```
In []: #python3
    # Hans D. Escobar H. (hdescobarh@unal.edu.co)

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import spearmanr # type: ignore
from statsmodels.stats.multitest import multipletests
from itertools import combinations
```

Asociación estadística entre la altura, el diametro y el número de hojas de una aracéa

1. Datos

Los datos corresponden a observaciones de una población de plantas de la familia *araceae*, en la Reserva Nacional Forestal Bosque de Yotoco (fecha, 26-May-2023). Datos colectados por estudiantes del curso de Fundamentos de Ecología de Poblaciones 2023-S1, Departamento de Biología. Universidad Nacional de Colombia.

```
In [ ]: araceae_raw_df = pd.read_csv("./aracea_altura.csv", header= 1).astype({"grupo": str})
    araceae_raw_df.drop("grupo", axis=1, inplace= True)
    araceae_raw_df
```

Out[]: altura_m diametro_cm numero_hojas 0 0.70 1.27 12.0 1 0.74 1.62 16.0 2 1.01 1.24 10.0 9.0 3 1.00 1.34 4 0.83 1.46 10.0 5 0.76 1.27 12.0 6 1.36 1.43 17.0 7 0.87 1.21 4.0 8 1.25 1.27 20.0 9 1.01 1.59 15.0 10 1.20 1.00 18.0 8.0 11 1.16 1.10 12 1.20 16.0 1.31 1.04 1.10 12.0 13 14 0.85 1.10 15.0 15 0.84 1.00 15.0 16 1.33 2.30 13.0 0.80 12.0 17 1.00 18 0.90 10.0 0.81 19 1.08 1.30 14.0

20

21

1.10

0.74

1.27

1.27

16.0

15.0

	altura_m	diametro_cm	numero_hojas
22	1.75	1.27	14.0
23	1.80	2.07	31.0
24	1.24	1.72	18.0
25	1.52	1.27	15.0
26	0.90	1.11	15.0
27	1.80	1.59	14.0
28	1.20	1.27	3.4
29	1.66	1.59	9.0
30	3.00	1.21	25.0
31	2.46	1.60	9.0
32	1.30	0.30	15.0
33	1.80	1.10	18.0
34	1.88	1.00	15.0
35	1.50	1.20	12.0
36	1.94	1.01	17.0
37	1.64	1.40	10.0
38	2.15	1.50	19.0
39	1.60	1.20	5.0
40	3.00	3.80	25.0
41	2.46	1.60	9.0
42	1.30	0.30	15.0
43	1.80	1.10	18.0

	altura_m	diametro_cm	numero_hojas
44	1.88	1.00	15.0
45	1.50	1.20	12.0
46	1.94	3.20	17.0
47	1.64	1.40	10.0
48	2.15	1.50	19.0
49	1.60	1.20	5.0

1.1. Limpieza de datos

En el boxplot se puede observar que, bajo el criterio del 1.5-IQR (intervalo interquartilico) hay algunos outliers.

Dataset lenght:50


```
In [ ]: # Calculate upper and lower limits of +-1.5IQR interval
        descriptive df = araceae raw df.describe()
        limit_for_outlier: dict[str, tuple[float, float]] = {col_name: (0,0) for col_name in araceae_raw_df.columns}
        for col_name in limit_for_outlier:
            iqr = descriptive_df[col_name]["75%"] - descriptive_df[col_name]["25%"]
            upper_limit = descriptive_df[col_name]["75%"] + 1.5 * iqr
            lower_limit = descriptive_df[col_name]["25%"] - 1.5 * iqr
            limit_for_outlier[col_name] = (lower_limit, upper_limit)
        # make a query proposition from the limits dictionary
        my query = ""
        tolerance = 1e-15
        for col_name, (lower_limit, upper_limit) in limit_for_outlier.items():
            my_query += f"({col_name} - {lower_limit} >= -{tolerance} & {col_name} - {upper_limit} <= {tolerance})"</pre>
        my_query = my_query.replace(")(", ") & (")
        # Return cleaned dataset and shows boxplot
        araceae_cleaned_df = araceae_raw_df.query(my_query)
```

```
print("Dataset lenght:{}".format(len(araceae_cleaned_df)))
araceae_cleaned_df.boxplot()
plt.show()
```

Dataset lenght:43

2. Análisis de correlación

```
In [ ]: def spearman_correlation_analysis(dataframe: pd.DataFrame):
    # Realiza el análisis de correlación de Spearman, devuelve stadisticos y p-values
    rho, pvalue_uncorrected = spearmanr(dataframe, alternative="two-sided")

# Extrae el triangulo superior sin la diagonal, y realiza corrección para multiples test
    correction_output = multipletests(pvalue_uncorrected[np.triu_indices(3, 1)], method="bonferroni")

# Reconstruye una nueva matriz pero con los p-value corregidos
```

```
pvalue_corrected = np.zeros((3,3))
  pvalue_corrected[np.triu_indices(3, 1)] = correction_output[1]
  pvalue_corrected[np.tril_indices(3, -1)] = correction_output[1]

  column_names = list(dataframe)
  rho_df = pd.DataFrame(rho, index = column_names, columns = column_names)
  pvalue_df = pd.DataFrame(pvalue_corrected, index = column_names, columns = column_names)

  return rho_df, pvalue_df

Ejemplo de como obtener el p-value mediante permutación. Recomendado cuando n es bajo.

from scipy.stats import permutation_test
from scipy.stats import spearmanr
r_spearman = lambda x: spearmanr(x,y).statistic
x = araceae df['numero_hojas']
```

PermutationTestResult(statistic=0.07548153631659311, pvalue=0.603, null distribution=array([0.00678922,

cmap = sns.color_palette("coolwarm", as_cmap=True) # sns.diverging_palette(h_neg= 15, h_pos=225, s=100, l=40, as_

y = araceae df['diametro cm']

res_exact = permutation_test(

In []: # Código para graficas

plt.show()

Solo es necesario permutar una columna!

0.38133573, 0.09674633, ..., -0.10993681, 0.00434025, 0.15091458]))

f, ax = plt.subplots(figsize=(11, 9))

res exact.statistic, res exact.pvalue

def make_heatmap(rho_df: pd.DataFrame):

(x,), r spearman, vectorized=False, permutation type='pairings')

sns.set_theme(context= "paper", style="white", palette="bright")

cmap=cmap, vmax=1, center=0, vmin=-1,

sns.set_theme(context= "paper", style="whitegrid", palette="muted")

square=True, linewidths=1, cbar_kws={"shrink": .5}, ax = ax)

def make scatterplot histogram(araceae df: pd.DataFrame, rho df: pd.DataFrame, pvalue df:pd.DataFrame):

mask = np.triu(np.ones_like(rho_df, dtype=bool), 1)

sns.heatmap(rho_df, mask=mask, annot= True, fmt=".3f",

```
s = set_title = np.vectorize(lambda ax, rho, pval: ax.title.set_text(
    "p = {:.2f}\np-valor = {:.4f}".format(rho, pval)) if ax!=None else None)
g = sns.PairGrid(araceae_df, diag_sharey=False, corner= True)
palette = sns.color_palette("Set2")
g.map_diag(plt.hist, color = palette[0]) # type: ignore
g.map_lower(sns.scatterplot, color = palette[1], s=50) # type: ignore
#g.map_upper(sns.kdeplot, lw=2)
plt.subplots_adjust(hspace = 0.6)
set_title(g.axes,rho_df, pvalue_df)
plt.show()
```

2.1. Datos sin limpiar

```
In [ ]: rho_unclean, pval_corrected_unclean = spearman_correlation_analysis(araceae_raw_df)
In [ ]: make_heatmap(rho_unclean)
```


In []: make_scatterplot_histogram(araceae_raw_df, rho_unclean, pval_corrected_unclean)

1 2 3 1 2 3 10 20 30 altura_m diametro_cm numero_hojas

2.2. Datos sin outliers

```
In [ ]: rho_clean, pval_corrected_clean = spearman_correlation_analysis(araceae_cleaned_df)
In [ ]: make_heatmap(rho_clean)
```


In []: make_scatterplot_histogram(araceae_cleaned_df, rho_clean, pval_corrected_clean)

1.0 1.5 2.0 2.5 1.0 1.2 1.4 1.6 5 10 15 20 altura_m diametro_cm numero_hojas