Machine Learning: Principles and Techniques

Bagging, Boosting IE 506

April 5, 2024

- Classification Algorithms
 - Bagging
 - Boosting

Classification Algorithms: Bagging

Bagging

Bagging (or Bootstrap aggregating)

Create different bootstrap data sets

- 1. Let D denote the original data set of N samples, \mathcal{Y} denote the label set and let k denote the number of bootstrap data sets.
- 2. For j = 1, 2, ... k do:
 - 2.1. Create a data set D_i of size N by sampling uniformly at random with replacement from D.
 - 2.2. Build a base classifier C_i using D_i .
- 3. Inference for test sample \hat{x} is done as: $\hat{y} = rg \max_{y \in \mathcal{Y}} \sum_{i=1}^k \mathbb{I}(C_j(\hat{x}) == y)$

Each sample has a probability of $1-(1-1/N)^N$ of getting selected in each data set D_j . For large N, this quantity can be approximated as $1 - 1/e \approx 0.632$

Thus on an average each bootstrap data set D_i has 63% of samples in the original data set D.

Bagging

Table	Exa	imple (of data	a set	used to	constr	uct an	ensem	ble of b	agging	classifiers.	
x	0.1	0.	2 (0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	
y	1	1	ı	1	-1	-1	-1	-1	1	1	1	
Baggir	na Rour	nd 1:										
x		0.1 0.2 (0.3	0.4	0.4	0.5	0.6	0.9	0.9	x <= 0.35 ==> y = 1	
У	1	1	1	1	-1	-1	-1	-1	1	1	x > 0.35 ==> y = -1	
	Bagging Round 1: x 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.6 0.9 0.9											
y	1	1	1	-1	-1	1	1	1	1	1	x > 0.65 ==> y = 1	
	Bagging Round 3:											
У	1	1	1	-1	-1	-1	-1	-1	1	1	x > 0.35 ==> y = -1	
Baggir	ng Rour											
×	0.1	0.1	0.2	0.4	0.4	0.5	0.5	0.7	0.8	0.9		
y	1	1	1	-1	-1	-1	-1	-1	1	1	x > 0.3 ==> y = -1	
Baggir	Bagging Round 5:											
X	0.1	0.1	0.2	0.5			0.6	1	1	1	x <= 0.35 ==> y = 1	
У	1	1	1	-1	-1	-1	-1	1	1	1	x > 0.35 ==> y = -1	
Baggir	Bagging Round 6:											
x	0.2	0.4	0.5	0.6	0.7	0.7	0.7	0.8	0.9	1	x <= 0.75 ==> y = -1	
У	1	-1	-1	-1	-1	-1	-1	1	1	1	x > 0.75 ==> y = 1	
Baggir	Bagging Round 7:											
X	0.1	0.4	0.4	0.6	0.7	0.8	0.9	0.9	0.9	1	x <= 0.75 ==> y = -1	

Baggii	Bagging Round 6:											
X	0.2	0.4	0.5	0.6	0.7	0.7	0.7	0.8	0.9	1	x <= 0.75 ==> y = -1	
У	1	-1	-1	-1	-1	-1	-1	1	1	1	x > 0.75 ==> y = 1	
Baggir	Bagging Round 7:											
X	0.1	0.4	0.4	0.6	0.7	0.8	0.9	0.9	0.9	1	x <= 0.75 ==> y = -1	
У	1	-1	-1	-1	-1	- 1	1	- 1	1	1	x > 0.75 ==> y = 1	
Baggii	ng Rour	nd 8:										
×	0.1	0.2	0.5	0.5	0.5	0.7	0.7	0.8	0.9	1	x <= 0.75 ==> y = -1	
У	1	1	-1	-1	-1	-1	-1	1	1	1	x > 0.75 ==> y = 1	
Baggii	Bagging Round 9:											
X	0.1	0.3	0.4	0.4	0.6	0.7	0.7	0.8	1	1	x <= 0.75 ==> y = -1	
У	1	1	-1	-1	7	-1	-1	1	1	1	x > 0.75 ==> y = 1	
Baggii	Bagging Round 10:											
X	0.1	0.1	0.1	0.1	0.3	0.3	0.8	0.8	0.9	0.9	x <= 0.05 ==> y = -1 x > 0.05 ==> y = 1	
У	1	1	1	1	1	1	- 1	1	1	1	x > 0.00 ==> y = 1	
	Towns to form to too door the order North order to the Towns to all											
⊏xan	Example from Introduction to Data Mining book by Tan et al.											
	· · · · · · · · · · · · · · · · · · ·											

Bagging

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	1	1	1	1	- 1	- 1	-1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1
5	- 1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	-1	1	1
7	-1	-1	-1	-1	-1	-1	-1	-1	1	1
8	-1	-1	-1	-1	-1	-1	-1	-1	1	1
9	-1	-1	-1	-1	-1	-1	-1	-1	1	1
10	1	1	1	1	- 1	- 1	- 1	1	1	1
Sum	2	2	2	-6	-6	-6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1
True Class	1	1	1	-1	-1	-1	-1	1	1	1

Figure 5.36. Example of combining classifiers constructed using the bagging approach.

Classification Algorithms: Boosting

Boosting: AdaBoost

Algorithm AdaBoost

Input: sequence of N labeled examples $\langle (x_1, y_1), \dots, (x_N, y_N) \rangle$ distribution D over the N examples weak learning algorithm WeakLearn integer T specifying number of iterations

Initialize the weight vector: $w_i^1 = D(i)$ for i = 1, ..., N. Do for t = 1, 2, ..., T

1. Set

$$\mathbf{p}^t = \frac{\mathbf{w}^t}{\sum_{i=1}^N w_i^t}$$

- 2. Call **WeakLearn**, providing it with the distribution \mathbf{p}^t ; get back a hypothesis $h_t: X \to [0,1]$.
- 3. Calculate the error of h_t : $\epsilon_t = \sum_{i=1}^N p_i^t |h_t(x_i) y_i|$.
- 4. Set $\beta_t = \epsilon_t/(1 \epsilon_t)$.
- 5. Set the new weights vector to be

$$w_i^{t+1} = w_i^t \beta_t^{1-|h_t(x_i)-y_i|}$$

Output the hypothesis

$$h_f(x) = \begin{cases} 1 & \text{if } \sum_{t=1}^T \left(\log \frac{1}{\beta_t}\right) h_t(x) \ge \frac{1}{2} \sum_{t=1}^T \log \frac{1}{\beta_t} \\ 0 & \text{otherwise} \end{cases}.$$

Y. Freund, R. Schapire. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, Journal of Computer and System Sciences. Vol 55-1, pp. 119-139, 1997.

AdaBoost - a loss perspective[†]

- Input: N samples $\{(x^i, y^i)\}_{i=1}^N$, $x^i \in \mathbb{R}^d$, $y^i \in \{+1, -1\}, \forall i \in \{1, 2, ..., N\}$.
- Initialize weights $w_i^1 = 1/N, \forall i \in \{1, 2, ..., N\}.$
- For t = 1, 2, ..., T do:
 - ▶ Train a weak classifier with examples weighed using current weights w_i^t by minimizing: $\epsilon_t = \sum_{i=1}^N w_i^t \mathbb{I}(h_t(x^i) \neq y^i)$.
 - $\qquad \qquad \textbf{Compute} \ \alpha_t = \tfrac{1}{2} \ln \tfrac{1-\epsilon_t}{\epsilon_t}$
 - Update weights as: $w_i^{t+1} = w_i^t e^{-\alpha_t y^i h(x^i)}$
 - ► Normalize $w_i^{t+1} = w_i^{t+1} / \sum_{i=1}^{N} w_i^{t+1}$.
- Output: Final classifier $h(x) = \text{sign}(\sum_{t=1}^{T} \alpha_t h_t(x))$.

^{†:} J. Friedman, T. Hastie and R. Tibshirani. Additive logistic regression: A statistical view of Boosting, Annals of Statistics, 2000, Vol. 28, no. 2, pp. 337–407.

10 data points and 2 features

Example from Ameet Talwalkar's slides on AdaBoost

Round 1: t = 1

- 3 misclassified (with circles): $\epsilon_1 = 0.3 \rightarrow \mathcal{C}_1 = 0.42$.
- Weights recomputed; the 3 misclassified data points receive larger weights

Round 2: t=2

- 3 misclassified (with circles): $\epsilon_2=0.21 \rightarrow 0.2=0.65$. Note that $\epsilon_2\neq 0.3$ as those 3 data points have weights less than 1/10
- 3 misclassified data points get larger weights
- Data points classified correctly in both rounds have small weights

Round 3: t = 3

- 3 misclassified (with circles): $\epsilon_3 = 0.14 \rightarrow 0_3 = 0.92$.
- Previously correctly classified data points are now misclassified, hence our error is low: what's the intuition?
 - Since they have been consistently classified correctly, this round's mistake will hopefully not have a huge impact on the overall prediction

Final classifier: combining 3 classifiers

• All data points are now classified correctly!