

SISTEM ROBOT OTONOM

M. Q. Zaman

PREVIOUSLY

APPERCEPTION

Previous section:

Odometry

This section:

- P3DX Odometry
- Coordinate transformation

P3DX ODOMETRY

ODOMETRY OF P3DX

COORDINATE TRANSFORMATION

RELATIVE POSE

 $\dot{A}y_{P}$ point P represented w.r.t frame \dot{A}

$$\begin{bmatrix} v_{x_P} \\ v_{y_P} \end{bmatrix} = R(\theta) \begin{bmatrix} {}^{B}x_P \\ {}^{B}y_P \end{bmatrix}$$
$$= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} {}^{B}x_P \\ {}^{B}y_P \end{bmatrix}$$

$$\begin{bmatrix} Ax_P \\ Ay_P \end{bmatrix} = \begin{bmatrix} Vx_P \\ Vy_P \end{bmatrix} + \begin{bmatrix} t_{rx} \\ t_{ry} \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} Bx_P \\ By_P \end{bmatrix} + \begin{bmatrix} t_{rx} \\ t_{ry} \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta & t_{rx} \\ \sin \theta & \cos \theta & t_{ry} \end{bmatrix} \begin{bmatrix} Bx_P \\ By_P \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} {}^{A}x_{P} \\ {}^{A}y_{P} \\ 1 \end{bmatrix} = \begin{bmatrix} R(\theta) & t_{r \ 2\times 1} \\ 0_{1\times 2} & 1 \end{bmatrix} \begin{bmatrix} {}^{B}x_{P} \\ {}^{B}y_{P} \\ 1 \end{bmatrix} \text{(Homogeneous Coordinates)}$$
$$= {}^{A}T_{B} \begin{bmatrix} {}^{B}x_{P} \\ {}^{B}y_{P} \\ 1 \end{bmatrix}$$

RELATIVE POSE EXAMPLE 1

$$\begin{bmatrix} {}^{B}x_{P} \\ {}^{B}y_{P} \\ {}^{B}z_{P} \\ {}^{1} \end{bmatrix} = {}^{B}T_{U} \begin{bmatrix} {}^{U}x_{P} \\ {}^{U}y_{P} \\ {}^{U}z_{P} \\ {}^{1} \end{bmatrix}
= {}^{B}T_{U} \begin{bmatrix} {}^{C}y - s & y & 0 & 0 \\ s & y & c & y & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{U}x_{P} \\ {}^{U}y_{P} \\ {}^{U}y_{P} \\ {}^{U}z_{P} \\ {}^{U}z_{P} \end{bmatrix}$$

https://manual.coppeliarobotics.com/en/positionOrientationTransformation.htm#euler

ASSIGNMENT

Assignment: Simulate with numpy

Using the known information:

•
$$({}^{u}x_{P}, {}^{u}y_{P}, {}^{u}z_{P}) = (2,0,0)$$

•
$$(\alpha, \beta, \gamma) = (0.0.90^{\circ})$$

•
$$(t_x, t_y, t_z) = (0.0,0)$$

- 1. Create a rotation matrix $R_z(\gamma)$
- 2. Create a translation vector $[t_x, t_y, t_z]^T$
- 3. Create transformation matrix BT_U

- 4. Make a homogeneous coordinate of (${}^{u}x_{P}$, ${}^{u}y_{P}$, ${}^{u}z_{P}$)
- 5. Calculate $({}^Bx_P, {}^By_P, {}^Bz_P)$!

Repeat the process for $({}^{u}x_{P}, {}^{u}y_{P}, {}^{u}z_{P}) = (0,2,0)$

Repeat the process for $({}^{u}x_{P}, {}^{u}y_{P}, {}^{u}z_{P}) = (2,0,2)$

Repeat the process for $({}^{u}x_{P}, {}^{u}y_{P}, {}^{u}z_{P}) = (2,0,2)$ and $(\alpha, \beta, \gamma) = (0,0,-180^{\circ})$

Submit the code and step by step explanation in *.pdf report format

CONCLUSION

CONCLUSION

This section:

Odometry

Next section:

- P3DX Odometry
- Coordinate transformation

CLOSURE

THANK YOU Muhammad Qomaruz Zaman muhammad.zaman@its.ac.id