# Exercícios Propostos<sup>1</sup>

### Produto escalar e norma

1. Seja  $E=(\vec{i},\vec{j},\vec{k})$ uma base ortonormal. Calcule  $||\vec{u}||$ nos casos:

(a)  $\vec{u} = (1, 1, 1)_E$  (b)  $\vec{u} = 3\vec{i} + 4\vec{k}$  (c)  $\vec{u} = -\vec{i} + \vec{j}$  (d)  $\vec{u} = 4\vec{i} + 3\vec{j} - \vec{k}$ 

2. Dados os pontos  $A=(3,4,3),\,B=(-3,1,4)$  e C=(2,-3,0), desenhe o triângulo ABCno plano cartesiano e encontre:

(a) Os vetores  $\overrightarrow{AB}$ ,  $\overrightarrow{BC}$  e  $\overrightarrow{CA}$ .

(b) O comprimento dos três lados do triângulo, dados por  $||\overrightarrow{AB}||$ ,  $||\overrightarrow{BC}||$  e  $||\overrightarrow{CA}||$ .

(c) Os pontos médios dos três lados do triângulo.

(d) A soma  $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$ . Por que essa soma deve ser zero?

3. Demonstre as expressões abaixo.

(a) Prove que  $|\vec{u} \cdot \vec{v}| \leq ||\vec{u}|| ||\vec{v}||$  (Designaldade de Schwarz) e que  $|\vec{u} \cdot \vec{v}| = ||\vec{u}|| ||\vec{v}||$  se, e somente se,  $\vec{u}$  é paralelo a  $\vec{v}$ .

(b) Use o item (a) para provar que  $||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||$  (Desigualdade triangular).

(c) Prove que  $4\vec{u} \cdot \vec{v} = ||\vec{u} + \vec{v}||^2 - ||\vec{u} - \vec{v}||^2$ .

## Ângulo entre vetores

4. São dadas as coordenadas de  $\vec{u}$  e  $\vec{v}$  em relação a uma base ortonormal fixada. Calcule, em radianos, o ângulo entre  $\vec{u}$  e  $\vec{v}$ .

(a)  $\vec{u} = (1, 0, 1), \ \vec{v} = (-2, 10, 2)$ (b)  $\vec{u} = (-1, 1, 1), \ \vec{v} = (1, 1, 1)$ (a)  $\vec{u} = (1, 0, 1), \vec{v} = (-2, 10, 2)$ 

(c)  $\vec{u} = (3, 3, 0), \vec{v} = (2, 1, -2)$ 

(d)  $\vec{u} = (\sqrt{3}, 1, 0), \vec{v} = (\sqrt{3}, 1, 2\sqrt{3})$ 

5. Considerando uma base ortonormal fixada, determine x de modo que  $\vec{u}$  e  $\vec{v}$  sejam ortogonais, isto é,  $\vec{u} \cdot \vec{v} = 0$ .

(a)  $\vec{u}=(x,0,3), \ \vec{v}=(1,x,3)$  (c)  $\vec{u}=(x,x,4), \ \vec{v}=(4,x,1)$  (b)  $\vec{u}=(x+1,1,2), \ \vec{v}=(x-1,-1,-2)$  (d)  $\vec{u}=(x,-1,4), \ \vec{v}=(x,-3,1).$ 

6. Obtenha um vetor  $\vec{u}$  ortogonal a  $\vec{v} = (4, -1, 5)$  e  $\vec{w} = (1, -2, 3)$  tal que  $\vec{u} \cdot (1, 1, 1) = -1$ .

#### Projeção ortogonal

7. Dada a base ortonormal  $B = (\vec{i}, \vec{j}, \vec{k})$ , sejam  $\vec{u} = 2\vec{i} - 2\vec{j} + \vec{k}$  e  $\vec{v} = 3\vec{i} - 6\vec{j}$ .

(a) Obtenha a projeção ortogonal de  $\vec{v}$  sobre  $\vec{u}$ .

(b) Determine  $\vec{p}$  e  $\vec{q}$  tais que  $\vec{v} = \vec{p} + \vec{p}$ , sendo  $\vec{p}$  paralelo e  $\vec{q}$  ortogonal a  $\vec{u}$ . (Dica:  $\vec{p}$  é o resultado do item a e  $\vec{q} = \vec{v} - \vec{p}$ .)

8. Calcule a projeção ortogonal de  $\vec{v}$  sobre  $\vec{u}$  em cada caso, onde se considerou uma base ortonormal fixada.

<sup>&</sup>lt;sup>1</sup>Resolva os exercícios sem omitir nenhuma passagem em seus cálculos. Respostas sem resolução e/ou justificativa não serão consideradas. Data máxima de entrega: 14/06/2023 até 14:00 horas

(a) 
$$\vec{v} = (1, -1, 2), \vec{u} = (3, -1, 1)$$

(c) 
$$\vec{v} = (-1, 1, 1), \vec{u} = (-2, 1, 2)$$

(b) 
$$\vec{v} = (1, 3, 5), \vec{u} = (-3, 1, 0)$$

(d) 
$$\vec{v} = (1, 2, 4), \vec{u} = (-2, -4, -8)$$

#### Produto vetorial

9. Seja  $E=(\vec{i},\vec{j},\vec{k})$  uma base ortonormal positiva ou cíclica, isto é,  $\vec{i}\times\vec{j}=\vec{k},$   $\vec{j}\times\vec{k}=\vec{i},$   $\vec{k}\times\vec{i}=\vec{j},$  ou seja,  $\vec{j}\times\vec{i}=-\vec{k},$   $\vec{k}\times\vec{j}=-\vec{i},$   $\vec{i}\times\vec{k}=-\vec{j},$  com  $\vec{i}\times\vec{i}=\vec{j}\times\vec{j}=\vec{k}\times\vec{k}=\vec{0}.$  Calcule o produto vetorial entre  $\vec{u}$  e  $\vec{v}$  usando as propriedades da base cíclica nos seguintes casos:

(a) 
$$\vec{u} = \vec{i} - 3\vec{j} \ e \ \vec{v} = 5\vec{i} - 15\vec{j} - 3\vec{k}$$

(c) 
$$\vec{u} = 3\vec{i} + 3\vec{j} \text{ e } \vec{v} = 5\vec{i} + 4\vec{j}$$

(a) 
$$\vec{u} = \vec{i} - 3\vec{j}$$
 e  $\vec{v} = 5\vec{i} - 15\vec{j} - 3\vec{k}$  (c)  $\vec{u} = 3\vec{i} + 3\vec{j}$  e  $\vec{v} = 5\vec{i} + 4\vec{j}$  (b)  $\vec{u} = 2\vec{i} - 16\vec{j} - 15\vec{k}$  e  $\vec{v} = 3\vec{i} + 3\vec{j} - 2\vec{k}$  (d)  $\vec{u} = 5\vec{k}$  e  $\vec{v} = 2\vec{i} + \vec{j} - 3\vec{k}$ 

(d) 
$$\vec{u} = 5\vec{k} \ e \ \vec{v} = 2\vec{i} + \vec{j} - 3\vec{k}$$

10. Fixada uma base ortonormal positiva, calcule  $\vec{u} \times \vec{v}$  usando o método do determinante e determine  $||\vec{u} \times \vec{v}||$ .

(a) 
$$\vec{u} = (6, -2, -4), \vec{v} = (-1, -2, 1)$$

(c) 
$$\vec{u} = (1, -3, 1), \vec{v} = (1, 1, 4)$$

(b) 
$$\vec{u} = (7, 0, -5), \vec{v} = (1, 2, -1)$$
 (d)  $\vec{u} = (2, 1, 2), \vec{v} = (4, 2, 4)$ 

(d) 
$$\vec{u} = (2, 1, 2), \vec{v} = (4, 2, 4)$$

11. Resolva os sistemas para encontrar o vetor  $\vec{x} = a\vec{i} + b\vec{j} + c\vec{k}$ .

(a) 
$$\begin{cases} \vec{x} \cdot (2\vec{i} + 3\vec{j} + 4\vec{k}) = 9 \\ \vec{x} \times (-\vec{i} + \vec{j} - \vec{k}) = -2\vec{i} + 2\vec{k} \end{cases}$$
 (b) 
$$\begin{cases} \vec{x} \times (1, 0, 1) = 2(1, 1, -1) \\ ||\vec{x}|| = \sqrt{6} \end{cases}$$

(b) 
$$\begin{cases} \vec{x} \times (1,0,1) = 2(1,1,-1) \\ ||\vec{x}|| = \sqrt{6} \end{cases}$$

#### Cálculo de áreas e volumes

12. Calcule as seguintes áreas:

- (a) Área do paralelogramo  $\overrightarrow{ABCD}$ , sendo  $\overrightarrow{AB} = (1, 1, -1)$  e  $\overrightarrow{AD} = (2, 1, 4)$ .
- (b) Área do triângulo  $\overrightarrow{ABC}$ , sendo  $\overrightarrow{AB} = (-1, 1, 0)$  e  $\overrightarrow{AC} = (0, 1, 3)$ .

13. Considere o paralelepípedo ABCDEFGH da figura abaixo. Em relação a uma base ortonormal positiva,  $\overrightarrow{AB} = (1,0,1), \overrightarrow{BE} = (1,1,1)$  e  $\overrightarrow{AD} = (0,3,3)$ . Calcule:



- (a) A área do paralelogramo ABCD.
- (c) O volume do tetraedro EABD.
- volume paralelepípedo ABCDEFGH.
- (d) A altura do tetraedro EABD em relação à face DEB.