Classical Nucleation Theory Description of Active Colloid Assembly

Gabriel S. Redner, Caleb G. Wagner, Aparna Baskaran, and Michael F. Hagan*
Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA

$$\dot{\mathbf{r}}_i = \mathbf{F}(\{\mathbf{r}_i\})/\xi + v_{\mathsf{p}}\hat{\mathbf{\nu}}_i + \sqrt{2D}\mathbf{\eta}_i^{\mathrm{T}},$$
 $\dot{\theta}_i = \sqrt{2D_{\mathsf{r}}}\mathbf{\eta}_i^{\mathrm{R}}.$

Phase separation of active particles

Separation can happen without attraction force

takes time "effective attraction"

Time scales in the system:

- 1. diffusion time $\sim \sigma^2/D$
- 2. rotational diffusion time $\sim 1/D_r$
- 3. active ballistic motion $\sim \sigma/v_p$

Separation happens if active ballistic motion time >> rotational diffusion time,i.e.

$$1/D_{r/} >> \sigma/v_{p}$$

Separation can be:

nucleation

spinodal decomposition has a theory: Phys. Rev. Lett. 111 145702 (2013)

Can CNT apply?

- analog to liquid/vapor phase separation of passive particles
- chemical potential can be well mapped

Phys. Rev. Lett. 111 145702 (2013)

- * non-equilibrium
- * different mechanism
- no well-defined pressure
- no well-defined interfacial energy
 - negative mechanical interfacial energy

Phys. Rev. Lett. 115 098301 (2015)

Yes, CNT applies

Key reasons

- single reaction coordinate: nucleus size n
- curvature-dependent evaporation rate

gives rise to an positive effective surface tension

CNT master equation

$$ho_{n-1}$$
 $J(n-1)$ ho_n $J(n)$ ho_{n+1} $J(n)$ = net flux from n to (n+1) $\partial_t \rho_n = J(n-1) - J(n)$

$$\rho_n = \rho_1 \prod_{m=1}^{n-1} \frac{j_{\text{in}}(m)S(m)}{j_{\text{out}}(m+1)S(m+1)} \equiv \rho_1 P(n)$$

Absorption and evaporation rate

$$j_{\rm in} = (\rho_{\rm g} v_{\rm p}/\pi)$$

Mechanism:

• v_p transports particles to the surface

Assumptions:

- Large nucleus, i.e. flat surface
- Pe >> 1, i.e. $v_{_{D}}$ dominates

$$j_{\text{out}}(n) = (D_{\text{r}}/\sigma)[\pi/2\alpha(n)]^2$$
$$\alpha(n) = \frac{1}{2}[\pi - \sin^{-1}(\sigma)/2r(n)]$$

Mechanism:

• direction of v_p diffuses and kicks particles out

Assumptions:

- Large nucleus, i.e. relatively flat surface
- Pe >> 1, i.e. v_{p} dominates

Steady-state cluster size distribution

$$\rho_n \propto \exp\left[-G(n)/(k_{\rm B}T)\right]$$

$$G(n) = -k_{\rm B}Tigg(\ln(z
ho_{\rm g})n - rac{\sigma
ho_{\rm C}}{\pi}S(n)igg) + \mathcal{O}(\ln n)$$
 bulk surface

$$z = (v_{p}\sigma/\pi D_{r})$$

Separation happens if active ballistic motion time >> rotational diffusion time,i.e.

$$1/D_{r/} >> \sigma/v_{p}$$

$$\Delta \mu = \ln[(v_{\mathrm{p}}\sigma/\pi D_{\mathrm{r}})\rho_{\mathrm{g}}]$$

	CNT for passive system	CNT for active system
chemical potential	density	density, v _p , D _r
surface tension	excess free energy to create surface	curvature-dependent flux ~ a - b/r
barrier mechanism	competition of bulk and surface terms	competition of absorption and evaporation (time scale separation)
has free-energy?	yes	no, but effectively yes
can predict spinodal line?	no	yes, but wrong
works for any dimension?	yes	principally yes

Prediction and verification

Outlook

- CNT for nucleation under shear
- Surface premelting of crystal with purely repulsive active particles
 - crystal has been observed