Support Vector Machines

* Margin
Quadratic programming
Sparsity of solution
Basis expansion
Kernel function

^{*}George Runger 2020

Maximum Margin *

- ullet Consider a **separable** classification problem with two classes $y=\pm 1$
- A linear classifier is $f(\vec{x}) = w_0 + \vec{w}^T \vec{x}$ where $\hat{y} = sign \hat{f}(\vec{x})$
- Classifier $f(\vec{x}) = w_0 + \vec{w}^T \vec{x}$ defines a hyperplane (affine) with normal vector \vec{w}
- Instance i is classified correctly when $y_i(w_0 + \vec{w}^T \vec{x}_i) > 0$
- Perceptron problem: many solutions for a separable problem, how to pick one?

^{*}George Runger 2020

Maximum Margin *

- ullet Signed distance of point x_0 from the hyperplane is $\frac{1}{\|w\|}(w_0 + \vec{w}^T \vec{x}_0)$
- Distance of point to boundary unchanged by transform $\vec{w} \to b \vec{w}$, $w_0 \to b w_0$
- Select scale so that for nearest +1 instance, $(w_0 + \vec{w}^T \vec{x}) = 1$ and for nearest -1 instance, $(w_0 + \vec{w}^T \vec{x}) = -1$
- Then for all instances $y_i(w_0 + \vec{w}^T \vec{x}_i) \geq 1$
- Margin is distance between hyperplanes (parallel to decision boundary) through nearest instances = $2/||\vec{w}||$

^{*}George Runger 2020

Global Optimum *

- Goal: classify correctly with maximum margin
- $\min \frac{\|\vec{w}\|^2}{2}$ with constraints $y_i(w_0 + \vec{w}^T \vec{x}_i) \geq 1$ for $i = 1, \dots, n$
- Quadratic programming problem with linear inequality constraints,
- Karush-Kuhn-Tucker (KKT) solution is obtained numerically to a *global* optimum $\hat{\vec{w}} = \sum_{i=1}^{n} \alpha_i y_i \vec{x}_i$ $\hat{w}_0 = y_i \hat{\vec{w}}^T \vec{x}_i \text{ for any } i \text{ where } \alpha_i > 0$

^{*}George Runger 2020

Support Vectors *

- KKT implies $\alpha_i = 0$ when $y_i(w_0 + \vec{w}^T \vec{x}_i) > 1$, that is, \vec{x}_i is NOT on a margin hyperplane
- KKT implies $\alpha_i > 0$ when $y_i(w_0 + \vec{w}^T \vec{x}_i) = 1$, that is, \vec{x}_i is on a margin hyperplane
- Therefore $\widehat{w} = \sum_{i=1}^{n} \alpha_i y_i \vec{x}_i$ is **sparse**, only \vec{x}_i on a margin hyperplane contribute to solution
- ullet Points $ec{x}_i$ with $lpha_i > 0$ are called **support** vectors

^{*}George Runger 2020

Non-Separable Case *

- Still maximize margin, but allow errors in classifier
- Define slack variables ξ_1, \dots, ξ_n Modify constraints to $y_i(w_0 + \vec{w}^T \vec{x}_i) \geq (1 - \xi_i), \xi_i \geq 0$
- Would like all $\xi_i = 0$, for no errors, but not possible in non-separable case
- ullet $\xi_i/\|ec{w}\|$ is a measure of distance of $ec{x}_i$ on wrong side of margin, error occurs when $\xi_i>1$
- $\min \frac{\|\vec{w}\|^2}{2} + C \sum_{i=1}^n \xi_i$ with constraints $y_i(w_0 + \vec{w}^T \vec{x}_i) \ge (1 \xi_i), \xi_i \ge 0, C > 0$

^{*}George Runger 2020

Non-Separable Case *

- C large implies a smaller margin, with fewer error on the training data, less robust (and corresponds in the nonlinear case to a more complex model)
- C small implies a larger margin, with more error on the training data, but a more robust fit
- Same as separable case—solution is a quadratic programming problem, global optimum $\hat{\vec{w}} = \sum_{i=1}^{n} \alpha_i y_i \vec{x}_i$ $\hat{w}_0 = y_i \hat{\vec{w}}^T \vec{x}_i \text{ for any support vector}$
- KKT again show sparse solutions (many α_i 's = 0)

^{*}George Runger 2020

Non-Separable Case *

- Because misclassified point has $\xi_i > 1$, $\sum_{i=1}^n \xi_i$ is upper bound on number of errors
- $\xi_i = 0 \rightarrow x_i$ correct $0 < \xi_i < 1 \rightarrow x_i$ correct, but inside margin $\xi_i = 1 \rightarrow x_i$ on decision boundary $\xi_i > 1 \rightarrow x_i$ incorrect
- Classifier is $\hat{y} = sign(\hat{f}(\vec{x}))$ where $f(\vec{x}) = \hat{w}_0 + \hat{w}^T \vec{x}$

^{*}George Runger 2020

Nonlinear Classifier *

- Function $f(\vec{x}) = w_0 + \vec{w}^T \vec{x}$ is linear and limited
- Basis expansion is used to dramatically enlarge the space of predictors (think polynomial terms)
- Instead of predictor $\vec{x_i}$ we use many more transformed features $\vec{\phi}(\vec{x_i})$: $T \times 1$ with T >> M
- ullet Linear model in $\vec{\phi}(\vec{x}_i)$, but nonlinear in \vec{x}_i
- Use C to control complexity, still maintain sparsity of solution
- Known as a support vector machine (SVM)

^{*}George Runger 2020

Support Vector Machine *

- In the quadratic programming problem, feature vectors $\vec{\phi}(\vec{x}_i)$ only appear as inner products between instances $\vec{\phi}^T(\vec{x}_i)\vec{\phi}(\vec{x}_j)$
- Also, $\hat{f}(\vec{x}) = \hat{w}_0 + \sum_{i=1}^n \alpha_i y_i \vec{\phi}^T(\vec{x}_i) \vec{\phi}(\vec{x})$ so that inner products only appear in the solution
- **Key**: Do not need to calculate transformed vectors, only need their inner products
- **Kernel** function $K(\vec{x}_1, \vec{x}_2) = \vec{\phi}^T(\vec{x}_1) \vec{\phi}(\vec{x}_2)$ provides inner products in the transformed (higher-dimensional) feature space

^{*}George Runger 2020

Support Vector Machine *

Some common kernel functions are

$$K(\vec{x}_i, \vec{x}_j) = (1 + \vec{x}_i^T \vec{x}_j)^m$$

$$K(\vec{x}_i, \vec{x}_j) = \exp\left(-\|\vec{x}_i - \vec{x}_j\|^2/(2\sigma^2)\right)$$

$$K(\vec{x}_i, \vec{x}_j) = \tanh(\beta \vec{x}_i^T \vec{x}_j - \delta)$$
 for hyperparameters σ^2, β, δ

• Also solution written with kernel function $\widehat{f}(\vec{x}) = \widehat{w}_0 + \sum_{i=1}^n \alpha_i y_i \vec{\phi}^T(\vec{x}_i) \vec{\phi}(\vec{x})$ $= \widehat{w}_0 + \sum_{i=1}^n \alpha_i y_i K(\vec{x}_i, \vec{x})$

^{*}George Runger 2020

Support Vector Machine *

- With 50 inputs, degree-2 polynomial contains 1325 terms
- Kernel function makes it feasible to compute these models
- Not unusual to use Gaussian kernel, how many polynomial terms?
- SVM "'magic" comes from the feature expansion, the simplicity of the kernel function, and a global optimum

^{*}George Runger 2020

Penalized Method *

Another view: SVM solves the regularized problem

$$L = \min_{w_0, \vec{w}} \sum_{i=1}^{n} [1 - y_i(w_0 + \vec{w}^T \vec{x}_i)]_+ + \lambda ||\vec{w}||^2$$

where $[u]_+ = \max(u, 0)$ and hyperparameter $\lambda > 0$

- ullet Note the error + smoothness penalty in L
- ullet L is responsible for the sparseness of the solution
- As usual, $\hat{y} = sign(\hat{w}_0 + \hat{\vec{w}})$

^{*}George Runger 2020

Such a result starts to integrate ridge regression, boosted decision trees, and SVM—
 on the surface very different algorithms,
 but with common roots