EE-222: Microprocessor Systems

AVR Programming in C

Instructor: Dr. Arbab Latif

Generating Time Delay in C

Time Delays in C

You can use for to make time delay

```
void delay(void)
{
volatile unsigned int i;
for(i = 0; i < 42150; i++)
{ }
}</pre>
```

If you use for loop

- The clock frequency can change your delay duration!
- The compiler has direct effect on delay duration!

Time Delays in C

 You can use <u>predefined</u> functions of compilers to make time delays

In Atmel Studio:

```
First you should include:
#define F_CPU 800000UL
#include <util/delay.h>

and then you can use
_delay_us(200); //200 microseconds
_delay_ms(100); //100 milliseconds
```

It is compiler dependant

Logic Operations in C

Bit-wise logical operators

Table 7-3: Bit-wise Logic Operators for C

		AND	OR	EX-OR	Inverter
A	В	A&B	A B	A^B	$Y = \sim B$
0	0	0	0	0	1
0	1	0	1	1	0
1	0	0	1	1	
1	1	1	1	0	

1110 1111

& 0000 0001

0000 0001

1110 1111

0000 0001

1110 1111

~ 1110 1011

0001 0100

Bit-wise Example – (1)

 Write an AVR C program to toggle only bit 4 of Port B continuously without disturbing the rest of the pins of PORT B.

Bit-wise Example – (2)

 Write and AVR C program to monitor bit 7 of Port B. If it is 1, make bit 4 of Port B as input; otherwise, change pin 4 of Port B to output.

```
#include <avr/io.h>
                                           //standard AVR header
int main(void)
  DDRB = DDRB & 0b01111111;
                                           //bit 7 of Port B is input
  while (1)
    if(PINB & 10000000)
      DDRB = DDRB & 0b11101111;
                                           //bit 4 of Port B is input
    else
      DDRB = DDRB \mid 0b00010000;
                                           //bit 4 of Port B is output
  return 0;
```

Shift operations in C

- data >> number of bits to be shifted right
- data << number of bits to be shifted left</p>

Shift Examples

Bit Shift Statement In Hex	Resulting Value In Hex
0x01 << 1	0x02
0x02 << 1	0x04
0x04 << 1	0x08
0x01 << 2	0x04
0x01 << 3	0x08
0x08 << 1	0x10
0x08 << 1 Bit Shift Statement in Binary	0x10 Resulting Value in Binary
Bit Shift Statement in	
Bit Shift Statement in Binary	Resulting Value in Binary
Bit Shift Statement in Binary 00000001 << 1	Resulting Value in Binary 00000010

Setting a bit in a Byte to 1

We can use | operator to set a bit of a byte to 1

PORTB |= (1<<4); //set bit 4 (5th bit) of PORTB

Clearing a bit in a Byte to 0

We can use | operator to set a bit of a byte to 1

PORTB &= ~(1<<4); //clear bit 4 (5th bit) of PORTB

Checking a bit in a Byte

We can use & operator to see if a bit in a byte is 1 or 0

```
if( ((PINC & (1<<5)) != 0) //check bit 5 (6th bit)</pre>
```

Bit-wise Example: Using Compound Assignment Operator

 Write an AVR C program to toggle only bit 4 of Port B continuously without disturbing the rest of the pins of PORT B.

Other Examples

• See carefully 7-15 - 7-20

Bit-wise Shift Operation: Example

Recommended Reading

- The AVR Microcontroller and Embedded Systems: Using Assembly and C by Mazidi et al., Prentice Hall
 - Chapter-7
 - Make sure you actually understand and run all the examples in Atmel Studio

THANK YOU

