Chương 1 ỨNG DỤNG PHÉP TÍNH VI PHÂN TRONG HÌNH HỌC

BỘ MÔN TOÁN CƠ BẢN

VIỆN TOÁN ỨNG DỤNG VÀ TIN HỌC ĐAI HỌC BÁCH KHOA HÀ NÔI

SAMI.HUST - 2023

Nội dung

- 1 Ứng dụng trong hình học phẳng
 - Tiếp tuyến và pháp tuyến
 - Độ cong
 - Hình bao

2 Ứng dụng trong hình học không gian

Cho một đường cong L có phương trình f(x,y)=0. Điểm $M_0(x_0,y_0)\in L$ được gọi là điểm chính quy nếu

$$[f_x'(M_0)]^2 + [f_y'(M_0)]^2 > 0.$$

Ngược lại ta nói M_0 là điểm kỳ dị.

Cho một đường cong L có phương trình f(x,y)=0. Điểm $M_0(x_0,y_0)\in L$ được gọi là điểm chính quy nếu

$$[f_x'(M_0)]^2 + [f_y'(M_0)]^2 > 0.$$

Ngược lại ta nói M_0 là điểm kỳ dị.

Xét điểm chính quy $M_0(x_0,y_0)\in L$ và giả sử $f_y'(M_0)\neq 0.$

Cho một đường cong L có phương trình f(x,y)=0. Điểm $M_0(x_0,y_0)\in L$ được gọi là điểm chính quy nếu

$$[f_x'(M_0)]^2 + [f_y'(M_0)]^2 > 0.$$

Ngược lại ta nói M_0 là điểm kỳ dị.

Xét điểm chính quy $M_0(x_0, y_0) \in L$ và giả sử $f'_y(M_0) \neq 0$.

Theo định lý về hàm ẩn, f(x,y)=0 xác định hàm ẩn y=y(x) trong một lân cận của x_0

$$f(x,y(x)) = 0. (1)$$

Lấy đạo hàm hai vế của (1) theo x tại x_0

$$f'_x(x_0, y_0) + f'_y(x_0, y_0)y'(x_0) = 0 \quad \Rightarrow \quad y'(x_0) = -\frac{f'_x(x_0, y_0)}{f'_y(x_0, y_0)}.$$

Cho một đường cong L có phương trình f(x,y)=0. Điểm $M_0(x_0,y_0)\in L$ được gọi là điểm chính quy nếu

$$[f'_x(M_0)]^2 + [f'_y(M_0)]^2 > 0.$$

Ngược lại ta nói M_0 là điểm kỳ dị.

Xét điểm chính quy $M_0(x_0, y_0) \in L$ và giả sử $f'_u(M_0) \neq 0$.

Theo định lý về hàm ẩn, f(x,y)=0 xác định hàm ẩn y=y(x) trong một lân cận của x_0

$$f(x,y(x)) = 0. (1)$$

Lấy đạo hàm hai vế của (1) theo x tại x_0

$$f'_x(x_0, y_0) + f'_y(x_0, y_0)y'(x_0) = 0 \quad \Rightarrow \quad y'(x_0) = -\frac{f'_x(x_0, y_0)}{f'_y(x_0, y_0)}.$$

Phương trình tiếp tuyến của L tại M_0 là

$$y - y_0 = y'(x_0)(x - x_0) = -\frac{f'_x(x_0, y_0)}{f'_y(x_0, y_0)}(x - x_0).$$

Phương trình tiếp tuyến của đường cong L tại điểm M_0 là

$$(x - x_0)f'_x(x_0, y_0) + (y - y_0)f'_y(x_0, y_0) = 0$$

 $ec{n}=(f_x'(x_0,y_0),f_y'(x_0,y_0))$ là một vectơ pháp tuyến của L tại $M_0.$

Phương trình tiếp tuyến của đường cong L tại điểm M_0 là

$$(x - x_0)f'_x(x_0, y_0) + (y - y_0)f'_y(x_0, y_0) = 0$$

 $\vec{n}=(f_x'(x_0,y_0),f_y'(x_0,y_0))$ là một vectơ pháp tuyến của L tại M_0 . Phương trình pháp tuyến của đường cong L tại điểm M_0 là

$$(x - x_0)f_y'(x_0, y_0) - (y - y_0)f_x'(x_0, y_0) = 0$$

Phương trình tiếp tuyến của đường cong L tại điểm M_0 là

$$(x - x_0)f'_x(x_0, y_0) + (y - y_0)f'_y(x_0, y_0) = 0$$

 $ec{n}=(f_x'(x_0,y_0),f_y'(x_0,y_0))$ là một vectơ pháp tuyến của L tại $M_0.$

Phương trình pháp tuyến của đường cong L tại điểm M_0 là

$$(x - x_0)f_y'(x_0, y_0) - (y - y_0)f_x'(x_0, y_0) = 0$$

Ví dụ. Viết phương trình tiếp tuyến của đường cong $x^4+4y^2=17$ tại điểm M(1;2).

Phương trình tiếp tuyến của đường cong L tại điểm M_0 là

$$(x - x_0)f_x'(x_0, y_0) + (y - y_0)f_y'(x_0, y_0) = 0$$

 $\vec{n}=(f_x'(x_0,y_0),f_y'(x_0,y_0))$ là một vectơ pháp tuyến của L tại M_0 . Phương trình pháp tuyến của đường cong L tại điểm M_0 là

$$(x - x_0)f_y'(x_0, y_0) - (y - y_0)f_x'(x_0, y_0) = 0$$

Ví dụ. Viết phương trình tiếp tuyến của đường cong $x^4+4y^2=17$ tại điểm M(1;2). Lời giải. Ta có

$$\vec{n}(M) = (4x_0^3, 8y_0) = (4; 16) = 4(1; 4).$$

Phương trình tiếp tuyến của đường cong L tại điểm M_0 là

$$(x - x_0)f'_x(x_0, y_0) + (y - y_0)f'_y(x_0, y_0) = 0$$

 $ec{n}=(f_x'(x_0,y_0),f_y'(x_0,y_0))$ là một vectơ pháp tuyến của L tại $M_0.$

Phương trình pháp tuyến của đường cong L tại điểm M_0 là

$$\left| (x - x_0) f_y'(x_0, y_0) - (y - y_0) f_x'(x_0, y_0) = 0 \right|$$

Ví dụ. Viết phương trình tiếp tuyến của đường cong $x^4+4y^2=17$ tại điểm M(1;2). Lời giải. Ta có

$$\vec{n}(M) = (4x_0^3, 8y_0) = (4; 16) = 4(1; 4).$$

Phương trình tiếp tuyến tại M(1;2) là

$$(x-1) + 4(y-2) = 0 \Leftrightarrow x + 4y = 9.$$

Xét đường cong L cho bởi phương trình tham số

$$x = x(t), \quad y = y(t).$$

Xét đường cong L cho bởi phương trình tham số

$$x = x(t), \quad y = y(t).$$

Giả sử các hàm x(t), y(t) khả vi tại M_0 ứng với $t=t_0$ và ta có

$$[x'(t_0)]^2 + [y'(t_0)]^2 > 0.$$

Xét đường cong L cho bởi phương trình tham số

$$x = x(t), \quad y = y(t).$$

Giả sử các hàm x(t), y(t) khả vi tại M_0 ứng với $t=t_0$ và ta có

$$[x'(t_0)]^2 + [y'(t_0)]^2 > 0.$$

Vecto $\vec{u} = (x'(t_0), y'(t_0))$ là một vecto chỉ phương của L tại M_0 .

Xét đường cong L cho bởi phương trình tham số

$$x = x(t), \quad y = y(t).$$

Giả sử các hàm x(t), y(t) khả vi tại M_0 ứng với $t=t_0$ và ta có

$$[x'(t_0)]^2 + [y'(t_0)]^2 > 0.$$

Vecto $\vec{u} = (x'(t_0), y'(t_0))$ là một vecto chỉ phương của L tại M_0 .

Phương trình tiếp tuyến của đường cong L tại điểm M_0 ứng với $t=t_0$ là

$$\frac{x - x(t_0)}{x'(t_0)} = \frac{y - y(t_0)}{y'(t_0)}.$$

Xét đường cong L cho bởi phương trình tham số

$$x = x(t), \quad y = y(t).$$

Giả sử các hàm x(t), y(t) khả vi tại M_0 ứng với $t=t_0$ và ta có

$$[x'(t_0)]^2 + [y'(t_0)]^2 > 0.$$

Vecto $\vec{u} = (x'(t_0), y'(t_0))$ là một vecto chỉ phương của L tại M_0 .

Phương trình tiếp tuyến của đường cong L tại điểm M_0 ứng với $t=t_0$ là

$$\frac{x - x(t_0)}{x'(t_0)} = \frac{y - y(t_0)}{y'(t_0)}.$$

Phương trình pháp tuyến tại điểm M_0 là

$$x'(t_0)(x - x(t_0)) + y'(t_0)(y - y(t_0)) = 0.$$

Ví dụ 1. (20181) Viết phương trình tiếp tuyến và pháp tuyến của đường cong

$$\begin{cases} x=(t^2-1)e^{2t}\\ y=(t^2+1)e^{3t} \end{cases} \quad \text{tại điểm ứng với } t=0.$$

Ví dụ 1. (20181) Viết phương trình tiếp tuyến và pháp tuyến của đường cong

$$\begin{cases} x=(t^2-1)e^{2t}\\ y=(t^2+1)e^{3t} \end{cases} \quad \text{tại điểm ứng với } t=0.$$

Lời giải.

$$x'(t) = 2te^{2t} + 2(t^2 - 1)e^{2t}, \quad y'(t) = 2te^{3t} + 3(t^2 + 1)e^{3t}, \quad \text{diểm } M_0(-1;1).$$

Ví dụ 1. (20181) Viết phương trình tiếp tuyến và pháp tuyến của đường cong

$$\begin{cases} x=(t^2-1)e^{2t}\\ y=(t^2+1)e^{3t} \end{cases} \quad \text{tại điểm ứng với } t=0.$$

Lời giải.

$$x'(t) = 2te^{2t} + 2(t^2 - 1)e^{2t}, \quad y'(t) = 2te^{3t} + 3(t^2 + 1)e^{3t}, \quad \text{diểm } M_0(-1;1).$$

Phương trình tiếp tuyến tại $M_0(-1;1)$ là

$$\frac{x+1}{-2} = \frac{y-1}{3}.$$

Ví dụ 1. (20181) Viết phương trình tiếp tuyến và pháp tuyến của đường cong

$$\begin{cases} x=(t^2-1)e^{2t}\\ y=(t^2+1)e^{3t} \end{cases} \quad \text{tại điểm ứng với } t=0.$$

Lời giải.

$$x'(t) = 2te^{2t} + 2(t^2 - 1)e^{2t}, \quad y'(t) = 2te^{3t} + 3(t^2 + 1)e^{3t}, \quad \text{diểm } M_0(-1;1).$$

Phương trình tiếp tuyến tại $M_0(-1;1)$ là

$$\frac{x+1}{-2} = \frac{y-1}{3}.$$

Phương trình pháp tuyến tại $M_0(-1;1)$ là

$$-2(x+1) + 3(y-1) = 0$$
 hay $-2x + 3y - 5 = 0$.

Ví dụ 1. (20181) Viết phương trình tiếp tuyến và pháp tuyến của đường cong

$$\begin{cases} x=(t^2-1)e^{2t}\\ y=(t^2+1)e^{3t} \end{cases} \quad \text{tại điểm ứng với } t=0.$$

Lời giải.

$$x'(t) = 2te^{2t} + 2(t^2 - 1)e^{2t}, \quad y'(t) = 2te^{3t} + 3(t^2 + 1)e^{3t}, \quad \text{diểm } M_0(-1;1).$$

Phương trình tiếp tuyến tại $M_0(-1;1)$ là

$$\frac{x+1}{-2} = \frac{y-1}{3}.$$

Phương trình pháp tuyến tại $M_0(-1;1)$ là

$$-2(x+1) + 3(y-1) = 0$$
 hay $-2x + 3y - 5 = 0$.

Ví dụ 2. Viết pt tiếp tuyến và pháp tuyến với đường astroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=5$ tại điểm M(8;1).

Cho đường cong L không tự cắt và có tiếp tuyến tại mọi điểm thuộc L.

Cho đường cong L không tự cắt và có tiếp tuyến tại mọi điểm thuộc L. Trên L chọn một chiều làm chiều dương. Vectơ tiếp tuyến đơn vị tại điểm $M \in L$ ứng với chiều dương được ký hiệu là $\overrightarrow{T}(M)$.

Cho đường cong L không tự cắt và có tiếp tuyến tại mọi điểm thuộc L. Trên L chọn một chiều làm chiều dương. Vectơ tiếp tuyến đơn vị tại điểm $M \in L$ ứng với chiều dương được ký hiệu là $\overrightarrow{T}(M)$.

Dịnh nghĩa

Cho hai điểm M và M' trên L. Độ cong trung bình của cung $\widehat{MM'}$, ký hiệu $C_{tb}(\widehat{MM'})$, là tỷ số của góc giữa hai vectơ đơn vị $\overrightarrow{T}(M)$ và $\overrightarrow{T}(M')$ với độ dài của cung $\widehat{MM'}$

$$C_{tb}(\widehat{MM'}) = \frac{\alpha}{\widehat{MM'}},$$

trong đó α là góc (rad) giữa hai vectơ đơn vị $\overrightarrow{T}(M)$ và $\overrightarrow{T}(M')$.

Định nghĩa

Cho hai điểm M và M' trên L. Độ cong trung bình của cung $\widehat{MM'}$, ký hiệu $C_{tb}(\widehat{MM'})$, là tỷ số của góc giữa hai vectơ đơn vị $\overrightarrow{T}(M)$ và $\overrightarrow{T}(M')$ với độ dài của cung $\widehat{MM'}$

$$C_{tb}(\widehat{MM'}) = \frac{\alpha}{\widehat{MM'}}$$
, trong đó α là góc (rad) giữa hai vectơ đơn vị $\overrightarrow{T}(M)$ và $\overrightarrow{T}(M')$.

Dinh nghĩa

Ta gọi độ cong của đường cong L tại điểm M, ký hiệu C(M), là giới hạn, nếu có, của độ cong trung bình $C_{tb}(\widehat{MM'})$ khi điểm M' dần tới điểm M trên L

$$C(M) = \lim_{M' \to M} C_{tb}(\widehat{MM'}).$$

Định nghĩa

Ta gọi độ cong của đường cong L tại điểm M, ký hiệu C(M), là giới hạn, nếu có, của độ cong trung bình $C_{tb}(\widehat{MM'})$ khi điểm M' dần tới điểm M trên L

$$C(M) = \lim_{M' \to M} C_{tb}(\widehat{MM'}).$$

Chú ý

Độ cong của đường cong tại một điểm đo tốc độ biến thiên (về hướng) của vectơ tiếp tuyến đơn vị $\overrightarrow{T}(M)$ theo độ dài cung.

Định nghĩa

Ta gọi độ cong của đường cong L tại điểm M, ký hiệu C(M), là giới hạn, nếu có, của độ cong trung bình $C_{tb}(\widehat{MM'})$ khi điểm M' dần tới điểm M trên L

$$C(M) = \lim_{M' \to M} C_{tb}(\widehat{MM'}).$$

Chú ý

Độ cong của đường cong tại một điểm đo tốc độ biến thiên (về hướng) của vectơ tiếp tuyến đơn vị $\overrightarrow{T}(M)$ theo độ dài cung.

Ví du 1. Với đường tròn bán kính R, ta có

$$C_{tb}(\widehat{MM'}) = \frac{\alpha}{\widehat{MM'}} = \frac{\alpha}{R\alpha} = \frac{1}{R}.$$

Định nghĩa

Ta gọi độ cong của đường cong L tại điểm M, ký hiệu C(M), là giới hạn, nếu có, của độ cong trung bình $C_{tb}(\widehat{MM'})$ khi điểm M' dần tới điểm M trên L

$$C(M) = \lim_{M' \to M} C_{tb}(\widehat{MM'}).$$

Chú ý

Độ cong của đường cong tại một điểm đo tốc độ biến thiên (về hướng) của vectơ tiếp tuyến đơn vị $\overrightarrow{T}(M)$ theo độ dài cung.

Ví dụ 1. Với đường tròn bán kính R, ta có

$$C_{tb}(\widehat{MM'}) = \frac{\alpha}{\widehat{MM'}} = \frac{\alpha}{R\alpha} = \frac{1}{R}. \text{ Suy ra } C(M) = \lim_{M' \to M} C_{tb}(\widehat{MM'}) = \frac{1}{R}.$$

• Độ cong của đường được cho bởi y=f(x) là $C=\frac{|y''|}{[1+(y')^2]^{3/2}}.$

- Độ cong của đường được cho bởi y=f(x) là $C=\frac{|y''|}{[1+(y')^2]^{3/2}}.$
- $\bullet \ \, \text{Dộ cong của đường được cho bởi} \, \begin{cases} x=x(t) \\ y=y(t) \end{cases} \quad \text{là} \quad C=\frac{|x'y''-x''y'|}{[(x')^2+(y')^2]^{3/2}}.$

- Độ cong của đường được cho bởi y=f(x) là $C=\frac{|y''|}{[1+(y')^2]^{3/2}}.$
- $\bullet \ \, \text{ Dộ cong của đường được cho bởi } \begin{cases} x=x(t) \\ y=y(t) \end{cases} \quad \text{ là } \quad C=\frac{|x'y''-x''y'|}{[(x')^2+(y')^2]^{3/2}}.$
- Độ cong của đường được cho trong hệ tọa độ cực $r = f(\varphi)$: $C = \frac{|r^2 + 2(r')^2 rr''|}{[r^2 + (r')^2]^{3/2}}$.

- Độ cong của đường được cho bởi y=f(x) là $C=\frac{|y''|}{[1+(y')^2]^{3/2}}.$
- Độ cong của đường được cho bởi $\begin{cases} x=x(t) \\ y=y(t) \end{cases}$ là $C=\frac{|x'y''-x''y'|}{[(x')^2+(y')^2]^{3/2}}.$
- Độ cong của đường được cho trong hệ tọa độ cực $r=f(\varphi)$: $C=\frac{|r^2+2(r')^2-rr''|}{[r^2+(r')^2]^{3/2}}.$

Ví dụ 2. (20173) Tính độ cong tại điểm ứng với t=0 của đường $\begin{cases} x=e^t+\sin t, \\ y=e^t-\cos t. \end{cases}$

- Độ cong của đường được cho bởi y=f(x) là $C=\frac{|y''|}{[1+(y')^2]^{3/2}}.$
- Độ cong của đường được cho bởi $\begin{cases} x=x(t) \\ y=y(t) \end{cases}$ là $C=\frac{|x'y''-x''y'|}{[(x')^2+(y')^2]^{3/2}}.$
- Độ cong của đường được cho trong hệ tọa độ cực $r=f(\varphi)$: $C=\frac{|r^2+2(r')^2-rr''|}{[r^2+(r')^2]^{3/2}}.$

Ví dụ 2. (20173) Tính độ cong tại điểm ứng với t=0 của đường $\begin{cases} x=e^t+\sin t, \\ y=e^t-\cos t. \end{cases}$

Lời giải. Ta có $x' = e^t + \cos t$, $x'' = e^t - \sin t$,

- Độ cong của đường được cho bởi y = f(x) là $C = \frac{|y''|}{[1 + (y')^2]^{3/2}}$.
- Độ cong của đường được cho bởi $\begin{cases} x=x(t) \\ u=u(t) \end{cases}$ là $C=\frac{|x'y''-x''y'|}{\lceil (x')^2+(u')^2\rceil^{3/2}}.$
- Độ cong của đường được cho trong hệ tọa độ cực $r=f(\varphi)$: $C=\frac{|r^2+2(r')^2-rr''|}{[r^2+(r')^2]^{3/2}}.$

Ví dụ 2. (20173) Tính độ cong tại điểm ứng với t=0 của đường $\begin{cases} x=e^t+\sin t, \\ u=e^t-\cos t \end{cases}$

Lời giải. Ta có $x' = e^t + \cos t$, $x'' = e^t - \sin t$, $y' = e^t + \sin t$, $y'' = e^t + \cos t$.

- Độ cong của đường được cho bởi y=f(x) là $C=\frac{|y''|}{[1+(y')^2]^{3/2}}.$
- $\bullet \ \, \text{ Dộ cong của đường được cho bởi } \begin{cases} x=x(t) \\ y=y(t) \end{cases} \quad \text{ là } \quad C=\frac{|x'y''-x''y'|}{[(x')^2+(y')^2]^{3/2}}.$
- Độ cong của đường được cho trong hệ tọa độ cực $r=f(\varphi)$: $C=\frac{|r^2+2(r')^2-rr''|}{[r^2+(r')^2]^{3/2}}.$

Ví dụ 2. (20173) Tính độ cong tại điểm ứng với t=0 của đường $\begin{cases} x=e^t+\sin t, \\ y=e^t-\cos t. \end{cases}$

Lời giải. Ta có $x'=e^t+\cos t$, $x''=e^t-\sin t$, $y'=e^t+\sin t$, $y''=e^t+\cos t$. Độ cong tại điểm M(1;0) ứng với t=0, là

Công thức tính độ cong

- Độ cong của đường được cho bởi y=f(x) là $C=\frac{|y''|}{[1+(y')^2]^{3/2}}.$
- Độ cong của đường được cho bởi $\begin{cases} x=x(t) \\ y=y(t) \end{cases}$ là $C=\frac{|x'y''-x''y'|}{[(x')^2+(y')^2]^{3/2}}.$
- Độ cong của đường được cho trong hệ tọa độ cực $r=f(\varphi)$: $C=\frac{|r^2+2(r')^2-rr''|}{[r^2+(r')^2]^{3/2}}$.

Ví dụ 2. (20173) Tính độ cong tại điểm ứng với t=0 của đường $\begin{cases} x=e^t+\sin t, \\ y=e^t-\cos t. \end{cases}$

Lời giải. Ta có $x'=e^t+\cos t$, $x''=e^t-\sin t$, $y'=e^t+\sin t$, $y''=e^t+\cos t$. Độ cong tại điểm M(1;0) ứng với t=0, là

$$C(M) = \frac{|2 \times 2 - 1 \times 1|}{(2^2 + 1^2)^{3/2}} = \frac{3}{5\sqrt{5}}.$$

Công thức tính độ cong

- Bài tập 1. (20172) Tính độ cong của đường $y=\ln(\sin x)$ tại điểm ứng với $x=\frac{\pi}{4}$.
- Bài tập 2. (20182) Tính độ cong của đường $y = x^3 + 2x^2 + x$ tại điểm ứng với x = 1.
- Bài tập 3. Tính độ cong của đường $r=a(1+\cos\varphi)$ (a>0) tại điểm ứng với $\varphi=\pi/2$.
- Bài tập 4. (20172) Tính độ cong của đường $\begin{cases} x = \cos t + t \sin t \\ y = \sin t t \cos t \end{cases}$ tại điểm ứng với $t = \pi$.
- Bài tập 5. Tính độ cong của đường $y=\sin x$ tại điểm $M(\frac{\pi}{3},\frac{\sqrt{3}}{2})$. Độ cong lớn nhất của đường $y=\sin x$ bằng bao nhiều?

Hình bao

Cho một họ đường cong $\mathcal L$ phụ thuộc một hay nhiều tham số. Nếu mọi đường cong của họ $\mathcal L$ đều tiếp xúc với một đường cong E và ngược lại, tại mỗi điểm của đường cong E đều có một đường của họ $\mathcal L$ tiếp xúc với E tại điểm ấy thì E gọi là hình bao của họ đường cong $\mathcal L$.

Hình bao

Cho một họ đường cong $\mathcal L$ phụ thuộc một hay nhiều tham số. Nếu mọi đường cong của họ $\mathcal L$ đều tiếp xúc với một đường cong E và ngược lại, tại mỗi điểm của đường cong E đều có một đường của họ $\mathcal L$ tiếp xúc với E tại điểm ấy thì E gọi là hình bao của họ đường cong $\mathcal L$.

Ví dụ 1. Họ đường tròn $(x-c)^2+(y-c)^2=c^2$, (c là tham số khác 0) có tâm I(c,c), bán kính |c|. Các đường tròn này tiếp xúc với hai trục tọa độ. Hình bao của họ là hai trục tọa độ (trừ tại gốc O).

Ví dụ 1. Họ đường tròn $(x-c)^2+(y-c)^2=c^2$, (c là tham số khác 0) có tâm I(c,c), bán kính |c|. Các đường tròn này tiếp xúc với hai trục tọa độ. Hình bao của họ là hai trục tọa độ (trừ tại gốc O).

Định lý

Cho họ đường cong có phương trình F(x,y,c)=0 phụ thuộc tham số c. Nếu các đường của họ ấy không có điểm kỳ dị thì phương trình hình bao E của họ này được xác định bằng cách khử tham số c từ hệ phương trình

$$\begin{cases} F(x,y,c) = 0, \\ F'_c(x,y,c) = 0. \end{cases}$$

Ví dụ 1. Họ đường tròn $(x-c)^2+(y-c)^2=c^2$, (c là tham số khác 0) có tâm I(c,c), bán kính |c|. Các đường tròn này tiếp xúc với hai trục tọa độ. Hình bao của họ là hai trục tọa độ (trừ tại gốc O).

Định lý

Cho họ đường cong có phương trình F(x,y,c)=0 phụ thuộc tham số c. Nếu các đường của họ ấy không có điểm kỳ dị thì phương trình hình bao E của họ này được xác định bằng cách khử tham số c từ hệ phương trình

$$\begin{cases} F(x, y, c) = 0, \\ F'_c(x, y, c) = 0. \end{cases}$$

Ví dụ 2. Tìm hình bao của các họ đường cong sau

a)
$$2x^2 - 4cx + 2y^2 + c^2 = 0$$
, c là tham số khác 0.

b)
$$c^2y + c(x^2 + 1) = 1$$
.

Ví dụ 2. Tìm hình bao của các họ đường cong sau

a)
$$2x^2-4cx+2y^2+c^2=0$$
, c là tham số khác 0.

b)
$$c^2y + c(x^2 + 1) = 1$$
.

Ví du 2. Tìm hình bao của các ho đường cong sau

a)
$$2x^2 - 4cx + 2y^2 + c^2 = 0$$
, c là tham số khác 0. b) $c^2y + c(x^2 + 1) = 1$.

b)
$$c^2y + c(x^2 + 1) = 1$$
.

Lời giải. a) Ta viết lại pt
$$F(x,y,c)=(x-c)^2+y^2-\left(\frac{c}{\sqrt{2}}\right)^2=0.$$

Ví du 2. Tìm hình bao của các họ đường cong sau

a)
$$2x^2 - 4cx + 2y^2 + c^2 = 0$$
, c là tham số khác 0.

b)
$$c^2y + c(x^2 + 1) = 1$$

a)
$$2x^2-4cx+2y^2+c^2=0$$
, c là tham số khác 0. b) $c^2y+c(x^2+1)=1$. Lời giải. a) Ta viết lại pt $F(x,y,c)=(x-c)^2+y^2-\left(\frac{c}{\sqrt{2}}\right)^2=0$. Đây là pt của đường tròn, tâm $(c,0)$, bán kính $\left|\frac{c}{\sqrt{2}}\right|$.

Ví dụ 2. Tìm hình bao của các họ đường cong sau

a)
$$2x^2 - 4cx + 2y^2 + c^2 = 0$$
, c là tham số khác 0. b) $c^2y + c(x^2 + 1) = 1$.

Lời giải. a) Ta viết lại pt
$$F(x,y,c)=(x-c)^2+y^2-\left(\frac{c}{\sqrt{2}}\right)^2=0$$
. Đây là pt của đường tròn, tâm $(c,0)$, bán kính $\left|\frac{c}{\sqrt{2}}\right|$.

Ta có $(F_x')^2+(F_y')^2=4(x-c)^2+4y^2=2c^2>0$, nên các điểm của họ đường cong đều là điểm chính quy.

Ví dụ 2. Tìm hình bao của các họ đường cong sau

a)
$$2x^2 - 4cx + 2y^2 + c^2 = 0$$
, c là tham số khác 0. b) $c^2y + c(x^2 + 1) = 1$.

Lời giải. a) Ta viết lại pt
$$F(x,y,c)=(x-c)^2+y^2-\left(\frac{c}{\sqrt{2}}\right)^2=0$$
. Đây là pt của đường tròn, tâm $(c,0)$, bán kính $\left|\frac{c}{\sqrt{2}}\right|$.

Ta có $(F_x')^2+(F_y')^2=4(x-c)^2+4y^2=2c^2>0$, nên các điểm của họ đường cong đều là điểm chính quy.

 $F_c'(x,y,c)=-2x+c=0\Rightarrow c=2x$. Thay vào pt đã cho ta được phương trình của hình bao là $y^2-x^2=0$ hay $y=\pm x$ (trừ tại gốc O, do $c\neq 0$).

Ví dụ 2. Tìm hình bao của các họ đường cong sau

a)
$$2x^2 - 4cx + 2y^2 + c^2 = 0$$
, c là tham số khác 0. b) $c^2y + c(x^2 + 1) = 1$.

Lời giải. a) Ta viết lại pt
$$F(x,y,c)=(x-c)^2+y^2-\left(\frac{c}{\sqrt{2}}\right)^2=0$$
. Đây là pt của đường tròn, tâm $(c,0)$, bán kính $\left|\frac{c}{\sqrt{2}}\right|$.

Ta có $(F_x')^2+(F_y')^2=4(x-c)^2+4y^2=2c^2>0$, nên các điểm của họ đường cong đều là điểm chính quy.

 $F_c'(x,y,c)=-2x+c=0\Rightarrow c=2x.$ Thay vào pt đã cho ta được phương trình của hình bao là $y^2-x^2=0$ hay $y=\pm x$ (trừ tại gốc O, do $c\neq 0$).

b) Phương trình hình bao $4y + (x^2 + 1)^2 = 0$.

Ví du 2. Tìm hình bao của các họ đường cong sau

a)
$$2x^2 - 4cx + 2y^2 + c^2 = 0$$
, c là tham số khác 0. b) $c^2y + c(x^2 + 1) = 1$.

Lời giải. a) Ta viết lại pt
$$F(x,y,c)=(x-c)^2+y^2-\left(\frac{c}{\sqrt{2}}\right)^2=0$$
. Đây là pt của đường tròn, tâm $(c,0)$, bán kính $\left|\frac{c}{\sqrt{2}}\right|$.

Ta có $(F_x')^2+(F_y')^2=4(x-c)^2+4y^2=2c^2>0$, nên các điểm của họ đường cong đều là điểm chính quy.

 $F_c'(x,y,c)=-2x+c=0\Rightarrow c=2x.$ Thay vào pt đã cho ta được phương trình của hình bao là $y^2-x^2=0$ hay $y=\pm x$ (trừ tại gốc O, do $c\neq 0$).

b) Phương trình hình bao $4y + (x^2 + 1)^2 = 0$.

Chú ý

Nếu họ đường cong có điểm kỳ dị thì hệ phương trình trên bao gồm cả phương trình hình bao và tập hợp các điểm kỳ dị.

Nội dung

- Úng dụng trong hình học phẳng
 - Tiếp tuyến và pháp tuyến
 - Độ cong
 - Hình bao

2 Ứng dụng trong hình học không gian

Hàm vecto

Giả sử $I \subset \mathbb{R}$. Ánh xạ:

$$\vec{r}: t \in I \to \vec{r}(t) \in \mathbb{R}^n$$
,

được gọi là hàm vectơ của biến số t xác định trên I.

Hàm vecto

Giả sử $I \subset \mathbb{R}$. Ánh xạ:

$$\vec{r}: t \in I \to \vec{r}(t) \in \mathbb{R}^n$$
,

được gọi là hàm vectơ của biến số t xác định trên I. Với n=3:

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}.$$

Hàm vecto

Giả sử $I \subset \mathbb{R}$. Ánh xạ:

$$\vec{r}: t \in I \to \vec{r}(t) \in \mathbb{R}^n$$
,

được gọi là hàm vectơ của biến số t xác định trên I. Với n=3:

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}.$$

Đặt

$$\overrightarrow{OM} = \overrightarrow{r}(t), \quad M(x(t), y(t), z(t)).$$

Hàm vecto

Giả sử $I \subset \mathbb{R}$. Ánh xạ:

$$\vec{r}: t \in I \to \vec{r}(t) \in \mathbb{R}^n$$
,

được gọi là hàm vectơ của biến số t xác định trên I. Với n=3:

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}.$$

Đặt

$$\overrightarrow{OM} = \overrightarrow{r}(t), \quad M(x(t), y(t), z(t)).$$

Tốc đồ (đồ thị) của hàm vectơ $\vec{r}(t)$: Tập hợp các điểm M khi $t \in I$ (là một đường cong L). Đường cong L có phương trình tham số là

$$x = x(t), \quad y = y(t), \quad z = z(t).$$

Giới han

Hàm vectơ $\vec{r}(t)$ có giới hạn là \vec{a} khi t dần tới t_0 : $\lim_{t \to t_0} \vec{r}(t) = \vec{a}$, nếu

$$|\vec{r}(t) - \vec{a}| \rightarrow 0$$
 khi $t \rightarrow t_0$,

Giới hạn

Hàm vecto $\vec{r}(t)$ có giới hạn là \vec{a} khi t dần tới t_0 : $\lim_{t \to t_0} \vec{r}(t) = \vec{a}$, nếu

$$|\vec{r}(t) - \vec{a}| \to 0$$
 khi $t \to t_0$,

$$\Leftrightarrow \quad \forall \varepsilon > 0, \exists \delta > 0: \quad |\vec{r}(t) - \vec{a}\,| < \varepsilon \quad \text{khi} \quad 0 < |t - t_0| < \delta.$$

Giới han

Hàm vectơ $\vec{r}(t)$ có giới hạn là \vec{a} khi t dần tới t_0 : $\lim_{t \to t_0} \vec{r}(t) = \vec{a}$, nếu

$$|\vec{r}(t) - \vec{a}| \to 0$$
 khi $t \to t_0$,

$$\Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0: \quad |\vec{r}(t) - \vec{a}| < \varepsilon \quad \text{khi} \quad 0 < |t - t_0| < \delta.$$

Hàm $\vec{r}(t)$ liên tục tại $t_0 \in I$ nếu: $\lim_{t \to t_0} \vec{r}(t) = \vec{r}(t_0)$

$$\Leftrightarrow \lim_{t \to t_0} x(t) = x(t_0), \quad \lim_{t \to t_0} y(t) = y(t_0), \quad \lim_{t \to t_0} z(t) = z(t_0).$$

Giới hạn

Hàm vecto $\vec{r}(t)$ có giới hạn là \vec{a} khi t dần tới t_0 : $\lim_{t \to t_0} \vec{r}(t) = \vec{a}$, nếu

$$|\vec{r}(t) - \vec{a}| \to 0$$
 khi $t \to t_0$,

$$\Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0: \quad |\vec{r}(t) - \vec{a}| < \varepsilon \quad \text{khi} \quad 0 < |t - t_0| < \delta.$$

Hàm $\vec{r}(t)$ liên tục tại $t_0 \in I$ nếu: $\lim_{t \to t_0} \vec{r}(t) = \vec{r}(t_0)$

$$\Leftrightarrow \lim_{t \to t_0} x(t) = x(t_0), \quad \lim_{t \to t_0} y(t) = y(t_0), \quad \lim_{t \to t_0} z(t) = z(t_0).$$

Đạo hàm

Xét hàm vectơ $\vec{r}(t)$ và $t_0 \in I$. Đạo hàm

$$\frac{d\vec{r}(t_0)}{dt} := \lim_{t \to t_0} \frac{\Delta \vec{r}}{\Delta t} = \lim_{t \to t_0} \frac{\vec{r}(t) - \vec{r}(t_0)}{t - t_0}.$$

Giới hạn

Hàm vectơ $\vec{r}(t)$ có giới hạn là \vec{a} khi t dần tới t_0 : $\lim_{t \to t_0} \vec{r}(t) = \vec{a}$, nếu

$$|\vec{r}(t) - \vec{a}| \to 0$$
 khi $t \to t_0$,

$$\Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0: \quad |\vec{r}(t) - \vec{a}| < \varepsilon \quad \text{khi} \quad 0 < |t - t_0| < \delta.$$

Hàm $\vec{r}(t)$ liên tục tại $t_0 \in I$ nếu: $\lim_{t \to t_0} \vec{r}(t) = \vec{r}(t_0)$

$$\Leftrightarrow \lim_{t \to t_0} x(t) = x(t_0), \quad \lim_{t \to t_0} y(t) = y(t_0), \quad \lim_{t \to t_0} z(t) = z(t_0).$$

Đạo hàm

Xét hàm vectơ $\vec{r}(t)$ và $t_0 \in I$. Đạo hàm

$$\frac{d\vec{r}(t_0)}{dt} := \lim_{t \to t_0} \frac{\Delta \vec{r}}{\Delta t} = \lim_{t \to t_0} \frac{\vec{r}(t) - \vec{r}(t_0)}{t - t_0}.$$

Ta nói hàm vectơ khả vi tại t_0 .

Chú ý

Đạo hàm của hàm vectơ $\vec{r}(t)$ tại t_0 là vectơ tiếp tuyến của tốc đồ tại điểm đó.

Chú ý

Đạo hàm của hàm vectơ $\vec{r}(t)$ tại t_0 là vectơ tiếp tuyến của tốc đồ tại điểm đó.

Với
$$n=3$$

$$\vec{r}'(t) = x'(t)\vec{i} + y'(t)\vec{j} + z'(t)\vec{k}.$$

Chú ý

Đạo hàm của hàm vectơ $\vec{r}(t)$ tại t_0 là vectơ tiếp tuyến của tốc đồ tại điểm đó.

Với n=3

$$\vec{r}'(t) = x'(t)\vec{i} + y'(t)\vec{j} + z'(t)\vec{k}.$$

Ví dụ. Xét đường cong $x(t) = \cos t$, $y(t) = \sin t$, z(t) = t.

Chú ý

Đạo hàm của hàm vectơ $\vec{r}(t)$ tại t_0 là vectơ tiếp tuyến của tốc đồ tại điểm đó.

Với n=3

$$\vec{r}'(t) = x'(t)\vec{i} + y'(t)\vec{j} + z'(t)\vec{k}.$$

Ví dụ. Xét đường cong $x(t) = \cos t$, $y(t) = \sin t$, z(t) = t.

Tiếp tuyến của đường cong tại một điểm

Xét đường cong L trong không gian với phương trình tham số

$$x = x(t), \quad y = y(t), \quad z = z(t).$$

Hàm vectơ tương ứng

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}.$$

Tiếp tuyến của đường cong tại một điểm

Xét đường cong L trong không gian với phương trình tham số

$$x = x(t), \quad y = y(t), \quad z = z(t).$$

Hàm vectơ tương ứng

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}.$$

Xét $M_0 \in L$: $M_0(x(t_0), y(t_0), z(t_0))$. Khi đó vecto

$$\vec{r}'(t_0) = x'(t_0)\vec{i} + y'(t_0)\vec{j} + z'(t_0)\vec{k}$$

là một vectơ tiếp tuyến của L tại điểm M_0 .

Tiếp tuyến của đường cong tại một điểm

Xét đường cong L trong không gian với phương trình tham số

$$x = x(t), \quad y = y(t), \quad z = z(t).$$

Hàm vectơ tương ứng

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}.$$

Xét $M_0 \in L$: $M_0(x(t_0), y(t_0), z(t_0))$. Khi đó vecto

$$\vec{r}'(t_0) = x'(t_0)\vec{i} + y'(t_0)\vec{j} + z'(t_0)\vec{k}$$

là một vectơ tiếp tuyến của L tại điểm M_0 .

Giả sử $\vec{r}'(t_0)
eq \vec{0}$. Phương trình tiếp tuyến của đường cong L tại điểm M_0 là

$$\frac{x - x(t_0)}{x'(t_0)} = \frac{y - y(t_0)}{y'(t_0)} = \frac{z - z(t_0)}{z'(t_0)}.$$

Pháp diện của đường cong tại một điểm

Có vô số pháp tuyến của đường cong L tại điểm M_0 . Chúng cùng nằm trên một mặt phẳng vuông góc với tiếp tuyến tại M_0 . Mặt phẳng ấy gọi là **pháp diện của đường cong** L **tại điểm** M_0 .

Pháp diện của đường cong tại một điểm

Có vô số pháp tuyến của đường cong L tại điểm M_0 . Chúng cùng nằm trên một mặt phẳng vuông góc với tiếp tuyến tại M_0 . Mặt phẳng ấy gọi là **pháp diện của đường cong** L **tại điểm** M_0 .

Phương trình pháp diện của đường cong L tại điểm M_0 là

$$(x - x(t_0))x'(t_0) + (y - y(t_0))y'(t_0) + (z - z(t_0))z'(t_0) = 0.$$

Pháp diện của đường cong tại một điểm

Có vô số pháp tuyến của đường cong L tại điểm M_0 . Chúng cùng nằm trên một mặt phẳng vuông góc với tiếp tuyến tại M_0 . Mặt phẳng ấy gọi là **pháp diện của đường cong** L **tại điểm** M_0 .

Phương trình pháp diện của đường cong L tại điểm M_0 là

$$(x - x(t_0))x'(t_0) + (y - y(t_0))y'(t_0) + (z - z(t_0))z'(t_0) = 0.$$

Ví dụ. Viết phương trình tiếp tuyến và pháp diện của đường cong

(20182CK)
$$x = t \cos 2t$$
, $y = t \sin 2t$, $z = 3t$ tại điểm ứng với $t = \pi/2$.

(20182GK)
$$x = \sin t, \ y = \cos t, \ z = e^{2t}$$
 tại điểm ứng với $t = 0$.

(20172GK)
$$x = 4\sin^2 t, \ y = 4\cos t, \ z = 2\sin t + 1$$
 tại điểm $M(1; -2\sqrt{3}; 2)$.

(20173CK)
$$\begin{cases} x^2 + y^2 + z^2 = 5, \\ x - 2y + 3z = 0, \end{cases}$$
 tại điểm $A(2; 1; 0)$.

Tiếp tuyến và pháp diện của đường cong tại một điểm

Phương trình tiếp tuyến của đường cong L tại điểm M_0 là

$$\frac{x - x(t_0)}{x'(t_0)} = \frac{y - y(t_0)}{y'(t_0)} = \frac{z - z(t_0)}{z'(t_0)}.$$

Phương trình pháp diện là $(x-x(t_0))x'(t_0)+(y-y(t_0))y'(t_0)+(z-z(t_0))z'(t_0)=0.$ Ví dụ. (20182CK) Viết phương trình tiếp tuyến và pháp diện của đường cong

$$x = t \cos 2t, \ y = t \sin 2t, \ z = 3t$$
 tại điểm ứng với $t = \pi/2$.

Tiếp tuyến và pháp diện của đường cong tại một điểm

Phương trình tiếp tuyến của đường cong L tại điểm M_0 là

$$\frac{x - x(t_0)}{x'(t_0)} = \frac{y - y(t_0)}{y'(t_0)} = \frac{z - z(t_0)}{z'(t_0)}.$$

Phương trình pháp diện là $(x-x(t_0))x'(t_0)+(y-y(t_0))y'(t_0)+(z-z(t_0))z'(t_0)=0$. Ví dụ. (20182CK) Viết phương trình tiếp tuyến và pháp diện của đường cong

$$x=t\cos 2t,\ y=t\sin 2t,\ z=3t$$
 tại điểm ứng với $t=\pi/2.$

Lời giải. Ta có $x'(t) = \cos 2t - 2t \sin 2t$, $y'(t) = \sin 2t + 2t \cos 2t$, z'(t) = 3. Điểm ứng với $t = \pi/2$ là $(-\frac{\pi}{2}; 0; \frac{3\pi}{2})$.

Tiếp tuyến và pháp diện của đường cong tại một điểm

Phương trình tiếp tuyến của đường cong L tại điểm M_0 là

$$\frac{x - x(t_0)}{x'(t_0)} = \frac{y - y(t_0)}{y'(t_0)} = \frac{z - z(t_0)}{z'(t_0)}.$$

Phương trình pháp diện là $(x-x(t_0))x'(t_0)+(y-y(t_0))y'(t_0)+(z-z(t_0))z'(t_0)=0.$ Ví dụ. (20182CK) Viết phương trình tiếp tuyến và pháp diện của đường cong

$$x=t\cos 2t,\ y=t\sin 2t,\ z=3t$$
 tại điểm ứng với $t=\pi/2.$

Lời giải. Ta có $x'(t)=\cos 2t-2t\sin 2t$, $y'(t)=\sin 2t+2t\cos 2t$, z'(t)=3. Điểm ứng với $t=\pi/2$ là $(-\frac{\pi}{2};0;\frac{3\pi}{2})$. Một vectơ tiếp tuyến tại điểm đó là $(-1;-\pi;3)$.

Phương trình tiếp tuyến là

$$\frac{x+\pi/2}{-1} = \frac{y}{-\pi} = \frac{z-3\pi/2}{3}.$$

Tiếp tuyến và pháp diện của đường cong tại một điểm

Phương trình tiếp tuyến của đường cong L tại điểm M_0 là

$$\frac{x - x(t_0)}{x'(t_0)} = \frac{y - y(t_0)}{y'(t_0)} = \frac{z - z(t_0)}{z'(t_0)}.$$

Phương trình pháp diện là $(x-x(t_0))x'(t_0)+(y-y(t_0))y'(t_0)+(z-z(t_0))z'(t_0)=0$. Ví dụ. (20182CK) Viết phương trình tiếp tuyến và pháp diện của đường cong

$$x=t\cos 2t,\ y=t\sin 2t,\ z=3t$$
 tại điểm ứng với $t=\pi/2.$

Lời giải. Ta có $x'(t)=\cos 2t-2t\sin 2t$, $y'(t)=\sin 2t+2t\cos 2t$, z'(t)=3. Điểm ứng với $t=\pi/2$ là $(-\frac{\pi}{2};0;\frac{3\pi}{2})$. Một vectơ tiếp tuyến tại điểm đó là $(-1;-\pi;3)$.

Phương trình tiếp tuyến là

$$\frac{x+\pi/2}{-1} = \frac{y}{-\pi} = \frac{z-3\pi/2}{3}.$$

Phương trình pháp diện là $x + \pi y - 3z + 5\pi = 0$.

Xét đường cong L trong không gian cho bởi hàm vecto $\vec{r}(t)$, có phương trình tham số

$$x = x(t), \quad y = y(t), \quad z = z(t).$$

Xét đường cong L trong không gian cho bởi hàm vecto $\vec{r}(t)$, có phương trình tham số

$$x = x(t), \quad y = y(t), \quad z = z(t).$$

Độ cong của đường cong L cho bởi công thức

$$C = \frac{\sqrt{\begin{vmatrix} x' & y' \\ x'' & y'' \end{vmatrix}^2 + \begin{vmatrix} y' & z' \\ y'' & z'' \end{vmatrix}^2 + \begin{vmatrix} z' & x' \\ z'' & x'' \end{vmatrix}^2}}{(x'^2 + y'^2 + z'^2)^{3/2}} = \frac{|\vec{r}'(t) \times \vec{r}''(t)|}{|\vec{r}'(t)|^3}.$$

Xét đường cong L trong không gian cho bởi hàm vecto $\vec{r}(t)$, có phương trình tham số

$$x = x(t), \quad y = y(t), \quad z = z(t).$$

Độ cong của đường cong L cho bởi công thức

$$C = \frac{\sqrt{\begin{vmatrix} x' & y' \\ x'' & y'' \end{vmatrix}^2 + \begin{vmatrix} y' & z' \\ y'' & z'' \end{vmatrix}^2 + \begin{vmatrix} z' & x' \\ z'' & x'' \end{vmatrix}^2}}{(x'^2 + y'^2 + z'^2)^{3/2}} = \frac{|\vec{r}'(t) \times \vec{r}''(t)|}{|\vec{r}'(t)|^3}.$$

Ví dụ 1. (20182CK) Tính độ cong tại gốc tọa độ O(0;0;0) của đường cong L cho bởi phương trình $x=t\cos 3t,\ y=t\sin 3t,\ z=2t.$

Ví dụ 2. (20182GK) Tính độ cong tại điểm M(1;0;-1) của đường là giao của mặt trụ $4x^2+y^2=4$ và mặt phẳng x-3z=4.

Ví dụ 2. (20182GK) Tính độ cong tại điểm M(1;0;-1) của đường là giao của mặt trụ $4x^2+y^2=4$ và mặt phẳng x-3z=4.

Ví dụ 2. (20182GK) Tính độ cong tại điểm M(1;0;-1) của đường là giao của mặt trụ $4x^2+y^2=4$ và mặt phẳng x-3z=4. Lời giải. Ta tham số hóa pt của đường cong $x=\cos t$, $y=2\sin t$.

Ví dụ 2. (20182GK) Tính độ cong tại điểm M(1;0;-1) của đường là giao của mặt trụ $4x^2+y^2=4$ và mặt phẳng x-3z=4.

Lời giải. Ta tham số hóa pt của đường cong
$$x=\cos t,\ y=2\sin t.$$
 Suy ra $z=\frac{1}{3}(\cos t-4).$

$$\vec{r}(t) = \cos t \, \vec{i} + 2 \sin t \, \vec{j} + \frac{1}{3} (\cos t - 4) \vec{k}.$$

Ví dụ 2. (20182GK) Tính độ cong tại điểm M(1;0;-1) của đường là giao của mặt trụ $4x^2+y^2=4$ và mặt phẳng x-3z=4.

Lời giải. Ta tham số hóa pt của đường cong $x=\cos t$, $y=2\sin t$. Suy ra $z=\frac{1}{3}(\cos t-4)$.

$$\vec{r}(t) = \cos t \, \vec{i} + 2 \sin t \, \vec{j} + \frac{1}{3} (\cos t - 4) \vec{k}.$$

$$\vec{r}'(t) = -\sin t \,\vec{i} + 2\cos t \,\vec{j} - \frac{1}{3}\sin t \,\vec{k}, \quad \vec{r}''(t) = -\cos t \,\vec{i} - 2\sin t \,\vec{j} - \frac{1}{3}\cos t \,\vec{k}.$$

Ví dụ 2. (20182GK) Tính độ cong tại điểm M(1;0;-1) của đường là giao của mặt trụ $4x^2+y^2=4$ và mặt phẳng x-3z=4.

Lời giải. Ta tham số hóa pt của đường cong $x=\cos t$, $y=2\sin t$. Suy ra $z=\frac{1}{3}(\cos t-4)$.

$$\vec{r}(t) = \cos t \, \vec{i} + 2 \sin t \, \vec{j} + \frac{1}{3} (\cos t - 4) \vec{k}.$$

$$\vec{r}'(t) = -\sin t \,\vec{i} + 2\cos t \,\vec{j} - \frac{1}{3}\sin t \,\vec{k}, \quad \vec{r}''(t) = -\cos t \,\vec{i} - 2\sin t \,\vec{j} - \frac{1}{3}\cos t \,\vec{k}.$$

Tại điểm M(1;0;-1), ta có $\cos t=1$, $\sin t=0$, lấy tham số t=0.

Ví dụ 2. (20182GK) Tính độ cong tại điểm M(1;0;-1) của đường là giao của mặt trụ $4x^2+y^2=4$ và mặt phẳng x-3z=4.

Lời giải. Ta tham số hóa pt của đường cong $x=\cos t$, $y=2\sin t$. Suy ra $z=\frac{1}{3}(\cos t-4)$.

$$\vec{r}(t) = \cos t \, \vec{i} + 2 \sin t \, \vec{j} + \frac{1}{3} (\cos t - 4) \vec{k}.$$

$$\vec{r}'(t) = -\sin t \,\vec{i} + 2\cos t \,\vec{j} - \frac{1}{3}\sin t \,\vec{k}, \quad \vec{r}''(t) = -\cos t \,\vec{i} - 2\sin t \,\vec{j} - \frac{1}{3}\cos t \,\vec{k}.$$

Tại điểm M(1;0;-1), ta có $\cos t=1$, $\sin t=0$, lấy tham số t=0. $\vec{r}'(0)=2\vec{j}, \vec{r}''(0)=-\vec{i}-\frac{1}{2}\vec{k}$.

Ví dụ 2. (20182GK) Tính độ cong tại điểm M(1;0;-1) của đường là giao của mặt trụ $4x^2+y^2=4$ và mặt phẳng x-3z=4.

Lời giải. Ta tham số hóa pt của đường cong $x=\cos t$, $y=2\sin t$. Suy ra $z=\frac{1}{3}(\cos t-4)$.

$$\vec{r}(t) = \cos t \, \vec{i} + 2 \sin t \, \vec{j} + \frac{1}{3} (\cos t - 4) \vec{k}.$$

$$\vec{r}'(t) = -\sin t \, \vec{i} + 2\cos t \, \vec{j} - \frac{1}{3}\sin t \, \vec{k}, \quad \vec{r}''(t) = -\cos t \, \vec{i} - 2\sin t \, \vec{j} - \frac{1}{3}\cos t \, \vec{k}.$$

Tại điểm M(1;0;-1), ta có $\cos t=1$, $\sin t=0$, lấy tham số t=0. $\vec{r}'(0)=2$ \vec{i} , $\vec{r}''(0)=-\vec{i}-\frac{1}{2}\vec{k}$. Ta có

$$|\vec{r}'(0) \times \vec{r}''(0)| = \sqrt{\left(-\frac{2}{3}\right)^2 + 0^2 + 2^2} = \frac{2}{3}\sqrt{10}, \quad |\vec{r}'(0)| = 2.$$

Ví dụ 2. (20182GK) Tính độ cong tại điểm M(1;0;-1) của đường là giao của mặt trụ $4x^2+y^2=4$ và mặt phẳng x-3z=4.

Lời giải. Ta tham số hóa pt của đường cong $x=\cos t$, $y=2\sin t$. Suy ra $z=\frac{1}{3}(\cos t-4)$.

$$\vec{r}(t) = \cos t \, \vec{i} + 2 \sin t \, \vec{j} + \frac{1}{3} (\cos t - 4) \vec{k}.$$

$$\vec{r}'(t) = -\sin t \,\vec{i} + 2\cos t \,\vec{j} - \frac{1}{3}\sin t \,\vec{k}, \quad \vec{r}''(t) = -\cos t \,\vec{i} - 2\sin t \,\vec{j} - \frac{1}{3}\cos t \,\vec{k}.$$

Tại điểm M(1;0;-1), ta có $\cos t=1$, $\sin t=0$, lấy tham số t=0. $\vec{r}'(0)=2$ \vec{i} , $\vec{r}''(0)=-\vec{i}-\frac{1}{2}\vec{k}$. Ta có

$$|\vec{r}'(0) \times \vec{r}''(0)| = \sqrt{\left(-\frac{2}{3}\right)^2 + 0^2 + 2^2} = \frac{2}{3}\sqrt{10}, \quad |\vec{r}'(0)| = 2.$$

Độ cong tại điểm M là $C(M) = \frac{1}{12}\sqrt{10}$.

Ví dụ 1. Mặt ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
.

Ví dụ 1. Mặt ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
.

Hình 2: Mặt ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 (bên trái) và $x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$ (bên phải).

Ví dụ 2. Mặt elliptic paraboloid
$$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Ví dụ 2. Mặt elliptic paraboloid
$$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Hình 3: Mặt elliptic paraboloid $\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ (bên trái) và $\frac{y}{b} = \frac{x^2}{a^2} + \frac{z^2}{c^2}$ (bên phải).

Ví dụ 3. Mặt paraboloid

Hình 4: Mặt paraboloid $z - 4 = (x - 1)^2 + (y - 3)^2$ (bên trái) và $y - 1 = (x - 3)^2 + z^2$ (bên phải).

Ví du 4. Măt nón

Hình 5: Mặt nón
$$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
 (bên trái) và $z = \sqrt{\frac{x^2}{a^2} + \frac{y^2}{b^2}}$ (bên phải).

Ví du 4. Măt nón

Hình 6: Mặt nón
$$\frac{y^2}{b^2} = \frac{x^2}{a^2} + \frac{z^2}{c^2}$$
.

Ví dụ 5. Mặt trụ elliptic

Hình 7: Mặt trụ elliptic $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (bên trái) và $\frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (bên phải).

Ví dụ 6. Mặt trụ parabolic

Hình 8: Mặt trụ parabolic $z = x^2$ (bên trái) và $x = y^2$ (bên phải).

Pháp tuyến và tiếp diện của mặt cong tại một điểm

Xét mặt cong S trong không gian được cho bởi phương trình f(x,y,z)=0. Điểm $P(x_0,y_0,z_0)$ được gọi là điểm chính quy nếu

$$[f_x'(x_0, y_0, z_0)]^2 + [f_y'(x_0, y_0, z_0)]^2 + [f_z'(x_0, y_0, z_0)]^2 > 0.$$

Pháp tuyến và tiếp diện của mặt cong tại một điểm

Xét mặt cong S trong không gian được cho bởi phương trình f(x,y,z)=0. Điểm $P(x_0,y_0,z_0)$ được gọi là điểm chính quy nếu

$$[f_x'(x_0, y_0, z_0)]^2 + [f_y'(x_0, y_0, z_0)]^2 + [f_z'(x_0, y_0, z_0)]^2 > 0.$$

Hình 9: Tiếp tuyến của mặt S tại điểm P.

Định lý

Tất cả các tiếp tuyến của mặt S tại một điểm chính quy P lập thành một mặt phẳng đi qua P. Mặt phẳng này gọi là tiếp diện của mặt S tại điểm P.

Định lý

Tất cả các tiếp tuyến của mặt S tại một điểm chính quy P lập thành một mặt phẳng đi qua P. Mặt phẳng này gọi là tiếp diện của mặt S tại điểm P.

 $\vec{n} = (f_x'(P), f_y'(P), f_z'(P))$ là một vectơ pháp tuyến của S tại điểm P.

Định lý

Tất cả các tiếp tuyến của mặt S tại một điểm chính quy P lập thành một mặt phẳng đi qua P. Mặt phẳng này gọi là tiếp diện của mặt S tại điểm P.

 $\vec{n}=(f_x'(P),f_y'(P),f_z'(P))$ là một vectơ pháp tuyến của S tại điểm P. Phương trình của tiếp diện tại $P(x_0,y_0,z_0)$ là

$$f'_x(P)(x-x_0) + f'_y(P)(y-y_0) + f'_z(P)(z-z_0) = 0.$$

Định lý

Tất cả các tiếp tuyến của mặt S tại một điểm chính quy P lập thành một mặt phẳng đi qua P. Mặt phẳng này gọi là tiếp diện của mặt S tại điểm P.

 $\vec{n}=(f_x'(P),f_y'(P),f_z'(P))$ là một vectơ pháp tuyến của S tại điểm P. Phương trình của tiếp diện tại $P(x_0,y_0,z_0)$ là

$$f'_x(P)(x-x_0) + f'_y(P)(y-y_0) + f'_z(P)(z-z_0) = 0.$$

Phương trình của pháp tuyến tại $P(x_0,y_0,z_0)$ là

$$\frac{x - x_0}{f'_x(P)} = \frac{y - y_0}{f'_y(P)} = \frac{z - z_0}{f'_z(P)}.$$

Dinh lý

Tất cả các tiếp tuyến của mặt S tại một điểm chính quy P lập thành một mặt phẳng đi qua P. Mặt phẳng này gọi là tiếp diện của mặt S tại điểm P.

 $\vec{n}=(f_x'(P),f_y'(P),f_z'(P))$ là một vectơ pháp tuyến của S tại điểm P. Phương trình của tiếp diên tai $P(x_0,y_0,z_0)$ là

$$f'_x(P)(x-x_0) + f'_y(P)(y-y_0) + f'_z(P)(z-z_0) = 0.$$

Phương trình của pháp tuyến tại $P(x_0,y_0,z_0)$ là

$$\frac{x - x_0}{f'_x(P)} = \frac{y - y_0}{f'_y(P)} = \frac{z - z_0}{f'_z(P)}.$$

Ví dụ 1. (20182GK) Viết phương trình tiếp diện và pháp tuyến của mặt cong $x^2+y^2-e^z-2xyz=0$ tại điểm P(1;0;0).

Phương trình của tiếp diện tại $P(x_0,y_0,z_0)$ là

$$f'_x(P)(x-x_0) + f'_y(P)(y-y_0) + f'_z(P)(z-z_0) = 0.$$

Phương trình của pháp tuyến tại $P(x_0,y_0,z_0)$ là

$$\frac{x - x_0}{f'_x(P)} = \frac{y - y_0}{f'_y(P)} = \frac{z - z_0}{f'_z(P)}.$$

Ví dụ 1. (20182GK) Viết phương trình tiếp diện và pháp tuyến của mặt cong $x^2+y^2-e^z-2xyz=0$ tại điểm P(1;0;0).

Phương trình của tiếp diện tại $P(x_0,y_0,z_0)$ là

$$f'_x(P)(x-x_0) + f'_y(P)(y-y_0) + f'_z(P)(z-z_0) = 0.$$

Phương trình của pháp tuyến tại $P(x_0,y_0,z_0)$ là

$$\frac{x - x_0}{f'_x(P)} = \frac{y - y_0}{f'_y(P)} = \frac{z - z_0}{f'_z(P)}.$$

Ví dụ 1. (20182GK) Viết phương trình tiếp diện và pháp tuyến của mặt cong

$$x^2 + y^2 - e^z - 2xyz = 0$$
 tại điểm $P(1;0;0)$.

Lời giải.
$$F(x,y,z)=x^2+y^2-e^z-2xyz$$
. Vecto $\vec{n}=(2x-2yz,2y-2xz,-e^z-2xy)$.

Phương trình của tiếp diện tại $P(x_0,y_0,z_0)$ là

$$f'_x(P)(x-x_0) + f'_y(P)(y-y_0) + f'_z(P)(z-z_0) = 0.$$

Phương trình của pháp tuyến tại $P(x_0,y_0,z_0)$ là

$$\frac{x - x_0}{f'_x(P)} = \frac{y - y_0}{f'_y(P)} = \frac{z - z_0}{f'_z(P)}.$$

Ví dụ 1. (20182GK) Viết phương trình tiếp diện và pháp tuyến của mặt cong

$$x^2 + y^2 - e^z - 2xyz = 0$$
 tại điểm $P(1;0;0)$.

Lời giải.
$$F(x, y, z) = x^2 + y^2 - e^z - 2xyz$$
. Vecto $\vec{n} = (2x - 2yz, 2y - 2xz, -e^z - 2xy)$.

Một vectơ pháp tuyến tại điểm P(1;0;0) là $\vec{n}(P)=(2;0,-1)$.

Phương trình của tiếp diện tại P(1;0;0) là 2x-z-2=0.

Phương trình của pháp tuyến tại P(1;0;0) là

$$\frac{x-1}{2} = \frac{z}{-1}, \ y = 0.$$

Bài tập

- Bài 1. (20172) Viết phương trình tiếp diện và pháp tuyến của mặt cong $\ln(x^2+3y)-2z^3=2$ tại điểm M(1;0;-1).
- Bài 2. (20182) Viết phương trình tiếp diện và pháp tuyến của mặt $x^2+y^2-z^2=-1$ tại điểm M(2;2;3).
- Bài 3. (20182) Viết phương trình tiếp diện của mặt $x^2+3y^2-z^2=3$ biết nó song song với mặt phẳng x-3y+z=0.
- Bài 4. (20182) Viết phương trình tiếp tuyến và pháp diện của đường cong cho dưới dạng giao của hai mặt cong $x^2+y^2+z^2=25$ và 4x+3y+5z=0 tại điểm M(3;-4;0).
- Bài 5. (20182) Viết phương trình pháp diện của đường cong $x=\sin t,\ y=3e^{-t},\ z=3e^t$ tại điểm M(0;3;3).
- Bài 6. Tính độ cong tại điểm M(1;-1) của đường cong

$$y = (2x - 3)e^{x^2 - 1}.$$