Тинькофф А'. Структуры данных и сканлайн. Семинар.

Костя Амеличев, Дима Умнов, Ваня Сафонов

25 сентября 2021

Задача 1. Дано n отрезков. За $\mathcal{O}(n \log n)$ найдите максимальное количество непересекающихся отрезков.

Задача 2. Дано n прямоугольников на плоскости. За $\mathcal{O}(n \log n)$ найдите . . . прямоугольников.

- 1. площадь пересечения
- 2. точку покрытую максимальным количеством
- 3. площадь объединения

Задача 3. Прибавление арифметической прогрессии на отрезке $(a_l += x, \ldots, a_r += x + (r-l) \cdot y)$ и взятие значения в точке за $\mathcal{O}(n \log n)$

Задача 4. RSQ online с массовым присвоением и массовым обновлением, координаты от 1 до C. Требуемая асимптотика $\mathcal{O}(q \log C)$ времени и памяти. Считайте, что $C \sim 10^{18}$

Задача 5. Нужно ответить в offline на запросы о количестве различных чисел на отрезке за $\mathcal{O}((q+n)\log n)$

Задача 6. Дан массив длины n. Нужно отвечать на запрос "найти первое число, больше или равное k_i "

- 1. на префиксе $[1; r_i]$
- 2. на отрезке $[l_i; r_i]$

W, конечно, обрабатывать изменения в точке и на отрезке. Все за $\mathcal{O}(\log n)$. Можете считать, что $\mathcal{O}(\log^2 n)$ является промежуточной подгруппой.

Задача 7. Дано n упорядоченных точек на плоскости. Нужно уметь обновлять точки на отрезке, а также отвечать на запрос "оптимальная длина пути $a_l \to a_{l+1} \to \dots \to a_r$, с учетом того, что расстояние манхэттенское, а также разрешено пропустить не более одной точки (сохранив порядок всех остальных)

Задача 8. Дан массив длины n. Нужно отвечать на запрос "найти максимальный по длине подотрезок заданного отрезка, являющийся арифметической прогрессией с шагом 1. И прибавление на отрезке, время $\mathcal{O}(q \log n)$.

Задача 9. Вам дан массив A длины n. Каждая пара соседних элементов отличается не более чем на 1. Нужно отвечать на запрос НВП на подотрезке. И апдейт на отрезке, все за $\mathcal{O}(q \log n)$

Задача 10. Вам дано два дерева на вершинах от 1 до n. Найдите количество пар (v,u), таких что v — предок u в обоих деревьях не обязательно прямой. $\mathcal{O}(n\log n)$

Задача 11. Дано n точек и m сенсоров в трехмерном пространстве (x_i, y_i, z_i) . Надо найти такое минимальное d, что если сдвинуть все сенсоры на вектор (d, d, d), то для каждой точки есть сенсор, по каждой координате превосходящий точку $(x'+d\geq x, y'+d\geq y, z'+d\geq z)$. Задача с одной из старых олимпиад.

- 1. $\mathcal{O}(n \log C \log n)$ [40 баллов за реальную задачу]
- $2.~\mathcal{O}(n\log C\log_f n)~(log_f(n)$ обозначет логарифм от дерева Фенвика) [80-100 баллов за реальную задачу]
- 3. $\mathcal{O}(n \log n)$ [100 баллов за реальную задачу]