Numerik
-> Annäherungen -> keine exakten Ergebnisse
Iteration & Iterationsfolgen
- Konvergent (gegen einen West)
- divesgent (immer weiter)
Fixpunkt verfahren
Fixpunkt: Schniffpunkt mit
Wisher on Zahl Geraden y=x
geometrisch falls Folge divergiert, muss
y=x man Unkehrfunktion nehmen
y=x man Umkehrfunktion nelimen
Nonstellen
4 Varianten: - Fixpenkt verfahren
- Bisektions verfahren
- Regula Falsi
- Newton Verfahren
Bisektion: einer positives und einen negativen West finden -> Annähern
$\times_{N} = \frac{\times_{u} + \times_{o}}{2}$
2 Nuistelle
Regula Falsi: (Sehnen verfahren) Gerade durch positiven hert a und
negativen West b -> Schnittpunkt der Gerade mit
x-Achse = neues a oder b
1. Gerade bilder for
Z. Schnittpunkt mit neues A x-Achse
3. Neuros a/6
Newton: Tangente eines Punktes -> Schnittpunkt 6
mit x-Adse = neuer Punkt
inicht immer beste Methode
An Month
Schnittpunkt und dann wiede
2 P
W T

Integrale

numerische Integration

Finktioner ohne Stammflut: nicht geschlossen integrietbar

Mittelpinktregel:

f(xh)· ax Ceine Teilfläche

Trapez regel :

Problem: bei Rechtskrümmung zu nanig Fläche

 $A_{\text{Tonpez}} = \frac{f(x_{n-1}) + f(x)}{2} \cdot b$

Simpson regel &

Polynom durch 3 Pinkte Polynomteile weder integriest

Polynom durch 3 Punkte: BSP. P. (112) P. (211) P3 (313)

$$\frac{1}{2}$$
 $\frac{2}{1}$ $\frac{1}{1}$ $\frac{3}{2}$ $\frac{3}{3}$ $\frac{2}{1}$ $\frac{3}{2}$

$$a_0 = 2$$
 $a_1 = -1$ $a_2 = \frac{3}{2}$

$$y = 2 + (-1)(x - 1) + \frac{3}{2}(x - 1)(x - 2)$$
$$= \frac{3}{2} x^{2} - \frac{11}{2} x + 6$$

$$\alpha_1 = \frac{y_1}{X_1 - X_0}$$

$$\alpha_2 = \frac{y_2 - 2y_1 + y_0}{2n^2}$$

y = a + a (x-x) + a (x-x) (x-x)

Integrations regeln

Summerregel
$$\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx$$

Faktoriegel
$$\int c \cdot f(x) dx = c \cdot \int f(x) dx$$

Potenzregel
$$\int x^n dx = \frac{1}{n+1} \times n+1 + C$$

Umkehrfunktionen:
$$(arcsin(x))' = \frac{1}{1-x^2}$$

 $(arccos(x))' = -\frac{1}{1-x^2}$
 $(arctan(x))' = \frac{1}{1+x^2}$

Partielle Integration

Hesteiting:
$$(u(x) \cdot v(x))' = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

$$u'(x) \cdot v(x) = (u(x) \cdot v(x))' - u(x) \cdot v'(x)$$

als Integral ->
$$\int u'(x) \cdot v(x) dx = u(x) \cdot v(x) - \int u(x) \cdot v'(x) dx$$

Substitution

"x zu u" "Verkettingsregel"

$$\int f'(g(x)) \cdot g'(x) dx = \int f'(u) du = f(u) + c = f(g(x)) + c$$

$$\frac{3}{8} \frac{1}{8} = \frac{1}{2} \frac{1}{8} \frac{1}{8} = \frac{1}{2} \frac{1}{8} \frac{1}{8} = \frac{1}{8} \frac{1}{8} \frac{1}{8} = \frac{1}{8} \frac{1}{8} = \frac{1}{8} \frac{1}{8} = \frac{1}{8} \frac{1}{8} = \frac{1}$$

Partial bruch zerleging

bei gebrochen rationalen Funktionen

1 In Teilbrüche zerlegen (Falls oben höherer Grad, dann Polynomdivision)

@ Koeffizientenvergleich

(3) Variables bestimmen
$$\frac{3}{8} \times \frac{5}{4} \times \frac{6}{4} = \frac{5 \times 6}{4 \times 2 \times 4} = \frac{4}{4 \times 2} \times \frac{3}{4 \times 4} + \frac{3}{4 \times 2} \times \frac{4}{4 \times 4} + \frac{3}{4 \times 4} \times \frac{3}{4 \times 4} + \frac{3}{4 \times$$

$$5x+6=Ax-A+Bx+2B$$
 -> $|5=A+B|->A=\frac{11}{3}$

$$\int \frac{4}{3} \cdot \frac{1}{x-1} + \frac{11}{3} \cdot \frac{1}{x+2} dx = \frac{11}{3} \ln (x-1) + \frac{11}{3} \ln (x+2) + c$$

