

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ³ :		(11) International Publication Number:	WO 82/ 01434
G06K 9/68	A1	(43) International Publication Date:	29 April 1982 (29.04.82)

US

(21) International Application Number: PCT/US81/01412

(22) International Filing Date: 20 October 1981 (20.10.81)

(31) Priority Application Numbers: 198,692 200,703

(32) Priority Dates: 20 October 1980 (20.10.80)

27 October 1980 (27.10.80)

(33) Priority Country:

(71) Applicant: ROCKWELL INTERNATIONAL COR-PORATION [US/US]; 2230 East Imperial Highway, El Segundo, CA 92667 (US).

(72) Inventor: ELSEY, John, Charles; 1311 E. Adams Avenue, Orange, CA 92803 (US).

(74) Agents: HAMANN, H. Fredrick et al.; Rockwell International Corporation, 3370 Miraloma Avenue, 008, AB06 Anaheim, CA 92803 (US).

(81) Designated States: AT (European patent), CH (European patent), DE (European patent), DK, FR (European patent), GB (European patent), JP, LU (European patent), NL (European patent), NO, SE (European patent).

Published

With international search report.

(54) Title: FINGERPRINT MINUTIAE MATCHER

(57) Abstract

A machine or process for comparing fingerprints based on the correspondence between fingerpring minutiae. The pattern of minutiae in an unknown or search fingerprint is rotated and translated to obtain approximate registration with the pattern of minutiae in a known on file fingerprint. Following rotation and translation, only those search and file fingerprints that exhibit a sufficient number of mating minutiae between the fingerprints are compared further. For each pair of mating search and file minutiae, the neighboring mating minutiae are compared and an individual min-. utia 'match score' is determined based on the degree of correspondence between the other mating pairs of minutiae within a specified neighborhood of the individual pair of mating search and file minutiae. The individual 'match scores' for each of the mating

SEARCH MINUTIA SUPERIMPOSED ON FILE MINUTIA

minutiae are summed to yield a total score that is indicative of the correspondence between the search and the file finger-prints.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	KP	Democratic People's Republic of Korea
ΑŪ	Australia	LI	Liechtenstein
BR	Brazil	LU	Luxembourg
CF	Central African Republic	MC	Monaco
CG	Congo	MG	Madagascar
CH	Switzerland	MW	Malaŵi
CM	Cameroon	NL	Netherlands
DE	Germany, Federal Republic of	NO	Norway
DK	Denmark	RO	Romania
FI	Finland	SE	Sweden
FR	France	SN	Senegal
GA	Gabon	SU	Soviet Union
GB	United Kingdom	TD	Chad
HÜ	Hungary	TG	Toro
JP	Japan	US	United States of America

FINGERPRINT MINUTIAE MATCHER

BACKGROUND OF THE INVENTION

A fingerprint can be characterized by the locations and angular orientations of the ridge endings and ridge bifurcations within the finger-print which data are referred to in this specification as "minutiae".

Machines for the detection and listing of fingerprint minutiae are described in a number of U.S. Patents, including Nos. 3,611,290; 3,699,419; 4,083,035; and 4,151,512.

This invention pertains to processes and machines for the automatic comparison of one fingerprint, referred to here as the "search" fingerprint with another fingerprint, referred to as the "file" fingerprint, to determine if the two prints were made by the same finger.

A minutia pattern matcher invented by Riganati and Vitols is described in U.S. Patent No. 4,135,147. The present invention is closely related to the minutia pattern matcher invented by Riganati and Vitols. U.S. Patent No. 4,135,147 describes, in some detail, the prior art and the background to which both this invention and the minutiae pattern matcher pertain.

The minutia pattern matcher of Riganati and Vitols generates a "relative information vector" ("RIV") for each minutia in the unidentified ("search") fingerprint, which RIV is a detailed description of a minutia's immediate neighborhood of nearly surrounding minutiae. The matcher compares each RIV in the search print with each RIV in the known ("file") print and generates a match score for each comparison (see Cols. 8-12 of U.S. Patent No. 4,135,147). By means of a histogram, the matcher makes a global comparison of the individual matches and generates a "final score" which indicates, quantitatively, how closely the search print compares with the file print (see Col. 12 of U.S. Patent No. 4,135,147). Because the minutia pattern matcher compares each RIV in the search print with each RIV in the file print, the process involves a significant amount of effort.

The present invention significantly reduces the effort expended in the comparison, first, by performing a preliminary comparison of search and file minutiae on a global basis in order to reject file prints which bear little resemblance to the search print (to give a "quick out") and, second, by, in effect, comparing each search RIV with only a single,

mating file RIV. The details of the present process also differ from those of the minutia pattern matcher.

SUMMARY OF THE INVENTION

This invention is a machine or process that compares or "matches" fingerprint minutia patterns. The result of this matching process is a match score which is a measure of the similarity of the two minutia patterns, with a high match score indicating a high degree of similarity. The machine of this invention is a general purpose computer, such as the IBM 7090, that has been programmed in accord with this specification.

The inputs to the machine are (1) the minutia data for the fingerprints being matched (one print is designated the search print, the other the file print), which minutia data consist of the locations (x,y) and angular orientations (Θ) of the minutiae, and (2) a set of machine operating parameters. The minutia data are ordered in a Θ in a lowest to highest values of Θ . Tables l(a) and l(a) show an example of minutia data in tabular form (the format in which the computer stores and uses the data), and Figures l(a) and l(a) are plots of such data.

The object of the invention is to measure the similarity between two minutia patterns, such as those shown in Figures 1A and 1B. A high degree of similarity exists between the patterns in Figures 1A and 1B, as is shown in the superimposed patterns of Figure 1C where the search minutia of Figure 1A have been rotated by an angle α and translated in X an amount X_T and in Y an amount Y_T , and then superimposed on the file pattern.

One measure of similarity is the number of corresponding minutiae. To determine this number, one can think of a small box being drawn around each search minutia as shown in Figure 2A. If there is a file minutia within the box which also has the minutia angle close to the search minutia angle (say, within 25°), then the two minutiae are said to correspond, or to be mates. Figures 2A, B and C illustrate several cases of mating, non-mating, and multiple mating minutia pairs. There are 13 corresponding or mating minutia pairs in Figure 1C. This number of mating minutiae, designated M_M, is used as a preliminary measure of similarity.

If $\mathbf{M}_{\mathbf{M}}$ is sufficiently high, a score is computed for each search minutia based on the number of neighboring search minutiae (up to some number such as eight) that also have a mating file minutia, and on the degree of correspondence between the neighboring, mating file and search minutia. The match score for the entire fingerprint is the sum of the scores for each search minutia.

If the number of mating minutiae, M_{M} , is not greater than some specified threshold, the file print is considered to be unrelated to the search print, and the fingerprints are not compared further.

Table 2 is a listing of all the major steps in the comparison or matching process. A more detailed functional description of each of these steps is given in the following sections.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A and 1B are examples of search and file minutiae respectively; Figure 1C shows the search minutiae of Figure 1A rotated and superimposed on the file minutiae in Figure 1B;

Figures 2A, B and C show examples of mating and non-mating pairs of minutiae;

Figure 3 shows the search minutiae of Figure 1A with each minutiae numbered;

Figures 4A and 4B contain a second example of search and file minutia patterns;

Figure 5 is a two-dimensional histogram for the example in Figures 4A and 4B;

Figure 6 is a flow diagram of the logic used to compare the search and file minutiae;

Figure 7 contains an example of overlaid plots of search and file minutiae;

Figure 8 is a logic flow diagram illustrating the detailed logic for processing the NHIT list of Table 8; and

Figure 9 is a flow diagram illustrating the minutia pairing logic.

DESCRIPTION OF THE PREFERRED EMBODIMENT

1.0 PREPARATION OF SEARCH MINUTIA DATA

In a typical application of the invention, a single search fingerprint is compared against many file fingerprints. Certain computations, involving the initial search minutia data only, are done only once at the beginning of the series of comparisons.

1.1 SORT INTO ANGLE ORDER

To decrease the computation time, the search minutiae are sorted, based on their angle, in ascending order as shown in Table 1. If the minutiae are already sorted with respect to θ , this step is skipped.

1.2 FIND CLOSEST NEIGHBORS

Since the scoring for each pair of mating minutiae is dependent on the number of neighbors that also have mates, the N_N nearest neighbors for each search minutia must be defined. The number N_N is a match parameter selected by the machine operator and is typically chosen to be in the range of 6 to 12. The "nearness" measure is the sum of the absolute values of the differences in the X and Y coordinates between two minutiae. Such a measure is easily computed and results in a diamond shaped neighborhood area. Figure 3 shows the search minutiae of Figure 1A with each minutia numbered. Table 3 lists the nearest eight neighbors for some of the search minutiae. The nearest neighbors for each minutia are determined by computing the distance from each minutia to all other minutiae and selecting the N_N closest minutia as the nearest neighbors.

1.3 ROTATE SEARCH MINUTIAE FOR EACH ANGULAR POSITION

Since the X, Y, θ minutia values for the search and for the file fingerprints initially are not located with respect to a unique coordinate system, it usually is necessary to rotate one of the minutia patterns with respect to the other to properly align the matching fingerprints, as illustrated, for example, in Figure 1C. There appears to be no straightforward method of computing a best rotation based on some criteria such as

a least-squared-error fit. Accordingly, in this process, the search minutiae are rotated through a series of preselected angles and these rotated sets of minutiae are stored. In the matching process, each set of rotated search minutiae are compared with the file print and the set which gives the best match (as measured by the number of paired minutiae) is used in computing the match score for the pair of prints being compared.

In the preferred embodiment, a discrete set of rotations, N_R , spaced 5.6 degrees apart are used in the matching process. A set of ten such rotations covers a range of \pm 28 degrees and normally is sufficient to allow for variations in fingerprint orientation. The number of rotations, N_R , is a match parameter specified by the operator, and can be made as large as desired in order to accommodate larger uncertainties in print orientation. Since a larger number of rotations would require more comparisons, it is desirable to use as small a value of N_R as practicable.

Functionally, the rotated \boldsymbol{X} and \boldsymbol{Y} minutia values are computed by the matrix equation

$$\begin{bmatrix} X_{R} \\ Y_{R} \end{bmatrix} = \begin{bmatrix} COS\alpha & SIN\alpha \\ SIN\alpha & COS\alpha \end{bmatrix} \begin{bmatrix} X_{S} \\ Y_{S} \end{bmatrix}$$
(1)

where X_R , Y_R are the rotated minutia values, X_S , Y_S are the initial search minutia values, and α is the rotation angle. In order to use only integer computations and to avoid using sine and cosine functions, the following approximations are used for the sine and cosine computations:

$$COS\alpha = 1 - 32/CDIV(N)$$
 (2)

$$SIN\alpha = 32/SDIV(N)$$
 (3)

The CDIV(N) and SDIV(N) functions are represented by integer tables which have values for each N corresponding to discrete values of α . Values of CDIV(N) and SDIV(N) are computed from the inverse of the above equations and have the form

$$CDIV(N) = \frac{32}{1 - COS\alpha} \tag{4}$$

$$SDIV(N) = \frac{32}{SIN\alpha}$$
 (5)

where N has values 1, 2, ... N_{RT} , α has values $(-N_{RT}^{+1})$ (5.6°) , $(-N_{RT}^{+3})$ (5.6°) , $(-N_{RT}^{+5})$ (5.6°) , ... $(-N_{RT}^{+2}N_{R}^{-3})$ (5.6°) , $(-N_{RT}^{+2}N_{RT}^{-1})$ (5.6°)

and $N_{\mbox{RT}}$ is the total number of rotations permissable and is an even integer.

The values of θ for each rotation can be obtained simply by adding an angle to each θ value equal to the rotation α defined above. This addition, however, is performed later in the matching process, thus avoiding the creation of an additional array of rotated values for θ .

In order to minimize the computational errors in the rotation calculations, the search minutiae are initially centered over the origin. The rotation computations then are performed for the translated data set, and the rotated minutia sets then are retranslated to the first quadrant so that all X and Y values for the minutiae are positive.

2.0 PREPARATION OF FILE MINUTIA DATA-

Very little preparation of the file print minutia data is necessary or desirable since these computations need to be performed for each file fingerprint with which the search print is compared. The file data are arranged in order with respect to θ and the minimum and maximum minutia X and Y values are determined for the file print, but these calculations need be done only once for each file print for instance, at the time the file print data is added to the data base. A simple computation also can be done at the time the file print is added to the data base to determine the quantization parameters for use with the histograms described in the next section.

3.0 PRINT REGISTRATION

Print registration or orientation matching requires the determination of the best angular rotation and the X and Y offsets or translation that are necessary to superimpose the search minutia pattern upon the file minutia pattern. This task is accomplished by constructing for each of the N_R rotations of the search minutia pattern, a two dimensional histogram of the displacements in X and Y needed to overlay each search minutia with each file minutia for which the values of Θ differ by less

than some threshold, which threshold is a matching parameter selected by the operator. If the computed displacements for a pair of search and file minutiae are greater than some specified threshold, this minutia pair is omitted from the histogram. An example of such a pair of minutia would be one near the top of one print and the other near the bottom of the other print. Such minutiae would not represent mating pairs. A large peak in the histogram indicates a large number of mating minutia pairs, and the coordinates of that peak give the X and Y offsets needed to give the best line up of the two minutia patterns for a particular angular rotation.

To illustrate and more precisely describe these operations, consider the example minutia patterns shown in Figures 4A and 4B, which example differs from the one shown in Figures 1-3. The search minutia pattern is one of the rotated sets of search minutia patterns. If the file minutia pattern is shifted 10 units in X and 10 units in Y (10 is added to each of the minutia X and Y values), there is almost a perfect correspondence between the search and file minutia patterns. Table 4 contains a minutia comparison matrix. This matrix lists the result of comparing each search minutia (the leftmost column of the matrix) with each file minutia (the top row of the matrix). The matrix entries show the results of the comparison. The letter A indicates that the tail angles for the two minutiae corresponding to that matrix element (e.g., search minutia, S1, and file minutia F8) differ by more than the allowed amount (30 degrees).

The two numerical entries for each pair of file and search minutia (e.g., 24, -20 for S2, F1) indicate the increments in X and Y that must be added to the file minutia data in order to superimpose that file minutia on top of the search minutia after the centers of the search and file minutia patterns have been made coincident.

The coordinates for the center of the search print are the average of the X and Y values respectively for the search minutiae. The Y coordinates for the center of the file print are the mid-points between the maximum and minimum values of X and Y respectively for the file minutiae. The center for each minutia pattern is shown by the + symbol in Figures 4A and 4B.

OMPI

The coordinate values shown for each minutia in the top row and left column of the comparison matrix of Table 4 are with respect to the center of the print. Thus, to compute the translations in X and Y, ΔX and ΔY , that are required to superimpose two minutiae, such as S2 and F4, the values of the file minutia are subtracted from the values of the search minutia, as shown by the equations of Figure 4. For the S2, F4 minutia pair, these differences are 12 and 10 for X and Y, respectively, as shown in the F4 column and S2 row of the comparison matrix. The +2 term in the X translation equation of Figure 4 is necessary to allow for the non-alignment of the center of the minutia patterns (the coordinates of the center of the search minutiae are 28, 30 and for the file print center are 30-30 producing a difference in the X coordinates of 2).

The entries of the letter L indicate that the translation required for the superposition of two minutiae (e.g., S2, F5) exceeds a threshold which is half of the file minutia pattern width for X and half of the file minutia pattern height for Y. Both the X and Y translations must be less than these thresholds to avoid an L entry. The width and height of the file minutia patterns of Figure 4 are 55 and 50, respectively.

Using the numbers contained in the comparison matrix, a two dimensional histogram is constructed. Figure 5 shows such a histogram for the example of Figure 4. Each cell of the histogram corresponds to the translations in X and Y listed on the top and left edges of the histogram. The number within each cell indicates the number of minutia pairs that exist for a given X and Y translation of the search print. The histogram is constructed by first setting all cells in the histogram to zero and then incrementing (by 1) each histogram cell that corresponds to the numerical entries in the comparison matrix of Table 4. Thus, for example, the minutia pair S2, F3, with a comparison matrix entry of 24, 5 causes the contents of the (24,25; 5,4) histogram cell to be incremented by one. As can be seen by an examination of Figures 4 and 5, all of the correct or proper corresponding minutia pairs (e.g., (S1,F3), (S3,F4) etc.), cause either the (14,15; 11,10) histogram cell or an adjacent cell to be incremented.

To determine from the histogram the best X,Y translation, a search is made of the histogram cells to find the cell with the maximum value. The coordinates of the cell with the maximum value gives the translation values in X and Y which wield the maximum degree of matching. Because of the discrete nature of the process, a slight modification of the procedure is used to avoid edge or boundary problems that produce quantization

errors. In the example, there actually are eight pairs of corresponding minutiae. Only four of these pairs are counted in the (14,15; 11,10) histogram cell. The counts for the other four pairs appear in the left and top adjacent cells due to slight variations in the spacing between minutiae of the two patterns. To allow for these edge or boundary problems, the maximum count for the histogram is computed based on the sum of the counts for four adjacent cells. Thus, the maximum count for the histogram of Figure 5 is eight, and using the center of the cluster of four cells that gives this maximum, the X and Y translations that best line up the two minutia patterns are (using integer computations) 13 and 11 (assuming an initial alignment of the print centers).

The actual mechanization of this alignment procedure, while functionally the same, is somewhat different computationally from that described in the example. One difference is that a comparison matrix as such is never constructed; the computations are done for each minutia pair comparison by means of two nested DO loops, with the histogram being updated at the completion of each minutia pair computation. The desirability of having the minutiae sorted by angle is apparent from an examination of the comparison matrix of Table 4, since all of the A entries for a given row are in one or two sequential groups which include at least one end of the row. Logic is used in the DO loop computation based on these sequential angle differences to reduce the number of minutia pair computations.

Other computation differences are concerned with the manner in which the boundary problem for the histogram is handled and the construction of the histogram for the matcher where, in effect, four more or less independent computations proceed in parallel.

The minutia pattern line-up or registration process is functionally identical to a two-dimensional discrete pattern correlation process wherein one pattern is placed on top of another, the number of corresponding features are counted, a correlation matrix element is incremented, the pattern is shifted a small increment, and the corresponding features again are counted, etc.

In order to determine the best rotation angle for lining up or registering two prints, histograms as described above are constructed in sequence for each rotation angle. The rotation angle which gives the maximum histogram entry is the best rotation angle. If there is more than one maximum in the histogram (i.e., two or more cells have the same

count which is higher than all others), the coordinates for each maximum are computed and stored as well as the rotation angles. Such a condition represents two equally good pattern registrations as determined by the above registration process. The rest of the matching process is executed for each of these maximums (up to five) and a match score is computed for each. The highest resulting match score is taken as the print match score.

4.0 TEST FOR EARLY OUT

After the two prints have been registered, the maximum histogram entry, M_M^\star , is a measure of how well the minutia patterns match since it is approximately the number of minutiae that are mates. (This measure is not exact because of possible double counting – one search minutia might be "paired" with more than one file minutia by the above process.) A comparison of M_M^\star is made with an early out threshold, E_T . E_T is a matching parameter that is specified by the operator. The value of E_T is dependent on the type of search prints used. A typical value for latent search prints is 15. If $M_M^\star < E_T$, a zero match score is assigned, and no further match computations are performed for these two prints. If $M_M^\star > E_T$, a more refined minutia pairing and scoring procedure is used, as described in the following sections.

5.0 MINUTIA PAIRING AND SCORING PROCEDURE

The process for minutia pairing and scoring is outlined in Figure 6. Figure 6 is a flow diagram of the pairing and scoring process. The various procedures indicated by the blocks in Figure 6 are discussed in more detail in the following subsections. The process is illustrated in Figure 7 for which the corresponding minutia data are tabulated in Table.5. Figure 7 contains an example of the overlaid plots corresponding to tabular listings of X, Y and θ minutia values and is used to illustrate the specifics of the process.

5.1 FORMATION OF INITIAL HIT LIST

The first step in the minutia pairing and scoring process is the formation of a list called the "HIT" list which is a list of the search

and file minutiae which are near enough to each other to be considered as potential mating pairs of minutiae. Table 6 is a "HIT" list for the example illustrated in Figure 7 and lists for each search minutia those file minutiae which are "close to" it. In order for a file minutia to be considered close to a search minutia, the file X, Y and Θ values must satisfy the equations

$$|X_{Si} - X_{Fj}| = \Delta W_{ij}, \quad \Delta X_{ij} \leq E_{\chi}$$

$$|Y_{Si} - Y_{Fj}| = \Delta Y_{ij}, \quad \Delta Y_{ij} \leq E_{\gamma}$$

$$|\theta_{Si} - \theta_{Fj}| = \Delta \theta_{ij}, \quad \Delta \theta_{ij} \leq E_{\theta}$$
(6)

 X_{Si} , X_{Fj} , Y_{Si} , Y_{Fj} , θ_{Si} , and θ_{Fj} represent the ith search and the jth file X, Y, and θ minutia values respectively, and E_{χ} , E_{γ} and E_{Θ} are the permissable X, Y and θ pairing errors.

For minutia pairs (i,j) which satisfy this criteria, a distance or closeness measure, D_{ij} , is computed as:

$$D_{ij} = \Delta X_{ij} + \Delta Y_{ij} + \Delta \theta_{ij} / S_{\theta}$$
 (7)

where S_{θ} is a quantity used to scale the Θ differences to the same range as the X and Y distances and depends on the units used to represent X, Y and Θ . For X and Y measured in .008 inch units and Θ measured in 5.6 degree units, S_{θ} would be 4. In addition to satisfying equations (6), in order for a file minutia to be considered close to a search minutia, the following distance relationship must also be satisfied:

$$D_{i,j} \leq D_{M} \tag{8}$$

where D_{M} is the permissable distance error. This distance measure is also shown for each of the minutia paris listed in Table 6. All file minutia which are "close" to a search minutia (up to a limit of four) are listed in the initial HIT list in ascending order of closeness as measured by D_{ij} , as shown in Table 6.

5.2 NEIGHBORHOOD HIT LIST

The rest of the minutia pairing and scoring procedure involves examining all possible search and file minutia combinations and selecting that combination which tends to maximize the match score under a closenessof-fit scoring technique for the neighboring pairs of minutiae. To determine which neighboring search minutiae also have mating file minutiae, a list is formed for each mating search minutia, called the "NHIT" list. An example of an "NHIT" list appears in Tables 7(a)-7(e). The left-most column of this list is a list of the N closest search minutia to that search minutia (called here the neighborhood center minutia) for which the list is formed. The right-hand most column is a list of file minutia (up to two) which are close to the search minutia listed in the left-most column of the table. These neighborhood closeness and distance measures are computed in accord with equations (6), (7) and (8), although different values of E_X , E_Y , E_θ , S_θ , and D_M (i.e., E_{XN} , E_{YN} , $E_{\Theta N}$, $S_{\Theta N}$, and D_M) can be specified. That is, the tolerances and scaling factors can be different for the HIT and NHIT lists. In Table 7(a), the NHIT list for the search and file pair of minutia (S4,F4) is shown together with the nearness or closeness measure for the four closest neighbors to minutia S4 (i.e., S3, S2, S8, S1). This list only includes the two closest file minutiae for a given search minutia. Duplicate file minutiae are eliminated from the list according to a set of logic which first maximizes the number of search minutiae having a mating file minutia, and then minimizes the distance or nearness measure when two pairs of minutiae are considered at a time.

The operation of the logic is illustrated by means of the example NHIT list of Table 8 (the minutiae of the example are not related to those of the example in Table 5). The first minutia combination to be considered by the logic is the S1,F2 combination listed in the first row. However, an examination of the second row shows that F2 appears in this row also, and with a smaller distance than in row one. If minutia F2 is paired with S2 because of the smaller distance, then there is no minutia to pair with S1. In order to minimize the number of pairings, the selection is made as shown in the final pairing column of the list. The detailed logic for processing the NHIT list is shown in the follow chart of Figure 8. In Figure 8:

NB = the number of neighbors for each search minutia

NHIT(I,2) = distance measure between the I search minutia in the NHIT list and the NHIT (I,1) file minutia

NHIT(I,4) = distance measure between the I search minutia in the NHIT list and the NHIT(I,3) file minutia.

Following the logic of Figure 8 and working in a top-to-bottom fashion through the list to eliminate duplicate file minutiae and then selecting the pairing giving the smallest distance measure results in the pairing shown in the "final pairing" column of the list. This logic is not sufficiently complex to always produce an optimum solution since if the file entry for row three would have been (F7,2) instead of (F8,2), the final pairing for the first three rows would have been (F2,5), - , (F7,2) which is not as good as the selection -, (F2,2), (F7,2) for which the combined distance is 4 as-compared to 7 for the less complex procedure. The simpler logic, however, is used in order to improve the matching speed since situations requiring the more complex logic are rare.

Once a NHIT list has been edited to eliminate duplicate file minutiae and the resulting, best search-file neighborhood minutia pairings have been determined (according to the above rules), the variance in the fit of the neighboring minutiae is computed. A combined variance over X, Y and Θ is computed as:

$$\sigma^{2} = \frac{1}{3} \left[\sigma_{x}^{2} + \sigma_{y}^{2} + \sigma_{\theta}^{2} / S_{\theta} \right]$$
 (9)

whereas:

$$\sigma_{X}^{2} = E \left[(\Delta X - M_{\Delta X})^{2} \right] = \frac{1}{N_{M}} \sum_{J=1}^{N_{M}} (\Delta X_{j})^{2} - \left[\frac{1}{N_{M}} \sum_{J=1}^{N_{M}} \Delta X_{j} \right]^{2}$$

$$\sigma_{Y}^{2} = E \left[(\Delta Y - M_{\Delta Y})^{2} \right] = \frac{1}{N_{M}} \sum_{J=1}^{N_{M}} (\Delta Y_{j})^{2} - \left[\frac{1}{N_{M}} \sum_{J=1}^{N_{M}} \Delta Y_{j} \right]^{2}$$
 (10)

$$\sigma_{\theta}^{2} = E \left[(\Delta \theta - M_{\Delta \theta})^{2} \right] = \frac{1}{N_{M}} \sum_{J=1}^{N_{M}} (\Delta \theta_{j})^{2} - \left[\frac{1}{N_{M}} \sum_{J=1}^{N_{M}} \Delta \theta_{j} \right]^{2}$$

 S_{θ} is a quantity used to scale the σ_{θ}^{2} values to the same range as σ_{χ}^{2} and σ_{γ}^{2} . ΔX_{u} , ΔY_{j} , $\Delta \theta_{j}$ are the X, Y and θ differences between neighboring search and file minutiae, and N_{M} is the number of matching neighbors. Again S_{θ} is a function of the units used to measure X, Y and θ . For X and Y measured in units of 0.008 inches and θ in units 5.6°, S_{θ} is in the range of 16-32.

In order to use integer arithmetic, equations (10) are computed using a different scale factor S_{σ} to scale the computed σ^2 values to appropriate integer values. The value of S_{σ} depends on the scoring table used and for the scoring table of Table 9, S_{σ} = 4. In FORTRAN notation, the equation for determining σ_{χ}^2 , equation (10), has the form:

IVX = ((MXIS - (MXI*MXI)/NMM)*IVARF/NMM
where:
IVX =
$$\sigma^2_X$$

MXIS = $\sum_{J=1}^{N_M} \Delta X_j^2$
MXI = $\sum_{J=1}^{N_M} \Delta X_j$

$$M_{M} = M_{M}$$

Tables 7(b) and 7 (d) show the variance computations for the (S4,F4) and (S4,F2) minutia pairs respectively. In these computations, $S_{\sigma} = 4$ and $S_{\theta} = 22.5$. The integer scaled values of σ^2 are indicated by σ_S^2 .

Having computed the variance in the neighborhood fit of minutia, the individual minutia score S_{Mi} is determined from a two-dimensional scoring table. An example of such a scoring table is shown in Table 7(e). One dimension of the table is N_M , the number of matching neighbors, and the other is $\sigma_S^{\ 2}$, the combined, scaled variance of the fit. The individual minutia score for the (S4,F4) minutia pair of 0 because $\sigma_S^{\ 2}$ is greater than 14, the largest $\sigma_S^{\ 2}$ entry of the table, while the individual minutia score for the S4,F2 minutia pair is 60 (the fourth row and fourth column entry of Table 7(e)). A careful examination of the minutia patterns of Table 5 shows that the (S4,F2) pairing gives a much better fit for the neighboring minutiae as the $\sigma_S^{\ 2}$ computation for this pairing indicates.

Table 9 is the scoring table used in the preferred embodiment. The table is treated in the computer program as a one-dimensional table for purposes of speed and the indices to the table are computed using the specified minimum and maximum values for N_{M} and σ_{S}^{2} . This procedure, in effect, specifies a score for all of N_{M} , σ_{S}^{2} space but it does not require an infinite table of scoring values. Thus, using FORTRAN type notation,

If
$$N_M > N_{MX}$$
, $N_M = N_{MX}$
If $N_M < N_{MN}$, $S_M = 0$
If $\sigma_S^2 > \sigma_{SX}^2$, $S_M = 0$
If $\sigma_X^2 < \sigma_{SN}^2$, $\sigma_S^2 = \sigma_{SN}^2$ (12)

where N_{MX} , N_{MN} , σ_{SX}^2 , and σ_{SN}^2 are the maximum and minimum allowed values of N_M and σ_S^2 respectively. In Table 9 N_{MX} = 12, N_{MN} = 4, σ_{SX}^2 , = 30, and σ_{SN}^2 = 1. Table 9 was developed by intutitive and empirical means so as to give a high score when the search and file fingerprints are similar, and a low score when they are dissimilar.

When the score S_{Mij} , for a given search minutia-file minutia pair (as listed in the initial HIT list), has been determined from its relationship to its closest neighbors, this score is entered in the initial HIT list in place of the distance measure initially computed for this minutia pair. This procedure is repeated until scores have been determined for all minutia pairs defined by the initial HIT list. Table 10(a) is the HIT list for Table 6 with the distance measure replaced by the individual minutia scores. In order to avoid considerable hand computations to provide this example, all of the S_{Mij} entries except for the S_{M44} entries are rough approximations, but are sufficiently representative to illustrate the essential features of the process.

5.3 DETERMINATION OF FINAL HIT LIST AND INDIVIDUAL MINUTIA SCORE

When all of the score entries have been made in the initial HIT list, the file minutia entries for each row are re-ordered to be in decending order based on the score entries, and only the first two entries are retained in the HIT list. The right-most column of the example HIT list of Table 10(a) shows the effect of this or-ordering and truncation.

Using the truncated, score-ordered HIT list, multiple file minutiae are eliminated by selecting that pairing which maximizes the total score when minutia pairings are considered two at a time. The selection process for the example of Table 10 is straightforward- in the right-most column of Table 10(a), the file minutia with the lowest score is always eliminated if multiple entires exist. Those file minutiae to be eliminated are indicated by a star (*) in this table.

A situation not quite so straightforward is shown in Table 11. If the lowest scoring file minutiae are eliminated, there is no mating file minutia for search minutiae S2, S4, S7, and S8. The selection logic considers the pairing for two search minutiae at a time and is such that the combined score for the two minutia pairing is maximized. Figure 9

contains a flow chart of the process. In Figure 9:

NS = number of search minutia

HIT(i,2) = score for file minutia of H(i,1)

HIT(i,4) = score for file minutia of H(i,3)

A HIT entry of 999 indicates an empty cell or no minutia pairing.

The result of the application of the process shown in Figure 9 to the example of Table 11 is shown in the right-most column of Table 11. The logic is not sufficiently complex to truly maximize the score over all possible pairing combinations. In the example of Table 11, the score would be five points higher if file minutia F9 were paired with search minutia S3 instead of S4 as shown. Such situations requiring more complex logic, however, seem to be very rare, and hence the added logic complexity that would be needed to handle such situations is not included as part of the match procedure.

6.0 FINAL MATCH SCORE

The final match score for the entire print is simply the sum of the match scores for each individual search minutia, as determined from the final HIT list. This is illustrated at the bottom part of Table 10(b).

The invention is mechanized by means of a FORTRAN routine run on any suitable computer system such as the IBM 7090. Appendix I contains a FORTRAN listing of the computer program. Appendix II contains a list of the more significant program variables.

Although the invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of this invention being limited only by the terms of the appended claims.

MINUTIA	COOF	NUTI	A ITES
NO.	X	Y	8
1	103	13	2
2	18	21	8
3	51	93	40
4	8	29	45
5	30	40	90
6	90	79	130
7	117	43	135
8	116	87	135
9	90	50	160
10	55	30	165
11	120	24 •	172
12	. 85	21	174
13	72	88	182
14	101	111	184
15	47	16	187
16	42	99	220
17	23	72	250
18	60	70	295
19	43	52	305
20	70	80	318

a) SEARCH MINUTIA

MINUTIA NO.	coò	RDIN	ia Ates .
NO.	×	Y	в
1 2 3 4 5 6 7 8	41 34 20 34 75 112 88 78 94	118 93 18 36 95 72 69 48 40	40 62 67 118 148 170 175 181
10 11 12 13 14 15 16	61 73 23 18 33 46 95 58	36 129 95 63 74 54 91 83	193 212 250 275 284 320 331 344

TABLE I

b) FILE MINUTIA

LIST OF BASIC STEPS IN PROCESS

- 1.0 PREPARE SEARCH MINUTIA DATA
 - 1.1 Sort Into Angle Order
 - 1.2 Find Closest Neighbors
 - 1.3 Rotate Search Minutia For Each Angular Position
- 2.0 PREPARE FILE MINUTIA DATA
 - 2.1 Sort Into Angle Order
 - 2.2 Find Min and Max X and Y Values
 - 2.3 Compute Quantization Parameters
- 3.0 PRINT REGISTRATION (FIND BEST ANGLE ORIENTATION AND X, Y OFFSETS FOR LINING UP SEARCH AND FILE MINUTIA PATTERNS)
 - 3.1 For Each Angular Rotation, Build A Two Dimensional Histogram of X, Y Translations To Overplay All Possible Minutia Pairs
 - 3.2 Determine X, Y Translations Corresponding To Maximum of Histogram
 - 3.3 Determine Rotation Angle For Maximum of All Histograms
 - 3.4 Determine Maximum Value of All Histograms M_{m}^{*}
- 4.0 TEST FOR EARLY OUT
 - 4.1 Compare M_{m}^{\star} With Threshold E_{T}
 - 4.2 IF M_{m}^{*} < E_{T} , Assign Zero Match Score, Exit
 - 4.3 If $M_m^* > E_T$, Proceed
- 5.0 "ROTATE, TRANSLATE" SEARCH MINUTIA TO BEST MATCH POSITION DETERMINE WHICH SEARCH MINUTIA MATE WITH WHICH FILE MINUTIA
- 6.0 FOR EACH SEARCH MINUTIA WHICH HAS A MATING FILE MINUTIA, TRANSLATE SEARCH MINUTIA SO THESE MATING MINUTIA COINCIDE COUNT HOW MANY OF N_N CLOSEST NEIGHBORING SEARCH MINUTIA ALSO HAVE A MATING FILE MINUTIA N_m COMPUTE THE INDIVIDUAL MINUTIA SCORE. I_{si} . ASI $_{si} = N_M 2$
 - 6.1 Form Initial "Hit" List
 - 6.2 Form Neighborhood Hit ("NHIT") List
 - 6.3 Determine Final Hit List and Individual Minutia Score
- 7.0 COMPUTE TOTAL FINAL MATCH SCORE S_{M} ASS $_{M} = \sum_{i=1}^{1} I_{si}$

MINUTIA NO.	8 NEAREST NEIGHBORS
. 1	11, 12, 7, 9, 15, 10, 6, 8
-2	4, 5, 15, 10, 17, 19, 18, 12
3	16, 13, 20, 18, 6, 19, 17, 14
4	2, 5, 15, 10, 17, 19, 18, 12
5	4. 2. 17, 19, 10, 15, 18, 9
6	20, 13, 8, 14, 9, 18, 3, 7
TABLE 3	

6 -1	14,10	J	<	< 1	<	<	<	<	<	<	58 (17,-16)
	-11,12	14,12	<	~	Α.	<	<	<	<	<	57 (-8,-13)
<	<	٧	17,23	14,13	₹	<	4	<	<	<	56 (-13,18)
<	<	∢.	12,10	0.0	<	<	<	<	«	<	19'81-1 cc
<	4	٧	<	<	14.10	٠	6,0	14,-5	-11,-15	ľ	\$4 (7,-5)
<	<	٧	٧.	<	-1,15	14,10	9,46-	0,1-	-2610	-5,-75	53 (-8,0)
<		<	۷	<	24,20	١.	12,10	24.5	-1'-2	24,-20	52 (17,5)
<	٧	V	٧	<	14,25	٦.	6,15	14,10	-11,0	14,-15	\$1 (7, 10)
F11 (27,-10)	F10 (5,-25)	F9 (-20,-25)	F8 (-28,5)	F7 (-25,5)	. F6 (-5,-15)	F5 (-20,-10)	F4 (3,-5)	F3 (-5,0)	F2 (20,10)	F1 (-5,25)	

SEA	RCH	MINO	TIA
NO.	×	Y	θ
1	8	8	25
2	14	21	27
3	10	20	30
4	6	17	32
5	36	10	150
6	31	8	155
7	26	14	160
8	14	14	235
9	28	22	325
10	32	22 22	330
11	39	22	340
			l

FI	LE M	ITUN	A	
NO.	X	Y	θ	
1	18	23	25	_
2 3	10	19	25	
3	14	22	28	
4	5	14	30	
5	8	9	30	
6	12	10	32	
7	28	15	150	_
8	24	12	150	•
9	39	12	160	
10	35	9	162	
11	27	8	170	
12	12	15	210	
13	18	15	230	
14	32	24	320	
15	36	23	332	
16	25	22	342	

HIT LIST

SEARCH MINUTIA	CORRESPONDING FILE MINUTIA, DISTANCE
S1	(F5.2), (F6.8), (F4,10)
\$2	(£3,1), (£1.6), (£2.6)
S3	(F2.2), (F3.6), (F4.11), (F1,12)
S4	(F4,4), (F2,8), (F5,10), (F3,14)
S5 .	(F10,3), (F9,7)
S 6	(F11.6), (F10.6)
S7	(F8.4), (F7.6), (F11,9)
S8	(F13,6), (F12,8)
S9	(F16,6), (F14,7), (F15,10)
S10	(F14,4), (F15,5), (F16,9)
S11	(F15,5), (F14,13)

-24
INITIAL NHIT LIST (S4,F4) PAIRING

INITIAL NHIT LIST	(S4,F2)	PAIRING
-------------------	---------	---------

THE LIVE WIT	. 6101 (04)14/ 11/2//2//
DISPLACED SEARCH	CORRESPONDING FILE
MINUTIA	MINUTIA DISTANCE
S 3	(F2,2), (F5,9)
S2	(F2,5), (F3,6)
S8	(F12,7), (F13,9)
S1	(F5,6), (F6,11)
·	(2)

DISPLACED SEARCH MINUTIA	CORRESPONDING FILE MINUTIA DISTANCE
S3 S2	(F23,1), (F1,6) (F1,0), (F3,5)
\$8	(F13,2), (F12,10) (F6,2), (F5,6)
S 1	(10,2), (10,0)
	(c)

FINAL NHIT LIST, (S4,F4) PAIRING

SEARCH MINUTIA		FILE MINUTIA	ΔХ	ΔΥ	Δθ
S3		F2]	2	-5
S2 S8 S1		F3 F12	-1	4	-25
<u> </u>		F5	1	4	5
		02	0.75	0.75	133
os ²	=	4(0.75) + 4(0.75) + 4	(20)/22.5	·
-	=	30			
S _{M44}	_	0	(b)		

FINAL NHIT LIST, (S4,F2) PAIRING

		1		-,	
EARCH INUTIA		FILE MINUTIA	ΔΧ	ΔΥ	Δθ
 \$3 \$2 \$8 \$1		F3 F1 F13 F6	- 0 - 0 0	0 0 -1 0	-2 -2 -5 7
 °s ²	=	0^{2} $4(0) + 4(0,19)$	0) + 4(20)/2	0.19	20
S _{M42}	=	60	(d)		

EXAMPLE SCORING TABLE

N	જ્'	0	1 :	. 2	3	4	5	6	7_	8	9	10	11	12	13	14
2 3			10 20	5 10		3	0	0	0	Ŏ	0 0 0	0	0 0 0	0	0	0
5 6			150	120	100	80		40		5 10 40	5	3 10	1 5	0 3	0	0

(e)

TABLE 7(a) - 7(e)

Ciliabera --

DISPLACED SEARCH MINUTIA	CORRESPONDING FILE MINUTIA, DISTANCE	FINAL PAIRING
S1	(F2,5) ~	(F2.5)
22	(F2,2), (F7,5)	(F7,5)
ಚ	(FB,2) —	(F8.2)
\$4	(F8.4), (F9.6)	(F9.6)
S 5	(F10,3), (F11,5)	(F10,3)
\$6	(F12.3), (F14,5)	F(14,5)
5 7	(F14,7) —	_
S8	F(12,1) -	F(12.1)

SCORING TABLE

NX X	4	5	6	7	8	9	10	11	12
1	50	100	120	150	170	200	220	250	250
2	30	60	100	120	150	180	200	220	250
3	20	40	70	110	140	150	180	210	240
4	10	20	60	100	120	140	160	200	220
5	8	16	40	70	100	110	150	190	200
6	5	10	20	40	80	100	130	170	200
7	3	- B	16	32	64	90	110	160	180
8	2	6	12	24	48	80	100	150	170
9	1	5	10	20	40	70	100	140	160
10	0	3	6	12	24	50	90	130	150
11	0	2	5	10	20	40	80	120	150
12	0	1	5	10	20	40	80	110	140
13	0	0	4	8	16	32	64	100	120
14	0	0	3	6	12	24	48	100	120
15	0	0	2	_ 4	8	16	32	70	100
16	0	0	1	3	6	12	` 24	50	90
17	0	o o	0	2	4	8	16	40	80
18	0	٥	0	1	3	6	12	30	70
19	0	. 0	0	0	2	4	8	20	60
20	0	0	0	0	1	3	6	10	40
21	0	0	0	0	0	2	4	8	30
22	0	0	0	0	0	1	3	6	20
23	0	0	0	0	0	0	2	4	10
24	0	0	0	0	0	0	1	3	8
25	0	٥	0	0	0	0	0	2	6
26	. 0	0	0	٥	0	0	0	1	4
27	0	0	0	0	0	.0	0	0	. 3
28	0 -	٥	0	0	0	0	0	0	2
29	0	0	0	0	0	0	0	.0	1
30	0	0	0	0	0	0	0	0	0

SEARCH MINUTIA	- 27 - CORRESPONDING FILE MINUTIA INDIVIDUAL MINUTIA SCORES	CORRESPONDING FILE MINUTIA AFTER SCORE ORDERING AND TRUNCATION
S 1	(F5,3), (F6,100), (F4,0)	(F6,100), (F5.3)
S2	(F3,10), (F1,80), (F2,1)	(F1,80), (F3,10)*
S3	(F2,3), (F3,100), (F4,0),	(F3,100), (F2,3)*
S4	(F1,0) (F4,0), (F2,60), (F5,0) (F3,0)	(F2,60), (F4,0)
S5	(F10,10), (F9,20)	(F9,20), (F10,10)*
S6	(F11,20), (F10,80)	(F10,80), (F11,20)
S7	(F8,3), (F7,60), (F11,0)	(F7,60), (F8,3)
S8	(F13,100), (F12,3)	(F13,100), (F12,3)
S9	(F16,3), (F14,40), (F15,0)	(F14,40) (F16,3)
S10	(F14,5), (F15,60), (F16,0)	(F15,60), (F14,5)*
S 11	(F15,3), (F14,10)	(F14,10)*, (F15,3)*

*Eliminated Minutia

(a) Intermediate HIT List

SEARCH MINUTIA	SELECTED FILE MINUTIA AND SCORE								
\$1 \$2 \$3 \$4 \$5 \$6 \$7 \$8 \$9 \$10 \$11	(F6,100) (FT,80) (F3,100) (F2,60) (F9,20) (F10,80) (F7,60) (F13,100) (F14,40) (F15,60)								
Match Score = 100 + 80 + 100 + 100 + 40 = 700									
(b) Final HIT List									

CORRESPONDING FILE MINUTIA AFTER SCORE ORDERING AND TRUNCATION	Final Pairing AND SCORE
(F3,40)*, (F7,35)	- (F7,35)
(F3,20)	(F3,20)
(F9,20)*, (F11,10)*	_
(F9.15)	(F9,15)
(F11.50)	(F11.50)
(F15,60), F(18,30)	(F15,60)
(F15,10)*	_
(F15,5)*	_
(F21,30), (F23,15)	(F21,30)
{F21,25}*, (F26,20)	(F26,20)
(F31,30)*, (F32,20)	. (F32,20)
(F31,20), (F33,5)	(F31,20)
	AFTER SCORE ORDERING AND TRUNCATION (F3.40)°, (F7,35) (F3.20) (F9.20)°, (F11,10)° (F9.15) (F11.50) (F15,60), F(18.30) (F15,10)° (F15,5)° (F21,30), (F23,15) (F21,25)°, (F26,20) (F31,30)°, (F32,20)

* ELIMINATED MINUTIA

TABLE II

APPENDIX I ECLIPSE FORTRAN 5, VERSION 4.00

SUBROUTINE MATCHP

OVERLAY OVMAT

ပ ပ ပ

9 2 8 9 9

ë

```
IPAR(31), ERAM), (IPAR(32), DELX), (IPAR(33), DX) (IPAR(35), NYMAX), (IPAR(36), IETP), (IPAR(37), IETPN) PAR(44), IOFLAG), (IPAP(61), ASFP), (IPAR(62), ERAB) (IPAR(64), ASFS), (IPAR(135), JSMIN), (IPAR(136), IVARF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         INTEGER P(3*ID4),COUNT(2500),F(3*ID3),PA(ID5*ID4),NBR(ID6*ID4)
*,SUMX,SUMY,AVX,AVY,SDIV(32),CDIV(32),NPRS(33),SCORET(16,10)
*,RIV(23),NPOS(5),NMAX(5) HIT(ID4),PA (ID4),S(ID5),SS(ID5),NHIT(ID4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        *,XOF,YOF,DPX,DPY,PX,PY,PXS,PYS,PCN(9),LATID(7)
*,DELTH,DELX,DX,ERAA,ERAM,DDX,XOFS,YOFS,PXLX,PYLY,ISTAB(512)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ,(IPAR(137),IVARMX), (IPAR(138),JSXMX), (IPAR(139),IVARMN)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    *,NP,NF,ISCOR,ISCOA(24),IFCDA(16),IPAR(256),ISCIVR(500)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (1), $591)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (COUNT(750),HIT(1))
     DATA GENERAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 COMMON/ARGS/LATID, ISCDA, NP, P, IFCDA, NF, ISCOR, IFLAG, PCN
                                                                                                                                                                                                                                                                                                                                                                    COMMON/ARRAY/F, COUNT, SCORET, IXMIN, IXMAX, TXMIN, IYMAX
                                                                                                                                                                                       PARAMETER ID1=204, ID4=204, ID3=204, ID5=20, ID6=12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IPAR(29), NAT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   COMMON/PLOTAG/PA,13S,XOFS,YOFS,IPAAR,PAA,AVX,AVY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (IPAR(26), IEOT), (IPAR(28), MXNBL), (IPAR(29), (IPAR(30), ERAA), (IPAR(31), ERAM), (IPAR(32), 0, (IPAR(34), NXMAX), (IPAR(35), NYMAX), (IPAR(36), (IPAR(38), DDX), (IPAR(44), IOFLAG), (IPAR(61), (IPAR(63), ASFN), (IPAR(64), ASFS), (IPAR(135), (IP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ), (count()
R40 MATCH PROGRAM (MATCHP): CALLS ASORT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  , (S(1), PA(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    EQUIVALENCE (ISTAB(21),ISCTVR(1))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  *, (COUNT(630),NHIT(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     * ASFP, ERAB, ASFN, ASFS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     COMMON/MATGP/IPAR
                                                                                                                                                                                                                                                                                COMPILER STATIC
```

* -132,-218,-652,652,218,132,95,75,62,54,48,43,40,37,35,34,33,32,32/ DATA CDIV/34,38,42,48,56,66,79,97,124,163,225,333,547,1068,2957,26556, 26556,2957,1068,547,333,225,163,124,97,79,66,56,48,42,38,34/ ,-40,-43,-48,-54,-62,-75,-95 DATA SDIV/-32,-32,-33,-34,-35,-37 PREPARE LATENT DATA

> 32: 34: 36: 36:

ر د د د

ب

BUREAU CMPI VIPO

= 32

.GT. 32)

DELTH = 4 IF(NAT .G

NPK = NP+NP+4

12: 13: 14: 15: 16: 17: 19: 19:

21: 22: 23:

24:

25: 26: - 29A -

IF(NAT*NPK .GT. ID5*ID4) NAT = ID5*ID4/NPK
IF (IFLAG.EQ.1) GO TO 65
OPEN AND READ FILE CONTAINING SCORING TABLE DATA

ပပပ

38: 39: 40: 41:

BUREAU

OMSI

A. WIPO

	14	NOTION NOTION	8030 CONTINUE	NHIV = MXRBL	IF (NHIV GE, NP) NAIV = NP-1		C SOAT INTO ANGLE ORDER		TRA = ERAA + DELTH + NAT/2	L ASORT		C COMPUTE AVERAGE X AND Y	ပ	NP3H NPA3	NPCO # NPS	3UMX = 0	SUMY # 0	00 15 I = 1,NP3,3	SUM H SUM + S(I)	15 9UMY = 3UMY + 3(1+1)	AVX = SUMX/NP	AVY = SUMY/NP		C CENIER LATENT AROUND ORIGIN	U	UC 25 1 = 1,NPCD,3	SS(I) = S(I) = 4VX	. SS(1+1)S = (1+1)S .	
# 3 U	0 7	 	50:	51:	52:	533	54:	55:	56:	57:	5.9:		: 09	51:	62:		54:	65:	66:	67:	6 H.	:69	70:	1.	72:	73:	7 4:	75:	,

						:				
						•				·
·						•				
)RS					•		•			
HOIS	NAIVS = NRIV+1	N W GN II NN	11=0	00 800 1 = 1,NN,3	00 380 L = 1,NRIVS	NORS(L) = 0	RIV(L) = 52767	Px = SS(I)	PY = SS(I+1)	
ပ ပ ပ							390			
77: 78: 79:	80:	91:	82:	83:	84:	e5:	86:	87:	88:	85

BUREAU OMPH WIFO WIFO

	i			[,	-	32	-					:	•		, ·	- ,							•
					•							•							**************************************				The state of the s		4 · · · · · · · · · · · · · · · · · · ·	•				
•		. (2)		ľ	10 75		60 T0 650										S(L-1)) 60 TO:770	•				661 0	•	10 760				, e	-	R EACH ANGULAR POSITION
ż	* IABS(PX-	A IABS(PY-S	+	. •	.RIV(1))	= 2,NRIVS	.RIV(K))	= RIV(K)		- +	AIV(K-1) = IR	NBRS(K-1) # 3/3 +1	:	IEND = NRIV		2, 1EN		RB (L)	= NBRS(·1) = 1TMP		1F (11MP.ED.0) GO TO	I - 0N	61.1) 60	:1.NRIV		WAR(II) = NARS(L)	Ì		ROTATE LATENT FOR E
						,			620		650		750		760			i :			170			;	199		180	0	ں))
0	0	116 -	921	931	106.	156	:96	973	186	0	1001	0	0	0	0	S	0		1001	0	0	_	_	-	1141		116:	-	1188	1611

	NP4NP # 2NP4NP	NP2CD = NP2	JA = (32-NAT)/2 +1	JB = (32+NAT)/2			S + 5 × 11 × × × × × × × × × × × × × × × ×	PX = 35(L)	PXS = 324PX	PY # 95(L+1)	PYS # 32APY	XX H XX	Z :: N	PA(KK) = PX - (PX9/COIV(N))-(PY9/SOIV(N))	
1021	121:	1251	1231	1241	1251	1561	1271	120:	1621	1301	1311	132:	1331	1341	

ζ.

W W W W W W W W W W W W W W W W W W W	06	
149:	INUE RE FI	
152:	C COMPUTE QUANTIZATION PARAMETERS	i !
1551	NX = MINO((IXMAX-IXMIN)/DELX,NXMAX) IF(NX.ED.0) NX=1	

157:	~
1581	IF(NY,ED,0) NY=1
1591	ICXF = ([XMAX+[XMIN)/2
160:	ICYF = (IYMAX+IYMIU)/2
161:	JFKMIN = 1CXF = DELX*NX/2
162:	ICYF -
163:	2+X
1641	NAI = NA+5
165:	LXII : NXI+NXI
166:	LX = NX*DELX/2
167:	ม
168:	11
169:	NB4 # NFIVA
170: C	
171: C	START OF BASIC MATCH ALGORITHM
172: C	
173: C	FIRST, FIND THE BEST X,Y OFFSETS AND ANGLE ORIENTATION:
174: C	ENT PRINT OVER T
175; C	! ·
1751 C	COMPUTE SEARCH POSITION LIMITS
1771 C	
1781	00 3 I = 1,NXII
1791	COUNT(1) = 0
100:	IANS # 2

1021 1021 1031 1051 1061 1001 1901 1931 1931	M H I I S M H I I S M H I I S M M M M M M M M M M M M M M M M M	
, p	6 11 11 11 2 2 15 16 2 2 1 2 1	ELX + 1

COUNT(KS1+NY1) = COUNT(KST+NV1)	XST = XST + 1	COUNT(KST) = COUNT(KST) + 1	Z	60 10 275	IF (F	L = LN			And the second of the second o	FIND COORDINATES OF MANAGEMENT STATES	INCO I FORTAGE TO CALCACTE TO COLOR	00 400 I = 1.NXT1	NSS # COUNT(1)	COUNT(1) = 0		1F (NSS.EG.]ANS) GO TO 199		The state of the s
					260		275	300	 	<u>ပ</u>	u			•	i			
2091	2101	2111	2121	213:	2141	2 5:	216:	217:	2181	2191	2201	2211	222:	223:	224:	27.5	7205	

2271	!	SON II SNAI	
228:	1	NPOS(M4AX) # 1 # 1	
229:		WMAX(MMAX) # NANGLE	
2 50 1		00 10 400	
231:	394	MAAX : MAAX + 1	ĺ
232:		IF (MMAX,61,5) MMAX II 5	
2331		NPO3(4MAX) # I	
2341		NYAX(MYAX) = NANGLE	
235:	000	CONTINUE	
2 36:	200	CONTINUE	
237:	ပ		j
239:		SECOND, MOVE THE LATENT PRINT AND FIND WHICH OF THE LATENT	
239:	U		
240:	ပ I	:	
241:		150089 = 0	
542:		1F (1ANS .LT. 1EOT) GO TO 992	
245:		1 = 7	!
244:	U		
245:	U	FIND THE POSITION OFFSETS	
246:	ບ	1	
247:		11	
248:		1 - NI+IN - (2f) SOUN = Nf	
		1	

(JN.GI.0) GO TO 601 = NY = IN = 1 TINUE Z = NMAX(JZ) = NP2CD*(NMAZ-1)	₹ 4 11 0	AS = 1256 = 1,2 90 1BA = 1,2 AS = 1AB1AS 90 1 = 1,NP 8*1-7	TRANSLATE LATENT TO NEW POSITION PX = PA(K) + XOF PY = PA(K+1) + YOF IANG = PAA(II + IABIAS
601	122	278	ບບບ
250: 250: 250: 250: 250: 250:	\mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v}	2613 2623 2633 2643 2653	269:

ר א א	IF(N.GE. NF3) GO.TO 292		C IDENTIFY HITS	U	. DO 280 J = NoNF3, 3	1EA = 1ABS(F(J+2) - 1ANG)	1F(1EA .GT. ERAM) GO TO 279		IF(IEX .GT. DX) GO TO 280	1EY = 1ABS(F(J+1) - PY)	IF(IEY .GT. 0x) GO TO 280	IET = IEA/ASFP + IEX + IEY	JF (1ET .61. 1ETP) GO TO 280	7	1F(HIT(1H+JH+1) .LE, 1ET) GO TO 2786	HIT(IH+JH+1) = 1ET	HIT(IH+JH) = 1/3 + 1	2783 JH # JH-2	1F(JH .LT. 0) GO TO 2786	IF(HIT(IH+JH+3) .GE. HIT(IH+JH+1)) GO TO 2786	111 = HIT(IH+JH)
12731	2791	1515	,5161	.2171	2781	2791	2601	2011	262:	2631	2841	2851	2861	267:	2581	2691	. 1065.	1162	1595	.2931	294:

												f om a Openhagumpa to	THE LATENT	THEN						**************************************			
I12 = H11(IH+JH+1)	IT(IH+JH) =	HIT(HH+JH+1) = HIT(HH+JH+3)	I(IH+JH+2) = 11	HIT(IH+JH+3) = IT2	0 10 2783	2786 CONTINUE		279 IF (F(J+2),GT,IANG) GD TO 290	- " "	30 CONTI	290 CONTINUE	292 CONTI	OR E	PRINTS	SEE HOW		NBRI = -NRIV	00 898 LM x 1,NP	NBRI = NBRI + NRIV	11	IS = 8*(L4-1) + 2*(LM1-1) + 1	IF (HIT(1S) , EO, 9999) GO TO 898	
295	5963	C	5	~	0	0	0	_	\circ	0						312:	3131	314:			317:	310:	

BUREAU
OMPI
WIPO
WIPO

ANG = PA	845 JAHIFAC	85 85	1. J	IEA = 1AB3(F(J+2) = 1ANG) IF(1EA _GT_ ERAB) GO TO A45	S(F(J) - PX) T. 00X) G0 T0	Y = IABS(F	EA/ASF PN) GO	= 4+K + 3 (NHII(IH) ,EG, 0) GO TO 835	.NE. 0)	820 NHIT(IH+2) # NHIT(IH)	10 035 (1ET .GE. NHIT(IH
1:		4 5 .	u7:			ν. ν. ε. ε.	5:	57:	5.05	61:	3 2 2

		WE . 0	J2*0 2=0, 5J1 .LE. 511
	TE FILE MINUTIA, SELECT BEST NEIGHBOR PAIRING 4) GO TO 870	1 11 # J2, J1 . NE.	11 x 31 11x31, 12 x 0 1 11x31, 12x0, 1 11x31 12x0 J
620	ITIA, SELECT BE!	9.79 9.79	5 4 60 TO 862
IF(IET -LT. NHIT(IH+1)) GO TO 620 030 IH = IH+2 035 NHIT(IH) = J NHIT(IH+1) = IET 045 CONTINUE 050 CONTINUE 052 CONTINUE	ELIMINATE DUPLICA 00 870 I # 1,NB4, IF(NHIT(I) .EQ. 0 855 IFM = NHIT(I)	J = I J = J+4 IF(J , 6T. NB4) GO IF(NHIT(J) , EO. 0) IF(NHIT(J) , EO. IF IF(NHIT(J+2) , NE. NHIT(J+2) = 0 NHIT(J+3) = 0 60 TO 656	860 IF [NHII (1+2) .NE. 0) GO TO R65 IF (NHII (1+2) .NE. 0) GO TO R64 IF (NHII (1+1) .LT. NHII (1+1)) GO TO R62 NHII (1) = 0 NHII (1+1) = 0 GO TO 870
200000000000000000000000000000000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	300: 300: 390: 391: 392:

	GO TO 858
	NHTTCI
	1) = NHIT
	(J+5) = 0
	3) =
-	60 10 858
11: 865	IF (NHIT (J+2) . EO. 0) GO TIL BAKE
4021	JF (NHIT (I+1) .LE. NHIT (J+1)) GO TO AKA . TIETL TO ME A STATE TO THE CONTROL OF
31 866	LTT (1) = NHIT(I+2)
. 4041	NHIT(I+1) = NHIT(I+3)
-	0 =
4061	NHIT(1+3) = 0
	60 10 855
463: 868	NH11(1+
4081	NHIT(1+3) # 0
0101 . 010	CONTINIE

BUREAU OMPI WIFO NIFO

							•	: :	•				· .					•			•	
	FIND SCORE FOR NEIGHBORS BASED ON VARIANCE OF FIT					•					•		:					•				
	RS BASED ON			:	•								:	TO 680	•			0	ı	3)	•	
	FOR NEIGHBO								-LAMIN+NANG			1,N84,4	•	.Eu. 0) GO			RI+K)	0) GO TO 840		+ DPX - F(J)	01	
	FIND SCORE	•	MX	0 = J.w	0 = I1x	O = SIXW	MYIS = 0	0. = 611m	IA91AS = -L	NMM = 0	х 0	00 8A0 I =	X 11 X + 2	IF (NHIT(I)	+ X72 11 752	J = NHIT(I)	KI = NBR(NBRI+K)	IF (KI'.EQ. 0) GO	IX = KI +KI	10 = PA(1K)	MAI = MAI +	
د	ပ	ပ																				
	115:	113:	310:	415:	416:	u 17:	418:	:617	4.20	421:	422:	423:	#5 n :	425:	426	427:	428:	429:	4 30:	431:	432:	

BUREAU
CLIPI
VIPO
VIPO
FRNATIONA

E 40 00 00 00 00 00 00 00 00 00 00 00 00	B PA (IK+1
	= MY1 + 10
436:	OI + OI + SIAM # SI
457:	ID = PAA(KI) + IABIAS - F(J+2)
438:	IF(IABS(ID) .GT. 127) ID = ID + 256
439:	0
4 4 0 3	MIS = HIIS + IDAID
: 1 7 7	880 CONTINUE
442:	1 + NIMSC - MEN H XSC
443:	IF(JSK .GT. JSKMX) JSK # JSKMX.
444	35
445:	
945:	19CORV = 0
: 177	115x5 = 0
448:	
1677	885 IVX = ((HXIS - (HXI*HXI)/NMM)*IVARF)/NMM
450\$	IVY = ((MYIS - (MYIAMYI)/NAM) + IVARF)/NMM
451:	IVI : (MIIS - (MILANTI)/NAM) + IVARE) / (NEM+ASFORDED
.25	
453:	ITSX = IVARWN
454:	IF (IISX .61. IVARMX) ITSX = IVARMX
4.5.5.	IF(II9x .LT. 1) IISX = 1
456:	IX3V = 13X=1) + IVARHX+1TSX
1	

19CORV # ISCTVR(1XJV) 890 HIT(IS+1) # ISCORV 895 CONTINUE 696 CONTINUE	C ORDER HIT ARRAY ENTRIES.BASED ON SCORE C DO 920 I = 1,NPB,8 4x = -5 4x = -5 4x = -10	00 910 1F(HIT 1F(HIT MX2 = MX2N = MX = H	905 16 (HII) 905 1F (HII) MX2 = MX2N = 910 CONTIN	
15 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4611 4621 4621 4631 4651	4671 4691 4701 471	4731 4751 4751 4763	4 6 3 3 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

BUREAU OMFI VIPO BAD ORIGINAL FRNATIONA

11=11,12±4999,J2=9999	1. 1121,12=9999,712=9999,511,61.511 .	1+1) + HIT(J+3)) GO ·TU 937 t	- 50 -	946 11=J1,12.NE.9999,J2.NE.9999 946 11=J1,12.NE.9999,J2.NE.9999,SJ1.LT.	IO 440. # 11=31,12.NE.9999,32=9999,SI1.Li.83. # 11=31,12.NE.9999,732=9999,SI1.Li.83. # 32.NE.9999, 911.LI.8I2+931	
F (417 (17 (1) 17 (1+1)	10 46 1(U) = 1	945 IF(HII(J+1) .GE. HII(I+1). + HII(J+3)) GO I 945 IF(HII(J+1) .GE. HII(I+1). + HII(J+3)) GO I 946 HII(J) = HII(J+2)	6666 = (950 IF(HIT(I+1) ,GT, HIT(J+1) + HIT(I+3)) GO TO 940, 952 HIT(I) = HIT(I+2) HIT(I) = HIT(I+3)	HIT(142) = 9999 HIT(1+3) = 9999 GU TU 925 960_CONTINUE
50 5 50 5 50 5 50 5	506:	5 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5		516: 517: 517:	\$19: \$20: \$21:	522: 523: 524: 526:

	ATTRIBUTES	POSITION	SIZE
ARRA	Y ••		
	•		
F	INTEGER ARRAY		612.
COUNT	INTEGER ARRAY	1144	2500.
33	INTEGER ARRAY	1144	20.
NHIT	INTEGER ARRAY	2331	204.
HIT	INTEGER ARRAY	2521	204.
SCORET	INTEGER ARRAY	6050	160.
IXMIN	_INTEGER	6310	
IXMAX	INTEGER	6311	
IAHIN	INTEGER	6312	
IYHAX	INTEGER	6313	
_			
PLOT	AG .==		
0.4	*******	_	
PA	INTEGER ARRAY .	0	4080.
3	INTEGER ARRAY	0	20.
133	INTEGER	7760	
	INTEGER	7761.	
YOFS	INTEGER	7762	· • -
IPAAB	INTEGER	7763	,
PAA	INTEGER ARRAY	7764	204.
AVY	INTEGER	10300	
A V 1	INTEGER	10301	•
ARGS	• •		• • • • • • • • • • • • • • • • • • •
LATID	INTEGER ARRAY	0	7,
ISCDA	INTEGER ARRAY	7	24.
ŅΡ	INTEGER	37	
<u>P</u>	_INTEGER ARRAY	40	612.
IFCDA	INTEGER ARRAY	1204	16.
NF	INTEGER	1224	
ISCOR	INTEGER	1225	
IFLAS	INTEGER	1226	
PCN	INTEGER ARRAY	1227	9.
MATO	3	• •	
MATG			•

	- 52	_	
IPAR IVARMN JSXMX IVARMX IVARF JSMIN ASFS ASFN ERAB ASFP IOFLAG DDX IETPN IETPN IETPN NYMAX NXMAX DX ERAM ERAA NAT MXNBL IEOT	INTEGER	0 212 211 210 207 206 77 76 75 74 53 45 44 43 42 41 40 37 36 35 34 33 31	256.
NBR SUMX SUMY SDIV CDIV NBRS RIV NPOS NMAX ISCTVR ISTAB XOF DPX DPY PX PY PXS PYS	INTEGER ARRAY INTEGER INTEGER INTEGER ARRAY INTEGER	0 4620 4621 4622 4662 4722 4763 5012 5017 5050 5024 6034 6035 6036 6037 6040 6041 6042 6043	2448. 32. 32. 33. 23. 5. 5. 512.

_	C -	2	_

PYLY I NP3 NPCD NN L NP L	INTEGER		6047 6050 6051 6052 6053 6055 6065 6066 6066 6067 6077 6077 6100 6110 61112 61113 61113 61113
ITMP	INTEGER	•	6117
NP2	INTEGER		6120
NP2CD	INTEGER		6121

- 54 -

KM KKX JFMIN NY ICYF NY ICYF NY ICYF NI IC	INTEGER	6122 6123 6124 6125 6126 6130 6131 6133 6133 6134 6135 6144 6145 6155 6155 6165 6165 6165 616
141.11.5	INIEGEN	

				•						•		:			•	٠
•		•				•		•		•		•			LEN	Z OZI
•										••					. IERR	ASORT
6200	6201	6202	6203	029	6205	6206	6207	6210	6211	6212	6213	6214	6215		.DATI	FOPE TIYP
TEGER	: 	TEGER	TEGER	TEGER	EGE	INTEGER	TEGER	TEGER	16668	TEGER	TEGER	TEGE	166	L SUBPROGRAMS	٥	. TATT FYRS
	!	_	N N	S		IVI IVI			· ·	MX2	N-X	N N N	SINC IN	EXTERNAL	ONCE	.IAEC

BUREAU

OMPI

WIFO

ERNATIONAL

208
=
191
531 532

17.9	264	€ C S	697	ロケコ	524															
145	25A	341	464	4 # 4	522															
143	257	340	441	445	521		:										•			
117	235	SH.	121	484	5.20		437	•	•				i							
6 R	233	387	425	K H 7	514		420							077					:	
8.7	22 H	378	¥ ≥ 7	481	517		342						•	439			٠			
. 56	223	377	410	480	510	•	332	449	•	•				438					•	
16	222	376	607	417	505		330						,	457						
15	221	375	404	476	504	536	272	303						436				•		
74	217	306	404	475	503	532	263	518		242				435	•				:	
7.5	201	212	202	473	501	531	251	272		227	306			454						
19	145	244	707	472	492	530	201	214	141	225	262	147	198	433					!	
99	179	 	202	944	491	575	193	204	1 48	224	217	161	162	432					:	
5	1	:		•			161	201	æ	æ	192	159	9	431	ç	þ	£	\$	2	
_	•	: ;					A B	وال	A	⋖	ВА	ပ	Ç	10		0	0	105	106	

	-							•					; m	S. 85	35.8 35	35A 35	35A 359	35A 35	35A 359	35A 359	35A 359	35A 359	35A 359	35A 359	35A 359
					366	366	:	:				.:	500	509	662	662	66%	599	599	500	662	662	66%	66%	662
				365 36	:		-						762	297 368	297 368	297 368 430	297 368 430	297 368 430	297 368 430	297 368 430	297 368 430	297 368 430	297 368 430	297 368 430	297 368 430
			• .	364	•	•	•								296										
!				140									€ .	25	1	2 × × × × × × × × × × × × × × × × × × ×	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 5 5 5	2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1	355		•	752	1))	; ;	355	355	355	355	•	•	•	, ww ann					•	· ! :				
0	350			355) - -) - - -	352	352	N W W	N W N R	3200	3.52 3.54 2.94 2.93	N	N	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NW 40 W W W W W W W W W W W W W W W W W W	200 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	N	200 4 4 5 5 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	200 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	33.50 3.50 3.50 3.50 4.31 4.31	200 200 200 200 200 200 200 200 200 200	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1	349			289	•			351	353	353	351	353	353	353 353 691 290 362	351 353 491 262 362	353 353 891 262 362 362	353 353 891 262 362 198	351 353 891 290 362 198 430	351 353 362 362 362 198 198 255	353 353 353 362 362 430 255	351 353 353 362 362 430 255	351 353 362 362 198 198 255	353 353 353 198 198 255 93	351 353 362 362 362 362 430 255 93	353 353 353 362 362 430 255 93
	285	e i	٠	288				•	295	C C	295 285 146	285 285 146 383	285 285 146 383	285 285 146 383 289	285 285 146 383 361 194	© E © E E	285 285 383 383 361 194	285 285 383 383 383 381 194 194	2895 2895 383 383 383 194 194 197 251	285 285 383 383 383 194 194 194 251	295 285 285 383 383 194 194 197 251	285 285 285 383 383 194 194 251 251	265 265 361 361 261 261 261 261 261 261 261	2885 2885 383 383 383 194 194 197 281 281 281	2885 2885 383 383 383 194 197 26 26
3 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	₹		8		Œ	€ ಬ	€ 50 €	& 20 & 10	& 20 C 60 C	& 20 C 100 C C	& 2 < 10 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 <	& 50 C 60 C C C C C			& 20 < 20 < 40 < 40 < 40 < 40 < 40 < 40 <	@ N < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	encipopaection a	encipopperipo aa	encidedeeribb aa	enciporaector aa	encipopeecipo aa 🖚	encipopoector aa -m	enciporaction as -mm	enciporaction as -mmr
- C	279	36	77	285	: :	5 2	26 25	26 25 241	26 24 281 283	26 24 283 18		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	240227	0.c element - c	. O . C . C . C . C . C . C . C . C . C	. A . C . C . C . C . C . C . C . C . C	0 · C / C / C / C / C / C / C / C / C / C	. A . C . C . C . C . C . C . C . C . C	0.000000000000000000000000000000000000	. n . n . n . n . n . n . n . n . n . n	. N. P.	nermones a labor solution	nerinor con esta interior de atrovir esta en	n recommendation of the common co	ortice to be to be made at the contract
				,			2	2	2	2 4	z	Z	Z 40	2 40	2 40	Z < U	2 40	2 40	2 40	7 40 4		7 40 40	Z 40 40 Z	2 40 2	

	5.41	•																	
:	8 × 2	;																•	
٠.	537									•							•	:	
,	535	1	535	3 1						45.6						•		: 1 -	
	533	3	534	I		•				455	•		•					:	
	529	541	532			: : :			111	454		451						! :	
	4.8	538	45A	457	77	1.5			707	453		057		456				•	
0	0	537	451	92	26	115	29A	299	107	452		409	453	454	452	452	45.2	1	
E	18	241	9 7 7	10	18	AP	766	295	104	445	447	75	56	٠ ۲	451	677	050		
ISCDA	15008	150088	13CORV	ISCIVA	ISTAB	11	111	112	ITMP	ITSX	ITaxs	IVARF	IVAMA	IVARMX	I v I	IVX	JVY	1	

	278	351	393	468	497	517					•	-	60)	-				•				336	
	216	349	389	467	496	516							•	299		•							27.1	
	215	348	388	437	495	514			-			٠		298									270	
	214	347	385	434	494	513								297									566	
	207	346	384	431	493	512								536								•	145	
	506	345	383	427	492	511								495									144	
	205	305	382	402	478	510								294				. •					142	
	204	304	381	401	477.	208				٠				293									101	
	203	303	380	333	476	207		,	•					292									100	
	102	230	379	398	475	503								291								539	66	
•	101	283	378	397	473	205				145				230			256			456		253	98	
9	9.6	281	367	396	472	499			136	141				289	326	369	250			444		248	97	
157	90	279	353	394	469	498	519	133	133	140	347	255	256	288	325	344	249	442	345	443	443	247	96	
ρα	68							123	124	139	319	161	162	287	320	343	248	5 6	344	442	56	243	95	

JV MAX MIN MIN

	130		- 61
	128		·
·.	126	·	
	116		
	114		
437	110		243
430	109		234
428 429 325	108		233
424 428 321	212		232
422 344 138	211	420	231
370 342 136	210	330	229
357 339 135 132	209	261 321 459	205 206 228
337 338 134	208 370 85 137	191 10 329 317 317	199 200 157 226
327 132 138	207 331 84	141 18 328 314 316	166 167 155 181
I X X X	KST KZ	LAMIN LATID LM LMI	LX LY MINO MMAX

HTT 416 439 451 HTTS 416 470 470 470 481 HTTS 465 469 470 470 470 482 HXZ 465 470 470 470 482 484 HXZ HXZ HXT	MPT	57													
465 469 470 472 479 461 465 470 475 476 482 484 471 473 449 417 433 449 418 435 449 419 435 449 410 435 449 411 431 449 412 435 420 413 436 420 414 435 420 415 436 430 416 329 234 236 417 229 234 236 418 320 375 380 410 40 400 400 400 40 400 400 400 416 337 426 401 400 416 400 400 400 400 419 400 400 400 400 419 400 400 400 400 410 400 400 400 400 410 400 400 400 400 410 400 400 400 400 410 </th <th>MII</th> <th>416</th> <th>M</th> <th>451</th> <th></th> <th></th> <th></th> <th>:</th> <th>! : :</th> <th>:</th> <th>! :</th> <th></th> <th></th> <th></th> <th></th>	MII	416	M	451				:	! : :	:	! :				
465 469 470 475 482 484 471 475 482 484 482 484 411 433 449	HII3	419	4	451											
471 477 463 471 477 463 471 477 463 414 435 449 417 453 415 435 449 417 460 26 51 415 435 450 415 435 450 415 435 450 415 435 450 415 435 450 416 450 416 450 416 450 417 463 418 450 418 450 419 410 428 419 410 428 419 401 402 403 404 405 406 409 410 420 273 304 327 410 410 410 410 410 410 410 4116 410 410 410 410 4116 410 410 410 4116	×	465	•	470	472	419	481								
471 477 483 414 432 449 417 433 449 417 433 449 417 433 449 411 473 480 26 51 418 436 450 133 134 135 136 202 203 273 274 278 260 261 330 420 147 229 234 236 159 329 375 380 410 423 441 151 203 215 274 278 305 151 203 215 274 278 305 151 203 215 274 278 305 151 203 215 274 278 305 152 203 234 355 360 361 362 364 365 367 360 169 202 215 259 273 304 327 169 202 215 259 273 304 327	4x2	466	_	-	476	482	484								
417 433 449 471 473 449 471 473 449 471 473 480 26 51 415 435 450 415 436 450 415 436 450 415 229 23 273 274 278 260 261 330 420 169 328 329 375 380 410 423 441 16 116 337 428 18 15 37 428 18 10 151 151 203 216 274 278 305 18 26 329 358 359 360 361 362 364 365 367 368 18 26 329 358 359 360 361 362 364 365 367 368 18 26 329 358 359 360 361 362 364 405 406 409 189 202 214 253 304 327 189 202 214 253 204 327	MXSN	471	~	8			•			•-					
417 433 449 471 473 460 26 51 415 435 450 416 436 450 418 436 450 418 436 450 419 329 234 236 419 329 329 375 380 410 423 441 419 329 339 359 350 351 362 364 365 367 368 419 202 215 259 273 304 327 418 202 215 259 273 304 327 418 203 216 274 278 305 419 202 215 259 273 304 327	HXI	710	1	₹							•				
471 473 480 26 51 415 435 450 418 436 450 133 134 135 136 202 203 273 274 278 260 261 330 420 187 229 234 236 187 229 234 236 189 329 375 380 410 423 441 18 116 337 428 18 15 337 428 18 10 151 151 203 216 274 278 305 189 20 359 359 360 361 362 364 365 367 360 189 202 215 259 273 304 327 18 229 234 253 254 254 254 256	HXIS	417	m	3	 - -		; ; ;	! !				! !	: !	:	:
26 51 415 435 450 418 436 450 133 134 135 136 202 203 273 274 278 260 261 330 420 187 229 234 236 169 328 329 375 380 410 423 441 16 116 337 428 18 10 151 151 203 216 274 278 305 18 26 329 358 359 360 361 362 364 365 367 360 189 202 215 259 273 304 327 18 229 234 253 18 229 234 253	MXN.	471	-	8					•	•	•				
415 435 450 418 436 450 133 134 135 136 202 203 273 274 278 260 261 330 420 187 229 234 236 189 329 329 375 380 410 423 441 189 202 354 253 189 202 273 304 327 189 202 213 304 327 189 202 213 304 327 189 202 213 304 327 189 202 214 253	4x49L	26	51							•	•	· ·			
a18 a36 450 153 134 135 136 202 203 273 274 276 260 261 330 a20 202 203 273 276 276 167 269 234 236 167 26 234 236 169 326 329 375 380 410 423 16 116 337 428 16 15 337 428 16 15 274 278 305 16 26 329 359 360 361 362 16 26 329 359 360 361 363 369 16 26 329 359 360 361 363 361 363 16 26 329 359 360 361 363 361 369 16 229 234 259 273 304 327 364 369 16 229 234 253 273 364 367 366	1 AM	-	~	ഥ											
133 134 135 136 202 203 273 274 276 260 261 330 420 187 229 234 236 26 36 36 123 124 141 187 236 169 328 329 375 380 410 423 441 18 116 337 428 313 315 337 428 18 85 98 101 106 107 108 109 116 19 10 151 151 203 216 274 278 305 19 26 329 359 360 361 362 364 365 367 368 189 202 215 259 273 304 327 189 202 215 259 273 304 327 189 202 234 253 253 254 255	HYIS	_	M	10				•							
260 261 330 a20 187 229 234 236 26 36 123 124 141 187 236 169 328 329 375 380 410 423 a41 18 116 337 428 18 85 98 101 106 107 108 119 116 19 10 151 151 203 216 274 278 305 15 26 329 358 359 360 361 362 364 365 367 368 189 202 215 259 273 304 327 189 202 215 259 273 304 327			P	200		20	203	273	274	27 A					
187 229 234 236 26 36 36 123 129 141 187 236 169 328 329 375 380 410 428 18 116 337 428 18 116 337 428 18 10 151 106 107 108 116 19 10 151 274 278 305 19 10 151 274 278 305 19 26 329 359 360 361 363 19 26 329 359 360 361 363 18 26 329 359 360 361 363 18 229 234 253 373 304 327 18 229 234 253 373 304 327 18 229 234 253 304 327	NANG	9	•	-		i	; · i	:	:	•	: ! !				
26 36 36 123 129 141 187 236 169 328 329 375 380 410 423 441 16 116 337 428 18 315 337 428 18 10 151 106 107 108 116 19 10 151 278 305 18 26 329 359 350 360 361 363 363 18 26 329 359 360 361 363 364 363 18 202 215 259 273 304 327 18 229 234 253 373 304 327 18 229 234 253 304 327	NANGLE	Œ	\sim	*	_										
169 328 375 380 410 423 441 16 116 337 428 313 315 337 428 18 16 101 106 107 108 116 18 10 151 106 107 108 116 19 10 151 274 278 305 151 203 216 274 278 365 361 362 364 365 367 360 18 26 329 359 360 401 402 403 404 405 409 18 229 234 259 273 304 327 404 405 409 16 229 234 253 304 327 404 405 409	NAT	24	•	-	_	123	N.		8	236					
16 116 337 428 313 315 337 428 16 16 101 106 107 108 116 19 10 151 274 278 305 151 203 216 274 278 305 18 26 329 359 359 360 361 393 189 202 215 259 273 304 327 18 229 234 253 18 229 234 253	NB C	169	~	A.		380	-	~	3					1	
313 315 337 428 18 85 96 101 106 107 108 116 19 10 151 101 106 107 108 116 19 10 151 274 278 305 19 26 329 359 359 360 361 348 349 189 202 215 259 273 304 327 18 229 234 253 24 254 254	Nan	1.9	-	\sim	_										
18 95 98 101 106 107 108 116 19 10 151 151 203 216 274 278 305 19 26 329 358 359 360 361 362 364 365 367 368 397 398 399 401 402 403 404 405 406 409 189 202 215 259 273 304 327 18 229 234 253 24 254 255	NBHI	313	-	M											
19 10 151 151 203 216 274 278 305 19 26 329 358 359 360 361 362 364 365 367 368 391 392 383 384 385 387 388 389 391 393 397 398 399 401 402 403 404 405 406 409 189 202 215 259 273 304 327 18 229 234 253	NBRS	1.8			_	0	107		109	116					
3 151 203 216 274 278 305 11 19 26 329 359 360 361 362 363 13 26 329 358 359 360 361 363 364 363 393 397 398 399 401 402 403 404 405 409 40 202 215 259 273 304 327 47 254 250 273 304 327	₽.F	- 3		SO.											
11 16 26 329 359 360 361 362 364 363 361 363 363 363 363 363 364 363	NF 3	151		_	~	~	305			:			1		
391 382 383 384 395 387 388 389 391 393 397 398 399 401 402 403 404 405 406 409 4X 18 229 234 253 4X 18 229 254 253	NHIT	1.9	9	O.	· LO	S	360	ج :	362	Ý	365	367	. •	376	
397 398 399 401 402 403 404 405 406 409 189 202 215 259 273 304 327 AX 16 229 234 253 A7 254 250		•	Œ	•		Œ	3.95	Œ	388	<	300	105	0	Œ	306
AX 18 229 234 253 304 32 AX 18 229 234 253		. •	0	0	0	0	₹05	0	404	0	404	4 0 B	0	~	ν.
AX 18 229 234 25 A7 251 254 260	- CN		C	_	n	_	304	\sim							
1 254 26	XYX	18	\sim	.	2										
	ZYHN	253	5	œ										;	

	195														_	63
	168															
	145				•											
	143						•			370						
	121					536		•		336			•			
	81					530				315						
	69					525				313						
	89					494				169	-					
451	. 19	460		•		489				116	66					
450	57	314		254		485	137		248	114	86		991			235
102	52	306		190	29	464	126		247	103	92	227	163			221
442 89	37	264		182	65	. 528	9/		233	8	98	225	191			179
426 83	2	217	122	136	6 2	257	73	38	228	25	84	224	156	165	155	178
421 81	18		121	122	19	168	6 2	37	<u>8</u>	2	80	222	155	163	56	165
E N	₽ S		NP2	NP2CD	NP3	NP8	NPCD	NPK	NPOS	NRIV	NRIVS	NSS	××	LXN	NXMAX	NXTI

431			- 64 -	
341	351	353	•	145
340	340	341		139
326	281	283		130
325	270	271		128
271	205	506		16 .
270	199	200		06
248	437	198	76	88
250 247 197	342	135	100 75	87
167 212 135	272	131	97	9/
164 209 . 134	201	135	96 67 135	75 68 69
162 207 57 26	145 90	207 134 91 207	94 66 134	74 66 67 270 271
158 165 157 10	434 9 10 87	199 129 88 200	26 86 8 8 8 29	26 63 64 255 9 256
157 164 26 18	8 8 8	8 8 8 8	6 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8
NY NYT NYMAX P PA	PAA PCN PX	PXLX PXS PY PYLY	ROBLK RIV S SCORET SDIV	SS SUMX SUMY XOF XOF YOF

GUESTITUTE SHEET BAD ORIGINAL WIFO WIFO WIFO

								305						٠.						
				216				302	•						•			i	. • !	
				213		301	Į.	Æ	306				217				235			
				206		243	:	8	303				214				230			
2.5A	19	7.5	214	205	300	292	303	245	264	307	119	137	145	45	231	136	224	236		
752	₹ ₽	7.3	0	=	9	Ţ	£	~	S	~	~	N	192	₹	N	~	122	œ:		
122	15		•	~	~	~	~	280	9	9	~	30	300	390	399	40	400	500	10	5

601 620 65	249 95 39	252 98 147		- 66 -				
650 750	96 89	100 93	94	102				
760	104	113					•	
770 780	105 114	106 116	110	,	,			
799 800	111 83	114 117						
8030	43	46	50					
810 820	328 361	329 365						^
825 830	359 356	364 366						
835	358	363	367	250	254	256	264	260
845 850	343 331	347 336	350 338	352 346	354 370	356	364	369
855 858	377 379	407 381	. 383	386	395	400		
860	382	387	303		030	,,,,		
862 864	389 388	393 396	402					
865 866	387 401	401 403					•	
868	380	408		47.0		•		
870 880	375 423	376 425	392 429	410 441				
. 885 890	444 448	449 458						
895	316	459	450					
898 90	314 143	318 145	460					
905 910	469 467	475 474	475	478				
915	468	479						
920 925	464 491	479 524	482	485				
930 935	493 496	495 501	497	500	509	515		
937	504 .	510	E3.0					
940 945	503 [*] 502	507 510	519			•		
946 948	51 1 501	517 516				•		
950	516	519				•		

	_	_	
_	h	7	_

52 60 70 90 92	518 489 530 243 242	520 490 531 537 540	494 536 539	506	525			
RGS RRAY ATGP VMAT LOTAG	.10 8 11 0	360	377	535	719	1669	1695	1228

- 68 -

APPENDIX II PROGRAM VARIABLES - DESCRIPTION

PROGRAM VARIABLES - DESCRIPTION
0 Scale Factor for Minutia Pairing Distance
Registration X, Y Histogram
\triangle angle between rotations in Units of 1.40625 degrees each
Minutia X, Y tolerance values for neighborhood scoring
Minutia X, Y cell size for print registration
Tolerance values for minutia pairing
X offset to exactly overlay a registered search minutia with
its mating file minutia
Y offset to exactly overlay a registered search minutia with
its mating file minutia
Minutia Angle tolerance for print registration
Minutia Angle tolerance for neighboring pairing
Minutia angle tolerance for minutia pairing
Sorted file minutia X, Y, 0 values
Array of mating file and search minutia
Switch, if = 1, then search data is ready
Maximum X value of file minutia set
Minimum X value of file minutia set
Maximum Y value of file minutia set
Minimum Y value of file minutia set
X Coordinate of minutia pattern center for file minutia set
Y Coordinate of minutia pattern center for file minutia set
Maximum value of registration histogram
Match score for a given registration histogram maximum
Final match score (maximum of ISCORS values)

- 69 -

APPENDIX II (CONTINUED)

NAME	PROGRAM VARIABLES - DESCRIPTION
ASFP	0 Scale Factor for Minutia Pairing Distance
COUNT(2500)	Registration X, Y Histogram
DELTH	\triangle angle between rotations in Units of 1.40625 degrees each
DDX	Minutia X, Y tolerance values for neighborhood scoring
DX	Minutia X, Y cell size for print registration, tolerance values
	for minutia pairing
DPX	X offset to exactly overlay a registered search minutia with its
	mating file minutia
DPY	Y offset to exactly overlay a registered search minutia with its
	mating file minutia
ERAA	Minutia Angle tolerance for print registration
ERAB	Minutia Angle Tolerance for Neighboring Pairing
ERAM	Minutia angle tolerance for minutia pairing
F(612)	Sorted file minutia X, Y 0 values
HIT(1632)	Array of mating file and search minutia
IFLAG	Switch, if = 1, their search data is ready
IXMAX	Maximum X values file minutia set
IXMIN	Minimum X values file minutia set
IYMAX	Maximum Y values file minutia set
IYMIN	Minimum Y values file minutia set
ICXF	X Coordinate of minutia pattern center for file minutia set
ICYF	Y Coordinate of minutia pattern center for file minutia set
IANS	Maximum value of registration histogram
ISCORS	Match score for a given registration histogram maximum
ISCOR	Find match score (maximum of ISCORS values)

- 70 -

APPENDIX II (CONTINUED)

NAME	PROGRAM VARIABLES - DESCRIPTION
ISTAB	Array Containing Score Table
IJ	Pointer to PA array for best set of rotated search minutia
*IEOT	Early out threshold
IETP	Distance Tolerance for minutia pairing
ITSX	Scaled Variance of Matching Neighboring Minutia
ISCTVR(500)	Score Table
ISCORV	Individual Minutia Score
JXMIN	X Coordinate of Lower Left Corner of File Minutia Pattern
JYMIN	Y Coordinate of Lower Left Corner of File Minutia Pattern
JSCOR	Number of matching neighbors for a particular search minutia
KF(700)	Array of file minutia that are mated with search minutia
LX	1/2 width of effective file minutia pattern area
LY	1/2 height of effective file minutia pattern area
LAMIN	Maximum angle bias for search minutia angles
NHIT(48)	Array of file minutia mating with neighbors of a given search
	minutia .
MMAX	Number of maximums in registration histograms
NB4	Number of neighbors to use times 4
NF	Number of file minutia
NMAX(5)	Array of best rotation for registration
NAT	Number of search print rotations to use
NF3	3 Times the number of file minutia
NRIV	Number of neighbors to use for neighborhood scoring
NP	Number of search minutia

- 71 -APPENDIX II (CONTINUED)

NAME	PROGRAM VARIABLES - DESCRIPTION											
NBR(2040)	Neighbor array											
NX	Count array size in X (Number of cells to use in count											
	array in X direction)											
NMM	Number of matching neighbors											
NY	Count array size in Y (number of cells to use in count											
	array in Y direction)											
NP8	Number of search minutia times 8											
NXMAX	Maximum number of count array cells in X direction											
NYMIN	Maximum number of count array cells in Y direction											
P(612)	Unsorted search minutia											
PA(2040)	Rotated search minutia X, Y values											
PAA(204)	Search minutia angle values											
R40STB	Disk file containing score table											
S(612)	Sorted Search Minutia											
SS(612)	Sorted, Centered, Search Minutia											
XOF	X offset to overlay search minutia on file minutia for											
•	registration histogram maximum											
YOF	Y offset to overlay search minutia on file minutia for											
	registration histogram maximum											

I CLAIM

- 1. A method employing a programmed computer for comparing the minutiae of a search fingerprint (the "search minutiae") with the minutiae of a file fingerprint (the "file minutiae") to determine if the search fingerprint closely resembles the file fingerprint comprising:
 - (a) rotating and translating the search minutiae to determine the rotation and translation which most nearly brings the search minutiae into registration with the file minutiae;
 - (b) pairing mating search and file minutiae;
 - (c) computing an individual minutia score for each search minutia that has a mating file minutia based on the spatial and angular relationship between the other mating file and search minutiae located within a neighborhood of each such search minutia; and
 - (d) summing the individual minutia scores to obtain a final match score indicative of the overall resemblance of the search fingerprint to the file fingerprint.
- 2. The method described in Claim 1 and further comprising:
 - (a) sorting the search minutiae into angle order;
 - (b) finding the closest neighbors for each search minutia;
 - (c) sorting the file minutiae into angle order; and
 - (d) computing maximum and minimum coordinates for the file minutia.
- 3. The method described in Claimlor 2 and further comprising terminating the comparison between the minutiae of a search fingerprint and the minutiae of a file fingerprint whenever the degree of registration of the search minutiae with the file minutiae fails to exceed an operator selected threshold.

- 4. A method employing a programmed computer for comparing the minutiae of a search fingerprint (the "search minutiae") with the minutiae of a file fingerprint (the "file minutiae") to determine if the search fingerprint closely resembles the file fingerprint comprising the following steps in the order named:
 - (a) rotating and translating the search minutiae to determine the rotation and translation which most nearly brings the search minutiae into registration with the file minutiae;
 - (b) pairing mating search and file minutiae:
 - (c) computing an individual minutia score for each search minutia that has a mating file minutia based on the spatial and angular relationship between the other mating file and search minutiae located within a neighborhood of each search minutia; and
 - (d) summing the individual minutia scores to obtain a final match score indicative of the overall resemblance of the search fingerprint to the file fingerprint.
- 5. The method described in Claim 4 and further comprising the following steps in the order named, and performed prior to the first step described in Claim 1:
 - (a) sorting the search minutiae into angle order;
 - (b) finding the closest neighbors for each search minutia;
 - (c) sorting the file minutiae into angle order; and
 - (d) computing maximum and minimum coordinates for the file minutia.
- 6. The method described in Claim 4 and further comprising the following step performed between steps (b) and (c) of Claim 4: terminating the comparison between the minutiae of a search fingerprint and the minutiae of a file fingerprint whenever the degree of registration of the search minutiae with the file minutiae fails to exceed an operator selected threshold.

- 7. The method described in Claim 5 or 6 wherein the step of rotating and translating the search minutiae to determine the rotation and translation which most nearly brings the search minutiae into registration with the file minutiae comprises:
 - (a) rotating the search minutiae through a preselected set of rotations;
 - (b) for each rotated set of search minutia constructing a histogram showing the number of coincident search and file minutiae for various translations of the search minutiae relative to the file minutiae; and
 - (c) determining the rotation and translation to which most nearly brings the search minutia into registration with the file minutiae by comparing the magnitudes of the largest adjacent blocks of entires in each of the histograms.

- 8. A device for comparing the minutiae of a search fingerprint (the "search minutiae") with the minutiae of a file fingerprint (the "file minutiae") to determine if the search fingerprint closely resembles the file fingerprint comprising:
 - (a) rotating and translating means for rotating and translating the search minutiae to determine the rotation and translation which most nearly brings the search minutiae into registration with the file minutiae;
 - (b) pairing means for pairing mating rotated and translated search and file minutiae;
 - (c) scoring means for computing an individual minutia score for each search minutia that has a mating file minutia based on the spatial and angular relationship between the other mating file and search minutiae located within a neighborhood of each such search minutia; and
 - (d) summing means for summing the individual minutia scores to obtain a final match score indicative of the overall resemblance of the search fingerprint to the file fingerprint.
- 9. The device described in Claim 8 and further comprising:
 - (a) first sorting means for sorting the search minutiae into angle order;
 - (b) finding means for finding the closest neighbors for each search minutia;
 - (c) second sorting means for sorting the file minutiae into angle order; and
 - (d) coordinate means for computing maximum and minimum coordinates for the file minutia.

- 10. The device described in Claim 8 or 9 and further comprising terminating means for terminating the comparison between the minutiae of a search fingerprint and the minutiae of a file fingerprint whenever the degree of registration of the search minutiae with the file minutiae fails to exceed an operator selected threshold.
- 11. The device described in Claim 8 or 9 wherein the rotating and translating means for rotating and translating the search minutiae to determine the rotation and translation which most nearly brings the search minutiae into registration with the file minutiae comprises:
 - (a) rotating means for rotating the search minutiae through a preselected set of rotations;
 - (b) for each rotated set of search minutiae constructing means for constructing a histogram showing the number of coincident search and file minutiae for various translations of the search minutiae relative to the file minutiae; and
 - (c) determining means for determining the rotation and translation which most nearly brings the search minutiae into registration with the file minutiae by comparing the magnitudes of the largest adjacent blocks of entries in each of the histograms.

FIG. 10

150 - 14 180 - 15 3 20 8 80 - 17 18 6 19 9 7 40 4 5 10 12 11

FG.3

0

BUREAU OMPI WIFO WIFO

\20

ဆ

X\$

417

																										,	
26 27																										_	
24, 25				7								7														_	
22, 23																											
20, 21																											
18, 19																											
16, 17			1																								
14, 15		7						2	4								1					_					
12, 13									2																		
10,																											_
8,														τ													
6,							1							1													
5,											L												L				
3,																							L				
0,4																							_				
77							I							Ţ		L	-										
4,6									L							L							L				
-6,							L		_				L			L							L				1
-4,																_	L						_				
-10, 9				L								7															
-12,							_			L				T	_	_	L					-					
-16,-14, -15,-13				L	_	L	_	L		_	L	L		_		_	_			_			L				
	_		L				L					_			_		_		_				_		_		
-18,	_							L	L		L			L									_				_
-20,			L					_	_				_					_					<u> </u>				
-22, -20, -21, -19					L				_	L	L						_										
-26,-24, -25,-23			L			L		L			Ŀ	_		L									_				
-26, -25											L	L											_				
ă/				_] 							0	12	-14	.Te	184	-20	-22	24	-26
/ ∤	7.26	25.24	13,22	1. 20	19,18	7,16	15,14	3,12	11,10	9,6	7.6	5,4	3,2	1,0	-1'-5	-3,-4	-5,-6	9-16	-9,-10	-11,-12	-13,-	-15,-	-17,-18	-19,-	-21,-22	-23,-24	-25,-26
<u> </u>	L	12	12	157		17	<u> </u>	<u> </u>	匚	100	1	L.,	<u> </u>		<u>. '</u>	<u>'</u>	<u>L</u>		<u>'</u>	<u>'</u>	نــٰـا	<u>'</u>	<u>'</u>		<u> </u>		•

F1G.5

5/7

FIG. 6

6 / 7

BUREAU OMPI WIFO

BEST AVAILABLE COPY

INTERNATIONAL SEARCH REPORT

International Application No PCT/USS1/01412

International Application No FUL/USUI/UI412												
1. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) *												
According to International Patent Classification (IPC) or to both National Classification and IPC Int. Cl. 3 G 06K 9/68												
	3. Cl											
	 		340/146.3 E									
II. FIELD	S SEAF	CHE										
- in			Minimum Docun	nentation Searched 4	**************************************							
Classificat	llon Syste	<u>m </u>		Classification Symbols								
340/146.3 E, Q, AQ U.S. 340/825.3, 825.31, 825.33, 825.34 356/71												
	Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched 6											
			ISIDERED TO BE RELEVANT 14									
Category *	[tation	of Document, 16 with Indication, where ap	propriate, of the relevant passages 17	Relevant to Claim No. 16							
A	US,	Α,	4,210,899, Publish Swonger et al.	ed 1 July 1980,	1 –11							
A	US,	Α,	4,047,154, Publish Vitols et al.	ed 6 September 1977,	1 –11							
X	US,	Α,	4,185,270, Publish Fischer II et al.	ed 22 January 1980,	1, 3-4, 6, 3, 10							
X	US,	Α,	3,638,188, Publishe Pincoffs et al.	ed 25 January 1972,	1 -11							
х	US,	Α,	3,292,149, Publishe Bourne.	ed 13 December 1966,	1 –11							
			•									
•												
·												
			•		·							
* Special d	ateoories	of cita	ed documents: 18	· · · · · · · · · · · · · · · · · · ·								
	_		general state of the art	WDF document mublished selected to	ha—a#===1 0"== =							
	docume		published on or after the international	"P" document published prior to the int on or after the priority date claimed								
"L" document cited for special reason other than those referred to in the other categories "O" document referring to an oral disclosure, use, exhibition or												
otner	means			"X" document of particular relevance								
IV. CERT			No of the leave of the leave									
Date Of the	Actual C	omple	tion of the international Search 2	Date of Mailing of this International Sea								
19 Ja	nuar	v 1	982	2.2 JAN 19	26							
Internation				Signature of Authorized Officer 20								
		- · · ·	•	Leo H. De	irea 1							
ISA/U	ర			L / Leo H / Boudness	- ,							

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.