Statistik und Wahrscheinlichkeitsrechnung (WS 2020/21) Aufgabenblatt 2

zu bearbeiten bis: 15.11.2020 (23:59 Uhr). Abgabe in StudIP-Ordner "Abgabe Blatt 02".

Aufgabe 2.1 (Kennwerte raten)

Gegeben ist eine bivariate Stichprobe $(x_y,y_1),...,(x_n,y_n)\in\mathbb{R}^2$. Studieren Sie den zugehörigen Plot oben und ordnen Sie den Kennwerten $\bar{x},\bar{y},\tilde{x}_{0.25},r_{xy},s_x^2,s_x^*,s_y^2,\tilde{y}_{1.0}$ und s_{xy} die folgenden Zahlenwerte zu. Ein Wert bleibt am Ende übrig. Begründen Sie jeweils knapp:

-1.6	1.41	8.33	-0.89	3.17	104.95	0.40	2.92	102.5	2.49	
------	------	------	-------	------	--------	------	------	-------	------	--

Aufgabe 2.2 (Korrelation im Portemonnaie)

Tom trägt bei sich: 2 Zehn-Euro-Scheine, 1 Zwei-Euro-Münze, 2 Ein-Euro-Münzen, 2 50-Cent-Stücke, 1 20-Cent-Stück und 1 Zehn-Cent-Stück. Die Herstellungskosten der Münzen und Scheine lauten: 2 Cent je 10-Cent-Münze, 3 Cent je 20- und 50-Cent-Münze, 10 Cent je 1- und 2-Eur-Münze, und 7 Cent je Geldschein. Wir definieren eine Stichprobe $x_1, ..., x_9$ mit dem jeweiligen Wert der Münzen/Scheine in Toms Geldbeutel (in EUR), und eine Stichprobe $y_1, ..., y_9$ mit den zugehörigen Herstellungskosten (in Cent).

- a) Berechnen Sie die Varianz der Stichprobe $y_1, ..., y_9$ mit Hilfe des Verschiebungssatzes.
- b) Berechnen Sie die Kovarianz zwischen beiden Stichproben.
- c) Wie müsste der Inhalt von Toms Geldbeutel aussehen, damit die Werte und Herstellungskosten *negativ* korreliert sind? Geben Sie ein Beispiel.

Aufgabe 2.3 (Standardabweichungen und Transformationen)

- a) Beweisen Sie: "Ist die Standardabweichung einer Stichprobe $x_1...,x_n \in \mathbb{R}$ gleich null, dann sind alle Werte der Stichprobe identisch."
- b) Gegeben sei eine Stichprobe $x_1, ..., x_n \in \mathbb{R}$ mit Mittelwert 10 und Varianz 25. Schlagen Sie eine lineare Transformation $x' = \alpha \cdot x + \beta$ vor, so dass der Mittelwert \bar{x}' der transformierten Stichprobe gleich 0 und ihre Varianz $s'^2 = 1$ ist.