Introduction

Basic terminology

- Population vs. Sample
- Parameter vs. Statistic
- Descriptive vs. Inferential Statistics
- Types of variables

What is Statistics

Statistics is the art of learning from data.

~Sheldon M. Ross

Statistics is the science of learning from data.

~Moore, McCabe & Craig

Statistics is the art and science of learning from data.

~Alan Agresti

 Statistics is the science whereby inferences are made about specific random phenomena on the basis of relatively limited sample materials.

~ Bernard Rosner

The **Population**

 The collection of all subjects of interest

The **Sample**

A subset of the population

Parameters

 Numerical measures computed using population data

Statistics

 Numerical measures computed using sample data

Descriptive statistics

Collecting, summarizing, and presenting data

Inferential statistics

Drawing conclusions about a population based only on sample data

Some questions of interest:

- What is the average height of this class?
- What proportion of NUS students are female?

 What is the total sugar consumption (in a year) of all Singaporeans?

Descriptive Statistics

- Organize / graph
- Numerical summaries

Inferential Statistics

- Estimate / predict
- Decide /conclude

A variable is any characteristics that is recorded for subjects in the study.

The terminology variable highlights the fact that data <u>vary</u>.

Descriptive Statistics

- Graphical presentation
- Numerical Summary

Categorical

Quantitative

Quantitative

affected by outliars but utilize all info

the balance point

ranked values

observed value

Distribution Shape

(a) Skewed Left Mean < Median

(b) Symmetric
Mean = Median

(c) Skewed Right Mean > Median

bimodel

unimodel

multimodel

Variability

Same center, different variation

Range =
$$X_{largest} - X_{smallest}$$

Deviation

Deviation = X - mean

av. dev. = 0

Variance

 The population variance, σ² of a variable is the sum of squared deviations divided by the number in the population

$$\frac{\sum (x_i - \mu)^2}{N} = \frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_N - \mu)^2}{N}$$

mean=u(para),x bar (stat)

 The sample variance, s² of a variable is the sum of squared deviations divided by one less than the number in the sample

$$\frac{\sum (x_i - \overline{x})^2}{n-1} = \frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n-1}$$

proportion = p(para), p^ (stat) size= N (para), n (stat) variance o^2(para), s^2 (stat)

Standard Deviation

- The standard deviation is the square root of the variance.
- σ is the population standard deviation.
- *s* is the sample standard deviation.

Standard Deviation Comparing Standard Deviations

z-scores

 z-scores can be used to compare the relative positions of data values in different samples

$$Z = \frac{X - \mu}{\sigma} \qquad \qquad Z = \frac{X - \overline{X}}{S}$$

Pat received:

- A grade of 82 on her statistics exam where the mean grade was 74 and the standard deviation was 12
- A grade of 72 on her biology exam where the mean grade was 65 and the standard deviation was 10
- A grade of 91 on her kayaking exam where the mean grade was 88 and the standard deviation was 6

z-scores

- Statistics
 - Grade of 82
 - Z =
- Biology
 - Grade of 72
 - Z=
- Kayaking
 - Grade of 91
 - Z=
- _____was the highest relative grade

Quartiles

Quartiles divide the data set into four equal parts

Percentiles

Percentiles divide the data set into 100 equal parts

Five-number Summary

- The five-number summary is the collection of
 - The smallest value
 - The first quartile $(Q_1 \text{ or } P_{25})$
 - The median (M or Q_2 or P_{50})
 - The third quartile $(Q_3 \text{ or } P_{75})$
 - The largest value
- These five numbers give a concise description of the distribution of a variable

```
median, IQR= OUTLIERS mean, SD = NO OUTLIERS
```

Five-number Summary

Compute the five-number summary for

```
1, 3, 4, 7, 8, 15, 16, 19, 23, 24, 27, 31, 33, 54
```

- Calculations
 - The minimum = 1
 - $Q_1 = 7$
 - M = 17.5
 - $Q_3 = Q_7$
 - The maximum = 54
- The five-number summary is

Boxplot

Outliers

- Extreme observations in the data are referred to as <u>outliers</u>
- One way to check for outliers uses the interquartiles range, IQR = Q3- Q1
- The <u>fences</u> used to identify outliers are
 - Lower fence = $LF = Q_1 1.5 \times IQR$
 - Upper fence = $UF = Q_3 + 1.5 \times IQR$
- Values less than the lower fence or more than the upper fence could be considered outliers

Outliers

Is the value 54 an outlier?

Calculations

$$-Q_1 = 7$$

$$-Q_3 = 27$$

$$-IQR = 20$$

$$-UF = 57$$

Using the fence rule, the value 54 is / is not an outlier

Boxplot

Left-Skewed

Symmetric

Right-Skewed

