# A QCNN for Quantum State Preparation Carnegie Vacation Scholarship

David Amorim

Week 5 (29/07/2024 - 02/08/2024)

## Table of Contents

Preliminaries

2 Improving the Loss Function

Next Steps

David Amorim QCNN State Preparation 05/08/2024 2 / 14

#### Aims for the Week

The following aims were set at the last meeting (29/07/2024):

#### Improve Loss Function

Work on an improved version of WILL. Incorporate some phase extraction metrics (e.g.  $\chi$ ,  $\epsilon$ ) into the loss function.

#### Investigate Phase Extraction

Study the relationship between mismatch and the extracted phase, i.e. study the operator  $\tilde{Q}^{\dagger}(\hat{I}\otimes\hat{R})\tilde{Q}.$ 

#### Mitigate Barren Plateaus

Work on strategies to mitigate barren plateaus, e.g. implement layer-by-layer training.

David Amorim QCNN State Preparation 05/08/2024 3 / 14

THIS WEEK INCLUDE EXAMPLES WITH HIGH m !! KEEP WORKING ON CHIL!! MAYBE RENAME TO QRQ??v DOES NOT WORK !!! I I I I

4 / 14

## Table of Contents

Preliminaries

2 Improving the Loss Function

Next Steps

David Amorim QCNN State Preparation 05/08/2024 5/14

#### WILL Revisited

 As discussed at the meeting on 29/07, the definition of WILL (weighted L<sub>p</sub> loss) was amended to:

$$\mathsf{WILL}_{\mathsf{p},\mathsf{q}} = \left(\sum_{k} \left| x_k - y_k \right|^p + |\mathbf{x}_k| \left| [k]_m - \Psi([k]_n) \right|^q \right)^{1/p}, \quad (1)$$

where the changes to the previous definition are highlighted

• Testing this for different  $\Psi$  (with L=6, m=3 and 600 epochs) yielded the following optimal values for p, q:

| $\Psi(f)$    | p    | q   |
|--------------|------|-----|
| $\sim f$     | 0.25 | 0.5 |
| $\sim f^2$   | 1    | 1.5 |
| $\Psi_{H23}$ | 0.75 | 2   |

Table 1: Optimal identified p, q values for WILL



David Amorim QCNN State Preparation 05/08/2024 6 / 14

## Comparing SAM, WIM, and WILL

|            | SAM    | WIM    | WILL   |
|------------|--------|--------|--------|
| $\mu$      | 3.4e-2 | 6.0e-2 | 4.5e-1 |
| $\sigma$   | 1.4e-1 | 1.1e-1 | 4.7e-1 |
| $\epsilon$ | 1.9e-2 | 9.2e-2 | 2.6e-1 |
| $\chi$     | 3.2e-2 | 5.1e-2 | 3.7e-1 |
| Ω          | 4.46   | 3.19   | 0.76   |

Table 2: Comparing loss function metrics for  $\Psi(f)\sim f$  ( $L=6,\ m=3,\ 600$  epochs)



Figure 1: Comparing extracted phase functions for  $\Psi(f)\sim f$  ( $L=6,\ m=3,\ 600$  epochs)

7 / 14

David Amorim QCNN State Preparation 05/08/2024

## Comparing SAM, WIM, and WILL

|            | SAM    | WIM    | WILL   |
|------------|--------|--------|--------|
| $\mu$      | 1.9e-1 | 2.3e-1 | 6.6e-1 |
| $\sigma$   | 1.2e-1 | 1.0e-1 | 4.1e-1 |
| $\epsilon$ | 2.2e-1 | 4.2e-1 | 2.8e-2 |
| $\chi$     | 1.9e-1 | 2.0e-1 | 6.1e-1 |
| Ω          | 1.39   | 1.05   | 0.57   |

Table 3: Comparing loss function metrics for  $\Psi(f) \sim f^2$  ( $L=6,\ m=3,\ 600$  epochs)



Figure 2: Comparing extracted phase functions for  $\Psi(f)\sim f^2$  ( $L=6,\ m=3,$  600 epochs)

8/14

David Amorim QCNN State Preparation 05/08/2024

## Comparing SAM, WIM, and WILL

|            | SAM    | WIM    | WILL   |
|------------|--------|--------|--------|
| $\mu$      | 6.8e-2 | 8.4e-2 | 7.6e-2 |
| $\sigma$   | 1.8e-1 | 1.2e-1 | 2.6e-1 |
| $\epsilon$ | 4.5e-2 | 1.8e-1 | 7.3e-3 |
| $\chi$     | 7.4e-2 | 1.0e-1 | 6.2e-2 |
| Ω          | 2.75   | 2.07   | 2.48   |

Table 4: Comparing loss function metrics for  $\Psi_{\rm H23}$  ( $L=6,\ m=3,\ 600$  epochs)



Figure 3: Comparing extracted phase functions for  $\Psi_{\rm H23}$  ( $L=6,\ m=3,\ 600$  epochs)

9/14

## Other Approaches

- Attempts to define a loss function based directly on  $\hat{Q}^{\dagger}\hat{R}\hat{Q}$ , e.g. minimising  $\chi$ , were unsuccessful
- This is due to the qiskit machine learning environment being build around sampler primitives which return quasi-probabilities instead of probability amplitudes
- Thus, phases cannot be directly taken into account for gradient calculation
- A possible work-around could be to switch to a QCNN based on an estimator primitive, which calculates the expectation value of an observable w.r.t to the state prepared by the network
- This would require the construction of an appropriate operator (note: qiskit supports non-Hermitian observables)
- Beyond this, no further ansatze for loss functions come to mind

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 久 ②

## An Estimator-based QCNN

• Let  $|\tilde{\phi}\rangle$  be the two-register state produced by applying  $\tilde{Q}^{\dagger}\hat{R}\tilde{Q}$ :

$$|\tilde{\phi}\rangle = \sum_{k} A(k)e^{i\tilde{\Psi}(k)}|k\rangle$$
 (2)

The desired output state is

$$|\phi\rangle = \sum_{k} A(k)e^{i\Psi(k)}|k\rangle \tag{3}$$

 An estimator-based optimiser calculates the loss and gradients for each epoch based on the expectation value

$$\mathbb{E}(\tilde{\phi}) = \langle \tilde{\phi} | \hat{O} | \tilde{\phi} \rangle = \sum_{k,k'} A(k') A(k) \exp\left(i \left[\tilde{\Psi}(k) - \tilde{\Psi}(k')\right]\right) \langle k' | \hat{O} | k \rangle,$$
(4)

for some operator  $\hat{O}$ 

4 11 1 4 4 12 1 4 12 1 1 1 1 1

## An Estimator-based QCNN

• Now construct  $\hat{O}$  such that

$$\langle k'|\hat{O}|k\rangle \equiv \frac{1}{A(k')A(k)} \exp\left(-i\left[\Psi(k) - \Psi(k')\right]\right)$$
 (5)

for  $A(k), A(k') \neq 0$ 

Then

$$|\mathbb{E}(\tilde{\phi})| \le |\mathbb{E}(\phi)| \tag{6}$$

so that we can train the network to generate  $|\phi \rangle$  by maximising  $|\mathbb{E}(\phi)|$ 

• This is highly speculative but could be worth trying?

4□▶ 4□▶ 4□▶ 4□▶ □ 900

12 / 14

## Table of Contents

Preliminaries

2 Improving the Loss Function

Next Steps



David Amorim QCNN State Preparation 05/08/2024 13 / 14

# Next Steps

• ...

14 / 14

David Amorim QCNN State Preparation 05/08/2024