Analysis I (Marciniak-Czochra)

Robin Heinemann

October 20, 2016

Contents

1	Einleitung			1
2	Mengen und Zahlen			
	2.1	Logisc	he Regeln und Zeichen	1
		2.1.1	Quantoren	1
		2.1.2	Hinreichend und Notwendig	2
		2.1.3	Beweistypen	2
		2.1.4	Summenzeichen und Produktzeichen	3
	2.2	Menge	en	3
		2.2.1	Definition	3
		2.2.2	Mengenrelationen	3

1 Einleitung

Webseite www.biostruct.uni-heidelberg.de/Analysis1.php Klausurzulassung: 50% Klausur 18.2.2017 9-12Uhr

2 Mengen und Zahlen

2.1 Logische Regeln und Zeichen

2.1.1 Quantoren

```
\forall x für alle x

\exists x es gibt (mindestens) ein x

\exists!x es gibt genau ein x
```

2.1.2 Hinreichend und Notwendig

- $A \Rightarrow B$: wenn A gilt, gilt auch B, A ist **hinreichend** für B, daraus folgt: B ist **notwendig** für A, Ungültigkeit von B impliziert die Ungültigkeit von A ($\neg B \Rightarrow \neg A$)
- $A \Leftrightarrow B$: A gilt, genau dann, wenn B gilt

2.1.3 Beweistypen

- 1. Direkter Schluss $A \Rightarrow B$
 - (a) Beispiel m gerade Zahl $\Rightarrow m^2$ gerade Zahl
 - i. Beweis m gerade $\Rightarrow \exists n \in \mathbb{N}$ sodas
s $m=2n \Rightarrow m^2=4n^2=2k$, wobei $k=2n^2 \in \mathbb{N}\square$
- 2. Beweis der Transponerten (der Kontraposition) Zum Beweis $A \Rightarrow B$ zeigt man $\neg B \Rightarrow \neg A \ (A \Rightarrow B) \Leftrightarrow (\neg B) \Rightarrow (\neg A)$
 - (a) Beispiel Sei $m \in \mathbb{N}$, dann gilt m^2 gerade $\Rightarrow m$ gerade
 - i. Beweis Wir zeigen: m ist ungerade $\Rightarrow m^2$ ungerade

$$\exists n \in \mathbb{N}: m = 2n+1 \Rightarrow m^2 = (2n+1)^2 = 2k+1, k = 2n^2+2n \in \mathbb{N} \Rightarrow m^2 \text{ ungerade} \square$$

- 3. Indirekter Schluss (Beweis durch Wiederspruch) Man nimmt an, dass $A \Rightarrow B$ nicht gilt, das heißt $A \land \neg B$ und zeigt, dass dann für eine Aussage C gelten muss $C \Rightarrow \neg C$, also ein Wiederspruch
 - (a) Beispiel $\not\exists q \in \mathbb{Q} : a^2 = 2$
 - i. Beweis Wir nehmen an, dass $\exists a \in \mathbb{Q} : a^2 = 2$ Dann folgt: $\exists b, c \in \mathbb{Z}$ teilfremd (ohne Einschränkung, denn sonst kürzen soweit wie möglich) mit $a = \frac{b}{c}$ Falls

$$a^2 = 2 \Rightarrow (\frac{b}{c})^2 = 2 = \frac{b^2}{c^2} = 2 \Rightarrow b^2 = 2c^2 \Rightarrow b^2 \text{ gerade } \Rightarrow b \text{ ist gerade (schon gezeight)} = \frac{b^2}{c^2} = 2 \Rightarrow b^2 = 2c^2 \Rightarrow b^2 \text{ gerade } \Rightarrow b \text{ ist gerade (schon gezeight)} = \frac{b^2}{c^2} = 2 \Rightarrow b^2 = 2c^2 \Rightarrow b^2 \text{ gerade } \Rightarrow b \text{ ist gerade (schon gezeight)} = \frac{b^2}{c^2} = 2 \Rightarrow b^2 = 2c^2 \Rightarrow b^2 \text{ gerade } \Rightarrow b \text{ ist gerade (schon gezeight)} = \frac{b^2}{c^2} = 2 \Rightarrow b^2 = 2c^2 \Rightarrow b^2 \text{ gerade } \Rightarrow b \text{ ist gerade (schon gezeight)} = \frac{b^2}{c^2} = 2 \Rightarrow b^2 = 2c^2 \Rightarrow b^2 \Rightarrow b^2 = 2c^2 \Rightarrow b^2 \Rightarrow b^2 = 2c^2 \Rightarrow b^2 \Rightarrow$$

Außerdem $b^2=2c^2\Rightarrow 2c^2=4d^2\Rightarrow c^2=2d^2\Rightarrow c$ ist auch gerade. Also müssen b und c beide gerade sein, also nicht teilerfremd, damit haben wir einen Widerspruch hergeleitet \Box

2.1.4 Summenzeichen und Produktzeichen

1. Summenzeichen Wir definieren für m > 0

$$\sum_{k=m}^{m} a_k := a_m + \ldots + a_n$$

falls $n \geq m$

$$\sum_{k=m}^{n} a_k := 0$$

falls n < m (sogennante leere Summe)

2. Produktzeichen

$$\prod_{k=m}^{n} a_k := \begin{cases} a_m \cdot \dots \cdot a_n & \text{falls } n \ge m \\ 1 & \text{falls } n < m \text{ (sog. leeres Produkt)} \end{cases}$$

2.2 Mengen

2.2.1 Definition

(Georg cantor 1885) Unger einer <u>Menge</u> verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten (welche die Elemente von M genannt werden), zu einem Ganzen M dadurch ist charakterisiert, dass von jedem vorliegendem Objekt x feststeht, ab gilt

- $x \in M$ (x Element von M)
- $x \rightarrow \in M$ (x kein Element von M)

$$M = \{x_1, x_2, \dots, x_n\}$$

$$M = \{x \mid A(x)\} \rightarrow \text{ eine Menge } M \text{ für die } x \in M \Leftrightarrow A(x)$$

2.2.2 Mengenrelationen

• Mengeninklusion $A \subset M$ (A ist eine Teilmenge von M)

$$\forall x : (x \in A \Rightarrow x \in M)$$

, zum Beispiel $\mathbb{N} \subset \mathbb{Z}$