Appunti Probabilità e Statistica

Nicolas Alberti

Anno Accademico 2020/21

Abstract

Questi sono appunti redatti seguendo le video-lezioni. Dovrebbero contenere tutto, quindi dovrebbero essere pronti per lo studio finale.

Contents

1	Lez	ione 1 4			
	1.1	Spazio di Probabilità			
		1.1.1 Definizione:			
		1.1.2 Esempi:			
		1.1.3 Esiti ed Eventi:			
		1.1.4 Esempio:			
		1.1.5 Eventi banali ed onnipresenti: 6			
	1.2	Operazioni elementari sugli eventi 6			
	1.3	Proprietà fondamentali di unione ed intersezione			
	1.4	Decomposizioni in unioni disgiunte			
2	Lez	ione 2			
	2.1	La sigma-algebra degli Eventi			
		2.1.1 Esempi			
		2.1.2 Conseguenze elementari degli assiomi			
	2.2	Misura di Probabilità P			
		2.2.1 Conseguenze elementari degli assiomi			
		2.2.2 Osservazione:			
3	Lezione 3				
	3.1	Scelta della Misura di Probabilità P			
		3.1.1 Scelta di P nel caso di Omega Discreto			
		3.1.2 Scelta di P nel caso di Omega Finito			
	3.2	Combinatoria Elementare			
		3.2.1 Principio Fondamentale del Conteggio (P.F.C) 17			
4	Lez	ione 4 19			
	4.1	Disposizioni con Ripetizione			
	4.2	Disposizioni senza Ripetizione			
	4.3	Esercizi			
	1.1	Righthay Problem			

5	Lez	ione 5	24
	5.1	Probabilità Condizionata	24
	5.2	Definizione Probabilità Condizionata	24
		5.2.1 Teorema	25
	5.3	Formula delle probabilità totali	26
		5.3.1 Teorema	26
		5.3.2 Esercizio: Tre Urne - Prima parte	27
		5.3.3 Formula di Bayes	27
		5.3.4 Esercizi	28
6		ione 6	31
	6.1	Eventi Indipendenti	31
		6.1.1 Indipendenza di due eventi	31
	6.2	Conseguenze elementari dell'indipendenza	33
		6.2.1 Dimostrazione	33
		6.2.2 Proposizione 2	33
	6.3	Indipendenza di Tre Eventi	34
		6.3.1 Esempi	34
		6.3.2 In generale	36
-	T	· 7	97
7		ione 7	37
	7.1	Variabili Aleatorie Discrete	37
	7.0	7.1.1 Esempi	37
	7.2	Misura di probabilità indotta	38
		7.2.1 Definizione Probabilità Indotta	38
		7.2.2 Lemma e Dimostrazione	39
	7.3	Esempi e descrizione probabilistica	41
		7.3.1 Descrizione Probabilistica della variabile aleatoria	42
8	Lez	ione 8	44
-	8.1	Funzione di una variabile aleatoria	44
	0.1	8.1.1 Esercizi	45
	8.2	Valor Medio (o Atteso)	46
	0.2	8.2.1 Significato del Valor Medio	46
		8.2.2 Teorema Fondamentale del valor medio	47
9		ione 9	48
	9.1	Proprietà del Valor Medio	48
		9.1.1 Linearità	48
		9.1.2 Positività	49
		9.1.3 Monotonia	49
		9.1.4 Limiti Inferiore e Superiore	49
		9.1.5 Teorema (valor medio di funzioni di v.al.)	49
		9.1.6 Esercizi	50
		U.L.'/ Vomongo	E.

10	Lezi	ione 11	53
	10.1	Variabili Aleatorie Discrete Notevoli	53
		10.1.1 Caso di Alfabeto Finito	53
		10.1.2 Schema di Bernoulli (o schema a Prove Indipendenti)	5^{2}
		10.1.3 Esempi	5^{4}
	10.2	Variabili Aleatorie Binomiali	5
		10.2.1 Esempio	5.
		10.2.2 Esercizio	50

Chapter 1

Lezione 1

1.1 Spazio di Probabilità

1.1.1 Definizione:

Uno spazio di probabilità è una terna (Ω, F, P) dove:

- Ω : è un Insieme
- $\bullet\,$ F: è una famiglia di sotto
insiemi di Ω con una particolare struttura detta
 $\sigma\text{-algebra}$
- P: da F \rightarrow [0, 1], è una mappa con misura positiva e normalizzata

Descriviamo ora nel particolare il primo simbolo. Ω è lo **spazio campionario**, ovvero è l'insieme di **tutti gli esiti** dell'esperimento aleatorio che stiamo considerando.

 $\mathbf{Oss.1}:\;$ bisogna scegliere un insieme Ω sufficientemente ricco capace di contenere tutti i risultati dell'esperimento considerato. Quindi la scelta dello spazio campionario **non è** univoca.

Oss.2:

- Se $(\Omega) \leq N$, si dice che lo spazio campionario è discreto.
- Se $(\Omega) \geq N$, si dice che lo spazio campionario è **continuo**.

1.1.2 Esempi:

1. Lancio 1 moneta, osservo la faccia uscita:

$$\Omega = \{T, C\}$$

dove T e C sono Testa e Croce

2. Lancio 1 moneta per 3 volte, vado a contare il numero di Teste uscite:

$$\Omega = \{0, 1, 2, 3\}$$

3. Lancio 1 moneta per 3 volte, ora osservo la sequenza delle facce ottenute:

$$\Omega = \{TTT, TTC, TCT, CTT, TCC, CTC, CCT, CCC\}$$

4. Lancio di 1 moneta fino a che non ottengo Testa e conto il numero di lanci effettuati:

$$\Omega = N + = \{1, 2, 3, ...\}$$

5. Considero il tempo di vita di un Hard Disk:

$$\Omega = R + = [0, +\infty]$$

1.1.3 Esiti ed Eventi:

Esiti ed Eventi sono degli elementi speciali dei sottoinsiemi.

- se $\omega \in \Omega$ (ovvero ω è elemento di Ω), allora è detto esito (o evento elementare
- se $E \subseteq \Omega$ (ovvero E è sottoinsieme di Ω , allora è detto evento

Se l'esecuzione dell'esperimento dà come risultato $\omega \in \Omega,$ diremo che si è verificato $\omega.$

Per ogni E tale che $\omega \in E$, allora diremo che si è verificato E.

1.1.4 Esempio:

Riprendiamo l'esempio 3 descritto prima. Lo spazio campionario che rappresenta i possibili risultati di 3 lanci di una moneta è :

$$\Omega = \{TTT, TTC, TCT, CTT, TCC, CTC, CCT, CCC\}$$

Gli eventi possibili saranno quindi:

- E_k = "ottengo K croci (in 3 lanci) ", con K = 0, 1, 2, 3 Per ogni K devo esaminarne gli eventi **favorevoli**:
 - 1. $E_0 = TTT$
 - 2. $E_1 = \text{TCT}, \text{CTT}, \text{TTC}$
 - 3. $E_2 = \text{TCC}, \text{CTC}, \text{CCT}$
 - 4. $E_3 = CCC$

Supponiamo di avere ottenuto come esito, dopo i 3 lanci, CTC: si verifica quindi E_2 ma non si verificano E_0 , E_1 ed E_3 .

1.1.5 Eventi banali ed onnipresenti:

Sono 2 e sono quelli di seguito:

- Ω : evento **certo**
- \emptyset : evento **impossibile**

1.2 Operazioni elementari sugli eventi

Le operazioni insiemistiche permettono di combinare più spazi campionari, al fine di ottenere eventi più interessanti.

Siano E, F $\in \Omega$ degli eventi. Abbiamo:

• il **complementare** di E (evento):

$$E^c = \{ (\omega \in \Omega | \omega \ni) E \}$$

E' l'insieme degli esiti che **non stanno** in E. Probabilisticamente, E^c si verifica quando non si verifica E.

 \bullet Intersezione di E con F:

$$E \cap F = \{ \omega \in \Omega | \omega \in E \ e \ \omega \in F \}$$

Probabilisticamente, $E \cap F$ si verifica solo se si verificano **sia E che F**. Se E ed F sono tali che:

$$E \cap F = \emptyset$$

si dice che E ed F sono **incompatibili** o **disgiunti**, cioè E ed F non si possono verificare allo stesso momento.

• Unione di E con F:

$$E \cup F = \{\omega \in \Omega | \omega \in E \ o \ \omega \in F\}$$

Probabilisticamente, $E \cup F$ si verifica se **almeno uno** tra E ed F si verifica. L'unione corrisponde ad una "o" inclusiva.

- Differenza tra insiemi. Ne esistono di 2 tipi:
 - $E \ F$ (si legge E meno F) non simmetrica: significa che ($F \ E \ne E \ F$).

$$E \backslash F = \{ \omega \in \Omega \mid \omega \in E \ e \ \omega \not\in F \}$$

Probabilisticamente, si dice che $E \backslash F$ si verifica quando si verifica E ma non si verifica F.

 $- E\triangle F$: è la differenza simmetrica:

$$E\triangle F = \{\omega \in \Omega \mid \omega \in (E \setminus F) \text{ o } \omega \in (F \setminus E)\}$$

Probabilisticamente, si dice che $E \triangle F$ si verifica se **esattamente** uno tra E ed F si verifica. Corrisponde ad una "o" esclusiva.

Esempio Vediamo l'esempio dei 3 lanci della moneta visto in precedenza. Abbiamo definito: $E_K="Ottengo\ K\ croci",\ K=0,1,2,3..$ Abbiamo un evento

$$E = "esce almeno una testa" = E_3^C$$

il quale è il **complementare** di

$$F = "escono almeno 2 croci" = E_2 \cup E_3$$

Abbiamo anche l'evento

$$G = "escono almeno due teste" = (E_2 \cup E_3)^C$$

1.3 Proprietà fondamentali di unione ed intersezione

Esistono varie leggi

• Leggi commutative

$$E \cup F = F \cup E$$

ed anche

$$E \cap F = F \cap E$$

• Leggi associative

$$(E \cup F) \cup G = E \cup (F \cup G)$$

ed anche

$$(E \cap F) \cap G = E \cap (F \cap G)$$

• Leggi distributive

$$E \cup (F \cap G) = (E \cup F) \cap (E \cup G)$$

ed anche

$$E \cap (F \cup G) = (E \cap F) \cup (E \cap G)$$

• Leggi di **De Morgan**

$$(E \cup F)^C = E^C \cap F^C$$

ed anche

$$(E \cap F)^C = E^C \cup F^C$$

1.4 Decomposizioni in unioni disgiunte

E' un metodo conveniente quando si tratteranno le probabilità. Dobbiamo innanzitutto **ripartire lo spazio campionario**.

• Partizione di Ω : E' una famiglia di eventi $\{E_N\}_{N\geq 1}$. Gli eventi sono a **2 a 2 disgiunti** e la proprietà è anche detta mutua disgiunzione o mutua incompatibilità e la loro unione porta ad ottenere lo spazio campionario Ω di partenza. Simbolicamente diciamo:

$$-E_i \cap E_j = \emptyset \text{ per } i \neq j$$

$$-\bigcup_{N>1} E_N = \Omega$$

Significa che fra gli eventi **non deve esserci intersezione** e quando verranno riuniti essi copriranno **tutto lo spazio campionario**.

Esempi

- 1. Se $E\subseteq \Omega$ è un evento, allora la famiglia $\{E,E^C\}$ è una partizione di $\Omega.$
- 2. Prendiamo di nuovo l'esempio dei 3 lanci di una moneta. La famiglia che costruiamo con gli eventi $E_K = \{E_0, E_1, E_2, E_3\}$ (che, ricordiamo, sono l'ottenimento di K croci), questa famiglia è una partizione di Ω .
- Decomposizione di un evento rispetto ad una partizione: Siano F evento e $\{E, E^C\}$ una partizione di Ω . Allora

$$F = (F \cap E) \cup (F \cap E^C)$$

Possiamo dire che $(F \cap E)$ e $(F \cap E^C)$ sono eventi **disgiunti**.

Figure 1.1: Questa è la rappresentazione grafica di ciò che abbiamo appena descritto

In generale, se $\{E_n\}_{n\geq 1}$ è una partizione di $\Omega,$ abbiamo

$$F = \bigcup_{n \ge 1} (F \cap E_n)$$

• Decomposizione dell'unione di due eventi: serve a riscrivere un unione in modo che gli eventi che vado ad unire per rappresentarla siano a due a due disgiunti. Non esiste una regola ed esistono varie decomposizioni. Siano

$$E, F \subseteq \Omega \ eventi$$

si può avere il primo caso (1.2)

$$E \cup F = (E \backslash F) \cup (E \cap F) \cup (F \backslash E)$$

Altrimenti possiamo avere anche il secondo caso (1.3):

$$E \cup F = E \cup (F \backslash E)$$

Figure 1.2: Ecco la raffigurazione del primo esempio di decomposizione: la parte blu indica $(E \setminus F)$, la parte rossa indica $(E \cap F)$ mentre la parte verde indica $(F \setminus E)$. Interessante notare come questi tre eventi siano anche **disgiunti** tra loro.

Figure 1.3: Ecco la raffigurazione del secondo esempio. In verde abbiamo E, mentre in blu abbiamo $(F \setminus E)$. Questi due eventi restano **disgiunti**.

Chapter 2

Lezione 2

2.1 La sigma-algebra degli Eventi

Una famiglia F (ricorda F corsivo) di sottoinsiemi di Ω si chiama $\sigma-algebra$ se:

- 1. F è non vuota
- 2. se $E \in F$, allora $E^C \in F$
- 3. se $E_n \in F$ per $n \ge 1$, allora $\bigcup_{n \ge 1} E_n \in F$; identifica la chiusura per unione numerabile.

2.1.1 Esempi

Vediamo alcuni esempi:

- 1. σ -algebra banale: qualunque sia Ω , la famiglia $\{\Omega, \varnothing\}$ è una σ -algebra. E' quindi σ -algebra lo spazio campionario Ω e lo spazio vuoto \varnothing .
- 2. $\sigma algebra$ generata da un evento: dato Ω e un evento $E \subseteq \Omega$, la famiglia $\{\varnothing, E, E^C, \Omega\}$ è una $\sigma algebra$.
- 3. $\sigma-algebra$ massima: qualunque sia Ω , la famiglia di tutti i suoi sottoinsiemi (detta insieme delle parti)

$$F = \mathbb{P}(\Omega)$$

è una $\sigma - algebra$. E' la più grande $\sigma - algebra$ costruibile.

Nota: se Ω è discreto, prenderemo sempre $F = \mathbb{P}(\Omega)$

2.1.2 Conseguenze elementari degli assiomi

Vediamo alcune conseguenze degli assiomi appena descritti:

1. $\Omega \in F e \varnothing \in F$

Come lo vediamo? Esiste un $E \in F$ per la condizione 1. vista prima, ciò implica $\longrightarrow E^C \in F$ per la condizione 2. di prima.

Ora vediamo $\Omega = \{E \cup E^C\} \in F$, poichè la loro unione determina un numero **finito** di elementi, dato dalla condizione 3. vista prima. In conclusione diciamo anche che $\Omega \in F$ e anche che $\varnothing = \Omega^C \in F$ per la condizione 2.

2. Chiusura per **intersezione numerabile**: dice che se ho $E_n \in F$ per ogni $n \ge 1$, allora anche $\bigcap_{n \ge 1} E_n \in F$ sarà nella $\sigma - algebra$. Come la vediamo? Devo riscrivere questa intersezione in un modo che

mi permetta di utilizzare tutte le informazioni che ho, che sono solo su unione e complementazione di eventi sulla $\sigma - algebra$. Sfrutto le Leggi di De Morgan:

- $(\bigcap_{n\geq 1} E_n)^C = \bigcup_{n\geq 1} E_n^C \in F$. Gli $E_n^C \in F$ per la **condizione 2.**. La loro **unione numerabile** $\in F$ per la **condizione 3.**
- Chiudiamo dicendo: $\bigcap_{n\geq 1} E_n = ((\bigcap_{n\geq 1} E_n)^C)^C$ dove la **prima intersezione** complementare \in Fper il primo punto di questo elenco, ed il **suo complementare** \in F per la **condzione 2.** della definizione precedente. Quindi l'oggetto è un elemento della $\sigma algebra$.

2.2 Misura di Probabilità P

Definizione Una misura di probabilità è una mappa

$$P: F \longrightarrow [01]$$

in cui

$$E \longmapsto P(E)$$

dove P(E) è la probabilità dell'evento E, tale che soddisfi 2 proprietà:

- 1. $P(\Omega) = 1$, è la normalizzazione
- 2. se $\{E_n\}_{n\geq 1}$ famiglia di eventi **mutualmente incompatibili** (ovvero quando l'intersezione fra i,j di una famiglia è vuota quando $i\neq j$), allora

$$P(\bigcup_{n\geq 1} E_n) = \sum_{n\geq 1} P(E_n)$$

La misura, come detto nella prima lezione, deve essere **positiva e normaliz-**zata.

- La **positività** è implicita nel fatto che la probabilità prende **valori nell'intervallo** [0,1], quindi certamente positivi
- La condizione di **normalizzazione** invece è la condizione sulla probabilità dell'**intero spazio campionario**, come indicato prima.

2.2.1 Conseguenze elementari degli assiomi

1. $P(E^C) = 1 - P(E)$: come lo vediamo? Si ha che $1 = P(\Omega) = P(E \cup E^C) = P^{per\ condizione\ 2\ definizione\ } P(E) + P(E^c)$, dove $E\ ed\ E^c$ sono **disgiunti**. Da cui quindi otteniamo

$$P(E^c) = 1 - P(E)$$

2. $P(\emptyset)=0$: come lo vediamo? Si ha $\emptyset=\Omega^c$, quindi posso usare la prima proprietà appena definita per dire:

$$P(\varnothing) = P(\Omega^c) = ^{(per\ proprieta'\ 1)} 1 - P(\Omega)_{(=1\ per\ conditione\ 1)} = 0$$

3. Se $E \subset F$, allora P(E) < P(F): come lo vediamo? Se $E \subset F$, allora $F = E \cup (F \setminus E)$, dove i due eventi che sto unendo sono **disgiunti**. Quindi

$$P(F) = ^{(per\ proprieta'\ 2\ Misura\ delle\ Probabilita')} P(E) + P(F \setminus E)$$

 $P(F \setminus E) \in [0, 1]$, che è **positivo**, da cui segue

4. Formula di **inclusione/esclusione**: ci dà modo di calcolare la probabilità di una **unione di eventi**.

$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

Come la vedo?

Si ha $E \cup F = E \cup (F \setminus E)$ (unione disgiunta) e quindi $P(E \cup F) = P(E) + P(F \setminus E)$.

Inoltre $F = (F \setminus E) \cup (F \cap E)$ (unione disgiunta) e quindi $P(F) = P(F \setminus E) + P(F \cap E)$.

Ricavo che: $P(F \setminus E) = P(F) - P(F \cap E)$. Lo sostituisco nella probabilità dell'unione scritta inizialmente ed ottengo:

$$P(E \cup F) = P(E) + P(F) - P(F \cap E)$$

2.2.2 Osservazione:

Dato (Ω, F) per completare la terna, la scelta della misura di probabilità P non è univocamente determinata, poichè gli assiomi non determinano un' unica misura di probabilità.

Esempio: Consideriamo il lancio di una moneta:

$$\Omega = \{T, C\} \ e \ F = \mathbb{P}(\Omega)$$

Abbiamo **infinite** misure di probabilità compatibili con gli assiomi:

$$(T) = p \in [0,1], P(C) = 1 - p$$

Chapter 3

Lezione 3

3.1 Scelta della Misura di Probabilità P

3.1.1 Scelta di P nel caso di Omega Discreto

Consideriamo (Ω, F, P) , con Ω discreto e $F = \mathbb{P}(\Omega)$. Come si assegna P su F? Se $\Omega = \{\omega_1, \omega_2, ...\}$ è discreta, allora ogni evento $E \subseteq \Omega$ (o, equivalentemente $E \in F$) può essere scritto come **unione numerabile** (o finita) di elementi di Ω , cioè significa che:

$$E = \{\omega_{i1}, \omega_{i2}, \omega_{i3}, ...\} = \{\omega_{i1}\} \cup \{\omega_{i2}\} \cup \{\omega_{i3}\} \cup ...$$

(dove gli indici i sono scelti precisamente) è una unione disgiunta di singoletti.

Se P fosse la probabilità a cui siamo interessati, allora avremmo che

$$P(E) = P(\{\omega_{i1}\}) + P(\{\omega_{i2}\}) + P(\{\omega_{i3}\}) + \dots\}$$

Se leggiamo dal punto di vista opposto: è sufficiente assegnare

$$P(\{\omega_i\}) = p_i$$

con i = 1, 2, 3, ... tali che:

- $p_i \in [0,1]$, quindi la **positività**
- $\sum_{i>1} p_i = 1$, quindi la **normalizzazione**

Quindi se Ω è discreto, assegno le **proprietà ai singoletti** che poi andrò ad **unire** per ottenere la probabilità dell'evento P.

Esempio

Consideriamo $\Omega = \mathbb{N}$ e definiamo $P(\{i\}) = \frac{1}{2^i}$ per ogni $i \in \mathbb{N}$. Questa è una misura di probabilità. Infatti verifico:

- $0 < \frac{1}{2^i} \le 1$
- $\sum_{\frac{1}{2^i}} = -1 + \sum_{i \ge 0} \frac{1}{2^i} = -1 + \frac{1}{1 \frac{1}{2}} = 1$

(Piccolo ripasso serie geometrica: $\sum_{K\geq 0} x^K$, dove x è detta ragione, abbiamo che:

- converge se 0 < x < 1
- diverge altrimenti

Se converge
$$\sum_{K \geq 0} x^K = \frac{1}{1-x}$$

Possiamo utilizzare questa misura di probabilità per calcolare la probabilità dell'insieme dei multipli di 3 . Si ha infatti:

$$\begin{split} &P(\{3,6,9,12,\ldots\}) = P(\{3*i\ con\ i \in \mathbb{N}\}) = \\ &= \sum_{i \geq 1} \frac{1}{2^{3i}} = \sum_{i \geq 1} \frac{1}{8^i} = -1 + \sum_{i \geq 0} \frac{1}{8^i} = -1 + \frac{1}{1 - \frac{1}{8}} = \frac{1}{7} \end{split}$$

3.1.2 Scelta di P nel caso di Omega Finito

Se $\Omega = \{\omega_1, \omega_2, ..., \omega_N\}$ ha cardinalità finita \mathbb{N} , possiamo scegliere la misura di probabilità uniforme, detta uniforme poichè assegna a tutti gli esiti la stessa probabilità, ovvero:

$$P(\{\omega_1\}) = P(\{\omega_2\}) = \dots = P(\{\omega_N\}) = \frac{1}{N}$$

Questo mi dice che tutti gli esiti sono equiprobabili.

Lo spazio di probabilità che ottengo scegliendo $\Omega finito, \sigma-algebra delle parti e spazio di probabilità uniforme è detto$ **spazio di probabilità uniforme**. Come faccio a calcolare la probabilità di un evento E?

Per ogni evento $E \in \mathcal{F}$, si ha

$$P(E) = \sum_{\omega_i \in E} P(\{\omega_i\}) = |E| * \frac{1}{N} = \frac{|E|}{|\Omega|}$$

(ovvero cardinalità di E fratto cardinalità di Omega). Questa ultima dicitura indica la famosa descrizione:

$$\frac{Casi\ Favorevoli}{Casi\ Possibili}$$

Esempio

Consideriamo un mazzo di carte da poker (52 carte) e peschiamo una carta.

- $\bullet\,$ La probabilità di estrarre una regina è $\frac{4}{52}$
- La probabilità di estrarre una carta di cuori è $\frac{13}{52}$
- La probabilità di estrarre la regina di cuori è $\frac{1}{52}$

Esercizio

Lanciamo due dadi equilibrati.

- 1. E_1 = "Qual è la probabilità che la somma dei punteggi sia 8?"
- 2. E_2 = "Qual è la probabilità che escano due punteggi uguali?"
- 3. E_3 = "Qual è la probabilità di ottenere 8 con due dadi con lo stesso punteggio?"

Soluzione Lo spazio campionario è

$$\Omega = \{(i,j):\ i,j \in \{1,2,...,6\}\}$$

cioè l'insieme delle coppie dei punteggi ottenuti sui due dadi. Si ha $|\Omega|=6*6=36$

1. Consideriamo l' evento

$$E_1 = \{(2,6), (3,5), (4,4), (5,3), (6,2)\}$$

si ha

$$P(E) = \frac{|E|}{|\Omega|} = \frac{5}{36}$$

2. Consideriamo l'evento

$$E_2 = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}$$

si ha

$$P(E) = \frac{|E|}{|\Omega|} = \frac{6}{36}$$

3. Consideriamo l'evento

$$E_3 = E_1 \cap E_2 = \{(4,4)\}$$

si ha

$$P(E) = \frac{|E|}{|\Omega|} = \frac{1}{36}$$

Punto chiave: Il punto chiave è il contare gli elementi di un insieme.

3.2 Combinatoria Elementare

3.2.1 Principio Fondamentale del Conteggio (P.F.C)

Sia E un insieme. Supponiamo che ogni elemento di E si possa determinare univocamente mediante K scelte successive, tali che:

- La prima scelta ha n_1 esiti possibili
- \bullet La seconda scelta ha n_2 esiti possibili
- La **K-esima** scelta ha n_k esiti possibili

allora la cardinalità di E sarà:

$$|E| = n_1 * n_2 * \dots * n_k$$

Esempio

Contiamo le carte in un mazzo da poker, usando il P.F.C. Ogni carta del mazzo è individuata da un seme (C, Q, F, P) e da un valore (A, 2, 3, ..., J, Q, K). Per individuare una carta, cosa faccio?

- 1. Scelgo il seme: 4 esiti possibili
- 2. Scelgo il valore: 13 esiti possibili

Quindi otteniamo che il numero di carte nel mazzo è:

$$4 * 13 = 52$$

Osservazione Cosa vuol dire "determinare univocamente"? Vuol dire che sequenze distinte di scelte individuano elementi diversi di E.

E' importante, perchè se non è soddisfatta la cardinalità risulterà errata! e il P.F.C non varrà.

Esempio 2

Si deve formare un comitato di 2 persone da scegliersi dal gruppo $\{U, D_1, D_2\}$ (dove U = Uomo e D = Donna). I possibili comitati sono 3:

- 1. $\{U, D_1\}$
- 2. $\{U, D_2\}$
- 3. $\{D_1, D_2\}$

Ora ragioniamo come segue. Scegliere un comitato equivale a fare le seguenti scelte:

- 1. Scelgo una delle due donne: ho 2 esiti possibili
- 2. Scelgo la persona che manca tra i rimanenti: ho 2 esiti possibili.

Applico il P.F.C ed ottengo che il numero dei comitati è 2*2=4, ma in realtà i comitati sono solo 3. Dove sta l'errore?

Sta nel fatto che ci sono **2 distinte sequenze di scelte** che mi danno come risultato il comitato $\{D_1, D_2\}$ e sono:

- $\{D_1, D_2\}$
- $\{D_2, D_1\}$

Chapter 4

Lezione 4

4.1 Disposizioni con Ripetizione

Scopo: Contare le K-uple **ordinate** che posso creare scegliendo ogni entrata da n oggetti con la possibilità di ripetizione.

Ogni entrata può essere scelta tra **n alternative** (ci può essere **ripetizione**) e faccio **K scelte** totali, una per ogni entrata del vettore che voglio costruire. Quindi, per sapere il numero totale di disposizioni con ripetizione è

$$n^{K}$$

Esempi

- 1. Una cassaforte con codice a 7 cifre ha 10^7 codici possibili.
- 2. Metodo per generare sottoinsiemi di un dato insieme: se E è un insieme finito, con cardinalità K, allora i possibili sottoinsiemi di E sono

$$2^{K}$$

Infatti, possiamo specificare un sottoinsieme F di E nel seguente modo: ad ogni elemento di F possiamo assegnare:

- Il valore 1 se sta in F
- \bullet Il valore 0 se non sta in F

Ogni stringa di bit $\{0,1\}$ di lunghezza K codifica un sottoinsieme di E.

Esempio: $E = \{+, -, *, :\}, |E| = 4$ con stringa di bit: 0101 che genera il sottoinsieme:

$$\{-,:\}$$

poichè i valori corrispondono esattamente agli elementi in E (" + " = 0 quindi no," – " = 1 quindi si, eccetera.) Per contare i sottoinsiemi devo quindi **contare le stringhe**. Quante stringhe di lunghezza K posso formare scegliendo le entrate in $\{0,1\}$? Sono 2^K .

4.2 Disposizioni senza Ripetizione

Scopo: contare le K-uple **ordinate** (poichè sono disposizioni quindi l'ordine conta) che posso creare scegliendo ciascuna entrata da n oggetti senza possibilità di ripetizione.

- La prima entrata può essere scelta tra n alternative
- La seconda tra n-1 alternative
- Fino alla K-esima che può essere scelta tra n-k+1 alternative

Il numero delle disposizioni senza ripetizione sarà n*(n-1)*(n-2)*...*(n-k+1) con K fattori. Se $\mathbf{K}=\mathbf{n}$ ottengo le **permutazioni** che contano tutti i modi possibili per ordinare gli n oggetti. In particolare si ottiene che il numero di possibili permutazioni è

n!

Esempio

Cinque amici fanno una gara di nuoto. Le possibili classifiche sono

$$5! = 120$$

ovvero tutti i possibili ordinamenti dei nomi. I possibili podii sono

$$5*4*3 = 60$$

rispettivamente 5 per l'oro, 4 per l'argento e 3 per il bronzo.

4.3 Esercizi

- 1. Un'urna contiene palline numerate da 1 a 50. Si estraggono contemporaneamente 2 palline. Calcolare la probabilità di ottenere:
 - (a) Due numeri dispari
 - (b) Un numero divisibile per 5 e uno non divisibile per 5
 - (c) Due numeri la cui somma è 50.

Soluzione Considero Ω l'insieme di combinazioni di 2 palline scelte tra le 50 nell'urna, senza tenere conto dell'ordine. Si ha $|\Omega|=\binom{50}{2}=1225$ Il coefficiente binomiale $\binom{n}{k}$ è

$$\frac{k!}{(n-k)!}$$

(a) Evento A: Ottengo

$$P(A) = \frac{\binom{25}{2}}{1225} = \frac{12}{49}$$

dove 25 sono le palline dispari (50-25 = 25)

(b) Evento B: Ottengo

$$P(B) = \frac{10 * 40}{1225} = \frac{16}{49}$$

dove 10 sono i numeri divisibili per 5 e 40 sono i numeri non divisibili per 5

(c) Evento C: Ottengo

$$P(C) = \{1, 49\}, \{2, 48\}, ..., \{24, 26\} = 24 \xrightarrow{porta\ al\ risultato} \frac{24}{1225}$$

Soluzione Alternativa Si può risolvere tenendo conto dell' ordine, considerando $\overline{\Omega}$ come l'insieme delle disposizioni di 2 palline scelte dalle 50 dall'urna. Si ha:

$$|\overline{\Omega}| = 50 * 49$$

(a) Evento A: Ottengo

$$P(A) = \frac{25 * 24}{50 * 49} = \frac{12}{49}$$

- (b) Evento B: Questo evento diventa l'unione disgiunta dei due eventi
 - $-B_1$ = "il primo numero è divisibile per 5 e il secondo no"
 - $-B_2$ = "il primo numero non è divisibile per 5 e il secondo si" Ottengo

$$P(B) = P(B_1 \cup B_2) = P(B_1) + P(B_2) = \frac{10 * 40}{50 * 49} + \frac{40 * 10}{50 * 49} = \frac{16}{49}$$

(c) Evento C: Le coppie ordinate che sommano a 50 sono (1,49), (49,1), ... (24,26), (26,24)

$$P(C) = \frac{48}{50 * 49} = \frac{24}{1225}$$

2. Lanciamo 3 dadi equilibrati. Calcolare la probabilità di ottenere:

- (a) Tre numeri dispari
- (b) Due numeri pari e uno dispari
- (c) Tre numeri la cui somma è 5
- (d) Almeno due 1.

Soluzione: Considero

$$\Omega = \{(i, j, k) : i, j, k \in \{1, ..., 6\}\}$$

Questo spazio campionario tiene conto dell'ordine. Si ha $|\Omega|=6^3=216esitipossibili.$

(a) Evento A: si ha

$$P(A) = \frac{3^3}{216} = \frac{1}{8}$$

(b) Evento B: si ha

$$P(B) = \frac{3^4}{216} = \frac{3}{8}$$

Si ha 3^4 perchè si hanno 3 posizioni diverse per i dadi che vanno incluse nel calcolo della probabilità totale, oltre alle scelte da fare sui dadi.

(c) Evento C: si ha

$$P(C) = \frac{2*3}{216} = \frac{1}{36}$$

Questo perchè si hanno solo 2 terne che rispondono alla richiesta (le terne "113" e "221") ed hanno 3 ordinamenti diversi.

(d) Evento D: questo evento è l'unione disgiunta dei due seguenti eventi:

 $-D_1$ = "Ottengo esattamente due 1"

 $-D_2$ = "Ottengo tre 1"

si ha quindi

$$P(D) = (D_1 \cup D_2) = \frac{3*5*1}{216} + \frac{1}{216} = \frac{2}{27}$$

questo perchè: in D_1 vi è un caso in cui non deve uscire "1" $(\frac{3*5}{6})$ mentre gli altri due casi sono $\frac{1}{6}*\frac{1}{6}$;

in D_2 invece ho solo un caso in cui ottengo esattamente tre "1", quindi ho $\frac{1}{6} * \frac{1}{6} * \frac{1}{6} = \frac{1}{216}$.

4.4 Birthday Problem

E' anche detto paradosso dei compleanni, in informatica esiste un attacco di tipo brute force chiamato "Birthday Attack".

Questo problema consiste nel calcolare la probabilità dell'evento

 E_n = "in una classe di n bambini almeno 2 hanno lo stesso compleanno" con $n \leq 365$.

L'anno è composto da 365 giorni (no anno bisestile), che identifico con i numeri da 1 (1 Gennaio) a 365 (31 Dicembre). Lo spazio campionario sarà:

$$\Omega_n = \{1, ..., 365\}^n$$

e la misura di probabilità è uniforme. Dobbiamo calcolare

$$P(E_n) = \frac{|E_n|}{|\Omega_n|} = \frac{|E_n|}{365^n}$$

Il calcolo di $|E_n|$ è complicato, quindi passo all'evento complementare, ossia $E_n^c=$ "in una classe di n bambini tutti i compleanni avvengono in giorni distinti". Si ha

$$P(E_n) = 1 - P(E_n^c) = 1 - \frac{365 * (365 - n + 1)}{365^n}$$

Quello che ci interessa è calcolare n_* definito come il primo n per cui $P(E_n) \geq \frac{1}{2}$, cioè

$$n_* = \min\{n \mid P(E_n) \ge \frac{1}{2}\}$$

Ciò lo si vede con un grafico fatto con un calcolatore e si trova che $n_* = 23$, quindi basta un numero piccolissimo di persone per avere una alta probabilità di persone con lo stesso compleanno all'interno del gruppo.

Figure 4.1: Questo è il grafico che permette di vedere che quale è il minimo n_{\ast} da prendere in considerazione

Chapter 5

Lezione 5

5.1 Probabilità Condizionata

Esempio Urna: 7 palline nere e 3 palline rosse. Estraggo 2 palline. Qual è la probabilità che la seconda pallina estratta sia rossa?

La risposta dipende da quale pallina ho estratto alla prima estrazione: la prima estrazione può avere 2 esiti diversi

- \bullet Pallina nera: resteranno 6 nere e 3 rosse, la probabilità che la seconda pallina sia rossa è $\frac{1}{3}$
- Pallina rossa: resteranno 7 nere e 2 rosse, la probabilità che la seconda pallina sia rossa è $\frac{2}{9}$

quindi la probabilità cambia a seconda della scelta che faccio.

Con questo concetto rispondiamo alle affermazioni del tipo: "la probabilità di E sapendo che si è verificato l'evento F".

5.2 Definizione Probabilità Condizionata

Siano (Ω, F, P) uno spazio di probabilità e $F \in F$ un evento tale che P(F) > 0. Allora, per ogni altro evento $E \in F$ è ben definita la quantità

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

Questa è la probabilità condizionata di E dato F.

Osservazione: Se P(E) e P(F) sono entrambe strettamente positive, allora

$$P(E\cap F) = P(E|F)*P(F) = P(F|E)*P(E)$$

Questa formula si chiama **formula di moltiplicazione**, è un trucco per calcolare l'intersezione.

Giustificazione dell'osservazione: Mettiamoci su uno spazio di probabilità uniforme e supponiamo di avere un'urna fatta in questo modo:

- $\bullet\,$ Ci sono 8 palline numerate da 1 a 8
- Le palline "3", "5" e "8" sono nere
- Le restanti palline sono rosse

Consideriamo gli eventi:

- E = "estraggo una pallina con numero pari"
- F = "estraggo una pallina rossa"

 $P(E) = \frac{1}{2}$. Come cambia la situazione se voglio calcolare P(E|F)?

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{|E \cap F|}{|\Omega|} * \frac{|\Omega|}{|F|} = \frac{|E \cap F|}{|F|} = \frac{3}{5}$$

Questa ultima espressione risponde all'affermazione "casi favorevoli su casi possibili", ma in uno **spazio di probabilità ridotto**. Quindi si può dire che **condizionare la scelta riduce lo spazio degli esiti possibili**.

Osservazione P(E|F) è minore, maggiore o uguale a P(E).

5.2.1 Teorema

Sia $F \in F$ un evento con P(F) > 0, allora la mappa

$$P(\cdot|F): F \to \mathbb{R}$$

$$E \longmapsto P(E|F)$$

è una misura di probabilità. Da ciò seguono due conseguenze importanti:

- 1. $P(E^c|F) = 1 P(E|F)$
- 2. $P(E \cup G|F = P(E|F) + P(G|F) P(E \cap G|F)$, è la formula di inclusione/esclusione

Attenzione: Fissato $E \in F$, la mappa di

$$P(E|\cdot): F \to \mathbb{R}$$

$$F \longmapsto P(E|F)$$

non è una misura di probabilità e quindi

$$P(E|F^c) \neq 1 - P(E|F)$$

5.3 Formula delle probabilità totali

5.3.1 Teorema

Siano (Ω, F, P) uno spazio di probabilità e $F \in F$ un evento tale che 0 < P(F) < 1, quindi un evento non impossibile e non certo, allora, per ogni $E \in F$, vale la formula delle probabilità totali:

$$P(E) = P(E|F) \cdot P(F) + P(E|F^c) \cdot P(F^c)$$

In generale, se ho $\{F_k\}_{k=1}^n$ che è una partizione di Ω con $P(F_k) > 0$ per ogni k, vale la formula delle probabilità totali:

$$P(E) = \sum_{k=1}^{n} P(E|F_k) \cdot P(F_k)$$

Dimostrazione: Dimostriamo il caso generale. Scomponiamo l'evento E sulla partizione $\{F_k\}_{k=1}^n$ ed otteniamo:

$$E = \bigcup_{k=1}^{n} (E \cap F_k)$$

ovvero una unione disgiunta. Quindi calcoliamo:

$$P(E) = P(\bigcup_{k=1}^{n} (E \cap F_k)) = \sum_{k=1}^{n} P(E \cap F_k)$$

che ci porta a

$$\sum_{k=1}^{n} P(E|F_k) \cdot P(F_k)$$

c.v.d.

Esempio

Urna del primo esempio: 7 palline nere e 3 rosse. Estraggo 2 palline e devo determinare quale è la probabilità che la seconda pallina sia rossa.

Definisco gli eventi: R_i = "l'i-esima pallina estratta è rossa", con i = 1,2 ed ottengo:

$$P(R_2) = P(R_2|R_1) \cdot P(R_1) + P(R_2|R_1^c) \cdot P(R_1^c) = \frac{2}{9} \cdot \frac{3}{10} + \frac{1}{3} \cdot \frac{7}{10} = \frac{3}{10}$$

dove le frazioni indicano, rispettivamente:

- La probabilità della seconda pallina estratta dopo aver estratto una rossa $(\frac{2}{9})$
- $\bullet\,$ La probabilità di estrarre una pallina rossa alla prima estrazione $(\frac{3}{10})$
- $\bullet\,$ La probabilità di avere una pallina rossa dopo una pallina nera $(\frac{1}{3})$
- $\bullet\,$ La probabilità di estrarre una pallina nera alla prima estrazione $(\frac{7}{10})$

5.3.2 Esercizio: Tre Urne - Prima parte

Ho tre urne.

- Prima urna: 3 palline bianche e 2 nere
- Seconda urna: 3 palline bianche e 3 nere
- Terza urna: 4 palline bianche e 1 nera

Lancio un dado equilibrato:

- Se esce 6 estraggo una pallina dalla terza urna
- ullet Se esce **4 o 5** estraggo dalla **seconda urna**
- Negli altri casi estraggo dalla **prima urna**

Quale è la probabilità di estrarre una pallina bianca?

Soluzione Consideriamo gli eventi U_i = "peschiamo dall'urna i", con i = 1,2,3 e l'evento B = "peschiamo una pallina bianca". Abbiamo:

- $P(U_1) = P(punteggio\ dado \in \{1, 2, 3\}) = \frac{1}{2}$
- $P(U_2) = P(punteggio\ dado \in \{4,5\}) = \frac{1}{3}$
- $P(U_3) = P(punteggio\ dado = 6) = \frac{1}{6}$

Dal testo ci possiamo anche ricavare le probabilità condizionate:

- $P(B|U_1) = \frac{3}{5}$
- $P(B|U_2) = \frac{1}{2}$
- $P(B|U_3) = \frac{4}{5}$

Quindi, per la formula delle probabilità totali otteniamo:

$$P(B) = P(B|U_1) \cdot P(U_1) + P(B|U_2) \cdot P(U_2) + P(B|U_3) \cdot P(U_3)$$

che equivale a

$$\frac{3}{5} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{3} + \frac{4}{5} \cdot \frac{1}{6} = \frac{18}{30} = \frac{3}{5}$$

5.3.3 Formula di Bayes

Questa formula serve per stimare le probabilità a posteriori, quindi a "rovesciare" il condizionamento. Questo avviene da

$$P(F_k|E) = \frac{P(F_k \cap E)}{P(E)} \cdot \frac{P(F_k)}{P(F_k)}$$

Dati questi elementi posso capire che

$$\frac{P(F_k \cap E)}{P(F_k)} = \frac{P(E|F_k) \cdot P(F_k)}{P(E)}$$

ed è questa ultima parte (dopo l'uguale) la formula di Bayes.

Esercizio: Tre Urne - Seconda Parte

Tenendo le informazioni della sezione 5.3.2, sapendo che è stata estratta una pallina bianca, quale è la probabilità che sia stata estratta dalla terza urna?

Soluzione Dobbiamo calcolare $P(U_3|B)$. Da quanto visto prima sappiamo che

$$P(U_3) = \frac{1}{6}, \ P(B|U_3) = \frac{4}{5} \ e \ P(B) = \frac{3}{5}$$

Per la formula di Bayes, si ha

$$P(U_3|B) = \frac{P(B|U_3) \cdot P(U_3)}{P(B)} = \frac{\frac{4}{5} \cdot \frac{1}{6}}{\frac{3}{5}} = \frac{2}{9}$$

5.3.4 Esercizi

- 1. Lungo un canale di trasmissione sono spediti dati in formato 0,1. Il canale è disturbato e a volte capita che si trasmetta uno 0 e si riceva un 1 e vicenversa. Si stima che:
 - Se si trasmette uno 0, viene ricevuto correttamente con probabilità 0.95
 - \bullet Se si trasmette un 1, viene ricevuto correttamente con probabilità 0.75
 - Si sa inoltre che il 70% dei segnali trasmessi sono 0.

Viene spedito un segnale lungo il canale, calcolare la probabilità che:

- a) Venga ricevuto uno 0
- b) Si verifichi un errore di trasmissione
- c) Il segnale spedito fosse uno 0, sapendo che è stato ricevuto uno 0.

Soluzione Definiamo gli eventi:

- T_i = "Trasmetto il segnale i", con $i \in \{0, 1\}$
- R_i = "Ricevo il segnale i", con $i \in \{0, 1\}$

Dal testo ricaviamo che:

$$P(R_0|T_0) = 0.95, \ P(R_1|T_1) = 0.75 \ e \ P(T_0) = 0.7$$

a) Dobbiamo calcolare la probabilità di $P(R_0)$. Uso la formula delle probabilità totali:

$$P(R_0) = P(R_0|T_0) \cdot P(T_0) + P(R_0|T_1) \cdot P(T_1)$$

Si ha:

$$-P(R_0|T_1) = P(R_1^c|T_1) = 1 - P(R_1|T_1) = 1 - 0.75 = 0.25$$
$$-P(T_1) = P(T_0^c) = 1 - P(T_0) = 1 - 0.7 = 0.3$$

Sostituisco ed ottengo:

$$(0.95 \cdot 0.7) + (0.25 \cdot 0.3) = 0.74$$

b) Sia E l'evento "Si verifica un errore di trasmissione".

$$E = (T_0 \cap R_1) \cup (T_1 \cap R_0)$$

Questa è una unione disgiunta, quindi ottengo:

$$P(E) = P(T_0 \cap R_1) + P(T_1 \cap R_0) = P(R_1 | T_0) \cdot P(T_0) + P(R_0 | T_1) \cdot P(T_1)$$

Si ha:

$$-P(R_1|T_0 = P(R_0^c|T_0) = 1 - P(R_0|T_0) = 1 - 0.95 = 0.05$$
$$-P(R_0|T_1 = P(R_0^c|T_1) = 1 - P(R_1|T_1) = 1 - 0.75 = 0.25$$

Infine ottengo che

$$P(E) = (0.05) \cdot (0.7) + (0.25) \cdot (0.3) = 0.11$$

c) Dobbiamo calcolare $P(T_0|R_0)$. E' una probabilità **a posteriori**, quindi si usa la formula di Bayes e otteniamo:

$$P(T_0|R_0) = \frac{P(R_0|T_0) \cdot P(T_0)}{P(R_0)}$$
$$= \frac{(0.95) \cdot (0.7)}{0.74} = 0.9$$

- 2. Siano A,B eventi tali che $P(A) = \frac{1}{4}$ e $P(A|B) = P(B|A) = \frac{1}{2}$. Si dica, giustificando, se è vero o falso che:
 - a) A e B sono incompatibili
 - b) $P(A \cap B) = P(A) \cdot P(B)$
 - c) $P(A \cap B) > P(A) \cdot P(B)$

Soluzione

- a) $P(A \cap B) = P(B|A) \cdot P(A) = \frac{1}{8}$. Se A,B fossero incompatibili, si avrebbe $A \cap B = \emptyset$ e quindi $P(A \cap B) = 0$. **FALSO**.
- b) $P(A \cap B) = P(A) \cdot P(B)$. Si ha che:

$$P(A \cap B) = P(A|B) \cdot P(B)$$

. Quindi posso semplificare per P(B) ed otterrei che

$$P(A|B) = P(A) \to \frac{1}{2} = \frac{1}{4}$$

il che è ${\bf ASSURDO}.$ Quindi b) è ${\bf FALSO}.$

c) Dato $P(A \cap B) > P(A) \cdot P(B),$ abbiamo, dopo la moltiplicazione per $\mathrm{P}(\mathrm{B})$

$$P(A|B) \cdot P(B) > P(A) \cdot P(B) = P(A \cap B) > P(A) \cdot P(B)$$

e poichè se P(B) non fosse strettamente positivo, P(A|B) non esisterebbe nemmeno, concludiamo che c) è **VERO**.

Chapter 6

Lezione 6

6.1 Eventi Indipendenti

6.1.1 Indipendenza di due eventi

Sia (Ω, F, P) spazio di probabilità. Gli eventi $E, F \in F$ si dicono indipendenti se

$$P(E \cap F) = P(E) \cdot P(F)$$

e si scrive

$$E \perp \!\!\!\perp F o \{E, F\} indipendente$$

Attenzione Indipendenza è diverso da incompatibilità.

- Indipendenza è una nozione **probabilistica**, dipende da E,F e dalla misura P.
- Incompatibilità è una nozione insiemistica.

In particolare, se $E,F \in F$ di probabilità strettamente positiva sono incompatibili, allora **non possono essere indipendenti**. Infatti, essendo incompatibili, significa che se uno si verifica l'altro **non può certamente verificarsi**, quindi c'è una **forte dipendenza** tra i due eventi.

Esempio (banale) Qualunque sia $E \in F$, allora $E \perp\!\!\!\perp \varnothing e E \perp\!\!\!\perp \Omega$. Infatti, si ha

- $P(E \cap \varnothing) = P(\varnothing) = 0 = P(\varnothing) \cdot P(E)$
- $P(E \cap \Omega) = P(E) = P(E) \cdot P(\Omega)$ dove $P(\Omega) = 1$

Esempi

1. Lanciamo una moneta e un dado. Lo spazio campionario naturale è

$$\Omega = \{(a,i): a \in \{T,C\}, i \in \{1,...,6\}\}$$

con la misura uniforme.

Osserviamo che $|\Omega| = 2 \cdot 6 = 12$. Gli eventi:

- E = "Esce testa"
- F = "Esce 4"

sono indipendenti. Infatti, se calcoliamo

$$P(E) = P(\{(T, i) : i \in \{1, ..., 6\}\}) = \frac{1}{2}$$

$$P(F) = P(\{(a, 4) : a \in \{T, C\}\}) = \frac{1}{6}$$

$$P(E \cap F) = P(\{(T, 4)\}) = \frac{1}{12}$$

otteniamo che $\frac{1}{12}=P(E\cap F)=P(E)\cdot P(F)=\frac{1}{2}\cdot \frac{1}{6}$ Questo ci permette di dire che gli eventi sono indipendenti.

2. Lanciamo un dado due volte. Lo spazio campionario naturale sarà

$$\Omega = \{(i, j) : i, j \in \{1, ..., 6\}\}$$

con la misura di probabilità uniforme, quindi tutti gli esiti sono equiprob-

Osserviamo che $|\Omega| = 6 \cdot 6 = 36$. Gli eventi:

- E = "La prima faccia è 4"
- F = "La somma dei due punteggi è 9"

non sono indipendenti.

$$P(E) = P(\{(4, j) : j \in \{1, ..., 6\}\}) = \frac{1}{6}$$

$$P(F) = P(\{(3, 6), (4, 5), (5, 4), (6, 3)\}) = \frac{1}{9}$$

$$P(E \cap F) = P(\{(4, 5)\}) = \frac{1}{36}$$

poichè è solo una la coppia che rispetta la condizione. Otteniamo $\frac{1}{36}=P(E\cap F)\neq P(E)\cdot P(F)=\frac{1}{6}\cdot\frac{1}{9}=\frac{1}{54},$ quindi gli eventi **non sono indipendenti**.

Se invece prendessimo l'evento G = "la somma dei punteggi è 7" e sostituissimo F con G, gli eventi E e G sarebbero indipendenti.

6.2 Conseguenze elementari dell'indipendenza

Proposizione 1 Siano E,F \in F con P(E) > 0 e P(F) > 0. Allora le seguenti affermazioni:

- (i) $E \perp \!\!\!\perp F$
- (ii) P(E|F) = P(E)
- (iii) P(F|E) = P(F)

sono equivalenti.

6.2.1 Dimostrazione

(i) \rightarrow (ii) $E \perp \!\!\!\perp F \xrightarrow{implica} P(E \cap F) = P(E) \cdot P(F)$

$$P(E \cap F) = P(E|F) \cdot P(F)$$

quindi posso semplificare i P(F) ed ottengo ciò che volevo dimostrare, ossia

$$P(E|F) = P(E)$$

(ii) \rightarrow (iii) $P(E|F) = P(E) \xrightarrow{(Bayes)} \frac{P(F|E) \cdot P(E)}{P(F)} = P(E)$ semplifico per P(E) e moltiplico per P(F), ottenendo

$$P(F|E) = P(F)$$

(iii) \rightarrow (i) $P(F|E) = P(F) \xrightarrow{implica} \frac{P(E \cap F)}{P(E)} = P(F)$ moltiplico per P(E) ed ottengo

$$P(E \cap F) = P(F) \cdot P(E) \xrightarrow{ci \ porta \ a} E \perp \!\!\!\perp F$$

c.v.d

6.2.2 Proposizione 2

Abbiamo equivalenza tra le seguenti istanze:

- (i) $E \perp \!\!\!\perp F$
- (ii) $E^c \perp \!\!\! \perp F$
- (iii) $E^c \perp \!\!\!\perp F^c$
- (iv) $E \perp \!\!\!\perp F^c$

Dimostrazione Abbiamo anche qui una catena di implicazioni:

(i) \rightarrow (ii) Dobbiamo mostrare che $P(E^c \cap F) = P(E^c) \cdot P(F)$. Si ha $E^c \cap F = F \setminus (E \cap F)$ ed inoltre si ha che $E \cap F \subseteq F$. Quindi $P(E^c \cap F) = P(F) - P(E \cap F)$. Usiamo l'ipotesi (i), quindi otteniamo:

$$P(E^{c} \cap F) = P(F) - P(E) \cdot P(F) = P(F) \cdot (1 - P(E))$$

ed $(1 - P(E)) = P(E^c)$, quindi

$$P(E^c \cap F) = P(E^c) \cdot P(F)$$

Per concludere si deve dimostrare che $(ii) \rightarrow (iii) \rightarrow (iv) \rightarrow (i)$.

6.3 Indipendenza di Tre Eventi

Gli eventi E_1, E_2, E_3 sono indipendenti se le seguenti due condizioni sono **entrambe** soddisfatte:

- 1. $E_1 \perp \!\!\!\perp E_2, E_1 \perp \!\!\!\perp E_3, E_2 \perp \!\!\!\perp E_3$
- 2. $P(E_1 \cap E_2 \cap E_3) = P(E_1) \cdot P(E_2) \cdot P(E_3)$

Osservazione Le due condizioni non sono rindondanti, sono infatti logicamente indipendenti e necessarie.

6.3.1 Esempi

- 1. Lancio due volte una moneta. Considero gli eventi:
 - A = "al primo lancio ottengo testa"
 - B = "al secondo lancio ottengo testa"
 - C = "nei due lanci ottengo due facce uguali"

Mostriamo che gli eventi sono a 2 a 2 indipendenti, ovvero che **vale la prima condizione** ma la seconda non è soddisfatta:

Soluzione Lo spazio campionario $\Omega=\{(l_1,l_2):l_1,l_2\in\{T,C\}\}$ con $|\Omega|=2\cdot 2=4$

- Evento A: $P(A) = P(\{(T, l_2) : l_2 \in \{T, C\}\}) = \frac{1}{2}$
- Evento B: $P(B) = P(\{(l_1, T) : l_1 \in \{T, C\}\}) = \frac{1}{2}$
- Evento C: $P(C) = P(\{(T,T),(C,C)\}) = \frac{1}{2}$

Inoltre si ha:

$$P(A \cap B) = P(A \cap C) = P(B \cap C) = P(\{(T, T)\}) = \frac{1}{4}$$

Si vede facilmente che le coppie $\{A,B\}$, $\{A,C\}$ e $\{B,C\}$ sono indipendenti. Per esempio prendiamo:

$$\frac{1}{4} = P(A \cap B) = P(A) \cdot P(B) = \frac{1}{2} \cdot \frac{1}{2}$$

le altre sono analoghe. Mostriamo ora che

$$P(A \cap B \cap C) \neq P(A) \cdot P(B) \cdot P(C)$$

- $P(A) \cdot P(B) \cdot P(C) = \frac{1}{8}$
- $P(A \cap B \cap C) = P(\{(T,T)\}) = \frac{1}{4}$
- 2. Lancio due volte un dado. Considero gli eventi:
 - A = "Il punteggio del primo lancio $\in \{1, 2, 3\}$ "
 - B = "Il punteggio del primo lancio $\in \{3, 4, 5\}$
 - C = "La somma dei due punteggi è uguale a 9"

Soluzione Mostriamo che:

- $P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$
- Gli eventi non sono indipendenti a 2 a 2.

Lo spazio campionario è

$$\Omega = \{(d_1, d_2) : d_1, d_2 \in \{1, ..., 6\}\} \rightarrow |\Omega| = 6 \cdot 6 = 36$$

Calcoliamo:

- $P(A) = P(\{(d_1, d_2) : d_1 \in \{1, 2, 3\}, d_2 \in \{1, ..., 6\}\}) = \frac{3 \cdot 6}{36} = \frac{1}{2}$
- $P(A) = P(\{(d_1, d_2) : d_1 \in \{3, 4, 5\}, d_2 \in \{1, ..., 6\}\}) = \frac{3.6}{36} = \frac{1}{2}$
- $P(C) = P(\{(3,6), (4,5), (5,4), (6,3)\}) = \frac{1}{9}$

Inoltre:

$$P(A \cap B \cap C) = P(\{(3,6)\}) = \frac{1}{36}$$

Quindi

$$P(A \cap B \cap C) = \frac{1}{36} = P(A) \cdot P(B) \cdot P(C) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{9} = \frac{1}{36}$$

Consideriamo ora $\{A,C\}$ e mostriamo che non sono indipendenti. Sappiamo già che:

$$P(A) \cdot P(C) = \frac{1}{2} \cdot \frac{1}{9} = \frac{1}{18}$$

Calcoliamo

$$P(A \cap C) = P(\{3, 6\}) = \frac{1}{36}$$

Si può facilmente vedere che

$$\frac{1}{18} \neq \frac{1}{36}$$

quindi gli eventi **non sono a due a due indipendenti**. Si può procedere in modo analogo per le altre coppie, ma il risultato è lo stesso: basta che solo una coppia non soddisfi la condizione e anche le altre non la soddisferanno.

6.3.2 In generale

La famiglia di $\{E_1, ..., E_n\}$ di eventi è indipendente se **per ogni r** $(2 \le r \le n)$ e per **ogni possibile scelta di r eventi distinti** degli n eventi della famiglia, la probabilità dell'intersezione degli r eventi scelti è **pari al prodotto delle loro probabilità**.

Devo quindi dimostrare la **proprietà di fattorizzazione** per ogni coppia, terna, quaterna, ecc. di eventi. Devo considerare **tutte le possibili sotto-**famiglie.

Osservazione Se $\{E_1, ..., E_n\}$ è una famiglia di eventi indipendenti, quando sostituisco qualche E_i (non importa quanti e quali) con E_i^c ottengo ancora una famiglia di eventi **indipendenti**.

La famiglia **numerabile** di eventi $\{E_1, E_2, ...\}$ è indipendente se ogni sotto-famiglia finita lo è.

Chapter 7

Lezione 7

7.1 Variabili Aleatorie Discrete

Sia $(\Omega, \mathbb{P}(\Omega), P)$ uno spazio di probabilità discreto. Ogni mappa:

$$X:\Omega\to\mathbb{R}$$

è detta variabile aleatoria (o casuale) discreta su \mathbb{R} . Nella mappa X, ad ogni esito viene associato un numero. Abbiamo che

Figure 7.1: Vediamo qui l'Alfabeto di X, che è l'immagine di X

$$X = X(\Omega) = \{x \in \mathbb{R} : X(\omega) = x \text{ per qualche } \omega \in \Omega\}$$

Importante! $X \in \mathbf{discreto}$ ed ho che

$$|X| \le |\Omega| \le |\mathbb{N}|$$

7.1.1 Esempi

1. Sia $(\Omega, \mathbb{P}(\Omega), P)$ uno spazio di probabilità discreto. Sia $E \in \mathbb{P}(\Omega)$ un qualsiasi evento. Possiamo definire la variabile aleatoria $\mathbb{1}_E(\omega): \Omega \to \mathbb{R}$

definita come:

$$\mathbb{1}_{E}(\omega) = \begin{cases} 1, & \text{se } \omega \in E \\ 0, & \text{altrimenti} \end{cases}$$

Questa variabile si chiama **indicatrice** ed ha alfabeto $\{0,1\}$.

2. Sia ora $\Omega = \{(d_1, d_2): d_1, d_2 \in \{1, ..., 6\}\}$ lo spazio campionario relativo al lancio di una coppia di dadi, dove d_i indica il punteggio dell'i-esimo dado, ed i = 1, 2.

Vediamo qualche variabile aleatoria che si può creare.

- $\omega = (d_1, d_2) \longmapsto X_1(\omega) = d_1$ Mappo gli eventi verso la variabile aleatoria X_1 e questo mi dice di considerare solo il lancio del valore d_1 . L'alfabeto sarà $X_1 = \{1, ..., 6\}$. Il discorso sulla mappatura vale anche per i prossimi esempi.
- $\omega = (d_1, d_2) \longmapsto X_2(\omega) = d_2$ con alfabeto $X_2 = \{1, ..., 6\}$
- $\omega = (d_1, d_2) \longmapsto X_3(\omega) = \min\{d_1, d_2\}$ con alfabeto $X_3 = \{1, ..., 6\}$
- $\omega = (d_1, d_2) \longmapsto X_4(\omega) = \max\{d_1, d_2\}$ con alfabeto $X_4 = \{1, ..., 6\}$
- $\omega = (d_1, d_2) \longmapsto X_5(\omega) = d_1 + d_2$ con alfabeto $X_5 = \{2, 3, ..., 12\}$

Osservazione Se vengono definite sullo stesso spazio di probabilità, diverse variabili aleatorie possono essere combinate attraverso operazioni, come ad esempio

$$X + Y, X - Y, X \cdot Y, X/Y, min\{X,Y\}, max\{X,Y\}$$

queste sono ancora variabili aleatorie, come nell'esempio 2, in cui avevamo X_3, X_4 e $X_5.$

7.2 Misura di probabilità indotta

Poichè X è un insieme discreto, basta assegnare una probabilità P^X ad **ogni singoletto** di X, compatibile con la probabilità P di $(\Omega, \mathbb{P}(\Omega), P)$ dove X è definita.

7.2.1 Definizione Probabilità Indotta

La definizione è questa:

$$P^X(x_k) = P(X^{-1}(x_k)) \forall x_k \in X$$

che si può anche scrivere come:

$$P^X(x_k) = P(X = x_k) \forall x_k \in X$$

Cosa significa? Significa che la probabilità totale dei valori che fanno verificare x_k è **uguale** alla probabilità che si verifichi x_k dell'alfabeto.

Ciascuno dei valori dell'alfabeto si osserverà se qualcuno degli esiti mappati in questo valore si verifica.

7.2.2 Lemma e Dimostrazione

 ${\cal P}^X$ è una misura di probabilità.

Dimostrazione Poichè X è discreto, basta verificare:

- 1. $P^X(x_k) \ge 0 \ \forall x \in X$
- $2. \sum_{x_k \in X} P^X(x_k) = 1$

Verifico

- 1. $P^X(x_k) = P(X^{-1}(x_k))$ ma P è misura di probabilità e quindi positiva
- 2. Osserviamo il fatto che X sia una funzione: ciò implica che la funzione delle anti-immagini (ovvero gli esiti che poi vengono mappati nell'alfabeto)

$${X^{-1}(X_k)}_{x_k \in X}$$

sia una **partizione** di Ω , cioè:

- $X^{-1}(x_k) \cap X^{-1}(x_j) = \varnothing, \ \forall k \neq j$
- $\bullet \ \bigcup_{x_k \in X} X^{-1}(x_k) = \Omega$

Quindi otteniamo che:

$$\sum_{x_k \in X} P^X(x_k) = \sum_{x_k \in X} P(X^{-1}(x_k))$$
$$= P(\bigcup_{x_k \in X} X^{-1}(x_k))$$
$$= P(\Omega) = 1$$

come volevasi dimostrare.

Figure 7.2: In questa figura vediamo chiaramente che le nuvole di probabilità sono distinte e disgiunte e si può vedere chiaramente ciò che è stato appena dimostrato.

7.3 Esempi e descrizione probabilistica

1. Ritorniamo all'esempio del lancio di 2 dadi, e consideriamo la variabile aleatoria $X_1: \Omega \longmapsto \mathbb{R}$ con $(d_1, d_2) \mapsto d_1$ Come assegniamo una probabilità sull'alfabeto $X_1 = \{1, ..., 6\}$? Vediamolo con una figura: La probabilità delle anti-immagini è:

Figure 7.3: Vediamo qui che ogni lancio del primo dado, come lo abbiamo definito prima, porta alla rappresentazione del numero reale, e l'insieme dei valori dati da d_1 mi dà l'alfabeto X_1

$$P^{X_1}(1 \in X_1) = P(X = 1) = P(X_1^{-1}(1))$$
$$= P(\{(1, 1), (1, 2), ..., (1, 6)\}) = \frac{1}{6}$$

$$P^{X_1}(2 \in X_1) = P(X = 2) = P(X_1^{-1}(2))$$
$$= P(\{(2,1), (2,2), ..., (2,6)\}) = \frac{1}{6}$$

Analogamente possiamo trovare

$$P^{X_1}(3) = P^{X_1}(4) = P^{X_1}(5) = P^{X_1}(6) = \frac{1}{6}$$

2. Sempre dall'esempio del lancio dei 2 dadi: consideriamo

$$X_3:\Omega\to\mathbb{R}$$

$$(d_1, d_2) \mapsto \min\{d_1, d_2\}$$

Come assegnamo una probabilità su $X_3 = \{1, ..., 6\}$?

Figure 7.4:

$$P^{X_3}(1) = P(X_3^{-1}(1)) = P(X = 1) = P(\text{ parte verde }) = \frac{11}{36}$$

 $P^{X_3}(2) = P(X_3^{-1}(2)) = P(2) = P(\text{ parte gialla }) = \frac{1}{4}$

e così via per tutti gli elementi dell'alfabeto X_3

7.3.1 Descrizione Probabilistica della variabile aleatoria

Se X è una variabile aleatoria discreta, per definirla probabilisticamente utilizziamo questa descrizione:

- Abbiamo X alfabeto **unito** a
- $p_x: X \to [0,1]$ $x_k \longmapsto p_x(x_k) = P(X=x_k)$ dove esistono due proprietà:
 - 1. $p_x(x_k) \ge 0, \forall x_k \in X$
 - 2. $\sum_{x_k \in X} p_x(x_k) = 1$

Identifichiamo p_x come densità discreta di probabilità (o legge) della variabile aleatoria X.

Esempio

Sia X una var. aleatoria discreta con alfabeto $X=\{0,\sqrt{2},\pi\}$ e densità discreta

•
$$p_x(0) = \frac{2}{3}$$

•
$$p_x(\sqrt{2}) = p_x(\pi) = \frac{1}{6}$$

Calcoliamo P(1 < X < 4). Abbiamo:

$$P(1 < X < 4) = P(X \in \{\sqrt{2}, \pi\})$$
(7.1)

$$= P(\{X = \sqrt{2}\} \cup \{X = \pi\}) \tag{7.2}$$

$$= P(X = \sqrt{2} + P(X = \pi)) \tag{7.3}$$

$$=\frac{1}{3}\tag{7.4}$$

Chapter 8

Lezione 8

Ricapitolando possiamo definire una variabile aleatoria in due modi:

- 1. Come funzione $X: \Omega \to \mathbb{R}$ di cui si determinano alfabeto X e misura di probabilità indotta $P^x(x_k) = P(X^{-1}(x_k))$, per ogni $x_k \in X$, da cui si deduce la densità $p_x(x_k) = P^x(x_k)$, per ogni $x_k \in X$, che soddisfa positività e normalizzazione.
- 2. Si danno direttamente alfabeto X e densità $p_x(\cdot)$ che soddisfa positività e normalizzazione.

8.1 Funzione di una variabile aleatoria

 $X:\Omega \to \mathbb{R}$, variabile aleatoria $g:\mathbb{R} \to \mathbb{R}$, funzione $Y=goX:\Omega \to \mathbb{R}$ variabile aleatoria Caratterizziamo Y. L'alfabeto è Y=g(X) e la densità discreta:

$$p_Y(y_l) = P(Y = y_l) = \sum_{x: g(x_k) = y_l} p_x(x_k),$$
 per ogni $y_l \in Y$

Esempio

Sia X una v.al. con alfabeto $X=\{-1,1,3\}$ e densità discreta $p_x(-1)=p_x(3)=\frac{1}{4}$ e $p_x(1)=\frac{1}{2}$.

Caratterizziamo la v.al. $Y=X^2$: se

- g: $\mathbb{R} \to \mathbb{R}$
- g: $x \mapsto x^2$

abbiamo Y = g(X).

Alfabeto: $Y = g(X) = \{1,9\}$

Densità:

$$p_y(1) = P(\{X = -1\} \cup \{X = 1\}) \tag{8.1}$$

$$= p_x(-1) + p_x(1) = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}$$
 (8.2)

$$P_y(9) = P(X=3) = p_x(3) = \frac{1}{4}$$
 (8.3)

8.1.1 Esercizi

1. Lancio una moneta e un dado. Se i risultati che ottengo hanno la stessa iniziale vinco 1 euro, altrimenti perdo 50 centesimi.

Sia X la variabile aleatoria che descrive la vincita/perdita. Determinare alfabeto e densità discreta di X.

- Soluzione: Alfabeto: $X = \{\frac{-1}{2}, 1\}$, corrispondono a perdita e vincita.
- Densità discreta: Uno spazio campionario per il nostro gioco è

$$\Omega = \{(a, i) : a \in \{T, C\}, i \in \{1, ..., 6\}\}$$

Si ha $|\Omega|=2\cdot 6=12.$ Calcoliamo la probabilità indotta, che prendiamo come densità di X.

$$p_x(1) = P(X = 1) = P(i \text{ risultati hanno la stessa iniziale})$$
 (8.4)

$$= P(\{(T,3),(C,5)\} = \frac{1}{6}$$
(8.5)

$$p_x(-\frac{1}{2} = 1 - p_x(1) = \frac{5}{6}$$
(8.6)

2. Estraggo tre carte da un mazzo di carte da poker. Vinco 1 euro per ogni carta di picche estratta.

Sia X la variabile aleatori che descrive la vincita. Determinare alfabeto e densità discreta di X.

- Soluzione: Alfabeto: $X = \{0,1,2,3\}$
- Densità discreta:

$$p_x(0) = P(X = 0) = P(\text{non pesco carte di picche})$$
 (8.7)

$$=\frac{\binom{39}{3}}{\binom{52}{3}} = \frac{703}{1700} \tag{8.8}$$

$$p_x(1) = P(1) = P(\text{pesco 1 carta di picche})$$
 (8.9)

$$=\frac{13\cdot\binom{39}{2}}{\binom{52}{3}} = \frac{741}{1700} \tag{8.10}$$

$$p_x(2) = P(2) = P(\text{pesco 2 carte di picche})$$
 (8.11)

$$=\frac{\binom{13}{2}\cdot 39}{\binom{52}{3}} = \frac{234}{1700} \tag{8.12}$$

$$p_x(3) = 1 - p_x(0) - p_x(1) - p_x(2) = \frac{11}{850}$$

8.2 Valor Medio (o Atteso)

Sia X v.al. con alfabeto X e densità discreta p_x . Il valor medio di X è il numero reale:

$$E(x) = \sum_{x_k \in X} x_k \cdot p_x(x_k)$$

Osservazione Se $|X| < \infty$, allora il v.medio è una somma finita ed è sempre ben definito. Se $|X| = +\infty$, allora il v.medio è una serie e **può non esistere** se la serie **non converge**.

Esempi

1. Sia X una v.al. con alfabeto $X = \{-7, 0, \pi, 4\}$ e densità $p_x(-7) = \frac{1}{2}$ e $p_x(0) = p_x(\pi) = p_x(4) = \frac{1}{6}$. Otteniamo:

$$E(X) = (-7) \cdot \frac{1}{2} + (4 + \pi) \cdot \frac{1}{6} \approx -2.31$$

2. Consideriamo uno spazio di probabilità $(\Omega, \mathbb{P}(\Omega), P)$ ed un evento $E \in \mathbb{P}(\Omega)$. Definiamo la v.al.

$$X(\omega) = \mathbb{1}_E(\omega) = \begin{cases} 1, & \text{se } \omega \in E \\ 0, & \text{se } \omega \notin E \end{cases}$$

Allora si ha:

$$E(X) = P(X = 1) = P(\{\omega : X(\omega) = 1\}) = P(E)$$

8.2.1 Significato del Valor Medio

Indice di centralità \iff Baricentro della distribuzione. abbiamo dei punti $\{x_1,...,x_n\}$ con masse $p_x(x_1),...,p_x(x_n)$ e cerchiamo il baricentro $a \in \mathbb{R}$ della nuvola di punti. Cerchiamo il punto dove la risultante dei momenti è nulla (equilibrio):

$$\sum_{x_k} (x_k - a) \cdot p_x(x_k) = 0 \tag{8.13}$$

$$\iff \sum_{x_k} x_k \cdot p_x(x_k) = a \cdot \underbrace{\sum_{x_k} p_x(x_k)}_{-1}$$
(8.14)

$$\iff a = E(x) \tag{8.15}$$

8.2.2 Teorema Fondamentale del valor medio

Sia $X:\Omega\to\mathbb{R}$ una v.al. discreta, allora si ha:

$$E(X) = \sum_{\omega \in \Omega} X(\omega) \cdot P(\{\omega\})$$

Dimostrazione

Calcoliamo:

$$E(X) = \sum_{x_k \in X} x_k \cdot p_x(x_k) = \sum_{x_k \in X} x_k \cdot P(X^{-1}(x_k))$$

$$= \sum_{\omega \in \Omega} X(\omega) \cdot P(\{\omega\})$$
 (8.19)

(1): Le due somme descrivono l'insieme:

$$\bigcup_{x_k \in X} \{\omega : X(\omega) = x_k\} = \Omega$$

dove $X(\omega) \longleftrightarrow \{X^{-1}(x_k)\}$ (è una partizione)

Chapter 9

Lezione 9

9.1 Proprietà del Valor Medio

9.1.1 Linearità

Descriviamo la linearità attraverso due osservazioni:

1. Sia X una v.al., $a \in \mathbb{R}$, allora E(aX) = aE(X). Come lo vedo? aX è la v.al. $\omega \mapsto aX(\omega)$, allora per il teorema fondamentale otteniamo:

$$E(aX) = \sum_{\omega \in \Omega} aX(\omega)P(\{\omega\})$$
(9.1)

$$= a \sum_{\omega \in \Omega} X(\omega) P(\{\omega\}) = aE(X)$$
 (9.2)

2. Siano X,Y v.al. definite sullo stesso spazio campionario Ω . Allora E(X+Y)=E(X)+E(Y). Come lo vedo?

X + Y è la v.al. $\omega \mapsto X(\omega) + Y(\omega)$, allora per il teorema fondamentale otteniamo:

$$E(X+Y) = \sum_{\omega \in \Omega} (X(\omega) + Y(\omega))P(\{\omega\})$$
(9.3)

$$= \sum_{\omega \in \Omega} X(\omega) \cdot P(\{\omega\}) + Y(\omega) \cdot P(\{\omega\})$$
 (9.4)

$$= E(X) + E(Y) \tag{9.5}$$

Potevo definire la proprietà 2. con la definizione del valore medio?

$$E(X + Y) = \sum_{x_k \in X} \sum_{y_l \in Y} (x_k + y_l) \cdot p_{X+Y}(x_k + y_l)$$

La scrittura p_{X+Y} avrà senso dalla settimana 8. Mettendo insieme le proprietà 1. e 2. otteniamo:

$$E(aX + bY) = aE(X) + bE(Y)$$

9.1.2 Positività

Sia X una v.al. positiva (cioè $X \in \mathbb{R}_+$), allora $E(X) \geq 0$

9.1.3 Monotonia

Siano X, Y: $\Omega \to \mathbb{R}$ v.al. tali che $X \geq Y$. Allora si può dire che

$$E(X) \ge E(Y)$$

Come lo vedo?

$$X \ge Y \iff X - Y \ge 0.$$

Per la positività si ha che $E(X - Y) \ge 0$.

Per la linearità invece si ottiene $E(X) - E(Y) \ge 0$ da cui concludo la dimostrazione che $E(X) \ge E(Y)$.

9.1.4 Limiti Inferiore e Superiore

Sia X v.al. con alfabeto X e siano $\underline{x} = infX$ e $\overline{x} = supX$. Allora si ha:

$$\underline{x} \le E(X) \le \overline{x}$$

Osservazione: Se $b \in \mathbb{R}$ allora E(b) = b.

Possiamo vedere $b \in \mathbb{R}$ come una v.al. **costante**, cioè:

X v.al. con alfabeto $X = \{b\}$ e densità discreta $p_x(b) = 1$ e $p_x(i) = 0$ $\forall i \neq b$. Segue dalla definizione di valor medio che E(X) = b.

9.1.5 Teorema (valor medio di funzioni di v.al.)

Siano $X: \Omega \to \mathbb{R}$ v.al. e $g: \mathbb{R} \to \mathbb{R}$ funzione. Si ha:

$$E(g(X)) = \sum_{x_k \in X} g(x_k) p_x(x_k)$$

Esempio

Sia X v.al. con alfabeto $X=\{-1,1,3\}$ e densità discreta $p_x(3)=p_x(-1)=\frac{1}{4}$ e $p_x(1)=\frac{1}{2}$. Sia inoltre $Y=X^2$. Calcoliamo E(Y).

• Metodo 1: Caratterizzo Y (alfabeto + densità) e uso la definizione di valor medio.

Abbiamo $Y = \{1,9\}$ e $p_y(1) = \frac{3}{4}$ e $p_y(3) = \frac{1}{4}$. Quindi

$$E(Y) = 1 \cdot \frac{3}{4} + 9 \cdot \frac{1}{4} = 3$$

• Metodo 2: Applico direttamente il teorema:

$$E(Y) = (-1)^2 \cdot \frac{1}{4} + 1^2 \cdot \frac{1}{2} + 3^2 \cdot \frac{1}{4} = 3$$

9.1.6 Esercizi

1. Un'urna contiene 8 palline nere e 6 bianche. Si fanno due estrazioni senza reinserimento. Per ogni pallina nera estratta si vince 1 euro. Per ogni pallina bianca estratta si perde 1 euro. Sia X la variabile aleatoria che descrive la vincita/perdita del gioco. Calcolare E(X).

Soluzione: Alfabeto: $X = \{-2, 0, 2\}$ (corrisponde a: estraggo 2 bianche, estraggo 1 nera e 1 bianca, estraggo 2 nere). Densità:

$$p_x(-2) = P(\text{estraggo 2 bianche})$$
 (9.6)

$$=\frac{\binom{6}{2}}{\binom{14}{2}} = \frac{15}{91} \tag{9.7}$$

$$p_x(0) = \frac{8 \cdot 6}{\binom{14}{2}} = \frac{48}{91} \tag{9.8}$$

$$p_x(2) = 1 - p_x(0) - p_x(-2) = \frac{4}{13}$$
(9.9)

Media: $E(X) = (-2) \cdot \frac{15}{91} + 2 \cdot \frac{4}{13} = \frac{2}{7} \approx 0.286$

2. Due dadi sono truccati in modo che la probabilità di ottenere 6 sia il doppio di quella di ottenere ogni altro punteggio. Qual è la media del punteggio ottenuto lanciando i due dadi?

Soluzione: Siano X_1 e X_2 le v.al. che corrispondono al punteggio del primo e del secondo dado. Le 2 v.al. hanno lo stesso alfabeto $X=\{1,...,6\}$ e la stessa densità discreta che ora determiniamo:

si ha
$$p_{xi}(6) = 2p$$

$$p_{xi}(j) = p$$
 per ogni j = 1,...,5
da cui ricavo $2p + 5p = 1 \iff p = \frac{1}{7}$.

Quindi la densità è

$$p_{xi}(1) = \dots = p_{xi}(5) = \frac{1}{7} e p_{xi}(6) = \frac{2}{7}$$

Ora sia $Y = X_1 + X_2$ la v.al. che corrisponde alla somma dei due punteggi. Abbiamo:

$$E(Y) = E(X_1) + E(X_2) (9.10)$$

$$= (1+2+3+4+5) \cdot \frac{1}{7} + 6 \cdot \frac{2}{7} + \frac{15}{7} + \frac{12}{7}$$
 (9.11)

$$=\frac{54}{7}\approx 7.7\tag{9.12}$$

Se i dadi non fossero stati truccati si avrebbe E(Y) = 7.

9.1.7 Varianza

Sia X v.al. con alfabeto X e densità discreta p_x . La varianza è il **numero reale positivo**.

$$Var(X) = \sum_{x_k \in X} (x_k - E(X))^2 p_x(x_k)$$

Esempio

Consideriamo $X_1 \in \{-1, \frac{1}{4}, \frac{3}{4}\}$ con densità discreta $p_{x_1}(-1) = p_{x_1}(\frac{1}{4}) = p_{x_1}(\frac{3}{4}) = \frac{1}{3}$ e $X_2 \in \{-10, 10\}$ con densità discreta $p_{x_2}(-10) = p_{x_2}(10) = \frac{1}{2}$. Abbiamo $E(X_1) = E(X_2) = 0$, ma

$$Var(X_1) = \frac{1}{3} \cdot [(-1 - 0)^2 + (\frac{1}{4} - 0)^2 + (\frac{3}{4} - 0)^2] \approx 0.524$$

$$Var(X_2) = \frac{1}{2} \cdot [(-10 - 0)^2 + (10 - 0)^2] = 100$$

I valori di X_2 sono tanto dispersi, cioè **lontani dalla media**.

Proprietà della Varianza

- 1. $Var(X) = E[(X E(X))^2]$ è la media di una funzione della v.al. X; usiamo $g(x) = (x E(x))^2$
- 2. $Var(X) \ge 0$ e, in particolare, $Var(X) = 0 \iff X \equiv costante$ Come lo vedo?

$$Var(X) = 0 \Longleftrightarrow \sum_{x_k \in X} (x_k - E(X))^2 \cdot \underbrace{p_x(x_k)}_{>0} = 0$$
 (9.13)

$$\iff x_k - E(X) = 0, \forall x_k \in X$$
 (9.14)

$$\iff x_k = E(X), \forall x_k \in X$$
 (9.15)

3. $Var(aX) = a^2 Var(X)$, $a \in \mathbb{R}$ Come lo vedo?

$$Var(aX) = E[(aX - aE(x))^{2}]$$
 (9.16)

per linearità valor medio
$$= E[(aX - aE(x))^2]$$
 (9.17)

per linearità valor medio
$$= a^2 E[(X - E(X))^2] = a^2 Var(X)$$
 (9.18)

4. $Var(X+c) = Var(X), c \in \mathbb{R}$

Osservazione Importante: 3 e 4 mostrano che la varianza NON E' LINEARE!

5. $Var(X) = E(X^2) - E(X)^2$ Come lo vedo?

$$Var(X) = E[(X - E(X))^{2}]$$
 (9.19)

$$= E[X^{2} - 2XE(X) + E(X)^{2}]$$
 (9.20)

$$(1) = E(X^2) - E(X)^2 (9.21)$$

(1) Indica che tale risoluzione è data da $E(X) \in \mathbb{R}$ + linearità del valor medio.

Esercizio

L'urna 1 ha composizione: 1 pallina dorata, 4 palline verdi, 15 palline bianche. L'urna 2 invece contiene: 4 palline verdi e 25 palline bianche. Una pallina a caso viene spostata dall'urna 1 all'urna 2, quindi mi viene chiesto di estrarre una pallina dall'urna 2.

Se estraggo la pallina dorata vinco 50 euro, se estraggo una pallina verde perdo 1 euro, altrimenti non vinco e non perdo.

Sia X la v.al. che corrisponde alla vincita/perdita. Si calcoli la varianza di X.

Soluzione: Alfabeto $X = \{-1, 0, 50\}$

Densità discreta. Considero gli eventi T_i = "trasferisco una pallina i" con i = O, V, B, dove O sta per Oro, V per Verde e B per bianca, ed E_i = "estraggo una pallina i" con i = O, V, B.

Otteniamo:

$$P(X = -1) = P(E_V) = P(E_V|T_B) \cdot P(T_B) + P(E_V|T_V) \cdot P(T_V)$$
(9.22)

$$+P(E_V|T_O)\cdot P(T_O)$$
 (9.23)

$$=\frac{4}{30} \cdot \frac{15}{20} + \frac{5}{30} \cdot \frac{4}{20} + \frac{4}{30} \cdot \frac{1}{20} = \frac{7}{50}$$

$$P(X = 50) = P(E_O) = P(T_O \cap E_O) = P(E_O|T_O) \cdot P(T_O)$$
(9.24)

$$=\frac{1}{30}\cdot\frac{1}{20}=\frac{1}{600}\tag{9.25}$$

$$P(X=0) = 1 - P(X=-1) - P(X=50) = \frac{103}{120}$$
 (9.26)

Varianza:

$$Var(X) = E(X^{2}) - E(X)^{2}$$
(9.27)

$$= (-1)^{2} \cdot \frac{7}{50} + (50)^{2} \cdot \frac{1}{600} - [(-1) \cdot \frac{7}{50} + 50 \cdot \frac{1}{600}]^{2}$$
 (9.28)

$$\approx 4.3\tag{9.29}$$

Chapter 10

Lezione 11

La lezione 10 è stata usata per esercizi di ripasso.

10.1 Variabili Aleatorie Discrete Notevoli

La densità discreta contiene la descrizione probabilistica di una variabile aleatoria. Quindi due v.al. X e Y con la stessa densità sono **probabilisticamente** indistinguibili (o equidistribuite o identicamente distribuite), nel senso che $P(X \in B) = P(Y \in B)$ per ogni B sottoinsieme dell'alfabeto.

Attenzione: ciò non significa che X = Y.

Assegnata una densita p(.) si può allora associare la famiglia delle v.al. X che hanno densità $p_x(.) = p(.)$

10.1.1 Caso di Alfabeto Finito

Variabili Aleatorie di Bernoulli

$$X \sim B_e(p) \text{ con } p \in [0, 1]$$

se ha:
$$\begin{cases} \text{alfabeto}, & X = \{0, 1\} \\ \text{densità discreta}, & p_x(1) = p, p_x(0) = 1 - p \end{cases}$$

Inoltre, E(X) = p e Var(X) = p(1-p)

Esempi

- 1. X v.al. che assume valore 1 se lanciando una moneta ottengo testa e assume valore 0 altrimenti. Si ha $X \sim B_e(\frac{1}{2})$
- 2. Y v.al. che assume valore 1 se lanciando un dado ottengo un numero pari e assume valore 0 altrimenti. Si ha $Y \sim B_e(\frac{1}{2})$ In questi due casi X e Y sono probabilisticamente indistinguibili ma X è diversa da Y

- 3. Sia (Ω, F, P) uno spazio di probabilità e $E \in F$ un evento. Definiamo la v.al.: $\mathbbm{1}_E(\omega) = \begin{cases} 1, & \text{se } \omega \in E \\ 0, & \text{altrimenti} \end{cases}$
 - Si ha $\mathbb{1}_E \sim B_e(P(E))$. Infatti otteniamo:

$$p = P(\mathbb{1}_E = 1) = P(\{\omega \in \Omega : \omega \in E\} = P(E))$$

10.1.2 Schema di Bernoulli (o schema a Prove Indipendenti)

Si divide in due pari: quella del **contesto sperimentale** e quella del **modello probabilistico**, che sono identiche tranne che nella forma in cui sono espresse.

Contesto Sperimentale

- $\bullet\,$ Un certo numero $n\geq 1$ di prove **identiche** effettuate in sequenza
- ullet Ogni prova ha ullet esiti possibili codificati con ullet e ullet
- Il risultato di ciascuna prova non influenza il risultato delle altre

Modello probabilistico

- Consideriamo $X_1, ..., X_n$ v.al. identicamente distribuite
- $X_i \sim B_e(p)$ (con i = 1,...,n) e p è la probabilità di ottenere 1
- Gli eventi $\{X_1=1\},...,\{X_n=1\}$ sono tra loro **indipendenti**

10.1.3 Esempi

- 1. Una rete è composta da 150 terminali connessi ad un server. Controllo quali terminali sono pronti per trasmettere un lavoro. Per i=1,...,150 si ha:
 - $X_i = \begin{cases} 1, & \text{se l'i-esimo terminale è pronto per trasmettere un lavoro} \\ 0, & \text{altrimenti} \end{cases}$
- 2. Controllo di qualità in una linea di produzione di chip. Ogni giorno ne vengono testati 1000. Per i=1,...,1000 si ha:

$$X_i = \begin{cases} 1, & \text{se l'i-esimo chip è difettoso} \\ 0, & \text{altrimenti} \end{cases}$$

3. Errori in una trasmissione digitale di 1200000 bit. Per i = 1,...,1200000 si ha:

$$X_i = \begin{cases} 1, & \text{se l'i-esimo bit è stato trasmesso errato} \\ 0, & \text{altrimenti} \end{cases}$$

10.2 Variabili Aleatorie Binomiali

$$X \sim Bin(n, p) \text{ con } n \in \mathbb{N} = \{1, 2, ...\} \text{ e } p \in [0, 1]$$

se ha:
$$\begin{cases} \text{alfabeto,} & X = \{0, 1, ..., n\} \\ \text{dens. discr.,} & p_x(k) = \binom{n}{k} \cdot p^k (1-p)^{n-k}, k \in X \end{cases}$$

Inoltre, E(X) = np e Var(X) = np(1-p).

La variabile aleatoria binomiale conta il numero di successi (cioè di numeri "1") in uno schema di Bernoulli con n prove indipendenti, dove la probabilità di successo è p.

Contesto: le v.al. $X_i \sim B_e(p)$ (i = 1,...,n) sono gli esiti delle n prove e la loro somma

$$X = \sum_{i=1}^{n} X_i \sim Bin(n, p)$$

è il numero di successi ottenuti nelle n prove.

Cruciale: indipendenza degli eventi $\{X_1=1\},...,\{X_n=1\}$

Interpretazione densità

$$p_x(k) = P(\text{ottenere k successi in n prove})$$
 (10.1)

$$= P(\text{ottenere stringa binaria di n cifre con k cifre 1})$$
 (10.2)

$$=\underbrace{\binom{n}{k}}_{\text{num. stringhe di lunghezza n con k cifre 1}}\cdot\underbrace{p^k}_{\text{prob. di avere k cifre 1}}\cdot\underbrace{(1-p)^{n-k}}_{\text{prob. di avere n-k cifre 0}}$$

$$(10.3)$$

 $p^k \cdot (1-p)^{n-k}$ indicano anche equidistribuzione + indipendenza.

10.2.1 Esempio

Supponiamo di fissare n = 5, k = 1 e di voler calcolare la probabilità della stringa '00010'. Se $X_i \sim B_e(p)$ si ottiene:

$$P(00010) = P(X_1 = X_2 = X_3 = 0, X_4 = 1, X_5 = 0)$$
(10.4)

$$\xrightarrow{indip.} = P(X_1 = 0)P(X_2 = 0)P(X_3 = 0)P(X_4 = 1)P(X_5 = 0)$$
 (10.5)

$$\xrightarrow{equidistr.} = (1-p)^4 \cdot p \tag{10.6}$$

Analogamente, possiamo calcolare:

$$P(01000) = P(X_1 = 0)P(X_2 = 1)P(X_3 = 0)P(X_4 = 0)P(X_5 = 0)$$
 (10.7)

$$= (1-p)^4 \cdot p \tag{10.8}$$

Per indipendenza ed equidistribuzione, tutte le stringhe di lunghezza 5 con una sola cifra 1 sono equiprobabili.

10.2.2 Esercizio

E' più facile ottenere almeno un 6 lanciando 4 volte un dado oppure ottenere almeno un doppio 6 lanciando 24 volte una coppia di dadi?

Soluzione

• Lancio singolo: Costruiamo uno schema di Bernoulli. Per ogni i = 1,...,4 definiamo le v.al.

$$X_i = \begin{cases} 1, & \text{se all'i-esimo lancio ottengo 6} \\ 0, & \text{altrimenti} \end{cases}$$

Si ha $X_i \sim B_e(\frac{1}{6})$. Inoltre gli eventi $\{X_1 = 1\}, ..., \{X_4 = 1\}$ sono indipendenti. Allora il numero di punteggi 6 ottenuti nei 4 lanci è:

$$X = \sum_{i=1}^{4} X_i \sim Bin(4, \frac{1}{6})$$

Calcoliamo:

$$P(X \ge 1) = 1 - P(X = 0) = 1 - (\frac{5}{6})^4 \approx 0.518$$

• Lancio doppio: Costruiamo uno schema di Bernoulli. Per i = 1,...,24 definiamo le v.al.

$$Y_i = \begin{cases} 1, & \text{se all'i-esimo lancio ottengo una coppia di 6} \\ 0, & \text{altrimenti} \end{cases}$$

Si ha $Y_i \sim B_e(\frac{1}{36})$. Inoltre gli eventi $\{Y_1=1\},...,\{Y_{24}=1\}$ sono indipendenti. Allora il numero di volte che ottengo un doppio 6 nei 24 lanci è:

$$Y = \sum_{i=1}^{24} Y_i \sim Bin(24.\frac{1}{36})$$

Calcoliamo:

$$P(Y \ge 1) = 1 - P(Y = 0) = 1 - (\frac{35}{36})^{24} \approx 0.49$$

Quinidi è più facile ottenere almeno un 6 lanciando un dado.