Connectivity, Community, and Centrality Analytics

19 questions

- The example given in the lectures of when a power network loses power in large portions of its service area was an example of what?
 - an attack which causes disconnection of the graph
 - high levels of connectivity which make it easy to bring a network down
 - a problem that can occur when centrality is too high
- 2. Is the following graph strongly connected, weakly connected or neither?

- weakly connected
- neither
- strongly connected
- 3. Is the following graph strongly connected, weakly connected or neither?

	<!--</th--><th>weakly connected neither strongly connected</th>	weakly connected neither strongly connected
4.	-	were going to look for a node which would be most likely to be the target of an attack to nect a network, what would be the best characteristic to look for?
		nodes that, if they were removed, would cause the graph to go from strongly connected to weakly connected
		high degree nodes
		low degree nodes
5.	What i	s the out-degree of node B?
		0
		1
		2
		3

 $\textbf{6.} \quad \text{In the graph below, which node is the greatest talker?}$

	Α	
	В	
0	С	
	D	

 $\textbf{7.} \quad \text{In the graph below, which nodes are the greatest communicators? (Hint: there's a tie)} \\$

13. Which of the two graphs below is more modular?

- ____ A
- B
- 14. Which of the following community tracking phases usually occurs when a company spins off a start-up?
 - Birth
 - Split
 - Merge
 - Grow
 - Death
 - Contract

15. An influencer in a network is defined as:

a node which has heavy weight edges to at least 1/2 of the nodes in the network

16. Which	of the following are the 2 core "key player" problems that centrality analytics can address?
	A set of nodes which can reach (almost) all other nodes
	What is the shortest path through a network
	Which nodes have the highest ratio of out-degree nodes to in-degree nodes
	Which nodes' removal will maximally disrupt the network
17. What that f	kind of centrality would you want to analyze in a graph if you wanted to inject information lows through the shortest path in a network and have it spread quickly?
	Between-ness
	Group
	Degree
	Closeness
18. What flow i	kind of centrality would you want to analyze in a graph if you wanted maximize commodity n a network? Group Closeness Degree
18. What flow i	kind of centrality would you want to analyze in a graph if you wanted maximize commodity n a network? Group Closeness
flow i	kind of centrality would you want to analyze in a graph if you wanted maximize commodity n a network? Group Closeness Degree
flow i	kind of centrality would you want to analyze in a graph if you wanted maximize commodity in a network? Group Closeness Degree Between-ness
flow i	kind of centrality would you want to analyze in a graph if you wanted maximize commodity in a network? Group Closeness Degree Between-ness kind of centrality identifies "hubness"?
flow i	kind of centrality would you want to analyze in a graph if you wanted maximize commodity in a network? Group Closeness Degree Between-ness kind of centrality identifies "hubness"? Group

