

Lecture4: Ch3. Data Modeling Using the Entity–Relationship (ER) Model part1

Dr. Alaa eldin Abdallah Yassin

Outline

- ER Model Concepts
- Types of Attributes.
- Entity Types and Entity Sets.
- ER Diagram
- Constraints on relationships
 - Relationships and Relationship types
 - Existence Dependency
- Alternative (min max) notation
- ER diagram for Company database

ER Model* Concepts

- **■** Entities and Attributes
 - Entities*: are specific persons, places, events, objects in the user environment about which the user needs to keep data.
 - For example : EMPLOYEE, office, task,...
 - Attributes*: are properties used to describe entity.
 - For example: EMPLOYEE entity may have the attributes Name, SSN, Address, Sex, BirthDate,...
 - Relationships: a relationship relates two or more entities with a specific meaning.
 - ❖For example: EMPLOYEE Ahmad Works on ProductX PROJECT.
 - *****EMPLOYEE Hassan Manages the Research DEPARTMENT

Types of Attributes

- Composite versus Simple (Atomic) Attributes.
- Single-Valued versus Multivalued Attributes.
- Stored versus Derived Attributes

Types of Attributes

- Simple
 - Each entity has a single atomic value for the attribute.
 - ❖For example: SSN or Sex
- Composite
 - The attribute may be composed of several components (attributes).
 - ► For example:
 - ❖ Name (FirstName, MiddelName, LastName).
 - Address (House#, Street, City, state, Country..)
- Multi-Valued
 - An Entity may have a multiple values for the attributes.
 - For example: Color of a CAR (black, white).
 - ❖Qualifications { BSC, MSC, PhD,...}

composite attributes

Types of Attributes...

■ Stored Attributes*

- Attribute that it take its value from user.
 - For example : Salary, Bonus
 - ❖BirthDate

Derived Attributes*

- For example: NetSalary = Salary + Bonus
- ❖Age: I can calculate from BirthDate attribute

□ Complex Attributes

- It's a multi-valued attribute and composite attribute.
 - For example: Phone = (Countcode, govCode, Phone#, Phone#)

Entity Types and Entity Sets

- entity type defines a "collection (or set) of entities that have the same attributes".
- Each entity type in the database is described by its name and attributes.

Entity Type Name: **EMPLOYEE** COMPANY Name, Age, Salary Name, Headquarters, President e₁ C1 . (Sunco Oil, Houston, John Smith) (John Smith, 55, 80k) e₂ C2 . Entity Set: (Fast Computer, Dallas, Bob King) (Fred Brown, 40, 30K) (Extension) e3 • (Judy Clark, 25, 20K)

ER Diagram

- ► An entity type is represented in ER diagrams as a rectangular box enclosing the entity type name.

 EMPLOYEE
- Attribute names are enclosed in ovals and are attached to their entity type by straight lines.
 SSN
- Composite attributes are attached to their component attributes by straight lines.

 Str#

Address
City

Phone

Multivalued attributes are displayed in double ovals.

ER Diagram...

derived attributes are displayed in dotted ovals

- Key Attributes of an Entity Type:
 - An entity type usually has one or more attributes whose values are distinct (uniqueness) for each individual entity in the entity set.
 - Such an attribute is called a key attribute, and its values can be used to identify each entity uniquely.
 - For example, the **Name** attribute is a key of the **COMPANY** entity type because no two companies are allowed to have the same name.
 - For the **PERSON** entity type, a typical key attribute is **SSN** (Social Security number).
 - Sometimes several attributes together form a key, meaning that the combination of the attribute values must be distinct for each entity.
 - each key attribute has its <u>name underlined</u> inside the oval

SSN

Ex: entity type with key attributes

The **CAR** entity type with two key attributes, Registration and Vehicle_id **ER diagram notation**.

Ex: entity type with key attributes...

```
CAR<sub>1</sub>
((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 2004 {red, black})

CAR<sub>2</sub>
((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue})

CAR<sub>3</sub>
((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})
```

CAR

Registration (Number, State), Vehicle_id, Make, Model, Year, {Color} *Entity set with three entities.*

■ True or False

- 1. The same Entity may have more than one key attributes [T/F]
- 2. The entity may have no any key attribute [T/F] **T:** weakentity*
- Weak entity: represented by double rectangle.

dependent

- **partial key**: A weak entity type normally has a **partial key**, which is the attribute that can uniquely identify weak entities that are *related to the same* owner entity. (partial key attribute is underlined with a dashed or **dotted line**)
 - In our example, if we assume that no two dependents of the same employee ever have the same first name, the attribute **Name** of DEPENDENT is the partial key.
 - In the worst case, a composite attribute of all the weak entity's attributes will be the partial key.

Constraints on Relationships

- Constraints on Relationship types
 - Also known as ratio constraints.
 - Cardinality Ratio (specific maximum participation)
 - 1. One-to-One (1:1)
 - 2. One-to-Many (1:N) or Many-to-One (N:1)
 - 3. Many-to-Many (M:N)
 - Existence Dependency Constraints (specific minimum participation)
 - Also called participation constraint.
 - 1. Zero (optional participation, not existence-participation)
 - 2. One or more (mandatory participation, existence-participation)

Relationships and Relationship types

- The degree of relationship type is the number of participating entity type.
- Relationship represented by Diamond
 - Both MANAGES and WORKS_ON are binary relationship.

2. Ternary relationship

Relationships and Relationship types...

- Recursive relationship
 - Entity related to itself.
 - For example: EMPLOYEE supervise another EMPLOYEEs

Cardinality* of Relationship

1. One-to-One

- Each Entity in the relationship will have exactly one related entity. (1:1)
 - ❖Ex: EMPLOYEE and DEPARTMENT (manage relationship)*

2. One-to-Many

- an Entity on one side of the relationship can have many related entities, but an entity on the other side have a maximum of one related entity. (1:M)
 - Ex: DEPARTMENT and PRPJECT (manage relationship)*

3. Many-to-Many (M:M)

- Entities on both side of the relationship have many related entities from the other side.
 - Ex: EMPLOYEE and PRPJECT (manage relationship)*

Cardinality of Relationship...

many to many

Total & partial participation Relationship

- Not all EMPLOYEE manage DEPARTMENT (partial participation)
- But all DEPARTMENTs should manage by EMPLOYEE (total participation)

Alternative (min max*) notation* for Relationship structural constraints

health care service (max = 4)

1/6/2024

Total & partial participation Relationship...

Ex1: The employee has the right to register 4 members of his family in the health care service (max = 4)

Ex2: The employee must participate in at least one project and at most 3 projects (min = 1 & max = 3)

Note: if we found double line in relation (total partial); by default, the min = 1

ER Design for the COMPANY Database

Example of Company database DEPARTMENT entity

- We need to create database schema design based on the following simplified requirements of the COMPANY database:
 - ❖ The company* is organized into **DPARTMENT**s.
 - Each department has a unique name*, unique number and an employee who manages the department.

Example of Company database **DEPARTMENT** entity...

★ Each department has a unique name*, unique number and an employee who manages the department. We keep track of the start date of the department manager. A department may have several locations*.

Example of Company database... PROJECT entity

*Each department controls a number of PROJECTs. Each project has a unique name, unique number and is located at a single location.

PROJECT

Number

Location

Example of Company database... EMPLOYEE entity

We store each EMPLOYEE's <u>social security number</u>, address, salary, sex, and birthdate

Example of Company database... EMPLOYEE entity...

Each employee works for one department, but may works on several projects.

Example of Company database... **EMPLOYEE** entity...

■ We keep track number of hours per week that an employee

Example of Company database... **EMPLOYEE** entity...

We also keep track of the direct supervisor of each employee.

Recursive Relationship

Example of Company database... DEPENDENT entity

- Each employee may have a number of DEPENDENTS
 - For each dependent we keep track of their name, sex, birthdate, and relationship to the employee.

Example of Company database...

DEPENDENT entity...

DEPENDENT participation and relation

Note that:

- weak entity usually total participated to the owner entity.
- The relation called identifying relationship

