Operations Research III: Theory

Course Overview

Ling-Chieh Kung

Department of Information Management National Taiwan University

Road map

- ► Course overview.
- ► Reviewing the simplex method.
- ▶ The simplex method in matrices.
- Examples.

Theory

- ▶ We have learned models and algorithms.
- ► In this course, we study **theory**.
- ► In most cases, these theories are about **optimality conditions**.
 - For example, through observation and analysis we know "for any linear program, if there is an optimal solution, there is an extreme point optimal solution."
 - ▶ This allows us to focus only on extreme points (basic feasible solutions).
- ► In general, **analysis** generate theories, which guide us to develop better algorithms.

Theory

- ▶ We have optimality conditions for linear, integer, and nonlinear programming.
- ▶ We will introduce a few:
 - Linear programming: duality.
 - ► Integer programming: total unimodularity.
 - ▶ Nonlinear programming: the KKT condition.
- ▶ We will also see their applications.
 - Sensitivity analysis.
 - ▶ Acceleration for the branch-and-bound algorithm.
 - Network flow models.
 - Linear regression.
 - Support vector machine.

Prerequisites

- ▶ We need more solid mathematical foundation.
 - ► (A lot of) linear algebra.
 - ► (Some) differential calculus.
 - ► (A little bit) discrete mathematics.
- ▶ Let's first get familiar with matrices and the matrix notation.
 - ▶ In particular, let's review the simplex method and see how it may be executed in a matrix way.

Road map

- ► Course overview.
- ► Reviewing the simplex method.
- ▶ The simplex method in matrices.
- Examples.

Overview

► Consider the following linear program

▶ The standard form is

The first iteration

▶ We prepare the initial tableau. We have $x^1 = (0, 0, 4, 8, 3)$ and $z_1 = 0$.

-1	0	0	0	0	0
2	-1	1	0	0	$x_3 = 4$ $x_4 = 8$ $x_5 = 3$
2	1	0	1	0	$x_4 = 8$
0	1	0	0	1	$x_5 = 3$

- For this maximization problem, we look for negative numbers in the 0th row. Therefore, x_1 enters.
 - ► Those numbers in the 0th row are called **reduced costs**.
 - ▶ The 0th row is $z x_1 = 0$. Increasing x_1 can increase z.
- ▶ "Dividing the RHS column by the entering column" tells us that x_3 should leave (it has the minimum ratio).¹
 - ► This is called the **ratio test**. We **always** look for the smallest ratio.

¹The 0 in the 3rd row means that increasing x_1 does not affect x_5 .

The first iteration

 \triangleright x_1 enters and x_3 leaves. The next tableau is found by **pivoting** at 2:

-1	0	0	0	0	0		0	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	2
2	-1	1	0	0	$x_3 = 4$	\rightarrow	1	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	$x_1 = 2$
2	1	0	1	0	$x_4 = 8$		0	2	-1	1	0	$x_4 = 4$
0	1	0	0	1	$x_5 = 3$		0	1	0	0	1	$x_5 = 3$

- ▶ The new bfs is $x^2 = (2, 0, 0, 4, 3)$ with $z_2 = 2$.
- ► Continue?
 - ▶ There is a negative reduced cost in the 2nd column: x_2 enters.
- ► Ratio test:
 - ▶ That $-\frac{1}{2}$ in the 1st row shows that increasing x_2 makes x_1 larger. Row 1 does not participate in the ratio test.
 - For rows 2 and 3, row 2 wins (with a smaller ratio).

The second iteration

- \triangleright x_2 enters and x_4 leaves. We pivot at 2.
- ▶ The second iteration is

0	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	2		0	0	$\frac{1}{4}$	$\frac{1}{4}$	0	3
1	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	$x_1 = 2$	\rightarrow	1	0	$\frac{1}{4}$	$\frac{1}{4}$	0	$x_1 = 3$
0	2	-1	1	0	$x_4 = 4$,						$x_2 = 2$
0	1	0	0	1	$x_5 = 3$		0	0	$\frac{1}{2}$	$\frac{-1}{2}$	1	$x_5 = 1$

- ► The third bfs is $x^3 = (3, 2, 0, 0, 1)$ with $z_3 = 3$.
 - ▶ It is optimal (why?).
 - ▶ Typically we write the optimal solution we find as x^* and optimal objective value as z^* .

Verifying our solution

- ▶ The three basic feasible solutions we obtain are
 - $x^1 = (0, 0, 4, 8, 3).$
 - $x^2 = (2, 0, 0, 4, 3).$
 - $x^3 = x^* = (3, 2, 0, 0, 1).$

Do they fit our graphical approach?

Road map

- ► Course overview.
- Reviewing the simplex method.
- ▶ The simplex method in matrices.
- ► Examples.

- ► The easiest way of doing this is to use the **matrix representation** for the simplex method.
- ► Consider a standard form linear program

$$\begin{array}{ll}
\max & c^T x \\
\text{s.t.} & Ax = b \\
& x \ge 0.
\end{array}$$

 \triangleright By dividing x to x_B and x_N , the basic and nonbasic variables, we have

max
$$c_B^T x_B + c_N^T x_N$$

s.t. $A_B x_B + A_N x_N = b$
 $x_B, x_N \ge 0$.

 $ightharpoonup c^T = [c_B^T, c_N^T], A = [A_B, A_N].$ Note that $A_B \neq I$!

► For our example:

▶ Using the above notation, we have

$$c^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix},$$

$$A = \begin{bmatrix} 2 & -1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}, \text{ and } b = \begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix}.$$

An example

▶ With

$$c^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix},$$

$$A = \begin{bmatrix} 2 & -1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}, \text{ and } b = \begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix},$$

given $x_B = (x_1, x_4, x_5)$ and $x_N = (x_2, x_3)$, we have

$$c_B^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \quad c_N^T = \begin{bmatrix} 0 & 0 \end{bmatrix},$$

$$A_B = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_N = \begin{bmatrix} -1 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix}.$$

▶ Let's rearrange the constraint $A_B x_B + A_N x_N = b$ and obtain

$$\max \quad c_B^T x_B + c_N^T x_N$$
s.t.
$$x_B = A_B^{-1} (b - A_N x_N)$$

$$x_B, x_N \ge 0.$$

▶ Let's replace x_B in the objective function by $A_B^{-1}(b - A_N x_N)$ to

$$\max \ c_B^T [A_B^{-1} (b - A_N x_N)] + c_N^T x_N$$

▶ The standard form linear program becomes

$$\max \quad c_B^T A_B^{-1} b - (c_B^T A_B^{-1} A_N - c_N^T) x_N$$

s.t.
$$x_B = A_B^{-1} (b - A_N x_N)$$

$$x_B, x_N \ge 0.$$

▶ Finally, let's rearrange the terms in the constraints to obtain

$$\max \quad c_B^T A_B^{-1} b - (c_B^T A_B^{-1} A_N - c_N^T) x_N$$

s.t. $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B, x_N \ge 0.$

▶ Let's ignore the sign constraints and let z be the objective value. We then have

$$z + (c_B^T A_B^{-1} A_N - c_N^T) x_N = c_B^T A_B^{-1} b$$

$$Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b.$$

ightharpoonup Therefore, given any valid choice of B and N (the index sets of basic and nonbasic variables), we may use the following table to calculate the simplex tableau:

0	$c_B^T A_B^{-1} A_N - c_N^T$	$c_B^T A_B^{-1} b$	0
I	$A_B^{-1}A_N$	$A_B^{-1}b$	1,,m
basic	nonbasic	RHS	

Let's see some examples.

Road map

- Course overview.
- ► Reviewing the simplex method.
- ▶ The simplex method in matrices.
- **Examples**.

An example

► Consider the example again:

▶ In the matrix representation, we have

$$c^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix},$$

$$A = \begin{bmatrix} 2 & -1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}, \text{ and } b = \begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix}.$$

A feasible basis

• Given $x_B = (x_1, x_4, x_5)$ and $x_N = (x_2, x_3)$, we have

$$c_B^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \quad c_N^T = \begin{bmatrix} 0 & 0 \end{bmatrix},$$

$$A_B = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_N = \begin{bmatrix} -1 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix}.$$

▶ Given the basis, we have

$$x_{B} = A_{B}^{-1}b = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix} = \begin{bmatrix} x_{1} \\ x_{4} \\ x_{5} \end{bmatrix}, \text{ and}$$

$$z = c_{B}^{T}A_{B}^{-1}b = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix} = 2.$$

▶ The current bfs is $x = (x_1, x_2, x_3, x_4, x_5) = (2, 0, 0, 4, 3)$.

A feasible basis

ightharpoonup For $x_N=(x_2,x_3)$, the reduced costs are

$$\begin{split} \bar{c}_N^T &= c_B^T A_B^{-1} A_N - c_N^T \\ &= \left[\begin{array}{ccc} 1 & 0 & 0 \end{array} \right] \left[\begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{ccc} -1 & 1 \\ 1 & 0 \\ 1 & 0 \end{array} \right] - \left[\begin{array}{ccc} 0 & 0 \end{array} \right] \\ &= \left[\begin{array}{ccc} -\frac{1}{2} & \frac{1}{2} \end{array} \right]. \end{split}$$

 \blacktriangleright x_2 enters. For $x_B=(x_1,x_4,x_5)$, we have

$$A_B^{-1} A_2 = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ 2 \\ 1 \end{bmatrix} \text{ and } A_B^{-1} b = \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix}.$$

 $ightharpoonup rac{4}{2} < rac{3}{1}$, so x_4 leaves.

An optimal basis

• Given $x_B = (x_1, x_2, x_5)$ and $x_N = (x_3, x_4)$ we have

$$c_B^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \quad c_N^T = \begin{bmatrix} 0 & 0 \end{bmatrix},$$

$$A_B = \begin{bmatrix} 2 & -1 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \quad A_N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix}.$$

▶ Given the basis, we have

$$x_{B} = A_{B}^{-1}b = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & 0\\ -\frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 4\\ 8\\ 3 \end{bmatrix} = \begin{bmatrix} 3\\ 2\\ 1 \end{bmatrix} = \begin{bmatrix} x_{1}\\ x_{2}\\ x_{5} \end{bmatrix}, \text{ and}$$

$$z = c_{B}^{T}A_{B}^{-1}b = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3\\ 2\\ 1 \end{bmatrix} = 3.$$

► The current bfs is $x = (x_1, x_2, x_3, x_4, x_5) = (3, 2, 0, 0, 1)$.

An optimal basis

For $x_N = (x_3, x_4)$, the reduced costs are

$$\begin{split} \overline{c}_N^T &= c_B^T A_B^{-1} A_N - c_N^T \\ &= \left[\begin{array}{ccc} 1 & 0 & 0 \end{array} \right] \left[\begin{array}{ccc} \frac{1}{4} & \frac{1}{4} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 1 \end{array} \right] \left[\begin{array}{ccc} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array} \right] - \left[\begin{array}{ccc} 0 & 0 \end{array} \right] \\ &= \left[\begin{array}{ccc} \frac{1}{4} & \frac{1}{4} \end{array} \right]. \end{split}$$

▶ No variable should enter: This bfs is optimal.

Overview

► Consider our example:

▶ Its standard form is

Another example

- ▶ Let's say $x_B = (s_1, s_2)$ and $x_N = (x_1, x_2)$.
 - We have $c_B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $c_N = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $A_B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $A_N = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, and $b = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$.
 - ▶ We then have $A_B^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $A_B^{-1}A_N = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, $A_B^{-1}b = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$, $c_B^T A_B^{-1} A_N c_N^T = \begin{bmatrix} -2 & -3 \end{bmatrix}$, and $c_B^T A_B^{-1}b = 0$.
 - ► This gives us exactly the initial tableau

Another example

- Let's say $x_B = (x_1, x_2)$ and $x_N = (s_1, s_2)$.
 - We have $c_B = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $c_N = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $A_B = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, $A_N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, and $b = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$.
 - ▶ We then have $A_B^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$, $A_B^{-1}A_N = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$, $A_B^{-1}b = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $c_B^T A_B^{-1} A_N c_N^T = \begin{bmatrix} 1 & 1 \end{bmatrix}$, and $c_B^T A_B^{-1}b = 10$.
 - ► This gives us exactly the optimal tableau

The matrix way

- ▶ In short, the simplex method may be executed with matrix calculations.
 - ▶ It is a process of searching for an optimal basis.
 - ▶ In each iteration, we replace a basic variable by a nonbasic one.
- ▶ In this way, the **bottleneck** is the calculation of A_R^{-1} .
 - ▶ This explains why the execution time of the simplex method is usually proportional to m^3 , where m is the number of constraints.
- ► Actually we may be faster.
 - ▶ Because the current basis B and the previous one have only **one** variable different, the current A_B and the previous one have only **one** column different.
 - ightharpoonup Calculating A_B^{-1} can be faster with the previous inverse.
- ▶ In fact, how do you know that A_B is still **invertible** after changing one column?