

Manuel d'utilisation de l'écran LCD TFT 1,8"

Cher client,

Merci d'avoir acheté notre produit.

Veuillez observer les instructions ci-dessous avant la première utilisation :

Utilisation avec une carte UNO

Connecter le module

Branchez le module LCD aux broches de la carte UNO comme représenté ci-dessous :

Table de correspondance :

Carte UNO	Ecran
+5V	+5V
GND	GND
13	SCL
11	SDA
9	RS/DC
8	RES
10	CS

Remarque : les quatre broches restant libres sont pour la communication avec la carte SD

Installation de la bibliothèque

Pour pouvoir utiliser ce module, la bibliothèque TFT doit être installée :

Ouvrez l'<u>IDE Arduino</u> et aller dans *Croquis → Inclure une bibliothèque →* Gérer les bibliothèques

Dans le gestionnaire de bibliothèques, recherchez « TFT » et installez la bibliothèque TFT:

Fermez la fenêtre une fois l'installation terminée.

Exemple de programme

L'exemple de code ci-dessous allume les leds suivant différentes séquences :

```
oo EcranTFT1.8 | Arduino 1.8.1
                                                                    ×
Fichier Édition Croquis Outils Aide
  EcranTFT1.8
#include <TFT.h>
#include <SPI.h>
// Définition des broches
#define cs 10
#define dc 9
#define rst 8
TFT TFTscreen = TFT(cs, dc, rst);
void setup() {
 TFTscreen.begin();
 // Couleur de fond : blanc
 TFTscreen.background(255, 255, 255);
 // Couleur d'écriture : bleu
 TFTscreen.stroke(0, 0, 255);
}
void loop() {
 TFTscreen.setTextSize(3); //Taille du texte
 TFTscreen.text("Go Tronic", 2, 3); // Ligne de texte
 TFTscreen.setTextSize(2);
 TFTscreen.text("1.8 TFT LCD", 5, 50);
 TFTscreen.setTextSize(1);
 TFTscreen.text("www.gotronic.fr", 5, 70);
 delay(250);
}
```


Utilisation avec un Raspberry Pi

Connecter le module

Branchez le module LCD aux broches du Raspberry Pi comme représenté ci-dessous :

Table de correspondance :

Raspberry Pi	Ecran
PIN 1 (+3.3V)	+5V
PIN 6 (GND)	GND
PIN 23 (SCLK)	SCL
PIN 19 (MOSI)	SDA
PIN 18 (GPIO 24)	RS/DC
PIN 22 (GPIO 25)	RES
PIN 24 (CE0)	CS

Prérequis

Les explications et programmes qui suivent ont été créés et testés pour un Raspberry utilisant le système d'exploitation Raspbian.

Un guide d'installation est disponible ici :

http://www.gotronic.fr/userfiles/www.gotronic.fr/files/Raspberry/GuideRPi.pdf

Un guide de démarrage est disponible ici :

http://www.gotronic.fr/userfiles/www.gotronic.fr/files/Raspberry/Raspberry%20Joyit.pdf

Installation du module

Pour installer le module, plusieurs fichiers de configuration sont à modifier :

Config.txt

Le fichier config.txt doit être modifié. Ouvrez le fichier :

sudo nano /boot/config.txt

Pour activer la communication SPI, ajoutez la ligne suivante à la fin du fichier :

dtparam=spi=on

Sauvegardez le fichier (Ctrl+O et Enter) et quittez le fichier (Ctrl+X).

Cmdline.txt

Le fichier cmdline.txt doit également être modifié. Ouvrez le fichier :

sudo nano /boot/cmdline.txt

Ajoutez la ligne suivante à la fin de la première ligne :

fbcon=map:10

Sauvegardez le fichier (Ctrl+O et Enter) et quittez le fichier (Ctrl+X).

99-fbturbo.conf

Le fichier 99-fbturbo.conf doit également être modifié. Ouvrez le fichier :

sudo nano /usr/share/X11/xorg.conf.d/99-fbturbo.conf

Modifiez la ligne...

Option "fbdev" "/dev/fb0"

En remplaçant **fb0** par **fb1**, la ligne devient donc :

Option "fbdev" "/dev/fb1"

Sauvegardez le fichier (Ctrl+O et Enter) et quittez le fichier (Ctrl+X).

Fbtft.conf

Créez le fichier fbtft.conf avec la commande :

sudo nano /etc/modules-load.d/fbtft.conf

Ajoutez les lignes suivantes dans ce fichier

spi-bcm2835 fbtft_device

Sauvegardez le fichier (Ctrl+O et Enter) et quittez le fichier (Ctrl+X).

Créez ensuite un autre fichier fbtft.conf:

sudo nano /etc/modprobe.d/fbtft.conf

Ajoutez la ligne suivante dans ce fichier. L'option rotate=90 permet une rotation de l'écran de 90°. Vous pouvez bien sûr mettre l'écran dans le sens que vous voulez en remplaçant 90 par 0, 180 ou 270.

options fbtft_device name=sainsmart18 rotate=90

Sauvegardez le fichier (Ctrl+O et Enter) et quittez le fichier (Ctrl+X).

Redémarrez le Raspberry Pi :

sudo reboot

A ce stade, les configurations sont terminées et le Raspberry Pi utilisera l'écran 1,8" comme écran principal.

Pour utiliser à nouveau le port HDMI pour l'écran, allez dans le fichier 99-fbturbo.conf et remplacez fb1 par fb0.

Affichage d'une image

Une visionneuse d'image doit être installée. Dans cet exemple, nous installons le programme FBI (pour "Linux FrameBuffer Imageviewer")

sudo apt-get -y install fbi

La commande suivante permet de télécharger une image d'exemple (un point d'interrogation blanc sur fond noir) :

wget http://art110.wikispaces.com/file/view/Mystery-100x100.jpg/30649064/Mystery-100x100.jpg

L'image téléchargée peut maintenant être affichée avec la visionneuse d'image avec la commande :

sudo fbi -d /dev/fb1 -T 1 -noverbose -a Mystery-100x100.jpg

GO TRONIC

ROBOTIQUE ET COMPOSANTS ÉLECTRONIQUES

Si vous rencontrez des problèmes, merci de nous contacter par courriel à :

sav@gotronic.fr

Coordonnées du fabricant :

service@joy-it.net

+49 (0)2845 9360 - 50