# DW-Data-Modelling-Refresher-Notes

- DW-Data-Modelling-Refresher-Notes
  - 1. OLAP vs. OLTP
  - 2. Facts
  - 3. Dimensions
  - 4. Star Schema
    - · Characteristics of a Star Schema
    - Advantages of Star Schema
    - Disadvantages of Star Schema
    - Conclusion
  - 5. Snowflake Schema
    - Characteristics of a Snowflake Schema
    - Advantages of Snowflake Schema
    - Disadvantages of Snowflake Schema
  - 6. Star Schema vs. Snowflake Schema Which is Better?
  - 7. Fact Table and Its Types
  - 8. Granularity
  - 9. Data Virtualization
    - Think of it like a TV remote!
  - 10. Data Marts
    - Think of it like a small store inside a shopping mall!
  - 11. Data Lakes
    - Think of it like a big lake!
  - 12. Relational OLAP
    - Think of it like a Library with an Index!
  - 13. Multi dimensional OLAP
    - Think of it like a Vending Machine!
  - 14. Data Cubes
    - 1. Slice (Filtering one dimension)
    - 2. Dice (Filtering multiple dimensions)

- 3. Drill Down (Going deeper into details)
- 4. Roll Up (Summarizing the data)
- 5. Pivot (Rotating the view)
- Summary Table
- 15. Dimensional Data
- 16. Difference between table and cube data type
  - 11 Table Data Type (Relational Data Model)
    - Key Characteristics of Tables:
  - 2 Cube Data Type (Multidimensional Model)
    - Key Characteristics of Cubes:
  - 3 Key Differences Between Table & Cube Data
- 17. Centipede Fact table
  - Characteristics of a Centipede Fact Table
  - 📌 Example: Centipede Fact Table in an E-commerce Business
  - Linked Dimension Tables
  - 📌 When to Use a Centipede Fact Table?
- 18. Factless Fact Table
  - 11 Why Use a Factless Fact Table?
    - P Example: Event Tracking
  - 2 When to Use a Factless Fact Table?
- 19. Three-Tier Data warehouses
  - Three-Tier Data Warehouse Architecture
  - 1 Bottom Tier: Data Source Layer (Raw Data Storage)
  - 2 Middle Tier: Processing Layer (ETL & Data Storage)
  - 3 Top Tier: Presentation & Reporting Layer
  - Summary Table: Three-Tier Data Warehouse
- 20. Junk dimension
  - 11 Why Do We Need a Junk Dimension?
    - Without a Junk Dimension (Messy Fact Table)
  - 2 How Junk Dimension Solves This?
    - With a Junk Dimension (Clean Fact Table)
    - Junk Dimension Table ( Groups Unrelated Attributes Together)

- Fact Table (Now Cleaner)
- 3 When to Use a Junk Dimension?
- 21. ODS and its types
- 22. Major Parallel computing platforms
- 23. Quantifiable Data Indicator
  - Examples of Quantifiable Data Indicators
  - QDI vs. Qualitative Data Indicator
- 24. Cross Tab
  - Example of Cross Tab Analysis
- 25. Metadata in datawarehouse
- 26. Conformed Dimensions
- 26. Domain
- 27. Hierarchy in Data Warehousing
- 28. Role playing dimension
  - Example: Order Processing
  - Table Structure:
- 29. Degenerate dimension
  - Example: Order Transactions
  - Table Structure:
- 30. Data Lake vs Data Warehouse
- 31. In memory databases
- 32. Schematic Evolution
- 33. Dimensional Modelling
  - Dimensional modelling
- 34. Conceptual Data Model
- 35. Physical Data Model
- 36. Surrogate Key
- 37. ERWIN (Data Modeling Tool)
- 38. Softwares Used for Data Modeling
- 39. Data modelling types
  - 11 Conceptual Data Model
  - 2 Logical Data Model
  - 3 Physical Data Model

# 1. OLAP vs. OLTP

- OLTP (Online Transaction Processing) Handles day-to-day transactions.
- OLAP (Online Analytical Processing) Used for complex queries and reporting.

| Feature    | OLTP (e.g., Banking App) | OLAP (e.g., Data Warehouse)        |  |
|------------|--------------------------|------------------------------------|--|
| Purpose    | Fast transactions        | Data analysis & reporting          |  |
| Data Size  | Small (few MBs/GBs)      | Huge (TBs/PBs)                     |  |
| Operations | Insert, Update, Delete   | Read-heavy (Aggregation, Grouping) |  |
| Example    | ATM withdrawal           | Monthly sales report               |  |

### **#** Example:

- A shopping website (**OLTP**) records purchases in a database.
- A sales manager checks yearly sales trends using an OLAP system.



### 2. Facts

A fact is a measurable event stored in a data warehouse.

### 📌 Example:

For an **e-commerce store**, facts could be:

- Total Sales
- Number of Orders
- **Revenue Generated**

Facts are usually stored in **Fact Tables**.



## 3. Dimensions

A dimension provides context to facts. It describes who, what, where, and when.

### **P** Example:

For sales data, dimensions could be:

- **Customer** (Name, Age, Location)
- **Product** (Category, Price)
- **Time** (Year, Quarter, Month)

Dimensions are stored in **Dimension Tables** and linked to fact tables.



### 4. Star Schema

A **Star Schema** organizes data into:

- A central Fact Table (stores measurable data)
- Multiple Dimension Tables (descriptive details)



Example of Star Schema Diagram

#### Characteristics of a Star Schema

- ✓ Single-level dimension tables (no normalization).
- ✓ **Dimension tables connect only to the fact table** (not to each other).
- ✓ Faster query performance due to simple joins.
- **✓** Easy to maintain and expand.

### **Advantages of Star Schema**

- **V** Faster Query Performance Simple structure enables efficient indexing and aggregation.
- **Easier for Reporting & Analysis** Widely used in **BI tools** like Power BI, Tableau.
- **V** Supports OLAP Cubes − Star schema helps in creating multi-dimensional data cubes.



### **Disadvantages of Star Schema**

- X Data Redundancy Since dimensions are not normalized, some data gets repeated.
- X Not Ideal for Complex Relationships Cannot efficiently handle many-to-many relationships.
- X Limited Flexibility Adding new analysis fields might require schema redesign.

### Conclusion

- \* Star Schema is the most popular data warehouse model, used in OLAP and reporting systems.
- 📌 It consists of **one fact table** and **multiple dimension tables** forming a star-like structure.
- rovides fast querying, easy maintenance, and efficient OLAP cube design.
- # Ideal for: Business Intelligence (BI), Data Warehousing, and Decision Support Systems.



# 5. Snowflake Schema

A **Snowflake Schema** is a more structured version of the Star Schema.

### **P** Example:

Instead of storing a **Location** directly in the Customer table, we split it into:

- Customer → CustomerID, Name, LocationID
- $\bigvee$  Location  $\rightarrow$  LocationID, City, Country

#### Characteristics of a Snowflake Schema

- ✓ **Dimension tables are normalized** into multiple sub-tables.
- ✓ Minimizes redundancy by reducing duplicate data storage.
- ✓ More complex queries due to multiple joins.
- **V** Better for hierarchical data (e.g., Country → State → City).

### **Advantages of Snowflake Schema**

- Saves Disk Space Normalization reduces storage requirements.
- No Data Redundancy Each value is stored only once.
- Scalability Works well with large, complex datasets.

### Disadvantages of Snowflake Schema

- X Slower Query Performance More joins lead to longer execution times.
- **Complex to Maintain** Schema changes require updating multiple related tables.
- X Harder to Understand More complex relationships make querying difficult.



## 6. Star Schema vs. Snowflake Schema - Which is Better?

| Feature     | Star Schema        | Snowflake Schema    |  |
|-------------|--------------------|---------------------|--|
| Storage     | Takes more space   | Uses less space     |  |
| Query Speed | Faster             | Slower (More Joins) |  |
| Simplicity  | Easy to understand | More complex        |  |

### 📌 Example:

- Star Schema is better for fast queries (e.g., sales reports).
- Snowflake Schema is better for optimized storage.



# 7. Fact Table and Its Types

A Fact Table stores numerical data (sales, revenue, etc.).

| Types:                            |                                    |
|-----------------------------------|------------------------------------|
| ▼ Transaction Fact Table – Stores | business events (e.g., a purchase) |

Snapshot Fact Table – Stores periodic data (e.g., monthly balance)

Accumulating Fact Table – Tracks the status of a process (e.g., order lifecycle)

| 1  |   |
|----|---|
| 07 | þ |

# 8. Granularity

Granularity refers to the level of detail in a data warehouse, particularly in fact tables.

### **#** Example:

- **High Granularity** → Data is very detailed (e.g., per second sales).
- Low Granularity → Data is summarized (e.g., monthly sales).

Choosing the right granularity affects storage size and query speed.



### \*\*9. Data Virtualization

👉 Access data from multiple sources without actually moving or copying it.

#### Think of it like a TV remote!

Just like a TV remote lets you switch between different channels without moving to a different room, **data virtualization** allows users to access and query data from different databases without physically transferring it.

### • Example:

A company has data stored in:

- MySQL (customer data)
- PostgreSQL (sales data)
- Google Sheets (marketing data)

Instead of copying all the data into one database, **data virtualization** lets employees **query all sources at once** without moving the data.

Pros: No duplication, real-time accessCons: May be slower for big queries



### 10. Data Marts

👉 A small, focused version of a data warehouse for a specific department.

### Think of it like a small store inside a shopping mall!

A **data warehouse** is like a giant mall with everything. A **data mart** is like a small store inside that mall, serving a specific group of people.

#### Example:

A company has a large data warehouse, but different departments only need specific data:

Sales Team: Needs sales performance data

• @ Marketing Team: Needs customer engagement data

• **& Finance Team:** Needs revenue and expense data

Instead of each team searching through the entire data warehouse, they get their own **data mart** with just the relevant information.

**Pros:** Faster, easier to manage for teams

X Cons: Needs proper setup and maintenance

| Type How It's Built 🛠                                |  | Where It Gets Data<br>▲                      | Best For 🗸                                                   |
|------------------------------------------------------|--|----------------------------------------------|--------------------------------------------------------------|
| Dependent Built from a central data warehouse        |  | From the main data warehouse                 | Large organizations<br>that already have a<br>data warehouse |
| 2 Independent                                        |  | Directly from operational databases          | Smaller businesses or when a data warehouse doesn't exist    |
| ☐ Hybrid Data Combination of Dependent & Independent |  | From both data warehouses & external sources | Companies that need a mix of internal & external data        |



### 11. Data Lakes

**The Arrival of the A** 

### Think of it like a big lake!

Just like a lake holds water from different sources (rivers, rain, streams) without filtering, a **data lake** stores all types of data—structured (tables), semi-structured (JSON, XML), and unstructured (videos, images).

#### • Example:

An e-commerce company stores:

- Îm Transaction data (structured)
- E Customer emails (semi-structured)
- Product demo videos (unstructured)

A data lake keeps all this data as-is until it's needed for analysis.

Pros: Flexible, stores all data types

X Cons: Can become messy (a "data swamp") if not managed well

### 12. Relational OLAP

👉 Uses traditional relational databases (SQL) to store and analyze data.

### Think of it like a Library with an Index!

A library has books (data) stored in different sections (tables), and an **index** (SQL queries) helps find the information quickly.

#### How it works:

- Stores data in relational databases (e.g., MySQL, PostgreSQL).
- Uses complex SQL queries to analyze large datasets.
- Works well with large and dynamic data



### 13. Multi dimensional OLAP

👉 Uses pre-built cubes for fast analysis.

### Think of it like a Vending Machine!

Instead of searching for ingredients (raw data) and cooking, you get a ready-to-eat snack (pre-calculated data).

#### How it works:

- Stores data in a multidimensional cube instead of tables.
- Pre-calculates summaries for quick access.
- Best for fast reporting and interactive analysis.
- **Pros:** Super fast queries since data is pre-aggregated.
- **X** Cons: Takes up more storage space and is less flexible.

### 14. Data Cubes

A **data cube** is a multi-dimensional structure used for analyzing data efficiently, especially in **OLAP (Online Analytical Processing)**. It allows users to explore data from different perspectives, just like how we can look at a physical cube from different angles.

Now, let's break down the **key operations** used to analyze a data cube:

### 1. Slice (Filtering one dimension)

- ← Think of it as cutting a single slice from a cake.
  - It selects a single value from one dimension and shows the remaining data.
  - Example:
    - A data cube contains sales data with three dimensions: Region, Product, and Time.
    - If we take **only the sales data for "2024"** (fixing the "Time" dimension), we get a **slice** of the cube showing only "Region vs. Product" sales.

### 2. Dice (Filtering multiple dimensions)

- 👉 Like cutting a smaller block out of the cake.
  - It selects specific values from two or more dimensions.
  - Example:

- From the same cube, we want sales data for "2024" and only for "Mobile Phones" in "Asia".
- This creates a **smaller sub-cube** focusing on those conditions.

### 3. Drill Down (Going deeper into details)

### 👉 Like zooming in on a map.

- It increases the level of detail by moving from higher-level summaries to lower-level details.
- Example:
  - We have total sales per country in a region.
  - If we "drill down" into India, we now see sales per state instead of just the country.

### 4. Roll Up (Summarizing the data)

### 👉 Like zooming out on a map.

- It decreases the level of detail by aggregating data into higher-level summaries.
- Example:
  - Instead of sales per city, we roll it up to show total sales per country.
  - This is the reverse of **Drill Down**.

# 5. Pivot (Rotating the view)

- 👉 Like turning a Rubik's cube to see a different side.
  - It changes the way data is presented by swapping rows and columns.
  - Example:
    - Suppose our table shows Products in rows and Regions in columns.
    - If we pivot, it can now show Regions in rows and Products in columns, giving a
      different perspective.

### **Summary Table**

| Operation Action |                       | Example                       |
|------------------|-----------------------|-------------------------------|
| Slice            | Filters one dimension | Show sales data only for 2024 |

| Operation     | Action                      | Example                                                   |
|---------------|-----------------------------|-----------------------------------------------------------|
| Dice          | Filters multiple dimensions | Show sales only for "Mobile Phones" in "Asia" during 2024 |
| Drill<br>Down | Increases detail            | See sales per <b>state</b> instead of country             |
| Roll Up       | Summarizes                  | See sales per <b>region</b> instead of state              |
| Pivot         | Changes view                | Swap "Regions" and "Products" in a table                  |



### 15. Dimensional Data

Dimensional data is a way of organizing data to make it easier to analyze in a **data warehouse**. It focuses on how business users **query data** rather than how databases store it.

When data is structured for **reporting and analysis**, it is stored in two main types of tables:

- 1. Fact Tables (store business events & numbers)
- 2. Dimension Tables (store descriptive information)

# 16. Difference between table and cube data type

🔟 Table Data Type (Relational Data Model)

A **table** is a structured collection of rows and columns, like a spreadsheet. It follows the **relational database model** and is commonly used in databases like **PostgreSQL**, **MySQL**, and **SQL Server**.

- Key Characteristics of Tables:
- **Two-dimensional** (rows & columns).
- Stores transactional data in a normalized format.
- ✓ Uses SQL queries (JOIN, SELECT, WHERE, etc.).

Tables are **good for transactional systems (OLTP)** but **slow for complex analytics**, especially when dealing with large datasets.



# Cube Data Type (Multidimensional Model)

A **cube** is a **multidimensional data structure** used in OLAP for fast data analysis. Instead of rows & columns, data is stored in multiple **dimensions**.

- Key Characteristics of Cubes:
- Multi-dimensional (more than just rows & columns).
- Optimized for aggregated reporting and analytics.
- Supports OLAP operations (Slice, Dice, Drill Down, Roll Up, Pivot).
- Pre-aggregated data for fast querying.
- **Example of a Sales Cube (Multidimensional Data)**

A **Sales Cube** could have three dimensions:

- Time (Year, Month, Day)
- Product (iPhone, MacBook, iPad)
- Region (USA, India, Europe)

# Key Differences Between Table & Cube Data

| Feature                       | Table (Relational)          | Cube (Multidimensional)            |  |
|-------------------------------|-----------------------------|------------------------------------|--|
| Structure Rows & Columns (2D) |                             | Multiple Dimensions (3D+)          |  |
| Use Case                      | Storing transactional data  | Fast analytical queries            |  |
| Speed                         | Slower for complex queries  | Faster due to pre-aggregated data  |  |
| Operations                    | SQL (JOIN, WHERE, GROUP BY) | OLAP (Slice, Dice, Drill, Roll Up) |  |
| Optimization                  | For CRUD operations         | For Business Intelligence (BI)     |  |

- Use tables when working with transactional databases (OLTP) for storage and retrieval.
- Use **cubes** when performing **fast analytical gueries** on large datasets (OLAP).



## 17. Centipede Fact table

A **Centipede Fact Table** is a special type of fact table in a data warehouse that has **many foreign keys** pointing to multiple dimension tables. This structure makes it look like a centipede

🐛 because of its long list of foreign key columns acting like "legs."

# **X** Characteristics of a Centipede Fact Table

### 1. Many Dimension Tables 🟗

- A centipede fact table has a large number of dimension tables linked to it.
- Each dimension provides more details about the facts.

### 2. Wide Table (Many Foreign Keys) 📊

- The fact table has many foreign key columns, making it wide.
- Each row in the table represents a business event (e.g., a sale, transaction, or shipment).

### 3. Optimized for Analysis, Not Performance 🗵

 While centipede fact tables provide detailed information, they can be slower because of many joins needed for querying.



# 📌 Example: Centipede Fact Table in an E-commerce Business

Imagine an **E-commerce Sales Fact Table** with many dimension tables:

| Order<br>ID | Date Key | Customer<br>Key | Product<br>Key | Region<br>Key | Payment<br>Key | Shipment<br>Key | Sales<br>Amount | ( |
|-------------|----------|-----------------|----------------|---------------|----------------|-----------------|-----------------|---|
| 1001        | 20240301 | 501             | 101            | 301           | 701            | 801             | ₹5000           | : |
| 1002        | 20240302 | 502             | 102            | 302           | 702            | 802             | ₹3000           | : |

### **Linked Dimension Tables**

- Date Dimension (Date Key → Year, Month, Day)
- Customer Dimension (Customer Key → Name, Age, Location)
- **Product Dimension** (Product Key → Name, Category, Brand)
- **Region Dimension** (Region Key → Country, State, City)
- Payment Dimension (Payment Key → Payment Type, Bank Name)
- **Shipment Dimension** (Shipment Key → Courier, Delivery Time)

Because there are **so many foreign keys**, the fact table **looks like a centipede** with many "legs" (references to dimension tables).

# **★** When to Use a Centipede Fact Table?

- When you need highly detailed data for in-depth analytics.
- When your data warehouse supports many dimensions for better reporting.
- X Avoid if performance is a concern—consider denormalization to reduce joins.



### 18. Factless Fact Table

A Factless Fact Table is a fact table that does not have measurable numeric facts (like sales amount, revenue, or quantity). Instead, it records events or relationships between dimensions without any numerical metrics.

📌 Think of it as a fact table that captures "what happened" but without actual values.

## Why Use a Factless Fact Table?

- To track events or occurrences (e.g., student attendance, product promotions).
- Useful for analyzing trends and patterns without needing numerical data.

📌 Example: Event Tracking

- Captures **something that happened** but has no numerical measures.
- Example: **Student Attendance** in a university.

**Fact Table: Attendance Fact** 

| Date Key | Student Key | Course Key | Professor Key |
|----------|-------------|------------|---------------|
| 20240301 | 101         | 201        | 301           |
| 20240302 | 102         | 202        | 302           |

#### What this tells us?

- A student (101) attended a course (201) on a specific date (20240301).
- There's no measurable fact like "hours attended"—just the event itself.

- When to Use a Factless Fact Table?
- When tracking **events or actions** without measurable facts.
- When modeling **relationships** between dimensions (many-to-many).
- When analyzing patterns, trends, or coverage data.



### 19. Three-Tier Data warehouses



#### Three-Tier Data Warehouse Architecture

A **Three-Tier Data Warehouse** is a structured way of organizing a data warehouse, dividing it into three layers:

- Bottom Tier (Data Source Layer) Where data is collected
- Middle Tier (Processing Layer) Where data is transformed and stored
- **Top Tier (Presentation Layer)** Where users access the data

#### Think of it like a restaurant:

- **Kitchen (Bottom Tier)** → Raw ingredients (data) are stored.
- Chef (Middle Tier) → Prepares and organizes the food (transforms data).

Waiter & Menu (Top Tier) → Serves the final dishes (reports & dashboards).

### Bottom Tier: Data Source Layer (Raw Data Storage)

- This is where the data warehouse gets raw data from multiple sources.
- \*Example: A retail company collects data from sales, inventory, and customer transactions in various databases.



## Middle Tier: Processing Layer (ETL & Data Storage)

- This layer does:
- ETL (Extract, Transform, Load) → Cleans, formats, and loads data into the warehouse.
- Data Storage → Stores processed data in Star Schema or Snowflake Schema.
- OLAP Processing → Enables multidimensional data analysis (cubes, aggregations).

### 📌 Example:

- Sales data from different stores is cleaned and converted into fact and dimension tables.
- The data warehouse organizes the data for fast querying.



### Top Tier: Presentation & Reporting Layer

- This is where users query and analyze the data.
- Includes:
- BI Tools & Dashboards (Power BI, Tableau, Looker, etc.).
- SQL Query Interfaces (for data analysts).
- Reports & Visualizations (for business users).

### 📌 Example:

- A sales manager runs a dashboard report to see monthly revenue trends.
- A data analyst runs an **SQL query** to find the top-selling products.

# Summary Table: Three-Tier Data Warehouse

| Tier           | Purpose                             | Example Technologies                        |
|----------------|-------------------------------------|---------------------------------------------|
| Bottom<br>Tier | Collect & store raw data            | PostgreSQL, MySQL, CSV files                |
| Middle Tier    | Process & organize data (ETL, OLAP) | Apache Spark, Snowflake, Amazon<br>Redshift |
| Top Tier       | User access (reports, dashboards)   | Power BI, Tableau, Looker, SQL Queries      |



### 20. Junk dimension

A **Junk Dimension** is a dimension in a data warehouse that combines **low-cardinality** attributes (flags, indicators, or miscellaneous data) into a single table.

Think of it as a "dumping ground" for small, unrelated attributes that don't fit well in other dimensions.

# Why Do We Need a Junk Dimension?

- To reduce clutter in the fact table (avoid too many foreign keys).
- To improve performance by grouping unrelated attributes together.
- To reduce storage space by avoiding multiple small dimension tables.

### Without a Junk Dimension (Messy Fact Table)

| Order<br>ID | Product<br>Key | Customer<br>Key | Discount Applied? | Promo Code<br>Used? | Return<br>Status | Gift<br>Wrapped? |
|-------------|----------------|-----------------|-------------------|---------------------|------------------|------------------|
| 1001        | 101            | 501             | Yes               | BLACKFRIDAY         | No               | Yes              |
| 1002        | 102            | 502             | No                | -                   | Yes              | No               |

### X Problems:

- Too many small attributes in the fact table.
- Increases the number of **columns** and makes queries slower.
- Harder to manage flags and indicators.



### Mow Junk Dimension Solves This?

Instead of keeping all flags and indicators in the fact table, we **combine them into one Junk Dimension** table.

🔽 With a Junk Dimension (Clean Fact Table)

Junk Dimension Table ( Groups Unrelated Attributes Together)

| Junk Dimension<br>Key | Discount Applied? | Promo Code<br>Used? | Return<br>Status | Gift<br>Wrapped? |
|-----------------------|-------------------|---------------------|------------------|------------------|
| 1                     | Yes               | BLACKFRIDAY         | No               | Yes              |
| 2                     | No                | -                   | Yes              | No               |

### **Fact Table (Now Cleaner)**

| Order ID | Product Key | Customer Key | Junk Dimension Key |
|----------|-------------|--------------|--------------------|
| 1001     | 101         | 501          | 1                  |
| 1002     | 102         | 502          | 2                  |

### Benefits:

- Fewer columns in the fact table.
- Faster queries due to indexing on Junk Dimension Key.
- Easier to maintain and extend in the future.

### When to Use a Junk Dimension?

- When you have **small attributes** (flags, indicators, status fields) that don't belong to any specific dimension.
- When you want to **optimize storage** and **improve performance**.
- When attributes **don't change frequently** (if they do, consider a Slowly Changing Dimension instead).



# 21. ODS and its types

An **Operational Data Store (ODS)** is a type of database that **stores current and integrated data** from multiple sources for **real-time or near-real-time reporting**.

Think of it as a "mini-data warehouse" that provides fresh data for operational decision-making.

### Classification of ODS

| Classifications | Comment                                                                                                                                                           |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class 1         | <ul> <li>Refresh cycle: Real-time</li> <li>Degree of transformation: Low due to compressed timeframes</li> </ul>                                                  |
| Class 2         | <ul> <li>Refresh cycle: ½ - 1 hour store and forward mechanism</li> <li>Degree of transformation: Medium</li> </ul>                                               |
| Class 3         | <ul> <li>Refresh cycle: Daily. Traditional batch process</li> <li>Degree of transformation: High</li> </ul>                                                       |
| Class 4         | <ul> <li>Refresh cycle: Ad hoc, often involving preprocessed, value-added information from a data warehouse</li> <li>Degree of transformation: Highest</li> </ul> |

- Class I Updates of data from operational systems to ODS are synchronous.
- Class II Updates between operational environment & ODS occurs between 2-3 hour frame.
- Class III synchronization of updates occurs overnight.
- Class IV Updates into the ODS from the DW are unscheduled.



# 22. Major Parallel computing platforms

Cluster Computing – A group of connected computers that work together as a single system. They are located in the same place and connected through a high-speed network. Used for AI, simulations, and databases.

**Example:** Google's data centers, Hadoop clusters.

2 Grid Computing – A collection of computers spread across different locations, working together on a shared problem. Each computer can have different hardware and operating

systems. Used in scientific research and distributed computing.

**Example:** CERN's computing grid, Folding@home.

Massively Parallel Processing (MPP) – A system where many processors work independently on different parts of a large problem. Each processor has its own memory and communicates with others through a network. Used in big data analytics and data warehousing. Example: Snowflake, Amazon Redshift, Teradata.

High-Performance Computing (HPC) – Using supercomputers or large clusters to solve highly complex problems at extreme speeds. Requires specialized processors and high-speed networking. Used in scientific simulations, weather forecasting, and AI training.

**Example:** Summit Supercomputer, Fugaku, Cray systems.



# 23. Quantifiable Data Indicator

A **Quantifiable Data Indicator (QDI)** is a measurable value that helps track performance, trends, or progress over time. These indicators are based on **numerical data** and can be analyzed to make informed decisions.

### **Examples of Quantifiable Data Indicators**

### 📌 Business:

- Monthly sales revenue (\$50,000 in March).
- Customer retention rate (85% customers returned).
- Website traffic (100,000 visitors per month).

### **★** Healthcare:

- Patient recovery rate (92% success).
- Hospital bed occupancy rate (75% occupied).

#### **#** Education:

- Student pass percentage (90% passed).
- Average test scores (85 out of 100).

### Manufacturing:

- Defect rate in production (2% defective items).
- Number of units produced per hour (500 units/hour).

### QDI vs. Qualitative Data Indicator

- **QDI (Quantifiable)** → Numerical, measurable (e.g., "500 units sold").
- **Qualitative Indicator** → Descriptive, subjective (e.g., "Customer satisfaction is high").



### 24. Cross Tab

A **Cross Tab (Cross Tabulation)** is a method of organizing and analyzing data by comparing two or more variables in a table format. It helps identify patterns, trends, and relationships between data points.

### **Example of Cross Tab Analysis**

**Scenario:** A company surveys 1,000 customers about their preferred beverage (Tea or Coffee) based on age groups.

| Age Group | Prefer Tea | Prefer Coffee | Total |
|-----------|------------|---------------|-------|
| 18-25     | 200        | 300           | 500   |
| 26-40     | 150        | 250           | 400   |
| 41+       | 50         | 50            | 100   |

#### **Insights from this Cross Tab:**

- ✓ Young people (18-25) prefer Coffee more than Tea.
- $lue{V}$  Older people (41+) have an equal preference for both beverages.
- ▼ Total survey participants = 1,000.



## 25. Metadata in datawarehouse



- Metadata is data about data.
- Stored in a repository.
- Contains all corporate metadata resources: database catalogs and data dictionaries.

### 26. Conformed Dimensions



A Conformed Dimension is a dimension table that is shared across multiple fact tables in a data warehouse. It allows different fact tables to be analyzed using the same dimension data, ensuring **consistency** across reports and queries.

- **★** Key Characteristics:
- ✓ Shared across multiple fact tables
- **✓** Consistent across different business processes
- ✓ Enables accurate cross-domain reporting

### 📌 Example:

Imagine a retail company with **Sales** and **Returns** fact tables. Both need **Date** and **Customer** dimensions. Instead of creating separate tables, a single **conformed dimension** is used.

```
Sales_Fact ←—— Date_Dim
Returns_Fact ←—— Date_Dim
```

This ensures that the **Date dimension** is consistent for both sales and returns analysis.

- **Property** Benefits of Conformed Dimensions:
- $\mathbf{V}$  Eliminates redundancy by reusing dimensions.
- Ensures consistency across different fact tables.
- Supports enterprise-wide reporting.



## 26. Domain

A **Domain** in a data warehouse defines the **valid set of values** for a specific data field. It ensures **data consistency and quality** by restricting values to a predefined set.

- 📌 Example:
- Customer\_Gender domain: {Male, Female, Other}
- Order\_Status domain: {Pending, Shipped, Delivered, Canceled}
- eals A f domain prevents invalid data entry, ensuring uniformity across the data warehouse.



# 27. Hierarchy in Data Warehousing

A **Hierarchy** defines a **parent-child relationship** within a dimension, allowing **drill-down analysis** from a broad to a detailed level.

📌 Example of a Geographic Hierarchy:

```
Continent → Country → State → City → Store
```

A report can be analyzed at different levels:

✓ Global sales (Continent Level)

✓ Country-wise sales (Country Level)

✓ City-wise sales (City Level)



# 28. Role playing dimension

A role-playing dimension is when one dimension table is used multiple times in the same fact table, but for different roles.

**Example: Order Processing** 

A sales order might have:

**✓ Order Date** (When the order was placed)

Shipment Date (When the order was shipped)

**Delivery Date** (When the order reached the customer)

All these dates come from the **same "Date Dimension" table**, but they represent **different roles** in the fact table.

**Table Structure:** 

Fact Table: Order Fact

| Order_ID | Order_Date_ID | Shipment_Date_ID | Delivery_Date_ID | Total_Amount |
|----------|---------------|------------------|------------------|--------------|
| 101      | 20240201      | 20240203         | 20240205         | 500          |
| 102      | 20240202      | 20240204         | 20240206         | 700          |

Dimension Table: Date\_Dim

| Date_ID  | Full_Date   | Month | Year |
|----------|-------------|-------|------|
| 20240201 | 01-Feb-2024 | Feb   | 2024 |
| 20240203 | 03-Feb-2024 | Feb   | 2024 |

Why is this useful?

- Instead of creating separate tables like Order\_Date\_Dim and Shipment\_Date\_Dim, we
  reuse the same date table with different column names in the fact table.
- Helps maintain consistency and reduces redundancy.

# 29. Degenerate dimension

A degenerate dimension (DD) is a dimension that exists in the fact table but does NOT have a separate dimension table.

**Example: Order Transactions** 

Every order has a **unique order number**, but we **don't need a separate table for it**. Instead, it is stored **directly in the fact table**.

**Table Structure:** 

Fact Table: Order Fact

| Order_Number | Date_ID  | Customer_ID | Product_ID | Total_Amount |
|--------------|----------|-------------|------------|--------------|
| ORD1001      | 20240201 | 501         | 301        | 500          |
| ORD1002      | 20240202 | 502         | 302        | 700          |

### No separate Order\_Dim table!

- Why is this useful?
- Some values, like Order Number or Invoice Number, don't have additional attributes, so creating a separate table is unnecessary.
- Improves **query performance** because we avoid unnecessary joins.

### 30. Data Lake vs Data Warehouse

- Data Lake is ideal for storing large volumes of diverse data for future exploration.
- Data Warehouse is optimized for structured data analysis and business reporting.

### 31. In memory databases

 An in-memory database (IMDB) is a type of database that primarily relies on main memory (RAM) for data storage, rather than traditional disk-based storage.  This makes it extremely fast for data access and manipulation, which is ideal for applications requiring real-time performance.

### 32. Schematic Evolution

- When you store structured data (like in a Parquet file), the schema defines the structure: field names, types, and order. Over time, you might need to:
  - Add new fields
  - Remove old fields
  - Change data types
  - Rename fields
- Schema evolution allows these changes to happen safely, so older data can still be read and new data can be written without compatibility issues.

# 33. Dimensional Modelling

#### **Dimensional modelling**

#### 1. Fact Tables:

- Contain **measurable**, **quantitative data** (e.g., sales amount, quantity sold).
- Often very large.
- Include foreign keys to dimension tables.

#### 2. Dimension Tables:

- Contain **descriptive attributes** (e.g., customer name, product category).
- Help provide context to facts.
- Typically denormalized for performance.

#### 3. Star Schema:

- Central fact table surrounded by dimension tables.
- Simple and fast for querying.

#### 4. Snowflake Schema:

- Dimensions are normalized into multiple related tables.
- More complex but can save space.

# 34. Conceptual Data Model

A **conceptual model** is a high-level design that shows how different entities relate to each other. It does **not** include technical details like data types or keys.

#### **Example:**

Imagine you're designing a university database. A conceptual model would include:

- Entities: Student, Course, Professor
- Relationships: A student enrolls in a course, a professor teaches a course
- Think of it as a rough sketch or blueprint of the system before adding technical details.



# 35. Physical Data Model

A **physical model** is the **detailed** implementation of the database, including table structures, columns, and data types.

#### **Example:**

For a **Student** entity, the physical model may look like this in SQL:

```
CREATE TABLE Student (
    StudentID INT PRIMARY KEY,
    Name VARCHAR(100),
    Age INT,
    Email VARCHAR(255) UNIQUE
);
```

The physical model ensures the database is optimized for storage and performance.



# 36. Surrogate Key

A **surrogate key** is a unique, system-generated identifier (usually a number). It is **not** derived from real-world data.

#### **Example:**

- Instead of using email as the primary key, we use a StudentID (1, 2, 3...).
- If a student changes their email, it won't affect the database structure.

• It's useful for large databases where natural keys (like email or phone numbers) can change.

37. ERWIN (Data Modeling Tool)

ERWIN is a tool for designing databases visually using Entity-Relationship Diagrams (ERD).

# 38. Softwares Used for Data Modeling

There are several tools used for **designing databases visually**:

- ERWIN → Most popular tool for ER diagrams
- Microsoft Visio → Used for conceptual designs
- Lucidchart → Web-based modeling tool
- MySQL Workbench → Used for designing and managing MySQL databases

## 39. Data modelling types

Data modeling is classified into three levels:

- 1. **Conceptual Data Model** Focuses on *what* the system contains.
- 2. **Logical Data Model** Defines *how* data should be structured.
- 3. **Physical Data Model** Describes *how* data is stored in a specific database.---

### Conceptual Data Model

- High-level representation of business entities, attributes, and relationships.
- Created by business analysts and data architects.
- Independent of hardware, software, or database technologies.
- Helps stakeholders understand data at a business level.

#### **Example:**

- Entities: Customer and Product
- Attributes:

- Customer: Customer\_ID, Name, Email
- Product: Product\_ID, Name, Price
- Relationship: A customer purchases a product.

#### Characteristics:

- Business-oriented, not technical
- 🔽 No details about tables, columns, or keys
- Provides a common vocabulary for stakeholders

### Logical Data Model

- Defines the structure of data elements and relationships in detail.
- Still independent of the database management system (DBMS).
- Adds data attributes, data types, and normalization rules.

#### **Example:**

- Tables: Customer, Product, Sales
- Data Types:
  - Customer ID → Integer (Primary Key)
  - Name → Varchar(50)
  - Price → Decimal(10,2)
- Relationship:
  - Sales table connects Customer and Product.

#### **Characteristics:**

- More detailed than the conceptual model
- Includes data types and normalization rules
- ☑ Helps in refining business rules before database implementation

### Physical Data Model

- Database-specific representation of the logical data model.
- Defines tables, columns, constraints, indexes, triggers, etc.
- Developed for a specific DBMS (MySQL, PostgreSQL, SQL Server, etc.).

#### **Example:**

• Table: Customer

```
CREATE TABLE Customer (
    Customer_ID INT PRIMARY KEY,
    Name VARCHAR(50) NOT NULL,
    Email VARCHAR(100) UNIQUE
);
```

• Table: Sales

```
CREATE TABLE Sales (
    Sale_ID INT PRIMARY KEY,
    Customer_ID INT,
    Product_ID INT,
    Sale_Date DATE,
    FOREIGN KEY (Customer_ID) REFERENCES Customer(Customer_ID),
    FOREIGN KEY (Product_ID) REFERENCES Product(Product_ID)
);
```

#### **Characteristics:**

- Specific to a DBMS (includes SQL scripts)
- Defines indexes, constraints, and storage details
- Melps developers implement the actual database

# **Comparison Table**

| Feature         | Conceptual Model                       | Logical Model                        | Physical Model                    |
|-----------------|----------------------------------------|--------------------------------------|-----------------------------------|
| Purpose         | High-level business view               | Detailed structure and relationships | Implementation in a specific DBMS |
| Who Creates It? | Business Analysts,<br>Data Architects  | Data Architects,<br>Analysts         | DBAs, Developers                  |
| Focus           | Entities, Attributes,<br>Relationships | Data types,<br>Normalization, Keys   | Tables, Indexes,<br>Constraints   |
| Independence    | Independent of DBMS                    | Independent of DBMS                  | Specific to DBMS                  |