Real-Time Communication System Powered by AI for Specially Abled

Submitted by

Princy Sindhiya JA (911719104047)

Vaishali T R (911719104079)

Abinaya S (911719104003)

Pavithra G (911719104044)

Team ID:PNT2022TMID47812

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. **REQUIREMENT ANALYSIS**

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTIONING

- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Feature 3

8. TESTING

- 8.1 Test Cases
- 8.2User Acceptance Testing
- 9. RESULTS
- 9.1Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

Source Code

GitHub & Project Demo Link

1. INTRODUCTION

1.1 Project Overview

People get to know one another by sharing their ideas, thoughts, and experiences with those around them. There are numerous ways to accomplish this, the best of which is the gift of "Speech." Everyone can very convincingly transfer their thoughts and understand each other through speech. It will be unjust if we overlook those who are denied this priceless gift: the deaf and dumb. In such cases, the human hand has remained the preferred method of communication. An app is built which uses this model. This app enables deaf and dumb people to convey their information using signs which get converted to human-understandable language and speech is given as output

1.2 Purpose

The project's purpose is to create a system that translates sign language into a human-understandable language so that ordinary people may understand it. Implementing predictive model technology to automatically classify Sign Language symbols can be used to create a form of real-time captioning for virtual conferences like Zoom meetings and other such things. This would greatly increase access of such services to those with hearing impairments as it would go hand-in-hand with voice-based captioning, creating a two-way communication system online for people with hearing issues.

2. LITERATURE SURVEY

	T				
JOURNAL	AUTHOR	DATE	DESCRIPTION	ADVANTANGE S	DISADVANTAG ES
Artificial	Aditya	Januar	Object tracking,	It provided a one-	Lack of Higher
Intelligence	Sharma,	y2020	recognition &	stop-shop solution	accuracy of the
enabled	Aditya Vats		classification, and	to all the sections of	implementation
virtualsixth	,Shiv		character	differently-abled	through the use of
sense	Shankar		recognition in	people.	custom models for
application	Dash and		offlinemode and	Integration has	object detection
forthe	Surinder		guarded the app to	provided a seamless	
disabled	Kaur.		shrink thesize of	User	
			the app	interface/experience for the initial setup	
Integrating	Ebenezer	Januar	Future Grid that	Enhance the	System is not truly
Artificial	Esenogho,	y6,	leverage disruptive	transition of	smart or intelligent
ntelligence	Karim	2022	technologies like	severalintegrated	without the infusion
nternet of	Djouani		AI, IoT and 5G for	solutions from	of AI/ML strategies
hing	And Anish		robustreliability,	blockchain to	
5G for	MKurien		security, resilience,	Internet Of Things	
NextGeneration			and overall system	, and 5G.	
martgrid:A			performance.		
SSurve					
Tren					
dhallenges and					
Pr					
ospect					
D-Talk: Sign	Rayan	Septe	D- talk use	Different sign	The code is
Language	Mohammed	mber	machine learning	languageeandards	dependingon skin
Recognition	Shleh , Reem	2020	model accuracy in	exist, their at aset	color and contour to
System for	Arahim		figuring out which	and the user cho	find the right sign.
People with	Al		model is best at	which sign	developers narrow
Disability	Beeshr		distinguishing	language to read.	the tasks to only one
using	Muhammad		connections		task which is browse
Machine	Shman Tariq				websites only
Learning and					

Image					
Processing					
Edge Artificial	Khaled B.	1,	Key wireless	Embedding low-	Lack of
Intelligence for	Letaief,	Januar	communication	power, low-	Multidiscipli
6G: Vision,	Yuanming	y2022	techniques,	latency,reliable,	nary
Enabling	Shi,		effectiveresource	and trustworthy	spanning
Technologies,	JianminLu,		management	intelligence into	wireless
and	and		approaches and	thenetwork edge is	communicati
Applications	Jianhua Lu.		holistic network	an inevitable trend	on machine
			architectures to	anddisruptive shift	learning
			design scalable and	in both academia	operation
			trustworthy edge	and industry.	research
			AI systems.		domain
					applications,
					regulations
					and ethics.
Guest	Prosper	6, June	AI-based radio	Channel sparsity	Lack of many
Editorial	Chemouil,	2019	propagation	inhigh-frequency	concrete
Special Issue	Pan Hui,		technologies in the	propagation well	proposals on
onArtificial	Wolfgang		integration of	considered during	AI-based
Intelligence	Kellerer, Yo		sensing and	the AI network	channel
andMachine	ngLi, Rolf		communications,	design.	parameter
Learning for	Stadler,		how to control		estimation
Networking	Dacheng		propagation		and
and	Tao,		signals using		characterizati
Communicatio	Yonggang		reconfigurable		on
ns	Wen, and		intelligent surfaces		
	Ying Zhang,		with AI support		

3.1 Existing Problem

Depending on the deaf person's level of hearing loss, they may be able to communicate with a blind person who is using speech. For example, a deaf person may have enough residual hearing (with or without the use of an assistive hearing device such as a hearing aid) to be able to decipher the speech of the person who is blind or has low vision. However, this is often not the most effective form of communication, as it is very dependent on

the individual circumstances of both people and their environment (for example, some places may have too much background noise)

3.2 References

- 1. Environment Setup: https://www.youtube.com/watch?v=5mDYijMfSzs
- 2. Dataset:
 https://drive.google.com/file/d/1ITbDvhLwyTTkuUYfNjOKhcIZh7hDgi64/view?usp
 =sharing
- 3. CNN using Tensorflow: https://www.youtube.com/watch?v=umGJ30-15_A
- 4. OpenCV Basics of Processing Image: https://www.youtube.com/watch?v=mjKd1Tzl701

2.3 Problem Statement Definition

Problem Statement 1

Problem Statement 2

Problem Statement 3

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation and Brainstorming

Step 1: Team Gathering, Collaboration

Step 2: Brainstorm idea listing and Grouping

Step 3 : Idea Prioritization

3.3 Proposed Solution

People get to know one another by sharing their ideas, thoughts, and experiences with those around them. There are numerous ways to accomplish this, the best of which is the gift of "Speech." Everyone can very convincingly transfer their thoughts and understand each other through speech. In such cases, the human hand has remained the preferred method of communicationThe project aims to develop a system that converts the sign language into a human hearing voice in the desired language to convey a message to normal people, as well as convert speech into understandable sign language for the deaf and dumb. A system that translates sign language into a Human understandable language so that ordinary people may understand it.

3.4 Problem Solution Fit

4. REQUIREMENT ANALYSIS

4.1 Functional Requirements

FR No.	Functional Requirement (EPIC)	Sub Requirement (Story / Sub Task)
FR-1	User Registration	Registration through Form Registration through Gmail Registration through LinkedIN
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP
FR-3	Uploading Image	Upload image through camera Upload image through gallery
FR-4	Text to Speech	Select speech icon to convert the respective text for sign language
FR-5	Whiteboard	Use whiteboard to share the message by drawing
FR-6	Emergency Templates	Select emergency templates icon to pass the message quickly

4.2 Non Functional Requirements

FR No	Non-Functional Requirements	Description
NFR-1	Usability	Client can undoubtedly upload the image and this application is planned in a manner here, client can without much of a stretch discover some predefined layouts
NFR-2	Security	Clients should sign in into an app only then proceed for further process. So unapproved access will be kept away from at max.
NFR-3	Reliability	This application has robust adaptation to noncritical failure and regardless of whether an error happens likewise it recuperates rapidly.
NFR-4	Performance	This application will rapidly transfer and process the images since it predicts the gestures through signing utilizing CNN model and it gives high accuracy.

NFR-5	Availability	The predefined formats will be accessible to all clients and furthermore have whiteboard choice. This application is planned such that it is straightforward and accessible to all clients.
NFR-6	Scalability	Engineers can add new form a stand it will build adaptability and this application has premium elements where client approach google maps and google duo.

5. PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution and Technical Architecture

5.3 User Stories

- As an admin, give user Id and provide account to the user.
- As an admin, I can see the dashboard of Account.
- As an admin, I can create a Account for All users.
- As a Co-admin, Manage all accounts and answer the queries of the Customer.
- As a Co-admin, I can see the dashboard of the User.
- As a user, I can register for Application, through Facebook and Gmail.

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning and Estimation

Sprint	Functional Requirement (EPIC)	User Story Number	User Story/ Task	Stor y Poin ts	Priority
Sprint 1	Dataset Collection	USN - 1	Collect Dataset for building model	9	High
Sprint 2	Image Preprocessing	USN - 2	Perform Preprocessing techniques on the Dataset	8	Medium
Sprint3	Model Building	USN - 3	Import the Required libraries, add the necessary layers and compile the model.	10	High
Sprint 4	Training and Testing the Model	USN - 4	Training the model and testing the model's	7	Medium

			performance		
Sprint 5	Application Development	USN - 5	Converting the input gesture image into English Alphabets.	9	High

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date	Story points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint 1	17	6 Days	24 Oct 2022	29 Oct 2022	17	29 Oct 2022
Sprint 2	17	6 Days	31 Oct 2022	05 Nov 2022	17	05 Nov 2022
Sprint 3	9	6 Days	07 Nov 2022	12 Nov 2022	9	12 Nov 2022
Sprint 4	8	6 Days	14 Nov	19 Nov	8	19 Nov

	2022	2022	2022

Burn down Chart:

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

6.3 Reports From JIRA

7. CODING & SOLUTIONING

7.1 Feature 1

Image Preprocessing

7.2 Feature 2

Model Building

7.3 Feature 3

Application Building

```
File Edit Selection View Go Run Terminal Help

    Building _Flask_Application_Part_3.ipynb - Visual Studio Code

                                                                                                                                                                                                                                                                  ⊕ □ ···
         ■ Building _Flask_Application_Part_3.ipynb ●
          C > Users > hr > Desktop > IBM > Project | Development Phase > Sprint-3 > Application Building > ■ Building _Flask_Application_Part_3(pynb > ♠ import numpy as np + Code + Markdown | □ Interrupt ■ Clear Outputs of All Cells ♣ Go To | ■ Outline ...

@app_route(¹/')
  Q
                                                                                                                                                                                                                                                               Python 3.10
                         index():
    return render_template('index.html')
 ş,
 $
留
               Building Flask Application-Part 3
                         detect(frame):
img-resize(frame,(64,64,1))
img-np.expand_dims(img,axis=0)
if(np.max(img)1):
| img-img/255.0
with graph.s-default():
| prediction=model.predict_classes(img)
print(prediction)
pred-wals(prediction[0]]
print(pred)
 Д
 def video_feed():
    return Response( gen(video), mimetype = 'multipart/x-mixed-replace ; boundary=frame')
                         __name__ =='__main__':
app.run(host='0.0.0.0',debug=True)
 8
                                                                                                                                                                                                     ① Connecting to kernel: Python 3.10: Activating Python Environment 'Pyt...
```

8. TESTING

8.1 Performance Testing

S.No	Parameter	Values
1	Model Summary	Value for Model Summary is 90
2	Accuracy	Training Accuracy -80 Validation Accuracy - 88

8.2 User Acceptance Testing Sprint

1. Purpose of Document

The project's purpose shows the number of resolved or closed bugs at each severity level, and how they were resolved, the number of test cases that have passed, failed, and untested

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By design	5	4	2	0	11
External	2	3	7	1	13
Fixed	4	4	2	1	11
Not Reproduced	0	3	1	0	4
Skipped	0	0	1	1	2
Won't Fix	0	2	2	1	5
Totals	11	16	15	4	92

2 Defect Analysis

This report shows the number of resolved or closed bugs at each severity Level how they were resolved

Section	Total Cases	Not Tested	Fall	Pass
Print Engine	4	0	1	3
Client App	30	0	2	28
Security	2	0	0	2
Outsource Shipping	3	0	0	3
Exception Reporting	7	0	2	5
Final Reporting Output	4	0	0	4
Version Control	2	0	0	2

9. RESULT

1/1 [=======] - 0s 10ms/step Predicted Character 1: A Confidence 1: 50.20339488983154

9.1 Performance Metrices

Confusion matrix and classification report

Confi	usio	on I	lati	rix				
[[38	31	33	26	29	22	31	19	21]
[31	28	25	27	26	26	33	26	28]
[22	18	28	34	30	36	33	21	28]
[32	21	23	34	30	24	42	22	22]
[29	23	29	18	25	30	32	30	34]
[20	29	27	26	32	25	32	22	37]
[27	30	26	32	21	31	33	26	24]
[26	41	25	26	24	26	30	25	27]
[25	29	33	28	33	30	29	14	29]]

Classificatio	n Report			
	precision	recall	f1-score	support
A	0.15	0.15	0.15	250
В	0.11	0.11	0.11	250
C	0.11	0.11	0.11	250
D	0.14	0.14	0.14	250
E	0.10	0.10	0.10	250
F	0.10	0.10	0.10	250
G	0.11	0.13	0.12	250
н	0.12	0.10	0.11	250
I	0.12	0.12	0.12	250
accuracy			0.12	2250
macro avg	0.12	0.12	0.12	2250
weighted avg	0.12	0.12	0.12	2250

Accuracy

10. ADVANTAGES & DISADVANTAGES

Advantages:

- 1. It provided a one stop-shop solution to all the sections of differently-abled people
- 2. Enhance the transition of several integrated solutions from blockchain to Internet Of Things , and 5G.

Disadvantages:

- 1. Lack of Higher accuracy of the implementation through the use of custom models for object detection
- 2. System is not truly smart or intelligent without the infusion of AI/ML strategies
- 3. The code is depending on skin color and contour to find the right sign.

11.CONCLUSION

Sign language is a useful tool for facilitating communication between deaf and hearing people. Because it allows for two-way communication, the system aims to bridge the communication gap between deaf people and the rest of society. The proposed methodology translates language into English alphabets that are understandable to humans.

This system sends hand gestures to the model, who recognises them and displays the equivalent Alphabet on the screen. Deaf-mute people can use their hands to perform sign language, which will then be converted into alphabets, thanks to this project.

12. FUTURE SCOPE

Having a technology that can translate hand sign language to its corresponding alphabet is a game changer in the field of communication and Ai for the specially abled people such as deaf and dumb. With the introduction of gesture recognition, the web app can easily be expanded to recognize letters beyond 'I', digits and other symbols plus gesture recognition can also allow controlling of software/hardware interfaces.

13. APPENDIX

13.1 GitHub & Project Demo

- GitHub : https://github.com/IBM-EPBL/IBM-Project-43496-1660717417
- Project Demo: https://www.veed.io/view/f7d04977-014b-44af-b613-fbbd9295693b?sharingWidget=true&panel=share