22 de julho de 2022

Lista Espaços Métricos

Denotamos $\mathbb{R}_0^+ = [0, +\infty)$, $R_+ = (0, \infty)$, $Q_+ = \mathbb{R}_+ \cap \mathbb{Q}$ e $Z_+ = \mathbb{Z} \cap \mathbb{R}_+$. Seja (\mathcal{X}, d) um espaco métrico.

Exercício 1 Prove os exercícios dados em sala de aula.

Exercício 2 Dados $x, y, z \in \mathcal{X}$, prove que

$$d(x,z) > |d(x,y) - d(y,z)|.$$

E que se d(x, z) > d(z, y), então $x \neq y$.

Demonstração. Tome $x, y, z \in \mathcal{X}$ e note que, pela desigualdade triangular

$$d(x,y) \le d(x,z) + d(z,y) = d(x,z) + d(y,z) \implies d(x,z) \ge d(x,y) - d(y,z).$$

Além disso,

$$d(y,z) \le d(y,x) + d(x,z) = d(x,y) + d(x,z) \implies d(x,z) \ge d(y,z) - d(x,y).$$

Portanto, vale que $d(x,z) \ge |d(x,y) - d(y,z)|$. No mesmo sentido,

$$d(x,y) > |d(x,z) - d(z,y)| > 0 \implies x \neq y$$

o que encerra a demonstração.

Exercício 3 Dados n pontos x_1, \ldots, x_n em \mathcal{X} , prove que

$$d(x_1, x_n) \le d(x_1, x_2) + \dots + d(x_{n-1}, x_n).$$

Demonstração. Vamos provar por indução em n. Para n=2 esse resultado é trivial. Para n=3, é consequência da desigualdade triangular. Suponha que valha para $n\geq 3$ pontos. Assim,

$$d(x_1, x_{n+1}) \le d(x_1, x_n) + d(x_n, x_{n+1}) \le d(x_1, x_2) + \dots + d(x_{n-1}, x_n) + d(x_n, x_{n+1}),$$

o que encerra a demonstração por indução.

Exercício 4 Prove que (\mathcal{X}, d) é um espaço métrico para os seguintes casos:

(a)
$$\mathcal{X} = \mathbb{R}^n$$
 e $d(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$ para todo $x, y \in \mathcal{X}$.

(b) $\mathcal{X} = C[a, b]$ (conjunto das funções contínuas $f : [a, b] \to \mathbb{R}$) e

$$d(f,g) = \max_{x \in [a,b]} |f(x) - g(x)|$$

para $f, g \in \mathcal{X}$.

(c) \mathcal{X} é um conjunto qualquer e

$$d(x,y) = \begin{cases} 1 & \text{se } x \neq y \\ 0 & \text{se } x = y \end{cases}$$

(d) $\mathcal{X} = l_2$ é o espaço das sequências $\mathbf{x} = (x_1, x_2, \dots, x_n, \dots)$ de números reais que satisfazem $\sum_{n=1}^{+\infty} x_n < +\infty$ e a distância é dada pela fórmula $d(x, y) = \left(\sum_{i=1}^{+\infty} (x_i - y_i)^2\right)^{1/2}$.

Solução.

(a) É evidente que d está bem definida em $\mathcal{X} \times \mathcal{X}$. Os axiomas (1) e (2) de métrica são trivialmente satisfeitos e nos resta demonstrar o axioma (3). Tome $x, y, z \in \mathcal{X}$. Por simplicidade, denote ||x - y|| = d(x, y), ||x|| = ||x - 0|| e $\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$. Defina a = x - z e b = z - y. Pela desigualdade de Cauchy-Schwarz,

$$|\langle a, b \rangle| \le ||a|| ||b|| \implies ||a||^2 + 2\langle a, b \rangle + ||b||^2 \le ||a||^2 + 2||a|| ||b|| + ||b||^2$$

e, então,

$$\sum_{i=1}^{n} a_i^2 + 2a_i b_i + b_i^2 \le (||a|| + ||b||)^2 \implies ||a+b||^2 \le (||a|| + ||b||)^2.$$

Da última desigualdade, observamos que

$$||x - y|| < ||x - z|| + ||z - y||$$

e d satisfaz o axioma (3), o que o define como métrica.

- (b) Nesse item, precisamos primeiro verificar que d está bem definida. Pelo Teorema de Weierstrass, a função $|f(\cdot) g(\cdot)|$ assume máximo em [a, b]. Portanto d está bem definido. Note que se d(f, g) = 0, então $0 \le |f(x) g(x)| \le 0, \forall x \in [a, b]$, o que implica que $f \equiv g$ nesse intervalo. Assim o axioma (1) é satisfeito. Além disso, o axioma (2) também é satisfeito. Por fim, o axioma é satisfeito, pois a métrica dada pelo módulo nos reais é de fato uma métrica.
- (c) Os axiomas (1) e (2) são trivialmente satisfeitos. Para verificar o axioma (3), tome $x, y, z \in \mathcal{X}$. Se x = y, temos que a desigualdade triangular é trivialmente satisfeita. Agora, se $x \neq y$, temos que $z \neq x$ ou $z \neq y$, pois não pode ser iguais a ambos simultaneamente, logo

$$d(x,z) + d(z,y) \ge 1 = d(x,y),$$

o que evidencia que d é de fato uma métrica.

(d) O primeiro passo é verificar que d existe, isto é, a série

$$\sum_{i=1}^{+\infty} (x_i - y_i)^2$$

é convergente para quaisquer $x, y \in \mathcal{X}$. Observe que para todo $n \in \mathbb{N}$,

$$a_n := \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{1/2} \le \left(\sum_{i=1}^n x_i^2\right)^{1/2} + \left(\sum_{i=1}^n y_i^2\right)^{1/2} \le L,\tag{1}$$

para algum L > 0, dado que a série para x e y são limitadas. A primeira desigualdade doi demonstrada no item (a). Como $\{a_n\}_{n\in\mathbb{N}}$ é uma sequência monótona não decrescente e limitada, ela é convergente. Com isso, d está bem definida. Axiomas (1) e (2) são trivialmente satisfeitos. Para o axioma (3), tome $a, b, c \in \mathcal{X}$. Defina x = b - a, y = b - c e x - y = c - a. Pela desigualdade introduzida na Equação (1),

$$\left(\sum_{i=1}^{n} (c_i - a_i)^2\right)^{1/2} \le \left(\sum_{i=1}^{n} (b_i - a_i)^2\right)^{1/2} + \left(\sum_{i=1}^{n} (b_i - c_i)^2\right)^{1/2}$$

Fazendo $n \to \infty$, vemos que $d(a,c) \le d(a,b) + d(b,c)$, o que mostra a desigualdade triangular. Com isso d é métrica.

Exercício 5 Mostre que se d é uma métrica, as funções 2d e d/(1+d) também são métricas. Além do mais, d^2 é uma métrica?

Solução. Se d é métrica, tanto 2d quando d/(1+d) estão bem definidas (é claro que 1+d>0) e satisfazem os axiomas (1) e (2) trivialmente, visto que d satisfaz. Basta verificar o axioma (3). Tome $x,y,z\in\mathcal{X}$. Assim

$$\begin{split} 2d(x,y) &\leq 2(d(x,y)+d(y,z)) = 2d(x,y)+2d(y,z) \\ \frac{d(x,y)}{1+d(x,y)} &= \left(d(x,y)^{-1}+1\right)^{-1} \leq \left((d(x,z)+d(z,y))^{-1}+1\right)^{-1} = \frac{d(x,z)+d(z,y)}{1+d(x,z)+d(z,y)} \\ &= \frac{d(x,z)}{1+d(x,z)+d(z,y)} + \frac{d(z,y)}{1+d(x,z)+d(z,y)} \leq \frac{d(x,z)}{1+d(x,z)} + \frac{d(z,y)}{1+d(z,y)}, \end{split}$$

o que mostra que tanto 2d quanto d/(1+d) satisfazem o axioma (3) e, por conseguinte, são métricas. Todavia, vamos ver que d^2 não é métrica necessariamente. Tome $\mathcal{X}=\mathbb{R}$ e d=|x-y|. Tome x=0,y=1 e z=2. Então $d^2(x,z)=4$, $d^2(x,y)=1$ e $d^2(y,z)=1$, mas 4>2, o que mostra que d^2 não satisfaz a desigualdade triangular.

Exercício 6 Seja $\varphi: \mathbb{R}_0^+ \longrightarrow \mathbb{R}_0^+$ uma função crescente com $\varphi(0) = 0$ e subaditiva, isto é, para todo $t, s \in \mathbb{R}_0^+$, vale que $\varphi(t+s) \leq \varphi(t) + \varphi(s)$. Se (M,d) é um espaço métrico, mostre que

$$d': M \times M \to \mathbb{R}^+$$
$$(x, y) \mapsto d'(x, y) = \varphi(d(x, y))$$

é uma métrica sobre M.

Demonstração. Para isso, basta verificar que d' satisfaz as propriedades de métrica. Note que d' esá bem definida, pois $d(x, y) \ge 0$ e, portanto, pertence ao domínio de φ .

- (i) $d'(x,y) = \varphi(d(x,y)) \ge 0$ pela definição de φ . Se d'(x,y) = 0, temos que $\varphi(d(x,y)) = 0$ e, como φ é crescente, d(x,y) = 0 que implica x = y. Agora, se x = y, vale que $d'(x,y) = \varphi(0) = 0$.
- (ii) d'(x,y) = d'(y,x), pois d(x,y) = d(y,x) e φ é uma função.
- (iii) Sejam $x, y, z \in M$. Como d'é métrica e φ é crescente e subaditiva,

$$d'(x,y) \le \varphi(d(x,z) + d(z,y)) \le \varphi(d(x,z)) + \varphi(d(z,y)) = d'(x,z) + d'(z,y),$$

Por (i), (ii) e (iii), conclui-se que d' é métrica.

Exercício 7 Determine se as seguintes funções são métricas em \mathbb{R} , para $s, t \in \mathbb{R}$,

- (a) $\varphi_1(t,s) = \sqrt{|t-s|}$
- (b) $\varphi_2(t,s) = |t^2 s^2|$
- (c) $\varphi_3(t,s) = |t 2s|$

Solução.

- (a) φ_1 é métrica. Axiomas (1) e (2) são trivialmente satisfeitos. Para o axioma (3), veja que $|a-b| \leq |a-c| + |c-b| \leq |a-c| + |c-b| + 2\sqrt{|a-c||c-b|} = (|a-c| + |c-b|)^2$ e, portanto, ele é satisfeito.
- (b) φ_2 não é métrica. Ele viola o axioma (1), pois $\varphi(t,-t)=|t^2-t^2|=0.$
- (c) φ_3 não é métrica. Ele viola o axioma (1) e (2) trivialmente.

Exercício 8 Mostre que um conjunto $A \subseteq \mathbb{R}$ é aberto se, e somente se, pode ser escrito como a união enumerável de intervalos abertos disjuntos. *Dica: que conjunto é denso nos reais e enumerável?*

Demonstração. Seja A um conjunto aberto. Se A é vazio, então o resultado é trivial. Caso contrário, tome $x \in A$. Por definição, existe r > 0 tal que $B_r(x) \subseteq A$. Como \mathbb{Q} é denso nos reais, existem racionais $q_1 \in (x, x+r)$ e $q_2 \in (x-r, x)$. Defina $I_x = (q_1, q_2)$. Está claro que $A = \bigcup_{x \in A} I_x$. Note que $\mathcal{A} = \{(q_1, q_2) : q_1, q_2 \in \mathbb{Q}, q_1 < q_2\}$ é enumerável, pois é subconjunto de \mathbb{Q}^2 . Assim $\{I_x = (q_1^x, q_2^x) : x \in A\} \subseteq \mathcal{A}$ é enumerável. Portanto, escrevemos A como uma união enumerável de intervalos abertos.

Defina agora a seguinte relação: $I_x \sim I_y$ se existe uma cadeia finita de intervalos

$$I_x = I_{x_1}, I_{x_2}, \dots, I_{x_n} = I_y,$$

de forma que $I_{x_i} \cap I_{x_{i+1}} \neq \emptyset$ para $i = 1, \ldots, n-1$. Note que $I = \bigcup_{i=1}^n I_{x_i}$ é um intervalo. É fácil ver que \sim define uma relação de equivalência. Seja \mathcal{C} uma classe de equivalência e $I_{\mathcal{C}} := \bigcup_{I \in \mathcal{C}} I$. Para $a, b \in I_{\mathcal{C}}$, vale que $a \in I_x \in \mathcal{C}$ e $b \in I_y \in \mathcal{C}$. Portanto, existe uma sequência finita que encadeada cuja união forma um intervalo. Assim, se a < x < b, então

x pertence a esse intervalo e, por conseguinte, $x \in I_{\mathcal{C}}$. Logo $I_{\mathcal{C}}$ é um intervalo. Como é união de abertos, então também será aberto.

Por fim, veja que duas classes de equivalência diferentes são disjuntas. Se não o fossem, existiriam dois intervalos, um em cada classe, que teriam um ponto de intersecção, o que faria com que ambos os intervalos estivessem em ambas as classes. Pela transitividade de \sim , isso varia com que as classes fossem iguais. Concluo que $I_{\mathcal{C}} \cap I_{\mathcal{C}'} = \emptyset$ se $\mathcal{C} \neq \mathcal{C}'$.

Com isso, escrevemos A como a união dos intervalos definidos pelas classes de equivalência, que é uma união enumerável de abertos disjuntos.

A volta é propriedade fundamental de conjuntos abertos: a união de conjuntos abertos é aberta. $\hfill\Box$

Exercício 9 Mostre que em todo espaço métrico, um conjunto finito de pontos é fechado.

Demonstração. Seja $A = \{x_1, \ldots, x_n\} \subseteq \mathcal{X}$. Tome uma sequência de pontos em A convergente. Tomando $\epsilon = \min_{i,j} \{d(x_i, x_j)\} > 0$, vemos que para essa sequência ser convergente, ela deve, para n suficientemente grande, assumir um único valor x_i . Em particular, o limite dessa sequência de pontos será um ponto de A. Concluo que o limite de toda sequência convergente de A pertence a A, isto é, $\bar{A} = A$ e, portanto, A é fechado.

Exercício 10 O conjunto de Cantor é um conjunto na reta descoberto por Henry Smith em 1874 e introduzido por Georg Cantor em 1883 que apresenta uma série de propriedades contra-intuitivas¹. Para construí-lo, inicie com o intervalo [0,1]. Reparta-o em três segmentos iguais e remova o intervalo aberto do meio (1/3,2/3), restando o conjunto $[0,1/3] \cup [2/3,1]$. Remova o intervalo aberto do meio de cada segmento, restando $[0,1/9] \cup [2/9,1/3] \cup [2/3,7/9] \cup [8/9,1]$. Continue esse processo indefinidamente e obtemos o conjunto \mathcal{C} . Mostre que \mathcal{C} é fechado.

Solução. Definimos

$$C_n = [0, 1] / \bigcup_{i=0}^{n-1} \bigcup_{j=0}^{3^{i-1}} \left(\frac{3j+1}{3^{i+1}}, \frac{3j+2}{3^{i+1}} \right) = [0, 1] \cap A_n^c, n \ge 1$$

como o conjunto de Cantor na iteração n, isto é, começamos em [0,1] e vamos removendo pra cada segmento restante, o intervalo aberto do meio. O conjunto A_n é a união de abertos e, portanto, aberto. Por definição, A_n^c é fechado e, por conseguinte, C_n é conjunto fechado. O conjunto de Cantor é $C = \bigcap_{n=1}^{\infty} C_n$ é a intersecção de conjuntos fechados e, portanto, fechado.

Exercício 11 Tome $\mathcal{X} = C[a, b]$ e fixe L > 0. Mostre que o conjunto

$$A = \{ f \in \mathcal{X} | |f(x)| < L, \forall x \in [a, b] \}$$

é aberto em \mathcal{X} com a métrica máximo introduzida no Exercício 4.

¹https://en.wikipedia.org/wiki/Cantor_set

Demonstração. Tome $f \in A$. Como |f| é contínua, ela assume máximo no intervalo [a,b] pelo Teorema de Weierstrass. Seja $L_1 = \max |f(x)|$. Para $r = L - L_1 > 0$, tome $g \in B_r(f)$, isto é, $\max_{x \in [a,b]} |f(x) - g(x)| < r$ Assim, para $x \in [a,b], |g(x)| \le |g(x) - f(x)| + |f(x)| < r + L_1 = L$. Logo $g \in A$. Concluo que $f \in A$ é aberto.

Demonstração. Seja F fechado que contenha A. Tome $x \in \bar{A}$. Então existe uma sequência de pontos $\{x_n\} \subseteq A$ tal que $x_n \to x$. Em particular, $\{x_n\} \subseteq F$ e, portanto, $x \in F$. Com isso $\bar{A} \subseteq F$. Provar que \bar{A} é fechado, tome $\{x_n\} \subseteq \bar{A}$ convergente para x. Para cada n, existe uma sequência $\{x_{nm}\}_{m \in \mathbb{N}} \subseteq A$ tal que $\lim_{m \to \infty} x_{nm} = x_n$. Considere a sequência $y_n = x_{nn} \in A$. Vamos mostrar que $y_n \to x$ e isso implica que $x \in \bar{A}$. Note que

$$d(y_n, x) \le d(x_{nn}, x_{nm}) + d(x_{nm}, x_n) + d(x_n, x).$$

Tomando n suficientemente grande, podemos fazer $d(x_n, x) < \epsilon/3$ e $d(x_{nn}, x_{nm}) < \epsilon/3$, com m > n e m suficientemente grande para termos $d(x_{nm}, x_n) < \epsilon/3$. Então $d(y_n, x) < \epsilon$. Com isso $x \in \bar{A}$ e \bar{A} é fechado.

Seja B aberto contido em A. Se $x \in B$, então existe r > 0 tal que $B_r(x) \subseteq B \subseteq A$ e $x \in \mathring{A}$. Portanto $B \subseteq \mathring{A}$. Para provar que \mathring{A} é aberto, tome $x \in \mathring{A}$. Assim, existe r > 0 com $B_r(x) \subseteq A$. Veja que $B_{r/2}(x) \subseteq \mathring{A}$, pois para $y \in B_{r/2}(x)$, $B_{r/2}(y) \subseteq A$. Com isso, vemos que \mathring{A} é aberto.

Exercício 13 Dê um exemplo de um espaço métrico e uma família de conjuntos $(A_n)_{n\in\mathbb{N}}$ tais que

$$\overline{\bigcup_{n\in\mathbb{N}} A_n} \neq \bigcup_{n\in\mathbb{N}} \overline{A_n}.$$

Solução. Considere o espaço métrico (\mathbb{R}, d) com d(x, y) = |x - y|. Defina $A_n = (1/n, 1]$. Assim $\bar{A} = [1/n, 1]$ e, portanto, temos que o fecho da união é [0, 1] e a união dos fechos é (0, 1]. Note que a chave é que de um lado temos união dos pontos limite, logo os limites pertencem a algum conjunto necessariamente. No segundo caso, podemos ter que o ponto limite não esteja na união.

Exercício 14 Considere $\mathcal{X} = \mathbb{R}$ e d(x,y) = |x-y|. Mostre que um ponto interior de um subconjunto A é um ponto limite. O mesmo vale para $\mathcal{X} = \mathbb{Q}$?

Demonstração. Tome $x \in \mathring{A}$, então existe r > 0 tal que $B_r(x) \subseteq A$. Logo, para todo $\epsilon > 0$, existem infinitos pontos de A em $B_{\epsilon}(x)$. Com isso, x é ponto limite de A. O mesmo vale quando $\mathcal{X} = \mathbb{Q}$, pois \mathbb{Q} é denso nos reais.

²https://en.wikipedia.org/wiki/Partially_ordered_set

Exercício 15 Num espaço métrico, defina a noção de distância de um ponto a um conjunto como

$$d(x,A) = \inf_{a \in A} d(x,a).$$

Mostre que $x \in \overline{A}$ se, e somente se, d(x, A) = 0.

Demonstração. Se $x \in \bar{A}$, então para todo $n \in \mathbb{N}$, existe $a_n \in A$ tal que $d(x, x_n) < 1/n$. Logo $d(x, A) \leq d(x, x_n) < 1/n$ para todo $n \in \mathbb{N}$, o que implica que d(x, A) = 0. Se d(x, A) = 0, para todo $\epsilon > 0$, existe $a \in A$ de forma que $d(x, a) < \epsilon$. Em particular, $x \in \bar{A}$.

Exercício 16 Um ponto $x \in A^c$ é dito ponto exterior de A se existe r > 0 tal que $B_r(x) \subseteq A^c$. Mostre que A^c tem a mesma fronteira que A e que seu interior coincide com o exterior de A, ou seja, $(\overline{A})^c = (\mathring{A}^c)$. Conclua que $\partial A = \overline{A} \cap \overline{A^c}$.

Demonstração. Temos que $x \in \partial A$ se para todo $\epsilon > 0$, vale que

$$B_{\epsilon}(x) \cap A \neq \emptyset \in B_{\epsilon}(x) \cap A^{c} \neq \emptyset.$$

Por essa definição, $x \in \partial A^c$. Logo $\partial A = \partial A^c$. Se $x \notin \bar{A}$, então existe $\epsilon > 0$ tal que $d(x,y) \geq \epsilon$ para todo $y \in A$. Logo $B_{\epsilon}(x) \subseteq A^c$, pois não tem nenhum ponto de A e $x \in A^c$. Agora tome $x \in A^c$, então existe r > 0, tal que $B_r(x) \subseteq A^c$ e x não pode ser limite de pontos de A, isto é, $x \notin \bar{A}$.

Se $x \notin \partial A$, então x é ponto interior ou exterior de A por indução. A recíproca é análoga. Logo $(\partial A)^c = \mathring{A} \cup \mathring{A}^c$. Com isso, $\partial A = \mathring{A}^c \cap (\mathring{A}^c)^c = \bar{A}^c \cap \bar{A}$.

Exercício 17 Sejam (\mathcal{X}, d_X) e (\mathcal{Y}, d_Y) espaços métricos. Mostre que $(\mathcal{X} \times \mathcal{Y}, d)$ com $d((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2)$ é um espaço métrico. Além disso, mostre que uma sequência $\{(x_n, y_n)\}$ converge em $\mathcal{X} \times \mathcal{Y}$ se, e somente se, $\{x_n\}$ e $\{y_n\}$ são convergentes em seus respectivos espaços.

Demonstração. Precisamos verificar que d é métrica. Como d_X e d_Y são métricas em seus respectivos espaços, axiomas (1) e (2) são triviais. O axioma (3) vem de que

$$d((x_1, y_1), (x_3, y_3)) = d_X(x_1, x_3) + d_Y(y_1, y_3)$$

$$\leq d_X(x_1, x_2) + d_X(x_2, x_3) + d_Y(y_1, y_2) + d_Y(y_2, y_3)$$

$$= d((x_1, y_1), (x_2, y_2)) + d((x_2, y_2), (x_3, y_3)).$$

o que mostra que d é de fato métrica. Suponha que $\{(x_n, y_n)\}$ converge em $\mathcal{X} \times \mathcal{Y}$. Assim $d_X(x_n, x) + d_Y(y_n, y) = d((x_n, y_n), (x, y)) \to 0$. Como as métricas são limitadas inferiormente por 0, então $x_n \to x$ e $y_n \to y$. A recíproca vem da mesma igualdade, o que conclui a demonstração.

Exercício 18 Mostre que \mathbb{Q} é denso em \mathbb{R} .

Demonstração. Queremos mostrar que $\mathbb{Q} = \mathbb{R}$. Tome $x \in \mathbb{R}$ e $n \in \mathbb{N}$. Defina a = x - 1/n e b = x + 1/n. Assim, o intervalo (an, bn) tem tamanho bn - an = 2. Defina $m = \lceil an \rceil$. Assim, m > an e $bn - m = bn - an - (m - an) \ge 1$. Logo $m \in (an, bn)$ e, portanto a < m/n < b. Além de que $q = m/n \in \mathbb{Q}$, isto é, para todo $n \in \mathbb{N}$, existe $q_n \in B_{1/n}(x) \cap \mathbb{Q}$. Em particular $q_n \to x$, o que prova que $x \in \mathbb{Q}$.

Exercício 19 Seja $\mathcal{X} = C[a, b]$ munido da métrica máximo introduzida no Exercício 4 e A o conjunto dos polinômios definidos em [a, b]. Mostre que A é denso em \mathcal{X} .

Solução. Esse resultado é uma consequência direta do Teorema da Aproximação de Weierstrass, que usa os polinômios de Bernstein³.

Exercício 20 Mostre que $f: \mathbb{N} \to \mathbb{N}$ é contínua para qualquer função f.

Demonstração. Tomando a métrica d(x,y) = |x-y|, vamos que $d(x,y) < 1 \iff x = y$. Portanto, o conjunto unitário $\{x\}$ é aberto para todo $x \in \mathbb{N}$. Com isso, para $\delta < 1$, $f(B_{\delta}(x)) = \{f(x)\} \subseteq B_{\epsilon}(f(x))$ para todo $\epsilon > 0$ e f é contínua.

Obs.: Para provar para uma métrica arbitrária, precisamos mostrar que a função $d(x,\cdot)$ assume mínimo em $\mathbb{N}/\{x\}$. Nesse caso, teremos que $\{x\}$ será aberto em \mathbb{N} e o resultado vale. Não consegui provar esse resultado todavia.

Exercício 21 Mostre que a intersecção de dois conjuntos densos e abertos em \mathcal{X} é densa e aberta em \mathcal{X} .

Demonstração. Sejam A, B conjuntos densos e abertos e $C = A \cap B$. É claro que C é aberto. Vamos verificar que $\bar{C} = \mathcal{X}$. Tome $x \in \mathcal{X}$. Como $\bar{A} = \mathcal{X}$, existe uma sequência $\{a_n\} \subseteq A$ de forma que $a_n \to x$. Além disso, como $\bar{B} = \mathcal{X}$, para cada $n \in \mathbb{N}$, existe uma sequência $\{b_m^n\} \subseteq B$ de forma que $b_m^n \to a_n$. Como A é aberto, para cada $n \in \mathbb{N}$, existe $\epsilon_n > 0$ tal que $B_{\epsilon_n}(a_n) \subseteq A$. Tome $\delta_n = \min\{\epsilon_n, 1/n\}$. Assim, existe m(n) de forma que $b_{m(n)}^n \in B_{\delta_n}(a_n)$. Defina $c_n := b_{m(n)}^n$ e observe que $c_n \in A \cap B$. Vamos verificar que $\lim c_n = x$. Tome $\epsilon > 0$. Assim, existe $N_1 \in \mathbb{N}$ de forma que $n \geq N_1$ implica $d(a_n, x) < \epsilon/2$. Além do mais, para $n \geq 2/\epsilon$, vale que $d(b_{m(n)}^n, a_n) < 1/n \leq \epsilon/2$. Portanto,

$$d(c_n, x) \le d(b_{m(n)}^n, a_n) + d(a_n, x) < \epsilon,$$

para $n \ge \max\{N_1, 2/\epsilon\}$, o que conclui que $x \in \bar{C}$ e C é denso.

Exercício 22 Todo homeomorfismo é uma isometria?

Solução. Não. Um homeomorfismo não precisa preservar distâncias. Por exemplo, f(x) = 2x tem inversa $f^{-1}(x) = x/2$ e é contínua, com f^{-1} também sendo. Logo f é homeomorfismo, mas não é isometria, visto que $|x - y| \neq 2|x - y|$ se $x \neq y$.

Exercício 23 Se $x_n \to x$, mostre que $(x_n)_{n \in \mathbb{N}}$ é uma sequência de Cauchy e que toda subsequência de $(x_n)_{n \in \mathbb{N}}$ converge para x.

³https://mast.queensu.ca/~speicher/Section14.pdf

Demonstração. Note que $d(x_n, x_m) \leq d(x_n, x) + d(x_m, x) \to 0$. Assim, vale que $\{x_n\}$ é sequência de Cauchy. Tome uma subsequência $\{x_{n_k}\}$. Dado $\epsilon > 0$, existe $N \in \mathbb{N}$ tal que $n \geq N$ implica $d(x, x_n) < \epsilon$. Note que, em particular, se $n_k > N$, vale que $d(x, x_{n_k}) < \epsilon$, o que mostra que $x_{n_k} \to x$.

Exercício 24 Mostre que se uma sequência de Cauchy possui uma subsequência convergente, então ela também converge.

Demonstração. Seja $\{x_n\}$ uma sequência de Cauchy e $\{x_{n_k}\}$ uma subsequência convergente. Com isso, existe $M \in \mathbb{N}$ tal que $n, n_k \geq M$ implica $d(x_{n_k}, x_n) < \epsilon/2$. Além disso, tomando $n_k \geq N$, temos que $d(x, x_{n_k}) < \epsilon/2$. Portanto, para $n, n_k \geq \max\{M, N\}$, vale que

$$d(x, x_n) \le d(x, x_{n_k}) + d(x_{n_k}, x_n) < \epsilon.$$

Exercício 25 Se $d(x_{n+1}, x_n) \leq ac^n$ para algum c < 1 e a > 0, então $\{x_n\}$ é Cauchy.

Demonstração. Para n > m, note que

$$d(x_n, x_m) \le \sum_{k=m}^{n-1} d(x_{k+1}, x_k) \le a \sum_{k=m}^{n-1} c^k = ac^m \frac{1 - c^{n-m}}{1 - c} \le ac^m.$$

Para $\epsilon > 0$, basta tomar que $n > m > \log(a/\epsilon)/\log(c)$ e teremos $d(x_n, x_m) < \epsilon$ e, portanto $\{x_n\}$ é Cauchy.

Exercício 26 Seja (\mathcal{X}, d) um espaço métrico completo e A um subconjunto fechado de \mathcal{X} . Mostre que o espaço métrico (A, d) é completo.

Demonstração. Tome $\{a_n\} \subseteq A$ sequência de Cauchy. Como \mathcal{X} é completo, vale que $\{a_n\}$ é convergente com limite $a \in X$. Como A é fechado, vale que $a \in A$, isto é, $\{a_n\}$ é convergente em A e, portanto, (A, d) é completo.

Obs.: Deveríamos verificar que (A, d) é um espaço métrico, mas isso vale trivialmente, pois d é uma métrica em \mathcal{X} , logo as propriedades valem em todo subconjunto de \mathcal{X} . \square

Exercício 27 (Teorema da Contração de Banach) Um mapeamento $f: \mathcal{X} \to \mathcal{X}$ é uma contração se existe $a \in (0,1)$ tal que

$$d(f(x), f(y)) \le a \cdot d(x, y), \forall x, y \in \mathcal{X}.$$

Suponha que \mathcal{X} é completo. Mostre que toda contração possui um único ponto fixo, isto é, existe um único $x \in \mathcal{X}$ tal que f(x) = x. Dica: Defina uma sequência $x_{n+1} = f(x_n)$ com $x_1 \in \mathcal{X}$ arbitrário.

Demonstração. Vamos provar a existência de um ponto fixo primeiramente. Tome $x_1 \in \mathcal{X}$. Se $f(x_1) = x_1$, já está demonstrado. Caso contrário, defina a sequência $x_{n+1} = f(x_n)$ para $n \geq 1$ iterativamente. Vou mostrar que essa sequência é de Cauchy e, portanto, convergente em \mathcal{X} , pois o espaço é completo. Seja n > m. Defina $c = d(x_2, x_1)/a > 0$. Afirmação: $d(x_{n+1}, x_n) \leq ca^n$: Para n = 1, esse resultado é trivial. Suponha que vale para n. Assim

$$d(x_{n+2}, x_{n+1}) = d(f(x_{n+1}), f(x_n)) \le ad(x_{n+1}, x_n) \le ca^{n+1}$$
.

Com isso, provamos que a afirmação. Pelo Exercício 25, vale que $\{x_n\}$ é de Cauchy e convergente.

Defina $x^* = \lim x_n = \lim x_{n+1} = \lim f(x_n)$. Assim, $d(f(x^*), f(x_n)) \le ad(x^*, x_n) \to 0$, que implica que $f(x_n) \to f(x^*)$ e, então, pela unicidade de limite $f(x^*) = x^*$ e esse é um ponto fixo.

A unicidade vem do fato de que se $x \neq x^{**}$ são pontos fixos,

$$d(x^*, x^{**}) = d(f(x^*), f(x^{**})) \le ad(x^*, x^{**}) < d(x^*, d^{**}),$$

o que é um absurdo.

Exercício 28 Sejam $(\mathcal{X}_1, d_1), \dots, (\mathcal{X}_n, d_n)$ espaços métricos completos e defina o espaço produto como $\mathcal{X} := \mathcal{X}_1 \times \dots \times \mathcal{X}_n$. Sejam $x = (x_1, \dots, x_n)$ e $y = (y_1, \dots, y_n)$ de \mathcal{X} . Prove que \mathcal{X} é completo quando a ele são atribuídas as seguintes métricas

- (a) $d(x,y) = d_1(x_1,y_1) + \cdots + d_n(x_n,y_n);$
- (b) $d(x, y) = \max_{1 \le i \le n} d_i(x_i, y_i);$
- (c) $d(x,y) = \left(\sum_{i=1}^{n} d_i(x_i, y_i)^2\right)^{1/2}$.

Solução. Seja $\{x_m = (x_m^1, \dots, x_m^n)\}_{m \in \mathbb{N}}$ uma sequência de Cauchy. Assim, dado $\epsilon > 0$, existe $M \in \mathbb{N}$ tal que $k, m \geq M$ implica

$$d_i(x_k^i, x_m^i) \le d(x_k, x_m) < \epsilon, i = 1, \dots, n,$$

isto é, $\{x_m^i\}_{m\in\mathbb{N}}$ é sequência de Cauchy e, por conseguinte, convergente em \mathcal{X}_i . Seja x_*^i o limite dessa sequência. Defina $x_* = (x_*^1, \dots, x_*^n)$. Dado $\epsilon > 0$, existe $M^i \in \mathbb{N}$ tal que $m > M^i$ implica $d(x_m^i, x_*^i) < \epsilon/n$. Em particular, tome $M = \max\{M^i\}$. Assim, para m > M,

$$d(x_*, x_m) < \epsilon/n * n = \epsilon,$$

para a métrica em (a). Para a métrica em (b), $d(x_*, x_m) < \epsilon/n < \epsilon$ e, para a métrica em (c), $d(x_*, x_m) < \epsilon/\sqrt{n} < \epsilon$. De qualquer forma, mostramos que $\{x_m\}$ é convergente. Com isso, \mathcal{X} é completo.

Exercício 29 Mostre que o espaço $\mathcal{X} = C[a, b]$ munido da métrica máximo é completo.

Demonstração. Tome uma sequência de funções contínuas $\{f_n\}$ de Cauchy. Em particular, dado $\epsilon > 0$, para m, n suficientemente grande, $\forall x \in [a, b]$,

$$|f_m(x) - f_n(x)| \le d(f_m, f_n) < \epsilon,$$

que implica que $\{f_n(x)\}_{n\in\mathbb{N}}$ é sequência de Cauchy e, portanto, convergente. Defina $f^*(x)=\lim_{n\to\infty}f_n(x)$ para $x\in[a,b]$. Vamos provar que $f_n\to f^*$ sob a métrica d e que f^* é contínua. Tome $\epsilon>0$. Assim, existem m>n suficientemente grandes para que $d(f_m,f_n)<\epsilon$. Para cada $x\in[a,b]$,

$$|f^*(x) - f_n(x)| = \lim_{m \to \infty} |f_m(x) - f_n(x)| < \epsilon.$$

Observe que a escolha de n independe de x e o limite em m faz com que m seja grande o suficiente. Concluímos que $d(f^*, f_n) < \epsilon$ e $f_n \to f^*$.

Vamos verificar que f^* é contínua. Tome $x \in [a, b]$ e uma sequência $\{x_n\}$ que converge para x. Tome m suficientemente grande para que $d(f^*, f_m) < \epsilon/4$ e n suficientemente grande para $|f_m(x) - f_m(x_n)| < \epsilon/2$, usando a continuidade de f_m .

$$|f^*(x) - f^*(x_n)| \le |f^*(x) - f_m(x)| + |f_m(x) - f_m(x_n)| + |f_m(x_n) - f^*(x_n)|$$

$$\le 2d(f^*, f_m) + |f_m(x) - f_m(x_n)|$$

$$< \epsilon/2 + \epsilon/2 = \epsilon.$$

Com isso, $f^*(x_n) \to f^*(x)$ e, portanto, f^* é contínua. Logo $\{f_n\}$ é uma sequência que converge (sob d) para um elemento de \mathcal{X} , o que prova que \mathcal{X} é completo sob a métrica máximo.

Exercício 30 Sejam (\mathcal{X}, d_X) e (\mathcal{Y}, d_Y) espaços métricos. Uma função $f: \mathcal{X} \to \mathcal{Y}$ é uniformemente contínua em \mathcal{X} se para todo $\epsilon > 0$, existe $\delta > 0$ tal que $d_X(x_1, x_2) < \delta$ implique que $d_Y(f(x_1), f(x_2)) < \epsilon$.

Prove que se (\mathcal{Y}, d_Y) é completo e $f: A \to \mathcal{Y}$ é uniformemente contínua em A com $\bar{A} = \mathcal{X}$, então f tem uma única extensão contínua $g: \mathcal{X} \to \mathcal{Y}$ e esta extensão g é uniformemente contínua em \mathcal{X} .

Demonstração. Vamos provar que essa extensão existe. Tome $x \in \mathcal{X}$ e seja uma sequência $\{a_n\} \subseteq A$ que converge para x. Defina $g(x) := \lim f(a_n)$. Vejamos que g está bem definida. Tome $\epsilon > 0$. Existe $M \in \mathbb{N}$ de forma que $m, n \geq M \implies d_X(a_m, a_n) < \delta$. Como f é uniformemente contínua, $d_Y(f(a_m), f(a_n)) < \epsilon$, o que implica que $\{f(a_n)\}$ é sequência de Cauchy e, então, é convergente, pois \mathcal{Y} é completo. Agora suponha que exista uma outra sequência $\{b_n\} \subseteq A$ com $b_n \to x$. Como f é uniformemente contínua, $d_Y(f(a_n), f(b_n)) \to 0$, pois $d_X(a_n, b_n) \to 0$. Com isso, $\lim f(a_n) = \lim f(b_n)$ e, portanto, g(x) está bem definido. Note que ela é uma extensão, pois $g(a) = \lim f(a) = f(a)$ para $a \in A$. Vamos verificar que g é uniformemente contínua.

Tome $\epsilon > 0$. Para $x, y \in \mathcal{X}$, sejam $x_n \to x$ e $y_n \to y$. Note a seguinte desigualdade:

$$d_Y(g(x), g(y)) \le d_Y(g(x), f(x_n)) + d_Y(f(x_n), f(y_n)) + d_Y(f(y_n), g(y)).$$

Para n suficientemente grande, temos $d_Y(g(x), f(x_n)) < \epsilon/3$ e $d_Y(g(y), f(y_n)) < \epsilon/3$. Além disso, $d_X(x_n, y_n) \le d_X(x_n, x) + d_X(x, y) + d_X(y, y_n)$. Como f é uniformemente contínua, existe $\delta > 0$, tal que $d_X(x_n, y_n) < \delta \implies d_Y(f(x_n), f(y_n)) < \epsilon/3$. Fazendo

 $d_X(x,y) < \delta/3$ e n suficientemente grande para que $d_X(x,x_n) < \delta/3$ e $d_X(y,y_n) < \delta/3$, temos que $d_X(x_n,y_n) < \delta$ e, portanto, $d_Y(f(x_n),f(y_n)) < \epsilon/3$. Concluímos, então, que $d_Y(g(x),g(y)) < \epsilon$, o que prova que g é uniformemente contínua em \mathcal{X} .

Seja h outra extensão contínua de f em \mathcal{X} . Tome uma sequência $\{a_n\} \subseteq A$ convergente em $x \in \mathcal{X}$. Assim $|h(a_n) - g(a_n)| = 0$ para todo $n \in N$. Pela continuidade das funções, h(x) = g(x), o que conclui a demonstração.

Exercício 31 (Completando os números racionais) Provamos que todo espaço métrico (\mathcal{X}, d) tem um completamento (\mathcal{X}^*, d^*) e que, além disso, ele é único a menos de uma isometria. Considere o espaço métrico (\mathbb{Q}, d) com d(x, y) = |x - y|.

- (a) Mostre que (\mathbb{Q}, d) não é completo, isto é, mostre uma sequência de Cauchy não convergente. Sabemos que existe um completamento (\mathbb{Q}^*, d^*) . A ideia desse exercício é construí-lo e mostrar que ele satisfaz os axiomas que definem os números reais.
- (b) Sejam $s_x = \{x_n\}$ e $s_y = \{y_n\}$ sequências de Cauchy definidas em \mathbb{Q} . Defina a relação R de forma que $s_x R s_y$ se, e somente se, $\lim_{n\to\infty} d(x_n, y_n) = 0$. Mostre que R é uma relação de equivalência. Denote R por \sim .
- (c) Defina \mathbb{R} como o conjunto quociente \mathbb{Q}/\sim , o conjunto das classes de equivalência de \mathbb{Q} , e denote seus elementos por $x=[x_n]$. Mostre que soma e produto de elementos de \mathbb{R} estão bem definidos com

$$x + y := [x_n + y_n] e xy := [x_n y_n].$$

e que \mathbb{R} é um corpo com essas operações.

- (d) Dizemos que $x = [x_n] > [0]$ se existem $\epsilon \in Q_+$ e $N \in \mathbb{N}$, tal que $x_n \ge \epsilon$ para todo $n \ge N$. Defina a relação de ordem em \mathbb{R} como $x \ge y$ se x y > 0 ou $x \sim y$. Mostre que ela define uma ordem total sobre \mathbb{R} .
- (e) Defina $d^*(x,y) = \lim_{n\to\infty} |x_n y_n|$, em que $\{x_n\}$ e $\{y_n\}$ são representantes das suas respectivas classes de equivalência. Mostre que d^* está bem definido e que (\mathbb{R}, d^*) é um espaço métrico. Para isso, basta mostrar que $|x| := [|x_n|]$ está bem definido e que é, de fato, o valor absoluto como conhecemos $|x| = \max\{x, -x\}$.
- (f) Note que \mathbb{Q} é isométrico ao conjunto $\mathbb{Q}_0 = \{[a, a, \dots,] : a \in \mathbb{Q}\} \subseteq \mathbb{R}$ e que Q_0 é denso em \mathbb{R} .
- (g) Mostre que o *axioma da completude* é satisfeito, isto é, que todo conjunto não vazio limitado superiormente tem supremo.
- (h) Mostre que \mathbb{R} é completo.

Solução. A solução desse exercício está parcialmente contida na demonstração do Teorema 4.5 em [2].

Exercício 32 Seja (\mathbb{N}, d) espaço métrico com d(x, y) = |x - y|. Prove que $\{x\}$ é conjunto aberto de \mathbb{N} . Prove que esse resultado vale para uma métrica arbitrária ou encontre um contra-exemplo, isto é, uma métrica d e um ponto $x \in \mathbb{N}$ de forma que $\{x\}$ não seja aberto considerando essa métrica.

Solução. Ainda sem solução.

Exercício 33 Mostre que o teorema da sequência dos conjuntos fechados encaixados deixa de valer se retirarmos a hipótese de que os diâmetros tendem a zero.

Solução. Esse teorema diz que (X,d) é completo se, e somente se, toda sequência não vazia de conjuntos fechados encaixados com diâmetro tendendo a zero tem intersecção não nula. A ideia é que sem a hipótese de que os diâmetros tendem a zero, podemos ter um espaço completo, uma sequência de fechados encaixados não vazios, mas com intersecção vazia. O exemplo clássico é $(\mathbb{R},(x,y)\mapsto |x-y|)$ com $F_n=[n,+\infty)$ que são fechados não vazios, mas $d(F_n)=+\infty, \forall n\in\mathbb{N}$ e $\bigcap_{n=1}^{+\infty}F_n=\emptyset$. Outra possibilidade é usar a métrica trivial, em que todo conjunto unitário é aberto e toda sequência de Cauchy é constante a partir de certo ponto e, por conseguinte, constante. Porém, é fácil construir uma sequência em que $d(F_n)=1$ para todo F_n .

Exercício 34 Prove que sequências de Cauchy são limitadas. Conclua que sequências ilimitadas não podem convergir.

Demonstração. Seja $S = \{x_n\}_{n \in \mathbb{N}}$ uma sequência de Cauchy. Precisamos mostrar que $d(S) \leq M$ para algum $M \in \mathbb{R}$. Para $\epsilon = 1$, existe $K_1 \in \mathbb{N}$ tal que

$$d(x_m, x_n) < 1, \forall m, n \ge K_1.$$

Além disso, seja $K_2 = \max\{d(x_i, x_{K_1}): 1 \leq i \leq K_1\}$. Defina $M = \max\{1, K_2\}$. Para $i, j \in \mathbb{N}$,

$$d(x_i, x_j) \le d(x_i, x_{K_1}) + d(x_{K_1}, x_j) < 2M,$$

o que mostra que $d(S) \leq 2M$. Se uma sequência é ilimitada, então ela não é de Cauchy e, portanto, não pode ser convergente.

Exercício 35 Sejam (\mathcal{X}, d) um espaço métrico e $A \subseteq \mathcal{X}$. Mostre que $d(A) = d(\bar{A})$.

Demonstração. Como $A \subseteq \bar{A}$, é claro que $d(A) \leq d(\bar{A})$. Sejam $a, b \in \bar{A}$ e $(a_n), (b_n)$ sequências em A tal que $a_n \to a$ e $b_n \to b$. Assim, para todo $n \in \mathbb{N}$,

$$d(a,b) \le d(a,a_n) + d(a_n,b_n) + d(b_n,b) \le d(a,a_n) + d(A) + d(b_n,b).$$

Tomando o limite em ambos os lados, obtemos que $d(a,b) \leq d(A)$. Com isso, $d(\bar{A}) \leq d(A)$ e, portanto, vale a igualdade.

Exercício 36 Sejam (\mathcal{X}, d_X) e (\mathcal{Y}, d_y) espaços métricos. Uma função $f : \mathcal{X} \to \mathcal{Y}$ é dita função Lipschitz se existe L > 0 tal que $\forall x, y \in \mathcal{X}$, vale que

$$d_Y(f(x), f(y)) \le Ld_X(x, y).$$

Seja f função Lipschitz. Mostre que para todo conjunto $A \subseteq \mathcal{X}$ limitado, sua imagem $f(A) \subseteq \mathcal{Y}$ é limitada.

Demonstração. Seja A é limitado. Tome $y_1 = f(x_1), y_2 = f(x_2) \in f(A)$. Assim,

$$d_Y(y_1, y_2) = d_Y(f(x_1), f(x_2)) \le Ld_X(x_1, x_2) \le Ld(A),$$

que implica que $d(f(A)) \leq Ld(A)$ e, portanto f(A) é limitado.

Exercício 37 Considere o espaço l_2 definido no Exercício 4. Defina Π o conjunto dos pontos $x \in l_2$ que satisfazem $|x_n| \le 2^{-n-1}, n \ge 1$. Prove que Π é totalmente limitado.

Demonstração. Tome $\epsilon > 0$. Vou provar que existe um número finito de pontos em Π que tenha distância de qualquer outro ponto menor do que ϵ . Tome $x \in \Pi$. Note que

$$\left(\sum_{k=m}^{\infty} x_k^2\right)^{1/2} \le \left(\sum_{k=m}^{\infty} 4^{-(k+1)}\right)^{1/2} = \frac{2^{-m}}{\sqrt{3}} < 2^{-m}.$$

Com isso, fazendo $m > -\log(\epsilon/2)/\log(2)$, podemos fazer pontos que concordam nas primeiras m posições. Baseada nessa ideia, tome $x = (x_1, \ldots, x_m, \ldots) \in \Pi$ e defina $x^* = (x_1, \ldots, x_m, 0, \ldots)$. Assim,

$$d(x, x^*) = \left(\sum_{k=m+1}^{\infty} x_k^2\right)^{1/2} < 2^{-(m+1)} < \epsilon/2.$$

Seja $\Pi^* = \{(x_1, \dots, x_m, 0, \dots)\}\$ e $A \subseteq \mathbb{R}^m$ tal que $(x_1, \dots, x_m) \in A$ se $|x_i| \leq 2^{-i-1}$, vemos que A é limitado em \mathbb{R}^n , pois

$$\sum_{i=1}^{m} x_i^2 \le 1,$$

para todo $x \in A$. Pelo Exercício 40, A é totalmente limitado. Logo, para $\epsilon/2$, existem $y_1, \ldots, y_k \in A$ tal que para todo $x \in A$, existe i tal que $d(x, y_i) < \epsilon/2$. Defina os pontos $z_i = (y_1^1, \ldots, y_i^m, 0, \ldots) \in \Pi^*$ para $i = 1, \ldots, k$. Assim, para $x \in \Pi$,

$$d(x, z_i) \le d(x, x^*) + d(x^*, z_i) < \epsilon,$$

para algum i. Isso mostra que Π é totalmente limitado.

Exercício 38 Mostre que $[0,1] \cap \mathbb{Q}$ é fechado e totalmente limitado em \mathbb{Q} , mas não é compacto.

Solução. É fechado: Tome $(x_n) \in [0,1] \cap \mathbb{Q}$ convergente para $x \in \mathbb{Q}$. Como $(x_n) \in [0,1]$ e [0,1] é fechado em \mathbb{R} , temos que $x \in [0,1]$ e, portanto, $[0,1] \cap \mathbb{Q}$ é fechado em \mathbb{Q} .

É totalmente limitado: Como [0,1] é limitado, ele é totalmente limitado em \mathbb{R} pelo Exercício 40. Logo, para todo $\epsilon > 0$, existem $y_1, \ldots, y_m \in [0,1]$ tal que $\forall x \in [0,1]$, existe i de forma que $d(x,y_i) < \epsilon/2$. Tome $z_i \in (y_i - \epsilon/2, y_i + \epsilon/2) \cap \mathbb{Q}$, usando que \mathbb{Q} é denso nos reais. Assim, $\forall x \in \mathbb{Q}$,

$$d(x, z_i) \le d(x, y_i) + d(y_i, z_i) < \epsilon,$$

o que mostra que o $[0,1] \cap \mathbb{Q}$ é totalmente limitado.

Não é compacto: Considere a sequência

$$x_n = \sum_{k=0}^{n} \frac{(-1)^k}{2k+1}$$

É fácil ver que $x_n \in [0,1] \cap \mathbb{Q}, \forall n$. Pela fórmula de Leibniz, $x_n \to \pi/4 \notin \mathbb{Q}$. Portanto, essa sequência não é convergente em \mathbb{Q} e não possui subsequência convergente, dado que qualquer subsequência converge para o mesmo ponto em \mathbb{R} . Com isso, $[0,1] \cap \mathbb{Q}$ não é sequencialmente compacto e, portanto, não pode ser compacto.

Exercício 39 Sejam A e B subconjuntos compactos de um espaço métrico (\mathcal{X}, d) tais que $A \cap B = \emptyset$. Prove que d(A, B) > 0. E se A e B forem subconjuntos fechados, essa afirmação é válida? Encontre um contra-exemplo.

Solução. Suponha que d(A, B) = 0. Assim, existem sequências $(a_n) \subseteq A$ e $(b_n) \subseteq B$ de forma que $d(a_n, b_n) < 1/n$. Como A é compacto, podemos tomar uma subsequência a_{n_k} convergente para $a \in A$. Como B é compacto, podemos tomar uma subsequência $b_{n_{k_j}}$ convergente para $b \in B$. Denotarei por (a_n) e (b_n) as subsequências dadas pelo índices n_{k_j} . Assim, temos que $\forall n \in \mathbb{N}$,

$$d(a,b) \le d(a,a_n) + d(a_n,b_n) + d(b_n,b).$$

Tomando o limite em ambos os lados, concluímos que d(a,b) = 0, isto é, a = b, o que é um absurdo, pois $A \cap B = \emptyset$.

Defina em \mathbb{R} com a métrica diferença absoluta $A = \mathbb{N}$ e $B = \{n+1/2n : n \in \mathbb{N}\}$. Note que $A^c = (-\infty, 1) \cup_{i=1}^{+\infty} (i, i+1)$, que é claramente aberto. Assim A é fechado. O mesmo pode ser dito de B dado que $B^c = (-\infty, 3/2) \cup_{i=1}^{+\infty} (i+1/2i, i+1+1/2(i+1))$ que é aberto em \mathbb{R} . Além disso, como 1/(2n) não é natural, então n+1/(2n) não pertence a A. Além disso, nenhum natural pertence a B. Com isso $A \cap B = \emptyset$. Note que

$$d(n, n + 1/(2n)) = 1/(2n)$$

e, portanto, d(A, B) = 0.

Exercício 40 Em \mathbb{R}^n , um conjunto A é limitado se, e somente é, é totalmente limitado. Pode considerar métrica derivada da norma 1, norma 2 ou norma máximo. Futuramente, vamos verificar que elas são equivalentes.

Demonstração. Suponha que A seja totalmente limitado. Assim, existem a_1, \ldots, a_m tal que $A \subseteq \bigcup_{i=1}^m B_1(a_i)$. Tomando $x, y \in A$, existem i, j com distância máxima 1. Assim,

$$d(x,y) \le d(x,a_i) + d(a_i,a_j) + d(a_j,y) \le 2 + \max\{d(a_i,a_j) : 1 \le i, j \le m\},\$$

que implica que A é limitado. Suponha que A seja limitado. Então existe $M \in \mathbb{R}$ tal que $A \subseteq [-M, M]^n$. Primeiro vou provar que [-M, M] é totalmente limitado. Tome $\epsilon > 0$ e $k > 1/\epsilon$. Defina $x_i = (i - Mk)/k$ para $i = 0, \ldots, 2Mk$. Assim, se $x \in [-M, M]$, $d(x, x_i) < 1/k$, o que conclui. Isso se estende para $[-M, M]^n$ tomando os pontos da forma $(x_{i_1}, x_{i_2}, \ldots, x_{i_n})$ com $i_j = 0, \ldots, 2Mk$ para $j = 1, \ldots, n$. Logo A é totalmente limitado, o que conclui a demonstração.

Exercício 41 Uma função contínua $f: \mathcal{X} \to \mathcal{Y}$, com (\mathcal{X}, d_X) e (\mathcal{Y}, d_Y) sendo espaços métricos completos, mapeia conjuntos totalmente limitados de \mathcal{X} a conjuntos totalmente limitados de \mathcal{Y} .

Demonstração. Seja $A \subseteq \mathcal{X}$ subconjunto totalmente limitado e defina B = f(A). Pelo Teorema 5.7 de [1], A é relativamente compacto e, portanto \bar{A} é compacto. Pelo Teorema 5.8 de [1], $f(\bar{A})$ é compacto. Tome $b \in \bar{B}$. Assim, existe uma sequência $(b_n) \subseteq B$ tal que $b_n \to b$. Seja $b_n = f(a_n)$. Como \bar{A} é compacto, existe uma subsequência convergente a_{n_k} para um ponto $x \in \bar{A}$. Como f é contínua, $f(a_{n_k}) \to f(x)$. Pela unicidade do limite, $b = f(x) \in f(\bar{A})$. Agora tome $y \in f(\bar{A})$ e seja y = f(x) com $x = \lim a_n$ com $(a_n) \subseteq A$. Defina $b_n = f(a_n)$. Pela continuidade de f, temos que $f(x) = \lim f(a_n) = \lim b_n$, que implica que $y \in \bar{B}$. Concluo que $\bar{B} = f(\bar{A})$ que é compacto. Logo B é relativamente compacto e, por conseguinte, totalmente limitado.

Exercício 42 Seja um mapeamento contínuo $f: \mathcal{X} \to \mathbb{R}$. Mostre que vale a generalização do Teorema de Weierstrass, isto é, dado um compacto $K \subseteq \mathcal{X}$, existem pontos $x_0, y_0 \in K$ tais que

$$f(x_0) = \inf_{x \in A} f(x)$$
 e $f(y_0) = \sup_{x \in A} f(x)$.

Demonstração. Pelo Teorema 5.8 de [1], f(K) é compacto. Defina $l = \inf_{x \in A} f(x)$ e $u = \sup_{x \in A} f(x)$. Assim, existem sequências (l_n) e (u_n) tal que

$$f(l_n) < l + 1/n$$
 e $f(u_n) > u - 1/n$.

Em particular $f(l_n) \to l$ e $f(u_n) \to u$. Como f(K) é compacto, então ele é fechado e, portanto, $l, u \in f(K)$, o que encerra a demonstração.

Exercício 43 Seja A um subconjunto de um espaço métrico (\mathcal{X}, d) . Prove que o completamento A^* de A é compacto se, e somente se, A é totalmente limitado.

Demonstração. Dizemos que (A^*, d) é completamento de (A, d) se existe $A_0 \subseteq A^*$ denso em A^* e isométrico a A. Além disso A^* é completo. Seja ϕ uma isometria entre A e A_0 . (\Rightarrow) : Tome $\epsilon > 0$. Como A^* é compacto, existe uma subcobertura finita $A^* \subseteq \bigcup_{i=1}^n B_{\epsilon}(x_i)$, com $x_i \in A^*$. Em particular A_0 é totalmente limitado. Como ele é isométrico a A, temos que A é totalmente limitado pelo que vamos provar a seguir, isto é, dois espaços isométricos preservam a propriedade de serem totalmente limitados.

(\Leftarrow): Suponha que A é totalmente limitado. Vou provar que A_0 é totalmente limitado. Dado $\epsilon > 0$, existem $a_1, \ldots, a_n \in A$ tal que $A \subseteq \bigcup_{i=1}^n B_{\epsilon}(a_i)$. Note que $A_0 \subseteq \bigcup_{i=1}^n B_{\epsilon}(\phi(a_i))$, pois se $y = \phi(x) \in A_0, x \in A$, temos que existe i com $d(y, \phi(a_i)) = d(\phi(x), \phi(a_i)) = d(x, a_i) < \epsilon$, o que mostra que A_0 é totalmente limitado. Como A^* é completo, temos que A_0 é relativamente compacto e, portanto, A^* é compacto, pelo Teorema 5.7 de [1].

Exercício 44 Seja (\mathcal{X}, d) um espaço métrico compacto. Prove que a isometria $f : \mathcal{X} \to \mathcal{X}$ é função bijetiva.

Demonstração. A injetividade de f é trivial, visto que 0 = d(f(x), f(x')) = d(x, x'), isto é, $f(x) = f(x') \iff x = x'$. Agora suponha que f não é sobrejetiva e tome $x \in \mathcal{X}/f(\mathcal{X})$. Então $\delta = d(x, f(\mathcal{X})) > 0$. Caso contrário, x seria limite de pontos em $f(\mathcal{X})$, que é compacto, portanto fechado e $x \in f(\mathcal{X})$. Defina a sequência (x_n) da seguinte forma $x_1 = x$ e $x_{n+1} = f(x_n)$. Assim $d(x, x_n) \ge d$, $\forall n > 1$. Além do mais, para m > n,

$$d(x_m, x_n) = d(x_{m-1}, x_{n-1}) = \dots = d(x_{m-n+1}, x_1) \ge d,$$

o que mostra que (x_n) não é sequência de Cauchy. Em particular, não podemos extrair nenhuma subsequência convergente, o que contradiz o fato de $f(\mathcal{X})$ ser compacto.

Exercício 45 Seja S o espaço das sequências de números reais. Dados dois pontos $x = (x_n)_{n \in \mathbb{N}}$ e $y = (y_n)_{n \in \mathbb{N}}$, defina

$$d(x,y) = \sum_{n \in \mathbb{N}} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}.$$

Mostre que (S, d) é espaço métrico separável e completo.

Solução. Vamos provar esse exercício em etapas:

(i) (S, d) é um espaço métrico.

Demonstração. É fácil ver que d está bem definido, pois $d(x,y) < \sum_{n \in \mathbb{N}} 2^{-n} = 1$, para todo $x,y \in \mathcal{S}$. Os axiomas (i) e (ii) que definem uma métrica são trivialmente satisfeitos, visto que é um somatório de termos não negativos que só se anula se $x_n = y_n, \forall n$, e que o módulo induz a simetria. Para verificar o axioma (iii), note que é necessário e suficiente que para todo n,

$$\frac{|x_n - y_n|}{1 + |x_n - y_n|} \le \frac{|x_n - z_n|}{1 + |x_n - z_n|} + \frac{|z_n - y_n|}{1 + |z_n - y_n|}.$$

Isso é uma consequência direta do Exercício 5. Portanto, d é uma métrica em S. \square

(ii) (S, d) é completo.

Demonstração. Seja $\{y_n\}_{n\in\mathbb{N}}\subseteq \mathcal{S}$ uma sequência de Cauchy. Tome $\epsilon>0$. Para cada $k\in\mathbb{N}$, existe $N\in\mathbb{N}$ tal que $m,n\geq N$ implica $d(y_m,y_n)<2^{-k}\epsilon/(1+\epsilon)$. Em particular, tem-se que

$$\frac{1}{2^k} \frac{|y_m^k - y_n^k|}{1 + |y_m^k - y_n^k|} < \frac{\epsilon}{2^k (1 + \epsilon)} \implies |y_m^k - y_n^k| < \epsilon,$$

o que mostra que a sequência $\{y_n^k\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ é Cauchy para cada k e, portanto, convergente. Defina $y_*^k=\lim y_n^k$ e $y_*=(y_*^1,y_*^2,\dots)\in\mathcal{S}$. Basta mostrar que y_* é o limite de y_n . Tome $\epsilon>0$ e seja $K\in\mathbb{N}$ de forma que $\sum_{k=K}^\infty 2^{-k}<\epsilon/2$. Para cada k, seja $N_k\in\mathbb{N}$, tal que

$$\frac{|y_*^k - y_n^k|}{1 + |y_*^k - y_n^k|} < \frac{\epsilon}{2},$$

e tome $N = \max\{N_i\}_{i=1}^{K-1}$. Assim, para $n \geq N$,

$$d(y_*, y_n) = \sum_{k=1}^{K-1} \frac{1}{2^k} \frac{|y_*^k - y_n^k|}{1 + |y_*^k - y_n^k|} + \sum_{k=K}^{+\infty} \frac{1}{2^k} \frac{|y_*^k - y_n^k|}{1 + |y_*^k - y_n^k|} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

o que mostra que $y_n \to y_*$ e o espaço é completo.

(iii) (S, d) é separável.

Demonstração. Defina $Q^n = \{(a_1, \ldots, a_n, 0, 0, \ldots), a_i \in \mathbb{Q}\}$ e $Q = \bigcup_n Q^n$. Temos que Q^n é claramente enumerável e, portanto Q também será. Por fim, basta provar que $S \subset \overline{Q}$. Para isso, para cada $x \in S$, defina

$$y_n = (a_n^1, \dots, a_n^n, 0, 0, \dots) \in Q^n,$$

de forma que $\{a_n^k\}_{n\in\mathbb{N}} \to x^k$. Usando a mesma ideia usada no item anterior para provar que y^* é limite da sequência quando é limite ponto a ponto, provamos que x será limite de y_n . Com isso, esse espaço é separável.

Exercício 46 (Teorema de Dini) Se K é compacto e $(f_n) \subseteq C(K, \mathbb{R})$ é uma sequência crescente, convergindo pontualmente para $f \in C(K, \mathbb{R})$, então f_n converge para f em $C(K, \mathbb{R})$. Dica: Considere a cobertura de K por bolas $B_{\delta}(x)$ tal que $f - \epsilon < f_n < f$ para n suficientemente grande.

Demonstração. Devemos mostrar que $\forall \epsilon > 0$, existe $N \in \mathbb{N}$ tal que $n \geq N$ implica $d(f_n, f) < \epsilon$. Tome $\epsilon > 0$ e $N_x \in \mathbb{N}$ tal que $n \geq N_x$ implique $|f_n(x) - f(x)| < \epsilon/3$ (convergência pontual). Para cada $x \in K$, também defina $\delta'_x > 0$ tal que $f_{N_x}(B_{\delta'_x}(x)) \subseteq B_{\epsilon/3}(f_{N_x}(x))$. De fato $\delta'_x > 0$, pois f_{N_x} é uma função contínua. Também defina $\delta''_x > 0$ tal que $f(B_{\delta''_x}(x)) \subseteq B_{\epsilon/3}(f(x))$, que é positivo, pois f é contínua. Por fim, defina $\delta_x = \min\{\delta'_x, \delta''_x\}$.

Note que $K \subseteq \bigcup_{x \in K} B_{\delta_x}(x)$. Pela compacidade de K, existem $x_1, \ldots, x_m \in K$ tal que

$$K \subseteq \cup_{i=1}^m B_{\delta_{x_i}}(x_i).$$

Defina $N = \max\{N_{x_i}\}_{i=1}^m$. Tome $x \in K$ e seja i tal que $x \in B_{\delta_{x_i}}(x_i)$. Então, se $n \geq N$, usando a monotonicidade da sequência,

$$|f_n(x) - f(x)| \le |f_N(x) - f(x)| \le |f_{N_i}(x) - f(x)|$$

$$\le |f_{N_i}(x) - f_{N_{x_i}}(x_i)| + |f_{N_{x_i}}(x_i) - f(x_i)| + |f(x_i) - f(x)|$$

$$< \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon.$$

Note que a escolha de N independe de x. Portanto, a convergência em $C(K,\mathbb{R})$ está demonstrada.

Exercício 47 Uma família de funções $F \subseteq C([a,b])$ é uniformemente limitada se existe M>0 tal que |f(x)|< M para toda $f\in F$ e $x\in [a,b]$. Verifique a seguinte versão do Teorema de Arzelà: $F\subseteq C([a,b])$ é relativamente compacto em C[a,b] se, e somente se, F é uniformemente limitado e equicontínuo.

Demonstração.

 \Rightarrow Suponha que F é relativamente compacto. Então F é totalmente limitado. Para $\epsilon = 1$, existem $f_1, \ldots, f_m \in F$ tal que a união das bolas $B_1(f_i)$ cobrem F. Pela continuidade de f_i , $M_i = \sup_{x \in [a,b]} |f_i(x)|$ é finito. Defina $M = \max_i M_i$. Além disso, para $f \in F$, para algum i,

$$|f(x)| < |f(x) - f_i(x)| + |f_i(x)| \le d(f, f_i) + M_i < 1 + M,$$

para todo $x \in [a, b]$. Com isso, F é uniformemente limitado.

Agora tome $\epsilon > 0$. Seja $\{f_1, \ldots, f_m\}$ a $\epsilon/3$ -net que cobre F. Cada função f_i é contínua e, como [a,b] é compacto, então f_i é uniformemente contínua. Para dado $\epsilon/3$, existe $\delta_i > 0$, tal que, se $|x_2 - x_1| < \delta_i$, então $|f_i(x_2) - f_i(x_1)| < \epsilon/3$. Tome $\delta = \min \delta_i$. Assim, para $f \in F$ e $|x_2 - x_1| < \delta$, existe algum i com $d(f_i, f) < \epsilon/3$,

$$|f(x_2) - f(x_1)| < |f(x_2) - f_i(x_2)| + |f_i(x_2) - f_i(x_1)| + |f_i(x_1) - f(x_1)| < \epsilon,$$

o que mostra que F é equicontínuo

 \Leftarrow Agora suponha F uniformemente limitado e equicontínuo. Como C([a,b]) é completo, basta provar que F é totalmente limitado. Tome $\epsilon > 0$ e $\delta > 0$ tal que $|x_2 - x_1| < \delta \implies |f(x_2) - f(x_1)| < \epsilon$ para toda $f \in F$. Considere uma partição finita $x_1 < \cdots < x_m$ de [a,b] com sub-intervalos de tamanho menor que δ . Agora tome $M = \sup\{|f(x)|, f \in F, x \in [a,b]\}$ e considere uma partição finita $y_1 < \cdots < y_n$ de [-M,M] com sub-intervalos de tamanho menor que ϵ . Defina a função g como o poligonal que passa nos pontos (x_k, y_l) para $k = 1, \ldots, m$. Note que existem n^m funções desse tipo.

Sejam $f \in F$ e $x \in [x_i, x_{i+1})$. Assim $|f(x) - f(x_i)| < \epsilon$ pela equicontinuidade. Também, $|f(x_i) - g(x_i)| < \epsilon$ escolhendo a função g em que $g(x_i)$ mais se aproxima de $f(x_i)$. Por fim, $|g(x_i) - g(x_{i+1})| \le |g(x_i) - f(x_i)| + |f(x_i) - f(x_{i+1})| + |f(x_{i+1}) - g(x_{i+1})| < 3\epsilon$, que implica que $|g(x_i) - g(x)| \le 3\epsilon$

$$|f(x) - g(x)| \le |f(x) - f(x_i)| + |f(x_i) - g(x_i)| + |g(x_i) - g(x)| < 5\epsilon.$$

Portanto $d(f,g) < 5\epsilon$ e F é totalmente limitado.

Exercício 48 Seja (\mathcal{X}, d) um espaço métrico. Se (\mathcal{X}, d) é totalmente limitado, então ele é separável. Em contrapartida, se existe uma quantidade não enumerável de bolas disjuntas, então o espaço não é separável.

Solução. Para cada $n \in \mathbb{N}$, seja $A_n = \{x_1^n, \dots, x_m^n\}$ a 1/n-net que cobre \mathcal{X} . Defina $A = \bigcup_{n \in \mathbb{N}} A_n$, que é claramente enumerável. Para ver que $\bar{A} = \mathcal{X}$, tome $x \in X$. Defina a sequência de pontos $\{a_n\}$ com $a_n \in A_n$, de modo que seja o ponto mais próximo de x para aquele A_n , isto é, $d(x, a_n) < 1/n$ para todo n e, portanto $a_n \to x$, o que mostra que o espaço é separável.

Agora, se existe uma quantidade não enumerável de bolas disjuntas, haverá uma bola, pelo menos, que não conterá pontos, para qualquer enumerável. Com isso, o conjunto não pode ser separável.

Exercício 49 Mostre que C[a, b] é separável (usando funções lineares com bicos nos números racionais). Também mostre que $C(\mathbb{R}_+)$ não é separável.

Solução. Defina P_n como sendo uma partição de [a,b] formada por racionais $\{q_1,\ldots,q_n\}$ tal que $a=q_0< q_1<\cdots< q_n< q_{n+1}=b$. Defina G_n o conjunto das funções lineares por partes com bicos em que q_i e com imagem $g(q_i) \in \mathbb{Q}$:

$$G_n = \left\{ g : g(x) = \sum_{i=0}^n \left(g(x_i) + \frac{g(x_{i+1}) - g(x_i)}{x_{i+1} - x_i} (x - x_i) \right) 1_{[x_i, x_{i+1})}(x), \{g(x_i)\} \in \mathbb{Q}^n \right\}.$$

É claro que G_n é enumerável, pois tem uma bijeção com $\mathbb{Q}^n \times \mathbb{Q}^n$. Defina $G = \bigcup_n G_n$, que também é enumerável. Para cada $f \in C[a,b]$ e $n \in \mathbb{N}$, tome $g_n \in G_n$ de forma que $g_n(x_i) \in B_{1/n}(f(x_i)) \cap \mathbb{Q}$. Tome $\epsilon > 0$. Então, para cada n, existe i com x_i^n mais próximo de x, para n suficientemente grande, usando a continuidade de f, Assim,

$$|f(x) - g_n(x)| \le |f(x) - f(x_i^n)| + |f(x_i^n) - g_n(x_i^n)| + |g_n(x_i^n) - g_n(x)|$$

$$\le |f(x) - f(x_i^n)| + 2|f(x_i^n) - g_n(x_i^n)| + |f(x_i^n) - f(x_{i+1}^n)| + |f(x_{i+1}^n) - g_n(x_{i+1}^n)|$$

$$< 5/n$$

Em particular, $d(f, g_n) < 5/n \to 0$ quando $n \to \infty$. Isso mostra que $g_n \to f$ e $f \in \bar{G}$, mostrando que G é denso enumerável em C[a, b].

Considere $\Lambda = \{0,1\}^{\mathbb{N}}$, isto é, as sequências de 0s e 1s. Essa sequência é não enumerável. Para $\lambda \in \Lambda$ e $x \in [n, n+1)$ para algum n, defina a função

$$f_{\lambda}(x) = \lambda_n + (\lambda_{n+1} - \lambda_n)(x - n),$$

isto é, f_{λ} é uma função linear por partes em que $f_{\lambda}(n) = \lambda_n$. Considere o conjunto $\mathcal{F} = \{f_{\lambda} \in C(\mathbb{R}_+) : \lambda \in \Lambda\}$, que é claramente não enumerável. Tome $f_a, f_b \in \mathcal{F}$. Se $a \neq b$, então para algum n, teremos que $a_n \neq b_n$ e, portanto,

$$d(f_a, f_b) \ge |f_a(n) - f_b(n)| = 1.$$

Com isso, temos que $\{B_1(f_{\lambda}) \subseteq C(\mathbb{R}_+)\}_{{\lambda} \in \Lambda}$ é não enumerável e formado por bolas disjuntas. Pelo Exercício 48, $C(\mathbb{R}_+)$ não é separável.

Exercício 50 Nesse exercício, provaremos o Teorema de Cauchy-Peano de existência de soluções de equações diferenciais ordinárias. Considere a EDO

$$\dot{x}(t) = f(t, x(t)), \quad x(t_0) = x_0$$

onde $f: \Omega \to \mathbb{R}^n$ é uma função contínua e $\Omega = [t_0, t_0 + a] \times \bar{B}_b(x_0)$, para $a, b \in \mathbb{R}$. Considere a métrica $d_{\infty}(x, y) = \max\{|x_i - y_i|\}$ para $x, y \in \mathbb{R}^n$.

(a) Para constantes $c, L \in \mathbb{R}$, defina o conjunto

$$\mathcal{A} := \{ \gamma : [t_0, t_0 + c] \to \mathbb{R}^n : ||\gamma(t) - \gamma(s)|| \le L|t - s|, \ \forall t, s \in [t_0, t_0 + c] \}.$$

Dados a, b, que escolha de constantes c, L nos garante que uma solução da EDO está em \mathcal{A} e é tal que $(t, \gamma(t)) \in \Omega$?

(b) Defina o funcional sobre \mathcal{A}

$$F(\gamma) = \max_{t \in [t_0, t_0 + c]} \left\| \gamma(t) - x_0 - \int_{t_0}^t f(s, \gamma(s)) ds \right\|.$$

Prove que F assume um mínimo em A.

(c) Defina a sequências de funções

$$\gamma_n(t) := \begin{cases} x_0, & \text{se } t \in [t_0, t_0 + c/n] \\ x_0 + \int_{t_0}^{t - c/n} f(s, \gamma_n(s)) \, ds, & \text{se } t \in (t_0 + c/n, t_0 + c] \end{cases}$$

Verifique que $F(\gamma_n) \to 0$ e conclua que a EDO admite ao menos uma solução \mathcal{C}^1 .

Referências

- [1] George Bachman and Lawrence Narici. Functional analysis. Courier Corporation, 2000.
- [2] Joseph Muscat. Functional analysis: an introduction to metric spaces, Hilbert spaces, and Banach algebras. Springer, 2014.