

Sorting

- Sorting is one of the most common data processing applications, the through which data are arranged according to their values.
- If data were not ordered , we would spend hours trying to find a single piece of information.

 Data may be sorted in either ascending sequence or descending sequence . and if the order of the sort is not specified its assumed to be ascending..

Insertion Sort

- In the insertion sort , the list is divided in two parts : sorted and unsorted.
- In each pass the first element of the unsorted sub list is transferred to the sorted sub list by inserting it at appropriate place.
- If we have a list of n elements , it will take at most n-1 passes to sort the data.

```
InsertionSort(A, n) {
  for i = 2 to n {
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
          A[j+1] = A[j]
          j = j - 1
     }
     A[j+1] = key
}
```

```
InsertionSort( A, n)
{
For i = 2 to n {

    Key = A[i]
    j = i - 1

While ( j > 0) and (A[j] > key)
{
    A[j+1] = A[j]
    j = j - 1
}

A[j+1] = key
}
```


Time Complexity

where t is the number of while tests

lima	nmn	
Time	COLLID	CALLY

Statement	Time	Best case	Worst case
For i = 2 to n {	n	n	n
Key = A[i]	n-1	n-1	n-1
j= i - 1	n-1	n-1	n-1
While (j > 0) and (A[j] > key)	$\sum_{i=2}^{n} (ti)$	n-1	n(n+1)/2 -1
A[j+1] = A[j]	$\sum_{i=2}^{n} (ti - 1)$	$\sum_{i=2}^{n}(1-1)=0$	n(n-1)/2
j=j-1	$\sum_{i=2}^{n} (ti - 1)$	$\sum_{i=2}^{n} (1-1) = 0$	n(n-1)/2
A[j+1] = key	n-1	n-1	n-1

Best case running time:

$$T(n) = n + (n-1) + (n-1) + (n-1) + 0 + 0 + (n-1)$$

= $5n - 4$

$$T(n) = O(n)$$

Worst case running time:

$$T(n) = n + (n-1) + (n-1) + (n(n+1)/2 - 1) + n(n-1)/n + n(n-1)/2 + (n-1)$$

$$T(n) = O(n^2)$$

Ex	ample 2	:					
	8	2	4	9	3	6	
	8	8	4	9	3	6	
	2	8	4	9	3	6	
	2	8	8	9	3	6	
University areas Sottle 19							

