Estadística III: Métodos asintóticos de inferencia

Alejandro López Hernández

24 de febrero de 2019

E1 Leer el capitulo 10 de G. Casella, Roger L. Berger, Statistical Inference[1].

Estimación Puntual

E2 Sea $X_1,...,X_n \sim \frac{\beta\alpha^{\beta}}{x^{\beta+1}}1_{[\alpha,\infty)}$ con α conocida, calcula la varianza asintotica del extimador máximo verosimil de β .

E3 Supongamos que $X_1, X_2, ..., X_n \sim \text{Bernoulli}(p)$, si \hat{p} es el estimador de máxima verosimilitud de p, calcula la varianza de $\hat{p}(1-\hat{p})$ y usa el método delta para cálcular la varianza asintotica y compara ambas.

E4 Sea $X_1, ..., X_n \sim \text{Uniforme}(0, \theta)$ y $\hat{\theta}_n = \text{máx}\{X_1, ..., X_n\}$ prueba que $\hat{\theta}_n$ es un estimador consistente de θ

E5 Sea $X_1,...,X_n \sim f_{\theta}(x)$ con $f_{\theta}(x) = \frac{1}{2}(1+\theta x)$ con $x,\theta \in (-1,1)$. Encuentra un estimador consiste para θ

E6 Sea $X_1, ..., X_n \sim \mathcal{N}(0, \sigma^2)$

- a) Muestra que $T_n = \frac{k\sum |X_i|}{n}$ es un estimador consistente de σ si y solo si $k = \sqrt{\pi/2}$ b) Calcula el ARE de T_n con respecto al máximo verosimil de σ

Pruebas de Hipótesis

E7 Para la prueba de hipótesis $H_0: p = p_0$ contra $H_1: p \neq p_0$ con un modelo paramétrico Bernoulli(p). Calcula $-2 \log \lambda(X)$ y establece la región de rechazo de nivel α asumiendo la convergencia de $-2\log\lambda(X)$.

E8 Sea $X_1, ..., X_n \sim \mathcal{N}(0, \sigma^2)$

- a) Si μ es desconocido y σ conocido encuentra un estadístico de Wald para probar $H_0: \mu = \mu_0$
- b) Si μ y σ son desconocidos encuentra un estadístico de Wald para probar $H_0: \mu = \mu_0$
- c) Si μ es conocido y σ desconocido encuentra un estadístico de Wald para probar $H_0: \sigma = \sigma_0$
- d) Si μ y σ son desconocidos encuentra un estadístico de Wald para probar $H_0: \sigma = \sigma_0$

E9 Sea $X_1,...,X_n \sim \text{Gamma}(\alpha,\beta)$ con α conocido, encuentra el estadístico de score para probar $H_0: \beta = \beta_0.$

E10 Sea $X_1, ..., X_n \sim \text{Geométrica}(p)$ encuentra una estadístico de Wald para probar $H_0: p = p_0$

E11 Sea $X_1,...,X_n \sim \text{Exp}(\theta)$ encuentra una estadístico de Wald para probar $H_0: \theta < \theta_0$ y encuentra la region de rechazo.

Estimación por intervalos

E12 Sea $X_1, ..., X_n \sim \text{Exp}(\theta)$ construir un intervalo de confianza asintótico de θ por los 4 métodos

E13 Sea $X_1, ..., X_n \sim \text{Poisson}(\lambda)$ construir un intervalo de confianza asintótico de λ por los 4 métodos conocidos.

E14 Sea $X_1,...,X_n \sim \text{Geo}(p)$ construir un intervalo de confianza asintótico de p por los 4 métodos

conocidos.

E15 Sea $X_1,...,X_n \sim \text{Beta}(\alpha,\beta)$ con β conocida. Construir un intervalo de confianza asintótico de α usando el cociente de verosimilitudes.

Referencias

[1] George Casella asnd Roger L. Berger, Statistical Inference. Second Edition, 2002.