RetCL: A Selection-based Approach for Retrosynthesis via Contrastive Learning

Hankook Lee Sungsoo Ahn Seung-Woo Seo You Young Song Eunho Yang Sung-Ju Hwang Jinwoo Shin

August 6, 2021

- Introduction
- Search procedure
- Training scheme with contrastive learning
- Experiments

Notation

- \bullet P, R: product and reactant molecules.
- C: the candidate set.
- \mathcal{R} : the reactant set.
- Π : the space of permutations.

Introduction

The RetCL framework:

- selection-based
- template-free

The Search Procedure of RetCL

Figure 1: Illustration of the search procedure in RetCL.

- Introduction
- Search Procedure
- Training Scheme with Contrastive Learning
- Experiments

Search Procedure

- **Object**: To find a reactant-set $\mathcal{R} = \{R_1, \dots, R_n\}$
- Input: The product P and the candidate set C
- First, select each reactant R_i sequentially from the candidate set C based on the backward selection score $\psi(R|P, \mathcal{R}_{given})$.
- Then, repeat the first step to get many reactant-sets.
- Finally, rank the chosen reactant-sets $\mathcal{R}_1, \ldots, \mathcal{R}_T$ based on the backward selection score $\psi(R|P, \mathcal{R}_{given})$ and the forward score $\phi(P|\mathcal{R})$.

$$\psi(R|P, \mathcal{R}_{given}) = \operatorname{CosSim} \left(f_{\theta}(P) - \sum_{S \in \mathcal{R}_{given}} g_{\theta}(S), h_{\theta}(R) \right)$$

$$\phi(P|\mathcal{R}) = \operatorname{CosSim}\left(\sum_{R \in \mathcal{R}} g_{\theta}(R), h_{\theta}(P)\right)$$

where CosSim is the cosine similarity and f_{θ} , g_{θ} , h_{θ} are embedding functions from a molecule to a fixed-sized vector with parameters θ .

Shen Yuan RetCL August 6, 2021 6/1:

Score Design

The overall score on a chemical reaction $\mathcal{R} \to P$ is defined as

score(
$$P, \mathcal{R}$$
) = $\frac{1}{n+2} \left(\max_{\pi \in \Pi} \sum_{i=1}^{n+1} \psi(R_{\pi(i)}|P, \{R_{\pi(1)}, \dots, R_{\pi(i-1)}\}) + \phi(P|\mathcal{R}) \right)$

where $R_{n+1} = R_{\text{halt}}$ and \prod is the space of permutations defined on the integers $1, \ldots, n+1$ satisfying $\pi(n+1) = n+1$.

Shen Yuan RetCL August 6, 2021 7/1

- Introduction
- Search Procedure
- Training Scheme with Contrastive Learning
- Experiments

Two Classification Tasks

$$p(R|P, \mathcal{R}_{\text{given}}, \mathcal{C}) = \frac{\exp(\psi(R|P, \mathcal{R}_{\text{given}})/\tau)}{\sum_{R' \in \mathcal{C} \setminus \{P\}} \exp(\psi(R'|P, \mathcal{R}_{\text{given}})/\tau)}$$

$$q(P|\mathcal{R}, \mathcal{C}) = \frac{\exp(\phi(P|\mathcal{R})/\tau)}{\sum_{P' \in \mathcal{C} \setminus \mathcal{R}} \exp(\phi(P'|\mathcal{R})/\tau)}$$

where τ is a hyperparameter for temperature scaling and \mathcal{C} is the given candidate set of molecules.

Loss Function

The Losses defined on a reaction of the product P and the reactant-set $\mathcal{R} = \{R_1, \dots, R_n\}$:

$$\mathcal{L}_{\text{backward}}(P, \mathcal{R}|\theta, \mathcal{C}) = -\max_{\pi \in \prod} \sum_{i=1}^{n+1} \log p(R_{\pi(i)}|P, \{R_{\pi(1)}, \dots, R_{\pi(i-1)}\}, \mathcal{C})$$

$$\mathcal{L}_{\text{forward}}(P, \mathcal{R}|\theta, \mathcal{C}) = -\log q(P|\mathcal{R}, \mathcal{C})$$

where $R_{n+1} = R_{\text{halt}}$ and \prod is the space of permutations defined on the integers $1, \ldots, n+1$ satisfying $\pi(n+1) = n+1$.

RetCL August 6, 2021

Candidate Set

Because the denominators of $p(\cdot)$ and $q(\cdot)$ require summation over the large set of candidate set \mathcal{C} .

For each mini-batch of reactions \mathcal{B} sampled from the training dataset:

$$C_{\mathcal{B}} = \{M | \exists (\mathcal{R}, P) \in \mathcal{B} \text{ such that } M = P \text{ or } M \in \mathcal{R}\}$$

$$\mathcal{L}(\mathcal{B}|\theta) = \frac{1}{|\mathcal{B}|} \sum_{(\mathcal{R}, P) \in \mathcal{B}} \left(\mathcal{L}_{\text{backward}}(P, \mathcal{R}|\theta, \mathcal{C}_{\mathcal{B}}) + \mathcal{L}_{\text{forward}}(P, \mathcal{R}|\theta, \mathcal{C}_{\mathcal{B}}) \right)$$

Shen Yuan RetCL August 6, 2021 10 / 13

Hard Negative Mining

$$\tilde{\mathcal{C}}_{\mathcal{B}} = \mathcal{C}_{\mathcal{B}} \cup \bigcup_{M \in \mathcal{C}_{\mathcal{B}}} \{ \text{Top-K nearest neighbors of M from } \mathcal{C} \}$$

where K is a hyperparameter controlling hardness of the contrastive task. The nearest neighbors are defined with respect to the cosine similarity on $\{h_{\theta}(M)\}_{M \in \mathcal{C}}$.

Shen Yuan RetCL August 6, 2021

- Introduction
- Search Procedure
- Training Scheme with Contrastive Learning
- Experiments

- Datasets: USPTO-50k.
- The candidate set: choose the candidate set of commercially available molecules $\mathcal C$ as the all reactants in the entire USPTO database
- Evaluation metric: top-k exact match accuracy.

The top-k exact match accuracy

Category	Method	Top-1	Top-3	Top-5	Top-10	Top-20	Top-50
	Reaction type	is unk	nown				
Template-free	Transformer (Karpov et al., 2019)	37.9	57.3	62.7	-	-	-
	SCROP (Zheng et al., 2019)	43.7	60.0	65.2	68.7	-	-
	Transformer (Chen et al., 2019)	44.8	62.6	67.7	71.1	-	-
	G2Gs (Shi et al., 2020)	48.9	67.6	72.5	75.5	-	-
Template-based	retrosim (Coley et al., 2017b)	37.3	54.7	63.3	74.1	82.0	85.3
	neuralsym (Segler & Waller, 2017)	44.4	65.3	72.4	78.9	82.2	83.1
	GLN (Dai et al., 2019)	52.5	69.0	75.6	83.7	89.0	92.4
Selection-based	Bayesian-Retro (Guo et al., 2020)	47.5	67.2	77.0	80.3	-	-
	Retcl (Ours)	71.3	86.4	92.0	94.1	95.0	96.4
	Reaction type is	given	as prior	•			
Template-free	seq2seq (Liu et al., 2017)	37.4	52.4	57.0	61.7	65.9	70.7
	Transformer [†] (Chen et al., 2019)	54.1	70.0	74.2	77.8	80.4	83.3
	SCROP (Zheng et al., 2019)	59.0	74.8	78.1	81.1	-	-
	G2Gs (Shi et al., 2020)	61.0	81.3	86.0	88.7	-	-
Template-based	retrosim (Coley et al., 2017b)	52.9	73.8	81.2	88.1	91.8	92.9
	neuralsym (Segler & Waller, 2017)	55.3	76.0	81.4	85.1	86.5	86.9
	GLN (Dai et al., 2019)	64.2	79.1	85.2	90.0	92.3	93.2
Selection-based	Bayesian-Retro (Guo et al., 2020)	55.2	74.1	81.4	83.5	-	-
	RetCL (Ours)	78.9	90.4	93.9	95.2	95.8	96.7

Figure 2: The top-k exact match accuracy (%).

Shen Yuan RetCL August 6, 2021 13 / 13