

CHƯƠNG 3

NETWORK LAYER

TS. TRẦN QUANG VINH

Chức năng lớp Network

- IP addressing
- Datagram Format
- Routing
- Forwarding
- Provide error detection and diagnostic capability

Internet Protocol

Giao thức IP

- Chuẩn hóa bởi IETF, RFC 791 (9/1981)
- Chuẩn hóa bởi DoD, MIL-STD-1777

Phương thức hoạt động

- Connectionless:
 - Giao thức IP không chuyển các thông tin điều khiển trước khi truyền dữ liệu
- Unreliable
 - Giao thức IP không có khả năng phát hiện và khắc phục lỗi
 - Không quan tâm đến việc dữ liệu có đến đích một cách chính xác hay không
- Best effort delivery
 - Truyền các Datagram càng nhanh càng tốt

Hosts and Routers

 interface trên host và router đều có thể gửi và nhận IP datagram, nên mỗi giao diện phải có một IP address → IP Address có tính duy nhất!

IP Address

- IPv4: 32 bit, IPv6: 128 bit
- Yêu cầu: phải có cấu trúc, cho phép định tuyến → địa chỉ IP gồm 2 phần thông tin:
 - Network address: địa chỉ mạng
 - Host address: địa chỉ máy trạm
- Biểu diễn:

Router Interface IP Address 1 223.1.1.4 2 223.1.2.9 3 223.1.3.27

Nguyên tắc đánh địa chỉ:

- Mỗi mạng LAN có địa chỉ mạng riêng biệt và được ngăn cách bởi router
- Các máy trạm (kể cả router) nằm trong một LAN có chung địa chỉ mạng, còn địa chỉ máy trạm khác nhau

Cách xác định Network

- Ngắt (detach) mỗi giao diện của router ra khỏi router và mỗi giao diện host ra khỏi host (ngắt các link giữa host và router)
- Mõi isolated networks là một network

IP Address Classing

	# of network	# of hosts
Class A	2^7=128	2^24
Class B	2^14=16384	2^16=65536
Class C	2^21	2^8=256

	Range for first byte
Class A	0 - 127
Class B	128 - 191
Class C	192 - 223
Class D	224 - 239
Class E	240 - 255

IP Address Classifying

Public IP Address

IP thực và duy nhất, được quản lý bởi IANA

Private IP Address

- sử dụng cho những host trong các mạng LAN

Class	Private IP Addresses (RFC 1918)	Default Subnet Mask	Number of Networks	Hosts per Network	Total Hosts
Α	10.0.0.0 to 10.255.255.255	255.0.0.0	1	16,777,214	16,777,214
В	172.16.0.0 to 172.31.255.255	255.255.0.0	16	65,534	1,048,544
С	192.168.0.0 to 192.168.255.255	255.255.255.0	256	254	65,024

Loopback Address

Loopback address	127.0.0.1 / 127.1.*
Multicast address (RFC5771)	224.0.0.0~239.255.255.255

IP Address Classifying

Multicast Address

 Địa chỉ định danh (logic) cho một nhóm các host trên mạng máy tính có khả năng xử lý datagrams hoặc frames cho một số dịch vụ mạng được chỉ định

Broadcast Address

- Địa chỉ có các bit phần HostID bằng 1
 - Sử dụng khi muốn phát quảng bá đến toàn bộ host trong cùng mạng
- Ví dụ: Mạng con: 180.13.0.0 sẽ có địa chỉ quảng bá: 180.13.255.255

Default Mask/Subnet mask

– Địa chỉ dùng để che phần host ID của địa chỉ IP → để xác định network ID

Assigning Addresses

Manual configuration

- IP address is configured into the host by the system administrator
- Windows: control panel → network → configuration → tcp/ip → properties
- UNIX: /etc/rc.config

Assigning Addresses

- Dynamic Host Configuration Protocol (DHCP)
 - Giao thức cấu hình địa chỉ động [RFC 2131]
 - "plug-and-play": Cho phép host nhận một địa chỉ IP động khi kết nối mạng

DHCP client-server scenario

DHCP client-server scenario

DHCP: Wireshark output (home LAN)

Message type: Estateducet (1)
Hardware type: Ethernet
Hardware address length: 6
Hops: 0 request
Transaction ID: 0x6b3a11b7
Seconds elapsed: 0
Bootp flags: 0x0000 (Unicast)
Client IP address: 0.0.0.0 (0.0.0.0)
Your (client) IP address: 0.0.0.0 (0.0.0.0)
Next server IP address: 0.0.0.0 (0.0.0.0)
Relay agent IP address: 0.0.0.0 (0.0.0.0)
Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)
Server host name not given
Boot file name not given
Magic cookie: (OK)
Option: (t=53,l=1) DHCP Message Type = DHCP Request
Option: (61) Client identifier
Length: 7; Value: 010016D323688A;
Hardware type: Ethernet
Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)
Option: (t=50,l=4) Requested IP Address = 192.168.1.101
Option: (t=12,l=5) Host Name = "nomad"
Option: (55) Parameter Request List
Length: 11; Value: 010F03062C2E2F1F21F92B
1 = Subnet Mask; 15 = Domain Name
3 = Router; 6 = Domain Name Server
44 = NetBIOS over TCP/IP Name Server

Message type: Boot Request (1)

reply

```
Message type: Boot Reply (2)
Hardware type: Ethernet
Hardware address length: 6
Hops: 0
Transaction ID: 0x6b3a11b7
Seconds elapsed: 0
Bootp flags: 0x0000 (Unicast)
Client IP address: 192.168.1.101 (192.168.1.101)
Your (client) IP address: 0.0.0.0 (0.0.0.0)
Next server IP address: 192.168.1.1 (192.168.1.1)
Relay agent IP address: 0.0.0.0 (0.0.0.0)
Client MAC address: Wistron 23:68:8a (00:16:d3:23:68:8a)
Server host name not given
Boot file name not given
Magic cookie: (OK)
Option: (t=53,l=1) DHCP Message Type = DHCP ACK
Option: (t=54,l=4) Server Identifier = 192.168.1.1
Option: (t=1,I=4) Subnet Mask = 255.255.255.0
Option: (t=3,I=4) Router = 192.168.1.1
Option: (6) Domain Name Server
  Length: 12; Value: 445747E2445749F244574092;
   IP Address: 68.87.71.226;
   IP Address: 68.87.73.242;
   IP Address: 68.87.64.146
Option: (t=15,l=20) Domain Name = "hsd1.ma.comcast.net."
```

Nhận xét

Đánh địa chỉ có phân lớp có một số nhược điểm

- Cứng nhắc, lớp C quá nhỏ, lớp B quá lớn → không tận dụng hiệu quả miền địa chỉ
- Các router trong mạng nội bộ cần phải có địa chỉ mạng (network ID.) riêng biệt cho từng giao diện

Cách giải quyết

- CIDR: Classless Inter Domain Routing
- Phần địa chỉ mạng sẽ có độ dài bất kỳ

Classless Inter-Domain Routing (CIDR)

CIDR notation

- Địa chỉ IP: a.b.c.d/x, trong đó a.b.c.d là địa chỉ mạng, x (mặt nạ mạng) là số
 lượng bit trong phần ứng với địa chỉ mạng
- Ví dụ: 128.211.168.0/21

Classless Inter-Domain Routing (CIDR)

Phân chia mạng con (Subneting)

- Mở rộng địa chỉ mạng sang các bit của địa chỉ host

Ví dụ:

- IP class C: 203.160.9.0 và subnet mask: 255.255.255.0 (địa chỉ mạng 24 bits)
- Chia thành 4 mạng con → lấy thêm 2 bít cho địa chỉ mạng (26 bits)
- <u>203.160.9.0/26</u>

Subnetting: 203.160.9.0/26

Địa chỉ mạng 1 :	203	160	9	0
	11001011	10100000	00001001	00000000
Dia chi mana 2 .	203	160	9	64
Địa chỉ mạng 2:	11001011	10100000	00001001	01 000000
Dia chi mana 2 .	203	160	9	128
Địa chỉ mạng 3:	11001011	10100000	00001001	10 000000
				-
Địa chỉ mạng 4 :	203	160	9	192
	11001011	10100000	00001001	11 000000
Mặt nạ của các mạng con này là : 255.255.255.192				
255	255	255	192	
11111111	11111111	11111111	11 000000	

Subnetting

Subnet mask

Các giá trị có thể có của subnet mask

- 255.255.255.224
- /27
- 0xFFFFFFe0

 Sẽ là một trong các số:

192 254

224 255

240

Subnetting

Kích thước mạng

- Kích thước
 - Theo lũy thừa 2
- RFC1878

- Trong trường hợp /26
 - Phần máy trạm = 6 bits
 - 2⁶=64
 - Dải địa chỉ có thể gán:
 - 0 63
 - 64 127
 - 128 191
 - 192 255

Supernetting

Nhóm nhiều segment -> segment lớn hơn

- Tiết kiệm vùng địa chỉ
- Giảm số bản ghi trong bảng định tuyến
 - summarized route

Classless Inter-Domain Routing (CIDR)

Example 1:

- Một ISP được cấp một địa chỉ mạng: 192.10.64.0/19
- Tìm mặt nạ mạng, địa chỉ đầu tiên và địa chỉ cuối cùng trong giải địa chỉ, địa chỉ broadcast và số lượng host cho mạng trên.

Solution

– Network address:

```
11000000 \ 00001010 \ 010|00000 \ 000000000 = 192.10.64.0/19
```

– Net mask:

- The network address: 010|00000 00000000 = 192.10.64.0/19
- The first host address: 010|00000 00000001 = 192.10.64.1
- Broadcast address: 010|11111 11111111 = 192.10.95.255
- The last host address: 010 | 11111 1111111 = 192.10.95.254
- There are 213 host addresses (32 19 = 13) in this range. So the ISP can allocate 8192 - 2 = 8190 host addresses

Classless Inter-Domain Routing (CIDR)

Example 2:

- Một ISP được gán dải địa chỉ: 194.160.0.0 194.175.255.255
- Tìm địa chỉ mạng, prefix length, địa chỉ đầu, địa chỉ cuối, địa chỉ quảng bá.

Solution:

```
160_{10} = 1010 \mid 0000_2
175_{10} = 1010 \mid 1111_2
```

→ Prefix length = 12 (8 bits from 1st byte + 4 bits from 2nd byte)

```
Network address is: 194.160.0.0/12
```

Network mask is: 255.240.0.0

First host address is: 194.160.0.1

Last host address is: 194.175.255.254

Broadcast address is: 194.175.255.255

Total Host addresses: $2^{(32-12)} - 2 = 1,048,574$ addresses

IP header

version	header length	type of service	packet length (bytes)		
	16 bit id	lentifier	flags 13-bit fragmentation offse		
time-to	-live	upper layer protocol	headerchecksum		
32 bit source IP address					
32 bit destination IP address					
options (if any)					
data					
32 bits					

IP Fragmentation and Reassembly

- Identification identifies a particular packet
- Flags = (unused, don't fragment/DF, more fragment/MF)
- Fragment offset identifies the location of a fragment within a packet

IP Fragmentation and Reassembly

Fragmentation

- Phân mảnh sử dụng các trường: identification, flags, fragment offset
 - Identification: 16 bit các offset của cùng 1 gói lớn có cùng một ID.
 - Flags: 3 bit
 - + #1 bit: không sử dụng
 - + #2 bit Don't fragment (DF) bit:
 - » DF=1: Không được phép phân mảnh
 - » DF=0: Được phép phân mảnh
 - + #3 bit More fragment (MF) bit: nếu DF=0
 - » MF=1: hãy còn phân mảnh tiếp theo
 - » MF=0: phân mảnh cuối cùng
- Offset: 13 bit
 - Vị trí của gói tin phân mảnh trong gói tin ban đầu
 - Theo đơn vị 8 bytes

Ví dụ

Ví dụ 1:

Homework:

- 1. ARP (Address Resolution Protocol), RARP
- 2. ICMP
- 3. NAT
- 4. IPv6

ICMP

- ICMP Internet Control Message Protocol
- RFC 792
- ICMP được sử dụng ở tầng mạng để trao đổi thông tin
 - Báo lỗi: báo gói tin không đến được một máy trạm, số chặng vượt quá giới hạn cho phép (TTL=0), kích thước gói tin quá dài .v.v.
 - Thông tin phản hồi
- ICMP được sử dụng ở tầng mạng, "phía trên" IP
 - Thông điệp ICMP chứa trong gói tin IP

Ver	HLEN	DS	Total Length		
Identification			Flags	Fragmentation offset	
Т	TL	Protocol	Header Checksum		
Source IP address					
Destination IP address					
Option					

Protocol:

1: ICMP

2: IGMP

6: TCP

17: UDP

89: OSPF

ICMP (tiếp)

- Định dạng bản tin ICMP:
 - Type: dạng gói tin ICMP
 - Code: nguyên nhân gây lỗi
 - Rest of the header: 8 bytes đầu tiên của gói tin IP bị lỗi
- ICMP luôn hoạt động, xong "trong suốt" với user
- User có thể sử dụng ICMP qua các công cụ debug
 - ping
 - traceroute

Type	Code	Checksum
Rest of the header		
Data		

ICMP (tiếp)

ICMP Error message

 ICMP error messages include the complete IP header and the first 8 bytes of the payload

Một số dạng bản tin ICMP:

Type	Code	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Ping:

- Sử dụng để kiểm tra kết nối
- Gửi gói tin "ICMP echo request"
- Bên nhận trả về "ICMP echo reply"
- Mỗi gói tin có một số hiệu gói tin
- Trường dữ liệu chứa thời gian gửi gói tin
 - Tính được thời gian đi và về RTT (round-trip time)
- Cú pháp: ping [địa chỉ IP/tên host]
 - ping www.google.com

Traceroute

- Tìm đường đi (các router trung gian) từ nguồn tới đích
- Cú pháp:
 - Linux: traceroute [địa chỉ IP/tên host]
 - Windows: tracert [địa chỉ IP/tên host]

