

CS202: Data Structures

Spring 2022

Lecture 12

Mobin Javed

B+ Trees

Why B+ Trees?

- B+ Trees are heavily used in databases and file systems
 - -Databases: Sleepycat/BerkeleyDB, MySQL, SQLite
 - -File systems: MacOS HFS/HFS+, ReiserFS, Windows NTFS, Linux ext3, shmfs
- They work very well with large datasets

Traversing Large Datasets

- Suppose we had many pieces of data e.g., $n = 2^{30} \approx 10^9$
- In the worst-case, how many hops would be traversed to find a node?
 - -BST
 - -AVL

Traversing Large Datasets

- Suppose we have $n = 2^{30} \approx 10^9$ data items
- In the worst-case, how many hops would be traversed to find a node?
 - -BST: ≈ 10^9
 - $-AVL: \approx 30$

Memory Considerations

- What does a binary search tree node contain?
 - -Pointers to the left child, right child, and the parent
 - -Key and data/value
- Suppose each pointer and the key takes up 4 bytes and the data takes up 1 KB (=1024 bytes) of memory
 - -How much space (in bytes) does a tree with 10⁹ nodes take?
 - -How many nodes of the tree can live in a 1 GB of RAM?

Memory Considerations

- What does a binary search tree node contain?
 - -Pointers to the left child, right child, and the parent
 - -Key and data/value
- Suppose each pointer and the key takes up 4 bytes and the data is 1 KB (=1024 bytes)
- How much space (in bytes) does a tree with 10⁹ nodes take?
 - -Memory taken by each node: (1024 + 4x4) = 1040 bytes
 - -Memory used by the tree: $1040 * 10^9 \approx 10^{12}$ bytes
- How many nodes of the tree can live in a 1 GB of RAM?
 - -Number of nodes that can fit in a 1 GB RAM: 1 GB/1040 $\approx 10^6$

B+ Tree: A Memory-Conscious Data Structure

- So far, we have taken for granted that memory access in the computer is constant and easily accessible
 - -This is not always true!
 - At any given time, some memory might be cheaper and easier to access than others
 - -Sometimes the OS provides the program an illusion, and says an object is "in memory" when it's actually on the disk

Memory Hierarchy

"Every desktop/laptop/server is different but here is a plausible configuration these days"

22

Hardware Constraints

- Back on 32-bit machines, each program had access to 4GB of memory
 - -However, this isn't feasible to provide!
 - -Sometimes there isn't enough available, and so memory that hasn't been used in a while gets pushed to the disk
- Memory that is frequently accessed goes to the cache, which we know is faster than RAM

CS202, Spring 2022 LUMS

Locality (1/2)

- Operating systems (OSes) use temporal and spatial locality to speed up access
- Temporal locality
 - -Memory recently accessed is likely to be accessed again
 - -Bring recently used data into faster memory
- Spatial locality
 - -Nearby memory is likely to be accessed
 - -Bring a block of nearby data into faster memory (e.g., running a loop over an array)

Locality (2/2)

- The OS is always processing this information and deciding which is the best
 - This is why arrays are faster in practice, they are always next to each other in memory
 - —Each new node in a BST may not even be in the same page in memory!!

Minimizing Random Disk Accesses

- In the previous example, we considered a good chunk of our data structure lives on the disk i.e., $\approx (10^9-10^6)$ nodes
- Traversing through the tree means lots of random (slow) disk accesses!
- How can we address this problem?

M-ary Search Trees

- Suppose we use a search tree with M children/node
 - We use an array to store children in sorted order
 - Choose M so that it fits into a disk block (1 access for an array)

Perfect tree of height h has $n=(M^{h+1}-1)/(M-1)$ nodes

- Q. What is the height of this tree?
- Q. What is the worst-case running time of find?

M-ary Search Trees

Suppose we use a search tree with M children/node

Q. What is the height of this tree? $O(log_M n)$ Example: M = 256 (=28) and n = 240 that's 5 hops instead of 40 hops!

Q. What is the worst-case running time of find?

 $O(log_2M*log_Mn)$

What are the benefits of M-ary Search Trees?

Benefits of M-ary Search Trees

- Smaller height
 - -Path length reduces as we increase M
- Potential improvements in the running time of operations
 - Smaller height means potentially smaller number of nodes to traverse
 - Storing of children nodes in an array exploits memory locality (good for caches)
 - -Caveats:
 - Time required for performing binary search
- ... how can we further improve upon M-ary search trees?
 - -Thought: Can we avoid loading data of nodes we may not need?

B+ Trees

- B+ trees have two types of nodes: internal nodes (signposts) & leaf nodes (i.e., data nodes)
 - Each internal node has room for up to M-1 (sorted) keys & M pointers
 - Each leaf node has room for L key-value pairs, sorted by key
- Note: Creator of the B+ tree must pick M and L!

Remember:

- Leaves store data
- Internal nodes are 'signposts'

Search over B+ Trees

- Different from BST in that we don't store data in internal nodes
- But find is still an easy root-to-leaf recursive algorithm
 - At each internal node do binary search on (up to) M-1 keys to find the branch to take
 - At the leaf do binary search on (up to) L data items
- But to get logarithmic running time, we need a balance condition...

B+ Tree Structure Properties

- Internal nodes
 - -store up to M-1 keys
 - -have between [M/2] and M children

Leaf nodes

Why half full? It ensures that the tree stays balanced

- -store data and all leaf nodes are at the same depth
- -contain between $\lceil L/2 \rceil$ and L data items, stored in sorted order

Root (special case)

Why can M be equal to 2 in case of the root? If n is relatively small compared to M and L, it may not be possible for the root to be half-full

-has between 2 and M children (or root could be a leaf)

B+ Tree Example

What is the Worst-Case Complexity for Search?

- Find the correct subnode at every signpost
 - $-O(\log_2 M)$
- Go through the depth of the tree
 - $-O(\log_M N)$
- Find the object in the leaf
 - $-O(\log_2 L)$
- Total find = $O(log_2 L + log_2 M*log_M N)$

Disk Friendliness

What makes B+ trees disk-friendly?

- Many keys stored in a node
 - -All brought to memory/cache in one disk access

- Internal nodes contain only keys
 - -Much of tree structure can be loaded into memory irrespective of data object size
 - -Data resides in disk!

B+ Tree Insertions

Insertion: Basic Idea

- Insert into the correct leaf (in sorted order)
- If the leaf overflows
 - -split into two
 - -attach new child to parent
 - -add new key to parent
- Recursively overflow as necessary
- If the root overflows, make a new root

Building a B+ Tree with Insertions

The empty B+ tree (the root will be a leaf at the beginning)

Just need to keep data in order

$$M = 3 L = 3$$

- When we 'overflow' a leaf, we split it into 2 leaves
- Parent gains another child but if there is no parent (like here), we create one; how do we pick the parent key?
 - Smallest key in the right tree (note that all keys < 18 are in the left subtree)

Split leaf again

CS202, Sping=2032 L = 3

LUMS

$$M = 3 L = 3$$

Note: Given the leaves and the structure of the tree, we can always fill in <u>internal node</u> keys; 'the smallest value in my right branch'

Insertion Algorithm

- 1. Insert the key in its leaf in sorted order
- 2. If the leaf ends up with L+1 items, **overflow**!
 - Split the leaf into two nodes:
 - original with \[(L+1)/2 \]
 smaller keys
 - new one with \[(L+1)/2 \] larger keys
 - Add the new child to the parent
 - If the parent ends up with M+1 children, overflow!

This makes the tree deeper!

- 3. If an internal node ends up with M+1 children, overflow!
 - Split the node into two nodes:
 - original with \[(M+1)/2 \] children with smaller keys
 - new one with \[(M+1)/2 \] children with larger keys
 - Add the new child to the parent
 - If the parent ends up with M+1 items, overflow!
- 4. Split an overflowed root in two and hang the new nodes under a new root
- 5. Propagate keys up tree.

Efficiency of Insert

- Find correct leaf: $O(log_2 M log_M n)$ [binary search on each node along the path]
- Insert in leaf: $O(log_2 L + L)$ [binary search + move elements by one spot]
- Split leaf: O(L) [requires creating a new leaf node O(L/2) keys + initialization]
- Split parents all the way up to root: $O(M \log_M n)$ [splitting may be needed all the way up to the root + per-split requires two new nodes with O(M) children nodes initialization]

Total: O(L + M log_M n)

But it's not that bad:

- Splits are not that common (only required when a node is FULL, M and L are likely to be large, and after a split, will be half empty)
- Splitting the root is extremely rare
- Remember disk accesses are key: O(log_M n)

B-Tree Reminder: Another dictionary

- Before we talk about deletion, just keep in mind the overall idea:
 - Large data sets won't fit entirely in memory and disk access is slow
 - Set up tree so we do (at most) one disk access per node in tree
 - Then our goal is to keep tree shallow as possible
 - Balanced BSTs are a good start, but we can do better than log₂n
 - In an M-ary tree, height drops to $log_M n$
 - Why not set M really high? Height 1 tree...
 - Instead, set M so that each node fits in a disk block

CS202, Spring 2022

LUMS

B+ Tree Deletion

Deletion: Basic Idea

- Remove the data from the correct leaf
- If the leaf has too few elements,
 - -Adopt one from a neighbor (if it doesn't result in an underflow)
 - -Otherwise, merge with the neighbor
- Recursively underflow up to root if necessary

And Now for Deletion...

Easy case: Leaf still has enough data; just remove

$$M = 3 L = 3$$

Delete(15)

Is there a problem?

$$M = 3 L = 3$$

Adopt from neighbor!

Adopt from neighbor!

Delete(16)

Is there a problem?

$$M = 3 L = 3$$

Merge with neighbor!

But hey, Is there a problem?

Adopt from neighbor!

Delete(14)

M = 3 L = 3

Delete(18)

M = 3 L = 3

Is there a problem?

Merge with neighbor! M = 3 L = 3

But hey, Is there a problem?

Merge with neighbor!

But hey, Is there a problem?

Pull out the root!

Deletion Algorithm, part 1

- 1. Remove the data from its leaf
- 2. If the leaf now has \[\begin{aligned} \beg
 - If a neighbor has $> \lceil L/2 \rceil$ items, adopt and update parent
 - Else *merge* node with neighbor
 - Guaranteed to have a legal number of items
 - Parent now has one less node
- 3. If step (2) caused the parent to have $\lceil M/2 \rceil 1$ children, underflow!
 - **—** ...

Deletion Algorithm (continued)

- 3. If an internal node has $\lceil M/2 \rceil 1$ children
 - If a neighbor has $> \lceil M/2 \rceil$ items, adopt and update parent
 - Else merge node with neighbor
 - Guaranteed to have a legal number of items
 - Parent now has one less node, may need to continue up the tree

If we merge all the way up through the root, that's fine unless the root went from 2 children to 1

- In that case, delete the root and make child the root
- This is the only case that decreases tree height

CS202, Spring 2022

Worst-Case Efficiency of Delete

• Find correct leaf: $O(\log_2 M \log_M n)$

Remove from leaf:

- Adopt from or merge with neighbor: O(L)
- Adopt or merge all the way up to root: $O(M \log_M n)$

Total: $O(L + M \log_M n)$

But it's not that bad:

- Merges are not that common
- Disk accesses are the name of the game: $O(\log_M n)$

Insert vs Delete Comparison

Insert

• Find correct leaf: $O(\log_2 M \log_M n)$

• Insert in leaf: O(L)

• Split leaf: O(L)

• Split parents all the way up to root: $O(M \log_M n)$

Delete

• Find correct leaf: $O(\log_2 M \log_M n)$

• Remove from leaf: O(L)

• Adopt/merge from/with neighbor leaf: O(L)

• Adopt or merge all the way up to root: $O(M \log_M n)$

Conclusion: Balanced Trees

- Balanced trees make good dictionaries because they guarantee logarithmic-time for find, insert, and delete
- AVL trees maintain balance by tracking height and allowing all children to differ in height by at most 1
- B+ trees maintain balance by keeping nodes at least half full and all leaves at same height

CS202, Spring 2022

Thank you!