Généralités sur les fonctions

Seconde 9

1 Définitions

Définition 1. *Une fonction est un objet mathématique capable d'associer un unique résultat à tout objet d'un ensemble appelé ensemble de définition.*

Exemple. On définit plusieurs fonctions dont l'ensemble de définition est l'ensemble des élèves de la seconde 9 :

- f est la fonction qui à un élève de la seconde 9 associe sa date d'anniversaire.
- g est la fonction qui à un élève de la seconde 9 associe sa couleur préférée.
- h est la fonction qui à un élève de la seconde 9 associe l'initiale d'un des membres de sa famille. (Attention! A-t-on vraiment défini une fonction ici?)
- p est la fonction qui à un élève de la seconde 9 associe
- q est la fonction qui à un élève de la seconde 9 associe

Remarque. On s'intéresse majoritairement en mathématiques aux fonctions numériques. Les ensembles de définitions sont des ensembles de nombres, et le résultat renvoyé par les fonctions est toujours un nombre réel.

Définition 2. *Une fonction numérique à valeurs réelles* est une fonction f définie de la manière suivante :

$$\begin{array}{ccc} f \colon & I & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & f(x) \end{array}$$

avec I son ensemble de définition.

Remarque.

- La plupart du temps, on aura $I = \mathbb{R}$, I est un intervalle ou I est une réunion d'intervalles.
- On aura toujours \mathbb{R} à droite de la flèche du haut : on dit que **l'ensemble d'arrivée** est \mathbb{R} .
- La flèche du bas se lit de la manière suivante : au nombre x, on renvoie le nombre f(x)

Définition 3. Soit
$$f: I \longrightarrow \mathbb{R}$$
 et $a \in I$. On pose b vérifiant l'égalité $x \longmapsto f(x)$

$$b = f(a).$$

Alors,

- a est **un antécédent** de b par la fonction f.
- b est **l'image** de a par la fonction f.

Exemple. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto 2x+1$

- a) Donner l'image de 3 par f :
- b) Donner un antécédent de 7 par f :

2 Courbe représentative

Définition 4. *Un repère orthonormé* est un repère formé par deux axes tels que :

- Les deux axes sont perpendiculaires (on dit que le repère est orthogonal)
- Les deux axes sont gradués et ont des graduations de longueurs égales (on dit que le repère est **normé**)

Exemple. On représente traditionnellement un repère orthonormé de la manière suivante :

- L'axe horizontal est appelé axe des abscisses.
- L'axe vertical est appelé axe des ordonnées.
- Le point d'abscisse 0 et d'ordonnée 0 (de coordonnées (0;0)) est appelé **origine du repère**.

Définition 5. Soit f une fonction définie sur un ensemble de définition I. On se place sur un reprère orthonormé. Alors, la **courbe représentative de** f, notée C_f , est l'ensemble des points du repère de coordonnées (x;y) vérifiant

$$y = f(x)$$

Remarque. La courbe représentative d'une fonction permet donc de représenter la fonction, c'est-à-dire de représenter la transformation d'un antécédent en une image par la fonction f. Chaque point de la courbe de coordonnées (x; y) représente une telle transformation : l'abscisse x du point joue le rôle de l'antécédent, et l'ordonnée y du point joue le rôle de l'image.

Exemple. Soit f une fonction dont la courbe représentative est donnée sur le repère orthonormé suivant. Donner l'image de 3 par f :

La courbe représentative d'une fonction f procure de nombreuses informations concernant f.

2.1 Calcul des antécédents de f

Pour chercher un antécédent (ou tous les antécédents) d'un nombre a par f, on trace une droite horizontale d'équation y=a:

Exemple.

On a résolu ici l'équation f(x) = 3: l'ensemble S des solutions est donné par $S = \{1, 6; 4, 4\}$.

2.2 Résolution d'inéquation $f(x) \ge a$

Dans ce cas, on cherche les zones où la courbe est **au-dessus** de la droite horizontale d'équation y = a.

Exemple.

Ici, on a résolu l'inéquation $f(x) \ge 3$: *l'ensemble des solutions* S *de cette inéquation est donné par l'intervalle* [1, 6; 4, 4].

Remarque.

- Le sens des crochets est toujours dépendant des cas d'égalités.
- La même méthode marche pour f(x) > a; $f(x) \le a$ et f(x) < a.
- Si la courbe est au-dessus de la droite à plusieurs endroit, alors on « joint » les différents intervalles-solutions à l'aide du symbole \cup (qui se lit « union »). Par exemple, $[0;1]\cup]4,5;9]$ est une union d'intervalles.