LOCALITY SENSITIVE DISCRIMINANT ANALYSIS

Authors: D. Cai, X. He, K. Zhou, J. Han, H. Bao

Reporter: Yunfei Wang

Sep. 28,2012

Outlines

- Linear Discriminant Analysis(LDA)
- Locality Sensitive Discriminant Analysis(LSDA)
- Marginal Fisher Analysis(MFA)
- Experimental Results
- Summary-Comparison between LDA,LSDA and MFA

Linear Discriminant Analysis

 Maximizing the ratio of inter-class variance to the intraclass variance in any particular data set thereby guaranteeing maximal separability.

LDA-Objective Function

$$\mathbf{a}_{opt} = \arg \max_{\mathbf{a}} \frac{\mathbf{a}^T S_b \mathbf{a}}{\mathbf{a}^T S_w \mathbf{a}}$$

$$S_b = \sum_{i=1}^c m_i (\boldsymbol{\mu}^i - \boldsymbol{\mu}) (\boldsymbol{\mu}^i - \boldsymbol{\mu})^T$$

$$S_w = \sum_{i=1}^c \left(\sum_{j=1}^{m_i} (\mathbf{x}_j^i - \boldsymbol{\mu}^i) (\mathbf{x}_j^i - \boldsymbol{\mu}^i)^T \right)$$

$$S_b \mathbf{a} = \lambda S_w \mathbf{a}$$

Drawbacks of LDA

- It's motivated by the assumption than the data of each class is Gaussian distributed, which is not always satisfied in real world problems. Without Gaussian distribution assumption, the inter-class scatter can't well characterize the separability of the data of different class.
- LDA fails to discover the intrinsic local geometrical structure of the data manifold while trying to preserve the global class relationship.

LSDA

 Estimating geometrical and discriminant properties of the submanifold form random points lying on this unknown submanifold.

 Finding a projection which maximizes the margin between data points from different class at each local area.

LSDA-Neighbor Graph

Global neighbor graph

$$W_{ij} = \begin{cases} 1, & \text{if } \mathbf{x}_i \in N(\mathbf{x}_j) \text{ or } \mathbf{x}_j \in N(\mathbf{x}_i) \\ 0, & \text{otherwise.} \end{cases}$$

Inter-class neighbor graph

$$W_{b,ij} = \begin{cases} 1, & \text{if } \mathbf{x}_i \in N_b(\mathbf{x}_j) \text{ or } \mathbf{x}_j \in N_b(\mathbf{x}_i) \\ 0, & \text{otherwise.} \end{cases}$$

Intra-class neighbor graph

$$W_{w,ij} = \begin{cases} 1, & \text{if } \mathbf{x}_i \in N_w(\mathbf{x}_j) \text{ or } \mathbf{x}_j \in N_w(\mathbf{x}_i) \\ 0, & \text{otherwise.} \end{cases}$$

LSDA-Objective Functions

- After mapping the intra-class graph and inter-class graph to a projection vector \mathbf{a} , we get a map $\mathbf{y} = (y_1, y_2, ... y_m)^T$
- Minimizing the intra-class scatter:

$$\min \sum_{ij} (y_i - y_j)^2 W_{w,ij}$$

Maximizing the inter-class scatter:

$$\max \sum_{ij} (y_i - y_j)^2 W_{b,ij}$$

LSDA-Optimal Linear Embedding

$$\frac{1}{2} \sum_{ij} (y_i - y_j)^2 W_{w,ij} \qquad \frac{1}{2} \sum_{ij} (y_i - y_j)^2 W_{b,ij}$$

$$= \frac{1}{2} \sum_{ij} (\mathbf{a}^T \mathbf{x}_i - \mathbf{a}^T \mathbf{x}_j)^2 W_{w,ij} \qquad = \frac{1}{2} \sum_{ij} (\mathbf{a}^T \mathbf{x}_i - \mathbf{a}^T \mathbf{x}_j)^2 W_{b,ij}$$

$$= \sum_{i} \mathbf{a}^T \mathbf{x}_i D_{w,ii} \mathbf{x}_i^T \mathbf{a} - \sum_{ij} \mathbf{a}^T \mathbf{x}_i W_{w,ij} \mathbf{x}_j^T \mathbf{a} = \mathbf{a}^T X (D_b - W_b) X^T \mathbf{a}$$

$$= \mathbf{a}^T X D_w X^T \mathbf{a} - \mathbf{a}^T X W_w X^T \mathbf{a}$$

- Constraint: $\mathbf{y}^T D_w \mathbf{y} = 1 \Rightarrow \mathbf{a}^T X D_w X^T \mathbf{a} = 1$
- Final Optimization Problem:

$$\underset{\mathbf{a}}{\operatorname{arg}} \underset{\mathbf{a}}{\operatorname{max}} \quad \underset{\mathbf{a}}{\mathbf{a}^{T}} X (\alpha L_{b} + (1 - \alpha) W_{w}) X^{T} \mathbf{a}$$

$$\underset{\mathbf{a}}{\mathbf{a}^{T}} X D_{w} X^{T} \mathbf{a} = 1$$

Marginal Fisher Analysis

- MFA has the same goal with LDA, but uses different criterion to characters the intra-class compactness and the inter-class separability.
 - Intra-class compactness: sum of distances between each point and its nearest neighbors of the same class.
 - Inter-class separability: sum of distances between margin points and their neighboring points of different classes.
- MFA overcomes the limitation of Gaussian distribution assumption of LDA.

MFA-Criterions

Intra-class compactness:

$$\tilde{S}_{c} = \sum_{i} \sum_{i \in N_{k_{1}}^{+}(j) \text{ or } j \in N_{k_{1}}^{+}(i)} ||w^{T}x_{i} - w^{T}x_{j}||^{2}$$

$$= 2w^{T}X(D^{c} - W^{c})X^{T}w$$

$$W_{ij}^{c} = 1$$
 if $j \in N_{k_{1}}^{+}(i)$ or $i \in N_{k_{1}}^{+}(j)$; 0,else.

Figure 3: The two adjacency graphs for Marginal Fisher Analysis. Note that the left adjacency graph only plots the connection edges for one sample in each class for ease of understanding.

Inter-class separability:

$$\begin{split} \tilde{S}_{m} &= \sum_{i} \sum_{(i,j) \in P_{k_{2}}(l_{i}) \text{ or } (j,i) \in P_{k_{2}}(l_{j})} \| w^{\mathsf{T}} x_{i} - w^{\mathsf{T}} x_{j} \|^{2} \\ &= 2 w^{\mathsf{T}} X (D^{m} - W^{m}) X^{\mathsf{T}} w \\ W_{ij}^{m} &= 1 \text{ if } (i,j) \in P_{k_{2}}(l_{i}) \text{ or } (j,i) \in P_{k_{2}}(l_{j}); \text{ 0, else.} \end{split}$$

MFA-Algorithmic Procedure

- PCA projection: projecting the data into PCA subspace by remaining N-N_c dimensions. $W_{\rm PCA}$ denotes the transformation matrix of PCA.
- Constructing the intra-class compactness and inter-class separability graphs W^c and W^m .
- Marginal Fisher Criterion:

$$w^* = arg \min_{w} \frac{w^{\mathsf{T}} X (D^c - W^c) X^{\mathsf{T}} w}{w^{\mathsf{T}} X (D^m - W^m) X^{\mathsf{T}} w}$$

Output the final linear projection direction:

$$w = W_{PCA} w^*$$

Experimental Results

Comparison

- Sharing points: compact the points of each class and separate the different classes as much as possible.
- LDA: mainly focus on the global geometry structure.
- LSDA: takes the local submanifold into consideration.
- MFA: takes advantage of a new criterion to estimating the intra-class and inter-class scatter.