

Forecasting ILI Trends Using Machine Learning

Author: Hieu Pham Advisor: Dr. Bo Mei

RESEARCH

Science and Engineering Research Center

OBJECTIVE

This project aims to build an interactive forecasting tool for influenza-like illness (ILI) using historical data and machine learning models. The app allows public health analysts and researchers to visualize trends and make predictions for better outbreak preparedness.

DATASET OVERVIEW

Data is directly downloaded from CDC Flu View, which includes weekly ILI data from 2010 onwards in the United States on a national level.

Some crucial characteristics include:

- Date of report (Year, week)
- Weighted % ILI cases (Used for ML models)
- Age-group breakdown
- Total patient counts

We also created lag features for autoregression (ILI_t-1 to ILI_t-5), date-based aggregations (year, week) to support the machine learning process.

Dataset Overview

	year	week	weighted_ili	unweighted_ili	age_0_4	age_25_49	age_5_24	age_50_64	age_65
0	2,010	1	1.9071	1.9828	4,998	3,333	3,961	1,244	763
1	2,010	2	1.8674	1.8275	4,877	2,793	4,614	1,182	622
2	2,010	3	1.8807	1.9261	5,399	2,693	5,079	1,008	578
3	2,010	4	1.9691	1.925	5,333	2,560	5,655	1,046	528

Average % Weighted ILI by Year

ML MODELS USED

Random Forest

- Handles non-linear data, robust to overfitting
- Slower training, less interpretable

Linear Regression

- Simple, fast, great for linear trends
- Struggles with complex patterns

XGBoost

- High accuracy, handles missing data
- Complex and slower to train

EVALUATION METRICS

RMSE (Root Mean Squared Error)

- To know how accurate the predictions are.
- Example: RMSE = $0.50 \rightarrow \text{predictions}$ are off by 0.5% on average.
- ⇒ Lower is better

• Use R² Score (Coefficient of Determination)

- To know how well the model fits the data.
- \circ R² = 1.0 \rightarrow perfect prediction
- ⇒ Higher is better

KEY TAKEAWAYS AND FORECAST

Linear Regression performed best in both RMSE and R². Despite being a simple model, it effectively captured the trend in the ILI data — likely because the target has a mostly linear structure.

Linear Regression

Random Forest

XGBoost

For more detailed and interactive plots, check out the deployed app for the project!

MODEL EVALUATIONS

Random Forest

± Q []

RMSE: 0.128

• R² Score: 0.951

Linear Regression

RMSE: 0.106

R² Score: 0.960

Linear Regression: Actual vs Predicted —— Actual --- Linear Regression XGBoost: Actual vs Predicted — Actual

XGBoost

o RMSE: 0.148

R² Score: 0.944

TOOLS AND TECH

Python & Pandas

Streamlit (Web app)

Matplotlib & Seaborn

Scikit-learn, XGBoost

ACKNOWLEDGEMENTS

sincerely appreciate Dr. Bo Mei for the valuable feedback throughout the design process, helping me stay focused on realistic key goals, and thoughtfully addressing my questions.