姓名: _____

学号: _____

院系: _____

____ 级___ 班

大 连 理 工 大 学

课程名称: <u>线性代数与解析几何</u> 试卷: <u>A</u> 考试形式: <u>闭卷</u>

授课院(系): 数学科学学院 考试日期: 2018年6月27日 试卷共6页

	_	1.1	11]	四	五	六	七	八	九	总分
标准分	30	10	8	8	8	10	12	6	8	100
得 分										

装

得 分 一 (每小题 3 分,共 30 分)填空题

1. 设
$$\boldsymbol{a} = (1,2,3)^T, \boldsymbol{b} = (1,-1,2)^T$$
,则 $\boldsymbol{ab}^T =$

2. 设A 为三阶方阵,|A|=2,将A 的1,3 行对调后得到B,再将B 的第2 行加到第3 行

得到
$$C$$
,则 $\begin{vmatrix} A^* & O \\ B^T & C^{-1} \end{vmatrix} = \underline{-2}$

订

$$\begin{vmatrix} k & 2 & 2 & 2 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{vmatrix} = \underline{\hspace{1cm}}$$

4. 设方阵 A 满足 $A^2 - 2A - 5E = 0$, 则 $(A - 3E)^{-1} =$

绀

6. 向量
$$\boldsymbol{b} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$
在基 $\boldsymbol{a}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\boldsymbol{a}_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, $\boldsymbol{a}_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ 下的坐标向量为

7. 设 $f(x_1, x_2, x_3) = kx_1^2 + 2x_2^2 + x_3^2 + 2kx_1x_2 - 2kx_2x_3$ 为正定二次型,则 k 需

满足_____

8.	设三阶方阵 A 与 B 相似,	A	=0, A-3E	= 0, r	(E-B)	= 2	,则 A	的相似标准形
----	---------------------	---	----------	--------	-------	-----	--------	--------

为 (注: 3,1,0 的次序可变)

9. 设
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 1 & -1 & k \end{pmatrix}$$
,三元列向量组 $\mathbf{\alpha}_1, \mathbf{\alpha}_2, \mathbf{\alpha}_3$ 线性无关,而向量组 $\mathbf{A}\mathbf{\alpha}_1, \mathbf{A}\mathbf{\alpha}_2, \mathbf{A}\mathbf{\alpha}_3$

线性相关,则k=

10. 设
$$A$$
为三阶方阵, $A^2 - A - 2E = 0$, $0 < |A| < 5$,则 $|A^2 + E| =$ _____

得 分 二 (每小题 2 分, 共 10 分)选择题

- 1. 设方阵 A 和方阵 B 等价,则下列选项错误的是(
 - (A) 若A可逆,则B也可逆

(B) A^* 和 B^* 等价

(C) \mathbf{A} 和 \mathbf{B} 的列向量组等价

- (D) r(A) = r(B)
- 2. 设A为 4×3 矩阵,则 $A^T A$ 可逆的充要条件是(A)
- (A) 方程组Ax = 0 只有零解
- (B) $\mathbf{A}\mathbf{A}^T$ 可逆
- (C) **A** 的行向量组线性无关
- (D) r(A) = 4
- 3. 设 β_1 , β_2 是非齐次线性方程组Ax = b的两个不同的解, α_1 , α_2 是齐次线性方程组Ax = 0的基 础解系, k_1,k_2 为任意常数,则 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的通解为(

(A)
$$k_1 \boldsymbol{\alpha}_1 + k_2 (\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2) + \frac{\boldsymbol{\beta}_1 - \boldsymbol{\beta}_2}{2}$$

(B)
$$k_1 \boldsymbol{\alpha}_1 + k_2 (\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2) + \frac{\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2}{2}$$

(C)
$$k_1 \alpha_1 + k_2 (\beta_1 + \beta_2) + \frac{\beta_1 - \beta_2}{2}$$
 (D) $k_1 \alpha_1 + k_2 (\beta_1 - \beta_2) + \frac{\beta_1 + \beta_2}{2}$

(D)
$$k_1 \alpha_1 + k_2 (\beta_1 - \beta_2) + \frac{\beta_1 + \beta_2}{2}$$

- 4. 下列矩阵中与 $\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 3 \end{bmatrix}$ 相似的矩阵是(D)
 - (A) $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (B) $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 2 & 3 \end{bmatrix}$ (C) $\begin{bmatrix} 0 & 2 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 3 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

5. 设A 为实对称矩阵,则与A 合同的矩阵是(

- (A) A E

- (B)A + E (C) $A^3 A$ (D) $A^3 + A$

分 Ξ (8分) 已知平面 π_1 : x-y+z=2 和平面 π_2 : x+y-2z=0 相交于直线 L ,

(1) 求直线 L 的点向式方程。(2) 求过点 P(1,1,3) 和直线 L 的平面的方程。

分 四 (8分) 已知向量组 $\alpha_1 = (1,-1,0,1)^T$, $\alpha_2 = (2,0,1,1)^T$, $\alpha_3 = (3,1,2,1)^T$,

 $\alpha_4 = (1,1,0,1)^T$, $\alpha_5 = (1,-1,-1,k)^T$ 的秩为3,(1)求k.(2)求该向量组的 一个极大无关组,并将其余向量用该极大无关组线性表示。

得分
五(8分)设
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 3 \end{pmatrix}$$
, $\mathbf{ABA}^{-1} = \mathbf{E} + \mathbf{BA}^{-1}$, 求 $(\mathbf{A} - \mathbf{E})^{-1}$ 及 \mathbf{B} .

得分六(10分)设
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & c-1 & 0 \\ c & 1 & 2 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ m \end{bmatrix}$$
,方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有无穷多个解,

(1)求c,m. (2)求方程组Ax = b的通解。

得分 七 (12分)设
$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
, (1) 求正交矩阵 \mathbf{Q} 和对角矩阵 $\mathbf{\Lambda}$, 使 $\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \mathbf{\Lambda}$.

(2) 在空间直角坐标系中,方程 $2x^2 - 2y^2 + 2z^2 + 2xz = 1$ 表示什么曲面?

得 分

分 八(6分)设A为三阶方阵, $\alpha_1,\alpha_2,\alpha_3$ 为三元非零列向量, $A\alpha_1=0,A\alpha_2=\alpha_2,$

 $A\alpha_3=2\alpha_3$, $\beta_1=\alpha_1+\alpha_2$, $\beta_2=\alpha_2+\alpha_3$, $\beta_3=\alpha_1+2\alpha_3$,证明: 向量组 β_1 , β_2 , β_3 线性无关。

- /*