Algebra: Chapter 0 Exercises Chapter 1, Section 4

David Melendez

February 14, 2017

Problem 4.1. Composition is defined for *two* morphisms. If more than two morphisms are given, e.g.:

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D \xrightarrow{i} E$$

then one may compose them in several ways, for example:

so that at every step one is only composing two morphisms. Prove that the result of any such nested composition is independent of the placement of the parentheses.

Solution. Let $Z_m \in \mathrm{Obj}(C)$ and $f_m \in \mathrm{Hom}(Z_{m+1}, Z_m)$ for every $m \in \mathbb{N}$. Let n be the number of morphisms we're composing. We will use induction on n.

Base case: Suppose n = 3. Then, since C is a category, we have $f_1(f_2f_3) = (f_1f_2)f_3$.

Induction: Suppose that all parenthesizations of f_1, \ldots, f_{j-1} under composition are equivalent for all $1 \leq j < n$. Then, for some $1 < k \leq n$, let α be some parenthesization of f_1, \ldots, f_{k-1} , and let β be some parenthesization of f_k, \ldots, f_n . Any parenthesization of f_1, \ldots, f_n will then be of the form $\alpha\beta$. By associativity and our inductive hypothesis, we have $\alpha = ((f_k \ldots f_{n-1})f_n)$, and so

$$\alpha\beta = (f_1 \dots f_{k-1}) ((f_k \dots f_{n-1}) f_n)$$

= $((f_1 \dots f_{k-1}) (f_k \dots f_{n-1})) f_n$
= $((\dots ((f_1 f_2) f_3) \dots) f_n$

as desired.

Problem 4.2. In Example 3.3 we have seen how to construct a category from a set endowed with a relation, provided this latter is reflexive and transitive. For what types of relations is the corresponding category a groupoid?

Solution. Recall that a groupoid is a category in which every morphism is an isomorphism. Let C be a category as defined in Example 3.3, and let (S, \sim) be the category's designated set and relation. C is a groupoid if \sim is symmetric.

Proof. Let (a,b) be a morphism from a to b in C. By our definition of C, we have $a \sim b$. Since \sim is symmetric, we then have $b \sim a$, and so (b,a) is also a morphism in C (from b to a). Composing these, we have $(a,b)(b,a)=(b,b)=\mathrm{id}_b$. Similarly, we also have $(b,a)(a,b)=(a,a)=\mathrm{id}_a$, making (a,b) an isomorphism as desired.

Problem 4.3. Let A, B be objects of a category C, and $f \in \text{Hom}_C(A, B)$ a morphism.

Solution. .

1. If f has a right-inverse, then f is an epimorphism.

Proof. Let $f \in \text{Hom}_C(A, B)$ be a morphism, $g \in \text{Hom}_C(B, A)$ its right-inverse, and $\alpha_1, \alpha_2 \in \text{Hom}_C(A, Z)$ morphisms for some $Z \in \text{Obj}(C)$ with $\alpha_1 f = \alpha_2 f$. We then have

$$\alpha_1 = \alpha_1(fg)$$

$$= (\alpha_1 f)g$$

$$= (\alpha_2 f)g$$

$$= \alpha_2(fg)$$

$$= \alpha_2$$

making f an epimorphism.

2. The converse of 1 does not hold; that is, there exists in some category C an epimorphism that does not have a right-inverse.

Proof. The category obtained by endowing \mathbb{Z} with the relation \leq contains morphisms that satisfy this property. Let \mathbf{C} be this category; $a,b\in \mathrm{Obj}(\mathbf{C})$ such that $a\neq b$ (so a< b); $f\in \mathrm{Hom}(a,b)$; $z\in \mathrm{Obj}(\mathbf{C})$ such that $b\leq z$; and $\alpha_1,\alpha_2\in \mathrm{Hom}(b,z)$. That $\alpha_1f=\alpha_2f$ implies $\alpha_1=\alpha_2$ is trivially true since $\mathrm{Hom}(b,z)$ has exactly one morphism, so f is an epimorphism.

However, since a < b, b > a, meaning Hom(b,a) has no morphisms. Thus, f has no right-inverse.

Problem 4.4. Prove that the composition of two morphisms is a monomorphism. Deduce that one can define a subcategory C_{mono} of a category C by taking the same objects as in C, and defining $\text{Hom}_{C_{\text{mono}}}(A, B)$ to be the subset of $\text{Hom}_{C}(A, B)$ consisting of monomorphisms, for all objects A, B. Do the same for epimorphisms. Can you define a subcategory C_{nonmono} of C by restricting to morphisms that are *not* monomorphisms?

Solution. Let **C** be a category; $A, B, C \in \text{Obj}(\mathbf{C})$ be objects in C; and $f \in \text{Hom}(A, B)$, $g \in \text{Hom}(B, C)$ be morphisms in C. If f and g are monic, then gf is also monic.

Proof. Since f and g are monic, we have, for all $Z_1, Z_2 \in \text{Obj}(\mathbf{C})$, $\alpha_1, \beta_1 \in \text{Hom}(B, Z_1)$, and $\alpha_2, \beta_2 \in \text{Hom}(C, Z_2)$:

$$\alpha_1 f = \beta_1 f \implies \alpha_1 = \beta_1$$

 $\alpha_2 g = \beta_2 g \implies \alpha_2 = \beta_2$

We then have:

$$\alpha_2(gf) = \beta_2(gf) \implies (\alpha_2 g)f = (\beta_2 g)f$$

$$\implies \alpha_2 g = \beta_2 g$$

$$\implies \alpha_2 = \beta_2$$

making gf monic as desired.

With this, we can define a category C_{mono} by

$$\mathrm{Obj}(\mathbf{C}_{mono}) = \mathrm{Obj}(\mathbf{C})$$

and

$$\operatorname{Hom}_{\mathbf{C}_{\operatorname{mono}}}(A,B) = \{ f \in \operatorname{Hom}_{\mathbf{C}}(A,B) \mid f \text{ is monic} \}$$

for all $A, B \in \mathrm{Obj}(\mathbf{C}_{\mathrm{mono}})$. Composition of morphisms is defined as normal (since we've proved monomorphisms are closed under composition, and the indentities are those in \mathbf{C} since identities are trivially monic.

Non-monomorphisms do not form a category since identity morphisms are monic. Interestingly enough, however, non-monomorphisms do compose to create non-monomorphisms.

Proposition. Let **C** be a category; A, B, C, Z be objects in **C**, and $f \in \operatorname{Hom}_{\mathbf{C}}(A, B)$ and $g \in \operatorname{Hom}_{\mathbf{C}}(B, C)$ be nonmonomorphisms. Then there exist morphisms $\alpha_1, \alpha_2 \in \operatorname{Hom}_{\mathbf{C}}(C, Z)$ such that $\alpha_1(gf) = \alpha_2(gf)$ but $\alpha_1 \neq \alpha_2$.

Proof. Since g is not monic, there exist $\alpha_1, \alpha_2 \in \text{Hom}_{\mathbf{C}}(C, Z)$ such that $a = \alpha_1 g = \alpha_2 g$ but $\alpha_1 \neq \alpha_2$. Let α_1 and α_2 be these morphisms. Then, we have

$$\alpha_1(gf) = (\alpha_1 g)f$$
$$= (\alpha_2 g)f$$
$$= \alpha_2(gf)$$

but $\alpha_1 \neq \alpha_2$. Thus, gf is not monic.

The same proofs for epimorphisms are analogous.

Problem 4.5. Give a concrete description of monomorphisms and epimorphisms in the category **MSet** you constructed in Exercise 3.9.

Solution. For the sake of completeness, I will include the definition of the category **MSet** here.

Definition. Let a multiset be a set endowed with an equivalence relation, $(S, \tilde{\ })$. We will define the category **MSet** as follows:

$$\begin{aligned} \operatorname{Obj}(\mathbf{C}) &= \{ M \mid M \text{ is a multiset} \} \\ \operatorname{Hom}_{\mathbf{MSet}}((A, \rho_A), (B, \rho_B)) &= \operatorname{Hom}_{\mathbf{Set}}(A/\rho_A, B/\rho_B) \text{ for all } A, B \in \operatorname{Obj}(\mathbf{C}) \end{aligned}$$

Composition and identities are defined as they are in **Set**.

4