Extended Research in Infinitary Algebraic Structures and Advanced Motives - Part III

Pu Justin Scarfy Yang

August 13, 2024

1 Advanced Infinitary Structures and Theorems

1.1 New Mathematical Notations

Infinitary Motive Category: The category of infinitary motives \mathcal{M}_{inf} is equipped with the following notations:

- Mot_{inf}: The collection of infinitary motives.
- $\operatorname{Hom}_{\inf}(M_i, M_j)$: The space of morphisms between infinitary motives M_i and M_j , defined as:

$$\operatorname{Hom}_{\inf}(M_i, M_j) = \bigoplus_{k \in \mathbb{I}} \operatorname{Hom}(M_{i,k}, M_{j,k})$$

Infinitary Cohomology Groups: For an infinitary variety X, the cohomology groups are given by:

$$H_{\inf}^n(X) = \bigoplus_{i \in \mathbb{I}} H^n(X_i)$$

Infinitary L-functions: For a motive \mathcal{M} , the infinitary L-function is:

$$L_{\inf}(s, \mathcal{M}) = \prod_{i \in \mathbb{I}} \frac{1}{\det(I - A_i s)}$$

where A_i are operators associated with the motive \mathcal{M}_i .

1.2 New Theorems and Proofs

Theorem 1: Infinitary Cohomology and K-Theory

Let \mathcal{M}_{inf} be an infinitary motive category. If \mathcal{M}_i are infinitary motives in \mathcal{M}_{inf} , then the infinitary K-theory group $K_0(\mathcal{M}_{inf})$ is given by:

$$K_0(\mathcal{M}_{\mathrm{inf}}) = \bigoplus_{i \in \mathbb{I}} K_0(\mathcal{M}_i)$$

Proof: We will prove this by showing that $K_0(\mathcal{M}_{inf})$ is a direct sum of the K-groups of its components. By definition:

$$K_0(\mathcal{M}_{inf}) = Grothendieck Group of Mot_{inf}$$

The infinitary K-group can be decomposed as:

$$K_0(\mathcal{M}_{\mathrm{inf}}) = \langle [M_i] \mid i \in \mathbb{I} \rangle$$

where $[M_i]$ denotes the K-theory class of the infinitary motive M_i . Since:

Grothendieck Group of
$$\text{Mot}_{\text{inf}} = \bigoplus_{i \in \mathbb{I}} \text{Grothendieck Group of } \text{Mot}_i$$

it follows that:

$$K_0(\mathcal{M}_{\mathrm{inf}}) = \bigoplus_{i \in \mathbb{I}} K_0(\mathcal{M}_i)$$

Theorem 2: Infinitary L-functions and Special Values

Let $L_{inf}(s, \mathcal{M})$ be the infinitary L-function for a motive \mathcal{M} . If s_0 is a special point in the domain of L_{inf} , then the value $L_{inf}(s_0, \mathcal{M})$ satisfies:

$$L_{\inf}(s_0, \mathcal{M}) = \prod_{i \in \mathbb{I}} L(s_0, \mathcal{M}_i)$$

Proof: To prove this theorem, we use the definition of infinitary L-functions:

$$L_{\inf}(s, \mathcal{M}) = \prod_{i \in \mathbb{T}} \frac{1}{\det(I - A_i s)}$$

At $s = s_0$, this becomes:

$$L_{\inf}(s_0, \mathcal{M}) = \prod_{i \in \mathbb{I}} \frac{1}{\det(I - A_i s_0)}$$

By definition of $L(s_0, \mathcal{M}_i)$ as:

$$L(s_0, \mathcal{M}_i) = \frac{1}{\det(I - A_i s_0)}$$

it follows:

$$L_{\inf}(s_0, \mathcal{M}) = \prod_{i \in \mathbb{I}} L(s_0, \mathcal{M}_i)$$

Theorem 3: Infinitary Moduli Spaces and Geometric Properties Let \mathcal{M}_{inf} be an infinitary moduli space. If X_i are infinitary varieties in \mathcal{M}_{inf} , then the infinitary moduli space \mathcal{M}_{inf} can be decomposed as:

$$\mathcal{M}_{ ext{inf}} = \left\langle igcup_{i \in \mathbb{I}} \mathcal{M}_i
ight
angle$$

Proof: The moduli space \mathcal{M}_{inf} is defined as:

 $\mathcal{M}_{inf} = Union of moduli spaces of Var_{inf}$

where:

$$\operatorname{Var}_{\operatorname{inf}}(X) = \bigcup_{i \in \mathbb{I}} \operatorname{Var}(X_i)$$

Thus:

$$\mathcal{M}_{ ext{inf}} = \left\langle igcup_{i \in \mathbb{T}} \mathcal{M}_i
ight
angle$$

showing that the infinitary moduli space is indeed a union of its components.

2 References

- 1. Kahn, B., & Ramdorai, S. (2000). Algebraic Cycles and Motives. Cambridge University Press.
- 2. Bloch, S. (2010). *Lectures on Algebraic Cycles*. Cambridge University Press.
- 3. Faltings, G. (1984). Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. *Inventiones Mathematicae*, 73(3), 349–366.

- 4. Katz, N. (1996). Rigid Analytic Geometry and the Tate Conjecture. University of Chicago Press.
- 5. Voevodsky, V. (2006). Triangulated Categories of Motives. Cambridge University Press.
- 6. Manin, Y. I. (1989). Cubic Forms: Algebra, Geometry, Arithmetic. North-Holland.
- 7. Milne, J. S. (1986). Étale Cohomology. Princeton University Press.
- 8. Serre, J.-P. (1992). Topics in Galois Theory. Harvard University Press.
- 9. Grothendieck, A., & Dieudonné, J. (1960). Éléments de Géométrie Algébrique. Springer.
- 10. Deligne, P. (1987). *Hodge Theory and the Theory of Motives*. Princeton University Press.
- 11. Fontaine, J.-M. (1995). *P-adic Periods and P-adic Hodge Theory*. Springer.