

# 电子科技大学 格拉斯哥学院 Glasgow College, UESTC

# Communication Circuits Design – 2018-19, semester II Lab 1 - Week 2

| Student's Chinese name | 郑长刚             |  |  |
|------------------------|-----------------|--|--|
| Student's English name | Changgang Zheng |  |  |
| Student's UESTC ID#    | 2016200302027   |  |  |
| Student's UoG ID#      | 2289258Z        |  |  |

#### I-V Characteristics of MOSFETs

The objective of this lab is to measure and plot the current-vs-voltage (I-V) operating curves of the Metal Oxide Semiconductor Field Effect Transistor (MOSFET).

### Introduction

A metal-oxide-semiconductor field-effect transistor (MOSFET) is a three-terminal device that can be used as a switch (e.g. in digital circuits) or as an amplifier (e.g. in analog circuits). The three terminals are referred to as the Source, Gate, and Drain terminals. Current flow between the source and drain terminals is controlled by the voltage  $V_{GS}$  applied between the gate and source terminals. If the gateto-source voltage  $V_{GS}$  is less than the threshold voltage value  $V_T$ , no current can flow between the source and the drain – i.e. the transistor is OFF; if  $V_{GS} > V_T$ , then current can flow between the source and the drain – i.e. the transistor is ON. The circuit symbol for an n-channel enhancement-mode ( $V_T$ > 0 Volts) MOSFET is shown in Figure-1, along with the terminal current reference directions.



Figure-1: Circuit symbol for n-channel enhancement MOSFET

In the ON state, the current  $I_{DS}$  flowing from the drain to the source will depend on the potential difference  $V_{DS}$  between the drain and the source:  $I_{DS}$  increases with increasing drain-to-source voltage  $V_{DS}$  as long as the drain voltage is at least  $V_T$  below the gate voltage,

i.e. as long as  $V_{GS}$  -  $V_T > V_{DS}$ . When  $V_{DS}$  increases above  $V_{GS}$  -  $V_T$ ,  $\bar{I}_{DS}$  saturates at a constant value (i.e. it no longer increases with increasing  $V_{DS}$ .).

#### **Practical Procedure**

1. Build the circuit shown in the Fig. 2 below. In the circuit you will use a potentiometer  $(P_1)$ to vary the gate voltage. Use the following circuit with  $R_D=1$  k $\Omega$  and the power boxes as a DC voltage supplies.

When I built my circuit, finally I found it is hart to use RD = 1 k $\Omega$  in the question, so I change it to  $0.1 \text{ k}\Omega$  in some questions.

2. First, the transfer characteristics, i.e. the dependence of the drain current  $(I_D)$  on the input voltage ( $V_{GS}$ ), will be measured at a fixed drain bias  $V_{DS} = 5.0$  V. Since the resistivity of the MOSFET changes as  $V_{GS}$  is changed,  $V_{DD}$  have to be adjusted for each point to keep  $V_{DS}$ =5.0 V. It is suitable to have  $V_{IN}$  = 5 V to be able to vary  $V_{GS}$  with the potentiometer. Measure the points in the table below and plot the data as  $I_D$  vs  $V_{GS}$ . In this task  $V_{GS}$  is measured as a function of set  $I_D$  values instead of the other way around to avoid too high currents through the MOSFET.



Figure-2: A simple circuit for obtaining the I-V characteristics of a MOSFET.

# 3. Set $V_{DD}$ according to the table. Adjust the potentiometer until the indicated $I_D$ is reached and measure V<sub>GS</sub>.

# **Answer:**

| V <sub>DD</sub> (V) | $I_D$ (mA) | $V_{GS}\left( \mathrm{V}\right)$ |
|---------------------|------------|----------------------------------|
| 15.0                | 10.0       | 2.59                             |
| 10.0                | 5.0        | 2.48                             |
| 8.0                 | 3.0        | 2.42                             |
| 6.0                 | 1.0        | 2.28                             |
| 5.1                 | 0.1        | 2.07                             |
| 5.0                 | 0.0        | 1.73                             |

# 4. Plot the transfer characteristic $I_D$ vs $V_{GS}$ using the collected data in the Table-1.

# **Answer:**



Figure-3: transfer characteristic I<sub>D</sub> vs V<sub>GS</sub> for a MOSFET

5. Does  $I_D$  follow the expected long or short (velocity saturated) channel behavior? Remember that  $I_D$  is proportional to  $V_{GS}$  for a velocity saturated MOSFET.

**Answer:** The I<sub>D</sub> follow the long channel behavior.



Figure-4: property for long/short channel [1]

From the above Figure-4, we can see that the long channel effect means voltage V<sub>GS</sub> is quadratic to  $I_D$ . So, I plot the figure for  $I_D$  versus  $V_{GS}^2$  shown as follow:



From the Figure-5, we can see that the saturation between the I<sub>D</sub> and V<sub>GS</sub> square is linear dependent. Thus we can conclude that it follows the long channel effect.

6. Now the output characteristics, i.e. the dependence of the drain current  $(I_D)$  on the drain voltage  $(V_{DS})$ , will be measured at a fixed gate bias. Adjust  $V_{DD}$  to 10 V and adjust the potentiometer so that you obtain  $I_{DS} = 5$  mA with  $V_{DS} = 5$  V. Keep this setting of the potentiometer (controlling  $V_{GS}$ ) throughout the measurement while varying  $V_{DD}$  to obtain the  $V_{DS}$  values in the table. Fill out  $I_D$  in the table and plot the data in the diagram as  $I_D$  vs  $V_{GS}$ .

**Answer:** The data is in the following table and the plot is shown in Figure-4

| V <sub>DS</sub> (V) | $I_D$ (mA) |
|---------------------|------------|
| 0                   | 0          |
| 0.2                 | 4.702      |
| 1.0                 | 5.012      |
| 3.0                 | 5.012      |
| 5.0                 | 5.012      |
| 10.0                | 5.012      |

Plot of the data in the diagram as I<sub>D</sub> vs V<sub>GS</sub>:



1. Does  $I_D$  saturate? If not, what is the reason.

Answer: Yes, It does. From the Figure-6, the I<sub>D</sub> rise with the increase of the V<sub>GS</sub>, which is then maintaining 5V after I<sub>G</sub> is 1 V. According to this, we can find that the I<sub>D</sub> did not increase with the rising of the V<sub>GS</sub>, which means it is saturated.

2. Now set  $V_{GS}$  to 4 V and measure  $V_{DS}$  and  $I_D$  as  $V_{DS}$  is varied from 0 to 10 V. Repeat this experiment with  $V_{GS}$  equal to 6 V, 8 V and 10 V. Plot the I-V characteristics of this MOSFET. The horizontal axis should be  $V_{DS}$  and the vertical axis  $I_D$ . The various V<sub>GS</sub> values generate a family of curves.

#### **Answer:**

| V <sub>GS</sub> (V  | ') = 4 V                   | V <sub>G</sub> s (  | (V) = 6 V V <sub>GS</sub> (V) = 8V |                     | = 8V                       |                     |                     |
|---------------------|----------------------------|---------------------|------------------------------------|---------------------|----------------------------|---------------------|---------------------|
| V <sub>DS</sub> (V) | <i>I</i> <sub>D</sub> (mA) | V <sub>DS</sub> (V) | $I_D$ (mA)                         | V <sub>DS</sub> (V) | <i>I</i> <sub>D</sub> (mA) | V <sub>DS</sub> (V) | I <sub>D</sub> (mA) |
| 0                   | 0                          | 0                   | 0                                  | 0                   | 0                          | 0                   | 0                   |
| 1                   | 67.3                       | 1                   | 164.2                              | 1                   | 259.8                      | 1                   | 355.9               |
| 2                   | 87.5                       | 2                   | 281.5                              | 2                   | 471.5                      | 2                   | 664.2               |

| 3  | 87.5 | 3  | 347.3 | 3  | 637.2 | 3  | 921.5 |
|----|------|----|-------|----|-------|----|-------|
| 4  | 87.5 | 4  | 347.9 | 4  | 753.5 | 4  | 1138  |
| 5  | 87.5 | 5  | 368.4 | 5  | 821.2 | 5  | 1302  |
| 6  | 87.5 | 6  | 368.4 | 6  | 841.1 | 6  | 1419  |
| 7  | 87.5 | 7  | 368.4 | 7  | 841.1 | 7  | 1488  |
| 8  | 87.5 | 8  | 368.4 | 8  | 841.1 | 8  | 1507  |
| 9  | 87.5 | 9  | 368.4 | 9  | 841.1 | 9  | 1507  |
| 10 | 87.5 | 10 | 368.4 | 10 | 841.1 | 10 | 1507  |

# 3. Identify and explain the operating regions of the I-V curve generated for the transistor.

# **Answer:**



Figure-7: transfer characteristic  $I_D$  vs  $V_{GS}$  for a MOSFET

| VGS(V) | Ohmic Region       | Operating Region | Breakdown Region |
|--------|--------------------|------------------|------------------|
| 4      | $0V < V_{DS} < 2V$ | $V_{DS} \ge 2V$  |                  |
| 6      | $0V < V_{DS} < 4V$ | $V_{DS} \ge 4V$  | _                |
| 8      | $0V < V_{DS} < 6V$ | $V_{DS} \ge 6V$  | _                |
| 10     | $0V < V_{DS} < 8V$ | $V_{DS} \ge 8V$  | _                |

Ohmic region, where current and voltage are related by Ohm's law. [2] Active (or constant-current) region, where current is essentially independent of V<sub>DS</sub>. [2]

The operating region is the active region, where the I<sub>D</sub> is proportional to the V<sub>GS</sub>. This property ensures that it can be used as the amplifier.



Note: the experimental condition cannot allow me to do this experiment totally in reality (burn the circuit and cannot generate such high voltage, so we just simulate it)

# References

- [1] course power pint, Communication Circuits Design Academic year 2018 to 2019 Semester 2 Week 1 Lecture 1.5: Field-Effect Transistor (FET), Francesco Fioranelli, Wasim Ahmad, Faisal Tariq.
- [2] COMP 103 Lecture 04: MOS Transistor short channel and scaling effects Reading: Section 3.3 up to page 107, Sec 3.5 [All lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey's Digital Integrated Circuits, ©2002, J. Rabaey et al.]