import libraries

```
In [3]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [9]: data = sns.load_dataset("titanic")
data

Out[9]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True
886	0	2	male	27.0	0	0	13.0000	S	Second	man	True
887	1	1	female	19.0	0	0	30.0000	S	First	woman	False
888	0	3	female	NaN	1	2	23.4500	S	Third	woman	False
889	1	1	male	26.0	0	0	30.0000	С	First	man	True
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	True
891 r	ows × 15 o	columns									

pre_processing

handle categorical data

In [10]: data.dtypes

Out[10]: survived int64 int64 pclass sex object float64 age int64 sibsp parch int64 fare float64 embarked object class category who object adult_male bool

deck category embark_town object

alive object alone bool

dtype: object

Out[12]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	deck	alive
0	0	3	male	22.0	1	0	7.2500	S	NaN	no
1	1	1	female	38.0	1	0	71.2833	С	С	yes
2	1	3	female	26.0	0	0	7.9250	S	NaN	yes
3	1	1	female	35.0	1	0	53.1000	S	С	yes
4	0	3	male	35.0	0	0	8.0500	S	NaN	no
886	0	2	male	27.0	0	0	13.0000	S	NaN	no
887	1	1	female	19.0	0	0	30.0000	S	В	yes
888	0	3	female	NaN	1	2	23.4500	S	NaN	no
889	1	1	male	26.0	0	0	30.0000	С	С	yes
890	0	3	male	32.0	0	0	7.7500	Q	NaN	no

891 rows × 10 columns

```
In [15]: data1.isna().sum()
Out[15]: survived
                        0
          pclass
                        0
          sex
                        0
                      177
          age
          sibsp
                        0
          parch
                        0
                        0
          fare
                        2
          embarked
                      688
          deck
          alive
                        0
          dtype: int64
```

In [24]: data2=data1.drop('deck',axis=1)
 data2

Out[24]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	alive
0	0	3	male	22.0	1	0	7.2500	S	no
1	1	1	female	38.0	1	0	71.2833	С	yes
2	1	3	female	26.0	0	0	7.9250	S	yes
3	1	1	female	35.0	1	0	53.1000	S	yes
4	0	3	male	35.0	0	0	8.0500	S	no
886	0	2	male	27.0	0	0	13.0000	S	no
887	1	1	female	19.0	0	0	30.0000	S	yes
888	0	3	female	NaN	1	2	23.4500	S	no
889	1	1	male	26.0	0	0	30.0000	С	yes
890	0	3	male	32.0	0	0	7.7500	Q	no

891 rows × 9 columns

Out[26]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	alive
0	0	3	male	22.0	1	0	7.2500	S	0
1	1	1	female	38.0	1	0	71.2833	С	1
2	1	3	female	26.0	0	0	7.9250	S	1
3	1	1	female	35.0	1	0	53.1000	S	1
4	0	3	male	35.0	0	0	8.0500	S	0
886	0	2	male	27.0	0	0	13.0000	S	0
887	1	1	female	19.0	0	0	30.0000	S	1
888	0	3	female	NaN	1	2	23.4500	S	0
889	1	1	male	26.0	0	0	30.0000	С	1
890	0	3	male	32.0	0	0	7.7500	Q	0

891 rows × 9 columns

```
In [27]: data3['survived'].equals(data3['alive'])
Out[27]: True
```

In [28]: data3.embarked.value_counts()

Out[28]: S 644 C 168 Q 77

Name: embarked, dtype: int64

```
In [30]: data4=data3.drop('alive',axis=1)
    data5=data4.replace({'sex':'male'},1).replace({'sex':'female'},0)
    data6=data5.replace({'embarked':'Q'},0).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({
```

Out[30]:

	survived	pclass	sex	age	fare	embarked	total number of family
0	0	3	1	22.0	7.2500	2.0	1
1	1	1	0	38.0	71.2833	1.0	1
2	1	3	0	26.0	7.9250	2.0	0
3	1	1	0	35.0	53.1000	2.0	1
4	0	3	1	35.0	8.0500	2.0	0
886	0	2	1	27.0	13.0000	2.0	0
887	1	1	0	19.0	30.0000	2.0	0
888	0	3	0	NaN	23.4500	2.0	3
889	1	1	1	26.0	30.0000	1.0	0
890	0	3	1	32.0	7.7500	0.0	0

891 rows × 7 columns

handle missing value

```
In [31]: data7.isna().sum()
Out[31]: survived
                                       0
         pclass
                                       0
                                       0
         sex
                                     177
         age
         fare
                                       0
         embarked
                                       2
         total number of family
                                       0
         dtype: int64
In [33]: data7.age.mode()
Out[33]: 0
               24.0
```

dtype: float64

```
In [34]: data7.age.mean()
Out[34]: 29.69911764705882
In [35]: data7.describe()
Out[35]:
                                                                                            total number of
                                                                                embarked
                     survived
                                   pclass
                                                  sex
                                                             age
                                                                         fare
                                                                                                    family
            count 891.000000
                               891.000000
                                           891.000000
                                                      714.000000
                                                                   891.000000
                                                                              889.000000
                                                                                                891.000000
                                                                                                  0.904602
            mean
                     0.383838
                                 2.308642
                                             0.647587
                                                        29.699118
                                                                    32.204208
                                                                                 1.637795
                     0.486592
                                 0.836071
                                                                    49.693429
              std
                                             0.477990
                                                        14.526497
                                                                                0.636157
                                                                                                  1.613459
                     0.000000
                                 1.000000
                                             0.000000
                                                                     0.000000
                                                                                                  0.000000
              min
                                                         0.420000
                                                                                0.000000
             25%
                     0.000000
                                 2.000000
                                             0.000000
                                                        20.125000
                                                                     7.910400
                                                                                 1.000000
                                                                                                  0.000000
             50%
                     0.000000
                                 3.000000
                                             1.000000
                                                        28.000000
                                                                    14.454200
                                                                                2.000000
                                                                                                  0.000000
             75%
                     1.000000
                                 3.000000
                                             1.000000
                                                        38.000000
                                                                    31.000000
                                                                                 2.000000
                                                                                                  1.000000
                     1.000000
                                 3.000000
                                             1.000000
                                                        80.000000
                                                                  512.329200
                                                                                 2.000000
                                                                                                 10.000000
             max
In [41]: data8=data7.fillna({'age':24})
           data9=data8.dropna()
           data9.isna().sum()
```

```
Out[41]: survived 0 pclass 0 sex 0 age fare 0 embarked total number of family 0 dtype: int64
```

handle outlier data

```
In [42]: data9.boxplot()
```

Out[42]: <matplotlib.axes._subplots.AxesSubplot at 0x1d868603910>


```
In [43]: data9.iloc[:,[3,4,6]].boxplot()
```

Out[43]: <matplotlib.axes._subplots.AxesSubplot at 0x1d868ddc130>


```
In [44]: #age
Q1 = data9.iloc[:,3].quantile(0.25)
Q3 = data9.iloc[:,3].quantile(0.75)
LB = Q1-1.5*(Q3-Q1)
UB = Q3+1.5*(Q3-Q1)
print(LB,UB)
```

2.5 54.5

```
In [46]: data9[data9['age']<2.5].shape</pre>
```

Out[46]: (24, 7)

```
In [47]: data9[data9['age']>54.5].shape
Out[47]: (41, 7)
In [48]: #fare
         Q1 = data9.iloc[:,4].quantile(0.25)
         Q3 = data9.iloc[:,4].quantile(0.75)
         LB = Q1-1.5*(Q3-Q1)
         UB = Q3+1.5*(Q3-Q1)
         print(LB,UB)
         -26.7605 65.6563
In [49]: data9[data9['fare']>65.6563].shape
Out[49]: (114, 7)
In [50]: #total number of family
         Q1 = data9.iloc[:,6].quantile(0.25)
         Q3 = data9.iloc[:,6].quantile(0.75)
         LB = Q1-1.5*(Q3-Q1)
         UB = Q3+1.5*(Q3-Q1)
         print(LB,UB)
         -1.5 2.5
In [51]: data9[data9['total number of family']>2.5].shape
Out[51]: (91, 7)
In [52]: data9[data9['total number of family']<-1.5].shape</pre>
Out[52]: (0, 7)
```

handle duplicated value

```
In [75]: data.duplicated().sum()
Out[75]: 107
```

Out[72]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True
885	0	3	female	39.0	0	5	29.1250	Q	Third	woman	False
887	1	1	female	19.0	0	0	30.0000	S	First	woman	False
888	0	3	female	NaN	1	2	23.4500	S	Third	woman	False
889	1	1	male	26.0	0	0	30.0000	С	First	man	True
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	True

784 rows × 15 columns

In [73]: data2=data1.iloc[:,[0,1,2,3,4,5,6,7,11,13]]

Out[73]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	deck	alive
0	0	3	male	22.0	1	0	7.2500	S	NaN	no
1	1	1	female	38.0	1	0	71.2833	С	С	yes
2	1	3	female	26.0	0	0	7.9250	S	NaN	yes
3	1	1	female	35.0	1	0	53.1000	S	С	yes
4	0	3	male	35.0	0	0	8.0500	S	NaN	no
885	0	3	female	39.0	0	5	29.1250	Q	NaN	no
887	1	1	female	19.0	0	0	30.0000	S	В	yes
888	0	3	female	NaN	1	2	23.4500	S	NaN	no
889	1	1	male	26.0	0	0	30.0000	С	С	yes
890	0	3	male	32.0	0	0	7.7500	Q	NaN	no

784 rows × 10 columns

```
In [78]: data3=data2.drop('deck',axis=1)
    data4=data3.replace({'alive':'no'},0).replace({'alive':'yes'},1)
    data5=data4.drop('alive',axis=1)
    data6=data5.replace({'sex':'male'},1).replace({'sex':'female'},0)
    data7=data6.replace({'embarked':'Q'},0).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embarked':'C'},1).replace({'embark
```

Out[78]:

	survived	pclass	sex	age	fare	embarked	total number of family
0	0	3	1	22.0	7.2500	2.0	1
1	1	1	0	38.0	71.2833	1.0	1
2	1	3	0	26.0	7.9250	2.0	0
3	1	1	0	35.0	53.1000	2.0	1
4	0	3	1	35.0	8.0500	2.0	0
885	0	3	0	39.0	29.1250	0.0	5
887	1	1	0	19.0	30.0000	2.0	0
888	0	3	0	24.0	23.4500	2.0	3
889	1	1	1	26.0	30.0000	1.0	0
890	0	3	1	32.0	7.7500	0.0	0

782 rows × 7 columns

feature scaling

z_score

```
In [104]: x=data10.iloc[:,[1,3,4,5,6]].values
binary=data10.iloc[:,[0,2]].reset_index().drop('index',axis=1)
```

```
In [105]: from sklearn.preprocessing import StandardScaler
          ss=StandardScaler()
          x_ss=ss.fit_transform(x)
          x ss
Out[105]: array([[ 0.88270537, -0.50794209, -0.52443986, 0.56772464, 0.03875807],
                 [-1.46118461, 0.64938541, 0.70359063, -1.05850491, 0.03875807],
                 [0.88270537, -0.21861021, -0.51149471, 0.56772464, -0.62012912],
                 [ 0.88270537, -0.36327615, -0.21375629, 0.56772464, 1.35653244],
                 [-1.46118461, -0.21861021, -0.08814041, -1.05850491, -0.62012912],
                 [0.88270537, 0.2153876, -0.51485086, -2.68473445, -0.62012912]])
In [106]: df_ss=pd.DataFrame(x_ss,columns=data10.iloc[:,[1,3,4,5,6]].columns)
In [107]: | data11=pd.concat([df_ss,binary],axis=1)
          data11
```

Out[107]:

	pclass	age	fare	embarked	total number of family	survived	sex
0	0.882705	-0.507942	-0.524440	0.567725	0.038758	0	1
1	-1.461185	0.649385	0.703591	-1.058505	0.038758	1	0
2	0.882705	-0.218610	-0.511495	0.567725	-0.620129	1	0
3	-1.461185	0.432387	0.354871	0.567725	0.038758	1	0
4	0.882705	0.432387	-0.509097	0.567725	-0.620129	0	1
777	0.882705	0.721718	-0.104921	-2.684734	2.674307	0	0
778	-1.461185	-0.724941	-0.088140	0.567725	-0.620129	1	0
779	0.882705	-0.363276	-0.213756	0.567725	1.356532	0	0
780	-1.461185	-0.218610	-0.088140	-1.058505	-0.620129	1	1
781	0.882705	0.215388	-0.514851	-2.684734	-0.620129	0	1

782 rows × 7 columns

min-max

```
In [135]: from sklearn.preprocessing import MinMaxScaler
           x1=data10.iloc[:,[1,3,4,5,6]].values
          y1=data10.iloc[:,0].reset_index().drop('index',axis=1)
          binary=data10.iloc[:,2].reset index().drop('index',axis=1)
          mm = MinMaxScaler()
          x_mm = mm.fit_transform(x1)
           x mm
Out[135]: array([[1.
                             , 0.27117366, 0.01415106, 1.
                                                                  , 0.1
                                                                               ],
                  [0.
                             , 0.4722292 , 0.13913574, 0.5
                                                                  , 0.1
                                                                               ],
                             , 0.32143755, 0.01546857, 1.
                  [1.
                                                                   , 0.
                                                                               ],
                  . . . ,
                             , 0.2963056 , 0.04577135, 1.
                  [1.
                                                                  , 0.3
                                                                               ],
                             , 0.32143755, 0.0585561 , 0.5
                                                                  , 0.
                  [0.
                                                                               ],
                  [1.
                             , 0.39683338, 0.01512699, 0.
                                                                  , 0.
                                                                               ]])
In [136]: df_mm=pd.DataFrame(x_mm,columns=data10.iloc[:,[1,3,4,5,6]].columns)
          df_mm
```

Out[136]:

	pclass	age	fare	embarked	total number of family
0	1.0	0.271174	0.014151	1.0	0.1
1	0.0	0.472229	0.139136	0.5	0.1
2	1.0	0.321438	0.015469	1.0	0.0
3	0.0	0.434531	0.103644	1.0	0.1
4	1.0	0.434531	0.015713	1.0	0.0
777	1.0	0.484795	0.056848	0.0	0.5
778	0.0	0.233476	0.058556	1.0	0.0
779	1.0	0.296306	0.045771	1.0	0.3
780	0.0	0.321438	0.058556	0.5	0.0
781	1.0	0.396833	0.015127	0.0	0.0

782 rows × 5 columns

Out[137]:

	pclass	age	fare	embarked	total number of family	sex	survived
0	1.0	0.271174	0.014151	1.0	0.1	1	0
1	0.0	0.472229	0.139136	0.5	0.1	0	1
2	1.0	0.321438	0.015469	1.0	0.0	0	1
3	0.0	0.434531	0.103644	1.0	0.1	0	1
4	1.0	0.434531	0.015713	1.0	0.0	1	0
777	1.0	0.484795	0.056848	0.0	0.5	0	0
778	0.0	0.233476	0.058556	1.0	0.0	0	1
779	1.0	0.296306	0.045771	1.0	0.3	0	0
780	0.0	0.321438	0.058556	0.5	0.0	1	1
781	1.0	0.396833	0.015127	0.0	0.0	1	0

782 rows × 7 columns

feature selection

brute_force

In [138]: fig=plt.figure(figsize=(6,6))
sns.heatmap(data10.corr(),vmin=-1,vmax=1,annot=True,cmap='coolwarm')

Out[138]: <matplotlib.axes._subplots.AxesSubplot at 0x1d86c0e51f0>

filter method

```
In [139]: from sklearn.feature_selection import SelectKBest
    from sklearn.feature_selection import chi2
    from sklearn.feature_selection import f_classif
In [145]: x2=data12.iloc[:,0:6]
    y2=data12.iloc[:,-1]
    bestfeatures = SelectKBest(score_func = chi2, k = 'all')
```

Out[145]:

```
03.12543947.7571011716.284499
```

dfscores

fit = bestfeatures.fit(x1,binary)
dfscores = pd.DataFrame(fit.scores)

4 74.408395

1.519728

3

```
In [144]: x2=data12.iloc[:,0:6]
    y2=data12.iloc[:,-1]
    bestfeatures = SelectKBest(score_func = f_classif, k = 'all')
    fit = bestfeatures.fit(x1,binary)
    dfscores = pd.DataFrame(fit.scores_)
    dfscores
```

C:\Users\sun\anaconda3\lib\site-packages\sklearn\utils\validation.py:73: DataCo
nversionWarning: A column-vector y was passed when a 1d array was expected. Ple
ase change the shape of y to (n_samples,), for example using ravel().
 return f(**kwargs)

Out[144]:

```
0
9.740201
7.300893
22.408319
6.674788
31.551836
```

In [148]: data

Out[148]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True
886	0	2	male	27.0	0	0	13.0000	S	Second	man	True
887	1	1	female	19.0	0	0	30.0000	S	First	woman	False
888	0	3	female	NaN	1	2	23.4500	S	Third	woman	False
889	1	1	male	26.0	0	0	30.0000	С	First	man	True
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	True

891 rows × 15 columns

Out[152]: <seaborn.axisgrid.FacetGrid at 0x1d86c095430>

