NUMERICAL METHODS IN PYTHON

OUTPUT

Complex Mathematics Formula

FORMULA

INPUT FROM USER

<u>Storage</u>

VARIABLE

= 5

What is Coding?

Run it ONCE and then REPEAT

For Coding what we require to learn?

1. UnderStand DATA Flow

2. Learn to teach first step to Computer

3. Never Focus on Language

WORKING

OUTPUT

Complex Mathematics Formula

FORMULA

INPUT FROM USER

Complex Mathematics Cmath

Mathematics math

Statistics
Numpy
Matplotlib

QUADRATIC EQUATION

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$d = (b^{**}2) - (4^*a^*c)$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Function

def decrement(a,b,c):

$$d = (b**2) - (4*a*c)$$

return d

$$A = 1$$

$$B = 5$$

$$C = 6$$

solX = (-b - cmath.sqrt(decrement(a, b, c))) / (2*a)

print(" Hello World {} {} ".format(sol_x, sol_y))


```
a = int(input('a: '))
A = 1
B = 5
                                b = int(input('b: '))
C = 6
                                c = int(input('c: '))
                     A = input('a:')
                 A = int(input('a:'))
```

def decrement(a=a, b=b, c=c):

decrement

= decrement()

Default Values

If decrement

print("Decrement is greater than 0")

elif decrement

print("Decrement is equal to 0")

else:

print("All other Cases")

Conditional Statements

FACTORIAL OF A NUMBER

FOR LOOP

```
for i in range(I, I0):

print('Hello World')
```

```
for i in range(I, num+I):

print('Hello World')
```

RANGE

range(I, I0)

123456789

range([start], stop[, step])

start: Starting number of the sequence.

stop: Generate numbers up to, but not including this number.

step: Difference between each number in the sequence.

FOR LOOP

For element in myList:

← tab → print(element)

EULER METHOD

Euler's Method

The Taylor series can be written as

$$y(x+h) = y(x) + y'(x)h + \frac{y''(x)}{2!}h^2 + \frac{y'''(x)}{3!}h^3 + \cdots$$

By truncation the series at the first derivative term, the approximate solution of Euler's method is obtained. Thus

$$y(x+h) = y(x) + y'(x)h$$

The initial conditions in this case should be the value of y(x) at initial x. This method is known as point-slope method because it predicts the next point using the slope y'(x).

Example

Example 1: Find the numerical solution of the following differential equation over the domain

[0, 2].

$$y' = xy$$
,

$$y'=xy, \qquad y(0)=1$$

Analytical Solution: $y = e^{x^2/2}$

Question

$$y(0) = 1$$

Initial Value of y

$$H = 0.5$$

Number of Steps (n)

TRAPEZOIDAL RULE

Area of this enclosed segment

Number of Divisions

Example

Example: Find the value of the integral

$$\int_{0}^{\frac{\pi}{2}} x \sin x \, dx$$

Solution: The analytical integration gives 1.

Question
$$=$$
 F

Number of Divisions (n)

a Lower Limit

Inputing the formula (S)

B Upper Limit

$$x = a + h$$
 $x = a + 2h$

The area of the first section is

$$A = h[f(x_0) + f(x_1)]/2$$

The integral will be equal to the sum of the trapezoidal areas:

$$I = \frac{h}{2}[f(x_0) + f(x_1)] + \frac{h}{2}[f(x_1) + f(x_2)] + \dots + \frac{h}{2}[f(x_{n-2}) + f(x_{n-1})] + \frac{h}{2}[f(x_{n-1}) + f(x_n)]$$
So,

$$I = h\left\{\frac{1}{2}[f(x_0) + f(x_n)] + f(x_1) + f(x_2) + \dots + f(x_{n-2}) + f(x_{n-1})\right\}$$

or

$$I = h \left\{ \frac{1}{2} [f(x_a) + f(x_b)] + f(x_1) + f(x_2) + \dots + f(x_{n-2}) + f(x_{n-1}) \right\}$$

Which can be programmed with in a single for-loop. Since the step size, h, is constant, the notation of x_i can be implemented in the code as $x_1 \rightarrow a+h$, $x_2 \rightarrow a+2h$ and so on.