基于异质网络分析方法的关键长非编码RNA的计算与识别

汇报人: 张颖颖

指导老师: 中南民族大学 朱剑林老师

天津大学 杜朴风老师

2020.5.29

E CONTENTS

一 研究背景

2 研究方法与思路

3 主要难点和结论

4. 总结

一、研究背景

随着人类基因组计划的完成,人们发现人类基因组中仅有1.5%负责编码蛋白质基因,而剩下占98.5%比例的DNA序列也会在某个时刻进行转录,将会产生大量非编码RNA(ncRNA),这表明ncRNA在复杂生物体中可能起着重要的调控作用。

长非编码RNA(Long Noncoding RNA, IncRNA)是一类长度大于200个核苷酸且几乎没有蛋白质编码能力的非编码RNA。

关键长非编码RNA是指在众多长非编码 RNA中功能非常重要的长非编码RNA。 长非 编码 RNA IncRNA的识别预测

序列特征的预测及结构预测

功能注释

与其他生物分子或疾病的关联预测

二、研究方法与思路

构建IncRNA-protein异质信息网络

- 从NPIter v4数据库中下载了IncRNA-protein关联数据,对数据进行筛选,预处理等操作
- 基于已知的关联关系,构建IncRNA-protein异质信息网络

HeteSim算法计算IncRNA之间的关联度

- 选择IncRNA-protein-IncRNA (LPL) 作为元路径
- 将关联关系转化IncRNA-protein的 0/1邻接矩阵
- 将0/1矩阵分别按照行向量和列向量 进行标准化得到2个转移概率矩阵
- 2个矩阵相乘,对结果进行<mark>标准化处</mark>理,将最后的值化为【0,1】之间
- 得到IncRNA-IncRNA关联得分矩阵

二、研究方法与思路

构建IncRNA-IncRNA网络,用网络节点中心性识别关键IncRNA

- ●用IncRNA-IncRNA关联得 分矩阵构建IncRNA-IncRNA网络
- ●用<mark>网络节点中心性</mark>识别网络 中的关键IncRNA

实验结果评估

- 采用GIC分数作为参照,验证网络节点中心性识别关键IncRNA的有效性
- 各个中心性计算得出的值按照从大到小的顺序排列, 分别取Top100, Top200, Top300,Top400为关键 IncRNA
- 分别取GIC分数0.45, 0.55,0.65,0.75,0.85作为阈值 来区别关键IncRNA和非关键IncRNA(如值≥0.45, 为关键IncRNA; 值<0.45, 为非关键IncRNA)
- 采用灵敏度、特异性、阳性预测值、阴性预测值、F-measure、准确性以及ROC曲线来评估实验结果

三、主要难点与结论 难点

A

无直接的IncRNA-IncRNA关联 信息

使用IncRNA-protein数据集,构建 IncRNA-protein异质信息网络,采用 HeteSim算法,以IncRNA-protein-IncRNA为元路径,计算IncRNA与其他 IncRNA之间的关联度,得到关联度矩阵

如何识别关键IncRNA

构建IncRNA-IncRNA虚拟网络,在网络中认为该<mark>节点越重要则越有可能是关键IncRNA</mark>,则用网络节点中心性来识别关键IncRNA。

B

C

各个网络节点中心性计算出来的 值如何设定阈值?

由于使用网络节点中心性计算出来的是一个具体的值,并没有区分关键IncRNA。 所以将这些值按照从大到小的顺序排列, 分别取排名Top100, Top200, Top300, Top400作为识别出来的关键IncRNA

无关键IncRNA数据库

因为没有准确的关键IncRNA库来对结果进行验证,故采用GIC分数进行代替。GIC分数可以根据IncRNA的序列信息计算出IncRNA的重要性。分数越高,重要性越高,则越有可能是关键IncRNA。

三、主要难点与结论 结论1

2、GIC分数分别取0.45, 0.55, 0.65, 0.75, 0.85作为阈值, 在各个中心性的阈值取Top100, 分别计算各个中心性的灵敏性、特异性、阳性预测值、阴性预测值、F-measure和准确值, 并进行比较

结果:从表5-1可以看出,除了阈值为 0.85时,CC的各项指标的值要高于其 他节点中心性。其他情况下,BC的各 项指标均比其他中心性要高。由此可见, BC的识别效果要更好一些。

表 5-1:各个节点中心性的灵敏性、	特异性、	阳性预测值、	阴性预测值、	F-measure 和准确性值情况

阈值 心	中	Sensitivity (SN)	Specificity (SP)	Positive	Negative	F-	Accurac
	心			Predictive	Predictive	measure	y
	性			Value(PPV)	Value(NPV)	(F)	(ACC)
	CC	0.102	0.911	0.23	0.795	0.142	0.743
	BC	0.142	0.921	0.32	0.803	0.196	0.759
0.45	DC	0.089	0.907	0.2	0.792	0.123	0.738
	IC	0.089	0.907	0.2	0.792	0.123	0.738
	EC	0.097	0.909	0.22	0.793	0.135	0.741
0.55	CC	0.135	0.913	0.15	0.903	0.142	0.833
	BC	0.196	0.92	0.22	0.909	0.208	0.845
	DC	0.108	0.91	0.12	0.9	0.114	0.828
	IC	0.108	0.91	0.12	0.9	0.114	0.828
	EC	0.108	0.91	0.12	0.9	0.114	0.828
0.65	CC	0.091	0.908	0.04	0.959	0.056	0.875
	BC	0.2	0.913	0.09	0.964	0.124	0.883
	DC	0.136	0.91	0.06	0.961	0.083	0.879
	IC	0.136	0.91	0.06	0.961	0.083	0.879
	EC	0.136	0.91	0.06	0.961	0.083	0.879
0.75	CC	0.176	0.909	0.03	0.986	0.051	0.898
	BC	0.278	0.911	0.05	0.987	0.085	0.901
	DC	0.176	0.909	0.03	0.986	0.051	0.898
	IC	0.176	0.909	0.03	0.986	0.051	0.898
	EC	0.176	0.909	0.03	0.986	0.051	0.898
0.85	CC	0.222	0.909	0.02	0.993	0.037	0.903
	BC	0.10	0.908	0.01	0.991	0.018	0.901
	DC	0.111	0.908	0.01	0.992	0.018	0.902
	IC	0.111	0.908	0.01	0.992	0.018	0.902
	EC	0.111	0.908	0.01	0.992	0.018	0.902

三、主要难点与结论 结论2

3、由各个节点中心性的AUC值对比可以看出,在阈值为0.45、0.55、0.65、0.75和0.85时,BC的AUC值均最大,分别为0.5440、0.5491、0.5742、0.6674和0.5831,所以还是BC的识别效果相对较好,其中GIC分数阈值取0.75时,BC的识别效果最佳。

四、总结 不足之处

数据集

元路径

识别关键IncRNA的算法

无官方的关键IncRNA数据集

本文数据集只采用了IncRNAprotein关联数据,过于单一。可加入protein-protein数据集,共同构建网络。

> 本文采用IncRNA-protein-IncRNA 作为元路径,也可加入proteinprotein关联数据,使用IncRNAprotein-protein-IncRNA作为元路径

本文采用<mark>网络节点中心性</mark>的方式识别关键IncRNA,也可采用别的方式来识别计算。

本实验无真实准确的关键 IncRNA数据库来判断识别结果 的准确性,只能采用GIC分数作 为代替,这也是导致实验效果不 好的原因之一。

四、总结 创新点

3 采用HeteSim算法在IncRNA-protein异质信息网络中计算得出IncRNA-IncRNA的间接关联关系

基于复杂网络的拓扑结构,采用网络节点中心性的方法在<mark>加权</mark>IncRNA-IncRNA网络中识别关键IncRNA

3 采用GIC分数作为是否为关键IncRNA的参照,弥补无关键IncRNA数据库的缺憾

基于异质网络分析方法的关键长非编码RNA的计算与识别

谢谢观赏

THANK YOU FOR WATCHING

汇报人:张颖颖

指导老师:中南民族大学 朱剑林老师 天津大学 杜朴风老师 2020.5.29