1-(3pt)-Considere o plano $\pi: x+y+z=1$, o triangulo Δ formado pelos vértices A=(2,1,0),

B=(3,0,-2), C=(-1,0,2), e uma fonte de luz pontual colocada no ponto $P_*=(3,3,2)$ (que emite raios retilíneos em todas as direções).

(1pt)-a)-Verifique se os pontos P_* , A, B e C estão no mesmo semi-espaço determinado por π .

(1pt)-b)-Determine o triângulo Δ^* que é a sombra projetada pelo triângulo Δ no plano π

(1pt)-c)-Obtenha a razão entre as áreas dos triângulos Δ e Δ^* .

RESOLUÇÃO:

1a)-Reescrevendo a equação do plano com operações vetoriais temos: $(x,y,z) \cdot (1,1,1) = P \cdot \overrightarrow{N} = 1$ e, dividindo a equação por $\|N\| = \sqrt{3}$ obtemos a mesma equação na forma normalizada : $P \cdot \overrightarrow{n} = \frac{1}{\sqrt{3}}$, onde

 $\overrightarrow{n}=\frac{1}{\|N\|}\overrightarrow{N}=\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)$ é unitário. Interpretando geometricamente o produto interno $P \cdot \overrightarrow{n}$ concluimos que os pontos P que estão no plano são caracterizados pelo fato de que sua projeção sobre \overrightarrow{n} é igual a $\frac{1}{\sqrt{3}}$ que, por conseguinte é a distancia do plano à origem. Ainda, se $P \cdot n > \frac{1}{\sqrt{3}}$ o ponto P estará em um dos semiespaços e se $P \cdot n \leq \frac{1}{\sqrt{3}}$ ele estará no outro semi-espaço. Assim, concluimos imediatamente que B e C estão sobre o plano (pois, $B \cdot N = 1$, $C \cdot N = 1$) e, como, $A \cdot n = \frac{3}{\sqrt{3}} > \frac{1}{\sqrt{3}}$ e $P_* \cdot n = \frac{8}{\sqrt{3}} \geq \frac{1}{\sqrt{3}}$ estão todos no semi-espaço dos pontos P caracterizado por $P \cdot n \geq \frac{1}{\sqrt{3}}$.

(A propósito, A está a uma distancia $\frac{3}{\sqrt{3}}-\frac{1}{\sqrt{3}}=\frac{2}{\sqrt{3}}$ do plano e P_* está a uma distancia $\frac{8}{\sqrt{3}}-\frac{1}{\sqrt{3}}=\frac{7}{\sqrt{3}}$ do plano)

1b)-O triangulo Δ^* será determinado pelos seus vértices A^*, B^* e C^* que são obtidos pelas interseções dos raios de luz que passam por P_* e , respectivamente, A, B e C com o plano. Como os pontos B e C já estão no plano, temos $B^* = B$ e $C^* = C$. A reta (raio de luz) que passa por P_* e A em equação parametrica pode ser escrita como: $R(t) = P_* + t(A - P_*)$ e a sua interseção com o plano π é dada quando R(t) estiver no plano, o que equivale dizer (analiticamente) : $R(t) \cdot N = 1$ de onde tiramos uma equação para t e, resolvendo, $P_* \cdot N + t(A - P_*) \cdot N = 1$, ou,

$$t = -\frac{P_* \cdot N}{(A - P_*) \cdot N} = \frac{8}{5} \text{ e, portanto}$$

$$A^* = P_* + \frac{8}{5} (A - P_*) = (3, 3, 2) + \frac{8}{5} (-1, -2, -2) = (\frac{7}{5}, \frac{-1}{5}, \frac{-6}{5}).$$

1c)-Uma forma de resolver esta questão é calcular a área de cada um utilizando o produto vetorial: $\frac{|\Delta|}{|\Delta^*|} = \frac{\frac{1}{2} \|((B-A)\times(C-A))\|}{\frac{1}{2} \|((B^*-A^*)\times(C^*-A^*))\|} =$

Chegando até aí, você resolveu essencialmente todo o problema, para completa-lo basta mostrar que sabe fazer o produto vetorial indicado na última expressão.

...

2-(3pt)—A reta r tem equação paramétrica : R(t) = (2,0,1) + t(1,0,1) e a reta l é determinada pela interseção dos planos: x = 3 e y - z - 3 = 0.

a)(0,5pt)-Verificar se r e l são reversas.

b)-(0,5pt)-Encontrar a distancia entre as duas retas.

c-(2pt)-Encontrar a equação paramétrica da reta s concorrente com r e l paralela ao vetor v=(1,-5,-1).

RESOLUÇÃO:

2a)-Há varias formas de resolver esta questão. Utilizaremos a representação parametrica de ambas. A segunda reta é dada pela interseção de dois planos, que podem ser descritos pelas respectivas equações vetoriais: $(1,0,0) \cdot P = N_1 \cdot P = 3$ e $(0,1,-1) \cdot P = N_2 \cdot P = 3$ onde N_1 e N_2 são, vetores perpendiculares aos respectivos planos. Portanto, um vetor diretor para esta reta é

 $v=N_1 \times N_2=i \times (j-k)=i \times j-i \times k=k+j=(0,1,1)$ e, calculando um ponto qualquer (digamos, x=3, y=0 temos z=-3, $P_0=(3,0,-3)$ e a reta L(s)=(3,0,-3)+s(0,1,1). Como os vetores diretores não são paralelos (v tem primeira componente nula e u=(1,0,1) não tem!) as retas não são paralelas. Para determinar se encontram resolvemos imediatamente esta e a segunda questão (1b) calculando a distancia. Para isto, determinamos os pontos $R(t_0)$ e $L(s_0)$ de uma e outra que realizam esta distancia, isto é, tal que $d=\|R(t_0)-L(s_0)\|$. Isto ocorre quando o vetor $R(t_0)-L(s_0)$ for perpendicular a ambas, ou seja, para calcular as duas "incognitas" t_0 e s_0 impomos esta condição geométrica que nos dá duas equações:

$$(R(t_0) - L(s_0)) \cdot u = 0$$
$$(R(t_0) - L(s_0)) \cdot v = 0$$

Abrindo as entranhas dos vetores temos as duas equações:

$$(1-t,s,-4+s+t) \cdot (1,0,1) = 1-t-4+s+t = -3+s = 0$$

$$(1-t,s,-4+s+t) \cdot (0,1,1) = s-4+s+t = 0$$

de onde obtemos $s_0 = 3$ e $t_0 = -2$ ou seja, R(-2) = (0,0,-1) e L(3) = (3,3,0) e $\|R(-2) - L(3)\| = \|(-3,-3,-1)\| = \sqrt{19}$, obviamente reversas.

(Observação: Se um exercicio desses tem por objetivo verificar que as retas não são reversas, um pequeno erro de cálculo levará à conclusão oposta, que é a posição relativa geral de duas retas no espaço).

3c-)Esta terceira reta que denominaremos T terá sua parametrização na forma $T(\theta) = P + \theta(1, -5, -1)$. Digamos que ela encontre as duas retas nos pontos $R(t_1)$ e $L(s_1)$.

Consideremos a parametrização de todas as retas T paralelas a w e partindo de um ponto (ainda desconhecido) da reta r, digamos $R(t_1)$, na forma: $T(\theta) = R(t_1) + \theta w$. Agora determinaremos **qual** delas e em **que ponto** ela se encontra com a reta L o que significa resolver o sistema de **três** equações (componente a componente) $T(\theta) = R(t_1) + \theta w = L(s_1)$ para as **três** incognitas, t_1, θ e s_1 , o que dá a conta certa! Portanto devemos ter:

$$(2+t,0,1+t)+(\theta,-5\theta,-\theta)=(3,s,-3+s)$$

ou, componente a componente: $2+t+\theta=3$; $-5\theta=s$; $1+t-\theta=-3+s$. Resolvendo, $t_1=\frac{13}{3}$, $\theta_1=\frac{-5}{3}$, $s_1=\frac{25}{3}$ e daí,

 $T(\theta) = R(\frac{13}{5}) + \theta(1, -5, -1)$ e de "lambuja" temos o outro ponto de interseção com a reta L, em $L(\frac{25}{3})$.

...

3-(2pt)-Escreva a equação paramétrica da reta r que passa por A=(2,0,-3) e é paralela à reta $s:\frac{1-x}{5}=\frac{3y}{4}=\frac{z+3}{6}$. Calcular a distância entre as duas retas.

RESOLUÇÃO:

A reta s pode ser imediatamente escrita na forma paramétrica fazendo $\frac{1-x}{5}=\frac{3y}{4}=\frac{z+3}{6}=t$, ou seja, $x=-5t+1, y=\frac{4}{3}t, z=-3+6t$, e, daí $:S(t)=(1-5t,\frac{4}{3}t,-3+6t)=(1,0,-3)+t(-5,\frac{4}{3},6)=P+tv$. Se a reta r, $R(\tau)=A+\tau v$, é paralela à reta s, então os vetores diretores das duas retas são paralelos e, portanto, podemos tomar $v=(-5,\frac{4}{3},6)$ e, como r passa por A=(2,0,-3) concluimos que podemos descreve-la parametricamente na forma: $R(\tau)=(2,0,-3)+\tau(-5,\frac{4}{3},6)$.

Há várias formas para se calcular a distancia entre duas retas paralelas, basta fazer um desenho, pensar geometricamente e traduzir a ideia analiticamente. Por exemplo, se tomarmos o ponto A=(2,0,-3) da reta R procuramos o ponto $S(t_0)$ que está exatamente à distancia mais curta de R e verificamos, geometricamente, que ele é tal que $(S(t_0)-A)$ será perpendicular ao vetor diretor de ambas, $v=(-5,\frac{4}{3},6)$. Analiticamente isto significa que o produto interno $(S(t_0)-A) \cdot v$ é nulo, de onde podemos tirar o valor de t_0 correspondente e daí a distancia $d=\|S(t_0)-A\|$. Resolvendo: De $(S(t)-A) \cdot v=(P+tv-A) \cdot v=0$ tiramos, $t_0=\frac{(A-P)\cdot v}{\|v\|^2}$. Portanto, $d=\|S(t_0)-A\|=\|P+\frac{(A-P)\cdot v}{\|v\|^2}v-A\|$. O argumento é a essencia da resolução, os cálculos são meros detalhes, se você sabe (e deveria saber) como calcular produto interno, norma, soma, produto vetorial, tabuada...

ATENÇÃO: Decorar fórmulas é perigoso pois, se você esquecer um pequeno (qualquer que seja) detalhe, vai tudo por água abaixo! Não confie tanto na sua memória, prefira o seu raciocínio.

. . .

4-(2pt)-Verificar se as afirmativas abaixo são falsas ou verdadeiras- (Respostas sem justificativas não serão consideradas).

- a)-Os pontos A = (1, -2, 1), B = (2, 1, 3) e C = (100, 1, 4) são coplanares.
- b)-Se u, v, w são vetores tais que u + v + w = 0 então , $u \times v = v \times w = w \times u$
- c)-As diagonais de um quadrado são perpendiculares.
- d)-A distancia do ponto A=(0,0,1) ao plano $\pi:3x+4y-z-10=0$ é $\sqrt{7}$.

RESOLUÇÃO:

4a)-**Verdadeira**: Não há o que verificar; três pontos sempre são coplanares, isto é, estão simultaneamente em um mesmo plano. (Este plano será único se B-A e C-A não forem colineares -que é o caso presente- ou, em vários planos, se B-A e C-A forem

colineares).

- 4b)-**Verdadeira**: Basta multiplicar vetorialmente a soma por u e depois por v e utilizar as propriedades distributiva e antisimétrica ($u \times v = -v \times u$):
 - $0 = u \times (u + v + w) = u \times u + u \times v + u \times w \Rightarrow u \times v = -u \times w = w \times u$
 - $0 = v \times (u + v + w) = v \times u + v \times v + v \times w \Rightarrow u \times v = -v \times w = v \times w.$
- 4c)-**Verdadeira**: Um desenho sugere que é verdade, mas para provar considere o quadrado com vértices em O, O+u, O+v, O+u+v, com lados de comprimentos $\|u\| = \|v\| \neq 0$ e perpendiculares (pois é um quadrado) $u \cdot v = 0$. As diagonais são $d_1 = u + v$ e $d_2 = v u$. Multiplicando escalarmente as duas, $d_1 \cdot d_2 = (u+v) \cdot (v-u) = \|v\|^2 \|u\|^2 = 0$, o que demonstra serem perpendiculares.
- 4d)-Falsa: Escrevendo o plano na forma $P \cdot n = d$ onde $\|n\| = 1$, ou seja, $(x,y,z) \cdot \frac{1}{\sqrt{26}} (3,4,-1) = \frac{10}{\sqrt{26}}$ verificamos que o plano está a uma distancia $\frac{10}{\sqrt{26}}$ da origem. A projeção do vetor posição do ponto A sobre n é : $A \cdot n = \frac{-1}{\sqrt{26}}$ (ou seja, a distancia do ponto A ao plano paralelo a π que passa pela origem) o que significa que a sua distancia ao plano é $\frac{1}{\sqrt{26}} + \frac{10}{\sqrt{26}} = \frac{11}{\sqrt{26}} \neq \sqrt{7}$.