1 Question 2-3

Given $f(n) = log(n)^{log(n)}$ and $g(n) = 2^{(log(n))^2}$, determine the relationship between f(n) and g(n).

2 Answer

We will first assume that f(n) = O(g(n)). This means that there exists a constant c > 0 and $n_0 > 0$ such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

$$f(n) \le c \cdot g(n)$$

$$log(n)^{log(n)} \le c \cdot 2^{(log(n))^2}$$

$$log(n) \cdot log(log(n)) \le c \cdot 2^{(log(n))^2}$$

$$log(n) \cdot log(log(n)) \le log(c) \cdot (log(n))^2$$

$$\frac{log(log(n))}{log(n)} \le log(c)$$

Then we will can find the limit of the right hand side of the inequality to be 0, as n approaches infinity.

$$\lim_{n \to \infty} \frac{\log(\log(n))}{\log(n)} = \lim_{n \to \infty} \frac{\frac{1}{n \cdot \log(n)}}{\frac{1}{n}}$$

$$= \lim_{n \to \infty} \frac{1}{\log(n)}$$

$$= 0$$
(L'Hopital)

Therefore, such a constant c exists, and f(n) = O(g(n)). we can pick $c = 2^{\frac{\log(3 \cdot \log(10))}{3 \cdot \log(10)}}$ and $n_0 = 10^3$ to satisfy the inequality.

Now we will assume that $f(n) = \Omega(g(n))$. This means that there exists a constant c > 0 and $n_0 > 0$ such that $f(n) \ge c \cdot g(n)$ for all $n \ge n_0$.

$$f(n) \ge c \cdot g(n)$$
$$\frac{\log(\log(n))}{\log(n)} \ge \log(c)$$

Then we will can find the limit of the right hand side of the inequality to be infinity, as n approaches infinity. Therefore, such a constant c does not exist, and $f(n) \neq \Omega(g(n))$.

Since f(n) = O(g(n)) and $f(n) \neq \Omega(g(n))$ we can conclude that $f(n) \neq \Theta(g(n))$.