CS 203: Software Tools & Techniques for Al IIT Gandhinagar Sem-II - 2024-25

LAB 06

Lead TA: Section 1- Eshwar Dhande; Section 2- Himanshu Beniwal

Total marks: 100

Submission deadline: Tuesday, 25/02/2025 11:59 PM

Submission guidelines:

- 1. Code should be added to a GitHub repository, and the **repository details** should be shared in the pdf.
- 2. **Submit the PDF showing screenshots** of all steps involved in the following code.

Note: By submitting this assignment solution you confirm to follow the IITGN's honor code. We shall strictly penalize the submissions containing plagiarized text/code.

Roll Number: (Aryan Solanki) 23110049 and (Parthiv Patel) 23110237

Graph in Weight and Biases

■ Model architecture and hyperparameters.

The Multi-Layer Perceptron (MLP) model used for classification consists of the following layers:

• **Input Layer**: 4 neurons (corresponding to the 4 input features)

• Hidden Layer: 16 neurons with ReLU activation

• Output Layer: 3 neurons with softmax activation for multi-class classification

The model was trained using the **Adam optimizer** with a learning rate of **0.001**. Other hyperparameters include:

Loss Function: Categorical Cross-Entropy

Batch Size: 32Epochs: 50

All these hyperparameters were logged in **Weights & Biases (W&B)** to ensure reproducibility and tracking of training progress.

It can also be seen in the W&B screenshot given below

Training & Validation loss Graph

Confusion Matrix

Final evaluation results.

Metric	Value		
Accuracy	90%		
Precision	92.1%		
Recall	90%		
F1	89.6%		

Total loss in batch in each epoch

```
Epoch 1: train loss=5.8671, val loss=1.1470
Epoch 2: train_loss=5.7476, val_loss=1.1246
Epoch 3: train loss=5.6729, val loss=1.1030
Epoch 4: train loss=5.4961, val loss=1.0823
Epoch 5: train loss=5.4439, val loss=1.0622
Epoch 6: train loss=5.2940, val loss=1.0430
Epoch 7: train loss=5.2436, val loss=1.0243
Epoch 8: train loss=5.1471, val loss=1.0062
Epoch 9: train loss=5.0572, val loss=0.9883
Epoch 10: train loss=5.0275, val loss=0.9705
Epoch 11: train loss=4.8466, val loss=0.9532
Epoch 12: train loss=4.7280, val loss=0.9351
Epoch 13: train loss=4.6204, val loss=0.9163
Epoch 14: train loss=4.5289, val loss=0.8977
Epoch 15: train_loss=4.5689, val loss=0.8789
Epoch 16: train loss=4.4225, val loss=0.8599
Epoch 17: train loss=4.4645, val_loss=0.8407
Epoch 18: train loss=4.3239, val loss=0.8215
Epoch 19: train loss=4.1788, val loss=0.8017
Epoch 20: train loss=3.9562, val loss=0.7817
Epoch 21: train loss=3.9455, val loss=0.7612
Epoch 22: train loss=3.8099, val loss=0.7407
Epoch 23: train loss=3.8434, val loss=0.7203
Epoch 24: train_loss=3.7337, val_loss=0.7000
Epoch 25: train loss=3.4714, val loss=0.6806
Epoch 47: train loss=2.2222, val loss=0.3767
Epoch 48: train loss=2.0895, val loss=0.3687
Epoch 49: train loss=2.0737, val loss=0.3612
Epoch 50: train loss=1.8927, val loss=0.3538
```

SECTION 2

Compare manual tuning vs. automated search

Which approach is better, and why?

ANS: In general, automated search is advantageous because it methodically examines a wider range of hyperparameters, minimising human bias and effort while frequently attaining better results. However, when resources are scarce, manual adjustment may be helpful for short experiments.

Epochs vs. Performance: accuracy and F1-score increase with more epochs. At one epoch, performance is around 86.67%, while at five epochs, both metrics reach 100%, confirming a direct relationship.

Learning Rate vs. Performance: A higher learning rate (0.001) allows faster convergence, achieving near-optimal performance in fewer epochs. A lower learning rate (0.00001) still achieves good results but requires more epochs to reach similar accuracy.

Batch Size vs. Performance (Hypothetical): Smaller batch sizes (e.g., 2 or 4) may provide more frequent updates, improving convergence and final performance. However, a batch size that is too small may introduce noise, affecting stability. Larger batch sizes could result in smoother but slower updates, potentially reducing generalization ability.

Plots for the training vs. validation loss for each hyperparameter configuration.

