02. Estudio de los esfuerzos en un punto

secciones 2.1 a 2.4

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales
Departamento de Ingeniería Civil
Mecánica Tensorial

2023a

Advertencia

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada (Álvarez, 2022).

- 1 2.1. Tensiones o esfuerzos
- 2 2.2. Estudio de las tensiones en un punto bidimensional
 - 2.2.1. Análisis de un elemento infinitesimal rectangular
 - 2.2.2. Análisis de un elemento infinitesimal triangular
- 3 2.3. Estudio de las tensiones en un punto tridimensional

Un pequeño comentario sobre el sistema coordenado en tres dimensiones

- 2.3.1. Análisis de un paralelepípedo infinitesimal
- 2.3.2. Análisis de un tetraedro infinitesimal
- 4 2.4. Notación indicial
- 6 Referencias

- 1 2.1. Tensiones o esfuerzos
- 2 2.2. Estudio de las tensiones en un punto bidimensional
 - 2.2.1. Análisis de un elemento infinitesimal rectangular
 - 2.2.2. Análisis de un elemento infinitesimal triangula
- 3 2.3. Estudio de las tensiones en un punto tridimensional Un pequeño comentario sobre el sistema coordenado en tres dimensiones
 - 2.3.1. Análisis de un paralelepípedo infinitesima
 - 2.3.2. Análisis de un tetraedro infinitesimal
- 4 2.4. Notación indicial
- 6 Referencias

- Intensidad de una fuerza por unidad de área en el contorno de un punto material sobre una superficie real o imaginaria de un medio contínuo.
- Las fuerzas internas son una reacción a las fuerzas externas aplicadas.

Augustin-Lois Cauchy (1789-1857

- Intensidad de una fuerza por unidad de área en el contorno de un punto material sobre una superficie real o imaginaria de un medio contínuo.
- Las fuerzas internas son una reacción a las fuerzas externas aplicadas.

Augustin-Lois Cauchy (1789-1857)

- Intensidad de una fuerza por unidad de área en el contorno de un punto material sobre una superficie real o imaginaria de un medio contínuo.
- Las fuerzas internas son una reacción a las fuerzas externas aplicadas.

Augustin-Lois Cauchy (1789-1857)

- El sólido deformado es contínuo.
- Hay una distribución de esfuerzos representada como una función contínua por partes.

Principio de esfuerzos de Cauchy

A medida que la superficie se vuelve muy pequeña y tiende al punto P la tensión o esfuerzo (denotada por q) en el punto (x,y,z) asociado con el plano normal \hat{n} es

$$q(x, y, z) = \lim_{\Delta A \to 0} \frac{\Delta f}{\Delta A}$$

Principio de esfuerzos de Cauchy

A medida que la superficie se vuelve muy pequeña y tiende al punto P la tensión o esfuerzo (denotada por ${\bf q}$) en el punto (x,y,z) asociado con el plano normal $\hat{{\bf n}}$ es

$$q(x, y, z) = \lim_{\Delta A \to 0} \frac{\Delta f}{\Delta A}$$

Descomposición del esfuerzo

El esfuerzo:

$$q(x, y, z) = \lim_{\Delta A \to 0} \frac{\Delta f}{\Delta A}$$

aquí ΔA tiene normal $\hat{\boldsymbol{n}}$. Se divide en:

Vector de esfuerzo normal
 Fuerzas de compresión y tracción

$$\sigma_n(x, y, z) = \lim_{\Delta A \to 0} \frac{\Delta f_n}{\Delta A}$$

Vector de esfuerzo tangencial

Fuerzas de cortante

$$\sigma_s(x, y, z) = \lim_{\Delta A \to 0} \frac{\Delta f_s}{\Delta A}$$

$$q(x, y, z) = \sigma_n(x, y, z) + \sigma_s(x, y, z)$$

- 1 2.1. Tensiones o esfuerzos
- 2 2.2. Estudio de las tensiones en un punto bidimensional
 - 2.2.1. Análisis de un elemento infinitesimal rectangular
 - 2.2.2. Análisis de un elemento infinitesimal triangular
- ② 2.3. Estudio de las tensiones en un punto tridimensional Un pequeño comentario sobre el sistema coordenado en tres dimensiones
 - 2.3.1. Análisis de un paralelepípedo infinitesimal
 - 2.3.2. Análisis de un tetraedro infinitesimal
- 4 2.4. Notación indicial
- 6 Referencias

- 1 2.1. Tensiones o esfuerzos
- 2.2. Estudio de las tensiones en un punto bidimensional 2.2.1. Análisis de un elemento infinitesimal rectangular
 - 2.2.2. Análicis de un elemento infinitesimal triangular
- 3 2.3. Estudio de las tensiones en un punto tridimensional

Un pequeño comentario sobre el sistema coordenado en tres dimensiones

- 2.3.1. Análisis de un paralelepípedo infinitesimal
- 2.3.2. Análisis de un tetraedro infinitesimal
- 4 2.4. Notación indicial
- 6 Referencias

Análisis de un elemento infinitesimal rectangular

Un esfuerzo cortante τ_{ij} que actúa sobre una superficie ortogonal al eje i y tiene la misma dirección que el eje j.

Condición de equilibrio estático

$$\tau_{xy} = \tau_{yx}$$

Análisis de un elemento infinitesimal rectangular

Un esfuerzo cortante τ_{ij} que actúa sobre una superficie ortogonal al eje i y tiene la misma dirección que el eje j.

Condición de equilibrio estático

$$\tau_{xy} = \tau_{yx}$$

Análisis de un elemento infinitesimal rectangular

Tarea

Verificar que las fuerzas másicas son extremadamente pequeñas en comparación con las fuerzas de superficie. (elemento infinitesimal rectangular)

- 1 2.1. Tensiones o esfuerzos
- 2 2.2. Estudio de las tensiones en un punto bidimensional
 - 2.2.1. Análisis de un elemento infinitesimal rectangular
 - 2.2.2. Análisis de un elemento infinitesimal triangular
- 3 2.3. Estudio de las tensiones en un punto tridimensional

Un pequeño comentario sobre el sistema coordenado en tres dimensiones

- 2.3.1. Análisis de un paralelepípedo infinitesima
- 2.3.2. Análisis de un tetraedro infinitesimal
- 4 2.4. Notación indicial
- 6 Referencias

Análisis de un elemento infinitesimal triangular

Análisis de un elemento infinitesimal triangular

Fórmula de Cauchy bidimensional

$$\underbrace{\begin{pmatrix} q_x \\ q_y \end{pmatrix}}_{\boldsymbol{q}} = \underbrace{\begin{pmatrix} \sigma_x & \tau_{xy} \\ \tau_{xy} & \sigma_y \end{pmatrix}}_{\boldsymbol{\hat{q}}} \underbrace{\begin{pmatrix} \alpha \\ \beta \end{pmatrix}}_{\boldsymbol{\hat{n}}}$$

- q: vector de esfuerzos
- <u>σ</u>: Matriz de tensiones de Cauchy (bidimensional)
- $\hat{\boldsymbol{n}}$: Vector normal unitario a la superficie \overline{AB}

Estos arreglos son función del punto P(x, y, z).

- 1 2.1. Tensiones o esfuerzos
- 2.2. Estudio de las tensiones en un punto bidimensional
 - 2 2 2 Análisis de un elemento infinitesimal triangular
- 3 2.3. Estudio de las tensiones en un punto tridimensional Un pequeño comentario sobre el sistema coordenado en tres dimensiones
 - 2.3.1. Análisis de un paralelepípedo infinitesimal
 - 2.3.2. Análisis de un tetraedro infinitesimal
- 4 2.4. Notación indicial
- Referencias

- 1 2.1. Tensiones o esfuerzos
- 2 2.2. Estudio de las tensiones en un punto bidimensional
 - 2.2.1. Análisis de un elemento infinitesimal rectangular
 - 2 2 2 Análisis de un elemento infinitesimal triangular
- ② 2.3. Estudio de las tensiones en un punto tridimensional Un pequeño comentario sobre el sistema coordenado en tres dimensiones
 - 2.3.1. Análisis de un paralelepípedo infinitesima
 - 2.3.2. Análisis de un tetraedro infinitesimal
- 4 2.4. Notación indicial
- 6 Referencias

Un pequeño comentario sobre el sistema coordenado en tres dimensiones

Sistema coordenado de la mano izquierda

Usado usualmente en geotécnica y pavimentos

Sistema coordenado de la mano derecha

Usado usualmente en estructuras e hidráulica

La consecuencia de usar un sistema de coordenadas u otro es que las fórmulas que se deducen con diferente sistema de coordenadas pueden diferir en los signos de las fórmulas.

Un pequeño comentario sobre el sistema coordenado en tres dimensiones

Sistema coordenado de la mano izquierda

Usado usualmente en geotécnica y pavimentos

Sistema coordenado de la mano derecha

Usado usualmente en estructuras e hidráulica

La consecuencia de usar un sistema de coordenadas u otro es que las fórmulas que se deducen con diferente sistema de coordenadas pueden diferir en los signos de las fórmulas.

Manual de MIDAS GTS

MIDAS GTS traduce Sistema de Análisis Geotécnico... y trabaja el sistema coordenado de la mano derecha!

FEM DESIGN	
Global co-ordinate system	
Definition of co-ordinates Definition of directions Interpretation of results	
Right-handed Cartesian	
XY,Z	
Fixed 3 colors, X = green Y = red Z = blue	
	Global co-ordinate system Definition of co-ordinates Definition of co-ordinates Definition of directions Interpretation of results Right-handed Cartesian X. Y., Z Fixed 3 colors, X = green Y = red

ABAQUS y FEM DESIGN son softwares enfocados en el área estructural y mecánica, y también trabajan en el sistema coordenado de la mano derecha

 NO es información trivial, de ser así no se molestarían en ponerlo en los manuales de usuario del programa.

Otro ejemplo

La fuerza cortante en función de la carga distribuida en vigas... ¿cómo se define?

$$\frac{dV}{dx} = w \circ \frac{dV}{dx} = -w$$

 NO es información trivial, de ser así no se molestarían en ponerlo en los manuales de usuario del programa.

Otro ejemplo

La fuerza cortante en función de la carga distribuida en vigas... ¿cómo se define?

$$\frac{dV}{dx} = w \circ \frac{dV}{dx} = -w$$

- 1 2.1. Tensiones o esfuerzos
- 2 2.2. Estudio de las tensiones en un punto bidimensional
 - 2.2.1. Análisis de un elemento infinitesimal rectangular
 - 2.2.2. Análisis de un elemento infinitesimal triangular
- 3 2.3. Estudio de las tensiones en un punto tridimensional

Un pequeño comentario sobre el sistema coordenado en tres dimensiones

- 2.3.1. Análisis de un paralelepípedo infinitesimal
- 2.3.2. Análisis de un tetraedro infinitesimal
- 4 2.4. Notación indicial
- 6 Referencias

Análisis de un paralelepípedo infinitesimal

Condición de equilibrio estático

$$\tau_{yz} = \tau_{zy} \qquad \tau_{zx} = \tau_{zx} \qquad \tau_{xy} = \tau_{yx}.$$

Análisis de un paralelepípedo infinitesimal

Condición de equilibrio estático

$$\tau_{yz} = \tau_{zy}$$
 $\tau_{zx} = \tau_{zx}$ $\tau_{xy} = \tau_{yx}$.

$$\tau_{zx} = \tau_{zx}$$

$$\tau_{xy} = \tau_{yx}$$
.

- 1 2.1. Tensiones o esfuerzos
- 2 2.2. Estudio de las tensiones en un punto bidimensional
 - 2.2.1. Análisis de un elemento infinitesimal rectangular
 - 2.2.2. Análisis de un elemento infinitesimal triangular
- 3 2.3. Estudio de las tensiones en un punto tridimensional

Un pequeño comentario sobre el sistema coordenado en tres dimensiones

- 2.3.1. Análisis de un paralelepípedo infinitesima
- 2.3.2. Análisis de un tetraedro infinitesimal
- 4 2.4. Notación indicial
- 6 Referencias

Fórmula de Cauchy tridimensional

$$\underbrace{\begin{pmatrix} q_x \\ q_y \\ q_z \end{pmatrix}}_{\boldsymbol{q}} = \underbrace{\begin{pmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_y & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_z \end{pmatrix}}_{\boldsymbol{\hat{n}}} \underbrace{\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}}_{\boldsymbol{\hat{n}}}$$

- q: vector de esfuerzos
- <u>\overline{\sigma}</u>: Matriz (simétrica) de tensiones de Cauchy (tridimensional) o tensor de esfuerzos
- $\hat{m{n}}$: Vector normal unitario a la superficie del plano \overline{ABC}

Estos arreglos son función del punto P(x, y, z).

Dato curioso

Fórmula de Cauchy tridimensional

$$\underbrace{\begin{pmatrix} q_x \\ q_y \\ q_z \end{pmatrix}}_{\boldsymbol{q}} = \underbrace{\begin{pmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_y & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_z \end{pmatrix}}_{\boldsymbol{\hat{n}}} \underbrace{\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}}_{\boldsymbol{\hat{n}}}$$

Observe que la matriz $\underline{\underline{\sigma}}(x,y,z)$ es en este caso simétrica. No obstante, es importante anotar que Fung and Tong, 2017 (página 64) dicen que, según el matemático y científico escocés James Clerk Maxwell (1831 - 1879), esta matriz no es simétrica en el caso de un imán en un campo magnético y en el caso de un material dieléctrico en un campo eléctrico con diferentes planos de polarización, ya que en ambas situaciones, cuando se tienen esfuerzos cortantes muy pequeños y campos electromagnéticos muy intensos, aparecen sobre el cuerpo del sólido "momentos másicos" que evitan que la matriz $\underline{\underline{\sigma}}(x,y,z)$ sea simétrica.

- 1 2.1. Tensiones o esfuerzos
- 2 2.2. Estudio de las tensiones en un punto bidimensional
 - 2.2.1. Análisis de un elemento infinitesimal rectangular
 - 2.2.2. Análisis de un elemento infinitesimal triangular
- ② 2.3. Estudio de las tensiones en un punto tridimensional Un pequeño comentario sobre el sistema coordenado en tres dimensione
 - 2.3.1. Análisis de un paralelepípedo infinitesima
 - 2.3.2. Análisis de un tetraedro infinitesimal
- 4 2.4. Notación indicial
- Referencias

Notación indicial

Tema aplazado

Este tema se verá junto con la introducción al cálculo tensorial

Delta de Kronecker

La función Kronecker delta o delta de Kronecker (no confundir con la función impulso unitario o delta de Dirac).

$$\delta_{ij} = \begin{cases} 1, & \text{si } i = j, \\ 0, & \text{si } i \neq j. \end{cases}$$

Otro ejemplo

La condición de ortogonalidad de dos vectores a partir del producto escalar

$$\langle a_i, a_j \rangle = a_i \cdot a_j = \begin{cases} 1, & \text{si } i = j \\ 0, & \text{si } i \neq j \end{cases}$$

Delta de Kronecker

La función Kronecker delta o delta de Kronecker (no confundir con la función impulso unitario o delta de Dirac).

$$\delta_{ij} = \begin{cases} 1, & \text{si } i = j, \\ 0, & \text{si } i \neq j. \end{cases}$$

Otro ejemplo

La condición de ortogonalidad de dos vectores a partir del producto escalar

$$\langle a_i, a_j \rangle = a_i \cdot a_j = \delta_{ij} = \begin{cases} 1, & \text{si } i = j, \\ 0, & \text{si } i \neq j. \end{cases}$$

- 1 2.1. Tensiones o esfuerzos
- 2 2.2. Estudio de las tensiones en un punto bidimensional
 - 2.2.1. Análisis de un elemento infinitesimal rectangular
 - 2.2.2. Análisis de un elemento infinitesimal triangular
- ② 2.3. Estudio de las tensiones en un punto tridimensional Un pequeño comentario sobre el sistema coordenado en tres dimensiones
 - 2.3.1. Análisis de un paralelepípedo infinitesima
 - 2.3.2. Análisis de un tetraedro infinitesimal
- 4 2.4. Notación indicial
- 6 Referencias

Referencias

Fung, Y.-c. and Tong, P. (2017). *Classical and computational solid mechanics*, volume 2. World scientific.

Álvarez, D. A. (2022). *Teoría de la elasticidad*, volume 1. Universidad Nacional de Colombia

Links

- Lista de resproducción: 02 Esfuerzos o Tensiones
- Repositorio del curso: github/medio continuo