Modeling mass vs. length cubed

ch["length_cm_cubed"] = perch["length_cm"] ** 3 mdl_perch = ols("mass_g ~ length_cm_cubed", data=perch).fit() ength_cm_cubed 0.016796

Coefficient of Determination

- Sometimes called "r-squared" or "R-squared".
- The proportion of the variance in the response variable that is predictable from the explanatory variable
 - 1 means a perfect
 - 0 means the worst possible

Lasso regression in scikit-learn

```
from sklearn.linear_model import Lasso
```

```
diabetes_df = pd.read_csv('diabetes.csv', index_col = 0)
diabetes_df = diabetes_df[diabetes_df['bmi'] != 0]
diabetes df = diabetes df[diabetes df['glucose'] != 0]
X = diabetes_df.drop('glucose', axis=1).values
v = diabetes df['glucose'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
scores = []
for alpha in [0.01,1.0,10.0, 20.0, 50.0]:
  lasso = Lasso(alpha=alpha)
  lasso.fit(X_train, y_train)
lasso_pred = lasso.predict(X_test)
  scores.append(lasso.score(X_test, y_test))
```

Quantiles

- Quantiles, also called percentiles, split up the data into some number of equal parts.
- · Here, we call np.quantile, passing in the column of interest, followed by point-5. This gives us 10.1 hours, so 50% of mammals in the dataset sleep less than 10.1 hours a day, and the other 50% sleep more than 10.1 hours, so this is exactly the same as the median.

Quartiles

• We can also pass in a list of numbers to get multiple quantiles at once. Here, we split the data into 4 equal parts. These are also called quartiles. This means that 25% of the data is between 1.9 and 7.85, another 25% is between 7.85 and 10.10, and so on.

```
# Calculate total co2_emission per country: emissions_by_country
emissions_by_country = food.groupby('country')['co2_emission'].sum()
# Compute the first and third quantiles and IQR of emissions_by_count
q1 = np.quantile(emissions_by_country, 0.25)
q3 = np.quantile(emissions_by_country, 0.75)
inc_eal_all_
                                           er and upper cutoffs for outliers
 lower = q1 - 1.5 * iqr
upper = q3 + 1.5 * iqr
# Subset emissions_by_country to find outliers outliers = emissions_by_country[(emissions_by_print(outliers)
                       emissions_by_country[(emissions_by_country < lower) | (emissions_by_country > upper)]
country
Argentina 2172.4
Name: co2_emission, dtype: float64
```

Lasso regression for feature selection

- · Lasso can select important features of a dataset
- · Shrinks the coefficients of less important features to zero
- · Features not shrunk to zero are selected by lasso

 $\begin{array}{ll} \mbox{diabetes_df = pd.read_csv('diabetes.csv', index_col = 0)} \\ \mbox{diabetes_df = diabetes_df[diabetes_df['bmi'] != 0]} \\ \mbox{diabetes_df = diabetes_df[diabetes_df['glucose'] != 0]} \\ \end{array}$ X = diabetes_df.drop('glucose', axis=1).values y = diabetes_df['glucose'].values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

names = diabetes_df.drop('glucose', axis=1).columns names = diabetes_di.orop(gluci lasso = Lasso(alpha=0.1) lasso_coef = lasso.fit(X,y).coef_ plt.bar(names, lasso_coef) plt.xticks(rotation=45)

Which measure (mean vs. median) to use?

When data is skewed, the mean and median are different. The mean is pulled in the direction of the skew, so it's lower than the median on the left-skewed data, and higher than the median on the right-skewed data Because the mean is pulled around by the extreme values, it's better to use the median since it's less affected by outliers.

Measures of spread

- · What is spread?
 - Spread is just what it sounds like it describes how spread apart or close together the data points are. Just like measures of center, there are a few different measures of spread.
- Variance measures the average distance from each data point to the data's mean.

Standard deviation

· The standard deviation is another measure of spread, calculated by taking the square root of the variance. It can be calculated using np.std. Just like np.var, we need to set ddof to 1. The nice thing about standard deviation is that the units are usually easier to understand since they're not squared. It's easier to wrap your head around 4 and a half hours than 19-point-8 hours squared.

Outliers

Outlier: data point that is substantially different from the others

How do we know what a substantial difference is? A data point is an outlier if:

- data $< \Omega1 1.5 \times IOR$ or
- data $> Q3 + 1.5 \times IQR$

Continuous distributions

- We can use discrete distributions to model situations that involve discrete or countable variables
- · Let's start with an example. The city bus arrives once every twelve minutes, so if you show up at a random time, you could wait anywhere from 0 minutes if you just arrive as the bus pulls in, up to 12 minutes if you arrive just as the bus leaves.

Waiting for the bus 44

Probability still = area

- Now that we have our distribution, let's figure out what the probability is that we'll wait between 4 and 7 minutes. Just like with discrete distributions, we can take the area from 4 to 7 to calculate probability.
- . The width of this rectangle is 7 minus 4 which is 3. The height is one twelfth
- Multiplying those together to get area, we get 3/12 or 25%.

Uniform distribution in Python

- Let's use the uniform distribution in Python to calculate the probability of waiting 7 minutes or less. We need to import uniform from scipy.stats. We can call uniform.cdf and pass it 7, followed by the lower and upper limits, which in our case is 0 and 12. The probability of waiting less than 7 minutes is about 58%
- If we want the probability of waiting more than 7 minutes, we need to take 1 minus the probability of waiting less than 7 minutes.

