数学优化

数学优化

• (Mathematical) Optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $g_i(x) = 0$, $i = 1, ..., p$

- $\mathbf{r} \times \mathbf{r} \in \mathbf{R}^n$ is (vector) variable to be chosen
- $ightharpoonup f_0$ is the *objective function*, to be minimized
- $ightharpoonup f_1, \ldots, f_m$ are the inequality constraint functions
- $ightharpoonup g_1, \ldots, g_p$ are the equality constraint functions

最大化问题可以转化为最小化问题

几乎任何问题都可以建模成数学优化问题来求解

数学优化

- 如何把问题建模成最优化问题?
 - 确定优化变量
 - 制定目标函数
 - 写出限制条件

Example

某军工厂生产甲、乙、丙三种产品,生产三 种产品需要A、B两种资源,其单位需求量及利润由下表1给出,问每天生产甲、乙、丙三种产品各多少,可使总利润最大?

	甲	乙	丙	资源的最大量
A	2	3	1	100kg
В	3	3	2	120kg
利润	40元	45元	24元	

$$max_{x_1,x_2,x_3}40x_1 + 45x_2 + 24x_3$$

$$s.t.\begin{cases} 2x_1 + 3x_2 + x_3 \le 100 \\ 3x_1 + 3x_2 + 2x_3 \le 120 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$$

线性回归问题

• 线性模型:

$$b = a^T x$$

输入a,输出b,系数是x

- 例如:
 - 学习时间和考试成绩
 - 疫情死亡人数与确诊人数

线性回归问题

• 给定了一系列观测值 (a_i, b_i) ,如何确定x?

 从数据中估计模型参数一般称为模型拟合(model fitting) 或者回归(regression)

最小二乘法

•最小二乘法:最小化均方误差(Mean Square Error,简称MSE)

$$\hat{x} = \arg\min_{x} \sum_{i} (b_i - a_i^T x)^2$$

- 残差: $r_i = b_i a_i^T x$
- 残差向量: $R = [r_1, \dots, r_n]^T$

L2范数

L2范数:
$$||x||_2 = \sqrt{\sum_i x_i^2}$$

• 向量x的欧式距离

MSE 等于残差向量 $R = [r_1, \dots, r_n]^T$ 的L2范数的平方

$$MSE = ||R||_2^2$$

最小二乘的统计解释

• 假设数据带有高斯噪音

$$b_i = a_i^T x + n, n \sim G(0, \sigma)$$

• 给定x观察到 (a_i,b_i) 的可能性:

$$P[(a_i, b_i)|x] = P[b_i - a_i^T x] \propto \exp{-\frac{(b_i - a_i^T x)^2}{2\sigma^2}}$$

• P通常被称为: 似然函数 / 似然性(likelihood)

最小二乘的统计解释

• 假定观测数据点彼此独立,则联合似然函数如下

$$P[(a_1,b_1)(a_2,b_2)...|x]$$

$$= \prod_{i} P[(a_i,b_i)|x]$$

$$= \prod_{i} P[b_i - a_i^T x]$$

$$\propto \exp{-\frac{\sum_{i} (b_i - a_i^T x)^2}{2\sigma^2}} = \exp{-\frac{\|Ax - b\|_2^2}{2\sigma^2}}$$

最大似然估计

• 最大似然估计寻找使似然函数最大化的x

$$\hat{x} = \arg \max_{x} P[(a_1, b_1)(a_2, b_2)...|x]$$

$$= \arg \max_{x} \exp -\frac{\|Ax - b\|_{2}^{2}}{2\sigma^{2}}$$

$$= \arg \min_{x} \|Ax - b\|_{2}^{2}$$

• 最小二乘对应于高斯噪声假设下的最大似然估计

非线性最小二乘

• 一般的非线性模型: $b = f_x(a)$

• 定义残差

$$R(x) = \begin{pmatrix} b_1 - f_x(a_1) \\ \vdots \\ b_n - f_x(a_n) \end{pmatrix}$$

• 最大似然估计等效于最小化MSE

$$\hat{x} = \arg\min_{x} \|R(x)\|_2^2$$

病态问题

• 病态问题指的是问题的解不唯一

例如:Ax = b 当方程数小于变量数

• 正则化: 通过添加先验知识来约束解的性质

• L2正则: $\min_{x} ||Ax - b||_{2}^{2} + \lambda ||x||_{2}^{2}$

- L2正则可以让x的值趋向于0
- 作用: 抑制冗余的变量

LI正则

•LI范数:
$$||x||_1 = \sum_i |x_i|$$

• LI正则:
$$\min_{x} ||Ax - b||_{2}^{2} + \lambda ||x||_{1}$$

• LI正则可以让x变得稀疏

正常值与离群值

• 正常值(Inlier):满足模型/噪音假设的数据点

• 离群值(Outlier):不满足模型/噪音假设的错误点

离群值

• 离群值会让最小二乘回归失败

离群值

- 为什么离群值会让最小二乘回归失败
 - MSE(平方误差)与残差平方成正比
 - 受离群值影响过大

鲁棒估计

- 如何降低离群值的影响?
 - 用其他目标函数替换MSE, 降低对离群值的惩罚
 - 例如LI范数、Huber函数

• 这种目标函数一般称为鲁棒函数

RANSAC

- •除了鲁棒函数,还有其他处理离群值的方法
- RANSAC: Random Sample Concensus
 - 目前最常用的处理离群值的方法
 - •核心思想:
 - Inlier的分布总是相似, outlier的分布各有各的不同
 - 用数据点对可能的模型参数进行投票

Ransac Procedure

数值优化方法

Recap: 线性回归

• 给定了一系列观测值 (a_i, b_i) ,如何确定x?

 从数据中估计模型参数一般称为模型拟合(model fitting) 或者回归(regression)

Recap: 最小二乘法

•最小二乘法:最小化均方误差(Mean Square Error,简称MSE)

$$\hat{x} = \arg\min_{x} \sum_{i} (b_i - a_i^T x)^2$$

- 残差: $r_i = b_i a_i^T x$
- 残差向量: $R = [r_1, \dots, r_n]^T$

Recap: 非线性最小二乘

• 一般的非线性模型: $b = f_x(a)$

• 定义残差

$$R(x) = \begin{pmatrix} b_1 - f_x(a_1) \\ \vdots \\ b_n - f_x(a_n) \end{pmatrix}$$

• 最大似然估计等效于最小化MSE

$$\hat{x} = \arg\min_{x} ||R(x)||_{2}^{2}$$

如何求解最优化问题?

- 有些问题有解析解
 - 线性最小二乘

$$\hat{x} = \arg\min_{x} ||Ax - b||_2^2$$

的解为以下线性方程组的解(目标函数关于x求导为0)

$$A^T A x = A^T b$$

如何求解最优化问题?

- 大部分问题没有解析解的问题
- 通用策略: 寻找一系列使目标函数不断下降的变量值完成优化

$$F(x_0) > F(x_1) > \dots > F(x_k) > \dots$$

梯度下降

- $x \leftarrow x_0$ %初始化
- while not converge
 - $p \leftarrow \text{descending_direction}(x)$ %确定下降方向
 - $\alpha \leftarrow \text{descending_step}(x, p)$ %确定步长
 - $x \leftarrow x + \alpha p$ %更新变量

• 如何确定下降方向与步长?

Preliminary

- 函数f的雅可比矩阵(Jacobian)
 - •一阶导数
 - 单输出函数的梯度

$$\mathbf{J} = egin{bmatrix} rac{\partial \mathbf{f}}{\partial x_1} & \cdots & rac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \\ dots & \ddots & dots \\ rac{\partial f_m}{\partial x_1} & \cdots & rac{\partial f_m}{\partial x_n} \end{bmatrix}.$$

- 函数f的海森矩阵(Hessian)
 - •二阶导数

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \, \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \, \partial x_n} \\ \\ \frac{\partial^2 f}{\partial x_2 \, \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \, \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \\ \frac{\partial^2 f}{\partial x_n \, \partial x_1} & \frac{\partial^2 f}{\partial x_n \, \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}.$$

下降方向的确定

• 对目标函数F(x)在 x_0 上进行一阶Taylor展开

$$F(x_0 + \Delta x) \approx F(x_0) + J_F \Delta x$$

• 当 $J_F \Delta x < 0$ 时,函数的值会下降(Δx 要足够小)

最速下降法

- $F(x_0 + \Delta x)$ 何时下降速度最快
 - 当 Δx 的方向与 $-J_F^T$ (负梯度方向)相同时

• 算法:

•
$$x \leftarrow x_0$$

• while not converge

•
$$x \leftarrow x - \alpha J_F^T$$

梯度方向垂直于等高线

步长的确定

- 步长 α 如何确定? 确定h之后F是 α 的函数 $\varphi(\alpha) = F(\mathbf{x} + \alpha \mathbf{h})$, \mathbf{x} and \mathbf{h} fixed, $\alpha \geq 0$.
- I. α 太小,函数值变化太小
 - 需要增大α
- 2. α 太大, $\phi(\alpha) > \phi(0)$
 - 需要减小α
- 3. α 接近于 $\phi(\alpha)$ 的minimizer
 - 可接受的 α 值

步长的确定

- 步长 α 如何确定?
- 1. Exact line search (太耗时)
- 2. Backtracking algorithm
- Initialize α with a big value
- Decrease α until $\phi(\alpha) \le \phi(0) + \gamma \phi'(0) \alpha$
 - 物理含义:满足上式时, α 处于右图中绿色区间

最速下降法

- 优点:
 - 实现简单计算量少
 - 在距离最优值较远时往往表现很好(启动快)
- 缺点:
 - 在最优值附近收敛缓慢
 - 当能量函数性质不好时会浪费很多迭代
 - 为什么收敛慢?
 - 只利用了一阶梯度信息
 - 没有利用曲率信息

最速下降法

牛顿法

- 利用目标函数的二阶导数(曲率)信息
- 在 x_k 附近进行二阶展开

$$F(x_k + \Delta x) \approx F(x_k) + J_F \Delta x + \frac{1}{2} \Delta x^T H_F \Delta x$$

• 求解最小化 $F(x_k + \Delta x)$ 的 Δx

$$H_F \Delta x + J_F^T = 0$$

• 最佳下降方向(牛顿步):

$$\Delta x = -H_F^{-1} J_F^T$$

牛顿法

- 优点: 收敛快
 - 在极值的邻域内二次收敛
 - 适合接近最终结果时使用
- 缺点: Hessian 计算量很大
 - 有时无法计算
 - 能不能近似?

绿色:梯度下降

红色: 牛顿法

高斯牛顿法

- 利用问题的性质来近似求解二阶导
 - 最小二乘问题

$$\hat{x} = \arg\min_{x} ||R(x)||_2^2$$

• 对R进行一阶近似:

$$||R(x_k + \Delta x)||_2^2 \approx ||R(x_k) + J_R \Delta x||_2^2$$

$$= ||R(x_k)||_2^2 + 2R(x_k)^T J_R \Delta x + \Delta x^T J_R^T J_R \Delta x$$

$$= ||F(x_k)||_2^2 + 2R(x_k)^T J_R \Delta x + \Delta x^T J_R^T J_R \Delta x$$

高斯牛顿法

• 此时最优的 Δx 满足

$$J_R^T J_R \Delta x + J_R^T R(x_k) = 0$$

• 最优下降方向:

$$\Delta x = -\left(J_R^T J_R\right)^{-1} J_R^T R(x_k)$$

- •对比牛顿法:
 - 牛顿步: $\Delta x = -H_F^{-1}J_F^T$
 - 高斯牛顿法用 $J_R^T J_R$ 近似Hessian矩阵 H_F

高斯牛顿法

- 优点
 - 不需要Hessian, 容易计算
 - 收敛快
- 缺点
 - 如果 $J_R^T J_R$ 不可逆,算法会变得不稳定

Levenberg-Marquardt

• LM法通过"正则化"回避这个问题

$$\Delta x = -(J_R^T J_R + \lambda I)^{-1} J_R^T R(x_k)$$

• 对于全部 $\lambda > 0$, $J_R^T J_R + \lambda I$ 一定是正定的

Levenberg-Marquardt

$$\Delta x = -(J_R^T J_R + \lambda I)^{-1} J_R^T R(x_k)$$

- λ的效果
 - λ → ∞ : 梯度下降步,并且长度短
 - $\lambda \to 0$: Gauss-Newton 步
- λ的选择
 - 每轮迭代更新
 - 当下降明显时, λ ↓
 - 当下降不明显时, λ ↑

Levenberg-Marquardt

- 优点:
 - 启动快 (λ ↑)
 - 收敛快 (λ ↓)
 - 不退化($J_R^T J_R + \lambda I$ 总是正定)
 - LM = 梯度下降+高斯牛顿

局部最优与全局最优

- 梯度下降只能找到局部最优解
- 对于特殊性质的函数,局部最优即全局最优(比如凸函数)

