OkCupid Data-A-Scientist

Codecademy portofolio project

Introduction:

In recent years, there has been a massive rise in the usage of dating apps to find love. Many of these apps use sophisticated data science techniques to recommend possible matches to users and to optimise the user experience. These apps give us access to a wealth of information that we've never had before about how different people experience romance.

In this portfolio project, I will analyze some data from OKCupid, an app that focuses on using multiple choice and short answers to match users and also create a presentation about my findings from this OKCupid dataset. The purpose of this project is to practice formulating questions and implementing machine learning techniques to answer those questions.

Data:

We have a csv file called "profiles.csv".

It has 31 columns as features and 59946 rows. Each row appears in the user's profile on the site. But some profiles have NaN values and we should drop the NaN datas and also if a feature has a lot of NaN values, we should drop that feature because it can make a problem in prediction and it lowers accuracy. Below, the first photo shows three columns of our data and the second shows how many NaN values each column has and the column data types.

0	age	59946	non-null	int64
1	body_type	54650	non-null	object
2	diet	35551	non-null	object
3	drinks	56961	non-null	object
4	drugs	45866	non-null	object
5	education	53318	non-null	object
6	essay0	54458	non-null	object
7	essay1	52374	non-null	object
8	essay2	50308	non-null	object
9	essay3	48470	non-null	object
10	essay4	49409	non-null	object
11	essay5	49096	non-null	object
12	essay6	46175	non-null	object
13	essay7	47495	non-null	object
14	essay8	40721	non-null	object
15	essay9	47343	non-null	object
16	ethnicity	54266	non-null	object
17	height	59943	non-null	float64
18	income	59946	non-null	int64
19	job	51748	non-null	object
20	last_online	59946	non-null	object
21	location	59946	non-null	object
22	offspring	24385	non-null	object
23	orientation	59946	non-null	object
24	pets	40025	non-null	object
25	religion	39720	non-null	object
26	sex	59946	non-null	object
27	sign	48890	non-null	object
28	smokes	54434	non-null	object
29	speaks	59896	non-null	object
30	status	59946	non-null	object
dtyp	es: float64(1), inte	54(2), obj	ect(28)

age	e body_type	diet	drinks	drugs	education	essay0	essay1	essay2	essay3	 location	offspring	orientation	pets	religion	sex	sign	smokes	speaks	status
0 2:	a little extra	strictly anything	socially	never	working on college/university	about me:
\n
\ni would love to think</br </br 	currently working as an international agent fo	making people laugh.
\nranting about a go</br 	the way i look. i am a six foot half asian, ha	 south san francisco, california	doesn't have kids, but might want them	straight	likes dogs and likes cats	agnosticism and very serious about it	m	gemini	sometimes	english	single
1 3	5 average	mostly other	often	sometimes	working on space camp	i am a chef: this is what that means.
\n1</br 	dedicating everyday to being an unbelievable b	being silly. having ridiculous amonts of fun w	NaN	 oakland, california	doesn't have kids, but might want them	straight	likes dogs and likes cats	agnosticism but not too serious about it	m	cancer	no	english (fluently), spanish (poorly), french (single
2 38	3 thin	anything	socially	NaN	graduated from masters program	i'm not ashamed of much, but writing public te	i make nerdy software for musicians, artists,	improvising in different contexts. alternating	my large jaw and large glasses are the physica	 san francisco, california	NaN	straight	has cats	NaN	m	pisces but it doesn't matter	no	english, french, c++	available

Goals:

Our goals is analyze data and clean it, then use machine learning to learn features and predict people's status.

Data analyses and visualisation:

After that, I will compare features and visualise them. So at first we see how many of profiles are male or female and we conclude about 60 percent of them are male and 40 percent of them are female.

Next we compare body types, age, income, education, job, orientation based on sex. In body type section we can say most people are athletic, fit or a little extra. About age, most people around 19 to 40 years old and most of them graduated from college or university. About orientation, most of people are straight and at last most of people never use drugs and use drinks socially.

In the next slides you can see their charts.

Compare some features according by sex

Also we can compare and visualise some other features but for some feature like religion we have a lot of data and we can clean and stack them:

Now we can make a data frame for use the model. For this table I choose these columns: Body type, diet, drinks, drugs, education, job, orientation, sex, clean religion and status. I cleared my data frame of NaN datas and convert datasets to numeric datasets expect status column. Below you can see a part of our new data frame.

bod	y_type_a	ody_type_athletic	body_type_averag	e body_type_curvy	body_type_fit	body_type_full	body_type_jacked	body_type_overweight	body_type_rather	body_type_skinr	ny shor	t_religion_agnost
	ttie extra					Tigurea ^	2-21		not say			
0	1	0		0 0	0	0	0	U	0		0	
1	0	0		1 0	0	0	0	0	0		0	
7	0	0		1 0	0	0	0	0	0		0	
ort_religio	on_atheism	short_religion_b	ouddhism short_r	eligion_catholicism	short_religion	_christianity s	short_religion_hinduis	m short_religion_isla	m short_religion_	judaism short	t_religion_ot	her status
	0		0	0		0		0	0	0		0 single
	0		0	0		0		0	0	0		0 single
	0		0	0		1		0	0	0		0 single

Now we can set the data to x and y. All columns of new data frame for x expect status and just status column for y and split the data for train and test sets.

Choose and build model:

My target (the status) is a classification data so I should a model from classification ways such as K-Nearest Neighbours, Support Vector Machines and Naive Bayes and I choose K-Nearest Neighbours for this project.

K-Nearest Neighbours a "n_neighbors" parameter and for find a best n_neighbors, each time I made a model with one of the numbers 1 to 10 and fit them with train sets and calculate the accuracy of model so the best model have the highest accuracy so I find the highest accuracy and the n_neighbor of that.

Once the data is preprocessed, it is ready to model. For now we can make our K-Nearest Neighbours model and fit and learn it with our train sets and predict the data with it.

The accuracy of K-Nearest Neighbors model with our test sets is about **93.493 percent**.

At the end we can make a confusion matrix for this model.

