

BAB 7

PENGUAT FREKUENSI TINGGI

TTI3H3

Elektronika RF

PENGUAT DAN PARAMETER S

Agenda:

- Model penguat
- Definisi parameter s dan konversi dari parameter y, z, h ke parameter s
- Definisi faktor-faktor penguatan
- Kemantapan penguat RF
- Lingkaran/daerah kemantapan penguat pada Smith Cart
- Perancangan Penguat dengan Gain Maksimum
- Perancangan Penguat dengan Operating Power Gain Ditentukan
- Perancangan Penguat dengan Available Power Gain Ditentukan
- Perancangan Penguat dengan VSWR Ditentukan
- Perancangan Penguat dengan Noise Figure Ditentukan

MODEL SISTEM (LINIER)

Penguat frekuensi tinggi SATU TAHAP dapat dimodelkan sebagai berikut :

Tampak bahwa sistem dapat dipandang sebagai hubungan kaskade dari kutub-4, sehingga pada umumnya metoda analisis yang dapat digunakan untuk mempelajari perilaku suatu penguat adalah dengan menggunakan parameter satu kutubempat.

Parameter Kutub 4:

- 1. Parameter Z, Y,H, ABCD (frekuensi rendah)
- 2. Parameter S (frekuensi rendah sampai tinggi)

Parameter Z
$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \cdot \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$$
Parameter Y
$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$
Parameter H
$$\begin{bmatrix} V_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \cdot \begin{bmatrix} i_1 \\ V_2 \end{bmatrix}$$
Parameter ABCD
$$\begin{bmatrix} V_1 \\ i_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} V_2 \\ -i_2 \end{bmatrix}$$

Parameter-parameter tersebut diatas mudah diukur pada frekuensi rendah, karena pengukurannya membutuhkan BEBAN HUBUNG SINGKAT dan/atau BEBAN TERBUKA, yang mudah diperoleh pada frekuensi RENDAH.

Pada frekuensi tinggi, parameter Z(impedansi), H(hybrid), Y(admitansi) atau ABCD sangat sulit (tidak mungkin) DIUKUR, karena :

- 1. Penggunaan beban terbuka/tertutup (hubung singkat) dapat menyebabkan komponen aktif yang digunakan tidak stabil (OSILASI)
- 2. Sulit memperoleh beban TERBUKA/TERTUTUP dengan lebar bidang frekuensi yang lebar pada frekuensi tinggi

Maka digunakan Parameter S (Scattering Parameter):

Gambar a_i dan b_i

Signal flow graph

$$a_i = \frac{V_i^+}{\sqrt{Z_{0i}}} = gelombang datang$$

$$b_i = \frac{V_i}{\sqrt{Z_{0i}}} = \text{gelombang pantul}$$

Dimana: i = 1(port 1) atau 2 (port 2)

$$S_{11} = S_{i} = \frac{b_{1}}{a_{1}}\Big|_{a_{2} = 0}$$

$$S_{21} = S_{f} = \frac{b_{2}}{a_{1}}\Big|_{a_{2} = 0}$$

$$\begin{vmatrix} \mathbf{S}_{22} - \mathbf{S}_{0} - \frac{1}{a_{2}} \end{vmatrix}_{a_{1} = 0}$$

$$S_{12} = S_{r} = \frac{b_{1}}{a_{2}} \Big|_{a_{1} = 0}$$

- → koefisien refleksi masukan dengan keluaran K-4 ditutup beban sesuai (match)
- → koefisien transmisi maju dengan keluaran K-4 ditutup beban sesuai
- → koefisien refleksi keluaran dengan masukan K-4 ditutup beban sesuai
- → koefisien transmisi balik dengan masukan K-4 ditutup beban sesuai

Hubungan parameter s dan parameter y

s-parameters in terms of y-parameters	y-parameters in terms of s-parameters
$s_{11} = \frac{(1 - y_{11})(1 + y_{22}) + y_{12}y_{21}}{(1 + y_{11})(1 + y_{22}) - y_{12}y_{21}}$	$y_{11} = \frac{(1 + s_{22})(1 - s_{11}) + s_{12}s_{21}}{(1 + s_{11})(1 + s_{22}) - s_{12}s_{21}}$
$s_{12} = \frac{-2y_{12}}{(1 + y_{11})(1 + y_{22}) - y_{12}y_{21}}$	$y_{12} = \frac{-2s_{12}}{(1+s_{11})(1+s_{22}) - s_{12}s_{21}}$
$s_{21} = \frac{-2y_{21}}{(1 + y_{11})(1 + y_{22}) - y_{12}y_{21}}$	$y_{21} = \frac{-2s_{21}}{(1+s_{11})(1+s_{22}) - s_{12}s_{21}}$
$s_{22} = \frac{(1 + y_{11})(1 - y_{22}) + y_{12}y_{21}}{(1 + y_{11})(1 + y_{22}) - y_{12}y_{21}}$	$y_{22} = \frac{(1+s_{11})(1-s_{22}) + s_{12}s_{21}}{(1+s_{11})(1+s_{22}) - s_{12}s_{21}}$

Hubungan parameter s dan parameter z

s-parameters in terms of z-parameters	z-parameters in terms of s-parameters
$s_{11} = \frac{(z_{11} - 1)(z_{22} + 1) - z_{12}z_{21}}{(z_{11} + 1)(z_{22} + 1) - z_{12}z_{21}}$	$z_{11} = \frac{(1+s_{11})(1-s_{22}) + s_{12}s_{21}}{(1-s_{11})(1-s_{22}) - s_{12}s_{21}}$
$s_{12} = \frac{2z_{12}}{(z_{11}+1)(z_{22}+1) - z_{12}z_{21}}$	$z_{12} = \frac{2s_{12}}{(1 - s_{11})(1 - s_{22}) - s_{12}s_{21}}$
$s_{21} = \frac{2z_{21}}{(z_{11}+1)(z_{22}+1)-z_{12}z_{21}}$	$z_{21} = \frac{2s_{21}}{(1 - s_{11})(1 - s_{22}) - s_{12}s_{21}}$
$s_{22} = \frac{(z_{11} + 1)(z_{22} - 1) - z_{12}z_{21}}{(z_{11} + 1)(z_{22} + 1) - z_{12}z_{21}}$	$z_{22} = \frac{(1+s_{22})(1-s_{11}) + s_{12}s_{21}}{(1-s_{11})(1-s_{22}) - s_{12}s_{21}}$

Hubungan parameter s dan parameter h

s-parameters in terms of h-parameters	h-parameters in terms of s-parameters
$s_{11} = \frac{(h_{11} - 1)(h_{22} + 1) - h_{12}h_{21}}{(h_{11} + 1)(h_{22} + 1) - h_{12}h_{21}}$	$h_{11} = \frac{(1+s_{11})(1+s_{22}) - s_{12}s_{21}}{(1-s_{11})(1+s_{22}) + s_{12}s_{21}}$
$s_{12} = \frac{2h_{12}}{(h_{11} + 1)(h_{22} + 1) - h_{12}h_{21}}$	$h_{12} = \frac{2s_{12}}{(1 - s_{11})(1 + s_{22}) + s_{12}s_{21}}$
$s_{21} = \frac{-2h_{21}}{(h_{11} + 1)(h_{22} + 1) - h_{12}h_{21}}$	$h_{21} = \frac{-2s_{21}}{(1 - s_{11})(1 + s_{22}) + s_{12}s_{21}}$
$s_{22} = \frac{(1 + h_{11})(1 - h_{22}) + h_{12}h_{21}}{(h_{11} + 1)(h_{22} + 1) - h_{12}h_{21}}$	$h_{22} = \frac{(1 - s_{22})(1 - s_{11}) - s_{12}s_{21}}{(1 - s_{11})(1 + s_{22}) + s_{12}s_{21}}$

KOEFISIEN REFLEKSI INPUT & KOEFISIEN REFLEKSI OUTPUT

MODEL PENGUAT

- 1. Γ_S = Koefisien refleksi sumber (Source) = a1/b1
- 2. Γ_1 = Koefisien Refleksi Beban (Load) = a2/b2
- 3. Γ_{IN} = Koefisien refleksi input transistor/penguat =b1/a1
- 4. Γ_{OUT} = Koefisien Refleksi output transistor/ penguat =b2/a2

KOEFISIEN REFLEKSI INPUT (Γ_{IN})

$$b_1 = S_{11}.a_1 + S_{12}.\Gamma_L.b_2 = S_{11}.a_1 + \frac{S_{12}.S_{21}.\Gamma_L}{1 - S_{22}.\Gamma_L}.a_1$$

$$\Gamma_{\text{IN}} = \frac{b_1}{a_1} \rightarrow \Gamma_{\text{IN}} = S_{11} + \frac{S_{12}.S_{21}.\Gamma_L}{1 - S_{22}.\Gamma_L}$$

KOEFISIEN REFLEKSI OUTPUT (Γ_{OUT})

$$b_2 = S_{21}.\Gamma_S.b_1 + S_{22}.a_2 = \frac{S_{12}.S_{21}.\Gamma_S}{1 - S_{11}.\Gamma_S} \cdot a_2 + S_{22}.a_2$$

$$\Gamma_{\text{OUT}} = \frac{b_2}{a_2} \Big|_{ES = 0} = S_{22} + \frac{S_{12}.S_{21}.\Gamma_{s}}{1 - S_{11}.\Gamma_{s}}$$

TTH313 - Elektronika Telekomunikas

PENGUATAN

FAKTOR PENGUATAN PENGUAT RF

Faktor Penguatan:

1. Transducer Power Gain (GT)

$$G_T = \frac{P_L}{P_{AVS}} = \frac{Daya \ yang \ diberikan \ ke beban}{Daya \ yang \ tersedia \ pada \ sumber \ sinyal}$$

2. Operating Power Gain (GP)

$$G_P = \frac{P_L}{P_{IN}} = \frac{Daya \ yang \ diberikan \ ke beban}{Daya \ yang \ diberikan \ ke transistor}$$

3. Available Power Gain (GA)

$$G_{\text{A}} = \frac{P_{\text{AVN}}}{P_{\text{AVS}}} = \frac{Daya \ tersedia \ dari \ transistor}{Daya \ yang \ tersedia \ pada \ sumber \ sinyal}$$

TRANSDUCER POWER GAIN (G_T)

$$G_T = \frac{P_L}{P_{AVS}} = \frac{P_L}{P_{IN}} \cdot \frac{P_{IN}}{P_{AVS}} = G_P \cdot \frac{P_{IN}}{P_{AVS}} = G_P \cdot M_S = \frac{1 - |\Gamma_S|^2}{|1 - \Gamma_S \cdot \Gamma_{IN}|^2} |S_{21}|^2 \frac{1 - |\Gamma_L|^2}{|1 - S_{22} \cdot \Gamma_L|^2}$$

atau

$$G_T = \frac{1 - |\Gamma_S|^2}{|1 - S_{11}. \Gamma_S|^2} |S_{21}|^2 \frac{1 - |\Gamma_L|^2}{|1 - \Gamma_{OUT}. \Gamma_L|^2}$$

<u>OPERATING POWER GAIN (G_P)</u>

$$G_{P} = \frac{P_{L}}{P_{IN}} = \frac{\frac{1}{2} |b_{2}|^{2} \cdot (1 - |\Gamma_{L}|^{2})}{\frac{1}{2} |a_{1}|^{2} \cdot (1 - |\Gamma_{IN}|^{2})}$$

$$b_2 = \frac{S_{21}.a_1}{1 - S_{22}.r_L}$$

$$G_{P} = \frac{1}{1 - |\Gamma_{IN}|^{2}} |S_{21}|^{2} \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22}.\Gamma_{L}|^{2}}$$

AVALAIBLE POWER GAIN (GA)

$$G_A = \frac{P_{AVN}}{P_{AVS}} = \frac{P_L}{P_{AVS}} \cdot \frac{P_{AVN}}{P_L} = \frac{G_T}{M_L}$$

$$G_{A} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - S_{11}.\Gamma_{S}|^{2}} |S_{21}|^{2} \frac{1}{1 - |\Gamma_{OUT}|^{2}}$$

HUBUNGAN ANTAR DAYA

$$P_{IN} = \frac{1}{2} |a_1|^2 - \frac{1}{2} |b_1|^2 = \frac{1}{2} |a_1|^2 \cdot (1 - |\Gamma_{IN}|^2)$$

$$P_{\text{IN}} = P_{\text{AVS}} \cdot \frac{\left(1 - \left|\Gamma_{\text{S}}\right|^{2}\right) \cdot \left(1 - \left|\Gamma_{\text{IN}}\right|^{2}\right)}{\left|1 - \Gamma_{\text{S}} \cdot \Gamma_{\text{IN}}\right|^{2}}$$

$$\mathbf{P}_{L} = \mathbf{P}_{\text{AVN}} \cdot \frac{\left(1 - \left|\Gamma_{L}\right|^{2}\right) \cdot \left(1 - \left|\Gamma_{\text{OUT}}\right|^{2}\right)}{\left|1 - \Gamma_{\text{OUT}} \cdot \Gamma_{L}\right|^{2}}$$

Contoh soal:

• Transistor microwave mempunyai parameter "S" pada 10 GHz, dengan impedansi referensi (Z_{Ω}) 50 Ω sbb.:

$$S_{11}=0,45 < 150^{0}$$

 $S_{12}=0,01 < -10^{0}$
 $S_{21}=2,05 < 10^{0}$
 $S_{22}=0,40 < -150^{0}$

Jika digunakan hambatan sumber $Z_S=20~\Omega$ dan Hambatan beban sebesar $Z_L=30~\Omega$, hitunglah Operating power Gain, Available Power Gain, dan Transducer Power Gain!

Solusi:
$$\Gamma_S$$
=-0.429, Γ_L =-0.250

$$\Rightarrow \Gamma_{IN} = 0.455 \angle 150^0 \text{ dan } \Gamma_{OUT} = 0.408 \angle -151^0$$

$$\Rightarrow G_P = 5.94$$

$$\Rightarrow G_A = 5.85$$

$$\Rightarrow G_T = 5.49$$

VSWR MASUKAN

$$\begin{split} \left|\Gamma a\right| &= \sqrt{1-M_{s}} \\ M_{s} &= \frac{\left(1-\left|\Gamma_{s}\right|^{2}\right).\left(1-\left|\Gamma_{\text{IN}}\right|^{2}\right)}{\left|1-\Gamma_{s}\Gamma_{\text{IN}}\right|^{2}} \end{split} \right\} \qquad \left|\Gamma a\right| = \sqrt{1-\frac{\left(1-\left|\Gamma_{s}\right|^{2}\right).\left(1-\left|\Gamma_{\text{IN}}\right|^{2}\right)}{\left|1-\Gamma_{s}\Gamma_{\text{IN}}\right|^{2}}} \\ \left|\Gamma a\right| &= \left|\frac{\Gamma_{\text{IN}}-\Gamma_{s}*}{1-\Gamma_{\text{IN}}\Gamma_{s}}\right| \end{split}$$

Contoh soal:

Hitunglah : a. $|\Gamma_a|$ (0.326)

b. VSWR_{IN} (1.985)

VSWR KELUARAN

$$VSWR_{OUT} = \frac{1 + |\Gamma_b|}{1 - |\Gamma_b|} \qquad \Gamma_b = \frac{Zb - Z_o}{Zb + Z_o}$$

$$\begin{split} \left| \Gamma_{b} \right| &= \sqrt{1 - M_{L}} \\ M_{L} &= \frac{\left(1 - \left| \Gamma_{L} \right|^{2} \right) . \left(1 - \left| \Gamma_{\text{OUT}} \right|^{2} \right)}{\left| 1 - \Gamma_{\text{OUT}} \Gamma_{L} \right|^{2}} \\ \right\} \\ \left| \Gamma_{b} \right| &= \sqrt{1 - \frac{\left(1 - \left| \Gamma_{L} \right|^{2} \right) . \left(1 - \left| \Gamma_{\text{OUT}} \right|^{2} \right)}{\left| 1 - \Gamma_{\text{OUT}} \Gamma_{L} \right|^{2}}} \\ \left| \Gamma_{b} \right| &= \frac{\left| \Gamma_{\text{OUT}} - \Gamma_{L} * \right|}{1 - \Gamma_{\text{OUT}} \Gamma_{L}} \end{split}$$

KESTABILAN

KEMANTAPAN PENGUAT RF

1. Mantap tanpa syarat (Unconditionally Stable)

Suatu penguat dinyatakan MANTAP TANPA SYARAT, bila terpenuhi $|\Gamma|N| < 1$ dan $|\Gamma|UV| < 1$; untuk SEMUA harga impedansi sumber dan beban PASIF ($|\Gamma|V| < 1$ dan $|\Gamma|V| < 1$)

2. Mantap bersyarat (Conditionally Stable, Potentially Unstable)

Suatu penguat dinyatakan MANTAP BERSYARAT, bila terpenuhi $|\Gamma IN| < 1$ dan $|\Gamma OUT| < 1$; untuk <u>SEJUMLAH</u> harga impedansi sumber dan beban PASIF

OSILASI terjadi pada penguat, jika pada terminal masukan atau keluarannya, terdapat RESISTANSI NEGATIF, yaitu bila $|\Gamma IN| > 1$ atau $|\Gamma OUT| > 1$. Sebagai contoh, jika impedansi masukan : ZIN = -RIN + jXIN

FAKTOR KEMANTAPAN K

$$K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |\Delta|^2}{2|S_{12}.S_{21}|} > 1 \qquad \text{dimana} \quad \Delta = S_{11}.S_{22} - S_{12}.S_{21}$$

$$1 - |S_{11}|^2 > |S_{12}.S_{21}|$$

$$1 - |S_{11}|^2 > |S_{12}S_{21}|$$
 $1 - |S_{22}|^2 > |S_{12}S_{21}|$

kondisi cukup dan perlu untuk memperoleh KEMANTAPAN TANPA SYARAT :

$$|S_{11}| < 1$$
 $|S_{11}|^2 > |S_{12}S_{21}|$
 $|S_{22}| < 1$ $1 - |S_{22}|^2 > |S_{12}S_{21}|$

atau cukup dengan :
$$\begin{vmatrix} \Delta & < 1 \\ & \text{dan} \\ & K > 1 \end{vmatrix}$$

Pada satu frekuensi tertentu bisa terjadi :

$$\begin{array}{l}
Rs - Rin = 0 \\
Xin + Xs = 0
\end{array}$$

$$I = \infty$$

Berdasarkan kepada koefisien refleksi, penguat yang MANTAP TANPA SYARAT akan terpenuhi bila:

1.
$$|\Gamma_s| < 1$$

3.
$$\left|\Gamma_{\text{OUT}}\right| = \left|S_{22} + \frac{S_{12}.S_{21}.\Gamma_{\text{S}}}{1 - S_{11}.\Gamma_{\text{S}}}\right| < 1$$

2.
$$|\Gamma_L| < 1$$

$$|\Gamma_{IN}| = |S_{11} + \frac{S_{12}.S_{21}.\Gamma_{L}}{1 - S_{22}.\Gamma_{L}}| < 1$$

Pada penguat MANTAP BERSYARAT, harga | Γ s | dan | Γ L | yang memberikan kemantapan dapat ditentukan dengan menggunakan PROSEDUR GRAFIS pada SMITH CHART.

Tempat kedudukan Γ s dan Γ L yang menghasilkan $|\Gamma$ 00 τ |=1 dan $|\Gamma$ 1N|=1 ditentukan dulu :

$$|\Gamma_{\text{IN}}| = \left|S_{11} + \frac{S_{12}.S_{21}.\Gamma_{\text{L}}}{1 - S_{22}.\Gamma_{\text{L}}}\right| = 1$$

$$\left| \Gamma_{L} - \frac{(S_{22} - \Delta.S_{11}^{*})^{*}}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \right| = \left| \frac{S_{12}.S_{21}}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \right| \quad dimana \quad \Delta = S_{11}.S_{22} - S_{12}.S_{21}$$

DAERAH KESTABILAN DENGAN MENGGUNAKAN SMITH CHART

Pada satu frekuensi tertentu bisa terjadi :

$$\begin{array}{l}
Rs - Rin = 0 \\
Xin + Xs = 0
\end{array}$$

$$I = \infty$$

Berdasarkan kepada koefisien refleksi, penguat yang MANTAP TANPA SYARAT akan terpenuhi bila:

1.
$$|\Gamma_s| < 1$$

3.
$$\left|\Gamma_{\text{OUT}}\right| = \left|S_{22} + \frac{S_{12}.S_{21}.\Gamma_{\text{S}}}{1 - S_{11}.\Gamma_{\text{S}}}\right| < 1$$

2.
$$|\Gamma_L| < 1$$

$$|\Gamma_{ ext{in}}|$$
 $=$ $|$

4.
$$\left|\Gamma_{\text{IN}}\right| = \left|S_{11} + \frac{S_{12}.S_{21}.\Gamma_{\text{L}}}{1 - S_{22}.\Gamma_{\text{L}}}\right| < 1$$

Pada penguat MANTAP BERSYARAT, harga | Γ s | dan | Γ L | yang memberikan kemantapan dapat ditentukan dengan menggunakan PROSEDUR GRAFIS pada SMITH CHART.

Tempat kedudukan Γ s dan Γ L yang menghasilkan $|\Gamma$ 00 τ |=1 dan $|\Gamma$ 1N|=1 ditentukan dulu :

$$|\Gamma_{\text{IN}}| = \left|S_{11} + \frac{S_{12}.S_{21}.\Gamma_{\text{L}}}{1 - S_{22}.\Gamma_{\text{L}}}\right| = 1$$

$$\left| \Gamma_{L} - \frac{(S_{22} - \Delta.S_{11}^{*})^{*}}{|S_{22}|^{2} - |\Delta|^{2}} \right| = \left| \frac{S_{12}.S_{21}}{|S_{22}|^{2} - |\Delta|^{2}} \right| \quad dimana \quad \Delta = S_{11}.S_{22} - S_{12}.S_{21}$$

Persamaan diatas merupakan persamaan lingkaran beban

 $\left\{ \begin{array}{l} R_{L} = \left| \frac{S_{12}.S_{21}}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \right| \\ C_{L} = \frac{\left(S_{22} - \Delta . S_{11} \right) *}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \end{array} \right. \rightarrow \left\{ \begin{array}{l} C_{L} = \frac{\left(S_{22} - \Delta . S_{11} \right) *}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \end{array} \right. \rightarrow \left\{ \begin{array}{l} C_{L} = \frac{\left(S_{22} - \Delta . S_{11} \right) *}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \end{array} \right. \rightarrow \left\{ \begin{array}{l} C_{L} = \frac{\left(S_{22} - \Delta . S_{11} \right) *}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \end{array} \right. \rightarrow \left\{ \begin{array}{l} C_{L} = \frac{\left(S_{22} - \Delta . S_{11} \right) *}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \end{array} \right. \rightarrow \left\{ \begin{array}{l} C_{L} = \frac{\left(S_{22} - \Delta . S_{11} \right) *}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \end{array} \right. \rightarrow \left\{ \begin{array}{l} C_{L} = \frac{\left(S_{22} - \Delta . S_{11} \right) *}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \end{array} \right. \rightarrow \left\{ \begin{array}{l} C_{L} = \frac{\left(S_{22} - \Delta . S_{11} \right) *}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \end{array} \right. \rightarrow \left\{ \begin{array}{l} C_{L} = \frac{\left(S_{22} - \Delta . S_{11} \right) *}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \end{array} \right. \rightarrow \left\{ \begin{array}{l} C_{L} = \frac{\left(S_{22} - \Delta . S_{11} \right) *}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \end{array} \right. \rightarrow \left\{ \begin{array}{l} C_{L} = \frac{\left(S_{22} - \Delta . S_{11} \right) *}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \end{array} \right. \rightarrow \left\{ \begin{array}{l} C_{L} = \frac{\left(S_{22} - \Delta . S_{11} \right) *}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \end{array} \right. \rightarrow \left\{ \begin{array}{l} C_{L} = \frac{\left(S_{22} - \Delta . S_{11} \right) *}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \end{array} \right. \rightarrow \left\{ \begin{array}{l} C_{L} = \frac{\left(S_{22} - \Delta . S_{11} \right) *}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \end{array} \right. \rightarrow \left\{ \begin{array}{l} C_{L} = \frac{\left(S_{22} - \Delta . S_{11} \right) *}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \end{array} \right. \rightarrow \left\{ \begin{array}{l} C_{L} = \frac{\left(S_{22} - \Delta . S_{11} \right) *}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \end{array} \right. \rightarrow \left\{ \begin{array}{l} C_{L} = \frac{\left(S_{22} - \Delta . S_{11} \right) *}{\left| S_{22} \right|^{2} - \left| \Delta \right|^{2}} \right\}$ → jari - jari → titik pusat lingkaran

Bagaimana menentukan daerah ΓL yang

MANTAP?

Jika

$$Z_{L} = Z_{O} \rightarrow \Gamma_{L} = \frac{Z_{L} - Z_{O}}{Z_{L} + Z_{O}} = 0 \implies |\Gamma_{IN}| = |S_{11}|$$
TTH313 - Elektronia

Lingkaran Kemantapan Beban

Jadi bila |S11| < 1, maka $|\Gamma IN| < 1$, untuk $\Gamma L = 0$ ($Z_L = Z_O$)

→ daerah yang mengandung titik pusat Smith Chart adalah daerah mantap

Jadi jika | S11 | > 1, maka | Γ IN | > 1 untuk Γ L = 0 ($Z_L = Z_O$)

→ daerah yang mengandung titik pusat Smith Chart adalah daerah tidak mantap

Figure 11-5 (p. 544) *Microwave Engineering, 3rd Edition, by David M Pozar* Load (Output) stability circles for a conditionally stable device. (a) $|S_{11}| < 1$. (b) $|S_{11}| > 1$.

$$\left| \Gamma_{\text{OUT}} \right| = \left| S_{22} + \frac{S_{12}.S_{21}.\Gamma_{\text{S}}}{1 - S_{11}.\Gamma_{\text{S}}} \right| = 1$$

$$\left| \Gamma_{\text{S}} - \frac{\left(S_{11} - \Delta . S_{22} * \right) *}{\left| S_{11} \right|^2 - \left| \Delta \right|^2} \right| = \left| \frac{S_{12}.S_{21}}{\left| S_{11} \right|^2 - \left| \Delta \right|^2} \right|$$

$$\left|\Gamma_{s} - \frac{(S_{11} - \Delta.S_{22}^{*})^{*}}{\left|S_{11}\right|^{2} - \left|\Delta\right|^{2}}\right| = \left|\frac{S_{12}.S_{21}}{\left|S_{11}\right|^{2} - \left|\Delta\right|^{2}}\right| \quad dimana: \Delta = S_{11}.S_{22} - S_{12}.S_{21}$$

Persamaan diatas merupakan persamaan lingkaran sumber (tempat kedudukan Γ s untuk $|\Gamma$ out|=1):

$$\begin{cases}
R_s = \left| \frac{S_{12}.S_{21}}{\left|S_{11}\right|^2 - \left|\Delta\right|^2} \right| & \rightarrow \text{ jari - jari} \\
C_s = \frac{(S_{11} - \Delta.S_{22}^*)^*}{\left|S_{11}\right|^2 - \left|\Delta\right|^2} & \rightarrow \text{ titik pusat lingkaran}
\end{cases}$$

Kondisi mantap "TANPA SYARAT" untuk semua sumber atau beban dapat ditulis dengan :

$$||\mathbf{C}_{\text{L}}| - R_{\text{L}}| > 1$$
 untuk $|\mathbf{S}_{11}| < 1$

$$|\mathbf{C}_{s}| - \mathbf{R}_{s}| > 1$$
 untuk $|\mathbf{S}_{22}| < 1$

KONDISI TIDAK MANTAP \rightarrow KONDISI MANTAP TANPA SYARAT :

1. dengan pembebanan resistif

2. dengan umpan balik

Latihan soal:

1. Suatu transistor jenis GaAs MESFET dengan parameter s, diukur pada $V_{ds} = 5 \text{ V}$ dan $I_{ds} = 40 \text{ mA}$, f = 9 GHz, referensi 50 ohm:

$$S_{11}$$
=0,65 <-154⁰
 S_{12} =0,02 <40⁰
 S_{21} =2,04 <185⁰
 S_{22} =0,55 <-30⁰
 Γ_s = 0,38 <25⁰

Tentukan:

1.	factor Delta Δ	0	3	33	32) <	<	17	11	0)
	100001 2 0100 2	_	9 -	_	_	_	-		_	•

2. Faktor stabilitas K (4,72)

3. Koefisien refleksi keluaran $\Gamma_{\rm out}$ (0,56 < -40,7°)

4. GA (Available Power Gain) (6,94dB)

Ref: Microwave Circuit Analysis & Amplifier Design, by Samuel Y.Liao, Exp. 3-4-2.

Latihan soal: (lanjutan)

2. Parameter S untuk HP HFET-102 GaAs FET pada frekuensi 2 GHz, dicatu dengan tegangan biasing $V_{gs} = 0$ dengan $Z_0=50$ Ω sebagai berikut:

$$S_{11}$$
=0.894 <-60.60
 S_{12} =0,020 <62.40
 S_{21} =3.122 <123.60
 S_{22} =0,781 <-27.60

Tentukan kestabilan transistor tersebut dengan menghitung K dan Δ , kemudian plot-kan daerah kestabilannya!

Solusi:
$$\Delta = 0.696 < -83^{0}$$
 $K = 0,607 \Rightarrow$ potentially unstable $C_L = 1.363 < 47^{0}$ $R_L = 0.50$ $R_S = 0.199$

Ref: Microwave Engineering, 2nd Edition, by David M Pozar, Exp 11.2

Plot lingkaran kestabilan sumber dan beban

PERANCANGAN PENGUAT DENGAN GAIN MAKSIMUM

PERANCANGAN UNTUK GAIN MAKSIMUM (CONJUGATE MATCHING)

→ syarat transistor mantap tanpa syarat

Jika dipilih :

$$\Gamma_{\text{IN}} = \Gamma_{\text{S}}^*$$
 $\Gamma_{\text{OUT}} = \Gamma_{\text{L}}^*$

diperoleh penguatan daya transducer (GT) maksimum

$$\Gamma_{S} * = S_{11} + \frac{S_{12}.S_{21}.\Gamma_{L}}{1 - S_{22}.\Gamma_{L}}$$

$$\Rightarrow \Gamma_{SM} = \frac{B_1 \pm \sqrt{B_1^2 - 4|C_1|^2}}{2C_1} \Rightarrow \Gamma_{LM} = \frac{B_2 \pm \sqrt{B_2^2 - 4|C_2|^2}}{2C_2}$$

dimana:
$$B_1 = 1 + |S_{11}|^2 - |S_{22}|^2 - |\Delta|^2$$

 $C_1 = S_{11} - \Delta S_{22}^*$

$$G_{\text{T, MAX}} = \frac{1}{1 - \left| \Gamma_{\text{SM}} \right|^2} \left| S_{21} \right|^2 \frac{1 - \left| \Gamma_{\text{LM}} \right|^2}{\left| 1 - S_{22} \cdot \Gamma_{\text{LM}} \right|^2} \quad \text{atau} \quad G_{\text{T, MAX}} = \frac{\left| S_{21} \right|}{\left| S_{12} \right|} \left(K - \sqrt{K^2 - 1} \right)$$

$$\Gamma_{L} *= S_{22} + \frac{S_{12}.S_{21}.\Gamma_{S}}{1-S_{11}.\Gamma_{S}}$$

$$\Rightarrow \Gamma_{LM} = \frac{B_2 \pm \sqrt{B_2^2 - 4|C_2|^2}}{2C_2}$$

$$B_2 = 1 + |S_{22}|^2 - |S_{11}|^2 - |\Delta|^2$$

$$C_2 = S_{22} - \Delta . S_{11} *$$

Gt, max =
$$\frac{|S_{21}|}{|S_{12}|}$$
 (K - $\sqrt{K^2 - 1}$)

Latihan soal:

• Rancanglah suatu penguat dengan gain maximum pada frekuensi 4 GHz menggunakan single-stub matching! Transistor GaAs FET mempunyai parameter S dengan Z_0 =50 Ω sebagai berikut:

$$S_{11}$$
=0.72 <-116⁰
 S_{12} =0,03 <57⁰
 S_{21} =2.60 <76⁰
 S_{22} =0,73 <-54⁰

Ref: Microwave Engineering, 2nd Edition, by David M Pozar, Exp 11.3

Solusi:
$$\Delta=0.488<-162^0K=1,195 \Rightarrow unconditionally stable$$

$$\Gamma_{SM}=0.872<123^0 \qquad \Gamma_{LM}=0.876<61^0$$

$$G_{T,max}=16.7 \ dB$$

Perhatikan rangkaian penyesuai impedansi sbb:

Circuit design and frequency response for the transistor amplifier of Example 11.3. (a) Smith chart for the design of the input matching network.

(b) RF circuit. (c) Frequency response.

PERANCANGAN PENGUAT DENGAN Gp DITENTUKAN

PERANCANGAN PENGUAT DENGAN GP DITENTUKAN: Lingkaran Gp (Operating Power Gain) Konstan

a. KASUS KEMANTAPAN TANPA SYARAT

$$G_{P} = \frac{1}{1 - |\Gamma_{IN}|^{2}} |S_{21}|^{2} \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22} \cdot \Gamma_{L}|^{2}} = |S_{21}|^{2} \cdot g_{P}$$

dimana:
$$g_{P} = \frac{1 - \left|\Gamma_{L}\right|^{2}}{1 - \left|S_{11}\right|^{2} + \left|\Gamma_{L}\right|^{2}.(\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}) - 2\operatorname{Re}\left[\Gamma_{L}.C_{2}\right]} \frac{C_{2} = S_{22} - \Delta.S_{11}^{*}}{\Delta = S_{11}.S_{22} - S_{12}.S_{21}}$$
$$\left|\Gamma_{L}\right|^{2} - \left\{1 + g_{P}.\left(\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}\right)\right\} - 2.g_{P}.\operatorname{Re}\left[\Gamma_{L}.C_{2}\right] = 1 - g_{P}\left(1 - \left|S_{11}\right|^{2}\right)$$

$$|\Gamma_{L}|^{2} - \frac{g_{P}.C_{2}.\Gamma_{L}}{1 + g_{P}(|S_{22}|^{2} - |\Delta|^{2})} - \frac{g_{P}.C_{2}*.\Gamma_{L}*}{1 + g_{P}(|S_{22}|^{2} - |\Delta|^{2})} = \frac{1 - g_{P}(1 - |S_{11}|^{2})}{1 + g_{P}(|S_{22}|^{2} - |\Delta|^{2})}$$

titik pusat lingkaran:

$$C_{P} = \frac{g_{P}.C_{2}*}{1 + g_{P}(|S_{22}|^{2} - |\Delta|^{2})}$$

jari-jari lingkaran:

$$R_{P} = \frac{\left\{1 - 2K \cdot \left|S_{12} \cdot S_{21}\right| \cdot g_{P} + \left|S_{12} \cdot S_{21}\right|^{2} \cdot g_{P}^{2}\right\}^{\frac{1}{2}}}{\left|1 + g_{P} \cdot (\left|S_{22}\right|^{2} - \left|\Delta\right|^{2})\right|}$$

 $G_{\mathbb{R}}$ maksimum terjadi pada $\mathbb{R}_{\mathbb{R}} = 0$; artinya :

$$g_{P,MAX}$$
. $|S12.S21|^2 - 2K. |S12.S21|. $g_{P,MAX} + 1 = 0$$

$$g_{P, MAX} = \frac{1}{|S_{12}.S_{21}|} \left(K - \sqrt{K^2 - 1} \right) = \frac{G_{P, MAX}}{|S_{21}|^2}$$

$$G_{P,MAX} = \frac{|S_{21}|}{|S_{12}|} (K - \sqrt{K^2 - 1})$$

Prosedur Perancangan Penguat GP ditentukan (menggunakan lingkaran GP konstan):

- Untuk GP yang ditentukan, hitung titik pusat dan jari-jari lingkaran GP konstan, buat lingkaran Gp Konstan
- Pilih $\Gamma_{\rm L}$ yang diinginkan (di lingkaran tersebut)
- Dengan $\Gamma_{\rm L}$ tersebut, daya keluaran maksimum diperoleh dengan melakukan conjugate match pada masukan, yaitu $\Gamma_s = \Gamma_{\text{IN}} {}^*\Gamma_s$ ini akan memberikan GT = GP

Contoh: Transistor

$$S_{11} = 0.641 \angle -171.3^{\circ}$$
 $S_{21} = 2.058 \angle 28.5^{\circ}$

$$S_{21} = 2,058 \angle 28,5^{\circ}$$

$$(f = 6GHz)$$

$$S_{12} = 0.057 \angle 16.3^{\circ}$$

(f = 6GHz)
$$S_{12} = 0.057 \angle 16.3^{\circ}$$
 $S_{22} = 0.572 \angle -95.7^{\circ}$

Rancanglah sebuah penguat RF yang mempunyai GP = 9 dB

Solusi

$$|\Delta| = 0,3014$$
 K = 1,504 \rightarrow mantap tanpa syarat $|S_{21}|^{2} = (2,058)^{2} = 4,235 \implies g_{P} = \frac{G_{P}}{|S_{21}|^{2}} = \frac{7,94}{4,235} = 1,875$ $C_{2} = 0,3911 \angle -103,9^{\circ}$

$$R_p = 0.431$$
 $C_P = 0.508 \angle 103.9^\circ$

 \rightarrow gambar tempat kedudukan $\Gamma_{\rm L}$ yang memberikan GP = 9 dB

tempat kedudukan $\Gamma_{\rm L}$ yang memberikan Gp = 9dB

Kita pilih
$$\Gamma_L = 0.36 \angle 47.5^\circ$$
 (titik A)

Ts yang memberikan daya keluar maksimum

$$\Gamma_{S} = \Gamma_{IN} * = \left[S_{11} + \frac{S_{12}.S_{21}.\Gamma_{L}}{1 - S_{22}\Gamma_{L}} \right]^{*}$$

$$\Gamma_{S} = 0,629 \angle 175,51^{\circ}$$

b. KASUS MANTAP BERSYARAT

Dengan transistor mantap bersyarat, prosedur perancangan untuk GP tertentu adalah sebagai berikut:

- 1) Untuk \mathbf{GP} yang diinginkan, gambar lingkaran \mathbf{GP} konstan dan lingkaran kemantapan beban. Pilih Γ_L yang berada pada daerah mantap dan tidak terlalu dekat dengan lingkaran kemantapan beban.
- 2) Hitung Γ_{IN} dan tentukan apakah conjugate match pada masukan mungkin. Untuk itu gambar lingkaran kemantapan sumber dan periksa apakah $\Gamma_{\text{S}} = \Gamma_{\text{IN}}^*$ terletak pada daerah mantap.
- 3) Jika $\Gamma s = \Gamma IN^*$ tidak terletak pada daerah mantap atau terletak pada daerah mantap namun terlalu dekat dengan lingkaran kemantapan sumber, pilih ΓL yang lain dan ulangi langkah 1) dan 2)

Catt: nilai Γ s dan Γ L sebaiknya tidak terlalu dekat dengan lingkaran kemantapan, karena ketidakmantapan (OSILASI) dapat terjadi oleh variasi nilai komponen yang digunakan sehingga Γ L dan Γ s masuk ke daerah tidak mantap.

Contoh: Transistor
$$S_{11} = 0.5 \angle -180^{\circ}$$
 $S_{21} = 2.5 \angle 70^{\circ}$ $(f = 6 \text{ GHz})$ $S_{12} = 0.08 \angle 30^{\circ}$ $S_{22} = 0.8 \angle -100^{\circ}$

Rancanglah sebuah penguat RF yang mempunyai GP = 10 dB

Solusi:

$$\Delta = 0.223 \angle 62.12^{0}$$
 K = 0.4 \rightarrow transistor mantap bersyarat

- Oleh karena |S11| < 1, daerah MANTAP berada diluar lingkaran kemantapan BEBAN
- Pilih titk A \rightarrow $\Gamma_L = 0,1 \angle 97,2^{\circ}$ \rightarrow $\Gamma_S = \Gamma_{IN} * = 0,52 \angle 179,32^{\circ}$
 - Lingkaran kemantapan sumber : $Cs = 1,67 \angle 171^{\circ}$ $R_s = 1,0$ Γ s diatas harus diperiksa apakah berada di daerah MANTAP
- Daerah mantap berada di luar lingkaran kemantapan sumber $\to \Gamma$ s berada di daerah mantap, maka Γ s dapat digunakan

PERANCANGAN PENGUAT DENGAN GA DITENTUKAN:

Lingkaran Ga (Available Power Gain) Konstan

a) KASUS MANTAP TANPA SYARAT

$$G_{A} = \frac{1}{1 - |\Gamma_{OUT}|^{2}} |S_{21}|^{2} \frac{1 - |\Gamma_{S}|^{2}}{|1 - S_{11}.\Gamma_{S}|^{2}} = |S_{21}|^{2} .g_{A}$$

$$g_{A} = \frac{G_{A}}{|S_{21}|^{2}} = \frac{1 - |\Gamma_{S}|^{2}}{1 - |S_{22}|^{2} + |\Gamma_{S}|^{2} .(|S_{11}|^{2} - |\Delta|^{2}) - 2 \operatorname{Re}[\Gamma_{S}.C_{1}]} C_{1} = S_{11} - \Delta.S_{22} *$$

Dengan cara yang sama seperti lingkaran GP konstan, diperoleh:

Lingkaran GA konstan:

titik pusat lingkaran:

$$C_A = \frac{g_A.C_1*}{1+g_A(|S_{11}|^2-|\Delta|^2)}$$

jari-jari lingkaran

$$\mathbf{R}_{A} = \frac{\left\{1 - 2\mathbf{K} \left| \mathbf{S}_{12} \cdot \mathbf{S}_{21} \right| \mathbf{g}_{A} + \left| \mathbf{S}_{12} \cdot \mathbf{S}_{21} \right|^{2} \cdot \mathbf{g}_{A}^{2}\right\}^{\frac{1}{2}}}{\left|1 + \mathbf{g}_{A} \left(\left| \mathbf{S}_{11} \right|^{2} - \left| \Delta \right|^{2} \right)\right|}$$

Semua Γ s pada lingkaran, memberikan suatu GA yang diinginkan. Untuk GA tertentu, daya keluaran maksimum diperoleh dengan $\Gamma_L = \Gamma_{OUT}^*$

$$\rightarrow \Gamma_L$$
 ini memberikan $G_T = G_A$

b) <u>KASUS MANTAP BERSYARAT</u>

- 1. Untuk GA yang diinginkan, gambar lingkaran GA konstan dan lingkaran kemantapan sumber. Pilih ΓS yang berada di daerah mantap dan tidak terlalu dekat dengan lingkaran kemantapan.
- 2. Hitung Γ_{OUT} dan periksa apakah conjugate match mungkin, untuk itu gambar lingkaran kemantapan beban dan periksa apakah $\Gamma L = \Gamma_{OUT}^*$ berada di daerah mantap.
- 3. Jika $\Gamma_L = \Gamma_{OUT}^*$ tidak berada pada daerah mantap atau terlalu dekat dengan lingkaran kemantapan beban, pilih Γ_S atau **GA** yang lain.

PERANCANGAN PENGUAT DENGAN VSWR DITENTUKAN:

• VSWR_{IN} konstan

VSWR_{IN} =
$$\frac{1 + |\Gamma a|}{1 - |\Gamma a|} \rightarrow |\Gamma a| = \left| \frac{\Gamma_{\text{IN}} - \Gamma_{\text{S}}^*}{1 - \Gamma_{\text{IN}} \cdot \Gamma_{\text{S}}} \right|$$

→ dapat diturunkan lingkaran VSWR_{IN} konstan

Lingkaran VSWR_{IN} konstan :

titik pusat lingkaran:

jari-jari lingkaran :

$$Cvi = \frac{\Gamma_{IN} * . (1 - |\Gamma a|^2)}{1 - |\Gamma a.\Gamma_{IN}|^2}$$

$$Rvi = \frac{\left|\Gamma a\right|. (1 - \left|\Gamma_{\text{IN}}\right|^{2})}{1 - \left|\Gamma a.\Gamma_{\text{IN}}\right|^{2}}$$

Pada kasus mantap tanpa syarat dan beberapa kasus mantap bersyarat,

 Γ s dapat dipilih = Γ IN*; untuk memperoleh VSWRIN = 1.

Bila VSWRIN =
$$1 \rightarrow |\Gamma a| = 0$$

$$\begin{cases} \mathbf{C}\mathbf{v}\mathbf{i} = \Gamma_{\text{IN}} * \\ \mathbf{R}\mathbf{v}\mathbf{i} = \mathbf{0} \end{cases}$$
Jadi $\Gamma_{\text{S}} = \Gamma_{\text{IN}} * \text{memberikan} |\Gamma_{a}| = 0 \rightarrow \text{VSWRIN} = 1$

VSWR_{out} konstan

DENGAN CARA YANG SAMA:

VSWR_{OUT} =
$$\frac{1 + |\Gamma b|}{1 - |\Gamma b|}$$
 $\rightarrow |\Gamma b| = \left| \frac{\Gamma_{\text{OUT}} - \Gamma_{\text{L}} *}{1 - \Gamma_{\text{OUT}} \cdot \Gamma_{\text{L}}} \right|$

Lingkaran VSWR_{OUT} konstan :

$$\mathbf{Cvo} = \frac{\Gamma_{\text{OUT}}^*.(1 - \left|\Gamma_{\text{b}}\right|^2)}{1 - \left|\Gamma_{\text{b}}.\Gamma_{\text{OUT}}\right|^2} \quad \mathbf{Rvo} = \frac{\left|\Gamma_{\text{b}}\right|.(1 - \left|\Gamma_{\text{OUT}}\right|^2)}{1 - \left|\Gamma_{\text{b}}.\Gamma_{\text{OUT}}\right|^2}$$

jari-jari lingkaran :

PERANCANGAN PENGUAT DENGAN NOISE FIGURE DITENTUKAN:

Lingkaran Noise figure/Faktor Derau Konstan:

dimana:

 F_{MIN} = faktor derau minimum komponen aktif

rn = equivalent normalized noise resistance (= R_N/Z_O)

 $\Gamma_{\rm opt} =$ koefisien refleksi sumber yang dapat menghasilkan faktor derau minimum

Ambil satu harga F = Fi

$$\frac{\left|\Gamma s - \Gamma opt\right|^{2}}{1 - \left|\Gamma s\right|^{2}} = \frac{Fi - F_{MIN}}{4 rn} \cdot \left|1 + \Gamma opt\right|^{2}$$

$$Ni = \frac{Fi - F_{MIN}}{4 \text{ rn}} . |1 + \Gamma \text{opt}|^2 = \text{konstan} \implies Ni = \frac{|\Gamma_{S} - \Gamma \text{opt}|^2}{1 - |\Gamma_{S}|^2}$$

$$(\Gamma_{S} - \Gamma \text{opt}). (\Gamma_{S^*} - \Gamma \text{opt}) = Ni - Ni |\Gamma_{S}|^2$$

$$|\Gamma s|^2 \cdot (1 + Ni) - 2Re[\Gamma s \cdot \Gamma opt^*] + |\Gamma opt|^2 = Ni$$

$$\left|\Gamma s\right|^2 - \frac{2}{1 + Ni} \operatorname{Re}\left[\Gamma s.\Gamma \operatorname{opt}^*\right] + \frac{\left|\Gamma \operatorname{opt}\right|^2}{1 + Ni} = \frac{Ni}{1 + Ni}$$

ightarrow merupakan persamaan lingkaran di bidang Γ s dan dapat ditulis menjadi :

$$\left|\Gamma_{s} - \frac{\Gamma_{opt}}{1 + N_{i}}\right|^{2} = \frac{N_{i}^{2} + N_{i}\left(1 - \left|\Gamma_{opt}\right|^{2}\right)}{\left(1 + N_{i}\right)^{2}}$$

untuk Ni tertentu, diperoleh lingkaran faktor derau Fi konstan.

Lingkaran faktor derau:

titik pusat lingkaran:

$$C_{Fi} = \frac{\Gamma opt}{1 + N_i}$$

jari-jari lingkaran

$$\mathbf{C_{Fi}} = \frac{\mathbf{\Gammaopt}}{\mathbf{1 + Ni}} \quad R_{Fi} = \frac{1}{Ni + 1} \sqrt{Ni^2 + Ni(1 - |\Gammaopt|^2)}$$

Contoh Soal:

Suatu transistor dengan parameter S sebagai berikut :

$$S_{11} = 0,552 \angle 169^{\circ}$$

$$F_{MIN} = 2,5dB$$

$$S_{12} = 0.049 \angle 23^{\circ}$$

$$\Gamma opt = 0,475 \angle 166^{\circ}$$

$$S_{21} = 1,681 \angle 26^{\circ}$$

$$Rn = 3.5 \Omega$$

$$S_{22} = 0.839 \angle -67^{\circ}$$

Tentukan lingkaran faktor derau Fi = 2.8dB konstan

Solusi:

Ni =
$$\frac{\text{Fi - F}_{\text{MIN}}}{4 \text{ rn}} . |1 + \Gamma \text{opt}|^2$$

rn = $\frac{\text{Rn}}{Z_0} = \frac{3.5}{50} = 0.07$

$$rn = \frac{Rn}{Z_0} = \frac{3.5}{50} = 0.07$$

$$Fi = 2.8dB = 1.905$$

$$FMIN = 2.5 dB = 1.778$$

$$\rightarrow Ni = 0.1378$$

$$C_{Fi} = \frac{\Gamma \text{opt}}{1 + \text{Ni}} = 0,417 \angle 166^{\circ}$$

$$R_{Fi} = 0.312$$

TERIMA KASIH