# Delayed Detonation Thermonuclear Supernovae With An Extended Dark Matter Component

Ho-Sang Chan<sup>1</sup>, Ming-Chung Chu<sup>1</sup>, Shing-Chi Leung<sup>2</sup>, and Lap-Ming Lin<sup>1</sup>

AAS 238th Meeting – 7<sup>th</sup> June 2021

## Dark Matter And Stellar Evolution Path



https://www.britannica.com/science/star-astronomy/Star-formation-and-evolution

- Dark matter (DM) ambient density maybe large
- DM collapse together with the molecular cloud
- Stars evolved with a DM core to become WDs

- Low mass stars end up as WDs
- WDs may evolve as supernovae



https://phys.org/news/2011-12-dark.html

What would DM admixture do to WDs and Type Ia Supernovae (SNeIa)?

# Progenitors - Dark Matter Admixed White Dwarfs

• Light DM particle mass  $\sim 0.1$  GeV

DM is extended and comparable to the NM

| Model                                    | NM    | DM-1  | DM0   | DM1   | DM2   | DM3   |
|------------------------------------------|-------|-------|-------|-------|-------|-------|
| NM $\rho_c \ (10^9 \ {\rm g \ cm^{-3}})$ | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   |
| DM Mass $(M_{\odot})$                    | -     | 0.067 | 0.120 | 0.201 | 0.322 | 0.494 |
| NM Mass $(M_{\odot})$                    | 1.374 | 1.242 | 1.183 | 1.124 | 1.067 | 1.015 |
| DM Radius (km)                           | -     | 975   | 1160  | 1380  | 1640  | 1920  |
| NM Radius (km)                           | 1930  | 1890  | 1830  | 1740  | 1650  | 1560  |

Stellar Parameters For Supernova Progenitors

- They are used as progenitors for simulating DM-SNela
- Chan+ arXiv:2012.06857, Accepted By ApJ

**Density Profiles** 



NM Mass And Radius Reduced

## Supernova Neutrinos





More DM Results In More Neutrino Production

- More neutrino produced for more DM admixtures
- Weaker neutrino burst But overall, more  $\nu$  production

## Supernova Light Curves



Dimmer and broader light curves!

- DM-admixed SNelas produce unusual light curves
- They correspond to peculiar supernovae Examples?

Computed by the SNEC code

## Observed Light Curves

• Interested in the Peak Magnitudes vs  $\Delta_{m15}$ 

Orthogonal trend to the Phillips relation



- Peculiar supernovae have been observed
- Broad and dim light curves
- DM models also produce dim and broad light curves!
- Help provide alternative explanations to peculiar events

## Summary

- We simulated one-dimensional DM-admixed SNela
- DM is extended and have comparable sizes and masses to the NM
- DM-SNela has a weaker neutrino burst but generates more neutrinos
- DM-SNeIa produces broader and dimmer light curves
- Some peculiar supernovae could be explained by having a DM admixture

### Thank You!

Welcome to contact

Chan et al.

hschan@phy.cuhk.edu.hk

# Appendix

## The Delayed Detonation Model

- SNeIa Explosion of a WD (standard candle in cosmology)
- Explosive modes classified as deflagrations or detonations



https://www.xpproducts.com/blog/what-is-deflagration-venting

#### Deflagration

Sub-sonic heat conduction



https://www.sutori.com/story/kaho-olawe--3kMhS5YL1RKWWLY7gNX74Ph5

#### Detonation

- Super-sonic compression wave
- The delayed detonation (DDT) model is an explosion model of SNeIa
- A Detonation is generated after the passage of a deflagration

We study one-dimensional DM-SNela using the DDT model

### Dark Matter Admixed White Dwarfs

Assumed ideal degenerate Fermi gas for DM

#### **Density Profiles**





- The index i = 1(DM) and 2(NM)
- Can be generalize to GR (TOV)



• Explode with PTD model – Explain some Type Iax



**Compact DM** 

How about other model (DDT) for an extended DM component?