UNIVERSIDAD DEL VALLE DE GUATEMALA

Departamento de Computación Security Data Science Sección 10

Proyecto 1: Métricas custom para la detección de patrones secuenciales de fraude

Brandon Ronaldo Sicay Cumes - 21757

Resumen

El presente proyecto busca mejorar la detección de fraudes en transacciones de tarjeta de crédito mediante el diseño e implementación de funciones de evaluación personalizadas enfocadas en la detección de patrones secuenciales de fraude. A diferencia de la detección tradicional de fraudes individuales, los fraudes secuenciales implican ataques organizados donde un mismo cliente o tarjeta realiza múltiples transacciones fraudulentas en un corto periodo de tiempo.

Para ello, se diseñaron múltiples variables nuevas orientadas a capturar comportamiento secuencial y se entrenaron modelos basados en LightGBM utilizando tanto métricas tradicionales como AUC-ROC y F1-score. Posteriormente, se definieron tres métricas personalizadas enfocadas en reducir los falsos positivos y mejorar la detección de secuencias, evaluando su impacto sobre el rendimiento del modelo. Finalmente, se realizó una comparación exhaustiva de resultados utilizando diferentes análisis, incluyendo matrices de confusión y curvas ROC-AUC.

El mejor balance entre detección de fraudes secuenciales y reducción de falsos positivos se logró con las métricas personalizadas fp_penalty, fp_ratio_penalty, y balanced_f1, destacándose un descenso en la tasa de falsos positivos sin perder capacidad de detección.

Metodología

1. Dataset Utilizado

Se trabajó con un dataset de transacciones de tarjeta de crédito entre enero 2019 y diciembre 2020. El conjunto de datos incluía variables como:

- Montos de transacción.
- Información geográfica (latitud/longitud).
- Historial de compras por cliente y comerciante.
- Variables temporales (hora, día, mes, año).

La variable objetivo inicial es is_fraud, pero se diseñó una variable auxiliar is_sequential_fraud_pattern que identifica fraudes en secuencia basados en:

- Agrupaciones de fraudes en corto intervalo de tiempo.
- Distancias cortas entre transacciones.
- Alta frecuencia de transacciones en el mismo comerciante.
- Reducción del tiempo entre fraudes consecutivos.

2. Exploración de Datos (EDA) e Ingeniería de variables

Mediante técnicas estadísticas y visuales se detectaron patrones característicos de fraude secuencial: altas concentraciones de transacciones en poco tiempo y con distancias geográficas pequeñas.

También se observaron características temporales anómalas en los fraudes: muchas transacciones en horarios similares y clientes reutilizando comerciantes en períodos cortos.

Se generaron variables enfocadas en patrones secuenciales como:

- secs since last trans: Diferencia de tiempo entre transacciones consecutivas.
- fraud cluster size: Número de fraudes agrupados por día.
- days since last fraud: Días desde el último fraude.
- trans dist km: Distancia geográfica entre transacciones consecutivas.
- rolling amt mean 1h: Promedio de montos en ventanas móviles de 1 hora.

Estas variables fueron claves para capturar comportamientos de fraude en serie.

3. Preparación de Datos

Se realizó un split temporal:

- Train: Datos hasta noviembre de 2020.
- Test: Transacciones de diciembre 2020.

Las variables categóricas (merchant, category, gender, city, state) fueron codificadas usando LabelEncoder con manejo explícito de valores desconocidos en test.

```
train_mask = (df['trans_month'] == 12) & (df['year'] == 2020)
df_train = df[~train_mask]
df_test = df[train_mask]

X_train = df_train.drop(columns=['is_sequential_fraud_pattern'])
y_train = df_train['is_sequential_fraud_pattern']
X_test = df_test.drop(columns=['is_sequential_fraud_pattern'])
y_test = df_test['is_sequential_fraud_pattern']
```

Descripción de la Implementación Práctica

1. Entrenamiento del Modelo Base

Se entrenó un modelo LightGBM con métricas estándar:

El modelo fue evaluado con métricas tradicionales:

ROC AUC: 1.0

• Weighted F1-score: 0.99999

- Matriz de confusión:
 - 1 solo falso positivo, 933 fraudes secuenciales correctamente detectados.

2. Definición de Métricas Personalizadas

Se diseñaron tres funciones feval personalizadas para LightGBM:

- 1. **fp_penalty**: Penaliza la proporción de falsos positivos.
- 2. fp_ratio_penalty: Penaliza el ratio (TP + FP) / TP.
- 3. **balanced f1**: Balancea precisión y recall, ponderando ambos errores.

Cada métrica fue optimizada en LightGBM, ajustando los siguientes hiperparámetros:

- boosting type: 'gbdt' (Gradient Boosting).
- objective: 'binary' (Clasificación binaria).
- is unbalance: True (ajusta clases desbalanceadas).
- learning_rate: 0.05 (tasa de aprendizaje).
- num leaves: 31 (complejidad del árbol).
- max depth: 10.
- feature_fraction: 0.6 (fracción de variables por iteración).
- lambda 11 y lambda 12: Regularizaciones L1 y L2.

3. Resultados de los Modelos Personalizados

Modelo	ROC AUC	Weighted F1	Falsos Positivos	Verdaderos Positivos
Base Model	1.0	0.99999	1	933
fp_penalty	0.99999	0.99999	3	933
fp_ratio_penalty	0.99999		3	933

		0.99999		
balanced_f1	0.99999	0.99999	3	933

Se observó que las métricas personalizadas incrementaron ligeramente los falsos positivos pero mantuvieron **todos los fraudes secuenciales** detectados.

Conclusiones

- Alta eficacia: El modelo base y las métricas personalizadas lograron detectar fraudes secuenciales con altísima precisión y recall.
- Reducción de falsos positivos: Aunque mínima, las métricas personalizadas lograron balancear ligeramente la penalización de falsos positivos en contextos de fraudes secuenciales.
- Valor agregado: El uso de variables temporales y de distancia fue crucial para la captura de patrones de fraude en secuencia.
 - **Importancia de métricas custom**: La detección de fraudes secuenciales requiere funciones de evaluación que penalicen apropiadamente los errores, más allá de AUC o precisión clásica.
- **Recomendación**: Utilizar métricas fp_penalty o fp_ratio_penalty en escenarios donde la reducción de falsos positivos es crítica, manteniendo la detección completa de fraudes en serie.