$parse-numbers = false \ per-mode = symbol$

Fundamental of digital systems

Arthur Herbette Prof. Mirjana Stojilovic

27 février 2025

Table des matières

1	Nui	mbser Systems	7
	1.1	Digital representations	7
		1.1.1 Representation of nonnegative integers	7
		Representation of signed Integers	9
	1.2		10
		1.2.1 Substraction of Unsigned Integers	11
		1.2.2 Two's Complement Addition/substraction	11
			12
	1.3	Fractional number	14
		1.3.1 Fixed-Point Representation	14
		1.3.2 Radix point	15
	1.4	Concepts of finite precision math	17
		1.4.1 Accuracy	17
		1.4.2 Floating-Point Number representation	18
		1.4.3 Significand : Sign-and-Magnitude	19
	1.5		20
		Summary	21
	1.6	Rounding	21
		1.6.1 IEE Standard 754	22
		1.6.2 Arithmetic operations	23
		•	24
		Floating-Point Arithmetic	25

Liste des cours

Cours 1: Number Systems — 2025-02-17	5
Cours 2 : Arithmetic Operations with integers — $2025-02-20$	10
Cours 3 : Fractional (Nointeger) Number — 2025-02-24	14
Cours 4: Arithmetic operation — 2025-02-28	23

4 LISTE DES COURS

Chapitre 1

Number Systems

1.1 Digital representations

Introduction

- In mathematics, a **tuple** is a finite ordered sequence of elements.
 - An **n-tuple** is a tuple of n elements, where n is a nonnegative integer
- In a digital representation, a number is represented by an ordered n-tuple
 - Each element of the n-tuple is called a **digit**
 - The n-tuple is called a **digit vector** (or string of digits)
 - The number of digits n is called the **precision** of the representation

1.1.1 Representation of nonnegative integers

Integer Digit-Vector

• Digit-vector (string) representing the integer x is denoted by :

$$X = (X_{n-1}, X_{n-2}, \dots, X_1, \overbrace{X_0}^{\text{zero-origin}})$$

We see here that it is a leftward-increasing indexing

- Least-significant digit (also called low order digit) : X_0
- Most-significant digit (also called high-order digit) : X_{n-1}

Elements of a number System

$$X = (X_{n-1}, X_{n-2}, \dots, X_1, X_0)$$

- \bullet The number system to represent the integer x consists of
 - the number of digits n
 - A set of numerical **values** for the digits
 - if a set of values for a digit X_i is D_i , the cardinality of D_i is $|D_i|$
 - A rule of interpretation
 - Mapping between the set of digit-vector values and the set of integers
 - Set size
 - The set of integers is a finite set of at most K elements

$$K = \prod_{i=0}^{n-1} |D_i|$$

Example : Decimal number system

$$X = (X_{n-1}, X_{n-2}, \dots, X_1, X_0)$$

- Number of digits n
 - Can be any, but let us consider n = 6(e.g., 17, 9899, 676799, ...)
 - Leading zeros are irrelevant
- Digit set in decimal number system
 - $D_i = \{0, 1, 2, \dots, 9\}$ of cardinality 10
- The correponding set size of K is one million values, from 0 to K-1 $K = \prod_{i=0}^{n-1} 10 = 10^6$

(Non)Redundant Number systems

- A number system is **nonredundant** if
 - ... each digit-vector represents a **different** integer
 - E.g., the decimal system is nonredundant as every number is unique
- Alternatively, a number system is **redundant** if ...
 - ... there are integers represented by more than one digit-vector

Weighted (Positional number systems

- Most frequently used number systems are weighted systems
- The rule of representation :

$$x = \sum_{i=0}^{n-1} X_i W_i$$

Where $W = (W_{n-1}, W_{n-2}, \dots, W_1, W_0)$ is the **weight-vector** of size n

• Equivalent formulation :

$$x = X_{n-1}W_{n-1} + X_{n-2}W_{n-2} + \dots + X_1W_1 + X_0W_0$$

- Example Decimal Number system
- Weights are a power of 10. Example:
 - Digit Vector X = (8, 5, 4, 6, 0, 3)
 - Weight vector $W = (10^5, 10^4, 10^3, 10^2.10^1, 10^0)$

$$x = 8 \cdot 10^5 + 5 \cdot 10^4 + 4 \cdot 10^3 + 7 \cdot 10^2 + 0 \cdot 10^1 + 3 \cdot 10^0$$

$$x = 854703_{10}$$

- When weights are of the format
 - $W_0 = 1$ and
 - $W_i = W_{i-1}R_{i-1}, \ i \le i \le n-1$

We have a radix number system

Radix number system

Définition 1 Radix number systems are weighted number system in which the weight vector is related to the **radix vector** $R = (R_{n-1}, R_{n-2}, \dots, R_1, R_0)$ as follows:

$$W_0 = 1; \ W_i = W_{i-1}R_{i-1}, \ 1 \le i \le n-1$$

• Equivalent to

$$W_0 = 1; \ W_i = \prod_{j=0}^{i-1} R_j$$

• E.g., in the decimal number system $W_0 = 1; W_i = \prod_{i=0}^{i-1} 10$

Fixed and Mixed-Radix number systems

- In a fixed-radix system, all elements of the radic-vector have the same value r (the radix)
- The weight vector in a fixed-radix system :

$$W = (r^{n-1}, r^{n-2}, \dots, r^2, r^1, 1)$$

and the integer x becomes

$$x = \sum_{i=0}^{n-1} X_i \cdot r^i$$

Example

- Characteristics of the decimal number system :
 - Radix r = 10
 - **Fixed-radix** system

Hexadecimal to/from Decimal

Binary/Octal/- I won't really go into the details here but the main thing to know is to convert from a system to one another (with the most famous ones)

Representation of signed Integers

Sign-and-Magnitude (SM)

• A signed integer x is represented by a pair

$$(x_s, x_m)$$

where x_s is the **sign** and x_m is the **magnitude** (positive integer)

- Sign (positive, negative) is represented by a binary bariables
 - $-0 \implies positive; 1 \implies negative$
- Magnitude can be represented as any positive integer
 - In a conventional radix-r system, the range of n-digit magnitude is:

$$0 \le x_m \le r^n - 1$$

1.2 Addition of unsigned Integers

By hand We use here the same principle as a classical addition by hand of decimal numbers :

How many Bits To represent the sum of two n-bit unsigned numbers we use n + 1 are needed For exemple the minimum space is when there are 0 + 0 which leads to:

$$s_{min} = 0 + 0 = 0$$

and for the maximum:

$$s_{max} = (2^n - 1) + (2^n - 1) = 2 \cdot 2^n - 2 = 2^{n+1} - 2$$

which makes it n+1 bits for the sum.

- But we do not always have the extra bit in hardware
- When the magnitude of the result exceeds the largest representable value, we say an **overflow** occurs and the result is incorrect.

1.2.1 Substraction of Unsigned Integers

• We use here the same idea as for decimal numbers :

Negative result

- Negative results cannot be represented using an unsigned system
- When trying to represent a value smaller than the minimu representable by the given number of bits n, an integer **underflow** occurs, and the result is incorrect.

1.2.2 Two's Complement Addition/substraction

Addition

We use here the same algorithm as for the unsigned numbers, and if the result exceeds the range, **overflow** occurs.

To refresh how signes numbers works, for example $1000_2 = -8_{10}$ which is the "most negative" number with 4 bits. Then we add the right side of the number as positive integers like this:

$$\underbrace{1}_{-8_{10}} \underbrace{010_2}^2 = -6_{10}$$

If we want to sum up -5 and 7 for exemple:

$$1011 + 0111$$

$$1 + 10$$

$$1 + 10$$

$$1 + 10$$

$$1 + 10$$

$$0010 = 2_{10}$$

We use it as a clock:

- Clockwise—addition of positive numbers
- Counterclockwise—subtraction of positive numbers

The preferred representation in digital Systems

- If we start with the smallest (most negative) number $1000_2 = -8_{10}$ and count up all succesive numbers up to $0111_2 = 7_{10}$ can be obtained by adding 1 to the previous one:
 - The result will always be correct as long as the range is not exceeded
 - Simple operation
 - Not as simple for sign and magnitude
 - Good for hardware implementation
 - **Win-win**: the same hardware can perform the addition of unsigned numbers

Overflow Detection rules

- Same algorithm as for the unsigned numbers
- If the result exceeds the range, overflow occurs
- Overflow detection rules
 - If the signes of the two numbers are the same but different from the sign of the sum, the overflow occured
 - Alternative formulation: if c_{in} into c_{out} out of the sign position are different, the overflow occurred
 - Adding two numbers of different signs never produces an overflow

1.2.3 Binary multiplication

How

We use the same "algorithm" that the one we use by hand. For a binary representation :

$$\begin{split} X \cdot Y &= X \cdot \sum_{i=0}^{n-1} Y_i \cdot 2^i \\ &= \sum_{i=0}^{n-1} X \cdot Y_i \cdot 2^i \\ &= Y_{n-1} \cdot \underbrace{X \cdot 2^{n-1}}_{\text{Mulit Left-shifted by } n-1} + \dots + Y_2 \underbrace{X \cdot 2^2}_{X \cdot 2^2} + Y_1 \cdot X \cdot 2^1 + Y_0 \cdot X \cdot 2^0 \end{split}$$

How many bits

Théorème 1 Given a n-bits intger and a m-bits intgers, there product can at most require n + m bits.

We can see the multiplication as a sequence of m additions with an n-bit number.

Two's Complement multiplication

Recall of a value in two's complement (signed byte):

$$x = -X_{n-1}2^{n-1} + \sum_{i=0}^{n-2} X_i 2^i$$

• Inspired by the previous algorithm:

$$X \cdot Y = X \cdot (-Y_{n-1} \cdot 2^{n-1}) + X \sum_{i=0}^{n-2} Y_i \cdot 2^i$$

$$= -X \cdot Y_{n-1} \cdot 2^{n-1} + \sum_{i=0}^{n-2} X \cdot Y_i \cdot 2^i$$

$$= -Y_{n-1} \cdot X \cdot 2^{n-1} + Y_{n-2} \cdot X \cdot 2^{n-2} + \dots + Y_2 \cdot X \cdot 2^2 + Y_1 \cdot X \cdot 2^1 + Y_0 \cdot X \cdot 2^0$$

Let us not forget the sign-extend the partial result

For this only n+m bits are kept; any higher-order bits are discarded. (that the "reason" how $-5 \cdot -3 = 15$

Sign-Magnitude and Two's Complement I just ewant to underline the difference between those two representation.

Sign Magni- In the Sign magnitude representation with n bits, we use the tude most significant bit (MSB) to use it as a sign:

- 0 for positive numbers
- 1 for negative numbers

The remaining bits represent the absolute magnitude of the number :

To write 5 in a 4-bits number, we use $0101_2 = +5_{10}$ To write -5 in a 4-bits number, we use $1101_2 = -5_{10}$ We see here that it is very intuitive and mirrors human notation with a sign.

Two's Complement Representation

Here, there is two point of view the one introduce in the course is to see it as a clock, in a clockwise (le sens des aiguilles d'une montre) it is positive, and unclockwise (dans le sens contraire à celui d'une montre) it is negative and begin. The negative also start at -1 but the bit to represent -1 is 1111_2 which is just on the left.

The other way is to see it as the most significant bit (MSB) as negative, $1000_2 = -8$ and the rest of the bits being positive. To write -5 you have to write it as -8 + 3 = -5 which goes to $1011_2 = -5_{10}$

The pros for this notation is that there is only one representation for 0 where there is two for the other (1000 = 0000 = 0), The arithmetic operation are easier because we don't have to carry a sign everywhere and it is mor efficient in hardware implementation.

FIGURE 1.1 – Comparison table

Feature	Sign-Magnitude	Two's complement
-5_{10}	1101	1011
Zero representation	0000(+0) and $1000(-0)$	0000
Range (4-bit)	[-7, 7]	[-8, +7]

2025-02-24 — Cours 3: Fractional (Nointeger) Number

1.3 Fractional number

1.3.1 Fixed-Point Representation

General Format

Définition 2 Fixed-Point Numbers are :

• Integers

$$I = -N, \dots, N$$

• Rational numbers ("binary" rationals) of the form :

$$x = \frac{a}{2^f}$$

where $a \in I$ and f positive integer

The fixed-point representation of a number x consists of integer x_{int} and fraction x_{fr} components represented by m and f digits, respectively:

$$x = x_{int} + x_{fr}$$

Définition 3 Digit-vector representation :

$$X = (X_{m-1}X_{m-2}\dots X_1X_0 \underbrace{\phantom{X_{m-1}X_{m-2}\dots X_{m-1}}}_{Radix\ point} X_{-1}X_{-2}\dots X_{-f})$$

• For **unsigned** numbers:

$$x = \sum_{i=-f}^{m-1} X_i 2^i$$

• For **signed** number in two's complement:

$$x = -X_{m-1}2^{m-1} + \sum_{i=-f}^{m-2} X_i 2^i$$

1.3.2 Radix point

Separator between the integer and fractional parts

$$X = (X_{m-1}X_{m-2} \dots X_1X_0 \underbrace{\hspace{1cm}}_{\text{Radix point}} X_{-1}X_{-2} \dots X_{-f})$$

- The position of the radix-point is assumed to be fixed
 - Hence the name fixed-point
- If the radix point is not shown, it is assumed to be to the right of the least significant digit (i.e, no fractional part)
 - In that case, the number is an integer
- Also known as decimal point, binary point, etc...

No fractional part (integers)

With the fractional part

Example

- Decimal number system and m = 5, f = 5
- Example decimal digit vector :

$$-X = (10077.01690) -x = 1 \cdot 10^4 + 7 \cdot 10^1 \dots + 0,009$$

• Most negative (min):

$$x_{min} = -99999.99999 = -99999 \frac{99999}{10^5}$$

• Largest number (max, positive):

$$x_{max} = +99999.99999 = +99999 \frac{99999}{10^5}$$

Fixed-point Representation

• Given an unsigned fixed-point binary format m = 3, f = 4— and an example binary digit vector :

$$X = (101.0111)$$

• Q : Find the equivalent decimal number :

$$X = (101.0111); x = 2^2 + 2^0 + 2^{-2} + 2^{-3} + 2^{-4} = 5.4375$$

Example With sign-and-magnitude and m = 5, f = 3, Example of a binary digit vector:

$$X = (10101.110);$$

 $x = -(4 + 1 + 0.5 + 0.25) = -5.75$

Therefore, The most negative number can be

$$x_{min} = 11111.111_2 = -15\frac{7}{8}$$

On the other hand, the largest number:

$$x_{max} = 01111.111 = 15\frac{7}{8}$$

Two's comple- With two's complement the work is the same as usual (the ment first digit is negative):

$$X = (1010.1101);$$

$$x = -8 + 2 + 0.5 + 0.0625 = -5.1875$$

Here the most negative number is $x_{min} = 1000.0000_2 = -8$ and the largest one is $x_{max} = 0111.1111_2 = 7\frac{15}{16}$

1.4 Concepts of finite precision math

Precision

Définition 4 The precision is the maximum number of non-zero bits

For example if we have $X=(X_{m-1}X_{m-2}\dots X_1X_1.X_{-1}X_{-2}\dots X_{-f})$ then, the precisions is the sum of f and m:

$$Precisions(x) = m + f$$

Resolution

Définition 5 The resolution is the smallest possible difference between two consecutive numbers

For example if a number as f=5 (5 digits for is fractional part) then we know that the smallest possible difference between the number is $\frac{1}{2^5}=\frac{1}{32}$, for integer (f=0) the resolution is $\frac{1}{2^0}=1$ However, in the general case :

Resolution(x) =
$$2^{-f}$$

Rang

Définition 6 The range is the difference between the most positive and the most negative number representable.

For example with two's complement

If we take, m=5, f=3, we compute $x_{max}=\sum_{i=-f}^{m-2}2^i=15\frac{7}{8}$, $x_{min}=-2^{m-1}=-16$. Then, the range is equal to $x_{max}-x_{min}=31\frac{7}{8}$ In the general case, for fixed point and two's complement:

Range(x) =
$$x_{max} - x_{min} = \sum_{i=-f}^{m-2} 2^i - (-2^{m-1})$$

1.4.1 Accuracy

definition

Définition 7 The accuracy is the magnitude of the maximum difference between a **real** value and its representation.

The worst case (max difference) occurs for a real value exactly in the middle between two subsequent representable numbers (the real value lays between two equaly distant representation).

In the general case =

$$Accuracy(x) = \frac{\text{Resolution}(x)}{2}$$

Dynamic Range

Définition 8 The dynamic range is the **ratio** of, the maximum **absolute** value representable and the minimum positive value absolute (i.e nonzero) value representable.

If we take the two's complement, with m=5, f=3 then the maximum absolute value is $-2^4=16$. For the minimum positive value we have $2^{-3}=\frac{1}{8}$.

The dynamic range is said = $\frac{x_{max}}{x_{min}}$ = 128 In the general case, for fixed-point and two's complement :

Dynamic Range
$$(x) = \frac{2^{m-1}}{2^{-f}} = 2^{m-1+f}$$

Personal remark

You can see as the *size* of all the representable value divided by 2, 128. We have here 8 bits which means that we have 2^8 possible value which goes exactly to 256.

1.4.2 Floating-Point Number representation

Floating-Point (FP) Representation

As with any other number representation in a digital system, FP representation is encoded in a finite number of bits. It represents only a **finite subset** of the **infinite set** of real numbers.

A real number that is **exactly** represented is called a **floating-point** (**FP**) **number**. All other real number either fall out of range (overflow or underflow) or are represented by FP numbers that approximate their value. The process of approximation is called **roundoff** and produces a **roundoff error**.

Significand, Exponent, Base

Significand, Ex- FP representation consists of two components:

- the signed significand (also called mantissa) M^*
- \bullet the signed **exponent** E

$$x = M^* \times b^E$$

where b is a constant called the **base**

Reminds us of the usual scientific notation, base 10:

$$+35200 = \underbrace{3.52}_{\text{Coefficient}} \cdot 10^{+4} - 0.099 = -9.9 \cdot \underbrace{10^{-2}}_{\text{Exponent}}$$

Benefits of Floating-Point

Consider 32 bit two's complement signed integers:

Dynamic Range₁
$$(x) = \frac{x_{max}}{x_{min}} = \frac{2^{32-1}}{2^0} = 2^3 1 \approx 2 \cdot 10^9$$

New, let's consider alors a 32 bit but floating-point number, with 24-significand in sign and magnitude and 8-bits exponent in two's complement.

Dynamic Range₂(x) =
$$\frac{x_{max}}{x_{min}} = \frac{(2^{23} - 1) \cdot 2^{2^{(8-1)} - 1}}{2^0 \cdot 2^{-2^{8-1}}} = (2^{23} - 1) \cdot 2^{255} \approx 5 \cdot 10^{83}$$

We can see here that the dynamic range increase a lot by a factor of $\approx 10^{74}$

Benefit

We can also see the benefits the resolution which also reduces of for example when taking a 32-bits with 8 fractional bits (fixed-point) and on the other

side, 24 bits significand in sign and magnitude and 8 bit exponent in two's complement. If we compute each resolutions :

$$\mbox{Resolution}_1(x) = 2^{-8} = 0.00390625$$

$$\mbox{Resolution}_2(x) = 2^0 \cdot 2^{-2^{(8-1)}} = 2^{-2^7} = 2^{-128}$$

If we compute the ratio:

$$\frac{\text{Resolution}_2(x)}{\text{Resolution}_1(x)} = \frac{2^{-128}}{2^{-8}} = 2^{-120} \approx 7.523 \cdot 10^{-37}$$

1.4.3 Significand: Sign-and-Magnitude

Floating-Point Representation

Today, the most used representation for significand is sign and magnitude because it simplifies multiplication in hardware.

The floating-point representation becomes:

$$x = (-1)^S \times M \times b^E$$

Where $S \in \{0,1\}$ is the **sign** and M is the **magnitude** of the signed significant

In the rest of the lecture, we assume significand is always represented in sign-and-magnitude.

Digit vector

Many digit vectors are conceivable, but we focus on the following:

$$X = (\underbrace{SE_{m-1}}_{\operatorname{Sign}E_{m-2}...E_1E_0M_{n-1}M_{n-2}...M_0}$$

Where E_i is the exponent and M_i is the magnitude.

There is (n+1) bit significand in sign and magnitude and m bit exponent.

Redundant

In the most general case, the representation:

$$x = (-1)^S \times M \times b^E$$

is redundant. Sign and magnitude is redundant, Multiple magnitude and exponent combinations can give the same number.

Example If we take for example:

$$(1010)_2 \times 2^{-2} = 10 \times 2^{-2} = 2.5$$

 $(0101)_2 \times 2^{-1} = 5 \times 2^{-1} = 2.5$
 $(1.01)_2 \times 2^1 = 1.25 \times 2^1 = 2.5$

Floating-point representation is **redundant unless it is normalized**!

If we take a magnitude that is **normalized**:

$$1 \le M < 2$$

Then:

$$1010.1000_2 = 1.0101_2 \times 2^3 = 10.5$$
$$-(0.00000011)_2 = -1.1_2 \times 2^{-7} = -0.01171875$$

Juste to be clearer, the normalized one here, is $1.0101_2 \times 2^3$ and $-1.1_2 \times 2^{-7}$.

For example let put 20_{10} normalized.

First, $20_{10} = 10100_2$, however $1 \le M < 2$, which leads us to: $1.0100_2 \times 2^4$. The M being between 1 and 2 doesn't mean that the decimal number has a 1,....

Fraction

Hidden Bit and As the significand is normalized, the first digit of the magnitude is always binary 1. If something is always the same, it can be omitted (saving precious bits)

The first digit of the significand is omitted and called **hidden bit**.

The binary point is assumed to the right of the hidden bit. The represented part of the significand is called **fraction F**.

Example

inormalized significand
$$101.001_2 \times 2^{-4} = \underbrace{1.01001_2}_{\text{Normalized significand}} \times 2^{-2} = \underbrace{0.01001_2}_{\text{Normalized significand}} \times 2$$

Summary

- Common significand representation is the following:
 - Sign-and-magnitude
 - Normalized
 - One hidden bit
- Corresponding significand value becomes:

$$(-1)^S \times (1 + \sum_{i=1}^n M_{n-1} 2^{-1})$$

Exponent 1.5

Exponent

Exponent needs to be signed

- Positive for representing very large numbers (large absolute value)
- Negative for representing very small numbers (small absolute value)

Biased representation

Exponent can take any signed representation we know but there is one particular representation, called biased, which simplifies comparing two FP numbers in hardware.

Biased representation of a digit vector $X = (X_{n-1} \dots X_1 X_0)$

$$x = \sum_{i=0}^{n-1} X_i 2^i - B$$

1.6. ROUNDING 21

Typically, the bias equals $B = 2^{n-1} - 1$

Biased representation, Cntd.

Where's the catch?

- Resulting number are sorted just like unsigned integers but cover both the positive and negative numbers
- efficient hardware (superior to two's complement)
- Min exponent is represented as all zeros
 - FP zero can be represented as all zeros (significand and exponent)

Summary

Exponent

- \bullet Common representation of an -m bit exponent is biased with base $B = 2^{m-1} - 1$
- For the binary digit vector :

$$X = (SE_{m-1}E_{m-2} \dots E_1E_0.M_{n-1}M_{n-2} \dots M_0)$$

this biased exponent value becomes:

$$e = \sum_{j=0}^{m-1} E_j 2^j - (2^{m-1} - 1)$$

Floating point format

There could be many floating point formats, but we will often assume:

- (n+1)-bit significand
- Sign and magnitude
- Normalized, one hidden bit
- m-bit exponent

— Biased,
$$B = 2^{m-1} - 1$$

$$X = (SE_{m-1}E_{m-2} \dots E_1E_0.M_{n-1}M_{n-2} \dots M_0)$$

$$x = (-1)^{S} \times \left(1 + \sum_{i=1}^{n} M_{n-i} 2^{-i}\right) \times 2^{\sum_{j=0}^{m-1} E_{j} 2^{j} - (2^{m-1} - 1)}$$

1.6 Rounding

The result of a floating-point operation is a real number that, to be represented exactly might require a significand with an infinite number of digits.

To obtain a representation close to the exact result, we perform what is called **rounding**

Rounding modes

Various rounding modes exist

- Round to nearest, to even when tie
- Round towards **zero** (truncate)
- Round towards plus or towards minus **infinity**

Consider the real number x_{real} and the consecutive floating-point number F_1 and F_2 such that $F_1 \leq x_{real} \leq F_2$, we round it like always (normal definition)

1.6.1 IEE Standard 754

FP format in IEEE 754

Exactly what we described

- (n+1)-bit significand
- Sign and magnitude, Normalized, one hidden bit
- *m*-bit exponent

— Biased
$$B = 2^{m-1} - 1$$

$$X = (SE_{m-1}E_{m-2} \dots E_1E_0.M_{n-1}M_{n-2} \dots M_0)$$

There is two types of formats: Basic and extended format:

Basic formats

 \bullet Sign S 1 bit

• Exponent E: 8 bits

• Fraction F: 23 bits

The default rounding mode is to the nearest, to even when there is a tie.

Double precision (64 bits)

• Sign S:1 bit

 \bullet Exponent E: 11 bits

• Fraction F:52 bits

Special Values

- Floating-point **zero** : E = 0, F = 0
 - The sign S differentiates between positive and negative zero, Value 1.0×2^{-B} is not represented.
- Positive and negative **infinity**
 - Biased exponents all ones, F=0
- NaN (not a number)
 - To represent results of invalid operations (for example, the square root of a negative number)
 - Sign = 0 or 1 biased exponents all ones, $F \neq 0$

Exceptions: Handling of special situations

The following five exceptions set a flag (i.e " activate an alarm") and the computation continues.

- Overflow, when the rounded value is to large to be represented
 - Result is set to infinity
- **Underflow**, when the rounded value is to small to be represented s to small to be represented
- Division by zero
- Inexact result, when the result is not an exact floating-point number
- \bullet invalid result, When NaN is produce by zero
- Inexact result, when the result is not an exact floating-point number
- \bullet invalid result, When NaN is produced

1.6. ROUNDING 23

2025-02-28 — Cours 4: Arithmetic operation

Difference between Fixed and Floating point representation

In a fixed point representation, the "distance" between each point is fixed, on the other and When using Floating point representation, this distance isn't fixed it is **floating**. The reason for this is the definition of the floating point representation:

$$X = (SE_{m-1}E_{m-2} \dots E_1 E_0 M_{n-1} M_{n-2} \dots M_0)$$
$$x = (-1)^S \times M \times b^E$$

As you can see, the number can be much more precise as it goes near zero.

Arithmetic operations

Fixed-Point arithmetic

Performing + or - on two binary numbers x(m, f) and y(m, f) is done the same way as if the operands were integers.

• Overflow can happen

Example(Slide 11) If I forgot to put the screenshot here is the example:

$$X = 000101.110_2 = 5.75_{10}$$

 $Y = 001100.011_2 = 12.375_{10}$

And we want to sum up these two number,

$$00101.110 \\ +001100.011$$

We begin at the right, 0 + 1 = 1, X + Y = ?????????1 then 1+1=10 there for we put a 0 and carry it over, X+X=???????.?01, then carry+1+0=10 same method at the next index so X + Y = ?????0.001 then we get the carry alone, ... and we end up with 010010.001 = 18.125

Personalremark

It is the same way because we are always adding power of the 2 event when we are in the "fractional world" it is still power of two. We also do the same with decimal number in base 10.

ment

Two's Comple- For the two's complement the formula is:

$$x \pm y = \left(-X_{(m_x - 1)}2^{(m_x - 2)} + \sum_{i = -f_x}^{m_x - 2} X_i 2^i\right) \pm \left(-Y_{(m_y - 1)}2^{(m_y - 1)} + \sum_{i = -f_y}^{m_y - 2} Y_i 2^i\right)$$

The largest integer-part exponent: $\max(m_x-1, m_y-1)$ Consequently $m_{x\pm y}=$ $\max(m_x, m_y) + 1$

The smallest fractional part exponent: $\min(-f_x, -f_y)$ Consequently $f_{x\pm y} =$ $\max(f_x, f_y)$

 $m_{x\pm y}$ is the number of bits for the integer component that is needed (usual addition), same thing for the $f_{x\pm y}$

Fixed Point arithmetic Multiplication

Introduction

For the multiplication on two binary numbers x(m, f) and y(m, f), we use the same algorithm as if the operands were integers but, the binary point location changes.

In two's complement:

$$x \cdot y = \left(-X_{m-1}2^{m-1} + \sum_{i=-f}^{m-2} X_i 2^i \right) \cdot \left(-Y_{m-1}2^{m-1} + \sum_{i=-f}^{m-2} Y_i 2^i \right)$$

The largest integer-part exponent (m-1)+(m-1) Consequently $m_{xy}=2m$ The smallest fractional-part exponent : (-f) + (-f) Consequently $f_{xy} = 2f$

Generalization

Multiple on two binary numbers $x(m_x, f_x)$ and $y(m_y, f_y)$

$$x \cdot y = (x_{int} + x_{fr}) \cdot (y_{int} + y_{fr})$$

In two's complement:

$$x \cdot y = \left(-X_{m_x} 2^{m_x - 1} + \sum_{i = -f_x}^{m_x - 2} X_i 2^i \right) \cdot \left(-Y_{m_y - 1} 2^{m_y - 1} + \sum_{i = -f_y}^{m_y - 2} Y_i 2^i \right)$$

- $\bullet \ m_{xy} = m_x + m_y$
- $\bullet \ f_{xy} = f_x + f_y$

Example: let us take for example

• $9.99 \ m_x = 1, f_x = 2$ • 999.9999, $m_y = 3$, $f_x = 4$

If we take the multiplication:

9989.999001
$$m_{xy} = 1 + 3 = 4; f_{xy} = 2 + 4 = 6$$

Example

For example if we take two number with the format,

- $m_x = m_y = 3$
- $f_x = f_y = 2$

and X = 010.11, Y = 011.01. (screenshot slide 17)

To explain it in spoken English we do it as a loop of addition without the format (like it is integer) and then with the result, we convert it to fixed-point.

We have to be careful here to not forget to change the format $(m_{xy} = m_x + m_y \dots)$.

1.6. ROUNDING 25

Pros and cons of fixed Point representation

Pros

- Arithmetic operations on integers can be applied to fixed-point numbers without modifications
 - Portable: we can reuse the same inetger processing hardware
 - Like with integers, arithmetic operations are performed efficiently (fast)
 - Used in image and signal processing and communication

Cons

- Complex data and algorithm analysis
 - Where to put the binary point to maximize accuracy
- There are other number formats, namely floating-point, that provide more extensive dynamic range and better precision

Floating-Point Arithmetic

Addition/Subtraction

Let x and y be represented as (S_x, M_x, E_x) and (S_y, M_y, E_y)

• The significands $M^* = (-1)^S M$ are normalized

Addition/subtraction result is z, also represented as (S_z, M_z, E_z) :

$$z = x \pm y = M_x^* \times 2^{E_x} \pm M_y^* \times 2^{E_y}$$

The significand of the result is also normalized:

$$z = M_z^* \times 2^{E_z}$$

Steps

Four main steps to compute and produce the result +/-

• Add/substract significand and set exponent The significand of the number with the **smaller** exponent has to be multiplied by two to the power of the difference between the exponents (this operation is called **alignment**) and the added/subtracted to the other significand

$$M_z^* \begin{cases} (M_x^* \pm (M_y^* \times 2^{(E_y - E_x)})) \times 2^{E_x} & \text{if } E_x \ge E_y \\ ((M_x^* \times 2^{(E_x - E_y)}) \pm M_y^*) \times 2^{E_y} & \text{if } E_x < E_y \end{cases}$$

$$E_z = \max(E_x, E_y)$$

- Normalize the result and update the exponent, if required
- Round the result, normalize, and adjust exponent, if required
- Set flags for special values, if required
- Recal Step 1 : Add/substract significand and set exponent
- Algorithm
 - Substract exponents $d = E_x E_y$
 - Align significands
 - Compare the exponents of the two operands
 - shift right d positions the significand of the operand with the smallest exponent

Recap

— Select as the exponent of the result the largest exponent
 — Add/subtract signed significands and produce the sign of the result

1.6.3 Floating Point +/-

Normalization Various situations may occur

- Scenario 2: When the effective operation is an **addition**, the significand might **overflow**. Steps to perform normalization:
 - Shift right the significand one position
 - Increment the exponent by one
- Example:

1.1001111 + 0.0110110 = 10.0000101

Normalization

Shift right >> 1

Increment the exponent E = E + 1

Rounding

The intermediate result may not be representable with the given format, in this case we perform a rounding.

 $\bullet\,$ Towards zero : truncate the lsb

• Twords $\pm \infty$: requires addition

• To nearest : require addition

Tie to even

The FP result is as close as possible to the exact value :

- Minimized rounfoff error (default rounding mode in *IEEE* 754)
- Tie to even is preferred because it leads to smaller error when the result is divided by two -a frequent operation

Assuming as significand of infinite precision and radix r, round to the nearest can be obtained by adding $(\frac{r^{-f}}{2})$ to the infinite precision significandd and keeping the resulting f fractional digits

• In case of overflow: normalization and the exponent update are needed

Max round-off Error Rounding to nearest. f fractional digits. What is the maximum difference between the exact value and its FP representation?

$$d_{max} = \frac{2^{-f}}{2} \times 2^{E_{max}}$$