CSC373 Worksheet 1 Solution

August 15, 2020

1. The cpu utilization is 100%.

The CPU utilization formula is given as

CPU Utilization =
$$1 - \prod_{i} I/O$$
 blocked time of ith process (1)

Since the processes do no I/O, we can write there is no I/O blocked time.

Thus, we can conclude

$$CPU Utilization = 1 - 0$$

$$= 1$$
(2)
(3)

which is 100%.

Notes

• CPU Utilization

- Means % of time CPU is in use
- Formula is

CPU Utilization =
$$1 - \prod_{i} I/O$$
 blocked time of ith process (4)

• Process

- Means a program in execution

PID

- Is a short hand form for 'process identifier'

• Process States

- in simplified view, process can be in one of the three states

1. Running:

- * Is running on a processor
- * Means 'Is executing instructions'

2. Ready:

- * Is ready to run
- * But, OS chosen to not to run it at the moment

3. Blocked:

* Is not ready to run until some other event takes place

Example

Running an I/O request to disk \rightarrow process blocked \rightarrow other process can do their job while waiting

2. It takes total of 10 seconds to run.

The first task only uses CPU, and takes 4 seconds.

But, for the second task, on top of 4 seconds used for I/O, 1 second is used for preparing and initiating I/O, and the other 1 second is used for signaling that I/O is done.

So in total, we have 4 + 4 + 1 + 1 = 10 seconds.

	lime	ט:עוץ	PIV: 1	LPU	108	
10 seconds	1	RUN:cpu	READY	1		
	2	RUN:cpu	READY	1		
	3	RUN:cpu	READY	1		
	4	RUN:cpu	READY	1		
	5	DONE	RUN:io	1		
	6	DONE	WAITING		1	
	7	DONE	WAITING		1	
	8	DONE	WAITING		1	
	9	DONE	WAITING		1	
	10*	DONE	DONE			

1

3. Yes. Switching the order does matter.

When the order is switched, the process 2 with I/O runs, and the process 2 enters the blocked state.

While at blocked state, the other process executes.

Since both take 4 seconds, by the time process 2 finishes, process 1 is finished.

Thus, total of 6 seconds are taken.

4. With flag SWITCH_ON_END, system runs as if it's without I/O. That is, process 2 runs after process 1 finishes.

The only difference is that process 2 executes at the same time process 1 finishes.

So instead of 10 seconds, there are 9 seconds in total

5. I need to write what happens when one is waiting for I/O.

The result is the same as question 2.

While process 1 is in blocked state, process 2 is executes.

```
[moegu@MacBook=Pro=5 week_1 % python process=run.py =l 1:0,4:100 =c =S SWITCH_ON_IO
                                    CPU
                                                I0s
Time
         PID: 0
                     PID: 1
  1
         RUN:io
                      READY
                                      1
  2
                                      1
                                                  1
        WAITING
                    RUN:cpu
  3
                                      1
                                                  1
        WAITING
                    RUN:cpu
  4
        WAITING
                    RUN:cpu
                                      1
  5
        WAITING
                    RUN:cpu
                                      1
                                                  1
           DONE
                       DONE
```