Math 835 Homework 5

Theo Koss

October 2024

Chapter 13

Section 5

- 2. Find all irred. polynomials of degree 1, 2, and 4 over \mathbb{F}_2 and prove their product is $x^{16}-x$
 - Degree 1: x and x + 1.
 - Degree 2: $x^2 + x + 1$.
 - Degree 4: $x^4 + x^3 + x^2 + x + 1$, $x^4 + x^3 + 1$, $x^4 + x + 1$.

Product:

$$x(x+1)(x^{2}+x+1)(x^{4}+x^{3}+x^{2}+x+1)(x^{4}+x^{3}+1)(x^{4}+x+1)$$

$$= (x^{4}+x)(x^{4}+x^{3}+x^{2}+x+1)(x^{4}+x^{3}+1)(x^{4}+x+1)$$

$$= (x^{8}+x^{7}+x^{6}+x^{3}+x^{2}+x+1)(x^{4}+x^{3}+1)(x^{4}+x+1)$$

$$= (x^{8}+x^{7}+x^{6}+x^{3}+x^{2}+x+1)(x^{8}+x^{7}+x^{5}+x^{4}+x^{3}+x+1)$$

$$= (x^{16}+x) = (x^{16}-x)$$

3. Prove that d divides n iff $x^d - 1$ divides $x^n - 1$. Note that if n = qd + r then $x^n - 1 = (x^{qd+r} - x^r) + (x^r - 1)$

Proof. (\Longrightarrow) Let $d\mid n$. Then n=kd for some $k\in\mathbb{Z}$. We then have $x^n-1=x^{kd}-1$. Let $y=x^d$ and substitute,

$$y^{q} - 1 = (y - 1)(y^{q-1} + \dots + y + 1)$$

So

$$x^{n} - 1 = (x^{d} - 1)(x^{dq-d} + x^{dq-2d} + \dots + x^{d} + 1)$$

 (\longleftarrow) Assume d does not divide n.

$$n = qd + r, \ r < d, \ r \neq 0$$

$$x^{n} - 1 = (x^{qd+r} - x^{r}) + (x^{r} - 1)$$
$$= x^{r}(x^{qd} - 1) + (x^{r} - 1)$$

But x^d divides the first part, and not the second part. So we have x^d-1 does not divide x^n-1 contradiction.

4. Let a > 1 be an integer. Prove for any positive integers n, d that d divides n if and only if $a^d - 1 \mid a^n - 1$ (cf. the previous exercise). Conclude in particular that $\mathbb{F}_{p^d} \subseteq \mathbb{F}_{p^n}$ if and only if $d \mid n$.

Proof. By above, the polynomial $x^d-1\mid x^n-1$ iff $d\mid n$. So (\Longrightarrow) Let $\mathbb{F}_{p^d}\subseteq \mathbb{F}_{p^n}$ and $k\in \mathbb{F}_{p^d}$, then we have $k\in \mathbb{F}_{p^n}$. Then, the finite fields are determined by roots of $x^{p^d}-x$ and $x^{p^n}-x$ respectively. So k is a root of both $x^{p^d}-x$ and $x^{p^n}-x$, therefore

$$x^{p^d} - x \mid x^{p^n} - x \implies p^d \mid p^n \implies d \mid n$$

(\iff) Let $d \mid n$, then n = dq for some $q \in \mathbb{Z}^+$. So

$$x^{p^d} - x \mid x^{p^{dq}} - x = x^{p^n} - x \implies \mathbb{F}_{p^d} \subseteq \mathbb{F}_{p^n}$$