# Statistical Signal Processing Lecture 3: LTI Filtering Random Processes

Carlas Smith & Peyman Mohajerin Esfahani



WSS RP Characteristics: Auto and cross-correlation function:

$$r_x(k) = E[x(n)x^*(n-k)]$$
  $r_{xy}(k) = E[x(n)y^*(n-k)]$ 



WSS RP Characteristics: Auto and cross-correlation function:

$$r_x(k) = E[x(n)x^*(n-k)]$$
  $r_{xy}(k) = E[x(n)y^*(n-k)]$ 

#### Properties:

Property 1: If 
$$x(n) \in \mathbb{C}$$
 then  $r_x(k) =$  Property 1: If  $x(n), y(n) \in \mathbb{C}$  then  $r_x^*(-k)$  (conjugate symmetric).  $r_{yx}(k) = r_{xy}^*(-k)$  (change of orlif  $x(n) \in \mathbb{R}$  then  $r_x(k) = r_x(-k)$  der index arguments!) (symmetric). If  $x(n), y(n) \in \mathbb{R}$  then  $r_{yx}(k) =$ 

Property 2: 
$$r_x(0) = E[|x(n)|^2] \ge 0$$
.

Property 3: 
$$r_x(0) \ge |r_x(k)| \quad \forall k$$

Property 4: If 
$$\exists k_0: r_x(k_0) = r_x(0) \Rightarrow r_x(k)$$
 is periodic with period  $k_0$  and further

$$E[|x(n) - x(n - k_0)|^2] = 0$$

x(n) is said to be mean-square periodic.

Property 1: If 
$$x(n), y(n) \in \mathbb{C}$$
 then  $r_{yx}(k) = r_{xy}^*(-k)$  (change of order index arguments!)

If  $x(n), y(n) \in \mathbb{R}$  then  $r_{yx}(k) = r_{xy}(-k)$  (not symmetric)

Property 2: 
$$|r_{xy}(k)| \leq \sqrt{r_x(0)r_y(0)}$$

Property 4: If 
$$\exists k_0: r_x(k_0)=r_x(0)\Rightarrow$$
 Property 3:  $|Re\Big(r_{xy}(k)\Big)|\leq \frac{1}{2}[r_x(0)+r_x(k)]$  is periodic with period  $k_0$   $r_y(0)]$ 



## Autocorrelation Function of a (WSS) RPs $\{x(n)\}$ :

$$r_x(k) = E[x(n)x^*(n-k)]$$

$$= E[x(t+k)x^*(t)]$$

$$= E[x(t)x^*(t+k)]^*$$

$$= r_x^*(-k)$$

$$P_x(z) = \sum_{k=-\infty}^{\infty} r_x(k)z^{-k}$$

$$= \sum_{k=-\infty}^{\infty} r_x^*(-k)z^{-k}$$

$$= \sum_{t=-\infty}^{\infty} r_x^*(t)(z)^t = \left[\sum_{t=-\infty}^{\infty} r_x(t)(z^*)^t\right]^*$$

$$= P_x^*(1/z^*)$$

Powspec.m



# Cross-correlation Function between two (WSS) RPs $\{x(n)\}$ and $\{y(n)\}$ :

$$r_{xy}(k) = E[x(n)y^*(n-k)]$$

$$= E[x(t+k)y^*(t)]$$

$$= E[y(t)x^*(t+k)]^*$$

$$= r_{yx}^*(-k)$$

$$P_{xy}(z) = \sum_{k=-\infty}^{\infty} r_{xy}(k)z^{-k}$$

$$= \sum_{t=-\infty}^{\infty} r_{xy}(-t)z^{t}$$

$$= \left[\sum_{t=-\infty}^{\infty} r_{xy}^{*}(-t)(z^{*})^{t}\right]^{*}$$

$$= \left[\sum_{t=-\infty}^{\infty} r_{yx}(t)(z^{*})^{t}\right]^{*}$$

$$= [P_{yx}(1/z^{*})]^{*}$$

$$= P_{yx}^{*}(1/z^{*})$$

## Part I: Filtering Random Processes



- 1. Signals and Systems recap
- 2. Preservation of WSS by LTI filtering
- Cross- and Auto correlation function/spectra due to LTI filtering
- 4. Applications



## Representing Signals and Systems





## Representing Signals and Systems



Both  $\{x(n)\}$  and  $\{h(n)\}$  are functions and can be represented in

terms of (orthogonal) basis functions. Definition: The unit Sample function  $\Delta(n)=\left\{\begin{array}{ll} 1 & ; & n=0\\ 0 & ; & \text{otherwise} \end{array}\right.$ 

## Representing Signals and Systems



Both  $\{x(n)\}$  and  $\{h(n)\}$  are functions and can be represented in terms of (orthogonal) basis functions.

terms of (orthogonal) basis lunctions. Definition: The unit Sample function  $\Delta(n) = \left\{ \begin{array}{ll} 1 & ; & n=0 \\ 0 & ; & \text{otherwise} \end{array} \right.$ 

Corollary: Doubly-∞ sequences are represented as:

$$x(n) = \sum_{\ell = -\infty}^{\infty} x(\ell) \Delta(n - \ell) \quad h(n) = \sum_{\ell = -\infty}^{\infty} h(\ell) \Delta(n - \ell)$$



## **Linear Time-invariant (LTI) Systems**



**Property 1 - Linearity (L):** A system H[.] is *linear* if for any 2 inputs  $x_1(n), x_2(n)$  and any 2 constants  $a, b \in \mathbb{C}$ ,

$$H[ax_1 + bx_2](n) = aH[x_1](n) + bH[x_2](n)$$

Property 2 - Shift-invariant (SI) - (Time-invariant (TI)):

If 
$$y(n) = H[x](n) \Rightarrow y(n - \ell) = H[x(\cdot - \ell)](n)$$



## Input-Output relation for LTI Systems



Let  $H[\cdot]$  be a linear, shift-invariant system with impulse response  $\{h(n)\}$ , then the response for an arbitrary input  $\{x(n)\}$  is given by:

$$y(n) = H[x](n) = H\left[\sum_{\ell=-\infty}^{\infty} x(\ell)\Delta(\cdot - \ell)\right](n)$$

$$= \sum_{\ell=-\infty}^{\infty} x(\ell)H\left[\Delta(\cdot - \ell)\right](n) = \sum_{\ell=-\infty}^{\infty} x(\ell)h(n - \ell)$$

$$y(n) = x(n) \star h(n) = h(n) \star x(n)$$

#### z-transform of a series

Rational: The z-transform is a generalization of the DTFT, defined as:

$$x(n) = \sum_{\ell=-\infty}^{\infty} x(\ell)\Delta(n-\ell)$$

$$\mathcal{Z}[\Delta(\cdot - \ell)] = z^{-\ell} \quad \Downarrow$$

$$X(z) = \mathcal{Z}[x] = \sum_{\ell=-\infty}^{\infty} x(\ell)z^{-\ell}$$

#### z-transform of a series

Rational: The z-transform is a generalization of the DTFT, defined as:

$$x(n) = \sum_{\ell=-\infty}^{\infty} x(\ell)\Delta(n-\ell)$$

$$\mathcal{Z}[\Delta(\cdot - \ell)] = z^{-\ell} \quad \Downarrow$$

$$X(z) = \mathcal{Z}[x] = \sum_{\ell=-\infty}^{\infty} x(\ell)z^{-\ell}$$

Existence: The z transform is only defined for those values of  $z \in \mathbb{C}$  for which the series converges. These values determine the Region of Convergence (ROC).



## z-transform of an input-output relation



Let  $H[\cdot]$  be a linear, time-invariant system with impulse response  $\{h(n)\}$ , let  $\{x(n)\}$  be an arbirtary input then the z-transform of the output (assuming all z-transforms exist) satisfies:

$$Y(z) = H(z)X(z)$$



## Stability and Causality of LTI systems



Property 3 - Stability: System  $H(z) = \sum_{n=-\infty}^{\infty} h(n)z^{-n}$  is *stable* if

$$|z| = 1 \subset \text{ROC} \Leftrightarrow \sum_{n = -\infty}^{\infty} |h(n)| < \infty$$

Property 4 - Causality, anti-causality: A stable mixed causal,

anti-causal LTI system  $H(z) = \sum_{n=-\infty}^{\infty} h(n)z^{-n}$  can be split

into:

$$H(z) = \sum_{n=1}^{\infty} h(-n)z^{n} + \sum_{n=0}^{\infty} h(n)z^{-n}$$

$$\operatorname{anti-causal} \left( [H(z)]_{-} \right) \quad \operatorname{causal} \left( [H(z)]_{+} \right)$$

each having its particular ROC (see example next).



A causal system gives a bounded output (for a bounded input) by the (forward recursion):

$$y(n) = 0.9y(n-1) + x(n-1) \xrightarrow{\mathcal{Z}} Y(z) = \frac{z^{-1}}{1 - 0.9z^{-1}} X(z)$$

A causal system gives a bounded output (for a bounded input) by the (forward recursion):

$$y(n) = 0.9y(n-1) + x(n-1) \stackrel{\mathcal{Z}}{\to}$$

$$Y(z) = \frac{z^{-1}}{1 - 0.9z^{-1}}X(z)$$

$$= \left(z^{-1} + 0.9z^{-2} + 0.81z^{-3} + \cdots\right)X(z)$$



A causal system gives a bounded output (for a bounded input) by the (forward recursion):

An anti-causal system gives a bounded output (for a bounded input) by the (backward recursion):

$$y(n) = 0.9y(n-1) + x(n-1) \xrightarrow{\mathcal{Z}} y(n) = 0.9y(n+1) + x(n+1) \xrightarrow{\mathcal{Z}} Y(z) = \frac{z^{-1}}{1 - 0.9z^{-1}} X(z) \qquad Y(z) = \frac{z}{1 - 0.9z} X(z)$$

$$(y(z)) = 0.9y(n+1) + x(n+1) = \frac{z}{1 - 0.9z}X(z)$$

$$= \left(z^{-1} + 0.9z^{-2} + 0.81z^{-3} + \cdots\right) X(z)$$
Causal System



A causal system gives a bounded output (for a bounded input) by the (forward recursion):

An anti-causal system gives a bounded output (for a bounded input) by the (backward recursion):

$$y(n) = 0.9y(n-1) + x(n-1) \stackrel{\mathcal{Z}}{\rightarrow}$$

$$Y(z) = \frac{z^{-1}}{1 - 0.9z^{-1}}X(z)$$

$$\begin{array}{ccc}
\stackrel{\mathcal{Z}}{\to} & y(n) & = & 0.9y(n+1) + x(n+1) \stackrel{\mathcal{Z}}{\to} \\
Y(z) & = & \frac{z}{1 - 0.9z} X(z)
\end{array}$$

$$= \left(z^{-1} + 0.9z^{-2} + 0.81z^{-3} + \cdots\right)X(z)$$







A causal system gives a bounded output (for a bounded input) by the (forward recursion):

$$y(n) = 0.9y(n-1) + x(n-1) \stackrel{\mathcal{Z}}{\rightarrow}$$

$$Y(z) = \frac{z^{-1}}{1 - 0.9z^{-1}}X(z)$$

$$= \left(z^{-1} + 0.9z^{-2} + 0.81z^{-3} + \cdots\right)X(z)$$

An anti-causal system gives a bounded output (for a bounded input) by the (backward recursion):

$$y(n) = 0.9y(n+1) + x(n+1) \stackrel{\mathcal{Z}}{\rightarrow}$$

$$Y(z) = \frac{z}{1 - 0.9z} X(z)$$

$$= (z + 0.9z + 0.81z^2 + \cdots)X(z)$$

$$ROC_{causal}$$
 :  $|0.9z^{-1}| < 1 \Leftrightarrow |z| > 0.9$ 

$$ROC_{acausal}$$
 :  $|0.9z| < 1 \Leftrightarrow |z| < \frac{1}{0.9}$ 



A causal system gives a bounded output (for a bounded input) by the (forward recursion):

$$y(n) = 0.9y(n-1) + x(n-1) \stackrel{\mathcal{Z}}{\rightarrow}$$

$$Y(z) = \frac{z^{-1}}{1 - 0.9z^{-1}}X(z)$$

$$= \left(z^{-1} + 0.9z^{-2} + 0.81z^{-3} + \cdots\right)X(z)$$

$$ROC_{causal}$$
 :  $|0.9z^{-1}| < 1 \Leftrightarrow |z| > 0.9$ 

$$ROC_{acausal}$$
 :  $|0.9z| < 1 \Leftrightarrow |z| < \frac{1}{0.9}$ 

An anti-causal system gives a bounded output (for a bounded input) by the (backward recursion):

$$y(n) = 0.9y(n+1) + x(n+1) \stackrel{\mathcal{Z}}{\to}$$

$$Y(z) = \frac{z}{1 - 0.9z} X(z)$$

$$= (z + 0.9z + 0.81z^2 + \cdots)X(z)$$



$$\mathsf{ROC}(\left[\frac{z^{-1}}{1 - 0.9z^{-1}} + \frac{z}{1 - 0.9z}\right])$$



# **Linear Filtering**

- 1. Signals and Systems recap
- 2. Preservation of WSS by LTI filtering
- 3. Cross- and Auto correlation function/spectra due to LTI filtering
- 4. Applications



## Preservation of WSS for H(z) stable



$$y(n) = \sum_{\ell = -\infty}^{\infty} h(\ell)x(n - \ell)$$

- 1 - First requirement:



## Preservation of WSS for H(z) stable



$$y(n) = \sum_{\ell = -\infty}^{\infty} h(\ell)x(n - \ell)$$

#### - 1 - First requirement:

$$E[y(n)] = \sum_{\ell=-\infty}^{\infty} h(\ell) E[x(n-\ell)] = \sum_{\ell=-\infty}^{\infty} h(\ell) \mu_x$$
$$= \left( H(z) \Big|_{z=1} \right) \mu_x = H(1) \mu_x$$

Provided  $H(z)|_{z=1}$  exists (is bounded), it can be concluded that E[y(n)] is constant (not dependent on time n).



## Preservation of WSS for H(z) stable (II)

- 2 - Second requirement:

$$r_y(n, n-k) = E[y(n)y^*(n-k)]$$
 not dependent on  $n$ ?

## Preservation of WSS for H(z) stable (II)

#### - 2 - Second requirement:

$$r_y(n, n-k) = E[y(n)y^*(n-k)]$$
 not dependent on  $n$ ?

$$= E\left[\sum_{\ell=-\infty}^{\infty} h(\ell)x(n-\ell)\sum_{p=-\infty}^{\infty} h^*(p)x^*(n-k-p)\right]$$

$$= \sum_{\ell=-\infty}^{\infty} \sum_{p=-\infty}^{\infty} h(\ell)h^*(p)E[x(n-\ell)x^*(n-k-p)]$$

$$= \sum_{\ell=-\infty}^{\infty} \sum_{p=-\infty}^{\infty} h(\ell)h^*(p)r_x(n-\ell,n-k-p)$$



## Preservation of WSS for H(z) stable (II)

#### - 2 - Second requirement:

$$r_y(n, n-k) = E[y(n)y^*(n-k)]$$
 not dependent on  $n$ ?

$$= E\left[\sum_{\ell=-\infty}^{\infty} h(\ell)x(n-\ell)\sum_{p=-\infty}^{\infty} h^*(p)x^*(n-k-p)\right]$$

$$= \sum_{\ell=-\infty}^{\infty} \sum_{p=-\infty}^{\infty} h(\ell)h^*(p)E[x(n-\ell)x^*(n-k-p)]$$

$$= \sum_{\ell=-\infty}^{\infty} \sum_{p=-\infty}^{\infty} h(\ell)h^*(p)r_x(n-\ell,n-k-p)$$

Therefore, if x(n) WSS,  $r_x(n-\ell,n-k-p)=r_x(k+p-\ell)$  we have that  $r_y(n,n-k)$  is independent of n.



# **Linear Filtering**

- 1. Signals and Systems recap
- 2. Preservation of WSS by LTI filtering
- 3. Cross- and Auto correlation function/spectra due to LTI filtering
- 4. Applications



#### Use of *z*-transform

Given a WSS RP  $\{x(n)\}$  with auto-covariance function  $\{r_x(k)\}_{k=-\infty}^{\infty}$ , then its z-transform is given as:

$$P_x(z) = \mathcal{Z}[r_x](z) = \sum_{k=-\infty}^{\infty} r_x(k)z^{-k}$$

Its power spectrum is  $P_x(e^{j\omega})$ .



$$\begin{cases} x(n) \}_{\text{WSS}} \\ H(z) \end{cases} \qquad y(n) = \sum_{\ell = -\infty}^{\infty} h(\ell) x(n - \ell)$$

$$r_{yx}(k) = E[y(n)x^*(n-k)]$$



$$\begin{cases} x(n) \}_{\text{WSS}} \\ H(z) \end{cases} \qquad y(n) = \sum_{\ell = -\infty}^{\infty} h(\ell) x(n - \ell)$$

$$r_{yx}(k) = E[y(n)x^*(n-k)]$$

$$= \sum_{\ell=-\infty}^{\infty} h(\ell)E[x(n-\ell)x^*(n-k)]$$



$$\begin{array}{c|c} \{x(n)\}_{\text{WSS}} \\ \hline \\ H(z) \\ \hline \end{array}$$
 
$$H(z)$$
 
$$y(n) = \sum_{\ell=-\infty}^{\infty} h(\ell)x(n-\ell)$$

$$r_{yx}(k) = E[y(n)x^*(n-k)]$$

$$= \sum_{\ell=-\infty}^{\infty} h(\ell)E[x(n-\ell)x^*(n-k)]$$

$$= \sum_{\ell=-\infty}^{\infty} h(\ell)r_x(k-\ell)$$

$$\begin{array}{c|c} \{x(n)\}_{\text{WSS}} \\ \hline \\ H(z) \\ \hline \end{array}$$
 
$$H(z)$$
 
$$y(n) = \sum_{\ell=-\infty}^{\infty} h(\ell)x(n-\ell)$$

$$P_{yx}(z) = \sum_{k=-\infty}^{\infty} \sum_{\ell=-\infty}^{\infty} h(\ell) r_x(k-\ell) z^{-\ell}$$

$$= \sum_{\ell=-\infty}^{\infty} h(\ell) E[x(n-\ell)x^*(n-k)]$$

$$= \sum_{\ell=-\infty}^{\infty} h(\ell) r_x(k-\ell)$$



$$\{x(n)\}_{\text{WSS}}$$

$$y(n) = \sum_{\ell=-\infty}^{\infty} h(\ell)x(n-\ell)$$

$$P_{yx}(z) = \sum_{k=-\infty}^{\infty} \sum_{\ell=-\infty}^{\infty} h(\ell)r_x(k-\ell)z^{-1}$$

$$r_{yx}(k) = E[y(n)x^{*}(n-k)]$$

$$= \sum_{\ell=-\infty}^{\infty} h(\ell)E[x(n-\ell)x^{*}(n-k)]$$

$$= \sum_{\ell=-\infty}^{\infty} h(\ell)\mathcal{Z}[r_{x}(\cdot -\ell)](z)$$

$$= \sum_{\ell=-\infty}^{\infty} h(\ell)r_{x}(k-\ell)$$

$$\frac{\{x(n)\}_{\text{WSS}}}{H(z)} \qquad \qquad y(n) = \sum_{\ell=-\infty}^{\infty} h(\ell)x(n-\ell)$$

$$r_{yx}(k) = E[y(n)x^{*}(n-k)]$$

$$= \sum_{\ell=-\infty}^{\infty} h(\ell)E[x(n-\ell)x^{*}(n-k)]$$

$$= \sum_{\ell=-\infty}^{\infty} h(\ell)E[x(n-\ell)x^{*}(n-k)]$$

$$= \sum_{\ell=-\infty}^{\infty} h(\ell)\mathcal{Z}[r_{x}(\cdot -\ell)](z)$$

$$= \sum_{\ell=-\infty}^{\infty} h(\ell)r_{x}(k-\ell)$$

$$= \sum_{\ell=-\infty}^{\infty} h(\ell)z^{-\ell}P_{x}(z)$$

$$= H(z)P_{x}(z)$$

$$\begin{array}{c|c} \{x(n)\}_{\text{WSS}} \\ \hline \\ H(z) \\ \hline \end{array}$$
 
$$H(z)$$
 
$$y(n) = \sum_{\ell=-\infty}^{\infty} h(\ell)x(n-\ell)$$

$$r_{xy}(k) = E[x(n+k)y^*(n)]$$

$$= \sum_{\ell=-\infty}^{\infty} h^*(\ell) E[x(n+k)x^*(n-\ell)]$$

$$= \sum_{\ell=-\infty}^{\infty} h^*(\ell) r_x(k+\ell)$$



## **Cross-correlation function**

$$\begin{cases} x(n) \}_{\text{WSS}} \\ H(z) \end{cases} \qquad y(n) = \sum_{\ell = -\infty}^{\infty} h(\ell) x(n - \ell)$$

$$r_{xy}(k) = E[x(n+k)y^*(n)]$$

$$= \sum_{k=-\infty}^{\infty} \sum_{\ell=-\infty}^{\infty} h^*(\ell) r_x(k+\ell) z$$

$$= \sum_{\ell=-\infty}^{\infty} h^*(\ell) E[x(n+k)x^*(n-\ell)] = \sum_{\ell=-\infty}^{\infty} h^*(\ell) \mathcal{Z} \Big[ r_x(\cdot + \ell) \Big](z)$$

$$= \sum_{\ell=-\infty}^{\infty} h^*(\ell) r_x(k+\ell) = \sum_{\ell=-\infty}^{\infty} h^*(\ell) z^{\ell} P_x(z)$$

$$= H^*(1/z^*) P_x(z)$$

## **Correlation function and Power Spectra**



Therefore,  $P_y(z)$  equals,



## **Correlation function and Power Spectra**



Therefore,  $P_y(z)$  equals,

$$P_{y}(z) = \sum_{k=-\infty}^{\infty} \sum_{\ell=-\infty}^{\infty} \sum_{p=-\infty}^{\infty} h(\ell)h^{*}(p)r_{x}(k+p-\ell)z^{-k}$$

$$= \sum_{\ell=-\infty}^{\infty} \sum_{p=-\infty}^{\infty} h(\ell)h^{*}(p) \mathcal{Z} \Big[ r_{x} \big( \cdot -(\ell-p) \big) \Big] (z)$$

$$= \sum_{\ell=-\infty}^{\infty} \sum_{p=-\infty}^{\infty} h(\ell)z^{-\ell} h^{*}(p)z^{p} P_{x}(z)$$

$$= H(z)H^{*}(1/z^{*})P_{x}(z)$$

#### **Summary Cross- and Auto (Power) Spectra**



$$P_{yx}(z) = H(z)P_x(z)$$

$$P_{xy}(z) = H^*(1/z^*)P_x(z)$$

$$P_y(z) = H(z)H^*(1/z^*)P_x(z)$$



# **Linear Filtering**

- 1. Signals and Systems recap
- 2. Preservation of WSS by LRI filtering
- 3. Cross- and Auto correlation function/spectra due to LTI filtering
- 4. Applications



## **Application 1: Estimating the Impulse Response**



$$r_{yx}(k) = g(k) \star r_x(k)$$

Experimental conditions: x(n) ZMWN with  $\sigma_x^2 = 1$ .

## **Application 1: Estimating the Impulse Response**



$$r_{yx}(k) = g(k) \star r_x(k)$$

Experimental conditions: x(n) ZMWN with  $\sigma_x^2 = 1$ . Therefore  $r_{yx}(k) = g(k)$ .

#### Consequences:

- $P_{yx}(e^{j\omega}) = G(e^{j\omega})$
- $P_y(e^{j\omega}) = |G(e^{j\omega})|^2$



## **Application 2: Proving Positivity of the Power Spectrum**

The Power Spectrum of a WSS RP x(n) satisfies,  $P_x(e^{j\omega}) \geq 0$ 

In order to show this, consider y(n) the output of a LTI filter with magnitude response show in the figure, such that y(n) is WSS. Then following property 3 of the Power spectrum,

$$E[|y(n)|^{2}] = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_{y}(e^{j\omega}) d\omega$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega})|^{2} P_{x}(e^{j\omega}) d\omega$$

$$= \frac{1}{2\pi} \int_{\omega_{0} - \frac{\Delta\omega}{2}}^{\omega_{0} + \frac{\Delta\omega}{2}} P_{x}(e^{j\omega}) d\omega \ge 0$$

And this for all  $\omega_o$  and  $\Delta\omega \Rightarrow P_x(e^{j\omega}) \geq 0$ .





Given: 
$$P_{yx}(z)\Big(=H(z)P_x(z)\Big)$$
 and  $U(z)=G(z)Y(z)$ .

 $\overline{\text{Determine: }}P_{\boxed{\mathbf{U}}x}(z)$ 



Given: 
$$P_{|\mathbf{y}|_x}(z)\Big(=H(z)P_x(z)\Big)$$
 and  $U(z)=G(z)Y(z)$ .

Determine:  $P_{|\mathbf{u}|x}(z)$ 

Looking for a relationship U(z) = ? X(z).

$$U(z) = G(z)Y(z)$$

$$= G(z)H(z)X(z)$$

$$\Rightarrow P_{ux}(z) = G(z)H(z)P_x(z)$$

$$= G(z)P_{yx}(z)$$



Given: 
$$P_{y[X]}(z)\Big(=H(z)P_x(z)\Big)$$
 and  $V(z)=G(z)X(z)$ .

Determine:  $P_{y|\mathbf{V}}(z)$ .





Given: 
$$P_y[\mathbf{X}](z)\Big(=H(z)P_x(z)\Big)$$
 and  $V(z)=G(z)X(z)$ .

Determine:  $P_{y \mid \mathbf{V} \mid}(z)$ . From the previous result we known,

$$P_{vy}(z) = G(z)P_{xy}(z)$$

In order to make use of the given information  $P_{yx}(z)$ 





Given: 
$$P_{y|\mathbf{X}|}(z)\Big(=H(z)P_x(z)\Big)$$
 and  $V(z)=G(z)X(z)$ .

Determine:  $P_{y \mid \mathbf{V} \mid}(z)$ . From the previous result we known,

$$P_{vy}(z) = G(z)P_{xy}(z)$$

In order to make use of the given information  $P_{yx}(z)$  we take the complex conjugate of both sides and change the argument z by  $1/z^*$ . This yields,

$$P_{vy}^*(1/z^*) = G^*(1/z^*)P_{xy}^*(1/z^*)$$

Using the property of the Cross-correlation spectrum:

$$P_{yv}(z) = G^*(1/z^*)P_{yx}(z)$$



# **Example 1: Brownian motion**

Brownian particle and the Histogram at time  $0.5\mu s$ .



A single realization of a free The simulation equation to generate one such realization of the displacement reads:

$$x(n) = a(1)x(n-1) + a(2)x(n-2) + b(0)v(n-2) + b(0)v(n-2$$

with v(n) ZMWN.

# **Example 1: Brownian motion**

Brownian particle and the Histogram at time  $0.5 \mu s$ .



A single realization of a free The simulation equation to generate one such realization of the displacement reads:

$$x(n) = a(1)x(n-1) + a(2)x(n-2) + b(0)v(n-2) + b(0)v(n-2$$

with v(n) ZMWN. The impulse response of this system is.



28

## **Example 2: Verhaegen's CSI lab**

Schematic Shack-Hartmann A single realization of the Sensor spot x-displacement



[From M. Konnik, 2010]



A signal (based) model (see in 2 lectures):

$$x(n) = a(1)x(n-1) + a(2)x(n-2) + b(1)v(n-1) + b(1)v(n-2)$$

with v(n) ZMWN. Stability? testARMA.



## Part II: ARMA Filtering Random Processes

- 1. Definition ARMA AR MA models
- 2. Calculation of Power Spectra
- 3. Calculation of Auto- and Cross Correlation functions
- 4. Harmonic Processes
- 5. Illustrative Examples



Consider filtering zwmn v(n) by the LSI filter H(z) with  $E[v(n)^2] = \sigma_v^2$ .



When H(z) is of type ARMA(p,q) then the transfer function is given as:

$$H(z) = \frac{\sum_{k=0}^{q} b(k)z^{-k}}{1 + \sum_{k=1}^{p} a(k)z^{-k}} \quad p \ge 1, q \ge 0$$

This corresponds to the following difference equation:

$$x(n) + a(1)x(n-1) + \dots + a(p)x(n-p) = b(0)v(n) + b(1)v(n-1) + \dots + b(q)v(n-q)$$



#### The AutoRegressive (AR) model

Consider filtering zwmn v(n) by the LSI filter H(z) with  $E[v(n)^2] = \sigma_v^2$ .

$$\begin{array}{c|c} \{v(n)\} \\ \hline \end{array} \qquad \begin{array}{c|c} \{x(n)\} \\ \hline \end{array}$$

An AR(p) model is an ARMA(p,0) and has transfer function is given as:

$$H(z) = \frac{b(0)}{1 + \sum_{k=1}^{p} a(k)z^{-k}} \quad p \ge 1$$

This corresponds to the following difference equation:

$$x(n) + a(1)x(n-1) + \dots + a(p)x(n-p) = b(0)v(n)$$



#### The Moving Average (MA) model

Consider filtering zwmn v(n) by the LSI filter H(z) with  $E[v(n)^2] = \sigma_v^2$ .

$$\begin{array}{c|c} \{v(n)\} \\ \hline \end{array} \qquad \begin{array}{c|c} \{x(n)\} \\ \hline \end{array}$$

An MA(q) model is an ARMA(0,q) and has transfer function is given as:

$$H(z) = \sum_{k=0}^{q} b(k)z^{-k}$$
  $q \ge 0$ 

This corresponds to the following difference equation:

$$x(n) = b(0)v(n) + b(1)v(n-1) + \dots + v(q)v(n-q)$$



### Part II:

- 1. Definition ARMA AR MA models
- 2. Calculation of Power Spectra
- 3. Calculation of Auto- and Cross Correlation functions
- 4. Harmonic Processes
- 5. Illustrative Examples



Consider filtering zwmn v(n) by the LSI filter H(z) with  $E[v(n)^2] = \sigma_v^2$ .



General Rule: With H(z) assumed to be stable, the Power spectrum of x is given as:

$$P_x(z) = H(z)H^*(1/z^*)\sigma_v^2$$

and for  $z=e^{j\omega}$  this is,

$$P_x(e^{j\omega}) = |H(e^{j\omega})|^2 \sigma_v^2$$



Consider filtering zwmn v(n) by the LSI filter H(z) with  $E[v(n)^2] = \sigma_v^2$ .



assumed to be stable, the Power spectrum of x is given  $P_x(z) = \frac{B_q(z)B_q^*(1/z^*)}{A_r(z)A^*(1/z^*)}\sigma_v^2$ as:

$$P_x(z) = H(z)H^*(1/z^*)\sigma_v^2$$

and for  $z=e^{j\omega}$  this is.

$$P_x(e^{j\omega}) = |H(e^{j\omega})|^2 \sigma_v^2$$

General Rule: With 
$$H(z)$$
 ARMA(p,q):  $H(z) = \frac{\sum_{k=0}^{q} b(k)z^{-k}}{1 + \sum_{k=1}^{p} a(k)z^{-k}} = \frac{B_q}{A_p}$ 

$$P_x(z) = \frac{B_q(z)B_q^*(1/z^*)}{A_p(z)A_p^*(1/z^*)}\sigma_v^2$$

Conclusion about poles/zeros of  $P_x(z)$ ?



Consider filtering zwmn v(n) by the LSI filter H(z) with  $E[v(n)^2] = \sigma_v^2$ .



assumed to be stable, the Power spectrum of x is given  $P_x(z) = \frac{B_q(z)B_q^*(1/z^*)}{A_r(z)A^*(1/z^*)}\sigma_v^2$ as:

$$P_x(z) = H(z)H^*(1/z^*)\sigma_v^2$$

and for  $z=e^{j\omega}$  this is.

$$P_x(e^{j\omega}) = |H(e^{j\omega})|^2 \sigma_v^2$$

General Rule: With 
$$H(z)$$
 ARMA(p,q):  $H(z) = \frac{\sum_{k=0}^{q} b(k)z^{-k}}{1 + \sum_{k=1}^{p} a(k)z^{-k}} = \frac{B_q}{A_p}$ 

$$P_x(z) = \frac{B_q(z)B_q^*(1/z^*)}{A_p(z)A_p^*(1/z^*)}\sigma_v^2$$

Conclusion about poles/zeros of  $P_x(z)$ ?

$$P_x(e^{j\omega}) = \frac{|B_q(e^{j\omega})|^2}{|A_p(e^{j\omega})|^2} \sigma_v^2$$

ARMAPow.m



#### The AutoRegressive (AR) model

Consider filtering zwmn v(n) by the LSI filter H(z) with  $E[v(n)^2] = \sigma_v^2$ .



assumed to be stable, the Power spectrum of x is given  $P_x(z) = \frac{1}{A_n(z)A_n^*(1/z^*)}\sigma_v^2$ as:

$$P_x(z) = H(z)H^*(1/z^*)\sigma_v^2$$

and for  $z=e^{j\omega}$  this is,

$$P_x(e^{j\omega}) = |H(e^{j\omega})|^2 \sigma_v^2$$

General Rule: With 
$$H(z)$$
 AR(p):  $H(z) = \frac{1}{1+\sum_{k=1}^p a(k)z^{-k}} = \frac{1}{A_p(z)}$ , assumed to be stable, the

$$P_x(z) = \frac{1}{A_p(z)A_p^*(1/z^*)}\sigma_v^2$$

Conclusion about poles/zeros of  $P_x(z)$ ?

$$P_x(e^{j\omega}) = \frac{1}{|A_p(e^{j\omega})|^2} \sigma_v^2$$

AR1Pow.m AR2Pow.m



#### The Moving Average (MA) model

Consider filtering zwmn v(n) by the LSI filter H(z) with  $E[v(n)^2] = \sigma_v^2$ .



General Rule: With H(z) MA(q):  $H(z) = \sum_{k=0}^q b(k) z^{-k}$ assumed to be stable, the Power spectrum of x is given  $P_x(z) = B_q(z)B_q^*(1/z^*)\sigma_v^2$ as:

$$P_x(z) = H(z)H^*(1/z^*)\sigma_v^2$$

and for  $z=e^{j\omega}$  this is.

$$P_x(e^{j\omega}) = |H(e^{j\omega})|^2 \sigma_v^2$$

MA(q): 
$$H(z) = \sum_{k=0}^{q} b(k)z^{-k}$$

$$P_x(z) = B_q(z)B_q^*(1/z^*)\sigma_v^2$$

Conclusion about poles/zeros of  $P_x(z)$ ?

$$P_x(e^{j\omega}) = |B_q(e^{j\omega})|^2 \sigma_v^2$$

MAPow.m

## Part II:

- 1. Definition ARMA AR MA models
- 2. Calculation of Power Spectra
- 3. Calculation of Auto- and Cross Correlation functions
- 4. Harmonic Processes
- 5. Illustrative Examples



The time-domain model:

$$x(n) + \sum_{\ell=1}^p a(\ell) x(n-\ell) = \sum_{\ell=0}^q b(\ell) v(n-\ell) \quad v(n) \frown \mathsf{ZMWN}(\sigma_v^2)$$

#### **Procedure:**

Step 1: Check WSS?

The time-domain model:

$$x(n) + \sum_{\ell=1}^p a(\ell) x(n-\ell) = \sum_{\ell=0}^q b(\ell) v(n-\ell) \quad v(n) \frown \mathsf{ZMWN}(\sigma_v^2)$$

#### **Procedure:**

Step 1: Check WSS? (H(z)) is stable).

Step 2: The Yule-Walker Equations:

$$r_x(n) + \sum_{\ell=1}^p a(\ell)r_x(n-\ell) = \sigma_v^2 \sum_{\ell=n}^q b(\ell)h^*(\ell-n)$$

with 
$$H(z) = h(0) + h(1)z^{-1} + h(2)z^{-2} + \cdots$$



Given:  $H(z) = \frac{1 - 0.5z^{-1}}{1 - 0.8z^{-1}}$  and  $H(z) = \sum_{m=0}^{\infty} h(m)z^{-m}$  Then it holds,

$$\frac{1 - 0.5z^{-1}}{1 - 0.8z^{-1}} = 1 + 0.3z^{-1} + 0.24z^{-2} + \cdots$$

$$r_x(0) - 0.8r_x(-1) = h(0) - 0.5h(1) \Rightarrow r_x(0) - 0.8r_x(1) = h(0) - 0.5h(1)$$

Given:  $H(z) = \frac{1 - 0.5z^{-1}}{1 - 0.8z^{-1}}$  and  $H(z) = \sum_{m=0}^{\infty} h(m)z^{-m}$  Then it holds,

$$\frac{1 - 0.5z^{-1}}{1 - 0.8z^{-1}} = 1 + 0.3z^{-1} + 0.24z^{-2} + \cdots$$

$$r_x(0) - 0.8r_x(-1) = h(0) - 0.5h(1) \Rightarrow r_x(0) - 0.8r_x(1) = h(0) - 0.5h(1)$$

For 
$$n = 1$$
:  $r_x(1) - 0.8r_x(0) = 0 - 0.5h(0)$ .



Given:  $H(z) = \frac{1 - 0.5z^{-1}}{1 - 0.8z^{-1}}$  and  $H(z) = \sum_{m=0}^{\infty} h(m)z^{-m}$  Then it holds,

$$\frac{1 - 0.5z^{-1}}{1 - 0.8z^{-1}} = 1 + 0.3z^{-1} + 0.24z^{-2} + \cdots$$

$$r_x(0) - 0.8r_x(-1) = h(0) - 0.5h(1) \Rightarrow r_x(0) - 0.8r_x(1) = h(0) - 0.5h(1)$$

For 
$$n = 1$$
:  $r_x(1) - 0.8r_x(0) = 0 - 0.5h(0)$ .

$$\begin{bmatrix} 1 & -0.8 \\ -0.8 & 1 \end{bmatrix} \begin{bmatrix} r_x(0) \\ r_x(1) \end{bmatrix} = \begin{bmatrix} 1 - .15 \\ -0.5 \end{bmatrix} \quad \Rightarrow \quad r_x(0) = \frac{5}{4} \text{ and } r_x(1) = \frac{1}{2}$$



Given:  $H(z) = \frac{1 - 0.5z^{-1}}{1 - 0.8z^{-1}}$  and  $H(z) = \sum_{m=0}^{\infty} h(m)z^{-m}$  Then it holds,

$$\frac{1 - 0.5z^{-1}}{1 - 0.8z^{-1}} = 1 + 0.3z^{-1} + 0.24z^{-2} + \cdots$$

$$r_x(0) - 0.8r_x(-1) = h(0) - 0.5h(1) \Rightarrow r_x(0) - 0.8r_x(1) = h(0) - 0.5h(1)$$

For 
$$n = 1$$
:  $r_x(1) - 0.8r_x(0) = 0 - 0.5h(0)$ .

$$\begin{bmatrix} 1 & -0.8 \\ -0.8 & 1 \end{bmatrix} \begin{bmatrix} r_x(0) \\ r_x(1) \end{bmatrix} = \begin{bmatrix} 1 - .15 \\ -0.5 \end{bmatrix} \quad \Rightarrow \quad r_x(0) = \frac{5}{4} \text{ and } r_x(1) = \frac{1}{2}$$

For 
$$n > 1$$
:  $r_x(n) - 0.8r_x(n-1) = 0$  testARMA.m.



#### The AutoRegressive (AR) model

The time-domain model:

$$x(n) + \sum_{\ell=1}^p a(\ell) x(n-\ell) = b(0) v(n) \quad v(n) \frown \mathsf{ZMWN}(\sigma_v^2)$$

Follows as a special case from the ARMA(p,0)

$$q = 0$$
 and  $h(0) = b(0)$ 

the Yule Walker equation for  $r_x(k)$  become:

$$r_x(n) + \sum_{\ell=1}^{p} a(\ell) r_x(n-\ell) = \sigma_v^2 |b(0)|^2 \Delta(n) \quad n \ge 0$$



#### The Moving Average (MA) model (real-case only)

The time-domain model:

$$x(n) = \sum_{\ell=0}^q b(\ell) v(n-\ell) \quad v(n) \frown \mathsf{ZMWN}(\sigma_v^2)$$

Follows as a special case from the ARMA(0,q) calculations with the special form that,

$$h(\ell) = b(\ell) \quad 0 \le \ell \le q$$

and therefore the Yule-Walker equations become:

$$r_x(n) = \sigma_v^2 \sum_{\ell=n}^q b(\ell) b^*(\ell - n) \quad 0 \le n \le q$$

the conjugate symmetric part follows from  $r_x(-n) = r_x^*(n)$ .



Given: 
$$H(z) = b(0) + b(1)z^{-1} + b(2)z^{-2} + b(3)z^{-3}$$

Then  $(\sigma_v = 1)$ :

$$r_x(0) = |b(0)|^2 + |b(1)|^2 + |b(2)|^2$$
  
 $r_x(1) = b^*(0)b(1) + b^*(1)b(2)$   
 $r_x(2) = b^*(0)b(2)$ 

Important Remark: The inverse problem to derive the filter coefficients from the Auto-correlation samples is non-linear!



## Part II:

- 1. Definition ARMA AR MA models
- 2. Calculation of Power Spectra
- 3. Calculation of Auto- and Cross Correlation functions
- 4. Harmonic Processes
- 5. Illustrative Examples



## **Example 4: Harmonic Process**

When x(n) is a WSS harmonic process:

$$x(n) = Asin(n\omega_0 + \phi)$$

with  $A, \phi$  uncorrelated random variables with  $\phi$  uniformly distributed, then (see Lecture 4)

$$r_x(k) = \frac{E[A^2]}{2}cos(k\omega_0) \Rightarrow P_x(e^{j\omega}) = \frac{\pi E[A^2]}{2} \left[ \Delta(\omega - \omega_0) + \Delta(\omega + \omega_0) \right]$$

PeriodBias.m



## **Example 4: Harmonic Process**

When x(n) is a WSS harmonic process:

$$x(n) = Asin(n\omega_0 + \phi)$$

with  $A, \phi$  uncorrelated random variables with  $\phi$  uniformly distributed, then (see Lecture 4)

$$r_x(k) = \frac{E[A^2]}{2}cos(k\omega_0) \Rightarrow P_x(e^{j\omega}) = \frac{\pi E[A^2]}{2} \left[ \Delta(\omega - \omega_0) + \Delta(\omega + \omega_0) \right]$$

PeriodBias.m

Remark: By the linearity of the E[.]-operator this can easily be extended to the finite sum of harmonic processes.

## Next steps forward to improve your chances to succeed ...

Instruction session for explanation of the abstract notions and getting hands-on-exerpience!

#### Preparation:

Study Chapter 6 (6.1-6.4) (and Chapter 2)

Next Instruction/lecture see Course Overview

