Evaluation

Exercise 1 : Concept Learning in 2D

Consider the problem of concept learning in the following, rather different, feature space: The set of possible examples is given by all points of the x-y plane with integer coordinates from the interval [1,10]. The hypothesis space is given by the set of all rectangles. A rectangle is defined by the points (x_1,y_1) and (x_2,y_2) (bottom left and upper right corner). Hypotheses are written as $\theta=(x_1,y_1,x_2,y_2)$, and assign a point (x,y) to the value 1, if $x_1 \le x \le x_2$ and $y_1 \le y \le y_2$ hold, with arbitrary, but fixed integer values for x_1,y_1,x_2,y_2 from the interval [1,10].

Hint: The maximally specific hypothesis s_0 corresponds to a "zero-sized" rectangle that doesn't contain any points with integer coordinates; you may use the symbol $\langle \bot \rangle$.

- (a) For the setting described above, formulate the most general hypothesis h_{q_0} .
- (b) Clarify for yourself how the "more-general" relation \geq_g works in this setting, and check all that apply:

 - \square $(1,1,2,8) \ge_q (1,1,3,3)$
 - \square $(3,3,9,9) \ge_q (1,1,1,1)$
- (c) Given a hypothesis $h: \theta = (2, 3, 5, 7)$, and an example $\mathbf{x} = (2, 7)$ with c = 0, determine two hypotheses h_1 and h_2 such that both are minimal specializations of h, and both are consistent with (\mathbf{x}, c) .

Hint: for the correct answers h_i , there must not exist any hypothesis h' consistent with consistent with where $h \ge_g h'$ and $h' \ge_g h_i$.

Exercise 2: Precision and Recall

In which of the following classification tasks do we aim for high precision, in which for high recall? Why?

- (a) Explosive detection using an airport x-ray machine.
- (b) Youtube video recommendations (classifying videos as relevant).
- (c) Choosing a good seat on a half-full train.
- (d) Spell checking (spelling error detection).

Exercise 3: ROC Curve

Consider the following binary classification scenario:

We use different linear classifiers (horizontal lines) that are parameterized by w_0 . Consider the effect of the choice of w_0 on the following two performance metrics:

The false positive rate, defined as

$$FPR = \frac{FP}{FP + TN} = \frac{FP}{N} = \frac{|\{(\mathbf{x}, c) \in D : y(\mathbf{x}) = 1 \land c = 0\}|}{|\{(\mathbf{x}, c) \in D : c = 0\}|},$$

and the true positive rate (i.e. recall), defined as

$$TPR = \frac{TP}{TP + FN} = \frac{TP}{P} = \frac{|\{(\mathbf{x}, c) \in D : y(\mathbf{x}) = 1 \land c = 1\}|}{|\{(\mathbf{x}, c) \in D : c = 1\}|}.$$

(a) Vary w_0 and fill out the following plot:

This is called ROC curve (receiver operating characteristic).

- (b) How would the ROC curve of a slightly worse classifier (e.g., one that is not horizontal) look like?
- (c) How does the ROC curve of the optimal classifier look like?
- (d) How does the ROC curve of the worst possible classifier look like?
- (e) What does the ROC curve of a random classifier look like that uses the threshold parameter as its acceptance probability?
- (f) Imagine a classifier with a ROC curve worse than random guessing. What went wrong here? How could this error be fixed?
- (g) How does this relate to forming a classifier from a regression model? Use the terms of bias and threshold.