

UNIVERSIDAD DEL PACÍFICO

Departamento Académico de Economía

Matemáticas III (130233)

Primer Semestre 2017

Profesores D. Winkelried, O. Bueno, J. Zúñiga, D. Bohorquez, y F. Rosales

Práctica Calificada 4

1. Misceláneos (9 ptos)

a) (3 ptos) Calcule la solución general de la ecuación diferencial

$$\frac{d^3x}{dt^3} + 2\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = e^{-t}.$$

b) (3 ptos) La solución de la ecuación de Euler-Cauchy

$$t^2\ddot{x} - 2x = 1 - t.$$

tiene la forma habitual $x(t) = x_c(t) + x_p(t)$. No obstante, en lugar de considerar que $x_c(t) = e^{rt}$, para una constante r por determinar, se debe considerar que $x_c(t) = t^r$. Si se sabe que x(1) = 0 y $\dot{x}(1) = 7/2$, calcule x(t).

c) (3 ptos) Considere la ecuación diferencial no lineal

$$\dot{x} = \alpha(x^2 - 4x + 3),$$

donde $\alpha \neq 0$ es una constante. Si se sabe que x(0) = 2, describa cualitativamente la trayectoria x(t). Su respuesta dependerá del signo de α .

2. Ecuación diferencial no lineal de segundo orden (6 ptos)

Considere la ecuación diferencial no lineal de segundo orden:

$$\ddot{x} + \alpha(x^2 - 1)\dot{x} + x = 0,$$

donde $\alpha \in \mathbb{R}$ es una constante.

a) (1 pto) Defina $y = \dot{x}$ y, a partir de la ecuación anterior, construya un sistema autónomo de la forma:

$$\dot{x} = f(x, y)$$
 y $\dot{y} = g(x, y)$.

- b) (1 pto) Determine los estados estacionarios del sistema anterior.
- c) (1 pto); Para qué valores de α todos los estados estacionarios del sistema son estables?
- d) (1 pto) ¿Para qué valores de α todos los estados estacionarios del sistema son nodos?
- e) (2 ptos) Suponga que $\alpha = -1$ y que -1 < x < 1. Esboce, de la manera más detallada posible, el diagrama de fases del sistema anterior en el plano (x, y).

3. Dinero y consumo (5 ptos)

La cantidad real de dinero de una economía m, evoluciona de acuerdo con:

$$\dot{m} = y - c$$
,

donde y es el ingreso agregado (exógeno) y c es el consumo.

Sea $U(m,c) = \beta u(m) + u(c)$ una función de utilidad con $\beta > 0$, $u'(\cdot) > 0$ y $u''(\cdot) < 0$. Luego, c evoluciona de acuerdo con:

$$\dot{c} = \frac{\alpha u'(c) - \beta u'(m)}{u''(c)},$$

donde $\alpha > 0$.

a) (2 ptos) Linealice el sistema alrededor de su estado estacionario (\bar{c}, \bar{m}) . Es decir, encuentre a_{cc} , a_{cm} , a_{mc} y a_{cc} en la siguiente representación:

$$\dot{m} = a_{mc}(c - \bar{c}) + a_{mm}(m - \bar{m}),$$

$$\dot{c} = a_{cc}(c - \bar{c}) + a_{cm}(m - \bar{m}).$$

- b) (1 pto) ¿Qué tipo de equilibrio es el (\bar{c}, \bar{m}) ?
- c) (2 ptos) Esboce el diagrama de fases del sistema en el plano (m, c) de la manera más detallada posible. Ayuda: Solo para fines gráficos, considere que $u(x) = \ln(x)$.