

Robust Adaptive Importance Sampling for Normal Random Vectors

Corvisier Jean-Christophe, OREISTEIN Pierre

January 10, 2019

Introduction

Article

Benjamin Jourdain et Jérôme Lelong.

Robust Adaptive Importance Sampling for Normal Random Vectors, 2008.

Contexte

Calcul de $\mathbb{E}[f(G)]$ avec $G = (G_1, \dots, G_d)$ un vecteur normal de dimension d et $f : \mathbb{R}^d \longrightarrow \mathbb{R}$ une fonction mesurable et intégrable pour G.

Motivations

Utile en mathématiques financières: correspond au le calcul du prix d'une option européenne dans le modèle de Black-Scholes avec f le payoff.

• Proposition du papier

Proposition d'une méthode de Monte-Carlo adaptatif <u>robuste</u>, <u>efficace</u> et automatique.

• Hypothèses :

- La variable aléatoire non nulle: $\mathbb{P}(f(G) \neq 0) > 0$
- La variable aléatoire est légèrement plus que de carré intégrable:

$$\forall \ \theta \in \mathbb{R}^d, \ \mathbb{E}[f^2(G)e^{-\theta \cdot G}] < +\infty$$
 (1)

• Hypothèses :

- La variable aléatoire non nulle: $\mathbb{P}(f(G) \neq 0) > 0$
- La variable aléatoire est légèrement plus que de carré intégrable:

$$\forall \ \theta \in \mathbb{R}^d, \ \mathbb{E}[f^2(G)e^{-\theta \cdot G}] < +\infty \tag{1}$$

• Transformation :

• Pour toute fonction intégrable, on a:

$$\forall \ \theta \in \mathbb{R}^d, \ \mathbb{E}[h(G)] = \mathbb{E}\left[h(G+\theta)e^{-\theta \cdot G - \frac{|\theta|^2}{2}}\right]$$
 (2)

• Hypothèses :

- La variable aléatoire non nulle: $\mathbb{P}(f(G) \neq 0) > 0$
- La variable aléatoire est légèrement plus que de carré intégrable:

$$\forall \ \theta \in \mathbb{R}^d, \ \mathbb{E}[f^2(G)e^{-\theta \cdot G}] < +\infty \tag{1}$$

• Transformation :

Pour toute fonction intégrable, on a:

$$\forall \ \theta \in \mathbb{R}^d, \ \mathbb{E}[h(G)] = \mathbb{E}\left[h(G+\theta)e^{-\theta \cdot G - \frac{|\theta|^2}{2}}\right]$$
 (2)

• Premiers Résultats :

• $\mathbb{E}[f(G)] = \mathbb{E}\left[f(G+\theta)e^{-\theta\cdot G - \frac{|\theta|^2}{2}}\right] \Longrightarrow \text{Nouvel estimateur}$

• Hypothèses :

- La variable aléatoire non nulle: $\mathbb{P}(f(G) \neq 0) > 0$
- La variable aléatoire est légèrement plus que de carré intégrable:

$$\forall \ \theta \in \mathbb{R}^d, \ \mathbb{E}[f^2(G)e^{-\theta \cdot G}] < +\infty \tag{1}$$

• Transformation :

Pour toute fonction intégrable, on a:

$$\forall \ \theta \in \mathbb{R}^d, \ \mathbb{E}[h(G)] = \mathbb{E}\left[h(G+\theta)e^{-\theta \cdot G - \frac{|\theta|^2}{2}}\right]$$
 (2)

• Premiers Résultats :

•
$$\mathbb{E}[f(G)] = \mathbb{E}\left[f(G+\theta)e^{-\theta \cdot G - \frac{|\theta|^2}{2}}\right] \Longrightarrow \text{Nouvel estimateur}$$

•
$$\operatorname{Var}[f(G+\theta)e^{-\theta\cdot G+\frac{\|\theta\|^2}{2}}] = \underbrace{\mathbb{E}\left[f^2(G)e^{-\theta\cdot G-\frac{\|\theta\|^2}{2}}\right]}_{=\nu^f(\theta)} - \mathbb{E}[f(G)]^2$$

Estimateurs

• Estimateurs :

- $(G_i)_{i \le 1}$ une séquence i.i.d. de gaussiennes centrées de dimension d.
- Nouvel estimateur non biaisé et convergent de $\mathbb{E}[f(G)]$:

$$M_n(\theta, f) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f(G_i + \theta) e^{-\theta \cdot G_i - \frac{|\theta|^2}{2}}$$

Variance de l'estimateur:

$$n \operatorname{Var}[M_n(\theta, f)] = \nu^f(\theta) - \mathbb{E}[f(G)]^2$$

Estimateurs

• Estimateurs :

- $(G_i)_{i \le 1}$ une séquence i.i.d. de gaussiennes centrées de dimension d.
- Nouvel estimateur non biaisé et convergent de $\mathbb{E}[f(G)]$:

$$M_n(\theta, f) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f(G_i + \theta) e^{-\theta \cdot G_i - \frac{|\theta|^2}{2}}$$

Variance de l'estimateur:

$$n \operatorname{Var}[M_n(\theta, f)] = \nu^f(\theta) - \mathbb{E}[f(G)]^2$$

• Objectif:

 \bullet On cherche $\theta_*^{\it f}$ qui minimise la variance. $\it Ie, trouver \theta_*^{\it f}$ solution de :

$$\nabla_{\theta} \nu^{f}(\theta) = \mathbb{E}\left[(\theta - G)f(G + \theta)e^{-\theta \cdot G + \frac{|\theta|^{2}}{2}}\right] = 0$$

État de l'art

• État de l'art :

• [Arouna, 2004] utilise l'algorithme de Robbins-Monro tronqué pour approximer θ_*^f .

<u>Problèmes</u>: Difficulté dans le choix de la séquence de sous espaces compacts pour les variables aléatoires tronquées.

État de l'art

• État de l'art :

• [Arouna, 2004] utilise l'algorithme de Robbins-Monro tronqué pour approximer θ_*^f .

<u>Problèmes</u>: Difficulté dans le choix de la séquence de sous espaces compacts pour les variables aléatoires tronquées.

• [Lemaire and Pagès, 2008] utilisation l'algorithme de Robbins-Monro pour caractériser θ_*^f comme solution de

$$\nabla_{\theta} \nu^f(\theta) = e^{|\theta|^2} \mathbb{E} \left[(2\theta - G) f^2(G - \theta) \right] = 0.$$

<u>Problèmes :</u> f doit satisfaire une hypothèse de croissance exponentielle à l'inifini.

 \Longrightarrow Dans les deux cas nécessité d'optimiser la séquence des gains de l'algorithme de Robbins-Monro

État de l'art

• État de l'art :

• [Arouna, 2004] utilise l'algorithme de Robbins-Monro tronqué pour approximer θ_*^f .

<u>Problèmes</u>: Difficulté dans le choix de la séquence de sous espaces compacts pour les variables aléatoires tronquées.

• [Lemaire and Pagès, 2008] utilisation l'algorithme de Robbins-Monro pour caractériser θ_*^f comme solution de

$$\nabla_{\theta} \nu^{f}(\theta) = e^{|\theta|^{2}} \mathbb{E} \left[(2\theta - G) f^{2} (G - \theta) \right] = 0.$$

<u>Problèmes</u>: f doit satisfaire une hypothèse de croissance exponentielle à l'inifini.

- \Longrightarrow Dans les deux cas nécessité d'optimiser la séquence des gains de l'algorithme de Robbins-Monro
- [Kim and Henderson, 2007] En deux étapes: 1) Newton sur la variance empirique pour estimer θ_*^f . 2) Estime $\mathbb{E}[f(G)]$ avec de nouveaux samples.

Problème : Utilise des samples de G différents aux deux étapes.

Méthode

• Estimation de θ_*^f :

Approximation par θ_n^f , via procédure de Newton, minimisant :

$$\nu_n^f(\theta) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f^2(G_i) e^{-\theta \cdot G_i + \frac{|\theta|^2}{2}}$$

Méthode

• Estimation de θ_*^f :

Approximation par θ_n^f , via procédure de Newton, minimisant :

$$\nu_n^f(\theta) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f^2(G_i) e^{-\theta \cdot G_i + \frac{|\theta|^2}{2}}$$

• Estimation de $\mathbb{E}[f(G)]$:

Approximation par $M_n(\theta_n^f, f)$

 \Longrightarrow Utilisation des mêmes samples G_i pour ces deux approximations

Méthode

• Estimation de θ_*^f :

Approximation par θ_n^f , via procédure de Newton, minimisant :

$$\nu_n^f(\theta) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f^2(G_i) e^{-\theta \cdot G_i + \frac{|\theta|^2}{2}}$$

• Estimation de $\mathbb{E}[f(G)]$:

Approximation par $M_n(\theta_n^f, f)$

 \Longrightarrow Utilisation des mêmes samples G_i pour ces deux approximations

- Principales Contributions :
 - Convergence p.s. de θ_n^f vers θ_*^f et de $\nu_n^f(\theta_n^f)$ vers $\nu^f(\theta_*^f)$
 - Convergence p.s. de $M_n(\theta_n^f, f)$ vers $\mathbb{E}[f(G)]$

Quelques détails sur les preuves

- Preuve de la convergence de θ_n^f :
 - Preuve que ν^f est \mathcal{C}^{∞} (via TCD)
 - f 2 Preuve que u^f est fortement convexe. (Hypothèse 1)
 - Lemme [Ledoux and Talagrand, 1991] sur la convergence de la moyenne empirique de fonctions mesurables et intégrables.

Quelques détails sur les preuves

- Preuve de la convergence de θ_n^f :
 - Preuve que ν^f est \mathcal{C}^{∞} (via TCD)
 - f 2 Preuve que u^f est fortement convexe. (Hypothèse 1)
 - Lemme [Ledoux and Talagrand, 1991] sur la convergence de la moyenne empirique de fonctions mesurables et intégrables.
- Preuve de la convergence de $M_n(\theta_n^f, f)$:
 - Convergence de θ_n^f vers θ^* (résultat précédent)
 - ② Utilisation du Lemme [Ledoux et Talagrand, 1991] pour prouver la convergence local uniforme de $\theta \to M_n(f,\theta)$ vers $\mathbb{E}(f(G))$

Quelques détails sur les preuves

• Preuve d'un TCL :

- ① Changement de variable : $\theta_n^f = \mathcal{A}\nu_n^f$ avec \mathcal{A} une matrice de taille dxd' (et de rang d' avec $d' \leq d$
- Introduction d'un ensemble de fonctions

$$\mathcal{H}_{\alpha} = \left\{ g : \mathbb{R}^{d} \to \mathbb{R} \ s.t : \ \exists \beta \in [0,2), \ \lambda \geq 0, \forall x, \ |g(x)| \leq \lambda * e^{|x|^{\beta}}, \right.$$
$$\forall x, y, \ |g(x) - g(y)| \leq \lambda e^{max(|x|^{\beta},|y|^{\beta})} |x - y|^{\alpha} \right\}$$

- **①** On considère une décomposition $f = f_1 + f_2$ avec f_1 de classe \mathcal{C}^1 et f_2 dans l'ensemble \mathcal{H}_{α} avec $\alpha \in (\frac{\sqrt{d'^2+8d^2}-d'}{4},1]$
- Preuve de la convergence en probabilité des $\sqrt{n}(M_n(\theta_n^{f,A}, f_i) M_n(\theta_*^{f,A}, f_i))$ vers 0.
- **③** Par théorème centrale limite, convergence en loi de $\sqrt{n}(M_n(\theta_n^{f,A}, f_i) \mathbb{E}(f(G)) \text{ vers } \mathcal{N}_1(0, Var(f(G + \theta_*^{f,A})e^{-\theta_*.G \frac{||\theta_*||^2}{2}}))$

Évaluation sur un modèle de Black-Scholes

• Dynamique du modèle de Black-Scholes

On considère la dynamique suivante :

$$dS_t^i = S_t^i(rdt + \sigma^i dW_t^i)$$
 $S_0 = (S_0^1, \dots, S_0^d)$

Où $W = (W^1, \dots, W^d)$ est un mouvement Brownien standard.

• Matrice de Covariance entre les mouvements browniens

Pour l'expérience on assume une matrice de covariance de la forme :

$$\langle W_t^i, W_t^j \rangle = \rho t \mathbb{1}_{\{i \neq j\}} + t \mathbb{1}_{\{i = j\}}$$

Fonction de payoff :

$$f(G) = e^{-rT} \left(\sum_{i=1}^d \omega^i S_T^i(G) - K \right)_+$$

Résultats expérimentaux

• Données :

$$d = 40, r = 0.05, T = 1, S_0^i = 50, \sigma^i = 0.2, \omega^i = 1/d, \forall i = 1, \dots, d, \text{ et } N = 100.$$

Figure: Approximation du prix et intervalle de confiance à 95% avec une méthode de Monte-Carlo classique (en bleu) et approximation via l'algorithme RRIS proposé (en orange)

Questions

Questions ...