Ciąg liczb

Problem ID: sequence

Ciąg dodatnich liczb całkowitych (x_1,\ldots,x_m) jest dobry jeśli $x_1=1$ oraz dla każdego $1< j\leq m$ mamy albo $x_j=x_{j-1}+1$ albo $x_j=x_k\cdot x_l$ dla pewnych k oraz l spełniających $0< k\leq l< j$. Na przykład, oba ciągi (1,1) oraz (1,2) są dobre, ale ciąg (1,3) nie jest dobry. Dla danych n liczb całkowitych w_1,\ldots,w_n definiujemy wagg ciągu liczb całkowitych (x_1,\ldots,x_m) spełniającego $1\leq x_j\leq n$ dla każdego $1\leq j\leq m$ jako

$$w_{x_1} + \cdots + w_{x_m}$$
.

Na przykład, mając wagi $w_1=10, w_2=42, w_3=1$, wagą ciągu (1,1) jest 20, a wagą ciągu (1,3) jest 11. Dla $1 \le v \le n$ definiujemy s_v jako najmniejszą możliwą wagę dobrego ciągu zawierającego wartość v.

Twoim zadaniem jest wyznaczenie wartości s_1, \ldots, s_n .

Wejście

W pierwszym wierszu wejścia znajduje się liczba całkowita n, będąca liczbą wag. Kolejne n wierszy zawierają liczby całkowite wag w_1, \ldots, w_n .

Wyjście

Wypisz n wierszy zawieraje kolejno: s_1, \ldots, s_n .

Ograniczenia i punktacja

Zawsze jest spełnione $1 \le n \le 30\,000$ oraz $1 \le w_i \le 10^6$ dla każdego $1 \le i \le n$.

Twoje rozwiązanie zostanie przetestowane na zestawie grup testowych, z których każda warta jest pewną liczbę punktów. Każda grupa testowa zawiera zestaw przypadków testowych. Aby uzyskać punkty za grupę testową musisz rozwiązać wszystkie przypadki testowe w tej grupie. Twój ostateczny wynik będzie maksymalnym wynikiem pojedynczego zgłoszenia.

Grupa	Punkty	Ograniczenia
1	11	$n \le 10$
2	10	$n \le 300, w_1 = \dots = w_n = 1$
3	10	$n \le 300, w_1 = \dots = w_n$
4	9	$n \le 1400, w_1 = \dots = w_n = 1$
5	45	$n \le 5000$
6	15	Brak dodatkowych ograniczeń

Sample Input 1

Sample Output 1

3	10
10	52
42	53
1	