Rook of Abstract Algobra 1/2

BOOK Of Abstract Algebra (2nd Edition)		
Chapter 28, Problem 2EF	Bookmark	Show all steps: ON
Problem		
Let U and V be vector spaces over the field F , whomomorphism.	with dim $U = n$ and dim	$V = m$. Let $h: U \rightarrow V$ be a
Prove the following:		
h is injective iff dim $U = \dim h(U)$.		
Step-by-s	tep solution	
Step	1 of 3	
It is already known that U and V are vector spa space. It is known that basis of U contains n elements	-	
Comment		
Step	2 of 3	
Linear transformation h is said to be injective if,		
$h(\mathbf{a}) = h(\mathbf{b}) \Longrightarrow \mathbf{a} = \mathbf{b}$		
Comment		
Step	3 of 3	

From question 7 of section E,

 $\dim(\operatorname{domain} \operatorname{of} h) = n = r + n - r = \dim(\operatorname{nullspace} \operatorname{of} h) + \dim(\operatorname{range} \operatorname{space} \operatorname{of} h)$

If $\dim U = \dim h(U)$ or, dimension of domain of h is equal to dimension of range of h, substitute result in above mentioned result,

$$\dim U = n = \dim h(U) + \dim(\text{nullspace space of } h)$$

$$\Rightarrow$$
 dim(nullspace space of h) = 0

Thus *h* is injective as proved in question 3 of section E

Now if h is injective or $\dim(\text{nullspace space of } h) = 0$,

It can be seen from same formula used above that,

$$\dim U = \dim h(U)$$

Hence it can be said that h is injective iff $\dim U = \dim h(U)$

Comment