Penalizations L^1 and L^2

1 Warm-up

Consider a model given by

$$Y = X\theta_* + \varepsilon$$
,

where $X \in \mathbb{R}^{n \times d}$ and $\varepsilon \sim \mathcal{N}(0, \sigma_*^2 I_n)$. The Ridge estimator is defined for all $\lambda > 0$ by:

$$\widehat{\theta}_{\lambda} \in \operatorname{Argmin}_{\theta \in \mathbb{R}^d} \mathcal{L}(\theta) \quad \text{with} \quad \mathcal{L}(\theta) = \|Y - X\theta\|_2^2 + \lambda \|\theta\|_2^2.$$

For all $\lambda > 0$, the excess risk is given by

$$\begin{split} \mathbb{E}\left[\mathsf{R}(\widehat{\theta}_{n,\lambda}^{\mathrm{ridge}}) - \mathsf{R}(\theta_{\star})\right] &= \lambda^2 \theta_{\star}^{\top} \left(\frac{1}{n} X^{\top} X + \lambda I_d\right)^{-2} \frac{1}{n} X^{\top} X \theta_{\star} \\ &\quad + \frac{\sigma_{\star}^2}{n} \mathrm{Trace}\left((n^{-1} X^{\top} X)^2 (n^{-1} X^{\top} X + \lambda I_d)^{-2}\right) \,. \end{split}$$

1. Prove that

$$\mathbb{E}\left[\mathsf{R}(\widehat{\theta}_n^{\mathrm{ridge}}) - \mathsf{R}(\theta_\star)\right] \leqslant \frac{\lambda}{2} \|\theta_\star\|_2^2 + \frac{\sigma_\star^2}{2n\lambda} \mathrm{Trace}\left(n^{-1}X^\top X\right) \,.$$

Proof in lecture notes.

2. Propose an "optimal" value for λ and compute the associated excess risk. Proof in lecture notes.

2 Elastic-Net

Consider a model given by

$$Y = X\theta_* + \varepsilon$$
,

where $X \in \mathbb{R}^{n \times d}$ and $\varepsilon \sim \mathcal{N}(0, \sigma_*^2 I_n)$. The Elastic-Net estimator involves both L¹ and L² penalties. It is defined for all $\lambda, \mu > 0$ by:

$$\widehat{\theta}_{\lambda,\mu} \in \operatorname{Argmin}_{\theta \in \mathbb{R}^d} \mathcal{L}(\theta) \quad \text{with} \quad \mathcal{L}(\theta) = \|Y - X\theta\|_2^2 + \lambda \|\theta\|_2^2 + \mu \|\theta\|_1.$$

In the following, we assume that for all $1 \le j \le d$, the j-th column of X satisfies $\|\mathbf{X}_j\|_2 = 1$.

1. For all $1 \leq j \leq d$ provide the partial derivative of \mathcal{L} with respect to θ_j for $\theta_j \neq 0$.

Note that for all $\theta \in \mathbb{R}^d$,

$$\nabla_{\theta}(\|Y - X\theta\|_{2}^{2} + \lambda \|\theta\|_{2}^{2}) = 2X^{\top}X\theta - 2X^{\top}Y + 2\lambda\theta = 2X^{\top}\left(\sum_{k=1}^{d} \theta_{k}\mathbf{X}_{k} - Y\right) + 2\lambda\theta.$$

Therefore, for $1 \leq j \leq d$ such that $\theta_j \neq 0$,

$$\partial_j \mathcal{L}(\theta) = 2\mathbf{X}_j^{\top} \left(\sum_{k=1}^d \theta_k \mathbf{X}_k - Y \right) + 2\lambda \theta_j + \mu \text{sign}(\theta_j).$$

2. Provide an expression of the answer of the first question with $R_j(\theta) = \mathbf{X}_j^{\top} (Y - \sum_{k \neq j} \theta_k \mathbf{X}_k)$.

Since $\|\mathbf{X}_j\|_2 = 1$, for $1 \le j \le d$ such that $\theta_j \ne 0$,

$$\partial_{j}\mathcal{L}(\theta) = 2\theta_{j} - 2R_{j}(\theta) + 2\lambda\theta_{j} + \mu \text{sign}(\theta_{j})$$
$$= 2\left((1+\lambda)\theta_{j} - R_{j}(\theta) + \frac{\mu}{2}\text{sign}(\theta_{j})\right).$$

3. Assume that θ_k , $1 \leq k \neq j \leq d$ are fixed and assume that the minimum of $\theta_j \mapsto \mathcal{L}(\theta)$ is reached at a $\theta_j \neq 0$. Prove that the sign of θ_j is the same as the signe of R_j and conclude.

If the minimum of $\theta_j \mapsto \mathcal{L}(\theta)$ is reached at some $\theta_j^* \neq 0$ it means that $\partial_j \mathcal{L}((\theta_1, \dots, \theta_{j-1}, \theta_j^*, \theta_{j+1}, \dots, \theta_d)) = 0$. Since

$$\partial_j \mathcal{L}((\theta_1, \dots, \theta_{j-1}, \theta_j^*, \theta_{j+1}, \dots, \theta_d)) = 2\left((1+\lambda)\theta_j^* - R_j(\theta) + \frac{\mu}{2}\mathrm{sign}(\theta_j^*)\right),\,$$

 $\begin{array}{l} \theta_j^* \ \text{and} \ R_j(\theta) \ \text{have the same sign. Indeed, if} \ \theta_j^* \geq 0 \ \text{and} \ R_j(\theta) < 0 \ \text{then} \ \partial_j \mathcal{L}((\theta_1, \dots, \theta_{j-1}, \theta_j^*, \theta_{j+1}, \dots, \theta_d)) > 0 \ \text{and} \ \theta_j^* < 0 \ \text{and} \ R_j(\theta) \geq 0 \ \text{then} \ \partial_j \mathcal{L}((\theta_1, \dots, \theta_{j-1}, \theta_j^*, \theta_{j+1}, \dots, \theta_d)) < 0. \end{array}$

$$\begin{aligned} \theta_j^* &= \frac{R_j(\theta)}{1+\lambda} \left(1 - \frac{\mu \text{sign}(\theta_j^*)}{2R_j(\theta)} \right) \,, \\ &= \frac{R_j(\theta)}{1+\lambda} \left(1 - \frac{\mu}{2|R_j(\theta)|} \right) \,. \end{aligned}$$

4. Provide an algorithm to obtain an approximation of $\widehat{\theta}_{\lambda,\mu}$.

The estimator $\widehat{\theta}_{\lambda,\mu}$ can be approximated recursively coordinate by coordinate. Starting from a random vector, at each iteration, a coordinate $1 \leq j \leq d$ is chosen at random and we update θ_j , keeping all other coordinates fixed.

- Compute $R_j(\theta)$.
- If $1 \mu/(2|R_j(\theta)|) > 0$ set $\theta_j = \frac{R_j(\theta)}{1+\lambda} \left(1 \frac{\mu}{2|R_j(\theta)|}\right)$.
- If $1 \mu/(2|R_i(\theta)|) \ge 0$ set $\theta_i = 0$.