

Lecture

Electricty and Magentism

- chapter 3.1: forces on moving charges in a magnetic field
- > 3.1.1 Lorentz force and magnetic field

Electricity and Magnetism, Prof. Dr. Gabriele Schrag

3.1 Forces on moving charges in a magnetic field

3.1.1 Lorentz force and magnetic field

- (i) Phenomenological observation: How do we recognize the presence of a magnetic field?
 - by impact on moving electric charge
 - ▶ deflection perpendicular to motion and to direction of magnetic field
 ⇒ force perpendicular to direction of motion = Lorentz force
 - > magnitude of force is proportional to
 - magnitude of velocity \vec{v} of charge
 - charge q
 - magnitude of magnetic field

Lorentz force

$$\vec{F}_L = q(\vec{v} \times \vec{B}) \quad (3.1)$$

- Magnetic field points into plane
- Magnetic field points out of plane

3.1 Forces on moving charges in a magnetic field

3.1.1 Lorentz force and magnetic field

Field quantity, which causes Lorentz deflection:

- րկզուենշ magnetische induction/magnetic flux density, "B-field" \vec{B}
- ightharpoonup unit: dim $(\vec{B}) = \frac{Vs}{m^2} = 1$ Tesla = 1T

note: according to electric field, the effect of the force is described by a force

field; see
$$\vec{F}_q = q\vec{E}$$

Lorentz force
$$\vec{F}_L = q(\vec{v} \times \vec{B})$$

$$\vec{F}_{em} = q(\vec{E} + \vec{v} \times \vec{B})$$
 (3.2)

Electricity and Magnetism, Prof. Dr. Gabriele Schrag

3.1 Forces on moving charges in a magnetic field

3.1.1 Lorentz force and magnetic field

(iii) Work carried out in magnetic field:

$$ightharpoonup$$
 In electric field $dW_{el} = \vec{F}_{el} d\vec{r} = q\vec{E} d\vec{r}$

> Im magnetic field
$$dW_{mag} = \vec{F}_L d\vec{r} = q(\vec{v} \times \vec{B}) d\vec{r} = q(\frac{d\vec{r}}{dt} \times \vec{B}) d\vec{r}$$

and power:
$$P_{mag} = \frac{dW_{mag}}{dt} = q(\vec{v} \times \vec{B}) \frac{d\vec{r}}{dt} = q(\vec{v} \times \vec{B}) \vec{v} = 0$$

No work is done on electric charge in a magnetic field; no power is added (as far as no electric field is present)

 \Rightarrow kinetic energy remains constant, and, hence, also the magnitude of the velocity: $|\vec{v}|$ =const. $\Leftrightarrow \frac{d\vec{v}}{dt} = 0$ (not direction! Direction is changed!)

(note: $\vec{v} \sim \vec{E}$ for drift model)