Multi-agent reinforcement learning for cooperative lane changing of connected and autonomous vehicles in mixed traffic

Authored by: Wei Zhou, Dong Chen, Jun Yan, Zhaojian Li, Huilin Yin and

Wanchen Ge

Presented by: Kelvin Mock

March 2024

Agenda

1. Background

- Motivation
- Problem Statement
- Research Questions

2. Overview

- High Level Algorithm
- Related Works

3. Methodologies

Preliminaries of RL MARL Problem for Lane-Changing Comparable Benchmarking Models

4. Experiments

Use of HDV Models
Technical Setup
Results & Analysis
Simulation Outcome

5. Conclusion

Background

How significant is this research? How is the problem formulated?

Motivation

Fatigue (e.g., long-haul driving)

Traffic Congestion

Lane Changing

Figure 1 Illustration of the considered lane-changing scenario

Problem Statement

Everyday Challenge as a driver

- Lane Assist / Self-Driving (taking over your wheel) → Accurate? Safe?
- Mixed-Traffic Highway Environment

Challenges in the Research Domain

- Most studies focuses on single agent settings.
- Different driving behaviors
 - Another Autonomous Vehicle (AV)
 - ☐ Human Aggressive vs Defensive

Research Questions

MARL Design

- How do the agents interact with each other and human-driven vehicles?
- How is the lane-changing problem formulated as a MARL task?
- How could this method be extended to real-world applications?

Algorithms

- How is an actor-critic mechanism applied in this problem?
- How does the parameter-sharing scheme improve MARL performance?
- How does the algorithm handle partial observability?

Overview

What is the goal of this research?

How are previous works supporting this research?

High Level Perspective of the Algorithm

- Multi-Agent Advantage Actor-Critic (MA2C) method
- Local Reward Design safety, efficiency, passenger's comfort
- Parameter Sharing Scheme
- Mechanism:
- Decentralized Cooperative in execution
- 2. Centralized Shared Critic in training
- With 3 Traffic Densities + 2 Driver's Behaviors

Related Works

Non-Data-Driven Methods

- Aim: To construct pre-defined a ruleset of virtual trajectory references:
- × Hard-coded rules are too naïve
 - Inter-vehicle traffic gaps
 - □ Time instances to perform maneuvers ⊗ ∑
- × Dynamic models is a highly complicated algorithm
 - Optimization-based
 - ☐ E.g., Quadratic Programming specific traffic constraints
- × Unable to account for stochastic driving behaviors on the road

Related Works

Data-Driven Methods

- Model-Free RL
- Deep Deterministic Policy Gradient
- Safe RL framework regret theory
- Temporal & Spatial Attention
- x Single-agent → corporation issue
- Priority-based Safety Supervisor
 - Hard-coded MARL Constraints
 - ↓ gradient estimation error

Figure 2: Vehicle system structure using DDPG [1]

DDPG

- Intelligent Driver's Model (IDM)
- Longitudinal Controller
- Acceleration
- Leader-following mechanism

Related Works

A MARL-based Implementation

- Graphic CNN [2]
- Deep Q Network (DDQN)
- √3-lane freeway with 2 off-ramps

Figure 3: Graphic representation of Connected AV (CAV) network

[2] Jiqian Dong, Sikai Chen, Paul (Young Joun) Ha, Yujie Li, Samuel Labi (2020).

Applying to this Paper

- Multi-Objective Reward Function
- Parameter-Sharing Scheme
- Partial Observation
- Markov Decision Process (MDP)

```
Step: 1
Action: left
Next State: (0, 0)
Observation: (2, 1)
Reward: -1
A . . . .
. X . . .
. . X . .
. . . . .
```


Methodologies

How do we formulate the problem to achieve our goal?

Preliminaries of Reinforcement Learning

- Goal: Maximize Rewards with Partial Observability
- γ: Discount Factor ranging (0,1]
- T: Maximum number of steps per episode
- s_t : State at time t (= n-dimensional real-value **vector**)
- a_t : Action at time t (= m-dimensional vector, m = number of agents)
- r: Scalar Reward at time t

$$R_t = \sum_{k=0}^{T} \gamma^k r_{t+k}$$

Policy: a probability distribution over the Action Space (in a state)

Preliminaries of Reinforcement Learning

Model-Free RL methods

- Goal: Find an Optimal Q-function
- Action-Value function: $Q^{\pi}(s, a) = E[R_t \mid s = s_t, a]$
 - □ Choose an action and state → Evaluate an expected return
- State-Value function: $V^{\pi}(s_t) = E_{\pi}[R_t \mid s = s_t]$
 - □ Evaluate again an expected return w.r.t. policy & state
- Represented in a Neural Network $\pi_{\theta}(a_t|s_t)$
- Actor-Critic: diminishing gradient $\theta \leftarrow \theta + E_{\pi\theta} [(\nabla_{\theta} \log \pi \theta (a_t | s_t)) A_t]$
- Advantage function: to reduce sample variance
- Update State-Value function: minimize loss function

Formulating the MARL Problem of Lane-Changing

Goal: Construct a decentralized approach with multi-agents

Discontinuous Evaluation

- State Space: $O_i: N_{N_i} \times F$ (in a matrix form, for agent i with F features)
 - □ Longitudinal Position (i.e., Distance between the vehicle ahead)
 - Lateral Speed
- Policy: $\pi_i: O_i \times S_i \rightarrow [0,1]$
- Action Space: {speed up, slow down, cruising, turn left, turn right}
- Reward Function:
 - ☐ Metrics: Safety, Headway evaluation, Speed Evaluation, Comfort
- Multi-Objective Reward: $r_{i,t} = w_s r_s + w_d r_d + \cdots$

Formulating the MARL Problem of Lane-Changing

Assumption: Weighted Total Reward

• Safety =
$$\begin{cases} 0 = safe \\ 1 = unsafe \end{cases}$$

- Headway Evaluation = $\log \left(\frac{d_{headway}}{v_t t_d} \right)$
 - ☐ Thresholds: Velocity & Time
- Speed Evaluation = $\min\{\frac{v_t v_{min}}{v_{max} v_{min}}, 1\}$
 - Highway Situation: High Speed the better
- **Driving Comfort** = $r_a + r_{lc}$ (Penalty Terms)

$$ho$$
 $r_a = \begin{cases} -1 \\ 0 \end{cases}$ = acceleration; $r_{lc} = \begin{cases} -1 = change\ lane \\ 0 = keep\ in\ lane \end{cases}$

Formulating the MARL Problem of Lane-Changing

- Actor-Critic Network
 - Maximize global reward → Scalability
 - Local reward → Credit Assignment

Figures 4 & 5: The Architecture and the Pseudocode of the network

```
Algorithm 1 MARL for AVs
Parameter: \gamma, \eta, p, T.
Output: \theta.
  1: Initialize o_0, t \leftarrow 0.
 2: repeat
         for i \in V do
              Observe o_{i,t}:
              Update a_{i,t} \sim \pi_{\theta_{i,t}};
         end for
         Update t = t + 1;
         if DONE then
              for i \in V do
                   Update \theta_i \leftarrow \theta_i + \eta \nabla_{\theta_i} J(\theta_i);
10:
              end for
11:
         end if
12:
         if t = T then
13:
              Initialize o_0, t \leftarrow 0;
14:
         end if
16: until Stop condition is reached
```


Comparable Benchmarking Models

	Multi-Agent Deep Q-Network	Multi-Agent Actor- Critic using Kronecker Factored Trust Region	Multi-Agent Proximal Optimal Optimization	MA2C (Ours)
Туре	Off-policyValue-Based	On-policyActor-CriticTrust Region Optimization	On-policyActor-CriticProximal Policy Optimization	On-PolicyActor-CriticMulti-Agent
Strength	 Sample Efficient Discrete Actions 	 Stable Learning Efficient Updates 	RobustBalances:(1) Stability(2) Exploration	 Local Reward Param Sharing Scalable Co-operable
Weakness	High varianceUnstable forMulti-agent tasks	X Less sample efficient	X Slow (converge)	X Less sample efficient

Experiments

How does the series of concepts come into play? Are those concepts proven valid and effective?

Use of HDV Models

- HDV = Human-Driven Vehicle Model
- Follows an Intelligent Driver Model deterministic, continuous in time
- Car-following Model
 - Position
 - Speed & Acceleration
 - Distance between the vehicle ahead
 - Driving Habits
- Acceleration Problem: Minimize Overall Braking Induced by Lane Change

Experiment Setup

OpenAl Gymnasium-based Simulation [3]

- Highway Road Length = 520 meters
- Randomly Spawn Vehicles on the Highway
 - □ Different Initial Speeds: 25 30 m/s (i.e., 56 mph 67 mph)
- Vehicle Control Sampling Frequency (default 5Hz, ~ 0.2 seconds)

Experiment Setup

Training

	Training Parameters	
Iterations	1 million steps / epochs	
Random Seeds	x2 Random Seeds (Sharing the same seed among agents)	
Discount Factor γ	0.99	
Learning Rate η	5×10^{-4}	
Weights	Safety = 200 Heading Distance = 4 Speed = 1	

Evaluation

3 Traffic Density Modes

Traffic density modes	AVs	HDVs	Explanation
1	1-3	1-3	low level
2	2-4	2-4	middle level
3	4-6	4-6	high level

Computational Resources

- macOS server
- 2.7 GHz Intel Core I5 processor
- 8 GB Memory

Local Reward designs outperforms
 Global Reward designs

Figure 6: Performance comparisons between local and global reward designs

- Variance
- Credit Assignment issues
- That's why we need decentralized execution

Sharing an Actor-Critic network is better than separating

Figure 7: Performance comparisons between with and without actor-critic network sharing

- Higher Rewards
- Lower Variance
- Separating the network takes longer time to converge
- That's why we need a centralized network

Verified Effectiveness via Driving Comfort

- ✓ Low Variance
- ✓ Smoother (avg. deviation ~0.455 m/s²)
- ✓ Scalable & Stable (regardless of HDV)

2
0
AV(driving comfort)
average deviation=0.455
AV
average deviation=0.582

10
20
30
40
50
Time steps

Figures 8 & 9: Performance comparisons of acceleration; Performance comparisons on different politeness coefficients p

- Multi-Agent Deep-Q-Network (MADQN)
- Multi-Agent Actor-Critic using Kronecker-Factored Trust Region (MAACKTR)
- Multi-Agent Proximal Policy Optimization (MAPPO)
- MA2C Our Approach

Method	Density 1	Density 2	Density 3
MADQN	47.451	51.568	48.509
	(± 27.948)	(± 32.943)	(± 24.078)
MA2C	58.000	44.744	32.579
	(± 9.308)	(± 10.895)	(± 8.160)
MAACKTR	8.812	3.759	4.892
	(± 6.217)	(± 10.858)	(± 10.986)
MAPPO	31.988	19.300	5.073
	(± 6.567)	(± 16.097)	(± 19.762)

Figures 10: Mean episode reward in different traffic flow scenario

Simulation Outcome

(c) lane change completed

Figures 11: Lane change in simulation environnent

Cooperative Reasonably

- Slow down to make space
- Speed up while merging
- Picks up speed after merging

Figures 12: Speeds of the AVs

Conclusion

- Developed an on-policy RL framework in a mixed-traffic environment
- Extended Actor-Critic into Multi-Agent settings
- Proven Efficiency of a local reward design + parameter sharing
- Compared with a compromising set of benchmarking models
- Compared with a convincing set of metrics
 - Driving Efficiency
 - Driving Comfort
 - Safety ensuring no collisions
- The proposed MA2C method outperforms!!!
- Extension: Our Project 👺

References

- Wei Zhou, Dong Chen, Jun Yan, Zhaojian Li, Huilin Yin and Wanchen Ge (2022). Multi-agent reinforcement learning for cooperative lane changing of connected and autonomous vehicles in mixed traffic. Zhou et al. Autonomous Intelligent Systems (2:5). Available at: https://link.springer.com/article/10.1007/s43684-022-00023-5.
- Pin Wang, Hanhan Li, Ching-Yao Chan (2019). Continuous Control for Automated Lane Change Behavior Based on Deep Deterministic Policy Gradient Algorithm. 30th IEEE Intelligent Vehicles Symposium (IV).
- Partially Observable Markov Decision Process (POMDP) in AI (2024).
 Geeksforgeeks. Available at: https://www.geeksforgeeks.org/partially-observable-markov-decision-process-pomdp-in-ai/.

References

- Jack Sackman (n.d.). 10 Tips For Avoiding Driver Fatigue. Available at https://auto.howstuffworks.com/10-tips-for-avoiding-driver-fatigue.htm.
- Consulting.ca (2018). CAA recommends eight ways to reduce traffic congestion in Canada. Available at https://www.consulting.ca/news/128/caa-recommends-eight-ways-to-reduce-traffic-congestion-in-canada.
- Leurent, Edouard (2018). An Environment for Autonomous Driving Decision-Making. GitHub. Available at https://github.com/Farama-Foundation/HighwayEnv.

Thank You

Any Questions?

