B. Sc. (Information Technology)		Semester – V		
Course Name: Artificial Intelligence		Course Code: USIT504 (Elective I)		
Periods per week (1 Period is 50 minutes)		5		
Credits		2		
		Hours	Marks	
Evaluation System	Theory Examination	21/2	75	
	Internal		25	

Unit	Details	Lectures
Ι	Introduction: What is Artificial Intelligence? Foundations of AI,	
	history, the state of art AI today.	12
	Intelligent Agents: agents and environment, good behavior, nature of	12
	environment, the structure of agents.	
II	Solving Problems by Searching: Problem solving agents, examples	
	problems, searching for solutions, uninformed search, informed search	
	strategies, heuristic functions.	12
	Beyond Classical Search: local search algorithms, searching with non-deterministic action, searching with partial observations, online search agents and unknown environments.	
III	Adversarial Search: Games, optimal decisions in games, alpha-beta	
	pruning, stochastic games, partially observable games, state-of-the-are	
	game programs.	12
	Logical Agents: Knowledge base agents, The Wumpus world, logic, propositional logic, propositional theorem proving, effective propositional model checking, agents based on propositional logic.	
IV	First Order Logic: Syntax and semantics, using First Order Logic,	
	Knowledge engineering in First Order Logic.	12
	Inference in First Order Logic: propositional vs. First Order, unification and lifting, forward and backward chaining, resolution.	12
V	Planning: Definition of Classical Planning, Algorithms for planning	
	as state space search, planning graphs, other classical planning	
	approaches, analysis of planning approaches, Time, Schedules and	
	resources, hierarchical planning, Planning and Acting in Nondeterministic	12
	Domains, multiagent planning,	12
	Knowledge Representation: Categories and Objects, events, mental	
	events and objects, reasoning systems for categories, reasoning with default information, Internet shopping world	

Books and References:					
Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Artificial Intelligence: A Modern Approach	Stuart Russel and Peter Norvig	Pearson	3 rd	2015

2.	A First Course in Deepak Khemani		TMH	First	2017
	Artificial Intelligence				
3.	Artificial Intelligence:	Rahul Deva	Shroff	1 st	2018
	A Rational Approach		publishers		
4.	Artificial Intelligence	Elaine Rich, Kevin	TMH	3 rd	2009
		Knight and			
		Shivashankar Nair			
5.	Artificial Intelligence &	Anandita Das	SPD	1 st	2013
	Soft Computing for	Bhattacharjee			
	Beginners				

B. Sc. (Information Technology)		Semester – V		
Course Name: Artificial Intelligence Practical		Course Code: USIT5P4		
		(Elective I)		
Periods per week (1 Period is 50 minutes)		3		
Credits		2		
		Hours	Marks	
Evaluation System	Practical Examination	21/2	50	
	Internal			

Practi	cal	Details	
No			
1	a	Write a program to implement depth first search algorithm.	
	b	Write a program to implement breadth first search algorithm.	
2	a	Write a program to simulate 4-Queen / N-Queen problem.	
	b	Write a program to solve tower of Hanoi problem.	
3	a	Write a program to implement alpha beta search.	
	b	Write a program for Hill climbing problem.	
4	a	Write a program to implement A* algorithm.	
	b	Write a program to implement AO* algorithm.	
5	a	Write a program to solve water jug problem.	
	b	Design the simulation of tic – tac – toe game using min-max algorithm.	
6	a	Write a program to solve Missionaries and Cannibals problem.	
	b	Design an application to simulate number puzzle problem.	
7	a	Write a program to shuffle Deck of cards.	
	b	Solve traveling salesman problem using artificial intelligence technique.	
8	a	Solve the block of World problem.	
	b	Solve constraint satisfaction problem	
9	a	Derive the expressions based on Associative law	
	b	Derive the expressions based on Distributive law	
10	a	Write a program to derive the predicate.	
		(for e.g.: Sachin is batsman, batsman is cricketer) -> Sachin is Cricketer.	
	b	Write a program which contains three predicates: male, female, parent. Make	
		rules for following family relations: father, mother, grandfather, grandmother,	
		brother, sister, uncle, aunt, nephew and niece, cousin.	
		Question:	
		i. Draw Family Tree.	
		ii. Define: Clauses, Facts, Predicates and Rules with conjunction and	
		disjunction	

The practicals can be implemented in C / C++ / Java/ Python / R /Prolog / LISP or any other language.