Esercizi geometria analitica nello spazio Corso di Laurea in Informatica A.A. 2002-2003 Docente: Andrea Loi

- 1. Denotiamo con P'_{12} , P'_{13} , P'_{23} , P'_{1} , P'_{2} , P'_{3} , P' i simmetrici di un punto P rispetto ai piani coordinati [xy], [xz], [yz], agli assi coordinati x, y, z e all'origine del sistema di riferimento. Calcolare P'_{12} , P'_{13} , P'_{23} , P'_{1} , P'_{2} , P'_{3} , P' quando P(1,2,3).
- 2. Verificare che i punti A(1,1,1), B(2,-1,3), C(0,1,4) non sono allineati.
- 3. Il baricentro G di un sistema di n punti $A_i(x_i, y_i, z_i)$ ha coordinate:

$$x_G = \frac{1}{n} \sum_{i=1}^n x_i, \ y_G = \frac{1}{n} \sum_{i=1}^n y_i, \ z_G = \frac{1}{n} \sum_{i=1}^n z_i.$$

Calcolare il baricentro G del triangolo di vertici $A_1(1,1,1)$, $A_2(-1,1,2)$, $A_3(0,0,1)$. Calcolare inoltre il baricentro G del quadrilatero di vertici $A_1(1,1,1)$, $A_2(-1,1,2)$, $A_3(0,0,1)$, $A_4(0,0,0)$.

- 4. Scrivere l'equazione del piano α passante per la retta $r:x+y-1=0,\ y-2z=0$ e parallelo alla retta $s:y-z=0,\ 3y-2z+2=0.$
- 5. Sia r la retta intersezione dei due piani, non paralleli, $\alpha: ax+by+cz+d=0$ e $\alpha': a'x+b'y+c'z+d'=0$

Dimostrare che le componenti di un vettore direttore $\mathbf{v}=(l,m,n)$ della retta r sono date da:

$$l = \left| egin{array}{ccc} b & c \ b' & c' \end{array}
ight|, \quad m = - \left| egin{array}{ccc} a & c \ a' & c' \end{array}
ight|, \quad n = \left| egin{array}{ccc} a & b \ a' & b' \end{array}
ight|.$$

6. Scrivere l'equazione cartesiana del piano α passante per $P_0(1,2,3)$ e contenente la retta $r: x=2, \ y=1-t, \ z=3t+1.$

- 7. Dato il punto $P_0(1,2,-1)$ ed il piano $\alpha: x+y-z+1=0$. Determinare l'equazione del piano α' passante per P_0 e parallelo a α .
- 8. Scrivere le equazione cartesiana e l'equazioni parametriche della retta passante per i punti A e B nei seguenti casi:
 - a) A(1,1,0), B(1,1,-1);
 - b) A(0,0,0), B(1,2,0);
 - c) A(-1,1,1), B(2,2,2).
- 9. Determinare i parametri direttori e dare una rappresentazione parametrica per ciascuna delle seguenti rette:
 - a) $x = y = \frac{z+1}{2};$
 - b) $\frac{x+1}{2} = \frac{y}{2} = \frac{z-1}{3}$;
 - c) x 2y + z 1 = 0, x + 3y 2z + 2 = 0.
- 10. Scrivere come intersezione di piani le rette r e s aventi le seguenti equazioni parametriche: $r: x=1-2t, \ y=1+t, \ z=2-3t, \ s: x=1-u, \ y=3, \ z=2+3u$.
- 11. Determinare la posizione reciproca delle seguenti coppie di rette:
 - a) r: x + y + z = 0, x = 0 s: x = 0, x 2y = 1;
 - b) r: x = 1 + t, y = t, z = -t, s: x = 1 + u, y = u, z = -2 + u;
 - c) r: x + y + z = 1, x y = 0, s: x = t, y = 1 + t, z = -t;
 - d) r: x = 2+t, y = -1-t, z = 4+3t, s: x = 3+u, y = 2+u, z = 4+u;
- 12. Trovare la distanza del punto $P_0(1,1,0)$ dalla retta r: x+y=0, x-z=0.
- 13. Calcolare la distanza tra le rette r: 2x + z = 0, x y = 0 e s: x = t, y = 1 + t, z = -t.

14. Determinare centro e raggio della sfera di equazione:

$$x^2 + y^2 + z^2 - 2y - 6z + 1 = 0.$$

Trovare, inoltre l'equazione del piano tangente a S nel punto $P_0(0,1,0)$.

15. Trovare centro e raggio della circonferenza σ intersezione della sfera S dell'esercizio precedente con il piano $\pi: x+y+z-1=0$.