MathWorks[®] https://ip.mathworks.com

MATLAB Visualization Reference

プロットの基本

プロットの描画 >>> figure; >>> plot(x,y)

プロットのタイプ

scatter

pareto

scatter

ベクトルプロットのタイプ

polarplot

polar

histogram

stream coneplot streamtube stream particles

プロットの装飾

フィギュアウィンドウ、座標軸オブジェクトの取得 >>> fig = gcf >>> ax = gca グラフィックスオブジェクトの取得(例) >>> h = plot(x,y)

座標軸オブジェクトプロパティの例

フォント操作

- >>> fontname(gcf,'Helvetica')
- >>> fontsize(gcf,18)

プロットの色・線太さ・マーカーを指定

- >>> h.Color = [0 0 0.5]>>> h.LineWidth = 1
- >>> h.Marker = 'o'

LineStvle

$\bigcirc + * \cdot \times - \mid \Box \Diamond \triangle \neg \triangleright \Diamond \star \diamond$ 'o' '+' '*' \.' 'x' \ ' \|' 's' 'd' \^' 'v' \>' '<' \p' \h'

座標軸の表示範囲の設定

- >>> xlim([0 10]) % x軸について設定 >>> axis([0 10 0 100]) % x,y軸まとめて設定
- 目盛りの設定

>>> xticks(0:1:10) % 0~10まで1刻み

>>> daspect([1 2 1]) % x:y:z = 1:2:1の比率

注釈を追記

>>> annotation('textarrow',x,y,'String',text)

(2次元データ)の表示

画像の表示 >>> figure;

>>> image (A)

画像表示のタイプ

/ image

contourslice contour3

geoplot geoscatter geobubble

カラーマップ

カラーマップの変更 >>> colormap(colormapName)

MATLAB Plot Gallery: https://jp.mathworks.com/products/matlab/plot-gallery.html#

GUIでの操作

Live Editorツールストリップからの操作

プロパティインスペクターからの操作

複数プロットをまとめる

プロットの重ね書き >>> plot(x1,v1) >>> hold on >>> plot(x2,y2)

グラフの重ね書き >>> plot(x1,y1)

>>> ax2 = axis(0.7,0.7,0.2,0.2)>>> plot(x2,y2,'Parent',ax2)

複数のグラフを並べて表示(均一) >>> tiledlayout('flow')

>>> nexttile; plot(x1,y1) >>> nexttile; plot(x2,y2)

複数のグラフを並べて表示(不均一) >>> tiledlayout('flow') >>> nexttile; plot(x1,y1)

>>> nexttile([2,1]); plot(x2,y2) >>> nexttile; plot(x3,y3)

2軸プロット >>> plot(x,y1)

>>> yyaxis right >>> plot(x,y2)

3次元プロット

bubblechart3 stem3

scatter3

isosurface

MathWorks[®]

MATLAB Visualization Reference

Plot Basic

Display plot >>> figure; >>> plot(x,y)

Types of Plots

scatter

histogram

bin scatter scatter

pareto

histogram

Types of Vector Plots

polarplot

polar

stream particles

coneplot streamtube stream

Customizing Plots

Get figure window object or current axes objects >>> fig = gcf >>> ax = gca Get graphics object (an example)

Examples of axes object properties

>>> h = plot(x,y)

Set font properties

>>> fontname(gcf,'Helvetica') >>> fontsize(gcf,18)

Set the color, line width, and marker of the plot

>>> $h.Color = [0 \ 0 \ 0.5]$ >>> h.LineWidth = 1 >>> h.Marker = 'o

LineStvle

Set axes limits

>>> xlim([0 10]) % set x-axis limits >>> axis([0 10 0 100]) % set both x,y axes

Set axes ticks

>>> xticks(0:1:10) % set ticks 0 to 10 by 1

Set the aspect ratio of the axes

>>> daspect([1 2 1]) % x:y:z in 1:2:1 ratio

Add annotation

>>> annotation('textarrow',x,y,'String',text)

Display Image/2D Data

Display image

>>> figure; >>> image (A)

Types of Images

heatman

geoplot geoscatter geobubble contourslice contour3

Colormaps

Set colormap >>> colormap(colormapName)

GUI Operations

Operation via Live Editor Toolstrip

Operation via Property Inspector

Combining Plots

Overlay plots >>> plot(x1,y1)

>>> hold on >>> plot(x2,y2)

Overlay charts

>>> plot(x1,y1) >>> ax2 = axis(0.7,0.7,0.2,0.2)>>> plot(x2,y2,'Parent',ax2)

Tiled layout of charts (even) >>> tiledlayout('flow')

>>> nexttile; plot(x1,y1) >>> nexttile; plot(x2,y2)

Tiled layout of charts (varied) >>> tiledlayout('flow')

>>> nexttile; plot(x1,y1)

>>> nexttile([2,1]); plot(x2,y2) >>> nexttile; plot(x3,y3)

Chart with two y-axes >>> plot(x,y1)

>>> yyaxis right >>> plot(x,y2)

Types of 3D Plots

bubblechart3 stem3

scatter3

