Tutorial 2

Exercise 1:

Table 1:

X	2	2	3	3	4	4	5	5	6	6
Υ	0	4	1	5	2	6	3	7	4	8

Scatter plot:

Mean:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
 Thus

$$\bar{x} = \frac{2+2+3+3+4+4+5+5+6+6}{10} = 4$$

$$\bar{y} = \frac{0+4+1+5+2+6+3+7+4+8}{10} = 4$$

Variances:

$$var(x) = s_x^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

$$s_x^2 = \frac{4+4+1+1+1+1+4+4}{9} = \frac{20}{9} = 2.22$$

$$s_y^2 = \frac{16+9+1+4+4+1+9+16}{9} = \frac{60}{9} = 6.67$$

Standard deviations:

$$sd(x) = s_x = \sqrt{\operatorname{var}(x)}$$

$$s_x = \sqrt{2.22} = 1.49$$

$$s_y = \sqrt{6.67} = 2.58$$

Covariances:

$$cov(x,y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

$$cov(x,y) = \frac{8+3+-1+-1+3+8}{9} = \frac{20}{9} = 2.22$$

Correlations:

$$r_{xy} = \frac{\text{cov}(x, y)}{s_x s_y} = \frac{2.22}{1.49 * 2.58} = 0.577$$

Exercise 2a

Linear transformations

$$v_i = 2x_i + 3$$
$$w_i = y_i - 8$$

Linear combinations

$$z_i = v_i + w_i = 2x_i + y_i - 5$$

Means

$$\overline{v}_i = a\overline{x}_i + b = 2*4+3=11$$
 $\overline{w}_i = \overline{y}_i - b = 1*4-8=-4$
 $\overline{z}_i = 2\overline{x}_i + \overline{y} - 5 = 2*4+1*4-5=7$

Variances

Calculate using table:

Table var(v) = cov (v,v) $v = 2x_i + 3$

	$2x_i$
$2x_i$	(2)*(2)cov(x,x) = 4var(x) = 8.89

Table var(w) $w = y_i - 8$

	/
	$ 1y_i $
$1y_i$	$(1)*(1)\cos(y,y) = 1 \operatorname{var}(y) = 6.67$

Table var(z) $z = 2x_i + y_i - 5$

	$2x_i$	$1y_i$
$2x_i$	8.89	$2\operatorname{cov}(x,y) = 4.44$
$1y_i$	$2\operatorname{cov}(x,y) = 4.44$	6.67

$$var(z) = 8.89 + 4.44 + 4.44 + 6.67 = 24.44$$

Standard deviations

$$s_v = \sqrt{8.89} = 2.98$$

$$s_w = \sqrt{6.67} = 2.58$$

$$s_z = \sqrt{24.44} = 4.94$$

Exercise 2b

<u>Covariances</u>

COV(V,W)

 $v_i = ax_i + b$

and

 $w_i = cy_i + d$

cov(v, w) = ac cov(x, y) = (2)*(1)*(2.22) = 4.44

Calculate with help of tables.

Table cov(v,w)

	$1y_i$
$2x_i$	$2\operatorname{cov}(x,y) = 4.44$

Table cov(v,z)

	$2x_i$	$1y_i$
$2x_i$	$4 \cos(x, x) = 8.89$	$2\operatorname{cov}(x,y) = 4.44$

cov(v, z) = 8.89 + 4.44 = 13.33

Table cov(w,z)

	$2x_i$	$1y_i$
$1y_i$	$2\operatorname{cov}(x,y) = 4.44$	1cov(y, y) = 6.67

$$cov(w, z) = 4.44 + 6.67 = 11.11$$

Correlations

Correlation between v end w

If ac >0 , than
$$r_{vw} = r_{xy}$$

If ac<0 , than $r_{vw} = -r_{xy}$

With linear transformations correlation remains the same in absolute values.

$$r_{xy} = \frac{\text{cov}(x, y)}{s_x s_y}$$

$$r_{vw} = \frac{4.44}{2.98 \times 2.58} = 0.577$$

$$r_{vz} = \frac{13.33}{2.98*4.94} = 0.905$$

$$r_{wz} = \frac{11.11}{2.58 * 4.94} = 0.870$$

Total

	X	Υ	V	W	Z
Means	4	4	11	-4	7
Variances	2.22	6.67	8.89	6.67	24.44

Covariance matrix

Covariance	V	W	Z
V	8.89		
W	4.44	6.67	
Z	13.33	11.11	24.44

<u>Correlation</u> matrix

Correlation	V	W	Z
V	1		
W	0.577	1	
Z	0.905	0.870	1

Exercise 3a

$$z_i = \frac{(x_i - \bar{x})}{s_x}$$

Table 1:

X	2	2	3	3	4	4	5	5	6	6
Υ	0	4	1	5	2	6	3	7	4	8

$$x = 2 \Rightarrow z = \frac{(2-4)}{1.49} = -1.342$$

$$x = 3 \Rightarrow z = \frac{(3-4)}{1.49} = -0.671$$

$$x = 4 \Rightarrow z = \frac{(4-4)}{1.49} = 0$$

$$x = 5 \Rightarrow z = \frac{(5-4)}{1.49} = 0.671$$

$$x = 6 \Rightarrow z = \frac{(6-4)}{1.49} = 1.342$$

$$y = 0 \Rightarrow z = \frac{(0-4)}{2.58} = -1.550$$

$$y = 1 \Rightarrow z = \frac{(1-4)}{2.58} = -1.162$$

$$y = 2 \Rightarrow z = \frac{(2-4)}{2.58} = -0.775$$

$$y = 3 \Rightarrow z = \frac{(3-4)}{2.58} = -0.387$$

$$y = 4 \Rightarrow z = \frac{(4-4)}{2.58} = 0$$

$$y = 5 \Rightarrow z = \frac{(5-4)}{2.58} = 0.387$$

$$y = 6 \Rightarrow z = \frac{(6-4)}{2.58} = 0.775$$

$$y = 7 \Rightarrow z = \frac{(7 - 4)}{2.58} = 1.162$$

$$y = 8 \Rightarrow z = \frac{(8-4)}{2.58} = 1.550$$

Exercise 3b

$$r_{xy} = \frac{\text{cov}(x, y)}{s_x s_y}$$

For z-scores standard deviations are always equal to 1, thus for z-scores:

$$r_{z_x z_y} = \frac{\text{cov}(z_x, z_y)}{1*1}$$

$$cov(z_{x}, z_{y}) = \sum_{i=1}^{n} \frac{(z_{x_{i}} - z_{\bar{x}})(z_{y_{i}} - z_{\bar{y}})}{n - 1}$$

For z-scores means are always 0, thus for z-scores:

$$r_{z_{x}z_{y}} = \sum_{i=1}^{n} \frac{z_{x_{i}}z_{y_{i}}}{n-1}$$

Table 1:

	А	В	С	D	E	F	G	Н	I	J
X	2	2	3	3	4	4	5	5	6	6
Υ	0	4	1	5	2	6	3	7	4	8

Calculate with z-scores from 3a.

A:
$$-1.342 * -1.549 = 2.079$$

C:
$$-0.671 * -1.162 = 0.780$$

D:
$$-0.671 * 0.387 = -0.260$$

E:
$$0 = 0$$

F:
$$0 = 0$$

G:
$$0.671 * -0.387 = -0.260$$

H:
$$0.671 * 1.162 = 0.780$$

I:
$$0 = 0$$

J:
$$1.342 * 1.549 = 2.079$$

$$r_{z_x z_y} = \frac{5.198}{9} = 0.577 = r_{xy}!!$$

a)
$$U = ax + b$$
 (when a > 0)

b)
$$U = -ax + b$$
 (when $a > 0$)
c) $U = b$ (when $a = 0$)

c)
$$U = b$$
 (when $a = 0$)

d)
$$U = (x - 4)^2$$

Examples:

a)
$$U = 2x+1$$

X	2	2	3	3	4	4	5	5	6	6
U	5	5	7	7	9	9	11	11	13	13

b)
$$U = -2x+1$$

X	2	2	3	3	4	4	5	5	6	6
U	-3	-3	-5	-5	-7	-7	-9	-9	-11	-11

c)
$$U = 9 + E$$

X	2	2	3	3	4	4	5	5	6	6
U	8	10	8	10	10	8	10	8	8	10

d)
$$U = (x-4)^2$$

X	2	2	3	3	4	4	5	5	6	6
U	4	4	1	1	0	0	1	1	4	4

Null hypothesis: correlation between X and Y in population is equal to zero:

 $H_0: \rho_{xy} = 0$

 H_a : $ρ_{xy}≠ 0$

Test statistic:

$$t = r_{xy} \sqrt{\frac{n-2}{1-r_{xy}^2}} = 0.577 \sqrt{\frac{8}{1-0.577^2}} = 1.998$$

Two-tailed t-test:

$$t_{cv}(df = n-2) = t_{cv}(8)_{\alpha=0.05} = \pm 2.306$$

Conclusion: Ho not rejected.

Seee Hinkle, Wiersma and Jurs Chapter.10 pp. 235-238

Spss ouput

Correlations

		Χ	Υ
Х	Pearson Correlation	1,000	,577
	Sig. (2-tailed)	,	,081
	N	10	10
Υ	Pearson Correlation	,577	1,000
	Sig. (2-tailed)	,081	,
	N	10	10

Proportion of explained (predicted) variance = R^2xy

$$R^2xy = 0.577^2 = 0.33 = 33\%$$

Exercise 7

a)

	Α	В	С	D	Е	F	G	Н	I	J	K
X	2	2	3	3	4	4	5	5	6	6	10000
Υ	0	4	1	5	2	6	3	7	4	8	-10000

R is -1.00

b)

	А	В	С	D	E	F	G	Н		J	K
X	2	2	3	3	4	4	5	5	6	6	10000
Υ	0	4	1	5	2	6	3	7	4	8	10000

R is 1.00

Table 1 when x>3

X	4	4	5	5	6	6
Υ	2	6	3	7	4	8

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\bar{x} = 5$$

$$\bar{y} = 5$$

$$var(x) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n - 1}$$

$$var(x) = 0.8$$

$$var(y) = 5.6$$

Construction and Analysis of Questionnaires for Foreign Students - Tutorial 2

$$sd(x) = \sqrt{\operatorname{var}(x)}$$

$$sd(x) = 0.89$$

 $sd(y) = 2.37$

$$cov(x,y) = \sum_{i=1}^{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n - 1}$$

$$cov(x, y) = 0.8$$

$$r_{xy} = \frac{\text{cov}(x, y)}{s_x s_y}$$

$$r_{xy} = 0.378$$

Exercise 9a.

$$X2 = X+10$$

 $Y2 = Y-10$

Table:

X	2	2	3	3	4	4	5	5	6	6
Υ	0	4	1	5	2	6	3	7	4	8
X2	12	12	13	13	14	14	15	15	16	16
Y2	-10	-6	-9	-5	-8	-4	-7	-3	-6	-2

$$r_{x2y2} = r_{xy}$$

Correlations

		X2	Y2
X2	Pearson Correlation	1	,577
	Sig. (2-tailed)		,081
	N	10	10
Y2	Pearson Correlation	,577	1
	Sig. (2-tailed)	,081	
	N	10	10

r_{xy} in group I +II is negative

Correlations

		Χ	Υ
Х	Pearson Correlation	1	-,688**
	Sig. (2-tailed)		,001
	N	20	20
Υ	Pearson Correlation	-,688**	1
	Sig. (2-tailed)	,001	
	N	20	20

^{**.} Correlation is significant at the 0.01 level

Exercise 9b.

$$X2 = X$$

 $Y2 = -Y$

Table:

X	2	2	3	3	4	4	5	5	6	6
Υ	0	4	1	5	2	6	3	7	4	8
X2	2	2	3	3	4	4	5	5	6	6
Y2	-0	-4	-1	-5	-2	-6	-3	-7	-4	-8

$$r_{x2y2} = -r_{xy}$$

Correlations

		X3	Y3
X3	Pearson Correlation	1	-,577
	Sig. (2-tailed)		,081
	N	10	10
Y3	Pearson Correlation	-,577	1
	Sig. (2-tailed)	,081	
	N	10	10

 r_{xy} in group I +II is 0

Correla	ations
---------	--------

		Χ	Υ
Х	Pearson Correlation	1	,000
	Sig. (2-tailed)		1,000
	N	20	20
Υ	Pearson Correlation	,000	1
	Sig. (2-tailed)	1,000	
	N	20	20

X=0	X=1	Total
-----	-----	-------

Y=0	Α	В	12
Y=1	С	D	28
Total	36	4	40

Correlation r for 2 dichotomous variables is equal to Φ :

$$\phi = \frac{(ad - bc)}{\sqrt{(a+b)(c+d)(a+c)(b+d)}}$$

Note:

with minimum correlation, we mean:

lower limit (largest neg. value) lower limit as ad-bc takes maximal negative value.

and with maximum correlation:

higher limit (highest pos. value) higher limit as ad-bc takes maximum positive value

Lower limit:

	X=0	X=1	Total
Y=0	8 (a)	4 (b)	12
Y=1	28 (c)	0 (d)	28
Total	36	4	40

$$\phi = \frac{(ad - bc)}{\sqrt{(a+b)(c+d)(a+c)(b+d)}}$$

$$\phi = \frac{(0-112)}{\sqrt{(12)(28)(36)(4)}} = \frac{-112}{\sqrt{48384}} = -0.51$$

Higher limit:

	X=0	X=1	Total
Y=0	12 (a)	0 (b)	12
Y=1	24 (c)	4 (d)	28
Total	36	4	40

$$\phi = \frac{(ad - bc)}{\sqrt{(a+b)(c+d)(a+c)(b+d)}}$$

$$\phi = \frac{(48 - 0)}{\sqrt{(12)(28)(36)(4)}} = \frac{48}{\sqrt{48384}} = 0.21$$

In this way we can see that the correlation lays between: $-0.51 \le \Phi \le 0.21$