$$g(x) = \underline{\omega}^{T} x$$

$$\vdots$$

$$\omega^{*} = \arg \min_{\omega} \sum_{i=1}^{N} (\omega^{T} x_{i} - y_{i})^{2}$$

$$SSE$$

Least Squares

$$y = f(a) + (n)$$

$$n \sim N(0, \sigma^2)$$

$$y = \underline{\omega^{7} + \epsilon}$$

$$\epsilon \sim N(0, \sigma^{2})$$

$$D_{2}\{(x_{1}, y_{1}), ..., (x_{n}, y_{n})\}$$

$$P(y|x) = N(y; \omega^{T}x, \sigma^{2})$$

$$E[y] = E[y|x] = E[\omega^{T}x + \epsilon|x]$$

$$W_{NL}^{*} = \underset{\omega}{\text{arg max}} P(D|\omega) = \underset{\omega}{\text{arg max}} \left(l_{N} P(y_{1}, ..., y_{n} \mid x_{1}, ..., x_{n}, \omega) \right)$$

i.i.d. ary man
$$\sum_{i=1}^{n} \ln P(y_i|x_i,w) = \arg \max_{i\geq 1} \sum_{i=1}^{n} \ln N(y_i;wx_i,\sigma^2)$$

= arg max
$$\sum_{i=1}^{n} ln \left(\frac{1}{2\pi} \sigma e^{i} \exp \left(\frac{1}{2} \frac{(w^{T} x_{i}^{2} - y_{i}^{2})^{2}}{\sigma^{2}} \right) \right)$$

$$= \underset{\omega}{\text{arg man}} \sum_{i=1}^{n} \frac{(\omega^{T} x_{i} - y_{i})^{2}}{\sigma^{2}} = \underset{\omega}{\text{arg min}} \sum_{i=1}^{n} (\omega^{T} x_{i} - y_{i})^{2}$$

$$\omega^* = (x^T x)^{-1} x^T y$$

$$f(x)$$

$$x = (x^T x)^{-1} x^T y$$

$$\begin{array}{l} X \\ \text{nxd} \\ (X^{T_X})_{dxd} \end{array} O(3^3) = O(10^{12})$$

$$0 = f'(\chi_o)$$

$$2ax + b = f(x_0)$$

 $2a = f'(x_0)$

Mini-batch

Bias-Variance tradeoff

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

M = 0	M = 1	M = 6	M = 9
0.19	0.82	0.31	0.35
	-1.27	7.99	232.37
		-25.43	-5321.83
		17.37	48568.31
			-231639.30
			640042.26
			-1061800.52
			1042400.18
			-557682.99
			125201.43
		0.19 0.82	0.19 0.82 0.31 -1.27 7.99 -25.43

Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the M=9 polynomial for N=15 data points (left plot) and N=100 data points (right plot). We see that increasing the size of the data set reduces the over-fitting problem.

Figure 1.7 Plots of M=9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error function (1.4) for two values of the regularization parameter λ corresponding to $\ln \lambda = -18$ and $\ln \lambda = 0$. The case of no regularizer, i.e., $\lambda = 0$, corresponding to $\ln \lambda = -\infty$, is shown at the bottom right of Figure 1.4.

Table 1.2 Table of the coefficients \mathbf{w}^{\star} for M=9 polynomials with various values for the regularization parameter λ . Note that $\ln \lambda = -\infty$ corresponds to a model with no regularization, i.e., to the graph at the bottom right in Figure 1.4. We see that, as the value of λ increases, the typical magnitude of the coefficients gets smaller.

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Figure 1.8 Graph of the root-mean-square error (1.3) versus $\ln \lambda$ for the M=9 polynomial.

