ESERCIZI RACCOLTI DI ALGEBRA

Ho voluto raccogliere gli esercizi teorici più carini / difficili che ho trovato in vari libri

TEORIA DEI GRUPPI

Nel seguito G indica un qualsiasi gruppo, viene indicata con e l'unità del gruppo. La notazione usata è quella moltiplicativa. $H \leq G$ indica che H è sottogruppo di G (eventualmente coincidente). $H \triangleleft G$ indica che H è un sottogruppo normale di G.

- 1. Ancora da controllare Se G è un gruppo nel quale $\forall a,b \in G \quad (ab)^i = a^ib^i$ per tre interi i consecutivi. Allora G è abeliano.
 - Trovare inoltre un controesempio all'abelianità di G nel caso in cui la relazione sussista solo per due interi consecutivi.
- 2. Se G è un gruppo tale che $\forall a \in G \quad a^2 = e$, allora G è abeliano.
- 3. Sia *G* finito di ordine pari. Allora $\exists a \in G, a \neq e$ t.c. $a^2 = e$.
- 4. Ancora da controllare Sia G tale che l'intersezione di tutti i sottogruppi diversi da (e) è un sottogruppo diverso da (e). Dimostrare che ogni elemento di G ha ordine finito e con un esempio mostrare che G non è necessariamente finito.
- 5. Ancora da controllare Se $H \leq G \implies H = (e)$ dimostrare che G è finito ed ha ordine primo.
- 6. Ancora da controllare Sia $H \leq G$ t.c. $Ha \neq Hb \implies aH \neq bH$. Dimostrare che $\forall g \in G \quad gHg^{-1} \subseteq H$.
- 7. Ancora da controllare $H, K \leq G$ entrambi di indice finito ($\mathbf{i}_G H = a, \mathbf{i}_G K = b$). Dimostrare che $H \cap G$ ha indice finito e vale $\mathbf{i}_G(H \cap K) \leq \mathbf{i}_G(H)\mathbf{i}_G(K)$. Trovare inoltre un esempio in cui vale l'uguaglianza.
- 8. $H \leq G$, $i_G H$ finito. Dimostrare che esistono solo un numero finito di sottogruppi della forma aHa^{-1} per $a \in G$.
- 9. \star Sia G finito tale che $3 \nmid$ ord G e supponiamo che valga $\forall a,b \in G \quad (ab)^3 = a^3b^3$. Dimostrare che G è abeliano.
- 10. Ancora da controllare Sia G abeliano e supponiamo che $\exists x,y \in G$ t.c. ord x=m, ord y=n. Dimostrare che $\exists z \in G$ t.c. ord z=m.c.m. (m,n).
- 11. Supponiamo $\exists a, b \in G, a \neq e, b \neq e \text{ t.c. } a^5 = e, aba^-1 = b^2$. Trovare ord b.
- 12. \star Ancora da controllare Sia G abeliano e finito tale che il numero delle soluzioni dell'equazione $x^n=e$ è al più n per ogni intero positivo n. Dimostrare che G è ciclico e produrre un controesempio alla tesi nel caso in cui non si supponga G finito.
- 13. Sia G finito e $A \leq G$ t.c. $\forall x \text{ ord } (AxA) = k$. Dimostrare che $\forall g \in G \text{ } gAg^{-1} = A$.
- 14. Sia $H \leq G$ tale che i $_GH = 2$. Dimostrare che $H \triangleleft G$
- 15. Supponiamo $N, M \triangleleft G, N \cap M = (e)$. Dimostrare allora che $\forall n \in N, m \in M \quad nm = mn$
- 16. Trovare un gruppo non abeliano nel quale tutti i sottogruppi siano normali.
- 17. Dare un esempio di gruppo $G, H \leq G$ ed $a \in G$ tali che $aHa^{-1} \subseteq H$.
- 18. Dare un esempio di tre sottogruppi $E \subseteq F \subseteq G$ con $E \triangleleft F, F \triangleleft G$ ma $E \not \lhd G$.
- 19. \star Sia G finito, e supponiamo che l'automorfismo T sia tale che $T(x) = x \Leftrightarrow x = e$. Inoltre $T^2 = I$. Dimostrare che G è abeliano. (Molto truccoso)
- 20. \star Sia G finito, e supponiamo che l'automorfismo T mandi più di tre quarti degli elementi di G nel proprio inverso. Dimostrare allora che $T(x)=x^{-1}$ e che G è abeliano. (Molto truccoso)
- 21. \star Sia G tale che ord $G = p^2$ con $p \in \mathbb{P}$. Mostrare che allora G è abeliano.

Da dove ho preso gli esercizi

• Algebra, I. N. Herstein