

XGBoost, origines et applications

Damien DouTEAUX

SOMMAIRE

Applications Conclusion

Sommaire Aspects théoriques

Mise en œuvre

Aspects théoriques Mise en œuvre

Applications

Conclusion

OUTILS DE VEILLE

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

Moteurs de recherche

Alertes mails

Réseaux sociaux et autres

GÉNÉRALITÉS SUR XGBOOST

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion XGBoost: EXtreme Gradient Boosting

- Flexibilité Régression, classification,...
- Portabilité Windows, Linux, OS X
- Multi-langages Python, R, JAVA, C++, Scala,...
- Distribué Yarn, Spark, Flink, AWS, Azure,...
- Performance Optimisé et expensif

LE BOOSTING

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

- Une stratégie adaptative.
- Convertir des règles peu performantes en (très) bonne prédiction.
- Réduction variance et biais.
- Convergence rapide.
- Sensible au bruit.

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

PREMIER MODÈLE

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

DEUXIÈME MODÈLE

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

TROISIÈME MODÈLE

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

VOTE MAJORITAIRE

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

UN ARBRE SIMPLE (CART)

Does the person like computer games

Source: https://xqboost.readthedocs.io/en/latest/model.html

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

PLUSIEURS ARBRES VALLENT MIEUX QU'UN

$$) = 2 + 0.9 = 2.9$$

Additive training (Boosting)

Source: https://xaboost.readthedocs.io/en/latest/model.html

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

CHOIX DE L'ARBRE À AJOUTER

• Fonction objectif $obj(\Theta) = \mathcal{L}(\Theta) + \Omega(\Theta)$

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

CHOIX DE L'ARBRE À AJOUTER

• Fonction de perte
$$\mathcal{L}(t) = \sum_{i=1}^{n} \left[g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right]$$

• Complexité
$$\Omega(t) = \gamma T + \frac{1}{2} \lambda \sum_{i=1}^{I} \omega_j^2$$

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

CHOIX DE L'ARBRE À AJOUTER

- Énumérer toutes les structures d'arbres possibles.
- Calculer l'objectif pour chaque structure.
- Trouver l'optimal et optimiser les feuilles.

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

CHOIX DE L'ARBRE À AJOUTER

- Énumérer toutes les structures d'arbres possibles.
- Calculer l'objectif pour chaque structure.
- Trouver l'optimal et optimiser les feuilles.

En pratique, construction des arbres au coup par coup.

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

CHOIX DE L'ARBRE À AJOUTER

$$\bullet \quad \text{Le gain} \quad \frac{1}{2} \left[\frac{G_{\rm L}^2}{H_{\rm L} + \lambda} + \frac{G_{\rm R}^2}{H_{\rm R} + \lambda} - \frac{(G_{\rm L} + G_{\rm R})^2}{H_{\rm L} + H_{\rm R} + \lambda} \right] - \gamma$$

g2, h2 g5, h5 g3, h3
$$G_B = g_2 + g_3 + g_5$$

On ne s'arrête pas si Gain<o.

Source: https://xqboost.readthedocs.io/en/latest/model.html

Plus qu'une méthode de Boosting

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

- Prise en compte de la régularisation.
- Calcul en parallèle.
- Support de Hadoop.
- Possibilité d'adaptation des fonctions objectifs.
- Prise en charge des valeurs manquantes.
- Version améliorée de l'élagage
- Cross-validation native

IMPORTANCE DES VARIABLES

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

- Entraîner les arbres.
- Pour chaque chaque variable :
 - ▶ Compter le nombre de fois où elle est sélectionnée.
 - ▶ Pondérer par la diminution d'erreur engendrée.
 - Moyenner sur les arbres.

PERFORMANCES

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion La rapidité est le but initial de XGBoost :

- Mémoire Pas de mémoire dynamique.
- Cache Éviter de surcharger la mémoire.
- Amélioration modèle Voir précédemment.
- Conception Parallélisation en arrière plan.
- Données externalisées Si mémoire insuffisante.

PERFORMANCES

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion La rapidité est le but initial de XGBoost :

- Mémoire Pas de mémoire dynamique.
- Cache Éviter de surcharger la mémoire.
- Amélioration modèle Voir précédemment.
- **Conception** Parallélisation en arrière plan.
- Données externalisées Si mémoire insuffisante.

Source: http://datascience.la/benchmarking-random-forest-implementations/[2015]

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

SUR LE BOOSTING

1989 Boosting (R. Schapire)

• **1996** AdaBoost (Y. Freund et R. Schapire)

• 1999 GBM (L. Breiman puis J. Friedman)

2014 XGBoost (T. Chen)

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

POUR XGBOOST

- Mars 2014 Première release
- Mai 2014 Python

Source: http://homes.cs.washington.edu/-tqchen/2016/03/10/story-and-lessons-behind-the-evolution-of-xgboost.html and the control of the con

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

POUR XGBOOST

- Mars 2014 Première release
- Mai 2014 Python
- Septembre 2014 Parallélisation, R
- Mai 2015 YARN, gestion HDFS, SKLearn wrapper

scikit-learn
gridsearch

scikit-learn
classifier API

XGBoost Python

XGboost

R. caret
grid search
caret xgboost
adaptor

XGBoost R

XGboost

SOUTCE: http://homes.cs.washington.edu/-tqchen/2016/03/10/story-and-lessons-behind-the-evolution-of-xqboost.html

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

POUR XGBOOST

- Mars 2014 Première release
- Mai 2014 Python
- Septembre 2014 Parallélisation, R
- Mai 2015 YARN, gestion HDFS, SKLearn wrapper
- Janvier 2016 API JAVA, Flink, Spark, améliorations
- Juillet 2016 Totale compatibilité JVM (Spark,...)

SOUTCE: http://homes.cs.washington.edu/-tgchen/2016/03/10/story-and-lessons-behind-the-evolution-of-xaboost.html

TROIS FAMILLES DE PARAMÈTRES

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

PARAMÈTRES GÉNÉRIQUES

Pour définir par exemple quelle méthode Boosting sera utilisée.

PARAMÈTRES LIÉS AU BOOSTING

Pour paramétrer le booster choisi.

PARAMÈTRES LIÉS À L'APPRENTISSAGE

Dépend de la tâche d'apprentissage (classification,...).

PARAMÈTRES GÉNÉRIQUES

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

- Booster Linéaire ou arbre.
- Silent Affichage de messages.
- Nthread Par défaut le maximum possible.

PARAMÈTRES LIÉS AU BOOSTING

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

Pour celui sur les arbres. Douze paramètres utiles...

- Eta Contrôle du niveau d'apprentissage.
- Min_child_weight Pour contrôler l'over/under-fitting
- Max_depth Pour contrôler l'over-fitting.
- Lambda Pour de la régularisation.
- Gamma Valeur minimale de gain pour diviser.
- ⊙ ...

PARAMÈTRES LIÉS À L'APPRENTISSAGE

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

- Objective Fonction objectif à minimiser (linéaire, softmax, softprob,...).
- Eval_metric Métrique d'évaluation (erreur MSE, MAE, LogLoss, AUC,...).
- Seed Pour l'aléatoire.

UTILISATION AVEC SPARK ET SCALA

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

```
1 val spark = SparkSession.builder().appName("SimpleXGBoost Application").
        config("spark.executor.memory", "2G").config("spark.executor.cores", "4
        ").config("spark.default.parallelism", "4").master("local[*]").
        getOrCreate()
  // number of iterations
  val numRound = 10
  val numWorkers = 4
  // training parameters
   val paramMap = List(
         "eta" -> 0.023f,
9
        "max_depth" -> 10,
        "min_child_weight" -> 3.0,
        "subsample" -> 1.0,
        "colsample bytree" -> 0.82.
        "colsample bylevel" -> 0.9.
        "base_score" -> 0.005,
14
        "eval_metric" -> "auc",
16
        "seed" -> 49.
        "silent" -> 1,
         "objective" -> "binary:logistic").toMap
18
  println("Starting Xgboost ")
  val xgBoostModelWithDF = XGBoost.trainWithDataFrame(trainingData, paramMap,
        round = numRound, nWorkers = numWorkers, useExternalMemory = true)
22 val predictions = xgBoostModelWithDF.setExternalMemory(true).transform(
        testData).select("label", "probabilities")
```


R ET FONCTION DE PERTE PERSONNALISÉE

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

```
1 loglossobj <- function(preds, dtrain) {
2  # dtrain is the internal format of the training data
3  # We extract the labels from the training data
4 labels <- getinfo(dtrain, "label")
5  # We compute the 1st and 2nd gradient, as grad and hess
6  preds <- 1/(1 + exp(-preds))
7  grad <- preds - labels
8  hess <- preds * (1 - preds)
9  # Return the result as a list
10  return(list(grad = grad, hess = hess))
11 }
12
13 model <- xgboost(data = train$data, label = train$label,
14  nrounds = 2, objective = loglossobj, eval_metric = "error")</pre>
```


SÉLECTION DE VARIABLES

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

Source: http://dmlc.ml/rstats/2016/03/10/xgboost.html et cours d'apprentissage Statistique (C. HELBERT)

QUELQUES BONNES PRATIQUE

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

- 1. Fixer un niveau d'apprentissage élevé.
- 2. Trouver le nombre optimal d'arbres.
- 3. Gérer les paramètres des arbres.
- 4. Gérer les paramètres de régularisation.
- 5. Réduire le niveau d'apprentissage.
- 6. Utiliser l'AUC pour estimer les modèles.

CHALLENGES KAGGLE

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

En 2015 sur Kaggle, 17 solutions gagnantes sur 29 utilisaient XGBoost.

CHALLENGES KAGGLE

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

En 2015 sur Kaggle, 17 solutions gagnantes sur 29 utilisaient XGBoost.

- 1er Knowledge Discovery and Data Mining Cup 2016 (V. Sandulescu).
- 1er et 3ème CERN LHCb experiment Flavour of Physics competition 2015 (V. Mironov).
- 1er Caterpillar Tube Pricing competition (M. Filho).
- **2**ème Airbnb New User Bookings (K. Kuroyanagi).
- 2ème Allstate Claims Severity (A. Noskov).
- 10% Higgs Boson Competition (T. Chen).
- **⊙** ...

UN EXEMPLE CONCRET

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

EN ENTREPRISE

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion Des données difficiles à obtenir...

- ODPS Cloud Service (Alibaba)
- Tencent (QQ)
- AutoHome
- AXA, Expedia, Amazon,...

CONCLUSION

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

- Une implémentation récente (3 ans).
- Une forte portabilité et de bonnes performances.
 - Une utilisation industrielle qui se développe.
 - Savoir-faire nécessaire pour la configuration.

CONCLUSION

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

- Une implémentation récente (3 ans).
- Une forte portabilité et de bonnes performances.
 - Une utilisation industrielle qui se développe.
- Savoir-faire nécessaire pour la configuration.

Une solution qui semble avoir de l'avenir!

QUESTIONS

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

Merci pour votre attention Et place aux questions!

https://ddouteaux.github.io/XGBoost_Veille_Douteaux/index.html

