Natürliche Einheitensysteme: Universelle Energieumwandlung und fundamentale Längenskala-Hierarchie

Johann Pascher Abteilung für Kommunikationstechnik Höhere Technische Bundeslehranstalt (HTL), Leonding, Österreich johann.pascher@gmail.com

13. April 2025

Zusammenfassung

Dieses grundlegende Dokument etabliert das natürliche Einheitensystem, das im gesamten T0-Modell-Framework verwendet wird. Durch Setzen fundamentaler Konstanten auf Eins und Annahme von Energie als Basisdimension können alle physikalischen Größen als Potenzen der Energie ausgedrückt werden. Dieses Dokument dient als Referenz für Einheitenumwandlungen und Dimensionsanalyse über alle T0-Modell-Anwendungen hinweg.

In halts verzeichn is

1	Liste der Symbole und Notation					
2	Einleitung					
	2.1 Vergleich mit anderen natürlichen Einheitensystemen					
3	Grundlagen natürlicher Einheitensysteme					
	3.1 Planck-Einheiten					
	3.2 Atomare Einheiten					
	3.3 Quantenoptische Einheiten					
	3.4 Vorteile natürlicher Einheiten					
4	Mathematischer Beweis der Energieäquivalenz					
	4.1 Fundamentale dimensionale Beziehungen					
	4.2 Umwandlung fundamentaler Größen					
	4.3 Verallgemeinerung					
	4.4 Fundamentale Beziehungen					
5	Längenskala-Hierarchie					
	5.1 Standard-Längenskalen					
	5.2 Die T0-Längenskala					
6	Einheitenumwandlungen					
	6.1 Energie als Referenz					
	6.2 Planck-Skala-Umwandlungen					
7	Mathematisches Framework					
	7.1 Vereinfachte Gleichungen					
	7.1.1 Quantenmechanik					
	7.1.2 Spezielle Relativitätstheorie					

		7.1.3 Allgemeine Relativitätstheorie	
		7.1.5 Thermodynamik	
8	Vor	rteile und Anwendungen	
	8.1	Vorteile natürlicher Einheiten	
	8.2	Nachteile	
	8.3	Praktische Anwendungen	
9	Arb	beiten mit natürlichen Einheiten	
	9.1	Arbeiten mit natürlichen Einheiten	
	9.2	Dimensionsprüfung	
	9.3		
	9.4		

1 Liste der Symbole und Notation

Symbol	Bedeutung	Einheiten/Notizen				
	Fundamentale Konstanten					
\hbar	Reduzierte Planck-Konstante	Auf 1 gesetzt				
c	Lichtgeschwindigkeit	Auf 1 gesetzt				
G	Gravitationskonstante	Auf 1 gesetzt				
k_B	Boltzmann-Konstante	Auf 1 gesetzt				
e	Elementarladung	$[E^0]$ (dimensionslos)				
$arepsilon_0, \mu_0$	Vakuum-Permittivität, -Permeabilität	In QED-Einheiten auf 1 gesetzt				
	Einheiten					
l_P, t_P, m_P, E_P, T_P	Planck-Länge, -Zeit, -Masse, -Energie, -Temp.	Natürliche Basiseinheiten				
m_e, a_0, E_h	Elektronmasse, Bohr-Radius, Hartree-Energie	Atomare Einheiten				
	Kopplungskonstanten					
$lpha_{ m EM}$	Feinstrukturkonstante	$e^2/(4\pi) = 1$ (nat.), $\approx 1/137$ (SI)				
$\alpha_s, \alpha_W, \alpha_G$	Starke, schwache, Gravitations-Kopplung	Dimensionslos				
	Physikalische Größen					
E, m, Θ	Energie, Masse, Temperatur	[E]				
L, r, λ, t	Länge, Radius, Wellenlänge, Zeit	$[E^{-1}]$				
p,ω, u	Impuls, Kreisfrequenz, Frequenz	[E]				
F	Kraft	$[E^2]$				
v	Geschwindigkeit	Dimensionslos				
q	Elektrische Ladung	$[E^0]$ (dimensionslos)				
Spezielle Skalen & Notation						
r_0, ξ	T0-Länge, Skalierungsparameter	$\xi l_P, \xi \approx 1.33 \times 10^{-4}$				
$\lambda_{C,e}, r_e$	Compton-Wellenlänge, klassischer e-Radius	$\hbar/(m_e c), e^2/(4\pi\varepsilon_0 m_e c^2)$				
$[X], [E^n]$	Dimension von X, Energiedimension	Dimensionsanalyse				
\sim , \leftrightarrow	Ungefähr, Umwandlung	Größenordnung, Einheiten				

Tabelle 1: Symbole und Notation

2 Einleitung

Natürliche Einheiten sind Einheitensysteme, in denen fundamentale physikalische Konstanten auf Eins gesetzt werden, um Berechnungen zu vereinfachen und die zugrundeliegende mathematische Struktur physikalischer Gesetze zu offenbaren. Die bekanntesten Systeme sind **Planck-Einheiten** (für Gravitation und Quantenphysik) und **atomare Einheiten** (für Quantenchemie).

Dieses Dokument etabliert das vollständige Framework für das natürliche Einheitensystem, das im T0-Modell verwendet wird, welches auf Planck-Einheiten mit Energie als fundamentaler Dimension basiert. Die Schlüsselerkenntnis ist, dass Energie [E] als universelle Dimension dient, aus der alle anderen physikalischen Größen abgeleitet werden.

2.1 Vergleich mit anderen natürlichen Einheitensystemen

System	Konstanten = 1	Basiseinheiten	Anwendungen	Notizen
Planck-Einheiten	$\hbar, c, G, k_B = 1$	l_P, t_P, m_P, E_P	Quantengravitation, Kosmologie	Universelle Bedeutung
Atomare Einheiten	$m_e, e, \hbar, \frac{1}{4\pi\varepsilon_0} = 1$	a_0, E_h	Quantenchemie, Atome	Chemieanwendungen
Teilchenphysik	$\hbar, c = 1$	GeV	Hochenergiephysik	Praktisch für Collider
T0-Modell	$\hbar, c, G, k_B = 1$	Energie $[E]$	Vereinheitlichte Physik	Energie als Basisdimension

Tabelle 2: Vergleich natürlicher Einheitensysteme

3 Grundlagen natürlicher Einheitensysteme

3.1 Planck-Einheiten

Die Planck-Einheiten wurden 1899 von Max Planck vorgeschlagen [1, 2] und basieren auf den fundamentalen Naturkonstanten:

$$G = 1$$
 (Gravitationskonstante) (1)

$$c = 1$$
 (Lichtgeschwindigkeit) (2)

$$hbar{h} = 1 \quad \text{(reduzierte Planck-Konstante)}$$
(3)

Planck erkannte, dass diese Einheiten ihre Bedeutung für alle Zeiten und für alle, einschließlich außerirdischer und nicht-menschlicher Kulturen notwendigerweise behalten [1].

3.2 Atomare Einheiten

Die atomaren Einheiten, 1927 von Hartree eingeführt [3], setzen:

$$m_e = 1$$
 (Elektronmasse) (4)

$$e = 1$$
 (Elementarladung) (5)

$$\hbar = 1 \tag{6}$$

$$\frac{1}{4\pi\varepsilon_0} = 1 \quad \text{(Coulomb-Konstante)} \tag{7}$$

3.3 Quantenoptische Einheiten

Für Quantenfeldtheorie-Anwendungen werden häufig quantenoptische Einheiten verwendet:

$$c = 1$$
 (Lichtgeschwindigkeit) (8)

$$hbar{h} = 1 \quad \text{(reduzierte Planck-Konstante)}$$
(9)

$$\varepsilon_0 = 1$$
 (Permittivität) (10)

$$\mu_0 = 1$$
 (Permeabilität, da $c = 1/\sqrt{\varepsilon_0 \mu_0}$) (11)

3.4 Vorteile natürlicher Einheiten

Natürliche Einheiten bieten mehrere Schlüsselvorteile:

- Vereinfachte Gleichungen (z.B. $E = m \text{ statt } E = mc^2$)
- Keine überflüssigen Konstanten in Berechnungen
- Universelle Skalierung für fundamentale Physik
- Offenbaren fundamentaler Beziehungen zwischen physikalischen Größen
- Bieten Dimensionskonsistenz-Prüfungen
- Eliminieren willkürliche Umwandlungsfaktoren
- Heben die universelle Rolle der Energie hervor

4 Mathematischer Beweis der Energieäquivalenz

4.1 Fundamentale dimensionale Beziehungen

In natürlichen Einheiten haben alle physikalischen Größen Dimensionen, die als Potenzen der Energie [E] ausgedrückt werden können [4, 5]:

$$[L] = [E]^{-1}$$
 (aus $\hbar c = 1$) (12)

$$[T] = [E]^{-1} \quad (\text{aus } \hbar = 1)$$
 (13)

$$[M] = [E] \quad (aus \ c = 1) \tag{14}$$

4.2 Umwandlung fundamentaler Größen

Länge: Aus der Beziehung $\hbar c = 1$ folgt:

$$[L] = \frac{[\hbar][c]}{[E]} = [E]^{-1} \tag{15}$$

Zeit: Aus $\hbar = 1$ und $E = \hbar \omega$ folgt:

$$[T] = \frac{[\hbar]}{[E]} = [E]^{-1} \tag{16}$$

Masse: Aus $E = mc^2$ und c = 1 folgt:

$$[M] = [E] \tag{17}$$

Geschwindigkeit:

$$[v] = \frac{[L]}{[T]} = \frac{[E]^{-1}}{[E]^{-1}} = [E]^0 = \text{dimensionslos}$$
 (18)

Impuls:

$$[p] = [M][v] = [E] \cdot [E]^0 = [E] \tag{19}$$

Kraft:

$$[F] = [M][a] = [E] \cdot [E]^{-1} = [E]^{2}$$
(20)

Ladung: In Planck-Einheiten aus $F = \frac{1}{4\pi\varepsilon_0} \frac{q^2}{r^2}$:

$$[q] = [E]^{1/2} (21)$$

4.3 Verallgemeinerung

Jede physikalische Größe G kann als Produkt von Potenzen der fundamentalen Konstanten dargestellt werden:

$$G = c^a \cdot \hbar^b \cdot G^c \cdot k_B^d \cdot \dots \tag{22}$$

In natürlichen Einheiten wird dies zu:

$$[G] = [E]^n$$
 für ein spezifisches $n \in \mathbb{Q}$ (23)

Physikalische Größe	SI-Dimension	Natürliche Dimension	Herleitung
Energie	$[ML^2T^{-2}]$	[E]	Basisdimension
Masse	[M]	[E]	$E = mc^2, c = 1$
Temperatur	$[\Theta]$	[E]	$E = k_B T, k_B = 1$
Länge	[L]	$[E^{-1}]$	$l_P = \sqrt{\hbar G/c^3} = 1$
Zeit	[T]	$[E^{-1}]$	$t_P = \sqrt{\hbar G/c^5} = 1$
Impuls	$[MLT^{-1}]$	[E]	$p = mv, v = [E^0]$
Kraft	$[MLT^{-2}]$	$[E^2]$	$F = ma = [E][E] = [E^2]$
Leistung	$[ML^2T^{-3}]$	$[E^2]$	$P = E/t = [E]/[E^{-1}] = [E^2]$
Ladung	[AT]	$[E^0]$	Dimensionslos in Planck-Einheiten
Elektrisches Feld	$[MLT^{-3}A^{-1}]$	$[E^2]$	$ec{E}=ec{F}/q$
Magnetisches Feld	$[MT^{-2}A^{-1}]$	$[E^2]$	$ec{B}=ec{F}/(qv)$

Tabelle 3: Universelle Energiedimensionen physikalischer Größen

4.4 Fundamentale Beziehungen

Die Schlüsselbeziehungen in natürlichen Einheiten werden zu:

$$E = m$$
 (Masse-Energie-Äquivalenz) (24)

$$E = T$$
 (Temperatur-Energie-Äquivalenz) (25)

$$[L] = [T] = [E^{-1}] \quad (Raum-Zeit-Einheit)$$
(26)

$$\omega = E$$
 (Frequenz-Energie-Äquivalenz) (27)

$$p = E$$
 (Impuls-Energie-Äquivalenz für masselose Teilchen) (28)

5 Längenskala-Hierarchie

5.1 Standard-Längenskalen

Physikalische Systeme organisieren sich um charakteristische Längenskalen:

5.2 Die T0-Längenskala

Das T0-Modell führt eine sub-Plancksche Längenskala ein:

Definition 5.1 (T0-Länge).

$$r_0 = \xi \cdot l_P \tag{29}$$

wobei $\xi \approx 1.33 \times 10^{-4}$ ein dimensionsloser Parameter ist.

Dies ergibt:

$$r_0 = \xi \cdot l_P = 1.33 \times 10^{-4} \times 1.616 \times 10^{-35} \,\mathrm{m}$$
 (30)

$$=2.15 \times 10^{-39} \,\mathrm{m} \tag{31}$$

In natürlichen Einheiten mit $l_P = 1$:

$$r_0 = \xi \approx 1.33 \times 10^{-4} \tag{32}$$

Skala	Symbol	SI-Wert (m)	Natürliche Einheiten $(l_P = 1)$
Planck-Länge	l_P	1.616×10^{-35}	1
Compton (Elektron)	$\lambda_{C,e}$	2.426×10^{-12}	1.5×10^{23}
Klassischer Elektronradius	r_e	2.818×10^{-15}	1.7×10^{20}
Bohr-Radius	a_0	5.292×10^{-11}	3.3×10^{24}
Kernskala	$\sim 10^{-15}$	10^{-15}	6.2×10^{19}
Atomare Skala	$\sim 10^{-10}$	10^{-10}	6.2×10^{24}
Menschliche Skala	~ 1	1	6.2×10^{34}
Erdradius	R_{\oplus}	6.371×10^{6}	3.9×10^{41}
Sonnensystem	$\sim 10^{12}$	10^{12}	6.2×10^{46}
Galaktische Skala	$\sim 10^{21}$	10^{21}	6.2×10^{55}

Tabelle 4: Standard-Längenskalen in natürlichen Einheiten

6 Einheitenumwandlungen

6.1 Energie als Referenz

Verwendung des Elektronvolts (eV) als praktische Energieeinheit:

Physikalische Größe	Umwandlung zu SI	Beispiel (1 GeV)
Energie	$1 \text{eV} = 1.602 \times 10^{-19} \text{J}$	$1.602 \times 10^{-10} \mathrm{J}$
Masse	$E(eV) \times 1.783 \times 10^{-36} \text{kg} \text{eV}^{-1}$	$1.783 \times 10^{-27} \mathrm{kg}$
Länge	$E(eV)^{-1} \times 1.973 \times 10^{-7} \mathrm{m}eV$	$1.973 \times 10^{-16} \mathrm{m}$
Zeit	$E(eV)^{-1} \times 6.582 \times 10^{-16} s eV$	$6.582 \times 10^{-25} \mathrm{s}$
Temperatur	$E(eV) \times 1.161 \times 10^4 K eV^{-1}$	$1.161 \times 10^{13} \mathrm{K}$

Tabelle 5: Umwandlungsfaktoren von natürlichen zu SI-Einheiten

6.2 Planck-Skala-Umwandlungen

Umwandlung zwischen Planck-Einheiten und SI:

Planck-Einheit	Natürlicher Wert	SI-Wert
Länge (l_P)	1	$1.616 \times 10^{-35} \mathrm{m}$
Zeit (t_P)	1	$5.391 \times 10^{-44} \mathrm{s}$
Masse (m_P)	1	$2.176 \times 10^{-8} \mathrm{kg}$
Energie (E_P)	1	$1.220 \times 10^{19} \mathrm{GeV}$
Temperatur (T_P)	1	$1.417 \times 10^{32} \mathrm{K}$

Tabelle 6: Planck-Einheiten-Umwandlungen

7 Mathematisches Framework

7.1 Vereinfachte Gleichungen

In natürlichen Einheiten werden fundamentale Gleichungen elegant einfach:

7.1.1 Quantenmechanik

Schrödinger-Gleichung:
$$i\frac{\partial \psi}{\partial t} = H\psi$$
 (33)

Unschärferelation:
$$\Delta E \Delta t \ge \frac{1}{2}$$
 (34)

de-Broglie-Beziehung:
$$\lambda = \frac{1}{p}$$
 (35)

7.1.2 Spezielle Relativitätstheorie

Masse-Energie:
$$E = m$$
 (36)

Energie-Impuls:
$$E^2 = p^2 + m^2$$
 (37)

Lorentz-Faktor:
$$\gamma = \frac{1}{\sqrt{1 - v^2}}$$
 (38)

7.1.3 Allgemeine Relativitätstheorie

Einstein-Gleichungen:
$$G_{\mu\nu} = 8\pi T_{\mu\nu}$$
 (39)

Schwarzschild-Radius:
$$r_s = 2M$$
 (40)

7.1.4 Elektromagnetismus

Coulomb-Gesetz:
$$F = \frac{q_1 q_2}{4\pi r^2}$$
 (41)

Feinstrukturkonstante:
$$\alpha = \frac{e^2}{4\pi} (\text{mit } 4\pi\varepsilon_0 = 1)$$
 (42)

7.1.5 Thermodynamik

Stefan-Boltzmann:
$$j = \sigma T^4$$
 (43)

Wien-Gesetz:
$$\lambda_{max}T = b$$
 (44)

Boltzmann-Verteilung:
$$P \propto e^{-E/T}$$
 (45)

8 Vorteile und Anwendungen

8.1 Vorteile natürlicher Einheiten

- Vereinfachte Gleichungen (z.B. $E = m \text{ statt } E = mc^2$)
- Keine überflüssigen Konstanten in Berechnungen
- Universelle Skalierung für fundamentale Physik
- Offenbaren fundamentaler Beziehungen zwischen physikalischen Größen
- Bieten Dimensionskonsistenz-Prüfungen
- Eliminieren willkürliche Umwandlungsfaktoren
- Heben die universelle Rolle der Energie hervor

8.2 Nachteile

- Unintuitive für makroskopische Anwendungen
- Umwandlung zu SI erfordert Kenntnis fundamentaler Konstanten
- Anfängliche Unvertrautheit für an SI-Einheiten Gewöhnte
- Ingenieurspräferenz für praktische SI-Einheiten

8.3 Praktische Anwendungen

- Teilchenphysik-Berechnungen
- Quantenfeldtheorie
- Allgemeine Relativität und Kosmologie
- Hochenergie-Astrophysik
- Stringtheorie und Quantengravitation
- Fundamentale Konstanten-Beziehungen

9 Arbeiten mit natürlichen Einheiten

9.1 Arbeiten mit natürlichen Einheiten

Um eine Berechnung von SI zu natürlichen Einheiten umzuwandeln:

- 1. Alle Größen in Energieeinheiten (eV oder GeV) ausdrücken
- 2. $\hbar = c = G = k_B = 1$ setzen
- 3. Die Berechnung durchführen
- 4. Ergebnisse bei Bedarf zurück zu SI umwandeln

9.2 Dimensionsprüfung

Immer Dimensionskonsistenz verifizieren:

- Alle Terme in einer Gleichung müssen dieselbe Energiedimension haben
- Prüfen, dass Exponenten konsistent sind
- Dimensionsanalyse zur Verifikation der Ergebnisse verwenden

9.3 Fundamentale Kräfte in natürlichen Einheiten

Die vier fundamentalen Kräfte können durch ihre dimensionslosen Kopplungskonstanten charakterisiert werden:

Kraft	Dimensionslose Kopplung	Typischer Wert	Reichweite
Elektromagnetisch	$lpha_{ m EM}$	$\sim 1/137$	∞
Stark	$lpha_s$	~ 0.118 bei $Q^2=M_Z^2$	$\sim 1 \times 10^{-15} \mathrm{m}$
Schwach	$\alpha_W = g^2/(4\pi)$	$\sim 1/30$	$\sim 1 \times 10^{-18} \mathrm{m}$
Gravitation	$\alpha_G = Gm^2/(\hbar c)$	m^2/m_P^2	∞

Tabelle 7: Fundamentale Kräfte charakterisiert durch Kopplungskonstanten

SI-Einheit	SI-Dimension	Natürliche Dimension	Umwandlung	Genauigkeit
Meter	[L]	$[E^{-1}]$	$1\mathrm{m} \leftrightarrow (197\mathrm{MeV})^{-1}$	< 0.001%
Sekunde	[T]	$[E^{-1}]$	$1\mathrm{s} \leftrightarrow (6.58 \times 10^{-22}\mathrm{MeV})^{-1}$	< 0.00001%
Kilogramm	[M]	[E]	$1\mathrm{kg} \leftrightarrow 5.61 \times 10^{26}\mathrm{MeV}$	< 0.001%
Ampere	[I]	$[E]^{1/2}$	$1 \mathrm{A} \leftrightarrow (6.24 \times 10^{18} \mathrm{eV})^{1/2} / \mathrm{s}$	< 0.005%
Kelvin	$[\Theta]$	[E]	$1\mathrm{K} \leftrightarrow 8.62 \times 10^{-5}\mathrm{eV}$	< 0.01%
Volt	$[ML^2T^{-3}I^{-1}]$	[E]	$1\mathrm{V} \leftrightarrow 1\mathrm{eV}/e$	< 0.0001%
Coulomb	[TI]	$[E^0]$	$1\:\mathrm{C} \leftrightarrow 6.24 \times 10^{18}\:e$	< 0.0001%

Tabelle 8: Umfassende Einheitenumwandlungen von SI zu natürlichen Einheiten

9.4 Umfassende Einheitenumwandlungen

10 Schlussfolgerung

Dieses natürliche Einheitensystem bildet die Grundlage für alle T0-Modell-Berechnungen. Durch Etablierung der Energie als universelle Dimension und Setzen fundamentaler Konstanten auf Eins offenbaren wir die zugrundeliegende Einheit physikalischer Gesetze über alle Skalen von der sub-Planckschen T0-Länge bis zu kosmologischen Entfernungen.

Schlüsselprinzipien:

- 1. Energie ist die fundamentale Dimension
- 2. Alle physikalischen Größen sind Potenzen der Energie
- 3. Die T0-Länge erweitert die Physik unter die Planck-Skala
- 4. Natürliche Einheiten vereinfachen fundamentale Gleichungen
- 5. Dimensionskonsistenz ist von höchster Bedeutung

Dieses Framework dient als Basis für alle weiteren Entwicklungen im T0-Modell und bietet sowohl Rechenwerkzeuge als auch konzeptuelle Einsichten in die Natur der physikalischen Realität.

Literatur

- [1] M. Planck, Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum, Verhandlungen der Deutschen Physikalischen Gesellschaft 2, 237-245 (1900).
- [2] M. Planck, Vorlesungen über die Theorie der Wärmestrahlung, Johann Ambrosius Barth, Leipzig, 1906
- [3] D. R. Hartree, The Calculation of Atomic Structures, John Wiley & Sons, New York, 1957.
- [4] S. Weinberg, The Quantum Theory of Fields, Vol. 1, Cambridge University Press, 1995.
- [5] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley, 1995.
- [6] C. W. Misner, K. S. Thorne, and J. A. Wheeler, *Gravitation*, W. H. Freeman and Company, 1973.
- [7] J. D. Jackson, Classical Electrodynamics, 3. Auflage, John Wiley & Sons, 1998.
- [8] J. Pascher, Jenseits der Planck-Skala: Die To-Länge in der Quantengravitation, 24. März 2025.