Protocolos Modelo OSI

AULA 08

Prof. Carlos Louzada

Protocolo

- Protocolo é a "linguagem" usada para computadores "conversarem" em uma rede.
- Por exemplo: através de um protocolo o transmissor pode informar ao receptor que tipo de dados ele está enviando.
- Na realidade em uma comunicação dentre dois computadores vários protocolos são usados, cada um com uma finalidade diferente.

Modelo OSI

- O Modelo OSI (*Open System Interconnection*) é um modelo de rede de computador referência da ISO dividido em camadas de funções, criado em 1971 e formalizado em 1983, com objetivo de ser um padrão, para protocolos de comunicação entre os mais diversos sistemas em uma rede local (Ethernet), garantindo a comunicação entre dois sistemas computacionais (*end-to-end*).
- Este modelo divide as redes de computadores em 7 camadas, de forma a se obter camadas de abstração. Cada protocolo implementa uma funcionalidade assinalada a uma determinada camada.

- Segundo Tanenbaum o Modelo OSI não é uma arquitetura de redes, pois não especifica os serviços e protocolos exatos que devem ser usados em cada camada. Ele apenas informa o que cada camada deve fazer.
- O Modelo OSI permite comunicação entre máquinas heterogêneas e define diretivas genéricas para a construção de redes de computadores (seja de curta, média ou longa distância) independente da tecnologia utilizada.

História

- A Organização Internacional para a Normalização (International Organization for Standardization - ISO), foi uma das primeiras organizações a definir formalmente uma arquitetura padrão com objetivo de facilitar o processo de interconectividade entre máquinas de diferentes fabricantes;
- Em 1984 a ISO lançou o padrão chamado Interconexão de Sistemas Abertos (*Open Systems Interconnection* OSI) ou Modelo OSI.

- A Organização Internacional para a Normalização (ISO) começou a desenvolver a sua estrutura de arquitetura OSI, com quatro componentes principais: um modelo abstrato de rede, o chamado Modelo de Referência Básico ou sete camadas do modelo, e um conjunto de protocolos específicos e outros dois de menor relevância.
- O conceito de um modelo de sete camadas foi fornecida pelo trabalho de Charles Bachman, Serviços de Informação da Honeywell. Vários aspectos do projeto OSI evoluíram a partir de experiências com a ARPANET, a Internet incipiente, NPLNET, EIN, CYCLADES rede e o trabalho em IFIP WG6.1.

- Quando as redes de computadores surgiram, as soluções eram, na maioria das vezes, proprietárias, isto é, uma determinada tecnologia só era suportada por seu fabricante.
- Dessa forma, um mesmo fabricante era responsável por tudo na rede: cabos, placas, equipamentos, protocolos, software, etc.
- O modelo OSI é um modelo de 7 camadas. Importante notar que este modelo foi criado especificamente para redes com comutação de pacotes e não para redes com comutação de circuito.
- O estudo desse protocolo é extremamente didático, pois através dele há como entender como deveria ser um "protocolo ideal", bem como facilita enormemente a comparação do funcionamento de protocolos criados por diferentes fabricantes.

Funções das Camadas

- Na transmissão de um dado, cada camada pega as informações passadas pela camada superior, acrescenta informações pelas quais ela seja responsável e passa os dados para a camada imediatamente inferior.
- Esse processo é conhecido como *encapsulamento*.

Camada 7 - Aplicação

- A camada de aplicação corresponde às aplicações (programas) no topo da camada OSI que serão utilizadas para promover uma interação entre a máquina-usuário (máquina destinatária e o usuário da aplicação).
- Esta camada também disponibiliza os recursos (protocolo) para que tal comunicação aconteça, por exemplo, ao solicitar a recepção de *e-mail* através do aplicativo de *e-mail*, este entrará em contato com a camada de Aplicação do protocolo de rede efetuando tal solicitação (POP3 ou IMAP).
- Tudo nesta camada é relacionado ao software. Alguns protocolos utilizados nesta camada são: HTTP, SMTP, FTP, NFS, Telnet, SIP, RDP, IRC, SNMP, NNTP, POP3, IMAP, BitTorrent, DNS, ICMP, SMTP etc.

Camada 6 - Apresentação

- A camada de Apresentação, também chamada camada de Tradução, converte o formato do dado recebido pela camada de Aplicação em um formato comum a ser usado na transmissão desse dado, ou seja, um formato entendido pelo protocolo usado.
- Um exemplo comum é a conversão do padrão de caracteres (código de página) quando o dispositivo transmissor usa um padrão diferente do ASCII. Pode ter outros usos, como compressão de dados e criptografia.

- Os dados recebidos da camada 7 estão descomprimidos, e a camada 6 do dispositivo transmissor fica responsável por comprimir esses dados.
- A transmissão dos dados torna-se mais rápida, já que haverá menos dados a serem transmitidos: os dados recebidos da camada 4 foram "encolhidos" e enviados à camada 1.
- Para aumentar a segurança, pode-se usar algum esquema de criptografia neste nível, sendo que os dados só serão descodificados na camada 6 do dispositivo receptor.
- Ela trabalha transformando os dados em um formato no qual a camada de aplicação possa aceitar, minimizando todo tipo de interferência.
- Um exemplo de protocolo que opera nesta camada é o SSL (*Secure Socket Layer*), responsável por criptografar dados gerados por protocolos operando na camada de aplicação.

Camada 5 - Sessão

- Responsável pela troca de dados e a comunicação entre hosts, a camada de Sessão permite que duas aplicações em computadores diferentes estabeleçam uma comunicação, definindo como será feita a transmissão de dados, pondo marcações nos dados que serão transmitidos.
- Se porventura a rede falhar, os computadores reiniciam a transmissão dos dados a partir da última marcação recebida pelo computador receptor.

Camada 4 - Transporte

- A camada de transporte é responsável por receber os dados enviados pela camada de sessão e segmentá-los para que sejam enviados a camada de rede, que por sua vez, transforma esses segmentos em pacotes.
- No receptor, a camada de Transporte realiza o processo inverso, ou seja, recebe os pacotes da camada de rede e junta os segmentos para enviar à camada de sessão.
- Isso inclui controle de fluxo, ordenação dos pacotes e a correção de erros, tipicamente enviando para o transmissor uma informação de recebimento, garantindo que as mensagens sejam entregues sem erros na sequência, sem perdas e duplicações.

- A camada de transporte separa as camadas de nível de aplicação (camadas 5 a 7) das camadas de nível físico (camadas de 1 a 3).
- A camada 4, Transporte, faz a ligação entre esses dois grupos e determina a classe de serviço necessária como orientada à conexão, com controle de erro e serviço de confirmação ou sem conexões e nem confiabilidade.
- O objetivo final da camada de transporte é proporcionar serviço eficiente, confiável e de baixo custo.
- O hardware e/ou software dentro da camada de transporte e que faz o serviço é denominado entidade de transporte.

- A entidade de transporte comunica-se com seus usuários através de primitivas de serviço trocadas em um ou mais TSAP (Transport Service Access Point), que são definidas de acordo com o tipo de serviço prestado: orientado ou não à conexão.
- Estas primitivas são transportadas pelas TPDU (*Transport Protocol Data Unit*).
- Na realidade, uma entidade de transporte poderia estar simultaneamente associada a vários TSA e NSAP (Network Service Access Point black).
- No caso de multiplexação, associada a vários TSAP e a um NSAP e no caso de *splitting*, associada a um TSAP e a vários NSAP.

A ISO define o protocolo de transporte para operar em dois modos:

- 1. Orientado à conexão;
- 2. Não-Orientado à conexão.
- Como exemplo de protocolo orientado à conexão, temos o TCP, e de protocolo não orientado à conexão, temos o UDP.
- É óbvio que o protocolo de transporte não orientado à conexão é menos confiável.
- Ele não garante entre outras coisas a entrega das TPDU, nem tão pouco a ordenação delas.
- Entretanto, onde o serviço da camada de rede e das outras camadas inferiores é bastante confiável - como em redes locais - o protocolo de transporte não orientado à conexão pode ser utilizado, sem o overhead inerente a uma operação orientada à conexão.

- O serviço de transporte baseado em conexões é semelhante ao serviço de rede baseado em conexões.
- O endereçamento e controle de fluxo também são semelhantes em ambas as camadas.
- Para completar, o serviço de transporte sem conexões também é muito semelhante ao serviço de rede sem conexões.
- Constatado os fatos acima, surge a seguinte questão: "Por que termos duas camadas e não uma apenas?".
- A camada de rede é parte da sub-rede de comunicações e é executada pela concessionária que fornece o serviço (pelo menos para as WAN).
- Quando a camada de rede não fornece um serviço confiável, a camada de transporte assume as responsabilidades, melhorando em suma importância a qualidade do serviço.

Camada 3 - Rede

- A camada de rede fornece os meios funcionais e de procedimento de transferência de comprimento variável de dados de sequências de uma fonte de acolhimento de uma rede para um host de destino numa rede diferente (em contraste com a camada de ligação de dados que liga os hosts dentro da mesma rede), enquanto se mantém a qualidade de serviço requerido pela camada de transporte.
- A camada de rede realiza roteamento de funções, e também pode realizar a fragmentação e remontagem e os erros de entrega de relatório.

- Roteadores operam nesta camada, enviando dados em toda a rede estendida e tornando a Internet possível.
- Este é um esquema de endereçamento lógico os valores são escolhidos pelo engenheiro de rede.
- O esquema de endereçamento não é hierárquico.

A camada de rede pode ser dividida em três subcamadas:

- **Sub-rede de acesso** considera protocolos que lidam com a interface para redes, tais como X.25;
- Sub-rede dependente de convergência necessária para elevar o nível de uma rede de trânsito, até ao nível de redes em cada lado;
- Sub-rede independente de convergência lida com a transferência através de múltiplas redes. Controla a operação da sub rede roteamento de pacotes, controle de congestionamento, tarifação e permite que redes heterogêneas sejam interconectadas.

Camada 2 – Link de Dados

- A camada de ligação de dados também é conhecida como de enlace ou link de dados.
- Esta camada detecta e, opcionalmente, corrige erros que possam acontecer no nível físico.
- É responsável por controlar o fluxo (recepção, delimitação e transmissão de quadros) e também estabelece um protocolo de comunicação entre sistemas diretamente conectados.

- A camada de link de dados pega os pacotes de dados recebidos da camada de rede e os transforma em quadros ou células que serão trafegados pela rede, adicionando informações como o endereço da placa de rede de origem, o endereço da placa de rede de destino, dados de controle, os dados em si e dados de correção de erro (checksum ou CRC).
- A diferença entre quadro e célula é que o quadro possui um tamanho configurável, enquanto que a célula possui sempre o mesmo tamanho.
- Se o pacote de dados recebido da camada três for maior do que o tamanho do quadro de dados sendo usado pela rede, então o pacote de dados será dividido em tantos quadros quantos forem necessários para a transmissão completa do pacote.

- O quadro criado pela camada link de dados é enviado para a camada física, que converte esse quadro em sinais elétricos para serem enviados através do meio (cabo ou ar, no caso de redes sem fio).
- Esta camada é ainda responsável por verificar se o meio onde os quadros serão transmitidos está disponível e pode ser usado.

Camada 1 - Física

- A camada física define especificações elétricas e físicas dos dispositivos.
- Em especial, define a relação entre um dispositivo e um meio de transmissão, tal como um cabo de cobre ou um cabo de fibra óptica.
- Isso inclui o layout de pinos, tensões, impedância da linha, especificações do cabo, temporização, hubs, repetidores, adaptadores de rede, adaptadores de barramento de host (HBA usado em redes de área de armazenamento) e muito mais.

- A camada física é responsável por definir se a transmissão pode ser ou não realizada nos dois sentidos simultaneamente.
- Sendo a camada mais baixa do modelo OSI, diz respeito a transmissão e recepção do fluxo de bits brutos não-estruturados em um meio físico.
- Ela descreve as interfaces elétricas, ópticas, mecânicas e funcionais para o meio físico e transporta sinais para todas as camadas superiores.

- A camada física pega dos quadros enviados pela camada de link de dados e efetua a codificação de modulação de quadro, transmitindo o quadro através de sinais elétricos, luminosos ou de radiofrequência, dependendo se a rede usa cabos metálicos, fibra óptica ou é do tipo sem fio, respectivamente.
- O papel dessa camada é efetuado pela placa de rede dos dispositivos conectados em rede. Note que a camada física não inclui o meio onde dados circulam.
- O máximo com que essa camada se preocupa é com o tipo de cabo usado para a transmissão e recepção dos dados, mas o cabo em si não é responsabilidade dessa camada.
- Assim como a camada dois, a acamada um é controlada por hardware e definida pela arquitetura de rede sendo usada.

7-Aplicação	Interfaces com aplicativos	
6-Apresentação	Formatos / Criptografia	
5-Sessão	Controle de Sessões entre Aplicativos	
4-Transporte	Conexão entre hosts / Portas	CAMADA
3-Rede	Endereço lógico / Roteadores	7 Aplicação
2-Enlace de Dados	Endereço físico / Pontes e Switches	\$ Sessão
1-Física	Hardware / Sinal elétrico / bits	4 Transporte Comunicação Limite da Sub-Rede PROTOCOLO INTERNO DA SUB-REDE

Função	Prover serviços de rede às aplicações	Criptografia, codificação, compressão e formatos de dados	Iniciar, manter e finalizar sessões de comunicação	Transmissão confiável de dados, segmentação	Endereçamento lógico e roteamento; Controle de tráfego	Endereçamento físico; Transmissão confiável de quadros	Interface com meios de transmissão e sinalização
Protocolos	HTTP, RTP, SMTP, FTP, SSH, Telnet, SIP, RDP, IRC, SNMP, NNTP, POP3, IMAP, BitTorrent, DNS	XDR, TLS	NetBIOS	NetBEUI, TCP, UDP, SCTP, DCCP, RIP	IP, (IPv4, IPv6), Ipsec, ICMP, ARP, RARP, NAT	Ethernet, IEEE 802. 1Q, HDLC, Token ring, FDDI, PPP, Swicth, Frame relay, ATM	Modem, 802. 11 WIFI, RDIS, RS- 232, EIA-422, RS-449, Bluetooth, USB, 10BASE-T, 100BASE, TX, ISDN, SONET, DSL
Camadas	Aplicação	Apresentação	Sessão	Transporte	Rede	Enlace	Física
	7	9	2	4	80	2	4

FIM!