

ER1 - 1 HEURE - le 19/10/2017

Sans document ni calculatrice

N° étudiant : Prénom : Nom :

Le principe de notation associé à la partie QCM consiste à attribuer deux points à une réponse juste et à soustraire 0,5 point pour une réponse fausse. L'absence de réponse se traduit par zéro. Une seule réponse par question.

Les valeurs numériques des applications ont été arrondies pour faciliter les calculs.

Exercice 1 : Généralités (20 points)

L'énergie en France.

Tot	tal ² : 253,5 Mtep		3.5	Total: 150,3 Mtep	
a. Relier le mot au numé	ro de l'encadré dans leque	el il do	oit apparaître :		
1 🗆			Pertes		
2 🗆			Ressources		
3 🗆			Consommation		
b. L'encadré 1 correspon	nd à une :				
	☐ énergie primaire				
	☐ énergie finale				
	☐ énergie perdue				
c. L'encadré 2 correspon	d à une :				
	☐ énergie primaire				
	☐ énergie finale				
	☐ énergie perdue				
d. Que doit-on mettre da	ans l'encadré 4 ? :				
	☐ Centrales nucléaires				
	☐ Centrales thermiques	s class	iques		
	☐ Centrales hydraulique	es, éo	liennes, photovoltaïques		
e. Que représente la flèc	che de 7,6 Mtep de l'encac	dré 5 î)		
	les centrale éoliennes	s et pl	notovoltaïques		
	☐ les centrales au bioga	ΒZ			
	les centrales hydrauli	iques			
f. Quelle est la taille de la grosse flèche arrivant vers l'encadré 2 ? :					
	☐ 54,8 Mtep				
	☐ 105,1 Mtep				
	□ 82,2 Mtep				

ER1 - 1 HEURE - le 19/10/2017 Sans document ni calculatrice

g. Quelle est l'unité utilisée dans ce diagramme ? Expliquer ce qu'elle représente. Connaissez-vous d'autres unités équivalentes ?
h. Quelle part représente l'électricité dans l'énergie totale utilisée en France ? :
□ 50%
□ 75%
i. Quelle part représente le nucléaire dans la production d'électricité en France ? :
□ 33% □ 55%
□ 55% □ 75%
j. Quelle quantité d'électricité a été consommée en France en 2016 ? :
□ 531 MWh
□ 531 GWh
□ 531 TWh
Exercice 2 : Installation photovoltaïque (25 points)
Une installation photovoltaïque est constituée de 16 modules photovoltaïques, d'un sectionneur et d'un onduleur.
a. L'onduleur permet :
de convertir le signal triphasé en sortie de l'installation en un signal de tension plus élevée pour
être ensuite envoyé sur les lignes hautes tensions du réseau électrique ☐ de convertir le signal continu en sortie de l'installation en un signal alternatif pour être ensuite
envoyé sur les lignes hautes tensions du réseau électrique ou consommé localement
de convertir le signal continu en sortie de l'installation en un signal continu dont la tension est
adaptée aux batteries de stockage
b. Quel est le rôle du sectionneur ?
Les caractéristiques électriques des modules photovoltaïques utilisés sont détaillées en page 3.
c. Tracer les caractéristiques courant-tension et puissance-tension de ce module photovoltaïque et indiquer les points
importants.

SUNPO	WFR		DI	MENSIONS	
CARACTÉRIST		RIQUES	MM (IN)	4X 399 [15.70) 2X
Valeurs dans des conditions de test standard : ensol Puíssance nominale (+5/-0 %)					
Rendement (cellule)	η	22,9 %		\leftarrow	\dashv
Tension à puissance maximale	V _{mpp}	54,7 V			⊸
Courant à puissance maximale	I _{mpp}	6,09 A		$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$	1046 [41.18]
Tension en circuit ouvert	V _{oc}	65,3 V			[41.10]
Courant de court-circuit	I _{sc}	6,46 A			
Tension maximale du système	IEC	1 000 V			⊸
Coefficients de température	Puissance (P)	- 0,38 %/K			
	Tension (V _{oc})	- 176,6 mV/K		1559	
	Courant (I _{sc})	3,5 mA/K	T-	[61.39]	
	22,9% 20,4% 15%				
e. Lorsque la température	augmente, le co augmente est constant diminue	ourant :			
. Lorsque la température :	augmente, la ter augmente est constante diminue				
g. Si la température de fon orsqu'il est éclairé par un □ □			ique est de 55°C, la	puissance maximale qu'il _l	pourrait délivrer
n. La tension nominale à l'	entrée de l'ondu 900 V 55 V 70 V	lleur est :			
. Le courant nominal à l'er □ □	ntrée de l'ondule 100 A 6,5 A 3 A	eur est :			
. La puissance totale de l'i	nstallation photo 333 W 5 328 W 6 090 W	ovoltaïque est :			
		de 20%. Supposons o	qu'il y ait 8 000 heu	es dans une année, la prod	duction attendue
our cette installation sera					
	8,5 MWh 42,6 MWh 533 kWh				

Exercice 3 : Électricité éolienne (20 points)

Une éolienne est associée à un régulateur de charge et à une batterie de stockage électrochimique afin d'alimenter quelques prises électriques en courant continu d'une maison. L'éolienne choisie a les caractéristiques suivantes :

1 000 W Puissance nominale 1 300 W Puissance maximale 24 V Tension nominale 350 tr/min Vitesse de rotation nominale 2 m/s Vitesse de démarrage 35 m/s Vitesse de mise en sécurité

Mécanique + Électronique Type de freinage 3 aérodynamiques Nombre de pales

2,88 m Diamètre du rotor Fibre de verre Matériau des pâles

Aimants permanents et Type de génératrice saturation magnétique

47 kg Poids de génératrice 680 × 410 ×330 mm³ Dimension de génératrice

1 an Garantie produit

a. Les caractéristiques nominales de l'éolienne sont données pour une vitesse de vent constante à 10 m/s. La puissance du vent disponible est alors de 4 kW. Quelle formule est utilisée pour faire ce calcul, sachant que ρ est la densité de l'air (1,23 kg/m³) et D le diamètre du rotor d'une éolienne (en m). ?

$\frac{1}{2}\rho\pi\left(\frac{D}{2}\right)^2v^3$
$\frac{1}{2}\rho\pi\left(\frac{D}{2}\right)^3v^2$
$\frac{16}{27} \times \frac{1}{2} \rho \pi \left(\frac{D}{2}\right)^2 v^3$

	le rapport	entre	l'énergie	électrique	effectivement	produite	et	l'énergie	qu'aurait	produit
l'éol	ienne en fon	ctionne	ement noi	minal, pend	lant la même dι	ırée				
	le coefficie	nt donr	né par la l	imite de Be	† 7					

le rapport entre la puissance électrique produite et la puissance du vent disponible en amont de l'éolienne, pour une vitesse de vent donnée

				_		
r	Quelle est la valeur	nominale du	coefficient de	nerformance	de cette éd	olienne ?

32% 25% \Box 4%

d. D'après la limite de Betz, le coefficient de performance maximum d'une éolienne est :

100% 59% 5%

e. Imaginons que le vent souffle en continu à une vitesse de 10 m/s de 20h à 6h et ne souffle pas le reste du temps. Quelle est l'énergie produite par l'éolienne par jour :

> 10 kWh 14 kWh 24 kWh

f. Le facteur de charge de cette installation est :

42% 58% 100%

g. Les rendements du régulateur de charge et de la batterie sont 94% et 80% respectivement. Le rendement du système (régulateur + batterie) est de :

98% 85% 75%

h. L'énergie stockée dans la	batterie par jour est : 7,5 kWh 10 kWh 18 kWh
i. Imaginons que l'on souhait	te stocker 6 kWh par jour. Quelle capacité de batterie pourrait être utilisée ? 200 Ah 250 Ah 300 Ah
à 2700 kWh par an, soit env	e par foyer, en France, pour des usages hors chauffage (chauffage, cuisson et eau chaude) s'élève riron 7,5 kWh/jour (Source ADEME 2015). Si la batterie stocke 6 kWh par jour, quelle part de la s ménages est couverte par ce type d'installation éolienne ? 50% 80% 125%
Exercice 4 : Divers (10 point	<u>s)</u>
a. La piézoélectricité produit	de l'électricité grâce à : une contrainte mécanique une différence de température un turbo-alternateur
b. Une céramique piézoéle	ectrique peut être modélisée par une source de courant $\left(\frac{Ae}{L}\frac{d(\delta L)}{dt}\right)$.* en parallèle avec un
condensateur C ₀ . L'unité de	e est : A/m² C/m² sans unité
c. Le signal électrique génére	é par une céramique piézoélectrique sous contraintes est : continu alternatif triphasé
d. La thermoélectricité production	uit de l'électricité grâce à : une contrainte mécanique une différence de température un turbo-alternateur
e. L'effet Peltier se produit la	ors de l'application d'une tension aux bornes : d'une jonction entre deux semi-conducteurs (thermiquement conducteurs) d'une jonction entre deux isolants électriques (thermiquement conducteurs) d'une jonction entre deux semi-conducteurs (thermiquement peu conducteurs)
	é par un dispositif thermoélectrique dont les deux extrémités sont à températures constantes
est :	continu alternatif triphasé

^{*} A : surface du matériau piézoélectrique δL/L : élongation du matériau piézoélectrique