Summary of my Findings (Written by Cyrus Look)

Data Dictionary of Titanic Data Set	
Variable	Definition, Key / Notes
Survived (Categorical Variable)	Survival; $0 = \text{No}$, $1 = \text{Yes}$
Pclass (Categorical Variable)	Ticket class; $1 = 1st = Upper$, $2 = 2nd = Middle$, $3 = 3rd = Lower$
Sex (Categorical Variable)	Gender = Male / Female
SibSp (Categorical Variable)	Number of siblings / spouses aboard the Titanic
Parch (Categorical Variable)	Number of parents / children aboard the Titanic
Embarked (Categorical Variable)	Port of Embarkation; C = Cherbourg, Q = Queenstown, S = Southampton
Age (Numerical Variable)	Age in years; Age is fractional if less than 1 & in the form of xx.5 if estimated.
Fare (Numerical Variable)	Passenger fare

2-categorical-variable analyses are used for the first 5 hypotheses. To learn about the relationship between two categorical variables, **Chi-square analysis**, involving Chi-square statistic and p-value, would be used. In other words, I would test the **independence** between the two categorical variables. As two-tailed tests are used in hypothesis testing, I would adopt **5%** (**0.05**) **significance level**. If p-value is smaller than 0.05, null hypothesis (H0) is rejected; If p-value is larger than 0.05, null hypothesis (H0) is accepted.

2-numerical-variable analysis is used for the last hypothesis. To learn about the relationship between two numerical variables, **correlation analysis**, involving scatter plot, would be used. In other words, I would test the **correlation** between the two numerical variables.

Since the survival rate is involved in the first 5 hypotheses, I would make a countplot for 'Survived'.

There were **more victims** than survivors in the titanic accident.

1) Determine if the survival rate is associated to the class of passenger.

First, make a countplot for 'Pclass'.

Most passengers were in the 3rd (Lower) class.

Then, set up two opposing statements: null hypothesis (H0) and alternative hypothesis (Ha).

H0: 'Survived' and 'Pclass' are **independent** to each other among all subjects in the population.

Ha: 'Survived' and 'Pclass' are **not independent** to each other among all subjects in the population.

After running of codes, Chi-square statistic = 102.88898875696056, p-value = $4.549251711298793e^{-23}$

Since p-value is smaller than 0.05, null hypothesis (H0) is rejected. I conclude that 'Survived' and 'Pclass' are **not** independent to each other among all subjects in the population. In layman's term, different classes of passenger have significantly different survival rates.

2) Determine if the survival rate is associated to the gender.

First, make a countplot for 'Sex'.

There were more male passengers in the titanic.

Then, set up two opposing statements: null hypothesis (H0) and alternative hypothesis (Ha).

H0: 'Survived' and 'Sex' are **independent** to each other among all subjects in the population.

Ha: 'Survived' and 'Sex' are **not independent** to each other among all subjects in the population.

After running of codes, Chi-square statistic = 260.71702016732104, p-value = 1.1973570627755645e⁻⁵⁸ Since p-value is smaller than 0.05, null hypothesis (*H*0) is rejected. I conclude that 'Survived' and 'Sex' are **not independent** to each other among all subjects in the population. In layman's term, **different genders have significantly different survival rates**.

3) Determine if the survival rate is associated to the number of siblings / spouses aboard the Titanic.

First, make a countplot for 'SibSp'.

Most passengers did **not** have siblings / spouses aboard the Titanic.

Then, set up two opposing statements: null hypothesis (H0) and alternative hypothesis (Ha).

H0: 'Survived' and 'SibSp' are **independent** to each other among all subjects in the population.

Ha: 'Survived' and 'SibSp' are **not independent** to each other among all subjects in the population.

After running of codes, Chi-square statistic = 37.2717929152043, p-value = $1.5585810465902147e^{-06}$

Since p-value is smaller than 0.05, null hypothesis (H0) is rejected. I conclude that 'Survived' and 'SibSp' are **not** independent to each other among all subjects in the population. In layman's term, different number of siblings / spouses aboard the Titanic have significantly different survival rates.

4) Determine if the survival rate is associated to the number of parents / children aboard the Titanic.

First, make a countplot for 'Parch'.

Most passengers did **not** have parents / children aboard the Titanic.

Then, set up two opposing statements: null hypothesis (H0) and alternative hypothesis (Ha).

H0: 'Survived' and 'Parch' are **independent** to each other among all subjects in the population.

Ha: 'Survived' and 'Parch' are **not independent** to each other among all subjects in the population. After running of codes, Chi-square statistic = 27.925784060236168, p-value = 9.703526421039997e⁻⁰⁵ Since p-value is smaller than 0.05, null hypothesis (*H*0) is rejected. I conclude that 'Survived' and 'Parch' are **not independent** to each other among all subjects in the population. In layman's term, **different number of parents** / **children aboard the Titanic have significantly different survival rates**.

5) Determine if the survival rate is associated to the port of embarkation.

First, make a countplot for 'Embarked'.

Most passengers embarked at Southampton (S).

Then, set up two opposing statements: null hypothesis (H0) and alternative hypothesis (Ha).

H0: 'Survived' and 'Embarked' are **independent** to each other among all subjects in the population.

Ha: 'Survived' and 'Embarked' are **not independent** to each other among all subjects in the population.

After running of codes, Chi-square statistic = 26.48914983923762, p-value = $1.769922284120912e^{-06}$

Since p-value is smaller than 0.05, null hypothesis (H0) is rejected. I conclude that 'Survived' and 'Embarked' are **not independent** to each other among all subjects in the population. In layman's term, **different ports of embarkation have significantly different survival rates**.

6) Determine if the age is associated to the passenger fare.

Make a scatter plot where x = 'Age' and y = 'Fare'.

From the scatter plot and the regression line, there is a weak positive linear

association with many outliers. We can say that **the age and the passenger fare is positively correlated**. The older the passenger was, the higher passenger fare he / she had.