ALGEBRAIC MONOIDS

1. THE UNIT GROUP OF AN ALGEBRAIC MONOID

Theorem 1.1. Let $f: X \to Y$ be a dominant morphism of finite type between irreducible schemes. Suppose that η is a generic point and assume that the generic fiber $f^{-1}(\eta)$ is finite. Then there exists an open and nonempty subset V of Y such that the restriction $f^{-1}(V) \to V$ of V is finite.

For the proof we need the following local version of the theorem.

Lemma 1.1.1. Let A be a ring such that Spec A is irreducible and let B be an A-algebra of finite type. Suppose that a unique minimal prime ideal $\mathfrak p$ of A is nilpotent and $k(\mathfrak p) \otimes_A B$ is finite over $k(\mathfrak p)$, where $k(\mathfrak p)$ denotes the residue field of $\mathfrak p$ in A. Then there exists nonzero s in A such that B_s is a finite A_s -module.

Proof of the lemma. Let $b_1,...,b_n$ be generators of B as an A-algebra. Then

$$\overline{b_i} = b_i \operatorname{mod} \mathfrak{p} B$$

for $1 \le i \le n$ are generators of $B/\mathfrak{p}B$ as an A/\mathfrak{p} algebra. Since $k(\mathfrak{p}) \otimes_A B$ is finite over $k(\mathfrak{p})$ for each i there exists positive integer m_i and a polynomial

$$f_i(x) = s_{m_i} x^{m_i} + s_{m_i-1} x^{m_i-1} + \dots + s_0 \in (A/\mathfrak{p})[x]$$

such that $s_{m_i} \neq 0$ and $f_i(\overline{b_i}) = 0$. Let $s \in A$ be an element such that

$$\overline{s} = s \mod \mathfrak{p} = s_{m_1} \cdot s_{m_2} \cdot \dots \cdot s_{m_n}$$

Clearly s is nonzero and $B_s/(\mathfrak{p}B)_s = (B/\mathfrak{p}B)_s$ is a finite A_s -algebra. Hence there exists a finite A_s -submodule M of B_s such that

$$B_S = M + (\mathfrak{p}B)_S = M + \mathfrak{p}B_S$$

Since $\mathfrak p$ is nilpotent, there exists $N \in \mathbb N$ such that $\mathfrak p^N = 0$. Thus

$$B_s = M + \mathfrak{p}B_s = M + \mathfrak{p}M + \mathfrak{p}^2B_s = \dots = M + \mathfrak{p}M + \dots + \mathfrak{p}^{N-1}M + \mathfrak{p}^NB_s = M + \mathfrak{p}M + \dots + \mathfrak{p}^{N-1}M$$
 is a finite A_s -module. \Box

Proof of the theorem. Pick an open, nonempty, affine neighborhood W of η . Since f is of finite type, we derive that

$$f^{-1}(W) = \bigcup_{i=1}^n U_i$$

where each U_i is nonempty open affine subscheme of X and moreover, the morphism $U_i \to V$ induced by f is of finite type. According to Lemma 1.1.1 for each i there exists an open, affine and nonempty subscheme $W_i \subseteq W$ such that the morphism $f^{-1}(W_i) \cap U_i \to W_i$ induced by f is finite. Thus replacing W by the intersection of $W_1,...,W_n$ we may assume that each $U_i \to W$ is finite. Consider

$$F = f^{-1}(W) \setminus \left(\bigcap_{i=1}^{n} U_i\right)$$

Then F is a closed subset of $f^{-1}(W)$ and it does not contain the generic point ξ of X. Since each restriction $U_i \to W$ of f is finite, we derive that $f(U_i \cap F)$ is closed in W for every $1 \le i \le n$ and does not contain $\eta = f(\xi)$ (f is dominant). Thus f(F) is a closed subset of W and $\eta \notin f(F)$. Hence $V = W \setminus f(F)$ is an open neighborhood of η and $f^{-1}(V) \subseteq \bigcap_{i=1}^n U_i$. Thus the restriction $f^{-1}(V) \to V$ of f is finite.

1

Theorem 1.2. Let M be a geometrically integral algebraic monoid k-scheme. Suppose that G is a group of units of M and $i: G \hookrightarrow M$ is the canonical monomorphism. Then i is an open immersion.

Proof. Assume that k is algebraically closed. Denote by $\mu : \mathbf{M} \times_k \mathbf{M} \to \mathbf{M}$ and $e : \operatorname{Spec} k \to \mathbf{M}$ the multiplication and the unit, respectively. Since \mathbf{M} is integral and of finite type over k, we derive that $\mathbf{M} \times_k \mathbf{M}$ is integral and

$$\dim (\mathbf{M} \times_k \mathbf{M}) = 2 \cdot \dim (\mathbf{M})$$

Moreover, μ is surjective (which can be checked on k-functors of points). Pick any irreducible component Z of $\mu^{-1}(e)$. By [Görtz and Wedhorn, 2010, Lemma 14.109] we deduce

$$\dim(Z) \ge \dim(\mu^{-1}(\eta))$$

where η is the generic point of **M**. Since

$$\dim(\mu^{-1}(\eta)) = \dim(\mathbf{M} \times_k \mathbf{M}) - \dim(\mathbf{M}) = 2 \cdot \dim(\mathbf{M}) - \dim(\mathbf{M}) = \dim(\mathbf{M})$$

we deduce that $\dim(Z) \ge \dim(\mathbf{M})$. Moreover, we have $\mathbf{G} \cong \mu^{-1}(e)$ as k-schemes and this isomorphism is given by the restriction $\pi: \mu^{-1}(e) \to \mathbf{G}$ to $\mu^{-1}(e)$ of the projection $\mathrm{pr}: \mathbf{M} \times_k \mathbf{M} \to \mathbf{M}$ on the first factor (this can be checked on k-functors of points). Hence \mathbf{G} is of finite type over k as it is isomorphic with a closed subscheme of $\mathbf{M} \times_k \mathbf{M}$ and each irreducible component Z of \mathbf{G} is of dimension at least $\dim(\mathbf{M})$. Now we fix an irreducible component Z of \mathbf{G} and consider it as a closed subscheme of \mathbf{G} with reduced structure. Then the morphism $i_{|Z}: Z \to \mathbf{M}$ is a monomorphism of finite type and $\dim(Z) \ge \dim(\mathbf{M})$. Hence $i_{|Z}$ is dominant. Since i is a monomorphism, this implies that \mathbf{G} has only one irreducible component and $i: \mathbf{G} \to \mathbf{M}$ is dominant. By Theorem 1.1 there exists an open and nonempty subset V of \mathbf{M} such that the morphism $i^{-1}(V) \to V$ induced by i is finite. Finite monomorphisms are closed immersions and dominant, closed immersions with integral scheme as a codomain are isomorphisms. Thus $i^{-1}(V) \to V$ is an isomorphism. Now pick a k-point g of \mathbf{G} . Since \mathbf{G} is a group k-scheme, we derive that $g \cdot (-): \mathbf{M} \to \mathbf{M}$ is an automorphism of k-scheme \mathbf{M} . This implies that $i^{-1}(g \cdot V) \to g \cdot V$ is an isomorphism. This holds for every k-point of \mathbf{G} and

$$i(\mathbf{G}) \subseteq \bigcup_{g \in \mathbf{G}(k)} g \cdot V$$

where G(k) is the set of k-points of G. Therefore, i is an open immersion.

If k is not algebraically closed, then we pick an algebraically closed extension K of k and consider $1_{\text{Spec }K} \times_k i$. This is an open immersion according to the case considered above. By faithfuly flat descent i is an open immersion.

The more general result for algebraically closed fields is [Brion, 2014, Theorem 1]. Let us also note the following theorems.

Theorem 1.3 ([Demazure and Gabriel, 1970, Chapitre 2, &2, Corollaire 3.6]). Let \mathbf{M} be an affine, algebraic monoid k-scheme. Suppose that \mathbf{G} is a group of units of \mathbf{M} . Then there exists a regular function f on \mathbf{M} such that canonical morphism $\mathbf{G} \hookrightarrow \mathbf{M}$ is the inclusion of open subscheme of \mathbf{M} on which f is nonzero.

The converse is also true.

Theorem 1.4 ([Brion, 2014, Theorem 2]). Let M be a geometrically integral algebraic monoid over a field k and let G be an group of units of M. If G is affine, then M is affine.

2. Kempf monoids

In this section we discuss an important class of monoid *k*-schemes.

Proposition 2.1. Let **M** be a monoid k-scheme with zero **o** and with group **G** of units. Suppose that for some field K over k there exists a closed immersion

$$i: \mathbb{A}^1_K \to \operatorname{Spec} K \times_k \mathbf{M}$$

of monoid K-schemes sending the zero of \mathbb{A}^1_K to the unique zero \mathbf{o}_K of Spec $K \times_{\operatorname{Spec} k} \mathbf{M}$ lying over \mathbf{o} . Let U be an open \mathbf{G} -stable subscheme of \mathbf{M} . Then the following are equivalent.

- (i) o is contained in U
- (ii) $U = \mathbf{M}$

Proof. Suppose that (i) holds. Denote

Spec
$$K \times_k \mathbf{M}$$
, Spec $K \times_k \mathbf{G}$, Spec $K \times_k U$

by \mathbf{M}_K , \mathbf{G}_K , U_K , respectively. Note that $i(\mathbf{G}_{m,K}) \subseteq \mathbf{G}_K$. Fix a field L over K and a morphism $j: \operatorname{Spec} L \hookrightarrow \mathbf{M}_K$. Next consider the composition

where the second morphism $\mu_K: \mathbf{M}_K \times_k \mathbf{M}_K \to \mathbf{M}_K$ is the multiplication. Clearly f is $\mathbb{G}_{m,L}$ -equivariant. Hence $f^{-1}(U_K)$ is an open $\mathbb{G}_{m,L}$ -stable subscheme of \mathbb{A}^1_L containing zero of this monoid L-scheme because $\mathbf{o}_K \in U_K$ by (i). Since the only open $\mathbb{G}_{m,L}$ -stable subscheme of \mathbb{A}^1_L containing zero is \mathbb{A}^1_L , we derive that $f^{-1}(U_K) = \mathbb{A}^1_L$. Thus the image of j is in U_K . Hence $U_K = \mathbf{M}_K$ because $j: \operatorname{Spec} L \to \mathbf{M}_K$ and L are arbitrary. By faithfuly flat descent, we derive that $U = \mathbf{M}$ i.e. we deduced (ii).

The implication (ii) \Rightarrow (i) is obvious.

Definition 2.2. Let **M** be an affine, geometrically integral monoid of finite type over *k*. Assume that **M** admits a zero **o**. Suppose that for some field *K* over *k* there exists a closed immersion

$$i: \mathbb{A}^1_K \to \operatorname{Spec} K \times_k \mathbf{M}$$

of monoid *K*-schemes sending the zero of \mathbb{A}^1_K to the unique zero \mathbf{o}_K of Spec $K \times_{\operatorname{Spec} k} \mathbf{M}$ lying over \mathbf{o} . Then \mathbf{M} is called *a Kempf monoid*.

REFERENCES

[Brion, 2014] Brion, M. (2014). On algebraic semigroups and monoids. In *Algebraic monoids, group embeddings, and algebraic combinatorics*, pages 1–54. Springer.

[Demazure and Gabriel, 1970] Demazure, M. and Gabriel, P. (1970). Groupes algébriques. Tome I. Géométrie algébrique généralités. Groupes commutatifs. North-Holland.

[Görtz and Wedhorn, 2010] Görtz, U. and Wedhorn, T. (2010). Algebraic Geometry: Part I: Schemes. With Examples and Exercises. Advanced Lectures in Mathematics.