

INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE COMPUTO

Oscilador

Practica 11

Materia:

Arquitectura de computadoras

Profesor:

Castillo Cabrera Gelacio

Alumno:

Cortés Piña Oziel

Grupo:

3CM12

Simulación en Multisim y Lattice Diamond

Código VHDL

Análisis de vectores

Vectores de entrada y salida

Tiempo (ns)	sBa	sclk	sYa
0	0	1	0
20	0	0	0
40	0	1	0
60	1	0	0
80	1	1	1
100	1	0	0
120	1	1	1
140	0	0	0
160	0	1	0
180	1	0	0
200	1	1	1
220	1	0	0
240	1	1	1
260	1	0	0
280	1	1	1

Conclusión

El pulso de reloj nos permite tener un control sobre el circuito de cierta manera menos manual para controlar circuitos. VHDL permite la simulación de estos mediante testbench, no es una manera efectiva de controlar un reloj pero nos permite ver que podría suceder a nuestros circuitos. Es evidente el uno de un circuito físico para poder hacer uso de este pero para nuestros propósitos una simulación es suficiente.