in the domain

(2) Nerted Quantifier(凝套) (3) Translation Practice

3. Domain Restrictions 4. Quantifier Scoping

2. DeMorgano for Quantifiers

Lec 4 Handout: Predicates & Quantifiers

A predicate is a statement with Some Variables unspecified

We means Some Variables unspecified

Quantifiers:

We means Some Variables unspecified

We means Some Va

in the domain

1)		
Nested Quantifiers – additional exercises		
Let $P(x,y) = "4x - y = 0"$, domain = integers Write each proposition using quantifiers, then determine whether it is true or false:		
Quantifiers Quantifiers	whether it is true or raise.	
1. There exists x such that there exists y such that P(x, y). True/ False		
2. There exists x such that for all y , P(x, y).	True / False	
3. For all y, there exists x such that P(x, y).	True / False	
4. For all x , there exists y such that P(x, y) .	True / False	
5. There exists y such that for all x, P(x, y).	True / False	
<u>₩XYY</u> 6. For all x , for all y , P(x, y) .	True False	

Handout Translating Logic to English #1 Domain of: m: all movies x, y: people in this room V(x,m): "person x has seen movie m" a) $\exists x \exists y [x \neq y \land \exists m (V(x,m) \land V(y,m))]$ There are (at least) two different people in this mom who have seen by least) on exympton main words b) $\exists x \exists y [x \neq y \land \forall m (V(x,m) \leftrightarrow V(y,m))]$ "p and q" There are (ot least) two different "p or q" people in this ruom who have "if p, then q" seen the exact same set of ∀x P(x) "for all x, P(x)" movies ∃x P(x) "there exists x such that P(x)"

DeMorgan's Laws for Quantifiers $\frac{\neg \exists x \ P(x) \equiv \quad \forall x \ \neg P(x)}{\neg \forall x \ P(x) \equiv \quad \exists x \ \neg P(x)}$ Exercise: Simplify each statement (so that negation appears only directly before a predicate):

a) $\neg \exists x \ \forall y \ \exists z \ [\neg P(x, y, z) \lor \neg Q(x, y, z)]$ b) $\neg \exists x \ [P(x) \to \neg Q(x)]$ $\equiv \forall x \ \neg \forall y \ \exists z \ [\neg P(x, y, z) \lor \neg Q(x, y, z)]$ $\equiv \forall x \ \exists y \ \forall \exists z \ [\neg P(x, y, z) \lor \neg Q(x, y, z)]$ $\equiv \forall x \ \exists y \ \forall z \ [\neg P(x, y, z) \lor \neg Q(x, y, z)]$ $\equiv \forall x \ \exists y \ \forall z \ [\neg P(x, y, z) \lor \neg Q(x, y, z)]$ $\equiv \forall x \ \exists y \ \forall z \ [\neg P(x, y, z) \lor \neg Q(x, y, z)]$ $\equiv \forall x \ \exists y \ \forall z \ [\neg P(x, y, z) \lor \neg Q(x, y, z)]$ $\equiv \forall x \ \exists y \ \forall z \ [\neg P(x, y, z) \lor \neg Q(x, y, z)]$ $\equiv \forall x \ \exists y \ \forall z \ [\neg P(x, y, z) \lor \neg Q(x, y, z)]$ $\equiv \forall x \ \exists y \ \forall z \ [\neg P(x, y, z) \lor \neg Q(x, y, z)]$ $\equiv \forall x \ \exists y \ \forall z \ [\neg P(x, y, z) \lor \neg Q(x, y, z)]$ $\equiv \forall x \ \exists y \ \forall z \ [\neg P(x, y, z) \lor \neg Q(x, y, z)]$

Example 1. negation

a) $\exists x \ L-4 < x \leq 1$)

Anower, $\forall x \cdot ((x > 1) \ \forall x \leq -4)$)

b) $\forall z \exists x \exists y \cdot (x^3 + y^3 = x^3)$ Anower: $\exists z \ \forall x \forall y \cdot (x^3 + y^3 \neq x^3)$

Example 2, Find Counter examples (domain; all integer for all variables)

a) $\forall x \exists y \ (x = \frac{1}{7}) \ (E; x = 0, \forall y \ (x \neq \frac{1}{7})$ b) $\forall x \exists y \ (y^2 - x^2 | w)$ $\cdot CE: \forall x = -1 w, \forall y \ (y^2 < 0)$ c) $\forall x \forall y \ (x^2 \neq y^3)$ $\cdot CE: \forall x = 1, y = 1$