P9120 - Statistical Learning and Data Mining

Lecture 12 - Multiple Testing

Min Qian

Department of Biostatistics, Columbia University

Nov. 21, 2024

Outline

Permutation test

2 Family wise error rate

3 False discovery rate

Multiple Testing: Gene Expression Example

 $n_1 = 44$, $n_2 = 14$, number of genes M = 12,625.

TABLE 18.4. Subset of the 12,625 genes from microarray study of radiation sensitivity. There are a total of 44 samples in the normal group and 14 in the radiation sensitive group; we only show three samples from each group.

	Normal				Radiation Sensitive			
Gene 1	7.85	29.74	29.50		17.20	-50.75	-18.89	
Gene 2	15.44	2.70	19.37		6.57	-7.41	79.18	
Gene 3	-1.79	15.52	-3.13		-8.32	12.64	4.75	
Gene 4	-11.74	22.35	-36.11		-52.17	7.24	-2.32	
:	:	:	:	:	:	:	:	:
Gene 12,625	-14.09	32.77	57.78		-32.84	24.09	-101.44	

Goal: Find genes which express differently between the radiation sensitive group and the normal group of patients.

Traditional Approach

 H_{0j} : Gene j doesn't express differently between two groups vs. H_{1j} : Gene j expresses differently between two groups

• Two sample t-test:

$$t_j = \frac{\bar{x}_{2j} - \bar{x}_{1j}}{se_j}$$

• Reject H_{0j} if $|t_j| \ge 2$ (correspond to a significant level of $\alpha = 5\%$)

There are 1189 genes with $|t_j| \geq 2$.

Any problem?

• The two-sample t-test may not be valid.

• Many large t values may occur by chance. If the genes were independent, the expected number of falsely significant genes is $M\alpha = 12625 \times 0.05 = 631.3$ if all null hypotheses are true.

Permutation Test

- Use random shuffles of the data to get the correct sampling distribution of a test statistic under the null hypothesis.
- The ranking of the real test statistic among the shuffled test statistics gives a p-value
- Permutation test is used when the distribution of the test statistic is unknown or hard to compute.

Permutation Example

• Null is true

• Null is false

Permutation Test

- Compute the t-statistic, t_j , from the original data set.
- ② Compute all K permutations/combinations of the sample labels and calculate the t-statistic t_i^k for each permutation.
- **3** Calculate p-value by comparing t_j to t_j^k 's:

$$p_j = \frac{1}{K} \sum_{k=1}^{K} I_{|t_j^k| > |t_j|}.$$

- If the number of total permutations is too large, take a random sample of possible permutations, say K = 1000.
- To exploit the fact that the genes are similar (e.g. measured on the same scale), we can pool the results for all genes in computing the p-values

$$p_j = \frac{1}{MK} \sum_{j'=1}^{M} \sum_{k=1}^{K} I_{|t_{j'}^k| > |t_j|}.$$

Count Errors

With One hypothesis test:

	Decision						
Truth	Do Not Reject H ₀	Rejct H₀					
H ₀ True	Correct Decision 1 - α	Incorrect Decision Type I Error					
H ₀ False	Incorrect Decision Type II Error β	Correct Decision 1 - β					

With M hypothesis tests:

	Called	Called	
	Not Significant	Significant	Total
H_0 True	U	V	M_0
H_0 False	T	S	M_1
Total	M-R	R	M

- V = # of type I errors, T = # of type II errors.
- ullet We would like to control V (overall type I error) in some way.

Approaches To Control Type I Errors

- Control Per Comparison Error Rate (PCER)
 - e.g. "uncorrected testing" reject H_{0j} if $p_j \leq \alpha$.
 - ▶ May result in many type I errors.
- Control Family-wise Error Rate (FWER).
 - Guarantees FWER $\triangleq P(V \ge 1) \le \alpha$.
 - ► Concept proposed by Tukey (1953) and Ryan (1959).
 - e.g. "Bonferroni correction" reject H_{0j} if $p_j \leq \alpha/M$.
 - today: Holm procedure.
- Control False Discovery Rate (FDR):
 - Guarantees FDR $\triangleq E(V/R) \leq \alpha$.
 - ▶ First defined by Benjamini & Hochberg (BH, 1995, 2000)

FWER.

Many procedures have been developed to control FWER (the probability of at least one type I error): $P(V \ge 1)$

Two general types of FWER corrections:

- Single step: equivalent adjustments made to each p-value
- Sequential: adaptive adjustment made to each p-bvalue

Single Step Approach: Bonferroni

Reject any hypothesis with p-value $\leq \alpha/M$.

Among M null hypotheses, let $H_0^{(1)}, \ldots, H_0^{(M_0)}$ be M_0 true null hypotheses.

$$\begin{aligned} \text{FWER} &= P(V \ge 1) \le \sum_{j=1}^{M_0} P(\text{reject } H_0^{(j)}) \\ &= \sum_{j=1}^{M_0} P\Big(p - value^{(j)} \le \alpha/M\Big) = \frac{M_0 \alpha}{M} \le \alpha. \end{aligned}$$

- FWER $\approx \alpha$ if the M tests are independent and $M_0 = M$.
- In general, it is highly conservative (lower power). In our example, the threshold is $0.05/12625 = 3.9 \times 10^{-6}$. None of the genes had a p-value this small.

◆□▶ ◆問▶ ◆ ■ ▶ ■ めのの

Sequential Approach: Holm Procedure

- Order the p-values such that $p_{(1)} \leq p_{(2)} \leq \ldots \leq p_{(M)}$
- ② Reject $H_{0,(j)}$ if $p_{(k)} \leq \alpha/(M-k+1)$ for all $k=1,\ldots,j$.

Proof.

- *J*: set of indices corresponding to true null hypotheses.
- $j_0 = \arg\min_{j \in J} p_{(j)}$: ranking of the first true null.
- $j_0 \leq M M_0 + 1$, where M_0 is the # of true null.
- Commit a false significance if and only if

$$p_{(1)} \le \frac{\alpha}{M}, p_{(2)} \le \frac{\alpha}{M-1}, \dots, p_{(j_0)} \le \frac{\alpha}{M-j_0+1}$$

• FWER $\leq P\left(\min_{j \in J} p_{(j)} \leq \frac{\alpha}{M_0}\right) \leq \sum_{j \in J} P\left(p_{(j)} \leq \frac{\alpha}{M_0}\right) = \alpha.$

Bonferroni vs. Holm

- Bonferroni: reject $H_{0,(j)}$ if $p_{(j)} \leq \alpha/M$.
- Holm: Reject $H_{0,(j)}$ if $p_{(k)} \leq \alpha/(M-k+1)$ for all $k=1,\ldots,j$.

Practical Problem with FWER

- While guarantee of FWER-control is appealing, the resulting thresholds often suffer from low power. In practice, this tends to wipe out evidence of the most interesting effects.
- In many cases (particularly in genomics) we can live with a certain number of false positives. FDR control offers a way to increase power while maintaining some principled bound on error.
- With FDR, we say "4 false discoveries out of 10 rejected null hypotheses" is a more serious error than "20 false discoveries out of 100 rejected null hypotheses."

Benjamini and Hochberg FDR

Assume all test statistics are independent. To control FDR at level α ,

- Order the p-values such that $p_{(1)} \leq p_{(2)} \leq \ldots \leq p_{(M)}$
- ② Define $j^* = \max\{j : p_{(j)} \leq \frac{j\alpha}{M}\}.$
- **3** Reject all $H_{0,(j)}$ with $j \leq j^*$.

Intuition:

- BH procedure finds maximal j^* s.t. $\frac{Mp_{(j^*)}}{j^*} \leq \alpha$, and rejects any hypothesis with p-value $\leq p_{(j^*)}$.
- When using $p_{(j^*)}$ as the cut-off value for the raw p-values, the expected number of false positives can be estimated by $M_0p_{(j^*)}$, since p-value under the null is uniformly distributed.
- Estimate of FDR: $M_0 p_{(j^*)}/j^*$.
- Since M_0 is unknown, M is used as a conservative estimate of M_0 .

Toy Example Continued

Gene Expression Example Continued

FIGURE 18.19. Microarray example continued. Shown is a plot of the ordered p-values $p_{(j)}$ and the line $0.15 \cdot (j/12,625)$, for the Benjamini–Hochberg method. The largest j for which the p-value $p_{(j)}$ falls below the line, gives the BH threshold. Here this occurs at j=11, indicated by the vertical line. Thus the BH method calls significant the 11 genes (in red) with smallest p-values.

FWER vs. FDR

V: number of false discoveries

R: number of discoveries

Note that
$$FDR = E\left[\frac{V}{R}\right] \le P(V \ge 1)$$

 $FDR = E\left[\frac{V}{R}\right] = E\left[\frac{V}{R}|R>0\right]P(R>0)$

by setting V/R = 0 whenever R = 0.

• If all null hypotheses are true, then FDR is equivalent to FWER.

Control of FDR implies control of FWER in a weak sense.

• When $M_0 < M$, any procedure that controls the FWER also controls the FDR. A procedure that controls the FDR but not the FWER can only be less stringent and thus more powerful.

Summary

- Permutation test is based on random shuffles of data to get the correct sampling distribution of a test statistic under the null hypothesis. It is useful when the distribution of the test statistic is unknown or hard to compute.
- When there are multiple comparisons, we need to address the multiple testing problem. The standard approach is to control FWER, e.g. Bonferroni, Holm, etc.
- When the number of tests M is large, FWER control may be too conservative. FDR is a useful alternative.
- The BH method is fast and robust, but it may over-control FDR. The main difficulty is finding a good estimator of FDR or M_0 . There are improved adaptive methods, say BKY (2004).

Reminders

- HW #4 is due at 12pm noon on Monday December 9th.
- Quiz for lecture 12 is due at 9pm on Monday November 25th.
- In class group paper presentation (December 5th):
 - CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning
 Team members: Sixuan Chen, Aiying Huang, Yixiao Sun, Zihan Wu, Allison Xia, Jingyi Xu, Tongxi Yu
 - ▶ Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging
 Team members: Mingzhi Chen, Chenshuo Pan, Zixuan Qiu,
 Xiaoting Tang, Mia Yu, Shubo Zhang