Геол. ан. Балк. полуос.	62 (1000)	71–89	Београд, децембар 2000
Ann. Geol. Penins. Balk.	[63 (1999)]	/1-89	Belgrade, Decembre 2000

UDC (УДК) 551.76:563.91+563.95(497.11-11)

Original scientific paper Оригинални научии рад

MESOZOIC ECHINODERMATA OF STARA PLANINA, EASTERN SERBIA

by

Jovanka Mitrovic-Petrovic*

This work describes Echinodermata (Crinoidea and Echinoidea) from Triassic, Jurassic and Cretaceous sedimentary rocks of Stara planina. Ten Crinoidea (nine of which are first found in Serbia) and eighteen Echinoidea species (twelve for the first time found in Serbia) are identified. With the earlier known species, the complete list of echinoderms from Stara planina numbers 15 Crinoidea and 46 Echinoidea species.

Paleontological and paleoecological characteristics of fauna are considered.

Each species is photographed and shown in one of the plates at the end of the article.

Key words: Crinoidea, Echinoidea, Triassic, Jurassic, Cretaceous, stratigraphy, paleoecology, Stara Planina, Eastern Serbia.

У раду је приказана фауна Echinodermata (Crinoidea и Echinoidea) која потиче из тријаских, јурских и кредних седимената Старе планине. Идентификовано је 10 врста Crinoidea (од тога је девет врста по први пут иађено на територији Србије) и 18 врста Echinoidea од чега је дванаест по први пут идентификовано у Србији. Узимајући у обзир већ раније познате врсте комплетан списак ехинодермата са Старе планине састоји се од 15 врста Crinoidea и 46 врста Echinoidea.

Разматранс су палеонтолошке и палеоеколошке одлике фауие. Све врсте су фотографисаие и приказане иа таблама у прилогу.

К. Бучне речи: Crinoidea, Echinoidea, тријас, јура, креда, стратиграфија, палеоекологија, Стара планина, источна Србија.

INTRODUCTION

Mesozoic units of Stara Planina are fossiliferous and well studied. Almost all groups of Mesozoic Invertebrata are found in them: Foraminifera, Infusoria, Radiolaria, Spongia, Anthozoa, Gastropoda, Bivalvia, Nautiloidea, Ammonoidea, Bryozoa, Brachiopoda, Crinoidea, and Echinoidea.

For detail information about Mesozoic rocks of Stara Planina, described by many authors the reader is referred to The Geology of Stara Planina – Stratigraphy (Andjelković et al., 1996) which gives complete list of references.

¹⁴ Decembra 82, 11000 Belgrade.

Very rich collections of fossils have been assembled from Stara Planina during twenty-six years of continuous field investigation with undergraduates of regional geology and paleontology, the Faculty of Mining and Geology. The first published work concerned with echinoderms of Stara Planina alone is written by Mitrovic-Petrovic (1977). It deals only with Cretaceous echinoids. In the meantime, much more fossil material has been collected from Triassic, Jurassic, and Cretaceous rocks. Besides Echinoidea, many Crinoidea forms have been identified. Before that, few crinoid species had been known, represented only by columnal plates (Zivanovic, 1993; Mitrovic-Petrovic & Radulovic, 1994; Andjelkovic et al., 1996).

Also, the number of localities where fossil fauna was found increased to eight from four wherefrom echinoid fauna was collected.

FOSSIL LOCALITIES

The localities where echinoderm fauna was collected are: Vrelo, Petrlas, Vladikina ploca, Dobri Dol, Gradiste, Nisor, Skuvija and Grlja (Fig. 1).

Fig. 1. Map showing positons of fossiliferous locality in Stara Planina Mountain. Сл. 1. Скица положаја фосилоносних локалитета на Старој планини.

As the localities of Vladikina Ploca, Gradiste, and Skuvija are described in detail by Mitrovic-Petrovic (1977), Dobri Dol by the same author (1998), and Grlja by Mi-

trovic-Petrovic (1977) and Mitrovic-Petrovic & Radulovic (1994), the remaining three localities will be presently described, and only lists will be given of the newly studied and identified Echinodermata from other localities.

Vrelo. Middle Triassic (Anisian) limestones are exposed at Vrelo, known under the name of Jelovica Limestones (after the village of Jelovica), and can be traced from Jelovica to Vrelo and further to the Sveta Bogorodica Monastery.

Lower part of the Jelovica Limestones in the Vrelo section contains a macro-association of dominanting Bivalvia: *Lima radiata* (Goldfuss), *L. lineata* (Schlotheim), *Entolium discites* (Schlotheim), *Velopecten alberti* (Goldfuss), etc. (Andjelković et al., 1996).

Middle levels of the Jelovica Limestones are represented by dolomitic limestones overlain by yellowish argillaceous limestones, mostly thick-bedded or nodular. The most numerous in these limestones are brachiopods: *Decurtella decurtata* (Girard), *Coenothyris vulgaris* Schlotheim, etc.

The upper part of the Jelovica Limestones are dolomitic, in which smaller or larger stem fragments were found, and a numerosity of columnal plates of the species *Encrinus liliformis* Lamarck. Limestone in which crinoid species for entire lumachelles (Pl. I, Fig. 1) is often reffered to as crinoid limestone, although it contains other macro-faunal forms (brachiopods, gastropods) as well.

Below the Sveta Bogorodica Monastery, by the Vrelo-Visočka Ržana road, the Jelovica Limestones are overlain by Ladinian dolomites in unconformable relationship with Liassic sedimentary rocks.

Petrlas. Echinoid fossils from Petrlas locality were lent to me for study by J. Jankicević. According to Andjelković et al. (1996) and oral comunication by J. Jankicević, these fossils are found in marly limestones and sandy limestones well exposed below the village school. The rocks contain brachiopods and bivalves in addition to echinoids. The identified echinoid species are: "Cidaris" falssani Dumortier, Diademopsis serialis (Agassiz) Desor, and the genus Holectypus whose specific identification was not possible. The entire association indicates the Liassic.

Vladikina Ploča. Detailed description of the locality and the section where fossils were collected is given by Mitrović-Petrović (1977). In this work, only those species will be mentioned which were found and studied after the publication of 1977, and the newly identified Crinoidea forms from the same locality.

Echinoidea: "Cidaris" cydonifera Agassiz, Rhabdocidaris cf. tuberosa Desor, Hemipedina minima Cotteau, Goniopygus intricatus Agassiz and Collirites ovulum d'Orbigny.

Crinoidea: Pentacrinites carinatus Roemer, Sclerocrinus mamakensis Arendt, S. rotundus Arendt, S. strambergensis (Jaekel), Hemicrinus thersitis (Jaekel) and Phyllocrinus balbakensis Arendt.

Most of echinoid species are stated in published literature to be Neocomian, whereas crinoids include forms of Valanginian, Hauterivian, or Barremian age.

Stratigraphic boundary between individual stages is not possible to place, because fauna was collected from marlstone debris and scree. Age of each species is given in the complete list of species at the end of the article.

Dobri Dol. This locality is describes by Mitrovic-Petrovic (1998) in a contribution on the discovery of "Cidaris" lardy Desor, fossilised complete with spines, where other echinoids were not considered. The species also found in this locality are Hemicidaris clunifera Desor and Echinobrissus (Trematopygus) olfersii Desor. The former is stated to be Upper Neocomian and the latter Neocomian.

Gradište. The section at Gradiste is also described by Mitrovic-Petrovic (1977). Additionally to echinoid species then studied, newly identified are: "Cidaris" muricata Roemer, Tetragramma raulini Desor, T. caroli Loriol, Goniopygus peltatus (Agassiz), and Cyphosoma cf. loryi Gras.

The newly identified crinoid species from this locality are: Sclerocrinus nonpolitus Arendt, Cyrtocrinites variabilis Arendt, Pentacrinites buchi Roemer and P. arzierensis Loriol.

Echinoid fauna is mainly found in northern Gradiste slopes, and most of it is dated in publications as Upper Neocomian or Lower Urgonian.

Two species of *Pentacrinites* are assigned by Roemer (1841) to Lower Cretaceous, and the other two are Valanginian according to Arendt (1974). As majority of echinoderm and other faunas indicate younger sedimentary rocks (predominantly Barremian), the two crinoid species probably have a graeter range. This is all the more so that Arendt (1974) mentions individual species which are found in Valanginian of Crimea and in younger rocks elsewhere in the world (e.g. *Sclerocrinus strambergensis* (Jaekel) in Valanginian of Crimea, and in Neocomian of France).

Nisor. Barremian and Aptian Nisor Limestones, or "the limestone facies" (Andjelković, 1978), are uncovered in the village of Nisor (Andjelković et al., 1996). These limestones are of organic-reef origin and bear corals, pachyodont shells, and other faunal remains. Locally sandy limestones contain *Pseudocidaris clunifera* (Agassiz) Loriol of Aptian age.

Skuvija. The Skuvija section is described by Mitrović-Petrović (1977). To its list of identified echinoids presently are added *Goniopygus noguessi* Cotteau and G. *delphinensis* Gras characteristic of the Upper Neocomian and Lower Aptian.

Grlja. This is the only locality of Stara Planina where Upper Cretaceous echinoderms have been found. Cenomanian rocks in the sections are described by Mitrović-Petrović & Radulović (1994) and Turonian-Senonian section by Mitrović-Petrović (1977). Newly identified echinoid species are Ovulaster gauthieri Cotteau, Hemiaster angustipneustes Desor, H. pullus Stoliczka, and the genus Echinocorys. All of identified species indicate the Santonian.

PRINCIPAL CHARACTERISTICS OF STUDIED FAUNA

Paleontological Characteristics

Crinoidea. Ten Crinoidea species are identified, six of which are of the order Cyrtocrinida characterised by their very small size. Three species belong to Pentacrinida and one to Encrinida.

The genus *Pentacrinites* is represented only by stem fragments or isolated columnal plates. Encrinus forms also are found only in stems or single columnal plates.

Unlike these, Cyrtocrinida representatives have preserved calyx or jointly calyx and stems.

The published information (Živanović, 1993; Mitrović-Petrović & Radulović, 1994; Andjelković et al., 1996) mentions five more crinoid species on Stara Planina, which makes a total of fifteen species.

Echinoidea. Echinoids are represented by eighteen species and two determined at the genus level (*Echinocorys* and *Holectypus*).

Regular echinoids are dominant; the incidence ratio 13:5 in favour of Regularia. The total number of identified species from Stara Planina is 31 regular and 15 irregular echinoids.

Regular echinoids considered in this article are largely represented by whole skeletons (Goniopygus noguessi Cotteau G. intricatus Agassiz, G. delphinensis Gras, Tetragramma raulini Desor, "Cidaris" falsani Dumortier, Hemipedina minima Cotteau, Diademopsis serialis (Agassiz) Desor. One specimen only is half a skeleton (Cyphosoma cf. loryi Gras) and one only skeleton plates Rhabdocidaris cf. tuberosa (Desor).

Four species are presented only in spicules: "Cidaris" cydonifera Agassiz, Tetragramma caroli (Loriol), Hemicidaris clunifera Desor, and Goniopygus peltatus Agassiz.

A far graeter number of all regular echinoids are represented only by spicules (22 species out of 31), of which 20 species belong to the family Cidaridae.

Skeletons of irregular echinoids are mostly preserved, some being slightly damaged.

The complete list of Echinodermata, collected and treated from Mesozoic rocks of Stara Planina (list at the end of the article) indicates the following:

- 1. Six of the fifteen Crinoidea species have been known from the study region. The other nine were found for the first time not on Stara Planina alone, but on the whole territory of Serbia.
- 2. The known number of Echinoidea species totals 46 (31 regular and 15 irregular) twelve of which are first found in Serbia.

The species which were not known earlier from Mesozoic units of Serbia are marked by asterisks in the list at the end of the article.

3. Crinoidea are found in five and Echinoidea in seven localities. Most of Crinoidea (6) and Echinoidea (20) species are found in Vladikina Ploca. The second most fossiliferous is Gradiste with 4 crinoid and 13 echinoid species. The third highest in Crinoidea is Vrelo (3 species) and Grlja in Echinoidea (7 species). These are followed by Crinoidea (2 species) in Grlja and Echinoidea (6 species) in Skuvija. Echinoids from Dobri Dol and Petrlas (two species in each), and crinoids (one species) from Lukanja are the fifth on the list. Finally, the sixth in echinoids is Nišor where only one species is found. Some of the species are found is more than one locality.

Paleoecological Characteristics

Paleoecological characteristics of Cretaceous Echinoidea of Stara Planina are published by Mitrovic-Petrovic (1977). This work will additionally consider paleoecological features of Crinoidea, and of Triassic and Jurassic Echinodermata.

Only one crinoid genus, *Encrinus*, is from Triassic rocks of Vrelo where echinoids have not been found. *Encrinus* is characterised by strong skeleton, massive stem and arms which branch at the base into two without further ramification (a total of ten arms). This morphological feature indicates existence in shallow water on rocky floor, where water energy was high and consequently food supply abundant, and there was not the need for a greater arm branching. The strong currents are indicated by the fact that *Encrinus* is represented only by stems and columnal plates, whilst other skeletal elements were not found. Skeleton if perished animal rapidity disintegrated under wave impact. Crinoids found in dolomitic limestones indicate a rocky floor densely populated (whole lumachelles are formed of crinoid stems).

Two species of regular echinoids are formed in Liassic rocks at Petrlas: "Cidaris" falssani Dumortier and Diademopsis serialis (Agassiz) Desor, and a representative of irregular echinoids identified only at the genus level (Holectypus sp.).

Cidarids are known to have lived on a rocky floor and used their spines primarily for locomotion. Their environment was littoral and neritic areas.

For Vladikina Ploca locality, Mitrovic-Petrovic (1977) states on the basis of echinoids (primarily numerous Regularia) that it had rocky floor and small depth during the Lower Cretaceous. This is confirmed and additionally supported by the presence of Crinoidea dominantly of Cyrtocrinida order.

The main characteristic of Cyrtocrinida is their small size. The fossils are largely the preserved calyx or calyx and stem systems, without a single arm found. Another important characteristic is the frequent occurrence of fused stem columnals, in some examples boundaries between columnals are invisible (e.g. Cyatocrinus variabilis Arendt – Pl. I; Fig. 6, and Hemicrinus thersites (Jaekel) – Pl. I, Fig. 7). Arendt (1974) states that stem with fused columnals consists of two parts, the lower combined with the root and the upper with the calyx, either of which has plates completely united. These forms have calyx, stem and root all in "two articles", whereas arms are free, composed of rows of osscicles. This phenomenon, known as oligomerisation, is found only among Cyrtocrinida, and has not been noted in either crinoids or echinoderms in general.

The third essential morphologic characteristic is the reduced number of arms, or even their disappearence in some examples. Arendt (1974) writes that among Lower Cretaceous crinoids of Crimea, there are three-, two-, and one arm crinoids. The two-arm crinoids were unknown before. The pentaradial symetry in these forms is replaced by bilateral symetry.

A functional analysis of morphologic features gives an idea about the mode and conditions of Cyrtocrinida life.

Short stems, fused skeletal elements, their thickness, and general compactness of the structure are indications of the existence in comparatively shallow turbulent water abounding in calcium carbonate. The development of notably bilaterally symetrical forms is an evidence of the habitat where water energy was high. The number of arms could not have been reduced where food was in short supply, because there were not water currents to bring the food.

The most typical habitats of cyrtocrinids, according to Arendt (1974), were areas of much differentiated sea floor with mounds and depressions and sea currents which carried microplancton (such places were suitable for building up of bioherms). Sediment deposition

was limited or none, and the floor was hard, rocky. Animals required normal salinity for their existence (as in the case of all echinoderms), well oxygenated and warm water. This is why they are common on reefs. However, they were often suppressed on reefs by fast development of corals and other reef-builders, and migrated onto the periphery of bioherms.

Another locality of quite numerous Cyrtocrinida is Gradiste. Mitrović-Petrović (1977) states for this locality the exposed massive sandy limestones with pachyodont shells, corals, brachiopods, echinoids, and other faunas, which indicate their reef character (Urgonian deposits).

All the above stated about the paleoecological characteristics of Cyrtocrinida is consistent with this conclusion, if one bears in mind the reef-building conditions.

Table 1. List of the Mesozoic Crinoidea of Stara Planina, with indicated age and locality. Табела 1. Списак мезозојских Crinoidea Старе планине са назначеном старошћу и местом наласка.

Name of species (Назив врсте)	Аде (Старост)	Locality (Локалност)
Encrinus liliformis Lamarck	Middle Triassic (средњи тријас)	Vrelo
Encrinus schlotheimi Quendstet	Middle Triassic (средны тријас)	Vrelo
Encrinus dubius Goldfuss	Middle Triassic (средњи гријас)	Vrelo
Sclerocrinus mamakensis Arendt	Lower Barremian (доил барем)	Vladikina ploča
Sclerocrinus nonpolitus Arendt	Valanginian (валендин)	Gradiste
Sclerocrinus rotundus Arendt	Barremian (барем)	Vladikina ploča
Sclerocrinus strambergensis (Jackel)	Valanginian (валендин)	Vladikina ploča
Cyrtocrinus variabilis Arendt	Valanginian (валендин)	Gradiste
Phyllocrinus balbekensis Arendt*	Upper Hauterivian (горњи отрив)	Vladikina ploca
Hemicrinus thersites (Jackel)*	Valanginian (валеидии)	Vladikina ploča
Pentacrinites arzierensis Loriol	Neocomian (неоком)	Gradiste
Pentacrinites carinatus Roemer	Lower and Upper Cretaceous (доња и горња креда)	Vladikina ploca, Grlja
Pentacrinites nodulus Roemer	Сеноmanian (ценоман)	Grlja
Pentacrinites buchi Roemer	Lower Cretaceous (доња креда)	Gradiste
Seriocrinus laevisutus (Pompeckj)	Liassic (лијас)	Velika Lukanja

The species marked by asterixes are for the first time found on the territory of Serbia.

CONCLUSION

Mesozoic sedimentary rocks of Stara Planina contain an abundant fauna of Echinodermata (Crinoidea and Echinoidea).

In this work, 10 Crinoidea and 18 Echinoidea species are identified. Of this number, 9 Crinoidea and 12 Echinoidea species are found for the first time in Serbia. Thus, 15 crinoid species are added to the earlier list of 5 crinoids, and the number of known echinoids increased from 28 to 46.

Most of the fauna (10 crinoid and 37 echinoid species) are extracted from Lower Cretaceous sedimentary rocks. The second most diverse are Upper Cretaceous forms (2 crinoid and 7 echinoid species), with one crinoid species found both in Lower and Upper Cretaceous. Only two Echinoidea and one Crinoidea species are from Jurassic (Liassic) rocks. Three crinoid species of the genus *Encrinus* are found in Triassic rocks.

^{*}Врсте обележене звездицом први нут су пађене на теренима Србије.

The most numerous among Crinoidea are forms of Cyrtocrinida order. The preserved skeletal parts include only calyx, and joined calyx and stem in two cases (Cyrtocrinus variabilis Arendt and Hemicrinus thersites (Jaekel). The genera Encrinus and Pentacrinites are represented only by stems and isolated columnal plates.

Among Echinoidea forms, Regularia are twice higher in incidence than Irregularia (31:15). Mostly (22 out of 31 species) only spines are preserved.

Table 2. List of the Mesozoic Echinoidea of Stara Planina, with indicated age and locality. Табела 2. Списак мезозојских Echinoidea Старе планине са назначеном старошћу и местом наласка.

Name of species (Назив врсте) Age (Старост)		Locality (Локалитет)
"Cidaris" pretiosa Desor	Valanginian (валендин)	Vladikina ploča
"Cidaris" ryzacantha Gras	Hauterivian (отрив)	Vladikina ploča
"Cidaris" pustulosa Gras	Valanginian (валендин)	Vladikina ploča
"Cidaris" cherenensis Savin	Lower Hauterivian (доњи отрив)	Vladikina ploča
"Cidaris" lardy Desor	Neocomian Urgonian	
"Cidaris" pilum Michelin	Hauterivian (отрив)	Vladikina ploča
"Cidaris" jauberti Cotteau	Neocomian (неоком)	Vladikina ploča
"Cidaris" frequens Szorenyi	Lower Hauterivian (доњи отрив)	Vladikina ploča
"Cidaris" punctatissima Agassiz	Middle Neocomian (средњи отрив)	Vladikina ploca
"Cidaris" cydonifera Agassiz	Upper Neocomian (горњи неоком)	Vladikina ploca
"Cidaris" pyrenaica Cotteau	Neocomian, Urgonian (неоком, ургон)	Skuvija
"Cidaris" cornifera Agassiz	Barremian, Aptian (барем, апт)	Skuvija, Gradiste
"Cidaris" muricata Roemer	Middle Neocomian (средњи неоком)	Gradiste
"Cidaris" falssani Dumortier	Liassic (лијас)	Petrlas
Pseudocidaris clunifera Agassiz	Neocomian, Barremian, Aptian (неоком, барем, апт)	Vladikina ploča, Nisor, Gradiste
Rhabdocidaris cf. tuberosa Desor	Lower Neocomian (доњи неоком)	Vladikina ploca
Acrocidaris meridanensis Cotteau	Valanginian (валендин)	Vladikina ploca
Hemicidaris clunifera Desor	Upper Neocomian(горњи неоком)	Dobri Dol
Tetragramma raulini (Desor)	Valanginian, Urgonian (валендин, ургон)	Gradiste
Tetragramma caroli Loriol	Valanginian (валендин)	Gradiste
Goniopygus noguesi Cotteau	Upper Neocomian (горњи неоком)	Skuvija
Goniopygus intricatus Agassiz	Neocomian (неоком)	Vladikina ploča
Goniopygus peltatus Agassiz	Upper Neocomian (горњи иеоком)	Gradiste
Goniopygus delphinensis Gras	Lower Aptian (доњи апт)	Skuvija
Peltastes Iardyi Cotteau	Lower Aptian (доњи апт)	Gradiste
Cyphosoma cf. loryi Gras	Upper Neocomian (горны неоком)	Gradiste
Hemipedina minima Cotteau	Middle Neocomian (средњи неоком)	Vladikina ploča
Hemidiadema rugosum Agassiz	Upper Aptian (горњи апт)	Gradiste
Diademopsis serialis (Ag.) Desor	Liassic (лијас)	Petrlas

Table 2 (continued) – Табела 2 (наставак)

Magnosia lens Desor	Valanginian (валендин)	Vladikina ploca
Orthopsis repellini Cotteau	Neocomian, Urgonian (неоком, ургон)	Gradiste
Pygaster truncatus Agassiz	Aptian, Cenomanian (апт, ценоман)	Skuvija
Holectypus macropygus Desor Neocomian, Lower Aptian (неоком, доны апт)		Vladikina ploca, Gradiste
Hauterivian, Lower Barremian (отрив, доны барем)		Gradiste
Discoidea minima Agassiz	Turonian (турон)	Grlja
Pyrina pygaea Agassiz	Hauterivian, Barremian, Aptian (отрив, барем, апт)	Gradiste
Pyrina cylindrica Gras	Aptian (anт)	Skuvija
Echinobrissus (Trematopygus) olfersii Desor	Neocomian (неоком)	Dobri Dol
Ovulaster gauthieri Cotteau	Santonian (сантон)	Grlja
Collirites ovulum d'Orbigny°	Neocomian (неоком)	Vladikina ploča
Guettaria angladoi Gauthier	Senonian (сенои)	Grlja
Toxaster retusus Lamarck	Hauterivian (отрив)	Vladikina ploca
Hemiaster cristatus Stoliczka	Senonian (сенон)	Grlja
Hemiaster sanio Lambert	Upper Turonian (горны турон)	Grlja
Hemiaster pullus Stoliczka	Santonian (сантон)	Grlja
Hemiaster angustipneustes Desor	Santonian (сантон)	Grlja

The species marked by asterixes are for the first time found on the territory of Serbia.

Paleoecological characteristics and living conditions are studied only for three localities: Vrelo, Petrlas and Vladikina Ploca, because other localities were earlier studied for paleoecology. An exception is Vladikina Ploca for which earlier paleoecological study is now complemented with the morphofunctional analysis of Crinoidea.

Vrelo locality was characterised in the Middle Triassic by a hard, rocky floor, densely populated by a numerosity of *Encrinus* forms (entire lumachelles built up of crinoid stems). Water was shallow and currents strong.

Similar living conditions prevailed in Petrlas during the Liassic. This is suggested by morphofunctional analysis of two echinoid species.

Paleoecological characteristics of numerous Cyrtocrinida forms at Vladikina Ploča indicate life in comparatively shallow, turbulent sea, rich in calcium carbonate. The sea floor was rocky, differentiated, with numerous mounds and depressions. Sediment deposition was limited or there was not any. Salinity was normal, water oxygenation very good, and water temperature fairly high (suitable for reef building).

Acknowlegements. I am grateful to J. Jankičević for lending me the material from Petrlaš locality, and to all colleagues and students who helped me collecting Echinodermata over many years.

^{*} Врсте обележене звездицом први пут су нађеле на терепима Србије.

REFERENCES - ЛИТЕРАТУРА

Andjelković M., 1978: Stratigrafija Jugoslavije- Paleozoik i mezozoik.- "Minerva", 1-1017, Subotica (in Serbian Cyrillic).

Andjelković M., Mitrović-Petrović J., Jankičević J., Rabrenović D., Andjelković J. & Radulović V. 1996: Geology of Stara Planina – Stratigraphy – Univ. Beogradu, Rud. –geol. tak.. Inst. reg. geol. i paleontol., 1–247, Beograd (in Serbian, English summary).

Arendt Û. A., 1974: The sea lilies Cyrtocrinids. Nauka, 1-251, Moskva (in Russian).

Mitrović-Petrović J., 1977: Cretaceous Echinoids of Stara Planina.— Geol. an. Balk. poluos., 41, 181-202, Beograd (in Serbian, English Summary).

Mitrovic-Petrovic J., 1998: Cidarida Fossilized with Spines from Barremian-Aptian Rocks of Stara Planina, Eatern Serbia. Ibid., 62, 123-131, Beograd (in Serbian and English).

Mitrovic-Petrovic J. & Radulovic V., 1994: Fossil Fauna from Cenomanian Tuffite Beds of Grlja (Stara Planina Mountain, Eatern Serbia). - Ibid., 58/1, 119-138, Beograd (in Serbian and English).

Roemer F.A., 1841: Die Verstemerungen des Nord Deutschen Kreidebirges 2, 49-145, Hannover.

Zivanovic M., 1993: Paleoecological and Taphonomic Analyses of Liassic Fauna from Stara Planina.—Geol. an. Balk. poluos., 57/2, 179–198, Beograd (in Serbian and English).

РЕЗИМЕ

ME3O3OJCKИ ECHINODERMATA СТАРЕ ПЛАНИНЕ (ИСТОЧНА СРБИЈА)

УВОД

Мезозојски терени Старе планине су добро проучени и веома фосилоносни. У њима су нађене готово све групе мезозојских Invertebrata: Foraminifera, Infusoria, Radiolaria, Spongia, Anthozoa, Gastropoda, Bivalvia, Nautiloidea, Ammonoidea, Bryozoa, Brachiopoda, Crinoidea и Echinoidea.

С обзиром на велики број аутора који су проучавали мезозојске седименте Старе планине читаоци се упућују на Геологију Старе планине— Стратиграфија (Andjelković et al., 1996.) где је дата комплетна библиографска листа.

Будући да је Стара планина полигон на коме се већ 26 година без прекида обавља теренска настава са студентима Рударско-геолошког факултета, Смер за регионалну геологију и палеонтологију, сакупљене су веома богате збирке фосила. Први рад који је посвећен искључиво проучавању ехинодермата Старе планине објавила је Mitrovic-Petrovic (1977), и односи се само на ехиниде кредне старости. У међувремену је сакупљено још много материјала који потиче из тријаских, јурских и кредних седимената. Поред Есhiпоіdeа идентификован је и већи број представника Стпоіdea. До сада је било познато само неколико врста кринова представљених искључиво плочицама дршке (Živanovic, 1993; Mitrovic-Petrovic & Radulovic, 1994; Andjelkovic et al., 1996).

Поред тога и број локалитета из којих фауна потиче је знатно увећан (укупно 8, док је раније обрађена ехинидска фауна сакупљена само из 4 локалитета). Ехинодермати су сакупљени из следећих локалитета: Врело (тријас), Петрлаш (лијас), Владикина плоча, Добри дол, Градиште, Нишор, Скувија (све доња креда), и Грља (горња креда) (сл. 1).

Стратиграфске и литолошке одлике локалитета из којих је сакупљена фауна ехинодермата приказане су у енглеском тексту.

ГЛАВНЕ ОДЛИКЕ ПРОУЧАВАНЕ ФАУНЕ

Палеонтолошке одлике

Crinoidea. Идентификовано је 10 врста Crinoidea од чега 6 припада реду Cyrtocrinida чији се представници одликују врло малим димензијама. Pentacrinidima припадају три врсте а Encrinidima једна врста.

Род *Pentacrinites* је представљен само деловима дршке или изолованим плочицама дршке. Од рода *Encrinus* такође су сачуване само дршке или поједине плочице које улазе у састав дршке.

Hacyпрот томе, код представника Cyrtocrinida сачуване су чашице или чашице заједно са дршком.

Према подацима из литературе (Zivanovic, 1993; Mitrovic—Petrovic & Radulovic, 1994; Andjelkovic et al., 1996) на теренима Старе планине се помиње присуство још пет криноидских врста, тако да се целокупан списак састоји од 15 врста.

Echinoidea. Ехиниди су заступљени са 18 врста док су два представника одређена само на нивоу рода (*Echinocorys* и *Holectypus*).

Правилни јежеви доминирају и њихов однос је 13:5 у корист Regularia. Ако се узму у обзир све до сада познате врсте са Старе планине број правилних јежева је 31, а неправилних 15.

Правилни јежеви приказани у овом раду су представљени у највећем броју случајева целим скелетима (Gonopygus noguesi Cotteau, G. Intricatus Agassiz, G. delphinensis Gras, Tetragramma raulini Desor, "Cidaris" falsani Dumortier, Hemipedina minima Cotteau, Diademopsis serialis (Agassiz) Desor). У једном случају сачувано је само пола скелета (Cyphosoma cf. loryi Gras) а у другом само плочице скелета (Rhabdocidaris cf. tuberosa Desor).

Код четири врсте сачуване су само бодље, "Cidaris" cydonifera Agassiz, Tetragramma caroli (Loriol), Hemicidaris clunifera Desor и Gontopygus peltatus Agassiz.

Увидом у целокупан списак правилних јежева произилази, међутим, да је далеко највећи број Regularia представљен само бодљама (22 врсте од укупно 31). Од тога броја 20 припада фамилији Cidaridae.

Код неправилних јежева скелети су махом у потпуности сачувани, понекад са малим опитеђењима.

Комплетан списак Echinodermata до сада сакупљених и обрађених из мезозојских седимената Старе планине (списак је на крају енглеског текста) указује на следеће:

- 1. Од 15 врста Crinoidea 6 је до сада било познато из проучаваних области. Осталих 9 врста је по први пут нађено не само на територији Старе планине, већ и на територији целе Србије.
- 2. Укупан број до сада познатих врста Echinoidea је 46 (31 правилних и 15 неправилних) од чега је 12 први пут констатовано у Србији.

Врсте које до сада нису биле познате из мезозојских терена Србије означене су звездицом у списку на крају енглеског текста.

3. Crinoidea потичу из 5 а Echinoidea из 7 локалитета. При томе, највећи број врста како Crinoidea (6), тако и Echinoidea (20) нађен је у локалитету Владикина плоча. На другом месту је Градиште са 4 криноидске и 13 ехинидских врста. На трећем месту су Crinoidea у Врелу (3 врсте), а Echinoidea у Грљи (7 врста). Четврто место

Стіпоіdeа припада локалитету Грља (2 врсте), а Есһіпоіdeа локалитету Скувија (6 врста). Ехиниди Доброг дола и Петрлаша су на петом месту (у сваком су нађене по две врсте), док су Стіпоіdea из Лукање на петом месту (једна врста). Најзад, шесто место код ехинида заузима Нишор, одакле потиче само једна врста.

Треба напоменути, при том, да су неке врсте нађене у више локалитета.

Палеосколошке одлике

Како су палеоеколошке одлике кредних Echinoidea Старе планине разматране у раду Mitrovic-Petrovic (1977), овде ћемо та разматрања допунити проучавањем палеоеколошких одлика Crinoidea, као и палеоеколошким одликама тријаских и јурских Echinodermata.

Из тријаских седимената Врела потиче само један криноидски род — *Encrinus*, док ехиниди уопште нису нађени. *Encrinus* се одликује снажним скелетом, масивном дршком и ручицама које се у самој основи рачвају на два дела и даљих разгранавања нема (тако да је укупан број ручица 10). Овакве морфолошке карактеристике указују на живот на стеновитом дну у плиткој води чији су покрети били снажни, тако да је притицај хране био изобилан, те није било потребе за већим разгранавањем ручица. На снажне покрете воде указује и чињеница да је *Encrinus* представљен само дршкама и плочицама које улазе у састав дршке, док остали делови скелета нису нађени. После угинућа животиње скелет је брзо био дезинтегрисан под снажним ударима таласа. Налазак кринова у доломитичним кречњацима указује на стеновито дно које су густо насељавали (читаве лумакеле су изграђене од криноидских држака).

У лијаским седиментима Петрлаша нађене су две врсте правилних јежева; "Cidaris" falssani Dumortier и Diademopsis serialis (Agassiz) Desor, као и један представник неправилних јежева идентификован само на нивоу рода (Holectypus sp.).

За цидариде се зна да за свој опстанак траже чврсто – стеновито дно по коме се крећу првенствено помоћу својих примарних бодљи. Становници су приобалске и неритске области.

За локалитет Владикина плоча Mitrovic—Petrovic (1977) на основу ехинида (пре свега великог броја Regularia) наводи да се у току доње креде одликовао стеновитим дном и малом дубином. Налазак Crinoidea, претежно из реда Cyrtocrinida потврђује и допуњава овај закључак.

Главна одлика Сугостіпіda је да су врло малих димензија. У највећем броју случајева сачувана је чашица или чашица са дршком, док ручице уопште нису нађене. Друга врло значајна карактеристика је честа појава срашћивања чланака дршке, тако да се у неким случајевима границе између чланака уопште не виде (нпр. код врсте *Cyrtocrinus variabilis* Arendt – Таб. I, сл. 6 и *Hemicrinus thersites* (Jaekel) – Таб. I, сл. 7). Arendt (1974) наводи да се при срашћивању чланака дршка дели на два дела са сучељавањем по средини. Нижи део сраста са кореном а горњи са чашицом, чије су плочице такође потпуно срасле. Чашица, дршка и корен код таквих форми представљају свега "два чланка", док су ручице остале покретне и свака се састојала од низа чланака. Ова појава која је иначе позната под називом олигомеризација среће се искључиво код представника реда Сугостіпіdа и није запажена ни код других кринова ни код ехинодермата уопште.

Трећа битна морфолошка карактеристика састоји се у смањењу броја руку, а у неким случајевима је дошло до њиховог потпуног ишчезавања. Arendt (1974)

износи да међу доњокредним криновима Крима има троруких, дворуких и једноруких кринова. При томе, истиче, да дворуки кринови раније уопште нису били познати. Петозрачна симетрија је код њих замењена билатералном.

На основу функционалне анализе морфолошких особености може се добити

представа о начину и условима живота Cyrtocrinida.

Кратке дршке, срастање скелетних елемената, њихова задебљалост и општа компактност грађе говоре о животу у сразмерно плиткој, покретној води богатој калцијум карбонатом. Развитак многих форми са великим степеном билатералне симетрије говори о животу на местима са израженим снажним покретима воде. До смањења броја руку не би могло да дође при недовољној количини хране у месту живљења и без струјања воде која ту храну доноси.

По Arendt—у (1974) најтипичнија станишта циртокринида су били делови јако издиференцираног морског дна са узвишењима и увалама и знатном покретљивошњу воде која је доносила микропланктон (таква места су била погодна и за образовање биохерма). Овде је таложење седимената било врло ограничено или га уопште није било и постојало је тврдо, каменито дно. При томе су за свој опстанак тражили нормалан салинитет (што је случај са свим ехинодерматима), добру аерацију и топлу воду. Због тога је њихова појава честа и на спрудовима. На спрудовима су, међутим, често били угрожени снажним развићем корала и других градитеља спрудова, па су се стога често селили у ободне делове биохерма.

Други локалитет где су представници Cyrtocrinida доста бројни је Градиште. Mitrović-Petrović (1977) наводи да су у овом локалитету откривени масивни песковити кречњаци, са пахиодонтним шкољкама, коралима, брахиоподима, јежевима и др. фауном, што указује на спрудни карактер (ургонски седименти).

Све што је до сада речено о палеоеколошким одликама Cyrtocrinida у потпуној је сагласности са овим закључком, када се има у виду који су услови потребни за формирање спрудова.

ЗАКЉУЧАК

Мезозојски седименти Старе планине садрже богату фауну Echinodermata (Crinoidea и Echinoidea).

У овоме раду идентификовано је 10 врста Стпоіdeа и 18 врста Есhіпоіdeа. Од тога је 9 врста Стпоіdeа и 12 врста Есhіпоіdeа по први пут нађено на теренима Србије. Тиме је списак од 5 раније познатих врста кринова допуњен на 15 врста, а број од 28 већ познатих врста ехинида попео се на 46.

Највећи део фауне потиче из доњокредних седимената (10 криноидских и 37 ехинидских врста). На другом месту су горњокредни представници (2 криноидске и 7 ехинидских врста), с тим што се једна криноидска врста среће како у доњој тако и у горњој креди. Из јурских (лијаских седимената) потичу само две врсте Echinoidea и једна врста Стіпоіdea. У тријаским седиментима су нађене три врсте криноидског рода *Encrinus*.

Од Crinoidea су најбројнији представници реда Сугtостіпіda. Од њихових делова скелета сачуване су само чашице, а у два случаја (Cyrtocrinus variabilis Arendt, и Hemicrinus thersites (Jaekel) чашица заједно са дршком. Родови Encrinus и Pentacrinites представљени су само дршкама и изолованим плочицама које улазе у састав дршке.

Међу представницима Echinoidea Regularia има приближно двоструко више од Ітедиlaria (31:15). У највећем броју случајева 22 од укупно 31 врсте сачуване су само бодље. Палеоеколошке одлике фауне и реконструкција животних услова проучавани су само за три локалитета: Врело, Петрлаш и Владикина плоча, јер су остали локалитети већ раније проучени са налеоеколошког становишта. Изузетак је Владикина плоча пошто су ранија палеоеколошка проучавања на основу Echinoidea сада допуњена и морфофункционалном анализом Crinoidea.

Локалитет Врело се у средњем тријасу одликовао чврстим, стеновитим дном које је било густо насељено бројним индивидуама рода *Encrinus* (читаве лумакеле су изграђене од криноидских дршки). Вода је била плитка, а покрети воде веома снажни.

Слични животни услови владали су и у локалитету Петрлат за време лијаса. На овај закључак паводи морфофункционална аиализа 2 врсте јежева.

Палеоеколошке особине бројних представника Cyrtocrinida у локалитету Владикина плоча говоре о животу у сразмерно плиткој, покретној, води, богатој калнијум карбопатом. Морско дно је било стеновито и издиференцирано са бројним узвишењима и увалама. Таложење седимената је било ограничено или га уопште није било. Салинитет је био нормалан, асрација воде врло добра, а температура воде доста висока (погодна за формнрање спрудова).

Захвалница. Захваљујем колеги Ј. Јашкичевићу на уступљеном материјалу из локалитета Петрлаш, као и свим колегама и студентима који су ми током низа година помагали у сакупљању Echinodermata.

РLAТЕ І ТАБЛА

Fig. (Сл.) 1.	Lumachelle with (лумакела ca) Encrinus liliformis Agassiz, ×1.
	la. Part of column (део дрпіке), ×1.
Fig. (Сл.) 2.	Sclerocrinus mamakensis Arendt
	Calyx, upper side (горња страна чашице), ×2.
	2a. Calyx, lower side (доња страна чапице), ×2.
Fig. (Сл.) 3.	Sclerocrinus nonpolitus Arendt
	Calyx, upper side (горња страна чаппице), ×2.
	3a. Calyx, lower side (доња страна чанице), ×2.
Fig. (Сл.) 4.	Serocrinus strambergensis (Jackel)
	Calyx, upper side. (горња страна чапице), ×2.
	4a. Calyx, lower side. (доња страна чанице), ×2.
Fig. (Сл.) 5.	Sclerocrinus rotundus Arendt
	Calyx, upper side (горња сграна чашице), ×2.
	5a. Calyx, lower side (доња страна чанице), ×2.
	5b. Calyx, lateral side (бочна страна чапнице), ×2.
	5c. Plate of stalk (плочица дршкс), ×2.
Fig. (Сл.) 6.	Cyrtocrinus variabilis Arendt
	Calyx with stalk, front side (чашица са дршком, предња страна), ×2.
	6a. Calyx with stalk, lateral side (чаппица са дрппком, бочна страна), ×2.
Fig. (Сл.) 7.	Hemicrinus thersites (Jackel)
	Calyx with stalk, front side (чаница с дршком, предња страна), ×2.
	7a. Calyx with stalk, lateral side (чанница с дрніком, бочна страна), ×2.
Fig. (Сл.) 8.	Pentacrinus arzierensis Loriol
	Stalk (дршка), ×2.

8a. Plate of stalk (плочица дршке), ×2.

Fig. (Сл.) 9. Pentacrinites buchi Roemer Stalk (дршка), ×2. 9a. Plate of stalk (плочица дршкс), ×2.

Fig. (Сл.) 10. Pentacrinites carinatus Roemer
Stalk (дршка), ×2.
10a. Plate of stalk (плочица дршке), ×2.

Fig. (Сл.) 11. Phyllocrinus balbekensis Arendt
Calyx, upper side (горпа страна чашице), ×2.
11a. Calyx, lower side (дона страна чашице), ×2.

Photo: V. Radulovic (Фотографија: В. Радуловић)

РІАТЕ ІІ ТАБЛА

Fig. (Сл.) 1. "Cidaris" falssani Dumortier Aboral side (аборална страна), ×1. 1a. Oral side (орална страна), ×1. 1b. Lateral side (профил), ×1.

Fig. (Сл.) 2. "Cidaris" cydonifera Agassiz Spine (бодља), ×1,3.

Fig. (Сл.) 3. Rhabdocidaris cf. tuberosa Desor Interambulaclar plate (интерамбулакрална плочица), ×2

Fig. (Сл.) 4. Hemicidaris clunifera Desor Spine (бодља), ×2.

Fig. (Сл.) 5. Pseudodiadema raulini Desor Aboral side (аборална страна), ×1,3. 5a. Lateral view (профил), ×1,3. 5b. Oral side (орална страна), ×1,3.

Fig. (Сл.) 6. *Pseudodiadema caroli* Loriol Spine (бодља), ×2.

Fig. (Сл.) 7. *Cyphosoma* cf. *loryi* Gras
Aboral side (аборална страна), ×1.
7a. Lateral view (профил), ×1.

Fig. (Сл.) 8. Goniopygus peltatus Agassiz Spine (бодља), ×2.

Fig. (Сл.) 9. Hemipedina minima Cotteau
Aboral side (аборална страна), ×2.
9a. Lateral view (профил), ×2.
9b. Oral side (орална страна), ×2.

Fig. (Сл.) 10. Goniopygus delphinensis Gras Aboral side (аборална страна), ×1,3. 10a. Lateral view (профил), ×1,3.

Fig. (Сл.) 11. Goniopygus noguesi Cotteau Aboral side (аборална страна), ×2 11a. Lateral side (профил), ×2. 11b. Oral side (орална страна), ×2.

Fig. (Сл.) 12. Goniopygus intricatus Agassiz Aboral side (аборална страна), ×2. 12a. Oral side (орална страна), ×2. 12b. Lateral view (профил), ×2. Fig. (Сл.) 13. Hemiaster cristatus Stoliczka
Aboral side (аборална страна), ×1.
13a. Lateral view (уздужин профил), ×1.
13b. Posterior view (попречии профил), ×1.

Photo: V. Radulovic (Фотографија: В. Радуловић)

РLAТЕ III ТАБЛА

Fig. (Сл.) 1. Diademopsis serialis (Agassiz) Desor Aboral side (аборалиа страна), ×1. 1a. Lateral side (профил), ×1.

Fig. (Сл.) 2. Hemiaster angustipneustes Desor
Aboral side (аборална страпа)...×1.
2a. Lateral side (уздужни профил), ×1.

Fig. (Сл.) 3. Echinobrissus (Trematopygus) olfersii Desor Aboral side (аборална страна), ×1.
3a. Oral side (орална страна), ×1.
3b. Lateral side (уздужни профил), ×1.
3c. Posterior side (попречни профил), ×1.

Fig. (Сл.) 4. Collirites ovulum d'Orbigny
Aboral side (аборална страна), ×1.
4a. Oral side (орална страна), ×1.
4b. Lateral side (уздужпи профил), ×1.

4c. Posterior side (попречии профил), ×1. Fig. (Сл.) 5. Ovulaster gauthieri Cotteau Aboral side (аборална страна), ×1.

5a. Lateral side (уздужни профил), ×1.5b. Posterior side (попречни профил), ×1.

Fig. (Сл.) 6. Hemiaster pullus Stoliczka
Aboral side (аборална страна), ×2.
6a. Lateral side of another specimen (уздужни профил другог примерка), ×2.
6b. Aboral side of another specimen (аборална страна другог примерка), ×2.

Photo: V. Radulovic (Фотографија: В. Радуловић)

РЕАТЕ ІІ ТАБЛА

РГАТЕ ІН ТАБЛА

