Đồ HỌA 3D PHÉP CHIẾU

Phép chiếu là gì

Chiếu các điểm từ không gian 3D lên mặt phẳng 2D.

HỆ TỌA ĐỘ QUAN SÁT

Tham số

- 1. Tâm chiếu
- 2. Mặt phẳng chiếu

Cách chiếu

Các loại phép chiếu

- Phép chiếu song song → Phép chiếu vuông góc
- Phép chiếu phối cảnh

C

Ví dụ

Phép chiếu vuông góc

Phép chiếu phối cảnh

Các loại phép chiếu vuông góc

Các loại phép chiếu phối cảnh

Tính chất

Bảo toàn tính thẳng và thứ tự

Tính chất

-Bảo toàn tỉ lệ chéo

Quan hệ điểm & điểm chiếu

Ứng dụng

- •Hình chiếu của đoạn thẳng sẽ là đoạn thẳng
- •Hình chiếu của đa giác sẽ là đa giác

Công thức

Dạng hàm:

$$\begin{aligned} P_x^{'} &= m_{00}P_x + m_{10}P_y + m_{20}P_z + m_{30}P_w \\ P_y^{'} &= m_{01}P_x + m_{11}P_y + m_{21}P_z + m_{31}P_w \\ P_z^{'} &= m_{02}P_x + m_{12}P_y + m_{22}P_z + m_{32}P_w \\ P_w^{'} &= m_{03}P_x + m_{13}P_y + m_{23}P_z + m_{33}P_w \end{aligned}$$

Dạng ma trận:

$$\begin{pmatrix} P_x^{'} & P_y^{'} & P_z^{'} & P_w^{'} \end{pmatrix} = \begin{pmatrix} P_x & P_y & P_z & P_w \end{pmatrix} \begin{pmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \\ m_{30} & m_{31} & m_{32} & m_{33} \end{pmatrix}$$

Phép chiếu vuông góc

Công thức

Công thức 1

$$P_x' = P_x$$

$$P_y^{'} = P_y$$

Công thức 2

$$P_x^{'} = P_x$$

$$P_y^{'} = P_y^{}$$

$$P_z^{'} = P_z$$

 $(P_z^{'} là độ sâu)$

Phép chiếu phối cảnh

Công thức chiếu

Công thức 1

$$P_x^{'} = \frac{P_x}{P_z/n}$$

$$P_y' = \frac{P_y}{P_z/n}$$

Biến đổi phối cảnh

Công thức

Công thức 2

$$\begin{split} P_x^{'} &= \frac{P_x}{P_z/n} \\ P_y^{'} &= \frac{P_y}{P_z/n} \\ P_z^{'} &= \frac{2P_z-n}{P_z/n} \\ \left(P_z^{'} \text{ là độ sâu}\right) \end{split}$$

		Р, '	*P	• •	Pz	, ?
			о '			

Ví dụ

Tại sao?

Nội suy độ sâu đoạn thẳng

1. Nội suy tuyến tính

ĐÒ HỌA 3D PHÉP XÉN

Giảng viên : Bùi Tiến Lên

Giới thiệu

Phép chiếu vuông góc

Phép chiếu phối cảnh

XÉN ĐOẠN THẮNG

Bài toán

Input

Đoạn thẳng P₁P₂

Output

$$P_1P_2 \cap W$$

Thuật toán

bước 1 Xén trái

bước 2 Xén phải

bước 3 Xén dưới

bước 4 Xén trên

bước 5 Xén xa

bước 6 Xén gần

Xén trái

Bao gồm 4 trường hợp

th1: P₁ bên trong, P₂ bên trong

th2: P₁ bên ngoài, P₂ bên ngoài

th3:

3.1 P₁ bên trong, P₂ bên ngoài

3.2 P₁ bên ngoài, P₂ bên trong

$$\begin{aligned} P_{1m\acute{o}i} &= P_1 \\ P_{2m\acute{o}i} &= P_2 \end{aligned}$$

$$P_{1m\acute{o}i} = P_1$$

$$P_{2m\acute{o}i} = P_1P_2 \cap W = I$$

$$P_{1\text{m\'o}i} = P_1 P_2 \cap W_1 = I$$
$$P_{2\text{m\'o}i} = P_2$$

XÉN ĐA GIÁC

Xem lại phần xén trong 2D ...

PHÉP BIẾN ĐỔI CHUẨN HÓA (OPENGL)

Phép chiếu & Khối quan sát chuẩn

- Phép chiếu vuông góc
- Khối quan sát chuẩn là hình lập phương có tâm là gốc, độ dài các cạnh bằng 2 và các mặt vuông góc với các trục

Phép chiếu vuông góc

void glOrtho(left, right, bottom, top, zNear, zFar)

Biến đổi chuẩn

$$\begin{pmatrix}
\frac{2}{r-l} & 0 & 0 & 0 \\
0 & \frac{2}{t-b} & 0 & 0 \\
0 & 0 & -\frac{2}{f-n} & 0 \\
-\frac{r+t}{r-t} & -\frac{t+b}{t-b} & -\frac{f+n}{f-n} & 1
\end{pmatrix}$$

Phép chiếu phối cảnh

void glFrustum(left, right, bottom, top, zNear, zFar)

Biến đổi chuẩn

$$\begin{pmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2fn}{f-n} \\
0 & 0 & -1 & 0
\end{pmatrix}$$

Phép chiếu phối cảnh

void gluPerspective(fov, aspect, near, far)

