

HYPOTHESIS TESTING

INFERENTIAL STATISTICS

........

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Hypothesis Test

Rejection Region

Critical Value and Z-score

p-Value

HYPOTHESIS TEST

HYPOTHESIS

A <u>hypothesis</u> is an initial <u>assumption</u> formed before collecting data, and it serves as a statement about a <u>population</u> parameter rather than about the sample data.

HYPOTHESIS TEST

A <u>hypothesis test</u> is simply comparing reality to an assumption and asking, "<u>Did things</u>
<a href="mailto:change?"

Null Hypothesis (H_o)

Represents **no change**, no effect, or the status quo.

Alternative Hypothesis (H_a)

Represents the possibility that things did change or that there is a **significant difference**.

IS YOUR DATA GUILTY?

Hypothesis testing is like a legal system where the defendant is assumed **innocent** until proven guilty.

TYPES OF ERROR

1. Type I Error

Rejecting the null hypothesis when it is actually true. The risk of making type I error is denoted by α (e.g., 0.05).

2. Type II Error

Failing to reject the null hypothesis when it is actually false. The risk of making a type II error is denoted by β (e.g. 0.20)

 H_o : Innocent

A company claims that the average lifespan of their batteries is 500 hours. A consumer group suspects that the average lifespan is <u>different</u> from 500 hours.

Null Hypothesis

$$H_o$$
: $\mu_1 = 500$

The average battery lifespan is 500 hours

<u>Alternative Hypothesis</u>

$$H_a$$
: $\mu_1 \neq 500$

The average battery lifespan differs from 500 hours

A company claims that the average lifespan of their batteries is 500 hours. A consumer group suspects that the batteries last <u>fewer than 500 hours</u>.

Null Hypothesis

 H_o : $\mu_1 \ge 500$

The average battery lifespan is at least 500 hours

Alternative Hypothesis

 H_a : $\mu_1 < 500$

The average battery lifespan is fewer than 500 hours

A company claims that the average lifespan of their batteries is 500 hours. An independent lab believes that the batteries last <u>longer than 500 hours</u>.

Null Hypothesis

 H_o : $\mu_1 \le 500$

The average battery lifespan is 500 hours at most

Alternative Hypothesis

 H_a : $\mu_1 > 500$

The average battery lifespan is longer than 500 hours

REJECTION REGION

SIGNIFICANCE LEVEL

The <u>significance level</u> (α) determines the threshold for deciding whether to <u>reject</u> the null hypothesis (H_o).

Typical values for α

0.01

0.05

0.1

Standard Normal Distribution

REJECTION REGION

Two-Tailed Test

Left-Tailed Test

 α

 μ_1

 μ_o

rejection region

$$H_a$$
: $\mu_1 < \mu_o$

$$H_a$$
: $\mu_1 \neq \mu_o$

REJECTION REGION

Two-Tailed Test

rejection region rejection region $\alpha/2$ μ_1 μ_o

$$H_o$$
: $\mu_1 = \mu_o$

$$H_a$$
: $\mu_1 \neq \mu_o$

Right-Tailed Test

$$H_o$$
: $\mu_1 = \mu_o$

$$H_a$$
: $\mu_1 > \mu_0$

CRITICAL VALUE AND Z-SCORE

CRITICAL VALUE AND Z-SCORE

lowercase **z**

z refers to the <u>critical value</u> obtained from the standard normal distribution table (ztable).

uppercase **Z**

Z is a standardized variable associated with the test called the **Z-score**.

Formula

$$Z = \frac{\overline{x} - \mu_o}{\sigma / \sqrt{n}}$$

Right-Tailed Test

Two-Tailed Test

$$\alpha = 0.05$$

$$z_{0.025} = 1.96$$

Null Hypothesis

$$H_o$$
: $\mu_1 = 500$

The average battery lifespan is 500 hours

<u>Alternative Hypothesis</u>

$$H_a$$
: $\mu_1 \neq 500$

The average battery lifespan differs from 500 hours

<u>Left-Tailed Test</u>

$$\alpha = 0.05$$

$$z_{0.05} = 1.645$$

Null Hypothesis

$$H_o$$
: $\mu_1 \ge 500$

The average battery lifespan is at least 500 hours

Alternative Hypothesis

$$H_a$$
: $\mu_1 < 500$

The average battery lifespan is fewer than 500 hours

Right-Tailed Test

$$\alpha = 0.05$$

$$z_{0.05} = 1.645$$

Null Hypothesis

$$H_o$$
: $\mu_1 \leq 500$

The average battery lifespan is 500 hours at most

<u>Alternative Hypothesis</u>

$$H_a$$
: $\mu_1 > 500$

The average battery lifespan is longer than 500 hours

A manufacturing process is claimed to have an average defect rate of 10.32 units, with a known standard deviation of 3.17 units. The Statistical Process Control (SPC) department suspects this claim may no longer be valid and collects a random sample of 30 production units to test whether the true average <u>defect rate differs</u> significantly from 10.32. dataset

Solution

"<u>defects-data-30-samples.csv</u>"

A manufacturing process is claimed to have an average defect rate of 10.32 units, with a known standard deviation of 3.17 units. The Statistical Process Control (SPC) department suspects this claim may no longer be valid and collects a random sample of 30 production units to test whether the true average defect rate increases significantly from 10.32. dataset

"defects-data-30-samples.csv"

Solution

P-VALUE

P-VALUE

The <u>p-value</u> (probability value) is the <u>smallest</u> <u>level of significance</u> at which we can still reject the null hypothesis, given the observed sample statistic.

One-Tailed Test

p-value = 1 – value from the table

Two-Tailed Test

p-value = $(1 - value from the table) <math>\times 2$

Hypothesis Test

Reject H_o if **p-value** $\leq \alpha$

Fail to reject H_o if p-value $> \alpha$

P-VALUE

The <u>p-value</u> (probability value) is the <u>smallest</u> <u>level of significance</u> at which we can still reject the null hypothesis, given the observed sample statistic.

One-Tailed Test

p-value = 1 – value from the table

Two-Tailed Test

p-value = $(1 - value from the table) <math>\times 2$

Cumulative Distribution Function (CDF)

cdf () returns the probability that a random variable **Z** (Z-score) from a standard normal distribution is less than or equal to a given critical value (**z**).

One-Tailed Test

p_value = 1-stats.norm.cdf(Z_score)

Two-Tailed Test

p_value = 2*(1-stats.norm.cdf(Z_score))

A manufacturing process is claimed to have an average defect rate of 10.32 units, with a known standard deviation of 3.17 units. The Statistical Process Control (SPC) department suspects this claim may no longer be valid and collects a random sample of 30 production units to test whether the true average <u>defect rate differs</u> significantly from 10.32. dataset

Solution

 $"\underline{defects\text{-}data\text{-}30\text{-}samples.csv}"$

A manufacturing process is claimed to have an average defect rate of 10.32 units, with a known standard deviation of 3.17 units. The Statistical Process Control (SPC) department suspects this claim may no longer be valid and collects a random sample of 30 production units to test whether the true average defect rate increases significantly from 10.32. dataset

"<u>defects-data-30-samples.csv</u>"

Solution

LABORATORY

