4 (x, w)

```
MACHINE LEARNING ASSIGNMENT
           In: true label
           2n = feature vector
          In >0 - importance of nth reample.
                    F(w) = 1 1 tr n (th- wt $ (xn)) 2.
                              Taking gradient ,
                          7 rn { +n -w $ (x) } $ (xn) = 0

\begin{array}{lll}
H & & & \\
Signal & & & \\
Signal & & & \\
N=1 & & & \\
\end{array}

\begin{array}{lll}
H & & & \\
T & & & \\
N=1 & & \\
\end{array}

\begin{array}{lll}
H & & \\
T & & \\
N=1 & & \\
\end{array}

\phi = \begin{pmatrix}
\phi_0(x_1) & \phi_1(x_1) & \cdots & \phi_{M-1}(x_1) \\
\phi_0(x_2) & \phi_1(x_2) & \cdots & \phi_{M-1}(x_2) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\phi_0(x_M) & \phi_1(x_M) & \cdots & \phi_{M-1}(x_M)
\end{pmatrix}

           Jaking \phi_{\tau} = \int \overline{\tau}_1 \phi_0(x_1) \cdot \overline{\tau}_1 \phi_1(x_2) \cdot \cdots \cdot \overline{\tau}_1 \phi_{m-1}(x_1)
\overline{\tau}_2 \phi_0(x_2) \cdot \overline{\tau}_2 \phi_1(x_2) \cdot \cdots \cdot \overline{\tau}_2 \phi_{m-1}(x_2)
                                                 Trado (xn) Trady (xn) - Trud M-1 (xn)
             WML = ( $ T $ T $ T (+0 )
                               1 - dement wise product.
                          - predictive distribution of weight voctor w,
for MAP informer of human sugression.
P(w/+, x,d)
   For a given value of x, the coversponding value of
    I has a gaussian distribution with mean value
```

```
(-4, (mix) b) = N(+1 h(xim) + b-1)
                      where p-1 = 52 y (viw)= M,
    p(= |=, w, B) = # 1 (tn ly (xn, w), B-1).
lu p (+1 x , w, B) = - B I = {y(2n, w) - +n32 + N ln B - N ln 2n.
        minimizing over B. O
               1 = 1 In fy (xniwml) - tn32
        WML -> minimization of ( least square vivors)
       using predictive distributions,
        P(+1x, WMI, BML) = N (tly (x, WML), B'ML)
    prior distribution of wwirt d,
             p(w/d) = N (w,0,0-1)
                    = ( \frac{0}{2} \) \frac{M+1}{2} \ e( - \frac{1}{2} \) w\( \nu \) )
   From probability, P(x,y) = P(x|y)P(y)
                             P(x, by) = p(x)
                                for independent (r,y)
   : p(w |x,t,d,B) & a p(+1x,w,B) p(w |d)
                                   w - independent of & an
    p(+ bx, w, B) → N (M, 6,2)
    p(w/d) -> N (M2, 5,2)
          => p(w|\(\bar{z},\bar{t},d,B) = N(\(\mu_1+M_2,\(\mathreal_2^2+\varepsilon_2^2\)).
                                        1162 + H2 62 67 67 67
```

5. M variables, Dth degree polynomial. A Homogenous polynomial is one of the form such that $(X, -X_m) \rightarrow variables$ of degree d' P (\x, -- \xn) = \langle P (x, xn) -P(x1 - xn) = 0 => P (xx1 - xxn) = 0 given a polynomial ring R=K[r, -- xn] over a field k the homogenous polynomials of degree & form a victor space Rd R in the direct sum of Rd (non negative integers d) (all polynomials can be represented as a sum of homogenous polynomials). Dim (vector space Rd) -s no of different monomials of degree d in M variables. -> which is the maximal number of non zero terms in a homogenens folynomials of digree d in M variable from benomial theorem for degree do no of turns of homogenous foly \Rightarrow $\begin{pmatrix} d+n-1 \\ n-1 \end{pmatrix} = \frac{(d+M+1)!}{d! \cdot (M-1)!}$ for the polynomial of degree D. no of terms

= d=1 (m-D), d1.

2. Training set error with a random division of 60:40

S.NO	Lambda value	M.S. Error(E)		
1.	0.00001	6.3969		
2.	0.0001	6.3969		
3.	0.001	6.3969		
4.	0.01	6.3969		
5.	0.1	6.3969		
6.	1	6.3981		
7.	10	6.4047		
8	100	6.4391		
9	1000	6.5201		

Test set error:

S.NO	Lambda value	M.S. Error(E)	
1.	0.00001	5.2902	
2.	0.0001	5.2902	
3.	0.001	5.2902	
4.	0.01	5.2902	
5.	0.1	5.2896	
6.	1	5.2622	
7.	10		
8	100	5.1991	
9	1000	5.2024	

3. Weka results with a random division of 60:40

Mean absolute error 4.4703

Root mean squared error 6.0108

Relative absolute error 68.5806 %

Root relative squared error 66.9563 %

7. Mean squared errors:

	Lambda1	Lambda2	Lambda3	Lambda4	Lambda5	Lambda6	Lambda7
a	0.10676623726	0.094480122747	0.10971386783	0.10069714216	0.19887969531	0.32090067540	0.32365504435
1	7103	7411	2934	6924	3357	5592	4624
a	0.50912698210	0.486898005162	0.42604668388	0.44644468161	0.51800105118	0.52732030971	0.64268334835
2	8216	651	4917	9496	6376	0945	0416
a	0.95290530050	1.014995112630	0.88807361618	1.01513912269	0.82779081987	1.04173110348	0.98047901865
3	8052	51	6469	988	5525	522	9859
a	1.63278214089	1.621224994388	2.00100738565	1.95366832890	1.63424671219	2.06143587584	1.99208300491
4	663	06	873	328	276	463	247
a	8.40552901392	9.186524250835	10.7510405697	7.81720856478	9.44903406962	10.0252928121	9.13949004483
5	863	71	484	126	857	391	804

8.

Bias of the Mean =

0.0155

Bias of the Variance =

-0.2621

Variance of the Mean =

0.2152

Variance of the Variance =

0.7529