Matrix and Linear Transformation

February 24, 2017

1 Matrix Multiplication

Proposition Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. Then there is a **unique** $m \times p$ matrix C such that $C\underline{v} = A(B\underline{v})$ for every $p \times 1$ vector v. Furthermore,

$$C = \left[\begin{array}{ccc} A\underline{b_1} & \cdots & A\underline{b_n} \end{array} \right]$$

Definition Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. We define a (matrix) **product** AB to be the $m \times p$ matrix whose jth column is Ab_j . That is

$$AB = \left[\begin{array}{ccc} A\underline{b_1} & \cdots & A\underline{b_n} \end{array} \right]$$

1.1 Theorem

Let A and B be $k \times m$ matrices, C be an $m \times n$ matrix, and P and Q be $n \times p$ matrices. Then the following statements are true:

•
$$s(AC) = sAC = A(sC), \forall s \in R$$
.

Associative ACP = A(CP)

Not Commutative $AC \neq CA$

Right Distributive (A+B)C = AC + BC

Left Distributive C(P+Q) = CP + CQ

- $I_k A = A = A I_m$, I_k and I_m are indentity matrices.
- A0 = 0A = 0
- $\bullet \ (AC)^T = C^T A^T.$
- Let k = m, then $A^0 = I_m$ and $A^1 = A$

1.2 Augmented Matrix

If A and B are matrices with the same number of rows, then the augmented matrix [A B] is the matrix whose columns are the columns of A followed by the columns of B.

Properties For any $P \in \mathbb{R}^{m \times n}$ and matrices A and B with n rows

$$P[A \ B] = [PA \ PB]$$

1.3 Diagonal Matrix

 $A = [a_{ij}] \in M_{n \times n}$ and $a_{ij} = 0$ for $i \neq j$, denoted by $A = diag[a_{11} \cdots a_{nn}]$ Sample:

$$\begin{bmatrix}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 10
\end{bmatrix}$$
(1)

Properties

$$A = diag[a_{11} \cdots a_{nn}], B = diag[b_{11} \cdots b_{nn}] \Leftrightarrow AB = diag[a_{11}b_{11} \cdots a_{nn}b_{nn}]$$

1.4 Symmetric Matrix

 $A = [a_{ij}] \in M_{n \times n}$ and $a_{ij} = a_{ji}$ or $A = A^T$. Sample:

$$\begin{bmatrix}
2 & 1 & 3 \\
1 & 1 & 0 \\
3 & 0 & 10
\end{bmatrix}$$
(2)

Properties For any $A \in M_{n \times n}$, AA^T and A^TA are square and symmetric:

$$(AA^T)^T = A^{TT}A^T = AA^T$$
 and $(A^TA)^T = A^TA^{TT} = A^TA$