Tutorato Geometria 1

DIEGO SANTORO & IGOR SIMUNEC

20 maggio 2020

Qui potete trovare alcuni esercizi da svolgere. Parte di questi sono stati, o saranno, svolti durante gli incontri. Può essere un ottimo allenamento provare ad esercitarsi e a scriverne per bene la soluzione. Chiunque voglia può consegnarci il proprio lavoro per avere un riscontro su quanto ha scritto.

Esercizio 1. Si consideri l'applicazione traccia $\operatorname{tr}: \operatorname{M}(n,n;\mathbb{R}) \to \mathbb{R}$ definita da

$$\operatorname{tr}(A) = \sum_{i=1}^{n} [A]_{ii}.$$

Mostrare che tale applicazione è lineare, calcolarne la dimensione del kernel e una base di esso.

Esercizio 2. Sia $L: \mathbb{R}^n \to \mathbb{R}^m$ una applicazione lineare e surgettiva. Mostrare che esiste una matrice $Q \in GL(n, n; \mathbb{R})$ tale che

$$LQ = (I_m \mid 0)$$

dove I_m denota la matrice identità in $M(m, m; \mathbb{R})$.

Esercizio 3. Sia $L: \mathbb{R}^3 \to \mathbb{R}^2$ l'applicazione lineare definita dalla matrice

$$L = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}.$$

Trovare una matrice invertibile $\mathbb{Q} \in \mathrm{GL}(3,3;\mathbb{R})$ per cui

$$LQ = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

Esercizio 4. Per ogni numero naturale $m \geq 1$, si consideri l'applicazione $f_m : \mathbb{R}_m[x] \to S(2)$ definita da

$$f_m(p) = \begin{bmatrix} p(0) & p(1) \\ p(1) & p(2) \end{bmatrix}$$

per ogni $p \in \mathbb{R}_m[x]$, dove $S(2) = \{A \in M(2,2;\mathbb{R}) \mid {}^t A = A\}$.

- Si verifichi che f_m è lineare.
- Si determinino i valori di m tali che f_m è iniettiva.

- Si determinino i valori di m tali che f_m è surgettiva.
- Fissato m=1, si costruisca, se esiste, un'applicazione lineare $g:M(2,2;\mathbb{R})\to\mathbb{R}_2[x]$ che verifichi le seguenti condizioni:
 - $-g \circ f_1$ è iniettiva.

$$-g(A) = 1 - 3x + 2x^2$$
, dove $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

$$- g(S(2)) = \{ p(x) \in \mathbb{R}_2[x] \mid p(3) = 0 \}.$$

Esercizio 5. Dire, giustificando la risposta, quali delle seguenti affermazioni sono vere e quali false.

- Sia n un numero naturale, n > 2. Siano W un sottospazio vettoriale di \mathbb{R}^n di dimensione n-1 e $g \in \operatorname{End}(\mathbb{R}^n)$ un endomorfismo tale che la restrizione di g a W è iniettiva. Allora esiste $f \in \operatorname{End}(\mathbb{R}^n)$ tale che $f^2 = 0$ e $\mathbb{R}^n = \operatorname{Im} f \oplus \operatorname{Ker} g$.
- Sia $A \in M(n, n; \mathbb{K})$ una matrice non nulla tale che $A \neq \lambda I_n$ per ogni $\lambda \in \mathbb{K}$. Sia $f_A : M(n, n; \mathbb{K}) \to M(n, n; \mathbb{K})$ l'applicazione lineare definita da $f_A(X) = AX XA$ per ogni $X \in M(n, n; \mathbb{K})$. Allora esiste $B \in M(n, n; \mathbb{K})$ non nulla tale che $B \in \text{Ker} f_A$ e tr(B) = 0, dove tr(B) denota la traccia di B.
- Siano $A_1, A_2, B_1, B_2 \in M(n, n; \mathbb{R})$ matrici non nulle e si denoti con \equiv_{SD} la relazione di SDequivalenza. Se $A_1B_1 \equiv_{SD} A_2B_2$ e $A_1 \equiv_{SD} A_2$ allora $B_1 \equiv_{SD} B_2$.

Esercizio 6. Una trasformazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ soddisfa

$$f(1,1,1) = (1,-2,3)$$
 $f(1,0,1) = (3,-2,1)$ $f(1,0,0) = (3,0,4)$.

Si determini l'immagine per f di un vettore generale $(x, y, z) \in \mathbb{R}^3$ e si determini la matrice di f rispetto alla base canonica di \mathbb{R}^3 .

Esercizio 7. Dato V spazio vettoriale reale di dimensione finita, definiamo $V^* = \operatorname{Hom}(V, \mathbb{R})$. Inoltre, data $f: V \to W$ applicazione lineare, denotiamo con $f^t: W^* \to V^*$ l'applicazione trasposta, definita da

$$f^t(\varphi) = \varphi \circ f \quad \forall \varphi \in W^*.$$

- mostrare che $\dim V^* = \dim V$.
- mostrare che se $f: V \to W$ è un'applicazione lineare, allora $f^t: W^* \to V^*$ è lineare.
- mostrare che $(Id_V)^t = Id_{V^*}$ e che date $f \in \text{Hom}(V, W)$ e $g \in \text{Hom}(W, Z)$ allora $(g \circ f)^t = f^t \circ g^t$. Dedurne che se $f : V \to W$ è un isomorfismo, allora f^t è un isomorfismo.

Esercizio 8. Sia $L: \mathbb{R}^3 \to \mathbb{R}^4$ l'applicazione lineare definita dalla matrice

$$L = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 8 & 9 \\ 7 & 1 & 2 \\ 0 & 2 & 2 \end{bmatrix}.$$

Determinare la matrice che rappresenta L^t nella base duale di $(\mathbb{R}^3)^*$.

Esercizio 9. Sia $f: V \to W$ un'applicazione lineare e siano \mathcal{B} e \mathcal{B}' rispettivamente basi di V e di W. Denotata con M la matrice che rappresenta f nelle basi \mathcal{B} e \mathcal{B}' , determinare la matrice che rappresenta $f^t: W^* \to V^*$, nelle basi duali \mathcal{B}'^* e \mathcal{B}^* .

Esercizio 10. Sia $D: \mathbb{R}_3[x] \to \mathbb{R}_2[x]$ l'applicazione definita da

$$D(f) = f' \quad \forall f \in \mathbb{R}_3[x]$$

dove f' denota la derivata di f:

- \bullet mostrare che D è un'applicazione lineare.
- fissate le basi $\mathcal{B} = \{1, x, x^2, x^3\}$ e $\mathcal{B}' = \{1, x, x^2\}$, calcolare la matrice che rappresenta D in queste basi.

Esercizio 11. Dire per quali valori di $k \in \mathbb{R}$ i seguenti vettori definiscono una base di \mathbb{R}^3 :

$$v_1 = (2, k, 1)$$
 $v_2 = (1, -2, 0)$ $v_3 = (1, 0, 1).$

Per tali valori di k, si calcolino le coordinate di v = (1, -2, 2) rispetto a tale base.

Esercizio 12. Siano V, W, Z spazi vettoriali su un campo \mathbb{K} e siano $f: V \to W$ e $g: W \to Z$ applicazioni lineari. Si dimostri che

$$\operatorname{Ker} f \subseteq \operatorname{Ker} g \iff \exists L : W \to Z \text{ lineare tale che } g = L \circ f.$$

Esercizio 13. Costruire, se esiste, una applicazione lineare $f: \mathbb{R}^8 \to M(3,3;\mathbb{R})$ tale che

$$\operatorname{Im} f \supset \{A \in M(3,3;\mathbb{R}) : \operatorname{rk} A = 2\}$$

Esercizio 14. Sia $f: M(n, n; \mathbb{K}) \to \mathbb{K}$ un'applicazione lineare tale che

$$f(AB) = f(BA), \quad \forall A, B \in M(n, n; \mathbb{K}).$$

Dimostrare che esiste $\lambda \in \mathbb{K}$ tale che

$$f(X) = \lambda \cdot \operatorname{tr} X, \quad \forall X \in M(n, n; \mathbb{K}).$$

Esercizio 15. Sia $V=\mathbb{R}^2[x]$ lo spazio vettoriale dei polinomi a coefficienti reali di grado minore o uguale a 2 e sia $W=\{(x,y,x)\in\mathbb{R}^3: -x+y+z=0\}$. Sia S l'insieme delle applicazioni lineari $f:V\to\mathbb{R}^3$ tali che $f(x^2+x-1)=(1,-1,2), f(x^2+1)=(2,2,1)$ e $W\subset \mathrm{Im}\, f$.

- 1. Dimostrare che S non è vuoto.
- 2. Dimostrare che ogni f in S è un isomorfismo.
- 3. Esiste $f \in S$ tale che f(2x 4) = (0, 1, 1)?
- 4. Esiste $f \in S$ tale che f(x) = (0, -4, 3)?

Esercizio 16. Si considerino i vettori:

$$v_1 = (1, 0, 0, 1, -1)$$
 $v_2 = (0, 0, -1, 2, -3)$ $v_3 = (\alpha, 0, 1, 0, 1) \in \mathbb{R}^5$

- Determinare per quali valori del parametro reale α i vettori sono linearmente dipendenti.
- Per i valori di α determinati, esprimere uno o più vettori come combinazione lineare dei vettori rimanenti.
- Per il valore $\alpha = 2$ individuare un sottospazio $W \subset \mathbb{R}^5$ tale che $\mathbb{R}^5 = W \oplus \langle v_1, v_2, v_3 \rangle$.

Esercizio 17. Un endomorfismo $f \in \text{End}(V)$ si dice proiezione di V se $f^2 = f$. Si dimostri che:

- se f è una proiezione di V, allora $V = \operatorname{Ker} f \oplus \operatorname{Im} f$;
- se f è una proiezione di V, allora Id f è una proiezione di V;
- $\operatorname{Ker}(Id f) = \operatorname{Im} f \in \operatorname{Ker} f = \operatorname{Im}(Id f)$.
- Si esibisca un esempio di proiezione dell' \mathbb{R} -spazio vettoriale \mathbb{R}^3 diversa dalla mappa nulla e dall'identità.

Esercizio 18. Una matrice $A \in M(n, n; \mathbb{R})$ si dice antisimmetrica se $A^t = -A$. Dimostrare che se n è dispari, non esistono matrici antisimmetriche invertibili in $M(n, n; \mathbb{R})$.

Esercizio 19. Sia $V = \mathbb{R}_3[x]$ lo spazio vettoriale dei polinomi in x di grado ≤ 3 a coefficienti reali e sia $Z = \{p \in V | p(-2) + p(2) = 0\}$

- $\bullet\,$ Verificare che Z è un sottospazio vettoriale di V e calcolarne la dimensione.
- Costruire, se esiste, un'applicazione lineare $f: V \to \mathbb{R}^4$ tale che dimf(Z) = 2 e Im $f = \{(x, y, z, t) \in \mathbb{R}^4 | x y + z t = 0\}.$

Esercizio 20. Per ognuna delle affermazioni seguenti, dire se è vera o falsa, motivando la risposta.

- Sia V uno spazio vettoriale di dimensione n su un campo \mathbb{K} e siano $A_1, A_2, A_3 \subset V$ sottospazi tali che:
 - $-\dim A_1 + \dim A_2 + \dim A_3 = n$
 - $-A_1 \cap A_2 = A_1 \cap A_3 = A_2 \cap A_3 = \{0\}.$

Allora $V = A_1 + A_2 + A_3$.

- Sia $f: V \to W$ un'applicazione lineare tra spazi vettoriali su un campo \mathbb{K} . Se $A, B \subset V$ sono sottospazi, allora f(A+B) = f(A) + f(B).
- Sia $f: V \to W$ un'applicazione lineare tra spazi vettoriali su un campo K.Se $A, B \subset V$ sono sottospazi tali che $A \cap B = \{0\}$, allora $f(A \oplus B) = f(A) \oplus f(B)$.

Esercizio 21. Sia V uno spazio vettoriale di dimensione n e sia $f:V\to V$ un'applicazione lineare non nulla. Dimostrare che esiste una applicazione lineare $g:V\to V$ tale che $g\circ f$ non è identicamente nulla e $(g\circ f)^2=g\circ f$.

Esercizio 22. Si consideri la mappa lineare $\Phi: M(2,2;\mathbb{R}) \to M(2,2;\mathbb{R})$ tale che per ogni $A \in M(2,2;\mathbb{R})$ valga $\Phi(A) = AB$, dove

$$B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}.$$

Si determinino delle basi di $\ker \Phi \in \operatorname{Im} \Phi$.

Esercizio 23. Sia $f: \mathbb{R}^3 \to \mathbb{R}^4$ l'applicazione lineare definita da

$$f(x,y,z) = (x+3y+2z, 2x-z, -x+3y+3z, 3x+3y+z),$$

e sia $U = \text{Span}((1,2,1)) \subset \mathbb{R}^3$.

- Trovare una base di $\operatorname{Im} f$.
- Costruire $g: \mathbb{R}^4 \to \mathbb{R}^3$ lineare tale che $g \circ f = 0$ e Im g = U.

Esercizio 24. Sia $A \in M(m, n; \mathbb{R})$ una matrice di rango r. Sia

$$S = \{X \in M(n, k; \mathbb{R}) : AX = 0\}.$$

Dimostrare che S è uno spazio vettoriale e calcolarne la dimensione.

Esercizio 25. Siano V, W, Z spazi vettoriali reali e siano $f: V \to W$ e $g: V \to Z$ due omomorfismi. Mostrare che

$$\operatorname{Ker} f \subset \operatorname{Ker} g \Leftrightarrow \exists L: W \to Z \text{ tale che } g = L \circ f.$$

Esercizio 26. Sia $A \in M(n,n;\mathbb{R})$ una matrice di rango 1. Si mostri che A è diagonalizzabile se e solo se $tr(A) \neq 0$.

Esercizio 27. Dimostrare che se $f: V \to V$ è un projettore di uno spazio vettoriale reale¹ allora f è diagonalizzabile. Quali sono gli autovalori di f?

Dimostrare che se $f:V\to V$ è un'involuzione di uno spazio vettoriale reale² allora f è diagonalizzabile. Quali sono gli autovalori di f?

Esercizio 28. Fissate due matrici $A, B \in M(n, n; \mathbb{R})$ definiamo l'insieme

$$E(A,B) = \{ X \in M(n,n;\mathbb{R}) | AX = XB \}.$$

Dimostrare che:

- E(A,B) è uno sottospazio vettoriale di $M(n,n;\mathbb{R})$
- se A_1 è simile ad A e B_1 è simile a B, allora $E(A_1, B_1)$ è isomorfo a E(A, B).

Esercizio 29. Sia $A \in M(n, n; \mathbb{R})$ e sia $L_A : M(n, n; \mathbb{R}) \to M(n, n; \mathbb{R})$ l'applicazione lineare definita

$$L_A(X) = AX \quad \forall X \in M(n, n; \mathbb{R}).$$

- Dimostrare che L_A è iniettiva $\Leftrightarrow A$ è invertibile.
- Dimostrare che λ è un autovalore per $L_A \Leftrightarrow \text{lo è per } A$.
- Se $B \in M(n, n; \mathbb{R})$ è simile ad A, che relazione c'è tra L_B e L_A ?
- Mostrare che L_A è diagonalizzabile $\Leftrightarrow A$ è diagonalizzabile.

¹ovvero $f^2 = f$

²ovvero $f^2 = Id_V$

Esercizio 30. Data una applicazione lineare $f: V \to V$, diciamo che un sottospazio $W \subset V$ è f-invariante se $f(W) \subset W$. In particolare è ben definito l'endomorfismo $f_{|W} \in \operatorname{End}(W, W)$ ottenuto restringendo f a W.

Supponiamo che $V=W\oplus U$, dove U e W sono due sottospazi f-invarianti. Dimostrare che

fè diagonalizzabile $\Leftrightarrow f_{|W}$ e $f_{|U}$ sono diagonalizzabili.

Esercizio 31. Usando l'esercizio precedente, mostrare che se $f:V\to V$ è diagonalizzabile e $W\subset V$ è un sottospazio f-invariante, allora $f_{|W}$ è diagonalizzabile.

E' vero che se f è un endomorfismo di V ed esiste $W \subset V$ sottospazio proprio³ f-invariante per cui $f_{|W}$ è diagonalizzabile $\Rightarrow f$ è diagonalizzabile?

Esercizio 32. Al variare del parametro $k \in \mathbb{R}$ si considerino le matrici

$$A = \begin{bmatrix} 2 & 0 & -1 \\ -1 & 1 & 1 \\ 2 & 0 & -1 \end{bmatrix}, \qquad B_k = \begin{bmatrix} 0 & k & 1 \\ 1 & 1 - k & -1 \\ -k & k & k + 1 \end{bmatrix}.$$

- Dire se A è diagonalizzabile e trovare equazioni cartesiane per i suoi autospazi.
- Determinare i valori di $k \in \mathbb{R}$ per cui esiste una base di \mathbb{R}^3 costituita da autovettori sia per A che per B_k .

Esercizio 33. Sia $\sigma: \mathbb{C}^n \to \mathbb{C}^n$ l'applicazione lineare che sulla base canonica agisce nel seguente modo:

$$\sigma(e_i) = e_{i+1}, \quad i = 1, \dots, n-1.$$

 $\sigma(e_n) = e_1.$

Dimostrare che σ è diagonalizzabile e trovarne autovalori e autovettori.

Esercizio 34. Sia $A \in M(n, n; \mathbb{R})$ una matrice diagonalizzabile. Si dimostri che

$$\exists k \in \mathbb{N} : A^k = I \iff A^2 = I.$$

Esercizio 35. Sia \mathbb{K} un campo. Data $A \in GL(n, \mathbb{K})$, sia $T_A \in End(M(n, \mathbb{K}))$ definito da

$$T_A(X) = AXA^{-1}$$
, per ogni $X \in M(n, \mathbb{K})$.

- Dimostrare che se $A, B \in GL(n, \mathbb{K})$ sono simili, allora T_A e T_B sono endomorfismi coniugati.
- Dimostrare che se $A \in GL(n, \mathbb{K})$ è diagonalizzabile allora anche T_A lo è.
- Sia $A \in GL(n, \mathbb{K})$ diagonalizzabile con spettro $\{\lambda_1, \ldots, \lambda_k\}$ e rispettive moltiplicità m_1, \ldots, m_k .
 - Determinare lo spettro di T_A , mostrando in particolare che 1 è un autovalore.
 - Determinare la molteplicità dell'autovalore 1 di T_A

Esercizio 36. Siano $f, g \in \text{End}(V)$ tali che $f \circ g = g \circ f$ e sia V_{λ} l'autospazio relativo a λ per f. Allora $g(V_{\lambda}) \subset V_{\lambda}$.

³Ossia $W \neq 0$ e $W \neq V$

Esercizio 37. Sia V uno spazio vettoriale di dimensione n. Siano $f, g \in \text{End}(V)$ tali che $f \circ g = g \circ f$ e supponiamo che f sia diagonalizzabile con n autovalori distinti. Mostrare che g è diagonalizzabile, e che f e g sono simultaneamente diagonalizzabili, ovvero che esiste una base comune di autovettori.

Esercizio 38. Per ogni $A \in M(n, \mathbb{R})$, si consideri l'applicazione lineare

$$L_A: M(n, \mathbb{R}) \to M(n, \mathbb{R})$$
 $L_A(X) = AX - XA$.

- Si provi che se le matrici $A, B \in M(n, \mathbb{R})$ sono simili, allora dim ker $L_A = \dim \ker L_B$.
- Si calcoli dim ker L_A nel caso in cui $A^2 = Id$ e tr(A) = p

Esercizio 39. Siano $\phi, \psi : \mathbb{C}^n \to \mathbb{C}^n$ endomorfismi nilpotenti tali che $\phi \psi = \psi \phi$. Dimostrare che:

- Per ogni $k \in \mathbb{N}$, $\phi(\ker \psi^k) \subseteq \ker \psi^k$ e $\psi(\ker \phi^k) \subseteq \ker \phi^k$.
- Per ogni $0 \le k \le n$, vale $\phi^{n-k}\psi^k = 0$.
- Per ogni $x \in \mathbb{C}$, l'endomorsfismo $x\phi + \psi$ è nilpotente.
- È vero che, se $\phi\psi \neq \psi\phi$, comunque $x\phi + \psi$ è nilpotente per ogni $x \in \mathbb{C}$? Giustificare la risposta con una dimostrazione oppure un controesempio.

Esercizio 40. • Sia B una matrice simmetrica reale definita positiva. Per ogni intero $n \ge 1$, dimostrare che esiste un'unica matrice A simmetrica reale definita positiva tale che $A^n = B$.

• Siano A e B matrici simmetriche reali definite positive tali che esiste $n \ge 2$ per cui $A^n B^n = B^n A^n$. Dimostrare allora che AB = BA.

Esercizio 41. Sia V uno spazio vettoriale di dimensione finita e sia f un endomorfismo con $f^2 = Id$.

- Esiste un prodotto scalare definito positivo rispetto al quale f è autoaggiunto?
- \bullet E' vero che frisulta autoaggiunto rispetto ad un qualsiasi prodotto scalare definito positivo su $V^?$

Esercizio 42. Sia V uno spazio vettoriale sul campo \mathbb{K} di dimensione n e sia $f \in V^*$ un funzionale non nullo. Poniamo $\phi_f : V \times V \to \mathbb{K}$, $\phi_f(v, w) := f(v)f(w)$, per ogni $v, w \in V$.

- Verificare che ϕ_f è un prodotto scalare su V.
- Verificare che dim $\operatorname{Rad}(\phi_f) = n 1$.
- Sia $A \in M(n, \mathbb{C})$, $A = A^T$ con rk(A) = 1. E' vero che esiste $f : \mathbb{C}^n \to \mathbb{C}$ lineare tale che per ogni $X, Y \in \mathbb{C}^n$ si ha $X^T A Y = \phi_f(X, Y)$?
- Stessa domanda del punto precedente, sostituendo $\mathbb C$ con $\mathbb R$.

Esercizio 43. Sia $n \ge 1$ un intero, sia $f \in \text{End}(\mathbb{R}^n)$ e sia W(f) il sottospazio dei prodotti scalari b su \mathbb{R}^n tali che

$$b(f(x), f(y)) = b(x, y) \quad \forall x, y \in \mathbb{R}^n.$$

• Si provi che se f non è iniettiva, ogni $b \in W(f)$ è degenere.

- Sia λ un autovalore per f e sia V_{λ} il corrispondente autospazio. Si provi che, se $\lambda \neq \pm 1$ e $b \in W(f)$, allora $b|_{V_{\lambda}} = 0$.
- Sia $b \in W(f)$. Si provi che, se λ, μ sono autovalori per f e $\lambda \mu \neq 1$, allora gli autospazi V_{λ} e V_{μ} sono ortogonali.
- Si calcoli dim W(f) nel caso in cui $f^2 = f$.
- Si dica se esiste un isomorfismo $f \in GL(n, \mathbb{R})$ tale che dimW(f) = 1.

Esercizio 44. Sia V uno spazio vettoriale di dimensione finita su \mathbb{R} e sia <,> un prodotto scalare definito positivo su V. Sia f un endomorfismo di V con tutti autovalori reali. Si dimostri che esiste una base ortonormale per <,> a bandiera per f.

Esercizio 45. Sia $A \in M(n, \mathbb{R})$ antisimmetrica. Mostrare che A è triangolabile se e solo se A = 0.

Esercizio 46. Sia $n \geq 2$ un numero naturale. Sullo spazio vettoriale $V = M(n, \mathbb{R})$ si considerino i prodotti scalari Φ e b definiti da

$$b(X,Y) = \operatorname{tr}(XY)$$
 e $\Phi(X,Y) = \operatorname{tr}(XY) - \operatorname{tr}(X)\operatorname{tr}(Y)$ $\forall x, y \in V$,

dove tr denota il funzionale "traccia". Sia $T = \{A \in V : tr(A) = 0\}$.

- Si verifichi che $V = T \oplus_b^{\perp} \operatorname{Span}(I)$ e $V = T \oplus_{\Phi}^{\perp} \operatorname{Span}(I)$, dove \oplus_b^{\perp} e \oplus_{Φ}^{\perp} indicano che gli ortogonali sono considerati rispetto ai prodotti scalari $b \in \Phi$.
- Si verifichi che $b|_T$ è non degenere e che Φ è non degenere.
- Si calcoli la segnatura di Φ .

Esercizio 47. Sia n un numero naturale assegnato. Sia V uno spazio vettoriale reale di dimensione n e sia e sia Φ un prodotto scalare su V di segnatura (h, n-h, 0).

• Si verifichi che

$$E = \{ f \in \text{End}(V) : \Phi(f(v), w) = \Phi(v, f(w)) \quad \forall v, w \in V \}$$

è un sottospazio vettoriale di End(V) e se ne calcoli la dimensione.

- Si determinino i valori di h per cui ogni $f \in E$ è triangolabile.
- Si provi che, se $f \in E$, allora $\ker f = (\operatorname{Im} f)^{\perp}$.
- Si provi che, se $f \in E$, allora $\Phi|_{\ker f}$ è non degenere se e solo se $\Phi|_{\operatorname{Im} f}$ è non degenere.

Esercizio 48. Costruire, se esiste, un prodotto scalare b su \mathbb{R}^3 che verifichi le seguenti condizioni:

- b ha segnatura $(i_+, i_-, i_0) = (2, 1, 0)$.
- La restrizione di b al sottospazio $W = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$ ha segnatura (1, 1, 0).
- Il vettore e_1 è isotropo.
- $b(e_1, e_2) = 1$.

Esercizio 49. Fissati in \mathbb{R}^4 i sottospazi vettoriali

$$H = \{(x, y, z, t) \in \mathbb{R}^4 : x + 2y = 0, y - z = 0\}$$
 e $W = \{(x, y, z, t) \in \mathbb{R}^4 : x - y + z = 0\},$

costruire un prodotto scalare ψ su \mathbb{R}^4 tale che $i_+(\psi) = 2$, $i_-(\psi) = 1$ e $W^{\perp} = H$ (dove $i_+(\psi)$ e $i_-(\psi)$ denotano rispettivamente l'indice di positività e l'indice di negatività di ψ).

Esercizio 50. Sia $V = \mathbb{R}_k[x]$ lo spazio vettoriale dei polinomi a coefficienti reali di grado $\leq k$. Per ogni $A \in \mathcal{M}(n,\mathbb{R})$ si consideri l'applicazione bilineare $\psi_A : V \times V \to \mathbb{R}$ definita da

$$\psi_A(p,q) = \operatorname{tr}(p(A)q(A)) \quad \forall p, q \in V,$$

dove tr denota l'applicazione "traccia".

- Si verifichi che ψ_A è un prodotto scalare su V.
- Si verifichi che, se $A, B \in M(n, \mathbb{R})$ sono matrici simili, allora $\psi_A = \psi_B$.
- Denotati con $\lambda_1, \ldots, \lambda_r$ gli autovalori distinti di una matrice triangolabile $A \in M(n, \mathbb{R})$, si provi che se r > k, allora ψ_A è definito positivo.
- Denotati con $\lambda_1, \ldots, \lambda_r$ gli autovalori distinti di una matrice triangolabile $A \in M(n, \mathbb{R})$, si determini la segnatura di ψ_A .

Esercizio 51. Sia V uno spazio vettoriale reale di dimensione $n, f \in V^*$ un funzionale non nullo e ϕ un prodotto scalare su V. Si supponga che $\phi(v, v) > 0$ per ogni $v \in V \setminus \operatorname{Ker} f$.

- Si provi che ϕ è semidefinito positivo.
- Si provi che, se $\phi|_{\text{Ker }f}$ è semidefinito negativo, allora i funzionali ϕ -rappresentabili sono quelli di tipo αf , al variare di $\alpha \in \mathbb{R}$. Fissato $V = \mathbb{R}^3$, si consideri il funzionale lineare dato da f(x,y,z) = 2x 2y + 3z per ogni $(x,y,z) \in \mathbb{R}^3$. Si costruisca un prodotto scalare ϕ su \mathbb{R}^3 tale che
 - (i) $\phi(v,v) > 0$ per ogni $v \in \mathbb{R}^3 \setminus \text{Ker } f$,
 - (ii) $\phi|_{\text{Ker }f}$ è semidefinito negativo,
 - e si determini $v \in \mathbb{R}^3$ tale che $f(v) = \phi(v, w) \, \forall w \in \mathbb{R}^3$.

Esercizio 52. Siano V, W, Z spazi vettoriali sul campo $\mathbb K$ di caratteristica diversa da 2. Sia φ un prodotto scalare non degenere su V , e sia ψ un prodotto scalare su W .

- Mostrare che per ogni $f \in \text{Hom}(V, W)$ esiste un'unica $f^* \in \text{Hom}(W, V)$ tale che $\psi(w, f(v)) = \varphi(f^*(w), v)$ per ogni $v \in V$ e $w \in W$.
- Mostrare che, se φ è anisotropo, $\operatorname{Im}(ff^*)^{\perp} = \operatorname{Im}(f)^{\perp}$.
- Supponiamo ancora φ anisotropo. Dimostrare che, se ψ è non degenere e $g_1, g_2 \in \text{Hom}(W, Z)$, allora $g_1ff^* = g_2ff^*$ se e solo se $g_1f = g_2f$. (Suggerimento: può essere utile riscrivere la condizione nella forma $(g_1 g_2)ff^* = 0$.)

Esercizio 53. Sia V uno spazio vettoriale su \mathbb{C} di dimensione finita e indichiamo con PS(V) lo spazio vettoriale dei prodotti scalari su V. Dato $W \subset V$ un sottospazio, dim W = m, e dato $\phi \in PS(W)$, definiamo $E_{\phi} = \{\psi \in PS(V) | \psi_{|W} = \phi \$\}$.

- Mostrare che E_{ϕ} è un sottospazio affine non vuoto di PS(V) (considerato come spazio affine su se stesso) e calcolarne la dimensione.
- Sotto quali ipotesi su rk ϕ esiste $\psi \in E_{\phi}$ non degenere?
- Dato $U \subset V$ un sottospazio tale che $V = W \oplus U$, e dato $\varphi \in PS(U)$, mostrare che ogni prodotto scalare in PS(V) è combinazione affine di un elemento di E_{φ} e di un elemento di E_{ϕ} .

Esercizio 54. Sia V uno spazio vettoriale di dimensione finita, sia φ un prodotto scalare non degenere su V esia f un endomorfismo di V. Siano $U, W \subset V$ due sottospazi tali che $U \subset W^{\perp}$ e V = U + W.

- Mostrare che $\varphi_{|U}$ e $\varphi_{|W}$ sono non degeneri.
- Mostrare che se U,W sono f-invarianti e le restrizioni $f_{|U}$, $f_{|W}$ sono autoaggiunte rispetto a $\varphi_{|U}$ e $\varphi_{|W}$ rispettivamente, allora f è autoaggiunto.
- Supponiamo esista g un endomorfismo di V autoaggiunto di rango almeno dim V-1 che commuta con f tale che Ker $g+{\rm Im}g=V$. Mostrare che se gf è autoaggiunto allora f è autoaggiunto.