MATH H113: Honors Introduction to Abstract Algebra

2016-03-30

- Rings of fractions
- Chinese remainder theorem

See pictures **Theorem**: Let R be a commutative ring. Let D be a subset of R such that:

- $D \neq \emptyset$,
- $0 \notin D$,
- D contains no zero divisors, and
- D is closed under multiplication

Let $F = R \times D$ and let \sim be the relation of G given by $(r,d) \sim (s,e) \iff re = sd$.

Then:

- a. \sim is an equivalence relation on F.
- b. Let Q be the set of \sim -equivalence classes in F Write $(r,d)=\frac{r}{d}$. Then $\frac{r}{d}+\frac{s}{e}=\frac{re+sd}{de}$ and $\frac{r}{d}\cdot\frac{s}{e}=\frac{rs}{de}$ given well-defined binary operations on Q, and they make Q into a commutative ring with 1. Moreover, $1\frac{d}{d}\forall d\in D$.
- c. Let $i:R\to Q$ be the map $r\mapsto \frac{rd}{d}$ for any $d\in D$. Then i is independent of the choice of d and is an injective ring homomorphism
- d. For all $d \in D$, i(d) is a unit in Q, and every element of A equals $i(d)^{-1}i(r)$ for some $r \in R$ and $d \in D$.
- e. Q is the smallest ring with 1 containing a subgring isomorphic to R, in which all elements of D are units in A, in the following sense: for all rings Q' with 1 and all homomorphisms $\phi: R \to Q'$ such that $\phi(d)$ is a unit of $Q' \ \forall d \in D$, there is a unique ring homomorphism $\Phi: Q \to Q'$ such that $\phi = \Phi \circ i$.

Proof:

- a. Already done.
- b. We showed that $(r,d) \sim (s,e) \iff$ you can get from (r,d) to (s,e)by finitely many steps using only the relation (r,d) = (rd',dd') (or it's opposite). This is left as an exercise, except I'll show the distributive law: $\frac{r}{d}(\frac{s}{e} + \frac{t}{f}) \stackrel{?}{=} \frac{r}{d} \cdot \frac{s}{e} + \frac{r}{d} \cdot \frac{t}{f}$

We may assume $e = f\left(\frac{s}{e} = \frac{sf}{ef} \text{ and } \frac{t}{f} = \frac{te}{fe}; \text{ then } \frac{s}{e} + \frac{t}{e} = \frac{se+te}{e^2} = \frac{s+t}{e}\right).$ Then the LHS is $\frac{r}{d}$. $\frac{s+t}{e} = \frac{r(s+t)}{de} = \frac{rs+rt}{de} = \frac{rs}{de} + \frac{rt}{de} = \frac{r}{d} \cdot \frac{s}{e} + \frac{r}{d} \cdot \frac{t}{e}.$

c. Again, i is a ring homomorphism (same kind of checking). Its kernel is 0because $r \in \ker i \iff i(r) = i(0) \iff \frac{rd}{d} = \frac{0d}{d} \iff rd^2 = 0d^2 \iff$ $rd = 0d \iff r = 0.$

(Can cancel d because $d \neq 0$ and it's not a zero divisor.) $\frac{rd}{d'} = \frac{rd'}{d'}$ because both $= \frac{rdd'}{dd'}$.

- d. i(d) has inverse $\frac{1}{d}$ because $\frac{d^2}{d} \cdot \frac{1}{d} = \frac{d^2}{d} = 1 \in Q$ every element of Q ... is true because $\frac{r}{d} = i(d)^{-1}i(r) = \frac{1}{d} \cdot \frac{rd}{d} = \frac{rd}{d^2} = \frac{r}{d}$. e. Given Q' and ϕ , define $\Phi(\frac{r}{d}) = \phi(d)^{-1}\phi(r)$ (because you have no choice) $\frac{r}{d} = i(d)^{-1}i(r) \implies \Phi(\frac{r}{d})$ must equal $\Phi(i(d)^{-1})\Phi(i(r)) = \Phi(i(d))^{-1}\Phi(i(r)) = \phi(d)^{-1}\phi(r)$ (need to check: $\Phi(1_Q) = 1_{Q'} \implies \Phi(\frac{r}{d}) = \frac{1}{2} \frac{d^2}{d^2} =$ $\Phi(u^{-1}) = \Phi(u)^{-1} \ \forall u \in Q^{\times}$). Also need to check: Φ is a ring homomorphism. Not assuming Q' is commutative.

 Φ is well defined because

$$rac{t}{d} = \frac{s}{e}$$

$$\Rightarrow re = sd$$

$$\Rightarrow er = ds$$

$$\Rightarrow \phi(e)\phi(r) = \phi(d)\phi(s)$$

$$\Rightarrow \phi(d)^{-1}\phi(e)\phi(r) = \phi(s)$$

$$\Rightarrow \phi(e)\phi(d)^{-1}\phi(r) = \phi(s)$$

$$\Rightarrow \phi(d)^{-1}\phi(r) = \phi(e)^{-1}\phi(s)$$

in a ring Q' with 1, if $u \in Q'^{\times}$ and $t \in Q'$ commute, then so do u^{-1} and t. Exercise.

Note: If ϕ is injective, then so is Φ . (Reverse the steps above).

Definition: For R and D as above, the ring A is denoted $D^{-1}R$ or $R[D^{-1}]$ (this does not mean polynomial ring or group ring).

Definition: If R is an integral domain, then we can let $D = R \setminus \{0\}$ in the theorem, and then $R[D^{-1}]$ is a field $(\frac{r}{d} \neq 0 \implies r \in D, so^{\frac{d}{r}} \in Q)$.

This is called the *quotient field* of R or the fraction field of R, or the field of fractions of R.

Example: \mathbb{Q} is the fraction field of \mathbb{Z}

Corollary (of the theorem): Every integral domain is a subring of a field (containing the field's "1").

$$x = 1_R \implies x = x^2 \implies x(x-1) = 0 \implies x = 0 \lor x = 1$$

Corollary: A ring is an integral domain \iff it is a subring of a field that contains (the field's) 1.

Chinese Remainder Theorem

Definition: Let $(R_i)_{i \in I}$ be a collection of rings. Then the direct product $\prod_{i \in I} R_i$

(as a ring) is the abelian group given by the direct product of the additive groups of the R_i , with componentwise multiplication.

For the rest of today's lecture, let R be a commutative ring with 1.

Definition: Ideals I and J in R are comaximal if I + J = (1).

Examples: Ideals in \mathbb{Z} :

- (2),(3) are comaximal
- (14), (10) are not comaximal (sum = (2))
- (m), (n) are comaximal $\iff \gcd(m, n) = 1$. $1 = xm = yn \iff \in (m) + (n)$

Theorem (Special case of Chinese Remainder Theorem):

Let I and J be comaximal ideals in R. Then $\phi: R \to (R/I) \times (R/J)$ given by $r \mapsto (r+I,r+J)$ is a ring homomorphism with kernel $= I \cap J = IJ$. It is onto, and it induces an isomorphism $R/IJ = R/(I \cap J) \cong (R/I) \times (R/J)$.

Proof: Ring homomorphism: easy check. (each component of ϕ is a natural project $R \to R/I$ or $R \to R/J$).

```
\ker \phi = I \cap J: obvious.
```

 $I \cap J = IJ$: $IJ \subseteq I$ and $IJ \subseteq J$ because they're ideal, so $IJ \subseteq I \cap J$.

Also let $a \in I \cap J$. Write 1 = x + y with $x \in I$ and $y \in J$ (using comaximality. $1 \in (1) = I + J$).

```
Then, a = a(x + y) = ax + ay
```

 $ax \in IJ$ because $x \in I$ and $a \in J$

 $ay \in IJ$ because $y \in J$ and $a \in I$.

 $a \in IJ$

Onto: with x, y as above,

$$\phi(x) = (0,1) \ x \in I \text{ so } x + I = 0 + I$$

$$x - 1 = -y \in J \text{ so } x + J = 1 + J$$

Similarly $\phi(y) = (1, 0)$.

 \therefore given any $(a+I,b+J) \in (R/I) \times (R/J)$,

 $(a+I,b+J) = \phi(ay+by)$ because $\phi(ay+bx)$

 $= \phi(a)\phi(y) + \phi(b)\phi(x)$

= (a + I, a + J)(1, 0) + (b + I, b + J)(0, 1)

= (a+I,0) + (0,b+J)

=(a+I,b+J)

Conclude by first isomorphism theorem.