Data Mining

Classifier Ensemble

Adapted from R. Polikar's "Ensemble Based Systems in Decision Making"

Outline

- Why Ensemble?
- Components in an ensemble
- Ensemble Based Systems
 - Bagging
 - Boosting
 - AdaBoost
- How much classification improvements with an ensemble?

Why Ensemble?

- Making important decisions
 - Expert panel, Lifeline (opinion of expert "friends")
- Reasons:
 - Statistical reason
 - Training vs. generalization
 - Algorithm/System vs. data
 - Large volumes of data
 - Too little data
 - Divide and conquer
 - Data fusion

Why Ensemble?

Divide and Conquer

Averaging over an ensemble of classifiers

Components in an Ensemble

Base Classifiers

- Good candidate base classifiers:
 - Decision Tree
 - Bayes Classifiers
 - KNN
 - Neural Networks
 - Many Others

Main Approaches in an Ensemble

- A strategy to build an ensemble as diverse as possible
 - Disjoint data -- k-fold data splitting
 - Bagging
 - Boosting

K-fold data splitting

Bagging

- Main idea:
 - Form different training data to train each classifier
 - How?
 - Create bootstrapped training data-- randomly pick a certain percent of data from the original data with replacement
 - The classifiers are combined with majority vote

Bagging

Algorithm: Bagging

Input:

- Training data S with correct labels ω_i $\in \Omega = \{\omega_1,...,\omega_C\}$ representing C classes
- Weak learning algorithm WeakLearn,
- Integer T specifying number of iterations.
- Percent (or fraction) F to create bootstrapped training data

Do
$$t = 1, ..., T$$

- Take a bootstrapped replica S_t by randomly drawing F percent of S.
- Call WeakLearn with S_t and receive the hypothesis (classifier) h_t.
- 3. Add h_t to the ensemble, E.

End

Test: Simple Majority Voting – Given unlabeled instance x

- 1. Evaluate the ensemble $\mathbf{E} = \{h_1, \dots, h_T\}$ on \mathbf{x} .
- 2. Let $v_{t,j} = \begin{cases} 1, & \text{if } h_t \text{ picks class } \omega_j \\ 0, & \text{otherwise} \end{cases}$ (8)

be the vote given to class ω_i by classifier h_l .

3. Obtain total vote received by each class

$$V_j = \sum_{t=1}^{T} v_{t,j}, \ j=1,...,C$$
 (9)

Choose the class that receives the highest total vote as the final classification.

Boosting

- Considered as one of the most important developments in the recent history of machine learning.
- Freund and Schapire, 1997
- Many variations
 - General boosting
 - Adaboost
 - Adaboost.R
 - Adaboost.M1

General Boosting

- Basic ideas: create three weak classifiers:
 - classifier C1 trained with a random subset of the available training data.
 - C2 is trained on a training data only half of which is correctly classified by C1, and the other half is misclassified.
 - The third classifier C3 is trained with instances on which C1 and C2 disagree.
 - The three classifiers are combined through a threeway majority vote.
- No replacement allowed

General Boosting

Algorithm: Boosting

Input:

- Training data S of size N with correct labels ω_i
 ∈ Ω = {ω₁, ω₂};
- Weak learning algorithm WeakLearn.

Training

- Select N₁<N patterns without replacement from S to create data subset S₁.
- Call WeakLearn and train with S₁ to create classifier C₁.
- Create dataset S₂ as the most informative dataset, given C₁, such that half of S₂ is correctly classified by C₁, and the other half is misclassified. To do so:
 - a. Flip a fair coin. If Head, select samples from S, and present them to C_1 until the first instance is misclassified. Add this instance to S_2 .

- b. If Tail, select samples from S, and present them to C₁ until the first one is correctly classified. Add this instance to S₂.
- c. Continue flipping coins until no more patterns can be added to S₂.
- 4. Train the second classifier C_2 with S_2 .
- Create S₃ by selecting those instances for which C₁ and C₂ disagree. Train the third classifier C₃ with S₃.

Test – Given a test instance x

- Classify x by C₁ and C₂. If they agree on the class, this class is the final classification.
- If they disagree, choose the class predicted by C₃ as the final classification.

AdaBoost

Basic ideas:

- Consecutive classifiers' training data are geared towards increasingly hard-to-classify instances.
 - How?
 - Train each weak classifier using instances drawn from an iteratively updated distribution of the training data.
 - This distribution update ensures that instances misclassified by the previous classifier are more likely to be included in the training data of the next classifier.
- Weighted majority vote

Adaboost

AdaBoost

Algorithm AdaBoost.M1

Input:

- Sequence of N examples S = [(**x**_i, y_i)], i = 1, · · · , N with labels y_i ∈ Ω, Ω = {ω₁, . . . , ω_C};
- Weak learning algorithm WeakLearn;
- Integer T specifying number of iterations.

Initialize
$$D_1(i) = \frac{1}{N}, i = 1, \dots, N$$
 (11)

Do for t = 1, 2, ..., T:

- Select a training data subset S_t, drawn from the distribution D_t.
- Train WeakLearn with S_t, receive hypothesis h_t.
- 3. Calculate the error of

$$h_t$$
: $\varepsilon_t = \sum_{i:h_t(\mathbf{x}_i) \neq y_i} D_t(i)$. (12)

If $\varepsilon_t > 1/2$, abort.

4. Set
$$\beta_t = \varepsilon_t/(1 - \varepsilon_t)$$
. (13)

5. Update distribution

$$D_t: D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} \beta_t & \text{if } h_t(\mathbf{x}_i) = y_i \\ 1, & \text{otherwise} \end{cases}$$
(14)

where $Z_t = \sum_i D_t(i)$ is a normalization constant chosen so that D_{t+1} becomes a proper distribution function.

- Test Weighted Majority Voting: Given an unlabeled instance x,
 - Obtain total vote received by each class

$$V_j = \sum_{t:h_t(\mathbf{x})=\omega_j} \log \frac{1}{\beta_t}, j=1,...,C.$$
 (15)

Choose the class that receives the highest total vote as the final classification.

Boosting

• It has been proven: "the error of this three-classifier ensemble is <u>bounded</u> above, and it is <u>less than</u> the error of the best classifier in the ensemble, provided that each classifier has an error rate that is less than 0.5."

Combining Classifiers

- A strategy to combine the output of individual classifiers → amplify correct decisions and cancel out incorrect ones:
 - Majority vote
 - Weighted majority vote
 - Combining numeric outputs
 - Others:
 - Behavior knowledge space, Borda count