Impact Analysis of Crush Box

Crash Box

- CRASH box is one of the most important part for a safe passenger vehicle.
- The main function of crash box is to absorb the impact load .
- Since all the impact load is absorbed by crash box. Less force is transferred to the occupants.

Crash Box

- Crash Box is Tube shaped object, which is located near bumper and chassis.
- Crash box in automobiles helps to reduce impact energy during the collisions.
- During impact, the shock energy is converted into strain energy by crumpling of the crash box.
- Crash box plays very important role for safety of the vehicle and the reduction of repair cost when the vehicle meet the low speed collisions.

Design of crash box

- The crash box are designed in such a way that it does not bend during collision.
- Instead the crash box should crumple.
- If the crash box bends, the it absorbs lesser energy and the shock load will be transferred to other parts and the occupant.

▲ Various Crush Box Shapes and Practice Models

Experimental Set-Up for Crush Analysis

Thickness = 1mm

Material details

name	Aluminum
Density	2900 kg/m³
	2.9 e ⁻⁶ kg/mm ³
Young modulus	69000 Mpa / N-mm ⁻²
Poisson ratio	0.29

Non-Linear Property of Aluminium

0
27
0.05
0.07
0.1
0.15

Assembly And Meshing

Interaction manager

- Self contact is allowed with friction coefficient 0.2.
- Walls constrained as rigid body.

Crumpling Of Square Profile Crush Box

Octagon Profile

Crumpling of Octagon Profile Crush Box

Hexagon Profile

Crumpling of Hexagon Profile Crush Box

Comparison of change in Internal energy of the Crush Box with respect to time for Different Profiles

Comparison of change in strain energy of the Crush Box with respect to time for Different Profiles

Extra slides: Steps taken For FEM Analysis of Crush Box

Rigid Plate

Boundary conditions

- · Bottom walls is fixed
- Top wall is provided displacement of 75 mm.

0	0
0.07	1

# Edit Bour	ndary Condition	×
Name: BC-	2	
Type: Disp	placement/Rotation	
Step: Step	o-1 (Dynamic, Explicit)	
Region: Set-	9 🖟	
CSYS: (G1c	bal) 🔓 🙏	
Distribution:	Uniform	f(x)
☐ U1:		
☐ U2:		
☑ U3:	-75	
UR1:		radians
UR2;		radians
UR3:		radians
Amplitude:	Amp-1	P
	isplacement boundary co e reapplied in subsequen	
ОК	Cance	

X # Edit Boundary Condition Name: BC-1 Symmetry/Antisymmetry/Encastre Type: Step: Initial Region: Set-8 CSYS: (Global) 🗎 🙏 XSYMM (U1 = UR2 = UR3 = 0) YSYMM (U2 = UR1 = UR3 = 0) \bigcirc ZSYMM (U3 = UR1 = UR2 = 0) XASYMM (U2 = U3 = UR1 = 0; Abaqus/Standard only) YASYMM (U1 = U3 = UR2 = 0; Abaqus/Standard only) ZASYMM (U1 = U2 = UR3 = 0; Abaqus/Standard only) O PINNED (U1 = U2 = U3 = 0) ENCASTRE (U1 = U2 = U3 = UR1 = UR2 = UR3 = 0) OK Cancel

$$g = 9.8 \text{ m/s}^2$$

= 9810 mm/s²

$$V = 1213 \text{ mm/s}$$

Time
$$t = d/v = 75/1213$$

$$t = 0.062 s$$

$$= 0.07 s$$

V= impact velocity

g = acceleration due to gravity

h = height /

