NSR Search Results Page 1 of 8

Visit the **Isotope Explorer** home page!

45 reference(s) found:

Keynumber: 1997ROZZ

Reference: INDC(CPR)-042/L, p.93 (1997)

Authors: J.Rong, G.Lui

Title: The Integral Test of the Reactor Dosimetry Data

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁴⁶, ⁴⁷, ⁴⁸Ti, ⁵⁴, ⁵⁶Fe, ⁵⁸, ⁶⁰Ni, ³²S(n,p), ²⁷Al, ⁵⁹Co, ⁶³Cu(n,α), ⁵⁵Mn, ⁵⁹Co, ⁵⁸Ni, ⁶⁵Cu(n,2n), ²³Na, ⁴⁵Sc, ⁵⁹Co, ⁵⁸Fe, ⁶³Cu, ¹¹⁵In, ¹⁹⁷Au, ²³²Th, ²³⁸U(n,γ), ²³⁵, ²³⁸U, ²³²Th, ²³⁷Np, ²³⁹Pu(n,F), ⁴⁷, ⁴⁸Ti(n,np), ⁶Li, ¹⁰B, ¹¹⁵In(n,X),E=reactor; calculated

spectrum averaged σ . Several data libraries compared.

Keynumber: 1997KA47

Reference: J.Radioanal.Nucl.Chem. 215, 193 (1997) **Authors:** S.I.Kafala, T.D.MacMahon, S.B.Borzakov **Title:** Neutron Activation for Precise Nuclear Data

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc, ⁵⁰Cr, ⁵⁹Co, ⁶⁴Zn, ⁷⁵As, ⁸⁵Rb, ¹¹³In, ¹²¹, ¹²³Sb, ¹³⁰Ba, ¹³³Cs, ¹³⁹La, ¹⁴⁰, ¹⁴²Ce, ¹⁴⁶Nd, ¹⁵¹, ¹⁵³Eu, ¹⁵²Gd, ¹⁵²Sm, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁷⁴Yb, ¹⁸⁰Hf, ¹⁸¹Ta, ¹⁸⁶W, ²³²Pa, ²³⁸Np(n,γ),E=reactor; measured Eγ,Iγ; deduced capture σ ,resonance integral,least-squares fit parameters. Multi-element standard.

Keynumber: 1995MO40

Reference: Aust.J.Phys. 48, 125 (1995) **Authors:** A.J.Morton, D.G.Sargood

Title: Thermonuclear Reactions Rates for Reactions Leading to N = 28 Nuclei

Keyword abstract: NUCLEAR REACTIONS ⁴⁴, ⁴⁶K, ⁴⁶, ⁴⁷, ⁴⁸Ca, ⁴⁵, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Sc, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰, ⁵¹V, ⁴⁸, ⁴⁹, ⁵⁰, ⁵¹, ⁵²Cr, ⁵¹, ⁵², ⁵³Mn, ⁵², ⁵³, ⁵⁴Fe, ⁵⁵Co(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p),E not given; ⁵⁶Ni(n,γ), (n,p), (n,α), (α,γ), (α,n), (α,p),E not given; ⁴⁶Ar, ⁴⁵, ⁴⁷K (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p),E not given; calculated stellar reaction rates vs temperature. Statistical model calculations, optical-model potential.

Kevnumber: 1991HI23

Reference: J.Radioanal.Nucl.Chem. 153, 169 (1991)

Authors: P.Z.Hien, T.K.Mai, T.X.Quang, N.V.Loc, T.N.Thuy

Title: Determination of k_0 -Factors of Short-Lived Nuclides ($T \ge 1$ Min) by Thermal Neutron Activation

Technique

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ³⁷Cl, ⁴⁵Sc, ⁷⁶Se, ¹⁰³Rh, ¹⁰⁶Pd, ¹⁰⁹Ag, ¹³⁸Ce, ¹⁶⁴Dy, ¹⁶⁶Er, ¹⁷⁸Hf(n,γ),E=thermal; measured γ-spectra. ²⁰F, ^{38m}Cl, ^{46m}Sc, ^{77m}Se, ¹⁰⁴Rh, ¹⁰⁷Pd, ¹¹⁰Ag, ^{139m}Ce, ^{165m}Dy, ^{167m}Er, ^{179m}Hf deduced k_0 -Au factors.

Keynumber: 1989CV01

Reference: Z.Phys. A332, 163 (1989)

Authors: F.Cvelbar, E.Betak

Title: Exciton Model Comparison of the Activation and the Integrated 14 MeV Neutron Radiative

Capture Cross Sections

Keyword abstract: NUCLEAR REACTIONS 27 Al, 51 V, 45 Sc, 55 Mn, 127 I, 141 Pr, 208 Pb, 209 Bi

NSR Search Results Page 2 of 8

 (n,γ) , E=14.1 MeV; calculated $\sigma(E(\gamma))$. Exciton model.

Keynumber: 1986**KR16**

Reference: Phys.Rev. C34, 2103 (1986)

Authors: B.Krusche, K.P.Lieb

Title: Dipole Transition Strengths and Level Densities $A \le 80$ Odd-Odd Nuclei Obtained from Thermal

Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³¹P, ³⁵Cl, ³⁹, ⁴¹K, ⁴⁵Sc, ⁵⁵Mn, ⁵⁹Co, ⁶³, ⁶⁵Cu, ⁷¹Ga, ⁷⁵As, ⁷⁹Br(n, γ),E=thermal; analyzed data. ²⁰F, ²⁴Na, ²⁸Al, ³²P, ³⁶Cl, ⁴⁰, ⁴²K, ⁴⁶Sc, ⁵⁶Mn, ⁶⁰Co, ⁶⁴, ⁶⁶Cu, ⁷²Ga, ⁷⁶As, ⁸⁰Br deduced primary E1,M1 transition strengths,level density parameters. Bethe, constant temperature Fermi gas models.

Keynumber: 1985EL10

Reference: J.Phys.(London) D18, 1967 (1985)

Authors: T.Elnimr, F.A.El-Hussiny

Title: Further Work on the Use of K(e,0) Factors as a Tool for a Critical Evaluation of Reactor Thermal

and Epithermal (n, γ) Cross Sections and of Absolute Gamma Intensities

Keyword abstract: NUCLEAR REACTIONS Mg, ²⁷Al,Ca, ⁴⁵Sc,Fe,Ga, ⁷⁵As,S,Se,Br,Ru,Rh (n,γ) , E=thermal, epithermal; analyzed (K(e),0) factors data; deduced reaction σ , absolute I γ .

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND ²⁰, ²¹, ²²Ne, ²³Na, ²⁴, ²⁵, ²⁶Mg, ²⁷Al, ²⁸, ²⁹, ³⁰Si, ³¹P, ³², ³³, ³⁴, ³⁶S, ³⁵, ³⁷Cl, ³⁶, ³⁸, ⁴⁰Ar, ³⁹, ⁴⁰, ⁴¹K, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵Sc, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵⁰, ⁵¹V, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni, ⁶³, ⁶⁵Cu, ⁶⁴, ⁶⁶, ⁶⁷Zn(n,γ), $(n,p), (n,\alpha), (p,\gamma), (p,n), (p,\alpha), (\alpha,\gamma), (\alpha,n), (\alpha,p), {}^{70}Zn(p,\gamma), (p,n), (p,\alpha), (\alpha,\gamma), (\alpha,n), (\alpha,p), E=low;$ compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1983IS05

Reference: Z.Phys. A311, 195 (1983)

Authors: M.A.Islam, T.J.Kennett, W.V.Prestwich

Title: A Probabilistic Model for Spectral Assignment in the (n,γ) Reaction

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc, ³⁵Cl, ¹⁶², ¹⁶⁴Dy, ¹⁶⁵Ho(n,γ),E not given; analyzed

capture data; deduced γ-transition spectral assignment. Probabilistic model.

Keynumber: 1983AH01

Reference: Ann.Nucl.Energy 10, 41 (1983)

Authors: A.Ahmad

Title: Analysis and Evaluation of Thermal and Resonance Neutron Activation Data

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc, ⁵⁰Ti, ⁵⁰Cr, ⁵¹V, ⁵⁵Mn, ⁵⁸Fe, ⁵⁹Co, ⁷⁴Se, ⁸⁵Rb, ⁹⁴.

⁹⁶Zr. ¹²³Sb. ¹³⁰Ba. ¹³³Cs. ¹³⁹La. ¹⁴⁰Ce. ¹⁵⁹Tb. ¹⁸⁰Hf. ¹⁸¹Ta. ¹⁹⁷Au(n.γ).E=thermal.epithermal:

analyzed data. Generalized least-squares fit.

Keynumber: 1982TI02

Reference: Nucl. Phys. A376, 421 (1982)

NSR Search Results Page 3 of 8

Authors: T.A.A.Tielens, J.Kopecky, F.Stecher-Rasmussen, W.Ratynski, K.Abrahams, P.M.Endt

Title: Investigation of the 45 Sc(n, γ) Reaction

Keyword abstract: NUCLEAR REACTIONS 45 Sc(n, γ),E=thermal; measured E γ ,I γ ; deduced Q-value.

⁴⁶Sc deduced levels J, π ,γ-branching.

Keynumber: 1981AR22

Reference: Yad.Fiz. 34, 1028 (1981)

Authors: L. Ya. Arifov, B.S. Mazitov, V.G. Ulanov

Title: Relative Probability of Isomer Population in Radiative Capture

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc, ⁵⁹Co, ⁶⁸, ⁷⁰Zn, ⁷⁴, ⁷⁶Ge, ⁸⁰, ⁸²Se, ⁸⁴Kr, ⁸⁵Rb, ⁸⁴Sr, ⁸⁹Y, ¹⁰³Rh, ¹⁰⁸, ¹¹⁰Pd, ¹⁰⁹Ag, ¹¹⁴Cd, ¹¹³, ¹¹⁵In, ¹¹², ¹²⁰, ¹²², ¹²⁴Sn, ¹²¹Sb, ¹²⁰, ¹²⁶, ¹²⁸, ¹³⁰Te, ¹³³Cs, ¹³²Ba, ¹³⁶, ¹³⁸Ce, ¹⁵¹Eu, ¹⁶⁴Dy, ¹⁸¹Ta, ¹⁸⁴W, ¹⁸⁷Re, ¹⁹⁰Os, ¹⁹¹Ir, ¹⁹⁶Pt, ¹⁹⁶Hg

 (n,γ) , E=thermal, 0.2-2.8 MeV; 92 Mo (p,γ) , E=1.8-7.4 MeV; analyzed σ (capture) isomer ratio vs E.

Statistical theory.

Keynumber: 1980WA20

Reference: Acta Phys.Austr. 52, 23 (1980)

Authors: M.Wagner, H.Warhanek

Title: Activation Measurements on Neutron Capture Cross Sections at 14.6 MeV and a Critical Survey

of Such Data in the Literature

Keyword abstract: NUCLEAR REACTIONS 45 Sc, 75 As, 81 Br, 96 Zr, 100 Mo, 104 Ru, 115 In, 123 Sb, 133 Cs, 141 Pr, 181 Ta, 187 Re(n,γ),E=14.6 MeV; measured σ ; deduced no shell effects. Activation technique.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc,Part3,P270,Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1980LI07

Reference: Nucl.Phys. A337, 401 (1980)

Authors: H.I.Liou, R.E.Chrien, J.Kopecky, J.A.Konter

Title: Study of the 45 Sc(n, γ) Reaction

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc(polarized n, γ), (n, γ),E \approx 0.0253 eV,E=0.14-7.65 eV,460.6,1060.4,3290,4330 eV; measured E γ ,I γ , γ -CP; deduced B(n). ⁴⁶Sc deduced resonances, J,multipolarity, γ strength function. Oriented,unoriented targets.

Keynumber: 1979BUZS

Reference: INDC(YUG)-6/L (1979)

Authors: M.Budnar, F.Cvelbar, E.Hodgson, A.Hudoklin, V.Ivkovic, A.Likar, M.V.Mihailovic,

R.Martincic, M.Najzer, A.Perdan, M.Potokar, V.Ramsak

Title: Prompt γ-Ray Spectra and Integrated Cross Sections for the Radiative Capture of 14 MeV

Neutrons for 28 Natural Targets in the Mass Region from 12 to 208

Keyword abstract: NUCLEAR REACTIONS Mg, ²⁷Al,Si, ³¹P,S,Ca, ⁴⁵Sc, ⁵¹V,Cr, ⁵⁵Mn,Fe,

NSR Search Results Page 4 of 8

⁵⁹Co,Cu,Se,Br,Sr, ⁸⁹Y,In,Sb, ¹²⁷I,Ba, ¹⁴¹Pr, ¹⁶⁵Ho, ¹⁸¹Ta,W,Tl,Pb, ²⁰⁹Bi(n,γ),E=14.6 MeV; measured σ (Εγ).

Keynumber: 1979AG02

Reference: J.Phys.Soc.Jpn. 46, 1 (1979) **Authors:** H.M.Agrawal, M.L.Sehgal

Title: Statistical Theory Calculations of Neutron-Capture Cross-Sections at 24 keV

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc, ⁵⁵Mn, ⁶³, ⁶⁵Cu, ⁶⁹, ⁷¹Ga, ⁷⁵As, ⁷⁹, ⁸¹Br, ⁸⁰Se, ⁸⁵, ⁸⁷Rb, ⁸⁹Y, ⁹³Nb, ⁹⁶Zr, ⁹⁸, ¹⁰⁰Mo, ¹⁰⁷, ¹⁰⁹Ag, ¹⁰⁸Pd, ¹¹⁴Cd, ¹¹⁵In, ¹²⁷I, ¹³³Cs, ¹³⁸Ba, ¹³⁹La, ¹⁴⁰, ¹⁴²Ce, ¹⁴¹Pr, ¹⁵², ¹⁵⁴Sm, ¹⁵⁸, ¹⁶⁰Gd, ¹⁶⁴Dy, ¹⁶⁵Ho, ¹⁷⁰Er, ¹⁷⁵Lu, ¹⁸⁰Hf, ¹⁸¹Ta, ¹⁸⁴, ¹⁸⁶W, ¹⁸⁵, ¹⁸⁷Re, ¹⁹⁷Au, ²⁰²Hg, ²⁰⁸Pb, ²⁰⁹Bi, ²³²Th(n,γ),E=24 keV; calculated σ; deduced ratio of average Γγ to average level spacing. Margolis formula of statistical theory, low energy resonance parameters.

Keynumber: 1978LIZT

Coden: JOUR BAPSA 23 636 KL9,Liou

Keyword abstract: NUCLEAR REACTIONS 45 Sc(n, γ),E \approx th,0.46,1.06,3.30,4.33 keV; measured

Eγ, absolute Iγ; deduced Q. 46 Sc deduced levels, J, λ.

Keynumber: 1978LIZF

Coden: CONF BNL(Neutron Capt γ-Ray Spectr), Contrib, No46, Liou

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc(n,γ),E=thermal-4.3 keV: measured σ(Eγ). ⁴⁶Sc

levels deduced $J, \pi, \Gamma \gamma(E1), \Gamma \gamma(M1), B(n), \gamma$ -strength function.

Keynumber: 1978LIYZ

Coden: CONF Brookhaven(Neutron Capt γ-Ray Spectr), Proc, P672, Liou

Keyword abstract: NUCLEAR REACTIONS 45 Sc(n, γ),E=thermal,3.29,4.33 keV; measured E γ ,I γ .

 46 Sc resonances deduced $\Gamma\gamma$ for E1,M1 transitions,neutron binding energy.

Keynumber: 1978KOZJ

Coden: CONF BNL(Neutron Capt γ-Ray Spectr), Contrib, No43, Kopecky

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc(polarized n, γ).E=th: measured CP. ⁴⁶Sc levels

deduced J, π , δ ,mixing parameter α .

Keynumber: 1978KOYU

Coden: CONF Brookhaven(Neutron Capt γ-Ray Spectr), Proc, P662, Kopecky

Keyword abstract: NUCLEAR REACTIONS 45 Sc(polarized n, γ),E not given; measured γ -ray CP.

 46 Sc resonances deduced J. π .

Keynumber: 1978ALZK

Coden: CONF Brookhaven(Neutron Capt γ-Ray Spectr), Proc, P535, Allen

Keyword abstract: NUCLEAR REACTIONS ⁴⁰Ca, ⁴⁵Sc, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; calculated

radiative widths, variances. Statistical, valence, door-way models.

Keynumber: 1978ALYZ

Coden: CONF BNL(Neutron Capt γ-Ray Spectr), Contrib, No5, Allen

Keyword abstract: NUCLEAR REACTIONS ⁴⁰Ca, ⁴⁵Sc, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ); calculated L=0,1 radiative widths. ⁵⁵Fe deduced dominance of valence effects. ⁴¹Ca, ⁴⁶Sc, ⁵⁷, ⁵⁸Fe deduced evidence for doorway

NSR Search Results Page 5 of 8

components.

Keynumber: 1977LIZZ

Reference: Bull.Am.Phys. 22, No.1, 53, DH3 (1977) **Authors:** H.I.Liou, R.E.Chrien, K.Kobayashi, R.C.Block

Title: Total Neutron Cross Section and Gamma Ray Spectroscopy of ⁴⁵Sc

Keyword abstract: NUCLEAR REACTIONS 45 Sc(n, γ),E=th-4 keV; measured σ (E,E γ). 46 Sc levels

deduced J,π .

Keynumber: 1977KE20

Reference: Aust.J.Phys. 30, 605 (1977) **Authors:** M.J.Kenny, B.J.Allen, R.L.Macklin

Title: Resonant Neutron Capture in ⁴⁵Sc below 100 keV

Keyword abstract: NUCLEAR REACTIONS 45 Sc(n, γ),E=2.5-100 keV; measured σ (E,E γ). 46 Sc

deduced neutron resonances, parameters.

Keynumber: 1977CHZC

Coden: REPT BNL-2205,R E Chrien

Keyword abstract: NUCLEAR REACTIONS 45 Sc(n, γ),E=400 eV-22 keV; measured total σ (E,E γ);

deduced incompatibility with postulate that a J=4 bound state dominates thermal scattering.

Keynumber: 1976AL04

Reference: Phys.Lett. 61B, 161 (1976)

Authors: B.J.Allen, M.J.Kenny, R.F.Barrett, K.H.Bray **Title:** Neutron Capture Mechanism in ⁴⁵Sc and ¹³⁹La

Keyword abstract: NUCLEAR REACTIONS 45 Sc, 139 La(n, γ),E=fast; analyzed reaction mechanism.

Keynumber: 1975MA19

Reference: Z.Phys. A272, 273 (1975)

Authors: W.Mannhart

Title: Messung von thermischen Aktivierungs-Wirkungsquerschnitten mit hoher Genauigkeit

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc, ¹¹⁵In, ¹³⁹La, ¹⁷⁹, ¹⁸⁰Hf(n,γ),E=thermal; measured

 $\sigma(E\gamma)$.

Keynumber: 1974DIZZ

Coden: JOUR ZEPYA 265 No5 abstracts (Dilg)

Keyword abstract: NUCLEAR REACTIONS 45 Sc, 51 V, 63 , 65 Cu, 103 Rh(n, γ); measured σ (E).

Keynumber: 1974CO23

Reference: Nucl.Instrum.Methods 116, 251 (1974)

Authors: A.H.Colenbrander, T.J.Kennett

Title: The Application of a Statistical Description for Complex Spectra to the (n,γ) Reaction **Keyword abstract:** NUCLEAR REACTIONS ²⁷Al, ⁴⁵Sc, ⁵⁵Mn, ⁵⁹Co, ⁶³Cu, ⁷⁵As, ¹⁰³Rh, ¹⁰⁹Ag, ¹¹⁵In, ¹³³Cs, ¹⁸⁵Re, ¹⁹⁷Au, ²⁰³Tl (n,γ) ; measured E γ ,I γ . ²⁸Al, ⁴⁶Sc, ⁵⁶Mn, ⁶⁰Co, ⁶⁴Cu, ⁷⁶As, ¹⁰⁴Rh,

¹¹⁰Ag, ¹¹⁶In, ¹³⁴Cs, ¹⁸⁶Re, ¹⁹⁸Au, ²⁰⁴Tl deduced nuclear temperature, level densities.

T7 1 1074

Keynumber: 1974CO22

Reference: Nucl.Instrum.Methods 116, 237 (1974)

NSR Search Results Page 6 of 8

Authors: A.H.Colenbrander, T.J.Kennett

Title: The Realization of a Statistical Description for Complex Spectra

Keyword abstract: NUCLEAR REACTIONS ¹⁰³Rh, ⁴⁵Sc(n,γ); measured Eγ,Ιγ, deduced method of

analyzing spectra.

Keynumber: 1973HE15

Reference: Z.Phys. 258, 315 (1973)

Authors: R.Henkelmann

Title: Low Energy Gamma Rays from Thermal Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc, ⁵⁹Co,Cu,Se,In,La, ¹⁴¹Pr,Nd,Sm,Eu,Gd, ¹⁵⁹Tb,Dy,

¹⁶⁵Ho,Er, ¹⁶⁹Tm,Lu,Hg(n,γ); measured Εγ,Ιγ.

Keynumber: 1972SE19

Reference: Nucl.Instrum.Methods 105, 301 (1972)

Authors: H.Seyfarth, A.M.Hassan, B.Hrastnik, P.Gottel, W.Delang

Title: Efficiency Determination for Some Standard Type Ge(Li) Detectors for Gamma-Rays in the

Energy Range from 0.04 to 11 MeV

Keyword abstract: NUCLEAR REACTIONS ³⁹K, ⁴⁵Sc(n,γ),E=thermal; measured Eγ,Iγ. ⁴⁰K, ⁴⁶Sc

deduced transitions.

Keynumber: 1972DEZG

Reference: Contrib.Conf.Nucl.Structure Study with Neutrons, Budapest, p.112 (1972)

Authors: W.Delang, P.Gottel, H.Seyfarth

Title: Gamma Spectroscopic Investigations of 46 Sc by the Reaction 45 Sc(n, γ) 46 Sc

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc(n,γ),E=thermal; measured Eγ,Ιγ,γγ-coin. ⁴⁶Sc

deduced levels, J, π , γ -mixing.

Keynumber: 1971VAZB

Coden: CONF Legnaro(1f₇/₂ Nuclei),P377

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc(n,γ), ⁴⁵Sc(d,pγ), ⁴⁷Ti(d, ³He), surveyed data. ⁴⁶Sc

deduced levels, J, π , γ -branching.

Keynumber: 1971DEXX

Reference: JUL-790-NP (1971)

Authors: W.Delang

Title: Eine zweidimensionale Koinzidenzapparatur zur Messung von γγ-Winkelkorrelationen nach Neutroneneinfang und experimentelle Untersuchungen der neiderenergetischen Anregungszustande im

⁴⁶Sc mit Hilfe der Reaktion ⁴⁵Sc(n,γ)⁴⁶Sc

Keyword abstract: NUCLEAR REACTIONS 45 Sc(n, γ).E=thermal: measured E γ .I γ . $\gamma\gamma$ -coin. $\gamma\gamma$ (θ):

deduced Q. 46 Sc deduced levels, J, π , γ -branching.

Keynumber: 1971DEXS

Coden: REPT JUL-790-WP, W Delang,8/16/72

Keyword abstract: NUCLEAR REACTIONS 45 Sc(n, γ),E=thermal; measured E γ ,I γ , $\gamma\gamma$ -coin, $\gamma\gamma$ (θ);

deduced Q. 46 Sc deduced levels,J, π , γ -branching.

Keynumber: 1970RA02

Reference: Aust.J.Phys. 23, 255 (1970)

NSR Search Results Page 7 of 8

Authors: B.B.V.Raju, B.M.Spicer

Title: The Low-Lying Odd Parity States of ⁴⁶Sc

Keyword abstract: NUCLEAR REACTIONS 45 Sc(n,γ),E=thermal; measured Εγ,Ιγ,γγ-coin,γγ(θ). 46 Sc

deduced rotational structure, B(EL), γ -mixing.

Keynumber: 1969BOZU

Reference: Proc.Intern.Symp.Neutron Capture Gamma-Ray Spectroscopy, Studsvik,

Intern.At.En.Agency, Vienna, p.15 (1969)

Authors: H.H.Bolotin

Title: Thermal-Neutron Capture Gamma-Gamma Coincidence Studies and Techniques

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc, ⁶³Cu, ¹⁷⁶Lu, ²⁰⁹Bi(n,γ),E=thermal; measured γγ-

coin. ⁴⁶Sc, ⁶⁴Cu, ¹⁷⁷Lu, ²¹⁰Bi deduced levels, J.π.γ-branching.

Keynumber: 1968SM10

Reference: Nucl.Instr.Methods 60, 103 (1968)

Authors: A.I.Smirnov, V.A.Shaburov, V.L.Alexeyev, D.M.Kaminker, A.S.Rylnikov, O.I.Sumbayev

Title: A Device for Precise Measurements of Radiation Energy from the (n, γ) Reaction

Keyword abstract: NUCLEAR REACTIONS 45 Sc(n, γ),E=thermal; measured E γ . 46 Sc deduced

transitions. Crystal spectrometer.

Keynumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS 6 Li, 7 Li, 9 Be, 10 B, 12 C, 14 N, 19 F, 23 Na, 24 Mg, 25 Mg, 26 Mg, 26 Mg, 27 Al, 28 Si, 31 P, 32 S, 35 Cl, 40 Ca, 45 Sc, 48 Ti, 51 V, 55 Mn, 54 Fe, 56 Fe, 59 Co, 58 Ni, 60 Ni, 63 Cu, 65 Cu, 66 Zn, 67 Zn, 73 Ge, 76 Se, 85 Rb, 87 Rb, 89 Y, 93 Nb, 103 Rh, 113 Cd, 123 Te, 133 Cs, 139 La, 141 Pr, 149 Sm, 153 Eu, 157 Gd, 159 Tb, 165 Ho, 167 Er, 169 Tm, 181 Ta, 182 W, 195 Pt, 197 Au, 199 Hg, 203 Tl, 207 Pb(n,γ), E = thermal;

measured Eγ; deduced Q. Natural targets.

Keynumber: 1967OR03

Reference: AD-649805 (1967)

Authors: V.J.Orphan, N.C.Rasmussen

Title: Study of Thermal Neutron Capture Gamma Rays Using a Lithium-Drifted Germanium

Spectrometer

Keyword abstract: NUCLEAR REACTIONS 9 Be, 45 Sc, Fe, Ge, Zr(n,γ), E= thermal; measured Eγ, Iγ, deduced Q. 10 Be, 46 Sc, 55 , 57 Fe, 71 , 73 , 74 Ge, 91 , 92 , 93 , 95 Zr deduced transitions. Ge(Li) detectors.

Kevnumber: 1967CS01

Reference: Nucl.Phys. A95, 229(1967)

Authors: J.Csikai, G.Peto, M.Buczko, Z.Miligy, N.A.Eissa **Title:** Radiative Capture Cross Sections for 14.7 MeV Neutrons

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ³⁰Si, ³¹P, ⁴⁵Sc, ⁴⁸Ca, ⁵⁰Ti, ⁵¹V, ⁸⁹Y, ¹²³Sb, ¹³⁹La, ²⁰⁹Bi(n,γ), E = 14.7 MeV; measured σ. ²³Na, ⁵⁵Mn, ¹⁰³Rh, ¹⁴¹Pr, ¹⁶⁵Ho, ²⁰⁸Pb(n,γ), E = 13.4-15.0

MeV; measured $\sigma(E)$. ¹⁰³Rh(n, γ), E = 13.4-15.0 MeV; measured $\sigma(g)/\sigma(M)$; deduced spin cutoff

parameter. Enriched ³⁰Si, ⁴⁸Ca targets.

NSR Search Results Page 8 of 8

Keynumber: 1966VA13

Reference: Nucl.Phys. 84, 661 (1966)

Authors: P.Van Assche, U.Gruber, B.P.Maier, H.R.Koch, O.W.B.Schult

Title: Low-Energy Level Scheme of 46 Sc Deduced from the 45 Sc(n, γ) 46 Sc Capture Gamma Rays **Keyword abstract:** NUCLEAR REACTIONS 45 Sc(n, γ) 46 Sc,E = thermal; measured E γ ,I γ . 46 Sc

deduced levels, J, π . Natural target.
