LESSON TITLE

Prepared By

Faculty Name

GAUSSIAN ELIMINATION AND GAUSS JORDAN ELIMINATION

JOHN LOUIE S. MARASIGAN
Colegio de San Juan de Letran
Calamba

COURSE OBJECTIVES

After completing this lesson, students must be able to:

- Determine the size of a matrix and write an augmented or
- coefficient matrix from a system of linear equations.
- Use matrices and Gaussian elimination with back-substitution to solve a system of linear equations.
- Use matrices and Gauss-Jordan elimination to solve a system of linear equations.

Matrices index in your subscript

Definition of a Matrix

If m and n are positive integers, an $m \times n$ (read "m by n") matrix is a rectangular array

	Column 1	Column 2	Column 3	 Column <i>n</i>
Row	$ \begin{array}{c c} 1 & a_{11} \\ 2 & a_{21} \\ 3 & a_{31} \\ \vdots \\ m & a_{m1} \end{array} $	a_{12}	a_{13}	 a_{1n}
Row	a_{21}	a_{22}	a_{23}	 a_{1n} a_{2n} a_{3n} \vdots a_{mn}
Row	a_{31}	a_{32}	a_{33}	 a_{3n}
•	•	•	•	
:		:	:	:
Row	$m \mid a_{m1}$	a_{m2}	a_{m3}	 a_{mn}

in which each **entry**, a_{ij} , of the matrix is a number. An $m \times n$ matrix has m rows and *n* columns. Matrices are usually denoted by capital letters.

Representation of Matrices

- **1.** An uppercase letter such as A, B, or C
- 2. A representative element enclosed in brackets, such as $[a_{ij}]$, $[b_{ij}]$, or $[c_{ij}]$
- 3. A rectangular array of numbers

```
\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}
```

SIZE OF MATRICES

A matrix with m rows and n columns is said to be of size $m \times n$.

REPRESENTATION OF SYSTEMS OF LINEAR EQUATIONS

Augmented Matrix

Coefficient Matrix

$$\begin{bmatrix} 1 & -4 & 3 \\ -1 & 3 & -1 \\ 2 & 0 & -4 \end{bmatrix}$$

ELEMENTARY ROW OPERATIONS

- 1. Interchange two equations.
- 2. Multiply an equation by a nonzero constant.

Gaussian Elimination with Back-Substitution

- 1. Write the augmented matrix of the system of linear equations.
- 2. Use elementary row operations to rewrite the matrix in row-echelon form.
- 3. Write the system of linear equations corresponding to the matrix in row-echelon form, and use back-substitution to find the solution.

 $\frac{2}{3} \frac{3}{0} \frac{3}{-4} \frac{7}{17} \frac{7$

1 -2 3 9 0 1 3 2 (ow-echolon for x-24) x - 2y + 3 = 5 y + 3z = 2

Row-Echelon Form and Reduced Row-Echelon Form

A matrix in row-echelon form has the following properties.

- 1. Any rows consisting entirely of zeros occur at the bottom of the matrix.
- 2. For each row that does not consist entirely of zeros, the first nonzero entry is 1 (called a leading 1).
- 3. For two successive (nonzero) rows, the leading 1 in the higher row is farther to the left than the leading 1 in the lower row.

A matrix in row-echelon form is in reduced row-echelon form when every column that has a leading 1 has zeros in every position above and below its leading 1.

Determine whether each matrix is in row-echelon form. If it is, determine whether the matrix is in reduced row-echelon form.

a.
$$\begin{bmatrix} 1 & 2 & -1 & 4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

b.
$$\begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & -4 \end{bmatrix} \times$$

c.
$$\begin{bmatrix} 1 & -5 & 2 & -1 & 3 \\ 0 & 0 & 1 & 3 & -2 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

e.
$$\begin{bmatrix} 1 & 2 & -3 & 4 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & -3 \end{bmatrix} \times \qquad \qquad \text{f.} \begin{bmatrix} 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

91, 92, 93, 94 X1, X2, X3, X4 X, Y, Z

$$\begin{bmatrix} 1 & 2 & -1 & 0 & 2 \\ 0 & 1 & 1 & -2 & -3 \\ 0 & 0 & 3 & -3 & -4 \\ 0 & 0 & -4 & -4 & -1/-21 \end{bmatrix} R_{4} + (6R_{2} - 7R_{4}H)$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & | & 2 \\ 0 & 0 & -1/2 & | & -2/2 \\ 0 & 0 & 0 & -1/2 & | & -3/2 \\ 0 & 0 & 0 & -1/2 & | & -3/2 \\ 0 & 0 & 0 & | & -1/2 & | & -3/2 \\ 0 & 0$$

References:

The main references of this course are the following:

a. Anton, H., Rorres, C. (2010). Elementary Linear Algebra: Applications Version. United Kingdom: Wiley.

b. Anton. (2013). Elementary Linear Algebra: Applications Version, Tenth Edition Wiley E-Text Reg Card. (n.p.): John Wiley & Sons, Incorporated.

c. Larson, R. (2013). Elementary Linear Algebra. United Kingdom: Brooks/Cole, Cengage Learning.

d. Larson, C., Larson, R. (2017). Elementary Linear Algebra, International Metric Edition. United States: Brooks/Cole.

e. Hill, R. O. (2014). Elementary Linear Algebra. United Kingdom: Elsevier Science.

