PREN 1, TEAM 32

Yves Studer
Thomas Wiss
Livio Kunz
Nikolaus Manser
MatteoTrachsel
Güdel Manuel
Pascal Roth

Morphologischer Kasten

Hochschule Luzern - Technik & Architektur PREN 1

Horw, Hochschule Luzern - T&A, 30. Oktober 2014

PREN 1, TEAM 32

Yves Studer Dorfstrasse 28 6264 Pfaffnau +41 79 705 48 88 yves.studer@stud.hslu.ch

Livio Kunz Hubelmatt 7 6206 Neuenkirch +41 79 811 53 03 livio.kunz@stud.hslu.ch

Matteo Trachsel Ogimatte 7 3713 Reichenbach +41 79 511 57 88 matteo.trachsel@stud.hslu.ch

Pascal Roth Dorfstrasse 18 6275 Ballwil +41 79 717 68 94 pascal.roth@stud.hslu.ch Thomas Wiss Bachhüsliweg 4a 6042 Dietwil +41 79 604 93 61 thomas.wiss@stud.hslu.ch

Niklaus Manser Brunnmattstrasse 11 6010 Kriens +41 77 405 58 56 niklaus.manser@stud.hslu.ch

Manuel Güdel Riedtalstrasse 4 4800 Zofingen +41 79 774 41 40 manuel.guedel@stud.hslu.ch

Morphologischer Kasten

Dozent: Markus Thalmann

Hochschule Luzern - Technik & Architektur Interdisziplinäre Projektarbeit 2014

Horw, Hochschule Luzern - T&A, 30. Oktober 2014

Version	Datum	Änderung	Verantwortlicher
v1.0	25.9.14	Dokument erstellt	Yves Studer

Inhalt

1	Analyse 1.1 Teilprobleme Beurteilen	2
2	2 Grobkonzept	
	Anhang A.1 Beurteilung	

1 Analyse

Als Gesamtübersicht und als Eruierungshilfe der einzelnen Teilprobleme haben wir zu Beginn der Lösungsfindung eine Skizze entworfen. Diese beinhaltet alle nötigen Elemente des Produkts und stellt diese in Relation zueinander dar.

Abb. 1: Grafische Darstellung der Aufgabenstellung

Aus der Abbildung 1 ergeben sich folgende Teilprobleme:

- Startgerät / Endgerät
- Startbefehlsübermittlung (drahtlos)
- Rechenkapazität (immer inklusive Verteileinheit)
- Versorgung der Steuerung / Sensoren
- Sensorik (Korberkennung)
- Ausgangslage der Bälle
- Weg des Balles (zum Korb)

Zu jedem Teilproblem wurden nun auf Grundlage der Technologierecherche konkrete Lösungen aufgelistet.

1.1 Teilprobleme Beurteilen

Um die Lösungsvorschläge der Teilprobleme untereinander vergleichen zu können, wurden zu jedem Teilproblem Bewertungskriterien definiert. Um die jeweiligen Kriterien bestmöglich und vollständig zu bewerten, legten wir die Werte im Plenum unter Einbezug aller Teammitglieder fest. Die Faktoren zur Multiplikation der Bewertungspunkte wurden nach der Zielsetzung des Teams festgelegt:

- 1. Treffgenauigkeit
- 2. Geschwindigkeit
- 3. Gewicht

Der Faktor Zuverlässigkeit erhält in jedem Teilproblem eine hohe Wert, dies aufgrund der Zielsetzung die eine hohen Zuverlässigkeit aller beteiligten Elemente nach sich zieht. Der Aufwand belegt in der Regel einen kleinen Faktor, da er in einem Schulprojekt einen sekundären Stellenwert hat. Der Faktor der Kosten wurde bewusst im Mittelfeld angesiedelt, um den Fokus auf die Zielsetzung zu legen, aber trotzdem teuren Produkten ein Nachteil einzuhandeln. In der Regel ist die Verteilung der Punkte pro Kriterium so geregelt, dass die schlechteste Lösung 1 Punkt erhält, die beste Lösung 5 Punkte, der Rest einen Wert dazwischen.

Um die nachfolgenden Beschreibung zu den Kriterien richtig zu interpretieren, ist die Beurteilung in Anhang A.1 zusätzlich zum jeweiligen beschreibenden Text hinzuzuziehen.

- Ausgangslage der Bälle (Annahme: Kugel (gefüllt mit Bällen) muss geometrisch sein)
 - Geschwindigkeit

Alle Bälle in einer grossen Kugel braucht wenig Zeit, ist daher die beste Lösung. Der Drehkranz ist schwerfällig und langsam.

- Gewicht
 - Der Trichter ist eine einfache, minimalistische Konstruktion, die wenig Gewicht aufweist. Der Drehkranz ist eine grosse, schwere Konstruktion mit mehreren Aktoren.
- Zuverlässigkeit
 - Die Bälle in einem Trichter können schnell verstopfen. Ein sauber konstruiertes und aufgebautes Magazin ist sehr zuverlässig.
- Kosten
 - Der Trichter hat eine einfache, minimalistische Konstruktion, benötigt daher wenig Material. Der Drehkranz hat viele Aktoren und ein aufwändiges Design.
- Aufwand
 Die Umsetzung eines Trichters ist einfach und schnell erledigt. Der Drehkranz ist aufwändig.
- Rechenkapazität (Annahme: Embedded Prozessor günstiger Bauart)
 - Zuverlässigkeit
 Smartphone und Embedded Prozessoren sind sehr zuverlässig, da sie on-board sind. Ein Notebook als Recheneinheit ist aufgrund der vielen Datenübermittlung fehleranfällig.

PREN Team 32 HS - 2014 3

- Geschwindigkeit

Embedded Prozessoren sind für genau eine spezifische Aufgabe ausgelegt und dimensioniert. Ein Notebook als Recheneinheit ist aufgrund der vielen Datenübermittlung fehleranfällig und langsam.

- Gewicht

Embedded Prozessoren sind für genau eine spezifische Aufgabe ausgelegt und dimensioniert, beinhalten nur das absolut Nötigste. Das Smartphone wird als Teil des Produktegewichts gerechnet.

- Kosten

Das Smartphone/Notebook wird von einem Teammitglied zur Verfügung gestellt. Ein eingebetteter Prozessor müsste zugekauft werden.

- Aufwand

Für einen Embedded Prozessor müsste eine eigene Stromversorgung, drahtlos-Kommunikations-Modul, etc. gebaut werden. Ein Notebook beruht auf wohlbekannten, gut dokumentierten Technologien.

Sensorik

- Geschwindigkeit

Eine Foto mit einer Smartphone Kamera ist schnell geschossen und kann direkt im Smartphone bearbeitet werden. Ein Laser muss viele Punkte abscannen und dabei mechanisch geschwenkt werden.

Genauigkeit

Ein Laser misst viele Punkte, kann daher ein sehr detailliertes Abbild schaffen. Ultraschallmessungen sind laut Recherchen nicht sehr präzise.

Zuverlässigkeit

Laservermessungen sind dank des detaillierten Abbilds sehr zuverlässig in der Korberkennung. Infrarot ist aufgrund des vielen Fremdeinflusses (bsp. Lichtstrahler an Spielfeldrand) sehr unzuverlässig.

- Kosten

Das Smartphone mit integrierter Kamera wird von einem Teammitglied zur Verfügung gestellt. Für einen Laser muss aufgrund der mechanischen Justierung zusätzliche Bauteile eingekauft werden.

Aufwand

Ein Smartphone mit integrierter Kamera beruht auf wohlbekannten, gut dokumentierten Technologien. Für einen Laser muss aufgrund der mechanischen Justierung zusätzlichen Aufwand betrieben werden

• Startbefehlsübermittlung

- Zuverlässigkeit

Bluetooth (und WLAN) basieren auf wohlbekannten, gut dokumentierten, standardisierten Technologien. Akustische Signale können einfach generiert und damit den Prozess erheblich stören.

- Kosten

Bluetooth (und WLAN) sind Teil der eingebauten Technologie in einem modernen Smartphone / Notebook. Bei Infrarot und Akustischen Signalen kostet der Empfänger.

- Aufwand

Bluetooth (und WLAN) sind Teil der eingebauten Technologie in einem modernen Smartphone / Notebook und beruhen auf wohlbekannten, gut dokumentierten, standardisierten Technologien. Das Auswerten eines Akustischen Signals ist aufwändig, fehleranfällig und benötigt zusätzliche Elektronik.

Startgerät – Endgerät

Zuverlässigkeit

Ein Notebook beruht auf wohlbekannten, gut dokumentierten, erprobten Technologien (drahtlos Kommunikation, sowie dazugehöriger Software). Taster muss neu gebaut werden, kann daher fehleranfällig sein.

- Kosten

Das Smartphone/Notebook wird von einem Teammitglied zur Verfügung gestellt. Ein Taster müsste neu gebaut respektive eingekauft werden.

Kompatibilität

Ein Smartphone besitzt nur ein Betriebssystem mit beschränkten Funktionen. Mit einem Notebook kann man viele verschiedene Software-Lösungen erstellen.

Aufwand

Das Smartphone/Notebook wird von einem Teammitglied zur Verfügung gestellt, es entsteht vor allem softwaretechnischer Aufwand. Für einen Taster müsste ein eigenes kleines System entwickelt werden.

• Versorgung Steuerung / Sensorik

- Zuverlässigkeit

Ein Akku hat im Vergleich zu einem Netzteil höhere Spannungsschwankungen.

- Gewicht

(hier als Vorteil, da als Ballast anrechenbar) Akku kann zur Gewichtsbestimmung entfernt werden.

- Kosten

Netzteile sind günstig und alte Netzteile können für diese Aufgabe recycelt werden. Akkus müssten neu gekauft werden.

Aufwand

Netzteile können in kompletter Form gekauft werden. Akku's müssen mit Elektronik stabilisiert und geregelt werden.

• Weg des Balles (Nachfolgende Bezeichnungen (..) beziehen sich auf die Nummerierung im Anhang A.1)

Geschwindigkeit

Je weniger Achsen bewegt werden müssen, desto schneller ist die jeweilige Lösung. (2) muss nur eine Drehbewegung ausführen. (5) muss drei Bewegungen ausführen.

- Zuverlässigkeit

Je weniger Achsen bewegt werden müssen, desto zuverlässiger ist die Lösung. (2) muss nur eine Drehbewegung ausführen. (1) muss fliegen und zusätzlich noch ständig nachkorrigieren, äussre Störeinflüsse schwer vorauszusagen.

- Genauigkeit

Je mehr Achsen bewegt werden müssen, je mehr Toleranzen, Fehler und Justierungen treten ein. (2) hat nur eine bewegliche Achse. (1) und (5) haben viele bewegliche Achsen und viele unbekannte Störeinflüsse.

- Gewicht

Je mehr Achsen bewegt werden müssen, je mehr Antriebe, Materialien und Elektronik wird benötigt. (2) ist stationär. (4) und (5) haben viele bewegliche Achsen.

- Kosten

Je mehr Achsen bewegt werden müssen, je teurerer werden die jeweiligen Ausführungen. (2) ist stationär. (4) und (5) haben viele bewegliche Achsen. (1) kann zudem im Testfall abstürzen und so teure Teile zerstören.

- Aufwand

(1) softwaretechnischer Aufwand ist immens. (2) stationäre Lösung im Vergleich eher einfach zu realisieren. (4) und (5) haben viele bewegliche Achsen, jede zusätzliche Achse erfordert weiteren Aufwand.

Es wurden vier Varianten (orange, grün, rot, blau) gewählt.

• Blaue Variante

Es wurden schlicht in jedem Teilproblem diejenige Lösung ausgewählt, welche die höchste Punktezahl in den Bewertungskriterien erreichte.

Rote Variante

Ausgangspunkt in dieser Variante ist die Auswahl, die Bälle in eine Kugel einzuschliessen. Da ein Smartphone mit integrierte Kamera verwendet wird, kann man zwei Teilprobleme mit einem Gerät lösen. Den Weg des Balles via seitliche Verschiebung wurde aufgrund der Unhandlichkeit der grossen Kugel gewählt, um den Weg kurz und einfach zu halten. Der Akku dient in dieser Variante neben der Energieversorgung auch als Ballast, um dem grossen Gewicht der Kugel entgegenzuwirken. Die Ausgabe des Startsignals mit einem Notebook und die Übertragung mit WLAN sind einfach auszuführen, beruhen auf wohlbekannten, gut dokumentierten Technologien.

• Grüne Variante

Die grüne Variante wurde um die Ausgangslage der Bälle in einem Drehkranz gewählt. Den Weg des Balles via seitliche Verschiebung wurde aufgrund der Unhandlichkeit des Drehkranzes als Favorit erkoren, um den Weg kurz und einfach zu halten. Da ein Smartphone mit integrierte Kamera verwendet wird, kann man zwei Teilprobleme mit einem Gerät lösen. Der Akku dient in dieser Variante neben der Energieversorgung auch als Ballast, um dem grossen Gewicht des Drehkranzes entgegenzuwirken. Die Ausgabe des Startsignals mit einem Smartphone und die Übertragung mit WLAN sind einfach auszuführen, beruhen auf wohlbekannten, gut dokumentierten Technologien.

• Orange Variante

Aus der Startposition gewinkelt werfen, ist der Ursprung der orangen Variante. Eine geführte Ausgabe aus einem Magazin hat den Vorteil, dass es mit leichten Materialen gebaut werden kann, verschiedene Formen, Winkel und Ausgabegeschwindigkeiten zur Verfügung stehen. Da ein Smartphone mit integrierte Kamera verwendet wird, kann man zwei Teilprobleme mit einem Gerät lösen. Der Akku dient in dieser Variante neben der Energieversorgung auch als Ballast und hat den schönen Nebeneffekt, dass das System Energieautark ist. Die Ausgabe des Startsignals mit einem Notebook und die Übertragung mit WLAN sind einfach auszuführen, beruhen auf wohlbekannten, gut dokumentierten Technologien

A Anhang

A.1 Beurteilung