Appunti di Geometria 2

Anno Accademico 2020/2021

"BEEP BOOP INSERIRE CITAZIONE QUI BEEP BOOP"

Indice

II Омоторіа

21

```
Indice
          ii
   TOPOLOGIA GENERALE 1
   Spazi topologici
   1.1 Spazio topologico
   1.2 Distanza e spazi metrici
        1.2.1 Norme esotiche
   1.3 Finezza: confronto di topologia
                                         6
   1.4 Base della topologia
       Altri concetti topologici: chiusura, interno, frontiera e densità
   1.5
       Intorni
       Funzioni continue
                            11
   1.8 Topologia indotta
   1.9 Sottospazio topologico
                                14
        1.9.1 Immersione
                             15
   1.10 Prodotti topologici
```

I

Topologia generale

CAPITOLO 1

SPAZI TOPOLOGICI

"BEEP BOOP INSERIRE CITAZIONE QUA BEEP BOOP."

NON UN ROBOT, UN UMANO IN CARNE ED OSSA BEEP BOOP.

1.1 SPAZIO TOPOLOGICO

Definizione 1.1.0. Uno **spazio topologico** (X, \mathcal{T}) è un insieme X con una famiglia di sottoinsiemi $\mathcal{T} \subseteq \mathcal{P}(X)$ detta **topologia** che soddisfano i seguenti assiomi (detti **assiomi degli aperti**):

- 1. Il vuoto e l'insieme stesso sono aperti della topologia: \varnothing , $X \in \mathcal{T}$.
- 2. L'unione arbitraria di aperti è un aperto: dati $\{A_i\}_{i\in I}$ tale che $A_i\in \mathcal{T}\ \forall i\in I\ (|I|\leq \infty)$, allora $\bigcap_{i\in I}A_i=A\in \mathcal{T}$.
- 3. L'intersezione finita di aperti è aperta: sati $\{A_i\}_{i\in I}$ tale che $A_i \in \mathcal{T} \ \forall i \in I \ (|I| < \infty)$, allora $\bigcup A_i = A \in \mathcal{T}$.

Gli elementi di \mathcal{T} si dicono aperti della topologia.

Definizione 1.1.1. Si può definire equivalentemente su X una topologia $\mathcal T$ usando gli assiomi dei chiusi):

- 1. Il vuoto e l'insieme stesso sono chiusi della topologia: \emptyset , $X \in \mathcal{T}$.
- 2. L'unione finita di chiusi è un chiuso: dati $\{C_i\}_{i\in I}$ tale che $C_i \in \mathcal{T} \ \forall i \in I \ (|I| < \infty)$, allora $\bigcap_{i \in I} C_i = C \in \mathcal{T}$.
- 3. L'intersezione arbitraria di chiusi è un chiuso: dati $\{C_i\}_{i\in I}$ tale che $C_i \in \mathcal{T} \ \forall i \in I$ $(|I| \leq \infty)$, allora $\bigcup C_i = C \in \mathcal{T}$.

Gli elementi di \mathcal{T} si dicono **chiusi** della topologia.

Osservazione. 1.1. Per verificare il terzo assioma degli aperti (o, equivalentemente, il secondo dei chiusi) è sufficiente verificare che sia vero per soli due sottoinsiemi qualunque.

Еѕемрю.

- **Topologia discreta**: $\mathcal{T} = \mathcal{P}(X)$, tutti gli insiemi sono aperti.
- **Topologia banale**: $\mathcal{T} = \emptyset$, X, tutti gli insiemi sono aperti.

1.2 DISTANZA E SPAZI METRICI

Definizione 1.2.0. Su un insieme X una funzione $d: X \times X \to \mathbb{R}$ è una **distanza** se:

- 1. Positività della distanza: $\forall x, y \in X \quad d(x, y) \ge 0 \text{ e } d(x, y) = 0 \iff x = y$
- 2. Simmetria: $\forall x, y \in X \quad d(x, y) = d(y, x)$
- 3. Disuguaglianza triangolare: $\forall x, y, z \in X \quad d(x, z) \le d(x, y) + d(y, z)$

Definizione 1.2.1. Uno **spazio metrico** (X,d) è un insieme su cui è definita una distanza.

DEFINIZIONE 1.2.2. Definita la **palla aperta di centro** x come l'insieme degli elementi di X che soddisfano la seguente condizione:

$$B_{\varepsilon}(x) = \{ y \in X \mid d(x, y) < \varepsilon \} \tag{1.1}$$

Ogni spazio metrico ha una **topologia** \mathcal{T}_d **indotta dalla distanza**, i cui aperti sono definiti come:

$$A \subseteq X$$
 aperto $(A \in \mathcal{T})$ se $\forall x \in A \exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq A$.

ESEMPIO.

■ Su un qualunque insieme *X* si può definire la *distanza banale*:

$$d(x, y) = \begin{cases} 0 & \text{se } x = y \\ 1 & \text{se } x \neq y \end{cases}$$
 (1.2)

In questo modo, ogni punto è una palla aperta e dunque ogni sottoinsieme è un aperto, dando allo spazio la *topologia discreta*. In particolare, ogni insieme può essere uno spazio metrico.

■ Su $X = \mathbb{R}$ si può definire come distanza il *valore assoluto d* (x, y) = |x - y|, che induce la **topologia Euclidea** $\mathcal{E}_{u \cdot c \ell}$, definita con le palle aperte di raggio ε :

$$B_{\varepsilon}(x) = \{ y \in \mathbb{R} \mid |x - y| < \varepsilon \} \tag{1.3}$$

nel seguente modo:

$$A \subseteq \mathbb{R}$$
 aperto $(A \in \mathcal{E}_{u,e\ell})$ se $\forall x \in A \exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq A$.

Su $X = \mathbb{R}^n$ si può definire come distanza la *norma Euclidea*: d(x, y) = ||x - y||. che induce la *topologia Euclidea* $\mathscr{E}_{u,e\ell}$ in modo analogo al caso precedente.

$$B_{\varepsilon}(x) = \{ y \in \mathbb{R}^n \mid ||x - y|| < \varepsilon \}$$

$$A \subseteq \mathbb{R}^n \text{ aperto } (A \in \mathcal{E}_{u,\varepsilon\ell}) \text{ se } \forall x \in A \ \exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq A.$$

Attenzione! Non tutte le topologie sono indotte da una distanza! Definiamo la **topologia dei complementari finiti** sull'insieme *X* nel modo seguente:

$$A \subseteq \mathbb{R}$$
 aperto $(A \in CF)$ se $\forall X \setminus A$ è finito. $C \subseteq \mathbb{R}$ chiuso $(C \in CF)$ se $\forall C$ è finito.

Alcune osservazioni:

• Se un aperto A è tale se il suo complementare $\mathscr{C}A$ è finito, si ha che:

$$A = \mathscr{C}(\mathscr{C}A) = X \setminus (X \setminus A) = X \setminus \{\text{un numero finito di punti}\}$$
 (1.4)

In altre parole A è aperto è pari ad X privato al più di un numero finito di punti.

- Se X è finito, la topologia CF coincide con la topologia discreta: ogni sottoinsieme di X è finito e dunque un aperto.
- Se X è infinito, ad esempio \mathbb{R} , la topologia non è quella discreta: [0, 1] per la topologia discreta è un chiuso ma per quella CF non lo è in quanto non è finito.

1.2.1 Norme esotiche

Possiamo definire su \mathbb{R}^n una famiglia di distanze dette **norme**; qui di seguito ne elenchiamo alcune. Definiti i punti $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n) \in \mathbb{R}^n$ abbiamo:

- Norma infinito: $d_{\infty}(x, y) = \max_{i} |x_i y_i|$
- Norma uno: $d_1(x, y) = \sum_{i=1}^{n} |x_i y_i|$
- Norma due: $d_2(x, y) = \sqrt{\sum_{i=1}^{n} |x_i y_i|^2}$
- Norma p: $d_p(x, y) = \sqrt[p]{\sum_{i=1}^n |x_i y_i|^p}$

Si ha inoltre $\lim_{p\to +\infty} d_p = d_{\infty}$.

Valgono inoltre le seguenti disuguaglianze:

$$\forall x, y \in \mathbb{R}^n \quad d_{\infty}(x, y) \le d_2(x, y) \le d_1(x, y) \le nd_{\infty}(x, y) \tag{1.5}$$

Dimostrazione. Supponiamo senza perdere di generalità che $d_{\infty}(x, y) = |x_1 - y_1|$.

$$d_2(x, y) = \sqrt{|x_1 - y_1|^2 + \dots + |x_n - y_n|^2} \ge \sqrt{|x_1 - y_1|^2} = |x_1 - y_1| = d_\infty(x, y)$$

$$d_2(x, y) = |x_1 - y_1| + \dots + |x_n - y_n| \le |x_1 - y_1| + \dots + |x_1 - y_1| = n|x_1 - y_1| = nd_\infty(x, y)$$

Notiamo che $|x_i - y_i|$ sono sempre positive, allora sia $a_i := |x_i - y_i|$. Segue che $a_1^2 + ... + a_n^2 \le (a_1 + ... + a_n)^2$ perché $a_i, ..., a_n \ge 0$. Allora:

$$\sqrt{a_1^2 + \ldots + a_n^2} \le a_1 + \ldots + a_n \implies d_2 \le d_1$$

Queste disuguaglianze danno le seguenti inclusioni1:

$$B_1(\varepsilon) \subseteq B_2(\varepsilon) \subseteq B_\infty(\varepsilon) \subseteq B_1(n\varepsilon)$$
 (1.6)

Questo ci porta a dire che le topologie indotte da queste distanze sono la stessa.

Preso adesso $X = \mathcal{C}([0, 1]) = \{f : [0, 1] \to \mathbb{R}, f \text{ continua}\}$, esso è uno spazio vettoriale infinito, con $0_{\mathcal{C}} \equiv O_{[0, 1]}$ (cioè la funzione *identicamente nulla*). In questo caso possiamo comunque adattare le norme precedenti con delle "somme infinite", ovvero degli integrali.

- Norma infinito: $d_{\infty}(f, g) = \max_{x \in [0, 1]} |f((x) (y)|$
- Norma uno: $d_1(f, g) = \int_0^1 |f((x) (y))|$
- Norma due: $d_2(f, g) = \sqrt{\int_0^1 |f((x) (y)|^2}$
- Norma p: $d_p(f, g) = \sqrt[p]{\int_0^1 |f((x) (y)|^p}$

A differenza del caso su \mathbb{R}^n , ogni norma genera in realtà una topologia distinta!

1.3 FINEZZA: CONFRONTO DI TOPOLOGIA

DEFINIZIONE 1.3.0. Sia X un insieme e \mathcal{T}_1 , \mathcal{T}_2 due topologie di X. Si dice che \mathcal{T}_1 è **meno** fine di \mathcal{T}_2 se tutti gli aperti della prima topologia sono aperti della seconda:

$$\forall A \in \mathcal{T}_1 \implies A \in \mathcal{T}_2 \tag{1.7}$$

In modo analogo si dice anche che \mathcal{T}_2 è **più fine** di \mathcal{T}_1 .

In altre parole, una topologia più fine ha più aperti rispetto a quella confrontata.

 $^{^{1}}$ Qui usiamo la notazione $B_{i}\left(r\right)$ per indicare la palla aperta di raggio r e centro fissato x rispetto alla norma i.

ESEMPIO

- La *topologia banale* è la *meno fine* di tutte, dato che ogni topologia contiene \emptyset , X.
- La *topologia discreta* è la *più fine* di tutte, dato che ogni topologia è contenuta in $\mathcal{P}(X)$.
- Su \mathbb{R} la topologia dei complementari finiti è *meno fine* di quella euclidea. Infatti un aperto $A \in CF$ su \mathbb{R} è definito come $A = \mathbb{R} \setminus \{x_1, ..., x_n\}$, cioè:

$$A = (-\infty, x_1) \cup (x_1, x_2) \cup \ldots \cup (x_n, +\infty)$$

Per n punti gli n+1 intervalli ottenuti sono aperti della topologia euclidea; essendo unione di aperti, anche A è un aperto di $\mathscr{E}_{uc\ell}$

OSSERVAZIONE. 1.2. Se definiamo due topologie \mathcal{T}_1 e \mathcal{T}_2 sono due topologie di un insieme X, l'intersezione $\mathcal{T}_1 \cap \mathcal{T}_2$ è anch'essa una topologia di X e, per costruzione, è meno fine di \mathcal{T}_1 e \mathcal{T}_2 .

1.4 BASE DELLA TOPOLOGIA

Definizione 1.4.0. Sia (X, \mathcal{T}) uno spazio topologico. \mathscr{B} è una **base** per \mathcal{T} se:

- 1. La base è costituita da paerti per la topologia $\mathcal{T}: A \in \mathcal{B} \implies A \in \mathcal{T}(\mathcal{B} \subseteq \mathcal{T})$.
- 2. Tutti gli aperti della topologia sono unioni degli aperti delle basi: $A \in \mathcal{T} \implies \exists B_i \in \mathcal{B}, \ i \in I: A = \bigcap_{i \in I} B_i$.

Attenzione! La base \mathcal{B} non è detto che sia una topologia! Ad esempio, le unioni sono aperti della topologia, ma non è detto che siano interni alla base \mathcal{B} .

ESEMPIO.

■ Nella topologia euclidea di \mathbb{R}^n una base è

$$\mathscr{B} = \{B_{\varepsilon}(x) \mid x \in \mathbb{R}^n, \ \varepsilon > 0\}$$
 (1.8)

Infatti, $\forall x \in A$ aperto $\exists \varepsilon_x > 0 : B_{\varepsilon_x}(x) \subseteq A$ per la definizione della topologia; segue che $A = \bigcap_{x \in A} B_{\varepsilon_x}(x)$.

lacktriangle Nella topologia euclidea di $\mathbb R$ una base è

$$\mathscr{B} = \{ (a, b) \mid a, b \in \mathbb{R} \} \tag{1.9}$$

Un'altra base per \mathbb{R} nella $\mathscr{E}_{uc\ell}$ è

$$\mathcal{B} = \{(a, b) \mid a, b \in \mathbb{Q}\}\$$

Dato $x \in \mathbb{R}$, esiste sempre una successione $\{x_n\} \in \mathbb{Q}$ decrescente o crescente tale che $\lim_{n \to +\infty} x_n = x$, essendo \mathbb{Q} denso in \mathbb{R}^a . Allora presa $a_n \setminus a$ e $b_n \nearrow b$, si ha:

$$(a, b) = \bigcap_{n \in \mathbb{N}} (a_n, b_n)$$

Questa base con estremi razionali ha *infiniti elementi*, ma in *misura minore* rispetto a quella ad estremi reali.

^aPer una discussione più approfondita a riguardo, si guardi sez. XXX a pag. XXX.

TEOREMA 1.4.0. TEOREMA DELLE BASI. (MANETTI, 3.7)

Sia X un insieme e $\mathcal{B} \subseteq \mathcal{P}(X)$ una famiglia di sottoinsiemi di X. \mathcal{B} è la base di un'*unica* topologia *se e solo se*:

- 1. L'insieme X deve essere scritto come unione di elementi della famiglia: $X = \bigcap_{B \in \mathcal{R}} B$.
- 2. Per ogni punto dell'intersezione di elementi della famiglia deve esserci un'altro elemento di essa che contiene il punto ed è sottoinsieme dell'intersezione:

$$\forall A, B \in \mathcal{B} \ \forall x \in A \cap B \ \exists C \in \mathcal{B} : x \in C \subseteq A \cap B$$
 (1.10)

DIMOSTRAZIONE. Sia \mathcal{B} la famiglia di sottoinsiemi che verifica i punti 1 e 2. Allora devo trovare una topologia di cui \mathcal{B} è base. Definiamo \mathcal{T} tale che:

$$A \in \mathcal{T} \iff A$$
 è unione di elementi di \mathcal{B}

Verifichiamo gli assiomi degli aperti su \mathcal{T} .

- I $X \in \mathcal{T}$ per ipotesi 1, $\emptyset \in \mathcal{T}$ perché è l'unione sugli insiemi di indici vuoto $(I = \emptyset)$.
- II Sia $A_i = \bigcap_i B_{ij}$, con $B_{ij} \in \mathcal{B}$. Allora:

$$\bigcap_{i} A_{i} = \bigcap_{i} \left(\bigcap_{j} B_{ij}\right) = \bigcap_{i, j} B_{ij} \implies \bigcap_{i, j} A_{i} \in \mathcal{T}$$

III Sia $A, B \in \mathcal{T}$, cioè $A = \bigcap_i A_i$ e $B = \bigcap_j B_j$ con $A_i, B_j \in \mathcal{B}$. Allora:

$$A \cap B = \left(\bigcap_{i} A_{i}\right) \cap \left(\bigcap_{j} B_{j}\right) = \bigcap_{i, j} \left(\underbrace{A_{i} \cap B_{j}}_{\in \mathcal{T} \text{ per l'ipotesi 2}}\right) \in \mathcal{T}$$

Еѕемрю. Sia $X = \mathbb{R}$ е $\mathcal{B} = \{[a, b) \mid a, b \in \mathbb{R}\}$. Verifichiamo che \mathcal{B} soddisfa il teorema appena enunciato.

- 1. $\mathbb{R} = \bigcap_{n \in \mathbb{N}} [-n, n).$
- 2. Preso $[a,b) \cap [c,d)$ si ha che esso è \varnothing o è [e,f), con $e = \max\{a, c\}$, $f = \min\{b, d\}$; in entrambi i casi l'intersezione è elemento di \mathscr{B} .

Esiste dunque una topologia su \mathbb{R} che ha base \mathcal{B} ; questa non è base per la topologia Euclidea, ad esempio, dato che gli intervalli semiaperti non sono inclusi in $\mathcal{E}_{ue\ell}$.

Notiamo inoltre che $(a, b) = \bigcap_{n \in \mathbb{N}} \left[a + \frac{1}{n}, b \right)$, dunque la topologia definita \mathscr{B} comprende

gli aperti della topologia Euclidea: $\mathscr{E}_{uc\ell}$ è meno fine di questa topologia.

1.5 ALTRI CONCETTI TOPOLOGICI: CHIUSURA, INTERNO, FRONTIERA E DENSITÀ

Ricordiamo che, dato uno spazio topologico (X, \mathcal{T}) e un sottoinsieme $A \subseteq X$, si ha:

- *A aperto* della topologia se $A \in \mathcal{T}$.
- *A chiuso* della topologia se $\mathscr{C}A = X \setminus A \in \mathcal{T}$.

Attenzione! Essere aperto oppure essere chiuso *non si escludono a vicenda*! Un insieme può essere aperto, chiuso, entrambi o nessuno dei due. Ad esempio, il vuoto e l'insieme stesso sono aperti e chiusi allo stesso tempo, dato che per ipotesi sono aperti i loro complementari $\mathscr{C}\varnothing = X\setminus\varnothing = X$ e $\mathscr{C}X = X\setminus X = \varnothing$ sono anch'essi aperti.

Definizione 1.5.0. Sia X spazio topologico e $A \subseteq X$. La **chiusura** \overline{A} di A è il più piccolo chiuso contente A:

$$\overline{A} = \bigcup_{\substack{A \subseteq C \\ C \text{ chiuso}}} C \tag{1.11}$$

Proprietà:

- \blacksquare $A \subseteq \overline{A}$.
- \blacksquare \overline{A} è un chiuso in quanto intersezione (arbitraria) di chiusi.
- $A \stackrel{.}{\text{e}} \text{ un chiuso} \iff A = \overline{A}$.

DEFINIZIONE 1.5.1. Un punto x è aderente ad A se $x \in \overline{A}$.

Definizione 1.5.2. Sia X spazio topologico e $A \subseteq X$. L'**interno** A^{o} di A è il più grande aperto contenuto in A:

$$A^{o} = \bigcap_{\substack{B \subseteq A \\ B \text{ aperto}}} B \tag{1.12}$$

Proprietà:

- \blacksquare $A^{o} \subseteq A$.
- \blacksquare A° è un aperto in quanto unione (arbitraria) di aperti.
- $A \stackrel{.}{e} \text{ un aperto} \iff A = A^{\circ}$.

Definizione 1.5.3. Un punto x è **interno** ad A se $x \in A^{o}$.

Definizione 1.5.4. Sia X spazio topologico e $A \subseteq X$. La **frontiera** ∂A di A sono i punti della chiusura di A non contenuti nel suo interno o, in altri termini, i punti aderenti sia ad A sia al suo complementare.

$$\partial A = \overline{A} \setminus A^{o} = \overline{A} \cap \overline{X \setminus A} \tag{1.13}$$

Proprietà:

- $\blacksquare \quad \partial A \subseteq \overline{A}.$
- \blacksquare ∂A è un chiuso.

Definizione 1.5.5. Sia X spazio topologico e $A \subseteq X$. A è **denso** è denso in X se $\overline{A} = X$ o, in altri termini, tutti i punti di X sono aderenti ad A.

Esempio. Il più piccolo chiuso contenente \mathbb{Q} è \mathbb{R} , poiché ogni reale è aderente ai razionali. Dunque \mathbb{Q} è denso in \mathbb{R} .

1.6 INTORNI

Definizione 1.6.0. Sia X spazio topologico e $x \in X$. V è un **intorno** di x se $\exists A$ aperto tale che $x \in A \subseteq V$ o, in altri termini, se x è interno ad U. Definiamo inoltre la **famiglia degli intorni** di x $I(x) \subseteq \mathcal{P}(X)$:

$$I(x) = \{ V \subseteq X \mid V \text{ è intorno di } x \} \tag{1.14}$$

OSSERVAZIONE. 1.3. Dato $A \subseteq X$, per ogni $x \in A$ tale che A è intorno di x si può definire un aperto $A_x \subseteq A$, con $x \in A_x$. L'unione arbitraria di questi A_x risulta essere contenuta in A e pari al suo interno. Dunque, si può definire l'interno di A come $A^o = \{x \in A \mid A \in I(x)\}$; segue che A è aperto se e solo se A è intorno di ogni punto in A.

Lemma 1.6.0. Proprietà degli intorni. (Manetti, 3.20, 3.21)

- 1. Si possono estendere gli intorni: $U \in I(x)$, $U \subseteq V \implies V \in I(x)$
- 2. Le intersezioni di intorni sono ancora intorni: $U, V \in I(x) \implies U \cap V \in I(x)$
- 3. Caratterizzazione della chiusura per intorni: $B \subseteq X$, allora $x \in \overline{B} \iff \forall U \in I(x) \quad U \cap B \neq \emptyset$.

DIMOSTRAZIONE.

- I L'aperto A che soddisfa la definizione di $U \in I(x)$ è per costruzione contenuto anche in V, dunque A è un aperto che soddisfa la definizione di V intorno di x.
- II Definiti gli aperti $A_U \subseteq U$, $A_V \subseteq V$ che soddisfano la definizione di intorni di x, l'intersezione $A = A_U \cap A_V$ è un aperto contenente x. Dato che $A = A_U \cap A_V \subseteq U \cap V$, $U \cap V$ per definizione di intorno di x.

III Per contronominale.

$$x \notin \overline{B} \iff x \notin B \land x \notin \partial B$$

$$\iff x \in X \setminus B \land x \notin \overline{B} \cap \overline{X \setminus B}$$

$$\iff x \in X \setminus B \land x \notin \partial(X \setminus B)$$

$$\iff x \in (X \setminus B)^{o}$$

$$\iff \exists U \in I(X) : x \in U \subseteq X \setminus B$$

$$\iff \exists U \in I(x) : U \cap B = \emptyset$$

Definizione 1.6.1. Sia X spazio topologico, $x \in X$ e I(x) la famiglia degli intorni di x. Una sottofamiglia $\mathcal{F} \subseteq I(x)$ è un **sistema fondamentale di intorni** di x se $\forall U \in I(x) \exists V \in \mathcal{F} : V \subseteq U$.

1.7 FUNZIONI CONTINUE

Definizione 1.7.0. Siano X, Y spazi topologici. Una funzione $f: X \to Y$ si dice **continua** se la controimmagine di aperti in Y è un aperto in X:

$$\forall A \text{ aperto in } Y, f^{-1}(A) \text{ è aperto in } X$$
 (1.15)

Alternativamente, f è continua se la controimmagine di chiusi in Y è un chiuso in Y.

$$\forall C \text{ chiuso in } Y, f^{-1}(C) \text{ è chiuso in } X$$
 (1.16)

OSSERVAZIONE. 1.4.

■ Si ha la definizione di continuità con i chiusi perché la controimmagine si "comporta bene" con i complementari:

$$f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$$

■ È sufficiente verificare la definizione per gli aperti una base di Y perché la controimmagine si "comporta bene" con le unioni di insiemi:

$$f^{-1}\left(\bigcap_{i}A_{i}\right)=\bigcap_{i}f^{-1}\left(A_{i}\right)$$

Lemma 1.7.0. (Manetti, 3.25) Siano X, Y spazi topologici e $f: X \to Y$ funzione. f è continua $iff \ \forall A \subseteq X \ f(\overline{A}) \subseteq \overline{f(A)}$. DIMOSTRAZIONE. Ricordiamo che per ogni funzione si ha:

- $f(f^{-1}(C)) \subseteq C$
- $A \subseteq f^{-1}(f(A))$
- \implies) Sia $A \subseteq X$. Dobbiamo dimostrare che $f(\overline{A})\overline{f(A)}$. Sappiamo che se un insieme è contenuto in un altro, lo stesso vale per le immagini e le controimmagini. Allora:

$$f(A) \subseteq \overline{f(A)}$$
$$A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\overline{f(A)})$$

 $f^{-1}(\overline{f(A)})$ è un chiuso (in X in quanto controimmagine tramite una funzione continua di un chiuso) che contiene A. Ma allora anche la chiusura, che è il più piccolo chiuso contenente A, è contenuta in $f^{-1}(\overline{f(A)})$. Segue quindi:

$$\overline{A} \subseteq f^{-1}\left(\overline{f(A)}\right)$$
$$f\left(\overline{A}\right) \subseteq f\left(f^{-1}\left(f(A)\right)\right) \subseteq \overline{f(A)}$$

 \Leftarrow) Sia $C \subseteq Y$ chiuso e sia $A = f^{-1}(C)$. Dobbiamo dimostrare che A è chiuso in X. Poiché $A \subseteq \overline{A}$ è vero per definizione, dimostriamo che $\overline{A} \subseteq A$. Per ipotesi:

$$f\left(\overline{A}\right) \subseteq \overline{f(A)}$$
$$f\left(\overline{f^{-1}(C)}\right) \subseteq \overline{f(f^{-1}(C))} \subseteq \overline{C} = C$$

Applicando nuovamente la controimmagine:

$$f\left(\overline{f^{-1}\left(C\right)}\right) \subseteq C$$

$$\overline{A} = \overline{f^{-1}\left(C\right)} \subseteq f^{-1}\left(f\left(\overline{f^{-1}\left(C\right)}\right)\right) \subseteq f^{-1}\left(C\right) = A$$

Dunque la controimmagine *A* di un chiuso *C* è un chiuso.

Теоrема 1.7.0. Manetti, 3.26 La composizione di funzioni continue è continua.

$$f: Y \to Z, g: X \to Y \text{ continue } \Longrightarrow f \circ g: X \to Z \text{ continua}$$
 (1.17)

DIMOSTRAZIONE. La controimmagine della composizione di funzioni $f \circ g$ è definita come $f^{-1}(f \circ g) = g^{-1} \circ f^{-1}$. Allora A aperto in $Z \implies f^{-1}(A)$ aperto $\implies g^{-1}(f^{-1}(A))$ aperto.

DEFINIZIONE 1.7.1. (MANETTI, 3.27)

Siano X, Y spazi topologici e $f: X \to Y$ funzione. Dato $x \in X$ f è **continua** in x se:

$$\forall U \in I(f(x)) \exists V \in I(x) : f(V) \subseteq U \tag{1.18}$$

Questa è la generalizzazione della definizione tradizionale della continuità affrontata in *Analisi UNO*.

TEOREMA 1.7.1. (МАNЕТТІ, 3.28)

Siano X, Y spazi topologici e $f: X \to Y$ funzione. f è continua per aperti $\iff f$ è continua in $x \ \forall x \in X$.

DIMOSTRAZIONE. \Longrightarrow) Sia $x \in X$ e $U \in I(f(x))$. Per definizione di intorno $\exists A$ aperto in Y tale che $f(x) \in A \subseteq U$. Basta porre $V = f^{-1}(A)$: per continuità è aperto in X e, dato che $x \in f^{-1}(A)$ perché $f(x) \in A$, allora V è intorno di x. Segue che $f(V) = f(f^{-1}(A)) \subseteq A \subseteq U$.

 \iff) Sia $A \subseteq Y$ aperto. Dobbiamo dimostrare che $f^{-1}(A)$ sia aperto. Preso $x \in f^{-1}(A)$ si ha che $f(x) \in A$; dunque A è, in quanto aperto, intorno di f(x). Allora, poiché f è continua in x, $\exists V \in I(x)$ tale che $f(V) \subseteq A$.

Segue che $x \in V \subseteq f^{-1}(A)$, cioè $f^{-1}(A)$ è intorno di x poiché contiene un intorno V dello stesso punto. Dunque $f^{-1}(A)$ aperto perché è intorno di ogni suo punto.

DEFINIZIONE 1.7.2. Siano X, Y spazi topologici e $f: X \to Y$ funzione.

- f è aperta se $\forall A$ aperto in X f (A) è aperto in Y.
- f è **chiusa** se $\forall C$ chiuso in X f (C) è chiuso in Y.

Osservazione. 1.5. È sufficiente verificare la definizione di funzione aperta per gli aperti di una base di X perché l'immagine si "comporta bene" con le unioni di insiemi:

$$f\left(\bigcap_{i}A_{i}\right) = \bigcap_{i}f\left(A_{i}\right)$$

Attenzione! Una funzione f aperta che non sia omeomorfismo non è necessariamente una funzione aperta. Si prenda $f: \mathbb{R}^2 \to \mathbb{R} \atop (x, y) \mapsto x$ (la proiezione sulla prima coordinata):

- *f* è *continua* per ovvi motivi.
- f è aperta. Infatti, presa una base su \mathbb{R}^2 come $\{B_{\varepsilon}(x, y)\}$, si ha che $f(B_{\varepsilon}(x, y)) = (x \varepsilon, x + \varepsilon)$ che sono aperti in \mathbb{R} .
- f non è chiusa. Prendiamo $C = \{(x, y) \in \mathbb{R}^2 \mid xy = 1\}$ e definiamo la funzione $g: \mathbb{R}^2 \to \mathbb{R}$ continua; vediamo facilmente come $C = g^{-1}$ ({1}) e, essendo 1 chiuso in R, C è controimmagine continua di un chiuso e dunque chiuso.

Si ha dunque $f(C) = \mathbb{R} \setminus \{0\}$, che tuttavia non è un chiuso della topologia Euclidea in quanto non contiene infiniti punti (una base della $\mathcal{E}_{ue\ell}$ è formata da intervalli, che dunque contengono infiniti punti).

Definizione 1.7.3. Siano X, Y spazi topologici e $f: X \to Y$ funzione. f è un **omeomorfismo** se è *biunivoca*, *continua* e la sua inversa è *continua*; più precisamente, esiste $g: Y \to X$ continua tale per cui $g \circ f = Id_X$ e $f \circ g = Id_Y$.

Due spazi topologici si dicono **omeomorfi** se esiste un omeomorfismo fra i due; in notazione $X \cong Y$.

LEMMA 1.7.1. (MANETTI, 3.31)

Siano X, Y spazi topologici e $f: X \rightarrow Y$ funzione *continua*. Allora vale:

- 1. f omeomorfismo \iff f aperta e biettiva.
- 2. f omeomorfismo \iff f chiusa e biettiva.

Dimostrazione. Dimostriamo la prima condizione, la seconda è analoga.

- \Longrightarrow) Un omeomorfismo è biettiva per definizione. Dimostriamo dunque che f sia aperta, cioè $\forall A \in X$ aperto $f(A) \in Y$ è aperto. Ma definita $g: Y \to X$ l'inversa continua dell'omeomorfismo f (cioè $f^{-1} = g$), si ha che $\forall A \in X$ $g^{-1}(A) = f(A)$ è aperto.
- \Leftarrow) f è già biettiva e continua per ipotesi. Dobbiamo dimostrare che l'inversa $g: Y \to X$ sia continua, cioè $\forall A \in X$ aperto $g^{-1}(A) \in Y$ è aperto. Ma $g^{-1}(A) = f(A)$ che è aperto perché f è aperta.

1.8 TOPOLOGIA INDOTTA

Definizione 1.8.0. Dati:

- Uno spazio topologico X.
- \blacksquare Un insieme Y.
- Una funzione $f: Y \rightarrow X$

Allora su Y si può definire la **topologia indotta** come la topologia meno fine tra tutte quelle che rendono f continua.

1.9 SOTTOSPAZIO TOPOLOGICO

DEFINIZIONE 1.9.0. Sia X uno spazio topologico (X, \mathcal{T}) e $Y \subseteq X$ un suo sottoinsieme. Su Y si può definire la seguente *topologia di sottospazio*:

$$U \subseteq Y$$
 aperto in $Y \iff \exists V \subseteq X$ aperto in $X(V \in \mathcal{T}) : U = V \cap Y$ (1.19)

Definita l'**inclusione** $i: Y \hookrightarrow X \atop y \mapsto y$, la topologia di sottospazio è la topologia indotta da i, cioè la topologia meno fine fra tutte quelle che rendono continua l'inclusione.

DIMOSTRAZIONE. Dimostriamo la continuità dell'inclusione. Se A aperto in X, $i^{-1}(A) = A \cap Y$ (tutti gli elementi di A contenuti in Y) è aperto in Y per definizione.

DEFINIZIONE 1.9.1. Sia X uno spazio topologico (X, \mathcal{T}) e $Y \subseteq X$ un suo sottoinsieme. Allora:

- $A \subseteq Y$ aperto in $Y \iff A = U \cap Y$ con U aperto in X.
- $C \subseteq Y$ **chiuso** in $Y \iff C = U \cap Y$ con V chiuso in X.
- Se \mathscr{B} è una base della topologia di $X \implies \mathscr{B}' \coloneqq \{B \cap Y \mid B \in \mathscr{B}\}$ è base della topologia di sottospazio.

Osservazione. 1.6. Se $A \subseteq Y$ è aperto della topologia di X, allora A è aperto in Y poiché $A = A \cap Y$.

Esempio. Sia $Y = [0, 1] \subset \mathbb{R} = X$ in topologia Euclidea.

- $A = (\frac{1}{2}, 1)$ è aperto in Y in quanto è già aperto in X.
- $A = \left[\frac{1}{2}, 1\right]$ è chiuso in Y in quanto è già chiuso in X.
- $B = (\frac{1}{2}, 1]$ è aperto in Y in quanto si ha, ad esempio, $A = (\frac{1}{2}, \frac{3}{2}) \cap Y$.

LEMMA 1.9.0. (MANETTI, 3.55)

Sia $A \subseteq Y \subseteq X$ con X spazio topologico e Y sottospazio topologico. Definiamo:

- $c\ell_Y(A) = \text{chiusura di } A \text{ in } Y.$
- $c\ell_X(A) = \text{chiusura di } A \text{ in } X.$

Allora $c\ell_Y(A) = c\ell_X(A) \cap Y$.

DIMOSTRAZIONE. Preso $\mathscr{C} = \{C \subseteq X \mid C \text{ chiuso in } X \in A \subseteq C\}$, per definizione di chiusura si ha:

$$c\ell_X(A) = \bigcup_{C \in \mathscr{C}} C$$

Ora sia $\mathscr{C}' = \{C \cap Y \mid C \in \mathscr{C}\}$. Allora, usando i chiusi del sottospazio:

$$c\ell_{Y}(A) = \bigcup_{C \in \mathscr{C}} (C \cap Y) = \left(\bigcup_{C \in \mathscr{C}} C\right) \cap Y = c\ell_{Y}(A)$$

1.9.1 Immersione

Definizione 1.9.2. Sia $f: X \to Y$ funzione tra X, Y spazi topologici. Se:

- \blacksquare f continua.
- \blacksquare f iniettiva

Allora f è un'**immersione** se e solo se ogni aperto in X è controimmagine di un aperto di Y per f, cioè se e solo se si ha che:

$$B \subseteq X$$
 è aperto in $X \iff B = f^{-1}(A)$, A aperto in Y (1.20)

Osservazione. 1.7. Per costruzione f è immersione se la topologia su X è la topologia indotta, dunque la meno fine che rende f continua.

Se sull'immagine $f(X) \subseteq Y$ mettiamo la topologia di sottospazio di Y, si ha che

$$f: X \to Y$$
 immersione $\iff f_{\bullet}: X \to f(X)$ è omeomorfismo

Esempio. Esempio di non immersione.

$$\begin{array}{l}
[0, 1) \to \mathbb{R}^2 \\
t \mapsto (\cos 2\pi t, \sin 2\pi t)
\end{array} \tag{1.21}$$

Notiamo innanzitutto che $f([0, 1)) = S^1$. Si ha:

- f_{\bullet} è continua per ovvi motivi
- f_{\bullet} iniettiva, dato che l'unico caso problematico poteva essere t=1 che non nel dominio (si avrebbe avuto infatti $f_{\bullet}(0) = f_{\bullet}(1)$).
- f_{\bullet} suriettiva per costruzione.

Tuttavia f_{\bullet} non è immersione, dato che f_{\bullet}^{-1} non è continua. Preso $P=(1,\ 0)\in S^1$, f_{\bullet}^{-1} non è continua in P. Infatti, gli intorni di 0 in $[0,\ 1)$ sono del tipo $U=[0,\ \varepsilon)$, dunque dovrei trovare $\forall U$ un intorno V di $P\in S^1: f_{\bullet}^{-1}(V)\subseteq U$.

Tuttavia, solo la parte superiore di $V \in I(P)$ ha la controimmagine interna ad U: la parte inferiore, poiché sono le immagini di punti prossimi all'estremo 1 del dominio, non hanno controimmagini in U. Pertanto, non abbiamo l'omeomorfismo di f_{\bullet} e dunque l'immersione.

Definizione 1.9.3. Sia $f: X \to Y$ funzione tra X, Y spazi topologici.

- f si dice **immersione aperta** se f è chiusa.
- f si dice **immersione chiusa** se f è aperta.

Lemma 1.9.1. Manetti, 3.59

Sia $f: X \to Y$ funzione *continua* tra X, Y spazi topologici.

- 1. f iniettiva e aperta \implies f è immersione (aperta)
- 2. f iniettiva e chiusa \implies f è immersione (chiusa)

DIMOSTRAZIONE. Dimostriamo il caso chiuso, il caso aperto è analogo. Preso $C \subseteq X$ chiuso, sappiamo che f(C) è chiuso in Y, ma possiamo sempre dire che $f(C) = f(C) \cap f(X)$ in quanto $f(C) \subseteq \cap f(X)$. Dunque f(C) è un chiuso del sottospazio f(X). Segue che ogni chiuso di C è un chiuso dell'immagine di f, dunque $f_{\bullet} \colon X \to f(X)$ è:

- \blacksquare Continua perché lo è f.
- Biunivoca perché f_{\bullet} è iniettiva in quanto lo è f e suriettiva per definizione.
- Chiusa per costruzione.

 f_{\bullet} è dunque omeomorfismo ed f è immersione (chiusa).

1.10 PRODOTTI TOPOLOGICI

DEFINIZIONE 1.10.0. Siano P, Q spazi topologici e $P \times Q$ il suo prodotto cartesiano. Definite le **proiezioni**:

$$p: P \times Q \to P$$

$$(x, y) \mapsto x$$

$$(1.22)$$

$$\begin{array}{l}
q: P \times Q \to Q \\
(x, y) \mapsto y
\end{array} (1.23)$$

La **topologia prodotto** \mathcal{P} è la topologia *meno fine* fra quelli che rendono p e q *continue*. In particolare, ricordando l'osservazione 1.2, la topologia prodotto è l'intersezione di *tutte* le topologia che rendono continue p e q.

Teorema 1.10.0. Manetti, 3.61

- 1. Una base della topologia \mathcal{P} è data dagli insiemi della forma $U \times V$ dove $U \subseteq P$ aperto, $V \subseteq Q$ aperto.
- 2. p, q sono aperte; inoltre $\forall (x, y) \in P \times Q$ le restrizioni:

$$p_{\mid} : P \times \{y\} \rightarrow P$$

$$(x, y) \mapsto x$$

$$(1.24)$$

$$q_{\mid}: \{x\} \times Q \to Q$$

$$(x, y) \mapsto y$$

$$(1.25)$$

Sono omeomorfismi.

3. Data $f: X \to P \times Q$ con X spazio topologico, si ha che:

$$f$$
 continua $\iff f_1 = p \circ f$, $f_2 = q \circ f$ continue (1.26)

DIMOSTRAZIONE.

- I Dimostriamo che:
 - A) La famiglia $\{U \times V\}$ è base per una topologia \mathcal{T} .
 - B) Pè meno fine di \mathcal{T} .
 - C) \mathcal{T} è meno fine di P.

In questo modo avremo che la topologia $\mathcal T$ è la topologia prodotto $\mathscr P$ e ne conosceremo una base.

- a) Segue dal teorema delle basi 1.1 (Manetti, 3.7). Infatti
 - i. $P \times Q$ appartiene alla famiglia $\{U \times V\}$, dato che per definizione gli insiemi stessi $P \in Q$ sono aperti.
 - ii. L'intersezione di due elementi della famiglia appartiene alla famiglia: $(U_1 \times V_1) \cap (U_2 \times V_2) = (U_1 \cap U_2) \times (V_1 \cap V_2)$.
- b) Per definizione \mathcal{P} è la meno fine fra tutte le topologie sul prodotto. Dunque, per dimostrare A) basta vedere che p, q sono continue rispetto alla topologia \mathcal{T}

Presa la proiezione p, sia $U \subseteq P$ aperto. Si ha che $p^{-1}(U) = U \times Q$ è aperto in \mathcal{T} in quanto è prodotto di aperti; in particolare sta nella base! Dunque p è continua, e un ragionamento analogo vale per q.

c) Dobbiamo dimostrare che ogni aperto di \mathcal{T} è anche aperto di \mathscr{P} . Presi $U \subseteq P$, $V \subseteq Q$ allora:

$$U \times V = (U \cap P) \times (V \cap Q) = (U \times P) \cap (V \times Q) = p^{-1}(U) \cap q^{-1}(V)$$

Poichè p, q sono continue e U, V sono aperti, anche $p^{-1}(U)$, $q^{-1}(V)$ sono aperti; segue che la loro intersezione è aperta e dunque $U \times V$ è aperto della topologia \mathcal{T} .

II Dimostriamo il caso con p_{\parallel} , dato che il caso con q_{\parallel} è analogo. Preso un aperto della base $U \times V$, studiamo gli aperti del sottospazio $P \times \{y\}$.

$$(U \times V) \cap (P \times \{y\}) = \begin{cases} \emptyset & \text{se } y \notin V \\ U \times \{y\} & \text{se } y \in V \end{cases}$$

Gli aperti del sottospazio $P \times \{y\}$ sono tutte e solo le unioni di $U \times \{y\}$, al variare

di *Y* di aperti dello spazio *P*. Si ha dunque:

$$p_{\parallel}(U \times \{y\}) = U$$

Dunque, essendo p_{\parallel} continua perché restrizione della proiezione (che è continua per definizione), biettiva per costruzione e aperta per i risultati appena ottenuti si ha che $P \times \{y\}$ e P sono omeomorfi, cioè p_{\parallel} è omeomorfismo.

Per dimostrare che p sia aperta, preso A aperto in $P \times Q$, si ha:

$$p(A) = p\left[\bigcap_{y \in \mathbb{Q}} (A \cap P \times \{y\})\right] = \bigcap_{y \in \mathbb{Q}} p(A \cap P \times \{y\})$$
 (1.27)

Per i ragionamenti della prima parte, $A \cap P \times \{y\}$ è aperto di $P \times \{y\}$ e sappiamo dunque che $p_{||}(A \cap P \times \{y\})$ è aperto: ne segue che $p(A \cap P \times \{y\})$ è aperto in P al variare di y. Allora anche p(A) è aperto (in quanto è unione di aperti) e dunque p è aperta.

III \Longrightarrow) Poiché $f: X \to P \times Q$, $p: P \times Q \to P$ e $q: P \times Q \to Q$ sono continue, le composizioni $f_1 = p \circ f: X \to P$, $f_2 = q \circ f: X \to Q$ sono banalmente continue. \longleftarrow) Dobbiamo dimostrare che f sia continua. Sia $A = U \times V \subseteq P \times Q$ aperto della base:

$$f^{-1}(U \times V) = f^{-1}(p^{-1}(U) \cap q^{-1}(V)) = f^{-1}(p^{-1}(U)) \cap f^{-1}(q^{-1}(V))$$
$$= (pf)^{-1}(U) \cap (qf)^{-1}(V)$$

Per ipotesi pf, qf sono continue, dunque loro controimmagini di aperti sono ancora aperti; inoltre, essendo la loro intersezione un aperto, segue l'implicazione.

Proposizione 1.10.0. Siano X, Y spazi topologici e $X \times Y$ il prodotto. Allora:

1. Date le basi \mathcal{B} della topologia di X e \mathscr{C} della topologia di Y, allora:

$$\mathcal{D} = \{ U \times V \mid U \in \mathcal{B}, \ V \in \mathcal{C} \} \tag{1.28}$$

è una base per la topologia prodotto.

2. Dati $x \in X$, $y \in Y$, siano $\mathcal{U} = \{U_i\}_{i \in I}$ un sistema fondamentale di intorni di x e $\mathcal{V} = \{V_j\}_{j \in J}$ un sistema fondamentale di intorni di y. Poniamo $Wij := U_i \times V_j \subseteq X \times Y$. Allora:

$$\mathcal{W} = \left\{ W_{ij} \right\}_{j \in J} \tag{1.29}$$

è un sistema fondamentale di intorni di $(x, y) \in X \times Y$.

3. Se $A \subseteq X$, $B \subseteq Y$, allora $\overline{A \times B} = \overline{A} \times \overline{B}$. In particolare, il prodotto di chiusi è chiuso.

DIMOSTRAZIONE. I Segue dalla dimostrazione dal primo punto del teorema 1.4 (MANETTI, 3.61).

II Per definizione di sistema fondamentale di intorni si ha:

$$\forall U \in I(x) \ \exists U_i \in \mathcal{U} : U_i \in U$$

$$\forall V \in I(y) \ \exists V_i \in \mathcal{V} : V_j \in V$$

 \implies) Per ogni intorno U di x e V di y, si ha $W \in I(x, y)$. Inoltre, presi gli intorni U_i e V_j definiti come sopra, si ha che $W_{ij} = U_i \times V_j \in I(x, y)$ per definizione di topologia prodotto; segue che, per ogni intorno W di questa forma esiste W_{ij} tale che:

$$W_{ij} = U_i \times V_j \subseteq U \times V \subseteq W$$

 \Leftarrow) Prendiamo un intorno $W \in I(x, y)$, esiste un aperto $W' \subseteq W$. Poiché W' appartiene al prodotto $X \times Y$, si ha che $W' = \bigcap_k U_k \times V_k$ con U_k e V_k aperti di X e Y. Preso allora $(x, y) \in W'$, esiste gli aperti U_k e V_k che contengono rispettivamente x e y.

Segue dunque che $U_k \in I(x)$ e $V_k \in I(y)$ e dunque dal sistema fondamentale di intorni si ha che $\exists U_i \in \mathcal{U}, \ V_j \in \mathcal{V}$ tali che $U_i \in U_k, \ V_j \in V_k$. Allora definito $W_{ij} = U_i \times V_j$, si ha per ogni intorno W di esiste W_{ij} tale che:

$$W_{ij} = U_i \times V_j \subseteq U_k \times V_k \subseteq W' \subseteq W$$

III

$$(xy) \in \overline{A \times B} \iff \forall W \in I(x, y) \quad W \cap (A \times B) \neq \emptyset$$

$$\iff \forall U \in I(x), \ \forall V \in I(y) \quad (U \times V) \cap (A \times B) \neq \emptyset$$

$$\iff \forall U \in I(x), \ \forall V \in I(y) \quad (U \cap A) \times (V \cap B) \neq \emptyset$$

$$\iff \forall U \in I(x), \ \forall V \in I(y) \quad U \cap A \neq \emptyset, \ V \cap B \neq \emptyset$$

$$\iff \forall U \in I(x) \quad U \cap A \neq \emptyset, \ \forall V \in I(y) \quad V \cap B \neq \emptyset$$

$$\iff x \in \overline{A} \land y \in \overline{B} \iff ()(xy) \in \overline{A} \times \overline{B}$$

In particolare, se A e B sono chiusi, avendo che $A = \overline{A}$ e $B = \overline{B}$, otteniamo:

$$A \times B = \overline{A} \times \overline{B} = \overline{A \times B}$$

Osservazione. 1.8. Il prodotto di un numero **finito** di spazi topologici è pari al prodotto di due spazi:

$$X \times Y \times Z = (X \times Y) \times Z$$

In particolare una base di aperti di $X_1 \times ... \times X_n$ è data da:

$$\mathcal{B} = \{A_1 \times ... \times A_n \mid A_i \text{ aperto in } X_i\}$$

II Omotopia