COSC264 Introduction to Computer Networks and the Internet

Introduction to Routing- Link State Routing

Dr. Barry Wu
Wireless Research Centre
University of Canterbury
barry.wu@canterbury.ac.nz

A quick review

- Layer approach and services
- Hierarchical routing and Autonomous System (AS)
- Routing vs forwarding
- Classification of routing algorithms

Hierarchical routing in the Internet

Routing and Forwarding

Outline – today

- Network layer overview
- Routing overview
- Link-state routing (Dijkstra's algorithm)
- Distance-vector routing (Bellman-Ford)
- Summary

Routing Algorithms and Routing Protocols

Intra-AS Routing

Couting Protocols	Routing Algorithms
RIP	Bellman-Ford (Distance-vector) Algorithm
OSFP	Dijkstra's Algorithm
BGP	Bellman-Ford (Distance-vector) Algorithm

Inter-AS Routing

The Internet routing protocols (RIP, OSPF, and BGP) are *load-insensitive*.

Euler and Graph Theory

Seven Bridges of Königsberg. 1783

Modeling a network

A network and its graphical representation

A graph G as an ordered pair G = (V, E) where

- V is a set of nodes (vertices) for routers; nodes are vertices $v_i \in V$
 - e.g., $V = \{1,2,3,...,N\}$
- E is a set of edges (links); $e_{ij} = (v_i, v_j) \in E$
 - $E \subset V \times V$; $E = \{(1,2), (1,3), (2,4), (3,4), (3,5), (4,6), (5,6), (5,7), (6,7)\}$
 - v_i and v_j are neighbors
 - Edge weights are costs

Modeling a network (2)

- Modeled as a graph
 - Routers ⇒ nodes
 - Link ⇒ edges

- Edge labels (called metrics) can be interpreted differently
 - as costs, e.g., delay, monetary transmission costs, geographical distance
 - as available resources, e.g., number of available phone trunks, current available capacity given the set of flows that already use this link

Routing algorithms

- To find least cost path
 - Shortest path if all link costs equal (measures hops)

Link State Routing

- Each router has complete network picture
 - Topology, Link costs
- How does each router get the global state?
 - Each router reliably floods information about its neighbors to every other router; authentication;
 - All routers have consistent information;

Flooding could be a danger!

There are sophisticated algorithms doing the broadcasting job! (Controlled flooding, spanning-tree broadcast; refer to 4.7 of [KR3].)

Link State: Control Traffic

- Each node floods its local information
- Each node ends up knowing the entire network topology node

Link State: Node State

Link State Routing

- Each router independently calculates the leastcost path from itself to every other router
 - Using Dijkstra's Algorithm;
 - Generates a forwarding table for every destination;

Dest.	Next-hop
u	x
V	у
• • •	

Dijkstra's Algorithm

INPUT:

Network topology (graph), with link costs

OUTPUT:

Least cost paths from one node to all other nodes

Dijkstra's Algorithm

- S: nodes whose least-cost path already known
 - Initially, $S = \{u\}$ where u is the source node
 - Add one node to S in each iteration
- D(v): current cost of path from source to node v
 - Initially, D(v) = c(u,v) for all nodes v adjacent to u
 - ... and D(v) = ∞ for all other nodes v
 - Continually update D(v) as shorter paths are learned
- p(v): predecessor node along path from source to v, that is next to v

Dijkstra's Algorithm

```
Initialization:
   S = \{u\} / * u \text{ is the source */}
   for all nodes v
     if v is adjacent to u {
        then D(v) = c(u,v) /* cost of neighbor known*/
5
        else D(v) = \infty / * cost of others unknown * /
   Loop
    find w not in S with the smallest D(w)
10 add w to S
11 update D(v) for all v adjacent to w and not in S:
12
       D(v) = min\{D(v), D(w) + c(w,v)\}
    /* new cost to v is either old cost to v or known
    shortest path cost to w plus cost from w to v */
#3 until all nodes in S
```

Dijsktra's Algorithm with another example

• c(i,j): link cost from node i to j; cost infinite if not direct neighbors; ≥ 0

 D(v): current value of cost of path from source to destination v

p(v): predecessor node along path from source to v, that is next to v

 S: set of nodes whose least cost path definitively known

S	tep	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0		Α	2,A	5,A	1,A	∞	∞
1							
2							
3							
4							
5							


```
1 Initialization:
2 S = {A};
3 for all nodes v
4 if v is adjacent to A
5 then D(v) = c(A,v);
6 else D(v) = ∞;
...
```

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	(1,A)	∞	∞
1						
2						_
3						
4						
5						


```
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 If D(w) + c(w,v) < D(v) then D(v) = D(w) + c(w,v); p(v) = w;</li>
13 until all nodes in S;
```

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
1	AD					
2						
3						
4						
5						


```
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S:
11 update D(v) for all v adjacent to w and not in S:
12 If D(w) + c(w,v) < D(v) then D(v) = D(w) + c(w,v); p(v) = w;</li>
13 until all nodes in S;
```

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
→ 1	AD		4,D		2,D	
2				1		
3						
4						
5						

▶ 8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 If D(w) + c(w,v) < D(v) then D(v) = D(w) + c(w,v); p(v) = w;
13 until all nodes in S;

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
1	AD		4,D		2,D	
2	ADE		3,E			4,E
3						
4						
5						


```
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 If D(w) + c(w,v) < D(v) then D(v) = D(w) + c(w,v); p(v) = w;</li>
—13 until all nodes in S;
```

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
1	AD		4,D		2,D	
2	ADE		3,E			4,E
3	ADEB					
4						
5						


```
Noop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 If D(w) + c(w,v) < D(v) then D(v) = D(w) + c(w,v); p(v) = w;</li>
13 until all nodes in S;
```

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
1	AD		4,D		2,D	
2	ADE		3,E			4,E
3	ADEB					
4	ADEBC					
5						


```
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 If D(w) + c(w,v) < D(v) then D(v) = D(w) + c(w,v); p(v) = w;</li>
—13 until all nodes in S;
```

Step	start S	D(B) ,p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
1	AD		4,D		2,D	
2	ADE		3,E			4,E
3	ADEB					
4	ADEBC					
5	ADEBCF					

8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 If D(w) + c(w,v) < D(v) then D(v) = D(w) + c(w,v); p(v) = w;
—13 until all nodes in S;

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
1	AD		4,D		2,D	
2	ADE		(3,E)			4,E
3	ADEB					
4	ADEBC					
5	ADEBCF					

To determine path $A \rightarrow C$ (say), work backward from C via p(v)

The Forwarding Table

- Running Dijkstra at node A gives the shortest path from A to all destinations
- We then construct the forwarding table

Subnet address (CIDRised) and interface

Destination	Link
В	(A,B)
С	(A,D)
D	(A,D)
E	(A,D)
F	(A,D)

Dijkstra's algorithm, discussion

Algorithm complexity: n nodes

- each iteration: need to check all nodes, w, not in N
- n(n-1)/2 comparisons: O(n²)
- more efficient implementations possible: O(nlogn)
 - Using a min-heap;
 - we can find out the node with min cost in O(logn);
 - Total cost = O(log(n-1) + log(n-2) + ... + log1) = O(log(n!))
 - = O(nlogn) (using Stirling's approximation).

Oscillation with link-state routing

Today's Internet routing algorithms are load-insensitive!

c. x, y, z detect better path to w, counterclockwise

d. x,y,z detect better path to w, clockwise

Summary: Link-State Routing

- Each router broadcasts the link state
 - To give every router a complete view of the graph
- Each router runs Dijkstra's algorithm
 - Compute least-cost paths, then construct forwarding table

Exercise

Example net. 1 (Fig. 19.1 W. Stallings' book)

Dijkstra's algorithm (for node 1)

step	S	D(2), p(2)	D(3), p(3)	D(4), p(4)	D(5), p(5)	D(6), p(6)
0	{1}	2,1	5,1	1,1	inf	inf
1	{1,4}	2,1	4, 4	1,1	2,4	inf
2	{1,4,2}	2,1	4, 4	1,1	2,4	inf
3	{1,4,2,5}	2,1	3,5	1,1	2,4	4,5
4	{1,4,2,5,3}	2,1	3,5	1,1	2,4	4,5
5	{1,4,2,5,3 6}	2,1	3,5	1,1	2,4	4,5

Example net 2

Dijkstra's algorithm (for node A)

step	S	D(B), p(B)	D(C), p(C)	D(D), p(D)	D(E), p(E)	D(F), p(F)
0	{A}	1,A	inf	4,A	inf	inf
1	{A,B}	1,A	4,B	4,A	2,B	inf
2	{A,B,E}	1,A	3,E	3,E	2,B	6,E
3	{A,B,E,D}	1,A	3,E	3,E	2,B	6,E **
4	{A,B,E,D, C}	1,A	3,E	3,E	2,B	5, C
5	{A,B,E,D, C,F}	1,A	3,E	3,E	2,B	5, C

^{**6,}E will be 5, C if node C is chosen first.

References

- [KR3] James F. Kurose, Keith W. Ross, Computer networking: a top-down approach featuring the Internet, 3rd edition.
- [PD5] Larry L. Peterson, Bruce S. Davie, Computer networks: a systems approach, 5th edition
- [TW5] Andrew S. Tanenbaum, David J. Wetherall, Computer network, 5th edition
- [LHBi]Y-D. Lin, R-H. Hwang, F. Baker, Computer network: an open source approach, International edition

Acknowledgements

- All slides are developed based on slides from the following two sources:
 - Dr DongSeong Kim's slides for COSC264, University of Canterbury;
 - Prof Aleksandar Kuzmanovic's lecture notes for CS340, Northwestern University, https://users.cs.northwestern.edu/~akuzma/class

es/CS340-w05/lecture_notes.htm