Noncommutative algebra - 2^{nd} homework

Benjamin Benčina, 27192018

20. november 2020

<u>Ex. 1:</u> Let R be a primitive ring and L a minimal left ideal of R. Let us show that every faithful simple R-module is isomorphic to L.

Let M be a faithful simple R-module, that exists by primitivity of R. Then by faithfulness of M, the product LM is non-zero. Choose $m \in M$ such that $Lm \neq 0$. By simplicity of M, Lm = M. Consider the homomorphism $\varphi \colon L \to M$ defined by $a \mapsto am$. The map φ is surjective by the above. It is also injective, since $\varphi \neq 0$ and $\ker \varphi \leq L$ and therefore $\ker \varphi = 0$. This is the isomorphism we seek.

Ex. 2: Let R be a ring and V a faithful simple R-module (R is therefore primitive). By Schur's lemma, V is a left vector space over the division ring $S = \operatorname{End}_R(V)$. We define the rank of an element $r \in R$ by

$$\operatorname{rank} r = \dim_S(rV)$$

We will show that $r \in R$ has finite rank $\iff r$ is a sum of elements of rank 1.

• (\iff): This direction follows from basic linear algebra. Suppose that $r = \sum_{i \in I} r_i$ is a finite sum (say, |I| = n) with rank $r_i = 1$ for all i where r_i is non-zero. Then we have

$$\operatorname{rank} r = \dim_S(rV) = \dim_S\left(\Sigma_{i \in I} r_i V\right) \le \Sigma_{i \in I} \dim_S(r_i V) = \Sigma_{i \in I} 1 = n < \infty$$

• (\Longrightarrow): By the Jacobson Density Theorem, since R is primitive, R is a dense ring of linear transformations of the S-vector space V. In other words, for any finite linearly independent set $\{v_1,\ldots,v_n\}$ and a finite set $\{w_1,\ldots,w_n\}$ there exists $r\in R$ such that $rv_i=w_i$ for all $i=1,\ldots,n$. We now continue with a proof by induction on the rank of r. The base case is trivial (if rank r=1, r is itself a one-term sum of elements of rank 1), so we proceed with the step case. Assume the implication holds for all $r\in R$ with rank $r\leq n-1$ and suppose for concrete $r\in R$ that rank $r=\dim_S(rV)=n<\infty$. There exists a (linearly independent) basis for rV: $\{rv_1,\ldots,rv_n\}$. By the density of R, there exists $r'\in R$ mapping the basis to the set $\{0,rv_2,\ldots,rv_n\}$ as described above. Clearly now rank r'r=n-1 and we can write r=(r-r'r)+r'r. Since by the induction hypothesis r'r can be written as a sum of elements of rank 1, we now need to prove only that r-r'r has rank 1, which is easy, since clearly $(r-r'r)V=\text{Lin}\{rv_1\}$ (r' acts as a projection).

Ex. 3: Let U be an \mathbb{R} -vector space. Let us show that $\sum_{i=1}^n u_i \otimes u_i = 0 \in U \otimes_{\mathbb{R}} U \iff u_i = 0$ for all $i = 1, \ldots, n$.

- (\iff): Since $u_i = 0$ implies $u_i \otimes u_i = 0$, this implication holds.
- (\Longrightarrow): Let $\{e_i\}_{i\in I}$ be a basis for U. Then $\{e_i\otimes e_j\}_{i,j\in I}$ is a basis for $U\otimes_{\mathbb{R}} U$. We can write $u_i=\Sigma_{j\in I}a_je_j$, so we get $u_i\otimes u_i=\Sigma_{j,k\in I}a_ja_ke_j\otimes e_k$ where in both sums only finitely many coefficients are non-zero. We thus get $\sum_{i=1}^n u_i\otimes u_i=\sum_{j,k\in I}b_{jk}e_j\otimes e_k$ where b_{jk} are sums of degree 2 products of coefficients of u_i , and only finitely many coefficients of the sum are non-zero. Since this sum is by assumption equal to zero, all its coefficients must be equal to zero. Now observe coefficients at basis vectors of the form $e_p\otimes e_p$. We see they are formed precisely by the sums of squares of appropriate coefficients of vectors u_i (those that contain e_p in basis decomposition) and that each coefficient from all of vectors u_i is present in some term. In particular, we have sums of non-negative real numbers that are equal to zero, so all these numbers (squares of coefficients of vectors u_i) must be zero. It follows all u_i are equal to zero.

Ex. 4: Let F be a field with char $F \neq 2$ and $a, b \in F^*$. Let $Q = \left(\frac{a,b}{F}\right)$ be a quaternion algebra with basis $\{1, i, j, k\}$. Define the norm $N: Q \to F$ by $N(x + yi + zj + wk) = x^2 - ay^2 - bz^2 + abw^2$. We show the following statements are equivalent

- (a) Q is not a division algebra;
- (b) $Q \cong M_2(F)$;
- (c) The above norm N has a non-trivial zero;
- (d) We have $b \in N_a := N_{F(\sqrt{a})/F}(F(\sqrt{a})) = \{x^2 ay^2; x, y \in F\}.$

Let us first prove the equivalence $(a) \iff (c)$, since we will need it later.

• $(a) \iff (c)$: We prove a more precise statement: an element $q \in Q$ is invertible $\iff N(q) \neq 0$. If qq' = 1 for some $q' \in Q$, then N(q)N(q') = N(1) = 1, so $N(q) \neq 0$. Conversely, suppose $N(q) \neq 0 \in F$. Since elements from F commute with all elements of Q (recall that Q is central simple), the expression

$$N(q) = q\overline{q} = \overline{q}q$$

gives us

$$q\frac{1}{N(q)}\overline{q} = \frac{1}{N(q)}q\overline{q} = 1$$

In other words, $q^{-1} = \frac{\overline{q}}{N(q)}$ is a two-sided multiplicative inverse of q.

We will later prove that $(a) \Longrightarrow (d) \Longrightarrow (b) \Longrightarrow (a)$. First however, we will show some other basic properties. Recall from tutorials that $\left(\frac{1,b}{F}\right) \cong M_2(F)$. We also have $\left(\frac{a,b}{F}\right) \cong \left(\frac{b,a}{F}\right)$ by the basis transformation $(i,j) \mapsto (j,i)$, and $\left(\frac{ac^2,b}{F}\right) \cong \left(\frac{a,b}{F}\right)$ by the basis transformation $(i,j) \mapsto (ic^{-1},j)$ for $c \neq 0$.

This clearly shows that if a is a square (that is, $\sqrt{a} \in F$) we also have $\left(\frac{a,b}{F}\right) \cong M_2(F)$. If a is a square it also easily follows that $N_a = F$ and therefore $b \in N_a$. Indeed, write $a = c^2$. Then

$$N_a = \{x^2 - c^2 y^2\} = \{(x - cy)(x + cy)\} = \{x'y'\}$$

where in the last equality we merely change variables. For a special case of, say, y' = 1, we get the entirety of $F \subseteq N_a$. The reverse inclusion is always true.

In the following proofs we can therefore assume, that a is not a square, since it will already imply what we want.

• $(a) \implies (d)$: Let Q not be a division algebra, so there exists a non-zero non-invertible $q \in Q$. By the above, N(q) = 0 and we have

$$x^{2} - ay^{2} - bz^{2} + abw^{2} = 0 \implies x^{2} - ay^{2} = b(z^{2} - aw^{2})$$

Since a is not a square, we must have $z^2 - aw^2 \neq 0$. Indeed, if $z^2 - aw^2 = 0$ then w = 0 (if $w \neq 0$ we can solve for a and see that a is a square). It follows that also z = 0 and we get in the above equation that $x^2 - ay^2 = 0$, so also x = y = 0 since a is not a square. It follows that q = 0, which is a contradiction. We can now solve the first equation for b and get

$$b = \frac{x^2 - ay^2}{z^2 - aw^2} \in N_a$$

• $\underline{(d)} \Longrightarrow \underline{(b)}$: Write $b = x_0^2 - ay_0^2$. Q then has a different quaternion basis $\{1, i, x_0 j + y_0 k, i(x_0 j + y_0 k)\}$ (the fourth element is actually $x_0 k + y_0 aj$, since $i^2 = a$ and k = ij). Indeed, we get this basis by transforming (j, k) as basis columns with the matrix

$$\begin{bmatrix} x_0 & ay_0 \\ y_0 & x_0 \end{bmatrix}$$

that has determinant $b \neq 0$. We also have $(x_0j + y_0k)^2 = b^2$. Since this is a different basis for the same quaternion algebra, it follows that

$$\left(\frac{a,b}{F}\right) \cong \left(\frac{a,b^2}{F}\right) \cong \left(\frac{a,1}{F}\right) \cong M_2(F)$$

• $(b) \implies (a)$: Clearly $M_2(F)$ is not a division algebra.