

CSC 211 - Digital Logic Design عال ـ تصميم المنطق الرقمي 211

First Term - 1439/1440 Lecture #9

Dr. Hazem Ibrahim Shehata

Assistant Professor

College of Computing and Information Technology

Administrivia

- >Assignment #2:
 - To be released on Sunday.

Website: http://hshehata.github.io/courses/su/cs211

Chapter 5: Combinational Logic Analysis

DR. HAZEM SHEHATA CS 211 - DIGITAL LOGIC DESIGN 3

Types of Digital Logic Circuits

There are two types of Digital Logic Circuits:

- 1. Combinational Logic Circuits:
 - Output is a pure function in the present inputs only!
 - Examples: adders, subtractors, encoder, decoders, multiplexers, ... etc.
- 2. Sequential Logic Circuits:
 - Output depends not only on the present input but also on the history of the input!!
 - Examples: flip-flops, latches, registers, counters, memory, ... etc.

Implementing Combinational Logic

- ➤ Methods for implementing Combinational Logic:
 - 1. AND-OR Logic
 - Usage: implementing SOP and POS expressions
 - 2. NAND Logic
 - Usage: implementing SOP expressions
 - 3. NOR Logic
 - Usage: implementing POS expressions
 - 4. ...

Implementing SOP expressions using AND-OR Logic

- Each product term is implemented by an AND gate whose inputs are the literals of the product term.
- All the outputs of the AND gates are fed to an OR gate.

Implementing POS expressions using AND-OR Logic

- Each sum term is implemented by an OR gate whose inputs are the literals of the product term.
- All the outputs of the OR gates are fed to an AND gate.

Universality of NAND gate

- NAND gates can be used to implement all other gates: NOT, AND, OR, NOR!!
- Hence, NAND gates can be used to implement any combinational circuit!!!

DR. HAZEM SHEHATA

Implementing SOP expressions using NAND Logic

- Start from the AND-OR implementation (like slide #7) and then replace each:
 - Inverter → NAND gate (Connected inputs).
 - AND

 NAND
 - OR → NAND

Universality of NOR gate

- NOR gates can be used to implement all other gates: NOT, AND, OR, NAND!!
- Hence, NOR gates can be used to implement any combinational circuit!!!

10

Implementing POS expressions using NOR Logic

- Start from the AND-OR implementation (like slide #8) and then replace each:
 - Inverter → NOR gate (Connected inputs).
 - OR → NOR
 - AND

 NOR

DR. HAZEM SHEHATA

	\boldsymbol{A}	В	$X = A \oplus B$
Julius .	0	0	0
2	0	1	$1 \rightarrow \bar{A}B$
	1	0	$ \begin{array}{c c} 1 \rightarrow A\overline{B} \\ 1 \rightarrow A\overline{B} \end{array} $
	1	1	0

 $X = \bar{A}B + A\bar{B}$

Implementing XOR Gate (⊕) using AND-OR Logic

2

$$X = \underline{A \odot B}$$

$$= \overline{A \oplus B}$$

$$= \overline{AB + AB}$$

$$= (A + \overline{B})(\overline{A} + B)$$

$$= A\overline{A} + \overline{AB} + AB + B\overline{B}$$

$$= \overline{AB} + AB$$

Implementing XNOR Gate (①) using AND-OR Logic

Chapter 6: Functions of Combinational Logic

The Half-Adder

- >A combinational logic circuit.
- Purpose: adds two bits, by rules of binary addition:

- >Input/Output:
 - Accepts two binary digits
 - Produces a sum bit and a carry bit.

	A	В	$C_{ m out}$	Σ
Julius Control of the	0	0	0	0
2	0	1	0	1
	1	0	0	1
	1	1	1	0

Implementing the Half Adder

The Full-Adder

- ➤ A combinational logic circuit.
- Purpose: adds three bits
- ➤Input/Output:
 - Accepts two binary digits & input carry
 - Produces a sum bit and a carry bit.

\boldsymbol{A}	В	$C_{\rm in}$	$C_{ m out}$	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$C_{\text{out}} = \overline{ABC_{\text{in}}} + A\overline{BC_{\text{in}}} + AB\overline{C_{\text{in}}} + ABC_{\text{in}}$$

$$= (\overline{AB} + A\overline{B})C_{\text{in}} + AB(\overline{C_{\text{in}}} + C_{\text{in}})$$

$$= (A \oplus B) C_{\text{in}} + AB$$

3

$$\sum = \bar{A}\bar{B}C_{in} + \bar{A}B\bar{C}_{in} + A\bar{B}\bar{C}_{in} + ABC_{in}$$

$$= (\bar{A}\bar{B} + AB)C_{in} + (\bar{A}B + A\bar{B})\bar{C}_{in}$$

$$= (A \odot B)C_{in} + (A \oplus B)\bar{C}_{in}$$

$$= (\bar{A} \oplus \bar{B})C_{in} + (\bar{A} \oplus \bar{B})\bar{C}_{in}$$

$$= (\bar{A} \oplus \bar{B})C_{in} + (\bar{A} \oplus \bar{B})\bar{C}_{in}$$

$$= (\bar{A} \oplus \bar{B}) \oplus C_{in}$$

Implementing the Full Adder

Implementing the Full Adder

Implementing the Full Adder

Reading Material

- Floyd, Chapter 5:
 - Pages 234 − 235, 237, 239 − 248, 250, 252 − 255
- Floyd, Chapter 6:
 - Pages 285 289

DR. HAZEM SHEHATA

