FGI-2 – Formale Grundlagen der Informatik II

Modellierung und Analyse von Informatiksystemen

Aufgabenblatt 9: P/T-Netze: Überdeckungsgraph, S-Invarianten, Fairness

Präsenzteil am 09./10.12. – Abgabe am 16./17.12.2013

Präsenzaufgabe 9.1: Konstruieren Sie für das folgende Netz $N_{9,1}$ den Überdeckungsgraphen nach Algorithmus 7.4. (Seite 131). Bestimmen Sie die Menge der unbeschränkten Plätze.

Präsenzaufgabe 9.2: Gegeben sei das folgende P/T Netz $N_{9.2}$:

1. Falls \mathbf{i} eine S-Invariante eines Netzes ist: Gilt dann für alle erreichbaren Markierungen \mathbf{m} die folgende, von \mathbf{i} abgeleitete Invariantengleichung? Gilt diese Gleichung für das Netz $N_{9.2}$?

$$\mathbf{i}(p_1) \cdot \mathbf{m}(p_1) + \mathbf{i}(p_2) \cdot \mathbf{m}(p_2) = const.$$

2. Aus der Anfangsmarkierung $\mathbf{m}_0 = (1,0)$ heraus gilt für alle erreichbaren Markierungen die folgende Invariantengleichung:

$$1 \cdot \mathbf{m}(p_1) + 1 \cdot \mathbf{m}(p_2) = 1 \cdot \mathbf{m}_0(p_1) + 1 \cdot \mathbf{m}_0(p_2) = 1$$

Da nur t_1 bzw. t_2 schalten können, wechselt die Marke immer zwischen p_1 und p_2 , es existiert also zu jedem Zeitpunkt genau eine Marke im System.

Zeigen Sie, dass der zur Gleichung zugehörige Vektor $\mathbf{i} = (1,1)^{tr}$ jedoch kein Invariantenvektor ist. Erläutern Sie die Ursachen!

- 3. Verhält sich $N_{9.2}$ unter der gegebenen Anfangsmarkierung fair?
- 4. Verhält sich $N_{9.2}$ mit der Anfangsmarkierung $\mathbf{m}_0' = (2,0)^{tr}$ fair?
- 5. Verhält sich $N_{9.2}$ mit der Anfangsmarkierung $\mathbf{m}_0'=(2,0)^{tr}$ fair unter der verschleppungsfreien Schaltregel?
- 6. Verhält sich $N_{9.2}$ mit der Anfangsmarkierung $\mathbf{m}'_0 = (2,0)^{tr}$ fair unter der fairen Schaltregel?

Übungsaufgabe 9.3: Folgende zwei Netze unterscheiden sich nur durch die Inhibitorkante zwischen Transition d und Platz p_2 :

von 4

 $N_{9.3a}$

 $N_{9.3b}$

- 1. Konstruieren Sie für die beiden Netze jeweils den Überdeckungsgraphen nach Algorithmus 7.4.
- 2. Bestimmen Sie jeweils die Menge der unbeschränkten Plätze, die sich nach den Überdeckungsgraphen ergeben.
- 3. Konstruieren Sie den Erreichbarkeitsgraphen zu $N_{9.3b}$.
- 4. Diskutieren Sie die Aussagekräftigkeit des Übderdeckungsgraphen für Inhibitornetze.

Übungsaufgabe 9.4: Eine große Firma möchte ihre Produktion und die Interaktion mit dem Verbraucher analysieren. Hierfür modelliert ein Informatiker für die Firma ein Petrinetz:

von 8

Netz $N_{9.4a}$:

Hierbei soll der linke Teil des Netzes einen Fertigungsprozess in einer Firma simulieren, der rechte Teil den Konsum des gefertigten Produktes und der Platz p_3 das Lager der Firma.

- 1. Geben Sie die Wirkungsmatrix $\Delta_{N_{9.4a}}$ an.
- 2. Bestimmen Sie die Menge aller S-Invariantenvektoren von $N_{9.4a}$.
- 3. Überprüfen Sie nach Theorem 7.35 (Seite 149), ob $N_{9.4a}$ strukturell beschränkt ist.
- 4. Während der Analyse beschließt der Informatiker einen neuen Platz p_6 einzufügen. Zusätzlich fügt er zwei neue Kanten (c, p_1) & (p_6, b) ein. Für das entstandene Netz $N_{9.4b}$
 - geben Sie die Wirkungsmatrix $\Delta_{N_{9,4b}}$ an,
 - bestimmen die Menge aller S-Invarianten

 $\bullet\,$ und überprüfen mit Theorem 7.35, ob $N_{9.4b}$ strukturell beschränkt ist.

Netz $N_{9.4a}$:

- 5. Was fällt beim Vergleich der beiden Netze auf. Diskutieren Sie, warum der Informatiker die Änderung am Ursprungsnetz $(N_{9.4a})$ vorgenommen hat. Beachten Sie, dass das Netz, welches der Informatiker entworfen hatte, reale Bedingungen einer Firma simulieren sollte.
- 6. Einer der Invariantenvektoren zu $N_{9.4b}$ lautet $\mathbf{i}_1=(2,2,5,1,1,5)^{tr}$. Geben Sie die zugehörige Invariantengleichung gemäß Satz von Lautenbach an. Die Anfangsmarkierung sei $\mathbf{m}_0=(1,1,0,3,0,1)^{tr}$

Bisher erreichbare Punktzahl: 103