Лабораторная работа 7 "Решение задачи Коши для ОДУ 1-го порядка". Гордеев Никита, группа 22307, вариант 7 <mark>ДАНО:</mark> $a = \frac{\pi}{4}$ $(1+u^2)dx - xdu$ уравнение начальная точка интервала $X_0 \coloneqq 1$ начальное условие b = 1конечная точка интервала приближенного решения ЭТАП 1: ПРИВЕДЕНИЕ УРАВНЕНИЯ К НОРМАЛЬНОЙ ФОРМЕ FROM THE MAKERS OF **WOLFRAM LANGUAGE** AND **MATHEMATICA Wolfram**Alpha (1+u²)dx-xdu NATURAL LANGUAGE ST MATH INPUT $\left(1+u^2\right)dx - x\,du = 0$ $\frac{x'(u)}{x(u)}=\frac{1}{1+u^2}$ $F(t,u) = \frac{1}{1+u^2}$ ЭТАП 2: ЯВНАЯ РАЗНОСТНАЯ СХЕМА ЭЙЛЕРА n = 5000Количество шагов $k \coloneqq 0 \dots n-1$ Итерационная переменная $h \coloneqq \frac{b-a}{n}$ Шаг метода $t_{_{\!k}}\!\coloneqq\!a\!+\!k\!\cdot\!h$ $X_{k+1} := X_k + h \cdot F\left(t_k, X_k\right)$ Значение правой части уравнения в текущей точке 1.11-1.1 1.09 1.08 1.07 1.06 1.05 $X_{_{k}}$ 1.04 1.03 1.02 1.01 $0.78 \\ \mathbf{5}.80 \\ \mathbf{5}.82 \\ \mathbf{5}.84 \\ \mathbf{5}.86 \\ \mathbf{5}.88 \\ \mathbf{5}.90 \\ \mathbf{5}.92 \\ \mathbf{5}.94 \\ \mathbf{5}.96 \\ \mathbf{5}.98 \\ \mathbf{5}.005$ $t_{_k}$

$Y_0 \coloneqq 1$	Начальное условие для приближенного решения	$n\!\coloneqq\! 2\!ullet n$	Удвоенное количество шагов для оценки погрешности
$h := \frac{b-a}{n}$	Новый шаг метода после удвоения шага	$k \coloneqq 0 \dots n -$	1 Итерационная переменная для нового числа шагов
$t_k = a + k \cdot h$			
$Y_{k+1} \coloneqq Y_k + I$	$hullet F\Bigl(t_{_k},Y_{_k}\Bigr)$ Реализация явно	ой разностной	й схемы Эйлера
$m \coloneqq 0 \dots \frac{n}{2}$	перепенная для	$:= \left X_m - Y_2 \right _m$	прислиженного решения на
	оценки погрешности		двух шагах для оценки погрешности
$\max(Z1) = 4$.932•10 ⁻⁷ Оценка погре	шности метод	да Рунге
ЭТАП 3: РАЗ	<mark>НОСТНАЯ СХЕМА ЭЙЛЕРА-КО</mark>	ШИ	
n = 100	Количество шагов разбиения интервала	$h \coloneqq \frac{b-a}{n}$	Шаг метода
$k \coloneqq 0 \dots n-1$	Итерационная переменная	$t_{k} \coloneqq a + k \cdot b$	$\delta := \frac{1}{2}$
X1 := 1 Начального условия приближенного решения			
$X1_{k+1} \coloneqq X1_k$	$+\frac{h}{2}\left(F\left(t_{k},X1_{k}\right)+F\left(t_{k+1},X1_{k}\right)\right)$	$t_k + h \cdot F(t_k, X1)$	$\binom{k}{2}$ явной разностной схемы Эйлера
1.11-			
1.1-			$\begin{bmatrix} 1 \\ 1.001 \end{bmatrix}$
1.08 - 1.07 -			1.002
1.06-			1.004
1.05	X1	k	$X1 = \begin{bmatrix} 1.005 \\ 1.006 \end{bmatrix}$
1.03			1.007
1.01-			1.009
1-			1.01
0.78D.80D.82D.84D.86D.88D.90D.92D.94D.96D.98D.005			1.012

ЭТАП 4: ИСПОЛЬЗОВАНИЕ ФУНКЦИИ MATHCAD RKFIXED $j \coloneqq 0 \dots n$ Итерационная переменная s = 1Текущее значение n = 100Количество шагов разбиения $D(t,s) \coloneqq F(t,s)$ Функция, описывающая изменение переменной s W = rkfixed(s, a, b, n, D)Результат численного решения уравнения с использованием функции 0.785 1 $0.788 \ 1.001$ 1.11 $0.79 \quad 1.002$ 1.1 $0.792 \ 1.003$ 1.09 $0.794 \ 1.004$ 1.08 $0.796 \ 1.005$ 1.07 1.06 0.798 1.006W = $W_{k,1}$ 0.81.0071.04 $0.803 \ 1.009$ 1.03 $0.805 \ 1.01$ 1.02 $0.807 \ 1.011$ 1.01 $0.809 \ 1.012$ 0.785.805.825.845.865.885.905.925.945.965.985.005 ЭТАП 5: ВЫЧИСЛЕНИЕ РАЗНОСТИ И СРАВНЕНИЕ С ОЦЕНКОЙ ПОГРЕШНОСТИ $R1_{j} \coloneqq \left| X1_{j} - W_{j,1} \right|$ $1.027\boldsymbol{\cdot} 10^{-10}$ $2.048 \cdot 10^{-10}$ $\max(R1) = 7.991 \cdot 10^{-9}$ $3.064 \cdot 10^{-10}$ $4.074 \cdot 10^{-10}$ $5.079 \cdot 10^{-10}$ 10-9 $6.079 \cdot 10^{-10}$ 10-R1 =10- $7.073 \cdot 10^{-10}$ 10- $8.062 \cdot 10^{-10}$ 10- $9.046 \cdot 10^{-10}$ 10-9 $X1_k - W_{k,1}$ 10-9 $1.002 \cdot 10^{-9}$ 10- $1.1 \cdot 10^{-9}$ 10- 0^{-10} $0.78 \pm 0.80 \pm 0.82 \pm 0.84 \pm 0.86 \pm 0.88 \pm 0.90 \pm 0.92 \pm 0.94 \pm 0.96 \pm 0.98 \pm 0.005$ $t_{_k}$

