VJAI 2020 By Le Anh

End-to-End Object Detection with Transformers (DETR)

DETR

Agenda

- ♦ Hungarian Algorithm
 - ♦ Weighted bipartite graph
- ♦ DETR architecture
- ♦ Encoder-Decoder
- ♦ FPN
- ♦ Loss Function
- ♦ Object Query
- ♦ Summary

Introduction to DETR

DETR stands for End-to-End Object Detection with Transformers

New method that views object detection as a direct set prediction problem

• Output is fixed set of N objects

Removing the need for many hand-designed components

- non-maximum suppression
- anchor generation

Compare to Faster RCNN

- significantly better performance on large objects
- lower performances on small objects

Term

- ♦ Bounding Box
- ♦ ROI
- ♦ IOU
- ♦ Transformer
 - ♦ Attention
- Fully Connection Network (FCN)

Hungarian Algorithm

Problems

- ♦ A factory needs to assign each of 4 workers to one of 4 tasks
- Aim: Determine the best assignment of workers to tasks so that the overall time taken is minimized

	A	В	C	D
Wendy	30	40	50	60
Xenefon	70	30	40	70
yolanda	60	50	60	30
Zelda	20	80	50	70
		TYPE		

Result

Zelda – A: 20 mins

Yolanda – D : 30 mins

Wendy – B or C:40 min or 50 min

Xenefor - C or B:50min or 40min

Overall: 140mins

DETR architecture

DETR architecture

 $x_{\text{img}} \in \mathbb{R}^{3 \times H_0 \times W_0}$

 $f \in \mathbb{R}^{C \times H \times W}$

Transformer

N embeddings of size d

Transformer

FCN

```
self.class_embed = nn.Linear(hidden_dim, num_classes + 1)
self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
```

decoder prediction heads FFN class, box ransformer decoder FFN class, box object queries representation of the prediction heads FFN object class, box object queries representation heads

Output

$$(\hat{c}_1, \hat{b}_1)$$

$$(\hat{c}_2, \hat{b}_2)$$

$$(\hat{c}_N, \hat{b}_N)$$

Step 1: find a bipartite matching between these two sets

Step 2: compute the loss function, the Hungarian loss for all pairs matched in the previous

step

Step I: find a bipartite matching between these two sets

Pair matching cost between ground truths and predictions

$$-\mathbb{1}_{\{c_i
eq \varnothing\}} \hat{p}_{\sigma(i)}(c_i) + \mathbb{1}_{\{c_i
eq \varnothing\}} \mathcal{L}_{ ext{box}}(b_i, \hat{b}_{\sigma(i)})$$

• find one-to-one matching for direct set prediction without duplicates

$$\hat{\sigma} = rg \min_{\sigma \in \mathfrak{S}_N} \sum_i^N \mathcal{L}_{\mathrm{match}}(y_i, \hat{y}_{\sigma(i)}),$$

Step 1: find a bipartite matching between these two sets

Step 2: compute the loss function, the Hungarian loss for all pairs matched in the previous step

$$\mathcal{L}_{\text{Hungarian}}(y, \hat{y}) = \sum_{i=1}^{N} \left[-\log \hat{p}_{\hat{\sigma}(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\text{box}}(b_i, \hat{b}_{\hat{\sigma}}(i)) \right]$$

Object Query

- Trainable parameters
- each slot learns to specialize on certain areas and box sizes with several operating modes

Encoder Self Attention

Fig. 3: Encoder self-attention for a set of reference points. The encoder is able to separate individual instances. Predictions are made with baseline DETR model on a validation set image.

Decoder attention

Fig. 6: Visualizing decoder attention for every predicted object (images from COCC val set). Predictions are made with DETR-DC5 model. Attention scores are coded wit different colors for different objects. Decoder typically attends to object extremities such as legs and heads. Best viewed in color.

Summary

- ♦ Introduction to DETR
- ♦ Hungarian algorithms
- ♦ Using of Transformer in object detection