AD-A203 854

State University of New York at Plattsburgh Auditory Research Laboratories

Report No. ARL 88-3

The Effects of Blast Trauma (Impulse Noise) on Hearing: A Parametric Study

Annual Report

Roger P. Hamernik William A. Ahroon Robert I. Davis Keng D. Hsueh George A. Turrentine

July 23, 1988

Supported by

U.S. Army Medical Research and Development Command Fort Detrick, Frederick, Maryland 21701-5012

Contract No. DAMD17-86-C-6172

The Research Foundation of the State University of New York P.O. Box 9 Albany, New York 12201-0009 S DTIC SELECTE JAN 3 0 1989

Approved for public release; distribution is unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

REPORT DO	CUMENTATION	PAGE			Form Approved OMB No 0704-0188 Exp Date Jun 30, 1986	
1a REPORT SECURITY CLASSIFICATION	T	16 RESTRICTIVE N	1ARKINGS			
unclassified						
2a SECURITY CLASSIFICATION AUTHORITY	3 DISTRIBUTION /	AVAILABILITY OF	REPORT			
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE			or public re		e;	
4 PERFORMING ORGANIZATION REPORT NUMBER(S)	5 MONITORING O	RGANIZATION REP	ORT NU	MBER(S)	
ARL 88-3						
6a NAME OF PERFORMING ORGANIZATION 61	OFFICE SYMBOL (If applicable)	7a NAME OF MO	NITORING ORGANI	ZATION		
The Research Foundation of the State University of New York						
6c. ADDRESS (City, State, and ZIP Code)		76 ADDRESS (City	, State, and ZIP Co	xde)		
P.O. Box 9 Albany, NY 12201-0009						
		9 PROCUREMENT	INSTRUMENT IDE	NTIFICAT	ION NUMBER	
ORGANIZATION U.S. Army Medical Research and Development Cmd.	(If applicable)	DAMD17-86-	-C-6172			
8c. ADDRESS (City, State, and ZIP Code)		10 SOURCE OF F	UNDING NUMBERS			
Fort Detrick		PROGRAM ELEMENT NO.		TASK NO.	WORK UNIT ACCESSION NO	
Frederick, MD 21701-5012		61102A	NO. 3M1 - 61102BS15	C	в 011	
11. TITLE (Include Security Classification)			011020313	0.	D I VII	
The Effects of Blast Trauma (Impu	alse Noise) on	Hearing: A	Parametric	Study	(u)	
12. PERSONAL AUTHOR(S) Hamernik, Ro	•	on, William h, Keng D.		-	ert I. , George A.	
13a TYPE OF REPORT 13b. TIME COV			RT (Year, Month, D			
Annual FROM 4/1/	<u>87</u> то <u>3/31/8</u> 8	1988 July 2	23		78	
16. SUPPLEMENTARY NOTATION						
17 COSATI CODES	18. SUBJECT TERMS (C	ontinue on revers	e if necessary and	identify	by block number)	
FIELD GROUP SUB-GROUP	Blast Trauma	Т	manilas Noiss		Vooring	
20 01		,				
24 01 19. ABSTRACT (Continue on reverse if necessary ar	RA 3	umher)				
19. ABSTRACT (Continue on reverse it necessary at	id identity by block in	umbery				
On reverse						
on leverse						
1						
			COLONY C. C. C. C.	A TIO **		
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT ☐ UNCLASSIFIED/UNLIMITED ☐ SAME AS RE	PT DTIC USERS	unclass:	ECURITY CLASSIFIC ified	AHON		
22a NAME OF RESPONSIBLE INDIVIDUAL	י בי טווכ טופאט		(Include Area Code) 22c (OFFICE SYMBOL	
MARY FRANCES BOSTIAN	Padition may be used us	301-663-			RD-RMI-S	

ABSTRACT

of this research

There are three broad goals to this contract: The first and primary goal is to study the effects of high level blast wave exposure on the conductive and sensory structures of the mammalian ear. This includes the use of the evoked potential to measure hearing thresholds and tuning curves prior to and after exposure to various blast wave exposures. Parameters of the blast waves studied include intensity, spectral composition, number of impulses and repetition rate. Correlations among hearing measures, exposure variables and histology are to be developed. The second objective is to develop a series of blast wave generation devices which are suitable for the laboratory simulation of a wide spectrum of blast waves. The third objective is to develop a suitable set of software and a PC-based computer system which will interact with crystal and capacitive microphones to capture and analyze blast waves,

During the second year of this contract the following progress toward these goals has been made: (a) the Lamont 5-inch diameter shock tube operating on a mechanical quick release valve principle was installed in the laboratory and calibrated at 150, 155 and 160 dB peak SPL; (b) Interactive and analytical software wast that has been under development for the past two years has been completed; (c) Ethirty animals have been exposed to the mid-frequency (1.0 kHz) energy-content blast waves. While it is too premature to discuss these results, the results to date indicate that these blast waves are substantially more hazardous to hearing than are the low-frequency (0.125 kHz) energy-content waves, reported on previously (see Hamernik et al., 1988, Rpt I). There were two surprising features of these data. First, the variability in hearing measures associated with exposures to the low frequency waves does not seem to be affecting the animals exposed to the mid-frequency waves. Thatis, preliminary hearing loss measures are consistent across animals in any given exposure paradigm. Second, the slowest repetition rate for the 10X condition consistently produces the most severe effects. (d) A set of rules have been developed and implemented on the DEC MicroPDP-11/73 microcomputer system which will systematically calculate tuning curve variables such as Q_{10dB}; high frequency slope and low frequency slope. An analysis of 650 tuning curves using this system has shown that there are systematic changes in tuning curve morphology that are related to the degree of permanent threshold shift. Furthermore, these changes are correlated with outer sensory cell losses in a frequency specific manner.

>(AW)

Accession For

NTIS GRA&I
DTIC T.B
Unarabored
Justimention

By
Distribution/
Availability Codes
Avail and/or
Dist Special

QUALITY
MSPECTED

II

AD	

State University of New York at Plattsburgh Auditory Research Laboratories

Report No. ARL 88-3

The Effects of Blast Trauma (Impulse Noise) on Hearing: A Parametric Study

Annual Report

Roger P. Hamernik William A. Ahroon Robert I. Davis Keng D. Hsueh George A. Turrentine

July 23, 1988

Supported by

U.S. Army Medical Research and Development Command Fort Detrick, Frederick, Maryland 21701-5017

Contract No. DAMD17-86-C-6172

The Research Foundation of the State University of New York P.O. Box 9 Albany, New York 12201-0009

Approved for public release; distribution is unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

FOREWORD

Disclaimer

Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.

Animal Use

In conducting the research described in this report, the investigators adhered to the "Guide for the Care and use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (DHHS Publication No. (NIH) 86-23, revised 1985).

Table of Contents

	PAGE NO.
Foreword	2
Technical Progress	6
"Lamont" 5-inch Driver Source	6
Description	6
Calibration	6
Additional Auditory Evoked Potential Station	11
Software	11
Scientific Progress	11
"Lamont" Driver Exposures	11
Evoked Potential Tuning Curves	17
Introduction	17
Methods	19
Data Collection	19
Tuning Curve Analysis	19
Individual Tuning Curves	19
Mean Tuning Curves	23
Results	23
Conclusions	30
Bibliography	31
Publications Resulting from this Contract	33
Appendix	35

LIST OF TABLES

			PAGE NO.
Table I		Total Energy in the 160 dB Blast Wave Generated by the "Lamont" Tube for three different analysis windows	12
Table I	u.	Total unweighted and A-weighted energies for 160 dB peak SPL blast waves from conventional and 5-inch "Lamont" shock tubes.	12
Table l	III.	Evoked potential tuning curve probe and masker frequencies (in kHz)	20

LIST OF FIGURES

			PAGE NO.
Figure	1.	Schematic representation of the "Lamont" quick-acting valve	7
Figure	2.	Pressure-time waveforms for the 160 dB peak SPL blast wave from the 5-inch "Lamont" shock tube	8
Figure	3.	The unweighted (upper) and A-weighted (lower) energy spectra for the 160 dB peak SPL blast wave	9
Figure	4.	The unweighted (upper) and A-weighted (lower) energy spectra for the 160 dB peak SPL blast wave in absolute units.	10
Figure	5.	Unweighted (upper) and A-weighted (lower) octave band energies of 160 dB peak SPL blast waves for the conventional and 5-inch "Lamont" shock tubes	13
Figure	6.	Schematic side view of the "Lamont" shock tube	14
Figure	7.	Schematic representation of the second AEP computer system	15
Figure	8.	Mean TS ₀ for groups of animals exposed to ten 160 dB peak SPL blast waves from a conventional (upper) or 5-inch "Lamont" (lower) shock tube	16
Figure	9.	Typical AER tuning curve from one animal	18
Figure	10.	Idealized tuning curves used to illustrate the calculation of tuning curve statistics	22
Figure	11.	Mean AEP tuning curves collected from 107 chinchillas	23
Figure	12.	Mean AEP tuning curves segregated by amount of PTS	25
Figure	13.	Comparison of the tuning curve statistics for probe tones presented at 15 and 35 dB above threshold	26
Figure	14.	Percent change in Q _{10dB} and sensory cell loss as a consequence of increased PTS	27
Figure	15.	Percent change in high frequency slope and sensory cell loss as a consequence of increased PTS	28
Figure	16.	Percent change in low frequency slope and sensory cell loss as a consequence of increased PTS	29

I. TECHNICAL PROGRESS

A. "LAMONT" 5-INCH DRIVER SOURCE: In the first year of the current project, a conventional shock tube using high and low pressure chambers separated by a diaphragm was employed to create the blast waves to which chinchilla were exposed. The highest frequency-content energy for the conventional tube was approximately 0.125 kHz. Two additional shock tubes were installed during the second year of this project. These tubes use an entirely different operating principle and produce blast waves with much different spectral distributions of energy.

Description: The "Lamont air-gun" 5-inch driver source is shown schematically in Figure 1. This device is essentially a shock tube driver section which uses a fast acting valve to rapidly discharge a high pressure air reservoir instead of bursting a diaphragm as in a conventional shock tube. Similar devices. which operate on a completely different scale, have been developed for use in sonic boom studies (e.g., see NASA SP-180 - Second Conference on Sonic Boom Research, The "Lamont" air gun was designed at the Lamont Geological Observatory of Columbia University for the purpose of producing undersea explosive discharges for use in Geological research. This driver, when coupled to an expansion section and an acoustic horn, is capable of generating well-controlled high sound pressure level The "Lamont" driver while obsolete for the purpose for which it was developed, has the advantage of producing a discharge directed in the axial direction. Commercially available air guns (e.g., Western Geophysical) generally produce radial discharges which are less suitable for laboratory operations. Engineers at the National Acoustics Laboratory of Australia designed an axial discharge device (Kenna, 1982) for use in blast wave research. However, their design has proved to be unreliable.

The "Lamont" driver uses a simple design with only one moving part. An aluminum piston is sealed in a steel casing by a series of "o" rings. The piston's geometry is such that two volumes are created within the steel casing. When low pressure air (P_L) enters the larger of the two volumes the piston is fully retracted and seated against the TeflonTM seal on the base plate. In this position, the smaller volume is sealed from the outside by an "o" ring and high pressure air (P_H) can charge the smaller volume. The seal is maintained by the proper balance between P_L and P_H . The gun is discharged by rapidly bleeding off P_L , which causes the piston to move forward breaking the seal. When discharged at sufficient pressure into an expansion section a shock wave is formed within several diameters downstream.

The two air guns in our laboratory operate in the range of 200-3000 psi with $P_{\tilde{L}}$ typically 1/7 P_{H} and have compression section volumes of approximately 4 cu. in. and 10 cu. in. The volume, diameter and charge pressure of the driver will determine the strength of the shock wave and other characteristics of the wave system developed in the expansion section.

Calibration of "Lamont" Source: The pressure-time configuration of the 160 dB peak SPL wave produced by the "Lamont" 5-inch driver is shown in Figure 2 along with the A-weighted waveform which was reconstructed from the A-weighted FFT amplitude spectrum without any phase correction. The top panels of Figures 3 and 4 illustrate the relative and absolute energy spectra of this wave while the lower panels show the A-weighted spectra. The "Lamont" driver produces a second peak trailing the primary wave by approximately 26 ms. The total energy in the entire 33 ms analysis window is displayed in Table I with the energies of the primary and

25 K.

Figure 1. Schematic of the Lamont Quick-acting Valve.

Figure 2. Pressure-time waveforms for the 160 dB peak SPL blast wave from the 5-inch "Lamont" shock tube. Upper trace is the actual recording. Lower trace is the waveform reconstructed from the A-weighted FFT amplitude spectrum without changing phase.

Figure 3. The unweighted (upper) and A-weighted (lower) energy spectra for the 160 dB peak SPL blast wave.

Figure 4. The unweighted (upper) and A-weighted (lower) energy spectra for the 160 dB peak SPL blast wave in absolute units.

secondary waves. The second peak contains approximately one-tenth the energy of the primary wave. The bar graph shown in Figure 5 compares the octave band energy distribution of the 160 dB peak SPL waves produced by the "Lamont" driver and the conventional shock tube (see Report I). The unweighted comparison of these two waves shows that the wave produced by the conventional shock tube contains a great deal more energy than the "Lamont" driver waveform. However, when the same comparison is made after an A-weighting is performed, the total energies of the two waves are similar but the peaks in the energy distribution are located at two different octave band frequencies, i.e., 0.250 kHz and 1.0 kHz for the conventional tube and the "Lamont" source respectively. Comparison figures are also presented in Table II. Figure 6 illustrates the mounting and installation of the "Lamont" 5-inch driver.

- B <u>ADDITIONAL AUDITORY EVOKED POTENTIAL STATION</u>: Another complete and independent evoked potential system has been installed. This system is shown schematically in Figure 7. The addition of this second system allows for a single individual to test two animals simultaneously, thus allowing more animals to be tested. At present our capacity is 15 animals/month.
- C. <u>SOFTWARE</u>: Interactive software that has been under development for the past two years has been completed. At present two Digital Equipment Corporation (DEC) MicroPDP-11/73 microcomputers, a Macintosh II and three Compaq 286 Deskpro personal computers (PC) can communicate with the host DEC MicroPDP-11/73. Thus all the anatomical data which results from the morphometric software routines; the evoked potential threshold data; three tuning curve variables and the stimulus variables can all be interrelated. For example, sensory cell variables such as total losses, octave band losses etc. can be compared with total energy of the stimulus, octave band energies weighted or unweighted. Similarly, thresholds can be handled in a variety of ways; i.e. averaged over several frequencies; taken at each octave, and compared with cell losses in that octave or with the energy of the stimulus at the same octave etc. (See Report I for a detailed description.)

This capability will now allow us to proceed uninhibited with the primary objectives of collecting data from exposure paradigms using the remaining three blast wave sources; i.e. the two quick acting valve tubes and the spark discharge. We have begun to routinely run 15 animals/month using this newly created system. This will allow us to complete the additional 315 animal exposures over the course of the final three years of the contract.

II. SCIENTIFIC PROGRESS

"LAMONT" DRIVER EXPOSURES: The top panel of Figure 8 summarizes the threshold shift measured immediately after exposure (TS₀) to the set of 160 dB peak SPL exposures of 10 blast waves. These data, obtained from the 5-inch "Lamont" driver which produces blast waves with maximal energies in the 1 kHz octave band, are compared to results obtained using the conventional shock tube which produces a blast wave with maximal energy in the 0.125 kHz octave band (bottom panel). The TS₀ data for the 1.0 kHz and the 0.125 kHz driver are systematic in showing that for these exposure conditions the slowest repetition rate of 1 blast wave/10 min. produces the largest threshold shift. This is a surprising and unexpected result. When repetition rates are greater than one per second, one expects that the middle ear reflex will have a protective effect on the threshold shifts that are produced. However, with the most rapid repetition rate that we have used, one per six seconds,

Table I

Total Energy in the 160 dB Blast Wave Generated by the Lamont Tube for three different analysis windows

Analysis	Window	(msec)	Total Energy (J/m ²)
Full	(0	- 32.768)	1.14
1st half	(0	- 16.384)	1.02
2nd half	(16.38	5 - 32.768)	0.12

Table II

Total unweighted and A-weighted energies for 160 dB peak SPL blast waves from conventional and 5-inch "Lamont" shock tubes.

Device	Weight	Absolute Energy (J/m ²)			Relative E	nergy (dB	dB) re: 1J/m ²	
		1X	10X	100X	1X	10X	100X	
Lamont	None	1.14	11.35	113.48	· 0.55	10.55	20.55	
	A	0.80	7.97	79.65	-0.99	9.01	19.01	
Conventional	None	4.37	43.70	436.99	6.40	16.40	26.40	
	A	0.72	7.24	72.36	-1.41	8.60	18.60	

Figure 5. Unweighted (upper) and A-weighted (lower) octave band energies of 160 dB peak SPL blast waves for the conventional and 5-inch "Lamont" shock tubes.

Figure 6. Schematic Side View of the Lamont Shock Tube

- Britis

Figure 7. Schematic representation of second evoked potential laboratory computer system.

Figure 8. Mean TS₀ for groups of animals exposed to ten 160 dB peak SPL blast waves from a conventional (upper) or 5-inch "Lamont" (lower) shock tube.

the reflex should not be a factor. Thus the repetition rate effect seen in Figure 7 probably reflects the vulnerability of the biological recovery process in the cochlea. While these results are unusual and contrary to the limited data published in the past, the effect is consistent across two very different blast wave sources. However these conclusions are only preliminary and valid only for the initial threshold shift. The PTS and sensory cell loss data which have not yet been completed must yield comparable data before we can be confident in this result.

The differences between the initial threshold shifts using the two different blast wave sources must be related to the energy content of the blast waves. For the "Lamont" tube, the total energy in ten 160 dB presentations is 11.4 J/m²; in the 1.0 kHz octave band the total energy is 2.6 J/m²; while the total A-weighted energy is 8.0 J/m². For the conventional shock tube the corresponding energies are: Total energy = 43.7 J/m²; total energy in the 1 kHz octave band = 0.5 J/m²; total A-weighted energy = 7.2 J/m². Thus, the increased effect seen with the "Lamont" driver would appear to be related to energy levels at specific octave bands and not to the total energy or to the commonly used parameter of total A-weighted energy. It should also be noted that the greatest shift is seen at the 2.0 kHz test frequency, i.e., at a frequency above the peak of the wave spectrum. The 2.0 kHz data for the 10X, 1/10m exposure could be higher than that shown in Figure 8 but at the 2.0 kHz frequency we are at the upper limit of our test system. The 0.5 and 8.0 kHz data are within the range of our system and therefore are accurate means. Thus, the 1/10m data, in reality, follows the configuration of the other three exposures presented in Figure 8.

EVOKED POTENTIAL TUNING CURVES

INTRODUCTION: Attempts at correlating hearing loss with hair cell loss have met with varying degrees of success. Some investigators have found threshold shifts of 30 - 50 dB with outer hair cell loss (e.g., Moody et al., 1976; Ryan and Dallos, 1975) while others have reported little or no hearing loss with significant OHC loss (Hunter-Duvar and Elliott, 1973; Henderson et al., 1974). Still others have reported hearing losses of 20 - 40 dB with little hair cell loss (Lindquist et al., 1954; Hunter-Duvar and Elliott, 1972). Some of the differences may be due to subtle forms of anatomical damage which are difficult to relate to hearing loss patterns, (e.g., isolated, mid-cochlear hair cell lesions versus lesions that extend continuously from base toward the apex of the cochlea). In the case of an isolated lesion, it is possible for the excitation pattern in the cochlea to spread from a damaged region of the cochlea into one that is normal as intensity increases. Thus, the spread of excitation could potentially obscure the correlations between hair cell loss and hearing loss.

One psychophysical method for estimating the underlying spread of excitation involves the use of psychophysical tuning curves. Psychophysical tuning curves are plots (usually an asymmetrical "V" shape) (see Figure 9) which indicate the levels and frequencies of masking tones which prevent the detection of a low level probe tone that is fixed in frequency (Vogten, 1974; Zwicker, 1974). The assumption is that the probe tone excites only a limited region of units along the basilar membrane. Masking presumably occurs when the masking stimulus invades the excitatory region of the probe. Frequencies above and below the probe become effective maskers only at high intensities. Quantitative estimates of the spread of excitation are obtained from the width and depth of the tuning curve tip.

Psychophysical tuning curves have been obtained from human listeners with impaired hearing. In general, when there is an elevation in threshold, the

Figure 9. Typical preexposure AEP tuning curves from one animal.

psychophysical tuning curve becomes wider (Wightman et al., 1977; Hoekstra and Ritsma, 1977) and in some cases the low frequency tail of the tuning curve becomes lower, i.e., frequencies below the probe become more effective maskers than normal (Leshowitz and Linstrom, 1977). These results suggest that at intensities near threshold the excitation pattern is relatively broad in impaired listeners. contrast, there are results from chinchillas treated with Kanamycin, which show normal tuning curve bandwidths with hearing losses up to 30 - 50 dB (Dallos et al., The Dallos results were correlated with pure OHC losses. The discrepancies between the data from chinchilla and man could simply reflect differences in the underlying cochlear pathologies, i.e., pure OHC versus a mixture of OHC and IHC Since histological data has been unavailable in human studies, there is no Thus, there is a need for further studies correlating tuning way to substantiate this. curve shape with a variety of cochlear histopathologies induced with noise and The blast wave exposures that we have used generated a variety of complex patterns of inner and outer hair cell loss. Such cochleas present a unique opportunity to study the frequency selectivity of the cochlea and how it is changed by various types of hair cell loss. The shapes of psychophysical tuning curves in hearing impaired persons may ultimately be used to predict the pattern or type of cochlear pathology (i.e., OHC versus IHC loss). The results are also relevant to theoretical problems in auditory research, namely the role of OHC's and IHC's in hearing, i.e., is frequency selectivity determined at the level of the IHC or are the OHC involved with frequency resolution? This, then, is the rationale for obtaining TC's on the animals from this study. However, collecting a psychophysical tuning curve with behavioral measures requires considerable time, consequently we have developed methods to obtain auditory evoked potential (AEP) tuning curves. changes in tuning characteristics have been observed following a NIPTS, the total number of animals published is very small and the range of PTS's examined is

relatively narrow. The data in this report were obtained from 107 noise exposed chinchillas from which approximately 650 TC's were obtained. It should be noted that this TC sample represents one of the largest accumulations of this type of data in existence. Changes in the morphology of the TC have been related to the degree of PTS and the extent of the sensory cell loss.

METHODS:

Data Collection: The evoked potential tuning curves are obtained using a simultaneous masking paradigm (McGee et al., 1976; Salvi et al., 1982). The probe duration is 20 ms and the intensity is set at 15 dB sensation level. A continuous tone masker is increased over a 35 dB range in an intensity series similar to that used for threshold testing, i.e., at a low enough masker level a clear evoked response is obtained; as masker intensity is increased the response either eventually disappears (i.e., is effectively masked), or persists until the output limitation of the instrumentation is reached (i.e., between 85 - 95 dB). Masked threshold is taken as the intensity mid-way between the lowest intensity where a response was present and the next highest intensity where it was absent. Masking at frequencies above and below the probe tone produces a "V"-shaped tuning curve similar to psychophysical tuning curves (Salvi et al., 1982). AEP tuning curves are measured at each octave frequency from 0.5 kHz to 8 kHz and at 11.2 kHz before exposure and at 30-days post exposure (following threshold determination). During the past year, we have developed a computer-based set of rules to quantify the morphology of the TC's. The technique has been refined for incorporation into our experimental protocol and is described below.

Tuning Curve Analysis: The evoked potential tuning curves were analyzed in two different ways. First, each of the six tuning curves for each animal was analyzed independently. Second, when animals were divided into groups (i.e., by amount of PTS), mean tuning curves were computed by averaging the masking functions for all the animals in the group.

A. Individual Tuning Curves: Three parameters were computed for each individual tuning curve: Q_{10dB} , high-frequency slope, and low-frequency slope. The first statistic, Q_{10dB} , is defined as the characteristic frequency divided by the bandwidth of the tuning curve 10 dB higher than the threshold at that characteristic frequency, i.e.,

$$Q_{10dB} = \frac{C F}{f_2 - f_1}$$
 (1)

where CF is the characteristic frequency, i.e., the frequency (in Hz) of the lowest point (in dB) on the tuning curve; and f_2 and f_1 represent the frequencies at which the masking function crosses a line 10 dB higher than the threshold at CF. The high-and low-frequency slopes (in dB per octave) represent the slope of the tuning curve function taken from CF toward the higher- or lower-frequency maskers.

These three variables are computed because the tuning curve is considered to be an analogue to an electrical filter. However, the response of an electrical filter can be measured with a high degree of resolution. Single-unit tuning curves obtained from VIII nerve fibers likewise are measured with a resolution of up to 20 to 50 frequencies per octave. Evoked response tuning curves, however, are measured using only approximately 10 frequencies. Of those ten frequencies, not all are

always able to mask the response to the probe, particularly following an exposure that produces a large PTS. Therefore, in computing the individual tuning curve statistics reported in this report, it was necessary to institute a number of rules that would allow us to describe as accurately as possible the frequency selectivity of the auditory system as measured by the evoked potential in animals with normal thresholds as well as in those with varying amounts of PTS. This was not a straightforward task since the morphology of the tuning curve in ears with cochlear damage can be very atypical.

If the tuning curve is thought to be an analogue to an electrical filter, it seemed reasonable to fix the value of the characteristic frequency to that of the masker closest to the probe (see Figure 10). Thus, the CF was defined for the purpose of calculating Q_{10dB} and high- and low-frequency slopes as the masker frequency closest to the probe tone on the high frequency side. The masker frequencies for each of the six probe tones were chosen to provide an estimate of the masking function for a broad frequency region around the probe. Thus, the maskers were selected based upon what is currently known about tuning in the auditory system, and the limitations of testing time and the equipment employed. Table III presents the masking frequencies employed for each probe.

Table III

Evoked Potential Tuning Curve Probe and Masker Frequencies (in kHz)

Probe					Maske	er Freq	uencie	S		
0.5	0.15	0.20	0.30	0.40	0.52*	0.60	0.65	0.75	1.30	2.20
1.0	0.15	0.20	0.40	0.55	0.80	1.05*	1.30	1.70	1.90	2.50
2.0	0.30	0.75	0.90	1.30	1.70	2.05*	2.20	3.00	3.50	4.00
4.0	0.45	1.30	2.20	3.00	3.50	4.10*	4.50	5.00	5.60	6.00
8.0	0.45	1.30	2.50	5.90	7.00	8.10*	9.30	11.00	12.70	14.00
11.2	1.00	4.00	7.00	9.00	11.00	11.50*	12.00	13.00	14.50	16.00

^{*} indicates the frequency used as CF for calculation of tuning curve statistics.

The use of only ten masker frequencies results in several problems when trying to calculate tuning curve statistics. Most of these problems can be resolved by using many more masking frequencies. However, even the use of just 10 masker frequencies is extremely time consuming, typically requiring an hour to obtain only one tuning curve. These problems most often occur when the masking function does not resemble the "typical" tuning curve as might be the case when the subject has a large permanent threshold shift (PTS) (e.g., > 20 dB). This often results in an inability to completely mask the probe with the extreme low and high frequency

maskers (i.e., masked thresholds is beyond the SPL output of the instrumentation.) Therefore, the statistics were computed using rules that we felt most accurately described the underlying tuning of the auditory system.

Figure 10 depicts idealized normal and abnormal evoked potential tuning curves and is used in the following description. For the "normal" tuning curve, the low-frequency slope was computed using the masked thresholds at CF and the two frequencies immediately below CF (i.e., points labeled D, E, and F, where F is defined as CF). Only three points were employed since the low-frequency side of many tuning curves (especially at higher frequencies) appears to consist of two legs of different slopes. The low-frequency slopes reported in this report represent the slope of the low-frequency leg of the tuning curve adjacent to the CF. A simple linear regression of threshold and log frequency resulted in a slope and intercept. If, because of measurement error or with pathological tuning curves, the low-frequency slope was positive or zero (see below), the value reported in our analyses is zero. The numerical values for the low-frequency slope, which has a negative value, are presented in this report as absolute values only.

The high-frequency slope was computed using the all the masker frequencies above the probe frequency for which a masked threshold could be measured (i.e., the points labeled F, G, H, J, and K). Thus, the linear regression coefficients were calculated using two to five or six masked thresholds. The high-frequency slope also is reported in dB per octave. As was the rule with the low-frequency slope, a value of zero was reported for any high-frequency leg with a negative slope.

Values of Q_{10dB} may be calculated using the low- and high-frequency slopes as However, in certain circumstances, these calculations resulted in values that were not representative of the actual tuning (represented by the concept of Q_{10dB}). Therefore, the values of Q_{10dB} were calculated independently of the slopes in order to provide a more accurate estimate of the "tuning" of the auditory system at a particular frequency region. As noted above, the value of CF was taken as the masker frequency immediately above the probe tone frequency. The values of f2 and were calculated using a linear regression of two adjacent points which represented the crossing of a fence 10 dB above the masked threshold of the probe in the presence of the CF masker. (The points labeled D and E were used to compute f1 and points G and H to compute f2.) [The values of Q10dB reported in the three volume tabulation of data submitted with the previous report (Hamernik et al., 1988, Report I) do not fix the CF at the masker frequency immediately above the probe frequency. Instead, the CF for those calculations was the (first) lowest masked threshold in the masking function. We feel that the values reported in the appendix of this report are a more accurate estimate of the actual tuning for these probe frequencies than are the figures reported in the volumes of compiled data.]

As noted above, under some circumstances, particularly when a subject had large amounts of PTS, values of f_2 and/or f_1 could not be estimated accurately. An example of this problem is the case where the masker frequency immediately above CF is unable to mask the probe tone. Therefore, the two points needed for our analysis to compute f_2 or f_1 do not exist. In this circumstance, Q_{10dB} is not calculated and is defined as "missing data" in subsequent inferential statistical analyses. The lower portion of Figure 10 depicts a tuning curve for which some of the variables can not be computed. The low-frequency slope, computed using a regression line through the points P, Q, and R, is positive and thus a zero slope is assigned. A high-frequency slope however can be computed using points R through V. Although f_1

Figure 10. Idealized tuning curves used to illustrate the calculation of tuning curve statistics.

can be computed using points M and N, the masking function above CF (point R) does not go above the 10 dB line (fence). Thus, f_2 and consequently Q_{10dB} cannot be computed and is thus set to a "missing" data value.

B. Mean Tuning Curves: In addition to the individual TC statistics, mean tuning curves for groups of animals were computed by averaging the masker levels required to just mask the response to the probe presented at 15 dB above threshold. Therefore, the problems caused by measurement error in computing the mean tuning curve variables are minimized or eliminated. The slopes were computed using the same rules as were applied to individual tuning curves. However, the calculations of Q_{10dB} from mean tuning curves differed from those employed for the individual tuning curves. The values f_1 and f_2 for the mean tuning curves were computed using the regression variables calculated when determining the low- and high-frequency slopes of the mean tuning curve (instead of using only the two points adjacent to the 10 dB fence).

RESULTS: Figure 11 illustrates the mean AEP TC's obtained on 107 chinchillas at the probe frequencies of 0.5, 1.0, 2.0, 4.0, 8.0 & 11.2 kHz. The mean preexposure Q_{10dB}'s and the general slopes of these curves are virtually identical to these reported by Salvi et al. (1982) in the chinchilla. The sharpness of tuning increases as the signal frequency is increased and the low and high frequency slopes (LFS & HFS) are steepened. The LFS ranged from 20-50 dB/oct and the HFS ranged from 25-90 dB/oct. These figures are also in general agreement with the published behavioral data on the chinchilla. These three variables however, may not be independent since the calculation of the three variables may use the same data points.

Figure 11. Mean AFP tuning curves collected from 10° chinchillas.

To get a visual impression of how the TC's change as PTS increases each animal was segregated at each frequency by the amount of PTS that the animal incurred. Bins containing animals that had PTS of less than 10 dB, between 10-20, 20-30, 30-40 and > 40 dB were formed for each test frequency. These data are shown in Figure 12. The ordinate and abscissa represent the intensity and frequency of a continuous tone that just masks the probe tone which is indicated with a solid symbol. From this figure, we can see the effect of an increasing PTS on the morphology of the mean TC at each probe frequency. When PTS is less than 10 dB, the morphology is identical (namely the Q_{10dB} the HFS and LFS) to the mean preexposure TC. In the 10-20 dB PTS group there is a general elevation of the TC and only a slight reduction in Q_{10dB} however in the 20-30 dB group the TC's are visibly broadened. This broadening is more pronounced in the 30-40 dB group. We can see a clear systematic detuning of the mean TC as the degree of PTS increases. The data from those animals having PTS > 40 dB have not been shown. Beyond 40 dB, the TC's were either flat or beyond the range of the instrumentation's ability to completely mask the probe tone.

It is important to note that the level of the probe tone was fixed at 15 dB SL for both the pre and post exposure TC's. Thus the SPL of the probe could be up to about 50 dB higher in some postexposure animals. Since the probe level may present a confounding variable which can influence TC characteristics, we examined the effects of a high probe level to determine to what extent the morphology of the TC is level dependent. Basically, we need to understand the effect of a high probe level before we can properly evaluate TC's in pathologic cochleas. Figure 13 shows the mean TC variables of the preexposure group and a control group whose TC's were obtained with a 35 dB SL probe tone at each probe frequency. We can see that the higher probe level resulted in either no change in the TC at all or an increase in the sharpness of the TC. Therefore, the changes previously described in the PTS TC's would at most represent an underestimate of the effects of a PTS.

In Figures 14 through 16, the percent change in Q_{10dB} and in the HFS and LFS with sensory cell loss as a function of the degree of PTS at probe frequencies of 1.0, 2.0, 4.0 & 8.0 kHz are shown. The total mean sensory cell loss was determined within the octave band region centered around the probe frequency. It should be noted that the IHC losses are in general very small, being no greater than 20% for PTS of up to 40 dB. However, the OHC shows a near total loss once PTS exceeds roughly 30 dB. Generally, as the amount of PTS increases beyond 10 dB, the percent change in Q increases, reflecting a reduction in Q_{10dB} . Also, as the amount of PTS increases beyond 10 dB, the relationship between percent change in Q_{10dB} and sensory cell loss seems to vary somewhat with probe frequency. At the low frequency (i.e. at 0.5 kHz not shown and 1.0 kHz) Q_{10dB} does not appear to be particularly sensitive to sensory cell loss while at the high frequencies (8.0 kHz and 11.2 kHz not shown) Q_{10dB} appears to be very sensitive to outer hair cell (OHC) losses. At the two midfrequencies shown, the changes in Q_{10dB} parallel the OHC loss.

The HFS data are shown in Figure 15. The same general trends in the results that were described for Q_{10dB} , are seen in the HFS data as PTS increases beyond 10 dB. That is, there is a general decrease in the HFS as PTS increases. At the low frequencies (1.0 kHz and below) the HFS slope seems relatively insensitive to the OHC loss while at the three higher frequencies the HFS seems to parallel the OHC loss.

Similarly for the LFS data, illustrated in Figure 16, as PTS increases the LFS decreases. At the 1.0, 2.0 and 4.0 kHz test frequencies, the LFS parallels the OHC loss,

Figure 12. Mean AEP tuning curves segregated by amount of PTS.

Figure 13. Comparison of the tuning curve statistics for probe tones presented at 15 and 35 dB above threshold. Upper panel illustrates Q_{10dB}; center panel illustrates high frequency slope; and lower panel illustrates low frequency slope.

Figure 14. Percent change in Q10dB and sensory cell loss as a consequence of increased PTS.

Figure 15. Percent change in high frequency slope and sensory cell loss as a consequence of increased PTS.

Figure 16. Percent change in low frequency stope and sensory cell loss as a consequence of increased PTS

while at the higher test frequency (8.0 kHz) the LFS seems very insensitive to the condition of the cochlea.

<u>CONCLUSIONS</u>: From the results obtained from the evoked potential tuning curves, the following conclusions may be made:

- 1. When PTS is below 10 dB, there is little sensory cell damage and no measurable change in the evoked potential TC morphology.
- 2. There is a systematic change in the 3 variables used to quantify the tuning curve (i.e. Q_{10dB}, low and high frequency slope) as PTS increases above 10 dB.
- 3. Changes in TC characteristics at the 2.0 and 4.0 kHz frequencies are highly correlated with OHC losses. At the lower (0.5 and 1.0 kHz) and higher (8.0 & 11.2 kHz) test frequencies the relation is not as straight forward.
- 4. When PTS exceeds 40 dB, there is a complete loss of OHC and tuning is essentially eliminated.

A complete summary of the tuning curve data that were used in developing these results are enclosed in the Appendix of this report. These turning curve figures supercede those that are tabulated in the three volumes of compiled data included with the previous report (Hamernik et al., 1988, Report I). The Appendix data reflect values obtained with the new TC protocol that was described above. The new rules that we recently incorporated do not yield the types of inconsistencies that were found in the calculation of the original TC data.

III. BIBLIOGRAPHY

- Dallos, P., Ryan, A., Harris, D., McGee, T., and Ozdamar, O. (1977). Cochlear frequency selectivity in the presence of hair cell damage. In: Psychophysics and Physiology of Hearing, E.F. Evans and J.P. Wilson (eds.). Academic Press, London. pp. 249-262.
- Hamernik, R.P., Ahroon, W.A., Davis, R.I., Hsueh, K.D. and Turrentine, G.A. (1988). The Effects of Blast Trauma (Impulse Noise) on Hearing: A Parametric Study. Annual Summary Report I. State University of New York at Plattsburgh, Auditory Research Laboratory Report No. ARL 88-2.
- Henderson, D., Hamernik, R.P. and Sitler, R.W. (1974). Audiometric and histological correlates of exposure to 1-msec noise impulses in the chinchilla. J. Acoust. Soc. Am. 56: 1210-1221.
- Hoekstra, A. and Ritsma, F.J. (1977). Perceptive hearing loss and frequency selectivity. In: Psychophysics and Physiology of Hearing, E.F. Evans and J.P. Wilson (eds). Academic Press. pp. 263-282.
- Hunter-Duvar, I.M. and Elliot, D.N. (1972). Effects of intense auditory stimulation: Hearing losses and inner ear changes in the squirrel monkey. J. Acoust. Soc. Am. 52: 1181-1192.
- Hunter-Duvar, I.M. and Elliot, D.N. (1973). Effects of intense auditory stimulation: Hearing losses and inner ear changes in the squirrel monkey. J. Acoust. Soc. Am. 52: 1179-1183.
- Kenna, L.C. (1982). High-level impulsive noise source. J. Acoust. Soc. Am. 71: 483-486.
- Leshowitz, B.G. and Lindstrom, R. (1977). Measurements of nonlinearities in listeners with sensorineural hearing loss. In: Psychophysics and Physiology of Hearing, E.F. Evans and J.P. Wilson (eds). Academic Press. pp. 263-282.
- Lindquist, S.E., Neff, W.D. and Schudnecht, H.F. (1954). Stimulation deafness: A study of hearing losses resulting from exposure to noise of blast impulses. J. Comp. Physiol. Psychol. 47: 406.
- McGee, R., Ryan, A. and Dallos, P. (1976). Psychophysical tuning curves of chinchillas. J. Acoust. Soc. Am. 60: 1146-1150.
- Moody, D.B., Stebbins, W.C., Johnsson, L.G. and Hawkins, J.E. (1976). Noise induced hearing loss in the monkey. In: The Effects of Noise on Hearing, D. Henderson, R.P. Hamenik, D.S. Dosanjh and J.H. Mills (eds.). Raven Press, NY. pp. 309-325.
- NASA (1968). Second Conference on Sonic Boom Research. SP-180.
- Ryan. A and Dallos, P. (1975). Effects of absence of cochlear outer hair cells on behavioral auditory thresholds. Nature 253: 44-46.
- Salvi, R.J., Ahroon, W.A., Perry, J.W., Gunnarson, A.D. and Henderson, D. (1982). Comparison of Psychophysical and Evoked-Potential Tuning Curves in the Chinchilla. Am. J. Otolaryngol. 3: 408-416.

- Vogten, L.L.M. (1974). Puretone masking: A new result from a new method. In: Facts and Models in Hearing. E. Zwicker and E. Terhardt (eds). Springer-Verlag, NY. pp. 142-155.
- Wightman, F., McGee, T. and Kramer, M. (1977). Factors influencing frequency selectivity in normal and hearing impaired listeners. In: Psychophysics and Physiology of Hearing, E.F. Evans and J.P. Wilson (eds). Academic Press, London. pp. 295-310.
- Zwicker, E. (1974). On a psychoacoustical equivalent of tuning curves. In: Facts and Models in Hearing. E. Zwicker and E. Terhardt (eds). Springer-Verlag, NY. pp. 133-141.

IV. PUBLICATIONS RESULTING FROM THIS CONTRACT

- Hamernik, R.P., Patterson, J.H., Turrentine, G.A. and Ahroon, W.A. (1988). The quantitative relation between sensory cell loss and hearing thresholds. Hearing Research (in press).
- Hamernik, R.P. and Ahroon, W.A. (1988). Effects of high-level impulse noise intensity, number, and rate on hearing. J. Acoust. Soc. Am. 84 (A) in press.
- Hamernik, R.P., Ahroon, W.A. and Patterson, J.H. (1988). Threshold recovery functions following impulse noise trauma. J. Acoust. Soc. Am. 84 (in press).
- Davis, R.I., Ahroon, W.A. and Hamernik, R.P. (1988). Changes in frequency selectivity in the chinchilla following a noise induced permanent threshold shift. J. Acoust. Soc. Am. 83: S116 (A).

- 34 -

Appendix

Individual and Group Tuning Curve Statistics from:

The Effects of Blast Trauma (Impulse Noise) on Hearing: A Parametric Study

150 dB 1X
INDIVIDUAL TUNING CURVE STATISTICS

		Pr	obe Frequer	ncy 0.5	kHz			
	PREEXPOSURE				POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
2071 2073 2084 2090	1.659 1.288 0.587 0.707	30.2 23.1 21.8 14.8	18.6 19.0 12.6 25.6	1.659 1.744 1.129 3.613		25.0 18.8 38.0 31.2	1.2	
Mean S.D.	1.060 0.503	22.5 6.3	18.9 5.3	2.036 1.086	26.4 7.0	28.2 8.2		
		Pr	obe Frequer	ncy 1.0	kHz			
		PREEXPOSU	TRE		POSTEXP	OSURE		
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
2071	1 769	47.0	21 Ω	1 770	56.2	21 2	. 1 7	

-1.7 -2.5 -7.5 2071 1.768 47.0 21.8 1.779 56.2 21.3 2073 1.316 37.4 19.0 2.100 33.3 15.7 2084 2.100 49.5 21.3 2.100 51.1 26.9 2090 1.837 48.8 21.3 1.983 51.9 22.9 -5.0 -4.2 1.755 45.7 20.8 1.991 48.1 21.7 Mean S.D. 0.326 5.6 1.2 0.151 10.2 4.6 2.6

Probe Frequency 2.0 kHz

	PREEXPOSURE			POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
2071	1.577	17.2	38.1	4.100	62.0	30.1	-3.3
2073	1.615	38.9	15.1	3.253	53.9	21.2	-1.0
2084	6.041	59.6	13.3	1.615	68.1	15.1	-4.2
2090	1.799	76.4	16.8	1.244	64.5	31.9	-10.0
Mean	2.758	48.0	20.8	2.553	62.2	24.6	-4.6
S.D.	2.191	25.6	11.6	1.351	6.0	7.9	3.8

٠,

150 dB 1X
INDIVIDUAL TUNING CURVE STATISTICS

PREEXPOSURE			POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
2071	3.654	116.3	33.2	2.733	87.8	22.1	-3.3
2073	2.285	85.3	11.0	3.009	85.7	22.1	-1.7
2084	3.489	111.0	44.3	2.474	92.4	10.9	-2.1
2090	3.255	87.7	33.2	3.532	91.4	22.3	-1.7
Mean	3.170	100.1	30.4	2.937	89.3	19.3	-2.2
S.D.	0.613	15.9	13.9	0.453	3.1	5.7	0.8

Probe Frequency 8.0 kHz

	PREEXPOSURE			POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
2071	0.975	48.5	0.0	1.007	76.8	0.0	-3.3	
2073	1.484	72.3	11.2	3.001	80.6	21.3	4.2	
2084	3.522	50.2	21.3	5.286	66.3	9.5	6.2	
2090	2.132	70.5	21.8	2.002	56.2	21.8	1.7	
Mean	2.028	60.4	13.6	2.824	70.0	13.1	2.2	
S.D.	1.102	12.7	10.3	1.832	11.0	10.4		

PREEXPOSURE			POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	e PTS
2071	2.431	103.4	30.2	2.793	81.0	50.6	-10.0
2073	4.137	83.5	50.6	5.116	134.7	65.7	-10.8
2084	*****	115.1	0.0	3.581	110.2	88.3	-0.7
2090	3.799	55.3	50.6	4.531	104.0	70.2	1.7
Mean	3.456	89.3	32.8	4.005	107.5	58.7	-5.0
S.D.	0.903	26.2	23.9	1.026	22.1	15.5	6.4

150 dB 10X 10/M
INDIVIDUAL TUNING CURVE STATISTICS

Prope	Frequency	0.5	kHz

		Pr	obe Frequen	cy 0.5	kHz			
		PREEXPOSU	RE		POSTEXP	OSURE		
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
	1.486 1.284	21.9 37.1 26.3	25.0 25.4 25.2 6.8 18.8	3.182 0.968	19.4 53.6 24.9	12.6 - 37.8 - 12.6	-1.7 -5.0 3.3	
Mean S.D.	1.452 0.146	25.8 7.1	20.2 8.0	1.480 0.968	32 ₋ 3 17.5	21.4 10.6	-0.7 3.0	
	Probe Frequency 1.0 kHz							
		PREEXPOSU	JRE .		POSTEXP	POSURE		
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
0510 0511 0512 0513 0524	2.100	71.3 44.4 60.1 53.2 40.8	19.6 26.3 27.4 26.9 27.4	1.664 4.532 3.591	63.5 47.7 84.9 50.3 68.0	27.4 20.7 31.9	-3.3 0.0 8.3 0.0 6.7	
			25.5 3.4				2.3 4.9	
		Pr	obe Frequer	ncy 2.0	kHz			
		PREEXPOSU	IRE		POSTEXE	POSURE		
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
0510 0511 0512 0513 0524		57.9 15.9 61.4 50.7 58.0	30.1 16.0 21.2 38.1 16.0		45.9 54.9 33.9 68.2 48.7	29.2 5.2		
Mean S.D.	2.641 1.172	48.8 18.8	24.3 9.7	2.568 1.530	50.3 12.6	22.0 - 10.8	-0.1 5.3	

150 dB 10X 10/M
INDIVIDUAL TUNING CURVE STATISTICS

PREEXPOSURE			POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0510 0511 0512 0513 0524	4.100 2.980 3.766 3.255 4.100	134.2 91.4 76.8 124.0 111.6	88.6 55.3 77.4 33.2 55.4	5.059 3.171 3.706 3.621 3.171	120.1 76.6 94.5 124.2 115.4	88.7 55.3 66.4 55.3 55.3	-3.3 0.0 0.0 1.7 8.3
Mean S.D.	3.640 0.506	107.6 23.5	62.0 21.6	3.745 0.775	106.1 20.1	64.2 14.5	1.3

Probe Frequency 8.0 kHz

		PREEXPOGU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0510	3.880	69.2	31.3	5.993	114.4	31.3	0.0
0511	2.132	76.7	22.4	3.721	92.5	9.5	6.7
0512	3.522	103.4	10.1	2.750	94.7	21.3	6.7
0513	1.799	35.0	21.8	3.880	100.8	31.3	0.0
0524	1.673	65.1	33.0	3.514	68.6	42.5	10.0
Mean	2.601	69.9	23.7	3.971	94.2	27.2	4.7
S.D.	1.025	24.6	9.2	1.211	16.6	12.4	

		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0510 0511 0512 0513 0524	4.531 15.385 2.511 8.945 7.475	112.1 90.9 86.3 104.2 98.3	70.2 49.8 30.2 70.2	2.695 11.497 7.287 2.531 3.405	72.1 142.5 102.5 106.8 40.1	50.6 34.7 44.5 46.1 45.3	0.0 0.0 -1.7 0.0 6.7
Mean S.D.	7.769 4.940	98.4 10.3	58.1 17.9	5.483 3.880	92.8 38.6	44.2 5.8	1.0

150 dB 10X 1/M
INDIVIDUAL TUNING CURVE STATISTICS

Probe E	Frequency	0.	. 5	kHz
---------	-----------	----	-----	-----

		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1010 1094 1104 1128 1231	1.176 1.317 0.679 1.960 1.082	40.9 17.3 19.2 28.0 30.1	0.0 5.2 11.2 17.6 16.3	2.126 2.311 2.311 1.219 1.507	31.3 23.0 16.9	17.6 17.4 30.2 5.2 10.1	11.7 8.3 11.7 -5.0 -3.3
Mean S.D.	1.243 0.466	27.1 9.5	10.1 7.5	1.895 0.502	24.6 6.4		4.7
		Pr	obe Freque	ncy 1.0	kĦz		
		PREEXPOSU	RE.		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1010 1094 1104 1128 1231	2.412 1.334 2.412	54.9 31.0 29.5 53.0 46.0	19.7 43.2 30.9	1.795 2.706		21.4 26.4 25.8	6.7 10.0 8.3 1.7 3.3
Mean S.D.		42.9 12.0	30.4 9.3		45.4 14.5	21.2 5.0	
		Pr	obe Freque	ncy 2.0	kHz		
		PREEXPOSU	TRE		POSTEXE	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1010 1094 1104 1128 1231	10.577 0.826 2.702 6.311 4.993	60.9 26.9 49.7 30.3 28.4	0.5 20.6 32.9	6.304 1.535 2.531 0.702 7.382	41.5 24.7	3.7 20.6 12.6 51.2	5.0 -1.7
	5.082 3.725	39.2 15.2	25.9 20.0	3.691 2.974		26.0 19.9	0.7

150 dB 10X 1/M
INDIVIDUAL TUNING CURVE STATISTICS

	respective from the							
	PREEXPOSURE			POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
1010 1094 1104 1128 1231	7.245 2.583 4.828 2.316 5.938	108.0 68.6 93.5 70.0 67.5	80.0 24.5 57.6 15.4 66.6	2.292 1.678 3.520 3.522 1.603	71.1 64.1 68.7 110.4 59.2	24.3 2.0 46.6 24.5 0.0	8.3 11.7 6.7 5.0 1.7	
Mean S.D.	4.582 2.128	81.5 18.3	48.8 27.7 obe Frequen	2.523 0.950 acy 8.0	74.7 20.5 kHz	19.5 19.1	6.7	
		PREEXPOSU	RE		POSTEXE	OSURE		

		PREEXPOSU	IRE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1010	*****	90.6	*****	7.527	84.8	27.2	10.0
1094	4.376	73.0	37.8	0.834	53.5	7.1	10.0
1104	2.866	65.9	28.9	4.412	45.1	38.9	-3.3
1128	5.144	63.7	60.8	5.672	70.7	60.2	11.7
1231	*****	30.1	85.5	2.912	24.5	47.3	16.0
Mean	4.129	64.7	53.2	4.272	55.7	36.1	8.9
S.D.	1.159	22.0	25.3	2.562	23.3	20.2	7.2

		PREEXPOSU	JRE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1010	3.833	98.9	28.1	2.441	83.3	8.5	3.3
1094	3.215	86.3	59.0	3.393	95.0	48.5	1.7
1104	3.364	78.4	48.5	4.602	53.3	62.8	-1.7
1128	2.944	86.9	33.4	2.462	45.4	48.5	-1.7
1231	9.378	98.0	35.5	8.461	60.9	50.6	8.3
Mean	4.547	89.7	40.9	4.272	67.6	43.7	2.0
S.D.	2.720	8.7	12.6	2.503	20.9	20.6	

150 dB 10X 1/10M

INDIVIDUAL TUNING CURVE STATISTICS

		PI	ope Frequer	ică 0.2	KHZ			
		PREEXPOSU	RE		POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
0502 0504 0505 0507 0509	1.553 1.118 1.011 2.600 1.345	36.6 30.7 33.2 33.3 31.7	25.4 19.0 19.0 25.2 25.4	1.486 1.017 1.325 1.156 0.885	26.0 32.8 44.9 22.9 20.1	25.2 12.8 18.8 12.8 12.4	-6.7 0.0 -1.7 -5.0 10.0	
		33.1 2.2	22.8 3.5		29.3 9.9			
	Probe Frequency 1.0 kHz							
PREEXPOSURE			POSTEXPOSURE					
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
0502 0504 0505 0507 0509	2.100 1.689 1.768 1.837 2.476	37.7 48.0 45.3 48.6 40.0	21.3 26.9 21.8 21.3 20.7	2.476 2.557 2.557 1.779 3.136	54.8	32.5 21.3 26.9	~3.3	
Mean S.D.		43.9 4.8	22.4 2.5		47.0 7.0			
		Pr	obe Frequer	ncy 2.0	kHz			
		PREEXPOSU	TRE		POSTEXE	POSURE		
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
0502 0504 0505 0507 0509	3.026 1.894 1.615 1.753 2.445	62.1 40.2 35.2 58.6 38.3		1.590 2.190 ***** 1.173 0.866	35.6		5.0 6.7	
Mean S.D.	2.147 0.584	46.9 12.5	15.9 6.2	1.455 0.573	36.2 19.6	13.8	3.3	

150 dB 10X 1/10M

INDIVIDUAL TUNING CURVE STATISTICS

Probe	Frequency	4.0	kHz
-------	-----------	-----	-----

		F L	obe rrequen	cy 4.0	KIIZ			
		PREEXPOSU	RE		POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
0502 0504 0505 0507 0509	2.522 2.890 3.056 3.435 3.056	99.3 84.8 91.8 84.5 70.3		3.129 4.100 2.890 3.660 2.352	78.9 90.2 99.6 104.7 74.0		-1.7 -3.3 0.0 0.0 3.3	
Mean S.D.	2.992 0.330	86.1 10.7	37.6 6.1	3.226 0.678	89.5 13.1	48.7 16.9	-0.3 2.5	
Probe Frequency 8.0 kHz								
PREEXPOSURE				POSTEXP	OSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10đB	HF Slope	LF Slope	PTS	
0502 0504 0505 0507 0509	1.233 3.001 4.576 4.152 1.459	48.9 84.7 91.8 66.7 68.6	10.6 21.3 20.1 31.9 0.0	1.664 5.291 4.576 4.824 1.088	94.9 91.8	40.8	-5.0 -4.6 0.0 6.7 6.7	
Mean S.D.	2.884 1.520	72.1 16.8	16.8 12.0	3.489 1.956	79.1 13.4	14.2 15.5	0.7 5.7	
		Pr	obe Frequen	cy 11.2	kHz			
		PREEXPOSU	RE		POSTEXE	OSURE		
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
0502 0504 0505 0507 0509	5.670 3.771 4.471	48.5 163.6 116.2 151.4 84.5	5.3 70.2 40.0 65.7 35.5	4.843 5.750 5.750	43.5 135.5 112.1 129.5 110.5	64.9 64.9	0.0 -3.7 0.0 0.0	
Mean S.D.	3.613 1.597	112.8 47.5	43.3 26.2		106.2 36.7	53.4	-0.7	

150 dB 100X 10/M

INDIVIDUAL TUNING CURVE STATISTICS

		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0525 0528 0530 0536 0538	3.182 1.288 1.011 2.436 1.288	25.4 24.2 21.9 39.9 39.1	31.4 25.6 19.0 31.4 19.0	0.836 1.651 1.298 2.198 1.713	5.1	12.6 25.2 44.2 25.4 19.0	1.7 5.0 -3.3 1.7 5.0
Mean S.D.	1.841	30.1 8.7	25.3 6.2	1.539 0.507	26.5 13.0	25.3 11.8	2.0 3.4
		Pr	obe Frequer	ncy 1.0	kHz		
		PREEXPOSU	RE		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0525 0528 0530 0536 0538	3.570 4.170 3.570 2.371 2.371	50.7 47.7 77.5 82.0 60.1	48.1 31.3	2.476 4.170 3.136 1.467 3.570	64.9 61.8 52.7	15.1 31.3 31.9 21.8 31.3	-1.7 3.3 0.0 0.0 3.3
Mean S.D.	3.210 0.804	63.6 15.5		2.964 1.040		26.3 7.5	
		Pr	obe Frequer	ncy 2.0	kHz		
		PREEXPOSU	RE		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0525 0528 0530 0536 0538	2.593 2.596 2.042 2.082 2.415	46.6 68.7 48.6 71.5 54.0	22.1 39.9 23.0 23.0 15.1	4.568 3.579 1.894 2.077 6.153	58.4 38.9	22.1 36.3 23.0 15.1 12.4	0.0 13.3 -6.7 -3.3 -1.7
Mean S.D.	2.345 0.269		24.6 9.2			21.8 9.3	

150 dB 100X 10/M
INDIVIDUAL TUNING CURVE STATISTICS

		PREEXPOSU	IRE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0525	3.390	81.1	55.2	6.294	90.2	77.8	-1.7
0528	6.093	83.3	77.6	6.093	98.9	66.6	6.7
0530	4.100	103.4	66.5	6.093	97.2	77.6	-11.7
0536	3.236	111.3	66.4	4.754	107.0	77.5	5.0
0538	5.059	126.6	88.7	3.297	101.7	55.4	0.0
Mean	4.376	101.1	70.9	5.306	99.0	71.0	-0.3
S.D.	1.200	19.2	12.7	1.280	6.1	9.9	7.2

Probe Frequency 8.0 kHz

		PREEXPOSU	JRE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0525 0528 0530 0536 0538	6.528 3.159 5.286 2.717 1.233	88.9 62.6 88.4 56.1 80.0	30.7 32.5 54.3 21.8 11.2	3.982 3.522 5.286 4.576 3.735	103.3 50.2 103.1 88.7 80.0	53.7 21.3 20.7 42.5 31.3	3.3 15.0 -1.7 -1.7
Mean S.D.	3.785 2.111	75.2 15.1	30.1 15.9	4.220 0.715	85.1 21.9	33.9 14.2	2.7

		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0525 0528 0530 0536 0538	3.789 11.497 3.046 5.223 3.372	91.0 98.1 99.4 98.9 97.2	45.3 49.8 50.6 90.6 80.8	3.771 3.612 7.700 3.168 4.728	86.7 84.1 110.9 80.0 112.7	40.0 61.2 14.3 80.8 85.3	-6.7 3.3 0.0 3.3 1.7
Mean S.D.	5.385 3.516	97.0 3.4	63.4 20.7	4.595 1.826	94.9 15.7	56.3 29.5	0.3

150 dB 100X 1/M
INDIVIDUAL TUNING CURVE STATISTICS

		Pr	obe Freque	ncy 0.5	kHz		
	PREEXPOSURE				POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1448 1510 1539 1564	***** 0.757 *****	13.0 26.6 *****	18.8 18.8 12.6 ***** 6.2 6.0	1.300 0.997 ***** 0.766 1.227	31.7 32.3 ***** 22.8 16.8	18.8 18.8 ***** 6.2 12.6	-1.7 -1.7 28.3 3.3 30.8
Mean S.D.			12.5 6.3	1.255	26.4 6.6	16.3	
		Pr	obe Freque	ncy 1.0	kHz		
	PREEXPOSURE				POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1365	2.100	52.3	21.3	1.698	36.4	10.6	23.3

	110010			1001111110001111			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1365 1448 1510 1539 1564 1597	2.100 ***** 2.557 ***** 1.578	52.3 ***** 34.2 ***** 44.0	21.3 10.6 21.3 ***** 8.1 21.8	1.698 1.589 1.649 ***** 1.275	36.4 47.5 41.1 ***** 14.3 8.2	10.6 10.6 16.2 ***** 1.7 16.2	23.3 3.3 1.7 21.7 18.3 21.7
Mean S.D.	2.078 0.490	43.5 9.1	16.6 6.7	1.553 0.190	29.5 17.2	11.1 5.9	15.0 9.8

	PREEXPOSURE			POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
1365 1448 1510 1539 1564 1597	***** 5.339 6.881 ***** 2.699 4.015	***** 49.2 65.0 ***** 50.9 55.1	***** 29.7 51.4 ***** 21.2 28.3	9.252 3.579 6.881 ***** 0.746	48.2 81.7 45.8 ***** 0.0 41.8	27.4 40.3 27.4 ***** 6.2 0.0	20.0 6.7 3.3 8.3 23.3 26.7	
Mean S.D.	· 4.734 1.792	55.1 7.1	32.7 13.0	5.114 3.728	43.5 29.1	20.3 16.7	14.7	

150 dB 100X 1/M
INDIVIDUAL TUNING CURVE STATISTICS

				2			
		PREEXPOSU	RE		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1510 1539 1564	2.809 4.606 ***** 3.255	128.9 85.0 ***** 42.2	55.4 55.3 55.5 ***** 33.2 66.4	4.100 4.100 ***** 3.255	70.5 ***** 90.2	55.4 44.4 ***** 33.2 *****	6.7 11.7 1.7
Mean S.D.	3.594 0.768	76.2 37.6	53.2 12.1	3.486 0.776	91.9 15.6	38.8 14.4	5.8 7.7
		Pr	obe Freque	ncy 8.0	kHz		
		PREEXPOSU	RE		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slop≈	LF Slope	PTS
1448 1510 1539 1564	***** 1.771	***** 22.6 ***** 82.7	42.5 73.5 33.0 ***** 44.2 33.6	4.252 3.258 ***** 4.305	69.9 ***** 65.8	44.2 43.1 ***** 10.1 *****	-5.0 1.7 8.3 5.0
	2.664 0.899	55.1 30.4	45.4 16.5	3.727 0.640	66.4 6.2		1.9
		Pr	obe Freque	ncy 11.2	kHz		
		PREEXPOSU	RE		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1365 1448 1510 1539 1564 1597	***** 4.728 3.130 ***** 2.083 4.633	34.7 127.3 53.7 ***** 32.8 79.7	11.4 85.3 52.8 ***** 50.6 110.2	2.891 ***** 7.475 ***** 2.980 *****	103.4 ****** 92.0 ***** 79.7 *****	65.7 ****** 70.2 ***** 45.3 *****	1.7 5.0 1.7 11.7 5.0 10.0
Mean S.D.	3.644 1.272	65.6 39.3	62.1 37.6	4.449 2.621	91.7 11.9	60.4 13.3	5.8 4.2

150 dB 100X 1/10M

INDIVIDUAL TUNING CURVE STATISTICS

Probe Frequency 0.5 kHz

		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0553	2.080	39.1	31.6	1.411	15.7	19.0	-1.7
0556	1.089	25.3	12.4	0.968	26.7	12.6	-1.7
0557	1.288	25.4	19.0	1.659	35.0	31.4	-3.3
0558	1.870	29.8	19.0	1.486	31.0	18.8	1.7
0559	3.613	36.8	44.0	1.033	38.1	12.6	3.3
Mean	1.988	31.3	25.2	1.311	29.3	18.9	-0.3
S.D.	0.995	6.4	12.6		8.7	7.7	2.7

Probe Frequency 1.0 kHz

		FREEXPOSU	RE	POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
0553	1.779	47.0	32.5	2.738	50.6	36.9	0.0	
0556	2.557	59.0	43.6	2.931	53.1	25.2	1.7	
0557	2.738	66.1	31.3	3.570	70.5	42.5	-6.7	
0558	2.100	50.7	26.9	2.557	38.3	32.5	0.0	
0559	2.557	51.1	32.5	2.851	44.4	32.5	-1.7	
Mean	2.346	54.8	33.3	2.929	51.4	33.9	-1.3	
S.D.	0.395	7.7	6.2	0.384	12.1	6.4	3.2	

		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0553 0556 0557 0558 0559	3.579 4.100 4.041 1.722 5.249	56.0 33.7 65.5 69.0 49.1	28.3 14.2 29.2 15.1 29.2	4.325 1.615 3.324 3.199 1.190	52.2 30.0 65.5 78.6 51.7	52.3 15.1 22.1 30.1 0.0	0.0 3.3 -3.3 0.0 8.3
Mean S.D.	3.738 1.284	54.7 14.1	23.2 7.9	2.731 1.297	55.6 18.1	23.9 19.3	1.7

150 dB 100X 1/10M

INDIVIDUAL TUNING CURVE STATISTICS

		PREEXPOSU	RE		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0553 0556 0557 0558 0559	3.084 5.760 3.532 3.038 3.129	110.5 70.4 123.6 69.9 87.2	55.2 55.6 66.5 66.4 77.6	2.728 4.232 3.236 3.255 4.412	108.4 73.3 72.4 96.7 109.6	44.1 66.4 66.4 44.2 99.5	1.7 -1.7 0.0 5.0 5.0
Mean S.D.	3.708 1.163		64.3 9.3	3.573 0.719		64.1 22.7	2.0
		Pr	obe Frequer	ncy 8.0	kHz		
		PREEXPOSU	IRE		P° شXP	POȘURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0553 0556 0557 0558 0559	3.094 1.484 8.900 5.286 4.576	80.4 63.6 109.8 107.4 76.4	21.3 1.1 52.0 31.9 42.5	2.058 1.357 7.282 4.305 3.001	52.2 90.1	21.8 10.6 52.0 43.7 43.7	-1.7 5.0 -1.7 0.0 3.3
		87.5 20.3		3.601 2.336		34.3 17.3	
		Pr	obe Frequer	ncy 11.2	kHz		
		PREEXPOSU	JRE		POSTEXE	POSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0553 0556 0557 0558 0559	2.563 2.241 3.771 3.007 5.116	70.1 .74.7 .91.3 .92.6 .80.3	45.3 55.9 40.0 50.6 65.7	3 446	74.0 106.4	40.0 45.3 75.5 101.2 65.7	0.0 0.0 0.0 0.0 8.3
Mean S.D.	3.339 1.147	81.8 10.0	51.5 9.9	3.256 0.328	90.0 17.9	65.5 24.6	1.7

155 dB 1X
INDIVIDUAL TUNING CURVE STATISTICS

		PREEXPOSU	RE		POSTEXP	POSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1933 1961 1975 2016 2076	1.038 1.120 1.486 1.769 0.700	33.6 27.9 28.8 25.8 28.0	25.6 25.0 31.6 24.8 12.8	1.134 0.757 0.938 1.349 2.436	26.8 26.8 27.3 33.3 33.5	25.4 12.6 25.6 25.0 31.4	
Mean S.D.	1.222 0.414	28.8 2.9	23.9 6.8	1.323 0.660	29.5 3.5	24.0 6.9	-1.0 4.9
		Pr	obe Frequer	ncy 1.0) kHz		
		PREEXPOSU	IRE		POSTEXE	OSURE	

	PREEXPOSURE			POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
1933	1.768	46.9	21.8	2.851	44.0	21.3	0.0	
1961	1.216	45.8	16.8	1.315	42.0	16.8	3.3	
1975	1.837	48.6	27.4	1.315	47.4	16.8	3.3	
2016	2.476	47.4	31.9	3.591	53.6	26.3	0.0	
2076	2.557	46.1	21.3	1.551	32.4	16.8	-10.0	
Mean	1.971	47.0	23.8	2.125	43.9	19.6	-0.7	
S.D.	0.554	1.1	5.9	1.039	7.8	4.2	5.5	

		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1933	1.238	44.0	23.9	8.309	40.1	0.0	3.3
1961	4.568	36.3	38.1	1.418	43.8	31.0	-1.7
1975	4.568	57.4	46.1	*****	*****	*****	-1.7
2016	2.772	50.4	14.2	4.568	32.4	38.1	-3.3
2076	2.608	50.8	31.0	3.418	70.0	14.2	-5.0
Mean	3.150	47.8	30.7	4.428	46.6	20.8	-1.7
S.D.	1.424	8.0	12.4	2.896	16.3	17.1	3.1

155 dB 1X
INDIVIDUAL TUNING CURVE STATISTICS

	PREEXPOSURE			POSTEXPOSURE				
Purmal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
1933	4.100	72.8	33.3	4.100	91.9	44.4	-3.3	
1961	2.469	52.6	22.1	4.100	66.3	33.3	0.0	
1975	6.768	112.6	66.6	3.489	114.1	44.3	1.7	
2016	4.420	48.2	55.3	3.129	52.5	55.5	10.0	
2076	2.469	41.9	22.2	1.636	46.7	33.1	-1.7	
Mean	4.045	65.6	39.9	3.291	74.3	42.1	1.3	
S.D.	1.770	28.7	20.1	1.014	28.3	9.3		

Probe Frequency 8.0 kHz

		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1933	4.305	83.1	43.7	2.819	48.2	33.0	5.0
1961	3.941	71.5	33.0	1.704	51.9	33.6	-8.3
1975	1.664	68.7	11.8	2.717	70.4	22.4	3.3
2016	5.286	76.1	43.1	7.799	94.6	75.5	-5.0
2076	1.588	60.5	21.8	5.192	86.9	54.9	-13.3
Mean	3.357	72.0	30.7	4.046	70.4	43.9	-3.7
くり.	1.655	8.4	13.8	2.457	20.6	21.3	7.8

	PREEXPOSURE				POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS		
1933 1961 1975 2016 2076	0.960 6.718 ***** 2.091 5.238	86.5 77.3 ***** 60.0 62.5	0.0 55.1 ***** 35.5 0.0	***** 4.062 0.871 ***** 11.496	2.8 77.1 71.6 ***** 105.2	78.6 35.5 0.0 25.1	-1.7 -1.7 6.7 -3.3 -11.7		
Mean S.D.	3.751 2.681	71.6 12.5	22.6 27.3	5.477 5.452	64.2 43.5	52.3 43.0	-2.3 6.5		

155 dB 10X 10/M

INDIVIDUAL TUNING CURVE STATISTICS

Probe Frequency 0.5 kHz

	PREEXPOSURE			POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1534	0.885	23.2	18.8	0.947	24.7	25.2	0.0
1700	3.182	31.1	25.0	2.080	32.8	25.2	-3.3
1716	0.724	24.1	12.5	1.769	25.2	31.2	10.0
1718	*****	11.0	18.8	1.235	24.1	0.0	8.3
1759	1.559	28.3	31.4	1.030	24.0	0.0	11.7
Mean	1.612	23.5	21.3	1.412	26.1	16.3	5.3
S.D.	1.123	7.7	7.2	0.492	3.8	15.1	6.6

Probe Frequency 1.0 kHz

		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1534 1700 1716 1718 1759	1.607 ***** 1.689 1.768 1.445	57.9 ***** 49.5 38.2 47.4	21.8 ***** 21.3 21.8 16.2	1.929 1.205 1.121 1.589 1.032	58.9 46.2 30.0 37.0 19.9	26.9 11.2 11.2 10.6 5.6	-1.7 -5.0 15.0 16.7 21.7
Mean S.D.	1.627 0.138	48.3 8.1	20.3 2.7	1.375 0.375	38.4 15.0	13.1	9.3

	PREEXPOSURE			POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1534	3.199	73.5	22.1	4.100	77.6	22.1	3.3
1700	4.015	68.5	20.4	4.100	68.9	22.1	-3.3
1716	2.039	64.2	22.1	2.121	64.7	37.2	5.0
1718	6.041	38.5	29.2	9.200	71.4	26.5	3.3
1759	5.247	55.2	50.5	8.309	43.8	19.5	10.8
Mean	4.108	60.0	28.9	5.566	65.3	25.5	3.8
S.D.	1.593	13.7	12.5	3.037	12.9	7.0	5.1

155 dB 10X 10/M
INDIVIDUAL TUNING CURVE STATISTICS

		PREEXPOSU	RE	_	POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1534 1700 1716 1718 1759	3.951 4.754 2.733 3.255 2.733	66.7 92.5 103.4 70.4 72.6	44.3 44.4 22.2 33.2 22.2	3.226 3.489 3.654 2.733 3.654	116.8 98.1 101.0	44.3 44.3 33.2 22.2 33.2	0.0 8.3 11.7 3.3 7.1
Mean S.D.	3.485 0.867	81.1 16.0	33.3 11.1	3.351 0.387		35.4 9.2	
		Pr	obe Frequen	cy 8.0	kHz		
	PREEXPOSURE				POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1534 1700 1716 1718 1759	1.850 2.914 ***** 1.870 5.993	37.2 44.0 12.5 50.2 56.1	45.4 22.4 11.2 11.8 31.3	3.014 1.343 1.356 1.281 2.652	28.2	44.2 10.6 0.0 1.1 33.6	0.0 5.0 13.3 6.7 0.8
Mean S.D.	3.157 1.955	40.0 16.9	24.4 14.4	1.929 0.835		17.9 20.0	5.2 5.3
		Pr	obe Frequen	cy 11.2	kHz		
		PREEXPOSU	RE		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1534 1700 1716 1718 1759	8.681 5.750 ***** 3.405 4.633	102.5 78.8 30.2 88.0 80.7	49.8 80.0 50.6 45.3 155.9	2.431 3.684 4.578 2.025 4.638	112.2	24.9 55.9 100.4 40.8 77.7	3.3 0.0 6.7 6.7 8.3
Mean S.D.	5.617 2.256	76.0 27.3	76.3 46.5	3.471 1.205	103.4 26.0	59.9 29.9	5.0 3.3

155 dB 10X 1/M INDIVIDUAL TUNING CURVE STATISTICS

	Probe	Frequency	0.5	kHz
--	-------	-----------	-----	-----

		Pr	obe Frequer	ncy 0.5	kHz		
		PREEXPOSU	RE		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1102 1271 1272 1280 1293	1.135 1.340 1.239 2.058 2.051	19.7 18.9 36.6 49.5 25.8	11.4 3.9 0.0 22.7 19.0	2.753 1.229 1.750 1.120 1.284	25.2 30.5	30.2 16.5 9.9 18.6 6.2	8.3 5.0 10.0 -0.5 24.7
Mean	1.565 0.453		11.4 9.6				
		Pr	obe Frequer	ncy 1.0	kHz		
PREEXPOSURE				POSTEXP	OSURE		
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1272 1280	1.959 0.900 0.657 ***** 1.649	43.1 26.3 14.4 22.7 41.1		1.520	41.0		
Mean S.D.	1.291 0.613	29.5 12.3	11.6 9.2	2.058 0.490	32.2 20.7	18.9 5.4	12.8 13.8
		Pr	obe Freque	ncy 2.0	kHz		
		PREEXPOSU	RE		POSTEXE	POSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1102 1271 1272 1280 1293	2.886 1.298 5.421	29.7 38.0 176.7 57.6 43.3	27.6 31.7 6.9 44.1 36.3	4.885 6.246 2.564 6.153 5.727	57.0 31.7	27.3 23.8 28.3	15.0 -1.7 21.7 -6.5 24.0

29.3

13.9

5.115

1.524

34.4

17.4

4.207

2.574

69.0

61.0

Mean

S.D.

10.5 13.8

24.6

4.7

155 dB 10X 1/M
INDIVIDUAL TUNING CURVE STATISTICS

PREEXPOSURE			POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1102	5.118	86.1	68.9	4.828	76.2	57.6	5.0
1271	1.291	27.1	0.0	2.133	64.0	11.0	17.9
1272	0.998	32.3	0.0	1.265	23.5	0.0	3.3
1280	2.612	99.0	33.1	3.532	80.7	55.4	5.2
1293	4.754	116.0	55.4	2.733	32.3	33.3	17.3
Mean	2.955	72.1	31.5	2.898	55.3	31.5	9.8
S.D.	1.912	40.2	31.4	1.361	26.0	25.8	7.2

Probe Frequency 8.0 kHz

		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1102 1271 1272 1280 1293	***** 1.271 2.184 1.759 2.938	86.7 43.2 50.9 80.3 86.9	***** 0.0 17.6 6.4 21.3	5.668 1.889 3.921 1.851 3.522	70.0 59.3 52.4 78.0 53.8	27.7 5.8 39.4 0.0 10.1	11.7 15.4 3.3 -2.8 -3.0
Mean S.D.	2.038 0.706	69.6 20.9	11.3 9.8	3.370 1.589	62.7 11.0	16.6 16.4	4.9

	PREEXPOSURE				POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
1102	3.226	93.2	43.2	2.218 ***** 3.925 ***** 8.399	75.7	3.2	1.7	
1271	10.504	95.9	35.5		11.6	0.0	-1.7	
1272	16.843	127.6	55.8		52.3	56.6	10.0	
1280	9.012	100.5	60.4		68.1	5.7	-5.0	
1293	*****	82.6	*****		85.2	44.9	3.3	
Mean	9.896	99.9	48.7	4.847	58.6	22.1	1.7	
S.D.	5.595	16.8	11.4	3.192	28.9	26.6		

155 dB 10X 1/10M

INDIVIDUAL TUNING CURVE STATISTICS

Probe Frequency 0.5 kHz

		Pr	obe Frequer	0.5	kHz	
		PREEXPOSU	TRE		POSTEXP	OSURE
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope PTS
1925 1931	3.327 1.189	31.7 24.6	37.4 25.2	1.659 1.659		18.6 -3.3
1948	1.407	36.5	6.2	0.979	30.6	31.4 -5.0 6.4 3.3
1967 1974	1.659	20.0 34.2	18.0	3.182	37.6	25.0 -12.0 19.0 1.7
Mean S D	1.774	29.4 6.9	21.2 11 4	1.708	31.4 4 1	20.1 -3.1 9.3 6.1
J.D.	0.000	0.3	11.4	0.004	4.4	<i>7.3</i>
		Pr	obe Frequer	ncy 1.0	kHz	
PREEXPOSURE				POSTEXE	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope PTS
1925	1.266	62.5		1.125	59.3	5.0 6.7
1931	2.100	38.2	21.3	1.689	47.4	15.7 1.7 21.3 5.0 16.2 -10.3
1967	*****	47.8 16.2	7.0	1.548	62.8 62.5 50.6	16.2 -10.3
1974	1.094	56.1	5.0	1.230	50.6	11.2 6.7
Mean						13.9 1.9
S.D.	0.692	18.1	7.2	0.567	7.1	6.1 7.2
		Pr	obe Frequer	ncy 2.0	kHz	
		PREEXPOSU	JRE .		POSTEXE	POSURE
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope PTS
1925			44.3			
1931 1948	3.610 6.041	54.8 68.6	13.3 29.2	6.153 1.970	49.9 74.5	$\begin{array}{ccc} 4.4 & -1.7 \\ 15.1 & -1.7 \end{array}$
1967	8.309	77.4	43.4	7.269	78.6	20.4 - 3.7
1974 	******	*****	35.4	10.970	50.3	11.5 13.3
Mean	6.307	64.9	33.1	5.500	57.0	10.3 3.6
S.D.	2.023	10.2	12.7	4.030	19.4	8.2 8.2

155 dB 10X 1/10M

INDIVIDUAL TUNING CURVE STATISTICS

Probe Frequency	4.0	kHz
-----------------	-----	-----

		PREEXPOSU	RE		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1925 1931 1948 1967 1974	2.531 4.406 5.059 1.896 2.352	110.5 78.3 100.2 81.7 77.8	22.1 44.5 44.5 10.9 22.1	3.654 2.972 3.489 3.255 3.255	49.3 80.8 106.9 98.5 102.7	44.2 33.2 44.3 33.2 33.2	-3.3 -1.7 -1.7 -3.7 1.7
Mean S.D.	3.249 1.393	89.7 14.8	28.8 15.0	3.325 0.260		37.6 6.0	-1.7 2.1
Probe Frequency 8.0 kHz							
PREEXPOSURE				POSTEXP	OSURE		
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1925 1931 1948 1967 1974	3.236 *****	80.2 42.8 55.7 89.6 25.1	32.5 0.0 23.0 35.6 0.0	1.607 ***** 1.147 1.674 3.522	*****	***** 11.2	-1.0 -1.7 1.3
Mean S.D.	2.774 1.449	58.7 26.5	18.2 17.3	1.987 1.049		8.0 5.3	0.1
		Pr	obe Freque	ncy 11.2	kHz		
		PREEXPOSU	RE		POSTEXE	POSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	· Slope	PTS
	3.567 3.748 2.852 ***** 3.144	71.4 106.9 85.9 81.0 86.4	17.4 47.6 40.0 0.0 30.2			*. < 5 1.	-0.4 0.0 9.7 -1.7
	3.328 0.405	86.3 13.0	27.0 18.9		80.7 20.9	18.1	0.5

155 dB 100X 10/M

INDIVIDUAL TUNING CURVE STATISTICS

Probe Frequency 0.5 kHz

		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slop	e PTS
1880 1922 1927 1945 1949 1953	1.129 1.486 1.089 1.059 1.987 1.478	31.2 23.1 33.3 22.9 35.0 25.7	31.6 25.2 25.2 19.0 37.8 19.0	0.867 1.607 0.382 0.403 1.253 0.865	5.9 26.1 13.4 9.4 10.1 15.1	0.0 31.6 19.2 18.8 12.6	33.3 -10.0 16.7 0.0 36.7 15.0
Mean S.D.	1.371 0.358	28.5 5.3	26.3 7.3	0.896 0.478	13.3 7.0	15.8 10.4	15.3 18.2

Probe Frequency 1.0 kHz

		PREEXPOSU	RE	POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
1880	1.008	42.4	2.3	6.233	23.9	35.8	48.3	
1922	2.241	48.2	33.0	1.551	41.1	16.8	3.3	
1927	1.406	50.6	17.4	2.557	41.4	15.7	3.3	
1945	1.837	38.2	32.5	1.213	39.9	28.0	1.7	
1949	2.100	58.1	32.5	*****	0.0	0.0	43.3	
1953	2.241	48.2	33.0	1.205	21.6	11.2	31.7	
Mean	1.806	47.6	25.1	2.552	28.0	17.9	21.9	
S.D.	0.503	6.9	12.8	2.131	16.3	12.6	21.7	

	PREEXPOSURE			POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
1880	1.787	43.6	23.9	*****	0.0	0.0	41.7	
1922	1.226	37.7	31.9	4.100	18.9	30.1	1.7	
1927	0.870	43.8	0.0	5.249	51.2	29.2	3.3	
1945	0.976	48.0	0.9	2.278	55.4	15.1	5.0	
1949	2.173	51.3	54.9	2.278	5.6	16.0	40.0	
1953	1.577	55.0	22.1	*****	0.0	0.0	35.0	
Mean	1.435	46.5	22.3	3.476	21.8	15.1	21.1	
S.D.		6.2	20.6	1.461	25.4	13.3	19.6	

155 dB 100x 10/M

INDIVIDUAL TUNING CURVE STATISTICS

		Pr	obe Frequer	ncy 4.0	kHz	
		PREEXPOSU	RE		POSTEXP	OSURE
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope PTS
1880 1922 1927 1945 1949 1953	4.754 5.059 3.489 3.255 4.100 3.489	84.0 70.4 94.3 102.6 92.1 102.6	33.3 77.6 44.3 44.2 44.4 44.3	***** 6.768 ***** 2.966 4.754 5.622	50.5 *****	0.0 41.7 66.6 -8.0 22.1 -11.7 33.0 -1.7 33.3 23.3 99.6 5.0
		91.0 12.3			64.2 44.0	42.4 8.1 35.3 20.6
		Pr	obe Frequer	acy 8.0	kHz	
		PREEXPOSU	TRE		POSTEXP	OSURE
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope PTS
1880 1922 1927 1945 1949 1953	5.192 1.562 1.074	90.9 101.9 57.3 53.5 59.1 20.8	76.7 66.1 11.2 0.0 32.5 11.8		67.1 83.8 52.0 51.4	0.0 56.7 33.6 8.3 43.7 -8.3 0.0 5.0 22.4 13.3 1.1 11.7
		63.9 29.0	33.0 31.7	2.167 0.915	63.4 13.3	
		Pr	obe Freque	ncy 11.2	kHz	
		PREEXPOSU	TRE		POSTEXP	OSURE
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope PTS
1880 1922 1927 1945 1949 1953	2.664 6.221 5.750 4.241 1.602 11.496	73.6 122.5 74.0 87.5 57.5 77.3	61.2 75.5 19.6 55.1 0.0 80.0	***** 5.750 1.743 3.405 1.150 3.453	0.0 107.5 59.9 65.5 37.2 102.3	0.0 66.7 80.0 8.3 0.0 3.3 45.3 -5.0 15.1 6.7 75.5 15.0
Mean S.D.	5.329 · 3.498	82.1 22.0	48.6 32.0	3.100 1.795	62.1 40.4	36.0 15.8 36.4 25.8

155 dB 100X 1/M

Probe Frequency 0.5 kHz

INDIVIDUAL TUNING CURVE STATISTICS

		PREEXPOSU	RE		OSURE		
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1746 1826 1854 1866 1868 1887	1.118 0.938 1.288	29.3 29.3 30.2 29.4 29.7 31.2	19.0	1.106	21.3 21.3 22.1	6.4 25.4	-1.7 -1.7 10.0
Mean	1.174 0.205	29.9 0.8	21.1 5.1	0.906 0.288	21.2 2.6	15.9	8.6
		Pr	obe Freque	ncy 1.0	kHz		
		PREEXPOSU	RE		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
	1.649 1.837	49.1 49.0 37.4 46.9	22.9 21.8 27.4 22.4 27.4 21.8	1.167 ***** 2.081 0.572	***** 44.9	21.8 16.2 11.2	1.7 18.3
Mean			24.0 2.7		17.4 17.2	13.5	16.7
		Pr	obe Freque	ncy 2.0	kHz		
		PREEXPOSU	IRE		POSTEXE	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1746 1826 1854 1866 1868 1887	1.454 1.577 1.577 2.874 2.874 1.262	38.9 41.1 54.9 49.3 29.0 24.6	39.0 0.0 7.1 23.0 23.0 14.2	***** 0.604 ***** 2.278 4.100 2.278	0.0 8.2 ***** 58.4 44.3 18.4	1.8 0.0 ***** 15.1 14.2 15.1	25.0 20.0 5.0 -5.0 16.7
Mean S.D.	1.936 0.735	39.6 11.6	17.7 13.8	2.315 1.428	25.8 24.7	9.2 7.6	13.1 11.0

155 dB 100X 1/M
INDIVIDUAL TUNING CURVE STATISTICS

		Pr	obe Frequer	ncy 4.0	kHz	
		PREEXPOSU	RE		POSTEXP	OSURE
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope PTS
1866	3.654 3.404 4.100	107.3 66.7	33.1	2.378 ***** 2.175 4.754		10.9 11.7 ***** 8.3 10.9 -2.5 55.4 -4.2
Mean S.D.	3.466 0.461	83.4 33.8	38.7 9.3	3.229 1.095	88.4 23.4	31.0 7.9 19.9 9.5
		Pr	obe Frequer	ncy 8.0	kHz	
		PREEXPOSU	RE		POSTEXP	OSURE
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope PTS
1854 1866	2.005 3.596 1.356	78.8 59.0 61.1		1.436 ***** 1.784 7.520	57.4 ***** 75.0	21.8 10.0 ***** -5.0
Mean S.D.		61.3 18.3	40.4 23.0	2.877 2.655	61.5 17.8	
		Pr	obe Frequer	ncy 11.2	kHz	
		PREEXPOSU	IRE		POSTEXP	POSURE
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope PTS
1746 1826 1854 1866 1868 1887	2.300 1.182 3.256 4.384 11.496 6.718	77.8 28.4 107.2 83.2 109.2 110.3	15.1 0.0 40.0 4.5 34.7 90.6	1.774 3.833 ***** 1.328 1.643 5.609	53.7 73.8 ****** 98.6 26.9 129.6	0.0 8.3 30.2 15.0 ***-** 6.7 9.8 -6.7 35.5 -8.3 40.0 5.0
Mean S.D.	4.889	86.0 31.5	30.8 33.3	2.838 1.838	76.5 39.6	23.1 3.3 17.3 9.1

155 dB 100X 1/10M

INDIVIDUAL TUNING CURVE STATISTICS

Plobe Frequency 0.5 kHz

		PREEXPOSU	RE		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1914 1917 1970 1999 2066	1.486 0.980 1.129 1.265 0.578	26.3 30.6 28.8 31.1 24.3	31.6 19.2 18.8 31.4 25.2	1.486 1.138 1.011 0.694 1.038	13.4 33.2 21.0 18.0 28.3	12.6 19.0 19.0 6.4 31.6	16.7 6.7 6.7 25.0
Mean S.D.	1.088	28.2 2.9	25.2 6.2	1.073 0.284	22.8 8.0	17.7 9.4	10.3
		Pr	obe Frequen	cy 1.0	kHz		
		PREEXPOSU	RE		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1914 1917 1970 1999 2066	1.275 1.589 2.464 2.217 3.136	41.2 37.3 41.9 52.4 46.9	22.4 11.2 33.0 36.9 26.3	3.056 1.589 1.551 1.013 1.877	20.2 48.4 48.2 24.6 56.9	15.7 11.8 16.8 16.2 26.9	28.3 0.0 10.0 21.7 -3.3
Mean S.D.	2.136 0.734	43.9 5.8	26.0 10.0	1.817 0.759	39.7 16.2	17.5 5.6	11.3
		Pı	obe Frequer	ncy 2.0	kHz		
		PREEXPOST	irē.		POSTEXE	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1914 1917 1970 1999 2066	2.278 0.823 1.418 5.249 4.568	44.6 30.2 36.8 55.2 37.7	15.1 0.9 31.0 37.2 30.1	4.100 4.100 6.153 0.904 0.976	0.0 60.7 52.8 19.1 56.0	6.2 14.2 28.3 0.0 0.0	25.0 -3.3 8.3 38.3 -3.3
Mean S.D.	2.867 1.949	40.9 9.5	22.9 14.7	3.247 2.266	37.7 26.7	9.7 11.9	13.0 18.3

155 dB 100X 1/10M

INDIVIDUAL TUNING CURVE STATISTICS

		PREEXPOSU	RE		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1914 1917 1970 1999 2066	3.165 4.221 4.754 5.059 3.706	71.2 132.7 108.0 49.0 119.8	22.1 44.5 44.4 55.5 66.4	***** 3.951 2.728 ***** 2.728	0.0 88.1 63.4 6.6 116.9	0.0 44.3 33.1 11.1 44.2	21.7 0.8 -5.8 75.8 -1.7
Mean S.D.	4.181 0.768	96.2 34.9	46.6 16.4	3.136 0.706	55.0 50.9	26.5 20.1	18.2 33.9
		Pr	obe Freque	ncy 8.0	kHz		
		PREEXPOSU	RE		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1914 1917 1970 1999 2066	3.570 1.484 2.382 7.821 6.089	37.3 104.7 58.9 105.1 79.6	44.2 10.6 23.0 65.5 43.1	2.717 1.799 0.794 ***** 2.346	82.8 53.9 49.5 9.1 75.5	22.4 23.5 0.0 0.0 33.6	5.0 0.0 10.0 70.0 1.7
Mean S.D.	4.269 2.633	77.1 29.4	37.3 21.2	1.914 0.836	54.2 28.8	15.9 15.2	17.3 29.7
		Pr	obe Freque	ncy 11.2	kHz		
		PREEXPOSU	IRE		POSTEXE	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1914 1917 1970 1999 2066	1.463 5.981 1.095 4.527 13.836	48.5 102.1 26.5 115.1 118.2	0.0 85.3 0.0 40.0 110.2	0.881 1.385 0.937 ***** 6.581	59.8 91.3 57.1 8.7 100.2	15.1 0.0 9.8 0.0 80.8	18.3 8.3 11.7 71.7 -3.3
Mean S.D.	5.380 5.155	82.1 41.9	47.1 49.8	2.446 2.766	63.4 36.0	21.1 34.0	21.3

160 dB 1X
INDIVIDUAL TUNING CURVE STATISTICS

		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	e PTS
1843	1.189	24.6	31.6	1.038	31.0	6.0	-11.7
1972	1.120	24.9	37.8	0.768	23.4	24.8	-2.5
1973	1.038	27.1	12.4	1.486	29.7	31.6	-4.6
2013	0.865	24.6	12.6	0.819	25.8	12.6	-1.7
2035	0.973	24.9	18.8	0.808	27.9	12.4	3.3
2057	0.885	19.8	25.2	1.011	21.0	19.0	-1.7
Mean	1.012	24.3	23.1	0.988	26.5	17.7	-3.1
S.D.	0.129		10.3	0.268	3.8	9.3	4.9

Probe Frequency 1.0 kHz

	PREEXPOSURE				POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	e PTS		
1843	1.717	26.1	28.0	1.284	61.6	17.4	-10.0		
1972	1.535	44.5	21.8	1.385	45.3	16.2	1.7		
1973	1.837	40.0	21.3	2.100	54.5	21.3	0.0		
2013	1.918	56.1	16.2	1.607	52.3	21.8	-1		
2035	1.578	57.8	21.8	1.918	41.5	16.2	3.3		
2057	2.557	34.5	21.3	1.551	33.2	16.8	-3.3		
Mean	1.857	43.2	21.7	1.641	48.1	18.3	-1.6		
S.D.	0.373	12.3		0.313	10.2	2.6	4.7		

	PREEXPOSURE			POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1843	3.858	74.2	21.2	1.324	61.4	15.1	-3.3
1972	7.269	60.0	20.4	2.699	54.7	13.3	3.3
1973	5.249	49.9	21.2	5.249	30.4	5.3	-3.7
2013	6.153	32.2	20.4	7.269	66.7	4.4	5.0
2035	5.249	48.6	21.2	4.568	33.8	6.2	0.0
2057	2.278	8.9	15.1	5.249	49.8	21.2	-1.7
Mean	5.010	45.6	19.9	4.393	49.5	10.9	-0. <u>1</u>
S.D.	1.750	22.7	2.4	2.101	14.7	6.7	3.6

160 dB 1X
INDIVIDUAL TUNING CURVE STATISTICS

		PREEXPOSURE			POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS		
1843	7.138	104.7	66.7	10.074	99.4	77.8 44.3 44.3 22.2 33.2 11.0	3.3		
1972	3.951	98.9	44.3	2.890	104.6		-1.7		
1973	3.056	96.2	33.1	3.489	102.7		1.7		
2013	2.585	66.8	11.1	3.009	79.3		6.7		
2035	3.489	107.7	44.3	2.821	91.1		4.6		
2057	2.733	87.8	22.2	2.123	67.9		-5.0		
Mean	3.825	93.7	36.9	4.068	90.8	38.8	1.6		
S.D.	1.699	14.9	19.4	2.975	14.6	23.1			

Probe Frequency 8.0 kHz

	PREEXPOSURE			POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1843	3.124	66.2	55.4	1.472	38.8	21.8	-1.7
1972	3.001	63.7	43.7	2.376	69.4	33.0	13.3
1973	1.356	44.4	0.0	2.177	60.3	11.2	9.2
2013	1.064	34.2	0.0	2.058	81.0	21.8	5.0
2035	*****	25.1	31.9	2.914	70.4	21.8	6.7
2057	1.425	46.6	10.6	3.322	65.9	0.0	-8.3
Mean	1.994	46.7	23.6	2.387	64.3	18.3	4.0
S.D.	0.986	16.1	23.5	0.655	14.2	11.3	7.8

	PREEXPOSURE			POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1843	4.241	104.8	55.1	3.771	104.8	80.8	0.0
1972	2.848	74.7	70.2	0.940	52.1	1.2	12.5
1973	3.857	44.2	49.8	1.533	101.2	0.0	8.7
2013	13.756	100.6	44.5	4.389	104.9	45.3	0.0
2035	4.011	94.0	45.3	11.497	109.8	64.9	3.3
2057	4.019	89.2	50.6	4.011	85.6	71.0	-5.0
Mean	5.455	84.6	52.6	4.357	93.1	43.9	3.3
S.D.	4.096	22.4	9.4	3.771	21.7	35.5	6.4

160 dB 10X 10/M

INDIVIDUAL TUNING CURVE STATISTICS

Probe	Frequency	0.5	kHz
-------	-----------	-----	-----

		PREEXPOSU	RE		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0515 0517 0518 0522 0523	0.885 2.080 1.288 2.436 1.486	23.2 42.4 24.9 29.1 26.9	18.8 25.2 19.0 25.0 25.2	0.801 1.306 1.465 1.465 1.249	28.1 25.7 25.0 47.1 42.0	12.8 12.6 6.4 6.4 6.4	-1.7 -5.0 5.0 13.3 16.7
Mean S.D.	1.635 0.621	29.3 7.7	22.6 3.4	1.257 0.272	33.6 10.3	8.9 3.4	5.7 9.3
		Pr	obe Freque	ncy 1.0	kHz		
		PREEXPOSU	RE		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0515 0517 0518 0522 0523	2.476 3.570 2.081 1.649 3.570	46.2 55.7 45.3 36.1 39.4	26.3 36.9 21.8 16.2 31.3	1.906 3.136 1.546 0.853 *****	67.1 70.5 39.5 12.2 16.2	26.9 37.5 33.0 5.0 15.7	1.7 5.0 1.7 35.0 36.7
Mean S.D.	2.669 0.873	44.5 7.5	26.5 8.1	1.860 0.956		23.6 13.2	16.0 18.2
		Pr	obe Freque	ncy 2.0	kHz		
		PREEXPOSU	JRE .		POSTEXE	POSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0515 0517 0518 0522 0523	1.414 1.135 4.015 2.021 1.332	37.2 51.2 41.8 56.3 53.1	0.0 7.1 20.4 31.0 7.1	***** 2.039 4.100 *****		***** 22.1 70.0 0.0 0.0	1.7 5.0 1.7 23.3 35.0
Mean S.D.	1.983 1.183	47.9 8.1	13.1 12.4	3.070 1.457	29.9 24.7	23.0 33.0	13.3 15.1

160 dB 10X 10/M
INDIVIDUAL TUNING CURVE STATISTICS

		Pr	obe Frequen	cy 4.0	kHz		
		PREEXPOSU	RE		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0515 0517 0518 0522 0523		62.4 81.1 90.2 67.4 67.5	33.3 66.5 55.5 44.3 55.4	2.422 2.583	94.3 106.0 56.2 79.4 63.2	55.4 33.2	
Mean S.D.	3.663 0.951	73.7 11.5	51.0 12.6	3.739 1.818	79.8 20.8	57.7 31.7	
Probe Frequency 8.0 kHz							
PREEXPOSURE					POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0515 0517 0518 0522 0523	3.159 2.382 2.929 0.868 5.993	80.9 72.9 73.3 80.6 75.9	10.1 21.8 31.9 0.0 31.3	2.857 4.152 2.465 2.857 3.522	93.4 73.7 89.7	32.5 31.9 32.5 21.3 0.0	
Mean S.D.	3.066 1.864	76.7 3.8	19.0 13.8	3.171 0.667	79.7 11.0	23.6 14.0	9.0 9.0

PREEXPOSURE				POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0515	3.835	83.9	55.1	*****	*****	*****	3.3
0517	3.083	98.0	65.7	3.413	132.6	80.8	3.3
0518	13.755	102.2	74.7	4.527	81.6	80.8	-1.7
0522	15.385	94.5	95.1	4.843	114.6	60.4	1.7
0523	2.356	100.1	24.9	*****	0.0	0.0	31.7
Mean	7.683	95.7	63.1	4.261	82.2	55.5	7.7
S.D.	6.335	7.2	25.9	0.751	58.7	38.2	13.6

160 dB 10X 1/M
INDIVIDUAL TUNING CURVE STATISTICS

	Probe	Frequency	0.5	kHz
--	-------	-----------	-----	-----

		PREEXPOSU	RE		POSTEXP	OSURE
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope PTS
1714 1764 1776 1778 1779 1785	1.264 0.890 1.072 0.660 0.910 1.120	33.8 20.1 31.0		0.885 0.746	25.0	25.2 1.7 19.0 15.0 18.6 5.0 18.8 8.3 19.0 5.0 12.4 11.7
Mean S.D.	0.986 0.212	27.7 7.8	19.9 11.5	0.892 0.303	25.6 3.5	18.8 7.8 4.0 4.9
		Pr	obe Frequen	ncy 1.0	kHz	
		PREEXPOSU	RE		POSTEXP	OSURE
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope PTS
1778 1779	2.557 1.717 1.418 1.649 1.433 1.918	40.7 48.7 46.1 52.0		1.482 1.121 1.529 1.336 1.837 1.275	36.6 43.2	27.4 3.3
Mean S.D.	1.782 0.423	48.5 5.7	22.8 7.4	1.430 0.248	41.2 13.6	19.3 7.2 5.6 11.7
		Pr	obe Frequer	ncy 2.0	kHz	
PREEXPOSURE				POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope PTS
1714 1764 1776 1778 1779 1785	2.077 1.487 6.881 5.249 1.228 7.269	61.4 42.5 52.7 54.9 51.3 39.4	15.1 7.1 67.3 13.3 8.0 52.3	3.026 ***** 2.593 1.577 5.016 2.359	49.5 0.0 64.4 50.4 69.4 38.7	14.2 -1.7 0.0 27.5 14.2 3.3 6.2 3.3 38.1 0.0 14.2 0.0
Mean S.D.	4.032 2.766	50.4 8.1	27.2 25.9	2.914 1.287	45.4 24.8	14.5 5.4 12.9 11.0

160 dB 10X 1/M INDIVIDUAL TUNING CURVE STATISTICS

Probe	Frequency	4.0	kHz
-------	-----------	-----	-----

Probe Frequency 4.0 kHz							
		PREEXPOSU		POSTEXP	OSURE		
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
	4.100 2.733		55.3 44.3 44.4 22.1 44.4 33.1		98.9 79.1	33.1 55.3	5.0 6.7 5.0 1.7 1.7
Mean S.D.	3.625 0.726	12.2	40.6 11.5 obe Frequen	1.841	96.2 15.3 kHz	51.6 19.5	3.3
PREEXPOSURE					POSTEXE	OSURE	

		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1714	1.484	66.7	0.6	2.652	74.0	33.6	8.3
1764	3.522	68.7	32.5	3.073	86.3	33.6	6.2
1776	4.152	68.5	31.9	2.002	80.1	23.0	3.3
1778	1.189	34.8	0.0	1.499	70.2	10.6	6.7
1779	2.382	82.0	21.8	2.582	59.8	33.0	-5.0
1785	3.522	87.1	32.5	3.045	70.8	21.8	0.0
Mean	2.708	68.0	19.9	2.476	73.5	25.9	3.3
S.D.	1.210	18.3	15.7	0.617	9.1	9.3	5.0

PREEXPOSURE			POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1714	4.247	90.5	60.4	3.446	96.4	40.0	5.0
1764	6.265	99.4	59.6	4.527	72.9	40.0	3.3
1776	5.750	87.3	80.0	3.541	125.9	65.7	1.7
1778	2.300	89.8	9.8	3.295	90.3	30.2	10.0
1779	4.527	98.4	40.0	2.638	88.6	30.2	-5.0
1785	2.875	60.4	30.2	4.241	123.3	55.1	8.3
Mean	4.327	87.6	46.7	3.615	99.6	43.5	3.9
S.D.	1.552	14.2	25.1	0.681	20.9	14.2	5.3

160 dB 10X 1/10M INDIVIDUAL TUNING CURVE STATISTICS

		Pr	obe Frequen	cy 0.5	kHz		
		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0445 0492 0503 0506 0508	1.744 1.553 1.713 1.232 2.051	26.9 20.0 23.2 29.2 25.6	25.2 25.4 19.0 25.2 19.0	2.600 1.117 1.086 1.010 1.093	27.1	25.2 25.4 6.4 0.0 19.0	3.3 -5.0 -3.3 8.3 -3.3
Mean S.D.	1.658 0.299	25.0 3.5	22.7 3.4	1.381 0.683		15.2 11.5	0.0 5.7
		Pr	obe Frequer	ncy 1.0	kHz		
		PREEXPOSU	RE		POSTEXP	POSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0445 0492 0503 0506 0508	1.719 1.529 1.167 1.924 2.100	34.9 31.2 41.6 47.4 58.3	20.7 21.3 21.3 31.9 38.0	1.274 4.170 1.649 2.557 3.905	27.0	20.7 31.3 22.4 15.7 36.4	11.7 -1.7 -1.7 25.0 0.0
Mean S.D.	1.688 0.362	42.7 10.7	26.6 7.9	2.711 1.301	41.2 20.1	25.3 8.4	6.7 11.7
		T>	oho Eromior	2 A	lette		

		PREEXPOSU	IRE		POSTEXE	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0445	4.100	34.6	38.1	3.610	49.5	13.3	10.0
0492	4.015	45.2	20.4	3.324	64.7	6.2	11.7
0503	2.772	61.6	22.1	3.610	50.3	29.2	6.7
0506	2.288	53.9	21.2	*****	0.0	6.2	30.0
0508	1.093	49.7	0.0	1.799	54.6	15.1	0.0
Mean	2.854	49.0	20.4	3.086	43.8	14.0	11.7
S.D.	1.258	10.1	13.5	0.868	25.2	9.4	11.2

160 dB 10X 1/10M

INDIVIDUAL TUNING CURVE STATISTICS

Probe Frequency 4.0 kHz

	PREEXPOSURE			POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q1.0dB	HF Slope	LF Slope	PTS
0445 0492 0503 0506 0508	6.093 5.059 2.586 4.292 4.221	94.6 117.9 116.9 74.0 90.7	88.7 77.6 33.1 66.7 44.5	3.297 2.399 4.100 2.111 3.069	84.8 102.9 89.3 30.6 90.7	66.5 55.2 33.3 66.7 66.3	3.3 -3.3 -1.7 13.3 0.0
Mean S.D.	4.450 1.286	98.8 18.6	62.1 23.0	2.995 0.783	79.7 28.2	57.6 14.4	2.3
		Pr	obe Freque	ncy 8.0	kHz		

		PREEXPOSU	IRE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0445	1.425	61.4	12.3	4.305	82.8	21.3	3.3
0492	3.014	73.7	44.2	2.695	82.6	44.2	-3.3
0503	1.540	83.0	11.2	1.922	71.4	21.8	-3.3
0506	2.382	80.1	21.8	1.176	57.8	10.6	0.0
0508	6.089	125.3	20.7	5.286	57.1	31.9	-3.3
Mean	2.890	84.7	22.1	3.077	70.3	26.0	-1.3
S.D.	1.902	24.2	13.3	1.694	12.6	12.7	3.0

		PREEXPOSU	RE		POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
0445	2.272	79.4	25.7	2.493	72.8	55.9	1.7	
0492	3.497	96.7	60.4	5.648	151.4	90.6	-3.3	
0503	3.833	95.7	35.5	2.682	91.0	30.2	-5.0	
0506	2.695	89.4	50.6	5.750	87.3	64.9	0.0	
0508	6.562	93.6	54.3	3.043	40.5	60.4	-1.7	
Mean	3.772	91.0	45.3	3.923	88.6	60.4	-1.7	
S.D.	1.679	7.0	14.3	1.633	40.4	21.6	2.6	

160 dB 100X 10/M

INDIVIDUAL TUNING CURVE STATISTICS

		Pr	obe Frequer	rcy 0.5	kHz		
		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0521 0537 0542 0543 0544	2.080 ***** 1.288	26.7 24.7 ***** 37.6 22.9		***** 0.946	27.4 44.0	6.6 12.8 6.2 6.2 6.2	41.7 15.0
Mean S.D.		28.0 6.6	25.2 5.1		20.3 15.5		
		Pr	obe Frequer	ncy 1.0	kHz		
		PREEXPOSU	JRE .		POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Sicpe	Q10dB	HF Slope	LF Slope	PTS
0521 0537 0542 0543 0544	5.201	*****	31.9 47.6 ***** 42.5 37.5	*****	32.5 36.6 5.4 52.2 0.0	10.6 *****	48.3

Probe Frequency 2.0 kHz

2.432 1.161

25.3 22.0

18.6

8.9

32.7

18.0

39.9 6.7

3.184 1.540

Mean

S.D.

47.8 11.4

		PREEXPOSU	IRE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0521	3.610	53.0	29.2	4.100	13.3	6.2	28.3
0537	5.249	63.4	29.2	*****	0.0	0.0	48.3
0542	*****	*****	*****	*****	*****	*****	50.0
0543	2.593	43.1	22.1	2 772	63.2	14.2	-1.7
0544	2.359	35.5	30.1	*****	13.1	0.0	43.3
Mean	3.453	48.8	27.7	3.436	22.4	5.1	33.7
S.D.	1.315	12.1	3.7	0.939	27.9	6.7	21.5

160 dB 100X 10/M INDIVIDUAL TUNING CURVE STATISTICS

Probe Frequency 4.0 kHz

	PREEXPOSURE			POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0521 0537 0542 0543 0544	4.100 6.093 ***** 4.100 2.581	98.5 75.0 ***** 70.4 76.5	77.5 99.7 ***** 55.4 77.4	1.629 2.512 0.827 3.621	36.7 64.1 19.9 72.9 0.0	33.2 55.3 0.0 55.3 10.9	35.0 18.3 46.7 3.3 30.0
Mean S.D.	4.218 1.440	80.1 12.5	77.5 18.1	2.147 1.199	38.7 30.3	31.0 25.3	26.7 16.5

Probe Frequency 8.0 kHz

		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0521	7.799	66.9	41.9	*****	13.1	0.0	40.0
0537	6.528	149.3	41.9	5.286	149.3	20.7	-0.8
0542	*****	*****	*****	*****	*****	0.0	45.0
0543	4.881	110.0	75.5	3.258	69.9	31.9	1.7
0544	4.164	124.3	42.5	4.058	92.5	8.9	18.3
Mean	5.843	112.7	50.5	4.201	81.2	12.3	20.8
S.D.	1.637	34.5	16.7	1.021	56.4	13.9	

		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0521	8.399	121.2	70.2	5.750	60.4	19.6	26.7
0537	3.824	149.9	75.5	3.144	140.9	24.9	10.0
0542	*****	*****	*****	*****	0.0	*****	40.0
0543	1.840	71.1	20.4	1.929	73.2	15.1	1.7
0544	1.533	67.1	20.4	2.980	93.7	45.3	-1.7
Mean	3.899	102.4	46.6	3.451	73.6	26.2	15.3
S.D.	3.167	40.2	30.4	1.625	51.3	13.3	17.6

160 dB 100X 1/M
INDIVIDUAL TUNING CURVE STATISTICS

	PREEXPOSURE			POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
1698 1775 1782 1787 1817	2.193 1.486 2.316 ***** 1.286	23.9 22.4 19.2 *****	31.6 25.2 31.6 *****	0.805 1.129 0.980 0.820 0.944	17.7 26.0 22.7 25.0 28.4	12.2 25.2 19.2 25.5 31.4	8.3 6.7 6.7 18.3 0.0	
Mean S.D.	1.820 0.511	25.0 6.6 Pr	28.3 3.8 Tobe Frequer	0.936 0.132	23.9 4.1	22.7 7.3	8.0	
		DDFFYDAGI	DF.		DOCTEVE	OCI IDE		

		PREEXPOSU	IRE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1698	1.205	40.7	11.2	0.958	55.4	17.4	3.3
1775	1.837	37.4	27.4	2.100	47.7	32.5	3.3
1782	1.551	34.9	16.8	1.400	19.9	11.8	25.0
1787	1.877	65.0	26.9	1.385	41.1	16.2	16.3
1817	1.443	58.9	16.8	1.417	43.8	21.8	1.7
Mean	1.583	47.4	19.8	1.452	41.6	19.9	9.9
S.D.	0.280	13.6	7.1	0.410	13.3	7.9	10.3

	PREEXPOSURE			POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1698	2.874	51.9	31.9	1.530	33.6	7.1	23.3
1775	4.568	56.7	22.1	1.642	51.9	8.0	3.3
1782	4.100	34.4	22.1	0.677	27.5	8.0	20.0
1787	2.593	48.6	14.2	3.097	76.3	61.1	13.2
1817	*****	16.1	*****	1.568	46.8	5.7	5.0
Mean	3.533	41.6	22.6	1.703	47.2	18.0	13.0
S.D.	0.951	16.5	7.3	0.873	19.0	24.1	8.8

160 dB 100X 1/M
INDIVIDUAL TUNING CURVE STATISTICS

		Pr	obe Frequen	cy 4.0	kHz		
	PREEXPOSURE			POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1698 1775 1782 1787 1817	3.069	65.8 97.1 80.7 72.4 35.6	33.2 44.3 44.3 66.6 44.3	2.733	94.9 77.6 38.1 127.9 111.3	66.4 44.4 22.1 44.4 33.2	10.0 13.7
Mean S.D.	4.001 1.613	70.3 22.7	46.5 12.2	4.025 0.853	90.0 34.5	42.1 16.4	12.1
Probe Frequency 8.0 kHz							
		PREEXPOSURE			POSTEXP	OSURE	
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1698	3.725	68.3	55.4	2.624	62.0	44.2	26.7

23.0

66.6

43.1

76.1

52.8

20.8

1775

1782

1787

1817

Mean

S.D.

2.382

3.827

6.687

3.735

4.071

1.580

78.2

58.8

96.5

85.5

26.4

125.4

Probe Frequency 11.2 kHz

2.132

4.152

4.305

1.227

2.888

1.323

63.7

56.9

59.3

63.7

61.1

3.0

22.4

54.3

10.1

0.0

26.2

22.8

-5.0

5.0

27.0

12.4

14.1

8.3

	PREEXPOSURE			POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
1698	2.134	91.5	10.6	3.833	55.9	30.2	31.7
1775	1.917	86.7	25.7	7.475	80.8	70.2	3.3
1782	2.440	88.6	5.3	3.089	45.6	15.1	13.3
1787	*****	11.2	45.3	5.936	116.4	105.7	26.7
1817	4.213	97.8	155.9	17.245	27.2	67.2	-1.7
Mean	2.676	75.2	48.5	7.515	65.2	57.7	14.7
S.D.	1.047	36.0	62.0	5.708	34.5	35.8	14.4

160 dB 100X 1/10M

INDIVIDUAL TUNING CURVE STATISTICS

		I 4	ope rreduci	icy 0.5	KHZ			
		PREEXPOSU	RE	POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
0546 0547 0548 0549 0550	0.416 0.811 1.289 1.253 1.156	10.8 15.5 36.1 21.1 22.1	12.6 19.0 18.8 12.6 12.6	2.436 ***** 1.486 1.066 0.660	0.0 9.0 47.2 18.8 19.9	5.8 6.2 18.8 6.2 6.6	38.3 35.0 3.3 6.7 10.4	
Mean S.D.	0.985 0.370	21.1 9.5	15.1 3.4	1.412 0.761		8.7 5.6	18.7 16.6	
		Pr	obe Freque	ncy 1.0	kHz			
		PREEXPOSU	RE	POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
0546 0547 0548 0549 0550	1.719 2.100 2.171 2.557 2.738	42.4 45.2 55.7 37.4 58.3	26.3 26.9 26.3 26.9 48.1	1.013 ***** 2.557 1.216 1.620	17.4 ***** 48.7 32.3 36.6	16.2 10.6 26.9 16.8 33.0	40.0 46.7 16.7 16.7 25.0	
Mean S.D.	2.257 0.401	47.8 8.9	30.9 9.6	1.602 0.685	33.7 12.9	20.7 9.0	29.0 13.7	
		Pr	obe Freque	ncy 2.0	kHz			
	PREEXPOSURE			POSTEXPOSURE				
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS	
0546 0547 0548 0549 0550	3.199 3.253 2.772 4.100 1.378	38.8 46.2 52.5 34.4 35.2	6.2 13.3 6.2 30.1 7.1	***** ***** 2.039 2.593 2.359	***** 0.0 44.9 50.1 35.5	0.0 ***** 14.2 22.1 14.2	40.0 60.0 6.7 8.3 21.7	
Mean S.D.	2.941 0.997	41.4 7.8	12.6 10.2	2.330 0.278	32.6 22.6	12.6 9.2	27.3 22.6	

160 dB 100X 1/10M

INDIVIDUAL TUNING CURVE STATISTICS

		* *	one rreduci	1CY 4.0	KIIZ		
		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0546 0547 0548 0549 0550	2.890 4.754 3.343 6.093 4.121	50.1 122.9 98.1 109.6 98.9	44.3 66.5 66.4 66.6 55.3		14.6 ***** 108.9 83.4 76.1	0.0 0.0 66.6 77.7 44.2	45.0 51.7 15.0 1.7 0.0
Mean S.D.	4.240 1.259		59.8 9.9	5.293 3.165	70.7 40.0	37.7 36.5	22.7 24.3
		Pr	obe Frequer	ncy 8.0	kHz		
		PREEXPOSU	RE	POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0546 0547 0548 0549 0550	1.233 1.965 6.528 1.176 3.094	68.2 79.6 77.7 48.4 107.6	11.2 11.2 53.1 10.6 21.3	***** ***** 5.286 1.145 3.094	***** 67.7	***** ***** 20.7 0.0 21.3	58.3 53.3 21.7 5.0 3.3
Mean S.D.	2.799 2.224	76.3 21.4	21.5 18.2	3.175 2.071	57.3 19.4	14.0 12.1	
		Pr	obe Frequer	ncy 11.2	kHz		
	PREEXPOSURE			POSTEXPOSURE			
Animal	Q10dB	HF Slope	LF Slope	Q10dB	HF Slope	LF Slope	PTS
0546 0547 0548 0549 0550	1.561 4.870 4.038 2.366 4.247	73.7 95.4 109.9 61.3 107.8	15.1 100.4 75.5 10.6 80.8	***** ***** 2.529 11.496 2.545		15.1 4.5 50.6	58.3 56.7 5.0 -5.0 1.7
Mean S.D.	3.416 1.390	89.6 21.4	56.5 40.9	5.523 5.173	90.4 22.3	23.4 24.1	