UNLocBoX : Toolbox MATLAB d'Optimisation Convexe

Méthodes de Proximal Splitting

DONGMO TCHOUMENE ANITA BELVIANE - 22W2184
DONFACK SYNTHIA CALORINE - 22U2073
BOKOU-BOUNA-ANGE-LARISSA - 22W2188
JIATSA ROMMEL JUNIOR - 22T2906

Université de Yaounde I - Master I Data Science

22 octobre 2025

Plan de la présentation

- Introduction à UNLocBoX
- 2 Contexte et motivation
- Concepts fondamentaux
- 4 Architecture de UNLocBoX
- 5 Utilisation pratique
- 6 Applications
- Avantages et comparaisons
- 8 Conclusion

Qu'est-ce que UNLocBoX?

- UNLocBoX : boîte à outils MATLAB pour l'optimisation convexe
- Basée sur les méthodes de proximal splitting
- Développée à l'EPFL (Lausanne, Suisse)
- Open source et bien documentée
- Efficace pour les problèmes de grande dimension

Problème résolu par UNLocBoX

Forme générale du problème :

$$\min_{x \in \mathbb{R}^N} \sum_{n=1}^K f_n(x)$$

Caractéristiques:

- Chaque f_n est une fonction convexe
- Les fonctions peuvent être différentiables ou non
- Somme de termes "simples" (régularisation, fidélité aux données, contraintes)

Pourquoi l'optimisation convexe?

- De nombreux problèmes en Machine Learning et traitement du signal
- Reconstruction d'images, débruitage, régression sparse
- Garantie de convergence vers un minimum global
- Algorithmes classiques (Newton, gradient): trop coûteux pour le big data

Limitations des méthodes classiques

- Gradient descent : nécessite différentiabilité
- Méthodes du second ordre : complexité $\mathcal{O}(N^3)$
- Inadaptées aux fonctions non-différentiables (norme ℓ_1 , TV)
- Proximal splitting : scalable et flexible

Opérateur proximal : définition

Définition:

$$\operatorname{prox}_{f}(x) = \arg\min_{y} \left(\frac{1}{2} \|x - y\|^{2} + f(y) \right)$$

Propriétés:

- Généralise la projection sur un ensemble convexe
- Solution unique pour toute fonction convexe semi-continue
- Permet de traiter les fonctions non différentiables

Proximal splitting: principe

Idée centrale:

- Découpler la fonction objective en termes simples
- Résoudre chaque terme séparément via son opérateur proximal
- Alterner entre les différents opérateurs
- Convergence garantie vers la solution optimale

Avantages:

- Complexité $\mathcal{O}(N)$ par itération
- Parallélisation possible

Structure générale

Composantes principales :

- Solvers : implémentent les algorithmes d'optimisation
- Opérateurs proximaux : fonctions prédéfinies
- Fichiers de démonstration : exemples d'utilisation
- Fonctions utilitaires : outils auxiliaires

Solvers disponibles

Solvers spécifiques (2 fonctions) :

- forward_backward (FISTA)
- douglas_rachford
- admm / sdmm
- chambolle_pock

Solvers généraux (K fonctions) :

- generalized_forward_backward
- ppxa

Fonction automatique: solvep

Opérateurs proximaux prédéfinis

- prox_11 : norme ℓ_1 (soft-thresholding)
- prox_12 : norme ℓ_2
- prox_tv : variation totale (TV)
- prox_nuclear : norme nucléaire
- ullet proj_b2 : projection sur boule ℓ_2
- proj_linear_eq : projection sur contraintes linéaires

Définition des fonctions

Fonction différentiable :

```
f.eval = @(x) norm(A*x - y)^2;
f.grad = @(x) 2*A'*(A*x - y);
f.beta = 2*norm(A)^2; % Lipschitz
```

Fonction non différentiable :

```
\begin{array}{ll} f.\, \textbf{eval} \ = \ @(\times) \ \ lambda*norm(\times,1); \\ f.\, prox \ = \ @(\times,T) \ \ prox \ \_l1(x, \ lambda*T); \end{array}
```

Résolution d'un problème

Exemple: Régression Lasso

$$\min_{x} \|Ax - y\|_{2}^{2} + \lambda \|x\|_{1}$$

```
% Fonction 1 : terme quadratique
f1.grad = @(x) 2*A'*(A*x - y);
f1.beta = 2*norm(A)^2;

% Fonction 2 : norme L1
f2.prox = @(x,T) prox_I1(x, lambda*T);

% R solution
sol = forward_backward(y, f1, f2, param);
```

Paramètres des solvers

Paramètres courants :

- param.maxit : nombre max d'itérations (défaut : 200)
- param.tol : tolérance de convergence (défaut : 10^{-2})
- param.gamma : pas de temps (calculé automatiquement)
- param.verbose: niveau de log (0, 1 ou 2)

Application 1 : Inpainting d'image

Problème: Reconstruction d'une image avec pixels manquants **Formulation:**

$$\min_{x} \|x\|_{TV}$$
 s.c. $\|Ax - y\|_2 \le \epsilon$

- A : opérateur de masque
- y : pixels observés
- Régularisation par variation totale (contours nets)

Solver: Douglas-Rachford

Application 2 : Débruitage par régularisation

Problème : Débruitage de signal/image

Formulation:

$$\min_{x} \|x - y\|_{2}^{2} + \lambda \|x\|_{1}$$

y : signal bruité

• Régularisation ℓ_1 : favorise la parcimonie

• Trade-off via λ

Solver: Forward-Backward (FISTA)

Application 3: Compressed Sensing

Problème : Reconstruction de signal sparse sous-échantillonné **Formulation :**

$$\min_{x} \|x\|_1 \quad \text{s.c.} \quad Ax = y$$

- A : matrice de mesure (sous-déterminée)
- Contrainte d'égalité stricte
- Promotion de la parcimonie

Solver: Douglas-Rachford avec projection

Avantages de UNLocBoX

- Flexibilité : gestion de multiples fonctions et contraintes
- Efficacité : complexité linéaire, adapté au big data
- Modularité : ajout facile de nouveaux opérateurs/solvers
- **Documentation complète** : guide utilisateur + exemples
- Open source : gratuit et personnalisable

Comparaison avec d'autres outils

Outil	Flexibilité	Scalabilité	Contrôle
CVX	Haute	Faible	Faible
UNLocBoX	Haute	Haute	Élevé
Gradient classique	Faible	Moyenne	Élevé

UNLocBoX : compromis optimal entre facilité et performance

Conclusion et perspectives

UNLocBoX est une boîte à outils puissante et flexible permettant de résoudre efficacement de nombreux problèmes convexes. S'appuyant sur les méthodes modernes de splitting et proximalité, elle est documentée et adaptée à la recherche et l'enseignement.

Points clés:

- UNLocBoX = outil moderne pour l'optimisation convexe
- Méthodes proximales : scalables et efficaces
- Applications variées en Data Science
- Extensible et personnalisable