PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-124729

(43)Date of publication of application: 25.04.2003

(51)Int.Cl.

H010 1/38 H01Q 1/40 H01Q 21/24

(21)Application number: 2002-003007

(71)Applicant : SAMSUNG ELECTRO MECH CO LTD

(22)Date of filing:

10.01.2002

(72)Inventor: SUNG JAE SUK

(30)Priority

Priority number: 2001 200159332

Priority date: 25.09.2001

Priority country: KR

(54) DUAL FEEDING CHIP ANTENNA WITH DIVERSITY FUNCTION

PROBLEM TO BE SOLVED: To provide a chip antenna equipped with not only a transmitting/ receiving function but also a diversity function.

SOLUTION: This antenna is provided with a dielectric substrate 21, an antenna 20 for transmitting/receiving formed from a first conductor pattern 23 in a portion of area on the dielectric substrate 21, an antenna 20 for diversity formed from a second conductor pattern 25 in another portion of the area on the dielectric substrate 21, a first feeding terminal 27 formed on one end of the antenna 20 for transmitting/receiving to be linked to a transmitting terminal circuit part and a receiving terminal circuit part, and a second feeding terminal 29 formed on one end of the antenna 20 for diversity to be linked to the receiving terminal circuit part.

LEGAL STATUS

[Date of request for examination]

10.01.2002 06.09.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出頭公開番号 特開2003-124729 (P2003-124729A)

(43)公開日 平成15年4月25日(2003.4.25)

(51) Int.CL7		識別配号	F I	テーマュート (参考)
HOIQ	1/38		H01Q 1/38	5 J O 2 1
_	1/40		1/40	5 J O 4 6
	21/24		21/24	

審査翻求 有 調求項の数14 OL (全 6 頁)

(21)出期番号	特顏2002-3007(P2002-3007)	(71) 出願人 591003770 三星 衛機株式会社
(22)出顧日	平成14年 1 月10日(2002.1.10)	大韓民国京教道水原市八達區梅薩 3 洞314
(31) 優先権主張番号 (32) 優先日 (33) 優先権主張国	2001-59332 平成13年9月25日(2001.9.25) 韓国(KR)	(72)発明者 成 幸 碩 大韓民国京敬道水原市八達区整通洞ハンシンアパート816洞903号 (74)代理人 100083806 弁理士 三好 秀和 (外1名) Fターム(参考) 5J021 AA02 AA12 AB02 HA05 HA06 5J046 AA04 AB08 AB10 AB13 PA01 PA04 QA00

(54) [発明の名称] ダイバーシティ機能を備えたデュアルフィードチップアンテナ

(57)【要約】

【課題】 送受信機能だけでなく、ダイバーシティ機能 を共に備えたチップアンテナを提供する。

【解決手段】 誘電体基板21と、前記誘電体基板21上の一部領域に第1導体バターン23で形成された送受信用アンテナ20と、前記誘電体基板21上の他の一部領域に第2導体バターン25で形成されたダイバーシティ用アンテナ20と、前記送受信用アンテナ20の一端に形成され、送信端回路部と受信端回路部に連結するための第1拾電端子27と、前記ダイバーシティ用アンテナ20の一端に形成され、前配受信端回路部に連結するための第2拾電端子29とを含む。

【特許請求の範囲】

【請求項1】 誘電体基板21と、

前配誘電体基板21上の一部領域に第1導体パターン2 3で形成された送受信用アンテナ20と、

1

前記誘電体基板21上の他の一部領域に第2導体バター ン25で形成されたダイバーシティ用アンテナ20と、 前記送受信用アンテナ20の一端に形成され、送信端回 路部と受信端回路部に連結するための第1 給電場子27

前記ダイパーシティ用アンテナ20の一端に形成され、 前記受信端回路部に連結するための第2給電端子29

を備えたことを特徴とするダイバーシティ機能を備えた デュアルフィードチップアンテナ.

【請求項2】 前配第1導体パターン23と第2導体パ ターン25の少なくとも1つは、所定の角度変化を少な くとも2回以上繰り返すパターンであることを特徴とす る請求項 1 記載のダイバーシティ 機能を備えたデュアル フィードチップアンテナ。

体パターン25とが所定の間隔を置いて分離されて形成 されたことを特徴とする請求項1記載のダイバーシティ 機能を備えたデュアルフィードチップアンテナ。

【請求項4】 前記第1導体パターン23と前記第2導 体パターン25はそれぞれ形成された方向によって異な る偏波を有することを特徴とする請求項1記載のダイバ ーシティ機能を備えたデュアルフィードチップアンテ ナ。

【請求項5】 前記第1導体パターン23と前記第2導 体パターン25は互いに異なる長さを有することを特徴 30 とする請求項1記載のダイバーシティ機能を備えたデュ アルフィードチップアンテナ。

【請求項6】 前記第1導体パターン23と前記第2導 体パターン25の少なくとも1つはメアンダライン(mea nder line)型に形成されることを特徴とする請求項1記 鉞のダイバーシティ機能を備えたデュアルフィードチッ **プアンテナ。**

【請求項7】 誘電体基板21と、

前記誘電体基板21内の一部領域に第1導体パターン3 3,43で形成された送受信用アンテナ20と、

前記誘電体基板21内の他の一部領域に第2導体バター ン35、45で形成されたダイパーシティ用アンテナ2 ٥٤.

前記送受信用アンテナ20の一端に形成され、送信端回 路部と受信端回路部に連結するための第1 給電端子27

前記ダイバーシティ用アンテナ20の一端に形成され、 前記受信端回路部に連結するための第2給電端子29

デュアルフィードチップアンテナ。

【請求項8】 前記送受信用アンテナ20と前記ダイバ ーシティ用アンテナ20は、前記誘電体基板21内部の 同一平面上に配置されるととを特徴とする請求項7記載 のダイバーシティ機能を備えたデュアルフィードチップ アンテナ。

【請求項9】 前記第1導体パターン33,43と第2 導体パターン35、45の少なくとも1つは、所定の角 度変化を少なくとも2回以上繰り退すパターンであるこ 10 とを特徴とする請求項7記載のダイバーシティ機能を備 えたデュアルフィードチップアンテナ。

【請求項10】 前記第1導体パターン33,43と前 記第2導体パターン35、45とが所定の間隔を置いて 分離されて形成されたととを特徴とする請求項7記載の ダイバーシティ機能を備えたデュアルフィードチップア ンテナ。

【請求項11】 前記第1導体パターン33.43と前 記第2導体パターン35.45はそれぞれ形成された方 向によって異なる偏波を有することを特徴とする離求項 【請求項3】 前記第1導体パターン23と前記第2導 20 7記載のダイパーシティ機能を備えたデュアルフィード チップアンテナ。

【請求項12】 前記第1導体バターン33.43と前 記第2導体パターン35、45は互いに異なる長さを有 することを特徴とする讃求項7記載のダイバーシティ機 能を備えたデュアルフィードチップアンテナ。

【請求項13】 前記第1導体バターン33.43と前 記第2導体パターン35,45の少なくとも1つはメア ンダライン型に形成されることを特徴とする請求項7配 載のダイバーシティ機能を備えたデェアルフィードチッ プアンテナ。

【請求項14】 少なくとも2枚の誘電体基板を備えた 積層チップアンテナにおいて、

前記少なくとも2枚の誘電体基板51、52のうち、1 枚の誘電体基板上に導体パターン53で形成された送受 信用アンテナ50と、

前記少なくとも2枚の誘電体基板51,52のうち、も う1枚の誘電体基板上に導体パターン55で形成された ダイパーシティ用アンテナ50と、

前記送受信用アンテナ50の一端に形成され、送信端回 路部と受信端回路部に連結するための第1 給電端子57

前記ダイバーシティ用アンテナ50の一端に形成され、 前配受信端回路部に連結するための第2拾電端子59

を備えたととを特徴とする積層チップアンテナ。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はダイバーシティ(div ersity)機能を備えたデュアルフィードチップアンテナ を備えたことを特徴とするダイバーシティ機能を備えた 50 (dual feeding chip antenna)に関し、より詳細には通

常の送受信機能と、受信感度を向上させるダイバーシテ ィ機能とを同時に行うととが可能なデュアルフィードチ ップアンテナに関する。

[0002]

【従来の技術】一般に、移動通信機はユーザの移動に伴 って電波環境が変化する。即ち、移動位置によって多重 波が生成され、信号のフェージング(fading)が発生する こともある。とのような信号のフェージングを軽減させ るために、複数のアンテナを使用する。との際、追加さ れるアンテナをダイバーシティ用アンテナと呼ぶ。移動 10 通信機のアンテナは、一般の送受信用アンテナとダイバ ーシティ用アンテナとから構成されている。

【0003】図4 (A) は上述したアンテナ構造を有す る無線端末機110の駅路図である。図4(A)を参照 すると、前配無線通信端末機110は、整合回路部11 4を介して送/受信機112に連結されたホイップアン テナ115と、別の受信機113に連結された平板アン テナ116とが備えられている。前記ホイップアンテナ 115は一般の送受信用アンテナの役割を果たし、前記 平板アンテナ116は受信感度を高めるための役割を果 20 たす。前記ホイップアンテナ115と前記平板アンテナ 116とが逆F形を成している。

【0004】 このような構造は、図4(B) に示す回路 構成を有する。図4 (B) はこの種のダイバーシティ機 能を備えた送受信機の回路図である。前記ダイバーシテ ィ機能を備えた送受信機は、図4(B)に示すように、 送受信のための第1アンテナ115と、ダイパーシティ 機能のための第2アンテナ116とを億える。前記第1 アンテナ115はデュプレクサ118を備え、前記デュ プレクサ118は送信信号と受信信号のためのフィルタ ーとして働く。また、前記第2アンテナ116を受信端 · (Rx) に連結してフェージングを除去し、受信感度を 改善するためのダイバーシティ受信機能を行う。

[0005]

【発明が解決しようとする課題】ところで、図4 (A) と図4(B)かち分るように、従来のダイパーシティ機 能を実現するための無線通信端末機は、一般の送受信用 アンテナの他に別のアンテナを備えなければならない。 とのようなアンテナを追加することにより、製造コスト も2つのアンテナのための空間を考慮しなければならな く、追加的なアンテナの設置によって通信機の外形が大 きくなるという問題が生ずる。しかも、ダイバーシティ アンテナは、取付位置によって一般の送受信用アンテナ とは異なる特性を示すので、所望の特性を得るために、 前記2つのアンテナの取付位置を細密に考慮しなければ ならないという内部設計上の難点があった。

【0006】本発明は、かかる問題を解決するためのも ので、その目的は、チップアンテナの製造技術を用いて 単一の誘電体基板上に送受信アンテナのための第1導体 50

バターンとダイバーシティアンテナのための第2導体バ ターンとを共に形成し、前記第1導体パターンと第2導 体バターンそれぞれの一緒には送信機及び受信機に連結 される第1給電端子と受信機に連結される第2給電端子 とを設け、送受信機能だけでなく、ダイバーシティ機能 を共に備えたチップアンテナを提供することにある。

【0007】本発明の他の目的は、第1導体パターンが 形成された第1誘電体基板と、第2導体パターンが形成 された第2誘電体基板とを含み、それぞれの導体パター ンの一端に第1給電端子と第2拾電端子を形成し、送受 信機能だけでなく、ダイバーシティ機能を共に償えた多 層型チップアンテナを提供するととにある。

[0008]

【課題を解決するための手段】上記目的を達成するた め、本発明は、チップアンテナにおいて、誘電体基板2 1と、前記誘電体基板21上の一部領域に第1導体バタ ーン23で形成された送受信用アンテナ20と、前記誘 電体基板21上の他の一部領域に第2導体パターン25 で形成されたダイバーシティ用アンテナ20と、前記送 受信用アンテナ20の一端に形成され、送信端回路部と 受信端回路部に連結するための第1拾電端子27と、前 記ダイバーシティ用アンテナの一端に形成され、前記受 信端回路部に連結するための第2 給電端子29 とを含ん でなる。従って、送受信機能だけでなく、ダイバーシテ ィ機能を共に備える。本発明の好適な実施の形態では、 前記第1導体パターン23または第2導体パターン25 は所定の角度変化を少なくとも2回以上繰り返すパター ンの形に形成することができる。さらに、本発明の他の 実施の形態では、前記第1導体パターン23及び前記第 2 導体パターン25を、所定の間隔を置いて互いに分離 30 形成することができる。本発明のさらに他の実施の形態 では、前記第1導体パターン23と前記第2導体パター ン25を、それぞれ形成された方向が互いに異なる個波 を有するように製造するとともできる。また、前記第1 導体バターン23の長さを前記第2導体バターン25の 長さと異ならせることにより、新規のダイバーシティ特 性を期待することもできる。前記第1導体パターン23 と前配第2導体パターン25の少なくとも1つはメアン ダライン(meander line)型に形成されることを要旨とす が増加するだけでなく、通信機器の内部回路の設計時に 40 る。従って、従来の内部設計上の問題を解消するととが できる.

【0009】また、上記目的を達成するため、本発明の さらに他の実施の形態では、誘電体基板21と、前記誘 電体基板21内の一部領域に第1導体バターン33,4 3で形成された送受信用アンテナ20と、前記誘電体基 板21内の他の一部領域に第2導体パターン35,45 で形成されたダイバーシティ用アンテナ20と、前記送 受信用アンテナ20の一端に形成され、送信端回路部と 受信端回路部に連結するための第1給電端子27と、前 記ダイバーシティ用アンデナ20の一端に形成され、前 記受信端回路部に連結するための第2給電端子29とか **らなる。従って、送受信機能だけでなく、ダイバーシテ** ィ機能を共に償える。前記送受信用アンテナとダイバー シティ用アンテナをそれぞれ構成する第1 客体パターン 33.43及び第2導体パターン35.45は、同一の 平面上に位置するように構成することができ、前述した 実施の形態の如く、様々な導体パターンにすることがで きる。すなわち、前記第1導体パターン23または第2 導体パターン25は所定の角度変化を少なくとも2回以 上繰り返すバターンの形に形成することができる。さら 10 に、本発明の他の実施の形態では、前記第1導体バター ン23及び前記第2導体バターン25を、所定の間隔を 置いて互いに分離形成することができる。 本発明のさら **に他の実施の形態では、前記第1導体パターン23と前** 記第2導体バターン25を、 それぞれ形成された方向が 互いに異なる偏波を有するように製造することもでき る。また、前記第1導体パターン23の長さを前記第2 導体パターン25の長さと異ならせることにより、新規 のダイバーシティ特性を期待することもできる。前記第 くともlつはメアンダライン(meander line)型に形成さ れることを要旨とする。従って、従来の内部設計上の問 題を解消することができる。

【0010】さらに、上記目的を達成するため、本発明 は、少なくとも2枚の誘電体基板を備えた積層チップア ンテナにおいて、前記少なくとも2枚の誘電体基板5 1,52のうち、1枚の誘電体基板上に導体パターン5 3で形成された送受信用アンテナと、前配少なくとも2 枚の誘電体基板51、52のうち、もう1枚の誘電体基 板上に導体バターン55で形成されたダイバーシティ用 アンテナ50と、前記送受信用アンテナ50の一端に形 成され、送信端回路部と受信端回路部に連結するための 第1給電場子57と、前記ダイパーシティ用アンテナ5 0の一端に形成され、前記受信端回路部に連結するため の第2給電端子59とを含んでなる。従って、送受信機 能だけでなく、ダイバーシティ機能を共に備える。

[0011] 【発明の実施の形態】以下、本発明の一実施の形態を添 付図面に基づいてより詳細に説明する。ここで、本発明 の特徴は、誘電体基板上に導電性物質でパターンを形成 40 するチップアンテナ製造技術を用いて、一般の送受信用 アンテナとダイバーシティ用アンテナを、単一の誘電体 基板からなる構造物、或いは少なくとも2枚以上の誘電 体基板が積層された構造物に形成することにある。従っ て、ダイバーシティ機能を備えるため別のアンテナを装 **着することによる製品設計上の複雑さを解消することが** でき、アンテナ全体のサイズを減少させることにより、 アンテナを実装する製品の小型化を図ることができる。 【0012】図1(A)は本発明の一実施の形態による チゥプアンテナ20を示す。図1(A)には、2つの導 50 ができた。

体パターン23、25を偉えた誘電体基板21が示され ている。前記誘電体基板21上には一般の送受信用アン テナのための第1導体バターン23と、ダイバーシティ 用アンテナのための第2導体パターン25とが形成され ている。前記導体バターン23、25はAg、Cu、A uなどの高伝導性金属物質からなり、メアンダライン(¤ eander line)型に形成することが好ましい。また、前記 導体パターン23、25は、所定の角度変化を少なくと も2回以上繰り返すバターンの形に形成することがチュ プアンテナ全体の小型化に好ましい。

【0013】一方、本発明のチップアンテナ20は、前 記第1導体パターン23の一端に送信機及び受信機に連 結するための第1拾電端子27を備え、前記第2導体バ ターン25の一端には受信機にのみ連結するための第2 給電端子29を備える。特に、前記第2給電端子29は 受信機(図示せず)と連結され、前記第2導体バターン 29がダイバーシティ受信用アンテナとしての役割を果 たせるようにする。

【0014】次に、図1(B)を参照して、無線通信端 1 導体パターン 23 と前配第2 導体パターン 25 の少な 20 末機における前記チップアンテナの作動を説明する。図 1 (B) は本発明に係るチュブアンテナを備えた無線通 信端末機の概略的な回路図である。

【0015】本発明に係るチップアンテナは、前述した ように、2つの導体パターンからなるアンテナで構成さ れる。前記回路の動作を簡単に説明すると、次の通りで ある。図1 (B) の回路図に示すように、アンテナ20 は、第1導体パターン23と第2導体パターン25とが 形成された誘電体基板21である。 第1導体パターン2 3で形成されたアンテナは、送信端 (Tx) から得た電 波を送信し、受信された電波を受信端 (Rx) に提供す る。 第2導体バターン25で形成されたアンテナは、 受 信された電波を受信端(R x)に提供してダイバーシテ ィ用アンテナの役割を果たす。 とのように前記2つの導 体パターンを単一の誘電体基板上に形成し、各等体パタ ーンが送受信用アンテナ、ダイバーシティ用アンテナと して機能できるように、第1及び第2給電端子を備える ことにより、一般の送受信用アンテナとダイバーシティ 用アンテナとを単一のチップアンテナで同時に実現する ととができる。

【0016】本発明の他の特徴は、一般の送受信アンテ ナとダイバーシティ受信用アンテナの取付位置によるダ イバーシティ特性を容易に実現できることにある。即 ち、ダイバーシティ特性は、その機能によるアンテナの 取付位置によって別のダイバーシティ特性を示し、さち にその特性自体が低下する虞があるという問題があるか ら、 端末機の内部構造設計上の難点とされてきた。 しか し、本発明は単一のチップ形態にアンテナを導体バター ンで形成することにより、所望する特性のための取付位 **镫を容易に設定して従来の設計上の難点を解消すること**

【0017】前記実施の形態とは異なり、送受信用アンテナ及びダイバーシティ用アンテナを構成する第1及び第2導体パターンを誘電体基板内に形成することもできる。このような方式は、複数のグリーンシートを用意し、そのうち少なくとも1枚のシート上に第1及び第2導体パターンを形成した後、これを積層して焼成する方式にすることもできる。前記誘電体基板内に導体パターンを形成するチップアンテナにおいても、前述した実施の形態の如く多様な導体パターンを構成することにより、所望のダイバーシティ機能を容易に得ることができる。このような基板の内部に送受信用アンテナ及びダイバーシティ用アンテナを製造する方法は、当業者には明らかなことであろう。

【0018】次に、所望のダイバーシティ特性を得るためのチャブアンテナの多様な実施の形態を説明する。前述した図1(A)に示す実施の形態では、2つの導体バターンを所定の間隔を置いて形成する場合には空間ダイバーシティ効果を得ることができる。図1(A)に示す実施の形態の他にも、本発明に係るチャブアンテナは導体バターンを変形することにより、所望のダイバーシテ 20ィ機能を多様に得ることができる。

【0019】図2(A)及び図2(B)は様々なダイバーシティ機能を備えるためのチュブアンテナの実施の形態を示す図である。

【0020】図2(A)はこのような偏波ダイバーシティ効果を得るためのチップアンテナの実施の形態を示す。図2(A)に示すように、チップアンテナは、第1 導体バターン33と第2導体バターン35を、異なる偏波方向を有するように形成する。従って、ダイバーシティ機能のためのアンテナである第2導体バターン35は、第1等体バターン33に受信される電波と直交する電波を受信して偏波ダイバーシティ機能を行うことができる。

[0021] 図2(B)は周波数ダイバーシティ効果を得るためのチップアンテナの実施の形態である。このようなチップアンテナは、第1導体パターン43の長さを第2導体パターン45の長さと異ならせることにより、各パターンによるアンテナの共振周波数を異にする方式を取る場合である。図2(B)を参照すると、第1導体パターン43が第2導体パターン45の長さより長く形成されていることが分る。従って、第2導体パターン45が高い共振周波数を有し、これを介して受信される電波によって周波数ダイバーシティ機能を実現することができる。

【0022】前述したように、本発明は、誘電体基板上 に形成される導体バターンの相互位置を調整することに より、所望のダイバーシティ機能を得ることができる。 従って、前記チップアンテナを採用する無線通信端末機 の場合、2つのアンテナの取付位置を考慮するために内 部設計を予め考えなければならないという問題を解消す 50

るととができる.

【0023】前記実施の形態は、単一の誘電体基板を用いてチップアンテナを形成する方式を説明したものである。これとは異なり、本発明の他の実施の形態は2枚以上の誘電体基板を領層して形成する多層型チップアンテナ(積層チップアンテナ)であるが、前記実施の形態と同一の原理で実現することができる。

【0024】図3は第1誘電体基板51と第2誘電体基板52とからなる多層型チップアンナ50を示す。前記第1誘電体基板51と第2誘電体基板52上にはそれぞれ第1導体パターン53と第2導体パターン55が形成されている。前記第1導体パターン53と第2導体パターン55の各一端には第1拾電端子57と第2拾電端子59をそれぞれ備えている。前記第1拾電端子57は、第1導体パターン53が一般の送受信用アンテナの機能を行うように、送信機及び受信機との連結部を提供し、前記第2拾電端子59は、第2導体パターン55がダイパーシティ受信用アンテナの機能を行うように受信機との連結部を提供する。結果として、前記多層型チップアンテナも、前述した単一の誘電体基板と同じ機能を持つことができる。

【0025】以上述べた本発明は、前述した実施の形態及び添付図面によって限定されるのではなく、特許請求の範囲によって限定される。従って、特許請求の範囲に記載の本発明の技術的思想から外れない範囲内で様々な形態の置換、変形及び変更が可能なのは、当技術分野で通常の知識を有する者には明らかなことであろう。

[0026]

【発明の効果】上述したように、本発明のチャブアンテナによれば、誘電体基板上に導電性物質でパターンを形成するチャブアンテナ製造技術を用いて、一般の送受信用アンテナとダイバーシティ用アンテナとを単一の誘電体基板が預層された構造物に形成することにより、1つのチャブアンテナで、一般の送受信機能だけでなくダイバーシティ機能を行うことができる。従って、別のアンテナの取付による製品設計上の複雑さを解消することができ、アンテナ全体による製品容積を減少させて製品の小型化を図ることができる。しかも、様々なダイバーシティ特性を、各導体パターンの形成位置を調節することにより容易に得ることができる。

[図面の簡単な説明]

【図 I 】 (A) は本発明の一実施の形態によるデュアルフィードチップアンテナの概略図、(B) は本発明によるデュアルフィードチップアンテナを採用した回路図である。

【図2】(A)は本発明の他の実施の形態によるデュアルフィードチップアンテナの概略図、(B)は本発明のさらに他の実施の形態によるデュアルフィードチップア

10

ンテナの概略図である。

【図3】本発明による多層型デュアルフィードチップアンテナの概略図である。

【図4】(A)は従来のダイバーシティ受信機能を備えた無線送末機の斜視図、(B)は従来のダイバーシティ受信機能を実現した回路図である。

【符号の説明】

*21 誘電体基板

23、33、43、53 第1導体パターン

25、35、45、55 第2導体パターン

27、57 第1給電端子

29、59 第2拾電端子

51 第1誘電体基板

k 52 第2誘電体基板

