ШАД. Экзамен.

1. Последовательность $\{x_n\}_{n=0}^{+\infty}$ задана реккурентным соотношением:

$$x_0 = 0, x_1 = 1, x_{n+1} = \frac{x_n + nx_{n-1}}{n+1}.$$

Покажите, что данная последовательность сходится, и найдите ее предел.

- 2. Имеется 100 некоторых подмножеств множества $\{0, 1, \dots, 9\}$. Докажите, что среди них найдется два подмножества, у которых симметрическая разность имеет мощность не более двух.
- 3. На единичной окружности $\{x^2+y^2=1\}$ выбирается случайная точка P (из равномерного распределения). В единичном круге $\{x^2+y^2\leqslant 1\}$ выбирается случайная точка Q (также из равномерного распределения). Пусть R прямоугольник со сторонами, параллельными осям координат и диагональю PQ. Какова вероятность того, что весь прямоугольник лежит в единичном круге?
- 4. Пусть f положительная непрерывная функция на \mathbb{R} , причем $\int\limits_{-\infty}^{+\infty} f(x)\,dx=1$. Пусть $\alpha\in(0,1)$, а интервал [a,b] это интервал минимальной длины из тех, для которых $\int\limits_a^b f(x)\,dx=\alpha$. Покажите, что f(a)=f(b).
- 5. Дана матрица M размера $n \times n$, где $m_{ij} = a_i a_j$ при $i \neq j$ и $m_{ii} = a_i^2 + k$, $i, j = 1, \ldots, n$. Найдите определитель матрицы M.
- 6. Задана битовая матрица $n \times n$, с элементами 0 и 1 (каждый элемент матрицы занимает один бит памяти). Назовем строку (столбец) исходной матрицы плохой (плохим), если в нем встречается хотя бы один ноль. Необходимо в исходной матрице занулить все плохие строки и столбцы. Предложите алгоритм, решающий эту задачу за O(1) дополнительной памяти и оцените его временную стоимость.
- 7. Рассмотрим линейное пространство многочленов над $\mathbb R$ от двух переменных степени не выше 2013. Рассмотрим его подпространство V, образованное всеми многочленами f, для которых криволинейный интеграл первого рода $\int f(x,y) \, ds = 0$, причем для любого R. Найдите размерность подпространства V.