36-789: Minimax Theory

Spring 2017

Lecture 2: January 23

Lecturer: Alessandro Rinaldo Scribes: Ilmun Kim

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

2.1 Recap

Notations

- Let \mathcal{P} be a class of probability distributions on $(\mathcal{X}, \mathcal{B})$. For example, $\mathcal{X} = \mathbb{R}^d$ and \mathcal{B} is a Borel set.
- Let θ be a function $\theta : \mathcal{P} \to \Theta$ where Θ is a parameter space. Here, θ can be a parametrization as $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$, but it can be $\theta(P) = \theta(P')$ even if $P \neq P'$.
- P_{θ} indicates an arbitrary $P \in \mathcal{P}$ such that $\theta(P) = \theta$.
- $d: \Theta \times \Theta \to [0, \infty)$ is a metric on a set Θ .
- $w: \mathbb{R}_+ \to \mathbb{R}_+$ is a non-decreasing function such that $w(x) \neq 0$ for $x \neq 0$ and w(0) = 0.
- $X = (X_1, \ldots, X_n)$ are i.i.d. sample from $P \in \mathcal{P}$.
- $\hat{\theta}(X) = \hat{\theta}(X_1, \dots, X_n)$ is a function $\hat{\theta}: \mathcal{X}^n \to \Theta$ from a sample space to a parameter space.
- A risk of $\hat{\theta}$ at $P \in \mathcal{P}$ is denoted by $\mathbb{E}_P[w(d(\hat{\theta}(X), \theta(P)))]$ where $\mathbb{E}_P[\cdot] = \mathbb{E}_{X_1, \dots, X_n \sim P}[\cdot]$.

A typical example is given by

$$w(d(\hat{\theta}, \theta(P))) = ||\hat{\theta} - \theta(P)||_2^2$$

where $w(x) = x^2$ and d is the Euclidean norm.

Definition 2.1 (Maximum risk) The maximum risk for an estimator $\hat{\theta}$ is

$$r_n(\hat{\theta}) = \sup_{P \in \mathcal{P}} \mathbb{E}_P[w(d(\hat{\theta}, \theta))].$$

For certain estimators $\hat{\theta}$, the maximum risk is upper bounded by $C\psi_n$ where $\psi_n \to 0$ as $n \to \infty$.

Definition 2.2 (Minimax risk) The minimax risk R_n^* is the infimum of r_n over all estimators. That is,

$$R_n^* = \inf_{\hat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_P \left[w \left(d(\hat{\theta}, \theta) \right) \right].$$

Our goal is to lower bound the minimax risk. This lower bound depends on $(\mathcal{P}, \Theta, \theta, d, w)$ but not on $\hat{\theta}$. We may allow everything to depend on n such as $\mathcal{P} = \mathcal{P}_n$ and $\Theta = \Theta_n$.

2.2 Reduction scheme

A general reduction scheme is based on the following three steps:

Step 1. Reduction to a bound in probability

For fixed $P \in \mathcal{P}$, $\hat{\theta}$ and $\delta > 0$, we have

$$\mathbb{E}_{P}\left[w\left(d(\hat{\theta},\theta)\right)\right] \geq w(\delta)P\left(w\left(d(\hat{\theta},\theta)\right) \geq w(\delta)\right)$$
 by the Markov inequality,
$$\geq w(\delta)P\left(d(\hat{\theta},\theta) \geq \delta\right)$$
 since w is a non-decreasing function.

Therefore, if we can establish that

$$\inf_{\hat{\theta}} \sup_{P \in \mathcal{P}} P\left(d(\hat{\theta}, \theta) \geq \delta \right)$$

is bounded away from 0, then a minimax lower bound is $w(\delta)$ up to a constant. To be clear, $\delta = \delta_n$ is a function of n such that $\delta_n \to 0$ as $n \to \infty$.

Step 2. Reduction to a finite number of hypotheses

Choose (M+1) points $\{\theta_0, \theta_1, \dots, \theta_M\}$ in Θ and (M+1) probability distributions $\{P_{\theta_0}, P_{\theta_1}, \dots, P_{\theta_M}\}$ in \mathcal{P} such that $\theta(P_{\theta_i}) = \theta_i$ where M can be a function of n. Now, we need a lower bound on

$$\inf_{\hat{\theta}} \max_{\theta \in \{\theta_0, \dots, \theta_M\}} P_{\theta} \left(d(\hat{\theta}, \theta) \ge \delta \right).$$

Each θ_i is a hypothesis and our next goal is to study the testing problem of recovering the correct hypothesis. We consider a multiple hypothesis test

$$\phi(X): \mathcal{X}^n \to \{0, 1, \dots, M\}$$

where $\phi(X) = i$ means that we think $X \sim P_{\theta_i}^n$. Given any estimator $\hat{\theta}$, define the minimum distance test

$$\phi^*(X) = \operatorname*{argmin}_{i \in \{0,1,\dots,M\}} d(\hat{\theta}(X), \theta_i).$$

Step 3. Choice of 2δ -separated hypotheses

If we consider $d(\theta_i, \theta_j) \geq 2\delta$, $\forall i \neq j$, then, for any $\hat{\theta}$ and $i = 0, \dots, M$,

$$P_{\theta_i}\left(d(\hat{\theta}, \theta_i) \ge \delta\right) \ge P_{\theta_i}\left(\phi^*(X) \ne i\right) \ge \inf_{\phi} P_{\theta_i}(\phi \ne i),$$

where the triangle inequality is used to obtain the result.

Lecture 2: January 23 2-3

Summary of the reduction scheme

If we can choose (M+1) hypotheses $P_{\theta_0}, \ldots, P_{\theta_M}$ that are 2δ -separated, then

$$\inf_{\hat{\theta}} \sup_{P \in \mathcal{P}} P\left(d(\hat{\theta}, \theta(P)) \ge \delta\right)$$

$$\ge \inf_{\hat{\theta}} \max_{\theta \in \{\theta_0, \dots, \theta_M\}} P_{\theta}\left(d(\hat{\theta}, \theta) \ge \delta\right)$$

$$\ge \inf_{\phi} \max_{i \in \{0, \dots, M\}} P_{\theta_i}\left(\phi(X) \ne i\right)$$

$$= P_{e,M,\delta}$$

where ϕ is a test function mapping \mathcal{X} into $\{0,\ldots,M\}$. Thus, the final lower bound on minimax risk is $w(\delta)P_{e,M,\delta}$. If $P_{e,M,\delta} > c$, then $w(\delta)c$ is a minimax lower bound.

Remarks

- 1. If $\delta_n \to 0$ as $n \to \infty$ and $P_{e,M_n,\delta_n} \ge c > 0$ for all large n, then $w(\delta_n)$ is a lower bound on minimax rate.
- 2. This bound needs not to be tight. It is just a lower bound. To show that it is optimal, we need to find one of $\hat{\theta}$ with the matching upper bound.
- 3. This is an art: you need to pick (M+1) 2δ -separated hypotheses that are far apart in the distance d, but whose corresponding probability distributions are very close.

2.3 Distance between probability distributions

Let P,Q be probability distributions on $(\mathcal{X},\mathcal{B})$ with a common dominance measure μ (e.g. $\mu=P+Q$) and their Radon–Nikodym derivative $(dP/d\mu=p)$ and $dQ/d\mu=q$).

2.3.1 Total Variation Distance

Definition 2.3 (Total Variation Distance) The total variation distance between P and Q is defined as follows:

$$d_{TV}(P,Q) = ||P - Q||_{TV} = \sup_{B \in \mathcal{B}} |P(B) - Q(B)|.$$

Properties of the total variation distance:

- It is a distance.
- $d_{TV}(P,Q) = 0$ if and only if P = Q.
- $d_{TV}(P,Q) = 1$ if and only if P and Q are singular. $(\exists B \in \mathcal{B}, P(B) = 1 \text{ and } Q(B) = 0)$

Lemma 2.4 (Scheffé lemma)

$$d_{TV}(P,Q) = \frac{1}{2} \int_{\mathcal{B}} |p(x) - q(x)| d\mu(x)$$

$$= 1 - \underbrace{\int_{\mathcal{B}} \min\{p(x), q(x)\} d\mu(x)}_{affinity}$$

$$= 1 - \int \min\{dP, dQ\}.$$

Proof: Let $A = \{x \in \mathcal{X} : q(x) \ge p(x)\}$. Then, we can get

$$\int_{\mathcal{X}} |p(x) - q(x)| d\mu(x) = 2 \int_{A} q(x) - p(x) d\mu(x).$$

Thus,

$$d_{TV}(P,Q) \ge Q(A) - P(A) = \frac{1}{2} \int |p(x) - q(x)| d\mu(x).$$

To show the opposite, we have that for $\forall B \in \mathcal{B}$,

$$\begin{split} \left| \int_{B} (q-p) d\mu \right| &= \left| \int_{B \cap A} (q-p) d\mu + \int_{B \cap A^{c}} (q-p) \mu \right| \\ &\leq \max \left\{ \int_{A} (q-p) d\mu, \int_{A^{c}} (p-q) d\mu \right\} \\ &\leq \frac{1}{2} \int |p-q| d\mu. \end{split}$$

Remark The supremum is achieved at the set $A = \{x : q(x) \ge p(x)\}.$

2.3.2 Connection with hypothesis testing

Suppose we want to test $H_0: X \sim P$ vs. $H_a: X \sim Q$. A test function is given as $\phi(X) \in \{0,1\}$, where

$$\begin{cases} \phi(X) = 1 & \text{reject } H_0 \\ \phi(X) = 0 & \text{accept } H_0. \end{cases}$$

For each test ϕ , the type I error and the type II error are provided by

Type I error
$$= \mathbb{E}_P \left[\phi(X) \right]$$

Type II error
$$= \mathbb{E}_Q [1 - \phi(X)]$$
.

Note that, according to the Neyman-Pearson lemma, the optimal test is

$$\phi^*(x) = I(q(x) \ge p(x)) = I(x \in A).$$

This test achieves the infimum as

$$\inf_{\phi} (\text{Type I error} + \text{Type II error}) = 1 - d_{TV}(P, Q) = \int \min\{dP, dQ\}.$$

Lecture 2: January 23 2-5

More facts:

• $\inf_{0 < f < 1} \mathbb{E}_P [f(x)] + \mathbb{E}_Q [1 - f(x)] = 1 - d_{TV}(P, Q)$

•
$$\inf_{f,g>0,f+g>1} \mathbb{E}_P[f(x)] + \mathbb{E}_Q[1-f(x)] \ge 1 - d_{TV}(P,Q)$$

Problem: It does not tensorize well, i.e. $d_{TV}(P^n, Q^n)$ is not trivially related to $d_{TV}(P, Q)$.

2.3.3 Hellinger Distance

Definition 2.5 (Hellinger distance) The Hellinger distance between P and Q is defined as follows:

$$H(P,Q) = \sqrt{\int_{\mathcal{X}} \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 d\mu(x)}$$

Properties of the Hellinger distance:

- It is a distance.
- $0 \le H^2(P,Q) \le 2$ where the upper bound holds when P,Q are singular.

•
$$H^2(P,Q) = 2 \left(1 - \underbrace{\int_{\mathcal{X}} \sqrt{p(x)} \sqrt{q(x)} d\mu(x)}_{\text{Hellinger affinity}} \right)$$

• If P and Q are product measures, $P = \bigotimes_{i=1}^{n} P_i$, $Q = \bigotimes_{i=1}^{n}$, then

$$H^{2}(P,Q) = 2\left(1 - \prod_{i=1}^{n} \left(1 - \frac{H^{2}(P_{i}, Q_{i})}{2}\right)\right).$$