	Page 1.
D SIFT on Web Site	
@ Collinearity (H Computation). in	Task 5
3 Evaluation Date (March 26). Place by your laptop. (Firmish the car	class
Prob 3 (a): No rotation Ax1+by1+cx+dy+e=0	den J. Orgatallar
5 back-projecting fi = [e,]x p2 pi (previous	
$\times \xrightarrow{H_{\pi}} \times'$	
Given X, Ha, is X' unique??	
Given x, x', is Hit unque??	
6) SfM Lecture (1) Final pascuration) Tast 6.

Triangulation

$$PX = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} P_1 \times \\ P_2 \times \\ P_3 \times \end{bmatrix} \begin{bmatrix} x_1 \\ y_2 \times \\ P_3 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ y_2 \times \\ p_3 \times \end{bmatrix}$$

$$PX = \begin{bmatrix} P_1 \times \\ P_2 \times \\ P_3 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ y_2 \times \\ p_3 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ y_2 \times \\ y_3 \times \end{bmatrix}$$

From PX

$$\begin{bmatrix} x_1 \\ y_3 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_3 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_3 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_1 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_1 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_1 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_1 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_1 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_1 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_1 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_1 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \times \end{bmatrix}$$

$$\begin{bmatrix} x_$$

Singular leduc decomposition of an MMXN matrix is a factoritation
$$U = V^T$$
.

A factoritation $U = V^T$.

A facto

A=UIVT AGR3×3