Wprowadzenie do macierzy Znaczenie w matematyce i sztucznej inteligencji

Mateusz Serzysko

Uniwersytet Wrocławski

12.04.2025

Plan wykładu

Wprowadzenie

2 Operacje na macierzach

3 Macierze w uczeniu maszynowym

Po wykładzie...

- Wiem, czym jest macierz.
- Znam podstawowe operacje macierzowe.
- Rozumiem, jak reprezentować dane za pomoca macierzy.

Wprowadzenie

Definicja

Macierza $n \times m$ nazywamy tabelke z liczbami, która posiada n wierszy oraz m kolumn. Zbiór takich macierzy, które sa wypełnione liczbami rzeczywistymi, oznaczamy $\mathbf{R}^{n \times m}$.

Definicja

Pojedynczy element macierzy A nazywamy wyrazem macierzy A. Wyraz macierzy A, znajdujacy sie w i-tym wierszu oraz j-otej kolumnie nazywamy czesto "ij-otym" wyrazem macierzy A i oznaczamy go a_{ij} .

Przykłady

$$A = egin{pmatrix} 10 & -3 \ 0 & -rac{\sqrt{3}}{2} \end{pmatrix} \in \mathbf{R}^{2 imes 2}, \ a_{21} = 0$$

$$B = \begin{pmatrix} 1 & 2 & \frac{1}{2} \\ \sqrt{5} & 0 & 0 \end{pmatrix} \in \mathbf{R}^{2 \times 3}, \ b_{13} = \frac{1}{2}$$

Mateusz Serzysko (UWr)

Ważne ciekawostki

• Nie ma różnicy miedzy liczba rzeczywista $a \in \mathbb{R}$, a macierza $(a) \in \mathbb{R}^{1 \times 1}$!

Ważne ciekawostki

- Nie ma różnicy miedzy liczba rzeczywista $a \in \mathbb{R}$, a macierza $(a) \in \mathbb{R}^{1 \times 1}$!
- Dowolny punkt (x, y) na płaszczyźnie dokładnie odpowiada macierzy $(x \ y) \in \mathbf{R}^{1 \times 2}!$

Dodawanie i odejmowanie macierzy

Definicja

Suma macierzy $A,\ B\in \mathbf{R}^{n\times m}$ nazywamy macierz $C\in \mathbf{R}^{n\times m}$ taka, że dowolnych $i,\ j$ mamy

$$c_{ij}=a_{ij}+b_{ij}.$$

Piszemy A + B = C.

Definicja

Różnica macierzy $A,\ B\in \mathbf{R}^{n\times m}$ nazywamy macierz $C\in \mathbf{R}^{n\times m}$ taka, że dowolnych $i,\ j$ mamy

$$c_{ij}=a_{ij}-b_{ij}.$$

Piszemy A - B = C.

Mnożenie niestety jest bardziej skomplikowane...

Mnożenie macierzy

Definicja

lloczynem macierzy $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{m \times k}$ nazywamy macierz $C \in \mathbb{R}^{n \times k}$ taka, że dla dowolnych i, j mamy

$$c_{ij} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \cdots + a_{im} \cdot b_{mj}.$$

Piszemy $A \cdot B = AB = C$.

Mnożenie macierzy- przykład

•

$$\begin{pmatrix} 1 & 3 \\ -2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 5 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 5 + 3 \cdot 0 & 1 \cdot (-1) + 3 \cdot 1 \\ (-2) \cdot 5 + 0 \cdot 0 & (-2) \cdot (-1) + 0 \cdot 1 \end{pmatrix}$$
$$= \begin{pmatrix} 5 & 2 \\ -10 & 2 \end{pmatrix}$$

•

$$\begin{pmatrix} 5 & -1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} 5 \cdot 1 + (-1) \cdot (-2) & 5 \cdot 3 + (-1) \cdot 0 \\ 0 \cdot 1 + 1 \cdot (-2) & 0 \cdot 3 + 1 \cdot 0 \end{pmatrix}$$

$$= \begin{pmatrix} 7 & 15 \\ -2 & 0 \end{pmatrix}$$

Mnożenie macierzy- uwagi

Uwaga

Mnożyć możemy jedynie macierze odpowiednich wymiarów!

Mnożenie macierzy- uwagi

Uwaga

- Mnożyć możemy jedynie macierze odpowiednich wymiarów!
- Mnożenie macierzy (prawie) nigdy nie jest przemienne! ($AB \neq BA$)

Inne ważne przekształcenia macierzy

Definicja

Transponensem macierzy $A \in \mathbf{R}^{n \times m}$ nazywamy macierz $B \in \mathbf{R}^m \times n$ taka, że dla wszystkich i,j zachodzi

$$b_{ij}=a_{ji}$$
.

Oznaczamy $A^T = B$.

Przykłady

$$A = \begin{pmatrix} 1 & 4 & -1 \\ 3 & 1 & 10 \\ 9 & -3 & 5 \end{pmatrix}, \ A^T = \begin{pmatrix} 1 & 3 & 9 \\ 4 & 1 & -3 \\ -1 & 10 & 5 \end{pmatrix},$$

$$B = \begin{pmatrix} 1 & 2 \\ -3 & 8 \\ -1 & 4 \end{pmatrix}, \ B^T = \begin{pmatrix} 1 & -3 & -1 \\ 2 & 8 & 4 \end{pmatrix}$$

Inne ważne przekształcenia macierzy cd.

Definicja

Macierza identycznościowa $A \in R^{n \times n}$ nazywamy macierz taka, że dla wszystkich i,j mamy

$$a_{ij} = egin{cases} 1 & \mathsf{gdy} \ i = j \\ 0 & \mathsf{gdy} \ i
eq j \end{cases}$$
 .

Oznaczamy $I_n = A$.

Definicja

Odwrotnościa macierzy $A \in \mathbf{R}^{n \times n}$ nazywamy macierz $B \in \mathbf{R}^{n \times n}$ taka, że spełnione jest równanie

$$AB = BA = I_n$$
.

Oznaczamy $A^{-1} = B$.

Macierz A^{-1} nie zawsze istnieje!

Dane jako macierze

Zauważmy, że tabelki z danymi liczbowymi, z których korzystaliśmy do tej pory na zajeciach, sa niczym innym, jak właśnie macierzami odpowiednich rozmiarów- każdy wiersz macierzy można rozumieć jak jedna **próbke** danych, a każda kolumne jako jedna **ceche próbki**.

Gdy dodatkowo interpretujemy wiersze macierzy (nasze dane) jako punkty w przestrzeni, możemy za pomoca mnożenia odpowiednich macierzy wykonywać skomplikowane operacje na danych oraz wyliczać różne skomplikowane właśności danych bardzo szybko.

Pytania?