Hatırlatma

Eğiticisiz Öğrenme

· Pekistirmeli Öğrenme (reinforcement learning)

Öğrenme işleminin her adımında istenilen yanıtı sağlayan bir eğitici yok

Eğitilen sistem, sonuçta elde edilecek yanıta erişmek için gerekli davranışı eleştiriyi gözönünde tutarak bulmak bulmak zorunda

Psikoloji açısından Pekiştirmeli öğrenme

- Biz kararlarımızı nasıl veriyoruz?
- Verdiğimiz kararlar daha sonraki davranışlarımızı nasıl etkiliyor?
- Verdiğimiz kararların sonuçları öğrenmemizi sağlıyor mu?

<u>Şartlanma-Pekiştirmeli öğrenme</u>

Klasik Şartlanma

Throndike'nin Yasası:
$$U_1 \longrightarrow Te_1$$
 $U_1 \longrightarrow Te_1$ $U_2 \longrightarrow Te_2$ $U_2 \longrightarrow Te_2$

Etkin Şartlanma

Psikolojide pekiştirmeli öğrenme

• Of <u>several responses made to the same situation</u>, those which are accompanied or closely followed by <u>satisfaction</u> to the animal will, other things being equal, be more firmly connected with the situation, so that, when <u>it recurs</u>, they will be more likely to <u>recur</u>; those which are accompanied or closely followed by <u>discomfort</u> to the animal will, other things being equal, have their connections with that situation weakened, so that, when <u>it recurs</u>, they will be less likely to occur. The greater the satisfaction or discomfort, the greater the strengthening or weakening of the bond. (Thorndike, 1911, p. 244)

Psikolojide pekiştirmeli öğrenme

- Throndike (1898): uyaran-yanıt ilişkilendirmesi (stimulus-response association)
- Skinner (1938): davranışsal düzenleme (behavioral regulation)

Nörobilim açısından Pekiştirmeli öğrenme

- Beyindeki hangi bölgeler yer alıyor?
- Bu bölgelerin birbirleriyle bağlantıları neler?
- Bağlantıları etkileyen mekanizmalar neler?

Makina öğrenmesinde pekiştirmeli öğrenme (Machine learning)

- Ortamdaki belirsizliğe rağmen bir amaca erişmek için aktif karar veren bir aracının ortamla ilişkisi inceleniyor.
- Aracı davranışlarını seçerken yararlanma-arama ikilemi ile yüzleşir.
 (exploit-explore)
- Pekiştirmeli öğrenme sistemi:

π yaklaşım (policy)

r ödül fonksiyonu (reward function)

 Q^{π} , V^{π} deger fonksiyonu (value function)

s ortam modeli

9

Makina öğrenmesinde pekiştirmeli öğrenme

Makina öğrenmesinde pekiştirmeli öğrenme

ortam modeli : Markov karar işlevi (Markov Decision Process (MDP))

Genel

$$\Pr\left\{s_{t+1} = s', r_{t+1} = r \middle| s_t, a_t, r_t, s_{t-1}, a_{t-1}, r_{t-1}, \dots, s_0, a_0, r_0\right\}$$

Markov

$$\Pr\{s_{t+1} = s', r_{t+1} = r | s_t, a_t\}$$

$$P_{ss'}^a = \Pr \left\{ s_{t+1} = s', r_{t+1} = r \middle| s_t, a_t \right\} \qquad \text{Durum geçiş}$$

$$R^a_{ss'} = \Pr \{ r_{t+1} | s_t = s, a_t = a, s_{t+1} = s' \}$$
 Yanıt

Daha öncede benzerini görmüstük, nerede? Durum denklemleri

Makina öğrenmesinde pekiştirmeli öğrenme

10

Markov karar işlevi (MDP) ele alındığında değer fonksiyonları ne oluyor?

$$V^{\pi}(s) = E_{\pi} \left\{ R_{t} \middle| s_{t} = s \right\}$$

$$= E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \middle| s_{t} = s \right\}$$

$$\begin{split} Q^{\pi}(s,a) &= E_{\pi} \left\{ R_{t} \middle| s_{t} = s, \ a_{t} = a \right\} \\ &= E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \middle| s_{t} = s, \ a_{t} = a \right\} \end{split}$$

Bu değerler, deneyimlere dayalı olarak belirlenebilir. Monte Carlo Metodu
R.S. Sutton, A.G. Barto, "Reinforcement Learning- An Introduction, MIT Press, 1999

Bir pekiştirmeli öğrenme metodu: Monte Carlo

• ortam modeli: deneyim

gerçek deneyim

(on-line)

benzeşim deneyim

(simulated)

yaklaşımla ve yaklaşım ötesinde

(on-policy) (off-policy)

13

Bir pekiştirmeli öğrenme metodu: Zamansal fark

- Monte Carlo metoduna benziyor: ortamın tam modeline gereksinimi yok
- Dinamik programlamaya benziyor: en son çıktıyı
 beklemeden güncelleme yapabiliyor

Yaklaşımla: Sarsa

Yaklaşım ötesinde: Q-öğrenme (Q-learning)

· Aktör-Kritik

Optimal değerleri belirleme:

$$V^{*}(s) = \max_{a \in A(s)} Q^{\pi^{*}}(s, a)$$

$$= \max_{a} E_{\pi^{*}} \left\{ R_{t} \middle| s_{t} = s, a_{t} = a \right\}$$

$$= \max_{a} E_{\pi^{*}} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \middle| s_{t} = s, a_{t} = a \right\}$$

$$= \max_{a} E_{\pi^{*}} \left\{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} \middle| s_{t} = s, a_{t} = a \right\}$$

$$= \max_{a} E_{\pi^{*}} \left\{ r_{t+1} + \gamma V^{*}(s_{t+1}) \middle| s_{t} = s, a_{t} = a \right\}$$

$$= \max_{a} \sum_{s'} P_{ss'}^{a} \left[R_{ss'}^{a} + \gamma V^{*}(s') \right]$$

$$Q^{*}(s, a) = E \left\{ r_{t+1} + \gamma \max_{a'} Q^{*}(s_{t+1}, a') \middle| s_{t} = s, a_{t} = a \right\}$$

$$= \sum_{s'} P_{ss'}^{a} \left[R_{ss'}^{a} + \gamma \max_{a'} Q^{*}(s', a') \right]$$
14

Aktör-kritik için bir uygulama

$$V(t) = w^{T}(t)s(t)$$
 Değer fonksiyonu

$$a(t) = f\left[\hat{w}^T(t)s(t) + n(t)\right]$$
 Davranış

$$\delta(t) = r(t+1) + \gamma V(t+1) - V(t) \quad \text{Hata}$$

$$w(t+1) = w(t) + \eta \delta(t)s(t) \qquad \hat{w}(t+1) = \hat{w}(t) + \alpha \delta(t)e(t)$$

$$e(t+1) = \lambda e(t) + (1-\lambda)a(t)s(t)$$

Pekiştirmeli öğrenmeye ilişkin biliş bilimde bir uygulama

Bilis bilim ne ile ilgileniyor?

• Davranışsal: girişe karşılık gelen çıkış ne?

• Fonksiyonel: çıkış nasıl oluşuyor?

• Fiziksel: çıkışı ne üretiyor?

<u>Pekiştirmeli öğrenme için önerilen bazı</u> <u>hesaplamalı modeller</u>

- Barto & Sutton & Anderson (1983)
 makina öğrenmesi
 TD (temporal difference)
- Schultz & Dayan & Montague (1997)
 Kritik, TD
 Kritik: VTA
- Suri & Scultz (1998)

Aktör-Kritik, TD

Kritik: nigrostriatal dopamin nöronları

Aktör: Striatum

<u>Pekiştirmeli öğrenme için geliştirilecek bir</u> hesaplamalı modelde nelere dikkat edilmeli?

Davranışsal: uyaran → yanıt yanıt → ödül/ceza ödül → yararlan (exploit) ceza → ara (explore)

Fonksiyonel: geçmişi değerlendir beklenti oluştur

Fiziksel: nöral yapıların/bağlantıların özelikleri

Barto , A.G. IEEE, Syst. Man&Cyber 1983 Geleckfreib delikik Grigorine $V(t) = E\left\{r(t) + \gamma r(t+1) + \gamma^2 r(t+2) + \ldots\right\}$ $V(t+1) = E\left\{r(t+1) + \gamma r(t+2) + \gamma^2 r(t+3) + \ldots\right\}$ $V(t) = E\left\{r(t) + \gamma r(t+1) + \gamma r(t+2) + \gamma^2 r(t+3) + \ldots\right\}$ $V(t) = E\left\{r(t) + \gamma r(t+1) + \gamma r(t+2) + \ldots\right\}$ $V(t) = E\left\{r(t) + \gamma r(t+1) + \gamma r(t+2) + \ldots\right\}$

 $\delta(t) = r(t) + \gamma V(t+1) - V(t)$ \leftarrow Hata

Bir pekistirmeli öğrenme metodu: Zamansal fark

17

18

Ardışıl eşleştirme ödevi

• Amaç: Bir dizi öğrenmek
$$A \longrightarrow 1$$

B $\longrightarrow 2$
C $\longrightarrow 3$

• Yöntem: 1)
$$U_1 = C$$
 $Te_1 = 3$ $U_1 \longrightarrow Te_1$ ödül 2) $U_2 = B$ $Te_2 = 2$ $U_2 \longrightarrow Te_2$ $U_1 \longrightarrow Te_1$ ödül 3) $U_3 = A$ $Te_3 = 1$ $U_3 \longrightarrow Te_3$ $U_2 \longrightarrow Te_2$ $U_1 \longrightarrow Te_1$ ödül $U_2 \longrightarrow Te_2$ $U_1 \longrightarrow Te_1$ ödül

 $\begin{array}{c} \ddot{\text{odül r}} \\ \ddot{\text{odül r}} \\ & V(t) = w_p I \\ & \delta(t) = r(t) + \gamma V(t+1) - V(t) \\ & k \text{ritik} \\ & &$

21

23

Davranış seçici sistem

$$p_d(k+1) = f(\lambda p_d(k) + m_d(k) + w_{cs}I)$$

$$m_d(k+1) = f(p_d(k) - d_d(k))$$

$$r_d(k+1) = w_r f(p_d(k))$$

$$n_d(k+1) = f(p_d(k))$$

$$d_d(k+1) = f(-r_d(k) + w_{diff}n_d(k))$$

$$f(x) = 0.5 \tanh(ax - \beta)$$

$$\mathcal{W}_r$$
 ve \mathcal{W}_{CS} öğrenme ile değiştirilecek

Güncelleme terimleri

$$w_{r}(n+1) = w_{r}(n) + \eta_{w_{r}} . \delta(n) . w_{r} . f(p_{d}(k))$$

$$w_{v}(n+1) = w_{v}(n) + \eta_{w_{v}} . \delta(n) I^{T}(n-1)$$

$$w_{cs}(n+1) = w_{cs}(n) + \eta_{w_{cs}} . \delta(n) a(n-1) I^{T}(n-1)$$

22

24

<u>Dinamik sistemin davranışı</u>

$$w_r = \begin{bmatrix} 1.25 & 0 \\ 0 & 1.25 \end{bmatrix}$$

<u>Dinamik sistemin davranışı</u>

$$w_r = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

26

25

<u>Dinamik sistemin davranışı</u>

$$w_r = \begin{bmatrix} 0.5 & 0 \\ 0 & 1 \end{bmatrix}$$

27

<u>Dinamik sistemin davranışı</u>

$$w_r = \begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix}$$

28