1.1 函数的连续性

定义 1.1.1: 连续点的定义

设函数 y = f(x) 在点 x_0 的某一邻域内有定义, 如果

$$\lim_{x \to x_0} f(x) = f(x_0)$$

那就称为函数 y = f(x) 在点 x_0 连续.

注 1.1.1: 函数连续的性质

• 当极限需要讨论时:

$$\lim_{x\to x_0^+}f\left(x\right)=\lim_{x\to x_0^-}f\left(x\right)=f\left(x_0\right)\Leftrightarrow f\left(x\right)$$
在点 x_0 处连续

- 一点连续不能推出邻域连续: 以函数 f(x) = xD(x) 为例, 其中 D(x) 为狄利克雷函数: 该函数在 x = 0 时极限为 0, 函数值也为 0, 因此函数在 x = 0 点连续, 但是其邻域内所有点都不连续.
- 连续性的四则运算: 设 f(x) 与 g(x) 都在点 $x=x_0$ 处连续, 则 $f(x)\pm g(x)$ 与 f(x)g(x) 在点 $x=x_0$ 处连续, 当 $g(x_0)\neq 0$ 时, f(x)/g(x) 在点 $x=x_0$ 处也连续。
- 复合函数的连续性: 设 $u=\varphi(x)$ 在点 $x=x_0$ 处连续, y=f(u) 在点 $u=u_0$ 处连续, 且 $u_0=\varphi(x_0)$, 则 $f[\varphi(x)]$ 在点 $x=x_0$ 处连续。
- 反函数的连续性: 设 y=f(x) 在区间 I_x 上单调且连续, 则反函数 $x=\varphi(y)$ 在对应的区间 $I_y=\{y|y=f(x),x\in I_x\}$ 上连续且有相同的单调性

• f(x) 在点 $x = x_0$ 处连续,且 $f(x_0) > 0$ (或 $f(x_0) < 0$),则存在 $\delta > 0$,使得当 $|x - x_0| < \delta$ 时 f(x) > 0(或f(x) < 0).

1.2 函数的间断点

1.2.1 间断点的相关概念

讨论间断点的前提: 函数 f(x) 在点 x_0 的某去心领域内有定义

定义 1.2.1: 可去间断点的定义

可去间断点: 若 $\lim_{x\to x_0}f(x)=A\neq f(x_0)(f(x_0)$ 甚至可以无定义), 则这类间断点称为可去间断点

题目 1. 函数
$$f(x) = \frac{(x+1)|x-1|}{e^{\frac{1}{x-2}} \ln |x|}$$
 的可去间断点的个数为

解答. 该题中可疑点为 $x=\pm 1,2,0$,对上述四点求极限可得: $\lim_{x\to 0}=0$,但是函数 f(x) 在 x=0 点无定义. 因此 x=0 是可去间断点. $\lim_{x\to 1}f(x)$ 时 $\lim_{x\to 1^+}\neq \lim_{x\to 1^-}$. 因此 x=1 是跳跃间断点. $\lim_{x\to -1}=-2\sqrt[3]{e}$,因此 x=-1 是可去间断点. $\lim_{x\to 2^+}f(x)=0$, $\lim_{x\to 2^-}f(x)=\infty$,x=2 是第二类间断点.

题目 1 的注记. 如何找间断点? 主要是找可疑点

- 绝对值分段点
- 这一点本身没有定义,但邻域内都有定义的点1.

 $\ln(x)$ 本身不需要讨论 x 等于 0, 因为只有 0 点右邻域有定义,0 点的左邻域内连定义都没有, 更不用谈 0 点的 左极限, 所以此时 0 不可能是间断点. 但出现 $\ln|x|, \ln(x^2)$ 时,0 点本身无定义, 但 0 点左右邻域内都有定义, 所

¹比如分母为 0 的点

以 0 可能是间断点.

题目 2. ★★★☆☆函数
$$f(x) = \frac{|x|^x - 1}{x(x+1)\ln|x|}$$
 的可去间断点的个数为

解答.
$$f(x) = \frac{\mid x\mid^x - 1}{x(x+1)\ln\mid x\mid}$$
 在 $x = -1, 0, 1$ 处无定义
$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{\mathrm{e}^{x\ln\mid x\mid} - 1}{x(x+1)\ln\mid x\mid} = \lim_{x \to -1} \frac{x\ln\mid x\mid}{x(x+1)\ln\mid x\mid} = \lim_{x \to -1} \frac{1}{x+1} = \infty,$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\mid x\mid^x - 1}{x(x+1)\ln\mid x\mid} = \lim_{x \to 0} \frac{\mathrm{e}^{x\ln\mid x\mid} - 1}{x(x+1)\ln\mid x\mid} = \lim_{x \to 0} \frac{x\ln\mid x\mid}{x(x+1)\ln\mid x\mid} = \lim_{x \to 0} \frac{1}{x+1} = 1,$$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{\mid x\mid^x - 1}{x(x+1)\ln\mid x\mid} = \lim_{x \to 1} \frac{\mathrm{e}^{x\ln\mid x\mid} - 1}{x(x+1)\ln\mid x\mid} = \lim_{x \to 1} \frac{x\ln\mid x\mid}{x(x+1)\ln\mid x\mid} = \lim_{x \to 1} \frac{1}{x+1} = \frac{1}{2}$$
 综上, $x = 0$ 与 $x = 1$ 为可去间断点

定义 1.2.2: 跳跃间断点的定义

跳跃间断点^a: 若 $\lim_{x\to x_0^-} f(x)$ 与 $\lim_{x\to x_0^+} f(x)$ 都存在,但 $\lim_{x\to x_0^+} f(x) \neq \lim_{x\to x_0^-} f(x)$,则这类间断点 称为跳跃间断点

跳跃间断点函数图像

定义 1.2.3: 无穷间断点的定义

无穷间断点: 若 $\lim_{x \to x_0} f(x) = \infty$, 则这类间断点称为无穷间断点, 如 $y = \tan x$

 $[^]a$ 一点极限存在 f(x) 在 x_0 连续

振荡间断点: 若 $\lim_{x \to x_0} f(x)$ 振荡不存在, 则这类间断点称为振荡间断点

图 1.2: 振荡间断点函数 $\sin \frac{1}{x}$ 图像

1.2.2 间断点的分类

通过求函数在该点的左右极限来判断

- 第一类间断点: $\lim_{x\to x_0^-}f(x)$ 和 $\lim_{x\to x_0^+}f(x)$ 均存在
 - $\ \overline{\exists} \, \pm^2 \colon \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) \neq f(x_0)$
 - 跳跃: $\lim_{x\to x_0^-}f(x)\neq \lim_{x\to x_0^+}f(x)$
- 第二类间断点: 除第一类以外的间断点 $\implies \lim_{x \to x_0^-} f(x)$ 和 $\lim_{x \to x_0^+} f(x)$ 均至少一个不存在

²可去间断点上极限存在但是导数不存在

题目 3. ★★☆☆☆ 设函数
$$f(x) = \lim_{n\to\infty} \frac{x^2 + nx(1-x)\sin^2\pi x}{1 + n\sin^2\pi x}$$
, 则 $f(x) = \lim_{n\to\infty} \frac{x^2 + nx(1-x)\sin^2\pi x}{1 + n\sin^2\pi x}$

解答. 分情况讨论, 当 $\sin^2 \pi x = 0$ 和 $\sin^2 \pi x \neq 0$ 当 $\sin^2 \pi x = 0$ 时,

原式 =
$$\lim_{n \to \infty} \frac{x^2}{1}$$
= x^2

当 $\sin^2 \pi x \neq 0$ 时,

原式 =
$$\lim_{n \to \infty} \frac{\frac{x^2}{n} + x(1 - x)\sin^2 \pi x}{\frac{1}{n} + \sin^2 \pi x}$$
$$= \lim_{n \to \infty} \frac{x(1 - x)\sin^2 \pi x}{\sin^2 \pi x}$$
$$= x(1 - x)$$

综上函数
$$f(x) = \begin{cases} x^2, \sin^2 \pi x = 0 \\ x(1-x), \sin^2 \pi x \neq 0 \end{cases}$$

解答. 当
$$n \to \infty$$
 时,有 $\lim_{x \to \infty} x^n = \begin{cases} \infty, |x| > 1 \\ 0, |x| < 1 \\ 1, x = 1 \end{cases}$,那么 $\lim_{n \to \infty} \frac{x^{n+2} - x^{-n}}{x^n + x^{-n}} = \begin{cases} -1, 0 < |x| < -1 \\ x^2, |x| > 1 \\ 0, |x| = 1 \end{cases}$

综上, $x = \pm 1$ 为跳跃间断点,x = 0 为可去间断点.

题目 4 的注记. 对于 f(x) 是 x 的函数,表达式是以 n 的极限的形式给出的情况,方法为把 f(x) 分段解出来,n 趋于无穷时, x^n 要以 |x|=1 为界限进行分段.

题目 5. $\underline{\,\,\,\,\,\,\,\,} f(x) = \lim_{n \to \infty} \frac{2\mathrm{e}^{(n+1)x} + 1}{\mathrm{e}^{nx} + x^n + 1}, \, \text{则 } f(x):$

(A) 仅有一个可去间断点. (B) 仅有一个跳跃间断点. (C) 有两个可去间断点. (D) 有两个跳跃间断点.

解答.
$$\lim_{x\to\infty}e^{nx}=\begin{cases} 0, x<0\\ 1, x=0\\ +\infty, x>0 \end{cases}, \ \lim_{x\to\infty}x^n=\begin{cases} \infty, |x|>1\\ 0, |x|<1\\ 1, x=1\\ (-1)^n, x=-1 \end{cases}$$
 综上可得:
$$\lim n\to\infty=f(x)=\lim_{n\to\infty}\frac{2\mathrm{e}^{(n+1)x}+1}{\mathrm{e}^{nx}+x^n+1}=\begin{cases} 0, x<-1\\ 1, -1< x<0\\ 2\mathrm{e}^x, x>0 \end{cases}$$