Computer Architecture Lab5

PB19071501 李平治

实验目的

● 在CPU和GPU平台上基于矩阵乘法,开展数据级并行实验,探讨不同矩阵规模与划分参数的性能

实验环境

- CPU平台
 - o macOS12.3.1
 - o 2 GHz 4vIntel Core i5
 - G++(Apple clang version 13.1.6)
- GPU平台
 - o Cuda 10.2.89
 - o GeForce RTX 2080
 - o g++ (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
- 为了消除编译器优化的影响,实验代码均添加了 #pragma G++ optimize(0) 优化指示预处理

实验内容

I. 阶段一 CPU

1. 基础矩阵乘法

```
1
   void gemm_baseline(float *A, float *B, float *C) {
2
       for(int i=0; i<N; i++){</pre>
           for(int j=0; j<N; j++){
3
                for(int k=0; k<N; k++){
4
                    C[i*N+j] += A[i*N+k] * B[k*N+j];
5
6
7
            }
8
       }
9
```

2. AVX矩阵乘法

```
1
    void gemm avx(float *A, float *B, float *C) {
 2
         m256 a, b, c;
         for(int i=0; i<N; i++){</pre>
 3
 4
             for(int j=0; j<N; j+=8){</pre>
 5
                  for(int k=0; k<N; k++){
                      c = _mm256_load_ps(C+i*N+j);
 6
 7
                      a = _mm256\_broadcast\_ss(A+i*N+k);
 8
                      b = mm256 load ps(B+k*N+j);
 9
                      c = mm256 \text{ fmadd ps(a, b, c)};
10
                      mm256 store ps(C+i*N+j, c);
11
                  }
12
             }
         }
13
    }
14
```

3. AVX分块矩阵乘法

```
1
    void gemm_avx_block(float *A, float *B, float *C){
 2
         for(int i=0; i<N; i+=BLOCK SIZE){</pre>
             for(int j=0; j<N; j+=BLOCK SIZE){</pre>
 3
                  for(int k=0; k<N; k+=BLOCK SIZE){</pre>
 4
 5
                      for(int m=i; m<i+BLOCK SIZE; m+=8*UNROLL){</pre>
                           for(int n=j; n<j+BLOCK SIZE; n++){</pre>
 6
 7
                                m256 c[UNROLL];
 8
                               for(int x=0; x<UNROLL; x++){</pre>
                                    c[x] = _mm256_load_ps(C+8*x+m+n*N); // c[x] = C[m][n]
9
10
                               for(int p=k; p<k+BLOCK SIZE; p++){</pre>
11
12
                                    m256 b = mm256 broadcast ss(B+p+n*N); // b = B[p][n]
13
                                    for(int x=0; x<UNROLL; x++){</pre>
                                        c[x] = _mm256_add_ps(c[x],
14
    _mm256_mul_ps(_mm256_load_ps(A+N*p+x*8+m), b)); // A[m][p]
15
                                    }
16
17
                               for(int x=0; x<UNROLL; x++){</pre>
18
                                    mm256 store ps(C+m+8*x+n*N, c[x]);
19
20
                           }
                      }
21
22
                  }
23
             }
         }
24
25
    }
```

4. 三种算法性能对比

矩阵规模 $\log_2 N$	Baseline运行时间	AVX运行时间	AVX分块运行时间
6	0.00167s	0.00044s	0.00027s
7	0.01174s	0.00429s	0.00147s
8	0.07758s	0.02561s	0.01273s
9	0.71398s	0.19027s	0.09678s
10	12.4893s	2.29080s	0.76403s

可以看出,在相同输入规模下,AVX分块性能最优,基础矩阵乘法性能最差。原因是AVX向量化运算起到了并行加速的效果;而AVX分块则进一步利用cache局部性,保证循环中使用的数据保留在缓存中,优化了访存运行时间。

5. AVX分块参数与性能

AVX分块算法有两个可调参数, $ext{Block_Size}$ 表示AVX分块大小, $ext{Unroll}$ 表示AVX循环展开大小 $ext{D}$ $ext{D}$ $ext{N}=2^9$.

BLOCK_SIZE	UNROLL	运行时间
32	4	0.246458s
64	4	0.089727s
128	4	0.101501s
256	4	0.099313s
256	8	0.097088s
256	16	0.086633s
256	32	0.081855s

可以看出,在 UNROLL 大小相同的情况下, BLOCK_SIZE 和性能并不是严格的单调关系,这与缓存局部性和矩阵规模有密切联系;在 BLOCK_SIZE 大小相同的情况下, UNROLL 越大,性能越好,这是因为展开次数越高,缓存局部性利用越好。

6. CPU平台上的其他矩阵乘法优化方法

- 基于OpenMP等框架的并行计算方法,通过多线程/多进程加速计算
- 使用循环排列技术,改变矩阵内嵌套循环顺序,或改变二维矩阵在一位数组上的展平顺序,使得矩阵访问对缓 存更友好

II. 阶段二 GPU

1. 基础矩阵乘法

```
1
     _global__ void gemm_baseline(float* A, float * B, float* C) {
2
        int i = blockIdx.x * blockDim.x + threadIdx.x;
        int j = blockIdx.y * blockDim.y + threadIdx.y;
3
        float temp = 0;
4
5
        if((i < N) && (j < N)){
            for(int k=0; k<N; k++){
6
7
                temp += A[i * N + k] * B[k * N + j];
8
            }
9
            C[i * N + j] = temp;
10
        }
11
    }
```

2. 分块矩阵乘法

```
global void gemm cuda block(float* A, float * B, float* C) {
 1
        int i = blockIdx.x * blockDim.x + threadIdx.x;
2
        int j = blockIdx.y * blockDim.y + threadIdx.y;
 3
 4
        float temp = 0;
5
        if(i < (N - N%BLOCK) && j < (N - N%BLOCK)) {
             __shared__ float A_sub[BLOCK][BLOCK];
 6
             __shared__ float B_sub[BLOCK][BLOCK];
8
            for(int k=0; k<N/blockDim.x; k++) {</pre>
9
                A sub[threadIdx.x][threadIdx.y] = A[blockIdx.x*BLOCK*N + threadIdx.x*N
    + k*BLOCK + threadIdx.y];
                B sub[threadIdx.x][threadIdx.y] = B[blockIdx.y*BLOCK + threadIdx.x*N +
10
    k*BLOCK*N + threadIdx.y];
                __syncthreads();
11
                for(int l=0; l<blockDim.x; l++) {</pre>
12
                     temp += A_sub[threadIdx.x][1] * B_sub[1][threadIdx.y];
13
14
                }
15
                 syncthreads();
16
            }
            C[i*N+j] = temp;
17
18
        else if(i < N \&\& j < N){
            for(int k=0; k<N; k++){
19
20
                temp += A[i * N + k] * B[k * N + j];
21
            C[i*N+j] = temp;
22
23
        }
24
   }
```

3. 两种算法性能对比

其中分块CUDA算法取 BLOCK = 8,

矩阵规模 $\log_2 N$	基础CUDA运行时间	分块CUDA运行时间
9	6.50189ms	0.57580ms
10	18.1184ms	4.35043ms
11	59.0665ms	34.6267ms
12	340.949ms	252.301ms
13	4473.96ms	1636.05ms
14	77956.6ms	13509.6ms

分块CUDA的性能显著优于基础CUDA,这是由于前者利用了CUDA的 shared memory 缓存,该储存层次访存更快,因此性能更好。

4. 基础CUDA程序参数与性能

取 $N=2^{12}$

GRID_SIZE	BLOCK_SIZE	运行时间
128	32	1107.12ms
256	32	1126.25ms
512	32	1132.99ms
1024	32	1122.59ms
1024	16	633.674ms
1024	8	331.721ms
1024	4	412.600ms

可以看出,GRID_SIZE 对性能的影响非常小,而 BLOCK_SIZE 对性能影响很大,这是由于矩阵使用行优先储存方式;与此同时,这两个参数与性能之间并没有显著的单调关系。当分块小而并行数大时,可能会由于高并行数性能更好,但也有可能由于线程数过多导致通信消耗过多,降低性能。

5. 分块CUDA程序参数与性能

BLOCK_SIZE	$\log_2 N$	运行时间
8	10	4.41888ms
8	11	34.7813ms
8	12	240.618ms
8	13	1679.32ms
2	10	56.9374ms
4	10	9.07997ms
16	10	8.984ms

可以看出,随着分块减小,运行时间先减少再升高,这是由于当分块变小时,并行线程增多,提高效率;而当分块过小,线程数太多而导致线程同步消耗时间过大,性能降低。

实验总结

- 本次试验通过动手进行AVX、CUDA等不同版本的矩阵乘法实现,探讨了不同矩阵规模与划分参数的性能
- 本次试验用时6h:

CPU部分: 2hGPU部分: 6h实验报告: 2h

附录

./src 下各文件对应实验及编译方式:

- base_matmul.cpp 基础矩阵乘法: g++-11 -o base_matmul base_matmul.cpp
- avx_matmul.cpp AVX矩阵乘法: g++-11 -mavx2 -march=native -o avx_matmul avx_matmul.cpp
- avx_block_matmul.cpp AVX基础矩阵乘法: g++-11 -mavx2 -march=native -o avx_block_matmul avx_block_matmul.cpp
- cuda_matmul.cu CUDA矩阵乘法: nvcc -o cuda_matmul cuda_matmul.cu
- cuda_block_matmul.cu CUDA分块矩阵乘法 nvcc -o cuda block matmul cuda block matmul.cu