Zdefiniowanie problemu predykcyjnego oraz scharakteryzowanie analizowanego zbioru danych

Mateusz Mazur

Jakub Sakowski

Aleksandra Wójcik

1. Definicja problemu predykcyjnego

Celem projektu jest zbudowanie modelu klasyfikacyjnego, który pozwoli przewidzieć ryzyko śmierci pacjenta z niewydolnością serca na podstawie dostępnych danych klinicznych. Zmienną objaśnianą (zmienną celu) jest DEATH_EVENT, która przyjmuje wartość:

- 1 jeśli pacjent zmarł w trakcie okresu obserwacji,
- 0 jeśli pacjent przeżył.

Zadanie to jest klasyfikacją binarną, w której model na podstawie danych wejściowych (cech medycznych i demograficznych pacjenta) ma określić prawdopodobieństwo wystąpienia zdarzenia śmiertelnego. Praktyczne zastosowanie takiego modelu może wspierać lekarzy w ocenie ryzyka i podejmowaniu decyzji klinicznych.

2. Charakterystyka zbioru danych

Analizowany zbiór danych pochodzi z repozytorium **UCI Machine Learning Repository** (ID: 519) i nosi nazwę **Heart Failure Clinical Records**. Zbiór został opracowany na podstawie danych z badań pacjentów z objawami przewlekłej niewydolności serca. Dane były pierwotnie używane w publikacji naukowej: "Anaemia and Renal Dysfunction in Heart Failure".

2.1 Podstawowe informacje:

- Liczba rekordów (pacjentów): 299
- Liczba cech (atrybutów): 13 (w tym 12 wejściowych + 1 docelowa)
- **Typ zadania:** Klasyfikacja binarna (DEATH_EVENT)
- Brakujące dane: brak

Rysunek 1: Macierz korelacji pomiędzy zmiennymi zbioru danych

2.2 Rodzaje cech:

Rodzaj danych Przykładowe cechy

Demograficzne age, sex

Kliniczne anaemia, diabetes, high_blood_pressure, smoking

. . . serum creatinine, serum sodium,

Laboratoryjne creatinine_phosphokinase
Funkcjonalne ejection_fraction, platelets

Obserwacyjne time – liczba dni obserwacji pacjenta

2.3 Zmienna docelowa:

DEATH_EVENT – informacja, czy pacjent zmarł podczas obserwacji (0 = przeżył, 1 = zmarł).

2.4 **Uwagi:**

- Dane są stosunkowo zrównoważone, choć występuje pewna przewaga jednej z klas.
- Cechy są mieszane: binarne (np. anaemia), ciągłe (serum_creatinine), dyskretne (ejection_fraction) co umożliwia zastosowanie szerokiego wachlarza technik eksploracyjnych i modelujących.

Rysunek 2: Rozkład wieku pacjentów. Oś pozioma przedstawia przedziały wiekowe (40-90 lat), a oś pionowa - liczbę pacjentów w każdej grupie wiekowej

Zależność poziomu kreatyniny od DEATH_EVENT

Rysunek 3: Rozkład zależności średniego poziomu kreatyniny w surowicy od zdarzenia śmierci

Rysunek 4: Zależność wieku od frakcji wyrzutowej (Ejection Fraction) w grupach pacjentów wg. Statusu zdarzenia śmierci.

3. Porównanie skuteczności modeli

Rysunek 5: Krzywe ROC dla modeli regresji logistycznej, lasu losowego i SVM.

Logistic Regression

Metryka	Class 0	Class 1	Accuracy	Macro Avg	Weighted Avg
Precision	0.83	0.85	-	0.84	0.83
Recall	0.95	0.58	-	0.77	0.83
F1-score	0.89	0.69	0.83	0. <i>7</i> 9	0.82
Support	41	19	60	60	60

ROC AUC: 0.8575

Rysunek 6: Macierz pomyłek (Confusion Matrix) dla modelu regresji logistycznej

Random Forest

Metryka	Class 0	Class 1	Accuracy	Macro Avg	Weighted Avg
Precision	0.84	0.80	-	0.82	0.83
Recall	0.93	0.63	-	0. <i>7</i> 8	0.83
F1-score	0.88	0.71	0.83	0. <i>7</i> 9	0.83
Support	41	19	60	60	60

ROC AUC: 0.8999

Rysunek 7: Macierz pomyłek (Confusion Matrix) dla modelu Random Forest.

SVM

Metryka	Class 0	Class 1	Accuracy	Macro Avg	Weighted Avg
Precision	0.77	0.62	-	0.69	0.72
Recall	0.88	0.42	-	0.65	0. <i>7</i> 3
F1-score	0.82	0.50	0. <i>7</i> 3	0.66	0.72
Support	41	19	60	60	60

ROC AUC: 0.8408

Rysunek 8: Macierz pomyłek (Confusion Matrix) dla modelu SVM.

4. Podsumowanie

Projekt klasyfikacji binarnej skupił się na przewidywaniu zdarzeń śmierci (DEATH_EVENT) w oparciu o dane medyczne, wykorzystując trzy różne modele uczenia maszynowego. Regresja logistyczna osiągnęła dokładność (accuracy) na poziomie 83%, z wartością ROC AUC wynoszącą 0.8575. Model ten wykazał wysoką precyzję (0.85) i czułość (0.95) dla klasy większościowej (przeżyli), ale znacznie niższą czułość (0.58) dla klasy mniejszościowej (zmarli), co przełożyło się na F1-score wynoszący odpowiednio 0.89 i 0.69.

Lasy losowe (Random Forest) wypadły nieco lepiej, osiągając dokładność 83% i najwyższą wartość ROC AUC (0.8999) spośród wszystkich testowanych modeli. Precyzja dla klasy zmarłych wyniosła 0.80, a czułość 0.63, co dało F1-score na poziomie 0.71. Dla klasy przeżyłych wyniki były zbliżone do regresji logistycznej, z precyzją 0.84 i czułością 0.93.

Model SVM okazał się najmniej skuteczny, z dokładnością 73% i ROC AUC równym 0.8408. Wykazał się szczególnie niską czułością (0.42) i F1-score (0.50) dla klasy zmarłych, co wskazuje na trudności w prawidłowej klasyfikacji tej grupy. Dla klasy przeżyłych precyzja wyniosła 0.77, a czułość 0.88, co przełożyło się na F1-score równy 0.82.

Wyniki pokazują, że lasy losowe są najlepszym wyborem pod względem ogólnej wydajności i zdolności do rozróżniania klas, choć wciąż wymagają poprawy w wykrywaniu przypadków zgonów. W dalszych etapach projektu warto skupić się na optymalizacji modeli, zwiększeniu

czułości dla klasy mniejszościowej oraz dokładniejszej analizie wpływu poszczególnych cech na prognozy, np. z wykorzystaniem metod interpretowalności AI, takich jak SHAP. Dodatkowo, zastosowanie bardziej zaawansowanych algorytmów, takich jak XGBoost, lub technik przetwarzania danych nierównowagowych może przynieść dalszą poprawę wyników.