

Introduction to High Performance Computing

Dr. habil. Josef Schüle

Introduction to High Performance Computing

- Basic datatypes like MPI_INT, MPI_FLOAT are not sufficient
- Structures may be packed
 - extra copy
 - no usage of scatter/gather hardware
- Noncontiguous data, like a sub-block of a matrix

Definition of own derived datatypes

- set together from basic datatypes
- set together from other derived datatypes

float char int

typemap = {(float,disp0),(char,disp1),(int,disp2)}
disps: relative postion (displacement)

```
{(float,0),(char,4),(int,8)}
{(newtype,0),(int,-4)}
{(int,8),(newtype,0),(int,-4)}
```


int

lb = smallest displacement
ub = largest + type + padding
extent = ub-lb

{(float,0),(char,4),(int,8)} {(newtype,0),(int,-4)} {(int,8),(newtype,0),(int,-4)}

lb	ub	extent
0	12	12
-4	8	12
-4	12	16

floatcharintintfloatcharintfloatchar

int

count times old_t glued to one new_t regarding extent.

count times (block times old t) there the blocks have stride distance regarding extent.

```
MPI_Type_vector(2, 3, 4, old_t,&new_t)

fl c fl c fl c fl c
(fl,0),(c,4), (fl,8),(c,12), (fl,16),(c,20), (fl,32),(c,36), (fl,40),(c,44), (fl,48),c(52)
```



```
MPI_Type_create_struct(count, ar_block, ar_dis, ar_typ,&new_t)
```

```
struct Particlestruct {
  double c[3]; // coordinates
  double v[3]; // velocities
  double m; // mass
  int hydro; // water molecules
  char name; // name (type) of particles
} particle;

5,(3,3,1,1,1),(0,32,56,64,68),(d,d,d,i,c)
```


Matrix with 2 dimensions (ndims=2) of sizes n and m (ars[0]=n, ars[1]=m, n running in x (ord=MPI_ORDER_C)

Submatrix, beginning at element (25,30) (sst[0]=25, sst[1]=30) of sizes sn and sm (sus[0]=sn, sus[1]=sm)

MPI_Type_commit(&datatype)

commits the datatype. It may be used in communications until

MPI_Type_free(&datatype)

1/0

- requirement for collective I/O
- realization with help of derived datatypes

- file (collective access)
- displacement where to start
- etype nondecreasing positioning, basic unit
- filetype template build of etype(s)
- view orderset set of etypes

single file

displacement

1/0

MPI File open (comm, &filename, amode, info, &file handle)

MPI_File_close(&file_handle)

positioning	synchronism	coordination	
		noncollective	collective
explicit	blocking	MPI_FILE_READ_AT	MPI_FILE_READ_AT_ALL
offsets		MPI_FILE_WRITE_AT	MPI_FILE_WRITE_AT_ALL
	nonblocking	MPI_FILE_IREAD_AT	MPI_FILE_IREAD_AT_ALL
		MPI_FILE_IWRITE_AT	MPI_FILE_IWRITE_AT_ALL
	split collective	N/A	MPI_FILE_READ_AT_ALL_BEGIN
			MPI_FILE_READ_AT_ALL_END
			MPI_FILE_WRITE_AT_ALL_BEGIN
			MPI_FILE_WRITE_AT_ALL_END
individual	blocking	MPI_FILE_READ	MPI_FILE_READ_ALL
file pointers		MPI_FILE_WRITE	MPI_FILE_WRITE_ALL
	nonblocking	MPI_FILE_IREAD	MPI_FILE_IREAD_ALL
		MPI_FILE_IWRITE	MPI_FILE_IWRITE_ALL
	split collective	N/A	MPI_FILE_READ_ALL_BEGIN
			MPI_FILE_READ_ALL_END
			MPI_FILE_WRITE_ALL_BEGIN
			MPI_FILE_WRITE_ALL_END
shared	blocking	MPI_FILE_READ_SHARED	MPI_FILE_READ_ORDERED
file pointer		MPI_FILE_WRITE_SHARED	MPI_FILE_WRITE_ORDERED
	nonblocking	MPI_FILE_IREAD_SHARED	N/A
		MPI_FILE_IWRITE_SHARED	
	split collective	N/A	MPI_FILE_READ_ORDERED_BEGIN
			MPI_FILE_READ_ORDERED_END
			MPI_FILE_WRITE_ORDERED_BEGIN
			MPI_FILE_WRITE_ORDERED_END

Introduction to High Performance Computing

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Vielen Dank

Thanks

