Login: student wachtwoord: Ohey5350

Hands-on sessie: programmeren

Wat is een computerprogramma?

Een lijst van instructies in een formele taal om een specifieke taak met een computer uit te voeren

Elektrische toestellen

Besturingssysteem

Games

Tijdens deze mini-les maken we ...

... een programma in Python waarmee we uit elk (virtueel) labyrint kunnen ontsnappen

De instructies:

Beweging is steeds relatief ten opzichte van de richting waarnaar de robot gericht is

turnLeft()

turnRight()

goForward()

Vlugge vraag

Beschouw volgende beginsituatie; wat is het resultaat van volgende sequentie instructies?

turnRight()
goForward()
turnLeft()
goForward()
goForward()
turnRight()

Vlugge vraag: Antwoord: **b**

Beschouw volgende beginsituatie; wat is het resultaat van volgende sequentie instructies?

turnRight()
goForward()
turnLeft()
goForward()
goForward()
turnRight()

Opdracht #1

(vraag1.py)

We zijn al een eind op weg; maak het programma verder af!

Oplossing opdracht #1

from doolhof import *

uitgang:

Volgende sequentie van instructies brengt je naar de

```
# Probleem 1: Manueel uit doolhof gaan
laadDoolhof("doolhof.txt")
turnRight()
goForward()
turnLeft()
goForward()
goForward()
turnRight()
goForward()
goForward()
turnLeft()
goForward()
goForward()
turnLeft()
goForward()
goForward()
goForward()
```

We vallen in herhaling ...

Laad nu het volgende doolhof (vraag2a.py)

```
# stap 2a: gebruik while
laadDoolhof("doolhof2a.txt")
```


We vallen in herhaling ...

Laad nu het volgende doolhof (vraag2a.py)

```
# stap 2a: gebruik while
laadDoolhof("doolhof2a.txt")
```

goForward() turnRight() goForward() goForward() goForward() turnRight() goForward() goForward()

goForward()

Herhalingslus

"Zolang je rechtdoor kan gaan, ga rechtdoor"

```
while freeForward():
    goForward()
```


Je kan niet enkel 1 instructie herhalen (goForward()), maar ook een heel programma

het te herhalen stuk springt in

Nieuwe functies

Waar (True) als

freeForward() ... de plek voor je

freeLeft() ... links van je

freeRight() ... rechts van je

vrij is; anders onwaar (False)

foundExit() Waar als je het eindpunt bereikte

anders onwaar

not functie() Waar als functie() onwaar is en omgekeerd

goForward() Het te herhalen stuk springt in; gebruik <TAB> goForward() goForward() Te herhalen stuk gedaan? Terug naar links! <Backspace> go-Forward() goForward() goForward() turnRight()

Geen hoofdletter While freeForward(): goForward() turnRight()

Herhalingslus

Opdracht #2a

(vraag2a.py)

Laad nu het doolhof en ga naar de uitgang

```
# stap 2a: gebruik while
laadDoolhof("doolhof2a.txt")
```



```
# stap 2a: gebruik while
laadDoolhof("doolhof2a.txt")
while freeForward():
    goForward()
turnRight()
while freeForward():
    goForward()
turnRight()
while freeForward():
    goForward()
```



```
# stap 2a: gebruik while
laadDoolhof("doolhof2a.txt")

while freeForward():
    goForward()

turnRight()
while freeForward():
    goForward()

turnRight()
while freeForward():
    goForward()
```



```
# stap 2a: gebruik while
laadDoolhof("doolhof2a.txt")
while freeForward():
    goForward()
turnRight()
while freeForward():
    goForward()
turnRight()
while freeForward():
    goForward()
```



```
# stap 2a: gebruik while
laadDoolhof("doolhof2a.txt")
while freeForward():
    goForward()
turnRight()
while freeForward():
    goForward()
turnRight()
while freeForward():
    goForward()
```



```
# stap 2a: gebruik while
laadDoolhof("doolhof2a.txt")
while freeForward():
    goForward()
turnRight()
while freeForward():
    goForward()
turnRight()
while freeForward():
    goForward()
```



```
# stap 2a: gebruik while
laadDoolhof("doolhof2a.txt")
while freeForward():
    goForward()
turnRight()
while freeForward():
    goForward()
turnRight()
while freeForward():
    goForward()
```

Oplossing #2a: minder code!

```
# stap 2a: gebruik while
laadDoolhof("doolhof2a.txt")
                                      while not foundExit():
while freeForward():
    goForward()
                                           while freeForward():
turnRight()
                                                goForward()
while freeForward():
                                           turnRight()
    qoForward()
turnRight()
while freeForward():
                                        Main
    goForward()
                                                True
+ turnRight()
                                     not foundExit()
                                     False
                                                            True
                                                  freeForward()
                                                 False
                                                             goForward()
```

End

Oplossing #2a - korter

```
while not foundExit():
    while freeForward():
        goForward()
    turnRight()
```

```
while not foundExit():
    while freeForward():
        goForward()
    turnRight()
```

```
while not foundExit():
    while freeForward():
        goForward()
    turnRight()
```

```
while not foundExit():
    while freeForward():
        goForward()
    turnRight()
```

```
while not foundExit():
    while freeForward():
        goForward()
    turnRight()
```

```
while not foundExit():
    while freeForward():
        goForward()
    turnRight()
```



```
while not foundExit():
    while freeForward():
        goForward()
    turnRight()
```

```
while not foundExit():
    while freeForward():
        goForward()
    turnRight()
```

```
while not foundExit():
    while freeForward():
        goForward()
    turnRight()
```

```
while not foundExit():
    while freeForward():
        goForward()
    turnRight()
```

```
while not foundExit():
    while freeForward():
        goForward()
    turnRight()
```

```
while not foundExit():
    while freeForward():
        goForward()
    turnRight()
```

```
while not foundExit():
    while freeForward():
        goForward()
    turnRight()
```

Oplossing #2a

- korter

```
while not foundExit():
    while freeForward():
        goForward()
    turnRight()
```

Oplossing #2a

- korter

```
while not foundExit():
    while freeForward():
        goForward()
    turnRight()
```

Oplossing #2a

- korter

```
while not foundExit():
    while freeForward():
        goForward()
    turnRight()
```

Opdracht #2b

(vraag2b.py)

Ga naar het einde van dit doolhof:

```
# stap 2b: while opdracht b
laadDoolhof("doolhof2b.txt")
```


Oplossing #2b

```
# stap 2b: while opdracht b
laadDoolhof("doolhof2b.txt")
while not foundExit():
    while freeForward():
        goForward()
    turnLeft()
```


Willekeurige doolhoven oplossen

Tot nu: programma's om specifieke doolhoven op te lossen. Kunnen we ook programma's schrijven die elk doolhof oplossen?

 We moeten keuzes kunnen maken die afhangen van de situatie:

Als links vrij is dan draai naar links

Anders als rechts vrij is dan draai naar rechts

Anders ga vooruit

if – elif - else

Dit is exact wat if – elif – else doet in Python:

Als links vrij is dan draai naar links

Anders als rechts vrij is dan draai naar rechts

Anders ga vooruit

```
if freeLeft():
    turnLeft()
elif freeRight():
    turnRight()
else:
    goForward()
```


if – elif - else

Dit is exact wat if – elif – else doet in Python:

Opdracht #3

vraag3.py

Maak een programma dat doolhof 3 oplost.

Oplossing #3

```
while not foundExit():
    while freeForward():
        goForward()
    if freeLeft():
        turnLeft()
    else:
        turnRight()
```


Als in- en uitgang beiden aan de buitenmuur liggen, dan kan je steeds op volgende manier ontsnappen:

Volg steeds het meest rechtse pad (zorg ervoor dat jouw rechterhand steeds de muur blijft raken)

Rechterhandregel: voorbeeld

Volg steeds het meest rechtse pad

Rechterhandregel

```
Volg steeds het meest rechtse pad
Zolang je de uitgang niet bereikte:
       als rechts vrij is:
               draai naar rechts en vooruit
       anders als vooruit vrij is:
               vooruit
       anders als links vrij is:
               draai naar <u>links</u> en <u>vooruit</u>
        anders:
```

draai 180gr en vooruit

4

Opdracht #4

vraag4.py

Maak een programma dat de rechterhandregel volgt. Je kan dit testen op doolhof 4:

```
# Vraag 4: Los doorhof 4 op
laadDoolhof("doolhof4.txt")
# laadDoolhof("doolhof5.txt") # 4 gelukt? vervang vorige regel dan door deze!
```

Zolang je de uitgang niet bereikte: neem het meest rechtse pad

Ben je klaar? Los dan ook eens doolhof5 op!

Oplossing #4

```
Zolang je de uitgang niet bereikte:

zoek meest rechtse doorgang
ga vooruit
```



```
while(not foundExit()):
    if freeRight():
        turnRight()
        goForward()
    elif freeForward():
        goForward()
    elif freeLeft():
        turnLeft()
        goForward()
    else:
        turnRight()
        turnRight()
        goForward()
```

Samenvatting

Programmeren = stap voor stap instructies geven om een probleem op te lossen

Belangrijke constructies:

Sequentie van commando's : een voor een uitvoeren

Herhalingslussen: zolang ... herhaal ...

Voorwaardelijke uitvoering: if ... elif ... else ...

Extras:

Variabelen om te onthouden en te rekenen

Informatica

Meer dan alleen programmeren

- Algoritme: rechterhandregel
 - Aantal stappen in slechtste geval?
 - Efficiënter algoritme mogelijk?
 - Wat als in- en uitgang niet aan de buitenkant liggen?
 - Hoe het kortste pad vinden?
- Ook: datastructuren, besturingssystemen, netwerken, gedistribueerde systemen, databanken, ...

Bedankt voor jullie aanwezigheid!

Tot volgend jaar?

Extra materiaal voor de snelle programmeurs ...

Variabelen

Stel dat we willen onthouden hoeveel stappen we namen

- Moeten dingen kunnen onthouden
- Kan met behulp van variabelen

Een variabele is een naam voor een geheugenplaats

- Zelfgekozen naam
- We kunnen waarden toekennen, aanpassen, uitlezen

Tel het totaal aantal stappen


```
steps=0
          foundExit():
    steps=steps+1
      freeRight(): # right is free
        turnRight()
        goForward()
    elif freeForward(): # not right, but forward is free
        goForward()
    elif freeLeft(): # not right, not forward, but left free
        turnLeft()
        goForward
    else: # neither right, nor forward, nor left are free
        turnLeft()
        turnLeft()
        goForward()
print("Aantal stappen:", steps)
```

Print geeft de *waarde* van uitdrukkingen of variabelen; hier de waarde van de *string* "Aantal stappen:" en de waarde van de variabele steps

Opdracht #5

vraag5.py

Tel hoeveel maal de robot:

- Naar links draait
- Naar rechts draait

Opdracht #5 : Oplossing


```
steps=0
right=0
left=0
while not foundExit():
    steps=steps+1
    if freeRight(): # right is free
        turnRight()
        right=right+1
        goForward()
    elif freeForward(): # not right, but forward is free
        goForward()
    elif freeLeft(): # not right, not forward, but left free
        turnLeft()
        left=left+1
        goForward
    else: # neither right, nor forward, nor left are free
        turnLeft()
        turnLeft()
        left=left+2
        goForward()
print("Aantal stappen:", steps)
print("Rechts:", right, "links:", left)
```

Variabelen gebruiken in if en while

We kunnen bewerkingen doen met een variabele:

```
cost = 3*left+2*right+steps
    #kostp ijs afhankelijk van de operatie
    vermenigvuldiging
```

We kunnen testen of een variabele of uitdrukking kleiner, gelijk, groter is dan een waarde of een andere variabele of uitdrukking

Let op! 2x = om te testen op

Opdracht #6

vraag6.py

Test welk algoritme het grootste aantal stappen nodig heeft in het doolhof: de rechterhand regel of de linkerhand regel?

Opdracht #6 Oplossing

```
stepsRHR=0
while not foundExit():
    stepsRHR=stepsRHR+1
    if freeRight(): # right is free
        turnRight()
        goForward()
    elif freeForward(): # not right, but forward is free
        goForward()
    elif freeLeft(): # not right, not forward, but left free
        turnLeft()
        goForward()
    else: # neither right, nor forward, nor left are free
        turnLeft()
        turnLeft()
        goForward()
# Right-hand rule
laadDoolhof("doolhof4.txt")
# Now do the Lefthand rule and count steps
stepsLHR=0
while not foundExit():
    stepsLHR=stepsLHR+1
    if freeLeft(): # left is free
        turnLeft()
        goForward()
    elif freeForward(): # not left, but forward is free
        goForward()
    elif freeRight(): # not left, not forward, but right free
        turnRight()
        goForward()
    else: # neither right, nor forward, nor left are free
        turnRight()
        turnRight()
        goForward()
# Decide which one is larger and print output
if stepsLHR==stepsRHR:
    print("Beiden nemen hetzelfde aantal stappen")
elif stepsLHR<stepsRHR:
    print ("Linkerhand regel is efficienter:", stepsLHR, "vs.", stepsRHR)
else:
    print("Rechterhand regel is efficienter:", stepsRHR, "vs.", stepsLHR)
```


Opdracht #6 Oplossing

```
stepsRHR=0
                                 while not foundExit():
                                     stepsRHR=stepsRHR+1
                                     if freeRight(): # right is free
                                        turnRight()
                                        goForward()
                                     elif freeForward(): # not right, but forward is free
                                        goForward()
                                     elif freeLeft(): # not right, not forward, but left free
                                        turnLeft()
                                        goForward()
                                     else: # neither right, nor forward, nor left are free
                                        turnLeft()
                                        turnLeft()
                                        goForward()
                                 # Right-hand rule
                                 laadDoolhof("doolhof4.txt")
                                 # Now do the Tofthand rule and count atoms
# Decide which one is larger and print output
if stepsLHR==stepsRHR:
     print("Beiden nemen hetzelfde aantal stappen")
elif stepsLHR<stepsRHR:
     print ("Linkerhand regel is efficienter:", stepsLHR, "vs.", stepsRHR)
else:
     print ("Rechterhand regel is efficienter:", stepsRHR, "vs.", stepsLHR)
                                     else. # Helchel light, hot lotward, hot lett ale liee
                                        turnRight()
                                        turnRight()
                                        goForward()
                                 # Decide which one is larger and print output
                                 if stepsLHR==stepsRHR:
                                     print("Beiden nemen hetzelfde aantal stappen")
                                 elif stepsLHR<stepsRHR:
                                     print ("Linkerhand regel is efficienter:", stepsLHR, "vs.", stepsRHR)
                                 else:
                                     print ("Rechterhand regel is efficienter:", stepsRHR, "vs.", stepsLHR)
```

