2001 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

CALCULUS AB SECTION II, Part B

Time—45 minutes Number of problems—3

No calculator is allowed for these problems.

- 4. Let h be a function defined for all $x \ne 0$ such that h(4) = -3 and the derivative of h is given by $h'(x) = \frac{x^2 2}{x}$ for all $x \ne 0$.
 - (a) Find all values of x for which the graph of h has a horizontal tangent, and determine whether h has a local maximum, a local minimum, or neither at each of these values. Justify your answers.
 - (b) On what intervals, if any, is the graph of h concave up? Justify your answer.
 - (c) Write an equation for the line tangent to the graph of h at x = 4.
 - (d) Does the line tangent to the graph of h at x = 4 lie above or below the graph of h for x > 4? Why?
- 5. A cubic polynomial function f is defined by

$$f(x) = 4x^3 + ax^2 + bx + k$$

where a, b, and k are constants. The function f has a local minimum at x = -1, and the graph of f has a point of inflection at x = -2.

- (a) Find the values of a and b.
- (b) If $\int_0^1 f(x) dx = 32$, what is the value of k?
- 6. The function f is differentiable for all real numbers. The point $\left(3, \frac{1}{4}\right)$ is on the graph of y = f(x), and the slope at each point (x, y) on the graph is given by $\frac{dy}{dx} = y^2(6 2x)$.
 - (a) Find $\frac{d^2y}{dx^2}$ and evaluate it at the point $\left(3, \frac{1}{4}\right)$.
 - (b) Find y = f(x) by solving the differential equation $\frac{dy}{dx} = y^2(6 2x)$ with the initial condition $f(3) = \frac{1}{4}$.

END OF EXAMINATION