기초통계 – 가설검정 (Z-test)

□ A/B 테스트

- □ A/B 테스트
 - ✓ 두 싸이트 비교
 - Treatment Group (B)
 - Control Group (A)
 - ✓ 우연히(by chance) B그룹이 A그룹보다 전환율이 좋았던 것일까?

- □ 가설검정(Hypothesis Testing)
 - ✓ 평균에 대한 가설 검정
 - ✓ 잘못된 가정: 대한민국 성인의 키는 크다
 - ✓ 올바른 가정: 대한민국 성인의 평균 키는 170cm 이다.

□ 귀무가설 및 대립가설

- 귀무가설(H₀)
 - ✓ 내용: 대한민국 성인의 평균 키는 170cm이다.
 - ✓ 통계적 표시법: H₀: µ = 170
- 대립가설(H₁)
 - √ 내용
 - 평균 키는 170이 아니다. = 제1형 = 양측검정
 - 평균 키는 170보다 작다. = 제2형 = 단측검정 = 좌측 검정
 - 평균 키는 170보다 크다. = 제3형 = 단측검정 = 우측 검정

□ 귀무가설 및 대립가설

- 귀무가설(H₀)
 - ✓ 내용: 대한민국 성인의 평균 키는 170cm이다.
 - ✓ 통계적 표시법: H₀: µ = 170
- 대립가설(H₁)
 - √ 내용
 - 평균 키는 170이 아니다. = 제1형 = Two-Sided Test, Two Tailed Test
 - 평균 키는 170보다 작다. = 제2형 = One-Sided Test = Lower Tailed Test
 - 평균 키는 170보다 크다. = 제3형 = One-Sided Test = Upper Tailed Test

- □ Z-검정 통계량
 - Z값

$$Z = \frac{\overline{X} - \mu}{SE}$$

○ 용어정리

✓ µ: 모평균

✓ X̄: 표본평균

✓ SE: 표준오차

✓
σ : 표준편차 (모집단)

✓ n: 모집단의 크기

○ SE(표준오차)

$$SE = \frac{\sigma}{\sqrt{n}}$$

- □ Z 통계량 예제
 - ✓ 2015년, 대한민국 만 7세 여자 어린이의 평균 키는 120cm임
 - ✓ 2020년, 대한민국 만 7세 여자 어린이 30명의 평균 키는 125cm (표준편차 15)임.
 - Q. 2020년 만 7세 여자 어린이의 평균 키는 2015년과 다른가요?

□ Z 통계량 예제

- ✓ 2015년, 대한민국 만 7세 여자 어린이의 평균 키는 120cm임
- ✓ 2020년, 대한민국 만 7세 여자 어린이 30명의 평균 키는 125cm (표준편차 15)임.
- Q. 2020년 만 7세 여자 어린이의 평균 키는 2015년과 다른가요?
- (1) 2020년 만 7세 여자 어린이의 Z-검정 통계량을 구하세요.

$$SE = \frac{\sigma}{\sqrt{n}}$$

$$Z = \frac{\overline{X} - \mu}{SE}$$

$$SE = \frac{15}{\sqrt{30}} = 2.738613$$

$$Z = \frac{125 - 120}{2.738613} = 1.825742$$

○ 유의수준

 \checkmark 제 1종 오류를 범할 확률의 최대 허용 한계 (유의수준 α)

<표- 가설 선택 시 발생할 수 있는 오류>

실제상황 통계적 결정	H ₀	H ₁
H ₀ 채택	올바른 결정 확률 = 1 - α	제 2종 오류 <i>β</i>
H ₀ 기각	제 1종 오류 α	올바른 결정 확률 = 1 - β

○ 유의수준

 \checkmark 제 1종 오류를 범할 확률의 최대 허용 한계 (유의수준 α)

<H₀: 이번 정부 정책은 효과가 없다>

실제상황 통계적 결정	정책 효과 없음	정책 효과 있음
H ₀ 채택	평상 업무 또는 새로운 제안 고려	정책 미 채택 = 예산 집행 (X) = 예산 낭비 (X)
H ₀ 기각	정책 채택 = 예산 집행 (O) = 예산 낭비 (O)	정책 채택 = 예산 집행 = 정책 효과 ↑

- □ 가설 선택의 기준 수립
 - 기각역
 - ✓ 대립가설은 크게 3가지로 구분됨
 - 만 7세 여자 어린이 키의 평균은 120cm가 아니다
 - 만 7세 여자 어린이 키의 평균은 120cm보다 크다
 - 만 7세 여자 어린이 키의 평균은 120cm보다 작다

- 기각역
 - ✓ 대립가설은 크게 3가지로 구분됨
 - 만 7세 남자 어린이 키의 평균은 120cm가 아니다 = 양측검정

○ 만 7세 남자 어린이 키의 평균은 120cm가 아니다 = 양측검정

자유도가 30인 z-분포에서 유의수준 lpha=0.05일 때의 기각역

- □ 가설 선택의 기준 수립
 - 만 7세 남자 어린이 키의 평균은 120cm가 아니다 = 양측검정
 - 그림상으로는 귀무가설을 채택해야 함

자유도가 30인 z-분포에서 유의수준 lpha=0.05일 때의 기각역

- □ 유의확률과 유의수준을 이용한 판정방법
 - 유의확률(P-Value, Significance Probability)은 검정 통계량 활용하여 구함
 - 양측검정 유의확률 0.039 > 유의 수준 0.025, 귀무가설 채택 (유의수준 0.05의 절반)

자유도가 30인 z-분포에서 유의수준 $\alpha=0.05$ 일 때의 기각역

- □ 통계 해석
 - 2020년, 2015년과의 평균 키, 비교를 위해 만 7세 여자 어린이의 표본 30명을 추출함
 - 평균 키는 125cm, 표준편차는 15cm로 확인함
 - 표본으로부터 구한 검정 통계량은 1.795 (p-value: 0.078)
 - $_{\odot}$ 유의수준(lpha) 0.05에서 만 7세 여자 어린이 키의 평균이 120cm라는 귀무가설 기각 안됨
 - 즉, 귀무가설을 채택해야하며, 여자 어린이의 키의 평균은 여전히 120cm임을 유지해야 함

자유도가 30인 z-분포에서 유의수준 $\alpha=0.05$ 일 때의 기각역

□ 모비율 검정

- 가설 설정
 - √ 귀무가설: 핸드폰 액정의 불량률은 10% 미만이다
 - √ 대립가설: 핸드폰 액정의 불량률은 10%를 넘는다

$$Z = \frac{\widehat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

✓ p̂: 표본 비율

 \checkmark p_0 : 귀무가설의 모비율

✓ n: 표본의 개수

- □ 모비율 검정
 - 가설 설정
 - √ 귀무가설: 핸드폰 액정의 불량률은 10% 미만이다
 - √ 대립가설: 핸드폰 액정의 불량률은 10%를 넘는다
 - 데이터 현황
 - √ 표본의 수는 200개, 총 22개가 불량으로 확인됨

$$Z = \frac{0.11 - 0.1}{\sqrt{\frac{0.1 \times 0.9}{200}}} \cong 0.471$$

□ 주요 참고자료

