H08

A

16.1

- **10.** Evaluate $\int_C (x y + z 2) ds$ where *C* is the straight-line segment x = t, y = (1 t), z = 1, from (0, 1, 1) to (1, 0, 1).
- 11. Evaluate $\int_C (xy + y + z) ds$ along the curve $\mathbf{r}(t) = 2t\mathbf{i} + t\mathbf{j} + (2 2t)\mathbf{k}, 0 \le t \le 1$.
- 17. Integrate $f(x, y, z) = (x + y + z)/(x^2 + y^2 + z^2)$ over the path $\mathbf{r}(t) = t\mathbf{i} + t\mathbf{j} + t\mathbf{k}, 0 < a \le t \le b$.
- **18.** Integrate $f(x, y, z) = -\sqrt{x^2 + z^2}$ over the circle

$$\mathbf{r}(t) = (a\cos t)\mathbf{j} + (a\sin t)\mathbf{k}, \qquad 0 \le t \le 2\pi.$$

B

- **24. Center of mass of a curved wire** A wire of density $\delta(x, y, z) = 15\sqrt{y+2}$ lies along the curve $\mathbf{r}(t) = (t^2 1)\mathbf{j} + 2t\mathbf{k}, -1 \le t \le 1$. Find its center of mass. Then sketch the curve and center of mass together.
- 27. Moment of inertia and radius of gyration of wire hoop A circular wire hoop of constant density δ lies along the circle $x^2 + y^2 = a^2$ in the xy-plane. Find the hoop's moment of inertia and radius of gyration about the z-axis.

C

16.2

- 17. Evaluate $\int_C xy \, dx + (x + y) \, dy$ along the curve $y = x^2$ from (-1, 1) to (2, 4).
- **18.** Evaluate $\int_C (x y) dx + (x + y) dy$ counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1).
- **19.** Evaluate $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$ for the vector field $\mathbf{F} = x^2 \mathbf{i} y \mathbf{j}$ along the curve $x = y^2$ from (4, 2) to (1, -1).
- **20.** Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ for the vector field $\mathbf{F} = y\mathbf{i} x\mathbf{j}$ counterclockwise along the unit circle $x^2 + y^2 = 1$ from (1, 0) to (0, 1).

In Exercises 25–28, find the circulation and flux of the field **F** around and across the closed semicircular path that consists of the semicircular arch $\mathbf{r}_1(t) = (a\cos t)\mathbf{i} + (a\sin t)\mathbf{j}$, $0 \le t \le \pi$, followed by the line segment $\mathbf{r}_2(t) = t\mathbf{i}$, $-a \le t \le a$.

25.
$$F = xi + yj$$

26.
$$\mathbf{F} = x^2 \mathbf{i} + y^2 \mathbf{j}$$

- **42. Zero circulation** Let C be the ellipse in which the plane 2x + 3y z = 0 meets the cylinder $x^2 + y^2 = 12$. Show, without evaluating either line integral directly, that the circulation of the field $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ around C in either direction is zero.
- **43. Flow along a curve** The field $\mathbf{F} = xy\mathbf{i} + y\mathbf{j} yz\mathbf{k}$ is the velocity field of a flow in space. Find the flow from (0, 0, 0) to (1, 1, 1) along the curve of intersection of the cylinder $y = x^2$ and the plane z = x. (*Hint*: Use t = x as the parameter.)

F

In Exercises 7–12, find a potential function f for the field \mathbf{F} .

7.
$$\mathbf{F} = 2x\mathbf{i} + 3y\mathbf{j} + 4z\mathbf{k}$$

8.
$$\mathbf{F} = (y + z)\mathbf{i} + (x + z)\mathbf{j} + (x + y)\mathbf{k}$$

In Exercises 13-17, show that the differential forms in the integrals are exact. Then evaluate the integrals.

16.
$$\int_{(0,0,0)}^{(3,3,1)} 2x \, dx - y^2 \, dy - \frac{4}{1+z^2} \, dz$$

17.
$$\int_{(1,0,0)}^{(0,1,1)} \sin y \cos x \, dx + \cos y \sin x \, dy + dz$$

G

34. Gradient of a line integral Suppose that $\mathbf{F} = \nabla f$ is a conservative vector field and

$$g(x, y, z) = \int_{(0,0,0)}^{(x,y,z)} \mathbf{F} \cdot d\mathbf{r}.$$

Show that $\nabla g = \mathbf{F}$.

35. Path of least work You have been asked to find the path along which a force field F will perform the least work in moving a particle between two locations. A quick calculation on your part shows F to be conservative. How should you respond? Give reasons for your answer.

Н

16.4

$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \oint_C M \, dy - N \, dx = \iint_R \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} \right) dx \, dy \tag{3}$$

Outward flux

Divergence integral

$$\oint_C \mathbf{F} \cdot \mathbf{T} \, ds = \oint_C M \, dx + N \, dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy \tag{4}$$

Counterclockwise circulation

Curl integral

In Exercises 1–4, verify the conclusion of Green's Theorem by evaluating both sides of Equations (3) and (4) for the field $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$. Take the domains of integration in each case to be the disk $R: x^2 + y^2 \le a^2$ and its bounding circle $C: \mathbf{r} = (a \cos t)\mathbf{i} + (a \sin t)\mathbf{j}$, $0 \le t \le 2\pi$.

$$1. \mathbf{F} = -y\mathbf{i} + x\mathbf{j}$$

3.
$$F = 2xi - 3yj$$

In Exercises 5-10, use Green's Theorem to find the counterclockwise circulation and outward flux for the field **F** and curve C.

5.
$$\mathbf{F} = (x - y)\mathbf{i} + (y - x)\mathbf{j}$$

C: The square bounded by x = 0, x = 1, y = 0, y = 1

9.
$$\mathbf{F} = (x + e^x \sin y)\mathbf{i} + (x + e^x \cos y)\mathbf{j}$$

C: The right-hand loop of the lemniscate $r^2 = \cos 2\theta$

J

If a simple closed curve C in the plane and the region R it encloses satisfy the hypotheses of Green's Theorem, the area of R is given by

Green's Theorem Area Formula

Area of
$$R = \frac{1}{2} \oint_C x \, dy - y \, dx$$
 (13)

The reason is that by Equation (3), run backward,

Area of
$$R = \iint_R dy \, dx = \iint_R \left(\frac{1}{2} + \frac{1}{2}\right) dy \, dx$$
$$= \oint_C \frac{1}{2} x \, dy - \frac{1}{2} y \, dx.$$

Use the Green's Theorem area formula (Equation 13) to find the areas of the regions enclosed by the curves in Exercises 21–24.

- **21.** The circle $\mathbf{r}(t) = (a\cos t)\mathbf{i} + (a\sin t)\mathbf{j}, \quad 0 \le t \le 2\pi$
- **22.** The ellipse $\mathbf{r}(t) = (a\cos t)\mathbf{i} + (b\sin t)\mathbf{j}, \quad 0 \le t \le 2\pi$
- **23.** The astroid $\mathbf{r}(t) = (\cos^3 t)\mathbf{i} + (\sin^3 t)\mathbf{j}, \quad 0 \le t \le 2\pi$
- **24.** The curve $\mathbf{r}(t) = t^2 \mathbf{i} + ((t^3/3) t)\mathbf{j}$, $-\sqrt{3} \le t \le \sqrt{3}$ (see accompanying figure).

