Math 218: Final Report

Project Haydoja

Payoja and Hayden

Dec 6

Introduction

There is a plethora of statistical tools available to understand any given set of data. Data scientists and statisticians often use either supervised or unsupervised statistical learning methods to model their data to both better understand trends and extrapolate predictions. For the our project, however, we decided to exclusively focus on supervised learning, mainly for two reasons. First, supervised learning methods are always guided by a response variable which ensures our research objective is clearly defined. Second, supervised learning models have relevant performance metrics (i.e. RMSE for regression problems or misclass. rate for classification problems).

For this project, we decided to implement a variety of supervised learning techniques using the Ames Housing dataset, which is a publicly available dataset that includes extensive information on the sale of residential properties in Ames, Iowa from 2006 to 2010. It contains 1460 observations with 79 variables on various house specifications. The variables are a mix of continuous, categorical and discrete types.

The data is available on Kaggle.

We will investigate both regression and classification problems, with the primary goal of better understanding which statistical learning method perform best on different features from the Ames housing dataset. Below are our driving research questions:

- 1. Which statistical learning method most accurately predicts housing prices using other available housing features?
- 2. Which statistical learning method most accurately classifies houses by neighborhood based on the other available housing features?

Although our primary goal is to identify which statistical learning method performs best, we will also spend some time exploring and understanding which predictors affect our response variables and how.

Data Description

Rather than use all 79 available variables, we decided to only include features we thought were particularly relevant to our two driving research questions. This dataset also includes a lot of categorical variables, so we decided to only include the ones that can be easily translated to usable dummy/binary variables for the sake of simplicity.

Below is a description of the features we focused on for this project:

Categorical Variables:

• Neighborhood: Physical locations within Ames city limits

• CentralAir: Central air conditioning (Yes/No)

• PavedDrive: Paved driveway (Yes/No)

• GarageFinish: Interior finish of the garage

BldgType: Type of dwellingHouseStyle: Style of dwelling

• BsmtFinType1: Rating of basement finished area

Continuous Variables:

• SalePrice: Price of house

- Pool
Area: Pool area in square feet

• LotArea: Lot size in square feet

• TotalBsmtSF: Total square feet of basement area

• GarageArea: Size of garage in square feet

• GrLivArea: Above ground living area square feet

Discrete Variable

• FullBath: Number of full bathrooms above ground

• HalfBath: Number of half bathrooms above ground

• BedroomAbvGr: Number of bedrooms above ground

• KitchenAbvGr: Number of kitchens above ground

• Fireplaces: Number of fireplaces

• OverallQual: Rates the overall material and finish of the house

• OverallCond: Rates the overall condition of the house

• YearBuilt: Original construction date

• YearRemodAdd: Year house was remodeled

• YrSold: Year house was sold

One caveat to this trimmed feature list is that there is a feature 'SaleCondition' that defines the sale of a house as either "normal" or one of several types of abnormal sales. We only want to look at the normal sales, so we've selected only those observations with SaleCondition = "normal".

EDA

Investigating SalePrice Variable The first exploratory question we wanted to investigate is if there is, in fact, a correlation between how big a house is and how much it costs:

This plot suggests that, although there may be a slight positive correlation between the LotArea and SalePrice, there are likely other variables that contribute to how expensive a house is.

Let's now look a bit more at the SalePrice variable and its distribution:

Judging from the histogram, the distribution of SalePrice in our data set is slightly right skewed. This suggests that there are some outlier properties with significantly higher sale prices. To account for this, we will add a logarithmic transformation to the SalePrice variable (see data cleaning section).

In the second plot, we can observe a huge drop in average sale price of houses in our data coinciding with the 2008 housing market crash. To try to account for this, we decided to replace YrSold with a binary variable 'Sold_08' that will be Y if a house was sold in 2008, and N otherwise:

Investigating Neighborhood Variable We also wanted to look at the distribution of houses across neighborhoods, as well as how expensive the homes are in each of the neighborhoods:

Number of Houses in Each Neighborhood

This plot reveals that there is a pretty big gradient of neighborhood sizes. To simplify our models and their interpretations, we want to reduce the number of neighborhood categories by grouping some of the neighborhoods into an 'Other' category.

To do so, we first isolated the neighborhoods with fewer than 50 homes:

We then looked at how these 16 neighborhoods vary in terms of average price and average house age:

Right off the bat, we decided to merge NoRidge (Northridge) and NridgHt (Northridge Heights) because they both are comprised primarily of new, expensive homes. Also, a quick Google search revealed that the two neighborhoods border each other geographically. We defined this combined neighborhood as 'GrNoRidge' or Greater Northridge:

Other than that, there weren't really any other neighborhood merges that made sense geographically. And if we were to merge all the neighborhoods with < 50 houses, we would get an 'Other' neighborhood category that accounts for the second highest number of houses in the dataset. This would likely skew how our model predicts neighborhood classification.

So, we decided look at how much data we would be losing if we just dropped the neighborhoods with < 50 houses or < 30 houses:

[1] 314

[1] 180

We decided to go ahead and drop the 180 houses in neighborhoods with < 30 houses:

Correlation between some of the numeric and discrete data fields (most importantly SalePrice):

As seen from above, housing prices seem to be the most correlated (positively) with overal quality of the house, above ground living area (in sq. ft), total basement area (in sq. ft) and garage area (in sq. ft). The price is also moderately correlated with number of full bathrooms.

Data Cleaning and Scaling

Feature Engineering There are a couple problems with the way our variables are formatted. First, if a house has not been remodeled, the YearRemodAdd will be the same as YearBuilt. Let's look at how many houses this case applies to:

[1] 536

Since over half the houses have never been remodeled, we just decided to convert YearRemodAdd to a binary variable:

Additionally, PavedDrive is a categorical variable with three possible class: Y (if paved), P (if partially paved) and N (if dirt/gravel). For simplicity, we decided to recode the variable so that PavedDrive is a binary variable that takes Y(Yes) if it is paved and N (No) otherwise.

Scaling/Transformations Here is where we want to apply the log transformation to our SalePrice variable:

Now, we want to scale all of our numeric variables:

Handling NAs For houses that have no garage or basement, the data codes 'GarageFinish' and 'BsmtFin-Type1' as 'NA'. We recode houses that have no garage and basement as 'NoGar' and 'NoBsmt' respectively.

##	Neighborhood	CentralAir	PavedDrive	GarageFinish	BldgType	HouseStyle
##	0	0	0	47	0	0
##	BsmtFinType1	SalePrice	PoolArea	LotArea	TotalBsmtSF	GarageArea
##	30	0	0	0	0	0
##	${ t GrLivArea}$	FullBath	HalfBath	${\tt BedroomAbvGr}$	KitchenAbvGr	Fireplaces
##	GrLivArea O	FullBath 0	HalfBath O	BedroomAbvGr 0	KitchenAbvGr 0	Fireplaces 0
	GrLivArea 0 OverallQual	0	HalfBath O YearBuilt	BedroomAbvGr 0 Sold_08	KitchenAbvGr 0 Remod	Fireplaces 0

Methodology

To answer our first research question relating to the regression problem, "Which statistical learning method most accurately predicts housing prices using other available housing features?", we decided to use three different regression models: Linear Regression, Ridge Regression and Lasso Regression. For each of the these three methods we divide our data into two sets 'train' and 'test'. The 'train' set contains 80% of our entire data where as the 'test' set contains the remaining 20%. The train and the test set are the same for all three regressions. The response variable is SalePrice and the predictors are all the other 22 variables listed in the data description section. A brief description on each of these methods is below.

- 1. Linear Regression Our linear model will include both numeric and categorical variable. For categorical variables, we create dummy variables using the 'fastDummies' package. To validate the performance of our model, we predict the sale price of houses in the test set using the lasso model fit on the training set. Then, we will examine the test error rate by measuring the root mean squares error.
- 2. Ridge Regression We implement the ridge regression to examine whether shrinking features that are not as important in determining sales price improves the performance of the model. For categorical variables, we create dummy variables. Using the 22 predictors, we fit the ridge model on the training set, with with λ chosen by cross-validation with k-fold equals 10. To validate the performance of our model, we predict the sale price of houses in the test set using the lasso model fit on the training set. Then, we will examine the test error rate by measuring the root mean squares error. The R package required to implement this method is 'glmnet'.
- 3. Lasso Regresison 22 predictors, although better than having too few predictors, may be too many to use for this research question. Thus, we want to implement the lasso method so that coefficients of features that are not as important shrinks to 0. For categorical variables, we create dummy variables. We realize that interpreting this might be tricky as only coefficient on some of the classes might be shrunk to 0, but we believe features such as neighborhood are important in determining the sale price. Thus, we chose to create dummies instead of getting rid of them. Using the 22 predictors, we fit the lasso model on the training set, with with λ chosen by cross-validation with k-fold equals 10. To validate the performance of our model, we predict the sale price of houses in the test set using the lasso model fit on the training set. Then, we will examine the test error rate by measuring the root mean squares error. The R package required to implement this method is 'glmnet'.

4. XgBoost

To answer our second research question relating to the classification problem, "Which statistical learning method most accurately classifies houses by neighborhood based on the other available housing features?", we decided to use two different classification models: Naive Beyes and Tree-Based Classification . For each of the these three methods we divide our data into two sets 'train' and 'test'. The 'train' set contains 80% of our entire data where as the 'test' set contains the remaining 20%. The train and the test set are the same

for all three Classification methods. The response variable is SalePrice and the predictors are all the other 22 variables listed in the data description section. A brief description on each of these methods is below.

- 1. Naive Bayes To implement Naive Bayes, we use the naiveBayes() function, which is part of the e1071 library, on our test set. To evaluate the performance of our model, we will predict the response on the test data and produce a contingency table comparing the true test labels to the predictions. The R package required to implement this method is 'e1071'.
- 2. Tree-Based Classification To implement this method, we will fit a decision classification tree to the training data, using 'neighborhood' as the response variable. For predictors, we will use all other variables. To evaluate the performance of our model, we will predict the response on the test data and produce a contingency table comparing the true test labels to the predictions. The R package required to implement this method is 'tree'.

Results

Which statistical learning method most accurately predicts housing prices using other available housing features?

Linear Regression

[1] 17498.74

##	(Intercept)	NeighborhoodCollgCr	NeighborhoodCrawfor
##	11.984336666	-0.020320265	0.096289317
##	NeighborhoodEdwards	NeighborhoodGilbert	NeighborhoodGrNoRidge
##	-0.070188801	-0.036984504	0.036917039
##	${\tt NeighborhoodMitchel}$	NeighborhoodNAmes	NeighborhoodNWAmes
##	-0.060737184	-0.056755422	-0.090504809
##	${\tt NeighborhoodOldTown}$	NeighborhoodSawyer	NeighborhoodSawyerW
##	-0.058499751	-0.055116299	-0.044823431
##	${\tt NeighborhoodSomerst}$	CentralAirY	${\tt PavedDriveY}$
##	0.036500114	0.063531406	0.026587955
##	${ t GarageFinishNoGar}$	${ t GarageFinishRFn}$	${ t Garage Finish Unf}$
##	-0.055978535	-0.011545133	-0.018924517
##	${\tt BldgType2fmCon}$	${\tt BldgTypeDuplex}$	${ t BldgTypeTwnhs}$
##	-0.013603867	-0.065421718	-0.085519419
##	${\tt BldgTypeTwnhsE}$	HouseStyle1.5Unf	HouseStyle1Story
##	-0.037631235	-0.028764804	-0.002239676
##	HouseStyle2.5Fin	HouseStyle2.5Unf	HouseStyle2Story
##	0.020545084	-0.007380128	0.019187240
##	HouseStyleSFoyer	${\tt HouseStyleSLvl}$	${\tt BsmtFinType1BLQ}$
##	0.027183926	0.033387764	-0.016476017
##	${\tt BsmtFinType1GLQ}$	${\tt BsmtFinType1LwQ}$	${\tt BsmtFinType1NoBsmt}$
##	0.011539716	-0.049196909	0.028554978
##	${\tt BsmtFinType1Rec}$	${\tt BsmtFinType1Unf}$	PoolArea
##	-0.019468609	-0.064072277	0.001555512
##	LotArea	${\tt TotalBsmtSF}$	GarageArea
##	0.027004642	0.068463846	0.030318497
##	${ t GrLivArea}$	FullBath	HalfBath
##	0.113924490	0.013863218	0.015770673
##	${\tt BedroomAbvGr}$	KitchenAbvGr	Fireplaces
##	-0.004049960	-0.005291752	0.020053060
##	OverallQual	OverallCond	YearBuilt

0.074122946	0.056394987	0.077919001	##
	RemodY	Sold_08Y	##
	0.013134782	0.003978057	##

Based on the output of the regression model, the 5 variables that seems to affect the sale price of the houses are GrLivArea, NeighborhoodCrawfor (a dummy that indicates whether house is in 'Crawfor' neighborhood), OverallQual, YearBuilt and TotalBsmtSF.Since the numeric variables are scaled, it is a little tricky to estimate by how much these variables affect the Sale price of the house. However, the sign on the coefficients of these variables are informative in that it indicates in which direction the price of the house will change as these variable changes. For example, the coefficient of 0.114 on GrLivArea implies that, controlling for other factors, an increase in above ground living area(in sq ft) increases the sale price of the house. The coefficient of 0.0963 on NeighborhoodCrawfor implies that, controlling for other factors, the sale price of houses in Crawfor Neighborhood are higher than sale price of houses in BrkSide Neighborhood (which is our baseline neighborhood).

The Root Mean Squared Error (RMSE), which has been unscaled, is 17498.74. This implies that the prediction of houses in the test set is, on average, off by 17498.74. This error seems small given that the the sale price of the houses are much higher.

CV Regression

[1] 17950.85

The Root Mean Squared Error (RMSE), which has been unscaled, is 17950.85. This implies that the prediction of houses in the test set is, on average, off by 17950.85. This error seems small given that the the sale price of the houses are much higher.

Ridge Regression

```
## [1] 16196.87
```

```
## 50 x 1 sparse Matrix of class "dgCMatrix"
##
                              s0
## (Intercept)
                          11.951
## NeighborhoodCollgCr
                           0.020
## NeighborhoodCrawfor
                           0.118
## NeighborhoodEdwards
                          -0.043
## NeighborhoodGilbert
                          -0.001
                          0.086
## NeighborhoodGrNoRidge
## NeighborhoodMitchel
                          -0.024
## NeighborhoodNAmes
                          -0.025
## NeighborhoodNWAmes
                          -0.047
## NeighborhoodOldTown
                          -0.055
## NeighborhoodSawyer
                          -0.033
## NeighborhoodSawyerW
                          -0.005
## NeighborhoodSomerst
                           0.071
## CentralAirY
                           0.064
## PavedDriveY
                           0.039
## GarageFinishNoGar
                          -0.059
## GarageFinishRFn
                          -0.012
## GarageFinishUnf
                          -0.032
## BldgType2fmCon
                          -0.008
```

```
## BldgTypeDuplex
                          -0.047
## BldgTypeTwnhs
                          -0.070
## BldgTypeTwnhsE
                          -0.026
## HouseStyle1.5Unf
                          -0.033
## HouseStyle1Story
                          -0.011
## HouseStyle2.5Fin
                           0.039
## HouseStyle2.5Unf
                           0.045
## HouseStyle2Story
                           0.013
  HouseStyleSFoyer
                           0.024
## HouseStyleSLvl
                           0.021
## BsmtFinType1BLQ
                          -0.015
## BsmtFinType1GLQ
                           0.027
## BsmtFinType1LwQ
                          -0.047
## BsmtFinType1NoBsmt
                           0.019
## BsmtFinType1Rec
                          -0.026
## BsmtFinType1Unf
                          -0.056
## PoolArea
                           0.001
## LotArea
                           0.027
## TotalBsmtSF
                           0.065
## GarageArea
                           0.037
## GrLivArea
                           0.090
## FullBath
                           0.023
## HalfBath
                           0.019
## BedroomAbvGr
                           0.002
## KitchenAbvGr
                          -0.011
## Fireplaces
                           0.023
## OverallQual
                           0.074
## OverallCond
                           0.048
## YearBuilt
                           0.049
## Sold 08Y
                           0.003
## RemodY
                           0.002
```

Based on the output of the regression model, the 5 variables that seems to affect the sale price of the houses are Neighborhood_Crawfor (a dummy that indicates whether house is in 'Crawfor' neighborhood), GrLivArea, NeighborhoodGrNoRidge (a dummy that indicates whether house is in 'GrNoRidge' neighborhood), OverallQual and NeighborhoodSomerst (a dummy that indicates whether house is in 'Somerst' neighborhood). The interpretation is similar to that of linear regression. regression.

The RMSE error, which has been unscaled, is 15967.11. This implies that the prediction of houses in the test set is,on average, off by \$15967.11. This error seems small given that the the sale peice of the houses are much higher.

Lasso Regression

```
## 50 x 1 sparse Matrix of class "dgCMatrix"
## s1
## (Intercept) 11.956572516
## NeighborhoodCollgCr
## NeighborhoodCrawfor 0.095668029
## NeighborhoodEdwards .
## NeighborhoodGilbert .
## NeighborhoodGrNoRidge 0.023284669
## NeighborhoodMitchel .
## NeighborhoodNAmes .
```

```
## NeighborhoodNWAmes
## NeighborhoodOldTown
                          -0.017074752
## NeighborhoodSawyer
## NeighborhoodSawyerW
## NeighborhoodSomerst
## CentralAirY
                           0.052943886
## PavedDriveY
                           0.001347142
## GarageFinishNoGar
## GarageFinishRFn
                          -0.002022007
## GarageFinishUnf
## BldgType2fmCon
                          -0.015950561
## BldgTypeDuplex
## BldgTypeTwnhs
## BldgTypeTwnhsE
## HouseStyle1.5Unf
## HouseStyle1Story
## HouseStyle2.5Fin
## HouseStyle2.5Unf
## HouseStyle2Story
## HouseStyleSFoyer
## HouseStyleSLvl
## BsmtFinType1BLQ
## BsmtFinType1GLQ
                           0.027863807
## BsmtFinType1LwQ
## BsmtFinType1NoBsmt
## BsmtFinType1Rec
## BsmtFinType1Unf
                          -0.029769478
## PoolArea
## LotArea
                           0.020323495
## TotalBsmtSF
                           0.050394907
## GarageArea
                           0.039465417
## GrLivArea
                           0.122618938
## FullBath
## HalfBath
                           0.004210934
## BedroomAbvGr
## KitchenAbvGr
                          -0.006587478
## Fireplaces
                           0.018723069
## OverallQual
                           0.096694832
## OverallCond
                           0.040888713
## YearBuilt
                           0.081612655
## Sold 08Y
## RemodY
```

[1] 17882.54

Based on the output, the lasso model scaled the coefficients on 28 of the 49 variables to 0. The interpretation of the coefficients of some of the categories in Neighborhoods, Building Type, HouseStyle, Basement Finish Type and Garage finish getting scaled to 0 is a bit trickier since these variables were categorical variables with multiple classes but only coefficients of certain classes were scaled to 0. It is hard to tell whether this implies these variables are not important covariates or only certain classes of these categorical variables are important when predicting for saleprice.

The 5 variables that seems to affect the sale price of the houses are GrLivArea, YearBuilt, NeighborhoodCrawfor (a dummy that indicates whether house is in 'Crawfor' neighborhood), OverallQual and CentralAirY(a

dummy that indicates whether house is in 'Crawfor' neighborhood). The interpretation for GrLivArea, NeighborhoodCrawfor and OverallQual is similar to that of Linear Regression. The coefficient of 0.08 on YearBuilt implies that, controlling for other variables, newwly built houses are more expensive. Likewise, the coefficient on CentralAirY implies that, controlling for other variables, houses that have central air conditioning have sale prices higher than houses that don't have central air conditioning.

The RMSE error, which has been unscaled, is 16549.82. This implies that the prediction of houses in the test set is, on average, off by \$16549.82. This error seems small given that the the sale price of the houses are much higher.

XGBoost The test RMSE values converted back to USD values using the exp() function:

[1] 17154.25

This implies that the prediction of houses in the test set is, on average, off by \$17154.25. This error seems small given that the the sale price of the houses are much higher.

Which statistical learning method most accurately classifies houses by neighborhood based on the other available housing features?

Naive Bayes

[1] 0.6715686

##		y_pred							
##		BrkSide	CollgCr	Crawfor	Edwards	Gilbert	GrNoRidge	${\tt Mitchel}$	NAmes
##	BrkSide	1	0	4	. 0	0	0	0	0
##	CollgCr	0	7	C	0	4	4	0	2
##	Crawfor	1	0	7	. 0	0	0	0	0
##	Edwards	4	0	3	1	0	0	0	4
##	Gilbert	0	2	C	0	9	0	0	0
##	GrNoRidge	e 0	0	C	0	0	10	0	0
##	Mitchel	0	2	1	. 0	0	0	0	0
##	NAmes	1	3	7	5	1	0	0	23
##	NWAmes	0	3	3	0	8	0	0	1
##	OldTown	7	0	6	2	1	0	0	2
##	Sawyer	0	1	1	. 1	0	0	0	12
##	SawyerW	2	2	C	0	2	1	0	0
##	Somerst	0	0	C	0	0	2	0	0
##		y_pred							
##		NWAmes	OldTown S	Sawyer S	awyerW S	omerst			
## ##	BrkSide	NWAmes O	OldTown S	Sawyer S O	awyerW S	omerst 0			
	BrkSide CollgCr								
##		0	0	0	0	0			
## ##	CollgCr	0	0 0	0 4	0	0 13			
## ## ##	CollgCr Crawfor	0 0 0	0 0 2	0 4 0	0 0 0	0 13 0			
## ## ## ##	CollgCr Crawfor Edwards	0 0 0 0	0 0 2 0	0 4 0 0	0 0 0	0 13 0 2			
## ## ## ##	CollgCr Crawfor Edwards Gilbert	0 0 0 0	0 0 2 0 0	0 4 0 0	0 0 0 0	0 13 0 2 2			
## ## ## ## ##	CollgCr Crawfor Edwards Gilbert GrNoRidge	0 0 0 0 0	0 0 2 0 0	0 4 0 0 0	0 0 0 0 0	0 13 0 2 2 4			
## ## ## ## ##	CollgCr Crawfor Edwards Gilbert GrNoRidge Mitchel	0 0 0 0 0 0	0 0 2 0 0 0	0 4 0 0 0 0 0	0 0 0 0 0	0 13 0 2 2 4 0			
## ## ## ## ## ##	CollgCr Crawfor Edwards Gilbert GrNoRidge Mitchel NAmes	0 0 0 0 0 0 0 0	0 0 2 0 0 0 0	0 4 0 0 0 0 0 2 1	0 0 0 0 0 0	0 13 0 2 2 4 0			
## ## ## ## ## ##	CollgCr Crawfor Edwards Gilbert GrNoRidge Mitchel NAmes NWAmes	0 0 0 0 0 0 0 0 0	0 0 2 0 0 0 0	0 4 0 0 0 0 0 2 1	0 0 0 0 0 0	0 13 0 2 2 4 0 0			
## ## ## ## ## ##	CollgCr Crawfor Edwards Gilbert GrNoRidge Mitchel NAmes NWAmes OldTown	0 0 0 0 0 0 0 0 0	0 0 2 0 0 0 0 0 0	0 4 0 0 0 0 0 2 1 0	0 0 0 0 0 0 0	0 13 0 2 2 4 0 0 0			

The misclassification rate is 0.67, which is really high.

Tree

```
##
## Classification tree:
## tree(formula = as.factor(Neighborhood) ~ ., data = tree_dat[train_ids,
## ])
## Variables actually used in tree construction:
## [1] "YearBuilt" "SalePrice" "LotArea" "GrLivArea" "GarageArea"
## Number of terminal nodes: 14
## Residual mean deviance: 2.483 = 1986 / 800
## Misclassification error rate: 0.4349 = 354 / 814
```


Based on the tree, it seems like YearBuilt is the most important factor for determining the class of the species. Since the data is scaled, it is a little tricky to interpret the tree but we we wanted to we could unsclae the data to know the exact value the split was the based on. For example, the root of the tree, Yearbuilt< 0.44, can be unscaled so that the root note is:

[1] 1982.402

The contingency table for the test set is:

##	BrkSide	1	0		2	1	0	0	0	0
##	CollgCr	0	24		0	2	4	0	2	0
##	Crawfor	3	0		5	1	0	0	0	0
##	Edwards	0	0		0	0	0	0	0	0
##	Gilbert	0	4		0	0	9	0	0	0
##	GrNoRidge	0	2		0	0	0	12	0	0
##	Mitchel	0	0		0	0	0	0	0	0
##	NAmes	0	1		1	6	0	0	2	35
##	NWAmes	0	2		0	0	0	0	1	5
##	OldTown	1	0		2	4	0	0	0	1
##	Sawyer	0	0		0	0	0	0	0	0
##	SawyerW	0	0		0	0	0	0	0	0
##	Somerst	0	1		0	0	0	2	0	0
##	+	rue								
##	,	or ae								
	preds		OldTown S	Sawyer	SawyerW	Somer	st			
			OldTown S	Sawyer 0	SawyerW 0	Somer	st 0			
##	preds	NWAmes (Somer				
## ##	preds BrkSide	NWAmes (6	0	0	Somer	0			
## ## ##	preds BrkSide CollgCr	NWAmes (6 1	0 1	0 1	Somer	0 3			
## ## ## ##	preds BrkSide CollgCr Crawfor	NWAmes (6 1 3	0 1 0	0 1 0	Somer	0 3 0			
## ## ## ##	preds BrkSide CollgCr Crawfor Edwards	NWAmes (0 2 2 0 0	6 1 3 0	0 1 0 0	0 1 0 0	Somer	0 3 0 0			
## ## ## ## ##	preds BrkSide CollgCr Crawfor Edwards Gilbert	NWAmes 0 0 2 0 0 0 0	6 1 3 0	0 1 0 0	0 1 0 0	Somer	0 3 0 0 1			
## ## ## ## ## ##	preds BrkSide CollgCr Crawfor Edwards Gilbert GrNoRidge	NWAmes 0 0 2 0 0 0 0	6 1 3 0 0	0 1 0 0 0	0 1 0 0 1 1	Somer	0 3 0 0 1 2			
## ## ## ## ## ##	preds BrkSide CollgCr Crawfor Edwards Gilbert GrNoRidge Mitchel	NWAmes 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 1 3 0 0 0	0 1 0 0 0 0	0 1 0 0 1 1	Somer	0 3 0 0 1 2			
## ## ## ## ## ##	preds BrkSide CollgCr Crawfor Edwards Gilbert GrNoRidge Mitchel NAmes	NWAmes 0 2 0 0 0 0 0 0 0 1	6 1 3 0 0 0 0 0	0 1 0 0 0 0 0	0 1 0 0 1 1 0	Somer	0 3 0 0 1 2 0			
## ## ## ## ## ##	preds BrkSide CollgCr Crawfor Edwards Gilbert GrNoRidge Mitchel NAmes NWAmes	NWAmes 0 0 2 0 0 0 0 0 0 1 1	6 1 3 0 0 0 0 0 9	0 1 0 0 0 0 0 0 10 4	0 1 0 0 1 1 0 1	Somer	0 3 0 0 1 2 0 0			
## ## ## ## ## ## ##	preds BrkSide CollgCr Crawfor Edwards Gilbert GrNoRidge Mitchel NAmes NWAmes OldTown	NWAmes 0 0 2 0 0 0 0 0 0 1 1 0 0 0	6 1 3 0 0 0 0 0 9 0 3	0 1 0 0 0 0 0 0 10 4	0 1 0 0 1 1 0 1 1	Somer	0 3 0 0 1 2 0 0 0			

The missclassification rate is:

[1] 0.495098

The misclassification rate of 0.495 is still quite high. So we decided to check whether pruning the tree will improve the results.

Based on the output, the tree with 13 terminal nodes seems to be the best. Thus, we will prune the original tree to obtain the 13 node tree.

The misclassification rate on the test set is then

[1] 0.495098

The misclassification rate of the pruned tree did not change. This makes sense because pruning only reduced the number of terminal nodes by 1–the original tree had 14 terminal nodes whereas the pruned one has 13.

Discussion

To answer our first research question relating to the regression problem, "Which statistical learning method most accurately predicts housing prices using other available housing features", we use four different regression models: Linear Regression, Ridge Regression, Lasso Regression and XgBoost. We found that the Root Mean Squared Error (RMSE) was 17498.74 for simple linear regression model, 17950.85 for linear regression with cross-validation, 15967.11 for ridge regression model and 16549.82 for the lasso model and 17154.25 for the Xgboost method. Thus, our best performing model was the ridge regression. This indicates that most of the predictors that were used in the regression impact the sale price significantly. Overall, we think that the our best performing model is a good choice to predict the sale prices as RMSE of 15967.11 is low if we compare it to the sale price of houses, which are much higher.

To answer our second research question relating to the regression problem, "Which statistical learning method most accurately classifies houses by neighborhood based on the other available housing features?", we use two different classification models: Naive Bayes, and Tree-based classification. We found the misclassification rate under Naive Bayes to be .67 and under Tree-based method to be .495. Although the tree-based method performs way better, we still think that the missclassification rate is really high. This suggests that perhaps the neighborhoods are not clustered based on the predictors we are using. There might me other demographic features such as race and ethnicity that might affect the clusters of the neighborhood.