Pattern Classification

Hsiao-Lung Chan, Ph.D.

Dept Electrical Engineering

Chang Gung University, Taiwan

chanhl@mail.cgu.edu.tw

Linear discriminate function

Discriminate function $g(\mathbf{x})=0$ $w_0 + w_1x_1 + w_2x_2 = 0$

Linear discriminate function (cont.)

A two-class pattern classifier

$$g(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n = \mathbf{w}^T \mathbf{x}$$

where
$$\mathbf{w} = [w_0, w_1, w_2, \dots, w_n]$$
 and $\mathbf{x} = [1, x_1, x_2, \dots, x_n]$

$$g(\mathbf{x}) = \begin{cases} \mathbf{w}^T \mathbf{x} > 0 & \text{if } \mathbf{x} \in \mathbf{C}_1 \\ \mathbf{w}^T \mathbf{x} \le 0 & \text{if } \mathbf{x} \in \mathbf{C}_2 \end{cases}$$

Multi-category classifier

Build M weight vectors and M discriminate functions

$$g_i(\mathbf{x}) = \begin{cases} \mathbf{w}_i^T \mathbf{x} > 0 & \text{if } \mathbf{x} \in \mathbf{C}_i \\ \mathbf{w}_i^T \mathbf{x} \le 0 & \text{otherwise} \end{cases}, i = 1, 2, \dots, M$$

Make decision

Build M discriminate functions

Make decisions based on M discriminate functions

- One-to-rest separable
 - Each class is separable from the rest by a single discriminate function

if
$$g_i(\mathbf{x}) > 0$$
 then $\mathbf{x} \in C_i$

- Pair-wise separable
 - There exists M discriminate functions with the property that

if
$$g_i(\mathbf{x}) > g_j(\mathbf{x}) \ \forall j \neq i$$
 then $\mathbf{x} \in C_i$

$$g_{ij}(\mathbf{x}) = g_i(\mathbf{x}) - g_j(\mathbf{x}) = \mathbf{w}_i \mathbf{x} - \mathbf{w}_j \mathbf{x} = (\mathbf{w}_i - \mathbf{w}_j) \mathbf{x}$$

Pair-wise separable: M(M-1)/2 two-class classifier

Minimum distance classifier

Probability model for statistical decision

- Assumes a Gaussian probability density function (PDF) to represent the features for each class
 - Represents the statistical attribute for each class using test samples

Probability model

The a prior probability

$$P(C_i)$$
 $i = 1, 2, \dots, M$

The likelihood function of class C_i $p(\mathbf{x} \mid C_i)$

PDF of x regardless of class membership

$$p(\mathbf{x}) = \sum_{i=1}^{M} P(C_i) p(\mathbf{x} \mid C_i)$$

The a posterior probability

$$P(C_i \mid \mathbf{x}) = \frac{P(C_i)p(\mathbf{x} \mid C_i)}{p(\mathbf{x})}$$

The probability that observed \mathbf{x} comes from C_i

Bayes classifier for Gaussian PDF

Gaussian PDF of a single random variable x

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(x-m)^2}{2\sigma^2}\right]$$

where the mean an the variance

$$m = E[x] = \int_{-\infty}^{\infty} xp(x)dx$$

$$\sigma^2 = E[(x - m)^2] = \int_{-\infty}^{\infty} (x - m)^2 p(x)dx$$

• In the case of M classes and P pattern vector, $\mathbf{x} = [x_1, x_2, ..., x_n]$

$$p(\mathbf{x} \mid C_i) = \frac{1}{(2\pi)^{n/2} |\mathbf{\Sigma}_i|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \mathbf{m}_i)^T \mathbf{\Sigma}_i^{-1} (\mathbf{x} - \mathbf{m}_i) \right]$$

where the mean vector an the covariance matrix

$$\mathbf{m}_{i} = E_{i}[\mathbf{x}]$$

$$\Sigma_i = E_i[(\mathbf{x} - \mathbf{m}_i)(\mathbf{x} - \mathbf{m}_i)^T]$$

Discriminate functions

$$g_i(\mathbf{x}) = p(\mathbf{x} \mid C_i) P(C_i), \ i = 1, 2, \dots, M$$

$$g_i(\mathbf{x}) = \ln[p(\mathbf{x} \mid C_i) P(C_i)] = \ln p(\mathbf{x} \mid C_i) + \ln P(C_i)$$

$$g_i(\mathbf{x}) = \ln P(C_i) - \frac{1}{2} \ln |\mathbf{\Sigma}_i| - \frac{1}{2} [(\mathbf{x} - \mathbf{m}_i)^T \mathbf{\Sigma}_i^{-1} (\mathbf{x} - \mathbf{m}_i)]$$

• If the features are statistically independent $\Sigma_i = \sigma^2 \mathbf{I}$ the bayes classifier is equivalent to linear discriminate function

$$g_i(\mathbf{x}) = \ln P(C_i) - \frac{\|\mathbf{x} - \mathbf{m}_i\|^2}{2\sigma^2}$$

$$= \ln P(C_i) - \frac{1}{2\sigma^2} \left[\mathbf{x}^T \mathbf{x} - 2\mathbf{m}_i^T \mathbf{x} - \mathbf{m}_i^T \mathbf{m}_i \right]$$

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0}$$

 If all covariance matrix are equal, the Bayses classifier is also equivalent to linear discriminate functions

$$g_i(\mathbf{x}) = \ln P(C_i) + \mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{m}_i - \frac{1}{2} \mathbf{m}_i^T \mathbf{\Sigma}^{-1} \mathbf{m}_i$$
$$= \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0}$$

Matlab implemenation

- class = classify(sample,training,group,type)
 - 'linear' Fits a multivariate normal density to each group, with a pooled estimate of covariance
 - 'diaglinear' Similar to 'linear', but with a diagonal covariance matrix estimate
 - 'quadratic' Fits multivariate normal densities with covariance estimates stratified by group
 - 'diagquadratic' Similar to 'quadratic',but with a diagonal covariance matrix estimate
 - 'mahalanobis' Uses Mahalanobis distances with stratified covariance estimates

Fisher's sepal measurements for iris versicolor and virginica

```
% Training data
load fisheriris
SL = meas(51:end,1);
SW = meas(51:end,2);
group = species(51:end);
h1 = gscatter(SL,SW,group,'rb','v^',[],'off');
set(h1,'LineWidth',2)
legend('Fisher versicolor','Fisher virginica', 'Location','NW')
% Classify a grid of measurements on the same scale:
[X,Y] = meshgrid(linspace(4.5,8), linspace(2,4));
X = X(:); Y = Y(:);
[C,err,P,logp,coeff] = classify([X Y],[SL SW],group,'quadratic');
```

Fisher's sepal measurements for iris versicolor and virginica

% Visualize the classification

```
hold on;
gscatter(X,Y,C,'rb','.',1,'off');
K = coeff(1,2).const;
L = coeff(1,2).linear;
Q = coeff(1,2).quadratic;
f = sprintf('0 = \%g + \%g*x + \%g*y + \%g*x^2 + \%g*x.*y + \%g*y.^2', K,L,Q(1,1),Q(1,2) + Q(2,1),Q(2,2));
h2 = ezplot(f, [4.5 8 2 4]);
set(h2,'Color','m','LineWidth',2)
axis([4.5 8 2 4])
xlabel('Sepal Length')
ylabel('Sepal Width')
title('{\bf Classification with Fisher Training Data}')
```

Classifying patterns

Classification

Application in PCG diagnosis

High-resolution spectral analysis by pole-zero modeling

Using window 1

Using window 2

Training sets

TABLE I
THE TRAINING SET USED TO DESIGN THE CLASSIFIER

Training Set				
Valve	f1(Hz)	f2(Hz)		
normal#1	172.	79.		
normal#2	140.	99.		
normal#3	82.	114.		
normal#4	· 84.	123.		
normal#5	123.	155.		
normal#6	90.	131.		
normal#7	79.	137.		
normal#8	134.	99.		
normal#9	146.	102.		
normal#10	111.	73.		
normal#11	93.	73.		
normal#12	96.	131.		
normal#13	87.	143.		
normal#14	125.	70.		
average	121.	109.		
abnormal#1	184.	257.		
abnormal#2	158.	216.		
abnormal#3	213.	87.		
abnormal#4	193.	117.		
abnormal#5	178.	290.		
abnormal#6	131.	193.		
average	176.	193.		

Classifier design

$$g(x) = g_n(x) - g_a(x)$$

$$g(x) = (x - \mu_a)^T \Sigma_a^{-1} (x - \mu_a) - (x - \mu_a)^T \Sigma_n^{-1} (x - \mu_n) + \ln \frac{|\Sigma_a|}{|\Sigma_n|} - 2 \ln \frac{P(C_a)}{P(C_n)}$$

$$g(x) = \begin{bmatrix} f_1 - 176 \\ f_2 - 193 \end{bmatrix}^T \begin{bmatrix} 1.81e - 3 & 2.88e - 4 \\ 2.88e - 4 & 5.82e - 10 \end{bmatrix} \begin{bmatrix} f_1 - 176 \\ f_2 - 193 \end{bmatrix}$$
$$- \begin{bmatrix} f_1 - 121 \\ f_2 - 109 \end{bmatrix}^T \begin{bmatrix} 1.65e - 3 & 7.85e - 4 \\ 7.85e - 4 & 1.69e - 3 \end{bmatrix} \begin{bmatrix} f_1 - 121 \\ f_2 - 109 \end{bmatrix} + 1.82$$

Result

Fig. 6. Test set and the decision boundary in the feature space. Misclassified patients are Patients 2, 4, and 8. Refer to Table II for numerical values.

Test sets

TABLE II
Test Set—Outcome of the Classifier and the Clinical Diagnosis

Test Set						
patient#	f1	12	g(x)	classification	diagnosis	
1	73.	120.	23.6	normal	normal	
2	169.	102.	-2.68	abnormal	normal	
3	120.	82.	10.2	normal	normal	
4	93.	0.0	-0.45	abnormal	normal	
5	52.	134.	29.4	normal	normal	
6	123.	84.	9.64	normal	normal	
7	134.	52.	4.14	normal	normal	
8	190.	225.	-44.7	abnormal	normal	
9	99.	73.	14.8	normal	normal	
10	90.	61.	15.5	normal	normal	
11	102.	140.	12.8	normal	normal	
12	117.	175.	0.9	normal	normal	
13	152.	76.	2.1	normal	normal	
14	158.	190.	-17.9	abnormal	abnormal	
15	216.	152.	-24.4	abnormal	abnormal	
16	178.	213.	-34.7	abnormal	abnormal	
17	225.	93.	-15.5	abnormal	abnormal	
18	108.	342.	-85.8	abnormal	abnormal	
19	190.	249.	-57.5	abnormal	abnormal	
. 50	187.	316.	-103.	abnormal	abnormal	

Measure of decision accuracy

- Let A be the class of abnormal and N the class of normal.
- True positive (TP)
 - The case when test is positive for a subject with disease

Sensitivity = TP fraction =
$$P(T^+ | A) = \frac{\text{number of TP decision}}{\text{number of subjects with disease}}$$

- True negative (TN)
 - The case when test is negative for a subject without disease

Specificty = TN fraction =
$$P(T^-|N) = \frac{\text{number of TN decision}}{\text{number of subjects without disease}}$$

Measure of decision accuracy (cont.)

False negative (FN)

FN fraction =
$$P(T^- | A) = \frac{\text{number of negative decision who has disease}}{\text{number of subjects with disease}}$$

False positive (FP)

FP fraction =
$$P(T^+ | N) = \frac{\text{number of positive decision who has not disease}}{\text{number of subjects without disease}}$$

Measure of decision accuracy (cont.)

Actual Croup	Predicted Group		
Actual Group -	Normal	Abnormal	
Normal	TN	FP	
Abnormal	FN	TP	

TPF + FNF = 1
TNF + FPF = 1
Accuracy =
$$P(A) P(T^+|A) + P(N) P(T^-|N)$$

Measure of decision accuracy (cont.)

Decision threshold is the tradeoff between sensitivity and specificity

Receiver operating characteristic (ROC)

- Curve indicate the relationship between sensitivity and (1specificity)
- A receiver (user) may choose to operate at any point along the curve

Reference

- R. Rangayyan, Biomedical Signal Analysis, John Wiely & Sons, 2002.
- TH. Joo et al, Pole-Zero Modeling and Classification of Phonocardiograms, IEEE Trans. on Biomedical Engineering, 30(2): 110-117, 1983.