Aufgabe 2

empirischer Mittelwert

Aus der gegebenen Formel

$$\frac{1}{n} \sum_{i=1}^{n} x_i$$

 $\min n = 9 \text{ folgt}$

$$ar{x} = rac{1}{9}(12 + 8 + 11 + 5 + 4 + 7 + 9 + 11 + 5) = 8$$

Median

Der Median ist so definiert, dass höchstens 50% der Werte größer und höchstens 50% der Werte kleiner als der Median seien dürfen. Nach dem Vorgehen, bei welchem die Werte sortiert werden, folgt daraus

$$4 \le 5 \le 5 \le 7 \le 8 \le 9 \le 11 \le 11 \le 12$$

Somit ergibt sich ein Median von 8

Quantile

Nach der Definition folgt, dass für ein $\frac{1}{4}$ -Quantil also mindestens 25% kleiner als das Quantil und mindestens 75% größer seien müssen. Mit n=9 ergibt das also 2.25 und 6.75 für die Anzahlen. Daraus folgt dann also, dass 5 (also der Index 3) als Quantil diese Eigenschaft erfüllt.

Für das $\frac{4}{7}$ -Quantil ergeben sich dann die Anteile von $\frac{4}{7}$ und $\frac{3}{7}$, welches den Anzahlen ≈ 5.14 und ≈ 3.86 entspricht. Somit ergibt sich ein Quantil von 9.

Für das $\frac{128}{309}$ -Quantil ergeben sich dann die Anteile von $\frac{128}{309}$ und $\frac{181}{309}$, welches den Anzahlen ≈ 3.73 und ≈ 5.27 entspricht. Somit ergibt sich ein Quantil von 7.

Quartilsabstand

Der Quartilsabstand ist das gleiche wie der $\frac{1}{4}$ - $\frac{3}{4}$ -Quantilsabstand, welcher sich durch $\tilde{x}_{\frac{3}{4}}-\tilde{x}_{\frac{1}{4}}$ definiert, wobei \tilde{x} die entsprechenden Quantile sind. Dafür müssen daher zuerst die Quantile bestimmt werden.

Für das $\frac{3}{4}$ -Quantil wird wie im Aufgabenteil zuvor vorgegangen. Daraus ergeben sich dann die Anzahlen 6.75 und 2.25, woraus ein Quantil von 11 folgt. (Hier gleiches Problem wie bei der 5 zuvor).

$$ilde{x}_{rac{1}{4}}=5$$

$$ilde{x}_{rac{3}{4}}=11$$

Daraus folgt dann ein Quartilsabstand von 11-5=6

Spannweite

Die Spannweite ist die Differenz zwischen dem größten und kleinsten Wert der Probe, also $12-4=8\,$

empirische Varianz

Die empirische Varianz ist definiert durch

$$\frac{1}{n-1}\sum_{i=1}^n\left(x_i-\bar{x}\right)^2$$

wobei \bar{x}^2 das Quadrat des Mittelwertes der Probe ist und $\overline{x^2}$ das Mittel des Quadrates aller Werte der Probe.

$$egin{aligned} ar{x}^2 = 8^2 = 64 \ & \overline{x}^2 = rac{1}{9}(12^2 + 8^2 + 11^2 + 5^2 + 4^2 + 7^2 + 9^2 + 11^2 + 5^2) = rac{646}{9} \ & s_x^2 = rac{9}{9-1}(rac{646}{9} - 64) = 8.75 \end{aligned}$$

empirische Standardabweichung

Die empirische Standardabweichung ist definiert als $s_x = \sqrt{s_x^2}$, woraus folgt

$$s_x = \sqrt{8.75} \approx 2.95804$$