Subject

2 сентября 2025 г.

Содержание

1. J	Логика	3
1.1.	Множества	3

1. Логика

Мат.логика имеет дело с высказываниями/утверждениями. Им присваивается значение либо истина, либо ложь.

Суждения (высказывания) могут быть простыми и составными.

Выделяют базовые связки?

- He ¬
- И \ (конъюнкция)
- Или ∨ (дизюнкция)
- Если, то ⇒ (импликация)
- Тогда и только тогда ⇔
- Или, или **⊕**

Можно составить таблицы, отражающую истинность соответствующих связок.

1.1. Множества

 $x \in A$ - x является элементом множества A

 $x \notin A$ - не является

(a) Таблица "если, (b) Таблица "тогда и (c) "Или, или" только тогда"

 $B\subset A$ - множество B входит в множества A. Обозначение \subseteq подразумевает возможное совпадение множества.

Например, :
$$A := \{1, 2, 3\}; B := \{2, 3\}; \Rightarrow B \subseteq A$$

Пустое множество: \emptyset или \oslash или \varnothing - множество, не содержащее элементов.

Можно рассматривать дополнение к множеству. Например, если работаем над полем целых чисел \mathbb{Z} , и вводим множество $A:=\{2,5\}$, то дополнением $\overline{A}:=\mathbb{Z}/\{2,5\}$, где / - операция вычитания.

Конъюнкция множеств является множество, состоящее из общих элементов: $A \wedge B \equiv A \cap B := \{x | x \in A \wedge x \in B\}.$

Дизюнкция определяется как объединение всех элементов обоих множеств, взятых единожды: $A \lor B \equiv A \cup B := \{x,y|x \in A \lor y \in B\}.$

Разность множеств - множество, элементы которого содержатся в первом множестве, но не содержатся во мтором: $A/B := \{x : x \in A \land x \notin B\}.$

Пустое множество явлется нейтральным по отношению к сложению множеством.

Симметрическая разность: $A\triangle B\equiv (A/B)\cup (B/A):=\{x|(x\in A,x\notin B)\vee (x\notin A,x\in B)\}.$

Равенство множеств определяется поэлементно: $A=B:=(A\subseteq B)\wedge(B\subseteq A)$