COMP3721 Question Bank #3

Turing Machines

Question 1

Let M be the Turing machine $(K, \Sigma, \delta, s, \{h\})$, where

$$K = \{q_0, q_1, q_2, h\},$$

$$\Sigma = \{a, \sqcup, \triangleright\},$$

$$s = q_0,$$

and δ is given by the following table.

Let $n \geq 0$. Describe carefully what M does when started in the configuration $(q_0, \rhd \sqcup \underline{a...a}\underline{a})$.

q,	σ	$\delta(q,\sigma)$
q_0	a	(q_1, \leftarrow)
q_0	\sqcup	(h,\sqcup)
q_0	\triangleright	(q_0, \rightarrow)
q_1	a	(q_2,\sqcup)
q_1	\sqcup	(h,\sqcup)
q_1	\triangleright	(q_1, \rightarrow)
q_2	a	(q_2, a)
q_2	\sqcup	(q_0, \leftarrow)
q_2	\triangleright	(q_2, \rightarrow)

Question 2

Design and write out in full a Turing machine that scans to the right until it finds two consecutive a's and then halts. The alphabet of the Turing machine should be $\{a,b,\sqcup,\triangleright\}$.

Question 3

Explain what this machine does on the input $\triangleright \underline{\sqcup} w \sqcup$.

$$> R \stackrel{a \neq \sqcup}{\rightarrow} R \stackrel{b \neq \sqcup}{\rightarrow} R_{\sqcup} a R_{\sqcup} b$$

Question 4

(a) Trace the operation of the following Turing machine when started on $\triangleright \underline{\sqcup} aabb$.

(b) Trace the operation of the following Turing machine when started on $\triangleright \Box aabb \underline{\Box}$.

Recursive & R.E. Languages

Question 1

- 1. Give a Turing machine that decides the regular language a^*ba^*b .
- 2. Give a Turing machine that semidecides the regular language a^*ba^*b .

Question 2

Give an example of a Turing machine with two halting states, y and n, that does not decide a language.

Question 3

Describe in words an implementation of a Turing machine that decides the following language

$$L = \{ \#w_1 \# w_2 \# ... \# w_n : w_i \in \{0, 1\}^*, n \ge 0, w_i \ne w_j \text{ for each } i \ne j \}$$

Question 4

- a) Construct a Turing machine out of basic machines that transforms $\triangleright \underline{\sqcup} w \sqcup to$ $\triangleright \sqcup w \underline{\sqcup} w^R \sqcup$, where $w \in \{a, b\}^*$.
- b) Describe in words how a double-tape Turing machine transforms $\triangleright \underline{\sqcup} w \sqcup to$ $\triangleright \sqcup w \underline{\sqcup} w^R \sqcup$, where $w \in \{a,b\}^*$.

Question 5

Prove that a language L is recursive if and only if L and \overline{L} are both recursively enumerable.

Question 6

We know that the class of recursively enumerable languages is not closed under complementation. Show that it is closed under union and intersection.

Undecidable problems

Question 1

Say that Turing machine M uses k tape squares on input string w if and only if there is a configuration of M, $(q, u\underline{a}v)$, such that $(s, \triangleright \underline{\sqcup} w) \vdash_M^* (q, u\underline{a}v)$ and $|uav| \geq k$.

- (a) Show that the following problem is solvable: Given a Turing machine M, an input string w, and a number k, does M use k tape squares on input w?
- (b) Show that the following problem is undecidable: Given a Turing machine M and an input string w, does there exist a $k \geq 0$ such that M does not use k tape squares on input w? (That is, does M use a finite amount of tape on input w?)

Question 2

Which of the following problems about Turing machines are solvable, and which are undecidable? Explain your answers carefully.

- (a) To determine, given a Turing machine M, a state q, and a string w, whether M ever reaches state q when started with input w from its initial state.
- (b) To determine, given a Turing machine M and a symbol σ , whether M ever writes the symbol σ when started on the empty tape.
- (c) To determine, given a Turing machine M, whether M ever writes any symbol (nonblank) when started on the empty tape.
- (d) To determine, given a Turing machine M, whether the language semidacided by M is finite.