

一、等比数列 00:01

1. 等比数列的概念 00:04

- **定义特征**: 从第2项起,每一项与前一项的比值等于同一个常数 $q(q \neq 0)$,即 $\frac{a_{n+1}}{a_n} = q$
- **实例说明**:如数列2,6,18,54,公比q=3,满足6是2的3倍,18是6的3倍,54是18的3倍
- **命名规则**:这个常数q称为公比,体现数列的倍数变化规律
- 2. 等比数列的通项公式 00:46
- 基本形式: $a_n = a_1 \cdot q^{n-1}$, 如 $a_5 = a_1 \cdot q^4$ 推广形式: $a_n = a_m \cdot q^{n-m}$ (当已知 a_m 时使用)
- 推导过程:
 - 由递推关系 $\frac{a_2}{a_1} = q, \frac{a_3}{a_2} = q, ..., \frac{a_n}{a_{n-1}} = q$ 连乘 约分后得 $\frac{a_n}{a_1} = q^{n-1}$,移项即得通项公式
- 3. 等比数列的性质 02:43

● 等比中项: 若x,G,y成等比数列,则 $G^2 = xy$,即 $G = \pm \sqrt{xy}$

● **数乘不变性**:各项同乘非零常数*m*后仍为等比数列,公比*q*保持不变

• 下标和性质: 当m + n = p + q = 2w时, $a_m \cdot a_n = a_p \cdot a_q = a_w^2$ (如 $a_5 \cdot a_7 = a_3 \cdot a_9 = a_6^2$)

4. 应用案例 04:41

1) 例题:等差等比计算

● 题目解析

o 等差条件: 利用x+9=2×6求得x=3

o 等比条件: 中间列公比 $q = \frac{1}{2}$ 得y = 3; 右侧列公比q = 1.5得z = 4

o 答案: x+y+z=10 (选C)

2) 例题:等比数列根系计算 06:42

● 题目解析

o 韦达定理应用: $a_3 \cdot a_9 = \frac{18}{2} = 9$

○ 性质转化: $a_6^2 = a_3 \cdot a_9 \Rightarrow a_6 = \pm 3$ ○ 验证过程: 通过求根验证q的正负性 答案: 需根据题目隐含条件确定正负 (示例中未明确)

5. 等比数列前n项和通项公式 09:36

- 特殊情况: 当q = 1时, $S_n = n \cdot a_1$ (所有项相同) 一般公式: $q \neq 1$ 时, $S_n = \frac{a_1(1 q^n)}{1 q} = \frac{a_1 a_n q}{1 q}$
- 推导方法:
 - 写出 $S_n = a_1 + a_2 + \cdots + a_n$
 - 两边同乘q得错位表达式
 - 两式相减消去中间项, 整理得求和公式
- 1) 例题:等差加等比数列计算 12:30

- 题目解析
 - 关键条件: a_1, a_2, a_7 成等比 \rightarrow (2 + 2d)² = 2(2 + 6d) 0
 - 解方程: 展开得 $4d^2 4d = 0$, 因 $d \neq 0$ 故d = 1

$$n(n-1)$$
 n^2+3n

- 求和计算: $S_n = 2n + \frac{n(n-1)}{2} = \frac{n^2 + 3n}{2}$ 0
- 答案:E选项

二、本章总结 15:16

渝新拓布线

本章总结

○ 等差: a_n = a₁ + (n - 1)d

● 求和对比:

○ 等差: $S_n = \frac{n(a_1 + a_n)}{2}$

o 等比: $S_n = \frac{a_1(1-q^n)}{1-q} \ (q \neq 1)$

● 中项性质:

o 等差中项: 2*b* = *a* + *c*

o 等比中项: $b^2 = a \cdot c$

● 下标性质:

○ 等差: $m + n = p + q \Rightarrow a_m + a_n = a_p + a_q$

○ 等比: $m + n = p + q \Rightarrow a_m \cdot a_n = a_p \cdot a_q$

三、知识小结

	I		
知识点	核心内容	考试重点/易	难度系数
		混淆点	
等比数列定	从第二项起,每项与前项的	与等差数列	** \$ \$ \$
义	比值等于同一常数(公比q)	定义对比	
		(差值vs比	
		值)	
通项公式推	an=aı×q ⁿ⁻¹ ,通过递推定义	n-1次方 的指	***
导	式相乘推导	数易错	
等比中项性	g²=x×y(类比等差中项	开方时 正负	***
质	x+y=2g)	双解 易遗漏	
公比性质	各项同乘非零常数m后仍为	比值不变性	** \$ \$ \$ \$
	等比数列	与伸缩变换	
下标和性质	m+n=p+q ⇒	乘法关系vs	****
	am×an=ap×a_q=a_w²(类比	等差数列加	
	等差的和性质)	法关系	
前n项和公式	q=1时Sn=naı; q≠1时Sn=aı(1-	分情况讨论	****
	q ⁿ)/(1-q)	和公式记忆	
等差等比综	表格中行成等差、列成等比	联立 中项公	****
合题	的解题策略	式与公比求	
		解	

方程结合问	利用韦达定理a3×a9=a6²求值	正负根取舍	***☆☆
题		条件判断	
错位相减法	求和公式推导的核心方法	指数项对齐	****
	(乘q相减)	技巧	