Universität des Saarlandes Fakultät für Mathematik und Informatik Fachrichtung Mathematik

Prof. Dr. Roland Speicher Dr. Tobias Mai

Präsenzübungen zur Vorlesung Höhere Mathematik für Ingenieure I Wintersemester 2020/21

Blatt 2 B

 $L\"{o}sungshinweise$

Aufgabe 1: Es sei $n \in \mathbb{N}$. Auf der Menge $\mathbb{Z}_n := \{0, 1, 2, \dots, n-1\}$ definieren wir eine Addition $+_n$ und eine Multiplikation $*_n$ durch die folgenden Vorschriften:

- Für $a, b \in \mathbb{Z}_n$ ist $a +_n b \in \mathbb{Z}_n$ der Rest, den die ganze Zahl a + b bei der Division mit n lässt.
- Für $a, b \in \mathbb{Z}_n$ ist $a *_n b \in \mathbb{Z}_n$ der Rest, den die ganze Zahl ab bei der Division mit n lässt.

Beispielsweise hat man für $(\mathbb{Z}_2, +_2)$ und $(\mathbb{Z}_2, *_2)$ die Verknüpfungstabellen:

+2	0	1
0	0	1
1	1	0

* 2	0	1
0	0	0
1	0	1

An diesen Verknüpfungstabellen erkennt man, dass es sich bei $(\mathbb{Z}_2, +_2)$ um eine Gruppe handelt, während $(\mathbb{Z}_2, *_2)$ keine Gruppe darstellt.

Bestimmen Sie wie in diesem Beispiel die Verknüpfungstabellen für $(\mathbb{Z}_3, +_3)$ und $(\mathbb{Z}_3, *_3)$ sowie für $(\mathbb{Z}_4, +_4)$ und $(\mathbb{Z}_4, *_4)$ und entscheiden Sie jeweils, ob es sich dabei um eine Gruppe handelt oder nicht.

Lösung: Für $(\mathbb{Z}_3, +_3)$ und $(\mathbb{Z}_3, *_3)$ bestimmen wir:

$+_3$	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

	* 3	0	1	2
ĺ	0	0	0	0
	1	0	1	2
	2	0	2	1

Für $(\mathbb{Z}_4, +_4)$ und $(\mathbb{Z}_4, *_4)$ bestimmen wir:

$+_4$	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

* 4	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Wir stellen damit fest, dass sowohl $(\mathbb{Z}_3, +_3)$ als auch $(\mathbb{Z}_4, +_4)$ Gruppen sind. Man sieht leicht, dass allgemeiner $(\mathbb{Z}_n, +_n)$ für jedes $n \in \mathbb{N}$ eine Gruppe darstellt. Im Gegensatz dazu ist $(\mathbb{Z}_n, *_n)$ für kein $n \geq 2$ eine Gruppe, da 0 kein inverses Element besitzen kann. (Im Grenzfall n = 1 ist $\mathbb{Z}_1 = \{0\}$ bezüglich $+_1$ und $*_1$ eine Gruppe, nämlich die triviale Gruppe mit nur einem Element.) Neben 0 kann es sogar noch weitere Elemente in \mathbb{Z}_n für $n \geq 2$ geben, die kein Inverses bezüglich $*_n$ besitzen. Für \mathbb{Z}_4 entnehmen wir der Verknüpfungstabelle, dass dies auf die 2 zutrifft; es gibt nämlich kein $a \in \mathbb{Z}_4$ sodass $2 *_4 a = a *_4 2 = 1$. Die Menge aller invertierbaren Elemente in $(\mathbb{Z}_n, *_n)$ bildet jedoch immer eine Gruppe, die sogenannte prime Restklassengruppe, die oft als $(\mathbb{Z}_n, *_n)^{\times}$ notiert wird. Deren Struktur ist etwas komplizierter und hängt von der Primfaktorzerlegung von n ab.

Aufgabe 2: Es sei $n \in \mathbb{N}$. Wir nennen eine Menge M endlich (mit n Elementen), falls es eine Bijektion $\{1, \ldots, n\} \to M$ gibt.

Zeigen Sie: Ist M endlich mit n Elementen und ist $x \in M$, so ist $M \setminus \{x\}$ eine endliche Menge mit n-1 Elementen.

Lösung: Es sei M endlich mit n Elementen. Nach Definition gibt es also eine bijektive Abbildung $\Phi \colon \{1, \ldots, n\} \to M$. Für $x \in M$ setzen wir $m := \Phi^{-1}(x)$, d. h. wir haben $m \in \{1, \ldots, n\}$ mit $\Phi(m) = x$. Wir definieren nun eine Abbildung $\Psi \colon \{1, \ldots, n-1\} \to M \setminus \{x\}$ durch die Vorschrift

$$\Psi(k) = \begin{cases} \Phi(k), & \text{falls } k < m \\ \Phi(k+1), & \text{falls } k \ge m \end{cases}$$
 für alle $k \in \{1, \dots, n-1\}.$

Da Φ injektiv und surjektiv ist, folgt sofort, dass auch Ψ injektiv und surjektiv ist und damit eine Bijektion $\{1,\ldots,n-1\}\to M\setminus\{x\}$ darstellt. Definitionsgemäß ist $M\setminus\{x\}$ daher endlich mit n-1 Elementen.

Aufgabe 3: Es sei $p(x) = (x^2 - 2)^9$. Finden Sie den Koeffizienten von p bei x^6 .

Lösung: Nach dem binomischen Lehrsatz gilt

$$p(x) = \sum_{k=0}^{9} (-2)^{9-k} \binom{9}{k} x^{2k}.$$

Der Summand für k=3 trägt die Potenz x^6 bei; der Koeffizient von p bei x^6 ist somit

$$(-2)^6 \cdot {9 \choose 3} = 2^6 \cdot \frac{9!}{6! \cdot 3!} = 64 \cdot \frac{9 \cdot 8 \cdot 7}{3!} = 64 \cdot 84 = 5376.$$

Aufgabe 4:

- (a) Wie viele n-stellige natürliche Zahlen ohne die Ziffer 9 gibt es?
- (b) Es haben 3 Personen 20 Sitzplätze zur Auswahl. Wie viele Möglichkeiten gibt es

- (i) wenn nicht zwischen den Personen unterschieden wird?
- (ii) wenn zwischen den Personen unterschieden wird?

Lösung:

- (a) Für die erste Stelle haben wir 8 Möglichkeiten (die erste Stelle kann nicht 0 und nicht 9 sein). Für die übrigen n-1 Stellen können wir eine beliebige Ziffer zwischen 0 und 8 wählen, das sind jeweils 9 Möglichkeiten. Insgesamt gibt es also $8 \cdot 9^{n-1}$ natürliche Zahlen mit n-Stellen (in der Dezimaldarstellung), in denen die Ziffer 9 nicht auftritt.
- (b) (i) Wird nicht zwischen den Personen unterschieden (d. h. es ist nur relevant welche Plätze belegt sind, aber nicht von wem), so gibt es

$$\binom{20}{3} = \frac{20!}{3! \cdot 17!} = \frac{20 \cdot 19 \cdot 18}{3 \cdot 2 \cdot 1} = 1140$$

Möglichkeiten.

(ii) Wird zwischen den Personen unterschieden (d. h. es ist zusätzlich relevant welche Person auf welchem Platz sitzt), so gibt es

$$3! \cdot \binom{20}{3} = 6 \cdot 1140 = 6840$$

Möglichkeiten.