CE412 A Water Supply & Wastewater Disposal Systems

Instructor:
Dr Vinod Tare

Components of Water Supply System

- > 1. Water Intake
 - ☐ Types Refer to Drawings
 - Surface Water
 - Lake / Reservoir
 - River
 - Dams
 - Concrete
 - o Earthen
 - Canals
 - Groundwater
 - ☐ Specifications to be provided Location, Type and Capacity based on Demand or Yield whichever is lower.

Components of Water Supply System

- > 2. Water Transmission/ Conveyance System
 - ☐ Raw water from source to water treatment plant
 - Both open and close conduits can be used
 - ☐ Treated water to water distribution system from water treatment plant
 - Specifications to be provided
 - Alignment, type of conduit, shape and size of the conduit.
 - Most economical diameter of the pressure pipe.

Darcy-Weisbach Equation

$$s = \frac{H}{L} = \frac{fv^2}{2gD}$$

$$g \to m/s^2$$

$$v \to mps$$

$$L \to m$$

$$d \to m$$

Manning's Formulae

$$v = \frac{1}{n} \, r^{2/3} \, s^{1/2}$$

$$=\frac{0.3968\ d^{2/3}\ s^{1/2}}{n}$$

$$Q = 0.31168 \frac{1}{n} d^{8/3} s^{1/2}$$

v is velocity in m/s; Q is flow or discharge in m³/s; r is hydraulic

radius in m; and d is diameter in m

$$n = 0.010 - 0.030$$
 (Most commonly use value = 0.013)

Hazen-Williams Formula

$$v = 0.849 \ C \ r^{0.63} \ s^{0.54}$$

$$v = 0.35449 \ C \ d^{0.63} \, s^{0.54}$$

$$Q = 0.27842 \ C \ d^{2.63} s^{0.54}$$

For
$$c = 100$$

$$v = 35.449 (d)^{0.63} (s)^{0.54}$$

v is velocity in $\frac{m}{s}$; Q is flow in $\frac{m3}{s}$; r is hydraulic redius in m; d is diameter in m;

 $s\ is\ slope\ i.\ e.\ headloss\ per\ unit\ length; and\ c\ is\ Hazen-Williams\ (Roughness) coefficient\ (100-100)$

$$-150)$$

$$Q = 27.842 d^{2.63} (h_f/L)^{0.54}$$

$$h_f = \left[\frac{Q}{27.842 d^{2.63}}\right]^{1/0.54} L = kQ^{1.85}L; \qquad k = \left[\frac{1}{27.842 d^{2.63}}\right] for given diameter and $c = 100$$$

Equation for Correction in Flow at the end of any

iteration in Hardy-Cross Method

The **Hardy Cross method** is an application of continuity of flow and continuity of potential to iteratively solve for flows in a pipe network. In the case of pipe flow, conservation of flow means that the flow in is equal to the flow out at each junction in the pipe.

$$h_f = kQ^{1.85}L$$

 $= k(Q_i + \Delta Q)^{1.85} = k(Q_i^{1.85} + 1.85 Q_i^{1.85-1} \Delta Q + \cdots)L$
 $\sum h_f = \sum kQ^{1.85} + 1.85 \Delta Q \sum Q^{1.85-1} = 0$

Or

$$\Delta Q = -\frac{\sum kQ^{1.85}}{1.85\sum kQ^{1.85-1}} = -\frac{\sum h_i}{1.85\sum h_i/Q_i}$$

Pipes in Series:

n number of pipes with diameter (di), Hazen William Coefficient(Ci) and Length (Li)in series: $d_1, c_1, L_1; d_2, c_2, L_2; \dots d_n, c_n, L_n$

Equivalent Pipe: d_{eq} , c_{eq} , L_{eq}

$$Q_{eq} = Q_1 = Q_2 = Q_3 \dots \dots \dots \dots \dots = Q_n$$

$$\left[\frac{Q_{eq}}{0.27842\ c_{eq}\ d_{eq}^{2.63}}\right]^{1.85}L_{eq} = \left[\frac{Q_1}{0.27842\ c_1\ d_1^{2.63}}\right]^{1.85}L_1 + \left[\frac{Q_2}{0.27842\ c_2\ d_2^{2.63}}\right]^{1.85}L_2$$

+ +
$$\left[\frac{Q_n}{0.27842} c_n d_n^{2.63}\right]^{1.85} L_n$$

$$\left[\frac{1}{c_{eq}}\frac{1}{d_{eq}^{2.63}}\right]^{1.85}L_{eq} = \left[\frac{1}{c_1d_1^{2.63}}\right]^{1.85}L_1 + \left[\frac{1}{c_2d_2^{2.63}}\right]^{1.85}L_2 + \dots + \left[\frac{1}{c_nd_n^{2.63}}\right]^{1.85}L_n$$

Pipes in Parallel:

n number id pipes with diameter (di), Hazen William C_1 , C_1 , C_2 , C_2 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7 , C_8

Equivalent Pipe: d_{eq} , c_{eq} , L_{eq}

$$Q_{eq} = Q_1 + Q_2 + \dots + Q_n$$

$$h_{feq} = h_{f1} = h_{f2} = \dots \dots \dots \dots = h_{fn}$$

$$0.27842\ d_{eq}^{2.63}(\frac{h_{feq}}{L_{eq}})^{0.54} = 0.27842\ d_1^{2.63}(\frac{h_{f1}}{L_1})^{0.54} + 0.27842\ d_2^{2.63}(\frac{h_{f2}}{L_2})^{0.54} + \dots + 0.27842\ d_n^{2.63}(\frac{h_{fn}}{L_n})^{0.54}$$

$$h_{feq} = h_{f1} = h_{f2} = h_{f3} = \dots \dots \dots \dots \dots = h_{fn}$$

$$d_{eq}^{2.63}(\frac{1}{L_{eq}})^{0.54} = d_1^{2.63}(\frac{1}{L_1})^{0.54} + d_2^{2.63}(\frac{1}{L_2})^{0.54} + \dots + d_n^{2.63}(\frac{1}{L_n})^{0.54}$$

Population Calculation

- Arithmetic method : dp/dt = constant Formula: $P_n = P_0 + n.x$
- Geometric method : $dp/dt \propto P$ Formula: $P_n = P_0(1+r/100)^n$

P_n= prospective or forecasted population after n decades from the present(i.e. the last known census)

Po= Population at present (i.e. the last known census)

X= arithmetic mean of population increase in known decades

r= assumed growth rate (%) (take geometric mean)

Ps= Saturation population value

Logistic Growth Method

$$P = \frac{Ps}{1 + \text{m.exp}(n.t)}$$

$$Ps = \frac{2PoP_1P_2 - P_1^2(Po + P_2)}{P_oP_2 - P_1^2} \qquad m = \frac{Ps - Po}{P_o}$$

$$n = \frac{2.3}{t_1} \log_{10} \frac{P_o(Ps - P_1)}{P_1(Ps - Po)}$$

P_o P₁ P₂ are population values chosen at times t_o t₁ t₂ and the interval between t_o t₁ t₂ remains constant

Fire Demand Formulae

- Kuichling's Formula : $Q = 3182\sqrt{P}$
- Freeman Formula : Q = $1136\left[\frac{P}{10} + 10\right]$
- American Insurance Association : Q= $4637\sqrt{P}$ [1 $0.01\sqrt{P}$]
- P= Population in thousands
- Q= Amount of water required in litres/minute