N-Channel JFETs

PRODUCT SUMMARY							
Part Number	V _{GS(off)} (V)	V _{(BR)GSS} Min (V)	g _{fs} Min (mS)	I _{DSS} Min (mA)			
2N4416	-≤6	-30	4.5	5			
2N4416A	−2.5 to −6	-35	4.5	5			
SST4416	-≤6	-30	4.5	5			

FEATURES

- Excellent High-Frequency Gain: 2N4416/A, Gps 13 dB (typ) @ 400 MHz
- Very Low Noise: 3 dB (typ) @ 400 MHz
- Very Low Distortion
- High AC/DC Switch Off-Isolation

BENEFITS

- Wideband High Gain
- Very High System Sensitivity
- High Quality of Amplification
- High-Speed Switching Capability
- High Low-Level Signal Amplification

APPLICATIONS

- High-Frequency Amplifier/Mixer
- Oscillator
- Sample-and-Hold
- Very Low Capacitance Switches

DESCRIPTION

The 2N4416/2N4416A/SST4416 n-channel JFETs are designed to provide high-performance amplification at high frequencies.

The TO-206AF (TO-72) hermetically-sealed package is available with full military processing (see Military Information.) The TO-236 (SOT-23) package provides a low-cost option and is available with tape-and-reel options (see Packaging Information). For similar products in the TO-226AA (TO-92) package, see the J304/305 data sheet.

Top View SST4416 (H1)*

*Marking Code for TO-236

For applications information see AN104.

2N4416/2N4416A/SST4416

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS

Gate-Drain, Gate-Source Voltage : Lead Temperature 300 °C Storage Temperature :

 (2N Prefix)a
 300 mW

 (SST Prefix)b
 350 mW

 Power Dissipation :

Notes

a. Derate 2.4 mW/°C above 25°C
b. Derate 2.8 mW/°C above 25°C

SPECIFICATIONS (T _A = 25°C UNLESS NOTED)										
			Typ ^a	Limits						
				2N4416		2N4416A		SST4416		1
Parameter	Symbol	Test Conditions		Min	Max	Min	Max	Min	Max	Unit
Static										
Gate-Source Breakdown Voltage	V _{(BR)GSS}	$I_G = -1 \mu A$, $V_{DS} = 0 V$	-36	-30		-35		-30		v
Gate-Source Cutoff Voltage	V _{GS(off)}	$V_{DS} = 15 \text{ V}, I_D = 1 \text{ nA}$	-3		-6	-2.5	-6		-6	
Saturation Drain Current ^b	I _{DSS}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}$	10	5	15	5	15	5	15	mA
Gate Reverse Current		$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V} (2\text{N})$	-2		-100		-100			pА
	1	T _A = 150°C	-4		-100		-100			
	I _{GSS}	$V_{GS} = -15 \text{ V}, V_{DS} = 0 \text{ V (SST)}$	-0.002						-1	nA
		T _A = 125°C	-0.6							
Gate Operating Current	I _G	V _{DG} = 10 V, I _D = 1 mA	-20							pА
Drain Cutoff Current ^c	I _{D(off)}	$V_{DS} = 10 \text{ V}, V_{GS} = -6 \text{ V}$	2							PΑ
Drain-Source On-Resistance ^c	r _{DS(on)}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	150							Ω
Gate-Source Forward Voltage ^c	V _{GS(F)}	$I_G = 1 \text{ mA}$, $V_{DS} = 0 \text{ V}$	0.7							٧
Dynamic										
Common-Source Forward Transconductance ^b	9 _{fs}	V _{DS} = 15 V, V _{GS} = 0 V f = 1 kHz	6	4.5	7.5	4.5	7.5	4.5	7.5	mS
Common-Source Output Conductance ^b	g _{os}	f = 1 kHz	15		50		50		50	μS
Common-Source Input Capacitance	C _{iss}		2.2		4		4			
Common-Source Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1 MHz	0.7		0.8		0.8			pF
Common-Source Output Capacitance	C _{oss}		1		2		2			
Equivalent Input Noise Voltage ^c	e _n	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1 kHz	6							nV∕ √Hz

HIGH-FREQUENCY SPECIFICATIONS FOR 2N4416/2N4416A (T _A = 25°C UNLESS NOTED)									
			Limits						
			100 MHz		400 MHz		1		
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Unit		
					-	-			
Common Source Input Conductance	g _{iss}			100		1,000			
Common Source Input Susceptance	b _{iss}			2,500		10,000	μS		
Common Source Output Conductance	9 _{oss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}$		75		100			
Common Source Output Susceptance	b _{oss}			1,000		4,000			
Common Source Forward Transconductance	9 _{fs}				4,000				
Common-Source Power Gain	G _{ps}	$V_{DS} = 15 \text{ V}, I_{D} = 5 \text{ mA}$	18		10		٩D		
Noise Figure	NF	$R_G = 1 k\Omega$		2		4	dB		

Notes a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

Pulse test: PW ≤300 µs duty cycle ≤3%.

This parameter not registered with JEDEC.

NH

TYPICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ UNLESS OTHERWISE NOTED)

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

I_D – Drain Current (mA)

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

TYPICAL CHARACTERISTICS (T_A = 25°C UNLESS OTHERWISE NOTED)

en – Noise Voltage (nV / √Hz