МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №4
"Распознавание рукописных символов"
по дисциплине «Искусственные нейронные сети»

Студентка гр. 8383	 Ишанина Л.Н.
Преподаватель	 Жангиров Т.Р.

Санкт-Петербург

Цель работы.

Реализовать классификацию черно-белых изображений рукописных цифр (28x28) по 10 категориям (от 0 до 9).

Набор данных содержит 60,000 изображений для обучения и 10,000 изображений для тестирования.

Задание.

- Ознакомиться с представлением графических данных
- Ознакомиться с простейшим способом передачи графических данных нейронной сети
- Создать модель
- Настроить параметры обучения
- Написать функцию, позволяющая загружать изображение пользователи и классифицировать его

Найти архитектуру сети, при которой точность классификации будет не менее 95%

Исследовать влияние различных оптимизаторов, а также их параметров, на процесс обучения

Написать функцию, которая позволит загружать пользовательское изображение не из датасета

Выполнение работы.

Была создана и обучена модель искусственной нейронной сети.

Далее были рассмотрены оптимизаторы Adagrad, Adam, RMSprop и SGD с разными входными параметрами.

Анализ оптимизаторов искусственных нейронных сетей.

Для всех оптимизаторов установлен коэффициент скорости обучения:

learning_rate - 0.001

Оптимизатор Adagrad:

Результат тестирования представлен на рис.1-2.

Рисунок 1 – графики точности при оптимизаторе Adagrad.

Рисунок 2 – графики потерь при оптимизаторе Adagrad.

Оптимизатор Adam:

Результат тестирования представлен на рис.3-4.

Рисунок 3 – графики точности при оптимизаторе Adam.

Рисунок 4 – графики потерь при оптимизаторе Adam.

Оптимизатор RMSprop:

Результат тестирования представлен на рис.5-6.

Рисунок 5 – графики точности при оптимизаторе RMSprop.

Рисунок 6 – графики потерь при оптимизаторе RMSprop.

Оптимизатор SGD:

Результат тестирования представлен на рис. 7-8.

Рисунок 7 – графики точности при оптимизаторе SGD.

Рисунок 8 – графики потерь при оптимизаторе SGD.

Затем для всех оптимизаторов был установлен коэффициент скорости обучения:

learning rate - 0.01

Оптимизатор Adagrad:

Результат тестирования представлен на рис.9-10.

Рисунок 9 – графики точности при оптимизаторе Adagrad.

Рисунок 10 – графики потерь при оптимизаторе Adagrad.

Оптимизатор Adam:

Результат тестирования представлен на рис.11-12.

Рисунок 11 – графики точности при оптимизаторе Adam.

Рисунок 12 – графики потерь при оптимизаторе Adam.

Оптимизатор RMSprop:

Результат тестирования представлен на рис.13-14.

Рисунок 13 – графики точности при оптимизаторе RMSprop.

Рисунок 14 – графики потерь при оптимизаторе RMSprop.

Оптимизатор SGD:

Результат тестирования представлен на рис.15-16.

Рисунок 15 – графики точности при оптимизаторе SGD.

Рисунок 16 – графики потерь при оптимизаторе SGD.

test_acc: 0.9792

learning_rate	Adagrad	Adam	RMSprop	SGD
0.001	0.8749	0.9789	0.9797	0.9819
0.01	0.9822	0.9667	0.9746	0.9792

Таким образом, при коэффициенте скорости обучения 0.001 лучший результат показал оптимизатор SGD, а при коэффициенте скорости обучения 0.01 лучший результат показал оптимизатор Adagrad.

Adagrad показал лучшую эффективность при learning_rate = 0.01
Adam показал лучшую эффективность при learning_rate = 0.001

RMSprop показал лучшую эффективность при learning_rate = 0.001 SGD показал лучшую эффективность при learning rate = 0.001

Далее было загружено пользовательское изображение:

Изображение было подано на вход нейронной сети. ИНС дала правильный ответ:

Выводы.

В ходе выполнения лабораторной работы было изучено представление и обработка графических данных, простейших черно-белых изображений. Было исследовано влияние различных оптимизаторов, а также их параметров на процесс обучения. Лучший результат был достигнут с оптимизатором Adagrad со скоростью обучения 0.01.