

Aprendizado de Máquina

Aula 3.2 - Medidas de avaliação (problemas binários)

Adriano Rivolli

rivolli@utfpr.edu.br

Especialização em Inteligência Artificial

Unive<mark>rsidade Tecnológica Federal do Paraná (UTFPR)</mark> Câmpus Cornélio Procópio Departamento de Computação

Conteúdo

- 1 Introdução
- 2 Métricas de avaliação
- 3 Curvas ROC e AUC

×

Introdução

Avaliação de modelos

- Etapa importante para mensurar o aprendizado
- Não existe um algoritmo perfeito
- Dados de treinamento, validação e teste
- As métricas enfatizam uma característica específica

Matriz de confusão

- Dada uma classe de interesse, a matriz de confusão identifica o seguinte:
 - Verdadeiro Positivo (TP)
 - Falso Positivo (FP)
 - ▶ Verdadeiro Negativo (TN)
 - ► Falso Negativo (FN)

Individual Number	1	2	3	4	5	6	7	8	9	10	11	12
Actual Classification	1	1	1	1	1	1	1	1	0	0	0	0
Predicted Classification	0	0	1	1	1	1	1	1	1	0	0	0
Result	FN	FN	TP	TP	TP	TP	TP	TP	FP	TN	TN	TN

Valores da matriz de confusão

		Predicted condition							
	Total population = P + N	Positive (PP)	Negative (PN)						
condition	Positive (P)	True positive (TP)	False negative (FN)						
Actual c	Negative (N)	False positive (FP)	True negative (TN)						

>

Exemplo de matriz de confusão

Individual Number	1	2	3	4	5	6	7	8	9	10	11	12
Actual Classification	1	1	1	1	1	1	1	1	0	0	0	0
Predicted Classification	0	0	1	1	1	1	1	1	1	0	0	0
Result	FN	FN	TP	TP	TP	TP	TP	TP	FP	TN	TN	TN

		Predicted condition						
	Total	Cancer	Non-cancer					
	8 + 4 = 12	7	5					
Actual condition	Cancer 8	6	2					
Actual c	Non-cancer	1	3					

×

Métricas de avaliação

Acurácia

- Calcula a taxa de acerto
- Não se preocupa com o tipo do erro
- Não é apropriado para dados desbalanceados

$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

Exemplo de acurácia

		Predicted condition					
	Total	Cancer	Non-cancer				
	8 + 4 = 12	7	5				
tual condition	Cancer 8	6	2				
Actual c	Non-cancer	1	3				

$$Acc = \frac{6+3}{12}$$
$$= 0.75$$

Precisão

- Fração das instâncias preditas como positivas que estão corretas
- Também chamado de *Positive Predicted value*
- Usado em cenários onde FP são prejudiciais:
 - Modelos cautelosos
 - Limiar da classificação é alto

$$Prec = \frac{TP}{TP + FP}$$

Exemplo de precisão

		Predicted condition						
	Total	Cancer	Non-cancer					
	8 + 4 = 12	7	5					
ual condition	Cancer 8	6	2					
Actual c	Non-cancer	1	3					

$$Prec = \frac{6}{6+1}$$

$$\approx 0.86$$

Revocação (recall)

- Fração das instâncias positivas que foram predicas corretamente
- Também chamado de *sensitivity* e *true positive rate*
- Usado em cenários onde FN são prejudiciais:
 - Modelos audaciosos (aceita errar para não perder algo)
 - Limiar da classificação é baixo

$$Rec = \frac{TP}{TP + FN}$$

Exemplo de revocação

		Predicted condition					
	Total	Cancer	Non-cancer				
	8 + 4 = 12	7	5				
tual condition	Cancer 8	6	2				
Actual c	Non-cancer	1	3				

$$Rec = \frac{6}{6+2}$$
$$= 0.75$$

Precisão x Revocação

Quantos elementos selecionados salo relevantes?

Quantos elementos relevantes foram selecionados?

Precisão =

Revocação =

Elementos selecionados pela busca

Curva Precisão x Revocação

Medida F1

- Média Harmônica entre precisão e revocação
- Busca um equilíbrio entre as 2 medidas

$$\textit{F1} = 2 \frac{\textit{precision} \cdot \textit{recall}}{\textit{precision} + \textit{recall}}$$

$$=\frac{2TP}{2TP+FP+FN}$$

Exemplo de F1

		Predicted condition						
	Total	Cancer	Non-cancer					
	8 + 4 = 12	7	5					
condition	Cancer 8	6	2					
Actual c	Non-cancer	1	3					

$$F1 = \frac{12}{12 + 1 + 2}$$
$$= 0.8$$

:

Curvas ROC e AUC

Receiver Operating Characteristic (ROC)

- Mostra o desempenho de um modelo de classificação considerando todos os diferentes limiares de classificação
- O ROC possui 2 parâmetros:
 - ► Taxa de verdadeiro positivo: $TPR = \frac{TP}{TP+FN}$
 - ► Taxa de falso positivo: $FPR = \frac{FP}{FP+TN}$
- Uma curva ROC traça um gráfico de TPR e FPR para os diferentes limiares de classificação

Curva ROC

Figura: Exemplo da curva ROC

Fonte: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

Area Under the ROC Curve (AUC)

- Uma simplificação da análise ROC
- Requer a predição de probabilidades
- O valor 1 indica uma classificação perfeita
- Probabilidade de o modelo classificar um exemplo positivo aleatório com uma classificação mais elevada do que um exemplo negativo aleatório

AUC

