1	1.	(Amended) A method of operating a fuel cell having a PEM as the electrolyte, an
2		anode method of on one side of the PEM, a cathode on the other side of the PEM,
3		an external electric circuit connecting the anode and cathode, and a primary
4		electricity using device within the external circuit, comprising the steps of
5		A. providing a hydrogen containing fuel to the anode and an oxygen containing
6		oxidant to the cathode to generate, for a first period of time, an electric
7		current within the external circuit for operating the primary electricity using
8		device, the cell operating conditions being selected such that, during the
9		course of said first period of time, the cathode potential is maintained above
10		0.66 volt and cell performance decreases;
11		B. regenerating the cell after Step A by a) providing a hydrogen containing fuel
12		to the anode while operating said cell using procedures selected to reduce the
13		cathode potential to below 0.50 volt, said procedures including the steps of i)
14		stopping the flow of oxidant to the cell, ii) disconnecting the primary
15		electricity using device and replacing it with a battery in the external circuit,
16		and iii) providing a flow of hydrogen containing gas to the cathode, and b)
17		maintaining the cathode potential below the said 0.50 volt for a second period
18		of time sufficient to essentially <u>restore</u> the cell performance decrease which
19		occurred during the course of Step A; and,
20		C. sequentially repeating Steps A and B to reduce the decrease in cell
21		performance over time.
1	2.	(Original) The method according to claim 1, wherein in Step B the cathode potential
2		is maintained at 0.1 volt or less for said second period of time.
	3.	(Cancelled)
	4.	(Cancelled)
	5.	(Cancelled)
	6.	(Cancelled)
	7.	(Cancelled)
1	8.	(Original) A method of operating a fuel cell having a PEM as the electrolyte, an
2		anode on one side of the PEM, a cathode on the other side of the PEM, an

. 3	external electric circuit connecting the anode and cathode, and a primary
4	electricity using device within the external circuit, comprising the steps of
5	A. providing a hydrogen containing fuel to the anode and an oxygen containing
6	oxidant to the cathode to generate, for a first period of time, an electric current
7	within the external circuit for operating the primary electricity using device,
8	the cell operating conditions being selected such that, during the course of said
9	first period of time, the cathode potential is maintained above 0.66 volt and
10	cell performance decreases;
11	B. regenerating the cell after Step A by a) providing a hydrogen containing fuel
12	to the anode while operating said cell using procedures selected to reduce the
13	cathode potential to below 0.50 volt, said procedures including the steps of i)
14	stopping the flow of oxidant to the cell and replacing it with a flow of inert
15	gas, and ii) disconnecting the electricity using device from the circuit and
16	leaving the circuit open until the cathode potential falls to below 0.5 volt, and
17	b) maintaining the cathode potential below the said 0.50 volt for a second
18	period of time sufficient to essentially restore the cell performance decrease
19	which occurred during the course of Step A; and,
20	C. sequentially repeating Steps A and B to reduce the decrease in cell
21	performance over time.
1	9. (Original) The method according to claim 8, wherein in Step B the cathode potential
2	is maintained at 0.1 volt or less for said second period of time.
1	10. (New) A method of operating a fuel cell having a PEM as the electrolyte, an anode
2	on one side of the PEM, a cathode on the other side of the PEM, an external
3	electric circuit connecting the anode and cathode, and a primary electricity using
4	device within the external circuit, comprising the steps of
5	A. providing a hydrogen containing fuel to the anode and an oxygen containing
6	oxidant to the cathode to generate, for a first period of time, an electric
7	current within the external circuit for operating the primary electricity using
8	device, the cell operating conditions being selected such that, during the
9	course of said first period of time, the cathode potential is maintained above
10	0.66 volt and cell performance decreases;

11	B. regenerating the cell after Step A by a) providing a hydrogen containing fuel to
12	the anode while operating said cell using procedures selected to reduce the
13	cathode potential to below 0.50 volt, said procedures including the steps of
14	i) disconnecting the primary electricity using device from the external circuit
15	and connecting an auxiliary resistive load in its place, and ii) stopping the
16	flow of oxidant to the cell and allowing the oxidant remaining within the cell
17	to be consumed at the cathode creating a current flow through the auxiliary
18	resistive load within the external circuit; and, b) maintaining the cathode
19	potential below the said 0.50 volt for a second period of time sufficient to
20	essentially restore the cell performance decrease which occurred during the
21	course of Step A; and,
22	C. sequentially repeating Steps A and B to reduce the decrease in cell performance
23	over time.
1	11. (New) The method according to claim 10, wherein in Step B said cell operating
2	procedures are selected to reduce cathode potential to 0.1 volt or less for said
3	second period of time.
1	12. (New) A method of operating a fuel cell having a PEM as the electrolyte, an anode on
2	one side of the PEM, a cathode on the other side of the PEM, an external electric
3	circuit connecting the anode and cathode, and a primary electricity using device
4	within the external circuit, comprising the steps of
5	A. providing a hydrogen containing fuel to the anode and an oxygen containing
6	oxidant to the cathode to generate, for a first period of time, an electric
7	current within the external circuit for operating the primary electricity using
8	device, the cell operating conditions being selected such that, during the
9	course of said first period of time, the cathode potential is maintained above
10	0.66 volt and cell performance decreases;
11	B. regenerating the cell after Step A while the primary electricity using device
12	within the external circuit remains connected across the anode and cathode
13	and while continuing to provide a hydrogen containing fuel to the anode and
14	an oxygen containing oxidant to the cathode using procedures selected to
15	reduce the cathode potential to below 0.50 volt for a second period of time

16	sufficient to essentially restore the cell performance decrease which occurred
17	during the course of Step A, said procedures including increasing the
18	oxidant utilization to at least 70% for said second period of time; and,
19	C. sequentially repeating Steps A and B to reduce the decrease in cell
20	performance over time.
1	13. (New) A method of operating a fuel cell having a PEM as the electrolyte, an anode on
2	one side of the PEM, a cathode on the other side of the PEM, an external electric
3	circuit connecting the anode and cathode, and a primary electricity using device
4	within the external circuit, comprising the steps of
5	A. providing a hydrogen containing fuel to the anode and an oxygen containing
6	oxidant to the cathode to generate, for a first period of time, an electric
7	current within the external circuit for operating the primary electricity using
8	device, the cell operating conditions being selected such that, during the
9	course of said first period of time, the cathode potential is maintained above
10	0.66 volt and cell performance decreases;
11	B. regenerating the cell after Step A while the primary electricity using device
12	within the external circuit remains connected across the anode and cathode
13	and while continuing to provide a hydrogen containing fuel to the anode and
14	an oxygen containing oxidant to the cathode using procedures selected to
15	reduce the cathode potential to below 0.50 volt for a second period of time
16	sufficient to essentially restore the cell performance decrease which occurred
17	during the course of Step A, said procedures including increasing the current
18	for said second period of time; and,
19	C. sequentially repeating Steps A and B to reduce the decrease in cell
20	performance over time.
1	14. (New) A method of operating a fuel cell having a PEM as the electrolyte, an anode on
2	one side of the PEM, a cathode on the other side of the PEM, an external electric
3	circuit connecting the anode and cathode, and a primary electricity using device
4	within the external circuit, comprising the steps of
5	A. providing a hydrogen containing fuel to the anode and an oxygen containing
6	oxidant to the cathode to generate, for a first period of time, an electric

7	current within the external circuit for operating the primary electricity using
8	device, the cell operating conditions being selected such that, during the
9	course of said first period of time, the cathode potential is maintained above
10	0.66 volt and cell performance decreases;
11	B. regenerating the cell after Step A by
12	a) providing a hydrogen containing fuel to the anode while operating said cell
13	using procedures selected to reduce the cathode potential to below 0.50 volt,
14	said procedures including the steps of i) stopping the flow of oxidant to the
15	cell and replacing it with a flow of inert gas, and ii)disconnecting the
16	primary electricity using device from the circuit and connecting an auxiliary
17	resistive load in its place; and,
18	b) maintaining the cathode potential below the said 0.50 volt for a second
19	period of time sufficient to essentially restore the cell performance decrease
20	which occurred during the course of Step A; and,
21	C. sequentially repeating Steps A and B to reduce the decrease in cell
22	performance over time.
1	15. (New) A method of operating a fuel cell having a PEM as the electrolyte, an anode on
2	one side of the PEM, a cathode on the other side of the PEM, an external electric
3	circuit connecting the anode and cathode, and a primary electricity using device
4	within the external circuit, comprising the steps of
5	A. providing a hydrogen containing fuel to the anode and an oxygen containing
6	oxidant to the cathode to generate, for a first period of time, an electric
7	current within the external circuit for operating the primary electricity using
8	device, the cell operating conditions being selected such that, during the
9	course of said first period of time, the cathode potential is maintained above
10	0.66 volt and cell performance decreases;
11	B. regenerating the cell after Step A by
12	a) providing a hydrogen containing fuel to the anode while operating said cell
13	using procedures selected to reduce the cathode potential to below 0.50
14	volt, said procedures including the steps of i) stopping the flow of oxidant
15	to the cathode and replacing it with a flow of hydrogen, ii) disconnecting

16	the primary electricity using device from the circuit and leaving the circuit
17	open until the cathode potential falls to below 0.50 volt; and, b) maintaining
18	the cathode potential below the said 0.50 volt for a second period of time
19	sufficient to essentially restore the cell performance decrease which
20	occurred during the course of Step A; and,
21	C. sequentially repeating Steps A and B to reduce the decrease in cell
22	performance over time.
1	16. (New) A method of operating a fuel cell having a PEM as the electrolyte, an anode on
2	one side of the PEM, a cathode on the other side of the PEM, an external electric
3	circuit connecting the anode and cathode, and a primary electricity using device
4	within the external circuit, comprising the steps of
5	A. providing a hydrogen containing fuel to the anode and an oxygen containing
6	oxidant to the cathode to generate, for a first period of time, an electric
7	current within the external circuit for operating the primary electricity using
8	device, the cell operating conditions being selected such that, during the
9	course of said first period of time, the cathode potential is maintained above
10	0.66 volt and cell performance decreases;
11	B. regenerating the cell after Step A by
12	a) providing a hydrogen containing fuel to the anode while operating said cell
13	using procedures selected to reduce the cathode potential to below 0.50 volt,
14	said procedures including the steps of i) stopping the flow of oxidant to the
15	cell, and ii) disconnecting the primary electricity using device and replacing it
16	with a power supply in the external circuit, and
17	b) maintaining the cathode potential below the said 0.50 volt for a second
18	period of time sufficient to essentially restore the cell performance decrease
19	which occurred during the course of Step A; and,
20	C. sequentially repeating Steps A and B to reduce the decrease in cell
21	performance over time.
1	17. (New) The method according to claim 16, including, in Step B, in addition to steps i)
2	and ii), step iii) providing a flow of hydrogen containing gas to the cathode.

1	18. (New) A method of operating a fuel cell having a PEM as the electrolyte, an
2	anode on one side of the PEM, a cathode on the other side of the PEM, an
3	external electric circuit connecting the anode and cathode, and a primary
4	electricity using device within the external circuit, comprising the steps of
5	A. providing a hydrogen containing fuel to the anode and an oxygen
6	containing oxidant to the cathode to generate, for a first period of time, an
7	electric current within the external circuit for operating the primary
8	electricity using device, the cell operating conditions being selected such
9	that, during the course of said first period of time, the cathode potential is
10	maintained above 0.66 volt and cell performance decreases;
11	B. regenerating the cell after Step A by a) providing a hydrogen containing
12	fuel to the anode while operating said cell using procedures selected to
13	reduce the cathode potential to below 0.50 volt, said procedures including
14	the steps of i) stopping the flow of oxidant to the cell and replacing it with
15	a flow of gas selected from the group consisting of carbon dioxide,
16	methane, natural gas, propane, and butane, and ii) disconnecting the
17	primary electricity using device from the circuit and leaving the circuit
18	open until the cathode potential falls to below 0.5 volt; and, b) maintaining
19	the cathode potential below the said 0.50 volt for a second period of time
20	sufficient to essentially restore the cell performance decrease which
21	occurred during the course of Step A; and,
22	C. sequentially repeating Steps A and B to reduce the decrease in cell
23	performance over time.
1	19. (New) A method of operating a fuel cell having a PEM as the electrolyte, an
2	anode on one side of the PEM, a cathode on the other side of the PEM, an
3	external electric circuit connecting the anode and cathode, and a primary
4	electricity using device within the external circuit, comprising the steps of
5	A. providing a hydrogen containing fuel to the anode and an oxygen
6	containing oxidant to the cathode to generate, for a first period of time, an
7	electric current within the external circuit for operating the primary

8	electricity using device, the cell operating conditions being selected such
9	that, during the course of said first period of time, the cathode potential is
10	maintained above 0.66 volt and cell performance decreases;
11	B. regenerating the cell after Step A by
12	a) providing a hydrogen containing fuel to the anode while operating said
13	cell using procedures selected to reduce the cathode potential to below
14	0.50 volt, said procedures including the steps of i) stopping the flow of
15	oxidant to the cell and replacing it with a flow of gas selected from the
16	group consisting of carbon dioxide, methane, natural gas, propane, and
17	butane, and ii)disconnecting the primary electricity using device from the
18	circuit and connecting an auxiliary resistive load in its place; and,
19	b) maintaining the cathode potential below the said 0.50 volt for a second
20	period of time sufficient to essentially restore the cell performance
21	decrease which occurred during the course of Step A; and,
22	C. sequentially repeating Steps A and B to reduce the decrease in cell
23	performance over time.
1	20. (New) A method of operating a fuel cell having a PEM as the electrolyte, an
2	anode on one side of the PEM, a cathode on the other side of the PEM, an
3	external electric circuit connecting the anode and cathode, and a primary
4	electricity using device within the external circuit, comprising the steps of
5	A. providing a hydrogen containing fuel to the anode and an oxygen
6	containing oxidant to the cathode to generate, for a first period of time, an
7	electric current within the external circuit for operating the primary
8	electricity using device, the cell operating conditions being selected such
9	that, during the course of said first period of time, the cathode potential is
10	maintained above 0.66 volt and cell performance decreases;
11	B. regenerating the cell after Step A by a) providing a hydrogen containing
12	fuel to the anode while operating said cell using procedures selected to
13	reduce the cathode potential to below 0.50 volt, said procedures including
14	the steps of i) stopping the flow of oxidant to the cell and replacing it with
15	a flow of inert gas, and ii) disconnecting the primary electricity using

16	device from the circuit and leaving the circuit open until the cathode
17	potential falls to below 0.5 volt, and b) maintaining the cathode potential
18	below the said 0.50 volt for a second period of time sufficient to restore at
19	least a major portion of the cell performance decrease which occurred
20	during the course of Step A; and,
21	C. sequentially repeating Steps A and B to reduce the decrease in cell
22	performance over time.
1	21. (New) A method of operating a fuel cell having a PEM as the electrolyte, an
2	anode on one side of the PEM, a cathode on the other side of the PEM, an
3	external electric circuit connecting the anode and cathode, and a primary
4	electricity using device within the external circuit, comprising the steps of
5	A. providing a hydrogen containing fuel to the anode and an oxygen
6	containing oxidant to the cathode to generate, for a first period of time, an
7	electric current within the external circuit for operating the primary
8	electricity using device, the cell operating conditions being selected such
9	that, during the course of said first period of time, the cathode potential is
10	maintained above 0.66 volt and cell performance decreases;
11	B. regenerating the cell after Step A by a) providing a hydrogen containing
12	fuel to the anode while operating said cell using procedures selected to
13	reduce the cathode potential to below 0.50 volt, said procedures
14	including the steps of i) disconnecting the primary electricity using
15	device from the external circuit, and ii) with an auxiliary resistive load
16	connected across the cell, stopping the flow of oxidant to the cell and
17	allowing the oxidant remaining within the cell to be consumed at the
18	cathode creating a current flow through the auxiliary resistive load; and,
19	b) maintaining the cathode potential below the said 0.50 volt for a
20	second period of time sufficient to essentially restore the cell
21	performance decrease which occurred during the course of Step A; and,
22	C. sequentially repeating Steps A and B to reduce the decrease in cell
23	performance over time.