CS220: Lecture Notes

Josh Kotler

last updated: October 14, 2022

1 Boolean Algebra

• Boolean algebra defines operations and rules for working with the set $\{0,1\}$.

1.1 Boolean Operations and Functions

Complement Denoted by a bar:

$$\overline{0} = 1$$
 $\overline{1} = 0$

Boolean sum Denoted as + / OR:

$$1+1=1$$
 $1+0=1$ $0+1=1$ $0+0=0$

Boolean product Denoted as \cdot / AND:

$$1 \cdot 1 = 1$$
 $1 \cdot 0 = 0$ $0 \cdot 1 = 0$ $0 \cdot 0 = 0$

Definition 1.1 (Boolean variable). Variable x is a **Boolean variable** only if $x \in \{0,1\}$.

1.2 Identities

1.3 Definition of a Boolean Algebra

- All the properties of Boolean functions and expression apply to other mathematical structures such as propositions and sets and the operations defined on them.
- If we can show that a particular structure is a Boolean algebra, then we know that all results established about Boolean algebras apply to this structure.

• For this purpose, we need an abstract definition of a Boolean algebra.

Definition 1.2 (Boolean Algebra). A Boolean algebra is a set B with two binary operators \land and \lor , elements 0 and 1, and a unary operation – such that the following properties hold fo all x, y, and z in B:

• $x \lor 0 = x$ and $x \land 1 = x$ (identity laws).