Meaningful Integrals

- 1. Let $f(x) = x^2 + 4$.
 - (a) Find the average value f_{ave} of f(x) on the interval [0, 3].

(b) Find a $c \in (0,3)$ such that $f(c) = f_{ave}$.

- 2. Let $g(x) = \frac{1}{1+x^2}$.
 - (a) Find the average value g_{ave} of g(x) on the interval [-1,1].

(b) Find a $c \in (-1,1)$ such that $g(c) = g_{ave}$.

The values of c you found on the previous page were guaranteed to exist because of the following theorem:

The Mean Value Theorem for integrals: If f is continuous on [a, b], then there exists a number c in (a, b) such that

$$f(c) = \frac{1}{b-a} \int_a^b f(x) \ dx.$$

Let's prove this theorem!

- 3. For a continuous function f(x), define $F(x) = \int_a^x f(t) dt$.
 - (a) What is F(a)? What is F'(x)?

(b) Apply the Mean Value Theorem to F(x) on the interval [a, b]. Use your answers above to rewrite your equation and prove the Mean Value Theorem for Integrals.