Part III Model Calibration

Adrian Galdran, MSC Research Fellow Universitat Pompeu Fabra, Barcelona, Spain University of Adelaide, Australia Meritxell Riera i Marin, Researcher Sycai Medical, Barcelona, Spain Universitat Pompeu Fabra, Barcelona, Spain

Contents

- 1. Understanding Calibration
- 2. Measuring Calibration
- 3. Improving Calibration
- 4. Practical Hands-On Session

But, don't we already have probabilities? (probability= confidence = uncertainty)?

http://www.eamonfleming.com/

p	y	p	y
1/2	0	3/4	0
1/2	0	3/4	1
1/2	0	3/4	1
1/2	1	3/4	1
1/2	1	1	1
1/2	1	1	1

p	y	
1/2	0	
1/2	0	
1/2	0	
1/2	1	
1/2	1	
1/2	1	

p	y
3/4	0
3/4	1
3/4	1
3/4	1
1	1
1	1

p	y	p	
1/2	0	3/4	
1/2	0	3/4	í
1/2	0	3/4	í
1/2	1	3/4	
1/2	1	1	
1/2	1	1	

p	у	
1/2	0	
1/2	0	
1/2	0	
1/2	1	
1/2	1	
1/2	1	

p	y
3/4	0
3/4	1
3/4	1
3/4	1
1	1
1	1

QUESTION:

Are these predictions under-confident or over-confident?

QUESTION:

Are these predictions under-confident or over-confident?

Reliability Plots

Not enough items with a given confidence to estimate population statistics decently:

model predicts with $p=0.2 \rightarrow "20\%"$ positives

What if you only have 2 items predicted with p=0.2? We can group predictions in bins, and plot them against y=x.

• Expected Calibration Error

The average of gaps across bins, weighted by bin population:

$$ext{ECE} = rac{1}{M} \sum_{i=1}^{M} rac{1}{|B_i|} \left| prob(B_i) - pos(B_i)
ight|.$$

• Generalizing from Binary to Multi-Class classifiers Full-calibration: consider the whole probability vector.

p	y
2/3	1
2/3	1
2/3	2

p	y
2/3	2
2/3	2
2/3	3

p	y
2/3	3
2/3	3
2/3	1

• Generalizing from Binary to Multi-Class classifiers

Full-calibration: consider the whole probability vector. Confidence calibration: only consider highest probability.

p	y
2/3	1
2/3	1
2/3	2

p	y
2/3	2
2/3	2
2/3	3

p	y
2/3	3
2/3	3
2/3	1

• Generalizing from Binary to Multi-Class classifiers

Full-calibration: consider the whole probability vector. Confidence calibration: only consider highest probability.

p	(ŷ, c)	y
2/3	(1,2/3)	1
2/3	(1,2/3)	1
2/3	(1,2/3)	2

р	(ŷ, c)	y
2/3	(2,2/3)	2
2/3	(2,2/3)	2
2/3	(2,2/3)	3

p	(ŷ, c)	y
2/3	(3,2/3)	3
2/3	(3,2/3)	3
2/3	(3,2/3)	1

^{*}Also Class-wise calibration: consider marginal probabilities, 1vsRest.

• Expected Full Calibration Error

$$ext{full-ECE} = rac{1}{M} \, \sum_{i=1}^{M} rac{1}{|\mathbb{B}_i|} \, \| \, prob(\mathbb{B}_i) \, - \, true(\mathbb{B}_i) \, \| \, dt$$

• Expected Confidence-Calibration Error

$$ext{conf-ECE} = rac{1}{M} \sum_{i=1}^{M} rac{1}{|B_i|} \left| conf(B_i) - acc(B_i)
ight|$$

• Expected Class-Wise Calibration Error

cw-ECE =
$$\frac{1}{K} \sum_{k=1}^{K} \text{bin-ECE}_k$$
 [one-vs-rest]

p	$\hat{\mathbf{y}}$	y
		1
		1
		2

p	$\hat{\mathbf{y}}$	y
		2
		3
		3

p	$\hat{\mathbf{y}}$	y
		1
		1
		2

p	$\hat{\mathbf{y}}$	y
		2
		3
		3

p	$\hat{\mathbf{y}}$	y
	1	1
	2	1
	3	2

p	$\hat{\mathbf{y}}$	y
	1	2
	2	3
	3	3

p	$\hat{\mathbf{y}}$	y
	1	1
	2	1
	3	2

p	$\hat{\mathbf{y}}$	y
	1	2
	2	3
	3	3

Alternative Calibration Measures: Proper Scoring Rules

p	$\hat{\mathbf{y}}$	y
	1	1
	2	1
	3	2

p	$\hat{\mathbf{y}}$	y
	1	2
	2	3
	3	3

This classifier predicts a random class with full uncertainty. It always has a confidence of ~1/3, and it has an accuracy of 1/3. Therefore it is perfectly confidence-calibrated, but useless.

p	$\hat{\mathbf{y}}$	y
		1
		1
		2

p	$\hat{\mathbf{y}}$	y
		2
		3
		3

p	$\hat{\mathbf{y}}$	y
	1	1
	3	1
	2	2

p	$\hat{\mathbf{y}}$	y
	1	2
	3	3
	3	3

Alternative Calibration Measures: Proper Scoring Rules

p	$\hat{\mathbf{y}}$	y
	1	1
	3	1
	2	2

p	$\hat{\mathbf{y}}$	y
	1	2
	3	3
	3	3

This classifier always predicts with \(\frac{1}{3} \) confidence. Also, it has an accuracy of \(\frac{1}{3} \). It is perfectly confidence-calibrated, but it has more discrimination ability than random guessing.

p	$\hat{\mathbf{y}}$	y
	1	1
	1	1
	2	2

p	$\hat{\mathbf{y}}$	y
	2	2
	3	3
	3	3

Alternative Calibration Measures: Proper Scoring Rules

p	$\hat{\mathbf{y}}$	y
	1	1
	1	1
	2	2

p	$\hat{\mathbf{y}}$	y
	2	2
	3	3
	3	3

This is a god-like classifier. It is always 100% confident, and always right. It is full-calibrated and perfectly discriminative.

PSRs are a tool for measuring calibration & discrimination jointly.

• Proper Scoring Rules

Measure discrimination+calibration at individual item level

Most popular: Brier Score, Logarithmic Score (aka Cross-Entropy)

$$\mathbf{Brier}(\mathbf{p},\mathbf{y}) = ||\mathbf{p} - \mathbf{y}||_{\mathbf{2}}^{\mathbf{2}} \qquad \qquad \mathbf{CE}(\mathbf{p},\mathbf{y}) = -\log(\mathbf{p}_y)$$

Example:
$$y = 3$$
, $y = (0, 0, 1)$, $p_{bad} = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$, $p_{better} = \left(0, \frac{1}{3}, \frac{2}{3}\right)$

$$\mathrm{Brier}(\mathrm{p_{bad}},\,\mathrm{y})=2/3 \quad \mathrm{Brier}(\mathrm{p_{better}},\,\mathrm{y})=2/9 \quad \mathrm{Brier}(\mathrm{y},\,\mathrm{y})=0$$

$$\mathbf{CE}(\mathbf{p_{bad}}, \mathbf{y}) \approx 0.477$$
 $\mathbf{CE}(\mathbf{p_{better}}, \mathbf{y}) \approx 0.176$ $\mathbf{CE}(\mathbf{y}, \mathbf{y}) = 0$

Note that a fully uncertain prediction Pbad does not score well.

3. Improving Calibration

Model Ensembling

Ensembling several diverse models can reduce over-confidence.

• Training Time Calibration

Over-parametrized NNs can keep on learning the training set until they are fully confident, minimizing NLL indefinitely.

We can regularize to disencourage confidence: Label Smoothing, MixUp, Focal Loss... Careful of underfitting! Report also PSRs.

Post-Training Calibration

Temperature Scaling: Uses a validation set to learn a scalar T dividing logits before applying softmax and tempers their value:

$$p_{\mathbf{j}} = \frac{\mathbf{e}^{\mathbf{z}_{\mathbf{j}}}}{\sum_{\mathbf{k}=1}^{\mathbf{N}} \mathbf{e}^{\mathbf{z}_{\mathbf{k}}}} \longmapsto p_{j} = \frac{\mathbf{e}^{(\mathbf{z}_{\mathbf{j}}/\mathbf{T})}}{\sum_{\mathbf{k}=1}^{\mathbf{N}} \mathbf{e}^{(\mathbf{z}_{\mathbf{k}}/\mathbf{T})}}$$

4. Hands-On

