Jednostka centralna

PODSTAWY INFORMATYKI

WYKŁAD NR 7

Zmienna binarna

- Arytmetyka binarna stanowi podstawę notacji wszelkich symboli używanych w technice cyfrowej
- Zmienna binarna to zmienna przyjmująca tylko dwie wartości: 0 i 1 zwane bitami
- Czasem wartości bitów podaje się jako prawda/fałsz, tak/nie, włączony/wyłączony
- Zwykle reprezentowane dwoma stanami napięcia (niski/wysoki)

Słowo binarne

- Aby zwiększyć liczbę możliwych do przedstawienia symboli należy zwiększyć liczbę zmiennych binarnych
- Z grupy n zmiennych binarnych można utworzyć 2ⁿ słów (symboli) binarnych
- Wartość n jest ściśle określona dla każdej maszyny cyfrowej
- Zwykle obliczenia są prowadzone na n-bitowych słowach (słowach maszynowych)

Pierwsze narzędzia do liczenia

► Abakus (V w. p.n.e.)

- 1623 Wilhelm Schickard pierwszy mechaniczny kalkulator (spłonął rok później)
- 1645 Pascalina (Blaise Pascal, udoskonalona przez Gottfrieda Leibnitza)

Mechaniczna jednostka arytmetyczna

Arytmometr

Pierwsze komputery

- Komputery elektromechaniczne Konrada Zusego: Z1 (1936-1938), Z2 (1940), Z3 (1941)
- ▶ ABC (Atanasoff-Berry Computer, 1942, Iowa State College, rozwiązywanie równań liniowych)
- Komputer analogowy Helmuta Hölzera (1942, Peenemünde, obliczanie trajektorii rakiet V2, pierwszy komputer w pełni elektroniczny)
- Colossus (1943, Thomas Harold Flowers, Bletchley Park, Government Code & Cypher School)
- Mark I (Harvard University, 1944, John von Neumann, Manhattan Project)
- ENIAC (Electronic Numerical Integrator and Computer, 1945/47, John Mauchly, J. Presper Eckert, University of Pennsylvania i US Army Ballistic Research Laboratory, badania nad bronią termojądrową)

Komputer wg modelu von Neumanna

- ▶ Na komputer składają się:
 - Pamięć komputerowa przechowująca dane i instrukcje programu (każda komórka pamięci jednoznacznie identyfikowana poprzez swój adres)
 - Układ sterujący odpowiedzialny za pobieranie instrukcji z pamięci i ich sekwencyjne przetwarzanie
 - Jednostka arytmetyczno-logiczna odpowiedzialna za wykonywanie instrukcji obliczeniowych
 - Układu wejścia/wyjścia służących do interakcji z otoczeniem

Komputer wg modelu von Neumanna

Architektura harwardzka

Pojęcia podstawowe

- Komputer urządzenie techniczne zdolne do wykonywania programu
- Program uporządkowany ciąg instrukcji elementarnych zwanych rozkazami
- Lista rozkazów zbiór wszystkich rozkazów dostępnych w danym komputerze
- Rozkaz uporządkowany ciąg operacji na elementach komputera uaktywnianych przez odpowiednie sygnały sterujące

Pojęcia podstawowe – c.d.

- Mikrorozkaz zbiór sygnałów sterujących (nie kolidujących ze sobą)
- Mikroprogram uporządkowany ciąg mikrorozkazów, jednoznacznie opisujący realizację rozkazu
- Sygnały sterujące zmienne binarne generowane przez część procesora zwaną układem sterującym wpływające na to, jakie operacje są aktualnie realizowane w procesorze

Format i lista rozkazów maszyny W

Symbol	Kod	Treść
DOD	00001	$(AK) + ((AD)) \rightarrow AK$
ODE	00010	$(AK) - ((AD)) \rightarrow AK$
ŁAD	00011	$(AK) \rightarrow (AD)$
POB	00100	$((AD)) \rightarrow AK$
SOB	00101	$(AD) \rightarrow L$
SOM	00110	$(AD) \rightarrow L$, gdy $(AK) < 0$
STP	00111	zatrzymanie pracy zegara

Cykl rozkazowy - założenia

- Podzielony na fazy (ang. cycle)
- Nie można zrobić wszystkiego w jednej fazie
- Rozpoczyna się zawsze pobraniem i zdekodowaniem rozkazu (czyt, wys, wei) oraz zwiększeniem wartości licznika rozkazów (il)
- Kończy się przygotowaniem do realizacji kolejnego rozkazu (wyl, <u>wea</u>)

Rozkaz dodawania DOD

$$(AK) + ((AD)) \rightarrow AK$$

$$((A)) \rightarrow S$$

 $(S) \rightarrow I$
 $(L) + 1 \rightarrow L$
 $(AD) \rightarrow A$
 $((A)) \rightarrow S$
 $(AK) + (S) \rightarrow AK$
 $(L) \rightarrow A$

Rozkaz dodawania DOD

$$(AK) + ((AD)) \rightarrow AK$$

$$\begin{array}{lll} \text{((A))} \rightarrow \text{S} & \text{czyt} \\ \text{(S)} \rightarrow \text{I} & \text{wys } \underline{\text{wei}} \\ \text{(L)} + 1 \rightarrow \text{L} & \underline{\text{il}} \\ \text{(AD)} \rightarrow \text{A} & \text{wyad } \underline{\text{wea}} \\ \text{((A))} \rightarrow \text{S} & \text{czyt} \\ \text{(AK)} + \text{(S)} \rightarrow \text{AK} & \text{wys weja dod } \underline{\text{weak}} \\ \text{(L)} \rightarrow \text{A} & \text{wyl } \underline{\text{wea}} \end{array}$$

Rozkaz dodawania DOD

Rozkaz odejmowania ODE

$$(AK) - ((AD)) \rightarrow AK$$

$$((A)) \rightarrow S$$

 $(S) \rightarrow I$
 $(L) + 1 \rightarrow L$
 $(AD) \rightarrow A$
 $((A)) \rightarrow S$
 $(AK) - (S) \rightarrow AK$
 $(L) \rightarrow A$

Rozkaz odejmowania ODE

$$(AK) - ((AD)) \rightarrow AK$$

$$\begin{array}{lll} \text{((A))} \rightarrow \text{S} & \text{czyt} \\ \text{(S)} \rightarrow \text{I} & \text{wys } \underline{\text{wei}} \\ \text{(L)} + 1 \rightarrow \text{L} & \underline{\text{il}} \\ \text{(AD)} \rightarrow \text{A} & \text{wyad } \underline{\text{wea}} \\ \text{((A))} \rightarrow \text{S} & \text{czyt} \\ \text{(AK)} - \text{(S)} \rightarrow \text{AK} & \text{wys weja ode } \underline{\text{weak}} \\ \text{(L)} \rightarrow \text{A} & \text{wyl } \underline{\text{wea}} \end{array}$$

Rozkaz odejmowania ODE

$$czyt = (F1+F3) \cdot ODE$$

$$wys = (F1+F3) \cdot ODE$$

$$\underline{\text{wei}} = f1 \cdot \text{ODE}$$

$$\underline{i}\underline{l} = f1 \cdot ODE$$

wyad =
$$F2 \cdot ODE$$

$$\underline{\text{wea}} = (f2+f3) \cdot \text{ODE}$$

ode =
$$F3 \cdot ODE$$

$$\underline{\text{weak}} = f3 \cdot \text{ODE}$$

$$wyl = F3 \cdot ODE$$

Rozkaz pobierania z pamięci POB

$$((AD)) \rightarrow AK$$

$$((A)) \rightarrow S$$

$$(S) \rightarrow I$$

$$(L) + 1 \rightarrow L$$

$$(AD) \rightarrow A$$

$$((A)) \rightarrow S$$

$$(S) \rightarrow AK$$

$$(L) \rightarrow A$$

Rozkaz pobierania z pamięci POB

$$((AD)) \rightarrow AK$$

$$((A)) \rightarrow S$$

$$(S) \rightarrow I$$

$$(L) + 1 \rightarrow L$$

$$(AD) \rightarrow A$$

$$((A)) \rightarrow S$$

$$(S) \rightarrow AK$$

$$(L) \rightarrow A$$

wyad <u>wea</u>

wys weja przep <u>weak</u>

Rozkaz pobierania z pamięci POB

$$czyt = (F1+F3) \cdot POB$$

$$wys = (F1+F3) \cdot POB$$

$$\underline{\text{wei}} = f1 \cdot POB$$

$$\underline{i}\underline{l} = f1 \cdot POB$$

wyad =
$$F2 \cdot POB$$

$$\underline{\text{wea}} = (f2+f3) \cdot POB$$

$$\underline{\text{weak}} = \text{f3} \cdot \text{POB}$$

$$\underline{\text{wyl}} = \text{F3} \cdot \text{POB}$$

Rozkaz ładowania do pamięci ŁAD

$$(AK) \rightarrow (AD)$$

$$((A)) \rightarrow S$$

$$(S) \rightarrow I$$

$$(L) + 1 \rightarrow L$$

$$(AD) \rightarrow A$$

$$(AK) \rightarrow S$$

$$(S) \rightarrow (A)$$

$$(L) \rightarrow A$$

Rozkaz ładowania do pamięci ŁAD

$$(AK) \rightarrow (AD)$$

$$((A)) \rightarrow S$$

$$(S) \rightarrow I$$

$$(L) + 1 \rightarrow L$$

$$(AD) \rightarrow A$$

$$(AK) \rightarrow S$$

$$(S) \rightarrow (AD)$$

$$(L) \rightarrow A$$

Rozkaz ładowania do pamięci ŁAD

Rozkaz skoku bezwarunkowego SOB

$$(AD) \rightarrow L$$

$$((A)) \rightarrow S$$

$$(S) \rightarrow I$$

$$(L) + 1 \rightarrow L$$

$$(AD) \rightarrow A$$

$$(AD) \rightarrow L$$

Rozkaz skoku bezwarunkowego SOB

$$(AD) \rightarrow L$$

$$((A)) \rightarrow S$$
 czyt
 $(S) \rightarrow I$ wys wei
 $(L) + 1 \rightarrow L$ il
 $(AD) \rightarrow A$ wyad wea
 $(AD) \rightarrow L$ wyad wel

Rozkaz skoku bezwarunkowego SOB

$$czyt = F1 \cdot SOB$$

$$wys = F1 \cdot SOB$$

$$wei = f1 \cdot SOB$$

$$il = f1 \cdot SOB$$

wyad =
$$F2 \cdot SOB$$

$$wea = f2 \cdot SOB$$

wel =
$$f2 \cdot SOB$$

Rozkaz skoku bezwarunkowego SOB i skoku warunkowego SOM, gdy liczba ujemna w AK

Rozkaz skoku warunkowego SOM, gdy liczba nieujemna w akumulatorze

$$(AD) \rightarrow L$$

$$((A)) \rightarrow S$$

$$(S) \rightarrow I$$

$$(L) + 1 \rightarrow L$$

$$(L) \rightarrow A$$

Rozkaz skoku warunkowego SOM, gdy liczba nieujemna w akumulatorze

$$(AD) \rightarrow L$$

$$((A)) \rightarrow S$$
 czyt
 $(S) \rightarrow I$ wys wei
 $(L) + 1 \rightarrow L$ il
 $(L) \rightarrow A$ wyl wea

Rozkaz skoku warunkowego SOM, gdy liczba nieujemna w akumulatorze

czyt =
$$F1 \cdot SOM \cdot \overline{Z}$$

wys = $F1 \cdot SOM \cdot \overline{Z}$
wei = $f1 \cdot SOM \cdot \overline{Z}$
il = $f1 \cdot SOM \cdot \overline{Z}$
wyl = $F2 \cdot SOM \cdot \overline{Z}$
wea = $f2 \cdot SOM \cdot \overline{Z}$

Podsumowanie

- Rozkaz i jego elementy
- Zasada wykonywania rozkazów
- Lista rozkazów
- Metoda projektowania rozkazów
- Równania rozkazów