Sequence and recurrence

Flydexo

March 4, 2023

Contents

1	Reasoning by recurrence	1
2	Limit of a sequence	2
3	Property of limits	2
4	Limit and comparison	4
5	Geometrical sequences and monotone sequences	4

1 Reasoning by recurrence

Theorem: P(n) a property, we suppose that:

- P(0) is true
- if P(n) is true so P(n+1) is true

So for every n, P(n) is true

<u>Theorem</u>: Reasoning by recurrence from a certain rank $n_0 \in \mathbb{N}, n \ge n_0$, we suppose that:

- $P(n_0)$ is true
- if $n \ge n_0$, P(n) is true so P(n+1) is true

So for every $n \ge n_0$, P(n) is true

Steps to demonstrate by recurrence with $n \ge n_0$

- 1. Initialization, verification of the truth of the property for $n = n_0$
- 2. Heredity, we suppose P(n) is true, demonstrate that P(n+1) is true
- 3. Conclusion, we conclude that P(n) is true for all $n \ge n_0$

Property: Inequality of Bernoulli

$$a \in \mathbb{R}^*, n \in \mathbb{N}, (1+a)^n \ge 1 + na$$

2 Limit of a sequence

<u>Definition</u>: Sequence diverging to infinity (u_n) tends to $+\infty$ when n tends to $+\infty$, if for every real: A > 0 the interval $]A; +\infty[$ includes all the terms of the sequence from a certain rank. We say that (u_n) diverges

$$\lim_{n \to +\infty} u_n = +\infty$$

 (u_n) tends to $-\infty$ when n tends to $+\infty$, if for every real A>0 the interval $]-\infty;-A[$ includes all the terms of the sequence from a certain rank. (u_n) diverges.

$$\lim_{n \to +\infty} u_n = -\infty$$

<u>Definition</u>: Sequence converging a real number (u_n) tends to the real l when n tends to $+\infty$ if all the opened interval including l includes all the terms of the sequence from a certain rank. (u_n) converges

$$\lim_{n \to +\infty} u_n = l$$

Theorem: Unicity of the limit If a limit exists, it is unique.

3 Property of limits

<u>Property:</u> Limits of the reference sequences \sqrt{n} , n and n^k where $k \in \mathbb{R}^*$

$$\lim_{n\to +\infty} = +\infty$$

$$\frac{1}{\sqrt{n}}, \frac{1}{n}, \frac{1}{n^k}$$
 have

$$\lim_{n\to +\infty} = 0$$

Property: Sum and products of limits

(u _n) a pour limite	(v _n) a pour limite	$(u_n + v_n)$ a pour limite	$(u_n \times v_n)$ a pour limite
ℓ	ℓ'	ℓ + ℓ'	$\ell \times \ell'$
ℓ	+∞	+∞	$+\infty$ si $\ell > 0$ $-\infty$ si $\ell < 0$ indéterminée si $\ell = 0$
ℓ	-∞	-∞	$-\infty$ si $\ell > 0$ $+\infty$ si $\ell < 0$ indéterminée si $\ell = 0$
+∞	+∞	+∞	+∞
+∞	-∞	indéterminée	-∞
-∞	-∞	-∞	+∞
-∞	+∞	indéterminée	-∞

Property: Quotient of limits

(u _n) a pour limite	(v _n) a pour limite	$\left(\frac{u_n}{v_n}\right)$ a pour limite	
ℓ	<i>ℓ′</i> ≠ 0	$\frac{\ell}{\ell'}$	
ℓ	+∞ ou -∞	0	
0 -1 0	0+	$+\infty$ si $\ell > 0$ $-\infty$ si $\ell < 0$	
ℓ ≠ 0	0-	$-\infty$ si $\ell > 0$ +∞ si $\ell < 0$	
+∞	ℓ′	$+\infty$ si $\ell' > 0$ ou $\ell' = 0^+$ $-\infty$ si $\ell' < 0$ ou $\ell' = 0^-$	
-∞	ℓ′	$-\infty$ si $\ell' > 0$ ou $\ell' = 0^+$ + ∞ si $\ell' < 0$ ou $\ell' = 0^-$	
±∞	±∞	indéterminée	
0	0	indéterminée	

4 Limit and comparison

<u>Theorem</u>: Theorem of comparison (u_n) and (v_n) , $n \ge n_0$, $u_n \le v_n$

- If $\lim_{n\to+\infty} u_n = +\infty$ then $\lim_{n\to+\infty} v_n = +\infty$
- If $\lim_{n\to+\infty} v_n = -\infty$ then $\lim_{n\to+\infty} u_n = -\infty$

<u>Theorem</u>: Theorem of gendarmes $(u_n), (v_n), (w_n), l$ a real.

We suppose that:

- n_0 exists, such as, $n \ge n_0, v_n \le u_n \le w_n$
- $\lim_{n\to+\infty} v_n = \lim_{n\to+\infty} w_n = l$

So the sequence (u_n) converges and $\lim_{n\to+\infty} u_n = l$

<u>Property:</u> Inequalities and limits Let (u_n) and (v_n) two sequences converging. We suppose n_0 , such as $n \geq n_0$, $u_n \leq v_n$. So $\lim_{n \to +\infty} u_n \leq \lim_{n \to +\infty} v_n$

5 Geometrical sequences and monotone sequences

Property: Limit of a geometrical sequence Let q a real.

- If q > 1, so $\lim_{n \to +\infty} q^n = +\infty$
- If q = 1, so $\lim_{n \to +\infty} q^n = 1$
- If -1 < q < 1, so $\lim_{n \to +\infty} q^n = 0$
- If $q \leq -1$, so the sequence (q^n) has no limit

<u>Definition</u>: Increased, understated, bounded sequence Let (u_n) be a sequence defined from rank k.

- We say that (u_n) is increased if a real M exists such as for every integer, $n \geq k, u_n \leq M$
- We say that (u_n) is understated if a real m exists such as for every integer, $n \ge k, u_n \ge m$
- We say that (u_n) is bounded if (u_n) is understated and increased.

Property: Convergence of a monotone sequence

- 1. Every increasing increased sequence converges
- 2. Every increasing non-increased sequence diverges to $+\infty$
- 3. Every decreasing understated sequence converges
- 4. Every decreasing non-understated sequence diverges to $-\infty$