

Figure 1

STC-1 GTC-1

Figure 2

ATG
2127
+1
E1
E2
STOP 3732

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11A

Figure 11B

Figure 12

Figure 13

GIP Promoter

atctctccag tcccttcctc aacccttctga gaacaggcaa actccaccat gattggctta
taaatcggtt tatggaccta ctaaggatgt aacaactggg agcatgctt cctagcatgt
ccggaaacccg gagttcagtc cctagcactg cacaatctca gtccttatga agtagaggg
agatcagagg ttcaaggaca acatcaattt gagaccagcc tgggtctactt accaaagaaaa
gaaagagaga aataaataaa tagatagata aataaataaa taagtaaata aatatctt
ggctggagag tttggttcagt gttaagagc acttattgtg gggttgggga tttagctcag
tggtagagcg tttgcctagg aagctcaagg ccctgggttc ggtccccagc tccggaaaca
aaacaaaaca aaacaaaacaa acacaaaacc ctgtctggaa aacacctaaa
taaagatata tatataat atatatacat ataataatata tatgatataat atatataat atatcttgt
ggaggaagct ataccttct ttcttgagcc tccaacacat aaatgtgccccc tgcattccca
ttcatattgc cccaaagtggg aaaccatgtg actataaact ctaagttctt agtcacttagg
aactctcaag acacccatctt caggcagcat cacttccgga gtgccaccat tatcagttaa
catccacatc tgggattcag atcccagatc ccttctgttc cctcagaagt cacctacagc
tttggggg tgcccttcc ctcagagagt gccacccgag ttgaccctca ccaaggcaac
cccttgcacc cacagaatcc aacaggaagt agggggagaaga acagccggcc ctgtgcccag
aaaaaaaaagag gggagggaga aggggggtct cagcctacca ccggggcaggt cccagataac
actgcagata cccaaatgtt aatcacccat tagcacaggc ccagagcaaa ggggaaagtg
attaggtgtt taatgggtt cactgggcag gaccagtggg cttgagcttc aaagataaga
gttttcagg ttaatcgca ccctgtgggtg tgtggatata aggaagctaa cacagggtct
tgaagcaaga tcctgag

Mouse chromogranin A (Chga) gene, promoter region.

ACCESSION L31361

1 ccggaaattac ccactacgtt ggaattctat aagggttggg ttgcgttgcgtt tgttacagc
61 tgcgttgcgtt gcacccagca cagctgatgt gttctaagcc cacgtcgatgt cttAACACAT
121 ggttgtgaa tgaatacacg cgaagccgggt tctcatttag gggcatgatgt aggcagaggt
181 gtggcagga agcaggaaag agcggaaaca ggtgcggaca gaaaggaggg gctctgaagg
241 atgcaggatca gtgcggaaact gtcatccaga taccaggatc actgtggccc tagggccaggc
301 tgcacggggc ttccatgtg tgcgtccccag ggtgagagca gaactgcgggt gggcgccggc
361 gaaggaaacc accaggaaag cagggttgc cccaaattat ccaggttta agtacattt
421 agagacaagg ctgggtgtt gaaggtcaga ggtgtccctg ggggtgttgc cttaggactga
481 ccacttctgt tttatgttta tgggtgaaac tgcctacac tgcgttgc cttacttgc
541 ctttgagagc tttgttgc tttgttgc ggacccaccc atgtgtgggt tggacccatca gtcacacact
601 gaacgtgtt gtgttgc tttgttgc cagggttgc cggactgttgc aagcagtgt
661 caactatcccc tatcaaataa caattaaata cacacagaat gcgaggcaca caactgttgc
721 tcaggagagg cttcgctcgt gcaagggtt caagaggctt ctgtgggacc cgctggatgt
781 tccaggaggat tttttttttt gggcgttgc tttttttttt ccagccaaat gaaatcaaga gaaaaggatc
841 cgaagtatag gaaaactcag cagtctggag aggttaatag gggaggaatc cgaggctc
901 agacaggagt gacttgc tttttttttt cggacgcaca gcaagggttgc aggtggatgt cagctgttgc
961 accttctgaa gcccggatcc tttttttttt accagatatac agcggatag agacagctga
1021 tggagaagct ggagggtgggg gggggggaccc cgaagggtggg gaaagggttgc gggggggggc
1081 tcctatgacg taattttttt ggtgtgttgc cgcgtgttgc tgcgtgttgc tttttttttt
1141 agccggcata gttttttttt cttttttttt cttttttttt cttttttttt cttttttttt
1201 accgttactg cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt
1261 cccgcatect cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt

11

Figure 14

Mus musculus secretogranin II (Scg2) gene, promoter and exon 1, complete sequence.
ACCESSION AF037451

Mus musculus glucokinase gene, 5' flanking region.
ACCESSION U93275

1 agcttaggt gtgtaatat ctacttggc gtagggcct tggcataact aagtaagttt
61 ccccttcact ggggtgtacc agtttacccct ggactgtcta agcaacaaga aggatagaca
121 tggcctacca cagattcat gtcgtccact ggctatgtca gaacatgtag gagctttgg
181 aatcagtcaa acaggtaattt tcagactgcc ttcccgtcggt ggggcttcc cgaaggccata
241 ttcccctag agtcagccct tcccaagctga ggacaagctg tactggacag atgccagcca
301 cttgaactgg gaatacatgg tcatttaggc agctggccta tctcatccat ggtacttgtat
361 ggctcggtt cagcacctca cagaaagtgc agacgggagg ctccggaa aacagagaag
421 caggcaggag atcctgcagg caatccctc gctccacagc ctgcacggac ttccctcagc
481 ctttagtgcgt gtgggtccca tctgagaaca ttgggttatat gtatccat aaccgatctg
541 cctttaagga gtggaaagaaa aaaactgtgg tgtttggcct acctttatga taatggcctt
601 ttcatctcc taataaaatat tgccaagtag ggttagattct atacgaaagc tcttaacccca
661 tggtatttgc aaatcatgtaa ggtgctaata atgaataactg gatgcagtc gtacaggat

721 ataaaatgga atgttaagacg ctgttgctat gaatggtag ctaactagat gttgtacaag
781 aaatgttgac gtatgtacgt gtggaaactt ggtattgaag atgtggactc gaaactttgt
841 ggatTTTtg atGCCatgtat aaaaatgtga agaatactgt tccttaccaa aaagaagaag
901 aagaaggaga aggaggagga agaggaggag gaggaagaag agggggagga agaagaag
961 aaggaggagg aagaggaggag ggaggaagaa gaggaggagg aggaagaaga agagaaggag
1021 gaggactagg aggaggagga gaagaaggag aaggggaagg agagagtgc cagaacattt
1081 ggggtgccat cagaataccca gatactccag acatagtcac agaaggactg gtttgttgt
1141 taaatagtg tttgtgggaa aacctgcagt gagatgtgt gtcttagaaa
1201 tgataggcaa gattcatcca caagaatgcg acaagatggc tgctgaaca agccctgaac
1261 attaacagca ccagtagacc tgcttacacg gaagaaagca atctcatagg ccctcacccc
1321 aaacaaagac tacagacagc agaggaactg gagagcagga gaaattgggt ctcccttta
1381 tgagccccct aactggttgt caaaactcta atggtcagcc ctgaaatcat atgcacaaag
1441 taatactgc gcaactgaac agattgtgc tttgtgtgt tttgtatga taacaaagaa
1501 gaaaaggccc catgttagag agggagcaag gtggcatgg aggtatggaa ggagttggaa
1561 ggaggggtga gaaggggaaa gtgatgtaat tatctttaa ttataaaaa aataaaaaat
1621 gggctggta gatggctcg tggtaagag caccgcactg ctcttccga aggtctggag
1681 ttccaaatccc agcaaccaca tggtgctca caaccatccg taacgagatc tggccccc
1741 ttctggagtg tctgaagaca gctacagtgt acttacatat aataaataaa taaatcttt
1801 aaaaaaaaata aaaaataaaaaa tattagaata aatgttagag gaatattttt aatttaacaa
1861 ctgggtgtg gcaaaagctt tttcaacaa aaacttaatc cctcagataa gaaaagacta
1921 gaatccacga cgtggataga tacttctgtt tgatgcaga cactattat caggttgtaa
1981 cttagcaga acttgagttg taacttgcg gaaacacaaa cacccttgc aaacaaaaga
2041 ttactagata ttttagatga aatataaaaaa tactttccac aactgtatgg taggaaacag
2101 ttcataatgtataataattat tgaacaaata atcctttaaa gaagaaatcc agaggaatag
2161 caagtttaggg gaagagaggg tttgtgtgtg tttgtgtgcg cgcacattt tagccaaaat
2221 agatgtatata cttaatgaa catgccattt aaacccattt tttgcatac agtttacata
2281 tgctaatgaa tactttaaa aaaaacatg ggattggaga gaaatggctc agtggtaag
2341 agtcaattc ccagcaacca catgattgtt cacaaccatc tttatggga tctgtgc
2401 tctctggta tttctgttgcg aagtgcgttgcgttataa ttataaaaaa ataaatcttt
2461 aacccaaaaa ccccccataat ttcaacaaca gatatgcctt ggtctgggc ttccaggcat
2521 agaaatagaa acacacagag tttggagccca gtgcgggtca ggtccggcat tccagttcag
2581 gtttcagacc aagagaaagg gaaaagaaga gacaagcaac aag

H.sapiens adenosine deaminase (ADA) gene 5' flanking region and exon 1 (and joined CDS).
ACCESSION X02189

1 tccaggaaat ggcgcgttcca ggccggcggg cgggggcgccc gtcggcgca gagggcgccc
61 cccgggaacg gggcgccggcg gggcgccgggg cggggccccc cccgttaaga agagcgfggc
121 cggccgcggc caccgcgttgc cccaggaaaa gcccggcgcc caccggcgcc gcagagaccc
181 accgagcgcc ggcgggggaa gcgacgccgg ggcgcacgag ggcacc

Homo sapiens mRNA for pre-proinsulin.
ACCESSION X70508

MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREA
EDLVGVQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN"

1 gctgcgttcatc aagaggccat caagcacatc actgtccttgc tgccatggcc ctgtggatgc

Figure 16

```
61 gcctcctgcc cctgtggcg ctgctggcc tctggggacc tgacccagcc gcagccttg  
121 tgaaccaaca cctgtgcggc tcacacctg tggaaagctct ctacctagtgc tgccgggaac  
181 gaggcttctt ctacacaccc aagacccgccc gggaggcaga ggacctgcag gtggggcagg  
241 tggagctggg cggggggccct ggtagcaggca gcctgcagcc ctggccctg gaggggctcc  
301 tgcagaagcg tggcattgtg gaacaatgtc gtaccagcat ctgctccctc taccagctgg  
361 agaactactg caactagacg cagcccgca gcaagcccccc accccggcc tcctgcaccg  
421 agagagatgg aataaaagcccc ttgaaccagc
```

Homo sapiens leptin (LEP), mRNA.
ACCESSION XM 004625

"MHWGTLCGFLWLWPYLFYVQAVPIQKVQDDDTKTLIKTIVTRINDISHTQS VSSKQKV TGLDFIPGLHPILTLSKMDQTLAVYQQILTSMPSRNVIQISNDLENLRD LHLVAFSKSCHLP WASGLETLDSLGGVLEASGYSTEVVVALSRLOGSLO DMLWOLDLSPGC"

Figure 17

2101 gctatcacac agtgggttgtt ggatctgtcc aaggaaactt gaatcaaagc agttaacttt
2161 aagactgagc acctgcgtca tgctcagccc tgactgggtgc tataggctgg agaagctcac
2221 ccaataaaaca ttaagattga ggcctgccc cagggatctt gcattccag tggtaaaacc
2281 gcaactcaccc atgtgccaag gtggggtatt taccacagca gctgaacagc caaatgcgt
2341 gtgcagtta cagcagggtgg gaaatggat gagctgaggg gggccgtgcc cagggccca
2401 cagggAACCC tgcttgact ttgtaaatcg tttactttc agggcatctt agcttctatt
2461 atagccacat ccctttgaaa caagataact gagaatttaa aaataagaaa atacataaga
2521 ccataacagc caacagggtgg caggaccagg actatagccc aggtcctctg atacccagag
2581 cattacgtga gccaggtaat gaggactgg aaccaggag accgagcgct ttctggaaaa
2641 gaggagtttc gaggttagt ttgaaggagg tgagggatgt gaattgcctg caagagagaag
2701 cctgtttgt tgaagggtt ggtgtgtgg aatgcagagg taaaagtgtg agcagtgt
2761 tacagcgaga ggcagagaaa gaagagacag gaggcaagg gccatgtga agggacctg
2821 aagggtaaag aagtttgata ttaaaggagt taagagtagc aagtctaga gaagaggctg
2881 gtgcgtggc caggggtgaga gctgcgtcg aaaatgtgac ccagatcctc acaaccacct
2941 aatcaggctg aggtgttta agcccttgc tcacaaaacc tggcacaatg gctaattccc
3001 agagtgtgaa acttcctaag tataatgtt tgtctgttt tgaacttaa aaaaaaaaaa
3061 aaaaagttgg cgggtgggg tggctcacgc ctgttatccc agcacttgg gaggccaagg
3121 tggggggatc acaaggtcac tagatggcga gcatctggc caacatggt aaaccccgct
3181 tctactaaaa acacaaaagt tagtgcggc tggtggcgcc cgctgttagt cccagccact
3241 cgggaggctg agacaggaga atcgctaaa cctgggaggc ggagagtaca gtgagccaag
3301 atcgccac tgcactccgg cctgtatgaca gagcgagatt ccgtctaaa aaaaaaaaaa
3361 aaaaagtttgg tttttttttt aatctaaata aaataactt gccccctg

Homo sapiens cholecystokinin (CCK), mRNA.

ACCESSION XM_003225

"GSAAGLLRLETPSQLRPNPKAMNSGVCLCVLMAVLAAGALTQPVPPADPAGSGLQRAE
EAPRRQLRVSQRTDGESRAHLGALLARYIQQARKAPSGRMSIVKNLQNLDPSHRISDRD
YMGWMDFGRRSAEYEYPS"

1 ggctcagctg cgggttgtt cggccaaagcc agctgcgtcc taatccaaaa
61 gccatgaaca gggcggtgtt cctgtcggtt ctgtatgggg tactggcggtt tgccgcctt
121 acgcagccgg tgcctcccgc agatcccgcg ggctccgggc tgccggcc agaggaggcg
181 ccccgtaggc agctgagggtt atgcagaga acggatggcg agtcccgagc gcacctggc
241 gcccgttgg caagatacat ccagcaggcc cggaaagctc ctctggacg aatgtccatc
301 gtaagaacc tgcagaacctt ggaccccgcc cacaggataa gtgaccggga ctacatggc
361 tggatggatt tggccgtcg cagtggccgag gatgtatgtt accccctcta gaggaccccg
421 ccgcctatcag cccaaacggga agcaacctcc caacccagag gaggcagaat aagaaaacaa
481 tcaacactcat aactcattgt ctgtggagtt tgacattgtt tgatctatt tattaagt
541 tcaatgtgaa aatgtgtctt gtaagattgtt ccagtgcac cacacaccc accagaattt
601 tgcataatggaa agacaaaatgttttccat ctgtgactcc tggctgtaaa atgttgat
661 gctattaaag tgatttcattt ctgcc

CCK Promoter (Rat)

ACCESSION S70690

1 aattcgccg ctaagccca ttattcacgt ttccagacat gtcacaaata cagctaattc

Figure 18

61 ctacaacctg agctgtgtca tgggggggggg gggaaatcacc cacagcattt aatctgtgc
121 tggtttaaac acgttgcttc taagtaaaga gaccgctaga gccacaacca ggaacctaac
181 tgctgctggc atcacttgcc ttctcatgt ctccctcagc cggAACCCCCC ccacgctggg
241 tgccctctt atttagaaag agtttctaag ctttctct tcaccctaga ctggcaaggt
301 tgagggttagg ctgagggttg caagactgtg agaaaaggaa gcccctctt tcctctgt
361 cggtgagtagt ctcagccaag atcctcacca cccagtggaa tcccgtaact ctagagggaaa
421 ggaagaactc tagaggacgg gaagatcatt gcaagctcc ctagatgtgc gagccccagcc
481 cgctccactc agccagccag agcttgaggg tgcttgagac actctctggc gccacttcgc
541 gaccaaatac atcggtagat gttaggttgt gagaagtcat ctggaaaga aatggaaacc
601 ttcccccac aggtttcccg cacaaaaggc aagagctgca cccaggatct taaaattctg
661 taagacgaga atccacgagg ccaactgtga ttgagttctg aaaaatttag agccctactc
721 ccctctctca ctgtgggag cccactcagg tctgaagtgcc tccagagaa catggcagaa
781 ttacatttgc tgacacccatg tctgtgaggg tcccccgggtt tccggaaagg atttgatccc
841 tcaaaagctca ctaaaacagtg gtcagcttc ccattccaga caaactccctg ctctctccg
901 ggagtaggggg tggcacccctc cctgaagagg actcagcaga ggcaccgaac agggtgggaa
961 gggaaagctgt ttagataaag aggaggactc atacaaagta ccccccctgg gaggggctat
1021 cctcattcac tggccgttt ccctctccc gggggggccac ttgcgtcggt ggtctctcca
1081 gttggctgcct ctgagcacgt gtcctgcgg actgcgtcg cactggtaa acagatgact
1141 ggctgcgtac cggggggggc tattaaagag gagtcgcctt gccgcctgccc ctcaacttag
1201 ctggacagca gccgtggaa accgccaagc cagctgactc cgcattccgaa ggtaagtggc
1261 tggcagatcc aagaatcatg agtgtgaaga actggcctgt agtttgcat ctattggcgt
1321 ttatgttttc cattttctgt gcctccctc acttgacagc tg

Human messenger RNA for growth hormone (presomatotropin).
ACCESSION V00519

"MATGSRSTLLLAFGLLCLPWLQEGSAFPTIPLSRFDNAMLRAHRLHQLAFDTYQEFE
AYIPKEQKYSFLQNQPQTSLCFSEIPTPSNREETQQKSNLLELRISLLIQSWEPEVQFLRS
FANSLVYVGASDSNVYDLLKDLEEGIQTLMGRLEDSPRTGQIFKQTYSKFDTNSHNDDA
LLKNYGLLYCFRKDMDKVETFLRIVQCRSVEGSCGF"

1 cgaaccactc agggtcctgt ggacagctca cctagctgca atggctacag gctccggac
61 gtcctgctc ctggcttttg gcctgctctg cctgcccctgg ctcaagagg gcagtcctt
121 cccaaccatt cccttatcca ggccttttgca caacgtatgc ctccgcgcc atcgctgca
181 ccagctggcc ttgcacacctt accaggagtt tgaagaagcc tatatccaa aggaacagaa
241 gtattcatc ctgcagaacc cccagaccc cctctgttc tcaagatcta ttccgacacc
301 ctccaacagg gaggaaacac aacagaaaatc caacctagag ctgctccgca tctccctgt
361 gtcatccag 1cggtggctgg agcccggtca gttccctcagg agtgcctcg ccaacagcc
421 ggtgtacggc gcctctgaca gcaacgtcta tgacctcta aaggacctag aggaaggcat
481 ccaaacgctg atggggagggc tggaaagatgg cagccccgg actggcaga tcttcaagca
541 gacctacagc aagtgcaca caaactgcaca caacgtatgc gcactactca agaactacgg
601 gtcgtctac tgcttcagga aggacatgga caaggtcgag acattccctgc gcatcgatc
661 gtggccgtct gtggagggca gctgtggctt ctatgtccc gggggccatc cctgtgaccc
721 ctccccagtg cctctcctgg ccctggaaatg tgccactcca gtgcccacca gccttgct
781 aataaaaatta agttgcata
//

Figure 19

Rat GIP Promoter -1 to -1894

(-1894)

5' _GAGTGGCGACAGGCTGCTGCTAGCAGGCTCTACACTGAGCTAACCCACCCATAT
ATATACA TAGTTACTATTAGCTTATTATTTAAGATTATCATTATATATAG
TACACTGTAGTGTCTAGATAACACAGAAGAGGCATCGGTCTTACAGAGAGCCACC
ATGTGGTTGCTGGGGATTGAACTCATACCTCTGGCAGAGCAGTCGGTCTTAACG
CTGAGCCATCTCTCCAGCGCCCCAAAGCCCAGCTTTAAAAATAATTAAAATTCT
TTCTACAGATTGTTTATGTATATGAGTGTGTTGTGATCGTTGATGTGTGTA
GTGTGCATGGCACATGCCAGTGGGCCACAGACAGAGGGACATGAGGATTCCCCTGAA
ACTTGGAGTTACAGATGGCTGTGGCTGCCATGTGAGTGAGCGCCTTGGAACCAAA
CCTGGGTCTGCACAAAAGCAACAAGCACTCTTAATCGTTGAGCCACCTCTCCAACC
CCTGATATTCTTCTGTTGGTGCATTAAAATTGATAAACAGAGGGTTTCTTATT
TAAAGATTTATTATTTATGTGAGTACACTGTTGCTCTTCAGACACATAGAACAG
GGCATTGCTGGATTCTGCTACAGATGGTTGTGAGCCACCATGTGGTCTGGGAGTT
AAACTCAGGACCTCTGGAAGAGCAGTCAGTGCTCTAACCACTGAGCCATCTCTCCA
GTCCCTCCTCAACCTCTGAGAACAGGCAAACCTCACCAGTGGCTTATAAAC
GTTATATGGACCTACTAAGGATGTAACAACGGCATGCTAACCTAGCATGTCCG
AAACCCGGAGTTCAAGGACAAACATCAATTGAGACCAGCCTGGCTACTTACCAAA
AGATCAGAGGTTCAAGGACAAACATCAATTGAGACCAGCCTGGCTACTTACCAAA
GAAAGAAAGAGAGAAATAAATAAGATAGATAAATAAAATAAGTAAATAA
ATATCTTATGGCTGGAGAGTTGGTCAGTGTGTTAAGAGCACTTATTGTGGGTTGGG
GATTATCTCAGTGGTAGAGCGTTGCCTAGGAAGCTCAAGGCCCTGGGTCGGTCC
CCAGCTCCGAAACAAAACAAAACAAAACAAAACAAACAAACAAACAAAAAACC
CTGTCTGAAAACACCTAAATAAAGATATATATATAATATATAACATATAAT
ATATATGATATATATATATATCTTGTGGAGGAAGCTATACCTTCTTCTT
GAGCCTCCAACACATAATGTGCCCTGTCATCCCATTCAATTGCCCAAGTGGAA
ACCATGTGACTATAAACTCTAAGTCCCTAGTCACTAGGAACCTCAAGACACCTACC
TCAGGCAGCATCACTCCGGAGTGCCACCATTATCAGTTAACATCCACATCTGGGAT
TCAGATCCCAGATCCCTCTGTTCCCTCAGAAGTCACCTACAGCTTGTGGGGTGC
CCCTCCCTCAGAGAGTGCCACCCGAGTTGACCTCACCAAGGCAACCCCTTGTACC
CACAGAATCCAACAGGAAGTAGGGGAAGAACAGCCGCCCTGTGCCAGAAAAAA
AGAGGGGAGGGAGAAGGGGGTGCTCAGCCTACCACCGGGCAGGTCCCAGATAACA
CTGCAGATACCAAATGTTAATCACCCATTAGCACAGGCCAGAGCAAAGGGAAA
GTGATTAGGTGTATAATGGGGTCACTGGCAGGAGCAGTGGGCTTGAGCTTCAA
GATAAGAGGTTTCAGGTTAATCAGCACCCGTGGTGTGGATATAAGGAAGCTAA
CACAGGGTCTTGAAGCAAGATC_3' (-1)