Отчёт по лабораторной работе №4

дисциплина: Архитектура вычислительных систем

Мосолов Александр Денисович

Содержание

1	Цел	ь работы	5
2	Вып	олнение лабораторной работы	6
	2.1	Программа Hello world!	6
	2.2	Транслятор NASM	7
	2.3	Расширенный синтаксис командной строки NASM	7
	2.4	Компоновщик LD	8
	2.5	Запуск исполняемого файла	8
	2.6	Задание для самостоятельной работы	8
3	Выв	ОДЫ	11

Список иллюстраций

2.1	Создаем каталог для работы	ć
2.2	Аsm-файл	ó
2.3	Открываем файл	ó
2.4	Вводим текст	7
2.5	Компилируем текст	7
2.6	Присваиваем имя скомпилированному файлу и создаем файл ли-	
	стинга	7
2.7	Передаем файл hello.o на обработку	3
2.8	Передаем файл obj.o на обработку	3
2.9	Запускаем исполняемый файл 8	3
2.10	Копируем файл hello.asm	3
	Вносим изменения в текст программы)
2.12	Транслируем текст)
	Переносим файлы)
	Загрузка файлов на Github)

Список таблиц

1 Цель работы

Освоение процедуры компиляции и сборки программ, написанных на ассемблере NASM.

2 Выполнение лабораторной работы

2.1 Программа Hello world!

Рассмотрим пример простой программы на языке ассемблера NASM. Традиционно первая программа выводит приветственное сообщение *Hello world!* на экран.

Создаем каталог для работы с программами на языке ассемблера *NASM* (рис. [2.1]):

```
admosolov@admosolov-VirtualBox:~$ mkdir -p ~/work/arch-pc/lab04
```

Рис. 2.1: Создаем каталог для работы

Переходим в каталог *lab4* и создаем в нем файл с именем *hello.asm*.

```
admosolov@admosolov-VirtualBox:~$ cd ~/work/arch-pc/lab04
admosolov@admosolov-VirtualBox:~/work/arch-pc/lab04$ touch hello.asm
```

Рис. 2.2: Asm-файл

Открываем этот файл с помощью текстового редактора *gedit*.

Рис. 2.3: Открываем файл

Вводим в него текст для последующей компиляции.

Рис. 2.4: Вводим текст

2.2 Транслятор NASM

NASM превращает текст программы в объектный код. Компилируем приведённый выше текст программы, проверяем наличие нового файла *hello.o*.

```
admosolov@admosolov-VirtualBox:-/work/arch-pc/lab04$ masm -f elf hello.asm
admosolov@admosolov-VirtualBox:-/work/arch-pc/lab04$ ls
hello.asm hello.o
admosolov@admosolov-VirtualBox:-/work/arch-pc/lab04$
```

Рис. 2.5: Компилируем текст

2.3 Расширенный синтаксис командной строки NASM

Данная команда скомпилирует исходный файл hello.asm в obj.o (опция -o позволяет задать имя объектного файла, в данном случае obj.o), при этом формат выходного файла будет elf, и в него будут включены символы для отладки (опция -g), кроме того, будет создан файл листинга list.lst (опция -l).

Проверяем существование созданных файлов с помощью команды ls.

```
admosolov@admosolov-VtrtualBox:-/work/arch-pc/lab04$ nasm -o obj.o -f elf -g -l list.lst hello.asm admosolov@admosolov-VtrtualBox:-/work/arch-pc/lab04$ cd admosolov@admosolov-VtrtualBox:-5 cd work/arch-pc/lab04 admosolov@admosolov-VtrtualBox:-/work/arch-pc/lab04$ ls hello.asm hello.o list.lst obj.o admosolov@admosolov-VtrtualBox:-/work/arch-pc/lab04$ ls hello.asm hello.o list.lst obj.o admosolov@admosolov-VtrtualBox:-/work/arch-pc/lab04$
```

Рис. 2.6: Присваиваем имя скомпилированному файлу и создаем файл листинга

2.4 Компоновщик LD

Объектный файл необходимо передать на обработку компоновщику.

```
admosolov@admosolov-VirtualBox:-/work/arch-pc/lab04$ ld -m elf_i386 hello.o -o hello admosolov@admosolov-VirtualBox:-/work/arch-pc/lab04$ ls hello hello.ash hello.o list.ist obj.o admosolov@admosolov-VirtualBox:-/work/arch-pc/lab04$
```

Рис. 2.7: Передаем файл hello.o на обработку

Для тренировки отправляем на обработку компоновщику файл *obj.o* и называем его *main*.

```
admosolov@admosolov-VirtualBox:~/work/arch-pc/lab04$ ld -m elf_i386 obj.o -o main admosolov@admosolov-VirtualBox:~/work/arch-pc/lab04$ ls hello hello.asm hello.o list.lst main obj.o
```

Рис. 2.8: Передаем файл obj.o на обработку

2.5 Запуск исполняемого файла

Запустить на выполнение созданный исполняемый файл, находящийся в текущем каталоге, можно, набрав в командной строке ./hello .

```
admosolov@admosolov-VirtualBox:-/work/arch-pc/lab04$ ./hello
Hello world!
admosolov@admosolov-VirtualBox:-/work/arch-pc/lab04$
```

Рис. 2.9: Запускаем исполняемый файл

2.6 Задание для самостоятельной работы

В каталоге \sim /work/arch-pc/lab04 с помощью команды *cp* создайте копию файла hello.asm с именем lab4.asm.

Рис. 2.10: Копируем файл hello.asm

С помощью текстового редактора вносим изменения в текст программы в файле *lab4.asm* так, чтобы вместо *Hello world!* на экран выводилась строка с фамилией и именем.

```
admosolov@admosolov-VirtualBox:-/work/arch-pc/lab04$ gedit lab4.asm

lab4asm
-/work/arch-pc/lab04

1; hello.asm
2 SECTION .data; Начало секции данных
3 hello: DB 'Mosolov Aleksandr',10; 'Mosolov Aleksandr' плюс
4; символ перевода строки
5 helloLen: EQU $-hello; Длина строки hello
6 SECTION .text; Начало секции кода
7 GLOBAL _start
8 _start:; Точка входа в программу
9 mov eax,4; Системный вызов для записи (sys_write)
10 mov ebx,1; Описатель файла '1' - стандартный вывод
11 mov ecx,hello; Адрес строки hello в есх
12 mov edx,helloLen; Размер строки hello
13 int 80h; Вызов ядра
14 mov eax,1; Системный вызов для выхода (sys_exit)
15 mov ebx,0; Выход с кодом возврата '0' (без ошибок)
16 int 80h; Вызов ядра
```

Рис. 2.11: Вносим изменения в текст программы

Транслируем полученный текст программы *lab4.asm* в объектный файл. Выполнияем компоновку объектного файла и запускаем получившийся исполняемый файл.

```
admosolov@admosolov-VirtualBox:-/work/arch-pc/lab04$ nasm -f elf lab4.asm admosolov@admosolov-VirtualBox:-/work/arch-pc/lab04$ cd admosolov@admosolov-VirtualBox:-$ cd work/arch-pc/lab04$ ls hello asm hello.o lab4.asm lab4.o list.lst main obj.o admosolov@admosolov-VirtualBox:-/work/arch-pc/lab04$ ld -m elf_i386 lab4.o -o lab4 admosolov@admosolov-VirtualBox:-/work/arch-pc/lab04$ ls hello asm hello.o lab4 lab4.asm lab4.o list.lst main obj.o admosolov@admosolov-VirtualBox:-/work/arch-pc/lab04$ ls hello hello.asm hello.o lab4 lab4.asm lab4.o list.lst main obj.o admosolov@admosolov-VirtualBox:-/work/arch-pc/lab04$ ./lab4 Mosolov Aleksandr admosolov@admosolov-VirtualBox:-/work/arch-pc/lab04$
```

Рис. 2.12: Транслируем текст

Переносим файлы hello.asm и lab4.asm в локальный репозиторий в ката-лог ~/work/study/2023-2024/"Apxumeктура компьютера"/arch-pc/labs/lab04/.

Рис. 2.13: Переносим файлы

Загружаем файлы на *Github*.

```
admosolov@admosolov-VirtualBox:-/work/arch-pc/labbis cd -/work/study/2023-2024/Архитектура компьютера"/arch-pc/
admosolov@admosolov-VirtualBox:-/work/study/2023-2024/Архитектура компьютера/arch-pc$ glt pull

Xee artyanhaно.
admosolov@admosolov-VirtualBox:-/work/study/2023-2024/Архитектура компьютера/arch-pc$ glt add .

glt comnt - am 'feat(main): add files lab-4'
glt push
[master 033476c] feat(main): add files lab-4
2 files changed, 32 insertions(+)
create mode 186644 labs/labb4/labd-asm
create mode 186644 labs/labb4/labd-asm
Перечисление объектов: 9, готово.
Подсчет объектов: 108% (9/9), готово.
Подсчет объектов: 108% (9/9), готово.
Подсчет объектов: 108% (9/9), готово.
Запись объектов: 108% (6/6), узъб байтов | 955.00 киб/с, готово.
Запись объектов: 108% (6/6), лотово.
Запись объектов: 108% (6/6), лотово.
Оситие объектов: 108% (6/6), лотово.
Всего 6 (изменений Э), повторно использовано пакетов 0
remote: Resolving deltas: 108% (3/3), сопретес delta to local objects.
To glthub.com:almosofs/study_2023-2024/arb-pc.glt
badba90.033476c master -> master
```

Рис. 2.14: Загрузка файлов на Github

3 Выводы

В ходе выполнения лабораторной работы были освоены процедуры компиляции и сборки программ, написанных на ассемблере *NASM*.