

FIGURE 1

2/9
2/7

FIGURE 2

3/9

3/7

FIGURE 3

219

FIGURE 4

5/7

5/9

FIGURE 5

FIGURE 6

777 719

Reference Design

Optimized Design

FIGURE 7

From step 417

FIG. 8A

8 | 9

To step 411

From step 411

Provide an objective function $OBJ(f_i, g_j)$, depending on at least one of the parameter values $f_1, \dots, f_s, g_1, \dots, g_c$, for the composite response surface $CRS\{f_i, g_j\}$ at each of n selected locations in G space associated with the target variable, and provide a corresponding objective function value OBJ_n ($n=1, \dots, N$)

Compute a training error value $TE\{g_j\}$ as a non-negative weighted sum of functions of differences, $F_n(OBJ_n - OBJ(f_i, g_j)_n)$

415

Is
 $TE\{g_j\} > \epsilon?$

No

417

Yes

Modify at least one shape
function $P_k(f_1, \dots, f_s)$

419

Accept present composite
response surface

421

FIG. 8B

9/9