# Regression analysis

## Mohammad Waleed

## 2024-08-23

## Contents

| 1        | Experiment 1 |                                          | 1  |
|----------|--------------|------------------------------------------|----|
|          | 1.1          | Experiment 1(a)                          | 1  |
|          | 1.2          | Experiment 1(b) $\dots$                  | 9  |
|          | 1.3          | Experiment $1(c)$                        |    |
|          | 1.4          | Result                                   | 6  |
| <b>2</b> | Exp          | periment 2.                              | 7  |
|          | 2.1          | Checking accuracy of the model           | 7  |
|          | 2.2          | Analysis without insignificant regressor | 8  |
|          | 2.3          | Checking accuracy of the model           | 10 |
|          | 2.4          | Result                                   | 11 |

## 1 Experiment 1

To check the effect and its significance on sales from three types of advertisement, TV, Radio and Newspaper using linear regression model.

## 1.1 Experiment 1(a)

(a) Appliying linear regression model onto sales and newspaper. We have linear model  $Sales = \beta_0 + \beta_1 * Newspaper + \epsilon$ .

```
advert = read.csv("advertising.csv")
cor(Newspaper,Sales)
```

```
## [1] 0.15796
```

```
plot( Newspaper, Sales)
M1 = lm(Sales~Newspaper, data = advert)
abline(M1, col = "red", lwd = 2)
```



### Hypothesis testing  $H_o: \beta_i = 0$  for all i's i.e., the model is insignificant.  $H1: \beta_i \neq 0$  for some i, i.e., the model is significant.

## 1.1.1 Checking accuracy of the model

summary.lm(M1)

```
##
## lm(formula = Sales ~ Newspaper, data = advert)
##
##
  Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
   -12.6930
                       0.6591
                                3.9083
                                        11.4385
##
            -3.8807
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
   (Intercept) 13.95955
                           0.63829
                                     21.870
                                              <2e-16 ***
                0.03832
                                      2.251
                                              0.0255 *
##
  Newspaper
                           0.01703
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 5.231 on 198 degrees of freedom
## Multiple R-squared: 0.02495,
                                    Adjusted R-squared:
## F-statistic: 5.067 on 1 and 198 DF, p-value: 0.02549
```

## 1.2 Experiment 1(b)

(b) Appliying linear regression model onto sales and Radio. We have linear model  $Sales = \beta_0 + \beta_1 * Radio + \epsilon$ 

```
advert = read.csv("advertising.csv")
cor(Radio,Sales)
```

## [1] 0.3496311

```
plot(Radio, Sales)
M2 = lm(Sales~Radio, data = advert)
abline(M2, col = "red", lwd = 2)
```



### Hypothesis testing  $H_o: \beta_i = 0$  for all i's i.e., the model is insignificant.  $H1: \beta_i \neq 0$  for some i, i.e., the model is significant.

#### 1.2.1 Checking accuracy of the model

## lm(formula = Sales ~ Radio, data = advert)

```
##
## Call:
```

```
##
## Residuals:
                1Q Median
##
                                   3Q
       Min
                                          Max
                                      8.6796
## -15.5632 -3.5293 0.6714 4.2504
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.2357
                          0.6535 18.724 < 2e-16 ***
                           0.0237 5.251 3.88e-07 ***
## Radio
             0.1244
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
\mbox{\tt \#\#} Residual standard error: 4.963 on 198 degrees of freedom
## Multiple R-squared: 0.1222, Adjusted R-squared: 0.1178
## F-statistic: 27.57 on 1 and 198 DF, p-value: 3.883e-07
```

## 1.3 Experiment 1(c)

(c) Appliying linear regression model onto sales and TV. We have linear model  $Sales = \beta_0 + \beta_1 * TV + \epsilon$ 

```
advert = read.csv("advertising.csv")
cor(Sales, TV)
```

## [1] 0.9012079

```
M3 = lm(Sales~TV, data = advert)
plot(TV,Sales)
abline(M3, col = "red", lwd = 2)
```



### Hypothesis testing  $H_o$ :  $\beta_i = 0$  for all i's i.e., each coeffcient is zero and the model is insignificant.  $H1: \beta_i \neq 0$  for some i, i.e., at least one is not zero and the model is significant.

#### 1.3.1 Checking accuracy of the model

```
##
## Call:
## lm(formula = Sales ~ TV, data = advert)
```

```
##
## Residuals:
##
       Min
                1Q
                    Median
                                        Max
                    0.0218
   -6.4438 -1.4857
                            1.5042
                                     5.6932
##
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
##
   (Intercept) 6.974821
                          0.322553
                                      21.62
                                              <2e-16 ***
##
  TV
               0.055465
                          0.001896
                                      29.26
                                              <2e-16 ***
##
## Signif. codes:
                   0 '***, 0.001 '**, 0.01 '*, 0.05 '.', 0.1 ', 1
##
## Residual standard error: 2.296 on 198 degrees of freedom
## Multiple R-squared: 0.8122, Adjusted R-squared: 0.8112
## F-statistic: 856.2 on 1 and 198 DF, p-value: < 2.2e-16
```

#### 1.4 Result

- 1(a) Since for the calculated p-value = 0.02549 < 0.05, our model is significant enough to reject the null hypothesis that all  $\beta'_i s$  are zero. The positive value of t-value(= 2.251) indicates positive correlation and the adjusted R-squared close to 0.02 indicates the 2% accuracy of the model.
- 1(b) Since for the calculated p-value < 2.2e-16 < 0.05, our model is significant enough to reject the null hypothesis that all  $\beta_i's$  are zero. The positive value of t-value (= 29.26) indicates positive correlation and the adjusted R-squared close to 0.81 indicates the 81% accuracy of the model.
- 1(c) Since for the calculated p-value < 3.88e-07 < 0.05, our model is significant enough to reject the null hypothesis that all  $\beta_i's$  are zero. The positive value of t-value (= 5.251) indicates positive correlation and the adjusted R-squared close to 0.12 indicates the 12% accuracy of the model.

## 2 Experiment 2.

To check the effect of all three regressors on sales using multiple linear regression model.

```
advert = read.csv("advertising.csv")
Mlm1 = lm(Sales ~ Radio + Newspaper + TV, data = advert)
Mlm1
##
## Call:
## lm(formula = Sales ~ Radio + Newspaper + TV, data = advert)
## Coefficients:
                               Newspaper
## (Intercept)
                      Radio
                  0.1070012
     4.6251241
                               0.0003357
##
                                            0.0544458
plot_all = data.frame(Sales, Newspaper, Radio, TV)
pairs(plot_all)
```



## 2.1 Checking accuracy of the model

```
advert = read.csv("advertising.csv")
Mlm1 = lm(Sales~Radio + Newspaper + TV, data = advert)
summary.lm(Mlm1)
##
## Call:
## lm(formula = Sales ~ Radio + Newspaper + TV, data = advert)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -7.3034 -0.8244 -0.0008 0.8976 3.7473
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 4.6251241 0.3075012 15.041
                                             <2e-16 ***
              0.1070012 0.0084896 12.604
## Radio
                                             <2e-16 ***
## Newspaper
              0.0003357 0.0057881
                                    0.058
                                              0.954
              0.0544458 0.0013752 39.592
                                             <2e-16 ***
## TV
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.662 on 196 degrees of freedom
## Multiple R-squared: 0.9026, Adjusted R-squared: 0.9011
## F-statistic: 605.4 on 3 and 196 DF, p-value: < 2.2e-16
Mlm1
##
## lm(formula = Sales ~ Radio + Newspaper + TV, data = advert)
## Coefficients:
## (Intercept)
                     Radio
                              Newspaper
                                                  TV
     4.6251241
                 0.1070012
                              0.0003357
                                           0.0544458
```

## 2.2 Analysis without insignificant regressor.

Since P value for newspaper is greater than 0.05, the regressor is insignificant for sales.

```
advert = read.csv("advertising.csv")

Mlm2 = lm(Sales ~ Radio + TV, data = advert)
Mlm2

##

## Call:

## lm(formula = Sales ~ Radio + TV, data = advert)

##

## Coefficients:

## (Intercept) Radio TV

## 4.63088 0.10717 0.05445
```

```
plot_all = data.frame(Sales, Radio, TV)
pairs(plot_all)
```



```
# Create the scatterplot3d object
plot3d = scatterplot3d(Radio, TV, Sales, main = "3D Scatter Plot with Regression Plane", xlab = "Radio"
# Add the regression plane
plot3d$plane3d(Mlm2, lty = "solid", col = "blue")
```

## 3D Scatter Plot with Regression Plane



## 2.3 Checking accuracy of the model

```
advert = read.csv("advertising.csv")
Mlm2 = lm(Sales~Radio + TV, data = advert)
summary.lm(Mlm2)
##
## Call:
## lm(formula = Sales ~ Radio + TV, data = advert)
##
## Residuals:
##
      Min
                1Q Median
                                ЗQ
                                       Max
## -7.3131 -0.8269 0.0095 0.9022 3.7484
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 4.630879
                          0.290308
                                     15.95
                                             <2e-16 ***
## Radio
               0.107175
                          0.007926
                                     13.52
                                             <2e-16 ***
                          0.001371
## TV
               0.054449
                                     39.73
                                             <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.657 on 197 degrees of freedom
```

```
## Multiple R-squared: 0.9026, Adjusted R-squared: 0.9016 ## F-statistic: 912.7 on 2 and 197 DF, p-value: < 2.2e-16
```

#### Mlm2

```
##
## Call:
## lm(formula = Sales ~ Radio + TV, data = advert)
##
## Coefficients:
## (Intercept) Radio TV
## 4.63088 0.10717 0.05445
```

## 2.4 Result

- (1) While performing multiple linear regression model on the advertising data set we noticed the p-value for newspaper is 0.954 > 0.05 which makes it insignificant compared to TV and Radio.
- (2) After eliminating the insignificant regressor we get our linear model with adjusted R-squared = 0.9016, which indicates the accuracy of model to be 90.16%.