Matematično-fizikalni praktikum 2024/25

5. naloga: Hitra Fourierova transformacija in korelacijske funkcije

Tadej Tomažič

20. november 2024

Kazalo

1	Nav	rodila	2
2	2 Rešitev		4
3 Dodatna naloga		6	
\mathbf{S}^{1}	like		
	1	Avtokorelacija signala sov	4
	2	Korelacija sov in posnetkov iz narave	5
	3	Hitrost algoritmov	5
	4	Barva glasu moškega in ženske	6
	5	Korelacija glasa človeka in posnetkov iz branja slovarja	6

1 Navodila

Diskretno Fourierovo transformacijo smo definirali kot

$$H_k = \sum_{n=0}^{N-1} h_n \exp(2\pi i k n/N), \qquad k = -\frac{N}{2}, \dots, \frac{N}{2},$$

oziroma

$$H_k = \sum_{n=0}^{N-1} W_N^{nk} h_n, \qquad W_N = \exp(2\pi i/N).$$

Ta postopek ima očitno časovno zahtevnost N^2 . Račun pa je mogoče izvesti tudi z bistveno manj operacijami. Osnovni premislek je razcep

$$H_k = H_k^{\text{sod}} + W_N^k H_k^{\text{lih}} \,,$$

kjer smo transformiranko H izrazili s transformacijama njenih sodih in lihih členov, pri čemer je vsota vsake od transformacij zdaj dolžine N/2. Gornjo relacijo lahko uporabljamo rekurzivno: če je N enak potenci števila 2, lahko rekurzijo razdrobimo do nizov, ki imajo samo še en člen. Zanj je transformacija identiteta. Za obrat pri eni vrednosti frekvence (pri danem m) je potrebno na vsakem koraku rekurzije le eno množenje s potenco W, korakov pa je $\log_2 N$. Skupna časovna zahtevnost je torej le še $N \log_2 N$.

Da ne iščemo pripadnikov niza po vsej tabeli, si podatke preuredimo. Lahko je pokazati, da je v prvotni tabeli treba med seboj zamenjati podatke, katerih vrstna števila v binarnem zapisu so obrnjena: v novem redu jemljemo člene kar po vrsti. Tudi potenc W ne izražamo vedno znova s sinusi in kosinusi, pač pa jih računamo z rekurzijo. Tak ali podoben postopek je osnova vseh algoritmov hitre Fourierove transformacije (FFT).

Z neko transformacijo iz družine FFT bomo izračunali korelacijsko funkcijo dveh signalov. Korelacija periodičnih funkcij g(t) in h(t) s periodo T je definirana kot:

$$\phi_{gh}(\tau) = \frac{1}{T} \int_{0}^{T} g(t+\tau) h(t) dt,$$

oziroma diskretno

$$\phi_{gh}(n) = \frac{1}{N} \sum_{k=0}^{N-1} g_{k+n} h_k.$$

Računamo torej skalarni produkt funkcij, ki sta časovno premaknjeni za τ oziroma n. Če je za določeno vrednost premika ta funkcija višja kot v okolici, potem to pomeni, da sta si funkciji podobni, le da ju je treba premakniti, da se to vidi.

V primeru, da sta funkciji (signala), ki ju primerjamo, enaki, računamo njuno avtokorelacijsko funkcijo: ta je mera za to, ali signal ostaja s pretekanjem časa sam sebi podoben. Če je signal slabo koreliran (sam s sabo), korelacija $\phi_{hh}(n)$ relaksira h kvadratu povprečnega signala $\langle h \rangle^2$, kjer je

$$\langle h \rangle = \frac{1}{N} \sum_{k=0}^{N-1} h_k .$$

Iz lokalnih maksimov v avtokorelacijski funkciji sklepamo na periodičnosti, bodisi popolne ali približne. Pri periodičnih signalih je tudi avtokorelacijska funkcija striktno periodična, za stohastične procese pa je značilna eksponentna avtokorelacijska funkcija. še bolj nas zanima, kako hitro se korelacija izgublja: računamo rajši reskalirano obliko avtokorelacije

$$\widetilde{\phi}_{hh}(n) = \frac{\phi_{hh}(n) - \langle h \rangle^2}{\phi_{hh}(0) - \langle h \rangle^2} ,$$

kjer je imenovalec nekakšno merilo za varianco signala,

$$\sigma^2 = \phi_{hh}(0) - \langle h \rangle^2 = \frac{1}{N} \sum_{k=0}^{N-1} (h_k - \langle h \rangle)^2.$$

Pri zgornjih enačbah moramo še "peš" poskrbeti za periodično zaključenost signala pri n = N, torej da je perioda enaka velikosti vzorca. Če tega ne moremo narediti, je bolj pravilna definicija avtokorelacije

$$\phi_{hh}(n) = \frac{1}{N-n} \sum_{k=0}^{N-n-1} h_{k+n} h_k.$$

Praktičen račun po zgornji formuli lahko postane za velike vzorce prezamuden. Avtokorelacijo rajši računamo s FFT (DFT) \mathcal{F} , saj je korelacija obratna Fourierova transformacija \mathcal{F}^{-1} produkta Fourierovih transformacij \mathcal{F} , torej z $G = \mathcal{F}g$ in $H = \mathcal{F}h$ dobimo

$$\phi_{gh}(n) = \frac{1}{N-n} \mathcal{F}^{-1} \left[G \cdot (H)^* \right]$$

oziroma

$$\phi_{hh}(n) = \frac{1}{N-n} \mathcal{F}^{-1} \left[|H|^2 \right] .$$

Za račun s FTT signale dolžine N najprej prepišemo v dvakrat daljše, periodično zaključene podatkovne nize, $\widetilde{h}_n = h_n$, $\widetilde{h}_{n+N} = 0$ za $n = 0, \dots, N-1$ in $\widetilde{h}_{n+2N} = \widetilde{h}_n$. Tedaj se avtokorelacija zapiše v obliki

$$\phi_{hh}(n) = \frac{1}{N-n} \sum_{k=0}^{2N-1} \widetilde{h}_{k+n} \, \widetilde{h}_k \,,$$

kar lahko izračunamo s FFT.

Naloga: Na spletni strani MF praktikuma najdeš posnetke oglašanja velike uharice, naše največje sove. Posneti sta dve sovi z minimalnim ozadjem (bubomono in bubo2mono) in nekaj mešanih signalov, ki zakrivajo njuno oglašanje (mix, mix1, mix2 in mix22). V signalih mix2 in mix22 je oglašanje sove komaj še zaznavno. Izračunaj avtokorelacijsko funkcijo vseh signalov in poskusi ugotoviti, za katero sovo gre pri teh najbolj zašumljenih signalih!

Poglejte si rutine four1 iz Numerical Recipes ali knjižnice fftw3, ki je še dosti hitrejša. V okolju Python so te rutine vključene v 'fft' paket. (Pri tako velikih vzorcih je skorajda nujno uporabiti FFT namesto počasne navadne DFT.)

Dodatna naloga: Izračunaj še avtokorelacijsko funkcijo za kak signal, ki ga posnameš sam ali za kak proces, za katerega sam poiščeš ustrezne podatke.

2 Rešitev

Najprej si poglejmo avtokorelacijo za obe sovi.

Slika 1: Avtokorelacija signala sov

Preden sem koreliral signal sem vektorja samplov normiral, tako da je "najmočnejšišignal 1. To pomeni

$$||x||_{\infty} = \max_{i} |x_i|$$

Poglejmo si še korelacije med sovami in posnetki:

Slika 2: Korelacija sov in posnetkov iz narave

Tukaj je bila normalizacija drugače izbrana. Tukaj je bila narejena normalizacija korelacije. Če je varianca signala a σ_a , potem je $\mathbf{x} = \mathbf{x}/\left(\sigma_a\sigma_b|\mathbf{b}|\right)$. Sigma je izračunana z numpy.std(). Hitrosti so precej dolgčasno pričakovane ampak vseeno.

Slika 3: Hitrost algoritmov

3 Dodatna naloga

Posnel sem dva človeka m in ž ko izgovarjata aaaaaaaaaaa. Posnel sem jih tudi ko bereta slovar. Gledal sem ali lahko spet zaznam ali gre za ž glas ali m glas. Poglejmo si spektra njunega glasu.

Slika 4: Barva glasu moškega in ženske

Slika 5: Korelacija glasa človeka in posnetkov iz branja slovarja