

Figure 1: Exemple de géodésiques sur le demi-plan de Poincaré, à noter que les points qui sont sur l'axe des réels sont exclus des géodésiques.

1 Demi-plan de Poincaré

Définition 1. On appelle demi-plan de Poincaré l'ensemble suivant

$$\mathcal{H} = \{ z \in \mathbb{C} \mid \Im(z) > 0 \} \cup \{ \infty \}. \tag{1}$$

Sur le demi-plan de Poincaré, les droites, ou plus exactement les géodésiques, sont définies comme les demi-cercles dont le centre est sur l'axe des réels et les droites verticales, i.e. les droites passant par ∞ . On notera $\mathcal D$ l'ensemble de ces géodésiques. On considère l'ensemble des transformations projectives inversibles, soit l'ensemble $PGL_2(\mathbb R)$. De telles transformations ont la propriété de "préserver" l'infini. Autrement dit, pour $f \in PGL_2(\mathbb R)$, on a $f(\infty) = \infty$. Pour tout autre point de $\mathbb P_1(\mathbb C)$, f peut être considérée comme une transformation linéaire. On parle alors de transformation de tr

Lemme 1. Soient $z, w \in \mathcal{H}$, il existe une unique droite géodésique de \mathcal{H} passant par z et w.

Proposition 1. $PSL_2(\mathbb{R})$ agit sur \mathcal{H} . De plus, il agit transitivement.