One-particle systems

Ground state energy. If H is bounded from below, i.e. if $\exists C \in \mathbb{R}$ s.t. $\mathcal{E}(\psi) := \langle \psi, H\psi \rangle \geqslant C \ \forall \psi$, then we define the ground state energy $E_0 := \inf \{\mathcal{E}_{\psi}, \|\psi\| = 1\}$. If there is a minimizer ψ_0 of \mathcal{E} , then it is called ground state of the system.

Stability of the first kind. The system is called *stable*, if $E_0 > -\infty$. If $\exists K > 0$ s.t. $\int V_- |\psi|^2 \le ||\nabla \psi||_2^2 + K||\psi||_2^2$, then $\mathcal{E}(\psi) \ge ||\nabla \psi||_2^2 - \int V_- ||\psi||_2^2 \ge -K||\psi||_2^2$, i.e. this condition on V_- is sufficient for the system being stable.

Condition on V using Sobolev's inequality. Consider $H=-\Delta+V$ and assume $V_-=V_1+V_2$ where $V_1\in L^{3/2},\ V_2\in L^\infty.$ By Sobolev: $\|\psi\|_6\leqslant C\|\nabla\psi\|_2$. We can assume that $\|V_1\|_{3/2}\leqslant C^{-2}$ (if this does not hold, just cut-off $V_1=V_1\mathbb{1}_{V_1\leqslant M}+V_1\mathbb{1}_{V_1\geqslant M}$ and redefine V_2 adding the first term). Then

$$\int V_1 |\psi|^2 \leqslant \|\psi\|_6^2 \|V_1\|_{3/2} \leqslant \|\nabla \psi\|_2^2$$

and

$$\int V_2 |\psi|^2 \leqslant ||V_2||_{\infty} ||\psi||_2^2$$

Thus the above bound on $\int V_- |\psi|^2$ holds with $K = ||V_2||_\infty$, so H is stable, if $V \in L^{3/2} + L^\infty$.

Lemma. For $\psi \in M$ and $d \geqslant 2$ we have

$$\int_{\mathbb{R}^d} \frac{|\psi(x)|^2}{|x|} dx \leqslant \|\nabla \psi\| \|\psi\|$$

and equality holds only for $\psi_0(x) \propto e^{-c|x|}$. (For the proof, we can calculate $\langle \psi, [\partial_j, \frac{x_j}{|x|}] \psi \rangle$ for $\psi \in C_0^{\infty}$ in two different ways for: directly and by partial integration, afterwards we use the Schwarz inequality.)

Hardy inequality. For $d \ge 3$ and $\psi \in C_0^{\infty}(\mathbb{R}^d)$

$$\int_{\mathbb{R}^d} \frac{|\psi(x)|^2}{|x|^2} dx \le \frac{4}{(d-2)^2} \|\nabla \psi\|^2$$

(proof as above using the commutator $[\partial_j, \frac{x_j}{|x|^2}]$)

Stability of hydrogen. The ground state energy of hydrogen $E_0 = \inf\{\int |\nabla \psi|^2 - Z\int \frac{|\psi|^2}{|x|} : \psi \in M, \|\psi\| = 1\}$ (where $M = \{\psi : \mathbb{R}^3 \to \mathbb{C} : \|\psi\| < \infty, \|\nabla \psi\| < \infty, \int |\psi|^2/|x| < \infty\}$) is given by $E_0 = -Z^2/4$ and $\psi_0(x) = Z^{3/2}e^{-Z|x|/2}/\sqrt{8\pi}$.

Stability of Many-Particle-Systems

Coulomb energy. Let $\mathbf{R} \in \mathbb{R}^{Kd}$, $\mathbf{Z} = (Z_1, \dots, Z_K)$ with $Z_i > 0$ be given parameters, $V_C(\mathbf{x}) := \sum_{k < l} \frac{1}{|x_l - x_k|} - \sum_{j=1}^{N} \sum_{k=1}^{K} \frac{Z_k}{|x_j - R_k|} + \sum_{k < l} \frac{Z_k Z_l}{|R_k - R_l|}$, then for $\psi \in L^2(\mathbb{R}^{Nd})$ define $\mathcal{E}(\psi) := \sum_{j} \int_{\mathbb{R}^{Nd}} |\nabla_j \psi|^2 + \int_{\mathbb{R}^{Nd}} V_C |\psi|^2$.

Stability. Set $E_0(\mathbf{R}) := \inf\{\mathcal{E}(\psi)|\psi \in M, \|\psi\| = 1\}$, where $M := \{\psi \in L^2(\mathbb{R}^{Nd})|\int |\nabla_j \psi|^2 < \infty, \int \frac{|\psi|^2}{|x_j - R_k|} < \infty\}$. Then $E_0 := \inf_{\mathbf{R}} E_0(\mathbf{R}) > -\infty$.

Stability of 2nd kind. A Coulomb system of K nuclei and N electrons satisfies the *stability of 2nd kind*, if $\exists C_Z$ where $Z = \max Z_k$ s.t. $E_0 \ge -C_Z(N+K)$.

Summary of analysis

Riesz Fischer theorem. Suppose $1 \le p \le \infty$ and (Ω, μ) is a measure space, then

- (i) $(L^p, \|\cdot\|_p)$ is complete.
- (ii) If $||f_n f||_p \to 0$, then $\exists (f_{n_k})_k \subset (f_n)_n$ and $F \in L^p$ s.t. $|f_{n_k}(x)| \leq F(x)$ and $f_{n_k}(x) \to f(x) \ \forall_{\mu} \ x \in \Omega$.

Completeness. The following spaces are complete

- (i) C[0,1] in $\|\cdot\|_{\infty}$
- (ii) L^{∞} in $\|\cdot\|_{\infty}$
- (iii) L^p in $\|\cdot\|_p$
- (iv) H^1 is complete in $\langle \cdot, \cdot \rangle_{H^1}$.

Denseness. The following spaces are dense

- (i) $C_0^{\infty}(\Omega) \subset L^p(\Omega)$ is dense in $\|\cdot\|_p$ for $p < \infty$.
- (ii) $C_0^{\infty}(\mathbb{R}^d) \subset H^1(\mathbb{R}^d)$ is dense in H^1 -norm.
- (iii) $H^1(\Omega) \subset L^2(\Omega)$ is dense in $\|\cdot\|_2$
- (iv) The completion of C[0,1] in $\|\cdot\|_p$ is $L^p[0,1]$ for $p<\infty$.
- (v) $\{\sum_i c_i \chi_{R_i} | c_i \in \mathbb{C}, R_i \text{ rectangles} \}$ is dense in L^1 .

Inequalities.

- (i) Jensen: Let $J: \mathbb{R} \to \mathbb{R}$ be convex, $\mu(\Omega)$ finite and define for $f \in L^1: \langle f \rangle := \frac{1}{\mu(\Omega)} \int_{\Omega} f d\mu$. Then $\langle J \circ f \rangle \geqslant J(\langle f \rangle)$.
- (ii) Hölder: For $1 \leqslant p, q \leqslant \infty$ s.t. $\frac{1}{p} + \frac{1}{q} = 1$ we have for $f \in L^p$, $g \in L^q$: $|\int fg \, d\mu| \leqslant ||f||_p ||g||_q$.
- (iii) Minkowski: $||f + g||_p \le ||f||_p + ||g||_p$ (for $1 \le p \le \infty$)
- (iv) Generalized Minkowski: $\|\int f(\cdot,y)dy\|_p \leqslant \int \|f(\cdot,y)\|_p dy$.
- (v) Generalized Cauchy-Schwarz: $|\int fg| \leq \frac{1}{2}(\alpha ||f||_2 + \alpha^{-1}||g||_2)$
- (vi) Young: Let $1\leqslant p,q,r\leqslant \infty$ with $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=2$ then for any $f\in L^p(\mathbb{R}^d), g\in L^q(\mathbb{R}^d), h\in L^r(\mathbb{R}^d)$ it holds $|\int_{\mathbb{R}^d}\int_{\mathbb{R}^d}f(x)g(x-y)h(y)\,dxdy|\leqslant \|f\|_p\|g\|_q\|h\|_r.$
- (vii) Application of Young: Let $1\leqslant \frac{1}{p}+\frac{1}{q}\leqslant 2,\ f\in L^p(\mathbb{R}^d),$ $g\in L^q(\mathbb{R}^d),\ 1+\frac{1}{r'}=\frac{1}{p}+\frac{1}{q}.$ Then $f*g=\int f(y)g(\cdot-y)dy$ fulfills $\|f*g\|_{r'}\leqslant \|f\|_p\|g\|_q.$
- (viii) Riesz-Thorin interpolation: Suppose there are exponents $1 \leqslant p_0, q_0, p_1, q_1 \leqslant \infty$ and $T: L^{p_0} \cap L^{p_1} \to L^{q_0} \cap L^{q_1}$ is linear. If $\|T\|_{p_0 \to q_0}, \|T\|_{p_1 \to q_1} < \infty$ then for any $t \in [0, 1], \|T\|_{p_t \to q_t} \leqslant \|T\|_{p_0 \to q_0}^{1-t} \|T\|_{p_1 \to q_1}^t$, where $\frac{1}{p_t} = \frac{1-t}{p_0} + \frac{t}{p_1}$ and $\frac{1}{q_t} = \frac{1-t}{q_0} + \frac{t}{q_1}$.
- (ix) Hausdorff-Young: For $\frac{1}{p} + \frac{1}{q} = 1$, $p \in [1, 2]$: $\|\hat{f}\|_q \leq \|f\|_p$ (this extends the fourier transform to a bounded map from $L^p(\mathbb{R}^d)$ to $L^q(\mathbb{R}^d)$.

The Sobolev space H^1 . We say $f \in L^2(\Omega)$ belongs to $H^1(\Omega)$, if there is a function $g = (g_1, \ldots, g_d) \in L^2(\Omega \to \mathbb{C}^d)$ s.t. g is the distributional/weak gradient of f, i.e. if

$$\int_{\Omega} f \frac{\partial \phi}{\partial x_{i}} = -\int g_{i} \phi \qquad \forall \phi \in C_{0}^{\infty}(\Omega)$$

Then we write $g = \nabla f$ (unique).

- (i) If $f \in C^1(\Omega) \cap L^2(\Omega)$ then $f \in H^1$ and the usual gradient coincides with the distributional one.
- (ii) $H^1(\Omega)$ is a Hilbert space with $\langle f,g\rangle_{H^1}:=\langle f,g\rangle+\langle\nabla f,\nabla g\rangle$
- (iii) $\|\nabla f\|_2 \leq \|f\|_{H^1}$, i.e. ∇ is a bounded linear operator from $H^1(\Omega)$ to $L^2(\Omega)$.
- (iv) Leibniz rule: For $f \in H^1(\Omega)$, $\psi \in C^{\infty}$, then $f\psi \in H^1(\Omega)$ and $\nabla(f\psi) = f\nabla\psi + \psi\nabla f$.
- (v) Chain rule: Let $G: \mathbb{C}^N \to \mathbb{C}$ be differentiable with bounded and continuous derivatives and $u=(u_1,\ldots,u_N)$ with $u_i\in H^1(\Omega)$, then $K:=G\circ u\in H^1(\Omega)$ with the extra assumption that if $|\Omega|=\infty$, then G(0)=0. Furthermore $\partial_j K=\sum_k \partial_k G \partial_j u_k$.
- (vi) Integration by parts: For $\Omega = \mathbb{R}^d$, $u, v \in H^1(\mathbb{R}^d)$ it holds $\int_{\mathbb{R}^d} u \frac{\partial v}{\partial x_j} = -\int_{\mathbb{R}^d} \frac{\partial u}{\partial x_j} v \text{ for } j = 1, \dots, d.$
- (vii) Fourier characterization: Let $f \in L^2(\mathbb{R}^d)$, then $f \in H^1(\mathbb{R}^d) \Leftrightarrow$ the function $k \mapsto |k| \hat{f}(k)$ is in $L^2(\mathbb{R}^d)$. In this case $\widehat{\nabla f}(k) = 2\pi i k \hat{f}(k)$, $||f||_{H^1}^2 = \int (1+4\pi^2 |k|^2) |\hat{f}(k)|^2 dk$.

Sobolev inequalities.

- (i) $\forall f \in H^1(\mathbb{R}^d), d \ge 3: ||f||_{\frac{2d}{d-2}} \le S_d ||\nabla f||_2$
- (ii) $\forall f \in H^1(\mathbb{R}): \|f\|_{\infty}^2 \leqslant \frac{1}{2} \|f\|_{H^1}^2$ and f is Hölder-continuous with exponent 1/2, i.e. $|f(x) f(y)| \leqslant \|f'\|_2 |x y|^{1/2}$ in particular $H^1(\mathbb{R}) \subset C(\mathbb{R})$.
- (iii) $\forall f \in H^1(\mathbb{R}^2), q \in [2, \infty): ||f||_q \leqslant C_q ||f||_{H^1}.$

Variational principle

Domination of the kinetic energy. Let $V_- \in L^{d/2} + L^{\infty}$ for $d \geq 3$, $V_- \in L^{1+\varepsilon} + L^{\infty}$ for d = 2, $V_- \in L^1 + L^{\infty}$ for d = 1, then $\exists C$ depending only on V s.t. $\mathcal{E}(\psi) \geq -C \|\psi\|^2$, i.e. $E_0 > -\infty$, and $\exists D$ s.t.

$$\int |\nabla \psi|^2 \leqslant 2\mathcal{E}(\psi) + D\|\psi\|^2$$

Weak convergence. A sequence $\{f_k\} \subset L^p$ converges weakly to $f \in L^p$, $f_k \rightharpoonup f$, if

$$l(f_k) \to l(f) \quad \forall l \in (L^p)^*$$

i.e. $f_n \to f \Leftrightarrow \forall g \in L^q : \int f_n g \to \int f g$ (q dual to p). Norm conv. implies weak conv. $(|l(f_k) - l(f)| \leq ||l|| ||f_k - f||)$ but not the other way around (osc. to death, walking out to inf., scaling). Properties:

- (i) Weak convergence seperates: $f_k \rightharpoonup f, f_k \rightharpoonup g \Rightarrow f = g$.
- (ii) The norm may drop under the weak limit, i.e. if $f_k \rightharpoonup f$, then $\|f\|_p \leqslant \liminf_k \|f_k\|_p$.
- (iii) Uniform boundedness principle: If $l(\psi_j)$ is a bounded sequence for any bounded linear functional l (especially if ψ_j is weakly convergent), then $\sup_i \|\psi_j\| < \infty$.
- (iv) Mazur theorem: If $f_j \in L^p$ converges weakly to $f \in L^p$, then there is a convex combination of f_j that converges strongly to f, i.e. $\exists c_{jk} \ge 0, 1 \le k \le j$ with $\sum_{k=1}^j c_{jk}$ s.t. $F_j := \sum_{k=1}^j c_{jk} f_k \to f$.

Variational characterization of the L^2 -norm. Since $(L^2)^* = L^2$ and $||f||_2 = ||f^*|| = \sup_{g \in L^2} \{|f^*(g)|/||g||_2\}$ for any $f \in L^2$ and its dual $f^* \in (L^2)^*$, we have

$$||f||_2 = \sup \{ |\langle f, g \rangle| : g \in L^2, ||g||_2 = 1 \}$$

= \sup \{ \langle f, \phi \rangle | : \phi \in C_0^\infty, ||\phi||_2 = 1 \}

Where the last equality follows from the fact that C_0^∞ is dense in L^2 , i.e. any $g\in L^2$ can be approximated arbitrary well

Alaoglu-type theorem. Let f_j be a bounded sequence in L^p (or in a separable Hilbert space), i.e. $\sup_j ||f_j||_p < \infty$, then f_j has a weakly convergent subsequence.

Existence of the minimizer. Assume $V: \mathbb{R}^d \to \mathbb{R}$ satisfies the same conditions as V_- in the theorem about domination of the kinetic energy and assume that V vanishes at infinity, i.e. $|\{x: |V(x)| > a\}| < \infty \ \forall a > 0$. From above we know, that $E_0 > -\infty$ and one can show that $E_0 \leq 0$. Now we assume $E_0 < 0$. Then $\exists \psi \in H^1, \|\psi\|_2 = 1$ s.t.

$$\mathcal{E}(\psi) = E_0$$

Moreover ψ satisfies $-\Delta \psi + V \psi = E_0 \psi$ in a weak sense, i.e. by testing against any $\phi \in C_0^{\infty}$:

$$\int \overline{\psi}(-\Delta\phi) + \int V\overline{\psi}\phi = E_0 \int \overline{\psi}\phi$$

Sketch of proof:

- (i) Choose a min. seq. $\{\psi_n\} \subset H^1$, $\mathcal{E}(\psi_n) \to E_0$, $\|\psi_n\|_2 = 1$.
- (ii) By the theorem about domination of the kinetic energy: $\|\nabla \psi_n\|^2 \leq 2\mathcal{E}(\psi_n) + D\|\psi_n\|^2 = 2\mathcal{E}(\psi_n) + D$. It follows that $\sup_n \|\psi_n\|_{H^1} < \infty$.
- (iii) Since H^1 is seperable Hilbert space, by the Alaoglu-type theorem, there is a weakly convergent subsequence $\psi_j := \psi_{n_j} \rightharpoonup \psi \in H^1$.
- (iv) Claim 1: $\int |\nabla \psi|^2 \leq \liminf_j \int |\nabla \psi_j|^2$. (Use the variational characterization of the L^2 norm of $\nabla \psi$ and calculate $|\langle \nabla \psi, \phi \rangle| = |\langle \psi, \nabla \phi \rangle| = \lim_j |\langle \psi_j, \nabla \phi \rangle|$, since $\psi_n \rightharpoonup \psi$ in L^2 as well b/c H^1 is dense in L^2 . From $\sup_n (\liminf_j a_{nj}) \leq \liminf_j (\sup_n a_{nj})$ follows the claim.)
- (v) Claim 2: $\int V|\psi|^2 = \lim_j \int V|\psi_j|^2$. (We want to use Rellich-Kondrashev. For this purpose we perform the following steps: (i) Define $V^{\delta} = V \mathbbm{1}_{\{x:|V(x)|\leqslant 1/\delta\}}$ where δ is chosen small enough s.t. the L^{∞} -part of V gets absorbed when computing $V - \bar{V}^{\delta}$. (ii) By monotone conv. theorem and $V_{\delta}(x) \to V(x)$ as $\delta \to 0$ we get $||V - V^{\delta}||_{d/2} \to 0$. (iii) Since $\int (V - V^{\delta}) |\psi_j|^2 \leqslant ||V - V^{\delta}||_{d/2} ||\psi_j||_{2d/d-2} \leqslant$ $C\|V-V^{\delta}\|_{d/2}\|\psi_j\|_{H^1}$ (by Sobolev) and $\sup \|\psi_j\|_{H^1} < \infty$, the integral $\int V|\psi_j|^2$ can be replaced by $\lim_{\delta \to 0} \int V^{\delta}|\psi_j|^2$ (uniformly in j and the same holds for ψ , so we can interchange limits and work from know on with V^{δ}). (iv) For $\varepsilon > 0$ set $A_{\varepsilon} := \{x : |V^{\delta}(x)| > \varepsilon\}$. Since V vanishes at ∞ we have $|A_{\varepsilon}| < \infty$, so A_{ε} will be the set for Rellich-Kondrashev. Furthermore $\int V^{\delta} |\psi_j|^2 = \int_{A_{\varepsilon}} V^{\delta} |\psi_j|^2 + \int_{A_{\varepsilon}^c} \dots$ where the second integral is $\leqslant \varepsilon$ uniformly in j (the same holds for ψ so we can work with $\int_{A_{\varepsilon}}$). (v) In order to apply RK, we calculate $|\int_{A_{\varepsilon}} V^{\delta}(|\psi_{j}|^{2} - |\psi|^{2})| \leq \frac{1}{\delta} \int_{A_{\varepsilon}} ||\psi_{j}|^{2} - |\psi|^{2}|$. Using $|\psi_{j}|^{2} - |\psi|^{2} = (|\psi_{j}| - |\psi|)(|\psi_{j}| + |\psi|)$ we get $|\dots| \leq \frac{1}{\delta} (\int_{A_{\varepsilon}} |\psi_{j} - \psi|^{2})^{1/2} \mathcal{I}(|\psi_{j}|^{2} + |\psi|^{2}) = \frac{4}{\delta} (\int_{A_{\varepsilon}} (|\psi_{j} - \psi|^{2})^{1/2}$ and by RK the last integral converges to zero.)
- (vi) Claim 3: $\|\psi\|_2 = 1$. (By claim 1 and 2: $E_0 = \lim_j \mathcal{E}(\psi_j) \geqslant \mathcal{E}(\psi) \geqslant E_0 \|\psi\|_2^2$. So $\|\psi\| \geqslant 1$, b/c $E_0 < 0$. But also $\|\psi\|_2 \leqslant \liminf_j \|\psi_j\|_2 = 1$.)

- (vii) ψ is a ground state, i.e. $\mathcal{E}(\psi) = E_0$, b/c from the claims above follows: $\mathcal{E}(\psi) \leqslant \liminf_j \mathcal{E}(\psi_j) = E_0$ and clearly $\mathcal{E}(\psi) \geqslant E_0$ always.
- (viii) Let $\phi \in C_0^\infty$ and set $\psi^\varepsilon = \psi + \varepsilon \phi$ and $R(\varepsilon) := \mathcal{E}(\psi^\varepsilon)/\|\psi^\varepsilon\|^2$ that is a ratio of two quadratic polynomials in ε with $R(0) = E_0$. Thus R is differentiable in a neighbourhood of 0 and attains its minimum there, so 0 = R'(0). This leads to $\Re \int \bar{\psi}(-\Delta \phi + V \phi E_0 \phi) = 0$ after performing an int. by parts in H^1 . We get the imaginary part of the same expression by replacing ϕ by $i\phi$. Thus the equality holds for the expression alone.

Rellich-Kondrashev. Let $B \subset R^d$ with $|B| < \infty$ and $f_n \rightharpoonup f$ in $H^1(\mathbb{R}^d)$. Then for any $q \in [1, \frac{2d}{d-2}]$ if $d \ge 3$, $q \in [1, \infty)$ if d = 2 or $q \in [1, \infty]$ if d = 1, we have

$$\lim_{n \to \infty} \int_{B} |f_n - f|^q = 0$$

There are two implications (the second one is more an equivalent formulation of Rellich-Kondrashev):

- (i) Corollary 1: If $f_n \to f$ in $H^1(\mathbb{R}^d)$, then there is subsequence $\{f_{n_j}\}$ s.t. $\lim_{j\to\infty} f_{n_j}(x) = f(x)$ for a.e. $x\in\mathbb{R}^d$.
- (ii) Corollary 2: Any bounded sequence in $H^1(\mathbb{R}^d)$ has a convergent subsequence in $L^q(B)$, where B and q are as above.

(Since $||f_n||_{L^q(B)} \leq C(B,q)||f_n||_{2d/d-2} \leq C' ||f_n||_{H^1}$ and $\sup_n ||f_n||_{H^1} < \infty$, f_n is bounded in $L^q(B)$. By the Banach-Alaoglue-type theorem, f_n has an H^1 -weakly convergent subsequence and by RK, this subsequence converges strongly in $L^q(B)$.)

Sketch of proof of Rellich-Kondrashev: Let $d \ge 3$, q = 2.

- (i) Smoothing: Fix $\phi \in C_0^{\infty}$, $\int \phi = 1$ and define for m > 0, $\phi_m := m^d \phi(my)$, then $\int \phi_m = 1$ and $\int |\phi_m(y)| |y| dy = \frac{1}{m} \int |\phi(y)| |y| dy$
- (ii) Splitting: We use that $||f * \phi_m f||_2 \to 0$ as $m \to \infty$ and split $||f_n f||_{L^2(B)}$ in the 3 terms $||f_n f_n * \phi_m||_{L^2(B)}$, $||f_n * \phi_m f * \phi_m||_{L^2(B)}$ and $||f * \phi_m f||_{L^2(B)}$.
- (iii) Uniformity of the first limit: For any $f \in H^1$ we have $\int |f(x+h)-f(x)|^2 dx = \int |e^{2\pi i k \cdot h}-1|^2 |\hat{f}(k)|^2 dk \le 4\pi^2 |h|^2 \int |k|^2 |\hat{f}(k)|^2 dk = |h|^2 |\nabla f||_2^2$. With ϕ from (i), we have $||f*\phi-f||_2^2 = ||\int [f(\cdot -y)-f(\cdot)]\phi(y)dy||_2^2 \le \int |\phi(y)| ||f(\cdot -y)-f(\cdot)||_2^2 dy$ by gen. Minkowski. Using the first result, this gives $||f*\phi-f||_2 \le ||\nabla f||_2 \int |\phi(y)||y|dy$. Applying this to f_n and ϕ_m and using that f_n is uniformly bounded in H^1 , we get

 $||f_n * \phi_m - f_n||_2 \le ||\nabla f_n|| \int |\phi_m(y)||y| dy \le \frac{C}{m}$ and the constant C is indep. of n, i.e. for $m \to \infty$ is

- (iv) Middle term: $|f_n * \phi_m(x)| \leq ||f_n||_2 ||\phi_m||_2 \leq C ||\phi_m||_2$ and $|f_n * \phi_m(x) f * \phi_m(x)| \leq ||f_n f||_2 ||\phi_m||_2 \to 0$ as $n \to \infty$. Thus, by dominated convergence (b/c $|B| < \infty$) we get $||f_n * \phi_m f * \phi_m||_{L^2(B)} \to 0$ as $n \to \infty$ for any fixed m.
- (v) Finally performing an $\epsilon/3$ -argument to the terms, we proved RK for q=2.
- (vi) $1 \leqslant q < 2$: $||f_n f||_{L^q(B)} \leqslant C(B, q) ||f_n f||_{L^2(B)} \to 0$.
- (vii) $2 \le q < \frac{2d}{d-2}$: $||f_n f||_{L^q(B)} \le ||f_n f||_2^{\theta} ||f_n f||_{2d/d-2}^{1-\theta}$ $\le ||f_n - f||_2 (C||\nabla (f_n - f)||_2)^{1-\theta} \le C||f_n - f||_2^{\theta} \to 0.$

Distributions. We use the space $C_0^{\infty}(\Omega)$ (where $\Omega \subset \mathbb{R}^d$) as the space of *test functions* and denote it by $\mathcal{D}(\Omega)$, if it is equipped with the following notion of convergence: $\phi_n \to \phi \Leftrightarrow \exists K \subset \Omega \text{ compact s.t. supp}(\phi_n - \phi) \subset K$ and for any multiindex α , $D^{\alpha}\phi_n \to D^{\alpha}\phi$ unif. on K. Distributions $T \in \mathcal{D}'(\Omega)$ are the bounded linear functionals on $\mathcal{D}(\Omega)$ equipped with $T_n \to T : \Leftrightarrow T_n(\phi) \to T(\phi)$, $\forall \phi \in \mathcal{D}(\Omega)$.

- (i) Examples for distributions: $f \in L^1_{loc}$, then $T_f(\phi) := \int f \phi$; μ regular Borel measure, then $T_{\mu}(\phi) = \int \phi \, d\mu$; $x \in \mathbb{R}^d$, then $\delta_x(\phi) := \phi(x)$.
- (ii) Derivative of distributions: For $T \in \mathcal{D}'(\Omega)$ and any multiindex α , $D^{\alpha}T(\phi) := (-1)^{|\alpha|}T(D^{\alpha}\phi)$ defines a distribution $D^{\alpha}T \in \mathcal{D}'(\Omega)$. It is easy to check, that if $T_n \to T$, then $D^{\alpha}T_n \to D^{\alpha}T$.
- (iii) If $f \in C^{\infty}$, then $D^{\alpha}T_f = T_{D^{\alpha}f}$.
- (iv) If $T \in \mathcal{D}'(\Omega)$ s.t. $T^{(1)}$ is a continuous function, then there is $f \in C^1$ s.t. $T = T_f$.
- (v) Fundamental theorem of calculus: For a function $f \in W^{1,1}_{loc} = \{f \in L^1_{loc} | \nabla f \in L^1_{loc} \}$, we have $f(x+y) f(x) = \int_0^1 y \cdot \nabla f(x+ty) dt$, $\forall y$ and a.e. x.
- (vi) Integration by parts: For $v \in L^1_{loc}$, $v(x) \in \mathbb{R}$, $\nabla v \in L^1_{loc}$, $u \nabla v \in L^1$ for any $u \in L^1$, then $-\int u \Delta v = \int \nabla u \nabla v$.
- (vii) If Ω is connected and $\nabla T = 0$, then $T = T_{const.}$
- (viii) If $\psi \in C^{\infty}$, $T \in \mathcal{D}'(\Omega)$, then $\psi T(\phi) := T(\psi \phi)$ defines a distribution, i.e. $\psi T \in \mathcal{D}'(\Omega)$.
- (ix) Convolution: For $j \in C_0^{\infty}$, we can extend the usual convolution to $\mathcal{D}'(\Omega)$ by $(j*T)(\phi) := T(\int j(y)\phi(\cdot + y)dy)$ and this distribution is given by a function: There is $t \in C^{\infty}$ s.t. $(j*T)(\phi) = \int t(y)\phi(y)\,dy$. Moreover, if $j_{\varepsilon} := \varepsilon^{-d}j(x/\varepsilon)$, then $j_{\varepsilon}*T \to T$ in $\mathcal{D}'(\Omega)$.
- $\begin{array}{l} \text{(x)} \ \ \text{If} \ \{\psi_j\}_1^N \ \text{is an ONS in} \ L^2(\varOmega), \ T \in \mathcal{D}'(\varOmega) \ \text{s.t.} \ T(\phi) = 0 \\ \forall \phi \ \text{with} \ \langle \phi, \psi_j \rangle = 0 \ \forall j, \ \text{then} \ \exists \ c_j \ \text{s.t.} \ T = \sum_j c_j \psi_j. \end{array}$
- (xi) Suppose $T(\phi) = 0$ for any $\phi \in \mathcal{D}(\Omega)$ with supp $\phi \subset \Omega \setminus \{0\}$. Then there is $K \in \mathbb{N}$ and c_j s.t. $T = \sum_{j=0}^K c_j \delta_0^{(j)}$.
- (xii) A distribution T is called positive, if $T(\phi) \ge 0$ for all $\phi \ge 0$. Positive distributions are regular Borel measures.

Excited states. Let $H = -\Delta + V$ where V satisfies the same conditions as in the theorem on the domination of the kin. energy. Let E_0 be the ground state energy and ψ_0 (one of) the groundstate(s). Assume $E_0 \leqslant \ldots \leqslant E_{k-1}$ and $\psi_0, \ldots, \psi_{k-1}$ are known, then $E_k := \inf\{\mathcal{E}(\psi) | \psi \in H^1(\mathbb{R}^d), \|\psi\|_2 = 1, \langle \psi, \psi_j \rangle = 0, j = 0, \ldots, k-1\}.$

- (i) Assume the first k eigenstates exist and $E_k < 0$, then the (k+1)th eigenstate ψ_k , i.e. the minimizer for E_k , also exists and satisfies the Schrödinger eq. $H\psi_k = E_k\psi_k$ in a weak sense. Thus the recursion from above can only stop for $E_k = 0$.
- (ii) If $E_k < 0$, then the multiplicity is finite.
- (iii) The sequence $E_0 \leqslant E_1 \leqslant \ldots$ cannot accumulate at any negative number.
- (iv) The ψ_k may not be unique, but the eigenspace is.
- (v) The eigenfunctions can be chosen real.

Properties of eigenfunctions. We assume the conditions on V as above and $E_0 < 0$, then

- (i) The ground state is unique.
- (ii) The ground state can be chosen strictly positive.
- (iii) The positivity of an eigenfunction characterizes the ground state, i.e. if $H\psi = E\psi$ for some $\psi \in H^1$ with $\psi \geqslant 0$, then $E = E_0$ and ψ is the ground state.
- (iv) If V is spherically symmetric, i.e. V(x) = V(|x|), so is the ground state.
- (v) If $(-\Delta + V)\psi = E\psi$ holds on a ball $B \subset \mathbb{R}^d$ in the sense of distributions and $V \in C^k(B)$, then $\psi \in C^{k+2}(B)$, i.e. ψ is even a strong solution.

Lemma. If $f \in H^1$, then $|f| \in H^1$ and

$$\int |\nabla |f||^2 \leqslant \int |\nabla f|^2$$

actually it holds even pointwise that $|\nabla|f|| \leq |\nabla f|$. Moreover, if |f(x)| > 0, then equality holds only if $\exists \lambda \in \mathbb{C}$ with $|\lambda| = 1$ and $f(x) = \lambda |f(x)|$.

Many body quantum systems

Marginal density of the *i*-th particle. It is the probability distribution of the *i*-th particle that is given by

$$\rho_{\psi}^{i}(x) = \int |\psi(\dots, x_{i-1}, x, x_{i+1}, \dots)|^{2} dx_{1} \dots \widehat{dx_{i}} \dots$$

One-particle density function. The particle density in the state ψ is given by $\rho_{\psi}(x) := \sum_{i=1}^{N} \rho_{\psi}^{i}(x)$. We have

$$\int_{\mathbb{R}^d} \rho_{\psi} = \sum_{i=1}^{N} \int \rho_{\psi}^{i} = \sum_{i=1}^{N} 1 = N$$

(If ψ is symmetric or antisymmetric, we have $\rho_{\psi}^{i}=\rho_{\psi}^{1}$ for all i and thus $\rho_{\psi}=N\rho_{\psi}^{1}$.)

Density matrix. For a normalized $\psi \in L^2(\mathbb{R}^{Nd})$ we define its *density matrix* as the orthogonal projection onto the subspace spanned by ψ , i.e. $(\Gamma_{\psi}\phi)(\boldsymbol{x}) := \langle \psi, \phi \rangle \psi(\boldsymbol{x})$. It has the kernel $\Gamma_{\psi}(\boldsymbol{x}, \boldsymbol{x}') = \psi(\boldsymbol{x})\overline{\psi}(\boldsymbol{x}')$.

One-particle density matrix. Given a density matrix Γ_{ψ} of an N-particle state ψ , we define a one-particle operator $\gamma_{\psi}^{(1)}:L^2(\mathbb{R}^d)\to L^2(\mathbb{R}^d)$ with kernel $\gamma_{\psi}^{(1)}(x,x'):=\sum_i\int \Gamma_{\psi}(\ldots,x_{i-1},x,\ldots;\ldots,x_{i-1},x',\ldots)\ldots dx_{i-1}dx_{i+1}\ldots$ (then $\gamma_{\psi}^{(1)}(x,x)=\rho_{\psi}(x)$ is the one-p. density from above).

Simplest bosonic state. If $\{f_j\} \subset L^2(\mathbb{R}^d)$, then the function $f_J := f_{j_1} \otimes \cdots \otimes f_{j_N} \in L^2(\mathbb{R}^{Nd}) = \bigotimes_1^N L^2(\mathbb{R}^d)$ (where $J = (j_1, \ldots, j_N)$) is not symmetric, but after applying the symmetrization $S : \bigotimes L^2(\mathbb{R}^d) \to \bigotimes^s L^2(\mathbb{R}^d)$, $\psi \mapsto \sum_{\pi \in S_N} \psi(x_{\pi(1)}, \ldots)$, the function $f_{\otimes J} := S(\bigotimes_{l=1}^N f_{j_l})$ describes a simple bosonic state (where $J = \{j_1, \ldots, j_N\}$). The normalized operator $\frac{1}{N!}S$ is an orthogonal projection. If $\{f_j\}$ is an ONB in \mathcal{H} , then $\{f_J|J=(j_1,\ldots,j_N)\}$ is an ONB in $\bigotimes H$ and $\{\frac{1}{N!}f_{\otimes J}|J=\{j_1,\ldots,j_N\}\}$ forms an ONB in $\bigotimes^s \mathcal{H}$.

Simplest fermionic state. If $\{f_j\} \subset L^2(\mathbb{R}^d)$, the antisymmetrized tensor product or Slater determinant is def. by $f_1 \wedge \ldots \wedge f_N(x_1, \ldots, x_N) = \frac{1}{\sqrt{N!}} \det(f_i(x_j))$. It can also be defined using the total antisymmetrization $\mathcal A$ that is given by $(\mathcal A\psi)(x_1, \ldots, x_N) = \sum_{\pi \in S_N} sgn(\pi)\psi(x_{\pi(1)}, \ldots)$. Then $f_1 \wedge \cdots \wedge f_N = \frac{1}{\sqrt{N!}} \mathcal A(f_1 \otimes \cdots \otimes f_N)$.

Many spins. If the number of spins q is bigger than the number of particles, $q \ge N$, then the fermionic character can be completely forgotten, i.e. the following holds: If $\phi(\boldsymbol{x})$ is an arbitrary function in $L^2(\mathbb{R}^{Nd})$ depending only on the space variables, then we can trivially extend this function to be an antisymmetric function as $\psi((x_1, \sigma_1), \ldots) = \frac{1}{\sqrt{N!}} \mathcal{A}(\phi(\boldsymbol{x})) \prod_1^N \delta(\sigma_j = j))$, i.e. even if ϕ is a symmetric function depending only on space, we can construct an antisymmetric one (in the spin variables) out of it. This is useful because of the properties

- (i) $\|\psi\| = \|\phi\|$
- (ii) For H being indep, of spin and invariant under perm, of space variables, we have $\langle \phi, H\phi \rangle = \langle \psi, (H \otimes I)\psi \rangle$.

Therefore $E_0^f(q \geqslant N) = E_0$.

The ground state is bosonic. For $H = H_0 + W$, where $W(x) = \sum_{i < j} U(x_i - x_j)$ with U(x) = (-x) and $H_0 = \sum_i h_i$ where $h_i = -\Delta_i + V(x_i)$. Suppose $\mathcal{E}(\psi)$ is bounded from below, i.e. $E_0 > -\infty$, then $E_0 = E_0^b$.

Non-interacting bosons. Let $H=H_0$ and assume that the groundstate energy of the one-particle problem described by h is finite. Then $E_0=Ne_0$. Moreover if the ground state f_0 of h exists, then $\psi_0=f_0\otimes\cdots\otimes f_0$ is the unique ground state of H_0 .

Bounded operators. Let \mathcal{H} be a seperable Hilbert space, $A: \mathcal{H} \to \mathcal{H}$ a bounded linear operator.

- (i) The adjoint of A, A^* , is def. by $\langle x, Ay \rangle = \langle A^*x, y \rangle$.
- (ii) A is called self-adjoint, if $A = A^*$ and A is called unitary, if $A^*A = AA^* = id$.
- (iii) $A = A^* \Leftrightarrow \langle x, Ax \rangle \in \mathbb{R} \ \forall x \in \mathcal{H}.$
- (iv) $\rho(A) := \{z \in \mathbb{C} | (z-A)^{-1} \text{ exists and is bounded} \}$ is called the resolvent set of A ($\rho(A) \subset \mathbb{C}$ open).
- (v) $\sigma(A) = \mathbb{C} \setminus \rho(A)$ is called spectrum of A ($\sigma(A) \neq \emptyset$).
- (vi) Eigenvalues of A are elements of the spectrum.
- (vii) $\sigma = \sigma_p \cup \sigma_c$ where $\sigma_p = \{\text{ev's}\}\$ is the point spectrum and $\sigma_c = \sigma \setminus \sigma_p$ is the continuous spectrum.
- (viii) A compact operator has the following equivalent properties: (1) A maps bounded sets to compact ones. (2) If $\{x_n\} \subset \mathcal{H}$ is bounded, then $\{Ax_n\}$ has a convergent subsequence. (3) A can be approximated in the operator norm by finite rank operators.
- (ix) The typical example of a compact operator on function spaces has an integral kernel: $Af(x) = \int a(x,y)f(y)dy$.
- (x) The compact operators form an ideal in the set of bounded operators, i.e. if A is compact and B bounded, then AB and BA are compact.
- (xi) If A is compact, then $\sigma(A)\setminus\{0\}$ consists of eigenvalues with finite multiplicity and the eigenvalues may accumulate only at 0.
- (xii) Spectral theorem: For a compact and s.a. operator A, $\exists \{\lambda_j\} \subset \mathbb{R} \text{ and } \exists ! \text{ ONB } \{v_j\} \text{ s.t. } Ax = \sum_{j=1}^{\infty} \lambda_j \langle v_j, x \rangle v_j$.