МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» им.В.И.УЛЬЯНОВА (ЛЕНИНА)

Кафедра вычислительной техники

Отчет по лабораторной работе № 13 по дисциплине «Программирование» Тема: «Битовые поля в структурах»

Студент гр. <u>8307</u>	Овечко Д.А.
Преподаватель	Перязева Ю.В.

Содержание

Задание	. 2
Постановка задачи и описание решения	
Описание переменных	
Контрольные примеры	
Текст программы	
Пример работы программы	
Вывол	

Цель

Получить практические навыки в разработке алгоритма и написании программы на языке Си с использованием битовых полей в структурах, классов, а также битовые операции, потому что эти знания необходимы при написании практических заданий.

Задание

Структура содержит 4 битовых поля типа unsigned char по 1 байту каждое. Значения полей структуры задаются шестнадцатеричными кодами. Разработать алгоритм и реализовать функцию циклического сдвига влево для заданного поля на заданное число позиций (если задано число N больше 7, то сдвиг производится на N%8 позиций). Вывести результаты в виде шестнадцатеричных значений полей структуры.

Исходные данные: Ввод с клавиатуры.

Постановка задачи и описание решения

Задаётся структура, состоящая из 4 битовых полей типа unsigned char, с помощью функции enter производится считывание элементов для этой структуры с клавиатуры.

После происходит вывод введённых чисел и их коды в двоичной системе.

Далее у пользователя уточняется с каким полем будет производиться работа. После выбора, пользователя просят ввести число, которое будет равно числу позиций сдвига (добавлена проверка на случай, если число больше 7).

С помощью функции shift происходит сдвиг поля на необходимое число позиций.

Выводятся сами шестнадцатеричные числа и их двоичные коды, включая изменяемое число и его код с произведённым сдвигом.

Описание переменных

Таблица 1. Описание переменных.

Имя переменной	Тип	Назначение
code	struct hex	Структура с битовыми полями
i	int	Счетчик
N	int	Число, определяющее сдвиг
		Переменная для работы в меню
k	Int	(выбор числа для проведения
		преобразований)

Таблица 2. Описание функций.

Имя переменной	Тип	Назначение
enter	struct hex	Ввод шестнадцатеричного кода
shift	struct hex	Сдвиг поля на необходимое число полей

Таблица 3. Описание структуры.

Имя переменной	Тип	Назначение
char ch[4]	union	Шестнадцатеричное число

Таблица 4. Описание класса.

Имя переменной	Тип	Назначение
а	*char	Введённое шестнадцатеричное число
bit7: 1	unsigned	7 бит
bit6: 1	unsigned	6 бит
bit5: 1	unsigned	5 бит
bit4: 1	unsigned	4 бит
bit3: 1	unsigned	3 бит
bit2: 1	unsigned	2 бит
bit1: 1	unsigned	1 бит
bit0: 1	unsigned	0 бит

Контрольные примеры

1. Пример 1

Исходные данные:

Введите 4 шестнадцатиричных числа

Первое: 12 Второе: 23 Третье: 34 Четвёртое: A4

Выберем для преобразования номер 3

Сдвиг 34

Результат:

Преобразованный список, в котором изменения произведены над 3-им элементом и двоичные коды элементов списка.

2. Пример 2

Исходные данные:

Введите 4 шестнадцатиричных числа

Первое: A3 Второе: A4 Третье: A5 Четвёртое: A6

Выберем для преобразования номер 4

Сдвиг 124

Результат:

Преобразованный список, в котором изменения произведены над 4-ым элементом и двоичные коды элементов списка.

3. Пример 3

Исходные данные:

Введите 4 шестнадцатиричных числа

Первое: B5 Второе: F6 Третье: 15 Четвёртое: D3

Выберем для преобразования номер 1

Сдвиг 876

Результат:

Преобразованный список, в котором изменения произведены над 1-ым элементом и двоичные коды элементов списка.

Текст программы

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <windows.h>
#include <ctype.h>
union char_ /// класс размером в 8 бита
{
  char bit;
  struct {
     unsigned char bit7: 1;
     unsigned char bit6: 1;
     unsigned char bit5: 1;
     unsigned char bit4: 1;
     unsigned char bit3: 1;
     unsigned char bit2: 1;
     unsigned char bit1: 1;
     unsigned char bit0: 1;
  };
};
struct hex
{
  union char_ ch[4];
};
```

```
struct hex enter(); /// Ввод
struct hex shift(struct hex , int, int); /// Преобразование
int main() {
   SetConsoleCP(1251);// установка кодовой страницы win-cp 1251
в поток ввода
   SetConsoleOutputCP(1251); // установка кодовой страницы win-
ср 1251 в поток вывода
   struct hex code:
   code = enter();
   printf("Заданы шестнадцатеричные коды: 1) %3x 2) %3x 3) %3x
4) %3x\n", code.ch[0].bit,
          code.ch[1].bit, code.ch[2].bit, code.ch[3].bit);
   int N, k;
   printf("Коды в двоичной системе: 1) %d%d%d%d%d%d%d%d%d 2)
%d%d%d%d%d%d%d%d"
          " 3) %d%d%d%d%d%d%d%d%d 4) %d%d%d%d%d%d%d%d%d\n",
code.ch[0].bit0, code.ch[0].bit1,
          code.ch[0].bit2, code.ch[0].bit3, code.ch[0].bit4,
code.ch[0].bit5, code.ch[0].bit6,
          code.ch[0].bit7, code.ch[1].bit0, code.ch[1].bit1,
code.ch[1].bit2, code.ch[1].bit3,
          code.ch[1].bit4, code.ch[1].bit5, code.ch[1].bit6,
code.ch[1].bit7, code.ch[2].bit0,
          code.ch[2].bit1, code.ch[2].bit2, code.ch[2].bit3,
code.ch[2].bit4, code.ch[2].bit5,
          code.ch[2].bit6, code.ch[2].bit7, code.ch[3].bit0,
code.ch[3].bit1, code.ch[3].bit2,
          code.ch[3].bit3, code.ch[3].bit4, code.ch[3].bit5,
code.ch[3].bit6, code.ch[3].bit7);
printf("Введите номер кода, который вы хотите преобразовать (или 1, или 2, или 3, или 4): ");
   scanf("%d", &k);
   printf("Введите на какое кол-во знаков произвезти сдвиг: ");
```

```
scanf("%d", &N);
   N = N \% 8;
   code = shift(code, N, k);
   printf("Преобразованные шестнадцатеричные коды: 1) %3x 2)
%3x 3) %3x 4) %3x\n", code.ch[0].bit,
         code.ch[1].bit, code.ch[2].bit, code.ch[3].bit);
   printf("Коды в двоичной системе: 1) %d%d%d%d%d%d%d%d%d 2)
%d%d%d%d%d%d%d%d"
         code.ch[0].bit0, code.ch[0].bit1.
         code.ch[0].bit2, code.ch[0].bit3, code.ch[0].bit4,
code.ch[0].bit5, code.ch[0].bit6,
         code.ch[0].bit7, code.ch[1].bit0, code.ch[1].bit1,
code.ch[1].bit2, code.ch[1].bit3,
         code.ch[1].bit4, code.ch[1].bit5, code.ch[1].bit6,
code.ch[1].bit7, code.ch[2].bit0,
         code.ch[2].bit1, code.ch[2].bit2, code.ch[2].bit3,
code.ch[2].bit4, code.ch[2].bit5,
         code.ch[2].bit6, code.ch[2].bit7, code.ch[3].bit0,
code.ch[3].bit1, code.ch[3].bit2,
         code.ch[3].bit3, code.ch[3].bit4, code.ch[3].bit5,
code.ch[3].bit6, code.ch[3].bit7);
   return 0;
}
struct hex enter() /// Ввод
{
   struct hex add;
   printf("Введите 4 шеснадцатиричных числа");
   int i:
   printf("\nПервое: ");
   scanf("%x", &i);
   add.ch[0].bit = i;
```

```
printf("BTopoe: ");
   scanf("%x", &i);
   add.ch[1].bit = i;
   printf("Третье: ");
   scanf("%x", &i);
   add.ch[2].bit = i;
   printf("\nчетвертое: ");
   scanf("%x", &i);
   add.ch[3].bit = i;
   return add;
}
struct hex shift(struct hex current, int N, int k) ///
Преобразование шеснадцатиричного кода
{
   if (k == 1)
      current.ch[0].bit = current.ch[0].bit << N;</pre>
   else if (k == 2)
      current.ch[1].bit = current.ch[1].bit << N;</pre>
   else if (k == 3)
      current.ch[2].bit = current.ch[2].bit << N;</pre>
   else if (k == 4)
      current.ch[3].bit = current.ch[3].bit << N;</pre>
   return current;
}
```

Пример работы программы

1. Исходные данные (Пример 1)

Введите 4 шестнадцатиричных числа

Первое: 12 Второе: 23 Третье: 34

Четвёртое: А4

Выберем для преобразования номер 3

Сдвиг 34

Вывод программы:

```
Введите 4 шеснадцатиричных числа
Первое: 12
Второе: 23
Третье: 34
Четвертое: А4
Заданы шестнадцатеричные коды: 1) 12 2) 23 3) 34 4) ffffffa4
Коды в двоичной системе: 1) 00010010 2) 00100011 3) 00110100 4) 10100100
Введите номер кода, который вы хотите преобразовать (или 1, или 2, или 3, или 4): 3
Введите на какое кол-во знаков произвезти сдвиг: 34
Преобразованные шестнадцатеричные коды: 1) 12 2) 23 3) ffffffd0 4) fffffa4
Коды в двоичной системе: 1) 00010010 2) 00100011 3) 11010000 4) 10100100
```

2. Исходные данные (Пример 2)

Введите 4 шестнадцатиричных числа

Первое: A3 Второе: A4 Третье: A5 Четвёртое: A6

Выберем для преобразования номер 4

Сдвиг 124

Вывод программы:

```
Введите 4 шеснадцатиричных числа
Первое: А3
Второе: А4
Третье: А5
Четвертое: А6
Заданы шестнадцатеричные коды: 1) ffffffa3 2) ffffffa4 3) ffffffa5 4) ffffffa6
Коды в двоичной системе: 1) 10100011 2) 10100100 3) 10100101 4) 10100110
Введите номер кода, который вы хотите преобразовать (или 1, или 2, или 3, или 4): 4
Введите на какое кол-во знаков произвезти сдвиг: 124
Преобразованные шестнадцатеричные коды: 1) ffffffa3 2) ffffffa4 3) ffffffa5 4) 60
Коды в двоичной системе: 1) 10100011 2) 10100100 3) 10100101 4) 01100000
```

3. Исходные данные (Пример 3)

Введите 4 шестнадцатиричных числа

Первое: В5 Второе: F6 Третье: 15

Четвёртое: D3

Выберем для преобразования номер 1

Сдвиг 876

Вывод программы:

```
Введите 4 шеснадцатиричных числа
Первое: B5
Второе: F6
Третье: 15

Четвертое: D3
Заданы шестнадцатеричные коды: 1) ffffffb5 2) fffffff6 3) 15 4) ffffffd3
Коды в двоичной системе: 1) 10110101 2) 11110110 3) 00010101 4) 11010011
Введите номер кода, который вы хотите преобразовать (или 1, или 2, или 3, или 4): 1
Введите на какое кол-во знаков произвезти сдвиг: 876
Преобразованные шестнадцатеричные коды: 1) 50 2) fffffff6 3) 15 4) ffffffd3
Коды в двоичной системе: 1) 01010000 2) 11110110 3) 00010101 4) 11010011
```

Вывод

При выполнении лабораторной работы были получены практические навыки в работе с битовыми полями в структурах, в классах, а также с битовыми операциями.