Lab 3: Temporal models

April 14, 2016

Objectives

- Tools for detecting temporal autocorrelation
- Build a state-space model with autocorrelation in the state process

Temporal Models

White noise process

$$W_{t} \sim Gau(0,\sigma^{2})$$

Random walk process

$$Y_{t} = Y_{t-1} + W_{t}$$

$$W_{t} \sim Gau(0, \sigma^{2})$$

Autoregressive Process

$$Y_{t} = Y_{t-1} + W_{t}$$

$$W_{t} \sim Gau(0, \sigma^{2})$$

Moving Average process

$$Y_{t} = W_{t} + \beta_{1}W_{t-1} + ... \beta_{q}W_{t-q}$$

$$W_{t} \sim Normal(0, \sigma^{2})$$

Fitting models to data

- Transform to obtain a stationary time series
 - Remove trends and seasonal components
 - Differentiate (if needed)
 - Test for stationarity
- Determine order of AR and MA processes
 - Compute partial auto-correlation function to determine order of model for AR,
 - partial auto-correlation of lag k is the autocorrelation between z_t and z_{t+k} with the linear dependence of z_t on z_{t+1} through z_{t+k-1} removed
 - Compute auto-correlation function to determine order of MA model
 - Estimate auto-regression and variance using Yule-Walker (AR) or maximum likelihood (AR, MA, or ARMA)
- Compute residuals and test for white noise

Analyze a time series of CO₂ concentrations from Mauna Loa Observatory from 1958 to 2008

State-space models

Temporal models

State-space model example - Dynamic Linear Model

$$S_t|S_{t-1} \sim N(\lambda S_{t-1}, \sigma_S^2)$$

$$y_t|S_t \sim N(S_t, \sigma_y^2)$$

- The state S_t is a stochastic function of the state the previous time step and the population growth rate λ and the level of process noise σ_S
- The observation process is a function of the measurement error $\sigma_{\rm v}$

Temporal models

State-space models

- Dynamic Linear Model
- Gompertz state space model

• [See R code and TMB code]