Program Correctness (Section 8.1)

Program Correctness (for imperative programs)

- A theory of program correctness needs wffs, axioms, and inference rules. The wffs (called *Hoare triples*) are of the form: {P} S {Q} where S is a program statement and P (a precondition) and Q (a postcondition) are logical statements about the variables of S.
- Semantics: The meaning of {P} S {Q} is the truth value of the statement:
 - If P is true before S executes, then Q is true after S halts.
- Note that it is assumed that S halts. If {P} S {Q} is true, then S is said to be correct with respect to (wrt) precondition P and postcondition Q.

Assignment Axiom

- The Assignment Axiom (AA) is: $\{P(x/t)\}\ x := t\ \{P\}.$
- Example: $\{x = 4\} \ x := x 1 \ \{x = 3\}$
- Consequence Rules are

 - P→R and {R}S{Q}
 {P}S{Q}
 {P}S{T} and T→Q
 {P}S{Q}

Example Proof

Prove the correctness of $\{x < 3\}x := x - 1\{x < 3\}$. Proof:

1.
$$\{x < 4\}x := x - 1\{x < 3\}$$
 AA

2.
$$x < 3$$
 P [for $(x < 3) \rightarrow (x < 4)$]

3.
$$x < 4$$

4.
$$(x < 3) \rightarrow (x < 4)$$

5.
$$\{x < 3\}x := x - 1\{x < 3\}$$
 1,4,Consequence. QED

Another Correctness Proof

Prove the correctness of

$$\{\exists x \ (y=2x)\}y := y + 3\{\exists x \ (y=2x+1)\}.$$

1.
$$\{\exists x \ (y+3=2x+1)\}y := y+3$$

 $\{\exists x \ (y=2x+1)\}$ AA
2. $\exists x \ (y=2x)$ P [for CP]
3. $y=2c$ 2,EI
4. $(y=2c) \rightarrow (y+3=2c+3)$ EE, where $f(x) = x+3$
5. $y+3=2c+3$ 3,4,MP
6. $y+3=2(c+1)+1$ 5,T
7. $\exists x \ (y+3=2x+1)$ 6,EG
8. $\exists x \ (y=2x) \rightarrow \exists x \ (y+3=2x+1)$ 2-7,CP
9. $\{\exists x \ (y=2x)\}y := y+3\{\exists x \ (y=2x+1)\}$ 1,8,Consequence QED

Composition Rule

- Composition Rule is:
 - $\frac{\{P\}S_1\{Q\}\text{and}\{Q\}S_2\{R\}}{\{P\}S_1;S_2\{R\}}$

Example proof

Prove the correctness of $\{x < 2\}y := 2x$; $x := y - 3\{x < 1\}$

1.
$$\{y-3<1\}x:=y-3\{x<1\}$$
 AA
2. $\{2x-3<1\}y:=2x\{y-3<1\}$ AA
3. $\{2x-3<1\}y:=2x; x:=y-3\{x<1\}$ 1,2,Composition
4. $x<2$ P [for $(x<2) \rightarrow (2x-3<1)$]
5. $2x<4$ 4,T
6. $2x-3<1$ 5,T
7. $(x<2) \rightarrow (2x-3<1)$ 4-6,CP
8. $\{x<2\}y:=2x; x:=y-3\{x<1\}$ 3,7,Consequence

If Rules

- If-Then Rule:
 - $\frac{\{P \land C\}S\{Q\} \text{ and } P \land \neg C \rightarrow Q}{\{P\}\text{if } C \text{ then } S\{Q\}}$
- If-Then-Else Rule:
 - $\bullet \quad \frac{\{P \land C\}S_1\{Q\} \text{ and } \{P \land \neg C\}S_2\{Q\}}{\{P\} \text{if } C \text{ then } S_1 \text{ else } S_2\{Q\}}$

If proof

Prove the correctness of $\{x > 0\}$ if x > 1 then $x := x - 1\{x > 0\}$

1.
$$\{x-1>0\}x := x-1\{x>0\}$$
 AA
2. $(x>0) \land (x>1)$ P [for CP]
3. $x>1$ 2,Simp
4. $x-1>0$ 3,T
5. $(x>0) \land (x>1) \rightarrow (x-1>0)$ 2-4,CP
6. $\{(x>0) \land (x>1)\}x := x-1\{x>0\}$ 1,5,Consequence
7. $(x>0) \land \neg (x>1)$ P [for CP]
8. $x>0$ 7,Simp
9. $(x>0) \land \neg (x>1) \rightarrow (x>0)$ 7-8,CP
10. $\{x>0\}$ if $x>1$ then $x:=x-1\{x>0\}$ 6,9,If-Then

While rule

- $\frac{\{P \land C\}S\{P\}}{\{P\} \text{while } C \text{ do } S\{P \land \neg C\}}$
- P is called a loop invariant

Additional issues

Two additional issues that the book investigates are: arrays and array indices, and loop termination.

Section 8.2

This section is about Higher-Order Logic. This allows us to, for example, quantify over predicates, rather than just variables. We won't study this idea.