+ · * < 2021 SMARCLE 겨울방학 인공지능 스터디 (• *

둘째마당 - 3장 선형회귀

1주차 1팀 2021.1.4.

김건우 박지하 송혜원

목차

1. 개요

(1) 우리가 사용할 책(2) 머신러닝, 딥러닝은 무엇일까?

2. 딥러닝을 하려면?

(1) 머신러닝에 필요한 간단한 지식들(2) 딥러닝의 원리

3. 선형회귀란?

(1) 선형회귀의 정의에 대하여 (2) 가장 훌륭한 예측선 긋기

4. 기울기와 절편 구하기

- (1) 최소 제곱법 실습1
- (2) 평균 제곱 오차 실습2

우리의 책 : 모두의 딥러닝

두둥..!

두둥..!

두둥..

두둥..!

머신러닝, 딥러닝?

딥러닝이란?

머신러닝에 필요한 간단한 지식들! - ① 작업 환경

		장점	단점	결론
July tel	주피터 노트북	 아나콘다만 설치한 후 간단하게 이용 가능 대화형 프로그래밍 가능 문서화 작업 용이 	• 컴퓨터 사양에 종속	설치가 비교적 쉽고 CPU 환경과 GPU 환경 모두에서 무난히 사용할 수 있다.
CO	구글	 설치 필요 없음 구글의 GPU, TPU 활용 가능 구글 드라이브와 연동 가능 	 로그아웃 시 설치한 환경, 샘플 파일, 가중치 값 등이 유실될 수 있음 여러 사람 동시 작업 불가 동시에 실행할 수 있는 작업 수 제한 	간단한 설정만으로 구글의 GPU 및 TPU 환경을 이용할 수 있다. 컴퓨터에 GPU가 설치되어 있지 않을 경우 사용하기 좋다.
PC	파이참	 파이썬 전문 프로그래밍 통합 패키지 디버깅, 코드 자동 완성, 모듈 관리 가능 	 컴퓨터 사양에 종속 프로그램 설치 및 인터프리터 연결 필요 시작 시 대기 시간 소요 	컴퓨터에 이미 성능 좋은 GPU가 설치되어 있을 경우 추천하는 툴. 파이썬 통합 패키지 툴의 여러 기 능을 활용해 전문적인 프로그래밍 을 할 수 있다.

머신러닝에 필요한 간단한 지식들! - ② 데이터

강아지

고양이

〈딥러닝 - 비지도학습〉

〈딥러님 - 지도학습〉

이렇게 딥러닝은 두 종류의 데이터로 구분할 수 있다!

머신러닝에 필요한 간단한 지식들! - ③ 파이썬

- * 사고 방법이나 틀은 C언어와 비슷 *
- (파이썬) 함수
- (파이썬) 라이브러리
- numpy 라이브러리

딥러닝의 동작 원리: 선형회귀, 로지스틱 회귀

〈로지스틱 회귀〉

~1부 끝 쉬는시간~

가장 훌륭한 예측선 긋기 : 선형회귀

선형 회귀의 정의

"학생들의 중간고사 성적이 다 다르다."

"학생들의 중간고사 성적이 ['정보']에 따라 다 다르다."

y(종속변수)

x(독립변수)

가장 훌륭한 예측선이란?

ex) 공부한 시간에 따른 중간고사 성적 데이터

<u>∓ 3−1</u>

공부한 시간과 중간고사 성적 데이터

공부한 시간	2시간	4시간	6시간	8시간
성적	81점	93점	91점	97점

$$X = \{2, 4, 6, 8\}$$

$$Y = \{81, 93, 91, 97\}$$

가장 훌륭한 예측선이란?

기울기인 a 값과 y 절편 b 값을 정확히 예측!

그림 3-1

공부한 시간과 성적을 좌표로 표현

최소 제곱법(method of least squares)

$$a = \frac{(x - x 평균)(y - y 평균)의 합}{(x - x 평균)^2 의 합}$$

$$b = y$$
의 평균 $-(x$ 의 평균×기울기 $a)$

최소 제곱법(method of least squares)

표 3−2

최소 제곱법 공식으로 구한 성적 예측 값

공부한 시간	2	4	6	8
성적	81	93	91	97
예측 값	83.6	88,2	92,8	97.4

그림 3-3 오차가 최저가 되는 직선의 완성

고시간 4시간 6시간 8시간

~실습 타임~

* Google colab을 실행해주세요.

평균 제곱 오차(MSE)

◆ 임의의 직선 그려보기 (y = 3x + 76)

평균 제곱 오차(MSE)

그림 3-8 기울기를 너무 작게 잡았을 때의 오차

그림 3-7

기울기를 너무 크게 잡았을 때의 오차

평균 제곱 오차(MSE)

≖ 3-3

주어진 데이터에서 오차 구하기

오차	1	-5	3	3
예측 값	82	88	94	100
성적(실제 값. y)	81	93	91	97
공부한 시간(x)	2	4	6	8

오차의 합
$$=\sum_{i}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$$

평균 제곱 오차(MSE) =
$$\frac{1}{n}\sum (y_i - \hat{y}_i)^2$$

~실습 타임~

* Google colab을 실행해주세요.

~질문 타임~ *^{질문 환영}

1팀이었습니다.

잘 들어주셔서 감사합니당!!

