SUPORT EXAMEN PROGRAMARE LOGICĂ

1. Programare Logică - cazul logicii clauzelor definite propoziționale

Logica propozițională.

- Formulele sunt definite inductiv din atomi propozitionali și conectorii logic $\neg, \land, \lor, \rightarrow$.
- O interpretare este o funcție care dă valori de adevăr (adevărat și fals) atomilor.
- O formulă F este adevărată într-o interpretare \mathcal{I} , notând $\mathcal{I} \models F$, dacă valoarea de adevăr a formulei obținută folosind tabelele de adevăr și interpretarea \mathcal{I} este adevărat.
- O formulă G este o consecință logică a unor formule F_1, F_2, \ldots, F_n , notat $F_1, \ldots, F_n \models G$, dacă pentru orice interpretare \mathcal{I} , dacă $\mathcal{I} \models F_i$, $i = 1, \ldots, n$, atunci $\mathcal{I} \models G$.
- O clauză definită este o formulă care este fie de forma (1) q (clauză unitate), sau (2) $p_1 \wedge \ldots \wedge p_k \to q$, unde q, p_1, \ldots, p_n sunt atomi.
- Un "program logic" este o listă F_1, \ldots, F_n de clauze definite.
- Problema programării logice propoziționale: $F_1, \ldots, F_n \models q$, unde F_1, \ldots, F_n, q clauze definite.

Sistem de deducție pentru clauze definite.

• Pentru o mulțime S de clauze definite propoziționale, considerăm un sistem de deducție care are ca axiome orice clauză din S și următoarele reguli de deducție:

$$\boxed{ \begin{array}{c|c} P & P \to Q \\ \hline Q & \end{array} (MP) } \qquad \boxed{ \begin{array}{c|c} P & Q \\ \hline P \land Q & (andl) \end{array} }$$

- O clauză Q se deduce din S, notat $S \vdash Q$, dacă există o secvență de clauze Q_1, \ldots, Q_n astfel încât $Q_n = Q$ și fiecare Q_i : fie aparține lui S, fie se poate deduce din Q_1, \ldots, Q_{i-1} folosind regulile de deducție.
- Dacă X, Y mulțimi de mulțimi, $f: X \to Y$ este monotonă dacă pentru orice mulțimi $X_1, X_2 \in X$, dacă $X_1 \subseteq X_2$, atunci $f(X_1) \subseteq f(X_2)$.
- Un punct fix al unei funcții $f: \mathcal{P}(X) \to \mathcal{P}(X)$ este o mulțime $Y \subseteq X$ astfel încât f(Y) = Y, unde $\mathcal{P}(X)$ este mulțimea părților lui X.
- Un cel mai mic punct fix (lfp) Y al lui f este un punct fix și dacă Z este tot un punct fix, atunci $Y \subseteq Z$.

Teoremă 1 (*). $Dacă f: \mathcal{P}(X) \to \mathcal{P}(X)$ este monotonă, atunci f are un cel mai mic punct fix.

• Fie A mulțimea atomilor care apar în S și $Baza = \{p_i \mid p_i \in S\}$ mulțimea atomilor care apar în clauzele unitate din S. Definim funcția $f_S: \mathcal{P}(A) \to \mathcal{P}(A)$ prin

$$f_S(Y) = Y \cup Baza \cup \{a \in A \mid (s_1 \wedge \ldots \wedge s_n \rightarrow a) \text{ este în } S, s_1 \in Y, \ldots, s_n \in Y\}$$

Propoziție 1. Funcția f_S este monotonă.

Teoremă 2. Fie X este cel mai mic punct fix al funcției f_S . Atunci $q \in X$ dacă și numai dacă $S \models q$.

Corolar 1. Sistemul de deducție pentru clauze definite propoziționale este complet pentru a arăta clauze unitate, i.e. dacă $S \models q$, atunci $S \vdash q$.

- $Metod\check{a}$ de decizie pentru a verifica $S \vdash Q$:
 - calculăm cel mai mic punct fix X al funcției f_S
 - dacă $q \in X$ atunci returnăm adevărat, altfel returnăm fals.
 - 2. Programare Logică cazul logicii Horn

Logica de ordinul I (calculul cu predicate).

- Un $limbaj \ \mathcal{L}$ de ordinul I este format dintr-o mulțime numărabilă de variabile $V = \{x_n \mid n \in \mathbb{N}\}$, conectorii $\neg, \rightarrow, \land, \lor$, paranteze, cuantificatorul universal \forall și cuantificatorul existențial \exists , o mulțime \mathbf{P} de simboluri de relații, o mulțime \mathbf{F} de simboluri de funcții, o mulțime \mathbf{C} de simboluri de constante, o functie aritate $ar: \mathbf{F} \cup \mathbf{P} \to \mathbb{N}^*$.
- Termenii lui \mathcal{L} sunt definiți inductiv asftel: orice variabilă este un termen; orice simbol de constantă este un termen; dacă $f \in \mathbf{F}$, ar(f) = nși t_1, \ldots, t_n sunt termeni, atunci $f(t_1, \ldots, t_n)$ este termen. Mulțimea termenilor lui \mathcal{L} este notată cu $Trm_{\mathcal{L}}$.
- Dacă $R \in \mathbf{R}$, ar(R) = n și t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.
- Formulele lui \mathcal{L} sunt definite asftel: orice formulă atomică este o formulă; dacă A este o formulă, atunci $\neg A$ este o formulă; dacă A și B sunt formule, atunci $A \vee B$, $A \wedge B$, $A \to B$ sunt formule; dacă A este o formulă și x_i este o variabilă, atunci $(\forall x_i)A$, $(\exists x_i)A$ sunt formule.
- O structură este de forma $S = (S, \mathbf{F}^S, \mathbf{P}^S, \mathbf{C}^S)$, unde S este o mulțime nevidă, $\mathbf{F}^S = \{f^S \mid f \in \mathbf{F}\}$ este o mulțime de operații pe A (dacă f are aritatea n, atunci $f^{S}: S^{m} \to S$), $\mathbf{R}^{S} = \{R^{S} \mid R \in \mathbf{R}\}$ este o mulţime de relaţii pe A (dacă R are aritatea n, atunci $R^{S} \subseteq S^{m}$), şi $\mathbf{C}^{\mathcal{S}} = \{ c^{\mathcal{S}} \in S \mid c \in \mathbf{C} \}.$
- O interpretare a variabilelor lui \mathcal{L} în \mathcal{S} este o funcție $I:V\to S$. Interpretarea termenului t în \mathcal{S} sub I $(t_I^{\mathcal{S}})$ este definită inductiv prin:
 - dacă $t = x_i \in V$, atunci $t_I^S := I(x_i)$
 - dacă $t = c \in \mathbf{C}$, atunci $t_I^{\mathcal{S}} := c^{\mathcal{S}}$
- dacă $t = f(t_1, \ldots, t_n)$, atunci $t_I^{\mathcal{S}} := f^{\mathcal{S}}((t_1)_I^{\mathcal{S}}, \ldots, (t_n)_I^{\mathcal{S}})$ O formulă este adevărată în \mathcal{S} sub interpretarea I dacă:
- - $-\mathcal{S}, I \models P(t_1, \dots, t_n) \text{ dacă } P^{\mathcal{S}}(t_1^{\mathcal{S}}, \dots, t_n^{\mathcal{S}})$
 - $-\mathcal{S}, I \models \neg B \operatorname{dacă} \mathcal{S}, I \not\models B$
 - $-\mathcal{S}, I \models B \lor C \operatorname{dac} \mathcal{S}, I \models B \operatorname{sau} \mathcal{S}, I \models C$
 - $-\mathcal{S}, I \models B \land C \operatorname{dacă} \mathcal{S}, I \models B \operatorname{si} \mathcal{S}, I \models C$
 - $-\mathcal{S}, I \models B \rightarrow C \operatorname{dacă} \mathcal{S}, I \not\models B \operatorname{sau} \mathcal{S}, I \models C$

$$\begin{array}{l} \mathcal{S}, I \models (\forall x) B \text{ dacă pentru orice interpretare } I_{x \leftarrow a} \text{ avem } \mathcal{S}, I_{x_i \leftarrow a} \models B \\ - \mathcal{S}, I \models (\exists x) B \text{ dacă există o interpretare } I_{x \leftarrow a} \text{ astfel încât } \mathcal{S}, I_{x_i \leftarrow a} \models B \\ \text{unde pentru orice } a \in \mathcal{S}, I_{x \leftarrow a}(y) = \begin{cases} I(y) & \text{dacă } y \neq x \\ a & \text{dacă } y = x \end{cases} \end{array}$$

- O formulă A este adevărată într-o structură S, notat $S \models A$, dacă este adevărată în S sub orice interpretare. Spunem că S este model al lui A. O formulă A este adevărată în logica de ordinul I, notat $\models A$, dacă este adevărată în orice structură.
- O formulă G este o consecință logică a formulelor F_1, \ldots, F_n , notat $F_1, \ldots, F_n \models G$, dacă pentru orice structură S, dacă $S \models F_i, i = 1, \ldots, n$, atunci $S \models G$.
- Loqica clauzelor definite/Loqica Horn un fragment al logicii de ordinul I în care singurele formule admise sunt clauze definite:
 - formule atomice: $P(t_1,\ldots,t_n)$
 - $-A_1 \wedge ... \wedge A_n \rightarrow B$, unde toate A_i, B sunt formule atomice.
- Problema programării logice: $T \models A_1 \land \ldots \land A_n$, unde T mulțime de clauze definite și toate A_i sunt formule atomice.

Algoritmul de unificare.

- O subtituție σ este o funcție (parțială) de la variabile la termeni, adică $\sigma: V \to Trm_{\mathcal{L}}$.
- Doi termeni t_1 şi t_2 se unifică dacă există o substituție θ astfel încât $\theta(t_1) = \theta(t_2)$.
- Un unificator ν pentru U este un cel mai general unificator (cgu) dacă pentru orice alt unificator ν' pentru U, există o substituție μ astfel încât $\nu' = \nu$; μ , unde ν ; μ este compunerea substitutiilor ν și μ .

	Lista soluţie	Lista de rezolvat
	S	R
Iniţial	Ø	$t_1 \stackrel{.}{=} t'_1, \dots, t_n \stackrel{.}{=} t'_n$
SCOATE	S	$R', t \stackrel{.}{=} t$
	S	R'
DESCOMPUNE	S	$R', f(t_1,\ldots,t_n) \stackrel{\cdot}{=} f(t'_1,\ldots,t'_n)$
	S	$R', t_1 \stackrel{.}{=} t'_1, \dots t_n \stackrel{.}{=} t'_n$
REZOLVĂ	S	$R', x \stackrel{\cdot}{=} t$ sau $t \stackrel{\cdot}{=} x, x$ nu apare în t
	$x \doteq t, S[x \leftarrow t]$	$R'[x \leftarrow t]$
Final	S	Ø

Sistem de deducție backchain pentru logica Horn (clauze definite).

• Pentru o mulțime T de clauze Horn, considerăm un sistem de deducție (sistemul backchain) care are ca axiome orice clauză din T şi regulă de deducție backchain:

$$\frac{\theta(p_1) \quad \theta(p_2) \quad \dots \quad \theta(p_n) \quad (p_1 \land p_2 \land \dots \land p_n \to q)}{\theta(q')}$$

unde $p_1 \wedge p_2 \wedge \ldots \wedge p_n \to q \in T$, iar θ este cgu pentru q' şi q.

• Notăm $T \vdash_b Q$ dacă există o derivare a lui Q din T folosind sistemul de deducție backchain (definit ca în cazul propozițional).

Propoziție 2 (Corectitudine *). Dacă $T \vdash_b Q$, atunci $T \models Q$.

- ullet Fie ${\mathcal L}$ un limbaj de ordinul I cu cel puțin un simbol de constantă.
- Universul Herbrand este mulțimea $T_{\mathcal{L}}$ a tututor termenilor lui \mathcal{L} fără variabile.
- Un model Herbrand este o structură $\mathcal{H} = (T_{\mathcal{L}}, \mathbf{F}^{\mathcal{H}}, \mathbf{P}^{\mathcal{H}}, \mathbf{C}^{\mathcal{H}})$, unde
 - pentru orice simbol de constantă c, $c^{\mathcal{H}} = c$
 - pentru orice simbol de funcție f de aritate $n, f^{\mathcal{H}}(t_1, \dots, t_n) = f(t_1, \dots, t_n)$
- O instanță de bază a unei clauze $Q_1(X_1) \wedge \ldots \wedge Q_n(X_n) \to P(Y)$ este rezultatul obținut prin înlocuirea variabilelor cu termeni fără variabile.
- Pentru o mulțime de clauze T, o formulă atomică P și o mulțime de formule atomice X, predicatul $oneStep_T(P,X)$ este adevărat dacă există o instanță de bază a unei clauze $Q_1(X_1) \wedge \ldots \wedge Q_n(X_n) \rightarrow P(Y)$ din T astfel încât P este instanța lui P(Y) și instanța lui $Q_i(X_i)$ este în X, pentru orice $i = 1, \ldots, n$.
- Baza Herbrand $B_{\mathcal{L}}$ este mulțimea formulelor atomice fără variabile.
- Pentru o mulțime de clauze T, definim $f_T: \mathcal{P}(B_{\mathcal{L}}) \to \mathcal{P}(B_{\mathcal{L}}), f_T(X) = \{P \in B_{\mathcal{L}} \mid oneStep_T(P, X)\}.$
- Fie FP_T cel mai mic punct fix al funcției monotone f_T .
- Pentru o mulțime de clauze T, definim cel mai mic model Herbrand \mathcal{LH} ca fiind un model Herbrand în care un predicat $R(t_1, \ldots, t_n)$ este adevărat ddacă $R(t_1, \ldots, t_n) \in FP_T$.

Propoziție 3. $\mathcal{LH} \models T$.

Propoziție 4 (*). Pentru orice formulă atomică $Q, T \vdash_B Q$ ddacă $\mathcal{LH} \models Q$.

Teoremă 3 (Completitudine *). Dacă $T \models Q$, atunci $T \vdash_b Q$.

Rezoluţie SLD.

- Regula backchain este implementată în programarea logică prin rezoluția SLD (Selected, Linear, Definite).
- O clauză definită $P_1 \wedge \ldots \wedge P_n \to Q$ poate fi gândită ca formula $Q \vee \neg P_1 \vee \ldots \vee \neg P_n$.
- $\bullet\,$ Pentru o mulțime de clauze definite $T,\,$ regula rezolutiei SLD este

$$SLD \boxed{ \frac{\neg P_1 \lor \dots \lor \neg P_i \lor \dots \lor \neg P_n}{(\neg P_1 \lor \dots \lor \neg Q_1 \lor \dots \lor \neg Q_m \lor \dots \lor \neg P_n)\theta}}$$

unde $Q \vee \neg Q_1 \vee \cdots \vee \neg Q_m$ este o clauză definită din T (în care toate variabilele au fost redenumite) și θ este c.g.u pentru P_i și Q.

• Fie T o mulțime de clauze definite și $P_1 \wedge \ldots \wedge P_m$ o țintă, unde P_i sunt formule atomice. O derivare din T prin rezoluție SLD este o secvență $G_0 := \neg P_1 \vee \ldots \vee \neg P_m$, G_1, \ldots, G_k, \ldots în care G_{i+1} se obține din G_i prin regula SLD. Dacă există un k cu $G_k = \square$ (clauza vidă), atunci derivarea se numește SLD-respingere.

Teoremă 4 (Completitudinea SLD-rezoluției). Sunt echivalente:

- (1) există o SLD-respingere a lui $P_1 \wedge \ldots \wedge P_m$ din T,
- (2) $T \vdash_b P_1 \land \ldots \land P_m$,
- (3) $T \models P_1 \wedge \cdots \wedge P_m$.

- Fie T o mulțime de clauze definite și o țintă $G_0 = \neg P_1 \lor ... \lor \neg P_m$. Un arbore SLD este definit astfel:
 - Fiecare nod al arborelui este o ţintă (posibil vidă)
 - $-\,$ Rădăcina este G_0
 - Dacă arborele are un nod G_i , iar G_{i+1} se obține din G_i folosind regula SLD folosind o clauză $C_i \in T$, atunci nodul G_i are copilul G_{i+1} . Muchia dintre G_i și G_{i+1} este etichetată cu C_i .
- ullet Dacă un arbore SLD cu rădăcina G_0 are o frunză \Box (clauza vidă), atunci există o SLD-respingere a lui G_0 din T.

3. Algebre multisortate

Signaturi multisortate. Multimi și funcții multisortate.

• O signatură multisortată este o pereche (S, Σ) , unde $S \neq \emptyset$ este o mulțime de sorturi și Σ este o mulțime de simboluri de operații σ : $s_1 s_2 \dots s_n \to s$. Dacă n = 0, atunci $\sigma :\to s$ este simbolul unei constante.

Fixăm o mulțime de sorturi S.

- O multime S-sortată este o familie de multimi $A = \{A_s\}_{s \in S}$.
- O funcție S-sortată $f:A\to B$ este o familie de funcții $f=\{f_s\}_{s\in S}$, unde $f_s:A_s\to B_s$, pt. or. $s\in S$. Dacă $f:A\to B$ și $g:B\to C$, definim compunerea $f;g:A\to C$, $(f;g)_s(a)=g_s(f_s(a))$, or. $a\in A_s$.
- O funcție S-sortată $f:A\to B$ este injectivă, (surjectivă, bijectivă) dacă f_s este injectivă, (surjectivă, bijectivă), or. $s\in S$. O funcție S-sortată $f=\{f_s\}_{s\in S}:A\to B$ este inversabilă dacă există $g:B\to A$ astfel încât $f;g=1_A$ și $g;f=1_B$.

Propoziție 5. O funcție S-sortată $f: A \to B$ este inversabilă \Leftrightarrow este bijectivă.

Algebre multisortate.

- O algebră multisortată de tip (S, Σ) este $A = (A_S, A_{\Sigma})$ unde $A_S = \{A_s\}_{s \in S}$ este o mulțime S-sortată și $A_{\Sigma} = \{A_{\sigma}\}_{\sigma \in \Sigma}$ este o familie de operații astfel încât
 - dacă $\sigma:s_1\dots s_n\to s$ în $\Sigma,$ atunci $A_\sigma:A_{s_1}\times\dots\times A_{s_n}\to A_s.$
 - $-\operatorname{dac\check{a}} \sigma: \to s \text{ în } \Sigma, \text{ atunci } A_{\sigma} \in A_s.$

Morfisme de algebre multisortate.

- Un morfism de (S, Σ) -algebre $h: A \to \mathcal{B}$ este o funcție S-sortată $h = \{h_s\}_{s \in S} : \{A_s\}_{s \in S} \to \{B_s\}_{s \in S}$ care verifică condiția de compatibilitate: $-h_s(A_\sigma) = B_\sigma$, or. $\sigma: \to s \in \Sigma$,
 - $-h_s(A_{\sigma}(a_1,\ldots,a_n)) = B_{\sigma}(h_{s_1}(a_1),\ldots,h_{s_n}(a_n)), \text{ or. } \sigma:s_1\ldots s_n \to s \in \Sigma \text{ si or. } a_1 \in A_{s_1},\ldots,a_n \in A_{s_n}.$

Propoziție 6. Compunerea a două Σ -morfisme este un Σ -morfism.

Izomorfisme de algebre multisortate.

- Un Σ -morfism $h: \mathcal{A} \to \mathcal{B}$ se numește izomorfism dacă există un Σ -morfism $g: \mathcal{B} \to \mathcal{A}$ astfel încât $h; g = 1_A$ și $g; h = 1_B$. Deoarece g este unic, se notează cu h^{-1} .
- Două Σ -algebre \mathcal{A} și \mathcal{B} sunt izomorfe ($\mathcal{A} \simeq \mathcal{B}$) dacă există un izomorfism $f : \mathcal{A} \to \mathcal{B}$.

Propoziție 7. Fie $h: A \to \mathcal{B}$ un Σ -morfism. Atunci h este izomorfism \Leftrightarrow este funcție S-sortată bijectivă.

Propoziție 8. Compunerea a două izomorfisme $f: \mathcal{A} \to \mathcal{B}$ și $g: \mathcal{B} \to \mathcal{C}$ este un izomorfism. Mai mult, $(f; g)^{-1} = g^{-1}; f^{-1}$.

Tipuri abstracte de date.

- Un tip abstract de date este o clasă $\mathfrak C$ de (S, Σ) -algebre cu proprietatea că oricare două (S, Σ) -algebre din $\mathfrak C$ sunt izomorfe.
- $\mathfrak{I}_{(S,\Sigma)} = \{ \mathcal{I} \mid \mathcal{I}(S,\Sigma) \text{-algebră inițială} \}$ este un tip abstract de date.

Termeni. Algebre de termeni.

- O mulțime de variabile este o mulțime S-sortată $X = \{X_s\}_{s \in S}$ astfel încât $X_s \cap X_{s'} = \emptyset$, or. $s, s' \in S$, $s \neq s'$, $X_s \cap \{\sigma\}_{\sigma: s_1 \dots s_n \to s \in \Sigma} = \emptyset$ și $X_s \cap \{\sigma\}_{\sigma: \to s \in \Sigma} = \emptyset$.
- Mulțimea S-sortată a termenilor cu variabile din X, $T_{\Sigma}(X)$, este cea mai mică mulțime de șiruri finite peste alfabetul $L = \bigcup_{s \in S} X_s \cup \bigcup_{w,s} \Sigma_{w,s} \cup \{(,)\} \cup \{,\}$ care verifică:
 - $-X \subseteq T_{\Sigma}(X),$
 - $-\operatorname{dac\check{a}} \sigma:\to s$ în Σ , atunci $\sigma\in T_{\Sigma}(X)_s$,
 - dacă $\sigma: s_1 \dots s_n \to s$ în Σ și $t_i \in T_{\Sigma}(X)_{s_i}$, or. $1 \le i \le n$, atunci $\sigma(t_1, \dots, t_n) \in T_{\Sigma}(X)_s$.
- - pasul iniţial: $\mathbf{P}(x) = true$, or. $x \in X$, şi $\mathbf{P}(\sigma) = true$, or. $\sigma :\to s$.
 - pasul de inducție: pt. or. $\sigma: s_1 \dots s_n \to s$ și or. $t_1 \in T_{\Sigma}(X)_{s_1}, \dots, t_n \in T_{\Sigma}(X)_{s_n}$, dacă $\mathbf{P}(t_1) = \dots = \mathbf{P}(t_n) = true$, atunci $\mathbf{P}(\sigma(t_1, \dots, t_n)) = true$.

Atunci $\mathbf{P}(t) = true$, oricare $t \in T_{\Sigma}(X)$.

- Mulţimea S-sortată a termenilor $T_{\Sigma}(X)$ este o (S, Σ) -algebră, numită algebra termenilor cu variabile din X, cu operațiile definite astfel: pt. or. $\sigma: \to s$ din Σ , operația corespunzătoare este $T_{\sigma}:=\sigma\in T_{\Sigma}(X)_s$ și pt. or. $\sigma:s_1\dots s_n\to s$ din Σ , operația corespunzătoare este $T_{\sigma}:T_{\Sigma}(X)_{s_1\dots s_n}\to T_{\Sigma}(X)_s$, $T_{\sigma}(t_1,\dots,t_n):=\sigma(t_1,\dots,t_n)$, or. $t_1\in T_{\Sigma}(X)_{s_1},\dots,t_n\in T_{\Sigma}(X)_{s_n}$. T_{Σ} algebra termenilor fără variabile $(X=\emptyset)$.
- O substituție a variabilelor din X cu termeni din $T_{\Sigma}(Y)$ este o funcție S-sortată $\tau: X \to T_{\Sigma}(Y)$.

Algebră inițială.

• O (S, Σ) -algebră $\mathcal I$ este inițială într-o clasă de (S, Σ) -algebre $\mathfrak K$ dacă pentru orice $\mathcal B \in \mathfrak K$, există un unic (S, Σ) -morfism $f: \mathcal I \to \mathcal B$.

Propoziție 9.

- (1) Dacă \mathcal{I} este inițială în \Re și $\mathcal{A} \in \Re$ astfel încât $\mathcal{A} \simeq \mathcal{I}$, atunci \mathcal{A} este inițială în \Re .
- (2) Dacă A_1 și A_2 sunt inițiale în \Re , atunci $A_1 \simeq A_2$.

Teoremă 5. Pentru orice (S, Σ) -algebră \mathcal{B} , există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.

Corolar 2. T_{Σ} este (S, Σ) -algebra inițială.

Algebre libere.

• O (S, Σ) -algebră $\mathcal{A} = (A_S, A_{\Sigma})$ este liber generată de X dacă $X \subseteq A_S$, i.e. există funcția S-sortată incluziune a lui X în A_S $i_A : X \hookrightarrow A_S$, și pt. orice (S, Σ) -algebră $\mathcal{B} = (B_S, B_{\Sigma})$ și orice funcție S-sortată $f : X \to B_S$, există un unic (S, Σ) -morfism $\tilde{f} : \mathcal{A} \to \mathcal{B}$ astfel încât $i_A; \tilde{f} = f$.

Teoremă 6. Dacă A și B sunt liber generate de X, atunci $A \simeq B$.

Teoremă 7. Fie $\mathcal{B} = (B_S, B_\Sigma)$ o (S, Σ) -algebră. Orice funcție S-sortată $e: X \to B_S$ se extinde unic la un (S, Σ) -morfism $\tilde{e}: T_\Sigma(X) \to \mathcal{B}$.

Corolar 3. $T_{\Sigma}(X)$ este (S, Σ) -algebra liber generată de X.

Propoziție 10. Fie $h: A \to \mathcal{B}$ un (S, Σ) -morfism surjectiv și X o mulțime de variabile. Pentru orice (S, Σ) -morfism $f: T_{\Sigma}(X) \to \mathcal{B}$, există un (S, Σ) -morfism $g: T_{\Sigma}(X) \to A$ astfel încât g; h = f.

Dacă $f: \mathcal{A} \to \mathcal{B}$ este un (S, Σ) -morfism şi $X \subseteq A_S$, $f \upharpoonright_X$ este restricția lui f la X, i.e. $(f \upharpoonright_X)_s(x) = f_s(x)$, or. $x \in X_s$.

 $\textbf{Propoziție 11.} \ \ \textit{Fie B o} \ \ o(S, \Sigma) - algebră \ , \ X \ \ o \ multime \ de \ variabile \ \\ \textit{si } f: T_{\Sigma}(X) \rightarrow \mathcal{B}, \ g: T_{\Sigma}(X) \rightarrow \mathcal{B} \ \ morfisme. \ \ Atunci \ g = f \Leftrightarrow g \mid_{X} = f \mid_{X}.$

Propoziție 12. Dacă $X \simeq Y$, atunci $T_{\Sigma}(X) \simeq T_{\Sigma}(Y)$.

Congruențe.

- O relație S-sortată $\equiv \{\equiv_s\}_{s\in S}\subseteq A_S\times A_S$ este o congruență dacă $\equiv_s\subseteq A_s\times A_s$ este echivalență, or. $s\in S$, și \equiv este compatibilă cu operațiile: pt. or. $\sigma:s_1\dots s_n\to s$ și or. $a_i,b_i\in A_{s_i},\ i=1,\dots,n,\ a_i\equiv_{s_i}b_i$, or. $i=1,\dots,n\Rightarrow A_{\sigma}(a_1,\dots,a_n)\equiv_s A_{\sigma}(b_1,\dots,b_n)$.
- Fie \mathcal{A} o (S, Σ) -algebră și \equiv o congruență pe \mathcal{A} . Definim:
 - $-[a]_{\equiv s}:=\{a'\in A_s\mid a\equiv_s a'\}$ (clasa de echivalență a lui a) și $A_s/_{\equiv s}:=\{[a]_{\equiv s}\mid a\in A_s\}$, or. $s\in S$.
 - algebră cât a lui $\mathcal A$ prin congruența \equiv notată $\mathcal A/_{\equiv}$: $A/_{\equiv}:=\{A_s/_{\equiv_s}\}$ cu operațiile: $(A/_{\equiv})_{\sigma}:=[A_{\sigma}]_{\equiv_s}$, or. $\sigma:\to s$, și
 - $(A/_{\equiv})_{\sigma}([a_1]_{\equiv s_1},\ldots,[a_n]_{\equiv s_n}):=[A_{\sigma}(a_1,\ldots,a_n)]_{\equiv s}, \text{ or. } \sigma:s_1\ldots s_n\to s \text{ §i } a_1\in A_{s_1},\ldots,a_n\in A_{s_n}.$
 - $-\ [\cdot]_{\equiv}:\mathcal{A}\to\mathcal{A}/_{\equiv},\ a\mapsto [a]_{\equiv_s},\ \text{or.}\ \ a\in A_s,\ \text{morfism surjectiv.}\ \ \text{Avem}\ \ [a]_{\equiv_s}=[b]_{\equiv_s}\Leftrightarrow a\equiv_s b\Leftrightarrow (a,b)\in\equiv_s.$
- Dacă $f: A \to \mathcal{B}$ un morfism de (S, Σ) -algebre, nucleul lui f este $Ker(f) = \{Ker(f_s)\}_{s \in S}$, unde $Ker(f_s) := \{(a, a') \in A_s \times A_s \mid f_s(a) = f_s(a')\}$, or $s \in S$.

Propoziție 13.

- (1) Ker(f) este o congruență pe A.
- (2) $Dac\breve{a} \equiv este \ o \ congruenț\breve{a} \ pe \ \mathcal{A}, \ atunci \ Ker([\cdot]_{\equiv}) = \equiv.$

Teoremă 8 (Proprietatea de universalitate a algebrei cât). Pentru orice (S, Σ) -algebră \mathcal{B} și pentru orice morfism $h : \mathcal{A} \to \mathcal{B}$ $a.\hat{\imath}. \equiv \subseteq Ker(h)$, există un unic morfism $\bar{h} : \mathcal{A}/_{\equiv} \to \mathcal{B}$ a.i. $[\cdot]_{\equiv}; \bar{h} = h$.

Propoziție 14 (*). Fie \mathfrak{K} o clasă de (S,Σ) -algebre. Dacă $\equiv_{\mathfrak{K}} := \bigcap \{Ker(h) \mid h : T_{\Sigma} \to \mathcal{B} \in \mathfrak{K} \text{ morfism}\}$, atunci:

- (1) $\equiv_{\mathfrak{K}}$ este congruența pe T_{Σ} ,
- (2) pt. or. $\mathcal{B} \in \mathfrak{K}$, există un unic morfism $\overline{h}: T_{\Sigma}/_{\equiv_{\mathfrak{K}}} \to \mathcal{B}$.

Ecuații. Relația de satisfacere.

- O (S, Σ) -ecuație $(\forall X)t =_s t'$ este formată dintr-o multime de variabile X și doi termeni $t, t' \in T_{\Sigma}(X)_s$.
- O (S,Σ) -algebră $\mathcal{A}=(A_S,A_\Sigma)$ satisface o ecuație $(\forall X)t \stackrel{.}{=}_s t'$
 - dacă pentru orice funcție S-sortată $e: X \to A_S$, $\tilde{e}_s(t) = \tilde{e}_s(t')$.
 - dacă pentru orice morfism $f: T_{\Sigma}(X) \to A, f_s(t) = f_s(t').$
- O (S, Σ) -ecuație condiționată $(\forall X)t \doteq_s t'$ if H este formată dintr-o mulțime de variabile X, doi termeni de același sort $t, t' \in T_{\Sigma}(X)_s$ și o mulțime H de ecuații $u \doteq_{s'} v$, cu $u, v \in T_{\Sigma}(X)_{s'}$.
- O (S, Σ) -algebră $\mathcal{A} = (A_S, A_{\Sigma})$ satisface o ecuație condiționată $(\forall X)t \stackrel{.}{=}_s t'$ if H
 - dacă pentru orice funcție S-sortată $e: X \to A_S$, $\tilde{e}_{s'}(u) = \tilde{e}_{s'}(v)$, or. $u =_{s'} v \in H \Rightarrow \tilde{e}_s(t) = \tilde{e}_s(t')$.
 - dacă pentru orice morfism $f: T_{\Sigma}(X) \to A, f_{s'}(u) = f_{s'}(v), \text{ or. } u \stackrel{.}{=}_{s'} v \in H \Rightarrow f_s(t) = f_s(t').$

Γ -algebre.

- Dacă Γ este o mulțime de ecuații condiționate, o (S, Σ) -algebră \mathcal{A} este o Γ -algebră dacă $\mathcal{A} \models \gamma$, or. $\gamma \in \Gamma$.
- Notăm cu $Alg(S, \Sigma, \Gamma)$ clasa tuturor Γ -algebrelor.

Teoremă 9. Fie \mathcal{A} și \mathcal{B} două (S, Σ) -algebre $a.\hat{i}.$ $\mathcal{A} \simeq \mathcal{B}$ și $\gamma := (\forall X)t =_s t'$ if H. Atunci $\mathcal{A} \models \gamma \Leftrightarrow \mathcal{B} \models \gamma.$

- O ecuație condiționată θ este consecință semantică a lui Γ dacă $\mathcal{A} \models \Gamma$ implică $\mathcal{A} \models \theta$, pentru orice (S, Σ) -algebră \mathcal{A} .
- $\bullet\,$ O congruență \equiv pe ${\mathcal A}$ este $\hat{\mathit{inchis\"{a}}}$ la substituție dacă

$$\operatorname{CS}(\Gamma, \mathcal{A}) \left| \begin{array}{c} \operatorname{or.} \ (\forall X)t \stackrel{.}{=}_s t' \text{ if } H \in \Gamma, \text{ or. } e: X \to A_S \\ \tilde{e}_{s'}(u) \equiv_{s'} \tilde{e}_{s'}(v), \text{ or. } u \stackrel{.}{=}_{s'} v \in H \Rightarrow \tilde{e}_s(t) \equiv_s \tilde{e}_s(t'). \end{array} \right|$$

Propoziție 15 (*). $Dacă \equiv este \ o \ congruență pe \ \mathcal{A} \ închisă la substituție, atunci \ \mathcal{A}/_{\equiv} \models \Gamma.$

- Pentru Γ şi $\mathcal{A} = (A_S, A_{\Sigma})$, definim $\equiv_{\Gamma, \mathcal{A}} := \bigcap \{Ker(h) \mid h : \mathcal{A} \to \mathcal{B}, \ \mathcal{B} \models \Gamma\}.$
- Dacă $\mathcal{A} = T_{\Sigma}(X)$, notăm $\equiv_{\Gamma, T_{\Sigma}(X)}$ cu \equiv_{Γ} . Avem $t \equiv_{\Gamma_s} t' \Leftrightarrow \Gamma \models (\forall X)t \doteq_s t'$.

Propoziție 16 (*). $\equiv_{\Gamma, \mathcal{A}}$ este o congruență pe \mathcal{A} închisă la substituție.

Propoziție 17 (*). $\equiv_{\Gamma, \mathcal{A}}$ este cea mai mică congruență pe \mathcal{A} închisă la substituție.

Teoremă 10 (*). $T_{\Sigma}/_{\equiv_{\Gamma,T_{\Sigma}}}$ este Γ -algebra inițială.

Specificații algebrice.

- O specificație algebrică este un triplet (S, Σ, Γ) , unde (S, Σ) este o signatură multisortată și Γ este o mulțime de ecuații condiționate. Specificația (S, Σ, Γ) definește clasa modelelor $Alq(S, \Sigma, \Gamma)$.
- Două specificații (S, Σ, Γ_1) și (S, Σ, Γ_2) sunt *echivalente* dacă definesc aceeași clasă de modele.
- O specificație (S, Σ, Γ) este adecvată pentru \mathcal{A} dacă \mathcal{A} este Γ -algebră inițială, i.e. $\mathcal{A} \in \mathfrak{I}_{(S, \Sigma, \Gamma)}$.

Deducție ecuațională - cazul necondiționat.

 \bullet E multime de ecuații necondiționate

R
$$(\forall X)t \stackrel{.}{=}_s t$$
 S $(\forall X)t_1 \stackrel{.}{=}_s t_2$ $(\forall X)t_2 \stackrel{.}{=}_s t_1$

T
$$\frac{(\forall X)t_1 \stackrel{.}{=}_s t_2, \ (\forall X)t_2 \stackrel{.}{=}_s t_3}{(\forall X)t_1 \stackrel{.}{=}_s t_3}$$

$$C\Sigma \quad \frac{(\forall X)t_1 \doteq_{s_1} t'_1, \dots, (\forall X)t_n \doteq_{s_n} t'_n}{(\forall X)\sigma(t_1, \dots, t_n) \doteq_{s} \sigma(t'_1, \dots, t'_n)}$$

unde $\sigma: s_1 \dots s_n \to s \in \Sigma$

$$Sub_E \quad \overline{(\forall X)\theta(t) \stackrel{.}{=}_s \theta(t')}$$

$$(\forall Y)t \stackrel{\cdot}{=}_s t' \in E \text{ si } \theta: Y \to T_{\Sigma}(X)$$

- Ecuația $\epsilon:=(\forall X)t\stackrel{.}{=}_st'$ se deduce din E dacă ex. o secvență $\epsilon_1,\ldots,\epsilon_n$ a.î. $\epsilon_n=\epsilon$ și pt. or. $1\leq i\leq n$:
 - $-\epsilon_i \in E$ sau
 - $-\epsilon_i$ se obține din $\epsilon_1, \ldots, \epsilon_{i-1}$ aplicând una din reg. R, S, T, C Σ , Sub_E.

Deducție ecuațională - cazul condiționat.

 \bullet Γ multime de ecuații condiționate

$$R \quad \overline{(\forall X)t \stackrel{.}{=}_s t}$$

S
$$\frac{(\forall X)t_1 \stackrel{.}{=}_s t_2}{(\forall X)t_2 \stackrel{.}{=}_s t_1}$$

T
$$\frac{(\forall X)t_1 \doteq_s t_2, \ (\forall X)t_2 \doteq_s t_3}{(\forall X)t_1 \doteq_s t_3}$$

$$C\Sigma \quad \frac{(\forall X)t_1 \doteq_{s_1} t'_1, \dots, (\forall X)t_n \doteq_{s_n} t'_n}{(\forall X)\sigma(t_1, \dots, t_n) \doteq_{s} \sigma(t'_1, \dots, t'_n)}$$

, unde $\sigma: s_1 \dots s_n \to s \in \Sigma$

$$Sub_{\Gamma} \quad \frac{(\forall X)\theta(u_1) \stackrel{.}{=}_{s_1} \theta(v_1), \dots, (\forall X)\theta(u_n) \stackrel{.}{=}_{s_n} \theta(v_n)}{(\forall X)\theta(t) \stackrel{.}{=}_{s} \theta(t')}$$

, unde $(\forall Y)t \stackrel{.}{=}_s t'$ if $\{u_1 \stackrel{.}{=}_{s_1} v_1, \dots, u_n \stackrel{.}{=}_{s_n} v_n\} \in \Gamma, \ \theta : Y \to T_{\Sigma}(X)$.

- Ecuația $\epsilon:=(\forall X)t=_st'$ se deduce din Γ dacă ex. o secvență $\epsilon_1,\ldots,\epsilon_n$ a.î. $\epsilon_n=\epsilon$ si pt. or. $1\leq i\leq n$:
 - $-\epsilon_i \in \Gamma$ sau
 - ϵ_i se obține din $\epsilon_1,\dots,\epsilon_{i-1}$ aplicând una din reg. R, S, T, C Σ , Sub Γ .

Corectitudinea logicii ecuaționale.

• O regulă de deducție $\left| \begin{array}{c} \frac{\epsilon_1, \dots, \epsilon_n}{\epsilon} \end{array} \right|$ este corectă dacă $\Gamma \models \epsilon_1, \dots, \Gamma \models \epsilon_n \Rightarrow \Gamma \models \epsilon$.

Propoziție 18. Regulile de deducție R, S, T, $C\Sigma$, Sub_{Γ} sunt corecte.

Teoremă 11 (Corectitudinea deducției). $\Gamma \vdash (\forall X)t \stackrel{\cdot}{=}_s t' \Rightarrow \Gamma \models (\forall X)t \stackrel{\cdot}{=}_s t'$.

Completitudinea logicii ecuaționale.

 $\bullet\,$ O relație binară $\sim\subseteq T_\Sigma(X)\times T_\Sigma(X)$ este închisă la regula

Propoziție 19. Sunt echivalente:

 $t \sim_s t'$.

- (1) \sim este congruență pe $T_{\Sigma}(X)$,
- (2) \sim este închisă la R, S, T, $C\Sigma$.

Propoziție 20. Sunt echivalente:

- (1) $\sim \operatorname{verifică} \operatorname{CS}(\Gamma, T_{\Sigma}(X))$ (i.e. închisă la substituție),
- (2) \sim este închisă la Sub_{Γ} .
 - Definim $t \sim_{\Gamma_s} t' \Leftrightarrow \Gamma \vdash (\forall X) t \stackrel{\cdot}{=}_s t'$, or. $s \in S$.

Propoziție 21. \sim_{Γ} este o congruență pe $T_{\Sigma}(X)$ închisă la substituție.

Teoremă 12 (Completitudinea deducției). $\Gamma \models (\forall X)t \doteq_s t' \Rightarrow \Gamma \vdash (\forall X)t \doteq_s t'$.

Teorema de completitudine.

- Echivalența sintactică: $t \sim_{\Gamma_s} t' \Leftrightarrow \Gamma \vdash (\forall X)t \stackrel{.}{=}_s t'$.
- Echivalența semantică: $t \equiv_{\Gamma_s} t' \Leftrightarrow \Gamma \models (\forall X) t \stackrel{\cdot}{=}_s t'$.
- Corectitudinea deducției: $\sim_{\Gamma} \subseteq \equiv_{\Gamma}$.
- Completitudinea deducției: $\equiv_{\Gamma} \subseteq \sim_{\Gamma}$.

Teoremă 13 (Teorema de completitudine). $\Gamma \models (\forall X)t \stackrel{\cdot}{=}_s t' \Leftrightarrow \Gamma \vdash (\forall X)t \stackrel{\cdot}{=}_s t' (\equiv_{\Gamma} = \sim_{\Gamma})$

Contexte.

- $nr_y(t) = \text{numărul de apariții ale lui } y \text{ în } t$
- Fie z a.î. $z \notin X$. Un termen $c \in T_{\Sigma}(X \cup \{z\})$ se numește context dacă $nr_z(c) = 1$.
- Dacă $t_0 \in T_{\Sigma}(X)$ şi t_0 are acelaşi sort cu z, definim substituția $\{z \leftarrow t_0\} : X \cup \{z\} \to T_{\Sigma}(X)$, prin $\{z \leftarrow t_0\}(x) = \begin{cases} t_0, & \text{dacă } x = z \\ x, & \text{altfel} \end{cases}$. Pentru un context $c \in T_{\Sigma}(X \cup \{z\})$, notăm $c[z \leftarrow t_0] := \{z \leftarrow t_0\}(c)$.

Sistem de rescriere.

- O regulă de rescriere $l \to_s r$ (peste Y) este formată din $l, r \in T_{\Sigma}(Y)_s$ astfel încât l nu este variabilă și $Var(r) \subseteq Var(l)$.
- Un sistem de rescriere (TRS) este o multime finită de reguli de rescriere.
- Dacă R este un sistem de rescriere, pentru $t, t' \in T_{\Sigma}(X)_s$ definim relația $t \to_R t'$ astfel:

$$\begin{array}{cccc} t \to_R t' & \Leftrightarrow & t \; \mathrm{este} \; c[z \leftarrow \theta_s(l)] \; \mathrm{gi} \\ & t' \; \mathrm{este} \; c[z \leftarrow \theta_s(r)], \; \mathrm{unde} \\ & c \in T_\Sigma(X \cup \{z\}) \; \mathrm{context}, \\ & l \to_s r \in R \; \mathrm{cu} \; Var(l) = Y, \\ & \theta : Y \to T_\Sigma(X) \; \mathrm{substituție} \end{array}$$

• Dacă E este o mulțime de ecuații astfel încât, pt. or. $(\forall Y)l =_s r \in E, l \notin Y$ (nu este variabilă) și $Var(r) \subseteq Var(l)$, definim sistemul de rescriere determinat de E $R_E := \{l \to_s r \mid (\forall Y)l =_s r \in E\}$. Notăm relația de rescriere generată de R_E prin $\to_E := \to_{R_E}$.

Logica ecuațională și rescrierea termenilor.

- Γ mulţime de ecuaţii condiţionate: $\boxed{ SR_{\Gamma} \quad \frac{(\forall X)\theta(u_1) \stackrel{.}{=}_{s_1} \theta(v_1), \dots, (\forall X)\theta(u_n) \stackrel{.}{=}_{s_n} \theta(v_n)}{(\forall X)c[z \leftarrow \theta(t)] \stackrel{.}{=}_{s'} c[z \leftarrow \theta(t')]} }, \text{ unde }$ $(\forall Y)t \stackrel{.}{=}_{s}t' \text{ if } \{u_1 \stackrel{.}{=}_{s_1} v_1, \dots, u_n \stackrel{.}{=}_{s_n} v_n\} \in \Gamma, \ \theta: Y \rightarrow T_{\Sigma}(X), \ c \in T_{\Sigma}(X \cup \{z\})_{s'}, \ z \notin X, \ nr_z(c) = 1.$

Propoziție 22. SR_{Γ} este regulă de deducție corectă.

Teoremă 14. Sunt echivalente:

- (1) $\Gamma \vdash_{R,S,T,C\Sigma,Sub_{\Gamma}} (\forall X)t \stackrel{.}{=}_s t',$
- (2) $\Gamma \vdash_{R,S,T,SR_{\Gamma}} (\forall X)t \stackrel{.}{=}_s t'$.

Teoremă 15. $E \vdash (\forall X)t \stackrel{\cdot}{=}_s t' \Leftrightarrow t \stackrel{*}{\leftrightarrow}_E t'.$

Sisteme de rescriere abstracte.

- Un sistem de rescriere abstract este o pereche (T, \rightarrow) unde T este o multime și $\rightarrow \subseteq T \times T$.
- $t \in T$ este reductibil dacă există $t' \in T$ a.î. $t \to t'$.
- $t \in T$ este $\hat{i}n$ form \check{a} normal \check{a} (ireductibil) dac \check{a} nu este reductibil.
- t_0 este o formă normală a lui t dacă $t \stackrel{*}{\to} t_0$ și t_0 este în formă normală.
- t_1 şi t_2 se intâlnesc $(t_1 \downarrow t_2)$ dacă există $t \in T$ a.î. $t_1 \stackrel{*}{\to} t \stackrel{*}{\leftarrow} t_2$.
- (T, \rightarrow) se numește
 - noetherian: dacă nu există reduceri infinite $t_0 \to t_1 \to t_2 \to \dots$
 - confluent: $t_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.
 - local confluent: $t_1 \leftarrow t \rightarrow t_2 \Rightarrow t_1 \downarrow t_2$.
 - Church-Rosser: $t_1 \stackrel{*}{\leftrightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.
 - normalizat: orice element are o formă normală.
 - complet (convergent, canonic): confluent şi noetherian.

Propoziție 23. Fie (T, \rightarrow) sistem de rescriere. Dacă $t \downarrow t'$, atunci $t \stackrel{*}{\leftrightarrow} t'$.

Propoziție 24. Dacă (T, \rightarrow) este un sistem de rescriere noetherian, atunci orice element are o formă normală.

Propoziție 25. Dacă (T, \rightarrow) este un sistem de rescriere complet, atunci orice element are o unică formă normală.

Propoziție 26. Un sistem de rescriere este confluent ddacă este Church-Rosser.

Propoziție 27. Dacă (T, \rightarrow) este un sistem de rescriere confluent, atunci este local confluent.

Propoziție 28. $Dacă(T, \rightarrow)$ este un sistem de rescriere noetherian și local confluent, atunci este confluent.

Propoziție 29. Fie (T, \rightarrow) sistem de rescriere complet. Atunci $t \stackrel{*}{\leftrightarrow} t' \Leftrightarrow fn(t) = fn(t')$.

Corolar 4. Dacă sistemul de rescriere $(T_{\Sigma}(X), R_E)$ este complet, atunci $E \vdash (\forall X)t =_s t' \Leftrightarrow t \stackrel{*}{\Rightarrow}_E t' \Leftrightarrow fn(t) = fn(t')$.

Terminarea sistemelor de rescriere. Fie (S, Σ) o signatură, Y mulțime de variabile și R un TRS.

- Arborele de reducere al termenului t este definit astfel:
 - rădăcina arborelui are eticheta t,
 - descendenții nodului cu eticheta u sunt etichetați cu termenii u' care verifică $u \to_R u'$.

Propoziție 30. Sunt echivalente:

- (1) R este noetherian,
- (2) oricărui termen t îi poate fi asociat un număr natural $\mu(t) \in \mathbb{N}$ astfel încât $t \to_R t'$ implică $\mu(t) > \mu(t')$.

Propoziție 31 (*). Fie A o (S, Σ) -algebră astfel încât:

- $A_s = \mathbb{N}$ or. $s \in S$.
- or. $\sigma: s_1 \dots s_n \to s$, dacă $k_i > k_i'$ atunci $A_{\sigma}(k_1, \dots, k_i, \dots k_n) > A_{\sigma}(k_1, \dots, k_i', \dots k_n)$,
- $\tilde{\mathbf{e}}(l) > \tilde{\mathbf{e}}(r)$, or. $l \to r \in R$ şi or. $\tilde{\mathbf{e}} : Var(l) \to A$.

 $Atunci\ R$ este noetherian.

- $\bullet\,$ O ordine strictă > pe $T_{\Sigma}(X)$ se numește o ordine de reducere dacă:
 - este well-founded: orice mulţime de termeni are un cel mai mic element în raport cu relaţia >;
 - este compatibilă cu operațiile: dacă $s_1 > s_2$, atunci $\sigma(t_1, \ldots, t_{i-1}, s_1, t_{i+1}, \ldots, t_n) > \sigma(t_1, \ldots, t_{i-1}, s_2, t_{i+1}, \ldots, t_n)$, pentru orice $\sigma: s_1 \ldots s_n \to s$;
 - este *închisă la substituții*: dacă $s_1 > s_2$, atunci $\theta(s_1) > \theta(s_2)$, pentru orice substituție θ .
- Relația de ordine strictă > pe $T_{\Sigma}(X)$ definită prin s > t ddacă |s| > |t| și $nr_x(s) \ge nr_x(t)$, pentru orice $x \in X$ este o ordine de reducere.
- Ordinea lexicografică $>_{lpo}$ indusă pe mulțimea de termeni $T_{\Sigma}(X)$ de o relație de ordine strictă > pe signatură este o ordine de reducere. Avem $s>_{lpo}t$ ddacă

```
(LPO1) t \in X şi s \neq t, sau (LPO2) s = f(s_1, \ldots, s_m), t = g(t_1, \ldots, t_n) şi (LPO2a) există i, 1 \leq i \leq m astfel încât s_i \geq_{lpo} t, sau (LPO2b) f > g şi s >_{lpo} t_j, pentru orice j, 1 \leq j \leq n (LPO2c) f = g, s >_{lpo} t_j, pentru orice j, 1 \leq j \leq n, şi există i, 1 \leq i \leq m astfel încât s_1 = t_1, \ldots, s_{i-1} = t_{i-1} şi s_i >_{lpo} t_i.
```

Teoremă 16 (*). Următoarele sunt echivalente:

- (1) Un sistem de rescrire R este noetherian.
- (2) Există o ordine de reducere > care satisface l > r pentru orice $l \to r \in R$.

Confluență și perechi critice. Fie (S, Σ) o signatură, Y mulțime de variabile și R un TRS.

- Fie $l_1 \to r_1, l_2 \to r_2 \in R$ astfel încât:
 - (1) $Var(l_1) \cap Var(l_2) = \emptyset$,
 - (2) există t un subtermen al lui l_1 care nu este variabilă $(l_1 = c[z \leftarrow t], \text{ unde } nr_z(c) = 1, t \text{ nu este variabilă})$
 - (3) există θ c.g.u pentru t și l_2 (i.e. $\theta(t) = \theta(l_2)$).

Perechea $(\theta(r_1), \theta(c)[z \leftarrow \theta(r_2)])$ se numește pereche critică.

Teoremă 17 (Teorema Perechilor Critice *). Dacă R este noetherian, atunci sunt echivalente:

- (1) R este confluent,
- (2) $t_1 \downarrow_R t_2$ pentru orice pereche critică (t_1, t_2) .

Algoritmul Knuth-Bendix.

- INTRARE: R un sistem de rescriere (TRS) noetherian.
- INIȚIALIZARE: T := R și > ordine de reducere pentru T
- Se execută următorii paşi, cât timp este posibil:
 - (1) $CP := CP(T) = \{(t_1, t_2) \mid (t_1, t_2) \text{ pereche critică în } T\}$
 - (2) Dacă $t_1 \downarrow t_2$, oricare $(t_1, t_2) \in CP$, atunci STOP (*T completarea lui R*).
 - (3) Dacă $(t_1,t_2) \in CP$, $t_1 \not\downarrow t_2$ atunci:
 - dacă $fn(t_1) > fn(t_2)$ atunci $T := T \cup \{fn(t_1) \rightarrow fn(t_2)\},\$
 - dacă $fn(t_2) > fn(t_1)$ atunci T := T $\cup \{fn(t_2) \rightarrow fn(t_1)\},$
 - altfel, STOP (completare eşuată).
- $\bullet\,$ IEŞIRE: T
 completarea lui R sau eșec.