Intervals, Transformations, and Slope Solution (version 162)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-2,4) \cup (6,7)$
Negative	$(-10, -2) \cup (4, 6)$
Increasing	$(-5,1) \cup (5,7)$
Decreasing	$(-10, -5) \cup (1, 5)$
Domain	(-10,7)
Range	(-9,9)

Intervals, Transformations, and Slope Solution (version 162)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=21$ and $x_2=35$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 21 & 33 \\ 27 & 21 \\ 33 & 35 \\ 35 & 27 \\ \hline \end{array}$$

$$\frac{g(35) - g(21)}{35 - 21} = \frac{27 - 33}{35 - 21} = \frac{-6}{14}$$

The greatest common factor of -6 and 14 is 2. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-3}{7}$$

2