Simplesso

Tuesday, 3 October 2023

09:17

- Metodo greedy per risolver ei problemi di programmazione lineare
 - Il tempo di computazione è lineare
 - Se però siamo sfigati potrebbe essere esponenziale
 - o E' una procedura algebrica con concetti basi geometrici
 - Il metodo del simplesso si muove lungo gli spigoli
- Procedimento:
 - o Imponiamo l'eguaglianza nei nostri vincoli
 - Definiamo i vertici che vengono reati attraverso l'intersezione di coppie di fronti
 - Due vertici sono detti adiacenti se condividono n-1 frontieri di vincoli
 - Due vertici adicanti sono collegati da un segmento che giace sull'intersezio
 - Il segmento che li collega verrà chiamato spigocolo, aka il segmento che ci
 - Abbiamo 2 tipi di vertici:
 - Ammissibile, quello che sta nella regione ammissibile
 - □ Non ammissibile, si trova all'intersezione di 2 rette però non è nella
 - $\hfill\Box$ E' possibile creare una tabella con vertice ammissibile \rightarrow Vertici amm
 - □ Essi godo di proprietà:
 - ◆ Test di ottimalità

Se una soluzione vertice non ammette soluzione vertici a lei a obiettivo Z migliore allora la soluzione in questione è ottimale Quindi basta guardare i vertici vicini per comprendere chi è il

Es:

Prendiamo vertice (2, 6), prendiamo i vertici a lui ammissibili a

$$(0, 6) \rightarrow Z = 30$$

$$(4, 3) \rightarrow z = 27$$

E siccome
$$(2,6) \rightarrow Z = 36$$

Siamo certi che (2, 6) è la soluzione ottimale

- Applichiamo metodo simplesso

Partiamo da $(0, 0) \rightarrow Z = 0 \mid \Rightarrow$ Inizializzazione, se possibile prendere (0, 0), nel caso b

Abbiamo (4, 0)
$$\rightarrow$$
 $Z=30$

Abbiamo (0, 6)
$$\rightarrow$$
 $Z = 12$

Quindi (0, 0) sicuramente non è la funzione ottimale

Qual'è il migliore? (0, 6) | ⇒ Test di ottimalità, e và verso il più grande, scelta grande

Abbiamo:
$$(2, 6) \rightarrow Z = 36$$

Delle prodedure di pre-ottimizzazione

Andiamo a (2 6)

Abbiamo:
$$(4, 3) \rightarrow Z = 27$$

Quindi (2,6) è la funzione ottimale

- Per introdurlo in termini pratici lo dobbiamo introdurlo in forma algebrica
 - Che si basa sulla risoluzione di sistemi di equazioni lineari
 - Dobbiamo trasformare il sistema di disequazione in vincoli funzionali di eguaglia
 - Per farlo dobbiamo introdurre la variabile slack
 Esempio:

$$\max Z = 3*x_1+5*x_2$$

$$x_1 \leq 4 \rightarrow \text{Variabile slack} = x_3 = 4-x_1 \text{ ed è la quantità che manca}$$
 E quindi $x_1+x_3=4, \ x_3 \geq 0$

$$2 * x_2 \le 12$$

 $3 * x_1 + 2 * x_2 \le 18$
 $x \ge 0$, $x_2 \ge 0$

La forma senza variabili slack è chiamata forma standard La forma aumentata:

$$\max Z = 3 * x_1 + 5 * x_2$$

$$x_1 + x_3 = 4$$

$$2 * x_2 + x_4 = 12$$

$$3 * x_1 + 2 * x_2 + x_5 = 18$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$$
Le variabili slack sono x_3, x_4, x_5
Nota che:

- Se noi poniamo la variabile slack pari a 0, la variabile con con per essere 0

Quindi se
$$x_4 = 0$$

Allora $2 * x_2 = 12 \rightarrow x_2 = 6$

- Se poniamo $x_4 = 1$ Allora $2 * x_2 < 12$
- Se invece $x_4 = negativo$ Allora la soluzione non è ammissibile

La soluzione aumentata è una soluzione in forma originale che vi Es. Se (3, 2) è la soluzione della forma originale,

allora (3, 2, 1, 8, 5) è la soluzione della forma aumentata Con 5 variabile, 2 decisionali e 3 di slack, abbiamo (5-3)=2 gradi

 Le variabili poste = 0 sono dette variabili non di base Es.

Posti
$$x_1 = 0, x_4 = 0$$

Troveremo che

$$x_2 = 6, x_3 = 4, x_5 = 6$$

E tutto questo sarà la nostra soluzione di base Proprietà:

- Una variabile o è di base oppure non di base
- Numero di variabile di base eguaglia il numero dei vincoli
- Le variabili non di base vengono poste a 0
- I valori delle variabili di base sono ottenuti come risoluzior equazione lineare, e l'insieme delle variabili è chiamata Bas
- Se l variabili di base soddisfano i vincoli di non negatività, l

Ma come ci accorgiamo se le soluzioni di base ammissibili sono a

- Sappiamo se sono adiacenti una variabile di base diventa d ed una non-base diver
- Quindi una variabile entra ed una esce

- Es:
$$(0,0)$$
, $(0,6)$
 $(0,0) \rightarrow (0,0,4,12,18)$
 $(0,6) \rightarrow (0,6,4,0,6)$
Notiamo che il $0 \rightarrow 6$, $12 \rightarrow 0$

Bisogna cercare di rendere la funzione obiettivo dentro il nostro $\max Z = 3 * x_1 + 5 * x_2 \rightarrow Z - 3 * x_1 - 5 * x_2 = 0$

Ora possiamo unire il tutto e risolvere

Passo passo:

$$\max Z = 3 * x_1 + 5 * x_2$$

$$x_1 + x_3 = 4$$

$$2 * x_2 + x_4 = 12$$

$$3 * x_1 + 2 * x_2 + x_5 = 18$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$$

- 1) Inizializzazione, cerchiamo di prendere (0,0) Ed ora dobbiamo calcolare x_{3-4-5} E calcolandolo scopriamo che $x_3 = 12, x_4 = 12, x_5 = 18$ Ed è una soluzione di base amissibile (0,0,4,12,18)
- 2) Verificare se è ottimale o meno, e per farlo: Prendiamo la funzione obiettivo max $Z = 3 * x_1 + 5 * x_2$ Noi sappiamo che Z = 0 sostituendo $x_1, x_2 = 0$ Ed ora dobbiamo calcolare il tasos di crescita I tassi di crescita è 3, 5 (Coefficenti di x1, x2)

E notiamo che aumentando x_1, x_2 rappresenta un miglioramento, e quindi

- Dobbiamo aumentare il valore di una variabile non di base
- Per la scelta di quale variabile deve aumentare per prima viene fatto at x₁ ha un tasso di miglioramento di 3
 x₂ ha un tasso di miglioramento di 5

Notiamo che x_2 comporta un miglioramento migliore, x_2 è una variabilidare aumentare

Questa varaibile verrà chiamata variabile entrante di base.

Ora dobbiamo aumentare x₂ fino al punto dove non perdiamo l'amissil
 E per farlo dobbiamo soddisfare i vincoli funzionali

^

$$x_1 = 0$$

E quindi $x_3 = 4$ per forza

Ora calcoliamo cosa succede ad x_4 alla variazione di x_2

$$x_4 = 12 - 2x_2$$

E questo ci dice quanto può cambiare x_2 affinchp x_4 rimane dentro i vinco

E facciamo lo stesso con $x_5 = 18 - 2 * x_2$

Ora ricaviamo x_2

$$x_4 = 12 - 2 * x_2 \ge 0 \Rightarrow x_2 \le \frac{12}{2} = 6$$

$$x_5 = 18 - 2 * x_2 \ge 0 \Rightarrow x_2 \le \frac{18}{2} = 9$$

Tra le 2 il minimo è 6 e quindi $x_2 = 6$

⇒ Test del rapporto minimo

Nota che ora $x_4 = 0$

Quindi entra x_2 ed esce x_4

Calcoliamo ora la nuova base

$$ma \, x \, Z = 3 * x_1 - 5 * x_2$$

$$x_1 + x_3 = 4$$

$$2 * x_2 + x_4 = 12$$

$$3 * x_1 + 2 * x_2 + x_5 = 18$$

Ora vogliamo fare (...)

Cerchiamo di cancellare x_2

Dividiamo la 2 equazione per 2 per avere 1

$$ma \, x \, Z = 3 * x_1 + 5 * x_2$$

$$x_1 + x_3 = 4$$

$$1 * x_2 + \frac{1}{2}x_4 = 6$$

$$3 * x_1 + 2 * x_2 + x_5 = 18$$

Ora vogliamo lo 0 in 1 posizione

Per farlo dobbiamo (...)

E diventa

$$< -3 * x_1 + \frac{5}{2}x_4 = 30$$

E ora vogliamo 0 nell'ultima posizione

$$3 * x_1 - x_4 + x_5$$

Quindi ora calcoliamo la nuova soluzione amissibile di base (0,0,4,12,18)

3) Ripetiamo al punto 1 fino a che non troviamo l'ottima

$$Z = 30 + 3 * x_1 - \frac{5}{2}x_4$$

Qui notiamo che solamente x_1 può migliorare

Quindi facciamo entrare in base x_1

E ora dobbiamo trovare quanto può cambiare x_1

E noteremo che $x_3 = 4 - x_1$

$$x_5 = 6 - 3x_1$$

Facciamo l'equazione

$$x_3 \Rightarrow x_1 \leq 4$$

$$x_5 \Rightarrow x_1 \le 2$$

E qui comprendiamo che x_1 entra in base mentre x_5 esce in base.

Per farla uscire in base deve far si che $x_5 = (0, 0, 0, 1)$

Dopo tanti calcoli noteremo che la soluzione sarà (2, 6, 2, 0, 0)

E ricominciamo...

$$Z = 36$$

$$Z = -\frac{3}{2}x_4 - x_5 + 36$$

E quindi non abbiamo nessuna posizione di miglioramento

E quindi questo ci garantisce che la soluzione che abbiamo trovato è la soluzione

- Forma tabellare

Salva:

- Coefficenti delle variabili
- Termini noti delle equazioni
- Variabili di base per ogni equazioni

Quindi non salva: simboli delle variabili

FORMA ALGEBRICA		FORMA TABELLARE							
	VARIABILE			С	OEFFIC	IENTE		, a	TERMINE
	DI BASE	Eq.	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	X4	X5	TER
$(0) \ \mathbf{Z} - 3x_1 - 5x_2 = 0$	Z	(0)	1	-3	-5	0	0	0	0
(1) $x_1 + x_3 = 4$	<i>X</i> ₃	(1)	0	1	0	1	0	0	4
$(2) 2x_2 + x_4 = 12$	<i>x</i> ₄	(2)	0	0	2	0	1	0	12
$(3) 3x_1 + 2x_2 + \mathbf{x}_5 = 18$	<i>X</i> ₅	(3)	0	3	2	0	0	1	18

Z->X5 = TABLEU

Passi per risolvere:

- 1) Inizializzazione
 - Inizializzazioni variabili slack
 - Selezionare le variabili di decisine da porre a 0 (non base)
 - Selezionare le variabili slack come base

Soluzione base amissibile: (0, 0, 4, 12, 18)

- 2) E' la soluzione base corrente la soluzione ottimale del nostro problema?
 - Conduciamo un test di ottimalità
 - □ Se gli efficenti della riga 0 sono non negativi (Eq. 0)
 - Se questo è vero lo finiamo, senò eseguaimo la prima iterazione
 - Determinare chi entra in hase

- Determinare un entra in base
- Determinare chi esce
- Determinare nuova soluzione ammissibile di base
- Se guardiamo la riga 0 notiamo 2 elementi con negativi, quindi la soluzion
 - □ Variabile che entra

Dobbiamo selezionare tra quelle non di base

- La scelta è muoveris in maniera golosa, dobbiamo segliere tra Ovviamente scegliamo -5, quindi scegliamo colonna PIVOT la E verrà chiamata PIVOT
- □ Variabile che esce

Determinazione della variabile che si sposta, e lo si fa con il test del

- Si sceglie gli elementi strettamente positivi della colonna pivo Esse sono: 2, 2: x_4 , x_5
- Dividiamo i termini noti per questi coefficenti
 Dividiamo ora i termini noti per 2, 2
 Quindi diventeranno

x2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	NOTO
-5	0	0	0	0
0	1	0	0	4
2	0	1	0	$12 \rightarrow \frac{12}{2}$
2	0	0	1	$18 \rightarrow \frac{18}{2}$

- Selezionare la riga cui corrisponde il più piccolo rapporto calco Scegliamo la più piccola nei termini noti, e qui la più piccola è
- La variabile di base di quella riga è la variabile uscente, rimpia Incrociamo la riga x_4 , $la\ colonna\ x_2$

E facendo così otteniamo il valore pivot = 2

VARIABILE				COEFF	ICIENTE			TERMI
DI BASE	Eq.	Z	<i>x</i> ₁	x ₂	<i>x</i> ₃	x ₄	x ₅	NOT
Z x ₃	(0) (1)	1 0	-3 1	-5 0	0 1	0	0	0 4
X ₄	(2)	0	0	2	0	I 1	0	RIGA PIVOT
<i>X</i> ₅	(3)	0	3	2	0	0	1	18 –
TERAZIO	NE: PA	SSO	2	COL ONNA		NUME	PO.	

PIVOT

□ Nuovi valori

- Dividiamo la riga pivot per il numero pivot, ottenendo un nuo Noi vogliamo cercare di ottenere il pattern (0, 0, 1, 0) nella co Iniziamo a fare scomparire il numero pivot e renderlo 1

0	1	0	1/2	0
---	---	---	-----	---

 Calcoliamo la nuova riga Oresima Noi vogliamo fare scompare il -5 E con calcoli otterremo

-3, 0, 0, 5/2, 0

- 400	- April 6	5088	- ACP-01	CONTRACTOR OF THE PARTY OF THE	
-3	-5	0	0	0	0
1	0	1	0	0	4
O	2	0	1	0	12
3	2	0	0	1	12 18
-3	0	0	<u>5</u> 2	0	30
0	1	0	1/2	0	6

- Ora vogliamo togliere il 2 dalla 3 riga 2 colonna

1	-3	0	0	<u>5</u> 2
0	1	0	1	O
0	0	1	O	$\frac{1}{2}$
0	3	0	О	-1

Ed abbiamo ottenuto il pattern (0, 0, 1, 0) nella colonna pivot Ora le nostre variabili di base saranno: x2, x3, x5 (quelle con gli 0 nella riga Z)

La nuova soluzione ammissibile è: (0, 6, 4, 0, 6)

- □ E' questa una soluzione ottimale?
 - Controlliamo guardando la riga Zesima e controlliamo coeffice Ce n'è 1, quindi prendiamo x_1 come pivot
 - Ricominciamo come prima, (0, 6, 4, 0, 6)
 - Determiniamo la variabile che entrerà in base, e l'unica è x_1 QUindi diventa la colonna pivot
 - Scegliamo la variabile che esce dalla base, e la calcoliamo con

-3	0	0	5 2	0	30	
1	0	1	0	0	4	$\frac{4}{1} = 4$
0	1	0	1/2	0	6	
3	0	0	-1	1	6	$\frac{6}{3} = 2 \leftarrow \text{mi}$

Prendiamo il minimo, 2, e quindi entrerà in base x_5

Ed ora sappiamo la riga pivot e l'elemento pivot Dobbiamo ottenere (0, 0, 0, 1) nella colonna pivot

О	О	0	$\frac{3}{2}$	1
0	0	1	1 3	$-\frac{1}{3}$
0	1	0	1/2	0
1	0	0	$-\frac{1}{3}$	$\frac{1}{3}$

- Notiamo che la riga Zesima ha tutti valori positivi, quindi è la s
 Ed otterremo (2, 6, 2, 0, 0)
- Tie breaking, aka situazioni anomale nei nostri algoritmi
 - Alternative multiple per la variabili entrante di base

(0)
$$Z - 3 \cdot x_1 - 3 \cdot x_2 = 0$$

(1) $x_1 + x_3 = 4$
(2) $2 \cdot x_2 + x_4 = 12$
(3) $3 \cdot x_1 + 2 \cdot x_2 + x_5 = 18$
Come risolvere questa situazione di pareggio
(tie) tra x_1 e x_2 ?

- La scelta è arbitraria
- Alternative multiple per la variabile uscente dalla base

Al passo 2 dell'algoritmo del simplesso abbiamo almeno 2 rapporti minimi ugual

- Raggiungeranno contemporaneamente il valore 0
- Non sappiamo più dire chi è in base e chi non
- Se poi la variabile non scelta è il minimo nella iterazione è anche il minimo avremo una situazione dove il valore della funzione obiettivo resta costan
- Tornerà indietro ed entrerà in un loop infinito
- Mancanza di variabili uscente

E' possibile che la funzione obiettivo è illimitata, e succede con sbagliati vincoli

- E quindi una variabile può incrementare illimitatamente senza intoccare l'
- Ce ne accorgiamo nell'ultimo step quando notiamo valori non positivi

Nella FORM								*2 8—		REGIO	(4, ∞
VARIABILE			COEF	FICIENT	E			6—	(SU	NE A	(4, 6
DI BASE	Eq.	Z	<i>x</i> ₁	x ₂	<i>x</i> ₃	TERMINE NOTO	TASSO		JPER	AMMI	
Z	(0)	1	-3	-5	0	0		4.—	IORI	ISSIE	(4.)

Molteplici soluzioni ottimali

- Ha almeno 2 vertici ammissibili che ono ottimali
- Ogni soluzione ottimale è una combinazione convessa di questi vertici am
- Le soluzioni ottimale sono equivalenti però potrebbero diventare diversi r
- Per identificarne basta:
 - Almeno una delle variabili non di base ha 1 coefficente nullo nella ri
 - Per trovarle basta effettuare ulteriori iterazioni del sistema del simp
 - Forziamo una variabile ad entrare in base

	VARIABILE				СО	EFFICIEN	ITE		TERMINE	SOLUZIONE
ITER	DI BASE	Eq.	Z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>x</i> ₄	X5	TERI	OTTIMALE
	Z	(0)	1	-3	-2	0	0	0	0	NO
0	<i>X</i> ₃	(1)	0	1	0	1	0	0	4	
U	X4	(2)	0	0	2	0	1	0	12	
	<i>X</i> ₅	(3)	0	3	2	0	0	1	18	
	Z	(0)	1	0	-2	3	0	0	12	NO
1	<i>x</i> ₁	(1)	0	1	0	1	0	0	4	110
1	X4	(2)	0	0		0	1	0	12	
	X ₅	(3)	0	0	2	-3	0	1	6	
	Z	(0)	1	0	0	0	0	1	18	SI
2	<i>x</i> ₁	(1)	0	1	0	1	0	0	4	31
2	X ₄	(2)	0	0	0 0 0	3	1	-1	6	
	<i>x</i> ₂	(3)	0	0	1	$-\frac{3}{2}$	0	$\frac{1}{2}$	3	

Le soluzioni di base ottimali sono: (4, 3, 0, 6, 0), (2, 6, 2, 0, 0)

- Se continuassimo semplicmenete faremmo uno swapping
- Da notare che il valore della funzione obiettivo è lo stesso
- Il metodo del simplesso ha forme alternative

 Quando non siamo nella forma standard, dobbiamo riuscire a trasformarlo durante la

La HUSTI a IUITHA STAHUATU.

- o Problema massimizzazione
- Vincoli ≤
- Variabili di decisioni non negative

Es:

$$\min Z = -2x_1 + 3x_2$$

$$x_1 + x_2 = 7$$

$$x_1 - 2 * x_2 \le 4$$

$$x_1 \ge 0$$

Trasformiamolo in forma standard:

- Trasformiamo al funzione obiettivo da min a max Per farlo si applica la funzione min(x) = max(-x): $min Z = -2x_1 + 3x_1 \Rightarrow max Z = 2 * x_1 - 3x_2$
- Abbiamo solo $x_1 \ge 0$ e dobbiamo cercare di trovare $x_2 \ge 0$ Per farlo dobbiamo creare 2 nuove variabili:

$$x_1, x'_2, x''_2 \ge 0$$

Dove
 $x_2 = x'_2 - x''_2$

E quindi la nostra funzione diventerà:

$$\max Z = 2 * x_1 - 3x_2' + 3x_2''$$

$$x_1 + x_2' - x_2'' = 7$$

$$x_1 - 2x_2' + 2x_2'' \le 4$$

$$x_1, x_2', x_2'' \ge 0$$

Abbiamo un vincolo di eguaglianza

E possiamo però trasformarlo in:

$$x_1 + x_2' - x_2'' \Rightarrow x_1 + x_2' - x_2'' \le 7$$

 $x_1 + x_2' - x_2'' \ge 7$

Però abbiamo \geq , sistemiamolo con -1

$$-x_1 - x_2' + x_2'' \le -7$$

Però qui abbiamo il problema che abbiamo un -7

Che risolveremo nel prossimo punto

- Variabili (...)
- Slack e surplus

Quando noi abbiamo i \leq oppure \geq li possiamo gestire con:

■ ≤ li trattiamo con i slack

$$0.3 * x_1 + 0.1 * x_2 \le 2.7$$

⇒ $0.3 * x_1 + 0.1 * x_2 + x_3$, $x_3 \ge 0$

■ ≥ li trattiamo con i surplus $0.6 * x_1 + 0.4 * x_2 \ge 6$ ⇒ $0.6 * x_1 + 0.4 * x_2 - x_4 = 6$, $x_4 \ge 0$