

- Authenticity is identification and assurance of origin of information
 - We'll see many specific examples in different scenarios

UNIVERSITY OF SAN PROPERTY OF

- Given: Everybody knows Bob's public key
- How is this achieved in practice?
- Only Bob knows the corresponding private key
- Goals: 1. Alice wants to send a secret message to Bob
- 2. Bob wants to authenticate himself

ust CR equirements for Public-Key Crypto

- Key generation: computationally easy to generate a pair (public key PK, private key SK)
 - Computationally infeasible to determine private key PK given only public key PK
- Encryption: given plaintext M and public key PK, easy to compute ciphertext C=E_{PK}(M)
- Decryption: given ciphertext C=E_{PK}(M) and private key SK, easy to compute plaintext M
 - Infeasible to compute M from C without SK
 - Decrypt(SK,Encrypt(PK,M))=M

Requirements for Public-Key STCS Cryptography Cryptography

- Computationally easy for a party B to generate a pair (public key KUb, private key KRb)
- 2. Easy for sender to generate ciphertext:

$$C = E_{KUb}(M)$$

Easy for the receiver to decrypt ciphertect using private key:

$$M = D_{KRb}(C) = D_{KRb}[E_{KUb}(M)]$$

Requirements for Public-Key Cryptography Cryptography

- 4. Computationally infeasible to determine private key (KR_b) knowing public key (KU_b)
- Computationally infeasible to recover message M, knowing KU_b and ciphertext C
- 6. Either of the two keys can be used for encryption, with the other used for decryption:

$$M = D_{KRh}[E_{KIJh}(M)] = D_{KIJh}[E_{KRh}(M)]$$

SECPUBLIC-Key Cryptographic Algorithms

- RSA and Diffie-Hellman
- > **RSA** Ron Rives, Adi Shamir and Len Adleman at MIT, in 1977.
 - RSA is a block cipher
 - The most widely implemented
- Diffie-Hellman
 - Echange a secret key securely
 - Compute discrete logarithms

Rivest, Shamir and Adleman (1977)

Key Generation

Select p, q

p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e

 $gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate d

 $de \mod \phi(n) = 1$

Public key

 $KU = \{e, n\}$

Private key

 $KR = \{d, n\}$

RSA en/decryption

Calculate $d \mod \phi(n) = 1$

Public key $KU = \{e, n\}$

Private key $KR = \{d, n\}$

Encryption

Plaintext: M < n

Ciphertext: $C = M^e \pmod{n}$

Decryption

Ciphertext:

Plaintext: $M = C^d \pmod{n}$

Example of RSA Algorithm

Figure 3.9 Example of RSA Algorithm

usfcs Why Is RSA Secure?

- ➤ RSA problem: given n=pq, e such that gcd(e,(p-1)(q-1))=1 and c, find m such that me=c mod n
 - i.e., recover m from ciphertext c and public key (n,e) by taking eth root of c
 - There is no known efficient algorithm for doing this
- Factoring problem: given positive integer n, find primes p_1 , ..., p_k such that $n=p_1^{e_1}p_2^{e_2}...p_k^{e_k}$
- ➤ If factoring is easy, then RSA problem is easy, but there is no known reduction from factoring to RSA
 - It may be possible to break RSA without factoring n

Other Public-Key usfcs Cryptographic Algorithms Cryptographic Algorithms

- Digital Signature Standard (DSS)
 - Makes use of the SHA-1
 - Not for encryption or key echange
- Elliptic-Curve Cryptography (ECC)
 - Good for smaller bit size
 - Low confidence level, compared with RSA
 - Very complex

ust CApplications of Public-Key Crypto

- Encryption for confidentiality
 - Anyone can encrypt a message
 - With symmetric crypto, must know secret key to encrypt
 - Only someone who knows private key can decrypt
 - Key management is simpler (maybe)
 - Secret is stored only at one site: good for open environments
- Digital signatures for authentication
 - Can "sign" a message with your private key
- Session key establishment
 - Exchange messages to create a secret session key
 - Then switch to symmetric cryptography (why?)

usf CAdvantages of Public-Key Crypto

- Confidentiality without shared secrets
 - Very useful in open environments
 - No "chicken-and-egg" key establishment problem
 - With symmetric crypto, two parties must share a secret before they can exchange secret messages
- > Authentication without shared secrets
 - Use digital signatures to prove the origin of messages
- Reduce protection of information to protection of authenticity of public keys
 - No need to keep public keys secret, but must be sure that Alice's public key is <u>really</u> her true public key

usf Chisadvantages of Public-Key Crypto

- Calculations are 2-3 orders of magnitude slower
 - Modular exponentiation is an expensive computation
 - Typical usage: use public-key cryptography to establish a shared secret, then switch to symmetric crypto
 - We'll see this in IPSec and SSL
- Keys are longer
 - 1024 bits (RSA) rather than 128 bits (AES)
- Relies on unproven number-theoretic assumptions
 - What if factoring is easy?
 - Factoring is <u>believed</u> to be neither P, nor NP-complete

Authentication using Publicusics Key System

MAC in encryptions

Key Management USIC Public-Key Certificate Use

