

Equilibrio Quimico

Prof° Me. Flávio Olimpio Sanches Neto

Reversibilidade das reações

$$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$$

$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$$

$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$$

$$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)} \quad 2NH_{3(g)} \rightarrow N_{2(g)} + 3H_{2(g)}$$

As reações atingem um equilíbrio dinâmico

Velocidade de reação direta e inversa são iguais

$$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$$

P _{SO2} (bar)	$P_{O2}(bar)$	P _{SO3} (bar)
0,660	0,390	0,0840
0,0380	0,220	0,00360
0,110	0,110	0,00750
0,950	0,880	0,180
1,44	1,98	0,410

Equilíbrio atingido em 1000K

$$K = \frac{(P_{SO_3}/P^0)^2}{(P_{SO_2}/P^0)^2(P_{O_2}/P^0)} \qquad K = \frac{(P_{SO_1})^2}{(P_{SO_2})^2(P_{O_2})^2}$$

P _{soz} (bar)	Poz (bar)	P _{SO3} (bar)	K
0,660	0,390	0,0840	0,0415
0,0380	0,220	0,00360	0,0409
0,110	0,110	0,00750	0,0423
0,950	0,880	0,180	0,0408
1,44	1,98	0,410	0,0409

Equilibrio atingido em 1000K

Lei da Ação das Massas Lei de Guldberg-Waage

A composição da mistura de reação pode ser expressa em termos de uma constante de equilíbrio

Independentemente da composição inicial de uma mistura de reação, a composição tende a se ajustar até que as atividades levem ao valor característico de K, na determinada temperatura

$$K = f(T)$$

$$aA + bB \rightleftharpoons cC + dD$$

$$K = \frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b}$$

$$aA + bB \rightleftharpoons cC + dD$$

$$K = \frac{(a_C)^c (a_D)^d}{(a_A)^a (a_B)^b}$$

Substância	Atividade	Aproximação
Gás ideal	$a_j = P_j/P^0$	$a_j = P_j$
Soluto em solução ideal	$a_j = [J]_j/c^0$	$a_j = [J]_j$
Sólido ou líquido puro	a _j =1	a _j =1

$$CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$$

$$K_P = P_{CO_2}$$

$$HF_{(l)} + {\color{red} H_2} {\color{red} O_{(l)}} \rightleftharpoons H_3 {\color{red} O_{(aq)}^{\scriptscriptstyle +}} + F_{(aq)}^{\scriptscriptstyle -}$$

$$K_c = \frac{[H_3O^+][F^-]}{[HF]}$$

$$Ca(OH)_{2(s)} \rightleftharpoons Ca_{(aq)}^{2+} + 2OH_{(aq)}^{-}$$

$$K_c = [Ca^{2+}][OH^{-}]^2$$

$$\dot{a}cido_{(l)} + \dot{a}lcool_{(l)} \rightleftharpoons \dot{e}ster_{(l)} + H_2O_{(l)}$$
 $K_c = \frac{[\dot{e}ster][H_2O]}{[\dot{a}lcool][\dot{a}cido]}$

$$K_{c} = \frac{[\acute{e}ster][H_{2}O]}{[\acute{a}lcool][\acute{a}cido]}$$

- Quando pouco produto é formado, a reação direta é espontânea, ΔG<0
- Quando tem excesso de produto, a reação inversa é espontânea, ΔG>0
- No equilíbrio não há tendência de espontaneidade, ΔG=0

O valor de ΔG_n depende das pressões parciais/concentração em cada momento

$$\Delta G_r = \sum nG_m(produtos) - \sum nG_m(reagentes)$$

O valor de ∆G_rº é uma constante do sistema, e é calculada nas condições padrão

$$\Delta G_r^0 = \sum nG_f^0(produtos) - \sum nG_f^0(reagentes)$$

$$\Delta G_r = \Delta G_r^0 + RT \ln Q$$

$$Q = \frac{a_C^c a_D^a}{a_A^a a_B^b}$$

No Equilíbrio

$$Q = K$$

$$\Delta G_r^0 = -RT \ln K$$

$$\Delta G_r = 0$$

$$0 = \Delta G_r^0 + RT \ln K$$

$$\Delta G^0 = -RT \ln K$$

$$K = e^{-\Delta H_r^0/RT} e^{\Delta S_r^0/R}$$

- Se ΔG_r⁰<0, K>1 − produtos favorecidos no equilíbrio
- Se $\Delta G_r^0 > 0$, K<1 reagentes favorecidos no equilíbrio

Se K <<1, então ΔH_r⁰>1 e ΔS_r⁰<1

$$\ln K = -\frac{\Delta G_r^0}{RT}$$

$$\ln K = -\frac{\Delta H_r^0}{RT} + \frac{\Delta S_r^0}{R}$$

$$K = e^{\left(-\Delta H_r^0/RT + \Delta S_r^0/R\right)}$$

$$K = e^{-\Delta H_r^0/RT} e^{\Delta S_r^0/R}$$

$$H_{2(g)} + Cl_{2(g)} \rightleftharpoons 2HCl_{(g)}$$
 $K = \frac{(P_{HCl})^2}{P_{H_2}P_{Cl_2}} = 4,0 \times 10^{18} (500,0K)$

$$N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$$
 $K = \frac{(P_{NO})^2}{P_{N_2}P_{O_2}} = 3,4 \times 10^{-21} (800,0K)$

- Valores de K~10³, o equilíbrio favorece os produtos
- Valores de K~10⁻³, o equilíbrio favorece os reagentes
- Valores de K entre 10⁻³ ~10³, o equilíbrio possui quantidades parecidas de reagentes e produtos

No Equilíbrio ...

$$Q = K$$

$$aA + bB \rightleftharpoons cC + dD$$

$$Q = \frac{[D]^{d}[C]^{c}}{[A]^{a}[B]^{b}} \qquad K = \frac{[D]^{d}[C]^{c}}{[A]^{a}[B]^{b}}$$

- Se Q<K, a reação caminha na formação dos produtos
- Se Q>K, a reação caminha na formação dos reagentes
- Se Q=K, a reação está em equilíbrio

$$aA + bB \rightleftharpoons cC + dD$$

$$K = \frac{(a_C)^c (a_D)^d}{(a_A)^a (a_B)^b}$$

$$K_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

$$K_p = \frac{P_C^c P_D^d}{P_A^a P_B^b}$$

$$K_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

$$K_P = \frac{P_C^{\ c} P_D^{\ a}}{P_A^{\ a} P_B^{\ b}}$$

$$K_{P} = \frac{P_{C}^{c} P_{D}^{d}}{P_{L}^{a} P_{D}^{b}} \qquad P_{J} = \frac{n_{J} RT}{V} \qquad P_{J} = RT \frac{n_{J}}{V} \qquad P_{J} = RT[J]$$

$$K_{P} = \frac{(RT[C])^{c}(RT[D])^{d}}{(RT[A])^{a}(RT[B])^{b}}$$

$$K_P = RT^{(c+d)-(a+b)} \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

$$\left[K_{P} = (RT)^{\Delta n} K_{c}\right]$$

$$K_{p} = \left(\frac{c^{0}RT}{P^{0}}\right)^{\Delta n} K_{c}$$

$$\Delta n = (c+d) - (a+b)$$

Em 400,0 °C, a constante de equilíbrio K_P da reação abaixo é 3,1 x 10⁴. Qual o valor de K_C nessa temperatura?

$$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$$

$$H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$$

$$K_{c1} = \frac{[HI]^2}{[H_2][I_2]} = 54$$

$$2H\!I_{(g)} {\,\rightleftarrows\,} H_{2(g)} + I_{2(g)}$$

$$K_{c1}^{-1} = \frac{[H_2][I_2]}{[HI]^2} = 0,019$$

$${}^{2}H_{2(g)} + {}^{2}I_{2(g)} \rightleftharpoons {}^{4}HI_{(g)}$$

$${}^{2}H_{2(g)} + {}^{2}I_{2(g)} \rightleftharpoons {}^{4}HI_{(g)}$$
 $K_{c2} = \frac{[HI]^{4}}{[H_{2}]^{2}[I_{2}]^{2}} = 2,9 \times 10^{3}$

$$K_{c2} = (K_{c1})^2 = \left(\frac{[HI]^2}{[H_2][I_2]}\right)^2$$

$$(54)^2 = 2,9 \times 10^3$$

$$K_{c1}^{-1} = \frac{1}{K_{c1}}$$

$$\frac{1}{54} = 0,019$$

Multiplicar uma reação por um fator n, equivale elevar o valor da constante de equilíbrio a n

A constante de equilíbrio da reação inversa, é o inverso matemático da constante de equilíbrio da reação direta

$$2P_{(g)} + 3Cl_{2(g)} \rightleftharpoons 2PCl_{3(g)}$$

$$K_{P1} = \frac{(P_{PCl_3})^2}{(P_P)^2 (P_{Cl_2})^3}$$

$$2P_{(g)} + 3Cl_{2(g)} \rightleftharpoons 2PCl_{3(g)} \qquad K_{P1}$$

$$2PCl_{3(g)} + 2Cl_{2(g)} \rightleftharpoons 2PCl_{5(g)} \qquad (K_{P2})^{2}$$

$$PCl_{3(g)} + Cl_{2(g)} \rightleftharpoons PCl_{5(g)}$$

$$K_{P2} = \frac{P_{PCl_5}}{P_{PCl_5}P_{Cl_2}}$$

$$2PCl_{3(g)} + 2Cl_{2(g)} \rightleftharpoons 2PCl_{5(g)} \quad (K_{P2})$$

$$2P_{(g)} + 5Cl_{2(g)} \rightleftharpoons 2PCl_{5(g)}$$

$$2P_{(g)} + 5Cl_{2(g)} \rightleftharpoons 2PCl_{5(g)} \qquad K_{P3} = \frac{(P_{PCl_5})}{(P_p)^2 (P_{CL_5})^5}$$

$$K_{P3} = \frac{(P_{PCl_5})^2}{(P_P)^2 (P_{Cl_5})^5}$$

$$2P_{(g)} + 5Cl_{2(g)} \rightleftharpoons 2PCl_{5(g)}$$

$$K_{P3} = \frac{(P_{PCl_5})^2}{(P_P)^2 (P_{Cl_2})^5} = \frac{(P_{PCl_3})^2}{(P_P)^2 (P_{Cl_2})^3} \times \frac{(P_{PCl_5})^2}{(P_{PCl_3})^2 (P_{Cl_2})^2}$$

$$K_{P1} \qquad (K_{P2})^2$$

A constante de equilíbrio da reação total é o produto da constante de equilíbrio das reações parciais

A composição de uma mistura de reação tende a ajustar-se até que atinja Q=K

Concentração inicial dos reagentes

Constante de equilíbrio

$$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$$

$$K_{p} = \frac{(P_{SO_{3}})^{2}}{(P_{SO_{2}})^{2}P_{O_{2}}} = 3,1 \times 10^{14}$$

$$P_{SO_{2}} = 0,3 \text{ atm}$$

$$P_{O_{3}} = 0,7 \text{ atm}$$

$$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$$

	SO ₂	O ₂	SO ₃
Início	0,3	0,7	0
Variação	-2x	-X	+2x
Equilíbrio	0,3-2x	0,7-x	0 + 2x

$$K_p = \frac{(2x)^2}{(0.3 - 2x)^2(0.7 - x)}$$

$$x = ?$$

Sob certas condições, nitrogênio e oxigênio reagem para formar óxido de dinitrogênio, N_2O . Imagine que uma mistura de 0,428 mol de N_2 e 0,933 mol de N_2 é colocada em um balão de volume 10,0L com formação de N_2O a 800K. Essa reação possui $K_P=3,2$ x 10^{-28} . Calcule as pressões parciais dos gases no equilíbrio ?

$$K_{\rho} = \frac{(\rho_{N_20})^2}{(\rho_{N_2})^2 \cdot \rho_0} = 3.2.10^{-2}$$

$$M_{N_2} = 0.428 \quad V = 10.01$$

$$M_{02} = 0.933 \quad T = 800K$$

$$P = m M$$

$$P = \frac{mM}{V}$$

$$R_{02} = \frac{0.428 \cdot 8.3145 \cdot 10^{-2} \cdot 800}{10.0} = 3.23 \text{ BAZ}$$

$$R_{02} = \frac{0.933 \cdot 8.3145 \cdot 10^{-2} \cdot 800}{10.0} = 6.23 \text{ BAZ}$$

$$2N_{2(g)} + O_{2(g)} \rightleftharpoons 2N_2O_{(g)}$$

$$K_{0} = 3.7 \cdot 10^{-28}$$
 $V_{0z} = 6.23 \text{ Ran}$
 $V_{0z} = 3.71 \text{ BM}$
 $V_{0z} = 3.71 \text{ BM}$
 $V_{0z} = 3.71 \text{ BM}$
 $V_{0z} = 20.70$
 V_{0z

$$K_{p} = \frac{\left(2x\right)^{2}}{\left(2x\right)^{2}} = \frac{\left(2x\right)^{2}}{\left(3,21-2x\right)^{2}\left(6,21-x\right)}$$

$$K_{p} = \frac{3,2 \cdot 10^{-28}}{\left(3,21\right)^{2}\left(6,21\right)} = \frac{4x^{2}}{\left(3,21\right)^{2}\left(6,21\right)} = \frac{4x^{2}}{\left(3,21\right)^{2}\left(6,21\right)}$$

$$k_{p} = 3.7 \cdot 10^{-28} \quad P_{0z} = 6.21 \text{ gar}$$

$$R_{Az} = 3.71 \text{ BM}$$

$$3.7.10^{-28} = \frac{4x^{2}}{64.0}$$

$$x = \sqrt{\frac{3.2.10^{-28}.64}{4}} \cdot \frac{64}{-7.1.10} \cdot \frac{14}{64}$$

Os equilíbrios são dinâmicos

Respondem rapidamente as mudanças das condições reacionais

Mudanças na energia livre de Gibbs

$$\Delta G = \Delta H^0 - T \Delta S^0$$

$$\Delta G_r^0 = -RT \ln K$$

$$Q = K$$

$$K = \frac{[D]^d [C]^c}{[A]^a [B]^b}$$

"Quando uma perturbação exterior é aplicada a um sistema em equilíbrio dinâmico, ele tende a se ajustar para reduzir ao mínimo o efeito da perturbação"

- Adição /remoção dos reagentes
- Variação da pressão
- Variação da temperatura