

Schletter, Inc.		25° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00	psf
g _{мім}	=	1.75	psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
Sloped Roof Snow Load, P _s =	18.56 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
$C_s =$	0.82	
$C_e =$	0.90	

 $C_t =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	85 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 11.34 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.500	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the currace.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>367.34</u>	<u>4595.72</u>	k
Compressive Load =	3978.25	4613.77	k
Lateral Load =	<u>21.47</u>	2479.69	k
Moment (Weak Axis) =	0.04	<u>0.01</u>	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 129037.6 in-lbs Resisting Force Required = 1804.72 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3007.87 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 595.81 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 1489.54 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 595.81 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

1.0D + 1.0S				1.0D+	- 1.0W		1.0D + 0.75L + 0.75W + 0.75S				0.6D + 1.0W					
	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
	1537 lbs	1537 lbs	1537 lbs	1537 lbs	1177 lbs	1177 lbs	1177 lbs	1177 lbs	1895 lbs	1895 lbs	1895 lbs	1895 lbs	-170 lbs	-170 lbs	-170 lbs	-170 lbs
	1604 lbs	1604 lbs	1604 lbs	1604 lbs	1662 lbs	1662 lbs	1662 lbs	1662 lbs	2304 lbs	2304 lbs	2304 lbs	2304 lbs	-2203 lbs	-2203 lbs	-2203 lbs	-2203 lbs
	202 lbs	202 lbs	202 lbs	202 lbs	1087 lbs	1087 lbs	1087 lbs	1087 lbs	950 lbs	950 lbs	950 lbs	950 lbs	-1192 lbs	-1192 lbs	-1192 lbs	-1192 lbs
	10700 lbs	10916 lbs	11132 lbs	11348 lbs	10399 lbs	10615 lbs	10831 lbs	11047 lbs	11758 lbs	11974 lbs	12190 lbs	12406 lbs	2163 lbs	2293 lbs	2422 lbs	2552 lbs
	3731 lbs-ft	3731 lbs-ft	3731 lbs-ft	3731 lbs-ft	2981 lbs-ft	2981 lbs-ft	2981 lbs-ft	2981 lbs-ft	4691 lbs-ft	4691 lbs-ft	4691 lbs-ft	4691 lbs-ft	3794 lbs-ft	3794 lbs-ft	3794 lbs-ft	3794 lbs-ft
	0.35 ft	0.34 ft	0.34 ft	0.33 ft	0.29 ft	0.28 ft	0.28 ft	0.27 ft	0.40 ft	0.39 ft	0.38 ft	0.38 ft	1.75 ft	1.65 ft	1.57 ft	1.49 ft
	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft						

332.5 psf 406.3 psf 401.0 psf 396.1 psf

250.9 psf 256.0 psf 254.9 psf 253.9 psf 253.0 psf 270.3 psf 268.9 psf 267.5 psf 266.2 psf

Ballast Width

37 in

36 in

38 in

35 in

335.6 psf

 $P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) = \frac{7560 \text{ lbs}}{7776 \text{ lbs}} = \frac{7992 \text{ lbs}}{7992 \text{ lbs}} = \frac{8208 \text{ lbs}}{7992 \text{ lbs}}$

Maximum Bearing Pressure = 406 psf Allowable Bearing Pressure = 1500 psf

350.5 psf 342.4 psf 338.9 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

7.3 psf

10.7 psf

391.4 psf 117.2 psf 117.6 psf 117.9 psf 118.2 psf

13.9 psf

17.0 psf

ASD LC Width

FB

P_{total}

М

L/6

fmin

Bearing Pressure

253.8 psf 252.8 psf

361.9 psf 357.9 psf

251.9 psf

354.1 psf

Weak Side Design

Overturning Check

 $M_0 = 1305.9 \text{ ft-lbs}$

Resisting Force Required = 895.50 lbs S.F. = 1.67

Weight Required = 1492.50 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width	35 in				35 in		35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	277 lbs	710 lbs	277 lbs	915 lbs	2602 lbs	915 lbs	81 lbs	208 lbs	81 lbs	
F _V	2 lbs	0 lbs	2 lbs	9 lbs	0 lbs	9 lbs	1 lbs	0 lbs	1 lbs	
P _{total}	9636 lbs	7560 lbs	9636 lbs	9824 lbs	7560 lbs	9824 lbs	2818 lbs	7560 lbs	2818 lbs	
М	8 lbs-ft	0 lbs-ft	8 lbs-ft	29 lbs-ft	0 lbs-ft	29 lbs-ft	2 lbs-ft	0 lbs-ft	2 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	
f _{min}	276.8 psf	217.5 psf	276.8 psf	281.0 psf	217.5 psf	281.0 psf	81.0 psf	217.5 psf	81.0 psf	
f _{max}	277.7 psf	217.5 psf	277.7 psf	284.4 psf	217.5 psf	284.4 psf	81.2 psf	217.5 psf	81.2 psf	

Maximum Bearing Pressure = 284 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 24in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

3.060 k	
12.808 k	
7.421 k	
<u>41%</u>	
	12.808 k 7.421 k

Maximum Axial Load = 3.309 k

M12 Bolt Capacity = 12.808 k

Strut Bearing Capacity = 7.421 k

Utilization = 45%

Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, $h_{sx} = 56.48$ in Allowable Story Drift for All Other Structures, $\Delta = \{ 0.020h_{sx} \\ 1.130 \text{ in}$ Max Drift, $\Delta_{MAX} = 0.054$ in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 117 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 323.677 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 117 \\ \mathsf{J} &= & 0.432 \\ & & 205.839 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi \mathsf{b} [\mathsf{Bc-1.6Dc^*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_L} &= & 28.7 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.5 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

y = 41.015 mm

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = \frac{36.9}{m} = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 446476 \text{ mm}^4$$

$$V = 45.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.599 in³

1.152 k-ft

Sx=

 $M_{max}St =$

 $\varphi F_L St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.88 \text{ in}^2$
 $\phi F_L = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14 $L_{b} = 104.56 \text{ in}$ J = 1.08 179.85 $S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$ S1 = 0.51461

$$S1 = 0.51461$$

 $S2 = \left(\frac{C_c}{1.6}\right)^2$
 $S2 = 1701.56$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$$

$$\varphi F_L = 29.0 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 104.56$$
 $J = 1.08$
 190.335

$$C1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))]}$$

$$\phi F_1 = 28.9$$

3.4.16

b/t = 16.2

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

3.4.16

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = \varphi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

$$\varphi F_L = 31.1 \text{ ksi}$$

$$S2 = 77.3$$

$$\phi F_{L} = 1.3 \phi y F c y$$

$$\phi F_{L} = 43.2 \text{ ksi}$$

$$\phi F_{L} W k = 33.3 \text{ ksi}$$

$$ly = 923544 \text{ mm}^{4}$$

$$2.219 \text{ in}^{4}$$

$$x = 40 \text{ mm}$$

$$Sy = 1.409 \text{ in}^{3}$$

$$M_{max} W k = 3.904 \text{ k-ft}$$

16.2

36.9

0.65

40

 $\frac{\theta_y}{2}$ 1.3Fcy

h/t =

S1 =

m =

 $C_0 =$

Cc =

Bbr -

 $S2 = \frac{k_1 Bbr}{}$

mDbr

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

1.375 in³

3.323 k-ft

3.4.10

Rb/t =18.1 6.87 S2 = 131.3 $\varphi F_L = \varphi c[Bt-Dt^*\sqrt{(Rb/t)}]$ $\phi F_L =$ 31.09 ksi $\phi F_1 =$ 31.09 ksi $A = 1215.13 \text{ mm}^2$ 1.88 in²

 $P_{max} =$

Rev. 07.29.2016

58.55 kips

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

$\phi F_L = 31.4 \text{ ksi}$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_I = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

24.5

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

 $M_{max}St = 1.460 \text{ k-ft}$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18 h/t = 24.5

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi F Cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L Wk = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mD^{1/2}}$

m =

 $C_0 =$

Cc =

mDbr

0.65

27.5

27.5

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

Shift = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\begin{array}{rll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

$\underline{\text{Compression}}$

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.9

$$b/t = 24.5 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = 28.2 \text{ ksi} \\ b/t = 24.5 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 $L_b =$ 69.80 in $L_b =$ 69.8 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ $\phi F_L =$ 30.0 ksi 30.0 3.4.16

$$S.4.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$S.4.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$p/F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\phi F_L = 38.9 \text{ ksi}$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi \varphi F c \varphi$$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi F_C \varphi$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{rl} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \end{array}$$

$$Sx = 0.621 \text{ in}^3$$

 $M_{max}St = 1.460 \text{ k-ft}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 1.61471$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.80606$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 10.8205 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} \textbf{9} \\ \text{b/t} = & 24.5 \\ \text{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \text{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi \textbf{F}_L = & \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_L = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \text{S1} = & 12.21 \\ \text{S2} = & 32.70 \\ \phi \textbf{F}_L = & \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 10.82 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 11.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-55.176	-55.176	0	0
2	M14	Υ	-55.176	-55.176	0	0
3	M15	Υ	-55.176	-55.176	0	0
4	M16	Υ	-55 176	-55 176	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-40.939	-40.939	0	0
2	M14	V	-40.939	-40.939	0	0
3	M15	V	-63.27	-63.27	0	0
4	M16	V	-63.27	-63.27	0	0

Member Distributed Loads (BLC 5 : Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	У	93.044	93.044	0	0
2	M14	V	70.714	70.714	0	0
3	M15	V	37.218	37.218	0	0
4	M16	V	37 218	37 218	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa	В	Fa	В	Fa	В	.Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:___

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	469.466	2	1070.021	1	.948	1	.004	1	Ö	1	Ó	1
2		min	-616.534	3	-1091.847	3	.046	15	0	15	0	1	0	1
3	N7	max	.043	9	1154.552	1	69	15	001	15	0	1	0	1
4		min	129	2	-61.371	3	-16.516	1	033	1	0	1	0	1
5	N15	max	0	15	3060.194	1	0	14	0	9	0	1	0	1
6		min	-1.516	2	-282.572	3	0	3	0	3	0	1	0	1
7	N16	max	1810.976	2	3549.05	1	0	9	0	1	0	1	0	1
8		min	-1907.451	3	-3535.169	3	0	3	0	3	0	1	0	1
9	N23	max	.043	9	1154.552	1	16.516	1	.033	1	0	1	0	1
10		min	129	2	-61.371	3	.69	15	.001	15	0	1	0	1
11	N24	max	469.466	2	1070.021	1	046	15	0	15	0	1	0	1
12		min	-616.534	3	-1091.847	3	948	1	004	1	0	1	0	1
13	Totals:	max	2748.135	2	11058.389	1	0	14						
14		min	-3140.752	3	-6124.178	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	99.684	1	450.118	1	-8.091	15	0	15	.28	1	0	1
2			min	4.045	15	-524.293	3	-200.313	1	014	1	.011	15	0	3
3		2	max	99.684	1	314.59	1	-6.21	15	0	15	.088	1	.484	3
4			min	4.045	15	-369.166	3	-153.661	1	014	1	.004	15	414	1
5		3	max	99.684	1	179.063	1	-4.33	15	0	15	0	12	.8	3
6			min	4.045	15	-214.038	3	-107.008	1	014	1	053	1	682	1
7		4	max	99.684	1	43.535	1	-2.449	15	0	15	005	12	.948	3
8			min	4.045	15	-58.91	3	-60.355	1	014	1	144	1	802	1
9		5	max	99.684	1	96.217	3	568	15	0	15	007	12	.927	3
10			min	4.045	15	-91.992	1	-13.702	1	014	1	184	1	776	1
11		6	max	99.684	1	251.345	3	32.95	1	0	15	007	15	.739	3
12			min	4.045	15	-227.52	1	.666	12	014	1	174	1	603	1
13		7	max	99.684	1	406.473	3	79.603	1	0	15	005	15	.383	3
14			min	4.045	15	-363.047	1	2.577	12	014	1	113	1	283	1
15		8	max	99.684	1	561.6	3	126.256	1	0	15	.001	2	.184	1
16			min	4.045	15	-498.575	1	4.489	12	014	1	003	3	141	3
17		9	max	99.684	1	716.728	3	172.908	1	0	15	.161	1	.797	1
18			min	4.045	15	-634.102	1	6.4	12	014	1	.004	12	834	3
19		10	max	99.684	1	769.63	1	-8.312	12	.014	1	.373	1	1.558	1
20			min	4.045	15	-871.856	3	-219.561	1	001	3	.012	12	-1.694	3
21		11	max	99.684	1	634.102	1	-6.4	12	.014	1	.161	1	.797	1
22			min	4.045	15	-716.728	3	-172.908	1	0	15	.004	12	834	3
23		12	max	99.684	1	498.575	1	-4.489	12	.014	1	.001	2	.184	1
24			min	4.045	15	-561.6	3	-126.256	1	0	15	003	3	141	3
25		13	max	99.684	1	363.047	1	-2.577	12	.014	1	005	15	.383	3
26			min	4.045	15	-406.473	3	-79.603	1	0	15	113	1	283	1

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

27	31.345 3 -32.95 1 0 15 174 1 60 .992 1 13.702 1 .014 1 007 12 .92 3.217 3 .568 15 0 15 184 1 7 8.91 3 60.355 1 .014 1 005 12 .94 3.535 1 2.449 15 0 15 144 1 80 4.038 3 107.008 1 .014 1 0 12 .8 9.063 1 4.33 15 0 15 053 1 60 9.166 3 153.661 1 .014 1 .088 1 .48 14.59 1 6.21 15 0 15 .004 15 4 4.293 3 200.313 1 .014 1 .28 1 .0 00.118 1 8.091 15 0 15 .011 15 .0	13 1 17 3 16 1 18 3 12 1 13 3 14 3
15 max 99.684 1 91.992 1 13.702 1 .014 1 .007 12 .927	.992 1 13.702 1 .014 1 007 12 .92 5.217 3 .568 15 0 15 184 1 7 8.91 3 60.355 1 .014 1 005 12 .92 3.535 1 2.449 15 0 15 144 1 80 4.038 3 107.008 1 .014 1 0 12 .8 9.063 1 4.33 15 0 15 053 1 60 9.166 3 153.661 1 .014 1 .088 1 .48 14.59 1 6.21 15 0 15 .004 15 4 4.293 3 200.313 1 .014 1 .28 1 .0 00.118 1 8.091 15 0 15 .011 15 .0	7 3 6 1 8 3 12 1 3 3 4 1 1
Second Columb	3.217 3 .568 15 0 15 184 1 7 8.91 3 60.355 1 .014 1 005 12 .92 3.535 1 2.449 15 0 15 144 1 80 4.038 3 107.008 1 .014 1 0 12 .8 9.063 1 4.33 15 0 15 053 1 60 9.166 3 153.661 1 .014 1 .088 1 .48 14.59 1 6.21 15 0 15 .004 15 4 4.293 3 200.313 1 .014 1 .28 1 .0 00.118 1 8.091 15 0 15 .011 15 .0	76 1 8 3 12 1 3 3 4 3 4 1
31	8.91 3 60.355 1 .014 1 005 12 .94 3.535 1 2.449 15 0 15 144 1 86 4.038 3 107.008 1 .014 1 0 12 .8 9.063 1 4.33 15 0 15 053 1 66 9.166 3 153.661 1 .014 1 .088 1 .48 14.59 1 6.21 15 0 15 .004 15 4 4.293 3 200.313 1 .014 1 .28 1 .0 00.118 1 8.091 15 0 15 .011 15 .0	8 3 12 1 3 32 1 4 3 4 1
32	3.535 1 2.449 15 0 15 144 1 80 4.038 3 107.008 1 .014 1 0 12 .8 19.063 1 4.33 15 0 15 053 1 60 9.166 3 153.661 1 .014 1 .088 1 .48 14.59 1 6.21 15 0 15 .004 15 4 4.293 3 200.313 1 .014 1 .28 1 .0 10.118 1 8.091 15 0 15 .011 15 .0	12 1 3 32 1 4 3 4 1
17	4.038 3 107.008 1 .014 1 0 12 .8 19.063 1 4.33 15 0 15 053 1 66 19.166 3 153.661 1 .014 1 .088 1 .48 14.59 1 6.21 15 0 15 .004 15 4 4.293 3 200.313 1 .014 1 .28 1 0 10.118 1 8.091 15 0 15 .011 15 0	3 32 1 4 3 4 1
Min	19.063 1 4.33 15 0 15 053 1 68 19.166 3 153.661 1 .014 1 .088 1 .48 14.59 1 6.21 15 0 15 .004 15 4 4.293 3 200.313 1 .014 1 .28 1 0 10.118 1 8.091 15 0 15 .011 15 0	3 4 1 1
Min	19.063 1 4.33 15 0 15 053 1 68 19.166 3 153.661 1 .014 1 .088 1 .48 14.59 1 6.21 15 0 15 .004 15 4 4.293 3 200.313 1 .014 1 .28 1 0 10.118 1 8.091 15 0 15 .011 15 0	3 4 1 1
18	9.166 3 153.661 1 .014 1 .088 1 .48 14.59 1 6.21 15 0 15 .004 15 4 4.293 3 200.313 1 .014 1 .28 1 0 0.118 1 8.091 15 0 15 .011 15 0	4 3 4 1 1
Min	14.59 1 6.21 15 0 15 .004 15 4 4.293 3 200.313 1 .014 1 .28 1 0 0.118 1 8.091 15 0 15 .011 15 0	4 1
19	4.293 3 200.313 1 .014 1 .28 1 0 0.118 1 8.091 15 0 15 .011 15 0	1
Min	0.118 1 8.091 15 0 15 .011 15 0	
M14		13
Min 2.236 15 -411.081 3 -207.622 1 013 1 .013 15 0	1.202 1 0.300 13 .000 3 .321	1
41 2 max 54.932 1 355.735 1 -6.505 15 .008 3 .127 1 .382 42 min 2.236 15 -294.658 3 -160.969 1 013 1 .005 15 -459 43 3 max 54.932 1 220.207 1 -4.624 15 .008 3 .002 3 .638 44 min 2.236 15 -178.236 3 -114.316 1 013 1 -022 1 -771 45 4 max 54.932 1 84.68 1 -2.744 15 .008 3 004 12 .768 46 min 2.236 15 -61.814 3 -67.663 1 013 1 12 1 936 47 5 max 54.932 1 171.031 3 25.642 1 <		3
42 min 2.236 15 -294.658 3 -160.969 1 013 1 .005 15 459 43 3 max 54.932 1 220.207 1 -4.624 15 .008 3 .002 3 .638 44 min 2.236 15 -178.236 3 -114.316 1 013 1 022 1 771 45 4 max 54.932 1 84.68 1 -2.744 15 .008 3 004 12 .768 46 min 2.236 15 -61.814 3 -67.663 1 -013 1 12 1 936 47 5 max 54.932 1 54.093 3 008 3 007 12 .772 48 6 max 54.932 1 171.031 3 25.642 1 .008 3		
43 3 max 54.932 1 220.207 1 -4.624 15 .008 3 .002 3 .638 44 min 2.236 15 -178.236 3 -114.316 1 013 1 022 1 771 45 4 max 54.932 1 84.68 1 -2.744 15 .008 3 004 12 .768 46 min 2.236 15 -61.814 3 -67.663 1 013 1 12 1 936 47 5 max 54.932 1 54.609 3 863 15 .008 3 007 12 .772 48 min 2.236 15 -50.848 1 -21.011 1 013 1 -168 1 954 49 6 max 54.932 1 171.031 3 25.642 1 <		
44 min 2.236 15 -178.236 3 -114.316 1 013 1 022 1 771 45 4 max 54.932 1 84.68 1 -2.744 15 .008 3 004 12 .768 46 min 2.236 15 -61.814 3 -67.663 1 013 1 12 1 936 47 5 max 54.932 1 54.609 3 863 15 .008 3 007 12 .772 48 min 2.236 15 -50.848 1 -21.011 1 013 1 168 1 954 49 6 max 54.932 1 171.031 3 25.642 1 .008 3 007 15 .65 50 min 2.236 15 -186.375 1 .368 12 013		
45 4 max 54.932 1 84.68 1 -2.744 15 .008 3 004 12 .768 46 min 2.236 15 -61.814 3 -67.663 1 013 1 12 1 936 47 5 max 54.932 1 54.609 3 863 15 .008 3 007 12 .772 48 min 2.236 15 -50.848 1 -21.011 1 013 1 168 1 954 49 6 max 54.932 1 171.031 3 25.642 1 .008 3 007 15 .65 50 min 2.236 15 -186.375 1 .368 12 013 1 166 1 826 51 7 max 54.932 1 287.454 3 72.295 1 <td< td=""><td></td><td></td></td<>		
46 min 2.236 15 -61.814 3 -67.663 1 013 1 12 1 936 47 5 max 54.932 1 54.609 3 863 15 .008 3 007 12 .772 48 min 2.236 15 -50.848 1 -21.011 1 013 1 168 1 954 49 6 max 54.932 1 171.031 3 25.642 1 .008 3 007 15 .65 50 min 2.236 15 -186.375 1 .368 12 013 1 166 1 826 51 7 max 54.932 1 287.454 3 72.295 1 .008 3 005 15 .402 52 min 2.236 15 -321.903 1 2.28 12 013		
47 5 max 54.932 1 54.609 3 863 15 .008 3 007 12 .772 48 min 2.236 15 -50.848 1 -21.011 1 013 1 168 1 954 49 6 max 54.932 1 171.031 3 25.642 1 .008 3 007 15 .65 50 min 2.236 15 -186.375 1 .368 12 013 1 166 1 826 51 7 max 54.932 1 287.454 3 72.295 1 .008 3 005 15 .402 52 min 2.236 15 -321.993 1 2.28 12 013 1 113 1 55 53 8 max 54.932 1 403.876 3 118.947 1 <t< td=""><td></td><td></td></t<>		
48 min 2.236 15 -50.848 1 -21.011 1 013 1 168 1 954 49 6 max 54.932 1 171.031 3 25.642 1 .008 3 007 15 .65 50 min 2.236 15 -186.375 1 .368 12 013 1 166 1 826 51 7 max 54.932 1 287.454 3 72.295 1 .008 3 005 15 .402 52 min 2.236 15 -321.903 1 2.28 12 013 1 113 1 55 53 8 max 54.932 1 403.876 3 118.947 1 .008 3 0 10 .027 54 min 2.236 15 -457.43 1 4.191 12 013 <		
49 6 max 54.932 1 171.031 3 25.642 1 .008 3 007 15 .65 50 min 2.236 15 -186.375 1 .368 12 013 1 166 1 826 51 7 max 54.932 1 287.454 3 72.295 1 .008 3 005 15 .402 52 min 2.236 15 -321.903 1 2.28 12 013 1 113 1 55 53 8 max 54.932 1 403.876 3 118.947 1 .008 3 0 10 .027 54 min 2.236 15 -457.43 1 4.191 12 013 1 009 1 128 55 9 max 54.932 1 520.298 3 165.6 1 .00		
50 min 2.236 15 -186.375 1 .368 12 013 1 166 1 826 51 7 max 54.932 1 287.454 3 72.295 1 .008 3 005 15 .402 52 min 2.236 15 -321.903 1 2.28 12 013 1 113 1 55 53 8 max 54.932 1 403.876 3 118.947 1 .008 3 0 10 .027 54 min 2.236 15 -457.43 1 4.191 12 013 1 009 1 128 55 9 max 54.932 1 520.298 3 165.6 1 .008 3 .145 1 .441 56 min 2.236 15 -592.958 1 6.102 12 .013		
51 7 max 54.932 1 287.454 3 72.295 1 .008 3 005 15 .402 52 min 2.236 15 -321.903 1 2.28 12 013 1 113 1 55 53 8 max 54.932 1 403.876 3 118.947 1 .008 3 0 10 .027 54 min 2.236 15 -457.43 1 4.191 12 013 1 009 1 128 55 9 max 54.932 1 520.298 3 165.6 1 .008 3 .145 1 .441 56 min 2.236 15 -592.958 1 6.102 12 013 1 .003 12 473 57 10 max 54.932 1 728.485 1 -8.014 12 .		
52 min 2.236 15 -321.903 1 2.28 12 013 1 113 1 55 53 8 max 54.932 1 403.876 3 118.947 1 .008 3 0 10 .027 54 min 2.236 15 -457.43 1 4.191 12 013 1 009 1 128 55 9 max 54.932 1 520.298 3 165.6 1 .008 3 .145 1 .441 56 min 2.236 15 -592.958 1 6.102 12 013 1 .003 12 473 57 10 max 54.932 1 728.485 1 -8.014 12 .013 1 .35 1 1.156 58 min 2.236 15 -636.721 3 -212.253 1 008		
53 8 max 54.932 1 403.876 3 118.947 1 .008 3 0 10 .027 54 min 2.236 15 -457.43 1 4.191 12 013 1 009 1 128 55 9 max 54.932 1 520.298 3 165.6 1 .008 3 .145 1 .441 56 min 2.236 15 -592.958 1 6.102 12 013 1 .003 12 473 57 10 max 54.932 1 728.485 1 -8.014 12 .013 1 .35 1 1.156 58 min 2.236 15 -636.721 3 -212.253 1 008 3 .011 12 -1.1 59 11 max 54.932 1 592.958 1 -6.102 12 .013 1 .145 1 .441 60 min 2.236 <td< td=""><td></td><td>2 3</td></td<>		2 3
54 min 2.236 15 -457.43 1 4.191 12 013 1 009 1 128 55 9 max 54.932 1 520.298 3 165.6 1 .008 3 .145 1 .441 56 min 2.236 15 -592.958 1 6.102 12 013 1 .003 12 473 57 10 max 54.932 1 728.485 1 -8.014 12 .013 1 .35 1 1.156 58 min 2.236 15 -636.721 3 -212.253 1 008 3 .011 12 -1.1 59 11 max 54.932 1 592.958 1 -6.102 12 .013 1 .145 1 .441 60 min 2.236 15 -520.298 3 -165.6 1 008	<u> 1.903 1 2.28 12 013 1 113 1 5</u>	5 1
55 9 max 54.932 1 520.298 3 165.6 1 .008 3 .145 1 .441 56 min 2.236 15 -592.958 1 6.102 12 013 1 .003 12 473 57 10 max 54.932 1 728.485 1 -8.014 12 .013 1 .35 1 1.156 58 min 2.236 15 -636.721 3 -212.253 1 008 3 .011 12 -1.1 59 11 max 54.932 1 592.958 1 -6.102 12 .013 1 .145 1 .441 60 min 2.236 15 -520.298 3 -165.6 1 008 3 .003 12 -473 61 12 max 54.932 1 457.43 1 -4.191 12 .013 1 0 10 </td <td><u>3.876 3 118.947 1 .008 3 0 10 .02</u></td> <td>7 3</td>	<u>3.876 3 118.947 1 .008 3 0 10 .02</u>	7 3
56 min 2.236 15 -592.958 1 6.102 12 013 1 .003 12 473 57 10 max 54.932 1 728.485 1 -8.014 12 .013 1 .35 1 1.156 58 min 2.236 15 -636.721 3 -212.253 1 008 3 .011 12 -1.1 59 11 max 54.932 1 592.958 1 -6.102 12 .013 1 .145 1 .441 60 min 2.236 15 -520.298 3 -165.6 1 008 3 .003 12 473 61 12 max 54.932 1 457.43 1 -4.191 12 .013 1 0 10 .027 62 min 2.236 15 -403.876 3 -118.947 1 008	57.43 1 4.191 12 013 1 009 1 1;	8 1
56 min 2.236 15 -592.958 1 6.102 12 013 1 .003 12 473 57 10 max 54.932 1 728.485 1 -8.014 12 .013 1 .35 1 1.156 58 min 2.236 15 -636.721 3 -212.253 1 008 3 .011 12 -1.1 59 11 max 54.932 1 592.958 1 -6.102 12 .013 1 .145 1 .441 60 min 2.236 15 -520.298 3 -165.6 1 008 3 .003 12 473 61 12 max 54.932 1 457.43 1 -4.191 12 .013 1 0 10 .027 62 min 2.236 15 -403.876 3 -118.947 1 008	0.298 3 165.6 1 .008 3 .145 1 .44	1 1
57 10 max 54.932 1 728.485 1 -8.014 12 .013 1 .35 1 1.156 58 min 2.236 15 -636.721 3 -212.253 1008 3 .011 12 -1.1 59 11 max 54.932 1 592.958 1 -6.102 12 .013 1 .145 1 .441 60 min 2.236 15 -520.298 3 -165.6 1008 3 .003 12473 61 12 max 54.932 1 457.43 1 -4.191 12 .013 1 0 10 .027 62 min 2.236 15 -403.876 3 -118.947 1008 3009 1128		3 3
58 min 2.236 15 -636.721 3 -212.253 1 008 3 .011 12 -1.1 59 11 max 54.932 1 592.958 1 -6.102 12 .013 1 .145 1 .441 60 min 2.236 15 -520.298 3 -165.6 1 008 3 .003 12 473 61 12 max 54.932 1 457.43 1 -4.191 12 .013 1 0 10 .027 62 min 2.236 15 -403.876 3 -118.947 1 008 3 009 1 128		
59 11 max 54.932 1 592.958 1 -6.102 12 .013 1 .145 1 .441 60 min 2.236 15 -520.298 3 -165.6 1 008 3 .003 12 473 61 12 max 54.932 1 457.43 1 -4.191 12 .013 1 0 10 .027 62 min 2.236 15 -403.876 3 -118.947 1 008 3 009 1 128		
60 min 2.236 15 -520.298 3 -165.6 1 008 3 .003 12 473 61 12 max 54.932 1 457.43 1 -4.191 12 .013 1 0 10 .027 62 min 2.236 15 -403.876 3 -118.947 1 008 3 009 1 128		
61		
62 min 2.236 15 -403.876 3 -118.947 1008 3009 1128		
63 13 max 54.932 1 321.903 1 -2.28 12 .013 1 005 15 .402		
64 min 2.236 15 -287.454 3 -72.295 1008 3113 155		
65		
66 min 2.236 15 -171.031 3 -25.642 1008 3166 1826		
67		
70 min 2.236 15 -84.68 1 2.744 15008 312 1936		
71		
72 min 2.236 15 -220.207 1 4.624 15008 3022 1771		
73		
74 min 2.236 15 -355.735 1 6.505 15008 3 .005 15459		
75 19 max 54.932 1 411.081 3 207.622 1 .013 1 .327 1 0		1
76 min 2.236 15 -491.262 1 8.386 15008 3 .013 15 0		3
77 M15 1 max -2.396 15 556.533 1 -8.382 15 .014 1 .326 1 0		2
78 min -58.854 1 -215.514 3 -207.551 1007 3 .013 15 0		3
79 2 max -2.396 15 401.652 1 -6.501 15 .014 1 .127 1 .202		
80 min -58.854 1 -157.151 3 -160.898 1007 3 .005 15519		
81 3 max -2.396 15 246.771 1 -4.621 15 .014 1 .001 3 .34		3
82 min -58.854 1 -98.788 3 -114.245 1007 3022 187		
83 4 max -2.396 15 91.89 1 -2.74 15 .014 1004 12 .416		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
84			min	-58.854	1	-40.426	3	-67.593	1	007	3	121	1	-1.054	1
85		5	max	-2.396	15	17.937	3	859	15	.014	1	007	12	.428	3
86			min	-58.854	1	-63.685	2	-20.94	1	007	3	169	1	-1.069	1
87		6	max	-2.396	15	76.3	3	25.713	1	.014	1	007	15	.377	3
88			min	-58.854	1	-217.872	1	.428	12	007	3	166	1	917	1
89		7	max	-2.396	15	134.662	3	72.366	1	.014	1	005	15	.263	3
90			min	-58.854	1	-372.753	1	2.339	12	007	3	113	1	597	1
91		8	max	-2.396	15	193.025	3	119.018	1	.014	1	0	10	.085	3
92		T .	min	-58.854	1	-527.634	1	4.251	12	007	3	009	1	11	1
93		9	max	-2.396	15	251.388	3	165.671	1	.014	1	.145	1	.552	2
94		1 3	min	-58.854	1	-682.515	1	6.162	12	007	3	.004	12	155	3
95		10		-2.396	15	837.396	1	-8.074	12	.007	3	.35	1	1.369	1
96		10	max	-58.854	1			-212.324	1		1	.011	12	459	3
		4.4	min			-309.75	3			014					
97		11	max	-2.396	15	682.515	1	-6.162	12	.007	3	.145	1	.552	2
98		40	min	-58.854	1_	-251.388	3	-165.671	1	014	1	.004	12	1 <u>55</u>	3
99		12	max	-2.396	15	527.634	1	-4.251	12	.007	3	0	<u>10</u>	.085	3
100			min	-58.854	1_	-193.025	3	-119.018	1_	014	1	009	_1_	11	1
101		13	max	-2.396	15	372.753	1_	-2.339	12	.007	3	005	15	.263	3
102			min	-58.854	1	-134.662	3	-72.366	1	014	1	113	1_	597	1
103		14	max	-2.396	15	217.872	1_	428	12	.007	3	007	15	.377	3
104			min	-58.854	1	-76.3	3	-25.713	1	014	1	166	1_	917	1
105		15	max	-2.396	15	63.685	2	20.94	1	.007	3	007	12	.428	3
106			min	-58.854	1	-17.937	3	.859	15	014	1	169	1_	-1.069	1
107		16	max	-2.396	15	40.426	3	67.593	1	.007	3	004	12	.416	3
108			min	-58.854	1	-91.89	1	2.74	15	014	1	121	1	-1.054	1
109		17	max	-2.396	15	98.788	3	114.245	1	.007	3	.001	3	.34	3
110			min	-58.854	1	-246.771	1	4.621	15	014	1	022	1	87	1
111		18	max	-2.396	15	157.151	3	160.898	1	.007	3	.127	1	.202	3
112		1.0	min	-58.854	1	-401.652	1	6.501	15	014	1	.005	15	519	1
113		19	max	-2.396	15	215.514	3	207.551	1	.007	3	.326	1	0	2
114		10	min	-58.854	1	-556.533	1	8.382	15	014	1	.013	15	0	3
115	M16	1	max	-4.529	15	515.802	1	-8.106	15	.012	1	.282	1	0	2
116	IVITO		min	-111.329	1	-191.93	3	-200.775	1	009	3	.011	15	0	3
117		2		-4.529	15	360.921	1	-6.226	15	.012	1	.09	1	.176	3
118			max	-111.329	1	-133.568	3	-0.220	1		3				1
		2	min		_					009		.004	15	475	_
119		3	max	-4.529	15	206.04	1	-4.345	15	.012	1	0	12	.289	3
120		-	min	-111.329	1_	-75.205	3	-107.47	1_	009	3	052	1_	782	1
121		4	max	-4.529	15	51.159	1	-2.464	15	.012	1	005	12	.339	3
122		-	min	-111.329	1_	-16.842	3	-60.817	1_	009	3	143	1_	921	1
123		5	max	-4.529	15	41.52	3	584	15	.012	1	007	12	.326	3
124				-111.329	1_	-103.722		-14.164	1	009	3	183	1_	893	1
125		6	max	-4.529	15	99.883	3	32.488	1	.012	1	007	<u>15</u>	.249	3
126			min	-111.329	1	-258.603	1	.843	12	009	3	173	_1_	697	1
127		7	max		15	158.246	3	79.141	1	.012	1	005	15	.109	3
128			min			-413.484	1	2.754	12	009	3	113	1	333	1
129		8	max	-4.529	15	216.608	3	125.794	1	.012	1	0	10	.199	1
130			min	-111.329	1	-568.365	1	4.666	12	009	3	002	3	094	3
131		9	max	-4.529	15	274.971	3	172.447	1	.012	1	.16	1	.899	1
132				-111.329		-723.246	1	6.577	12	009	3	.005	12	36	3
133		10	max		15	878.127	1	-8.488	12	.012	1	.372	1	1.766	1
134				-111.329	1	-333.333	3	-219.099		009	3	.013	12	689	3
135		11	max		15	723.246	1	-6.577	12	.009	3	.16	1	.899	1
136			min	-111.329	1	-274.971	3	-172.447	1	012	1	.005	12	36	3
137		12	max		15	568.365	1	-4.666	12	.009	3	0	10	.199	1
138		14	min			-216.608	3	-125.794		012	1	002	3	094	3
139		13			15	413.484	1	-2.754	12	.009	3	002	<u> </u>	.109	3
140		13	max						1		1		1		1
140			min	-111.329	1	-158.246	3	-79.141		012		113		333	

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC :	z-z Mome	. LC
141		14	max	-4.529	15	258.603	1	843	12	.009	3	007	15	.249	3
142			min	-111.329	1	-99.883	3	-32.488	1	012	1	173	1	697	1
143		15	max	-4.529	15	103.722	1	14.164	1	.009	3	007	12	.326	3
144			min	-111.329	1	-41.52	3	.584	15	012	1	183	1	893	1
145		16	max	-4.529	15	16.842	3	60.817	1	.009	3	005	12	.339	3
146			min	-111.329	1	-51.159	1	2.464	15	012	1	143	1	921	1
147		17	max	-4.529	15	75.205	3	107.47	1	.009	3	0	12	.289	3
148				-111.329	1	-206.04	1	4.345	15	012	1	052	1	782	1
149		18	max	-4.529	15	133.568	3	154.122	1	.009	3	.09	1	.176	3
150				-111.329	1	-360.921	1	6.226	15	012	1	.004	15	475	1
151		19	max	-4.529	15	191.93	3	200.775	1	.009	3	.282	1	0	2
152				-111.329	1	-515.802	1	8.106	15	012	1	.011	15	0	3
153	M2	1		1044.684	1	2.022	4	.797	1	0	5	0	3	0	1
154				-965.206	3	.476	15	.032	15	0	1	0	1	0	1
155		2		1045.157	1	1.985	4	.797	1	0	5	0	1	0	15
156			min	-964.851	3	.467	15	.032	15	0	1	0	15	0	4
157		3	_	1045.631	1	1.948	4	.797	1	0	5	0	1	0	15
158				-964.496	3	.458	15	.032	15	0	1	0	15	001	4
159		4		1046.105	1	1.911	4	.797	1	0	5	0	1	0	15
160		7	min	-964.14	3	.45	15	.032	15	0	1	0	15	002	4
161		5		1046.579	_ <u></u>	1.874	4	.797	1	0	5	.001	1	<u>002</u> 0	15
162		J		-963.785	3	.441	15	.032	15	0	1	0	15	002	4
163		6		1047.052	<u> </u>	1.837	4	.797	1	0	5	.001	1	<u>002</u> 0	15
		0		-963.43	3	.432	15	.032	15		1	0	15		
164		7	min							0				003	4
165		7		1047.526	1	1.8	4	.797	1	0	5	.002	1	0	15
166		_	min	-963.074	3	.423	15	.032	15	0		0	15	004	4
167		8	max		1	1.763	4	.797	1	0	5	.002	1	0	15
168				-962.719	3	.415	15	.032	15	0	1	0	15	004	4
169		9		1048.474	1_	1.726	4_	.797	1	0	5	.002	1	001	15
170		4.0		-962.364	3	.406	15	.032	15	0	1	0	15	<u>005</u>	4
171		10		1048.947	1_	1.689	4_	.797	1	0	5	.002	1	001	15
172				-962.009	3_	.397	15	.032	15	0	1	0	15	005	4
173		11		1049.421	_1_	1.652	4	.797	1	0	5	.003	1	001	15
174				-961.653	3	.389	15	.032	15	0	1	0	15	006	4
175		12		1049.895	_1_	1.615	4_	.797	1	0	5	.003	1	002	15
176			min	-961.298	3	.38	15	.032	15	0	1	0	15	006	4
177		13		1050.368	_1_	1.578	4_	.797	1	0	5	.003	1	002	15
178				-960.943	3	.371	15	.032	15	0	1	0	15	007	4
179		14		1050.842	_1_	1.541	4	.797	1	0	5	.003	1	002	15
180			min	-960.587	3	.363	15	.032	15	0	1	0	15	007	4
181		15		1051.316	_1_	1.504	4	.797	1	0	5	.004	1	002	15
182				-960.232	3	.354	15	.032	15	0	1	0	15	008	4
183		16	max	1051.79	_1_	1.467	4	.797	1	0	5	.004	1	002	15
184			min	-959.877	3	.345	15	.032	15	0	1	0	15	008	4
185		17	max	1052.263	1	1.43	4	.797	1	0	5	.004	1	002	15
186			min	-959.521	3	.336	15	.032	15	0	1	0	15	009	4
187		18	max	1052.737	1	1.393	4	.797	1	0	5	.004	1	002	15
188				-959.166	3	.328	15	.032	15	0	1	0	15	009	4
189		19		1053.211	1	1.356	4	.797	1	0	5	.005	1	002	15
190				-958.811	3	.319	15	.032	15	0	1	0	15	01	4
191	M3	1	max		2	8.992	4	.344	1	0	12	0	1	.01	4
192				-574.642	3	2.114	15	.014	15	0	1	0	15	.002	15
193		2	max		2	8.12	4	.344	1	0	12	0	1	.006	4
194		_		-574.77	3	1.909	15	.014	15	0	1	0	15	.001	15
195		3		428.419	2	7.248	4	.344	1	0	12	0	1	.002	2
196			min	-574.898	3	1.704	15	.014	15	0	1	0	15	0	3
197		4		428.249	2	6.376	4	.344	1	0	12	0	1	0	2
			IIIIUA	120.270		0.070		.0-7			1 - 1 -				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
198			min	-575.026	3	1.499	15	.014	15	0	1	0	15	002	3
199		5	max	428.078	2	5.504	4	.344	1	0	12	0	1	0	15
200			min	-575.153	3	1.294	15	.014	15	0	1	0	15	004	4
201		6	max	427.908	2	4.632	4	.344	1	0	12	.001	1	001	15
202			min	-575.281	3	1.089	15	.014	15	0	1	0	15	006	4
203		7	max	427.738	2	3.76	4	.344	1	0	12	.001	1	002	15
204			min	-575.409	3	.884	15	.014	15	0	1	0	15	008	4
205		8	max	427.567	2	2.888	4	.344	1	0	12	.001	1	002	15
206			min	-575.537	3	.679	15	.014	15	0	1	0	15	01	4
207		9	max	427.397	2	2.016	4	.344	1	0	12	.002	1	003	15
208			min	-575.664	3	.474	15	.014	15	0	1	0	15	011	4
209		10	max	427.227	2	1.144	4	.344	1	0	12	.002	1	003	15
210			min	-575.792	3	.269	15	.014	15	0	1	0	15	012	4
211		11	max	427.056	2	.327	2	.344	1	0	12	.002	1	003	15
212			min	-575.92	3	0	3	.014	15	0	1	0	15	012	4
213		12	max	426.886	2	141	15	.344	1	0	12	.002	1	003	15
214			min	-576.048	3	6	4	.014	15	0	1	0	15	012	4
215		13	max	426.716	2	346	15	.344	1	0	12	.002	1	003	15
216			min	-576.175	3	-1.472	4	.014	15	0	1	0	15	012	4
217		14	max	426.545	2	551	15	.344	1	0	12	.002	1	003	15
218			min	-576.303	3	-2.344	4	.014	15	0	1	0	15	011	4
219		15	max	426.375	2	756	15	.344	1	0	12	.003	1	002	15
220			min	-576.431	3	-3.216	4	.014	15	0	1	0	15	009	4
221		16	max	426.205	2	961	15	.344	1	0	12	.003	1	002	15
222			min	-576.559	3	-4.088	4	.014	15	0	1	0	15	008	4
223		17	max	426.034	2	-1.166	15	.344	1	0	12	.003	1	001	15
224			min	-576.686	3	-4.96	4	.014	15	0	1	0	15	006	4
225		18	max	425.864	2	-1.371	15	.344	1	0	12	.003	1	0	15
226			min	-576.814	3	-5.832	4	.014	15	0	1	0	15	003	4
227		19	max	425.694	2	-1.576	15	.344	1	0	12	.003	1	0	1
228			min	-576.942	3	-6.704	4	.014	15	0	1	0	15	0	1
229	M4	1	max	1151.486	1	0	1	691	15	0	1	.002	1	0	1
230			min	-63.671	3	0	1	-17.078	1	0	1	0	15	0	1
231		2	max	1151.656	1	0	1	691	15	0	1	0	1	0	1
232			min	-63.543	3	0	1	-17.078	1	0	1	0	15	0	1
233		3	max	1151.826	1	0	1	691	15	0	1	0	15	0	1
234			min	-63.415	3	0	1	-17.078	1	0	1	002	1	0	1
235		4	max	1151.997	1	0	1	691	15	0	1	0	15	0	1
236			min	-63.287	3	0	1	-17.078	1	0	1	004	1	0	1
237		5	max	1152.167	1	0	1	691	15	0	1	0	15	0	1
238			min	-63.16	3	0	1	-17.078	1	0	1	006	1	0	1
239		6	max	1152.337	1	0	1	691	15	0	1	0	15	0	1
240			min	-63.032	3	0	1	-17.078	1	0	1	008	1	0	1
241		7	max	1152.508	1	0	1	691	15	0	1	0	15	0	1
242			min	-62.904	3	0	1	-17.078	1	0	1	01	1	0	1
243		8	max	1152.678	1_	0	1	691	15	0	1	0	15	0	1
244			min	-62.776	3	0	1	-17.078	1	0	1	012	1	0	1
245		9		1152.848	1	0	1	691	15	0	1	0	15	0	1
246				-62.649	3	0	1	-17.078	1	0	1	013	1	0	1
247		10		1153.019	1	0	1	691	15	0	1	0	15	0	1
248				-62.521	3	0	1	-17.078	1	0	1	015	1	0	1
249		11		1153.189	1	0	1	691	15	0	1	0	15	0	1
250			min	-62.393	3	0	1	-17.078	1	0	1	017	1	0	1
251		12		1153.359	1	0	1	691	15	0	1	0	15	0	1
252			min	-62.265	3	0	1	-17.078	1	0	1	019	1	0	1
253		13		1153.53	1	0	1	691	15	0	1	0	15	0	1
254			min		3	0	1	-17.078	1	0	1	021	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
255		14	max	1153.7	1_	0	1	691	15	0	_1_	0	15	0	1
256			min	-62.01	3	0	1	-17.078	1	0	1	023	1	0	1
257		15	max	1153.87	1	0	1	691	15	0	1	001	15	0	1
258			min	-61.882	3	0	1	-17.078	1	0	1	025	1	0	1
259		16	max	1154.041	1	0	1	691	15	0	1	001	15	0	1
260			min	-61.754	3	0	1	-17.078	1	0	1	027	1	0	1
261		17	max	1154.211	1	0	1	691	15	0	1	001	15	0	1
262			min	-61.627	3	0	1	-17.078	1	0	1	029	1	0	1
263		18	max	1154.382	1	0	1	691	15	0	1	001	15	0	1
264			min	-61.499	3	0	1	-17.078	1	0	1	031	1	0	1
265		19		1154.552	1	0	1	691	15	0	1	001	15	0	1
266			min	-61.371	3	0	1	-17.078	1	0	1	033	1	0	1
267	M6	1	_	3300.913	1	2.2	2	0	1	0	1	0	1	0	1
268			min	-3122.048	3	.328	12	0	1	0	1	0	1	0	1
269		2	+	3301.387	1	2.171	2	0	1	0	1	0	1	0	12
270			min	-3121.693	3	.314	12	0	1	0	1	0	1	0	2
271		3		3301.861	1	2.142	2	0	1	0	1	0	1	0	12
272			min	-3121.337	3	.299	12	0	1	0	1	0	1	001	2
273		4		3302.334	1	2.113	2	0	1	0	1	0	1	0	12
274			min	-3120.982	3	.285	12	0	1	0	1	0	1	002	2
275		5		3302.808	1	2.085	2	0	1	0	1	0	1	0	12
276			min	-3120.627	3	.27	12	0	1	0	1	0	1	003	2
277		6		3303.282	1	2.056	2	0	1	0	1	0	1	0	12
278			min	-3120.272	3	.256	12	0	1	0	1	0	1	003	2
279		7		3303.756	1	2.027	2	0	1	0	1	0	1	0	12
280			min	-3119.916	3	.241	12	0	1	0	1	0	1	004	2
281		8		3304.229	1	1.998	2	0	1	0	1	0	1	0	12
282		0	min	-3119.561	3	.227	12	0	1	0	1	0	1	005	2
283		9		3304.703	1	1.969	2	0	1	0	1	0	1	0	12
284		9	min	-3119.206	3	.213	12	0	1	0	1	0	1	005	2
285		10		3305.177	1	1.94	2	0	1	0	1	0	1	0	12
286		10	min	-3118.85	3	.198	12	0	1	0	1	0	1	006	2
287		11		3305.651	1	1.911	2	0	1	0	1	0	1	0	12
288			min	-3118.495	3	.184	12	0	1	0	1	0	1	007	2
289		12	+	3306.124	1	1.883	2	0	1		1	0	1	007	
290		12	_		3	.169	12	0	1	0	1	0	1	007	12
		12	min					0	1		1	0	1		12
291 292		13		3306.598 -3117.784	3	1.854 .155	12	0	1	0	1	0	1	0	2
293		14	min	3307.072	1	1.825	2	0	1		1		1	008	12
		14		-3117.429	3			0	1	0	1	0	1	0	2
294		15	min		<u>ع</u>	.14	12		1	0		0		008	
295		15		3307.546	1	1.796	2	0	1	0	1	0	1	001	12
296		10	min	-3117.074 3308.019	3	.126	12	0	1	0	1	0	1	009	12
297		10			1	1.767	12	0	1	0	1	0	1	001	12
298		17	min	3308.493	3	.112		0		0		0		01	2
299		17			1	1.738	2	0	1	0	1	0	1	001	12
300		40	min		3	.097	12	0	_	0	1_	0	1	01	2
301		18		3308.967	1	1.709	2	0	1	0	1	0	1	001	12
302		40	min		3	.077	3	0	1	0	1_	0	1_	011	2
303		19		3309.441	1	1.68	2	0	1	0	1_	0	1	001	12
304	1.47	4	min		3	.056	3	0	1	0	1_	0	1_	011	2
305	M7	1		1693.454	2	9.031	4	0	1	0	1	0	1	.011	2
306		_	min	-1768.481	3	2.12	15	0	1	0	1	0	1_	.001	12
307		2		1693.284	2	8.159	4	0	1	0	1	0	1	.008	2
308		_	min		3	1.915	15	0	1	0	1	0	1_	0	3
309		3		1693.114	2	7.287	4	0	1	0	1_	0	1	.005	2
310			min	-1768.737	3	1.71	15	0	1	0	1	0	1_	003	3
311		4	max	1692.943	2	6.415	4	0	1	0	_1_	0	_1_	.002	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-1768.865	3	1.505	15	0	1	0	1	0	1	004	3
313		5	max	1692.773	2	5.543	4	0	1	0	_1_	0	_1_	0	2
314			min	-1768.993	3	1.3	15	0	1	0	1	0	1	006	3
315		6	max	1692.603	2	4.671	4	0	1	0	1	0	1	001	15
316			min	-1769.12	3	1.095	15	0	1	0	1	0	1	007	3
317		7	max	1692.432	2	3.799	4	0	1	0	_1_	0	1	002	15
318			min	-1769.248	3	.89	15	0	1	0	1	0	1	008	4
319		8		1692.262	2	2.927	4	0	1	0	1	0	1	002	15
320			min	-1769.376	3	.685	15	0	1	0	1	0	1	01	4
321		9		1692.092	2	2.055	4	0	1	0	_1_	0	1	003	15
322			min	-1769.504	3	.474	12	0	1	0	1	0	1	011	4
323		10	max	1691.921	2	1.315	2	0	1	0	1	0	1	003	15
324			min	-1769.631	3	.134	12	0	1	0	1	0	1	012	4
325		11		1691.751	2	.635	2	0	1	0	1	0	1	003	15
326			min	-1769.759	3	34	3	0	1	0	1	0	1	012	4
327		12		1691.581	2	044	2	0	1	0	1	0	1	003	15
328			min	-1769.887	3	849	3	0	1	0	1	0	1	012	4
329		13	max	1691.41	2	34	15	0	1	0	1	0	1	003	15
330			min	-1770.015	3	-1.433	4	0	1	0	1	0	1	011	4
331		14	max	1691.24	2	545	15	0	1_	0	_1_	0	1_	002	15
332			min	-1770.142	3	-2.305	4	0	1	0	1	0	1	011	4
333		15	max		2	75	15	0	1	0	1	0	1_	002	15
334			min	-1770.27	3_	-3.177	4	0	1	0	1	0	1	009	4
335		16		1690.899	2	955	15	0	1	0	1	0	1	002	15
336			min	-1770.398	3	-4.049	4	0	1	0	1	0	1	008	4
337		17		1690.729	2	-1.16	15	0	1_	0	1	0	1_	001	15
338			min	-1770.526	3	-4.921	4	0	1	0	1	0	1	005	4
339		18		1690.558	2	-1.365	15	0	1_	0	1	0	1_	0	15
340			min	-1770.653	3	-5.793	4	0	1	0	1	0	1	003	4
341		19		1690.388	2	-1.57	15	0	1	0	1	0	1	0	1
342			min	-1770.781	3	-6.665	4	0	1	0	1	0	1_	0	1
343	<u>M8</u>	1		3057.127	_1_	0	1	0	1	0	1	0	1	0	1
344			min	-284.872	3_	0	1	0	1	0	1	0	1	0	1
345		2		3057.298	_1_	0	1	0	1	0	1	0	1	0	1
346			min	-284.744	3_	0	1	0	1	0	1	0	1_	0	1
347		3		3057.468	1_	0	1	0	1	0	1	0	1	0	1
348			min	-284.616	3	0	1	0	1	0	1	0	1	0	1
349		4	max		1_	0	1	0	1	0	1	0	1	0	1
350		-	min	-284.489	3	0	1	0	1	0	1	0	1	0	1
351		5		3057.809	1_	0	1	0	1	0	1	0	1	0	1
352				-284.361	3	0	1	0	1	0	1	0	1	0	1
353		6		3057.979	1	0	1	0	1	0	1	0	1	0	1
354		7	min	-284.233	3_	0	1	0	1_1	0	1	0	1	0	1
355		7		3058.15	1	0	1	0	1	0	1	0	1	0	1
356		0	min	-284.105	3	0		0		0		0		0	1
357		8		3058.32	1	0	1	0	1	0	1	0	1	0	1
358		0	min		3	0	1	0	1	0	1	0	1	0	1
359		9		3058.49	1	0	1	0	1	0	1	0	1	0	1
360		10		-283.85	3	0	-	0		0	_	0		0	
361		10		3058.661	1	0	1	0	1	0	1	0	1	0	1
362		4.4		-283.722	3	0	-	0		0		0		0	
363		11		3058.831	1	0	1	0	1	0	1	0	1	0	1
364		10	min		3	0	1	0	1	0	1	0		0	1
365		12		3059.001	1	0	_	0		0		0	1	0	1
366		42	min		3	0	1	0	1	0	1	0	1	0	1
367		13		3059.172	1	0	1	0	1	0	1	0	1	0	1
368			min	-283.339	3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

000	Member	Sec		Axial[lb]						Torque[k-ft]	LC		LC		LC
369		14		3059.342	1	0	1	0	<u>1</u> 1	0	1	0	1	0	1
370 371		15	min	-283.211 3059.512	<u>3</u>	0	1	0	1	0	<u>1</u> 1	0	1	0	1
372		13		-283.083	3	0	1	0	1	0	1	0	1	0	1
373		16		3059.683	<u> </u>	0	1	0	1	0	1	0	1	0	1
374		10		-282.955	3	0	1	0	1	0	1	0	1	0	1
375		17		3059.853	1	0	1	0	1	0	1	0	1	0	1
376		- '	min	-282.828	3	0	1	0	1	0	1	0	1	0	1
377		18		3060.023	1	0	1	0	1	0	1	0	1	0	1
378			min	-282.7	3	0	1	0	1	0	1	0	1	0	1
379		19		3060.194	1	0	1	0	1	Ö	1	0	1	0	1
380			min	-282.572	3	0	1	0	1	0	1	0	1	0	1
381	M10	1	max	1044.684	1	2.022	4	032	15	0	1	0	1	0	1
382				-965.206	3	.476	15	797	1	0	5	0	3	0	1
383		2		1045.157	1	1.985	4	032	15	0	1	0	15	0	15
384			min	-964.851	3	.467	15	797	1	0	5	0	1	0	4
385		3	max	1045.631	1	1.948	4	032	15	0	1	0	15	0	15
386			min	-964.496	3	.458	15	797	1	0	5	0	1	001	4
387		4	max	1046.105	1_	1.911	4	032	15	0	1_	0	15	0	15
388			min	-964.14	3	.45	15	797	1	0	5	0	1	002	4
389		5	max	1046.579	_1_	1.874	4	032	15	0	1	0	15	0	15
390			min	-963.785	3	.441	15	797	1	0	5	001	1	002	4
391		6		1047.052	_1_	1.837	4	032	15	0	_1_	0	15	0	15
392			min	-963.43	3	.432	15	797	1_	0	5	001	1	003	4
393		7		1047.526	1_	1.8	4	032	<u>15</u>	0	_1_	0	15	0	15
394			min	-963.074	3	.423	15	797	1_	0	5	002	1_	004	4
395		8	max	1048	_1_	1.763	4	032	<u>15</u>	0	_1_	0	15	0	15
396			min	-962.719	3	.415	15	797	1_	0	5	002	1_	004	4
397		9		1048.474	1_	1.726	4	032	15	0		0	15	001	15
398		40	min	-962.364	3	.406	15	797	1_	0	5	002	1_	005	4
399		10		1048.947 -962.009	1	1.689	<u>4</u> 15	032	<u>15</u> 1	0	1	002	1 <u>5</u>	001	15
400		11	min	1049.421	<u>3</u> 1	.397 1.652	4	797 032	15	0	<u>5</u> 1	002	15	005 001	15
402				-961.653	3	.389	15	797	1	0	5	003	1	006	4
403		12		1049.895	<u> </u>	1.615	4	032	15	0	1	0	15	002	15
404		12	min		3	.38	15	797	1	0	5	003	1	002	4
405		13	_	1050.368	1	1.578	4	032	15	0	1	0	15	002	15
406		10	min	-960.943	3	.371	15	797	1	0	5	003	1	007	4
407		14		1050.842	1	1.541	4	032	15	0	1	0	15	002	15
408				-960.587	3	.363	15	797	1	0	5	003	1	007	4
409		15		1051.316	1	1.504	4	032	15	0	1	0	15	002	15
410				-960.232	3	.354	15	797	1	0	5	004	1	008	4
411		16		1051.79	1	1.467	4	032	15	0	1	0	15	002	15
412				-959.877	3	.345	15	797	1	0	5	004	1	008	4
413		17		1052.263	1	1.43	4	032	15	0	1	0	15	002	15
414				-959.521	3	.336	15	797	1	0	5	004	1	009	4
415		18		1052.737	1	1.393	4	032	15	0	1	0	15	002	15
416			min	-959.166	3	.328	15	797	1	0	5	004	1	009	4
417		19		1053.211	1	1.356	4	032	15	0	1	0	15	002	15
418			min	-958.811	3	.319	15	797	1	0	5	005	1	01	4
419	M11	1	max	428.76	2	8.992	4	014	15	0	1	0	15	.01	4
420			min	-574.642	3	2.114	15	344	1	0	12	0	1	.002	15
421		2	max		2	8.12	4	014	15	0	1	0	15	.006	4
422				-574.77	3	1.909	15	344	1_	0	12	0	1	.001	15
423		3	max		2	7.248	4	014	<u>15</u>	0	1	0	15	.002	2
424				-574.898	3	1.704	15	344	1_	0	12	0	1_	0	3
425		4	max	428.249	2	6.376	4	014	15	0	_1_	0	15	0	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	. LC
426			min	-575.026	3	1.499	15	344	1	0	12	0	1	002	3
427		5	max	428.078	2	5.504	4	014	15	0	1	0	15	0	15
428			min	-575.153	3	1.294	15	344	1	0	12	0	1	004	4
429		6	max	427.908	2	4.632	4	014	15	0	1	0	15	001	15
430			min	-575.281	3	1.089	15	344	1	0	12	001	1	006	4
431		7	max	427.738	2	3.76	4	014	15	0	1	0	15	002	15
432			min	-575.409	3	.884	15	344	1	0	12	001	1	008	4
433		8	max	427.567	2	2.888	4	014	15	0	1	0	15	002	15
434			min	-575.537	3	.679	15	344	1	0	12	001	1	01	4
435		9	max	427.397	2	2.016	4	014	15	0	1	0	15	003	15
436			min	-575.664	3	.474	15	344	1	0	12	002	1	011	4
437		10	max		2	1.144	4	014	15	0	1	0	15	003	15
438			min	-575.792	3	.269	15	344	1	0	12	002	1	012	4
439		11	max	427.056	2	.327	2	014	15	0	1	0	15	003	15
440			min	-575.92	3	0	3	344	1	0	12	002	1	012	4
441		12	max	426.886	2	141	15	014	15	0	1	0	15	003	15
442			min	-576.048	3	6	4	344	1	0	12	002	1	012	4
443		13	max	426.716	2	346	15	014	15	0	1	0	15	003	15
444			min	-576.175	3	-1.472	4	344	1	0	12	002	1	012	4
445		14	max	426.545	2	551	15	014	15	0	1	0	15	003	15
446			min	-576.303	3	-2.344	4	344	1	0	12	002	1	011	4
447		15	max		2	756	15	014	15	0	1	0	15	002	15
448			min	-576.431	3	-3.216	4	344	1	0	12	003	1	009	4
449		16	max	426.205	2	961	15	014	15	0	1	0	15	002	15
450			min	-576.559	3	-4.088	4	344	1	0	12	003	1	008	4
451		17	max	426.034	2	-1.166	15	014	15	0	1	0	15	001	15
452			min	-576.686	3	-4.96	4	344	1	0	12	003	1	006	4
453		18	max	425.864	2	-1.371	15	014	15	0	1	0	15	0	15
454			min	-576.814	3	-5.832	4	344	1	0	12	003	1	003	4
455		19	max	425.694	2	-1.576	15	014	15	0	1	0	15	0	1
456			min	-576.942	3	-6.704	4	344	1	0	12	003	1	0	1
457	M12	1		1151.486	_1_	0	1	17.078	1	0	1	0	15	0	1
458			min	-63.671	3	0	1	.691	15	0	1	002	1	0	1
459		2	1	1151.656	_1_	0	1	17.078	1	0	1	0	15	0	1
460			min	-63.543	3	0	1	.691	15	0	1	0	1	0	1
461		3		1151.826	1_	0	1	17.078	1	0	1	.002	1	0	1
462			min	-63.415	3	0	1	.691	15	0	1	0	15	0	1
463		4		1151.997	1_	0	1	17.078	1	0	1	.004	1	0	1
464			min	-63.287	3	0	1	.691	15	0	1	0	15	0	1
465		5_		1152.167	1_	0	1	17.078	1	0	1	.006	1	0	1
466			min	-63.16	3	0	1_	.691	15	0	1	0	15	0	1
467		6		1152.337	_1_	0	1	17.078	1	0	1	.008	1	0	1
468			min		3	0	1_	.691	15	0	1	0	15	0	1
469		7		1152.508	_1_	0	1	17.078	1	0	1	01	1	0	1
470			min	-62.904	3	0	1	.691	15	0	1	0	15	0	1
471		8		1152.678	1_	0	1	17.078	1	0	1	.012	1	0	1
472		-	min		3_	0	1	.691	15	0	1	0	15	0	1
473		9		1152.848	1_	0	1	17.078	1	0	1	.013	1	0	1
474			min	-62.649	3	0	1	.691	15	0	1	0	15	0	1
475		10		1153.019	1_	0	1	17.078	1	0	1	.015	1_	0	1
476			min	-62.521	3	0	1	.691	15	0	1	0	15	0	1
477		11		1153.189	_1_	0	1	17.078	1	0	1	.017	1	0	1
478			min		3_	0	1_	.691	15	0	1	0	15	0	1
479		12		1153.359	_1_	0	1	17.078	1	0	1	.019	1	0	1
480			min	-62.265	3	0	1	.691	15	0	1	0	15	0	1
481		13	1	1153.53	1_	0	1	17.078	1	0	1	.021	1	0	1
482			min	-62.138	3	0	1	.691	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

402	Member	Sec	may	Axial[lb]			LC 1			Torque[k-ft]	LC 1			_	LC 1
483 484		14	max min	1153.7 -62.01	<u>1</u> 3	0	1	17.078 .691	<u>1</u> 15	0	1	.023	15	0	1
485		15	max	1153.87	<u> </u>	0	1	17.078	1	0	1	.025	1	0	1
486		13	min	-61.882	3	0	1	.691	15	0	1	.023	15	0	1
487		16	_	1154.041	_ <u></u>	0	1	17.078	1	0	1	.027	1	0	1
488		10	min	-61.754	3	0	1	.691	15	0	1	.027	15	0	1
489		17		1154.211	<u> </u>	0	1	17.078	1	0	1	.029	1	0	1
490		17	min	-61.627	3	0	1	.691	15	0	1	.029	15	0	1
491		18	_	1154.382	<u>ა</u> 1	0	1	17.078	1 <u>15</u> 1	0	1	.031	1	0	1
491		10			3		1		15		1		15	0	1
		10	min	-61.499		0	1	.691		0	1	.001			1
493		19			1	0	1	17.078	1_	0	1	.033	1	0	1
494	M1	1	min	-61.371	3	0	3	.691 -4.045	15	0	1	.001	<u>15</u>	0	
495	IVIT		max	200.32	1_	524.262			<u>15</u>	0		.28	_	0	15
496			min	8.091	15	-447.795	1_	-99.494	1_	0	3	.011	15	014	1
497		2	max	201.032	1_	523.116	3_	-4.045	<u>15</u>	0	1_	.218	1	.264	1
498			min	8.306	<u>15</u>	-449.322	1_	-99.494	1_	0	3	.009	15	326	3
499		3	max	369.174	3_	516.795	1_	-4.013	<u>15</u>	0	3	.156	1	.533	1
500			min	-240.094	2	-377.943	3	-99.025	1_	0	1_	.006	15	641	3
501		4	max	369.708	3	515.268	1	-4.013	15	0	3	.095	1	.213	1
502		_	min	-239.382	2	-379.089	3	-99.025	1_	0	1_	.004	15	406	3
503		5	max	370.242	3_	513.741	1_	-4.013	<u>15</u>	0	3	.033	1_	005	15
504			min	-238.67	2	-380.234	3_	-99.025	_1_	0	1_	.001	15	17	3
505		6	max	370.776	3	512.214	1_	-4.013	15	0	3	001	15	.066	3
506			min	-237.958	2	-381.379	3	-99.025	1_	0	1	028	1	425	1
507		7	max	371.31	3	510.687	_1_	-4.013	15	0	3	004	15	.303	3
508			min	-237.246	2	-382.524	3	-99.025	1_	0	1	09	1	742	1
509		8	max	371.844	3	509.161	_1_	-4.013	15	0	3	006	15	.541	3
510			min	-236.534	2	-383.669	3	-99.025	1_	0	1_	151	1	-1.059	1
511		9	max	386.226	3	33.662	2	-6.249	15	0	9	.094	1	.634	3
512			min	-152.506	2	.466	15	-154.016	1_	0	3	.004	15	-1.206	1
513		10	max	386.76	3_	32.136	2	-6.249	<u>15</u>	0	9	0	15	.617	3
514			min	-151.794	2	.005	15	-154.016	1_	0	3	002	1	-1.217	1
515		11	max	387.294	3_	30.609	2	-6.249	<u>15</u>	0	9	004	15	.6	3
516			min	-151.082	2	-1.828	4	-154.016	1	0	3	097	1	-1.228	1
517		12	max	401.583	3	243.239	3	-3.854	15	0	1_	.148	1	.523	3
518			min	-89.473	10	-545.667	1	-95.239	1	0	3	.006	15	-1.084	1
519		13	max	402.117	3	242.094	3	-3.854	15	0	1	.089	1	.373	3
520			min	-88.88	10	-547.194	1	-95.239	1	0	3	.004	15	745	1
521		14	max	402.651	3	240.948	3	-3.854	15	0	1	.03	1	.223	3
522			min	-88.287	10	-548.721	1	-95.239	1	0	3	.001	15	405	1
523		15	max	403.185	3	239.803	3	-3.854	15	0	1	001	15	.073	3
524			min	-87.693	10	-550.248	1	-95.239	1	0	3	029	1	064	1
525		16	max	403.719	3	238.658	3	-3.854	15	0	1	004	15	.285	2
526			min	-87.1	10	-551.775	1	-95.239	1	0	3	088	1	075	3
527		17	max	404.253	3	237.513	3	-3.854	15	0	1	006	15	.621	1
528			min	-86.507	10	-553.302	1	-95.239	1	0	3	147	1	223	3
529		18	max	-8.321	15	519.522	1	-4.53	15	0	3	009	15	.31	1
530				-201.482	1	-190.862	3	-111.508	1	0	2	213	1	109	3
531		19	max		15	517.995	1	-4.53	15	0	3	011	15	.009	3
532			min	-200.77	1	-192.008	3	-111.508	1	0	2	282	1	012	1
533	M5	1	max		1	1743.644	3	0	1	0	1	0	1	.028	1
534			min	16.624	12	-1527.516	1	0	1	Ö	1	0	1	0	15
535		2	max		1	1742.499	3	0	1	0	1	0	1	.977	1
536			min		12	-1529.043	1	0	1	0	1	0	1	-1.079	3
537		3		1169.842	3	1503.814	1	0	1	0	1	0	1	1.893	1
538				-837.15	2	-1182.903	3	0	1	0	1	0	1	-2.128	3
539		4		1170.376	3	1502.287	1	0	1	0	1	0	1	.96	1
						,					<u> </u>	<u> </u>	<u> </u>		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-836.438	2	-1184.048	3	0	1	0	1	0	1	-1.394	3
541		5	max	1170.91	3	1500.76	1	0	1	0	1	0	_1_	.033	9
542			min	-835.726	2	-1185.194	3	0	1	0	1	0	1_	659	3
543		6	max	1171.444	3	1499.233	1	0	1	0	1	0	1	.077	3
544			min	-835.014	2	-1186.339	3	0	1	0	1	0	1	903	1
545		7	max	1171.978	3	1497.706	1	0	1	0	1	0	1_	.814	3
546			min	-834.302	2	-1187.484	3	0	1	0	1	0	1	-1.833	1
547		8	max	1172.512	3	1496.179	1	0	1	0	1	0	1	1.551	3
548			min	-833.59	2	-1188.629	3	0	1	0	1	0	1	-2.762	1
549		9	max	1196.957	3	111.836	2	0	1	0	1	0	1	1.792	3
550			min	-659.94	2	.465	15	0	1	0	1	0	1	-3.131	1
551		10	max	1197.491	3	110.309	2	0	1_	0	1	0	1_	1.729	3
552			min	-659.228	2	.004	15	0	1	0	1	0	1	-3.169	1
553		11	max	1198.025	3	108.782	2	0	1	0	1	0	1	1.667	3
554			min	-658.516	2	-1.57	4	0	1	0	1	0	1	-3.207	1
555		12	max	1222.659	3	740.664	3	0	1	0	1	0	1	1.459	3
556			min	-484.879	2	-1619.007	1	0	1	0	1	0	1	-2.853	1
557		13	max	1223.193	3	739.518	3	0	1	0	1	0	1	1	3
558			min	-484.167	2	-1620.534	1	0	1	0	1	0	1	-1.848	1
559		14	max	1223.727	3	738.373	3	0	1	0	1	0	1	.541	3
560			min	-483.455	2	-1622.061	1	0	1	0	1	0	1	842	1
561		15	max	1224.261	3	737.228	3	0	1	0	1	0	1	.223	2
562			min	-482.743	2	-1623.588	1	0	1	0	1	0	1	0	13
563		16	max	1224.795	3	736.083	3	0	1	0	1	0	1	1.174	1
564			min	-482.031	2	-1625.115	1	0	1	0	1	0	1	374	3
565		17	max		3	734.938	3	0	1	0	1	0	1	2.183	1
566			min	-481.319	2	-1626.642	1	0	1	0	1	0	1	83	3
567		18	max	-17.332	12	1768.656	1	0	1	0	1	0	1	1.122	1
568		1	min	-438.921	1	-665.933	3	0	1	0	1	0	1	433	3
569		19	max	-16.976	12	1767.129	1	0	1	0	1	0	1	.024	1
570		10	min	-438.209	1	-667.078	3	0	1	Ö	1	0	1	019	3
571	M9	1	max	200.32	1	524.262	3	99.494	1	0	3	011	15	0	15
572	1110		min	8.091	15	-447.795	1	4.045	15	0	1	28	1	014	1
573		2	max	201.032	1	523.116	3	99.494	1	0	3	009	15	.264	1
574		_	min	8.306	15	-449.322	1	4.045	15	0	1	218	1	326	3
575		3	max	369.174	3	516.795	1	99.025	1	0	1	006	15	.533	1
576			min	-240.094	2	-377.943	3	4.013	15	0	3	156	1	641	3
577		4	max	369.708	3	515.268	1	99.025	1	0	1	004	15	.213	1
578			min	-239.382	2	-379.089	3	4.013	15	0	3	095	1	406	3
579		5	max		3	513.741	1	99.025	1	0	1	001	15	005	15
580			min		2	-380.234		4.013	15	0	3	033	1	17	3
581		6	max		3	512.214	1	99.025	1	0	1	.028	1	.066	3
582			min	-237.958	2	-381.379		4.013	15	0	3	.001	15	425	1
583		7		371.31	3	510.687	1	99.025	1	0	1	.09	1	.303	3
584			min	-237.246	2	-382.524	3	4.013	15	0	3	.004	15	742	1
585		8		371.844	3	509.161	1	99.025	1	0	1	.151	1	.541	3
586			min	-236.534	2	-383.669	3	4.013	15	0	3	.006	15	-1.059	1
587		9			3	33.662	2	154.016	1	0	3	004	15	.634	3
588		9	max	-152.506		.466	15		15	0	9	004	1	-1.206	1
		10			2								1		
589		10	max		3	32.136	2	154.016	1	0	3	.002		.617	3
590		4.4		-151.794	2	.005	15		15	0	9	0	15	-1.217	_
591		11_	max		3	30.609	2	154.016	1	0	3	.097	1	.6	3
592		40	min	-151.082	2	-1.828	4	6.249	15	0	9	.004	15	-1.228	1
593		12		401.583	3	243.239	3	95.239	1	0	3	006	15	.523	3
594		40	min	-89.473	10	-545.667	1	3.854	15	0	1	148	1_	-1.084	1
595		13		402.117	3	242.094	3	95.239	1	0	3	004	15	.373	3
596			min	-88.88	10	-547.194	1	3.854	15	0	1	089	_1_	745	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	402.651	3	240.948	3	95.239	1	0	3	001	15	.223	3
598			min	-88.287	10	-548.721	1	3.854	15	0	1	03	1	405	1
599		15	max	403.185	3	239.803	3	95.239	1	0	3	.029	1	.073	3
600			min	-87.693	10	-550.248	1	3.854	15	0	1	.001	15	064	1
601		16	max	403.719	3	238.658	3	95.239	1	0	3	.088	1	.285	2
602			min	-87.1	10	-551.775	1	3.854	15	0	1	.004	15	075	3
603		17	max	404.253	3	237.513	3	95.239	1	0	3	.147	1	.621	1
604			min	-86.507	10	-553.302	1	3.854	15	0	1	.006	15	223	3
605		18	max	-8.321	15	519.522	1	111.508	1	0	2	.213	1	.31	1
606			min	-201.482	1	-190.862	3	4.53	15	0	3	.009	15	109	3
607		19	max	-8.106	15	517.995	1	111.508	1	0	2	.282	1	.009	3
608			min	-200.77	1	-192.008	3	4.53	15	0	3	.011	15	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
1	M13	1	max	0	1	<u>.175</u>	1	.007	3 1.176e-2	_1_	NC	_1_	NC	1
2			min	0	15	023	3	003	2 -1.506e-3	3	NC	1_	NC	1
3		2	max	0	1	.209	3	.046	1 1.31e-2	1_	NC	5	NC	2
4			min	0	15	004	9	.002	10 -1.379e-3	3	1008.321	3	5259.569	1
5		3	max	0	1	.397	3	.108	1 1.444e-2	1_	NC	5	NC	3
6			min	0	15	128	1	.005	15 -1.252e-3	3	556.651	3	2203.377	1
7		4	max	0	1	.512	3	.16	1 1.578e-2	1	NC	5	NC	3
8			min	0	15	199	1	.007	15 -1.126e-3	3	436.986	3	1474.398	
9		5	max	0	1	.541	3	.187	1 1.711e-2	1	NC	5	NC	3
10			min	0	15	196	1	.008	15 -9.994e-4	3	415.155	3	1264.52	1
11		6	max	0	1	.484	3	.179	1 1.845e-2	1	NC	5	NC	3
12			min	0	15	122	1	.007	15 -8.729e-4	3	461.785	3	1316.687	1
13		7	max	0	1	.359	3	.14	1 1.979e-2	1	NC	5	NC	3
14			min	0	15	008	9	.006	15 -7.463e-4	3	612.129	3	1687.52	1
15		8	max	0	1	.2	3	.081	1 2.112e-2	1	NC	1	NC	3
16			min	0	15	.005	15	0	10 -6.198e-4	3	1047.172	3	2950.906	1
17		9	max	0	1	.297	1	.024	3 2.246e-2	1	NC	4	NC	1
18			min	0	15	.009	15	007	10 -4.932e-4	3	1917.399	1	NC	1
19		10	max	0	1	.358	1	.022	3 2.38e-2	1	NC	3	NC	1
20			min	0	1	009	3	015	2 -3.667e-4	3	1281.218	1	NC	1
21		11	max	0	15	.297	1	.024	3 2.246e-2	1	NC	4	NC	1
22			min	0	1	.009	15	007	10 -4.932e-4	3	1917.399	1	NC	1
23		12	max	0	15	.2	3	.081	1 2.112e-2	1	NC	1	NC	3
24			min	0	1	.005	15	0	10 -6.198e-4	3	1047.172	3	2950.906	1
25		13	max	0	15	.359	3	.14	1 1.979e-2	1	NC	5	NC	3
26			min	0	1	008	9	.006	15 -7.463e-4	3	612.129	3	1687.52	1
27		14	max	0	15	.484	3	.179	1 1.845e-2	1	NC	5	NC	3
28			min	0	1	122	1	.007	15 -8.729e-4	3	461.785	3	1316.687	1
29		15	max	0	15	.541	3	.187	1 1.711e-2	1	NC	5	NC	3
30			min	0	1	196	1	.008	15 -9.994e-4	3	415.155	3	1264.52	1
31		16	max	0	15	.512	3	.16	1 1.578e-2	1	NC	5	NC	3
32			min	0	1	199	1	.007	15 -1.126e-3	3	436.986	3	1474.398	
33		17	max	0	15	.397	3	.108	1 1.444e-2	1	NC	5	NC	3
34			min	0	1	128	1	.005	15 -1.252e-3	3	556.651	3	2203.377	1
35		18	max	0	15	.209	3	.046	1 1.31e-2	1	NC	5	NC	2
36			min	0	1	004	9	.002	10 -1.379e-3	3	1008.321	3	5259.569	1
37		19	max	0	15	.175	1	.007	3 1.176e-2	1	NC	1	NC	1
38			min	0	1	023	3	003	2 -1.506e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.258	3	.007	3 7.146e-3	1	NC	1	NC	1
40			min	0	15	547	1	003	2 -4.005e-3	3	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
41		2	max	0	1	.504	3	.031	1 8.414e-3	1	NC	5	NC	2
42			min	0	15	885	1	0	10 -4.807e-3	3	692.317	1	8099.03	1
43		3	max	0	1	.715	3	.084	1 9.683e-3	1	NC	15	NC	3
44			min	0	15	-1.181	1	.004	15 -5.609e-3	3	368.851	1	2840.125	1
45		4	max	0	1	.868	3	.134	1 1.095e-2	1	9360.02	15	NC	3
46			min	0	15	-1.407	1	.006	15 -6.411e-3	3	272.04	1	1764.819	1
47		5	max	0	1	.95	3	.163	1 1.222e-2	1	8073.641	15	NC	3
48			min	0	15	-1.547	1	.007	15 -7.213e-3	3	234.021	1_	1452.977	1
49		6	max	0	1	.961	3	.161	1 1.349e-2	1	7703.398	15	NC	3
50			min	0	15	-1.599	1	.007	15 -8.015e-3	3	222.449	1	1473.794	1
51		7	max	0	1	.912	3	.128	1 1.476e-2	1	7921.422	15	NC	3
52			min	0	15	-1.575	1	.005	15 -8.817e-3	3	227.588	1	1853.661	1
53		8	max	0	1	.828	3	.075	1 1.603e-2	1	8589.309	15	NC	2
54			min	0	15	-1.501	1	0	10 -9.619e-3	3	245.205	1	3189.57	1
55		9	max	0	1	.741	3	.021	1 1.729e-2	1		15	NC	1
56			min	0	15	-1.416	1	006	10 -1.042e-2	3	269.081	1	NC	1
57		10	max	0	1	.7	3	.02	3 1.856e-2	1_		15	NC	1
58			min	0	1	-1.374	1	014	2 -1.122e-2	3	282.906	1	NC	1
59		11	max	0	15	.741	3	.021	1 1.729e-2	1_		15	NC	1
60			min	0	1	-1.416	1	006	10 -1.042e-2	3	269.081	1	NC	1
61		12	max	0	15	.828	3	.075	1 1.603e-2	1_		<u>15</u>	NC	2
62			min	0	1	<u>-1.501</u>	1	0	10 -9.619e-3	3	245.205	1	3189.57	1
63		13	max	0	15	.912	3	.128	1 1.476e-2	1		15	NC	3
64			min	0	1	-1.575	1	.005	15 -8.817e-3	3	227.588	1_	1853.661	1
65		14	max	0	15	.961	3	.161	1 1.349e-2	1_		<u>15</u>	NC	3
66			min	0	1	-1.599	1	.007	15 -8.015e-3	3	222.449	1_	1473.794	1
67		15	max	0	15	.95	3	.163	1 1.222e-2	1_		<u>15</u>	NC	3
68			min	0	1	-1.547	1	.007	15 -7.213e-3	3	234.021	1_	1452.977	1
69		16	max	0	15	.868	3	.134	1 1.095e-2	1		15	NC	3
70			min	0	1	-1.407	1	.006	15 -6.411e-3	3	272.04	1	1764.819	1
71		17	max	0	15	.715	3	.084	1 9.683e-3	1_		<u>15</u>	NC	3
72			min	0	1	-1.181	1	.004	15 -5.609e-3	3	368.851	1_	2840.125	1
73		18	max	0	15	.504	3	.031	1 8.414e-3	1_	NC	5	NC	2
74			min	0	1	885	1	0	10 -4.807e-3	3	692.317	1_	8099.03	1
75		19	max	00	15	.258	3	.007	3 7.146e-3	1_	NC	1_	NC	1
76			min	0	1	547	1	003	2 -4.005e-3	3	NC	1_	NC	1
77	<u>M15</u>	1_	max	00	15	.265	3	.006	3 3.318e-3	3_	NC	1_	NC	1
78			min	0	1	546	1	003	2 -7.294e-3	1_	NC	1_	NC	1
79		2	max	0	15	.426	3	.031	1 3.982e-3	3	NC	5	NC	2
80			min	0	1	<u>912</u>	1	0	10 -8.599e-3	1_	638.68	1_	8029.197	1
81		3	max	0	15	.57	3	.085	1 4.647e-3	3		<u>15</u>	NC	3
82			min	0	1	-1.232	1	.004	15 -9.903e-3	1_	341.244	1_	2825.749	
83		4	max	0	15	.682	3	.135	1 5.311e-3	3_		<u>15</u>	NC	3
84			min	0	1	<u>-1.471</u>	1	.006	15 -1.121e-2	1_	252.883	1_	1757.952	1
85		5_	max	0	15	.756	3	.163	1 5.975e-3	3_		<u>15</u>	NC	3
86			min	0	1	<u>-1.614</u>	1	.007	15 -1.251e-2	1	219.081	1_	1447.923	1
87		6	max	0	15	.79	3	.161	1 6.64e-3	3		<u>15</u>	NC 4 400 FF0	3
88		-	min	0	1	<u>-1.658</u>	1	.007	15 -1.382e-2	1_			1468.559	
89		7	max	0	15	.79	3	.129	1 7.304e-3	3		<u>15</u>	NC	3
90		_	min	0	1	<u>-1.619</u>	1	.005	15 -1.512e-2	1_		1_	1845.708	
91		8	max	0	15	.766	3	.076	1 7.968e-3	3		<u>15</u>	NC 0407 F07	2
92			min	0	1	<u>-1.525</u>	1	.001	10 -1.643e-2	1_	239.02	<u>1</u>	3167.537	1
93		9	max	0	15	.734	3	.022	1 8.633e-3	3_		<u>15</u>	NC NC	1
94		40	min	0	1	-1.422	1	005	10 -1.773e-2	1_	267.081	1_	NC NC	1
95		10	max	0	1	.718	3	.018	3 9.297e-3	3		<u>15</u>	NC NC	1
96		4.4	min	0	1	<u>-1.371</u>	1	013	2 -1.904e-2	1_	283.491	1_	NC NC	1
97		11	max	0	1	.734	3	.022	1 8.633e-3	3	9518.163	<u>15</u>	NC	_1_

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
98			min	0	15	-1.422	1	005	10 -1.773e-2	1_	267.081	1_	NC	1
99		12	max	0	1	.766	3	.076	1 7.968e-3	3	8612.003	15	NC	2
100			min	0	15	-1.525	1	.001	10 -1.643e-2	1	239.02	1	3167.537	1
101		13	max	0	1	.79	3	.129	1 7.304e-3	3	7939.066	15	NC	3
102			min	0	15	-1.619	1	.005	15 -1.512e-2	1	218.09	1	1845.708	1
103		14	max	0	1	.79	3	.161	1 6.64e-3	3	7718.037	15	NC	3
104			min	0	15	-1.658	1	.007	15 -1.382e-2	1	210.321	1	1468.559	1
105		15	max	0	1	.756	3	.163	1 5.975e-3	3	8087.032	15	NC	3
106			min	0	15	-1.614	1	.007	15 -1.251e-2	1	219.081	1	1447.923	1
107		16	max	0	1	.682	3	.135	1 5.311e-3	3	9373.932	15	NC	3
108			min	0	15	-1.471	1	.006	15 -1.121e-2	1	252.883	1	1757.952	1
109		17	max	0	1	.57	3	.085	1 4.647e-3	3	NC	15	NC	3
110			min	0	15	-1.232	1	.004	15 -9.903e-3	1	341.244	1	2825.749	1
111		18	max	0	1	.426	3	.031	1 3.982e-3	3	NC	5	NC	2
112			min	0	15	912	1	0	10 -8.599e-3	1	638.68	1	8029.197	1
113		19	max	0	1	.265	3	.006	3 3.318e-3	3	NC	1	NC	1
114		1	min	0	15	546	1	003	2 -7.294e-3	1	NC	1	NC	1
115	M16	1	max	0	15	.17	1	.005	3 6.089e-3	3	NC	1	NC	1
116	14110		min	001	1	091	3	003	2 -1.104e-2	1	NC	1	NC	1
117		2	max	0	15	.005	4	.045	1 6.991e-3	3	NC	5	NC	2
118			min	0	1	054	2	.002	15 -1.221e-2	1	1166.982	1	5327.944	1
119		3	max	0	15	.025	3	.107	1 7.892e-3	3	NC	5	NC	3
120			min	0	1	211	2	.004	15 -1.337e-2	1	653.431	1	2218.5	1
121		4	max	0	15	.048	3	.16	1 8.794e-3	3	NC	5	NC	3
122		-	min	0	1	299	2	.007	15 -1.453e-2	1	526.817	1	1479.55	1
123		5	max	0	15	.04	3	.186	1 9.696e-3	3	NC	5	NC	3
124			min	0	1	305	2	.008	15 -1.57e-2	1	520.348	2	1265.55	1
125		6		0	15	.004	12	.008 .18	1 1.06e-2	3	NC	5	NC	3
126		-	max	0	1	23	2	.007	15 -1.686e-2	1	623.301	2	1313.815	
127		7	min	0	15	.005	4	.141	1 1.15e-2	3	NC	5	NC	3
128			max	0	1	094	2	.006	15 -1.802e-2	1	979.322	2	1675.785	
129		8			15	.122	1	.082	1 1.24e-2	3	NC	4	NC	3
130		0	max	0	1	128	3	.003	10 -1.919e-2	1	3205.164	2	2896	1
131		9			15	<u>126</u> .276	1	.003 .024	1 1.33e-2	3	NC		NC	1
		9	max	0	1		3			<u>3</u>		<u>5</u> 1	NC NC	1
132		10	min	0	1	189		<u>004</u>		•	2216.637	•		1
133		10	max	0	1	.345	3	.016	3 1.42e-2	3	NC	<u>5</u> 1	NC NC	1
134		44	min	0		216		012	2 -2.151e-2	1	1343.296		NC NC	
135		11	max	0	1	.276	1	.024	1 1.33e-2	3	NC 2010 COZ	<u>5</u>	NC NC	1
136		40	min	0	15	189	3	004	10 -2.035e-2	1_	2216.637	-	NC NC	
137		12	max	0	1	.122	1	.082	1 1.24e-2	3	NC	4	NC	3
138		10	min		15	128	3	.003	10 -1.919e-2	2	3205.164	2	2896	1
139		13	max	0	1	.005	4	.141	1 1.15e-2	3	NC	5	NC 1675 705	3
140		4.4	min	0	15	<u>094</u>	2	.006	15 -1.802e-2	1	979.322	2	1675.785	
141		14	max	0	1	.004	12	.18	1 1.06e-2	3	NC	5	NC	3
142		4.5	min	0	15	23	2	.007	15 -1.686e-2	1	623.301	2	1313.815	
143		15	max	0	1	.04	3	.186	1 9.696e-3	3	NC 520.249	5	NC 1265 FF	3
144		40	min	0	15	305	2	.008	15 -1.57e-2	1_	520.348	2	1265.55	
145		16	max	0	1	.048	3	.16	1 8.794e-3	3	NC FOC 047	5_4	NC 4.470.FF	3
146		47	min	0	15	299	2	.007	15 -1.453e-2	1_	526.817	1_	1479.55	1
147		17	max	0	1	.025	3	.107	1 7.892e-3	3	NC CEO 404	5	NC 2040 F	3
148		40	min	0	15	211	2	.004	15 -1.337e-2	1_	653.431	1_	2218.5	1
149		18	max	0	1	.005	4	.045	1 6.991e-3	3	NC	5_	NC 5007.044	2
150		4.0	min	0	15	054	2	.002	15 -1.221e-2	1_	1166.982	1_	5327.944	
151		19	max	.001	1	.17	1	.005	3 6.089e-3	3	NC	1_	NC NC	1
152	140		min	0	15	091	3	003	2 -1.104e-2	1_	NC NC	1_	NC NC	1
153	M2	1	max	.007	1	.006	2	.013	1 -1.218e-5		NC	1	NC 5000 400	2
154			min	006	3	01	3	0	15 -3.008e-4	<u> 1</u>	NC	<u> 1</u>	5303.162	1

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC				LC	(n) L/z Ratio	
155		2	max	.007	1	.005	2	.012	1	-1.149e-5	<u> 15</u>	NC	_1_	NC	2
156			min	006	3	01	3	0	15	-2.838e-4	1	NC	1	5782.309	1
157		3	max	.006	1	.004	2	.011	1	-1.08e-5	15	NC	1	NC	2
158			min	006	3	01	3	0	15	-2.668e-4	1	NC	1	6352.947	1
159		4	max	.006	1	.003	2	.01	1	-1.011e-5	15	NC	1	NC	2
160			min	005	3	01	3	0	15	-2.498e-4	1	NC	1	7039.222	1
161		5	max	.005	1	.002	2	.009	1	-9.425e-6	15	NC	1	NC	2
162			min	005	3	01	3	0	15	-2.328e-4	1	NC	1	7874.054	1
163		6	max	.005	1	.001	2	.008	1	-8.736e-6	15	NC	1	NC	2
164			min	005	3	009	3	0	15	-2.157e-4	1	NC	1	8903.261	1
165		7	max	.005	1	0	2	.007	1	-8.048e-6	15	NC	1	NC	1
166			min	004	3	009	3	0	_	-1.987e-4	1	NC	1	NC	1
167		8	max	.004	1	0	2	.006	1	-7.36e-6	15	NC	1	NC	1
168			min	004	3	009	3	0	15	-1.817e-4	1	NC	1	NC	1
169		9	max	.004	1	001	2	.005	1	-6.672e-6	•	NC	1	NC	1
170			min	004	3	008	3	0		-1.647e-4	1	NC	1	NC	1
171		10	max	.003	1	001	15	.004	1	-5.984e-6		NC	-	NC	1
172		10	min	003	3	008	3	0		-1.476e-4	1	NC	1	NC	1
		11			1	008 001		.003			15	NC	1	NC	1
173		11	max	.003			15		1	-5.296e-6			1		1
174		40	min	003	3	007	3	0		-1.306e-4	1_	NC NC	_	NC NC	_
175		12	max	.003	1	001	15	.003	1	-4.607e-6		NC NC	1	NC NC	1
176		40	min	002	3	007	3	0	15	-1.136e-4	1_	NC NC	1_	NC NC	1
177		13	max	.002	1	001	15	.002	1	-3.919e-6		NC	1	NC	1
178			min	002	3	006	3	0	15	-9.659e-5	_1_	NC	1_	NC	1
179		14	max	.002	1	001	15	.001	1	-3.231e-6		NC	1_	NC	1
180			min	002	3	005	4	0		-7.957e-5	_1_	NC	1_	NC	1
181		15	max	.002	1	001	15	0	1	-2.543e-6		NC	_1_	NC	1
182			min	001	3	005	4	0	15	-6.255e-5		NC	1_	NC	1
183		16	max	.001	1	0	15	0	1	-1.855e-6	15	NC	_1_	NC	1
184			min	001	3	004	4	0	15	-4.553e-5	1_	NC	1_	NC	1
185		17	max	0	1	0	15	0	1	-1.167e-6	<u>15</u>	NC	_1_	NC	1_
186			min	0	3	003	4	0	15	-2.851e-5	1_	NC	1_	NC	1
187		18	max	0	1	0	15	0	1	-4.785e-7	<u> 15</u>	NC	_1_	NC	1
188			min	0	3	002	4	0	15	-1.149e-5	1	NC	1	NC	1
189		19	max	0	1	0	1	0	1	5.534e-6	1_	NC	1	NC	1
190			min	0	1	0	1	0	1	7.309e-8	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-1.173e-7	12	NC	1	NC	1
192			min	0	1	0	1	0	1	-3.272e-6	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	3.217e-5	1	NC	1	NC	1
194			min	0	2	003	4	0	12		15	NC	1	NC	1
195		3	max	0	3	001	15	0	1	6.761e-5		NC	1	NC	1
196			min	0	2	006	4	0	12	2.734e-6		NC	1	NC	1
197		4	max	0	3	002	15	0	1	1.031e-4	1	NC	1	NC	1
198			min	0	2	009	4	0	12	4.165e-6	15	NC	1	NC	1
199		5	max	.001	3	003	15	0	1	1.385e-4	1	NC	1	NC	1
200			min	0	2	012	4	0	12	5.597e-6		8792.805	4	NC	1
201		6	max	.002	3	003	15	0	1	1.739e-4	1	NC	2	NC	1
202			min	001	2	005 015	4	0	15	7.028e-6		7098.313	4	NC	1
203		7		.002	3	004	15	0	1	2.094e-4	1	NC	5	NC	1
204			max		2			0		8.46e-6		6079.122	4	NC NC	1
		8	min	001		017	15		15	8.46e-6 2.448e-4					_
205		Ö	max	.002	3	004	15	.001	1		1 1E	NC 5450 404	5_4	NC NC	1
206		_	min	002	2	019	4	0	15	9.891e-6		5450.191	4_	NC NC	1
207		9	max	.003	3	005	15	.002	1	2.803e-4	1_	NC FOZZ 440	5_	NC	1
208			min	002	2	02	4	0	15	1.132e-5		5077.449	4_	NC	1
209		10	max	.003	3	005	15	.002	1	3.157e-4	_1_	NC	5	NC	1
210			min	002	2	021	4	0	15	1.275e-5	15	4895.736	4	NC	1
211		11	max	.003	3	005	15	.003	1	3.512e-4	1_	NC	5	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]					LC	(n) L/z Ratio	LC
212			min	002	2	021	4	0	15	1.419e-5		4878.202	4	NC	1
213		12	max	.003	3	005	15	.003	1	3.866e-4	_1_	NC	5	NC	1
214			min	003	2	021	4	0	15	1.562e-5	15	5026.009	4	NC	1
215		13	max	.004	3	005	15	.004	1_	4.22e-4	_1_	NC	5_	NC	1
216			min	003	2	02	4	0	15	1.705e-5	15	5370.08	4_	NC	1
217		14	max	.004	3	004	15	.005	1	4.575e-4	_1_	NC	5	NC	1
218		<u> </u>	min	003	2	018	4	0	15	1.848e-5	<u>15</u>	5987.22	4	NC	1
219		15	max	.004	3	004	15	.006	1	4.929e-4	1_	NC 70.47.007	3	NC	1
220		40	min	003	2	01 <u>5</u>	4	0	15	1.991e-5		7047.997	4	NC NC	1
221		16	max	.005	3	003	15	.007	1	5.284e-4	1_	NC	1_	NC	1
222		47	min	003	2	012	4	0	15	2.134e-5		8965.765	4	NC NC	1
223		17	max	.005	3	002	15	.009	1	5.638e-4	1_	NC NC	1	NC	1
224		40	min	004	2	009	4	0	15	2.277e-5	<u>15</u>	NC NC	1_	NC NC	1
225		18	max	.005	3	001	15	.01	1	5.993e-4	1_	NC NC	1	NC	2
226		40	min	004	2	006	1	0	15	2.421e-5	<u>15</u>	NC NC	1_	9829.789	1
227		19	max	.006	3	0	15	.012	1	6.347e-4	1_	NC NC	1	NC 0.400,000	2
228	N 4 4	4	min	004	2	003	1	0	15	2.564e-5	15	NC NC	1_	8426.925	1
229	M4	1_	max	.003	1	.004	2	0	15	1.568e-4	1_	NC NC	1	NC 0040400	3
230			min	0	3	006	3	012	1_1_	6.364e-6	<u>15</u>	NC NC	1_	2049.186	1
231		2	max	.003	1	.004	2	0	15	1.568e-4	1_	NC NC	<u>1</u> 1	NC 222C C44	3
232		2	min	0	3	005	3	011	1	6.364e-6	<u>15</u>	NC NC		2226.611	1
233		3	max	.002	3	.003	2	0	15	1.568e-4	1_	NC NC	1	NC	3
234		1	min	0		005	3	<u>01</u>	1	6.364e-6	<u>15</u>	NC NC	1_	2437.878	1
235		4	max	.002	1	.003	2	0	15	1.568e-4	1_	NC NC	1	NC	3
236		E	min	0	3	005	3	009	1 1 5	6.364e-6	<u>15</u>	NC NC	1	2691.76	1
237		5	max	.002	1	.003	2	0	15	1.568e-4	1_	NC NC	1	NC	3
238			min	0	3	005	3	008	1	6.364e-6	<u>15</u>	NC NC		3000.179	1
239		6	max	.002	1	.003	2	0	15	1.568e-4	1_	NC NC	1	NC	3
240		7	min	0	3	004	3	007	1_1_	6.364e-6	<u>15</u>	NC NC		3379.672	1
241			max	.002 0	3	.003 004	3	0 006	1 <u>5</u>	1.568e-4 6.364e-6	<u>1</u> 15	NC NC	<u>1</u> 1	NC 3853.708	3
243		8	min	.002	1	.002	2	006 0	15	1.568e-4	<u>15</u> 1	NC NC	1	NC	2
244		<u> </u>	max	.002	3	004	3	006	1	6.364e-6	15	NC NC	1	4456.518	1
245		9		.002	1	.002	2	<u>008</u> 0	15	1.568e-4	1 1	NC NC	1	NC	2
246		9	max	.002	3	003	3	005	1	6.364e-6	15	NC NC	1	5239.628	1
247		10	min max	.001	1	.002	2	<u>005</u> 0	15	1.568e-4	1 <u>1</u>	NC NC	1	NC	2
248		10	min	0	3	003	3	004	1	6.364e-6	15	NC	1	6283.577	1
249		11	max	.001	1	.002	2	- <u>004</u> 0	15	1.568e-4	1	NC	1	NC	2
250			min	0	3	003	3	003	1	6.364e-6	15	NC	1	7720.103	
251		12	max	.001	1	.003	2	<u>003</u> 0	15	1.568e-4	1	NC	1	NC	2
252		12	min		3	002	3	003	1	6.364e-6			1	9777.057	
253		13	max	0	1	.002	2	<u>003</u> 0		1.568e-4	1	NC	1	NC	1
254		13	min	0	3	002	3	002	1	6.364e-6	15	NC	1	NC	1
255		14	max	0	1	.002	2	<u>002</u> 0		1.568e-4	1	NC	1	NC	1
256		14	min	0	3	002	3	001	1	6.364e-6	15	NC	1	NC	1
257		15	max	0	1	- <u>002</u> 0	2	0	15	1.568e-4	1 1	NC	1	NC	1
258		13	min	0	3	001	3	0	1	6.364e-6	15	NC	1	NC	1
259		16	max	0	1	0	2	0	15		1	NC	1	NC	1
260		10	min	0	3	0	3	0	1	6.364e-6	15	NC NC	1	NC NC	1
261		17	max	0	1	0	2	0	15	1.568e-4	1 <u>15</u> 1	NC NC	1	NC NC	1
262		17	min	0	3	0	3	0	1	6.364e-6	15	NC NC	1	NC NC	1
263		18	max	0	1	0	2	0	15	1.568e-4	1	NC	1	NC	1
264		10	min	0	3	0	3	0	1	6.364e-6	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.568e-4	1	NC	1	NC	1
266		13	min	0	1	0	1	0	1	6.364e-6	15	NC NC	1	NC NC	1
267	M6	1	max	.022	1	.024	2	0	1	0.304e-0	<u>15</u> 1	NC NC	3	NC NC	1
268	IVIO		min	021	3	032	3	0	1	0	1	2895.486	2	NC	1
200			11////	021	J	032	J	U		U		2030.400		INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	1		(n) L/y Ratio L			
269		2	max	.021	1	.022	2	0	1	0	_1_		3	NC	1
270			min	02	3	031	3	0	1	0	<u>1</u>		2	NC	1
271		3	max	.02	1	.019	2	0	1	0	_1_		3	NC	1
272			min	018	3	029	3	0	1	0	1_		2	NC	1
273		4	max	.018	1	.017	2	0	1	0	_1_		3	NC	1
274		_	min	017	3	027	3	0	1	0	1_		2	NC	1
275		5	max	.017	1	.015	2	0	1	0	1		3_	NC	1
276			min	016	3	026	3	0	1	0	1_		2	NC	1
277		6	max	.016	1	.013	2	0	1	0	1		3	NC	1
278		_	min	015	3	024	3	0	1	0	1_		2	NC	1
279		7	max	.015	1	.011	2	0	1	0	<u>1</u>		1_	NC	1
280			min	014	3	022	3	0	1	0	<u>1</u>		2	NC	1
281		8	max	.013	1	.009	2	0	1	0	_1_		1	NC	1
282			min	013	3	021	3	0	1	0	1_		2	NC	1
283		9	max	.012	1	.007	2	0	1	0	_1_		1_	NC	1
284			min	012	3	019	3	0	1	0	1_		2	NC	1
285		10	max	.011	1	.006	2	0	1	0	1		1_	NC NC	1
286			min	01	3	017	3	0	1	0	1		1	NC	1
287		11	max	.01	1	.004	2	0	1	0	1		1	NC	1
288		4.0	min	009	3	<u>015</u>	3	0	1	0	1		1_	NC	1
289		12	max	.009	1	.003	2	0	1	0	<u>1</u>		1_	NC	1
290			min	008	3	014	3	0	1	0	<u>1</u>		1	NC	1
291		13	max	.007	1	.002	2	0	1	0	1_		1_	NC	1
292			min	007	3	012	3	0	1	0	1_		1	NC	1
293		14	max	.006	1	0	2	0	1	0	_1_		1_	NC	1
294			min	006	3	01	3	0	1	0	<u>1</u>	110	1	NC	1
295		15	max	.005	1	0	2	0	1	0	1		1	NC	1
296			min	005	3	008	3	0	1	0	<u>1</u>		1_	NC	1
297		16	max	.004	1	0	2	0	1	0	_1_		1	NC	1
298			min	003	3	006	3	0	1	0	_1_		1	NC	1
299		17	max	.002	1	0	2	0	1	0	<u>1</u>		1_	NC	1
300			min	002	3	004	3	0	1	0	<u>1</u>		1	NC	1
301		18	max	.001	1	0	2	0	1	0	_1_		1_	NC	1
302			min	001	3	002	3	0	1	0	1_		1	NC	1
303		19	max	0	1	0	1	0	1	0	1		1	NC	1
304			min	0	1	0	1	0	1	0	1_	110	1	NC	1
305	<u>M7</u>	1_	max	0	1	0	1	0	1	0	1		1_	NC	1
306			min	0	1	0	1	0	1	0	<u>1</u>		1_	NC	1
307		2	max	0	3	0	15	0	1	0	_1_		1	NC	1
308			min	0	2	003	3	0	1	0	1_	110	1_	NC NC	1
309		3	max	.002	3	001	15	0	1	0	1	NC NC	1	NC	1
310		4	min	002	2	006	3	0	1	0	1_		1_	NC NC	1
311		4	max	.003	3	002	15	0	1	0	1		1	NC NC	1
312		_	min	003	2	009	3	0	1	0	1_		1	NC NC	1
313		5	max	.004	3	003	15	0	1	0	1		1	NC NC	1
314		_	min	004	2	012	4	0	1	0	1_	000 0 .	4	NC NC	1
315		6	max	.005	3	003	15	0	1	0	1		1_	NC NC	1
316		_	min	005	2	014	4	0	1	0	1_		4	NC NC	1
317		7	max	.006	3	004	15	0	1	0	1		1	NC NC	1
318			min	006	2	017	4	0	1	0	1_		4_	NC NC	1
319		8	max	.007	3	004	15	0	1	0	1		5_	NC NC	1
320			min	006	2	019	4	0	1	0	1_		4_	NC NC	1
321		9	max	.008	3	005	15	0	1	0	1		5	NC NC	1
322		4.0	min	007	2	02	4	0	1	0	1_		4	NC NC	1
323		10	max	.009	3	005	15	0	1	0	1		5	NC NC	1
324			min	008	2	021	4	0	1	0	1_		4	NC NC	1
325		11	max	.01	3	005	15	0	1	0	_1_	NC	5	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	_LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			
326			min	009	2	021	4	0	1	0	1_	4963.814	4	NC	1
327		12	max	.011	3	005	15	0	1	0	_1_	NC	5_	NC	1
328			min	01	2	021	4	0	1	0	1	5110.047	4	NC	1
329		13	max	.012	3	005	15	0	1	0	1	NC	5	NC	1
330			min	011	2	02	4	0	1	0	1	5456.141	4	NC	1
331		14	max	.013	3	004	15	0	1	0	1	NC	5	NC	1
332			min	012	2	018	4	0	1	0	1	6079.721	4	NC	1
333		15	max	.014	3	004	15	0	1	0	1	NC	1	NC	1
334			min	013	2	015	4	0	1	0	1	7153.58	4	NC	1
335		16	max	.014	3	003	15	0	1	0	1	NC	1	NC	1
336			min	014	2	013	4	0	1	0	1	9096.774	4	NC	1
337		17	max	.015	3	002	15	0	1	0	1	NC	1	NC	1
338			min	015	2	01	1	0	1	0	1	NC	1	NC	1
339		18	max	.016	3	001	15	0	1	0	1	NC	1	NC	1
340		1.0	min	016	2	007	1	0	1	0	1	NC	1	NC	1
341		19	max	.017	3	0	15	0	1	0	1	NC	1	NC	1
342		- 10	min	017	2	005	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	1	.016	2	0	1	0	1	NC	1	NC	1
344	IVIO		min	0	3	018	3	0	1	0	1	NC	1	NC	1
345		2	max	.007	1	.015	2	0	1	0	1	NC	1	NC	1
346			min	0	3	017	3	0	1	0	1	NC NC	1	NC	1
347		3	max	.006	1	.014	2	0	1	0	1	NC	1	NC	1
		3	min	0	3	01 4	3	0	1	0	1	NC	1	NC	1
348		1							1						1
349		4	max	.006	1	.013	2	0	1	0	1	NC NC	1	NC NC	1
350		+	min	0	3	015	3	0		0		NC NC		NC NC	•
351		5	max	.006	1	.012	2	0	1	0	1	NC	1	NC	1
352		_	min	0	3	014	3	0	1	0	1_	NC	1_	NC	1
353		6	max	.005	1	.011	2	0	1	0	1_	NC	1	NC	1
354		_	min	0	3	013	3	0	1	0	1_	NC	1_	NC	1
355		7	max	.005	1	.01	2	0	1	0	1_	NC	1_	NC	1
356			min	0	3	012	3	0	1	0	1	NC	1_	NC	1
357		8	max	.004	1	01	2	0	1	0	1_	NC	1_	NC	1
358			min	0	3	011	3	0	1	0	1_	NC	1_	NC	1
359		9	max	.004	1	.009	2	0	1	0	_1_	NC	_1_	NC	1
360			min	0	3	01	3	0	1	0	1	NC	1_	NC	1
361		10	max	.004	1	.008	2	0	1_	0	_1_	NC	_1_	NC	1
362			min	0	3	009	3	0	1	0	1_	NC	1_	NC	1
363		11	max	.003	1	.007	2	0	1	0	_1_	NC	_1_	NC	1
364			min	0	3	008	3	0	1	0	1	NC	1	NC	1
365		12	max	.003	1	.006	2	0	1	0	1	NC	1	NC	1
366			min	0	3	007	3	0	1	0	1	NC	1	NC	1
367		13	max	.002	1	.005	2	0	1	0	1	NC	1	NC	1
368			min	0	3	006	3	0	1	0	1	NC	1	NC	1
369		14	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
370			min	0	3	005	3	0	1	0	1	NC	1	NC	1
371		15	max	.002	1	.003	2	0	1	0	1	NC	1	NC	1
372		1	min	0	3	004	3	0	1	0	1	NC	1	NC	1
373		16	max	.001	1	.003	2	0	1	0	1	NC	1	NC	1
374		10	min	0	3	003	3	0	1	0	1	NC	1	NC	1
375		17	max	0	1	.002	2	0	1	0	1	NC	1	NC	1
376		17	min	0	3	002	3	0	1	0	1	NC	1	NC	1
377		18	max	0	1	<u>002</u> 0	2	0	1	0	1	NC	1	NC	1
		10	_		3		3		1		1	NC NC	1	NC NC	1
378		10	min	0		0		0		0					-
379		19	max	0	1	0	1	0	1	0	1_1	NC NC	1_4	NC NC	1
380	N440	4	min	0		0	1	0	1_	0	1_	NC NC	1_	NC NC	1
381	M10	1_	max	.007	1	.006	2	0	15	3.008e-4	1_	NC	1	NC F000 400	2
382			min	006	3	01	3	013	1	1.218e-5	15	NC	1_	5303.162	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC	, ,	
383		2	max	.007	1	.005	2	0	15	2.838e-4	_1_	NC	_1_	NC	2
384			min	006	3	01	3	012	1	1.149e-5	15	NC	1	5782.309	1
385		3	max	.006	1	.004	2	0	15	2.668e-4	1	NC	1	NC	2
386			min	006	3	01	3	011	1	1.08e-5	15	NC	1	6352.947	1
387		4	max	.006	1	.003	2	0	15	2.498e-4	1_	NC	1_	NC	2
388			min	005	3	01	3	01	1	1.011e-5	15	NC	1	7039.222	1
389		5	max	.005	1	.002	2	0	15	2.328e-4	1	NC	1	NC	2
390			min	005	3	01	3	009	1	9.425e-6	15	NC	1	7874.054	1
391		6	max	.005	1	.001	2	0	15	2.157e-4	1_	NC	1_	NC	2
392			min	005	3	009	3	008	1	8.736e-6	15	NC	1	8903.261	1
393		7	max	.005	1	0	2	0	15	1.987e-4	1	NC	1	NC	1
394			min	004	3	009	3	007	1	8.048e-6	15	NC	1	NC	1
395		8	max	.004	1	0	2	0	15	1.817e-4	1_	NC	1_	NC	1
396			min	004	3	009	3	006	1	7.36e-6	15	NC	1	NC	1
397		9	max	.004	1	001	2	0	15	1.647e-4	1	NC	1	NC	1
398			min	004	3	008	3	005	1	6.672e-6	15	NC	1	NC	1
399		10	max	.003	1	001	15	0	15	1.476e-4	1	NC	1	NC	1
400			min	003	3	008	3	004	1	5.984e-6	15	NC	1	NC	1
401		11	max	.003	1	001	15	0	15	1.306e-4	1	NC	1	NC	1
402			min	003	3	007	3	003	1	5.296e-6	15	NC	1	NC	1
403		12	max	.003	1	001	15	0	15	1.136e-4	1	NC	1	NC	1
404			min	002	3	007	3	003	1	4.607e-6	15	NC	1	NC	1
405		13	max	.002	1	001	15	0	15	9.659e-5	1	NC	1	NC	1
406			min	002	3	006	3	002	1	3.919e-6	15	NC	1	NC	1
407		14	max	.002	1	001	15	0	15	7.957e-5	1	NC	1	NC	1
408			min	002	3	005	4	001	1	3.231e-6	15	NC	1	NC	1
409		15	max	.002	1	001	15	0	15	6.255e-5	1	NC	1	NC	1
410			min	001	3	005	4	0	1	2.543e-6	15	NC	1	NC	1
411		16	max	.001	1	0	15	0	15	4.553e-5	1	NC	1	NC	1
412			min	001	3	004	4	0	1	1.855e-6	15	NC	1	NC	1
413		17	max	0	1	0	15	0	15	2.851e-5	1	NC	1	NC	1
414			min	0	3	003	4	0	1	1.167e-6	15	NC	1	NC	1
415		18	max	0	1	0	15	0	15	1.149e-5	1	NC	1	NC	1
416			min	0	3	002	4	0	1	4.785e-7	15	NC	1	NC	1
417		19	max	0	1	0	1	0	1	-7.309e-8	12	NC	1	NC	1
418			min	0	1	0	1	0	1	-5.534e-6	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	3.272e-6	1	NC	1	NC	1
420	.,,,,,		min	0	1	0	1	0	1	1.173e-7	12	NC	1	NC	1
421		2	max	0	3	0	15	0	12	-1.302e-6	15	NC	1	NC	1
422			min	0	2	003	4	0	1	-3.217e-5	1	NC	1	NC	1
423		3	max	0	3	001	15	0		-2.734e-6		NC	1	NC	1
424			min	0	2	006	4	0	1	-6.761e-5	1	NC	1	NC	1
425		4	max	0	3	002	15	0	12	-4.165e-6		NC	1	NC	1
426			min	0	2	009	4	0	1	-1.031e-4	1	NC	1	NC	1
427		5	max	.001	3	003	15	0	12	-5.597e-6		NC	1	NC	1
428			min	0	2	012	4	0	1	-1.385e-4	1	8792.805	4	NC	1
429		6	max	.002	3	003	15	0	15	-7.028e-6	_	NC	2	NC	1
430			min	001	2	015	4	0	1	-1.739e-4	1	7098.313	4	NC	1
431		7	max	.002	3	004	15	0	15	-8.46e-6	15	NC	5	NC	1
432			min	001	2	017	4	0	1	-2.094e-4	1	6079.122	4	NC	1
433		8	max	.002	3	004	15	0	15		15	NC	5	NC	1
434			min	002	2	019	4	001	1	-2.448e-4	1	5450.191	4	NC	1
435		9	max	.002	3	005	15	0	15		15	NC	5	NC	1
436			min	002	2	003	4	002	1	-2.803e-4	1	5077.449	4	NC	1
437		10	max	.003	3	005	15	<u>002</u> 0		-1.275e-5	15	NC	5	NC	1
438		10	min	002	2	005 021	4	002	1	-3.157e-4	1	4895.736	4	NC	1
439		11	max	.003	3	021 005	15	<u>002</u> 0		-1.419e-5	_	NC	5	NC	1
403		<u> </u>	πιαλ	.003	∟ວ	005	ΙÜ	U	10	-1. 4 136-3	ıυ	INC	J	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			_C_	(n) L/y Ratio	LC		LC
440			min	002	2	021	4	003			1	4878.202	4	NC	1
441		12	max	.003	3	005	15	0	15 -1.56	32e-5	15	NC	5	NC	1
442			min	003	2	021	4	003	1 -3.86	66e-4	1	5026.009	4	NC	1
443		13	max	.004	3	005	15	0	15 -1.70)5e-5	15	NC	5	NC	1
444			min	003	2	02	4	004	1 -4.2	2e-4	1	5370.08	4	NC	1
445		14	max	.004	3	004	15	0	15 -1.84	8e-5	15	NC	5	NC	1
446			min	003	2	018	4	005	1 -4.57	'5e-4	1	5987.22	4	NC	1
447		15	max	.004	3	004	15	0	15 -1.99	1e-5	15	NC	3	NC	1
448			min	003	2	015	4	006	1 -4.92	29e-4	1	7047.997	4	NC	1
449		16	max	.005	3	003	15	0	15 -2.13	84e-5	15	NC	1	NC	1
450			min	003	2	012	4	007			1	8965.765	4	NC	1
451		17	max	.005	3	002	15	0	15 -2.27	7e-5	15	NC	1	NC	1
452			min	004	2	009	4	009	1 -5.63	88e-4	1	NC	1	NC	1
453		18	max	.005	3	001	15	0	15 -2.42	21e-5	15	NC	1	NC	2
454			min	004	2	006	1	01	1 -5.99	3e-4	1	NC	1	9829.789	1
455		19	max	.006	3	0	15	0	15 -2.56	34e-5	15	NC	1	NC	2
456			min	004	2	003	1	012			1	NC	1	8426.925	1
457	M12	1	max	.003	1	.004	2	.012	1 -6.36	64e-6	15	NC	1	NC	3
458			min	0	3	006	3	0	15 -1.56		1	NC	1	2049.186	1
459		2	max	.003	1	.004	2	.011			15	NC	1	NC	3
460			min	0	3	005	3	0	15 -1.56		1	NC	1	2226.611	1
461		3	max	.002	1	.003	2	.01	1 -6.36	64e-6	15	NC	1	NC	3
462			min	0	3	005	3	0	15 -1.56	8e-4	1	NC	1	2437.878	1
463		4	max	.002	1	.003	2	.009	1 -6.36	64e-6	15	NC	1	NC	3
464			min	0	3	005	3	0	15 -1.56		1	NC	1	2691.76	1
465		5	max	.002	1	.003	2	.008			15	NC	1	NC	3
466			min	0	3	005	3	0	15 -1.56		1	NC	1	3000.179	1
467		6	max	.002	1	.003	2	.007			15	NC	1	NC	3
468			min	0	3	004	3	0	15 -1.56		1	NC	1	3379.672	1
469		7	max	.002	1	.003	2	.006			15	NC	1	NC	3
470			min	0	3	004	3	0	15 -1.56		1	NC	1	3853.708	1
471		8	max	.002	1	.002	2	.006			15	NC	1	NC	2
472			min	0	3	004	3	0	15 -1.56		1	NC	1	4456.518	1
473		9	max	.002	1	.002	2	.005			15	NC	1	NC	2
474			min	0	3	003	3	0	15 -1.56		1	NC	1	5239.628	1
475		10	max	.001	1	.002	2	.004			15	NC	1	NC	2
476			min	0	3	003	3	0	15 -1.56		1	NC	1	6283.577	1
477		11	max	.001	1	.002	2	.003			15	NC	1	NC	2
478			min	0	3	003	3	0	15 -1.56		1	NC	1	7720.103	
479		12	max	.001	1	.001	2	.003			15	NC	1	NC	2
480			min	0	3	002	3	0	15 -1.56	8e-4	1	NC	1	9777.057	
481		13	max	0	1	.001	2	.002		64e-6		NC	1	NC	1
482			min	0	3	002	3	0		8e-4	1	NC	1	NC	1
483		14	max	0	1	.001	2	.001		64e-6	15	NC	1	NC	1
484			min	0	3	002	3	0			1	NC	1	NC	1
485		15	max	0	1	0	2	0		64e-6	15	NC	1	NC	1
486			min	0	3	001	3	0	15 -1.56		1	NC	1	NC	1
487		16	max	0	1	0	2	0		4e-6	_	NC	1	NC	1
488		1.0	min	0	3	0	3	0	15 -1.56		1	NC	1	NC	1
489		17	max	0	1	0	2	0			15	NC	1	NC	1
490			min	0	3	0	3	0	15 -1.56		1	NC	1	NC	1
491		18	max	0	1	0	2	0		64e-6	15	NC	1	NC	1
492		1.5	min	0	3	0	3	0			1	NC	1	NC	1
493		19	max	0	1	0	1	0			15	NC	1	NC	1
494		13	min	0	1	0	1	0			1	NC	1	NC	1
495	M1	1	max	.007	3	.175	1	0		8e-2	1	NC	1	NC	1
496	IVII		min	003	2	023	3	0	15 -1.85		3	NC	1	NC	1
430			11/11/1	003		023	J	U	10 -1.00	125-2	J	INC		INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio L		
497		2	max	.007	3	.087	1	00	15	6.593e-3	_1_	NC 5		1
498			min	003	2	011	3	009	1	-9.191e-3	3	1523.855		1
499		3	max	.007	3	.01	3	0	15	-8.233e-7	10	NC 5		2
500			min	003	2	009	2	013	1	-2.843e-4	1	731.458	07 101000	1
501		4	max	.007	3	.048	3	0	15	4.697e-3	_1_		5 NC	1
502			min	003	2	117	1	012	1	-3.674e-3	3	459.63		1
503		5	max	.007	3	.096	3	0	15	9.677e-3	<u>1</u>		5 NC	1
504			min	003	2	232	1	008	1	-7.254e-3	3	330.24		1
505		6	max	.007	3	.15	3	0	15	1.466e-2	1_		5 NC	1
506			min	003	2	343	1	004	1	-1.083e-2	3	259.16	l NC	1
507		7	max	.007	3	.201	3	0	1	1.964e-2	1	6350.97 1	5 NC	1
508			min	003	2	443	1	0	3	-1.441e-2	3	217.318	l NC	1
509		8	max	.007	3	.244	3	.001	1	2.462e-2	1		5 NC	1
510			min	003	2	523	1	0	15	-1.799e-2	3	192.621	I NC	1
511		9	max	.006	3	.272	3	0	15	2.704e-2	1	5283.179 1	5 NC	1
512			min	003	2	573	1	0	1	-1.817e-2	3	179.764	I NC	1
513		10	max	.006	3	.283	3	0	1	2.775e-2	1	5171.239 1	5 NC	1
514			min	003	2	589	1	0	15	-1.607e-2	3	175.904	I NC	1
515		11	max	.006	3	.276	3	0	1	2.846e-2	1		5 NC	1
516			min	003	2	572	1	0	15	-1.397e-2	3	179.984		1
517		12	max	.006	3	.253	3	0	15	2.68e-2	1		5 NC	1
518			min	003	2	521	1	001	1	-1.176e-2	3	193.3		1
519		13	max	.006	3	.216	3	0	15	2.159e-2	1		5 NC	1
520			min	003	2	44	1	0	1	-9.408e-3	3	218.979		1
521		14	max	.006	3	.168	3	.003	1	1.639e-2	1		5 NC	1
522		17	min	003	2	339	1	0	15	-7.054e-3	3	262.713		1
523		15	max	.006	3	.114	3	.008	1	1.119e-2	1		5 NC	1
524		10	min	003	2	226	1	0	15	-4.699e-3	3	337.528		1
525		16	max	.005	3	.058	3	.011	1	5.989e-3	1		5 NC	1
526		10	min	003	2	111	1	0	15	-2.345e-3	3	474.871		1
527		17	max	.005	3	.003	3	.012	1	7.866e-4	1	NC 5		1
528		17	min	003	2	005	2	0	15	8.104e-6	12	765.525		1
529		18		005 .005	3	.087	1	.009	1	8.319e-3	1	NC 5		1
530		10	max	003	2	045	3	<u>.009</u>	15	-2.598e-3	3	1609.987		1
		40	min											-
531		19	max	.005	3	.17	3	0	15	1.608e-2	1			1
532	NAE-	4	min	003	2	091		<u>001</u>	1	-5.294e-3	3	110	110	•
533	<u>M5</u>	1	max	.022	3	.358	1	0	1	0	1_	NC 1		1
534			min	015	2	009	3	0	1	0	1_	NC ′		1
535		2	max	.022	3	.177	1	0	1	0	1_	NC 5		1
536			min	<u>015</u>	2	004	3	0	1	0	1_	746.093	110	1
537		3	max	.022	3	.032	3	0	1	0	1_		5 NC	1
538			min	015	2	03	1	0	1	0	1_	346.926		1
539		4	max	.022	3	.122	3	0	1	0	1_		5 NC	1
540			min	015	2	285	1	0	1	0	1_	209.365		1
541		5	max	.021	3	.25	3	0	1	0	1_		5 NC	1
542			min	015	2	566	1	0	1	0	1_	145.598		1
543		6	max	.021	3	.396	3	0	1	0	1_		5 NC	1
544			min	014	2	848	1	0	1	0	1_	111.534		1
545		7	max	.021	3	.54	3	0	1	0	1_	2987.512 1		1
546			min	014	2	-1.105	1	0	1	0	1	91.934		1
547		8	max	.02	3	.662	3	0	1	0	1_	2621.891 1	5 NC	1
548			min	014	2	-1.311	1	0	1	0	1	80.573	I NC	1
549		9	max	.02	3	.741	3	0	1	0	1	2434.485 1	5 NC	1
550			min	013	2	-1.441	1	0	1	0	1	74.757		1
551		10	max	.019	3	.77	3	0	1	0	1		5 NC	1
552			min	013	2	-1.485	1	0	1	0	1		I NC	1
553		11	max	.019	3	.751	3	0	1	0	1		5 NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
554			min	013	2	-1.44	1	0	1	0	1	74.862	1	NC	1
555		12	max	.018	3	.686	3	0	1	0	1_	2622.104	15	NC	1
556			min	013	2	-1.307	1	0	1	0	1	80.924	1	NC	1
557		13	max	.018	3	.581	3	0	1	0	1_	2987.953	15	NC	1
558			min	013	2	-1.095	1	0	1	0	1	92.852	1	NC	1
559		14	max	.017	3	.448	3	0	1	0	_1_		<u>15</u>	NC	1
560			min	012	2	832	1	0	1	0	1	113.617	1	NC	1
561		15	max	.017	3	.3	3	0	1	0	1_		15	NC	1
562			min	012	2	545	1	0	1	0	1	150.159	1	NC	1
563		16	max	.016	3	.15	3	0	1	0	1	6760.909	15	NC	1
564			min	012	2	263	1	0	1	0	1	219.693	1	NC	1
565		17	max	.016	3	.01	3	0	1	0	1	NC	15	NC	1
566			min	012	2	015	2	0	1	0	1	372.3	1	NC	1
567		18	max	.016	3	.181	1	0	1	0	1	NC	5	NC	1
568			min	012	2	109	3	0	1	0	1	814.928	1	NC	1
569		19	max	.016	3	.345	1	0	1	0	1	NC	1	NC	1
570			min	012	2	216	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.007	3	.175	1	0	15	1.852e-2	3	NC	1	NC	1
572			min	003	2	023	3	0	1	-1.368e-2	1	NC	1	NC	1
573		2	max	.007	3	.087	1	.009	1	9.191e-3	3	NC	5	NC	1
574			min	003	2	011	3	0	15	-6.593e-3	1	1523.855	1	NC	1
575		3	max	.007	3	.01	3	.013	1	2.843e-4	1	NC	5	NC	2
576			min	003	2	009	2	0	15	8.233e-7	10	731.458	1	9745.589	1
577		4	max	.007	3	.048	3	.012	1	3.674e-3	3	NC	15	NC	1
578			min	003	2	117	1	0	15	-4.697e-3	1	459.63	1	NC	1
579		5	max	.007	3	.096	3	.008	1	7.254e-3	3	9546.857	15	NC	1
580			min	003	2	232	1	0	15	-9.677e-3	1	330.24	1	NC	1
581		6	max	.007	3	.15	3	.004	1	1.083e-2	3	7536.806	15	NC	1
582			min	003	2	343	1	0	15	-1.466e-2	1	259.16	1	NC	1
583		7	max	.007	3	.201	3	0	3	1.441e-2	3	6350.97	15	NC	1
584			min	003	2	443	1	0	1	-1.964e-2	1	217.318	1	NC	1
585		8	max	.007	3	.244	3	0	15	1.799e-2	3	5649.728	15	NC	1
586			min	003	2	523	1	001	1	-2.462e-2	1	192.621	1	NC	1
587		9	max	.006	3	.272	3	0	1	1.817e-2	3	5283.179	15	NC	1
588			min	003	2	573	1	0	15	-2.704e-2	1	179.764	1	NC	1
589		10	max	.006	3	.283	3	0	15	1.607e-2	3		15	NC	1
590			min	003	2	589	1	0	1	-2.775e-2	1	175.904	1	NC	1
591		11	max	.006	3	.276	3	0	15	1.397e-2	3		15	NC	1
592			min	003	2	572	1	0	1	-2.846e-2	1	179.984	1	NC	1
593		12	max	.006	3	.253	3	.001	1	1.176e-2	3	5649.302	15	NC	1
594			min	003	2	521	1	0	15	-2.68e-2	1	193.3	1	NC	1
595		13	max	.006	3	.216	3	0	1	9.408e-3	3		15	NC	1
596			min	003	2	44	1	0	15	-2.159e-2	1	218.979	1	NC	1
597		14	max	.006	3	.168	3	0		7.054e-3	3	7535.572	15	NC	1
598			min	003	2	339	1	003	1	-1.639e-2	1	262.713	1	NC	1
599		15	max	.006	3	.114	3	0	15	4.699e-3	3		15	NC	1
600			min	003	2	226	1	008	1	-1.119e-2	1	337.528	1	NC	1
601		16	max	.005	3	.058	3	0	15	2.345e-3	3	NC	15	NC	1
602			min	003	2	111	1	011	1	-5.989e-3	1	474.871	1	NC	1
603		17	max	.005	3	.003	3	0	15	-8.104e-6	12	NC	5	NC	1
604			min	003	2	005	2	012	1	-7.866e-4	1	765.525	1	NC	1
605		18	max	.005	3	.087	1	0	15	2.598e-3	3	NC	5	NC	1
606			min	003	2	045	3	009	1	-8.319e-3	1	1609.987	1	NC	1
607		19	max	.005	3	.17	1	.001	1	5.294e-3	3	NC	1	NC	1
608			min	003	2	091	3	0		-1.608e-2	1	NC	1	NC	1
								_							

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{ m ed,Na}$ $\Psi_{ m p,Na}$

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5}$ (Eq. D-24)									
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)					
4.00	0.50	1.00	2500	7.87					

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	/c/ / (v co) 1 eu, v 1 c, i	V 1 11, V V by (OCO. D	.+. 1, D.O.Z. 1(0)	α Lq. D Z 1)			
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			_

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-31 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2495.5	1558.5	0.0	1558.5
2	2495.5	1558.5	0.0	1558.5
Sum	4991.0	3117.0	0.0	3117.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

k c	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_i)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	$_{d,N} arPsi_{c,N} arPsi_{cp,N} \mathcal{N}_b$ (S	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (Ib)
378.00	324.00	1.000	0.972	1.00	1.000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f short-term	K_{sat}	$\tau_{k,cr}$ (psi)	
1035	1.00	1.00	1035	
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \Psi_{ed,Na} \Psi_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N_{a0} \text{ (Sec. D.4.1 \& Eq. D-16b)}$

A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$arPsi_{ec,Na}$	$arPsi_{ ho, Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	8/1/2016			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 21-31 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc / Avco) Yec, v Ye	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	$Av \infty$ (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
378.00	648.00	1.000	0.836	1.000	1.000	15593	0.70	5323

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (Ib)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$

,			(,	-, 3,,	μ, ,μ (,	,,,	(-1)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A_{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2496	6071	0.41	Pass
Concrete breakout	4991	9208	0.54	Pass
Adhesive	4991	8093	0.62	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1559	3156	0.49	Pass
T Concrete breakout x+	3117	5323	0.59	Pass (Governs)

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-31 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete break	out y- 1559	12241	0.	13	Pass (Governs)	
Pryout	3117	19833	0.	16	Pass	
Interaction check	Nua/φNn	Vua/ ϕ Vn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.62	0.59	120.2 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.