Announcements for Wednesday, 23OCT2024

- Exam 2 Conflict Exam Requests due by Friday, 25OCT2024, 11:59 PM (EDT)
 - for students having Rutgers sanctioned classes and activities during the Exam 2 period (Wednesday, 30OCT2024, 7:45 PM – 9:05 PM)

ANY GENERAL QUESTIONS? Feel free to see me after class!

Some Limitations of Valence Bond Theory – O_2 and O_3

although relatively successful, the properties of some systems still cannot be adequately accounted for by VB theory

- liquified oxygen $(O_2(\ell))$ responds to an external magnetic field
 - indicates paramagnetism and the presence of one or more unpaired e⁻s
 - according to VB theory, O₂
 should not have unpaired e⁻s

the O/O bonds in ozone (O₃) are identical and some electrons are delocalized

Molecular Orbital (MO) Theory

- unlike in VB theory, the overlapping of atomic orbitals leads to the formation of orbitals that extend over the entire molecule, not localized between two atoms
 - electrons belong to the entire molecule (i.e., delocalized) rather than to individual atoms
- The Schrödinger wave equation is applied to the molecule to calculate a set of molecular orbitals
 - atomic orbitals are combined to create an initial set of molecular orbitals
 - the MOs are adjusted until their energies are minimized

© 2018 Pearson Education, Inc.

Linear Combination of Atomic Orbitals (LCAO)

a method used to create an initial set of molecular orbitals

consider the overlap of 1s orbitals in H₂

the atomic orbitals combine:

- constructively to form a bonding molecular orbital (σ or π)
 - the energy of the MO is lower than the individual AOs
 - most electron density between nuclei
- **destructively** to form an **antibonding** molecular orbital (σ^* or π^*)
 - the energy of the MO is higher than the individual AOs
 - a node between nuclei and electron density outside inter-nuclei region

© 2018 Pearson Education, Inc.

MO Theory (continued)

- the number of atomic orbitals combined equals the number of molecular orbitals formed
- electrons within bonding MOs lower the energy of the system and stabilize it
- electrons within antibonding MOs destabilize the system and cancel the stabilizing effect of electrons in bonding MO

Bond Order = one-half of the difference between number of electrons in bonding and antibonding orbitals

Bond Order = ½ (# Bonding Electrons – # Antibonding Electrons)

- only need to consider valence electrons
- may be fractional or negative
- higher bond order = stronger and shorter bonds
- if bond order ≤ 0, then the bond is unstable compared to the individual atoms and will not form
- unpaired electrons lead to paramagnetism

MO Diagrams for *Homonuclear* Diatomic Molecules – **Period 1**

- an energy diagram showing the AOs of the atoms composing a molecule, the MOs of the molecule, their relative energies, and the placement of valence e⁻s
- electrons are assigned to molecular orbitals following the same rules from Ch 3
 - Aufbau principle, Hund's rule, Pauli Exclusion principle

MO Diagrams for Homonuclear Diatomic Molecules – Period 1

- an energy diagram showing the AOs of the atoms composing a molecule, the MOs of the molecule, their relative energies, and the placement of valence e⁻s
- electrons are assigned to molecular orbitals following the same rules from Ch 3
 - Aufbau principle, Hund's rule, Pauli Exclusion principle

Try This On Your Own

• Draw a molecular orbital diagram for He₂⁺ and determine whether the molecule exists.

MO Diagrams for *Homonuclear* Diatomic Molecules – **Period 2**

- In addition to s-orbitals, Period 2 atoms have *p-orbitals* in their valence shells
- p-orbitals on separate atoms can overlap in two different ways

• formation of σ_{2p} and σ_{2p}^* MOs

side-to-side (π) overlap

• formation of π_{2p} and π_{2p}^* MOs (2 sets)

MO Diagrams for *Homonuclear* Diatomic Molecules – **Period 2 Does the B₂ molecule exist?**

B: [He] 2s² 2p¹

Bond Order = $\frac{1}{2}(4-2) = 1$ B₂ exists

Molecular Orbital Energy Ordering – Period 2

- the relative energy orderings are usually determined computationally
- Don't Memorize: energy orderings can be found on the Formula Sheet