计算机组成原理 第十一周作业 4月28日周二

PB18151866 龚小航

(T)4.18.

已知接收到的汉明码(按配偶原则配置)为: 1100100,1100111,1100000,1100001则上述代码是否 出错? 第几位出错?

解:上述的四条数据都是接收到的数据,其中已经加了校验位。数据总共7位,其中从左往右第1,2,4 位为校验码位,将四条数据分别列举如下:

1 1100100:

数据	1	1	0	0	1	0	0	
位标	C1	C2	D1	C4	D2	D3	D4	
位数	1	2	3	4	5	6	7	
P1	P1		P1		P1		P1	0
P2		P2	P2			P2	P2	1
Р3				Р3	Р3	Р3	Р3	1

这种情况下,三个校验位对应三组,记为P1,P2,P3. 因为数据按配偶配置,因此检查每一组中的 1 的个数是否为偶数。P1包括第1,3,5,7位,P2包括第2,3,6,7位,P3包括第4,5,6,7位,

校验位的值为 P3 P2 P1 = $110 = (6)_D$, 因此数据第 6 位出错, 正确数据应为 $(0110)_B$.

(2) 1100111:

数据	1	1	0	0	1	1	1	
位标	C1	C2	D1	C4	D2	D3	D4	
位数	1	2	3	4	5	6	7	
P1	P1		P1		P1		P1	1
P2		P2	P2			P2	P2	1
Р3				Р3	Р3	Р3	Р3	1

这种情况下,三个校验位对应三组,记为P1,P2,P3. 因为数据按配偶配置,因此检查每一组中的 1 的个数是否为偶数。P1包括第1,3,5,7位,P2包括第2,3,6,7位,P3包括第4,5,6,7位,

校验位的值为P3 P2 P1 = $111 = (7)_D$, 因此数据第7位出错, 正确数据应为 $(0110)_B$.

(3) 1100000:

数据	1	1	0	0	0	0	0	
 位标	C1	C2	D1	C4	D2	D3	D4	
位数	1	2	3	4	5	6	7	
P1	P1		P1		P1		P1	1
P2		P2	P2			P2	P2	1
Р3				Р3	Р3	P3	Р3	0

这种情况下,三个校验位对应三组,记为P1,P2,P3.因为数据按配偶配置,因此检查每一组中的1 的个数是否为偶数。P1包括第1,3,5,7位, P2包括第2,3,6,7位, P3包括第4,5,6,7位,

校验位的值为P3 P2 P1 = $011 = (3)_D$, 因此数据第 3 位出错, 正确数据应为 $(1000)_B$.

(4) 1100001:

数据	1	1	0	0	0	0	1	
位标	C1	C2	D1	C4	D2	D3	D4	
位数	1	2	3	4	5	6	7	
P1	P1		P1		P1		P1	0
P2		P2	P2			P2	P2	0
Р3				Р3	Р3	P3	P3	1

这种情况下,三个校验位对应三组,记为P1,P2,P3. 因为数据按配偶配置,因此检查每一组中的 1

的个数是否为偶数。P1包括第1,3,5,7位,P2包括第2,3,6,7位,P3包括第4,5,6,7位,

校验位的值为P3 P2 P1 = $100 = (4)_D$, 因此数据第 4 位出错, 第四位为校验数。数据无误, 为 $(0001)_B$.

4.20. **T**

欲传送的二进制代码为 1001101, 用奇校验确定其对应的汉明码。若在第六位出错, 说明纠错过程。

解: 先说明这个数据产生对应的奇校验汉明码的过程:

① 确定需要的校验位位数:

需要传输的数据为 7 位,n=7,所以需要 k 位校验位,需要满足 $2^k > k+n=k+7$ 因此 k=4,即需要四位校验位。

② 列表,将校验位填入第 1,2,4,8 个位置,其余从左到右填入待传输的数据的高位至低位:将数据都划归为C1,C2,C3,C4四个校验数组中,每组所含元素在表中标出。

数据	C1	C2	1	C3	0	0	1	C4	1	0	1	
位标	C1	C2	D1	C3	D2	D3	D4	C4	D5	D6	D7	
位数	1	2	3	4	5	6	7	8	9	10	11	
C1	C1		C1									
C2		C2	C2			C2	C2			C2	C2	
С3				С3	С3	С3	С3					
C4								C4	C4	C4	C4	

③ 根据 C1,C2,C3,C4 每组中1的个数,若是偶数则校验位填1,若是奇数则填0,以确保每一组中1的个数为奇数(连校验数一起)。于是数据行变更为:

数据 1 0 1 0 0 1 1 1 0 1
--

至此, 原数据的汉明码已经产生, 产生后的码字为:

10100011101

以下说明若传输过程中第六位发生错误, 汉明码的纠错过程:

 $10100011101 \rightarrow 10100111101$

将数据列于下表, 收到数据为 10100111101, 写入下表并计算 P1, P2, P3, P4:

凡是一组中有奇数个 1 的,则这组无误, $P_i=0$,若有偶数个 1,则这组出错 $P_i=1$

数据	1	0	1	0	0	1	1	1	1	0	1	
位标	C1	C2	D1	С3	D2	D3	D4	C4	D5	D6	D7	
位数	1	2	3	4	5	6	7	8	9	10	11	
P1	P1		P1	0								
P2		P2	P2			P2	P2			P2	P2	1
Р3				Р3	Р3	Р3	Р3					1
P4								P4	P4	P4	P4	0

再将校验数排成一列,得到 P4 P3 P2 P1 = $0110 = (6)_B$

说明整个数据的第六位发生错误,由于是二进制数据,只需将第六位取反则完成纠错:

 $10100111101 \rightarrow 10100011101$

4.22. **T**

有一个(7,4)码, 生成多项式 $G(x) = x^3 + x + 1$, 写出代码 1001 的循环冗余校验码。

解: (7,4) 码, 即 CRC 码为 7 位, 信息码为 4 位

- ① 首先把生成多项式转换成二进制数,由 $G(x) = x^3 + x + 1$,可以知道,它一共是 4 位(总位数等于最高位的幂次加 1),然后根据多项式各项的含义(多项式只列出二进制值为 1 的位),可得它的二进制比特串为 1011.
- ② 生成多项式的位数为 4, 得知 CRC 校验码的位数为 3 (校验码的位数比生成多项式的位数少 1)。因为原数据帧1001,将它左移三位以空出校验码位,得到1001000,然后把这个数以"模 2 除法"方式除以1001生成多项式,得到的余数(必须为 3 位,不足用 0 补齐),即 CRC 校验码。

								0			
1	0	1	1	1	0	0	1	0	0	0	_
				1	0	1	1				
						1	0	0	0		
						1	0	1	1		
								1	1	_ 0	

因此代码 1001 的循环冗余校验码为 1001110