MSO-203 B ASSIGNMENT 1 IIT, KANPUR

18th October, 2020

1. Consider the following functions defined on the interval $[-\pi, \pi]$.

a)
$$f(x) = |x|$$

b)
$$f(x) = |\sin(x)|$$

c)
$$f(x) = \sin|x|$$

d)
$$f(x) = x^2$$
.

Which one of the above functions admits Fourier series expansion? (It is understood that the functions are extended 2π periodically to whole of real line). Write down their Fourier series expansion.

2. Find the Fourier even half series of the function f(x) = x on the interval [0, L].

3. Consider the function defined by

$$g(x) := \sum_{n=1}^{\infty} \frac{4\cos((2n+1)x)}{\pi(2n+1)^2} + \sum_{m=1}^{\infty} \frac{2\sin((2m+1)x)}{(2m+1)}, \quad x \in \mathbb{R}.$$

Then which of the following are correct:

a)
$$g(\frac{\pi}{2}) = \frac{\pi}{2}$$

b)
$$g(0) = 0$$

c)
$$g(0) = \frac{\pi}{2}$$

d)
$$g(\frac{\pi}{2}) = -2$$

Hint: Work with the Fourier series of the periodical extension of the following function

$$f(x) = \begin{cases} x, & x \in [-\pi, 0) \\ \pi - x, & x \in (0, \pi]. \end{cases}$$

4. Pick the correct answers from the following:

a)
$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

a)
$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

b) $\frac{\pi^2}{2} = \sum_{n=1}^{\infty} \frac{1}{n^2}$

c)
$$0 = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} \cos(n\pi)$$

d)
$$0 = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{3}{n^2} \cos(n\pi)$$
.

Hint: Work with the Fourier transform of the periodical extension of the following function $f(x) = x^2$ on the interval $[-\pi, \pi]$

5. Find the half range series (both even and odd) for the following function:

$$f(x) = \begin{cases} 0, & x \in [0, \frac{\pi}{2}) \\ 1, & x \in [\frac{\pi}{2}, \pi]. \end{cases}$$

6. Apply Parsevals formula to the function f(x) = x on $[-\pi, \pi]$ to find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

1