Cetuximab plus FOLFIRI in the treatment of metastatic colorectal cancer – the influence of KRAS and BRAF biomarkers on outcome: Updated data from the CRYSTAL trial

E. Van Cutsem, I. Lang, G. Folprecht, M.P. Nowacki, S. Cascinu, I. Shchepotin, J. Maurel, D. Cunningham, I. Celik, C.H. Köhne

1 University Hospital Gasthuisberg, Leuven, Belgium; 2 National Institute of Oncology, Budapest, Hungary; 2 University Hospital Carl Gustav Carus, Dresden, Germany; 4 MSC Memorial Cancer Center, Warsaw, Poland; 5 Università Politecnica delle Marche, Ancona, Italy;

6 National Cancer Institute, Kiev, Ukraine; 7 Hospital Clínic, Barcelona, Spain; 8 The Royal Marsden NHS Foundation Trust, London, UK; 9 Merck KGaA, Darmstadt, Germany; 10 Klinikum Oldenburg, Oldenburg, Germany

ASCO GI 2010, Abstract No. 281

Background

- In the CRYSTAL study patients with KRAS wild-type tumors (KRAS wt) had a significantly reduced risk of disease progression (Hazard ratio, 0.68, p=0.02) and an increased chance of tumor response (Odds ratio, 1.91) in the ceturianab plus FOLFIRI arm compared with the FOLFIRI arm.
- The CRYSTAL trial confirmed earlier findings from randomized and single-arm studies, that cetuximab efficacy was confined to patients with KRAS wt tumors.^{2,3,4}
- The serine-threonine kinase BRAF is a direct downstream effector of KRAS. BRAF gene mutations have been detected in around 8% of colorectal tumors⁶ and BRAF mutation status has been suggested to be predictive of cetuximab efficacy in pretreated patients.⁶
- Here we report an updated analysis of the CRYSTAL study with increased follow-up time and an increased population of patients for which tumor KRAS mutation status has been determined.
- The impact of BRAF tumor mutations in patients with KRAS wt tumors on cetuximab efficacy was investigated.

Study objectives

- · Primary study objective
- Assess whether the progression-free survival (PFS) of patients receiving cetuximab plus FOLFIRI was superior to that of FOLFIRI alone.
- Secondary objective
- Comparison of the treatment regimens with respect to overall survival (OS) time, best overall response (OR) and safety.
- A retrospective subgroup analysis investigated associations between KRAS/BRAF tumor mutation status and PFS time, OR, and OS time.

Methods

. This was an open-label randomized multicenter phase III study (Figure 1).

5-FU, 5-fluorouracil; ECOG PS, Eastern Cooperative Oncology Group performance status; EGFR, epidermal growth factor receptor, LV, leucovorin; mCRC, metastatic colorectal cancer; R, randomization.

Patients

Main patient inclusion/exclusion criteria have been reported elsewhere.

KRAS/BRAF tumor mutation analysis

- Ascertainment of samples for KRAS and BRAF testing was increased using DNA extracted from formalin fixed parafflin embedded slide mounted sections initially prepared to evaluate tumor EGFR expression.
- KRAS mutations at codons 12/13 and BRAF (V600E) mutations were detected using the previously described polymerase chain reaction clamping and melting curve technique.

Data cut-offs for analysis

 CRYSTAL study data cut-offs were: PFS (independent review committee), OR (independent review committee) 27 July 2006, OS 31 May 2009.

Results

Baseline characteristics (Table 1)

- The number of patients for whom KRAS tumor mutation status was determined was increased from 540/1198 (45%), previously published¹ to 1063 (89%).
- The number of patients for whom BRAF tumor mutation status was determined was increased from 529/1198 (44%) previously reported⁷ to 1000 (83%).
- BRAF mutations were detected in 60/1000 (6%) evaluable patient tumor samples.
- One patient tumor was both KRAS mt and BRAF mutant (BRAF mt)
- 666/1063 (63%) patients had KRAS wt tumors.
- \bullet 625 KRAS wt tumors were evaluable for BRAF mutation.
- 566 (91%) were BRAF wt
- 59 (9%) were BRAF mt

able 1. Baseline and disease characteristics in patients with KRAS wt tumors according to BRAF mutation status and treatment											
	<i>KRAS</i> wt (n=666)		KRAS wt/BRAF wt (n=566)		KRAS wt/BRAF mt (n=59)						
Characteristics, n (%) unless otherwise stated	FOLFIRI (n=350)	Cetuximab + FOLFIRI (n=316)	FOLFIRI (n=289)	Cetuximab + FOLFIRI (n=277)	FOLFIRI (n=33)	Cetuximab + FOLFIRI (n=26)					
Gender											
Male	211 (60)	196 (62)	177 (61)	176 (64)	18 (55)	15 (58)					
Female	139 (40)	120 (38)	112 (39)	101 (36)	15 (45)	11 (42)					
Median age, years	59	61	59	60	58	65					
(range)	(19-84)	(24-79)	(19-84)	(24-79)	(25-75)	(34-79)					
Age categories											
<65 years	234 (67)	200 (63)	194 (67)	177 (64)	22 (67)	13 (50)					
≥65 years	116 (33)	116 (37)	95 (33)	100 (36)	11 (33)	13 (50)					
ECOG PS											
0/1	336 (96)	303 (96)	280 (97)	266 (96)	30 (91)	26 (100)					
2	14 (4)	13 (4)	9 (3)	11 (4)	3 (9)	0 (0)					
Liver metastasis only	72 (21)	68 (22)	62 (22)	57 (21)	4 (12)	9 (35)					
nvolved disease sites ≤2	295 (84)	277 (88)	247 (86)	245 (88)	24 (72)	21 (81)					
Prior adjuvant chemotherapy	73 (21)	80 (25)	62 (21)	75 (27)	6 (18)	4 (15)					

ECOG PS, Eastern Cooperative Oncology Group performance status; mt, mutant; wt, wild-type.

Clinical Efficacy (Table 2)

- The addition of cetuximab to FOLFIRI compared with FOLFIRI alone in KRAS wt patients led to:
- Significant improvement in OS time (median follow-up time of 46.2 months vs 46.9 months, respectively; Figure 3)
- Significant improvement in PFS time (Figure 4)
- Significant improvement in OR (Figure 2) with a mean difference in the best % change of the lesion (based on WHO criteria) of 13.9
- Significant interactions between treatment outcomes and KRAS tumor mutation status were observed for all efficacy variables: tumor response (p=0.0005), PFS (p=0.003) and OS (p=0.046).⁸
- Patients with BRAF mt tumors were associated with poor prognosis in both treatment arms (Table 2).

	KRAS wt (n=666)		KRAS wt/BRAF wt (n=566)		KRAS wt/BRAF mt (n=59)	
	FOLFIRI (n=350)	Cetuximab + FOLFIRI (n=316)	FOLFIRI (n=289)	Cetuximab + FOLFIRI (n=277)	FOLFIRI (n=33)	Cetuximab + FOLFIRI (n=26)
OS time						
Median OS, months	20.0	23.5	21.6	25.1	10.3	14.1
[95% CI]	[17.4-21.7]	[21.2-26.3]	[20.0-24.9]	[22.5-28.7]	[8.4-14.9]	[8.5-18.5]
Hazard ratio	0.796		0.830		0.908	
[95% CI]	[0.670-0.946]		[0.687-1.004]		[0.507-1.624]	
p-value ^a	0.0093		0.0549		0.7440	
PFS time						
Median PFS, months	8.4	9.9	8.8	10.9	5.6	8.0
[95% CI]	[7.4-9.2]	[9.0-11.3]	[7.6-9.4]	[9.4-11.8]	[3.5-8.1]	[3.6-9.1]
Hazard ratio	0.696		0.679		0.934	
[95% CI]	[0.558-0.867]		[0.533-0.864]		[0.425-2.056]	
p-value ^a	0.0012		0.0016		0.8656	
Tumor response						
OR rate (%)	39.7	57.3	42.6	61.0	15.2	19.2
[95% CI]	[34.6-45.1]	[51.6-62.8]	[36.8-48.5]	[55.0-66.8]	[5.1-31.9]	[6.6-39.4]
Odds ratio	2.0693		2.1750		1.0842	
[95% CI]	[1.5154-2.8258]		[1.5505-3.0511]		[0.2644-4.4456]	
p-value ^b	<0.0001		< 0.0001		0.9136	

"Stratified log-rank test; "Cochran-Mantel-Haenszel test.
Cl. confidence interval: mt. mutant: OR. best overall response: OS. overall survival: PFS. progression-free survival: wt. wild-type.

*Data for 16 patients were missing; **Data for 21 patients were missing.

CI. confidence interval: HR. hazard ratio: OS. overall survival: wt. wild-type.

Conclusions

- This final analysis shows for the first time in a randomized study that the addition of a targeted agent (cetuximab) to FOLFIRI in the 1st-line treatment of patients with mCRC with KRAS wt tumors significantly improved OS compared to FOLFIRI alone.
- This final analysis confirms KRAS tumor mutation status to be a predictive factor across all
 efficacy endpoints examined for cetuximab in combination with FOLFIRI.
- The analysis suggests BRAF tumor mutations to be a poor prognostic factor in 1st-line mCRC.
- BRAF testing may not provide any additional benefit as a predictive indicator for the efficacy of cetuximab in 1st-line treatment in combination with chemotherapy.

Cl, confidence interval; HR, hazard ratio; PFS, progressions-free survival; wt, wild-type.

References

- 1. Van Cutsem E, et al. N Engl J Med 2009;360:1408-17.
- 2. Bokemeyer C, et al. J Clin Oncol 2009;27:663-71.
- 3. De Roock W. et al. Ann Oncol 2008:19:508-15.
- 4. Lièvre A, et al. J Clin Oncol 2008;26:374-9.
- 5. Roth A, et al. J Clin Oncol 2009 E-pub doi/10.1200/JCO.2009.23.3452.
- 6. Di Nicolantonio F, et al. J Clin Oncol 2008:26:5705-12
- 7. Köhne C, et al. J Clin Oncol 2009;27(15s). Abstract 4068.
- 8. Lang I, et al. Eur J Cancer Suppl 2009;7(2):345. Abstract P-6078.

Acknowledgments

The authors would like to thank patients, investigators, co-investigators and the study teams at each of the participating centers and at Merck KGaA, Darmstadt, Germany.