# Wavelength Detection through Michelson Interferometry

Henry Shackleton

March 16, 2017

1 / 15

#### Outline

- Introduction and Theory
- 2 Experimental Setup
- Oata Analysis
- 4 Conclusion

## What is Michelson Interferometry?



2 / 15

## What is Michelson Interferometry?



Use detector measurements to determine wavelength of light source.

#### Light travels as waves



## Superposition of waves work as addition

$$E_T(t) = E_1 e^{i(\phi_1 - \omega t)} + E_2 e^{i(\phi_2 - \omega t)}$$



Henry Shackleton Michelson Interferometry March 16, 2017 4 / 15

#### From complex waves to observables

- What photodetectors observe is the *intensity* of a wave.
- $I \propto \langle E_T^* E_T \rangle = E_1^2 + E_2^2 + 2E_1E_2\cos(\phi_1 \phi_2)$
- Relative phase difference affects intensity measured.

#### From complex waves to observables

- What photodetectors observe is the *intensity* of a wave.
- $I \propto \langle E_T^* E_T \rangle = E_1^2 + E_2^2 + 2E_1E_2\cos(\phi_1 \phi_2)$
- Relative phase difference affects intensity measured.
  - $\phi_1 \phi_2 = 2\pi n$ , n = 1, 2, ... constructive interference

#### From complex waves to observables

- What photodetectors observe is the *intensity* of a wave.
- $I \propto \langle E_T^* E_T \rangle = E_1^2 + E_2^2 + 2E_1E_2\cos(\phi_1 \phi_2)$
- Relative phase difference affects intensity measured.
  - $\phi_1 \phi_2 = 2\pi n$ ,  $n = 1, 2, \ldots$  constructive interference
  - $\phi_1 \phi_2 = (2n+1)\pi$  destructive interference

#### Relative length traveled to relative phase

• One wave travels a length  $2l_1$ , and one wave travels a length  $2l_2$ . What is the relative phase offset of the two?

$$\phi_1 - \phi_2 = \frac{4\pi}{\lambda} \left( I_2 - I_1 \right)$$

#### Relative length traveled to relative phase

• One wave travels a length  $2l_1$ , and one wave travels a length  $2l_2$ . What is the relative phase offset of the two?

$$\phi_1 - \phi_2 = \frac{4\pi}{\lambda} \left( I_2 - I_1 \right)$$

$$I \propto E^2 + E^2 \cos \left( \frac{4\pi}{\lambda} (l_2 - l_1) \right)$$

#### Overview of experimental setup



## PZT converts voltage to displacement

- PZT changes relative length difference from  $2(l_2 l_1)$  to  $2(l_2 l_1 \Delta V)$ .
- Linear relative length difference causes a linear phase difference proportional to the wavelength.
- Linear phase difference causes periodic intensity differences.
- Measure voltage differences corresponding to a full period in intensity.

## Oscilliscope display of interference patterns





• Individual measured voltage differences give error of  $\pm 0.14~\text{V}$  from measurement



- Individual measured voltage differences give error of  $\pm 0.14~\text{V}$  from measurement
- Averaging voltage differences gives  $6.96 \pm .02 \text{ V}$



- Individual measured voltage differences give error of  $\pm 0.14~\text{V}$  from measurement
- Averaging voltage differences gives  $6.96 \pm .02 \text{ V}$
- Total uncertainty in voltage  $6.96 \pm .14 \text{ V}$



- Individual measured voltage differences give error of  $\pm 0.14~\text{V}$  from measurement
- Averaging voltage differences gives  $6.96 \pm .02 \text{ V}$
- Total uncertainty in voltage  $6.96 \pm .14 \text{ V}$
- $\bullet$  PZT voltage to length conversion 44.6  $\pm$  2.6 nm/V



- Individual measured voltage differences give error of  $\pm 0.14~\text{V}$  from measurement
- Averaging voltage differences gives  $6.96 \pm .02 \text{ V}$
- Total uncertainty in voltage  $6.96 \pm .14 \text{ V}$
- $\bullet$  PZT voltage to length conversion 44.6  $\pm$  2.6 nm/V
- $\bullet$   $\lambda = 620 \pm 38$  nm

#### Predicted wavelength agrees with independent calculations

- Wavelength reported on laser is 594.6 nm.
- ullet Predicted wavelength of 620  $\pm$  38 nm mostly falls within this range.
- Michelson interferometry can be used to accurately calculate wavelengths.

 Michelson interferometers produce interference patterns dependent on the light wavelength and the relative length difference between the two arms.

12 / 15

- Michelson interferometers produce interference patterns dependent on the light wavelength and the relative length difference between the two arms.
- By controlling this length with a PZT, we can accurately determine the wavelength of the light source.

12 / 15

- Michelson interferometers produce interference patterns dependent on the light wavelength and the relative length difference between the two arms.
- By controlling this length with a PZT, we can accurately determine the wavelength of the light source.
- Error propegation is largely controlled by the PZT.

- Michelson interferometers produce interference patterns dependent on the light wavelength and the relative length difference between the two arms.
- By controlling this length with a PZT, we can accurately determine the wavelength of the light source.
- Error propegation is largely controlled by the PZT.
- The aether probably doesn't exist.

### Derivation of wavelength/voltage correpondance

$$I \propto E^2 \left( 1 + cos \left( rac{4\pi}{\lambda} (\emph{I}_2 - \emph{I}_1 - \Delta \emph{V}) 
ight) 
ight)$$

One period with respect to V given by

$$2\pi V = \frac{4\pi\Delta}{\lambda}$$

### Constructive interference in light waves



### Constructive interference in light waves

