CSE 548: Analysis of Algorithms

Lecture 6 (Divide-and-Conquer Algorithms: Akra-Bazzi Recurrences)

> Rezaul A. Chowdhury **Department of Computer Science SUNY Stony Brook** Fall 2017

Deterministic Select

Input: An array A[q:r] of distinct elements, and integer $k \in [1, r-q+1]$. **Output:** An element x of A[q:r] such that rank(x, A[q:r]) = k.

> Select (A[q : r], k) 1. $n \leftarrow r - q + 1$ 2. if $n \le 140$ then

sort A[q:r] and return A[q+k-1]

divide A[q:r] into blocks B_i 's each containing 5 consecutive elements (last block may contain fewer than 5 elements)

for $i \leftarrow 1$ to $\lceil n/5 \rceil$ do

 $M[i] \leftarrow \text{median of } B_i \text{ using sorting}$

 $x \leftarrow Select(M[1: \lceil n/5 \rceil], \lfloor (\lceil n/5 \rceil + 1)/2 \rfloor) \{ median of medians \}$

 $t \leftarrow Partition (A[q:r], x)$ { partition around x which ends up at A[t]}

else if k < t - q + 1 then return Select (A[q:t-1], k)

else return Select (A[t+1:r], k-t+q-1)

Deterministic Select

Select (A, k): Given an unsorted set A of n (= |A|) items, find the k^{th} smallest item in the set

group median

item larger than the group median

median of group medians

Deterministic Select

Select (A, k): Given an unsorted set A of n (= |A|) items, find the k^{th} smallest item in the set

#items definitely smaller than x is

 $\geq 3\left(\left|\frac{1}{2}\left[\frac{n}{5}\right]\right| - 1\right) \geq \frac{3n}{10} - 6$

#items definitely larger than x is

 $\geq 3\left(\left|\frac{1}{2}\left[\frac{n}{5}\right]\right| - 1\right) \geq \frac{3n}{10} - 6$

#items in any recursive call (lines 11/12) $\leq n - \left(\frac{3n}{10} - 6\right) = \frac{7n}{10} + 6$

Deterministic Select

The following recurrence describes the worst-case running time of the deterministic selection algorithm (given in Section 9.3 of CLRS):

$$T(n) \le \begin{cases} \Theta(1), & \text{if } n < 140, \\ T\left(\left\lceil \frac{n}{5} \right\rceil\right) + T\left(\frac{7n}{10} + 6\right) + \Theta(n), & \text{if } n \ge 140. \end{cases}$$

Dropping the ceiling for simplicity, and observing that $\frac{7n}{10} + 6 \le \frac{8n}{10}$ when $n \ge 60$, we obtain the following upper bound on T(n).

$$T'(n) = \begin{cases} \Theta(1), & \text{if } n < 140, \\ T'\left(\frac{n}{5}\right) + T'\left(\frac{4n}{5}\right) + \Theta(n), & \text{if } n \ge 140. \end{cases}$$

How do you solve for T'(n)?

Deterministic Select

The following recurrence describes the worst-case running time of the deterministic selection algorithm (given in Section 9.3 of CLRS):

$$T(n) \le \begin{cases} \Theta(1), & \text{if } n < 140, \\ T\left(\left\lceil \frac{n}{5} \right\rceil\right) + T\left(\frac{7n}{10} + 6\right) + \Theta(n), & \text{if } n \ge 140. \end{cases}$$

Dropping the ceiling for simplicity, and observing that $\frac{7n}{10} + 6 \le \frac{7.5n}{10}$ when $n \ge 120$, we obtain the following upper bound on T(n).

$$T''(n) = \begin{cases} \Theta(1), & \text{if } n < 140, \\ T''\left(\frac{n}{5}\right) + T''\left(\frac{3n}{4}\right) + \Theta(n), & \text{if } n \ge 140. \end{cases}$$

How do you solve for T''(n)?

Akra-Bazzi Recurrences

Consider the following recurrence:

$$T(x) = \begin{cases} \Theta(1), & \text{if } 1 \le x \le x_0, \\ \sum_{i=1}^k a_i T(b_i x) + g(x), & \text{if } x > x_0; \end{cases}$$

where,

- 1. $k \ge 1$ is an integer constant
- 2. $a_i > 0$ is a constant for $1 \le i \le k$
- 3. $b_i \in (0,1)$ is a constant for $1 \le i \le k$
- 4. $x \ge 1$ is a real number
- 5. $x_0 \ge \max\left\{\frac{1}{b_i}, \frac{1}{1-b_i}\right\}$ is a constant for $1 \le i \le k$
- 6. g(x) is a nonnegative function that satisfies a polynomial-growth condition (to be specified soon)

Polynomial-Growth Condition

We say that g(x) satisfies the polynomial-growth condition if there exist positive constants c_1 and c_2 such that for all $x \ge 1$, for all $1 \le i \le k$, and for all $u \in [b_i x, x]$,

$$c_1 g(x) \le g(u) \le c_2 g(x),$$

where x, k, b_i and g(x) are as defined in the previous slide.

The Akra-Bazzi Solution

Consider the recurrence given in the previous two slides under the conditions specified there:

$$T(x) = \begin{cases} \Theta(1), & \text{if } 1 \le x \le x_0, \\ \sum_{i=1}^k a_i T(b_i x) + g(x), & \text{if } x > x_0. \end{cases}$$

Let p be the unique real number for which $\sum_{i=1}^k a_i b_i^p = 1$. Then

$$T(x) = \Theta\left(x^p \left(1 + \int_1^x \frac{g(u)}{u^{p+1}} du\right)\right)$$

Deterministic Select

$$T'(n) = \begin{cases} \Theta(1), & \text{if } n < 140, \\ T'\left(\frac{n}{5}\right) + T'\left(\frac{4n}{5}\right) + \Theta(n), & \text{if } n \ge 140. \end{cases}$$

From
$$\left(\frac{1}{5}\right)^p + \left(\frac{4}{5}\right)^p = 1$$
 we get $p = 1$.

Hence,
$$T'(n) = \Theta\left(n^p \left(1 + \int_1^n \frac{u}{u^{p+1}} du\right)\right)$$

$$= \Theta\left(n \left(1 + \int_1^n \frac{du}{u}\right)\right)$$

$$= \Theta(n \ln n)$$

Deterministic Select

$$T''(n) = \begin{cases} \Theta(1), & \text{if } n < 140, \\ T''\left(\frac{n}{5}\right) + T''\left(\frac{3n}{4}\right) + \Theta(n), & \text{if } n \ge 140. \end{cases}$$

From
$$\left(\frac{1}{5}\right)^p + \left(\frac{3}{4}\right)^p = 1$$
 we get $p < 1$.

Hence,
$$T''(n) = \Theta\left(n^p \left(1 + \int_1^n \frac{u}{u^{p+1}} du\right)\right)$$

$$= \Theta\left(n^p \left(1 + \int_1^n \frac{du}{u^p}\right)\right)$$

$$= \Theta\left(\left(\frac{1}{1-p}\right)n - \left(\frac{p}{1-p}\right)n^p\right)$$

$$= \Theta(n)$$

Examples of Akra-Bazzi Recurrences

Example 1:
$$T(x) = 2T\left(\frac{x}{4}\right) + 3T\left(\frac{x}{6}\right) + \Theta(x\log x)$$

Then
$$p = 1$$
 and $T(x) = \Theta\left(x\left(1 + \int_1^x \frac{u \log u}{u^2} du\right)\right) = \Theta(x \log^2 x)$

Example 2:
$$T(x) = 2T\left(\frac{x}{2}\right) + \frac{8}{9}T\left(\frac{3x}{4}\right) + \Theta\left(\frac{x^2}{\log x}\right)$$

Then
$$p = 2$$
 and $T(x) = \Theta\left(x^2\left(1 + \int_1^x \frac{u^2/\log u}{u^3} du\right)\right) = \Theta\left(x^2\log\log x\right)$

Example 3:
$$T(x) = T\left(\frac{x}{2}\right) + \Theta(\log x)$$

Then
$$p = 0$$
 and $T(x) = \Theta\left(1 + \int_1^x \frac{\log u}{u} du\right) = \Theta(\log^2 x)$

Example 4:
$$T(x) = \frac{1}{2}T\left(\frac{x}{2}\right) + \Theta\left(\frac{1}{x}\right)$$

Then
$$p = -1$$
 and $T(x) = \Theta\left(\frac{1}{x}\left(1 + \int_{1}^{x} \frac{1}{u} du\right)\right) = \Theta\left(\frac{\log x}{x}\right)$

A Helping Lemma

Lemma: If g(x) is a nonnegative function that satisfies the polynomial-growth condition, then there exist positive constants c_3 and c_4 such that for $1 \le i \le k$ and all $x \ge 1$,

$$c_3g(x) \le x^p \int_{b_ix}^x \frac{g(u)}{u^{p+1}} du \le c_4g(x).$$

Proof:

$$\Rightarrow \frac{1}{\max\{(b_{i}x)^{p+1}, x^{p+1}\}} \le \frac{1}{u^{p+1}} \le \frac{1}{\min\{(b_{i}x)^{p+1}, x^{p+1}\}}$$

$$\Rightarrow \frac{x^{p}c_{1}g(x)}{\max\{(b_{i}x)^{p+1}, x^{p+1}\}} \int_{b_{i}x}^{x} du \le x^{p} \int_{b_{i}x}^{x} \frac{g(u)}{u^{p+1}} du \le \frac{x^{p}c_{2}g(x)}{\min\{(b_{i}x)^{p+1}, x^{p+1}\}} \int_{b_{i}x}^{x} du$$

$$\Rightarrow \frac{(1 - b_{i})c_{1}}{\max\{1, b_{i}^{p+1}\}} g(x) \le x^{p} \int_{b_{i}x}^{x} \frac{g(u)}{u^{p+1}} du \le \frac{(1 - b_{i})c_{2}}{\min\{1, b_{i}^{p+1}\}} g(x)$$

$$\Rightarrow c_{3}g(x) \le x^{p} \int_{b_{i}x}^{x} \frac{g(u)}{u^{p+1}} du \le c_{4}g(x)$$

Partitioning the Domain of x

Let $I_0 = [1, x_0]$ and $I_j = (x_0 + j - 1, x_0 + j]$ for $j \ge 1$.

then $b_i x$ must be somewhere here

That allows us to use induction in the proof of:

$$T(x) = \begin{cases} \Theta(1), & \text{if } 1 \le x \le x_0, \\ \sum_{i=1}^k a_i T(b_i x) + g(x), & \text{if } x > x_0. \end{cases}$$

<u>Partitioning the Domain of x</u>

Let $I_0 = [1, x_0]$ and $I_j = (x_0 + j - 1, x_0 + j]$ for $j \ge 1$.

then $b_i x$ must be somewhere here

Proof:

$$x_{0} + j - 1 < x \le x_{0} + j$$

$$\Rightarrow b_{i}(x_{0} + j - 1) < b_{i}x \le b_{i}(x_{0} + j)$$

$$\Rightarrow b_{i}x_{0} < b_{i}x \le b_{i}x_{0} + j$$

$$\Rightarrow 1 < b_{i}x \le x_{0} + j - (1 - b_{i})x_{0}$$

$$\Rightarrow 1 < b_{i}x \le x_{0} + j - 1$$

<u>Derivation of the Akra-Bazzi Solution</u>

Lower Bound: There exists a constant $c_5 > 0$ such that for all $x > x_0$,

$$T(x) \ge c_5 x^p \left(1 + \int_1^x \frac{g(u)}{u^{p+1}} du \right).$$

Proof: By induction on the interval I_j containing x.

Base case (j=0) follows since $T(x)=\Theta(1)$ when $x\in I_0=[1,x_0]$.

Induction:
$$T(x) = \sum_{i=1}^{k} a_i T(b_i x) + g(x) \ge \sum_{i=1}^{k} a_i c_5(b_i x)^p \left(1 + \int_1^{b_i x} \frac{g(u)}{u^{p+1}} du \right) + g(x)$$
$$= c_5 x^p \sum_{i=1}^{k} a_i b_i^p \left(1 + \int_1^x \frac{g(u)}{u^{p+1}} du - \int_{b_i x}^x \frac{g(u)}{u^{p+1}} du \right) + g(x)$$
$$\ge c_5 x^p \left(1 + \int_1^x \frac{g(u)}{u^{p+1}} du - \frac{c_4}{x^p} g(x) \right) \sum_{i=1}^{k} a_i b_i^p + g(x)$$

$$= c_5 x^p \left(1 + \int_1^x \frac{g(u)}{u^{p+1}} du \right) + (1 - c_4 c_5) g(x) \ge c_5 x^p \left(1 + \int_1^x \frac{g(u)}{u^{p+1}} du \right)$$
 (assuming $c_4 c_5 \le 1$

