Analysis Hand in Four

William A. Bevington

Question One - Workshop 7, Q7

Suppose that d(x,y) and $\rho(x,y)$ are metrics on some set X with $x,y \in X$. First I will show that $\rho(x,y)$ and d(x,y) are equivalent iff $B_{\rho}(x_0;r) = B_d(x_0;r)$, where $B_{\rho}(x_0;r)$ is a ball with centre x_0 and radius r in the $\rho(x,y)$ metric and $B_d(x_0;r)$ is the same in the d(x,y) metric, then we can conclude that d(x,y) and $\rho(x,y)$ are equivalent iff for any open subset $H \subset_{\text{open}} X$ in (X,d) we have also $H \subset_{\text{open}} X$ in (X,ρ) .

Now, we have the two open balls in (X, d) and (X, ρ) given by

$$B_d(x_0; r) := \{ y \in X : d(x, y) < r \}, \qquad B_\rho(x_0; r) := \{ y \in X : \rho(x, y) < r \}. \tag{1}$$

If d(x,y) and $\rho(x,y)$ are equivalent then by definition we have that $\forall x, x_0 \in X : \forall \varepsilon > 0 : \exists \delta > 0$ such that

$$d(x, x_0) < \delta \Rightarrow \rho(x, x_0) < \varepsilon$$
and
$$\rho(x, x_0) < \delta \Rightarrow d(x, x_0) < \varepsilon$$

We can define the sets on which this holds and say that d(x,y) and $\rho(x,y)$ are equivalent if

$$x \in \{ y \in X : d(y, x_0) < \delta \} \Rightarrow x \in \{ y \in X : \rho(y, x_0) < \varepsilon \}$$
 and
$$x \in \{ y \in X : \rho(y, x_0) < \delta \} \Rightarrow x \in \{ y \in X : d(y, x_0) < \varepsilon \},$$

choosing $r = \min\{\delta, \varepsilon\}$ (which exists because we've assumed d(x, y) and $\rho(x, y)$ are equivalent), we can make this an 'if and only if' statement, and using (1) we get that if d(x, y) and $\rho(x, y)$ are equivalent then $B_d(x_0; r) = B_\rho(x_0; r)$ for any r. This does in fact work for any r because we have an arbitrary choice for ε and an arbitrary choice for d(x, y) and $\rho(x, y)$, which determine δ , so we can make $\min\{\delta, \varepsilon\}$ as large or small as we like.

Now we have to show that $B_d(x_0;r) = B_{\rho}(x_0;r)$ for arbitrary $x_0 \in X$ and r > 0 implies that d(x,y) and $\rho(x,y)$ are equivalent. This will essentially be the same argument in reverse. If $B_d(x_0;r) = B_{\rho}(x_0,r)$ for an arbitrary choice of x_0 and r, then $x \in B_d(x_0;r) \Rightarrow x \in B_{\rho}(x_0;r)$, and so $d(x,x_0) < r \Rightarrow \rho(x,x_0) < r$, so we let $\varepsilon = \delta = r$ and we get that

$$\forall x, y \in X : \forall \varepsilon > 0 : \exists \delta > 0 : d(x, x_0) < \delta \Rightarrow \rho(x, x_0) < \varepsilon \text{ and } \rho(x, x_0) < \delta \Rightarrow d(x, x_0) < \varepsilon,$$

and so d(x,y) and $\rho(x,y)$ are equivalent iff $B_d(x_0;r) = B_\rho(x_0;r)$.

Every open subset of a metric space X can be realised as a union of open balls. Thus if $H \subset X$ is an open subset of (X,d) then $H = \bigcup B_d(x_0;r) = \bigcup B_\rho(x_0;r) \subset (X,\rho)$, and visa-versa. So d(x,y) and $\rho(x,y)$ are equivalent on X if and only if every subset H which is open with respect to ρ is also open with respect to d(x,y).

Question Two - Workshop 7, Q9

We are asked to show that

$$d_1(f,g) := \int_0^1 |f - g|$$

does not give rise to a complete metric space on C([0,1]). We will construct a counter-example which gives a Cauchy series $f_n \to f$ but where $f \notin C([0,1])$ and so f_n is not convergent in C([0,1]). Let the sequence $(f_n)_{n \in \mathbb{N}}$ be defined

$$f_n = \frac{1}{1 + (x - \frac{1}{2})^{2n}} \tag{2}$$

where I've shifted $\frac{1}{1+x^{2n}}$ to the left by a half. Now, I will prove that each f_n is continuous on [0,1] and hence $\forall n \in \mathbb{N} : f_n \in C([0,1])$, but that $\lim_{n \to \infty} f_n \notin C([0,1])$.

First of all, each f_n is continuous. To see this note that each of the functions

$$g_1(x) = \frac{1}{1+x}$$
$$g_2(x) = x^{2n}$$
$$g_3(x) = x - \frac{1}{2}$$

are continuous on the domain [0, 1], and that $f_n(x) = g_1 \circ g_2 \circ g_3(x)$, and that the composition of continuous functions is continuous. Thus each f_n is continuous.

We now show that (f_n) is Cauchy. Let z = x - 1/2 so that $z \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ and

$$|f_n(z) - f_m(z)| = \left| \frac{1}{1 + z^{2n}} - \frac{1}{1 + z^{2m}} \right|$$

$$= \left| \frac{1 + z^{2m} - 1 - z^{2n}}{(1 + z^{2n})(1 + z^{2m})} \right|$$

$$= \left| \frac{z^{2m} - z^{2n}}{(1 + z^{2n})(1 + z^{2m})} \right|.$$

Since $-\frac{1}{2} \le z \le \frac{1}{2}$ we have $0 \le z^2 \le \frac{1}{4} \Rightarrow 1 \le 1 + z^{2n} \le 1 + \frac{1}{2^n}$ and so

$$|f_n(z) - f_m(z)| \le \left| \frac{\frac{1}{4^n} - \frac{1}{4^m}}{(1)(1)} \right| = \left| \frac{1}{4^n} - \frac{1}{4^m} \right|.$$

Without loss of generality, assume m>n and so $\frac{1}{4^m}<\frac{1}{4^n}$, thus $\left|\frac{1}{4^n}-\frac{1}{4^m}\right|\leq \frac{1}{4^n}=:\varepsilon$ so (f_n) is Cauchy. Now we show that $f(x):=\lim_{n\to\infty}f_n(x)$ isn't continuous on [0,1], as it has a discontinuity at $x=\frac{1}{2}$. Substituting $x=\frac{1}{2}$ into (2) we get that $\forall n:f_n(1/2)=1$ and so clearly f(1/2)=1. However, if $x\in(\frac{1}{2},1]$ then $x-\frac{1}{2}>0\Rightarrow 1+(x-\frac{1}{2})^{2n}>1$ and so $f_n(x)=\frac{1}{1+(x-\frac{1}{2})^{2n}}\to 0$ as $n\to\infty$ by the p-test. So $\lim_{x\to 1/2^+}f(x)=0$ and $f(x) = \frac{1}{2}$, thus f is discontinuous at $x = \frac{1}{2}$.

Thus we have shown that there exists a Cauchy sequence on the metric space $(C([0,1]), d_1)$ which is not convergent; so the space isn't complete.

Question Three - Workshop 8

I will prove that if (X,d) is a complete metric space then any closed subset of $A \subset X$ is compact, thus we will get for free that $[0,1] \times [0,1] \subset \mathbb{R}^2$ is compact, since \mathbb{R}^2 is complete.

Suppose $A \subset X$ is a closed subset of (X,d) with the restriction of d to A, dentoed $d|_A$, forming a metric (sub)space $(A, d|_A)$, and that $(A, d|_A)$, (X, d) are complete spaces. We say that $Q \subset X$ is compact if given any open cover \mathcal{U} of Q we can find a finite sub-cover $\{\mathcal{U}_{\alpha}\}\subset\mathcal{U}$ of Q.

Thus, for the sake of contradiction, assume that \mathcal{U} is an open cover of A in which there exists a subcover $\{U_{\alpha}\}$ which is infinite. We partition \mathcal{U} into $\frac{h}{h}$ subsets $Q_1 = \mathcal{U}_1 \sqcup \cdots \sqcup \mathcal{U}_h$, so that $\{\mathcal{U}_1, \ldots, \mathcal{U}_h\}$ is a subcover of \mathcal{U} , by our assumption it must be the case that at least one of the \mathcal{U}_i has no finite subcover.

Without loss of generality say that \mathcal{U}_1 has no finite subcover, and let $Q_1 := \mathcal{U}_1$. We can now partition this into a further four subsets which cover it and then we repeat the steps from the last paragraph, giving the sequence $Q_{n+1} \subset Q_n \subset \cdots \subset Q_1$, where we choose each Q_i to be one with no finite subcover by our assumption.

Now we choose $x_n \in Q_n$ and $x_m \in Q_m$ with m > n so that $Q_m \subset Q_n$, note that the maximum distance between these two points is the maximum distance between any two points in Q_n , given by $k_n = \sup\{d(x_i, x_i) :$ $x_i, x_i \in Q_n$. We require now that $(k_n)_{n \in \mathbb{N}}$ is a Cauchy sequence (more on this at the end), which by the completeness of X gives that it is a convergent sequence, so $x_n, x_m \to x$ as $m, n \to \infty$ for some $x \in \bigcap_{i=0}^{\infty} Q_i$.

So we have that $x \in \bigcap_{i \in I} Q_i$ for some finite indexing set I since $Q_m \subset Q_n$ for m > n, so we may just choose a finite I as $\bigcap_{i\in I}\subset Q_1$, for instance, and one is finite. Let B(x,r) be an open ball so that $B(x,r)\subseteq\bigcap_{i\in I}Q_i$, we can choose a suitably large (yet still finite) N for which, given $n \geq N$ we have $\sup\{d(x_i, x)\} \leq r$ since the sequence $(x_i)_{n\in\mathbb{N}}$ is convergent to a finite limit. Then $Q_n\subseteq B(x,r)$, and so our ball is a finite subcover of Q_n , which is in contradiction with our statement that each Q_i has no finite subcover.

Now, we required earlier that $(k_n)_{n\in\mathbb{N}}$ be a Cauchy sequence, which may not be true for any choice of sub-division of each Q_i . However we may choose a subdivision each time which suitably decreaces the 'size' of Q_{i+1} as to make (k_n) Cauchy since we have not fixed the number of subdivisions h, and so can choose a suitably large h as to suitably decrease the size of each subdivision, forcing $(k_n)_{n\in\mathbb{N}}$ to be Cauchy. Thus, since $[0,1] \times [0,1] \subset \mathbb{R}^2$ is complete, it is also compact.