Name: _____

Show your work.

1. Using truth tables, indicate whether each given statement is true or false.

(a)
$$(p \rightarrow \neg p) \rightarrow (q \rightarrow \neg q) \Longrightarrow (q \rightarrow p)$$

(a) _____

(b)
$$(p \leftrightarrow \neg p) \lor \neg (q \leftrightarrow \neg q) \Longrightarrow (\neg p \to p)$$

(b) _____

(c)
$$\neg p \iff \left(\left(\neg p \land q \right) \lor \neg \left(\neg p \rightarrow q \right) \right)$$

(c) _____

2. Consider the pictured graph $G = (V, E, \gamma)$:

(a) Supply the adjacency matrix for **G**.

(b) Specify the number of paths from vertex v_1 to vertex v_2 of length 2.

(c) Where \mathbf{M} denotes the adjacency matrix for \mathbf{G} , specify the value of $\mathbf{M}^7[1,7]$.

- (d) Where M denotes the adjacency matrix for G, specify the value of $\left(M^{T}\right)^{2}[2,3]$.
- (d) _____

(e) Specify the property that function γ satisfies.

(e) _____

- (A) onto and 1-1 (B) onto and not 1-1 (C) 1-1 and not onto (D) neither onto nor 1-1

3. Consider the function $f : \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ such that for every $m, n \in \mathbb{N}$:

$$f(m,n) = 2^m(2n+1) - 1$$

(a) Indicate whether the following statement is true or false.

(a) _____

For some $s \in \mathbb{N}$, there are no $n, m \in \mathbb{N}$ such that $((m, n), s) \in Graph(f)$.

(b) Specify the property that function *f* satisfies.

(b) _____

- (1)
- (A) onto and 1-1 (B) onto and not 1-1 (C) 1-1 and not onto (D) neither onto nor 1-1
- (c) Specify whether each given set is finite, countably infinite, or uncountable; if a given set is finite, specify its cardinality.
 - (i) $(\mathbb{R} \times \mathbb{R} \setminus \mathbb{Q} \times \mathbb{Q}) \setminus \text{Dom}(f)$.

(i) _____

(ii) $\mathbb{R} \times \mathbb{R} \setminus (\mathbb{Q} \times \mathbb{Q} \setminus \text{Dom}(f))$

(ii) _____

(iii) $f(0) \times \mathbb{N}$.

(iii) _____

4. Consider a binary relation S on $\mathbb{R} \times \mathbb{R}$ such that for every $x_1, y_1, x_2, y_2 \in \mathbb{R}$:

 $(x_1, y_1) S(x_2, y_2)$ if and only if either $y_1 < y_2$ or $y_1 \le y_2$ and $x_1 \le x_2$

Indicate whether each given statement is true or false.

(a) The relation S is transitive.

(a) _____

(b) The relation S is symmetric.

(b) _____

(c) The relation S is reflexive.

(c) _____

- 5. Consider sets $A = \{0, \beta, a, ?, @, \land, U, \Delta\}$ and $S = \{\$, @, \%, +, !, \#\}$.
 - (a) How many 3-element subsets of S are there?

(a) _____

(b) How many one-to-one functions are there from A to S?

(b) _____

(c) How many 2-permutations of A are there?

(c) _____

- 6. An urn has three blue balls and four yellow balls. A set of three balls are to be removed at random from the urn without replacement.
 - (a) What is the probability that the three balls are all blue?

(a) _____

(b) What is the probability that two of the balls are yellow and one of the balls is blue?

(b) _____

7. **Quiz** 4 **Problem**. Let p(n) express the following proposition:

$$\sum_{m=1}^{n} \frac{1}{(3m+1)(3m-2)} = \frac{n}{3n+1}$$

To prove that proposition p(n) is true for every natural number $n \in \mathbb{P}$ by mathematical induction, carry out the following steps.

(a) Specify the applicable base case.

(a)	(a)	
(/	(**)	

(b) In the space below, establish the base case by mathematical argumentation.

.....

- (c) Specify the applicable inductive step.
- (d) Specify the inductive hypothesis in the inductive step.
 - (d) _____

Pederse	Name:
(e)	In the space below, establish the inductive step by mathematical argumentation.

Pedersen	Name:
Scratch.	

Pedersen	Name: