Foice - Magnetostática

Italo

Março de 2021

1 O Limite e a Carteada 3 Juntinhos **

Uma espira quadrada de lado a está sendo percorrida por uma corrente elétrica constante i_1 e está a uma distância d de um fio retilíneo e infinito que é percorrido por uma corrente i_2 . O fio divide o plano em dois semiplanos infinitos: z>0 (que denominamos de Γ) e z<0, como mostra a figura. Sendo μ_0 a permissividade magnética do vácuo, calcule o fluxo do campo magnético gerado pela espira sobre a região semi-infinita Γ .

Figura 1: Espira e Fio Infinito

2 Tô fora! ***

Um dipolo magnético \vec{m} é colocado no centro de uma esfera de permeabilidade magnética μ e raio R. Encontre o campo magnético dentro e fora da esfera, sabendo que fora da esfera, todo o espaço é vácuo.

Considere a situação mostrada na figura, onde estão dois solenoides muito longos nos quais passam correntes I_1 e I_2 e ambos com n espiras por unidade de comprimento e área A. Os dois solenoides estão muito próximos um do outro. Calcule a força de interação entre eles.

Figura 2: Dois solenoides longos juntinhos

4 Eu acredito no seu potencial *

- a) O campo magnético gerado por um fio infinito percorrido por uma corrente I é conhecido e da forma $\vec{B} = \frac{\mu_0 I}{2\pi s} \hat{\phi}$ em coordenadas cilíndricas. Mostre explicitamente que o rotacional desse campo é igual a zero para qualquer $s \neq 0$ e, portanto, esse campo pode ser descrito como o gradiente de um potencial escalar $\vec{B} = \nabla \psi$.
- **b)** Calcule o valor de ψ e explique porque seu valor como potencial escalar é limitado quando comparado ao do potencial eletrostático, por exemplo.

5 De novo, só que agora é 7 Eu posso fazer isso com \vec{M} ** ímãs? ***

Calcule diretamente o campo magnético gerado por uma esfera de raio R e magnetização constate \vec{M} dentro e fora da esfera.

6 Ampère e Gilbert tiveram uma discussão **

Um dipolo magnético de Ampère é um dipolo magnético produzido por uma corrente circulando um pequeno circuito, já um dipolo magnético de Gilbert é um dipolo magnético formado por duas cargas magnéitcas separados por uma pequena distância. Ampère e Gilbert entraram em uma discussão ao afirmar que o modelo de dipolos magnéticos do outro estaria incorreto e, para resolverem suas diferenças, um experimento foi proposto envolvendo o interior de um ímã de formato cilíndrico. Ambos os cientistas concordaram em modelar o objeto como possuindo uma certa magnetização constante Mna direção do eixo do cilindro, que gera um resultado idêntico ao experimental para o campo magnético externo em ambos os modelos, permitindo encontrar o sentido de \dot{M} .

- a) Mostre que o modelo de Gilbert para o ímã permanente prevê um campo magnético interno oposto ao da magnetização e calcule, baseando-se nesse modelo, o valor do campo magnético no centro do cilindro para os casos em que L >> R e L << R.
- b) Mostre que o modelo de Ampère para o ímã permanente prevê um campo magnético interno no sentido da magnetização e calcule, baseando-se nesse modelo, o valor do campo magnético no centro do cilindro para os casos em que L >> R e L << R.

Após utilizarem partículas carregadas altamente energéticas para testarem o sentido do campo magnético dentro do ímã, mas Gilbert não admite estar errado e avisa Ampère que encontrará um monopolo magnético.

Um dipolo magnético pontual \vec{m} no vácuo (meio 1) está apontando na direção da superfície plana de um meio (2) com permeabilidade relativa μ . A distância entre o dipolo e a superfície é d. Calcule o campo magnético dentro do meio 2 e a força agindo no dipolo.

Figura 3: Dipolo magnético e meio de permeabilidade relativa μ

8 Só porque dá bonito *

Calcule a indutância mútua entre um fio infinito e um fio circular de raio a que quase tangencia o fio infinito. (Ver figura).

Figura 4: Fio e infinito e espira circular

9 Eu posso fazer isso com 12 fios? ***

Um fio infinito pelo qual passa uma corrente I está a uma distância d da superfície plana e paralela ao fio de um meio com permissividade relativa μ e dimensões muito maiores que d. Determine o campo magnético dentro desse meio e a força sentida pelo fio.

10 Razão Giromagnética ****

Considere uma região finita do espaço em que a distribuição de cargas é proporcional a distribuição de massa, ou seja, $\frac{\rho_m}{M_t} = \frac{\rho_q}{Q_t}$ para todo ponto no espaço. Nessas condições, um resultado conhecido e muito útil é a chamada razão giromagnética:

$$\vec{m} = \frac{Q_t}{2M_t} \vec{L} \tag{1}$$

Para demonstrar essa relação, é necessário conhecer a fórmula geral para o momento magnético de uma distribuição de correntes:

$$\vec{m} = \frac{1}{2} \int \vec{r'} \times \vec{J}(\vec{r'}) d\tau' \tag{2}$$

Demonstre, a partir da expansão para grandes distâncias da fórmula para o vetor potencial gerado por uma distribuição de correntes, a fórmula acima e utilize-a para demonstrar o resultado da razão giromagnética.

11 Razão Giromagnética, só que fácil **

Um disco de espessura e, raio R, massa M e carga Q possui sua massa e sua carga uniformemente distribuída. Calcule diretamente o momento angula e o momento magnético desse disco quando ele gira com velocidade angular ω . Verifique que a razão giromagnética está sendo satisfeita.

12 Complexo ou não *

Uma partícula carregada entra em uma região na qual há uma força de fricção proporcional a velocidade da partícula, parando então há 10 cm do ponto de seu ponto de entrada. Se esse movimento é repetido com a presença de um campo magnético B homogêneo e perpendicular ao plano do movimento, então a partícula parará a uma distância de 6 cm do ponto de entrada. A que distância do ponto de entrada a partícula pararia se o campo magnético fosse duas vezes mais intenso?