Ejercicio 1:

Simplificar las siguientes funciones booleanas a un número mínimo de literales.

Postulados y teoremas del álgebra booleana

Postulado 2	a)	x + 0 = x	b)	$x \cdot 1 = x$
Postulado 5	a)	x + x' = 1	b)	$x \cdot x' = 0$
Teorema 1	a)	x + x = x	b)	$x \cdot x = x$
Teorema 2	a)	x + 1 = 1	b)	$x \cdot 0 = 0$
Teorema 3, involución		(x')' = x		
Postulado 3, conmutatividad	a)	x + y = y + x	b)	xy = yx
Teorema 4, asociatividad	a)	x + (y + z) = (x + y) + z	b)	x(yz) = (xy)z
Postulado 4, distributividad	a)	x(y+z)=xy+xz	b)	x + yz = (x + y)(x + z)
Teorema 5, DeMorgan	a)	(x+y)'=x'y'	b)	(xy)' = x' + y'
Teorema 6, absorción	a)	x + xy = x	b)	x(x+y)=x

a)
$$ky + k\overline{y} = k(y+\overline{y}) = kA = k$$

b) $(k+y)(k+\overline{y}) = k+y\overline{y} = k+0 = k$

c) $kyz + \overline{k}y + ky\overline{z} = ky(z+\overline{z}) + \overline{k}y = kyA + \overline{k}y = ky + \overline{k}y = y(k+\overline{k}) = yA = y$

d) $zk + z\overline{k}y = z(k+\overline{k}y) = z((k+\overline{k})(k+y)) = z(4+(k+y)) = z(k+y)$

e) $(\overline{A+B})(\overline{A+B}) = \overline{AB}(\overline{A+B}) = \overline{AB}(\overline{A+B}) = A\overline{B}AB = (\overline{AA})(\overline{BB}) = 0.0 = 0$

f) $y(w\overline{z} + wz) + ky = y(w(\overline{z}+z)) + ky = y(wA) + ky = yw + ky = y(w+k)$