

Worksheet 5 HoTTEST Summer School 2022

The HoTTEST TAs, and 21 July 2022

1 (*)

Consider a function $f:A\to B$. Recall that a retraction of f is a function $g:B\to A$ such that $g\circ f\sim \operatorname{id}_A$. Construct a function

$$\mathsf{retr}(f) \to \left(\prod_{a,a':A} f(a) = f(a') \to a = a'\right).$$

This means that if f has a retraction, then it is an injection.

2 (**)

Consider a commuting triangle

- 1. Suppose that h has a section $s: B \to A$. Prove that $f \circ s \sim g$ and that $\sec(f) \leftrightarrow \sec(g)$.
- 2. Suppose that g has a retraction $r: X \to B$. Prove that $r \circ f \sim h$ and that $\mathsf{retr}(f) \leftrightarrow \mathsf{retr}(h)$.
- 3. Prove that if any two of f, g, and h are equivalences, then so is the third.
- 4. Prove that any retraction or section of an equivalence is itself an equivalence.

Suppose that C is a type and that the canonical map $C \to \mathbb{I}$ is an equivalence. Consider a commuting diagram of the form

$$D \xrightarrow{\text{id}_D} D .$$

Here, we call D a retract of C. Note that the diagram

commutes. Therefore, by part (1), the map $D \to 1$ has a section. By part (2), it also has a retraction. Hence it is an equivalence. (This proves that a retract of a *contractible* type, to be defined in Lecture 6, is itself contractible.)

3 (**)

Consider the type Bool, generated by

true : Bool
false : Bool.

Define the type family Eq-bool : Bool \to Bool $\to \mathcal{U}_0$ by

$$\begin{split} &\mathsf{Eq\text{-}bool}(\mathsf{true},\mathsf{true}) \coloneqq \mathbb{1} \\ &\mathsf{Eq\text{-}bool}(\mathsf{true},\mathsf{false}) \coloneqq \emptyset \\ &\mathsf{Eq\text{-}bool}(\mathsf{false},\mathsf{false}) \coloneqq \mathbb{1} \\ &\mathsf{Eq\text{-}bool}(\mathsf{false},\mathsf{true}) \coloneqq \emptyset. \end{split}$$

For every b, b': Bool, define $\varphi_{b,b'}: (b=b') \to \mathsf{Eq\text{-bool}}(b,b')$ by path induction. Prove that $\varphi_{b,b'}$ is an equivalence.

It is easy to show that $\neg(\mathbb{1} = \emptyset)$. As a consequence, we can prove that $\neg(b = \mathsf{neg\text{-}bool}(b))$ for every $b : \mathsf{Bool}$.

4 (**)

Prove that for all b : Bool,

 \neg is-equiv(const_b).

Also, prove that

Bool $\not\simeq \mathbb{1}$.

5 (*)

Let A be a type and B be a type family over A. For each x, y : A, construct an inverse of the function

$$\mathsf{inv}_{x,y}:(x=y)\to (y=x)$$
.

Further, for each p: x = y, construct an inverse of the function

$$\operatorname{tr}_B(p): B(x) \to B(y).$$

6 (*)

Let $f, g: A \to B$ and $H: f \sim g$. Prove that is-equiv $(f) \leftrightarrow \text{is-equiv}(g)$.

7 (**)

Suppose that $e, e': A \to B$ are equivalences and that $H: e \sim e'$. Let s and s' denote the sections of e and e', respectively. Prove that s and s' are homotopic.