Homework 10, Section 2.1; 6, 1923, 27, 28

Alex Gordon

February 14, 2014

Homework

6.

$$\begin{bmatrix} -5 & 22 \\ 12 & -22 \\ 3 & -2 \end{bmatrix}$$

19.

 $Ab_3 = ab_1 + Ab_2$ since A = A. Therefore $b_3 = b_1 + b_2$

20.

 $ifAb_1 = Ab_2$, then if you divide both sides by A then $b_1 = b_2$

21.

Let bp be the last column of B. By hypothesis, the last column of AB is zero. Thus, $Ab_p = 0$. However, b_p is not the zero vector, because B has no column of zeros. Thus, the equation $Ab_p = 0$ is a linear dependence relation among the columns of A, and so the columns of A are linearly dependent.

22.

If the columns of B are linearly dependent, then there exists a nonzero vector \mathbf{x} such that $B_x = 0$. From this, A(Bx) = A0 and (AB)x = 0 (by associativity). Since \mathbf{x} is nonzero, the columns of AB must be linearly dependent.

23.

If x satisfies Ax = 0, then CAx = C0 = 0 and so $I_nx = 0$ and x = 0. This means that the equation Ax = 0 has no free variables so every variable is a basic variable and every column of A is a pivot column meaning each pivot is in a different row, A must have at least as many rows as columns.

27.

$$uv^{T} = \begin{bmatrix} -2a & -2b & -2c \\ 3a & 3b & 3c \\ -4a & -4b & -4c \end{bmatrix}$$
$$vu^{T} = \begin{bmatrix} -2a & 3a & -4a \\ -2b & 3b & -4b \\ -2c & 3c & -4c \end{bmatrix}$$

28.

By Theorem 3,
$$(uv^T)^T = (v^T)^T u^T = vu^T$$
.