

M	S	P	S	P	T	A	L	F	C	L	11									
GGAGTCGACCCACGCGTCCGCAGGGCTGAGGAACC ATG TCT CCA TCC CCG ACC GCC CTC TTC TGT CTT											68									
G	L	C	L	G	R	V	P	A	Q	S	G	P	L	P	K	P	S	L	Q	31
GGG CTG TGT CTG GGG CGT GTG CCA GCG CAG AGT GGA CCG CTC CCC AAG CCC TCC CTC CAG																				128
A	L	P	S	S	L	V	P	L	E	K	P	V	T	L	R	C	Q	G	P	51
GCT CTG CCC AGC TCC CTG GTG CCC CTG GAG AAG CCA GTG ACC CTC CGG TGC CAG GGA CCT																				188
P	G	V	D	L	Y	R	L	E	K	L	S	S	S	R	Y	Q	D	Q	A	71
CCG GGC GTG GAC CTG TAC CGC CTG GAG AAG CTG AGT TCC AGC AGG TAC CAG GAT CAG GCA																				248
V	L	F	I	P	A	M	K	R	S	L	A	G	R	Y	R	C	S	Y	Q	91
GTC CTC TTC ATC CCG GCC ATG AAG AGA AGT CTG GCT GGA CGC TAC CGC TGC TCC TAC CAG																				308
N	G	S	L	W	S	L	P	S	D	Q	L	E	L	V	A	T	G	V	F	111
AAC GGA AGC CTC TGG TCC CTG CCC AGC GAC CAG CTG GAG CTC GTT GCC ACG GGA GTT TTT																				368
A	K	P	S	L	S	A	Q	P	G	P	A	V	S	S	G	G	D	V	T	131
GCC AAA CCC TCG CTC TCA GCC CAG CCC GGC CCG GCG GTG TCG TCA GGA GGG GAC GTA ACC																				428
L	Q	C	Q	T	R	Y	G	F	D	Q	F	A	L	Y	K	E	G	D	P	151
CTA CAG TGT CAG ACT CGG TAT GGC TTT GAC CAA TTT GCT CTG TAC AAG GAA GGG GAC CCT																				488
A	P	Y	K	N	P	E	R	W	Y	R	A	S	F	P	I	I	T	V	T	171
GCG CCC TAC AAG AAT CCC GAG AGA TGG TAC CGG GCT AGT TTC CCC ATC ATC ACG GTG ACC																				548
A	A	H	S	G	T	Y	R	C	Y	S	F	S	S	R	D	P	Y	L	W	191
GCC GCC CAC AGC GGA ACC TAC CGA TGC TAC AGC TTC TCC AGC AGG GAC CCA TAC CTG TGG																				608
S	A	P	S	D	P	L	E	L	V	V	T	G	T	S	V	T	P	S	R	211
TCG GCC CCC AGC GAC CCC CTG GAG CTT GTG GTC ACA GGA ACC TCT GTG ACC CCC AGC CGG																				668
L	P	T	E	P	P	S	S	V	A	E	F	S	E	A	T	A	E	L	T	231
TTA CCA ACA GAA CCA CCT TCC TCG GTA GCA GAA TTC TCA GAA GCC ACC GCT GAA CTG ACC																				728
V	S	F	T	N	K	V	F	T	T	E	T	S	R	S	I	T	T	S	P	251
GTC TCA TTC ACA AAC AAA GTC TTC ACA ACT GAG ACT TCT AGG AGT ATC ACC ACC AGT CCA																				788
K	E	S	D	S	P	A	G	P	A	R	Q	Y	Y	T	K	G	N	L	V	271
AAG GAG TCA GAC TCT CCA GCT GGT CCT GCC CGC CAG TAC TAC ACC AAG GGC AAC CTG GTC																				848
R	I	C	L	G	A	V	I	L	I	I	L	A	G	F	L	A	E	D	W	291
CGG ATA TGC CTC GGG GCT GTG ATC CTA ATA ATC CTG GCG GGG TTT CTG GCA GAG GAC TGG																				908
H	S	R	R	K	R	L	R	H	R	G	R	A	V	Q	R	P	L	P	P	311
CAC AGC CGG AGG AAG CGC CTG CGG CAC AGG GGC AGG GCT GTG CAG AGG CCG CTT CCG CCC																				968

L	P	P	L	P	Q	T	R	K	S	H	G	G	Q	D	G	G	R	Q	D	331
CTG	CCG	CCC	CTC	CCG	CAG	ACC	CGG	AAA	TCA	CAC	GGG	GGT	CAG	GAT	GGA	GGC	CGA	CAG	GAT	1028
V	H	S	R	G	L	C	S	*												340
GTT	CAC	AGC	CGC	GGG	TTA	TGT	TCA	TGA												1055
CCGCTGAACCCCAGGCACGGTCGTATCCAAGGGAGGGATCATGGCATGGGAGGCCACTCAAAGACTGGCGTGTGGAG 1134																				
CGTGGAAAGCAGGAGGGCAGAGGCTACAGCTGTGGAAACGAGGCCATGCTGCCTCCTGGTGTCCATCAGGGAGCCG 1213																				
TTCGGCCAGTGTCTGTCTGTCTGCCTCTGTCTGAGGGCACCCCTCATTGGGATGGAAGGAATCTGTGGAGAC 1292																				
CCCCATCCTCCCTGCACACTGTGGATGACATGGTACCCCTGGCTGGACCACATACTGGCCTCTTCTCAACCTCTCT 1371																				
AATATGGGCTCCAGACGGATCTTAAGGTTCCAGCTCTCAGGGTTGACTCTGTTCCATCCTCTGTGCAAAATCCTCCT 1450																				
GTGCTTCCCTTGGCCCTCTGTGCTTGTCTGGTTTCCCCAGAAACTCTCACCCCTACTCCATCTCCACTGCGGTC 1529																				
TAACAAATCTCCTTCTGCTCTCAGAACGGGCTTGAGGCAGTTGGGTATGTCATTCACTTCTTAGTGAAAATCT 1608																				
AGCACGTTGCCGCTCCCTCACATTAGAAAACAAGATCAGCCTGTGCAACATGGTAAACCTCATCTTACCAACAA 1687																				
AACAAAAAAACACAAAATTAGCCAGGTGTGGTGGTGCATCCCTATACTCCAGCAACTCGGGGGCTGAGGTGGGAGA 1766																				
ATGGCTTGAGCCTGGGAGGCAGAGGTTGCAGTGAGCTGAGATCACACCACTGCACTCTAGCTCGGGTGACGAAGCCTGA 1845																				
CCTTGTCTCAAAAATACAGGGATGAATATGTCATTACCTGATTGATCATAGCACGTTGTATACATGTACTGCAAT 1924																				
ATTGCTGTCCACCCATAAATATGTCATTGTATACATTAAAATCATAAAAATAAGATAATGAAAAAAAAAA 2003																				
AAAAAAAAAAAAAGGGGGGGCGCTAGACTAGTCTAGAGAAC 2047																				

FIG. 1B

MSPSPPTALFCLGLCLGRVPAQSGPLPKPSLQALPSSLVPLEKPVTLRCQGPPGVDLYRLE
KLSSSRYQDQAVLFIPAMKRSLAGRYRCSYQNGSLWSLPSDQLELVATGVFAKPSLSAQPGPAVSSGGDVTLQCQTRYGFDQFALYKEGDPAPYKNPERWYASFPIITVTAHSGTYRC
YSFSSRDPLYLWSAPSDPLELVVTGTSVTPSRLPTEPPSSVAEFSSEATAELTVSFTNKVFT
TETRSITTSPKESDSPAGPARQYYTKGNLVRICLGAVILIIILAGFLAEDWHSRRKRLRH
RGRAVQRPLPPLPQTRKSHGGQDGGRQDVHSRGGLCS

FIG.2

	10	20	30	40	50	60	70
inputs	ATGACGCCGCCCTCACAGCCCTGCTGCCTGGGCTGAGTCTGGGCCAGGACCGCGTGCAGGCAG						
	10	20	30	40	50	60	
	ATGTCTCATCCCCGACCGCCCTCTGTCTGGGCTGTCTGGGCG-TGTGCCAGC-GCAGAGTG						
	80	90	100	110	120	130	
inputs	GGCCCTTCCCCAAACCCACCCCTCTGGGCTGAGCCAGGCTGTGAT-CAGCTGGGGAGGCCGTGACCA						
	70	80	90	100	110	120	130
	GACCGCTCCCCAAGCCCTCCCTCAGGCTCTGCCAGCTCCCTGGTGCCCCTGGAGAACCCA-GTGACCC						
	140	150	160	170	180	190	200
inputs	TCTGGTGTCAAGGGGAGCCTGGAGGCCAGGAGTACCGACTGGATAAAGAGGGAAAGCCCAGAGCCCTTGGGA						
	140	150	160	170	180	190	200
	TCCGGTGCCAGGG-ACCT-----CCGGGCGTG-GACCTGTA-----CCGCCTGGAG-----AAG						
	210	220	230	240	250	260	270
inputs	CAGAAATAACCCACTGGAACCCAAAGAACAAAGGCCAGATTCTCCATCCCATGACAGAGCACCATGCG						
	190	200	210	220	230	240	
	CTGAGTT-CCAGCAGGTACC-AGGATCA-GGCAGTCCTTCAATCCCGGCCATGAAGAGAACGTCTGGCT						
	280	290	300	310	320	330	340
inputs	GGGAGATACCGCTGCCACTATTACAGCTGCAG--GCTGGTCAGAGGCCAGCGACCCCTGGAGCTGGT						
	250	260	270	280	290	300	310
	GGACGCTACCGCTGCTCTAC-CAGAACGGAAGCCTCTGGTCCCTGCCAGCGACCAGCTGGAGCTCGT						
	350	360	370	380	390	400	410
inputs	GATGACAGGATTCTACAACAAACCCACCTCTAGCCCTGCCAGCCCTGTGGTGGCCTCAGGGGGGAAT						
	320	330	340	350	360	370	380
	TGCCACGGGAGTTTGCCAAACCCCTCGCTCTAGCCCAGCCGGCCGGCGGTGTCGTCAAGGAGGGAC						
	420	430	440	450	460	470	480
inputs	ATGACCCCTCCGATGTGGCTCACAGAACGGATATCACCATTGTTCTGATGAAGGAAGGAGAACACCAGC						
	390	400	410	420	430	440	
	GTAACCCCTACAGTGTCAAGACTCGGTATGGCTTACCAATTGCTCTGTACAAGGAAGG-----						
	490	500	510	520	530	540	550
inputs	TCCCCCCGGACCCCTGGACTCACAGCAGCTCACAGTGGGGGTTCCAGGCCCTGTTCCCTGTGGGCCCGT						
	450						
	-----GGACCCCTG-----C-GCCCTA-----CAA						
	460						

FIG.3A

Serial No.: 09/829,495

Inventor(s): BUSFIELD ET AL.

Title: "GLYCOPROTEIN VI AND USES THEREOF"

inputs 560 570 580 590 600 610 620
GAACCCCAGCCACAGGTGGAGGTTCACATGCTATTACTATTATATGAACACCCCCCAGGTGTGGTCCCAC
::: ::::: ::::: ::::: ::::: ::::: :::
GAATCCCGA-----GAGATGGTAC-CGGGCTAGT-----TT-----CCCCAT-----CAT
470 480 490 500

630 640 650 660 670 680 690
inputs CCCAGTGACCCCTGGAGATTCTGCCCTCAGGCCTGTCTAGGAAGCCCTCCCTCCTGACCCTGCAGGGCC
: : : : : :
CACGGTGACCGCC-----GCCACAG-----
510 520

700 710 720 730 740 750 760
inputs CTGTCTGGCCCTGGGCAGAGCCTGACCCCTCCAGTGTGGCTCTGATGTGGCTACGACAGATTGTTCT
: : : : : :
-----CGGAACCTA-----CCGATG-----CTACAGC-----TTCT
530 540 550

770 780 790 800 810 820 830
inputs GTATAAGGAGGGGGAACGTGACTTCCTCCAGCGCCCTGGCCAGCAGCCCCAGGCTGGCTCTCCAGGCC
: : : : : :
-----CCAGCAG-----

840 850 860 870 880 890 900
inputs AACTTCACCCCTGGCCCTGTGAGCCCCTCCCACGGGGCCAGTACAGGTGCTATGGTGCACACAACCTCT
: : : : : :
-----GGACCCA-----TACCT-----
560

910 920 930 940 950 960 970
inputs CCTCCGAGTGGTGGCCCTCAGCGACCCCTGAACATCCTGATGGCAGGACAGATCTATGACACCGTCTC
: : : : : :
-----GTGGTGGCCCTCAGCGACCCCTGG-----GCT-----TGTG-----
570 580 590 600

980 990 1000 1010 1020 1030 1040
inputs CCTGTCAGCACAGCGGGCCCCACAGTGGCCTCAGGAGAGAACGTGACCCCTGCTGTCACTGGTGG
: : : : : :
-----GTCA-----CAGGAACCTCTGTGACC-----CCCAGC-----CGGT-----
610 620 630

1050 1060 1070 1080 1090 1100 1110
inputs CAGTTGACACTTCCTCTGACCAAAGAAGGGGCAGCCCATCCCCACTGCGTCTGAGATCAATGTACG
: : : : : :
-----TACCAACAGAAC-----CA-----CCTTCC-----TCG
640 650

1120 1130 1140 1150 1160 1170 1180
inputs GAGCTCATAAGTACCAGGCTGAATTCCCCATGAGTCCTGTGACCTCAGCCCACGCCGGGACCTACAGGTG
: : : : : :
-----GTA-----GCAGAATTCTC-----AGAAGCCAC-----CGCTGA-----ACTG-----A
660 670 680 690

FIG.3B

	1190	1200	1210	1220	1230	1240	1250	
inputs	CTACGGCTCATACAGCTCCAACCCCCACCTGCTGTCTTCCCCAGTGAGCCCCTGGAACTCATGGCTCA							
	C--CGTCTCATTCA	CAAAC	-----	AAAGTCTT	CACAA	-----	CTGAGACT	TCT--
	700			710	720			730
	1260	1270	1280	1290	1300	1310	1320	
inputs	GGACACTCTGGAGGCTCCAGCCTCCACCCACAGGGCCGCCCTCACACCTGGTCTGGGAAGATACTGG							
	-----	AGGAGTATC	ACCACCAAGTCCAAAGGA	-----	GTCAGACTCTCCAG	-----	CTGG	-----
	740	750	760	770				
	1330	1340	1350	1360	1370	1380	1390	
inputs	AGGTTTGATTGGGGTCTCGGTGGCCTTCGTCCTGCTGCTCTTCCTCCTCTCCTCCTCCGACG							
	-----	TCCTGC	-----	CCGCCAGTA	-----	CTACACCAAGG		
	780			790			800	
	1400	1410	1420	1430	1440	1450	1460	
inputs	TCAGCGTCACAGCAAACACAGGACATCTGACCAGAGAAAGACTGATTCCAGCGCTCTGCAGGGGCTGGC							
	GCAAC	-----	CTGGTC	-----	CGGATAT	-----	GCCTC	-----
	810			820			830	
	1470	1480	1490	1500	1510	1520	1530	
inputs	GAGACAGAGCCCAAGGACAGGGGCTGCTGAGGAGGTCCAGCCCAGCTGCTGACGTCCAGGAAGAAAACC							
	-----	TGATCTTAATAA	-----	TCCTG	-----	GCAGAGA	-----	GGACTGG
	840	850	860	870				
	1540	1550	1560	1570	1580	1590	1600	
inputs	TCTATGCTGCCGTGAAGGACACACAGTCTGAGG-ACAGGGTGGAGCTGGACAGT-CAGAGCCCACACGAT							
	AC	-----	AGCCG	-----	GAGGAAGCGC	-----	CTGCGGCACAGGG	-----
	880	890	900	910	920			
	1610	1620	1630	1640	1650	1660	1670	
inputs	GAAGACCCCCAGGCAGTGACGTATGCCCGGTGAAACACTCCAGTCCTAGGAGAGAAATGGCTCTCCTC							
	-----	TCC	-----	GCCCCCTG	-----	CCGC	-----	C
	930					940		
	1680	1690	1700	1710	1720	1730	1740	
inputs	CCTCCTCACTGCTCTGGGAATTCTCTGGACACAAGGACAGACAGGTGGAAGAGGACAGGCAGATGGACAC							
	CCTCC	-----	CGCAGAC	-----	CCGGAAATCA	-----	CA	-----
	950	960	970	980			980	
	1750	1760	1770	1780	1790	1800	1810	
inputs	TGAGGCTGCTGCATCTGAAGCCTCCCAGGATGTGACCTACGCCAGCTGCACAGCTTGACCCCTTAGACGG							
	GGC	-----	CGAC	-----	AGGATGTT	-----	CACAGC	-----
	990						1000	
	1820	1830	1840	1850	1860	1870	1880	
inputs	AAGGCAACTGAGCCTCTCCATCCCAGGAAGGGGAACCTCCAGCTGAGCCCAGCATCTACGCCACTCTGG							
	-----	CGGGTTATG	-----	-----	TTCA	-----		
	1010							
	1890							
inputs	CCATCCAC							

O I P E
AUG 01 2002
U.S. PATENT & TRADEMARK OFFICE

Serial No.: 09/829,495
Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

inputs	10	20	30	40	50	60	
	MSPSPTALFCGLCLG	-RVPAQSGPLPKPSLQALPSSLVPLEKPVTLRCQGPPGVDLYRLEKLSSS	-				
	10	20	30	40	50	60	70
	MTPALTALLCGLSLGPRT	RVQAGPFPKTLWAEPGSVISWGSPVTIWCQGSLEAQEYRLDKEGSPEPLD					
inputs	70	80	90	100	110	120	130
	RYQ	-DQAVLFIPAMKRSLAGRYRCSYQNGSLWSLPSDQLELVATGVFAKPSLSAQPGPAVSSGGDV					
	80	90	100	110	120	130	140
	RNNPLEPKNKARFSIPS	MTEHHAGRYRCHYSSAGWSEPSDPLELVMTGFYNKPTLSALPSPVVASGGNM					
inputs	150	160	170	180	190	200	210
	TLQCGSQKGYHHFVL	MKEGEHQLPRTLDSQQLHSGGFQALFPVGPVNPSHRWRFTCYYYYYMNTPQVWSHP					
inputs	220	230	240	250	260	270	280
	SDPLEILPSGVSRKPSLL	TTLQGPVLAPGQSLTLQCGSDVGYDRFVLYKEGERDFLQRPGQQPQAGLSQAN					
inputs	290	300	310	320	330	340	350
	FTLGPVSPSHGGQYRCYGAHNLS	SEWSAPS DPLNILMAGQIYDTVSLSAQPGPTVASGENVTLLCQSWWQ					
inputs	360	370	380	390	400	410	420
	FDTFLLTKEAAHPP	LRLRSMYGAHKYQAEPMSPTSAHAGTYRCYGSYSSNPILLSFPSEPLELMVSG					
inputs	430	440	450	460	470	480	490
	TSVTPSLPTEPPSS	-VAEFSEATAELTVSFTNKVF	-	-	-	-	-
	HSGGSSLPP	TGPPSTPGLGRYLEVLIGSVAFVLLL	FLLL	FLLLRRQRHSKHRTSDQRKTDQRPAGAAE			
inputs	500	510	520	530	540	550	560
	TEPKDRG	LLRRSSPAADVQEENLYAAVKDTQSEDREV	ELDSQSPHD	EDPQAVTYAPVKHSSPRREMASPPS			
inputs	570	580	590	600	610	620	630
	SLSGEFLDTKDRQVEEDRQM	TEAAASEASQDV	TYAQLHS	TLRRKATEPPPSQE	GEPPAEP	SIYATLAI	

inputs S

H

FIG.4

Serial No.: 09/829,495
Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

*->GesvtLtCsvsgfgppgvsvtWyfkngk.1gps11gysysrlesgek
+ vtL+C+ + v y + k ++ r++ +
hT268 41 EKPVTLRCQGP-----PGVDLY-RLEK1SSS-----RYQDQ-- 70

anlseggrfsissltLtissvekeDsGtYtCvv<-*
++L i. +++ +G Y+C
hT268 71 -----AVLFIPAMKRSLAGRYRCSY 90

FIG.5A

*->GesvtLtCsvsgfgppgvsvtWyfkngk.1gps11gysysrlesgek
G++vtL+C++ + ++ y k+g++ + y++
hT268 127 GGDVTLQCQTR---YGFDQFALY-KEGDpAP-----YKNPERWYR-- 162

anlseggrfsissltLtissvekeDsGtYtCvv<-*
++++i+v++ sGtY+C
hT268 163 -----ASFPIITVTAHSGTYRCYS 182

FIG.5B

	M	S	P	A	4
GAGTCGACCCACCGCGTCCGCTTCCCTGCTTGGCCACATAGCTCAGGACTGGGTTGCAGAAC	ATG	TCT	CCA	GCC	74
S P T F F C I G L C V L Q V I Q T Q S G					24
TCA CCC ACT TTC TTC TGT ATT GGG CTG TGT GTA CTG CAA GTG ATC CAA ACA CAG AGT GGC					134
P L P K P S L Q A Q P S S L V P L G Q S					44
CCA CTC CCC AAG CCT TCC CTC CAG GCT CAG CCC AGT TCC CTG GTA CCC CTG GGT CAG TCA					194
V I L R C Q G P P D V D L Y R L E K L K					64
GTT ATT CTG AGG TGC CAG GGA CCT CCA GAT GTG GAT TTA TAT CGC CTG GAG AAA CTG AAA					254
P E K Y E D Q D F L F I P T M E R S N A					84
CCG GAG AAG TAT GAA GAT CAA GAC TTT CTC TTC ATT CCA ACC ATG GAA AGA AGT AAT GCT					314
G R Y R C S Y Q N G S H W S L P S D Q L					104
GGA CGG TAT CGA TGC TCT TAT CAG AAT GGG AGT CAC TGG TCT CTC CCA AGT GAC CAG CTT					374
E L I A T G V Y A K P S L S A H P S S A					124
GAG CTA ATT GCT ACA GGT GTG TAT GCT AAA CCC TCA CTC TCA GCT CAT CCC AGC TCA GCA					434
V P Q G R D V T L K C Q S P Y S F D E F					144
GTC CCT CAA GGC AGG GAT GTG ACT CTG AAG TGC CAG AGC CCA TAC AGT TTT GAT GAA TTC					494
V L Y K E G D T G P Y K R P E K W Y R A					164
GTT CTA TAC AAA GAA GGG GAT ACT GGG CCT TAT AAG AGA CCT GAG AAA TGG TAC CGG GCC					554
N F P I I T V T A A H S G T Y R C Y S F					184
AAT TTC CCC ATC ATC ACA GTG ACT GCT GCT CAC AGT GGG ACG TAC CGG TGT TAC AGC TTC					614
S S S S P Y L W S A P S D P L V L V V T					204
TCC AGC TCA TCT CCA TAC CTG TGG TCA GCC CCG AGT GAC CCT CTA GTG CTT GTG GTT ACT					674
G L S A T P S Q V P T E E S F P V T E S					224
GGA CTC TCT GCC ACT CCC AGC CAG GTA CCC ACG GAA GAA TCA TTT CCT GTG ACA GAA TCC					734
S R R P S I L P T N K I S T T E K P M N					244
TCC AGG AGA CCT TCC ATC TTA CCC ACA AAC AAA ATA TCT ACA ACT GAA AAG CCT ATG AAT					794
I T A S P E G L S P P I G F A H Q H Y A					264
ATC ACT GCC TCT CCA GAG GGG CTG AGC CCT CCA ATT GGT TTT GCT CAT CAG CAC TAT GCC					854
K G N L V R I C L G A T I I I I L L G L					284
AAG GGG AAT CTG GTC CGG ATA TGC CTT GGT GCC ACG ATT ATA ATA ATT TTG TTG GGG CTT					914
L A E D W H S R K K C L Q H R M R A L Q					304
CTA GCA GAG GAT TGG CAC AGT CGG AAG AAA TGC CTG CAA CAC AGG ATG AGA GCT TTG CAA					974
R P L P P L P L A *					314
AGG CCA CTA CCA CCC CTC CCA CTG GCC TAG					1004
AAATAACTTGCTTCAAGAGGGATTGACCAGACATCCATGCACAACCATGGACATCACCACAGGCCACAGACAT					1083
GGACATACTCAAGAGTGGGGAGGTTATATAAAAAAATGAGTGTGGAGAATAATGCAGAGCCAACAAGGTAAAAAAA					1162
A					1163

FIG.6

Serial No.: 09/829,495.
Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

MSPASPTFFCIGLCVLQVIQTQSGPLPKPSLQAQPSSLVPLGQSVILRCQGPPDVLYRL
EKLKPEKYEDQDFLF IPTMERSNAGRYRCSYQNGSHWSLPSDQLELIATGVYAKPSLSAH
PSSAVPQGRDVTLKQCSPYSFDEFVLYKEGDTGPYKRPEKWYRANFPIITVTAHSGTYR
CYSFSSSSPYLWSAPSDPLVLVVTGLSATPSQVPTEEESFPVTTESSRRPSILPTNKISTTE
KPMNITASPEGLSPIGFAHQHYAKGNLVRICLGATIIILLGLLAEDWHSRKKCLQHRM
RALQRPLPPLPLA

FIG. 7

inputs	10	20	30	40	50	60	70
	ATGACGCCCGCCCTCACAGCCCTGCTCTGCCTGGGCTGAGTCTGGGCCAGGACCCGCGTCAGGCAG
	ATGTCTCCAGCC	-TCAC	-CC	-ACTTTCTT	-CTGTAT	-----	-----
	10	20	30				
inputs	80	90	100	110	120	130	140
	GGCCCTTCCCCAAACCCACCCTCTGGGCTGAGCCAGGCTCTGTGATCAGCTGGGGAGCCCCGTGACCAT
	TGGGCTG	-----	TGTGTACTGC	-----	-----	-----	-----
	40						
inputs	150	160	170	180	190	200	210
	CTGGTGTCAAGGGAGCCTGGAGGCCAGGAGTACCGACTGGATAAAGAGGGAAAGCCCAGAGCCCTGGAC
	AAGTGATCC	-----	AAACACAGAG	-----	TGG	-----	-----
	50		60	70			
inputs	220	230	240	250	260	270	280
	AGAAATAACCCACTGGAACCCAAAGAACAAAGGCCAGATTCTCCATCCCATCCATGACAGAGCACCATGCGG
	CCCAC	-CCC	-CAAG	CCTTCCC	-TCCAGG	-----	-----
	80		90				
inputs	290	300	310	320	330	340	350
	GGAGATAACCGCTGCCACTATTACAGCTCTGCAGGCTGGTCAGAGCCCAGCGACCCCCCTGGAGCTGGTGT
	CTCAGCC	-----	CAGTCCCTG	-GTACCCCTGGGTCA	G-----	-----	-----
	100		110	120			
inputs	360	370	380	390	400	410	420
	GACAGGATTCTACAACAAACCCACCCCTCTCAGCCCTGCCAGCCCTGTGGTGGCCTCAGGGGGAAATATG
	-TCAG	-TTATTC	-----	TGAGGTG	-C	-CAGGGA	-----
	130		140	150			
inputs	430	440	450	460	470	480	
	ACCCCTCC	-GATGTGGCTCACAGAACGGATATCACCATTGTTCTGATGAAGGAAGGAGAACACCAGCTC	
	-CCTCCAGATGTGG	-----	ATTATATCGCCTGGAGAAA	CTGAA	-----	-----	
	160	170	180	190			
inputs	490	500	510	520	530	540	550
	CCCCGGACCCCTGGACTCACAGCAGCTCCACAGTGGGGGTTCCAGGCCCTGTTCCCTGTGGGCCCGTGA
	-CCGGA	-GA	-----	AGTATGAAGATCAAGAC	-TTTCTCTT	-----	CATT
	200	210	220				

FIG. 8A

Serial No.: 09/829,495
Inventor(s): BUSHFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

FIG.8B

1120	1130	1140	1150	1160	1170	1180
inputs GCTCATAAGTACCAAGGCTGAATTCCCCATGAGTCCTGTGACCTCAGCCCACGCCGGGACCTACAGGTGCT						
480	490	500	510	520	530	540
1190	1200	1210	1220	1230	1240	1250
inputs ACGGCTCATACAGCTCCAACCCCCACCTGCTCTTCCCCAGTGAGCCCTGGAACCTCATGGTCTCAGG						
550	560	570	580	590	600	610
1260	1270	1280	1290	1300	1310	1320
inputs ACACCTGGAGGCTCCAGCCTCCCACCCACAGGGCCGCCCTCACACCTGGTCTGGGAAGATACCTGGAG						
620	630	640	650	660		
1330	1340	1350	1360	1370	1380	1390
inputs GTTTGATTGGGGTCTCGGTGGCCTCGTCTGCTCTCCCTCCCTCTCCCTCCGACGTC						
670	680	690	700			
1400	1410	1420	1430	1440	1450	1460
inputs AGCGTCACAGCAAACACAGGACATCTGACCAGAGAAAGACTGATTTCCAGCGTCTGCAGGGCTGCGGA						
710	720	730	740	750		
1470	1480	1490	1500	1510	1520	1530
inputs GACAGAGCCCAGGACAGGGCCTGCTGAGGAGGTCCAGCCCAGCTGCTGACGTCAGGAAGAAAACCTC						
760	770	780				
1540	1550	1560	1570	1580	1590	1600
inputs TATGCTGCCGTGAAGGACACACAGTCTGAGGACAGGGTGGAGCTGGACAGTCAGAGCCCACACGATGAAG						
790	800					
1610	1620	1630	1640	1650	1660	1670
inputs ACCCCCAGGCAGTGACGTATGCCCGGTGAAACACTCCAGTCCTAGGAGAGAAATGGCCTCTCCCTCC						
820	830					
1680	1690	1700	1710	1720	1730	1740
inputs CTCACTGTCTGGGAATTCTGGACACAAAGGACAGACAGGTGGAAGAGGGACAGGCAGATGGACACTGAG						
850	860					

FIG.8C

WVNRG: 140.. / WUW-LUT-000

Serial No.: 09/829,495

Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

1750	1760	1770	1780	1790	1800	1810
inputs GCTGCTGCATCTGAAGCCTCCAGGATGTGACCTACGCCAGCTGACAGCTTGACCCTAGACGGAGG						
:: : :::::.. . : :::::.. : :::: .. . ::::						
GC--CTGCAACA-----CAGGATGAGA-----GCTTGCA-----AAAGG						
890		900			910	
1820	1830	1840	1850	1860	1870	1880
inputs CAACTGAGCCTCCATCCCAGGAAGGGAACCTCCAGCTGAGCCCAGCATCTAGGCCACTCTGGCCAT						
: :::. : ::::: : ::::: . ::::: . :::::						
CCACTA-----CCACC-----CCTCC-----CACTGGCC-----						
920			930			
1890						
inputs CCAC						

FIG. 8D

DOCKET NO. 7000-204-395
 Serial No.: 09/829,495
 Inventor(s): BUSFIELD ET AL.
 Title: "GLYCOPROTEIN VI AND USES THEREOF"

	10	20	30	40	50	60	
inputs	MSPASPTFFCIGLCVLQVIQTQSGPLPKPSLQAQPSSLVPLGQSVILRCQGPPDVDLYRLEKL-KPEKYE						
	
	MTPALTALLCLGLSLGPRTRVQAGPFPKPTLWAEPGSVISWGSPVTIWCQGSLEAQEYRLDKEGSPEPLD						
	10	20	30	40	50	60	70
	
	70 inputs DQDFL-----F-IPTMERSNAGRYRCSYQNGSHWSLPSDQLELIATGVYAKPSLSAHPSSAVPQGRDV						
	
	RNNPLEPKNKARFSIPSMEHHAGRYRCHYYSSAGWSEPSDPLELVMTGFYNKPTLSALPSPVVASGGNM						
	80	90	100	110	120	130	140
	
inputs	TLKC--QSPY-----						
	
	TLRCGSQKGYHHFVLMKEGEHQLPRTLDSQQLHSGGFQALFPVGPVNPSHRWRFTCYYYYMNTPQVWSHP						
	150	160	170	180	190	200	210
	
	140 inputs SFDEFVLYKEGD-----						
	
	SDPLEILPSGVSRKPSLLTLQGPVLAPGQSLTLQCGSDVGYDRFVLYKEGERDFLQRPGQQPQAGLSQAN						
	220	230	240	250	260	270	280
	
	160 inputs TGPYK-----RP-----EKW--						
	
	FTLGPVSPSHGQYRCYGAHNLSEWSAPS DPLNILMAGQIYDTVSLSAQPGPTVASGENVTLLCQSWWQ						
	290	300	310	320	330	340	350
	
	170 inputs YRANFPIITVTAHSGTYRCYSFSSSPYLWSAPS DPLVLVVTG						
	
	FDTFLLTKEAAHPLRLRSMYGAHKYQAEFPMSPVTSAHAGTYRCYGSYSSNPHLLSFPEPLELMVSG						
	360	370	380	390	400	410	420
	
	210 inputs LSATPSQVPTEES-----FPV-----						
	
	HSGGSSLPPTGPPSTPGLGRYLEVLIGVSVAFLLLLFLRRQRHSKHRTSDQRKTDQRPAGAAE						
	430	440	450	460	470	480	490
	
	230 input TESS-----RRPS-----ILPTNKISTTEKPMNI-TASPEGLSP-PIGFAH-QHYAKGNLVR--I						
	
	TEPKDRGLLRRSSPAADVQEENLYAAVKDTQSEDREVLDQSOPHDDEDPOQAVTYAPVKHSSPRREMASPPS						
	500	510	520	530	540	550	560
	
	280 inputs CLGATIIILLGLLAEDWH-----SRKKCLQHRMRALQRPL-----PP-----LPL						
	
	SLSGEFLDTKDRQVEEDRQMDTEAAASEASQDVTVYAQQLHSLLRRAKATEPPPSQEGERPAEPSIYATLAI						
	570	580	590	600	610	620	630
	

inputs A

H

FIG. 9

Document No. 1000-200-000
Serial No.: 09/829,495
Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

mT268 42 *->GesvtLtCsvsgfgppgvsvtWyfkngk.1gps11gysysr1esgek
G+sv L+C+ ++v y + k ++ +++e +
GQS VILRCQGP-----PDVDLY-RLEK1KP-----EKYEDQ-- 71

mT268 72 an1segrfsiss1tLtissvekeDsGtYtCvv<-*
L i + e++++G Y+C
-----DFLF IPTMERSNAGRYRCSY 91

FIG. 10A

mT268 128 *->GesvtLtCsvsgfgppgvsvtWyfkngk.1gps11gysysr1esgek
G +vtL C++ ++ y k+g++ + Y+r+e +
GRDVTLKCQSP---YSFDEFVLY-KEGDtGP-----YKRPEKW-Y 162

mT268 163 an1segrfsiss1tLtissvekeDsGtYtCvv<-*
+ ++i++v++ sGtY+C
RA-----NFPIITVTAHSGTYRCYS 183

FIG. 10B

DOCKET NO.: 7000-204-555
 Serial No.: 09/829,495
 Inventor(s): BUSFIELD ET AL.
 Title: "GLYCOPROTEIN VI AND USES THEREOF"

	10	20	30	40	50	60	
inputs	MSPSPTALFCLGLCLGRV-PAQSGPLPKPSLQALPSSLVPLEKPVTLRCQGPPGVDLYRLEKLSSSRQD						
	
	MSPASPTFFCIGLCVLQVIQTQSGPLPKPSLQAQPSLVLQPLGQSVILRCQGPPDVLDYRLEKLKPEKYED						
	
	10	20	30	40	50	60	70
	70	80	90	100	110	120	130
inputs	QAVLFIPAMKRSLAGRYRCSYQNGSLWSLPSDQLELVATGVFAKPSLSAQPGPAVSSGGDVTLQCQTRYG						

	QDFLFIPTMERSNAGRYRCSYQNGSHWSLPSDQLELIATGVYAKPSLSAHPSSAVPQGRDVTLKCQSPYS						

	80	90	100	110	120	130	140
	140	150	160	170	180	190	200
inputs	FDQFALYKEGDPAPYKNPERWYRASFPIITVTAAMSGTYRCYSFSSRDPYLWSAPS DPLEL VVTGTSVTP						

	FDEFVLYKEGDTGPYKRPEKWYRANFPIITVTAHSGTYRCYSFSSSPYLWSAPS DPLVL VVTGLSATP						

	150	160	170	180	190	200	210
	210	220	230	240	250	260	270
inputs	SRLPTEPPSSVAEFSSEATAELTVSFTNKVFTTETRSITSPKESDSPAGPARQYYTKGNLVRICLGAVI						

	SQVPTEESFPVTESSRRPSILP--TNKISTTEKPMNITASPEGLSPPIGFAHQHYAKGNLVRICLGATI						

	220	230	240	250	260	270	
	280	290	300	310	320	330	
inputs	LIILAGFLAEDWHSRRKRLRHRGRAVQRPLPPLPQTRKSHGGQDGGRQDVHSRG LCS						

	IIILLGLLAEDWHSRKCLQHRMRALQRPLPPLP-LA-----						

	280	290	300	310			

FIG.11

FIG.15A

FIG.15B

FIG.15C

Serial No.: 09/829,495
Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

FIG.16A

FIG.16B

Serial No.: 09/829,495
Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

FIG.19

EFFETS DES MONOCLONAUX SUR LA LIASION
GPVI-Fc/coll TYPE 1

FIG.20

EFFET DES MONOCLONAUX SUR LA LIAISON GPVI-Fc/CONVULXINE

FIG.21

Serial No.: 09/829,495
Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

FIG. 22

FIG.23

Serial No.: 09/829,495
Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

FIG. 24A

Serial No.: 09/829,495
Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

FIG.24B

DOCKET NO. 7000-204-350
Serial No.: 09/829,495
Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

FIG.26A

FIG.26B

Serial No.: 09/829,495
Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

FIG.29B

FIG.29A

FIG.30A

FIG.30B

Serial No.: 09/829,495
Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

FIG.26C

FIG.26D

Serial No.: 09/829,495
Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

scFv1:A4
scFv2:B4
scFv3:A9
scFv4:C4
scFv5:C9
scFv6:C10
scFv7:A10

FIG.26I

DOCKET NO.: 7000-204-355
Serial No.: 09/829,495
Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

FIG.26G

FIG.26H

FIG.26E

FIG.26F

08/10/80

23 U.S. PTO

Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

control scFv

scFv/A9

scFv/C3

scFv/A4

scFv/A10

scFv/C9

FIG.28A

FIG.28B

923 U.S. PTO
08/01/02

Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

FIG. 25

18/01/02
23 U.S. PTO

FIG.12

Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

FIG. 13A

FIG. 13B

923 U.S. PTO
08/01/02

FIG. 14A

FIG. 14B

FIG.14C

FIG.14D

FIG. 17

8/01/02
23 U.S. PTO

Inventor(s): BUSFIELD ET AL.
Title: "GLYCOPROTEIN VI AND USES THEREOF"

FIG. 27