SCC0270 / SCC5809 - Redes Neurais Aula 0 - Introdução

Profa. Dra. Roseli Aparecida Francelin Romero SCC - ICMC - USP

2018

Sumário

- Introdução
 - Breve histórico
 - Defnição
 - Analogia com o sistema nervoso
 - Neurônios artificiais
- 2 Exercício

- A era das redes neurais (RN) começou com o trabalho pioneiro de McCullock and Pitts, em 1943.
- Pitts matemático, McCullock psiquiatra e neuro-anatomista -> representar um evento no sistema nervoso.
- "A Logical Calculus of the Ideas Immament in Nervous Activity"
- Redes lógicas de neurônios, novas ideias sobre máquinas de estado finitos, elementos de decisão de limiar lineares e representações lógicas de várias formas de comportamento e memória

- Com um número suficiente de unidades simples e um conjunto de conexões sinápticas e operando sincronicamente, eles mostraram que uma rede assim constituída calcularia, em princípio, qualquer função computável.
- Resultado muito significativo -> IA e RN

- O primeiro trabalho com ligação direta com aprendizado foi o livro de Hebb, em 1949.
 "The Organization of Behavior".
- Hebb propôs uma teoria para explicar o aprendizado em neurônios biológicos baseada no reforço das ligações sinápticas entre neurônios excitados.
- Em 1958, Frank Rosenblatt demonstrou com o seu novo modelo, o Perceptron que, se fossem acrescidas sinapses ajustáveis, as RNA com várias camadas de Perceptrons poderiam ser treinadas para classificar certos tipos de padrões.

- Em 1960, Widrow e Hoff sugeriram uma regra de aprendizado, conhecida como regra LMS ou regra Delta, que é ainda hoje utilizada. -> ADALINE
- Em 1962, Widrow apresentou MADALINE.
- Em 1965, o livro de Nilsson (Learning Machines) foi publicado e é até hoje o livro mais bem escrito sobre padrões linearmente separáveis.
- Em 1967, Amari usou gradiente estocástico para classificação de padrões adaptativos.

- Em 1969, Minsky e Paper usou matemática para mostrar que algumas tarefas o Perceptron não era capaz de executar.
- Nos anos 70, a abordagem conexionista ficou estagnada, apesar de alguns pesquisadores continuarem trabalhando.
 - Igor Aleksander (redes sem pesos) na Inglaterra.
 - Fukushima (cognitron e neocognitron) no Japão.
 - Steven Grossberg (sistemas auto-adaptativos) nos EUA.
 - Teuvo Kohonen (sistemas auto-organizáveis)

- Em 1982, J.Hopfield publicou um artigo que foi responsável pela retomada de pesquisas na área. Ele mostrou a relação entre redes recorrentes auto-associativas e sistemas físicos.
- Em 1986, a descrição do algoritmo de treinamento backpropagation mostrou que a visão de Minsky e Papert era bastante pessimista. RNA de múltiplas camadas propostas por Rumelhart et al., são, sem dúvida, capazes de resolver problemas que são difíceis de serem resolvidos por técnicas clássicas.

Defnicão

Definição

- Redes Neurais são modelos de computação com propriedades particulares como:
 - aprender, generalizar, agrupar ou organizar dados.
- Estruturas distribuídas formadas por um grande número de unidades de processamento bastante simplificadas conectadas entre si.
- O comportamento inteligente vem das interações das unidades de processamento da rede.

- Redes neurais simulam o cérebro humano:
 - unidades de processamento -> neurônios
 - conexões -> sinapses
- Sistema nervoso
 - conjunto de células extremamente complexo que tem um papel essencial na determinação do funcionamento e do comportamento do corpo humano.

Cérebro Humano versus computador

- Funções particulares podem ser atribuídas a determinadas regiões do cérebro:
 - coleção de centro de processamento para tarefas específicas conectadas por vias compostas por feixes de fibras nervosas.
- Os modelos de redes neurais desenvolvidos até então são versões bastante simplificadas do cérebro.

Vantagens

- Adaptável.
- Tolerante a falhas: tanto a falhas internas quanto a entradas recebidas com distorções.
 - Plasticidade: capacidade de se modificar de acordo com a experiência.
 - Redundância: existência de muitas células e conexões que têm a mesma função.

 O projeto Genoma identificou algo como 25 mil genes. O cérebro humano tem cerca de 100 bilhões de neurônios, cada um conectado a milhares de outros, perfazendo um total de 10¹⁴ conexões nervosas.

- Conexões dentro do sistema nervoso alto grau de precisão e especificidade estabelecimento das conexões.
 - Nativismo: conexões são definidas geneticamente.
 - Empirismo: conexões são determinadas pela experiência.
 - Não é possível saber o lugar de cada neurônio no cérebro, bem como os pontos de ligação com outras células nervosas.

- Os genes trazem regras muito gerais de desenvolvimento e migração neuronal, que vão sendo ajustados ao longo do processo.
- A sintonia fina cerebral se faz pela criação de numerosas ligações entre os neurônios (sinaptogênese), seguida da eliminação das conexões que não foram utilizadas (poda).
- Entre a metade da gestação e os dois anos de idade, o cérebro forma 1,8 milhão de novas sinapses por segundo.

Processo de poda

- É bem mais lento: até o final da adolescência.
- As conexões que mais produzem prazer são constantemente estimuladas e, por isso, reforçadas, as menos utilizadas acabam sendo eliminadas.
- Experimentos feitos com gatos que têm os olhos tapados ao nascer.
 - Sem a experiência da visão presidindo à geração e poda de sinapses, o cérebro deles não aprende a enxergar.
 - Se a venda só for retirada após a "fase crítica" os gatos ficam cegos para sempre, embora o seu equipamento ótico esteja em perfeitas condições.

 Este é um bom argumento para mostrar que a dicotomia genes-ambiente (em inglês: nature/nurture) não faz muito sentido. As instruções embutidas nos genes só ganham real significado depois de moduladas pela experiência.

- Segundo Wallenstein, conservamos até o fim os prazeres que foram importantes na vida intrauterina e na primeira infância.
 - Um exemplo: bebês gostam de ser chacoalhados; e gostam porque isso faz bem a eles. É uma experiência importante, em que o cérebro se ajusta para lidar com equilíbrio e movimento.
- O mesmo é valido para cada um dos sentidos.
- Calibrar o cérebro para visão, exige que exercitemos na observação de cores, linhas e, em especial, no reconhecimento de faces. Daí o nosso gosto inato pelas cores primárias, pela simetria e a verdadeira obsessão humana por rostos.
- A curiosidade sonora do bebê e seus balbucios já são a primeira fase da aquisição da linguagem.

- A eficácia da estimulação cinética nos primeiros meses de vida foi demonstrada num experimentos com gêmeos idênticos. O bebê que foi mais sacudido começou a andar 4 meses antes de seu irmão.
- Como o gosto pela agitação permanece mesmo quando sua finalidade primordial já foi cumprida, crianças adoram correr e pular, jovens divertem-se testando os limites de aceleração de carros e até os mais pacatos idosos curtem a cadeira de balanço.

Neurônio

- Cada neurônio é composto por:
 - **Dendritos:** conjunto de terminais de entrada.
 - Corpo celular: a parte mais volumosa da célula nervosa, se localizam o núcleo e a maioria das estruturas citoplasmáticas.
 - Axônio: um longo terminal de saída.
- Dentro de um neurônio as mensagens fluem dos dendritos para o axônio passando pelo corpo celular.

Neurônio

Figura 1: Principais partes constituintes de um neurônio.

Sinapses

- Sinapses: região através da qual os impulsos nervosos são transmitidos de neurônio para neurônio.
- Podem ser:
 - Excitatórias: estimulam a ação do neurônio.
 - Inibitórias: têm o efeito contrário.

Modelo do neurônio

Figura 2: Modelo de um neurônio.

Estrutura básica de um neurônio artificial

- Estado de ativação (saída): si
- Conexões entre processadores: wij
 - a cada conexão existe um peso sináptico que determina o efeito da entrada sobre o processador.
- Soma: cada processador soma os sinais de entrada ponderado pelo peso sináptico das conexões
- Função de ativação: $s_j = F(net_j)$
 - determina o novo valor do estado de ativação do processador.

Funções de transferência

Figura 3: Exemplos de funções de transferência usadas em redes neurais artificiais.

Sumário

- Introdução
 - Breve histórico
 - Defnição
 - Analogia com o sistema nervoso
 - Neurônios artificiais
- 2 Exercício

Exercício

- Um neurônio j recebe entradas de outros 4 neurônios cujos níveis de atividades são: 10, -20, 4 e -2. Os pesos sinápticos respectivos são: 0.8, 0.2, -1.0 e -0.9. Calcule a saída do neurônio j para as seguintes situações:
- a) o neurônio é linear, isto é, sua função de transferência ou ativação é linear.
- b) o neurônio é representado por um modelo de McCullock-Pitts. Assuma que o threshold aplicado ao neurônio é zero e depois igual a 0.5.