Operations With Vector Data I

HES 505 Fall 2023: Session 11

Matt Williamson

Objectives

By the end of today, you should be able to:

- Recognize the unary, binary, and n-ary transformers
- Articulate common uses for unary and binary transformers
- Use unary transformations to fix invalid geometries
- Implement common binary transformers to align and combine data

Revisiting predicates and measures

- **Predicates**: evaluate a logical statement asserting that a property is **TRUE**
- **Measures**: return a numeric value with units based on the units of the CRS
- Unary, binary, and n-ary distinguish how many geometries each function accepts and returns

Transformations

• Transformations: create new geometries based on input geometries

Unary Transformations

transformer	returns a geometry		
centroid	of type POINT with the geometry's centroid		
buffer	that is this larger (or smaller) than the input geometry, depending on the buffer size		
jitter	that was moved in space a certain amount, using a bivariate uniform distribution		
wrap_dateline	cut into pieces that do no longer cover the dateline		
boundary	with the boundary of the input geometry		
convex_hull	that forms the convex hull of the input geometry		
line_merge	after merging connecting LINESTRING elements of a MULTILINESTRING into longer LINESTRINGs.		
make_valid	that is valid		
node	with added nodes to linear geometries at intersections without a node; only works on individual linear geometries		
point_on_surface	with a (arbitrary) point on a surface		
polygonize	of type polygon, created from lines that form a closed ring		

Unary Transformations (cont'd)

transformer	returns a geometry	
segmentize	a (linear) geometry with nodes at a given density or minimal distance	
simplify	simplified by removing vertices/nodes (lines or polygons)	
split	that has been split with a splitting linestring	
transform	transformed or convert to a new coordinate reference system (chapter @ref(cs))	
triangulate	with Delauney triangulated polygon(s) (figure @ref(fig:vor))	
voronoi	with the Voronoi tessellation of an input geometry (figure @ref(fig:vor))	
zm	with removed or added Z and/or M coordinates	
collection_extract	with subgeometries from a GEOMETRYCOLLECTION of a particular type	
cast	that is converted to another type	
+	that is shifted over a given vector	
*	that is multiplied by a scalar or matrix	

Common uses of Unary Transformers

- Creating valid geometries
- Reprojecting your data
- Combining or changing geometries

Binary Transformers

function	returns	infix operator
intersection	the overlapping geometries for pair of geometries	&
union	the combination of the geometries; removes internal boundaries and duplicate points, nodes or line pieces	I
difference	the geometries of the first after removing the overlap with the second geometry	/
sym_difference	the combinations of the geometries after removing where they intersect; the negation (opposite) of intersection	%/%
crop	crop an sf object to a specific rectangle	

Binary Transformers

Common Uses of Binary Transformers

- Relating partially overlapping datasets to each other
- Reducing the extent of vector objects

N-ary Transformers

- Similar to Binary (except st_crop)
- union can be applied to a set of geometries to return its geometrical union
- intersection and difference take a single argument, but operate (sequentially) on all pairs, triples, quadruples, etc.

