Reinforcement Learning

Notes

Jingye Wang

Spring 2020

Contents

1	Intro	oduction	3
2	Revi	iew of Basic Probability	5
	2.1	Interpretation of Probability	5
	2.2	Transformations	5
	2.3	Limit Theorem	5
	2.4	Sampling & Monte Carlo Methods	6
	2.5	Basic Inequalities	8
	2.6	Concentration Inequalities	10
	2.7	Conditional Expectation	12
3	Ban	dit Algorithms	14
	3.1	Bandit Models	14
	3.2	Stochastic Bandits	14
	3.3	Greedy Algorithms	15
	3.4	UCB Algorithms	16
	3.5	Thompson Sampling Algorithms	17
	3.6	Gradient Bandit Algorithms	18
4	Mar	kov Chains	20
	4.1	Markov Model	20
	4.2	Basic Computations	20
	4.3	Classifications	21

CONTENTS	2

	4.4	Stationary Distribution	22	
	4.5	Reversibility	22	
	4.6	Markov Chain Monte Carlo	23	
5	Mar	kov Decision Process	25	
	5.1	Markov Reward Process	25	
	5.2	Markov Decision Process	26	
	5.3	Dynamic Programming	28	
6	Mod	el-Free Prediction	33	
	6.1	Monte-Carlo Policy Evaluation	33	
	6.2	Temporal-Difference Learning	35	
7	Model-Free Control			
	7.1	On Policy Monte-Carlo Control	38	
	7.2	On Policy Temporal-Difference Control: Sarsa	40	
	7.3	Off-Policy Temporal-Difference Control: Q-Learning	41	
8	Valu	e Function Approximation	42	
	8.1	Introduction on Function Approximation	42	
	8.2	Incremental Method	42	
	8.3	Batch Methods	44	
	8.4	Deep Q-Learning	45	
9	Poli	cy Optimization	46	
	9.1	Policy Optimization	47	
	9.2	Monte-Carlo Policy Gradient	48	
	9.3	Actor-Critic Policy Gradient	51	
	9.4	Extension of Policy Gradient	52	

6 Model-Free Prediction

To begin, we firstly give definition of the term *episode* then give the prediction algorithm based MC and TD methods.

Episodes: An episode τ is a sequence of states and actions in the environment,

$$\tau = (s_0, a_0, s_1, a_1, \ldots).$$

We call an episode is complete if it ends with the terminal state.

In model free method, we only utilize the episode itself without further exploitation.

6.1 Monte-Carlo Policy Evaluation

Monte-Carlo (MC) policy evaluation methods learn directly from the *complete* episodes, thus it needs no knowledge of MDP transitions or rewards. The limitation of MC policy method methods is that it requires MDPs are episodic.

Monte-Carlo Policy Evaluation: Given some complete episodes under the policy π , we can approximate the value of s by the average returns observed after visiting to s.

Depending on when average returns for state s in an episode, there are two different implementations.

First-Visit Monte-Carlo Policy Evaluation: Only at the first time-step t that state s is visited in an episodes, we do the following procedure:

- Increment counter $N(s) \leftarrow N(s) + 1$;
- Increment the total return $return(s) \leftarrow return(s) + G_t$;
- Update the value by the mean return $v(s) \leftarrow return(s)/N(s)$.

Every-Visit Monte-Carlo Policy Evaluation: Every time-step t that state s is visited in an episode, we do the following procedure:

- Increment counter $N(s) \leftarrow N(s) + 1$;
- Increment the total return $return(s) \leftarrow return(s) + G_t$;
- Update the value by the mean return $v(s) \leftarrow return(s)/N(s)$.

Algorithm 10 First-Visit Monte-Carlo Policy Evaluation

```
1: initialize v(s) \in \mathbb{R} arbitrarily for all s \in \mathcal{S};
2: initialize return(s) \leftarrow an empty list for all s \in \mathcal{S};
 3: input the policy \pi to be evaluated;
 4: for true do:
    # variants for this alg. can be start with s_0 \in \mathcal{S}, a_0 \in \mathcal{A}(s_0) randomly, \varepsilon-greedy, etc.
         Generate a complete episode \tau = (s_0, a_0, r_1, ..., s_{T-1}, a_{T-1}, r_T);
         G \leftarrow 0;
 6:
         for t = T - 1, T - 2, ...0 do:
              G \leftarrow \gamma G + r_{t+1};
              if s_t appears in (s_0, s_1, ..., s_{t-1}) then:
                   Append G to return(s_t);
10:
                   v(s_t) \leftarrow average(return(s_t));
11:
              end if
12:
         end for
13:
14: end for
```

Algorithm 11 Every-Visit Monte-Carlo Policy Evaluation

```
1: input the policy \pi to be evaluated;

2: initialize v(s) \in \mathbb{R} arbitrarily for all s \in \mathcal{S};

3: initialize return(s) \leftarrow an empty list for all s \in \mathcal{S};

4: for true do:

5: Generate a complete episode \tau = (s_0, a_0, r_1, ..., s_{T-1}, a_{T-1}, r_T);

6: for t = T - 1, T - 2, ..., 0 do:

7: G \leftarrow \gamma G + r_{t+1};

8: Append G to return(s_t);

9: v(s_t) \leftarrow \text{average}(return(s_t));

10: end for
```

By law of large numbers, both of two methods can achieve $v(s) \to v^{\pi}(s)$ as $N(s) \to \infty$. In practice, we can use a trick incremental mean to simplify the calculation.

Differences between DP and MC for policy evaluation:

- DP computes v_k by bootstrapping the rest of the expected return calculated with v_{k-1} ;
- DP iterates on Bellman expectation backup:

$$v_k(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a|s) \left(R_s^a + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) v_{k-1}(s') \right).$$

• MC updates the empirical mean return with a sampled episode:

$$v(s_t) \leftarrow v(s_t) + \alpha(G_{k,t} - v(s_t)).$$

Advantages of MC over DP:

- MC can work when the environment is unknown;
- Working with sampled episodes has a huge advantage. Even with the complete knowledge of the
 environment's dynamics, the complexity still could be a challenge;
- Cost of estimating a single state's value is independent of the total number of states. So one can sample episodes starting from the states of interest then average returns.

6.2 Temporal-Difference Learning

Unlike MC methods, temporal-difference (TD) does not require the episodes are complete. TD methods can learn from incomplete episodes by bootstrapping.

Temporal-Difference Learning: Given some incomplete episodes under the policy π , we update value $v(s_t)$ toward estimated return $r_{t+1} + \gamma v(s_{t+1})$:

$$v(s_t) \leftarrow v(s_t) + \alpha(r_{t+1} + \gamma v(s_{t+1}) - v(s_t)),$$

where $r_{t+1} + \gamma v(s_{t+1})$ is called the TD target, α is the step-size, and we call

$$\delta_t = r_{t+1} + \gamma v(s_{t+1}) - v(s_t)$$

the TD error.

Algorithm 12 TD(0) Evaluation

```
1: initialize v(s) \in \mathbb{R} arbitrarily for all s \in \mathcal{S} except that v(terminal) = 0;
```

- 2: **input** the policy π to be evaluated; the step size $\alpha \in (0,1]$;
- 3: **for** true **do**:
- 4: Generate initial state *s*;
- 5: **while** s is not terminal **do**:
- 6: $a \leftarrow \pi(s)$;
- 7: $r, s' \leftarrow environment(s, a);$
- 8: $v(s) \leftarrow v(s) + \alpha(r + \gamma v(s') v(s));$
- 9: $s \leftarrow s'$;
- 10: end while
- 11: end for

Differences between MC and TD for policy evaluation:

- TD can learn online after every step;
- MC must wait until end of episode before return is known;
- TD can learn from incomplete sequences;
- MC can only learn from complete sequences;
- TD works in continuing (non-terminating) environments;
- MC only works in episodic (terminating) environments;
- TD exploits Markov property, and it is efficient in Markov environments;
- MC does not exploit Markov property, thus it is relatively effective in non-Markov environments.

Bootstrapping: involves old values, it is something like in-place update.

Sampling: samples to get an expectation.

A summary of bootstrapping and sampling for DP, MC, and TD is shown in Table 2.

Algorithm	Bootstraps	Sampling
Dynamic Programming	$\sqrt{}$	
Monte-Carlo		\checkmark
Temporal-Difference		\checkmark

Table 2: Bootstrapping and sampling for DP, MC, and TD.

n-step TD methods: Unlike the simplest TD method, in n-step TD methods, the updating rule of value $v(s_t)$ is

$$v(s_t) \leftarrow v(s_t) + \alpha (G_t^{(n)} - v(S_t)),$$

where $G_t^{(n)}$ is the n-step return

$$G_t^{(n)} = r_{t+1} + \gamma r_{t+2} + \dots + \gamma^n v(s_{t+n}).$$

Notice that with additional definition, we can generalize TD to MC when $n \to \infty$.

TD(λ) **methods**: To make use of the information from all time-steps, we can use weight $(1 - \lambda)\lambda^{n-1}$ to average n-step returns over different n as

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)},$$

thus the updating rule for the value becomes

$$v(s_t) \leftarrow v(s_t) + \alpha(G_t^{\lambda} - v(s_t)).$$