CHENNAI MATHEMATICAL INSTITUTE

Discrete Mathematics

Quiz 3:

Date: June 25, 2021. Each question is 10 marks.

- (1) Let (P, \leq) be a poset and let ζ denote the zeta function of P, defined as $\zeta(x,y)=1$ if and only if $x\leq y$. Let δ denote the Kronecker delta function, $\delta(x,y)=1$ if and only if x=y. For $x\leq y$, a chain of length k from x to y is a sequence of the form $x=x_0< x_1< x_2\cdots < x_{k-1}< x_k=y$ with $x_i\in P$ (note, the inequalities here are strict).
 - i Show that the number of distinct chains of length k from x to y is $(\zeta \delta)^k(x, y)$.
 - ii Denote by c_i the number of distinct chains of length i from x to y. Prove that

$$\mu(x,y) = c_0 - c_1 + c_2 \cdots + (-1)^k c_k + \cdots$$

4 marks

- (2) Let G be a graph on n vertices having m edges. Let S be a random subset of vertices of [n] picked as follows for $i \in [n]$ toss a coin put vertex i in S if and only if you see heads. The coin tosses are independent and the probability that the coin shows heads is p with 0 .
 - i What is $\mathbb{E}(|S|)$?

4 marks

- ii Let Y be the random variable denoting the number of edges of G both of whose end points are in S. What is $\mathbb{E}(Y)$? 4 marks
- iii Draw the sample space and the value of Y on each sample point when G which is a triangle on three vertices. 4 marks