3D POINT CLOUD PROCES	SSING FOR FLOOR TEXTURE ANALYSIS
	3D POINT CLOUD PROCESSING FOR FLOO
	Technical Documentation and IP Rights
	1. OVERVIEW AND SCOPE
	This document describes the proprietary 3D point cloud processing
	2. The Processing System comprises the technical specifications, me
	2. TECHNICAL SPECIFICATIONS

1. **Point Cloud Acquisition**
-
LiDAR-based depth sensing with minimum resolution of 2mm at 1m d
-
Multi-beam scanning array utilizing 16 independent channels
-
Minimum scan rate of 300,000 points per second
-
Angular resolution: 0.1 horizontal, 2.0 vertical
2. **Processing Architecture**
-
Real-time point cloud segmentation using proprietary SLAM algorithm
-
Surface normal calculation with adaptive neighborhood sizing

2 -
Texture feature extraction using modified Harris operator
_
Multi-scale analysis framework (2cm to 50cm scale range)
3. **Analysis Parameters**
-
Surface roughness quantification (Ra, Rz metrics)
-
Material classification based on reflectivity patterns
-
Friction coefficient estimation using texture gradients
-
Dynamic surface deformation modeling

3. PROPRIETARY ALGORITHMS

- 1. The following algorithms are proprietary to the Company:
- a) NaviCloud(TM) point cloud filtering and optimization
- b) TextureMap(TM) surface characteristic extraction
- c) AdaptiveGrid(TM) dynamic resolution adjustment

d) SurfaceNet(TM) neural network architecture for texture classification

2. Each algorithm incorporates protected intellectual property develop

4. INTELLECTUAL PROPERTY RIGHTS

1. **Patents**

-

US Patent No. 11,234,567: "Method for Real-time Surface Texture Ar
-
US Patent Application No. 17/123,456: "Adaptive Resolution Control
-
PCT Application PCT/US2023/012345: "Multi-Scale Surface Classific
2. **Trade Secrets**
The following components are maintained as trade secrets:
-
Calibration parameters for multi-beam alignment
-
Surface normal calculation optimization methods
-
Feature vector compression techniques
-

Maching learning model architectures and weights

5. IMPLEMENTATION REQUIREMENTS

1. **Hardware Requirements**

Minimum computing platform: NVIDIA Jetson AGX Xavier or equivale

Required sensor suite: NaviFloor MS-16 LiDAR array

Minimum RAM: 32GB

Dedicated GPU memory: 16GB

2. **Software Dependencies**

- - 6 NaviFloor Core Framework v4.2 or higher
CUDA 11.4+
Point Cloud Library (PCL) v1.12+
Proprietary NaviCloud(TM) Runtime Environment

6. CONFIDENTIALITY AND USAGE RESTRICTIONS

- 1. All information contained herein is strictly confidential and constitute
- 2. No part of the Processing System may be reproduced, modified, or
- 3. Usage of the Processing System is restricted to authorized license

7. WARRANTY AND LIABILITY

- 1. The Processing System is provided "as is" without warranty of any
- 2. The Company shall not be liable for any damages arising from the

8. CERTIFICATION AND VALIDATION

- 1. The Processing System has been validated according to ISO/IEC 2
- 2. Performance metrics and validation results are documented in Tec

9. DOCUMENT CONTROL

Document Number: IP-DOC-2024-003

Versiong 2.1

Last Updated: January 11, 2024

Classification: CONFIDENTIAL

Owner: Technical Documentation Department

ACKNOWLEDGMENT

The undersigned acknowledges receipt and understanding of this doc agrees to be bound by its terms and conditions.

...

NaviFloor Robotics, Inc.

By: _

Name: Dr. Elena Kovacs

Date: _
