Statistics 5350/7110 Forecasting

Lecture 23
Frequency Domain Diagnostics

Professor Stine

Preliminaries

- Questions?
- Assignments
 - Review of Assignment 5
 - Assignment 6
- Longer-than-usual review
 - Periodicity in time series
 - Periodogram
 - Start with a review of properties of the periodogram...

Today's Topics

- Periodogram
 - Review of sampling properties
- Diagnostics based on the periodogram
 - An isolated frequency (e.g. seasonality)
 - Broader dependence
- Smoothing the periodogram
 - Scatterplot smoothing originated in periodogram smoothing
 - Connection to covariances
 - Spectrum of stationary process

Review of Periodogram

Key concepts from prior lecture

Properties of Periodogram

- Regression coefficients
 - Coefficients at Fourier frequencies

$$a_k = (2/n) \sum X_t \cos(2\pi t k/n)$$
 and $b_k = (2/n) \sum X_t \sin(2\pi t k/n)$

• Approximately normal, independent

$$a_k,b_k\sim N\left(0,\sigma_w^2\frac{2}{n}\right) \qquad \qquad \text{k=1,2,...,(n/2)-1}$$

$$\text{Cov}(a_k,a_j)=0\;(j\neq k) \quad \text{and} \quad \text{Cov}(a_k,b_j)=0$$

Appendix Property C.3 page 234

- Periodogram
 - · Squared amplitude of estimated signusoid

$$X_t = R\cos(2\pi t k/n + \varphi) + w_t \longrightarrow R_k^2 = a_k^2 + b_k^2$$

Periodogram

$$I(k/n) = \frac{n}{4} \left(a_k^2 + b_k^2 \right) \approx \sigma_w^2 \frac{\chi_2^2}{2}$$

Caution: this is not the R² from regression!

Proportional to an exponential random variable

Properties of Periodogram

- Periodogram of white noise
 - Proportional to exponential r.v.

$$I_k = I(k/n) = \frac{n}{4} \left(a_k^2 + b_k^2 \right) \sim \sigma_w^2 \frac{\chi_2^2}{2}$$

• Approximately independent values sampled from skewed distribution: Very noisy appearance

- Example
 - n = 256
 - White noise, $\sigma_w^2 = 5$

Examples of Periodogram

Max of Periodogram

Distribution of Maximum Periodogram

- Idea
 - Originated 100+ years ago by R. A. Fisher
 - Exponential r.v. imply "nice" behavior of the maximum value
- Application to periodogram
 - Periodogram values l_k are approximately multiple of independent exponential r.v.

$$I_k \sim \sigma_w^2 \left(\frac{\chi_2^2}{2}\right) \quad \Rightarrow \quad P(I_k/\sigma_w^2 \le x) = 1 - e^{-x}$$

- Let m denote the number of periodogram values considered (m = n/2 2) if n is even)
- Maximum value of the m terms $M = \max I_k$

$$P(M \le x) = (1 - e^{-x})^m$$

. Because $\lim_{n\to\infty} (1+x/n)^n = e^x$ it follows that

$$P(M \le x + \log m) = (1 - e^{-x - \log m})^m = (1 - e^{-x}/m)^m \approx \exp(-e^{-x})$$

- Refinement
 - Result has been improved over the years since Fisher (How to estimate σ_w^2)

R function "test_max_periodogram" defined in Lecture 23.Rmd

- Confirm level of the test
 - Test produces a p-value.
 - Before using, confirm that the test behaves properly
 - If the null hypothesis holds, then the distribution of p-values should be uniform [0, 1]

• Simulate p-values

- Gaussian white noise with n = 128
- 20,000 simulated replications
- Issues:
 - Too few close to 1 (who cares)
 Too many close to 0 (uh-oh)
 Not a big problem: 5.1% less than .05
- Not surprising since n=128 is a "small" length for this application

- Simulate application
 - Simulate data that does include a sinusoid.
 - What sort of power does the test have?
- Context
 - White noise with n = 128
 - $X_t = R\cos(2\pi t k/n) + w_t$ R = 0.35
- What do you think?

- Simulate application
 - Simulate data that does include a sinusoid.
 - What sort of power does the test have?
- Context
 - White noise with n = 128
 - $X_t = R\cos(2\pi t k/n) + w_t$
- What do you think?

- Simulate application
 - Simulate data that does include a sinusoid.
 - What sort of power does the test have?
- Context
 - White noise with n = 128
 - $X_t = R\cos(2\pi t k/n) + w_t$
- What do you think?

Signal Revealed

- Lower power?
 - Hard to see signal in noise
 - Hints in ACF
- Periodogram
 - Very evident in periodogram
 - It's the continuing regularity that makes this frequency so evident in the periodogram
 - Wave detectors at ocean

Power of Max Test

- Setting
 - n = 128
 - R = 0.35
- Simulate for Gaussian white noise

20 bins, so power of test that rejects if p < 0.05 is fraction of p-values in the left-most bin.

Cumulative Periodogram

Alternative Test from Periodogram

Max test

- Great for finding single sinusoid hidden in a time series, what about other questions
- What if you want to test for other components, such as the second peak?
- What if the deviation from white noise isn't confined to a single frequency?

Example

- Suppose data is an AR(1) with $\phi = 0.4$
- Max test isn't very helpful here

Alternative Test from Periodogram

Max test

- Great for finding single sinusoid hidden in a time series, what about other questions
- What if you want to test for other components, such as the second peak?
- What if the deviation from white noise isn't confined to a single frequency?

Example

- Suppose data is an AR(1) with $\phi = 0.4$
- Max test isn't very helpful here, but inspecting the cumulative periodogram is

Test uses boundaries like those that define significant deviations from the diagonal in a QQ-plot

Comparison

- Each test has its domain
 - Power of tests based on the maximum or cumulative periodogram depend on deviation from H₀
 - Null hypothesis H₀: white noise (ideally, Gaussian white noise)
- Deviation: Hidden periodic component
 - Max test has more power
- Deviation: Broad shift
 - Cumulative periodogram has more power

The Spectrum

What's the nature of that "broad deviation" from white noise?

Spectral Density

- Alternative to the autocovariance function
 - The spectral density is the discrete Fourier transform of the autocovariances

$$f(\nu) = \gamma(0) + 2\sum_{h=1}^{\infty} \gamma(h) \cos(2\pi\nu h), \quad -1/2 \le \nu \le 1/2$$

• The inverse relationship also holds,

$$\gamma(h) = \int_{-1/2}^{1/2} f(\nu) \cos(2\pi\nu h) d\nu, \qquad h = 0, \pm 1, \pm 2, \dots$$

Property 6.6 without the complex exponential

- Spectral density is ...
 - Equivalent to autocovariances
 - Symmetric around 0, f(u) = f(-u)
 - Offers a frequency-domain decomposition of the variance of the process

$$\operatorname{Var}(X_t) = \gamma(0) = \int f(\nu) d(\nu)$$

Could anticipate from the periodogram

Spectral Density of ARMA

White noise

- Origin of the name "white noise"
- If {wt} is white noise with variance $\sigma_{w'}^2$ then

$$f_w(\nu) = \gamma(0) + 2\sum_{h} \gamma(h) \cos(2\pi\nu h) = \gamma(0) = \sigma_w^2$$

• Implies equal variance associated with every frequency

MA process

- Reconstruct from the definition and autocovariances
- If $X_t = w_t + \theta w_{t-1}$, then $\gamma(0) = \sigma_w^2(1+\theta^2)$, $\gamma(1) = \sigma_w^2\theta$, $\gamma(h) = 0$, $h=\pm 2,\pm 3,...$

$$f_{x}(\nu) = \sigma_{w}^{2} \left(1 + \theta^{2} + 2\theta \cos(2\pi\nu) \right)$$

AR process

- Practical derivation requires knowing a bit of complex variables
- For AR(1) with coefficient Φ,

$$f_{x}(\nu) = \frac{\sigma_{w}^{2}}{1 + \phi^{2} - 2\phi\cos(2\pi\nu)}$$

Example 6.7

Example 6.9

Example 6.10 shows AR(2)

Examples of ARMA Spectra

- Moving averages
 - Positive coefficient leads to more low frequency
 - Negative coefficient leads to more high frequency

- AR(2) process can show predominant cycle
 - $\phi_1 = 1$, $\phi_2 = -0.9$

Connection to Periodogram

- Periodogram of white noise
 - Multiple of exponential

$$I_k = \frac{n}{4} \left(a_k^2 + b_k^2 \right) \approx \sigma_w^2 \frac{\chi_2^2}{2}$$

• Re-express using what we know about spectral density of white noise

$$I_k \approx f(k/n) \frac{\chi_2^2}{2}$$

- Periodogram of stationary process
 - Analogous property holds: periodogram is an exponential multiple of the spectral density
- Smoothing periodogram
 - Periodogram is not a consistent estimator of the spectral density: larger n just means more noisy values
 - Need to smooth: combine adjacent values to reduce variance (origin of scatterplot smoothing)

Estimating Spectrum

- Periodogram is not consistent estimator
 - Doesn't improve as the sample size increases; just get more noisy estimates

$$EI_k = f(k/n), \quad \forall \operatorname{ar}(I_k) = f(k/n)^2$$

• Periodogram is an random exponential multiple of the spectrum

$$I(k/n) = \left(\frac{\chi_2^2}{2}\right) f(k/n)$$

- Hence, periodogram is an inconsistent estimator of the spectral density.
- On the good side, values I(k/n) are approximately uncorrelated... unlike estimated autocovariances
- Example
 - Assume process is MA(1) as in prior example
 - Observe either n=128 (top) or n=1024

Climate Example

Southern Oscillation Index

• Data

- Southern oscillation index (soi, air pressure differences in Pacific) and recruitment (rec, measure of new fish)
- Monthly, n = 453

- ACF/PACF
 - SOI has long-term annual dependence, whereas REC resembles stationary AR(2)

- Periodograms
 - SOI has very strong annual cycle, whereas REC has more low-frequency variation
 - Frequency scale runs from 0 to 12 (1/2) = 6 months

- Log periodograms
 - Variance of I(k/n) proportional to square of f(k/n)
 - Software indicates confidence interval in upper right corner

 $\log I(k/n) = \log f(k/n) + \log(\chi_2^2/2)$

- Results
 - Peak doesn't look so impressive
 - Need for smoothing more evident

- Log periodograms with smoothing
 - Simple moving average smoother, width 5
 - Smoothing introduces bias in order to reduce variance: Peak in SOI becomes more spread out
 - Confidence interval is narrower

- Log periodograms with smoothing and tapering
 - Simple moving average smoother, width 5
 - Tapering sharpens peaks
 - Less leakage (bias) for SOI

What's next?

- Forecast revisions
- Context
 - Your company is ordering supplies for a future event
 - You've provided a forecast for how much is needed at the event
 - As the date of the event gets closer, your forecasts change
 - Are such changes appropriate?