Integer-Forcing Source Coding

Or Ordentlich Joint work with Uri Erez

June 30th, 2014 ISIT, Honolulu, HI, USA

$$\left[\begin{array}{c}x_1\\x_2\end{array}\right]\sim\mathcal{N}(\mathbf{0},\mathbf{K}_{xx})$$

Goal:

- \bullet Simple, identical, universal, non-cooperating quantizers $\mathcal{E}_1, \mathcal{E}_2$
- ullet Simple decoder ${\mathcal D}$ that can depend on ${\mathbf K}_{\!{\scriptscriptstyle X\!X}}$
- Good performance for all \mathbf{K}_{xx} with the same log det $\left(\mathbf{I} + \frac{1}{d}\mathbf{K}_{xx}\right)$

$$\left[\begin{array}{c}x_1\\x_2\end{array}\right]\sim\mathcal{N}(\mathbf{0},\mathbf{K}_{xx})$$

Goal:

- ullet Simple, identical, universal, non-cooperating quantizers $\mathcal{E}_1,\mathcal{E}_2$
- ullet Simple decoder ${\mathcal D}$ that can depend on ${\mathbf K}_{{\mathsf x}{\mathsf x}}$
- Good performance for all \mathbf{K}_{xx} with the same log det $\left(\mathbf{I} + \frac{1}{d}\mathbf{K}_{xx}\right)$

Extreme cases:

$$\mathbf{K}_{xx}^1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $\mathbf{K}_{xx}^2 = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$, and $\mathbf{K}_{xx}^3 = \begin{bmatrix} b & b \\ b & b \end{bmatrix}$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_{xx}) \qquad \begin{array}{c} x_1 \\ \\ x_2 \end{array} \longrightarrow \begin{array}{c} \mathcal{E}_1 \\ \\ \mathcal{E}_2 \end{array} \longrightarrow \begin{array}{c} \mathcal{R} \\ \\ \mathcal{E}_2 \end{array} \longrightarrow \begin{array}{c} (\hat{x}_1, d) \\ (\hat{x}_2, d) \end{array}$$

Goal:

- Simple, identical, universal, non-cooperating quantizers $\mathcal{E}_1, \mathcal{E}_2$
- Simple decoder \mathcal{D} that can depend on \mathbf{K}_{xx}
- Good performance for all \mathbf{K}_{xx} with the same log det $(\mathbf{I} + \frac{1}{d}\mathbf{K}_{xx})$

Extreme cases:

$$\mathbf{K}_{xx}^1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $\mathbf{K}_{xx}^2 = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$, and $\mathbf{K}_{xx}^3 = \begin{bmatrix} b & b \\ b & b \end{bmatrix}$

Willing to apply a universal linear transformation before quantization

- Fundamental limits understood in some cases
- Inner and outer bounds known

- Fundamental limits understood in some cases
- Inner and outer bounds known

Some applications require

- Extremely simple encoders/decoder
- Extremely short delay

We restrict attention to:

- Gaussian sources $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_{xx})$
- One-shot compression block length is 1
- Symmetric rates $R_1 = \cdots = R_K = R$
- Symmetric distortions $d_1 = \cdots = d_K = d$
- MSE distortion measure: $E(x_k \hat{x}_k)^2 \le d$

Goal and Means

Goal

- Simple encoders: uniform scalar quantizers
- Decoupled decoding
- Performance close to best known inner bounds (Berger-Tung)

Goal and Means

Goal

- Simple encoders: uniform scalar quantizers
- Decoupled decoding
- Performance close to best known inner bounds (Berger-Tung)

Binning:

- Well understood for large blocklengths, less for short blocks
- Requires sophisticated joint decoding techniques

Goal and Means

Goal

- Simple encoders: uniform scalar quantizers
- Decoupled decoding
- Performance close to best known inner bounds (Berger-Tung)

Binning:

- Well understood for large blocklengths, less for short blocks
- Requires sophisticated joint decoding techniques

Scalar Modulo

- A simple 1-D binning operation
- Allows for efficient decoding using integer-forcing

Integer-Forcing Source Coding: Overview

Basic Idea: Rather than solving the problem

Integer-Forcing Source Coding: Overview

First solve

and then invert equations to get $\hat{x}_1, \ldots, \hat{x}_K$

Integer-Forcing Source Coding: Overview

First solve

and then invert equations to get $\hat{x}_1, \ldots, \hat{x}_K$

- ullet Problem reduces to simultaneous distributed compression of K linear combinations
- Can be efficiently solved with small rates for certain choices of coefficients
- Equation coefficients can be chosen to optimize performance

Scalar Quantization

High resolution/dithered quantization:

$$\tilde{x}_i = x_i + u_i$$

where
$$u_i \sim \text{Uniform}\left(\left[-\frac{\sqrt{12d}}{2}, \frac{\sqrt{12d}}{2}\right]\right)$$
, $u_i \perp \!\!\! \perp \!\!\! x_i$

 $\bullet \ \mathbb{E}(\tilde{x}_i - x_i)^2 = d$

Modulo Scalar Quantization

- $\Delta = 2^R \sqrt{12d} \Longrightarrow$ Compression rate is R
- High resolution/dithered quantization:

$$\tilde{x}_i^* = [x_i + u_i]^*$$

Encoders

Each encoder is a modulo scalar quantizer with rate R : produces \tilde{x}_k^*

Encoders

Each encoder is a modulo scalar quantizer with rate R : produces \tilde{x}_k^*

Simple modulo property

For any set of integers a_1, \ldots, a_K and real numbers $\tilde{x}_1, \ldots, \tilde{x}_K$

$$\left[\sum_{k=1}^K a_k \tilde{x}_k\right]^* = \left[\sum_{k=1}^K a_k \tilde{x}_k^*\right]^*$$

Encoders

Each encoder is a modulo scalar quantizer with rate R : produces \widetilde{x}_k^*

Simple modulo property

For any set of integers a_1,\ldots,a_K and real numbers $ilde x_1,\ldots, ilde x_K$

$$\left[\sum_{k=1}^K a_k \tilde{x}_k\right]^* = \left[\sum_{k=1}^K a_k \tilde{x}_k^*\right]^*$$

Decoder

- Gets: $\tilde{x}_1^*, \dots, \tilde{x}_K^*$
- Outputs:

$$\widehat{\mathbf{a}^T \mathbf{x}} = \left[\sum_{k=1}^K a_k \tilde{\mathbf{x}}_k^* \right]^* = \left[\sum_{k=1}^K a_k \tilde{\mathbf{x}}_k \right]^* = \left[\mathbf{a}^T (\mathbf{x} + \mathbf{u}) \right]^*$$

Compression of Integer Linear Combination - P_e

$$\widehat{\mathbf{a}^T\mathbf{x}} = \left[\mathbf{a}^T(\mathbf{x} + \mathbf{u})\right]^*$$

$$\widehat{\mathbf{a}^T \mathbf{x}} = \begin{cases} \mathbf{a}^T \mathbf{x} + \mathbf{a}^T \mathbf{u} & \text{if } \mathbf{a}^T (\mathbf{x} + \mathbf{u}) \in \left[-\frac{\Delta}{2}, \frac{\Delta}{2} \right) \\ \text{error} & \text{otherwise} \end{cases}$$

- P_e is small if $\frac{\Delta}{\sqrt{\operatorname{Var}\left(\mathbf{a}^T(\mathbf{x}+\mathbf{u})\right)}}$ is large
- ullet Δ grows exponentially with R

Compression of Integer Linear Combination - P_e

$$\widehat{a^Tx} = \left[a^T(x+u)\right]^*$$

$$\widehat{\mathbf{a}^T \mathbf{x}} = \begin{cases} \mathbf{a}^T \mathbf{x} + \mathbf{a}^T \mathbf{u} & \text{if } \mathbf{a}^T (\mathbf{x} + \mathbf{u}) \in \left[-\frac{\Delta}{2}, \frac{\Delta}{2} \right) \\ \text{error} & \text{otherwise} \end{cases}$$

- P_e is small if $\frac{\Delta}{\sqrt{\mathrm{Var}\left(\mathbf{a}^T(\mathbf{x}+\mathbf{u})\right)}}$ is large
- ullet Δ grows exponentially with R

$$P_{\mathrm{e}} \leq 2 \exp \left\{ -\frac{3}{2} 2^{2 \left(R - \frac{1}{2} \log \left(\frac{\mathbf{a}^T (\mathbf{K}_{\mathbf{x}\mathbf{x}} + d\mathbf{I}) \mathbf{a}}{d}\right)\right)} \right\}$$

Compression of Integer Linear Combination - P_e

$$\widehat{\mathbf{a}^T\mathbf{x}} = \left[\mathbf{a}^T(\mathbf{x} + \mathbf{u})\right]^*$$

$$\widehat{\mathbf{a}^T \mathbf{x}} = \begin{cases} \mathbf{a}^T \mathbf{x} + \mathbf{a}^T \mathbf{u} & \text{if } \mathbf{a}^T (\mathbf{x} + \mathbf{u}) \in \left[-\frac{\Delta}{2}, \frac{\Delta}{2} \right) \\ \text{error} & \text{otherwise} \end{cases}$$

- P_e is small if $\frac{\Delta}{\sqrt{\mathrm{Var}\left(\mathbf{a}^T(\mathbf{x}+\mathbf{u})\right)}}$ is large
- \bullet Δ grows exponentially with R

$$P_{e} \leq 2 \exp \left\{ -\frac{3}{2} 2^{2 \left(R - \frac{1}{2} \log \left(\frac{\mathbf{a}^{T} (\mathbf{K}_{\mathbf{x}\mathbf{x}} + d\mathbf{I}) \mathbf{a}}{d}\right)\right)} \right\}$$

For **a** with small $\operatorname{Var}\left(\mathbf{a}^{T}(\mathbf{x}+\mathbf{u})\right)$ we can take small R

Integer-Forcing Source Coding

- ullet Need to estimate K linearly independent integer linear combinations
- If all combinations estimated without error, can compute

$$\hat{\boldsymbol{x}} = \boldsymbol{A}^{-1}\widehat{\boldsymbol{A}\boldsymbol{x}} = \boldsymbol{A}^{-1}(\boldsymbol{A}\boldsymbol{x} + \boldsymbol{A}\boldsymbol{u}) = \boldsymbol{x} + \boldsymbol{u}$$

Integer-Forcing Source Coding

- ullet Need to estimate K linearly independent integer linear combinations
- If all combinations estimated without error, can compute

$$\hat{\mathbf{x}} = \mathbf{A}^{-1}\widehat{\mathbf{A}\mathbf{x}} = \mathbf{A}^{-1}(\mathbf{A}\mathbf{x} + \mathbf{A}\mathbf{u}) = \mathbf{x} + \mathbf{u}$$

$$P_{e} \leq 2K \exp \left\{ -\frac{3}{2} 2^{2 \left(R - \frac{1}{2} \log \left(\frac{\max_{m=1,...,K} \mathbf{a}_{m}^{T}(\mathbf{K}_{\mathbf{x}\mathbf{x}} + d\mathbf{I}) \mathbf{a}_{m}}{d}\right)\right)} \right\}$$

Integer-Forcing Source Coding - Performance

Let

$$R_{\mathsf{IF}}(\mathbf{A}, d) \triangleq \frac{1}{2} \log \left(\max_{m=1,\dots,K} \mathbf{a}_m^{\mathsf{T}} \left(\mathbf{I} + \frac{1}{d} \mathbf{K}_{\mathsf{xx}} \right) \mathbf{a}_m \right)$$

Integer-Forcing Source Coding - Performance

Let

$$R_{\mathsf{IF}}(\mathbf{A}, d) \triangleq \frac{1}{2} \log \left(\max_{m=1,...,K} \mathbf{a}_m^{\mathsf{T}} \left(\mathbf{I} + \frac{1}{d} \mathbf{K}_{\mathsf{xx}} \right) \mathbf{a}_m \right)$$

Theorem

Let $R=R_{\mathsf{IF}}(\mathbf{A},d)+\delta$. IF source coding produces estimates with average MSE distortion d for all x_1,\ldots,x_K with probability $>1-2K\exp\left\{-\frac{3}{2}2^{2\delta}\right\}$

Integer-Forcing Source Coding - Performance

Let

$$R_{\mathsf{IF}}(\mathbf{A}, d) \triangleq \frac{1}{2} \log \left(\max_{m=1,...,K} \mathbf{a}_m^{\mathsf{T}} \left(\mathbf{I} + \frac{1}{d} \mathbf{K}_{\mathsf{xx}} \right) \mathbf{a}_m \right)$$

Theorem

Let $R=R_{\mathsf{IF}}(\mathbf{A},d)+\delta$. IF source coding produces estimates with average MSE distortion d for all x_1,\ldots,x_K with probability $>1-2K\exp\left\{-\frac{3}{2}2^{2\delta}\right\}$

Can minimize compression rate by minimizing $R_{IF}(\mathbf{A}, d)$ w.r.t. **A**

Integer-Forcing Source Coding: Example

 $\mathbf{x} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{K}_{\mathbf{x}\mathbf{x}}\right), \ \mathbf{K}_{\mathbf{x}\mathbf{x}} = \mathbf{I} + \mathsf{SNR}\mathbf{H}\mathbf{H}^T, \ \mathsf{SNR} = \mathsf{20dB} \ \mathsf{and} \ \mathbf{H} \in \mathbb{R}^{8 \times 2}$

How close is $R_{IF}(d)$ to the optimal performance?

- Usually very close to the performance of the Berger-Tung inner bound.
- But... the gap can be arbitrarily large.

How close is $R_{IF}(d)$ to the optimal performance?

- Usually very close to the performance of the Berger-Tung inner bound.
- But... the gap can be arbitrarily large.

However, if we change the setting...

this obstacle can be overcome.

How close is $R_{IF}(d)$ to the optimal performance?

- Usually very close to the performance of the Berger-Tung inner bound.
- But... the gap can be arbitrarily large.

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_{xx})$$

How close is $R_{IF}(d)$ to the optimal performance?

- Usually very close to the performance of the Berger-Tung inner bound.
- But... the gap can be arbitrarily large.

How close is $R_{IF}(d)$ to the optimal performance?

- Usually very close to the performance of the Berger-Tung inner bound.
- But... the gap can be arbitrarily large.

Requirements

- Universal precoding matrix **P** (does not depend on K_{xx})
- $R_{\mathsf{IF}}(d) \leq \mathsf{const} + \frac{1}{2K} \log(\mathbf{I} + \frac{1}{d}\mathbf{K}_{xx})$ for all \mathbf{K}_{xx}

How close is $R_{IF}(d)$ to the optimal performance?

- Usually very close to the performance of the Berger-Tung inner bound.
- But... the gap can be arbitrarily large.

Requirements

- Universal precoding matrix **P** (does not depend on K_{xx})
- ullet $R_{\mathsf{IF}}(d) \leq \mathsf{const} + rac{1}{2\mathcal{K}} \log(\mathbf{I} + rac{1}{d}\mathbf{K}_{xx})$ for all \mathbf{K}_{xx}

Price of universality - need to jointly encode K realizations

Space-Time Source Coding

Space-Time Source Coding - Performance Guarantees

Let ${\bf P}$ be a generating matrix of a "perfect" linear dispersion space-time code, with minimum det $\delta_{\min}(\mathcal{C}_{\infty}^{\mathsf{ST}})$

Theorem

For any source with covariance matrix \mathbf{K}_{xx} , the rate-distortion function of space-time integer-forcing source coding with precoding matrix \mathbf{P} is bounded by

$$R_{\mathsf{IF}}(d) < \frac{1}{2K} \log \det \left(\mathbf{I} + \frac{1}{d} \mathbf{K}_{\mathbf{xx}} \right) + \Gamma \left(K, \delta_{\mathsf{min}}(\mathcal{C}_{\infty}^{\mathsf{ST}}) \right)$$

where
$$\Gamma\left(K, \delta_{\min}(\mathcal{C}_{\infty}^{\mathsf{ST}})\right) \triangleq 2K^2\log(2K^2) + K\log\frac{1}{\delta_{\min}(\mathcal{C}_{\infty}^{\mathsf{ST}})}$$

Remark: For K=2 the golden-code precoding matrix has $\delta_{\sf min}(\mathcal{C}_{\infty}^{\sf ST})=1/5$

Example

$$\mathbf{K}_{xx}^1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $\mathbf{K}_{xx}^2 = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$, and $\mathbf{K}_{xx}^3 = \begin{bmatrix} b & b \\ b & b \end{bmatrix}$

$$\tfrac{1}{2K}\log\left(\mathbf{I}+\tfrac{1}{d}\mathbf{K}_{\mathrm{xx}}^1\right)=\tfrac{1}{2K}\log\left(\mathbf{I}+\tfrac{1}{d}\mathbf{K}_{\mathrm{xx}}^2\right)=\tfrac{1}{2K}\log\left(\mathbf{I}+\tfrac{1}{d}\mathbf{K}_{\mathrm{xx}}^3\right)$$

Example

$$\mathbf{K}_{xx}^1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $\mathbf{K}_{xx}^2 = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$, and $\mathbf{K}_{xx}^3 = \begin{bmatrix} b & b \\ b & b \end{bmatrix}$

$$\tfrac{1}{2K}\log\left(\mathbf{I}+\tfrac{1}{d}\mathbf{K}_{\mathrm{xx}}^{1}\right)=\tfrac{1}{2K}\log\left(\mathbf{I}+\tfrac{1}{d}\mathbf{K}_{\mathrm{xx}}^{2}\right)=\tfrac{1}{2K}\log\left(\mathbf{I}+\tfrac{1}{d}\mathbf{K}_{\mathrm{xx}}^{3}\right)$$

Thanks for your attention!