COMP229: Introduction to Data Science Lecture 3: box plots of data samples

Olga Anosova, O.Anosova@liverpool.ac.uk Autumn 2023, Computer Science department University of Liverpool, United Kingdom

Biased vs unbiased variance

Consider a sample $A = \{a_1, \ldots, a_n\}$ with a mean \bar{a} .

Sample standard deviation

Population standard

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (a_i - \bar{a})^2} \, \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (a_i - \bar{a})^2}$$

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (a_i - \bar{a})^2}$$

 σ is used when a sample is a whole population. If a sample isn't a whole population, then the difference between the population average and the sample average requires correction by the factor $\frac{n}{n-1}$, which is called <u>Bessel's correction</u>.

Other common values for the denominator can correct other types of error. Four common values for the denominator are n-1, n and (for normal distribution) n+1, n-1.5. The last three factors are beyond the scope of COMP229.

Similarly, the sample variance is $Var = s^2$ and the population variance is $Var = \sigma^2$.

In this module we will mostly use the sample standard deviation $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (a_i - \bar{a})^2}$.

Alex's story

from Aha! Gotcha by Martin Gardener

Alex's story continued

Alex's story - happy ending

The median of a data sample

Definition 3.1. The *median* of a data sample $A = \{a_1, \ldots, a_n\}$ is the value separating the lower half of the ordered sample from the upper half. For 2k + 1 values $a_1 \leqslant \cdots \leqslant a_{k+1} \leqslant \cdots \leqslant a_{2k+1}$, the median is the middle value a_{k+1} . For 2k values $a_1 \leqslant \cdots \leqslant a_k \leqslant a_{k+1} \leqslant \cdots \leqslant a_{2k}$, the median is the average of two middle values $\frac{a_k + a_{k+1}}{2}$.

Definition 3.2. A *mode* is a most frequent value (not always unique), i.e. a value that appears in the data sample a highest number of times.

Computing the median of a sample

Problem 3.3. Find the median of the data sample $A = \{9, 4, 2, 4, 6, 4, 7, 4, 6, 4\}.$

Solution 3.3. Order the sample:

$$A = \{2, 4, 4, 4, 4, 4, 6, 6, 7, 9\}$$

The sample A has 10 values. The middle values (at places 5 and 6) are 4 and 4, hence the median is their arithmetic average (4 + 4)/2 = 4.

Problem 3.4. Is the median of any data sample always equal to the sample mean?

Median vs mean

Solution 3.4. $A = \{2, 4, 4, 4, 4, 4, 6, 6, 7, 9\}$ has the mean $\bar{a} = 5$ not equal to the median 4.

Problem 3.5. When are median and mean equal?

Solution 3.5. If a sample A is *symmetric* around its median a, i.e. splits into pairs $a \pm x$ for some x (possibly including a as an extra value) then median a + b mean.

The data sample $B = \{2, 3, 3, 3, 4, 6, 6, 6, 8, 9\}$ has the mean $\bar{b} = 5$ equal to median 5, but isn't symmetric around 5.

Histogram

A **histogram** is a plot that depicts the number of observations that fall into each of the disjoint categories (known as **bins**):

histogram of $A = \{2, 4, 4, 4, 4, 4, 6, 6, 7, 9\}$

Histogram shapes

It is handy to see the symmetries and other properties, especially for big data:

Histogram of B

histogram of $B = \{2, 3, 3, 3, 4, 6, 6, 6, 8, 9\}$, no symmetry.

Skewness and central tendencies

Usually for skewed data the mean lies toward the direction of skew (the longer tail) relative to the median,

but this is not a general rule and is very frequently violated for real life data!

In cases where one tail is *long* but the other tail is *fat*, skewness does not obey this simple rule.

Try, for example, $C = \{1, 1, 2, 2, 3\}$.

A mode of a data sample

Problem 3.6. Find modes for

$$A = \{2, 4, 4, 4, 4, 4, 6, 6, 7, 9\}$$
 and

$$B = \{2, 3, 3, 3, 4, 6, 6, 6, 8, 9\}.$$

Solution 3.6. A has the mode 4.

B is bimodal with two modes 3, 6.

Actual instances of mean, median, mode

- Does the mean always belong to the sample?
 No. For example, the mean of integer numbers can be non-integer.
- Does the median always belong to the sample?
 Yes unless the sample size n = 2k and a_k ≠ a_{k+1}.
- Does a mode always belong to the sample?
 Yes, it does by the definition.

Comparison of mean, median, mode

Mean	Median	Mode
+ Easy to calculate + Good for symmetrical distributions + Good for ordered data	+ Good for skewed distributions +Good for ordered data	+ Always belong to the sample + Good for qualitative data
- Influenced by outliers - Does not always belong to the sample	- No easy maths formula - Does not always belong to the sample	- No easy maths formula - Not always unique - Can be away from the centre

The more the merrier!

Baseball salaries (1994) have mean = \$1,183,000, mode = \$250,000 and median = \$500.000.

Each of those central tendency measurements provides useful information.

Are means useful?

Chicago Jury Project (1960): the same outcome was reached by judges and lay decision-makers (juries) in 89% of all cases.

Besides, mean is not always an *arithmetic* mean: there are lots of mean creatures!

Geometric mean

$$\left(\prod_{i=1}^n a_i\right)^{\frac{1}{n}} = \sqrt[n]{a_1 a_2 \cdots a_n}$$

is always smaller than arithmetic mean.

The quartiles Q_1, Q_2, Q_3 of a sample

Definition 3.7. The median is the 2nd quartile Q_2 . The idea of the 1st quartile Q_1 is to separate the lowest 25% data values from the highest 75%. Similarly, the 3rd quartile Q_3 separates the lowest 75% data values from the highest 25% values.

Quartiles in even cases

If a data sample consists of 2k ordered values $a_1 \leqslant \cdots \leqslant a_k \leqslant a_{k+1} \leqslant \cdots \leqslant a_{2k}$, then Q_1 is the median of the lowest half a_1, \ldots, a_k ; Q_3 is the median of the highest half a_{k+1}, \ldots, a_{2k} .

Problem 3.7. Find the quartiles of the samples $A = \{9, 4, 2, 4, 6, 4, 7, 4, 6, 4\}$, $B = \{9, 6, 2, 3, 6, 8, 3, 4, 6, 3\}$. **Solution 3.7**. $A = \{2, 4, 4, 4, 4, 4, 6, 6, 7, 9\}$ has $Q_1 = 4$, $Q_3 = 6$. $B = \{2, 3, 3, 3, 4, 6, 6, 6, 8, 9\}$ has $Q_1 = 3$, $Q_3 = 6$.

Quartiles in odd cases

If a data sample has 2k+1 ordered values $a_1\leqslant \cdots \leqslant a_k\leqslant a_{k+1}\leqslant \cdots \leqslant a_{2k+1}$, we will remove one median value a_{k+1} , then split the data into equal parts containing k values each.

 Q_1 is the median of the lowest half a_1, \ldots, a_k ;

 Q_3 is the median of the highest half $a_{k+2}, \ldots, a_{2k+1}$.

Computing quartiles Q_1, Q_2, Q_3

Problem 3.8. Find the median and quartiles of the data samples $C = \{6, 5, -2, 7, 12, 5, 6, 3, 4\}$ and $D = \{6, 4, 8, 6, 12, 9, 5, 7, 6, 1, 6\}$.

Solution 3.8. The sample

 $C = \{-2, 3, 4, 5, 5, 6, 6, 7, 12\}$ has the median $Q_2 = 5$ and quartiles $Q_1 = 3.5$, $Q_3 = 6.5$.

The sample $D = \{1, 4, 5, 6, 6, 6, 6, 7, 8, 9, 12\}$ has the median $Q_2 = 6$ and quartiles $Q_1 = 5$, $Q_3 = 8$.

Can all descriptors be ordered for any sample?

Bounds for the sample mean

Claim 3.9. The mean of a data sample a_1, \ldots, a_n is within the range (non-strictly between the minimum and maximum values).

Start from writing the claim in terms of a_1, \ldots, a_n .

Proof. Taking the sum of $a_i \geqslant \min_{i=1,\dots,n} a_i$ over all i, dividing by n>0, we get $\bar{a}=\frac{1}{n}\sum_{i=1}^n a_i \geqslant \min_{i=1,\dots,n} a_i$. Similarly, taking the sum of $a_i \leqslant \max_{i=1,\dots,n} a_i$ over all i,

dividing by
$$n > 0$$
, we get $\bar{a} = \frac{1}{n} \sum_{i=1}^{n} \leqslant \max_{i=1,\dots,n} a_i$.

Bounds for the median

Claim 3.10. The median is always within $[Q_1, Q_3]$.

Start from writing the claim in terms of a_1, \ldots, a_n .

Proof. The median Q_2 is within the range $[\min_{i=1,\dots,n} a_i, \max_{i=1,\dots,n} a_i]$. Also by definition, Q_1 is the median of a 'half-sample' within $[\min_{i=1,\dots,n} a_i, Q_2]$.

Similarly, Q_3 by definition is the median of the upper 'half-sample' within $[Q_2, \max_{i=1,...,n} a_i]$.

The 5-number summary of a sample

Definition 3.11. The 5-number summary of a data sample consists of the minimum, 3 quartiles and maximum: $\min_{i=1,...,n} a_i \leqslant Q_1 \leqslant Q_2 \leqslant Q_3 \leqslant \max_{i=1,...,n} a_i$.

The Interquartile Range $IQR = Q_3 - Q_1$.

The 1.5*IQR* **rule** says that a value outside $[Q_1 - 1.5IQR, Q_3 + 1.5IQR]$ is called an *outlier*.

Problem 3.12. Find outliers by the $1.5 \times IQR$ rule in the data samples $C = \{6, 5, 2, 7, 12, 5, 6, 3, 4\}$ and $D = \{6, 4, 8, 6, 12, 9, 5, 7, 6, 1, 6\}$.

Finding the Interquartile Range

Solution 3.12. $\{2,3,4,5,5,6,6,7,12\}$ has $IQR = Q_3 - Q_1 = 6.5 - 3.5 = 3$, so $12 \notin [3.5 - 1.5 \times 3, 6.5 + 1.5 \times 3]$ is an outlier. $\{1,4,5,6,6,6,6,7,8,9,12\}$ has IQR = 8 - 5 = 3. all values in $[5 - 1.5 \times 3, 8 + 1.5 \times 3]$, no outliers.

Definition 3.10. The *box* plot on the left represents any sample of scalar values by 2 intervals [min, max] and $[Q_1, Q_3]$ using 5 descriptors.

Time to revise and ask questions

To benefit from the lecture, now you could

- ask or submit your questions on CANVAS or after the lecture;
- write down your summary in 2-3 phrases,
 e.g. list key concepts you have learned;
- talk to your classmates to revise the lecture.

Problem 3.13. Draw the box plots of the data samples $C = \{6, 5, 2, 7, 12, 5, 6, 3, 4\}$ and $D = \{6, 4, 8, 6, 12, 9, 5, 7, 6, 1, 6\}$.

Final solution

Solution 3.13. $C = \{2, 3, 4, 5, 5, 6, 6, 7, 12\}$ has 5 descriptors 2 < 3.5 < 5 < 6.5 < 12.

The data sample $D = \{1, 4, 5, 6, 6, 6, 6, 7, 8, 9, 12\}$ has 5 descriptors 1 < 5 < 6 < 8 < 12.

Summary

1) The mean, mode, median do not always coincide, each has its own uses and limitations.

2) The box plot represents a sample of scalar values by intervals [min, max], $[Q_1, Q_3]$ and 5 descriptors $\min_{i=1,...,n} a_i \leqslant Q_1 \leqslant Q_2 \leqslant Q_3 \leqslant \max_{i=1}^n a_i$.