$\overline{\mathcal{R}}$ OBERT \mathcal{S} TAŃCZY

http://www.math.uni.wroc.pl/~stanczr/A/06.pdf

Zadanie 66. Dwa rozwiązania $y_1(t)$ i $y_2(t)$ równania liniowego drugiego rzędu, spełniające $W(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t) \neq 0$, będziemy nazywali fundamentalnym zbiorem rozwiązań równania. Udowodnić, że funkcje $y_1(t) = \sqrt{t}$ i $y_2(t) = 1/t$ tworzą fundamentalny zbiór rozwiązań równania $2t^2y'' + 3ty' - y = 0$. Znaleźć rozwiązanie tego równania spełniające: y(1) = 2, y'(1) = 1.

Zadanie 67. Znaleźć rozwiązania następujących zagadnień:

- a) y'' + y' 10y = 0, y(1) = 5, y'(1) = 2; b) y'' + y' + 2y = 0, y(0) = 1, y'(0) = -2;
- c) 2y'' y' + 3y = 0, y(1) = 1, y'(1) = 1; d) 9y'' + 6y' + y = 0, y(0) = 1, y'(0) = 0;

Zadanie 68. Równanie postaci $t^2y'' + \alpha ty' + \beta y = 0$, α, β – stałe, nazywamy *równaniem Eulera*. Udowodnić, że funkcja $y(t) = t^r$ jest rozwiązaniem tego równania o ile $r^2 + (\alpha - 1)r + \beta = 0$.

Zadanie 69. Znaleźć rozwiązanie ogólne równania $t^2y'' + 5ty' - 5y = 0$, oraz znaleźć rozwiązanie zagadnienia $t^2y'' - ty' - 2y = 0$, y(1) = 0, y'(1) = 1 dla t > 0.

Zadanie 70. Sprawdzić, że $W[e^{\alpha t}\cos\beta t, e^{\alpha t}\sin\beta t] = \beta e^{2\alpha t}$.

Zadanie 71. Załóżmy, że równanie y'' + p(t)y' + q(t)y = g(t) ma trzy rozwiązania: t^2 , $t^2 + e^{2t}$, $1 + t^2 + 2e^{2t}$. Znaleźć rozwiązanie ogólne oraz q i p.

Zadanie 72. Równanie y'' + p(t)y' + q(t)y = g(t) ma rozwiązania: a) $3e^t + e^{t^2}$, b) $7e^t + e^{t^2}$, c) $5e^t + e^{-t^3} + e^{t^2}$. Znaleźć rozwiązanie tego równania spełniające warunki początkowe y(0) = 1, y'(0) = 2.

Zadanie 73. Stosując metodę uzmieniania stałych (szukamy $y(t) = c_1(t)y_1(t) + c_2(t)y_2(t)$, gdzie y_i rozwiązania równania jednorodnego, a c_i szukane "uzmiennione" współczynniki) znaleźć rozwiązanie następujących równań: $a)y'' - 4y' + 4y = te^{2t}$, $b)2y'' - 3y' + y = (t^2 + 1)e^t$, $c)3y'' + 4y' + y = (\sin t)e^{-t}$.

Zadanie 74. Znaleźć jedno szczególne rozwiązanie równań: a) $y'' + 3y = t^3 - 1$, b) $y'' + 4y' + 4y = te^{\alpha t}$, c) $y'' - y = t^2 e^t$, d) $y'' + y' + y = 1 + t + t^2$ e) $y'' + 4y = t \sin 2t$, f) $y'' - 2y' + 5y = 2(\cos^2 t)e^t$.

Zadanie 75. Dla jakich wartości k i ω równanie $x'' + k^2 x = \sin \omega t$ ma przynajmniej jedno rozwiązanie okresowe?

Zadanie 76. Dla jakich wartości a zagadnienie y'' + ay = 1, y(0) = 0, y(1) = 0, nie ma rozwiązań?

Zadanie 77. Szukamy rozwiązania szczególnego równania $y'' - 2y' + y = te^t$. Sprawdzić przez bezpośrednie podstawienie, że próba szukania rozwiązania szczególnego w postaci $y_1(t) = (a_0 + a_1 t) e^t$ lub $y_2(t) = (a_0 + a_1 t + a_2 t^2) e^t$ prowadzi do sprzeczności. Wyjaśnić, dlaczego szukając rozwiązania w postaci $y(t) = (a_0 + a_1 t + a_2 t^2 + a_3 t^3) e^t$ można przyjąć, że $a_0 = a_1 = 0$.

Zadanie 78. Znaleźć rozwiązanie ogólne równań: a) y'' + ty' + y = 0, b) y'' - ty = 0, c) $y'' - t^3y = 0$. Zbadać promień zbieżności otrzymanych szeregów potegowych.

Zadanie 79. Znaleźć rozwiązanie następujących zagadnień: a) $y'' + t^2y = 0$, y(0) = 2, y'(0) = -1, b) t(2-t)y'' - 6(t-1)y' - 4y = 0, y(1) = 1, y'(1) = 0, c) $ty'' - t^2y' + (t^2-2)y = 0$, y(0) = 0, y'(0) = 1.

Zadanie 80. W poniższych zagadnieniach znaleźć rekurencyjne wzory na współczynniki w rozwinieciu rozwiązania w szereg $\sum_{n=0}^{\infty} a_n t^n$ lub wyznaczyć kilka pierwszych współczynników szeregu. a) (1-t)y'' + ty' + y = 0, y(0) = 1, y'(0) = 0; b) $y'' + ty' + e^t y = 0$, y(0) = 1, y'(0) = 0; c) $y'' + y' + e^{-t} y = 0$, y(0) = 3, y'(0) = 5;

Zadanie 81. Znaleźć rozwiązania następujących zagadnień: a) $y''-5y'+4y=e^{2t}$, y(0)=1, y'(0)=-1; b) $y''-3y'+2y=e^{-t}$, y(0)=1, y'(0)=0; c) $y'''-6y''+11y'-6y=e^{4t}$, y(0)=0, y'(0)=0, y''(0)=0;

Zadanie 82. Znaleźć rozwiązania zagadnień: a) $y'' + y = \sin t$, y(0) = 1, y'(0) = 2; b) $y'' + y = t \sin t$, y(0) = 1, y'(0) = 2; c) $y'' + y' + y = 1 + e^{-t}$, y(0) = 3, y'(0) = -5;

Zadanie 83. Ciężarek o masie 1 kg zawieszony na pewnej sprężynie rozciąga ją o 49/320 metra. Ciągniemy ten ciężarek w dół o dodatkowe 1/4 metra i puszczamy. Oblicz amplitudę, okres i częstotliwość powstałych drgań. Przyjmij g=9.8 m/s². Rozważ równanie my'' + cy = f, gdzie m to masa, a c to wsp. sprężystości, a f to siła zewnętrzna, zaś y opisuje wychylenie od punktu równowagi.