

Università degli Studi di Roma "La Sapienza"

FISICA

Ingegneria Informatica e Automatica1

04.09.2023-A.A. 2022-2023 (12 CFU) C.Sibilia/L.Sciscione

1. **ESERCIZIO** -Un camion sta salendo, con accelerazione costante α , lungo una strada rettilinea inclinata di un angolo θ rispetto all'orizzontale.

Al suo interno è appeso un pendolo semplice formato da una massa m attaccata a un filo inestensibile di massa trascurabile e lunghezza L. Si osserva che il pendolo è in equilibrio quando il filo forma un angolo θ' con la direzione della normale alla strada (linea tratteggiata in Figura). Si trovi l'angolo θ' in funzione delle grandezze note.

2. ESERCIZIO

Un ragazzo sta girando in tondo in bicicletta su un terreno pianeggiante. Egli descrive una circonferenza di raggio r con velocità $v=4.0\ m/s$. Per fare ciò deve stare inclinato di un angolo θ rispetto alla verticale.

- a) Se il coefficiente di attrito statico tra gli pneumatici e il terreno è $\mu_s=0.408$, qual è il minimo valore possibile per il raggio della circonferenza descritta dalla bici?
- b) Usando il centro di massa come polo per calcolare i momenti, dimostrare che l'angolo massimo θ^* di cui il ragazzo si può inclinare senza cadere è tale che $\mu_s = \tan \theta^*$.

3. ESERCIZIO

Una mole di gas perfetto monoatomico descrive il ciclo reversibile in Figura. Nel punto A la pressione, il volume e la temperatura sono noti e valgono p_i , v_i e T_i . Calcolare:

- a) il calore assorbito e il lavoro compiuto durante il ciclo, esprimendoli solo in funzione di T_i ;
- b) il rendimento della macchina termica che lavora secondo il ciclo indicato;
- c) le variazioni di entropia del gas per tutte le trasformazioni del ciclo. Verificare che la loro somma è zero.

4.ESERCIZIO Due cilindri paralleli, infinitamente lunghi, di stesso raggio R=10cm sono disposti alla distanza d=30cm. Sapendo che sul primo è disposta una carica positiva distribuita uniformemente con densità volumetrica ρ_1 =10⁻⁶C/m³ e sapendo che non si registra alcun campo elettrico nel punto P posto a distanza f=5cm dall'asse del secondo cilindro, determinare la densità di carica ρ_2 , supposta uniforme, che deve essere disposta nel secondo cilindro. Calcolare, inoltre, la differenza di potenziale fra il punto A sull'asse del primo cilindro ed il punto B sull'asse del secondo cilindro.

5.ESERCZIZIO Un nastro infinitamente lungo di spessore d=5cm è percorso dalla intensità di corrente I_1 =15mA. Una spira rettangolare di lati a=10cm, b=30cm giace nel piano del nastro a distanza c=15cm da esso. Sapendo che la spira viene percorsa dalla corrente I_2 =50mA come in figura determinare la forza di attrazione cui è soggetta la spira.

