01418231 Data Structure

Graph

Graph and Traversal

- ightharpoonup G = (V, E)
- ▶ V is the vertex set
 - Vertices are also called nodes and points.
 - ▶ A, B, C, D & E are known as vertices.
- E is edge or arc that connects two between vertices.
 - ► (A,B) is the link between vertices A and B
- Edges are three types.
 - An undirected egde is a bidirectional edge. If there is a undirected edge between vertices A and B then edge (A, B) is equal to edge (B, A).
 - A directed egde is a unidirectional edge. If there is a directed edge between vertices A and B then edge (A, B) is not equal to edge (B, A).
 - 3. ______ A weighted egde is an edge with cost on it.

- ► This graph G can be defined as G = (V, E)
- Where V = {A,B,C,D,E}
- \blacktriangleright and E = {(A,B)_

Undirected edge has no orientation (u,v).

u v

Directed edge has an orientation (u,v)

u v

Weighted Edge has an orientation (u,v) or no orientation

u v

The number of vertices in the graph.

The number of edges in the graph.

Number of edges incident to the vertex.

Types of Graphs in Data Structures

Types of Graphs in Data Structures

- 1. Finite Graph
- 2. Infinite Graph
- 3. Trivial Graph
- 4. Simple Graph
- 5. Multi Graph
- 6. Null Graph
- 7. Complete Graph
- 8. Pseudo Graph
- 9. Regular Graph

- 10. Weighted Graph
- 11. Directed Graph
- 12. Undirected Graph
- 13. Connected Graph
- 14. Disconnected Graph
- 15. Cyclic Graph
- 16. Acyclic Graph
- 17. Directed Acyclic Graph
- 18. Subgraph

► The graph G=(V, E) is called a finite graph if the number of vertices and edges in the graph is limited in number

► The graph G=(V, E) is called a infinite graph if the number of vertices and edges in the graph is interminable.

► A graph G= (V, E) is trivial if it contains only a single vertex and no edges.

- If each pair of nodes or vertices in a graph G=(V, E) has only one edge, it is a simple graph.
- As a result, there is just one edge linking two vertices, depicting one-to-one interactions between two elements.

- ► If there are numerous edges between a pair of vertices in a graph G= (V, E), the graph is referred to as a multigraph.
- ► There are no self-loops in a Multigraph.

► It's a reworked version of a trivial graph. If several vertices but no edges connect them, a graph G= (V, E) is a null graph.

- ► If a graph G= (V, E) is also a simple graph, it is complete.
- Using the edges, with n number of vertices must be connected.
- ► It's also known as a full graph because each vertex's degree must be n-1.

Have all possible edges.

- Undirected Graph , Directed Graph

Graph (Clique)

Graph (Clique)

Number of edges of graph

Directed Graph

Number of Edges = N*(N-1)

Undirected Graph

Number of Edges = [N*(N-1)]/2

$$5*(5-1)/2 = 10$$

► If a graph G= (V, E) contains a self-loop besides other edges, it is a pseudograph.

- If a graph G= (V, E) is a simple graph with the same degree at each vertex, it is a regular graph.
- As a result, every whole graph is a regular graph.

► A graph G= (V, E) is called a labeled or weighted graph because each edge has a value or weight representing the cost of traversing that edge.

► A directed graph also referred to as a digraph, is a set of nodes connected by edges, each with a direction.

Graph with weighted edges

https://slideplayer.com/slide/4953310/

Powered By: Jirawan Charoensuk

- An undirected graph comprises a set of nodes and links connecting them.
- ► The order of the two connected vertices is irrelevant and has no direction.
- You can form an undirected graph with a finite number of vertices and edges.

Graph with weighted edges

https://forum.qt.io/topic/77736/qt-simple-library-for-drawing-undirected-weighted-graph

https://en.wikipedia.org/wiki/Widest_path_problem

If there is a path between one vertex of a graph data structure and any other vertex, the graph is connected.

When there is no edge linking the vertices, you refer to the null graph as a disconnected graph.

If a graph contains at least one graph cycle, it is considered to be cyclic.

When there are no cycles in a graph, it is called an acyclic graph.

► It's also known as a directed acyclic graph (DAG), and it's a graph with directed edges but no cycle. It represents the edges using an ordered pair of vertices since it directs the vertices and stores some data.

► The vertices and edges of a graph that are subsets of another graph are known as a subgraph

Sum of degrees = 2e (e is number of edges)

- Number of edges incident to vertex.
- Undirected graph

degree(2) = 2, degree(5) = 3, degree(3) = 1

01418231: Data Structure

Powered By: Jirawan Charoensuk

Vertex Degree

- Directed graph
 - Sum of Degree (degree)=
 - ► In-Degree
 - Out-Degree

https://www.chegg.com/homework-help/questions-and-answers/1-consider-directed-graph-weighted-edges-represent-graph-using-adjacency-list-adjacency-ma-q20254763

In-Degree

- ▶ in-degree is number of incoming edges
- indegree

Out-Degree

- out-degree is number of outbound edges
- outdegree(2) = 1, outdegree(8) = 2

 01418231: Data Structure

 Powered By: Jirawan Charoensuk

Degree

- Degree (2) = _____
- Degree (5) = _____

Path

□ Path between a and e

□ Length =

01418231: Data Structure

Path Finding

▶ Path between 1 and 8.

Path Finding

▶ Path between 1 and 8.

Path Finding

No path between 2 and 9.

Weighted Graph

Weighted Graph

► A graph G= (V, E) is called a labeled or weighted graph because each edge has a value or weight representing the cost of traversing that edge.

Formally

A weighted graph G =_where

- V is the set of vertices
- ► E is the set of edges
- ▶ W is the weight function

Example

Adjacent Vertices

adj(v) = set of vertices adjacent to v

 $\sum_{v} |adj(v)| = |E|$

▶ adj(v): Neighbours of v

Graph Representation

- 1. Adjacency Matrix
- 2. Incidence Matrix
- 3. Adjacency Lists
 - 1. Array Adjacency Lists
 - 2. Linked Adjacency Lists

Adjacency Matrix

Ideal view
01418231: Data Structure

Computerized view

Adjacency Matrix

01418231; Data Structure Powered By: Jirawan Charoensuk http://btechsmartclass.com/DS/U3_T9.html

Incidence Matrix

- graph can be represented using a matrix of size total number of vertices by total number of edges.
- That means if a graph with 4 vertices and 6 edges can be represented using a matrix of 4X6 class.
- In this matrix, rows represents vertices and columns represents edges.
 - ▶ This matrix is filled with either 0 or 1 or -1.
 - 0 represents row edge is not connected to column vertex,
 - ▶ 1 represents row edge is connected as outgoing edge to column vertex
 - ▶ -1 represents row edge is connected as incoming edge to column vertex.

Incidence Matrix

Array Adjacency Lists

- Adjacency list for vertex i is a linear list of vertices adjacent from vertex i.
- An array of n adjacency lists.

Linked Adjacency Lists

Each adjacency list is a chain.

Array Length = n

of chain nodes = 2e (undirected graph)

of chain nodes = e (digraph)

Array Adjacency Lists

Each adjacency list is an array list.

Array Length = n

of list elements = 2e (undirected graph)

of list elements = e (digraph)

Question?

Graphs: Adjacency Matrix

Example:

Α	1	2	3 4
1			
2			
3			22
4			

Adjacency Matrix (weight)

double vertex[][];

	1	2	3
1			
2			
3			

Adjacency List (weight)

EdgeList vertex[];

01418231: Data Structure

Applications

Travel Planning

Question

What is the shortest way to travel between A and B?

"SHORTEST PATH PROBLEM"

How to mimimize the cost of visiting n cities such that we visit each city exactly once, and finishing at the city where we start from?

"TRAVELING SALESMAN PROBLEM"

Internet

Question

What is the shortest route to send a packet from A to B?

"SHORTEST PATH PROBLEM"

The Web

Question

► Which web pages are important?

► Which set of web pages are likely to be of the same topic?

01418231: Data Structure

01418231: Data Structure

01418231: Data Structure

Breadth-First Search Example 2

Start search at vertex 1.

Mark/label start vertex and put in a FIFO queue.

Remove 8 from Q; visit adjacent unvisited vertices; put in Q.

Queue is empty. Search terminates.

Breadth-First Search Example 3

generalSearch(problem, queue)

of nodes tested: 0, expanded: 0

current	nodes list
	{S}

01418231: Data Structure

Powered By: Jirawan Charoensuk

generalSearch(problem, queue)

of nodes tested: 1, expanded: 1

current	nodes list
	{S}
S not goal	{A,B,C}

01418231: Data Structure

Powered By: Jirawan Charoensuk

generalSearch(problem, queue)

of nodes tested: 7, expanded: 6

current	nodes list
	{S}
S	{A,B,C}
A	{B,C,D,E}
В	{C,D,E,G}
С	{D,E,G,F}
D	{E,G,F,H}
E	{G,F,H}
G goal	{F,H}
	no expand

01418231: Data Structure

Powered By: Jirawan Charoensuk

generalSearch(problem, queue)

of nodes tested: 7, expanded: 6

current	nodes list
	{S}
S	{A,B,C}
A	{B,C,D,E}
В	{C,D,E,G}
С	{D,E,G,F}
D	{E,G,F,H}
E	{G,F,H,G}
G	{F,H,G}

01418231: Data Structure Powered By: Jirawan Charoensuk

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the breadth of the frontier
- Builds a tree over the graph
 - Pick a source vertex to be the root
 - ► Find ("discover") its children, then their children, etc.

- Visit start vertex and put into a FIFO queue.
- Repeatedly remove a vertex from the queue, visit its unvisited adjacent vertices, put newly visited vertices into the queue.

01418231: Data Structure

Powered By: Jirawan Charoensuk

01418231: Data Structure

Powered By: Jirawan Charoensuk

01418231: Data Structure

Powered By: Jirawan Charoensuk

Depth-First Search Example 2

Start search at vertex 1.

Label vertex 1 and do a depth first search from either 2 or 4.

01418231: Data Structure

Return to invoking method.

Depth-First Search Example 3

Depth-First Search (DFS)

generalSearch(problem, stack)

of nodes tested: 0, expanded: 0

current nodes list
{\$}

01418231: Data Structure

Powered By: Jirawan Charoensuk

Depth-First Search (DFS)

generalSearch(problem, stack)

of nodes tested: 1, expanded: 1

current	nodes list
	{S}
C not cool	

S not goal | {A,B,C}

01418231: Data Structure

Powered By: Jirawan Charoensuk

Depth-First Search (DFS)

generalSearch(problem, stack)

of nodes tested: 6, expanded: 5

current	nodes list
	{S}
S	{A,B,C}
A	{D,E,B,C}
D	{H,E,B,C}
Н	{E,B,C}
E	{G,B,C}
G	{B,C}

01418231: Data Structure

Powered By: Jirawan Charoensuk

Summary

- Visit start vertex and put into a FIFO queue.
- Repeatedly remove a vertex from the queue, visit its unvisited adjacent vertices, put newly visited vertices into the queue.

- A depth-first search (DFS) in an undirected graph G is like wandering in a labyrinth with a string and following one path to the end
- We then backtrack by rolling up our string until we get back to a previously visited vertex v.
- v becomes our current vertex and we repeat the previous steps

Question

