Last name	
First name	

LARSON—MATH 550—CLASSROOM WORKSHEET 21 Pascal's Triangle & Binomial Coefficients.

Concepts & Notation

• Sec. 5.1. Binomial coefficients, Pascal's triangle.

We let $\binom{n}{m}$ be the number of m-subsets of an n-set.

- 1. Find $\binom{n}{1}$.
- 2. Find $\binom{n}{n-1}$.
- 3. Find $\binom{n}{0}$?
- 4. Find a formula for $\binom{n}{m}$ $(0 \le m \le n, m, n \in \mathbb{Z})$.

5. Draw 5 levels of a Pascal-style triangle where the 0^{th} (top) level is the single number $\binom{0}{0}$, and where the n^{th} level is the (n+1) numbers $\binom{n}{0}$, $\binom{n}{1}$, ... $\binom{n}{n}$.

7. Argue the symmetry identity
$$\binom{n}{k} = \binom{n}{n-k}$$
.

8. Argue the absorbtion identity
$$\binom{r}{k} = \frac{r}{k} \binom{r-1}{k-1}$$
.