Α

Komprese H.264 - AVC

Komprese H.265 - HEVC

Kompresní standardy - video

ITU-T Video Coding Experts Group (ITU-T – VCEG) (H.261, H.263) - telekomunikace, nízké bitové toky

ISO Moving Picture Experts Group (ISO/IEC – MPEG)

1993 <u>MPEG-2</u> (H.262)

ITU-T/ISO Joint Video Team (JVT)

2003 MPEG-4/10 H.264 AVC

ITU-T/ISO Joint Collaborative Team on Video Coding (JCT-VC)

2013 (MPEG-H) **H.265 HEVC**

Kodér MPEG-2 část redukující prostorovou redundanci a irelevanci

MPEG-2 kodér

Intra predikce bloků 4x4, jasová matice (1)

M	Α	В	C	D	E	F	G	Н
I	a	b	С	d				
J	е	f	og.	h				
K	i	j	k	1				
L	m	n	0	p				

Figure 2 Labelling of prediction samples (4x4)

Intra predikce bloků 4x4, jasová matice (2)

Příklad pro 6 módů

3 (diag down/left), SAE=200

5 (vertical/right), SAE=908

Inter predikce, rozdělení makrobloků

Figure 2-2 Macroblock sub-partitions: 8x8, 4x8, 8x4, 4x4

Inter predikce, příklad rozdělen makrobloků

Entropické kódování: VLC a Aritmetické kódování

Entropie: 1,73 b/s VLC: 1,85 b/s Binární kódování:

Základní změny proti MPEG-2

- 1. Proměnná velikost bloků- větší flexibilita pro pohybovou kompenzaci
- 2. Kompenzace pohybu s přesností ¼ vzdálenosti mezi vzorky.
- 3. Vícenásobné referenční snímky
- 4. Není dána striktní závislost mezi pořadím snímků pro kompenzaci pohybu a pořadím snímků pro zobrazení
- 5. Jako referenční snímky lze i snímky B
- 6. Obsahuje adaptivní protiblokový filtr
- 7. Pracuje se 16-ti bitovou aritmetikou
- 8. Účinnější kódování entropie
- 9. Flexibilní řazení makrobloků
- 10. Kromě snímků I, P, B ještě snímky SI, SP
- 11. 2 módy predikce- Intra a Inter
- 12. Snímek rozdělen na makrobloky s pevnou strukturou (16x16 Y , 2x(8x8) Chr)
- 13. Výstupní bitový tok NAL není pevně specifikován, volba dle typu služby

Zdrojové kódování H.264

Features of selected profiles

Feature	ВР	XP	MP	HiP	Hi10P	Hi422P
Bith depth (per sample)	8	8	8	8	8 to 10	8 to 10
Chroma formats	4:2:0	4:2:0	4:2:0	4:2:0	4:2:0	4:2:0/4:2: 2
Interlaced coding (PicAFF, MBAFF)	No	Yes	Yes	Yes	Yes	Yes
B slices	No	Yes	Yes	Yes	Yes	Yes
CABAC	No	No	Yes	Yes	Yes	Yes
4:0:0 (Monochrome)	No	No	No	Yes	Yes	Yes
8×8 vs. 4×4 transform adaptivity	No	No	No	Yes	Yes	Yes
Quantization scaling matrices	No	No	No	Yes	Yes	Yes
Separate C _b and C _r QP control	No	No	No	Yes	Yes	Yes

H.264 Profily a úrovně

Profiles:

Constrained Baseline Profile, BP, Extended P, **Main Profile** (added to DVB standard)

High Profile (HiP) - DVB HDTV broadcasting

Progressive High Profile, Constrained High Profile (without B)

High 10 Profile (Hi10P), High 4:2:2 Profile (Hi422P), High 4:4:4 Predictive Profile (Hi444PP),

and Four intra frames profiles (cameras, editing)

Five Scaleable profiles (including High Profile)

Two Multiview Profiles

5 basic levels:

```
HDTV up
Level 4
-
20 Mbit/s
(High10 60 Mbis/s)
up 30 fr/s

4.1
-
62.5 Mb/s
(High 10 150 Mb/s)
up 64 fr/s

UHD up
Level 5.1
-
300 Mb/s
(High 10 720 Mb/s)
up 30fr/s

Level 5.2
-
300 Mb/s
(High 10 720 Mb/s)
up 60fr/s
```

Summary - H.264, MPEG-4/10, AVC

High flexibility: Profiles for different resolution, bitrate (quality), broadcast, Blue-ray discs, IP, telephony)

Developed: Joint Video Team (JVT) = ITU-T VCEG + JTC MPEG (2004 +) Patented for commercial use.

More then 22 versions, 2007 SVC (Scalable VC), 2009 MVP (Multi View Profile)

Základní vlastnosti:

Integer transform 4x4 based on DCT

Intra-prediction - predikce v I snímku

Deblocking Filter - redukce bloková struktura už v kodéru

Reference frames - více referenčních snímků, i kombinace

Size of Macroblock - od 4x4 do 16x16, přesnost ¼ pixelu

Entropy coding - CAVLC / CABAC

Tabelle I. Formate nach EBU Tech 3299

	720p/50	1080i/25	1080p/50	SD
aktive Bildpunkte	1280×720	1920 × 1080	1920 × 1080	720 × 576
Bildrate (Hz)	50	25	50	25
Netto-Datenrate (10 bit)	0,9216	1,0368	2,0736	0,207
Gbit/s (8 bit)	0,7373	0,8294	1,6589	0,166
1 h Speicherkapazität				
Gbyte (10 bit)	414,7	466,6	933,2	93,1
Gbyte (8 bit)	331,8	373,2	746,5	74,7
Reduktionsfaktor (10 bit)	9,2	10,4	20,7	2,1
für 100 Mbit/s (8 bit)	7,4	8,3	16,6	1,7

Bild 1. Zeitlicher Verlauf der Codiereffizienz bei der Datenratenreduktion

Komprese H.265 - HEVC Zdrojové kódování pro HDTV

Komprese H.265 - HEVC Zdrojové kódování pro HDTV

Kompresní standardy - video

ITU-T Video Coding Experts Group (ITU-T – VCEG) (H.261, H.263) - telekomunikace, nízké bitové toky

ISO Moving Picture Experts Group (ISO/IEC – *MPEG*)

1993 <u>MPEG-2</u> (H.262)

ITU-T/ISO Joint Video Team (JVT)

2003 MPEG-4/10 <u>H.264</u> AVC

ITU-T/ISO Joint Collaborative Team on Video Coding (JCT-VC)

2013 (MPEG-H) H.265 HEVC

H.265, HEVC, MPEG H

- Successor of H.264/MPEG-4 AVC
- Joint standard of ITU-T/VCEG and ISO-IEC/MPEG
- ITU-T Rec H.265 and ISO/IEC 23008-2 MPEG H Part

Version 1: finalized 2013

- Main Profile: classical consumer applications (8bits + 4:2:0)
- Main 10 Profile: Premium and UHDTV applications
- Still Picture Profile: IDR picture (Subset of Main)

Version 2 Range Extensions (RExt): 2014

- 15 profiles including Main 4:2:2 10-b/12-b, Main 4:4:4 10-b/12-b
- Scalable High-efficiency Video Coding (SHVC)
- Layered encoding

Version 3 - 2015 3D Main Profile

Standard HEVC

Prostorová (Intra) predikce

Zakódování podobných oblastí pouze jednou. Eliminace dat na základě modelu HVS.

Každý blok je predikován ze svých sousedních bloků

Intra predikce

Luma: 35 prediction directions (33 +

Planar + DC)

Planar predition)

Prostorová a časová predikce

Odhad pohyby (ME) - není standardizován, každý výrobce drží konkrétní postup v tajnosti

HEVC

- Coding Tree is a collection of Coding Units (CU), CU size can be 64x64 to 8x8
- Each CU can have different coding modes
- Each CU can further partition into Prediction (PU) or Transform Units(TU)
- Separation of PU and TU allows better coding efficiency

Coding Structure

Coding Unit (CU) 8x8 to 64x64

Prediction Unit (PU)

Intra: square

Inter: square, rectangular, AMP

Transform Unit (TU)

4x4 to 32x32

Intra: DCT + DST 4X4 Luma intra

Inter: DCT only

H.264 - HEVC

H.264/AVC 16x16 Macroblock **Block coding structure** 3 Intra partitioning 4 Inter partitioning +4 sub-partitioning 8x8 2 Transform sizes: 4x4, 8x8 Up to 9 Intra prediction directions

Prediction Unit and Transform Unit partitioning

➡ Multiples sizes/forms: 64x64 to 4x4

35 Intra prediction directions

	MPEG-2	H.264	HEVC
Partition size	Macroblock 16x16	Macroblock 16x16	Coding Unit: 8x8 to 64x64
Partitioning	Inter16x8, Intra 8x8	Sub-block down to 4x4	Prediction Unit Quadtree down to 4x4
Transform	Floating DCT	Integer DCT 8x8, 4x4	Transform Unit 4x4 to 32x32 Intra/Inter
Intra prediction	DC predictor	Up to 9 predictors	35 predictors
Motion prediction	Vector from one Neighbor	Spatial Median (3 blocks)	Advanced motion vector prediction (spatial + temporal)
"motion-copy" mode	-	Direct mode	Merge mode
Motion precision	½ Pixel bilinear	½ Pixel 6-tap, ¼ Pixel bi-linear	½ Pixel 12-tap,1/8 Pix 6-tap chroma
Entropy coding	VLC	CABAC, CAVLC	CABAC

50% Bandwidth Savings = Same VQ, Half Bitrate

HEVC Encoding Efficiency

25% to 35% lower bit rates at equivalent quality (HD)

[Ohm et al., IEEE TCSVT Dec. 2012]

Comparision HEVC – H.264

Savings are dependent on resoluion:

Zdroj: ATEME, 2016

	H.264 (Mb/s)	HEVC (Mb/s)	Savings (%)
SD	1.5 - 2.5	0.8 – 1.5	30%
1080i25	5 to 9	2.5 to 4.5	35%
1080p50	8 to 15	4 to 7	~50%
UHDp24	18 to 23	9 to 15	~50%
UHDp50	22 to 45	11 to 22	~55%