Statistical Learning

Prova d'esame

14 Luglio 2022

Tempo a disposizione: 180 minuti

Problema 1

Si considerino i seguenti dati:

Player	n_i	s_i	pi_i
Baines	90	26	0.289
Barfield	90	22	0.256
Bell	90	23	0.265
Biggio	90	25	0.287
Bonds	90	27	0.297

di p=5 giocatori di baseball, dove n_i e s_i indicano rispettivamente il numero di volte a battuta e il numero di battute valide, mentre π_i indica la vera media battuta (calcolata su tutta la carriera di ciascun giocatore).

Sia Z_i la variabile aleatoria Binomiale $(n_i, \pi_i)/n_i$, e si supponga che Z_1, \ldots, Z_p siano indipendenti.

Si consideri valida la seguente approssimazione

$$Z_i \approx N(\pi_i, \sigma_0^2)$$

dove $\sigma_0^2 = \frac{\bar{p}(1-\bar{p})}{90}$ con \bar{p} pari alla media dei valori (s_i/n_i) .

- a) Sia $\hat{\pi}^{\text{MLE}}$ la stima di massima verosimiglianza per $\pi = (\pi_1, \dots, \pi_p)$. Riportare il valore della stima per Bell.
- b) Sia $\hat{\pi}^{JS}$ la stima secondo James-Stein per π . Riportare il valore della stima per Bell.
- c) Calcolare

$$\frac{\sum_{i=1}^{p} (\hat{\pi}_i^{\text{JS}} - \pi_i)^2}{\sum_{i=1}^{p} (\hat{\pi}_i^{\text{MLE}} - \pi_i)^2}$$

Problema 2

Si consideri il dataset cement presente nella libreria MASS. La variabile risposta è y, i predittori sono le rimanenti variabili.

- a. Sia X la matrice del disegno. Calcolare il condition number di $(X^{\mathsf{T}}X + \lambda I_p)$ per il modello di regressione ridge con $\lambda = 10$.
- b. Calcolare la stima dell'errore di previsione tramite $leave-one-out\ cross-validation$

$$LOO_{\lambda} = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^t \hat{\beta}_{\lambda}^{(-i)})^2$$

dove $\hat{\beta}_{\lambda}^{(-i)}$ è la stima ridge calcolata su (n-1) osservazioni escludendo l'osservazione (x_i, y_i) per λ pari a $0, 1, 2, \ldots, 99$. Riportare il valore minimo di LOO_{λ} .

c. Calcolare la stima dell'errore di previsione tramite generalized cross-validation con il valore di λ che ha minimizzato LOO_{λ} nel punto precedente.

Problema 3

Si consegni il file .R che produce le risposte alle domande richieste. Il codice deve essere **riproducibile** e, se eseguito, deve stampare in output **solo** il risultati richiesti dalle domande a) e b).

Si consideri il dataset Boston presente nella libreria MASS. La variabile risposta è medv, i predittori sono le rimanenti variabili.

Si consideri come training set le prime 505 osservazioni (righe) del dataset Boston, e come test point l'ultima osservazione (riga 506).

Si utilizzi l'algoritmo split conformal considerando come Learning set le osservazioni del training set con indici pari, i.e. $L = \{2, 4, ..., 504\}$ e come Inference set le osservazioni del training set con indici dispari, i.e. $I = \{1, 3, ..., 505\}$.

Si costruisca l'intervallo di previsione per il test point a livello $1-\alpha$ con $\alpha=25/254$. L'algoritmo da utilizzare è la regressione forward, impostata in modo da selezionare 6 variabili (per la regressione forward è obbligatorio utilizzare la funzione step presente nella libreria stats).

Riportare

- a) gli estremi dell'intervallo di previsione;
- b) il valore TRUE se il test point si trova all'interno dell'intervallo di previsione, FALSE altrimenti.

Problema 4

Si consideri il seguente esperimento (ipotetico) con tecnologia microarray. Ci sono n=400 partecipanti che entrano nello studio uno per giorno, e ricevono il Trattamento o il Placebo a giorni alterni (il giorno 1 il soggetto 1 riceve il Trattamento, il giorno 2 il soggetto 2 riceve il Placebo, il giorno 3 il soggetto 3 riceve Trattamento, etc.). A ciascun soggetto viene misurata la risposta di p=200 geni. La matrice dei dati X è di dimensione 400×200 , e ciascun elemento è indipendente con distribuzione gaussiana, ovvero

$$X_{ij} \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_{ij}, 1)$$

Si supponga che per j = 30, 48, 57, 65, 84, 92, 113, 128, 143, 195

$$\mu_{ij} = 2$$
 $i = 1, 3, ..., 317, 319$ (Treatment) $\mu_{ij} = -2$ $i = 2, 4, ..., 318, 320$, (Placebo)

e per tutto il resto $\mu_{ij} = 0$. Si consideri l'utilizzo della Foresta Casuale (Random Forest)

- 1. con suddivisione in training set di 320 soggetti e test set di 80 soggetti in maniera casuale (RF-I);
- 2. con suddivisione in training set con i primi 320 soggetti e test set con gli ultimi 80 soggetti (RF-II);

Si risponda alle seguenti domande (motivare la risposta per ciascun quesito.)

- a) Ti aspetti che l'errore di previsione valutato sul training set con RF-I sia minore/uguale/maggiore a quello con RF-II?
- b) Ti aspetti che l'errore di previsione valutato sul test set con RF-II sia minore/uguale/maggiore al 50%?
- c) Quante variabili (geni) ti aspetti di trovare con elevato punteggio di *Variable Importance* (calcolato sul training set) se utilizzi RF-II?