Principle Component Analysis

In [12]: iris.head()

Out[12]:

	SepalLength	SepalWidth	PetalLength	PetalWidth	Name
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

PCA algorithm

- Calculate covariance matrix of X, Σ
- Calculate the Eigenvectors (U) and Eigenvalues (S) of covariance matrix
- Take first K columns of U to form U_{sub}
- New data given by: $X_{new} = U_{sub}^T X$

```
import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
iris = datasets.load_iris()

X = iris.data
y = iris.target
target_names = iris.target_names
```

```
pca = PCA(n_components=2)
X_r = pca.fit(X).transform(X)
```


