Odpowiedzi i schematy oceniania

Arkusz 9

Zadania zamknięte

Numer	Poprawna	Wskazówki do rozwiązania zadania	
zadania	odpowiedź		
1.	A.	$-3^2 = -9$	
2.	C.	$\sqrt[4]{5}\sqrt[6]{5} = 5^{\frac{1}{4}}5^{\frac{1}{6}} = 5^{\frac{1}{4}+\frac{1}{6}} = 5^{\frac{5}{12}} = \sqrt[12]{5^5}$	
3.	A.	$\log_3(\log 30 - \log 3) = \log_3 \log \frac{30}{3} = \log_3 \log 10 = \log_3 1 = 0$	
4.	В.	$ x-4 < 7 \Leftrightarrow x-4 < 7 \land x-4 > -7 \Leftrightarrow x < 11 \land x > -3 \Leftrightarrow x \in (-3,11)$	
5.	C.	$W(x) = x^{2}(x+5) - 3(x+5) = (x+5)(x^{2}-3) = (x+5)(x-\sqrt{3})(x+\sqrt{3})$	
6.	C.	$W(-3) = -6 - (-3)^{2} - (-3)^{3} = -6 - 9 + 27 = 12$	
7.	D.	$W = \frac{x \cdot x - (x+1)(x-1)}{x(x-1)} = \frac{1}{x(x-1)}$	
8.	A.	$\left(\sqrt{2} + 4\right)^2 = 2\sqrt{2} + 24 + 48\sqrt{2} + 64 = 88 + 50\sqrt{2}$	
9.	C.	$D: 20-4x \ge 0 \Rightarrow x \le 5$, zatem największą liczbą całkowitą należącą	
		do dziedziny funkcji jest liczba 5.	
10.	A.	$y = (x+3)(x-5) \Rightarrow y = x^2 - 2x - 15$	
11.	C.	$f(x+5) = 3(x+5) + 8 \Rightarrow f(x+5) = 3x + 23$, zatem wartość funkcji	
		wzrasta o 15.	
12.	B.	$a_1 = -11, r = 4 \Rightarrow a_{40} = -11 + 39 \cdot 4 = 145$	
13.	B.	Ciąg z przykładu B jest ciągiem arytmetycznym o dodatniej różnicy.	
14.	D.	$a_1 = -18, q = -\frac{1}{3} \Rightarrow a_n = -18 \cdot \left(-\frac{1}{3}\right)^{n-1}$	
15.	C.	Dla każdego kąta ostrego α spełniony jest warunek $0 < \sin \alpha < 1$.	
16.	C.	Druga przyprostokątna ma długość $2\sqrt{6} < 5$, zatem najmniejszy kąt	
		leży naprzeciwko przyprostokątnej o długości $2\sqrt{6}$.	
17.	D.	Przeciwprostokątna trójkąta ma długość $2r = 12$, więc	
		przyprostokątne mają długości 6 i $6\sqrt{3}$.	

18.	A.	$\frac{ BO }{20} = \frac{ BO - 6}{15} \Rightarrow BO = 24$
19.	C.	$a\sqrt{2} = 4 \Rightarrow a = 2\sqrt{2} \Rightarrow P = 8 - \frac{1}{4} \cdot 8\pi \Rightarrow P = 8 - 2\pi$
20.	B.	Każdy punkt dwusiecznej kąta jest równoodległy od ramion tego kąta.
21.	C.	Suma długości dwóch dowolnych boków trójkąta jest większa od długości trzeciego boku.
22.	В.	Okrąg o środku $S = (a, b)$ i promieniu r ma równanie $(x-a)^2 + (x-b)^2 = r^2.$
23.	В.	$a_l = \frac{3}{4}, a_k = -\frac{4}{3}$

Zadania otwarte

Numer	Modelowe etapy rozwiązywania zadania	Liczba	
zadania	włodelowe etapy rozwiązywania zadania	punktów	
24.	Wyznaczenie potęg: $x = 5\frac{1}{3} - \frac{1}{3} \cdot 9 + 27 - \frac{1}{3} - 9$.	1	
	Obliczenie liczby $x: x = 20$.	1	
25	Zapisanie przyprostokątnych trójkąta za pomocą jednej	1	
	niewiadomej: $a, b = a\sqrt{3}$.		
	Ułożenie i rozwiązanie równania:	1	
	$\frac{1}{2}a \cdot a\sqrt{3} = 2\sqrt{3} \Rightarrow a = 2, b = 2\sqrt{3}.$		
26.	Uzasadnienie, że liczba jest podzielna przez 3: suma liczb	1	
	podzielnych przez 3 jest podzielna przez 3.		
	Uzasadnienie, że liczba jest podzielna przez 2: suma parzystej	1	
	liczby liczb nieparzystych jest liczbą parzystą.		
27.	Zapisanie trójmianu w postaci kanonicznej:	1	
	$f(x) = 2(x-5)^2 - 10.$		
	Obliczenie $f(15)$: $f(15) = 2 \cdot 10^2 - 10 \Rightarrow f(15) = 190$.	1	

28.	Przekształcenie lewej strony wzoru przez wyciągnięcie przed	1
	nawias wspólnego czynnika w liczniku i mianowniku ułamka:	
	$L = \frac{\cos \alpha (1 - \cos^2 \alpha)}{\sin \alpha (1 - \sin^2 \alpha)}.$	
	$L = \frac{1}{\sin \alpha (1 - \sin^2 \alpha)}.$	
	Wykorzystanie jedynki trygonometrycznej do wykazania tezy	1
	zadania: $L = \frac{\cos \alpha \sin^2 \alpha}{\sin \alpha \cos^2 \alpha} = \frac{\sin \alpha}{\cos \alpha} = \operatorname{tg} \alpha = P$.	
29.	Wyznaczenie długości boków trójkąta:	1
	$ AB = \sqrt{45}, AC = \sqrt{90}, BC = \sqrt{45}.$	
	Wykazanie tezy zadania: $ AB ^2 + BC ^2 = AC ^2$.	1
30.	Wprowadzenie oznaczeń:	1
	V, t – rzeczywista prędkość i czas turysty i zapisanie równia:	
	Vt = 24.	
	Zapisanie układu równań: $\begin{cases} Vt = 24 \\ (V+1,2)(t-1) = 24 \end{cases}$	1
	Doprowadzenie układu do równania z jedną niewiadomą:	1
	$-V^2 - 1.2V + 28.8 = 0.$	
	Rozwiązanie równania: $V_1 = 4.8$, $V_2 = -6$.	1
	Zapisanie odpowiedzi: $V = 4.8, t = 5$.	1
31.	Wprowadzenie oznaczeń lub wykonanie rysunku z	1
	oznaczeniami:	
	a, b = 2a – odpowiednio krawędź podstawy i krawędź boczna	
	ostrosłupa,	
	H, h – odpowiednio wysokość ostrosłupa i wysokość ściany	
	bocznej ostrosłupa,	
	α – kąt nachylenia ściany bocznej do płaszczyzny podstawy	
	ostrosłupa.	
	Wyznaczenie wysokości ściany bocznej ostrosłupa w zależności	1
	od $a: h = \frac{a}{2}\sqrt{15}$.	
	Wyznaczenie cosinusa kąta α : $\cos \alpha = \frac{\sqrt{15}}{15}$.	1
	•	

	Zapisanie równania wynikającego z treści	1
	zadania: $4 \cdot \frac{1}{2} a \cdot \frac{a}{2} \sqrt{15} = 36\sqrt{15}$.	
	Rozwiązanie równania i podanie odpowiedzi: $a = 6, b = 12$.	1
32.	Zapisanie liczby kul w urnie:	1
	n – liczba kul białych,	
	2n – liczba kul zielonych,	
	3n – liczba kul czerwonych	
	Wyznaczenie liczebności zbioru wszystkich zdarzeń	1
	elementarnych: $\overset{=}{\Omega} = 6n \cdot (6n - 1)$.	
	Wyznaczenie liczebności zbioru wszystkich zdarzeń	1
	elementarnych sprzyjających zdarzeniu, że wylosowano dwie	
	kule zielone: $\bar{A} = 2n \cdot (2n-1)$ i wyznaczenie	
	prawdopodobieństwa zdarzenia $A: P(A) = \frac{2n-1}{3(6n-1)}$.	
	Zapisanie równania: $\frac{(2n-1)}{3(6n-1)} = \frac{5}{51}.$	1
	Rozwiązanie równania i podanie odpowiedzi: $n = 3$.	1