RRC SUMMER SCHOOL

LECTURE 1
INTRODUCTION TO RIGID BODY TRANSFORMATIONS

BOLLIMUNTHA SHREYA

WHAT IS A ROBOT?

• A ROBOT IS AN AUTONOMOUS MACHINE CAPABLE OF SENSING ITS ENVIRONMENT, CARRYING OUT COMPUTATIONS TO MAKE DECISIONS, AND PERFORMING ACTIONS IN THE REAL WORLD.

WHAT IS ROBOTICS?

- ROBOTICS IS THE SCIENCE STUDYING THE INTELLIGENT CONNECTION OF PERCEPTION TO ACTION.
 - O PERCEPTION: SENSORY SYSTEM
 - COGNITION: PLANNING AND DECISION MAKING
 - ACTION: MECHANICAL SYSTEM (LOCOMOTION & MANIPULATION)
- ROBOTICS IS AN INTERDISCIPLINARY SUBJECT CONCERNING MECHANICS, ELECTRONICS, INFORMATION THEORY, CONTROL THEORY, ETC.

MATHEMATICAL FOUNDATION

GROUPS

- A GROUP G IS A FINITE OR INFINITE SET OF ELEMENTS TOGETHER WITH A BINARY OPERATION \circ (ADDITION AND MULTIPLICATION) THAT SATISFY THE FOUR FUNDAMENTAL PROPERTIES OF
 - O CLOSURE
 - ASSOCIATIVITY
 - O IDENTITY PROPERTY
 - O INVERSE PROPERTY

HOMOMORPHISM

- A GROUP HOMOMORPHISM IS A FUNCTION f BETWEEN TWO GROUPS G1, G2 THAT IDENTIFIES SIMILARITIES BETWEEN THEM.
- IT IS A STRUCTURE-PRESERVING MAP BETWEEN TWO ALGEBRAIC STRUCTURES OF THE SAME TYPE (SUCH AS TWO GROUPS, TWO RINGS, OR TWO VECTOR SPACES).

COORDINATE FRAMES

- TO SPECIFY THE LOCATION OF A PARTICLE OR POINT, A COORDINATE FRAME IS NEEDED.
- THE COORDINATE FRAME UNIQUELY DESCRIBE:
 THE LOCATION OF THE POINT

$$0 p = (x, y) \in \mathbb{R}^2$$

o NO. OF COORDINATES = 2

MOTION OF A PARTICLE

• THE MOTION OF A PARTICLE MOVING IN A EUCLIDEAN SPACE IS REPRESENTED BY A PARAMETERIZED CURVE p(t)

$$Op(t) = (x(t), y(t)) \in \mathbb{R}^2$$

- COORDINATE IS A FUNCTION OF TIME
- NO. OF COORDINATES = 2
- O AND TIME T

RIGID BODY

- RIGID BODY IS A COLLECTION OF PARTICLES SUCH THAT THE DISTANCE BETWEEN ANY TWO PARTICLES REMAINS FIXED, REGARDLESS OF ANY MOTION OR APPLICATION OF FORCES.
- LENGTH IS PRESERVED
- ||p q|| = CONSTANT

VECTORS IN \mathbb{R}^2

• GIVEN TWO POINTS $p, q \in O$, THE VECTOR $v \in \mathbb{R}^2$ IS DEFINED TO BE THE DIRECTED LINE SEGMENT CONNECTING FROM p TO q.

VECTORS IN \mathbb{R}^3

• GIVEN TWO POINTS p, q $\in O$, THE VECTOR $v \in \mathbb{R}$ 3 IS DEFINED TO BE THE DIRECTED LINE SEGMENT CONNECTING FROM p TO q

VECTORS IN RN

• GIVEN TWO
POINTS $p, q \in O$,
THE VECTOR $v \in \mathbb{R}n$ IS DEFINED TO BE
THE DIRECTED LINE
SEGMENT
CONNECTING
FROM p TO q

ROTATION MATRICES

ROTATION MATRICES IN 3 DIMENSIONS

• A BASIC ROTATION OF A VECTOR IN 3-DIMENSIONS IS A ROTATION AROUND ONE OF THE COORDINATE AXES. WE CAN ROTATE A VECTOR COUNTERCLOCKWISE THROUGH AN ANGLE Θ AROUND THE X-AXIS, THE Y-AXIS, OR THE Z-AXIS.

- WE WANT TO ROTATE A VECTOR [X , Y , Z] AROUND ONE OF THE AXES
 BY AN ANGLE TO THE NEW POSITION GIVEN BY ANOTHER VECTOR [X' , Y'
 , Z'].
- WE WOULD NEED ONE OF THE THREE ROTATION MATRICES.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \quad \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \quad \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

QUESTION

• FIND THE VECTOR [X' Y' Z'] THAT RESULTS WHEN THE VECTOR [X Y Z] = [1 2 3] IS ROTATED 90° COUNTERCLOCKWISE AROUND X-AXIS.

SOLUTION

Using the rotation formula
$$\begin{bmatrix} x'\\y'\\z' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\0 & \cos\theta & -\sin\theta\\0 & \sin\theta & \cos\theta \end{bmatrix} \cdot \begin{bmatrix} x\\y\\z \end{bmatrix} \text{ with } \begin{bmatrix} x\\y\\z \end{bmatrix} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \text{ and } \theta = 90^\circ, \text{ we get}$$

$$\begin{bmatrix} x'\\y'\\z' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\0 & \cos\theta & -\sin\theta\\0 & \sin\theta & \cos\theta \end{bmatrix} \cdot \begin{bmatrix} x\\y\\z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\0 & \cos90^\circ & -\sin90^\circ\\0 & \sin90^\circ & \cos90^\circ \end{bmatrix} \cdot \begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} x'\\y'\\z' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\0 & \sin-1\\0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 0 \cdot 2 + 0 \cdot 3\\0 \cdot 1 + 0 \cdot 2 + (-1) \cdot 3\\0 \cdot 1 + 1 \cdot 2 + 0 \cdot 3 \end{bmatrix}$$

$$\begin{bmatrix} x'\\y'\\z' \end{bmatrix} = \begin{bmatrix} 1\\-3\\2 \end{bmatrix}$$

When rotated counterclockwise 90° around the x-axis, the vector $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ becomes $\begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}$.

ROTATION MATRICES FOR EULER ANGLES

$$\hat{R}(\phi,\theta,\psi) = \hat{R}_3(\psi) \cdot \hat{R}_1(\theta) \cdot \hat{R}_3(\phi) = \begin{pmatrix} \cos\psi & \sin\psi & 0 \\ -\sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{pmatrix} \cdot \begin{pmatrix} \cos\phi & \sin\phi & 0 \\ -\sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\hat{R}(\phi, \theta, \psi) = \begin{pmatrix} \cos \psi \cos \phi - \cos \theta \sin \psi \sin \phi & -\sin \psi \cos \phi - \cos \theta \sin \phi \cos \psi & \sin \theta \sin \phi \\ \cos \psi \sin \phi + \cos \theta \cos \phi \sin \psi & -\sin \phi \sin \psi + \cos \theta \cos \phi \cos \psi & -\sin \theta \cos \phi \\ \sin \theta \sin \psi & \sin \theta \cos \psi & \cos \theta \end{pmatrix}$$

PROPERTIES OF ROTATION MATRICES

SUBSCRIPT CANCELLATION

$$R_a = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R_b = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R_c = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix},$$

$$R_{ac} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}, \qquad R_{ca} = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}.$$

$$R_{ac} = R_{ab}R_{bc}.$$

$$R_{ac} = R_{ab}R_{bc} = \text{change_reference_frame_from_\{b\}_to_\{a\}} (R_{bc}).$$

$$R_{ab}R_{bc} = R_{ab}R_{bc} = R_{ac}.$$

$$R_{ab}p_b = R_{ab}p_b = p_a.$$

OTHER PROPERTIES OF ROTATION MATRICES

- ROTATION MATRICES ARE ORTHOGONAL.
- INVERSE OF A ROTATION MATRIX IS EQUAL TO ITS TRANSPOSE

$$0 R^{T} = R^{-1}$$

• DET (R) = 1

FIXED AND BODY FRAME ROTATIONS

COMPOSITE TRANSFORMATIONS

HOMOGENOUS TRANSFORMATION MATRICES

• THE SPECIAL EUCLIDEAN GROUP SE(3), ALSO KNOWN AS THE GROUP OF RIGID-BODY MOTIONS OR HOMOGENEOUS TRANSFORMATION MATRICES IN R 3 , IS THE SET OF ALL 4×4 REAL MATRICES T OF THE FORM

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_1 \\ r_{21} & r_{22} & r_{23} & p_2 \\ r_{31} & r_{32} & r_{33} & p_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

PROPERTIES OF TRANSFORMATION MATRICES

INVERSE OF A TRANSFORMATION MATRIX IS:

$$T^{-1} = \left[\begin{array}{cc} R & p \\ 0 & 1 \end{array} \right]^{-1} = \left[\begin{array}{cc} R^{\mathrm{T}} & -R^{\mathrm{T}}p \\ 0 & 1 \end{array} \right].$$

- THE PRODUCT OF TWO TRANSFORMATION MATRICES
 IS ALSO A TRANSFORMATION MATRIX
- THE MULTIPLICATION OF TRANSFORMATION MATRICES IS ASSOCIATIVE, SO THAT $(T_1T_2)T_3 = T_1(T_2T_3)$, BUT GENERALLY NOT COMMUTATIVE: $T_1T_2 \neq T_2T_1$

USES OF TRANSFORMATION MATRICES

- TO REPRESENT THE CONFIGURATION (POSITION AND ORIENTATION) OF A RIGID BODY
- TO CHANGE THE REFERENCE FRAME IN WHICH A
 VECTOR OR FRAME IS REPRESENTED
- TO DISPLACE A VECTOR OR FRAME

EXAMPLE

- REPRESENTING A CONFIGURATION
 - O ROTATION MATRICES

$$R_{sa} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad R_{sb} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \qquad R_{sc} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

O POSITION

$$p_{sa} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \qquad p_{sb} = \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix}, \qquad p_{sc} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}.$$

$$T_{sb} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & -2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

SUBSCRIPT CANCELLATION

- CHANGING THE REFERENCE FRAME OF A VECTOR OR A FRAME
 - BY A SUBSCRIPT CANCELLATION RULE ANALOGOUS TO THAT FOR ROTATIONS, FOR ANY THREE REFERENCE FRAMES {A}, {B}, AND {C}, AND ANY VECTOR V EXPRESSED IN {B} AS V_B, WHERE V_A IS THE VECTOR V EXPRESSED IN {A}.

$$\begin{split} T_{ab}T_{bc} &= T_{a\not b}T_{\not bc} = T_{ac} \\ T_{ab}v_b &= T_{a\not b}v_{\not b} = v_a, \end{split}$$

INVERSE OF A TRANSFORMATION MATRIX

$$T_{de} = T_{ed}^{-1}$$

$$\begin{split} T_{sb'} &= TT_{sb} = \operatorname{Trans}(p) \operatorname{Rot}(\hat{\omega}, \theta) T_{sb} & \text{(fixed frame)} \\ &= \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_{sb} & p_{sb} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} RR_{sb} & Rp_{sb} + p \\ 0 & 1 \end{bmatrix} \\ T_{sb''} &= T_{sb}T = T_{sb} \operatorname{Trans}(p) \operatorname{Rot}(\hat{\omega}, \theta) & \text{(body frame)} \\ &= \begin{bmatrix} R_{sb} & p_{sb} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_{sb}R & R_{sb}p + p_{sb} \\ 0 & 1 \end{bmatrix}. \end{split}$$

FIXED AND BODY TRANSFORMATIONS

TRANSFORMATIONS IN MANIPULATORS

QUATERNIONS

QUATERNIONS

- EXTENDING THE NOTION OF COMPLEX NUMBERS TO HIGHER DIMENSION.
- QUATERNIONS ARE A NON-COMMUTATIVE NUMBER SYSTEM THAT EXTENDS THE COMPLEX NUMBERS.
- VISUALIZING QUATERNIONS

- THE COMPLEX NUMBERS C FORM A PLANE.
- THEIR OPERATIONS ARE VERY RELATED TO TWO-DIMENSIONAL GEOMETRY.
- IN PARTICULAR, MULTIPLICATION BY A UNIT COMPLEX NUMBER:

$$O |Z|^2 = 1$$
WHICH CAN ALL BE WRITTEN:
 $Z = E^{|\Theta|}$

GIVES A ROTATION: $R_7(W) = ZW$

BY ANGLE Θ.

- HOW DOES THIS WORK?
- $\mathbb{C} = \{ a + bi : a, b \in \mathbb{R}, i^2 = -1 \} = -1$
- ANY COMPLEX NUMBER HAS A LENGTH, GIVEN BY THE PYTHAGOREAN FORMULA:

$$|a+bi|=\sqrt{a^2+b^2}.$$

- WE CAN ADD AND SUBTRACT IN C. FOR EXAMPLE: a + bi + c + di = (a + c) + (b + d)i. + D)I.
- WE CAN ALSO MULTIPLY, WHICH IS MUCH MESSIER: (a+bi)(c+di) = (ac-bd) + (ad+bc)i

QUATERNION ALGEBRA

- IT FOLLOWS $i^2 = j^2 = k^2 = ijk = -1$.
- THE QUATERNIONS $M \mathbb{H} = \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}\}$
- SUPPOSE WE HAVE TWO UNIT QUATERNIONS, P AND Q, WITH SOME VECTOR U. $\mathbf{q} = \cos\alpha + \mathbf{u}\sin\alpha$

$$\mathbf{p} = \cos\beta + \mathbf{u}\sin\beta$$

$$\mathbf{r} = \mathbf{pq} = \cos(\alpha + \beta) + \mathbf{u}\sin(\alpha + \beta)$$

REPRESENTING A QUATERNION

- A QUATERNION CONSISTS OF ONE SCALAR AND A 3-ELEMENT UNIT VECTOR.
- COMMON REPRESENTATIONS
 - q = w + xi + yj + zk
 - $q = q_0 + q_1 i + q_2 j + q_3 k$
 - o Q_0 IS A SCALAR VALUE REPRESENTING AN ANGLE OF ROTATION
 - o Q₁, Q₂, AND Q₃ CORRESPOND TO AN AXIS OF ROTATION ABOUT WHICH THE ANGLE IS PERFORMED
- ALTERNATIVE REPRESENTATIONS
 - $q = (q_0, q_1, q_2, q_3)$
 - $\bullet \quad q=(q_0,\mathbf{q})=q_0+\mathbf{q}$

$$R(Q) = \begin{bmatrix} 2(q_0^2 + q_1^2) - 1 & 2(q_1q_2 - q_0q_3) & 2(q_1q_3 + q_0q_2) \\ 2(q_1q_2 + q_0q_3) & 2(q_0^2 + q_2^2) - 1 & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_2q_3 + q_0q_1) & 2(q_0^2 + q_3^2) - 1 \end{bmatrix}$$

QUATERNION TO ROTATION MATRIX

GIVEN A QUATERNION, YOU CAN FIND THE CORRESPONDING THREE DIMENSIONAL ROTATION MATRIX
USING THE FOLLOWING FORMULA

WHY QUATERNIONS?

- BETTER COMPUTATIONALLY
 - o FOR QUATERNIONS VERSUS A 3X3 ROTATION MATRIX, THE QUATERNION HAS THE ADVANTAGE IN SIZE (4 SCALARS VS. 9) AND SPEED (QUATERNION MULTIPLICATION IS MUCH FASTER THAN 3X3 MATRIX MULTIPLICATION).

NO GIMBAL LOCK

GIMBAL LOCK

EULER'S THEOREM

- ANY TWO INDEPENDENT ORTHONORMAL COORDINATE FRAMES CAN BE RELATED BY A SEQUENCE OF ROTATIONS (NOT MORE THAN THREE) ABOUT COORDINATE AXES, WHERE NO TWO SUCCESSIVE ROTATIONS MAY BE ABOUT THE SAME AXIS.
- WE CAN REPRESENT AN ORIENTATION WITH 3 NUMBERS
- THIS GIVES US 12 REDUNDANT WAYS TO STORE AN ORIENTATION USING EULER ANGLES.
- WHAT ARE THE 12 WAYS?

 ASSUMING WE LIMIT OURSELVES TO 3 ROTATIONS WITHOUT SUCCESSIVE ROATIONS ABOUT THE SAME AXIS, WE COULD USE ANY OF THE FOLLOWING 12 SEQUENCES:

 O YXZ
 O ZXY

O YXZ
 O YZX
 O YZX
 O ZYX
 O YXY
 O YXY
 O ZXZ
 O YZY
 O ZYZ

VISUAL DEMONSTRATION

GIMBAL LOCK

SINGULARITY

- A ROBOT SINGULARITY IS A CONFIGURATION IN WHICH THE ROBOT END-EFFECTOR BECOMES BLOCKED IN CERTAIN DIRECTIONS
- SINGULARITIES IN MANIPULATORS

REFERENCES

- MODERN ROBOTICS KEVIN LYNCH
- INTRODUCTION TO ROBOTICS: MECHANICS AND CONTROL – J J CRAIG

THANK YOU!