2 Kalman Filter	variables <i>u</i>	Ergodic Theorem: If $(X_i)_{i \in \mathbb{N}}$ is ergodic:
	$f_A _u \sim N(K_{Au}K_uu^{-1}u, K_{AA} - K_{Au}K_uu^{-1}K_{uA})$	$\lim_{N \to \infty} \frac{1}{n} \sum_{i=1}^{N} f(X_i) = \mathbb{E}_{x \sim \pi} [f(x)]$
$\begin{cases} X_{t+1} = FX_t + \epsilon_t & \epsilon_t \sim N(0, \Sigma_x) \\ Y_t = HX_t + \eta_t & \eta_t \sim N(0, \Sigma_y) \end{cases} X_1 \sim N(\mu_p, \Sigma_p)$	$f_* _{u} \sim N(K_{*u}K_{u}u^{-1}u, K_{**} - K_{*u}K_{u}u^{-1}K_{u*})$	Detailed Blanced Equation:
Then if X_0 is Gaussian then $X_t Y_{1:t} \sim N(\mu_t, \sigma_t)$:	Subset of Regressors (SoR): $\blacksquare \rightarrow 0$	P(x x') is the transition model of a MC:
$\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$	FITC: ■ → its diagonal	if $R(x)P(x' x) = R(x')P(x x')$ then R is the limit
$\Sigma_{t+1} = (I - K_{t+1}H)(F\Sigma_t F^T + \Sigma_x)$	4 Review of useful concepts and Introduction	distribution of the MC
$K_{t+1} = (F\Sigma_t F^T + \Sigma_x) H^T (H(F\Sigma_t F^T + \Sigma_x) H^T + \Sigma_v)^{-1}$	4.1 Multivariate Gaussian	Material Landers Alex Consult Consult MC
3 Gaussian Processes	$f(x) = \frac{1}{2\pi\sqrt{ \Sigma }} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$	Metropolis Hastings Algo : Sample from a MC
$f \sim GP(\mu, k) \Rightarrow \forall \{x_1, \dots, x_n\} \ \forall n < \infty$	Suppose we have a Gaussian random vector	which has $P(x) = \frac{Q(x)}{Z}$ as limit dist.
$[f(x_1)\dots f(x_n)] \sim N([\mu(x_1)\dots \mu(x_n)], K)$		Result: $\{X_i\}_{i\in\mathbb{N}}$ sampled from the MC
where $K_{ij} = k(x_i, x_j)$	$\begin{bmatrix} X_A \\ X_B \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_A \\ \mu_B \end{bmatrix}, \begin{bmatrix} \Sigma_{AA} & \Sigma_{AB} \\ \Sigma_{BA} & \Sigma_{BB} \end{bmatrix} \right) \Rightarrow X_A X_B = x_B \sim$	init: $R(x x')$
3.1 Gaussian Process Regression	$\mathcal{N}\left(\mu_A + \Sigma_{AB}\Sigma_{BB}^{-1}(x_B - \mu_B), \Sigma_{AA} - \Sigma_{AB}\Sigma_{BB}^{-1}\Sigma_{BA}\right)$	/* Good R choice \rightarrow fast convergence */ init: $X_0 = x_0$
$f \sim GP(\mu, k)$ then: $f y_{1:n}, x_{1:n} \sim GP(\tilde{\mu}, \tilde{k})$	4.2 Convex / Jensen's inequality	for $t \leftarrow 1, 2, \dots$ do
$\tilde{\mu}(x) = \mu(x) + K_{A,x}^{T} (K_{AA} + \epsilon I_n)^{-1} (y_A - \mu_A)$	$g(x)$ is convex $\Leftrightarrow x_1, x_2 \in \mathbb{R}, \lambda \in [0,1]: g''(x) > 0$	$x' \sim R(\cdot, x_{t-1})$
$\tilde{k}(x, x') = k(x, x') - K_{A,x}^T (K_{AA} + \epsilon I_n)^{-1} K_{A,x'}$	$g(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda g(x_1) + (1 - \lambda)g(x_2)$	$\alpha = \min \left\{ 1; \frac{Q(x')R(x_{t-1} x')}{Q(x_{t-1})R(x' x_{t-1})} \right\}$
Where: $K_{A,x} = [k(x_1, x)k(x_n, x)]^T$	$\varphi(E[X]) \le E[\varphi(X)]$	with probability α do
$[K_{AA}]_{ij} = k(x_i, x_j) \text{ and } \mu_A = [\mu(x_1 \dots x_n)]^T$	4.3 Information Theory elements:	$X_t = x';$
$[\mathcal{K}_{AA}]_{ij} = \mathcal{K}(x_i, x_j)$ and $\mu_A = [\mu(x_1 \dots x_n)]$	Entropy: $H(X) \doteq -\mathbb{E}_{x \sim p_X} [\log p_X(x)]$	otherwise $X_t = x_{t-1}$;
3.2 Kernels	$H(X Y) \doteq -\mathbb{E}_{(x,y) \sim p_{(X,Y)}} \left \log p_{Y X}(y x) \right $	
k(x, y) is a kernel if it's symmetric semidefinite	if $X \sim \mathcal{N}(\mu, \Sigma) \Rightarrow H(X) = \frac{1}{2} \log \left[(2\pi e)^d \det(\Sigma) \right]$	Metropolis Adj. Langevin Algo (MALA):
positive:	Chain Rule: $H(X,Y) = H(Y X) + H(X)$	Energy function: $P(x) = \frac{Q(x)}{Z} = \frac{1}{Z} \exp(-f(x))$
$\forall \{x_1, \dots, x_n\}$ then for the Gram Matrix $[K]_{ij} = k(x_i, x_j)$ holds $c^T K c \ge 0 \forall c$	Mutual Info: $I(X, Y) \doteq KL(p_{(X,Y)} p_Xp_Y)$	We chose: $R(x x') = \mathcal{N}(x' - \tau \nabla f(x), 2\tau I)$
Some Kernels: (h is the bandwidth hyperp.)	I(X,Y) = H(X) - H(X Y)	Stoch. Grad. Langevin Dynamics (SGLD):
" "2	if $X \sim \mathcal{N}(\mu, \Sigma)$, $Y = X + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$:	We use SGD to Approximate ∇f . Converges also without acceptance step
Gaussian (rbf): $k(x,y) = \exp(-\frac{ x-y ^2}{h^2})$	then $I(X, Y) = \frac{1}{2} \log \left[\det \left(I + \frac{1}{\sigma^2} \Sigma \right) \right]$	Hamilton MC: SGD performance improoved
Exponential: $k(x, y) = \exp(-\frac{ x-y }{h})$	4.4 Kullback-Leiber divergence	by adding momentum (consider last step ∇f)
Linear kernel: $k(x,y) = x^T y$ (here $K_{AA} = XX^T$)	- ()-	Gibbs sampling : Practical when $X \in \mathbb{R}^n$
	$KL(p q) = \mathbb{E}_p \left[\log \frac{p(x)}{q(x)} \right]$	Used when $P(X_{1:n})$ is hard but $P(X_i X_{-i})$ is easy.
3.3 Optimization of Kernel Parameters	if $p_0 \sim \mathcal{N}(\mu_0, \Sigma_0)$, $p_1 \sim \mathcal{N}(\mu_1, \Sigma_1) \Rightarrow KL(p_0 p_1)$	init: $x_0 \in \mathbb{R}^n$; $(x_0^{(B)} = x^{(B)})$ B is our data
Given a dataset A, a kernel function $k(x,y;\theta)$.	$= \frac{1}{2} \left(tr \left(\Sigma_1^{-1} \Sigma_0 \right) + (\mu_1 - \mu_0)^T \Sigma_1^{-1} (\mu_1 - \mu_0) - k + \log \frac{ \Sigma_1 }{ \Sigma_0 } \right)$	for $t = 1, 2,$ do
$y \sim N(0, K_y(\theta))$ where $K_y(\theta) = K_{AA}(\theta) + \sigma_n^2 I$	$\hat{q} = \arg\min_{q} KL(p q) \Rightarrow \text{overconservative}$	$x_t = x_{t-1}$ with $i \sim \mathcal{U}(\{1:n\} \setminus B) * \mathbf{do}$
$\hat{\theta} = \arg\max_{\theta} \log p(y X;\theta)$	$\hat{q} = \arg\min_{q} KL(q p) \Rightarrow \text{overconfident}$	
In GP: $\hat{\theta} = \arg\min_{\theta} y^T K_y^{-1}(\theta) y + \log K_y(\theta) $	5 Approximate inference	$x_{t-1}^{(i)} \sim P(x^{(i)} x^{(-i)})$
We can from here $\nabla \downarrow$:	5.1 Laplace Approximation	if and do it \/ i of D are DDE but are an area time!
$\nabla_{\theta} \log p(y X;\theta) = \frac{1}{2} tr((\alpha \alpha^{T} - K^{-1}) \frac{\partial K}{\partial \theta}), \alpha = K^{-1} y$ Or we could also be baysian about θ	$\hat{\theta} = \arg\max_{\theta} p(\theta y)$	* if we do it $\forall i \notin B$ no DBE but more practical
3.4 Aproximation Techniques	$\Lambda = -\nabla_{\theta} \nabla_{\theta} \log p(\theta y) _{\theta = \hat{\theta}}$	5.4 Variable elimination for MPE (most probable explanation):
Local method: $k(x_1, x_2) = 0$ if $ x_1 - x_2 \gg 1$	$p(\theta y) \simeq q(\theta) = N(\hat{\theta}, \Lambda^{-1})$	With loopy graphs, BP is often overconfi-
	5.2 Variationa Inverence	dent/oscillates.
Random Fourier Features: if $k(x, y) = \kappa(x - y)$	$\hat{q} = \arg\min_{q \in Q} KL(q p(\cdot y))$	6 Bayesian Neural Nets
$p(w) = \mathcal{F}\{\kappa(\cdot), w\}$. Then $p(w)$ can be normalized to be a density	$\hat{q} = ELBO$ Evidence Lower Bound	Likelihood: $p(y x;\theta) = \mathcal{N}(f_1(x,\theta), \exp(f_2(x,\theta)))$
zed to be a density. $ x(x,y) = \mathbb{E}\left[\exp\left(i\omega T(x,y)\right)\right] = \lim_{x \to \infty} \left[\exp\left(i\omega T(x,y)\right)\right]$	$ELBO \doteq \mathbb{E}_{\theta \sim q} \left[\log p(y \theta) \right] - KL(q p(\cdot)) \le \log p(y)$	Prior: $p(\theta) = \mathcal{N}(0, \sigma_p^2)$
$\kappa(x-y) = \mathbb{E}_{p(w)} \left[\exp\left\{ i w^T (x-y) \right\} \right] \text{ antitransform}$	5.3 Markov Chain Monte Carlo	$\theta_{MAP} = \arg\max\log(p(y,\theta))$
$\kappa(x - y) = \mathbb{E}_{b \sim \mathcal{U}([0, 2\pi]), w \sim p(w)} [z_{w,b}(x) z_{w,b}(y)]$	Idea: All we need is sampling from postirior	- MAL WOMENTO (L (A), A))

is faster $(X^TX \text{ vs } XX^T)$

Inducing points: We a vector of inducing

where $z_{w,b}(x) = \sqrt{2}cos(w^Tx + b)$. I can MC Ergodic Markov Chain:

extract features z. If # features is \ll n then this $\exists t \text{ s.t. } \mathbb{P}(i \to j \text{ in t steps}) > 0 \ \forall i, j \Rightarrow$

1 Bayesian Regression

 $y|w \sim N(Xw, \sigma_n^2 I)$

 $w \sim N(0, \sigma_n^2 I), \ \epsilon \sim N(0, \sigma_n^2 I), \ y = Xw + \epsilon$

 $w|y \sim N((X^TX + \lambda I)^{-1}X^Ty,(X^TX + \lambda I)^{-1}\sigma_n^2)$

```
Metropolis Adj. Langevin Algo (MALA):
Energy function: P(x) = \frac{Q(x)}{Z} = \frac{1}{Z} \exp(-f(x))
Ve chose: R(x|x') = \mathcal{N}(x' - \tau \nabla f(x), 2\tau I)
toch. Grad. Langevin Dynamics (SGLD):
We use SGD to Approximate \nabla f. Converges
lso without acceptance step
lamilton MC: SGD performance improoved
y adding momentum (consider last step \nabla f)
Gibbs sampling: Practical when X \in \mathbb{R}^n
Used when P(X_{1:n}) is hard but P(X_i|X_{-i}) is easy.
  init: x_0 \in \mathbb{R}^n; (x_0^{(B)} = x^{(B)}) B is our data
  for t = 1, 2, ... do
       x_t = x_{t-1}
with i \sim \mathcal{U}(\{1:n\} \setminus B) * \mathbf{do}
            x_{t-1}^{(i)} \sim P(x^{(i)}|x^{(-i)})
if we do it \forall i \notin B no DBE but more practical
```

 $\exists ! \pi = \lim_{N \to \infty} \mathbb{P}(X_n = x)$ Limit distribution

Ergodic Theorem: if $(X_i)_{i \in \mathbb{N}}$ is ergodic:

```
Predictive Esnable NNs:
Let \mathcal{D} = \{(x_i, y_i)\}_{i=1:n} be our dataset.
Train \theta_i^{MAP} on \mathcal{D}_i with i = 1, ..., m
\mathcal{D}_i is a Bootstrap of \mathcal{D} of same size
and p(y^*|x^*, \mathcal{D}) \simeq \frac{1}{m} \sum_{i=1}^{m} p(y^*|x^*, \theta_i^{MAP})
6.3 Model calibration
Train \hat{q} on \mathcal{D}_{train}
Evaluate \hat{q} on \mathcal{D}_{val} = \{(y', x')\}_{i=1:m}
Held-Out-Likelihood \doteq \log p(y'_{1:m}|x'_{1:m}, \mathcal{D}_{train})
\geq \mathbb{E}_{\theta \sim \hat{q}} \left[ \sum_{i=1}^{m} \log p(y_i'|x_i', \theta) \right] (Jensen)
\simeq \frac{1}{k} \sum_{i=1}^{k} \sum_{j=1}^{m} \log p(y_{i}'|x_{i}', \theta^{(j)}), \ \theta^{(j)} \sim \hat{q}
Evaluate predicted accuracy: We divide \mathcal{D}_{val}
into bins according to predicted confidence va-
lues. In each bin we compare accuracy with
confidence
7 Active Learning
Let \mathcal{D} be the set of observable points.
We can observe S \subseteq \mathcal{D}, |S| \leq R
Information Gain: \hat{S} = \arg \max_{S} F(S) = I(f, y_S)
For GPs: F(S) = \frac{1}{2} \log \left| I + \frac{1}{\sigma^2} K_{SS} \right|
This is NP Hard, \Rightarrow Greedy Algo:
       init: S^* = \emptyset
```

 $x_t = \operatorname{arg\,max}_{x \in \mathcal{D}} F(\mathcal{S}^* \cup \{x\})$

 $\left(x_t = \arg\max_{x \in \mathcal{D}} \sigma_x^2 | \mathcal{S} \text{ for GPs}\right)$

 $x_t = \arg\max_{x \in \mathcal{D}} \frac{\sigma_{f|\mathcal{S}}^2(x)}{\sigma_n^2(x)}$ for heter. GPs

6.1 Variation inference:

 \blacksquare \rightarrow Aletoric, \blacksquare \rightarrow Epistemic

 $Q = \{q(\cdot|\lambda) = \prod_{i} q_{i}(\theta_{i}|\lambda), \lambda \in \mathbb{R}^{d}\}$

6.2 MCMC:

where $q_i(\theta_i|\lambda) = p\delta_0(\theta_i) + (1-p)\delta_{\lambda_i}(\theta_i)$

MCMC but cannot store all the $\theta^{(i)}$:

And updete them online.

for t = 1 : R do

Usually we use Q = Set of Gaussians

 $\hat{q} = \arg\max ELBO$ Reparameterization trick

q approx. the posterior but how to predict?

Gaussian Mixture distribution: $\mathbb{V}(y^*|x^*, \mathcal{D}) \simeq$ $\simeq \frac{1}{m} \sum_{i=1}^{m} \sigma^{2}(x^{*}, \theta^{(i)}) + \frac{1}{m} \sum_{i=1}^{m} \left(\mu(x^{*}, \theta^{(j)} - \overline{\mu}(x^{*})) \right)$

Dropouts Regularization: Random ignore no-

des in SGD iteration: Equavalent to VI with

This allows to do Dropouts also in prediction

1) Subsampling: Only store a subset of the $\theta^{(i)}$

2) Gaussian Aproximation: We only keep:

 $\mu_i = \frac{1}{T} \sum_{i=1}^{T} \theta_i^{(j)}$ and $\sigma_i = \frac{1}{T} \sum_{i=1}^{T} (\theta_i^{(j)} - \mu_i)^2$

 $p(y^*|x^*, \mathcal{D}) \simeq \frac{1}{m} \sum_{i=1}^{m} p(y^*|x^*, \theta^{(i)}), \ \theta \sim \hat{q}(\theta)$

F is **Submodular** if: $\forall x \in \mathcal{D}$, $\forall A \subseteq B \subseteq D$ holds that: $F(A \cup \{x\}) - F(A) \ge F(B \cup \{x\}) - F(B)$ F is Submodular $\Rightarrow F(S^*) \ge \left(1 - \frac{1}{e}\right)F(\hat{S})$

8 Bayesian Optimization

Like Active Learning but we only want to find the optima. We pick $x_1, x_2,...$ from \mathcal{D} and observe $y_i = f(x_t) + \epsilon_t$.

Comulative regret:
$$R_T = \sum_{t=1}^{T} \left(\max_{x \in \mathcal{D}f(x) - f(x_t)} \right)$$

$$\mathbf{Oss:} \frac{R_T}{T} \to 0 \Rightarrow \max_t f(x_t) \to \max_{x \in \mathcal{D}} f(x)$$

8.1 Upper Confidence Sampling

With GP
$$x_t = \arg \max_{x \in \mathcal{D}} \mu_{t-1}(x) + \beta_t \sigma_{t-1}(x)$$

Chosing the correct
$$\beta_t$$
 we get: $\frac{R_T}{T} = \mathcal{O}\left(\sqrt{\frac{\gamma_T}{T}}\right)$.

Where
$$\gamma_t = \max_{|S| < T} I(f; y_S)$$
. On d dims:

Linear:
$$\gamma_T = \mathcal{O}(d \log T)$$
 RBF: $\gamma_T = \mathcal{O}((\log T)^{d+1})$

Optimal
$$\beta_t = \mathcal{O}(\|f\|_K^2 + \gamma_t \log^3 T)$$

Oss:
$$\beta \uparrow =$$
 more exploration

$$x_t = \arg\max_{x \in \mathcal{D}} \tilde{f}(x), \ \tilde{f} \sim p(f|x_{1:n}, y_{1:n})$$

9 Markov Decision Process (MDP)