Университет ИТМО Мегафакультет компьютерных технологий и управления Факультет программной инженерии и компьютерной техники

ЛАБОРАТОРНАЯ РАБОТА №5 ИНТЕРПОЛЯЦИЯ ФУНКЦИИ Вариант №10

Группа: Р3211

Студент: Орчиков Даниил Валерьевич

Преподаватель: Малышева Татьяна Алексеевна

Оглавление

Цель работы	2
Вычислительная реализация задачи:	2
Рабочие формулы	2
Решение	3
Конечные разности:	3
Интерполяционная формула Ньютона	3
Интерполяционная формула Гаусса	4
Программная реализация задачи	4
Листинг программы	4
Примеры и результаты работы программы	7
Пример 1	7
Пример 2	8
Пример 3	8
Вывод	8

Цель работы

Решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

Вычислительная реализация задачи:

Рабочие формулы

Конечные разности

- Первого порядка $\Delta y_i = y_{i+1} y_i$ Второго порядка $\Delta^2 y_i = \Delta y_{i+1} \Delta y_i$
- k-го порядка $\Delta^k y_i = \Delta^{k-1} y_{i+1} \Delta^{k-1} y_i$

Первая интерполяционная формула Ньютона

$$t = \frac{x - x_i}{h}, \qquad i = \left[\frac{x - a}{h}\right]$$

$$N_n(x) = y_i + t\Delta y_i + \frac{t(t - 1)}{2!}\Delta^2 y_i + \dots + \frac{t(t - 1)\dots(t - n + 1)}{n!}\Delta^n y_i$$

Вторая интерполяционная формула Ньютона

$$t = \frac{x - x_i}{h}, \qquad i = \left[\frac{x - a}{h}\right] + 1$$

$$N_n(x) = y_i + t\Delta y_{i-1} + \frac{t(t+1)}{2!}\Delta^2 y_{i-2} + \dots + \frac{t(t+1)\dots(t+n-1)}{n!}\Delta^n y_0$$

Интерполяционные формулы Гаусса

$$t = \frac{x - a}{h}$$

Первая интерполяционная формула Гаусса (x > a)

$$\begin{split} P_n(x) &= y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-1} + \frac{(t+1)t(t-1)(t-2)}{4!}\Delta^4 y_{-2} \\ &\quad + \frac{(t+2)(t+1)t(t-1)(t-2)}{5!}\Delta^5 y_{-2} + \dots + \frac{(t+n-1)\dots(t-n+1)}{(2n-1)!}\Delta^{2n-1} y_{-(n-1)} \\ &\quad + \frac{(t+n-1)\dots(t-n)}{(2n)!}\Delta^{2n} y_{-n} \end{split}$$

Вторая интерполяционная формула Гаусса (x < a)

$$\begin{split} P_n(x) &= y_0 + t\Delta y_{-1} + \frac{t(t+1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-2} + \frac{(t+1)(t+1)t(t-1)}{4!}\Delta^4 y_{-2} + \cdots \\ &\quad + \frac{(t+n-1)\dots(t-n+1)}{(2n-1)!}\Delta^{2n-1} y_{-n} + \frac{(t+n)(t+n-1)\dots(t-n+1)}{(2n)!}\Delta^{2n} y_{-n} \end{split}$$

Решение

X	y
2,10	3,7578
2,15	4,1861
2,20	4,9218
2,25	5,3487
2,30	5,9275
2,35	6,4193
2,40	7,0839

 $X_1 = 2.355$, $X_2 = 2.254$, a = 2.25

Конечные разности:

	x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$	$\Delta^5 y_i$	$\Delta^6 y_i$
0	2.1	3.7578	0.4283	0.3074	- 0.6162	1.0769	- 1.7765	2.9748
1	2.15	4.1861	0.7357	- 0.3088	0.4607	- 0.6996	1.1983	
2	2.2	4.9218	0.4269	0.1519	- 0.2389	0.4987		
3	2.25	5.3487	0.5788	-0.087	0.2598			
4	2.3	5.9275	0.4918	0.1728				
5	2.35	6.4193	0.6646					
6	2.4	7.0839						

Интерполяционная формула Ньютона

Используем вторую формулу, так как X_1 смещен относительно середины отрезка вправо

$$i = \left[\frac{2.355 - 2.1}{0.05}\right] + 1 = 6$$
$$t = \frac{2.355 - 2.4}{0.05} = -0.9$$

$$N_7(x) = 7.0839 - 0.9 * 0.6646 + \frac{-0.9 * 0.1}{2} 0.1728 + \frac{-0.9 * 0.1 * 1.1}{6} + \frac{-0.9 * 0.1 * 1.1 * 2.1}{24}$$

$$* 0.4987 + \frac{-0.9 * 0.1 * 1.1 * 2.1 * 3.1}{120} * 1.1983 + \frac{-0.9 * 0.1 * 1.1 * 2.1 * 3.1 * 4.1}{720}$$

$$* 2.9748 = 6.4431$$

Интерполяционная формула Гаусса

	x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$	$\Delta^5 y_i$	$\Delta^6 y_i$
-3	2.1	3.7578	0.4283	0.3074	- 0.6162	1.0769	- 1.7765	2.9748
-2	2.15	4.1861	0.7357	- 0.3088	0.4607	- 0.6996	1.1983	
-1	2.2	4.9218	0.4269	0.1519	- 0.2389	0.4987		
0	2.25	5.3487	0.5788	-0.087	0.2598			
1	2.3	5.9275	0.4918	0.1728				
2	2.35	6.4193	0.6646					
3	2.4	7.0839						

$$t = \frac{2.254 - 2.25}{0.05} = 0.08$$

Используем первую формулу, так как x > a

$$P_{7}(x) = 5.3487 + 0.08 * 0.5788 + \frac{0.08(0.08 - 1)}{2} * 0.1519 + \frac{(0.08 + 1)0.08(0.08 - 1)}{6} * (-0.2389)$$

$$+ \frac{(0.08 + 1)0.08(0.08 - 1)(0.08 - 2)}{24} * (-0.6996)$$

$$+ \frac{(0.08 + 2)(0.08 + 1)0.08(0.08 - 1)(0.08 - 2)}{120} * 1.1983$$

$$+ \frac{(0.08 + 2)(0.08 + 1)0.08(0.08 - 1)(0.08 - 2)(0.08 - 3)}{720} * 2.9748 = \frac{5.3875}{120}$$

Программная реализация задачи

Листинг программы

Представлен только код, непосредственно выполняющий вычисления

Весь код можно посмотреть тут (GitHub)

```
function Lagrange(x) {
  let Ln = 0
  let q = []
  for (let i = 0; i < XY.length; i++) {
    let li = XY[i][1]
    q.push(XY[i][1])
    for (let j = 0; j < XY.length; j++)
        if (i!==j) {
            li *= (x - XY[j][0]) / (XY[i][0] - XY[j][0])
            q[q.length - 1] += `(x - ${XY[j][0]}) / (${XY[i][0]} - ${XY[j][0]})`
        }
        Ln += li</pre>
```

```
calculator.setExpression({id: 'graph4', latex: q.join("+")})
 return Ln
function separated_differences(x) {
 let f = []
 f.push([])
 for (let i = 0; i < XY.length; i++)
   f[0].push(XY[i][1])
 for (let i = 1; i < XY.length; i++) {
   let last = f[f.length - 1]
   let current = []
   for (let k = 0; k < last.length - 1; k++)
      current.push((last[k+1] - last[k]) / (XY[i+k][0] - XY[k][0]))
   f.push(current)
 let N = f[0][0]
 let q = [getting_rid_of_scientific_notation_no_arr(f[0][0])]
 for (let k = 1; k < f.length; k++) {
   \overline{\text{let n}} = f[k][0]
   q.push(`(${getting_rid_of_scientific_notation_no_arr(f[k][0])})`)
   for (let j = 0; j < k; j++) {
      n *= (x - XY[j][0])
      q[q.length - 1] += (x-(\{XY[j][0]\}))
   N += n
 calculator.setExpression({id: 'graph3', latex: q.join("+")})
 return N
function finite_differences(x) {
 let f = []
 f.push([])
 for (let i = 0; i < XY.length; i++)
   f[0].push(XY[i][1])
 for (let i = 1; i < XY.length; i++) {
   let last = f[f.length - 1]
   let current = []
   for (let k = 0; k < last.length - 1; k++)
     current.push((last[k + 1] - last[k]))
   f.push(current)
   let table_h = document.querySelector(`#finite_differences thead`)
   let table_b = document.querySelector(`#finite_differences tbody`)
   let t_h = "   xi   yi  "
   for (let j = 1; j < XY.length; j++)
     t_h = \text{$\d}_{j}yi  
   t_h += "
   let t_b = "
   for (let i = 0; i < XY.length; i++) {
      t_b += \\{i\}\{XY[i][0]\}
      for (let j = 0; j < f[i].length; j++) {
       t_b += ""
   table_h.innerHTML = t_h
   table_b.innerHTML = t_b
 XY.forEach(xy => {
   mn = Math.min(mn, xy[0])
   mx = Math.max(mx, xy[0])
```

```
let h = XY[1][0] - XY[0][0]
 let Nn = 0
 let Q = []
 if ((mn + mx) / 2 > x) {
    let i = Math.floor((x - mn) / h)
   let t = (x - XY[i][0]) / h
    let t_str = `(x-${getting_rid_of_scientific_notation_no_arr(XY[i][0])})/${h}`
    for (let j = 0; j < f.length - i; j++) {
      let s = f[j][i] / factorial(j)
      console.log(f[j][i])
      let q1 = `${getting_rid_of_scientific_notation_no_arr(f[j][i])}/${getting_rid_of_scientific_notation_no_arr(factorial(j))}
      for (let q = 0; q < j; q++) {
        s *= (t - q)
        q1 += *(\{t_str\} - \{q\})
      Nn += s
      Q.push(q1)
    calculator.setExpression({id: 'graph5', latex: Q.join("+")})
    return [Nn, 1]
 } else {
    let i = Math.floor((x - mn) / h) + 1
    let t = (x - XY[i][0]) / h
   let t_str = `(x-${getting_rid_of_scientific_notation_no_arr(XY[i][0])})/${h}`
    for (let j = 0; j \le i; j++) {
      let s = f[j][i - j] / factorial(j)
      console.log(f[j][i - j])
      let q1 = `${getting_rid_of_scientific_notation_no_arr(f[j][i-j])}/${getting_rid_of_scientific_notation_no_arr(factorial(j))}`
      for (let q = 0; q < j; q++) {
        s = (t + q)
        q1 + = *(\$\{t_str\} + \$\{q\})
      Nn += s
      Q.push(q1)
    calculator.setExpression({id: 'graph5', latex: Q.join("+")})
    return [Nn, 2]
function getting_rid_of_scientific_notation_no_arr(x) {
 let w = x.toString()
 let parts = w.split('e')
 if (parts.length > 1)
   return `${parts[0]}*10^{${parts[1]}}`
 return `${parts[0]}
function factorial(n) {
 if (n \le 0)
   return 1
 return n * factorial(n - 1)
```

Примеры и результаты работы программы

Пример 1

Миогочлен Лагранжа: 1.041076 Формула Ньютона для интерполирования назад: 1.039186 Точное значение: 1.0410757253368614

	xi	yi	∆1yi	∆2yi	∆3yi	∆4yi	∆5yi	∆6yi	∆7yi	∆8yi	∆9yi	∆10yi	∆11yi	△12yi	∆13yi	∆14yi	∆15yi	∆16yi	∆17yi	∆18yi	∆19yi
0	-10	2.544	-1.0035	0.4638	0.5448	-1.0181	0.4778	0.5454	-1.0328	0.492	0.5459	-1.0477	0.5065	0.5463	-1.0627	0.5213	0.5465	-1.0779	0.5364	0.5466	-1.0932
1	-8.947368421052632	1.5405	-0.5397	1.0086	-0.4733	-0.5403	1.0232	-0.4874	-0.5408	1.0379	-0.5018	-0.5412	1.0528	-0.5165	-0.5414	1.0678	-0.5314	-0.5415	1.083	-0.5466	
2	-7.894736842105264	1.0008	0.4689	0.5353	-1.0136	0.4829	0.5358	-1.0282	0.4971	0.5361	-1.043	0.5116	0.5364	-1.0579	0.5264	0.5365	-1.0729	0.5415	0.5364		
3	-6.842105263157895	1.4697	1.0042	-0.4784	-0.5308	1.0186	-0.4925	-0.5311	1.0332	-0.5069	-0.5313	1.048	-0.5215	-0.5314	1.0629	-0.5365	-0.5314	1.0779			
4	-5.7894736842105265	2.4739	0.5258	-1.0091	0.4879	0.5262	-1.0236	0.5021	0.5264	-1.0382	0.5166	0.5265	-1.053	0.5314	0.5264	-1.0678	0.5465				
5	-4.736842105263158	2.9997	-0.4833	-0.5212	1.014	-0.4974	-0.5215	1.0285	-0.5118	-0.5216	1.0431	-0.5265	-0.5215	1.0579	-0.5414	-0.5213					
6	-3.6842105263157894	2.5164	-1.0046	0.4928	0.5166	-1.0189	0.507	0.5167	-1.0334	0.5216	0.5166	-1.048	0.5364	0.5165	-1.0627						
7	-2.6315789473684212	1.5118	-0.5118	1.0094	-0.5023	-0.5119	1.0237	-0.5167	-0.5118	1.0382	-0.5313	-0.5116	1.0528	-0.5463							
8	-1.578947368421053	1	0.4976	0.5071	-1.0142	0.5119	0.507	-1.0285	0.5264	0.5069	-1.043	0.5412	0.5065								
9	-0.526315789473685	1.4976	1.0047	-0.5071	-0.5023	1.0189	-0.5215	-0.5021	1.0332	-0.5361	-0.5018	1.0477									
10	0.5263157894736832	2.5024	0.4976	-1.0094	0.5166	0.4974	-1.0236	0.5311	0.4971	-1.0379	0.5459										
11	1.5789473684210513	3	-0.5118	-0.4928	1.014	-0.5262	-0.4925	1.0282	-0.5408	-0.492											
12	2.6315789473684212	2.4882	-1.0046	0.5212	0.4879	-1.0186	0.5358	0.4874	-1.0328												
13	3.6842105263157894	1.4836	-0.4833	1.0091	-0.5308	-0.4829	1.0232	-0.5454													
14	4.7368421052631575	1.0003	0.5258	0.4784	-1.0136	0.5403	0.4778														
15	5.789473684210526	1.5261	1.0042	-0.5353	-0.4733	1.0181															
16	6.842105263157894	2.5303	0.4689	-1.0086	0.5448																
17	7.894736842105264	2.9992	-0.5397	-0.4638		•															
18	8.94736842105263	2.4595	-1.0035		•																
19	10	1.456																			

Пример 2

Многочлен Лагранжа: -0.958939 Многочлен Ньютона с разделенными разностями: -0.958939 Точное значение: -0.9589242746631385

Пример 3

Вывод

Во время выполнения данной лабораторной работы я познакомился с разными методами интерполяции и реализовал некоторые из них на языке JavaScript.