电子线路实验报告

系别:	实验分组:	姓名:	学号:
同组姓名:	实验日期:		如师评定:

【实验名称】RC 晶体管振荡器

【目的要求】

- 1. 进一步练习焊接,掌握调试技术和测量频率的方法;
- 2. 研究振荡器的起振条件和振荡频率;
- 3. 观察负反馈对振荡波形的影响。

【仪器用具】

直流稳压电源,示波器,万用表,音频信号发生器,

器件名	型号	数量
三极管	3DG6	2
运算放大器	uA741	2
	1ΚΩ	2
	1.6ΚΩ	2
电阻	2ΚΩ	2
	10ΚΩ	1
	20ΚΩ	2
电位器	调节至 3.9KΩ	1

【实验原理】

下图为桥式正弦波振荡电路,由两部分组成,左边为振荡器反馈电路,右边是放大器部分。

电子线路实验报告

水州·	系别:	实验分组:	姓名:	学号:
-----	-----	-------	-----	-----

同组姓名: _____ 实验日期: _____ 教师评定: _____

理论分析:

起振条件: $|\dot{A}\dot{F}| \geq 1$,满足这个条件时,振荡器的振幅将越来越大,为了达到稳幅状态,需要在放大器或反馈网络中引入由非线性元件组成的稳幅环节。

维持自激振荡的条件: $\dot{A}\dot{F}=1$,

负反馈
$$\dot{F} = \frac{Z_2}{Z_1 + Z_2} = \frac{1}{3 + j(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})}$$
 其中($\omega_0 = 1/RC$)

当 $\omega=\omega_0$ 时, $\dot{F}=1/3$ 最大,此时 $\varphi_f=0$,故要求 $\varphi_A=2n\pi,(n=0,1,2,\ldots)$

振荡器一旦振荡, 其信号频率为

$$f = \frac{\omega_0}{2\pi} = \frac{1}{2\pi RC}$$

【实验数据】

- 1. 如图焊接电路。
- 2. 测量静态工作点,调整 Ec=12v,接通电源后有

晶体管	Uc/V	Ue/V	Ic/mA	Ie/Ma
Q1	7.52	2.53	2.24	2.35

电子线路实验报告

系别:		实验分组:		姓名:	学号:	
同组姓名:	:		实验日期:_		教师评定:	
	Q2	5.8	33	3.15	3.10	3.15

3. 改变反馈电阻,观察输出波形的变化。

发现逆时针调节则信号幅度变小直到消失,顺时针调节则变大直到失真。

4.

电容值(C1, C2)/uF	频率测量值/KZ	频率理论值/KZ
0.1	1.020	0.994
0.01	N/A	9.94

原因分析:

相比较而言,测量跟理论值符合的比较好,可能是因为,读数的时候太过仓促看错了。因为似乎其他同学没有这么好的结果。

5. 通过调整 RF,测量振荡时输 51 正弦波幅度最大时的电压值。

 $U_{c=0.1uF} = 4.875V$

6. 测量电压串联负反馈放大器的放大倍数。

电容值/uF	U ₀ /V	U _i /V	$A=U_i/U_0$
C1, C2=0.01uF	n/a	n/a	n/a
C1, C2=0.1uF	2.062	0.3	6.9

【分析与讨论】

虽然我的线路焊好的很早,但是可惜的是线路板某处有些接触不良,这样我浪费了大量时间 来检测和调试;终于在无法忍受的时候,我用力敲打它,于是信号发生了。

【思考题】

本实验是通过调整反馈电阻的大小来达到自动起振条件的,满足起振条件后,放大器中的反馈网络中引入非线性元件来稳幅,这个元件我认为是晶体三极管 Q2。