Chapter 11: Duality Connections and Nonperturbative Effects

1. Taking the expression for a toroidal heterotic compactification from exercise 9.1

$$\left[\frac{R}{\sqrt{\tau_2}\eta\bar{\eta}^{17}}\sum_{m,n}e^{-\frac{\pi R^2}{\tau_2}|m+n\tau|^2}e^{-i\pi\sum_{I}nY^I(m+n\bar{\tau})Y^IY^I}\frac{1}{2}\sum_{a,b=0}^{1}\prod_{i=1}^{16}\bar{\theta}\begin{bmatrix}a\\b\end{bmatrix}(Y^I(m+\bar{\tau}n)|\bar{\tau})\right]\times\frac{1}{\tau_2^{7/2}\eta^7\bar{\eta}^7}\frac{1}{2}\sum_{a,b=0}^{1}\frac{\theta^4\begin{bmatrix}a\\b\end{bmatrix}}{\eta^4}$$

Using θ function identities as in the second equation in appendex **E**, we get

$$\Gamma_{1,17}(R,Y) = \frac{R}{\sqrt{\tau_2}} \sum_{m,n} e^{-\frac{\pi R^2}{\tau_2} |m+n\tau|^2} \frac{1}{2} \sum_{a,b=0}^{1} e^{i\pi m Y^I Y^I n - i\pi b n Y^I} \bar{\theta} \begin{bmatrix} a - 2n Y^I \\ b - 2m Y^I \end{bmatrix}$$

Now take $Y^I = 0$ for $I = 1 \dots 8$ and $Y^I = 1/2$ for $I = 1 \dots 16$. Then

$$\prod_I e^{i\pi m Y^I Y^I n - i\pi b n Y^I} = e^{i\pi m \sum_I (Y^I)^2 - i\pi b \sum_I Y^I} = 1$$

and we can ignore this term. Similarly because we are taking a product over 16 $\bar{\theta}$, no phases will interfere with us replacing $\theta \begin{bmatrix} u \\ v \end{bmatrix}$ with $\theta \begin{bmatrix} -u \\ v \end{bmatrix}$ for integer u, v. This gives us the desired first step

$$\Gamma_{1,17}(R,Y) = R \sum_{m,n} e^{-\frac{\pi R^2}{\tau_2}|m+n\tau|^2} \frac{1}{2} \sum_{a,b=0}^{1} \bar{\theta} \begin{bmatrix} a \\ b \end{bmatrix}^8 \bar{\theta} \begin{bmatrix} a+n \\ b+m \end{bmatrix}^8$$

Now again because we have enough $\theta {a+n \brack b+m}$ that phases do not interfere, we see that we only care about n,m modulo 2 in the fermion term. We know how to divide the partition function of the compact boson into parity odd and even blocks by doing the \mathbb{Z}^2 stratification corresponding to the πR translation orbifold of the circle. This gives our desired answer:

$$\frac{1}{2} \sum_{h,g} \Gamma_{1,1}(2R) \begin{bmatrix} h \\ g \end{bmatrix} \frac{1}{2} \sum_{a,b} \bar{\theta} \begin{bmatrix} a \\ b \end{bmatrix}^8 \bar{\theta} \begin{bmatrix} a+h \\ b+g \end{bmatrix}^8$$

with

$$\Gamma_{1,1}(2R) = 2R \sum_{m,n} \exp\left[\frac{-\pi R^2}{\tau_2} |2m + g + (2n + h)\tau|^2\right]$$

2. As before, take the ansatz

$$ds^{2} = e^{2A(r)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + e^{2B(r)} dx^{i} \cdot dx^{i}, \qquad A_{012} = \pm e^{C(r)} \Rightarrow G_{r012} = \pm C'(r) e^{C(r)}$$

The BPS states in 11D require only the gravitino variation to vanish:

$$\delta\psi_{M} = \partial_{M}\epsilon + \frac{1}{4}\omega_{M}^{PQ}\Gamma_{PQ}\epsilon + \frac{1}{2\cdot 3!\cdot 4!}G_{PQRS}\Gamma^{PQRS}\Gamma_{M}\epsilon - \frac{8}{2\cdot 3!\cdot 4!}G_{MQRS}\Gamma^{QRS}\epsilon$$

We have worked out ω in **8.43**.

$$\omega_{\hat{\mu}\hat{\nu}} = 0, \quad \omega_{\hat{\mu}\hat{i}} = (-)^{\mu=0} \, \partial_i A \, e^{A-B} dx^{\mu}, \quad \omega_{\hat{i}\hat{j}} = \partial_j B dx^i - \partial_i B dx^j$$

Let's look first at $M = \mu$ parallel. Since ϵ is Killing we expect no longitudinal variation and we get

$$0 = \hat{\rho}_{\mu}\epsilon + \frac{1}{2}A'e^{A-B}\Gamma^{\hat{\mu}\hat{r}}\epsilon \pm \frac{1}{2\cdot 3!}C'(r)e^{C}\Gamma^{012}\Gamma_{\mu}\epsilon \mp \frac{1}{3!}C'(r)e^{C}\Gamma_{\mu}\Gamma^{r012}\epsilon$$

$$= \frac{1}{2}A'e^{A-B}\Gamma^{\hat{\mu}\hat{r}}\epsilon \mp \frac{1}{3!}C'e^{C-B-2A}\Gamma^{\hat{\mu}\hat{r}\hat{0}\hat{1}\hat{2}}\epsilon$$

$$\Rightarrow 0 = A'\epsilon \mp \frac{1}{3}C'e^{C-3A}\Gamma^{\hat{0}\hat{1}\hat{2}}\epsilon$$

If we would like these two terms to be proportional, then we should take C=3A, and we get the following condition for ϵ

$$(1 \mp \Gamma^{\hat{0}\hat{1}\hat{2}})\epsilon = 0$$

So half the dimension of the space of spinors satisfies this at any given point. We thus get

For M = i transverse, we recall Γ_{ij} generates rotations, so assuming rotational invariance in the transverse space, we'll cancel this. We get

$$\begin{split} &\partial_{r}\epsilon + \frac{1}{4}\omega_{r}^{jk}\Gamma_{jk}\epsilon + \frac{1}{2-3!}G_{r012}\Gamma^{r012}\Gamma_{r}\epsilon \mp \frac{1}{3!}G_{r012}\Gamma^{012}\epsilon = 0 \\ \Rightarrow &\partial_{r}\epsilon \mp \frac{1}{3!}G_{r012}\Gamma^{012}\epsilon = 0 \\ \Rightarrow &\partial_{r}\epsilon \mp \frac{e^{-3A}}{3!}C'e^{C}\Gamma^{\hat{0}\hat{1}\hat{2}}\epsilon \end{split}$$

Solving this gives us that

$$\epsilon(r) = e^{C(r)/6} \epsilon_0$$

for ϵ_0 some constant spinor. We still do not have a relationship between C and B. This can be obtained by not assuming rotational invariance but rather imposing cancellation of the second and third terms above as follows:

$$\begin{split} &\frac{1}{2}\partial_{j}B\,\Gamma^{\hat{i}\hat{j}}\epsilon\pm\frac{1}{2\cdot3!}\partial_{j}C\,e^{C}\,\Gamma^{j012}\Gamma_{i}\epsilon\\ &=\frac{1}{2}\partial_{j}B\,\Gamma^{\hat{i}\hat{j}}\epsilon\pm\frac{1}{2\cdot3!}\partial_{j}C\,e^{C-3A}\,\Gamma^{\hat{i}\hat{j}\hat{0}\hat{1}\hat{2}}\epsilon\\ &\Rightarrow\partial_{j}B+\frac{1}{3!}\partial_{j}C=0 \end{split}$$

where we have used the condition on ϵ already obtained. Thus C=3A=-6B. Finally Let's look at G's equation of motion:

$$dG = 0, \qquad \frac{1}{3!}d \star G + \frac{3}{(144)^2} \epsilon^{MNOPQRST} G_{MNOP} G_{QRST} = 0$$

By assumption, the term quadratic in G vanishes. What remains gives us:

$$0 = \partial_r(e^{3A + 8B}e^{-6A - 2B}C'(r)e^C) = \partial_r(e^{-3A + 6B + C}C') = \partial_r(C'e^{-C}) \Rightarrow \partial_r^2e^{-C} = 0$$

So we have that $e^{-C} = H(r)$ as required, where

$$H(r) = 1 + \frac{L^6}{r^6}$$

I'm happy with this. I could use Mathematica to show that the other EOM:

$$R_{MN} - \frac{1}{2}g_{MN}R = \kappa^2 T_{MN}, \quad \kappa^2 T_{MN} = \frac{1}{2 \cdot 4!} \left(4G_{MPQR}G_N^{PQR} - \frac{1}{2}g_{MN}G^2 \right)$$

is satisfied - but this is barely different from what I've done several times before for the D-branes and fundamental string solutions in chapter 8.

As before, this generalizes straightforwardly to multi-membrane configurations.

The charge of the M2 brane with $H=1+\frac{32\pi^2N\ell_s^6}{r^6}$ is given by integrating $\frac{\star G}{2\kappa_{11}^2}$ on a seven-sphere at infinity. Here $2\kappa_{11}^2=(2\pi)^8\ell_{11}^9$ Asymptotically we will get the field strength going as

$$\frac{32 \times 6\pi^2 N \ell_{11}^6}{m^6}$$

Altogether, using $\Omega_7 = \frac{\pi^4}{3}$ this gives a total charge of

$$\frac{\pi^4}{3} \frac{32 \times 6\pi^2 N \ell_{11}^6}{(2\pi)^8 \ell_{11}^9} = \frac{N}{(2\pi)^2 \ell_{11}^2}$$

This is exactly consistent with 11.4.10-13, with $\mu = N = 1$ corresponding to a single M2 brane.

Calculating the Ricci scalar curvature gives a divergence going as $1/r^2$ as we approach r=0.

$$\begin{split} & \ln[120] = \text{ R = RicciScalar[g, xx]} \\ & \text{Out[120]} = -\frac{6144 \text{ Ll}^{12} \text{ NN}^2 \, \pi^4}{\left(1 + \frac{32 \text{ ll}^6 \text{ NN} \pi^2}{r^6}\right)^{1/3} \left(32 \text{ ll}^6 \text{ NN} \, \pi^2 \, r + r^7\right)^2} \\ & \ln[122] = \text{ Series} \Big[-\frac{6144 \text{ ll}^{12} \text{ NN}^2 \, \pi^4}{\left(1 + \frac{32 \text{ ll}^6 \text{ NN} \pi^2}{r^6}\right)^{1/3} \left(32 \text{ ll}^6 \text{ NN} \, \pi^2 \, r + r^7\right)^2}, \, \{\text{r, 0, 0}\} \Big] \\ & \text{Out[122]} = -\frac{3}{(2\,\pi)^{2/3} \left(\frac{\text{ll}^6 \text{ NN}}{6}\right)^{1/3} r^2} + \text{O[r]}^1 \end{split}$$

Finally, we can take the near-horizon limit and get

$$ds^{2} = \frac{r^{4}}{L^{4}} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + \frac{L^{2}}{r^{2}} dx^{i} \cdot dx^{i}$$
$$= \frac{r^{4}}{L^{4}} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + \frac{L^{2}}{r^{2}} dr^{2} + L^{2} d\Omega_{7}^{2}$$

Take now $r = L/\sqrt{z}$ to get the first term to look like $1/z^2$ while not affecting the second term much:

$$\frac{1}{z^2}(\eta_{\mu\nu}dx^{\mu}dx^{\nu} + 4L^2dz^2) + L^2d\Omega_7^2$$

We can rescale z, x^{μ} and see that this geometry is $AdS_4 \times S^7$

3. The M5 brane is now magnetically charged under C_3 . Now the equations of motion $d \star dC = 0$ are trivially satisfied but the Bianchi identity is nontrivial, giving

$$\partial_r^2 H = 0 \Rightarrow H = 1 + \frac{L^3}{r^3}$$

The metric form can be fixed by analyzing the gravitino variation similar to before. Longitudinally:

$$0 = \frac{1}{2}A'e^{A-B}\Gamma^{\hat{\mu}\hat{r}} + \frac{1}{2\cdot 3!}C'e^{C+A-4B}\Gamma^{\hat{\theta}_1\hat{\theta}_2\hat{\theta}_3\hat{\theta}_4\hat{\mu}}$$
$$\Rightarrow A'\epsilon + \frac{1}{3!}C'e^{C-3B}\Gamma^{\hat{r}\hat{\theta}_1\hat{\theta}_2\hat{\theta}_3\hat{\theta}_4}\epsilon$$

We see that we must take C = 3B and A = -C/6, and we get the half-BPS condition:

$$(1 - \Gamma^{\hat{7}\hat{8}\hat{9}\hat{1}\hat{0}\hat{1}\hat{1}})\epsilon = 0$$

The transverse components will give the profile for ϵ .

$$\partial_r \epsilon + \frac{1}{2 \cdot 3!} C' e^{C - 3B} \Gamma^{\hat{\theta}_1 \hat{\theta}_2 \hat{\theta}_3 \hat{\theta}_4 \hat{r}} \epsilon$$

and this gives a profile

$$\epsilon = e^{-C/12} \epsilon_0$$

The membrane charge is given by integrating G on a 4-sphere whose area is given by $8\pi^2/3$, so we get

$$\frac{8\pi^2}{3}\frac{3\pi N\ell_{11}^3}{(2\pi^8)\ell_{11}^9} = \frac{N}{(2\pi\ell_{11})^5\ell_{11}}$$

We again get a quadratic divergence of the Ricci curvature scalar

$$\begin{split} & & \ln[138] = \ R = RicciScalar[g, xx] \\ & & 3 \ l^6 \ NN^2 \ \pi^2 \\ & & 2 \left(1 + \frac{l l^3 \ NN \ \pi}{r^3}\right)^{2/3} \left(l l^3 \ NN \ \pi \ r + r^4\right)^2 \\ & & \\ & & \\ & \ln[139] = \ Series[R, \{r, \theta, \theta\}] \\ & &$$

Taking the near-horizon limit we arrive at

$$ds^{2} = \frac{r}{L} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + \frac{L^{2}}{r^{2}} dx^{i} \cdot dx^{i} = \frac{r}{L} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + \frac{L^{2}}{r^{2}} dr^{2} + L^{2} d\Omega_{4}^{2}$$

Now take $r = L/z^2$ yielding

$$\frac{1}{z^2}(\eta_{\mu\nu}dx^{\mu}dx^{\nu} + 4L^2dr^2) + L^2d\Omega_4^2$$

so again after rescaling the same was as before we get $AdS_7 \times S^4$.

As before, a solution can consist of an arbitrary number of M5 branes at different places, in which case we get

$$H(r) = 1 + \sum_{i} \frac{L_i}{|r - r_i|^3}$$

This remains half-bps.

4. First look at the field strengths. The general M5 brane solution For a uniform distribution of M5 charges, we know that in the transverse (3D) space the potential must now decay as

$$H = 1 + \int dx^{11} \frac{L}{|\vec{r} - x^{11}\hat{e}_{11}|^2} = 1 + \frac{2L}{r_{10D}^2}$$

where L depends on the density of the distribution **work out explicitly**. Then the 3-form field strength in 10D will just be

$$(dB)_{abc} = \epsilon_{abce} \partial_e H$$

Given this source in 10D, we have already worked out Einstein's equations in **Chapter 8**. Another way to see this is that we remain half-BPS.

The dilaton comes from $G_{11,11} = H^{2/3}$