Face Recognition using Principal Component Analysis

Ravitha N

Face Recognition

- Face recognition is the challenge of classifying whose face is in an input image.
- A naïve way of accomplishing this is to take the new image, flatten it into a vector, and compute the Euclidean distance between it and all of the other flattened images in our database. Obvious Drawback is speed

Say you have a image of size 8*8 ~ 64 *1

If it needs to be compared with 200 images in the database, then the approach is unrealistic

Number of computations = $200 * 64 \sim 12,800$ computations

Problems with Distance classifier

• It cannot capture inherent noise in image (translation, rotation, illumination variations) in an image

Can we improve classifier?

 Advanced Classifiers such as Neural Networks can be used. But still the network would suffer from curse of dimensionality

if the image is flattened into mn * 1 vector; then the network requires more than mn images which is not realistic for images (as it would depend on the storage space, computational complexity)

Principal Component Analysis

- Reduce the size of the image (not blindly)
- Can we have a technique which can map the face to smaller dimension but retains most of the important parts in it
- Principal Component Analysis is one such technique which helps in mapping the datapoints to lower dimensions.

Sample Data and its Principal Components

Contd.. Observation: In the First Figure, Principal Vector captures most of the variance in the data.

Projection of Data point to a vector

- Data Point [3,2]
- Vector [4 5]

Perpendicular Projection of data point onto the vector Dot Product between the vectors will help in projection of point onto a vector.

Transformation of data points onto the Principal Vector

Mathematical Approach

 Consider an image of size 4 * 4. They can be represented as row vector

$$x = \{x_1, x_2, x_3, x_4 \cdot \cdots x_{16}\}$$

 Observation matrix is constructed, where images are encoded as columnar vectors

$$\begin{bmatrix} x_{11} & \cdots & x_{1,16} \\ \vdots & \ddots & \vdots \\ x_{1,16} & \cdots & x_{n,16} \end{bmatrix}$$

Mean subtract the data (across the rows)

Contd..

Compute the covariance matrix

$$C = \frac{1}{M-1} (x - \bar{x})(x - \bar{x})^T$$

Where M represents the number of samples (images)

 \bar{x} indicates the mean vector

 Compute eigen values and eigen vectors for the matrix (Eigen vectors are special vectors which when incident on a matrix, it never modify the orientation)

$$Cv = \lambda v$$
 which implies

$$C - \lambda = 0$$

Contd...

• Solving the equation we will obtain the unknown quantity λ (eigen value) and v (eigen vector)

Find the principal component for the following data points

•
$$x_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} x_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix} x_3 = \begin{bmatrix} 5 \\ 0 \end{bmatrix} x_4 = \begin{bmatrix} 7 \\ 6 \end{bmatrix} x_5 = \begin{bmatrix} 9 \\ 2 \end{bmatrix}$$

Observation Matrix

$$x = \begin{bmatrix} 2 & 3 & 5 & 7 & 9 \\ 1 & 4 & 0 & 6 & 2 \end{bmatrix}$$

Mean Vector

$$\bar{x} = \begin{bmatrix} (2+3+5+7+9)/5\\ (1+4+0+6+2)/5 \end{bmatrix} = \begin{bmatrix} 5.2\\ 2.6 \end{bmatrix}$$

Mean Subtracted data

$$x - \bar{x} = \begin{bmatrix} -3.2 - 2.2 & -0.2 & 1.8 & 3.8 \\ -1.61 \cdot 4 & -2.6 & 3.4 & -0.6 \end{bmatrix}$$

Covariance Matrix

$$C = \frac{1}{4} \begin{bmatrix} 3.2 & -2.2 & -0.2 & 1.8 & 3.8 \\ -1.6 & 1.4 & -2.6 & 3.4 - 0.6 \end{bmatrix} \begin{bmatrix} 3.2 & -1.6 \\ -2.2 & 1.4 \\ -0.2 & -2 \cdot 6 \\ 1.8 & 3 \cdot 9 \\ 3.8 & -0 \cdot 6 \end{bmatrix}$$

$$C = \frac{1}{4} \begin{bmatrix} 32.8 & 6 \cdot 4 \\ 6.4 & 23.2 \end{bmatrix}$$

$$C = \begin{bmatrix} 8.2 & 1.6 \\ 1.6 & 5.8 \end{bmatrix}$$

Finding Eigen Vectors

$$\begin{vmatrix} 8.2 & 1.6 \\ 1.6 & 5.8 \end{vmatrix} - \begin{vmatrix} \lambda & 0 \\ 0 & \lambda \end{vmatrix} = 0$$

$$\begin{vmatrix} 8.2 - \lambda & 1.6 \\ 1.6 & 5.8 - \lambda \end{vmatrix} = 0$$

$$\lambda^2 - 14\lambda + 45 = 0$$

$$(\lambda - 9)(\lambda - 5) = 0$$

$$\lambda = 9, \lambda = 5$$

Eigen vector for lambda 9 Substitute it in

$$\begin{vmatrix} 8.2 - \lambda & 1.6 \\ 1.6 & 5.8 - \lambda \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

$$\begin{vmatrix} 8.2 - 9 & 1.6 \\ 1.6 & 5.8 - 9 \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

Assume x2=1

$$-0.8x_1 + 1.6x_2 = 0$$

 $1.6x_1 + 3.2x_2 = 0$

$$\begin{cases} -0.8x1 = -1.6 \Rightarrow x1=2 \\ \begin{bmatrix} x1 \\ x2 \end{bmatrix} = \frac{1}{\sqrt{2^2 + 1^2}} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \simeq \begin{pmatrix} 0.89 \\ 0.45 \end{pmatrix}$$

- Eigen vector for lambda 5
- Substitute it in

$$\begin{vmatrix} 8.2 - \lambda & 1.6 \\ 1.6 & 5.8 - \lambda \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

$$\begin{vmatrix} 8.2 - 5 & 1.6 \\ 1.6 & 5.8 - 5 \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

Assume x2=1

$$3.2x_1 + 1.6x_2 = 0$$
$$1.6x_1 + 0.8x_2 = 0$$

3.2x1 = -1.6 => x1=-0.5
$$\begin{bmatrix} x1\\ x2 \end{bmatrix} = \frac{1}{\sqrt{-0.5^2 + 1^2}} \begin{bmatrix} -0.5\\ 1 \end{bmatrix} \simeq \begin{bmatrix} -0.45\\ 0.89 \end{bmatrix}$$

Projecting Data points onto Principal Components

• Eigen Vectors v1 = $\begin{pmatrix} 0.89 \\ 0.45 \end{pmatrix}$ V2 = $\begin{bmatrix} -0.45 \\ 0.89 \end{bmatrix}$

Convert data point (2 1) its mean centered value (-3.2 -1.6) Project (-3.2 -1.6) $\binom{0.89}{0.45}$ = -3.568 Onto v1

Project (-3.2 -1.6) $\begin{bmatrix} -0.45 \\ 0.89 \end{bmatrix}$ = 0.016 Onto v2 https://pythonmachinelearning.pro/face-recognition-witheigenfaces/