- **Problem 7.9.** $G^0 = 0$. $G_1 = 1$ and $G_n = 7G_{n-1} 12G_{n-2}$ for n > 1. Compute G_5 . Show $G_n = 4^n 3^n$ for $n \ge 0$.
- Problem 7.12(c). (See Problem 7.28 for hints.) Tinker to guess a formula for each recurrence and prove it. In each case $A_1 = 1$ and for n > 1:

i. formula found:

$$\frac{10^n-1}{9}n$$

ii. prove the base case:

$$A(2) = \frac{100 - 1}{9}(2)$$
$$= \frac{99}{9}(2) = 22$$

base case proven

iii. prove using direct proof

$$10n\frac{A(n-1)}{n-1} + n = \frac{10^n - 1}{9}(n)$$

with with LHS

$$10n\frac{A(n-1)}{n-1} + n = 10n\frac{\frac{10^{n-1}-1}{9}(n-1)}{2(n-1)} + n$$

$$= (10)n(\frac{10^n - 10}{20} \frac{1}{9}) + n$$

$$= n\frac{10^n - 10}{9} + n$$

$$= n\frac{10^n - 10}{9} + \frac{9n}{9}$$

$$= \frac{10^n n - 10n + 9n}{9}$$

$$= \frac{10^n n - n}{9}$$

$$= \frac{10^n - n}{9}$$

iv. we prove by direct proof that the statement is true for all n > 1

- Problem 7.13(a). Analyze these very fast growing recursions. [Hint: Take logarithms.]
 - (a) $M_1 = 2$ and $M_n = aM_{n-1}^2$ for n > 1. Guess and prove a formula for M_n . Tinker, tinker.

n	2	3	4	5
A_n	a4	a16	a256	a65536

(i) formula found:

$$M(n) = 2^{2^{n-1}}$$

(ii) base case:

$$M(2) = a(2^{2^1})$$
$$= a(2^2)$$
$$= a4$$

base case proven

(iii) prove using direct proof

$$aM(n-1)^2=a2^{2^{n-1}}$$
 $M(n-1)^2=2^{2^{n-1}}$ simplify
$$\log_2(M(n-1)^2)=\log_2(2^{2^{n-1}})\ \text{log both sides}$$

$$\log_2(M(n-1)^2)=2^{2^{n-1}}$$

work with LHS

$$\log_2(M(n-1)^2) = 2\log_2(M(n-1))$$

$$= 2\log_2(2^{2^{(n-1)-1}})$$

$$= 2(2^{n-2})$$

$$= 2^{n-1}$$

- (iv) we prove by direct proof that the statement is true for all n > 1
- Problem 7.19(d). Recall the Fibonacci numbers: F_1 , $F_2 = 1$; and, $F_n = F_{n-1} + F_{n-2}$ for n > 2
 - (d) Prove that every third Fibonacci number, F_{3n} , is even
- Problem 7.42.
- Problem 7.45(c).
- Problem 7.49.
- Problem 8.12(d).
- Problem 8.14.