

Codeforces Round #268 (Div. 2)

A. I Wanna Be the Guy

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input output: standard output

There is a game called "I Wanna Be the Guy", consisting of n levels. Little X and his friend Little Y are addicted to the game. Each of them wants to pass the whole game.

Little X can pass only p levels of the game. And Little Y can pass only q levels of the game. You are given the indices of levels Little X can pass and the indices of levels Little Y can pass. Will Little X and Little Y pass the whole game, if they cooperate each other?

Input

The first line contains a single integer n ($1 \le n \le 100$).

The next line contains an integer p ($0 \le p \le n$) at first, then follows p distinct integers $a_1, a_2, ..., a_p$ ($1 \le a_i \le n$). These integers denote the indices of levels Little X can pass. The next line contains the levels Little Y can pass in the same format. It's assumed that levels are numbered from 1 to n.

Output

If they can pass all the levels, print "I become the guy.". If it's impossible, print "Oh, my keyboard!" (without the quotes).

Examples

input	
4 3 1 2 3 2 2 4	
output	
I become the guy.	

input

3 1 2 3 2 2 3

output

Oh, my keyboard!

Note

In the first sample, Little X can pass levels [1 2 3], and Little Y can pass level [2 4], so they can pass all the levels both.

In the second sample, no one can pass level 4.

B. Chat Online

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input

output: standard output

Little X and Little Z are good friends. They always chat online. But both of them have schedules.

Little Z has fixed schedule. He always online at any moment of time between a_1 and b_1 , between a_2 and b_2 , ..., between a_p and a_p (all borders inclusive). But the schedule of Little X is quite strange, it depends on the time when he gets up. If he gets up at time 0, he will be online at any moment of time between a_1 and a_2 , ..., between a_2 and a_3 , ..., between a_4 and a_5 (all borders inclusive). But if he gets up at time a_1 , these segments will be shifted by a_2 . They become a_3 (for all a_4).

If at a moment of time, both Little X and Little Z are online simultaneosly, they can chat online happily. You know that Little X can get up at an integer moment of time between I and I (both borders inclusive). Also you know that Little X wants to get up at the moment of time, that is suitable for chatting with Little Z (they must have at least one common moment of time in schedules). How many integer moments of time from the segment I, I suit for that?

Input

The first line contains four space-separated integers $p, q, l, r \ (1 \le p, q \le 50; \ 0 \le l \le r \le 1000)$.

Each of the next p lines contains two space-separated integers a_i , b_i ($0 \le a_i < b_i \le 1000$). Each of the next q lines contains two space-separated integers C_i , d_i ($0 \le C_i < d_i \le 1000$).

It's guaranteed that $b_i < a_{i+1}$ and $d_i < c_{j+1}$ for all valid i and j.

Output

Output a single integer — the number of moments of time from the segment [I, r] which suit for online conversation.

Examples

input	
1 1 0 4 2 3 0 1	
output	
3	

input		
2 3 0 20 15 17 23 26 1 4 7 11 15 17		
15 17		
23 26		
1 4		
7 11		
15 17		

output

20

C. 24 Game

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input

output: standard output

Little X used to play a card game called "24 Game", but recently he has found it too easy. So he invented a new game.

Initially you have a sequence of n integers: 1, 2, ..., n. In a single step, you can pick two of them, let's denote them a and b, erase them from the sequence, and append to the sequence either a + b, or a - b, or $a \times b$.

After n-1 steps there is only one number left. Can you make this number equal to 24?

Input

The first line contains a single integer n ($1 \le n \le 10^5$).

Output

If it's possible, print "YES" in the first line. Otherwise, print "NO" (without the quotes).

If there are multiple valid answers, you may print any of them.

Examples

input	
1	
output	
NO	

input 8 output YES 8 * 7 = 56 6 * 5 = 30 3 - 4 = -1 1 - 2 = -1 30 - 1 = 31 56 - 31 = 25 25 + -1 = 24

D. Two Sets

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input output: standard output

Little X has n distinct integers: $p_1, p_2, ..., p_n$. He wants to divide all of them into two sets A and B. The following two conditions must be satisfied:

- If number X belongs to set A, then number a X must also belong to set A.
- If number X belongs to set B, then number b X must also belong to set B.

Help Little X divide the numbers into two sets or determine that it's impossible.

Input

The first line contains three space-separated integers n, a, b ($1 \le n \le 10^5$; $1 \le a$, $b \le 10^9$). The next line contains n space-separated distinct integers $p_1, p_2, ..., p_n$ ($1 \le p_i \le 10^9$).

Output

If there is a way to divide the numbers into two sets, then print "YES" in the first line. Then print n integers: $b_1, b_2, ..., b_n$ (b_i equals either 0, or 1), describing the division. If b_i equals to 0, then p_i belongs to set A, otherwise it belongs to set B.

If it's impossible, print "NO" (without the quotes).

Examples

input	
input 4 5 9 2 3 4 5	
output YES 0 0 1 1	

input		
3 3 4 1 2 4		
output NO		
NO		

Note

It's OK if all the numbers are in the same set, and the other one is empty.

E. Hack it!

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input

output: standard output

Little X has met the following problem recently.

Let's define f(x) as the sum of digits in decimal representation of number X (for example, f(1234) = 1 + 2 + 3 + 4). You are to calculate $\frac{\hat{\Sigma}}{f(0) \text{ mod } a}$

Of course Little X has solved this problem quickly, has locked it, and then has tried to hack others. He has seen the following C++ code:

```
ans = solve(l, r) % a;
if (ans <= 0)
ans += a;
```

This code will fail only on the test with $\frac{\hat{\Sigma}^{(0)=0 \text{ (mod a)}}}{\hat{\Sigma}^{(0)=0 \text{ (mod a)}}}$. You are given number a, help Little X to find a proper test for hack.

Input

The first line contains a single integer a ($1 \le a \le 10^{18}$).

Output

Print two integers: l, r ($1 \le l \le r < 10^{200}$) — the required test data. Leading zeros aren't allowed. It's guaranteed that the solution exists.

Examples

input	
46	
output	
1 10	

input	
126444381000032	
output	
2333333 2333333333333	

<u>Codeforces</u> (c) Copyright 2010-2016 Mike Mirzayanov The only programming contests Web 2.0 platform