Categorical Domain Adaptation Theory and Algorithms

Pengcheng Xu 2020, SEP, 25

Paper list

• Contrastive Adaptation Network for Unsupervised Domain Adaptation

• Deep Subdomain Adaptation Network for Image Classification

• Opposite Structure Learning for Semi-supervised Domain Adaptation

Problems

- Issues for covariate shift assumption
 - Classification mechanism is the same; Marginal distribution is the different.
 - $P_S(y|x) = P_T(y|x)$ $P_S(x) \neq P_T(x) \Rightarrow$ Align the source & target marginal distribution
 - Negative transferring due to lack of categorical information on target.

Contrastive Adaptation Network for Unsupervised Domain Adaptation

Guoliang Kang¹, Lu Jiang², Yi Yang^{1,3}*, Alexander G. Hauptmann⁴
¹CAI, University of Technology Sydney, ²Google AI, ³Baidu Research, ⁴Carnegie Mellon University

kgl.prml@gmail.com, lujiang@google.com, Yi.Yang@uts.edu.au, alex@cs.cmu.edu

Intuition

- 1. Both inter and intra domain adaptation
 - Modified MMD to CDD as distance measure
- 2. Explicitly categorical domain adaptation
 - Assign pseudo labels to unlabeled target domain
- 3. Alternative training for pseudo labeling
 - Iterate between spherical K-means and Adaptation
- 4. Class-ware sampling

Categorical Distribution Alignment

MMD distance of marginal distributions

$$\mathcal{D}_{\mathcal{H}}(P,Q) \triangleq \sup_{f \sim \mathcal{H}} \left(\mathbb{E}_{oldsymbol{X}^s}[f(oldsymbol{X}^s)] - \mathbb{E}_{oldsymbol{X}^t}[f(oldsymbol{X}^t)]
ight)_{\mathcal{H}},$$

$$egin{aligned} \hat{\mathcal{D}}_{l}^{mmd} &= rac{1}{n_{s}^{2}} \sum_{i=1}^{n_{s}} \sum_{j=1}^{n_{s}} k_{l}(\phi_{l}(m{x}_{i}^{s}), \phi_{l}(m{x}_{j}^{s})) \ &+ rac{1}{n_{t}^{2}} \sum_{i=1}^{n_{t}} \sum_{j=1}^{n_{t}} k_{l}(\phi_{l}(m{x}_{i}^{t}), \phi_{l}(m{x}_{j}^{t})) \ &- rac{2}{n_{s}n_{t}} \sum_{i=1}^{n_{s}} \sum_{j=1}^{n_{t}} k_{l}(\phi_{l}(m{x}_{i}^{s}), \phi_{l}(m{x}_{j}^{t})), \end{aligned}$$

Contrastive Domain Discrepancy

Extend the marginal MMD to conditional CDD

$$\sup_{f \sim \mathcal{H}} \left(\mathbb{E}_{\boldsymbol{X}^s}[f(\phi(\boldsymbol{X}^s)|Y^s)] - \mathbb{E}_{\boldsymbol{X}^t}[f(\phi(\boldsymbol{X}^t)|Y^t)] \right)_{\mathcal{H}}.$$

Define the divergence of any two classes

$$\hat{\mathcal{D}}^{c_1 c_2}(\hat{y}_1^t, \hat{y}_2^t, \cdots, \hat{y}_{n_t}^t, \phi) = e_1 + e_2 - 2e_3$$

e1 & e2 are kernels of the same classes; e3 are kernels of different classes

• Combine the divergence of all classes

$$\begin{split} \hat{\mathcal{D}}^{cdd} &= \underbrace{\frac{1}{M} \sum_{c=1}^{M} \hat{\mathcal{D}}^{cc}(\hat{y}_{1:n_t}^t, \phi)}_{intra} \\ &- \underbrace{\frac{1}{M(M-1)} \sum_{c=1}^{M} \sum_{\substack{c'=1 \\ c' \neq c}}^{M} \hat{\mathcal{D}}^{cc'}(\hat{y}_{1:n_t}^t, \phi),}_{inter} \end{split}$$

Overall Loss: Add all layers and CE loss

$$\hat{\mathcal{D}}_{\mathcal{L}}^{cdd} = \sum_{l=1}^{L} \hat{\mathcal{D}}_{l}^{cdd}.$$

$$\min_{\theta} \ell = \ell^{ce} + \beta \hat{\mathcal{D}}_{\mathcal{L}}^{cdd}$$

Alternate Optimization

- Jointly update both pseudo labels and features network
- Target cluster centers are initialized with source cluster centers

$$O^{sc} = \sum_{i=1}^{N_s} \mathbf{1}_{y_i^s = c} \frac{\phi_1(\mathbf{x}_i^s)}{\|\phi_1(\mathbf{x}_i^s)\|}, \, \mathbf{1}_{y_i^s = c} \left\{ egin{array}{ll} 1 & ext{if } y_i^s = c \ 0 & ext{otherwise} \end{array}
ight.$$

Clustering target with spherical k-means

$$\hat{y}_i^t \leftarrow \operatorname{argmin}_c dist(\phi_1(oldsymbol{x}_i^t), O^{tc}) \qquad O^{tc} \leftarrow \sum_{i=1}^{N_t} \mathbf{1}_{\hat{y}_i^t = c} \frac{\phi_1(oldsymbol{x}_i^t)}{\|\phi_1(oldsymbol{x}_i^t)\|}$$

Filtering the ambiguous samples based on distance

$$\{(\boldsymbol{x}^t, \hat{y}^t) | dist(\phi_1(\boldsymbol{x}^t), O^{t(\hat{y}^t)}) < D_0, \boldsymbol{x}^t \in \mathcal{T}\}$$

Class-Ware Sampling

- Select a subset classes with enough samples
- Sample data for each class to construct a mini-batch for intra-DA

```
Algorithm 1: Optimization of CAN at loop T_e.
   Input:
   source data: \mathcal{S} = \{(m{x}_1^s, y_1^s), \cdots, (m{x}_{N_s}^s, y_{N_s}^s)\}, target data: \mathcal{T} = \{m{x}_1^t, \cdots, m{x}_{N_t}^t\}
   Procedure:
 1 Forward S and compute the M cluster centers O^{sc};
 2 Initialize O^{tc}: O^{tc} \leftarrow O^{sc};
 3 Cluster target samples \mathcal{T} using spherical K-means;
 4 Filter the ambiguous target samples and classes;
 5 for (k \leftarrow 1; k \leq K; k \leftarrow k+1) do
         Class-aware sampling based on C'_{T_a}, \tilde{T}, and S;
        Compute \hat{\mathcal{D}}_{\mathcal{L}}^{cdd} using Eq. (6);
 7
        Sample from S and compute \ell^{ce} using Eq. (7);
        Back-propagate with the objective \ell (Eq.(8));
        Update network parameters \theta.
11 end
```

Experiment Results

Method	$\boldsymbol{A} \to \boldsymbol{W}$	$\mathbf{D} \to \mathbf{W}$	$\mathbf{W} \to \mathbf{D}$	$\mathbf{A} \to \mathbf{D}$	$\mathrm{D} \to \mathrm{A}$	$W \to A $	Average
Source-finetune	68.4 ± 0.2	96.7 ± 0.1	99.3 ± 0.1	68.9 ± 0.2	62.5 ± 0.3	60.7 ± 0.3	76.1
RevGrad [10, 11]	82.0 ± 0.4	96.9 ± 0.2	99.1 ± 0.1	79.7 ± 0.4	68.2 ± 0.4	67.4 ± 0.5	82.2
DAN [22]	80.5 ± 0.4	97.1 ± 0.2	99.6 ± 0.1	78.6 ± 0.2	63.6 ± 0.3	62.8 ± 0.2	80.4
JAN [25]	85.4 ± 0.3	97.4 ± 0.2	99.8 ± 0.2	84.7 ± 0.3	68.6 ± 0.3	70.0 ± 0.4	84.3
MADA [28]	90.0 ± 0.2	97.4 ± 0.1	99.6 ± 0.1	87.8 ± 0.2	70.3 ± 0.3	66.4 ± 0.3	85.2
Ours (intra only) Ours (CAN)		98.4 ± 0.2 99.1 ± 0.2					89.5 90.6

Table 1. Classification accuracy (%) for all the six tasks of Office-31 dataset based on ResNet-50 [14, 15]. Our methods named "intra only" and "CAN" are trained with intra-class domain discrepancy and contrastive domain discrepancy, respectively.

Method	airplane	bicycle	snq	car	horse	knife	motorcycle	person	plant	skateboard	train	truck	Average
Source-finetune	72.3	6.1	63.4	91.7	52.7	7.9	80.1	5.6	90.1	18.5	78.1	25.9	49.4
RevGrad [10, 11]	81.9	77.7	82.8	44.3	81.2	29.5	65.1	28.6	51.9	54.6	82.8	7.8	57.4
DAN [22]	68.1	15.4	76.5	87.0	71.1	48.9	82.3	51.5	88.7	33.2	88.9	42.2	62.8
JAN [25]	75.7	18.7	82.3	86.3	70.2	56.9	80.5	53.8	92.5	32.2	84.5	54.5	65.7
MCD [32]	87.0	60.9	83.7	64.0	88.9	79.6	84.7	76.9	88.6	40.3	83.0	25.8	71.9
ADR [31]	87.8	79.5	83.7	65.3	92.3	61.8	88.9	73.2	87.8	60.0	85.5	32.3	74.8
SE [9]	95.9	87.4	85.2	58.6	96.2	95.7	90.6	80.0	94.8	90.8	88.4	47.9	84.3
Ours (intra only)	96.5	72.1	80.9	70.8	94.6	98.0	91.7	84.2	90.3	89.8	89.4	47.9	83.9
Ours (CAN)	97.0	87.2	82.5	74.3	97.8	96.2	90.8	80.7	96.6	96.3	87.5	59.9	87.2

Table 2. Classification accuracy (%) on the VisDA-2017 validation set based on ResNet-101 [14, 15]. Our methods named "intra only" and "CAN" are trained with intra-class domain discrepancy and contrastive domain discrepancy, respectively.

Deep Subdomain Adaptation Network for Image Classification

Yongchun Zhu^{1,2}, Fuzhen Zhuang^{1,2}, Jindong Wang³, Guolin Ke³, Jingwu Chen⁴,

Jiang Bian³, Hui Xiong⁵, and Qing He^{1,2}

¹Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS),

Institute of Computing Technology, CAS, Beijing 100190, China

²University of Chinese Academy of Sciences, Beijing 100049, China

³Microsoft Research,

⁴ByteDance,

⁵the State University of New Jersey

{zhuyongchun18s,zhuangfuzhen,heqing}@ict.ac.cn, {jindong.wang,Guolin.Ke,jiang.bian}@microsoft.com

{chenjingwu}@bytedance.com, {hxiong}@rutgers.edu

Intuition

- 1 Categorical subdomain alignment
- 2. Current subdomain adversarial methods include many loss functions and converges slowly
- 3. Soft target labels for re-weighting the LMMD

Maximum Mean Discrepancy

MMD definitions

$$d_{\mathcal{H}}(p,q) \triangleq \|\mathbf{E}_p[\phi(\mathbf{x}^s)] - \mathbf{E}_q[\phi(\mathbf{x}^t)]\|_{\mathcal{H}}^2,$$

- p=q iff the MMD is zero but we can only get an estimation of the MMD
- LMMD definitions

$$d_{\mathcal{H}}(p,q) \triangleq \mathbf{E}_c \|\mathbf{E}_{p^{(c)}}[\phi(\mathbf{x}^s)] - \mathbf{E}_{q^{(c)}}[\phi(\mathbf{x}^t)]\|_{\mathcal{H}}^2,$$

$$\hat{d}_{\mathcal{H}}(p,q) = \frac{1}{C} \sum_{c=1}^{C} \left\| \sum_{\mathbf{x}_{i}^{s} \in \mathcal{D}_{s}} w_{i}^{sc} \phi(\mathbf{x}_{i}^{s}) - \sum_{\mathbf{x}_{j}^{t} \in \mathcal{D}_{t}} w_{j}^{tc} \phi(\mathbf{x}_{j}^{t}) \right\|_{\mathcal{H}}^{2}, \qquad w_{i}^{c} = \frac{y_{ic}}{\sum_{(\mathbf{x}_{j}, \mathbf{y}_{j}) \in \mathcal{D}} y_{jc}},$$

Deep Subdomain Network

- Align the distribution and generate more accurate pseudo labeling;
- For source, use the one-hot encoding; For target, use the soft target;

$$\min_{f} \frac{1}{n_s} \sum_{i=1}^{n_s} J(f(\mathbf{x}_i^s), \mathbf{y}_i^s) + \lambda \sum_{l \in L} \hat{d}_l(p, q).$$

Bound Theory

Bound under covariate shift

$$\forall h \in \mathcal{H}, R_{\mathcal{T}}(h) \leq R_{\mathcal{S}}(h) + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{S}, \mathcal{T}) + C,$$

Relaxation of the bound

$$R(f_1, f_2) \leq R(f_1, f_3) + R(f_2, f_3).$$

Then, we have:

$$C = \min_{h \in \mathcal{H}} R_{\mathcal{S}}(h, f_{\mathcal{S}}) + R_{\mathcal{T}}(h, f_{\mathcal{T}})$$

$$\leq \min_{h \in \mathcal{H}} R_{\mathcal{S}}(h, f_{\mathcal{S}}) + R_{\mathcal{T}}(h, f_{\mathcal{S}}) + R_{\mathcal{T}}(f_{\mathcal{S}}, f_{\mathcal{T}})$$

$$\leq \min_{h \in \mathcal{H}} R_{\mathcal{S}}(h, f_{\mathcal{S}}) + R_{\mathcal{T}}(h, f_{\mathcal{S}}) + R_{\mathcal{T}}(f_{\mathcal{S}}, f_{\hat{\mathcal{T}}})$$

$$+ R_{\mathcal{T}}(f_{\mathcal{T}}, f_{\hat{\mathcal{T}}}),$$

 $C = \min_{h \in \mathcal{H}} R_{\mathcal{S}}(h, f_{\mathcal{S}}) + R_{\mathcal{T}}(h, f_{\mathcal{T}}),$

3rd item is the subdomain discrepancy

4th item is expected to be reduced with training

Experiments

TABLE I ACCURACY (%) ON IMAGECLEF-DA FOR UNSUPERVISED DOMAIN ADAPTATION (RESNET50).

$I \rightarrow P$	$P \to I$	$\mathrm{I} \to \mathrm{C}$	$C \rightarrow I$	$C \rightarrow P$	$P \rightarrow C$	A
740102				C / I	$P \rightarrow C$	Avg
/4.8±0.3	83.9 ± 0.1	91.5±0.3	78.0±0.2	65.5±0.3	91.2±0.3	80.7
74.6 ± 0.3	85.7 ± 0.8	91.1 ± 0.3	82.3 ± 0.7	68.3 ± 0.4	88.8 ± 0.2	81.8
75.0 ± 0.4	86.2 ± 0.2	93.3 ± 0.2	84.1 ± 0.4	69.8 ± 0.4	91.3 ± 0.4	83.3
75.0 ± 0.6	86.0 ± 0.3	96.2 ± 0.4	87.0 ± 0.5	74.3 ± 0.5	91.5 ± 0.6	85.0
76.9 ± 0.2	88.5 ± 0.3	93.6 ± 0.3	86.8 ± 0.6	74.0 ± 0.3	91.6 ± 0.3	85.2
76.8 ± 0.4	88.0 ± 0.2	94.7 ± 0.2	89.5 ± 0.3	74.2 ± 0.3	91.7 ± 0.3	85.8
75.0 ± 0.3	87.9 ± 0.2	96.0 ± 0.3	88.8 ± 0.3	75.2 ± 0.2	92.2 ± 0.3	85.8
78.2	87.5	94.2	89.5	75.8	89.2	85.7
79.5	89.7	94.7	89.9	78.5	92.0	87.4
76.7 ± 0.3	90.6 ± 0.3	97.0 ± 0.4	90.5 ± 0.4	74.5 ± 0.3	93.5 ± 0.4	87.1
77.7 ± 0.3	90.7 ± 0.2	97.7 \pm 0.3	91.3 ± 0.3	74.2 ± 0.2	94.3 ± 0.3	87.7
80.2 ±0.2	93.3 ±0.4	97.2±0.2	93.8 ±0.2	80.8 ±0.4	95.9 ±0.4	90.2
	75.0 ± 0.4 75.0 ± 0.6 76.9 ± 0.2 76.8 ± 0.4 75.0 ± 0.3 78.2 79.5 76.7 ± 0.3 77.7 ± 0.3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE II
ACCURACY (%) ON OFFICE-31 FOR UNSUPERVISED DOMAIN ADAPTATION (RESNET50).

Method	$\mathbf{A} \to \mathbf{W}$	$\mathrm{D} \to \mathrm{W}$	$W \to D$	$\mathbf{A} \to \mathbf{D}$	$\mathrm{D} \to \mathrm{A}$	$W \to A$	Avg
ResNet [1]	68.4 ± 0.5	96.7 ± 0.5	99.3±0.1	68.9 ± 0.2	62.5 ± 0.3	60.7 ± 0.3	76.1
DDC [39]	75.8 ± 0.2	95.0 ± 0.2	98.2 ± 0.1	77.5 ± 0.3	67.4 ± 0.4	64.0 ± 0.5	79.7
DAN [13]	83.8 ± 0.4	96.8 ± 0.2	99.5 ± 0.1	78.4 ± 0.2	66.7 ± 0.3	62.7 ± 0.2	81.3
D-CORAL [16]	77.7 ± 0.3	97.6 ± 0.2	99.7 ± 0.1	81.1 ± 0.4	64.6 ± 0.3	64.0 ± 0.4	80.8
DANN [17]	82.0 ± 0.4	96.9 ± 0.2	99.1 ± 0.1	79.7 ± 0.4	68.2 ± 0.4	67.4 ± 0.5	82.2
ADDA [30]	86.2 ± 0.5	96.2 ± 0.3	98.4 ± 0.3	77.8 ± 0.3	69.5 ± 0.4	68.9 ± 0.5	82.9
JAN [26]	85.4 ± 0.3	97.4 ± 0.2	99.8 ± 0.2	84.7 ± 0.3	68.6 ± 0.3	70.0 ± 0.4	84.3
MADA [15]	90.0 ± 0.1	97.4 ± 0.1	99.6 ± 0.1	87.8 ± 0.2	70.3 ± 0.3	66.4 ± 0.3	85.2
GTA [43]	89.5 ± 0.5	97.9 ± 0.3	99.8 ± 0.4	87.7 ± 0.5	72.8 ± 0.3	71.4 ± 0.4	86.6
CAN [31]	81.5	98.2	99.7	85.5	65.9	63.4	82.4
iCAN [31]	92.5	98.8	100.0	90.1	72.1	69.9	87.2
CDAN [14]	93.1 ± 0.2	98.2 ± 0.2	$100.0 \pm .0$	89.8 ± 0.3	70.1 ± 0.4	68.0 ± 0.4	86.6
CDAN+E [14]	94.1 \pm 0.1	98.6 \pm 0.1	$100.0 \pm .0$	92.9 \pm 0.2	71.0 ± 0.3	69.3 ± 0.3	87.7
DSAN	93.6±0.2	98.3±0.1	100.0 ±0.0	90.2±0.7	73.5 ±0.5	74.8 ±0.4	88.4

Experiments

TABLE IV ACCURACY (%) ON VISDA-2017 FOR UNSUPERVISED DOMAIN ADAPTATION (RESNET101).

Method	airplane	bicycle	bus	car	horse	knife	motorcycle	person	plant	skateboard	train	truck	Avg
ResNet [1]	72.3	6.1	63.4	91.7	52.7	7.9	80.1	5.6	90.1	18.5	78.1	25.9	49.4
DANN [17]	81.9	77.7	82.8	44.3	81.2	29.5	65.1	28.6	51.9	54.6	82.8	7.8	57.4
DAN [13]	68.1	15.4	76.5	87.0	71.1	48.9	82.3	51.5	88.7	33.2	88.9	42.2	62.8
JAN [26]	75.7	18.7	82.3	86.3	70.2	56.9	80.5	53.8	92.5	32.2	84.5	54.5	65.7
MCD [49]	87.0	60.9	83.7	64.0	88.9	79.6	84.7	76.9	88.6	40.3	83.0	25.8	71.9
DSAN	90.9	66.9	75.7	62.4	88.9	77.0	93.7	75.1	92.8	67.6	89.1	39.4	75.1

Opposite Structure Learning for Semi-supervised Domain Adaptation

¹Can Qin, ¹Lichen Wang, ²Qianqian Ma, ¹Yu Yin, ¹Huan Wang ^{1,3}Yun Fu

¹ Department of Electrical & Computer Engineering, Northeastern University

²Department of Electrical & Computer Engineering, Boston University

³Khoury College of Computer Science, Northeastern University

qin.ca@husky.neu.edu, wanglichenxj@gmail.com, maqq@bu.edu,
yin.yul@husky.neu.edu, wang.huan@husky.neu.edu, yunfu@ece.neu.edu

Intuition

- Problems:
- 1. Conditional distribution mismatch between source and targets.
- 2. Biased decision boundary towards source domain.
- Methods:
- Well **clustered** target domain for conditional mismatch; Well **scattered** source domain to regulate model.
- 1. Source scattering and expansion; Target classifier improves intra-class density and enlarge inter-class divergence.
- 2. Mode collapse: adversarial training between feature extractor and classifier.

Entropy Minimization

Clustering by minimizing the conditional entropy

$$H_{tar} = -\mathbb{E}_{oldsymbol{x}^u \sim \mathcal{U}} \sum_{k=1}^K [p_2(y=k|oldsymbol{x}^u) \log p_2(y=k|oldsymbol{x}^u)],$$

Scattering by maximizing the conditional entropy

$$H_{src} = -\mathbb{E}_{oldsymbol{x}^s \sim \mathcal{S}} \sum_{k=1}^K [p_1(y=k|oldsymbol{x}^s) \log p_1(y=k|oldsymbol{x}^s)],$$

End-to-end trained with gradient reversal layer.

$$\Theta_{\mathcal{F}_{1}}^{*} = \underset{\Theta_{\mathcal{F}_{1}}}{\operatorname{arg\,min}} \alpha \mathcal{L}_{src} + (1 - \alpha) \mathcal{L}_{tar} + \beta H_{src}, \qquad \Theta_{\mathcal{G}}^{*} = \underset{\Theta_{\mathcal{G}}}{\operatorname{arg\,min}} \mathcal{L}_{src} + \mathcal{L}_{tar} - \beta H_{src} + \lambda H_{tar}.$$

$$\Theta_{\mathcal{G}}^{*} = \underset{\Theta_{\mathcal{F}_{2}}}{\operatorname{arg\,min}} (1 - \alpha) \mathcal{L}_{src} + \alpha \mathcal{L}_{tar} - \lambda H_{tar}.$$

Experiments

Table 1. Quantitative results (%) on the benchmark of DomainNet.

Methods	R-	→C	R-	→P	P-	→C	C-	→S	S-	→P	R-	→S	P-	→R	A	vg
Methods	1_{shot}	3_{shot}	1_{shot}	3-shot	1_{shot}	3_{shot}	1_{shot}	3_{shot}								
S+T	55.6	60.0	60.6	62.2	56.8	59.4	50.8	55.0	56.0	59.5	46.3	50.1	71.8	73.9	56.9	60.0
DANN [7]	58.2	59.8	61.4	62.8	56.3	59.6	52.8	55.4	57.4	59.9	52.2	54.9	70.3	72.2	58.4	60.7
ADR [26]	57.1	60.7	61.3	61.9	57.0	60.7	51.0	54.4	56.0	59.9	49.0	51.1	72.0	74.2	57.6	60.4
CDAN [15]	65.0	69.0	64.9	67.3	63.7	68.4	53.1	57.8	63.4	65.3	54.5	59.0	73.2	78.5	62.5	66.5
ENT [10]	65.2	71.0	65.9	69.2	65.4	71.1	54.6	60.0	59.7	62.1	52.1	61.1	75.0	78.6	62.6	67.6
MME [24]	70.0	72.2	67.7	69.7	69.0	71.7	56.3	61.8	64.8	66.8	61.0	61.9	76.1	78.5	66.4	68.9
Ours	72.7	75.4	70.3	71.5	69.8	73.2	60.5	64.1	66.4	69.4	62.7	64.2	77.3	80.8	68.5	71.2

The applied backbone is Resnet34 [12] and Avg means the average results on previous adaptation scenarios.

Experiments

Table 3. Quantitative results (%) of ablation study.

	C	OMPO	$R \rightarrow S$	$R{ ightarrow}C$		
1- <i>C</i>	2- C	\mathcal{H}_{tar}	\mathcal{H}_{tar} + \mathcal{H}_{src}	ST	$1_{shot}/3_{shot}$	$1_{shot}/3_{shot}$
					61.0/61.9	70.0/72.2
\ \			\checkmark		60.4/61.2	69.2/71.5
	\checkmark	$\sqrt{}$			61.1/62.8	70.5/72.4
			\checkmark		62.2/63.9	71.6/74.0
			·		61.2/62.6	70.7/72.8
					62.7/64.2	72.7/75.4

The applied backbone is Resnet34 [12].

Figure 4. The visualization results of t-SNE [17] on the shared tenclass features on the adaptation scenario *Real* to *Sketch*, *i.e.*, R→S, obtained by (a) S+T, (b) MME [24] and (c) Ours. The figures are captured under 3-shot SSDA setting. The feature points of source and target domains are indicated by red and blue spots.

Q&A

Thank You Very Much