Laboratorium **Technologie IOT**

Wydział Elektrotechniki Automatyki i Informatyki Politechnika Świętokrzyska

Studia: Stacjonarne I	Kierunek: Informatyka
Data wykonania: 16.12.2018	Grupa: 3ID15A
Ocena	 Marcin Tomczyk Paweł Wrzesień Mateusz Nachyła
Numer laboratorium:	Temat ćwiczenia: Blinking an LED using RedBoard and Arduino IDE oraz Buzzer

1. Blinking an LED using RedBoard and Arduino IDE

a) Cel ćwiczenia

Naszym celem było zapoznanie się z obsługą mikrokontrolera Arduino oraz jego obsługą, a także zaświecenie diody. Do wykonania zadania użyliśmy:

- Komputera z dostępem do Internetu
- Zestawu SparkFun
- Rezystora, diody LED
- przewodów

b) zadana topologia

c) wykonana topologia

d) kod programu

```
vvoid setup() {
    pinMode(13, OUTPUT); #ustawiamy pin 13 jako wyjściowy
}

vvoid loop() {
    digitalWrite(13, HIGH); #ustawia stan pinu 13 na wysoki
    delay(1000); #ustawiamy opóźnienie 1s
    digitalWrite(13, LOW); #ustawia stan pinu 13 na niski
    delay(1000);
}
```

Następnie mieliśmy uruchomić tą topologię dla portu numer 3. Kod różni się tylko numerem użytego portu:

```
Void setup() {
    pinMode(3, OUTPUT);
}
Void loop(){
    digitalWrite(3,HIGH);
    delay(1000);
    digitalWrite(3,LOW);
    delay(1000);
}
```

```
vvoid setup() {
    pinMode(5, OUTPUT);
    pinMode(4, OUTPUT);
    pinMode(3, OUTPUT);
}

vvoid loop() {
    digitalWrite(5, HIGH);
    digitalWrite(4, HIGH);
    digitalWrite(3, HIGH);
    delay(1000);
    digitalWrite(5, LOW);
    digitalWrite(4, LOW);
    digitalWrite(3, LOW);
    digitalWrite(3, LOW);
    delay(1000);
}
```

kod dla trzech diód

Wykonaliśmy również topologię z diodami połączonymi równolegle:

Diody w tym połączeniu świeciły, ale dużo słabiej ponieważ napięcie w danym momencie musiało się rozłożyć na trzy diody.

- e) Jakie mogą nastąpić problemy, dla których dioda LED nie będzie świecić?
 - układ został źle połączony
 - dioda może być uszkodzona
 - połączenie może być w kierunku zaporowym

BUZZER

a) topologia

b) Cel zadania

Połączenie o raz konfiguracja urządzeń według topologii, w taki sposób aby z brzęczyka(buzzer) wydobywała się melodia.

Aby wykonać ćwiczenie potrzebujemy takich narzędzi jak:

- Zestaw SparkFun,
- Komputer PC z Arduino
- Plik przykładowych kodów przewodnika SIK,
- przewody, buzzer oraz potencjometr.

c) Wykonanie

- -podłączenie topologii
- -wybór kodu dla buzzera

Ak

Upewniamy się czy nasz układ został dobrze podłączony, oraz czy jest on podłączony do komputera kablem USB. Następnie przesyłamy oprogramowanie od ReadBorder'a.

topologia z brzęczykiem

Po przesłaniu konfiguracji brzęczyk rozpocznie odtwarzanie utworu. Można obracać kółkiem na potencjometrze w celu regulacji tonu. Piosenka zostanie zagrana tylko raz, gdy będziemy chcieli usłyszeć ją ponownie należy nacisnąć guzik **RESET**.

a) Przejrzyj kod. Którą funkcje i jej parametr należy skonfigurować, aby zmienić tempo utworu?

Aby dokonać zmiany tempa potrzebujemy w funkcji void play(char note, int beats) zmienić tablice częstotliwości int frequencies[]która dopasowuje do każdej litery jej częstotliwość.

Np. czwarta nuta to "f" z ustawiona częstotliwością 175, zmiana częstotliwości kolejnych liter zmieni nam tempo odtwarzania utworu