

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Memory Arrays - 1

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Memory Arrays - 1

Reetinder Sidhu

Department of Computer Science and Engineering

Course Outline

- Digital Design
 - Combinational logic design
 - Sequential logic design
 - Memory Arrays 1
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

Demultiplexers (demuxes)

• A multiplexer (also called a mux) multiplexes many inputs onto a single output

2:1 Mux

A multiplexer (also called a mux) multiplexes many inputs onto a single output

2:1 Mux

2:1 mux symbol:

- Data inputs: i_0 , i_1
- ► Control input: *j*

• A multiplexer (also called a mux) multiplexes many inputs onto a single output

2:1 Mux

• 2:1 mux symbol:

- Data inputs: i₀, i₁
- ► Control input: *j*

• A multiplexer (also called a mux) multiplexes many inputs onto a single output

2:1 Mux

2:1 mux symbol:

- Data inputs: i₀, i₁
- ► Control input: *j*

A multiplexer (also called a mux) multiplexes many inputs onto a single output

2:1 Mux

2:1 mux symbol:

- Data inputs: i_0 , i_1
- ► Control input: *j*

A multiplexer (also called a mux) multiplexes many inputs onto a single output

2:1 Mux

2:1 mux symbol:

- Data inputs: i₀, i₁
- Control input: j

2:1 mux logic circuit:

• A multiplexer (also called a mux) multiplexes many inputs onto a single output

2:1 Mux

• 2:1 mux symbol:

- ▶ Data inputs: i_0 , i_1
- Control input: j

• 2:1 mux logic circuit:

• 2:1 mux truth table:

2.1 mux truth tai					
i_0	i_1	j	У		
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	1		
1	0	1	0		
1	1	0	1		
1	1	1	1		

A multiplexer (also called a mux) multiplexes many inputs onto a single output

2:1 Mux

2:1 mux symbol:

- Data inputs: i_0 , i_1
- Control input: *i*

2:1 mux logic circuit:

2.1 mux truth table:

)	2:1 mux truth tab				
	i ₀	i_1	j	У	
	0	0	0	0	
	0	0	1	0	
	0	1	0	0	
	0	1	1	1	
	1	0	0	1	
	1	0	1	0	
	1	1	0	1	
	1	1	1	1	

2:1 mux Boolean formula:

$$o = \bar{j} i_0 + j i_1$$

• A demultiplexer (also called a demux) demultiplexes single input onto a many outputs

1:2 Demux

• A demultiplexer (also called a demux) demultiplexes single input onto a many outputs

1:2 Demux

- ▶ Data outputs: o₀, o₁
- ► Control input: *j*

• A demultiplexer (also called a demux) demultiplexes single input onto a many outputs

1:2 Demux

- Data outputs: o₀, o₁
- ► Control input: *j*

• A demultiplexer (also called a demux) demultiplexes single input onto a many outputs

1:2 Demux

- Data outputs: o₀, o₁
- ► Control input: *j*

• A demultiplexer (also called a demux) demultiplexes single input onto a many outputs

1:2 Demux

- ▶ Data outputs: o₀, o₁
- ► Control input: *j*

1:2 Demultiplexer

• A demultiplexer (also called a demux) demultiplexes single input onto a many outputs

- ▶ Data outputs: o_0 , o_1
- ► Control input: *j*

1:2 Demultiplexer

• A demultiplexer (also called a demux) demultiplexes single input onto a many outputs

• 1:2 demux symbol:

- Data outputs: o_0 , o_1
- ► Control input: *j*

• 2:1 mux truth table:

i	j	00	01
0	0	0	0
0	1	0	0
1	0	1	0
1	1	0	1

1:2 Demultiplexer

• A demultiplexer (also called a demux) demultiplexes single input onto a many outputs

1:2 Demux

• 1:2 demux symbol:

- ► Data outputs: o₀, o₁
- ► Control input: *j*

• 1:2 mux logic circuit:

• 2:1 mux truth table:

i	j	00	o_1
0	0	0	0
0	1	0	0
1	0	1	0
1	1	0	1

• 2:1 mux Boolean formula:

$$o_0 = \bar{j} i$$

 $o_1 = i i$

1:4 demux		

1:4 demux

• 1:4 demux

- Data outputs: o_0 , o_1 , o_2 , o_3
- Control inputs: j_0 , j_1

1:4 demux

• 1:4 demux

- Data outputs: o_0 , o_1 , o_2 , o_3
- Control inputs: j_0 , j_1
- 1:4 demux Boolean formulas: $o_0 = \overline{i_1} \cdot \overline{i_0} i$

$$o_0 = \overline{j_1} \, \overline{j_0} \, i$$

$$o_1 = \overline{j_1} \, \underline{j_0} \, i$$

$$o_2 = \overline{j_1} \, \overline{j_0} \, i$$

$$o_3 = \overline{j_1} \, \overline{j_0} \, i$$

1:4 Demultiplexer

1:4 demux

• 1:4 demux

- Data outputs: o_0 , o_1 , o_2 , o_3
- Control inputs: j_0 , j_1
- 1:4 demux Boolean formulas: $o_0 = \overline{j_1} \overline{j_0} i$ $o_1 = \overline{j_1} j_0 i$
 - $o_2 = j_1 \overline{j_0} i$ $o_3 = j_1 j_0 i$

 1:4 demux logic circuit using 2:1 muxes:

1:n Demultiplexer

1 : *n* Demux

A combinational logic circuit having one data input, $\lceil \log_2 n \rceil$ control inputs and n outputs, that connects the data input to the output indicated by the control inputs

Think About It

- What is the Boolean formula for a 1:5 demux?
- Construct a 1:5 demux using
 - ▶ 1:2 demuxes
 - ► AND, OR and NOT gates