Seoul Bike Sharing

Table of Contents

Ol Problem Statement

02 Data Selection

O3 Data Preprocessing & Visualization

04 Model Selection

05 Model Limitations

O1 Problem Statement

"The rental bike business is thriving worldwide especially after 2012"

Several Potential Reasons:

- Environment friendly
- Healthy Lifestyle
- Less traffic jams
- Convenient on short distance traveling

Goal

Build a model to predict the demand of rental bikes in Seoul (Capital of South Korea). So that city government and rental bike companies may be able to allocate their bikes more wisely by time.

Data Selection

Seoul-Bike Demand Dataset

Variable Name	Explanation	
Date	Date in Year-Month-Day format	
Rented Bike Count	Demand of bike within certain hour	
Hour	Hour dummies of 24 hours	
Temperature(°C)	Temperature in Degree Celsius	
Humidity(%)	Humidity	
Wind speed (m/s)	The speed of wind.	
Visibility (10m)	Visibility	
Dew point temperature(°C)	Temperature air needed to saturate and condense into liquid water	
Solar Radiation (MJ/m2)	Amount of solar radiation	
Rainfall(mm)	Amounts of rainfall in millimeters	
Snowfall (cm)	Amounts of snowfall in centimeters	
Seasons	Season dummies of 4 seasons	
Holiday	Dummies variable whether certain date is a holiday or not	
Functioning Day	Dummies variable if the software is functioning on certain day	

- 14 attributes
- 8760 instances
- No missing values
- 445 outliers

Column	Lower Prob	Upper Prob	Lower Quantile	Upper Quantile	Low Threshold	20.00	Number of Outliers
Date	0.1	0.9	3.6e+9	3.62e+9	3.52e+9	3.7e+9	0
Rented Bike Count	0.1	0.9	64	1671.9	-4759.7	6495.6	0
Hour	0.1	0.9	2	21	-55	78	0
Temperature(°C)	0.1	0.9	-3.7	28	-98.8	123.1	0
Humidity(%)	0.1	0.9	32	86	-130	248	0
Wind speed (m/s)	0.1	0.9	0.6	3.2	-7.2	11	0
Visibility (10m)	0.1	0.9	436.1	2000	-4255.6	6691.7	0
Dew point temperature(°C)	0.1	0.9	-15.3	21	-124.2	129.9	0
Solar Radiation (MJ/m2)	0.1	0.9	0	2.059	-6.177	8.236	0
Rainfall(mm)	0.1	0.95	0	0.4	-1.2	1.6	184
Snowfall (cm)	0.1	0.95	0	0.2	-0.6	0.8	261

O3
Data
Pre-processing
& Visualization

Data Pre-processing Procedure

Delete Unnecessary Rows

Non-functioning Days were excluded

Partition

75% Training 25% Validation Seed: 2022

Detecting Outlier

147 outliers in Rainfall.mm177 outliers in Snowfall.cmdidn't exclude

Standardize

temperature, humidity, windspeed, solar radiation, rainfall, snowfall,

Correlation Matrix

Shows the correlation coefficients between several variables related to rented bike count:

- Finding 1: the correlation between <u>temperature</u> and the <u>dew point temperature</u> is 0.91 (strongly positively correlated)
- Finding 2: the correlation between <u>solar radiation</u> and <u>rush hour</u> is 0.69 (relatively positively correlated)

*note: since there is a hyper correlation between columns temperature(°C) and Dew point temperature(°C) so we can drop the column Dew point temperature(°C).

Inspect Multicollinearity

Finding:

VIF on Dew.point.temperature=10.8658

	GVIF	Df	$GVIF^{(1/(2*Df))}$
Hour	1.206624	1	1.098464
Temperature	90.014794	1	9.487613
Humidity	20.351053	1	4.511214
Wind.speedm.s.	1.299927	1	1.140143
Visibility10m.	1.702329	1	1.304733
Dew.point.temperature	118.066770	1	10.865853
Solar.RadiationMJ.m2.	2.023486	1	1.422493
Rainfall.mm.	1.085400	1	1.041825
Snowfallcm.	1.120201	1	1.058396
Seasons	5.235148	3	1.317715
Holiday	1.023907	1	1.011883

Correlation Matrix Cont'd

Right: list of sorted correlation of variables to the rented bike count from largest to smallest

ut[26]:

Correlation to the target

Rented.Bike.Count	1.000000
Temperature	0.562740
Hour	0.425256
Solar.RadiationMJ.m2.	0.273862
Is_Rush_Hour	0.219067
Visibility10m.	0.212323
Wind.speedm.s.	0.125022
Rainfall.mm.	-0.128626
Snowfallcm.	-0.151611
Humidity	-0.201973

Visualization

Rented Bike Count v.s. Temperature

 There is an increasing trend between temperature and rented bike count, which reaches peak at around 30°C.

Visualization Cont'd (python)

Rented Bike Count v.s. Hour

- peak is at 8.am and 6p.m., which makes good sense since there are the rush hours

Rented Bike Count v.s. Seasons

 Citizens in Seoul rented bike more frequently in Summer and Autumn, which matches the weather condition of the city (Summer: 60.8°F ~ 82.4°F / 16° C ~ 28°C)

Model Selection

Linear Regression

- X Variable: hour, temperature, humidity, windspeed, solar radiation, rainfall, holiday
- Y variable: rented bike count (numerical)
- **Stepwise regression:** Forward & backward using minimum BICs
- Finding:
 - > R-Square on Validation: 0.50
 - > RASE on Validation:448.14

424.66605	28.11818	15.10	
00 075 405		15.10	<.0001
29.375405	0.856059	34.31	<.0001
32.223208	0.549487	58.64	<.0001
-7.836527	0.35514	-22.07	<.0001
-79.29898	8.332543	-9.52	<.0001
-65.39598	5.274667	-12.40	<.0001
-78.3773	13.42051	-5.84	<.0001
	-7.836527 -79.29898 -65.39598	-7.836527 0.35514 -79.29898 8.332543 -65.39598 5.274667	-7.836527 0.35514 -22.07 -79.29898 8.332543 -9.52 -65.39598 5.274667 -12.40

W	Crossvall	aation		
	Source	RSquare	RASE	Freq
	Training Set	0.5167	447.86	6349
	Validation Set	0.5040	448.14	2116

Decision Tree

Best number of splits: 63

AICc

- X Variable: hour, temperature, humidity, windspeed, solar radiation, rainfall, holiday, snowfall (removed season due to multicollinearity)
- Y variable: rented bike count (numerical)

Column Contrib	utions			
Term	Number of Splits	SS		Portion
Temperature	17	898665393		0.4232
Hour	24	763200389		0.3594
Humidity	11	222389732		0.1047
Solar.RadiationMJ.m2.	4	205192655		0.0966
Rainfall.mm.	5	33313368.9		0.0157
Holiday	1	719799.196		0.0003
Wind.speedm.s.	1	181677.485		0.0001
Snowfallcm.	0	0		0.0000

- Finding:
 - R-Square on Validation: 0.776
 - RASE on validation: 301.25

Decision Tree

Bootstrap Forest

- X Variable: hour, temperature, humidity, windspeed, solar radiation, rainfall, holiday, snowfall (removed season due to multicollinearity)
- Y variable: rented bike count (numerical)
- Finding:
 - R-Square on Validation: 0.85
 - > RASE on validation: 248.86

V	Sne	cific	ations
•	Opc	CILIC	auons

Target Rented.Bike.Count Validation Column: Validation

Number of Trees in the Forest: 1000 Number of Terms Sampled per Split: 3 Training Rows: 6349
Validation Rows: 2116
Test Rows: 0
Number of Terms: 8
Bootstrap Samples: 6349
Minimum Splits per Tree: 10

Minimum Size Split:

Overall Statistics

Individual	
Trees	RASE
In Bag	196.3160
Out of Bag	322.1751

	RSquare	RASE	N
Training	0.891	212.59498	6349
Validation	0.847	248.85973	2116

► Cumulative Validation

▶ Per-Tree Summaries

Column Contributions

Term	Number of Splits	ss	Portion
Temperature	22845	571197807	0.4027
Hour	19447	485422725	0.3422
Solar.RadiationMJ.m2.	11882	131860996	0.0930
Humidity	18335	127651922	0.0900
Rainfall.mm.	2186	60975701.7	0.0430
Wind.speedm.s.	15658	26351148.8	0.0186
Snowfallcm.	1792	12072452.9	0.0085
Holiday	1375	2899634.49	0.0020

Neural Networks

- X Variable: hour, temperature, humidity, windspeed, solar radiation, rainfall, holiday, snowfall
- Y variable: rented bike count (numerical)
- 2 hidden layers and 32 hidden neurons (2 architectures and 16 each)
- Finding:
 - R-Square on Validation: 0.84
 - RASE on Validation: 251.68

Summary

- We select Bootstrap Forest as our final model(highest R-square,lowest RASE,free from overfitting)
- The 'Temperature' and 'Hour' has significantly higher positive contributions to the variance of demand of rental bike than other variables.
- The major negative contributor is the 'Solar radiation'.
- Seoul citizens use rental bike more frequently when the temperature is higher especially when the rush hours come.

General suggestions based on prediction:

- 1. Increase the supply of shared bikes during 8 a.m. and 17~19 p.m., especially in summer and autumn.
- 2. Winter may be a good time to provide bike maintenance.

O5Limitations

Limitation 1

- Time series dataset: our data is a time series data. We observe our data by using Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF).
- Stationarity: the ACF and PACF of origin dataset shown above, and that of the first difference of dataset shown below. The plot shows that the dataset is non-stationary and contains both seasonal and non-seasonal AC. A multiplicative SARIMA may be appropriate.

♦ Decision:

Given Bootstrap Forest gave us a good fit and the difficulty of using this model, we decide not to fit a multiplicative SARIMA model.

Limitation 2

 Industry growth: bike rental is a fast growing industry and our data used to fit model and validate is data from 2017 to 2018, which did not account for the rapid growth of the bike rental industry and the impact of COVID-19.

Finding:

Thus, our model may be not as accurate to predict the real life bike rental demand today in Seoul.

Limitation 3

 Interpretability and accuracy trade-off: The Bootstrap Forest is not as interpretable as model like tree-based.

Finding:

Only really tells us how variables contribute to the model, without showing us what will happen to our decision if we increase or decrease our feature values

Thank You!

Any questions?

Reference

- (Seoul, South Korea Average Annual Weather Holiday Weather (holiday-weather.com)
- Chart: Bike-Sharing Clicks Into Higher Gear | Statista
- SeoulBikeDemand