Elementos de Cálculo Numérico / Cálculo Numérico

Segundo Cuatrimestre de 2024

Práctica N° 0: Repaso del polinomio de Taylor.

El polinomio de Taylor es un concepto importante de análisis I/matemática I que utilizaremos mucho a lo largo del curso. Por eso, decidimos incluir esta práctica de repaso.

Ejercicio 1. Aproximar la raíz cuadrada

- 1. Hallar el polinomio de McLaurin (=Taylor centrado en el origen) de orden 2 y la expresión del resto para la función $f(x) = \sqrt{1+x}$.
- 2. Evaluar el error que se comete al aproximar f(0.2) por dicho polinomio.

Ejercicio 2. Para cada n par, sea P_n el polinomio de Mc-Laurin de $f(x) = \cos x$ de orden n.

1. Encuentre explícitamente una fórmula para P_n y pruebe que

$$|f(x) - P_n(x)| \le \frac{|x|^{n+2}}{(n+2)!}$$

2. Utilícela para calcular aproximadamente el coseno de un ángulo de 10 grados sexagecimales con error menor que 10^{-7} .

Ejercicio extra: Para practicar más, puede intentar escribir un programita en Python para calcular $P_n(x)$, y graficar cómo estas funciones van aproximando a f.

Ejercicio 3. Más ejemplos en una variable Utilizando el polinomio de Taylor de un orden suficientemente alto para una función conveniente, aproximar el valor de:

- 1. $(1,3)^{2/3}$ con un error (absoluto) menor que 1/100,
- 2. del número e con un error menor que 10^{-4} ,
- 3. $\log 2$ con un error menor que 10^{-3}

Ejercicio 4. Un ejemplo en dos variables Encontrar el polinomio de Taylor de segundo orden para la función $f(x,y) = x^y$ en el punto (1,2) y escribir la expresión del resto de Lagrange. Usarla para calcular $(0,95)^{2,01}$ con error menor que 1/200.