Data Structures & Algorithms 1

Topic 5 – Big O Notation

Algorithm Efficiency

- Throughout the course we will seek to design efficient algorithms
- But how can we come up with a universal standard for algorithm efficiency?
- Imagine I compare my dice program with yours
- I run my program on my fast office computer
- You run your program on a slower lab machine

Running Times

5 Dice rolled 1 million times

My computer 40ms

Your computer 70ms

Which Dice algorithm is better?

The metre

- Historically, (1889-1960) the metre was defined by the French Academy of Sciences
- It was the length between two marks on a platinum-iridium bar
- 1/10 millionth of the distance from the equator to the North Pole through Paris
- Every measurement was based on this bar

Algorithm Efficiency

- In the same way, we could try running all algorithms on the same computer
- But is this a good universal standard?
- We would need to have a single benchmark machine on which all of the world's programs were tested
 - 386 25Mhz with 2MB RAM
- This machine would quickly become antiquated and need to be updated, invalidating the previous measurements

Running Times

	1 million rolls	2 million rolls	3 million rolls
My computer	40ms	160ms	360ms
Your computer	70ms	140ms	210ms

Which Dice algorithm is better?

Standard measure

- The relationship between the increase in the size of a problem and the increase in the running time is platform independent (apart from a constant)
- No matter what platform you run it on, the same relationship will emerge
- We therefore use this relationship to define algorithm efficiency
- Knowing the relationship is very useful for predicting how long an algorithm will take to run on a particular problem

Big O Notation

- We use Big O Notation to describe this ratio
- We are not concerned with the actual time it takes to run the algorithm
 - 100 ms on a laptop
 - 10 ms on a supercomputer
- We want a way to describe the rate with which the running time of the algorithm increases compared to the rate at which the size of the problem (n) increases
- Big O is always concerned with worst case time requirement

Examples

- O(n) The rate at which the running time increases is proportional to the rate at which the size increases
- O(n²) Running time increases proportional to the square of the size of the problem
- O(1) Running time is not related to the size of the problem
- O(log n) Time increases slowly at log the rate of the size

Big O graph

Insertion in an Unordered Array

- For insertion into an unordered array running time doesn't depend on the size of the array – we just stick the element on at the end
- We can say that running time (T) = some constant time (K) which won't change → T = K
- K can depend on factors such as the speed of the computer, the amount of RAM etc.
- We don't care what K actually is Big O Notation is only concerned with describing the relationship between the running time and the size of the problem
- We just say the algorithm is O(1) running time is unaffected by n

Linear Search

- We have to search through all the elements in an array
- On average, we'll have to check half of them
- So T = K * (n / 2)
- Because K is a constant, K / 2 will still be a constant (value doesn't depend on n)
- So T = K * n
- This algorithm is O(n)

Binary Search

- We have already shown that iterations = log₂(size)
- Therefore T = K * log₂(n)
- As it happens $log_{10}X = 3.32 * log_2X$
- Incorporating the 3.32 into the K, we get T = 3.32K * log₁₀(n)
- 3.32K is just a constant which is irrelevant to Big O Notation
- This algorithm is O(log n)

Operations in an Ordered Array

- Ordered arrays are handy because we can use binary search on them and this is O(logn)
- However, if we want to insert or delete we have to make space / remove a space
- On average, we will have to move half of the items up or down → K * (n/2)
- Therefore, these operations are O(n)

Running times in Big O Notation

Algorithm	Running Time	
Linear Search	O(n)	
Binary Search	O(log n)	
Insertion in unordered array	O(1)	
Insertion in ordered array	O(n)	
Deletion in unordered array	O(n)	
Deletion in ordered array	O(n)	

Question

- Which of the following statements about Big O Notation is false?
- **A)** Big O Notation provides a standard mechanism for comparing algorithms
- **B)** Big O Notation is useful for identifying parts of a program that are causing bottlenecks because they are inefficient
- C) The same algorithm will always have the same Big O Notation no matter what machine it is run on
- **D)** Algorithms with the same Big O Notation can take different amounts of time to run on the same computer for a given problem size
- E) Knowing the Big O Notation of an algorithm allows you to predict exactly how long the algorithm will take to run for a given problem size

Expressing iterations in terms of *n*

- Usually we can look at a piece of code and derive a function f(n) which describes the number of loop steps in it
- How many loop iterations in this code?
- In other words, how many time will counter++ be run?

```
for (int i = 10; i < n; i++) {
    for (int j = 10; j > 0; j--) {
        counter++;
    }
}
```

• There are (n - 10) * 10 iterations = 10n - 100

Formalities

- Formal mathematical definition of Big O
- A function f(n) = O(g(n)) if
 - a positive real number c and positive integer n₀ exist such that

$$f(n) \le c \cdot g(n)$$
 for all $n \ge n_0$

Graph

c.g(n) is the upper bound on f(n) when n is sufficiently large

Interpretation

- We want to describe how the size of a function f(n) (which describes the running time of a program) increases as n gets really huge
- The biggest power of n will always dominate
- Accordingly, we pick this as the Big O complexity g(n)
- We don't care about constants
- To justify that this pick is a good description of f(n), we show that f(n) is always bounded by the Big O complexity g(n) (multiplied by some constant, which doesn't matter as we don't care about constants!) as long as n is bigger than some value n_0
- In other words, to show g(n) provides a good description of f(n) we show that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$

Interpretation

- For example O(n²) is a good description of 3n² + 5n + 2 since n² multiplied by the arbitrary constant 10 will always be bigger than 3n² + 5n + 2 for every value of n greater than 1
- O(n²) manages to capture the behaviour of this function as n becomes bigger (with only a constant amount of inaccuracy)
- We don't care that 3n² + 5n + 2 could be up to 10 times bigger than O(n²)
- 10 is only a constant and in the long run as *n* gets huge, constants will become insignificant

Example

- The function $10n^2$ will always exceed $3n^2 + 5n + 2$, so as long as n is 2 or greater
- Therefore $3n^2 + 5n + 2$ is $O(n^2)$ because...
 - □ $10n^2 = 3n^2 + 5n^2 + 2n^2$ which is > than $3n^2 + 5n + 2$ when n >= 2...
 - $3n^2 = 3n^2$
 - $5n^2 > 5n$
 - $2n^2 > 2$

Explain?

- I'm looking for the Big O function which is the closest description of the performance of my function (i.e. computer program)
- My function must be bounded by the Big O function beyond a certain problem size n₀
- The Big O function can be multiplied by any constant in order to meet this requirement
- For example, if I describe my function as being O(n), what I mean is that my function always has a running of less than K * n when n is bigger than n₀
 - K can be a million, a billion, a trillion, it doesn't matter
 - n₀ can be any value too, but it is usually more sensible to keep it low
 - Even though it is huge, 2¹⁰⁰ is actually a constant because it has no n term

Example

- Show that f(n) = 5n + 3 = O(n)
 - Find a g(n), c and n_0 such that f(n) ≤ c.g(n) for all n ≥ n_0
 - How about g(n) = n, c = 8, $n_0 = 1$?
 - f(n) <= 8n for every value of n greater than 1</p>
 - 5n + 3 is always less than 5n + 3n when n is at least 1
 - Therefore, we can say f(n) is O(n)
- Why don't we let $g(n) = n^2$?
- Although the conclusion is correct since f(n) will always be less than O(n²) as well, this is not the closest description of the algorithm

Example

- 8n will always bound 5n + 3 when n is bigger than 1
- Therefore, we can say that a program with 5n + 3 steps is O(n)
- Of course, it would also be bounded by 6*n* but so long as we show it for any constant then that's sufficient

Usage

- Always use the most parsimonious formula for the Onotation.
- We write
 - $3n^2+2n+5 = O(n^2)$
- The followings are all correct but we want the most concise
 - $3n^2+2n+5 = O(3n^2+2n+5)$
 - $3n^2+2n+5 = O(n^2+n)$
 - $3n^2+2n+5 = O(3n^2)$

Tip

- In order to figure out what the order of a function is, just look at the highest order of n
- If there's an n² term, then the formula is O(n²)
- Always put g(n) equal to this power
 - $g(n) = n^2$
- Now choose c so that it equals the sum of all the variables in the function
 - If $f(n) = 3n^2 + 2n + 5$, then choose c to be 10 (3 + 2 + 5)
- This makes it easy to show that 3n²+2n+5 < 3n²+2n²+5n²
- Finally, figure out what value n_0 needs to have in order to make the above statement $f(n) \le c.g(n)$ true

Example of O-notation

• Show that $3n^2+2n+5 = O(n^2)$

$$g(n) = n^2$$
, $c = 10$, $n_0 = 1$

Pick c = 10 because it's easy to show $10n^2 \ge 3n^2 + 2n + 5$

$$10n^2 = 3n^2 + 2n^2 + 5n^2$$

 $3n^2 + 2n^2 + 5n^2 \ge 3n^2 + 2n + 5$ for all $n \ge 1$

Formalities

- The following identities hold for Big O notation:
- O(k * f(n)) = O(f(n))
 - If an algorithm is doubled in complexity, it still has the same Big O Notation
- O(f(n)) + O(g(n)) = O(f(n) + g(n))

 - If we run one algorithm after the other, the complexity is added However, if algorithm 1 is $O(n^2)$ and algorithm 2 is O(n) then $O(n^2 + n)$ can be more parsimoniously described as $O(n^2)$
- O(f(n)) * O(g(n)) = O(f(n) *g(n))
 - If algorithm 1 is O(n²) and algorithm 2 is O(n) and one algorithm is run inside the other as a loop then the Big O Notation is O(n3)

Big-O Examples

■ 7n - 2

```
7n-2 is O(n)
need c > 0 and n_0 \ge 1 such that 7n-2 \le c•n for n \ge n_0
this is true for c = 9 and n_0 = 1
```

 $3n^3 + 20n^2 + 5$

```
3n^3 + 20n^2 + 5 is O(n^3)
need c > 0 and n_0 \ge 1 such that 3n^3 + 20n^2 + 5 \le c \cdot n^3 for n \ge n_0
this is true for c = 28 and n_0 = 1
```

■ 3 log n + 5

```
3 log n + 5 is O(log n)
need c > 0 and n_0 \ge 1 such that 3 log n + 5 \le c•log n for n \ge n_0
this is true for c = 8 and n_0 = 10 (log10 = 1 so n_0 has to be 10 before logn exceeds 1)
```

Keeping it simple

- $f(n) = 10 n + 25 n^2$
- f(n) = 20 n log n + 5 n
- $f(n) = 12 n log n + 0.05 n^2$
- $f(n) = n^{1/2} + 3 n \log n$

- O(n²)
- O(n log n)
- O(n²)
- O(n log n)

Getting Big O of a program

- When trying to determine the Big O Notation of a computer program, look at the loop structure
- Statements that are run the same number of times regardless of the size of the problem are just constants
- All you're interested in is how increasing the size of n increases the number of iterations of the loops
- Increasing the size of n will only have an effect is there a loop structure which depends on n
 - A single loop running n times indicates O(n)
 - A nested loop each running n times indicates O(n²)

Picturing Efficiency

Consider this algorithm:

```
for i = 1 to n

sum = sum + i

1 2 3 ... n
```

- The work done by the body of the loop (i.e. sum = sum + i) requires a
 constant amount of time O(1)
- This body is executed n times
- Therefore, the algorithm is O(n)

Picturing Efficiency

```
for i = 1 to n
   { for j = 1 to n
       sum = sum + 1
i=1
   K K ... K
   X X ... X
                        \mathrm{O}(n*n)=\mathrm{O}(n^2)
```

n steps of work are repeated n times

An O(n²) algorithm

Shaking hands at a party

- If there are n people at the party, we will need to shake (n-1) hands
- The next person will have to shake (n-2) hands (they don't have to shake your hand again)
- The last person has to shake 0 hands because everybody has already shaken his hand
- Total number of handshakes:

$$(n-1) + (n-2) + (n-3) \dots 0$$

There will be n terms in the above and the average term is

$$((n-1) + 0) / 2 = (n-1) / 2$$

- Total number = $n*(n-1) / 2 = n^2/2 n/2$
- Using our usual methodology we can show that this is O(n²)

Compute average of array

```
double average(int[] array) {
   double sum = 0;
   int n = array.length;
   for (int i=0; i<n; i++) {
      sum += array[i];
   }
   return sum / n;
}</pre>
```

One loop running n times = O(n)

Nested Loops

```
double sum = 0;
for(int i=0; i<n; i++) {
   for(int j=0; j<n; j++) {
      sum += 5;
   }
}</pre>
```

Nested for loops each running n times = $O(n^2)$ steps

Loop running constant number of times

 Suppose that your implementation of a particular algorithm appears in Java as follows:

• Two loops running to n, third loop runs a constant number of times \rightarrow O(n²)

How about this loop?

```
for(int i=0; i<10; i++) {
  for(int j=0; j<20; j++) {
    counter++;
  }
}</pre>
```

- Analyse the complexity of the above algorithm
- Notice that the loops do not depend on the size of n
- No matter what size n is, the loops will run the same number of times
- Therefore, the running time will always be the same
- The order of the above algorithm is O(1)

Exam Question – January 2008

A function involves the following number of steps where *n* is the size of the problem:

$$f(n) = log(n) + n/2 + 5$$

State the Big-O complexity of the function and prove that this is the case using the mathematical definition.

Exam Question – January 2008

- g(n) = n since n is the biggest term
- Let c = 7 since there are 7 units in the function
- We must show c.g(n) >= f(n) above some threshold n₀
- 7n = n + n + 5n >= logn + n/2 + 5
 as long as n > =1
- QED

Timing Programs

- You can check how long your program has been running
- There is a System method that allows us to store the current value of the system clock
- By comparing two different system clock values we can figure out how long the program has been running

```
long start = System.currentTimeMillis();
long elapsed = System.currentTimeMillis() - start;
```