EXTENSION OF SOME FIXED POINT THEOREMS ON WEAKLY CONTRACTIVE MAPS

N. K. SINGH AND R. P. DUBEY

Abstract. In this paper we establish some fixed point theorems on weakly contractive maps. These results are the extension of the results of Alber and Guerre-Delabriere [1].

1. Introduction

In 1997, Alber and Guerre -Delabriere [1] define weakly contractive maps. In 2001, Rhoades [2] proved some theorems which extend the work of Alber and Guerre -Delabriere [1] to arbitrary Banach spaces. In this paper now we extend the results of Rhoades [2]. If X is an arbitrary Banach Space, then a self map T of X satisfies the Banach contraction principle, if there existe a constant K satisfying $0 \le K < 1$, such that, for each $x, y \in X$,

$$||Tx - Ty|| \le K||x - y||$$
 (1)

Not only do maps satisfying (1) possess a unique fixed point, but the fixed point can be obtained by repeated iteration of T, beginning at any point x in X. Inequality (1) can be written in the form

$$||Tx - Ty|| \le ||x - y|| - q||x - y||$$
 (2)

where q = a - K.

The entension of (2) to what are called weakly contractive maps is a natural one. Let X be a Banach space, K a closed convex subset of X. A self map T of K is called weakly contractive if, for each $x, y \in K$,

$$||Tx - Ty|| \le |x - y|| - \psi[||x - y||]$$
(3)

where $\psi:[0,\infty)\to[0,\infty)$ is continuous and nondecreasing such that ψ is positive on $(0,\infty)$, $\psi(o)=0$ and $\lim_{t\to\infty}\psi(t)=\infty$. If K is bounded, then the infinity condition can be omitted.

Remark 1: Weakly contractive maps lie between those which satisfy Banach contradiction principle and contractive maps.

2. Preliminaries

It was shown in [1] that, for Hilbert spaces, weakly contractive maps possess a unique fixed point without any additional assumptions, noted that the same is true, at least for

2010 Mathematics Subject Classification: 47H09, 47H10.

Key words and phrases: almost stability; fixed point; weakly contractive.

uniformly smooth and uniformly convex Banach spaces. In 2001, Rhoades [2] showed that theorem remains true in arbitrary complete metric spaces and proved the following theorem:

Theorem A: Let (X, d) be a complete metric space, T a weakly contractive maps. Then T has a unique fixed point p in X.

In this paper we generalize the above theorem.

3. Main Results

We prove the following theorem:

Theorem 1: Let (X, d) be a complete metric space, S and T be two weakly contractive maps, i.e. for each $x, y \in K$,

$$||Sx - Ty|| \le ||x - y|| - \psi[||x - y||]$$
 (4)

Where $\psi:[0,\infty)\to[0,\infty)$ is continuous and nondecreasing such that ψ is positive on $(0,\infty)$, ψ (0)=0 and $\lim_{t\to\infty}\psi(0)=\infty$. Then S and T have an unique commen fixed point.

Poof: Let $x_0 \in X$ and define

$$x_{2n+1} = Sx_{2n} and x_{2n+2} = Tx_{2n+1}$$
.

Then, from (4),

$$d(x_{2n+1}, x_{2n+2}) = d(Sx_{2n}, Tx_{2n+1})$$

$$\leq d(x_{2n}, x_{2n+1}) - \psi \left[d(x_{2n}, x_{2n+1}) \right].$$

Set $\rho_n = d(x_{2n}, x_{2n+1})$. Then we have

$$\rho_{n+1} \le \rho_n - \psi(\rho_n) \le \rho_n. \tag{5}$$

Therefore $\{\rho_n\}$ is a nonnegative nonincreasing sequence and hence possesses a limit $\rho^* \geq 0$. Suppose that $\rho^* > 0$. Since ψ is nondecreasing, therefore, we have, from (5), $\rho_{n+1} \leq \rho_n - \psi(\rho^*)$.

Thus $\rho_{N+m} \le \rho_m - N\psi(\rho^*)$, a contradiction for N large enogh. Therefore $\rho^* = 0$.

Fix $\in > 0$ and chose N so that

$$d(x_N, x_{N+1}) \le \min \left\{ \frac{\epsilon}{2}, \psi(\frac{\epsilon}{2}) \right\}.$$

We wish to show that S is a map of the closed ball $B(x_N, \in)$. Let $x \in B(x_N, \in)$.

Case 1. $d(x, x_N) \le \frac{\epsilon}{2}$.

$$d(Sx, x_N) \le d(Sx, Tx_N) + d(Tx_N, x_N)$$

$$\leq d(x, x_N) - \psi \left[d(x, x_N) \right] + d(x_{N+1}, x_N)$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Case 2.
$$\frac{\epsilon}{2} < d(x, x_N) \le \epsilon$$
. Then $\psi[d(x, x_N)] \ge \psi(\frac{\epsilon}{2})$.

Therefore,

$$d(Sx, Tx_N) \le d(x, x_N) - \psi[d(x, x_N)] + d(x_{N+1}, x_N)$$

$$\le d(x, x_N) - \psi(\frac{\epsilon}{2}) + \psi(\frac{\epsilon}{2})$$

$$\le d(x, x_N) \le \epsilon.$$

Since S is a self map of $B(x_N,\in)$, it follows that each $x_{2n}\in B(x_N,\in)$ for n>N. Since \in is arbitrary, $\{x_{2n}\}$ is Cauchy; hence convergent. The continuity of S implies that the limit is a fixed point. Similarly T is a self map of $B(x_N,\in)$, it follows that each $x_{2n}\in B(x_N,\in)$ for n>N. The continuity of T implies that T has a fixed point. Hence S and T have a common fixed point. In order to show the uniqueness of fixed point z, let $w(w\neq z)$ be another common fixed point of S and T. Then Using (4), we have

$$d(z, w) = d(Sz, Tw)$$

$$\leq d(z, w) - \psi[d(z, w)]$$

$$< d(z, w)$$

a contradiction. It follows that z = w. This completes the proof of the theorem.

Remark 2: If we put S = T in theorem 1 we get Theorem 1 of Rhoades [2].

Theorem 3.1 of [1] remains true in Banach spaces we state the following theorem which is the generalization of theorem 3.1 of [1].

Theorem 2: Let S and T be two weakly contractive selfmaps of a closed convex subset K of a Banach space X. Then the iterative process $x_{2n+1} = Sx_{2n}$ and $x_{2n+2} = Tx_{2n+1}$ converges strongly to fixed point, with the following error estimate,

$$||x_{2n} - P|| \le \phi^{-1} [\phi(||x_1 - p||)] - (n-1)$$

where ϕ is defined by the antiderivative.

$$\Phi(t) = \int \frac{dt}{\psi(t)}, \Phi(0) = 0,$$

and Φ^{-1} is the inverse of Φ .

We shall now investigate the convergence of other iterative procedures applied to S and T. The Mann iterative scheme is defined by

$$x_{0} \in X, x_{2n+1} = (1 - \alpha_{2n})x_{2n} + \alpha_{2n}Sx_{2n}$$

$$x_{2n+2} = (1 - \alpha_{2n+1})x_{2n+1} + \alpha_{2n+1}Tx_{2n+1}$$
......(6)

where $0 \le \alpha_{2n} \le 1 \& 0 \le \alpha_{2n+1} \le 1$ for each n.

REFERENCES

- [1] Ya.I.Alber and S.Guerre-Delabriere, Principles of weakly contractive maps in Hilbert Spaces, Birkhauser Verlag, Basel 98, 1997, 7-22.
- [2] B.E.Rhoades, some theorems on weakly contractive maps, Nonlinear Analysis 47(2001), 2683-2693.
- [3] N. K. Singh and R. P. Dubey. Extension of a fixed point theorem of Rhoades, J. Ind. Acad. Maths. 31(2), 2009, 577-580.
- [4] N. K. Singh and R. P. Dubey. 2010. Common Maximal Elements in Banach Space, J. Ind. Acad. Maths. 32 (2), 2010, 419-426.

N. K. Singh, Department of Applied Mathematics, Bhilai Institute of Technology, Durg (Chhattisgarh) INDIA R. P. Dubey, Principal, Dr. C. V. Raman University, Bilaspur (Chhattisgarh) INDIA