

Общероссийский математический портал

А. В. Арутюнов, С. Е. Жуковский, Теорема Адамара для отображений с ослабленными условиями гладкости, *Матем. сб.*, 2019, том 210, номер 2, 3–23

DOI: https://doi.org/10.4213/sm9010

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 178.186.63.117

4 июня 2022 г., 17:18:12

УДК 515.275

А. В. Арутюнов, С. Е. Жуковский

Теорема Адамара для отображений с ослабленными условиями гладкости

В работе получены достаточные условия глобальной гомеоморфности отображений пространства \mathbb{R}^n в себя. В качестве приложений получены теорема Адамара для дифференцируемых отображений и условия существования и единственности точки совпадения накрывающего и липшицева отображений, действующих в \mathbb{R}^n . Исследованы накрывающие и накрывающие в точке отображения метрических пространств.

Библиография: 23 названия.

Ключевые слова: локальный гомеоморфизм, теорема Адамара о гомеоморфизме, условие типа Каристи, накрывающее отображение.

DOI: https://doi.org/10.4213/sm9010

§ 1. Введение

Сформулируем классическую теорему Адамара (см., например, [1]).

ТЕОРЕМА АДАМАРА. Пусть отображение $F\colon \mathbb{R}^n \to \mathbb{R}^n$ непрерывно дифференцируемо, для любого x линейный оператор F'(x) невырожден u, более того, существует такое m>0, что $\|F'(x)^{-1}\|\leqslant m\ \forall\ x\in\mathbb{R}^n$. Тогда отображение F является диффеоморфизмом.

Здесь и ниже под диффеоморфизмом (гомеоморфизмом) понимается глобальный диффеоморфизм (гомеоморфизм).

Мы обобщим это утверждение для отображений $F \colon \mathbb{R}^n \to \mathbb{R}^n$ с ослабленным условием гладкости. А именно, покажем, что если отображение F непрерывно, является накрывающим и локально инъективным (т.е. у каждой точки x существует окрестность, сужение на которую отображения инъективно), то оно является гомеоморфизмом. Из этого утверждения выводится теорема Адамара для дифференцируемых и для локально липшицевых отображений.

Далее эти результаты приложены к исследованию точек совпадения двух отображений и получения условия накрываемости отображений $F\colon \mathbb{R}^n \to \mathbb{R}^s$ при $s\leqslant n$. В § 7 исследованы накрывающие отображения и отображения, накрывающие в точке.

Работа выполнена при поддержке Министерства образования и науки Российской Федерации (задание № 1.962.2017/4.6), Российского фонда фундаментальных исследований (гранты № 17-51-12064 ННИО а, № 18-01-00106-а, № 19-01-00080-а) и программы РУДН "5-100".

§ 2. Обобщение теоремы Адамара

Пусть (X, ρ_X) , (Y, ρ_Y) — метрические пространства. Для $x \in X$, $r \geqslant 0$ через $B_X(x,r)$ будем обозначать замкнутый шар в пространстве X с центром в точке x радиуса r. В пространстве \mathbb{R}^n евклидову норму будем обозначать через $|\cdot|$. Операторную норму, подчиненную евклидовой норме, будем обозначать через $\|\cdot\|$. Замкнутый шар в \mathbb{R}^n с центром в точке x радиуса r будем обозначать через B(x,r).

Пусть задано $\alpha > 0$.

Определение 2.1. Отображение $F\colon X\to Y$ называется α -накрывающим в точке $x\in X$, если для любого $\varepsilon>0$ существует положительное $r\leqslant \varepsilon$ такое, что

$$B_Y(F(x), \alpha r) \subset F(B_X(x, r)).$$
 (2.1)

Если включение (2.1) выполняется при любых $x \in X$ и $r \geqslant 0$, то отображение F называется α -накрывающим.

Очевидно, если отображение F является α -накрывающим, то F сюръективно. Более того, α -накрываемость отображения F равносильна тому, что

$$\forall \, x_0 \in X, \quad \forall \, y \in Y \quad \exists \, x \in X \colon \quad F(x) = y \quad \text{if} \quad \rho_X(x_0, x) \leqslant \frac{1}{\alpha} \rho_Y(F(x_0), y).$$

Отсюда непосредственно вытекает следующее утверждение: если отображение F взаимно однозначно, то оно является α -накрывающим тогда и только тогда, когда обратное отображение F^{-1} удовлетворяет условию Липшица с константой α^{-1} .

ТЕОРЕМА 2.2. Пусть отображение $F: \mathbb{R}^n \to \mathbb{R}^n$ непрерывно, является α -накрывающим в каждой точке $x \in \mathbb{R}^n$ и локально инъективно. Тогда оно является (глобальным) гомеоморфизмом и обратное отображение F^{-1} удовлетворяет условию Липшица с константой α^{-1} .

Доказательства этой теоремы и остальных утверждений этого параграфа приведены в $\S 5$.

Из теоремы 2.2 вытекают следующие утверждения. Начнем с теоремы Адамара. В ней предполагалось, что отображение F является непрерывно дифференцируемым. Основная ценность следующего утверждения заключается в том, что за счет применения теоремы 2.2 требование гладкости в теореме Адамара можно ослабить и достаточно предполагать лишь дифференцируемость отображения F. А именно, имеет место

Следствие 2.3. Предположим, что отображение $F: \mathbb{R}^n \to \mathbb{R}^n$ дифференцируемо в каждой точке $x \in \mathbb{R}^n$, для любого x линейный оператор F'(x) невырожден u, более того, существует такое m > 0, что $||F'(x)^{-1}|| \leqslant m$ для любого $x \in \mathbb{R}^n$.

Тогда F является (глобальным) гомеоморфизмом, обратное отображение F^{-1} удовлетворяет условию Липшица c константой m, дифференцируемо в каждой точке $y \in \mathbb{R}^n$ и $(F^{-1})'(F(x)) = F'(x)^{-1} \ \forall x \in \mathbb{R}^n$.

Применим теорему 2.2 к локально липшицевым отображениям. Напомним, отображение $F:\mathbb{R}^n \to \mathbb{R}^s$ называется локально липшицевым, если для любой точки $x \in \mathbb{R}^n$ существует такая ее окрестность, что сужение F на эту окрестность удовлетворяет условию Липшица. Локально липшицево отображение F в каждой точке $x \in \mathbb{R}^n$ имеет производную Кларка. Напомним ее определение (см. [2]). По теореме Радемахера локально липшицево отображение, действующее в конечномерных пространствах, почти всюду дифференцируемо. Зафиксируем точку $x \in \mathbb{R}^n$. Возьмем всевозможные последовательности $\{x_i\} \subset \mathbb{R}^n$, сходящиеся к x, в точках которых отображение F дифференцируемо, и рассмотрим последовательности $\{F'(x_i)\}$. Все они равномерно ограничены. Обозначим через C множество всех их предельных точек. Очевидно, C – компакт. Выпуклая оболочка множества C называется производной Кларка отображения F в точке x и обозначается через $\partial F(x)$. Таким образом, $\partial F(x)$ представляет из себя непустое выпуклое компактное множество линейных операторов $M:\mathbb{R}^n \to \mathbb{R}^s$, которые будем отождествлять с $(s \times n)$ -матрицами.

Пусть задано m > 0.

Определение 2.4. Локально липшицево отображение $F\colon \mathbb{R}^n \to \mathbb{R}^s$ назовем m-невырожденным, если

$$B(0,1) \subset MB(0,m) \quad \forall M \in \partial F(x), \quad \forall x \in \mathbb{R}^n.$$
 (2.2)

Очевидно, при s=n условие (2.2) равносильно тому, что

$$M\mathbb{R}^n = \mathbb{R}^n \quad \text{и} \quad \|M^{-1}\| \leqslant m \qquad \forall \, M \in \partial F(x), \quad \forall \, x \in \mathbb{R}^n.$$

Следствие 2.5. Пусть отображение $F: \mathbb{R}^n \to \mathbb{R}^n$ локально липшицево и m-невырождено. Тогда оно является (глобальным) гомеоморфизмом и обратное отображение F^{-1} удовлетворяет условию Липшица с константой m.

Доказательство следствия 2.5 приведено в § 5.

Замечание 2.6. Этот результат, правда без утверждения о липшицевости обратного отображения, был получен в [3].

Приведем простой пример дифференцируемого отображения, удовлетворяющего предположениям следствия 2.3, но не являющегося локально липшицевым, в связи с чем к нему не применимы ни следствие 2.5, ни тем более теорема Адамара.

Пример 2.7. Положим $a_j:=j^{-1},\ \delta_j:=j^{-4},\ j=2,3,4,\dots$ Определим скалярную функцию $\varphi\colon\mathbb{R}\to\mathbb{R}$ следующим образом: на отрезке $[a_{j+1},a_{j+1}+\delta_j]$ функция φ линейно возрастает от нуля до j, на отрезке $[a_{j+1}+\delta_j,a_{j+1}+2\delta_j]$ она линейно убывает от j до нуля и $\varphi(t)=0$ вне отрезков $[a_{j+1},a_{j+1}+2\delta_j]$. Функция φ суммируема, поскольку ряд $\sum_{j=2}^\infty j^{-3}$ сходится. Зададим отображения $f,F\colon\mathbb{R}\to\mathbb{R}$ по формулам

$$f(x) := \int_{-\infty}^{x} \varphi(t) dt, \quad F(x) := x + f(x), \qquad x \in \mathbb{R}.$$

Очевидно, что в точках $x \neq 0$ функция f дифференцируема. Докажем, что она дифференцируема в точке x=0. Действительно, для произвольного

 $x \in [a_{j+1}, a_j]$ имеет место неравенство

$$\int_{-\infty}^{x} \varphi(t) dt \leqslant \int_{0}^{a_{j}} \varphi(t) dt = \sum_{i=j}^{\infty} \frac{1}{i^{3}},$$

откуда

$$\frac{f(x) - f(0)}{x} \leqslant \frac{\sum_{i=j}^{\infty} 1/i^3}{1/(j+1)} \leqslant 2\sum_{i=j}^{\infty} \frac{1}{i^2} \to 0 \quad \text{при } x \to 0,$$

а значит, f дифференцируемо в нуле и f'(0)=0. Таким образом, F дифференцируемо, $F'(x)=1+\varphi(x)\geqslant 1$ для любого x, однако F не является локально липшицевым, так как $F'(a_{j+1}+\delta_j)=1+j\to\infty$ и $a_{j+1}+\delta_j\to 0$ при $j\to\infty$.

§ 3. Условие типа Каристи и вариационные принципы

Этот параграф содержит утверждение, которое неоднократно используется ниже, в частности при доказательстве теоремы 2.2 и некоторых других результатов настоящей статьи, а также имеет важное самостоятельное значение.

Далее в этом параграфе (X, ρ) – это полное метрическое пространство с метрикой ρ . Пусть задана ограниченная снизу полунепрерывная снизу функция $U \colon X \to \mathbb{R} \cup \{+\infty\}$ и число k > 0.

Определение 3.1. Будем говорить, что функция U удовлетворяет условию типа Каристи с константой k, если для всех $x \in X : U(x) > \inf_{x \in X} U(x)$ выполняется

$$\exists x' \neq x$$
: $U(x') + k\rho(x, x') \leq U(x)$.

Условие типа Каристи было введено в [4] и там же было доказано следующее утверждение (см. [4; теорема 3]).

ТЕОРЕМА 3.2. Пусть функция U удовлетворяет условию типа Каристи c константой k. Тогда для любого $x_0 \in X$: $U(x_0) < +\infty$ существует $\overline{x} \in X$, для которого имеют место соотношения

$$U(\overline{x}) = \inf_{x \in X} U(x), \qquad \rho(\overline{x}, x_0) \leqslant \frac{U(x_0) - \inf_{x \in X} U(x)}{k}.$$

Эта теорема непосредственно вытекает из вариационного принципа Экланда. Покажем это, следуя [4].

Не теряя общности, будем считать, что $\inf_{x \in X} U(x) = 0$ и $U(x_0) > 0$. Положим $\varepsilon := U(x_0)$, $\lambda = \varepsilon/k$. В силу вариационного принципа Экланда (см. [2]) существует такое $\overline{x} \in X$, что

$$\rho(\overline{x}, x_0) \leqslant \lambda, \qquad U(x) + \frac{\varepsilon}{\lambda} \rho(x, \overline{x}) > U(\overline{x}) \quad \forall x \neq \overline{x}.$$
(3.1)

Покажем, что \overline{x} является искомым. Для этого достаточно доказать $U(\overline{x})=0$. Действительно, предположим противное, т.е. $U(\overline{x})>0$. Тогда в силу условия типа Каристи существует $x'\neq \overline{x}$ такое, что $U(x')+k\rho(x',\overline{x})\leqslant U(\overline{x})$. Но последнее противоречит строгому неравенству в (3.1), поскольку по построению

 $\varepsilon/\lambda=k$. Полученное противоречие доказывает, что $U(\overline{x})=0$, и завершает доказательство теоремы 3.2.

Отметим, что теорему 3.2 также можно доказать на основе теории частично упорядоченных пространств, вводя в декартовом произведении $X \times \mathbb{R}$ частичный порядок, предложенный Бишопом и Фелпсом (подробности см. в [4], а также аналогичные рассуждения в [5]). Отметим, что существование минимума функции U в приведенных предположениях было доказано в [6].

Таким образом, мы показали, что теорема 3.2 вытекает из вариационного принципа Экланда. Оказывается, справедлива и обратная импликация, т.е. вариационный принцип Экланда вытекает из теоремы 3.2. Покажем это.

Пусть задано $x_0 \in X$, причем $U(x_0) < +\infty$. Докажем сначала, что для любого c>0 существует $\overline{x} \in X$ такой, что:

- (i) $U(\overline{x}) + c\rho(x_0, \overline{x}) \leq U(x_0);$
- (ii) $U(x) + c\rho(x, \overline{x}) > U(\overline{x}) \ \forall x \neq \overline{x}$.

Фиксируем c > 0. Предположим противное, т.е. что для любого \overline{x} нарушается либо (i), либо (ii). Тогда для любого x, лежащего во множестве

$$\overline{X} := \{ x \in X : U(x) + c\rho(x_0, x) \leqslant U(x_0) \},$$
 (3.2)

существует точка $x' \neq x$ такая, что $U(x') + c\rho(x',x) \leqslant U(x)$. Точка x' также лежит в \overline{X} , так как

$$U(x') + c\rho(x_0, x') \leq U(x) + c\rho(x_0, x') - c\rho(x', x)$$

$$\leq U(x) + c\rho(x_0, x) \leq U(x_0).$$

Кроме того, множество \overline{X} непусто, поскольку содержит x_0 , и замкнуто в силу полунепрерывности снизу функции U. Применяя к сужению функции U на \overline{X} теорему 3.2, получаем, что существует точка $\overline{x} \in \overline{X}$ такая, что $U(\overline{x}) \leqslant U(x)$ для любого $x \in \overline{X}$. Но тогда в точке \overline{x} выполняется (ii), т.е. $U(x) + c\rho(x, \overline{x}) > U(\overline{x})$ $\forall x \neq \overline{x}$, поскольку при $x \in \overline{X}$ имеет место неравенство

$$U(\overline{x}) \leqslant U(x) < U(x) + c\rho(x, \overline{x}),$$

а при $x \notin \overline{X}$ имеет место неравенство

$$\begin{split} U(\overline{x}) \leqslant U(x_0) - c\rho(x_0, \overline{x}) \\ < U(x) + c\rho(x_0, x) - c\rho(x_0, \overline{x}) \leqslant U(x) + c\rho(x, \overline{x}). \end{split}$$

Таким образом, для \overline{x} выполняются условия (i) и (ii). Получили противоречие. Оно доказывает, что для любого c>0 существует $\overline{x}\in X$, для которого выполнены соотношения (i) и (ii). Это утверждение называется вариационным принципом Бишопа-Фелпса (см., например, [7]). В [8] доказано, что вариационный принцип Бишопа-Фелпса эквивалентен вариационному принципу Экланда. Для полноты изложения приведем его элементарный вывод из вариационного принципа Бишопа-Фелпса.

Пусть заданы ε , $\lambda > 0$ и x_0 такие, что $U(x_0) < +\infty$ и

$$U(x_0) \leqslant \inf_{x \in X} U(x) + \varepsilon.$$

Докажем, что существует $\overline{x} \in X$, для которого выполняется:

- (iii) $U(\overline{x}) \leqslant U(x_0)$;
- (iv) $\rho(x_0, \overline{x}) \leqslant \lambda$;
- (v) $U(x) + (\varepsilon/\lambda)\rho(x,\overline{x}) > U(\overline{x}) \ \forall x \neq \overline{x}$.

Положим $c:=\varepsilon/\lambda$. Применяя к функции U вариационный принцип Бишопа—Фелпса, находим $\overline{x}\in X$, для которого выполняются соотношения (i) и (ii). Из (ii) вытекает (v). Из (i), очевидно, имеем $U(\overline{x})\leqslant U(x_0)$ и

$$\rho(x_0, \overline{x}) \leqslant \frac{U(x_0) - U(\overline{x})}{c} \leqslant \frac{U(x_0) - \inf_{x \in X} U(x)}{c} \leqslant \frac{\varepsilon}{\varepsilon / \lambda} = \lambda.$$

Итак, доказано, что существует $\overline{x} \in X$ такой, что выполнены соотношения (iii), (iv) u (v). А это и есть вариационный принцип Экланда.

Таким образом, три утверждения: вариационный принцип Бишопа-Фелпса, вариационный принцип Экланда и теорема 3.2, эквивалентны. При этом, чтобы вывести вариационный принцип Бишопа-Фелпса из вариационного принципа Экланда, мы использовали импликации: вариационный принцип Экланада \Rightarrow теорема $3.2 \Rightarrow$ вариационный принцип Бишопа-Фелпса. Покажем, как вывести вариационный принцип Бишопа-Фелпса из вариационного принципа Экланда напрямую.

Для $\varepsilon := U(x_0)$, $\lambda := \varepsilon/c$, применяя к сужению функции U на множестве \overline{X} (см. (3.2)) вариационный принцип Экланда, находим точку $\overline{x} \in \overline{X}$, для которой выполняется (i) и неравенство в (ii) при всех $x \in \overline{X}$. Докажем неравенство в (ii) при $x \in X \setminus \overline{X}$. Имеем

$$U(x) + c\rho(x, \overline{x}) \geqslant U(x) + c(\rho(x, x_0) - \rho(x_0, \overline{x})) > U(x_0) - c\rho(x_0, \overline{x}) \geqslant U(\overline{x}),$$

где строгое неравенство вытекает из того, что $x \notin \overline{X}$. Следовательно, точка \overline{x} удовлетворяет вариационному принципу Бишопа–Фелпса.

На самом деле доказано большее. А именно, пусть заданы $x_0 \in X$ и положительные числа ε, λ, c . Обозначим через $\mathrm{BP}(x_0; c)$ множество точек $\overline{x} \in X$, отвечающих вариационному принципу Бишопа–Фелпса (т.е. тех, для которых выполнены соотношения (i) и (ii)). Через $\mathrm{E}(x_0; \varepsilon, \lambda)$ обозначим множество точек $\overline{x} \in X$, отвечающих вариационному принципу Экланда (т.е. тех, для которых выполнены соотношения (iii), (iv) и (v)). Из приведенных рассуждений напрямую следует, что имеет место равенство

$$E(x_0; \varepsilon, \lambda) \cap \overline{X} = BP\left(x_0; \frac{\varepsilon}{\lambda}\right),$$

где \overline{X} определенно в (2.2), и, значит, $\mathrm{BP}(x_0;\varepsilon/\lambda)\subset\mathrm{E}(x_0;\varepsilon,\lambda).$

При этом отметим, что множества $\mathrm{BP}(x_0; \varepsilon/\lambda)$ и $\mathrm{E}(x_0; \varepsilon, \lambda)$ могут не совпадать. Простым примером сказанному является функция $U(x) = \min\{1, e^x\}$, $x \in \mathbb{R}$. Непосредственно проверяется, что для этой функции $x \in \mathrm{E}(0; 1, \lambda)$, $x \notin \mathrm{BP}(0; 1/\lambda)$ при любых $x \in (0, \lambda], \lambda > 1$.

§ 4. Доказательство вспомогательных утверждений

Доказательство сформулированных в $\S 2$ утверждений основано на следующих леммах.

ЛЕММА 4.1. Пусть отображение $F: \mathbb{R}^n \to \mathbb{R}^n$ непрерывно и является α -накрывающим. Если F инъективно на некотором шаре B(x,R), то существует r>0 такое, что отображение F является гомеоморфизмом множеств B(x,r) и F(B(x,r)), причем обратное отображение $G\colon F(B(x,r))\to B(x,r)$ удовлетворяет условию Липшица с константой α^{-1} .

Доказательство. Возьмем произвольное положительное $\varepsilon < R/2$. Поскольку отображение F непрерывно, то существует положительное $r \leqslant R-2\varepsilon$ такое, что $F(B(x,r)) \subset B(F(x),\alpha\varepsilon)$. Существование обратного отображения G вытекает из инъективности F на шаре $B(x,r) \subset B(x,R)$. Докажем, что G удовлетворяет условию Липшица с константой α^{-1} .

Возьмем произвольные точки $y_1,y_2\in F(B(x,r))$. Положим $x_1:=G(y_1)$. Поскольку отображение F является α -накрывающим, то существует точка $x_2\in\mathbb{R}^n$ такая, что

$$F(x_2) = y_2, |x_1 - x_2| \le \frac{|y_1 - y_2|}{\alpha}.$$
 (4.1)

Имеем

$$|x_2 - x| \le |x_2 - x_1| + |x_1 - x| \le \frac{|y_2 - y_1|}{\alpha} + r \le 2\varepsilon + r \le R.$$

Здесь первое неравенство вытекает из неравенства треугольника, второе – из (4.1) и соотношения $x_1=G(y_1)\in B(x,r)$, третье – из соотношений $y_1,y_2\in F(B(x,r))\subset B(F(x),\varepsilon)$, четвертое справедливо в силу выбора r. Таким образом, $x_2\in B(x,R)$. Поэтому в силу инъективности F на B(x,R) из соотношений $F(x_2)=y_2$ и $F(G(y_2))=y_2$ следует, что $x_2=G(y_2)$. Отсюда и из неравенства в (4.1) следует, что $|G(y_1)-G(y_2)|\leqslant \alpha^{-1}|y_1-y_2|$. Лемма доказана.

ЛЕММА 4.2. Пусть отображение $F: \mathbb{R}^n \to \mathbb{R}^s$ является α -накрывающим в каждой точке $x \in \mathbb{R}^n$, и пусть $y \in \mathbb{R}^s$.

Тогда для функции

$$U(x) := |F(x) - y|, \qquad x \in \mathbb{R}^n, \tag{4.2}$$

выполняется условие типа Каристи с константой α , т.е. для любого $x \in \mathbb{R}^n$ такого, что $F(x) \neq y$, существует $x' = x'(x,y) \in \mathbb{R}^n$ такой, что

$$x' \neq x$$
, $|F(x') - y| + \alpha |x' - x| \le |F(x) - y|$. (4.3)

Доказательство. Возьмем произвольную точку $x\in\mathbb{R}^n$, для которой $F(x)\neq y$. Поскольку F является α -накрывающим в точке x, то существует положительное $r<\alpha^{-1}|y-F(x)|$ такое, что $B(F(x),\alpha r)\subset F(B(x,r))$. Отсюда следует, что для точки

$$y' := F(x) + \alpha r \frac{y - F(x)}{|y - F(x)|}$$

существует точка $x' \in \mathbb{R}^n$ такая, что $x' \neq x$, F(x') = y' и $|x - x'| \leqslant r$. Кроме того, по построению имеем |y - y'| + |y' - F(x)| = |y - F(x)|. Следовательно,

$$|F(x') - y| + \alpha |x - x'| \le |y' - y| + \alpha r = |y' - y| + |y' - F(x)| = |y - F(x)|.$$

Лемма доказана.

Далее в § 5 мы покажем, что в предположениях теоремы 2.2 из леммы 4.2 вытекает сюръективность отображения F. Для доказательства инъективности отображения F воспользуемся методом продолжения кривых (см. [1; гл. 5]).

Определение 4.3 (см. [1; гл. 5]). Говорят, что отображение F обладает свойством npodonнсаемости для лежащей в \mathbb{R}^n непрерывной кривой $q(t), t \in [0,1]$, если для любой непрерывной функции $p(t), t \in [0,\tau)$, где $\tau \in (0,1]$ задано, для которой $F(p(t)) \equiv q(t), t \in [0,\tau)$, существует предел $\lim_{t \to \tau - 0} p(t) = p(\tau)$. Очевидно, тогда $F(p(\tau)) = q(\tau)$.

В [1; п. 5.3.4] доказано следующее утверждение. Пусть F является локальным гомеоморфизмом (т.е. для каждой точки $x \in \mathbb{R}^n$ существуют окрестности $U, V \subset \mathbb{R}^n$ точек x и F(x) соответственно такие, что F является гомеоморфизмом множеств U и V), а $q \colon [0,1] \times [0,1] \to \mathbb{R}^n$ и $r \colon [0,1] \to \mathbb{R}^n$ — такие непрерывные функции, что $F(r(s)) \equiv q(s,0)$. Если для каждого фиксированного $s \in [0,1]$ отображение F обладает свойством продолжаемости для непрерывной кривой $q_s(t) := q(s,t), t \in [0,1]$, то существует такая непрерывная функция $p \colon [0,1] \times [0,1] \to \mathbb{R}^n$, что

$$p(s,0) \equiv r(s), \quad F(p(s,t)) \equiv q(s,t), \qquad s,t \in [0,1].$$
 (4.4)

Отметим еще одно простое утверждение, которое используем ниже. Если F является локальным гомеоморфизмом, а $l(s), s \in [0,1]$, — непрерывная кривая в \mathbb{R}^n , для которой $F(l(s)) \equiv y_0, s \in [0,1]$, для некоторого $y_0 \in \mathbb{R}^n$, то $l(s) \equiv l(0), s \in [0,1]$.

Действительно, если это не так, то существует последовательность точек $s_i \in [0,1]$, сходящаяся к точке s_0 , для которой $l(s_i) \neq l(s_0) \ \forall i$. Но $F(l(s_i)) = F(l(s_0)) \ \forall i$, что противоречит локальной гомеоморфности F в окрестностях точек $l(s_0) \in \mathbb{R}^n$ и $y_0 \in \mathbb{R}^n$ соответственно.

ЛЕММА 4.4. Пусть отображение $F: \mathbb{R}^n \to \mathbb{R}^n$ непрерывно, является α -на-крывающим и локально инъективным. Тогда F инъективно.

Доказательство. В силу леммы 4.1 и определения α -накрываемости отображение F является локальным гомеоморфизмом. Покажем, что F инъективно.

Возьмем произвольные $y_1,y_2\in\mathbb{R}^n,\ y_1\neq y_2,$ и рассмотрим линейную кривую $q(t):=(1-t)y_1+ty_2,\ t\in[0,1].$ Докажем, что F обладает свойством продолжимости для q.

Действительно, пусть функция $p\colon [0,\tau)\to \mathbb{R}^n$ непрерывна, $\tau>0$ и $F(p(t))\equiv q(t),\ t\in [0,\tau).$ Возьмем произвольную точку $\bar t\in [0,\tau),$ и пусть $\bar x:=p(\bar t),$ $\bar y=F(\bar x).$ Поскольку отображение F является α -накрывающим и локально инъективным, то в силу леммы 4.1 существуют такие окрестности U и V точек $\bar x$ и $\bar y$ соответственно, что F является гомеоморфизмом множеств U и V и обратное отображение $G\colon V\to U$ удовлетворяет условию Липпица с константой α^{-1} . Поэтому для всех t из некоторой окрестности O точки $\bar t$ выполняется p(t)=G(q(t)) и, значит, на O функция p удовлетворяет условию Липпица с константой α^{-1} . Поэтому функция p абсолютно непрерывна на O и $|\dot p(t)|\leqslant \alpha^{-1}\ \forall t\in [0,\tau).$

Пусть $t_i \to \tau - 0$. Тогда последовательность $\{p(t_i)\}$ фундаментальна. Это вытекает из того, что для любых номеров i,j выполняется

$$|p(t_i) - p(t_j)| = \left| \int_{t_i}^{t_j} \dot{p}(t) dt \right| \leqslant \alpha^{-1} |t_j - t_i|.$$

Поэтому последовательность $\{p(t_i)\}$ сходится к некоторому x. Отсюда вытекает, что $\lim_{t\to \tau-0} p(t) = x$. Таким образом, отображение F обладает свойством продолжаемости для всех линейных кривых.

Докажем, что F инъективно. Пусть $x_1, x_2 \in \mathbb{R}^n$ и $F(x_1) = F(x_2) = y$. Положим $r(s) := (1-s)x_1 + sx_2, \ q(s,t) =: ty + (1-t)F(r(s)), \ s,t \in [0,1].$

При каждом фиксированном $s \in [0,1]$ функция $q_s = q(s,\cdot)$ линейна. Поэтому в силу доказанного выше F обладает свойством продолжаемости для каждой из функций q_s . Поэтому существует отвечающая функциям q и r в силу (4.4) непрерывная функция p.

Очевидно, $q(0,t)\equiv y$, откуда $F(p(0,t))\equiv y$ и, значит, в силу сказанного перед леммой 4.4 функция $p(0,\cdot)$ постоянна. Поэтому p(0,0)=p(0,1). Аналогично, $q(s,1)\equiv y$ и, значит, p(0,1)=p(1,1), а поскольку $q(1,t)\equiv y$, то p(1,1)=p(1,0). Следовательно, p(0,0)=p(1,0), откуда в силу (4.4) получаем r(0)=r(1). Значит, $x_1=x_2$.

Обозначим через S^{n-1} единичную сферу в \mathbb{R}^n .

ЛЕММА 4.5. Пусть \mathcal{M} – выпуклое множество невырожденных линейных операторов $M: \mathbb{R}^n \to \mathbb{R}^s$ и существует m > 0 такое, что

$$B(0,1) \subset MB(0,m) \quad \forall M \in \mathcal{M}.$$
 (4.5)

Tог ∂a

$$\forall u \in S^{s-1} \quad \exists e \in S^{n-1} \colon \quad \langle M^*u, e \rangle \geqslant m^{-1} \quad \forall M \in \mathcal{M}. \tag{4.6}$$

Доказательство. Зафиксируем $u \in S^{s-1}$. В силу (4.5) каждый оператор $M \in \mathcal{M}$ является сюръективным. Поэтому оператор $M^*(MM^*)^{-1}$ является к M псевдообратным (см. [9; п. 6.46]) и в силу (4.5) его норма не превышает m (см. [9; п. 6.31 и п. 6.41]). Следовательно, $|M^*(MM^*)^{-1}y| \leqslant m|y| \ \forall y \in \mathbb{R}^s$. Поэтому из неравенства

$$|M^*u||M^*(MM^*)^{-1}u| \geqslant |\langle M^*u, M^*(MM^*)^{-1}u\rangle| = \langle u, u\rangle = 1$$

следует, что

$$|M^*u| \geqslant \frac{1}{|M^*(MM^*)^{-1}u|} \geqslant \frac{1}{m}.$$

Значит, выпуклое множество $\mathscr{M}^*u:=\{M^*u\colon M\in\mathscr{M}\}$ не пересекается с открытым шаром в \mathbb{R}^n с центром в нуле радиуса m^{-1} . Поэтому по теореме отделимости выпуклых множеств существует вектор $e\in S^{n-1}$ такой, что $\langle w,e\rangle\geqslant m^{-1}$ для каждого $w\in\mathscr{M}^*u$. Итак, (4.6) доказано.

ЛЕММА 4.6. Пусть отображение $F: \mathbb{R}^n \to \mathbb{R}^s$ является т-невырожденным. Тогда для произвольного $\delta \in (0, m^{-1})$ для любого $y \in \mathbb{R}^s$ для функции U, определенной равенством (4.2), выполняется условие типа Каристи с константой $k = m^{-1} - \delta$, т.е. для любого $x \in \mathbb{R}^n$, для которого $F(x) \neq y$, существует $x' = x'(x,y) \in \mathbb{R}^n$ такой, что соотношение (4.3) выполняется c = k.

ДОКАЗАТЕЛЬСТВО. В силу леммы 4.5 соотношение (4.6) выполняется с $\mathcal{M} = \partial F(x)$ при каждом $x \in \mathbb{R}^n$. Поэтому из [10; предложение 1] следует, что для произвольного $\delta \in (0, m^{-1})$ при $k = m^{-1} - \delta$ для любого $y \in \mathbb{R}^s$ для функции U выполняется условие типа Каристи с константой k.

ЛЕММА 4.7. Пусть отображение $F: \mathbb{R}^n \to \mathbb{R}^s$ является m-невырожденным. Тогда для любых $\overline{x} \in \mathbb{R}^n$ и $y \in \mathbb{R}^s$ существует $\xi = \xi(\overline{x}, y) \in \mathbb{R}^n$ такой, что

$$F(\xi) = y, \qquad |\overline{x} - \xi| \leqslant m|F(\overline{x}) - y|.$$
 (4.7)

Доказательство. Зафиксируем $\overline{x} \in \mathbb{R}^n$, $y \in \mathbb{R}^s$. Возьмем произвольное натуральное i > m. В силу леммы 4.6 для функции U, определенной равенством (4.2), выполняется условие типа Каристи с константой $k = m^{-1} - i^{-1}$. Поэтому в силу теоремы 3.2 существует $\xi_i \in \mathbb{R}^n$ такой, что

$$F(\xi_i) = y, \qquad |\xi_i - \overline{x}| \le (m^{-1} - i^{-1})^{-1} |F(\overline{x}) - y|.$$
 (4.8)

Очевидно, последовательность $\{\xi_i\}$ ограничена. Поэтому, переходя к подпоследовательности, будем считать, что $\xi_i \to \xi$. Переходя в (4.8) к пределу при $i \to \infty$, получаем (4.7).

Приведенные выше утверждения будут применены в $\S 5$ для доказательства теоремы 2.2 и следствий 2.5 и 2.3. Два последующих утверждения будут использованы в $\S 6$ и $\S 7$.

Пусть заданы $\alpha > 0$ и отображение $F: \mathbb{R}^n \to \mathbb{R}^s$.

ПРЕДЛОЖЕНИЕ 4.8. Предположим, что отображение F непрерывно в окрестности точки $\overline{x} \in \mathbb{R}^n$ и дифференцируемо в точке \overline{x} . Тогда:

- 1) если линейный оператор $F'(\overline{x})$ является α -накрывающим, то для любого $\varepsilon > 0$ отображение F является $(\alpha \varepsilon)$ -накрывающим в точке \overline{x} ;
- 2) если отображение F является α -накрывающим в точке \overline{x} , то линейный оператор $F'(\overline{x})$ также является α -накрывающим.

Доказательство. Для простоты будем считать $\overline{x} = 0, F(\overline{x}) = 0.$

1) В силу определения α -накрываемости для линейного оператора, переходя от \mathbb{R}^n к *s*-мерному подпространству, дополняющему ядро оператора F'(0), будем не теряя общности считать, что s=n и $\|F'(0)^{-1}\| \leqslant \alpha^{-1}$.

Рассмотрим уравнение F(x)=y относительно неизвестного x. По теореме об обратной функции (см., например, [11], [12]) существует c>0 такое, что для всех y, достаточно близких к нулю, это уравнение имеет некоторое решение x=x(y), удовлетворяющее оценке $|x|\leqslant c|y|$. В силу определения производной имеем F'(0)x+o(x)=y. Зафиксируем произвольное $\delta>0$. Очевидно, что при всех y, близких к нулю, имеет место $|x(y)|\leqslant (1+\delta)\|F'(0)^{-1}\||y|$. Последнее доказывает, что F является $(\alpha-\varepsilon)$ -накрывающим в нуле.

2) Зафиксируем произвольный единичный вектор $e \in \mathbb{R}^s$. Для натуральных j рассмотрим уравнение $F(x) = j^{-1}e$. В силу накрываемости отображения F в нуле для любого достаточно большого j оно имеет решение $x = x_j$ такое, что $|x_j| < \alpha^{-1} j^{-1}$. Тогда $F'(0)x_j + o(x_j) = j^{-1}e_j$. Деля последнее равенство на j^{-1} и переходя к пределу при $j \to \infty$, получаем, что существует вектор $u \in \mathbb{R}^n$ такой, что $F'(0)u = e, |u| \leqslant \alpha^{-1}$. Следовательно, линейный оператор F'(0) является α -накрывающим. Лемма доказана.

Следующий простой пример показывает, что предположение непрерывности отображения F в окрестности точки \overline{x} в п. 1) предложения 4.8 и в теореме об обратной функции из [11] опустить нельзя.

ПРИМЕР 4.9. Рассмотрим отображение

$$F \colon \mathbb{R} \to \mathbb{R}, \qquad F(x) = x + x^2 \mathscr{D}(x), \quad x \in \mathbb{R},$$

где \mathscr{D} — функция Дирихле, т.е. $\mathscr{D}(x)=0$ для иррациональных x и $\mathscr{D}(x)=1$ для рациональных x. Функция F дифференцируема в нуле, F'(0)=1, но в любой окрестности нуля имеет разрывы. Покажем, что образ $F(\mathbb{R})$ не содержит точки j^{-1} , где j — произвольное натуральное число.

Действительно, если $F(x)=j^{-1}$, то, очевидно, число x рационально. Поэтому $x^2+x-j^{-1}=0$ и, значит, число $\sqrt{(j+4)/j}$ рационально, т.е. представимо в виде несократимой дроби $p/q,\ p,q\in\mathbb{N}$. Тогда существует $c\in\mathbb{N}$ такое, что $j+4=cp^2,\ j=cq^2.$ Поэтому 4=c(p-q)(p+q) и, в частности, p>q, откуда следует, что $p+q=4,\ p-q=c=1$, что невозможно. Следовательно, $F(\mathbb{R})$ не содержит точки j^{-1} .

Таким образом, для отображения F в нуле утверждение теоремы об обратной функции из [11] не выполняется и тем более F не является α -накрывающим в нуле ни при каком $\alpha>0$.

ЛЕММА 4.10. Если отображение $F: \mathbb{R}^n \to \mathbb{R}^s$ непрерывно и при любом $\delta \in (0,\alpha)$ является $(\alpha - \delta)$ -накрывающим, то F является α -накрывающим.

Доказательство. Возьмем произвольные $x_0 \in \mathbb{R}^n$ и $y \in \mathbb{R}^s$. Для каждого $j > \alpha^{-1}$, поскольку F является $(\alpha - j^{-1})$ -накрывающим, существует точка $x_j \in \mathbb{R}^n$ такая, что $F(x_j) = y$ и $|x_0 - x_j| \leqslant (\alpha - j^{-1})^{-1} |F(x_0) - y|$. Очевидно, последовательность $\{x_j\}$ ограничена. Поэтому в ней существует сходящаяся подпоследовательность, предел которой удовлетворяет соотношениям F(x) = y и $|x - x_0| \leqslant \alpha^{-1} |F(x_0) - y|$.

§ 5. Доказательство теоремы 2.2 и ее следствий

Доказательство теоремы 2.2. Докажем, что отображение F является α -накрывающим. Возьмем произвольный $\overline{y} \in \mathbb{R}^s$. В силу леммы 4.2 для функции $U(x) := |F(x) - \overline{y}|, \ x \in \mathbb{R}^n$, выполняется условие типа Каристи с константой α . Поэтому в силу теоремы 3.2 для каждого $x \in \mathbb{R}^n$ существует точка $\overline{x} \in \mathbb{R}^n$ такая, что $U(\overline{x}) = 0$ и $|x - \overline{x}| \leqslant \alpha^{-1}U(x)$. Имеем $F(\overline{x}) = \overline{y}$ и $|x - \overline{x}| \leqslant \alpha^{-1}|F(x) - \overline{y}|$. Значит, F является α -накрывающим.

Из α -накрываемости отображения F следует, что F сюръективно. Кроме того, в силу леммы 4.4 отображение F инъективно. Значит, существует обратное к F отображение F^{-1} . Поскольку F взаимно однозначно и является α -накрывающим, то F^{-1} является липшицевым с константой α^{-1} . Теорема 2.2 доказана.

Доказательство следствия 2.3. В силу предложения 4.8 для любого $\varepsilon > 0$ отображение F является $(m+\varepsilon)^{-1}$ -накрывающим в каждой точке $x \in \mathbb{R}^n$. Как известно (см. [13; теорема 1]), всякое дифференцируемое отображение

из \mathbb{R}^n в \mathbb{R}^n , у которого производная в каждой точке невырождена, является локально инъективным. Поэтому отображение F локально инъективно и, значит, из теоремы 2.2 следует, что F является гомеоморфизмом, а F^{-1} удовлетворяет условию Липшица с константой $m+\varepsilon$. В силу произвольности выбора $\varepsilon>0$ отображение F^{-1} удовлетворяет условию Липшица с константой m. Дифференцируемость обратного отображения доказана, например, в [14; приложение II, следствие 3].

Доказательство следствия 2.5. В силу леммы 4.7 отображение F является m^{-1} -накрывающим. По теореме об обратной функции (см. [2; теорема 7.1.1]) отображение F является локально инъективным. Поэтому из теоремы 2.2 следует, что F является гомеоморфизмом, а отображение F^{-1} удовлетворяет условию Липшица с константой m.

При исследовании гомеоморфности непрерывных отображений, действующих из \mathbb{R}^n в \mathbb{R}^n , важную роль играет понятие коэрцитивности. Напомним его.

Отображение $F: \mathbb{R}^n \to \mathbb{R}^n$ называется коэрцитивным, если $|F(x)| \to \infty$ при $x \to \infty$. Как известно (см., например, [1; теорема 5.3.8]), если отображение является локальным гомеоморфизмом, то для его глобальной гомеоморфности необходимо и достаточно, чтобы оно было коэрцитивным.

В связи с этим представляется интересным следующее утверждение. Пусть k>0 задано.

ПРЕДЛОЖЕНИЕ 5.1. Пусть отображение $F: \mathbb{R}^n \to \mathbb{R}^n$ непрерывно, функция $|F(\cdot)|$ удовлетворяет условию типа Каристи с константой k>0 и множество нулей отображения F ограничено. Тогда F коэрцитивно.

Доказательство. Положим $d:=\sup_{x\colon F(x)=0}|x|$. В силу предположения предложения d конечно. Зафиксируем произвольную точку $x\in\mathbb{R}^n$. Применяя теорему 3.2 к функции $U(\cdot)=|F(\cdot)|$, получаем, что существует точка $\overline{x}\in\mathbb{R}^n$ такая, что $F(\overline{x})=0$ и $|x-\overline{x}|\leqslant k^{-1}|F(x)|$. Поэтому имеем $|F(x)|\geqslant k|x-\overline{x}|\geqslant k(|x|-d)$. В силу произвольности $x\in\mathbb{R}^n$ отображение F коэрцитивно.

По лемме 4.6 для локально липшицевых m-невырожденных отображений условие Каристи выполняется. А для локально гомеоморфных коэрцитивных отображений уже легко доказывается, что $F(\mathbb{R}^n) = \mathbb{R}^n$.

§ 6. Обобщения и приложения

В [15] для непрерывных отображений $F: \mathbb{R}^n \to \mathbb{R}^n$ получены условия невырожденности, гарантирующие, что для любого замкнутого шара $B(x_0,r)$ конечного радиуса r>0 существует отображение $G\colon B(F(x_0),r/\beta)\to B(x_0,r)$, которое удовлетворяет условию Липпица с константой β и на шаре $B(F(x_0),r/\beta)$ является правым обратным к F. Здесь число β определяется из условия невырожденности F (см. [15; теорема 1]), которое формулируется в терминах производного множества Варги, а не в терминах производной Кларка, как у нас в следствии 2.5. При этом в [15; теорема 1] предположение конечности числа r принципиально, так как ее доказательство опирается на теорему Арцела, которая применима лишь на компактных множествах (в данном случае на шаре $B(x_0,r)$).

В отличие от результатов [15] теорема 2.2 гарантирует, что отображение $F: \mathbb{R}^n \to \mathbb{R}^n$ является глобальным гомеоморфизмом, и результаты, аналогичные описанным выше, из теоремы 2.2, очевидно, вытекают. Например, если локально липшицево отображение F является m-невырожденным, то для любого шара $B(x_0, r)$ отображение F гомеоморфно отображает $B(x_0, r)$ на свой образ, внутренность которого содержит точку $F(x_0)$, причем обратное отображение F^{-1} удовлетворяет условию Липшица с константой m.

Наряду с производной Кларка и производным множеством Варги можно воспользоваться понятием нижнего обобщенного полудифференциала. В этих терминах в [16; теорема 5.2] сформулирована весьма общая теорема о локальном накрывании. Введем нужные обозначения. Для отображения $F \colon \mathbb{R}^n \to \mathbb{R}^s$ положим (см. [16; гл. 1, § 5.2])

$$a(F, x_0) = \inf\{|x^*| \in \mathbb{R}^n : x^* \in D^-\langle y^*, F \rangle(x_0), |y^*| = 1\},\$$

где символ D^- обозначает нижний обобщенный полудифференциал (см. [16; гл. 1, $\S 2.1$]).

ПРЕДЛОЖЕНИЕ 6.1. Пусть отображение F непрерывно u для некоторого $\alpha>0$ выполняется

$$a(x, F) \geqslant \alpha \quad \forall x \in \mathbb{R}^n.$$
 (6.1)

Tогда отображение F является α -накрывающим.

Доказательство. Возьмем произвольное $\varepsilon > 0$. По [16; теорема 5.2] в каждой точке $x_0 \in \mathbb{R}^n$ отображение F является $(\alpha - \varepsilon)$ -накрывающим. Отсюда в силу [17; теорема 4] (см. также теорему 7.2 ниже) отображение F является $(\alpha - \varepsilon)$ -накрывающим. В силу произвольности выбора ε из леммы 4.10 следует, что F является α -накрывающим.

Отметим, что в силу [11; теорема 2] если F является α -накрывающим, то $\alpha \leqslant a(F,x) \ \forall \, x.$

Пусть n=s и F локально липшицево. Если для некоторого $\alpha>0$ выполняется условие невырожденности (6.1), то F сюръективно. Однако оно не обязано быть взаимно однозначным. Соответствующий пример отображения $F\colon \mathbb{R}^2\to\mathbb{R}^2$ приведен в [11; пример 2] (см. также [18]). Это отображение F является "овеществлением" комплексной функции $F\colon \mathbb{C}\to\mathbb{C}, F(z)=z^2/|z|$ при $z\neq 0, F(0)=0$. Как несложно видеть, это отображение F удовлетворяет условию Липшица с константой 3 и для него $0\in\partial F(0)$. Таким образом, в отличие от условия m-невырожденности, более слабое условие невырожденности (6.1) уже не гарантирует гомеоморфности F.

Вернемся к случаю $n \geqslant s$.

ПРЕДЛОЖЕНИЕ 6.2. Пусть отображение $F: \mathbb{R}^n \to \mathbb{R}^s$ локально липшицево и m-невырожденно. Тогда F является m^{-1} -накрывающим.

Доказательство. Зафиксируем $\delta \in (0,m^{-1}), x_0 \in \mathbb{R}^n$ и $y \in \mathbb{R}^s, y \neq F(x_0)$. В силу леммы 4.6 функция $U(x) := |F(x) - y|, x \in \mathbb{R}^n$, удовлетворяет условию типа Каристи с константой $k = m^{-1} - \delta$. Поэтому в силу теоремы 3.2 существует точка $x \in \mathbb{R}^n$ такая, что F(x) = y и $|x_0 - x| \leq (m^{-1} - \delta)^{-1}|F(x_0) - y|$. Следовательно, отображение F является $(m^{-1} - \delta)$ -накрывающим. В силу произвольности выбора δ из леммы 4.10 следует, что F является m^{-1} -накрывающим.

Выведем условие глобальной накрываемости дифференцируемого отображения.

ПРЕДЛОЖЕНИЕ 6.3. Пусть отображение $F: \mathbb{R}^n \to \mathbb{R}^s$ дифференцируемо и существует $\alpha > 0$ такое, что при любом $x \in \mathbb{R}^n$ оператор F'(x) имеет правый обратный, который по норме не превосходит α^{-1} . Тогда отображение F является α -накрывающим.

Доказательство. В силу предложения 4.8 для любого $\delta \in (0,\alpha^{-1})$ отображение F является $(\alpha-\delta)$ -накрывающим в каждой точке $x\in\mathbb{R}^n$. В силу леммы 4.2 для произвольного $\overline{y}\in\mathbb{R}^s$ для функции $U(x):=|F(x)-\overline{y}|,\,x\in\mathbb{R}^n$, выполняется условие типа Каристи с константой $(\alpha-\delta)$. Поэтому из теоремы 3.2 следует, что для произвольного $x\in\mathbb{R}^n$ существует \overline{x} такой, что $F(\overline{x})=\overline{y}$ и $|x-\overline{x}|\leqslant (\alpha-\delta)^{-1}|F(x)-\overline{y}|$. В силу произвольности выбора δ из леммы 4.10 следует, что F является m^{-1} -накрывающим.

Для непрерывно дифференцируемых отображений предложение 6.3 было получено в [19]. В связи с этим предложением возникает следующий естественный вопрос. Пусть выполнены предположения предложения 6.3 и отображение F гладко. Существует ли непрерывно дифференцируемое или хотя бы непрерывное отображение $G \colon \mathbb{R}^s \to \mathbb{R}^n$ такое, что $F(G(y)) \equiv y$?

Ответ на этот вопрос при s=1 является утвердительным. Для доказательства надо рассмотреть дифференциальное уравнение $\dot{x}=f(x)$, где $f(x)=|F'(x)|^{-2}F'(x)$, решения которого бесконечно продолжимы, поскольку в силу m-невырожденности F выполняется $|F'(x)|\geqslant m^{-1}\ \forall\ x$ и, значит, правая часть f равномерно ограничена. При $s\geqslant 2$ ответ на поставленный вопрос является предметом дальнейших исследований.

Перейдем к приложениям теоремы 2.2 к теории точек совпадения. Пусть наряду с отображением $F: \mathbb{R}^n \to \mathbb{R}^s$ задано отображение $H: \mathbb{R}^n \to \mathbb{R}^s$. Точку $x \in \mathbb{R}^n$ называют точкой совпадения отображений F и H, если F(x) = H(x).

ПРЕДЛОЖЕНИЕ 6.4. Предположим, что локально липшицево отображение $F: \mathbb{R}^n \to \mathbb{R}^n$ т-невырожденно, а отображение $H: \mathbb{R}^n \to \mathbb{R}^n$ удовлетворяет условию Липшица с константой β . Тогда, если $m\beta < 1$, то F и H имеют единственную точку совпадения.

Доказательство. Как отмечалось выше, отображение F является m^{-1} -накрывающим, причем $m^{-1} < \beta$. Поэтому (см. [4], [20]) у F и H существует точка совпадения ξ . А в силу теоремы 2.2 уравнение $F(x) = F(\xi)$ имеет единственное решение $x = \xi$. Поэтому в силу [20; лемма 2] точка совпадения ξ единственна.

Если предположение о строгом неравенстве $m\beta < 1$ заменить на равенство $m\beta = 1$, то точки совпадения может не существовать. Тем не менее справедливо следующее утверждение.

ПРЕДЛОЖЕНИЕ 6.5. Предположим, что локально липшицево отображение $F: \mathbb{R}^n \to \mathbb{R}^n$ т-невырожденно и существует монотонно возрастающая непрерывная справа функция $\lambda: \mathbb{R}_+ \to \mathbb{R}_+$, для которой

$$m\lambda(t) < t \quad \forall \, t > 0, \quad \lambda(0) = 0 \tag{6.2}$$

и выполняется

$$|H(x_1) - H(x_2)| \le \lambda(|x_1 - x_2|) \quad \forall x_1, x_2.$$
 (6.3)

Тогда F и H имеют единственную точку совпадения.

Доказательство. По теореме 2.5 обратное отображение F^{-1} существует и удовлетворяет условию Липшица с константой Липшица m^{-1} . Рассмотрим суперпозицию $\Phi:=F^{-1}\circ H$. Очевидно, для любых x_1, x_2 справедливо неравенство $|\Phi(x_1)-\Phi(x_2)|\leqslant m\lambda(|x_1-x_2|)$ и, значит, Φ является обобщенным сжатием (см. [21], [22]), следовательно, по теореме Браудера (см. [21]) о неподвижной точке Φ имеет единственную неподвижную точку, которая, очевидно, будет искомой единственной точкой совпадения отображений F и H.

Предположения на функцию λ автоматически выполняются, если она имеет вид $\lambda(t) \equiv \beta t$, где $\beta \geqslant 0$ и $m\beta < 1$.

Далее, если отображение F непрерывно дифференцируемо, то из предположения о m^{-1} -накрывании вытекает его m-невырожденность. Поэтому в силу предложения 6.5 если F непрерывно дифференцируемо, является m^{-1} -накрывающим и для функции λ выполняются условия (6.2), (6.3), то F и H имеют единственную точку совпадения.

Для локально липшицевых отображений эти рассуждения провести нельзя, так как для них из условия m^{-1} -накрывания условие m-невырожденности уже может не вытекать. Пример этого дает отображение $F: \mathbb{R}^2 \to \mathbb{R}^2$, построенное в [11; пример 2], которое является 1-накрывающим, и в то же время для него $0 \in \partial F(0)$.

§ 7. Накрываемость отображений в точке и глобальная накрываемость

Выше в § 6 мы использовали накрывающие отображения. Они играют важнейшую роль при исследовании нелинейных уравнений и уравнений, порожденных отображениями (в частности, многозначными), действующими в метрических пространствах. Здесь мы с помощью результатов § 3, связанных с условиями типа Каристи, получим условия накрываемости отображений.

Пусть (X, ρ_X) , (Y, ρ_Y) – метрические пространства, $\Psi \colon X \rightrightarrows Y$ – многозначное отображение, т.е. отображение, которое каждому $x \in X$ ставит в соответствие непустое замкнутое множество $\Psi(x) \subset Y$. Через $\mathrm{gph}(\Psi)$ обозначим график отображения Ψ , т.е. $\mathrm{gph}(\Psi) = \{(x,y) \colon y \in \Psi(x)\}$. Зададим метрику ϱ на $\mathrm{gph}(\Psi)$ по формуле

$$\varrho((x_1,y_1),(x_2,y_2)) = \max\{\rho_X(x_1,x_2),\rho_Y(y_1,y_2)\} \quad \forall \, (x_1,y_1),(x_2,y_2) \in \mathrm{gph}(\Psi).$$

Определение 7.1 (см. [17]). Пусть $\alpha > 0$. Говорят, что отображение Ψ является α -накрывающим в точке $(x,y) \in \mathrm{gph}(\Psi)$, если для любого $\varepsilon > 0$ существует положительное $r \leqslant \varepsilon$ такое, что

$$B_Y(y, \alpha r) \subset \Psi(B_X(x, r)).$$
 (7.1)

Если включение (7.1) выполняется при любых $(x,y) \in \mathrm{gph}(\Psi)$ и r>0, то отображение Ψ называется α -накрывающим.

Очевидно, α -накрываемость отображения Ψ равносильна тому, что

$$\forall (x_0, y_0) \in gph(\Psi), \ \forall \overline{y} \in Y \ \exists \overline{x} \in X : \overline{y} \in \Psi(\overline{x}), \ \rho_X(x_0, \overline{x}) \leqslant \frac{\rho_Y(y_0, \overline{y})}{\alpha}.$$

Приведем условия, при которых из α -накрываемости многозначного отображения Ψ в каждой точке $(x,y) \in \mathrm{gph}(\Psi)$ вытекает накрываемость отображения Ψ . Для этого напомним вспомогательные определения.

Пусть дана непрерывная кривая $\gamma\colon [a,b]\to Y$. Обозначим через $l(\gamma)$ супремум множества всех сумм вида $\sum_{j=0}^{n-1}\rho_Y(\gamma(t_j),\gamma(t_{j+1}))$, где $t_j\in [a,b],\ j=0,\ldots,n,\ t_0< t_1<\cdots< t_n,\ n\geqslant 1$. Если $l(\gamma)<+\infty$, то кривая γ называется спрямляемой, а $l(\gamma)$ — ее длиной. Функция l аддитивна (см., например, [23]). Предположим, что в пространстве Y любые две точки y_1 и y_2 можно соединить спрямляемой кривой. Внутренней метрикой в Y называется функция $\widetilde{\rho}_Y\colon Y\times Y\to\mathbb{R}_+$, которая каждой паре точек $(y_1,y_2)\in Y\times Y$ ставит в соответствие инфимум длин $l(\gamma)$ всех спрямляемых кривых γ , соединяющих точки y_1 и y_2 . Эта функция является метрикой (см., например, [23]).

Предположим, что существует $\mu' \geqslant 1$ такое, что

$$\widetilde{\rho}_Y(y_1, y_2) \leqslant \mu' \rho_Y(y_1, y_2) \quad \forall y_1, y_2 \in Y.$$
(7.2)

Инфимум таких μ' , следуя [17], будем называть коэффициентом изгиба пространства Y. Обозначим его через μ . Из (7.2) вытекает соотношение

$$\rho_Y(y_1, y_2) \leqslant \widetilde{\rho}_Y(y_1, y_2) \leqslant \mu \rho_Y(y_1, y_2) \quad \forall y_1, y_2 \in Y,$$
(7.3)

из которого, в частности, следует, что пространство (Y, ρ_Y) полно тогда и только тогда, когда полно пространство $(Y, \widetilde{\rho}_Y)$. Очевидно, если Y является выпуклым подмножеством нормированного пространства, то его коэффициент изгиба равен единице.

Вернемся к исходному вопросу.

ТЕОРЕМА 7.2. Пусть $(gph(\Psi), \varrho)$ является полным метрическим пространством, метрическое пространство Y имеет коэффициент изгиба μ . Если Ψ является α -накрывающим в каждой точке $(x,y) \in gph(\Psi)$, то Ψ является (α'/μ) -накрывающим для любого $\alpha' < \alpha$.

Замечание 7.3. Эта теорема является обобщением [17; теорема 4]. Действительно, во-первых, в [17] предполагалось, что пространства X и Y являются полными и график отображения Ψ замкнут. В то же время соответствующее предположение относительно полноты $\mathrm{gph}(\Psi)$ в теореме 7.2 слабее. Во-вторых, определение 7.1 накрываемости в точке отличается от соответствующего определения из [17] тем, что в определении 7.1 r зависит от ε , x и y, а в [17] r должно быть одно и то же для всех $y \in \Psi(x)$. Если Ψ однозначно, то эти определения совпадают, а если Ψ является многозначным отображением, то в силу сказанного предположение теоремы 7.2 слабее соответствующего предположения из [17; теорема 4].

Вначале докажем следующее вспомогательное утверждение.

ЛЕММА 7.4. Если выполняется соотношение (7.2), то для любых $y, \overline{y} \in Y$, $y \neq \overline{y}$ и любых положительных $d < \widetilde{\rho}_Y(y, \overline{y})$ и k < 1 существует точка $y' \in Y$ такая, что

$$\widetilde{\rho}_Y(y, y') = d \quad u \quad k\widetilde{\rho}_Y(y, y') + \widetilde{\rho}_Y(y', \overline{y}) \leqslant \widetilde{\rho}_Y(y, \overline{y}).$$
 (7.4)

Доказательство. Возьмем произвольное положительное $\varepsilon \leqslant (1-k)d$. Поскольку коэффициент изгиба метрического пространства (Y, ρ_Y) существует, то найдется спрямляемая кривая $\gamma \colon T \to Y$, соединяющая точки y и \overline{y} , такая, что $l(\gamma) \leqslant \widetilde{\rho}_Y(y,\overline{y}) + \varepsilon$.

Из непрерывности отображения γ в метрике ρ_Y и соотношения (7.3) следует непрерывность отображения γ в метрике $\widetilde{\rho}_Y$. Поэтому функция $s(t) := \widetilde{\rho}_Y(y,\gamma(t)),\ t\in [a,b],$ непрерывна. Отсюда и из соотношений s(a)=0< d, $s(b)=\widetilde{\rho}_Y(y,\overline{y})>d$ следует, что s(t')=d для некоторого $t'\in (a,b).$ Тогда для $y':=\gamma(t')$ равенство в (7.4) выполняется.

Докажем неравенство в (7.4). Положим $\gamma_1(t) := \gamma(t)$ для $t \in [a,t'], \gamma_2(t) := \gamma(t)$ для $t \in [t',b]$. Очевидно, γ_1 и γ_2 являются спрямляемыми кривыми, $l(\gamma_1) + l(\gamma_2) = l(\gamma), \ \widetilde{\rho}_Y(y,y') \leqslant l(\gamma_1)$ и $\widetilde{\rho}_Y(y',\overline{y}) \leqslant l(\gamma_2)$. Следовательно,

$$\begin{split} k\widetilde{\rho}_Y(y,y') + \widetilde{\rho}_Y(y',\overline{y}) &\leqslant kl(\gamma_1) + l(\gamma_2) = l(\gamma) - (1-k)l(\gamma_1) \\ &\leqslant \widetilde{\rho}_Y(y,\overline{y}) + \varepsilon - (1-k)\widetilde{\rho}_Y(y,y') \leqslant \widetilde{\rho}_Y(y,\overline{y}) + \varepsilon - (1-k)d \leqslant \widetilde{\rho}_Y(y,\overline{y}). \end{split}$$

Доказательство теоремы 7.2. Возьмем произвольные $\alpha' < \alpha$, $(x_0, y_0) \in gph(\Psi)$, $\overline{y} \in Y$. Достаточно доказать, что

$$\exists \, \overline{x} \in X \colon \quad \overline{y} \in \Psi(\overline{x}) \quad \text{и} \quad \rho_X(x_0, \overline{x}) \leqslant \frac{\rho_Y(y_0, \overline{y})}{\alpha'/\mu}. \tag{7.5}$$

Зададим на $gph(\Psi)$ метрику

$$\rho((x_1,y_1),(x_2,y_2)) = \max\{\alpha \rho_X(x_1,x_2), \widetilde{\rho}_Y(y_1,y_2)\}.$$

Положим

$$U(x,y) := \widetilde{\rho}_Y(y,\overline{y}) \quad \forall (x,y) \in gph(\Psi)$$

и покажем, что U удовлетворяет предположениям теоремы 3.2 с $k := \alpha'/\alpha$.

Поскольку метрики ϱ и ρ эквивалентны, то пространство $(\mathrm{gph}(\Psi), \rho)$ полно. Очевидно, функция U непрерывна. Возьмем произвольную точку $(x,y) \in \mathrm{gph}(\Psi)$ такую, что $y \neq \overline{y}$. В силу α -накрываемости отображения Ψ в точке (x,y) существует $r < \alpha^{-1}\rho_Y(y,\overline{y})$ такое, что выполняется (7.1). Положим $d:=\alpha r$. В силу леммы 7.4, поскольку $d < \rho_Y(y,\overline{y}) \leqslant \widetilde{\rho}_Y(y,\overline{y})$, то существует точка $y' \in Y$ такая, что выполняются соотношения (7.4). Имеем $\rho_Y(y,y') \leqslant \widetilde{\rho}_Y(y,y') = d$. Поэтому $y' \in B_Y(y,\alpha r)$ и, значит, из включения (7.1) следует, что существует точка $x' \in X$ такая, что $\rho_X(x,x') \leqslant r = \alpha^{-1}d = \alpha^{-1}\widetilde{\rho}_Y(y,y')$. Отсюда и из неравенства в (7.4) получаем

$$U(x',y') + k\rho((x,y),(x',y')) = \widetilde{\rho}_Y(y',\overline{y}) + k \max\{\alpha\rho_X(x,x'),\widetilde{\rho}_Y(y,y')\}$$
$$= \widetilde{\rho}_Y(y',\overline{y}) + k\widetilde{\rho}_Y(y,y') \leqslant \widetilde{\rho}_Y(y,\overline{y}) = U(x,y).$$

Итак, предположения теоремы 3.2 выполнены. Следовательно, существует точка $(\overline{x}, v) \in \text{gph}(\Psi)$, в которой достигается минимум U и

$$\rho((x_0, y_0), (\overline{x}, v)) \leqslant \frac{U(x_0, y_0)}{k} = \frac{\widetilde{\rho}_Y(y_0, \overline{y})}{k}.$$
(7.6)

Если $v \neq \overline{y}$, то, как показано выше, в некоторой точке $(\overline{x}', \overline{y}') \in \operatorname{gph}(\Psi)$ значение функции U меньше, чем $U(\overline{x}, \overline{y})$. Следовательно, $v = \overline{y}$ и, значит, $(\overline{x}, \overline{y}) \in \operatorname{gph}(\Psi)$. Таким образом, $\overline{y} \in \Psi(\overline{x})$. Кроме того, из (7.6) и (7.3) имеем

$$\rho_X(x_0, \overline{x}) \leqslant \frac{\rho((x_0, y_0), (\overline{x}, \overline{y}))}{\alpha} \leqslant \frac{\widetilde{\rho}_Y(y_0, \overline{y})}{\alpha k} \leqslant \mu \frac{\rho_Y(y_0, \overline{y})}{\alpha k} = \frac{\rho_Y(y_0, \overline{y})}{\alpha' / \mu}.$$

Соотношение (7.5) доказано.

Пусть Y – нормированное пространство. В этом случае утверждение теоремы 7.2 гарантирует, что отображение Ψ является α' -накрывающим для любого $\alpha' < \alpha$. Покажем, что при этом отображение Ψ будет α -накрывающим даже при ослаблении предположения локальной накрываемости.

Через S_Y обозначим сферу с центром в нуле единичного радиуса в Y. Для произвольного $e \in S_Y$ обозначим через l(e) луч с центром в нуле, порожденный вектором e, т.е. $l(e) := \{\lambda e \colon \lambda \geqslant 0\}$.

Определение 7.5. Будем говорить, что отображение Ψ является α -накрывающим в точке $(x,y) \in \mathrm{gph}(\Psi)$ вдоль направления $e \in S_Y$, если для любого $\varepsilon > 0$ существует положительное $r \leqslant \varepsilon$ такое, что

$$B_Y(y,\alpha r) \cap (y+l(e)) \subset \Psi(B_X(x,r)).$$
 (7.7)

ТЕОРЕМА 7.6. Пусть график $gph(\Psi)$ является полным. Если Ψ является α -накрывающим в каждой точке $(x,y) \in gph(\Psi)$ вдоль каждого направления $e \in S_Y$, то оно является α -накрывающим.

Доказательство. Возьмем произвольную точку $\overline{y} \in Y$. Зададим функцию $U\colon \mathrm{gph}(\Psi)\to\mathbb{R}$ по формуле $U(x,y):=\|y-\overline{y}\|,\ (x,y)\in \mathrm{gph}(\Psi).$ Определим на $\mathrm{gph}(\Psi)$ метрику по формуле $\rho((x_1,y_1),(x_2,y_2))=\max\{\alpha\rho_X(x_1,x_2),\|y_1-y_2\|\}.$ Очевидно, пространство $(\mathrm{gph}(\Psi),\rho)$ полно, а функция U непрерывна. Покажем, что для U выполнено условие типа Каристи с константой k=1.

Возьмем произвольную точку $(x,y)\in \mathrm{gph}(\Psi)$. Пусть вначале $y\neq \overline{y}$. Положим

$$e:=\frac{y-\overline{y}}{\|\overline{y}-y\|}, \qquad \varepsilon:=\frac{\|\overline{y}-y\|}{\alpha}.$$

Поскольку Ψ является α -накрывающим в точке $(x,y) \in \mathrm{gph}(\Psi)$ вдоль направления $e \in S_Y$, то существует положительное $r < \varepsilon$, для которого выполняется включение (7.7). Значит, для $y' := y + \alpha re \in B_Y(y,\alpha r) \cap (y+l(e))$ существует точка $x' \in X$ такая, что $y' \in \Psi(x')$ и $\rho_X(x,x') \leqslant r = \alpha^{-1} \|y-y'\|$. Следовательно,

$$U(x', y') + \rho((x', y'), (x, y)) = \|\overline{y} - y'\| + \max\{\alpha \rho_X(x, x'), \|y - y'\|\}$$

= $(\|\overline{y} - y\| - \alpha r) + \max\{\alpha \rho_X(x, x'), \alpha r\}$
 $\leq (\|\overline{y} - y\| - \alpha r) + \max\{\alpha r, \alpha r\} = U(x, y),$

причем $(x',y') \neq (x,y)$, так как по построению $y' \neq y$. Если же $y = \overline{y}$, то в точке (x,y) функция U достигает минимума. Значит, для функции U выполнено условие типа Каристи с константой k=1.

В силу теоремы 3.2 для каждого $(x_0,y_0) \in \operatorname{gph}(\Psi)$ минимум функции U достигается в некоторой точке $(\overline{x},\widehat{y}) \in \operatorname{gph}(\Psi)$, для которой $\rho((x_0,y_0),(\overline{x},\widehat{y})) \leqslant U(x_0,y_0)$. В силу выше доказанного, если $\widehat{y} \neq \overline{y}$, то значение функции U на множестве $\operatorname{gph}(\Psi)$ можно сделать строго меньше, чем $U(\overline{x},\widehat{y})$. Поэтому $\widehat{y} = \overline{y}$. Следовательно, $\rho_X(x_0,\overline{x}) \leqslant \alpha^{-1}\|y_0 - \overline{y}\|$ и $(\overline{x},\overline{y}) \in \operatorname{gph}(\Psi) \Rightarrow \overline{y} \in \Psi(\overline{x})$. Значит, отображение Ψ является α -накрывающим.

В заключение обсудим одно свойство α -накрывающих отображений в точке. Пусть X — полное метрическое пространство, Y — нормированное пространство. Известная теорема Милютина о возмущении гласит, что если непрерывное отображение $\Psi\colon X\to Y$ является накрывающим в окрестности точки $x_0\in X$, отображение $\Phi\colon X\to Y$ — β -липшицево в окрестности точки x_0 и $\beta<\alpha$, то отображение $\Psi+\Phi$ является $(\alpha-\beta)$ -накрывающим в окрестности x_0 .

Возникает вопрос, верно ли это утверждение для накрывания в точке. Действительно, если отображение Ψ непрерывно в окрестности точки x_0 и α -накрывает в этой точке, а отображение Φ β -липшицево в окрестности x_0 , и $\beta < \alpha$, то будет ли $\Psi + \Phi$ накрывающим в этой точке? Отрицательный ответ на это дает следующий пример.

ПРИМЕР 7.7. Рассмотрим квадратичное отображение

$$Q(x) = (x_1^2 + x_2^2 - x_3^2, 2x_1x_3, 2x_2x_3), \qquad x = (x_1, x_2, x_3) \in \mathbb{R}^3.$$

Возьмем $\beta \in (0,1)$ и зададим отображения $\Psi, \Phi \colon \mathbb{R}^3 \to \mathbb{R}^3$ формулами

$$\Psi(x) = \frac{Q(x)}{|x|} \quad \forall x \neq 0, \quad \Psi(0) = 0, \qquad \Phi(x) = (0, -\beta x_2, \beta x_1) \quad \forall x \in \mathbb{R}^3.$$

Очевидно, отображение Φ является β -липшицевым. Непосредственно проверяется, что отображение Q сюръективно и $|Q(x)|=|x|^2 \ \forall x$. Поэтому Ψ является 1-накрывающим в нуле. В то же время отображение $\Psi+\Phi$ не является накрывающим в нуле, поскольку нуль не является внутренней точкой образа этого отображения. Покажем это.

Положим $y_n := (n^{-1}, 0, 0), n \geqslant 1$. Рассмотрим уравнение $\Psi(x) + \Phi(x) = y_n$. Если это уравнение имеет решение $x = (x_1, x_2, x_3)$, то

$$\frac{x_1^2 + x_2^2 - x_3^2}{|x|} = \frac{1}{n}, \qquad \frac{2x_1x_3}{|x|} - \beta x_2 = 0, \qquad \frac{2x_2x_3}{|x|} + \beta x_1 = 0.$$

Умножая второе равенство на $-x_2$, а третье – на x_1 и складывая их, получаем $\beta(x_1^2+x_2^2)=0$. Поэтому из первого равенства следует, что $-x_3^2>0$, что невозможно. Следовательно, нуль не является внутренней точкой образа отображения $\Psi+\Phi$ и, значит, $\Psi+\Phi$ не является накрывающим в нуле.

Авторы благодарны профессору А. Ф. Измаилову и профессору В. Ю. Протасову за полезные обсуждения.

Список литературы

- [1] Дж. Ортега, В. Рейнболт, Итерационные методы решения нелинейных систем уравнений со многими неизвестными, Мир, М., 1975, 558 с.; пер. с англ.: J. M. Ortega, W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York–London, 1970, xx+572 pp.
- [2] Ф. Кларк, *Onmumusayus и негладкий анализ*, Hayka, M., 1988, 280 с.; пер. с англ.: F. H. Clarke, *Optimization and nonsmooth analysis*, Canad. Math. Soc. Ser. Monogr. Adv. Texts, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1983, xiii+308 pp.
- [3] B. H. Pourciau, "Hadamard's theorem for locally Lipschitzian maps", J. Math. Anal. Appl., 85:1 (1982), 279–285.
- [4] А.В. Арутюнов, "Условие Каристи и существование минимума ограниченной снизу функции в метрическом пространстве. Приложения к теории точек совпадения", Оптимальное управление, Сборник статей. К 105-летию со дня рождения академика Льва Семеновича Понтрягина, Тр. МИАН, 291, МАИК «Наука/Интерпериодика», М., 2015, 30–44; англ. пер.: А. V. Arutyunov, "Caristi's condition and existence of a minimum of a lower bounded function in a metric space. Applications to the theory of coincidence points", Proc. Steklov Inst. Math., 291 (2015), 24–37.
- [5] M. A. Khamsi, "Remarks on Caristi's fixed point theorem", Nonlinear Anal., 71:1-2 (2009), 227–231.
- [6] W. Takahashi, "Minimization theorems and fixed point theorems", Nonlinear analysis and mathematical economics (Kyoto, 1992), Sūrikaisekikenkyūsho Kōkyūroku, 829, RIMS, Kyoto Univ., Kyoto, 1993, 175–191.
- [7] J. Dugundji, A. Granas, Fixed point theory, v. I, Monogr. Mat., 61, PWN, Warszawa, 1982, 209 pp.
- [8] H. Brézis, F. E. Browder, "A general principle on ordered sets in nonlinear functional analysis", *Advances in Math.*, **21**:3 (1976), 355–364.
- [9] В.В. Воеводин, Ю.А. Кузнецов, Матрицы и вычисления, Наука, М., 1984, 319 с.
- [10] А.В. Арутюнов, "О существовании решений нелинейных уравнений", Докл. РАН, 472:4 (2017), 373–377; англ. пер.: А. V. Arutyunov, "On the existence of solutions for nonlinear equations", Dokl. Math., 95:1 (2017), 46–49.
- [11] А.В. Арутюнов, С.Е. Жуковский, "Существование обратных отображений и их свойства", Дифференциальные уравнения и топология. II, Сборник статей. К 100-летию со дня рождения академика Льва Семеновича Понтрягина, Тр. МИАН, 271, МАИК «Наука/Интерпериодика», М., 2010, 18–28; англ. пер.: А. V. Arutyunov, S. E. Zhukovskiy, "Existence and properties of inverse mappings", Proc. Steklov Inst. Math., 271 (2010), 12–22.
- [12] A. V. Arutyunov, R. B. Vinter, "A simple 'finite approximations' proof of the Pontryagin maximum principle under reduced differentiability hypotheses", Set-Valued Anal., 12:1-2 (2004), 5-24.
- [13] J. S. Raimond, "Local inversion for differentiable functions and Darboux property", Mathematika, 49:1-2 (2002), 141–158.
- [14] А.В. Арутюнов, Г.Г. Магарил-Ильяев, В.М. Тихомиров, *Принцип максимума Понтрягина*. Доказательство и приложения, Факториал Пресс, М., 2006, 144 с.
- [15] J. Warga, "Fat homeomorphisms and unbounded derivate containers", J. Math. Anal. Appl., 81:2 (1981), 545–560.
- [16] Б. Ш. Мордухович, Методы аппроксимаций в задачах оптимизации и управления, Наука, М., 1988, 360 с.
- [17] A. Arutyunov, E. Avakov, B. Gel'man, A. Dmitruk, V. Obukhovskii, "Locally covering maps in metric spaces and coincidence points", J. Fixed Point Theory Appl., 5:1 (2009), 105–127.

- [18] A. V. Arutyunov, "Second-order conditions in extremal problems. The abnormal points", *Trans. Amer. Math. Soc.*, **350**:11 (1998), 4341–4365.
- [19] A. V. Dmitruk, "On a nonlocal metric regularity of nonlinear operators", Control Cybernet., 34:3 (2005), 723–746.
- [20] А.В. Арутюнов, Б.Д. Гельман, "О структуре множества точек совпадения", *Mamem. cб.*, **206**:3 (2015), 35–56; англ. пер.: А. V. Arutyunov, В. D. Gel'man, "On the structure of the set of coincidence points", *Sb. Math.*, **206**:3 (2015), 370–388.
- [21] F. E. Browder, "On the convergence of successive approximations for nonlinear functional equations", Nederl. Akad. Wetensch. Proc. Ser. A, 71 = Indag. Math., 30 (1968), 27–35.
- [22] J. Jachymski, "Around Browder's fixed point theorem for contractions", J. Fixed Point Theory Appl., 5:1 (2009), 47–61.
- [23] Д. Ю. Бураго, Ю. Д. Бураго, С. В. Иванов, Курс метрической геометрии, Ин-т компьютерных исследований, М.-Ижевск, 2004, 512 с.; пер. с англ.: D. Burago, Yu. Burago, S. Ivanov, A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001, xiv+415 pp.

Арам Владимирович Арутюнов (Aram V. Arutyunov)

Московский государственный университет имени М.В. Ломоносова; Институт проблем передачи информации им. А.А. Харкевича Российской академии наук, г. Москва; Институт проблем управления

им. В. А. Трапезникова

Российской академии наук, г. Москва

E-mail: arutyunov@cs.msu.ru

Сергей Евгеньевич Жуковский (Sergey E. Zhukovskiy)

Московский физико-технический институт (государственный университет), г. Долгопрудный, Московская обл.;

Российский университет дружбы народов, г. Москва

E-mail: s-e-zhuk@yandex.ru

Поступила в редакцию 10.09.2017 и 08.10.2018