Université Mohamed khider Biskra

Faculté des sciences exactes et sciences de la nature et de vie Département de mathématiques

Module: Martingales à temps discret

TD 3: Martingales et temps d'arrêt

Exercice1:

1) Soit $(Z_n)_{n\geq 1}$ une suite de v.a.r. indépendantes de même loi donnée par :

 $P(Z_n=1)=p,\ P(Z_n=-1)=1-p.$ On pose $\mathcal{B}_0=\{\emptyset,\Omega\}$ et $B_n=\sigma(Z_1,...,Z_n)$ pour $n\geq 1.$ Soit $(b_n)_{n\geq 1}$ une suite de v.a. positives bornées, telles que b_n soit \mathcal{B}_{n-1} -mesurable pour tout $n\geq 1$, on définit un jeu en décidant que si $Z_n=1$, on gagne b_n , et si $Z_n=-1$, on pert b_n . Soit S_0 la fortune initiale, S_n la fortune aprés le n-iéme coup.

Montrer que $(S_n)_{n\geq 1}$ est une martingale si $p=\frac{1}{2}$, une sous-martingale si $p > \frac{1}{2}$, une surmartingale si $p < \frac{1}{2}$.

2)Soit $(X_n)_{n\geq 0}$ une sur-martingale pour la filtration $(\mathcal{B}_n)_{n\geq 0}$,

a)Soit $(\varepsilon_n)_{n\geq 0}$ une suite de v.a.positives et bornées, ε_n étant \mathcal{B}_{n-1} -mesurable pour $n\geq 1$ et ε_0 constante. On pose $Z_0=X_0$, et pour $n\geq 1$, $Z_n=X_n-X_{n-1}$. Montrer que la suite $Y_n=\varepsilon_0Z_0+\ldots+\varepsilon_nZ_n$ est une sur-martingale.

b) Soit T un temps d'arrêt adapté à la filtration $(\mathcal{B}_n)_{n\geq 0}$. Montrer que le processus $\left(\hat{X}_n\right)_{n\geq 0}=(X_{T\wedge n})_{n\geq 0}$ est une sur-martingale.

Exercice2:

Soit $(Y_n)_{n\in \mathbb{N}}$ une suite de v.a.r. indépendantes

intégrables, avec $E(Y_n) = \mu_n$. On pose $m_n = \sum_{k=1}^n \mu_k$, puis:

 $S_0 = 0, \mathcal{F}_0 = \{\Omega, \phi\}, \text{ et pour } n \ge 1, S_n = Y_1 + \dots + Y_n, \mathcal{F}_n = \sigma(Y_1, \dots, Y_n),$

1-Montrer que $Z_n = S_n - m_n$ est une martingale.

2-Si la suite Y_n est de carré sommable, on pose $\sigma_n^2 = var(Y_n)$ et $v_n^2 = \sum_{k=1}^n \sigma_k^2$.

Montrer que $X_n = Z_n^2 - v_n^2$ est une martingale.

Exercice3:

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de v.a indépendantes. Pour $a\succ 0$, on pose:

$$Y_n^a = X_n \mathbf{1}_{\{|X_n| \le a\}}, \ m_n^a = E(Y_n^a) \text{ et } S_n = \sum_{k=1}^n (Y_k^a - m_k^a).$$

On suppose qu'il existe $a \succ 0$ tel que les séries:

$$\sum_{n} P(|X_{n}| \geq a); \sum_{n} E(Y_{n}^{a}); \sum_{n} Var(Y_{n}^{a}) \text{ soient convergentes.}$$

a) Montrer que $(S_n)_{n\geq 1}$ est une martingale, en déduire que $\sum_n (Y_n^a - m_n^a)$ converge

presque surement.

b) Montrer que $\sum_{n} Y_n^a$ converge presque sûrement.

c) Montrer que $\sum_{n} X_n$ converge presque sûrement.

Exercice4:

Soit $(X_n)_{n\in\mathbb{N}}$ une sMG pour la filtration $(\mathcal{B}_n)_{n\in\mathbb{N}}$ et soit $(m_n)_{n\in\mathbb{N}}$ une suite croissante de temps d'arrêt finis. On pose $Y_n=X_{m_n}$. Montrer que les hypothèses

$$\forall n \geq 0, E(|Y_n|) < +\infty \text{ et}$$

 $\forall n \geq 0, \underline{\lim}_{\{m_n > N\}} \int_{|X_N|} dp = 0$

sont vérifiées dans les deux cas suivants:

- a) Il existe M > 0 tel que pour tout $n, |X_n| \leq M$ P.p.s.
- b) Les temps d'arrêt m_n sont bornés:

$$\forall n \geq 0, \exists k_n \in N, m_n \leq k_n \quad P.p.s.$$

Exercice5: (théorème généralisé de Lebegue)

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de v.a intégrable qui converge P.p.s vers X. Alors les conditions suivantes sont équivalentes

$$1)X \in L^1 \text{ et } X_n \xrightarrow[n \to +\infty]{L^1} X$$

2) La suite $(X_n)_{n\in N}$ est uniformément intégrable.

Exercice6:

Soit H une partie de L^1 , les propriétés suivantes sont équivalentes:

- 1) H est uniformément intégrable.
- 2) Il existe une fonction $g: R_+ \longrightarrow R_+$ telle que $\lim_{t \longrightarrow +\infty} \frac{g(t)}{t} = +\infty$, et $\sup_{X \in H} E\left[g\left(|X|\right)\right] < +\infty$.