

Theoretical Mechanics, Lab 9: DYN COM LINEAR

Theorem on the:

Motion of the centre of Mass of a system Change of Linear momentum of a system

Motion of the centre of mass of a system

R. O.	Eqn#	Equations	Applications	Extra Info
System	1-3	1. $m\vec{a}_c = \sum \vec{F}$; $\vec{x}_c = \frac{\sum m_i \vec{x}_i}{\sum m_i}$ 2. $\frac{d\vec{Q}_c}{dt} = \sum \vec{F}$; $Q_c = \sum m\vec{v}_i$	We are interested in linear motion. 1. Easy to find a displacement for a body of a system, motion equation for system, external forces. 2. Easy to find a velocities for bodies.	

Task 1 and 2 (mine)

A system consist of body A (rectangular) with mass m_1 and a body B (ball) with mass m_2 which connected to the body A by rotational joint.

$$OB = I = 0.2, m_1 = 2, m_2 = 0.5.$$

There are 2 tasks:

1. We need to find *S* (distance), when the body *B* moved from *I* position, to *II* with applied torque *M*.

Answer:
$$S = \frac{m_2 I}{m_1 + m_2} = 0.04$$

 We know that B has an angular velocity ω = εt, where ε = const. We have to find a velocity of A, when the body B reaches II position.

Task 3 (yours): M (rus) 35.17

546. A homogeneous prism B rests on a homogeneous prism A which is placed on a horizontal plane, as shown in Fig. 349. The cross-sections of the prisms are right triangles. The weight of the prism A is three times that of the prism B. Assuming that the prisms and the plane are perfectly smooth, determine the length I through which the prism A moves when B, which is sliding down along A, touches the plane.

Ans.
$$l = \frac{a-b}{4}$$
.

Task 4 (yours)

547. A floating crane lifts a weight P_1 =2000 kgf, the jib being turned through an angle of 30° to the vertical (Fig. 350). The crane weighs P_2 =20,000 kgf. The length of the jib is OA=8 m. Determine the displacement of the floating crane. The resistance of the water and the weight of the jib should be neglected.

Ans. The crane moves a distance of 0.36 m to the left.

Fig. 350

