

PCT

ORGANISATION MONDIALE DE LA PROPRIÉTÉ INTELLECTUELLE
Bureau international

DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lithuanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaïdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave de Macédoine	TM	Tadjikistan
BF	Burkina Faso	GR	Grèce	ML	Mal	TR	Turquie
BG	Bulgarie	HU	Hongrie	MN	Mongolie	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MR	Mauritanie	UA	Ukraine
BR	Brésil	IL	Israël	MW	Madagascar	UG	Ouganda
BY	Bélarus	IS	Islande	MX	Mexique	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	NE	Niger	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NL	Pays-Bas	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norvège	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NZ	Nouvelle-Zélande	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire démocratique de Corée	PL	Pologne		
CM	Cameroun			PT	Portugal		
CN	Chine	KR	République de Corée	RO	Roumanie		
CU	Cuba	KZ	Kazakhstan	HU	Fédération de Russie		
CZ	République tchèque	LC	Sainte-Lucie	SD	Soudan		
DE	Allemagne	LI	Lichtenstein	SE	Suisse		
DK	Danemark	LK	Sri Lanka	SG	Singapour		
EE	Estonie	LR	Liberia				

EMULSION IMMUNOSTIMULANTE

L'invention concerne le domaine des vaccins et plus particulièrement les
5 adjuvants de vaccins.

Les vaccins, qu'ils soient prophylactiques ou thérapeutiques, sont destinés à stimuler le système immunitaire de l'organisme humain ou animal auquel ils sont administrés, la réponse du système immunitaire pouvant être soit une réponse de type humorale (production d'anticorps), soit une réponse
10 de type cellulaire, soit encore une combinaison des 2 types de réponses. De façon classique, depuis de nombreuses années, la vaccination a consisté à administrer à un organisme une version non pathogène d'un micro-organisme de façon à préparer le système immunitaire à réagir efficacement dans le cas où l'organisme serait amené ultérieurement à rencontrer le même micro-
15 organisme, dans sa version pathogène. L'antigène administré lors de la vaccination peut être de différentes natures : micro-organisme tué entier ou fragmenté, souche vivante atténuée du micro-organisme, fractions antigéniques du micro-organisme ou encore polynucléotides susceptibles de conduire à l'expression par l'organisme d'une fraction antigénique.
20 Depuis déjà longtemps, on a cherché à augmenter la réponse du système immunitaire ou à modifier sa nature, non pas simplement en agissant sur l'antigène administré ou sur son mode d'administration, mais également en lui adjointant des substances immunostimulatrices ou adjuvants. Depuis l'adjuvant complet de Freund, de nombreux produits ont été testés, notamment
25 des sels minéraux (tels que le chlorure de zinc, le phosphate de calcium, l'hydroxyde d'aluminium ou encore le phosphate d'aluminium par exemple), des saponines, des polymères, des lipides ou des fractions lipidiques(Lipide A, Monophosphoryl Lipid A),...etc. Cependant, peu d'entre eux présentent toutes les caractéristiques souhaitées : être de bons immuno-adjuvants, stables, mais
30 sans risque de toxicité.

On connaît d'autre part, par la demande WO 96/02555, des oligonucléotides pouvant avoir une activité immunostimulatrice, ces oligonucléotides pouvant être administrés comme adjuvant vaccinal. Cette

référence mentionne également la possibilité d'associer à ces oligonucléotides par liaison ionique, covalente ou par encapsulation, des moyens pour cibler l'administration de l'oligonucléotide. De tels moyens peuvent être notamment constitués de stérol, de lipide (par exemple un lipide cationique, un virosome 5 ou un liposome) ou un agent de liaison spécifique à la cellule-cible (par exemple un liant reconnu par un récepteur spécifique de la cellule-cible). Cette demande mentionne encore, parmi toutes les variantes d'utilisation des polynucléotides décrits, la possibilité de les administrer en conjonction avec un véhicule porteur pharmaceutiquement acceptable. Cette demande n'identifie 10 pas de véhicule comme étant d'un intérêt particulier mais en donne une liste indicative et cite à cet égard notamment les solutions, les solvants, les milieux de dispersion, les agents-retard, les émulsions et autres; l'utilisation de tels milieux pour des substances pharmaceutiquement actives étant mentionnée comme étant bien connue dans ce domaine.

15 Selon l'enseignement de ce document, la quantité d'oligonucléotides administrée doit l'être en quantité suffisante pour réaliser l'effet biologique recherché.

Or, les auteurs de la présente invention ont trouvé que, de façon tout à fait inattendue, il était possible d'accroître fortement l'effet immunoadjuvant 20 d'un oligonucléotide, sans être obligé d'accroître la quantité d'oligonucléotides ou la quantité d'antigènes administrée.

Pour atteindre ce but, l'invention a pour objet une émulsion immunostimulante du type huile dans eau, comprenant au moins une phase aqueuse et une phase huileuse, caractérisée en ce qu'elle comprend en outre au moins un 25 polynucléotide immunostimulant dont au moins une partie est couplée de façon covalente à au moins une molécule lipidique.

Aux fins de l'invention, on entend par émulsion de type huile dans eau, une dispersions de gouttelettes d'huile dans une phase aqueuse pouvant être 30 constituée par du tampon tel que le tampon PBS. La phase huileuse est constituée par une huile pharmaceutiquement acceptable, qui peut être une huile minérale, animale ou végétale. De préférence, on utilise une huile métabolisable telle que le squalène, les esters (notamment l'oléate d'éthyle, le

myristate d'isopropyle), une huile végétale(par exemple l'huile de ricin, l'huile de tournesol, l'huile d'olive...)ou encore une huile végétale modifiée (ex : les macrogol glycerides). On peut, notamment, obtenir une émulsion satisfaisante en mélangeant 500 mg de squalène à 10 ml de tampon PBS dans un appareil 5 tel qu'un ULTRA-TURRAX™, puis en microfluidisant la dispersion obtenue grâce à un microfluidiseur tel que le Microfluidics™, ce qui permet d'obtenir des particules huileuses dont le diamètre est inférieur à 200 nm.

Afin de faciliter la formation de l'émulsion, il est possible d'utiliser en outre un agent tensio-actif , notamment un agent tensio-actif dont la valeur HLB 10 (Balance Hydrophile/Lipophile) est comprise entre 6 et 14. Il est notamment possible d'utiliser un agent tensio-actif choisi parmi la liste des produits suivants : les esters de sorbitan et les polysorbates, l'huile de ricin éthoxylée hydrogénée ou non, l'acide stéarique éthoxylé, l'alcool oléique 10 OE, l'alcool cétostéarylique 20 OE, le stéarate de glycérol, le stéarate de propylène glycol, 15 les lécithines, le lauryl sulfate de sodium, le stéarate de sodium, le cocoate de glycérol éthoxylé 70E , les esters de glycérol éthoxylés, les acides oléiques éthoxylés, l'oléate de mannitan. On a obtenu de particulièrement bons résultats en utilisant du TWEEN™ 80.

L'émulsion obtenue est considérée immunostimulante si elle est capable de 20 provoquer ou d'accroître la stimulation du système immunitaire, par exemple lors de son administration conjointement à un antigène vaccinal. Dans cette application, l'émulsion est utilisée comme immuno-adjuvant.

Cette activité immuno-adjuvante peut s'exprimer de différentes façons :

- rendre visible la réponse du système immunitaire à l'administration conjointe 25 de l'antigène et de l'émulsion, alors que la réponse à l'administration de l'antigène seul ne l'était pas,
- accroître le degré de la réponse du système immunitaire sans en modifier la nature (par exemple : augmenter la quantité d'anticorps produits),
- modifier la nature de la réponse du système immunitaire à l'administration de 30 l'antigène (par exemple, induire une réponse cellulaire alors que l'administration de l'antigène seul provoquait uniquement une réponse humorale),

- induire ou accroître la production de cytokines, ou de certaines cytokines en particulier.

Par "polynucléotide" au sens de la présente invention, on comprend un oligonucléotide simple brin ayant de 6 à 100 nucléotides, de préférence de 6 à 30 nucléotides. Il peut s'agir d'oligoribonucléotide, ou d'oligodesoxyribonucléotide. On utilise de préférence des polynucléotides comprenant des séquences de base à symétrie inversée, tel que cela est le cas dans les séquences palindromiques (c'est-à-dire des séquences de type ABCDEE'D'C'B'A' où A et A', B et B', C et C', D et D' E et E' sont des bases complémentaires au sens de Watson et Crick), et plus particulièrement des polynucléotides comprenant au moins une séquence dinucléotidique Cytosine, Guanine, dans laquelle la Cytosine et la Guanine ne sont pas méthylées. Tout autre polynucléotide connu pour être, par sa nature même, immunostimulant, peut convenir aux fins de l'invention. Ainsi, il est possible également d'utiliser les oligonucléotides immunostimulants décrits dans la demande de brevet WO96/02555. On a obtenu de particulièrement bons résultats en utilisant un polynucléotide dont la séquence des bases est la suivante : GAGAACGCTCGACCTTCGAT.

Les oligonucléotides convenant aux fins de l'invention peuvent se présenter sous forme de phosphodiester, ou afin d'être plus stables sous forme de phosphorothioates ou d'hybrides phosphodiester/phosphorothioates. Bien qu'il soit possible d'utiliser des oligonucléotides provenant de sources d'acides nucléiques existantes tel que l'ADN génomique ou le cADN, on préfère utiliser des oligonucléotides de synthèse. Ainsi, il est possible d'élaborer des oligonucléotides sur support solide en utilisant la méthode β -cyano éthyl phosphoramidite (Beaucage, S.L. and Caruthers, M.H. Tetrahedron Letters 22, 1859 - 1862 (1981)) pour l'assemblage 3'-5', puis on procède à une précipitation en éthanol en présence d'acétate de sodium 0,3 M non ajusté en pH (0,3M en final). On effectue ensuite une précipitation par 4 volumes d'éthanol à 80% suivi d'un séchage avant de procéder à une reprise par de l'eau pure.

Les oligonucléotides phosphorothioatés ont un des atomes d'Oxygène composant le groupement Phosphate qui est remplacé par un atome de Soufre. Leur synthèse peut être effectuée comme précédemment décrit, sauf à remplacer la solution iodé/eau/pyridine tétrahydrofurane qui est utilisée lors de 5 l'étape d'oxydation nécessaire à la synthèse des liaisons phosphodiester par une solution TETD (tétraethylthiuram disulfide) apportant les ions sulfates permettant de produire le groupement phosphorothioate.

On peut également envisager d'autres modifications des liaisons phosphodiesters, des bases ou des sucres, pour modifier les propriétés des 10 oligonucléotides utilisés, et notamment pour accroître leur stabilité.

Selon l'invention, on couple au polynucléotide au moins une molécule lipidique de façon covalente. Cette molécule lipidique est de préférence une molécule de cholestérol ou de dérivé de cholestérol. Le couplage peut être effectué par liaison covalente à une ou à chaque extrémité du polynucléotide, 15 ou encore par insertion à côté de chaque base d'au moins une molécule lipidique. Ce couplage peut être effectué directement lors de la synthèse du polynucléotide en utilisant dans le synthétiseur d'oligonucléotides un réactif de type Cholestérol Phosphoramidite au lieu du réactif Phosphoramidite habituellement utilisé.

20 Les antigènes dont il est possible de potentialiser l'effet grâce à l'émulsion selon la présente invention, peuvent être de nature variée ; il peut notamment s'agir de protéines, de glycoprotéines, de glycoconjugués, de polyosides ou encore de polynucléotides comprenant des fractions d'ADN susceptibles de conduire à l'expression de molécules d'intérêt ; il peut 25 également s'agir d'un mélange de différents antigènes. De particulièrement bons résultats ont été obtenus avec une composition comprenant des antigènes de la grippe tels qu'ils sont présents dans le vaccin commercial VAXIGRIP™.

On peut obtenir une émulsion selon l'invention en procédant de la façon 30 suivante : on mélange tout d'abord, sous agitation, l'huile avec la phase aqueuse constituée éventuellement par une solution tampon dans laquelle a été incorporé un surfactant. Le mélange obtenu est homogénéisé au moyen, par exemple, d'un agitateur à hélice, afin de conduire à une émulsion du type

huile dans eau. De préférence, on traite ensuite l'émulsion obtenue au moyen d'un microfluidiseur afin de réduire les gouttelettes d'huile à un diamètre inférieur à 200 nm.

Puis, cette émulsion étant maintenue sous agitation, on lui ajoute 5 simplement le polynucléotide auquel a été couplé le lipide, et on obtient l'émulsion objet de la présente invention.

Lorsque cette émulsion est destinée à être utilisée comme immuno-adjuvant, on la mélange sous agitation, à une composition comprenant l'antigène dont on souhaite potentialiser l'effet. Le mélange peut être 10 àavantageusement effectué dans un rapport volumique de 1. On peut, ensuite, vérifier l'effet inattendu et notamment l'effet synergique obtenu sur la stimulation du système immunitaire par l'utilisation simultanée d'un polynucléotide couplé à au moins une molécule de lipide, et son incorporation à une émulsion de type huile dans eau.

15 A cette fin, il est possible de réaliser un test d'immunogénicité sur des souris divisées en plusieurs groupes, à qui on administre, suivant le groupe :

- soit une composition comprenant uniquement l'antigène ou le mélange d'antigènes vis-à-vis desquels on veut tester l'effet immunostimulant de l'émulsion selon l'invention,
- 20 - soit une composition, comprenant l'antigène ou les antigènes d'intérêt à laquelle a été ajoutée une solution comprenant uniquement des polynucléotides couplés à au moins une molécule de lipides,
- soit une composition comprenant l'antigène ou les antigènes d'intérêt à laquelle a été ajoutée une émulsion de type huile dans eau, sans 25 polynucléotide, ou avec un polynucleotide dépourvu d'activité immunostimulante vis-à-vis des antigènes administrés,
- soit une composition comprenant l'antigène ou les antigènes d'intérêt à laquelle a été ajoutée une émulsion selon l'invention.

30 Pour chacune des souris immunisées, on peut, ensuite, déterminer la quantité et la nature des anticorps produits ce qui permet de déterminer la GMT (ou Moyenne Géométrique du Titre en Anticorps) ; on peut également effectuer des dosages des cytokines produites ; en outre, on peut effectuer des

dosages permettant de déterminer la réponse cellulaire du système immunitaire.

Les résultats obtenus ont montré un effet synergique important des éléments constituant l'émulsion selon l'invention.

5 De plus, l'émulsion obtenue selon l'invention présente une stabilité accrue par rapport aux émulsions de même nature, i.e. celles constituées d'une phase aqueuse et d'une phase huileuse identiques, mais dépourvues de polynucléotides.

10 Les exemples qui suivent illustrent de façon plus précise un mode de réalisation de l'invention.

Exemple 1

On prépare des oligonucléotides grâce à un automate synthétiseur fourni par
15 Applied Biosystems qui met en œuvre la méthode chimique standard eau phosphoramidite et qui comporte à chaque cycle une étape d'oxydation.

Cette étape d'oxydation est réalisée au moyen d'une solution iodé/eau/tétrahydrofurane/acétonitrile pour obtenir une liaison phosphodiester et au moyen d'une solution tétraéthylthiuram/acétonitrile pour obtenir une
20 liaison phosphorothioate. On prépare ainsi un oligonucléotide 3 Db(S) dont la séquence est reproduite sous SEQ ID NO 1 et qui comporte des liaisons phosphorothioate sur toute sa longueur.

On prépare également un oligonucléotide MGC (S) dont la séquence est reproduite à SEQ ID NO 2, qui comporte à la fois des liaisons phosphodiester
25 et des liaisons phosphorothioate. Les liaisons phosphorothioate sont situées à chaque extrémité ; il y a 2 liaisons phosphorothioate en 3' et 5 liaisons phosphorothioate en 5'. Cet oligonucléotide ne possède pas de séquence palindromique, et notamment pas de séquence CG.

30 Exemple 2

On prépare des oligonucléotides auxquels sont couplés aux extrémités des molécules de cholestérol. La synthèse de ces oligonucléotides 3 Db(S)-chol et

- 8 -

MGC(S)-chol est effectuée de la même manière qu'à l'exemple 1, à l'exception du réactif Phosphoramidite qui est remplacé par un réactif spécifique, le Cholestérol-ON™ Phosphoramidite fourni par la société CLONTECH Lab. Inc, (USA), lors du premier et du dernier cycle de synthèse afin d'obtenir une
5 molécule de cholestérol insérée avant chacun des nucléotides d'extrémité.

Les séquences de nucléotides obtenues sont identiques à celles des oligonucléotides décrits à l'exemple précédent.

Exemple 3

10

On dispose de 10 ml de tampon PBS auxquels on ajoute 25 mg de Tween™80 et 500 mg de squalène. Le mélange obtenu est émulsionné grâce à un appareil ULTRA-TURRAX™ T25 pendant 1 min à 13500 tours/min.

15

L'émulsion obtenue est ensuite fluidisée grâce à un traitement de 5 cycles à 500 Psi dans un microfluidiseur Microfluidics™.

Exemple 4

20

Préparation d'une émulsion squalène/PBS comprenant des polynucléotides couplés à du cholestérol.

On prépare une émulsion immunostimulante selon l'invention en mélangeant 435 µl de la solution à 2,3 g/l de 3Db(S) couplé au cholestérol obtenue à l'exemple 2 (soit 1 mg d'oligonucléotide), avec 2 ml de l'émulsion squalène/PBS obtenue à l'exemple 3, maintenue sous agitation.

25

On prépare une autre émulsion en mélangeant 263 µl de la solution à 3,81 g/l de MGC(S) couplé à du cholestérol obtenue à l'exemple 2 (soit 1 mg d'oligonucléotide) avec 2 ml de l'émulsion squalène/PBS obtenue à l'exemple 3, maintenue sous agitation.

Exemple 5

Préparation des compositions d'immunisation.

On prépare des doses d'immunisation de différentes natures en ajoutant sous agitation 2 ml de vaccin splitté contre la grippe NIB16 (monovalent A/Singapore H1N1) contenant 100 µg d'hémagglutinine HA en tampon PBS à 2 ml de chacune des préparations suivantes :

- tampon PBS
- 10 - solution MGC(S) obtenue à l'exemple 1,
- solution MGC(S)-chol obtenue à l'exemple 2,
- émulsion MGC(S)-chol obtenue à l'exemple 4,
- solution 3Db(S) obtenue à l'exemple 1,
- solution 3Db(S)-chol obtenue à l'exemple 2,
- 15 - émulsion 3Db(S)-chol obtenue à l'exemple 4.

Exemple 6

Immunisation.

20 On dispose de groupes de 6 souris Balb/c femelles âgées de 6 à 8 semaines, chaque groupe correspondant à une des préparations effectuées à l'exemple 6. Chacune des souris est immunisée avec 200µl de la préparation correspondant à son groupe et reçoit donc 5µg de HA par immunisation, chaque souris étant immunisée 2 fois à 3 semaines d'intervalle, avec la même préparation.

25 2 semaines après la deuxième injection, on mesure la réponse en anticorps spécifiques anti-HA, grâce à un test ELISA, et on détermine la GMT pour les IgG1 ainsi que pour les IgG2a.

- 10 -

Les résultats obtenus sont indiqués ci-après :

	GMT/IgG1	GMT/IgG2a
	38 062	2 137
5 HA/MGC(S)	37 518	1 050
HA/MGC(S)-chol	28 039	1 498
HA/MGC(S)-chol/émulsion	264 776	26 981
HA/3Db(S)	63 939	43 529
HA/3Db(S)-chol	65 904	31 066
10 HA/3Db(S)-chol/émulsion	611 301	218 142

Les résultats obtenus confirment que l'oligonucléotide 3Db(S) est bien doté de propriétés immunostimulantes car il est capable d'induire un accroissement de la réponse en anticorps par rapport à ce qui est obtenu lors de l'administration des antigènes seuls. Par contre, les résultats obtenus avec l'oligonucléotide MGC(S) ne démontrent pas d'activité immunostimulante.

D'autre part, on remarque que, de façon inattendue, l'émulsion contenant un polynucléotide immunostimulant tel que le polynucléotide 3Db(S) conduit à une production d'anticorps nettement supérieure à celle obtenue avec une émulsion contenant le polynucléotide MGC(S)-chol; cet effet est encore plus remarquable en ce qui concerne la production d'IgG2a; ce qui est indicateur d'une orientation de la réponse immunitaire vers un type TH1, orientation parfois souhaitée dans certaines cibles vaccinales.

En effet, en considérant que l'effet attendu d'une émulsion est l'effet obtenu avec l'émulsion HA/MGC(S)-chol, (l'oligonucléotide MGC(S) n'ayant par lui-même aucun effet immunostimulant vis-à-vis des antigènes administrés ainsi que cela est analysé ci-dessus), on note un effet synergique important de l'émulsion selon l'invention car le titre obtenu pour la production d'anticorps, que ce soit pour les IgG1 ou de façon plus nette encore pour les IgG2a, est nettement supérieur à la somme des titres obtenus séparément pour chacune des 2 compositions (émulsion HA/MGC(S) d'une part et solution HA/3Db(S) d'autre part).

Exemple 7.

On prépare des compositions vaccinales comprenant les éléments suivants:

- antigènes sous-unitaires contre le RSV (ou Virus Syncitial Respiratoire) en présence de gel d'aluminium, à raison de 1 µgramme de protéines totales (Protéines F, G et M)

en tampon PBS ou additionné suivant le cas des éléments suivants:

- solution 3Db(S) obtenue à l'exemple 1,
- émulsion 3 Db(S) obtenue à l'exemple 4,
- 10 - émulsion MGC(S) obtenue à l'exemple 4.

Les doses sont de 50µlitres et comprennent 50 microgrammes d'oligonucléotides.

Ces compositions sont administrées à des souris à J0 et à J28; 5 à 6 semaines 15 après l'injection de rappel, on prélève les rates des souris afin d'évaluer la quantité d'interféron γ produite.

On obtient les résultats suivants, après dosage ELISA effectué après restimulation secondaire *in vitro*:

	Quantité d' Interféron en pg/ml
Antigènes + Adjuvant aluminium	3432 2565 2998
Antigènes + Adjuvant aluminium + 3 Db(S)	13400 9543 1147
Antigènes + Adjuvant aluminium + émulsion MGC(S)	5130 9216 7173
Antigènes + Adjuvant aluminium + émulsion selon l'invention	57394 42285 49839

Ces résultats montrent clairement la synergie obtenue en utilisant un oligonucléotide immunostimulant et une émulsion selon l'invention, lorsqu'on s'intéresse au RSV et qu'on observe la production d'interféron γ qui est un bon
5 indicateur de la réponse TH1.

Exemple 8:

On prépare des doses d'immunisation identiques à celles de l'exemple 7, à
10 l'exception des antigènes RSV qui ne sont pas en présence de gel
d'aluminium. Les doses de 50 μ litres sont administrées en intramusculaire à des
groupes de 6 souris.
4 semaines après l'immunisation, les souris sont saignées et les taux
d'anticorps anti-protéines F sont déterminés par titrage ELISA. Les résultats
15 obtenus sont récapitulés dans le tableau suivant :

	Ig G	Ig G1	Ig G 2a
Antigènes + PBS	100	100	100
	100	100	100
	100	100	100
	100	100	100
	100	100	100
Antigènes + 3Db(S)	6400	400	6400
	6400	400	12800
	12800	800	6400
	6400	400	3200
	3200	100	25600
	6400	400	25600
Antigènes + émulsion MGC(S)	12800	1600	6400
	6400	400	100
	51200	6400	100
	25600	1600	100
	25600	1600	100
Antigènes + émulsion selon l'invention	25600	1600	25600
	12800	400	12800
	51200	1600	25600
	102400	6400	1600
	51200	3200	25600

Ces résultats confirment l'intérêt d'utiliser une émulsion selon l'invention dans le cas où les antigènes sont les antigènes du Virus Syncitial Respiratoire.

REVENDICATIONS

1. Emulsion immunostimulante du type huile dans eau, comprenant au moins une phase aqueuse et une phase huileuse, caractérisée en ce qu'elle comprend en outre au moins un polynucléotide immunostimulant dont au moins une partie est couplée de façon covalente à au moins une molécule lipidique.
5
2. Emulsion selon la revendication 1, caractérisée en ce que la molécule lipidique est une molécule de cholestérol.
10
3. Emulsion selon une des revendications précédentes, caractérisée en ce que le polynucléotide immunostimulant comprend au moins une séquence palindromique.
15
4. Emulsion selon une des revendications précédentes, caractérisée en ce que le polynucléotide immunostimulant est un oligodesoxynucléotide phosphodiester, phosphorothioate ou un hybride phosphodiester phosphorothioate.
20
5. Emulsion selon une des revendications précédentes, caractérisée en ce que le polynucléotide immunostimulant comprend une séquence GAGAACGCTCGACCTTCGAT.
25
6. Emulsion selon une des revendications précédentes caractérisée en ce que la partie couplée à au moins une molécule lipidique est située à l'extrémité 5' du polynucléotide.
30
7. Emulsion selon une des revendications précédentes, caractérisée en ce que la molécule lipidique est une molécule de cholestérol.
35
8. Emulsion selon une des revendications précédentes, caractérisée en ce qu'elle comprend, en outre, au moins un surfactant.
9. Emulsion selon la revendication 8, caractérisée en ce que le surfactant est du Tween 80.

- 15 -

10. Emulsion selon une des revendications 1 à 9, caractérisée en ce que la phase huileuse comprend du squalène
11. Composition vaccinale comprenant au moins un antigène vaccinal, caractérisée en ce qu'elle comprend en outre une émulsion immunostimulante selon une des revendications 1 à 10.
12. Composition vaccinale selon la revendication précédente, caractérisée en ce qu'elle comprend au moins un antigène vaccinal contre la grippe.
- 10 13. Composition vaccinale selon la revendication 11, caractérisée en ce qu'elle comprend au moins un antigène vaccinal du Virus Syncytial Respiratoire.
- 15 14. Utilisation d'une émulsion selon une des revendications 1 à 10, pour la fabrication d'un médicament destiné à stimuler le système immunitaire.
15. Utilisation d'une émulsion selon une des revendications 1 à 10, pour la fabrication d'un médicament destiné à produire une réponse de type TH1.
- 20 16. Utilisation d'une émulsion selon une des revendications 1 à 10, pour la fabrication d'un médicament destiné à induire la sécrétion d'interféron-γ.

1
LISTE DE SEQUENCES

(1) INFORMATIONS GENERALES:

(i) DEPOSANT:

- (A) NOM: Pasteur Merieux Serums & Vaccins
- (B) RUE: 58 avenue Leclerc
- (C) VILLE: Lyon
- (E) PAYS: France
- (F) CODE POSTAL: 69007
- (G) TELEPHONE: 33 (0) 4 72 73 70 90
- (H) TELECOPIE: 33 (0) 4 72 73 78 50

(ii) TITRE DE L' INVENTION: Emulsion immunostimulante

(iii) NOMBRE DE SEQUENCES: 2

(iv) FORME DECHIFFRABLE PAR ORDINATEUR:

- (A) TYPE DE SUPPORT: Floppy disk
- (B) ORDINATEUR: IBM PC compatible
- (C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS
- (D) LOGICIEL: PatentIn Release #1.0, Version #1.30 (OEB)

(2) INFORMATIONS POUR LA SEQ ID NO: 1:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 20 paires de bases
- (B) TYPE: nucléotide
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: lin,aire

(ii) TYPE DE MOLECULE: Autre acide nucléique

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:

GAGAACGCTC GACCTTCGAT

20

(2) INFORMATIONS POUR LA SEQ ID NO: 2:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 20 paires de bases
- (B) TYPE: nucléotide
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: lin,aire

(ii) TYPE DE MOLECULE: Autre acide nucléique

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:

GGGGTCAAGC TTGAGGGGG

20