Devoir 6 IFT2125-A-H19

Student: Qiang Ye (20139927)

Date: 14 Fév 2019

mailto: samuel.ducharme@umontreal.ca (mailto:samuel.ducharme@umontreal.ca)

Question

Supposons que pendant l'exécution de l'algorithme de Dijkstra le sommet v_i vient d'être ajouté à F_i et la i-ème itération est terminée. Est-ce que un chemin **le plus court** dans F_i de s vers un sommet dans $V \setminus F_i$ peut passer d'abord par v_i et ensuite par un autre sommet de F_i ? Expliquez votre réponse.

Answer Non, c'est pas possible.

Preuve

Dans le cas: i-ème itération est terminée, et le sommet v_i vient d'être ajouté à F_i .

Supposons un sommet $g \in V \setminus F_i$, un autre somme $u \in F_i \setminus \{v_i\}$, on garde les chemins possibles de s à g.

Par l'algorithme de Dijkstra, puisque u est ajouté à F_i plus tôt que v_i , c'est trivial que:

$$d(u) \le d(v_i) \tag{1}$$

Disons qu'il existe des chemins de v_i à u dang F_i , tant que v_i n'es pas u, on a:

$$\min\{C[v_i, u]\} > 0 \tag{2}$$

Si le chemine de s vers g comprenant $C[v_i, u]$ est le plus court, on peut dire:

$$\tilde{d}(g) = d(v_i) + \min\{c(C[v_i, u])\} + \min\{c(C[u, g])\}$$
(3)

Comme $d(u) \le d(v_i)$, on peut trouver un autre chemin C[s,g] qui utilise le chemin le plus court de s à u et ne contient pas le chemin $C[v_i,u]$, tel que:

$$c(C[s,g]) = d(u) + min\{c(C[u,g])\}$$

$$\tag{4}$$

Basé sur les formulaires (1), (2), (3), (4), on a:

$$c(C[s,g]) < \tilde{d}(g) \tag{5}$$

,ce qui signifie un chimin contenant $C[v_i,u]$ n'est pas un chemin **le plus court** de s à $g \in V \setminus F_i$, où s est le source, $v_i,u \in F_i$, et v_i est le sommet v_i vient d'être ajouté à F_i .