

Gecode

an open constraint solving library

Christian Schulte KTH – Royal Institute of Technology, Sweden

Gecode

- Generic Constraint Development Environment
 - open source
 - C++ library
 - constraint propagation + complete (parallel) search
 - finite domain and finite set constraints
 - complete documentation (reference, tutorial, papers)
 - thousands of users

Overview

- History and facts
- Modeling (interfacing) & programming
- Openness

History

- **2002**
 - development started
- **1.0.0**
 - Dec 6, 2005
- **2.0.0**
 - Nov 14, 2007
- **3.0.0**
 - Mar 13, 2009
- ▶ 3.5.0 (current)
 - Feb 1, 2011

... 4.0.0 in 2012

43 kloc, 21 klod

77 kloc, 41 klod

24 releases

81 kloc, 41 klod

126 kloc, 52 klod

History

2002 development started **1.0.0** 43 kloc, 21 klod growth ▶ Dec 6, 2 **2.0.0** 77 kloc, 41 klod Nov 14, 20 eases **3.0.0** consolidation 81 kloc, 41 klod Mar 13, ∠ ▶ 3.5.0 (current) 126 kloc, 52 klod Feb 1, 2011

... 4.0.0 in 2012

History: Tutorial Documentation

... 4.0.0 in 2012

People

Core team

► Christian Schulte KTH – Royal Institute of Technology, Sweden

Guido Tack
K.U. Leuven, Belgium

▶ Mikael Z. Lagerkvist KTH – Royal Institute of Technology, Sweden

Code

- contributions: David Rijsman, Denys Duchier, Filip Konvicka, Gabor Szokoli, Gregory Crosswhite, Håkan Kjellerstrand, Patrick Pekczynski, Raphael Reischuk, Tias Guns.
- fixes: Alexander Samoilov, David Rijsman, Geoffrey Chu, Grégoire Dooms, Gustavo Gutierrez, Olof Sivertsson.

Documentation

Seyed Hosein Attarzadeh Niaki, Vincent Barichard, Felix Brandt, Markus Böhm, Roberto Castañeda, Gregory Crosswhite, Pierre Flener, Gustavo Gutierrez, Gabriel Hjort Blindell, Sverker Janson, Andreas Karlsson, Håkan Kjellerstrand, Chris Mears, Flutra Osmani, Dan Scott, Kish Shen.

Goals

Research

- architecture of constraint programming systems
- propagation algorithms, search, modeling languages, ...

Efficiency

- competitive (winner MiniZinc challenges 2008-2010, all categories)
- proving architecture right

Education

state-of-the-art, free platform for teaching

Users

Research

- own papers
- papers by others: experiments and comparison
- Google scholar: some 500 references to Gecode

Education: teaching

KTH, Uppsala U, U Freiburg, UC Louvain, Saarland U, American U Cairo, U Waterloo, U Javeriana-Cali, ...

Industry

 several companies have integrated Gecode into products (part of hybrid solvers)

Deployment & Distribution

- ▶ Open source ≠ Linux only
 - Gecode is native citizen of: Linux, Mac, Windows
- High-quality
 - extensive test infrastructure (around 16% of code base)
- Downloads from Gecode webpage
 - software: between 25 to 125 per day
 - documentation: between 50 to 300 per day
- Included in
 - Debian, Ubuntu, FreeBSD

Modeling & Programming

- propagation loop
- backtracking for search
- memory management

- search engines
 - depth-first (DFS) and branch-and-bound (BAB)
 - parallel search

- depth-first (DFS) and branch-and-bound (BAB)
- parallel search
- search tool: Gist (millions of nodes)

- variables
- propagators
- branchers

(constraints)

(search heuristics)

- direct C++ modeling or interfacing
- language interfaces: MiniZinc (see Guido's talk later), Java, JavaScript, Lisp, Ruby, Eclipse Prolog,

. . .

Modeling (interfacing)

- Use modeling layer in C++
 - matrices, operators for arithmetical and logical expressions, ...
- Use predefined
 - constraints
 - search heuristics and engines

Documentation

getting started	30 pages
concepts and functionality	96 pages
case studies	76 pages

Modeling (interfacing)

Constraint families

- arithmetics, Boolean, ordering,
- alldifferent, count (global cardinality, ...), element, scheduling, table and regular, sorted, sequence, circuit, channel, binpacking, lex, geometrical packing

Families

- different variants
- different propagation strength

Programming

Interfaces for programming

- propagators (for constraints)
- branchers (for search heuristics)
- variables
- search engines

Documentation	intro	advanced
propagators	40 pages	58 pages
branchers	22 pages	
variables		44 pages
search engines	12 pages	26 pages

Openness

Open Source

MIT license

- permits commercial, closed-source use
- disclaims all liabilities (as far as possible)

License motivation

- public funding
- focus on research

Not a reason

attitude, politics, dogmatism

Open Architecture

- More than a license
 - license restricts what users may do
 - code and documentation restrict what users can do
- Modular, structured, documented, readable
 - complete tutorial and reference documentation
 - ideas based on scientific publications
- Equal rights: clients are first-class citizens
 - you can do what we can do: APIs
 - you can know what we know: documentation
 - on every level of abstraction

Open Development

- We encourage contributions
 - direct, small contributions
 - → we take over maintenance and distribution
 - larger modules on top of Gecode
 - → you maintain the code, we distribute it
- Prerequisites
 - MIT license
 - compiles and runs on platforms we support

Summary

- Open source libraries require open architecture
 - users need good code to build on
- Open architecture promotes equality
 - client code is first-class citizen
 - encourages code contributions
- Open development fosters research
 - collaboration
 - experiments are reproducible