§ 3.4 随机变量的独立性

两随机变量独立的定义:

设 X,Y是两个r.v,若对任意的x,y,有 $P(X \le x, Y \le y) \square P(X \le x) P(Y \le y)$ 则称X,Y相互独立.

两事件A, B独立的定义是: 若 P(AB)=P(A)P(B) 则称事件A, B独立.

用分布函数表示,即

设X,Y是两个r.v,若对任意的x,y,有

$$F(x,y) \square F_X(x)F_Y(y)$$

则称X, Y相互独立.

它表明,两个r.v相互独立时,联合分布函数等于两个边缘分布函数的乘积.

离散型

X与Y独立 \longrightarrow 对一切i,j有

$$P(X \square x_i, Y \square y_j) \square P(X \square x_i) P(Y \square y_j)$$

即
$$p_{ij} \square p_{i\square} \cdot p_{\square j}$$

连续型

X与Y独立 \longrightarrow 对任何x,y有

$$f(x,y) \square f_X(x) f_Y(y)$$

二维随机变量 (X, Y) 相互独立, 则边缘分布完全确定联合分布

二维连续 r.v. (X,Y) 相互独立

$$f_X(x) \square f_{X|Y}(x|y) \quad (f_Y(y) \square 0)$$

$$f_{Y}(y) \square f_{Y|X}(y|x) \quad (f_{X}(x) \square 0)$$

证明:
$$f_{X|Y}(x|y) \square \frac{f(x,y)}{f_Y(y)} \square \frac{f_X(x) \cdot f_Y(y)}{f_Y(y)} \square f_X(x)$$

命题
$$(X,Y) \sim N(\square_1, \sigma_1^2; \square_2, \sigma_2^2; \rho)$$
相互独立

$$ightharpoonup
ho \square 0$$

$$ho \square 0$$

$$\frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\frac{(x-\Box_{1})^{2}}{\sigma_{1}^{2}}-2\rho\frac{(x-\Box_{1})(y-\Box_{2})}{\sigma_{1}\sigma_{2}}\Box\frac{(y-\Box_{2})^{2}}{\sigma_{2}^{2}}\right]}$$

$$\Box \frac{1}{\sqrt{2\pi\sigma_{1}}} e^{-\frac{(x-\Box_{1})^{2}}{2\sigma_{1}^{2}}} \frac{1}{\sqrt{2\pi\sigma_{2}}} e^{-\frac{(y-\Box_{2})^{2}}{2\sigma_{2}^{2}}}$$

取特殊值 $x \square \square_1, y \square \square_2$

$$\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \, \Box \, \frac{1}{\sqrt{2\pi}\sigma_1} \frac{1}{\sqrt{2\pi}\sigma_2}$$

故 $\rho \square 0$

将
$$\rho \Box 0$$
 代入 $f(x,y)$ 即得
$$f(x,y) \Box f_{x}(x) f_{y}(y)$$

例 已知 (X, Y) 的联合 d.f.为

$$(1) \quad f_1(x,y) \square \begin{cases} 4xy, & 0 \square x \square 1, 0 \square y \square 1 \\ 0, & 其他 \end{cases}$$

(2)
$$f_2(x,y) = \begin{cases} 8xy, & 0 \square x \square y, 0 \square y \square 1 \\ 0, & \sharp \text{ } \text{ } \end{cases}$$

讨论X,Y是否独立?

(1)
$$f_1(x,y) = \begin{cases} 4xy, & 0 \square x \square 1, 0 \square y \square 1 \\ 0, & \text{其他} \end{cases}$$
 由图知边缘 d.f. 为

$$f_X(x) \square \begin{cases} 2x, & 0 \square x \square 1, \\ 0, & 其他 \end{cases}$$

$$f_Y(y)$$
 \square
$$\begin{cases} 2y, & 0 \square y \square 1, \\ 0, & 其他 \end{cases}$$

显然, $f_1(x,y) \Box f_X(x) f_Y(y)$

故 X, Y 相互独立

由图知边缘 d.f. 为

$$f_X(x) \square \begin{cases} 4x(1-x^2), & 0 \square x \square 1, \\ 0, & 其他 \end{cases}$$

$$f_{Y}(y)$$
 \square
$$\begin{cases} 4y^{3}, & 0 \square y \square 1, \\ 0, & 其他 \end{cases}$$

显然 $f_{\gamma}(x,y) \neq f_{\chi}(x) f_{\chi}(y)$

故X,Y不独立

例设随机变量 X 在 1,2,3三个数中等可能地取值,另一个随机变量 Y 在1~X 中等可能地取一整数值,试问 X, Y 的独立性。

DX, Y的联合与边缘分布律

不独立

X	Y	1	2	3	$p_{i\square}$
	1	$\frac{1}{3}$	0	0	$\frac{1}{3}$
	2	$\frac{1}{6}$	$\frac{1}{6}$	0	$\frac{1}{3}$
	3	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{3}$
	$p_{_{\square j}}$	$\frac{11}{18}$	$\frac{5}{18}$	$\frac{2}{18}$	1

例 箱子里装有4只白球和2只黑球,在其中随机地取两次,每次取一只.问 X,Y 的独立性.

$$X \square$$
 $\begin{cases} 0,$ 若第一次取出的是黑球, $1,$ 若第一次取出的是自球.

$$Y = \begin{cases} 0, 若第二次取出的是黑球, \\ 1, 若第二次取出的是白球. \end{cases}$$

(1) 有放回抽样

独立

X	0	1	$p_{i\square}$
0	<u>1</u> 9	<u>2</u> 9	$\frac{1}{3}$
1	$\frac{2}{9}$	<u>4</u> 9	$\frac{2}{3}$
$p_{\scriptscriptstyle \Box j}$	$\frac{1}{3}$	$\frac{2}{3}$	1

(2) 不放回抽样

X	0	1	$p_{i\square}$
0	1 15	<u>4</u> 15	$\frac{1}{3}$
1	4 15	<u>6</u> 15	$\frac{2}{3}$
$p_{\scriptscriptstyle \Box j}$	$\frac{1}{3}$	$\frac{2}{3}$	1