Scientific Computing for Biologists

Linear Algebra Review I

Instructor: Paul M. Magwene

09 September 2014

Overview of Lecture

- ANOVA as bivariate regression
- Partial correlation
- Introduction to Matrices
 - Matrices as collections of vectors
 - Special matrices
- Matrix operations
 - Matrix addition, subtraction
 - Matrix multiplication
 - Transpose
 - More special matrices
- Matrices as linear transformations
- Linear dependence/independence
- Matrix inverses
- Solving simultaneous linear equations

Geometry of Bivariate Regression

Geometric interpretation of regression as projection:

$$\vec{\hat{y}} = b\vec{x}$$

$$b = \frac{\vec{x} \cdot \vec{y}}{\vec{x} \cdot \vec{x}}$$
 (1)

Two-group ANOVA as Regression

We can also use a geometric perspective to test whether the mean of a variable differs between two groups of subjects.

Setup a 'dummy variable' as the predictor X_g . We assign all subjects in group 1 the value 1 and all subjects in group 2 the value -1 on the dummy variable. We then regress the variable of interest, Y, on X_g .

$$y = X_g b + e$$

	Raw		Centered	
Group	Y_i	X_i	y_i	x_i
1	2	-1	-3	$-\frac{4}{3}$
	3	-1	-1	$-\frac{4}{3}$
2	5	1	0	2 3
	6	1	1	$\frac{2}{3}$
	6	1	1	2 3 2 3 2 3 2 3
	7	1	2	$\frac{2}{3}$
Mean	5	$\frac{1}{3}$	0	0

Two-group ANOVA as Regression, cont

- When the means are different in the two groups, X_g will be a good predictor of the variable of interest, hence \vec{y} and $\vec{x_g}$ will have a small angle between them.
- When the means in the two groups are similar, the dummy variable will not be a good predictor. Hence the angle between \vec{y} and $\vec{x_g}$ will be large.

Geometry of the Population Regression Model

Figure: Left: null hypothesis of no regression effects is true; Right: null model is false.

Is my regression significant? \Rightarrow Is $|\vec{\hat{y}}|^2$ large relative to $|\vec{e}|^2$?

Comparing the Effect Space and the Error Space

To compare the squared length of $|\vec{\hat{y}}|^2$ and $|\vec{e}|^2$ we divide them by the dimension of the subspaces in which they lie.

$$M(\vec{\hat{y}}) = \frac{|\vec{\hat{y}}|^2}{\dim(\mathcal{V}_X)}$$
$$M(\vec{e}) = \frac{|\vec{e}|^2}{\dim(\mathcal{V}_e)}$$

We compare these by defining a statistic, F:

$$F = \frac{M(\vec{y})}{M(\vec{e})} = \frac{\dim(\mathcal{V}_e)|\vec{y}|^2}{\dim(\mathcal{V}_\chi)|\vec{e}|^2}$$
$$= \frac{(N - p - 1)R^2}{p(1 - R^2)}$$

When null hypothesis is true, $F \approx 1$; when it is false, $F \gg 1$.

Reminder: Correlation

Last time we saw that correlation is a measure of association and is a function of the angle between two vectors (variables).

$$cor(X, Y) = r_{XY} = cos \theta = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}||\vec{y}|}$$

Q: Correlation is a pairwise measure. Can we extend this idea to more than two variables?

Partial Correlation

The partial correlation of \vec{x} and \vec{y} given \vec{z} is the correlation of \vec{x} and \vec{y} after we "account for" their joint association with \vec{z} .

What we mean by "account for" here is essentially 'to factor out', by projecting \vec{x} and \vec{y} onto \vec{z} and then calculating the correlation of the residual vectors.

Geometry of Partial Correlation

The partial correlation of \vec{x} and \vec{y} given \vec{z} is equivalent to the correlation of the residuals after projecting \vec{x} and \vec{y} onto \vec{z} .

$$cor(X, Y|Z) = r_{XY.Z} = cor(\hat{x}_{\perp z}, \hat{y}_{\perp z}) = cos \phi$$

Algebra of Partial correlation

Algebraicly, one can calculate the partial correlation between X and Y given Z as:

$$cor(X, Y|Z) = r_{XY.Z} = \frac{r_{XY} - r_{XZ}r_{YZ}}{\sqrt{(1 - r_{XZ}^2)(1 - r_{YZ}^2)}}$$

This extends logically when Z represents a set of variables rather than just a single variable.

$$cor(X, Y|Z, W) = r_{XY.ZW} = \frac{r_{XY.Z} - r_{XZ.W}r_{YZ.W}}{\sqrt{(1 - r_{XZ.W}^2)(1 - r_{YZ.W}^2)}}$$

Introduction to Matrices

- One way to think about a matrix is as a collection of vectors. This is, in essence, what a multivariate data set is.
- A matrix which has n rows and p columns will be referred to as a n x p matrix. n x p is the shape of the matrix.

$$A_{(n \times p)} = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1p} \\
a_{21} & a_{22} & \cdots & a_{2p} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{np}
\end{bmatrix}$$

Special Matrices

Zero matrix

$$O = \left[\begin{array}{cccc} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{array} \right]$$

Square matrix A matrix whose shape is is n × n

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Ones matrix

$$1 = \left[\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 \end{array} \right]$$

Diagonal matrix A square matrix where the off-diagonal elements are zero.

$$A = \left[\begin{array}{cccc} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{array} \right]$$

Scalar Multiplication of a Matrix

Let k be a scalar and let A be the matrix

$$A = \left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{array} \right]$$

then

$$kA = \begin{bmatrix} ka_{11} & ka_{12} & \cdots & ka_{1p} \\ ka_{21} & ka_{22} & \cdots & ka_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ ka_{n1} & ka_{n2} & \cdots & ka_{np} \end{bmatrix}$$

Addition and Subtraction of Matrices

■ Let A and B be matrices that have the same shape, $n \times p$:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix}$$

then

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1p} + b_{1p} \\ a_{21} + b_{11} & a_{22} + b_{22} & \cdots & a_{2p} + b_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} + b_{n1} & a_{n2} + b_{n2} & \cdots & a_{np} + b_{np} \end{bmatrix}$$

$$A - B = A + (-B)$$

Multiplying a Matrix by a Vector

■ Let A be a $n \times p$ matrix, and let x be a $p \times 1$ vector

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}$$

then

$$Ax = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1p}x_p \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2p}x_p \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{np}x_p \end{bmatrix}$$

Note that Ax is a vector with shape $n \times 1$. The i-the element of Ax is equivalent to the dot product of the i-th row vector of A with x.

General Matrix Multiplication

■ Let A be a $n \times p$ matrix and B be a $p \times q$ matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1q} \\ b_{21} & b_{22} & \cdots & b_{2q} \\ \vdots & \vdots & \vdots & \vdots \\ b_{p1} & b_{n2} & \cdots & b_{nq} \end{bmatrix}$$

■ The product AB is an $n \times q$ matrix whose (i, j)-entry is the dot product of the i-th row vector of A and the j-th column vector of B.

Matrix Arithmetic Rules

i
$$A + B = B + A$$

ii $(A + B) + C = A + (B + C)$
iii $k(A + B) = kA + kB$
iv $(kA)B = k(AB)$
v $(AB)C = A(BC)$ (associative)
vi $A(B + C) = AB + AC$ (distributive)
vii $(A + B)C = AC + BC$ (distributive)

Alert

Matrix multiplication is **not** commutative, i.e. $AB \neq BA$ in general.

Be careful when you expand expressions like (A + B)(A + B).

Matrix Transpose

- We denote the transpose of a matrix as A^T
- If A is an $n \times p$ matrix, then A^T is a $p \times n$ matrix where $A^T_{ii} = A_{ij}$
- Transpose rules:
 - $(A^T)^T = A$
 - $(A+B)^T = A^T + B^T$
 - $(AB)^T = B^T A^T$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1p} & a_{12} & \cdots & a_{np} \end{bmatrix}$$

More Special Matrices

Symmetric matrix – square matrix, A, where $A^T = A$ Skew-symmetric matrix – square matrix, A, where $A^T = -A$ Identity Matrix – diagonal matrix, I, where

$$I = \left[\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right]$$

- IA = AI = A if I and A are $n \times p$ matrices
- A = Ix is a diagonal matrix where $a_{ii} = x_i$ if I is an $n \times n$ matrix and x is a $n \times 1$ vector.

Orthogonal matrix - square matrix for which $A^TA = AA^T = I$.

Matrices as Linear Transformations

- Let A be a particular $n \times p$ matrix. Than for any p-vector x, the product Ax is a n-vector.
- We say that the matrix A determines a function from \mathbb{R}^p to \mathbb{R}^n .
 - \blacksquare A(kx) = k(Ax) where k is a scalar.
 - If y is also a p-vector than A(x + y) = Ax + Ay is an n-vector
- A function, f, where f(x + y) = f(x) + f(y) and f(kx) = kf(x) is called a *linear transformation*.

Highlight

Every matrix determines a linear transformation!

Every linear transformation can be represented by a matrix!

Examples of Linear Transformation in \mathbb{R}^2

 \blacksquare reflection in the *x*-axis

$$\left[\begin{array}{c} x \\ y \end{array}\right] \mapsto \left[\begin{array}{c} x \\ -y \end{array}\right]$$

reflection in the line y = x

$$\left[\begin{array}{c} x \\ y \end{array}\right] \mapsto \left[\begin{array}{c} y \\ x \end{array}\right]$$

shear parallel to the x-axis

$$\left[\begin{array}{c} x \\ y \end{array}\right] \mapsto \left[\begin{array}{c} x + ay \\ y \end{array}\right]$$

 \blacksquare projection onto the *x*-axis

$$\left[\begin{array}{c} x \\ y \end{array}\right] \mapsto \left[\begin{array}{c} x \\ 0 \end{array}\right]$$

How about reflection in the y-axis? shear parallel to the y-axis? projection onto the y-axis?

Examples of Linear Transformation: Rotation

■ The rotation of the plane, by an angle θ about the origin is given by:

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Linear dependence/independence

- You'll remember that a *linear combination* of vectors is an equation of the form $z = b_1x_1 + b_2x_2 + \cdots + b_px_p$
- A list of vectors, $x_1, x_2, ..., x_p$, is said the be *linearly dependent* if there is a non-trivial combination of them which ie qual to the zero vector.

$$b_1x_1+b_2x_2+\cdots+b_px_p=0$$

A list of vectors that are not linearly dependent are said to be linearly independent

Matrix Inverses

If A is a square matrix and C is a matrix of the same size where AC = I and CA = I than C is the inverse of A and we denote is A^{-1} .

$$AA^{-1} = A^{-1}A = I$$

- Rules for inverses:
 - Only square matrices are invertible
 - A matrix for which we can find an inverse is called invertible (non-singular)
 - A matrix for which no inverse exists is *singular* (non-invertible)
 - If A and B are both invertible $p \times p$ matrices than $AB^{-1} = B^{-1}A^{-1}$ (note change in order).

Highlight

If a matrix is invertible than it's columns form a linearly independent list of vectors!

More facts about Matrix Inverses

- Not every square matrix is invertible
- Every orthogonal matrix is invertible
- Any diagonal matrix, A, where the a_{ii} are non-zero, is invertible

Simultaneous Linear Equations

A set of simultaneous linear equations are equations like the following:

$$x_1 + 3x_2 + 2x_3 = 3$$

 $-x_1 + x_2 + 2x_3 = -2$
 $2x_1 + 4x_2 - 2x_3 = 10$

- Simultaneous linear equations have either:
 - No solutions
 - One solution
 - Infinitely many solutions

Matrices and Simultaneous Linear Equations

 Matrices can be used to represent and solve simultaneous linear equations. For example,

$$x_1 + 3x_2 + 2x_3 = 3$$

 $-x_1 + x_2 + 2x_3 = -2$
 $2x_1 + 4x_2 - 2x_3 = 10$

Can be represented by the equation Ax = h:

$$\begin{bmatrix} 1 & 3 & 2 \\ -1 & 1 & 2 \\ 2 & 4 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 10 \end{bmatrix}$$

Solve this equation by pre-multiplying both sides of the equation by A^{-1} .

$$A^{-1}Ax = A^{-1}h$$
$$x = A^{-1}h$$

Simultaneous Equations and Matrix Inverses

- \blacksquare Ax = h has a unique solution iff A is invertible.
- If A is a singular matrix than Ax = h either has no solution or infinitely many solutions.