## Email training, N3 September 8-14

**Problem 3.1.** Find all triples (a, b, c) such that  $a = (b + c)^2$ ,  $b = (c + a)^2$  and  $c = (a + b)^2$ .

**Solution 3.1.** Since a, b and c are squares of real numbers it means all of them are non negative. Assume  $a \neq b$ . Then

$$a - b = (b + c)^{2} - (c + a)^{2} = (b - a)(b + 2c + a).$$

Since  $a - b \neq 0$ , so b + 2c + a = -1, which is impossible since  $b + 3c + a \geq 0$ . So a = b and in the same way a = b = c. Putting in the equation we get  $a = 4a^2$ , so a = 0 either  $a = \frac{1}{4}$ .

**Answer:** a = b = c = 0 and  $a = b = c = \frac{1}{4}$ .

**Problem 3.2.** Find all integer solutions of the equation

$$1 + x + x^2 + x^3 + x^4 = y^4.$$

Solution 3.2. Note that

$$(2y^2)^2 = (2x^2 + x + 1)^2 - (x^2 - 2x - 3) < (2x^2 + x + 1)^2$$

when x < -1 or x > 3 and

$$(2y^2)^2 = (2x^2 + x)^2 + 3x^2 + 4x + 4 > (2x^2 + x)^2$$

always. So we get  $(2x^2 + x)^2 \le (2y^2)^2 < (2x^2 + x + 1)^2$  whenever  $x \notin [-1, 3]$ . By considering cases x = -1, 0, 1, 2, 3 separately we conclude that the only solutions are  $(x, y) = (-1, \pm 1)$  and  $(x, y) = (0, \pm 1)$ .

**Problem 3.3.** Three prime numbers p, q, r and a positive integer n are given such that the numbers

$$\frac{p+n}{qr}, \frac{q+n}{rp}, \frac{r+n}{pq}$$

are integers. Prove that p = q = r.

**Solution 3.3.** Assume without lose of generality that  $p \ge q \ge r$ . Since p divides (q+n) - (r+n) = q-r, it follows q=r because  $0 \le q-r < p$ .

Then q divides r + n implies q divides n. But we have q divides p + n, too, so we must in fact have  $q \mid p$ . Since p is prime, we must have p = q = r.

**Problem 3.4.**  $a_1, a_2, ..., a_{100}$  are permutation of 1, 2, ..., 100.  $S_1 = a_1, S_2 = a_1 + a_2, ..., S_{100} = a_1 + a_2 + ... + a_{100}$ . Find the maximum number of perfect squares from  $S_i$ 

**Solution 3.4.** Let n be the number of squares among those numbers. As there is 71 possible squares less than  $5050 = 1 + 2 + \cdots + 100$ , we get trivial bound  $n \le 71$ . We put  $S_0 = 0$  and consider the subsequence that is perfect square.  $S_{m_1} = k_1^2$ ,  $S_{m_2} = k_2^2$ , ...,  $S_{m_n} = k_n^2$  with  $m_1 < m_2 < \ldots < m_n$ .

Whenever  $S_{m_{i+1}}$  and  $S_{m_i}$  have different parities then

$$S_{m_{i+1}} - S_{m_i} = a_{m_i+1} + a_{m_i+2} + \ldots + a_{m_{i+1}-1},$$

contains odd summander. Since there are only 50, which means in the sequence  $S_{m_i}$  there are at most 50 consecutive squares. So, in total can be at most  $50 + \frac{71-50}{2} < 61$  perfect squares, so  $n \le 60$ .

It remains to give example for 60. Consider the sequence  $a_i = 2i - 1$  for  $1 \le i \le 50$ . Then we get all  $S_i = i^2$  for  $1 \le i \le 50$ . It remains to construct 10 more squares. Consider  $a_{51+4i} = 2 + 8i$ ,  $a_{52+4i} = 100 - 4i$ ,  $a_{53+4i} = 4 + 8i$  and  $a_{54+4i} = 98 - 4i$  for  $0 \le i \le 7$ . Then we get  $S_{54+4i} = (52 + 2i)^2$ . To get the last 2 square we arrange the remaining number in the following order

Then we get  $S_{87} = 66^2 + 2 \cdot 134 = 68^2$  and  $S_{96} = 70^2$ . **Answer:** 60.

**Problem 3.5.** Is it possible to put positive integers in the cells of the table  $7 \times 7$  such that the sum of number in any square  $2 \times 2$  and any square  $3 \times 3$  is an odd number.

**Solution 3.5.** Assume it's possible. Consider a square  $6 \times 6$ . It can be divided into 4 square of size  $3 \times 3$  so the total sum of number in the square  $6 \times 6$  will be a sum of 4 odd numbers, which is even. On other size the square  $6 \times 6$  can be divided into 9 squares of size  $2 \times 2$  which means the total sum of numbers in the square  $6 \times 6$  will be a sum of 9 odd numbers, which is odd. We got contradiction.

**Answer:** Not possible.

**Problem 3.6.** The natural numbers from 1 to 50 are written down on the blackboard. At least how many of them should be deleted, in order that the sum of any two of the remaining numbers is not a prime?

**Solution 3.6.** Notice that if the odd (respectively even), numbers are all deleted, then the sum of any two remaining numbers is even and exceeds 2, so it is certainly not a prime. We prove that 25 is the minimal number of deleted numbers. To this end, we group the positive integers from 1 to 50 in 25 pairs, such that the sum of the numbers within each pair is a prime:

```
(1,2), (3,4), (5,6), (7,10), (8,9), (11,12), (13,16), (14,15), (17,20), (18,19), (21,22), (23,24), (25,28), (26,27), (29,30), (31,36), (32,35), (33,34), (37,42), (38,41), (39,40), (43,46), (44,45), (47,50), (48,49).
```

Since at least one number from each pair has to be deleted, the minimal number is 25. **Answer:** 25.

**Problem 3.7.** In the triangle ABC one has  $\angle A = 96^{\circ}$ . The segment BC is extended to an arbitrary point D. The angle bisectors of angles ABC and ACD intersect at  $A_1$ , and the angle bisectors of  $A_1BC$  and  $A_1CD$  intersect at  $A_2$  and so on... the angle bisectors of  $A_4BC$  and  $A_4CD$  intersect at  $A_5$ . Find the size of  $BA_5C$  in degrees.

## Solution 3.7. -

Since  $A_1B$  and  $A_1C$  bisect  $\angle ABC$  and  $\angle ACD$  respectively,  $\angle A = \angle ACD - \angle ABC = 2(\angle A_1CD - \angle A_1BC) = 2\angle A_1$ , therefore  $\angle A_1 = \frac{1}{2}\angle A$ .



Similarly, we have  $A_{k+1} = \frac{1}{2}A_k$  for k = 1, 2, 3, 4. Hence

$$A_5 = \frac{1}{2}A_4 = \frac{1}{4}A_3 = \frac{1}{2^3}A_2 = \frac{1}{2^4}A_1 = \frac{1}{2^5}A = \frac{96^\circ}{32} = 3^\circ.$$

**Problem 3.8.** Let ABCD is a parallelogram. A point M is drawn on the line AB such that  $\angle MAD = \angle AMO$ , where O is the point of intersection of the diagonals of the parallelogram. Prove that MD = MC.

## Solution 3.8. -

Extend MO to cut CD at N. Since  $\angle MAD = \angle AMN$ , AMND is an isosceles trapezoid. By symmetry, AM = NC so that AMCN is a parallelogram. Hence  $\angle MDC = \angle AND = \angle MCD$  and therefore MC = MD.

