PS From All-sky Maps

Planck Map (Foreground-cleaned)

Raw PS

- Spectrum is clearly related, but some issues.
- Orange is best-fit from papers.
 Spectrum is below model at l=1500, above at l=2500.

X-Spec

- Map=signal+noise
- C_I=C_I(signal)+C_I(noise)
- Split data in half: a_{lm1}=SHT(map 1), a_{lm2}=SHT(map 2)
- $< a_{lm1}^* a_{lm2} > = Cl(signal)$ + $n_{lm1}^* n_{lm2} = Cl(signal)$
- We've lost some SNR, but turns out with more splits we can buy back.

Noise Spec

- We can also check PS of map difference. Gives us estimate of noise.
- NB $\sigma(m1-m2)=2\sigma((m1-m2)/2)$

Beams

- In real space, we measure sky convolved with instrument beam.
- In FT, we then measure sky transform times beam transform
- SHT similar (for circular beam): $C_{I,obs}=C_{I,true}B_{I}$.
- Bl=Gaussian, σ~1300

What Else could be Wrong?

- Our beam guess was sloppy. Should really use real beam
- Beam also frequency-dependendent. This map combination of others, so should use all beams for all frequencies
- Foregrounds point sources dominate at high ell (small scales). Residual source contamination could be problem.

Masking

- Often we don't have full sky/need to remove map regions.
- We call this masking, and need to account in taking PS.
- One way (polspice) estimate angular correlation function C(θ).
- C_1 is P_1 transform of $C(\cos(\theta))$.
- Estimate C(θ) only over unmasked pixels. Will introduce noise correlations, but will get unbiased estimate of PS.

Noise

- What is $Var(\sum a_{lm}^2)$? $Var(a_{lm}^2)=(2/4)C_l$ where C_l is total power spectrum.
- We get $C_{l,sky}+N_l$. for each mode, so $(2l+1)(C_{l,sky}+N_l)$ where 2l+1 comes from real/complex at each m except for m=0.
- $Var(C_{l,estimated}) = Var(\sum a_{lm}^2/(2l+1)) = (C_{l,sky} + N_l)/\sqrt{(2l+1)}$
- Key points at low I, even if N_I is tiny, $C_{I,sky}$ noise is large because $\sqrt{(2I+1)}$ is small. At high I, $C_{I,sky}/\sqrt{(2I+1)}$ is small, but N_I can get very large.
- The C_{I,sky} noise term is called Cosmic (or sample) variance. We can't improve without more universes. The thermal noise term can get improved, with beating down measurement errors
- Often cosmic & thermal noises are reported separately. Make sure you're using the right one!
- Note once N_l gets smaller than $C_{l,sky}$, you don't improve by integrating deeper. In a partial sky measurement, you want to observe until $N_l=C_{l,sky}$, i.e. SNR=1, then move on to new patch.

NB - all factors of 2 guaranteed correct to within a factor of 2 (or so).