Artificial Intelligence

Taro Sekiyama

National Institute of Informatics (NII) sekiyama@nii.ac.jp

Support vector machines (SVMs)

- A supervised learning algorithm applicable to both classification and regression problems
- Ex: classification
 - \square For input (x_1, x_2)
 - If $x_2 \le ax_1 + b$, the label should be \checkmark
 - If $x_2 \ge ax_1 + b$, the label should be \times

Pros and Cons

- Advantage
 - Works well for datasets with highly-dimensional features (i.e., the large # of features)
 - Ex: texts (1M~ features) and images (28×28×28×28 features for RGBA images)
 - Able to handle non-linearly separable datasets
- Disadvantage
 - Computationally hard to handle a huge dataset

SVMs in this lecture

- Supposed to be used as binary classifiers
 - Making it easier to investigate their mathematical aspects
 - Able to be extended to multi-class classifiers and regressors
- Dataset consists of data points (x_i, y_i) for $x_i \in \mathbb{R}^n$ and $y_i \in \{1, -1\}$

Drawing a splitting line for 2-dim space

Drawing a splitting plane for 3-dim space

Drawing a splitting plane for 3-dim space

- Drawing a splitting hyperplane for n-dim space
 - □ A hyperplane of n-dim space is a (n-1)-dim space
 - Hyperplanes of 3-dim space are planes
 - Hyperplanes of 2-dim space are lines
 - Hyperplanes of 1-dim space are points

Hyperplane

A hyperplane of n-dim space is expressed by:

$$W \cdot X + b = 0$$

- $\square X \in \mathbb{R}^n$: input features (with n-dimension)
- $\ \square\ W \in \mathbb{R}^n, b \in \mathbb{R}$: parameters to determine the shape of the hyperplane
- $\ \square \ W \cdot X$ is the inner product of X and W
- Ex: for 2-dim space

$$W \cdot X + b = 0$$

for
$$X \in \mathbb{R}^2$$
 and $W \in \mathbb{R}^2$

Hyperplane

A hyperplane of n-dim space is expressed by:

$$W \cdot X + b = 0$$

- $\square X \in \mathbb{R}^n$: input features (with *n*-dimension)
- \square $W \in \mathbb{R}^n$, $b \in \mathbb{R}$: parameters to determine the shape of the hyperplane
- $\ \square \ W \cdot X$ is the inner product of X and W
- Ex: for 2-dim space

$$w_1 X_1 + w_2 X_2 + b = 0$$

 $_{\square}$ Another rep. of the standard form $X_2=lpha X_1+eta$

Classification by hyperplane

- Data points are classified by separating hyperplanes
- A hyperplane is separating if and only if, for all the training data points (X, y),

$$\square W \cdot X + b \ge 0 \text{ if } y = 1$$

$$\square W \cdot X + b \le 0 \text{ if } y = -1$$

Classification by hyperplane

- Data points are classified by separating hyperplanes
- A hyperplane is separating if and only if, for all the training data points (X, y),

$$\Box y(W \cdot X + b) \ge 0$$

Questions

- 1. Which separating hyperplane is "optimal"?
- 2. How do we identify the optimal separating hyperplane?
- 3. How do we handle datasets for which there is no separating hyperplane?

Questions

- 1. Which separating hyperplane is "optimal"?
- 2. How do we identify the optimal separating hyperplane?
- 3. How do we handle datasets for which there is no separating hyperplane?

Motivation of Q1

- There can be multiple separating hyperplanes
- We need a metric to measure "goodness" of hyperplanes

Hypothesis

Data points around a y-labeled point are likely to be labeled with y

Hypothesis

Data points around a y-labeled point are likely to be labeled with y

Hypothesis

Data points around a y-labeled point are likely to be labeled with y

To predict y for as many points around a training point with label y as possible

To find a separating hyperplane s.t. $y(W \cdot x + b) \ge 0$ holds as many points with features x around a training point labeled with y as possible

 \approx Predicting y for point x

- Q. When is the # of such points maximized?
- A. When the distance between the hyperplane and the points closest to the hyperplane is maximized

To find a separating hyperplane s.t. the distance d between the hyperplane and the points closest to the hyperplane are maximized X_2 Margin

Support vectors

To find a separating hyperplane s.t. its margin is maximized

How can the margin be calculated?

$$d = d_2 - d_1$$

- $\Box d_2$: the distance btw the origin and \mathcal{H}_2
- $\square d_1$: the distance btw the origin and \mathcal{H}_1

Distance between a hyperplane and a point

- Given: $W, x \in \mathbb{R}^n, b \in \mathbb{R}$
- What we want to calculate: distance $\|\alpha\|$
- Facts:

$$\square \frac{1}{\|\alpha\|} \alpha = \frac{1}{\|W\|} W$$

- $\square W \cdot \beta + b = 0$
- $\square \beta = x \alpha$
- $\|\alpha\| = \frac{1}{\|W\|} (W \cdot x + b)$

$$d = d_2 - d_1$$

- $\Box d_2$: the distance btw the origin and \mathcal{H}_2
- $\square d_1$: the distance btw the origin and \mathcal{H}_1

■ How can the distance d be calculated?

$$d = d_2 - d_1$$

$$\square d_2 = \frac{1}{\|W\|} (W \cdot \mathbf{0} + b)$$

 $\square d_1$: the distance btw the origin and \mathcal{H}_1

$$d = d_2 - d_1$$

$$\square d_2 = \frac{1}{\|W\|} (W \cdot \mathbf{0} + b)$$

$$\Box d_1 = \frac{1}{\|W\|} (W \cdot \mathbf{0} + b - 1)$$

$$d = \frac{1}{\|W\|}$$

$$\square d_2 = \frac{1}{\|W\|} (W \cdot \mathbf{0} + b)$$

$$\Box d_1 = \frac{1}{\|W\|} (W \cdot \mathbf{0} + b - 1)$$

To find a separating hyperplane s.t.

the margin =
$$\frac{2}{\|W\|}$$

is maximized

■ To find a separating hyperplane s.t.

||W||

is *minimized*

To find a separating hyperplane s.t.

$$\frac{1}{2}||W||^2$$

is *minimized*

$$\approx y_i(W \cdot x_i + b) \ge 1$$

 $\approx y_i(W \cdot x_i + b) \ge 1$ for all the training points (x_i, y_i)

 \blacksquare To find W and b s.t.

$$\frac{1}{2}||W||^2$$

is minimized, subject to

$$y_i(W \cdot x_i + b) \ge 1$$

for all the training points (x_i, y_i)

Questions

- 1. Which separating hyperplane is "optimal"?
- 2. How do we identify the optimal separating hyperplane?
- 3. How do we handle datasets for which there is no separating hyperplane?

Optimization

- Finding an optimal separating hyperplane is a quadratic optimization problem
- We can solve this problem by reducing it to a Lagrangian problem
 - This lecture skips the details of its mathematical development
 - □ References:
 - C. Bishop. "Pattern Recognition and Machine Learning" Springer, 2011

Optimization problem...

 \blacksquare To find W and b s.t.

$$\frac{1}{2}||W||^2$$

is minimized, subject to

$$y_i(W \cdot x_i + b) \ge 1$$

for all the training points (x_i, y_i)

... Reduces to

■ Finding a vector of *Lagrangian multipliers* $a \in \mathbb{R}^m$ s.t.

$$\sum_{i} a_i - \frac{1}{2} \sum_{i} \sum_{j} a_i a_j y_i y_j (x_i \cdot x_j)$$

is maximized, subject to

$$a_i \ge 0$$
 for any $i = 0, \dots, m$
$$\sum_i a_i y_i = 0$$

- $\square m$: the number of training data points
- Once such a vector a is found:

$$\square W = \sum_{i} a_{i} y_{i} x_{i}$$

$$\Box b = y_i - \sum_{(x_i, y_i) \in \mathcal{S}} a_j y_j (x_i \cdot x_j) \text{ for } \mathcal{S} = \{(x_k, y_k) \mid a_k > 0\} \text{ and } (x_i, y_i) \in \mathcal{S}\}$$

Time complexity

- The order of the time complexity to find the optimal Lagrangian multipliers a is $O(m^3)$
 - □ The time complexity of the original optimization problem is $O(n^3)$
 - □ It works well for datasets where m (= the # of data points) < n (= the # of features)

Questions

- 1. Which separating hyperplane is "optimal"?
- 2. How do we identify the optimal separating hyperplane?
- 3. How do we handle datasets for which there is no separating hyperplane?
 - 1. Soft margin
 - 2. Kernel tricks

Problem

- In practice, data points may be unable to be clearly separated by any hyperplane
 - Data points involve noise
 - □ There may be outliers

Solution: soft margin

To introduce so-called slack variables $\zeta_i \ge 0$ $(i = 1, \dots, m)$ that denote the errors of points (x_i, y_i)

Optimal hyperplanes should satisfy $y_i(W \cdot x_i + b) = 1 - \zeta_i$ $\mathcal{H}_{2}: W \cdot X + b = 1$ $\mathcal{H}_2: W \cdot X + b = -1$

43

Formulation

■ To find W and b, for given $C \ge 0$, s.t.

$$\frac{1}{2}||W||^2 + C\sum_{i} \zeta_{i}$$

is minimized, subject to

$$y_i(W \cdot x_i + b) \ge 1 - \zeta_i$$

for all the training points (x_i, y_i)

- C is a hyperparameter to control how erroneous data points are allowed
 - \square If C=0, it is the same as the problem of finding a separating hyperplane

Questions

- 1. Which separating hyperplane is "optimal"?
- 2. How do we identify the optimal separating hyperplane?
- 3. How do we handle datasets for which there is no separating hyperplane?
 - 1. Soft margin
 - 2. Kernel tricks

Problem

The pattern of data points cannot be represented by linear functions

General solution

Transforming a feature vector into more highly-dimensional space

Kernel trick

- Embedding the transformation of vectors into the optimization problem
- Benefits
 - Efficiency: it is enough to transform only support vectors
 - Enable transformation into the infinitelydimensional space

Kernel

The kernel K_{ϕ} of $\phi: \mathbb{R}^n \to \mathbb{R}^m$ is:

$$K_{\phi}(x, x') = \phi(x) \cdot \phi(x')$$

for $x, x' \in \mathbb{R}^n$

- Exampels:
 - \Box Linear kernel: $\phi = x \mapsto x, K_{\phi}(x, x') = x \cdot x'$
 - □ Polynominal kernel:

$$K^{d,c}(x,x') = (x \cdot x + c)^d$$

Off-the-shelf Kernels

Linear kernel

$$\phi = x \mapsto x$$
$$K_{\phi}(x, x') = x \cdot x'$$

Polynomial kernel

$$K^{d,c}(x,x') = (x \cdot x + c)^d$$

 $\Box \phi(x)$ returns a vector involving all the polynomial terms w.r.t. x_1, \dots, x_n (degree d and constant term c)

Off-the-shelf Kernels

RBF (radial basis function) kernel

$$K_{\phi}(x, x') = e^{-\gamma ||x - x'||}$$

 $\Box \phi(x)$ returns a vector in the infinitely-dimensional space \mathbb{R}^{∞}

x is replaced with $\phi(x)$

Optimization problem

 \blacksquare To find W and b s.t.

$$\frac{1}{2}||W||^2$$

is minimized, subject to

$$y_i(W \cdot \phi(x_i) + b) \ge 1$$

for all the training points $(\phi(x_i), y_i)$

x is replaced with $\phi(x)$

... Reduces to

■ Finding a vector of Lagrangian multipliers $a \in \mathbb{R}^m$ s.t.

$$\sum_{i} a_i - \frac{1}{2} \sum_{i} \sum_{j} a_i a_j y_i y_j (\phi(x_i) \cdot \phi(x_j))$$

is maximized, subject to

$$a_i \ge 0$$
 for any $i = 0, \dots, m$
$$\sum_i a_i y_i = 0$$

- $\square m$: the number of training data points
- Once such a vector *a* is found:

$$\square W = \sum_{i} a_{i} y_{i} \phi(x_{i})$$

$$\square b = y_i - \sum_{(x_i, y_i) \in \mathcal{S}} a_j y_j(\phi(x_i) \cdot \phi(x_j)) \text{ for } \mathcal{S} = \{(\phi(x_k), y_k) \mid a_k > 0\} \text{ and } (\phi(x_i), y_i) \in \mathcal{S}\}$$

$x_i \cdot x_j$ is replaced with $K_{\phi}(x_i, x_2)$

... Reduces to

■ Finding a vector of Lagrangian multipliers $a \in \mathbb{R}^m$ s.t.

$$\sum_{i} a_i - \frac{1}{2} \sum_{i} \sum_{j} a_i a_j y_i y_j K_{\phi}(x_i, x_j)$$

is maximized, subject to

$$a_i \ge 0$$
 for any $i = 0, \dots, m$
$$\sum_i a_i y_i = 0$$

- $\square m$: the number of training data points
- Once such a vector *a* is found:

$$\square W = \sum_{i} a_i y_i \phi(x_i)$$

$$\Box b = y_i - \sum_{(x_j, y_j) \in \mathcal{S}} a_j y_j K_{\phi}(x_i, x_j) \text{ for } \mathcal{S} = \{ (\phi(x_k), y_k) \mid a_k > 0 \} \text{ and } (\phi(x_i), y_i) \in \mathcal{S} \}$$

Kernel examples

Linear kernel

$$\phi = x \mapsto x$$
$$K_{\phi}(x, x') = x \cdot x'$$

Polynomial kernel

$$K^{d,c}(x,x') = (x \cdot x + c)^d$$

 $\Box \phi(x)$ returns a vector involving all the polynomial terms w.r.t. x_1, \dots, x_n (degree d and constant term c)

... Reduces to

■ Finding a vector of *Lagrangian multipliers* $a \in \mathbb{R}^m$ s.t.

$$\sum_{i} a_i - \frac{1}{2} \sum_{i} \sum_{j} a_i a_j y_i y_j (x_i \cdot x_j)$$

is maximized, subject to

$$a_i \ge 0$$
 for any $i = 0, \dots, m$
$$\sum_i a_i y_i = 0$$

- $\square m$: the number of training data points
- Once such a vector a is found:

$$\square W = \sum_{i} a_{i} y_{i} x_{i}$$

$$\Box b = y_i - \sum_{(x_i, y_i) \in \mathcal{S}} a_j y_j (x_i \cdot x_j) \text{ for } \mathcal{S} = \{(x_k, y_k) \mid a_k > 0\} \text{ and } (x_i, y_i) \in \mathcal{S}\}$$

Questions

- 1. Which separating hyperplane is "optimal"?
- 2. How do we identify the optimal separating hyperplane?
- 3. How do we handle datasets for which there is no separating hyperplane?

Notice

- Next week is for programming
 - Assignments will be notified via Course N@vi by next week
 - □ The room will beE-room, 3rd floor, Building 63
 - You need to bring your laptop
- (Common) Programming weeks are for making opportunities to receive questions
 - No new information will be provided
 - □ No attendance will be taken