ΑΝΑΦΟΡΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Ι

ΑΣΚΗΣΗ 2 : ΕΦΑΡΜΟΓΕΣ ΔΙΟΔΩΝ

ΟΜΑΔΑ

Γιώργος Βιριράκης **2016030035** Χρήστος Μπεχτσούδης **2016030005** Μιχάλης Γαλάνης **2016030036**

ΜΕΡΟΣ Α

Ερώτημα 1°

Συγκριση Θεωρητικών – Πειραματικών τιμών						
	V0rms	Vsec peak	fκυματωσης	V0DC		
Θεωρητικές	15V	21.217V	100Hz	6,746V		
Πειραματικές	15.572V	20V	100Hz	12,491V		
Απόκλιση	3,81%	5,74%	0%	85,16%		

Μετά από σύνδεση πυκνωτή:

 $I_{DC} = V_{SEC\ peak} / R_L = 21,217 \text{mA}$

 $V_{Ripple} = I_{DC} / (f * C) = 21,217 / (100 Hz * 47 \mu F) \sim = 4,514 V$

Συγκριση Θεωρητικών – Πειραματικών τιμών						
	V _{0rms}	V _{sec peak}	f _{κυματωσης}	V _{oDC}		
Θεωρητικές	30V	21.217V	100Hz	18,96V		
Πειραματικές	21,21V	20V	100Hz	18,11V		
Απόκλιση	29,3%	5,70%	0%	4,48%		

Πυκνωτής 470μΕ:

Συγκριση Θεωρητικών – Πειραματικών τιμών						
	V _{0rms}	V _{sec peak}	f _{κυματωσης}	V _{oDC}		
Θεωρητικές	30V	21.217V	100Hz	18,23V		
Πειραματικές	15,19V	20V	100Hz	18,66V		
Απόκλιση	49,37%	5,70%	0%	2,36%		

Οι αποκλίσεις οφείλονται σε εσωτερικές αντιστάσεις και στρογγυλοποιήσεις στις πειραματικές μετρήσεις μας.

Ερώτημα 2°

Χωρίς πυκνωτή:

Με πυκνωτή 47 μF:

Με πυκνωτή 470 μΕ:

Οι θεωρητικές τιμές των μεγεθών που ζητούνται πειραματικά για την προσωμοίωση υπολογίστηκαν παραπάνω.

Ερώτημα 3°

Η σύγκριση των πειραματικών τιμών με τα στοιχεία της προσομοίωσης (θεωρητικές τιμές) έχει γίνει στο 1° ερώτημα.

Ερώτημα 4°

Με την αυξηση της τιμης του πυκνωτη πετυχενουμε καλυτερη εξομαλυνση,δηλαδη η καμπυλη της Vo τεινει να γινει ευθεια και οι αυξαμειωσεις ελαττώνονται.

ΜΕΡΟΣ Β

Ερώτημα 1°

Θεωρητικά

 $V_{in peak} = 15/0.707 \sim = 21,217V$

 $V_{C\ peak} = V_{in\ peak} \sim = 21,217V$

 $Vc_{Dc} = 0.636 * Vc_{peak} \sim = 13,5V$

Θεωρούμε τη δίοδο ιδανική άρα Vz(0) = Vz = 5,1V

Άρα $V_{0 peak} = Vz = 5,1V$

 $V_{0\,DC} = 0.636 * 5.1 = 3.2436 V \text{ kai V0}_{rms} = 3.6057 V$

Πειραματικά

Vc = 2.5V

 $V_0 = 0.024V$

Η τόσο μεγάλη απόκλιση οφείλεται στη μέτρηση λάθους τμήματος στον παλμογράφο.

Ερώτημα 2°

Προσωμοιώνοντας το κύκλωμα, έχουμε:

Για αντίσταση 1000Ω:

Για αντίσταση 470Ω:

Ερώτημα 3°

Ρύθμιση γραμμής = V_z / ($R_s + V_z$) = 15/(10^3 +15) ~= 0,015 Ρύθμιση φορτίου = $-V_z$ * R_s / ($V_z + R_s$) = - 15 * 10^3 / (15 + 10^3) ~= 14,77

Ερώτημα 4°

Πειραματικά

Pύθμιση φορτίου = $\Delta(V_0)$ / $\Delta(I_L)$ = 4,71 – 4,42/)/((4,71 /1000) – 4,54/470)) = ... = ~31,79Ω Pύθμιση γραμμής = $\Delta(V_0)$ / $\Delta(V_0)$ = V0 p-p / Vc p-p = 0,08 / 2,23 = 0,024

Παρατηρούμε ότι οι πειραματικές τιμές είναι μεγαλύτερες από τις θεωρητικές, γεγονός που οφείλεται σε στρογγυλοποιήσεις.

Ερώτημα 5°

Η κυμάτωση μειώνεται όταν μειώνεται η ρύθμιση γραμμής, όταν δηλαδή αυξάνεται με την αντίσταση Rs, προσέχοντας όμως να μη ξεπεράσουμε το I_z max της διόδου Zenner.