AI와 데이터 기초

pandas 자료구조

오늘 수업은

- ❖데이터 종류와 구조
- ❖에제로 보는 데이터 구성
 - seaborn 데이터셋
- ❖데이터 준비하기
 - pandas
- ❖pandas 자료구조
 - 데이터 생성
 - Series
 - DataFrame
- ❖유기동물보호현황 확인하기
 - 예제로 보는 데이터 구성
 - 데이터 수집

빅데이터 종류

- ❖정형데이터(structured data)
 - 미리 정해 놓은 형식과 구조에 따라 저장된 데이터 예) 관계형 데이터베이스의 테이블, 스프레드시트, CSV 등
- ❖반정형데이터(semi-structured data)
 - 일정한 규칙의 고정된 필드에 저장되어 있지 않지만 데이터의 구조 정보를 데이터와 함께 제공하는 데이터
 예)XML, HTML, JSON, 웹문서, 웹로그 등
- ❖비정형데이터(unstructured data)
 - 정의된 구조가 없이 데이터 자체만으로 내용에 대한 질의 처리를 할 수 없는 데이터
 - 예) 소셜 데이터, 텍스트 문서, 동영상/이미지/음성 데이터, 문서(PDF) 등

[이미지 출처]: 정보통신용어사전

(http://terms.tta.or.kr/dictionary/dictionaryView.do?word_seq=175128-2)

(정형) 데이터 구조

- ❖데이터(표)는 행(row)과 열(column)로 구성
 - 행(row): 하나의 단위로 다루어지는 데이터의 집합(표의 가로축)
 - 열(column): 특정 자료형을 갖는 일련의 데이터 값(표의 세로축)

열(co	lumn)
------	-------

학번	이름	학과	학년
20211021	박형식	영어영문학과	1
20205412	공유	화학과	2
20210578	아이유	수학과	1
19983125	송중기	경영학과	4

(정형) 데이터 구조

❖칼럼(Column) = 열

칼럼=열 (Column)

통계 분야

변수 (Variable)

컴퓨터 분야

속성 (Attribute)

인공지능 분약

≣ଅ (Feature)

패턴인식 분약

학번	이름	학과	학년
20211021	박형식	영어영문학과	1
20205412	공유	화학과	2
20210578	아이유	수학과	1
19983125	송중기	경영학과	4

- ❖칼럼의 종류
 - 수치형(Numeric) : 정수형(int), 실수형(float), Bool형
 - 범주형(Categorical) : 순서형(category), 텍스트(object)

- 1. 레코드(행)는 개수는?
- 2. 칼럼(변수)의 개수는?
- 3. 수치형 칼럼 개수는?
- 4. 범주형 칼럼 개수는?

데이터 정보가 중요한가?

❖행과 열

- 데이터의 크기를 알 수 있음
- 처리의 양을 파악 할 수 있음
- 변수(칼럼)들을 통해서 변수간의 관련성에 대한 의문점을 가질 수 있음

❖ 칼럼의 종류

- 칼럼들의 연산 가능여부 확인 가능
- 간단한 통계정보를 통하여 데이터에 대한 대략적인 분석 가능
- 칼럼의 종류에 따라 프로그램 작성시 오류 파악 가능

데이터의 크기

- ❖데이터가 크다? : 행이 많거나 열이 많다
- ❖데이터 분석을 위해서는 행과 열 중 무엇이 많은게 좋을까? : [답] 열
 - 행이 많은 경우
 - 행의 개수가 많을수록 처리하는 양이 많아짐으로 컴퓨터가 느려짐
 - 물리적인 비용(메모리나 CPU, 분산처리, 클라우드)으로 해결가능
 - 100만명과 100명의 평균 또는 분석 방법이 같다면 데이터 분석의 노력 결과는 달라지지 않음
 - 열이 많은 경우
 - 변수간의 관계에 대해 분석할 수 있는 사항들이 많아짐
 - 분석 방법 및 기술이 다양해짐
- ❖행과 열의 수보다 다양한 데이터가 더 중요!!!
 - 데이터의 가치는 어떤 현상이 조건에 따라 달라진다는 사실을 발견할 때 생김
 - 조건에 따른 현상은 다양한 데이터에 포함된 변수간의 관련성으로 분석

예제로 보는 데이터 구성 (seaborn 데이터셋)

seaborn 데이터셋 블러오기(titanic)

- - 데이터 시각화 라이브러리
 - 내장 데이터셋 22개 제공(sns.get_dataset_names() 명령으로 확인가능)

```
In [1]:
             import seaborn as sns
In [2]:
            df = sns.load_dataset('titanic')
In [3]:
             df.head()
Out[3]:
            survived pclass
                              sex age sibsp parch
                                                     fare embarked class
                                                                              who adult_male de
                                                                   S Third
                             male 22.0
                                                 0 7.2500
                                                                                         True Na
                                                                              man
                         1 female 38.0
                                                 0 71.2833
                                                                                        False
                                                                       First woman
         2
                         3 female 26.0
                                                 0 7.9250
                                                                      Third woman
                                                                                        False Na
                         1 female 35.0
                                                 0 53.1000
                                                                       First woman
                                                                                        False
                             male 35.0
                                                 0 8.0500
                                                                   S Third
                                                                                         True Na
                                                                              man
                                                                                               þ.
```

titanic 데이터 전체보기

In [4]:

1 df

Out[4]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True
886	0	2	male	27.0	0	0	13.0000	S	Second	man	True
887	1	1	female	19.0	0	0	30.0000	S	First	woman	False
888	0	3	female	NaN	1	2	23.4500	S	Third	woman	False
889	1	1	male	26.0	0	0	30.0000	С	First	man	True
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	True

891 rows × 15 columns

titanic 데이터 구성 확인하기

```
In [5]:
          1 | df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 891 entries, 0 to 890
        Data columns (total 15 columns):
             Column
                          Non-Null Count Dtype
             survived
                          891 non-null
                                           int64
                          891 non-null
             polass
                                           int64
                          891 non-null
                                           object
             sex
                          714 non-null
                                           float64
             age
                                           int64
             sibsp
                          891 non-null
             parch
                          891 non-null
                                           int64
             fare
                          891 non-null
                                           float64
             embarked
                          889 non-null
                                           object
                          891 non-null
             class
                                           category
             who
                          891 non-null
                                           object
             adult_male
                          891 non-null
                                           bool
             deck
                          203 non-null
                                           category
             embark_town 889 non-null
                                           object
             alive
                          891 non-null
                                           object
         14 alone
                          891 non-null
                                           bool
        dtypes: bool(2), category(2), float64(2), int64(4), object(5)
```

memory usage: 80.7+ KB

❖데이터 정보 확인하기

- 1. 레코드는 개수는?
- 2. 칼럼의 개수는?
- 3. 수치형 칼럼 개수는?
- 4. 범주형 칼럼 개수는?

titanic 데이터셋 시각화하기

데이터 준비하기(pandas)

Pandas란?

❖데이터 분석을 위한 Python 라이브러리

- Panel Data Analysis
- 대용량의 (정형)데이터 처리를 지원함.
- 데이터 관리와 정제 기능을 가진 라이브러리
- 머신러닝, 시각화 등의 데이터 사이언스 관련 라이브러리에서 사용

❖ Excel과의 차이점

	엑셀(Excel)	판다스(pandas)
자동화	- 기본적으로 사람의 손으로 작업 - VB로 자동화 가능하기는 함	- 코딩을 통한 자동화
대용량 데이터 처리	- 큰 데이터 처리에 부적합함 - 로딩이 안되는 경우도 있음 - 데이터 처리 속도가 느림	- 데이터 처리 속도 빠름
분석 방법	- 지원되는 기능에 한정	- 사용자가 코딩을 통해 다양한 창의적 인 데이터 분석이 가능함

[pandas.pydata.org]

설치방법 및 라이브러리 선언

- ❖콘솔에서 아래의 명령으로 설치
 - Path 설정에 문제가 있는 경우 아래 명령이 실행 안될 수 있음
 - 그럴 경우 pip 명령이 있는 위치로 경로를 이동한 후 실행

pip install pandas

- ❖코랩(colab)에는 이미 설치되어 있음
- ❖라이브러리 선언

import pandas as pd

파이썬 기본 자료구조

❖리스트

- a = [10, 20, 30]
 b = [[1,2], [3,4], [5,6]]
 데이터 개별 접근: a[0] + a[2] / a[0:2] / b[2][1]
- ❖튜플: 데이터 변경 불가
 - a = (10,20,30)
 - b = ((1,2), (3,4), (5,6))
 - 데이터 개별 접근 : a[0] + a[2] / a[0] = 1 (Error)

❖딕셔너리

- ▶ key : value 형식으로 데이터 저장
- dict = { 'a': 100 , 'b': 200, 'c': 300 }
- 데이터 개별 접근 : dict['a'] + dict ['b']

pandas 자료 구조

Series

■ 1차원 배열 형태로써 같은 종류의 데이터가 순서대로 나열된 데이터 구조

DataFrame

- 데이터를 표 형식 데이터(행, 열) 구조로 저장
- 예)CSV, EXCEL

번호	도서명	저자	출판사	발행년도
1	꿀벌의 예언 1	베르나르 베르베르	열린책들	2023
2	메리골드 마음 세탁소	윤정은	북로망스	2023
3	바다가 들리는 편의점	마치다 소노코	모모	2023
4	냉정과 열정사이	츠지 히토나리	소담출판사	2003
5	남한산성:김훈 장편소설	김훈	학고재	2007

Series

- ❖여러 값을 나열한 1차원 자료구조
- ❖ DataFrame을 구성하는 하위요소
- ❖ DataFrame을 다루는 함수는 대부분 시리즈를 이용하여 연산함

index 자동 부여

```
1 import pandas as pd
2 data = pd.Series([3, 4, 5])
3 print(data)
4 print(data[0])
5 print(data[1])
6 print(data[2])
1     4
2     5
dtype: int64
3     4
5
```

index 직접 부여

```
1 x_data = pd.Series([20, 25, 22], index=['kim','lee','park'])
2 print(x_data)
3 print(x_data[0])
                                                       kim.
                                                               20
4 print(x_data[1])
                                                               25
                                                       Lee.
5 print(x_data[2])
                                                               22
                                                       park
6 print(x_data['kim'])
                                                       dtype: int64
7 print(x_data['lee'])
                                                       20
8 print(x_data['park'])
                                                       25
                                                       22
                                                       20
                                                       25
                                                       22
```

DataFrame

- ❖ DataFrame을 이용한 데이터 생성
 - pd.DataFrame({'key1':value1, 'key2':value2, ...})
 - key : 열이름(변수명)
 - value : 열이름에 해당하는 데이터들(데이터, 리스트)

4	Α	В	С
1	학번	이름	학과
2	20211021	박형식	영어영문학과
3	20205412	공유	화학과
4	20210578	아이유	수학과

```
1 import pandas as pd

2

3 no = [20231021, 20225412, 20210578]

4 name = ['박형식','공유', '아이유']

5 major = ['영어영문학과', '화학과','수학과']

6

7 df = pd.DataFrame({'학번':no, '이름':name, '학과':major})

8 df
```

	학번	이름	학과
0	20231021	박형식	영어영문학과
1	20225412	공유	화학과
2	20210578	아이유	수학과

DataFrame

- ❖ DataFrame을 이용한 데이터 생성
 - pd.DataFrame([데이터들], columns=['열이름들'])
 - 데이터들 : 각 열의 데이터들(데이터, 리스트)
 - 열이름들 : 각 열의 변수명

```
1 import pandas as pd

2

3 Al_class = [[20231021,'박형식','영어영문학과'],

4 [20225412,'공유','화학과'],

5 [20210578,'아이유','수학과']

6 ]

7

8 df = pd.DataFrame(Al_class, columns=['학번','이름','학과'])

9 df
```

```
ABC1학번이름학과220211021박형식영어영문학과320205412공유화학과420210578아이유수학과
```

```
1 import pandas as pd

2

3 df = pd.DataFrame([[20231021,'박형식','영어영문학과'],

4 [20225412,'공유','화학과'],

5 [20210578,'아이유','수학과']

6 ], columns=['학번','이름','학과'])

7 df
```

	학번	이름	학과
0	20231021	박형식	영어영문학과
1	20225412	공유	화학과
2	20210578	아이유	수학과

pandas 자료구조

[실습내용]

- 1. 데이터 생성
- 2. Series
- 3. DataFrame

1. Series를 활용한 데이터 생성

❖index 자동 부여

- 변수명 = pd.Series([데이터])
 - 데이터 : 리스트 형식으로 작성
 - 데이터 참조: 리스트 참조 방식 사용 ex)a[1]

❖index 직접 부여

- 변수명 = pd.Series([데이터], index=[index이름])
 - 데이터: 리스트 형식으로 작성
 - index이름: 데이터의 개수만큼 생성

2. DataFrame을 활용한 데이터 생성

- ❖변수명 = pd.DataFrame({'key1':value1, 'key2':value2, ···})
 - key : 열이름(변수명)
 - value : 열이름에 해당하는 데이터들(리스트)

- ❖변수명 = pd.DataFrame([데이터], columns=['열이름들'])
 - 데이터들 : 각 열의 데이터들(리스트)
 - 열이름들 : 각 열의 변수명

유기동물보호현황 확인하기

[실습내용]

- 1. 데이터 구성
- 2. 데이터 수집

1. 데이터 수집하기

- EXCEL(xlsx) : 쐴병합 check 해제
- CSV
- TXT

위 3개의 파일을 각각 선택하여 [다운로드]

2. 데이터 읽어오기

import pandas as pd # 데이터 관리와 정제 기능을 가진 라이브러리

- ❖xlsx 파일을 불러올때:
 - 변수명 = pd.read_excel("파일경로명', 속성量)
- ❖csv 또는 txt 파일을 불러올때
 - 변수명 = pd.read_csv("파일경로명', 속성量)

2. 데이터 읽어오기

- *pd.read_csv()와 pd.read_excel()의 속성
 - delimiter='구분기호'
 - 생략시 ","로 인식
 - \t: tab을 열 구분 문자로 인식
 - header=[행번호] :
 - 위에서 몇 째줄 부터 읽어올지 지정(줄 수는 0부터 시작)
 - 열이름(변수이름)으로 설정할 index 번호 기술
 - encoding= '인코딩방식'
 - 한글이 깨져서 보일 경우 인코딩 방식 설정
 - EUC_KR' (한글이 포함된 일반적인 경우)/ 'cp949' (MS office에서 저장한 파일 형식)
 - thousands=','
 - ','가 포함된 문자열 데이터에서 ','를 삭제하고 숫자형 데이터를 변경

3. 데이터 정보 보기

❖데이터 정보 보기

■ 변수명.info(): 데이터 타입, 각 아이템 개수, 누락데이터 수 등 확인

4. 데이터를 화일에 저장하기

❖파일에 저장하기

- 변수명.to_csv('화일명')
 - DataFrame을 csv 파일로 저장
- 변수명.to_excel('화일명')
 - DataFrame을 excel 파일로 저장