INTRODUCTION TO DEEP LEARNING

LECTURE 5

Elad Hoffer Nir Ailon Ran El-Yaniv

Technion Israel Institute Of Technology, Computer-Science department

Overview

- 1. Sequence modeling
- 2. Recurrent neural networks
- 2.1 Training recurrent networks
- 2.2 Vanishing and exploding gradients
- 3. Gated architectures
- 3.1 Long-short-term-memory
- 3.2 Gated recurrent unit
- 4. Tricks of the trade

SEQUENCE MODELING

Sequence modeling

Many interesting problems are time dependent - where our model is expected to infer using a sequence of inputs, or output a sequence of targets. Some popular examples:

- Speech recognition
- Handwriting recognition
- Language translation
- Caption generation from images

Time-delayed neural networks

The most basic approach is using *time-delayed neural networks*. TDNNs are feed-forward NNs that represent time explicitly with a fixed-length window of the recent history.

For example, a convolutional network trained to classify video instances (Karapathy, 14')

Time-delayed neural networks

Properties of time-delayed neural networks:

- Fixing the window size makes long-term dependency hard (even impossible) to learn
- Linear increase of the number of parameters for larger time-window
- Time-shift invariant since it has no internal state

Any better way to model temporal data?

Recurrent neural networks (RNNs) are networks where connections between units form a directed cycle.

 ϕ is usually a bounded non-linearity (Tanh, Sigmoid)

Recurrent neural networks properties:

- RNN hidden states work as memory on previous inputs and states
- Temporal dependency and internal memory allow processing of sequences of inputs
- Able to address wide range of time-dependencies
- Able to learn and infer sequences of varying length

What theses RNNs do?

This one calculates the sum of inputs over time:

This one determines if the total value of the first or second inputs are larger:

- O RNNs essentially describe programs.
- They are proven to be Turing-complete (Siegelmann, Sontag) in the sense that they can to simulate arbitrary programs (with proper weights).
- Similar to universal approximation theorem for feed-forward neural nets - does not tell us what kind/size is needed for a given problem, or how hard it is to learn it.

So, how do we train recurrent networks?

Back-propagation through time

In order to learn time-dependent signals, we need to use *Back-propagation through time*:

- Unfold network in time (remember all intermediate steps)
- Apply gradient back-propagation recursively back in time from T to 1
- Sum over the whole sequence (t = 1..T) to get the derivatives with respect to the weights

Vanishing and exploding gradients

Recurrent networks tend to suffer from the infamous problem of *vanishing or exploding gradients* (Hochreiter, 91')

- Back-propagated error signals either shrink rapidly, or grow out of bounds.
- In fact, they decay exponentially in the number of layers, or they explode.

Why does it happen?

Vanishing and exploding gradients

$$h_t = \phi \left(W_i x_t + W_r h_{t-1} + b \right)$$

We wish to optimize the weight according to some error *E*:

$$\frac{\partial E}{\partial W} = \sum_{1 \le t \le T} \frac{\partial E_t}{\partial W}, \quad \frac{\partial E_t}{\partial W} = \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W} \right)$$
$$\frac{\partial h_t}{\partial h_k} = \prod_{t \ge i > k} \frac{\partial h_i}{\partial h_{i-1}} = \prod_{t \ge i > k} \mathbf{W}_r^T diag(\phi'(h_{i-1}))$$

Vanishing and exploding gradients

The vanishing or exploding gradients problem can be seen as a symptom for our attempt at modeling varying time dependencies

Short term dependency

Long term dependency

Long-short-term-memory

Long Short-Term Memory (LSTM) architecture was proposed by Hochreiter and Schmidhuber, '97.

- Designed specifically to counter the vanishing and exploding gradient problem
- It uses *gate units* to control the information flow within the network
- Empirically found to be much better at finding and exploiting long range dependencies within the data (compared to simple RNNs)
- Very popular today as a recurrent network model

Long-short-term-memory

Moving from RNNs to LSTMS units

○ RNN

LSTM

Long-short-term-memory

Gate units

- O Gates are a way to optionally let information through.
- They are composed out of a sigmoid neural net layer and a pointwise multiplication operation.
- The sigmoid layer outputs numbers between zero and one, describing how much of each component should be let through.

An LSTM has three of these gates

Forget gate

We'll start with the "forget gate"

 Controls the amount of information kept from previous state. outputs a number between 0 and 1 for each number in the cell state

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Input gate and candidate state

The next step is to decide what new information we're going to store in the cell state.

- First, a gate layer called the "input gate" decides which values we'll update.
- O Next, a tanh layer creates a vector of new candidate values, \tilde{C}_t .

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Candidate state update

It's now time to update the old cell state, C_{t-1} , into the new cell state C_t .

- \bigcirc We multiply the old state by f_t , forgetting the things we decided to forget earlier.
- O We then add it $i_t * \tilde{C}_t$. This is the new candidate values, scaled by how much we decided to update each state value.

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output gate

Finally, we need to decide what we're going to output. This output will be a filtered version of the state.

- First, we compute an "output gate" which decides what parts of the cell state we're going to output.
- Then, we apply a tanh on the cell state and output the gated version of it.

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Gated recurrent unit

Gated recurrent unit (GRU) is a recently introduced alternative:

- Similarly to the LSTM unit, the GRU has gating units that modulate the flow of information.
- O The activation h_t of the GRU at time t is a linear interpolation between the previous activation h_{t-1} and the candidate activation \tilde{h}_t
- GRU exposes the whole state each time.

RNN - tricks of the trade

Some useful techniques for training recurrent networks:

 Gradient clipping - to reduce the chances of exploding gradients, it is helpful to normalize them using a predetermined maximum norm (usually around 5):

if
$$\left\| \frac{\partial E}{\partial W} \right\|_2 > V_{max}$$

$$\left(\frac{\partial E}{\partial W} \right)_i = \frac{V_{max}}{\left\| \frac{\partial E}{\partial W} \right\|_2} \left(\frac{\partial E}{\partial W} \right)_i$$

This is very effective in practice, and should be used in every recurrent training.

RNN - tricks of the trade

- Per parameter adaptive optimization can sometime be crucial for convergence. Adam and Rmsprop usually work.
- Dropout, batch-normalization may need special care to work - straight-forward usage will work only on non-recurrent connections.
- Weight initialization initializing the recurrent weights to be close to identity can speed-up convergence. Similarly, the forget-gate bias in LSTM should be initialized to a large constant (>1).
- Using small batches recurrent networks are much more affected by batch size. It is therefore beneficial to use small batches compared to CNN training.

Recent trends

- Memory augmented architectures Memory networks,
 Neural Turing machines, Stack-augmented networks
- Sequence-to-sequence learning

Recent trends

 Attention mechanisms - learn a state-dependent weighting over the input space in order to maximize an objective

References

Figures were borrowed from Christopher Olah's site: Understanding LSTMs