CLAIMS

What is claimed is:

A compound comprising a glycosyl moiety having a nitrogen-based substituent linked to a carbon atom within said glycosyl moiety,

wherein said nitrogen-based substituent is selected from the group consisting of $-NH_2$, $-N^+(CH_3)_3$,

 $-(CH_2)_n-N(R_{10})_3$, and $-NH-C(N^+H_2)-NH_2$, and

wherein substituents linked to other carbon atoms within said glycosyl moiety are independently selected from the group consisting of hydrogen, -alkyl, -O-alkyl,

 $-O-C(O)-alkyl, -O-CH_2-CH_2(O-C(O)-R_6)-CH_2(O-C(O)-R_7),$

15 $-O-CH_2-CH_2(OR_6)-CH_2(OR_7)$, $-O-CH_2-CH_2(R_6)-CH_2(R_7)$,

-O-(CH₂)_m-cholesterol, polyetaylene glycol,

 $-O-(CH_2)_n-N(R_8)_3$, $-NH_2$, $-N^+(CH_3)_3$, $-(CH_2)_n-N(R_9)_3$, and

-(CH₂)-OR₁₀,

wherein R_6 , R_7 , R_8 , R_9 , and R_{10} are independently 20 selected from the group consisting of hydrogen, methyl, and alkyl,

wherein m is selected from the group consisting of 0,

1, 2, 3, 4, and 5, and

wherein n is selected from the group consisting of 1,

25 2, 3, 4, and 5.

2. A compound of claim 1 having a structure set forth in formula I:

15

wherein said R_1 and R_1 ' are independently selected from the group consisting of hydrogen, -OH, -OCH₃, -alkyl, -O-alkyl, -O-C(O)-alkyl,

5 $-O-CH_2-CH_2(O-C(O)-R_6)-CH_2(O-C(Q)-R_7)$,

(I)

 $-O-CH_2-CH_2$ (OR₆) $-CH_2$ (OR₇), $-O-CH_2-CN_2$ (R₆) $-CH_2$ (R₇),

-O-(CH₂)_m-cholesterol, polyethylene glycol,

 $-O-(CH_2)_n-N(R_9)_3$, $-NH_2$, $-N_1(CH_3)_3$, $-(QH_2)_n-N(R_9)_3$, and

-(CH₂)-OR₁₀, wherein R₆, R₇, R₈, R₉, and R₁₀ are independently selected from the group consisting of hydrogen, methyl, and alkyl, and wherein m is selected from the group consisting of 0, 1, 2, 3, 4, and 5, and wherein n is selected from the group consisting of 1, 2, 3, 4, and 5;

wherein R_2 and R_2 ' are independently selected from the group consisting of hydrogen, NH_2 , $-N^+(CH_3)_3$, $-(CH_2)_n-N(R_{11})_3$ and $-NH-C(N^+H_2)-NH_2$, wherein said R_{11} is selected from the group consisting of hydrogen, methyl, and alkyl; and

wherein R_3 , R_3 ', R_4 , R_5 and R_5 ' are independently selected from the group consisting of hydrogen, -OH,

 $-OCH_3$, -alkyl, -O-alkyl, -O-C(O)-alkyl,

 $-O-CH_2-CH_2 (O-C (O) -R_6) -CH_2 (O-C (O) -R_7)$,

 $-O-CH_2-CH_2(OR_6)-CH_2(OR_7)$, $-O-CH_2-CH_2(R_6)+CH_2(R_7)$,

-O-(CH₂)_m-cholesterol, polyethylene glycol,

25 $-O-(CH_2)_n-N(R_8)_3$, $-NH_2$, $-N^+(CH_3)_3$, $-(CH_2)_n-N(R_9)_3$, and $-(CH_2)-OR_{10}$ wherein R_6 , R_7 , R_8 , R_9 , and R_{10} are independently

10

15

25

selected from the group consisting of hydrogen, methyl, and alkyl, and wherein m is selected from the group consisting of 0, 1, 2, 3, 4, and 5, and wherein n is selected from the group consisting of 1, 2, 3, 4, and 5;

provided that R_5 ' is not $-CH_2-O-C(O)-(CH_2)_{14}CH_3$ when R_3 ' and R_4 ' are OH, R_2 ' is $-NH_2$, and R_1 ' is $-OCH_3$; and

provided that R_5 ' is not $-CH_2-O-C(O)-(CH_2)_pCH_3$, wherein p is selected from the group consisting of 10, 12, 14, or 16, when R_3 ' is identical to R_5 ', R_4 ' is -OH, R_2 ' is $-NH_2$, and R_1 ' is $-OCH_3$.

3. The compound of claim 2, wherein R_2 and R_2 ' are independently selected from the group consisting of hydrogen, $-NH_2$, $-N^+(CH_3)_8$, and $-NH^-(CN^+H_2)-NH_2$.

4. The compound of claim 3, wherein R_3 , R_3 ', R_4 , R_4 ', R_5 , and R_5 ' are independently selected from the group consisting of hydrogen, -OH, -O-C(0)-alkyl, -alkyl, and -(CH₂)-OH.

20 -0-alkyl, -alkyl, and -(ch₂) -0h.

5. The compound of claim 4, wherein R_1 and R_1 ' are independently selected from the group consisting of hydrogen, $-OCH_3$, -alkyl, -O-alkyl, -O-C(O)-alkyl, $-O-CH_2-CH_2(alkyl)-CH_2(alkyl)$,

-O-CH₂-CH₂(O-alkyl)-CH₂(O-alkyl), -O-CH₂-CH₂(O-C(O)-alkyl)-CH₂(O-C(O)-alkyl), -O-(CH₂)_m-cholesterol, -O-(CH₂)_n-NH₂, and -O-(CH₂)_n-N⁺(CH₃)₃, wherein m is selected from the group consisting of 0, 1, 2, 3, 4, and 5, and wherein n is

30 selected from the group consisting of 1, $2 \setminus 3$, 4, and 5.

- 6. The compound of claim 5, wherein said alkyl moiety is a straight chain hydrocarbon moiety having 14, 16, or 18 carbon atoms and 0, 1 2, or 3 unsaturations.
- 7. The compound of claim 6 having the structure set forth in formula (II):

8. The compound of claim 6 having the structure set forth in formula (III):

HO NH₂ O-

9. The compound of claim 6 having the structure set forth in formula (IV):

(IV)

(III)

5

10

15

- 10. A composition for delivery one or more macromolecules into one or more cells, comprising:
- (a) a compound comprising a glycosyl moiety having a nitrogen-based substituent linked to a carbon atom within said glycosyl moiety, wherein said nitrogen-based substituent is selected from the group consisting of -NH₂, -N⁺(CH₃)₃, -(CH₂)_n-N(R₁₀)₃, and -NH-C(N⁺H₂)-NH₂, and wherein substituents linked to other carbon atoms within said glycosyl moiety are independently selected from the group consisting of hydrogen, -alkyl, -O-alkyl, -O-C(O)-alkyl, -O-CH₂-CH₂(O-C(O)-R₆)-CH₂(O-C(O)-R₇), -O-CH₂-CH₂(OR₆)-CH₂(OR₇), -O-CH₂-CH₂(R₆)-CH₂(R₇), -O-(CH₂)_m-cholesterol, polyethylene glycol,
- 15 $-O-(CH_2)_n-N(R_8)_3$, $-NH_2$, $-N^+(CH_3)_3$, $-(CH_2)_n-N(R_9)_3$, and $-(CH_2)-OR_{10}$ wherein R_6 , R_7 , R_8 , R_9 , and R_{10} are independently selected from the group consisting of hydrogen, methyl, and alkyl, and wherein m is selected from the group consisting of 0, 1, 2, 3, 4, and 5, and wherein n is selected from the group consisting of 1, 2, 3, 4, and 5; and
 - (b) said macromolecule or macromolecules.
 - 11. A composition for delivering one or more macromolecules into one or more cells, comprising:
- 25 (a) a compound having a structure set forth in formula (I):

$$\begin{array}{c|c}
R_4 \\
R_5 \\
R_5 \\
R_2 \\
R_1
\end{array}$$
(I)

wherein R_1 and R_1 ' are independently selected from the group consisting of hydrogen, -OH, -OCH₃,

-alkyl, -O-alkyl, -O-C(O)-alkyl, -O-CH₂-CH₂(O-C(O)-R₆)-

5 $CH_2(O-C(O)-R_7)$, $-O-CH_2-CH_2(OR_6)-CH_2(OR_7)$,

group consisting of 1, 2, 3, 4, and 5;

 $-O-CH_2-CH_2(R_6)-CH_2(R_7)$, $-O-(CH_2)_m$ -cholesterol,

 $-O-(CH_2)_n-N(R_8)_3$, $-NH_2$, $-N^+(CH_3)_3$, $-(CH_2)_n-N(R_9)_3$, and

selected from the group consisting of hydrogen, methyl, and alkyl, and wherein m is selected from the group consisting of 0, 1, 2, 3, 4, and 5, and wherein n is selected from the

-(CH₂)-OR₁₀, wherein R₆, R₇, R₈, R₉, and R₁₀ are independently

wherein R_2 and R_2 ' are independently selected from the group consisting of hydrogen, $-NH_2$, $-N^+(CH_3)_3$,

15 $-(CH_2)n-N(R_{11})_3$, and $-NH-C(N^+H_2)-NH_2$, wherein said R_{11} is selected from the group consisting of hydrogen, methyl, and alkyl; and

wherein R_3 , R_3 ', R_4 , R_4 ', R_5 , and R_5 ' are independently selected from the group consisting of hydrogen, -OH, -OCH₃,

20 -alkyl, -O-alkyl, -O-C(O)-alkyl,

 $-O-CH_2-CH_2(O-C(O)-R_6)-CH_2(O-C(O)-R_7)$,

 $-O-CH_2-CH_2(OR_6)-CH_2(OR_7)$, $-O-CH_2-CH_2(R_6)-CH_2(R_7)$,

 $-O-(CH_2)_m-cholesterol$, $-O-(CH_2)_n-N(R_8)_3$, $-NH_2$, $-N^+(CH_3)_3$,

 $-(CH_2)_n-N(R_9)_3$, and $-(CH_2)-OR_{10}$, wherein R_6 , R_7 , R_8 , R_9 , R_{10}

are independently selected from the group consisting of hydrogen, methyl, and alkyl, and wherein m is selected from

ťŌ

20

the group consisting of 0, 1, 2, 3, 4, and 5, and wherein n is selected from the group consisting of 1, 2, 3, 4, and 5; and

(b) said macromolecule or macromolecules.

5

- 12. The composition of claim 11, wherein R_2 and R_2 ' are independently selected from the group consisting of NH_2 , $-N^+(CH_3)_3$, and $-NH-C(N^+H_2)-NH_2$.
- 13. The composition of claim 12, wherein said R_3 , R_3 ', R_4 , R_4 ', R_5 , and R_5 ' are independently selected from the group consisting of hydrogen, -OH, -O-C(O)-alkyl, -O-alkyl, and -alkyl, -(CH₂)-OH.
- 14. The composition of claim 13, wherein said R_1 and R_1 ' are independently selected from the group consisting of $-OCH_3$, -alkyl, -O-alkyl, -O-C(O)-alkyl, $-O-CH_2-CH_2(alkyl)-CH_2(alkyl)$, $-O-CH_2-CH_2(O-alkyl)-CH_2(O-alkyl)$,
 - $-O-CH_2-CH_2(O-C(O)-alkyl)-CH_2(O-C(O)-alkyl)$,
- $-O-(CH_2)_m$ -cholesterol, $-O-(CH_2)_n$ -NH₂, and $-O-(CH_2)_n$ -N⁺(CH₃)₃, wherein m is selected from the group consisting of 0, 1, 2, 3, 4, and 5, and wherein n is selected from the group consisting of 1, 2, 3, 4, and 5;
- 25 15. The composition of claim 14, wherein said alkyl moiety is a straight chain hydrocarbon moiety having 14, 16, or 18 carbon atoms and 0, 1, 2, or 3 unsaturations.
- 16. The composition of claim 15, wherein said 30 compound has the structure set forth in formula (II):

17. The composition of claim 15, wherein said 5 compound has the structure set forth in formula (III): (III)

18. The composition of claim 15, wherein said 10 compound has the structure set forth in formula (IV): (IV)

- 19. The composition of claim 11, wherein said 15 macromolecule is an anionic molecule.
 - 20. The composition of claim 19, wherein said anionic molecule is selected from the group consisting of a polynucleotide molecule, a DNA molecule, a RNA molecule,

and a nucleotide analog molecule.

- 21. The composition of claim 20, wherein said DNA molecule is a plasmid molecule comprising at least one element for polypeptide expression in one or more eukaryotic cells.
- 22. The composition of claim 21, wherein said plasmid molecule further comprises a gene encoding IL-2.
- 23. The composition of claim 11, further comprising at least one co-lipid.
- 24. The composition of claim 23, wherein said co-15 lipid is DOPE.
 - 25. The composition of claim 23, wherein said colipid is cholesterol.
- 26. The composition of claim 11, further comprising a20 cryoprotectant.
 - 27. The composition of claim 26, wherein said cryoprotectant is PVP.
- 28. The composition of claim 11, wherein said composition is capable of forming liposomes.
 - 29. The composition of claim 11 having an effective diameter between 100 nanometers and 300 nanometers.

- 30. The composition of claim 11 having a -/+ charge ratio selected from the group consisting of 1:0.5, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, and 1:9.
- 5 31. A method for delivering macromolecules to cells of a mammal, comprising the step of administering a composition of any one of claims 11-30 to said cells.
- 32. The method of claim 31, wherein said composition 10 is administered to said cells *in vitro*.
 - 33. The method of claim 31, wherein said composition is administered to said cells *in vivo*.
- 15 34. The method of claim 31, wherein said administration results in IL-2 expression in said cells.
- 35. The method of claim 31, wherein said composition is administered by a technique selected from the group consisting of direct injection to a tissue, parenteral injection, intravenous injection, oral administration, and administration by inhalation.
- 36. A method for synthesizing a compound of claim 2, 25 comprising the steps of:
 - (a) reacting a first reactant of formula (V):

$$X_5$$
 X_6
 X_6
 X_1
 X_4
 X_4
 X_4
 X_4
 X_2
 X_3

with a second reactant,

wherein X_1 and X_1 ' are independently selected from the group consisting of hydrogen, halogen atom, and an

- activatable moiety; X_2 and X_3 are independently selected from the group consisting of a protecting moiety, hydrogen, halogen, or any activatable moiety; and X_4 , X_4 ', X_5 , X_5 ', X_6 and X_6 ' are independently selected from the group consisting of hydrogen, -O-acetyl, -OH,
- 10 -CH₂-O-acetyl, -CH₂-OH, and -O-alkyl;

wherein said second reactant is selected from the group consisting of $HOCH_3$, HO-alkyl, HO-C(O)-alkyl, $HO-CH_2-CH_2(O-C(O)-R_6)-CH_2(O-C(O)-R_7)$, $HO-CH_2-CH_2(OR_6)-CH_2(OR_7)$, $HO-CH_2-CH_2(R_6)-CH_2(R_7)$,

- HO- $(CH_2)_m$ -cholesterol, and HO- $(CH_2)_n$ -N(R₈)₃, wherein R₆, R₇, R₈, and R₉ are independently selected from the group consisting of hydrogen, methyl, and alkyl, and wherein m is selected from the group consisting of 0, 1, 2, 3, 4, and 5, and wherein n is selected from the group consisting of 1,
- 20 2, 3, 4, and 5;
 - (b) reacting the product of step (a) with a reducing agent; and
 - (c) purifying said compound of claim 2.
- 25 37. A method for synthesizing a compound of claim 2, comprising the steps of:

(a) reacting a first reactant of formula (V):

$$X_5$$
 X_4
 X_6
 X_4
 X_6
 X_1
 X_2
 X_3

with a second reactant,

wherein X_1 and X_1 ' are independently selected from the group consisting of hydrogen, -OCH₃, -alkyl,

-O-alkyl, -O-C(O)-alkyl,

 $-O-CH_2-CH_2(O-C(O)-R_6)-CH_2(O-C(O)-R_7)$,

V

 $-O-CH_2-CH_2(OR_6)-CH_2(OR_7)$, $-O-CH_2-CH_2(R_6)-CH_2(R_7)$,

10 $-O-(CH_2)_m$ -cholesterol, $-O-(CH_2)_n-N(R_8)_3$, $-NH_2$, $-N^+(CH_3)_3$, and $-(CH_2)_n-N(R_9)_3$, wherein R_6 , R_7 , R_8 , and R_9 are independently selected from the group consisting of hydrogen, methyl, and alkyl, and wherein m is selected from the group consisting of 0, 1, 2, 3, 4, and 5, and wherein n is selected from the group consisting of 1, 2, 3, 4, and 5; and wherein X_2 and

 X_3 are independently selected from the group consisting of hydrogen and a protecting group, and X_4 , X_4 , X_5 , X_5 , X_5 , X_6 , and X_6 ' are independently selected from the group consisting of hydrogen, -OH, and -O-alkyl;

wherein said second reactant is selected from the group consisting of $ClCH_3$, Cl-alkyl,

 $C1-CH_2-CH_2(O-C(O)-R_6)-CH_2(O-C(O)-R_7)$,

 $C1-CH_2-CH_2(OR_6)-CH_2(OR_7)$, $C1-CH_2-CH_2(R_6)-CH_2(R_7)$,

 $Cl-(CH_2)_m$ -cholesterol, and $Cl-(CH_2)_n-N(R_8)_3$, wherein R_6 , R_7 ,

 R_8 , and R_9 are independently selected from the group consisting of hydrogen, methyl, and alkyl, and wherein m is SD-84582.1

selected from the group consisting of 0, 1, 2, 3, 4, and 5, and wherein n is selected from the group consisting of 1, 2, 3, 4, and 5;

- (b) reacting the product of step (a) with a 5 reducing agent and a catalyst; and
 - (c) purifying said compound of claim 2.
 - 38. The method of claims 36 and 37, wherein said protecting group is an N-phthalimido moiety.
 - 39. The method of claims 36 and 37, wherein said reducing agent is selected from the group consisting of H_2NNH_2 , H_2 , and $NABH_4$.
- 15 40. The method of claim 37, wherein said catalyst is palladium.