Computer simulations and Monte Carlo Methods (chapter 5)

Assume that we can simulate $U \sim \text{Uniform}(0,1)$. Recall that:

Every programming language has a random number generator that simulates a U. In R, this function is \mathtt{runif} (). Subsequent calls to this function will give draws that are "independent" for all practical purposes.

Simulating from discrete distributions

Simulating $X \sim \mathbf{Bernoulli}(p)$:

Recall: If X Bernoulli(p), P(X = 1) = p, P(X = 0) = 1 - p.

- 1. Generate U.
- 2. If $U \leq p$; set X = 1, else set X = 0.

Verification:

Simulating $X \sim f(x)$, arbitrary discrete distribution:

Suppose X takes values $x_0, x_1, ...,$ with probabilities $p_0, p_1, ...,$ where $p_i = P(X = x_i)$ and $\sum_i p_i = 1$.

1. Divide the interval [0,1] into subintervals as shown below.

- 2. Generate U.
- 3. If U falls in subinterval i, take $X = x_i$.

Verification:

Simulating from continuous distributions

Result: If X is a continuous rv with cdf F(x), then U = F(X) follows Uniform(0, 1) distribution.

Inverse transform method: To simulate a X,

- 1. Generate U.
- 2. Set U = F(X)
- 3. Solve for X (i.e., invert the cdf).

Often the equation cannot be solved explicitly or efficiently. Alternatives are available.

Simulating from Exponential(λ) distribution:

Recall: If $X \sim \text{Exponential}(\lambda)$, $F(x) = 1 - \exp(-\lambda x)$.

Solving problems by Monte Carlo methods

Estimating
$$\mu = E(X)$$
 and $\sigma^2 = var(X) = E(X - \mu)^2$:

Simulate a large number (N) of independent draws from the distribution of X, say, X_1, X_2, \ldots, X_N

MC estimator of μ :

MC estimator of E[g(X)] where g is a given function:

MC estimator of σ^2 :

Estimating an integral $I = \int_a^b g(x)dx$:

Estimating $p = P(X \in A)$ for a given region A:

Simulate a large number (N) of independent draws from the distribution of X, say, X_1, X_2, \ldots, X_N

Define Y_1, \ldots, Y_N as:

MC estimator of p:

Properties of \hat{p} :

Accuracy of a Monte Carlo study:

Error in estimation:

Specify a small margin of error ϵ and a small probability α . Want N such that

$$P(|\hat{p} - p| > \epsilon) \le \alpha \tag{1}$$

or equivalently

- Error exceeds ϵ with probability α or less
- Error is ϵ or less with probability more than 1α .

To derive a formula for N, suppose $Z \sim N(0,1)$ and $z_{\alpha/2}$ is such that $P(Z > z_{\alpha/2}) = \alpha/2$.

From the symmetry,

$$P(|Z| > z_{\alpha/2}) = \tag{2}$$

Now, let's derive an expression for $P(|\hat{p} - p| > \epsilon)$:

Comparing (2) and (3), and noticing that P(|Z| > x) is decreasing in x, we can conclude that (1) approximately holds if

A practical problem:

Alternative 1:

Alternative 2:

Note: This formula is valid only if N is large.

Ex: Suppose the desired accuracy is $(\epsilon, \alpha) = (0.03, 0.05)$. N = ?