Face Authentication using Eigenfaces, Distance Classifiers and Support Vector Machines

Ashutosh Modi Arun Muralidharan Shubhendu Trivedi

Project Guide: Dr (Mrs.) K. R. Joshi

Mentor: Mr Sumedh Kulkarni

Recognition is a Super-Set of Authentication

 Face Verification involves a one to one check that compares a query image with a template that the user claims to be

 Face Recognition involves a one to many comparison of a query image with a template library

Major Tasks

- Face Detection/ Segmentation
- Feature Extraction
- Classification

Problem Overview

Generic face recognition/authentication system configuration

Feature Extraction and Representation

Features in Face Recognition

- Global Features (Appearance):
 - PCA
 - ICA
 - LDA
- o Local Features:
 - Gabor Wavelets
 - Active Appearance Models (Model)
 - Elastic Bunch Graph (Model)

An Information Theory Approach

- Considers face recognition as a 2-D problem
- Involves encoding face onto some other space
- Use of both intuitive and nonintuitive features

Eigen Faces : The Idea

 Representing a face as a weighted combination of "basis" faces. Idea similar to Fourier Series.

Eigen Faces: Basics

- An image is a point in high dimensional space. An N x N image is a point in R^{NXN}
- PCA seeks directions efficient for representing the data
- PCA reduces the dimensions

Obtain set of M training images

 $M_2 =$

. . .

 Convert each face image into a vector (N x N matrix into a N² x 1 vector)

$$I_{i} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1N} \\ a_{21} & a_{22} & \dots & a_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NN} \end{bmatrix}_{N \times N} \xrightarrow{\text{concatenation}} \begin{bmatrix} \vdots \\ a_{1N} \\ \vdots \\ a_{2N} \\ \vdots \\ a_{NN} \end{bmatrix}_{N^{2} \times 1} = \Gamma_{i}$$

 \circ Compute the average face Ψ

$$\psi = \frac{1}{M} \sum_{n=1}^{M} \Gamma i$$

 Subtract mean face from each face vector to obtain Φ

$$\Phi i = \Gamma i - \psi$$

 Compute the Covariance matrix C = AA^T using:

$$C = \frac{1}{M} \sum_{n=1}^{M} \mathbf{\Phi}_{N} \mathbf{\Phi}_{N}^{T}$$

- \circ A can be given as [$Φ_1$, $Φ_2$... $Φ_M$]
- Covariance is a matrix of N²xN²
 while A of N x M

- Compute Eigenvectors v_i of AA^T (N²xN²)
- Computationally too expensive
- Compute Eigenvectors u_i of A^TA instead (MxM)
- $\circ v_i = A u_i$
- Keep 'k' most significant eigenvectors

 Eigenvectors obtained have some component of each face and look face like. Hence these are called Eigenfaces.

Eigen Faces – Finding Weights

 Each face is projected onto the eigen-space to find out associated weights

Eigen Faces – Finding Weights

o This can be calculated as:

$$\omega_k = u_k^T (\Gamma - \Psi)$$

Final Face Representation

 Each face is represented as a vector of weights

$$\mathbf{\Omega}^T = [\boldsymbol{\omega}_1, \boldsymbol{\omega}_1, \dots, \boldsymbol{\omega}_M]$$

 This feature vector is an information theoretic feature and captures intuitive as well as non intuitive face features

Classification Task

Classification Methods Used

- Distance Classifiers
 - City-Block Distance
 - Euclidean Distance
 - Mahalanobis Distance
- Support Vector Machines

Distance Measures

City- Block Metric

$$||x - y||_{c-b} = \sum_{i=1}^{D} |x_i - y_i|$$

 Euclidean Distance: Special case of the Minkowski Metric

$$||x - y||_e = (\sum_{i=1}^{D} |x_i - y_i|^2)^{1/2}$$

Distance Measures

- o Mahalanobis Distance:
 - Takes in to account covariance between variables.
 - Eliminates problems of scale and correlation inherent to Euclidean norm

$$d(x,y) = ((x-y)^T C^{-1}(x-y))^{1/2}$$

Distance Measures: Classification

- Find distance measure of incoming probe image feature vector with every image feature vector in the database
- Choose the face for which $e_r = \min_{l} ||\Omega \Omega^{l}||$
- Decide threshold θ empirically.
 - If e_r < Θ recognise the probe image as best match
 - If $e_r > \Theta$ probe image is not in data-base

Need for Threshold

Support Vector Machines

Feature Representation

- Each Individual is a class and distribution of each face is approximated
- This makes recognition a K class problem
- This would formulate our problem in a difference space which captures dissimilarities between two images

Feature Representation

Operation of the ope

$$C_{1} = t_{i} i t_{j} j t_{i} v t_{j}$$

$$C_{2} = t_{i} i t_{i} j t_{i} \dot{c} t_{i}$$

- Classes C1 and C2 are inputs to the SVM algorithm which will generate a decision surface
- Thus basically given two images p1 and p2 the classifer estimates if they are of the same person

Support Vector Machines

How would you classify this data?

Intuitions about Classification

Confidence in correct Prediction

Highly separated data set

SVM: Intuitions about Classification

Non-Linear SVMs

 Datasets that are linearly separable with some noise work out great:

Map the data to a higher dimensional space

 General idea: the original input space can always be mapped to some higherdimensional feature space where the training set is separable:

Support Vector Machines

- Use Structural Risk Minimization giving better generalization
- Optimization is guaranteed
- Low VC Dimension
- Computational Cycles are lesser as compared to A.N.N
- Best off the shelf learning algorithm for classification and regression problems

Popular Mercer Kernels

Radial Basis Functions

Linear Kernels

Polynomial Kernels

Multiple Kernels

Final Optimization Problem (General Case)

$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y^{(i)} y^{(j)} \alpha_i \alpha_j \langle x^{(i)}, x^{(j)} \rangle$$
s.t. $0 \le \alpha_i \le C, \quad i = 1, \dots, m$

$$\sum_{i=1}^{m} \alpha_i y^{(i)} = 0,$$

Steps to apply SVM

- Conduct scaling on data if needed
- Use RBF Kernel first
- Use Cross-Validation to fit parameters C and γ
- Use these values of best parameters to train the whole training set
- Test for images in the designated test set.

Cross Validation

- Follows from Learning Theory
- Choosing hypothesis with low training error might be risky
- Allows to choose hypothesis from hypotheses class H with best generalization error and avoids over-fitting

Cross Validation Methods

- Hold-Out Cross Validation
 - Wastes training data
 - Suited when training set is large
- K-Fold Cross Validation
 - Utilizes Data better
 - Suited for medium sized training sets
- One Hold Out Cross Validation
 - Uses data best
 - Suited when training data is scarce
 - Computationally very expensive

Hold - Out Cross Validation

- Randomly split training set into disjoint test and training sets (Ratio 25%,33% to 75,67% recommended)
- Train the hypotheses class H on this training set
- Test H on this test set and select h with least generalization error
- Go back and train h on the entire training set

Grid Search

Random Search With Multiple Restarts

- Choose Random point on C/Gamma Axes.
- Find Optima in neighborhood
- Choose another random point
- Repeat process and update optima

Training Algorithms

Projected Conjugated Gradient
 Chunking Algorithm

Oslun's Algorithm

 Sequential Minimal Optimization Algorithm

Recognition Task

- Let the incoming probe be P
- Compute similarity score of P with each of the gallery images

$$\pm_{j} = \int_{0}^{\infty} y_{i} k(s_{i}g_{j} i p) + b$$

$$i = 1$$

- Recognize probe as person j that has minimum similarity score
- Decide threshold heuristically

Experimental Results

- Databases Tested on:
 - MIT-CBCL (For Distance Classifiers)
 - Non-Standard (Online + Offline)

Experimental Results

Image (Test Set) (In bracket – Actual Image)	Identified as (City-Block)	Identified as (Euclidean)	Identified as (Mahalanobis)	Identified as (SVM)
1. (9)	9	9	9	9
2. (2)	2	2	2	2
3. (-)	6	8	10	10
4. (-)	9	9	10	9
5. (3)	3	3	3	3
6. (1)	1	1	1	1
7. (10)	10	10	10	10
8. (10)	10	10	10	10
9. (5)	5	5	5	5
10 (6)	6	6	6	6

Further Work

- Testing on a challenging database
- Using a parallel and/or cascade combination of Gabor Features and Eigenfaces
- Statistically constructing a random image set
- Designing a custom Kernel
- Investigating a multiple Kernel

References

- Vladimir Vapnik, Feature Selection for SVM, Neural and information processing systems proceedings.
- Marti Hearst, Support Vector Machines, IEEE Intelligent Systems
- C.J.C Burges, A Tutorial on Support Vector Machines, Lucent Bell Labs.
- Maria trias, A survery of face verification methods. Project Thesis.
- K. Jonsson, J. Matas, SVM, CVSSP.
- Andrew Ng, CS-229, Stanford Center for Professional Development.
- Lindsay Smith, A tutorial on PCA.
- Jonathon Shlens, Systems Neurobiology Laboratory, Salk Insitute for Biological Studies La Jolla, CA 92037.
- Vladimir Vapnik, Statistical Learning Theory, Springer Varlag, 1995

References

- Vladimir Vapnik, Support Vector Machines. Springer 1998
- Bernhard Scholkopf, Alexander J. Smola, Learning With Kernels, The MIT press.
- Lipo Wang, Advances in Pattern Recognition, Springer 2003.
- Graf, Borer, Normalization in Support Vector Machines, Eurpoean Conference on Computer Vision.
- Wu, Liu, Shum, Auto eye glass Removal in face recognition, IEEE Pattern Recognition and Machine Intelligence
- He, Yan, Hu, Niyogi, and Zhang, Face recognition using laplacianfaces, IEEE transactios on Pattern analysis and machine intelligence, March 2005.
- L.Wiskott, J. andN, Kr"uger, and C. D. Malsburg, "Face recognition by elastic bunch graph matching," IEEE Transactions on Pattern analysis and machine intelligence, July 1997.

References

- R. Duda, P. Hart, and D. Stork, Pattern Classification (2nd Edition).
 Wiley-Interscience, 2000.
- P. Belhumeur, J. P. Hespanha, and DJ.Kriegman, "Eigenfaces vs fisherfaces: Recognition using class specific linear projection," IEEE transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 1997.