

Prática de Circuitos Eletrônicos 1

Tutorial 11

CIRCUITOS DE SEGUNDA ORDEM RLC

Professor: Marcus Vinícius Chaffim Costa **Tutora:** Camila Ferrer

Universidade de Brasília

 A partir da resposta ao item anterior, determine os polos do circuito, ou seja, as raízes do denominador da função de transferência. Expresse estes polos em função apenas de R, L e C.

$$s^{2}LC + sRC + 1 = 0$$

$$d = (RC)^{2} - 4 \times LC \times 1 = R^{2}C^{2} - 4LC$$

$$s_{1,2} = \frac{-RC \pm \sqrt{R^2C^2 - 4LC}}{2CL} = \frac{-RC \pm RC\sqrt{1 - \frac{4L}{R^2C}}}{2CL}$$

$$s_{1,2} = \frac{-R \pm R\sqrt{1 - \frac{4L}{R^2C}}}{2L}$$

Universidade de Brasília

🕽 Programa Tutoria

 Que condição R, L e C devem satisfazer para que os polos sejam reais e iguais? (Criticamente amortecido)
 O discriminante deve ser igual a zero:

$$1 - \frac{4L}{R^2C} = 0$$

$$\frac{4L}{R^2C} = 1 \rightarrow \frac{R^2C}{4L} = 1$$

 Que condição R, L e C devem satisfazer para que os polos sejam complexos conjugados? (Subamortecido)

O discriminante deve ser menor que zero:

$$1 - \frac{4L}{R^2C} < 0$$

$$\frac{4L}{R^2C} > 1 \rightarrow \frac{R^2C}{4L} < 1$$

Universidade de Brasília

Programa Tutoria

 Calcule a frequências de ressonância (ou frequência natural) do circuito, considerando os valores de L e C dados anteriormente. Qual o seu valor em Hz?

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{100 \times 10^{-6} \times 10 \times 10^{-9}}} = 10^6 rad/s$$

$$\omega_0 = 2\pi f_0 \to f_0 = \frac{\omega_0}{2\pi} = \frac{10^6}{2\pi} \cong 159,15 \text{kHz}$$

 Utilizando o conceito de impedância, determine a razão entre a tensão de saída e a tensão de entrada, seja no domínio fasorial ou no domínio de Laplace.

$$\begin{cases} V_i(s) = \left(R + sL + \frac{1}{sC}\right)I(s) \\ V_o(s) = \frac{1}{sC}I(s) \to I(s) = sCV_o(s) \end{cases}$$

$$\begin{split} V_i(s) &= \left(R + sL + \frac{1}{sC}\right)sCV_o(s) \\ V_i(s) &= (s^2LC + sRC + 1)V_o(s) \\ \frac{V_o(s)}{V_i(s)} &= \frac{1}{(s^2LC + sRC + 1)} \end{split}$$

\bigvee

Universidade de Brasília

Programa Tutoria

 Que condição R, L e C devem satisfazer para que os polos sejam reais e distintos? (Sobreamortecido)

Para se ter dois polos reais e distintos, o discriminante do denominador da Função de Transferência deve ser maior que zero:

$$\begin{split} d &= R^2 C^2 - 4LC > 0 \\ R^2 C^2 \left(1 - \frac{4L}{R^2 C} \right) > 0 \\ 1 - \frac{4L}{R^2 C} > 0 \\ \frac{4L}{R^2 C} < 1 \rightarrow \frac{R^2 C}{4L} > 1 \end{split}$$

Universidade de Brasília

Programa Tutoria

 Suponha que L = 100µH e C = 10nF. Qual o valor de R para que o circuito seja criticamente amortecido?

$$\frac{R^2C}{4L} = 1 \to R^2 = \frac{4L}{C}$$

$$R^2 = \frac{4 \times 100 \times 10^{-6}}{10 \times 10^{-9}} = 4 \times 10^4$$

$$R_{crit} = \sqrt{4 \times 10^4} = 200\Omega$$

Universidade de Brasília

 Para cada um dos três casos encontrados no item (c), calcule o coeficiente de amortecimento do circuito, ξ.

Sobreamortecido

$$\xi \omega_0 = \frac{R}{2L} \to \xi = \frac{R}{2L\omega_0} = \frac{R\sqrt{LC}}{2L}$$
$$\xi^2 = \frac{R^2LC}{4L^2} = \frac{R^2C}{4L}$$
$$\xi^2 = \frac{R^2C}{4L} > 1 \to \xi > 1$$

 Para cada um dos três casos encontrados no item (c), calcule o coeficiente de amortecimento do circuito, ξ.

Criticamente Amortecido

$$\xi^2 = \frac{R^2C}{4L} = 1 \to \xi = 1$$

Subamortecido

$$\xi^2 = \frac{R^2 C}{4L} < 1 \to \xi < 1$$

• Considerando os valores de L e C dados, calcule a frequência de amortecimento, ω_{d} , do circuito para o caso subamortecido.

$$\begin{split} \omega_d &= \sqrt{\omega_0^2 - \alpha^2} & \alpha = \xi \omega_0 \\ \omega_d &= \sqrt{\omega_0^2 - \xi^2 \omega_0^2} = \sqrt{1 - \xi^2} \omega_0 \\ \omega_d &= \sqrt{1 - \frac{R^2 C}{4L}} \omega_0 = \sqrt{1 - (25 \times 10^{-6} \times R^2)} \omega_0 \\ para R &< 200 \Omega \end{split}$$

Simule o circuito acima adotando L=100 μ H e C=10nF. Configure a tensão de entrada como uma onda quadrada com amplitude de 4V, frequência $\omega=\omega_0/10$ rad/s e R=R_{crit} para que o circuito seja criticamente amortecido.

 Abra o QUCS, vá em Main Dock e crie um novo projeto.

Simulação

 Na aba Componentes, vá em componentes agrupados e coloque um resistor, um indutor e um capacitor no esquemático. Vá em Fontes e coloque uma fonte rectangle voltage

Universidade de Brasília

 Para deslocar a onda na metade da amplitude e colocar para ela variar entre +4V e -4V, será utilizada uma fonte DC de -4V. Conecte os componentes sem esquecer da referência do terra e ajuste seus valores para os pedidos no exercício. Nomeie os nós para medir a tensão V_i e V_o.

 Para uma onda com V_{amp}=4V, U deve ser 8V. Como a frequência é 15,9kHz, o período será 62,5 us, logo TH e TL devem ser metade do período.

 Será utilizada a simulação transiente. Coloque tempo suficiente para visualizar o comportamento da onda e resolução grande o suficiente para gerar a onda.

Vá em Diagramas e insira um plano cartesiano.
 Coloque os valores das tensões V_i.Vt e V_o.Vt.

• Assim, verifica-se que os valores pedidos no exercício.

Universidade de Brasília

 Obtenha o sinal de saída do circuito fazendo R igual a diferentes valores percentuais de R_{crit}: 25%, 50%, 100%, 150% e 300%.

Universidade de Brasília

Universidade de Brasília

• Para o caso em que R=0,25 R_{crit} , obtenha a partir do gráfico do sinal de saída, o valor final $V_{\rm f}$, a frequência de amortecimento $\omega_{\rm d}$, a ultrapassagem percentual $M_{\rm p}(\%)$ e o tempo de acomodação em 5% $t_{\rm s5\%}$.

Universidade de Brasília

- O Valor Final $\mathbf{V_f}$ é o valor para o qual tende a resposta.
- A Ultrapassagem Percentual M_p(%) é o quanto a forma de onda, no instante de pico, ultrapassa o valor de estado estacionário, final, expresso como uma percentagem do valor de estado estacionário.
- O Tempo de Acomodação t_s é o tempo em que a resposta se encontra definitivamente dentro de determinada margem em torno do valor final, nesse caso, uma margem de ±5% do valor final.

$$M_p(\%) = \frac{V_{max} - V_{final}}{V_{final}} \times 100 \qquad t_{s5\%} = \frac{3}{\xi \omega}$$

Universidade de Brasília

Utilizando o circuito de 25%, adicione as equações para calcular a frequência de amortecimento.

 Adicione as equações para gerar dois gráfico para visualizar a margem do tempo de acomodação

Equação	-	ì	Equação
 ts_mais_5_porcento 			ts_menos_5_porcento
ts_plus=Vi.Vt*1.05			ts_minus=Vi.Vt*0.95

Universidade de Brasília

 Salve e simule. Vá em Diagramas e insira um plano cartesiano. Coloque os valores das tensões V_i.Vt, V_o.Vt, ts_plus e ts_minus.

 Configure os limites do gráfico para visualizar a oscilação da onda.

• Com o valor máximo e o valor final, crie uma equação para calcular o valor de $M_D(\%)$.

| Equação | ultrapassagem_percentual | Mp=((7.55-4)/4)*100

 Marque no gráfico o ponto máximo de V₀.Vt, o ponto onde o gráfico entra na margem de ts e o valor final para qual tende a resposta.

Universidade de Brasília

