Permutation and Combination

Abhyas Kumar Kanaujia

Contents

1	Per	mutation	5	
	1.1	Formulae for Permutation	5	
	1.2	Repeated	5	
	1.3	Alternative arragement	6	
2	Cor	mbination	7	
	2.1	Formulae for Combination	7	
	2.2	Polygon	8	
		2.2.1 Number of Triangles		
		2.2.2 Number of Diagonals		
	2.3	Number of Squares and Rectangles	8	
	2.4	Dearrangement	8	
	2.5	Sum of digit on unit place	9	
3	Circlular Permutation 11			
	3.1	Formulae	11	

4 CONTENTS

Chapter 1

Permutation

1.1 Formulae for Permutation

ways of arranging n thing in r places is

$$^{n}P_{r} = \frac{n!}{(n-r)!}$$
 (1.1)

Trick

$$^{10}P_3 = 10 \times 9 \times 8$$

3 Factors from 10 in decending order. Common Values

$$^{n}P_{0} = 1$$
 (1.2)

$$^{n}P_{n} = n \tag{1.3}$$

1.2 Repeated

If n things are arranged and p are of one kind, q are of one kind etc. then no of ways of arranging is

$$\frac{n!}{p!q!\dots} \tag{1.4}$$

1.3 Alternative arragement

4 Boys and 4 girls sit alternatively

$$4! \times 4! \times 2$$

 $3~\mathrm{Boys}$ and $4~\mathrm{girls}$ sit alternatively

$$3! \times 4!$$

This kind of arrangement is only possible when numbers are either equal or consequitive.

Chapter 2

Combination

2.1 Formulae for Combination

Ways of selecting r things out of n things is

$${}^{n}C_{r} = \frac{n!}{(n-r)!r!}, \text{ where } n > r$$
 (2.1)

Trick

$$^{10}C_3 = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} \tag{2.2}$$

3 terms in decending order starting from 10 divided by factorial 3. Relation to Permutaiton

$$^{n}P_{r} = r!^{n}C_{r} \tag{2.3}$$

Relations in Combination Formulae

$${}^{n}C_{r} = {}^{n}C_{n-r} \tag{2.4}$$

$${}^{n}C_{x} = {}^{n}C_{y}$$

$$\implies n = x + y$$

$$(2.5)$$

Common Values

$${}^{n}C_{0} = 1 = {}^{n}C_{n} (2.6)$$

$${}^{n}C_{1} = n \tag{2.7}$$

2.2 Polygon

2.2.1 Number of Triangles

Number of triangles in a polygon having n sides is

$${}^{n}C_{3}$$

Number of equilateral triangles in hexagon = 2

2.2.2 Number of Diagonals

Number of diagonals in a polygon having n sides is

$${}^{n}C_{3} - n = \frac{n(n-3)}{2}$$

2.3 Number of Squares and Rectangles

For a figure having m horizontal and n vertical lines,

Number of Rectangles =
$${}^{m}C_{2} \times {}^{n}C_{2}$$
 (2.8)

Number of Squares can be found using the number of boxes instead of lines For a grid having m rows and n columns

Number of squares =
$$mn + (m-1)(n-1) + (m-2)(n-2) + \dots$$
 (2.9)

until one of the terms becomes 1

2.4 Dearrangement

If all n things in wrong place then number of ways is

$$n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots \text{ upto n terms} \right]$$
 (2.10)

2.5 Sum of digit on unit place

Sum of all the digits in unit place of all the numbers formed with the help of given digits is

$$(n-1)![\text{sum of digits}]$$
 (2.11)

Chapter 3

Circlular Permutation

3.1 Formulae

Number of ways of arranging n thing in a circle is

$$(n-1)! (3.1)$$

If the arrangement is the same both clockwise and anti-clockwise then the number of ways of arranging n things in a circle is

$$\frac{1}{2}(n-1)! (3.2)$$