

Above is the time series of the original temps data

The above is exponential smoothing using the additive method

The above is exponential smoothing using the multiplicative method

Using additive method:

Base factor: 0.661 Trend factor: 0

Seasonal factor: 0.625

Sum of Squared Errors: 66244

For multiplicative method:

Base factor: 0.615 Trend factor: 0

Seasonal factor: 0.55

Sum of Squared Errors: 68905

Above is a comparison of the two methods

	xhat	level	trend	season
[1,]	87.2	82.9	-0.00436	4.30
[2,]	90.3	82.1	-0.00436	8.24
[3,]	93.0	81.9	-0.00436	11.09
[4,]	90.9	81.9	-0.00436	9.04
[5,]	84.0	81.9	-0.00436	2.07
[6,]	84.0	81.9	-0.00436	2.12
[7,]	75.1	81.9	-0.00436	-6.83
[8,]	87.0	81.8	-0.00436	5.20
[9,]	84.0	81.8	-0.00436	2.21
[10,]	87.1	81.8	-0.00436	5.26

Above is the output of the additive model

 $Holt-Winters: The \ additive \ y(t) = Level(t) + Trend(t) + Seasonality(t) + Remainder(t)$

Holt-Winters: the multiplicative model y(t) = Level(t) * Trend(t) * Seasonality(t) * Remainder(t)