

STATIS-DUAL

EJEMPLO PTA

Datos del programa RStudio Data(meaudret)

Datos sobre cinco lugares de muestreo a lo largo de un pequeño arroyo francés (el Meaudret) en los que se recogen cuatro veces (primavera, verano, otoño e invierno) variables ambientales (químicas) y biológicas.

Estructura de la

matriz de tres-vías

4	А	R	C	ט ו	Ł	F	G	н	- 1	J	K
1	id	season	site	Temp	Flow	pН	Cond	Bdo5	Oxyd	Ammo	Nitr
2	sp_1	spring	S1	10	41	8,5	295	2,3	1,4	0,12	
3	sp_2	spring	S2	11	158	8,3	315	7,6	3,3	2,85	
4	sp_3	spring	S3	11	198	8,5	290	3,3	1,5	0,4	
5	sp_4	spring	S4	12	280	8,6	290	3,5	1,5	0,45	
5	sp_5	spring	S5	13	322	8,5	285	3,6	1,6	0,48	
7	su_1	summer	S1	13	62	8,3	325	2,3	1,8	0,11	
3	su_2	summer	S2	13	80	7,6	380	21	5,7	9,8	
9	su_3	summer	S3	15	100	7,8	385	15	2,5	7,9	
0	su_4	summer	S4	16	140	8	360	12	2,6	4,9	
1	su_5	summer	S5	15	160	8,4	345	1,7	1,9	0,22	
2	au_1	autumn	S1	1	25	8,4	315	1,6	0,5	0,07	
3	au_2	autumn	S2	3	63	8	425	36	8	12,5	
4	au_3	autumn	S3	2	79	8,1	350	7,1	1,9	2,7	1
5	au_4	autumn	S4	3	85	8,3	330	2	1,4	0,42	
6	au_5	autumn	S5	2	72	8,6	305	1,6	0,9	0,1	
7	wi_1	winter	S1	3	118	8	325	1,6	1,2	0,17	
8	wi_2	winter	S2	3	252	8,3	360	9,5	2,9	2,52	
9	wi_3	winter	S3	3	315	8,3	370	8,7	2,8	2,8	
0	wi 4	winter	S4	3	498	8.3	330	4.8	1.6	1.04	

Ordenamos los datos según la variable seasor

K= 4 estaciones climáticas

J= 9 mismas variables ambientales (físico-químicas)

I= 5 mismos individuos – sitios de muestreo


```
#####PTA
data(meaudret)

wit1 <- withinpca(meaudret$env, meaudret$design$season, scan = FALSE, scal = "partial")

kta1 <- ktab.within(wit1, colnames = rep(c("S1", "S2", "S3", "S4", "S5"), 4))

kta2 <- t(kta1)

pta1 <- pta(kta2, scann = FALSE)
```

Realiza un
preprocesamiento
(estandarización de los
datos) utilizando el
método de
estandarización Parcial de
Bouroche

Realiza el PTA

Transpone los datos para que queden las variables como columnas

Identifica la ubicación de cada k-tabla en el set de datos, crea las k-tablas

50 plot(pta1)

> pta1\$RV#coeficentes de correlación vectorial RV spring summer autumn winter

 spring
 1
 0.6934558
 0.7886185
 0.2834592

 summer
 0.6934558
 1
 0.7671756
 0.5340456

 autumn
 0.7886185
 0.7671756
 1
 0.4794976

 winter
 0.2834592
 0.5340456
 0.4794976
 1

Valores altos de coeficientes Vectoriales – RV indican similaridades entre el las condiciones medioambientales durante las estaciones climáticas

53 pta1\$tabw#pesos para las k-tablas

> pta1\$tabw#pesos para las k-tablas spring summer autumn winter 0.5066788 0.5403976 0.550964 0.3842991 Summer aporta con mayor información para construir el compromiso, mientras que Winter aporta la menor información

52 pta1\$cos2#coseno2

> pta1\$cos2#coseno2

spring summer autumn winter 0.8496725 0.906217 0.9239364 0.6444484

El compromiso representa de mejor la información medioambiental que ocurrió en Autumn y en Summer.

Débil representación de la información de Winter en el compromiso.

54 pta1\$RV.eig#valores propios para la inter-estructura

>	pta1\$RV.eig#val	suma			
eigenvalues	2.8121449	0.7541476	0.2536781	0.1800294	4
% Varianza	70.3%	18.9%	6.3%	4.5%	
% Varianza Acumulada	70.3%	89.2%	95.5%	100.0%	

En la inter-estructura los 2 primeros componentes explican un 89.2% de la varianza

55 pta1\$eig#valores propios para el compromiso

>	pta1\$eig#valores propios para el compromiso					
eigenvalues	17.2010553	7.2975324	0.6099439	0.2007724	25.309304	
% Varianza	68.0%	28.8%	2.4%	0.8%		
% Varianza Acumulada	68.0%	96.8%	99.2%	100.0%		

En el compromiso los 2 primeros componentes explican un 96.8% de la varianza

Intra-estructura, proyecta la información de cada k-tabla sobre la información del compromiso

Winter: presenta una condición ambiental diferente, la Temp presenta correlación débil con las otras variables. Las condiciones de S2 son similares a las de S3 y poseen valores por encima del valor promedio en Phos, Oxyd, Amno principalmente

Este análisis se debe realizar para cada época (ktabla)

RECURSOS NATURALES

