

ARTIFICIAL NEURAL NETWORK

Unit-2: Perceptron

Ms. Swetha R.

Department of Electronics and Communication Engineering PES University

CONTENT:Part-1

- 1. Perceptron
 - 1. Introduction-Linearly Separable
 - 2. Rosenblatt Algorithm with example
 - 3. Perceptron Convergence Theorem
- 2. Single Layer Perceptron

DrawBack: Xor Logic Gate

- 3. Multilayer Perceptron
 - 1. Backpropogation Algorithm
 - 2. Example: XOR Logic Gate

Back-Propogation Algorithm (BPA)

This Multilayer Perceptron is represented as

2:3:2:1

Back-Propogation Algorithm (BPA)

Layer

Index

PES UNIVERSITY ONLINE

Consider a neural network with 2:2:1 as shown below

Back-Propogation Algorithm (BPA)

PES UNIVERSITY ONLINE

Consider a neural network with 2:2:1 as shown below

Layer	0	1	2
Index	$m_0 = 2$	m ₁ =2	m ₂ =1

Back-Propogation Algorithm (BPA)

• Procedure:

- Step 1: Initialize the weight vector all layers
- Step 2: Computation takes place at 2 stages
 - Feedforward Pass
 - Compute output
 - Backward Pass
 - Compute local gradient

Step 3: Update the weight vectors if required

W = $\begin{pmatrix} & w & \\ & & & \end{pmatrix}$

Back-Propogation Algorithm (BPA)

PES UNIVERSITY ONLINE

Feedforward Pass:

Layer: p	0	1	2
Index	i> 0:(m ₀ =2)	j> 0:(m ₁ =2)	I> 0:(m ₂ =1)

Back-Propogation Algorithm (BPA)

Layer 0: Input Layer

$$X(k) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \quad y_0(k) = \begin{pmatrix} 1 \\ x_1 \\ x_2 \end{pmatrix}$$

Layer 1: 1st Hidden Layer

Input:
$$y_0(k) = \begin{pmatrix} 1 \\ x_1 \\ x_2 \end{pmatrix}$$
 Weight $W_1 = \begin{pmatrix} w_{110} & w_{111} & w_{112} \\ w_{120} & w_{121} & w_{122} \end{pmatrix}$

Induced local field:

$$v_1 = \begin{pmatrix} v_{11} \\ v_{12} \end{pmatrix} = W_1(k) y_0(k)$$

Output of activation block:

$$\varphi_{1}(v_{1}) = \begin{pmatrix} \varphi_{11}(v_{11}) \\ \varphi_{12}(v_{12}) \end{pmatrix}$$

Output of 1st Hidden Layer:

Back-Propogation Algorithm (BPA)

Layer 2: Output Layer

Input:
$$y_1(k) = \begin{pmatrix} 1 \\ -y_1(k) \end{pmatrix}$$
 Weight $W_2 = \begin{pmatrix} w_{210} & w_{211} & w_{211} \end{pmatrix}$ Vector:

Induced local field:

$$v_2(k) = w_2(k)y_1(k)$$

Output of activation block:

$$\varphi_2(v_2(k)) = \varphi_{21}(v_2(k))$$

Output:

$$y_2 = \varphi_2(v_2(k))$$

Error:

$$e_1 = y_d - y_{21}$$

THANK YOU

Ms. Swetha R.

Department of Electronics and Communication Engineering

swethar@pes.edu

+91 80 2672 1983 Extn 753