EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN BE/ABP

 $\begin{array}{c} {\rm CERN/xx/xx} \\ {\rm Updated~April~2018} \end{array}$

SixDesk

Version 1.0

the Simulation Environment for SixTrack

User's Reference Manual

R. De Maria, M. Giovannozzi, E. McIntosh, A. Mereghetti, F. Schmidt, I. Zacharov Updated by: P. D. Hermes, D. Pellegrini, S. Kostoglou

Abstract

SIXTRACK [1, 2, 3] is a single particle tracking code widely used at CERN. One of its most important applications is the estimation of the dynamic aperture available in large storage rings like the Large Hadron Collider (LHC) or the Future Circular Collider (FCC). These studies require massive computing resources, since they consist of scans over large parameter spaces probing non-linear beam dynamics over long times. The SIXDESK [4, 5] environment is the simulation framework used to manage and control the large amount of information necessary for and produced by the studies.

This document updates the previous documentation, and describes how massive tracking campaigns can be performed with SixTrack starting from a Madx "mask" file. The SixDesk environment is an ensemble of shell scripts and configuration files, aimed at easing the everyday life of the user interested in performing large parameter scans with SixTrack.

Acknowledgement

Some acknowledgements.

Contents

1		Introduction														
		Overview														
		Work Flow														
		The BOINC Platform for Volunteering Computing														
	1.4	Pre-requisites	3													
_	New Features															
	2.1	External Scans	4													
		idelines and Common Pitfalls	5													
	3.1	Choice of Platform	5													
\mathbf{B}^{i}	ibliog	graphy	7													

Chapter 1

Introduction

SIXTRACK [1, 2, 3] is a tracking code for simulating transverse and longitudinal single particle beam dynamics. Tracking is treated in a full six-dimensional way, including synchrotron motion, in a symplectic manner. SIXTRACK is widely used at CERN for predicting dynamic aperture in large storage rings [6] like the Large Hadron Collider (LHC) [7] or its upgrade as foreseen by the High Luminosity LHC Project (HL-LHC) [8, 9].

The code was extended [10] to predict the performance of a collimation system in terms of loss pattern and cleaning inefficiency. Hence, SixTrack is routinely used nowadays also for addressing the performance of existing cleaning systems, like those of the LHC [11] or of the Relativistic Heavy Ion Collider (RHIC) at BNL [12], or new ones.

The code is in continuous development [13, 14], not only to improve the accuracy of the tracking models, but also including the dynamics introduced by novel accelerator technologies, like electron lenses or powered wires for the compensation of beam–beam long range effects or christal collimation.

The accelerator dynamic aperture is studied scanning the beam phase space in presence of non-linear forces, like the kicks introduced by long range beam—beam interactions or multipolar components of magnetic fields. Moreover, the scan could be also performed varying the machine configurations. The SIXDESK [4, 5] environment gives the users of SIXTRACK a mean to handle the large amount of files to be treated.

1.1 Overview

- 1. SixTrack input generated by Madx (fort.2,fort.8, fort.16); then, run SixTrack; then, collect results (fort.10) and analyse them via SixDB;
- 2. inner loops (i.e. controlled by sixdeskenv) and outer loops (i.e. controlled by scan_definitions);

1.2 Work Flow

Show workflow of production of results, both for BOINC (including "processed" folder) and HTCondor. Retrieval of results depends on the submission platform:

• run_results: BOINC

• run_status: HTCondor, HTBoinc

1.3 The BOINC Platform for Volunteering Computing

BOINC vs local batch system (e.g. HTCondor)

1.4 Pre-requisites

SIXDESK is native to lxplus.cern.ch. Hence, for running in such an environment, the user does not need to set up anything. On the contrary, in case of a local machine or other distributed resources,

Table 1.1: Pre-Requisites

Component	reason
kerberos	to renew/check credentials via klist and kinit
AFS (local mount)	retrieval of optics files
	submission to BOINC via spooldir
HTCondor (local installation)	submission of jobs to local batch system
python2.7	SixDB
	computation of floating point scan parameters

Chapter 2

New Features

This chapter illustrates the new features implemented in SIXDESK from the user point of view.

2.1 External Scans

Original work by: P. .D. Hermes, D. Pellegrini Updated by: A. Mereghetti

"Internal scans" are the scans handled by SIXDESK directly from the input contained in the sixdeskenv file.

Chapter 3

Giudelines and Common Pitfalls

3.1 Choice of Platform

HTCondor is convenient when:

- 1. results should be collected quickly. This can be the case when the user has short time to collect data or the simulation set-up is being defined. In the second case, indeed, one does not want to wait too long for proceeding;
- 2. short or few jobs per study. This can be the case when re-submission of selected cases is necessary, e.g. to complete a study when few points in the scan are missing;

The BOINC platform for volunteer computing is convenient in case of large simulation campaigns, i.e. when simulations are long or they are in high number (e.g. hundreds of thousands of jobs).

Bibliography

- [1] F. Schmidt, "SixTrack: Version 4.7.16, Single Particle Tracking Code Treating Transverse Motion with Synchrotron Oscillations in a Symplectic Manner, User's Reference Manua", CERN/SL/94–56 (AP), CERN, Geneva, Switzerland (2017), http://sixtrack.web.cern.ch/SixTrack/docs/user_full/manual.php
- [2] G. Ripken and F. Schmidt, "A symplectic six-dimensional thin-lens formalism for tracking", CERN, Geneva, Switzerland, Rep. CERN/SL/95–12(AP), 1995.
- [3] SixTrack, http://sixtrack.web.cern.ch/SixTrack
- [4] M. Hayes and F. Schmidt, "Run Environment for SixTrack", LHC Project Note 300, CERN, Geneva, Switzerland (2002), https://cds.cern.ch/record/691785/files/project-note-300.pdf
- [5] E. McIntosh and R. De Maria, "The SixDesk Run Environment for SixTrack", CERN-ATS-TE-2012-089 TECH, CERN, Geneva, Switzerland (2002), https://github.com/SixTrack/SixDesk/blob/master/sixjobs/doc/sixdesk_env.pdf
- [6] M. Giovannozzi et al., "Dynamic Aperture Studies for the LHC Hight Luminosity Lattice", in Proc. 6th Int. Particle Accelerator Conf. (IPAC'15), Richmond, VA, USA, May 2015, paper MOPMN003, pp. 705–709.
- [7] O. Brüning *et al.* (eds), "LHC design report", Vol. I, CERN, Geneva, Switzerland, Rep. CERN-2004-003-V-1, 2004.
- [8] O. Brüning, L. Rossi (eds.), "The High Luminosity Large Hadron Collider", World Scientific Press, 2015, ISBN 978-981-4675-46-8.
- [9] G. Apollinari, I. Bejar Alonso, O. Brüning, M. Lamont, L. Rossi (eds.), "High Luminosity Large Hadron Collider (HL-LHC) Technical Design Report V.01", CERN, Geneva, Switzerland, EDMS n. 1723851 v.0.71, https://edms.cern.ch/ui/file/1723851/0.71/HL_TDR_V07.0.2016.10.05. Version15.2h.pdf
- [10] G. Robert-Demolaize, R. Assmann, S. Redaelli, F. Schmidt, "A New Version of SixTrack with Collimation and Aperture Interface", in *Proc. Particle Accelerator Conf. (PAC'05)*, Knoxville, TN, USA, 2005, paper FPAT081, pp. 4084–4087.
- [11] R.W. Assmann *et al.*, "The Final Collimation System for the LHC", in *Proc.* 10th European Particle Accelerator Conf. (EPAC'06), in Proc. EPAC'06, Edinburgh, Scotland, UK, Jun 2006, paper TUODFI01, pp. 986–988.
- [12] G. Robert-Demolaize and A. Drees, "Simulations of collimation losses at RHIC", in *Proc. Tracking for Collimation Workshop*, CERN, Geneva, Switzerland, Oct 2015, unpublished.
- [13] S. Redaelli (ed.), "Proceedings of the tracking for collimation workshop", CERN, Geneva, Switzerland, Oct 2015, unpublished.

- [14] A. Mereghetti et al., "SixTrack for Cleaning Studies: 2017 Updates", in Proc. 8th Int. Particle Accelerator Conf. (IPAC'17), Copenhagen, DK, May 2017, paper THPAB046, pp. 3811–3814.
- [15] "Berkeley Open Infrastructure for Network Computing", http://boinc.berkeley.edu

List of Tables

1 1	Pre-Requisites.																														9	į
1.1	r re-mequisites.	 	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			 				J	į