NOT: Bu adimlar algoritmanin nasil calistigini daha iyi anlamak icin extra olarak analiz yaparken incelenmistir.

Yildiz patterni icin bir deneme

Pattern = "Yildiz"

Text = "merhaba mehmet semih babacan Yildiz teknik unviersitesi ogrencisi olmaktan dolayi gurur duyuyor"

d harfi text[105] > 0b111111111111111111111111101100

Asagidaki gibi bir vector dizisi olusturulacak her bir harf icin verilen degerleri goruyoruz

0. m binarysi

0b1111111111111111111111111111100

1. e binarysi

0b1111111111111111111111111111100

2. r binarysi

0b1111111111111111111111111111100

3. h binarysi

0b1111111111111111111111111111100

4. a binarysi

0b1111111111111111111111111111100

5. b binarysi

0b	1111111111111111111111111111111100
6. a binarys	si
0b	1111111111111111111111111111111100
7. binarys	i
0b	1111111111111111111111111111111100
8. m binary	<i>y</i> si
0b	1111111111111111111111111111111100
9. e binary:	si
0b	1111111111111111111111111111111100
10. h binar	ysi
0b	11111111111111111111111111111111100
11. m bina	rysi
0b	11111111111111111111111111111111100
12. e binar	ysi
0b	11111111111111111111111111111111100
13. t binary	⁄si
0b	11111111111111111111111111111111100
14. binary	vsi
0b	11111111111111111111111111111111100
15. s binary	<i>y</i> si
0b	11111111111111111111111111111111100
16. e binar	ysi
0b	11111111111111111111111111111111100
17. m bina	rysi
0b	11111111111111111111111111111111100
18. i binary	vsi
0b	1111111111111111111111111111111000
19. h binar	ysi
0b	111111111111111111111111111111100

20. binarysi
0b11111111111111111111111111111100
21. b binarysi
0b11111111111111111111111111111100
22. a binarysi
0b11111111111111111111111111111100
23. b binarysi
0b11111111111111111111111111111100
24. a binarysi
0b11111111111111111111111111111100
25. c binarysi
0b11111111111111111111111111111100
26. a binarysi
0b11111111111111111111111111111100
27. n binarysi
0b11111111111111111111111111111100
28. binarysi
0b11111111111111111111111111111100
29. Y binarysi
0b11111111111111111111111111111100
30. i binarysi
0b11111111111111111111111111111000
31. I binarysi
0b111111111111111111111111111110100
32. d binarysi
0b111111111111111111111111111101100
33. i binarysi
0b111111111111111111111111111011000
34. z binarysi

	0b11111111111111111111111110111100
35.	binarysi
	0b11111111111111111111111111111100
36. 1	binarysi
	0b111111111111111111111111111111100
37.	e binarysi
	0b11111111111111111111111111111100
38. l	c binarysi
	0b111111111111111111111111111111100
39. ı	n binarysi
	0b111111111111111111111111111111100
40. i	binarysi
	0b111111111111111111111111111111000
41. l	k binarysi
	0b111111111111111111111111111111100
42.	binarysi
	0b11111111111111111111111111111100
43. ו	u binarysi
	0b11111111111111111111111111111100
44. ı	n binarysi
	0b111111111111111111111111111111100
45. v	<i>ı</i> binarysi
	0b111111111111111111111111111111100
46. i	binarysi
	0b111111111111111111111111111111000
47.	e binarysi
	0b111111111111111111111111111111100
48. ı	⁻ binarysi
	0b11111111111111111111111111111100

49. s binarysi
0b1111111111111111111111111111100
50. i binarysi
0b11111111111111111111111111111000
51. t binarysi
0b11111111111111111111111111111100
52. e binarysi
0b11111111111111111111111111111100
53. s binarysi
0b11111111111111111111111111111100
54. i binarysi
0b11111111111111111111111111111000
55. binarysi
0b11111111111111111111111111111100
56. o binarysi
0b11111111111111111111111111111100
57. g binarysi
0b11111111111111111111111111111100
58. r binarysi
0b11111111111111111111111111111100
59. e binarysi
0b11111111111111111111111111111100
60. n binarysi
0b11111111111111111111111111111100
61. c binarysi
0b11111111111111111111111111111100
62. i binarysi
0b11111111111111111111111111111000
63. s binarysi

0b1111111111111111111111111111100
64. i binarysi
0b111111111111111111111111111000
65. binarysi
0b1111111111111111111111111111100
66. o binarysi
0b1111111111111111111111111111100
67. I binarysi
0b1111111111111111111111111111100
68. m binarysi
0b1111111111111111111111111111100
69. a binarysi
0b1111111111111111111111111111100
70. k binarysi
0b1111111111111111111111111111100
71. t binarysi
0b1111111111111111111111111111100
72. a binarysi
0b1111111111111111111111111111100
73. n binarysi
0b11111111111111111111111111111100
74. binarysi
0b11111111111111111111111111111100
75. d binarysi
0b11111111111111111111111111111100
76. o binarysi
0b11111111111111111111111111111100
77. I binarysi
0b1111111111111111111111111111100

78. a binarysi
0b11111111111111111111111111111100
79. y binarysi
0b1111111111111111111111111111100
80. i binarysi
0b11111111111111111111111111111000
81. binarysi
0b11111111111111111111111111111100
82. g binarysi
0b11111111111111111111111111111100
83. u binarysi
0b11111111111111111111111111111100
84. r binarysi
0b11111111111111111111111111111100
85. u binarysi
0b11111111111111111111111111111100
86. r binarysi
0b11111111111111111111111111111100
87. binarysi
0b11111111111111111111111111111100
88. d binarysi
0b11111111111111111111111111111100
89. u binarysi
0b11111111111111111111111111111100
90. y binarysi
0b11111111111111111111111111111100
91. u binarysi
0b11111111111111111111111111111100
92. y binarysi

0b11111111111111111111111111111100

93. o binarysi

0b1111111111111111111111111111100

94. r binarysi

0b1111111111111111111111111111100

Yildiz icin sirayla (i yani 105 2 kere) olmak kosuluyla patternMask icersinde karakterizasyonlarinin yapilmasi

4294967228 degeri binary olarak ->> 111111111111111111111111110111100 karsilik geliyor

29 degeri donduruldu, yaptigim test fonksiyonunda main fonksiyon sonucu/indexi return ediyordu

```
>>> metin = "merhaba mehmet semih babacan Yildiz teknik unviersitesi ogrencisi o
lmaktan dolayi gurur duyuyor"
>>> metin.find("Yildiz")
29
```

Kontrolumuz dogru cikiyor.

Tipki asagidaki matris yapisi gibi bir matris hayal edebiliriz

		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
		G	С	A	Т	С	G	С	A	G	A	G	A	G	Т	A	Т	A	С	A	G	Т	A	С	G
0	G	0	1	1	1	1	0	1	1	0	1	0	1	0	1	1	1	1	1	1	0	1	1	1	0
1	С	1	0	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	Α	1	1	0	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	G	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4	Α	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5																									
6	Α	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
7	G	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1

Her bir R degeri icin verilen bit vektoru seklinde degerler

0b111111111111111111111111111111100

9. R -> b	inary
	0b11111111111111111111111111111100
10. R ->	binary
	0b11111111111111111111111111111100
11. R ->	binary
	0b111111111111111111111111111111100
12. R ->	binary
	0b111111111111111111111111111111100
13. R ->	binary
	0b111111111111111111111111111111100
14. R ->	binary
	0b111111111111111111111111111111100
15. R ->	binary
	0b111111111111111111111111111111100
16. R ->	binary
	0b111111111111111111111111111111100
17. R ->	binary
	0b11111111111111111111111111111100
18. R ->	binary
	0b111111111111111111111111111111000
19. R ->	binary
	0b11111111111111111111111111111100
20. R ->	binary
	0b11111111111111111111111111111100
21. R ->	binary
	0b11111111111111111111111111111100
22. R ->	binary
	0b11111111111111111111111111111100
23. R ->	binary

	0b1111111111111111111111111111100
24. R ->	binary
	0b1111111111111111111111111111100
25. R ->	binary
	0b1111111111111111111111111111100
26. R ->	binary
	0b11111111111111111111111111111100
27. R ->	binary
	0b1111111111111111111111111111100
28. R ->	binary
	0b11111111111111111111111111111100
29. R ->	binary
	0b11111111111111111111111111111100
30. R ->	binary
	0b111111111111111111111111111111000
31. R ->	binary
	0b111111111111111111111111111110100
32. R ->	binary
	0b11111111111111111111111111101100
33. R ->	binary
	0b111111111111111111111111111011000
34. R ->	binary
	0b111111111111111111111111100
35. R ->	binary
	0b1111111111111111111111111111100
36. R ->	binary
	0b1111111111111111111111111111100
37. R ->	binary
	0b1111111111111111111111111111100

38. R ->	binary
	0b11111111111111111111111111111100
39. R ->	binary
	0b11111111111111111111111111111100
40. R ->	binary
	0b111111111111111111111111111111000
41. R ->	binary
	0b11111111111111111111111111111100
42. R ->	binary
	0b111111111111111111111111111111100
43. R ->	binary
	0b11111111111111111111111111111100
44. R ->	binary
	0b11111111111111111111111111111100
45. R ->	binary
	0b11111111111111111111111111111100
46. R ->	binary
	0b111111111111111111111111111111000
47. R ->	binary
	0b11111111111111111111111111111100
48. R ->	binary
	0b111111111111111111111111111111100
49. R ->	binary
	0b11111111111111111111111111111100
50. R ->	binary
	0b111111111111111111111111111111000
51. R ->	binary
	0b111111111111111111111111111111100
52. R ->	binary

	0b1111111111111111111111111111100
53. R ->	binary
	0b1111111111111111111111111111100
54. R ->	binary
	0b11111111111111111111111111111000
55. R ->	binary
	0b1111111111111111111111111111100
56. R ->	binary
	0b1111111111111111111111111111100
57. R ->	binary
	0b1111111111111111111111111111100
58. R ->	binary
	0b11111111111111111111111111111100
59. R ->	binary
	0b1111111111111111111111111111100
60. R ->	binary
	0b1111111111111111111111111111100
61. R ->	binary
	0b11111111111111111111111111111100
62. R ->	binary
	0b11111111111111111111111111111000
63. R ->	binary
	0b1111111111111111111111111111100
64. R ->	binary
	0b11111111111111111111111111111000
65. R ->	binary
	0b1111111111111111111111111111100
66. R ->	binary
	0b1111111111111111111111111111100

67. R ->	binary
	0b111111111111111111111111111111100
68. R ->	binary
	0b111111111111111111111111111111100
69. R ->	binary
	0b111111111111111111111111111111100
70. R ->	binary
	0b111111111111111111111111111111100
71. R ->	binary
	0b11111111111111111111111111111100
72. R ->	binary
	0b111111111111111111111111111111100
73. R ->	binary
	0b111111111111111111111111111111100
74. R ->	binary
	0b111111111111111111111111111111100
75. R ->	binary
	0b111111111111111111111111111111100
76. R ->	binary
	0b111111111111111111111111111111100
77. R ->	binary
	0b111111111111111111111111111111100
78. R ->	binary
	0b111111111111111111111111111111100
79. R ->	binary
	0b111111111111111111111111111111100
80. R ->	binary
	0b111111111111111111111111111111000
81. R ->	binary

	0b1111111111111111111111111111111100
82. R ->	binary
	0b1111111111111111111111111111111100
83. R ->	binary
	0b111111111111111111111111111111100
84. R ->	binary
	0b111111111111111111111111111111111111
85. R ->	binary
	0b111111111111111111111111111111111111
86. R ->	binary
	0b111111111111111111111111111111111111
87. R ->	binary
	0b11111111111111111111111111111100
88. R ->	> binary
	0b11111111111111111111111111111111100
89. R ->	> binary
	0b1111111111111111111111111111111100
90. R ->	> binary
	0b1111111111111111111111111111111100
91. R ->	> binary
	0b111111111111111111111111111111100
92. R ->	> binary
	0b11111111111111111111111111111100
93. R ->	> binary
	0b111111111111111111111111111111100
94. R ->	> binary

0b1111111111111111111111111111100

ACIKLAMA