ESO 208A: Computational Methods in Engineering

Tutorial 7

Orthogonal basis functions

1. (a) Estimate a quadratic polynomial approximation of the following function by using Legendre polynomials as the basis functions.

$$f(x) = \frac{1}{1+x^2}; x \in (-1,1)$$

Legendre Polynomials

$$P_{0}(x) = 1, P_{1}(x) = x, P_{n+1}(x) = \frac{2n+1}{n+1}xP_{n}(x) - \frac{n}{n+1}P_{n-1}(x); \langle P_{n}, P_{j} \rangle = \begin{cases} 0 & \text{if } n \neq j \\ \frac{2}{2n+1} & \text{if } n = j \end{cases}$$

- (b) Perform the second order Taylor series approximation of f(x) at x = 0.
- (c) Estimate the true relative error in estimating f(x) by the above two approximations at x = -0.9, -0.5, 0, and 0.5.

Interpolation

2. For the following data, interpolate the value of function f(x) at x = 0.275 by (a) Lagrange polynomials and (b) Newton's divided difference. Perform interpolation using first, second and third order polynomials.

x	f(x)
0.1	0.99010
0.2	0.96154
0.3	0.91743
0.4	0.86207
0.5	0.80000

If the actual function is $f(x) = \frac{1}{1+x^2}$, estimate the true relative error in interpolation by the different order polynomials.