QCM N° 1: Test

Pour tous les QCM, il y a au moins une réponse juste

EXERCICE 1. Le QQ-plot suivant peut être le QQ-plot de :

- \square Deux échantillons suivant des lois $\mathcal{U}(0,1)$
- \square Un échantillon suivant une loi $\mathcal{U}(-4,4)$ et un échantillon suivant une loi $\mathcal{N}(20,4)$
- \square Un échantillon suivant une loi $\mathcal{N}(0,1)$ et un échantillon suivant une loi $\mathcal{N}(10,2)$
- \square Deux échantillons suivant des lois $\mathcal{N}(20,4)$

Correction:

- \square Deux échantillons suivant des lois $\mathcal{U}(0,1)$
- \square Un échantillon suivant une loi $\mathcal{U}(-4,4)$ et un échantillon suivant une loi $\mathcal{N}(10,2)$
- \boxtimes Un échantillon suivant une loi $\mathcal{N}(0,1)$ et un échantillon suivant une loi $\mathcal{N}(10,2)$
- \square Deux échantillons suivant des lois $\mathcal{N}(20,4)$

EXERCICE 2. Soit Z une variable distribuée suivant une loi normale centrée réduite, et Φ la fonction de répartition de la loi $\mathcal{N}(0,1)$.

$$\mathbb{P}(-0.155 < Z < 1.60) =$$

$$\Box \Phi(-0.155) - \Phi(1.6)$$

$$\Box -\Phi(-0.155) + \Phi(1.6)$$

$$\Box \Phi(1.6) - 1 - \Phi(0.155)$$

$$\Box \Phi(1.6) + \Phi(0.155) - 1$$

Correction:

$$\Box \Phi(-0.155) - \Phi(1.6)$$

$$\boxtimes -\Phi(-0.155) + \Phi(1.6)$$

$$\Box \Phi(1.6) - 1 - \Phi(0.155)$$

$$\bowtie \Phi(1.6) + \Phi(0.155) - 1$$

EXERCICE 3. Soit $X \sim \mathcal{N}(15, 3^2)$ et $\Phi_{\mu,\sigma}$ la fonction de répartition d'une loi $\mathcal{N}(\mu, \sigma^2)$

$$\mathbb{P}(|X| < 45) =$$

$$\square 2\Phi_{15,3^2}(45) - 1$$

$$\Box 2\Phi_{0,1}(2.8) - 1$$

$$\Box \Phi_{0,1}(10) - \Phi_{0,1}(-10)$$

$$\Box \Phi_{0,1}(10) - 1 - \Phi_{0,1}(20)$$

Correction:

$$\boxtimes 2\Phi_{15,3^2}(45) - 1$$

$$\Box 2\Phi_{0,1}(2.8) - 1$$

$$\Box \Phi_{0,1}(10) - \Phi_{0,1}(-10)$$

$$\Box \Phi_{0,1}(10) - 1 - \Phi_{0,1}(20)$$

EXERCICE 4. Soit Z une variable distribuée suivant une loi normale centrée réduite, et Φ la fonction de répartition de la loi $\mathcal{N}(0,1)$.

$$\mathbb{P}(Z > -1 \text{ et } Z < 2) =$$

$$\square$$
 0

$$\Box \Phi(2) + \Phi(1) - 1$$

$$\Box$$
 1

$$\Box (1 - \Phi(-1)) + \Phi(2)$$

Correction:

$$\Box$$
 0

$$\boxtimes \Phi(2) + \Phi(1) - 1$$

 \Box 1

$$\Box (1 - \Phi(-1)) + \Phi(2)$$

EXERCICE 5. Soit $X \sim \mathcal{N}(0,1)$, Φ sa fonction de répartition, $q \in \mathbb{R}$ et $p \in [0;1]$.

Quelle(s) affirmation(s) est(sont) impossibles:

$$\Box \Phi(q) \simeq -1.96$$

$$\Box \Phi(0.19) \simeq 0.385$$

$$\Box \Phi^{-1}(p) \simeq -0.25$$

$$\Box \Phi(q) \simeq 2.27$$

Correction:

$$\boxtimes \Phi(q) \simeq -1.96$$

$$\bowtie \Phi(0.19) \simeq 0.385$$

$$\Box \Phi^{-1}(p) \simeq -0.25$$

$$\boxtimes \Phi(q) \simeq 2.27$$

EXERCICE 6. Soit Z une variable distribuée suivant une loi normale centrée réduite, et b solution de l'équation $\mathbb{P}(Z < b) = 0.75$. Alors b est aussi solution de l'équation :

$$\square \ \mathbb{P}(Z > b) = 0.75$$

$$\square \mathbb{P}(Z > b) = -0.75$$

$$\square \ \mathbb{P}(Z < b) = 0.25$$

$$\square \ \mathbb{P}(Z > b) = 0.25$$

Correction:

$$\square \mathbb{P}(Z > b) = 0.75$$

$$\square \mathbb{P}(Z > b) = -0.75$$

$$\square \ \mathbb{P}(Z < b) = 0.25$$

$$\bowtie \mathbb{P}(Z > b) = 0.25$$

EXERCICE 7. Soient x_1, \ldots, x_n quelques observations. Pour des raisons de commodités, on a changé les unités menant à de nouvelles observations

$$y_i = ax_i + b, \qquad i = 1, \dots, n.$$

Quelle(s) réponse(s) est(sont) exacte(s)?

- $\Box \bar{y}_n = |a|\bar{x}_n$
- $\Box \ \bar{y}_n = a^2 \bar{x}_n + b$
- $\square \ \sigma_y^2 = |a|\sigma_x^2$
- $\square \ \sigma_x = \frac{1}{|a|} \sigma_y$

Correction:

$$\Box \bar{y}_n = |a|\bar{x}_n$$

- $\Box \ \bar{y}_n = a^2 \bar{x}_n + b$
- $\square \ \sigma_y^2 = |a|\sigma_x^2$
- $\boxtimes \sigma_x = \frac{1}{|a|}\sigma_y$

EXERCICE 8. En reprenant les notations du cours, quelle(s) réponse(s) est(sont) exacte(s)?

- $\Box \bar{x}_n$ est aléatoire
- $\square x_{i_1}$ est aléatoire
- \square n est aléatoire
- $\square x_1$ est aléatoire

Correction:

- $\boxtimes \bar{x}_n$ est aléatoire
- $\boxtimes x_{i_1}$ est aléatoire
- \square n est aléatoire

 \square x_1 est aléatoire

EXERCICE 9.

TABLE 1 – Distribution du nombre d'heures passées devant un écran par semaine.

Nb d'heures.	Nb. de personnes (%)
0-5	8
5-10	26
10 - 25	40
25 - 30	22
30-60	4
Total	100

Que peut-on dire des quantiles approchés?

- $\square Q1 \in [5; 10]$
- $\square \ Q3 = 24.3$
- \square Med = 16
- ☐ Aucune réponse n'est exacte

Correction:

- $\boxtimes Q1 \in [5;10]$
- $\square Q3 = 24.3$
- $\bowtie Med = 16$
- ☐ Aucune réponse n'est exacte

EXERCICE 10. Concernant l'image ci-dessous :

Si l'on considère que l'estimateur représenté par les points noirs est à faible biais et à variance faible sur la cible 1 que peut-on dire sur les autres cibles?

- ☐ L'estimateur de la cible 2 est à fort biais et à forte variance
- ☐ L'estimateur de la cible 3 est à faible biais et à forte variance

\square L'estimateur de la cible 4 est à faible biais et à forte variance	EXERCICE 13. Considérons l'intervalle de confiance suivant de la moyenne empirique \bar{x}_n :
\square L'estimateur de la cible 2 est à faible biais et à forte variance	$\left[\bar{x}_n - \frac{\sigma}{\sqrt{n}}, \bar{x}_n + \frac{\sigma}{\sqrt{n}}\right]$
Correction:	L v v J
☐ L'estimateur de la cible 2 est à fort biais et à forte variance	Sachant que $\Phi(1) \simeq 0.84$, cela nous donne un intervalle de confiance de \bar{x}_n au niveau : $\square 84\%$
☐ L'estimateur de la cible 3 est à faible biais et à forte variance	□ 32% □ 68%
☐ L'estimateur de la cible 4 est à faible biais et à forte variance	□ 95%
∠ L'estimateur de la cible 2 est à faible biais et à forte variance	Correction:
EXERCICE 11. On considère une population de 7 individus. On s'intéresse à un tirage aléatoire simple de 4 individus. Le nombre d'échantillons possible est égal à :	$ \begin{array}{c} $
$ \begin{array}{c} $	EXERCICE 14. A propos de la variance de la moyenne empirique, en supposant que les x_{i_k} sont indépendants, $\mathbb{V}\mathrm{ar}(\bar{x}_n) =$
$\square \ inom{7}{4} \ rac{\mathbf{Correction}}{4}$:	
\boxtimes $\binom{7}{3}$ \Box 70 \Box 7!	$\square \ \forall \operatorname{ar}(x_{i_1})/n^2$ $\square \ \operatorname{Aucune\ r\'eponse\ n'est\ exacte}$ Correction:
$ \Box \frac{7!}{3!} \\ \boxtimes \binom{7}{4} $	$\square \operatorname{Var}(x_{i_1})$
EXERCICE 12. Soient x_1, \ldots, x_n des variables	$\boxtimes \operatorname{Var}(x_{i_1})/n$
aléatoires indépendantes, distribuées suivant la	$\square \operatorname{Var}(x_{i_1})/n^2$
même loi, d'espérance μ et de variance σ^2 ; Alors, si n est grand $(n \ge 30)$, la variable	☐ Aucune réponse n'est exacte
$Z=rac{ar{x}_n-\mu}{\sigma/\sqrt{n}}$	EXERCICE 15. L'écart quadratique moyen d'un estimateur \hat{x}_n d'un paramètre μ est donné par
suit approximativement une loi:	$\mathbb{E}(\hat{x}_n - \mu)^2 =$
\square $\mathcal{N}(\mu,\sigma^2)$	$\square \operatorname{Var}(\hat{x}_n) + \mathbb{B}(\hat{x}_n)^2$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\square \operatorname{\mathbb{V}ar}(\hat{x}_n) - \mathbb{B}(\hat{x}_n)^2$
$\square \ \mathcal{U}(0,1)$	$\square \operatorname{Var}(\hat{x}_n)^2 - \mathbb{B}(\hat{x}_n)$
$\ \ \square \ {\cal U}(\mu,\sigma^2)$	$\square \operatorname{Var}(\hat{x}_n)^2 + \mathbb{B}(\hat{x}_n)$
Correction:	Correction:
$\square \ \mathcal{N}(\mu, \sigma^2)$ $\boxtimes \ \mathcal{N}(0, 1)$	$\boxtimes \operatorname{\mathbb{V}ar}(\hat{x}_n) + \mathbb{B}(\hat{x}_n)^2$ $\square \operatorname{\mathbb{V}ar}(\hat{x}_n) - \mathbb{B}(\hat{x}_n)^2$
$\square \ \mathcal{U}(0,1)$	$\square \operatorname{Var}(\hat{x}_n)^2 - \mathbb{B}(\hat{x}_n)$
$\square \ \mathcal{U}(\mu, \sigma^2)$	$\square \operatorname{Var}(\hat{x}_n)^2 + \mathbb{B}(\hat{x}_n)$