ENGR 504 (Fall 2024) S. Alghunaim

14. Constrained optimization

- equality constrained optimization
- · penalty method
- augmented Lagrangian method
- constrained nonlinear least squares
- nonlinear control example

Equality constrained optimization

minimize
$$f(x)$$

subject to $g_i(x) = 0$, $i = 1, ..., p$

- $f: \mathbb{R}^n \to \mathbb{R}; g_i: \mathbb{R}^n \to \mathbb{R}$
- we let $g(x) = (g_1(x), \dots, g_p(x))$
- a point x satisfying g(x) = 0 is called a *feasible point*
- \hat{x} is a solution if it is feasible and $f(\hat{x}) \leq f(x)$ for all feasible x

Regular point: a feasible point *x* is a *regular point* if the vectors

$$\nabla g_1(x), \ \nabla g_2(x), \ \dots, \ \nabla g_p(x)$$

are linearly independent

Lagrangian function

the Lagrangian function is defined as

$$L(x, z) = f(x) + \sum_{i=1}^{p} z_i g_i(x)$$

- $z = (z_1, \dots, z_p)$ is a *p*-vector
- the entries of z_i are called the Lagrange multipliers
- the gradient of Lagrangian is

$$\nabla L(x, z) = \begin{bmatrix} \nabla_x L(x, z) \\ \nabla_z L(x, z) \end{bmatrix}$$

where

$$\nabla_x L(x, z) = \nabla f(x) + \sum_{i=1}^p z_i \nabla g_i(x)$$
$$\nabla_z L(x, z) = g(x)$$

Method of Lagrange multipliers

if \hat{x} is a regular point and a local minimizer, then there exists a vector \hat{z} such that

$$\nabla_x L(\hat{x}, \hat{z}) = \nabla f(\hat{x}) + \sum_{i=1}^p \hat{z}_i \nabla g_i(\hat{x}) = 0$$
$$\nabla_z L(\hat{x}, \hat{z}) = g(\hat{x}) = 0$$

- \hat{z} is called an *optimal Lagrange multiplier*
- · these are necessary conditions but not sufficient
- there can be points (x, z) satisfying the above but x is not a local minimizer
- the above method is known as the method of Lagrange multipliers
- called KKT conditions or Lagrange conditions

Example

minimize
$$x_1^2 + x_2^2$$

subject to $x_1^2 + 2x_2^2 = 1$

• the Lagrangian is

$$L(x, z) = x_1^2 + x_2^2 + z(x_1^2 + 2x_2^2 - 1)$$

· the necessary optimality conditions are

$$\nabla_x L(x, z) = \begin{bmatrix} 2x_1 + 2x_1 z \\ 2x_2 + 4x_2 z \end{bmatrix} = 0$$
$$\nabla_z L(x, z) = x_1^2 + 2x_2^2 - 1 = 0$$

• solving, we get the stationary points

$$x = (0, \pm \frac{1}{\sqrt{2}}), \quad z = -1/2$$

and

$$x = (\pm 1, 0), z = -1$$

- all feasible points are regular since $\nabla g(x) = (2x_1, 4x_2)$ is linearly independent
- thus, any minimizer to the above problem must satisfy the optimality conditions
- checking the value of the objective, we see that it is smallest at

$$x^{(1)} = (0, \frac{1}{\sqrt{2}})$$
 and $x^{(2)} = (0, -\frac{1}{\sqrt{2}})$

• therefore, the points $x^{(1)}$ and $x^{(2)}$ are candidate minimizers

Example

$$\begin{array}{ll} \text{minimize} & x_2\\ \text{subject to} & x_1^2+x_2^2=1\\ & (x_1-2)^2+x_2^2=1 \end{array}$$

one feasible point $\hat{x} = (1, 0)$, thus optimal

- \hat{x} is not regular as $\nabla g_1(\hat{x}) = (2,0), \nabla g_2(\hat{x}) = (-2,0)$ are dependent
- the Lagrangian is

$$L(x,z) = x_2 + z_1(x_1^2 + x_2^2 - 1) + z_2((x_1 - 2)^2 + x_2^2 - 1)$$

· the necessary condition

$$\nabla_x L(x,z) = \begin{bmatrix} 2x_1 z_1 + 2(x_1 - 2)z_2 \\ 1 + 2x_2(z_1 + z_2) \end{bmatrix} = 0$$

cannot be satisfied at $\hat{x} = (1, 0)$

Outline

- equality constrained optimization
- penalty method
- augmented Lagrangian method
- constrained nonlinear least squares
- nonlinear control example

Quadratic penalty formulation

minimize
$$f(x) + \mu ||g(x)||^2$$

- $g(x) = (g_1(x), \dots, g_p(x))$
- $\mu \in \mathbb{R}$ is the *penalty parameter*
- $\mu \|g(x)\|^2 = \mu \sum_{i=1}^p (g_i(x))^2$ penalize constraints violation
- a solution of the above problem might not feasible
- for large μ we expect to have small values $(g_i(x))^2$
- minimizing the above for an increasing sequence μ is called the *penalty method*

Penalty method

given a starting point $x^{(1)}$, $\mu^{(1)}$, and a solution tolerance $\epsilon>0$ repeat for $k=1,2,\ldots$

1. $set x^{(k+1)}$ to be the (approximate) solution to

minimize
$$f(x) + \mu^{(k)} ||g(x)||^2$$

using an unconstrained optimization method with initial point $\boldsymbol{x}^{(k)}$

- 2. update $\mu^{(k+1)} = 2\mu^{(k)}$
- penalty method is terminated when $\|g(x^{(k)})\|$ becomes sufficiently small
- simple and easy to implement
- feasibility $g(x^{(k)}) = 0$ is only satisfied approximately for $\mu^{(k-1)}$ large enough
- $\mu^{(k)}$ increases rapidly and must become large to drive g(x) to (near) zero
- for large $\mu^{(k)}$, step 1 can take a large number of iterations, or fail

Connection to optimality condition

recall optimality condition

$$\nabla f(\hat{x}) + Dg(\hat{x})^T \hat{z} = 0, \quad g(\hat{x}) = 0$$

• $x^{(k+1)}$ satisfies optimality condition for unconstrained problem:

$$\nabla f(x^{(k+1)}) + 2\mu^{(k)} Dg(x^{(k+1)})^T g(x^{(k+1)}) = 0$$

• if we define $z^{(k+1)} = 2\mu^{(k)}g(x^{(k+1)})$, this can be written as

$$\nabla f(x^{(k+1)}) + Dg(x^{(k+1)})^T z^{(k+1)} = 0$$

- so $x^{(k+1)}$ and $z^{(k+1)}$ satisfy first equation in KKT optimality condition
- feasibility $g(x^{(k+1)}) = 0$ is only satisfied approximately for $\mu^{(k)}$ large enough
- feasibility $g(x^{(k+1)}) = 0$ holds in the limit

Outline

- equality constrained optimization
- penalty method
- augmented Lagrangian method
- constrained nonlinear least squares
- nonlinear control example

Minimizing the Lagrangian

minimize
$$f(x)$$

subject to $g(x) = 0$

- $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^p \to \mathbb{R}$
- Lagrangian: $L(x, z) = f(x) + z^T g(x)$ where $z \in \mathbb{R}^p$
- problem is equivalent to (for any z)

minimize
$$L(x, z) = f(x) + z^{T}g(x)$$

subject to $g(x) = 0$

• if \hat{x} is a solution and a regular point, then

$$\nabla_x L(\hat{x}, \hat{z}) = 0$$
 for some \hat{z}

Augmented Lagrangian

the augmented Lagrangian (AL) is

$$L_{\mu}(x, z) = L(x, z) + \mu \|g(x)\|^{2}$$
$$= f(x) + z^{T}g(x) + \mu \|g(x)\|^{2}$$

- this is the Lagrangian L(x, z) augmented with a quadratic penalty
- μ is a positive penalty parameter
- augmented Lagrangian is the Lagrangian of the equivalent problem

minimize
$$f(x) + \mu ||g(x)||^2$$

subject to $g(x) = 0$

- solution of the original problem is also a solution of the AL formulation
- AL method minimizes $L_{\mu}(x,z)$ for a sequence of values of z and μ

Lagrange multiplier update

ullet minimizer $ilde{x}$ of augmented Lagrangian $L_{\mu}(x,z)$ satisfies

$$\nabla f(\tilde{x}) + Dg(\tilde{x})^T (2\mu g(\tilde{x}) + z) = 0$$

• if we define $\tilde{z} = z + 2\mu g(\tilde{x})$ this can be written as

$$\nabla f(\tilde{x}) + Dg(\tilde{x})^T \tilde{z} = 0$$

• this is the first equation in the optimality conditions

$$\nabla f(\hat{x}) + Dg(\hat{x})^T \hat{z} = 0, \quad g(\hat{x}) = 0$$

- shows that if $g(\tilde{x}) = 0$, then \tilde{x} is optimal
- if $g(\tilde{x})$ is not small, suggests \tilde{z} is a good update for z

Augmented Lagrangian algorithm

given $x^{(1)}, z^{(1)}, \mu^{(1)}$, and a solution tolerance $\epsilon > 0$ repeat for k = 1, 2, ...

1. set $x^{(k+1)}$ to be an (approximate) solution to

minimize
$$f(x) + (z^{(k)})^T g(x) + \mu^{(k)} ||g(x)||^2$$

using any unconstrained optimization method with initial point $\boldsymbol{x}^{(k)}$

2. update $z^{(k)}$:

$$z^{(k+1)} = z^{(k)} + 2\mu^{(k)}g(x^{(k+1)})$$

3. set $\mu^{(k)}$ as constant or

$$\begin{cases} \mu^{(k)} & \text{if} \quad \|g(x^{(k+1)})\| < 0.25 \|g(x^{(k)})\| \\ 2\mu^{(k)} & \text{otherwise} \end{cases}$$

- \bullet μ is increased only when needed, more slowly than in penalty method
- continues until $g(x^{(k)})$ and/or $\nabla L(x^{(k)}, z^{(k)})$ are sufficiently small

Example

minimize
$$e^{3x_1} + e^{-4x_2}$$

subject to $x_1^2 + x_2^2 = 1$

the augmented Lagrangian function is:

$$L_{\mu}(x,z) = e^{3x_1} + e^{-4x_2} + z\left(x_1^2 + x_2^2 - 1\right) + \mu(x_1^2 + x_2^2 - 1)^2$$

- initial points $x^{(1)}=(0,0)$ and $z^{(1)}=-1$, and $\mu^{(k)}=10$
- for the inner minimization problems we use Newton's method with stepsize t = 1:

$$\hat{x} \leftarrow \hat{x} - t \nabla^2 L_{\mu}(\hat{x}, z^{(k)})^{-1} \nabla L_{\mu}(\hat{x}, z^{(k)})$$

the gradient and Hessian are:

$$\nabla_x L_\mu(x,z) = \begin{bmatrix} 3e^{3x_1} + 2zx_1 + 4\mu x_1(x_1^2 + x_2^2 - 1) \\ -4e^{-4x_2} + 2zx_2 + 4\mu x_2(x_1^2 + x_2^2 - 1) \end{bmatrix}$$

and

$$\nabla_{x}^{2}L_{\mu}(x,z) = \begin{bmatrix} 9e^{3x_{1}} + 2z + 4\mu(x_{1}^{2} + x_{2}^{2} - 1) + 8\mu x_{1}^{2} & 8\mu x_{1}x_{2} \\ 8\mu x_{1}x_{2} & 16e^{-4x_{2}} + 2z + 4\mu(x_{1}^{2} + x_{2}^{2} - 1) + 8\mu x_{2}^{2} \end{bmatrix}$$

Newton method starts from $\hat{x} = x^{(k)}$ and and stops if $\|\nabla L_{\mu}(\hat{x}, z^{(k)})\| < 10^{-5}$

the value $x^{(k+1)}$ is then set to \hat{x} and the Lagrange multiplier is subsequently updated:

$$z^{(k+1)} = z^{(k)} + 2\mu \big((x_1^{(k+1)})^2 + (x_2^{(k+1)})^2 - 1 \big)$$

after executing the augmented Lagrangian method until $\|g(x^{(k)})\| < 10^{-6}$ or 50 iterations, the results are approximately $\hat{x} = (-0.7483, 0.6633)$ and $z^* = 0.2123$

MATLAB code implementation

```
mu=10;
%% AL gradient and Hessian
g=0(x,z)[3*exp(3*x(1))+2*z*x(1)+4*mu*x(1)*(x(1)^2+x(2)^2-1);
-4*exp(-4*x(2))+2*z*x(2)+4*mu*x(2)*(x(1)^2+x(2)^2-1);
hess=Q(x,z)[9*exp(3*x(1))+2*z+4*mu*(x(1)^2+x(2)^2-1)+...
8*mu*x(1)^2 8*mu*x(1)*x(2):
8*mu*x(1)*x(2) 16*exp(-4*x(2))+2*z+4*mu*(x(1)^2+x(2)^2-1)+8*mu*x(2)^2];
%% AL method
x = [0:0]:
z=-1:
for i=1:50
% Newton inner minimization
while (norm(g(x,z)) >= 1e-5)
d = -hess(x,z) \setminus g(x,z);
x = x+d:
end
% Lagrange update
z=z+mu*(x(1)^2+x(2)^2-1):
if norm((x(1)^2+x(2)^2-1))<1e-6
return
end
```

end

Outline

- equality constrained optimization
- penalty method
- augmented Lagrangian method
- constrained nonlinear least squares
- nonlinear control example

Constrained nonlinear least squares

minimize
$$f_1(x)^2 + \cdots + f_p(x)^2$$

subject to $g_1(x) = 0, \dots, g_p(x) = 0$

in vector notation:

$$\begin{array}{ll} \text{minimize} & \|f(x)\|^2\\ \text{subject to} & g(x)=0 \end{array}$$
 with $f(x)=(f_1(x),\ldots,f_m(x)),$ $g(x)=(g_1(x),\ldots,g_p(x))$

- $f_i(x)$ is ith (scalar) residual; $g_i(x) = 0$ is ith (scalar) equality constraint
- x is feasible if it satisfies the constraints g(x) = 0
- \hat{x} is a solution if it is feasible and $||f(x)||^2 \ge ||f(\hat{x})||^2$ for all feasible x

Lagrange multipliers

the **Lagrangian** of the problem is the function

$$L(x, z) = ||f(x)||^2 + z_1 g_1(x) + \dots + z_m g_m(x)$$

= $||f(x)||^2 + g(x)^T z$

- p-vector $z = (z_1, \dots, z_p)$ is vector of Lagrange multipliers
- gradient of Lagrangian with respect to x is

$$\nabla_{x} L(\hat{x}, \hat{z}) = 2Df(\hat{x})^{T} f(\hat{x}) + Dg(\hat{x})^{T} \hat{z}$$

• gradient with respect to z is

$$\nabla_z L(\hat{x}, \hat{z}) = g(\hat{x})$$

Optimality condition: if \hat{x} is optimal, then there exists \hat{z} such that

$$2D f(\hat{x})^T f(\hat{x}) + Dg(\hat{x})^T \hat{z} = 0, \quad g(\hat{x}) = 0$$

provided the rows of $Dg(\hat{x})$ are linearly independent

Constrained (linear) least squares

minimize
$$(1/2)||Ax - b||^2$$

subject to $Cx = d$

- a special case of the nonlinear problem with f(x) = Ax b, g(x) = Cx d
- apply general optimality condition:

$$Df(\hat{x})^{T}f(\hat{x}) + Dg(\hat{x})^{T}\hat{z} = A^{T}(A\hat{x} - b) + C^{T}\hat{z} = 0$$
$$g(\hat{x}) = C\hat{x} - d = 0$$

· these are the KKT equations

$$\left[\begin{array}{cc} A^T A & C^T \\ C & 0 \end{array}\right] \left[\begin{array}{c} \hat{x} \\ \hat{z} \end{array}\right] = \left[\begin{array}{c} A^T b \\ d \end{array}\right]$$

Penalty algorithm

given a starting point $x^{(1)}$, $\mu^{(1)}$, and solution tolerance ϵ repeat for $k=1,2,\ldots$

1. set $x^{(k+1)}$ to be an (approximate) solution to

minimize
$$\left\| \begin{bmatrix} f(x) \\ \sqrt{\mu}g(x) \end{bmatrix} \right\|^2$$

using the Levenberg-Marquardt algorithm, starting from initial point $x^{(k)}$

2. update $\mu^{(k)} = 2\mu^{(k)}$

if stopping criteria holds, stop and output $x^{(k+1)}$

Augmented Lagrangian

the augmented Lagrangian for the constrained NLLS problem is

$$L_{\mu}(x, z) = L(x, z) + \mu \|g(x)\|^{2}$$
$$= \|f(x)\|^{2} + g(x)^{T}z + \mu \|g(x)\|^{2}$$

· equivalent expressions for augmented Lagrangian

$$L_{\mu}(x, z) = \|f(x)\|^{2} + g(x)^{T}z + \mu\|g(x)\|^{2}$$

$$= \|f(x)\|^{2} + \mu\|g(x) + \frac{1}{2\mu}z\|^{2} - \frac{1}{2\mu}\|z\|^{2}$$

$$= \left\| \int_{\sqrt{\mu}g(x) + z/(2\sqrt{\mu})}^{f(x)} dx \right\|^{2} - \frac{1}{2\mu}\|z\|^{2}$$

• can be minimized over x (for fixed μ, z) by Levenberg-Marquardt method:

minimize
$$\left\| \left[\begin{array}{c} f(x) \\ \sqrt{\mu}g(x) + z/(2\sqrt{\mu}) \end{array} \right] \right\|^2$$

Augmented Lagrangian algorithm

given: $z^{(1)} = 0$, $\mu^{(1)} = 1$, and $x^{(1)}$

repeat for $k = 1, 2 \dots$

1. set $x^{(k+1)}$ to be the (approximate) solution of

minimize
$$\left\|\left[\begin{array}{c} f(x) \\ \sqrt{\mu^{(k)}}g(x) + z^{(k)}/(2\sqrt{\mu^{(k)}}) \end{array}\right]\right\|^2$$

using Levenberg-Marquardt algorithm, starting from initial point $x^{(k)}$

2. multiplier update:

$$z^{(k+1)} = z^{(k)} + 2\mu^{(k)}g(x^{(k+1)})$$

3. penalty parameter update:

$$\mu^{(k+1)} = \begin{cases} \mu^{(k)} & \text{if } \|g(x^{(k+1)})\| < 0.25 \|g(x^{(k)})\| \\ \mu^{(k+1)} = 2\mu^{(k)} & \text{otherwise} \end{cases}$$

Example

$$f(x_1, x_2) = \begin{bmatrix} x_1 + \exp(-x_2) \\ x_1^2 + 2x_2 + 1 \end{bmatrix}, \quad g(x_1, x_2) = x_1 + x_1^3 + x_2 + x_2^2$$

- solid: contour lines of $||f(x)||^2$
- dashed: contour lines of g(x)
- *: solution $\hat{x} = (0, 0)$

Convergence

- left: augmented Lagrangian, right: penalty method
- blue curve is norm $||g(x^{(k)})||$
- red curve is norm of $\|2Df(x^{(k)})^Tf(x^{(k)}) + Dg(x^{(k)})^Tz^{(k)}\|$

Outline

- equality constrained optimization
- penalty method
- augmented Lagrangian method
- constrained nonlinear least squares
- nonlinear control example

Nonlinear dynamical system

a nonlinear dynamical system has the form

$$x_{k+1} = f(x_k, u_k), \quad k = 1, \dots, K$$

- $x_k \in \mathbb{R}^n$ is the *state vector* at instant k
- $u_k \in \mathbb{R}^m$ is the *input* or *control* at instant k
- $f: \mathbb{R}^{n+m} \to \mathbb{R}^n$ describes evolution of the system (system dynamics)
- examples: vehicle dynamics, robots, chemical plants evolution...

Optimal control

- initial state $x_1 = x_{\text{initial}}$ is known
- choose the inputs u_1, \ldots, u_K to achieve some goal for the states/inputs

Simple model of a car

$$\frac{dp_1}{dt} = s(t)\cos\theta(t)$$
$$\frac{dp_2}{dt} = s(t)\sin\theta(t)$$
$$\frac{d\theta}{dt} = \frac{s(t)}{L}\tan\phi(t)$$

- L wheelbase (length)
- p(t) position
- $\theta(t)$ orientation (angle)
- $\phi(t)$ steering angle
- s(t) speed
- we control speed s and steering angle ϕ

Discretized car dynamics

$$\begin{split} p_1(t+h) &\approx p_1(t) + hs(t) \cos \theta(t) \\ p_2(t+h) &\approx p_2(t) + hs(t) \sin \theta(t) \\ \theta(t+h) &\approx \theta(t) + h(s(t)/L) \tan \phi(t) \end{split}$$

- h is a small time interval
- let state vector $x_k = (p_1(kh), p_2(kh), \theta(kh))$
- let input vector $u_k = (s(kh), \phi(kh))$
- discretized model $x_{k+1} = f(x_k, u_k)$ with

$$h(x_k, u_k) = x_k + h(u_k)_1 \begin{bmatrix} \cos(x_k)_3 \\ \sin(x_k)_3 \\ (\tan(u_k)_2)/L \end{bmatrix}$$

Car control problem

- move car from given initial to desired final position and orientation
- using a small and slowly varying input sequence

Problem formulation

$$\begin{array}{ll} \text{minimize} & \sum_{k=0}^{K}\|u_k\|^2 + \gamma \sum_{k=0}^{K-1}\|u_{k+1} - u_k\|^2 \\ \text{subject to} & x_2 = f\left(0, u_1\right) \\ & x_{k+1} = f\left(x_k, u_k\right), \quad k = 2, \dots, K-1 \\ & x_{\text{final}} = f\left(x_K, u_K\right) \end{array}$$

- variables u_1, \ldots, u_K , and x_2, \ldots, x_K
- the initial state is assumed to be zero
- the objective ensures the input is small with little variation
- $\gamma > 0$ is an input variation trade-off parameter

Four solution trajectories

solution trajectories with different final states; the outline of the car shows the position $(p_1(kh); p_2(kh))$, orientation $\theta(kh)$, and the steering angle $\phi(kh)$ at time kh

nonlinear control example SA - ENGR504 14.31

Inputs for four trajectories

References and further readings

- S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, 2018.
- L. Vandenberghe. *EE133A lecture notes*, Univ. of California, Los Angeles. (http://www.seas.ucla.edu/~vandenbe/ee133a.html)

references SA_ENGR504 14.33