电子技术实验 III 实验报告 实验五 混频器与 AGC 中频放大系统

实验人: 王旭东 PB22051030

李 毅 PB22051031

院 系: __信息科学技术学院__

时间: 2024年11月29日

台号: _______

第一部分 实验目的

PB22051031 李毅

2024年11月29日

- 1. 了解混频器的基本原理,掌握模拟乘法器和三极管实现混频的方法。
- 2. 了解自动增益控制的基本原理,理解 AGC 系统的构成,掌握自动增益控制系统的测试方法。

第二部分 实验原理

1. 混频器的概念

信息科学技术学院

将载波频率为 f_s (高频)的已调波信号不失真地变换为载波频率为 f_I (固定中频)的已调波信号,并保持原调制规律不变。即将信号频谱自载频 f_s 线性搬移到中频 f_I ,且信号的相对频谱分布不变。混频器频率变换示意图如图 ?? 所示。

图 1: 混频器频率变换示意图

2. 混频器主要性能指标

混频增益 $K_V = \frac{u_{Im}}{u_{sm}}$,选择性 S 为 3dB 带宽与 40dB 带宽的比值,越接近 1 越好。噪声系数、失真和干扰: 越小越好。

3. 常用的混频器电路

三极管混频:利用晶体管 $i_c - u_{BE}$ 的非线性特性实现,经过带通滤波器后输出的中频电流

$$i_I = \frac{g_1}{2} U_{sm} cos(\omega_L - \omega_s) t$$

乘法器混频:经过非线性频率变换后的输出

$$u_I = \frac{K}{2} U_{sm} U_{Lm} cos(\omega_L + \omega_s) t + cos(\omega_L + \omega_s) t$$

用带通滤波器可取出和频分量 $\omega_L + \omega_s$, 或取出差频分量 $\omega_L - \omega_s$ 。

4. AGC 中频放大系统

中频放大器输入为混频输出的中频信号,谐振频率调谐在中频,输出作为检波器输入,放大倍数 受 AGC 电压控制,保证输入信号在很大范围变化时,接收机的输出电压基本稳定。

自动增益控制电路在接收机输入信号电压出现较大波动时,自动调整接收机各级增益,保持接收机输出电压几乎不变。 $u_o - u_i$ 曲线如图 ?? 所示。

图 2: AGC 电路 $u_o - u_i$ 曲线

5. 实验电路

信息科学技术学院

图 3: 模拟集成乘法器混频电路

图 4: 三极管混频电路

图 5: 中放 AGC 实验电路

PB22051030 王旭东 PB22051031 李毅

第三部分 实验内容及结果

需要说明的是,由于实验时示波器显示的测量数据处于抖动状态,我们的测量方法是按 Stop 键之后读取数值作为试验记录,之后按 Run 键再将波形保存为图片,所以试验记录和图片中显示数据可能会有细微差别,报告中的计算全部按照原始数据来计算,图片仅作波形参考

3.1 混频器电路测试

3.1.1 集成模拟乘法器混频

1. 465KHz 混频输出信号观测

信息科学技术学院

调节本振信号 $f_L = 6.465MHz$, $u_{Lpp} = 800mV$,射频信号 $f_s = 6MHz$, $u_{Spp} = 700mV$,混频输出信号通过中心频率为 465KHz 的带通滤波器,进行滤波处理,用示波器观测记录中频信号 u_I 的波形如图??所示,可以看到 u_I 为正弦波,峰峰值 510mV,频率 465.6KHz

图 6: 465KHz 混频输出中频信号波形

保持 u_L 和 u_S 幅度不变,保持 f_s 不变,改变 f_L ,记录混频输出信号频率 f_I 的变化如表??所示。可以得到频率关系为 $f_I=f_L-f_s$

表 1: 465KHz 混频输出信号频率的变化

f_s	6MHz									
f_L/MHz	6.42 6.43 6.44 6.45 6.46 6.4						6.48	6.49		
f_I/MHz	0.4200	0.4300	0.4400	0.4500	0.4600	0.4700	0.4825	0.4925		

恢复 $f_L=6.465MHz$,保持 $u_{Spp}=700mV$ 不变,调整本振信号 u_L 的幅值,用示波器观测 u_L 的幅值、混频输出信号 u_I 的幅值以及混频增益如表??所示。

PB22051031 李毅

2024年11月29日

表 2: 465KHz 混频输出信号幅值数据表

u_{Lpp}/mV	500	600	700	800	900	1000
u_{Ipp}/mV	500	500	500	510	510	510
K_V	0.714	0.714	0.714	0.729	0.729	0.729

2. **4.5MHz** 混频输出信号观测调节本振信号 $f_L = 10.5MHz$, $u_{Lpp} = 800mV$, 射频信号 $f_s = 6MHz$, $u_{Spp}=700mV$, 混频输出信号通过中心频率为 $4.5 \mathrm{MHz}$ 的带通滤波器, 进行滤波处理, 用示波器观 测记录中频信号 u_I 的波形如图??所示,可以看到 u_I 为正弦波,峰峰值 205mV,频率 4.48MHz。

图 7: 4.5MHz 混频输出中频信号波形

保持 u_L 和 u_S 幅度不变,保持 f_s 不变,改变 f_L ,记录混频输出信号频率 f_I 的变化如表??所示。 可以得到频率关系为 $f_I = f_L - f_s$

表 3: 4.5MHz 混频输出信号频率数据表

f_s	6MHz									
f_L/MHz	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9	
f_I/MHz	4.098	4.198	4.298	4.398	4.498	4.598	4.698	4.798	4.898	

恢复 $f_L = 10.5 MHz$, 保持 $u_{Lpp} = 800 mV$ 不变, 调整参考输入信号 u_S 的幅值, 频率为 6MHz 不变,用示波器观测 u_S 的幅值、混频输出信号 u_I 的幅值以及混频增益如表??所示。

表 4: 4.5MHz 混频输出信号幅值数据表

u_{spp}/mV	200	300	400	500	600	700
u_{Ipp}/mV	59	86	115	140	166	195
K_V	0.295	0.287	0.288	0.280	0.277	0.279

3. 调频波经混频输出信号观测

调节本振信号 $f_L = 10.5 MHz$, $u_{Lpp} = 800 mV$, 射频信号 $f_s = 6 MHz$, $u_{Spp} = 1 Vpp$, 调制类型 FM,调制频率 1KHz,频偏 75KHz,混频输出信号通过中心频率为 4.5MHz 的带通滤波器,进行 滤波处理,用频谱仪观测记录本振信号的频谱如图??所示,峰值频率为 10.498MHz。

PB22051031 李毅

2024年11月29日

图 8: 本振信号频谱

调频输入信号频谱如图 ?? 所示,中心频率 6MHz,左侧峰值频偏为-72.5KHz,右侧峰值频偏为 +74.5KHz.

图 9: 调频波混频输入信号频谱

混频输出信号频谱与调频输入信号形状相同,中心频率 4.5MHz,左侧峰值频偏为-72KHz,右侧 峰值频偏为 +72KHz。

可以看出,混频后的信号是将输入信号频谱近似线性地搬移到中频,频谱形状与两侧峰值频偏均 基本没有变化。

3.1.2 三极管混频输出信号观测

1. 实验现象观测

调节本振信号 $f_L = 10.5 MHz$, $u_{Lpp} = 800 mV$,射频信号 $f_s = 6 MHz$, $u_{Spp} = 200 mV$,用示波 器观察测晶体三极管混频的输出 u_I 波形如图??所示,调整 W1、W2 使 u_I 幅度最大且波形不失 真。记录 u_L 幅值 800mV,频率 10.4MHz, u_S 幅值 200mV,频率 6MHz, u_I 幅值 237mV,频率 4.48MHz。

PB22051031 李毅

图 10: 三极管混频输入输出信号波形

改变本振信号频率,频谱仪观测混频输出信号的频率如表??所示。分析频率关系为 $f_I = f_L - f_S$ 。

6MHz f_s f_L/MHz 10.2 10.3 10.5 10.6 10.4 10.7 10.8 f_I/MHz 4.20004.30054.39954.50004.60054.69954.8000

表 5: 混频输出信号频率数据表

恢复 $f_L=10.5MHz$,保持 $u_{Spp}=200mV$ 不变,调整本振信号电压幅值 u_{Lpp} 为 1V 和 1.2V,示 波器观测本真信号和混频输出的幅值,计算混频电压增益如表??所示。

表 6: 三极管混频电压数据表

u_{Lpp}/V	1	1.2
u_{Ipp}/mV	350	386
K_V	1.75	1.93

2. 调幅波经混频输出信号观测

调节本振信号 $f_L = 10.5MHz$, $u_{Lpp} = 1.2V$,射频信号 $f_s = 6MHz$, $u_{Spp} = 0.4V$,调制类型 AM, 调制频率 2KHz,调制深度 30%,用示波器观察测晶体三极管混频的输出 u_I 波形如图??所示,调 整 W1、W2 使混频输出调幅波形幅值较大且包络不失真。输入波形如图??通道 2 所示,输出波 形如图??通道2所示。记录参数如下:

PB22051031 李毅

调幅输入: $A_{max} = 120.5 mV$, $A_{min} = 57.5 mV$, 调制度 m = 0.354

混频输出: $A_{max} = 228mV, A_{min} = 118mV$,调制度 m = 0.289

本振信号: $f_L = 10.5 MHz, u_{Lpp} = 1.24 V$

信息科学技术学院

受限于时域测量精度问题,输入输出信号的调制度误差较大。

图 11: 本振信号与调幅波混频输入信号波形

图 12: 本振信号与调幅波混频输出信号波形

PB22051031 李毅

2024年11月29日

频谱仪测量本振信号频谱如图??所示,峰值频率 $f_L=10.5004MHz$ 。

信息科学技术学院 PB22051030 王旭东

图 13: 本振信号频谱

调幅输入信号频谱如图??所示,左侧和右侧峰值频率差值 $\Delta f_{min} = \Delta f_{max} = 2KHz$,中心频率 $f_S = 6MHz$,幅度差值 $\Delta A = -16.25dB$,调制度 $m = \frac{2}{10^{|\Delta A|/20}} = 0.308$

图 14: 输入调幅波信号频谱

混频输出信号频谱如图??所示,左侧和右侧峰值频率差值 $\Delta f_{min} = \Delta f_{max} = 2KHz$,中心频率 $f_S = 4.5004MHz$,幅度差值 $\Delta A = -16.72dB$,调制度 $m = \frac{2}{10^{|\Delta A|/20}} = 0.292$

图 15: 输出混频波信号频谱

可以看出频域测量的输入输出调制度近似相等,左右峰值频率差值相同,说明混频前后频谱结构 无失真,只是进行线性搬移。

AGC 中频放大系统测试 3.2

3.2.1 测量开环(无 AGC)时中频放大器输入、输出特性曲线

从中放输入端接入 4.5MHz, 0.2Vpp 的正弦信号, 调节 W3 使输出信号最大不失真, 测得 u_{ipp} = $221mV, u_{opp} = 3.86V$ 中放谐振电压放大倍数 $A_u = 17.466$ 。

以 $0.2\mathrm{Vpp}$ 为步进单位改变输入信号幅值,测量中放输入输出电压幅值,计算开环电压放大倍数 A_u 如表 ?? 所示, 绘制 $u_o \sim u_i$ 和 $A_u \sim u_i$ 曲线如图 ?? 和 ?? 所示。

u_i/Vpp	0.11	0.32	0.53	0.74	0.94	1.14	1.32	1.56	1.75	1.96
u_o/Vpp	2.06	5.40	7.10	8.00	8.80	9.20	9.60	10.00	10.00	10.10
$\overline{A_u}$	18.90	16.88	13.40	10.81	9.36	8.07	7.27	6.41	5.71	5.15

表 7: 开环输入、输出特性测量数据表

随输入电压幅值增大,输出电压幅值逐渐增大,到达 10V 左右后不再增加。随输入电压幅值增大, 开环电压放大倍数近似线性下降。

3.2.2 测量闭环(有 AGC)时中频放大器输入、输出特性曲线

保持 W3 不变,测量中放 AGC 系统输入输出电压幅值及 AGC 控制电压 V_{AGC} 如表??所示,绘制 曲线 $u_o \sim u_i$ 曲线、 $A_u \sim u_i$ 曲线及 $V_{AGC} \sim u_i$ 曲线 ??、图 ?? 和图 ?? 所示。

可以看出,闭环时中放随 u_i 增大, u_o 先增大,后保持不变,再增大,与理论上的起控到失控的过 程相符合,起控电压 $u_{imin} \approx 0.1V$,失控电压 $u_{imax} \approx 0.35V$ 。在 $u_i \leq u_{imin}$ 时,电压增益 A_u 和 AGC 控制电压 V_{AGC} 几乎不变; $u_{imin} \leq u_i \leq u_{imax}$ 时, A_u 下降, V_{AGC} 上升, 变化趋势渐缓; $u_i \geq u_{imax}$ 时,电压增益 A_u 和 AGC 控制电压 V_{AGC} 几乎不变。

信息科学技术学院

表 8: 闭环输入、输出特性测量数据表

PB22051031 李毅

2024年11月29日

u_i/Vpp	0.043	0.068	0.087	0.106	0.206	0.321	0.422	0.518	0.73
u_o/Vpp	0.90	1.45	1.83	1.93	1.93	1.93	2.21	2.69	3.87
V_{AGC}/V	-6.380	-6.380	-6.380	-4.276	-1.386	-0.507	-0.003	-0.003	-0.003
A_u	20.930	21.324	21.034	18.208	9.369	6.012	5.237	5.193	5.301

图 16: 开环 $u_o \sim u_i$ 曲线

图 17: 开环 $A_u \sim u_i$ 曲线

PB22051031 李毅

2024年11月29日

PB22051030 王旭东

(a) 闭环 $u_o \sim u_i$ 曲线

(b) 闭环 $A_u \sim u_i$ 曲线

(c) 闭环 $V_{AGC} \sim u_i$ 曲线 图 18: 闭环(有 AGC)时中频放大器输入、输出特性曲线

第11页,共??页

第四部分 思考题

I. 分析混频的必要性

答: (1) 方便进行信号处理

在无线通信系统中,尤其是接收端的设计中,直接使用高频信号进行处理较为困难,因为信号的传输、放大和解调都受到高频电路的限制。混频器可以将接收到的高频信号转换为中频或基带信号,从而使信号处理更加容易。

(2) 改善信号的抗干扰能力

在高频通信系统中,高频信号容易受到噪声和干扰的影响。混频后得到中频信号再进行信号滤波和处理,有助于提升系统的抗干扰能力。

(3) 降低硬件复杂度

对于需要接收不同频段信号的接收机,将所有频段统一使用混频器变换到同一个中频上再进行信号处理,避免针对不同频率设计不同电路,降低硬件复杂度。

II. 分析混频与调幅有什么异同

相同点: 混频与 AM 调制都是对频谱的线性变换,都可以利用模拟乘法器实现,二者的结果都是获得两种频率的和、差新频率。

不同点:

- (1)目的不同,混频的目的是将难以直接处理的高频信号变换到中频,调幅的目的是将难以直接传输的基带信号搭载到高频载波上,用基带信号控制高频信号的幅值。
- (2) 频谱结构不同,调幅的输出频谱可能包含载波信号,也可能只有单/双边带信号,混频的输出频谱通常是两个输入频率的和频和差频。
- (3) 应用不同,调幅主要用于信号的传输过程中,混频主要应用于信号的接收解调过程。

III. 简述 AGC 的控制原理

当输入信号电压在很大范围内变化时,AGC 电路能够自动调整各级放大器的增益,保持接收机输出电压几乎不变。较强的输入信号,增益较小;对于较弱的输入信号,增益较大。