Burrows-Wheeler compression with modified sort orders and exceptions to the MTF phase, and their impact on the compression rate

Marc Lehmann

Burrows-Wheeler compression

- M. Burrows and D.J. Wheeler in 1994
- lossless compression
- context-based
- ▶ 3 stages in basic form

Burrows-Wheeler compression

- M. Burrows and D.J. Wheeler in 1994
- lossless compression
- context-based
- 3 stages in basic form

Definitions:

symbol smallest logical unit of information string sequence of symbols

The Burrows-Wheeler Transform

Example: mississippi

Write all cyclic shifts into a table.

```
0
                      i
                                               i
     m
                  S
                          S
                                          p
     i
                  i
                              i
                                          i
                      S
                          S
                                              m
             i s
                          i
                                               i
                      S
                                          m
                              p
 3
                      i
                                          i
     S
             s
                  S
                          р
                              p
                                               S
 4
                            i
             s i
                      p
                          р
                                          s
                                               S
 5
                          i
     S
                 р
                      р
                              m
                                          s
                                               i
 6
                      i
                                          i
                 р
                          m
                                               S
     i
                  i
                          i
             p
                      \mathbf{m}
                              s
                                          s
                                               S
 8
                      i
     p
                 m
                          S
                              S
                                               i
 9
                  i
                              i
                                          i
     р
             m
                      S
                          S
                                              р
10
              i
                          i
                                      i
                  S
                      S
                              S
                                          p
                                              р
```

- ► Sort the table lexicographically to get the *BW table*.
- ▶ Last column is the output of the transform (*BW code*).

0	i	m	i	s	s	i	s	s	i	p	р
1	i	p	p	i	m	i	s	s	i	s	s
2	i	s	s	i	p	p	i	m	i	s	s
3	i	s	s	i	s	s	i	p	p	i	m
4	m	i	s	s	i	s	s	i	p	p	i
5	p	i	m	i	s	s	i	s	s	i	p
6	p	p	i	m	i	s	s	i	s	s	i
7	s	i	p	p	i	m	i	s	s	i	s
8	s	i	s	s	i	p	p	i	m	i	s
9	s	s	i	p	p	i	m	i	s	s	i
10	s	s	i	s	s	i	p	p	i	m	i

Context Blocks

► Context block: block of BW code corresponding to rows with a specific symbol at the beginning.

0	i	m	i	s	S	i	S	S	i	p	р
1	i	p	p	i	m	i	s	s	i	s	S
2	i	s	s	i	p	p	i	m	i	s	s
3	i	s	s	i	s	s	i	p	p	i	m
4	m	i	s	s	i	s	s	i	p	p	i
5	p	i	m	i	s	s	i	s	s	i	p
6	p	p	i	m	i	s	s	i	s	s	i
7	S	i	p	p	i	m	i	s	s	i	s
8	S	i	s	s	i	p	p	i	m	i	s
9	S	s	i	p	p	i	m	i	s	s	i
10	S	s	i	s	s	i	p	p	i	m	i

Reversibility

- Every column is a permutation of the input
- ▶ First column can be reconstructed by sorting the last

0	i	m	i	s	s	i	s	s	i	р	р	
1	i	P	P	i	m	i	s	s	i	s	s	
2	i	S	S	i	p	p	i	m	i	s	s	
3	i	S	S	i	s	s	i	p	p	i	m	
4	m	i	s	s	i	s	s	i	p	p	i	0
5	р	i	m	i	s	S	i	s	s	i	p	
6	P	P	i	m	i	s	s	i	s	s	i	1
7	s	i	p	p	i	m	i	s	s	i	s	
8	s	i	s	s	i	p	р	i	m	i	ន	
9	S	S	i	p	р	i	m	i	s	s	i	2
10	S	S	i	S	s	i	p	p	i	m	i	3

Reversibility

- Start index is also needed
- ▶ i-th occurrence in the first column corresponds to i-th occurrence of the last column

0	i	m	i	s	s	i	s	s	i	р	р	
1	i	P	P	i	m	i	s	s	i	s	s	
2	i	S	S	i	p	p	i	m	i	s	s	
3	i	S	S	i	S	s	i	p	p	i	m	
4	m	i	s	s	i	s	s	i	p	p	i	0
5	p	i	m	i	s	s	i	s	s	i	p	
6	P	P	i	m	i	s	s	i	s	s	i	1
7	s	i	p	p	i	m	i	s	s	i	s	
8	s	i	s	s	i	p	p	i	m	i	s	
9	S	S	i	p	р	i	m	i	s	s	i	2
10	S	S	i	S	s	i	p	p	i	m	i	3

The BWT The Effect

- Substrings of the input beginning with the same symbols are sorted one below the other
- ▶ BW code are the symbols immediately preceding them
- Usually only a few distinct symbols in a context block, many runs of the same symbol

- Substrings of the input beginning with the same symbols are sorted one below the other
- ▶ BW code are the symbols immediately preceding them
- Usually only a few distinct symbols in a context block, many runs of the same symbol

For example, context block corresponding to "nd" in book1 (first 100 symbols):

Move-To-Front Coding

- ► Alphabet initialized with all possible symbols (e.g. [0x00, 0x01, ..., 0xff] for bytes)
- Symbols encoded as index in the coder's alphabet
- Encoded symbols is moved to the front of the alphabet

Move-To-Front Coding

- Alphabet initialized with all possible symbols (e.g. [0x00, 0x01, ..., 0xff] for bytes)
- Symbols encoded as index in the coder's alphabet
- Encoded symbols is moved to the front of the alphabet

For example, encode aaabacccba:

```
[97, 0, 0, 98, 1, 99, 0, 0, 2, 2]
```

- Generally small numbers
- Runs of same symbols are runs of zeros
- ▶ book1: 0: 49.8%, 1: 15.4%, 2: 8%, 3: 5.3%

Entropy Coding

- Output of MTF has very skewed probabilities, suitable for entropy coding
- ► Symbols with high probability are encoded with short codes
- Huffman coding, arithmetic coding

Modifying the Sort Order

- ▶ B. Chapin, 1998
- ▶ Instead of a \rightarrow b \rightarrow c \rightarrow . . ., sort differently
- Transitions between "similar" context blocks means lower MTF codes in the beginning
- Less symbols have to be "fetched from the back" of the alphabet
- Chapin: handpicked order aeioubcd...
- ▶ Overhead: $\lceil log_2 256! \rceil = 1684$ bits

Computing Orders

- ► Assign a cost to each transitions between symbols (i.e. What if *x* was sorted before *y*?)
- ▶ Run Traveling Salesman Heuristic on the costs
- Best tour is the best sort order
- (according to the metric that computed the costs)

Metrics

- ► Chapin: based on BW code
- ► Analyze similarities in symbol frequencies of context blocks
- ▶ Badness metric: based on the effect on the MTF code
- Attempts to put a number to how "bad" a transition is (for compression)

Partial MTF

- Like regular MTF, but start with empty alphabet
- ► Encode symbols that aren't in it with a special code (-1)

Example aaabacccba from earlier:

```
MTF: [97, 0, 0, 98, 1, 99, 0, 0, 2, 2]
```

Partial MTF: [-1, 0, 0, -1, 1, -1, 0, 0, 2, 2]

Special codes only difference from regular MTF

- ▶ Want to determine badness value for transition from *x* to *y*
- ▶ Do BWT with natural order and get the context blocks corresponding to x and y
- Create the partial MTF for context block y and for the concatenation of both

- ▶ Want to determine badness value for transition from *x* to *y*
- ▶ Do BWT with natural order and get the context blocks corresponding to *x* and *y*
- Create the partial MTF for context block y and for the concatenation of both

For example, abc and ccaadb:

```
right side: [ -1, 0, -1, 0, -1, -1] combined: [-1, -1, -1, 0, 0, 2, 0, -1, 3]
```

- Metric assumes that context blocks remain unchanged
- Only positions where the right side has special codes are relevant

Compare values at the relevant positions to ideal values

```
abc \rightarrow ccaadb
right side: [ -1, 0, -1, 0, -1, -1]
combined: [-1, -1, -1, 0, 0, 2, 0, -1, 3]
ideal: [ 0, 1, 2, 3]
```

Compare values at the relevant positions to ideal values

```
abc \rightarrow ccaadb
right side: [ -1, 0, -1, 0, -1, -1]
combined: [-1, -1, -1, 0, 0, 2, 0, -1, 3]
ideal: [ 0, 1, 2, 3]
```

- Special code in the combined code: symbol only appears in the right side
- No information: assume ideal
- ▶ Badness value is the sum of the differences between actual and ideal value

Variants

- Weighting: divide value by the number of special codes in the right side
- ► So (long) blocks with many different symbols aren't punished
- ▶ MTF prediction: instead of assuming ideal code, make a guess
 - generic mean of all MTF codes greater or equal the ideal code
 - specific mean of all MTF codes greater or equal the ideal code, that are encoding the same underlying symbol

First Column Only

- Metric assumes context blocks remain unchanged, but this is not true
- When a different order is used, the blocks will also be sorted differently
- More specific problem: only look for order for first column, rest is ordered with the natural order
- This way, context blocks stay as they were, metric's assumption holds

Performance of the Metrics

book1

			ייטי רטיי	
weighted	MTF prediction	all co	first co	
Х	Х	-0.04	0.01	
Х	generic	-0.02	0.02	
Х	specific	0.04	0.01	
✓	Х	0.03	0.02	
✓	generic	0.06	0.02	
✓	specific	0.08	0.02	
"aeiou		0.08	0.01	
stogram dif	0.04	0.01		
ımber of in	0.04	0.01		
ber of inve	0.04	0.01		
	X X V 'aeiou. togram dif	X X X generic X specific ✓ X ✓ generic ✓ specific ✓ specific	X generic -0.04 X specific 0.04 ✓ X 0.03 ✓ generic 0.06 ✓ specific 0.08 "aeiou" 0.08 togram differences 0.04 mber of inversions 0.04	X X -0.04 0.01 X generic -0.02 0.02 X specific 0.04 0.01 ✓ X 0.03 0.02 ✓ generic 0.06 0.02 ✓ specific 0.08 0.02 "aeiou" 0.08 0.01 togram differences 0.04 0.01 mber of inversions 0.04 0.01

File: book1, size 6150168 bits.

Performance of the Metrics

paper1

			_	Jumns	.olumn				
Metric	weighted	MTF prediction	all co	Jumns first	,-				
	Х	Х	-0.40	0.02					
	Х	generic	-0.21	0.10					
Badness	Х	specific	-0.15	0.10					
Dauness	✓	Х	-0.24	0.12					
	✓	generic	-0.10	0.14					
	✓	specific	-0.04	0.13					
	"aeiou.		0.17	0.02					
h	istogram di	0.05	0.05						
r	number of ir	0.11	0.11						
nu	mber of inv	-0.04	0.09						
-	1								

File: paper1, size 425288 bits.

Performance of the Metrics

Observations

- Not much of a difference
- More relative improvement with smaller file size (number of transitions)
- ▶ Badness is good for first column, not always for all columns
- Considering overhead, paper1 actually gets bigger

Multiple Sort Orders

- Make separate orders for the first two (or more) columns
- ► One order: for every distinct symbol in the first column, there's one context block
- Two orders: for every distinct symbol in the first column, for every distinct symbol in the second that follows it, there's one context block
- More transitions to optimize, hopefully more compression gains

Multiple Sort Orders

The BWT

```
i
                                                   m
                   i
          S
                        р
                            p
                                              S
                                                   S
 2
                   i
                            i
               p
                        m
                                                   S
 3
      i
                            i
                        S
                                          i
                   S
                                 S
                                              p
                                                   p
 4
                        i
                                                   i
                                              p
 5
                        i
                                                   i
                   m
                            s
                                              S
 6
                   i
                                 i
                                              i
      p
                        S
                                                   р
 7
                            i
                                          i
                                                   i
                   s
                        S
                                              m
 8
                            i
                                                   i
                        p
 9
                        i
                                              i
               S
                   S
                            р
                                                   S
10
                        i
                                 i
                                              i
               p
                   р
                            m
                                          S
                                                   S
```

In general, different orders for all different symbols in the first column

Reversibility

- ► Can't show reversibility with arbitrary number of orders
- Can show for two orders
- ▶ Problem: *i*-th occurrence in first column doesn't correspond to *i*-th occurence in last column anymore
- Solution: "Look ahead" and reorder according to the second column

Reversibility

Looking Ahead

0	i	S	S	i	S	S	i	р	р	i	m	
1	i	S	S	i	P	p	i	m	i	s	s	
2	i	p	p	i	m	i	s	s	i	s	ន	
3	i	m	i	s	s	i	s	s	i	p	p	
4	m	i	s	s	i	s	s	i	p	p	i	3
5	p	p	i	m	i	s	s	i	s	s	i	2
6	р	i	m	i	s	s	i	s	s	i	p	
7	S	S	i	S	s	i	p	p	i	m	i	0
8	S	S	i	P	р	i	m	i	s	s	i	1
9	s	i	s	ន	i	p	р	i	m	i	s	
10	s	i	p	p	i	m	i	s	s	i	s	

► Get possible indices and sort based on following symbols according to the second order

Performance

			_	lumns	colun
Metric	weighted	MTF prediction	all co	Jumns first	C
	Х	Х	-0.06	0.07	
	Х	generic	-0.02	0.09	
Badness	Х	specific	-0.03	0.09	
Dauness	✓	Х	-0.06	0.09	
	✓	generic	-0.03	0.10	
	✓	specific	-0.04	0.09	
	"aeiou.		0.08	0.01	
h	istogram di	-0.04	0.03		
r	number of in	0.02	0.06		
nu	mber of inve	0.01	0.06		

File: book1, size 6150168 bits.

Performance

Observations

- Better compression than one order if only the first columns are reordered
- Orders for the second column even less suitable as default order
- ➤ Overhead for storing the orders (83 · 1684 bits) outweighs compression gain
- First columns only requires three orders (natural order as default), not sure if reversible

Context block "nd" in book1:

Context block ". ":

leyyytetylnyyykrnytehnnyadyyyrkesyyydalsyyyddlednyyyd trgkryesendydnekyayswnregsyrmdeycs.nntyhkdegyd!

- Next sentence doesn't give indication about last letter of last word of previous one
- Many different symbols, no long runs

- Symbols are the last letters of words, different probabilities
- But no information is taken from the further context
- Encoding with MTF doesn't make sense in this case
- "Pollutes" the statistics of a static entropy coder

- Symbols are the last letters of words, different probabilities
- But no information is taken from the further context
- Encoding with MTF doesn't make sense in this case
- "Pollutes" the statistics of a static entropy coder
- Exclude certain blocks from the MTF phase
- ▶ Put a special code in the MTF to signalize a missing block
- Encode with Huffman directly and append

Selecting Exceptions

- Encode with MTF as usual
- ► For every context block: if the mean of all the MTF values is above a threshold, exclude it from the MTF phase
- ► Also require a certain length of the block, so the compression gains aren't destroyed by the overhead

Performance, book1

min length	threshold	gain	excepted blocks
0	3	-0.39	many
0	4	0.59	$0x00$, \n, $0x1a$, space, !, &,),
			*, +, ",", ., 0, 5, 7, :, ;, =, >,
			?, E, U, V, X
100	4	0.59	\n, space, !, +, ",", ., :, ;, >, ?,
			E, U
100	4.5	0.60	\n, space, !, +, ",", ., :, ;, >, ?
100	5	0.59	\n, space, !, +, ",", ., :, ;, >
100	6	0.26	\n, ",", .

File: book1, size 6150168 bits.

Observations

- ▶ Works much better than the reordering stuff
- ▶ Good choice for threshold seems to be between 4 and 5

Observations

- ▶ Works much better than the reordering stuff
- ▶ Good choice for threshold seems to be between 4 and 5

Caveats

- Effective with static (two-pass) Huffman coder I use
- Adaptive coder could adapt to temporarily higher MTF codes
- Huffman coder with multiple tables could have one for these bad cases