

RÉSUMÉ DE COURS: CALCUL DIFFÉRENTIEL

NIVEAU:MP

CONTEXTE

Soient E, F, G et H des \mathbb{R} -espaces vectoriels de dimensions finies non nulles. On pose $\dim E = n$ et $\dim F = p$.

Soient $U \subset E$ et $V \subset F$ deux ouverts non vide, $a \in U$, $f : U \to F$, $\mathcal{B} = (e_1, \dots, e_n)$ une base de E et $\mathcal{C} = (\varepsilon_1, \dots, \varepsilon_p)$ une base de F.

DÉRIVÉES PARTIELLES ET DIFFÉRENTIELLES

Définition: Dérivée selon un vecteur

On dit que f admet une dérivée en a suivant $h \in E \setminus \{0\}$ si $\lim_{t\to 0} \frac{f(a+th)-f(a)}{t}$ existe ou encore si $\varphi: t \longmapsto f(a+th)$ est dérivable en 0. Dans ce cas, cette limite s'appelle la dérivée de f en a suivant h et on la note $\varphi'(0) = D_h f(a)$.

Définition: Dérivées partielles

- On appelle dérivées partielles de f en a les dérivées, lorsqu'elles existent, de f en a suivant les vecteurs e_1, \ldots, e_n .
- La dérivée en a selon e_i se note $D_i f(a)$ ou $\frac{\partial f}{\partial x_i}(a)$.
- $x \mapsto \frac{\partial f}{\partial x_i}(x)$ s'appelle la i-ème application dérivée partielle de f sur U.

 On la note $\frac{\partial f}{\partial x_i}$.

DIFFÉRENTIELLE

Définition: Différentielle en un point

On dit que f est différentiable en a s'il existe une application linéaire ℓ de E vers F et ε une application de E dans F continue et nulle en 0 telles que $\forall h \in E$ tel que $a + h \in U$: $f(a + h) = f(a) + \ell(h) + \|h\| \varepsilon(h)$ L'application

 ℓ est unique, appelée la différentielle de f en a et notée d f_a . On écrit $o(\|h\|)$ pour $\|h\|\varepsilon(h)$.

Propriété

- 1. f est différentiable en $a \Rightarrow f$ est continue en a.
- 2. f est différentiable en $a \Rightarrow f$ est dérivable en a selon tout vecteur et: $\forall h \in E \setminus \{0\}, df_a(h) = D_h f(a)$.
- 3. Si $E = \mathbb{R}$. L'application f est différentiable en a si, et seulement, si f est dérivable en a.

Auquel cas, $\forall h \in \mathbb{R}, df_a(h) = hf'(a)$.

4. Si f est différentiable en a alors les dérivées partielles de f en a existent et on a $\forall h - \sum_{h \in e} f \in E$

et on a
$$\forall h = \sum_{i=1}^{n} h_i e_i \in E$$
,

$$df_a(h) = D_h f(a) = \sum_{i=1}^n h_i \frac{\partial f}{\partial x_i}(a)$$

Définition: Différentielle

On dit que f est différentiable sur U si f est différentiable en tout point de U. L'application $df: x \in U \mapsto df_x \in \mathcal{L}(E,F)$ s'appelle la différentielle de f sur U.

FONCTIONS DE CLASSE \mathcal{C}^k

Définition

On dit que f est de classe :

- C^k ($k \ge 1$) sur U si ses dérivées partielles d'ordre k existent et sont continues sur U.
- C^{∞} sur U si $\forall k \in \mathbb{N}^*$, f est de C^k sur U.

La notion de fonction de classe C^k ne dépend pas du choix de la base B.

Propriété: Somme

Soit $k \in \mathbb{N}^* \cup \{\infty\}$. Soiet $f, g : U \subset E \longrightarrow F$ et $\lambda, \mu \in \mathbb{R}$. Si f et g sont de classe C^k alors $\lambda f + \mu g$ est de classe C^k et

$$\frac{\partial(\lambda f + \mu g)}{\partial x_i} = \lambda \frac{\partial f}{\partial x_i} + \mu \frac{\partial g}{\partial x_i}$$

Propriété: Composition par une application bilinéaire

Soit $k \in \mathbb{N}^* \cup \{\infty\}$. Soit $f: U \subset E \longrightarrow F, g: U \subset E \longrightarrow G$ et $B: F \times G \longrightarrow H$ bilinéaire. Si f et g sont de classe \mathcal{C}^k alors B(f,g) l'est aussi et

$$\frac{\partial B(f,g)}{\partial x_i} = B\left(\frac{\partial f}{\partial x_i}, g\right) + B\left(f, \frac{\partial g}{\partial x_i}\right)$$

Propriété

Si $f \in C^k(U, F)$ et $g \in C^k(U, \mathbb{K})$, alors $gf \in C^k(U, F)$. Si de plus g ne s'annule pas sur U alors $\frac{f}{g}$ est de classe C^k

Propriété: Lien avec les composantes

Soit $f:U\subset E\longrightarrow F$. Alors f est de classe \mathcal{C}^k sur U ssi ses fonctions composantes sont de classe \mathcal{C}^k sur U

Propriété: Règle de la chaine

Soit $f:U\subset E\longrightarrow F$ et $g:V\subset F\longrightarrow G$ deux fonctions de \mathcal{C}^k telles que $f(U)\subset V$, alors $g\circ f$ est de \mathcal{C}^k et $\forall a\in U$

$$\forall j \in [1, n], \quad \frac{\partial (g \circ f)}{\partial x_j}(a) = \sum_{i=1}^p \frac{\partial f_i}{\partial x_j}(a) \cdot \frac{\partial g}{\partial y_i}(f(a))$$

avec f_1, \dots, f_p les fonctions coordonnées de f.

Propriété: Formule d'intégration

Soit $f: U \subset E \longrightarrow F$ une application de classe C^1 et $\gamma: [0,1] \longrightarrow E$ est un arc de classe C^1 inscrit dans U d'extrémités $a = \gamma(0)$ et $b = \gamma(1)$ alors

$$f(b) - f(a) = \int_0^1 df_{\gamma(t)} (\gamma'(t)) dt$$

En particulier si U est un ouvert connexe par arcs alors f est constante si, et seulement si, $\mathrm{d}f=\widetilde{0}$

Propriété: Théorème de Schwarz

Soit $f \in C^2(U, F)$. Alors:

$$\forall i \neq j \in [1, n]^2, \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.$$

DÉVELOPPEMENT DE TAYLOR D'ORDRE 2

Propriété

Soit $f \in C^2(U)$. Alors $\forall h = \sum_{i=1}^n h_i e_i \in E$ tel que $a + h \in U$ on a:

$$f(a+h) = f(a) + \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(a) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j}(a) + \circ (\|h\|^2).$$

APPLICATIONS AUX EXTRÉMUMS

Propriété: Caractérisation de points critiques

 $Si\ f: U \subset E \longrightarrow \mathbb{R}\ de\ classe\ \mathcal{C}^1\ et\ a \in U.\ Alors$

a est point critique de
$$f \iff \forall i \in [1, n], \quad \frac{\partial f}{\partial x_i}(a) = 0$$

Propriété: Extrémums en dimension 2

Soit $f: U \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ de classe C^2 et a critique de f. On note $r = \frac{\partial^2 f}{\partial x^2}(a,b), s = \frac{\partial^2 f}{\partial y \partial x}(a,b)$ et $t = \frac{\partial^2 f}{\partial y^2}(a,b)$.

- 1. $Si s^2 rt < 0$ et r > 0 alors f admet un minimum local stricte en a.
- 2. $Si s^2 rt < 0$ et r < 0 alors f admet un maximum local stricte en a.
- 3. Si $s^2 rt > 0$ alors a est un point col ou selle de f
- 4. Si $s^2 rt = 0$, on ne peut pas conclure

MATRICE JACOBIENNE

Définition

On appelle matrice jacobienne relative aux bases \mathcal{B} et \mathcal{C} d'une application $f: U \subset E \longrightarrow F$ différentiable en $a \in U$ la matrice de l'application linéaire df_a relative aux bases \mathcal{B} et \mathcal{C} : $J_f(a) = \underset{\mathcal{B},\mathcal{C}}{\operatorname{Mat}}(df_a) \in M_{p,n}(\mathbb{R})$

$$\mathcal{B}, \mathcal{C}$$
 \mathcal{B}, \mathcal{C} $\mathcal{B$

GRADIENT

E désigne un espace euclidien dont on note (.|.) le produit scalaire

Propriété: Gradient

Si $f: U \subset E \longrightarrow \mathbb{R}$ est une application de classe \mathcal{C}^1 alors pour tout $a \in U$, il existe un unique vecteur dans E noté $\nabla f(a)$ et appelé gradient de f en a vérifiant $\forall h \in E, \quad D_h f(a) = (\nabla f(a)|h)$

De plus, si $\mathcal{B} = (e1, \dots, e_n)$ est une BON de E alors

$$\nabla f(a) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)e_i$$

CONTACT INFORMATION

Web www.elamdaoui.com
Email elamdaoui@gmail.com

Phone 06 62 30 38 81