2.1: The Determinant Function

- (\cdot)
 - **@** 5
- (b) 9
- © 6
- Q) 10
- @ 0
- £ 2

- **②**
 - @ odd
- (b) 022
- Qeven
- d) even
 - @ ever
- Œ) e

- ③ (3×4)−(5×(-2))
 - = 12 + 10 = 22
- 4 (4 × 2) (1 × 8)
 - 8-8=0
- (5 (-Sx -z) (6 x (-7))
 - = 10 + 42 = 52
- 6 (12 × 13') (4 × 16')
- = 16 416
- $= -3\sqrt{6}$
- (0 (a-3)(a-2) (5 x(-3))
- =a°-5a+6+15
- = a2 -5a +21
- ((-2)×1×4)+(7×(-2)×3)+(6×5×8)-(6×1×3)-(1-2)×(-2)×3)-(7×5×4) = -8-42+240-18-82-140
 - **=** 0
- (1 (-2) × 5 × 2) + (1 × (-7) × 1) + (4 × 3 × 6) (4 × 5 × 1) ((-2) × (-7) × 6) (1 × 3 × 2)
 - = -20 -7 +72 -20 -84-6
 - = -65

(3,1,2,4): even	(4,1,2,3): odd
(3,1,4,2): 000	(4,1,3,2): even
(3,2,1,4); odd	(4,2,1,3); even
(3,2,4,1): even	(4, 2, 3, 1): odd
(3,4,1,2): even	(4,3,1,2): odd
(3,4,2,1): odd	(4,3,2,1): even

- (5) $a_{11}a_{12}a_{33}a_{44} a_{11}a_{12}a_{34}a_{43} a_{11}a_{13}a_{32}a_{44} + a_{11}a_{13}a_{34}a_{42} + a_{11}a_{14}a_{32}a_{43} a_{11}a_{14}a_{33}a_{42} a_{12}a_{11}a_{33}a_{44} + a_{12}a_{11}a_{34}a_{43} + a_{12}a_{12}a_{134}a_{13} + a_{12}a_{13}a_{134}a_{13} + a_{12}a_{13}a_{13}a_{13}a_{14} + a_{13}a_{12}a_{13}a_{14} a_{13}a_{12}a_{23}a_{14} + a_{13}a_{12}a_{23}a_{14} a_{13}a_{12}a_{23}a_{14} + a_{13}a_{12}a_{23}a_{14} + a_{13}a_{12}a_{23}a_{14} + a_{14}a_{13}a_{12}a_{23}a_{14} + a_{14}a_{12}a_{13}a_{13}a_{14} + a_{14}a_{14}a_{12}a_{13}a_{14}a_{14} + a_{14}a_{12}a_{13}a_{14}a_{14} + a_{14}a_{12}a_{13}a_{14}a_{14} + a_{14}a_{1$
- (6) $\begin{bmatrix} 4 & -9 & 9 & 2 \\ -2 & 5 & 6 & 4 \\ 1 & 2 & -5 & -3 \\ 1 & -2 & 0 & -2 \end{bmatrix}$
- (17)

 (17)

 (17)

 (18)

 (19)

 (19)

 (19)

 (19)

 (10)

 (10)

 (10)

 (10)

 (11)

 (11)

 (11)

 (12)

 (12)

 (13)

 (14)

 (15)

 (15)

 (16)

 (17)

 (18)

 (18)

 (18)

 (19)

 (19)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)

 (10)
 - DAs above, there is only one permutation such that the elementary product \$ 0. That is all ass ass ass ass ass. This permutation is odd, and so the signed elementary product is negative.

(18) First, we calculate:
$$|x-1| = x(1-x)-3(-1) = x-x^2+3$$

= $-x^2+x+3$

Next:
$$\begin{vmatrix} 1 & 0 & -3 \end{vmatrix} = (1)(x)(x-5)+0+(-3)(2)(3)-(-3)(x)(1)-1 \\ 2 & x & -6 & (1)(-6)(3)-0 \\ 1 & 3 & x-5 & = x^2-5x-1-8+3x+18 \\ & = x^2-2x \end{vmatrix}$$

Thus:
$$-x^2 + \chi + 3 = \chi^2 - 2x$$

 $2x^2 - 3x - 3 = 0$
 $x = \frac{3}{4} + \frac{\sqrt{33}}{4}$

=
$$sin^2\Theta + cos^2\Theta = 1$$

Proof: Let
$$A = [a \ b]$$
 and $B = [d \ e]$.

(+) Suppose A and B commute. That is, $AB = BA$, and so:

[ad $ae + bf] = [da \ db + ec]$
[O cf]. Note than that $ae + bf = db + ec$.

So, $|b \ a - c| = b(d - f) - e(a - c) = bd - bf - ea + ec$
 $= -bf - ea + ea + bd + ec$
 $= -bf - ea + ea + bf = 0$.

(4) Suppose $|b \ a - c| = 0$. That is: $b(d - f) - e(a - c) = 0$

Rote that: $bd + ec = ea + bf$

Since db+ec=ae+bf, AB=BA. Therefore, A and B commite.
2) Be cause it is the rum of the products of integers.
(2) For any n such that n > 1, the determinant would be O.
There are an equal number of odd and even permutations, and
all the elementery products are I. Thus, there are an equal
There are an equal number of odd and even permutations, and all the elementery products are 1. Thus, there are an equal number of 1's and -1's, and so the determinant is O.
& secause each signed elementary product will be U, since each
@ Because each signed elementary product will be 0, since each row must be represented in each elementary product (including the 0 row).
O Popular and a little and the William and
b) because each signed elementery product will be U, since each
Because each signed elementery product will be 0, since each other must be represented in each elementery product (including the 0 column).
C Colonia,
(24) The delegan & in the modern 20 the linear land of
(24) The determinant is the product of the diagonal entriers
(25) For both, the determinant is the product of the diagonal entries.
() 1 % () () () () () () () () () (