Имя, фами:	лия и номер гр	уппы:						
1. a] b	d e f	15. a	b	\Box c	d	e	
2. a] b	$d \boxed{} e \boxed{} f$	16. a	b	\Box c	d	e	
3. a] b	$d \boxed{} e \boxed{} f$	17. a	b	\Box c	d	e	
4. a] b	d e f	18. a	b	\Box c	d	e	
5. a] b	d e f	19. a	b	\Box c	d	e	\Box f
6. a] b	d e f	20. a	Ъ	С	d	e	f
7. a] b	d e f						
8. a] b	d e f	21 a	b	С	∐ d	e	f
9. a] b	d e f	22a	b	c	d	e	f
10. a] b	d e f	23. a	b	c	d	e	f
11. a] b	d e f	24. a	b	\Box c	d	e	f
12. a] b	d e f	25. a	b	c	d	e	
13. a] b	d e f	26. a	b	\Box c	d	e	
14. a] b	d e f	27. a	b	\Box c	d	e	

Удачи!

Имя, фамилия и номер группы:

1. По 100 наблюдениям получена оценка метода максимального правдоподобия, $\hat{\theta}=20$, также известны значения лог-функции правдоподобия $\ell(20)=-10$ и $\ell(0)=-50$.

С помощью критерия отношения правдоподобия, LR, проверьте гипотезу H_0 : $\theta=0$ против H_0 : $\theta\neq 0$ на уровне значимости 5%.

а) $LR = 60, H_0$ не отвергается

d) нет верного ответа

b) $LR = 80, H_0$ отвергается

е) Критерий неприменим

c) LR = 40, H_0 не отвергается

- f) $LR = 40, H_0$ отвергается
- 2. Величины X_i независимы и одинаково распределены с математическим ожиданием $\mathbb{E}(X_i) = 5a + 1.$

По выборке из 100 наблюдений оказалось, что $\bar{X}=16$.

Найдите оценку \hat{a} методом моментов.

a) 3.6

c) 2.8

e) 3.4

b) 3.2

d) 3

- f) нет верного ответа
- 3. Оценка \hat{a}_n неизвестного параметра a асимптотически нормальная и несмещённая. По выборке из 200 наблюдений оказалось, что $\hat{a}_n=3$ с оценкой дисперсии $\widehat{\text{Var}}(\hat{a}_n)=3$.

Найдите правую границу симметричного двустороннего 95%-го доверительного интервала для параметра a.

a) 9.85

- с) нет верного ответа
- e) 15.05

b) 13.32

d) 16.78

- f) 6.39
- 4. По случайной выборке размером 100 студентов из всех студентов Вышки доля любителей кричать «Халява приди» равна 0.2.

Найдите правую границу 95%-й асимптотического доверительного интервала для вероятности того, что случайно выбираемый студент Вышки любит кричать «Халява приди».

a) 0.358

c) 0.438

e) 0.318

b) 0.398

- d) нет верного ответа
- f) 0.278
- 5. Исследователь Вовочка при проверке гипотезы о равенстве математического ожидания константе по ошибке вместо t-распределения использует стандартное нормальное.

Как изменяются при этом вероятность ошибки первого рода α и ошибки второго рода β ?

а) нет верного ответа

d) α падает, β падает

b) α растёт, β падает	e)	e) $lpha$ падает, eta изменяется непредсказуемо		
c) α растёт, β растёт	f)	f) α падает, β растёт		
6. Выберите верное утверж	кдение о связи уровня значим	ости $lpha$ и P -значения.		
а) Р-значение монот	онно падает с ростом $lpha$			
b) <i>P</i> -значение моното	онно растёт с ростом $lpha$			
с) нет верного ответа				
d) α и P -значение не	связаны			
e) P -значение случай	но, ожидание от него моното	нно падает с ростом $lpha$		
f) P -значение случай	но, ожидание от него моното	нно растёт с ростом $lpha$		
7. Исследователь Винни-П	ух приступил к новому иссле	дованию.		
•	λ . Альтернативная гипотеза	одинаково экспоненциально распределено у состоит в том, что параметр λ отличается у		
Максимум правдоподоб ний равен $\exp(-3)$.	ия при верной H_0 равен $\exp(-$	-8). Максимум правдоподобия без ограниче-		
Найдите значение стати	стики отношения правдопод	обия.		
a) 11	c) 8	е) нет верного ответа		
b) 14	d) 10	f) 9		
		и математическим ожиданием и дисперсией пределение с корреляцией 0.5.		
Найдите $\operatorname{Var}(Y\mid X=3)$				
а) нет верного ответа	c) 5	e) 0.5		
b) 0.75	d) 3.75	f) 1.5		
9. Величины X_i независим	лы и равномерны на отрезке [-a;2a].		
Оцените a методом мак	симального правдоподобия п	о выборке из трех наблюдений: -5, -3, 13.		
a) 6	c) 7.5	e) 7		
b) 5.5	d) нет верного отв	ета f) 6.5		
10. Длины катетов в санти стандартных нормальны		гольника являются модулями независимых		

Какую пороговую длину гипотенуза этого треугольника превышает с вероятностью 0.05?

a) 5.99

c) 4.61

e) 0.68

b) 0.1

d) нет верного ответа

f) 0.21

11. Рассмотрим хи-квадрат случайную величину с n степенями свободы. Укажите множество всех возможных значений, принимаемых данной случайной величиной с ненулевой вероятностью:

a) $\{0, 1, \dots, n\}$

c) $(0,\infty)$

e) [0, n]

b) $[0, n^2]$

d) нет верного ответа

f) $\{x \in R : \sum_{i=1}^{n} x^2 = 1\}$

12. Проверяется гипотеза H_0 : $\theta=\gamma$ против альтернативной гипотезы H_a : $\theta\neq\gamma$, где θ и $\gamma-$ два неизвестных параметра.

Выберите верное утверждение о распределении статистики отношения правдоподобия, LR.

а) если верна H_a , то $LR \sim \chi_2^2$

d) если верна H_0 , то $LR \sim \chi_1^2$

b) нет верного ответа

е) и при H_0 , и при H_a , $LR \sim \chi_2^2$

c) если верна H_a , то $LR \sim \chi_1^2$

f) и при H_0 , и при H_a , $LR \sim \chi_1^2$

13. Теоретическая информация Фишера о параметре a описывается функцией $I_F(a)$, при этом a=3b. Какой функцией описывается теоретическая информация Фишера о параметре b?

a) $I_F(3b)$

c) $9I_F(3b)$

е) нет верного ответа

b) $3I_F(3b)$

d) $3I_F(b)$

f) $3I_F(b/3)$

14. Геродот Геликарнасский проверяет гипотезу $H_0: \mu=2$. Лог-функция правдоподобия имеет вид $\ell(\mu,\nu)=-\frac{n}{2}\ln(2\pi)-\frac{n}{2}\ln\nu-\frac{\sum_{i=1}^n(x_i-\mu)^2}{2\nu}.$

Найдите оценка максимального правдоподобия для ν при предположении, что H_0 верна.

a) $\sum_{i=1}^{n} \frac{\sum_{i=1}^{n} x_{i}}{n}$

c) $\frac{\sum x_i^2 - 4\sum x_i}{n} + 2$

e) $\frac{\sum x_i^2 - 4 \sum x_i + 4}{n}$

b) нет верного ответа

d) $\frac{\sum x_i^2 - 4 \sum x_i + 2}{n}$

 $f) \frac{\sum x_i^2 - 4\sum x_i}{n} + 4$

15. Величина X имеет F-распределение с 2 и 17 степенями свободы.

Какое распределение имеет величина $Y = X^{-1}$?

a) $F_{17,2}$

с) нет верного ответа

e) $F_{2.17}$

b) $F_{1/2,1/17}$

d) $F_{1/17,1/2}$

f) χ_{19}^2

16. Кот Матроскин поймал 20 рыб. Совсем маленьких, весом до 1 кг, он отпустил. Оставшиеся три рыбы весили 2 кг, 3 кг и 4 кг.

Найдите значение выборочной функции распределения массы пойманных рыб в точке 3.5 кг.

a) 0.8

c) 0.85

e) 0.9

b) 0.95

d) нет верного ответа

f) 0.75

- 17. Выберите верное утверждение о предпосылках теста Стьюдента на равенство математического ожидания величин $X_1, ..., X_n$ некоторой константе μ_0 .
 - а) нет верного ответа
 - b) величины X_i могут быть распределены произвольно, но величина \bar{X} должна быть нормально распределённой
 - с) величины X_i могут быть распределены произвольно, но должны быть независимы
 - d) константа μ_0 должна быть больше нуля
 - е) количество наблюдений должно быть больше 30
 - f) величины X_i должны быть нормально распределёнными
- 18. Каждое утро в 8:00 Иван Андреевич Крылов, либо завтракает, либо уже позавтракал. В это же время кухарка либо заглядывает к Крылову, либо нет.

По таблице сопряженности вычислите статистику χ^2 Пирсона для тестирования гипотезы о том, что визиты кухарки не зависят от того, позавтракал ли уже Крылов или нет.

	Кухарка заходит	Кухарка не заходит
Крылов завтракает	200	40
Крылов уже позавтракал	25	100

19. Отличница Машенька получает только 8, 9 или 10. За все годы обучения Маша получила 60 восьмёрок, 10 девяток и 40 десяток.

Найдите значение статистики Пирсона для проверки гипотезы о том, все отличные оценки имеют равную вероятность.

20. Пусть $X_1, ..., X_n$ — выборка объема n из некоторого распределения с конечным математическим ожиданием.

Выберите несмещенную и состоятельную оценку математического ожидания.

a)
$$\frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-1}}{n-2} - \frac{X_n}{2n}$$
 c) $\frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-2}}{n-1} + \frac{X_n}{2n}$ e) $\frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-2}}{n-2} + \frac{X_n}{2n}$ b) $\frac{X_1 + X_2}{2}$ d) $\frac{1}{3}X_1 + \frac{2}{3}X_2$ f) нет верного ответа

c)
$$\frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-2}}{n-1} + \frac{X_n}{2n}$$

e)
$$\frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-2}}{n-2} + \frac{X_n}{2n}$$

b)
$$\frac{X_1 + X_2}{2}$$

d)
$$\frac{1}{3}X_1 + \frac{2}{3}X_2$$

21. Исследователи Машенька и Вовочка, не зная друг о друге, каждый день по всем правилам статистики строят 95%-й доверительные интервалы для математического ожидания μ .

Выборка у них общая на двоих, и каждый день — новая. При этом Машенька знает истинную дисперсию, а Вовочка — нет. Все наблюдения одинаково нормально распределены и независимы. Выберите верное утверждение.

- а) Машенькины интервалы всегда уже Вовочкиных
- b) нет верного ответа
- с) Машенькины интервалы всегда шире Вовочкиных
- d) Машенькины интервалы всегда правее Вовочкиных
- е) Машенькины интервалы бывают как шире, так и уже Вовочкиных
- f) Машенькины интервалы всегда левее Вовочкиных
- 22. Величины X_i независимы и распределены по Пуассону с параметром интенсивности λ . Выберите несмещённую оценку для $\mathbb{E}(X_i)$.
 - a) $\sum_{i=1}^{n} X_i/(n-1)$ c) $\sum_{i=1}^{n} X_i^2/n$

- a) $\sum_{i=1}^{n} X_i/(n-1)$ c) $\sum_{i=1}^{n} X_i^2/n$ e) нет верного ответа b) $\sum_{i=1}^{n} X_i/(n+1)$ d) $\sum_{i=1}^{n} (X_i \bar{X})^2/(n-1)$ f) $\sum_{i=1}^{n} X_i^2/(n-1)$
- 23. Известно, что величины $X_1, ..., X_{600}$ независимы и имеют экспоненциальное распределение с интенсивностью λ , и $\ln L(\lambda)$ — логарифмическая функция правдоподобия.

Найдите $\mathbb{E}\left(\frac{\partial \ln L(\lambda)}{\partial \lambda}\right)$.

a) $600\lambda^2$

c) 600λ

e) $600/\lambda^2$

b) $600/\lambda$

d) 0

- f) нет верного ответа
- 24. Величина X имеет t-распределение с 6 степенями свободы.

Какое распределение имеет величина $Y = X^2$?

a) $F_{6.1}$

c) t_{36}

е) нет верного ответа

b) $F_{6.6}$

d) $F_{1.6}$

- f) χ_6^2
- 25. Величины X и Y одинаково распределены с нулевым математическим ожиданием и дисперсией 7. Вектор (X,Y) имеет многомерное нормальное распределение с корреляцией 0.5.

Найдите $\mathbb{E}(Y \mid X=2)$.

a) 0.75

c) 5.25

e) 0.5

b) 1

- d) нет верного ответа
- **f**) 0
- 26. Пусть X_1, \ldots, X_n случайная выборка из распределения с плотностью распределения

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, \text{ при } x \ge 0, \\ 0, \text{ при } x < 0 \end{cases},$$

где $\theta > 0$ — неизвестный параметр распределения.

Найдите информацию Фишера о параметре θ , заключенную в трёх наблюдениях случайной выборки.

a) $\theta^2/3$

c) θ

e) θ^2

b) $3/\theta^2$

- d) нет верного ответа
- f) $1/\theta$

27. Известно, что $\mathbb{E}(\hat{a})=0.6a+3$, функция правдоподобия регулярна и информация Фишера равна $I_F(a)=1/a^2.$

Найдите теоретическую нижнюю границу $\mathrm{Var}(\hat{a}).$

a) $9a^2$

c) a^2

e) $0.36a^2$

b) $3a^2$

d) $0.6a^2$

f) нет верного ответа