$Formel sammlung \ Physik \\ _{http://www.fersch.de} \ Physik$

©Klemens Fersch

16. August 2016

Inhaltsverzeichnis

1	Med	chanik		4
	1.1	Grund	lagen Mechanik	4
		1.1.1	Gewichtskraft	4
		1.1.2	Kräfte	4
		1.1.3	Dichte	4
		1.1.4	Wichte	5
		1.1.5	Reibung	5
		1.1.6	Schiefe Ebene	5
		1.1.7	Hookesches Gesetz	6
		1.1.8	Drehmoment	6
		1.1.9	Hebelgesetz	6
		1.1.10	Druck	6
		1.1.11	Auftrieb in Flüssigkeiten	6
		1.1.12	Schweredruck	6
	1.2	Kinem	atik	7
		1.2.1	Geradlinige Bewegung v=konst	7
		1.2.2	Beschleunigte Bewegung	7
		1.2.3	Beschleunigte Bewegung mit Anfangsgeschwindigkeit	7
		1.2.4	Durchschnittsgeschwindigkeit	7
		1.2.5	Durchschnittsbeschleunigung	8
		1.2.6	Freier Fall	8
		1.2.7	Senkrechter Wurf nach oben	8
		1.2.8	Waagrechter Wurf	8
		1.2.9	Schiefer Wurf	9
		1.2.10	Frequenz-Periodendauer	9
		1.2.11	Winkelgeschwindigkeit	9
		1.2.12	Bahngeschwindigkeit	10
		1.2.13	Zentralbeschleunigung	10
	1.3	Dynan	nik	11
		1.3.1	Kraft	11
		1.3.2	Schiefe Ebene	11
		1.3.3	Zentralkraft	11
		1.3.4	Gravitationsgesetz	11
		1.3.5	Impuls	12
		1.3.6	Mechanische Arbeit	12
		1.3.7	Hubarbeit - Potentielle Energie	12
		1.3.8	Spannarbeit-Spannenergie	
		1.3.9	Beschleunigungsarbeit - kinetische Energie	
		1.3.10	Mechanische Leistung	
			Wirkungsgrad	
	1.4		ngungen/Wellen	
		1.4.1	Lineares Kraftgesetz	
		1.4.2	Periodendauer (harmonische Schwingung)	
		1.4.3	Bewegungsgleichung (harmonische Schwingung)	

2	Elel	ktrotechr	nik	15
	2.1		tätslehre	
		2.1.1 S	tromstärke	15
			Ohmsches Gesetz	
		2.1.3 R	Reihenschaltung von Widerständen	15
		2.1.4 P	arallelschaltung von Widerständen	16
			Viderstandsänderung - Temperatur	
			pezifischer Widerstand	
			pezifischer Leitwert	
			· Slektrische Leistung	
		2.1.9 E	llektrische Arbeit	17
	2.2	Elektrisc	hes Feld	18
		2.2.1 E	llektrische Feldstärke	18
		2.2.2 G	Gesetz von Coulomb	18
		2.2.3 K	Kapazität eines Kondensators	18
		2.2.4 R	teihenschaltung von Kondensatoren	18
		2.2.5 P	arallelschaltung von Kondensatoren	19
		2.2.6 E	Elektrische Energie des Kondensators	19
	2.3	Magnetis	sches Feld	20
		2.3.1 F	'lußdichte	20
		2.3.2 F	eldstärke einer langgestreckten Spule	20
		2.3.3 F	lußdichte - Feldstärke	20
			Magnetischer Fluß	
			nduktivität einer langgestreckten Spule	
			deihenschaltung (Induktivität)	
			Parallelschaltung (Induktivität)	
	2.4		strom	
			Vechselspannung - Wechselstrom	
			cheitel - Effektiv	
			nduktiver Widerstand	
			Capazitiver Widerstand	
			Virkleistung	
	2.5		ther Schwingkreis	
			Sigenfrequenz (Ungedämpfte elektrische Schwingung)	
	2.0		ligenkreisfrequenz	
	2.6		ne Elektrotechnik	
		2.6.1 S	pannungsteiler	24
3	Wä	rmelehre		25
J	3.1		, .tur	25
	0.1	-	Permperatur - Umrechnungen	-
			Temperatur differenz	
	3.2		ung der Körper	26
	0.2		ängenausdehnung	26
			lächenausdehnung	26
			Volumenausdehnung	26
	3.3			27
	0.0	0	Värmeenergie	27
			Verbrennungsenergie	27
			chmelzen und Erstarren	27
			Verdampfen und Kondensieren	27
	3.4		sänderungen der Gase	
	=		allgemeine Gasgleichung	
			Thermische Zustandsgleichung	
		_		
4	\mathbf{Ast}	ronomie		2 9
	4.1		ion	
		4.1.1 G	Fravitationsgesetz	29
		4.1.2 G	Fravitationsfeldstärke	29

5	\mathbf{Ato}	mphys	sik	3 0
	5.1	Atomb	oau	30
		5.1.1	Kernbausteine(Protonen, Neutronen, Massenzahl)	30
		5.1.2	Atommasse	30
		5.1.3		30
		5.1.4	Stoffmenge und Anzahl der Teilchen	30
		5.1.5	Molare Masse	30
		5.1.6	Masse - Energie	30
	5.2	Kernu	mwandlungen	31
		5.2.1	Zerfallsgesetz	31
		5.2.2	Halbwertszeit	31
		5.2.3	Aktivität	31
		5.2.4	Photon	31
6	Phy	/sikalis	che Konstanten	32
7	Tab	ellen		33
	7.1		chnungen	
	7.1	7.1.1	Längen	33
	7.1	7.1.1 $7.1.2$	Längen	33 33
	7.1	7.1.1	Längen	33 33 33
	7.1	7.1.1 $7.1.2$	Längen	33 33 34
	7.1	7.1.1 7.1.2 7.1.3	Längen Flächen Volumen Zeit Vorsilben	33 33 33 34 34
	7.1	7.1.1 7.1.2 7.1.3 7.1.4	Längen Flächen Volumen Zeit Vorsilben Masse	33 33 34 34 35
	7.1	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5	Längen Flächen Volumen Zeit Vorsilben Masse Kraft	33 33 33 34 34
	7.1	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6	Längen Flächen Volumen Zeit Vorsilben Masse Kraft	33 33 34 34 35
	7.1	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9	Längen Flächen Volumen Zeit Vorsilben Masse Kraft Energie-Arbeit Leistung	33 33 34 34 35 35
	7.1	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9	Längen Flächen Volumen Zeit Vorsilben Masse Kraft Energie-Arbeit Leistung	33 33 34 34 35 35
	7.1	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10	Längen Flächen Volumen Zeit Vorsilben Masse Kraft Energie-Arbeit Leistung Geschwindigkeit	33 33 34 34 35 35 36
	7.1	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11	Längen Flächen Volumen Zeit Vorsilben Masse Kraft Energie-Arbeit Leistung Geschwindigkeit Druck Frequenz	33 33 34 34 35 35 36 36 36 37
	7.1	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11	Längen Flächen Volumen Zeit Vorsilben Masse Kraft Energie-Arbeit Leistung Geschwindigkeit Druck	33 33 34 34 35 35 36 36 36 37
	7.1	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12 7.1.13	Längen Flächen Volumen Zeit Vorsilben Masse Kraft Energie-Arbeit Leistung Geschwindigkeit Druck Frequenz	33 33 34 34 35 35 36 36 36 37 37

3

Mechanik

Grundlagen Mechanik

1.1.1 Gewichtskraft

 $F_G = m \cdot g$

Masse Kilogramm Fallbeschleunigung Gewichtskraft Newton

 $m=\frac{F_G}{g} ~~ g=\frac{F_G}{m}$ Interaktive Inhalte: $F_G=m\cdot g~$ - $m=\frac{F_G}{g}~$ - $g=\frac{F_G}{m}~$ -

1.1.2 Kräfte

 $\vec{F}_{res} = \vec{F}_1 + \vec{F}_2$

Einzelkraft Newton Einzelkraft Newton Resultierende Kraft Newton

Interaktive Inhalte: $\vec{F}_{res} = \vec{F}_1 + \vec{F}_2$ -

1.1.3 Dichte

 $\rho = \frac{m}{V}$

Volumen V m^3 Kubikmeter Masse m - kg ${\rm Kilogramm}$ Dichte ρ Kilogramm/Kubikmeter

 $m = \rho \cdot V \qquad V = \frac{m}{\rho}$

Interaktive Inhalte: $\rho = \frac{m}{V}$ - $m = \rho \cdot V$ - $V = \frac{m}{\rho}$ -

1.1.4 Wichte

$$\gamma = \frac{F_G}{V}$$

Volumen VKubikmeter Gewichtskraft F_G NNewton $\frac{kgm}{2}$ $F_G = V \cdot \gamma$ $V = \frac{F_G}{\gamma}$

Interaktive Inhalte: $\gamma = \frac{F_G}{V}$ - $F_G = V \cdot \gamma$ - $V = \frac{F_G}{\gamma}$ -

1.1.5 Reibung

$$F_R = \mu \cdot F_N$$

Reibungszahl μ Normalkraft F_N Reibungkraft F_R Newton N Newton

 $F_N = \frac{F_R}{\mu} \quad \mu = \frac{F_R}{F_N}$ Interaktive Inhalte: $F_R = \mu \cdot F_N$ - $F_N = \frac{F_R}{\mu}$ - $\mu = \frac{F_R}{F_N}$ -

1.1.6 Schiefe Ebene

$$F_H = \frac{F_G \cdot h}{l}$$

Höhe Meter $\frac{kgm}{r^2}$ Hangabtriebskraft F_H N Newton $F_G = \frac{F_H \cdot l}{h}$ $h = \frac{F_H \cdot l}{F_G}$ $l = \frac{F_G \cdot h}{F_H}$

$$F_N = \frac{F_G \cdot b}{l}$$

 $egin{array}{ccc} l & m & ext{Meter} \ b & m & ext{Meter} \end{array}$ Länge Breite Gewichtskraft F_G N Newton $\frac{kgm}{s^2}$ Normalkraft F_N N Newton $\frac{kgm}{s^2}$ $F_G = \frac{F_N \cdot l}{b} \quad b = \frac{F_N \cdot l}{F_G} \quad l = \frac{F_G \cdot b}{F_N}$ Interaktive Inhalte: $F_H = \frac{F_G \cdot h}{l} - F_G = \frac{F_H \cdot l}{h} - h = \frac{F_H \cdot l}{F_G} - l = \frac{F_G \cdot h}{F_H} - F_N = \frac{F_G \cdot b}{l} - F_G = \frac{F_N \cdot l}{b} - b = \frac{F_N \cdot l}{F_G} - l = \frac{F_G \cdot b}{F_N} - l = \frac{F_G \cdot b}{F_N}$

Mechanik Grundlagen Mechanik

1.1.7 Hookesches Gesetz

$$F = D \cdot s$$

 $D = \frac{F}{s} \qquad s = \frac{F}{D}$

Interaktive Inhalte: $F = D \cdot s - D = \frac{F}{s} - s = \frac{F}{D}$

1.1.8 Drehmoment

$$M = F \cdot l$$

Interaktive Inhalte: $M = F \cdot l - F = \frac{M}{l} - l = \frac{M}{F}$ -

1.1.9 Hebelgesetz

$$F_1 \cdot l_1 = F_2 \cdot l_2$$

Interaktive Inhalte: $F_1 \cdot l_1 = F_2 \cdot l_2$ - $F_1 = \frac{F_2 \cdot l_2}{l_1}$ - $l_1 = \frac{F_2 \cdot l_2}{F_1}$ -

1.1.10 Druck

$$p = \frac{F}{A}$$

Fläche A m^2 Quadratmeter Kraft F N Newton $\frac{kgm}{n^2}$ Druck p Pa Pascal $\frac{\tilde{N}}{m^2}$ $F = p \cdot A$ $A = \frac{F}{p}$

Interaktive Inhalte: $p = \frac{F}{A}$ - $F = p \cdot A$ - $A = \frac{F}{p}$ -

1.1.11 Auftrieb in Flüssigkeiten

$$F_A = \rho \cdot g \cdot V$$

Interaktive Inhalte: $F_A = \rho \cdot g \cdot V - \rho = \frac{F_A}{g \cdot V} - V = \frac{F_A}{g \rho}$

1.1.12 Schweredruck

 $p = \rho \cdot g \cdot h$

 $\rho = \frac{p}{g \cdot h} \qquad h = \frac{p}{g\rho}$

Interaktive Inhalte: $p = \rho \cdot g \cdot h - \rho = \frac{p}{g \cdot h} - h = \frac{p}{g \rho}$ -

Mechanik Kinematik

Kinematik

Geradlinige Bewegung v=konst. 1.2.1

 $s = v \cdot t$ Sekunden Geschwindigkeit $v = \frac{m}{s}$ Meter/SekundeWeg, Auslenbung s mMeter $v = \frac{s}{t}$ $t = \frac{s}{v}$

Interaktive Inhalte: $s = v \cdot t - v = \frac{s}{t} - t = \frac{s}{v}$

1.2.2 Beschleunigte Bewegung

 $v = a \cdot t$ Sekunden $\begin{array}{lll} \text{Beschleunigung} & a & \frac{m}{s^2} \\ \text{Geschwindigkeit} & v & \frac{m}{s} \end{array}$ $Meter/Sekunde^2$ Meter/Sekunde $a = \frac{v}{t}$ $t = \frac{v}{a}$ $s=\tfrac{1}{2}\cdot a\cdot t^2$ Sekunden Beschleunigung $a \frac{m}{s^2}$ Weg,Auslenkung s m $Meter/Sekunde^2$ $a = \frac{2 \cdot s}{t^2}$ $t = \sqrt{\frac{2 \cdot s}{a}}$

Interaktive Inhalte: $v=a\cdot t$ - $a=\frac{v}{t}$ - $t=\frac{v}{a}$ - $s=\frac{1}{2}\cdot a\cdot t^2$ - $a=\frac{2\cdot s}{t^2}$ - $t=\sqrt{\frac{2\cdot s}{a}}$ -

Beschleunigte Bewegung mit Anfangsgeschwindigkeit

 $v = v_0 + a \cdot t$ Anfangsgeschwindigkeit v_0 Meter/Sekunde Sekunden Beschleunigung $Meter/Sekunde^2$ Geschwindigkeit $v = \frac{\frac{s^2}{m}}{s} = Meter/Sekunde$

 $v_0 = v - a \cdot t$ $t = \frac{v - v_0}{a}$ $a = \frac{v - v_0}{t}$

Anfangsweg $s = s_0 + \overline{v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2}$ $s_0 \quad m \quad \text{Meter}$

 $\begin{array}{ccccc} {\rm Anfangsgeschwindigkeit} & v_0 & \frac{m}{s} & {\rm Meter/Sekunde} \\ {\rm Zeit} & t & s & {\rm Sekunden} \end{array}$

 $a = \frac{m}{s^2} = \frac{Meter/Sekunde^2}{s}$ s = m = MeterBeschleunigung Weg, Auslenkung

 $a = \frac{2 \cdot (s - s_0 - v_0 \cdot t)}{t^2} \qquad t = \frac{-v_0 \pm \sqrt{v_0^2 - 4 \cdot 0, 5 \cdot a \cdot (s_0 - s)}}{a}$ $v_0 = \frac{s - s_0 - 0, 5 \cdot a \cdot t^2}{t}$ $s_0 = s - v_0 \cdot t - \frac{1}{2} \cdot a \cdot t^2$

 $v^2 - v_0^2 = 2 \cdot a \cdot s$

Geschwindigkeit $v = \frac{m}{s} Meter/Sekunde$ Anfangsgeschwindigkeit $v_0 = \frac{s}{m}$ Meter/Sekunde

Anfangsgeschwing $a \frac{m}{s^2}$ Meer Beschleunigung s m Meter m $Meter/Sekunde^2$

 $v = \sqrt{2 \cdot a \cdot s + v_0^2}$ $v_0 = \sqrt{v^2 - 2 \cdot a \cdot s}$

Interaktive Inhalte: $v = v_0 + a \cdot t - v_0 = v - a \cdot t - t = \frac{v - v_0}{a} - a = \frac{v - v_0}{t} - s = s_0 + v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2 - a = \frac{2 \cdot (s - s_0 - v_0 \cdot t)}{t^2} - t = \frac{-v_0 \pm \sqrt{v_0^2 - 4 \cdot 0.5 \cdot a \cdot (s_0 - s)}}{a} - s_0 = s - v_0 \cdot t - \frac{1}{2} \cdot a \cdot t^2 - v_0 = \frac{s - s_0 - 0.5 \cdot a \cdot t^2}{t} - v^2 - v_0^2 = 2 \cdot a \cdot s - v = \sqrt{2 \cdot a \cdot s + v_0^2} - v_0 = \sqrt{v^2 - 2 \cdot a \cdot s} - v_0 = \sqrt{v^$

1.2.4 Durchschnittsgeschwindigkeit

 $v = \frac{x_1 - x_2}{t_1 - t_2}$ aufeinanderfolgende Zeitpunkte t_2 aufeinanderfolgende Zeitpunkte t_1 szurückgelegter Weg $x_2 m$

 $x_1 m$ zurückgelegter Weg Meter Bahngeschwindigkeit Meter/Sekunde v

Sekunde

Sekunde

Meter

Interaktive Inhalte: $v = \frac{x_1 - x_2}{t_1 - t_2}$ -

Mechanik Kinematik

1.2.5 Durchschnittsbeschleunigung

 $a = \frac{v_1 - v_2}{t_1 - t_2}$

aufeinanderfolgende Zeitpunkte t_2 s Sekunde aufeinanderfolgende Zeitpunkte t_1 s Sekunde Geschwindigkeit v_2 $\frac{m}{s}$ Meter/Sekunde Geschwindigkeit v_1 $\frac{m}{s}$ Meter/Sekunde Durchschnittsbeschleunigung a $\frac{m}{s^2}$ Meter/Sekunde im Quadrat

Interaktive Inhalte: $a = \frac{v_1 - v_2}{t_1 - t_2}$ -

1.2.6 Freier Fall

 $h=\tfrac{1}{2}\cdot g\cdot t^2$

Zeit t s Sekunden Fallbeschleunigung g $\frac{m}{s^2}$ $9,81\frac{m}{s^2}$ Fallhöhe h m Meter $g=\frac{2\cdot h}{t^2} \quad t=\sqrt{\frac{2\cdot h}{g}}$

 $v = \sqrt{2 \cdot h \cdot g}$

Höhe h m Meter Fallbeschleunigung g $\frac{m}{s^2}$ 9,81 $\frac{m}{s^2}$ Geschwindigkeit v $\frac{m}{s}$ Meter/Sekunde $h = \frac{v^2}{2 \cdot g}$

Interaktive Inhalte: $h=\frac{1}{2}\cdot g\cdot t^2$ - $g=\frac{2\cdot h}{t^2}$ - $t=\sqrt{\frac{2\cdot h}{g}}$ - $v=\sqrt{2\cdot h\cdot g}$ - $h=\frac{v^2}{2\cdot g}$ -

1.2.7 Senkrechter Wurf nach oben

 $h = h_0 + v_0 \cdot t - \frac{1}{2} \cdot g \cdot t^2$

Abwurfhöhe h_0 m Meter Anfangsgeschwindigkeit v_0 $\frac{m}{s}$ Meter/Sekunde Zeit t s Sekunden Fallbeschleunigung g $\frac{m}{s^2}$ $9,81\frac{m}{s^2}$ Höhe h m Meter $g = -\frac{2\cdot(h-h_0-v_0\cdot t)}{t^2}$ $t = \frac{-v_0\pm\sqrt{v_0^2+4\cdot0.5\cdot g\cdot(h_0-h)}}{-g}$ $h_0 = h - v_0\cdot t + \frac{1}{2}\cdot g\cdot t^2$

 $v = v_0 - g \cdot t$

1.2.8 Waagrechter Wurf

 $h = \frac{1}{2} \cdot g \cdot t^2$

Zeit t s Sekunden Fallbeschleunigung g $\frac{m}{s^2}$ 9,81 $\frac{m}{s^2}$ Höhe h m Meter

 $g = \frac{2 \cdot h}{t^2}$ $t = \sqrt{\frac{2 \cdot h}{g}}$

 $s = v \cdot t$

Zeit t s Sekunden Geschwindigkeit v $\frac{m}{s}$ Meter/Sekunde Wurfweite s m Meter

v =

Interaktive Inhalte: $h = \frac{1}{2} \cdot g \cdot t^2 - g = \frac{2 \cdot h}{t^2} - t = \sqrt{\frac{2 \cdot h}{g}} - s = v \cdot t - v = \frac{s}{t}$

Mechanik Kinematik

1.2.9 Schiefer Wurf

 $v_x = v \cdot cos\alpha$

$x_w = \frac{v_0^2 \cdot \sin(2 \cdot \alpha)}{g}$	Fallbeschleunigung Abwurfwinkel Anfangsgeschwindigkeit Wurfweite $t = \frac{v_0 \cdot sin\alpha}{g}$	$egin{array}{c} g \ lpha \ v_0 \ x_w \end{array}$	$\frac{\frac{m}{s^2}}{\circ}$ $\frac{m}{s}$ m	$9,81\frac{m}{s^2}$ Grad Meter/Sekunde Meter	
--	--	---	---	--	--

$$v_y = v \cdot sin\alpha - g \cdot t$$
 Fallbeschleunigung
$$g \quad \frac{m}{s^2} \quad 9,81 \frac{m}{s^2}$$
 Zeit
$$t \quad s \quad \text{Sekunden}$$
 Winkel Geschwindigkeitsvektor v - x-Achse
$$\alpha \quad ^{\circ} \quad \text{Grad}$$
 Betrag der Geschwindigkeit
$$v \quad \frac{m}{s} \quad \text{Meter/Sekunde}$$

Meter/Sekunde Komponente in y-Richtung

 $v = \frac{v_y + g \cdot t}{\sin \alpha}$

Winkel Geschwindigkeitsvektor v - x-Achse Grad Meter/Sekunde Betrag der Geschwindigkeit vKomponente in x-Richtung Meter/Sekunde v_x

 $v = \frac{v_x}{\cos\alpha}$

$$v = \sqrt{v_x^2 + v_y^2}$$
 Komponente in x-Richtung v_x $\frac{m}{s}$ Meter/Sekunde Komponente in y-Richtung v_y $\frac{m}{s}$ Meter/Sekunde Betrag der Geschwindigkeit v $\frac{m}{s}$ Meter/Sekunde

 $v_x = \sqrt{v^2 - v_y^2}$

$$v_y = \sqrt{v^2 - v_x^2} \\ \text{Betrag der Geschwindigkeit} \quad v \quad \frac{m}{s} \quad \text{Meter/Sekunde} \\ \text{Komponente in x-Richtung} \quad v_x \quad \frac{m}{s} \quad \text{Meter/Sekunde} \\ \text{Komponente in y-Richtung} \quad v_y \quad \frac{m}{s} \quad \text{Meter/Sekunde} \\ \text{Meter/Sekunde} \\ \text{Noter/Sekunde} \\ \text{$$

 $v_y = tan\alpha \cdot v_x \quad tan\alpha = \frac{v_y}{v_x}$

 $y = x \cdot tan\alpha - \frac{g \cdot x^2}{2 \cdot v_0^2 \cdot cos^2 \alpha}$

Anfangsgeschwindigkeit Meter/Sekunde Fallbeschleunigung $9,81\frac{m}{s^2}$ Abwurfwinkel Grad α in x-Richtung (Bahnkurve) x Meter in y-Richtung (Bahnkurve) y Meter $t = \frac{2 \cdot v_0 \cdot sin\alpha}{g}$

 $t=rac{2\cdot v_0\cdot sinlpha}{g}$ -

1.2.10 Frequenz-Periodendauer

Periodendauer T sSekunden $f = \frac{1}{T}$ Frequenz $f \quad hz = \frac{1}{s}$ $T = \frac{1}{f}$ $f = \frac{n}{t}$ Perioden-Umdrehungen nFrequenz f $hz = \frac{1}{s}$ Hertz

 $t = \frac{n}{f}$ $n = f \cdot t$

Interaktive Inhalte: $f = \frac{1}{T} - T = \frac{1}{f} - f = \frac{n}{t} - t = \frac{n}{f} - n = f \cdot t$

1.2.11 Winkelgeschwindigkeit

 $\omega = 2 \cdot \pi \cdot f$ Kreiszahl 3,1415927 $\begin{array}{lll} \mbox{Frequenz} & f & hz = \frac{1}{s} \\ \mbox{Winkelgeschwindigkeit} & \omega & \frac{1}{s} \end{array}$ Hertz 1/Sekunde $f = \frac{\omega}{2 \cdot \pi}$ $\omega = \frac{2 \cdot \pi}{T}$ $T = \frac{2 \cdot \pi}{\omega}$

Interaktive Inhalte: $\omega = 2 \cdot \pi \cdot f - f = \frac{\omega}{2 \cdot \pi} - \omega = \frac{2 \cdot \pi}{T} - T = \frac{2 \cdot \pi}{\omega}$

Mechanik Kinematik

1.2.12 Bahngeschwindigkeit

 $v = \omega \cdot r$

 $\begin{array}{lll} \text{Radius} & r & m & \text{Meter} \\ \text{Winkelgeschwindigkeit} & \omega & \frac{1}{s} & 1/\text{Sekunde} \\ \text{Bahngeschwindigkeit} & v & \frac{m}{s} & \text{Meter/Sekunde} \end{array}$

 $\omega = \frac{v}{r} \hspace{0.5cm} r = \frac{v}{\omega}$

Interaktive Inhalte: $v = \omega \cdot r - \omega = \frac{v}{r} - r = \frac{v}{\omega}$

1.2.13 Zentralbeschleunigung

 $a_z = \omega^2 \cdot r$

Radius r m Meter Winkelgeschwindigkeit ω $\frac{1}{s}$ 1/Sekunde Zentralbeschleunigung a_z $\frac{m}{s^2}$

 $\omega = \sqrt{rac{a_z}{r}} ~~ r = rac{a_z}{\omega}$

Interaktive Inhalte: $a_z = \omega^2 \cdot r - \omega = \sqrt{\frac{a_z}{r}} - r = \frac{a_z}{\omega}$

w = 2*pi*f

Mechanik Dynamik

1.3 Dynamik

1.3.1 Kraft

 $m = \frac{F}{a} \quad a = \frac{F}{m}$ Interaktive Inhalte: $F = m \cdot a - m = \frac{F}{a} - a = \frac{F}{m}$ -

1.3.2 Schiefe Ebene

$$F_H = F_G \cdot sin\alpha$$

$$F_N = F_G \cdot cos\alpha$$

Interaktive Inhalte: $F_H = F_G \cdot sin\alpha$ - $F_G = \frac{F_H}{sin\alpha}$ - $sin\alpha = \frac{F_H}{F_G}$ - $F_N = F_G \cdot cos\alpha$ - $F_G = \frac{F_N}{cos\alpha}$ - $cos\alpha = \frac{F_N}{F_G}$ -

1.3.3 Zentralkraft

$$F_z = m \cdot \omega^2 \cdot r$$
 Radius r m Meter Winkelgeschwindigkeit ω $\frac{1}{s}$ 1/Sekunde Masse m kg Kilogramm Zentralkraft F_z N Newton $\frac{kgm}{s^2}$
$$mm = \frac{F_z}{\omega^2 \cdot r} \quad \omega = \sqrt{\frac{F_z}{m \cdot r}} \quad r = \frac{F_z}{m \cdot \omega^2}$$

Interaktive Inhalte: $F_z = m \cdot \omega^2 \cdot r - m = \frac{F_z}{\omega^2 \cdot r} - \omega = \sqrt{\frac{F_z}{m \cdot \omega^2}} - r = \frac{F_z}{m \cdot \omega^2}$

1.3.4 Gravitationsgesetz

$$F = G \cdot \frac{m_1 \cdot m_2}{r^2} \qquad \qquad \text{Gravitationskonstante} \qquad G \qquad \frac{Nm^2}{kg^2} \qquad \qquad 6,672041E-11$$
 Abstand der Massen $r \qquad m$ Massen $m_2 \qquad kg \qquad \text{Kilogramm}$ Massen $m_1 \qquad kg \qquad \text{Kilogramm}$ Kraft $F \qquad N \qquad \text{Newton} \qquad \frac{kgm}{s^2}$
$$r = \sqrt{\frac{G \cdot m_1 \cdot m_2}{F}} \qquad m_1 = \frac{F \cdot r^2}{G \cdot m_2} \qquad m_2 = \frac{F \cdot r^2}{G \cdot m_1}$$

Interaktive Inhalte: $F=G\cdot \frac{m_1\cdot m_2}{r^2}$ - $r=\sqrt{\frac{G\cdot m_1\cdot m_2}{F}}$ - $m_1=\frac{F\cdot r^2}{G\cdot m_2}$ - $m_2=\frac{F\cdot r^2}{G\cdot m_1}$ -

Mechanik Dynamik

1.3.5 Impuls

$$p = m \cdot v$$

 $\begin{array}{cccc} \text{Geschwindigkeit} & v & \frac{m}{s} & Meter/Sekunde \\ \text{Masse} & m & kg & \text{Kilogramm} \end{array}$

Impuls p Ns Newton Sekunden $kg\frac{m}{s}$

 $m = \frac{p}{v}$ $v = \frac{p}{m}$

Interaktive Inhalte: $p = m \cdot v - m = \frac{p}{v} - v = \frac{p}{m}$

1.3.6 Mechanische Arbeit

$$W = F \cdot s$$

Interaktive Inhalte: $W = F \cdot s - F = \frac{W}{s} - s = \frac{W}{F}$

1.3.7 Hubarbeit - Potentielle Energie

$$W = F_G \cdot h$$

Interaktive Inhalte: $W = F_G \cdot h - F_G = \frac{W}{h} - h = \frac{W}{F_G}$

1.3.8 Spannarbeit-Spannenergie

$$W=\tfrac{1}{2}\cdot D\cdot s^2$$

Weg,Auslenkung s m Meter Federkonstante,Richtgröße D $\frac{N}{m}$ $\frac{kg}{s^2}$ Arbeit W J Joule Nm = Ws $s = \sqrt{\frac{2 \cdot W}{D}}$ $D = \frac{2 \cdot W}{s^2}$

Interaktive Inhalte: $W=\frac{1}{2}\cdot D\cdot s^2$ - $s=\sqrt{\frac{2\cdot W}{D}}$ - $D=\frac{2\cdot W}{s^2}$ -

1.3.9 Beschleunigungsarbeit - kinetische Energie

$$W = \frac{1}{2} \cdot m \cdot v^2$$

Interaktive Inhalte: $W=\frac{1}{2}\cdot m\cdot v^2$ - $m=\frac{2\cdot W}{v^2}$ - $v=\sqrt{\frac{2\cdot W}{m}}$ -

1.3.10 Mechanische Leistung

$$P = \frac{W}{t}$$

Interaktive Inhalte: $P = \frac{W}{t}$ - $W = P \cdot t$ - $t = \frac{W}{P}$ -

www.fersch.de

12

Mechanik Dynamik

1.3.11 Wirkungsgrad

$$\eta = \frac{P_2}{P_1}$$
 abgegebene Leistung P_2 W Watt $VA = \frac{J}{s}$ zugeführte Leistung P_1 W Watt $VA = \frac{J}{s}$ Wirkungsgrad η

$$P_1 = \frac{p_2}{\eta} \qquad P_2 = \eta \cdot P_1$$

Interaktive Inhalte: $\eta = \frac{P_2}{P_1}$ - $P_1 = \frac{p_2}{\eta}$ - $P_2 = \eta \cdot P_1$ -

Mechanik Schwingungen/Wellen

Schwingungen/Wellen

1.4.1 Lineares Kraftgesetz

Auslenkung,
Elongation
$$y$$
 m Meter Federkonstante,
Richtgröße D $\frac{N}{m}$ M Newton $\frac{kg}{\frac{kgm}{s^2}}$
$$F$$
 N Newton $D = \frac{-F}{y}$ $y = \frac{-F}{D}$ Interaktive Inhalte: $F = -D \cdot y$ $-D = \frac{-F}{y}$ $-y = \frac{-F}{D}$

1.4.2 Periodendauer (harmonische Schwingung)

$$T=2\cdot\pi\cdot\sqrt{\frac{m}{D}}$$
 Kreiszahl
$$\pi$$
 Sederkonstante, Richtgröße
$$D=\frac{N}{m}$$
 Kilogramm Periodendauer
$$T=s$$
 Sekunden
$$D=m\cdot\frac{(2\cdot\pi)^2}{T^2}$$

$$m=D\cdot\frac{T^2}{(2\cdot\pi)^2}$$

Interaktive Inhalte: $T = 2 \cdot \pi \cdot \sqrt{\frac{m}{D}} - D = m \cdot \frac{(2 \cdot \pi)^2}{T^2} - m = D \cdot \frac{T^2}{(2 \cdot \pi)^2}$

1.4.3 Bewegungsgleichung (harmonische Schwingung)

$$y = y_s \cdot sin(\omega \cdot t + \phi_0)$$
 Zeit t s Sekunden Phase für $t=0$ ϕ_0 rad Winkelgeschwindigkeit ω $\frac{1}{s}$ $1/$ Sekunde max. Auslenkung, Scheitelwert y_s m Meter Auslenkung, Elongation y m Meter
$$y_s = \frac{y}{sin(\omega \cdot t + \phi_0)}$$
 $t = \frac{arcsin(y/y_s) - \phi_0}{\omega}$

Interaktive Inhalte: $y = y_s \cdot sin(\omega \cdot t + \phi_0) - y_s = \frac{y}{sin(\omega \cdot t + \phi_0)} - t = \frac{arcsin(y/y_s) - \phi_0}{\omega}$

2 Elektrotechnik

2.1 Elektrizitätslehre

2.1.1 Stromstärke

$I = \frac{\Delta Q}{\Delta t}$	Zeitänderung Ladungsänderung Stromstärke		Sekunden Ampere	As
	$\Delta Q = I \cdot \Delta t \Delta t$	$=\frac{\Delta Q}{I}$		

Interaktive Inhalte: $I=\frac{\Delta Q}{\Delta t}$ - $\Delta Q=I\cdot\Delta t$ - $\Delta t=\frac{\Delta Q}{I}$ -

2.1.2 Ohmsches Gesetz

$$R = \frac{U}{I}$$
 Stromstärke I A Ampere Spannung U V Volt Widerstand R Ω Ohm $\frac{V}{A}$
$$U = R \cdot I \quad I = \frac{U}{R}$$

Interaktive Inhalte: $R = \frac{U}{I} - U = R \cdot I - I = \frac{U}{R}$

2.1.3 Reihenschaltung von Widerständen

$$R_g = R_1 + R_2 \qquad R_1 = R_g - R_2 \qquad R_2 = R_g - R_1$$

$$U_g = U_1 + U_2... + U_n$$
 Einzelspannung U_2 V Volt Einzelspannung U_1 V Volt Gesamtspannung U_g V Volt
$$U_g = U_1 + U_2 \quad U_1 = U_g - U_2 \quad U_2 = U_g - U_1$$

Elektrotechnik Elektrizitätslehre

2.1.4 Parallelschaltung von Widerständen

$$\frac{1}{R_g} = \frac{1}{R_1} + \frac{1}{R_2} \dots + \frac{1}{R_n}$$

$$U = \text{konstant}$$

Einzelwiderstand Einzelwiderstand R_1 Ω Ohm $\frac{V}{A}$ Gesamtwiderstand R_g Ω Ohm $\frac{V}{A}$ $R_g = \frac{R_1 \cdot R_2}{R_1 + R_2}$ $R_1 = \frac{R_2 \cdot R_g}{R_2 - R_g}$ $R_2 = \frac{R_1 \cdot R_g}{R_1 - R_g}$

$$R_g = \frac{R_1 \cdot R_2}{R_1 + R_2}$$
 $R_1 = \frac{R_2 \cdot R_g}{R_2 - R_g}$ $R_2 = \frac{R_1 \cdot R_g}{R_1 - R_g}$

$$I_g = I_1 + I_2 ... + I_n$$

Einzelstrom I_2 A Ampere Einzelstrom I_1 A Ampere Gesamtstrom I_g A Ampere

$$I_g = I_1 + I_2$$
 $I_1 = I_g - I_2$ $I_2 = I_g - I_1$

 $I_g = I_1 + I_2 \quad I_1 = I_g - I_2 \quad I_2 = I_g - I_1$ Interaktive Inhalte: $\frac{1}{R_g} = \frac{1}{R_1} + \frac{1}{R_2}... + \frac{1}{R_n} \quad -R_g = \frac{R_1 \cdot R_2}{R_1 + R_2} \quad -R_1 = \frac{R_2 \cdot R_g}{R_2 - R_g} \quad -R_2 = \frac{R_1 \cdot R_g}{R_1 - R_g} \quad -I_g = I_1 + I_2... + I_n \quad -I_g = I_1 + I_2 \quad -I_1 = I_g - I_2 \quad -I_2 = I_g - I_1 \quad -I_2 = I_g - I_2 \quad -I_3 = I_g - I_3 \quad -I_3 = I_1 + I_2 \quad -I_3 = I_3 - I_3 \quad -I_4 = I_3 - I_4 - I_4 \quad -I_4 = I_4 - I_4 -$

2.1.5 Widerstandsänderung - Temperatur

 $\Delta R = R \cdot \alpha \cdot \Delta T$

 $\Delta R = R \cdot \alpha \cdot \Delta T \quad \alpha = \frac{R}{\Delta R \cdot \Delta T} \quad \Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T}$ Interaktive Inhalte: $\Delta R = R \cdot \alpha \cdot \Delta T \quad -\Delta R = R \cdot \alpha \cdot \Delta T \quad -\alpha = \frac{R}{\Delta R \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T} \quad -\Delta T$

2.1.6 Spezifischer Widerstand

 $R = \frac{\rho \cdot l}{A}$

Fläche $A mm^2$ Quadratmillimeter Länge Meter Ωmm^2 Spezifischer Widerstand ρ $\frac{V}{A}$ Widerstand Ohm

 $l = \frac{R \cdot A}{\rho} \quad \rho = \frac{R \cdot A}{l} \quad A = \frac{R \cdot \rho}{A}$ Interaktive Inhalte: $R = \frac{\rho \cdot l}{A} - l = \frac{R \cdot A}{\rho} - \rho = \frac{R \cdot A}{l} - A = \frac{R \cdot \rho}{A}$

2.1.7 Spezifischer Leitwert

 $R = \frac{l}{\kappa \cdot A}$ $A mm^2$ Quadratmillimeter Fläche Meter

Flache A mmLänge l mSpezifischer Leitwert κ $\frac{m}{\Omega mm^2}$ Widerstand R Ω Ohm $l = R \cdot \kappa \cdot A \hspace{0.5cm} A = \tfrac{l}{\kappa \cdot R} \hspace{0.5cm} \kappa = \tfrac{l}{R \cdot A}$

Interaktive Inhalte: $R = \frac{l}{\kappa \cdot A}$ - $l = R \cdot \kappa \cdot A$ - $A = \frac{l}{\kappa \cdot R}$ - $\kappa = \frac{l}{R \cdot A}$ -

ElektrotechnikElektrizitätslehre

2.1.8 Elektrische Leistung

 $\begin{array}{cccc} {\rm Stromst\"{a}rke} & I & A \\ {\rm Spannung} & U & V \\ {\rm Leistung} & P & W \end{array}$ $P = U \cdot I$ Ampere Volt $VA = \frac{J}{s}$ Watt

 $U = \frac{P}{I}$ $I = \frac{P}{U}$

Interaktive Inhalte: $P = U \cdot I - U = \frac{P}{I} - I = \frac{P}{U}$

2.1.9 Elektrische Arbeit

 $W = U \cdot I \cdot t$ Zeit Sekunden Stromstärke IAAmpere U VSpannung Volt Arbeit W - Ws Wattsekunde VAs = J

 $U = \frac{W}{I \cdot t} \quad I = \frac{W}{U \cdot t} \quad t = \frac{P}{U \cdot I}$ Interaktive Inhalte: $W = U \cdot I \cdot t \quad - U = \frac{W}{I \cdot t} \quad - I = \frac{W}{U \cdot t} \quad - t = \frac{P}{U \cdot I} \quad -$

Elektrotechnik Elektrisches Feld

Elektrisches Feld

2.2.1Elektrische Feldstärke

Interaktive Inhalte: $E = \frac{F}{Q} - F = E \cdot Q - Q = \frac{F}{E} - E = \frac{U}{d} - U = E \cdot d - d = \frac{U}{E}$

2.2.2 Gesetz von Coulomb

Interaktive Inhalte: $F = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{r^2}$ - $r = \sqrt{\frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{F}}$ - $Q_1 = 4\pi\epsilon_0 \cdot \frac{F \cdot r^2}{Q_2}$ -

2.2.3 Kapazität eines Kondensators

$C = \frac{Q}{U}$	$\begin{array}{lll} \text{Spannung} & U & V \\ \text{Ladung} & Q & C \\ \text{Kapazität} & C & F \\ Q = C \cdot U & U = \frac{Q}{C} \end{array}$	Coulomb	$rac{As}{V}$	
$C = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{d}$	Plattenabstand Fläche Elekt. Feldkonstante Dielektrizitätszahl	$A m^2$	Meter Quadratmeter	
	Kapazität $A = \frac{C \cdot d}{\epsilon_0 \epsilon_r} d = \epsilon_0 \cdot \epsilon_r$	$\cdot \frac{A}{C}$	Farad	$\frac{As}{V}$

Interaktive Inhalte: $C = \frac{Q}{U} - Q = C \cdot U - U = \frac{Q}{C} - C = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{d} - A = \frac{C \cdot d}{\epsilon_0 \epsilon_r} - d = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{C}$

2.2.4 Reihenschaltung von Kondensatoren

Elektrisches Feld

$$\frac{1}{C_g} = \frac{1}{C_1} + \frac{1}{C_2} ... + \frac{1}{C_n}$$

$$U_g = U_1 + U_2 ... + U_n$$

Interaktive Inhalte: $\frac{1}{C_g} = \frac{1}{C_1} + \frac{1}{C_2}... + \frac{1}{C_n} - C_g = \frac{C_1 \cdot C_2}{C_1 + C_2} - C_1 = \frac{C_2 \cdot C_g}{C_2 - C_g} - C_2 = \frac{C_1 \cdot C_g}{C_1 - C_g} - U_g = U_1 + U_2... + U_n - U_g = U_1 + U_2 - U_1 = U_g - U_2 - U_2 = U_g - U_1$

2.2.5 Parallelschaltung von Kondensatoren

$$C_g = C_1 + C_2 \dots + C_n$$

Kapazität 1 C_2 F Farad $\frac{As}{X_s}$ Kapazität 1 C_1 F Farad $\frac{As}{X_s}$ Gesamtkapazität C_g F Farad $\frac{As}{Y}$ $C_g = C_1 + C_2$ $C_1 = C_g - C_2$ $C_2 = C_g - C_1$

$$Q_g = Q_1 + Q_2.. + Q_n$$

2.2.6 Elektrische Energie des Kondensators

 $W = \frac{1}{2} \cdot C \cdot U^2$

Kapazität C F Farad $\frac{As}{V}$ Spannung U V Volt Arbeit W Ws Wattsekunde VAs = J $U = \sqrt{\frac{2 \cdot W}{C}}$ $C = \frac{2 \cdot W}{U^2}$

Interaktive Inhalte: $W=\frac{1}{2}\cdot C\cdot U^2$ - $U=\sqrt{\frac{2\cdot W}{C}}$ - $C=\frac{2\cdot W}{U^2}$ -

Elektrotechnik Magnetisches Feld

Magnetisches Feld

2.3.1 Flußdichte

Interaktive Inhalte: $B = \frac{F}{I \cdot l} - F = B \cdot I \cdot l - I = \frac{F}{B \cdot l} - l = \frac{F}{I \cdot B}$

2.3.2 Feldstärke einer langgestreckten Spule

 $H = \frac{I \cdot N}{l}$ Länge der Spule lMeter Anzahl der Windungen NStromstärke $\begin{array}{ccc} I & A \\ \text{Magnetische Feldstärke} & H & \frac{A}{m} \end{array}$ Ampere Ampere/Meter $I = \frac{H \cdot l}{N} \quad N = \frac{H \cdot l}{I} \quad l = \frac{I \cdot N}{H}$ Interaktive Inhalte: $H = \frac{I \cdot N}{l} - I = \frac{H \cdot l}{N} - N = \frac{H \cdot l}{I} - l = \frac{I \cdot N}{H}$

2.3.3 Flußdichte - Feldstärke

 $B = \mu_r \cdot \mu_0 \cdot H$ Permeabilitätszahl Magn. Feldkonstante μ_0 $\frac{V_s}{Am}$ Magnetische Feldstärke H $\frac{A}{m}$ Magnetische Flußdichte B T $H = \frac{B}{\mu_r \cdot \mu_0} \qquad \mu_r = \frac{B}{\mu_0 \cdot H} \qquad \mu_0 = \frac{B}{\mu_r \cdot H}$ Interaktive Inhalte: $B = \mu_r \cdot \mu_0 \cdot H \quad - H = \frac{B}{\mu_r \cdot \mu_0} \quad - \mu_r = \frac{B}{\mu_0 \cdot H} \quad - \mu_0 = \frac{B}{\mu_r \cdot H} \quad - \mu_0 = \frac{B}{\mu_0 \cdot H} \quad - \mu_0 = \frac{B}{\mu_0 \cdot H} \quad - \mu_0 = \frac{B}{\mu_0$

2.3.4 Magnetischer Fluß

 $\Phi = B \cdot A \cdot cos(\delta)$ Winkel Flächennormale-Flußdichte δ radRadiant (Bogenmaß) Fläche Magnetische Flußdichte Magnetischer Fluß Quadratmeter Tesla Magnetischer Fluß Weber $A = \frac{\Phi}{B \cdot cos(\delta)} \qquad B = \frac{\Phi}{A \cdot cos(\delta)} \qquad \delta = \arccos(\frac{\Phi}{B \cdot A})$ Interaktive Inhalte: $\Phi = B \cdot A \cdot cos(\delta) - A = \frac{\Phi}{B \cdot cos(\delta)} - B = \frac{\Phi}{A \cdot cos(\delta)} - \delta = \arccos(\frac{\Phi}{B \cdot A})$

2.3.5 Induktivität einer langgestreckten Spule

 $L = \mu_0 \cdot \mu_r \cdot \frac{A \cdot N^2}{ISP}$ Fläche Quadratmeter lSP - mLänge der Spule Meter Anzahl der Windungen NPermeabilitätszahl μ_r Magn. Feldkonstante μ_0 $\frac{V_s}{Am}$ Induktivität L H Henry $\frac{V_s}{A}$ $l_{SP} = \mu_0 \cdot \mu_r \cdot \frac{A \cdot N^2}{L}$ $A = \frac{L \cdot l}{\mu_0 \cdot \mu_r \cdot N^2}$ $N = \sqrt{\frac{L \cdot l}{\mu_0 \cdot \mu_r \cdot A}}$

Interaktive Inhalte: $L = \mu_0 \cdot \mu_r \cdot \frac{A \cdot N^2}{lSP}$ - $l_{SP} = \mu_0 \cdot \mu_r \cdot \frac{A \cdot N^2}{L}$ - $A = \frac{L \cdot l}{\mu_0 \cdot \mu_r \cdot N^2}$ - $N = \sqrt{\frac{L \cdot l}{\mu_0 \cdot \mu_r \cdot A}}$ -

Elektrotechnik Magnetisches Feld

2.3.6 Reihenschaltung (Induktivität)

$$L_g = L_1 + L_2 \dots + L_n$$

$$L_g = L_1 + L_2$$
 $L_1 = L_g - L_2$ $L_2 = L_g - L_1$

$$U_g = U_1 + U_2 ... + U_n$$

$$U_g = U_1 + U_2$$
 $U_1 = U_g - U_2$ $U_2 = U_g - U_1$

2.3.7 Parallelschaltung (Induktivität)

$$\frac{1}{L_g} = \frac{1}{L_1} + \frac{1}{L_2} ... + \frac{1}{L_n}$$

$$L_1 = \frac{L_2 \cdot L_g}{L_2 - L_g}$$
 $L_2 = \frac{L_1 \cdot L_g}{L_1 - L_g}$

$$I_g = I_1 + I_2 ... + I_n$$

$$I_g = I_1 + I_2$$
 $I_1 = I_g - I_2$ $I_2 = I_g - I_1$

Interaktive Inhalte: $\frac{1}{L_g} = \frac{1}{L_1} + \frac{1}{L_2}... + \frac{1}{L_n}$ - hier klicken $L_1 = \frac{L_2 \cdot L_g}{L_2 - L_g}$ - $L_2 = \frac{L_1 \cdot L_g}{L_1 - L_g}$ - $I_g = I_1 + I_2... + I_n$ - $I_g = I_1 + I_2$ - $I_1 = I_g - I_2$ - $I_2 = I_g - I_1$ -

Elektrotechnik Wechselstrom

Wechselstrom

Wechselspannung - Wechselstrom

 $I_t = I_{max} \cdot sin(\omega \cdot t)$

Interactive Inhalte: $U_t = U_{max} \cdot sin(\omega \cdot t) - I_t = I_{max} \cdot sin(\omega \cdot t)$

2.4.2 Scheitel - Effektiv

$$U_{eff} = \frac{U_{max}}{\sqrt{2}}$$

Scheitel-, Spitzenspannung U_{max} Effektivspannung

 $I_{max} = \sqrt{2} \cdot I_{eff}$ $I_{eff} = \frac{I_{max}}{\sqrt{2}}$

Interaktive Inhalte: hier klicken $U_{eff} = \frac{U_{max}}{\sqrt{2}}$ - $I_{max} = \sqrt{2} \cdot I_{eff}$ - $I_{eff} = \frac{I_{max}}{\sqrt{2}}$ -

2.4.3 Induktiver Widerstand

$$X_L = \omega \cdot L$$

Induktivität Henry Eigenkreisfrequenz 1/Sekunde Induktiver Widerstand X_L Ohm

 $L = \frac{X_L}{\omega}$ $\omega = \frac{X_L}{L}$

Interaktive Inhalte: $X_L = \omega \cdot L - L = \frac{X_L}{\omega} - \omega = \frac{X_L}{L}$

2.4.4 Kapazitiver Widerstand

$$X_C = \frac{1}{\omega \cdot C}$$

Kapazität Farad Eigenkreisfrequenz 1/Sekunde Kapazitiver Widerstand X_C Ohm

 $C = \frac{1}{X_C \cdot \omega} \quad \omega = \frac{1}{X_C \cdot C}$ Interaktive Inhalte: $X_C = \frac{1}{\omega \cdot C} - C = \frac{1}{X_C \cdot \omega} - \omega = \frac{1}{X_C \cdot C}$

2.4.5 Wirkleistung

 $P = U \cdot I \cdot cos(\phi)$

Winkel phi Radiant (Bogenmaß) rad

Effektivstromstärke AAmpere I_{eff} Effektivspannung VVolt U_{eff}

Wirkleistung WWatt

 $VA = \frac{J}{s}$

Interaktive Inhalte: $P = U \cdot I \cdot cos(\phi)$ -

Elektrischer Schwingkreis

2.5.1 Eigenfrequenz (Ungedämpfte elektrische Schwingung)

$$f = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$
 Kapazität C F Farad $\frac{As}{V}$ Induktivität L H Henry $\frac{Vs}{A}$ Eigenfrequenz f $hz = \frac{1}{s}$ Hertz
$$L = \frac{1}{(2 \cdot \pi \cdot f)^2 \cdot C} \quad C = \frac{1}{(2 \cdot \pi \cdot f)^2 \cdot L}$$
 Interaktive Inhalte: $f = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}} - L = \frac{1}{(2 \cdot \pi \cdot f)^2 \cdot C} - C = \frac{1}{(2 \cdot \pi \cdot f)^2 \cdot L}$

2.5.2 Eigenkreisfrequenz

$$\omega = \frac{1}{\sqrt{L \cdot C}}$$
 Kapazität C F Farad $\frac{As}{V}$ Induktivität L H Henry $\frac{V_s}{A}$ Eigenkreisfrequenz ω $\frac{1}{s}$ 1/Sekunde
$$L = \frac{1}{\omega^2 \cdot C} \quad C = \frac{1}{\omega^2 \cdot L}$$
 Interaktive Inhalte: $\omega = \frac{1}{\sqrt{L \cdot C}} - L = \frac{1}{\omega^2 \cdot C} - C = \frac{1}{\omega^2 \cdot L}$

2.6 Allgemeine Elektrotechnik

2.6.1 Spannungsteiler

$U_1 = U_g \cdot \frac{R_1}{R_1 + R_2}$	Teilwiderstand Teilwiderstand Gesamtspannung Teilspannung	$R_2 \\ R_1 \\ U_g \\ U_1$	$egin{array}{l} \Omega \ V \ V \end{array}$	Ohm Ohm Volt Volt	$\frac{V}{A}$ $\frac{V}{A}$	
---	--	----------------------------	---	----------------------------	-----------------------------	--

Interaktive Inhalte: $U_1 = U_g \cdot \frac{R_1}{R_1 + R_2}$ -

3 Wärmelehre

3.1 Temperatur

3.1.1 Termperatur - Umrechnungen

```
T = 273, 15 + \tau
                                                                             ^{\circ}C
                                                                                    Grad\ Celsius = GadCelsius
                                              absolute Temperatur T
                                                                            K
                                                                                    Kelvin
                                              \tau = T - 273, 15
T_F = \frac{9}{5} \cdot \tau + 32
                                              Temperatur \tau °C Grad Celsius = GadCelsius
                                              \tau = \frac{5}{9} \cdot (T_F - 32)
T_R = \frac{9}{5} \cdot \tau + 491,67
                                              Temperatur \tau °C
                                                                           Grad Celsius
                                                                                              = GadCelsius \\
                                              Temperatur T_R °R Grad Rankine Rankine
                                              \tau = \frac{5}{9} \cdot (T_R - 491, 67)
```

Interaktive Inhalte: $T=273,15+\tau$ - $\tau=T-273,15$ - $T_F=\frac{9}{5}\cdot\tau+32$ - $\tau=\frac{5}{9}\cdot(T_F-32)$ - $T_R=\frac{9}{5}\cdot\tau+491,67$ - $\tau=\frac{5}{9}\cdot(T_R-491,67)$ -

3.1.2 Temperaturdifferenz

 $\Delta T = T_2 - T_1$ absolute Temperatur T_2 K Kelvin absolute Temperatur T_1 K Kelvin Temperatur differenz ΔT K Kelvin $T_1 = T_2 - \Delta T$ $T_2 = \Delta T + T_1$

Interactive Inhalte: $\Delta T = T_2 - T_1 - T_1 = T_2 - \Delta T - T_2 = \Delta T + T_1$

Ausdehnung der Körper 3.2

3.2.1 Längenausdehnung

 $\Delta l = l_0 \cdot \alpha \cdot \Delta T$

Längenausdehnungskoeffizient 1/Kelvin Kelvin Temperaturdifferenz Anfangslänge Meter m l_0 Längenänderung Meter m

 $l_0 = \frac{\Delta l}{\alpha \cdot \Delta T}$

Längenausdehnungskoeffizient 1/Kelvin Temperaturdifferenz ΔT Kelvin Längenänderung Δl Meter mAnfangslänge Meter l_0 m

 $\alpha = \frac{\Delta l}{l_0 \cdot \Delta T} \quad \Delta T = \frac{\Delta l}{l_0 \cdot \alpha}$ Interaktive Inhalte: $\Delta l = l_0 \cdot \alpha \cdot \Delta T - l_0 = \frac{\Delta l}{\alpha \cdot \Delta T} - \alpha = \frac{\Delta l}{l_0 \cdot \Delta T} - \Delta T = \frac{\Delta l}{l_0 \cdot \alpha}$

3.2.2 Flächenausdehnung

 $\Delta A = A_0 \cdot 2 \cdot \alpha \cdot \Delta T$

Längenausdehnungskoeffizient α $\frac{1}{K}$ Temperaturdifferenz ΔT K1/Kelvin Kelvin Anfangsfläche Quadratmeter Flächenänderung Quadratmeter

 $A_0 = \frac{\Delta A}{2 \cdot \alpha \cdot \Delta T} \quad \alpha = \frac{\Delta A}{A_0 \cdot \Delta T \cdot 2} \quad \Delta T = \frac{\Delta A}{A_0 \cdot 2 \cdot \alpha}$ Interaktive Inhalte: $\Delta A = A_0 \cdot 2 \cdot \alpha \cdot \Delta T - A_0 = \frac{\Delta A}{2 \cdot \alpha \cdot \Delta T} - \alpha = \frac{\Delta A}{A_0 \cdot \Delta T \cdot 2} - \Delta T = \frac{\Delta A}{A_0 \cdot 2 \cdot \alpha}$

3.2.3 Volumenausdehnung

 $\Delta V = V_0 \cdot 3 \cdot \alpha \cdot \Delta T$

Längenausdehnungskoeffizient 1/Kelvin Temperaturdifferenz Kelvin Kubikmeter Anfangsvolumen Volumenänderung Kubikmeter

 $V_0 = \frac{\Delta V}{3 \cdot \alpha \cdot \Delta T} \quad \alpha = \frac{\Delta V}{V_0 \cdot \Delta T \cdot 3} \quad \Delta T = \frac{\Delta V}{V_0 \cdot 3 \cdot \alpha}$ Interaktive Inhalte: $\Delta V = V_0 \cdot 3 \cdot \alpha \cdot \Delta T \quad - V_0 = \frac{\Delta V}{3 \cdot \alpha \cdot \Delta T} \quad - \alpha = \frac{\Delta V}{V_0 \cdot \Delta T \cdot 3} \quad - \Delta T = \frac{\Delta V}{V_0 \cdot 3 \cdot \alpha} \quad - \Delta T = \frac{\Delta V}{V_0 \cdot 3 \cdot \alpha} \quad - \Delta T = \frac{\Delta V}{V_0 \cdot 3 \cdot \alpha} \quad - \Delta T = \frac{\Delta V}{V_0 \cdot \Delta T \cdot 3} \quad - \Delta$

Wärmelehre Energie

3.3 Energie

3.3.1 Wärmeenergie

 $\Delta Q = c \cdot m \cdot \Delta T$

Temperaturdifferenz Kelvin $\frac{Joule}{Kilogramm \cdot Kelvin}$ $\frac{J}{kgK}$ Spezifische Wärmekapazität Masse Kilogramm Wärmeenergie Joule

Nm = Ws

Nm = Ws

 $m = \frac{\Delta Q}{c \cdot \Delta T} \quad c = \frac{\Delta Q}{m \cdot \Delta T} \quad \Delta T = \frac{\Delta Q}{c \cdot m}$ Interaktive Inhalte: $\Delta Q = c \cdot m \cdot \Delta T$ - $m = \frac{\Delta Q}{c \cdot \Delta T}$ - $c = \frac{\Delta Q}{m \cdot \Delta T}$ - $\Delta T = \frac{\Delta Q}{c \cdot m}$ -

3.3.2 Verbrennungsenergie

 $Q = H_u \cdot m$

Masse Kilogramm Heizwert

Verbrennungsenergie Joule Nm = Ws

 $H_u = \frac{Q}{m}$ $m = \frac{Q}{H_u}$

Interaktive Inhalte: $Q = H_u \cdot m - H_u = \frac{Q}{m} - m = \frac{Q}{H_u}$

3.3.3 Schmelzen und Erstarren

 $Q = q_s \cdot m$

Joule Kilogramm Spezifische Schmelz-/Erstarrungswärme Energie zum Schmelzen/Erstarren Nm = Ws

 $m = \frac{Q}{q_s} \qquad q_s = \frac{Q}{m}$

Interaktive Inhalte: $Q = q_s \cdot m - m = \frac{Q}{q_s} - q_s = \frac{Q}{m}$

3.3.4 Verdampfen und Kondensieren

 $Q = q_v \cdot m$

Kilogramm $\frac{J}{kg}$ $\frac{Joule}{Kilogramm}$ Spezifische Verdampfungs-/Kondensationswärme q_v Energie zum Verdampfen/Kondensieren

 $m = \frac{Q}{q_v} \qquad q_v = \frac{Q}{m}$

Interaktive Inhalte: $Q=q_v\cdot m$ - $m=rac{Q}{q_v}$ - $q_v=rac{Q}{m}$ -

Zustandsänderungen der Gase

3.4.1 Allgemeine Gasgleichung

$$\frac{V_1 \cdot p_1}{T_1} = \frac{V_2 \cdot p_2}{T_2}$$

$$\frac{V_1 \cdot p_1}{T_1} = \frac{V_2 \cdot p_2}{T_2}$$
Druck 1
$$\frac{p_1}{p_1} = \frac{P_2}{p_2} = \frac{P_2}{p_2}$$

$$\frac{p_1}{p_2} = \frac{P_3}{p_2} = \frac{P_3}{p_2}$$

$$\frac{p_2}{p_2} = \frac{P_3}{p_2} = \frac{P_3}{p_2}$$
Note the peratur of the peratur

3.4.2 Thermische Zustandsgleichung

4 Astronomie

4.1 Gravitation

4.1.1 Gravitationsgesetz

$$F = G \cdot \frac{m_1 \cdot m_2}{r^2}$$
 Gravitationskonstante $G \cdot \frac{Nm^2}{kg^2}$ 6,672041 $E - 11$
Abstand der Massen $r \cdot m$
Massen $m_2 \cdot kg$ Kilogramm
Massen $m_1 \cdot kg$ Kilogramm
Kraft $F \cdot N$ Newton $\frac{kgm}{s^2}$

$$r = \sqrt{\frac{G \cdot m_1 \cdot m_2}{F}} \quad m_1 = \frac{F \cdot r^2}{G \cdot m_2} \quad m_2 = \frac{F \cdot r^2}{G \cdot m_1}$$

Interaktive Inhalte: $F = G \cdot \frac{m_1 \cdot m_2}{r^2} - r = \sqrt{\frac{G \cdot m_1 \cdot m_2}{F}} - m_1 = \frac{F \cdot r^2}{G \cdot m_2} - m_2 = \frac{F \cdot r^2}{G \cdot m_1} - m_2 = \frac{F \cdot r^2}{G \cdot m_1} - \frac{F \cdot r^2}{G$

4.1.2 Gravitationsfeldstärke

$$gr = \frac{G \cdot m}{r^2}$$
 Gravitationskonstante $G = \frac{Nm^2}{kg^2}$ 6,672041 $E - 11$ Abstand der Masse $r = m$ Masse $m = kg$ Kilogramm Gravitationsfeldstärke $gr = \frac{N}{kg}$ $m = \frac{gr \cdot r^2}{G} = r = \sqrt{\frac{G \cdot m}{gr}}$

Interaktive Inhalte: $gr = \frac{G \cdot m}{r^2}$ - $m = \frac{gr \cdot r^2}{G}$ - $r = \sqrt{\frac{G \cdot m}{gr}}$ -

5 Atomphysik

5.1 Atombau

5.1.1 Kernbausteine(Protonen, Neutronen, Massenzahl)

Z = A - N

Neutronenzahl M Nukleonen-,Massenzahl A Ordnung-,Protonenzahl Z

A = Z + N N = A - Z

Interaktive Inhalte: Z = A - N - A = Z + N - N = A - Z

5.1.2 Atommasse

 $m_a = A_r \cdot u$

atomare Masseneinheit $\begin{array}{ccc} u & kg & \text{Kilogramm} \\ \text{relative Atommasse} & A_r \\ \text{Atommasse} & m_a & kg & \text{Kilogramm} \end{array}$

 $m_a = A_r \cdot u \qquad m_a = A_r \cdot u$

Interactive Inhalte: $m_a = A_r \cdot u - m_a = A_r \cdot u - m_a = A_r \cdot u$

5.1.3 Masse des Atomkerns

 $m_k = m_a - Z \cdot m_e$

 $m_a=m_k+Z\cdot m_e \quad Z=\frac{m_a-m_k}{m_e} \quad m_e=\frac{m_a-m_k}{Z}$ Interaktive Inhalte: $m_k=m_a-Z\cdot m_e$ - $m_a=m_k+Z\cdot m_e$ - $Z=\frac{m_a-m_k}{m_e}$ - $m_e=\frac{m_a-m_k}{Z}$ -

5.1.4 Stoffmenge und Anzahl der Teilchen

 $\nu = \frac{N}{N_a}$

Avogadro-Konstante NA $6,022045E23\frac{1}{mol}$ Anzahl der Teilchen N Stoffmenge ν mol Mol

 $N = N_a \cdot \nu$

Interaktive Inhalte: $\nu = \frac{N}{N_a} - N = N_a \cdot \nu$ -

5.1.5 Molare Masse

 $M = \frac{m}{\nu}$

30

 $\nu = \frac{m}{M} \quad m = M \cdot \nu$

Interaktive Inhalte: $M = \frac{m}{\nu} - \nu = \frac{m}{M} - m = M \cdot \nu$

5.1.6 Masse - Energie

 $E=m\cdot c^2$

 $m = \frac{L}{c^2}$

Interactive Inhalte: $E = m \cdot c^2 - m = \frac{E}{c^2}$

Atomphysik Kernumwandlungen

Kernumwandlungen

5.2.1Zerfallsgesetz

zerfallfähige Atome nach der Zeit tN(t)

$$N_0 = \tfrac{N(t)}{e^{-\lambda t}} \hspace{0.5cm} \lambda = -ln \tfrac{Nt}{N_0} \cdot \tfrac{1}{t} \hspace{0.5cm} t = -ln \tfrac{Nt}{N_0} \cdot \tfrac{1}{\lambda}$$

 $N_0 = \frac{N(t)}{e^{-\lambda t}} \quad \lambda = -ln\frac{Nt}{N_0} \cdot \frac{1}{t} \quad t = -ln\frac{Nt}{N_0} \cdot \frac{1}{\lambda}$ Interaktive Inhalte: $N(t) = N_0 \cdot e^{-\lambda t}$ - $N_0 = \frac{N(t)}{e^{-\lambda t}}$ - $\lambda = -ln\frac{Nt}{N_0} \cdot \frac{1}{t}$ - $t = -ln\frac{Nt}{N_0} \cdot \frac{1}{\lambda}$ -

5.2.2 Halbwertszeit

$$T = \frac{\ln 2}{\lambda}$$
 Zerfallskonstante λ $\frac{1}{s}$ Halbwertszeit T s Sekunden

 $\lambda = \frac{\ln 2}{T}$

Interaktive Inhalte: $T = \frac{\ln 2}{\lambda} - \lambda = \frac{\ln 2}{T}$

5.2.3 Aktivität

$$A = \lambda \cdot N(t)$$
 zerfallfähige Atome nach der Zeit
t $N(t)$
$$X = \frac{1}{s}$$
 Aktivität
$$A = \frac{1}{s}$$
 Becquerel $Bq = \frac{1}{s}$

 $N(t) = \frac{A}{\lambda}$

Interaktive Inhalte: $A = \lambda \cdot N(t) - N(t) = \frac{A}{\lambda}$ - hier klicken

5.2.4 Photon

$$E = f \cdot h$$
 Planksches Wirkungsquantum h Js $\frac{Joule}{Sekunde}$ Eigenfrequenz f $hz = \frac{1}{s}$ Hertz Energie E J Joule $Nm = Ws$ $f = \frac{E}{h}$

Interaktive Inhalte: $E = f \cdot h - f = \frac{E}{h}$

6 Physikalische Konstanten

Name	Symbol	Zahlenwert	Einheit
Kreiszahl	π	3.14159265358979323846	
Eulersche zahl	e	2.71828182845904523536	
Elektronenladung Gravitationskonstante Lichtgeschwindigkeit Dielektrizitätskonstante Permeabilitätskonstante $(4\pi\varepsilon_0)^{-1}$	e G, κ c ε_0 μ_0	$1.60217733 \cdot 10^{-19}$ $6.67259 \cdot 10^{-11}$ $2.99792458 \cdot 10^{8}$ $8.854187 \cdot 10^{-12}$ $4\pi \cdot 10^{-7}$	C $m^3kg^{-1}s^{-2}$ m/s (def) F/m H/m
Planksches Wirkungsquantum	h	$6.6260755 \cdot 10^{-34}$	Js
Molare Gaskonstante	R	8.31441	$J \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$
Avogadro-Konstante	$N_{\rm A}$	$6.0221367 \cdot 10^{23}$	mol^{-1}
Boltzmann-Konstante	$k = R/N_{\rm A}$	$1.380658 \cdot 10^{-23}$	J/K
Ruhemasse des Elektrons	$m_{ m e}$	$9.1093897 \cdot 10^{-31}$	kg
Ruhemasse des Protons	$m_{ m p}$	$1.6726231 \cdot 10^{-27}$	kg
Ruhemasse des Neutrons	$m_{ m n}$	$1.674954 \cdot 10^{-27}$	kg
Ruhemasse α -Teilchens	$m_{ m n}$	$6,6447 \cdot 10^{-27}$	kg
Atomare Masseneinheit	$m_{\rm u} = \frac{1}{12} m(^{12}_{6}{\rm C})$	$1.6605656 \cdot 10^{-27}$	kg
Masse der Sonne	M_{\odot}	$1.989 \cdot 10^{30}$	kg
Radius der Erde	$R_{ m A}$	$6.378 \cdot 10^6$	m
Masse der Erde	$M_{ m A}$	$5.976 \cdot 10^{24}$	kg
Umlaufdauer Erde-Sonne	Tropical year	365.24219879	Tage
Astronomische Einheit	AU	$1.4959787066 \cdot 10^{11}$	m
Lichtjahr	lj	$9.4605 \cdot 10^{15}$	m
Parsec	pc	$3.0857 \cdot 10^{16}$	m
Hubble Konstante	H	$\approx (75 \pm 25)$	$\mathrm{km}\cdot\mathrm{s}^{-1}\cdot\mathrm{Mpc}^{-1}$

Basiseinheiten

Name	Einheit	Symbol
Länge	Meter	m
Masse	Kilogramm	kg
Zeit	Sekunden	\mathbf{s}
Temperatur	Kelvin	\mathbf{K}
Stromstärke	Ampere	${f A}$
Lichtstärke	Candela	$\operatorname{\mathbf{cd}}$
Stoffmenge	mol	\mathbf{mol}

Abgeleitete Einheiten

Abgeleitete Einneiten				
Kraft F	Newton $N = \frac{mkg}{s^2} = \frac{VAs}{m}$			
Energie E	Joule $J = \frac{m^2 kg}{s^2} = VAs$			
Leistung P	$\mathbf{Watt} \; \mathbf{W} = \frac{\mathbf{m}^2 \mathbf{kg}}{\mathbf{s}^3} = \mathbf{VA}$			
Ladung Q	Coulomb $C = As$			
Spannung V	$ ext{Volt } ext{V} = rac{ ext{m}^2 ext{kg}}{ ext{s}^3 ext{A}} = rac{ ext{W}}{ ext{A}}$			
Widerstand R	Ohm $\Omega = \frac{\mathbf{m}^2 \mathbf{k} \mathbf{g}}{\mathbf{s}^3 \mathbf{A}^2} = \frac{\mathbf{V}}{\mathbf{A}}$			
Leitwert Y	Siemens $S = \frac{S}{m^2 kg} = \frac{A}{V}$			
Kapazität C	$\mathbf{Farad} \mathbf{F} = \frac{\mathbf{s}^4 \mathbf{A}^2}{\mathbf{m}^2 \mathbf{k} \mathbf{g}} = \frac{\mathbf{C}}{\mathbf{V}}$			
Induktivität L	Henry $H = \frac{m^2 kg}{s^2 A^2} = \frac{Vs}{A}$			
magn. Fluß Φ	Weber Wb = $\frac{m^2 kg}{s^2 A}$ = Vs			
Induktion B	$ ext{Tesla T} = rac{ ext{kg}}{ ext{s}^2 ext{A}} = rac{ ext{Vs}}{ ext{m}^2}$			
${\bf Magnetfeld}\ H$	$\frac{A}{m}$			

7 Tabellen

7.1 Umrechnungen

7.1.1 Längen

	m	dm	cm	mm	μm	nm	pm	km
\overline{m}	1	10	100	1000	10^{6}	10^{9}	10^{12}	0,001
dm	0, 1	1	10	100	10^{5}	10^{8}	10^{11}	0,0001
cm	0,01	0, 1	1	10	10^{4}	10^{7}	10^{10}	10^{-5}
mm	0,001	0,01	0,1	1	1000	10^{6}	10^{9}	10^{-6}
μm	10^{-6}	10^{-5}	0,0001	0,001	1	1000	10^{6}	10^{-9}
nm	10^{-9}	10^{-8}	10^{-7}	10^{-6}	0,001	1	1000	10^{-12}
pm	10^{-12}	10^{-11}	10^{-10}	10^{-9}	10^{-6}	0,001	1	10^{-15}
km	1000	10^{4}	10^{5}	10^{6}	10^{9}	10^{12}	10^{15}	1

m	Meter
dm	Dezimeter
cm	Zentimeter
mm	Millimeter
μm	Mikrometer
nm	Nanometer
pm	Pikometer
km	Kilometer

7.1.2 Flächen

	m^2	dm^2	cm^2	mm^2	a	ha	km^2
m^2	1	100	10^{4}	10^{6}	0,01	0,0001	10^{-6}
dm^2	0,01	1	100	10^{4}	0,0001	10^{-6}	10^{-8}
cm^2	0,0001	0,01	1	100	10^{-6}	10^{-8}	10^{-10}
mm^2	10^{-6}	0,0001	0,01	1	10^{-8}	10^{-10}	10^{-12}
a	100	10^{4}	10^{6}	10^{8}	1	0,01	0,0001
ha	10^{4}	10^{6}	10^{8}	10^{10}	100	1	0,01
km^2	10^{6}	10 ⁸	10^{10}	10^{12}	10^{4}	100	1

m^2	Quadratmeter
dm^2	Quadratdezimeter
cm^2	Quadratzentimeter
mm^2	Quadratmillimeter
a	Ar
ha	Hektar
km^2	Quadratkilometer

7.1.3 Volumen

	m^3	dm^3	cm^3	mm^3	l	hl	ml
m^3	1	1000	10^{6}	10^{9}	1000	10	10^{6}
dm^3	0,001	1	1000	10^{6}	1	0,01	1000
cm^3	10^{-6}	0,001	1	1000	0,001	10^{-5}	1
mm^3	10^{-9}	10^{-6}	0,001	1	10^{-6}	10^{-8}	0,001
l	0,001	1	1000	10^{6}	1	0,01	1000
hl	0,1	100	10^{5}	10^{8}	100	1	10^{5}
ml	10^{-6}	0,001	1	1000	0,001	10^{-5}	1

m°	Kubikmeter
dm^3	Kubikdezimeter
cm^3	Kubikzentimeter
mm^3	Kubikmillimeter
l	Liter
hl	Hektoliter
ml	Milliliter

7.1.4 Zeit

	s	min	h	ms	μs	ns	ps
s	1	0,01667	0,0002778	1000	10^{6}	10^{9}	10^{12}
min	60	1	0,01667	$6 \cdot 10^4$	$6 \cdot 10^7$	$6 \cdot 10^{10}$	$6 \cdot 10^{13}$
h	3600	60	1	$3, 6 \cdot 10^6$	$3, 6 \cdot 10^9$	$3, 6 \cdot 10^{12}$	$3,6 \cdot 10^{15}$
ms	0,001	$1,667 \cdot 10^{-5}$	$2,778 \cdot 10^{-7}$	1	1000	10^{6}	10 ⁹
μs	10^{-6}	$1,667 \cdot 10^{-8}$	$2,778 \cdot 10^{-10}$	0,001	1	1000	10^{6}
ns	10^{-9}	$1,667 \cdot 10^{-11}$	$2,778 \cdot 10^{-13}$	10^{-6}	0,001	1	1000
ps	10^{-12}	$1,667 \cdot 10^{-14}$	$2,778 \cdot 10^{-16}$	10^{-9}	10^{-6}	0,001	1

s	Sekunden
min	Minuten
h	Stunden
ms	Millisekunden
μs	Mikrosekunden
ns	Nanosekunden
ps	Pikosekunden

7.1.5 Vorsilben

		d	c	m	μ	n	p	f	a	da	h	k	M	G	T	P	E
	1	10	100	1000	106	109	1012	10 ¹⁵	10 ¹⁸	0, 1	0,01	0,001	10-6	10-9	10^{-12}		10^{-18}
d	0, 1	1	10	100	10 ⁵	108	1011	10^{14}	10 ¹⁷	0,01	0,001	0,0001	10-7			10^{-16}	10-19
c	0,01	0, 1	1	10	10^{4}	107	10 ¹⁰	10 ¹³	10 ¹⁶	0,001	0,0001	10-5	10-8		10^{-14}	10-17	10^{-20}
m	0,001	0,01	0, 1	1	1000	106	109	10 ¹²	10 ¹⁵	0,0001	10-5	10-6		10^{-12}			10^{-21}
μ	10-6	10-5	0,0001	0,001	1	1000	106	109	10^{12}	10-7	10-8	10-9	10^{-12}	10^{-15}	10^{-18}		10^{-24}
n	10-9	10-8	10-7	10-6	0,001	1	1000	106	109	10-10	10-11	10-12	10^{-15}	10^{-18}	10^{-21}	10^{-24}	10^{-27}
p	$_{10}^{-12}$	10-11	10-10	10-9	10-6	0,001	1	1000	10^{6}	10^{-13}	10^{-14}	10-15	10^{-18}	10^{-21}	10^{-24}	10^{-27}	10-30
f	10^{-15}	10^{-14}		$_{10}^{-12}$		10-6	0,001	1	1000	10^{-16}	10-17	10-18	10^{-21}	10^{-24}	10^{-27}	10-30	10-33
a	$_{10}^{-18}$	10-17	$_{10}^{-16}$	10-15	10^{-12}	10-9	10-6	0,001	1	10^{-19}	10^{-20}	10-21	10^{-24}	10^{-27}	10-30	$^{10}^{-33}$	10^{-36}
da	10	100	1000	10^{4}	107	10 ¹⁰	1013	10^{16}	1019	1	0, 1	0,01	10-5	10-8	10-11	10^{-14}	10-17
h	100	1000	10^{4}	10 ⁵	108	1011	1014	1017	1020	10	1	0, 1	0,0001	10-7	10-10		10^{-16}
k	1000	10^{4}	10^{5}	10^{6}	109	1012	10 ¹⁵	10 ¹⁸	1021	100	10	1	0,001	10-6	10-9	10^{-12}	10^{-15}
M	10^{6}	107	108	109	10 ¹²	10 ¹⁵	1018	10^{21}	10^{24}	10 ⁵	10^{4}	1000	1	0,001	10-6	10-9	10^{-12}
G	109	10 ¹⁰	10 ¹¹	10 ¹²	10 ¹⁵	10 ¹⁸	10 ²¹	10^{24}	1027	108	107	106	1000	1	0,001	10-6	10-9
T	10^{12}	10 ¹³	10^{14}	10^{15}	10 ¹⁸	10^{21}	10^{24}	10^{27}	1030	10 ¹¹	10 ¹⁰	109	10 ⁶	1000	1	0,001	10-6
P	10^{15}	10^{16}	10 ¹⁷	10 ¹⁸	10^{21}	10^{24}	1027	1030	1033	1014	10 ¹³	1012	109	106	1000	1	0,001
E	10^{18}	10 ¹⁹	1020	10^{21}	1024	10^{27}	1030	1033	1036	1017	10 ¹⁶	10 ¹⁵	10^{12}	109	106	1000	1

	Bezugsgröße
d	Dezi
c	Zenti
m	Milli
μ	Mikro
n	Nano
p	Pico
f	Femto
a	Atto
da	Deka
h	Hekto
k	Kilo
M	Mega
G	Giga
T	Tera
P	Peta
E	Exa

7.1.6 Masse

	kg	g	mg	t	oz	lb	t
kg	1	1000	10^{6}	0,001	35, 28	2,205	0,0009843
g	0,001	1	1000	10^{-6}	0,03528	0,002205	$9,843 \cdot 10^{-7}$
mg	10^{-6}	0,001	1	10^{-9}	$3,528 \cdot 10^{-5}$	$2,205 \cdot 10^{-6}$	$9,843 \cdot 10^{-10}$
t	1000	10^{6}	10^{9}	1	$3,528 \cdot 10^4$	2205	0,9843
oz	0,02835	28,35	$2,835 \cdot 10^4$	$2,835 \cdot 10^{-5}$	1	0,06249	$2,79 \cdot 10^{-5}$
lb	0,4536	453, 6	$4,536 \cdot 10^5$	0,0004536	16	1	0,0004464
t	1016	$1,016 \cdot 10^6$	$1,016 \cdot 10^9$	1,016	$3,584 \cdot 10^4$	2240	1

kg	Kilogramm
g	Gramm
mg	Milligramm
t	Tonne
oz	ounce
lb	pound
t	ton(UK)

7.1.7 Kraft

	N	cN	mN	kN	MN	kp	p	dyn	pdl	lbf
N	1	100	1000	0,001	10^{-6}	0,102	102	10^{5}	7,231	0,2248
cN	0,01	1	10	10^{-5}	10^{-8}	0,00102	1,02	1000	0,07231	0,002248
mN	0,001	0, 1	1	10^{-6}	10^{-9}	0,000102	0, 102	100	0,007231	0,0002248
kN	1000	10^{5}	10^{6}	1	0,001	102	$1,02 \cdot 10^5$	108	7231	224,8
MN	10^{6}	10^{8}	10^{9}	1000	1	$1,02 \cdot 10^5$	$1,02 \cdot 10^8$	10 ¹¹	$7,231 \cdot 10^6$	$2,248 \cdot 10^5$
kp	9,807	980, 7	9807	0,009807	$9,807 \cdot 10^{-6}$	1	1000	$9,807 \cdot 10^5$	70,91	2,205
p	0,009807	0,9807	9,807	$9,807 \cdot 10^{-6}$	$9,807 \cdot 10^{-9}$	0,001	1	980, 7	0,07091	0,002205
dyn	10^{-5}	0,001	0,01	10^{-8}	10^{-11}	$1,02 \cdot 10^{-6}$	0,00102	1	$7,231 \cdot 10^{-5}$	$2,248 \cdot 10^{-6}$
pdl	0,1383	13,83	138, 3	0,0001383	$1,383 \cdot 10^{-7}$	0,0141	14, 1	$1,383 \cdot 10^4$	1	0,03109
lbf	4,448	444,8	4448	0,004448	$4,448 \cdot 10^{-6}$	0,4536	453, 6	$4,448 \cdot 10^5$	32, 16	1

N	Newton
cN	Zentinewton
mN	Millinewton
kN	Kilonewton
MN	Meganewton
kp	Kilopond
p	Pond
dyn	Dyn
pdl	poundal
lbf	pound-force

7.1.8 Energie-Arbeit

	J	Nm	Ws	kWh	cal	Kcal	eV	BTU
J	1	1	1	$2,778 \cdot 10^{-7}$	0,2388	0,0002388	$6,242 \cdot 10^{18}$	0,0009478
Nm	1	1	1	$2,778 \cdot 10^{-7}$	0,2388	0,0002388	$6,242 \cdot 10^{18}$	0,0009478
Ws	1	1	1	$2,778 \cdot 10^{-7}$	0,2388	0,0002388	$6,242 \cdot 10^{18}$	0,0009478
kWh	$3, 6 \cdot 10^6$	$3, 6 \cdot 10^6$	$3, 6 \cdot 10^6$	1	$8,598 \cdot 10^5$	859, 8	$2,247 \cdot 10^{25}$	3412
cal	4, 187	4, 187	4, 187	$1,163 \cdot 10^{-6}$	1	0,001	$2,613 \cdot 10^{19}$	0,003968
Kcal	4187	4187	4187	0,001163	1000	1	$2,613 \cdot 10^{22}$	3,968
eV	$1,602 \cdot 10^{-19}$	$1,602 \cdot 10^{-19}$	$1,602 \cdot 10^{-19}$	$4,45 \cdot 10^{-26}$	$3,827 \cdot 10^{-20}$	$3,827 \cdot 10^{-23}$	1	$1,518 \cdot 10^{-22}$
BTU	1055	1055	1055	0,0002931	252	0,252	$6,585 \cdot 10^{21}$	1

J	Joule
Nm	Newtonmeter
Ws	Wattsekunde
kWh	Kilowattstunde
cal	Kalorie
Kcal	Kilokalorie
eV	Elektronenvolt
BTU	British thermal unit

7.1.9 Leistung

	W	$\frac{J}{s}$	$\frac{Nm}{s}$	PS	KW	hp	BTU/s	BTU/h
W	1	1	1	0,00136	0,001	0,001341	0,0009478	3,412
$\frac{J}{s}$	1	1	1	0,00136	0,001	0,001341	0,0009478	3,412
$\frac{Nm}{s}$	1	1	1	0,00136	0,001	0,001341	0,0009478	3,412
PS	735, 5	735, 5	735, 5	1	0,7355	0,9863	0,6971	2510
KW	1000	1000	1000	1,36	1	1,341	0,9478	3412
hp	745, 7	745, 7	745, 7	1,014	0,7457	1	0,7068	2544
BTU/s	1055	1055	1055	1,434	1,055	1,415	1	3600
BTU/h	0,2931	0,2931	0,2931	0,0003985	0,0002931	0,000393	0,0002778	1

W	Watt
$\frac{J}{s}$	Joule pro Sekunde
$\frac{\frac{s}{Nm}}{s}$	Newtonmeter/Sekunde
$\stackrel{s}{PS}$	Pferdestärke
KW	Kilowatt
hp	horsepower
BTU/s	BTU/Sekunde
BTU/h	BTU/Stunde

7.1.10 Geschwindigkeit

	$\frac{m}{s}$	$\frac{km}{h}$	$\frac{ft}{s}$	$\frac{mi}{hr}$	$kn = \frac{sm}{h}$
$\frac{m}{s}$	1	3,6	3,281	2,237	1,944
$\frac{km}{h}$	0,2778	1	0,9113	0,6214	0,54
$\frac{ft}{s}$	0,3048	1,097	1	0,6818	0,5925
$\frac{mi}{hr}$	0,447	1,609	1,467	1	0,869
$kn = \frac{sm}{h}$	0,5144	1,852	1,688	1,151	1

$\frac{m}{s}$	Meter/Sekunde
$\frac{km}{h}$	Kilometer/Stunde
$\frac{ft}{s}$	Feet per sec
$\frac{mi}{hr}$	Miles per hour
$kn = \frac{sm}{h}$	Knoten

7.1.11 Druck

	Pa	$\frac{N}{m^2}$	bar	at	atm	Torr	mmHg	psf	psi	mbar
Pa	1	1	10^{-5}	$1,02 \cdot 10^{-5}$	$9,869 \cdot 10^{-6}$	0,007501	0,007501	0,02089	0,000145	0,01
$\frac{N}{m^2}$	1	1	10^{-5}	$1,02 \cdot 10^{-5}$	$9,869 \cdot 10^{-6}$	0,007501	0,007501	0,02089	0,000145	0,01
bar	10^{5}	10^{5}	1	1,02	0,9869	750, 1	750, 1	2089	14, 5	1000
at	$9,807 \cdot 10^4$	$9,807 \cdot 10^4$	0,9807	1	0,9678	735, 6	735, 6	2048	14, 22	980, 7
atm	$1,013 \cdot 10^5$	$1,013 \cdot 10^5$	1,013	1,033	1	760	760	2116	14, 7	1013
Torr	133, 3	133, 3	0,001333	0,00136	0,001316	1	1	2,785	0,01934	1,333
mmHg	133, 3	133, 3	0,001333	0,00136	0,001316	1	1	2,785	0,01934	1,333
psf	47, 88	47,88	0,0004788	0,0004882	0,0004725	0,3591	0,3591	1	0,006944	0,4788
psi	6895	6895	0,06895	0,07031	0,06805	51,72	51,72	144	1	68,95
mbar	100	100	0,001	0,00102	0,0009869	0,7501	0,7501	2,089	0,0145	1

Pa	Pascal
$\frac{N}{m^2}$	Newton/Quadratmeter
bar	Bar
at	Tech. Atmosphäre
atm	Physikalische. Atmosphäre
Torr	Torr
mmHg	Millimeter Quecksilber
psf	pound per square foot
psi	pound per square inch
mbar	Millibar

7.1.12 Frequenz

	$Hz = \frac{1}{s}$	kHz	MHz	GHz
$Hz = \frac{1}{s}$	1	0,001	10^{-6}	10^{-12}
kHz	1000	1	0,001	10^{-9}
MHz	10^{6}	1000	1	10^{-6}
GHz	10^{12}	10^{9}	10^{6}	1

$Hz = \frac{1}{s}$	Hertz
kHz	Kilohertz
MHz	Megahertz
GHz	Gigahertz

7.1.13 Spannung

	V	mV	μV	kV	MV
V	1	1000	10^{6}	0,001	10^{-6}
mV	0,001	1	1000	10^{-6}	10^{-9}
μV	10^{-6}	0,001	1	10^{-9}	10^{-12}
kV	1000	10^{6}	10^{9}	1	0,001
MV	10^{6}	10^{9}	10^{12}	1000	1

V	Volt
mV	Millivolt
μV	Mikrovolt
kV	Kilovolt
MV	Megavolt

7.1.14 Strom

	A	mA	μA	kA	MA
A	1	1000	10^{6}	0,001	10^{-6}
mA	0,001	1	1000	10^{-6}	10^{-9}
μA	10^{-6}	0,001	1	10^{-9}	10^{-12}
kA	1000	10^{6}	10^{9}	1	0,001
MA	10^{6}	10^{9}	10^{12}	1000	1

A	Ampere
mA	Milliampere
μA	Mikroampere
kA	Kiloampere
MA	Megaampere

7.1.15 Widerstand

	Ω	$m\Omega$	$\mu\Omega$	$k\Omega$	M
Omega					
Ω	1	1000	10^{6}	0,001	10^{-6}
$m\Omega$	0,001	1	1000	10^{-6}	10^{-9}
$\mu\Omega$	10^{-6}	0,001	1	10^{-9}	10^{-12}
$k\Omega$	1000	10^{6}	10^{9}	1	0,001
$M\Omega$	10^{6}	10^{9}	10^{12}	1000	1

Ω	Ohm
$m\Omega$	Milliohm
$\mu\Omega$	Mikroohm
$k\Omega$	Kiloohm
$M\Omega$	Megaohm

	H	mH	μH	nH	kH
H	1	1000	10^{6}	10^{9}	0,001
mH	0,001	1	1000	10^{6}	10^{-6}
μH	10^{-6}	0,001	1	1000	10^{-9}
nH	10^{-9}	10^{-6}	0,001	1	10^{-12}
kH	1000	10^{6}	10^{9}	10^{12}	1

H	Henry
mH	Millihenry
μH	Mikrohenry
nH	Nanohenry
kH	Kilohenry

	F	mF	μF	nF	pF	kF
F	1	1000	10^{6}	10^{9}	10^{12}	0,001
mF	0,001	1	1000	10^{6}	10^{9}	10^{-6}
μF	10^{-6}	0,001	1	1000	10^{6}	10^{-9}
nF	10^{-9}	10^{-6}	0,001	1	1000	10^{-12}
pF	10^{-12}	10^{-9}	10^{-6}	0,001	1	10^{-15}
kF	1000	10^{6}	10^{9}	10^{12}	10^{15}	1

F	Farad
mF	Millifarad
μF	Mikrofarad
nF	Nanofarad
pF	Pikofarad
kF	Kilofarad