#### **LOGO**

### Presentation Title

Author · 11. November 2017

Institute · University

Overview

- 1. Topological phases
- 2. 1D p-wave superconductor

# Topological Phases

#### **LOGO**



Conducting edge channels  $\longleftrightarrow$  Non-trivial bandstructure

## **Topological Phases**

#### LOGO



Conducting edge channels  $\longleftrightarrow$  Non-trivial bandstructure

QAHE bulk Hamiltonian 
$$\widehat{\mathcal{H}}(\mathbf{k}) = \mathbf{g}(\mathbf{k}) \cdot \mathbf{\sigma}$$
 
$$\mathbf{g}(k_x, k_y) = (\sin k_x, \sin k_y, \cos k_x + \cos k_y - M)^\mathsf{T}$$

# Topological Phases

### LOGO





Conducting edge channels  $\longleftrightarrow$  Non-trivial bandstructure

QAHE bulk Hamiltonian 
$$\widehat{\mathcal{H}}(\mathbf{k}) = \mathbf{g}(\mathbf{k}) \cdot \mathbf{\sigma}$$

$$g(k_x, k_y) = (\sin k_x, \sin k_y, \cos k_x + \cos k_y - M)^{\mathsf{T}}$$



$$M = 3$$

# 1D p-wave-SC

### **LOGO**



Lattice 
$$\mathcal{H} = \sum_{i=1}^{c_1} \left[ t c_i^{\dagger} c_{i+1} + \Delta c_i c_{i+1} + \text{H.c.} \right] - \mu \sum_{i=1}^{n} c_i^{\dagger} c_i$$

### 1D p-wave-SC

#### **LOGO**





$$\mathcal{H} = \sum_{i=1}^{c_3} \left[ t c_i^{\dagger} c_{i+1} + \Delta c_i c_{i+1} + \text{H.c.} \right] - \mu \sum_{i=1}^{n} c_i^{\dagger} c_i$$

Majorana operators 
$$\gamma_j = \frac{c_j + c_j^{\dagger}}{2}$$
 
$$\gamma_i' = \frac{c_j - c_j^{\dagger}}{2}$$

Lattice

# 1D p-wave-SC

### **LOGO**

