Interpretação de Linguagem Natural

Aula 10

O conteúdo destes slides foi adaptado de:

- Curso "Da Linguagem Natural a Informação" Prof. Emerson Cabrera Paraiso (PPGIa/PUCPR).
- "Natural Language Processing" course Prof. Thamar Solorio (University of Houston).
- "Speech and Language Processing", Jurafsky, D., Martin, J.; 3a Edição (2018).

Bacharelado em Ciência da Computação - 4º Período

Expressões Regulares (REGEX) (Aula Anterior)

- Expressões Regulares (Regular Expressions): linguagem formal para especificar cadeias de caracteres (strings).
- É uma das formas mais básicas de processar um texto.
- Permite a especificação de padrões utilizados na busca de strings (ou substrings) em textos.
- Após a construção do padrão, um motor faz a análise léxica e sintática do texto-alvo e indica as ocorrências das strings encontradas a partir do padrão indicado.
- Trata-se de ferramenta muito utilizada na recuperação da informação.
- Define padrões para o processo de tokenização.

Exemplos de REGEX (Aula Anterior)

- Verificar a presença do http:// ou https://
 - ^(http:\/\www\.|https:\/\www\.|http:\/\|https:\/\)?[a-z0-9]+([\-\.]{1}[a-z0-9]+)*\.[a-z]{2,5}(:[0-9]{1,5})?(\/.*)?\$

Tipos de Erros (por Jurafsky) (Aula Anterior)

- No exemplo, dois tipos de erros surgiram:
 - 1) Retornar strings indesejadas ("parado"): falso positivo
 - 2) Não retornar strings desejadas ("Para"): falso negativo

Exemplo de Etapas Típicas do PLN (Aula Anterior)

Part-of-Speech (POS) Tagging (Aula Anterior)

- Análise morfológica.
- Processo de atribuir uma part-of-speech (classe gramatical) para cada palavra num corpus. (Jurafsky and Martin)
- Exemplos de classes gramaticais:
 - Substantivos, verbos, pronomes, adjetivos, advérbios, etc.

Conjunto de POS Tags (Aula Anterior)

	Tag	Description	Example Ta		Description	Example	
• • • •	CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &	
	CD	cardinal number	one, two, three	TO	"to"	to	
	DT	determiner	a, the	UH	interjection	ah, oops	
	EX	existential 'there'	there	VB	verb, base form	eat	
	FW	foreign word	mea culpa	VBD	verb, past tense	ate	
	IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating	
	JJ	adjective	yellow	VBN	verb, past participle	eaten	
	JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat	
	JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats	
	LS	list item marker	1, 2, One	WDT	wh-determiner	which, that	
	MD	modal	can, should	WP	wh-pronoun	what, who	
	NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose	
	NNS	noun, plural	llamas	WRB	wh-adverb	how, where	
	NNP	proper noun, singular	IBM	\$	dollar sign	\$	
	NNPS	proper noun, plural	Carolinas	#	pound sign	#	
	PDT	predeterminer	all, both	"	left quote	or "	
	POS	possessive ending	's	,,	right quote	' or "	
	PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <	
	PRP\$	possessive pronoun	your, one's)	right parenthesis],), },>	
	RB	adverb	quickly, never	,	comma	,	
	RBR	adverb, comparative	faster		sentence-final punc	.!?	
Crosor:	RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;	
Gregory	RP	particle	up, off				

Part-of-Speech (POS) Tagging (Aula Anterior)

Exemplo de POS tagging realizado com StanfordNLP.

The quick brown fox jumped over the lazy dog.

Exemplo de Etapas Típicas do PLN (Aula Anterior)

Parsing (Aula Anterior)

- Existem diferentes tipos
 - Foco: parser de dependência.

Parsing (Aula Anterior)

- Parser de dependência (dependency parser)
 - Representação da estrutura sintática: consiste de itens léxicos conectados por relações binárias (dependências).

A flecha conecta um item léxico chamado raiz (head, governor) com um item léxico denominado dependente (subordinate). Normalmente as dependências formam uma árvore.

Gregory Moro Puppi Wanderley (gregory.puppi@pucpr.br)

Parser de Dependência com StanfordNLP (Aula Anterior)

```
Índices na
('The', '4', 'det')
('quick', '4', 'amod')
('brown', '4', 'amod')
('fox', '5', 'nsubj') ←
                       Dependências são tuplas:
('jumped', '0', 'root')
                       (item dependente,
('over', '9', 'case')
                       índice do item raiz na frase,
('the', '9', 'det')
                       nome da relação)
('lazy', '9', 'amod')
('dog', '5', 'obl')
('.', '5', 'punct')
```


Plano de Aula

- Representação Vetorial de Textos
 - Bag-of-words
 - Matriz Termo-Documento
 - TF-IDF
- Similaridade entre Documentos

Representação Vetorial de Textos

- Definição: trata-se de conversão da representação textual (strings) de um corpus para uma representação numérica (vetor).
- Esta operação é necessária como etapa inicial ao processo de classificação ou recuperação da informação, por exemplo.
- Em outras palavras, trata-se de um processo equivalente a "obtenção de características" do texto/corpus.
- O método mais conhecido para realizar esta tarefa é o bag-ofwords.

Bag-of-words (BoW)

- O modelo bag-of-words (BoW) propõe uma maneira de representar as características textuais de documentos em vetores numéricos.
- O BoW é baseado na frequência de palavras nos textos (histograma de palavras).
- A ideia da "sacola" de palavras vem do fato de que a ordem das palavras ou a estrutura do texto não é levado em consideração no processo.
- Todo o corpus pode ser chamado de "lista de BoW".

BoW

- **Primeira etapa:** encontrar todas as ocorrências de uma palavra (ou termo), o que chamaremos de definição do vocabulário.
- Dado o seguinte corpus extraído de (https://machinelearningmastery.com/gentleintroduction-bag-words- model/).
 - "It was the best of times,"
 - "it was the worst of times,"
 - "it was the age of wisdom,"
 - "it was the age of foolishness."
- Cada linha é tratada como um documento. O vocabulário seria então formado por 10 palavras:
 - "it", "was", "the", "best", "of", "times", "worst", "age", "wisdom", "foolishness"

16

BoW

 Perceba que nenhuma operação básica de modificação no texto foi realizada (por exemplo, extração de stopwords).

BoW

 Segunda etapa: criação dos vetores de documentos. Os vetores terão comprimento de 10 posições, visto que o vocabulário tem comprimento C = 10. Para cada texto, indicar a ocorrência (e a quantidade) para cada termo.

- Dado o vocabulário, cada palavra representa uma posição no vetor:
 - {"it", "was", "the", "best", "of", "times", "worst", "age", "wisdom", "foolishness"}
- Vetores:
 - [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
 - [1, 1, 1, 0, 1, 1, 1, 0, 0, 0]
 - [1, 1, 1, 0, 1, 0, 0, 1, 1, 0]
 - [1, 1, 1, 0, 1, 0, 0, 1, 0, 1]

Outro Exemplo

Corpus:

- "John likes to watch movies. Mary likes movies too."
- "John also likes to watch football games."
- Vocabulário após a extração de stopwords {"also", "to", "too"}:
 - {"John", "likes", "watch", "movies", "Mary", "football", "games"}
- Vetores:
 - [1, 2, 1, 2, 1, 0, 0]
 - [1, 1, 1, 0, 0, 1, 1]

Plano de Aula

- Representação Vetorial de Textos
 - Bag-of-words
 - Matriz Termo-Documento
 - TF-IDF
- Similaridade entre Documentos

Matriz Termo-Documento

- O conjunto de todos os vetores forma a matriz Termo-Documento.
- Para a coleção de documentos a seguir:
 - d1 = "O carro branco é bonito. O carro é novo."
 - d2 = "Comprei um carro branco bonito."
 - d3 = "Comprei um novo carro."
 - d4 = "Todos precisamos de um carro."
 - A matriz equivalente é construída (sem stopwords):

	carro	branco	bonito	comprei	novo	precisamos
d_1	2	1	1	0	1	0
d_2	1	1	1	1	0	0
d_3	1	0	0	1	1	0
d_4	1	0	0	0	0	1

Detalhes da Utilização do BoW

- A matriz gerada pelos N documentos (textos) é geralmente esparsa (vários 0s ao logo das colunas - Lei de Zipf) e de alta dimensionalidade.
- Formas de reduzir a dimensão:
 - Retirada de stopwords;
 - Lematização;
 - Uso do n-gram (múltiplas palavras por token).
- O fato de uma palavra ter alta frequência não necessariamente significa que trata-se de um termo importante. Por exemplo: artigos ('o', 'a', ...) tem a tendência de ocorrer com frequência em textos.

Distribuição dos Termos

- A distribuição dos termos em uma coleção de documentos segue a lei de Zipf e a distribuição de cauda longa (long-tailed):
 - A maior parte do vocabulário tem baixa frequência.

frequência de termos

de termos

Plano de Aula

- Representação Vetorial de Textos
 - Bag-of-words
 - Matriz Termo-Documento
 - TF-IDF
- Similaridade entre Documentos

TF-IDF

- Definição: o TF-IDF (term frequency—inverse document frequency) é usado para medir a importância de um termo em um documento presente em uma coleção de documentos. ((JONES, 1972); (SALTON; BUCKLEY, 1988))
 - O valor TF-IDF de uma palavra aumenta proporcionalmente à medida que aumenta o número de ocorrências dela em um documento. Porém, este valor é relativizado pela frequência da palavra no corpus.
 Resumindo:
 - 1) Quanto mais frequentemente um termo ocorre em um documento, mais representativo ele é para o conteúdo, e;
 - 2) Quanto mais documentos o termo ocorre, menos discriminativo ele é.

TF-IDF

- "TF-IDF é comumente usado em Recuperação de Informação para comparar um vetor de consulta com um vetor de um documento de texto, usando uma função de similaridade ou distância, como a função cosseno". (SOUCY; MINEAU, 2005)
- Para computar o TF-IDF vamos trabalhar com o seguinte corpus:
 - d1 = "O carro branco está na rodovia."
 - d2 = "O caminhão branco parou na garagem."

	0	carro	branco	está	na	rodovia	caminhão	parou	garagem
d1	1	1	1	1	1	1	0	0	0
d2	1	0	1	0	1	0	1	1	1

Formulação Matemática - tf

- Matematicamente, TF-IDF (term frequency—inverse document frequency) pode ser computado como:
 - termo-frequência (tf): nos fornece a frequência de cada termo em um documento do corpus.

$$tf_{i,j} = \frac{n_{i,j}}{\sum_{k} n_{i,j}}$$

• Sendo $n_{i,i}$, a frequência de um termo i num documento j.

Formulação Matemática - tf

Para o corpus:

- tf("carro", d1) = 1/6 = 0.167
- tf("carro", d2) = 0/6 = 0
- tf("branco", d1) = 1/6 = 0.167
- tf("branco", d2) = 1/6 = 0.167

Formulação Matemática – idf

Cálculo do IDF (Inverse Document Frequency): permite computar o peso de cada palavra na coleção de documentos. Palavras que ocorrem mais raramente tem maior IDF.

$$idf(w) = log(\frac{N}{df_t})$$

- Sendo:
 - N = número total de documentos do corpus;
 - df_t = número de documentos contendo o termo t;

29

Formulação Matemática - idf

Para o corpus:

- idf("carro") = log(2/1) = 0.3
- idf ("branco") = log(2/2) = 0

Formulação Final

 O cálculo do TD-IDF seria então o produto de ambas equações:

$$w_{i,j} = t f_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

- Sendo:
 - $w_{i,i}$ = trata-se do TF-IDF de um termo i em um documento j.

Exemplo

Para o corpus:

- tf-idf ("carro", d1) = $0.167 \times 0.3 = 0.051$
- tf-idf("carro",d2)=0x0.3=0
- tf-idf ("branco", d1) = $0.167 \times 0 = 0$
- tf-idf ("branco", d2) = 0.167 x 0 = 0

Conclusões:

Gregory Moro Puppi Wanderley (gregory.puppi@pucpr.br)

- tf-idf de palavras em comum nos documentos é zero, ou seja, não são palavras significantes na discriminação dos textos;
- if-idf de "carro" é diferente de zero, o que significa que esta palavra tem mais importância na coleção de documentos.

Outras Alternativas

- Caso você busque uma forma alternativa para representar os documentos, dê uma olhada neste artigo, é uma dentre várias possibilidades:
 - https://arxiv.org/pdf/1301.6770.pdf

Trabalho 7 (Parte I)

- 1) Dado o corpus:
 - d1 = "O rato roeu a roupa do rei de Roma."
 - d2 = "Nenhum rato rói a roupa do rei de Roma sem punição."
 - d3 = "A rota de fuga do rato foi rápida."

Implementar um programa em Python para computar o TF-IDF de cada termo.

Plano de Aula

- Representação Vetorial de Textos
 - Bag-of-words
 - Matriz Termo-Documento
 - TF-IDF
- Similaridade entre Documentos

Similaridade entre Documentos

- Dada a introdução ao trabalho com o modelo de espaço vetorial (vector space model), onde documentos são representados como coleções (vetores) de valores (índices, frequência, etc.), podemos utilizá-los em diferentes aplicações.
- Vamos utilizar o espaço vetorial para identificar qual documento *D* está mais "próximo" de um vetor de consulta Q (a query Q será então considerada como um documento).
- Neste caso uma medida de similaridade pode ser usada para calcular a distância entre os vetores (documentos).
- A forma tradicional de medir a distância entre dois vetores é por meio da medida do ângulo entre ambos.
- O ângulo é computado pelo produto interno entre os vetores.

Similaridade entre Vetores

- No exemplo, cada documento é composto por dois termos.
- 'A' e 'I' são termos válidos.
 - Documentos:

•
$$D_1 = \{A, I\}$$

•
$$D_2 = \{A\}$$

$$D_3 = \{I\}$$

$$Q = \{A, I\}$$

Vetor de documentos:

•
$$D_1 = [1, 1]$$

•
$$D_2 = [1, 0]$$

•
$$D_3 = [0, 1]$$

•
$$Q = [1, 1]$$

Coeficiente de Similaridade (SC)

 Para o cálculo da similaridade entre os documentos temos diferentes abordagens. Uma das mais simples é calcular o produto dos vetores. Assume-se que o comprimento do vetor que representa a query Q é igual ao comprimento dos vetores dos documentos da coleção.

$$SC(Q, D_i) = \sum_{j=1}^{t} w_{qj} \times d_{ij}$$

- Sendo:
 - d_{ii} = é o peso do termo j do documento I
 - w_{ai} =é o peso do termo j da query Q

Exemplo

- Assumindo o seguinte corpus de documentos (Grossman and Frieder, 2004):
 - D1 = "Shipment of gold damaged in a fire."
 - D2 = "Delivery of silver arrived in a silver truck."
 - D3 = "Shipment of gold arrived in a truck."
- e a query:
 - Q = "gold silver truck."
- Temos então 3 documentos e 11 termos na coleção.

	а	arrived	damaged	delivery	fire	gold	in	of	shipment	silver	truck
d1	0	0	0.477	0	0.477	0.176	0	0	0.176	0	0
d2	0	0.176	0	0.477	0	0	0	0	0	0.477	0.176
d3	0	0.176	0	0	0	0.176	0	0	0.176	0	0.176
Q	0	0	0	0	0	0.176	0	0	0	0.477	0.176

Exemplo

- Após o cálculo dos pesos para cada documento, computamos a similaridade SC da query Q em relação à cada documento D_i.
 - $SC(Q, D_1) = (0 * 0) + (0 * 0) + (0 * 0.477) + ... + (0.477 * 0) + (0.176 * 0) = 0.031$
 - $SC(Q, D_2) = (0.954 * 0.477) + (0.176 * 0.176) = 0.486$
 - $SC(Q, D_3) = (0.176 * 0.176) + (0.176 * 0.176) = 0.062$

Assim, o documento mais próximo à query Q seria D₂, depois D₃ e D₁.

Trabalho 7 (Parte II)

- 1) Dado o corpus "30NoticiasCurtas", computar o tf-idf das seguintes palavras:
 - "Brasil"
 - "mortos"
 - "governo"
- 2) Dado o corpus "30NoticiasCurtas", comprovar lei de Gorge Zipf.
 Traçar um gráfico para visualização dos resultados.
- 3) Será que o conteúdo desta aula pode ser usado na extração de termos relevantes:
 - Faça um teste disso:
 - https://app.monkeylearn.com/main/extractors/ex_y7BPYzNG/tab/de/

Dúvidas?