sabemos [por la fórmula (9) de la tabla de identidades vectoriales de la Sección 4.4] que div(rot \mathbf{G}) = 0 para cualquier campo vectorial \mathbf{G} de clase C^2 . Podemos plantearnos el enunciado recíproco: si div $\mathbf{F} = 0$, ¿es \mathbf{F} el rotacional de un campo vectorial \mathbf{G} ? El siguiente teorema responde de forma afirmativa a esta pregunta.

Teorema 8 Si \mathbf{F} es un campo vectorial de clase C^1 en todo \mathbb{R}^3 tal que div $\mathbf{F} = 0$, entonces existe un campo vectorial \mathbf{G} de clase C^1 tal que $\mathbf{F} = \operatorname{rot} \mathbf{G}$.

En el Ejercicio 20 se esboza la demostración. Una advertencia: al contrario que en el Teorema 7, el campo vectorial \mathbf{F} del Teorema 8 no permite tener un punto excepcional. Por ejemplo, el campo de fuerza gravitatoria $\mathbf{F} = -(GmM\mathbf{r}/r^3)$ tiene la propiedad de que div $\mathbf{F} = 0$, y no existe ningún \mathbf{G} para el que $\mathbf{F} = \mathrm{rot} \mathbf{G}$ (véase el Ejercicio 29). El Teorema 8 no es aplicable, porque el campo de la fuerza gravitatoria \mathbf{F} no está definido en $\mathbf{0} \in \mathbb{R}^3$.

Ejercicios

- 1. Determinar cuál de los siguientes campos vectoriales \mathbf{F} en el plano es el gradiente de una función escalar f. Si existe una función f así, calcularla.
 - (a) $\mathbf{F}(x,y) = x\mathbf{i} + y\mathbf{j}$
 - (b) $\mathbf{F}(x,y) = xy\mathbf{i} + xy\mathbf{j}$
 - (c) $\mathbf{F}(x,y) = (x^2 + y^2)\mathbf{i} + 2xy\mathbf{j}$
- **2.** Repetir el Ejercicio 1 para los siguientes campos vectoriales:
 - (a) $\mathbf{F}(x,y) = (\cos xy xy \sin xy)\mathbf{i} (x^2 \sin xy)\mathbf{j}$
 - (b) $\mathbf{F}(x,y) = (x\sqrt{x^2y^2+1})\mathbf{i} + (y\sqrt{x^2y^2+1})\mathbf{j}$
 - (c) $\mathbf{F}(x,y) = (2x\cos y + \cos y)\mathbf{i} (x^2\sin y + x\sin y)\mathbf{j}$
- **3.** Para cada uno de los siguientes campos vectoriales \mathbf{F} , determinar (I) si existe una función g tal que $\nabla g = \mathbf{F}$ y (II) si existe un campo vectorial \mathbf{G} tal que rot $\mathbf{G} = \mathbf{F}$. (No es necesario determinar g ni \mathbf{G}).
 - (a) $\mathbf{F}(x, y, z) = (4xz x, -4yz, z 2y)$
 - (b) $\mathbf{F}(x, y, z) = (e^x \sin y, e^x \cos y, z^2)$
 - (c) $\mathbf{F}(x, y, z) = (\log(z^2 + 1) + y^2, 2xy, \frac{2xz}{z^2 + 1})$
 - (d) $\mathbf{F}(x,y,z) = (x^2 + x \operatorname{sen} z, y \cos z 2xy, \cos z + \operatorname{sen} z)$

- **4.** Para cada uno de los siguientes campos vectoriales \mathbf{F} , determinar (I) si existe una función g tal que $\nabla g = \mathbf{F}$ y (II) sis existe un campo vectorial \mathbf{G} tal que rot $\mathbf{G} = \mathbf{F}$. (No es necesario determinar g ni \mathbf{G}).
 - (a) $\mathbf{F}(x, y, z) = (e^x \cos y, -e^x \sin y, \pi)$
 - (b) $\mathbf{F}(x,y,z) = \left(\frac{y}{z^2+4}, \frac{x}{z^2+4}, \frac{-2xyz}{z^4+8z^2+16}\right)$
 - (c) $\mathbf{F}(x, y, z) = (x^2 y^2 z^2, y e^x, xy \cos z)$
 - (d) $\mathbf{F}(x,y,z) = (6z^5y^5, 9x^8z^2, 4x^3y^3)$
- **5.** Demostrar que cualesquiera dos funciones potenciales para un campo vectorial en \mathbb{R}^3 difieren como máximo en una constante.
- **6.** (a) Sea $\mathbf{F}(x,y)=(xy,y^2)$ y sea \mathbf{c} la trayectoria $y=2x^2$ que une (0,0) a (1,2) en \mathbb{R}^2 . Evaluar $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$.
 - (b) ¿Depende la integral del apartado (a) de la trayectoria que une (0,0) a (1,2)?
- 7. Sea $\mathbf{F}(x, y, z) = (2xyz + \sin x)\mathbf{i} + x^2z\mathbf{j} + x^2y\mathbf{k}$. Hallar una función f tal que $\mathbf{F} = \nabla f$.
- **8.** Calcular $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$, donde $\mathbf{c}(t) = (\cos^5 t, \sin^3 t, t^4)$, $0 \le t \le \pi$, y **F** es como en el Ejercicio 7.