- Attend Infer Repeat: Fast Scene Understanding with Generative Models
- S. M. Ali Eslami, Geoffrey E. Hinton

Assumption

Here we assume that, naturally, a scene with multiple objects are generated as follows:

- The number of objects n is drawn from p(n)
- For $i=1,\ldots,n$, determine z^i from $p_{\theta}(z)$
- Generate the scene using $p_{\theta}(x|z)$.

That is

$$p_{ heta}(\mathbf{x}) = \sum_{n=1}^{N} p_{N}(n) \int p_{ heta}^{z}(\mathbf{z}|n) p_{ heta}^{x}(\mathbf{x}|\mathbf{z}) \mathrm{d}\mathbf{z}$$

Inference

Two difficulties:

- Trans-dimensionality: the number of z^i 's is itself a random variable
- Symmetry: z^i should be permutation-invariant

This is resolved with recurrent neural networks. First, we will denote z_{pres} as indicator for n. For given n, z_{pres} is a vector of n 1's, followed by 0's. Given this, we can model q_{ϕ} as

$$q_{\phi}\left(\mathbf{z},\mathbf{z}_{ ext{pres}}|\mathbf{x}
ight) = q_{\phi}\left(z_{ ext{pres}}^{n+1} = 0|\mathbf{z}^{1:n},\mathbf{x}
ight)\prod_{i=1}^{n}q_{\phi}\left(\mathbf{z}^{i},z_{ ext{pres}}^{i} = 1|\mathbf{x},\mathbf{z}^{1:i-1}
ight)$$

Several notes here:

- ullet The condition part should really include $z^i_{prse}=1.$ But since this is always true, we can just omit this during modeling.
- ullet In essence, we are assuming an infinite number of z^i and $z^i_{pres}.$
- $\bullet \;\;$ Conditioning on $z^{1:i-1}, x$ is modeled with hidden states of the RNN.

Learning

Just trivial. Different gradient estimation for discrete and continuous variables.

Models and Experiments

First, for 2D experiments, there are three types of z:

- z_{pres}^{i} : presence of object i
- ullet z_{where}^{i} : 3-D, position and scale
- z_{what}^i : identity

Here we must specify two things:

- The exact form of p(x|z)
- The exact form of $q(z^i|x, z^{1:i-1})$.

For the first, we assume that at each time step, a y^i is generated, and they are summed to x. Each y^i is generated as follows:

- ullet from z^i_{what} , we generate the digit y^i_{att}
- ullet from z^i_{where} and y^i_{att} , we generate the component y^i .

Inference goes in the opposite direction. This is best illustrated with this figure:

Figure 2: **AIR in practice:** Left: The assumed generative model. Middle: AIR inference for this model. The contents of the grey box are input to the decoder. Right: Interaction between the inference and generation networks at every time-step. In our experiments the relationship between $\mathbf{x}_{\text{att}}^i$ and $\mathbf{y}_{\text{att}}^i$ is modeled by a VAE, however any generative model of patches could be used (even, e.g., DRAW).

Experiments:

- Multi-MNIST: correctly infers the number of digits
- Strong generalization: interpolation
- Representation power: for downstream tasks
- 3D scenes: when the generative model is specified using a differential renderer, this network can be used to infer the pose and identity of the objects.