A Major Project Final Presentation on

"Digital Voting System using Biometrics"

Presented by:

Paras Shrestha	PAS076BEI021
Sohan Pokharel	PAS076BEI041
Sulav Gaire	PAS076BEI045
Suresh Thapa Magar	PAS076BEI047

Outline

- Introduction
- Problem Statement
- Objectives
- Literature Review
- Methodology
- Epilogue
- Appendix

Introduction

- Nepal's current voting system is paper-based and has remained largely unchanged since 1959.
- The manual process of paper-based voting is time-consuming, prone to manipulation, and involves significant human labor.
- The lack of a digital voting system leaves room for rigging, vandalism of voting booths, alteration of vote counting, and manipulation during transportation.
- The use of traditional ballot paper-based voting is outdated, inefficient, and costly in terms of time, money, and manpower.
- The proposed digital voting system using biometrics aims to address these challenges by introducing a user-friendly and efficient method for elections, particularly in rural areas.

Problem Statement

- The traditional ballot paper-based voting system in Nepal is inefficient, time-consuming, and prone to human errors.
- Voting booths can be compromised through bribery or other means, compromising the integrity of the election.
- Transportation and counting of votes can be tampered with, leading to potential manipulation of the election results.

Objectives

- To develop a voting system with two factor authentication using biometrics recognition.
- To develop a server system which will efficiently integrate all the components and have functionality of voter and candidate registration.

Literature Review

S.N	Research Paper	Authors	Findings
1.	Mobile voting using Global System for Mobile Communication (GSM) technology and authentication using fingerprinting biometrics and wireless networks	Pallav, S.Dhanalakshmi, S.Aiswarya, S.	Integration of electronic voting with mobile infrastructure enhances voter authentication using fingerprinting technology and maintains voter privacy.
2.	Analysis of a Plurality Voting-based Combination of Classifiers	Mu, X.Watta, P.Hassoun, M.H.	Voting strategy utilizing face recognition achieves high detection and identification rates with low false acceptance rates.
3.	Fingerprints patterns in population - a forensic study	Sharma, D. (Dr. K. Sharma)	Fingerprints are considered the best method for human identification.

Literature Review

S.N	Research Paper	Authors	Findings
4.	Scalable Solutions: Implementing Face Recognition and Fingerprint Voting Systems for Large-Scale Elections	Thompson, S.	Biometric voting systems utilizing face recognition and fingerprint technology require scalable infrastructure for seamless operation during nationwide or high-volume elections.
5.	Advancements in Biometric Voting: Face Recognition and Fingerprint Technology	Johnson, E.	Recent advancements in biometric voting systems, particularly in face recognition and fingerprint technology, improve the voting process.

1) System Block Diagram

- 2) Fingerprint recognition pipeline
 - a) Fingerprint Enrollment

- 2) Fingerprint recognition pipeline
 - a) Fingerprint Matching

2) Face recognition pipeline

Registration Process

3) Voting Process

- After user is verified they will cast votes in the voting machine.
- For this project votes will be entered through buttons available in the system.
- The voting count will be update for different candidates.
- Flags will be update in voter's database to check whether they have voted for particular candidate or not.

a) Registration

a) Voting

- Django Server Backbone: Controls data flow, ensures integrity, and implements security measures.
- Django REST Framework: Enables seamless front-end and back-end communication via RESTful APIs.
- Token-Based Authentication: Uses JWT for secure user authentication and access control.
- JSON Data Formatting: Organizes biometric data efficiently and ensures compatibility across platforms.
- Security Measures: Implements CORS to control backend resource access and mitigate security risks.
- Session and Token Management: Manages user sessions and token expiration for secure access.
- Efficient Data Exchange: Utilizes JSON for fast and secure communication between server and client.
- Reliability and Scalability: Integrates Django tools for reliable and scalable system operation.

Epilogue

Output:

- The project delivers a digital voting system with two-factor authentication (facial and fingerprint recognition).
- Users register biometric data, while the admin registers candidates.
- During voting, users authenticate via biometrics before casting their votes.
- Admin can publish overall vote count for each candidate.

Discussion:

- Originally planned as a fully equipped voting box, budget constraints led to software-focused adjustments.
- Components like ESP32 Camera were replaced with laptop webcams, and physical buttons with a web application interface.
- Despite last-minute changes, core functionality remained intact, achieving project goals.

Epilogue

Future Enhancements:

- The system allows for future enhancements, including full conversion to a software-based voting system accessible from any device.
- Integration of blockchain technology can enhance security and credibility.
- Dual-factor authentication can be adjusted based on availability, offering flexibility in authentication methods.
- Options for physical voting box implementation cater to rural areas with limited internet access.

Conclusion:

- The implemented digital voting system advances voting security through two-factor authentication.
- It aims to democratize voting by considering remote voting options and enhancing accessibility.
- Despite initial challenges, the system achieves its core objectives and presents opportunities for further improvement and modernization in Nepal's electoral procedures.

Appendix

Appendix

Appendix

THANK YOU!