Data Transformation & Data Visualization Homework

Rujipas Mew

2024-08-05

Instruction

Homework Data Transformation

Write 5 codes to query data from **nycflights23** dataset with R Markdown.

Homework Data Visualization

Write 5 codes to create graphs from nycflights23 dataset using ggplots package with R Markdown.

Download library

```
## Load library
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
                                  2.1.5
## v dplyr 1.1.4 v readr
## v forcats 1.0.0 v stringr 1.5.1
## v ggplot2 3.5.1 v tibble
                                  3.2.1
## v lubridate 1.9.3
                       v tidyr
                                  1.3.1
## v purrr
             1.0.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(nycflights23)
```

Inspect data

```
## Inspect nycflights23 data
ls("package:nycflights23")
## [1] "airlines" "airports" "flights" "planes" "weather"
```

```
## Overview of dataset "flights"
str(flights)
## tibble [435,352 x 19] (S3: tbl_df/tbl/data.frame)
## $ year
                 ## $ month
                 : int [1:435352] 1 1 1 1 1 1 1 1 1 1 ...
## $ day
                   : int [1:435352] 1 1 1 1 1 1 1 1 1 1 ...
                : int [1:435352] 1 18 31 33 36 503 520 524 537 547 \dots
## $ dep_time
## $ sched_dep_time: int [1:435352] 2038 2300 2344 2140 2048 500 510 530 520 545 ...
## $ dep_delay : num [1:435352] 203 78 47 173 228 3 10 -6 17 2 ...
                   : int [1:435352] 328 228 500 238 223 808 948 645 926 845 ...
## $ arr_time
## $ sched_arr_time: int [1:435352] 3 135 426 2352 2252 815 949 710 818 852 ...
## $ arr_delay : num [1:435352] 205 53 34 166 211 -7 -1 -25 68 -7 ...
                 : chr [1:435352] "UA" "DL" "B6" "B6" ...
## $ carrier
## $ flight
                  : int [1:435352] 628 393 371 1053 219 499 996 981 206 225 ...
## $ tailnum
                 : chr [1:435352] "N25201" "N830DN" "N807JB" "N265JB" ...
## $ origin
                 : chr [1:435352] "EWR" "JFK" "JFK" "JFK" ...
                  : chr [1:435352] "SMF" "ATL" "BQN" "CHS" ...
## $ dest
## $ air_time : num [1:435352] 367 108 190 108 80 154 192 119 258 157 ...
## $ distance
                 : num [1:435352] 2500 760 1576 636 488 ...
## $ hour
                 : num [1:435352] 20 23 23 21 20 5 5 5 5 5 ...
## $ minute : num [1:435352] 38 0 44 40 48 0 10 30 20 45 ...
## $ time_hour : POSIXct[1:435352], format: "2023-01-01 20:00:00" "2023-01-01 23:00:00" ...
## Overview of dataset "airlines"
str(airlines)
## tibble [14 x 2] (S3: tbl df/tbl/data.frame)
## $ carrier: chr [1:14] "9E" "AA" "AS" "B6" ...
## $ name : chr [1:14] "Endeavor Air Inc." "American Airlines Inc." "Alaska Airlines Inc." "JetBlue
## Overview of dataset "airports"
str(airports)
## tibble [1,251 x 8] (S3: tbl_df/tbl/data.frame)
## $ faa : chr [1:1251] "AAF" "AAP" "ABE" "ABI" ...
## $ name : chr [1:1251] "Apalachicola Regional Airport" "Andrau Airpark" "Lehigh Valley International
## $ lat : num [1:1251] 29.7 29.7 40.7 32.4 67.1 ...
## $ lon : num [1:1251] -85 -95.6 -75.4 -99.7 -157.9 ...
## $ alt : num [1:1251] 20 79 393 1791 334 ...
## $ tz : num [1:1251] -5 -6 -5 -6 -9 -7 -6 -5 -5 -6 ...
## $ dst : chr [1:1251] "A" "A" "A" "A" ...
## $ tzone: chr [1:1251] "America/New_York" "America/Chicago" "America/New_York" "America/Chicago" ...
## Overview of dataset "planes"
str(planes)
## tibble [4,840 x 9] (S3: tbl_df/tbl/data.frame)
## $ tailnum : chr [1:4840] "N101DQ" "N101DU" "N101HQ" "N101NN" ...
                : int [1:4840] 2020 2018 2007 2013 2020 NA 2007 2013 1998 NA ...
## $ year
                : chr [1:4840] "Fixed wing multi engine" "Fixed wing multi engine" "Fixed wing multi
## $ type
```

```
## $ manufacturer: chr [1:4840] "AIRBUS" "C SERIES AIRCRAFT LTD PTNRSP" "EMBRAER-EMPRESA BRASILEIRA DE
## $ model
                : chr [1:4840] "A321-211" "BD-500-1A10" "ERJ 170-200 LR" "A321-231" ...
## $ engines
                : int [1:4840] 2 2 2 2 2 2 2 2 2 2 ...
                : int [1:4840] 199 133 80 379 199 133 80 379 182 133 ...
## $ seats
## $ speed
                : int [1:4840] 0 0 0 0 0 0 0 0 0 0 ...
                : chr [1:4840] "Turbo-fan" "Turbo-fan" "Turbo-fan" "Turbo-fan" ...
## $ engine
## Overview of dataset "weather"
str(weather)
## tibble [26,204 x 15] (S3: tbl_df/tbl/data.frame)
             : chr [1:26204] "JFK" "JFK" "JFK" "JFK" ...
               ##
   $ year
              : int [1:26204] 1 1 1 1 1 1 1 1 1 1 ...
## $ month
## $ day
              : int [1:26204] 1 1 1 1 1 1 1 1 1 1 ...
              : int [1:26204] 0 1 2 3 4 5 6 7 8 9 ...
## $ hour
              : num [1:26204] NA ...
## $ temp
## $ dewp
              : num [1:26204] NA ...
## $ humid
              : num [1:26204] NA ...
## $ wind_dir : num [1:26204] 0 190 190 250 170 0 250 230 260 250 ...
## $ wind speed: num [1:26204] 0 4.6 5.75 5.75 8.06 ...
## $ wind_gust : num [1:26204] 0 5.3 6.62 6.62 9.27 ...
              : num [1:26204] NA NA NA 0.02 NA NA NA NA NA NA ...
## $ pressure : num [1:26204] NA ...
              : num [1:26204] 0.25 2.5 0.25 4 0.75 0.75 0.24 0.5 8 5 ...
## $ time_hour : POSIXct[1:26204], format: "2023-01-01 15:00:00" "2023-01-01 16:00:00" ...
```

Analyze the dataset

1. Finding the average, min, and max arrival delay by each carrier

```
## # A tibble: 14 x 4
##
      carrier mean_arr_delay min_arr_delay max_arr_delay
##
      <chr>
                       <dbl>
                                     <dbl>
                                                    <dbl>
  1 F9
                     26.2
                                       -66
                                                     1241
## 2 HA
                     21.4
                                       -60
                                                     1086
## 3 B6
                     15.6
                                       -92
                                                     1010
## 4 00
                     13.7
                                       -59
                                                     1409
## 5 NK
                                       -74
                      9.89
                                                      878
## 6 UA
                      9.04
                                       -80
                                                     1489
## 7 WN
                      5.76
                                       -59
                                                     537
```

```
5.27
                                         -92
##
   8 AA
                                                      1812
## 9 DL
                      1.64
                                         -97
                                                      1233
## 10 MQ
                      0.119
                                        -46
                                                       161
                      0.0844
                                        -88
                                                      1012
## 11 AS
## 12 9E
                      -2.23
                                         -67
                                                      1271
## 13 YX
                      -4.64
                                        -72
                                                      1162
## 14 G4
                      -5.88
                                         -54
                                                      1382
```

Plot graph

Relationship between Carrier and Avg. arrival delay(minutes)

Source: nycflights23 from nycflights23 package

Observations

- 1. Carriers with the most negative values have the best on-time performance, while those with the highest positive values have the worst.
- 2. Carriers can be grouped into three clusters based on their average delays:
 - On-time: 9E, YX, G4
 - Low Delay: NK, UA, WN, AA, DL, MQ, AS
 - High Delay: F9, HA, B6, OO
- 3. Carriers like 9E, YX, G4 have the lowest average delays, with G4 arriving earlier than scheduled at an average of 5.88 minutes.
- 4. Carriers like F9, HA, B6, OO have the highest average delays, with F9 experiencing the longest delays at 26.24 minutes.

2. Finding the number of flights departed in each airports by month

```
flights_count_bymonth <- flights %>%
  left_join(airports, by = c("origin" = "faa")) %>%
  mutate(month = factor(month, levels = 1:12, labels = month.name)) %>%
  group_by(origin, name, month) %>%
  summarise(n = n()) %>%
  arrange(month, origin)

## 'summarise()' has grouped output by 'origin', 'name'. You can override using
## the '.groups' argument.

## can use 'count(origin, name, month)' instead of 'group_by()' %>% 'summarise()'
print(flights_count_bymonth)

## # A tibble: 36 x 4
## # Groups: origin, name [3]
```

```
##
      origin name
                                                  month
                                                               n
##
      <chr> <chr>
                                                  <fct>
                                                           <int>
            Newark Liberty International Airport January
## 1 EWR
                                                          11623
## 2 JFK
            John F Kennedy International Airport January 10918
## 3 LGA
            La Guardia Airport
                                                  January 13479
## 4 EWR
            Newark Liberty International Airport February 10991
## 5 JFK
            John F Kennedy International Airport February 10567
            La Guardia Airport
## 6 LGA
                                                  February 13203
## 7 EWR
            Newark Liberty International Airport March
                                                           12593
            John F Kennedy International Airport March
## 8 JFK
                                                           12158
## 9 LGA
            La Guardia Airport
                                                           14763
                                                  March
## 10 EWR
            Newark Liberty International Airport April
                                                           12022
## # i 26 more rows
```

Plot graph

The Total Flights Departed in each Airports by Month

Source: nycflights23 from nycflights23 package

Observations

- 1. There seems to be a general trend of higher flight departures during the spring-summer months (MarAug) compared to the autumn-winter months (Sept-Feb).
- 2. LGA consistently has the highest number of departures throughout the year.
- 3. Every airports have their highest number of departures in March.

3. Finding top 10 biggest plane

```
biggest_plane <- planes %>%
 group_by(manufacturer, model, type, engine) %>%
 summarize(max_seats = max(seats)) %>%
 arrange(desc(max_seats)) %>%
 head(10)
## 'summarise()' has grouped output by 'manufacturer', 'model', 'type'. You can
## override using the '.groups' argument.
print(biggest_plane)
## # A tibble: 10 x 5
## # Groups: manufacturer, model, type [10]
     manufacturer model
##
                            type
                                                    engine
                                                              max_seats
##
     <chr>
                  <chr>
                            <chr>>
                                                    <chr>
                                                                  <int>
                                                                    563
## 1 BOEING
                  777-323ER Fixed wing multi engine Turbo-fan
## 2 BOEING
                  777-300ER Fixed wing multi engine Turbo-fan
                                                                    552
## 3 AIRBUS
                  A330-302 Fixed wing multi engine Turbo-fan
                                                                    451
## 4 AIRBUS
                  A330-941 Fixed wing multi engine Turbo-fan
                                                                    442
## 5 BOEING
                  777-223 Fixed wing multi engine Turbo-fan
                                                                    440
## 6 BOEING
                  787-9
                            Fixed wing multi engine Turbo-fan
                                                                    422
                  777-222 Fixed wing multi engine Turbo-fan
## 7 BOEING
                                                                    400
## 8 BOEING
                  777-224 Fixed wing multi engine Turbo-fan
                                                                    400
## 9 AIRBUS
                  A321-231 Fixed wing multi engine Turbo-fan
                                                                    379
## 10 AIRBUS
                  A330-223 Fixed wing multi engine Turbo-fan
                                                                    379
```

Plot graph

Observations

- 1. Boeing 777-323ER has the highest number of seats, with 563 seats.
- 2. Boeing 777-300ER comes in second with 552 seats
- 3. Boeing models occupy the majority of the top 10 list, with 6 out of 10 largest aircraft models.

4. Finding top 5 most popular destination

```
pop_dest <- flights %>%
  left_join(airports, by = c("dest" = "faa")) %>%
  count(dest, name) %>%
  arrange(desc(n)) %>%
  head(5)

print(pop_dest)
```

```
## # A tibble: 5 x 3
##
     dest name
                                                                    n
     <chr> <chr>
                                                                 <int>
## 1 BOS
           General Edward Lawrence Logan International Airport 19036
## 2 ORD
           Chicago O'Hare International Airport
                                                                 18200
## 3 MCO
           Orlando International Airport
                                                                17756
## 4 ATL
           Hartsfield Jackson Atlanta International Airport
                                                                17570
## 5 MIA
           Miami International Airport
                                                                16076
```

Plot graph

Top 5 most popular destination

Source: nycflights23 from nycflights23 package

Observations

- 1. BOS (General Edward Lawrence Logan International Airport) is the most popular destination with the highest number of flights.
- 2. MIA (Miami International Airport) has the lowest number of flights among the top 5.
- 3. The ranking of airports from highest to lowest number of flights is: BOS, ORD, MCO, ATL, MIA

5. Finding Delayed and On-Time Departed Flights Across Airports

```
flights_perf <- flights %>%
  filter(!is.na(flights$dep_delay)) %>% ## remove null in dep_delay
  left_join(airports, by = c("origin" = "faa")) %>%
  mutate(flg = if_else(dep_delay <= 0, "on-time", "delay")) %>%
  count(origin, name, flg)

print(flights_perf)

## # A tibble: 6 x 4
```

```
##
    origin name
                                              flg
##
    <chr> <chr>
                                              <chr>
                                                       <int>
## 1 EWR Newark Liberty International Airport delay
                                                       54477
## 2 EWR Newark Liberty International Airport on-time
                                                       80468
         John F Kennedy International Airport delay
## 3 JFK
                                                       48924
## 4 JFK John F Kennedy International Airport on-time 81276
## 5 LGA La Guardia Airport
                                                       49476
## 6 LGA La Guardia Airport
                                              on-time 109993
```

Plot Graph

Source: nycflights23 from nycflights23 package

Observations

- 1. La Guardia Airport despite having the highest total number of flights, does not have the highest number of delayed flights.
- 2. Newark Liberty International Airport has the highest proportion of delayed flights.
- 3. John F Kennedy International Airport, while having fewer total flights than Newark Liberty International Airport, has a higher proportion of on-time departures.