Logistic Regression Models

MACHINE LEARNING IN THE TIDYVERSE

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

Binary Classification

The attrition Dataset

Features

Education
Income
Work-life Balance
Job Satisfaction

• • •

Logistic Regression

```
glm(formula = ___, data = ___, family = "binomial")
```



```
head(cv_data)
```


Time to Practice

MACHINE LEARNING IN THE TIDYVERSE

Evaluating Classification Models

MACHINE LEARNING IN THE TIDYVERSE

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

Ingredients for Performance Measurement

- 1) Actual attrition classes
- 2) Predicted attrition classes
- 3) A metric to compare 1) & 2)

1) Prepare Actual Classes

attrition	class
Yes	TRUE
No	FALSE

validate\$Attrition

```
No No No No Yes No Yes ... No No No
```

```
validate_actual <- validate$Attrition == "Yes"
validate_actual</pre>
```

FALSE FALSE FALSE FALSE TRUE FALSE TRUE ... FALSE FALSE

2) Prepare Predicted Classes

P(attrition)	class
> 0.5	TRUE
≤ 0.5	FALSE

```
validate_prob <- predict(model, validate, type = "response")
validate_prob</pre>
```

0.324 0.012 0.077 0.001 0.104 0.940 0.116 0.811 0.261 0.027 0.065 0.060

```
validate_predicted <- validate_prob > 0.5
validate_predicted
```

FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE

3) A metric to compare 1) & 2)


```
table(validate_actual, validate_predicted)
```

```
validate_predicted
validate_actual FALSE TRUE

FALSE 181 5

TRUE 17 18
```


3) Metric: Accuracy

accuracy(validate_actual, validate_predicted)

0.9004525

3) Metric: Precision

precision(validate_actual, validate_predicted)

0.7826087

3) Metric: Recall

recall(validate_actual, validate_predicted)

0.5142857

Let's practice!

MACHINE LEARNING IN THE TIDYVERSE

Classification With Random Forests

MACHINE LEARNING IN THE TIDYVERSE

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

ranger() for Classification

1) Prepare Actual Classes

attrition	class
Yes	TRUE
No	FALSE

validate\$Attrition

No No No No Yes No Yes ... No No No

validate_actual <- validate\$Attrition == "Yes"
validate_actual</pre>

FALSE FALSE FALSE FALSE TRUE FALSE TRUE ... FALSE FALSE

2) Prepare Predicted Classes

P(attrition)	class
Yes	TRUE
No	FALSE

```
validate_classes <- predict(rf_model, rf_validate)$predictions
validate_classes</pre>
```

```
No No No No Yes No No ... No No No
```

```
validate_predicted <- validate_classes == "Yes"
validate_predicted</pre>
```

FALSE FALSE FALSE FALSE TRUE FALSE FALSE ... FALSE FALSE FALSE

Build the Best Attrition Model

MACHINE LEARNING IN THE TIDYVERSE

Recap: Machine Learning in the Tidyverse

MACHINE LEARNING IN THE TIDYVERSE

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

Chapter 1 - The List Column Workflow

1 Make a list column nest()

Work with list columns map()

3 Simplify the list columns unnest()

map_*()

Chapter 2 - Explore Multiple Models With broom

```
1 Make a list column nest()
```

```
Work with
list columns

map()
tidy()
glance()
```

augment()

```
3 Simplify the list columns unnest()
```

Chapter 3 - Build, Tune & Evaluate Regression Models

```
1 Make a list column
```

```
nest()
initial_split()
  vfold_cv()
  crossing()
```

```
2 Work with list columns
```

```
map()
training()
testing()
    lm()
    ranger()
    mae()
```

```
3 Simplify the list columns
```

```
unnest()
map_dbl()
```

Chapter 4 - Build, Tune & Evaluate Classification Models

```
1 Make a list column
```

```
nest()
initial_split()
  vfold_cv()
  crossing()
```

```
2 Work with list columns
```

```
map()
training()
testing()
  glm()
  ranger()
  recall()
```

```
3 Simplify the list columns
```

```
unnest()
map_dbl()
```

Congratulations!

MACHINE LEARNING IN THE TIDYVERSE

