A Note on Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR Thesis Supervisor: Prof. Dr. Bayram Ali ERSOY

> Yildiz Technical University, Faculty of Arts and Sciences, Department of Mathematics, Istanbul, Turkey

PhD Thesis Periodic Report - 5 June 8, 2018

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali FRSOY

Conter

Objective

Preliminaries

Pseudo-cyclic C

Formulation of the

Problem

The Dual Code and Sequential Codes
Pseudo-cyclic Codes
vs Sequential Codes

From Shortening and Puncturing to Pseudo-cyclic Codes and Their Duals

Code Construction Methods: Shortenii

Conclusion and Futur

Deference

Contents

- 1. Objective
- 2. Introduction
- Preliminaries
- 4 Formulation of the Problem
- 5. Construction Method and Examples
- 6 Conclusion and Future Work
- 7. References

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali FRSOY

Contents

Objective

meroduceior

Preliminaries

Pseudo-cyclic Coc

Formulation of the

Formulation of the Problem

The Dual Code and Sequential Codes Pseudo-cyclic Code vs Sequential Codes

From Shortening an Puncturing to

nd Their Duais Code Construction Methods: Shorteni

Conclusion and Future

Work

Objective

In this report, as a result of our periodic studies, we introduce a method to obtain a direct construction for the dual codes of pseudo-cyclic codes. Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali ERSOY

Conten

Objective

introduction

Preliminaries

Pseudo-cyclic C

Formulation of the

Problem

The Dual Code and Sequential Codes Pseudo-cyclic Codes

Pseudo-cyclic Codes vs Sequential Codes From Shortening and

rom Shortening and Juncturing to Jseudo-cyclic Codes nd Their Duals

Code Construction Methods: Shortening and Puncturing

Conclusion and Futur

Deference

Introduction

 Pseudo-cyclic codes over finite fields were first introduced by (Peterson and Weldon, 1972). Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali FRSOY

Content

Objective

Introduction

Preliminaries

Pseudo-cyclic Code

Formulation of the

Problem
The Dual Code and

Sequential Codes Pseudo-cyclic Codes vs Sequential Codes

From Shortening and Puncturing to Pseudo-cyclic Codes and Their Duals

Code Construction Methods: Shortening

Conclusion and Future

Introduction

- Pseudo-cyclic codes over finite fields were first introduced by (Peterson and Weldon, 1972).
- ▶ Although every pseudo-cyclic code corresponds to a shortened cyclic code over finite fields, in terms of introducing a direct construction, pseudo-cyclic codes have attracted many researchers with their rich algebraic structure.

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali ERSOY

Content

Objectiv

Introduction

Preliminaries

r reminimantes

F. 100 - 601

Formulation of the Problem

The Dual Code and Sequential Codes
Pseudo-cyclic Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

Code Construction Methods: Shortening

Conclusion and Future

D-f----

Generalization of Cyclic Codes

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali ERSOY

Content

Objective

Introduction

reliminaries

Book to the

Formulation of the Problem

The Dual Code and Sequential Codes Pseudo-cyclic Codes

From Shortening and Puncturing to

and Their Duals

Code Construction

Methods: Shortening

Conclusion and Future

D.C.

Let $c=(c_0,c_1,\ldots,c_{n-1})$ be any vector in F_q^n . We fix a shift vector $v=(v_0,v_1,\ldots,v_{n-1})$ and define the following linear transformation

$$\tau_v \colon F^n \longrightarrow F^n (c_0, c_1, \dots, c_{n-1}) \mapsto (v_0 c_{n-1}, c_0 + v_1 c_{n-1}, \dots, c_{n-2} + v_{n-1} c_{n-1})$$

It has the following representation matrix as $\tau_v(c) = c.T_v$ and T_v is exactly the companion matrix for $f(x) = x^n - v(x)$.

$$T_v = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & 0 \\ \vdots & 0 & \cdots & 0 & 1 \\ v_0 & v_1 & \cdots & v_{n-2} & v_{n-1} \end{bmatrix}_{nxn}$$

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali ERSOY

Contents

Objective

Preliminaries

Pseudo-cyclic Codes

Formulation of the Problem

The Dual Code and Sequential Codes
Pseudo-cyclic Codes
vs Sequential Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

Code Construction
Methods: Shorte

Conclusion and Future Work

Deference

Thus we have

$$T_v = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ v_0 & v_1 & v_2 \end{array} \right]$$

And the transformation τ_v moves $c=(c_0,c_1,c_2)$ to the vector $\tau_v(c)=(v_0c_2,c_0+v_1c_2,c_1+v_2c_2)$ as follows;

$$\tau_v(c) = c \cdot T_v = \begin{bmatrix} c_0 & c_1 & c_2 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ v_0 & v_1 & v_2 \end{bmatrix}$$
$$= \begin{bmatrix} v_0 c_2 & c_0 + v_1 c_2 & c_1 + v_2 c_2 \end{bmatrix}$$

► T_v is the companion matrix for $f(x) = x^3 - (v_0 + v_1 x + v_2 x^2)$.

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali FRSOY

Contents

Objective

meroduceion

Preliminaries

Pseudo-cyclic Codes

Formulation of the

The Dual Code and Sequential Codes Pseudo-cyclic Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

Code Construction Methods: Shortenin

Conclusion and Future Work

A linear code C with length n over a finite field F_q is called pseudo-cyclic with respect to the vector $v=(v_0,v_1,\ldots,v_{n-1})$, if whenever $c=(c_0,c_1,\ldots,c_{n-1})$ is in C, so is its v-pseudo-cyclic shift $(v_0c_{n-1},c_0+v_1c_{n-1},\ldots,c_{n-2}+v_{n-1}c_{n-1})$.

A pseudo-cyclic code with respect to v is invariant under τ_v .

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali

Content

Objective

Introductio

Preliminaries

Pseudo-cyclic Codes

Formulation of the Problem

The Dual Code and Sequential Codes Pseudo-cyclic Codes

vs Sequential Codes
From Shortening and
Puncturing to

seudo-cyclic Codes nd Their Duals Code Construction

lethods: Shortenin nd Puncturing

Conclusion and Future Work

Definition

A linear code C with length n over a finite field F_q is called pseudo-cyclic with respect to the vector $v=(v_0,v_1,\ldots,v_{n-1})$, if whenever $c=(c_0,c_1,\ldots,c_{n-1})$ is in C, so is its v-pseudo-cyclic shift $(v_0c_{n-1},c_0+v_1c_{n-1},\ldots,c_{n-2}+v_{n-1}c_{n-1})$.

- A pseudo-cyclic code with respect to v is invariant under τ_v .
- Any cyclic code is pseudo cyclic with respect to v = (1, 0, ..., 0) and v(x) = 1.

Conten

Objective

introduction

Preliminaries

Pseudo-cyclic Codes

Formulation of the Problem

The Dual Code and Sequential Codes Pseudo-cyclic Codes vs Sequential Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

Code Construction
Methods: Shortening

Conclusion and Future

A linear code C with length n over a finite field F_q is called pseudo-cyclic with respect to the vector $v=(v_0,v_1,\ldots,v_{n-1})$, if whenever $c=(c_0,c_1,\ldots,c_{n-1})$ is in C, so is its v-pseudo-cyclic shift $(v_0c_{n-1},c_0+v_1c_{n-1},\ldots,c_{n-2}+v_{n-1}c_{n-1})$.

- A pseudo-cyclic code with respect to v is invariant under τ_v .
- Any cyclic code is pseudo cyclic with respect to v = (1, 0, ..., 0) and v(x) = 1.
- Any constacyclic code with respect to α , is *pseudo cyclic* with respect to $v = (\alpha, 0, ..., 0)$ and $v(x) = \alpha$.

Conten

Objective

Introductio

Preliminaries

Pseudo-cyclic Codes

Formulation of the Problem

The Dual Code and Sequential Codes
Pseudo-cyclic Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

Code Construction
Methods: Shortening

Conclusion and Future Work

Deference

Polynomial Correspondence

 $ightharpoonup C \lhd F_q[x]/(f(x)), f(x) = x^n - v(x)$

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali

Content

Objective

Introductio

Preliminaries

Pseudo-cyclic Codes

Formulation of the

Problem

Sequential Codes

Pseudo-cyclic Codes

vs Sequential Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

and Their Duals Code Construction Methods: Shortening

onclusion and Future

. .

Polynomial Correspondence

$$ightharpoonup C \lhd F_q[x]/(f(x)), f(x) = x^n - v(x)$$

$$ightharpoonup C \lhd F_q[x]/(f(x)), f(x) = x^n - \alpha, \alpha \in F_q^*$$

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali

Content

Objective

Introductio

Preliminaries

Pseudo-cyclic Codes

Formulation of the

The Dual Code and Sequential Codes

Pseudo-cyclic Codes vs Sequential Codes

From Shortening and Puncturing to Pseudo-cyclic Codes and Their Duals

Code Construction Methods: Shortening and Puncturing

Conclusion and Futur

Polynomial Correspondence

$$ightharpoonup C \lhd F_q[x]/(f(x)), f(x) = x^n - v(x)$$

$$ightharpoonup C \lhd F_q[x]/(f(x)), f(x) = x^n - \alpha, \alpha \in F_q^*$$

►
$$C \triangleleft F_q[x]/(f(x)), f(x) = x^n - 1$$

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali FRSOY

Contents

Objective

introduction

Preliminaries

Pseudo-cyclic Codes

Formulation of the

Problem
The Dual Code and

Sequential Codes
Pseudo-cyclic Codes
vs Sequential Codes

From Shortening and Puncturing to Pseudo-cyclic Codes and Their Duals

Code Construction Methods: Shortening and Puncturing

Conclusion and Futur Work

In terms of the usual correspondence to the polynomial ring $F_q[x]/(x^n-v(x))$, multiplying a polynomial by x corresponds to a pseudo-cyclic shift with respect to v, therefore a pseudo-cyclic code over F_q^n corresponds to an ideal in $F_q[x]/(x^n-v(x))$.

Example

Consider $c(x) = c_0 + c_1 x + c_2 x^2$. Let $v(x) = v_0 + v_1 x + v_2 x^2$, so we are in $F_a[x]/(x^3 - v(x))$.

Multiplying c(x) by x, we get;

$$(c_0 + c_1 x + c_2 x^2).x = c_0 x + c_1 x^2 + c_2 x^3$$

$$= c_0 x + c_1 x^2 + c_2 (v(x))$$

$$= c_0 x + c_1 x^2 + c_2 (v_0 + v_1 x + v_2 x^2)$$

$$= c_2 v_0 + (c_0 + c_2 v_1)x + (c_1 + c_2 v_2)x^2$$

So this gives us the pseudo-cyclic shift,

$$(c_0, c_1, c_2) \rightarrow (c_2 v_0, c_0 + c_2 v_1, c_1 + c_2 v_2)$$

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali ERSOY

Contents

Objective

.....

Preliminaries

Pseudo-cyclic Codes

Formulation of the

Problem
The Dual Code and

Sequential Codes
Pseudo-cyclic Codes
vs Sequential Codes

Puncturing to
Pseudo-cyclic Codes

Code Construction Methods: Shortening and Puncturing

Conclusion and Futur

References

ŀ

Different Definitions

- Pseudo-cyclic shift, Pseudo-cyclic codes
- Polycyclic shift, Polycyclic codes
- p(x)—circulants, Generalized cyclic codes
- ▶ v-vector cyclic shift, v-vector based codes
- θ polycyclic shift, module θ codes

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali

Conten

Objective

meroduceion

Preliminaries

Pseudo-cyclic Codes

Formulation of the

The Dual Code and Sequential Codes Pseudo-cyclic Codes

vs Sequential Codes
From Shortening and
Puncturing to

Pseudo-cyclic Codes and Their Duals Code Construction Methods: Shortening

and Puncturing

Conclusion and Futur Work

Formulation of the Problem

 Pseudo-cyclic codes are fully characterized over finite fields and finite chain rings (Lopez et al., 2013; Bedir and Siap, 2015; Alahamdi et al., 2016) Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali ERSOY

Conten

Objectiv

IIItroduction

Preliminaries

Pseudo-cyclic Codes

Formulation of the

The Dual Code and Sequential Codes
Pseudo-cyclic Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

nd Their Duals Code Construction Methods: Shortenin

Conclusion and Futur

Formulation of the Problem

- Pseudo-cyclic codes are fully characterized over finite fields and finite chain rings (Lopez et al., 2013; Bedir and Siap, 2015; Alahamdi et al., 2016)
- ▶ They have been constructed as module θ —codes over skew polynomial rings (Boucher and Ulmer, 2011).

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumevra BEDIR . Thesis Supervisor: Prof. Dr. Bayram Ali

Preliminaries

Formulation of the Problem

Sequential Codes

Formulation of the Problem

- ▶ Pseudo-cyclic codes are fully characterized over finite fields and finite chain rings (Lopez et al., 2013; Bedir and Siap, 2015; Alahamdi et al., 2016)
- ► They have been constructed as module θ —codes over skew polynomial rings (Boucher and Ulmer, 2011).
- ► However, the problem of finding a concrete generator for the dual code was open both over the commutative and noncommutative cases

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali ERSOY

Conten

Objective

Introducti

Preliminaries

Pseudo-cyclic

Formulation of the

The Dual Code and Sequential Codes Pseudo-cyclic Codes

Pseudo-cyclic Codes vs Sequential Codes From Shortening and

Puncturing to
Pseudo-cyclic Codes
and Their Duals

Methods: Shorteni and Puncturing

Conclusion and Future Work

Preliminaries

Pseudo-cyclic Codes

Formulation of the Problem

The Dual Code and Sequential Codes Pseudo-cyclic Codes

vs Sequential Codes
From Shortening and
Puncturing to

Puncturing to
Pseudo-cyclic Codes
and Their Duals

Code Construction

Code Construction Methods: Shortenin and Puncturing

Conclusion and Futur Work

Deferen

For the commutative case, the following theorem gives an indirect method for generating the dual code;

Theorem (Bedir and Siap, 2015)

If g(x) = f(x)/h(x) is the generating polynomial of a pseudo-cyclic code C, then $G = g(T_v)$ is a generator matrix for C and $H = h^R((T_v^{-1})^{tr})$ is a parity check matrix for C, where $h^R(x)$ is the reciprocal polynomial of h(x) $(h^R(x) = h(1/x)x^{\deg(h(x))})$.

Content

Objective

....

Preliminaries

Pseudo-cyclic Codes

Formulation of the Problem

The Dual Code and Sequential Codes Pseudo-cyclic Codes

From Shortening and Puncturing to

Puncturing to
Pseudo-cyclic Codes
and Their Duals

Code Construction Methods: Shortening and Puncturing

Conclusion and Future

Deferences

▶ The dual code of a polycyclic code is a type of "sequential code" (Lopez et al., 2009).

Definition

A linear code C with length n over a finite field F is called sequential with respect to the the vector $\omega = (\omega_0, \omega_1, \ldots, \omega_{n-1})$, if there is a function $\varphi_\omega : F^n \longrightarrow F$ such that whenever $c = (c_0, c_1, \ldots, c_{n-1})$ is in C, so is $(\varphi_\omega(c_0, c_1, \ldots, c_{n-1}), c_0, c_1, \ldots, c_{n-2})$.

The Dual Code of a Pseudo-cyclic Code

Let C be a pseudo-cyclic code with respect to $v=(v_0,v_1,\ldots,v_{n-1})$, with generating polynomial $g(x)=g_0+g_1x+\cdots+g_{n-1}x^{n-1}$, and let $h(x)=(x^n-v(x))/g(x)$.

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali

Conten

Objective

meroduction

Preliminaries

Pseudo-cyclic Code

Formulation of the Problem

The Dual Code and Sequential Codes

Pseudo-cyclic Codes vs Sequential Codes From Shortening and

From Shortening and Puncturing to Pseudo-cyclic Codes and Their Duals

Code Constructio Methods: Shorter

Conclusion and Future Work

District in

- Let C be a pseudo-cyclic code with respect to $v=(v_0,v_1,\ldots,v_{n-1})$, with generating polynomial $g(x)=g_0+g_1x+\cdots+g_{n-1}x^{n-1}$, and let $h(x)=(x^n-v(x))/g(x)$.
- Set $\omega = (v_0^{-1}, -v_{n-1}/v_0, -v_{n-2}/v_0, \dots, -v_1/v_0)$. And consider the following transformation;

$$\rho_{\omega}: F^{n} \longrightarrow F^{n}$$

$$(c_{0}, c_{1}, \dots, c_{n-1}) \mapsto (\omega_{n-1}c_{0} + \omega_{n-2}c_{1} + \dots + \omega_{0}c_{n-1},$$

$$c_{0}, c_{1}, \dots, c_{n-2})$$

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali

Content

Objective

meroduction

Preliminaries

Pseudo-cyclic Codes

Formulation of the Problem

The Dual Code and Sequential Codes
Pseudo-cyclic Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

nd Their Duals Code Construction Methods: Shortenin

Conclusion and Futur

D. C. . .

- Let C be a pseudo-cyclic code with respect to $v=(v_0,v_1,\ldots,v_{n-1})$, with generating polynomial $g(x)=g_0+g_1x+\cdots+g_{n-1}x^{n-1}$, and let $h(x)=(x^n-v(x))/g(x)$.
- Set $\omega = (v_0^{-1}, -v_{n-1}/v_0, -v_{n-2}/v_0, \dots, -v_1/v_0)$. And consider the following transformation;

$$\rho_{\omega}: F^{n} \to F^{n}
(c_{0}, c_{1}, \dots, c_{n-1}) \mapsto (\omega_{n-1}c_{0} + \omega_{n-2}c_{1} + \dots + \omega_{0}c_{n-1}, c_{0}, c_{1}, \dots, c_{n-2})$$

The matrix representation for ρ_{ω} is exactly $(T_v^{-1})^{tr}$, and note that v_0 should be invertible in any case.

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali

Content

Objective

meroduction

Preliminaries

Pseudo-cyclic Codes

Formulation of the Problem

The Dual Code and Sequential Codes Pseudo-cyclic Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

Code Construction
Methods: Shortening

Conclusion and Future

D. C. . .

The dual code of a pseudo-cyclic code with respect to $v=(v_0,v_1,\ldots,v_{n-1})$ is therefore a sequential code with respect to $\omega=(v_0^{-1},-v_{n-1}/v_0,\ldots,-v_1/v_0)$, where $\varphi_\omega(c_0,c_1,\ldots,c_{n-1})=\omega_{n-1}c_0+\omega_{n-2}c_1+\cdots+\omega_0c_{n-1}$.

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali ERSOY

Content

Objective

meroduction

Preliminaries

Farmulation of the

Problem

The Dual Code and Sequential Codes Pseudo-cyclic Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

ind Their Duals Code Construction Methods: Shortenin

Conclusion and Future

District Co.

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali ERSOY

Conter

Objective

.

.

reliminaries

Pseudo-cyclic Codes

Formulation of the Problem

The Dual Code and Sequential Codes

Pseudo-cyclic Codes vs Sequential Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

Code Construction Methods: Shortenin

Conclusion and Futur Work

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali ERSOY

Content

Objective

Introduction

................

-

Formulation of the Problem

The Dual Code and Sequential Codes

Sequential Codes
Pseudo-cyclic Codes
vs Sequential Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

> Code Construction Methods: Shortenin

Conclusion and Futur Work

District Co.

Pseudo-cyclic Codes vs Sequential Codes

Pseudo-cyclic codes have an ideal structure, and over the corresponding polynomial ring, we are able to find a generating polynomial; which gives a generating vector and provides constructing a vector-circulant generating matrix. Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali ERSOY

Conten

Objective

Preliminaries

Pseudo-cyclic Codes

Formulation of the Problem

The Dual Code and Sequential Codes Pseudo-cyclic Codes

vs Sequential Codes From Shortening and Puncturing to

Pseudo-cyclic Codes and Their Duals Code Construction

and Puncturing onclusion and Futur

2.2

Pseudo-cyclic Codes vs Sequential Codes

- Pseudo-cyclic codes have an ideal structure, and over the corresponding polynomial ring, we are able to find a generating polynomial; which gives a generating vector and provides constructing a vector-circulant generating matrix.
- However, sequential codes do not have an ideal structure.
 The transformation does not correspond to multiplication by x in the polynomial correspondence.

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali ERSOY

Conten

Objective

Introducti

Preliminaries

Pagudo quella C

Formulation of the

The Dual Code and Sequential Codes
Pseudo-cyclic Codes

vs Sequential Codes
From Shortening and
Puncturing to
Pseudo-cyclic Codes

nd Their Duals Code Construction Methods: Shortenii

Conclusion and Futur

- However, sequential codes do not have an ideal structure.
 The transformation does not correspond to multiplication by x in the polynomial correspondence.
- So, how can we obtain a generating polynomial/ generating vector a for sequential codes (as the dual code of pseudo-cyclic codes), so that we obtain a direct construction as follows;

$$H = \begin{bmatrix} \cdots & a & \cdots \\ \cdots & \rho_{\omega}(a) & \cdots \\ \cdots & \rho_{\omega}^{2}(a) & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & \rho_{\omega}^{n-1}(a) & \cdots \end{bmatrix}_{nxn}$$

$$a = ???$$

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali ERSOY

Content

Objective

Preliminaries

Pseudo-cyclic Code

Formulation of the Problem

The Dual Code and Sequential Codes Pseudo-cyclic Codes vs Sequential Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

Code Construction Methods: Shortening

Conclusion and Futur Work

Deference

Let C' be an [n,k,d]-linear code over F_q . For a fixed $1 \le i \le n$, form the subset A of C' consisting of the codewords with the i^{th} position equal to 0. Delete the i^{th} position from all the words in A to form a code C. Then C is an [n-1,k,d]-linear code over F_q with $k-1 \le k \le k$, $d \ge d$. (Ling and Xing, 2004).

A pseudo-cyclic code with generating polynomial $g(x) = g_0 + g_1 x + \cdots + g_{n-1} x^{n-1}$ can be obtained by shortening a cyclic code C' generated by g(x).

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali FRSOY

Content

Objective

....

Preliminaries

Pseudo-cyclic Codes

Formulation of the

The Dual Code and Sequential Codes Pseudo-cyclic Codes

From Shortening and Puncturing to

Pseudo-cyclic Codes and Their Duals Code Construction

Methods: Shortening and Puncturing

Conclusion and Futur Work

Deference

Let D' be an [n+r,k,d+r]-linear code over F_q . Choose a set B of codewords in D' with distance d+r. Choose r non-zero coordinates, and delete these coordinates from all the codewords of D'. Then the new code D, is an [n,k,d]-linear code over F_q (Ling and Xing, 2004).

The dual code of a pseudo-cyclic code with generating polynomial $g(x) = g_0 + g_1 x + \cdots + g_{n-1} x^{n-1}$ can be obtained by puncturing the dual code of a cyclic code C' generated by g(x).

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali FRSOY

Content

Objective

Introductio

Preliminaries

Pseudo-cyclic Codes

Formulation of the Problem

The Dual Code and Sequential Codes Pseudo-cyclic Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

Code Construction
Methods: Shortening
and Puncturing

Conclusion and Futur

D-f----

From Shortening and Puncturing to Pseudo-cyclic Codes and Their Duals

► Following the intiutions we get from the above correspondences, we derived a formula to obtain a generating vector for the dual codes of pseudo-cyclic codes.

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali FRSOY

Content

Objective

meroduceion

Preliminaries

Pseudo-cyclic Code

Formulation of the

Problem

Sequential Codes
Pseudo-cyclic Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

Code Construction Methods: Shortening and Puncturing

Conclusion and Futur

From Shortening and Puncturing to Pseudo-cyclic Codes and Their Duals

- ► Following the intiutions we get from the above correspondences, we derived a formula to obtain a generating vector for the dual codes of pseudo-cyclic codes.
- We used the cyclic code with the smallest length N for which f(x) divides $x^N 1$.

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali FRSOY

Content

Objective

introduction

Preliminaries

Fielillillaries

Formulation of the

Problem

The Dual Code and Sequential Codes
Pseudo-cyclic Codes

vs Sequential Codes
From Shortening and
Puncturing to

Puncturing to Pseudo-cyclic Codes nd Their Duals

Code Construction Methods: Shortening and Puncturing

Conclusion and Future

Let
$$h(x)g(x) = f(x)$$
, $\deg(g(x)) = n - k$,

$$p(x) = \frac{x^N - 1}{f(x)} = \sum_{i=0}^{N-n} p_i x^i$$
 and let C be the pseudo-cyclic code

generated by g(x). Then the dual code D is generated by the vector $\mathbf{a} = (a_0, a_1, \dots, a_{n-1})$ and its n - k - 1 sequential shifts, where

$$a_0 = p_0 h_0$$
, $a_i = \sum_{j=0}^{i-1} p_{N-n-j} h_{n-i+j}$, $1 \le i \le n-1$

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR . Thesis Supervisor: Prof. Dr. Bayram Ali

Objective

Formulation of the

Problem

Sequential Codes

Pseudo-cyclic Codes

Code Construction Methods: Shortening and Puncturing

$$F_4 = \{0, 1, \alpha, \alpha^2 = \alpha + 1\}$$
. Let

$$g(x) = \alpha^2 + \alpha x^2 + x^3, h(x) = 1 + \alpha x + x^2$$
 and $f(x) = g(x)h(x) = x^5 + \alpha x^3 + x^2 + x + \alpha^2.$

Let T_v be the companion matrix of f(x).

Consider the pseudo-cyclic code C generated by g(x) over F_4 . We obtain the generating matrix of C as follows;

$$G = \begin{bmatrix} \cdots & g & \cdots \\ \cdots & g \cdot T_v & \cdots \end{bmatrix}_{2x5}$$
$$= \begin{bmatrix} \alpha^2 & 0 & \alpha & 1 & 0 \\ 0 & \alpha^2 & 0 & \alpha & 1 \end{bmatrix}_{2x5}$$

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali ERSOY

Conten

Objective

Introduction

Preliminaries

Pseudo-cyclic C

Formulation of the

Problem

Sequential Codes
Pseudo-cyclic Codes
vs Sequential Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

Code Construction Methods: Shortening and Puncturing

Conclusion and Future Work

Deference

In this case we have

$$p(x) = \frac{x^{N} - 1}{f(x)}$$

$$= \alpha + \alpha^{2}x + \alpha x^{2} + \alpha^{2}x^{3} + \alpha^{2}x^{5} + \alpha x^{6} + x^{7} + \alpha x^{8} + x^{10}$$

Using the above formula

$$a_0=p_0h_0$$
 and $a_i=\sum\limits_{j=0}^{i-1}p_{N-n-j}h_{n-i+j}$,

we get

$$a = (a, 0, 0, 1, a)$$

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali

Contents

Objective

meroduction

Preliminaries

reminaries

Formulation of the

Problem

Sequential Codes

Pseudo-cyclic Codes

vs Sequential Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

Code Construction Methods: Shortening and Puncturing

Conclusion and Future Work

So the dual code can be generated as follows;

$$H = \begin{bmatrix} \cdots & a & \cdots \\ \cdots & a \cdot (T_v^{-1})^{tr} & \cdots \\ \cdots & a \cdot ((T_v^{-1})^{tr})^2 & \cdots \end{bmatrix}_{3x5}$$
$$= \begin{bmatrix} \alpha & 0 & 0 & 1 & \alpha \\ 0 & \alpha & 0 & 0 & 1 \\ 1 & 0 & \alpha & 0 & 0 \end{bmatrix}_{3x5}$$

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumevra BEDIR . Thesis Supervisor: Prof. Dr. Bavram Ali

Preliminaries

Problem

Sequential Codes

Code Construction Methods: Shortening and Puncturing

Conclusion and Future Work

We have derived a formula to obtain the generators of the dual codes of pseudo-cyclic codes and we gave an example over a commutative structure. Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali FRSOY

Content

Objective

IIITIOGUCTIOII

Preliminaries

Pseudo-cyclic Cod

Formulation of the

Problem
The Dual Code and

Sequential Codes
Pseudo-cyclic Codes
vs Sequential Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

nd Their Duals Code Construction Methods: Shortenii

Conclusion and Future Work

Conclusion and Future Work

- We have derived a formula to obtain the generators of the dual codes of pseudo-cyclic codes and we gave an example over a commutative structure.
- ▶ We further improved our result for the non-commutative case over skew polynomial rings as a near future work.

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali FRSOY

Content

Objective

.....

Preliminaries

Pseudo-cyclic Co

Formulation of the Problem

The Dual Code and Sequential Codes Pseudo-cyclic Codes

From Shortening and Puncturing to

Pseudo-cyclic Codes and Their Duals Code Construction Methods: Shortening

and Puncturing

Conclusion and Future

Work

Conclusion and Future Work

- We have derived a formula to obtain the generators of the dual codes of pseudo-cyclic codes and we gave an example over a commutative structure.
- ▶ We further improved our result for the non-commutative case over skew polynomial rings as a near future work.
- We will apply these results to skew quasi-cyclic codes and skew multi-twisted codes

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali FRSOY

Content

Objective

merodaction

Preliminaries

Pseudo-cyclic Codes

Formulation of the

The Dual Code and Sequential Codes Pseudo-cyclic Codes

vs Sequential Codes
From Shortening and
Puncturing to

seudo-cyclic Codes nd Their Duals Code Construction

lethods: Shortenin nd Puncturing

Conclusion and Future Work

References

A. Alahamdi, S. Dougherty, A. Leroy, P. Sole (2016). On the duality and the direction of polycyclic codes, Adv. in Math. of Com., 10(4):921-929.

S. Bedir, I. Siap (2015). Polycyclic Quaternary Codes, Proceedings of the International Conference on Coding and Cryptography, 5-10 Nov 2015, Algeria.

D. Boucher, F.Ulmer (2011). A note on the dual codes of module skew codes, 7089:230-243.

S. Jitman (2013). Vector-circulant matrices over finite fields and related codes, arXiv:1408.2059 [math.RA]

S. Ling, C. Xing (2004). Coding Theory: A First Course, Cambridge University Press, New York.

S. R. López-Permouth, H. Özadam, F. Özbudak, S. Szabo (2013). Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes, Finite Fields and Their Applications, 19(2013):16-38.

Dual Codes of Pseudo-cyclic Codes

PhD Candidate: Sumeyra BEDIR , Thesis Supervisor: Prof. Dr. Bayram Ali ERSOY

Contents

Objective

.....

Preliminaries

Pseudo-cyclic Codes

Formulation of the Problem

The Dual Code and Sequential Codes Pseudo-cyclic Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

Code Construction
Methods: Shorter
and Puncturing

Conclusion and Future Work

Objective

Introduction

Preliminaries

Pseudo-cyclic Codes

Formulation of the Problem

The Dual Code and Sequential Codes Pseudo-cyclic Codes

From Shortening and Puncturing to Pseudo-cyclic Codes

> Code Constructi Methods: Short and Puncturing

Conclusion and Future

References

S.R. Lopez-Permouth, B.R. Parra-Avila, S. Szabo (2009). Dual generalizations of the concept of cyclicity of codes, Adv. in Math. of Com. (2009): 227–234.

W. W. Peterson, E. J. Jr Weldon (1972) Error Correcting codes: second edition, MIT Press, Cambridge, MA.

D. Radkova, A.J. Van Zanten, (2009). Constacyclic codes as invariant subspaces, Linear Algebra and its Applications, 430(2009): 855-864.

M. Wu, (2013). Free cyclic codes as invariant submodules over finite chain rings, International Mathematical Forum, 8(37): 1835 - 1838.