

TECHNICAL REPORT TL-77-10

U.S. ARMY
MISSILE
RESEARCH
AND
DEVELOPMENT
COMMAND

AN EXPERIMENTAL TECHNIQUE TO EVALUATE THE BLOW-OFF EFFECTS OF NUCLEAR WEAPONS

John A. Schaeffel and Bobby R. Mullinix Ground Equipment and Missile Structures Directorate Technology Laboratory

William F. Ranson Auburn University

16 September 1977

Redstone Arsenal, Alabama 35809

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	CESSION NO. 3. RECIPIENT'S CATALOG NUMBER
TL-77-107DRDMI-12-77-1	0
TITLE (and Subitle)	TYPE OF REPORT & PERIOD COVERED
AN EXPERIMENTAL TECHNIQUE TO EVALUATE THE	Technical kepet
BLOW-OFF EFFECTS OF NUCLEAR WEAPONS.	6 PERSONNE ORG. REPORT NUMBER
The second secon	TL-77-10
AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(*)
John A./Schaeffel Bobby R./Mullinix	(12/62p,
William F. Ranson	
PERFORMING ONGANIZATION NAME AND ADDRESS	10. APOGRAM ELEMENT, PROJECT, TASK
Commander US Army Missile Research and Development	4//0
At tn: DRDMI-TL	AMCMS 632303.112140811.01
Redstone Arsenal, Alabama 35809 CONTROLLING OFFICE NAME AND ADDRESS	ME: REPORT DATE
Commander	16 Sep. 77
US Army Missile Research and Development Attn: DRDMI-TI	PARTICIPATION PROCESSION
Redstone Arsenal, Alabama 35809 MONITORING AGENCY NAME & ADDRESS(If different from Control	159 Sing Office) 15. SECURITY CLASS. (of this report)
MONITORING VOCACE WANTE & VARIETY IN THE MONITOR ON THE	
	UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
DISTRIBUTION STATEMENT (of this Report)	
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, i	tion unlimited.
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, i	
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, is supplementary notes. KEY WORDS (Continue on reverse side if necessary and identify by	if different from Report)
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by Nuclear weapons effects B1	block number)
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side it necessary and identify by Nuclear weapons effects Missile structures Op	block number) Low-off Otical techniques
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by Nuclear weapons effects Missile structures Op	block number)
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by Nuclear weapons effects Missile structures Op X-ray effects Hi	block number) Low-off Otical techniques .gh speed photography
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by Nuclear weapons effects Missile structures Op X-ray effects Hi ABSTRACT (Continue on reverse side if necessary and identify by N	block number) Low-off Otical techniques Ligh speed photography
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by its Nuclear weapons effects Missile structures Op X-ray effects Hi ABSTRACT (Continue on reverse side if necessary and identify by its Nuclear weapons and identify by its Nuclear weapons are reverse side if necessary and identify by its Nuclear way and identify way and identify way and identify way and identify way and ide	block number) Low-off Otical techniques Ligh speed photography block number)
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by a superimental technique to simulate concentrations of x-rays resulting from a	block number) Low-off Otical techniques Ligh speed photography Dlock number) Lee and evaluate the effects of high a nuclear detonation on missile
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by a superimental technique to simulate concentrations of x-rays resulting from a structures is presented. Data from 34 te	block number) Low-off Otical techniques Ligh speed photography block number) Lee and evaluate the effects of high a nuclear detonation on missile lests are included to demonstrate
Nuclear weapons effects Missile structures ABSTRACT (Continue on reverse side if necessary and identify by the concentrations of x-rays resulting from a structures is presented. Data from 34 te the technique. The effects on the total voltage, and plate thickness on the total	block number) Low-off Otical techniques Ligh speed photography block number) Lee and evaluate the effects of high a nuclear detonation on missile lests are included to demonstrate in the foil thickness, capacitor impulse and maximum strain in the
Nuclear weapons effects Missile structures ABSTRACT (Continue on reverse side if necessary and identify by the concentrations of x-rays resulting from a structures is presented. Data from 34 te the technique. The effects of variations	block number) Low-off Otical techniques Ligh speed photography block number) Lee and evaluate the effects of high a nuclear detonation on missile lests are included to demonstrate in the foil thickness, capacitor impulse and maximum strain in the
Nuclear weapons effects Missile structures ABSTRACT (Continue on reverse side if necessary and identify by the concentrations of x-rays resulting from a structures is presented. Data from 34 te the technique. The effects on the total voltage, and plate thickness on the total	block number) Low-off Otical techniques Ligh speed photography block number) Lee and evaluate the effects of high a nuclear detonation on missile lests are included to demonstrate in the foil thickness, capacitor impulse and maximum strain in the
Nuclear weapons effects Missile structures ABSTRACT (Continue on reverse side if necessary and identify by the concentrations of x-rays resulting from a structures is presented. Data from 34 te the technique. The effects of variations voltage, and plate thickness on the total structure were determined. The experiment	block number) Low-off Dical techniques Logh speed photography Block number) Lee and evaluate the effects of high a nuclear detonation on missile lests are included to demonstrate in the foil thickness, capacitor impulse and maximum strain in the letal technique utilizes a high
Nuclear weapons effects Missile structures Nuclear weapons effects Missile structures An experimental technique to simulate concentrations of x-rays resulting from a structures is presented. Data from 34 technique. The effects of variations voltage, and plate thickness on the total structure were determined. The experimental technique. The experimental structure were determined. The experimental structure were determined. The experimental structure were determined.	block number) Low-off Otical techniques Loke number) Low and evaluate the effects of high a nuclear detonation on missile lests are included to demonstrate in the foil thickness, capacitor impulse and maximum strain in the latal technique utilizes a high ABSTRACT (Continued) UNCLASSIFIED
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by Nuclear weapons effects Missile structures Op X-ray effects An experimental technique to simulat concentrations of x-rays resulting from 34 te the technique. The effects of variations voltage, and plate thickness on the total structure were determined. The experiment	block number) Low-off Otical techniques Ligh speed photography Stee and evaluate the effects of high In nuclear detonation on missile Lests are included to demonstrate Light in the foil thickness, capacitor Limpulse and maximum strain in the Lital technique utilizes a high ABSTRACT (Continued)

41\$ 263

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) ABSTRACT (Continued) energy capacitor discharge unit to explode an aluminum foil on the surface of the structure. The structural response is evaluated by optical methods using the grid slope deflection method. The fringe patterns were recorded using a high-speed framing camera. The data were digitized using an optical comparator with an x-y table. The analysis was performed on a CDC 6600 computer.

CONTENTS

																								Page
ı.	INTRODU	CTIO	ν.																					3
II.	THEORY													•				•						4
III.	EXPERIM	ENTA	L G	EOM	ETF	RY	ANI	1 (Œī	HC	D	OF	I	OA	D	AP	PL	ııc	IA:	IC	M	•		10
IV.	DATA AN	ALYS	ıs.				•			•	•	•						•						18
v.	DISCUSS	SION .	AND	RE	SUI	TS	•				•				•		•						•	26
VI.	SUMMARY	AND	CO	NCL	USI	ON	s.				•		•						•	•			•	31
REFER	ENCES .													•						•	•			45
Append	dix. CC	MPUT	ER	COD	ES.																			47

ATIS	White Section 2
386	Buff Section C
UNANTOURCE	n C
JUSTIFIGATIO	N Process
	DR/AVAILABILITY CODES
DISTRIBUTIO Dist.	DR/AVAILABILITY CODES AVAIL ENG/OF SPECIAL

ACKNOWLEDGMENTS

The authors express their gratitude and deep appreciation to Mr. V. G. Irelan for his assistance with the control system electronics and to Mr. W. B. Matkin and Ms. D. K. Russell for their aid with the laboratory work and data reduction.

I. INTRODUCTION

The three broad divisions of nuclear weapons effects are blast, thermal radiation, and nuclear radiation. Blast effects include airblast, cratering, and ground shock. Thermal radiation includes the effects of heat and light. The divisions of nuclear radiation are (a) the initial effects which include gamma and neutron radiation and (b) the residual effects which include induced radiation and fallout. The alpha and beta effects are significant only within distances of approximately 2 meters of ground zero and are therefore negligible in comparison with other effects.

Restrictions placed on nuclear testing by regulations, treaties, and costs made it imperative that a large portion of the nuclear weapons effects research be done through experimental and simulation techniques.

The objective of this research is to develop an experimental technique to simulate and evaluate the effects of high concentrations of x-rays resulting from a nuclear detonation on missile structures (blow-off) and perform basic tests to establish the validity of the technique.

Prior research investigated the effects of nuclear weapons on missile structures while subjected to the combined loading conditions encountered in a flight environment [1]. The primary effects considered were prestress due to flight loads, pressure from the air blast, and heat from the flight environment plus thermal radiation from the detonation.

The two energy sources considered to explode the foil on the surface were a high energy capacitor discharge unit and a laser. The high energy capacitor discharge unit was selected.

Several existing methods measure the slope of deformed plates using grids projected on the reflecting surface of flat plates [2,3,4]. However, these methods are usually considered cumbersome and more immediate Moire' techniques have been developed which record partial slopes directly. The first was a double exposure method developed by Ligtenberg [5]. In this method, Ligtenberg photographed a grating reflected off the surface of a polished plate before deformation. After deformation a second exposure was made of the grating projected on the plate. The result is a Moire' pattern appearing on the negative that shows the partial slope contours of the plate in the principal directions of the grid lines. Rieder and Ritter [6] improved the accuracy of this method by using a partial mirror and a line grating of a greater density. Finally, Chiang [7] has used the method of Rieder and Ritter to measure the partial slopes of plates subjected to a dynamic loading. A complete description of the different techniques and experimental apparatus is presented by Theocaris [8] and Durelli and Parks [9].

The original technique developed by Ligtenberg and the subsequent improvements have enabled the partial slopes to be determined directly by a photograph. However, there are some limitations in these methods which restrict their use. The plate must be initially flat; otherwise, fringes will occur due to the inital curvature of the plate. For example, black Plexiglas is an excellent material to use in the Ligtenberg method because of the good surface quality. A polished aluminum plate has enough surface variation to cause many initial fringes. The use of partial mirrors in the system reduces the available light to the camera which is a limitation when high-speed cameras are used to photograph a dynamic event. Also, double exposures are difficult for dynamic events.

To determine the response of flat plates subjected to blow-off, a projected grid method was utilized because of the limitations of the more direct Moire' methods. A rotating drum camera was used to record the event with light illumination provided by a pulsed light source of approximately 8.6-msec time duration. However, all of the avaliable light was needed to expose the film and proper film exposure could not be obtained with the Ligtenberg techniques.

In the reflecting grid method of analysis, the data reduction is generally more difficult than the Moire' methods. However, if analysis is restricted to the maximum conditions at the center of the plate, then the amount of work is considerably reduced. Although data are recorded for the complete response of the plate, only the maximum conditions are included in this report.

II. THEORY

A. General

The principle of the method used to record slope contours in thin plates is shown schematically in Figure 1. A light field is used to reflect a grating onto the reflective surface of an initially flat plate. After deformation, the camera records the distorted grid pattern reflected by the deformed plate.

Refer to Figure 2 and let a point a' on the undeformed plate reflect light from a point y_3 on the grid illuminated by collimated light at an incident angle α . When the plate is deformed, point a' reflects light from a point y_4 on the grid. When the plate is deformed, the angle of rotation of the plate at point a' is denoted by β . The angle β can be calculated from the change in shape of the grid pattern.

Figure 1. Schematic representation of apparatus used to obtain the partial slopes in flat plates.

From the geometry of the schematic of the experimental apparatus, the target of the angles (α + 2 β) and α can be calculated as

$$\tan (\alpha + 2\beta) = \frac{y_4 - y_2}{z'}$$
 (1)

$$\tan (\alpha) = \frac{y_3 - y_2}{z'} \tag{2}$$

From the geometry of the experimental configuration, the following relationships are known:

$$y_2 = y + D_y \tag{3}$$

$$y_4 = y_1 + N_y^G y$$
 (4)

$$y_3 = (y + D_y) \left[\frac{z' + z}{z} \right]$$
 (5)

Figure 2. Experimental geometry for the blow-off simulation of a flat plate.

where

a = plate center

 $G_{\mathbf{y}}$ = grid spacing in the y direction

 N_{v} = number of grids between a' and a

 β = slope at the point a'

Equations (1) through (5) can be used to solve for the slope of the plate a' which has the following form:

$$\beta = \frac{1}{2} \left\{ \tan^{-1} \left[\frac{N_y G_y}{z'} + \frac{y}{z} - \frac{D_y}{z'} \right] - \tan^{-1} \left[\frac{y}{z} + \frac{D_y}{z} \right] \right\} . \tag{6}$$

Equation (6) is the basic equation which relates the slope of the plate at point a' to the change in grid spacing. This equation can be simplified for small deformation approximations consistant with the linear plate theory. However, in the analysis of the data, Equation (6) will be used in the general form.

B. Restrictions for Small Angle Changes

The results for tan 2β in Equation (6) can be simplified based on small angles of rotation approximations. The angle β in Equations (1) and (2) can be put in the following form consistant with these restrictions:

$$\tan (2\beta) = \left\{ \frac{y_4 - y_2}{z'} \right\} \left\{ 1 - \tan(\alpha) \tan(2\beta) \right\} - \tan(\alpha)$$
 (7)

The term $(y_4 - y_2)/z'$ can be put in the following form:

$$\frac{y_4 - y_2}{z'} = \frac{y_4 - y_3}{z'} + \tan \alpha \qquad . \tag{8}$$

Equations (7) and (8), with the restriction that usually in an experiment y_{\perp} - $y_{3}<< z'$, can be reduced to

$$\beta \simeq \frac{(y_4 - y_3) \cos^2 \alpha}{2z!} \qquad (9)$$

Equation (9) in this restricted form agrees with the methods used by Theocaris [8] and Durelli and Parks [9].

Figure 3 illustrates the coordinate system and location of the projected grid orders on the flat plate. A reference mark was projected on the surface of the plate to locate the plate centerline of the x and y grid orders. Positive and negative grid orders will correspond to the positive and negative coordinate directions.

C. Stress-Strain-Displacement Relationships for Linear Plate Theory

In classical plate theory, the strain components are related to the transverse displacement w(x,y,t) and the in-plane components u(x,y,t), v(x,y,t) as shown in the following equations:

Figure 3. Coordinate system and orientation of the projected grid and orders on the plate surface.

$$\epsilon_{xx} = \frac{\partial u}{\partial y} - z \frac{\partial^2 w}{\partial x^2}$$

$$\epsilon_{yy} = \frac{\partial v}{\partial y} - z \frac{\partial^2 w}{\partial x^2}$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} - 2z \frac{\partial^2 w}{\partial x \partial y}$$
(10)

The nonzero stress components are related to the strain components as shown by the following equations:

$$\sigma_{xx} = \frac{E}{1 - \nu^2} \left[\epsilon_{xx} + \nu \epsilon_{yy} - (1 + \nu) \alpha \Delta T \right]$$

$$\sigma_{yy} = \frac{E}{1 - \nu^2} \left[\epsilon_{yy} + \nu \epsilon_{xx} - (1 + \nu) \alpha \Delta T \right]$$

$$\tau_{xy} = \frac{E}{2(1 + \nu)} \gamma_{xy} ,$$
(11)

where

 \mathbf{u} , \mathbf{v} , and \mathbf{w} = displacements in the \mathbf{x} , \mathbf{y} , and \mathbf{z} coordinate direction, respectively,

 ϵ_{xx} = strain in the x-direction

 ϵ_{yy} = strain in the y-direction

7xv = shearing strain

 σ_{xx} = stress in the x-direction

o = stress in the y-direction

τ = shearing stress

 α = coefficient of linear expansion

△T = differential temperature

v = Poisson's ratio.

III. EXPERIMENTAL GEOMETRY AND METHOD OF LOAD APPLICATION

A. Plate Foil Sublimation Experiments

Initial experiments were conducted to test the proposed plate-foil design. The aluminum plate design is shown in Figure 4(a), where an alumnum foil is bonded to a dielectric layer which is bonded to the aluminum plate test specimen. This geometry worked very well; however, some difficulties were encountered which restricted the eventual use of this configuration. The reflecting surface of the plate could not be polished so that a highly reflecting flat surface could be obtained. When a rectangular grid was projected on the surface of this plate, the reflected pattern was distorted. The polished surface did not reflect enough light to expose the film properly.

A plate geometry, as shown in Figure 4(b), was made and tests were conducted to determine the reflecting surface characteristics. This surface produced very good results. In addition, fabrication of the models was simplified. The model consists of a clear Plexiglas plate which has been painted on one side with a flat black lacquer paint. Aluminum foil of 99% purity is then bonded to the painted surface using a rubber cement compound. The black surface allows the front surface of the plate to reflect light in a very efficient manner and serves as a mask for the light generated when the foil sublimates.

B. Exploding Foil Experiments

Blow-off simulation of the flat plate was determined by sublimating the aluminum foil with a high energy capacitor discharge unit.

The electrical design of the equipment of this system is presented in detail in a report by Cost et al. [10]. Basically, the system consists of an 18,600-J high energy capacitor discharge unit of low inductance electrical energy capable of delivering rapid pulses of intense electrical currents. The unit has a main capacitor bank which consists of a six 60-uf capacitors in parallel producing a combined capacity of 360 μ f. The main bank is charged from a high voltage power supply which uses a conventional 115-V 60-cycle ac power supply and a high voltage secondary unit consisting of four No. 8020 tubes in a bridge rectifier circuit. Foil sublimation is accomplished by mounting the flat plate and foil (Figure 4) in a mounting device as shown in Figure 5. The foil contacts the electrodes and sublimates when the electrical energy is discharged in the foil. Initial electrode design, as shown in Figure 5, did not produce a uniform sublimation of the foil. Results of this design are shown in Figure 6. The corners of the plate did not sublimate and the high speed photographs shown in Figure 6 indicate a nonuniform sublimation of the foil.

Figure 4(a). Aluminum plate with dielectric layer and foil backing.

Figure 4(b). Plexiglas plate with aluminum foil backing.

Belleville and the second second of the second second

Figure 5. Initial electrode design.

Figure 6. High speed photograph of sublimation process with the initial electrode design.

Redesign of the electrodes is shown in Figure 7. Basically, the only difference is that the electrodes make contact along the edge of the foil instead of a small area at the plate edge. The plate holding fixture is made of G-10 phenolic which is a good insulator. This fixture has produced very good results which are illustrated in Figure 8. Also a high speed photograph of the foil sublimation is shown in Figure 8. A test of a $4\times4\times0.001$ -in. aluminum foil with a capacitor bank voltage of 7500 V was conducted. The high speed camera was operated at a framing rate of 3000 frames/sec. The sublimation time of the foil was measured from the photographic data to be 0.0159 sec.

C. Impulse Calculations

Prior research [11] presented indicates that an acceptable model for the impulse derived from the sublimation of an aluminum foil on an insulative substrate is given as:

$$I_{\beta} = 9150 \text{ ph } (E_{d} - E_{s})^{0.5}$$
 (12)

where

 $I_g = impulse (Taps/cm²)$

E_d = capacitor bank energy discharge (Cal/gm)

E = sublimation energy of foil (Cal/gm)

 ρ = density of foil (gm/cm³)

h = foil thickness (cm).

Using a density of ρ = 2.702 gm/cm³ for aluminum evaluated to be approximately 99% pure by mass spectroscopy, the following relations hold true:

1-mil foil:
$$I_{\beta} = 62.797 (60.727 \text{ V}^2 - E_{\text{s}})^{0.5}$$
 (13)

0.5-mil foil:
$$I_{\beta} = 31.399 (121.4597 \text{ V}^2 - E_s)^{0.5}$$
 (14)

0.25-mil foil:
$$I_{\beta} = 15.699 (242.919 \text{ V}^2 - E_s)^{0.5}$$
 (15)

where

V = Capacitor bank voltage level (kv)

 $E_{s} = 3200 \text{ (ca1/gm)}$

 $I_8 = impulse (Taps/cm^2)$

Figure 7. (a) Redesign of electrodes and mounting fixture; (b) Plate specimen loaded in the test fixture; (c) Complete sublimation of the foil in the redesigned fixture.

Figure 8. High speed photograph of foil sublimation with redesigned electrodes (framing rate 3000 fps, capacitor bank voltage -7500V, foil area $-4 \times 4 \times 0.001$ in.).

Figure 9. Schematic diagram for triggering the strobe light source with the exploding foil.

D. Experimental Geometry and Timing of the Event

The experimental arrangement used for the timing of the sequence of events in the exploding of the foil and data recording is shown in Figures 9 and 10. A voltage divider is attached across the electrodes of the exploding foil test fixture whose output is used to trigger a Beckman electronic flash through an oscilloscope. A complete assembly is shown in Figure 10. Data were recorded with a high speed rotating drum camera with a maximum framing rate of 20,000 frames/sec. This camera is capable of recording 224 frames with a frame separation of 39 μ sec at 20,000 frames/sec. Thus, a flash duration of 8.6 msec is sufficiently short so that the camera will not rewrite.

IV. DATA ANALYSIS

A. Data Collection

Plate response was determined for various blow-off simulations according to the schedule shown in Table 1. Physical parameters for Tests 1 through 38 are

 $G_x = 0.5$ in.

 $G_{v} = 0.5 \text{ in.}$

x = 11 in.

y = 0.0 in.

z = 32.0 in.

z' = 19.25 in.

Physical parameters for Tests 39 through 48 are

 $G_{y} = 0.958 \text{ in.}$

 $G_{v} = 0.958 \text{ in.}$

x = 11.0 in.

y = 0.0 in.

z = 32 in.

z' = 19.25 in.

All data were recorded by a Beckman rotating drum camera using Kodak 2475 recording film. The camera speed for all tests was 17,800 frames/sec. Plate response illustrating the shape of a deformed grid for a typical test is shown in Figure 11.

Figure 10. Experimental configuration.

TABLE 1. EXPLODING FOIL TEST SCHEDULE

Test	Foil Thickness (mil)	Voltage Level (kV)	Impulse (Taps/cm ²)	Plate Thickness (in.)
1	0.25	4.0	411.39	0.25
2	0.25	4.5	650.91	0.25
3	0.25	5.0	841.47	0.25
4	0.25	5.5	1011.13	0.25
5	0.25	6.0	1169.03	0.25
6	0.25	6.5	1319.40	0.25
7	0.25	7.0	1465.56	0.25
8	0.25	7.5	1605.92	0.25
9	0.25	8.0	1744.41	0.25
10	0.50	5.5	683.717	0.25
11	0.50	6.0	1075.180	0.25
12	0.50	6.5	1380.011	0.25
13	0.50	7.0	1647.034	0.25
14	0.50	7.5	1892.323	0.25
15	0.50	8.0	2123.422	0.25
16	1.00	7.5	922.696	0.25
17	1.00	8.0	1645.386	0.25
18	0.25	4.0	411.39	0.1875
19	0.25	4.5	650.91	0.1875
20	0.25	5.0	841.47	0.1875
21	0.25	5.5	1011.13	0.1875
22	0.25	6.0	1169.03	0.1875
23	0.25	6.5	1319.40	0.1875
24	0.25	7.0	1464.56	0.1875
25	0.25	7.5	1605.92	0.1875
26	0.25	8.0	1744.41	0.1875
27	0.50	5.5	683.717	0.1875
28	0.50	6.0	1075.180	0.1875
29	0.50	6.5	1380.011	0.1875

TABLE 1. (Concluded)

Test	Foil Thickness (mil)	Voltage Level (kV)	Impulse (Taps/cm ²)	Plate Thickness (in.)
30	0.50	7.0	1647.034	0.1875
31	0.50	7.5	1892.323	0.1875
32	0.50	8.0	2123.422	0.1875
33	1.00	7.5	922.696	0.1875
34	1.00	8.0	1645.386	0.1875
35	0.25	4.0	411.39	0.125
36	0.25	4.5	650.91	0.125
37	0.25	5.0	841.47	0.125
38	0.25	5.5	1011.13	0.125
39	0.25	4.0	411.39	0.125
40	0.25	4.5	650.91	0.125
41	0.25	5.0	841.47	0.125
42	0.25	5.5	1011.13	0.125
43	0.25	6.0	1169.03	0.125
44	0.25	6.5	1319.40	0.125
45	0.25	7.0	1464.56	0.125
46	0.25	7.5	1605.92	0.125
47	0.25	8.0	1744.41	0.125
48	0.25	8.0	1744.41	0.125

NOTES: On tests No. 38, 47, and 48, the plate failed under the test conditions and data were not recorded for analysis. Figure 12 shows the failure mode of Test No. 47.

Figure 11. Plate responses for test No. 23.

Figure 12. Failure of test No. 47: (a) specimen with clamp holder, (b) specimen without clamp holder, (c) sublimated side of specimen, (d) fragments of broken specimen.

Data for each test are tabulated in the Appendix. The location of the grid orders is denoted as X_2, X_1, X_0,... Each subscript will denote the assigned grid order as illustrated in Figure 3. In each test, several frames were analyzed to obtain enough data to calculate the maximum strains.

Curve Fit Analysis

Plate response was calculated for the maximum conditions which occurred at the center of the plate for specified impulse loading. Because the loading conditions were observed to be nearly symmetrical and data were calculated at the midpoint of the plate, the data reduction and use of Equation (10) were simplified. For these conditions, Equations (10) reduce to the following form:

$$\epsilon_{xx} = -\left(\frac{h}{2}\right) \frac{\partial^2 w}{\partial x^2}$$

$$\epsilon_{yy} = -\left(\frac{h}{2}\right) \frac{\partial^2 w}{\partial y^2}$$

$$\gamma_{xy} = 0 \qquad . \tag{16}$$

Therefore, if the curvatures $\partial^2 w/\partial x^2$ and $\partial^2 w/\partial y^2$ are known, then the stress and strain components can be calculated and curvatures are determined from the change in shape of the grid lines where the plate thickness h is known.

If grid lines are oriented with lines parallel to the axes of symmetry (Figure 3), then the grid changes yield the partial slopes along each of the axes. Grid lines parallel to the y-axis will yield the partial slopes $\beta_x = \partial w/\partial x$, and lines parallel to the x-axis will yield partial slopes $\beta_v = \partial w/\partial y$. The slopes β_x and β_v are calculated by the use of Equation (6). Then, in principle, the change in shape of the grid lines will provide enough experimental information to calculate the strain components by numberical differentiation of the β_x and β_y

Because the data can be approximated as symmetrical with respect to the midpoint of the plate, $\partial w/\partial x = \partial w/\partial y = 0$; therefore, $\beta_x = \beta_y = 0$ at the plate center. Plate curvatures $\partial^2 w/\partial x^2$ and $\partial^2 w/\partial y^2$ were evaluated by fitting a cubic spline through the grid order data. cubic spline has the form

$$\beta_{x} = a_{1}x + a_{2}x^{2} + a_{3}x^{3}. \tag{17}$$

A difference function was then formed as defined by the following equation:

$$\sum \delta_{i}^{2} = \sum \left[\beta_{x}^{i} - (a_{1}x_{i} + a_{2}x_{i}^{2} + a_{3}x_{i}^{3}) \right]^{2}$$
 (18)

when the x_i , β_i are the input data. Constants a_i are determined from a minimization of the difference function as defined by

$$\frac{\partial \sum \delta \mathbf{1}}{\partial \mathbf{a}_{\mathbf{1}}} = 0 \tag{19}$$

Equations (15) can be put in the following form:

$$a_{1}x_{2} + a_{2}x_{3} + a_{3}x_{4} = \beta_{1}$$

$$a_{1}x_{3} + a_{2}x_{4} + a_{3}x_{5} = \beta_{2}$$

$$a_{1}x_{4} + a_{2}x_{5} + a_{3}x_{6} = \beta_{3}$$
(20)

where

$$\sum_{i}^{k} = x_{k}$$

$$\sum_{i}^{k} \beta i = \beta$$
(21)

Equations (15) were solved for the constants a_1 , a_2 , and a_3 .

Plate curvature $\partial^2 w/\partial x^2$ can be evaluated from the data because $\partial^2 w/\partial x^2 = \partial \beta_x/\partial x |_{x=0}$ and from Equation (17) $\partial \beta_x/\partial x |_{x=0} = a_1$. The curvature $\partial^2 w/\partial y^2$ at the plate center can be evaluated in a similar manner using the grid order data y_{-2} , y_{-1} , y_{0} , ...

C. Error Analysis

To study the plate deflections of a Plexiglas specimen, a high-speed camera operating at approximately 17,800 frames/sec was used. This results in a discrete sampling interval of approximately 0.0562 msec perframe. The period of free vibration for the 0.1875-in. plates is approximately 562 Hz while the 0.250-in. plates vibrate at approximately 500 hz. This means that approximately 20 to 40 frames of data can be obtained for one complete cycle of a plate vibrating freely using the specified sampling interval. However, it is still possible to

miss the point of maximum plate deflection because it can occur in any 0.0562-msec interval and be undetected by a high speed camera. This is one of the contributing factors of data scatter in this analysis.

Another factor of error in the analysis is due to locating the grid centers of the photographed plate deflections. Errors in locating the grid centers can be multiplied by a factor as large as five or six. To minimize this error, a photomicrometer was used at 20% power to digitize the grid centers of the deflection photographs.

Errors can also be made in centering the camera equipment and measuring the various distances used in the analysis. These errors are considered to be trivial when compared with discrete sampling errors and errors due to digitizing grid locations.

Finally, the sublimation phenomenon of a foil is a complex problem. Surface irregularities, poor electrode contact, atmospheric conditions, foil surface conditions, etc. will play a part in the scatter of the data. The electrical characteristics of the capacitor bank and electrical energy transport cables contribute significantly to the complexity of the problem. Irregularities in their characteristics contribute to data scatter. The total estimated error in the results when all of these factors are considered can be as great as 15% to 20%.

The only sources of error which can be adequately determined are due to errors in distance measurements and errors in digitizing the data. Distance measurement errors are estimated to be less than 1%. An indication of errors due to digitizing the film data can be made by comparing the values of $\varepsilon_{\rm xx}$ and $\varepsilon_{\rm yy}$ for the points of maximum strain. Theoretically, they should be equal assuming uniform loading conditions on the plates. It is observed from the computed results that $\varepsilon_{\rm xx}$ generally agrees with the $\varepsilon_{\rm vy}$ values within the experimental accuracy.

V. DISCUSSION AND RESULTS

Table 2 tabulates the results of Experiments 1 through 34. Each test shown gives the corresponding foil thickness, capacitor bank voltage, estimated plate impulse, and foil energy density. The maximum calculated values of the strain in both the x and y directions is given for the center of the plate.

Figures 13 through 16 indicate the theoretical plate strains of Plexiglas versus impulse level for a linearly decaying pressure profile [11]. The actual results for Tests 1 through 34 are shown in Figures 17 through 40. A cubic least square curve fit was applied to the laboratory data. The results are shown with each figure. These equations should be applied only over the experimental domain of the lab data. The results for strain versus impulse level are generally fairly

TABLE 2. RESULTS OF EXPERIMENTS 1 THROUGH 34

Test No.	Foil Thickness (mil)	Capacitor Voltage (kV)	Plate Impulse (taps/cm ²)	Foil Energy Density (cm/gm)	(cm/cm) E XXMAX	Plate Thickness (cm)	(cm/cm) E yy _{MAX}
1	0.25	4.0	411.39	3886.704	0.003688	0.635	0.003904
7	0.25	4.5	650.91	4919.109	0.004556	0.635	0.003773
8	0.25	5.0	841.47	6072.97	0.004519	0.635	0.004462
4	0.25	5.5	1011.13	7348.30	0.004351	0.635	0.004178
2	0.25	0.9	1169.03	8745.08	060900.0	0.635	0.005131
9	0.25	6.5	1319.40	10263.3	0,005067	0.635	0.005599
7	0.25	7.0	1464.56	11903.03	0.006782	0.635	0.005558
80	0.25	7.5	1605.92	13664.19	0,006949	0.635	0.005971
6	0.25	8.0	1744.41	15546.81	0.009673	0.635	09090000
10	0.50	5.5	683.717	3674.15	0.006297	0.635	0.005490
11	0.50	0.9	1075.180	4372.55	0.006586	0.635	0.005907
12	0.50	6.5	1380.011	5131.67	0.005916	0.635	0.005497
13	0.50	7.0	1647.034	5951.52	0.007762	0.635	0.006149
14	0.50	7.5	1892.323	6832.11	0.006821	. 0.635	0.006463
15	0.50	8.0	2123.422	7773.42	0.008212	0.635	0.007008
16	1.00	7.5	952.696	3415.91	0.006727	0.635	0.006261
17	1.00	8.0	1645.386	3886.55	0.008404	0.635	0.007083
18	0.25	4.0	411.39	3886.704	0.005430	9.476	0.005524
19	0.25	4.5	650.91	4919.109	0.005687	0.476	0.004819
20	0.25	5.0	841.47	6072.97	0.006867	0.476	0.005930

TABLE 2. (Concluded)

Test No.	Foil Thickness (mil)	Capacitor Voltage (kV)	Plate Impulse (taps/cm ²)	Foil Energy Density (cm/cm)	(cm/cm) ExxMAX	Plate Thickness (cm)	(cm/cm) E yy _{MAX}
21	0.25	5.5	1011.13	7342.30	0.006327	0.476	0.005772
22	0.25	0.9	1169.03	8745.08	0.007727	0.476	0.007257
23	0.25	6.5	1319.40	10263.3	0.007088	0.476	99990000
24	0.25	7.0	1464.56	11903.03	0.007833	0.476	0.007853
25	0.25	7.5	1605.92	13664.19	0.007876	0.476	0,006603
26	0.25	8.0	1744.41	15546.81	0.011150	0.476	0.009059
27	0.50	5.5	683.717	3674.15	0.008439	0.476	0.007887
28	0.50	0.9	1075.180	4372.55	0.010130	0.476	0.010390
29	0.50	6.5	1380.011	5131.67	0.009271	9.476	0.008564
30	0.50	7.0	1647.034	5951.52	0.008639	0.476	0.008314
31	0.50	7.5	1992.323	6832.11	0.008271	0.476	0.006612
32	0.50	8.0	2123:422	7773.42	0.009610	0.476	0.009267
33	1.00	7.5	952.696	3415.91	0.014070	0.476	0.009101
34	1.00	8.0	1645.386	3886.55	0.010450	0.476	0.008614

Figure 13. Theoretical plate strains.

Figure 14. Theoretical plate strains.

Figure 15. Theoretical plate strains.

Figure 16. Theoretical plate strains.

linear which corresponds with the theoretical results. By adjusting the impulse level and impulse duration of the theoretical computer solution, the resulting theoretical curve can be forced to agree closely with the actual laboratory results. The experimental work described here indicates that the theoretical model for impulse due to roil sublimation is incomplete and requires some refinement. The curves for strain versus capacitor bank voltage level and foil energy density should be used in making predictions of plate response.

The strain versus impulse level curves indicate two possibilities: (1) the mathmatical model for impulse versus capacitor bank voltage is incorrect or (2) the computer equations for pressure versus time are incorrect. Although a mathmatical computer solution is desirable, it is not required because the curves for strain versus foil energy density are adequate. Figures 17 through 40 show that the plate strains are functions of foil thickness; for identical energy densities, thicker foils generally result in higher strain levels. The explanation for this may be the result of a high voltage skin effect on the foil.

VI. SUMMARY AND CONCLUSIONS

A technique to simulate and experimentally evaluate the effects of high concentrations of x-rays resulting from a nuclear detonation on missile structures was developed. Data from 34 tests were presented to demonstrate the technique. In these tests the effects of variations in the foil thickness, capacitor voltage, and plate thickness on the total impulse and maximum strain in the structure were determined.

The experimental error of these tests is estimated to be approximately 15% to 20%. However, this should not reflect on the technique because the major error source is the 17,800 frames/sec framing rate of the recording camera yielding a 0.281-msec interval for peak deflection to occur and not be recorded. To apply this technique, a framing rate of 50,000 to 100,000 frames/sec should be used; the experimental error should then be less than 10%.

Although the actual specimens used in the tests were made of Plexiglas, results for actual missile materials such as aluminum can be obtained through equations relating the material properties.

Four other tests were run on 0.318-cm thick Plexiglas specimen but the data were not valid because of excessive deflections and fracture of the specimen.

The results presented show that there is a strong indication that the sublimation phenomenon is a function of the following:

- a) Foil geometry and material.
- b) Electrical characteristics of the capacitor discharge device.
- c) Electrical energy supplied to the foil.
- d) Surface characteristics of the foil.

The contribution played by each of these factors and their correlation to an actual sublimation event require more detailed study to make an accurate estimation of the effects of a nuclear blast on a missile structure. The data curves indicate that foil energy density is not an entirely accurate estimation of structural performance although it does indicate certain trends. Considering the factors involved in the analysis of the data, it appears that given a known foil geometry, an accurate prediction of plate performance can be achieved for a given foil energy density. The smoothing effect of the least squares cubic spline curve fit to the experimental data should be used when data are taken from the experimental graphs.

Figure 17. Plate strains as a function of foil thickness.

Figure 18. Plate strains as a function of foil thickness.

Figure 19. Plate strains as a function of foil thickness.

Figure 20. Plate strains as afunction of foil thickness.

Figure 21. Plate strains as a function of foil thickness.

Figure 22. Plate strains as a function of foil thickness.

Figure 23. Plate strains as a function of foil thickness.

Figure 24. Plate strains as a function of foil thickness.

Figure 25. Plate strains as a function of foil thickness.

Figure 26. Plate strains as a function of foil thickness.

Figure 27. Plate strains as a function of foil thickness.

Figure 28. Plate strains as a function of foil thickness.

Figure 29. Plate strains as a function of foil thickness.

Figure 30. Plate strains as a function of foil thickness.

Figure 31. Plate strains as a function of foil thickness.

Figure 32. Plate strains as a function of foil thicknes.

Figure 33. Plate strains as a function of foil thickness.

Figure 34. Plate strains as a function of foil thickness.

Figure 35. Plate strains as a function of foil thickness.

Figure 36. Plate strains as a function of foil thickness.

Figure 37. Plate strains as a function of foil thickness.

Figure 38. Plate strains as a function of foil thickness.

Figure 39. Plate strains as a function of foil thickness.

Figure 40. Plate strains as a function of foil thickness.

REFERENCES

- Ranson, W. F., Schaeffel, J. A., Murphree, E. A., Irelan, V. G., and Mullinix, B. R., "An Experimental Assessment of Nuclear Weapons Effects of Structures," US Army Missile Command, Redstone Arsenal, Alabama, November 1975, Report No. RL-76-9.
- Dantu P., "Me'thode nouvelle pour the de'termination des flexions dans une plaque plane," <u>Annals des Ponts et Chausse'es</u>, No. 1, 1940.
- 3. Dantu, P., "Etude experimentale des plaques par une me'thode optique" Annals des Points et chausse'es, No. 3, 1952.
- 4. Moore, A. D., "Soap-Film and Sandbed-Mapper Techniques," Trans. A.S.M.E <u>Journal of Applied Mechanics</u>, Vol. 17, No. 3, 1950 p. 291.
- 5. Ligtenberg, F. K., "The Moire' Method-A New Experimental Method for the Determination of Moments in Small Slab Models," <u>Proceedings</u>, <u>Society for Experimental Stress Analysis</u>, Vol. 7, No. 2, 1955.
- Rieder, G. and Ritter, R., "Krummungsmessung an belasteten Platten nach dem Lightenbergschen Moire'-Verfahren," <u>Forschung im Ingenieurwesen, VDI-Verlag Dusseldorf</u>, Vol. 31, No. 2, 1965, p. 33-34.
- 7. Chiang, Fu-pen and Jaisingh, G., <u>Dyanmic Moire' Methods for the Bending of Plates</u>, Department of Mechanics Report No. 219, College of Engineering, State University of New York at Stony Brook, February 1972.
- 8. Theocaris, P. S., Morie' Fringes in Strain Analysis, London: Pergamon Press, 1969.
- 9. Durelli, A. J. and Parks, V. J., Moire' Analysis of Strain, New Jersey: Prentice-Hall Inc., 1970.
- 10. Cost, T. L., Griffin, J. R., and Pettey, R. H., Analysis and Design of Thermally and Mechanically Prestressed Flat Plates Subjected to Transverse Blast Loads, US Army Missile Command, Redstone Arsenal, Alabama, May 1973, Report No. RL-72-18.
- 11. Cost, T. L., <u>Dynamic Response of Missile Structures to Impulsive</u>
 Loads Caused by Nuclear Effects Blowoff, Athena Engineering Company,
 Northport, Alabama, June 1976, Report No. AEC-TR-76-01.

Appendix. COMPUTER CODES

The computer code shown on the following pages was used to reduce the plate deflection data of Tests 1 through 34. The card data input format is as follows:

Card (1)

SF,GX,GY,X,Y,Z,ZP,H,T

9F5.0 FORMAT

Card (2)

00009

This card separates the test cases.

Card (3)

IFN, X_{-2} , X_{-1} , X_{0} , X_{+1} , X_{+2} , Y_{-2} , Y_{-1} , Y_{0} , Y_{+1} , Y_{+2} I5, 10F5.0 FORMAT

:

Card (last)

15 FORMAT

00000

where

SF = Film scale factor

GX = Grid spacing in the x-direction

GY = Grid spacing in the y-direction

X
Y
= Location of camera lens in the specified test coordinate system

ZP = Plate to grid distance

H = Plate thickness

T = Time between film frame exposures

IFN = film frame number which identifies the time after the start of
 of the sublimation event in which the plate has deflected.

 X_{-2} , X_{-1} , X_0 , X_{+1} , X_{+2} = Location of the X-grid orders

 Y_{-2} , Y_{-1} , Y_0 , Y_{+1} , Y_{+2} = Location of the Y-grid orders

Following the computer code is a listing of the data used in the strain analysis.

BEST AVAILABLE COPY

```
PROGRAM MAIN (INPUT.OUTPUT.TAPES=INPUT.TAPE6=OUTPUT)
      GRID SLOPE DEFLECTION NWER PLATE ANALYZER CODE
      WRITTEN BY JOHN A. SCHAFFFFL. JR.
C
      DIMENSION X1 (5) . Y1 (5) . WX1 (5) . WY1 (5) . X5 (5) . Y5 (5)
      READ (5.1) SF.GX.GY.X.Y.7.7P.H.T
      FORMAT (9F5.1)
      READ (5.3) IFN. X1 (1) . X1 (2) . X1 (3) . X1 (4) . X1 (5) .
     141(1).41(2).41(3).41(4).41(5)
      FORMAT (15,10F5.0)
      IF (IFN.FO.0) GOTO 17
      IF (IFN.FO.9) GOTO 15
      DO 4 I=1.5.1
      XS(I)=ABS(X!(I)-X1(3))*SF
      YS(1)=ARS(Y!(1)-Y1(3))*SF
      IF(I.LT.3) xS(I) = -XS(I)
      IF (I.LT.3) YS([)=-YS([)
      DO 5 I=1.5.1
      AN=FLOAT(I)-3.
      WX1(I)=TAN(-.5*(ATAN(((AN*GX-XS(I))/7P)+(X/7))-ATAN((X+XS(I))/7)))
      WY1(I)=TAN(-.5*(ATAN(((AN*GY-YS(I))/ZP)+(Y/7))-ATAN((Y+YS(I))/7)))
      CALCULATE STRAIN DATA
      X6=0.
      x5=0.
      x4=0.
      x3=0.
      x2=0.
      X17=0.
      X12=0.
      X11=0.
      Y6=0.
      Y5=0.
      Y4=0.
      Y3=0.
      Y2=0.
      Y13=0.
      Y12=0.
      Y11=0.
      DO 6 1=1.5.1
      x2=x2+x5(1) *x5(1)
      X3=X3+X5(1) *X5(1) *XC(1)
      X4=X4+X5(I)*X5(1)*X5(I)*X5(I)
      X5=X5+X5(]) *X5(]) *X5(]) *X5(]) *X5(])
      X6=X6+X5([) *X5([) *X5([) *X5([) *X5([) *X5([)
      X11=X11+X5(T) *WX1(T)
      X12=X12+X5(1)*X5(1)*WX1(1)
      X13=X13+X5(T) #X5(T) #X5(T) #WX1(T)
      Y2=Y2+Y5(1) *Y5(1)
      Y3=Y3+Y5([) #Y5([) #Y5([)
      Y4=Y4+Y5([)*Y5([)*Y5([)*Y5([)
      Y5=Y5+Y5(1)*Y5(1)*Y5(1)*Y5(1)*Y5(1)
      Y6=Y6+Y5(1) *Y5(1) *Y5(1) *Y5(1) *Y5(1) *Y5(1)
      Y11=Y11+Y5(1)*WY1(1)
      Y12=Y12+YS(() *YS(() *WY1(()
      Y13=Y13+YS(T)*YS([)*YS([)*WY1([)
      RX1=X4+X6-X5+X5
      RX2=X3+X6-X4+X5
      RX7=X3+X5-X4+X4
```

willing a series with group or the total from the

BEST AVAILABLE COPY

RY1=Y4*Y6-Y5*Y5 RY2=Y3*Y6-Y4*Y5 RY3=Y3+Y5-Y4+Y4 WX2 = (RX1 + X11 - RX2 + X12 + RX3 + X13) / (PX1 + X2 - PX2 + X3 + RX3 + X4)WY2=(RY1*Y11-RY2*Y12+RY3*Y13)/(RY1*Y2-RY2*Y3+RY3*Y4) TL=FLOAT (IFM) +T EXX= (-H/2.) *WX2 EYY= (-H/2.) *WY? PD=((EXX-EYY) +2./(EXX+EYY)) +100. WRITE (6.7) IFN 7 FORMAT (14H FRAME NUMBER=+12) WRITE (6.8) TL FORMAT (14H FLAPSED TIME=+F10.4+1X+6H MSFC+) WRITE (6.9) 9 FORMAT (23H INPUT DATA X1-X5, Y1-Y5) WRITE(6.10) X1(1).X1(2).X1(3).X1(4).X1(5). 141(1).41(2).41(3).41(4).41(5) 10 FORMAT(10FIn.4) WRITE (6.11) FORMAT (33H INPUT DATA SF, GX, GY, X, Y, 7, 7P, H, T) 11 WRITE (6.12) SF. GX. GY. X. Y. Z. ZP. H. T 12 FORMAT (9F10.4) WRITE (6.13) 13 FORMAT (12H OUTPUT DATA) WRITE(6.14) WX2.WY2.EXX.EYY.PD 14 FORMAT(5H WX2=.E10.4.1x.4HWY2=.F10.4.1X. 14HFXX=.F10.4.1X.4HEYY=.F10.4.1X.19HPERCENT DIFFERENCE=.F10.4) WRITE (6,1A) FORMAT (28H WX1(1)-WX1(5)+WY1(1)-WY1(5)) WRITE(6.19) WX1(1).WX1(2).WX1(3).WX1(4).WX1(5). 1WY1(1).WY1(2).WY1(3).WY1(4).WY1(5) 19 FORMAT (10F10.4) WRITE (6.20) WRITE (6.20) 20 FORMAT (2H +) GOTO ? 15 WRITE (6.16) 16 FORMAT (21H -----) GOTO 2 17 CONTINUE STOP

END

	C+7	. 4665	9797	54575	.4672			× × ×	\$695	.4377	1007	.3707		C+>	0.74.	4301	-0027	1674.		×+2	4504	.4657	4678	5697
	۲۰۱	.4825	.4820	4774	2787			-	.4844	.4547	.4170	.3853		۲۰۱	.4874	.4562	4851	.4844		۲۰۱	4694	.4874	.4833	14841
	٨٥	.4971	8665°	0667	.5004		•	10	-500R	.4710	.4351	0005		70	.5003	.4733	9667	.5006		**	.4795	.5000	2664.	7864.
-	۲-۱	.5120	.5182	.5208	.5169			- :	95150	.4840	.4521	.4148	•	<u>-</u> -1	.5150	8067°	.5151	.5148		7-	8167	.5177	.5155	.5139
ORDERS (IN	x-2	.5273	.5350	.5415	.5326	M1. 303000	מייים מייים	7-1	5302	.5023	8694	.4288	OPDFRS (IN	Y-2	.5288	5081	5304	.5286	ORDERS (IN	X-2	.5073	.5344	.5319	.5288
N OF GRID	X+2	.5333	.5353	.5394	.5339	0100 90 10	OLY ON IN	Y . Y	.5653	.5282	.5254	.5222	N OF GRID	X+2	.5264	5322	.5252	.5286	N OF GRID	X+2	.5285	.5291	.5259	.5306
LOCATIO	x+1	.5180	.5174	.5202	.5166	011470	01.400	1	.5163	.5133	5105	.5688	LOCATIO	x+1	.5129	.5157	.5129	.5144	LOCATIO	x+1	.5148	.5139	.5120	.5159
	0 x	.5045	.5000	.5000	1667		,	0 7	1664.	6867.	9767	9567		0 ×	2665	\$665	.4993	6667.		0 ×	.5010	.4988	£464°	.5007
	x-1	£644°	55°4.	5004	42c4.			1-4	. 6 × 6 ×	15040	2004.	.4423		-x	£905°	1204.	6907	.4451		-×	.4072	.4036	55°4°	2904.
	x-2	\$414°	5494.	.4593	***		,		\$6150	.4703	1494.	.4679		K-2	4014.	6797	0F74.	4694.		X-2	\$174.	.4685	4698	.4711
FLAPSFN	77.40	. I DBKMC	.2916MS	. 1126MC	.2248MS	61 40650	1111	45.	Jacket.	.2910MC	.1124MC	224AMS	FLADGEN	TIME	. 15RKMC	. 241 PMC	.1124WC	SZAPMC.	FLAPSEN	TIME	. 1586MC	SHINKS.	.112445	.224AMS
TEST	.0.	-	-	-	-	1561		•		n:	^	•	TEST	.0.	•	•	•	۳	TFST	NO.	4	,	4	•

***	8574	4454	.4651	54722	8294.		C+1	.4756	6897°	.4372	9214.	*4604		C+1	.4743	.4716	.4755	1244.		×*>	4754	4778	4752	.4642
3	.4870	.4580	.4829	.4869	.4814		4.1	.4887	.4840	.4532	.4876	.4801		۲۰۱	.4872	.4857	.4879	\$654		**	4874	4866	4873	.4831
6	6867.	.4728	6867	7667.	.5006		٧.	.5016	.4987	.4689	1664.	.4987		40	8667°	.4989	8664.	.4767		•	8007	9667	5667	.5003
Ţ	.5127	.4888	.5173	.5138	.5191		<u></u>	.5145	.5138	.4843	.5126	.5176		<u>-</u>	.5120	.5128	.5127	9164.		-	5130	.5133	5112	.5173
DRDERS (IN)	.5251	.5043	.5353	.5274	.5373	DRDERS (IN)	x-2	.5276	.5288	.5006	.5263	.5360	ORDERS (IN	X-2	.5243	.5272	.5251	.5100	202000	Y-2 (11)	2266	.5263	55235	.5337
N OF GRID	5233	.5284	.5311	.5282	.5347	V OF GRID	X+2	.5239	.5241	.5283	.5259	.5349	N OF GRID	X+2	.5212	.5261	.5247	.5312	0.000	X+2	2107	5248	5225	.5293
LOCATION	.5113	.5134	.5156	.5140	.5172	LOCATIO	1 • x	.5120	.5131	.5143	.5131	.5173	LOCATIO	1 • X	.5103	.5130	.5125	•2129	LOCATIO	x+1	7605	.5121	51.15	.5148
5	1667	1667	4997	9667	.5002		0×	-5002	.4985	9667.	.5000	-5002		0×	1665	7667	.5008	.5010		ex.	1007	4989	0007	9667
Ţ	4A89	.4A39	8484°	4964	.4437		x-1	.4887	.4P50	.4A60	.4875	.4827		-x	.4A93	.4871	.4883	*4P64		x-1	4888	4870	-4882	.4450
3	4768	4687	.4669	.4710	.4657		X-2	.4767	.4695	.4711	64739	***		X-2	.47R0	.4736	.4759	.4707		K-2	4790	.4739	.4763	*694
ELAPSFO	.1686MS	.2810MC	.1124MS	.2248MS	.3372MS	ELAPSED	TIME	.1686MS	.2810MS	.1124MS	.2248MS	.3372MS	ELAPSED	TIME	.1686MS	.2810MS	.2248MS	.3372HS	EI ADGED	TIME	1686MC	.2810MS	2248MS	.3372MS
TEST		5	5	10	· v	TEST	NO.	9	9	9	•	9	TFST	NO.	1	-	1	1	1561	N	•	•	α	•

4658 .4511 .4346 4986 .4793 .4586 4580 .4461 .4392 4996 .4815 .4648		7 + 1 • 4877 • 4867 • 4478 • 4478	70
.5192 .49 .4675 .45 .5179 .49	V1 V1 V0 V1		5117 .4995 .5117 .4995 .5158 .4997 .4870 .4675
X+2 Y-2 -6034 .4952 -5292 .5398 -5190 .4775 -5296 .5355	X 4-2 Y-2 Y-2 S263 S216 S263 S277 S297 S470 S302 S4962 S260 S260 S272	0 080	NF GRID ORDERS (1 7-2 6295 ,5310 5300 ,5314 5219 ,4951 5245 ,4664
×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×	LOCATION OF X+1	Not	LOCATION OF X+3
×0 •5583 •4996 •4996	x 4 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* * * * * * * * * * * * * * * * * * *	.5008 .5008
X-1 .5427 .4924 .4915	X 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	x x 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	X X X X X X X X X X X X X X X X X X X
×-2 •5305 •4628 •4878 •4614	×44444 000000 000000	C-X 6-T4 6-T4 6-47 6-47 7-65 7-65 7-65	583. 7674. 7074.
2934MS .3934MS .2248MS	ELAPSFN 11MF 2610Mc 2910Mc 3934MS 1124MC	ELPSED 1186445 2810445 3934445 1124445 3337245	ELAPSFN TIMF .168645 .291045 .112445
00000	1000000	4000000	100000

	**	.4253	0166.	6447	57170		4.2	.4757	\$115	6777	0172.	04770	5.46.5		K+2	1057	4764.	6766.	3774		C+1	.4743	8777.	4124.	6772.	8657°
	۲٠١	.4361	.4104	8287	.4870		1.1	.4843	.4857	6667.	.4860	.48A6	.4810		4.1	1627	.4377	6807.	. 1829		۲۰۱	.4881	***	.4334	.4873	.4806
	**	1877.	0424.	.4986	.4985		7.6	1665.	5667.	.5010	8667.	6667.	2005.		4.0	.4734	8677.	.4239	.3947		40	£667°	.4762	.4450	1667.	8667.
	۲-1	\$4595	.43KR	.5141	.5105		۲-1	.5117	.5124	.5287	.5143	.5113	.5272		Y-1	.4846	5494.	.43A0	2504.	_	۲-1	.5119	.4923	.4567	.5111	.5217
DROFRS (IN	x-2	.4703	.4507	.5296	.5218	OPDERS (IN	1-2	.5230	.5262	.5579	.5280	.5217	1665.	OPDERS (IN	Y-2	1563.	.4767	.4522	.4155	DRDFRS (IN	X-2	.5226	.5077	.4685	.5221	.5434
U OF GRID (X+2	.5160	.5226	.5228	,5254	N OF GRID	X+2	.5205	.5266	.5700	.5237	.5221	.5335	N OF GRID	X+2	.5186	.5251	.5253	.5176	V OF GRTD (X+2	.5223	.5306	.5216	.5235	.5364
LOCATTO	x•1	.5071	.5103	.5998	.5111	LOCATIO	x+1	.5106	.5132	.5343	.5121	.5114	.5165	LOCATION	x+1	.5190	.5122	.5122	.5675	LOCATIO	x • 1	.5118	.5156	.5116	.5121	.5174
	0 x	A767.	.4973	1464.	7667		0×	.5006	5005	5005	6665	.5001	1667		0×	7067	1067	9667	4497A		0×	. Seo8	.5012	.5015	.5003	A002.
	x-1	08c7.	19050	4504°	2754.		-x	6604	-4a47	.44.80	. 4aB3	6884	¥6936		x-1	£007°	4459	4404.	7147		1-x	. 4988	05a5.	B007.	88a7.	.4841
	x->	.4702	4114	*4604	475¢		X-2	.4793	C474.	78F4.	5474.	2674.	0597		x-2	.4799	£677.	\$4725	.4767		x-2	.4770	6697.	.4R06	.4771	1597
FLADSFN	True	.15864c	.29164c	.1124MS	SM8455.	FLADSED	TTME	. 1686MS	. 2Al IMC	3936MC	.1126MS	. 274 RMC	.3377Mc	FL APCFA	TIME	. I KAKMC	241 14c	.112645	.224 AMS	FLAPSED	TIME	.1686MC	.2910Mc	.112445	.224 BMC	,3372MS
TEST	*.O.	-			13	TEST	.U.4	5	1.	14	7:	14	7.	TECT	0.1		v	2	7	TEST	*0×	14	4-	15	4	16

The state of the s

	4+2	14527	.4275	.4766	4624		X+2	.4777	6014.	\$624	54672	97140	9494		4.7	.4775	05740	4307	.4753		C+4	404	.4791	0697	.4814	.4736
	۲۰۱	.4632	4040	.4880	.4811		۲۰۱	.4898	.4853	.4811	.4830	.4876	.4837		۲٠١	.4890	.4872	.4572	.4876		۲٠١	0067	.4891	.4851	.4915	.4872
	40	.4746	.4522	.4993	.5001		4.0	.5003	1664.	.5000	.4987	2665	0667.		7.0	.5001	6664.	.4734	7667.		YO	.5002	8664.	.5004	.5017	.5004
	7	.4854	.4657	.5097	.5179		1-1	.5112	.5141	.5141	.5137	.5120	.5149		<u></u>	.5119	.5134	.4899	.5113		1-1	.5104	.5109	.5168	.5117	.5142
DRDERS (IN	Y-2	.4953	.4781	.5203	6965	DADERS (IN	Y-2	.5220	.5275	.5369	.5292	.5233	.5299	DRDERS (IN	Y-2	.5234	.5266	.5062	.5239	DRDERS (IN	Y-2	.5201	.5220	.5324	.5212	.5271
N OF GRID	X+2	.5184	.5247	.5208	.5300	V OF GRID	X+2	.5196	.5258	.5368	.5284	.5233	.5275	OF GRID	X+2	.5217	.5283	.5320	.5241	N OF GRID	X+2	.5173	.5238	.5248	.5189	.5230
LOCATIO	x • 1	.5094	.5121	.5108	.5147	LOCATIO	x • 1	· 5099	.5112	.5180	.5146	•5116	.5142	LOCATTO	X+1	.5111	.5147	.5165	•5125	LOCATIO	X+1	.5087	.5120	•5119	.5091	.5112
	0 x	.5002	1664	.5004	.5007		0×	.5000	1867	2005	.5017	8667	.5019		0 x	.5017	.5008	.5010	.5005		0×	1664.	.5003	8664	1667	1667
	x-1	2107.	.4AB5	9004.	*****		X-1	66a4.	.4831	4417	.4973	59a4°	.4483		x-1	4014	6904.	45a4°	2884.		x-1	6104.	.4483	.4a73	·4089	.4972
	×-2	.4822	.4761	.47A6	.4700		X-2	1674.	.4689	.4630	.4733	4740	.4747		x-2	.4803	.4731	.4703	.4753		x-2	.4815	.475A	4740	.4788	.4755
FLAPSED	TIME	.1686MS	.2810MS	.224RMS	.3372MS	FLAPSFD	TIME	.1686MS	.2810MS	.3934MS	.1124MS	.2248MS	.3372MS	ELAPSED	TIME	.1686MS	.2810MS	.1124MS	.2248MS	ELAPSED	TIME	.1686MS	.2810MS	.3934MS	.224AMS	.3377WS
TEST	NO.	17	17	17	11	TFST	.0N	18	18	18	8	8	8-	TEST	NO.	19	19	6	10	TEST	NO.	20	50	02	5	20

with the second with the second second

September 18 th the sound of the

	4.5	.4348	SF145	3742	6697.	.4777	0d95.		× 2	1644.	.4800	1154.	6694.	1682	6745		K+2	-4875	20170	0v87.	.4541		***	4.50£	0101	0CH4.	1097	21875	.4755
	۲۰۱	.4493	.4264	.3941	.4844	.4890	.4853		۲٠١	.4583	1064.	.4674	.4843	8067.	.4875		1.1	1067	6684.	.4911	6997			4403		1167.	.4850	2264.	.4887
	40	8654°	.4388	.4131	2664.	6664.	.5903		N.	.4675	.5005	.4822	5867	-5005	.5005		7.3	.5001	.5904	.5005	.4400		**	4770		.5011	8667.	.590A	8667.
		.4700	.4522	54332	.5148	5115	.5147	•	<u></u>	.4762	.5109	\$4975	.5139	.509R	.5133	•		.5093	5112	.5101	1164.		, ,	4.073	2000	.5103	.5151	-5092	.5117
DROFRS (IN	1-2	.4806	64949	.4529	.5305	.5220	.5291	DRDERS (IN	7-2	.4850	.5204	.5124	.5294	.5189	.5257	DRDERS (IN	Y-2	.5184	.5211	9615	.5056	MI AGENT	6-7	7907		.5195	.5305	.5173	.5240
N OF GRED	X+2	.5193	.5267	.5351	.5274	. 5221	,5253	N OF GRID	X+2	.5166	.5203	.5237	.5288	.5176	,5236	N OF GRID	X+2	.5179	.5215	.5183	.5225	0.000	XA2	2143	carce	.5195	.5240	.5163	.5199
LOCATIO	X+1	.5161	.5133	.5169	.5133	.5115	.5124	LOCATIO	X+1	.5090	.5099	.5112	.5144	.5n84	.5118	LOCATIO	x • 1	.5096	.5107	.5090	.5110	1004710	X	9000	00000	.509B	.5120	.5078	.5100
	0 X	.5011	.5008	.5003	8664°	.5001	.5007		0×	.5013	.4993	5665	5005	£665°	6664.		0×	.5016	.5003	9664	.5000		**	000		.5005	.5000	7667.	.5001
	x-1	6165	.4880	4926	.4P65	4086	.4880		x-1	.4032	.4 a A S	.486R	.4865	****	.4992		-x	14027	6684	5604°	.4883		1-1	2507	35.4.	7007	2804.	.4010	1647.
	×-2	.482R	.4750	.4375	4774	.4773	.4748		X-2	.4856	.4777	5474.	.4718	.4815	.4762		x-2	.4840	4614	479R	.4765		Y-2	4040	0000	. 4R09	.4760	.482B	.476A
ELAPSFD	TIME	.1686MS	.281 3MS	3934MS	.1124MS	-224 RMS	.3372MS	FLAPSED	TIME	. 1686WS	.2810MS	3934MS	.1124MS	.2248MS	.3372MS	FLAPSEN	TIME	.1686MS	- 2810MS	-224AMS	.3372MS	0300413	TIME	140446	- HOOD TO	.2410MS	.3034MC	.2248MS	.3372MS
TEST	. ON	2	21	2	21	21	2	TEST	.0N	22	25	25	25	22	22	TFST	ייט.	23	٤٠	23	23	1551				24	24	*	54

	C+7	.4411	5057°	85 L 7 3 8	0154°	.4723			C+1	6057	6187°	54845	.4757		C+1	8597°	4014.	.4741	6957	6444.		C+ A	6787	64779	.4678	.47A2	.45A7	.4751
	۲٠١	868ª°	.4701	.4876	64642	.4872			۲٠١	.4674	0167.	.4928	.4878		۲٠١	.4757	*4904	.4880	4654	.4623		۲۰۱	.4930	6684.	.4841	.4897	.4684	.4878
	Ye	8667°	.4811	.5006	.4737	.5010			7.0	.4754	.5001	.5000	1667.		4.0	.4856	.5000	.5007	.4739	.4741		۲.	8667°	9667.	.5005	.5003	.4779	.5006
•	1-1	.5091	.4921	.5133	.4833	.5146		-	۲-1	1184.	.5091	.50₽3	.5119	-	1- - -	6767	.5112	.5134	.4873	.4868		۲-۱	.5071	.5103	.516A	.5105	.4880	.5136
ORDERS (IN	Y-2	.5181	.5028	.5262	.4927	.5285		ORDERS (IN	7-2	.4903	.5181	.5160	.5235	ORDFRS (IN	Y-2	.5043	.5217	.5264	5067	6867	ORDERS (IN	Y-2	.5140	.5209	.5324	.5209	.4975	.5262
N OF GRID	X+2	.5150	.5219	.5229	.5192	.5235		N OF GRID	X+2	.5119	.5186	.5160	.5182	N OF GRID	X+2	.5159	.5209	.5205	.5143	.5237	N OF GRID	X+2	.5131	.5219	.5278	.5174	.5193	.5198
LOCATIO	x+1	.5076	.5110	.5109	.5098	.5114		LOCATIO	x+1	.5059	.5093	.5n86	.5087	LOCATIO	x+1	.5071	.5196	.509A	.5963	.5121	LOCATIO	X+1	.5074	.5113	.5134	.5095	.5105	.5101
	ex	5667	1665	.5004	.5004	.5001			0×	.5000	Suns.	.5009	7667.		0×	6H65.	.5003	2064.	4664	2005		0 x	.5005	.5004	1664	.5006	.5004	2005
	x-1	0107	40AB	6807.	6007.	.4483			-x	7F04.	73070	.4033	6607		-x	5004.	\$ 6 B B	6847	2104	* 4 a R 4		-×	6404.	2004.	.4461	4050	9004°	6607.
	x->	TC84.	.4777	.474A	4444	5474.			x->	.4874	PANO.	***	. 480A		K-2	0184°	.4779	.4775	1584	.4748		x-2	.4871	\$614.	4704	.4826	.480¢	964.
FLADEEN	TIME	. JAPANS	SAILMS.	.1126 WC	PARASC.	3177WS	Success.	EL APCFO	TIME	. 1686mc	SAJAMS.	.224AMC	.3372WC	LABERD	TIME	. 15AKMS	. 28164c	3034MC	.224RMC	.337245	FLAPSFO	TIME	. 1485MC	SAI DAC	3934MS	.1124MS	.224AMS	.3372MS
TEST	NO.	36	S.	50	35	'n		TEST	.07	36	24	52	36	TEST	.0.	10	27	22	20	10	TFST	.0.A	90	20	20	23	20	28

;	***	.4811	.4816	66740	.45A3	.4771		×+2	.4835	6187	.4668	.46R6	.4830	.4757		4.7	.4179	*184	8024	6087.	.4813		Z . X .	4684	.4873	.46A2	.4852	.4776
;	1.1	*490	.4912	.4871	.4658	.4891	4,	**1	4918	.4913	.4840	.4858	6169.	.4880		. I • A	.4267	8064.	.4851	2064.	8064.		۲۰۱	4915	.4911	.4841	.4935	.4892
5	í.	2664.	8667	8667.	.4739	6667.		40	9667	.5005	1664.	.5006	1665.	.5001		40	*4364	.5001	-5002	8664.	8667.		7.0	.5000	7664.	2664.	.5009	.5000
•	-	.5082	.5092	.5130	.4816	.5115		7	.50A1	.5097	.5160	.5176	.5089	.5130		1-1	0944.	.5097	.5148	.5094	.5097		X-1	.50A3	.50A7	.5148	.5088	.5118
DRDERS (IN	7-1	.5171	.5177	.5262	.4888	.5218	NT/ SOLUTION	×->	.5159	.5193	.5306	.5337	.5171	.5244	ORDERS (IN	Y-2	.4552	.5187	.5302	.5187	.5181	ORDERS (IN	X-2	.5161	.5171	.5300	.5168	.5226
N OF GRID	X+2	.5138	.5183	.5179	.5130	.5199	0105 90 10	X+2	5132	.5193	.5225	.5289	.5168	.5204	N OF GRID	X+2	.4893	.5196	.5221	.5154	.5192	N OF GRID	X+2	.5128	.5183	.5220	.5154	.5200
LOCATIO	1 • X	.5n68	.5091	.5086	.5061	•5699	LOCATION	x+1	.5077	.5100	.5114	.5147	.5086	.5102	LOCATIO	x • 1	.4819	.5102	.5110	.5080	*2098	LOCATIO	x • 1	.5066	·5096	.5112	.5076	.5103
;	Ox.	8664	\$664	*664	.4993	1664.		0X	.5001	.5000	.5001	.5002	.5001	.5000		0×	.4739	.5005	.5009	-5005	.5004		0×	6664	.5005	.5001	5665	.5012
,	1-1	.4927	56d4°	5644.	22640	\$684°		. L-X	.4933	4893	4889	4P58	91040	1684.		x-1	.4663	.4903	.4AB5	.4927	5064.		X-1	4931	*4004	.4886	9204.	400H
,	X-7	6484.	.4793	8614.	.485A	-4802		x-2	4861	56795	.4764	.4714	.4834	9614.		X-2	.45A1	.4868	.4769	.4841	.4803		X-2	.4865	6684.	6924	4843	.4809
ELAPSED	LIME	.1686MS	-2810MS	3934MS	.2248MS	.3372#S	FI ADGED	TIME	1686MS	.2810MS	.3934MS	.1124MS	.2248MS	.3372MS	ELAPSED	TIME	.1686MS	.2810MS	.3934MS	.224 RMS	.3372HS	ELAPSFO	TIME	.1686MS	.2810MS	.3934MS	.224RMS	.3372MS
TEST	000	53	2	62	52	62	TEST	2	92	30	30	30	30	96	TFST	, ON	31	1.	31	31	31	TEST	NO.	32	32	32	35	35

	61 40050										
200	TIME	1-3	1-1		COCALIO VA:	OLAS AD N	UMUERS (IN	,	*	,	
•		2-4			1.4		3-1		1.0	1.1	***
33	.1686MS	.48P]	9604.		.5074		.4876	4807	.4728	.4655	0454
33	.2Alnus	£614°	4644		.5107		.5210	5107	25000	4895	4782
33	.1124MS	.4842	4017		-5072		.5180	5089	6667	1167	4807
33	.224RMS	*4804	.4905		-5085		.5167	.5081	4987	4899	4806
33	.3372Mc	.4789	9604.	.5002	.5198		5625.	.5151	.5000	.4863	6472
FST	FLAPSED				LOCATIO	N OF GR10	OPDERS (IN	•			
· Oid	1146	X-2	x-1	6x	x+1	X+2	Y-2	1-7	. 0 %	× 1	×+2
34	.1686MS	.485A	456¥	5667	.5057	.5123	.5148	.5072	4986	.4913	1584.
34	.2810MS	8614°	2604.	8667°	-5092	.5190	.5189	.5098	.5405	4917	.4823
34	.1124MS	6174	6904.	9667	.5118	.5255	-5144	4986	.4833	.4685	4543
34	.224AMS	6284.	9107	.5000	.5082	.5165	.5168	5047	2000	6167	46826
34	.3372MS	.4779	.4P89	.5009	-5105	.5212	.5264	.5133	5401	4879	67/7
								-			

A Commence of the same of the

the design of the control of the state of th

DISTRIBUTION

	No. of Copies
Defense Documentation Center Cameron Station Alexandria, Virginia 22314	12
Commander US A my Materiel Development and Readiness Command Attn: DRCRD DRCDL 5001 Eisenhower Avenue Alexandria, Virginia 22333	1
Office of Naval Research Attn: Mr. A. M. Diness, ONR 471 800 North Quincy Street Arlington, Virginia 22217	1
Superior Technical Services, Inc. Actn: T. Ward 4308 Governors Drive Huntsville, Alabama 35805	1
DRSMI-LP, Mr. Voigt	1
DRDMI-T, Dr. Kobler -TER, Mr. R. Russell -TG -TL, Mr. Lewis -TLA, Mr. Pettey -TLA, Dr. B. Mullinix -EA, Mr. Greene Mr. Matthews -TBD	1 1 2 12 31 5 1
-TI (Record Set) (Reference Copy)	1