

Gestion des aléas : chaines de cotes et répartition des intervalles ; utilisation des incertitudes en tp

Jean-Michel Génevaux, Catherine Potel

▶ To cite this version:

Jean-Michel Génevaux, Catherine Potel. Gestion des aléas : chaines de cotes et répartition des intervalles ; utilisation des incertitudes en tp. École d'ingénieur. France. 2013. <cel-00611698v10>

HAL Id: cel-00611698 https://cel.archives-ouvertes.fr/cel-00611698v10

Submitted on 30 Jan 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ENSIM 4A

Gestion des aléas chaines de cotes et répartition des intervalles utilisation des incertitudes en tp http://umtice.univ-lemans.fr/course/view.php?id=4099

Jean-Michel Génevaux avec la complicité de Catherine Potel, et tous les collègues précédents qui ont fournis leurs documents.

Chaque fois que je me plante, je pousse.[9]

January 23, 2018

Contents

1	Mé	thode o	de travail	3
	1.1	Les ob	jectifs	3
	1.2	La péc	lagogie utilisée	3
	1.3	L'évalı	nation des compétences	4
2	Not	e, com	pétences et plan de progression dans cet enseignement	6
	2.1	Compe	étences	6
	2.2	Plan d	e progression	6
		2.2.1	J'ai été présent à la séance :	6
		2.2.2	J'ai lu les pages :	6
		2.2.3	J'ai obtenu les brevets :	7
		2.2.4	Je suis référent des brevets :	7
3	Ges	tion de	es aléas	8
	3.1	A prop	oos de l'évaluation des incertitudes relatives à un résultat expérimental, à un	
		modèle	e, à leur comparaison	8
		3.1.1	Quelques rappels de grandeurs	8
		3.1.2	Plan de formation	13
		3.1.3	Démarche suivie à titre d'exemple	15
		3.1.4	Classifions un peu nos approches	20
		3.1.5	Détection de points aberrants lors de la détermination d'une valeur moyenne	20
		3.1.6	Incertitudes de type A	23
		3.1.7	Comparaison de deux échantillons	25
		3.1.8	Incertitudes de type B	26
		3.1.9	Détermination de l'incertitude globale	26
		3.1.10	Détection de points aberrants avant la détermination d'une régression linéaire	31
		3.1.11	Evaluation statistique de l'incertitude sur une pente p	34
			Evaluation manuelle de l'incertitude sur une pente p	37
			Evaluation statistique d'une limite de linéarité et de la pente avant cette limite	38
		3.1.14	Calcul de l'incertitude sur une grandeur composée, à partir de celles des	
			paramètres expérimentaux	43
			Méthode de grand-papa : à ne plus utiliser, car fausse	45
			Comparaison entre une théorie et une expérience	46
			Un exemple : Ouf!	47
			Quelques utilitaires	52
			Termes métrologiques généraux	54
	3.2		en compte des aléas en fabrication	60
		3.2.1	De l'idée d'une pièce à sa fabrication en série	60
		3.2.2	Les dispersions d'une cote à la fabrication	65
		3.2.3	La cotation de fabrication	69

Si vous êtes l'une des 44 personnes qui téléchargent annuellement ce polycopié sur archives-ouvertes.fr et que vous passez au Mans, venez m'offrir un café (sans sucre)... et on en profitera pour parler du contenu afin de l'améliorer.

Chapter 1

Méthode de travail

1.1 Les objectifs

Cet enseignement sera dispensé pendant les séances de CRAIES ("Coopérons à notre Rythme d'Apprentissage Individualisé Efficace et Sympathique").

Pour que vous puissez organiser vos apprentissages, pour chacun des enseignements, un plan de travail personnel et pour l'année résume :

- les étapes de formation (brevets),
- les objectifs de formations (ceintures ou examen).
- le nombre de séances à priori qu'il vous faut suivre,

1.2 La pédagogie utilisée

La première séance est une séance d'expérimentation pour répondre à un problème d'optimisation. Par groupe de 4, vous tenterez de trouver expérimentalement une réponse. La dernière séance permettra de présenter à tous votre résultat optimisé.

Les séquences d'enseignement suivantes sont divisées en cinq parties :

- Lors de votre entrée dans la salle, vous prenez un plot de couleur et vous y insérez le triaide et éventuellement le drapeau du brevet dont vous êtes référent. Vous posez en évidence sur la table votre plot.
- Lecture silencieuse du polycopié pendant 10 minutes. Vous cochez les lieux où vous avez une difficulté, au besoin notez votre question. Durant cette phase, vous ne cherchez pas de l'aide auprès de vos collègues afin de respecter le silence dans la salle et permettre à chacun de se concentrer..
- Lors d'un second temps, il est demandé à chacun s'il a une question. La question est posée à haute voix, l'enseignant répond à tous. Ce module étant ouvert gratuitement sur le net, nous souhaitons enregistrer en vidéo les phases de questions-réponses qui seront ensuite indexées dans le polycopié aux lieux adéquats, ce qui permettra de les consulter en différé. Cela permettra aux personnes suivant ce cours à distance, de consulter les FAQ (frequently asked questions). Si vous ne souhaitez pas apparaître à l'écran, par respect pour votre droit à l'image ou pour cause de mise en plis défectueuse ce matin là (vous aviez tellement travaillé hier soir !), seule votre voix peut être enregistrée en ne vous placant pas dans le cadre de la caméra. La prise d'image est assurée par un étudiant-caméraman à l'aide d'une tablette.
- Un troisième temps est consacré au débat. L'image ou l'histoire du jour est affichée. L'enseignant vous pose une question à laquelle vous répondrez en 3 temps : 2 minutes de réflexion personnelle, 4 minutes de confrontation d'idées par groupe de 4, puis mise en commun collective avec toute la promotion sous le format : "Je pense que ... et mes raisons sont les suivantes

- ...". L'enseignant se contente de noter et d'organiser au tableau vos raisonnements : il ne donne pas son avis.
- Une phase d'exercices (brevets) est faite dans un quatrième temps, à votre rythme. La banque de brevet regroupe l'ensemble des exercices (https://cel.archives-ouvertes.fr/cel-00611694). Ils ont été écrits suite aux erreurs rencontrées les plus fréquemment dans les copies de validation de compétence. Cette banque de brevets concerne l'ensemble des trois années de formation à l'ENSIM et certaines formations de l'UFR Sciences. Un arbre des connaissances vous permet, en grisant les brevets dont vous êtes détenteur-trice de savoir où vous en êtes dans la formation proposée. Pour un brevet que vous avez bien compris, vous pouvez en devenir le référent : votre rôle est alors d'aider les autres à l'obtenir. Un système de drapeau, que vous posez sur votre table lors des séances suivantes, permet aux étudiants de vous identifier et de venir chercher de l'aide. Vous n'êtes pas obligé de répondre instantanément à la demande d'aide : finissez ce que vous êtes en train de faire. Néanmoins, bien que le demandeur d'aide puisse commencer un autre brevet en vous attendant, ne le laissez pas mariner pendant 1/2 h. L'aide de l'enseignant se concentre sur les brevets pour lesquels il n'y a pas encore de référent. Afin que chacun puisse se concentrer sur son travail, si vous échangez avec vos voisins, merci de le faire en chuchotant.
- Les trois dernières minutes d'une séquence sont utilisées pour noter votre progression sur le plan de travail.

Sur http://umotion.univ-lemans.fr, vous pouvez visualiser la réponse à une des questions sur cette partie. Les fichiers sont nommés 069 062.

1.3 L'évaluation des compétences

L'évaluation est faite par la validation de compétences. Le chaînage des compétences est indiqué en début de chaque section de formation et les sujets de la première tentative de chaque compétence est téléchargeable sur $http://perso.univ-lemans.fr/\sim jmgenev/comp$.

Une compétence n'est pas validée si l'une des conditions suivantes est fausse

- vous êtes détenteur ou avez échoué 3 fois aux compétences mères au sein de ce module,
- vous trouvez le(s) résultat(s),
- toutes vos équations sont homogènes,
- les scalaires sont égaux à des scalaires,
- les vecteurs sont égaux à des vecteurs,
- les torseurs sont égaux à des torseurs,
- les tenseurs sont égaux à des tenseurs,
- votre copie de réponse à cette compétence utilise des écritures complètes, bases, points d'expression d'un torseur.
- vos résultats chiffrés sont suivis par des unités.

Vos validations/échecs aux compétences vous seront transmises via $http://perso.univ-lemans.fr/\sim jmgenev/comp$.

En cas de réussite, vous pouvez télécharger les sujets des compétences filles. En cas d'échec à une tentative de compétence, envoyez un message à jmgenev@univ-lemans.fr, avec juste comme titre : "année, matière, couleur, numéro de tentative". Je vous enverrai le sujet suivant.

Sur http://umotion.univ-lemans.fr, vous pouvez visualiser la réponse à une des questions sur cette partie. Les fichiers sont nommés 602 603 604 607.

Etre détenteur d'une compétence, implique qu'en tant qu'expert de celle-ci, vous aidiez vos camarades à l'obtenir, en les orientant sur les brevets afférents, en répondant à leur questions sur ces brevets, en insistant sur des points qui vous ont éventuellement fait rater cette compétence dans des tentatives précédentes, en inventant des exercices similaires, sans dévoiler le contenu du sujet de la compétence ni les réponses.

L'interfaçage avec les modalités de contrôle des connaissances nécessite, hélas, une note... (Relire l'invariant pédagogique 19 de Célestin Freinet [10]). Le cumul de vos points vous fourni la note. Nous transmettrons les compétences que chacun d'entre vous a validées, aux collègues des enseignements à venir qui ont comme prérequis des compétences de ce module.

Attention, une compétence est attribuée en "tout ou rien". Il n'est pas possible de répondre à des petits bouts de chaque compétence pour grapiller quelques points.

Nous vous souhaitons une bonne découverte, une intéressante confrontation des modèles que nous développerons lors de cette formation à la réalité des essais effectués en travaux pratiques, et bien sûr... une bonne coopération entre vous, sauf lors de la validation de compétences.

Sur http://umotion.univ-lemans.fr, vous pouvez visualiser la réponse à une des questions sur cette partie. Les fichiers sont nommés 073 060 078.

Chapter 2

Note, compétences et plan de progression dans cet enseignement

Votre note, puisqu'il en faut une, sera le cumul des points acquis aux compétences multiplié par 20/12.

2.1 Compétences

L?enchaînement des compétences est visible sur http://umtice.univ-lemans.fr/course/view.php?id=2619

- 1. jaune, 3 points : savoir déterminer si les valeurs moyennes de deux populations ou d'un modèle et d'une expérience sont significativement différentes.
- 2. orange, 3 points : savoir déterminer la limite de linéarité entre deux paramètres d'une population et les paramètres de la régression linéaire.
- 3. verte, 3 points : savoir déterminer l'incertitude sur la valeur moyenne d'un paramètre d'une population et sur une grandeur composée.
- 4. bleue, 3 points : Connaître les problèmes d'incertitude dans les calculs scientifiques sur machine.

2.2 Plan de progression

Pour que vous veilliez à ne pas prendre du retard dans votre progression, veuillez compléter en fin de séances les brevets obtenus, les pages lues, les numéros de brevets dont vous êtes référent et vos présences aux séances, ainsi que les afficher sur les feuilles de progression de la communauté.

2.2.1 J'ai été présent à la séance :

 $1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10\ 11\ 12$

2.2.2 J'ai lu les pages:

 $1\ 3\ 5\ 7\ 9\ 11\ 13\ 15\ 17\ 19\ 21\ 23\ 25\ 27\ 29\ 31\ 33\ 35\ 37\ 39\ 41\ 43\ 45\ 47\ 49\ 51\ 53\ 55\ 57\ 59\ 61\ 62$

2.2.3 J'ai obtenu les brevets:

Les brevets pour se préparer à leur validation sont : 85 26 27 43 30 48 44 45 86 8 7 28 29 46 84 47 10 $\,$

J'ai complété *https://ethercalc.org/lemans-gda-1718* en inscrivant mon prénom sur la ligne du brevet que je suis en train de travailler dans la case la plus à gauche possible (afin de faire apparaître un histogramme)

2.2.4 Je suis référent des brevets :

J'ai complété https://ethercalc.org/lemans-sdp-1718 en inscrivant mon mél sur la ligne correspondant au brevet dont je suis référent. J'ai aussi noté celui-ci au dos des fiches papier de brevet qui sont utilisées dans la classe.

Sur http://umotion.univ-lemans.fr, vous pouvez visualiser la réponse à une question sur cette partie. Le fichier est nommé 610.

Chapter 3

Gestion des aléas

L'objectif de cet enseignement est que vous sachiez, lorsque vous énoncez le résultat d'une mesure, afficher son incertitude associée au taux de confiance que vous avez choisi. De plus, lorsque la grandeur est obtenue par la composition de plusieurs grandeurs, que vous sachiez propager les incertitudes de chacune d'elles pour évaluer l'incertitude de cette grandeur composée, ainsi que la loi qui régit sa distribution de probabilité.

3.1 A propos de l'évaluation des incertitudes relatives à un résultat expérimental, à un modèle, à leur comparaison.

3.1.1 Quelques rappels de grandeurs

Au paragraphe 3.1.19, est fourni un extrait de la norme qui définit exactement les termes employés. Nous reviendrons ici sur quelques définitions et concepts.

• valeur vraie (voir figure 3.1)

Figure 3.1: Relation entre valeur vraie et mesure.

- mesurande : C'est la grandeur soumise à mesurage.
- erreur : C'est l'écart entre la valeur mesurée et la valeur vraie : elle est par définition inaccessible.
- moyenne : nous la noterons

$$\bar{q} = \frac{\sum_{k=1}^{n} q_k}{n},\tag{3.1}$$

• variance d'une population (voir figure 3.2) :

$$s_q = \sigma_q^2 = \frac{\sum_{k=1}^n (q_k - \bar{q})^2}{n-1},$$
(3.2)

avec n le nombre de points de mesure.

Figure 3.2: Les seules informations auxquelles il est possible d'accéder à partir des mesures.

• variance sur la moyenne d'une population

$$\sigma^2(\bar{q}) = \frac{\sigma_q^2}{n},\tag{3.3}$$

• écart type : σ

• covariance : elle définit la liaison statistique entre deux grandeurs y et z. C'est une grandeur dimensionnelle :

$$s_{yz} = \frac{\sum_{k=1}^{n} (y_k - \bar{y})(z_k - \bar{z})}{n - 1},$$
(3.4)

Sur http://umotion.univ-lemans.fr, vous pouvez visualiser la réponse à une des ques-

tions sur cette partie. Les fichiers sont nommés 601 606 608 612.

Ce concept sera utile lorsque nous évaluerons l'incertitude sur une grandeur composée de plusieurs grandeurs qui auront été mesurées. Si la covariance n'est pas nulle, on risque de surestimer l'incertitude sur la grandeur composée. On peut aussi définir la covariance des moyennes,

$$s_{\bar{y}\bar{z}} = \frac{s_{yz}}{n},\tag{3.5}$$

• coefficient de corrélation : c'est la grandeur adimensionnelle comprise entre 1 et -1 qui quantifie le lien entre deux grandeurs,

$$r_{yz} = \frac{s_{yz}}{\sigma_y \sigma_z},\tag{3.6}$$

- résultat brut
- biais : la connaissance approfondie de l'appareil de mesure, et son étalonnage par rapport à des grandeurs de références, permettent de quantifier l'écart entre la valeur de référence et la valeur donnée par l'appareil de mesure. Ceci sera appelé biais. L'incertitude sur ce biais est aussi à prendre en compte.
- résultat corrigé
- incertitude type : c'est l'incertitude d'un résultat de mesurage, exprimée sous la forme d'un écart-type.
- incertitude élargie : c'est l'incertitude associée à un mesurage afin qu'elle comprenne une fraction élevée de valeurs qui pourraient être attribuées raisonnablement au mesurande.
- facteur d'élargissement : une fois défini le taux de confiance avec lequel on souhaite afficher le résultat, il faut prendre en compte le type de loi pour calculer ce facteur d'élargissement.
- intervalle de confiance : la norme précise que cette appellation n'est valable que si toutes les incertitudes types sont obtenues par une méthode de type A.
- niveau de confiance
- répétabilité
- reproductibilité
- distribution uniforme
- distribution gaussienne
- distribution de Student (voir figure 3.3)

Table G.2 – Valeur de $t_p(v)$ de la loi de t pour v degrés de liberté, qui définit un intervalle de $-t_p(v)$ à $+t_p(v)$ comprenant la fraction p de la loi

Nombre de degrés			Fraction p e	n pourcentage							
de liberté	68,27 ^(a)	90	95	95,45 ^(a)	99	99,73 ^(a)					
	Valeur de $t_p(v)$										
1	1,84	6,31	12,71	13,97	63,66	235,80					
2	1,32	2,92	4,30	4,53	9,92	19,21					
3	1,20	2,35	3,18	3,31	5,84	9,22					
4	1,14	2,13	2,78	2,87	4,60	6,62					
5	1,11	2,02	2,57	2,65	4,03	5,51					
6	1,09	1,94	2,45	2,52	3,71	4,90					
7	1,08	1,89	2,36	2,43	3,50	4,53					
8	1,07	1,86	2,31	2,37	3,36	4,28					
9	1,06	1,83	2,26	2,32	3,25	4,09					
10	1,05	1,81	2,23	2,28	3,17	3,96					
11	1,05	1,80	2,20	2,25	3,11	3,85					
12	1,04	1,78	2,18	2,23	3,05	3,76					
13	1,04	1,77	2,16	2,21	3,01	3,69					
14	1,04	1,76	2,14	2,20	2,98	3,64					
15	1,03	1,75	2,13	2,18	2,95	3,59					
16	1,03	1,75	2,12	2,17	2,92	3,54					
17	1,03	1,74	2,11	2,16	2,90	3,51					
18	1,03	1,73	2,10	2,15	2,88	3,48					
19	1,03	1,73	2,09	2,14	2,86	3,45					
20	1,03	1,72	2,09	2,13	2,85	3,42					
25	1,02	1,71	2,06	2,11	2,79	3,33					
30	1,02	1,70	2,04	2,09	2,75	3,27					
35	1,01	1,70	2,03	2,07	2,72	3,23					
40	1,01	1,68	2,02	2,06	2,70	3,20					
45	1,01	1,68	2,01	2,06	2,69	3,18					
50	1,01	1,68	2,01	2,05	2,68	3,16					
100	1,005	1,660	1,984	2,025	2,626	3,077					
	1,000	1,645	1,960	2,000	2,576	3,000					

(a) Pour une grandeur z décrite par une loi normale d'espérance mathématique μ_z et d'écart-type σ , l'intervalle $\mu_z \pm k\sigma$ comprend respectivement p = 68,27; 95,45 et 99,73 pour-cent de la loi pour k = 1, 2 et 3

Figure 3.3: Table de Student

• degrés de liberté :

- pour une grandeur unique estimée par la moyenne arithmétique de n observations indépendantes, $\nu = n 1$.
- pour une grandeur estimée par une droite des moindres carrés (pente et origine) utilisant n observations indépendantes, $\nu=n-2$.

Sur http://umotion.univ-lemans.fr, vous pouvez visualiser la réponse à une question sur cette partie. Les fichiers sont nommés 605 611 076 077 071.

3.1.2 Plan de formation

- Avec de l'expérience, l'évaluation d'incertitudes de type B
- Sans information précise, l'évaluation d'incertitudes de type A
- Quelle est la distribution sous-jacente ? Simulation des lois ; des pièces mises bout à bout (a+b+c); une grandeur fonction de nombreuses autres (2*a+exp(b))/c).
- Procédure et expression de l'incertitude : voir figure 3.4 et le fichier "FicheIncertitude".

8 Récapitulation de la procédure d'évaluation et d'expression de l'incertitude

Les étapes à suivre pour évaluer et exprimer l'incertitude du résultat d'un mesurage, telles qu'elles sont présentées dans ce *Guide*, peuvent être résumées comme suit :

- 1 Exprimer mathématiquement la relation entre le mesurande Y et les grandeurs d'entrée X_i dont Y dépend : $Y = f(X_1, X_2, \ldots, X_N)$. La fonction f doit contenir chaque grandeur, y compris toutes les corrections et facteurs de correction qui peuvent contribuer à une composante significative de l'incertitude du résultat du mesurage (voir 4.1.1 et 4.1.2).
- 2 Déterminer x_i , la valeur estimée de la grandeur d'entrée X_i , soit sur la base de l'analyse statistique de séries d'observations, soit par d'autres moyens (voir 4.1.3).
- 3 Evaluer l'incertitude-type $u(x_i)$ de chaque estimation x_i . Pour une estimation d'entrée obtenue par l'analyse statistique de séries d'observations, l'incertitude-type est évaluée comme décrit en 4.2 (évaluation de Type A de l'incertitude-type). Pour une estimation d'entrée obtenue par d'autres moyens, l'incertitude-type $u(x_i)$ est évaluée comme décrit en 4.3 (évaluation de Type B de l'incertitude-type).
- 4 Evaluer les covariances associées à toutes les estimations d'entrée qui sont corrélées (voir 5.2).
- 5 Calculer le résultat du mesurage, c'est-à-dire l'estimation y du mesurande Y, à partir de la relation fonctionnelle f en utilisant pour les grandeurs d'entrée X_i les estimations x_i obtenues à l'étape 2 (voir 4.1.4).

- 6 Déterminer l'incertitude-type composée $u_c(y)$ du résultat de mesure y à partir des incertitudes-types et des covariances associées aux estimations d'entrée, comme décrit au chapitre 5. Si le mesurage détermine simultanément plusieurs grandeurs de sortie, calculer leurs covariances (voir 7.2.5, H.2, H.3 et H.4).
- 7 S'il est nécessaire de donner une incertitude élargie U, avec pour objectif de fournir un intervalle de y-U à y+U dont on peut s'attendre à ce qu'il comprenne une fraction élevée de la distribution des valeurs qui pourraient être attribuées raisonnablement au mesurande Y, multiplier l'incertitude-type composée $u_c(y)$ par un facteur d'élargissement k, typiquement situé dans la plage de 2 à 3, pour obtenir $U=ku_c(y)$. Choisir k sur la base du niveau de confiance requis pour l'intervalle (voir 6.2, 6.3 et spécialement l'annexe G qui présente le choix d'une valeur de k produisant un intervalle avec un niveau de confiance proche d'une valeur spécifiée).
- 8 Donner dans un rapport le résultat du mesurage y avec son incertitude-type composée $u_{\rm c}(y)$ ou son incertitude élargie U en suivant les indications données en 7.2.1 ou 7.2.3. Utiliser l'un des modes d'expression recommandés en 7.2.2 ou 7.2.4. Décrire, comme exposé aussi au chapitre 7, comment les valeurs de y et $u_{\rm c}(y)$ ou U ont été obtenues.

Figure 3.4: Procédure d'expression de l'incertitude.

- Incertitude sur une moyenne
- Choix du type de régression
- Incertitude sur les coefficients d'une régression linéaire
- Incertitude sur une limite de linéarité
- Et en non-linéaire ?...
- Comparaison de populations

3.1.3 Démarche suivie à titre d'exemple

Nous nous proposons de déterminer la résistance au roulement C d'un sol sur une bille : au point de contact P bille/sol, le sol exerce sur la bille qui roule dans la direction \vec{i} un torseur,

$$\left\{ \begin{array}{c} N\vec{k} + T\vec{i} \\ -C\ddot{j} \end{array} \right\}_{P}.$$
(3.7)

Pour déterminer ce paramètre C, nous lâcherons sans vitesse initiale une bille sur un plan incliné, arrivée en bas de ce plan incliné, elle poursuivra son mouvement sur une surface horizontale dont on veut mesurer la résistance au roulement. Les données de l'expérience seront l'angle α du plan incliné, la distance entre le point lâcher et la fin du plan incliné \tilde{x}_0 , la masse de la bille m, son rayon R, la pesanteur g. Le résultat de l'expérience sera la longueur parcourue à l'horizontale x_2 (voir figure 3.5)

Figure 3.5: Un essai de lacher d'une bille pour mesurer le coefficient de résistance au roulement.

Nous suivrons la démarche suivante, qui utilisera les concepts présentés dans les paragraphes de ce chapitre :

- modélisation (voir figures 3.6, 3.7, 3.8) pour mettre en évidence les relations entre C et les paramètres de l'essai
- choix d'un jeu de paramètres
- 1er essai
- mesure de la réponse
- précision de la réponse : incertitude de type B (paragraphe 3.1.8)
- calcul de l'estimation C_1 :
- précision sur C_1 : incertitude de type A; incertitude théorique (paragraphe 3.1.14)
- 2ième essai
- $\bullet\,$ comparaison des 2 résultats expérimentaux $x_{2,1}$ et $x_{2,2}$: répétabilité ; courbe comparative
- nième essai : $x_{2,n}$
- calcul de la moyenne \bar{x}_2
- calcul de l'estimation C_2 .
- incertitude sur la moyenne de ces n essais $\Delta \bar{x}_2$: incertitude statistique sur une valeur moyenne de ces n essais (paragraphe 3.1.6); programme incvalmoy.ods
- calcul de l'incertitude sur C_2 .
- \bullet changement d'un paramètre (la distance de lacher), car le coefficient C ne doit pas en dépendre
- \bullet incertitude sur la moyenne de ces m essais, calcul de C_3 et de son incertitude : comparaison
- relation linéaire entre C et \tilde{x}_0 , utilisation de la pente de la droite x_2 fonction de \tilde{x}_0 : $x_2 = p\tilde{x}_0$
- mesure des pentes maximale et minimale par la méthode manuelle (paragraphe 3.1.12)
- mesure des pentes maximale et minimale par la méthode statistique (paragraphe 3.1.11) ; programme incvalli.sxc
- \bullet calcul des valeurs maximale et minimale de C_4
- détermination de la fin d'une relation de linéarité ; programme incvalli.sce

Figure 3.6: Modélisation d'un essai de lâcher d'une bille pour mesurer le coefficient de résistance au roulement: p1.

Figure 3.7: Modélisation d'un essai de lâcher d'une bille pour mesurer le coefficient de résistance au roulement: p2.

Figure 3.8: Modélisation d'un essai de lâcher d'une bille pour mesurer le coefficient de résistance au roulement: p3.

3.1.4 Classifions un peu nos approches

Un client souhaite connaître "la valeur" d'une grandeur X. Vous lui répondrez en quantifiant la précision sur votre évaluation de cette grandeur X, et en lui associant un niveau de confiance.

Nous ne reviendrons pas sur les éventuelles corrections à apporter à la mesure (d'étalonnage, d'environnement). Elles nécessitent un modèle et donc les incertitudes sur ces corrections peuvent être traitées comme dans le paragraphe 3.1.14.

La procédure à suivre dépend de la demande du client. Si la grandeur demandée est directement accessible par l'essai (une température avec l'aide un thermomètre ...), en fonction de votre connaissance (ou ignorance), vous choisirez :

- une évaluation de l'incertitude sur des mesures répétées, par méthode statistique (type A) (paragraphe 3.1.6),
- et lorsque votre connaissance de l'expérience est plus empirique, vous pourrez évaluer cette incertitude (type B) (paragraphe 3.1.8).

Si la grandeur demandée caractérise le lien entre deux grandeurs mesurables a et b, vous mènerez un essai de b en fonction de a. Si ce lien est linéaire, la grandeur demandée peut être la pente p ou l'ordonnée à l'origine c. Vous adopterez la méthode statistique (paragraphe 3.1.11) ou la méthode manuelle (paragraphe 3.1.12) en fonction du type A ou B des incertitudes sur a et b.

Si la grandeur demandée, est une fonction plus ou moins complexe de votre résultat d'expérience, mais faisant intervenir des grandeurs auxiliaires, un calcul de l'incertitude sur E est à faire par la méthode du paragraphe 3.1.14. Par exemple, le module d'Young E d'une éprouvette de traction de section e de largeur e de longueur e est donnée en fonction de la pente e de la courbe de traction (écartement des mors et fonction de la force) par,

$$E = \frac{1}{p} \frac{l}{eh}. ag{3.8}$$

Nous conclurons cette présentation par quelques réflexions sur la méthode de calcul d'erreur que vous utilisiez auparavant.

3.1.5 Détection de points aberrants lors de la détermination d'une valeur moyenne

Supposons que nous disposons d'une série de n mesures a_i d'une grandeur a. On peut calculer la valeur moyenne \bar{a} en utilisant tous les points, mais il est judicieux de vérifier auparavant que cette série ne comporte pas de mesure "aberrante". La détermination statistique pour rejeter une valeur est la suivante :

- classer les valeurs par ordre croissant $a_{(i)}$,
- pour la valeur extrême que vous souhaitew tester $a_{(1)}$ ou $a_{(n)}$, calculer $v = \frac{|\bar{a} a_1|}{\sigma_a}$ ou $v = \frac{|\bar{a} a_n|}{\sigma_a}$, avec σ_a donné par l'équation 3.2.
- choisir un seuil de signification α , par exemple $\alpha=0.05$: cela signifie que vous acceptez d'avoir 5% de (mal)chance de considérer une valeur comme correcte, alors qu'elle n'est là que par hasard.
- calculer $Q = 200\alpha$,
- extraire de la table figures 3.9 et 3.10 la valeur de $v_{max}(n;Q)$,
- si $v < v_{max}(n;Q)$ alors la mesure n'est pas considérée aberrante au seuil de α ,
- si $v > v_{max}(n; Q)$ alors la mesure est considérée aberrante au seuil de α , supprimer ce point de la liste des a_i , puis reprendre la procédure à la première étape pour vérifier les nouvelles valeurs extrêmes.

La procédure s'arrête lorsque les deux valeurs extrêmes sont considérées comme non aberrantes.

Valeurs « maximales admissibles » $v_{\rm max}$ $(n\,;\,Q)$ des écarts réduits (élimination des résultats aberrants d'observation ; schéma à une dimension ; seuil de signification $\alpha=Q/200$ %)

	Q, %											
n	0,05	0,1	0,2	0,5	1	2	5	10	20			
3	1,414	1,414	1,414	1,414	1,414	1,414	1,414	1,412	1,406			
4	1,732	1,732	1,731	1,730	1,728	1,723	1,710	1,689	1,645			
5	1,996	1,994	1,990	1,982	1,972	1,955	1,917	1,869	1,791			
6	2,219	2,212	2,203	2,183	2,161	2,130	2,067	1,996	1,894			
7	2,408	2,395	2,377	2,344	2,310	2,265	2,182	2,093	1,974			
8	2,568	2,547	2,521	2,476	2,431	2,374	2,273	2,172	2,041			
9	2,704	2,677	2,643	2,586	2,532	2,464	2,349	2,238	2,097			
10	2,822	2,788	2,747	2,680	-2,616	2,540	2,414	2,294	2,146			
11	2,925	2,884	2,837	2,760	2,689	2,606	2,470	2,343	2,190			
12	3,015	2,969	2,915	2,830	2,753	2,663	2,519	2,387	2,229			
1 3	3,096	3,044	2,984	2,892	2,809	2,713	2,563	2,426	2,264			
14	3,167	3,111	3,046	2,947	2,859	2,759	2,602	2,461	2,297			
1 5	3,232	3,171	3,102	2,997	2,905	2,800	2,638	2,494	2,327			
16	3,290	3,225	3,152	3,042	2,946	2,837	2,670	2,523	2,354			
17	3,343	3,274	3,198	3,083	2,983	2,871	2,701	2,551	2,380			
18	3,392	3,320	3,240	3,120	3,017	2,903	2,728	2,577	2,404			
19	3,437	3,361	3,278	3,155	3,049	2,932	2,754	2,601	2,426			
.20	3,478	3,400	3,314	3,187	3,079	2,959	2,779	2,623	2,447			
21	3,516	3,436	3,347	3,217	3,106	2,984	2,801	2,644	2,467			
22	3,552	3,469	3,378.	3,245	3,132	3,008	2,823	2,664	2,486			
23	3,585	3,500	3,407	3,271	3,156	3,030	2,843	2,683	2,504			
24	3,616	3,529	3,434	3,295	3,179	3,051	2,862	2,701	2,521			
25	3,646	3,556	3,459	3,318	3,200	3,071	2,880	2,718	2,537			
26	3,673	3,582	3,483	3,340	3,220	3,089	2,897	2,734	2,553			
27	3,699	3,606	3,506	3,360	3,239	3,107	2,913	2,749	2,568			
.28	3,724	3,629	3,528	3,380	3,258	3,124	2,929	2,764	2,582			
29	3,747	3,651	3,548	3,399	3,275	3,140	2,944	2,778	2,596			
	. !							. :				

Figure 3.9: Table de détermination de l'écart maximum admissible pour ne pas rejeter une valeur douteuse (extrait de [7])

(<u> </u>	Q, %										
n	0,05	0,1	0,2	0,5	1	2	5	10	20		
. 30	3,769	3,672	3,567	3,416	3,291	3,156	2,958	2,792	2,609		
31	3,791	3,692	3,586	3,433	3,307	3,171	2,972	2,805	2,622		
32	3;811	3,711	3,603	3,449	3,322	3,185	2,985	2,818	2,634		
33	3,830	3,729	3,620	3,465	3,337	3,199	2,998	2,830	2,646		
34	3,848	3,746	3,636	3,480	3,351	3,212	3,010	2,842	2,657		
35	3,866	3,762	3,652	3,494	3,364	3,224	3,022	2,853	2,668		
36	3,882	3,778	3,667	3,507	3,377	3,236	3,033	2,864	2,679		
37	3,898	3,793	3,681	3,521	3,389	3,248	3,044	2,874	2,689		
38	3,914	3,808	3,695	3,533	3,401	3,259	3,055	2,885	2,699		
39	3,929	3,822	3,708	3,545	3,413	3,270	3,065	2,894	2,709		
40	3,943	3,835	3,720	3,557	3,424	3,281	3,075	2,904	2,718		
41	3,957	3,848	3,733	3,568	3,435	3,291	3,084	2,913	2,727		
42	3,970	3,861	3,745	3,579	3,445	3,301	3,094	2,922	2,736		
43	3,983	3,873	3,756	3,590	3,455	3,310	3,103	2,931	2,745		
44	3,995	3,885	3,767	3,600	3,465	3,320	3,112	2,940	2,753		
45	4,007	3,896	3,778	3,610	3,474	3,329	3,120	2,948	2,762		
46	4,019	3,907	3,788	3,620	3,483	3,338	3,129	2,956	2,770		
47	4,030	3,918	3,798	3,630	3,492	3,346	3,137	2,964	2,778		
48	4,041	3,928	3,808	3,639	3,501	3,354	3,145	2,972	2,785		
49	4,052	3,938	3,818	3,648	3,510	3,363	3,152	2,980	2,793		
50	4,062	3,948	3,827	3,656	3,518	3,370	3,160	2,987	2,800		
51	4,072	3,957	3,836	3,665	3,526	3,378	3,167	2,994	2,807		
52	4.082	3,966	3,845	3,673	3,534	3,386	3,175	3,001	2,814		
		<u> </u>									

Figure 3.10: Table de détermination de l'écart maximum admissible pour ne pas rejeter une valeur douteuse (extrait de [7])

Si vous voulez vérifier que vous avez assimilé ce paragraphe, nous vous invitons à faire le brevet 085. Si vous avez des difficultés, je vous invite à contacter le référent du brevet correspondant, dont le mél est disponible sur https://framacalc.org/univ_maine_referent_brevet.

3.1.6 Incertitudes de type A

Elles sont essentiellement utilisées pour quantifier les incertitudes de répétabilité. L'évaluation d'une incertitude de type A est plus chère qu'une évaluation a priori, appelée évaluation de type B. Vous le constaterez en séance de tp.

On souhaite obtenir la mesure Y, dont le meilleur estimateur est la moyenne \bar{Y} des mesures Y_i que l'on réalisera. Il nous faut évaluer l'incertitude de \bar{Y} .

La démarche à suivre est la suivante :

- 1. faire les mesures Y_i pour i de 1 à N,
- 2. vérifier qu'il n'y a pas de point aberrant dans les valeurs,
- 3. calculer la moyenne des réalisations $\bar{Y} = \frac{\sum_{i=1}^{N} Y_i}{N}$,
- 4. calculer l'écart type estimé sur les réalisations de mesure $\sigma(Y) = \sqrt{\frac{\sum_{i=1}^{N} (Y_i \bar{Y})^2}{N-1}}$,
- 5. vérifier, en traçant un histogramme, que la distribution des mesures tend vers une répartition Gaussienne, ou pour le moins que les valeurs sont regroupées et ne forment pas deux "paquets" distants ce qui signifierai qu'il existe 2 sous-populations dans l'échantillon,
- 6. calculer la valeur de l'écart type (incertitude type) de la valeur moyenne $\sigma(\bar{Y}) = \frac{\sigma(Y)}{\sqrt{N}}$, (c'est celle qui sera utilisée par la suite dans le calcul d'une incertitude sur une valeur composée).
- 7. choisir un niveau de confiance P%, par négociation avec le client, car le coût sera différent. Par exemple, on acceptera un résultat avec 5% de chances de se tromper (soit P=95%).
- 8. connaissant le nombre de degrés de liberté (N-1), prendre le facteur d'élargissement t_p dans la table de Student (figure 3.3),
- 9. calculer la valeur de l'incertitude élargie de la valeur moyenne : $\Delta \bar{Y} = t_p \sigma(\bar{Y})$.

Comment choisit-on le nombre de mesures N? Il vous suffit d'observer lors des essais l'évolution de $\Delta \bar{Y}$, et de vous arrêter lorsque le client est satisfait de la précision obtenue, ou qu'il ne veut pas payer plus, ou qu'il exige de respecter une norme.

Figure 3.11: carré : les mesures y_i ; losanges : les bornes de la valeur moyenne $\bar{Y} + \Delta \bar{Y}$ et $\bar{Y} - \Delta \bar{Y}$ avec 5% de chances de se tromper.

Un programme en langage scilab, qui fait cette analyse et trace la courbe d'évolution de $\bar{Y} + \Delta \bar{Y}$ et $\bar{Y} - \Delta \bar{Y}$, vous est fourni sur le site http://umtice.univ-lemans.fr/course/view.php?id=403. Il produit la figure 3.11.

Si vous voulez vérifier que vous avez assimilé ce paragraphe, nous vous invitons à faire les brevets 026, 027, 043 et 030. Si vous avez des difficultés, je vous invite à contacter le référent du brevet correspondant, dont le mél est disponible sur https://framacalc.org/univ_maine_referent_brevet.

3.1.7 Comparaison de deux échantillons

Lorsque l'on souhaite comparer deux types d'échantillons ou tester la reproductibilité ou la répétabilité d'une expérience, la comparaison ne peut être faite sur chaque réalisation de mesure, mais sur la moyenne obtenue sur chaque ensemble de réalisations. On pourrait aussi envisager de comparer les variances des échantillons, mais ce cas est bien plus rare. Pour ce dernier cas, nous invitons le lecteur intéressé par ce dernier test à se reporter au livre de S. Geller.

Cette problématique est bien souvent rencontrée par les enseignants et les étudiants : les deux types d'échantillons peuvent être les notes obtenues par deux sous-groupes d'une même promotion qui ont passé un examen noté par des enseignants différents. Il suffit de calculer la moyenne avec 3 chiffres significatifs pour constater que les moyennes des deux échantillons sont différentes, mais cet écart est-il significatif ? Si c'est le cas, le débat peut s'engager sur la recherche des causes (groupe plus faible, enseignant plus exigeant...). Si ce n'est pas le cas, la discussion n'a pas lieu d'être.

Si le nombre de mesures dans chaque échantillon est "grand"

Si le coefficient de student associé au nombre de degrés de liberté et au taux de confiance choisi, est proche de la valeur pour la gaussienne (par exemple à moins de 10% de celle-ci), alors on peut alors considérer que l'échantillon est grand. Dans ce cas, la connaissance des moyennes μ_i et des incertitudes élargies sur celles-ci $\Delta \mu_i$ (définie avec une confiance de x%) est suffisante :

- s'il existe une zone commune entre les intervalles $[\mu_1 \Delta \mu_1, \mu_1 + \Delta \mu_1]$ et $[\mu_2 \Delta \mu_2, \mu_2 + \Delta \mu_2]$ alors on peut affirmer avec x% de confiance que les échantillons ne sont pas significativement différents.
- s'il n'existe pas de zone commune entre les intervalles $[\mu_1 \Delta \mu_1, \mu_1 + \Delta \mu_1]$ et $[\mu_2 \Delta \mu_2, \mu_2 + \Delta \mu_2]$ alors on peut affirmer avec x% de confiance que les échantillons sont significativement différents.

Si le nombre de mesures dans au moins un échantillon est "petit"

Dans ce cas, les distributions suivent une loi de Student, et la comparaison des intervalles obtenus n'est pas suffisante. On peut se poser la question, "Quelle est la probabilité pour que la valeur absolue de la différence des deux moyennes soit supérieure ou inférieure à une valeur donnée?".

Si n_1 est le nombre de mesures x_i de l'échantillon 1, n_2 est le nombre de mesures y_i de l'échantillon 2, on calcule,

$$\sigma_s^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x})^2 + \sum_{i=1}^{n_2} (y_i - \bar{y})^2}{n_1 + n_2 - 2},$$
(3.9)

dans la mesure où,

$$t_{ech} = \frac{|\bar{x} - \bar{y}|}{\sqrt{\frac{\sigma_s^2}{n_1} + \frac{\sigma_s^2}{n_2}}}$$
(3.10)

suit une loi de student avec $\nu=n_1+n_2-2$ degrés de liberté, il suffit de retrouver la valeur de t_{stu} dans le tableau 3.3. On en déduit la probabilité pour que l'écart des moyennes soit représentatif d'un même échantillon.

Si $t_{ech} > t_{stu}$, vous pouvez énoncer la phrase suivante : J'affirme avec x% de confiance, que les deux moyennes sont significativements différentes

Si vous voulez vérifier que vous avez assimilé ce paragraphe, faites le brevet 048. Si vous avez des difficultés, je vous invite à contacter le référent du brevet correspondant, dont le mél est disponible sur https://framacalc.org/univ_maine_referent_brevet.

Sur http://umotion.univ-lemans.fr, vous pouvez visualiser la réponse à une question sur cette partie. Le fichier est nommé 079.

3.1.8 Incertitudes de type B

Fondée sur l'expérience des utilisateurs, sur la connaissance des phénomènes physiques, c'est une définition *a priori* de l'étendue des valeurs possibles.

Par exemple, pour un acier dont on n'a pas mesuré les caractéristiques mécaniques, le module de Young E est compris entre $2.05\ 10^{11}$ Pa et $2.15\ 10^{11}$ Pa. Sans information complémentaire, on prendra une distribution a priori uniforme entre ces deux valeurs, pour calculer l'incertitude type associée.

Second exemple, dans le cas d'un affichage digital, on peut considérer la résolution de lecture de plus ou moins 0.5 digit.

Si un appareil de mesure est de classe c, et que sa gamme de mesure est g, on peut évaluer une incertitude de type B à partir de l'intervalle $\frac{cg}{100}$. Il faut encore savoir si les dispersions suivent une loi normale ou une loi uniforme.

Dans le cas d'une incertitude de type B, on peut donc également afficher X avec son incertitude ΔX .

Si vous voulez vérifier que vous avez assimilé ce paragraphe, nous vous invitons à faire les brevets 044 et 045. Si vous avez des difficultés, je vous invite à contacter le référent du brevet correspondant, dont le mél est disponible sur https://framacalc.org/univ_maine_referent_brevet.

3.1.9 Détermination de l'incertitude globale

La démarche doit être la suivante :

- définition du mesurande,
- description de la procédure de mesure,
- liste des appareils utilisés lors de cette mesure,
- analyse des causes d'incertitude : sur une ligne on reporte les différents composants de la mesure, et pour chacun, on définit les causes possibles d'incertitude (exemple pour le cas d'un étalonnage d'ampèremètre, figures 3.13 3.14),
- modélisation du processus de mesure : on doit obtenir la formule liant la grandeur que l'on souhaite évaluer aux grandeurs mesurées ainsi que leurs éventuelles corrections,
- évaluation des corrections,
- calcul des incertitudes type : par la méthode de type A pour le traitement des lectures lorsqu'elles ne sont pas uniques, par la méthode de type B pour chaque appareil (étalonnage, dérive, résolution, effet de température...),
- calcul de l'incertitude type composée (voir paragraphe 3.1.14).

Figure 3.12: Méthode des 5 M pour la détermination des incertitudes (extrait de recueil d'exemples d'évaluation d'incertitudes)

Figure 3.13: Montage d'étalonnage d'un ampèremètre (extrait de recueil d'exemples d'évaluation d'incertitudes)

Figure 3.14: Analyse des causes d'incertitudes lors de l'étalonnage d'un ampèremètre (extrait de recueil d'exemples d'évaluation d'incertitudes)

Figure 3.15: Positionnement de la compétence orange de gestion des aléas.

3.1.10 Détection de points aberrants avant la détermination d'une régression linéaire

Supposons que nous disposons d'une série de n mesures de couples (a_i,b_i) de mesurandes a et b. On peut calculer, comme dans le paragraphe ci-dessus la valeur moyenne de la pente \bar{p} et \bar{c} d'une régression linéaire b=pa+c en utilisant tous les points, mais il est judicieux de vérifier auparavant que cette série ne comporte pas de mesure "aberrante".

La première idée est de tracer les points afin de voir si à l'oeil l'un des points est situé en dehors du nuage de points formé par les autres.

La seconde idée est d'effectuer un test statistique sur l'ensemble des points, et si nécessaire à commencer par le point qui est le plus "excentré" des autres. C'est la méthode statistique dont la procédure est détaillée ci-dessous.

• calcul du coefficient de régression

$$r = \frac{s_{ab}}{\sigma_a \sigma_b},\tag{3.11}$$

avec s_{ab} la covariance entre a et b (Eq. 3.4),

calculer

$$Q = \frac{n^2}{2} \sigma_a^2 \sigma_b^2 \left(1 - r^2 \right) \tag{3.12}$$

qui représente la somme du carré de l'aire des triangles dont deux sommets sont toutes les combinaisons possibles des couples de points d'échantillonage a_i, b_i et le troisième est le barycentre du système (\bar{a}, \bar{b}) (voir fig 3.16).

Figure 3.16: Mesure de la surface de l'ensemble des triangles reliant les points par triplet. La suppression du point le plus excentré implique la diminution la plus forte de cette surface.

• calculer pour chaque point j = 1 à n, la valeur

$$\lambda^{(j)} = \frac{Q^{(j)}}{Q},\tag{3.13}$$

où $Q^{(j)}$ a été calculé par la formule 3.12 en considérant tous les points sauf ce point j.

- la valeur minimale des $\lambda^{(j)}$ indique l'indice j_1 la plus douteuse.
- choisir un seuil de signification α , par exemple $\alpha = 0.05$,
- à l'aide de la table figure 3.17 extraire la valeur $R_{min}^{(1)}(\alpha,n),$
- si $\lambda^{(j_1)} > R_{min}^{(1)}(\alpha, n)$ alors la mesure n'est pas considérée aberrante au seuil de α , et la procédure de test s'arrête,

• si $\lambda^{(j_1)} < R_{min}^{(1)}(\alpha, n)$ alors la mesure est considérée aberrante au seuil de α , il faut supprimer ce point de la liste, puis reprendre la procédure à la première étape.

Valeurs minimales admissibles $R_{\min}^{(1)}$ (α ; n) et $R_{\min}^{(2)}$ (α ; n) des statistiques critiques R_{i_0} et $R_{i_0j_0}$ (élimination des résultats aberrants d'observation; schéma de corrélation; α — seuil de signification; n — nombre total des observations; l'indice supérieur de R indique le nombre de points « douteux »)

	$\alpha = 0,1$		$\alpha = 0,05$		$\alpha=0,025$		a = 0,01	
n	$R_{\min}^{(1)}(\alpha;n)$	$R_{\min}^{(2)}(\alpha; n)$	$R_{\min}^{(1)}(\alpha;n)$	$R_{\min}^{(2)}(\alpha;n)$	$R_{\min}^{(1)}(\alpha;n)$	$R_{\min}^{(2)}\left(\alpha;n\right)$	$R_{\min}^{(1)}(\alpha;n)$	$R_{\min}^{(2)}\left(\mathbf{a};n\right)$
5 6 7 8 9 10 11 12 13 14 4 15 16 17 18 19 20 21 22 22 23	0,02000 0,06525 0,11952 0,117328 0,22314 0,26827 0,30878 0,34511 0,37776 0,40719 0,43883 0,45804 0,48014 0,50038 0,51899 0,53615 0,55205 0,56680 0,58053	0,00501 0,04791 0,10904 0,16955 0,22444 0,27305 0,31592 0,35381 0,38747 0,41753 0,46892 0,49106 0,51125 0,52974 0,54676 0,56246 0,57700 0,59051	0,01000 0,04140 0,08452 0,18133 0,17711 0,22007 0,25965 0,29584 0,32886 0,35897 0,38650 0,41471 0,45620 0,47591 0,49417 0,51113 0,52692 0,54166	0,00250 0,03372 0,08604 0,14167 0,19419 0,24188 0,28462 0,32286 0,35712 0,38792 0,41573 0,44096 0,46394 0,5205 0,53849 0,5374 0,55374 0,56793	0,00500 0,02589 0,05976 0,09953 0,14057 0,18053 0,21834 0,25361 0,28629 0,31647 0,34433 0,37007 0,39387 0,41593 0,43642 0,45547 0,47324 0,48984 0,50538	0,00125 0,02376 0,06794 0,11852 0,16820 0,21444 0,25661 0,29479 0,32932 0,36058 0,38897 0,41483 0,43848 0,46017 0,48014 0,49859 0,51567 0,53155 0,54633	0,00200 0,01406 0,03780 0,06898 0,10358 0,17364 0,20689 0,23835 0,26790 0,29556 0,36810 0,38919 0,40893 0,42743 0,44480 0,46113	0,00050 0,01498 0,04982 0,09374 0,13926 0,18308 0,22397 0,26160 0,29606 0,32758 0,35641 0,38284 0,40713 0,42952 0,45019 0,46935 0,48714 0,50371 0,50371

Suite	de	la	table	19
-------	----	----	-------	----

<u> </u>	$\alpha =$	0,1	$\alpha = 0.05$		$\alpha=0,025$		$\alpha = 0,01$	
n	$R_{\min}^{(1)}(\alpha;n)$	$R_{\min}^{(2)}(\alpha;n)$	$R_{\min}^{(1)}(\alpha;n)$	$R_{\min}^{(2)}(\alpha;n)$	$R_{\min}^{(1)}(\alpha;n)$	R _{min} (a; n)	$R_{\min}^{(1)}(\alpha;n)$	R _{min} (a; n)
24 25	0,59335 0,60535	0,60310 0,61487	0,55545 0,56838	0,58117 0,59354	0,51996 0,53367	0,56014 0,57037	0,47651 0,49102	$0,53365 \\ 0,54722$
26 27 28 29 30	0,61660 0,62717 0,63713 0,64653 0,65540	0,62589 0,63623 0,64596 0,65513 0,66380	0,58053 0,59197 0,60276 0,61296 0,62260	0,60515 0,61604 0,62630 0,63598 0,64513	0,54657 0,55874 0,57025 0,58113 0,59144	0,58520 0,59660 0,60734 0,61748 0,62707	0,50471 0,51767 0,52994 0,54158 0,55263	0,55996 0,57196 0,58328 0,59397 0,60409
35 40 45 50 55	0,69342 0,72335 0,74758 0,76763 0,78451 0,79895	0,70082 0,72990 0,75343 0,77288 0,78926 0,80327	0,66402 0,69675 0,72330 0,74532 0,76388 0,77975	0,68424 0,71501 0,73992 0,76052 0,77787 0,79271	0,63587 0,67113 0,69982 0,72365 0,74378 0,76102	0,66814 0,70050 0,72671 0,74841 0,76669 0,78233	0,60048 0,63870 0,66994 0,69598 0,71803 0,73694	0,64753 0,68184 0,70968 0,73276 0,75222 0,76887
60 65 70 75 80 85 90	0,79893 0,81145 0,82238 0,83203 0,84061 0,84830 0,85524	0,80527 0,81539 0,82600 0,83537 0,84370 0,85148 0,85791	0,79351 0,80554 0,81616 0,82561 0,83408 0,84172	0,80555 0,81678 0,82670 0,83553 0,84343 0,85056	0,77596 0,78904 0,80060 0,81088 0,82010 0,82841	0,79586 0,80770 0,81815 0,82746 0,83579 0,84330	0,75336 0,76775 0,78048 0,79181 0,80197 0,81115	0,78328 0,79590 0,80704 0,81695 0,82583 0,83384
95 100 200 300 400 500	0,86452 0,86725 0,92574 0,94751 0,95908 0,96631	0,86402 0,86960 0,92664 0,94799 0,95936 0,96650	0,84864 0,85494 0,91924 0,94310 0,95573 0,96361	0,85703 0,86292 0,92316 0,94564 0,95759 0,96500	0,83595 0,84281 0,91280 0,93871 0,95240 0,96093	0,85012 0,85632 0,91974 0,94330 0,95582 0,96350	0,81946 0,82704 0,90435 0,93293 0,94801 0,95739	0,84110 0,84771 0,915018 0,94023 0,95349 0,96180

Figure 3.17: Table de détermination de l'écart maximum admissible pour ne pas rejeter une valeur douteuse dans le cas d'une régression linéaire (extrait de [7])

Si vous voulez vérifier que vous avez assimilé ce paragraphe, nous vous invitons à faire le brevet 086. Si vous avez des difficultés, je vous invite à contacter le référent du brevet correspondant, dont le mél est disponible sur https://framacalc.org/univ_maine_referent_brevet.

Sur http://umotion.univ-lemans.fr, vous pouvez visualiser la réponse à une question sur cette partie. Le fichier est nommé 075.

3.1.11 Evaluation statistique de l'incertitude sur une pente p

On recherche une pente dans le cas où la modélisation nous laisse présager une relation de type b = pa + c.

Dans le cas où les incertitudes sur a et b sont de type A, on peut évaluer l'incertitude sur les deux coefficients de la régression p et c, par la démarche suivante :

- 1. obtenir par essai N couples (a_i,b_i)
- 2. tracer la courbe et vérifier, à l'oeil, la linéarité de la corrélation (cela vous évitera d'essayer de faire passer une droite par des points voisins d'une parabole!).
- 3. vérifier qu'il n'y a pas de point aberrant,
- 4. calculer les estimateurs des coefficients de la droite des moindres carrés,

$$p = \frac{N \sum_{i=1}^{N} a_i b_i - \sum_{i=1}^{N} a_i \sum_{i=1}^{N} b_i}{N \sum_{i=1}^{N} a_i^2 - \left[\sum_{i=1}^{N} a_i\right]^2}$$
(3.14)

 $c = \frac{\sum_{i=1}^{N} b_i \sum_{i=1}^{N} a_i^2 - \sum_{i=1}^{N} a_i b_i \sum_{i=1}^{N} a_i}{N \sum_{i=1}^{N} a_i^2 - \left[\sum_{i=1}^{N} a_i\right]^2},$ (3.15)

- 5. les résidus $r_i = b_i (pa_i + c)$ peuvent être calculés.
- 6. l'écart type sur chaque résidu σ_{ri} , est lié à l'écart type sur la dispersion de la mesure σ par,

$$\sigma_{ri}^{2} = \sigma^{2} \left[1 + \frac{2a_{i} \sum_{j=1}^{N} a_{j} - Na_{i}^{2} - \sum_{j=1}^{N} a_{j}^{2}}{N \sum_{j=1}^{N} a_{j}^{2} - \left[\sum_{j=1}^{N} a_{j} \right]^{2}} \right].$$
 (3.16)

Ceci traduit que les résidus r_i de chaque point, sont corrélés entre eux. Or on ne connait pas σ . La formule 3.16 n'est donc pas utilisable. On calculera un estimateur σ_e de l'écart type σ par,

$$\sigma_e^2 = \frac{\sum_{i=1}^N r_i^2}{N-2},\tag{3.17}$$

7. on calculera les grandeurs écart type de la pente (σ_p) et de l'ordonnée à l'origine (σ_c) telles que,

$$\sigma_p^2 = \frac{\sigma_e^2 N}{N \sum_{i=1}^N a_i^2 - \left[\sum_{i=1}^N a_i\right]^2},$$
(3.18)

$$\sigma_c^2 = \frac{\sigma_e^2 \sum_{i=1}^N a_i^2}{N \sum_{i=1}^N a_i^2 - \left[\sum_{i=1}^N a_i\right]^2},$$
(3.19)

- 8. connaissant le nombre de degrés de liberté (N-2), prendre le facteur d'élargissement t_p dans la table de Student.
- 9. obtenir les valeurs des incertitudes sur p et c:

$$\Delta p = t_p \sigma_p, \tag{3.20}$$

$$\Delta c = t_p \sigma_c. \tag{3.21}$$

10. obtenir les valeurs des pentes maximale et minimale

$$p_{max} = p + \Delta p, \tag{3.22}$$

$$p_{min} = p - \Delta p, \tag{3.23}$$

11. obtenir les valeurs des ordonnées à l'origine maximale et minimale

$$c_{max} = c + \Delta c, (3.24)$$

$$c_{min} = c - \Delta c. \tag{3.25}$$

Sur http://umotion.univ-lemans.fr, vous pouvez visualiser la réponse à une question sur cette partie. Le fichier est nommé 080.

Appliquons cette méthode à un exemple. L'évolution de la pente p et de l'ordonnée à l'origine c est tracée sur les figures 3.18. Si le modèle est linéaire sur tout le domaine d'étude, la convergence des pentes maximale et minimale doit être observée. L'augmentation du nombre de points pris en compte doit se traduire par une diminution de l'écart entre pente maximale et minimale, si le bruit de mesure n'augmente pas. La solution recherchée est la partie commune des valeurs admissibles sur l'ensemble du domaine. Elle peut différer de la solution obtenue avec le nombre maximal de points pris en compte (voir figure 3.18).

Figure 3.18: (haut) évolution de y en fonction de x. (gauche) évolution des valeurs maximale et minimale de pente en fonction du nombre de points considérés. (droite) évolution des valeurs maximale et minimale d'ordonnée à l'origine en fonction du nombre de points considérés. On notera que la valeurs maximale p_{max1} et minimale p_{min1} retenues ne sont pas nécessairement celles correspondantes au nombre maximal de points.

Si vous voulez vérifier que vous avez assimilé ce paragraphe, faites le brevet 008 à l'aide du programme scilab *incvalli.sce*. Si vous avez des difficultés, je vous invite à contacter le référent du brevet correspondant, dont le mél est disponible sur https://framacalc.org/univ_maine_referent_brevet.

3.1.12 Evaluation manuelle de l'incertitude sur une pente p

On recherche une pente dans le cas où la modélisation nous laisse présager une relation de type b = pa + c.

Cette méthode ne peut s'appliquer que si pour les deux paramètres a et b les incertitudes sont connues (voir figure 3.19).

- 1. faire les mesures des couples (a_i,b_i) .
- 2. placer les couples (a_i,b_i) dans un graphe.
- 3. tracer les rectangles d'incertitude autour de chaque couple. Leur dimension peut être fonction du couple.
- 4. chercher les droites de pente maximale et minimale qui passent **par tous les rectangles** d'incertitude. Si nécessaire, éliminer les points aberrants (vis-à-vis du modèle que vous avez en tête). Si les incertitudes sont tellement petites qu'elle sont non représentables sur le graphe, il est possible d'effectuer un zoom sur les résidus entre le points de mesure et une droite des moindre carrés. Ceci permet de les visualiser, puis de faire le tracé.
- 5. mesurer les pentes max et min p_{min} et p_{max}

Figure 3.19: Tracé à la main des pentes maximale et minimale passant par les rectangles d'incertitude.

Si vous voulez vérifier que vous avez assimilé ce paragraphe, faite le brevet 007 sur une feuille de papier. Si vous avez des difficultés, je vous invite à contacter le référent du brevet correspondant, dont le mél est disponible sur https://framacalc.org/univ_maine_referent_brevet.

Evaluation statistique d'une limite de linéarité et de la pente 3.1.13avant cette limite

Dans le cas d'un essai, la rupture de linéarité n'est pas nécessairement évidente. Il s'agit de déterminer la valeur pour laquelle cette limite est atteinte et de mesurer la pente précédente. Nous le ferons dans le cas où les incertitudes sur les grandeurs mesurées sont de type A pour des petits échantillons.

Dans le cas où le nombre de données est très grand, on pourra se référer aux travaux de De Domenico et Latora [8].

Il faut être capable de détecter la coordonnée x à partir de laquelle un modèle linéaire n'est plus acceptable. Pour ce faire, il faut calculer la pente de la droite des moindres carrés et son incertitude, en considérant successivement un nombre de points croissants (les 3 premiers points expérimentaux, les 4, les 5 ...).

Nous pouvons rejeter l'hypothèse de linéarité sur toute la plage de mesure, dès que il n'existe plus de valeur de pente admissible sur l'ensemble du domaine (figure 3.20), c'est-à-dire lorsque la plus petite des valeurs maximale p_{max2} devient inférieure à la plus grande des valeurs minimales p_{min1} . Soit b le numéro du point tel que la pente minimale p_{min1} soit atteinte. Nous considèrerons que le domaine de linéarité est compris entre le premier point et le bième point. On peut alors obtenir les valeurs maximale et minimales de pente p_{max1} p_{min1} , ainsi que les valeurs extrêmes de l'ordonnée à l'origine c_{min1} et c_{max1} .

Par exemple, si l'on souhaite aussi calculer la limite d'élasticité en terme de variable y, on peut calculer la valeur de y la plus probable pour les points compris entre 1 et b,

$$y_{lim} = \frac{p_{max1} + p_{min1}}{2} x_b + \frac{c_{max1} + c_{min1}}{2}.$$
 (3.26)

Si l'on considère que la pente et l'ordonnée à l'origine sont décorrélées (ce qui est abusif), alors l'incertitude sur y_{lim} est données par l'incertitude sur c :

$$y_{limmax} = y_{lim} + \frac{c_{max1} - c_{min1}}{2}, \tag{3.27}$$

$$y_{limmax} = y_{lim} + \frac{c_{max1} - c_{min1}}{2},$$
 (3.27)
 $y_{limmin} = y_{lim} - \frac{c_{max1} - c_{min1}}{2}.$ (3.28)

En effet, la probabilité d'être simultanément avec la pente maximale à 95% et l'ordonnée à l'origine maximale à 95 %, est avec une probabilité plus faible.

Figure 3.20: (haut) évolution de y en fonction de x. (gauche) évolution des valeurs maximale et minimale de pente en fonction du nombre de points considérés. (droite) évolution des valeurs maximale et minimale d'ordonnée à l'origine en fonction du nombre de points considérés. Le domaine de linéarité est ici compris entre 1 et 10 points.

Sur http://umotion.univ-lemans.fr, vous pouvez visualiser la réponse à une question sur cette partie. Le fichier est nommé 081.

Cette méthode est appliquée aussi à un autre exemple : une portion d'une fonction racine (figure 3.21).

Figure 3.21: (haut) évolution de y en fonction de x. (gauche) évolution des valeurs maximale et minimale de pente en fonction du nombre de points considérés. (droite) évolution des valeurs maximale et minimale d'ordonnée à l'origine en fonction du nombre de points considérés. Le test est fait sur une fonction "racine".

Si vous voulez vérifier que vous avez assimilé ce paragraphe, faite les brevets 028, 029. Si vous avez des difficultés, je vous invite à contacter le référent du brevet correspondant, dont le mél est disponible sur https://framacalc.org/univ_maine_referent_brevet.

Figure 3.22: Positionnement de la compétence verte de gestion des aléas.

3.1.14 Calcul de l'incertitude sur une grandeur composée, à partir de celles des paramètres expérimentaux

Si vous voulez vérifier avant toute chose que modifier les incertitudes sur les données, les lois de distribution, les valeurs, influent sur la valeur moyenne d'une grandeur composée et sur son incertitude, je vous invite à faire la manipulation 001, dont le fichier manip001.ods est disponible sur la page moodle de ce cours.

Soit une grandeur Y fonction des q paramètres $x_i,...,x_q$. Nous noterons $Y = f(x_1, x_2,...)$. Supposons que nous connaissons les écarts-types σ_i sur chaque paramètre x_i . Cet écart-type dépend de la forme de probabilité dans l'intervalle de tolérance (figure 3.23). L'écart-type σ_Y sur la grandeur Y est donné par,

$$\sigma_{\bar{Y}}^2 = \sum_{i=1}^q \left[\frac{\partial f}{\partial x_i} \right]^2 \sigma_{\bar{i}}^2 + 2 \sum_{i=1}^{q-1} \sum_{j=i+1}^q \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} s_{x_i x_j}, \tag{3.29}$$

avec la covariance entre les deux paramètres x_i et x_j donnée par,

$$s_{x_i x_j} = E[(x_i - \bar{x_i})(x_j - \bar{x_j})],$$
 (3.30)

que l'on peut estimer dans le cas de N paires d'observations simultanées par,

$$s_{x_i,x_j} = \frac{1}{N-1} \sum_{l=1}^{N} (x_{il} - \bar{x_i})(x_{jl} - \bar{x_j}).$$
(3.31)

Figure 3.23: Relations entre l'intervalle de tolérance, sa forme et l'écart type.

L'estimation de la variance de \bar{Y} nécessite donc de calculer les dérivées partielles de la fonction f par rapport à chaque paramètre x_i . La lourdeur (intellectuelle) de cette démarche est néanmoins utile car elle permet de ne pas surestimer l'incertitude sur \bar{Y} .

Une fois la valeur de l'incertitude-type obtenue, il faut calculer le facteur d'élargissement, et pour cela connaître le nombre de degrés de liberté effectifs [4] :

$$\nu_{eff} = \frac{\sigma_{\bar{Y}}^4}{\sum_{i=1}^q \frac{\left(\frac{\partial f}{\partial x_i} \sigma_{\bar{i}}\right)^4}{\nu_i}},\tag{3.32}$$

- Si le paramètre q_i est déterminé par une méthode de type A, ν_i le nombre de degrés de liberté de la variable q_i est connu.
- Si le paramètre q_i est déterminé par une méthode de type B, soit l'on considère que $\nu_i = \infty$, soit on le calcule par,

$$\nu_i = \frac{1}{2} \left[\frac{\Delta u}{u} \right]^{-2}. \tag{3.33}$$

 $\frac{\Delta u}{u}$ est la précision relative de la mesure

Erreur classique : Si l'un des paramètres x_i est la moyenne de N mesures a_j , alors $x_i = \bar{a}$, pour le calcul de la grandeur composée, il faut utiliser $\sigma(x_i) = \sigma(\bar{a})$ et non $\sigma(a) = \sqrt{N} \sigma(\bar{a})$.

Sur http://umotion.univ-lemans.fr, vous pouvez visualiser la réponse à une question sur cette partie. Le fichier est nommé 083.

Si vous voulez vérifier que vous avez assimilé ce paragraphe, faite les brevets 046 et 084. Si vous avez des difficultés, je vous invite à contacter le référent du brevet correspondant, dont le mél est disponible sur https://framacalc.org/univ_maine_referent_brevet.

3.1.15 Méthode de grand-papa : à ne plus utiliser, car fausse.

On peut croiser dans la littérature, la méthode faisant apparaître les dérivées logarithmiques, appelée "méthode de calcul d'erreur". Si l'on se réfère à la définition de l'erreur (écart entre la valeur obtenue et la valeur vraie), dans la mesure où l'expérimentateur ne connaît pas la valeur vrai qui reste inaccessible, il lui est impossible en toute rigueur de calculer cette erreur.

Néanmoins, pour ceux qui y tiennent vraiment, prenons un exemple,

$$X = 4\frac{c_1^2 \sqrt{c_4}}{c_2 c_3^3},\tag{3.34}$$

en prenant le logarithme,

$$\log X = \log 4 + 2\log c_1 + 1/2\log c_4 - \log c_2 - 3\log c_3, \tag{3.35}$$

et en dérivant,

$$\frac{dX}{X} = 2\frac{dc_1}{c_1} + \frac{1}{2}\frac{dc_4}{c_4} - \frac{dc_2}{c_2} - 3\frac{dc_3}{c_3},\tag{3.36}$$

on obtient classiquement,

$$\frac{\Delta X}{X} = 2\frac{\Delta c_1}{c_1} + 1/2\frac{\Delta c_4}{c_4} + \frac{\Delta c_2}{c_2} + 3\frac{\Delta c_3}{c_3}.$$
 (3.37)

Vous êtes en droit de sommer les erreurs, mais pas les incertitudes!

En assimilant ΔX à une incertitude (alors que c'est une erreur), vous présupposez que les valeurs extrêmes des c_i peuvent être atteintes simultanément, et donc a fortiori, que les paramètres sont fortement corrélés. Votre "incertitude" obtenue sur X est plus grande que si elle est évaluée statistiquement : vous obtenez un piètre résultat.

Le client risque de trouver un meilleur rapport qualité prix chez votre concurrent qui ne confond pas ces deux concepts.

De plus cette démarche est moins directe si la fonction présente des termes additionnels comme dans

$$X = 4\frac{c_1^2}{c_2c_3^3} + \frac{\sqrt{c_4}}{c_2^2}. (3.38)$$

Il faut alors calculer la différentielle totale exacte,

$$dX = dc_1 \left[8 \frac{c_1}{c_2 c_3^3} \right] + dc_2 \left[\frac{-4c_1^2}{c_2^2 c_3^3} + \frac{-3\sqrt{c_4}}{c_2^3} \right] + dc_3 \left[\frac{-12c_1^2}{c_2 c_3^4} \right] + dc_4 \left[\frac{1}{2c_2^2 \sqrt{c_4}} \right], \tag{3.39}$$

puis identifier les variations aux erreurs en prenant les valeurs absolues de chaque terme,

$$\Delta X = \Delta c_1 \mid 8 \frac{c_1}{c_2 c_3^3} \mid + \Delta c_2 \mid \frac{-4c_1^2}{c_2^2 c_3^3} + \frac{-3\sqrt{c_4}}{c_2^3} \mid + \Delta c_3 \mid \frac{-12c_1^2}{c_2 c_3^4} \mid + \Delta c_4 \mid \frac{1}{2c_2^3 \sqrt{c_4}} \mid, \tag{3.40}$$

A bon entendeur ...

Si vous voulez vérifier que vous avez assimilé ce paragraphe, faite le brevet 047. Si vous avez des difficultés, je vous invite à contacter le référent du brevet correspondant, dont le mél est disponible sur https://framacalc.org/univ_maine_referent_brevet.

Sur http://umotion.univ-lemans.fr, vous pouvez visualiser la réponse à une question sur cette partie. Le fichier est nommé 082.

3.1.16 Comparaison entre une théorie et une expérience

Deux cas peuvent se présenter pour la valeur théorique :

- Si la valeur théorique d'une grandeur y_{th} est donnée dans la littérature, vous connaissez ses valeurs minimales et maximales.
- si à l'aide d'un modèle, la théorie vous a fourni une relation entre la grandeur recherchée y_{th} en fonction de paramètres x_i , i allant de 1 à N. Il vous faut avoir pris soin de considérer dans la relation précédente l'ensemble des données réellement mesurées x_i . Par la propagation d'incertitudes paragraphe 3.1.14, et en ayant choisi un taux de confiance (par exemple 95%) vous connaissez l'incertitude élargie sur la valeur fournie par le modèle. Vous avez donc les valeurs minimales et maximales de y_{th} .

Du côté expérimental, deux cas se présentent aussi ::

- A l'aide d'une expérience, vous avez obtenu directement la valeur de y_{ex} et avez évalué l'incertitude élargie sur celle-ci. Vous avez donc les valeurs minimales et maximales de y_{ex} .
- A l'aide d'une expérience, vous avez obtenu indirectement la valeur de y_{ex} à partir de mesures de grandeurs z_i . Par la même démarche que précédemment, vous avez évalué l'incertitude élargie sur y_{ex} . Vous avez donc les valeurs minimales et maximales de y_{ex} .

Si une zone commune existe entre $[y_{thmin}, y_{thmax}]$ et $[y_{exmin}, y_{exmax}]$, alors le modèle est validé par l'expérience.

Si aucune zone commune n'existe entre $[y_{thmin}, y_{thmax}]$ et $[y_{exmin}, y_{exmax}]$, alors le modèle n'est pas adapté à l'expérience.

Si vous voulez vérifier que vous avez assimilé ce paragraphe, faite le brevet 010. Si vous avez des difficultés, je vous invite à contacter le référent du brevet correspondant, dont le mél est disponible sur https://framacalc.org/univ_maine_referent_brevet.

3.1.17 Un exemple : Ouf!

Nous souhaitons vérifier le modèle suivant : les déformations d'une éprouvette en traction varient linéairement avec la pression dans un vérin qui tire sur la structure. La loi théorique est,

$$\epsilon = P * \frac{S_v}{ES},\tag{3.41}$$

avec ϵ la déformation, P la pression, S_v la section du vérin, S la section de l'éprouvette et E le module de Young.

Démarches expérimentales

1. Supposons que pour une pression nulle, l'équilibrage du pont d'extensomtrie n'est pas parfait. L'étudiant pressé peut se contenter de deux mesures,

$\frac{P}{10^5 \text{ Pa}}$	$\begin{array}{c} \epsilon \\ 10^{-6} \end{array}$
1	12
20	54

Se jettant ensuite sur la calculette, il obtient deux valeurs de pente ϵ/P , $12/1=12~10^{-11}$ Pa⁻¹, et $54/20=2,7~10^{-11}$ Pa⁻¹

- Il est étonnant que la sensibilité de la déformation/pression dépende de la pression. Ce n'est pas conforme au modèle que l'on cherche à vérifier (la pente ϵ/P doit être constante). Il est encore plus inutile de faire la moyenne de ces deux valeurs.
- Le modèle ne prend pas en compte le fait que la déformation n'est pas nulle à pression nulle (défaut d'équilibrage) aussi il faut considérer la pente entre les deux points : $\epsilon/P = \frac{54-12}{20-1} = 2.21052632\,10^{-11}~\mathrm{Pa^{-1}}$
- les valeurs de pression et de déformations sont données avec deux chiffres significatifs, le résultat ne peut être donné avec plus de deux chiffres significatifs : nous garderons donc $\epsilon/P=2.2\,10^{-11}\,Pa^{-1}$
- il est nécessaire de faire une répétabilité afin de confirmer la valeur obtenue.
- 2. Un deuxième essai fournit

$\frac{P}{10^5 \text{ Pa}}$	$\frac{\epsilon}{10^{-6}}$
3	14
30	70

- La pente obtenue par le deuxième essai est : $\epsilon/P = 2.1 \ 10^{-11} \ \mathrm{Pa^{-1}}$. Elle est différente de la valeur du premier essai. Pour pouvoir affirmer que ces estimations de pente sont représentatives de la même grandeur, il faut évaluer l'incertitude sur chacune des mesures. Si vous ne faites pas cela, l'essai doit être considéré comme non répétable, et ce n'est pas la peine d'aller plus loin sans avoir compris les causes de cette mauvaise répétabilité.
- \bullet Si les incertitudes $\Delta\epsilon$ en déformation (1 10^{-6} par exemple) et ΔP en pression (2 10^5 par exemple) sont connues (type B), alors on peut tracer (ou calculer) les pentes maxi et mini qui passent par les rectangles d'incertitudes (voir figure 3.19). Ceci doit être fait pour les deux essais. Par exemple pour le deuxième essai, on obtient,

$$pmin = \frac{(70 - \Delta\epsilon) - (14 + \Delta\epsilon)}{(30 + \Delta P) - (3 - \Delta P)} = 1.74 \cdot 10^{-11} \text{ Pa}^{-1}$$

$$pmax = \frac{(70 + \Delta\epsilon) - (14 - \Delta\epsilon)}{(30 - \Delta P) - (3 + \Delta P)} = 2.54 \cdot 10^{-11} \text{ Pa}^{-1}$$
(3.42)

$$pmax = \frac{(70+\Delta\epsilon)-(14-\Delta\epsilon)}{(30-\Delta P)-(3+\Delta P)} = 2.54 \ 10^{-11} \ Pa^{-1}$$
 (3.43)

- L'essai est considéré répétable, si une zone commune est obtenue entre les pentes minimale et maximale des deux essais.
- Si les incertitudes en déformation et en pression ne sont pas connues (type A), il faut évaluer l'écart type sur la mesure des paramètres. Un essai avec plus de deux points de mesure est nécessaire.
- 3. Un essai est effectué à pression croissante en prenant plus de deux mesures.

P	ϵ	
10^5 Pa	10^{-6}	
1	11	
3	17	
5	21	
7	24	
9	30	
11	32	
13	39	
15	41	
17	45	
19	51	
21	53	
23	58	
25	25 63	
27	66	
29	72	

• Si les incertitudes sont de type B, on trace le graphe de la figure 3.19, en veillant à ce que les droites passent par tous les rectangles associés aux points expérimentaux. On trouve sur ce graphe,

$$pmin = \frac{80-11.2}{34.1-0} = 2.018 \ 10^{-11} \ Pa^{-1}$$
 (3.44)

$$pmin = \frac{80-11.2}{34.1-0} = 2.018 \ 10^{-11} \ Pa^{-1}$$
 (3.44)

$$pmax = \frac{80-8.1}{32.4-0} = 2.219 \ 10^{-11} \ Pa^{-1}$$
 (3.45)

• Si les incertitudes sont de type A, on utilise la méthode statistique, par l'intermédiaire du programme incvalli.m. On visualise les évolutions des pentes moyenne, minimale et maximale (avec 5% de chances de se tromper), lorque l'on considère un nombre croissant de points (voir 3.24).

Figure 3.24: (haut) évolution de ϵ en fonction de P. (gauche) évolution des valeurs maximale et minimale de pente en fonction du nombre de points considérés. (droite) évolution des valeurs maximale et minimale d'ordonnée à l'origine en fonction du nombre de points considérés.

On obtient le tableau pour la pente,

nb points	pente moyenne	pente maxi	pente mini
4	2.3750	6.9613	-2.2113
5	2.1250	3.0560	1.1940
6	2.2500	2.7090	1.7910
7	2.1429	2.4568	1.8289
8	2.2232	2.4606	1.9859
9	2.1339	2.3446	1.9232
10	2.1000	2.2639	1.9361
11	2.1318	2.2666	1.9970
12	2.0977	2.2142	1.9812
13	2.0935	2.1893	1.9977
14	2.1044	2.1855	2.0233
15	2.0940	2.1640	2.0239
16	2.1098	2.1731	2.0466

On retient la valeur minimale des pentes maxi 2.1640 et maximale des pentes mini 2.0466. Comme il existe une zone possible, on peut donc afficher comme résultat :

Le modèle linéaire est validé par l'expérience.

La pente est comprise entre,

$$pmin = 2.0466 \, 10^{-11} \, \text{Pa}^{-1}$$
 (3.46)

$$pmax = 2.1640 \, 10^{-11} \, \text{Pa}^{-1}$$
 (3.47)

- Il reste à vérifier la répétabilité de la mesure. On effectue une deuxième prise de mesure, on réitère la démarche ci-dessus, et on vérifie qu'il existe une zone commune entre les valeurs possibles de pente des deux essais.
- Il faut encore comparer au modèle avec incertitudes

Démarche théorique

L'incertitude sur la pente théorique doit être évaluée à partir des incertitudes des grandeurs qui ont été mesurées. Si la section de l'éprouvette S est évaluée par la mesure des cotes b et h de cette section, il faut écrire la formule en ces termes.

$$\frac{\epsilon}{P_{th}} = \frac{S_v}{ES} = \frac{S_v}{Ebh}.\tag{3.48}$$

Si les données sont : $S_v = 7.1410^{-4}m^2$, $E = 2.110^{11}Pa$, S = bh, avec b = 0.02m et h = 0.0078m mesurées au pied à coulisse, la valeur moyenne est $2.1795\,10^{-11}\,Pa^{-1}$, et la variance de la pente est donnée par la formule (3.29). Les mesures des grandeurs n'étant pas corrélée, la covariances de celles-ci est nulle, et l'on obtient :

$$\sigma_{\epsilon/P}^{2} = \left(\frac{1}{Ebh}\right)^{2} \sigma_{S_{v}}^{2} + \left(-\frac{S_{v}}{E^{2}bh}\right)^{2} \sigma_{E}^{2} + \left(-\frac{S_{v}}{Eb^{2}h}\right)^{2} \sigma_{b}^{2} + \left(-\frac{S_{v}}{Ebh^{2}}\right)^{2} \sigma_{h}^{2}. \tag{3.49}$$

Les variances sont calculées à partir du type d'incertitude (voir figure 3.23).

- La section efficace du verin est donnée dans les documents techniques avec 3 chiffres significatifs. On a donc, $\Delta S_v = 0.005 \, 10^{-4} \, m^2$, soit pour une forme de type rectangle, $\sigma_{S_v} = \frac{\Delta S_v}{\sqrt{3}} = 0.0029 \, 10^{-4} \, m^2$.
- Le module d'Young est aussi donné dans les documents, et on obtient par la même démarche, $\sigma_E=\frac{\Delta E}{\sqrt{3}}=0.029\,10^{11}$ Pa.

• La dimension b est mesurée. Ceci est fait avec un pied à coulisse qui a une precision de mesure $\Delta b = 0.00002$ m, donc, $\sigma_b = \frac{\Delta b}{\sqrt{3}} = 1.2 \, 10^{-5}$ m, et $\sigma_h = 1.2 \, 10^{-5}$ m.

La variance sur la pente est donc,

$$\sigma_{\epsilon/P} = 0.030 \, 10^{-11} \, \text{Pa}^{-1}.$$
 (3.50)

Il nous reste à calculer le nombre de degrés de liberté effectifs associé à l'ensemble des données du problème. La formule 3.32 donne :

- incertitudes de type A : aucun paramètre de la formule 3.48 n'est de type A
- pour les données d'incertitude de type B, on peut considérer que $\nu_{Sv}=\infty, \nu_E=\infty, \nu_b=\infty, \nu_h=\infty.$

soit,

$$\nu_{eff} = \frac{(0.03 \ 10^{-11})^4}{\frac{(0.0029 \ 10^{-4})^4}{\infty} + \frac{(0.029 \ 10^{-11})^4}{\infty} + \frac{(1.2 \ 10^{-5})^4}{\infty} + \frac{(1.2 \ 10^{-5})^4}{\infty}} = \infty.$$
(3.51)

Le coefficient d'élargissement à 95% est donc de 1.96. Le cas traité est un cas très spécial pour lequel tous les nombres de degrés de libertés sont infinis. Dans le cas contraire, si l'une des composantes est mesurée par une méthode de type A, le nombre de degrés de liberté effectif, pourra être voisin (et obligatoirement plus grand) de ce nombre de degrés de liberté (voir le brevet 46).

On peut donc affirmer avec 5% de chances de se tromper que la pente théorique est connue avec une incertitude de 1.96 $\sigma_{\epsilon/P}$. On obtient donc,

$$pmin_{th} = (2.1795 - 1.96\ 0.030)\ 10^{-11} = 2.1203\ 10^{-11}\ Pa^{-1}$$
 (3.52)

$$pmax_{th} = (2.1795 + 1.96\ 0.030)\ 10^{-11} = 2.2386\ 10^{-11}\ Pa^{-1}$$
 (3.53)

Pour cet exemple, illustré figure 3.25, on remarque que le modèle est en accord avec l'expérience, car il existe une zone commune entre les résultats expérimentaux et théoriques. Dans le cas contraire, le modèle est insuffisant pour expliquer l'expérience.

Figure 3.25: Comparaison des résultats expérimentaux et théoriques. Il existe une zone commune : le modèle est conforme à l'expérience

3.1.18 Quelques utilitaires

Les programmes utiles au calcul des incertitudes sont à votre disposition sur http://umtice.univ-lemans.fr/course/view.php?id=403

- creapoin.m: creation de faux points expérimentaux utilisant des distributions de bruit.
- histo.m : permet de tracer un histogramme de la distribution
- \bullet student. dat : valeur du facteur d'élargissement pour un niveau de 95% de confiance, en fonction du nombre de degrés de liberté
- incvalmoy.sce : utilitaire de détermination de l'incertitude sur la valeur moyenne (version scilab "mises à jour")
- incvalmoy.sxc : utilitaire de détermination de l'incertitude sur la valeur moyenne (version OpenOffice "mises à jour")
- incvalmoy.m : utilitaire de détermination de l'incertitude sur la valeur moyenne (version matlab " plus de mises à jour")
- incvalli.sce : utilitaire de détermination des incertitudes sur la pente et l'ordonnée à l'origine d'une approximation par un modèle linéaire de la relation entre deux grandeurs (version scilab "mises à jour")
- incvalli.sxc : utilitaire de détermination des incertitudes sur la pente et l'ordonnée à l'origine d'une approximation par un modèle linéaire de la relation entre deux grandeurs (version OpenOffice "mises à jour")
- incvalli.m : utilitaire de détermination des incertitudes sur la pente et l'ordonnée à l'origine d'une approximation par un modèle linéaire de la relation entre deux grandeurs (version matlab " plus de mises à jour")
- compvalmoy.m: utilitaire de comparaison des valeurs moyennes de deux populations
- res2.dat : fichier exemple de données d'une variable
- resp2.dat : fichier exemple de données relatives à deux
- FicheIncertitudes.sxc : fichier OpenOffice de calcul d'incertitude sur une grandeur composée de plusieurs variables (voir figure 3.26)

Fiche de Déterm	ination	d'Incertitude	,			Fiche N°
						Date :
Référentiel :						
Domaine, Unités :						
Détermination des Incertitu	des :					
Méthode de Type A :						
Méthode de Type B						
B1						
B2						
B3						
B4						
B5						
B6						
B7						
Tableau récapitulatif						
INCERTITUDES	1	type loi "u" "n" "as"	u _i	u _i ²	nb ddl (nui)	(ui^4)/nui
Type A			2	4	3	5,33
Type B						
B1	1	n	0,33	0,11	1000	
B2	0	n	0	0	1000	
B3 B4	0	n	0	0	1000 1000	
B5	1	u u	0,58	0,33	1000	0
B6	1	as	0,38	0,33		
B7	0	as	0,71	0,0	1000	
					nb de ddl ef	
				4,94	4,58	
					Ĺ	
Résultat :		composé uc :		2,22		lent
		argissement k=		2,32		
	Incertitude	I =		5,16		

cases àcompléter/renseigner

Figure 3.26: Exemple de fiche de calcul d'incertitude

3.1.19 Termes métrologiques généraux

Figures 3.27 à 3.31, sont définis les termes métrologiques généraux tels que définis par la norme de 1995.

Annexe B

Termes métrologiques généraux

B.1 Origine des définitions

Les définitions des termes métrologiques généraux ayant rapport avec ce Guide et données ci-après proviennent du Vocabulaire international des termes généraux et fondamentaux de métrologie (en abrégé VIM), deuxième édition [6], publié par l'Organisation internationale de normalisation (ISO) au nom des sept organisations qui ont apporté leur soutien à sa mise au point et nommé les experts qui l'ont préparé : le Bureau international des poids et mesures (BIPM), la Commission électrotechnique internationale (CEI), la Fédération internationale de chimie clinique (FICC), l'ISO, l'Union internationale de chimie pure et appliquée (UICPA), l'Union internationale de physique pure et appliquée (UIPPA) et l'Organisation internationale de métrologie légale (OIML). Le VIM doit être la source consultée en priorité pour les définitions de termes qui ne seraient pas inclus ci-après dans cette annexe ou dans le texte du Guide.

NOTE - Certains termes et concepts statistiques fondamentaux sont donnés en annexe C, tandis que les termes "valeur vraie", "erreur" et "incertitude" sont développés de manière plus approfondie en annexe D.

B.2 Définitions

Comme pour le chapitre 2, dans les définitions suivantes, l'utilisation de parenthèses autour de mots de certains termes signifie que ces mots peuvent être omis s'il n'y a pas d'ambiguîté à craindre.

Les termes en caractères gras dans certaines notes correspondent à des termes métrologiques complémentaires définis dans ces notes sous forme implicite ou explicite (voir la référence [6]).

B.2.1 grandeur (mesurable) [VIM 1.1] attribut d'un phénomène, d'un corps ou d'une substance,

qui est susceptible d'être distingué qualitativement et déterminé quantitativement

NOTES

1 Le terme "grandeur" peut se rapporter à une grandeur dans un sens général [voir exemple a)] ou à une grandeur particulière [voir exemple b)].

EXEMPLES

- a) grandeurs dans un sens général: longueur, temps, masse, température, résistance électrique, concentration en quantité de matière;
- b) grandeurs particulières
- longueur d'une tige donnée
- résistance électrique d'un échantillon donné de fil
- concentration en quantité de matière d'éthanol dans un échantillon donné de vin.
- 2 Les grandeurs qui peuvent être classées les unes par rapport aux autres en ordre croissant (ou décroissant) sont appelées grandeurs de même nature.
- 3 Les grandeurs de même nature peuvent être groupées ensemble en catégories de grandeurs, par exemple :
 - travail, chaleur, énergie
 - épaisseur, circonférence, longueur d'onde.
- 4 Des symboles de grandeurs sont donnés dans l'ISO 31.

B.2.2 valeur (d'une grandeur) [VIM 1.18]

expression quantitative d'une grandeur particulière, généralement sous la forme d'une unité de mesure multipliée par un nombre

EXEMPLES

a) longueur d'une tige :

5,34 m ou 534 cm;

b) masse d'un corps :

0,152 kg ou 152 g;

c) quantité de matière

d'un échantillon d'eau (H2O) : 0,012 mol ou 12 mmol.

NOTES

 La valeur d'une grandeur peut être positive, négative ou nulle.

Figure 3.27: Norme 1995

- 2 La valeur d'une grandeur peut être exprimée de plus d'une façon.
- 3 Les valeurs des grandeurs de dimension un sont généralement exprimées sous la forme de nombres.
- 4 Certaines grandeurs, pour lesquelles on ne sait pas définir leur rapport à une unité, peuvent être exprimées par référence à une échelle de repérage ou à un procédé de mesure spécifié ou aux deux.

B.2.3 valeur vraie (d'une grandeur) [VIM 1.19] valeur compatible avec la définition d'une grandeur particulière donnée

NOTES

- C'est une valeur que l'on obtiendrait par un mesurage parfait.
- 2 Toute valeur vraie est par nature indéterminée.
- 3 L'article indéfini "une" plutôt que l'article défini "la" est utilisé en conjonction avec "valeur vraie" parce qu'il peut y avoir plusieurs valeurs correspondant à la définition d'une grandeur particulière donnée.

Commentaire du *Guide*: voir annexe D, en particulier D.3.5 qui expose la raison pour laquelle le terme "valeur vraie" n'est pas utilisé dans le présent *Guide* et pourquoi les termes "valeur vraie d'un mesurande" (ou d'une grandeur) et "valeur d'un mesurande" (ou d'une grandeur) sont considérés comme équivalents.

B.2.4 valeur conventionnellement vraie (d'une grandeur) [VIM 1.20]

valeur attribuée à une grandeur particulière et reconnue, parfois par convention, comme la représentant avec une incertitude appropriée pour un usage donné

EXEMPLES

- a) en un lieu donné, la valeur attribuée à la grandeur réalisée par un étalon de référence peut être prise comme étant une valeur conventionnellement vraie;
- b) valeur recommandée par CODATA (1986) pour la constante d'Avogadro, N_A : 6,022 136 7×10^{23} mol⁻¹.

NOTES

- 1 La valeur conventionnellement vraie est quelque fois appelée valeur assignée, meilleure estimation de la valeur, valeur convenue ou valeur de référence; le terme "valeur de référence", dans ce sens, ne doit pas être confondu avec le même terme utilisé dans le sens de la note de 5.7 du VIM.
- 2 On utilise souvent un grand nombre de résultats de mesures d'une grandeur pour établir une valeur conventionnellement vraie.

Commentaire du Guide: voir le commentaire du Guide pour B.2.3.

B.2.5 mesurage [VIM 2.1]

ensemble d'opérations ayant pour but de déterminer une valeur d'une grandeur

NOTE - Le déroulement des opérations peut être automatique.

B.2.6 principe de mesure [VIM 2.3]

base scientifique d'un mesurage

EXEMPLES.

- a) l'effet thermoélectrique utilisé pour le mesurage de la température;
- b) l'effet Josephson utilisé pour le mesurage de la tension électrique;
- c) l'effet Doppler utilisé pour le mesurage de la vitesse;
- d) l'effet Raman utilisé pour le mesurage du nombre d'onde des vibrations moléculaires.

B.2.7 méthode de mesure [VIM 2.4]

succession logique des opérations, décrites d'une manière générique, mises en oeuvre lors de l'exécution de mesurages

NOTE - La méthode de mesure peut être qualifiée de diverses facons telles que :

- méthode de substitution
- méthode différentielle
- méthode de zéro.

B.2.8 mode opératoire (de mesure) [VIM 2.5]

ensemble des opérations, décrites d'une manière spécifique, mises en oeuvre lors de l'exécution de mesurages particuliers selon une méthode donnée

NOTE - Le mode opératoire est habituellement décrit dans un document qui est quelquefois appelé lui-même "mode opératoire" et qui donne assez de détails pour qu'un opérateur puisse effectuer un mesurage sans avoir besoin d'autres informations.

B.2.9 mesurande [VIM 2.6]

grandeur particulière soumise à mesurage

EXEMPLE - pression de vapeur d'un échantillon donné d'eau à 20 °C.

NOTE - La définition du mesurande peut nécessiter des indications relatives à des grandeurs telles que le temps, la température et la pression.

Figure 3.28: Norme 1995

Expression de l'incertitude : 1995 (F)

B.2.10 grandeur d'influence [VIM 2.7]

grandeur qui n'est pas le mesurande mais qui a un effet sur le résultat du mesurage

EXEMPLES

- a) température d'un micromètre lors de la mesure d'une longueur;
- b) fréquence lors de la mesure de l'amplitude d'une tension électrique alternative;
- c) concentration en bilirubine lors de la mesure de la concentration en hémoglobine dans un échantillon de plasma sanguin humain.

Commentaire du Guide: la définition de la grandeur d'influence doit se comprendre comme incluant les valeurs associées aux étalons, aux matériaux de référence, et aux données de référence, valeurs dont peut dépendre le résultat d'un mesurage, aussi bien que les phénomènes tels que les fluctuations à court terme de l'instrument de mesure et les grandeurs telles que la température ambiante, la pression atmosphérique et l'humidité.

B.2.11 résultat d'un mesurage [VIM 3.1] valeur attribuée à un mesurande, obtenue par mesurage

NOTES

- 1 Lorsqu'on donne un résultat, on indiquera clairement si l'on se réfère :
 - à l'indication
 - au résultat brut
 - au résultat corrigé

et si cela comporte une moyenne obtenue à partir de plusieurs valeurs.

2 Une expression complète du résultat d'un mesurage comprend des informations sur l'incertitude de mesure.

B.2.12 résultat brut [VIM 3.3]

résultat d'un mesurage avant correction de l'erreur systématique

B.2.13 résultat corrigé [VIM 3.4]

résultat d'un mesurage après correction de l'erreur systématique

B.2.14 exactitude de mesure [VIM 3.5]

étroitesse de l'accord entre le résultat d'un mesurage et une valeur vraie du mesurande

NOTES

- 1 Le concept d' "exactitude" est qualitatif.
- 2 Le terme "précision" ne doit pas être utilisé pour "exactitude".

Commentaire du Guide: voir le commentaire du Guide pour B.2.3.

B.2.15 répétabilité (des résultats de mesurage) [VIM 3.6]

étroitesse de l'accord entre les résultats des mesurages successifs du même mesurande, mesurages effectués dans la totalité des mêmes conditions de mesure

NOTES

- 1 Ces conditions sont appelées conditions de répétabilité.
- 2 Les conditions de répétabilité comprennent :
 - même mode opératoire
 - même observateur
 - même instrument de mesure utilisé dans les mêmes conditions
 - même lieu
 - répétition durant une courte période de temps.
- 3 La répétabilité peut s'exprimer quantitativement à l'aide des caractéristiques de dispersion des résultats.

B.2.16 reproductibilité (des résultats de mesurage) [VIM 3.7]

étroitesse de l'accord entre les résultats des mesurages du même mesurande, mesurages effectués en faisant varier les conditions de mesure

NOTES

- 1 Pour qu'une expression de la reproductibilité soit valable, il est nécessaire de spécifier les conditions que l'on fait varier.
- 2 Les conditions que l'on fait varier peuvent comprendre :
 - principe de mesure
 - méthode de mesure
 - observateur
 - instrument de mesure
 - étalon de référence
 - lieu
 - conditions d'utilisation
 - temps.
- 3 La reproductibilité peut s'exprimer quantitativement à l'aide des caractéristiques de dispersion des résultats.
- 4 Les résultats considérés ici sont habituellement les résultats corrigés.

B.2.17 écart-type expérimental [VIM 3.8]

pour une série de n mesurages du même mesurande, grandeur $s(q_k)$ caractérisant la dispersion des résultats, donnée par la formule :

Figure 3.29: Norme 1995

$$s(q_k) = \sqrt{\frac{\sum_{k=1}^{n} (q_k - \overline{q})^2}{n-1}}$$

 q_k étant le résultat du kième mesurage et \overline{q} la moyenne arithmétique des n résultats considérés.

NOTES

- 1 En considérant la série de n valeurs comme échantillon d'une loi de probabilité, \overline{q} est un estimateur sans biais de la moyenne μ_q et $s^2(q_k)$ est un estimateur sans biais de la variance σ^2 de cette loi.
- 2 L'expression $s(q_k)/\sqrt{n}$ est une estimation de l'écart-type de la loi de \overline{q} et est appelée écart-type expérimental de la moyenne.
- 3 L'écart-type expérimental de la moyenne est parfois appelé à tort erreur de la moyenne.

Commentaire du *Guide*: certains symboles utilisés dans le VIM ont été changés pour être cohérent avec les notations utilisées en 4.2 de ce *Guide*.

Commentaire du Guide pour la version française : le VIM emploie le terme "distribution" dans les notes 1 et 2. En matière de probabilité, le terme "loi" est plus correct.

B.2.18 incertitude (de mesure) [VIM 3.9]

paramètre, associé au résultat d'un mesurage, qui caractérise la dispersion des valeurs qui pourraient raisonnablement être attribuées au mesurande

NOTES

- 1 Le paramètre peut être, par exemple, un écart-type (ou un multiple de celui-ci) ou la demi-largeur d'un intervalle de niveau de confiance déterminé.
- 2 L'incertitude de mesure comprend, en général, plusieurs composantes. Certaines peuvent être évaluées à partir de la distribution statistique des résultats de séries de mesurages et peuvent être caractérisées par des écarts-types expérimentaux. Les autres composantes, qui peuvent aussi être caractérisées par des écarts-types, sont évaluées en admettant des lois de probabilité, d'après l'expérience acquise ou d'après d'autres informations.
- 3 Il est entendu que le résultat du mesurage est la meilleure estimation de la valeur du mesurande, et que toutes les composantes de l'incertitude, y compris celles qui proviennent d'effets systématiques, telles que les composantes associées aux corrections et aux étalons de référence, contribuent à la dispersion.

Commentaire du Guide: il est signalé dans le VIM que

cette définition et les notes sont identiques à celles de ce Guide (voir 2.2.3).

Commentaire du *Guide* pour la version française : en note 2, le VIM emploie le terme "distribution de probabilité". Le terme "loi de probabilité" est plus correct.

B.2.19 erreur (de mesure) [VIM 3.10]

résultat d'un mesurage moins une valeur vraie du mesurande

NOTES

- 1 Etant donné qu'une valeur vraie ne peut pas être déterminée, dans la pratique on utilise une valeur conventionnellement vraie (voir VIM 1.19 [B.2.3] et 1.20 [B.2.4]).
- 2 Lorsqu'il est nécessaire de faire la distinction entre "l'erreur" et "l'erreur relative", la première est parfois appelée "erreur absolue de mesure". Il ne faut pas confondre avec la valeur absolue de l'erreur, qui est le module de l'erreur.

Commentaire du Guide: si le résultat d'un mesurage dépend des valeurs de grandeurs autres que le mesurande, les erreurs des valeurs mesurées de ces grandeurs contribuent à l'erreur sur le résultat du mesurage. Voir aussi le commentaire du Guide pour B.2.22 et B.2.3.

B.2.20 erreur relative [VIM 3.12]

rapport de l'erreur de mesure à une valeur vraie du mesurande

NOTE - Etant donné qu'une valeur vraie ne peut pas être déterminée, dans la pratique on utilise une valeur conventionnellement vraie (voir VIM 1.19 [B.2.3] et 1.20 [B.2.4]).

Commentaire du Guide : voir le commentaire du Guide pour B.2.3.

B.2.21 erreur aléatoire [VIM 3.13]

résultat d'un mesurage moins la moyenne d'un nombre infini de mesurages du même mesurande, effectués dans les conditions de répétabilité

NOTES

- 1 L'erreur aléatoire est égale à l'erreur moins l'erreur systématique.
- 2 Comme on ne peut faire qu'un nombre fini de mesurages, il est seulement possible de déterminer une estimation de l'erreur aléatoire.

Commentaire du Guide: voir aussi le commentaire du Guide pour B.2.22.

Figure 3.30: Norme 1995

B.2.22 erreur systématique [VIM 3.14]

moyenne qui résulterait d'un nombre infini de mesurages du même mesurande, effectués dans les conditions de répétabilité, moins une valeur vraie du mesurande

NOTES

- L'erreur systématique est égale à l'erreur moins l'erreur aléatoire.
- 2 Comme la valeur vraie, l'erreur systématique et ses causes ne peuvent pas être connues complètement.
- 3 Pour un instrument de mesure, voir "erreur de justesse" (VIM 5.25).

Commentaire du Guide: l'erreur sur le résultat d'un mesurage (voir B.2.19) peut souvent être considérée comme provenant d'un certain nombre d'effets systématiques et aléatoires qui contribuent aux composantes individuelles de l'erreur sur le résultat. Voir

aussi les commentaires du Guide pour B.2.19 et B.2.3.

B.2.23 correction [VIM 3.15]

valeur ajoutée algébriquement au résultat brut d'un mesurage pour compenser une erreur systématique

NOTES

- 1 La correction est égale à l'opposé de l'erreur systématique estimée.
- 2 Puisque l'erreur systématique ne peut pas être connue parfaitement, la compensation ne peut pas être complète.

B.2.24 facteur de correction [VIM 3.16]

facteur numérique par lequel on multiplie le résultat brut d'un mesurage pour compenser une erreur systématique

NOTE - Puisque l'erreur systématique ne peut pas être connue parfaitement, la compensation ne peut pas être complète.

Figure 3.31: Norme 1995

3.2 Prise en compte des aléas en fabrication

3.2.1 De l'idée d'une pièce à sa fabrication en série

Une fois l'idée d'une pièce jaillie de l'imagination d'un inventeur ou d'un groupe de travail, le chemin pour arriver à l'existence de cette pièce en grand nombre, passe par plusieurs services (voir figure 3.32) :

- le service commercial effectue une étude de marché,
- le bureau d'étude, à partir d'un cahier des charges, doit élaborer les plans d'ensemble du système pour aboutir aux dessins de définition de chacune des pièces, associée à la cotation fonctionnelle (la cotation minimale qui assure le bon fonctionnement de la pièce)
- le bureau des méthodes assure que chacune des pièces est fabricables et élabore les gammes de fabrications, la cotation de fabrication et les outils nécessaires associés
- l'atelier fabrique les pièces et assure un contrôle final de la validité des pièces

Figure 3.32: Les différents services et leurs actions pour la réalisation d'une pièce.

Si l'on détaille un peu plus le travail du bureau des méthode, interface entre le bureau d'étude qui conçoit le système et l'atelier qui fabrique les pièces, les différentes étapes sont résumées dans la figure 3.33. On remarquera les nombreux échanges entre les différents services à différentes étapes du processus.

Figure 3.33: Du dessin de définition d'une pièce à la gamme de fabrication de celle-ci.

Nous supposons que la formation de l'Ensim de première année en technologie mécanique, vous permet d'effectuer le travail du bureau d'étude, et que vous disposez pour une pièce des cotes fonctionnelles. Elle sont issues du travail de chaîne de cotes qui établit pour chaque jeu fonctionnel les dimensions qui interviennent pour réaliser ce jeu fonctionnel. Sur l'exemple figure 3.34, le jeu fonctionnel est noté j. Il relie la surface s_1 de la pièce 1, à la surface s_2 de la pièce 2. Pour réaliser cette condition, les dimensions qui interviennent sont : d_1 entre la surface s_1 et la surface s_3 de la pièce 1, d_2 la tolérance de contact entre la surface s_3 de la pièce 1 et la surface s_3 de la pièce 2 et d_3 entre la surface s_3 et la surface s_2 de la pièce 2. Une chaîne de cote est orientée : elle part de l'origine de la condition j et fini à l'extrémité de la condition. L'équation associée à cette chaîne de cote est,

$$j = -d_1 - d_2 + d_3. (3.54)$$

On obtient les équations en terme de jeu maximal j_M et de jeu minimal j_m :

$$j_M = d_{1m} - d_{2m} + d_{3M}, (3.55)$$

$$j_m = d_{1M} - d_{2M} + d_{3m}. (3.56)$$

La méthode de répartition des intervalles de tolérance sera vue dans la paragraphe suivant.

Figure 3.34: Exemple d'une chaîne de cote.

Il faut maintenant traduire en cotes fonctionelles en cotes de fabrication (zone cerclée de rouge dans la figure 3.33), ces dernières dépendront de l'ordre dans lequel vous choisissez d'effectuer les usinages. Mais auparavant, voyons pourquoi les cotes ne peuvent être obtenues avec une précision infinie.

3.2.2 Les dispersions d'une cote à la fabrication

Prenons l'exemple d'un diamètre d'un cylindre obtenu par tournage d'une pièce. le diamètre de la pièce est imposé par les positions successives du point extrémité de l'outil de coupe. Celui-ci ce déplace sur une droite parrallèle à l'axe de rotation de la pièce. La distance entre l'axe de rotation de la pièce et ce point de l'outil de coupe réalise le rayon du diamètre fabriqué. Nous vous invitons à faire un dessin de ceci.

A la pointe d'outil, les frottements sont importants. L'outil étant beaucoup plus dur que la pièce travaillée, une fissure se propage juste en avant de l'arrête de coupe, séparant le copeau de la partie massive de la pièce. Le copeau s'enroule en glissant sur l'une des faces de l'outil en frottant sur celui-ci. Les pressions sont considérables, comme le montre la structure du copeau qui est formée de matière qui présente des plans de glissement de cisaillement interne. Sur la face de dépouille de l'outil, la matière qui était comprimée par l'arrivée de la fissure, se relache et frotte donc aussi sur cette face de dépouille. Ces frottements usent l'outil (voir figure 3.35), arrachant de la matière à l'outil : la pointe d'outil recule donc par rapport au corps de l'outil, qui elle est en translation. Ceci implique donc une variation de la distance entre l'axe de rotation et ce point, donc une variation du diamètre de la pièce fabriquée. Cette usure n'est pas proportionelle à la durée de travail de l'outil (voir figure 3.36).

Figure 3.35: L'usure d'un outil n'est pas proportionelle à la longueur de copeaux produite.

Figure 3.36: La cote réalisée sur la pièce n'est pas proportionelle au nombre de pièces usinées depuis le dernier affutage de l'outil.

On imagera aisément que même si l'opérateur a réglé la distance entre l'axe de rotation de la pièce et la pointe de l'outil avec une précision infinie (ce qui lui est impossible), même si la thermique de la machine est parfaitement stable (ce qui est impossible), même si les efforts de coupe importants ne font pas fléchir les pièces (ce qui est impossible), même si les vibrations engendrées par les efforts de coupe impliquent des déplacements négligeables de la pointe de coupe (là c'est possible), même si aucun jeu n'est présent dans la machine (ce qui est impossible), la cote obtenue pendant l'usinage de la série de pièce variera, et qu'il est donc nécessaire de vérifier régulièrement si la cote fabriquée reste dans la tolérance de fabrication. Pour éviter d'avoir à faire une mesure, on utilise en général un outillage spécifique, un gabarit "entre - n'entre pas", qui permet de tester rapidement si la dimension est conforme.

Un exemple de dépendance de la cote usinée par rapport aux jeux dans la machine dans le cas du dressage d'une face au tour est présenté figure 3.37. En fonction du type de surface, de type de liaison, les valeurs des dispersions sont différentes (voir figure 3.38).

Dispersions en townage (dressage de face)

Figure 3.37: La cote réalisée au tour en dressage dépend des jeux dans le système d'usinage.

lours variables subvent no	The second secon	ues à l'usure de l'outil	o conditions do co
leurs variables suivant no		de l'outil, la nature de la pièce, le nps de coupe.	is conditions de co
-		aux prises de pièces (mm)	
	Dispersions dues :	moulée au sable	0.4
urface d'appui de la	brute	moulée en coquille	0,2
pièce		sciée	0,1 à 0,4
		0,02 à 0,1	
1	Dispersions dues a	ux butées de course (mm)	
type de butée		ébauche	finition
fixe		0,04 à 0,08	0,02 à 0,04
debrayage mécanique		0,1 à 0,2	0,05 à 0,1
débrayage électrique		0,05 à 0,1	0,03 à 0,05
	Dispersions due	s aux porte-pièces (mm)	
Mandrin 3 mors durs			0,1 à 0,2
Mandrin 3 mors doux			0,02 à 0,04
centreur cylindrique centreur quelconque rondelles Ringspann expansibles			fonction du jeu
		dispersion de coaxialité	0,02 à 0,04
			0,01 à 0,02
			0,01 à 0,02

Figure 3.38: Les dispersions dépendent du type de surface et du type de contact.

Si l'on reprend l'exemple de la figure 3.34, en petite série, les intervalles de tolérance associés à l'équation 3.54 doivent vérifier,

$$IT_j = IT_{d_1} + IT_{d_2} + IT_{d_3}, (3.57)$$

dont seul l'intervalle de tolérance de d_2 est a priori connu : il dépend du type de surfaces en contact (via le tableau 3.38).

Si vous voulez vérifier que vous avez assimilé ce paragraphe, nous vous invitons à faire les brevets 068, 69 et 70. Si vous avez des difficultés, je vous invite à contacter le référent du brevet correspondant, dont le mél est disponible sur https://framacalc.org/univ_maine_referent_brevet.

Si du fait des valeurs des dispersions aux butées, l'incertitude engendrée par ces butées est supérieure à l'incertitude souhaitée sur la cote, on peut soit rechercher une autre technique de fabrication de cette surface, en prenant appuis par exemple sur une autre surface, en changeant de machine, ou en procédant à un pré-usinage d'une surface brute, mesure sans démonter la pièce de la cote d_{1brute} , et réglage du complément de déplacement de l'outil pour obtenir d_1 .

3.2.3 La cotation de fabrication

Les cotes fournies par le bureau d'étude sont les cotes nécessaires pour que la pièce remplisse ses fonctions une fois assemblée dans le système (voir figure 3.39).

Figure 3.39: Exemple de cotation fournie par le bureau d'étude.

L'ordre dans lesquels les surfaces sont fabriquées ne sont pas imposées par le bureau d'étude. Le bureau des méthodes doit donc étudier les différentes possibilités. En fonction des machines et de l'outillage disponible au sein de l'entreprise, la création d'une surface se fait toujours par rapport à une autre. C'est la distance entre la surface crée et la surface de référence qui doit être cotée par le bureau des méthodes à chaque étape de fabrication. Elles ne sont pas a priori les mêmes que les cotes fonctionnelles fournies par le bureau d'étude.

Figure 3.40: Deux procédures d'obtention de la pièce.

Sur l'exemple de la pièce tournée de la figure 3.39, détaillons les différentes possibilités. La figure 3.40 présente deux modes d'obtention des surface répéré par les indices a) et b). Les volumes grisés correspondent à la matière enlevée.

- Les étapes 1a) et 1b) de tronçonnage d'une barre d'étiré sont identiques.
- L'étape 2a) correspond au dressage de la face de droite, puis du diamètre et du dressage de l'épaulement.
- La pièce est alors retournée, mis en butée sur l'épaulement, serrée sur le diamètre le plus petit, puis la surface opposée est usinées. Ceci est représenté par l'étape 3a).
- La figure 4a) indique les cotes qui ont été fabriquée : elles sont identiques à celles du bureau d'étude.
- L'étape 2b) correspond au dressage de la face la plus grande.
- L'étape 3b) correspond au retournement de la pièce, la mise en butée sur la surface précédente, le serrage sur le diamètre extérieur, le dressage de la face la plus petite, le tournage du cylindre le plus petit pour finir par le dressage de l'épaulement. C'est la longeur totale de la pièce qui correspond à la cote fabriquée.
- La figure 4b) indique que l'une des cotes du bureau d'étude n'a pas été fabriquée directement. Il sera nécessaire de faire un transfert de cote, en prenant la cote du bureau d'étude non fabriquée comme condition.

La répartition des intervalles de tolérance sur chacune des cotes doit suivre la procédure suivante.

Explicitons cette démarche pour la procédure b). Des pastilles de couleur en haut de la figure 3.41, indiquent dans quel ordre remplir la feuille de calcul de cotes : flèches et valeurs sont associées à une couleur, donc à une étape de la procédure.

- étape 1 bleu : identifier l'ordre de fabrication des surfaces et pour chaque surface, par rapport à quelle autre surface elle est fabriquée. Cela définie les cotes de fabrication cfi que l'on doit déterminer.
- étape 2 verte : pour la première cote du bureau d'étude ce1, identifier la chaîne de cotes cf qui permette de la réaliser. Ici, la cote de fabrication cf4 correspond à la cote de bureau d'étude ce1.
- étape 3 brune : faire la même chose pour les autre cotes de bureau d'étude (ici, ce2) et les cotes de surépaisseur de brut cmi qui sont données par le bureau des méthode. Pour ce2, la chaîne de cote fait intervenir cf4 et cf3. Même travail pour les cotes cm2 et cm1.

L'ensemble des chaînes de cotes est ainsi tracée. Il faut maintenant répartir des incertitudes des conditions sur les différentes cotes de fabrication. Deux voies sont possible : l'écriture du système d'équation, ou le remplissage du tableau tel que présenté figure 3.41. Ce tableau n'est que l'image du système d'équations, les résultats sont donc les mêmes.

Résolution par le système d'équation :

• étape 3 magenta : pour les cotes de bureau d'étude ce et de surépaisseur cm, donnez leur dimension moyenne dm, leur intervalle de tolérance IT, le nombre n de cotes de fabrications qui composent la chaîne de cote associée n et la valeur IT/n. Dans le cas d'une cote mini ou maxi n'indiquer que cette valeur. Pour notre exemple, cela donne :

$$ce1_M = cf4_M, (3.58)$$

$$ce1_m = cf4_m, (3.59)$$

$$ce2_M = -cf4_m + cf3_M,$$
 (3.60)

$$ce2_m = -cf4_M + cf3_m, (3.61)$$

$$cm2_m = -cf3_M + cf2_m,$$
 (3.62)

$$cm1_m = cf1_m - cf2_M. (3.63)$$

• étape 4 rouge : calculer les valeurs moyennes des cotes de fabrication cf.

$$ce1 = cf4, (3.64)$$

$$ce2_M = -cf4 + cf3.$$
 (3.65)

d'où (en mm)

$$cf4 = 30,$$
 (3.66)

$$cf3 = 20 + 30 = 50. (3.67)$$

• étape 5 grise et 6 rose : distribuer les intervalles de tolérance. En petite série, l'incertitude de la condition est divisée par le nombre de cotes composant la chaîne de cote et elle est répartie uniformément sur les cotes.

$$IT_{cf4} \le IT_{ce1}/1,$$
 (3.68)

$$IT_{cf4} \le IT_{ce2}/2, \tag{3.69}$$

$$IT_{cf3} \le IT_{ce2}/2. \tag{3.70}$$

La condition la plus restrictive sur cf4 est dûe à ce2, donc $IT_{cf4}=0.2$ mm et $IT_{cf3}=0.2$ mm. Ici, la condition ce1 implique que la tolérance sur cf4 est de 0.2 mm. Les valeurs maxi et mini de cf4 et cf3 sont alors connues :

$$cf4 = 30 \pm 0.2 \tag{3.71}$$

$$cf3 = 50 \pm 0.2. (3.72)$$

• étape 7 bleu clair : Pour les conditions mini et maxi reporter les valeurs obtenues maximale ou minimale Les deux équations

$$cm2_m = -cf3_M + cf2_m,$$
 (3.73)

$$cm1_m = cf1_m - cf2_M. (3.74)$$

peuvent maintenant se ré-écrire :

$$1 = -50.2 + cf2_m, (3.75)$$

$$1 = cf1_m - cf2_M. (3.76)$$

La primière équation donne $cf2_m=51.2$ mm. ON choisira pour continuer une incertitude sur la cf2 de 2 mm, qui ne demande pas d'effort particuler (donc pas de surcoût) lors de la découpe du brut : $cf2_M=cf2_m+2=53.2$ mm. On déduit donc de la seconde équation $cf1_m=1+53.2=54.2$ mm.

Résolution par le tableau : Le même raisonnement que précédemment est fait, mais présenté simplement sous forme de tableau.

- étape 3 magenta : pour les cotes de bureau d'étude ce et de surépaisseur cm, donnez leur dimention moyenne dm, leur intervalle de tolérance IT, le nombre n de cotes de fabrications qui composent la chaîne de cote associée n et la valeur IT/n. Dans le cas d'une cote mini ou maxi n'indiquer que cette valeur.
- étape 4 rouge : calculer les valeurs moyennes des cotes de fabrication cf.
- étape 5 grise : distribuer les intervalles de tolérance les plus petits. Ici, la condition ce1 implique que la tolérance sur cf4 est de 0.2 mm.
- étape 6 rose : reporter tous les intervales déterminés à l'étape 5 dans les autres cotes apparaissant sur les autres conditions. Ici, on reporte sur la cote cf4 qui apparaît dans la condition ce1. On notera que la condition ce1 est vérifiée car $0.2 \downarrow 0.4$, ce qui n'aurait pas été le cas si l'on avait distribuer en premier l'intervalle de tolérance de ce1.

- étape 7 bleu clair : Pour les conditions mini et maxi reporter les valeurs obtenues maximale ou minimale : cela dépend du sens de la chaîne de cote. Si la direction d'une flèche vers la droite représente une cote mini, les flèches vers la gauche représentent des cotes maxi. Pour vous en convaincre, écriver l'équation associée de la chaîne de cote.
- étape 8 vert clair : déterminer les autres cotes et si elles sont mini ou maxi.
- étapes 9 et 10, saumon et brun clair : faire de même avec mes autres conditions unidimensionnelles, ici cm2.

Toutes les cotes de facbrication ont été déterminées par le bureau des méthodes.

Figure 3.41: Détermination des cotes de bureau des méthodes et de leurs incertitudes dans le cas de la procédure d'usinage b)

La même démarche peut être faite pour la procédure a) et le tableau de résolution est présenté figure 3.41.

Figure 3.42: Détermination des cotes de bureau des méthodes et de leurs incertitudes dans le cas de la procédure d'usinage a)

Une fois les deux études faites, il faut choisir la procédure de fabrication qui est la moins coûteuse, donc qui permet d'avoir des cotes de fabrication ayant les intervalles de tolérance les plus grands. Dans le cas explicité ici, c'est la procédure a) qui doit être choisie.

Si vous voulez vérifier que vous avez assimilé ce paragraphe, nous vous invitons à faire les brevets 071, 072 et 073. Si vous avez des difficultés, je vous invite à contacter le référent du brevet correspondant, dont le mél est disponible sur https://framacalc.org/univ_maine_referent_brevet.

Bibliography

- [1] JM Breteau Introduction aux mesures et capteurs
- [2] du polycopié de travaux pratiques de l'ENSEM (Nancy)
- [3] S. Geller Statistiques (519.5 GEL à la bibliothèque universitaire du Mans),
- [4] de la norme française XP X 07-020 (juin 96), Guide pour l'expression de l'incertitude de mesure
- [5] Mouvement français pour la qualité, recueil d'exemples d'évaluation d'incertitudes, 1999, Bagneux.
- [6] K Protassov *Probabilités et incertitudes dans l'analyse de données expériementales.*,Presses Universitaires de Grenoble, 1999.
- [7] S. Aïvazian Etude statistique des dépendances, Ed Mir, Moscou, 1970
- [8] M. De Domenico, V. Latora, Fast detection of nonlinearity and nonstationarity in short and noisy time series. EuroPhys.Lett. 91, 2010
- [9] M. Guez, La communication non-violente Stage 1
- [10] J.M. Génevaux A. Pelat, Une pédagogie participative en école d?ingénieur (alias ?Freinet 5CH?), formation pédagogique de l'Université du Maine, mars 2014