

CSCE 581: Introduction to Trusted Al

Lectures 15 and 16: Mitigations, LLMs, Project Update #2

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 4TH AND 6TH MAR, 2025

Carolinian Creed: "I will practice personal and academic integrity."

Credits: Copyrights of all material reused acknowledged

CSCE 581 - SPRING 2025

Organization of Lectures 15, 16

- Introduction Section
 - Recap from Week 7 (Lectures 13 and 14)
 - Announcements and News
- Main Section
 - L15: LLMs, Explanation
 - L16: Project Update #2
- Concluding Section
 - About next week/ non-holiday Lectures 17, 18
 - Ask me anything

CSCE 581 - SPRING 2025

Introduction Section

Recap from Week 7 (Lectures 13, 14)

- We looked at
 - Explanations LIME method
 - Transparency through documentation Rating ARC tool

Al News

AAAI conference

- Report: AAAI 2025 Presidential Panel on the Future of AI Research: 15 topics, each with sketching its
 history, current trends and open challenges; contains insights from both expert and survey respondents,
 https://aaai.org/wp-content/uploads/2025/03/AAAI-2025-PresPanel-Report-FINAL.pdf
- Teaching award (Prof. Subbaro Kambhampati, 2025; Profs. Michael Littman and Charles Isbell, 2024)

CSCE 581 - SPRING 2025

Key Insights

CSCE 581 - SPRING 2025

Valuable Reading

• AAAI 2025 Presidential Panel on the Future of AI: 17 topics related to AI research, each chapter sketching its history, current trends and open challenges. Has insights both from experts and survey respondents. https://aaai.org/wp-content/uploads/2025/03/AAAI-2025-PresPanel-Report-FINAL.pdf

Announcement: Change to Student Assessment

A = [920-1000]

B+ = [870-919]

B = [820-869]

C+ = [770-819]

C = [720-769]

D+ = [670-719]

D = [600-669]

F = [0-599]

Tests	Undergrad	Grad
Course Project – report, in-class presentation	600	600
Quiz – 2 quizzes	200	200
Final Exam	200	100
Additional Final Exam – Paper summary, in-class presentation		100
Total	1000 points	1000 points

Change: 4 quizzes to 2; no best of 3

Intelligent Agent Model

Relationship Between Main Al Topics (Covered in Course) Agent Human Interaction Reasoning Representation (Models) Insights Learning Data

SCE 580, 581 - FALL 2023

High Level Semester Plan (Adapted, Approximate)

CSCE 581 -

- Week 1: Introduction
- Week 2: Background: AI Common Methods
- Week 3: The Trust Problem
- Week 4: Machine Learning (Structured data) Classification
- Week 5: Machine Learning (Structured data) Classification Trust Issues
- Week 6: Machine Learning (Structured data) Classification Mitigation Methods
- Week 7: Machine Learning (Structured data) Classification Explanation Methods
- Week 8: Machine Learning (Text data, vision) Classification,

Large Language Models

- Week 9: Machine Learning (Text data) Classification Trust Issues, LLMs
- Week 10: Machine Learning (Text data) Classification Mitigation Methods
- Week 11: Machine Learning (Text data) Classification Explanation Methods
- Week 12: Emerging Standards and Laws, Real world applications
- Week 13: Project presentations
- Week 14: Project presentations, Conclusion

Increased focus on LLMs and projects now

AI/ ML topics and with a focus on fairness, explanation, Data privacy, reliability

Main Segment

SCF 590-1: TRUSTED AI

InterpretML

Interpretability Technique

- **Details**: https://github.com/interpretml/interpretml/
 - Whitebox (Glassbox) models: change learning code to introduce explainability support
 - Blackbox models: don't change learning code

interpretability lechnique	Type
Explainable Boosting	glassbox model
APLR	glassbox model
Decision Tree	glassbox model
Decision Rule List	glassbox model
Linear/Logistic Regression	glassbox model
SHAP Kernel Explainer	blackbox explainer
LIME	blackbox explainer
Morris Sensitivity Analysis	blackbox explainer
Partial Dependence	blackbox explainer

CSCE 580, 581 - FALL 2023

InterpretML – Sample Code

Github: https://github.com/biplav-s/course-ai-f24/blob/main/sample-code/l21-explainability/ExploreInterpreatbilityPackageMS.ipynb

CSCE 590-1: TRUSTED AI

Class 15: Explanation

Methods

- LIME:
 - Tools: LIME, InterpretML
- SHAP:
 - Tools: SHAP, ExplainerBoard

SHAP (SHapley Additive exPlanations)

Image Credit: https://shap.readthedocs.io/en/latest/index.html

• Details and example:

- https://shap.readthedocs.io/en/latest/example notebooks/overviews/An%20intro duction%20to%20explainable%20Al%20with%20Shapley%20values.html
- https://www.datacamp.com/tutorial/introduction-to-shap-values-machinelearning-interpretability

- Features with positive SHAP values positively impact the prediction,
- · Negative values have a negative impact.
- Magnitude is a measure strength of effect
- +: Numbers add up to one
- -: Numbers (coefficients) depend on the unit of quantity being measured
- +: Model agnostic
- +: Additive: contribution of each feature to the final prediction can be computed independently and then summed up

GitHub Code

• LIME, SHAP:

https://github.com/biplav-s/course-tai-s25/blob/main/sample-code/Demo%20LIME%20and%20SHAP.ipynb

 SHAP/ ExplainerBoard: https://github.com/biplav-s/course-tai-s25/blob/main/sample-code/ExplainerBoard%20Demo.ipynb

CSCE 581 - SPRING 2025

Class 15: LLMs

Language Model

Problem:

Given a sentence fragment, predict what word(s) come next

Applications:

- Spelling correction
- speech recognition
- machine translation,
- ...

Language Model: estimate probability of substrings of a sentence

$$P(w_i|w_1, w_2, ..., w_{i-1}) = \frac{P(w_1, w_2, ..., w_{i-1}, w_i)}{P(w_1, w_2, ..., w_{i-1})}$$

Bigram approximation

$$P(w_i|w_1, w_2, ..., w_{i-1}) \approx \frac{P(w_{i-1}, w_i)}{P(w_{i-1})}$$

From Jurafsky & Martin

Language Model

Markovify library

https://github.com/jsvine/markovify

Language Model: estimate probability of substrings of a sentence

$$P(w_i|w_1, w_2, ..., w_{i-1}) = \frac{P(w_1, w_2, ..., w_{i-1}, w_i)}{P(w_1, w_2, ..., w_{i-1})}$$

See code samples with Markovify library on Github

- Prepare data two datasets shown
- Try generator:
 - https://github.com/biplav-s/course-nl/blob/master/17-language/code/TryMarkovifyLangModel.ipynb

Large LMs (LLMs)

Large Language Models (LLMs) Basics

(C) BIPLAV SRIVASTAVA

ChatGPT: Large Language Models (LLMs) based Chatbot

(C) BIPLAV SRIVASTAVA

Another "Turning Point" Moment In Technology

Raised interest about Chatbots among public

text, image, video, audio,

- Excitement about new use-cases
- Concerns about social impact cheating, jobs, misinformation
- Renewed calls for regulations

Usage Phase

•••

(C) BIPLAV SRIVASTAVA

BERT - **B**idirectional **E**ncoder **R**epresentations from **T**ransformers

Learns with two tasks

- Predicting missing words in sentences
 - mask out 15% of the words in the input, predict the masked words.
- Given two sentences A and B, is B the actual next sentence that comes after A, or just a random sentence from the corpus?

(12-layer to 24-layer Transformer) on (Wikipedia + BookCorpus)

Input: the man went to the [MASK1] . he bought a [MASK2] of milk. Labels: [MASK1] = store; [MASK2] = gallon

Sentence A: the man went to the store . Sentence B: he bought a gallon of milk . Label: IsNextSentence

Sentence A: the man went to the store . Sentence B: penguins are flightless .

Label: NotNextSentence

Credit and details: https://github.com/google-research/bert

LLM (Fine-tuning) Training Procedure

AI4SOCIETY, IAN 2025

Inference Time with LLMs

LLM/ FM Tools

Using LLMs/FMs

- Choose a LLM/FM
 - Open-source: Llama, Mistral, DeepSeek, Bloom, ...
 - · Closed-source: GPT, Gemini, Claude, ...
- API interface
 - Huggingface
 - Ollama
- Use chat interface
 - POE
 - ChatGPT
 - DeepSeek
 - •

CSCE 581 - SPRING 2025

Class 16: Project Update #2

Extra Task for Update #2

- Give project input to a LLM
- Collect its result
- Discuss
 - Is the result a good baseline?
 - Is your solution beating the baseline?
 - Where do you go from here?

Project Discussion

Course Project

Framework

- 1. (Problem) Think of a problem whose solution may benefit people (e.g., health, water, air, traffic, safety)
- 2. (User) Consider how the primary user (e.g., patient, traveler) may be solving the problem today
- 3. (Al Method) Think of what the solution will do to help the primary user
 - 1. Solution => ML task (e.g. classification), recommendation, text summarization, ...
 - 2. Use a foundation model (e.g., LLM-based) solution as the baseline
- 4. (Data) Explore the data for a solution to work
- 5. (Reliability: Testing) Think of the evaluation metric we should employ to establish that the solution will works? (e.g., 20% reduction in patient deaths)
- 6. (Holding Human Values) Discuss if there are fairness/bias, privacy issues?
- 7. (Human-AI) Finally, elaborate how you will explain the primary user that your solution is trustable to be used by them

CSCE 590-1: TRUSTED AI 35

Project Discussion: What to Focus on?

- Problem: you should care about it
- Data: should be available
- Method: you need to be comfortable with it. Have at least two one serves as baseline
- Trust issue
 - Due to Users
 - Diverse demographics
 - Diverse abilities
 - Multiple human languages
 - Or other impacts
- What one does to mitigate trust issue

Rubric for Evaluation of Course Project

Project

- Project plan along framework introduced (7 points)
- Challenging nature of project
- Actual achievement
- Report
- Sharing of code

Presentation

- Motivation
- Coverage of related work
- Results and significance
- Handling of questions

Project Discussion

- Create a private Github repository called "CSCE581-Spring2025-<studentname>-Repo". Share with Instructor (biplav-s)
- Create a folder called "Project". Inside, create a text file called "ProjectPlan.md" (or "ProjectPlan.txt") and have details by the next class (Jan 30, 2025)

- 1. Title:
- 2. Key idea: (2-3 lines)
- 3. Who will care when done:
- 4. Data need:
- 5. Methods:
- 6. Evaluation:
- 7. Users:
- 8. Trust issue:

Concluding Section

Week 8 (L15 and 16): Concluding Comments

- We looked at
 - Revised explanation methods
 - Did an overview of LLM/ FM basics and tools
 - Reviewed projects, especially in the context of a LLM/FM

About Next Week – Lectures 17, 18

Lectures 17, 18:

- Invited talk
- Text processing

13	Feb 25 (Tu)	AI - Supervised ML: Explanation Tools
14	Feb 27 (Th)	AI Trust - Mitigation method
	100 27 (111)	(Trust rating) – Kausik Lakkaraju
	1 (T)	
15	Mar 4 (Tu)	Large Language Models (LLMs),
		Machine Learning – Trust Issues
		(Explainability)
16	Mar 6 (Th)	Student presentations - project
	Mar 11 (Tu)	
	Mar 12 (Th)	
17	Mar 18 (Tu)	Invited Guest – Kush
		Varshney
18	Mar 20 (Th)	AI - Unstructured (Text):
		Processing and Representation
19	Mar 25 (Tu)	AI - Unstructured (Text):
		Representation, Common NLP
		Tasks, Large Language Models
		(LLMs)
20	Mar 27 (Th)	Natural Languages/ Language
20	Widi 27 (111)	Models and their Impact on AI
21	4 1 (TE)	•
21	Apr 1 (Tu)	AI - Unstructured (Text): Analysis
		- Supervised ML - Trust Issues
22	Apr 3 (Th)	AI - Unstructured (Text): Analysis
		 Supervised ML – Mitigation
		Methods
23	Apr 8 (Tu)	AI - Unstructured (Text): Analysis
	1 /	_
		Rating and Debiasing Methods
		rating and Deblasing Methods