Your Own Analysis 1 Research Plan

Background

Function of RNA-Binding Proteins

RNA-binding proteins (RBPs)는 RNA와 결합하는 단백질로서, RNA 분자의 생애 전반(RNA life cycle)에 걸친 핵심적인 조절자로 기능한다. RBP는 다양한 종류의 RNA(rRNA, mRNA, pre-mRNA)에 결합하여 RNA의 운명 결정 및 단백질의 번역 조절을 담당하는데 이는 RBP가 단순한 RNA 조절자가 아닌, 세포 상태 변화를 주도하거나 반영하는 핵심 조절자임을 시사한다. RBP는 RNA의 전반을 조절한다는 점에서 공통되지만, 그 안에서도 역할이 매우 다양하다.

- 1) Pre-mRNA의 exon-intron 경계를 인식을 통한 alternative splicing 조절
- 2) 성숙된 mRNA의 수명 조절
- 3) 성숙된 mRNA를 특정 세포 부위로의 이동 유도(mRNA Localization)
- 4) mRNA의 modification 유도
- 5) Ribosome recruitment 촉진/억제를 통한 최종적인 번역의 속도 결정

RBP는 다양한 종류의 세포에 걸쳐 유전자 발현 과정을 조절하지만, 그 중에서도 배아줄기세포에서 RNA와 상호작용하는 interactome이 높은 수준으로 나타나며(RBP의 발현이 높게 관찰됨), 분화 과정 중 발현 수준이 크게 달라지는 단백질들이 본 interactome에 상당 부분 포함되어 있는 것이 확인된 연구들이 다수 존재한다. 이는 RBP가 세포 운명을 결정하고, 변화시키는데 주된 기능을 담당하는 중요한 인자임을 시사한다.

Functional divergence of RNA-Binding Proteins based on binding site location

RNA-binding proteins (RBPs)는 RNA의 다양한 위치에 결합하는 것으로 밝혀져 있는데, mRNA 상 결합하는 위치에 따라 mRNA의 조절 양상이 상이하게 나타난다.

mRNA 상 결합 위치	RBPs	Function
5'UTR	TIA1, DDX3, FMRP	번역 개시(Translation initiation) 조절
CDS (Coding Sequence)	FMRP, Orb2	Ribosome stalling Translation Elongation 조절
3'UTR	HuR, IGF2BP, TTP	mRNA stability mRNA localization Translation 조절 miRNA localization
Intron	hnRNP, SRSF, PTBP1	Alternative splicing 조절 (pre-mRNA 단계)

Hypothesis

본 논문을 통해 LIN28A의 전사체 내 결합 위치가 CDS 혹은 3'UTR에 위치하는 것이 확인되었고, 이는 LIN28A의 기능이 결합 위치에 따라 상이하게 나타날 가능성을 시사한다. 따라서 본 논문에서 시행한 CLIP-seq/Ribosome-seq/RNA-seq을 기반으로 두가지 가설을 입증하는 분석을 진행하고자 한다.

- 1. LIN28A의 조절 효과는 전사체 내 결합 위치에 따라 달라지며, CDS와 3'UTR 부위에의 결합은 서로 상이한 생물학적 결과를 유도할 것이다.
- 2. LIN28A가 서로 다른 부위(CDS vs 3'UTR)에 결합하는 RNA들은 각각 기능적 유사한 특징을 공유할 것이다.

Research Pipeline & Plan

1. Lin28a CLIP-seq Binding 위치 주석 : CDS / 3'UTR 로 분류 : BAM -> BED 변환 후 GTF 와 intersect : Transcript 별 binding_region 열 생성

2. mRNA Abundance 변화 분석 : CDS-bound / 3'UTR-bound 그룹으로 나누어 비교 : 그룹 별 CLIP-enrich level 에 따른 mRNA abundance 비교

3. Translation 변화 분석

:CLIP enrichment 대비 ribosome density 시각화 : 그룹(CDS-bound / 3'UTR-bound) 별 CLIP-enrich level 에 따른 Translation 변화 양상 비교

4. Gene Ontology 분석 : CLIP-enrichment에 따라 mRNA/Translation 변화가 유의미한 유 전자 선별 (GO 대상 선정) : CDS-bound / 3'-UTR-bound 그룹으로 나누어 GO 분석 : Biological Process, Cellular Component

5. 결과 요약 및 시각화

연구 주차	연구 내용	
1주차 (YOA 1)	RBP 에 대한 선행 연구 정리 연구 가설 설정 및 분석 pipeline 구축	
2주차 (YOA 2)	Lin28a CLIP-seq Binding 위치 주석 mRNA abundance 변화 분석 Translation 변화 분석 Gene ontology 대상 유전자 선별	
3주차 (YOA 3)	Gene ontology 분석 수행 결과 해석 및 시각화	