverses a^{-1} : $a.a^{-1} = e$
- Semigroup, Monoid, Groupin that order
- A group
 - \Box if is commutative a.b = b.a then it forms an abelian group
- Finite group, order of a finite group
- Infinite group

26/66

Group...

- def: A group (G, *) consists of a set G with a binary operation * on G satisfying the following three axioms:
 - □ the group operation is associative i.e. $a^*(b^*c) = (a^*b)^*c$ for all $a,b,c \in G$.
 - there is an element $1 \in G$, called the identity element, such that a * 1 = 1 * a = a for all $a \in G$
 - □ for each $a \in G$ there exists an element $a^{-1} \in G$, called the inverse of a such that $a * a^{-1} = a^{-1} * a = 1$
- for a group G, if a * b = b * a for all $a, b \in G$, then the group G is abelian or commutative.

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

27/66

27

Group – illustrations

- The set of integers Z_n with the operation of addition modulo n forms a group of order n. Identity element = ? Inverse of a = ?
 - □ Is it an abelian group, too?
- The set of real numbers under multiplication is an abelian group.
- Is the set of integers Z_n with the operation of multiplication modulo n, a group of order n?
- Is the set of integers Z_n with the operation of multiplication modulo n, a monoid ?

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

The multiplicative inverse

- e.g. the table shows the multiplication modulo 7
- unlike additive inverse, the multiplicative inverse of a number may not exist e.g.
 - \Box what are the MIs of 2,3,4?
- what are the MIs of 4 in modulo 8

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

20

29

Group – illustration

■ Ex: Let set G_{XOR} = {EVEN, ODD} and a binary operation \oplus be defined as

⊕	EVEN	ODD
EVEN	EVEN	ODD
ODD	ODD	EVEN

- □ Is it a closed under operation \oplus ?
- □ Does it exhibit associativity?
- □ What is the identity element?
 - EVEN
- □ Does every element have an <u>inverse</u>?
 - What are the inverses of ODD and EVEN elements?

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

30/66

Ring

- A set of "numbers"
 - □ with two operations (addition and multiplication) denoted as (R, +, X) and
 - which forms an abelian group with addition operation (identity 0)
 - multiplication operation
 - □ has closure
 - \Box is associative i.e. a x (b x c) = (a x b) x c for all a,b,c \in R
 - \Box distributive over addition i.e. $a \times (b+c) = a \times b + a \times c$
- i.e. a ring is a set in which we can do addition, subtraction and multiplication without leaving the set.
- e.g. the set of integers Z with + supported is a ring
- e.g. is the set of integers Z with x supported a ring?

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

31/66

31

Invertible element and Field

- An element a of a ring R is called a unit or an invertible element
 if there is an element b ∈ R such that a x b = 1.
- A **FIELD** is a set in which we can do addition, subtraction, multiplication, and division without leaving the set.
 - Division is defined with the following rule: $a/b = a(b^{-1})$. We denote a Field as $\{F,+,.\}$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

Field...

- def: A field is a commutative ring in which all the non-zero elements have multiplicative inverses.
 - \Box e.g. the set of integers under the + & x operations is not a field. Why
- Are the sets (of) rational numbers, real numbers, complex numbers a field?
- \blacksquare Z_n is a field iff n is a prime number.
- These have hierarchy with more axioms/laws
 - □ group -> ring -> field

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

34/66

34

Galois Fields

- Infinite fields are of not much interest. But, finite fields play a key role in cryptography.
- The number of elements in a finite field
 - \square i.e. the order of a finite filed must be a power of a prime p^n , $n \ge 1$
 - □ the finite field of the order of pⁿ are known as Galois fields
- \blacksquare denoted $GF(p^n)$
- in particular often use the fields
 - □ GF(p)
 - □ GF(2ⁿ)

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

Galois Fields GF(p)

- GF(p) is the set of integers $Z_p = \{0,1, ..., p-1\}$ with arithmetic operations modulo prime p
- these form a finite field since each element has multiplicative inverse
- hence arithmetic is "well-behaved" and
 - □ can do addition, subtraction, multiplication, and division without leaving the field GF(p)

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

36/66

36

Addition modulo 7

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

37

GF(7) Multiplication Example

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0 (1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5 (1	4
4	0	4 (1	5	2	6	3
5	0			1			2
6	0	6	5	4	3	2 (1

How to find inverses when the numbers involved are very large ???

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

38/66

38

Finding Inverses - Extended Euclidean algorithm

EXTENDED EUCLID (m, b)

- 1. (A1, A2, A3) = (1, 0, m);(B1, B2, B3) = (0, 1, b)
- **2. if** B3 = 0

return A3 = gcd(m, b); no inverse

3. if B3 = 1

return B3 = gcd (m, b); B2 = b^{-1} mod m

- **4.** $Q = A3 \, div \, B3$
- 5. (T1, T2, T3) = (A1 Q B1, A2 Q B2, A3 Q B3)
- **6.** (A1, A2, A3) = (B1, B2, B3)
- 7. (B1, B2, B3) = (T1, T2, T3)
- 8. goto 2

39/66

Inverse of 17 in GF(29)

i.e. calling Extended_Euclid(29, 17)

Q	A1	A2	A3	B1	B2	В3
_	1	0	29	0	1	17

 $Mr\ D\ C\ Jinwala,\ CS614,\ Machine\ Learning\ in\ Security,\ MTech\ -\ I\ (2nd\ Sem),\ DoCSE,\ SVNIT,\ Surat,\ Spring\ 2022-23$

40/6

40

Inverse of 17 in GF(29)

i.e. calling Extended_Euclid(29, 17)

Q	A1	A2	A3	B1	B2	B3
	1	0	29	0	1	17
1	0	1	17	1	-1	12
1	1	-1	12	-1	2	5
2	-1	2	5	3	-5	2
2	3	-5	2	-7	12	1

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

41/66

Inverse of 37 in GF(49)

i.e. calling Extended_Euclid(49, 37)

Q	A1	A2	A3	B1	B2	В3
_	1	0	49	0	1	37
1	0	1	37	1	-1	12
3	0	1	12	-3	4	1

• Hence $37^{-1} \equiv 4 \mod 49$ OR $4 = 37^{-1} \mod 49$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNTT, Surat, Spring 2022-23

42/66

42

Inverse of 550 in GF(1759)

i.e. calling Extended_Euclid(1759, 550)

Q	A1	A2	A3	B1	B2	B3
	1	0	1759	0	1	550
3	0	1	550	1	-3	109
5	1	-3	109	-5	16	5
21	-5	16	5	106	-339	4
1	106	-339	4	-111	355	1

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-2

43/66

Inverse of 49 in GF(37)

i.e. calling Extended_Euclid(37, 49)

Q	A1	A2	A3	B1	B2	B3
_	1	0	37	0	1	49
0	0	1	49	1	0	37
1	1	0	37	-1	1	12
3	-1	1	12	4	-3	1

- Hence $49^{-1} \equiv (-3) \mod 37$
- But, $-3 \pmod{37} \equiv 34 \pmod{37}$. Hence,
- $34 = 37^{-1} \mod 49$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNTT, Surat, Spring 2022-23

14/66

44

Tutorial #11

- Find the inverse of the following elements in the GF as indicated::
 - 1. Inverse of 8 GF(19)
 - 2. Inverse of 17 in GF(29)
 - 3. Inverse of 13 in GF(29)
 - 4. Inverse of 49 in GF(37)
 - 5. Inverse of 351 in GF(771)
 - 6. Inverse of 17 in GF(331)

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

The Euler Totient function

- def: For $n \ge 1$, let $\emptyset(n)$ denote the number of integers in the interval [1,n] which are relatively prime to n.
- The function ø is called the Euler Totient function.
- Note that, when we are doing arithmetic modulo n
 - \Box the complete set of residues is : 0.....n-1, whereas,
 - the reduced set of residues is those numbers (residues) which are relatively prime to n
 - \bullet eg for n=10,
 - \Box the complete set of residues is $\{0,1,2,3,4,5,6,7,8,9\}$
 - \Box the reduced set of residues is $\{1,3,7,9\}$

Mr D C, Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

46/66

46

The Euler Totient function - Properties

- So, the number of elements in reduced set of residues is called the Euler Totient Function ø(n)
- Properties:
 - 1. If p is prime then $\phi(p) = p 1$.
 - 2. The function \emptyset is multiplicative i.e. if gcd(m,n)=1, then $\emptyset(mn)=\emptyset(m)$. $\emptyset(n)$.
 - 3. If $n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \dots p_k^{e_k}$ is the prime factorization of n, then,

$$\emptyset$$
(n) = $n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \left(1 - \frac{1}{p_3} \right) \dots \dots (1 - \frac{1}{p_k})$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

47/66

Euler Totient Illustration

 \bullet $\phi(1)$, $\phi(2)$, $\phi(3)$, $\phi(4)$, $\phi(6)$, $\phi(7)$, $\phi(14)$, $\phi(23)$ $\phi(15)$

- given by
$$p = p-1$$

$$\bigcirc \ \phi(2) = |\{1\}|$$

- given by
$$p = p-1$$

- given by
$$p = p-1$$

$$\bigcirc \phi(4) = |\{1,3\}|$$

$$\bigcirc \ \phi(6) = |\{1,5\}|$$

$$\circ (6) = \emptyset(3) \circ \emptyset(2) = 2 \circ 1 = 2$$

$$\circ$$
 $\phi(7) = |\{1, 2, 3, 4, 5, 6\}|$

- given by
$$p = p-1$$

$$o(14) = |\{1,3,5,9,11,13\}|$$

$$\bullet$$
 $\emptyset(14) = \emptyset(7)*\emptyset(2) = 6*1 = 6$

- - **4** * 2 = 8

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

48

Euler's Totient Function

If $n = p_1^{e_1}p_2^{e_2}p_3^{e_3}....p_k^{e_k}$ is the prime factorization of n, then,

$$\emptyset(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \left(1 - \frac{1}{p_2}\right) \dots \dots \left(1 - \frac{1}{p_k}\right)$$

- e.g. $616 = 2^3 * 7 * 11$
- Therefore,

$$= 616 * (1 - 1/2) * (1 - 1/7) * (1 - 1/11)$$

$$= 616 * 1/2 * 6/7 * 10/11$$

$$= 240.$$

49/66

Tutorial #12

- Find the Euler's Totient Function of the following:
 - □ Φ(273)
 - □ Φ(393)
 - □ Φ(495)
 - Φ(289)
 - **□** Φ(169)
 - Φ(274)
 - Φ(472)
 - Φ(65)
 - Φ(127)
 - Φ(133)
 - Φ(201)
 - □ Φ(333)

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

50/66

50

Applications of finding $\Phi(n)$ - RSA

- Each user generates a public/private key pair by the following process
 - select two large distinct primes at random p, q.
 - □ compute their system modulus n=p.q
 - compute \emptyset (n) How?
 - □ select at random the encryption key e
 - where $1 \le 0 \le 0$ (n), $gcd(e, \emptyset(n)) = 1$
 - □ solve the following equation to find decryption key d
 - e.d=1 mod \emptyset (n) and $0 \le d \le n$. How?
 - \Box publish the public encryption key: PU={e,n}
 - \Box keep secret private decryption key: PR={d,n}
- It is critically important that the factors p & q of the modulus n are kept secret

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

51/66

Multiplicative Group

- The multiplicative group of Z_n is denoted by Z_n^*
- def: defined as $Z_n^* = \{a \in Z_n \mid \gcd(a, n) = 1\}$
 - □ If n is prime, then $Z_n^* = \{a \mid 1 \le a \le n-1\}$
 - □ If $a \in Z_n^*$ and $b \in Z_n^*$, then $a.b \in Z_n^*$
- Let n = 21. Then, $Z_{21}^* = \{1,2,4,5,8,10,11,13,16,17,19,20\}$

52/66

52

Multiplicative Group

- The order of a multiplicative group Z_n^* denoted $|Z_n^*|$ is defined as
 - $\square |Z_n^*|$ i.e. the number of elements in Z_n^*
- Recollect that if n is prime, then $Z_n^* = \{a \mid 1 \le a \le n-1\}$
- Illustration:
 - □ Let n = 21. Then, $Z_{21}^* = \{1,2,4,5,8,10,11,13,16,17,19,20\}$
 - - $o(7).o(3)=6.2=12=|Z^*_{21}|$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-2:

53/66

Euler's theorem

- Let $n \ge 2$ be an integer. Then if $a \in Z_n^*$, $a^{o(n)} \equiv 1 \pmod{n}$
- e.g. $a=3; n=10; \emptyset(10)=4;$ hence $3^4 = 81 \equiv 1 \mod 10$

What about a=7 i.e. $7^4 \mod 10$?
And a=5?

- $a=2; n=11; \emptyset(11)=10;$ hence $2^{10} = 1024 = 1 \mod 11$
- If n is a product of distinct primes,
 - \square and if $r \equiv s \pmod{\emptyset(n)}$, then $a^r \equiv a^s \pmod{n}$
 - \square i.e. when working with modulo such as n, exponents can be reduced modulo $\emptyset(n)$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNTT, Surat, Spring 2022-23

54/66

54

Order of elements of an MG

- Let $a \in \mathbb{Z}_{n}^{*}$. Then, the order of a, denoted by ord(a),
 - is the <u>least</u> positive integer t such that $a^t \equiv 1 \pmod{n}$
 - \square e.g. consider again $Z_{21}^* = \{1,2,4,5,8,10,11,13,16,17,19,20\}$
 - \circ $o(21)=12=|Z^*_{21}|.$
 - \square Now the orders of various elements in \mathbb{Z}_{21}^* are:

a	1	2	4	5	8	10	11	13	16	17	19	20
Ord(a)	1	6	3	6	2	6	6	2	3	6	6	2

□ Ord(a) = mod(power(a,Ai),21) in Excel sheet

Generator, Cyclic group

- Let $\alpha \in \mathbb{Z}_{n}^{*}$.
 - \square if the order of α is $\emptyset(n)$, then α is said to be a generator or a primitive element of Z_n^* .
 - \Box Are there any generators in the group Z_{21}^* ?

a	1	2	3	4	5	6	7	8	9	10
Ord(a)	1	6	-	3	6	-	-	2	_	6
a	11	12	13	14	15	16	17	18	19	20
Ord(a)	6	-	2	-	-	3	6	ı	6	2

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

56

56

Generator, Cyclic group

- IF Z_n^* has a generator, then Z_n^* is said to be a cyclic group.
 - □ In the above example, Z_{21}^* is not a cyclic group, since no generator is equal to $\emptyset(n)$ i.e. 12.

a	1	2	4	5	8	10	11	13	16	17	19	20
Ord(a)	1	6	3	6	2	6	6	2	3	6	6	2

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

Generator, Cyclic group (contd)

- □ Consider now a group Z₂₅*
 - $\square Z_{25}^* = \{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24\}$
 - \Box i.e. $\Phi(25) = |Z_{25}^*| = 20$
 - $\hfill\Box$ Now the orders of various elements in $Z_{25}{}^*$ are:

Use the formula $Ord(a) = mod(power(a,Ai),25)$ in Excelsheet												
a	1	2	3	4	6	7	8	9	10	11	12	13
Ord(a)	1	20	20	10	5	5	20	10	-	5	?	?
a	14	15	16	17	18	19	21	23	24			
Ord(a)	?	?	?	?	?	?						

 \square Thus, Z_{25} * is indeed a cyclic group because 2,3,8,... are the generators of the group.

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNTT, Surat, Spring 2022-23

58

58

Generator, Cyclic group (contd)

□ Consider now a multiplicative group Z₁₃*

$$\square Z_{13}^* = \{1, 2, 3, 4, 6, 7, 8, 9, 11, 12\}$$

$$\Box$$
 i.e. $\Phi(13) = |Z_{13}^*| = 12$

 \Box Compute the orders of various elements in Z_{13} *:

α	0	1	2	3	4	5	6	7	8	9	10	11
α^{i} mod 13	1	6	12	3	7	4	12	12	4	3	6	12

□ Thus,

 $\alpha = 2, 6, 7, 11$ are the generators of the group.

 \square Note the case of 5^t mod 13 with t=4,12.

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNTT, Surat, Spring 2022-23

60

60

Generators.....

- How many Generators can be there of a group if Z^{*}_n is a cyclic group?
 - \Box if Z_n^* is cyclic, then the number of generators is $\Phi(\Phi(n))$.
 - e.g. Z_{21} * is not cyclic doesn't have a generator because n does not satisfy any of the conditions above in first
- Are Z*₁₁, Z*₇, Z*₁₃, Z*₁₇, Z*₁₉ cyclic?
- Is Z_{30}^* cyclic? $\Phi(30)$ is $\Phi(6)^* \Phi(5) = 2*4=8$.

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

How to test for a given number to be a Generator

- Consider a MG Z_{p}^* , where p is a prime.
- Then, it is easy to test whether a given element is its generator or not. How?
 - □ As p is a prime, $\Phi(p) = p-1$, and
 - \Box the number of generators in it is $\Phi(p-1)$,
 - \square now, if $p_1, p_2, p_3....p_k$ are the distinct prime factors of p-1, then,
 - g is a generator of Z_p^* if and only if

$$g^{(p-1)/pi} \neq 1 \bmod p$$
 for all $p_i \leq i \leq k$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

62/66

62

How to test for a given number to be a

- e.g. consider Z_{13}^* . Check whether 7 is a generator or not.
- Now,
 - $\Phi(13) = p-1 = 12$, and
 - \Box the number of generators in it is $\Phi(p-1) = \Phi((12) = 4$.
 - □ Also, the distinct prime factors of p-1 i.e. 12 are 2,3. Hence, p_1 =2, p_2 =3.
 - □ Then,
 - $g^{(p-1)/p_1} = 7^{12/2} = 7^6 \mod 13 = 12 \mod 13 \neq 1 \mod 13$, and
 - $g^{(p-1)/p_2} = 7^{12/3} = 7^4 \mod 13 = 9 \mod 13 \neq 1 \mod 13$
- Hence, 7 is indeed a generator of Z_{13}^*

 $g^{(p-1)/pi} \neq 1 \mod p$ for all $p_i \leq i \leq k$

63/66

How to test for a given number to be a

- lacksquare e.g. consider Z_{13}^* . Now, check whether 8 is a generator or not.
- Now,
 - $\Phi(13) = p-1 = 12$, and
 - \Box the number of generators in it is $\Phi(p-1) = \Phi((12) = 4$.
 - □ Also, the distinct prime factors of p-1 i.e. 12 are 2, 3. Hence, p_1 =2, p_2 =3.
 - □ Then,
 - $g^{(p-1)/p_1} = 8^{12/2} = 8^6 \mod 13 = 12 \mod 13 \neq 1 \mod 13$, and
 - $g^{(p-1)/p_2} = 8^{12/3} = 8^4 \mod 13 = 1 \mod 13$
- Hence, 8 is NOT a generator of Z_{13}^*

 $g^{(p-1)/pi} \neq 1 \mod p$ for all $p_i \leq i \leq k$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNTT, Surat, Spring 2022-23

64/66

64

References:

- Handbook of Applied Cryptography by Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone.
- Introduction to Algorithms by Cormen, Leicerson and Rivest.
- NPTEL Lectures by Debdeep Mukhopadhyay

 $Mr\ D\ C\ Jinwala,\ CS614,\ Machine\ Learning\ in\ Security,\ MTech-I\ (2nd\ Sem),\ DoCSE,\ SVNIT,\ Surat,\ Spring\ 2022-2324,\ Machine\ Learning\ in\ Security,\ MTech-I\ (2nd\ Sem),\ DoCSE,\ SVNIT,\ Surat,\ Spring\ 2022-2324,\ Machine\ Learning\ in\ Security,\ MTech-I\ (2nd\ Sem),\ DoCSE,\ SVNIT,\ Surat,\ Spring\ 2022-2324,\ Machine\ Learning\ in\ Security,\ MTech-I\ (2nd\ Sem),\ DoCSE,\ SVNIT,\ Surat,\ Spring\ 2022-2324,\ Machine\ Learning\ in\ Security,\ MTech-I\ (2nd\ Sem),\ DoCSE,\ SVNIT,\ Surat,\ Spring\ 2022-2324,\ Machine\ Learning\ in\ Security,\ MTech-I\ (2nd\ Sem),\ DoCSE,\ SVNIT,\ Surat,\ Spring\ 2022-2324,\ Machine\ MTech-I\ (2nd\ Sem),\ DoCSE,\ SVNIT,\ Surat,\ Spring\ 2022-2324,\ MTech-I\ (2nd\ Sem),\ DoCSE,\ SVNIT,\ Surat,\ Spring\ 2022-2324,\ MTech-I\ (2nd\ Sem),\ DoCSE,\ SVNIT,\ Surat,\ Spring\ 2022-2324,\ MTech-I\ (2nd\ Sem),\ MTech-I\ (2nd\ Sem),\$

Thank You!!!

 $Mr\ D\ C\ Jinwala,\ CS614,\ Machine\ Learning\ in\ Security,\ MTech-I\ (2nd\ Sem),\ DoCSE,\ SVNIT,\ Surat,\ Spring\ 2022-23$

66/66