0.1 Introduce Substitutions

0.1.1 Substitutions as SNOC lists

Definition of σ

0.1.2 Trivial Properties of substitutions

 $\operatorname{fv}(\sigma)$

 $dom(\sigma)$

 $x\#\sigma$

0.1.3 Effect of substitutions

]

0.1.4 Well Formedness

0.1.5 Simple Properties Of Substitution

If $\Gamma' \vdash \sigma$: Γ then: **TODO: Number these**

- Γ Ok and Γ' Ok
- $\omega : \Gamma'' \triangleright \Gamma'$ implies $\Gamma'' \vdash \sigma : \Gamma$
- $\bullet \ \times \not \in (\mathtt{dom}(\Gamma)\mathtt{dom}(\Gamma'')) \ \mathrm{implies} \ (\Gamma',x:A) \vdash (\sigma,x:=x) \colon (\Gamma,x:A)$

0.2 Substitution Preserves Typing

TODO: State property TODO: Proof by induction overtype relation

0.3 Semantics of Substitution

0.3.1 Denotation of Substitutions

TODO: Fill in from p98

0.3.2 Lemma

TODO: Fill in from p98

0.3.3 Substitution Theorem

$$\Gamma' \overset{ \left[\Gamma' \vdash \sigma : \Gamma\right]_{M}}{ \nearrow} \Gamma$$
If $\Gamma \vdash t : \tau$ and $\Gamma' \vdash \sigma : \Gamma$ then
$$\sigma : \tau \underset{\left[T\right]_{M}}{ \nearrow} pgfextrapgf@stop$$

$$\left[T\right]_{M}^{ \square} pgfextrapgf = \tau$$

0.4 Single Substitution