Sean $A,\ B$ y C sucesos. Hallar el conjunto que representa a los sucesos definidos por:

- 1. $D_1 = \{\text{alguno de los sucesos } A \text{ o } B, \text{ ocurre}\}$
- 2. $D_2 = \{ \text{al menos dos de los sucesos } A, B \circ C, \text{ ocurren} \}$
- 3. $D_3 = \{\text{ninguno de los sucesos } A \text{ o } B \text{ ocurre}\}$
- 4. $D_4 = \{ \text{exactamente uno de los sucesos } A, B, C, \text{ ocurre} \}$
- 5. $D_5 = \{A \ y \ B \ \text{ocurren, pero} \ C \ \text{no}\}$

Sean $A,\ B$ y C sucesos. Hallar el conjunto que representa a los sucesos definidos por:

- 1. $D_1 = \{ \text{alguno de los sucesos } A \text{ o } B, \text{ ocurre} \}$
- 2. $D_2 = \{ \text{al menos dos de los sucesos } A, B \circ C, \text{ ocurren} \}$
- 3. $D_3 = \{\text{ninguno de los sucesos } A \text{ o } B \text{ ocurre}\}$
- 4. $D_4 = \{ \text{exactamente uno de los sucesos } A, B, C, \text{ ocurre} \}$
- 5. $D_5 = \{A \ y \ B \ \text{ocurren, pero} \ C \ \text{no}\}$
- 1. $D_1 = A \cup B$.
- **2.** D_2 es el suceso "A y B ocurren, o A y C ocurren, o B y C ocurren", y se representa por:

$$D_2 = (A \cap B) \cup (A \cap C) \cup (B \cap C) \tag{1.1}$$

El conjunto que representa a cada suceso es único, pero puede ser expresado de diferentes maneras. En el caso de D_2 podemos dar otra expresión, ya que "al menos dos de los sucesos A, B o C ocurren" significa que ocurren exactamente dos de los sucesos o que ocurren los tres. Por ello, también se tiene:

$$D_2 = (A \cap B \cap C^c) \cup (A \cap B^c \cap C) \cup (A^c \cap B \cap C) \cup (A \cap B \cap C)$$
 (1.2)

con la ventaja de que en 1.2, D_2 se descompone en conjuntos disjuntos.

Sean $A,\ B$ y C sucesos. Hallar el conjunto que representa a los sucesos definidos por:

- 1. $D_1 = \{ \text{alguno de los sucesos } A \text{ o } B, \text{ ocurre} \}$
- 2. $D_2 = \{ \text{al menos dos de los sucesos } A, B \circ C, \text{ ocurren} \}$
- 3. $D_3 = \{\text{ninguno de los sucesos } A \text{ o } B \text{ ocurre}\}$
- 4. $D_4 = \{ \text{exactamente uno de los sucesos } A, B, C, \text{ ocurre} \}$
- 5. $D_5 = \{A \ y \ B \ \text{ocurren, pero} \ C \ \text{no}\}$
- 3. Para que ninguno de los sucesos A o B ocurran, no tiene que ocurrir A y no tiene que ocurrir B, lo que implica:

$$D_3 = A^c \cap B^c$$

Otra forma equivalente es $(A \cup B)^c$.

4. Es semejante al apartado 2.

$$D_4 = (A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C)$$

Los conjuntos de la descomposición son disjuntos.

5. También es semejante al apartado 2.

$$D_5 = A \cap B \cap C^c$$

Si A y B son dos sucesos de cierto espacio de posibilidades, expresar en términos de P(A), P(B), y $P(A \cap B)$, las probabilidades de los siguientes sucesos:

- 1. $A^c \cup B^c$
- 2. $A^c \cap B^c$
- 3. $A^c \cup B$
- 4. $A^c \cap B$
- 5. $A \cup (A^c \cap B)$

Si A y B son dos sucesos de cierto espacio de posibilidades, expresar en términos de P(A), P(B), y $P(A \cap B)$, las probabilidades de los siguientes sucesos:

- 1. $A^c \cup B^c$
- 2. $A^c \cap B^c$
- 3. $A^c \cup B$
- 4. $A^c \cap B$
- **5.** $A \cup (A^c \cap B)$
- 1. Sabemos que $A^c \cup B^c = (A \cap B)^c$; por la propiedad 1, se verifica:

$$P(A^c \cup B^c) = P((A \cap B)^c) = 1 - P(A \cap B)$$

2. *Idem*:

$$P(A^{c} \cap B^{c}) = P((A \cup B)^{c}) = 1 - P(A \cup B)$$

= 1 - P(A) - P(B) + P(A \cap B)

Si A y B son dos sucesos de cierto espacio de posibilidades, expresar en términos de $P(A),\ P(B),\ y\ P(A\cap B),$ las probabilidades de los siguientes sucesos:

- 1. $A^c \cup B^c$
- 2. $A^c \cap B^c$
- 3. $A^c \cup B$
- 4. $A^c \cap B$
- 5. $A \cup (A^c \cap B)$
- 3. Por la propiedad 4, se tiene:

$$P(A^c \cup B) = P(A^c) + P(B) - P(A^c \cap B)$$

Ahora, por la propiedad 1, $P(A^c) = 1 - P(A)$ y, por la propiedad 2,

$$P\left(A^{c}\cap B\right) = P\left(B-A\right) = P\left(B\right) - P\left(A\cap B\right)$$

Así, resulta:

$$P(A^c \cup B) = 1 - P(A) + P(A \cap B)$$

4. Por la propiedad 2,

$$P(A^c \cap B) = P(B - A) = P(B) - P(A \cap B)$$

5. Puesto que $A \cup (A^c \cap B) = A \cup B$, resulta:

$$P(A \cup (A^c \cap B)) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Consideremos el experimento aleatorio de elegir al azar un número de los números naturales $\mathbb{N} = \{1, 2, 3, ...\}$ y los sucesos:

A="El número elegido es múltiplo de 2"

B=" El número elegido es menor que 10"

C=" El número elegido es primo"

D=" El número elegido es múltiplo de 3"

Describir el espacio muestral y expresar como subconjuntos de él los sucesos:

$$A \cap \overline{B}$$

$$B \cap C$$

$$A \cap D$$

$$A \cup D$$

$$\overline{A} \cup \overline{D} \cup \overline{C}$$

$$C \cap \overline{D}$$

Un número es elegido al azar de la recta real ℝ . Sean A, B, C los sucesos asociados con el experimento representados por:

$$A = [3,8]$$

$$B = (7,10]$$

$$C = [0,+\infty)$$

Describir el espacio muestral y expresar como subconjuntos de él los siguientes sucesos:

$$\overline{B}$$
 $A \cup B$
 $B \cap C$
 $\overline{A} \cap \overline{B} \cap \overline{C}$
 $(A \cup B) \cap \overline{C}$
 $\overline{A} \cap B$
 $A \cap \overline{B}$

- 1. Un experimento consiste en preguntarle a 3 personas elegidas al azar si lavan sus platos con el detergente marca X.
 - a) Enumerar los elementos del espacio muestral Ω utilizando la letra s para las respuestas afirmativas y n para las negativas.
 - b) Escribir los elementos de Ω que corresponden al suceso A= "al menos una de las personas utilizan la marca X".
 - c) Definir (describir) un suceso que tenga como elementos los puntos $\{sss, nss, ssn, sns\}$.

- 1. Un experimento consiste en preguntarle a 3 personas elegidas al azar si lavan sus platos con el detergente marca X.
 - a) Enumerar los elementos del espacio muestral Ω utilizando la letra s para las respuestas afirmativas y n para las negativas.
 - b) Escribir los elementos de Ω que corresponden al suceso A= "al menos una de las personas utilizan la marca X".

¹Sol.: a) $\{sss, ssn, sns, nss, nss, nss, nsn, snn, nsn, snn, nsn, snn, nsn, snn, nsn, n$

3. El director de unos almacenes ha supervisado el número de quejas recibidas a la semana por un servicio deficiente. Las probabilidades correspondientes al número de quejas por semana encontradas en la revisión se muestran en la tabla.

0	0.14
1 - 3	0.39
4 - 6	0.23
7 - 9	0.15
10 - 12	0.06
más de 12	0.03

Sean A el suceso "se recibirá al menos una queja por semana", y B "se recibirán menos de 10 quejas por semana".

- a) Calcular la probabilidad del suceso A.
- b) Calcular la probabilidad del suceso B.
- c) Describir el complementario del suceso A.
- d) Calcular la probabilidad del complementario del suceso A.
- e) Describir el suceso intersección de los sucesos A y B.
- f) Calcular la probabilidad del suceso intersección de A y B.
- g) Describir el suceso unión de los sucesos A y B.
- h) Calcular la probabilidad de la unión de los sucesos A y B.
- i) ¿ Son los sucesos A y B mutuamente excluyentes?
- j) ξ Forman los sucesos A y B un sistema completo de sucesos?

 $^3 \, \mathrm{Sol.:}$ a) 0.86, b) 0.91, d) 0.14, f) 0.77, h) 1, i) No, j) No.

- 8. Calcular la probabilidad de $P(\bar{A} \cap \bar{B})$ conocidas P(A) = a, P(B) = b y $P(A \cup B) = c$.
- **9.** Calcular la probabilidad de $P(A \cap \overline{B})$ conocidas P(A) = a, P(B) = b y $P(A \cup B) = c$.

- Calcular la probabilidad de $P(\bar{A} \cap \bar{B})$ conocidas P(A) = a, P(B) = b y $P(A \cup B) = c$.
- Calcular la probabilidad de $P(A \cap \bar{B})$ conocidas P(A) = a, P(B) = b y $P(A \cup B) = c$.

 8 Sol.: 1-c 9 Sol.: c-b

10. Sean A, B y C tres sucesos de un mismo experimento. Consideremos los sucesos:

$$S_1 = \bar{A} \cap \bar{B} \cap C$$
 y $S_2 = (A \cup B) \cap C$

Demostrar que:

- a) S_1 y S_2 son dos sucesos mutuamente excluyentes.
- b) Calcular la probabilidad de S_1 y S_2 sabiendo que

$$P(A) = 0.5, P(B) = 0.6, P(C) = 0.7, P(A \cap B) = 0.3$$

$$P(A \cap C) = 0.2$$
, $P(B \cap C) = 0.1$, $P(A \cap B \cap C) = 0.05$

11. Dados tres sucesos cualesquiera A, B y C demostrar que:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

10. Sean A, B y C tres sucesos de un mismo experimento. Consideremos los sucesos:

$$S_1 = \bar{A} \cap \bar{B} \cap C$$
 y $S_2 = (A \cup B) \cap C$

Demostrar que:

- a) S_1 y S_2 son dos sucesos mutuamente excluyentes.
- b) Calcular la probabilidad de S_1 y S_2 sabiendo que

$$P(A) = 0.5$$
, $P(B) = 0.6$, $P(C) = 0.7$, $P(A \cap B) = 0.3$

$$P(A \cap C) = 0.2$$
, $P(B \cap C) = 0.1$, $P(A \cap B \cap C) = 0.05$

¹⁰Sol.: b) $P(S_1) = 0.45$, $P(S_2) = 0.25$

11. Dados tres sucesos cualesquiera A, B y C demostrar que:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

Problema 8. N tiradores disponen de k cartuchos cada uno y disparan independientemente. Las probabilidades de hacer diana son p_i (i = 1, ..., N) y cada uno deja de disparar cuando consigue hacer diana. Determinar

- a) La probabilidad de que por lo menos un tirador no agote su munición.
- b) La probabilidad de que ningún tirador agote su munición.
- c) La probabilidad de algún tirador sea el único que agote su munición.

Problema 8. N tiradores disponen de k cartuchos cada uno y disparan independientemente. Las probabilidades de hacer diana son p_i $(i=1,\ldots,N)$ y cada uno deja de disparar cuando consigue hacer diana. Determinar

- a) La probabilidad de que por lo menos un tirador no agote su munición.
- b) La probabilidad de que ningún tirador agote su munición.
- c) La probabilidad de algún tirador sea el único que agote su munición.
 - a) La probabilidad de que el tirador i consuma toda su munición es

$$P(A_i) = (1 - p_i)^{k-1}$$

ya que, para ello, debe fallar con los k-1 primeros cartuchos.

Puesto que cada tirador se comporta independientemente de los demás, la probabilidad de que los N agoten su munición es

$$P(\bigcap_{i=1}^{N} A_i) = \prod_{i=1}^{N} (1 - p_i)^{k-1}$$

Y la probabilidad de que alguno no agote sus cartuchos resulta entonces

$$P(\bigcup_{i=1}^{N} A_i^c) = 1 - P(\bigcap_{i=1}^{N} A_i) = 1 - \prod_{i=1}^{N} (1 - p_i)^{k-1}$$

Problema 8. N tiradores disponen de k cartuchos cada uno y disparan independientemente. Las probabilidades de hacer diana son p_i $(i=1,\ldots,N)$ y cada uno deja de disparar cuando consigue hacer diana. Determinar

- a) La probabilidad de que por lo menos un tirador no agote su munición.
- b) La probabilidad de que ningún tirador agote su munición.
- c) La probabilidad de algún tirador sea el único que agote su munición.
- b) El tirador i no agota su munición con probabilidad

$$P(A_i^c) = 1 - (1 - p_i)^{k-1}$$

Como se comportan independientemente, la probabilidad de que ninguno agote su munición es

$$P(\bigcap_{i=1}^{N} A_i^c) = \prod_{i=1}^{N} \left[1 - (1 - p_i)^{k-1} \right]$$

c) La probabilidad de que i agote su munición y los demás no, es

$$P(A_i \cap \left(\cap_{j \neq i} A_j^c \right)) = (1 - p_i)^{k-1} \prod_{j \neq i} \left[1 - (1 - p_i)^{k-1} \right]$$

La probabilidad de que algún tirador agote su munición, mientras el resto conserva algún cartucho, resulta

$$P(\bigcup_{i=1}^{N} \left[A_i \cap \left(\cap_{j \neq i} A_j^c \right) \right]) = \sum_{i=1}^{N} (1 - p_i)^{k-1} \prod_{j \neq i} \left[1 - (1 - p_j)^{k-1} \right]$$