Работа №2

$$F_{\min} = -(-F)_{\max} = -F'_{\max}$$

a)
$$F = -8x_1 + 3x_2 \to \min(\max)$$

$$\begin{cases} x_1 + 2x_2 \le 14 \\ -4x_1 + 3x_2 \le 12 \\ x_1 \le 6 \\ x_1 \ge 0, \quad x_2 \ge 0 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 \le 14 \\ -4x_1 + 3x_2 \le 12 \\ x_1 \le 6 \\ x_1 \ge 0, \quad x_2 \ge 0 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + x_3 = 14 \\ -4x_1 + 3x_2 + x_4 = 12 \\ x_1 + x_5 = 6 \\ x_i \ge 0, i = \overline{1,5} \end{cases}$$

	c	-8	3	0	0	0	0	
Basis	C base	x0	x1	x2	x3	x4	В	reduced_cost
	0							
A3	0	-4	3	0	1	0	12	4
A4		1				1		
	delta	-8	3	0	0	0	0	

	c	-8	3	0	0	0	0
Basis	C base	x0	x1	x2	х3	x4	В
A2	0	3.66667	0	1	-0.666667	0	6
A 1	3.0	-1.33333	1	0	0.333333	0	4
A4	0	1	0	0	0	1	6
	delta	-4	0	0	-1	0	12

$$x_1 = 14 - 2x_2 - x_3 = 14 - 2 \cdot 4 - 6 = 0, \quad F_{\text{max}} = F(0, 4) = 12$$

Basis	C base	x0	x1	x2	x3	x4	В	reduced_cost
A2	0	1	2	1	0	0	14	14 -3 6
A3	0	-4	3	0	1	0	12	-3
A4	0	1	0	0	0	1	6	6
	delta	8	-3	0	0	0	0	
	delta c	8	-3	0	0	0	0	

Таблица 1: Таблица с данными и столбцом reduced_cost.

Basis	C base	x0	x1	x2	x3	x4	В
A2	0	0	2	1	0	-1	8
A3	0	0	3	0	1	4	36
A0	0 0 8.0	1	0	0	0	1	6
	delta c	0	-3	0	0	-8	48
	c	8	-3	0	0	0	0

Таблица 2: Таблица с данными без столбца reduced_cost.

$$x_1 + x_3 = 14 \implies x_2 = 0$$

 $F_{\min} = F(6, 0) = -48$

b)
$$F = 2x_1 + x_2 \rightarrow \min(\max)$$

$$\begin{cases} 2x_1 + x_2 \ge 10 \\ -4x_1 + x_2 \le 8 \\ x_1 \ge 0, \quad x_2 \ge 0 \end{cases}$$

$$\begin{cases} -2x_1 - x_2 + x_3 = -10 \\ -4x_1 + x_2 + x_4 = 8 \\ x_i \ge 0, i = \overline{1, 4} \end{cases}$$

Basis	C base	x0	x1	x2	x3	В	reduced_cost
A2	0	-2	-1	1	0	-10	5
A3	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	-4	1	0	1	8	-2
	delta	2	1	0	0	0	
	delta c	2	1	0	0	0	

$$\exists \delta_j > 0 : \forall x_{ij} < 0 \quad \Rightarrow \quad \nexists F_{\text{max}}$$

Basis	C base	x0	x1	x2	x3	В
A2	0	-2	-1	1	0	-10
A3	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	-4	1	0	1	8
	delta	-2	-1	0	0	0

⇒ Задача имеет бесконечное множество оптимальных решений

$$F_{\min} = F(5,0) = 10$$

c)
$$F = 2x_1 - x_2 \rightarrow \min(\max)$$

$$\begin{cases} 3x_1 - x_2 \ge 21 \\ x_1 \le 2 \\ x_1 \ge 0, \quad x_2 \ge 0 \end{cases}$$

$$\begin{cases} 3x_1 - x_2 \ge 21 \\ x_1 \le 2 \\ x_1 \ge 0, \quad x_2 \ge 0 \end{cases}$$

$$\begin{cases} 3x_1 - x_2 - x_3 = 21 \\ x_1 + x_4 = 2 \\ x_i \ge 0, i = \overline{1, 4} \end{cases}$$

Basis	C base	x1	x2	x3	x4	В	r
A3	0	-3	1	1	0	-21	7
A4	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	0	0	1	2	2
	delta	2	-1	0	0	0	

$$(\forall j: \delta_j \leq 0) \quad \& \quad F < 0 \quad \Rightarrow \quad D = \emptyset$$

$$\nexists F_{\min}, \quad \nexists F_{\max}$$