Gravitation-1

1 S# Electro Statio -> Analygo	ons -> gravitation
2)# { - Newton's law of	{
3 gravitation 32. gravitational fie	0_1 \
S. gravituhonal fe	(by) gravitale
23. der. due to gra-	The state of the s

Newton's law of gravitation

$$|F_{21}| = |F_{12}|$$

$$\begin{cases} F_{12} = F_{21} & \alpha & m_1 m_2 \\ F_{12} = F_{21} & \alpha & \frac{1}{\delta^2} & Universal \\ gravitaling \\ F_{12} = F_{21} = \frac{m_1 m_2}{\delta^2} & \text{control} \\ \frac{m_1 m_2}{\delta^2} & \text{control} \end{cases}$$

$$\begin{cases} F_{12} = F_{21} = \frac{m_1 m_2}{\delta^2} & \text{control} \\ \frac{m_1 m_2}{\delta^2} & \text{control} \end{cases}$$

Digration' a

Force 2 due to 1 {

$$F_{21} = 2 \frac{Gm^2}{n^2}$$
 (-1)

Grantational force due to System of patrile

Principle of System of patrile

Superposition

A grantation of Fred = $\int_{2F^2+2F^26560}^{2F^2+2F^26560}$

= $\int_{2F^2+F^2}^{2F^2+2F^26560}$

= $\int_{2F^2+F^2}^{2F^2+2F^26560}$

W 9 # Force on point ways due to optended budy: dr 2 x (dF = G m dm = 2) Direction to

as force on m due

every smell segment

is come have

we can directly

 $f_{not} = 4 \int \frac{M(\frac{M}{L}dr)}{r}$

Fred - Gmm Sdn

 $= \frac{Cmm}{L} \left[-\frac{1}{n} \right]_{x}^{x+L}$

 $= -\frac{GmM}{2} \left(\frac{1}{2+1} - \frac{1}{3} \right)$ (--- M uniform a) if we keep a point mass (ii) Ring net ferce cap by din find net force entry fret = o du Ox Lety Point run dre to Symmetral budy due to

Find =
$$\int dF650$$
 $dF = \frac{dmm}{\sqrt{F^2}}$
 $= \frac{dmm}{(F^2 + n^2)} \frac{dm}{\sqrt{F^2 + n^2}}$
 $= \frac{dmn}{(F^2 + n^2)^{3/2}} \frac{dm}{dm}$
 $= \frac{dm^2n}{\sqrt{m^2n}}$

(iii) Hollow Sphie? F(2) = { (M, F) zero on point only w w "if body is Uniform and 3D Spherical Bedy (Hellow or Solid) (are I! if point objet is outside sprea (Hollow ox Solid)
then we can assure all more of Hollow or Sold Sphe at it com and we can directly me the

ib point object 15 ins de somere (Hollow ex Solid) then we draw a Spherical bondry endosing that point and calculate en closed many and assure that mans at 1H (entre of news & then we can directly we then the

Acceleration Due to gravity. h from swefres wo (i) above suface m (ii) on the surface F= GmH = mg1 / 1/2 - 1/2 $g = \frac{GM}{R^2} = 9.81$ $g = \frac{GM}{R^2} = 9.81$ $g = \frac{GM}{R^2} = \frac{9.81}{Mls^3}$ (R+n) = (R+n) = M

6 y/ M (P-4)

13

$$g'' = \frac{GM}{R^2} \left[1 - \frac{G}{R} \right]$$

$$g'' = g \left(1 - \frac{L}{R} \right)$$

$$M = \frac{GM}{R^2} \left[1 - \frac{L}{R} \right]$$

gravitational bield: " gravitation field at my point due to my object is experience by a point winner test point" (i g hito gravitational j

geff = 5 g2 f z 2 m4 - 29 x 62 650

geff = 1 g² + Rlaslony - 29 Kasour geff = Jg2 + p2652004 - 2gR6520w2

According to our assurption of a infuse more from Pole to equitar two 015 going to decreen from 50 20 (i) 9 pole 3 0 = 90 = (9eff 9

11 about (A) dem nove comet value' A a 1

Gravitational Potontial Every Slowly - (04)+B U(2) = mi disland

Method 1:
$$(W Fert)_{\infty} \rightarrow A Slowly = (\Delta u)_{\infty} \rightarrow A$$

$$(S MINZ dr = (\Delta u)_{\infty} \rightarrow A$$

$$(G MINZ dr = UA - (U\infty)$$

$$\frac{G_{m_1 m_2}}{-G_{m_1 m_2}} \left[-\frac{1}{7} \right]_{\infty}^{\infty}$$

$$-G_{m_1 m_2} \left[-\frac{1}{8} \right]_{\infty}^{\infty} = \frac{U_A - U_A}{V_A}$$

$$-G_{m_1 m_2} \left[-\frac{1}{7} \right]_{\infty}^{\infty}$$

$$\frac{U_A(r) - G_{m_1 m_2}}{V_A(r) - V_A}$$

$$\frac{U_A(r) - G_{m_1 m_2}}{V_A(r) - V_A}$$

$$\int_{0}^{A} \frac{G \min_{n \geq 2} dn}{n^{2}} dn = \int_{0}^{A} \frac{G \min_{n \geq 2} dn}{n^{2}} dn = \int_{0}^{A} \frac{G \min_{n \geq 2} dn}{n^{2}} dn$$

$$\int_{0}^{A} \frac{G \min_{n \geq 2} dn}{n^{2}} dn = \int_{0}^{A} \frac{G \min_{n \geq 2} dn}{n^{2}} dn$$

$$\int_{0}^{A} \frac{G \min_{n \geq 2} dn}{n^{2}} dn = \int_{0}^{A} \frac{G \min_{n \geq 2} dn}{n^{2}} dn$$

$$U(r) = \frac{G m^2 M}{r}$$

$$U(r) = \frac{G m M}{r} = \frac{G m M}{a} = \frac{G m M}{a} = \frac{G m M}{a}$$

$$= \frac{G m M}{a} = \frac{G m M}{a} = \frac{G m M}{a}$$

$$= \frac{G m M}{a} = \frac{G m M}{a} = \frac{G m M}{a}$$

$$= \frac{G m M}{a} = \frac{G m M}{a} = \frac{G m M}{a}$$

Po toul al 0 (3m (4h) _ n (3n) 9 m (um) U(2) V24 CA 01 en 3n Gzmm 4~ 01 J 2 4 -

Hone west?