CapSel KH - 01

Nonlinear evolution of the Kelvin-Helmholtz instability

keppens@rijnh.nl

- the Kelvin-Helmholtz instability in compressible HD
- Linear (2D) results
 - \Rightarrow HD versus MHD: parallel and anti-parallel B configurations
- Non-linear (2D) behaviour
- 3D simulations: A case study

Kelvin-Helmholtz instability

- ullet 2D (x,y)-plane, compressible HD, constant ho and p
- shear tanh(y/a) horizontal v_x flow profile, width 2a
- perturb with vertical flow $\delta v_y \sim \sin(k_x x)$
 - \Rightarrow within shear layer: $-\rho v_x' \delta v_y$ horizontal force
 - \Rightarrow density ($\propto p$) redistributed in compression-depression pattern
 - ⇒ pressure perturbation → pressure gradient force field

⇒ amplifies the vertical velocity perturbation: unstable!

- 2D studies: HD and MHD uniform horizontal (\parallel flow) and reversed B \Rightarrow reversed field: uniform strength, direction flips at y=0
- linear and non-linear behaviour: growth & saturation
- ullet monitor vertical kinetic energy: deduce growth rate and E_{max}

Linear (2D) results

- reference case with $V_0 = 0.645$, a = 0.05, $k_x = 2\pi$, $B_0 = 0.129$
 - \Rightarrow KH unstable for HD, initially weak B field in MHD
 - \Rightarrow dimensionless $k_x a = 0.314$, $M_s = 0.5$, $M_a = 5$, $\beta = 120$
 - ⇒ growth rates agree with LEDAFLOW results!
- ullet dependence of growth Γ on wavelength

- stabilizing influence of uniform B
 - ⇒ tension in field lines
- destabilizing influence of reversed B stronger for B
 - \Rightarrow growth rate as function of Alfvén Mach M_a

Nonlinear results

- KH instability for reference parameter values
 - \Rightarrow weak initial B ($\beta = 120$): vortical flow pattern sets in
 - ⇒ magnetic field dragged into spiral configuration
 - ⇒ eventually gets amplified in thin spiral sheetlike structure
 - \Rightarrow B locally dynamically important: halts further winding
 - \Rightarrow where ${f B}$ is amplified in sheets: cospatial low density lanes

ullet study of saturation energy level E_{max} versus $k_x a$, M_s , and M_a

- ⇒ indication of non-linear saturation
- dependence on Alfvén Mach number (initial field strength)

⇒ reversed case may saturate above/intermediate/below HD value

- ullet reversed case: initial $\mathbf{J} = \nabla \times \mathbf{B}$ infinitely thin sheet
 - \Rightarrow limit $b \to 0$ with $B_x = \tanh(y/b)$ [then p(y)]
 - ⇒ additional pinching mode (with reconnection) accessible
- current sheet gets amplified by vortex flow
 - \Rightarrow strong current sheet \Rightarrow resistive dissipation important
 - \Rightarrow systematic study in resistive MHD for $\eta \to 0$ (finer grid)
 - ⇒ extra magnetic energy tapped

- anti-parallel field lines pushed together
 - ⇒ magnetic islands form (tearing unstable)

- reconnection plays role sooner than for uniform case
- turbulent state sets in fast, complicating saturation behaviour
- compressibility: density deviations up to 40 %

CapSel KH - 10

 \bullet density evolution for case without and with J -sheet

- \Rightarrow induced island formation ('tearing') when ${\bf J}$ -sheet
- ⇒ 2D current-vortex transits to magnetically modified turbulence
- ⇒ KH unstable shear flow triggers small-scale reconnection events

3D KH case study

ullet Model [astrophysical] jet of radius R_{jet}

 \Rightarrow shear flow (width 2a) across its circumference

 \Rightarrow t=0 parallel uniform ${\bf B}$, reference $V_0=0.645$, a=0.05, $B_0=0.129$

- ullet 3D perturbation wavenumber n along jet, m about jet axis
 - \Rightarrow sideways 'kink' perturbation m = 1 = n

 \bullet in horizontal cross-cut: doubled 2D result: ρ at t=4

CapSelKH - 13

ullet high ho isosurface and $v_x=0$ jet surface colored by $p_{
m th}$

ullet $p_{
m th}$ gradient induces wavenumber doubling on top/bottom

ullet low ho lanes: 3D fibril and sheet structures: cospatial with high $B_{
m pol}$

ullet localized 3D high $B_{ m pol}$ regions control jet deformation

Kelvin-Helmholtz unstable jet : m=1 vrs. m=2 breakup.

CapSel KH - 18

References

- R. Keppens et al., *J. Plasma Physics* **61**, **1** (1999)
- R. Keppens, G. Tóth, *Physics of Plasmas* **6**(5), 1461 (1999)