1 Midterm

- 1. (a) $\mathbb{P}(|Y_n-1| \geq \epsilon) = \mathbb{P}(Y_n \leq 1-\epsilon) = \mathbb{P}(X_1 \leq 1-\epsilon, \dots, X_n \leq 1-\epsilon) = (1-\epsilon)^n$. $\lim_{n \to \infty} \mathbb{P}(Y_n \leq 1-\epsilon) = \lim_{n \to \infty} (1-\epsilon)^n = 0$. $\therefore Y_n \stackrel{\mathbb{P}}{\to} 1$.
 - (b) Yes. Since $N(t) \sim \text{Poisson}(\lambda t), t \geq 0$, this means that $N(n) = \sum_{i=1}^{n} N(1)$, so that by the SLLN, $\lim_{n\to\infty} \frac{N(n)}{n} = \mathbb{E}[N(1)] = \lambda$.
 - (c) Let $X_1, \ldots, X_i, \ldots X_N$ represent the interarrival times of a Poisson process process with rate λ . Let each arrival be accepted with probability p and rejected with probability 1-p. We can view this as a splitting process, where the original process is split into Poisson processes for arrival acceptances and arrival rejections. In particular, S_N represents the time of the first arrival acceptance, and $S_N \sim \text{Exponential}(\lambda p)$.
 - (d) See Figure 1.

Figure 1: Irreducible, transient, aperiodic MC with no self-loops

(e) Let state i be the Hamming distance from 000, and $\alpha(i) = \mathbb{P}(T_0 < T_3 \mid X_0 = 2)$. Then the first step equations are:

$$\alpha(0) = 1$$

$$\alpha(1) = \frac{1}{3}\alpha(0) + \frac{2}{3}\alpha(2)$$

$$\alpha(2) = \frac{1}{3}\alpha(3) + \frac{2}{3}\alpha(1)$$

$$\alpha(3) = 0$$

We are looking for $\alpha(2) = \frac{2}{3}\alpha(1) = \frac{2}{3}\left(\frac{1}{3} + \frac{2}{3}\alpha(2)\right)$, so $\alpha(2) = \frac{2}{5}$.

(f)

(g) Note that that $\mathbb{P}(1-Y_i=2)=\mathbb{P}(Y_i=-1)=p$ and $\mathbb{P}(1-Y_i=0)=\mathbb{P}(Y_i=1)=1-p$. As such, $\hat{p}=\frac{\sum_{i=1}^n B_i}{2n}$, where each $B_i=\frac{1-Y_i}{2}\sim \text{Bernoulli}(p)$. We would like to determine an interval $(\hat{p}-\epsilon,\hat{p}+\epsilon)$ such that $\mathbb{P}(|\hat{p}-p|\leq\epsilon)=.95$. Using the CLT, we get that:

$$\mathbb{P}(|p-p| \le \epsilon) = .95$$

$$\mathbb{P}\left(\frac{\sqrt{n}|\hat{p}-p|}{\sqrt{p(1-p)}} \le \frac{\epsilon\sqrt{n}}{\sqrt{p(1-p)}}\right) = .95$$

$$\mathbb{P}\left(|Z| \le \frac{\epsilon\sqrt{n}}{\sqrt{p(1-p)}}\right) = .95$$

Since $Z \sim \mathcal{N}(0,1)$ by the CLT, we have that $\frac{\epsilon \sqrt{n}}{\sqrt{p(1-p)}} \approx 2$, so $\epsilon \approx \frac{2\sqrt{p(1-p)}}{\sqrt{n}}$. As such, our interval is thus $\left(\hat{p} - \frac{2\sqrt{p(1-p)}}{\sqrt{n}}, \hat{p} + \frac{2\sqrt{p(1-p)}}{\sqrt{n}}\right)$.

- (h) Since $\sum_{i=1}^{10} |x_i 6| \le 1$, for a sequence to be in the typical set with n = 10, p = .6 and $\epsilon = .1$, this means there must only be either 5, 6, or 7 $x_i \mid x_i = 1 \ \forall i \in \{1, \ldots, 10\}$. As such, we get that $|A_{.1}^{(10)}| = {10 \choose 5} + {10 \choose 6} + {10 \choose 7}$.
- 2. (a)
 - (b)
 - (c)
 - (d)
- 3. (a)
 - (b)
 - (c)
- 4. (a) Let N_t be a random variable indicating the total number of transitions at time t. Then $N_t \sim \text{Poisson}(\lambda t)$, as the transitions between the states can be modeled as a Poisson arrival process with rate λ . As such, we are looking for $\mathbb{P}(N_1 = 2 \mid N_3 = 6)$. We thus get that:

$$\mathbb{P}(N_1 = 2 \mid N_3 = 6) = \frac{\mathbb{P}(N_3 = 6, N_1 = 2)}{\mathbb{P}(N_3 = 6)}$$

$$= \frac{\frac{\lambda^3 e^{-\lambda}}{2!} \cdot \frac{(2\lambda)^4 e^{-2\lambda}}{4!}}{\frac{(3\lambda)^6 e^{-3\lambda}}{6!}}$$

$$= \binom{6}{2} \frac{2^4 \lambda^6}{3^6 \lambda^6}$$

$$= \binom{6}{2} \frac{2^4}{3^6}$$

(b) Let $\beta(i) = \mathbb{E}[T_n \mid X = i]$, where T_n is the expected time to hit state n. We would then like to find $\beta(0)$. Writing out the first step equations, we get that:

$$\beta(-1) = \frac{1}{\lambda} + \beta(0)$$

$$\beta(0) = \frac{1}{\mu + \lambda} + \frac{\lambda}{\mu + \lambda} \beta(1) + \frac{\mu}{\mu + \lambda} \beta(-1)$$

$$\vdots$$

$$\beta(i) = \frac{1}{\lambda} + \beta(i+1)$$

$$\vdots$$

$$\beta(n) = 0$$

Solving these for $\beta(0)$, bet get that:

$$\begin{split} \beta(0) &= \frac{1}{\mu + \lambda} + \frac{\lambda}{\mu + \lambda} \cdot \frac{n-1}{\lambda} + \frac{\mu}{\mu + \lambda} \left(\frac{1}{\lambda} + \beta(0) \right) \\ \frac{\lambda \beta(0)}{\mu + \lambda} &= \frac{1}{\mu + \lambda} + \frac{n-1}{\mu + \lambda} + \frac{\mu}{\lambda(\mu + \lambda)} \\ \beta(0) &= \frac{n-1}{\lambda} + \frac{\mu}{\lambda^2} \end{split}$$

6

(a)

(b)

(c)

	(c) Too hard.
2	Exponential: MLE & MAP
(a)	
(b)	
3	BSC: MLE & MAP
(a)	
(b)	
(c)	
4	Fun with Linear Regression
(a)	
(b)	
(c)	
(d)	
5	Community Detection Using MAP

[Bonus] Bayesian Estimation of Poisson Distribution