EFFICIENT STEREO DEPTH ESTIMATION USING PATCHMATCH

Tyler Baumgartner

Stereo Image Depth Estimation

- Similar to how we estimate depth based on disparities between our left and right eyes.
- Pixels can be mapped between left and right images
- Open Questions:
 - How do we properly match pixels?
 - What if a pixel in the left is obstructed in the right (or vice versa)?
 - How do we discriminate between identical pixels?
 - How do minor shifts in lighting alter output?

Basic Block Matching

- Advantages:
 - Quick
 - Low memory usage
- Disadvantages:
 - No global scope
 - No refining process
- Can be used to "prune" search space

PatchMatch

Figure 2: Phases of the randomized nearest neighbor algorithm: (a) patches initially have random assignments; (b) the blue patch checks above/green and left/red neighbors to see if they will improve the blue mapping, propagating good matches; (c) the patch searches randomly for improvements in concentric neighborhoods.

DeepPruner - Merging the Two Ideas

Figure 1: **Overview:** Given a pair of stereo images, we first extract deep multi-scale features. Then we exploit differentiable PatchMatch to estimate a small subset of disparities for each pixel and capitalize on confidence range predictor to further prune out the solution space. Unlike other approaches [8, 15] which operate on the entire disparity search range, we only aggregate the cost within the reduced search range. Finally, we leverage a light-weight network to refine the stereo output.

Implementation

- 3 Models
 - Classic Stereo (Basic Block Matching)
 - My Implementation
 - Non-Differentiable Patch Match (hard *arg min*)
 - Includes random search step
 - Just one search at 50px radius (1/2 the total search radius)
 - DeepPruner's Differentiable PatchMatch Implementation
 - Differentiable Patch Match (soft arg max)
 - Excludes random search step
- Design
 - Python 3.8, NumPy 1.17.3, Matplotlib 3.0.2, PyTorch 1.3.0+cpu
 - Object-Oriented
 - Assumed disparity search radius of 100px

Experiments/Results

Left Image

Right Image

		Driving			Flying Objects		
		0001.png	0002.png	0003.png	1001.png	1002.png	1003.png
PM	1 iter	27.922	45.469	46.391	30.281	51.391	60.672
	2 iter	46.719	100.109	86.219	54.328	86.500	99.672
	5 iter	110.563	190.625	181.688	178.438	201.203	226.875
DPM	1 iter	18.281	28.516	27.719	25.750	25.625	31.000
	2 iter	37.547	50.641	49.469	51.375	52.719	60.109
	5 iter	114.063	126.953	128.281	129.078	133.828	144.266
Classical		1044.828	1224.375	1320.578	840.594	931.609	547.375

Runtime Results (seconds)

Basic Block Matching

My Algorithm (5 Iterations)

DeepPruner Differentiable PatchMatch (5 Iterations)

Conclusion/Discussion

- Independent of a more sophisticated model, basic block matching does a poor job
- PatchMatch can significantly reduce disparity search field
- More research should be done into the random search phase