Question	Scheme	Marks
5(a)	$V = x \times 4x \times h \Rightarrow 4x^2 h = 75 \Rightarrow h = \frac{75}{4x^2}$	B1
	$S = 2(4x^{2} + xh + 4xh) = [8x^{2} + 2xh + 8xh] \Rightarrow S = 8x^{2} + 10xh$	M1
	$S = 2(4x^{2} + xh + 4xh) = \left[8x^{2} + 2xh + 8xh\right] \Rightarrow S = 8x^{2} + 10xh$ $\Rightarrow S = 8x^{2} + 10x \times \frac{75}{4x^{2}} \Rightarrow S = 8x^{2} + \frac{375}{2x} *$	M1A1 cso
		[4]
(b)(i)	$\frac{dS}{dx} = 16x - \frac{375}{2x^2} = 0$	M1
	$\Rightarrow 16x = \frac{375}{2x^2} \Rightarrow x^3 = \frac{375}{32} \Rightarrow x = 2.2714 \approx 2.27 \text{ (cm)}$	M1A1
(ii)	$\frac{d^2S}{dx^2} = 16 + 375x^{-3} \approx 48$	M1
	Conclusion: (As x is always positive) $\frac{d^2S}{dx^2} > 0 \Rightarrow \text{minimum}$	A1ft [5]
(c)	$S = 8 \times '2.27'^2 + \frac{375}{2 \times '2.27'} = 123.822 \approx 124 \text{ (cm}^2\text{)}$	M1A1 [2]
	Total	11 marks

Part	Mark	Notes	
(a)		For finding the correct expression for h in terms of x	
		Accept this mark seen anywhere in part (a)	
	B1	Accept also for example, $xh = \frac{75}{4x}$ or any equivalent that can be substituted into an	
		expression for S.	
		For finding an expression for <i>S</i> is terms of <i>x</i> and <i>h</i> . Accept as a minimum	
	M1	$Ax^2 + Bxh$ where A and B are constants.	
		Accept other letters for S at this stage. E.g SA etc. or even no letter at all.	
	M1	For substituting their <i>h</i> into their <i>S</i>	
	A1	For the correct expression for S as shown in the question. You must see $S = 8x^2 + \frac{375}{2x}$ including S although S seen at the top of a column of working is also fine.	
(b)	M1	For an attempt to differentiate the given S which as a minimum must be of the form	

	$\frac{dS}{dx} = 16x - \frac{k}{x^2}$ where k is a constant.		
	For setting their $\frac{dS}{dx} = 0$ and attempting to solve the equation and reaching a value		
M	of x .		
	It must be a clearly differentiated expression even if they do not score the first M		
A	mark in (b). That is, they must reduce the power of at least one term by 1. For awrt $x = 2.27$		
A			
	For an attempt to differentiate their $\frac{dS}{dx}$ to find $\frac{d^2S}{dx^2}$ which must be as a minimum		
	$\frac{d^2S}{dx^2} = 16 + lx^{-3} \text{ where } l \text{ is a constant}$		
M			
	Other methods Please send to Review any examples of candidates who test the gradient on either		
	side of the minimum, or who draw a sketch.		
	.2		
	Concludes that as $x > 0$ so $\frac{d^2S}{dx^2} > 0$ and therefore S is a minimum when $x = 2.27$		
	Dependent on correct method seen.		
	Follow through their value of x provided it is positive.		
A1	NB:		
AI	They do not need to evaluate $\frac{d^2S}{dx^2}$ to score this mark. [See above]		
	I ney do not need to evaluate $\frac{dx^2}{dx^2}$ to score this mark. [See above]		
	However, if they use the correct [2.27] or an incorrect positive value of x , provided		
	substitution is seen award the mark even if the final evaluation is incorrect. If no substitution is seen and either the value of x is incorrect or they do not obtain		
	approximately 48, withhold this mark.		
(c)	Substitutes their $x = 2.27$ into the given S		
	Follow through their value of x provided it is a positive value. Use of a negative		
M	value of x is M0. If the final value of S is incorrect following an incorrect value of x award this mark		
	only for explicit substitution seen.		
A	^		