Curve fitting

Lecture-2

Objective:

The purpose of curve fitting is to find the parameters values of the model function that closely match the data.

Methodologies:

The method of least squares may be one of the most systematic procedures to fit a curve through given data points.

Curve Fitting by Least Squares Method

Consider the problem of fitting a set of *n* data points

$$(x_r, y_r), r = 1.2.3, \dots, n$$

to a curve Y=f(x) whose values depends on m parameters c_1,c_2,c_3,\cdots,c_m . The values of the function at a point depends on the values of the parameter involved. In least square method we determine a set of values of the parameter c_1,c_2,c_3,\cdots,c_m such that the sum of the squares of the error

$$E(c_1, c_2, \dots, c_m) = \sum_{i=1}^{n} [f(x_i, c_1, c_2, \dots, c_m) - y_i]^2$$

is minimum.

The necessary conditions for *E* to have a minimum is that

$$\frac{\partial E}{\partial c_r} = 0, \qquad r = 1, 2, 3, \dots, m$$

This condition gives a system of m equations, *called normal equations*, in m unknowns $c_1, c_2, c_3, \dots, c_m$.

If the parameters appear in the function in non-linear form, the normal equations become non-linear and are difficult to solve. This difficulty may be avoided if f(x) is transformed to a form which is linear in parameters.

Let the curve to be fitted y = a + bx

$$E(a,b) = \sum (a+bx-y)^2$$

To minimize error (i.e. E(a, b)), we have $\frac{\partial E}{\partial a} = 0$ and $\frac{\partial E}{\partial b} = 0$

Example: Given the following set of values of x and y:

X	1	2	3	4	5	6
Y	1.553	1.638	0.685	-0.428	-0.679	0.164

A physicist wants to approximate the data using a periodic curve $y = a + b \sin x$ Estimate the parameters a and b to 2 decimal places using least squares method.

Solution:

$$E(a,b) = \sum_{i=1}^{6} (a+b\sin x_i - y_i)^2$$
Normal equations
$$\frac{\partial E}{\partial a} = 0 \text{ and } \frac{\partial E}{\partial b} = 0$$

$$\rightarrow \sum_{i=1}^{6} 2(a+b\sin x_i - y_i) 1 = 0$$

$$\rightarrow \sum_{i=1}^{6} 2(a+b\sin x_i - y_i) \sin x_i = 0$$

The sum can be calculated as follows

X	Y	sin x	sin²x	y sin x
1	1.553	0.8415	0.7081	1.3068
2	1.638	0.9093	0.8268	1.4894
3	0.685	0.1411	0.0199	0.0967
4	-0.428	-0.7568	0.5727	0.3239
5	-0.679	-0.9589	0.9195	0.6511
6	0.164	-0.2794	0.0781	-0.0458
Sum	2.933	-0.1032	3.1251	3.8221

The normal equations are

$$6a - 0.1032 b = 2.933$$

 $-0.1032 a + 3.1251 b = 3.8221$

$$6 a + b \sum \sin x_i = \sum y_i$$

$$a \sum \sin x_i + b \sum \sin^2 x_i = \sum y_i \sin x_i$$

The normal equations are

$$6 a$$
- $0.1032 b$ = 2.933 $-0.1032 a$ + $3.1251 b$ = 3.8221

By dividing each equation by the coefficient of a, we have

$$a$$
– 0.0172 b = 0.4888

$$a$$
– 30.282 b = –37.0359

Subtracting the equations

$$30.2648 b = 37.5247$$

Solving we have

$$b = 1.2399 \approx 1.24$$

$$a = 0.5108 \approx 0.51$$

Now the fitted curve is $y = 0.51 + 1.24 \sin x$

Example

The height of a child is measured at different ages and listed below:

t (yrs)	3	6	9	12	15
H (ft)	2.87	3.60	4.28	4.88	5.35

It is believed that height follows saturation growth model

$$H = \frac{6.45}{1 + a_2 \exp(-a_3 t)}$$

- Use a suitable substitution to reduce the above relation to a linearized form in parameters.
- ii. Use least square method to find the normal equation of the above data
- iii. Estimate, to 2 decimal places, the values of a_2 and a_3
- iv. Estimate the height when the child becomes 20 years old.
- v. Use MATLAB function $a = lsqcurvefit(fun, a_0, xdata, ydata)$ to fit the general form

like
$$H = \frac{a_1}{1 + a_2 \exp(-a_3 t)}$$
.

Solution:

$$H = \frac{6.45}{1 + a_2 \exp(-a_3 t)}$$

$$or, \frac{6.45}{H} = 1 + a_2 e^{-a_3 t}$$

or,
$$\frac{6.45}{H} - 1 = a_2 e^{-a_3 t}$$

$$\ln\left(\frac{6.45}{H} - 1\right) = \ln a_2 - a_3 t$$

This can be written as

$$Y = A + BX$$

Where,

$$Y = \ln\left(\frac{6.45}{H} - 1\right)$$
, $A = \ln a_2$, $B = -a_3$, $X = t$

(ii) Now,

$$E(A,B) = \sum_{i=1}^{5} (A + BX_i - Y_i)^2$$

Normal equations are,

$$\frac{\partial E}{\partial A} = 0$$
 and $\frac{\partial E}{\partial B} = 0$

$$\sum_{i} 2(A + BX_i - Y_i)1 = 0$$

$$\sum_{i} 2(A + BX_i - Y_i)X_i = 0$$

Now,

$$A\sum 1 + B\sum X_i = Y_i$$

$$A\sum X_i + B\sum X_i^2 = \sum X_i Y_i$$

$$Y = \ln\left(\frac{6.45}{H} - 1\right), A = \ln a_2, B = -a_3, X = t$$

The sum can be calculated in a tabular form as shown below:

N	Т	Н	Х	Υ	XY	X ²
1	3	2.87	3	0.221	0.663	9
2	6	3.60	6	-0.234	-1.402	36
3	9	4.28	9	-0.679	-6.113	81
4	12	4.88	12	-1.134	-13.609	144
5	15	5.35	15	-1.582	-23.727	225
Sum			45	-3.408	-44.187	495

Normal Equations

$$5 A + 45 B = -3.408$$

iii.

Solutions:
$$A + 9 B = -0.682$$

 $A + 11 B = -0.982$

$$-2$$
 B = 0.3

B =
$$-0.150$$
 $a_3 = 0.15$

$$A = 0.668$$
 $a_2 = 1.95$

iv. The fitting curve is
$$H=\frac{6.45}{1+1.45\exp(-0.15t)}$$
 . From the equation of the curve, we get when $t=20$ then $H=5.88$.

MATLAB Code

v. >> xd=[3 6 9 12 15]; % state x-values

>> yd=[2.87 3.60 4.28 4.88 5.35]; % staet y-values

Define fitting curve in terms of parameters as vector a

>> Fd=@(a,xd) a(1)./(1+a(2).*exp(-a(3).*xd));

>> a0=[6,2,0.2]; % guess parameter values

% To fit the curve use MATLAB function **lsqcurvefit** with following syntax

>> a=lsqcurvefit(Fd,a0,xd,yd)

Advantages and Drawbacks: Least Square Method

Advantages of Least Square Method:

- > Simplicity: It is very easy to explain and to understand.
- ➤ Applicability: There are hardly any applications where least squares doesn't make sense.
- Theoretical Underpinning: It is the maximum-likelihood solution and, if the Gauss-Markov conditions apply, the best linear unbiased estimator.

Drawbacks of Least Square Method:

- Sensitivity to outliers.
- For the transfer of the control of t
- Tendency to overfit data.

Sample MCQ

- 1. What is the purpose of curve fitting?
- (a) Find the parameter value
- (b) Find the solution
- (c) Find the data
- (d) Find the parameter which closely match the data
- 2. To find the parameter value which method we use in curve fitting?
- (a) Interpolation
- (b) Least square method
- (c) Lagrange method
- (d) None
- $3. \sum_{i=1}^{20} 1 = ?$
- a) 10
- b) 20
- c) 30
- d) 40

Exercise

1. Average price, *P*, of a certain type of second-hand car is believed to be related to its age, *t* years, by an equation of the form

$$P = \frac{50}{a + be^{\frac{t}{4}}}$$

Where a and b are constants. Data from a recent newspaper give the following average price (in Taka) for used car of this type,

t (yrs)	2	4	6	8
P (lac)	20.50	17.25	14.50	11.75

- (i) Estimate the values of a and b rounded to 3 significant figures.
- (ii) Estimate the values of a car of this type that is 10 years old and the original new price.

2. A bowl of hot water is kept in a room of constant temperature 25°C. At 5 minutes interval temperature of the water is recorded and listed as given below.

t in	5	10	15	20	25
minute					
<i>T</i> in ⁰ C	76.8	70.4	64.2	58.8	54.1

The law of cooling can be assumed to be of the form $T = 27 + ae^{-kt}$.

- (i) Find, to 2 significant figures, the best values of a and k.
- (ii) Estimate the initial temperature.
- (iii) Estimate the time, to the nearest minute, when the temperature of the water in the bowl will be 50°C.
- 3. The equation $v = 70 ce^{-kt}$ can be used for calculating the speed of a moving car, where c and k are constant.

t	4	8	12	16	20
V	23.21	28.52	33.07	36.96	40.29

- (a) Estimate the values of c and k rounded to 2 significant figures.
- (b) Find the time, to the nearest second, when the speed is 45 ms⁻¹.