Haitham Abdel Razaq Moh'd Almatani 407920 Themistoklis Dimaridis 355835 Kirill Beskorovainyi 451420

Aufgabe 1:

a) i)

$$z^3 = -8i$$

Wir bringen erstmal die Zahl-8i=0+-8i in Eulerdarstellung, der Form

•
$$r = \sqrt{x^2 + y^2} = \sqrt{0^2 + (-8)^2} = \sqrt{8^2} = 8$$

•
$$\phi = arg(z) = arctan\left(\frac{Im(z)}{Re(z)}\right)$$

• $\phi = arg(z) = arctan\left(\frac{Im(z)}{Re(z)}\right)$ In unserem Fall der Winkel $\phi = -\frac{\pi}{2}$, da x = 0 und y < 0.

Also gilt:

$$-8i = re^{i\phi}$$
$$-8i = 8e^{-\frac{\pi}{2}i}$$

Das heißt also:

$$z^{3} = -8i$$

$$<=> z^{3} = 8e^{-\frac{\pi}{2}i}$$

$$=> r^{3} = 8$$

$$3\phi = -\frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z}$$

$$r = \sqrt[3]{8} = 2$$

$$\phi = -\frac{\pi}{6} + \frac{2k\pi}{3}, \ k \in \mathbb{Z}$$

Für k = 0, 1, 2 bekommen wir unsere 3 verschiedenen Lösungen wie folgendes:

 $\begin{array}{lll} k=0 & : & y_0=-\frac{\pi}{6} \text{ und somit } z_0=2e^{-\frac{\pi}{6}i} \\ k=1 & : & y_1=-\frac{\pi}{6}+\frac{2\pi}{3}=\frac{3\pi}{6}=\frac{\pi}{2} \text{ und somit } z_1=2e^{\frac{\pi}{2}i} \\ k=2 & : & y_2=-\frac{\pi}{6}+\frac{2\times 2\pi}{3}=-\frac{\pi}{6}+\frac{4\pi}{3}=\frac{7\pi}{6} \text{ und somit } z_2=2e^{\frac{7\pi}{6}i} \end{array}$

Allgemeine Polardarstellung:

$$z = r(\cos(\phi) + i\sin(\phi))$$

Somit sehen unsere Lösungen wie folgt aus:

$$z_0 = 2(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right))$$

$$z_1 = 2(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right))$$

$$z_0 = 2(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right))$$

$$z_1 = 2(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right))$$

$$z_2 = 2(\cos\left(\frac{7\pi}{6}\right) + i\sin\left(\frac{7\pi}{6}\right))$$