第 12 章 e: 傅里叶级数

数学系 梁卓滨

2018-2019 学年 II

We are here now...

1. 周期为 2π 的周期函数的傅里叶级数

3. 一般周期函数的傅里叶级数

• 注意到三角函数系

 $1, \cos x, \sin x, \cos 2x, \sin 2x, \cdots, \cos nx, \sin nx, \cdots$ 也具有周期 2π

• 注意到三角函数系

 $1, \cos x, \sin x, \cos 2x, \sin 2x, \cdots, \cos nx, \sin nx, \cdots$ 也具有周期 2π

$$\frac{a_0}{2} + \sum_{n=0}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

• 注意到三角函数系

 $1, \cos x, \sin x, \cos 2x, \sin 2x, \cdots, \cos nx, \sin nx, \cdots$ 也具有周期 2π

问题 是否有如下展开

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, ..., $\cos nx$, $\sin nx$, ...

在区间 $[-\pi, \pi]$ 上正交。

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, ..., $\cos nx$, $\sin nx$, ...

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, ..., $\cos nx$, $\sin nx$, ...

$$\int_{-\pi}^{\pi} \cos nx dx = 0, \qquad \int_{-\pi}^{\pi} \sin nx dx = 0 \qquad (n = 1, 2, 3, \dots)$$

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, \cdots , $\cos nx$, $\sin nx$, \cdots

$$\int_{-\pi}^{\pi} \cos nx dx = 0, \qquad \int_{-\pi}^{\pi} \sin nx dx = 0 \qquad (n = 1, 2, 3, \dots)$$

$$\int_{-\pi}^{\pi} \sin kx \cdot \cos nx dx = 0 \qquad (k, n = 1, 2, 3, \dots)$$

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, ..., $\cos nx$, $\sin nx$, ...

$$\int_{-\pi}^{\pi} \cos nx dx = 0, \qquad \int_{-\pi}^{\pi} \sin nx dx = 0 \qquad (n = 1, 2, 3, \dots)$$

$$\int_{-\pi}^{\pi} \sin kx \cdot \cos nx dx = 0 \qquad (k, n = 1, 2, 3, \dots)$$

$$\int_{-\pi}^{\pi} \sin kx \cdot \sin nx dx = 0 \qquad (k, n = 1, 2, 3, \dots, k \neq n)$$

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, ..., $\cos nx$, $\sin nx$, ...

$$\int_{-\pi}^{\pi} \cos nx dx = 0, \qquad \int_{-\pi}^{\pi} \sin nx dx = 0 \qquad (n = 1, 2, 3, \dots)$$

$$\int_{-\pi}^{\pi} \sin kx \cdot \cos nx dx = 0 \qquad (k, n = 1, 2, 3, \dots)$$

$$\int_{-\pi}^{\pi} \sin kx \cdot \sin nx dx = 0 \qquad (k, n = 1, 2, 3, \dots, k \neq n)$$

$$\int_{-\pi}^{\pi} \cos kx \cdot \cos nx dx = 0 \qquad (k, n = 1, 2, 3, \dots, k \neq n)$$

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, ..., $\cos nx$, $\sin nx$, ...

在区间 $[-\pi, \pi]$ 上正交。即上述任意两个相异函数的乘积,在 $[-\pi, \pi]$ 上的积分为零:

$$\int_{-\pi}^{\pi} \cos nx dx = 0, \qquad \int_{-\pi}^{\pi} \sin nx dx = 0 \qquad (n = 1, 2, 3, \cdots)$$

$$\int_{-\pi}^{\pi} \sin kx \cdot \cos nx dx = 0 \qquad (k, n = 1, 2, 3, \cdots)$$

$$\int_{-\pi}^{\pi} \sin kx \cdot \sin nx dx = 0 \qquad (k, n = 1, 2, 3, \cdots, k \neq n)$$

$$\int_{-\pi}^{\pi} \cos kx \cdot \cos nx dx = 0 \qquad (k, n = 1, 2, 3, \cdots, k \neq n)$$

另外

$$\int_{-\pi}^{\pi} \sin^2 nx dx = \int_{-\pi}^{\pi} \cos^2 nx dx = \pi \qquad (n = 1, 2, 3, \dots)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

$$(n = 0, 1, 2, \dots)$$

$$(n = 1, 2, \dots)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

$$(n = 0, 1, 2, \dots) \qquad (n = 1, 2, \dots)$$

$$\int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

$$(n = 0, 1, 2, \dots) \qquad (n = 1, 2, \dots)$$

"形式推导" (1) 当 n = 0, 1, 2, 3, · · · 时,

$$\int_{-\pi}^{\pi} f(x) \cos nx dx \qquad \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \cos nx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

$$(n = 0, 1, 2, \dots) \qquad (n = 1, 2, \dots)$$

"形式推导" (1) 当 n = 0, 1, 2, 3, · · · 时,

$$\int_{-\pi}^{\pi} f(x) \cos nx dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \cos nx dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$
 $(n = 0, 1, 2, \dots)$
 $(n = 1, 2, \dots)$

$$\int_{-\pi}^{\pi} f(x) \cos nx dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \cos nx dx$$
$$= \int_{-\pi}^{\pi} a_n \cos nx \cdot \cos nx dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

$$(n = 0, 1, 2, \dots)$$

$$(n = 1, 2, \dots)$$

$$\int_{-\pi}^{\pi} f(x) \cos nx dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \cos nx dx$$
$$= \int_{-\pi}^{\pi} a_n \cos nx \cdot \cos nx dx = \begin{cases} \pi a_n, & n = 1, 2, \dots \\ 2\pi a_0, & n = 0 \end{cases}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

$$(n = 0, 1, 2, \dots) \qquad (n = 1, 2, \dots)$$

$$\int_{-\pi}^{\pi} f(x) \cos nx dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \cos nx dx$$
$$= \int_{-\pi}^{\pi} a_n \cos nx \cdot \cos nx dx = \begin{cases} \pi a_n, & n = 1, 2, \dots \\ 2\pi a_0, & n = 0 \end{cases}$$

$$\int_{-\pi}^{\pi} f(x) \sin nx dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

$$(n = 0, 1, 2, \dots) \qquad (n = 1, 2, \dots)$$

"形式推导" (1) 当 $n = 0, 1, 2, 3, \cdots$ 时,

$$\int_{-\pi}^{\pi} f(x) \cos nx dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \cos nx dx$$
$$= \int_{-\pi}^{\pi} a_n \cos nx \cdot \cos nx dx = \begin{cases} \pi a_n, & n = 1, 2, \dots \\ 2\pi a_0, & n = 0 \end{cases}$$

(2) 当 n = 1, 2, 3, ··· 时,

$$\int_{-\pi}^{\pi} f(x) \sin nx dx \qquad \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \sin nx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

$$(n = 0, 1, 2, \dots)$$

$$(n = 1, 2, \dots)$$

"形式推导" (1) 当 $n = 0, 1, 2, 3, \cdots$ 时,

$$\int_{-\pi}^{\pi} f(x) \cos nx dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \cos nx dx$$
$$= \int_{-\pi}^{\pi} a_n \cos nx \cdot \cos nx dx = \begin{cases} \pi a_n, & n = 1, 2, \dots \\ 2\pi a_0, & n = 0 \end{cases}$$

(2) 当 $n = 1, 2, 3, \cdots$ 时,

$$\int_{-\pi}^{\pi} f(x) \sin nx dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \sin nx dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

$$(n = 0, 1, 2, \dots) \qquad (n = 1, 2, \dots)$$

"形式推导" (1) 当 $n = 0, 1, 2, 3, \cdots$ 时,

$$\int_{-\pi}^{\pi} f(x) \cos nx dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \cos nx dx$$
$$= \int_{-\pi}^{\pi} a_n \cos nx \cdot \cos nx dx = \begin{cases} \pi a_n, & n = 1, 2, \dots \\ 2\pi a_0, & n = 0 \end{cases}$$

(2) 当 *n* = 1, 2, 3, ··· 时,

$$\int_{-\pi}^{\pi} f(x) \sin nx dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \sin nx dx$$
$$= \int_{-\pi}^{\pi} b_n \sin nx \cdot \sin nx dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

$$(n = 0, 1, 2, \dots) \qquad (n = 1, 2, \dots)$$

"形式推导" (1) 当 $n = 0, 1, 2, 3, \cdots$ 时,

$$\int_{-\pi}^{\pi} f(x) \cos nx dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \cos nx dx$$
$$= \int_{-\pi}^{\pi} a_n \cos nx \cdot \cos nx dx = \begin{cases} \pi a_n, & n = 1, 2, \dots \\ 2\pi a_0, & n = 0 \end{cases}$$

(2) 当 $n = 1, 2, 3, \cdots$ 时,

$$\int_{-\pi}^{\pi} f(x) \sin nx dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \sin nx dx$$
$$= \int_{-\pi}^{\pi} b_n \sin nx \cdot \sin nx dx = \pi b_n$$

定义 f(x) 的傅里叶级数定义为

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

其中

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

$$(n = 0, 1, 2, \dots) \qquad (n = 1, 2, \dots)$$

定义 f(x) 的傅里叶级数定义为

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

其中

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

$$(n = 0, 1, 2, \dots)$$

$$(n = 1, 2, \dots)$$

问题

- 对哪些 x 傅里叶级数 $\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$ 收敛?
- 对哪些 x 成立 $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$?

定义 f(x) 的傅里叶级数定义为

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

其中

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

$$(n = 0, 1, 2, \dots) \qquad (n = 1, 2, \dots)$$

问题

- 对哪些 x 傅里叶级数 $\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$ 收敛?
- 对哪些 x 成立 $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$?

定理(收敛定理, 狄利克雷充分条件)

- 1. 在一个周期内连续或只有有限个第一类间断点;
- 2. 在一个周期内至多只有有限个极值点,

- 1. 在一个周期内连续或只有有限个第一类间断点;
- 2. 在一个周期内至多只有有限个极值点,

那么f(x)的傅里叶级数收敛

- 1. 在一个周期内连续或只有有限个第一类间断点;
- 2. 在一个周期内至多只有有限个极值点,

那么f(x)的傅里叶级数收敛(但不一定绝对收敛)

- 1. 在一个周期内连续或只有有限个第一类间断点;
- 2. 在一个周期内至多只有有限个极值点,

那么 f(x) 的傅里叶级数收敛(但不一定绝对收敛),并且

当 x 是 f(x) 的连续点时,

• 当x是f(x)的间断点时,

- 1. 在一个周期内连续或只有有限个第一类间断点;
- 2. 在一个周期内至多只有有限个极值点,

那么f(x)的傅里叶级数收敛(但不一定绝对收敛),并且

当 x 是 f(x) 的连续点时,

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

• 当x是f(x)的间断点时,

- 1. 在一个周期内连续或只有有限个第一类间断点;
- 2. 在一个周期内至多只有有限个极值点,

那么f(x)的傅里叶级数收敛(但不一定绝对收敛),并且

当 x 是 f(x) 的连续点时,

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

• 当 $x \in f(x)$ 的间断点时,

$$\frac{1}{2} \Big[f(x^{-}) + f(x^{+}) \Big] = \frac{a_0}{2} + \sum_{n=1}^{\infty} \Big(a_n \cos nx + b_n \sin nx \Big)$$

例 1 设 f(x) 是周期为 2π 的周期函数,在 $[-\pi, \pi)$ 上的表达式为

$$f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 1, & 0 \le x < \pi. \end{cases}$$

求出f(x)的傅里叶级数。

$$f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 1, & 0 \le x < \pi. \end{cases}$$

求出f(x)的傅里叶级数。

$$f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 1, & 0 \le x < \pi. \end{cases}$$

求出f(x)的傅里叶级数。

$$f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 1, & 0 \le x < \pi. \end{cases}$$

求出f(x)的傅里叶级数。

解 计算傅里叶系数如下:

 a_n

$$f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 1, & 0 \le x < \pi. \end{cases}$$

求出f(x)的傅里叶级数。

解 计算傅里叶系数如下:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 1, & 0 \le x < \pi. \end{cases}$$

求出f(x)的傅里叶级数。

解 计算傅里叶系数如下:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\text{fight}} 0$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{6}{3}} 0,$$

 b_n

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{6}{3}} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{6}{4}} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{6}{3}} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{6}{6}} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$
$$= \frac{2}{\pi} \cdot (-1) \cdot \frac{\cos nx}{n} \Big|_{0}^{\pi}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \stackrel{\text{fight}}{===} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$
$$= \frac{2}{\pi} \cdot (-1) \cdot \frac{\cos nx}{n} \Big|_{0}^{\pi} = \frac{2}{n\pi} \Big[1 - \cos n\pi \Big]$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \stackrel{\text{fight}}{===} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$
$$= \frac{2}{\pi} \cdot (-1) \cdot \frac{\cos nx}{n} \Big|_{0}^{\pi} = \frac{2}{n\pi} \Big[1 - \cos n\pi \Big] = \frac{2}{n\pi} \Big[1 - (-1)^n \Big]$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{6}{6}} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$
$$= \frac{2}{\pi} \cdot (-1) \cdot \frac{\cos nx}{n} \Big|_{0}^{\pi} = \frac{2}{n\pi} \Big[1 - \cos n\pi \Big] = \frac{2}{n\pi} \Big[1 - (-1)^n \Big]$$

$$= \left\{ \begin{array}{c} n = 1, 3, 5, \cdots \\ n = 2, 4, 6, \cdots . \end{array} \right.$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \stackrel{\text{fight}}{===} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$
$$= \frac{2}{\pi} \cdot (-1) \cdot \frac{\cos nx}{n} \Big|_{0}^{\pi} = \frac{2}{n\pi} \Big[1 - \cos n\pi \Big] = \frac{2}{n\pi} \Big[1 - (-1)^n \Big]$$

$$= \begin{cases} n = 1, 3, 5, \cdots \\ 0, n = 2, 4, 6, \cdots \end{cases}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{6}{6}} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$
$$= \frac{2}{\pi} \cdot (-1) \cdot \frac{\cos nx}{n} \Big|_{0}^{\pi} = \frac{2}{n\pi} \Big[1 - \cos n\pi \Big] = \frac{2}{n\pi} \Big[1 - (-1)^n \Big]$$

$$= \begin{cases} \frac{4}{n\pi}, & n = 1, 3, 5, \cdots \\ 0, & n = 2, 4, 6, \cdots \end{cases}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \stackrel{\text{fight}}{===} 0,$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$

$$= \frac{2}{\pi} \cdot (-1) \cdot \frac{\cos nx}{n} \Big|_{0}^{\pi} = \frac{2}{n\pi} \Big[1 - \cos n\pi \Big] = \frac{2}{n\pi} \Big[1 - (-1)^{n} \Big]$$

$$= \begin{cases} \frac{4}{n\pi}, & n = 1, 3, 5, \dots \\ 0, & n = 2, 4, 6, \dots \end{cases}$$

$$(0, n = 2, 4, 6, \cdots)$$

所以傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=0}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\text{fight}} 0,$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$

$$= \frac{2}{\pi} \cdot (-1) \cdot \frac{\cos nx}{n} \Big|_{0}^{\pi} = \frac{2}{n\pi} \Big[1 - \cos n\pi \Big] = \frac{2}{n\pi} \Big[1 - (-1)^{n} \Big]$$

$$= \begin{cases} \frac{4}{n\pi}, & n = 1, 3, 5, \dots \\ 0, & n = 2, 4, 6, \dots \end{cases}$$

$$\frac{a_0}{2} + \sum_{n=0}^{\infty} \left(a_n \cos nx + b_n \sin nx \right) = \sum_{n=0}^{\infty} b_n \sin nx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{6}{6}} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$
$$= \frac{2}{\pi} \cdot (-1) \cdot \frac{\cos nx}{n} \Big|_{0}^{\pi} = \frac{2}{n\pi} \Big[1 - \cos n\pi \Big] = \frac{2}{n\pi} \Big[1 - (-1)^n \Big]$$

$$= \begin{cases} \frac{4}{n\pi}, & n = 1, 3, 5, \cdots \\ 0, & n = 2, 4, 6, \cdots \end{cases}$$

所以傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right) = \sum_{n=1}^{\infty} b_n \sin nx$$

第 12 章 e:傅里叶级数

 $= \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right]$

敛定理分析可知:

• 当 $x \neq n\pi$ 时,

当 x = nπ 是,

敛定理分析可知:

• 当 $x \neq n\pi$ 时,是 f 的连续点,

• 当 $x = n\pi$ 是,

敛定理分析可知:

• 当 $x \neq n\pi$ 时,是 f 的连续点,此时

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$

• 当 $x = n\pi$ 是,

敛定理分析可知:

• 当 $x \neq n\pi$ 时,是 f 的连续点,此时

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$

• $\exists x = n\pi \in \mathcal{L}$, \mathcal{L} 的间断点,

• 当 $x \neq n\pi$ 时,是 f 的连续点,此时

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$

• 当 $x = n\pi$ 是,是 f 的间断点,此时

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{1}{2} \left[f(x^{-}) + f(x^{+}) \right]$$

敛定理分析可知:

• 当 $x \neq n\pi$ 时,是 f 的连续点,此时

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$

• 当 $x = n\pi$ 是,是 f 的间断点,此时

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{1}{2} \left[f(x^{-}) + f(x^{+}) \right] = 0$$

• 当 $x \neq n\pi$ 时,是 f 的连续点,此时

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$

• 当 $x = n\pi$ 是,是 f 的间断点,此时

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{1}{2} \left[f(x^{-}) + f(x^{+}) \right] = 0$$

(显然,可直接看出当 $x = n\pi$ 时傅里叶级数的值为 0)

• 当 $x \neq n\pi$ 时,是 f 的连续点,此时

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$

• 当 $x = n\pi$ 是,是 f 的间断点,此时

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{1}{2} \left[f(x^{-}) + f(x^{+}) \right] = 0$$

(显然,可直接看出当 $x = n\pi$ 时傅里叶级数的值为 0)

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots$$

• 当 $x \neq n\pi$ 时,是 f 的连续点,此时

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$

• 当 $x = n\pi$ 是,是 f 的间断点,此时

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{1}{2} \left[f(x^{-}) + f(x^{+}) \right] = 0$$

(显然,可直接看出当 $x = n\pi$ 时傅里叶级数的值为 0)

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = \frac{\pi}{4}$$

• 当 $x \neq n\pi$ 时,是 f 的连续点,此时

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$

• 当 $x = n\pi$ 是,是 f 的间断点,此时

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{1}{2} \left[f(x^{-}) + f(x^{+}) \right] = 0$$

(显然,可直接看出当 $x = n\pi$ 时傅里叶级数的值为 0)

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = \frac{\pi}{4}$$

• 当 $x \neq n\pi$ 时,是 f 的连续点,此时

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right]$$

• 当 $x = n\pi$ 是,是 f 的间断点,此时

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{1}{2} \left[f(x^{-}) + f(x^{+}) \right] = 0$$

(显然,可直接看出当 $x=n\pi$ 时傅里叶级数的值为 0)

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = \frac{\pi}{4}$$

注 4 奇函数 f(x) 的傅里叶级数是 $\sum_{n=1}^{\infty} b_n \sin nx$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

例 2 设 f(x) 是周期为 2π 的周期函数,在 $[-\pi, \pi)$ 上的表达式为

$$f(x) = |x|$$

求出f(x)的傅里叶级数。

例 2 设 f(x) 是周期为 2π 的周期函数, 在 $[-\pi, \pi)$ 上的表达式为

$$f(x) = |x|$$

例 2 设 f(x) 是周期为 2π 的周期函数, 在 $[-\pi, \pi)$ 上的表达式为

$$f(x) = |x|$$

求出f(x)的傅里叶级数。

例 2 设 f(x) 是周期为 2π 的周期函数,在 $[-\pi, \pi)$ 上的表达式为

$$f(x) = |x|$$

求出f(x)的傅里叶级数。

解 计算傅里叶系数如下:

 b_n

例 2 设 f(x) 是周期为 2π 的周期函数,在 $[-\pi, \pi)$ 上的表达式为

$$f(x) = |x|$$

求出f(x)的傅里叶级数。

解 计算傅里叶系数如下:

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

例 2 设 f(x) 是周期为 2π 的周期函数,在 $[-\pi, \pi)$ 上的表达式为

$$f(x) = |x|$$

求出 f(x) 的傅里叶级数。

解 计算傅里叶系数如下:

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{\Phi(M)}{\pi}} 0,$$

$$a_n =$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{6}{\pi} (4\pi)} 0,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{6}{3}} 0,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{6}{3}} 0,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$
$$= \frac{2}{n\pi} \int_{0}^{\pi} x d \sin nx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{6}{3}} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$
$$= \frac{2}{n\pi} \int_{0}^{\pi} x d \sin nx = \frac{2}{n\pi} \left[x \sin nx \right]_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx$$

第 12 章 e:傅里叶级:

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{6}{3}} 0,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$
$$= \frac{2}{\pi} \int_{0}^{\pi} x d \sin nx = \frac{2}{\pi} \left[x \sin nx \right]_{0}^{\pi} - \left[\sin nx dx \right]_{0}^{\pi}$$

$$= \frac{2}{n\pi} \int_0^{\pi} x d\sin nx = \frac{2}{n\pi} \left[x \sin nx \Big|_0^{\pi} - \int_0^{\pi} \sin nx dx \right]$$
$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_0^{\pi} \right]$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{6}{3}} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$
$$= \frac{2}{\pi} \int_{0}^{\pi} x d \sin nx = \frac{2}{\pi} \left[x \sin nx \right]_{0}^{\pi} - \left[x \sin nx dx \right]_{0}^{\pi}$$

$$= \frac{2}{n\pi} \int_0^{\pi} x d \sin nx = \frac{2}{n\pi} \left[x \sin nx \Big|_0^{\pi} - \int_0^{\pi} \sin nx dx \right]$$
2 \(\Gamma 1 \)

$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right]$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{6}{3}} 0,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$\int_{-\pi}^{\pi} \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = -\int_{0}^{\pi} f(x) \cos nx dx = -\int_{0}^{\pi} x \cos nx dx$$
$$= \frac{2}{n\pi} \int_{0}^{\pi} x d \sin nx = \frac{2}{n\pi} \left[x \sin nx \right]_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx$$

 $= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{n} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} n = 1, 3, 5, \dots \\ n = 2, 4, 6, \dots \end{cases}$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{6}{3}} 0,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = -\int_{0}^{\pi} \int_{0}^{\pi} f(x) \cos nx dx = -\int_{0}^{\pi} x \cos nx dx$$
$$= \frac{2}{n\pi} \int_{0}^{\pi} x d \sin nx = \frac{2}{n\pi} \left[x \sin nx \right]_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx$$

 $= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \cdots \\ n = 2, 4, 6, \cdots \end{cases}$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$= \frac{2}{n\pi} \int_{0}^{\pi} x d\sin nx = \frac{2}{n\pi} \left[x \sin nx \right]_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx$$

 $= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \cdots \\ 0, & n = 2, 4, 6, \cdots \end{cases}$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$\pi J_{-\pi} \qquad \pi J_{0} \qquad \pi J_{0}$$

$$= \frac{2}{n\pi} \int_{0}^{\pi} x d\sin nx = \frac{2}{n\pi} \left[x \sin nx \Big|_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx \right]$$

$$= \frac{2}{n\pi} \int_{0}^{\pi} x d\sin nx = \frac{2}{n\pi} \left[x \sin nx \Big|_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx \right]$$

$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \dots \\ 0, & n = 2, 4, 6, \dots \end{cases}$$

 a_0

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$2 \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx$$

$$= \frac{2}{n\pi} \int_0^{\pi} x d\sin nx = \frac{2}{n\pi} \left[x \sin nx \Big|_0^{\pi} - \int_0^{\pi} \sin nx dx \right]$$

$$= \frac{1}{n\pi} \int_{0}^{\pi} x d \sin nx = \frac{1}{n\pi} \left[x \sin nx \Big|_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx \right]$$

$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \dots \\ 0, & n = 2, 4, 6, \dots \end{cases}$$

$$= \frac{1}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0} \right] = \frac{1}{n^2 \pi} \left[(-1)^n - 1 \right] = \frac{1}{n^2 \pi} \left[(-1)^n$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$\pi J_{-\pi} \qquad \pi J_{0} \qquad \pi J_{0}$$

$$= \frac{2}{n\pi} \int_{0}^{\pi} x d \sin nx = \frac{2}{n\pi} \left[x \sin nx \Big|_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx \right]$$

$$= \frac{1}{n\pi} \int_{0}^{\pi} x dx \sin nx = \frac{1}{n\pi} \left[x \sin nx \right]_{0}^{\pi} = \int_{0}^{\pi} \sin nx dx$$

$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \right]_{0}^{\pi} = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \dots \\ 0, & n = 2, 4, 6, \dots \end{cases}$$

$$x = \frac{1}{n\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{n\pi} \int_{0}^{\pi} f(x) dx$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$= \frac{2}{n\pi} \int_0^{\pi} x d\sin nx = \frac{2}{n\pi} \left[x \sin nx \Big|_0^{\pi} - \int_0^{\pi} \sin nx dx \right]$$

$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \dots \\ 0, & n = 2, 4, 6, \dots \end{cases}$$

$$a_{0} = \frac{1}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$f(x) \cos nx dx = -\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = -\frac{1}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = -\frac{1}{\pi} \int_{0}^{\pi} x \cos nx dx$$
$$= -\frac{2}{n\pi} \int_{0}^{\pi} x d \sin nx = -\frac{2}{n\pi} \left[x \sin nx \right]_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx$$

$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \dots \\ 0, & n = 2, 4, 6, \dots \end{cases}$$

$$= \frac{1}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \left\{ \frac{-\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \dots \\ n = 2, 4, 6, \dots \right\}$$

$$= \frac{1}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \left\{ \frac{-\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \dots \\ n = 2, 4, 6, \dots \right\}$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x dx = \frac{2}{\pi} \cdot \frac{1}{2} x^2 \Big|_{0}^{\pi}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$\pi \int_{-\pi}^{\pi} \int_{0}^{\pi} x d\sin nx = \frac{2}{n\pi} \left[x \sin nx \right]_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx$$

 $= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \cdots \\ 0, & n = 2, 4, 6, \cdots \end{cases}$

 $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x dx = \frac{2}{\pi} \cdot \frac{1}{2} x^2 \Big|_{0}^{\pi} = \pi.$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0,$$

$$x = \frac{2}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{-\pi}^{\pi} x \cos nx dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$
$$= \frac{2}{n\pi} \int_{0}^{\pi} x d \sin nx = \frac{2}{n\pi} \left[x \sin nx \right]_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx$$

$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \cdots \\ 0, & n = 2, 4, 6, \cdots \end{cases}$$

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x dx = \frac{2}{\pi} \cdot \frac{1}{2} x^{2} \Big|_{0}^{\pi} = \pi.$$

所以傅里叶级数为 $\frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos nx$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \stackrel{\text{fight}}{===} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$
$$= \frac{2}{n\pi} \int_{0}^{\pi} x d \sin nx = \frac{2}{n\pi} \left[x \sin nx \right]_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx$$

$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \dots \\ 0, & n = 2, 4, 6, \dots \end{cases}$$

$$\alpha_{0} = \frac{1}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x dx = \frac{2}{\pi} \cdot \frac{1}{2} x^{2} \Big|_{0}^{\pi} = \pi.$$

所以傅里叶级数为
$$\frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos nx = \frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

又因为f(x) 是连续函数,

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

又因为 f(x) 是连续函数, 故利用收敛定理分析可知:

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

又因为f(x)是连续函数,故利用收敛定理分析可知:

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

$$注 2 取 x = 0$$
,可得到

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

又因为f(x)是连续函数,故利用收敛定理分析可知:

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

$$\dot{r} 2$$
 取 $x = 0$. 可得到

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$$

注 1 f(x) 的傅里叶级数是

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

又因为 f(x) 是连续函数, 故利用收敛定理分析可知:

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

注 2 取 x = 0. 可得到

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$$

注 3 偶函数 f(x) 的傅里叶级数是 $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{i=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

• 若 f(x) 是奇函数,则傅里叶级数为

• 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx,$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx,$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx,$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx,$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

 $\overline{\text{tim}}$ (1) 假设 f 为奇函数,则

$$a_n =$$

$$b_n =$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

证明 (1) 假设f 为奇函数,则

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

证明(1)假设ƒ为奇函数,则

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{4\pi}{3}} 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

证明 (1) 假设 f 为奇函数,则

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{\hat{\sigma}(\text{Mt})}{\pi}} 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{\hat{\sigma}(\text{Mt})}{\pi}} \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

证明 (2) 假设 f 为偶函数,则

$$b_n =$$

$$a_n =$$

• 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

证明 (2) 假设f 为偶函数,则

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

$$1 \int_{-\pi}^{\pi} f(x) \sin nx dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

证明 (2) 假设 f 为偶函数,则

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{6}{3}} 0$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

证明 (2) 假设 f 为偶函数,则

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{\hat{\sigma}(\underline{M}\underline{M}\underline{M})}{\underline{\sigma}(\underline{M}\underline{M}\underline{M})}} 0$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{\hat{\sigma}(\underline{M}\underline{M}\underline{M}\underline{M})}{\underline{\sigma}(\underline{M}\underline{M})}} \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx$$

设 f(x) 是定义在区间 $[-\pi, \pi)$ (或 $(-\pi, \pi]$)上的函数,可以对其进行周期延拓,从而得到定义在 \mathbb{R} 上的周期函数

设 f(x) 是定义在区间 $[-\pi, \pi)$ (或 $(-\pi, \pi]$)上的函数,可以对其进行周期延拓,从而得到定义在 \mathbb{R} 上的周期函数,如图:

设 f(x) 是定义在区间 $[-\pi, \pi)$ (或 $(-\pi, \pi]$)上的函数,可以对其进行周期延拓,从而得到定义在 \mathbb{R} 上的周期函数,如图:

设 f(x) 是定义在区间 $[-\pi, \pi)$ (或 $(-\pi, \pi]$)上的函数,可以对其进行周期延拓,从而得到定义在 \mathbb{R} 上的周期函数,如图:

延拓后的周期函数任然记为 f(x),此时可以进行傅里叶展开。

设 f(x) 是定义在区间 $(0, \pi]$ 上的函数,可以对其进行奇延拓,从而得到定义在 \mathbb{R} 上的周期奇函数。

设 f(x) 是定义在区间 $(0, \pi]$ 上的函数,可以对其进行奇延拓,从而得到定义在 \mathbb{R} 上的周期奇函数。

设 f(x) 是定义在区间 $(0, \pi]$ 上的函数,可以对其进行奇延拓,从而得到定义在 \mathbb{R} 上的周期奇函数。

设 f(x) 是定义在区间 $(0, \pi]$ 上的函数,可以对其进行奇延拓,从而得到定义在 \mathbb{R} 上的周期奇函数。

设 f(x) 是定义在区间 $(0, \pi]$ 上的函数,可以对其进行奇延拓,从而得到定义在 \mathbb{R} 上的周期奇函数。

设 f(x) 是定义在区间 $(0, \pi]$ 上的函数,可以对其进行奇延拓,从而得到定义在 \mathbb{R} 上的周期奇函数。

奇延拓步骤:

• 定义 f(0) = 0

奇延拓

设 f(x) 是定义在区间 $(0, \pi]$ 上的函数,可以对其进行奇延拓,从而得到定义在 \mathbb{R} 上的周期奇函数。

奇延拓步骤:

• $\mathbb{E} \setminus f(0) = 0$; $\mathbb{E} \times f($

奇延拓

设 f(x) 是定义在区间 $(0, \pi]$ 上的函数,可以对其进行奇延拓,从而得到定义在 \mathbb{R} 上的周期奇函数。

奇延拓步骤:

• 定义 f(0) = 0; 当 $x \in (-\pi, 0)$ 时,定义 f(x) = -f(-x); (此时 f 在 $(-\pi, \pi]$ 上有定义,且在 $(-\pi, \pi)$ 上为奇函数)

奇延拓

设 f(x) 是定义在区间 $(0, \pi]$ 上的函数,可以对其进行奇延拓,从而得到定义在 \mathbb{R} 上的周期奇函数。

奇延拓步骤:

- 定义 f(0) = 0; 当 $x \in (-\pi, 0)$ 时,定义 f(x) = -f(-x); (此时 f 在 $(-\pi, \pi]$ 上有定义,且在 $(-\pi, \pi)$ 上为奇函数)
- 周期延拓 f 在 (-π, π] 上的取值。

设 f(x) 是定义在区间 $[0, \pi]$ 上的函数,可以对其进行偶延拓,从而得到定义在 \mathbb{R} 上的周期偶函数。

设 f(x) 是定义在区间 $[0, \pi]$ 上的函数,可以对其进行偶延拓,从而得到定义在 \mathbb{R} 上的周期偶函数。

设 f(x) 是定义在区间 $[0, \pi]$ 上的函数,可以对其进行偶延拓,从而得到定义在 \mathbb{R} 上的周期偶函数。

设 f(x) 是定义在区间 $[0, \pi]$ 上的函数,可以对其进行偶延拓,从而得到定义在 \mathbb{R} 上的周期偶函数。

设 f(x) 是定义在区间 $[0, \pi]$ 上的函数,可以对其进行偶延拓,从而得到定义在 \mathbb{R} 上的周期偶函数。

偶延拓步骤:

• $\exists x \in [-\pi, 0]$ 时,定义 f(x) = f(-x);

设 f(x) 是定义在区间 $[0, \pi]$ 上的函数,可以对其进行偶延拓,从而得到定义在 \mathbb{R} 上的周期偶函数。

偶延拓步骤:

• 当 $x \in [-\pi, 0]$ 时,定义 f(x) = f(-x); (此时 f 成为定义在 $[-\pi, \pi]$ 上为偶函数)

设 f(x) 是定义在区间 $[0, \pi]$ 上的函数,可以对其进行偶延拓,从而得到定义在 \mathbb{R} 上的周期偶函数。

- 当 $x \in [-\pi, 0]$ 时,定义 f(x) = f(-x); (此时 f 成为定义在 $[-\pi, \pi]$ 上为偶函数)
- 周期延拓 f 在 [-π, π] 上的取值。

We are here now...

1. 周期为 2π 的周期函数的傅里叶级数

3. 一般周期函数的傅里叶级数

假设 f(x) 是定义在 \mathbb{R} 上周期函数,周期为 T=2l,

假设 f(x) 是定义在 \mathbb{R} 上周期函数,周期为 T=2l,其傅里叶级数应为:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

假设 f(x) 是定义在 \mathbb{R} 上周期函数,周期为 T=2l,其傅里叶级数应为:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$1 \int_{-l}^{l} n\pi x$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

"推导" 令 $g(x) = f(\frac{l}{\pi}x)$,

假设 f(x) 是定义在 \mathbb{R} 上周期函数,周期为 T=2l,其傅里叶级数应为:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

"推导" $\Leftrightarrow g(x) = f(\frac{l}{\pi}x)$, 则 g 是周期为 2π 的周期函数:

假设 f(x) 是定义在 \mathbb{R} 上周期函数,周期为 T=2l,其傅里叶级数应为:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

"推导" \Leftrightarrow $g(x) = f(\frac{l}{\pi}x)$, 则 g 是周期为 2π 的周期函数:

$$q(x+2\pi)$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

"推导" \Leftrightarrow $g(x) = f(\frac{l}{\pi}x)$, 则 g 是周期为 2π 的周期函数:

$$g(x+2\pi) = f(\frac{l}{\pi}(x+2\pi))$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

"推导" \Leftrightarrow $g(x) = f(\frac{l}{\pi}x)$,则 g 是周期为 2π 的周期函数:

$$g(x+2\pi) = f(\frac{l}{\pi}(x+2\pi)) = f(\frac{l}{\pi}x+2l)$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

"推导" 令 $g(x) = f(\frac{l}{\pi}x)$, 则 g 是周期为 2π 的周期函数:

$$g(x+2\pi) = f(\frac{l}{\pi}(x+2\pi)) = f(\frac{l}{\pi}x+2l) = f(\frac{l}{\pi}x)$$

假设 f(x) 是定义在 \mathbb{R} 上周期函数,周期为 T=2l,其傅里叶级数应为:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

"推导" 令 $g(x) = f(\frac{l}{\pi}x)$, 则 g 是周期为 2π 的周期函数:

$$g(x+2\pi) = f(\frac{l}{\pi}(x+2\pi)) = f(\frac{l}{\pi}x+2l) = f(\frac{l}{\pi}x) = g(x)$$

假设 f(x) 是定义在 \mathbb{R} 上周期函数,周期为 T=2l,其傅里叶级数应为:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

"推导" 令 $g(x) = f(\frac{l}{\pi}x)$, 则 g 是周期为 2π 的周期函数:

$$g(x+2\pi) = f(\frac{l}{\pi}(x+2\pi)) = f(\frac{l}{\pi}x+2l) = f(\frac{l}{\pi}x) = g(x)$$

所以

$$g(x) = \frac{a_0}{2} + \sum_{n=0}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

其中
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$
其中
$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

"推导" 令 $g(x) = f(\frac{l}{\pi}x)$,则 g 是周期为 2π 的周期函数: $g(x + 2\pi) = f(\frac{l}{\pi}(x + 2\pi)) = f(\frac{l}{\pi}x + 2l) = f(\frac{l}{\pi}x) = g(x)$

所以
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

 a_n

 b_n

死然 $f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz$$

 b_n

死然 $f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz$$

既然 $f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$x = \frac{l}{\pi}z$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$\frac{x = \frac{l}{\pi}z}{\pi} \frac{1}{\pi} \int f(x) \cos \frac{n\pi x}{l}$$

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos \frac{n\pi x}{l}$$

 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$\frac{x = \frac{l}{\pi}z}{\pi} \frac{1}{\pi} \int f(x) \cos \frac{n\pi x}{l} d(\frac{\pi}{l}x)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$\frac{x = \frac{l}{\pi}z}{\pi} \frac{1}{\pi} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} d(\frac{\pi}{l}x)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$\xrightarrow{x = \frac{l}{\pi}z} \frac{1}{\pi} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} d(\frac{\pi}{l}x) = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$\frac{x = \frac{l}{\pi}z}{\pi} \frac{1}{\pi} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} d(\frac{\pi}{l}x) = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx,$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \sin nz dz$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$\frac{x = \frac{l}{\pi} z}{\frac{l}{\pi}} \frac{1}{\pi} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} d(\frac{\pi}{l} x) = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi} z) \sin nz dz$$

$$x = \frac{l}{\pi}z$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$f_n = -\frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = -\frac{1}{\pi} \int_{-\pi}^{\pi} f(-z) \cos nz dz$$

$$= \frac{x = \frac{1}{\pi} z}{\pi} \int_{-\pi}^{t} f(x) \cos \frac{n\pi x}{t} d(\frac{\pi}{t} x) = \frac{1}{t} \int_{-\pi}^{t} f(x) \cos \frac{n\pi x}{t} dx,$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \sin nz dz$$

$$\frac{x = \frac{l}{\pi}z}{\pi} \frac{1}{\pi} \int f(x) \sin \frac{n\pi x}{l}$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

所以
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$a_n = \frac{1}{\pi} \int_{-\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi} f(\frac{1}{\pi}z) \cos nz dz$$

$$\frac{x = \frac{l}{\pi} z}{\pi} \frac{1}{\pi} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} d(\frac{\pi}{l} x) = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi} z) \sin nz dz$$

$$\frac{x = \frac{l}{\pi}z}{\pi} \frac{1}{\pi} \int f(x) \sin \frac{n\pi x}{l} d(\frac{\pi}{l}x)$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(-z) \cos nz dz$$

$$\frac{x = \frac{1}{\pi}z}{\pi} \frac{1}{\pi} \int_{-\pi}^{t} f(x) \cos \frac{n\pi x}{t} d(\frac{\pi}{t}x) = \frac{1}{t} \int_{-\pi}^{t} f(x) \cos \frac{n\pi x}{t} dx,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(-z) \sin nz dz$$

$$= \frac{x = \frac{l}{\pi} z}{\pi} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} d(\frac{\pi}{l} x)$$

既然 $f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$

所以
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$\frac{x = \frac{l}{\pi}z}{\pi} \frac{1}{\pi} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} d(\frac{\pi}{l}x) = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \sin nz dz$$

 $\frac{x=\frac{l}{\pi}z}{\pi} \frac{1}{\pi} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} d(\frac{\pi}{L}x) = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx.$

