

Machine Learning Course

Time Series Analysis

Neychev Radoslav

ML Instructor, BigData Team Research Scientist, MIPT

27.08.2018, Moscow, Russia

Outline

- Time Series as data with time hierarchy.
- 2. Classical approaches: AR, MA, ARIMA, exp. smoothing etc.
- Practice.
- 4. Feature engineering for Time Series analysis.
- 5. Modern approaches.
- 6. (extra) Neural networks (CNN & RNN) in TS analysis.
- 7. More practice.

Materials: http://bit.ly/ml4megafon august18 public

Time Series: intro

Time Series -- series of data observations with time hierarchy.

Time Series: intro

How to measure the prediction quality?

Time Series: metrics in forecasting

- R squared (coefficient of determination): $R^2(y,\hat{y}) = 1 \frac{\sum_{i=0}^{n_{\text{samples}}-1} (y_i \hat{y}_i)^2}{\sum_{i=0}^{n_{\text{samples}}-1} (y_i \bar{y}_i)^2}$
- Mean Absolute Error: $MAE(y, \hat{y}) = \frac{1}{n_{samples}} \sum_{i=0}^{n_{samples}-1} |y_i \hat{y}_i|$.

- edian Absolute Error: $\operatorname{MedAE}(y,y) = \dots$ Mean Squared Error: $\operatorname{MSE}(y,\hat{y}) = \frac{1}{n_{\operatorname{samples}}} \sum_{i=0}^{n_{\operatorname{samples}}-1} (y_i \hat{y}_i)^2$.

 Mean Absolute Percentage Error: $\operatorname{MAPE} = \frac{1}{n_{\operatorname{samples}}} \sum_{i=0}^{n_{\operatorname{samples}}-1} \frac{|y_i \hat{y}_i|}{|y_i|} \frac{|y_i \hat{y}_i|}{n_{\operatorname{samples}}-1}$ MSLE $(y,\hat{y}) = \frac{1}{n_{\operatorname{samples}}} \sum_{i=0}^{n_{\operatorname{samples}}-1} (\log_e (1 + y_i) \log_e (1 + \hat{y}_i))^2$

Stationarity

Stationary process does not change its statistical properties (mean and variance) over time.

b)

Source: post by Sean Abu

Process oscillates around 0 with deviation of 1.

White noise to random walk

Let's transform the white noise process: y(t)=p

 $y(t) = \rho^* y(t-1) + e(t)$

Variance stabilization

Box-Cox transformation:

$$w_t = \left\{ egin{array}{l} \log y_t, ext{ if } \lambda = 0; \ rac{(y_t^{\lambda} - 1)}{\lambda}, ext{ otherwise} \end{array}
ight.$$

tm

Source: datascienceplus blog post

Averaging and smoothing

• Moving average:
$$\hat{y}_t = \frac{1}{k} \sum_{t=0}^{k-1} y_{t-n}$$

• Weighted moving average:
$$\hat{y}_t = \sum_{n=1}^{\infty} \omega_n y_{t+1-n}$$

• Exponential smoothing: $\hat{y}_t = \alpha \cdot y_t + (1 - \alpha) \cdot \hat{y}_{t-1}$

Averaging and smoothing

Caution: only one step is predicted

Double exponential smoothing

intercept (or level): $\ell_x = \alpha y_x + (1 - \alpha)(\ell_{x-1} + b_{x-1})$

trend (or slope): $b_x = \beta(\ell_x - \ell_{x-1}) + (1 - \beta)b_{x-1}$

Now two steps can be predicted

Let's add one more component: seasonality (s).

Seasonal component in the model should explain repeated variations around intercept and trend, and it will be described by the length of the season.

Triple exponential smoothing (Holt-Winters)

$$\mathcal{E}_{x} = \alpha(y_{x} - s_{x-L}) + (1 - \alpha)(\mathcal{E}_{x-1} + b_{x-1})$$

$$b_{x} = \beta(\mathcal{E}_{x} - \mathcal{E}_{x-1}) + (1 - \beta)b_{x-1}$$

$$s_{x} = \gamma(y_{x} - \mathcal{E}_{x}) + (1 - \gamma)s_{x-L}$$

$$\hat{y}_{x+m} = \mathcal{E}_{x} + mb_{x} + s_{x-L+1+(m-1)modL}$$

Triple exponential smoothing example

Triple exponential smoothing example: Anomaly detection

Actually, simple exponential smoothing allows to detect anomalies as well.

One more great approach from econometrics: ARIMA (<u>link1</u>, <u>link2</u>, <u>link3</u> etc.)

Time Series Cross Validation

Time to take a break

But first, feedback, please: http://bit.ly/ml4megafon august18 lecture5 feedback

Feature generation

Different ways to generate features:

- Lagged Time Series Values
- Rolling statistics (max, min, median, mean, variance etc. in some window)
- Data-based features (information about holidays, siesta hours, special events etc)
- Exogenous variables
- Predictions of some extra models

Example TS with exogenous variables

Wait, what about classification problem?

Wait, what about classification problem?

Easy: now we are just dealing with supervised learning problem!

Example Time Series: design matrix

- a) Design matrix example
- b) Target variables example

Supervised learning approaches

And here come all the great methods:

- Linear models
- Random Forest
- XGBoost (and alike)
- Neural Networks (RNN, CNN etc.)

To describe our data well, we need good feature space.

And feature engineering is an *art*.

Possible way out:

1. Neural Networks

Recap: convolution layer

2d (and 3d) convolution: vital for Computer Vision problems.

1d convolution fits time series analysis.

Recap: convolution layer

5x5

1,	1 _{×0}	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Intuition: how *cat-like* is this square?

Recap: pooling layer

- Reduces layer size by a factor
- Makes NN less sensitive to small signal (image/ts) shifts

- Widely used:
 - max pooling
 - mean pooling

We use same weight matrices for all steps

Now with formulas

$$h_{0} = \bar{0}$$

$$h_{1} = \sigma(\langle W_{\text{hid}}[h_{0}, x_{0}] \rangle + b)$$

$$h_{2} = \sigma(\langle W_{\text{hid}}[h_{1}, x_{1}] \rangle + b) = \sigma(\langle W_{\text{hid}}[\sigma(\langle W_{\text{hid}}[h_{0}, x_{0}] \rangle + b, x_{1}] \rangle + b)$$

$$h_{i+1} = \sigma(\langle W_{\text{hid}}[h_{i}, x_{i}] \rangle + b)$$

$$P(x_{i+1}) = \operatorname{softmax}(\langle W_{\text{out}}, h_{i} \rangle + b_{\text{out}})$$

To describe our data well, we need good feature space.

And feature engineering is an *art*.

Possible way out:

- **1.** Neural Networks
- Some libraries that do this stuff for us (<u>Facebook Prophet</u> e.g.). But it's coming next

That's all. Time to get some practice.

But first, feedback, please:

http://bit.ly/ml4megafon_august18_lecture6_feedback