Machine Learning and Artificial Intelligence

Lab 08 – Gradient Descent

Optimization

- The machine learning algorithms we have seen so far try to find a solution which is deemed to be "as good as possible" given a model and a specific term describing what is "as good as possible".
- Essentially, we are trying to select the best elements (k number of neighbors, k clusters, weights), w.r.t some criterion, from some set of available observations (a.k.a given the data).
- This means we can solve these problems using optimization.

Optimization

- Optimization is very large and complex field, but one of the most common applications is the of *convex optimization*.
- Convex functions are preferred because they have the desirable property of having a global minimum which is equivalent to the local minima (when strictly convex there can only be one local minima = global).
- This means that we can try to use convex loss functions and minimize them in order to obtain the "best solution" for our machine learning problem.

Coming back to linear regression

• Given $\{y_i, x_{i1}, \ldots, x_{ip}\}_{i=1}^n$ fit a line to the data:

$$y_i = eta_0 + eta_1 x_{i1} + \dots + eta_p x_{ip} + arepsilon_i = \mathbf{x}_i^\mathsf{T} oldsymbol{eta} + arepsilon_i, \qquad i = 1, \dots, n,$$

or

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

• Such that the sum of squared errors is is minimal!

$$\sum_{i=1}^{n} e_i = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

In practice one can also optimize the Mean Squared Error (MSE):

$$\frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2$$

Geri Skenderi ML & AI - Lab 5

Least squares estimation

• We know the **direct, closed form solution** given by *OLS*:

$$\mathbf{X} = egin{bmatrix} X_{11} & X_{12} & \cdots & X_{1p} \ X_{21} & X_{22} & \cdots & X_{2p} \ dots & dots & \ddots & dots \ X_{n1} & X_{n2} & \cdots & X_{np} \end{bmatrix}, \qquad oldsymbol{eta} = egin{bmatrix} eta_1 \ eta_2 \ dots \ eta_p \end{bmatrix}, \qquad \mathbf{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix}.$$

$$\hat{\boldsymbol{eta}} = \left(\mathbf{X}^\mathsf{T}\mathbf{X}\right)^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}.$$

What if there is none?

We can find it via optimization

ML & AI - Lab Geri Skenderi

Simple (yet powerful) ideas

Gradient Descent (1/5)

If the function under consideration is differentiable, we could calculate its rate of change and go in the opposite direction to minimize the loss.

Geri Skenderi

ML & AI - Lab

Gradient Descent (2/5)

- Gradient Descent Algorithm:
 - 1. Initialize weights randomly $\sim N(0, \sigma^2)$
 - 2. Repeat until convergence:
 - 1. Compute the gradient $\frac{\partial J(w)}{\partial w}$
 - 2. Update weights $w \leftarrow w \eta \frac{\partial J(w)}{\partial w}$
 - 3. Return weights

Gradient Descent (3/5)

- Gradient Descent Algorithm:
 - 1. Initialize weights randomly $\sim N(0, \sigma^2)$
 - 2. Repeat until convergence:
 - 1. Compute the gradient $\frac{\partial J(w)}{\partial w}$
 - 2. Update weights $w \leftarrow w \eta \frac{\partial J(w)}{\partial w}$
 - 3. Return weights

Very expensive to compute for all training points (might be millions!)

Improve gradient descent computationally

Gradient Descent (4/5)

- Stochastic Gradient Descent Algorithm:
 - 1. Initialize weights randomly $\sim N(0, \sigma^2)$
 - 2. Repeat until convergence:
 - 1. Pick single data point *i*
 - 2. Compute the gradient $\frac{\partial J_i(w)}{\partial w}$
 - 3. Update weights $w \leftarrow w \eta \frac{\partial J(w)}{\partial w}$
 - 3. Return weights
- While this version is much easier to compute, it is very noisy (stochastic) since it relies on single instances.

Gradient Descent (5/5)

- Mini-batch Gradient Descent Algorithm (the happy, middle ground):
 - 1. Initialize weights randomly $\sim N(0, \sigma^2)$
 - 2. Repeat until convergence:
 - 1. Pick a batch B of data points
 - 2. Compute the gradient $\frac{\partial J_B(w)}{\partial w} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(w)}{\partial w}$
 - 3. Update weights $w \leftarrow w \eta \frac{\partial J(w)}{\partial w}$
 - 3. Return weights
- Mini-batch gradient descent allows for smoother convergence, stabler gradients and larger learning rates.

Linear Regression with SGD

- We can use Gradient
 Descent to solve the system as an optimization problem
- Imagine a Perceptron with no activation function and a squared error cost function.

$$J(\Theta_0, \Theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (y_i - (\Theta_0 + \Theta_1 x_i))^2$$
$$\frac{\partial J}{\partial \Theta_0} = -\frac{1}{N} \sum_{i=1}^{N} (y_i - (\Theta_0 + \Theta_1 x_i))$$
$$\frac{\partial J}{\partial \Theta_1} = -\frac{1}{N} \sum_{i=1}^{N} x_i (y_i - (\Theta_0 + \Theta_1 x_i))$$

Typical regression error metrics

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |Y_i - \hat{Y}_i|$$

Sklearn links

- https://scikitlearn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
- https://scikitlearn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFea tures.html
- https://scikitlearn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.h tml#sklearn.linear_model.SGDRegressor
- https://scikitlearn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklear n.metrics.r2_score
- https://scikitlearn.org/stable/modules/generated/sklearn.metrics.mean absolute error
 r.html#sklearn.metrics.mean absolute error

