Yunjie Liu **Syan Racah **Prabhat **Joaquin Correa **Amir Khostowshahi, David Lavers **Amir Khostowshahi (Amir Collins **Amir Collins **Amir Khostowshahi (**Amir Collins **Amir Col	doc_1		doc_2		decision
Title Application of Deep Convolutional Neural Networks for Detecting Extreme Weather in Climate Datasets	authors	 Evan Racah Prabhat Joaquin Correa Amir Khosrowshahi, David Lavers Kenneth Kunkel Michael Wehner 	authors	 Evan Racah Prabhat Joaquin Correa Amir Khosrowshahi David Lavers Kenneth Kunkel Michael Wehner 	
publication_date 2016-05-04 00:00:00 source SupportedSources.INTERNET_ARCHIVE journal None volume doi http://arxiv.org/bdf/1605.01156v1 http://arxiv.org/b	title	Application of Deep Convolutional Neural Naturals for Detecting Extrema Weather in Climate Detects		**	
source SupportedSources.INTERNET_ARCHIVE journal volume doi urls https://web.archive.org/web/20191019071402/https://arxiv.org/pdf/1605.01156v1.pdf id id-6432456119549892500 Detecting extreme events in large datasets is a major challenge in climate science research. Current algorithms for extreme event detection are build upon human expertise in defining events based on subjective thresholds of relevant physical variables. Often, multiple competing methods produce vastly different results on the same dataset. Accurate characterization of extreme events in climate simulations and observational data archives is critical for understanding the trends and potential impacts of such events in a climate change content. This study presents the first application of Deep Learning techniques as alternative methodology for climate extreme events detection. Deep neural networks are able to learn high-level representations of a broad class of patterns from labeled data. In this work, we developed deep Convolutional Neural Network (CNN) classification system and demonstrated the usefulness of Deep Learning technique for tacking climate pattern detection problems. Coupled with Bayesian based hyper-parameter optimization scheme, our deep CNN system and demonstrated the usefulness of Deep Learning technique for tacking climate pattern detection problems. Coupled with Bayesian based hyper-parameter optimization scheme, our deep CNN system and demonstrated the usefulness of Deep Learning technique for tacking climate pattern detection problems. Coupled with Bayesian based hyper-parameter optimization scheme, our deep CNN system and demonstrated the usefulness of Deep Learning technique for tacking climate pattern detection problems. Coupled with Bayesian based hyper-parameter optimization scheme, our deep CNN system and demonstrated the usefulness of Deep Learning technique for tacking climate pattern detection problems. Coupled with Bayesian based hyper-parameter optimization scheme, our deep CNN system and demonstrat				-	
volume doi uris https://web.archive.org/web/20191019071402/https://arxiv.org/pdf/1605.01156v1.pdf id id-6432456119549892500 Detecting extreme events in large datasets is a major challenge in climate science research. Current algorithms for extreme event detection are build upon human expertise in defining events based on subjective thresholds of relevant physical variables. Often, multiple competing methods produce vastly different results on the same dataset. Accurate characterization of extreme events in climate smulations and observational data archives is critical for understanding the trends and potential impacts of such events in a climate change content. This study presents the first application of Deep Learning techniques as alternative methodology for climate extreme events detection. Deap neural networks are able to learn high-level representations of a broad class of patterns from labeled data. In this work, we developed deep Convolutional Neural Network (CNN) classification system and demonstrated the usefulness of Deep Learning technique for tackling climate pattern detection problems. Coupled with Bayesian based hyper-parameter optimization scheme, our deep CNN system addieves of Deep Learning technique for tackling climate pattern detection of Deep Learning technique for tackling climate pattern detection of Deep Learning technique for tackling climate pattern detection problems. Coupled with Bayesian based hyper-parameter optimization scheme, our deep CNN system addieves of Deep Learning technique for tackling climate pattern detection problems. Coupled with Bayesian based hyper-parameter optimization scheme, our deep CNN system addieves of Deep Learning technique for tackling climate pattern detection problems. Coupled with Bayesian based hyper-parameter optimization scheme, our deep CNN system addieves of Deep Learning technique for tackling climate pattern detection problems. Coupled with Bayesian based hyper-parameter optimization scheme, our deep CNN system addieves of Deep Learning te	<u> </u>				
volume doi	journal			None	
doi urls https://web.archive.org/web/20191019071402/https://arxiv.org/pdf/1605.01156v1.pdf urls http://arxiv.org/pdf/1605.01156v1 http://arxiv.org/pdf/1605.01156v	cases volume				
extreme event detection are build upon human expertise in defining events based on subjective thresholds of relevant physical variables. Often, multiple competing methods produce vastly different results on the same dataset. Accurate characterization of extreme events in climate simulations and observational data archives is critical for understanding the trends and potential impacts of such events in a climate change content. This study presents the first application of Deep Learning techniques as alternative methodology for climate extreme events detection. Deep neural networks are able to learn high-level representations of a broad class of patterns from labeled data. In this work, we developed deep Convolutional Neural Network (CNN) classification system and demonstrated the usefulness of Deep Learning technique for tackling climate pattern detection problems. Coupled with Bayesian based hyper-parameter optimization scheme, our deep CNN system achieves 89\%-99\% of accuracy in detecting parameter optimization scheme, our deep CNN system achieves 89\%-99\% of accuracy in detecting parameter optimization scheme, our deep CNN system achieves 89\%-99\% of accuracy in detecting	doi			• http://arxiv.org/abs/1605.01156v1	DUPLICATES 53
extreme event detection are build upon human expertise in defining events based on subjective thresholds of relevant physical variables. Often, multiple competing methods produce vastly different results on the same dataset. Accurate characterization of extreme events in climate simulations and observational data archives is critical for understanding the trends and potential impacts of such events in a climate change content. This study presents the first application of Deep Learning techniques as alternative methodology for climate extreme events detection. Deep neural networks are able to learn high-level representations of a broad class of patterns from labeled data. In this work, we developed deep Convolutional Neural Network (CNN) classification system and demonstrated the usefulness of Deep Learning technique for tackling climate pattern detection problems. Coupled with Bayesian based hyper-parameter optimization scheme, our deep CNN system achieves 89\%-99\% of accuracy in detecting extreme events in large datasets is a major challenge in climate science research. Current algorithms for extreme events in large datasets is a major challenge in climate science research. Current algorithms for extreme event detection are build upon human expertise in defining events based on subjective thresholds of relevant physical variables. Often, multiple competing methods produce vastly different results on the same dataset. Accurate characterization of extreme events in large datasets is a major challenge in climate simulations algorithms for extreme event detection are build upon human expertise in defining events based on subjective thresholds of relevant physical variables. Often, multiple competing methods produce vastly different results on the same dataset. Accurate characterization of extreme events in large datasets is a major challenge in climate simulations algorithms for extreme event detection are build upon human expertise in defining events based on subjective thresholds of relevant physical variables.		Detecting extreme events in large datasets is a major challenge in climate science research. Current algorithms for	id	id8129216039314924868	
		extreme event detection are build upon human expertise in defining events based on subjective thresholds of relevant physical variables. Often, multiple competing methods produce vastly different results on the same dataset. Accurate characterization of extreme events in climate simulations and observational data archives is critical for understanding the trends and potential impacts of such events in a climate change content. This study presents the first application of Deep Learning techniques as alternative methodology for climate extreme events detection. Deep neural networks are able to learn high-level representations of a broad class of patterns from labeled data. In this work, we developed deep Convolutional Neural Network (CNN) classification system and demonstrated the usefulness of Deep Learning technique for tackling climate pattern detection problems. Coupled with Bayesian based hyper-parameter optimization scheme, our deep CNN system achieves 89\%-99\% of accuracy in detecting	abstract	algorithms for extreme event detection are build upon human expertise in defining events based on subjective thresholds of relevant physical variables. Often, multiple competing methods produce vastly different results on the same dataset. Accurate characterization of extreme events in climate simulations and observational data archives is critical for understanding the trends and potential impacts of such events in a climate change content. This study presents the first application of Deep Learning techniques as alternative methodology for climate extreme events detection. Deep neural networks are able to learn high-level representations of a broad class of patterns from labeled data. In this work, we developed deep Convolutional Neural Network (CNN) classification system and demonstrated the usefulness of Deep Learning technique for tackling climate pattern detection problems. Coupled with Bayesian based hyper-parameter optimization scheme, our deep CNN system achieves 89\%-99\% of accuracy in detecting	