

Opera Solutions, LLC 12230 El Camino Real Suite 330ºSan Diego, California 92130º+1 (858) 480 3750 telephoneº+1 (858) 480 3727 facsimile www.operasolutions.com

KDD Cup 2012 Track 2:

Ensemble of Collaborative Filtering and Feature Engineered Models for Click Through Rate Prediction

—Methods of Opera Solutions

The Dream Team

- Jeong-Yoon Lee
- Jingjing(Bruce) Deng
- Hang Zhang
- Jacob Spoelstra
- Andreas Töscher
- Michael Jahrer

The Task

- Predicting the click-through rate (CTR) a search advertisement receives from a querying user
 - Search advertising has been one of the major revenue sources of the internet industry
 - Predicting CTR correctly helps search providers to rank/price ads correctly
 - Important to user experience improvements and revenue growth
 - Widely applicable to searching engines, online stores, online finance services, etc.
 - Evaluation metric: Area Under ROC Curve (AUC)

Preparing the data for learning

- We do some basic checks
- Decide to use random 3% of train as valid
 - Split 1.5% to Valid1
 - Split 1.5% to Valid2

Main data table

clicks	impr	adUrIID		ad	IID	adverID	depth	pos	queryID	keyWordID	titleID	descrID	userID
0	1	126738	70462623600	0000	4242983	26519	2	1	47350	812	8842	25537	6023881
0	1	63990	24617856670	0000 2	1299603	36491	2	2	546	113	3225	121	6023881
1	1	126738	70462623600	0000	4242983	26519	1	1	47350	812	9164	7625	6023881
0	1	68775	16134389990	0000 20	0053263	2332	2	1	23447	476	3547	3397	2583834
0	4	63608	09004806360	0000 10	0164628	18209	2	2	4035850	947	74709	37226	2583834
0	4	116593	73614241500	0000 20	0934246	34882	2	1	4035850	592434	1507528	4127	2583834
1	1	176971	27834337800	0000 10	0484162	29135	2	1	1788197	147838	971553	628205	2583834
0	2	46603	87735928840	0000 2	1313239	36540	1	1	6600	11342	10208	1785	4019508
1	1	26709	52723278900	0000 20	0172874	23805	2	2	5	3	35	16	4019508
0	1	77718	84441258270	0000 20	0108617	32367	1	1	1315	316	177	64	4019508

... 150M records !! - 10Gig raw csv file + keywords + userProfiles

Opera's Approaches

- Individual models
 - Collaborative filtering (Bias model, Factor models)
 - Naïve Bayesian classifiers (NBC)
 - Feature engineering and advanced statistical models
- Blending (mix the individuals)
 - Weighted sum (linear)
 - Neural network

Collaborative filtering

- Sparse matrix
- What is the matrix?
- What is the target ?

clicks	impr	adUrIID	adID	adverID	depth	pos	queryID	keyWordID	titleID	descrID	userID
0	1	12673870462623600000	4242983	26519	2	1	47350	812	8842	25537	6023881
0	1	6399024617856670000	21299603	36491	2	2	546	113	3225	121	6023881
1	1	12673870462623600000	4242983	26519	1	1	47350	812	9164	7625	6023881
0	1	6877516134389990000	20053263	2332	2	1	23447	476	3547	3397	2583834
0	4	6360809004806360000	10164628	18209	2	2	4035850	947	74709	37226	2583834
0	4	11659373614241500000	20934246	34882	2	1	4035850	592434	1507528	4127	2583834
1	1	17697127834337800000	10484162	29135	2	1	1788197	147838	971553	628205	2583834
0	2	4660387735928840000	21313239	36540	1	1	6600	11342	10208	1785	4019508
1	1	2670952723278900000	20172874	23805	2	2	5	3	35	16	4019508
0	1	7771884441258270000	20108617	32367	1	1	1315	316	177	64	4019508

- We have 10 ID sources (adUrlID, adID, advertiserID, depth, pos, queryID, keyWID, titleID, descrID, userID)
- userID x adUrlID ?
- userID x adID ?
- userID x advertiserID ?
- ...
- ...
- ...

45

combinations

Target: clicks/impressions

Bias model

- Biases for every unique ID
 - approx. 50M biases
- Prediction is sum of M=10 biases

12.1		-	11.110				IID.	1 15	1 0	1	ID	1 M/ HD	cu ID		ID			
Clicks	simp		adUrIID			-	adID			_		keyWordID		descrID				
()	1			32623600	_			2	1	47350	812	8842	25537	6023881			
()	1	63990	2461	7856670	000	21299603	36491	72	2	546	113	3225	121	6023881			
	1	1	126/738	7046	2623600	000	4242983	26519	1	1	47350	812	9164	7625	6023881			
()	1	68775	1613	34389990	000	20053263	23/32	2		23447	476	3547	3397	2583834			
()	4	63608	0900	4806360	20 0	10164628	18209	2	2	4035850	947	74709	37226	2583834			
()	4	1 <mark>/</mark> 16593	7361	4241500	000	20934246	34882	2	1	4035850	592434	1507528	4127	2583834			
	1	1	1 76971.	2783	3433 7 800	000	10484162	29135	2	1	1788197	147838	971553	628205	2583834			
()	2/	46603	8773	35928840	000	21313239	36540			6600	11342	10208	1785	4019508			
	1	1	26709	5272	3278900	000	20172874	23805	2	2	5	3	35	16	4019508			
()	/1	77718	8 44 4	1258270	000	20108617	32367	1	1	1315	316	177	64	4019508			
		1			//								_					
	d	Z	(126	738	37046	26	236000	000			adUrlID, line=1							
	$d_{1}^{2} = 4242983$,	adID, line=1							
>>	d_{1}^{5} 26519								i	adverID, line=1								
	$d_{1}^{4}=2$										depth, line=1							

- Training with stochastic gradient descent
 - Minimizing MSE
 - Small learning rate, L2 regularization (both optimized)
 - Public Leaderboard AUC: 0.76461

Bias model improved #1

Same model

$$\widehat{p_i} = \sum_{m=1}^M b \, _k^m$$
 where $\mathbf{k} = d \, _i^m$

+0.009 AUC improvement

• Separate learning rates η_m and regularizations λ_m for each of the 10 ID sources

ID NAME	η	λ
ADURLID	0.000013	0.01
ADID	0.0001	0.0135
ADVERTISERID	0.0001	0.0379
DEPTH	0.000013	0.0379
POSITION	0.009	0.002
QUERYID	0.0025	0.0379
KEYWORDID	0.0001	0.002
TITLEID	0.0001	0.0135
DESCRIPTIONID	0.0001	0.137
USERID	0.0025	0.0075

- Training with stochastic gradient descent
 - Minimizing MSE
 - Public Leaderboard AUC: 0.77336

Bias model improved #2

Same model

$$\widehat{p_i} = \sum_{m=1}^M b \, rac{m}{k}$$
 where $\mathrm{k} = d \, rac{m}{i}$

+0.015 AUC improvement

- Separate learning rates η_m and regularizations λ_m for each of the 10 ID sources
- Training with pairwise stochastic gradient descent
 - Minimizing MSE on pairs related to AUC maximization directly
 - Public Leaderboard AUC: 0.788

FOR e = 1maxEpochs									
FOR n = 1N (all samples, e.g. N=150M for train set)									
Select a sample: a =index to positive sample									
Select b sample: b =index to	Select b sample: b =index to negative sample								
$\widehat{p_a} = \sum_{m=1}^M b \frac{m}{d^m}$ a sample prediction									
$\widehat{p_b} = \sum_{m=1}^M b \frac{m^a}{d b}$	b sample prediction								
$\Delta_{pred} = \widehat{p_a} - \widehat{p_b}$	difference of predictions								
$\Delta_{target} = t_a - t_b$	difference of targets								
	the error								
FOR m = 1M (all 10 ID sources) $k_a = d_a^m \qquad k_b = d_b^m$									
$b_{k_{a}}^{m} = b_{k_{a}}^{m} - \eta_{m} \cdot (error + \lambda_{m} \cdot b_{k_{a}}^{m})$ $b_{k_{b}}^{m} = b_{k_{b}}^{m} - \eta_{m} \cdot (-error + \lambda_{m} \cdot b_{k_{b}}^{m})$	update the a and b sample biases								

	ID NAME	η	λ
	ADURLID	0.000013	0.01
	ADID	0.0001	0.0135
	ADVERTISERID	0.0001	0.0379
	DEPTH	0.000013	0.0379
	POSITION	0.009	0.002
	QUERYID	0.0025	0.0379
	KEYWORDID	0.0001	0.002
	TITLEID	0.0001	0.0135
	DESCRIPTIONID	0.0001	0.137
	USERID	0.0025	0.0075
-			

Bias model improved #3

Same model

$$\widehat{p_i} = \sum_{m=1}^M b \frac{m}{k}$$
 where $\mathbf{k} = d \frac{m}{i}$

- Unroll the training set based on impressionCnt
 - From 150M to 235M training samples (+56% more training samples)
 - Use only 1 (+) or 0 (-) as targets

clicks impr adUrlID adID adverID depth pos queryID keyWordID titleID descrID u 0 1 12673870462623600000 4242983 26519 2 1 47350 812 8842 25537 6 0 1 6399024617856670000 21299603 36491 2 2 546 113 3225 121 6 1 1 12673870462623600000 4242983 26519 1 1 47350 812 9164 7625 6 0 1 6877516134388999000 20053263 2332 2 1 23447 476 3547 3397 2 0 4 6360809004806360000 10164628 18209 2 2 4035850 947 74709 37226 2 0 4 11659373614241500000 20934246 34882 2 1 4035850 592434 1507528 4127 2 1 1 17697127834337800000 10484162<	
0 1 6399024617856670000 21299603 36491 2 2 546 113 3225 121 6 1 1 12673870462623600000 4242983 26519 1 1 47350 812 9164 7625 6 0 1 6877516134389990000 20053263 2332 2 1 23447 476 3547 3397 2 0 4 6360809004806360000 10164628 18209 2 2 4035850 947 74709 37226 2 0 4 11659373614241500000 20934246 34882 2 1 4035850 592434 1507528 4127	clicks ii
1 1 12673870462623600000 4242983 26519 1 1 47350 812 9164 7625 6 0 1 6877516134389990000 20053263 2332 2 1 23447 476 3547 3397 2 0 4 6360809004806360000 10164628 18209 2 2 4035850 947 74709 37226 2 0 4 11659373614241500000 20934246 34882 2 1 4035850 592434 1507528 4127	0
0 1 6877516134389990000 20053263 2332 2 1 23447 476 3547 3397 2 0 4 6360809004806360000 10164628 18209 2 2 4035850 947 74709 37226 2 0 4 11659373614241500000 20934246 34882 2 1 4035850 592434 1507528 4127 2	0
0 4 6360809004806360000 10164628 18209 2 2 4035850 947 74709 37226 2 0 4 11659373614241500000 20934246 34882 2 1 4035850 592434 1507528 4127 2	1
0 4 11659373614241500000 20934246 34882 2 1 4035850 592434 1507528 4127 2	0
	0
1 1 17697127834337800000 10484162 29135 2 1 1788197 147838 971553 628205 2	0
	1
0 2 4660387735928840000 21313239 36540 1 1 6600 11342 10208 1785 4	0
1 1 2670952723278900000 20172874 23805 2 2 5 3 35 16 4	1
0 1 7771884441258270000 20108617 32367 1 1 1315 316 177 64 4	0

7	0	4	6360809004806360000	10164628	1
1	0	4	6360809004806360000	10164628	1
7	0	4	6360809004806360000	10164628	1
\rightarrow	0	4	6360809004806360000	10164628	1

Gives also improvement

- Unfortunately, we have no detailed notes

e.g. if impressionCnt=4
-> unroll 1 data sample
to 4 +/- samples

Factorized model

- Again, d_{i}^{m} is the value of the data at
 - m = the sourceID (1...10)
 - i = the sampleID (1...150M)
- The prediction is a sum of all dot products!

$$\widehat{p_i} = \sum_{m=1}^{M} \sum_{n=m+1}^{M} p \binom{c}{(d_i^m)}^T \cdot q \binom{c}{(d_i^n)}$$

$$\widehat{p_i} = p_0^T q_0 + p_1^T q_1 + p_2^T q_2 + \dots + p_{44}^T q_{44}$$
45 dot
products

- On every cell we have a feature matrix: F x $|d {m \atop *}|$
 - F = number of features
 - e.g. P_0 =F x 26272 P_1 =F x 641706
 - Huge number of features!

										adUrlID	adID	adverID	depth	pos	queryID	keyWordID	titleID	descrID	userID
										12673870462623600000	4242983	26519	2	- 1	4735	0 812	8842	25537	602388
										6399024617856670000	21299603	36491	2	2			3225		602388
										12673870462623600000	4242983	26519	1	1	4735	0 812	9164		602388
										6877516134389990000	20053263	2332	2	1	2344	7 476	3547	3397	258383
										6360809004806360000		18209	2		403585	0 947	74709	37226	258383
										11659373614241500000	20934246	34882	2	1	403585	0 592434	1507528	4127	258383
										17697127834337800000	10484162	29135		1	178819		971553	628205	258383
										4660387735928840000	21313239	36540			660		10208		401950
										2670952723278900000		23805				5 3			401950
										7771884441258270000		32367	1	1			177		401950
7771884441258270000 20178617	4660387735928840000	17697127834337800000	11659373614241500000	6360809004806360000	6877516134389990000	12673870462623600000	6399024617856670000	12673870462623600000	adUrlID		0	1	2	3	4	5	6	7	8
0 20172874	0 21313239	0 10484162			6.4	0 4242983	0 21299603	4242983	adID			9	10	1	112	13	14	15	16
32367	36540	29135	34882	18209	2332	26519	36491	26519	adverID depth pos queryID				17	1	8 19	20	21	22	25 29 34
4 1		2	2				2	2	depth					2	4 25 30	26 31	27 32	28 33	29
4 N				2			2	_	90						120	1 21	วว	22	2/
	-	-4	4	4	_	_	10	-	q					l	3) JI			٠,
1215	6600	1 1788197	4035850	4035850	23447	47350	546	47350								35	36	37	38
316	11342	147838		947	476	812	113	812	keyWordID titleID								39	40	41
177	102		7			9164	3225		titleID									42	43
	17	6				7625			Q.										44
64 4019508	4019508					6023881	121 6023881	25537 6023881	userID									11	

Factorized model #2

- Very HUGE memory consumption
 - We were only able to train models with F=2 features
- Problems with overfitting
 - Error is minimal after 1 epoch of training!
 - High L2-regularization does not help
 - Too less time to do careful analysis
- Training with pairwise stochastic gradient descent
 - Minimizing pairwise MSE
 - Small learning rate, L2 regularization (both optimized)
 - Public Leaderboard AUC: 0.7913

Factorized model #3

- Added an 11th ID based on token overlap
 - # same tokens per instance: queryTokens -> {keywordTokens,titleTokens,descriptionTokens}
 - Public Leaderboard AUC: 0.7945
- Tried 12th ID based on
 - #pairs in tokens: hurts the model (but inside ensemble)

+0.003 AUC improvement

Other Collaborative filtering models tried

- KNN
 - Tried a few tweaks, but didn' help
- AFM
 - Uses features in "test set" to learn!
 - Helps a little (0.0001 in blend)
 - Bad performance itsself (public leaderboard AUC 0.74xx)

The prediction of a sample i was

```
\begin{array}{rcl} & \text{``item feature''} & \text{``user feature''} \\ \hat{r}_i & = & \overrightarrow{p}^T & \cdot & \overrightarrow{q} \\ p & = & \{sum \ of \ 7 \ features \ of \ sample \ i\} \\ q & = & q_u + \sum\limits_{j \in N(u)} \sum\limits_{k=1}^{7} \{sum \ of \ 7 \ features \ of \ sample \ j\} \end{array}
```

7 features are:

- adUrlID
- adID
- advertiserID
- queryID
- keyWordID
- titleID
- descriptionID

ROC curves comparisons

For classifiers, this is the important region -> operating point But for Track2 unimportant, just area under the curve

Pub. Leaderboard AUC's

FactorModel: 0.795

BiasModel: 0.788

AFM: 0.74

TokenOverlapStat:0.57

CF observations and model tweaks

- Construct a 11th ID
 - tokenMatchID
 - Use it in bias model and factor model
- >50% of userIDs in the test set are unknown
 - Bad for user-based models
- Never clip predictions to 0...1
 - Can hurt in the final blend
- Every model is re-trained on the whole data before making predictions on the testset
- Use the tokenIDs in factor models
 - queryTokens, keywordTokens, titleTokens, descriptionTokens
 - Very small improvements in the blend
- Use gender and age codes
 - Very small improvements in the blend, if all
 - Hurts if we add this as new ID source in factor models
- We have problems with overfitting in the factor model, even if regularization is high
 - Back to F=1 features

Engineered Features

Risk Features

1D: conditional probability of click given an ID was present in a record.

$$Pr(Y = 1|ID_i) = \frac{\sum_{j=1}^{n} (c_j + N_1) \times I(ID_i \in R_j)}{\sum_{j=1}^{n} (n_j + N_2) \times I(ID_i \in R_j)}$$

- 2D: conditional probabilty of click given two IDs were present in a record.
- 8 1D-risk features for adUrlID, adID, advertiserID, depth, position, userID, gender, age
- 8 2D-risk features for {adID, advertiserID, depth, position} x {gender, position}

Similarity Features

- Overlap between tokens of queryID (ID1) and keywordID/titleID/descriptionID (ID2).
 - The proportion of the tokens in ID1 that are present in ID2 tokens.
 - The proportion of the 2-consecutive tokens in ID1 that are present in ID2.
 - If there exist common tokens between ID1 and ID2, their earliest position in ID2.
 - If there exist common 2-consecutive tokens between ID1 and ID2, their earliest position in ID2
- 12 similarity features.

Feature Engineered Models

- Built on the engineered features
- Gradient Boosting Machine (GBM)
 - "gbm" package in R was used.
 - Number of trees, shrinkage, and depth were chosen based on the validation errors.
 - AUC: 0.757
- Support Vector Machine (SVM)
 - SVM_perf was used.
 - AUC loss function, linear kernel, c = 500.
 - AUC: 0.764
- Neural Network (NN)
 - NN with AUC optimization was implemented in C.
 - Single hidden layer.
 - Other parameters were chosen based on the validation errors.
 - AUC: 0.765

Blending with a linear model

- Inputs
 - P Predictors (models) as a matrix with elements p_{nj}
 - Targets as a vector t
 - Features (pos, gender, age, tokenOverlaps, supports)
- Model
 - Weights w_i
 - $\hat{p}_i = \sum_{i=1}^{p} w_i p_{ni} + w_0$ (w_0 =0, because of pairwise ranking)
- Training
 - Gradient descent on pairs of samples
 - Public Leaderboard AUC: 0.8030

```
FOR e = 1...maxEpochs
   FOR n = 1...N (all samples, e.g. N=3,430,641 for upsampled Valid1)
   Select a positive sample: a=index to positive sample t_{(+)}=1
   Select a negative sample: b=index to negative sample t_{(-)}=0
   \widehat{p_{(+)}} = \sum_{j=1}^{P} w_j p_{aj}
                                (+) sample prediction
   \widehat{p_{(-)}} = \sum_{i=1}^{p} w_i p_{bi}
                                 (-) sample prediction
   \Delta_{pred} = \widehat{p_{(+)}} - \widehat{p_{(-)}}
                                        difference of predictions
   \Delta_{target} = t_{(+)} - t_{(-)}
                                        difference of targets
   error = \Delta_{pred} - \Delta_{target}
                                        the error
    FOR j = 1...P (all predictors, e.g. P=57)
    w_i = w_i - \eta \cdot (error \cdot (p_{ai} - p_{bi}) + \lambda \cdot w_i)
                                                                   update the weights
```

Blending with a neural network

Inputs

- P Predictors (models) as a matrix with elements $p_{n,i}$
- Targets as a vector t
- Features (pos, gender, age, tokenOverlaps, supports)

Model

- A single neural network, 1 hidden layer, K=20 units
- $\quad \widehat{p_i} = calcNN(p_{n*})$

Training

- Normalization of inputs to -1...+1
- Gradient descent on pairs of samples
- Public Leaderboard AUC: approx. 0.80524 (0.80824 on private)


```
FOR e = 1...maxEpochs
   FOR n = 1...N (all samples, e.g. N=3,430,641 for upsampled Valid1)
   Select a positive sample: \alpha=index to positive sample t_{(+)}=1
   Select a negative sample: b=index to negative sample t_{(-)}=0
   \widehat{p_{(+)}} = calcNN(p_{ai})
                                      (+) sample prediction
   \widehat{p_{(-)}} = calcNN(p_{bi})
                                      (-) sample prediction
   \Delta_{pred} = \widehat{p_{(+)}} - \widehat{p_{(-)}}
                                      difference of predictions
   \Delta_{target} = t_{(+)} - t_{(-)}
                                      difference of targets
   error = \Delta_{pred} - \Delta_{target}
                                      the error
    Update the NN with both (+) and (-) sample
    Using backprob rule
```

+0.002 AUC improvement to linear blending

Summary of Results

Model name	Performance on public leaderboard					
Bias model (rank optimization)	0.788					
Factor model (rank optimization)	0.795					
AFM	0.745					
NBC	0.77847					
ANN optimizing AUC on feature metrics	0.76535					

Ensemble methods	Performance on public leaderboard					
Neural Network rank blend (1x20 neurons)	0.80524					
Linear rank blend	0.803					

It was very close on the private leaderboard!

Conclusions

- Was a challenge to handle this HUGE dataset
- Collaborative filtering methods (for sparse data)
 - Pairwise-rank training
 - Unroll the data (150M -> 235M +/- samples)
- Feature engineering + supervised models
- Blending (mix models) is the key for accuracy
 - Pairwise rank SGD -> optimized the AUC
 - Neural network perform better than linear models

Thank you for the attention!