Математические основы алгоритмов

А. С. Охотин

Определение 1. *Машина с произвольным доступом в память* (RAM). У нас есть память в виде ячеек на \mathbb{Z} , где хранятся программы и следующие операции:

- присваивание: A = B;
- \bullet арифметические операции: A = B + C, A = B C, A = B × C, A = B / C, A = B ÷ C;
- GOTO n;
- GOTO x_n;
- IF A == B THEN GOTO n (BMecto A == B Mowet быть A >= B; BMecto n Mowet быть x_n);

Определение 2. Сложность работы программы — это такая функция t(n) равная максимуму затрачиваемых ходов по всем входным данным длины n.

Замечание 1. Рассматривают ещё модель "log-cost", где каждая операция стоит логарифм от входящих в неё значений.

Определение 3. Сложсность памяти программы — это такая функция s(n) равная максимуму затрачиваемого места по всем входным данным длины n.

Теорема 1 (Карацуба). Умножение двух чисел длины не более n можно посчитать за время $O(n^{\log_2(3)})$.

Теорема 2. Давйте разобъём наши числа $\overline{a_{n-1} \dots a_0}$ и $\overline{b_{n-1} \dots b_0}$ на две приемерно равные половины: $\overline{a_{n-1} \dots a_0} = \overline{A_1 A_2}$, $\overline{b_{n-1} \dots b_0} = \overline{B_1 B_2}$. Тогда произведение (без переносов переполнения разрядов) равно

$$\overline{A_1B_1;(A_1+A_2)(B_1B_2)-A_1B_1-A_2B_2;A_2B_2}$$

Видно, что для этого нужно сделать три умножения и четыре сложения (вычитания). Т.е. T(n) = 3T(n/2) + O(n). Тем самым $T(n) = O(n^{\log_2(3)})$.

Теорема 3. Сортировка добавлением элемента работает $зa \approx n^2/2$.

Теорема 4. Сортировка слиянием (merge sort) работает за $O(n \log(n))$.