11-Correlation

 $ENSY\ SILVER^1$

Thursday $10^{\rm th}$ September, 2020

 $^{^{1}}$ Thanks to my family, my friend and freedom.

1 The correlation coefficient

Theorem 1.1. Let X and Y be any two random variables. The correlation coefficient of X and Y, denoted $\rho(X,Y)$, is given by

$$\rho(X,Y) = \frac{\mathrm{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

Corollary 1.1.1. For any two variables X and Y,

- 1. $|\rho(X,Y)| \le 1$.
- 2. $|\rho(X,Y)|=1$ if and only if Y=aX+b for some constants a and b, where $a\neq 0$.

Since the correlation coefficient is defined by

$$\rho(X,Y) = \frac{E(XY) - E(X)E(Y)}{\sqrt{\text{Var}(X)}\sqrt{\text{Var}(Y)}}$$

and we define the sample correlation coefficient by

$$R = \frac{\frac{1}{n} \sum_{i=1}^{n} X_i Y_i - \bar{X} \bar{Y}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

Corollary 1.1.2. Let $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ be a set of measurements whose sample correlation coefficient is r. Then

$$r = \hat{\beta}_1 \sqrt{\frac{n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}{n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}}$$

where $\hat{\beta}_1$ is the maximum likelihood estimate for the slope.

2 Bivariate normal distribution

We omit the deduction of bivariate normal distribution and give the definition now.

Theorem 2.1. Let X and Y be random variables with joint pdf

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \cdot \exp\left\{-\frac{1}{2}\left(\frac{1}{1-\rho^2}\right)\left[\frac{(x-\mu_X)^2}{\sigma_X^2} - 2\rho\frac{x-\mu_X}{\sigma_X} \cdot \frac{y-\mu_Y}{\sigma_Y} + \frac{(y-\mu_Y)^2}{\sigma_Y^2}\right]\right\}$$

Bivariate normal distribution has several properties.

Theorem 2.2. Suppose that X and Y are random variables having the bivariate normal distribution. Then

- 1. $f_X(x)$ is a normal pdf with means μ_X and variance σ_X^2 , $f_Y(y)$ is a normal pdf with mean μ_Y and variance σ_Y^2 .
- 2. ρ is the correlation coefficient between X and Y.
- 3. $E(Y|x) = \mu_Y + \frac{\rho \sigma_Y}{\sigma_X}(x \mu_X)$.
- 4. $Var(Y|x) = (1 \rho^2)\sigma_Y^2$.

3 Estimating parameters in the bivariate normal pdf

Theorem 3.1. Given that $f_{X,Y}(x,y)$ is a bivariate normal pdf, the maximum likelihood estimators for $\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho$, are $\bar{X}, \bar{Y}, \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2, \frac{1}{n} \sum_{i=1}^n (Y_i - \bar{Y})^2$ and R, respectively.

Theorem 3.2. Let $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ be a random sample of size n drawn from a bivariate normal distribution, and let R be the sample correlation coefficient. Under the null hypothesis that $\rho = 0$, the statistic

$$T_{n-2} = \frac{\sqrt{n-2}R}{\sqrt{1-R^2}}$$

has a Student t distribution with n-2 degrees of freedom.