1.
$$\frac{dy}{dx} = 2\cos x - 3\sin x$$

$$\frac{5}{dx}\left[\frac{1}{\cos^2 x}\right] = \frac{+\sin x}{\cos^2 x}$$

7.
$$\frac{d}{dx} \left[\frac{1}{\tan x} \right] = \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$

= $\frac{1}{\cos^2 x} = \sec^2 x$

19.
$$\frac{d}{dx} \left[\cos x \right] = -\sin x$$
.
eq. of tan. at $x = 1$ is
$$y - \cos t = -\sin 1(x - 1)$$

27. tangent is honizontal when
$$f'(x) = 0$$
.

$$f'(x) = 9\cos^2 x - 9\sin^2 x = 0$$

$$\iff \cos^2 x = \sin^2 x$$

$$\iff \chi = (2n+1)\pi$$

$$\iff \eta \in \mathbb{Z}$$

9.
$$\frac{d}{dx} \left[\frac{\sin x + \cos x}{\cos x} \right] = \frac{d}{dx} \left[\tan x + 1 \right]$$

$$= \sec^2 x \quad (by #7)$$

11.
$$\frac{d}{dx} \left[\sin x \cos x \right] = \cos^2 x - \sin^2 x$$

13.
$$\frac{d}{dx} \left[\frac{\sin x}{x} \right] = \frac{x \cos x - \sin x}{x^2}$$

15.
$$\frac{d}{dx} \left[\frac{\chi^2}{\cos x} \right] = 2 \times \cos x - \frac{\chi^2}{\sin x}$$

21.
$$\frac{d}{dx} \left[\sin 2x \right] = \frac{d}{dx} \left[2\sin x \cos x \right]$$
$$= 2\cos^2 x + 2$$