Méthodes itératives de résolution d'un système linéaire

Leçons: 157, 162, 226, 233

Soit $A \in GL_n(\mathbb{R})$, $b \in \mathbb{R}^n$. On étudie le système Ax = b.

Définition 1

 $Si(M,N) \in GL_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R})$ est tel que A = M - N, on dit que la méthode itérative associée à (M,N) converge si pour tout $u_0 \in \mathbb{R}^n$, la suite de premier terme u_0 et définie $par \ \forall k \in \mathbb{N}, u_{k+1} = M^{-1}(Nu_k + b) \ converge.$

Théorème 2

La méthode itérative associée à (M,N) converge si et seulement si $\rho(M^{-1}N) < 1$.

Commençons par montrer un lemme :

Lemme 3

Soit $A \in \mathcal{M}_n(\mathbb{C})$, $\varepsilon > 0$. Alors il existe une norme subordonnée $||| \cdot |||$ telle que $|||A||| \le$ $\rho(A) + \varepsilon$.

Démonstration. Comme A est à coefficients dans \mathbb{C} , elle est trigonalisable : on se donne donc P inversible et $T = (t_{ij})_{1 \le i,j \le n}$ triangulaire supérieure tels que $A = PTP^{-1}$.

Notons (e_1,\ldots,e_n) la base canonique de \mathbb{C}^n . Pour $\delta>0$, on pose $e_1'=\delta^{i-1}e_i$ et $D_\delta=0$ Diag $(1, \delta, \dots, \delta^{n-1})$.

On a donc

$$\forall j \in [1, n], Te'_j = \delta^{j-1}Te_j = \delta^{j-1}\sum_{i=1}^{j}t_{ij}e_i = \sum_{i=1}\delta^{j-i}t_{ij}e'_i,$$

de sorte que

$$T_\delta := D_\delta^{-1} T D_\delta = egin{pmatrix} t_{11} & \delta t_{12} & \dots & \delta^{n-1} t_{1n} \ & \ddots & \ddots & \dots \ & & \ddots & \delta t_{n-1n} \ & & & t_{nn} \end{pmatrix}.$$

On définit pour $x \in \mathbb{R}^n$, $||x|| = ||(PD_{\delta})^{-1}x||_{\infty}$, et on note $|||\cdot|||$ la norme subordonnée

associée. On vérifie aisément que $\forall B \in \mathcal{M}_n(\mathbb{R}), ||B||| = |||(PD_{\delta})^{-1}BPD_{\delta}|||_{\infty}$. Or (admis ici), pour tout $B = (b_{ij})_{i,j} \in \mathcal{M}_n(\mathbb{R})$, on a $|||B|||_{\infty} = \sup_{1 \le i \le n} \sum_{j=1}^n |b_{ij}|$. En choi-

sissant $\delta > 0$ tel que pour tout $1 \le i \le n-1$, $\sum_{j=i+1}^n \delta^{j-i} |t_{ij}| \le \varepsilon$, on obtient donc, puisque $\rho(A) = \sup_{1 \le i \le n} |t_{ii}|, |||A||| = |||T_{\delta}|||_{\infty} \le \rho(A) + \varepsilon.$

Démonstration (du théorème). Soit $u \in \mathbb{R}^n$ tel que Au = b, c'est à dire Mu = Nu + b. Posons $e_k = u_k - u$ en reprenant les notations du théorème. Alors

$$e_{k+1} = M^{-1}(Nu_k + b) - M^{-1}Nu - M^{-1}b = M^{-1}N(u_k - u) = M^{-1}Ne_k.$$

Ainsi, par une récurrence immédiate, $\forall k \in \mathbb{N}, e_k = (M^{-1}N)^k e_0$. Dès lors, deux cas se présentent:

- Si $\rho(M^{-1}N) < 1$, on fixe $\varepsilon = \frac{1 \rho(M^{-1}N)}{2}$ et le lemme nous fournit une norme subordonnée $|||\cdot|||$ telle que $|||M^{-1}N||| \le \rho(M^{-1}N) + \varepsilon < 1$. Donc pour la norme $||\cdot||$ associée, on a pour tout k, $\|e_k\| \le \||M^{-1}N||^k\| e_0\|$ donc $\lim_{k\to +\infty} e_k = 0$ si bien que $(u_k)_k$ converge vers u.
- Si $\rho(M^{-1}N) \ge 1$, soit λ valeur propre complexe de module supérieur ou égal à 1, et $\tilde{u}=\tilde{u}_1+i\tilde{u}_2$ un vecteur propre associé. Comme pour tout k, $(M^{-1}N)^k\tilde{u}=\lambda^k\tilde{u}$, la méthode itérative ne converge pas pour $u_0 = u + \tilde{u}_1$.

Décrivons maintenant quelques cas particuliers de méthodes itératives :

- Méthode de Jacobi : $M = \text{Diag}(a_{11}, \dots, a_{nn}) = D$ et N = D A. On note $J = D^{-1}(D A)$
- Méthode de Gauss-Seidel : M=D-E où $D={\rm Diag}(a_{11},\ldots,a_{nn})$ et $E=-A_{\rm inf}$, partie
- triangulaire inférieure stricte de A. $N = -A_{\sup} = F$. On note $\mathcal{L}_1 = (D E)^{-1}F$.

 Méthode de relaxation : $M = \frac{D}{\omega} E$ et $N = \frac{1 \omega}{\omega}D + F$,

$$\mathscr{L}_{\omega} = \left(\frac{D}{\omega} - E\right)^{-1} \left(\frac{1 - \omega}{\omega} D + F\right).$$

Proposition 4

Si A est une matrice tridiagonale, $\rho(\mathcal{L}_1) = (\rho(J))^2$. La méthode de Gauss-Seidel a donc une vitesse de convergence double de celle de la méthode de Jacobi.

Démonstration. Remarque préliminaire : introduisons pour $\mu \neq 0$:

$$A(\mu) = \begin{pmatrix} b_1 & \mu^{-1}c_2 & & (0) \\ \mu a_2 & b_2 & \ddots & \\ & \ddots & \ddots & \mu^{-1}c_n \\ (0) & & \mu a_n & b_n \end{pmatrix}$$

où A = A(1). Alors $A(\mu) = Q(\mu)A(1)Q(\mu)^{-1}$ où $Q(\mu) = \text{Diag}(\mu, \mu^2, \dots, \mu^n)$, donc $\det A(\mu) = A(1)$ $\det A(1)$.

Les valeurs propres de *J* sont les racines du polynôme caractéristique

$$p_J(\lambda) = \det(D^{-1}(E+F) - \lambda I),$$

ce sont aussi celles de $q_J(\lambda) = \det(\lambda D - E - F)$. De même, les valeurs propres de \mathcal{L}_1 sont les racines de $p_{\mathcal{L}_1}(\lambda) = \det((D - E)^{-1}F - \lambda I)$, et celles de $q_{\mathcal{L}_1}(\lambda) = \det(\lambda D - \lambda E - F)$. Mais selon la remarque préliminaire,

$$\forall \lambda \in \mathbb{C}^*, q_{\mathcal{L}_1}(\lambda^2) = \det(\lambda^2 D - \lambda^2 E - F) = \lambda^n \det(\lambda D - \lambda E - \lambda^{-1} F) = \lambda^n \det(\lambda D - E - F) = \lambda^n q_J(\lambda).$$

Donc les valeurs propres non nulles de \mathcal{L}_1 sont les carrés de valeurs propres non nulles de J, ce qui permet de conclure.

Proposition 5

Le rayon spectral de \mathcal{L}_{ω} est strictement supérieur à $|\omega-1|$. La méthode de relaxation ne peut donc converger que si $\omega \in]0,2[$.

Démonstration. La matrice $\mathcal{L}_{\omega} = \left(\frac{D}{\omega} - E\right)^{-1} \left(\frac{1-\omega}{\omega}D + F\right)$ est trigonalisable comme produit de matrices trigonalisables et en notant $\lambda_1, \dots, \lambda_n$ ses valeurs propres avec multiplicité, on a

$$\prod_{i=1}^{n} \lambda_{i} = \det(\mathcal{L}_{\omega}) = \frac{\det\left(\frac{1-\omega}{\omega}D + F\right)}{\det\left(\frac{D}{\omega} - E\right)} = \frac{\prod_{i=1}^{n} \frac{1-\omega}{\omega} a_{ii}}{\prod_{i=1}^{n} \frac{a_{i}i}{\omega}} = (1-\omega)^{n}.$$

Donc $\rho(\mathcal{L}_{\omega})^n \geqslant |\det(\mathcal{L}_{\omega})| = |1 - \omega|^n$ de sorte que $\rho(\mathcal{L}_{\omega}) \geqslant |\omega - 1|$.

- **Remarque.** Par des techniques similaires, on montre que si A est tridiagonale et J a un spectre réel, la méthode de Jacobi et la méthode de relaxation pour $0<\omega<2$ convergent ou divergent simultanément. De plus, $\omega_0=\frac{1}{1+\sqrt{1-\rho(J)^2}}$ est un paramètre de relaxation tel que $\rho(\mathscr{L}_{\omega_0})$ est minimal.
 - En 15 minutes, on peut difficilement faire tout le développement, la dernière proposition est là à titre culturel.

Référence : Philippe CIARLET (1988). *Introduction à l'analyse numérique et à l'optimisation*. Masson, p. 102