

#4
#3

1

SEQUENCE LISTING

<110> Kenneth W. Dobie

<120> ANTISENSE MODULATION OF PHOSPHOLIPID SCRAMBLASE 3 EXPRESSION

<130> RTS-0335

<160> 94

<210> 1

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 1

tccgtcatcg ctcctcaggg

20

A
<210> 2

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 2

atgcattctg cccccaaggaa

20

<210> 3

<211> 1680

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (144) ... (1031)

<400> 3

ccccgggggg gtccgagctc gggccgcct ccgcctccgc cagctcctgt gagctgccga

60

gtgctaggca cccgggctct tctggggct ccagaactaa gccacccaga caccatcatc

120

tcgaaaaccc cagcccttct ccc atg gca ggc tac ttg ccc ccc aaa ggc tac

173

Met Ala Gly Tyr Leu Pro Pro Lys Gly Tyr

1

5

10

gcc cct tcg ccc cca cct ccc tac cct gtc acc cct ggg tac ccg gag
Ala Pro Ser Pro Pro Pro Tyr Pro Val Thr Pro Gly Tyr Pro Glu

221

15

20

25

ccg gcg cta cat cct ggg ccc ggg cag gcg cca gtg ccc gcc cag gta Pro Ala Leu His Pro Gly Pro Gly Gln Ala Pro Val Pro Ala Gln Val	269
30 35 40	
cct gcc cca gct ccc ggc ttc gcc ctc ttc ccc tcg cct ggc ccc gtg Pro Ala Pro Ala Pro Gly Phe Ala Leu Phe Pro Ser Pro Gly Pro Val	317
45 50 55	
gcc ttg ggg tct gct gcc ccc ttc ttg cca ctg cca ggg gtg cct tct Ala Leu Gly Ser Ala Ala Pro Phe Leu Pro Leu Pro Gly Val Pro Ser	365
60 65 70	
ggc ctc gaa ttc ctg gtg cag att gat cag att ttg att cac cag aag Gly Leu Glu Phe Leu Val Gln Ile Asp Gln Ile Leu Ile His Gln Lys	413
75 80 85 90	
gct gag cga gtg gaa acg ttc cta ggc tgg gag acc tgt aat cgg tat Ala Glu Arg Val Glu Thr Phe Leu Gly Trp Glu Thr Cys Asn Arg Tyr	461
95 100 105	
gaa ctg cgc tct ggg gcc ggg cag ccc ctg ggt cag gcg gcc gag gag Glu Leu Arg Ser Gly Ala Gly Gln Pro Leu Gly Gln Ala Ala Glu Glu	509
110 115 120	
agc aac tgc tgc gcc cgt ctg tgc tgt ggc gcc cgc cgg ccg ctg cgt Ser Asn Cys Cys Ala Arg Leu Cys Cys Gly Ala Arg Arg Pro Leu Arg	557
125 130 135	
gtc cgc ctg gcc gac ccc ggg gac cgt gag gtg ctg cgt ttg ctc cgc Val Arg Leu Ala Asp Pro Gly Asp Arg Glu Val Leu Arg Leu Leu Arg	605
140 145 150	
ccg ctg cac tgt ggc tgc agc tgc tgc ccc tgt ggc ctc cag gag atg Pro Leu His Cys Gly Cys Ser Cys Cys Pro Cys Gly Leu Gln Glu Met	653
155 160 165 170	
gaa gta cag gct cca cca ggc acc acc att ggc cac gtg cta cag acc Glu Val Gln Ala Pro Pro Gly Thr Thr Ile Gly His Val Leu Gln Thr	701
175 180 185	
tgg cat ccc ttc ctc ccc aag ttc tcc atc cag gat gcc gat cgc cag Trp His Pro Phe Leu Pro Lys Phe Ser Ile Gln Asp Ala Asp Arg Gln	749
190 195 200	
aca gtc ttg cga gtg gtt ggg ccc tgc tgg acc tgt ggc ctc cag gag Thr Val Leu Arg Val Val Gly Pro Cys Trp Thr Cys Gly Cys Gly Thr	797
205 210 215	
gac acc aac ttt gag gtg aag act cgg gat gaa tcc cgc agt gtg ggc Asp Thr Asn Phe Glu Val Lys Thr Arg Asp Glu Ser Arg Ser Val Gly	845
220 225 230	
gag atc agc aag cag tgg ggg ggc ctg gtc cga gaa gcc ctc aca gat Arg Ile Ser Lys Gln Trp Gly Gly Leu Val Arg Glu Ala Leu Thr Asp	893
235 240 245 250	

gca gat gac ttt ggc cta cag ttc ccg ctg gac ctg gat gtg agg gtg	941
Ala Asp Asp Phe Gly Leu Gln Phe Pro Leu Asp Leu Asp Val Arg Val	
255	260
265	
aag gct gtg ctg ctg gga gcc aca ttc ctc att gac tac atg ttc ttt	989
Lys Ala Val Leu Leu Gly Ala Thr Phe Leu Ile Asp Tyr Met Phe Phe	
270	275
280	
gag aag cga gga ggc gct ggg ccc tct gcc atc acc agt tag aggccaccat	1041
Glu Lys Arg Gly Gly Ala Gly Pro Ser Ala Ile Thr Ser	
285	290
295	
ggtgtgagga gaccatcacc tcgaccagaa ctccagatgg tcacctgccc tggccctcc	1101
tctgggcagc ccctttcctc catgtacact gcaggggaca gaaggggggc cccatcccta	1161
ccctactccc tggccgcctg cccctgtggt tcccaaggag gggtatgtat gagagccgct	1221
cteetgctac ctcccaccac tgtcccagca gtccctcgcc acacaggcat atcagcttc	1281
acactttccc catgcactct ctcccacccc cttccagggc ctctgctcca aaggaggcct	1341
ctggaaccca ggactctggg gtttacaag agggctgggg tgtgaaaggg caagctgcac	1401
caaagacggt ggatatagcc accgcccccc cgccgctgcc tagcatctgc ttggccaatt	1461
agttcagcct cagaccatgg cacttgagg gggctctac ctcccatca acagctgcag	1521
ggggacccca gtgccaactt cctctccac tagggccctg cttcagctg gtgcttgctg	1581
cgattcctgt gccttatgta actgcccttc ctcccttgc cctaggaaaa aggctgcac	1641
tttatatgtt acattcatat aaactttgta actttttgg	1680

<210> 4
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 4
gtccgagaag ccctcacaga 20

<210> 5
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 5 gccttcaccc tcacatcca	19
<210> 6 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Probe	
<400> 6 cagatgactt tggcctacag ttcccgc	27
<210> 7 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 7 gaaggtgaag gtcggagtc	19
<210> 8 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 8 gaagatggtg atgggatttc	20
<210> 9 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Probe	
<400> 9 caagcttccc gttctcagcc	20
<210> 10 <211> 596 <212> DNA <213> Homo sapiens	

```

<220>
<221> exon:exon junction
<222> (333) ... (334)
<223> exon 5:exon 6b

<221> exon:exon junction
<222> (423) ... (424)
<223> exon 6b:exon 7

<400> 10
ttggggtctg ctgccccctt cttgccactg ccagggtgcc ttctggcctc gaattcctgg   60
tgcagattga tcagattttg attcaccaga aggctgagcg agtggaaacg ttcctagtgc   120
tgggagacct gtaatcggtt tgaactgcgc tctggggctt gggcagccccc tgggtcaggc   180
ggccgaggag agcaactgct gcgcggctt gtgctgtggc tgcccgccgg cctgctgcgt   240
gtccgcctgg ccgaccccccgg ggaccgtgag gtgctgcgtt tgctccgcgg gctgcactgt   300
ggctgcagct gctgccccctg tggcctccag gagttctcca tccaggatgc cgatcgccag   360
acagtcttgc gagtggtggg gccctgctgg acctgtggct gtggcacaga caccaacttt   420
gaggtgaaga ctcgggatga atcccgcagt gtggggccgca tcagcaagca gtgtgggggg   480
cctggtccga gaagccctca cagatgcaga tgactttggc ctacagttcc cgctggacct   540
ggatgtgagg gtgaaggctg tgctgctggg agccacattc ctcatttgac tactgt   596

<210> 11
<400> 11
000

<210> 12
<400> 12
000

<210> 13
<400> 13
000

<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 14
cggcagctca caggagctgg

```

<210> 15
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 15
gcactcgga gctcacagga 20

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 16
tgccctagcac tcggcagctc 20

<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 17
tggcttagtt ctggagcccc 20

<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 18
tggtgtctgg gtggcttagt 20

<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

```

<400> 19
tcgagatgat ggtgtctggg                                20

<210> 20
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 20
gcaagttagcc tgccatggga                                20

<210> 21
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 21
gccagaaggc acccctggca                                20

<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 22
tctgatcaat ctgcaccagg                                20

<210> 23
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 23
cttctggta atcaaaaatct                                20

<210> 24
<211> 20
<212> DNA

```

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 24
tccactcgct cagccttctg 20

<210> 25
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 25
acgtttccac tcgctcagcc 20

<210> 26
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 26
gtctcccaagc ctaggaacgt 20

<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 27
tacaggcttc ccagccttagg 20

<210> 28
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 28
accgattaca ggtctcccag 20

<210> 29
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 29
agcgcagttc ataccgatta

20

<210> 30
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 30
cccgagagcgc agttcataacc

20

<210> 31
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 31
agcaaacgca gcacacctcacg

20

<210> 32
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 32
cagtgcagcgc ggcggagcaa

20

<210> 33
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 33
cagccacagt gcagcgggcg 20

<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 34
gggcagcagc tgcagccaca 20

<210> 35
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 35
caatggtgt gcctgggtgga 20

<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 36
aggctgttag cacgtggcca 20

<210> 37
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 37
ggatgccagg tctgttagcac 20

<210> 38
<211> 20
<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 38 20
ggaaggatg ccaggtctgt

<210> 39
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 39 20
agggcccac cactcgcaag

<210> 40
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 40 20
tgtgccacag ccacaggtcc

<210> 41
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 41 20
tttgtgtctg tgccacagcc

<210> 42
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 42 20
ttcacacctaa agttgggtgc

<210> 43
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 43
tgcgggattc atcccgagtc 20

<210> 44
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 44
ttgctgatgc ggcccacact 20

<210> 45
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 45
actgcttgct gatgcggccc 20

<210> 46
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 46
ggcttctcg accaggcccc 20

<210> 47
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 47
atctgtgagg gcttctcgga 20

<210> 48
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 48
tcatctgcat ctgtgagggc 20

<210> 49
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 49
ccaaagtcat ctgcatctgt 20

<210> 50
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 50
ttcacccctca catccaggtc 20

<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 51
tcccagcagc acagcattca 20

<210> 52
<211> 20
<212> DNA

<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 52	20
acatgttagtc aatgaggaat	
<210> 53	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 53	20
cttctcaaag aacatgttagt	
<210> 54	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 54	20
cgcctcctcg cttctcaaag	
<210> 55	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 55	20
taactggta tggcagaggg	
<210> 56	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 56	20
tggtggcctc taactggta	

<210> 57
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 57
tctcctcaca ccatgggtggc 20

<210> 58
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 58
tggtcgaggt gatggctctcc 20

<210> 59
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 59
aggtgaccat ctggagttct 20

<210> 60
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 60
tacccctcct tggaaaccac 20

<210> 61
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 61
ctcctttgga gcagaggccc 20

<210> 62
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 62
cagaggcctc ctttggagca 20

<210> 63
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 63
aaaccccaaga gtcctgggtt 20

<210> 64
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 64
ttgtaaaacc ccagagtccct 20

<210> 65
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 65
cagccctctt gtaaaaacccc 20

<210> 66
<211> 20
<212> DNA

<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 66	20
acaccccccagc cctcttgtaa	
<210> 67	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 67	20
gtggctatat ccaccgtctt	
<210> 68	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 68	20
gggcgggtggc tataatccacc	
<210> 69	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 69	20
aagtgccatg gtctgaggct	
<210> 70	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 70	20
cctcaaagtg ccatggtctg	

```

<210> 71
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 71
accccctcaa agtgccatgg                                20

<210> 72
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 72
tgggagagga agttggcact                                20

<210> 73
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 73
cctagtggga gaggaagttg                                20

<210> 74
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 74
gctgaaggca gggccctagt                                20

<210> 75
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

```

<400> 75
gcaaggcacca gctgaaggca

20

<210> 76
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 76
tcgcagcaag caccagctga

20

<210> 77
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 77
aatcgcagca agcaccagct

20

<210> 78
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 78
ggaagggcag ttacataagg

20

<210> 79
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 79
gccttttcc tagggcaagg

20

<210> 80
<211> 20
<212> DNA

20

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 80

atataaaagat gcagcctttt

20

<210> 81

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 81

tgtaacatat aaagatgcag

20

<210> 82

<400> 82

000

<210> 83

<400> 83

000

<210> 84

<400> 84

000

<210> 85

<400> 85

000

<210> 86

<400> 86

000

<210> 87

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 87

ggatggagaa ctcctggagg

20

```

<210> 88
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Oligonucleotide

<400> 88
gagtcttcac ctcaaagttg                                20

<210> 89
<400> 89
000

<210> 90
<400> 90
000

<210> 91
<400> 91
000

<210> 92
<211> 794
<212> DNA
<213> Homo sapiens

<400> 92
agtcctgtg agctgccgag tgcttaggcac ccgggcttct ctggggcctc cagaactaag 60
ccaaaccaga caccatcac ccgaaaaaccc cagcccttct cccttggcag attgatcaga 120
tttgattcac cagaaggctg agcgagtggaa aatggaaagt acaggtcca ccaggcacca 180
ccatggccac gtgctacaga cctggcatcc cttectcccc aagtctcca tccaggatgc 240
cgatcccac acagtcttc gagtggtggg gccctgctgg acctgtggct gtggcacaga 300
caccactt gaggtgaaga ctcgggatga atcccccagat gtggggcga tcagcaagca 360
gtggggggc ctgggtccgag aagccctcac agatgcagat gactttggcc tacagttccc 420
gctggacctg gatgtgaggg tgaaggctgt gctgctggga gccacattcc tcattgatac 480
atgttctttg agaagcgagg aggccgtggg ccctctgcca tcaccagtta gaggccacca 540
tggtgtgagg agaccatcac ctcgaccaga actccagatg gtcactgcct ggcctcctct 600
ggggtcagcc ctttcctcca tggactgc gggacagaat gggggccca tcctacccta 660
tctggcgctg ccctgtgctt cccacgcggg cttgcttgcc cacccttcct gccctcccc 720
ccggccgcgg tcccgcacc gcttcctccc ctccccggcc cccgcctcc ggcggccccc 780
gagccggccc cgcc                                794

<210> 93
<211> 536
<212> DNA
<213> Homo sapiens

<400> 93
ctccgcgcgc tcctgtgagc tgccgagtgc taggcacccg ggctttctg ggggctccag 60

```

aggcgccgcc caagagaccc tgggcccggcg ccggggcgca gtcgcctctcc gtctttgtgt 120
 ctgtctctgt gtctgtctgg ctagtctccga gtttgccctcc gcttcagaa ctaagccacc 180
 cagacaccat catccccaaa acccccagccc ttctcccatg gcaggctact tgccccccaa 240
 aggctacgccc ccttcgcccc cacccctccta ccctgtcacc cctgggtacc cggagccggc 300
 gctacatcct gggccccggc aggccgcagt gccgcggccag gtacccgtccc cagctccgg 360
 cttcgccctc ttcccccgtc ctggcccccgt ggccttgggg tctgtgcccc cttcttggc 420
 actgccaggg gtgccttctg gcctcgaatt cctgggtcag attgatcaga ttttattca 480
 ccagaaggct gagcgagtgg aaacgttcct aggtggag acctgtatac ggtatg 536

<210> 94
<211> 546
<212> DNA
<213> Homo sapiens

<400> 94
 agcgggcttc cgccagctcc tgtgagctgc cgagtgcgtag gcaccggggc tcttctgggg 60
 gctccagtc gaggcgccgc ccaagagacc ctggggccggc gccgggcgca gtcgcctctc 120
 cgtctttgtg tctgtctctg tgtctgtctg gctatctccg agtttgcctc cgcttccaga 180
 actaagccac ccagacacca tcatactcgaa aaccccagcc cttctccat ggcaggctac 240
 ttgcccccca aaggctacgc cccttcgccc ccaccccttccct accctgtcac ccctgggtac 300
 ccgctgcgtg tccgcctggc cgaccccccggg gaccgtgagg tgctgcgttt gtcggcccg 360
 gtgcacttgtt ggcttcgagg tgtgttgcctt tttggggcct ccaggagatg gatgtacggg 420
 ctccaccagg caccacccat gggccacgtg ctacagacct ggcatccctt cctcccaaag 480
 ttctccatcc aggtatgccga tcgcccagaca gtcttgcgaa gtggggggc cttgcctgg 540
 cctgtg 546