## Lesson 9 - Topics Models

Erin M. Buchanan

02/28/2019

## Language Topics Discussed

- Expansion of semantic vector models into Topics Models
- Types of relations
- ▶ How to differentiate topics and other models

- ▶ What does it take to understand a sentence?
  - Retrieving concepts from memory
  - Dynamic process based on incoming information
  - ▶ Use the semantic context to create a "gist" representation

- Pulling the right information from memory can be improved by predicting what concepts are going to be relevant (expectancy generation)
  - ► For example, bank might prime federal and reserve
  - ▶ However, multiple senses can sometimes make this difficult
  - Gist representation allows us to create an overarching topic to disambiguate sense

- Four types of ways to think about relation:
  - ► Word-concept: knowledge that a word refers to some concept (physical letters dog refer to dog)
  - Concept-concept: knowledge that a concept is related to some other concept (dog is a type of animal)
  - Concept-precept/action: knowledge about what a concept looks like or does (dogs are furry and bark)
  - Word-word: knowledge that the word co-occurs with another word (dog-cat)



Eigung 1 Approaches to sementic representation

STREAM VE • DEEP MEADOW WOODS G

FE BA

LOA

- ► These are useful to understand, because they predict different ways to think about semantic memory.
- What are people doing when they read a sentence and how can we represent that?
  - Translating words to concepts and using background knowledge to pull in other related concepts
  - Using word co-occurrence to predict the next words

- What do topics models propose people do?
  - ▶ Predict: people predict the next word or concept because it helps with retrieval
  - Disambiguation: of senses or meanings of words
  - Gist: creating a coherent representation of the text (mental model not individual words)



documents

## Other thoughts

- Topics modeling could allow us to reveal topics present in text
- OR find ways to sort various texts into different groups
- Similar to clustering, classification, finds the natural groups in the corpus

#### A little bit of math

- ▶ Latent Dirichlet allocation (LDA) is the most popular math
- Estimates topics based on the idea that every document includes a mix of topics, and every topic includes a mix of words
- ► That specification allows topics to overlap, such that they might have some of the same words/content
- ► LDA is the middle group that finds both the words for each topic and the topics for each document

## Getting started with raw data

First, you would need to load the libraries for the Topic Modeling packages:

```
library(tm)
library(topicmodels)
library(tidyverse)
library(tidytext)
library(slam)
```

### Load a dataset or corpus

with:

```
importdf = read.csv('exam_answers.csv', header = F, strings
```

▶ Then, you could load a dataset you are interested in working

## Convert to a Corpus

- ► From these documents, we will create a corpus (a set of text documents).
- ▶ Because our data is in one column in our dataset, we will use VectorSource() to create the corpus:

```
import_corpus = Corpus(VectorSource(importdf$V1))
```

## Clean up the text

- When you perform these analyses, you usually have to edit the text.
- ▶ Therefore, we are going to lower case the words, take out the punctuation, and remove English stop words (like *the, an, a*).
- ► This step will also transform the documents in a term (words) by document matrix.

## Clean up the text

## Weight the matrix

- ► Then you would want to weight that matrix to help control for the sparsity of the matrix.
- That means you are controlling for the fact that not all words are in each document, as well as the fact that some words are very frequent.
- ► Then you usually ignore very frequent words and words with zero frequency.

## Weight the matrix

#### Parameters and terms

- ▶ Alpha: a measure of the number of topics; low scores indicate a few dominant topics per document, high scores indicate more
- ▶ Beta: a measure of the number of words, low scores indicate each topic only composes of a few words
- Gamma: probability of that topic in that document
- Entropy: a measure of randomness

#### A bit more math

- ▶ There are several model types:
  - ► The LDA Fit model is an analysis with VEM (variational expectation-maximization) algorithm and estimating an alpha.
    - The LDA Fixed model using the VEM algorithm with a fixed alpha value.
    - Last, the LDA Gibbs option uses a Gibbs (Bayesian) algorithm to fit the data.
    - CTM stands for correlated topics models, which allows the correlation between topics, and this method uses a VEM algorithm.

#### Run the models

- ► First, you will pick a number of expected topics which is the k option.
- ▶ The SEED should be a random number to start the analysis on.

#### Run the models

## Get the alpha values

You can then get the alpha values, and smaller alpha values indicate higher percentages of documents that were classified to one single topic.

```
LDA_fit@alpha

## [1] 0.05846617

LDA_fixed@alpha

## [1] 16.66667

LDA_gibbs@alpha

## [1] 16.66667
```

## Get the entropy values

➤ You can also get entropy values where higher values indicate that topics are evenly spread.

## [1] 0.2402260 1.0920326 1.0946644 0.5894953

## The actual topics

- The topic matrix indicates the rank of the number of topics for each document.
- ► For instance, if you select to estimate 5 topics, you will see see which topic is covered most in each document, with less covered topics ranked lower.
- ▶ Therefore, a score set of 5, 3, 1, 2, 4 indicates that the 5th topic was covered most in that document, and the 4th topic was covered least.

## The actual topics

```
topics(LDA_fit, k)
        1 2 3 4 5 6 7 8 9 10 11 14 15 16 17 18 19 20 21
##
   [1,] 3 3 1 3 3 1
                                   2 3
                                         2
                                             3
                                                   3
                                                      3
                                                             2
                             3 2 1
        2 1 3 1 1 2 3 2 1
                                      1
                                         1
                             2
                                3
                                   3
                                         3
                                                             3
        1 2 2 2 2 3 2 3 3
##
        30 31 32 33 34 35 36 37 38 39
                                        40
   [1,]
                   3
                             3
                  1
##
   [2,]
            3
                3
                      3
                         1
                             1
                                1
                                   1
                                                3
                         3
                             2
                                   3
   [3,]
         3
                2
                                3
                                      3
##
```

## The actual topics

```
topics(LDA_gibbs, k)
       1 2 3 4 5 6 7 8 9 10 11 14 15 16 17 18 19 20 21
##
                       2 2 2 2
## [1.] 2 3 1 2 3 1 1 2 2
                                   1
                                           3
             1 2 2 1 1 1 3 1 1
                                   2
                                     2
                                                3
                                                   1
          2 1
  [3,] 3 2 3 3 2 3 3 3 3 3 1 3 3 3 3
                                       3
                                                   3
       30 31 32 33 34 35 36 37 38 39 40 41 42
##
## [1,] 1 3 1 1 2 3 2 2 2 3 3
## [2,] 2 1 2 3 1 1 1 1 3 1 1 2 1
## [3,] 3 2 3 2 3 2 3 3 1 2 2 3 3
##you can do all of them saving space
#topics(LDA_fixed, k)
#topics(CTM_fit, k)
```

## The terms for topics

➤ You can get the most frequent terms for each of the topics that were estimated.

#### terms(LDA\_fit,10)

```
Topic 1 Topic 2 Topic 3
##
   [1,] "top" "element" "bike"
##
   [2,] "actual" "observ" "mean"
##
##
   [3,] "previous" "gorilla" "success"
##
  [4.] "surround" "black"
                          "ride"
##
   [5,] "environ" "line"
                           "gorilla"
##
   [6,] "dont" "screen" "red"
## [7.] "discuss" "demonstr" "dont"
  [8,] "therefor" "flash" "your"
##
  [9.] "hand" "lead"
                           "environ"
##
  [10,] "rememb" "monitor" "effici"
##
```

### The terms for topics

#### terms(LDA\_gibbs, 10)

```
##
        Topic 1
                  Topic 2
                                    Topic 3
## [1,] "mean"
                  "gorilla"
                                    "bike"
##
   [2,] "dont"
                  "observ"
                                    "success"
## [3,] "environ" "surround"
                                    "ride"
## [4,] "element" "hand"
                                    "actual"
                                    "previous"
## [5,] "top" "therefor"
   [6,] "rememb" "your"
##
                                    "red"
## [7.] "screen" "attentioncontrol" "black"
## [8.] "act"
                                    "discuss"
             "demonstr"
## [9,] "although" "lead"
                                    "line"
## [10,] "close" "neutral"
                                    "monitor"
```

```
##again you can do all of them
#terms(LDA_fixed, 10)
#terms(CTM_fit,10)
```

## Make some pretty plots

```
#use tidyverse to clean up the the fit
LDA_fit_topics = tidy(LDA_fit, matrix = "beta")

#create a top terms
top_terms = LDA_fit_topics %>%
    group_by(topic) %>%
    top_n(10, beta) %>%
    ungroup() %>%
    arrange(topic, -beta)
```

## Make some pretty plots

▶ Some code to clean up the ggplot2 defaults

## Make some pretty plots

```
#make the plot
top_terms %>%
  mutate(term = reorder(term, beta)) %>%
  ggplot(aes(term, beta, fill = factor(topic))) +
  geom_bar(stat = "identity", show.legend = FALSE) +
  facet_wrap(~ topic, scales = "free") +
  cleanup +
  coord_flip()
```



## The plot



#### Document classification

- ▶ We saw earlier with the topics() function, we could figure out the most to least likely topics.
- This matrix is organized by gamma, which is the probability of that topic in for each document.
- Let's visualize those numbers.

### Document classification

```
LDA_gamma = tidy(LDA_fit, matrix = "gamma")

LDA_gamma %>%
    ggplot(aes(factor(topic), gamma)) +
    geom_point() +
    cleanup
```



### Document classification



## Summary

- ▶ We explored how the theoretical background for topics models is different than other semantic vector space models.
- We talked about how to build topics models with various settings.
- ▶ We talked about the output you can pull from a topic model.
- Extensions can be made to unsupervised classification and clustering.