- Existen algoritmos en los que el conjunto de operaciones deben ser ejecutadas varias veces
- Existen algoritmos en los que el conjunto de operaciones deben ser ejecutadas varias veces
- El conjunto de operaciones que se ejecuta repetidamente se llama ciclo
- Algunas condiciones que se deben cumplir son:
 - ☐ El ciclo debe ejecutarse un numero finito de veces
 - ☐ Cada vez que se ejecuta el algoritmo se evalúan condiciones necesarias que determinan si se continúa con la ejecución del ciclo

o Ejemplo:

☐ Construya un diagrama de flujo tal que dados como datos los sueldos de empleados de una empresa, obtenga el total de los sueldos

o Ejemplo:

Donde:

SUE1 .. SUE5: variables de tipo real

NOMINA: variable de tipo real.

Almacena la suma de los sueldos de los empleados.

¿Que pasa si la empresa tuviese mas de cinco empleados, ej. 100 o 1000...etc.?

El problema se resuelve utilizando estructuras algorítmicas repetitivas

- Clasificación:
 - a) Repetir (For-to)
 - b) Mientras (While)

0	Re	petir	(Para-a	For-to)
---	----	-------	---------	---------

- □ Se utiliza cuando se conoce a priori cuantas veces se debe ejecutar el algoritmo
- ☐ La estructura algorítmica que se repite un número definido de veces se llama repetir
- □ El número de veces no depende de las proposiciones que se encuentran dentro del ciclo
- □ Para utilizar la estructura algorítmica se debe conocer y entender bien el problema, para determinar la cantidad de iteraciones que debe realizar el problema

Repetir Ascendente: DFD

Donde:

V es la variable de control del ciclo.

VI es el valor inicial.

VF es el valor final.

INC es el incremento cuando la estructura repetir es ascendente.

Repetir Ascendente : Pseudo-código

```
HACER V ← VI
REPETIR con V desde VI hasta VF
...
{Proceso}
...
Hacer V ← V + INC

{Fin Ciclo}
```

Repetir Descendente: DFD

Donde:

V es la variable de control del ciclo.

VI es el valor inicial.

VF es el valor final.

DEC es el decremento cuando la estructura repetir es descendente

Repetir Descendente : Pseudo-código

```
HACER V ←VI
REPETIR con V desde VI hasta VF
...
{Proceso}
...
Hacer V ← V - INC

{Fin Ciclo}
```

Repetir (Para-a For-to)

□ Ejemplo:

- Construya un diagrama de flujo tal que dados como datos los sueldos de cinco empleados de una empresa, obtenga el total de los sueldos
- Utilice estructuras repetitivas

Repetir (Para-a For-to)

□ Ejemplo:

Explicación de las variables

I: Variable tipo entero que controla el ciclo. Contabiliza el número de veces que ha de repetirse determinada acción. El contador toma un valor inicial (generalmente 0 ó 1) y se incrementa en la mayoría de los casos en una unidad en cada vuelta del ciclo.

NOMINA: Es una variable de tipo entero que representa un acumulador. Este se utiliza cuando debemos obtener el total acumulado de un conjunto de cantidades. Generalmente se inicializa de cero.

SUE: Es una variable de tipo entero. Representa el sueldo del trabajador.

INICIO

Repetir : Pseudo-código

```
Programa _ nómina
{ El programa calcula el total de la nómina de un grupo de 5
empleados}
Inicio _ programa
{ I es una variable de tipo entero. SUE y NOMINA son variables
de tipo entero}

1. Hacer NOMINA ← 0 e I←1
2. repetir con I desde 1 hasta 5
Leer SUE
Hacer NOMINA ← NOMINA + SUE
Hacer I ← I + 1
3. {fin del ciclo}
4. Escribir NOMINA
Fin _ programa
```


Repetir (Para-a For-to)

□ Ejemplo:

- Sumar 10 números consecutivos
- DFD

Repetir : Pseudo-código

```
Programa_NOMINA
{ El programa suma los primeros 10 números consecutivos}
Inicio_Programa
{res e I son variables de tipo entero}
Hacer res ← 0 e I ← 0
Repetir con I desde 0 hasta 9
Inicio

Hacer res ← res + I

Hacer I ← I + 1

{fin del ciclo}
Escribir res
Fin_programa
```