

# String Pattern Matching with Finite Automata

Esra Eryılmaz 171044046

Tuğçe Karagöz 171044099

Ayşe Gül Demirbilek 1801042088

### Content

What is Finite Automata?

What is Pattern Matching?

How to match string using finite automata? (with example)

How to generate finite automata for any pattern?

User Interface

Output Examples



# What is Finite Automata?

• - Finite State Automata or Finite State Machine is the simplest model used in Automata. Finite state automata accepts regular language. In this, the term finite means it has a limited number of possible states, and number of alphabets in the strings are finite.





## What is Finite Automata?

#### A finite automaton M is a 5-tuple (Q, $q_0$ , A, $\sum$ , $\delta$ ) where

- Q is a finite set of states,
- $q_0 \in Q$  is the start state (initial state),
- $A \subseteq Q$  is a notable set of **accepting states**,
- $\sum$  is a finite input alphabet,
- $\delta$  is the **transition function** that gives the next state for a given current state and input.

# Representation of Finite Automata

**Transition Diagram** 



• The initial state is marked with:



• The final state(s) are marked with:

#### Transition Table

| States            | INPUT          |                |
|-------------------|----------------|----------------|
|                   | 0              | 1              |
| $\rightarrow q_0$ | q <sub>1</sub> | q <sub>o</sub> |
| q <sub>1</sub>    | q <sub>2</sub> | q <sub>1</sub> |
| q <sub>2</sub>    | $q_2$          | q <sub>2</sub> |

# **Types of Finite Automata**



# What is Pattern Matching?

#### Pattern:

- A collection of strings described in some formal language.

#### Pattern Matching:

- The problem of locating a specific pattern inside raw data.





# Pattern Matching Algorithms:

- 1) Naive Pattern Searching
- 2) KMP Algorithm
- 3) Rabin-Karp Algorithm
- 4) Finite Automata
- 5) Boyer Moore Algorithm
- 6) Aho-Corasick Algorithm
- 7) Suffix Array
- 8) Kasai's Algorithm
- 9) Z algorithm (Linear time pattern searching Algorithm)
- 10) Manacher's Algorithm
- 11) Ukkonen's Suffix Tree Construction

# Applications of Pattern Matching



# How to match strings?

Text = "banananona"
Pattern = "nano"

| States     | n  | a  | n          | 0  |
|------------|----|----|------------|----|
| S0         | SI | SO | SO         | S0 |
| SI         | SI | S2 | SO         | S0 |
| S2         | S3 | SO | S0         | S0 |
| <b>S3</b>  | SI | S2 | S <b>4</b> | S0 |
| S <b>4</b> | S0 | S0 | S0         | S0 |

Transition Table



18 May 2022

# How to make transition table and finite automata?

- Identify the unique characters from the pattern.
- Transitions table's columns represent those unique characters and other cases, table's rows represent the indexes of the pattern and the start state. So,

Number of columns = numberOfChar(pattern) + I Number of rows = length(pattern) + I



4 char is sequentially matched and reached the last character

# User Interface





# Output Examples

#### String Pattern Matching with Finite Automata

Enter the string:

Enter pattern to find :

Pattern found at index position:

RESET

mathematics

ma

[0, 5]

FIND!

# Thanks for listening





