Homework 2

Daniel Hartig

September 13, 2017

Problem 1.2

a.

Each randomly guessed question is a Bernoulli trial with success probability 0.25. Since each trial is independent, the distribution of the number of correct answers is Binomial with parameters $\pi = 0.25$ and n = 100.

b.

The mean of a binomial distribution is $n\pi = 100(0.25) = 25$. The standard deviation is $\sqrt{n\pi(1-\pi)} = 4.330$. If the student picked 50 answers correctly, that would be $\frac{50-25}{4.330} = 5.774$ standard deviations above the mean; a very unusual event. Calculating probabilities from the binomial distribution, there is a $\binom{100}{50}0.25^{50}(1-0.25)^{50} = 4.507 \times 10^{-8}$ chance of the student selecting exactly 50 answers correctly, and a 6.639×10^{-8} change of selecting 50 or more choices correctly.

c.

Since the students choice of answer (1, 2, 3, or 4) is random, $\sum_{j=1}^{4} \pi_i = 1$, and each choice is selected with equal probability $(\pi_1 = \pi_2 = \pi_3 = \pi_4)$. Therefore, $\pi_1 = \pi_2 = \pi_3 = \pi_4 = 1/4$, and n_j is a four dimensional multinomial distribution where $\pi_i = 0.25$; $\forall i \in \{1, 2, 3, 4\}$. Alternately, n_i could be described as a discrete uniform distribution with parameters a = 1, b = 4.

d.

For all $j \in \{1, 2, 3, 4\}$,

$$E[n_j] = n\pi_j = 25$$

 $Var(n_j) = n\pi_j(1 - \pi_j) = 18.75$

For all $j, k \in \{1, 2, 3, 4\}; j \neq k$,

$$Cov(n_j, n_k) = -n\pi_j \pi_k = -6.25$$

$$Corr(n_j, n_k) = \frac{Cov(n_j, n_k)}{\sqrt{Var(n_j)}\sqrt{Var(n_k)}} = \frac{-6.25}{\sqrt{18.75}\sqrt{18.75}} = -1/3$$

Problem 1.16

The variance of a binomial distribution is $n\pi(1-\pi) = -\pi^2 - \pi$, which is the equation for an inverted parabola with a maximum at $\pi = 0.5$ and minimum— on the range (0, 1)—at $\pi = 0$ and $\pi = 1$. Thus, the variance of a binomial distribution is highest when $\pi = 0.5$ and lowest near $\pi = 0$ and $\pi = 1$.

The width of the confidence interval for any estimate of a parameter is proportional to the variance of that parameter and inversely proportional to the number of samples. Thus, if π is close to 0 or 1, fewer samples will be needed to get yield an acceptably small confidence interval.

Problem 1.17

a.

There are two possible outcomes for Y_i : 0 and 1. $P(Y_i = 0) + P(Y_i = 1) = 1$. Therefore, Y_i is a Bernoulli trial with success defined as $Y_i = 1$ and probability of success $P(Y_i = 1) = \pi$. Y is the total number of successes in n Bernoulli trials, so the distribution of Y is binomial. For a binomial distribution with parameters π and n, $E[Y] = n\pi$ and $Var(Y) = n\pi(1 - \pi)$.

b.

$$\begin{aligned} \operatorname{Var}(Y) &= \operatorname{Var}\left(\sum_{i=1}^{n} Y_{i}\right) \\ &= \sum_{i \in 1, \dots, n} \operatorname{Var}(Y_{i}) + 2 \sum_{i \in 1, \dots, n} \sum_{\substack{j \in 1, \dots, n \\ i \neq j}} \operatorname{Cov}(Y_{i}, Y_{j}) \\ &= n\pi(1 - \pi) + 2 \sum_{\substack{i \in 1, \dots, n \\ i \neq j}} \sum_{\substack{j \in 1, \dots, n \\ i \neq j}} \operatorname{Cov}(Y_{i}, Y_{j}). \end{aligned}$$

Since any pair Y_i , Y_j has covariance $\rho > 0$,

$$2\sum_{i\in 1,\dots,n}\sum_{\substack{j\in 1,\dots,n\\i\neq i}}\operatorname{Cov}(Y_i,Y_j)>0$$

and

$$n\pi(1-\pi) + 2\sum_{\substack{i \in 1,...,n \\ i \neq j}} \sum_{\substack{j \in 1,...,n \\ i \neq j}} \text{Cov}(Y_i, Y_j) > n\pi(1-\pi).$$

c.

$$Var(Y_i) = E \left[Var(Y_i|\pi) \right] + Var(E[Y_i|\pi])$$
$$= E \left[\pi(1 - \pi) \right] + Var(\pi)$$
$$= \rho(1 - \rho) + Var(\pi)$$

Since $Var(\pi) > 0$,

$$Var(Y) = nVar(Y_i)$$

= $n\rho(1 - \rho) + nVar(\pi) > n\rho(1 - \rho)$