```
# import necessary libraries
library(readxl) # to read excel
library(plyr)
library(caTools)
library(e1071)
library(caret)
library(randomForest)
```

Data Understanding

```
# load data
attribset = read_excel('Attribute DataSet.xlsx')
dresssale = read_excel('Dress Sales.xlsx')

#remove Dress_ID column
attribset_ = attribset[2:14]
dresssale_ = dresssale[2:24]
```

Data Preparation

Attributes dataset

```
# check the unique values for each columns
#lapply(attribset[2:14], unique)
# values checking
# stvle
attribset $Style[attribset $Style == 'sexy'] = 'Sexy'
# Price
attribset $Price[attribset $Price == 'low'] = 'Low'
attribset $Price[attribset $Price == 'high'] = 'High'
# Size
attribset $Size[attribset $Size == 's'] = 'S'
attribset $Size[attribset $Size == 'small'] = 'S'
# Season
attribset $Season[attribset $Season == 'spring'] = 'Spring'
attribset $Season[attribset $Season == 'summer'] = 'Summer'
attribset $Season[attribset $Season == 'Automn'] = 'Autumn'
attribset $Season[attribset $Season == 'winter'] = 'Winter'
# NeckLine
attribset $NeckLine[attribset $NeckLine == 'sweetheart'] =
'Sweetheart'
# SleeveLength
```

```
attribset $SleeveLength[attribset $SleeveLength == 'sleevless'] =
'sleeveless'
attribset $SleeveLength[attribset $SleeveLength == 'sleeevless'] =
'sleeveless'
attribset $SleeveLength[attribset $SleeveLength == 'sleveless'] =
'sleeveless'
attribset $SleeveLength[attribset $SleeveLength == 'threequater'] =
'threequarter'
attribset $SleeveLength[attribset $SleeveLength == 'thressqatar'] =
'threequarter'
attribset $SleeveLength[attribset $SleeveLength == 'urndowncollor'] =
'turndowncollar'
# FabricTvpe
attribset $FabricType[attribset $FabricType == 'shiffon'] = 'chiffon'
attribset_$FabricType[attribset_$FabricType == 'sattin'] = 'satin'
attribset $FabricTvpe[attribset $FabricTvpe == 'wollen'] = 'woolen'
attribset $FabricType[attribset $FabricType == 'flannael'] = 'flannel'
attribset $FabricType[attribset $FabricType == 'knitting'] = 'knitted'
# Decoration
attribset $Decoration[attribset $Decoration == 'embroidary'] =
'embroidery'
attribset $Decoration[attribset $Decoration == 'sequined'] = 'sequins'
attribset $Decoration[attribset $Decoration == 'ruched'] = 'ruche'
attribset_$Decoration[attribset $Decoration == 'none'] = 'null'
# Pattern Type
attribset $'Pattern Type'[attribset $'Pattern Type' == 'none'] =
'null'
attribset $'Pattern Type'[attribset $'Pattern Type' == 'leapord'] =
'leopard'
# factoring
attribset $Style = factor(attribset $Style,
                          levels = \overline{c}('Sexy', 'Casual', 'vintage',
'Brief', 'cute', 'bohemian', 'Novelty', 'Flare', 'party', 'work',
'OL', 'fashion'),
                          labels = c(0,1,2,3,4,5,6,7,8,9,10,11)
attribset $Price = factor(attribset $Price,
                          levels = c('Low', 'High', 'Average',
'Medium', 'very-high'),
                          labels = c(0,1,2,3,4))
attribset $Size = factor(attribset $Size,
                          levels = c('M', 'L', 'XL', 'free', 'S'),
                          labels = c(0,1,2,3,4))
```

```
attribset $Season = factor(attribset $Season,
                               levels = c('Summer', 'Autumn', 'Spring',
'Winter'),
                               labels = c(0,1,2,3))
attribset $NeckLine = factor(attribset $NeckLine,
                               levels = c('o-neck', 'v-neck', 'boat-neck',
'peterpan-collor', 'ruffled', 'turndowncollor', 'slash-neck',
'mandarin-collor', 'open', 'sqare-collor', 'Sweetheart', 'Scoop',
'halter', 'backless', 'bowneck', 'NULL'),
                               labels =
c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15))
attribset $SleeveLength = factor(attribset $SleeveLength,
levels = c('sleeveless', 'Petal', 'full',
'butterfly', 'short', 'threequarter', 'halfsleeve', 'cap-sleeves',
'turndowncollor', 'capsleeves', 'half', 'turndowncollar', 'NULL'),
                               labels = c(0,1,2,3,4,5,6,7,8,9,10,11,12)
attribset $waiseline = factor(attribset $waiseline,
                              levels = c('empire', 'natural', 'null',
'princess', 'dropped'),
                              labels = c(0,1,2,3,4))
attribset $Material = factor(attribset $Material,
                              levels = c('null', 'microfiber', 'polyster',
'silk', 'chiffonfabric', 'cotton', 'nylon', 'other', 'milksilk',
'linen', 'rayon', 'lycra', 'mix', 'acrylic', 'spandex', 'lace',
'modal', 'cashmere', 'viscos', 'knitting', 'sill', 'wool', 'model',
'shiffon'),
                               labels =
c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23))
attribset $FabricType = factor(attribset $FabricType,
levels = c('chiffon', 'null', 'broadcloth',
'jersey', 'other', 'batik', 'satin', 'flannel', 'worsted', 'woolen',
'poplin', 'dobby', 'knitted', 'tulle', 'organza', 'lace', 'Corduroy',
'terry'),
                               labels =
c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17))
attribset $Decoration = factor(attribset $Decoration,
                              levels = c('ruffles', 'null', 'embroidery',
'bow', 'lace', 'beading', 'sashes', 'hollowout', 'pockets', 'sequins',
'applique', 'button', 'Tiered', 'rivet', 'feathers', 'flowers',
'pearls', 'pleat', 'crystal', 'ruche', 'draped', 'tassel', 'plain',
'cascading'),
                               labels =
c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23))
```

```
attribset_$`Pattern Type` = factor(attribset_$`Pattern Type`,
                           levels = c('animal', 'print', 'dot',
'solid', 'null', 'patchwork', 'striped', 'geometric', 'plaid',
'leopard', 'floral', 'character', 'splice'),
                           labels = c(0,1,2,3,4,5,6,7,8,9,10,11,12)
attribset $Recommendation = sapply(attribset $Recommendation, factor)
# count of missing values in attribset dataset
colSums(is.na(attribset ))
         Style
                         Price
                                       Rating
                                                         Size
Season
             0
                             2
                                            0
                                                            0
      NeckLine
                 SleeveLength
                                    waiseline
                                                     Material
FabricType
                                                            1
1
                 Pattern Type Recommendation
    Decoration
# Create the function.
getmode <- function(v) {</pre>
   uniqv <- unique(v)
   uniqv[which.max(tabulate(match(v, uniqv)))]
}
# fill missing Value with mode
attribset $Price[is.na(attribset $Price) == TRUE] <-
getmode(attribset $Price)
attribset $Season[is.na(attribset $Season) == TRUE] <-
getmode(attribset $Season)
attribset $NeckLine[is.na(attribset $NeckLine) ==TRUE] <-
getmode(attribset $NeckLine)
attribset $waiseline[is.na(attribset $waiseline) ==TRUE] <-</pre>
getmode(attribset $waiseline)
attribset $Material[is.na(attribset $Material) ==TRUE] <-</pre>
getmode(attribset $Material)
attribset_$FabricType[is.na(attribset $FabricType) ==TRUE] <-</pre>
getmode(attribset_$FabricType)
attribset $Decoration[is.na(attribset $Decoration) ==TRUE] <-
getmode(attribset $Decoration)
attribset $`Pattern Type`[is.na(attribset $`Pattern Type`) ==TRUE] <-
getmode(attribset $`Pattern Type`)
attribset data <- data.frame(attribset )</pre>
str(attribset data)
```

```
'data.frame':
                 500 obs. of 13 variables:
                 : Factor w/ 12 levels "0", "1", "2", "3", ...: 1 2 3 4 5 6
 $ Style
2 7 8 6 ...
$ Price
                  : Factor w/ 5 levels "0", "1", "2", "3", ...: 1 1 2 3 1 1
3 3 3 1 ...
$ Rating
                  : num 4.6 0 0 4.6 4.5 0 0 0 0 0 ...
                  : Factor w/ 5 levels "0", "1", "2", "3", ...: 1 2 2 2 1 1
 $ Size
3 4 4 4 ...
                  : Factor w/ 4 levels "0", "1", "2", "3": 1 1 2 3 1 1 1 2
$ Season
3 1 ...
$ NeckLine
                 : Factor w/ 16 levels "0","1","2","3",..: 1 1 1 1 1 2
1 1 2 2 ...
 $ SleeveLength : Factor w/ 13 levels "0", "1", "2", "3", ...: 1 2 3 3 4 1
3 5 5 1 ...
$ waiseline
                  : Factor w/ 5 levels "0", "1", "2", "3", ...: 1 2 2 2 2 1
3 2 1 2 ...
                  : Factor w/ 24 levels "0", "1", "2", "3", ...: 1 2 3 4 5 1
 $ Material
6 3 6 7 ...
                  : Factor w/ 18 levels "0", "1", "2", "3", ...: 1 2 2 1 1 2
$ FabricType
2 3 3 1 ...
                  : Factor w/ 24 levels "0", "1", "2", "3", ...: 1 1 2 3 4 2
 $ Decoration
2 5 6 2 ...
 $ Pattern.Type : Factor w/ 13 levels "0","1","2","3",..: 1 1 2 2 3 2
4 5 4 5 ...
$ Recommendation: Factor w/ 2 levels "1", "0": 1 2 2 1 2 2 2 1 1 ...
```

Dresses dataset

```
# Update columns name in dresssale dataset
dresssale = rename(dresssale , c('41314'='2/9/2013'))
dresssale = rename(dresssale , c('41373'='4/9/2013'))
dresssale_ = rename(dresssale_,c('41434'='6/9/2013'))
dresssale_ = rename(dresssale_,c('41495'='8/9/2013'))
dresssale_ = rename(dresssale_,c('41556'='10/9/2013'))
dresssale_ = rename(dresssale_,c('41617'='12/9/2013'))
dresssale = rename(dresssale , c('41315'='2/10/2013'))
dresssale = rename(dresssale_,c('41374'='4/10/2013'))
dresssale_ = rename(dresssale_,c('41435'='6/10/2013'))
dresssale = rename(dresssale , c('40400'='8/10/2013'))
dresssale = rename(dresssale ,c('41557'='10/10/2013'))
dresssale = rename(dresssale ,c('41618'='12/10/2013'))
The following `from` values were not present in `x`: 41314
The following `from` values were not present in `x`: 41373
The following `from` values were not present in `x`: 41434
The following `from` values were not present in `x`: 41495
The following `from` values were not present in `x`: 41556
The following `from` values were not present in `x`: 41617
The following `from` values were not present in `x`: 41315
```

```
The following `from` values were not present in x: 41374 The following `from` values were not present in x: 41435
The following `from` values were not present in `x`: 40400
The following `from` values were not present in `x`: 41557
The following `from` values were not present in `x`: 41618
# Convert all variable types to numeric
dresssale <- as.data.frame(apply(dresssale , 2, as.numeric))</pre>
# mean row
dresssale = as.matrix(dresssale )
k <- which(is.na(dresssale ), arr.ind=TRUE)</pre>
dresssale [k] <- rowMeans(dresssale , na.rm=TRUE)[k[,1]]</pre>
dresssale = as.data.frame(dresssale )
# sum all values on row on (total sales)
dresssale $total sales = rowSums(dresssale )
head(dresssale )
  29/8/2013 31/8/2013 2/9/2013 4/9/2013 6/9/2013 8/9/2013 10/9/2013
12/9/2013
1 2114
             2274
                        2491
                                  2660
                                            2727
                                                      2887
                                                                2930
3119
2 151
              275
                         570
                                   750
                                             813
                                                      1066
                                                                1164
1558
3
   6
                7
                           7
                                     7
                                               8
                                                         8
                                                                   9
10
4 1005
             1128
                        1326
                                  1455
                                            1507
                                                      1621
                                                                1637
1723
5 996
             1175
                        1304
                                  1396
                                            1432
                                                      1559
                                                                1570
1638
                5
                          11
                                    13
                                              13
                                                        13
6
                                                                  16
18
  14/9/2013 16/9/2013 ... 26/9/2013 28/9/2013 30/9/2013 2/10/2013
4/10/2013
1 3204
             3277
                        ... 3624
                                       3706
                                                  3746
                                                             3795
                                                                         3832
                        ... 2942
2 1756
             1878
                                       3258
                                                   3354
                                                             3475
                                                                         3654
3 10
               10
                        ... 11
                                          11
                                                     11
                                                                11
                                                                           11
4 1746
             1783
                        ... 1892
                                       1914
                                                   1924
                                                              1929
                                                                         1941
                        ... 2156
                                       2252
5 1655
             1681
                                                   2312
                                                              2387
                                                                         2459
6 19
               20
                        . . .
                               25
                                          26
                                                     26
                                                                26
                                                                           26
  6/10/2013 8/10/2013 10/10/2013 12/10/2013 total sales
1 3897
             3923
                        3985
                                    4048
                                                75979
2 3911
             4024
                        4125
                                    4277
                                                52256
                                                   223
    11
               11
                          11
                                      11
```

4 1952	1955	1959	1963	39691
5 2544	2614	2693	2736	44077
6 27	27	27	27	457

Marged data

merged_data <- data.frame(attribset_ ,dresssale_)</pre> head (merged_data)

	•	–	•							
Ma	Style aterial		Rating	Size	Season	NeckLin	e Sleeve	Length	waise	line
	0	0	4.6	0	0	0	0		0	0
2	1	0	0.0	1	0	0	1		1	1
3	2	1	0.0	1	1	0	2		1	2
4	3	2	4.6	1	2	0	2		1	3
5	4	0	4.5	0	0	0	3		1	4
6	5	0	0.0	0	0	1	0		0	0
	Fabrio 4.10.20		X26		13 X28.9 3706		30.9.201 746	13 X2.10 3795	0.2013	3832
2	1		2942	2	3258	3	354	3475		3654
3	1		13	l	11		11	11		11
4	0		1892	2	1914	1	924	1929		1941
5	0		2156	5	2252	2	312	2387		2459
6	1		25	5	26		26	26		26
1 2 3 4 5 6	X6.10. 3897 3911 11 1952 2544 27		X8.10.20 3923 4024 11 1955 2614 27	39 41 19	10.10.20 985 125 11 959 693 27	913 X12. 4048 4277 11 1963 2736 27		total_s 75979 52256 223 39691 44077 457	sales	

str(merged_data)

```
'data.frame':
                 500 obs. of 37 variables:
$ Style
2 7 8 6 ...
                 : Factor w/ 12 levels "0","1","2","3",..: 1 2 3 4 5 6
```

: Factor w/ 5 levels "0","1","2","3",..: 1 1 2 3 1 1 \$ Price

```
3 3 3 1 ...
                  : num 4.6 0 0 4.6 4.5 0 0 0 0 0 ...
 $ Rating
 $ Size
                  : Factor w/ 5 levels "0", "1", "2", "3", ...: 1 2 2 2 1 1
3 4 4 4 ...
                  : Factor w/ 4 levels "0", "1", "2", "3": 1 1 2 3 1 1 1 2
$ Season
3 1 ...
                  : Factor w/ 16 levels "0","1","2","3",..: 1 1 1 1 2
 $ NeckLine
1 1 2 2 ...
                : Factor w/ 13 levels "0","1","2","3",..: 1 2 3 3 4 1
 $ SleeveLength
3 5 5 1 ...
                  : Factor w/ 5 levels "0", "1", "2", "3", ...: 1 2 2 2 2 1
$ waiseline
3 2 1 2 ...
 $ Material
                  : Factor w/ 24 levels "0", "1", "2", "3", ...: 1 2 3 4 5 1
6 3 6 7 ...
                  : Factor w/ 18 levels "0","1","2","3",...: 1 2 2 1 1 2
$ FabricType
2 3 3 1 ...
 $ Decoration
                  : Factor w/ 24 levels "0", "1", "2", "3", ...: 1 1 2 3 4 2
2 5 6 2 ...
                  : Factor w/ 13 levels "0", "1", "2", "3", ...: 1 1 2 2 3 2
 $ Pattern.Type
4 5 4 5 ...
 $ Recommendation: Factor w/ 2 levels "1","0": 1 2 2 1 2 2 2 1 1 ...
 $ X29.8.2013
                         2114 151 6 1005 996 ...
                  : num
 $ X31.8.2013
                         2274 275 7 1128 1175 ...
                  : num
 $ X2.9.2013
                  : num
                         2491 570 7 1326 1304 ...
 $ X4.9.2013
                         2660 750 7 1455 1396 ...
                  : num
                         2727 813 8 1507 1432 ...
 $ X6.9.2013
                 : num
 $ X8.9.2013
                         2887 1066 8 1621 1559 ...
                 : num
 $ X10.9.2013
                         2930 1164 9 1637 1570 ...
                 : num
                         3119 1558 10 1723 1638 ...
 $ X12.9.2013
                 : num
 $ X14.9.2013
                         3204 1756 10 1746 1655 ...
                 : num
                         3277 1878 10 1783 1681 ...
 $ X16.9.2013
                 : num
                         3321 1985 10 1796 1743
 $ X18.9.2013
                 : num
                         3386 2106 10 1812 1824 ...
 $ X20.9.2013
                 : num
                         3479 2454 11 1845 1919
 $ X22.9.2013
                 : num
 $ X24.9.2013
                         3554 2710 11 1878 2032 ...
                  : num
                         3624 2942 11 1892 2156 ...
 $ X26.9.2013
                  : num
 $ X28.9.2013
                         3706 3258 11 1914 2252 ...
                 : num
                         3746 3354 11 1924 2312
 $ X30.9.2013
                  : num
                         3795 3475 11 1929 2387
 $ X2.10.2013
                 : num
                         3832 3654 11 1941 2459
 $ X4.10.2013
                  : num
 $ X6.10.2013
                         3897 3911 11 1952 2544
                 : num
 $ X8.10.2013
                         3923 4024 11 1955 2614
                  : num
 $ X10.10.2013
                         3985 4125 11 1959 2693
                  : num
 $ X12.10.2013
                         4048 4277 11 1963 2736
                  : num
                        75979 52256 223 39691 44077 ...
 $ total sales
                  : num
# spliting dataset
set.seed(100)
spl = sample.split(merged data$Recommendation, SplitRatio = 0.7)
```

```
train = subset(merged_data, spl==TRUE)
test = subset(merged_data, spl==FALSE)
print(dim(train)); print(dim(test))
[1] 350  37
[1] 150  37
```

Classification - Predict recommendation

First model (Naive Bayes)

```
# naive bayes model
naive model = naiveBayes(Recommendation ~.,data = train) # build model
confusionMatrix(train$Recommendation,predict(naive model,train),positi
ve = '1') # create confusion Matrix
print('----')
naive predict = predict(naive model,test) # predict test set
table(naive_predict,test$Recommendation) # create table
Confusion Matrix and Statistics
         Reference
Prediction 1
        1 106 41
        0 66 137
              Accuracy : 0.6943
                95% CI : (0.6431, 0.7422)
   No Information Rate: 0.5086
   P-Value [Acc > NIR] : 1.352e-12
                 Kappa : 0.3869
Mcnemar's Test P-Value: 0.02033
           Sensitivity: 0.6163
           Specificity: 0.7697
        Pos Pred Value : 0.7211
        Neg Pred Value: 0.6749
            Prevalence: 0.4914
        Detection Rate: 0.3029
  Detection Prevalence: 0.4200
     Balanced Accuracy: 0.6930
       'Positive' Class : 1
[1] "-----"
```

```
naive_predict 1 0
           1 33 37
           0 30 50
Second model (Support Vector Machine)
# Support vector machine
svm model = svm(Recommendation ~.,train) # build model
confusionMatrix(train$Recommendation,predict(svm model),positive =
'1')# create confusion Matrix
print('----')
svm predict = predict(svm_model,test) # predict test set
table(svm predict,test$Recommendation) # create table
Confusion Matrix and Statistics
         Reference
Prediction 1 0
            6 141
        1
        0 0 203
              Accuracy : 0.5971
                95% CI: (0.5437, 0.6489)
   No Information Rate: 0.9829
   P-Value [Acc > NIR] : 1
                 Kappa : 0.047
Mcnemar's Test P-Value : <2e-16
           Sensitivity: 1.00000
           Specificity: 0.59012
        Pos Pred Value: 0.04082
        Neg Pred Value : 1.00000
            Prevalence: 0.01714
        Detection Rate: 0.01714
  Detection Prevalence: 0.42000
     Balanced Accuracy: 0.79506
       'Positive' Class : 1
[1] "-----"
svm_predict 1 0
         1 0 2
         0 63 85
```

Third model (Random Forest)

```
# Random Forest
randomForest model = randomForest(x = train, y =
train$Recommendation,ntree =800)# build model
confusionMatrix(train$Recommendation,predict(randomForest model),posit
ive = '1') # create confusion Matrix
print('----')
randomForest predict = predict(randomForest model,test) # predict test
table(randomForest predict, test$Recommendation )# create table
Confusion Matrix and Statistics
         Reference
Prediction 1 0
        1 147
        0 0 203
              Accuracy: 1
                95% CI: (0.9895, 1)
   No Information Rate: 0.58
   P-Value [Acc > NIR] : < 2.2e-16
                 Kappa: 1
Mcnemar's Test P-Value : NA
           Sensitivity: 1.00
           Specificity: 1.00
        Pos Pred Value : 1.00
        Neg Pred Value : 1.00
            Prevalence: 0.42
        Detection Rate: 0.42
  Detection Prevalence: 0.42
     Balanced Accuracy: 1.00
       'Positive' Class : 1
[1] "----"
randomForest predict 1 0
                  1 63 0
                  0 0 87
```

Regresstion model

Regression (total sales and (Style+Season+Material+Price))

```
# regression (total sales and (Style+Season+Material+Price))
regressor Sales = lm(formula = total sales ~
Style+Season+Material+Price, data = train) # build model
summary(regressor_Sales) # print model summary
plot(regressor Sales, pch = 16, col = "blue") # Plot the results
abline(regressor Sales) # Add regression line
Call:
lm(formula = total sales ~ Style + Season + Material + Price,
    data = train)
Residuals:
   Min
           10 Median
                          30
                                Max
- 19944
        -6145 -2112
                        1336 108668
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                   4.716 3.63e-06 ***
(Intercept)
             11642.9
                          2468.6
Style1
             -4756.9
                          2019.4
                                 -2.356
                                            0.0191 *
Style2
                          3733.0
                                   0.729
              2720.4
                                            0.4667
Style3
                                 -0.566
             -2242.7
                          3960.1
                                            0.5716
Style4
             -4555.6
                          3039.3
                                  -1.499
                                            0.1349
Style5
             -7081.8
                          3740.8
                                  -1.893
                                            0.0593 .
Style6
             -6932.0
                          6056.4
                                  -1.145
                                            0.2533
Style7
            -11758.8
                         12815.6
                                  -0.918
                                            0.3596
                          3213.0
                                  -1.282
Style8
             -4119.9
                                            0.2007
                          4069.5
Style9
             -3267.7
                                  -0.803
                                            0.4226
             -9315.9
                         12772.5
                                  -0.729
Style11
                                            0.4663
Season1
              -873.4
                          2346.7
                                  -0.372
                                            0.7100
Season2
              2392.6
                          1910.8
                                   1.252
                                            0.2115
Season3
              -651.9
                          1953.2
                                 -0.334
                                            0.7388
                          7521.3
Material1
             12390.3
                                   1.647
                                            0.1005
               795.6
                          2245.2
                                   0.354
                                            0.7233
Material2
Material3
             -2392.4
                          3317.6
                                  -0.721
                                            0.4714
                                            0.2469
Material4
              3645.2
                          3142.3
                                   1.160
Material5
             -2154.0
                          1885.9
                                  -1.142
                                            0.2543
                                  -0.652
                                            0.5151
Material6
             -3599.0
                          5523.1
Material7
             -2414.3
                          9136.3
                                  -0.264
                                            0.7918
Material8
             -2431.6
                          9074.4
                                  -0.268
                                            0.7889
Material9
              1963.7
                          7593.4
                                   0.259
                                            0.7961
Material10
             -6027.6
                          5060.2
                                  -1.191
                                            0.2345
              -592.8
                          7479.6
                                  -0.079
Material11
                                            0.9369
                                  -0.372
Material12
             -1596.6
                          4288.7
                                            0.7099
Material13
             -2840.7
                          7505.8
                                  -0.378
                                            0.7053
Material14
             -7007.3
                         12938.8
                                  -0.542
                                            0.5885
```

```
Material15
            -2251.5
                       12852.1 -0.175
                                         0.8611
                       12741.0 -0.513
Material16
            -6536.3
                                         0.6083
Material17
            -5259.4
                        9114.9 -0.577
                                        0.5644
Material19
            -1822.2
                       12776.2 -0.143
                                        0.8867
Material20
            -7964.3
                       12800.2 -0.622
                                        0.5343
Material23
            -3010.3
                        9273.1 -0.325
                                        0.7457
Price1
            -1941.8
                        3912.9 -0.496
                                        0.6201
Price2
              371.2
                        1628.8
                                 0.228
                                        0.8199
            -4102.3
                        3571.7
                                -1.149
                                        0.2516
Price3
Price4
            -8178.1
                        4050.9 -2.019
                                        0.0444 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 12560 on 312 degrees of freedom
Multiple R-squared: 0.09177, Adjusted R-squared: -0.01594
F-statistic: 0.852 on 37 and 312 DF, p-value: 0.7162
Warning message:
"not plotting observations with leverage one:
```

8, 68, 153, 162, 202, 257, 271"

Fitted values Im(total_sales ~ Style + Season + Material + Price)

Warning message:

"not plotting observations with leverage one:

8, 68, 153, 162, 202, 257, 271"

Warning message in abline(regressor_Sales):
"only using the first two of 38 regression coefficients"

Regression (total sales and Rating)

```
# regression (total sales and Rating)
regressor_Rating = lm(formula = total_sales ~ Rating, data = train) #
build model
summary(regressor_Rating) # print model summary
plot(regressor_Rating, pch = 16, col = "blue") # Plot the results
abline(regressor_Rating) # Add regression line

Call:
lm(formula = total_sales ~ Rating, data = train)
```

```
Residuals:
```

Min 10 Median 30 Max -9076 -6020 -2686 812 114971

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2742.8 1305.0 2.102 0.0363 * Rating 1282.6 323.7 3.962 9.02e-05 ***

- - -

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12210 on 348 degrees of freedom Multiple R-squared: 0.04316, Adjusted R-squared: 0.04041

F-statistic: 15.7 on 1 and 348 DF, p-value: 9.022e-05


```
# evaluation
original = test$total_sales
pred = predict(regressor_Rating,test)
predicted = pred
d = original-predicted

mse = mean((d)^2) # MSE
mae = mean(abs(d)) # MAE
rmse = sqrt(mse) # RMSE
R2 = 1-(sum((d)^2)/sum((original-mean(original))^2)) # R^2
```

cat(" MAE:", mae, "\n", "MSE:", mse, "\n", "RMSE:", rmse, "\n", "Rsquared:", R2)

MAE: 7784.569 MSE: 274959077 RMSE: 16581.89

R-squared: 0.04042806