Data Science III with python (Class notes)

STAT 303-3

Arvind Krishna

2023-03-24

Table of contents

Pretace			3	
1	Intro	oduction to scikit-learn	4	
	1.1	Splitting data into train and test	5	
		1.1.1 Stratified splitting	6	
	1.2	Scaling data	7	
	1.3		8	
	1.4	Computing performance metrics	9	
		1.4.1 Accuracy	9	
			10	
		1.4.3 Confusion matrix & precision-recall	10	
	1.5		13	
			15	
		• • •	18	
		1.5.3 Tuning the decision threshold probability and the regularization param-		
		eter simultaneously	21	
		v		
Αį	Appendices			
A Datasets, assignment and project files			25	

Preface

These are class notes for the course STAT303-3. This is not the course text-book. You are required to read the relevant sections of the book as mentioned on the course website.

The course notes are currently being written, and will continue to being developed as the course progresses (just like the class notes last quarter). Please report any typos / mistakes / inconsistencies / issues with the class notes / class presentations in your comments here. Thank you!

1 Introduction to scikit-learn

In this chapter, we'll learn some functions from the library sklearn that will be useful in:

- 1. Splitting the data into train and test
- 2. Scaling data
- 3. Fitting a model
- 4. Computing model performance metrics
- 5. Tuning model hyperparameters* to optimize the desired performance metric

*In machine learning, a model hyperparameter is a parameter that cannot be learned from training data and must be set before training the model. Hyperparameters control aspects of the model's behavior and can greatly impact its performance. For example, the regularization parameter λ , in linear regression is a hyperparameter. You need to specify it before fitting the model. On the other hand, the beta coefficients in linear regression are parameters, as you learn them while training the model, and don't need to specify their values beforehand.

We'll use a classification problem to illustrate the functions. However, similar functions can be used for regression problems, i.e., prediction problems with a continuous response.

```
# Importing necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(font_scale=1.35)
```

Let us import the sklearn modules useful in developing statistical models.

```
# sklearn has 100s of models - grouped in sublibraries, such as linear_model
from sklearn.linear_model import LogisticRegression, LinearRegression

# sklearn has many tools for cleaning/processing data, also grouped in sublibraries
# splitting one dataset into train and test, computing cross validation score, cross validate
from sklearn.model_selection import train_test_split, cross_val_predict, cross_val_score
```

```
#sklearn module for scaling data
from sklearn.preprocessing import StandardScaler

#sklearn modules for computing the performance metrics
from sklearn.metrics import accuracy_score, mean_absolute_error, mean_squared_error, r2_score
roc_curve, auc, precision_score, recall_score, confusion_matrix

#Reading data
```

Scikit-learn doesn't support the formula-like syntax of specifying the response and the predictors as in the statsmodels library. We need to create separate objects for predictors and response, which should be *array-like*. A Pandas DataFrame / Series or a Numpy array are *array-like* objects.

Let us reference our predictors as object X, and the response as object y.

```
# Separating the predictors and response - THIS IS HOW ALL SKLEARN OBJECTS ACCEPT DATA (difference X = \text{data.drop}("\text{Outcome}", \text{axis} = 1)
```

1.1 Splitting data into train and test

data = pd.read_csv('./Datasets/diabetes.csv')

Let us create train and test datasets for developing a model to predict if a person has diabetes.

```
# Creating training and test data
    # 80-20 split, which is usual - 70-30 split is also fine, 90-10 is fine if the dataset is
    # random_state to set a random seed for the splitting - reproducible results
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 45
```

Let us find the proportion of classes ('having diabetes' (y = 1) or 'not having diabetes' (y = 0)) in the complete dataset.

```
#Proportion of 0s and 1s in the complete data
y.value_counts()/y.shape
```

```
0    0.651042
1    0.348958
Name: Outcome, dtype: float64
```

Let us find the proportion of classes ('having diabetes' (y = 1) or 'not having diabetes' (y = 0)) in the train dataset.

```
#Proportion of 0s and 1s in train data
y_train.value_counts()/y_train.shape

0    0.644951
1    0.355049
Name: Outcome, dtype: float64

#Proportion of 0s and 1s in test data
y_test.value_counts()/y_test.shape

0    0.675325
1    0.324675
Name: Outcome, dtype: float64
```

We observe that the proportion of 0s and 1s in the train and test dataset are slightly different from that in the complete data. In order for these datasets to be more representative of the population, they should have a proportion of 0s and 1s similar to that in the complete dataset. This is especially critical in case of imbalanced datasets, where one class is represented by a significantly smaller number of instances than the other(s).

When training a classification model on an imbalanced dataset, the model might not learn enough about the minority class, which can lead to poor generalization performance on new data. This happens because the model is biased towards the majority class, and it might even predict all instances as belonging to the majority class.

1.1.1 Stratified splitting

We will use the argument stratify to obtain a proportion of 0s and 1s in the train and test datasets that is similar to the proportion in the complete 'data.

```
#Stratified train-test split
X_train_stratified, X_test_stratified, y_train_stratified,\
y_test_stratified = train_test_split(X, y, test_size = 0.2, random_state = 45, stratify=y)
#Proportion of 0s and 1s in train data with stratified split
y_train_stratified.value_counts()/y_train.shape
```

0 0.651466 1 0.348534

Name: Outcome, dtype: float64

```
#Proportion of 0s and 1s in test data with stratified split
y_test_stratified.value_counts()/y_test.shape
```

0 0.649351 1 0.350649

Name: Outcome, dtype: float64

The proportion of the classes in the stratified split mimics the proportion in the complete dataset more closely.

By using stratified splitting, we ensure that both the train and test data sets have the same proportion of instances from each class, which means that the model will see enough instances from the minority class during training. This, in turn, helps the model learn to distinguish between the classes better, leading to better performance on new data.

Thus, stratified splitting helps to ensure that the model sees enough instances from each class during training, which can improve the model's ability to generalize to new data, particularly in cases where one class is underrepresented in the dataset.

Let us develop a logistic regression model for predicting if a person has diabetes.

1.2 Scaling data

In certain models, it may be important to scale data for various reasons. In a logistic regression model, scaling can help with model convergence. Scikit-learn uses a method known as gradient-descent (not in scope of the syllabus of this course) to obtain a solution. In case the predictors have different orders of magnitude, the algorithm may fail to converge. In such cases, it is useful to standardize the predictors so that all of them are at the same scale.

```
# With linear/logistic regression in scikit-learn, especially when the predictors have differ
# of magn., scaling is necessary. This is to enable the training algo. which we did not cover
scaler = StandardScaler().fit(X_train)

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test) # Do NOT refit the scaler with the test data, just
```

1.3 Fitting a model

Let us fit a logistic regression model for predicting if a person has diabetes. Let us try fitting a model with the un-scaled data.

```
# Create a model object - not trained yet
logreg = LogisticRegression()

# Train the model
logreg.fit(X_train, y_train)
```

C:\Users\akl0407\AppData\Roaming\Python\Python38\site-packages\sklearn\linear_model_logisticsTOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

```
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
    n_iter_i = _check_optimize_result(
```

LogisticRegression()

Note that the model with the un-scaled predictors fails to converge. Check out the data X_train to see that this may be probably due to the predictors have different orders of magnitude. For example, the predictor DiabetesPedigreeFunction has values in [0.078, 2.42], while the predictor Insulin has values in [0, 800].

Let us fit the model to the scaled data.

```
# Create a model - not trained yet
logreg = LogisticRegression()

# Train the model
logreg.fit(X_train_scaled, y_train)
```

LogisticRegression()

The model converges to a solution with the scaled data!

The coefficients of the model can be returned with the coef_attribute of the LogisticRegression() object. However, the output is not as well formatted as in the case of the statsmodels library since sklearn is developed primarily for the purpose of prediction, and not inference.

```
# Use coef_ to return the coefficients - only log reg inference you can do with sklearn
print(logreg.coef_)
```

1.4 Computing performance metrics

1.4.1 Accuracy

Let us test the model prediction accuracy on the test data. We'll demonstrate two different functions that can be used to compute model accuracy - accuracy_score(), and score().

The accuracy_score() function from the metrics module of the sklearn library is general, and can be used for any classification model. We'll use it along with the predict() method of the LogisticRegression() object, which returns the predicted class based on a threshold probability of 0.5.

```
# Get the predicted classes first
y_pred = logreg.predict(X_test_scaled)

# Use the predicted and true classes for accuracy
print(accuracy_score(y_pred, y_test)*100)
```

73.37662337662337

The score() method of the LogisticRegression() object can be used to compute the accuracy only for a logistic regression model. Note that for a LinearRegression() object, the score() method will return the model *R*-squared.

```
# Use .score with test predictors and response to get the accuracy
# Implements the same thing under the hood
print(logreg.score(X_test_scaled, y_test)*100)
```

73.37662337662337

1.4.2 ROC-AUC

The roc_curve() and auc() functions from the metrics module of the sklearn library can be used to compute the ROC-AUC, or the area under the ROC curve. Note that for computing ROC-AUC, we need the predicted probability, instead of the predicted class. Thus, we'll use the predict_proba() method of the LogisticRegression() object, which returns the predicted probability for the observation to belong to each of the classes, instead of using the predict() method, which returns the predicted class based on threshold probability of 0.5.

```
#Computing the predicted probability for the observation to belong to the positive class (y=
#The 2nd column in the output of predict_proba() consists of the probability of the observat
#belong to the positive class (y=1)
y_pred_prob = logreg.predict_proba(X_test_scaled)[:,1]

#Using the predicted probability computed above to find ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(y_test, y_pred_prob)
print(auc(fpr, tpr))# AUC of ROC
```

0.7923076923076922

1.4.3 Confusion matrix & precision-recall

The confusion_matrix(), precision_score(), and recall_score() functions from the metrics module of the sklearn library can be used to compute the confusion matrix, precision, and recall respectively.


```
print("Precision: ", precision_score(y_test, y_pred))
print("Recall: ", recall_score(y_test, y_pred))
```

Precision: 0.6046511627906976

Recall: 0.52

Let us compute the performance metrics if we develop the model using stratified splitting.

```
# Developing the model with stratified splitting

#Scaling data
scaler = StandardScaler().fit(X_train_stratified)
X_train_stratified_scaled = scaler.transform(X_train_stratified)
X_test_stratified_scaled = scaler.transform(X_test_stratified)

# Training the model
logreg.fit(X_train_stratified_scaled, y_train_stratified)
```

```
#Computing the accuracy
y_pred_stratified = logreg.predict(X_test_stratified_scaled)
print("Accuracy: ",accuracy_score(y_pred_stratified, y_test_stratified)*100)

#Computing the ROC-AUC
y_pred_stratified_prob = logreg.predict_proba(X_test_stratified_scaled)[:,1]
fpr, tpr, auc_thresholds = roc_curve(y_test_stratified, y_pred_stratified_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC

#Computing the precision and recall
print("Precision: ", precision_score(y_test_stratified, y_pred_stratified))
print("Recall: ", recall_score(y_test_stratified, y_pred_stratified))

#Confusion matrix
cm = pd.DataFrame(confusion_matrix(y_test_stratified, y_pred_stratified), columns=['Predicted_index = ['Actual 0', 'Actual 1'])
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```

Accuracy: 78.57142857142857 ROC-AUC: 0.85055555555556 Precision: 0.7692307692307693 Recall: 0.555555555555556

The model with the stratified train-test split has a better performance as compared to the other model on all the performance metrics!

1.5 Tuning the model hyperparameters

A hyperparameter (among others) that can be trained in a logistic regression model is the regularization parameter.

We may also wish to tune the decision threshold probability. Note that the decision threshold probability is not considered a hyperparameter of the model. Hyperparameters are model parameters that are set prior to training and cannot be directly adjusted by the model during training. Examples of hyperparameters in a logistic regression model include the regularization parameter, and the type of shrinkage penalty - lasso / ridge. These hyperparameters are typically optimized through a separate tuning process, such as cross-validation or grid search, before training the final model.

The performance metrics can be computed using a desired value of the threshold probability. Let us compute the performance metrics for a desired threshold probability of 0.3.

```
# Performance metrics computation for a desired threshold probability of 0.3
desired_threshold = 0.3
# Classifying observations in the positive class (y = 1) if the predicted probability is gre-
# than the desired decision threshold probability
y_pred_desired_threshold = y_pred_stratified_prob > desired_threshold
y_pred_desired_threshold = y_pred_desired_threshold.astype(int)
#Computing the accuracy
print("Accuracy: ",accuracy_score(y_pred_desired_threshold, y_test_stratified)*100)
#Computing the ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(y_test_stratified, y_pred_stratified_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
#Computing the precision and recall
print("Precision: ", precision_score(y_test_stratified, y_pred_desired_threshold))
print("Recall: ", recall_score(y_test_stratified, y_pred_desired_threshold))
#Confusion matrix
cm = pd.DataFrame(confusion_matrix(y_test_stratified, y_pred_desired_threshold),
                  columns=['Predicted 0', 'Predicted 1'], index = ['Actual 0', 'Actual 1'])
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```


1.5.1 Tuning decision threshold probability

Suppose we wish to find the optimal decision threshold probability to maximize accuracy. Note that we cannot use the test dataset to optimize model hyperparameters, as that may lead to overfitting on the test data. We'll use K-fold cross validation on train data to find the optimal decision threshold probability.

We'll use the $cross_val_predict()$ function from the model_selection module of sklearn to compute the K-fold cross validated predicted probabilities. Note that this function simplifies the task of manually creating the K-folds, training the model K-times, and computing the predicted probabilities on each of the K-folds. Thereafter, the predicted probabilities will be used to find the optimal threshold probability that maximizes the classification accuracy.

```
for threshold_prob in hyperparam_vals:
    predicted_class = predicted_probability[:,1] > threshold_prob
    predicted_class = predicted_class.astype(int)

#Computing the accuracy
    accuracy = accuracy_score(predicted_class, y_train_stratified)*100
    accuracy_iter.append(accuracy)
```

Let us visualize the accuracy with change in decision threshold probability.

```
# Accuracy vs decision threshold probability
sns.scatterplot(x = hyperparam_vals, y = accuracy_iter)
plt.xlabel('Decision threshold probability')
plt.ylabel('Average 5-fold CV accuracy');
```


The optimal decision threshold probability is the one that maximizes the K-fold cross validation accuracy.

```
# Optimal decision threshold probability
hyperparam_vals[accuracy_iter.index(max(accuracy_iter))]
```

0.46

```
# Performance metrics computation for the optimum decision threshold probability
desired_threshold = 0.46
\# Classifying observations in the positive class (y = 1) if the predicted probability is greater
# than the desired decision threshold probability
y_pred_desired_threshold = y_pred_stratified_prob > desired_threshold
y_pred_desired_threshold = y_pred_desired_threshold.astype(int)
#Computing the accuracy
print("Accuracy: ",accuracy_score(y_pred_desired_threshold, y_test_stratified)*100)
#Computing the ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(y_test_stratified, y_pred_stratified_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
#Computing the precision and recall
print("Precision: ", precision_score(y_test_stratified, y_pred_desired_threshold))
print("Recall: ", recall_score(y_test_stratified, y_pred_desired_threshold))
#Confusion matrix
cm = pd.DataFrame(confusion_matrix(y_test_stratified, y_pred_desired_threshold),
                  columns=['Predicted 0', 'Predicted 1'], index = ['Actual 0', 'Actual 1'])
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```

Accuracy: 79.87012987012987
ROC-AUC: 0.85055555555556
Precision: 0.7804878048780488
Recall: 0.5925925925925926

Model performance on test data has improved with the optimal decision threshold probability.

1.5.2 Tuning the regularization parameter

The LogisticRegression() method has a default L2 regularization penalty, which means ridge regression. C is $1/\lambda$, where λ is the hyperparameter that is multiplied with the ridge penalty. C is 1 by default.

```
plt.plot(hyperparam_vals, np.mean(np.array(accuracy_iter), axis=1))
plt.xlabel('C')
plt.ylabel('Average 5-fold CV accuracy')
plt.xscale('log')
plt.show()
```



```
# Optimal value of the regularization parameter 'C'
optimal_C = hyperparam_vals[np.argmax(np.array(accuracy_iter).mean(axis=1))]
optimal_C
```

0.11787686347935879

```
# Developing the model with stratified splitting and optimal 'C'
#Scaling data
```

```
scaler = StandardScaler().fit(X_train_stratified)
X_train_stratified_scaled = scaler.transform(X_train_stratified)
X_test_stratified_scaled = scaler.transform(X_test_stratified)
# Training the model
logreg = LogisticRegression(C = optimal_C)
logreg.fit(X_train_stratified_scaled, y_train_stratified)
#Computing the accuracy
y_pred_stratified = logreg.predict(X_test_stratified_scaled)
print("Accuracy: ",accuracy_score(y_pred_stratified, y_test_stratified)*100)
#Computing the ROC-AUC
y pred stratified prob = logreg.predict_proba(X_test_stratified_scaled)[:,1]
fpr, tpr, auc_thresholds = roc_curve(y_test_stratified, y_pred_stratified_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC
#Computing the precision and recall
print("Precision: ", precision_score(y_test_stratified, y_pred_stratified))
print("Recall: ", recall_score(y_test_stratified, y_pred_stratified))
#Confusion matrix
cm = pd.DataFrame(confusion_matrix(y_test_stratified, y_pred_stratified), columns=['Predicted
            index = ['Actual 0', 'Actual 1'])
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```


1.5.3 Tuning the decision threshold probability and the regularization parameter simultaneously

```
accuracy = accuracy_score(predicted_class, y_train_stratified)*100
        accuracy_iter.loc[iter_number, 'threshold'] = threshold_prob
        accuracy_iter.loc[iter_number, 'C'] = c_val
        accuracy_iter.loc[iter_number, 'accuracy'] = accuracy
        iter_number = iter_number + 1
# Parameters for highest accuracy
optimal_C = accuracy_iter.sort_values(by = 'accuracy', ascending = False).iloc[0,:]['C']
optimal_threshold = accuracy_iter.sort_values(by = 'accuracy', ascending = False).iloc[0, :]
#Optimal decision threshold probability
print("Optimal decision threshold = ", optimal_threshold)
#Optimal C
print("Optimal C = ", optimal_C)
Optimal decision threshold = 0.46
Optimal C = 4.291934260128778
# Developing the model with stratified splitting, optimal decision threshold probability, and
#Scaling data
scaler = StandardScaler().fit(X_train_stratified)
X_train_stratified_scaled = scaler.transform(X_train_stratified)
X_test_stratified_scaled = scaler.transform(X_test_stratified)
# Training the model
logreg = LogisticRegression(C = optimal_C)
logreg.fit(X_train_stratified_scaled, y_train_stratified)
# Performance metrics computation for the optimal threshold probability
y_pred_stratified_prob = logreg.predict_proba(X_test_stratified_scaled)[:,1]
# Classifying observations in the positive class (y = 1) if the predicted probability is gre-
# than the desired decision threshold probability
y_pred_desired_threshold = y_pred_stratified_prob > optimal_threshold
y_pred_desired_threshold = y_pred_desired_threshold.astype(int)
#Computing the accuracy
print("Accuracy: ",accuracy_score(y_pred_desired_threshold, y_test_stratified)*100)
```

```
#Computing the ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(y_test_stratified, y_pred_stratified_prob)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC

#Computing the precision and recall
print("Precision: ", precision_score(y_test_stratified, y_pred_desired_threshold))
print("Recall: ", recall_score(y_test_stratified, y_pred_desired_threshold))

#Confusion matrix
cm = pd.DataFrame(confusion_matrix(y_test_stratified, y_pred_desired_threshold), columns=['Pst_index = ['Actual 0', 'Actual 1'])
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```

Accuracy: 79.87012987012987 ROC-AUC: 0.8509259259259259 Precision: 0.7804878048780488 Recall: 0.5925925925925926

Later in the course, we'll see the sklearn function GridSearchCV, which is used to optimize several model hyperparameters simultaneously with K-fold cross validation, while avoiding for loops.

A Datasets, assignment and project files

Datasets used in the book, assignment files, project files, and prediction problems report tempate can be found here