N-Body simulation using Barnes-Hut

Mats Thijssen

Physics

Things To Investigate:

- Large Scale Structure
- Rotation Curves (DM)
- Colliding Galaxies
 - Barred Galaxies
- DM Subhalo

Algorithm

Brute Force

- Perfectly Accurate
- O(n²)

Barnes Hut

- Approximation
- O(n log n)

Barnes-Hut

Tree Structure

- Recursively divide the region until every point has a separate node
- Every node stores: Points, COM, Mass, and size of node

Force Calculation:

- Traverse tree, find which nodes to use
- Require: $s/d < \theta$
 - s = sidelength of node
 - o d = distance from point to COM of node
 - \circ $\theta=0.5$
- Calculate total force on pt from used nodes

Rotational Curves

Stellar/Gas Velocity vs. Radial Distance

$$\Phi(r,0) = -2\pi G \int_0^\infty dk J_0(kr) \int_0^\infty dr r J_0(kr) \Sigma(r)$$

For exponential disk:

$$\Phi(r,0) = -\pi G \Sigma_0 r \left[I_0 \left(\frac{r}{2h_r} \right) K_1 \left(\frac{r}{2h_r} \right) - I_1 \left(\frac{r}{2h_r} \right) K_0 \left(\frac{r}{2h_r} \right) \right]$$

$$\Rightarrow v(r)^2 = \pi G \Sigma_0 \frac{r^2}{h_r} \left[I_0 \left(\frac{r}{2h_r} \right) K_0 \left(\frac{r}{2h_r} \right) - I_1 \left(\frac{r}{2h_r} \right) K_1 \left(\frac{r}{2h_r} \right) \right]$$

$$\Longrightarrow v(r)^2 = \pi G \Sigma_0 \frac{r^2}{h_r} \left[I_0 \left(\frac{r}{2h_r} \right) K_0 \left(\frac{r}{2h_r} \right) - I_1 \left(\frac{r}{2h_r} \right) K_1 \left(\frac{r}{2h_r} \right) \right]$$

Dark Matter Subhalo

- Small halo orbiting inside potential well of parent halo
- Strong tidal forces
- Loses energy & ang. mom. From dynamical friction

