	A Company	ASS-12 A02236773
3	Q <i>i</i>)	L-program :- [AI] XI = XI -1 Y = Y +1
		IF XI != 0 GOTO AI
		Firstly me need to convert each instruction to the following format: $\#(I) = \langle a, \langle b, c \rangle \rangle$ before calculating the finteger value.
}		Given: $-$ [AI] $\times_1 \subset \times_{i-1}$
Į.		From the above nytruction, we can say that a=1
		$X, \leftarrow X, -1 \Rightarrow "TYPE-2"$ Instruction : $b=2$
		Since the variable here is X_1 , whose count is $2 \neq 0$ $C = 2 - 1 = 1$
		: Instruction is <a, <="" <b,="">></a,>
		= <1, <2,1>>
		Breaking this down;
		The formulae to be used here is: - 2 (2y+1)-1
		Fisstly, compute <2,1>:
		$2^{2}(2(1)+1)-1=4(3)-1=12-1=11$
		1. <1, <2,1>>> bleaks down to <1,11>
		Now compute <1,11>:
		Flell, $\chi = 1$, $y = 11$: $2(2(11)+1)-1 = 2(22+1)-1 = 2(23)-1$
		ruxe, x-1, y-11 - 2(2x)-1 = 2(2x)-1 = 2(2x)-1 = 2(2x)-1

Y = Y + 1 **(b)** From the above instructions function, we can say that a=0 YC-Y+1 is a TYPE-1 instruction => b=1 the count of raciable (Y) is $4 \Rightarrow c = 4-1 = 0$ (Az me Know) : Instruction is < a, (b, (>) = <0, <1,0>> Breaking this down :-Formulae to be used 75 :- 2 (24+1)-1 Firstly, compute <1,0> $z = 1, y = 0 \Rightarrow 2/(2(0)+1)-1$ ⇒ 2(1)-1=<u>1</u> : 9t broke down to <0,1> Now, compute <0,1> x = 0, y = 1 = 2(2(1)+1)-1=) 3-1 = 2 0 IF X! =0 90TO A1 FORMULAE OF Label missing =) a=0 4/40 TO INSTRUCTION Given: - 9070 A1 & the value of A1=1 => b=1+2=3 Variable hell is x whose value = 2 => c=2-1=1 : Instruction is Ca, cb, c>> = <0, <3, 1>> Belaking this Lower: Formulae to be used is :- 2 (24+1)-1 Listly compute <3,1> : x=3, y=1 =) 23(2(1)+1)-1 => P(3)-1=24-1=23 : 9t broke down to 20,23> +lellin=0, y=23 => 2°(2(23)+1)-1=46+1)-1=46 Now, compute co, 23>

<u>.</u> :	Final solution = 2.3.5-1
Q2)	Reverse compile 575
A:-	We need to find the PRIME FACTORIZATION of (5754)
14	= 576
1	2 <u>576</u> 2 288
h	2(72 ::576 - 2.2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	3/9
	Now take 6:- 11 From (i)
	2 (2y+1)-1=6
	$=$ $2^{(2y+1)} = 7$
	=) $2^{7}(2y+1)=7$ =) $2y+1=\frac{7}{2^{7}}$
1	For 7 to be an Enteger, 2nd should be able to divide "7"
	i.e., 2" should be a multiple of 7.
()	this happens ONLY when x=0 =) 7 = 7
	$2y+1=7 \Rightarrow 2y=6 \Rightarrow y=3$ Of becomes $6 = <0,3>$
	Break this even frether
	$2^{2}(2y+1)-1=3$
	$=$ $2^{2}(2y+1)=y$
	$\Rightarrow 2y+1=y$
_T	

be an integer for x=1 & x=2 Ince, the maximum should be taken. X=2 = 2y+1=4=4=1=> 2y+1=1 =) y=0 6= <0,3> ξ 3 = <2,0> :. 6 = co, <2,0>>> ->(ii) Now take 2: 11 From (i) 27 (2y+1)-1=2 =) 2x (2y+1) =3 NOTE: - 3 will be an integer only when x=0 $\frac{1}{2} = \frac{2}{3} = \frac{3}{30} = \frac{3}{30}$ =) 24 = 2 =) 4=1 · 2=20,17 Break this even further 2 (2y+1)-1=1 =) z (2y+1)=2 =) 2y+1= 2 Now, 2 will be an integer for x =0,1 : Maximum value should be taken => x = 1

	1
i-The metanction is :- Ye Y+1	
	-
	-
6	100
·	- Contraction
	1
	+
) 1
	, and a
	1
<i>y</i> ,	
1 · · · · · · · · · · · · · · · · · · ·	か無く