Esami di Stato per l'abilitazione alla professione di Ingegnere Sessione II - Gennaio 2007

Nuovo Ordinamento – Sez. A

Settore Informazione – Classe 29/S Ingegneria Meccatronica

Prova Pratica

1 Problema

Si prenda in considerazione l'apparato schematizzato in Figura 1. Si tratta di una massa m in sospensione elettro-magnetica nel campo gravitazionale. La massa sospesa comanda, tramite un sistema ruota-cremagliera, la posizione angolare di un condensatore variabile. Il circuito dell'elettromagnete, alimentato da un generatore ideale di tensione E(t), ha caratteristiche RCL, dove

- $\bullet\,$ La resistenza R è costante
- La capacità C è variabile in funzione dell'angolo θ , secondo la seguente relazione

$$C(\theta) = C_0(1 + \cos \theta(t)); \quad |\theta(t)| \le \pi/2$$

 \bullet L'induttanza L è variabile in funzione del traferro della massa sospesa, secondo la seguente relazione

$$L(x(t)) = \frac{A}{\ell_0 + d + x(t)}; \quad |x(t)| \le d$$

con A, ℓ_0 e d costanti positive. La lunghezza d e dell'ordine di 1 mm, mentre $\ell_0 \gg d$ e rappresenta la lunghezza del circuito magnetico che si chiude sull'elettromagnete.

Tra lo spostamento x(t) e l'angolo $\theta(t)$ esiste una relazione costante, tale per cui si ha un angolo di $\pi/2$ per ogni millimetro lineare di traslazione.

2 Punti da sviluppare

Il candidato deve:

- 1. Ricavare il modello dinamico dell'apparato, utilizzando preferibilmente l'approccio basato sulle equazioni di Lagrange. È indispensabile che il candidato definisca il significato di ogni variabile utilizzata nel modello e specifichi le eventuali ipotesi semplificative introdotte.
- 2. Ricavare le relative equazioni di stato. Qualora queste fossero non lineari, esse andranno linearizzate intorno ad un punto di lavoro, che potrebbe essere x(t) = 0.

- 3. Discutere la possibilità di utilizzare la misura della tensione sul condensatore o della corrente nell'induttore come sensore dell'angolo $\theta(t)$ o dello spostamento posizione x(t)
- 4. Impostare il progetto di un sistema di controllo della posizione x(t) che renda il sistema insensibile ad un disturbo di forza verticale sinusoidale, di ampiezza 1×10^{-3} kg e frequenza 50 Hz.

3 Dati

I parametri k e β rappresentano, rispettivamente, il coefficiente di elasticità (angolare) del sistema ruota-cremagliera e il coefficiente di attrito viscoso (angolare) dello stesso.

Si trascuri il momento d'inerzia della ruota e la massa della cremagliera sia inglobata in m.

Il candidato assuma i valori dei parametri a suo piacere, ma che abbiano i seguenti ordini di grandezza.

Descrizione	Simbolo	Unità di misura	Valore
massa sospesa	m	kg	≈ 1
traferro medio	d	m	1×10^{-3}
capacità nominale	C_0	F	$1 \div 10 \times 10^{-6}$
induttanza nominale	$L_0 = \frac{A}{\ell_0 + d}$	Н	$1 \div 10 \times 10^{-3}$
resistenza	R	Ω	$1 \div 10$
coeff. d'attrito	β	$N \cdot m \cdot s$	≈ 0.1
costante rigidezza torsionale	k	$N \cdot m \cdot rad^{-1}$	$\approx 1 \cdot 10^4$

Ogni altro dato numerico che si rendesse necessario è lasciato alla definizione del candidato.

Figura 1: L'apparato meccatronico considerato.