Donsker's Theorem: A brief review

Abhilash Singh Avik Biswas Sanket Agrawal

Department of Mathematics & Statistics Indian Institute of Technology Kanpur

MTH516A: Mini Project 2, April 17, 2021

Empirical processes

▶ Let $Z_1, ..., Z_n \sim F$ be a random sample taking values in \mathcal{X} . Define,

$$F_{n} = \frac{1}{n} \sum_{i=1}^{n} \delta_{Z_{i}};$$

$$X_{n} = \sqrt{n}(F_{n} - F)$$
Empirical process

For any measure μ and measurable f, let μf denote

$$\mu f := \int f d\mu,$$

▶ Consider $\mathcal{G} = \{g \text{ defined on } \mathcal{X}, g \text{ measurable}\}$. Then, the collection of random elements $\{X_ng : g \in \mathcal{G}\}$ is called an *empirical process indexed* by \mathcal{G} .

Empirical processes

▶ Let $Z_1, ... Z_n \sim F$ be a random sample taking values in \mathcal{X} . Define,

$$F_{n} = \frac{1}{n} \sum_{i=1}^{n} \delta_{Z_{i}};$$

$$X_{n} = \sqrt{n}(F_{n} - F)$$
Empirical process

For any measure μ and measurable f, let μf denote,

$$\mu f := \int f d\mu,$$

▶ Consider $\mathcal{G} = \{g \text{ defined on } \mathcal{X}, g \text{ measurable}\}$. Then, the collection of random elements $\{X_ng : g \in \mathcal{G}\}$ is called an *empirical process indexed* by \mathcal{G} .

Empirical processes

▶ Let $Z_1, ... Z_n \sim F$ be a random sample taking values in \mathcal{X} . Define,

$$F_{n} = \frac{1}{n} \sum_{i=1}^{n} \delta_{Z_{i}};$$

$$X_{n} = \sqrt{n(F_{n} - F)}$$
Empirical process

For any measure μ and measurable f, let μf denote,

$$\mu f := \int f d\mu,$$

▶ Consider $\mathcal{G} = \{g \text{ defined on } \mathcal{X}, g \text{ measurable}\}$. Then, the collection of random elements $\{X_ng : g \in \mathcal{G}\}$ is called an *empirical process indexed* by \mathcal{G} .

▶ Donsker's Class

A class $\mathcal G$ of measurable functions $g:\mathcal X\to\mathbb R$ is F-Donsker if the process $\{X_ng:g\in\mathcal G\}$ indexed by $\mathcal G$ converges in distribution in the space $I^\infty(\mathcal G)$ to a tight random element.

▶ When is \mathcal{G} F—Donsker?

- G is finite and consists of square integrable functions: the multi-variate CLT.
- Else, depends on the size and complexity of the class.

▶ Donsker's Class

A class $\mathcal G$ of measurable functions $g:\mathcal X\to\mathbb R$ is F-Donsker if the process $\{X_ng:g\in\mathcal G\}$ indexed by $\mathcal G$ converges in distribution in the space $I^\infty(\mathcal G)$ to a tight random element.

▶ When is \mathcal{G} F—Donsker?

- \[
 \mathcal{G}\]
 is finite and consists of square integrable functions: the
 multi-variate CLT.
 \]
- Else, depends on the size and complexity of the class.

▶ Donsker's Class

A class $\mathcal G$ of measurable functions $g:\mathcal X\to\mathbb R$ is F-Donsker if the process $\{X_ng:g\in\mathcal G\}$ indexed by $\mathcal G$ converges in distribution in the space $I^\infty(\mathcal G)$ to a tight random element.

- ▶ When is \mathcal{G} F—Donsker?
 - G is finite and consists of square integrable functions: the multi-variate CLT.
 - Else, depends on the size and complexity of the class.

▶ Donsker's Class

A class \mathcal{G} of measurable functions $g: \mathcal{X} \to \mathbb{R}$ is F-Donsker if the process $\{X_ng: g \in \mathcal{G}\}$ indexed by \mathcal{G} converges in distribution in the space $I^{\infty}(\mathcal{G})$ to a tight random element.

- ▶ When is \mathcal{G} F—Donsker?
 - G is finite and consists of square integrable functions: the multi-variate CLT.
 - Else, depends on the size and complexity of the class.

- ▶ Let (M, d) be any arbitrary semi-metric space.
- An ϵ -cover of the set M with respect to the semi-metric d is a set $\{x_1, \ldots, x_N\}$ such that for any $x \in M$, there exists a $r \in \{1, \ldots, N\}$ with $d(x, x_r) \leq \epsilon$.
- ▶ The ϵ -covering number of M is

$$N(\epsilon, M, d) := \inf\{N \in \mathbb{N} : \exists \text{ a cover } x_1, \dots, x_N \text{ of } M\}.$$

- An ϵ -packing of the set M with respect to the semi-metric d is a set $\{x_1, \ldots, x_D\} \subseteq M$ such that for all $r, r' \in \{1, \ldots, D\}$, we have $d(x_r, x'_r) > \epsilon$.
- ▶ The ϵ -packing number of M is

$$D(\epsilon, M, d) := \sup\{D \in \mathbb{N} : \exists \text{ a packing } x_1, \dots, x_D \text{ of } M\}$$

ightharpoonup Both covering numbers and packing numbers increase as ϵ decreases

- Let (M, d) be any arbitrary semi-metric space.
- An ϵ -cover of the set M with respect to the semi-metric d is a set $\{x_1, \ldots, x_N\}$ such that for any $x \in M$, there exists a $r \in \{1, \ldots, N\}$ with $d(x, x_r) \le \epsilon$.
- ▶ The ϵ -covering number of M is

$$N(\epsilon, M, d) := \inf\{N \in \mathbb{N} : \exists \text{ a cover } x_1, \dots, x_N \text{ of } M\}.$$

- An ϵ -packing of the set M with respect to the semi-metric d is a set $\{x_1, \ldots, x_D\} \subseteq M$ such that for all $r, r' \in \{1, \ldots, D\}$, we have $d(x_r, x'_r) > \epsilon$.
- ▶ The ϵ -packing number of M is

$$D(\epsilon, M, d) := \sup\{D \in \mathbb{N} : \exists \text{ a packing } x_1, \dots, x_D \text{ of } M\}.$$

ightharpoonup Both covering numbers and packing numbers increase as ϵ decreases

- ▶ Let (M, d) be any arbitrary semi-metric space.
- An ϵ -cover of the set M with respect to the semi-metric d is a set $\{x_1, \ldots, x_N\}$ such that for any $x \in M$, there exists a $r \in \{1, \ldots, N\}$ with $d(x, x_r) \le \epsilon$.
- ▶ The ϵ -covering number of M is

$$N(\epsilon, M, d) := \inf\{N \in \mathbb{N} : \exists \text{ a cover } x_1, \dots, x_N \text{ of } M\}.$$

- An ϵ -packing of the set M with respect to the semi-metric d is a set $\{x_1, \ldots, x_D\} \subseteq M$ such that for all $r, r' \in \{1, \ldots, D\}$, we have $d(x_r, x'_r) > \epsilon$.
- ▶ The ϵ -packing number of M is

$$D(\epsilon, M, d) := \sup\{D \in \mathbb{N} : \exists \text{ a packing } x_1, \dots, x_D \text{ of } M\}.$$

ightharpoonup Both covering numbers and packing numbers increase as ϵ decreases

- Let (M, d) be any arbitrary semi-metric space.
- An ϵ -cover of the set M with respect to the semi-metric d is a set $\{x_1, \ldots, x_N\}$ such that for any $x \in M$, there exists a $r \in \{1, \ldots, N\}$ with $d(x, x_r) \le \epsilon$.
- ▶ The ϵ -covering number of M is

$$N(\epsilon, M, d) := \inf\{N \in \mathbb{N} : \exists \text{ a cover } x_1, \dots, x_N \text{ of } M\}.$$

- An ϵ -packing of the set M with respect to the semi-metric d is a set $\{x_1,\ldots,x_D\}\subseteq M$ such that for all $r,r'\in\{1,\ldots,D\}$, we have $d(x_r,x'_r)>\epsilon$.
- ▶ The ϵ -packing number of M is

$$D(\epsilon, M, d) := \sup\{D \in \mathbb{N} : \exists \text{ a packing } x_1, \dots, x_D \text{ of } M\}.$$

ightharpoonup Both covering numbers and packing numbers increase as ϵ decreases

- ▶ Let (M, d) be any arbitrary semi-metric space.
- An ϵ -cover of the set M with respect to the semi-metric d is a set $\{x_1, \ldots, x_N\}$ such that for any $x \in M$, there exists a $r \in \{1, \ldots, N\}$ with $d(x, x_r) \le \epsilon$.
- ▶ The ϵ -covering number of M is

$$N(\epsilon, M, d) := \inf\{N \in \mathbb{N} : \exists \text{ a cover } x_1, \dots, x_N \text{ of } M\}.$$

- An ϵ -packing of the set M with respect to the semi-metric d is a set $\{x_1, \ldots, x_D\} \subseteq M$ such that for all $r, r' \in \{1, \ldots, D\}$, we have $d(x_r, x'_r) > \epsilon$.
- ▶ The ϵ -packing number of M is

$$D(\epsilon, M, d) := \sup\{D \in \mathbb{N} : \exists \text{ a packing } x_1, \dots, x_D \text{ of } M\}.$$

ightharpoonup Both covering numbers and packing numbers increase as ϵ decreases

- Let (M, d) be any arbitrary semi-metric space.
- An ϵ -cover of the set M with respect to the semi-metric d is a set $\{x_1, \ldots, x_N\}$ such that for any $x \in M$, there exists a $r \in \{1, \ldots, N\}$ with $d(x, x_r) \le \epsilon$.
- ▶ The ϵ -covering number of M is

$$N(\epsilon, M, d) := \inf\{N \in \mathbb{N} : \exists \text{ a cover } x_1, \dots, x_N \text{ of } M\}.$$

- An ϵ -packing of the set M with respect to the semi-metric d is a set $\{x_1,\ldots,x_D\}\subseteq M$ such that for all $r,r'\in\{1,\ldots,D\}$, we have $d(x_r,x'_r)>\epsilon$.
- ▶ The ϵ -packing number of M is

$$D(\epsilon, M, d) := \sup\{D \in \mathbb{N} : \exists \text{ a packing } x_1, \dots, x_D \text{ of } M\}.$$

ightharpoonup Both covering numbers and packing numbers increase as ϵ decreases.

- ▶ $(\mathcal{G}, \|\cdot\|)$ be a subset of a normed linear space of functions $g: \mathcal{X} \to \mathbb{R}$.
- ▶ For probability spaces (Ω, \mathcal{F}, F) , norm is usually $L_r(F)$ norm
- Given two functions $l(\cdot)$ and $u(\cdot)$, the bracket [l,u] is the set $\{g \in \mathcal{G}: l(x) \leq g(x) \leq u(x), \forall x \in \mathcal{X} \}$. An ϵ -bracket is a bracket [l,u] such that $||l-u|| < \epsilon$.
- ▶ The ϵ -bracketing number $N_{[]}(\epsilon, \mathcal{G}, \|\cdot\|)$ is the min. number of ϵ -brackets needed to cover \mathcal{G} . They also increase as ϵ decreases
- The bracketing integral is defined as

$$J_{[]}(\delta,\mathcal{G},L_2(F)) := \int_0^\delta \sqrt{\log N_{[]}(\epsilon,\mathcal{G} \cup \{0\},L_2(F))} d\epsilon, \delta > 0$$

An envelope function of a class \mathcal{G} is any function $x \mapsto G(x)$ such that $g(x) \leq G(x)$, for every $x \in \mathcal{X}$ and $g \in \mathcal{G}$.

- ▶ $(G, \|\cdot\|)$ be a subset of a normed linear space of functions $g: \mathcal{X} \to \mathbb{R}$.
- ▶ For probability spaces (Ω, \mathcal{F}, F) , norm is usually $L_r(F)$ norm.
- ▶ Given two functions $I(\cdot)$ and $u(\cdot)$, the bracket [I, u] is the set $\{g \in \mathcal{G} \mid I(x) \leq g(x) \leq u(x), \forall x \in \mathcal{X} \}$. An ϵ -bracket is a bracket [I, u] such that $||I u|| < \epsilon$.
- ▶ The ϵ —bracketing number $N_{[]}(\epsilon, \mathcal{G}, \|\cdot\|)$ is the min. number of ϵ -brackets needed to cover \mathcal{G} . They also increase as ϵ decreases
- The bracketing integral is defined as

$$J_{[]}(\delta,\mathcal{G},L_2(F)) := \int_0^\delta \sqrt{\log N_{[]}(\epsilon,\mathcal{G} \cup \{0\},L_2(F))} d\epsilon, \delta > 0.$$

An envelope function of a class \mathcal{G} is any function $x \mapsto G(x)$ such that $g(x) \leq G(x)$, for every $x \in \mathcal{X}$ and $g \in \mathcal{G}$.

- ▶ $(G, \|\cdot\|)$ be a subset of a normed linear space of functions $g: \mathcal{X} \to \mathbb{R}$.
- ▶ For probability spaces (Ω, \mathcal{F}, F) , norm is usually $L_r(F)$ norm.
- ▶ Given two functions $I(\cdot)$ and $u(\cdot)$, the bracket [I, u] is the set $\{g \in \mathcal{G}: I(x) \leq g(x) \leq u(x), \forall x \in \mathcal{X} \}$. An ϵ -bracket is a bracket [I, u] such that $||I u|| < \epsilon$.
- ▶ The ϵ -bracketing number $N_{[]}(\epsilon, \mathcal{G}, \|\cdot\|)$ is the min. number of ϵ -brackets needed to cover \mathcal{G} . They also increase as ϵ decreases
- ► The bracketing integral is defined as

$$J_{[]}(\delta,\mathcal{G},L_2(F)) := \int_0^\delta \sqrt{\log N_{[]}(\epsilon,\mathcal{G} \cup \{0\},L_2(F))} d\epsilon, \delta > 0.$$

An envelope function of a class \mathcal{G} is any function $x \mapsto G(x)$ such that $g(x) \leq G(x)$, for every $x \in \mathcal{X}$ and $g \in \mathcal{G}$.

- ▶ $(G, \|\cdot\|)$ be a subset of a normed linear space of functions $g: \mathcal{X} \to \mathbb{R}$.
- ▶ For probability spaces (Ω, \mathcal{F}, F) , norm is usually $L_r(F)$ norm.
- ▶ Given two functions $I(\cdot)$ and $u(\cdot)$, the bracket [I, u] is the set $\{g \in \mathcal{G}: I(x) \leq g(x) \leq u(x), \forall x \in \mathcal{X} \}$. An ϵ -bracket is a bracket [I, u] such that $||I u|| < \epsilon$.
- ► The ϵ -bracketing number $N_{[l]}(\epsilon, \mathcal{G}, \|\cdot\|)$ is the min. number of ϵ -brackets needed to cover \mathcal{G} . They also increase as ϵ decreases.
- ► The bracketing integral is defined as

$$J_{[]}(\delta,\mathcal{G},L_2(F)):=\int_0^\delta \sqrt{\log N_{[]}(\epsilon,\mathcal{G}\cup\{0\},L_2(F))}d\epsilon,\delta>0.$$

▶ An envelope function of a class \mathcal{G} is any function $x \mapsto G(x)$ such that $g(x) \leq G(x)$, for every $x \in \mathcal{X}$ and $g \in \mathcal{G}$.

- ▶ $(G, \|\cdot\|)$ be a subset of a normed linear space of functions $g: \mathcal{X} \to \mathbb{R}$.
- ▶ For probability spaces (Ω, \mathcal{F}, F) , norm is usually $L_r(F)$ norm.
- ▶ Given two functions $I(\cdot)$ and $u(\cdot)$, the bracket [I, u] is the set $\{g \in \mathcal{G}: I(x) \leq g(x) \leq u(x), \forall x \in \mathcal{X} \}$. An ϵ -bracket is a bracket [I, u] such that $||I u|| < \epsilon$.
- ► The ϵ -bracketing number $N_{[]}(\epsilon, \mathcal{G}, \|\cdot\|)$ is the min. number of ϵ -brackets needed to cover \mathcal{G} . They also increase as ϵ decreases.
- ► The bracketing integral is defined as

$$J_{[]}(\delta,\mathcal{G},L_2(F)) := \int_0^\delta \sqrt{\log N_{[]}(\epsilon,\mathcal{G} \cup \{0\},L_2(F))} d\epsilon, \delta > 0.$$

An envelope function of a class \mathcal{G} is any function $x \mapsto G(x)$ such that $g(x) \leq G(x)$, for every $x \in \mathcal{X}$ and $g \in \mathcal{G}$.

- $lackbox (\mathcal{G},\|\cdot\|)$ be a subset of a normed linear space of functions $g:\mathcal{X} o\mathbb{R}$.
- ▶ For probability spaces (Ω, \mathcal{F}, F) , norm is usually $L_r(F)$ norm.
- ▶ Given two functions $I(\cdot)$ and $u(\cdot)$, the bracket [I, u] is the set $\{g \in \mathcal{G}: I(x) \leq g(x) \leq u(x), \forall x \in \mathcal{X} \}$. An ϵ -bracket is a bracket [I, u] such that $||I u|| < \epsilon$.
- ► The ϵ -bracketing number $N_{[]}(\epsilon, \mathcal{G}, \|\cdot\|)$ is the min. number of ϵ -brackets needed to cover \mathcal{G} . They also increase as ϵ decreases.
- ► The bracketing integral is defined as

$$J_{[]}(\delta,\mathcal{G},L_2(F)):=\int_0^\delta \sqrt{\log N_{[]}(\epsilon,\mathcal{G}\cup\{0\},L_2(F))}d\epsilon,\delta>0.$$

▶ An envelope function of a class \mathcal{G} is any function $x \mapsto G(x)$ such that $g(x) \leq G(x)$, for every $x \in \mathcal{X}$ and $g \in \mathcal{G}$.

Suppose that a square-integrable (measurable) envelope G exists for G.

Result

 ${\cal G}$ is F-Donsker if and only if there exists a semi-metric $d(\cdot,\cdot)$ on ${\cal G}$ such that $({\cal G},d)$ is totally bounded and

$$\lim_{\delta \to 0} \limsup_{n \to \infty} Pr^* \left(\sup_{d(f,g) \le \delta; f,g \in \mathcal{G}} |X_n f - X_n g| > \epsilon \right) = 0,$$

for every $\epsilon>0$. (Asymptotically equicontinuous in probability,

A possible choice for the semi-metric d is $d^2(f,g) = Var_F(f(Z) - g(Z))$

Suppose that a square-integrable (measurable) envelope G exists for G.

Result

 $\mathcal G$ is F-Donsker if and only if there exists a semi-metric $d(\cdot,\cdot)$ on $\mathcal G$ such that $(\mathcal G,d)$ is totally bounded and

$$\lim_{\delta \to 0} \limsup_{n \to \infty} Pr^* \left(\sup_{d(f,g) \le \delta; f,g \in \mathcal{G}} |X_n f - X_n g| > \epsilon \right) = 0,$$

for every $\epsilon > 0$. (Asymptotically equicontinuous in probability)

A possible choice for the semi-metric d is $d^2(f,g) = Var_F(f(Z) - g(Z))$

Suppose that a square-integrable (measurable) envelope G exists for G.

Result

 $\mathcal G$ is F-Donsker if and only if there exists a semi-metric $d(\cdot,\cdot)$ on $\mathcal G$ such that $(\mathcal G,d)$ is totally bounded and

$$\lim_{\delta \to 0} \limsup_{n \to \infty} Pr^* \left(\sup_{d(f,g) \le \delta; f,g \in \mathcal{G}} |X_n f - X_n g| > \epsilon \right) = 0,$$

for every $\epsilon > 0$. (Asymptotically equicontinuous in probability)

A possible choice for the semi-metric d is $d^2(f,g) = Var_F(f(Z) - g(Z))$

Result (Bracketing integrals)

Suppose that $J_{[]}(1,\mathcal{G},L_2(F))<\infty$. Then \mathcal{G} is F-Donsker.

$$J_{[]}(1,\mathcal{G},L_2(F)) = \int_0^1 \sqrt{\log N_{[]}(\epsilon,\mathcal{G} \cup \{0\},L_2(F))} d\epsilon$$

- The integrand is a decreasing function of ϵ . So the convergence depends on the size of bracketing numbers as $\epsilon \downarrow 0$.
- ▶ We know that $\int_0^1 \epsilon^{-r} d\epsilon$ converges for r < 1 and diverges for $r \ge 1$.
- ► The result is in force if the bracketing entropy, i.e. the logarithm of the bracketing number is bounded by,

 $K\epsilon^{-r}$ for some K and r<2.

Result (Bracketing integrals)

Suppose that $J_{[]}(1,\mathcal{G},L_2(F))<\infty$. Then \mathcal{G} is F-Donsker.

$$J_{[]}(1,\mathcal{G},L_2(F)) = \int_0^1 \sqrt{\log N_{[]}(\epsilon,\mathcal{G} \cup \{0\},L_2(F))} d\epsilon$$

- ▶ The integrand is a decreasing function of ϵ . So the convergence depends on the size of bracketing numbers as $\epsilon \downarrow 0$.
- ▶ We know that $\int_0^1 \epsilon^{-r} d\epsilon$ converges for r < 1 and diverges for $r \ge 1$.
- The result is in force if the bracketing entropy, i.e. the logarithm of the bracketing number is bounded by,

 $K\epsilon^{-r}$ for some K and r<2.

Result (Bracketing integrals)

Suppose that $J_{[]}(1,\mathcal{G},L_2(F))<\infty$. Then \mathcal{G} is F-Donsker.

$$J_{[]}(1,\mathcal{G},L_2(F)) = \int_0^1 \sqrt{\log N_{[]}(\epsilon,\mathcal{G} \cup \{0\},L_2(F))} d\epsilon$$

- ▶ The integrand is a decreasing function of ϵ . So the convergence depends on the size of bracketing numbers as $\epsilon \downarrow 0$.
- ▶ We know that $\int_0^1 e^{-r} d\epsilon$ converges for r < 1 and diverges for $r \ge 1$.
- ► The result is in force if the bracketing entropy, i.e. the logarithm of the bracketing number is bounded by,

 $K\epsilon^{-r}$ for some K and r < 2.

Result (Bracketing integrals)

Suppose that $J_{[]}(1,\mathcal{G},L_2(F))<\infty$. Then \mathcal{G} is F-Donsker.

Result (Uniform covering numbers)

Suppose that,

$$\int_0^1 \sup_{Q} \sqrt{\log N(\epsilon \|G\|_{Q,2}, \mathcal{G}, L_2(Q))} d\epsilon < \infty.$$

Then G is F—Donsker.

Here the supremum is taken over all probability measures $\mathcal Q$ for which the class $\mathcal G$ is not identically zero.

Result (Classical Donsker's Theorem)

let $\mathcal{X} = \mathbb{R}$ and $\mathcal{G} = \{1_{(-\infty,t]}(\cdot) : t \in \mathbb{R}\}$. Then \mathcal{G} is F-Donsker, i.e., $\{X_ng : g \in \mathcal{G}\}$ converges to a tight element in the space $I^{\infty}(\mathcal{G})$.

- Proof: We will use the Bracketing integral condition to show this
- It suffices to show that the bracketing entropy grows no faster than K/ϵ^2 for some constant K.
- Choose $-\infty = t_0 < t_1 \cdots < t_k = \infty$ such that $F(t_i -) F(t_{i-1}) < \epsilon^2$ for each $i = 1, \dots, k$. k can be chosen to be less than $2/\epsilon^2$.
- ▶ Consider brackets of the form $[1_{(-\infty,t_{i-1}]},1_{(-\infty,t_i)}]$. Clearly, these brackets cover \mathcal{G} .
- $||1_{(-\infty,t_{i-1}]} 1_{(-\infty,t_i)}||_2 = ||1_{(t_{i-1},t_i)}||_2 = (F(t_i-) F(t_{i-1}))^{1/2} < \epsilon.$
- ▶ So, $N_{[]}(\epsilon, \mathcal{G}, L_2(F)) < 2/\epsilon^2$, whence, $\log N_{[]}(\epsilon, \mathcal{G}, L_2(F)) < 2/\epsilon^2$. \square

Result (Classical Donsker's Theorem)

let $\mathcal{X} = \mathbb{R}$ and $\mathcal{G} = \{1_{(-\infty,t]}(\cdot) : t \in \mathbb{R}\}$. Then \mathcal{G} is F-Donsker, i.e., $\{X_ng : g \in \mathcal{G}\}$ converges to a tight element in the space $I^{\infty}(\mathcal{G})$.

- ▶ *Proof:* We will use the Bracketing integral condition to show this.
- It suffices to show that the bracketing entropy grows no faster than K/ϵ^2 for some constant K.
- ► Choose $-\infty = t_0 < t_1 \cdots < t_k = \infty$ such that $F(t_{i-1}) F(t_{i-1}) < \epsilon^2$ for each i = 1, ..., k. k can be chosen to be less than $2/\epsilon^2$.
- ▶ Consider brackets of the form $[1_{(-\infty,t_{l-1}]},1_{(-\infty,t_l)}]$. Clearly, these brackets cover G.
- $||1_{(-\infty,t_{i-1}]} 1_{(-\infty,t_i)}||_2 = ||1_{(t_{i-1},t_i)}||_2 = (F(t_i) F(t_{i-1}))^{1/2} < \epsilon.$
- $lackbox{ So, } N_{[]}(\epsilon,\mathcal{G},L_2(F)) < 2/\epsilon^2$, whence, $\log N_{[]}(\epsilon,\mathcal{G},L_2(F)) < 2/\epsilon^2$. \square

Result (Classical Donsker's Theorem)

let $\mathcal{X} = \mathbb{R}$ and $\mathcal{G} = \{1_{(-\infty,t]}(\cdot) : t \in \mathbb{R}\}$. Then \mathcal{G} is F-Donsker, i.e., $\{X_{n}g : g \in \mathcal{G}\}$ converges to a tight element in the space $I^{\infty}(\mathcal{G})$.

- Proof: We will use the Bracketing integral condition to show this.
- It suffices to show that the bracketing entropy grows no faster than K/ϵ^2 for some constant K.
- ► Choose $-\infty = t_0 < t_1 \cdots < t_k = \infty$ such that $F(t_{i-1}) F(t_{i-1}) < \epsilon^2$ for each i = 1, ..., k. k can be chosen to be less than $2/\epsilon^2$.
- Consider brackets of the form $[1_{(-\infty,t_{i-1}]},1_{(-\infty,t_i)}]$. Clearly, these brackets cover \mathcal{G} .
- $||1_{(-\infty,t_{i-1}]} 1_{(-\infty,t_i)}||_2 = ||1_{(t_{i-1},t_i)}||_2 = (F(t_i-) F(t_{i-1}))^{1/2} < \epsilon.$
- ▶ So, $N_{[]}(\epsilon, \mathcal{G}, L_2(F)) < 2/\epsilon^2$, whence, $\log N_{[]}(\epsilon, \mathcal{G}, L_2(F)) < 2/\epsilon^2$.

Result (Classical Donsker's Theorem)

let $\mathcal{X} = \mathbb{R}$ and $\mathcal{G} = \{1_{(-\infty,t]}(\cdot) : t \in \mathbb{R}\}$. Then \mathcal{G} is F-Donsker, i.e., $\{X_ng : g \in \mathcal{G}\}$ converges to a tight element in the space $I^{\infty}(\mathcal{G})$.

- Proof: We will use the Bracketing integral condition to show this.
- It suffices to show that the bracketing entropy grows no faster than K/ϵ^2 for some constant K.
- ► Choose $-\infty = t_0 < t_1 \cdots < t_k = \infty$ such that $F(t_{i-1}) F(t_{i-1}) < \epsilon^2$ for each i = 1, ..., k. k can be chosen to be less than $2/\epsilon^2$.
- ▶ Consider brackets of the form $[1_{(-\infty,t_{i-1}]},1_{(-\infty,t_i)}]$. Clearly, these brackets cover \mathcal{G} .
- $\|1_{(-\infty,t_{i-1}]} 1_{(-\infty,t_i)}\|_2 = \|1_{(t_{i-1},t_i)}\|_2 = (F(t_i-) F(t_{i-1}))^{1/2} < \epsilon.$
- ▶ So, $N_{[]}(\epsilon, \mathcal{G}, L_2(F)) < 2/\epsilon^2$, whence, $\log N_{[]}(\epsilon, \mathcal{G}, L_2(F)) < 2/\epsilon^2$. \square

Result (Classical Donsker's Theorem)

let $\mathcal{X} = \mathbb{R}$ and $\mathcal{G} = \{1_{(-\infty,t]}(\cdot) : t \in \mathbb{R}\}$. Then \mathcal{G} is F-Donsker, i.e., $\{X_ng : g \in \mathcal{G}\}$ converges to a tight element in the space $I^{\infty}(\mathcal{G})$.

- Proof: We will use the Bracketing integral condition to show this.
- It suffices to show that the bracketing entropy grows no faster than K/ϵ^2 for some constant K.
- ► Choose $-\infty = t_0 < t_1 \cdots < t_k = \infty$ such that $F(t_{i-1}) F(t_{i-1}) < \epsilon^2$ for each i = 1, ..., k. k can be chosen to be less than $2/\epsilon^2$.
- ▶ Consider brackets of the form $[1_{(-\infty,t_{i-1}]},1_{(-\infty,t_i)}]$. Clearly, these brackets cover \mathcal{G} .
- $\|1_{(-\infty,t_{i-1}]} 1_{(-\infty,t_i)}\|_2 = \|1_{(t_{i-1},t_i)}\|_2 = (F(t_i-) F(t_{i-1}))^{1/2} < \epsilon.$
- ▶ So, $N_{[]}(\epsilon, \mathcal{G}, L_2(F)) < 2/\epsilon^2$, whence, $\log N_{[]}(\epsilon, \mathcal{G}, L_2(F)) < 2/\epsilon^2$. \square

Result (Classical Donsker's Theorem)

let $\mathcal{X} = \mathbb{R}$ and $\mathcal{G} = \{1_{(-\infty,t]}(\cdot) : t \in \mathbb{R}\}$. Then \mathcal{G} is F-Donsker, i.e., $\{X_{n}g : g \in \mathcal{G}\}$ converges to a tight element in the space $I^{\infty}(\mathcal{G})$.

- Proof: We will use the Bracketing integral condition to show this.
- It suffices to show that the bracketing entropy grows no faster than K/ϵ^2 for some constant K.
- ► Choose $-\infty = t_0 < t_1 \cdots < t_k = \infty$ such that $F(t_{i-1}) F(t_{i-1}) < \epsilon^2$ for each i = 1, ..., k. k can be chosen to be less than $2/\epsilon^2$.
- ▶ Consider brackets of the form $[1_{(-\infty,t_{i-1}]},1_{(-\infty,t_i)}]$. Clearly, these brackets cover \mathcal{G} .
- $\|1_{(-\infty,t_{i-1}]} 1_{(-\infty,t_i)}\|_2 = \|1_{(t_{i-1},t_i)}\|_2 = (F(t_i-) F(t_{i-1}))^{1/2} < \epsilon.$
- ▶ So, $N_{[]}(\epsilon, \mathcal{G}, L_2(F)) < 2/\epsilon^2$, whence, $\log N_{[]}(\epsilon, \mathcal{G}, L_2(F)) < 2/\epsilon^2$.

Result (Classical Donsker's Theorem)

let $\mathcal{X} = \mathbb{R}$ and $\mathcal{G} = \{1_{(-\infty,t]}(\cdot) : t \in \mathbb{R}\}$. Then \mathcal{G} is F-Donsker, i.e., $\{X_{n}g : g \in \mathcal{G}\}$ converges to a tight element in the space $I^{\infty}(\mathcal{G})$.

- Proof: We will use the Bracketing integral condition to show this.
- It suffices to show that the bracketing entropy grows no faster than K/ϵ^2 for some constant K.
- ► Choose $-\infty = t_0 < t_1 \cdots < t_k = \infty$ such that $F(t_{i-1}) F(t_{i-1}) < \epsilon^2$ for each i = 1, ..., k. k can be chosen to be less than $2/\epsilon^2$.
- ▶ Consider brackets of the form $[1_{(-\infty,t_{i-1}]},1_{(-\infty,t_i)}]$. Clearly, these brackets cover \mathcal{G} .
- $\|1_{(-\infty,t_{i-1}]} 1_{(-\infty,t_i)}\|_2 = \|1_{(t_{i-1},t_i)}\|_2 = (F(t_i-) F(t_{i-1}))^{1/2} < \epsilon.$
- ▶ So, $N_{[1]}(\epsilon, \mathcal{G}, L_2(F)) < 2/\epsilon^2$, whence, $\log N_{[1]}(\epsilon, \mathcal{G}, L_2(F)) < 2/\epsilon^2$.

Goodness of Fit

- \triangleright F_n is a natural estimator of the population distribution function F.
- An analysis of the discrepancy between the two can be used to test the hypothesis about the underlying population.
- Some popular goodness of fit statistic are

$$\sqrt{n}\|F_n - F\|_{\infty}$$
, (Kolmogorov-Smirnov)
 $n \int (F_n - F)^2 dF$, (Cramér-von Mises).

Donsker's result along with the Continuous mapping theorem gives the asymptotic distribution of both statistics.

Goodness of Fit

- \triangleright F_n is a natural estimator of the population distribution function F.
- An analysis of the discrepancy between the two can be used to test the hypothesis about the underlying population.
- Some popular goodness of fit statistic are,

$$\sqrt{n} \|F_n - F\|_{\infty}$$
, (Kolmogorov-Smirnov),
 $n \int (F_n - F)^2 dF$, (Cramér-von Mises).

Donsker's result along with the Continuous mapping theorem gives the asymptotic distribution of both statistics.

Goodness of Fit

- \triangleright F_n is a natural estimator of the population distribution function F.
- An analysis of the discrepancy between the two can be used to test the hypothesis about the underlying population.
- ► Some popular goodness of fit statistic are,

$$\sqrt{n} \|F_n - F\|_{\infty}$$
, (Kolmogorov-Smirnov),
 $n \int (F_n - F)^2 dF$, (Cramér-von Mises).

▶ Donsker's result along with the Continuous mapping theorem gives the asymptotic distribution of both statistics.

M-estimators

- ► *M*—estimators are those which are obtained as result of a maximization or a minimization procedure.
- Familiar examples include the OLS estimates in regression model, maximum likelihood estimators, and also various location estimators like the sample mean and sample quantiles.
- ▶ Important results such as the *argmax continuity mapping theorem* and *asymptotic normality* of *M*—estimators utilize the rich theory of empirical processes.

M-estimators

- ► *M*—estimators are those which are obtained as result of a maximization or a minimization procedure.
- ► Familiar examples include the *OLS estimates* in regression model, maximum likelihood estimators, and also various location estimators like the sample mean and sample quantiles.
- ▶ Important results such as the argmax continuity mapping theorem and asymptotic normality of M—estimators utilize the rich theory of empirical processes.

M-estimators

- ► *M*—estimators are those which are obtained as result of a maximization or a minimization procedure.
- ► Familiar examples include the *OLS estimates* in regression model, maximum likelihood estimators, and also various location estimators like the sample mean and sample quantiles.
- ► Important results such as the argmax continuity mapping theorem and asymptotic normality of M—estimators utilize the rich theory of empirical processes.

References

- Sen, B. A Gentle Introduction to Empirical Process Theory and Applications. Lecture Notes. Columbia University.
- Vaart, A. (1998). Asymptotic statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge.
- ▶ Vaart, A. and Wellner, J. A. (1996). Weak convergence and empirical processes. Springer Series in Statistics. Springer-Verlag, New York

Questions????

