

Practical Project 1

Linear Regression

1. Consider the "Medical Cost Personal Dataset", available at "Kaggle.com". The data consists of age, sex, BMI (body mass index), children, smoker, region and charges features.

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

The goal is to check whether the charges billed by health insurance can be predicted from the remaining features.

$$h_{\theta}(xi) = \theta_0 + \theta_1 \text{age} + \theta_2 \text{sex} + \theta_3 \text{bmi} + \theta_4 \text{children} + \theta_5 \text{smoker} + \theta_6 \text{region}$$

- 2. Exploratory Data Analysis
 - a) Convert all the data to numeric values.
 - b) Check if there are any missing/NULL values
 - c) Obtain the histogram of each feature, using:
 - a. Bar plots
 - b. Density estimates
 - d) Analyze the correlation between features:
 - a. Observing the scatter plots between pairs of features.
 - b. Observing the scatter plots between each feature and the dependent variable.
- 3. Implement a "linear_regression.py" script, that obtains the best model, according to the gradient descent algorithms.
- 4. Implement functions to obtain performance measures according to a "k-fold" validation scheme.

- 5. Analyze the differences in performance between the models obtained for the different folds.
- 6. Adapt the "linear_regression.py" script to fit a polynomial model (of order "p") to your data. Repeat the analysis of step 5.