6.3 单纯形法

基本步骤

- (1) 确定初始基本可行解.
- (2) 检查当前的基本可行解. 若是最优解或无最优解, 计算结束; 否则作基变换, 用一个非基变量替换一个基变量, 得到 一个新的可行基和对应的基本可行解, 且使目标函数 值下降 (至少不升).
- (3) 重复(2).

确定初始基本可行解

先考虑最简单的情况,设约束条件为

$$a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \le b_i$$
 , $b_i \ge 0$, $i = 1,2,\ldots,m$ 引入 m 个松弛变量 $x_{n+i} \ge 0$ ($i = 1,2,\ldots,m$) , $a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n + x_{n+i} = b_i$, $i = 1,2,\ldots,m$ 取 x_{n+i} ($i = 1,2,\ldots,m$) 作为基变量,初始基本可行解为 $x^{(0)} = (0,0,\ldots,0,b_1,b_2,\ldots,b_m)^T$

min
$$z' = -12x_1 - 15x_2$$

s.t. $0.25x_1 + 0.50x_2 + x_3 = 120$
 $0.50x_1 + 0.50x_2 + x_4 = 150$
 $0.25x_1 + x_5 = 50$
 $x_j \ge 0, i = 1, 2, ..., 5$

例 $\max z = 12x + 15y$ s.t. $0.25x + 0.50y \le 120$ $0.50x + 0.50y \le 150$ $0.25x \le 50$ $x \ge 0, y \ge 0$

取 x_3, x_4, x_5 作为基变量, $x^{(0)} = (0,0,120,150,50)^T$

最优性检验

给定可行基 $B=(P_{\pi(1)},P_{\pi(2)},...,P_{\pi(m)})$, Ax=b 两边同乘 B^{-1} , 得 $B^{-1}Ax=B^{-1}b$. 记 A中对应非基变量的列构成的矩阵为 N,

$$x_B + B^{-1}Nx_N = B^{-1}b$$

解得

$$x_B = B^{-1}b - B^{-1}Nx_N$$

代入目标函数

$$z = c^{T}x = c_{B}^{T}x_{B} + c_{N}^{T}x_{N}$$

$$= c_{B}^{T}(B^{-1}b - B^{-1}Nx_{N}) + c_{N}^{T}x_{N}$$

$$= c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$

基本可行解 $x_B^{(0)} = B^{-1}b$, $x_N^{(0)} = 0$, 目标函数值 $z_0 = c_B^T B^{-1}b$

最优性检验

$$z = c^T x$$

$$= z_0 + (c_N^T - c_B^T B^{-1} N) x_N$$

$$= z_0 + (c_B^T - c_B^T B^{-1} B) x_B + (c_N^T - c_B^T B^{-1} N) x_N$$

$$= z_0 + (c^T - c_B^T B^{-1} A) x$$
记 $\lambda^T = c^T - c_B^T B^{-1} A$ 检验数
$$z = z_0 + \lambda^T x$$
 简化的目标函数

最优性检验

$$\begin{vmatrix} z = z_0 + \lambda^T x \\ x_B = B^{-1}b - B^{-1}Nx_N \end{vmatrix}$$

北京大学

记 $B^{-1}A = (\alpha_{ij})_{m \times n}$, $P'_j = B^{-1}P_j \ (1 \le j \le n)$, $\beta = B^{-1}b$.

定理 3 给定基本可行解 $x^{(0)}$,

- (1) 若所有检验数大于等于0,则 x⁽⁰⁾是最优解.
- (2) 若存在检验数 $\lambda_k < 0$ 且所有 $\alpha_{ik} \le 0$ ($1 \le i \le m$), 则无最优解.
- 证 (1) 如果 $\lambda \ge 0$, 则对任意可行解, $x \ge 0$, $z \ge z_0$, 故 $x^{(0)}$ 是最优解.
- (2) 若存在 $\lambda_k < 0$ (λ_k 必对应非基变量) 且所有 $\alpha_{ik} \le 0$ ($1 \le i \le m$), 取 $x_k = M > 0$, 其余非基变量 $x_j = 0$, 解得

$$x_{\pi(i)} = \beta_i - \alpha_{ik} M \ge 0, \qquad 1 \le i \le m$$

这是一个可行解,其目标函数值为

$$z = z_0 + \lambda_k M$$

当 $M \to +\infty$ 时, $z \to -\infty$. 得证无最优解.

问题 存在检验数 $\lambda_k < 0$ 且有 $\alpha_{lk} > 0$,做基变换.

基变换

给定可行基 $B=(P_{\pi(1)},P_{\pi(2)},...,P_{\pi(m)})$, 设 $\lambda_k < 0$ 且 $\alpha_{lk} > 0$, x_k 必是非基变量.

基变换: 用非基变量 x_k 替换基变量 $x_{\pi(l)}$,用 P_k 替换 B 中的 $P_{\pi(l)}$,新的基为 $B'=(P_{\pi(1)},...,P_{\pi(l-1)},P_k,P_{\pi(l+1)},...,P_{\pi(m)})$. 称 x_k 为换入变量, $x_{\pi(l)}$ 为换出变量.

计算公式
$$\alpha_{lj}' = \alpha_{lj}/\alpha_{lk}$$
, $1 \le j \le n$ $\alpha_{ij}' = \alpha_{ij} - \alpha_{ik}\alpha_{lj}/\alpha_{lk}$, $1 \le i \le m 且 i \ne l$, $1 \le j \le n$ $\beta_{l}' = \beta_{l}/\alpha_{lk}$ $\beta_{l}' = \beta_{l} - \alpha_{ik}\beta_{l}/\alpha_{lk}$, $1 \le i \le m 且 i \ne l$

为保证 B'是可行的, 只需

$$\beta_i' = \beta_i - \alpha_{ik}\beta_l/\alpha_{lk} \ge 0, \quad 1 \le i \le m 且 i \ne l$$

$$\beta_i \ge 0, \, \beta_l \ge 0, \, \alpha_{lk} > 0. \, \alpha_{ik} \le 0 \text{时不等式成立;} \quad \alpha_{ik} > 0 \text{时} \beta_l/\alpha_{lk} \le \beta_i/\alpha_{ik}$$

取 l 使得 $\beta_l/\alpha_{lk} = \min\{\beta_i/\alpha_{ik} \mid \alpha_{ik} > 0, 1 \le i \le m\}$ 用第l个方程消去简化的目标函数中的 x_k

$$\lambda_{j}' = \lambda_{j} - \lambda_{k} \alpha_{lj} / \alpha_{lk}, \quad 1 \le j \le m$$

$$z_{0}' = z_{0} + \lambda_{k} \beta_{l} / \alpha_{lk}$$

单纯形法

算法 单纯形法 (针对最小化)

- 1. 设初始可行基 $B = (P_{\pi(1)}, P_{\pi(2)}, ..., P_{\pi(m)}), \alpha = B^{-1}A, \beta = B^{-1}b,$ $\lambda^T = c^T c_B^T B^{-1}A, z_0 = B^{-1}b.$
- 2. 若所有 $\lambda_i \ge 0$ ($1 \le j \le n$), 则 $x_B = \beta$, $x_N = 0$ 是最优解, 计算结束.
- 3. 取 $\lambda_k < 0$. 若所有 $\alpha_{ik} \le 0$ ($1 \le i \le m$), 则无最优解, 计算结束.
- 4. 取 l 使得

$$\beta_l/\alpha_{lk} = \min\{ \beta_i/\alpha_{ik} \mid \alpha_{ik} > 0, 1 \le i \le m \}$$

- 5. 以 x_k 为换入变量、 $x_{\pi(l)}$ 为换出变量做基变换.
- 6. 转 2.

对最大化, $2 + \lambda_j \ge 0$ 改为 $\lambda_j \le 0$, $3 + \lambda_k < 0$ 改为 $\lambda_k > 0$.

单纯形表

			c_1	c_2 .	• •	c_n	
c_B	x_B	\boldsymbol{b}	x_1	x_2 .	• •	\boldsymbol{x}_n	θ
$c_{\pi\!(1)}$	$x_{\pi(1)}$	$oldsymbol{eta_1}$	α_{11}	α_{12} .	• •	α_{1n}	
$c_{\pi(2)}$	$x_{\pi(2)}$	eta_2	$lpha_{21}$	$lpha_{22}$.	• •	α_{2n}	
•	•	•	•	•	• •	•	
$c_{\pi(m)}$	$x_{\pi(m)}$	β_m	α_{m1}	α_{m2}	• • •	α_{mn}	
		-z ₀	λ_1	λ_2	• • •	$\overline{\lambda_n}$	

$$-z + \lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_n x_n = -z_0$$

			-12	-15	0	0	0	
c_B	$ x_B $	b	x_1	x_2	x_3	x_4	x_5	θ
0	x_3	120	0.25	0.50	1	0	0	240
0	x_4	150	0.50	0.50	0	1	0	300
0	x_5	50	0.25	0	0	0	1	
	- z	0	-12	-15	0	0	0	
-15	x_2	240	0.50	1	2	0	0	480
0	x_4	30	0.25	0	-1	1	0	120
0	x_5	50	0.25	0	0	0	1	200
	- z	3600	-4.5	0	30	0	0	
-15	x_2	180	0	1	4	-2	0	
-12	x_1	120	1	0	-4	4	0	
0	x_5	20	0	0	1	- 1	1	
	- z	4140	0	0	12	18	0	

例 2

用单纯形法解下述线性规划

min
$$z = x_1 - 2x_2$$

s.t. $x_1 - x_2 \le 1$
 $-2x_1 + x_2 \le 4$
 $x_1 \ge 0, x_2 \ge 0$

解 引入2个松弛变量 x_3, x_4 , 得到标准形

min
$$z = x_1-2x_2$$

s.t. $x_1-x_2+x_3 = 1$
 $-2x_1+x_2 + x_4 = 4$
 $x_i \ge 0, \quad j = 1,2,3,4$

例2的单纯形表

			1	-2	0	0	
c_B	x_B	b	x_1	x_2	$\overline{x_3}$	$\overline{x_4}$	θ
0	x_3	1	1	-1	1	0	
0	x_4	4	-2	1	0	1	4
	- Z	0	1	-2	0	0	
0	x_3	5	-1	0	1	1	
-2	x_2	4	-2	1	0	1	
	- Z	8	-3	0	0	2	

目标函数值没有下界, 无最优解

其他约束条件的情况

北京大学

现考虑剩余的两种情况:

$$(1)\sum_{i=1}^n a_{ij}x_j \ge b_i$$

$$(2) \sum_{j=1}^{n} a_{ij} x_{j} = b_{i}$$

其中 b_i ≥0.对于(1),引入剩余变量转化成(2).

对(2)引入人工变量 $y_i \ge 0$,

$$\sum_{j=1}^{n} a_{ij} x_j + y_j = b_i$$

取所有松弛变量和人工变量作为基变量,得到初始可行基.根据辅助问题的解判断原始问题是否存在基本可行解.方法:两阶段法.

6.4 对偶性

例3 公司甲用3种原料混合成2种清洁剂.

问: 这2种清洁剂应各配制多少才能使总价值最大?

	原料1	原料2	原料3	售价(万元/吨)
清洁剂A	0.25	0.50	0.25	12
清洁剂B	0.50	0.50		15
存量 (吨)	120	150	50	

公司乙急需这3种原料,打算向公司甲购买,应出什么价钱?

例3 (续)

公司甲:

设清洁剂 A和 B分别配制 x_1 和 x_2

$$\max z = 12x_1 + 15x_2$$
s.t. $0.25x_1 + 0.50x_2 \le 120$
 $0.50x_1 + 0.50x_2 \le 150$
 $0.25x_1 \le 50$
 $x_1 \ge 0, x_2 \ge 0$

公司乙向甲买3种原料存量, 出价每吨分别为y₁,y₂,y₃万元. 希望总价尽可能的小,但又不 能低于公司甲用这些原料生 产清洁剂所产生的价值

min
$$w = 120y_1 + 150y_2 + 50y_3$$

s.t. $0.25y_1 + 0.50y_2 + 0.25y_3 \ge 12$
 $0.50y_1 + 0.50y_2 \ge 15$
 $y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$

对偶线性规划

定义 原始线性规划 (P)

 $\max c^T x$
s.t. $A x \le b$
 $x \ge 0$

对偶线性规划(D)

 $\begin{array}{l}
\mathbf{min} \ b^T y \\
\mathbf{s.t.} \ A^T y \ge c \\
y \ge 0
\end{array}$

定理4 对偶的对偶是原始线性规划.

证 (D)可改写成 (D') $\max -b^{T}y$ s.t. $-A^{T}y \leq -c$ $y \geq 0$

(D') 的对偶为

$$\min_{-c^T x}$$
s.t. $(-A^T)^T x \ge -b$
 $x \ge 0$

写出下述线性规划的对偶 max $2x_1-x_2+3x_3$ s.t. $x_1+3x_2-2x_3 \le 5$ $-x_1-2x_2+x_3=8$ $x_1 \ge 0, x_2 \ge 0, x_3$ 任意

对偶规划为 min $5y_1 + 8y_2' - 8y_2''$ s.t. $y_1 - y_2' + y_2'' \ge 2$ $3y_1 - 2y_2' + 2y_2'' \ge -1$ $-2y_1 + y_2' - y_2'' \ge 3$ $2y_1 - y_2' + y_2'' \ge -3$ $y_1 \ge 0, y_2' \ge 0, y_2'' \ge 0$

例4

令
$$x_3 = x_3' - x_3''$$
,
 $A = B$ 等价于 $A \le B$ 和 $-A \le -B$,
max $2x_1 - x_2 + 3x_3' - 3x_3''$
s.t. $x_1 + 3x_2 - 2x_3' + 2x_3'' \le 5$
 $-x_1 - 2x_2 + x_3' - x_3'' \le 8$
 $x_1 + 2x_2 - x_3' + x_3'' \le -8$
 $x_1 \ge 0, x_2 \ge 0, x_3' \ge 0, x_3'' \ge 0$

令 $y_2 = y_2' - y_2''$,合并后2个不等式 min $5y_1 + 8y_2$ s.t. $y_1 - y_2 \ge 2$ $3y_1 - 2y_2 \ge -1$ $-2y_1 + y_2 = 3$ $y_1 \ge 0$, y_2 任意

对偶规划的一般形式

原始规划

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, 1 \leq i \leq s$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i}, s+1 \le i \le m$$

$$x_j \ge 0, 1 \le j \le t$$

$$x_i$$
任意, $t+1 \le j \le n$

对偶规划

$$\min \sum_{i=1}^m b_i y_i$$

$$y_i \ge 0, 1 \le i \le s$$

$$y_i$$
任意, $s+1 \le i \le m$

$$\sum_{i=1}^{m} a_{ij} y_{i} \leq c_{j}, 1 \leq j \leq t$$

$$\sum_{i=1}^{m} a_{ij} y_{i} = c_{j}, t+1 \leq j \leq n$$

性质

定理5 设 x 是原始规划 (P) 的可行解, y是对偶规划 (D) 的可行解, 则恒有

$$c^{T}x \le b^{T}y$$

$$c^{T}x \le (A^{T}y)^{T}x = y^{T}(Ax) \le y^{T}b = b^{T}y$$

证

定理6 如果 x 和 y 分别是原始规划(P)和对偶规划(D)的可行解,且 $c^Tx = b^Ty$,则 x 和 y 分别是它们的最优解.

定理7 如果原始规划(P)有最优解,则对偶规划(D)也有最优解,且它们的最优值相等.反之亦然.

原始规划和对偶规划的解

- (1) 都有最优解,且最优值相等.
- (2)一个有可行解且目标函数值无界,而另一个无可行解.
- (3) 都没有可行解.

		对偶规划					
		有最优解	有可行解且无界	无可行解			
原始规划	有最优解	(1)	×	×			
	有可行解且无界	×	×	(2)			
	无可行解	×	(2)	(3)			

整数线性规划的分支限界算法

整数线性规划 在线性规划上对变量增添整数的要求 纯整数线性规划(全整数线性规划) 要求所有变量是整数 混合整数线性规划 只要求部分变量是整数 0-1型整数线性规划 要求所有变量是0或1

松弛规划(简称松弛) 删去整数 要求后得到的线性规划 松弛规划的最优值是原整数规 划的最优值的界限(最小化的 下界,最大化的上界),但通常不 是原整数规划的最优解

分支限界法

记整数线性规划为 ILP, 其松弛为 LP. 如果 LP 的最优解 α 满足整数要求, 则 α 是 ILP 的最优解.

否则, 设 α_1 不满足整数要求, 在 LP 上分别添加 $x_1 \leq \lfloor \alpha_1 \rfloor$ 和 $x_1 \geq \lfloor \alpha_1 \rfloor + 1$,

记作 LP₁和 LP₂. 如果 LP₁或 LP₂的最优解符合整数要求,那么这个解也是 ILP 的可行解,得到 ILP 的最优值的一个界限 (最小化上界,最大化下界),该子问题的计算结束.

如果子问题的最优解不满足整数要求,则继续分支计算. 如果子问题的最优值超过界限(最小化大于界限,最大化小于界限),则往下计算不可能得到ILP的最优解,计算结束. 当没有待计算的子问题时,所有可行解中最好的是 ILP 的最优解.

源北京大学

例5

min
$$z = -3x-5y$$

s.t. $-x + y \le 3/2$
 $2x + 3y \le 11$
 $x, y \ge 0$, 整数

LP x=13/10, y=14/5

z = -179/10

应用:最小顶点覆盖

• 顶点覆盖问题

给定图 G = (V,E), G 的顶点覆盖是顶点子集 $S \subseteq V$,使得每条边至少有一个端点属于S. 求G的最小的顶点覆盖.

• 转化为线性规划问题

令
$$V=\{1,2,...,n\}$$
, $\forall e \in E$, 存在 $i,j \in V$, 使得 $e=(i,j)$ $\forall i \in V$, 定义变量 $x_i=0,1$,且 $x_i=1 \Leftrightarrow i \in S$ $\forall e=(i,j) \in E$, $x_i+x_j \geq 1$

$$\min \sum_{i \in V} x_i$$

s.t.
$$x_i + x_j \ge 1$$
 $(i, j) \in E$
 $x_i = 0, 1$ $i \in V$

设计算法

· 顶点覆盖是整数规划问题,属于NP难问题.

• 近似算法的设计思想:

- 1. 放松 $x_i = 0,1$ 的约束条件,令 x_i 为[0,1]区间任意实数,转化为线性规划问题.
- 2. 用线性规划算法找到一组 $x_i \in [0,1]$, i = 1,2,...,n, 使得其和达到最小.
- 3. $\diamondsuit S = \{ i \mid x_i \ge 1/2 \}$.
- 算法分析
 可以证明上述 *S* 是 *G* 的顶点覆盖,且 |S| ≤ 2|S*|,其中 *S**为最优解.

应用: 负载均衡问题

• 负载均衡问题

给定作业集合J={1,2,...,n},作业j 加工时间为 t_j ,j=1,2,...,n. 机器集合 M={1,2,...,m},对每个作业分配一台机器,作业j 可分配的机器集合为 M_j . J_i 是分配到机器i上的作业集合. 机器i 的负载是 L_{i_o} 设分配方案的负载为L,其中

$$L = \max_{i \in \{1,2,...,m\}} L_i$$
, $L_i = \sum_{j \in J_i} t_j$

问题: 求分配方案 使得 L 达到最小。

转变为线性规划

 x_{ij} : 任务j 在机器i 上的负载 min L

$$\mathbf{s.t.}$$
 $\sum_i x_{ij} = t_j$ $\forall j \in J$ 任务 j 在各机器的负载之和等于加工时间
$$\sum_j x_{ij} \leq L \quad \forall i \in M$$
 任何机器的负载总量不超过 L $x_{ij} \geq \mathbf{0}$ $\forall j \in J, i \in M_j$

- 如果上述线性规划有值不超过 L 的解,那么最优负载的值至少是 L.
- 线性规划的最优解有可能把一个作业分配到多台机器上,即负载是分数.需要调整这个解,以满足原问题的需求:每个作业只能分配到一台机器上.

