Transformaty Laplace'a

Lp	f(x)	F(s)
1	1	$\frac{1}{s}$
2	e^{ax}	$\frac{1}{s-a}$
3	$\cos \omega x$	$\frac{s}{s^2 + \omega^2}$
4	$\sin \omega x$	$\frac{\omega}{s^2 + \omega^2}$
5	xe^{ax}	$\frac{1}{\left(s-a\right)^2}$
6	$\frac{x^n}{n!}$	$\frac{1}{s^{n+1}}$
7	$x^n e^{ax}$	$\frac{n!}{\left(s-a\right)^{n+1}}$
8	$\frac{x}{2\omega}\sin\omega x$	$\frac{s}{\left(s^2+\omega^2\right)^2}$
9	$e^{ax}\cos\omega x$	$\frac{s-a}{\left(s-a\right)^2+\omega^2}$
10	$e^{ax}\sin \omega x$	$\frac{\omega}{\left(s-a\right)^2+\omega^2}$

$$L\left[f^{(n)}(x)\right] = s^n L\left[f(x)\right] - s^{n-1} f\left(0^+\right) - s^{n-2} f'\left(0^+\right) - \dots - f^{(n-1)}\left(0^+\right)$$
www.etrapez.pl