Lição 5

Árvores

Objetivos

Ao final desta lição, o estudante será capaz de:

- Discutir os conceitos básicos e definições de árvores
- Identificar os tipos de árvores: ordenadas, orientadas e árvores livres
- Usar a representação de árvores com ponteiros
- Explanar os conceitos básicos e definições sobre florestas
- Converter uma floresta na sua representação de árvore binária e vice-versa usando a correspondência natural
- Percorrer uma floresta usando o processo pré-ordem, pós-ordem, por nível e por família
- Criar representações de árvores usando a alocação seqüencial
- Utilizar a representação aritmética de árvores
- Utilizar árvores em uma aplicação: O problema da equivalência

Definição e Conceitos Relacionados

Árvore Ordenada

Árvore Orientada

В

Definição e Conceitos Relacionados

Árvore Livre

Progressão de Árvores

Representação de Ligação de Árvores

Estrutura de um node de árvore:

- Algumas propriedades de uma árvore com n *node* e grau **k**:
 - Número de campos ponteiros = n * k
 - Número de ponteiros não-nulos = n-1
 - Número de ponteiros nulos = n*k (n-1) = n(k-1) + 1
- Estrutura alternativa melhor aproveitamento de espaço:

Florestas

- Zero ou mais árvores disjuntas tomadas em conjunto
- Floresta ordenada
- Correspondência Natural
- Implementação de abordagem não-recursiva

Florestas: Abordagem não Recursiva

Florestas: Atravessando a Floresta

Em pré-ordem – usando RLink

• Em pré-ordem – usando RTag e uma Stack

Em ordem de família – usando LLink

Em ordem de família - usando LTAG

• Em ordem de nível – usando LTAG e uma queue

Florestas

Passaremos agora para o NetBeans

Representações Aritméticas de Árvores

- grau número de filhos de um node
- peso número de descendentes de um node

Representações Aritméticas de Árvores

seqüência em pré-ordem com graus

INFO	1	2	5	11	6	12	13	7	3	8	4	9	14	15	16	10
DEGREE	3	3	1	0	2	0	0	0	1	0	2	1	2	0	0	0

seqüência em pré-ordem com pesos

INFO	1	2	5	11	6	12	13	7	3	8	4	9	14	15	16	10
WEIGHT	15	6	1	0	2	0	0	0	1	0	5	3	2	0	0	0

seqüência em pós-ordem com graus

INFO	11	5	12	13	6	7	2	8	3	15	16	14	9	10	4	1
DEGREE	0	1	0	0	2	0	3	0	1	0	0	2	1	0	2	3

seqüência em pós-ordem com pesos

INFO	11	5	12	13	6	7	2	8	3	15	16	14	9	10	4	1
WEIGHT	0	1	0	0	2	0	6	0	1	0	0	2	3	0	5	15

Representações Aritméticas de Árvores

seqüência em ordem de nível com graus

INFO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
DEGREE	3	3	1	2	1	2	0	0	1	0	0	0	0	2	0	0

seqüência em ordem de nível com pesos

INFO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
WEIGHT	15	6	1	5	1	2	0	0	3	0	0	0	0	2	0	0

Problema da Equivalência

- Relação de Equivalência
- Problema da Equivalência
- Teorema: Uma relação de equivalência particiona seu conjunto S em classes disjuntas, chamadas classes de equivalência, de modo que dois elementos são equivalentes se e somente se eles pertencem à mesma classe de equivalência

Problema da Equivalência

Passaremos agora para o NetBeans

Problema da Equivalência: Regra para União

Problema da Equivalência: Árvores Pior Caso

Problema da Equivalência: Árvores Pior Caso

Problema da Equivalência: Solução Final

Passaremos agora para o NetBeans

Sumário

- Definição e Conceitos Relacionados
- Representação de Ligação de Árvores
- Florestas
 - Abordagem não recursiva
 - Atravessando a Floresta
 - Representação Seqüencial
- Representações Aritméticas de Árvores
- Problemas de Equivalência
 - Regra de União
 - Árvores Pior Caso

Parceiros

 Os seguintes parceiros tornaram JEDITM possível em Língua Portuguesa:

