The description logic \mathcal{EL} : the terminological part

DL architecture

Knowledge Base (KB)

TBox (terminological box, schema)

 $\begin{array}{c} \mathsf{Man} \equiv \mathsf{Human} \sqcap \mathsf{Male} \\ \mathsf{HappyFather} \equiv \mathsf{Man} \sqcap \exists \mathsf{hasChild} \end{array}$

• • •

ABox (assertion box, data)

john: Man (john, mary): hasChild

...

Inference System

Interface

\mathcal{EL} (syntax)

• Language for \mathcal{EL} concepts (classes):

- concept names $A_0, A_1, ...$ (e.g., Person, Female, ...)
- role names r_0, r_1, \dots (e.g., hasChild, loves, ...)
- the concept T (often called "thing")
- the concept constructor □ (often called intersection, conjunction, or simply "and").
- the concept constructor ∃ (often called existential restriction).

EL concepts are defined inductively:

- all concept names are \mathcal{EL} concepts
- \top is a \mathcal{EL} concept
- if C and D are \mathcal{EL} concepts and r is a role name, then

$$(C \sqcap D), \exists r.C$$

are \mathcal{EL} concepts.

Examples

- Person □ Female (a woman),
- Person □ ∃hasChild.Person (a person who has a child),
- Person □ ∃hasChild.Person □ ∃hasParent.Person (a person who has a child and has a parent),
- Person □ ∃hasChild.(Person □ Female) (a person who has a child who is a woman),
- Person □ ∃hasChild.Person □ Female (a woman who has a child),
- Person □ ∃hasChild. □ (a person who has a child),
- Person □ ∃hasChild.∃hasChild. □ (a person who has a grandchild).

Concept definitions in \mathcal{EL}

Let A be a concept name and C a \mathcal{EL} concept. Then

- $A \equiv C$ is a \mathcal{EL} concept definition. C describes necessary and sufficient conditions for being an A. We sometimes read this as "A is equivalent to C".
- $A \sqsubseteq C$ is a primitive \mathcal{EL} concept definition. C describes necessary conditions for being an A. We sometimes read this as "A is subsumed by C".

Examples:

- Father = Person \sqcap Male $\sqcap \exists$ has Child. \top .
- Student = Person □ ∃is_registered_at.University.
- Father □ Person.
- Father
 □ ∃hasChild.
 ⊤.

\mathcal{EL} terminology

A \mathcal{EL} terminology T is a finite set of definitions of the form

$$A \equiv C$$
, $A \sqsubseteq C$

such that no concept name occurs more than once on the left hand side of a definition. So, in a terminology it is impossible to have two distinct definitions:

- University

 Institution

 ∃grants.academicdegree
- University ≡ Institution □ ∃supplies.higher_education

However, we can have cyclic definitions such as

A **acyclic** \mathcal{EL} **terminology** T is a \mathcal{EL} terminology that does not not contain (not even indirect) cyclic definitions.

Example: SNOMED CT

- Comprehensive healthcare terminology with approximately 400 000 definitions (400 000 concept names and 60 role names)
- ullet Almost (except inclusions between role names) an acyclic \mathcal{EL} terminology
- Property rights owned by not-for-profit organisation IHSTDO (International Health terminology Standards Development Organisation).
- IHSTDO made currently of nine nations (free in 49 developing countries).
- Aim: enabling clinicians, researchers and patients to share and exchange healthcare and clinical knowledge worldwide.
- The widespread adoption of SNOMED CT across all NHS clinical systems is a strategic goal of the NHS Connecting for Health IT programme.

SNOMED CT Snippet

EntireFemur		StructureOfFemur
FemurPart		StructureOfFemur □
		∃part_of.EntireFemur
BoneStructureOfDistalFemur		FemurPart
EntireDistalFemur		BoneStructureOfDistalFemur
DistalFemurPart		$BoneStructureOfDistalFemur \ \sqcap$
		$\exists part_of.EntireDistalFemur$
${\bf Structure of Distal Epiphysis Of Femur}$		DistalFemurPart
EntireDistalEpiphysisOfFemur	⊑	StructureOfDistalEpiphysisOfFemur

\mathcal{EL} concept inclusion (CI)

Let C and D be \mathcal{EL} concepts. Then

- $C \sqsubseteq D$ is called a \mathcal{EL} concept inclusion. It states that every C is-a D. We also say that C is subsumed by D or that D subsumes C. Sometimes we also say that C is included in D.
- $C \equiv D$ is an abbreviation for the two concept inclusions $C \sqsubseteq D$ and $D \sqsubseteq C$. We sometimes read this as "C and D are equivalent".

Examples:

- Disease □ ∃has_location.Heart □ NeedsTreatment
- ∃student_of.ComputerScience ⊑ Human_being□∃knows.Programming_Language

\mathcal{EL} TBox

A \mathcal{EL} TBox is a finite set T of \mathcal{EL} concept inclusions $C \sqsubseteq D$ (we use $C \equiv D$ as an abbreviation). Note the following inclusions:

acyclic terminology \Rightarrow terminology \Rightarrow TBox

Example:

Pericardium

☐ Tissue ☐ ∃cont_in.Heart

Pericarditis

Inflammation

∃has_loc.Pericardium

Inflammation

□ Disease □ ∃acts_on. Tissue

Disease □ ∃has_loc.∃cont_in.Heart □ Heartdisease □ NeedsTreatment

How are TBoxes (eg, SNOMED CT) used?

The **concept hierarchy** induced by a TBox T is defined as

 $\{A \sqsubseteq B \mid A, B \text{ concept names in } T \text{ and } T \text{ implies } A \sqsubseteq B\}$

Eg, the concept hierarchy induced by the SNOMED CT snippet above is EntireDistalEpiphysisOfFemur

 ${\bf Structure Of Distal Epiphysis Of Femur}$

DistalFemurPart

BoneStructureOfDistalFemur

FemurPart

Standard application of SNOMED CT based on concept hierarchy

- SNOMED CT is used to produce a hierarchy of medical terms (concept names). Each term is annotated with a numerical code and an axiom defining its meaning.
- This hierarchy is used by physicians to
 - generate,
 - process
 - and store

electronic medical records (EMRs) containing diagnoses, treatments, medication, lab records, etc.

Problem: we do not yet have a precise definition of what it means that $A \sqsubseteq B$ follows from T (or is implied by T). So: we do not have a precise definition of the concept hierarchy induced by a TBox

\mathcal{EL} (semantics)

- ullet An **interpretation** is a structure $\mathcal{I} = (\Delta^{\mathcal{I}}, \, ullet^{\mathcal{I}})$ in which
 - $\Delta^{\mathcal{I}}$ is the **domain** (a non-empty set)
 - $\cdot^{\mathcal{I}}$ is an interpretation function that maps:
 - * every concept name A to a subseteq $A^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$ $(A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}})$
 - * every role name r to a binary relation $r^{\mathcal{I}}$ over $\Delta^{\mathcal{I}}$ $(r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}})$
- The interpretation $C^{\mathcal{I}}$ of an arbitrary \mathcal{EL} concept C in \mathcal{I} is defined inductively:
 - $(\top)^{\mathcal{I}} = \Delta^{\mathcal{I}}$
 - $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$
 - $(\exists r.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} \mid \text{ exists } y \in \Delta^{\mathcal{I}} \text{ such that } (x,y) \in r^{\mathcal{I}} \text{ and } y \in C^{\mathcal{I}} \}$

Example

Let
$$\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$$
 , where

- ullet $\Delta^{\mathcal{I}} = \{a,b,c,d,e,f\};$
- ullet Person $^{\mathcal{I}}=\{a,b,c,d,f\}$; Female $^{\mathcal{I}}=\{a,b,c,e\}$;
- $\mathsf{hasChild}^{\mathcal{I}} = \{(a,b), (b,c), (d,e), (f,f)\}.$

Compute:

- (Person \sqcap Female) $^{\mathcal{I}}$,
- (Person $\sqcap \exists hasChild.Person)^{\mathcal{I}}$,
- (Person $\sqcap \exists hasChild.(Person \sqcap Female)^{\mathcal{I}}$,
- (Person $\sqcap \exists hasChild.Person \sqcap Female)^{\mathcal{I}}$,
- (Person $\sqcap \exists \mathsf{hasChild}. \top)^{\mathcal{I}}$,
- (Person $\sqcap \exists hasChild. \exists hasChild. \top$) $^{\mathcal{I}}$.

Semantics: when is a concept inclusion true in an interpretation?

Let \mathcal{I} be an interpretation, $C \sqsubseteq D$ a concept inclusion, and \mathcal{T} a TBox.

- We set $\mathcal{I} \models C \sqsubseteq D$ if, and only if, $C^{\mathcal{I}} \sqsubseteq D^{\mathcal{I}}$. In words:
 - \mathcal{I} satisfies $C \sqsubseteq D$ or
 - $C \sqsubseteq D$ is true in \mathcal{I} or
 - \mathcal{I} is a model of $C \sqsubseteq D$.
- ullet We set $\mathcal{I} \models C \equiv D$ if, and only if, $C^{\mathcal{I}} = D^{\mathcal{I}}$
- We set $\mathcal{I} \models \mathcal{T}$ if, and only if, $\mathcal{I} \models E \sqsubseteq F$ for all $E \sqsubseteq F$ in \mathcal{T} . In words:
 - \mathcal{I} satisfies \mathcal{T} or
 - \mathcal{I} is a model of \mathcal{T} .

Semantics: when does a concept inclusion follow from a TBox?

Let \mathcal{T} be a TBox and $C \sqsubseteq D$ a concept inclusion. We say that $C \sqsubseteq D$ follows from \mathcal{T} if, and only if, every model of \mathcal{T} is a model of $C \sqsubseteq D$.

Instead of saying that $C \sqsubseteq D$ follows from \mathcal{T} we often write

- ullet $\mathcal{T} \models C \sqsubseteq D$ or
- $C \sqsubseteq_{\mathcal{T}} D$.

Example: let MED be the \mathcal{EL} TBox

Pericardium \sqsubseteq Tissue $\sqcap \exists cont_in.Heart$

Pericarditis
☐ Inflammation ☐ ∃has_loc.Pericardium

Inflammation

□ Disease □ ∃acts_on. Tissue

Disease □ ∃has_loc.∃cont_in.Heart □ Heartdisease □ NeedsTreatment

Pericarditis needs treatment if, and only if, **Percarditis** \sqsubseteq_{MED} **NeedsTreatment**.

Deciding whether $C \sqsubseteq_{\mathcal{T}} D$ for \mathcal{EL} -TBoxes \mathcal{T} .

We give a polynomial time (tractable) algorithm deciding whether $C \sqsubseteq_{\mathcal{T}} D$

The algorithm actually decides whether $A \sqsubseteq_{\mathcal{T}} B$ for concept names A and B in \mathcal{T} . This is sufficient because the following two conditions are equivalent:

- $C \sqsubseteq_{\mathcal{T}} D$
- ullet $A \sqsubseteq_{\mathcal{T}'} B$ for fresh concept names A and B and the TBox

$$\mathcal{T}' = \mathcal{T} \cup \{A \equiv C, B \equiv D\}$$

Pre-processing

A \mathcal{EL} -TBox is in *normal form* if it consists of inclusions of the form

(sform) $A \sqsubseteq B$, where A and B are concept names;

(cform) $A_1 \sqcap A_2 \sqsubseteq B$, where A_1, A_2, B are concept names;

(rform) $A \sqsubseteq \exists r.B$, where A, B are concept names;

(Iform) $\exists r.A \sqsubseteq B$, where A, B are concept names.

Given a \mathcal{EL} -Box \mathcal{T} , one can compute in polynomial time a TBox \mathcal{T}' in normal form such that for all concept names A, B in \mathcal{T} :

$$A \sqsubseteq_{\mathcal{T}} B \Leftrightarrow A \sqsubseteq_{\mathcal{T}'} B.$$

Algorithm for Pre-processing (main steps)

Given a TBox T, apply the following rules exhaustively:

- Replace each $C_1 \equiv C_2$ by $C_1 \sqsubseteq C_2$ and $C_2 \sqsubseteq C_1$;
- Replace each $C \sqsubseteq C_1 \sqcap C_2$ by $C \sqsubseteq C_1$ and $C \sqsubseteq C_2$;
- If $\exists r.C$ occurs in \mathcal{T} and C is complex, replace C everywhere by a fresh concept name X_C and add $X_C \sqsubseteq C$ and $C \sqsubseteq X_C$ to the TBox.
- If $A_1\sqcap\cdots\sqcap A_n\sqcap\exists r_1.B_1\sqcap\cdots\sqcap\exists r_m.B_m\sqsubseteq C$ in $\mathcal T$, remove it, take a new concept name X and add

$$A_1 \sqcap \cdots \sqcap A_n \sqcap X \sqsubseteq C \quad \exists r_1.B_1 \sqcap \cdots \sqcap \exists r_m.B_m \sqsubseteq X$$

ullet If $\exists r_1.B_1 \sqcap \cdots \sqcap \exists r_m.B_m \sqsubseteq \exists r.B$ in $\mathcal T$, remove it, take a new concept name X and add

$$\exists r_1.B_1 \sqcap \cdots \sqcap \exists r_m.B_m \sqsubseteq X \quad X \sqsubseteq \exists r.B$$

Pre-Processing: Example

Consider T:

$$A_0 \sqsubseteq B \cap \exists r.B'$$

$$A_1 \sqcap \exists r.B \sqsubseteq A_2$$

Step 1 gives:

$$A_0 \sqsubseteq B$$

$$A_0 \sqsubseteq \exists r.B'$$

$$A_1 \sqcap \exists r.B \sqsubseteq A_2$$

Step 2 gives:

$$A_0 \sqsubseteq B$$

$$A_0 \sqsubseteq \exists r.B'$$

$$A_1 \sqcap X \sqsubseteq A_2$$

$$\exists r.B \sqsubseteq X$$

Pre-Processing applied to Example MED

Pericardium □ **Tissue** Pericardium \Box Y**Pericarditis** □ **Inflammation** Pericarditis

∃has_loc.Pericardium **Inflammation** □ **Disease** Inflammation

∃acts_on. Tissue Disease $\sqcap X \sqsubseteq \mathsf{Heartdisease}$ Disease $\sqcap X \subseteq \mathsf{NeedsTreatment}$ $\exists \mathsf{has_loc}.Y \sqsubseteq X \quad \exists \mathsf{cont_in.Heart} \sqsubseteq Y \quad Y \sqsubseteq \exists \mathsf{cont_in.Heart}$

Algorithm deciding $A \sqsubseteq_{\mathcal{T}} B$: Intuition

Given T in normal form, we compute functions:

- S maps every concept name A from T a set of concept names B;
- R maps every role name r from \mathcal{T} to a set of pairs (B_1,B_2) of concept names.

We will have $A \sqsubseteq_{\mathcal{T}} B$ if, and only if, $B \in S(A)$. Intuitively, we construct an interpretation \mathcal{I} with

- ullet $\Delta^{\mathcal{I}}$ is the set of concept names in \mathcal{T} .
- $A^{\mathcal{I}}$ is the set of all B such that $A \in S(B)$;
- ullet $r^{\mathcal{I}}$ is the set of all $(A,B)\in R(r)$.

This will be a model of \mathcal{T} and $A \sqsubseteq_{\mathcal{T}} B$ if, and only if, $A \in B^{\mathcal{I}}$.

Algorithm

Input: $\mathcal T$ in normal form. Initialise: $S(A)=\{A\}$ and $R(r)=\emptyset$ for A and r in $\mathcal T$. Apply the following four rules to S and R exhaustively:

(simpleR) If $A' \in S(A)$ and $A' \sqsubseteq B \in \mathcal{T}$ and $B \not \in S(A)$, then

$$S(A) := S(A) \cup \{B\}.$$

(conjR) If $A_1,A_2\in S(A)$ and $A_1\sqcap A_2\sqsubseteq B\in \mathcal{T}$ and $B\not\in S(A)$, then

$$S(A) := S(A) \cup \{B\}.$$

(rightR) If $A' \in S(A)$ and $A' \sqsubseteq \exists r.B \in \mathcal{T}$ and $(A,B) \not \in R(r)$, then

$$R(r) := R(r) \cup \{(A,B)\}.$$

(leftR) If $(A,B)\in R(r)$ and $B'\in S(B)$ and $\exists r.B'\sqsubseteq A'\in \mathcal{T}$ and $A'\not\in S(A)$, then

$$S(A) := S(A) \cup \{A'\}.$$

Example

$$egin{array}{cccc} A_0 &\sqsubseteq& \exists r.B \ & B &\sqsubseteq& E \ & \exists r.E &\sqsubseteq& A_1 \end{array}$$

Initialise: $S(A_0)=\{A_0\}$, $S(A_1)=\{A_1\}$, $S(B)=\{B\}$, $S(E)=\{E\}$, $R(r)=\emptyset$.

- ullet Application of (rightR) and axiom 1 gives: $R(r)=\{(A_0,B)\};$
- Application of (simpleR) and axiom 2 gives: $S(B) = \{B, E\}$;
- Application of (leftR) and axiom 3 gives: $S(A_0) = \{A_0, A_1\}$;
- No more rules are applicable.

Thus, $R(r)=\{(A_0,B)\}$, $S(B)=\{B,E\}$, $S(A_0)=\{A_0,A_1\}$ and no changes for the remaining values. We obtain $A_0\sqsubseteq_{\mathcal{T}} A_1$.

Fragment of MED

Partial run of the algorithm (showing that $Ps \sqsubseteq_{MED} NeedsTreatment$):

- Applications of (simpleR) give: $S(Pm) = \{Y, Pm\}$, $S(Ps) = \{Inf, Ps, Dis\}$;
- Application of (rightR) give: $R(has_loc) = \{(Ps, Pm)\}$,
- Application of (leftR) gives: $S(Ps) = \{Inf, Ps, Dis, X\}$
- Application of (conjR) gives: $S(Ps) = \{Inf, Ps, Dis, X, NeedsTreatment\}$

Analysing the output of the algorithm

Let \mathcal{T} be in normal form and S, R the output of the algorithm.

Theorem. For all concept names A,B in \mathcal{T} : $A\sqsubseteq_{\mathcal{T}} B$ if, and only if, $B\in S(A)$. In fact, the following holds: Define an interpretation \mathcal{I} by

- ullet $\Delta^{\mathcal{I}}$ is the set of concept names in \mathcal{T} .
- $A^{\mathcal{I}}$ is the set of all B such that $A \in S(B)$;
- $r^{\mathcal{I}}$ is the set of all $(A,B) \in R(r)$.

Then

- \bullet \mathcal{I} satisfies \mathcal{T} and
- for all concept names A from \mathcal{T} and \mathcal{EL} -concepts C:

$$A \sqsubseteq_{\mathcal{T}} C \quad \Leftrightarrow \quad A \in C^{\mathcal{I}}.$$