

Rahmiati, M.Kom

Pertemuan 10- Finite State Automata dengan Output
(Mesin Mealy)

Mesin Mealy

- Bila output pada mesin Moore berasosiasi dengan state, maka output pada mesin Mealy akan berasosiasi dengan transisi.
- Mesin Mealy sendiri didefinisikandalam 6 tupel, yaitu:

$$M=(Q, \Sigma, \delta, S, \Delta, \lambda)$$

Dimana: himpunan state

 Σ = himpunan simbol input

 δ = fungsi transisi

S = state awal, dimana S∈ Q

 Δ = himpunan output

 λ = fungsi output untuk setiap output

Contoh Mesin Mealy:

Konfigurasi mesin

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{ 0, 1 \}$$

$$\Delta = \{ Y, T \}$$

$$S = \{q_0\}$$

$$\lambda = (\mathbf{q_0}, \mathbf{0}) = \mathbf{T}$$

$$\lambda = (q_0, 1) = T$$

$$\lambda = (q_1, 0) = Y$$

$$\lambda = (\mathbf{q_1}, \mathbf{1}) = \mathbf{T}$$

$$\lambda = (q_2, 0) = T$$

$$\lambda = (\mathbf{q_2}, \mathbf{1}) = \mathbf{Y}$$

Tidak diterima input 110101, ditolak oleh Mesin Mealy

Contoh soal: Mesin Moore

- Buat konfigurasi mesin tersebut
- -Jika mesin menerima input "1101011", output

$$\delta \left(\mathsf{q}_0, \, 1101011 \right) = \delta \left(\mathsf{q}_1, \, 101011 \right) = \delta \left(\mathsf{q}_3, \, 01011 \right)$$

1 3

=
$$\delta$$
 (q₃, 1011) = δ (q₄, 011) = δ (q₂, 11) = δ (q₅, 1) = q₅

Input =
$$1101011$$

Output =
$$1334255$$

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_4\}$$

$$\Sigma = \{0, 1\}$$

$$\Delta = \{ 0, 1, 2, 3, 4, 5 \}$$

$$S = q_0$$

A

$$\lambda (q_0) = 0$$

$$\lambda (q_1) = 1$$

$$\lambda (q_2) = 2$$

$$\lambda (q_3) = 3$$

$$\lambda (q_4) = 4$$

$$\lambda (q_a) = 4$$

LATIHAN:

- 1. Jlka Mesin Moore pada contoh soal didapat " 1010101101011 ", ?
- 2. Pada Mesin Moore Modulus 3
 - \rightarrow 40 mod 3?
 - \rightarrow 55 mod 3?
 - \rightarrow 73 mod 3?
- 3. Pada mesin Mealy jika input " 0110011011 " apakah diterima ?

```
1. \delta(q_0, 1010101101011) = \delta(q_1, 010101101011) = (q_2, 010101101011)
10101101011)
   = \delta (q<sub>5</sub>, 0101101011) = \delta (q<sub>1</sub>, 101101011) = \delta (q<sub>3</sub>,
         01101011) 5 1 3
   = \delta (q<sub>3</sub>, 1101011) = \delta (q<sub>4</sub>, 101011) = \delta (q<sub>4</sub>, 01011) = \delta (q<sub>2</sub>,
          101) 3 4 4 2
   = \delta (q<sub>5</sub>, 011) = \delta (q<sub>1</sub>, 11) = \delta (q<sub>3</sub>, 1) = q<sub>4</sub>
            5 1 3 4
   Input = 1010101101011
   Output = 1251334425134
```

2. * 40 mod 3 bilangan biner 40 = 101000 urutkan state :

$$\delta (q_0, 101000) = \delta (q_1, 01000) = \delta (q_2, 1000)$$

=
$$\delta$$
 (q₂, 000) = δ (q₁, 00) = δ (q₁, 0) = q₁

Berakhir pada

$$\lambda (q_1) = 1$$
 40 mod 3 = 1

* 55 mod 3 bilangan biner 55 = 110111 urutkan state : $\delta \, (q_0, \, 110111) = \delta \, (q_1, \, 10111) = \delta \, (q_0, \, 0111) = \delta \, (q_0, \, 111) = \delta \, (q_1, \, 11) = \delta \, (q_1, \, 1) = q_1$ Berakhir pada Q1 $\lambda \, (q_1) = 1$

* 73 mod 3
bilangan biner 73 = 1001001
$$\delta (q_0, 1001001) = \delta (q_1, 001001) = \delta (q_2, 01001)$$

= $\delta (q_1, 1001) = \delta (q_0, 001) = \delta (q_0, 01)$
= $\delta (q_0, 1) = q_1$

berakhir pada q_1 $\lambda (q_1) = 1$ 73 mod 3 = 1

 $55 \mod 3 = 1$

3. Jika input " 011001101011 ", apakah diterima ?
$$\delta \ (\mathbf{q_0},\ 011001101011) = \delta \ (\mathbf{q_1},\ 11001101011) = \delta \ (\mathbf{q_2},\ 1001101011)$$
 T

=
$$\delta$$
 (q₂, 001101011) = δ (q₁, 01101011) = δ (q₁, 1011) Y T T

=
$$\delta$$
 (q₂, 101011) = δ (q₂, 01011) = δ (q₁, 1011) T Y T

=
$$\delta$$
 (q₂, 011) = δ (q₁, 11) = δ (q₂, 1) = q₂ T T T

Contoh Mesin Mealy

Mesin ini akan mengeluarkan output menerima 'Y' atau menolak 'T' suatu masukan biner.

Dengan ketentuan: mesin akan mengeluarkan output 'Y' bila menerima untai yang memiliki dua simbol berurutan yang sama, atau secara formal dalam ER: (0+1)*(00+11)

Konfigurasi mesinnya adalah sbb:

Q = {q₀, q₁,

$$\Sigma$$
 q₂}
S = {0, 1},0
 Δ = q₀
 $\lambda(q_0,0) = Y$, $\lambda(q_1,0) = Y$; $\lambda(q_1,1) = T$
 $\lambda(q_2,0) = T$; $\lambda(q_2,1) = Y$

Gambar 7.2. Contoh Mesin Mealy

Coba buktikan untuk input yang diterima: 01011; 01100; 1010100; 10110100; 00; 11; 100; 011; 111; 0101; 0010

- 7.3 Ekuivalens Mesin Moore dani Mesin Mealy
- Dari suatu mesi Moore, dapat dibuat mesin Mealy yang ekuivalen, begitu juga sebaliknya.
- State pada mesin Moore dibentuk dari kombinasi state pada Mealy dan banyaknya output.
- Untuk mesin Mealy pada gambar 7.2, jumlah state=3; dan jumlah output=2; maka jumlah state pada mesin Moore yang ekuivalen adalah = 6.

Konfigurasi mesIn Moore yang dibentuk

$$\begin{array}{ll} \begin{subarray}{lll} \begin{subarra$$

Gambar 7.3. Mesin Moore yang ekuivalen dengan Mesin Mealy pada gambar 7.2.

- Untuk memperoleh ekuivalensi mesin Mealy dari suatu mesin Moore, caranya lebih mudah, cukup dengan menambahkan label output ke setiap transisi, dan menghapus label output pada setiap state
- Konfigurasi mesIn Moore yang dibentuk adalah:

Q =
$$\{q_{0}, q_{1}, q_{2}\}$$

 Σ = $\{0, 1\}$
S = q_{0}
 Δ = $\{0, 1, 2\}$
 $\lambda(q_{0}, 0) = 0; \lambda(q_{0}, 1) = 1$
 $\lambda(q_{1}, 0) = 2; \lambda(q_{1}, 1) = 0$
 $\lambda(q_{2}, 0) = 1; \lambda(q_{2}, 1) = 3$

Gambar 7.4. Mesin Mealy yang ekuivalen dengan Mesin Moore pada gambar 7.1.

-(FINITE STATE AUTOMATA)

-DENGAN OUTPUT

Mesin Moore dengan 6

Tuple M = (Q,
$$\Sigma$$
, δ , S, Δ , λ)

- **Q** = Himpunan State
- Σ = Himpunan simbol input
- δ = Fungsi transisi
- $S = State awal, S \in Q$
- Δ = Himpunan output
- λ = Fungsi output untuk setiap

state Contoh: konfigurasi mesin

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{0, 1\}$$

$$\Delta = \{0, 1,$$

$$(q_0)$$

$$\lambda(q_0) = 0$$

$$\lambda(\mathbf{q}_1) = 1$$

$$\lambda(\alpha) = 2$$

Mesin Moore untuk modulus 3

5 mod 3 = ? mod → hasil dari sisa pembagian bilangan biner 5 = 101

urutkan state:

$$\delta (q_0, 101) = \delta (q_1, 01) = \delta (q_2, 1) = q_2$$

Berakhir pada q₂

$$\lambda (q_2) = 2$$
 maka 5 mod 3 = 2

☐ 10 mod

Bilangan biner 10 = 1010

Urutkan state:

$$\delta (q_0, 1010) = \delta (q_1, 010) = \delta (q_2, 10) = \delta (q_2, 0) = q_1$$

Beakhir pada q₁

$$\lambda (q_1) = 1$$
 maka

 $10 \mod 3 = 1$

✓ MESIN

MEALY

Dengan 6 tuple

$$M = (Q, \Sigma, \delta, S, \Delta, \lambda)$$

Contoh Mesin Mealy:

Konfigurasi mesin

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{ 0, 1 \}$$

$$\Delta = \{ Y, T \}$$

$$S = \{q_0\}$$

$$\lambda = (\mathbf{q_0}, \mathbf{0}) = \mathbf{T}$$

$$\lambda = (q_0, 1) = T$$

$$\lambda = (q_1, 0) = Y$$

$$\lambda = (\mathbf{q_1}, \mathbf{1}) = \mathbf{T}$$

$$\lambda = (q_2, 0) = T$$

$$\lambda = (\mathbf{q_2}, \mathbf{1}) = \mathbf{Y}$$

Tidak diterima input 110101, ditolak oleh Mesin Mealy

Contoh soal: Mesin Moore

- Buat konfigurasi mesin tersebut
- -Jika mesin menerima input "1101011", output

$$\delta \left(\mathsf{q}_0, \, 1101011 \right) = \delta \left(\mathsf{q}_1, \, 101011 \right) = \delta \left(\mathsf{q}_3, \, 01011 \right)$$

1 3

=
$$\delta$$
 (q₃, 1011) = δ (q₄, 011) = δ (q₂, 11) = δ (q₅, 1) = q₅

Input =
$$1101011$$

Output =
$$1334255$$

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_4\}$$

$$\Sigma = \{0, 1\}$$

$$\Delta = \{ 0, 1, 2, 3, 4, 5 \}$$

$$S = q_0$$

A

$$\lambda (q_0) = 0$$

$$\lambda (q_1) = 1$$

$$\lambda (q_2) = 2$$

$$\lambda (q_3) = 3$$

$$\lambda (q_4) = 4$$

$$\lambda (q_a) = 4$$

LATIHAN:

- 1. Jlka Mesin Moore pada contoh soal didapat " 1010101101011 ", ?
- 2. Pada Mesin Moore Modulus 3
 - \rightarrow 40 mod 3?
 - \rightarrow 55 mod 3?
 - \rightarrow 73 mod 3?
- 3. Pada mesin Mealy jika input " 0110011011 " apakah diterima ?

```
1. \delta(q_0, 1010101101011) = \delta(q_1, 010101101011) = (q_2, 010101101011)
10101101011)
   = \delta (q<sub>5</sub>, 0101101011) = \delta (q<sub>1</sub>, 101101011) = \delta (q<sub>3</sub>,
         01101011) 5 1 3
   = \delta (q<sub>3</sub>, 1101011) = \delta (q<sub>4</sub>, 101011) = \delta (q<sub>4</sub>, 01011) = \delta (q<sub>2</sub>,
          101) 3 4 4 2
   = \delta (q<sub>5</sub>, 011) = \delta (q<sub>1</sub>, 11) = \delta (q<sub>3</sub>, 1) = q<sub>4</sub>
            5 1 3 4
   Input = 1010101101011
   Output = 1251334425134
```

2. * 40 mod 3 bilangan biner 40 = 101000 urutkan state :

$$\delta (q_0, 101000) = \delta (q_1, 01000) = \delta (q_2, 1000)$$

=
$$\delta$$
 (q₂, 000) = δ (q₁, 00) = δ (q₁, 0) = q₁

Berakhir pada

$$\lambda (q_1) = 1$$
 40 mod 3 = 1

* 55 mod 3 bilangan biner 55 = 110111 urutkan state : $\delta \, (q_0, \, 110111) = \delta \, (q_1, \, 10111) = \delta \, (q_0, \, 0111) = \delta \, (q_0, \, 111) = \delta \, (q_1, \, 11) = \delta \, (q_1, \, 1) = q_1$ Berakhir pada Q1 $\lambda \, (q_1) = 1$

* 73 mod 3
bilangan biner 73 = 1001001
$$\delta (q_0, 1001001) = \delta (q_1, 001001) = \delta (q_2, 01001)$$

= $\delta (q_1, 1001) = \delta (q_0, 001) = \delta (q_0, 01)$
= $\delta (q_0, 1) = q_1$

berakhir pada q_1 $\lambda (q_1) = 1$ 73 mod 3 = 1

 $55 \mod 3 = 1$

3. Jika input " 011001101011 ", apakah diterima ?
$$\delta \ (\mathbf{q_0},\ 011001101011) = \delta \ (\mathbf{q_1},\ 11001101011) = \delta \ (\mathbf{q_2},\ 1001101011)$$
 T

=
$$\delta$$
 (q₂, 001101011) = δ (q₁, 01101011) = δ (q₁, 1011) Y T T

=
$$\delta$$
 (q₂, 101011) = δ (q₂, 01011) = δ (q₁, 1011) T Y T

=
$$\delta$$
 (q₂, 011) = δ (q₁, 11) = δ (q₂, 1) = q₂ T T T