Q1

Seaborn have different plots such as:- 1.Line Plot:-A Line Plot Is The Simplest Plot In All Plotting Types, As It Is The Visualization Of A Single Function. This Plot Helps Us To See The Relationship Between X-Axis, Y-Axis And It Also Takes Some Parameters Such As Hue, Size, Color, Etc.

2.Countplot:-A Count Plot Is Used To Show The Counts Of Observations In Each Categorical Bin Using Bars. This Method Is Accepting The Parameters X, Y Which Take The Name Of A Variable In Data, Hue It Is An Optional Parameter It Helps To Take Column Name For Color Encoding. 3.Bar Chart:-A Bar Chart Is A Way Of Comparing A Set Of Categorical Data. It Is Better To Convert Continuous Data To Bins Before Plotting. The Bar Chart Displays Data Using Several Bars, Each Representing A Particular Category. 4.Pairplot:-Pair Plot Creates A Grid Of Axis Such That Each Numeric Variable In Data Will Create A Plot Between Each Other The Y-Axis Across A Single Row And The X-Axis Across A Single Column. 5.Scatter Plot:-Scatter Plot Is The Same As A Line Plot, In A Line Plot Instead Of Points Being Joined By Line Segments, The Points Are Shown Individually With A Dot, Circle, Or Any Other Shape. The Position Of Each Marker On The Horizontal And Vertical Axis Indicates Values For An Individual Data Point. 6.Histogram:-A Histogram Is A Graph That Shows The Underlying Frequency Distribution Of A Set Of Continuous Data. This Chart Is Helpful In Data Collection And Data Analysis And Hence It Is Widely Used In The Analytics Industry.

In [5]: #Q2
import seaborn as sns
sns.load_dataset("fmri")

ıt[5]:		subject	timepoint	event	region	signal
	0	s13	18	stim	parietal	-0.017552
	1	s5	14	stim	parietal	-0.080883
	2	s12	18	stim	parietal	-0.081033
	3	s11	18	stim	parietal	-0.046134
	4	s10	18	stim	parietal	-0.037970
	•••					
	1059	s0	8	cue	frontal	0.018165
	1060	s13	7	cue	frontal	-0.029130
	1061	s12	7	cue	frontal	-0.004939
	1062	s11	7	cue	frontal	-0.025367
	1063	s0	0	cue	parietal	-0.006899

1064 rows × 5 columns

```
In [13]: sns.lineplot(data=df,x='timepoint',y='signal',color="red")
```

```
Out[13]: <AxesSubplot: xlabel='timepoint', ylabel='signal'>
```



```
In [15]: #Q3
   import seaborn as sns
   df=sns.load_dataset("titanic")
   sns.boxplot(data=df,x='pclass',y='age')
```

Out[15]: <AxesSubplot: xlabel='pclass', ylabel='age'>

In [18]: sns.boxplot(data=df,x='pclass',y='fare')

Out[18]: <AxesSubplot: xlabel='pclass', ylabel='fare'>


```
In [23]: #Q4
  import seaborn as sns
  sns.load_dataset("diamonds")
```

cut color clarity depth table price Out[23]: carat X У Z 0 0.23 Ideal Ε SI₂ 61.5 55.0 326 3.95 3.98 2.43 0.21 Premium Ε SI1 59.8 61.0 326 3.89 3.84 2.31 1 0.23 Good Ε VS1 56.9 65.0 4.05 4.07 2.31 2 327 0.29 Premium VS2 62.4 58.0 3 334 4.20 4.23 2.63 SI2 4 0.31 Good J 63.3 58.0 335 4.34 4.35 2.75 53935 0.72 Ideal D SI1 60.8 57.0 2757 5.75 5.76 3.50 53936 0.72 Good D SI1 63.1 2757 5.69 5.75 3.61 55.0 53937 0.70 Very Good D SI1 62.8 60.0 5.66 5.68 3.56 2757 53938 0.86 Premium Н SI2 61.0 58.0 2757 6.15 6.12 3.74

53940 rows × 10 columns

Ideal

0.75

53939

```
In [36]: X=df['price']
Y=df['cut']
sns.distplot(X,label='Y')
```

62.2

55.0 2757 5.83 5.87 3.64

/tmp/ipykernel_117/2918881724.py:3: UserWarning:

D

SI2

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(X,label='Y')

Out[36]: <AxesSubplot: xlabel='price', ylabel='Density'>


```
In [38]: #Q5
   import seaborn as sns
   df=sns.load_dataset("iris")

In [39]: sns.pairplot(data=df,hue='species')
```

Out[39]: <seaborn.axisgrid.PairGrid at 0x7f687977eaa0>


```
In [43]: #Q6
   import seaborn as sns
   data=sns.load_dataset("flights")

In [51]: df1=data[['year','passengers']].corr()
   sns.heatmap(data=df1)
```

Out[51]: <AxesSubplot: >

In []: