

Linear Algebra for Machine Learning in Python

Moritz Wolter

March 5, 2023

High-Performance Computing and Analytics Lab, University of Bonn

Overview

Introduction

Essential operations

Linear curve fitting

Regularization

Introduction

Motivating linear algebra

Même le feu est régi par les nombres.

Fourier¹ studied the transmission of heat using tools that would later be called an eigenvector-basis. Why would he say something like this?

¹Jean Baptiste Joseph Fourier (1768-1830)

Matrices

 $\mathbf{A} \in \mathbb{R}^{m,n}$ is a real-valued Matrix with m rows and n columns.

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, a_{ij} \in \mathbb{R}.$$
 (1)

3

Essential operations

Addition

Two matrices $\mathbf{A} \in \mathbb{R}^{m,n}$ and $\mathbf{B} \in \mathbb{R}^{m,n}$ can be added by adding their elements.

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$
(2)

4

Multiplication

Multiplying $\mathbf{A} \in \mathbb{R}^{m,n}$ by $\mathbf{B} \in \mathbb{R}^{n,p}$ produces $\mathbf{C} \in \mathbb{R}^{m,p}$,

$$\mathbf{AB} = \mathbf{C}.\tag{3}$$

To compute ${\bf C}$ the elements in the rows of ${\bf A}$ are multiplied with the column elements of ${\bf C}$ and the products added,

$$c_{ik} = \sum_{j=1}^{m} a_{ij} \cdot b_{jk}. \tag{4}$$

Linear Algebra for Machine Learning in Python —Essential operations

Multiplying $\mathbf{A} \in \mathbb{R}^{m,n}$ by $\mathbf{B} \in \mathbb{R}^{n,p}$ produces $\mathbf{C} \in \mathbb{R}^{m,p}$, $\mathbf{AB} = \mathbf{C}. \tag{\mathbf{C}}$ To compute \mathbf{C} the elements in the rows of \mathbf{A} are multiplied with the column elements of \mathbf{C} and the products added, $\mathbf{ca} = \sum_{i=1}^{m} \mathbf{a}_{i} \cdot \mathbf{b}_{i}. \tag{\mathbf{C}}$

Multiplication

-Multiplication

Define on the board:

- Dot product $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n$ for two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$.
- Row times column view [Str+09]:

The identity matrix

$$\mathbf{I} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix} \tag{5}$$

 $I = \begin{pmatrix} 1 & & \\ & 1 & \\ & & \ddots & \\ & & & \ddots \end{pmatrix}$ (5)

☐The identity matrix

Demonstrate multiplication with the inverse by hand.

$$\begin{pmatrix} -1 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & -0 & -0 \\ -2 & -1 & -1 \\ -1 & -0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{6}$$

Matrix inverse

The inverse Matrix \mathbf{A}^{-1} undoes the effects of \mathbf{A} , or in mathematical notation,

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}.\tag{7}$$

The process of computing the inverse is called Gaussian elimination.

Linear Algebra for Machine Learning in Python

Essential operations

└─Matrix inverse

Matrix inverse

The inverse Matrix A^{-1} undoes the effects of A, or in mathematical notation, $AA^{-1} = I$

The process of computing the inverse is called Gaussian elimination.

Example on the board:

$$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 2 & 0 & 1 & 0 \\ 1 & 3 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 1 & 3 & 0 & 1 \end{pmatrix} \tag{8}$$

$$\rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 3 & -\frac{1}{2} & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & -\frac{1}{6} & \frac{1}{3} \end{pmatrix} \tag{9}$$

Test the result:

$$\begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ -\frac{1}{6} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 2 \cdot \frac{1}{2} + 0 \cdot -\frac{1}{6} & 2 \cdot 0 + 0 \cdot \frac{1}{3} \\ 1 \cdot \frac{1}{2} + 3 \cdot -\frac{1}{6} & 0 \cdot 0 + 3 \cdot \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
(10)

The Transpose

The transpose operation flips matrices along the diagonal, for example, in \mathbb{R}^2 ,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
 (11)

Motivation of the determinant

- The determinant contains lots of information about a matrix in a single number.
- When a Matrix has a zero determinant, its inverse does not exist.
- We require determinants to find eigenvalues by hand.

Computing determinants in two or three dimensions

The two-dimensional case:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$
 (12)

(13)

Computing the determinant of a three-dimensional matrix.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \cdot \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \cdot \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

$$(14)$$

dimensions

Example computation on the board:

$$\begin{vmatrix} -1 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{vmatrix} = -1 \cdot \begin{vmatrix} -1 & 1 \\ 0 & -1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 0 & 0 \\ 0 & -1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 0 & 0 \\ -1 & 1 \end{vmatrix}$$
 (15)
$$= (-1) \cdot ((-1) \cdot (-1) - 0 \cdot 1)) -$$
 (16)
$$(0 \cdot (-1) - 0 \cdot 0) + 0 \cdot 1 - (-1) \cdot 0$$
 (17)
$$= -1$$
 (18)

Determinants in n-dimensions

$$\begin{vmatrix} a_{11} & a_{21} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{m2} & \dots & a_{mn} \end{vmatrix} + a_{21} \begin{vmatrix} a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{m2} & \dots & a_{mn} \end{vmatrix}$$

Linear Algebra for Machine Learning in Python —Essential operations

 $\begin{vmatrix} s_{11} & s_{21} & \dots & s_{2n} \\ s_{21} & s_{22} & \dots & s_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ s_{n1} & s_{n2} & \dots & s_{nn} \end{vmatrix} = s_{n2} \begin{vmatrix} s_{21} & \dots & s_{2n} \\ \vdots & \vdots & \vdots \\ s_{n2} & \dots & s_{nn} \end{vmatrix} + s_{n2} \begin{vmatrix} s_{21} & \dots & s_{2n} \\ \vdots & \vdots & \vdots \\ s_{n2} & \dots & s_{nn} \end{vmatrix} = s_{n2} \begin{vmatrix} s_{21} & \dots & s_{2n} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{vmatrix}$

Determinants in n-dimensions

Draw the sign pattern on the board:

$$\begin{vmatrix} + & - & + & \dots \\ - & + & - & \dots \\ + & - & + & \dots \\ \vdots & \vdots & \vdots & \ddots \end{vmatrix}$$
 (19)

The determinant can be expanded along any column as long as the sign pattern is respected.

Summary

- We saw some of the most important operations in linear algebra.
- Let's use these to do something useful next.

Linear curve fitting

What is the best line connecting measurements?

Problem Formulation

A line has the form dx + c, with $c, x, d \in \mathbb{R}$. In matrix language, we could ask for every point to be on the line,

$$\begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{pmatrix}. \tag{20}$$

We can treat polynomials as vectors, too! The coordinates populate the matrix rows in $\mathbf{A} \in \mathbb{R}^{n_p \times 2}$, and the coefficients appear in $\mathbf{x} \in \mathbb{R}^2$, with the points we would like to model in $\mathbf{b} \in \mathbb{R}^{n_p}$. The problem now appears in matrix form and can be solved using linear algebra!

The Pseudoinverse [Str+09; DFO20]

The inverse exists for square or n by n matrices. Nonsquare \mathbf{A} such as the one we just saw, require the pseudoinverse,

$$\mathbf{A}^{\dagger} = (\mathbf{A}^{T} \mathbf{A})^{-1} \mathbf{A}^{T}. \tag{21}$$

Sometimes solving $\mathbf{A}\mathbf{x} + \mathbf{b} = 0$ is impossible, the pseudoinverse considers,

$$\min_{\mathbf{x}} \frac{1}{2} |\mathbf{A}\mathbf{x} - \mathbf{b}|^2 \tag{22}$$

(23)

instead. $\mathbf{A}^{\dagger}\mathbf{b} = \mathbf{x}$ yields the solution.

Linear Algebra for Machine Learning in Python	The Facultamente [Att+03, BF025]
Linear curve fitting	The inverse exists for square or n by n matrices. Nonsquare A such as the one we just saw, require the pseudoinverse,
—Linear curve litting	$A^{\dagger} = (A^{T}A)^{-1}A^{T}$. (21)
	Sometimes solving $\mathbf{A}\mathbf{x}+\mathbf{b}=0$ is impossible, the pseudoinverse considers,
☐The Pseudoinverse [Str+09; DFO20]	$\min_{x} \frac{1}{2} \mathbf{A}_{\mathbf{X}} - \mathbf{b} ^{2} $ (22)
The Fseudoniverse [5t1+09, Di O20]	instead. $A^{\dagger}b=x$ yields the solution.

 $\min_{\mathbf{v}} \frac{1}{2} |\mathbf{A}\mathbf{x} - \mathbf{b}|^2$

At the optimum we expect,

$$0 = \nabla_{\mathbf{x}} \frac{1}{2} |\mathbf{A}\mathbf{x} - \mathbf{b}|^2$$

$$-\mathbf{b}|^2 \tag{26}$$

$$= (\mathbf{A}\mathbf{x} - \mathbf{b})\mathbf{A}^T$$

(28)

(29)

(30)

(31)

$$= (A$$

$$= \mathbf{A}' \mathbf{A} \mathbf{x}$$

 $\mathbf{A}^T \mathbf{b} = \mathbf{A}^T \mathbf{A} \mathbf{x}$

 $(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{b} = \mathbf{x}$

$$= \nabla_{\mathbf{x}} \frac{1}{2} |\mathbf{A}\mathbf{x} - \mathbf{b}|^{2}$$
$$= \nabla_{\mathbf{x}} \frac{1}{2} (\mathbf{A}\mathbf{x} - \mathbf{b})^{T} (\mathbf{A}\mathbf{x} - \mathbf{b})$$

$$= (\mathbf{A}\mathbf{x} - \mathbf{b})\mathbf{A}$$
$$= \mathbf{A}^T \mathbf{A}\mathbf{x} - \mathbf{A}^T \mathbf{b}$$

$$\mathbf{b} = \mathbf{A}$$

Sometimes solving
$$\mathbf{A}\mathbf{x} + \mathbf{b} = 0$$
 is implossible. One the board, derive:

Linear regression

What about harder problems?

Fitting higher order polynomials

$$\underbrace{\begin{pmatrix}
1 & x_1^1 & x_1^2 & \dots & x_1^m \\
1 & x_2^1 & x_2^2 & \dots & x_2^m \\
1 & x_3^1 & x_3^2 & \dots & x_3^m \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_n^1 & x_n^2 & \dots & x_n^m
\end{pmatrix}}_{\mathbf{A}} \underbrace{\begin{pmatrix}
c_1 \\ c_2 \\ \vdots \\ c_m
\end{pmatrix}}_{\mathbf{x}} = \underbrace{\begin{pmatrix}
p_1 \\ p_2 \\ \vdots \\ p_n
\end{pmatrix}}_{\mathbf{b}}.$$
(32)

As we saw for the linear regression $\mathbf{A}^{\dagger}\mathbf{b} = \mathbf{x}$ gives us the coefficients.

Overfitting

The figure below depicts the solution for a polynomial of 7th degree, that is m = 7.

Summary

- We saw how linear algebra lets us fit polynomials to curves.
- For the 7th degree polynomial the noise took over! What now?

Regularization

Motivation

- Is there a way to fix the previous example?
- To do so we start from a rather peculiar observation.

Eigenvalues and Eigen-Vectors

Multiply matrix **A** with vectors $\mathbf{x_1}$ and $\mathbf{x_2}$,

$$\mathbf{A} = \begin{pmatrix} 1 & 4 \\ 0 & 2 \end{pmatrix}, \mathbf{x}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}, \tag{33}$$

we observe

$$\mathbf{A}\mathbf{x}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{A}\mathbf{x}_2 = \begin{pmatrix} 8 \\ 2 \end{pmatrix} \tag{34}$$

Vector $\mathbf{x_1}$ has not changed! Vector $\mathbf{x_2}$ was multiplied by two. In other words,

$$Ax_1 = 1x_1, Ax_2 = 2x_2$$
 (35)

Eigenvalues and Eigenvectors

Eigenvectors turn multiplication with a matrix into multiplication with a number,

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}.\tag{36}$$

Subtracting λx leads to,

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0 \tag{37}$$

(38)

The interesting solutions are those were $\mathbf{x} \neq \mathbf{0}$, which means

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0 \tag{39}$$

Linear Algebra for Machine Learning in Python —Regularization

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors: Eigenvectors with a matrix into multiplication with a matrix with a number. $\mathbf{A}_{\mathbf{x}} = \lambda \mathbf{x}. \tag{26}$ Subtracting $\lambda \mathbf{k}$ leads to, $(\mathbf{A} - \lambda)\mathbf{x} = 0 \tag{27}$ (33) The interesting solutions are those were $\mathbf{x} \neq 0$, which means $\det(\mathbf{A} - \lambda \mathbf{l}) = 0 \tag{39}$

On the board, compute the eigenvalues and vectors for the initial example.

$$\mathbf{A} = \begin{pmatrix} 1 & 4 \\ 0 & 2 \end{pmatrix} \rightarrow \begin{vmatrix} 1 - \lambda & 4 \\ 0 & 2 - \lambda \end{vmatrix} = (1 - \lambda) * (2 - \lambda) - 0 * 4 = 0 \quad (40)$$

$$\rightarrow \lambda_1 = 1, \lambda_2 = 2. \quad (41)$$

$$\begin{pmatrix} 1 - 1 & 4 \\ 0 & 2 - 1 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ 0 & 1 \end{pmatrix} \mathbf{x}_1 = 0 \rightarrow \mathbf{x}_1 = \begin{pmatrix} p \\ 0 \end{pmatrix} \text{ for } p \in \mathbb{R} \quad (42)$$

$$\begin{pmatrix} 1 - 2 & 4 \\ 0 & 2 - 2 \end{pmatrix} = \begin{pmatrix} -1 & 4 \\ 0 & 0 \end{pmatrix} \mathbf{x}_1 = 0 \rightarrow \mathbf{x}_2 = \begin{pmatrix} q \\ \frac{1}{4}q \end{pmatrix} \text{ for } q \in \mathbb{R} \quad (43)$$

Determinant not useful numerically, software packages use QR-Method.

Eigenvalue-Decomposition [Str+09]

Eigenvalues let us look into the heart of a sqaure system-matrix $\mathbf{A} \in \mathbb{R}^{n,n}$.

$$\mathbf{A} = \mathbf{S} \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} \mathbf{S}^{-1} = \mathbf{S} \wedge \mathbf{S}^{-1}, \tag{44}$$

with $\mathbf{S} \in \mathbb{R}^{n,n}$ and $\Lambda \in \mathbb{C}^{n,n}$.

Singular-Value-Decomposition [Str+09]

What about a non-square matrix $\mathbf{A} \in \mathbb{R}^{n,m}$? Idea:

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{V} \begin{pmatrix} \sigma_1^2 & & \\ & \ddots & \\ & & \sigma_n^2 \end{pmatrix} \mathbf{V}^{-1}, \mathbf{A}\mathbf{A}^{\mathsf{T}} = \mathbf{U} \begin{pmatrix} \sigma_1^2 & & \\ & \ddots & \\ & & \sigma_n^2 \end{pmatrix} \mathbf{U}^{-1}. \tag{45}$$

Using the eigenvectors of the $\mathbf{A}^T\mathbf{A}$ and $\mathbf{A}\mathbf{A}^T$ we construct,

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}, \tag{46}$$

with $\mathbf{A} \in \mathbb{R}^{m,n}$, $\mathbf{U} \in \mathbb{R}^{m,m}$, $\Sigma \in \mathbb{R}^{m,n}$ and $\mathbf{V} \in \mathbb{R}^{n,n}$.

Singular values and matrix inversion [GK65]

$$\mathbf{A}^{\dagger} = \mathbf{V} \mathbf{\Sigma}^{\dagger} \mathbf{U}^{T} = \mathbf{V} \begin{pmatrix} \sigma_{1}^{-1} & & \\ & \ddots & \\ & & \sigma_{m}^{-1} \end{pmatrix} \mathbf{U}^{T}$$
(47)

Regularization via Singular Value Filtering

Originally we had a problem computing $\mathbf{A}^\dagger \mathbf{b} = \mathbf{x}.$ To solve it, we compute,

$$\mathbf{x}_{reg} = \sum_{i=1}^{n} f_i \frac{\mathbf{u}_i^T b}{\sigma_i} \mathbf{v_i}$$
 (48)

The filter factors are computed using $f_i = \sigma_i^2/(\sigma_i^2 + \epsilon)$. Singular values $\sigma_i < \epsilon$ are filtered. Expressing equation 48 using matrix notation:

$$\mathbf{x}_{reg} = \mathbf{VF} \begin{pmatrix} \sigma_1^{-1} & & & \\ & \ddots & & \\ & & \sigma_m^{-1} & \\ & & 0 \end{pmatrix} \mathbf{U}^T \mathbf{b}_{noise}$$
 (49)

with $\mathbf{A} \in \mathbb{R}^{m,n}$, $\mathbf{U} \in \mathbb{R}^{m,m}$, $\mathbf{V} \in \mathbb{R}^{n,n}$, $\mathbf{F} \in \mathbb{R}^{m,m}$, $\Sigma^{\dagger} \in \mathbb{R}^{n,m}$ and $\mathbf{b} \in \mathbb{R}^{n,1}$.

Regularized solution

Conclusion

- True scientists know what linear can do for them!
- Think about matrix shapes. If you are solving a problem, rule out all formulations where the shapes don't work.
- Regularization using the SVD is also known as Tikhonov regularization.

Literature

References

- [DFO20] Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for machine learning. Cambridge University Press, 2020.
- [GK65] Gene Golub and William Kahan. "Calculating the singular values and pseudo-inverse of a matrix." In: Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis 2.2 (1965), pp. 205–224.
- [Str+09] Gilbert Strang, Gilbert Strang, Gilbert Strang, and Gilbert Strang. Introduction to linear algebra. Vol. 4. Wellesley-Cambridge Press Wellesley, MA, 2009.