PAÜ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2020-2021 GÜZ DÖNEMİ İŞARET İŞLEME FİNAL SINAVI

TÜM YAPRAKLARA AD-SOYAD yazınız. İmzanızı atınız	SÜRE:	PUAN:
Ara cevapları tek, kesin cevapları çift kutu içine alınız		
AD-SOYAD:	NUMARA:	

1- Aşağıdaki denklemi Laplace özelliklerini kullanarak x(t) = u(t) için çözünüz. y(t) = ?

Başlangıç koşulları: y(0) = 1 ve $\dot{y}(0) = 2$

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y(t) = 2\frac{dx}{dt} + x(t)$$

2- Haberleşmenin temeli sayılan modülasyon işleminin gerekliliğini yazınız

3- Aşağıda verilen Fourier Serisini dikkate alarak şu soruları cevaplayınız

- a) Serinin temel frekansı ve harmonikleri nelerdir? Belirtiniz
- b) Seriye ait frekans spektrumunu (genlik ve açı spektrumu) çiziniz.

$$f(t) = 8 + 4\sin(\pi t - 60^\circ) + 6\sqrt{2}\sin(2\pi t) + 4\sin(5\pi t + 30^\circ) - 5\sin(6\pi t + 120^\circ)$$
 ise

4- y[-1] = 1, y[-2] = 33 başlangıç şartlarına sahip y[k] + 0.3y[k-1] - 0.1y[k-2] = x[k] + 2x[k-1] sisteminin sıfır giriş cevabını y[k] bulunuz.

5- Bu soruda sadece çizim yapılacaktır! Aşağıdaki sistem için x(t): giriş sinyalini, y(t): çıkış sinyalini temsil etmektedir.

 $\mathbf{x}(\mathbf{t})$ işaretinin Fourier transformu $\mathbf{X}(\mathbf{f})$ yukarıda verildiği şekildedir. Bu sistemde $\mathbf{H}_1(\mathbf{f})$ ve $\mathbf{H}_2(\mathbf{f})$ blokları ise aşağıdaki grafiklerle özellikleri belirtilen çeşitli filtreleri ifade etmektedir.

- a. $\mathbf{x}(\mathbf{t})$ işaretinin $2\cos(2\pi 50\mathbf{t})$ taşıyıcı işareti ile $\underline{\text{modüle}}$ edildikten sonraki hali olan $\mathbf{u}(\mathbf{f})$ işaretini frekans ortamında çiziniz.
- b. Modüle edilen $\mathbf{u}(\mathbf{f})$ işaretinin $\mathbf{H}_1(\mathbf{f})$ filtresinden geçtikten sonraki hali olan $\mathbf{v}(\mathbf{f})$ işaretini frekans ortamında çiziniz.
- c. $\mathbf{v}(\mathbf{f})$ işaretinin $2\cos(2\pi 50\mathbf{t})$ taşıyıcı işareti ile <u>demodüle</u> edildikten sonraki hali olan $\mathbf{w}(\mathbf{f})$ işaretini frekans ortamında çiziniz.
- d. Demodüle edilen w(f) işaretinin H₂(f) filtresinden geçtikten sonraki hali olan y(f) çıkış işaretini frekans ortamında çiziniz.
 Not: Frekans ortamında kaydırma özelliğini hatırlatmak gerekirse;

$$F[w(t)\cos(2\pi f_c t)] = \frac{1}{2}[W(f - f_c) + W(f + f_c)]$$

Sürekli-Zamanlı Konvolüsyon Tablosu

ourekii-Zamariii Konvolusyon Tablosu						
No	$\mathbf{x_1}(\mathbf{t})$	$\mathbf{x}_{2}(\mathbf{t})$	$\mathbf{x_1}(\mathbf{t}) * \mathbf{x_2}(\mathbf{t})$			
1	x(t)	$\delta(t-T)$	x(t-T)			
2	$e^{\lambda t}u(t)$	u(t)	$\frac{1-e^{\lambda t}}{-\lambda}u(t)$			
3	u(t)	u(t)	tu(t)			
4	$e^{\lambda 1t}u(t)$	$e^{\lambda 2t}u(t)$	$\frac{e^{\lambda 1t} - e^{\lambda 2t}}{\lambda_1 - \lambda_2} \mathbf{u}(\mathbf{t})$			
5	$e^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$te^{\lambda t}u(t)$			
6	$te^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$\frac{1}{2}t^2e^{\lambda t}\mathbf{u}(t)$			

	Laplace Ozellikleri Tablosu				
No	$\mathbf{x}(\mathbf{t})$	X(s)			
1	$\mathbf{x_1}(\mathbf{t}) + \mathbf{x_2}(\mathbf{t})$	$X_1(s) + X_2(s)$			
2	kx(t)	kX(s)			
3	dx(t)	$\mathbf{sX}(\mathbf{s}) - \mathbf{x}(0^{-})$			
	dt				
	$d^2x(t)$	$s^2X(s)-sx(0^-)$			
	dt^2	$-\dot{x}(0^{-})$			
4	$\mathbf{x}(\mathbf{t}-t_0)\mathbf{u}(\mathbf{t}$	$X(s)e^{-st_0}$, $t_0\geq 0$			
	$-t_{0}$)				

Laplace Dönüşüm TablosuNo $x_1(t)$ $X_1(s)$ 1 $\delta(t)$ 12u(t)1/s3t.u(t) $1/s^2$ 4 $e^{\lambda t}u(t)$ $1/(s-\lambda)$ 5 $t.e^{\lambda t}.u(t)$ $1/(s-\lambda)^2$

NOT: Soruları çözmek için tablolarda bulamadığınız özellikler varsa canlı ders sunumları ve ders materyallerini kullanabilirsiniz.

S1-20p S2-1)p S3-20p	S4-20p	S5-30p	T-100p
-------------	-----------	--------	--------	--------

Doç. Dr. Meriç Çetin, Başarılar dilerim