*	PA	LMI	NTF	AN
The state of the s				

Day: Thursday Date: 2/16/2006

Time: 14:56:20

Inventor Information for 10/668672

Inventor Name	City	State/Country					
STUPP, SAMUEL I.	CHICAGO	ILLINOIS					
NIECE, KRISTA L.	EVANSTON	ILLINOIS					
HARTGERINK, JEFFREY D.	PEARLAND	TEXAS					
Appln Info Contents Petition Info Atty/Agent Info Continuity Data Foreign-Data Search Another: Application# Search or Patent# Search							
		u Sparch I					
PCT / / Sea		i (more as					

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

US 20050272662 A1	US- PGPUB	20051208	Self-assembled peptide- amphiphiles & self-assembled peptide nanofiber networks presenting multiple signals	514/17	530/329	Stupp, Samuel I. et al.
US 20050214952 A1	US- PGPUB	20050929	Oligo(p- phenylene vinylene) amphiphiles and methods for self-assembly	438/1	564/285	Stupp, Samuel I. et al.
US 20050209145 A1	US- PGPUB	20050922	Self-assembling peptide amphiphiles and related methods for growth factor delivery	514/12	435/366; 435/69.1; 530/399	Stupp, Samuel I. et al.
US 20050208589 A1	US- PGPUB	20050922	Branched peptide amphiphiles, related epitope compounds and self assembled structures thereof	435/7.1	436/86; 530/330	Stupp, Samuel I. et al.
US 20050130879 A1	US- PGPUB	20050616	Modifying tissue surfaces by liquid crystal formation	514/2	514/54	Hwang, Julia et al.
US 20040258726 A1	US- PGPUB	20041223	Methods and materials for nanocrystalline surface coatings and attachment of peptide amphiphile nanofibers thereon	424/423	424/93.7	Stupp, Samuel I. et al.
US 20040155517 A1	US- PGPUB	20040812	Self-assembled hybrid compositions and methods of	301/17	252/299.01; 252/301.35; 252/301.36; 252/582;	Stupp, Samuel I. et al.

			making, using and ordering the same		428/917	
US 20040022718 A1	US- PGPUB	20040205	Encapsulation of nanotubes via self-assembled nanostructures	423/445R	428/34.1	Stupp, Samuel I. et al.
US 20040018961 A1	US- PGPUB	20040129	Self-assembly and mineralization of peptide- amphiphile nanofibers	514/7	530/324	Stupp, Samuel I. et al.
US 20040001893 A1	US- PGPUB	20040101	Self-assembly of peptide- amphiphile nanofibers under physiological conditions	424/488	514/6; 530/350	Stupp, Samuel I. et al.
US 20030087533 A1	US- PGPUB	20030508	Liquid crystal- templated conducting organic polymers	438/745		Stupp, Samuel I. et al.
US 20030008826 A1	US- PGPUB	20030109	Modifying tissue surfaces by liquid crystal formation	514/12		Hwang, Julia et al.
US 20030008825 A1	US- PGPUB	20030109	Modifying tissue surfaces by liquid crystal formation	514/12		Hwang, Julia et al.
US 6890654 B2	USPAT	20050510	Encapsulation of nanotubes via self-assembled nanostructures	428/403	257/788; 428/323; 428/327; 428/407; 428/408; 977/742; 977/842 CIPG 20060101 A C01B C01B31/00 L I R US M 20060101	Stupp; Samuel I. et al.

						CICL C01B CIPS C01B31/00 20060101 CIPG 20060101 A C01B C01B31/02 L I R US M 20060101 CICL C01B CIPS C01B31/02 20060101		44
US 6849711 B2	USPAT	20050201		Modifying tissue surfaces by liquid crystal formation	530/324	424/9.1; 514/2; 514/561; 530/300; 623/16.11	Hwa Julia al.	et
US 6784282 B2	USPAT	20040831		Modifying tissue surfaces by liquid crystal formation	530/324	424/9.1; 530/300	Hwa Julia al.	•
US 6680215 B2	USPAT	20040120		Liquid crystal- templated conducting organic polymers	438/30	205/78; 257/40; 438/99	Stup Sam I. et	uel
US 6420519 B1	USPAT	·		Modifying tissue surfaces by liquid crystal formation	530/324	128/898; 424/422; 424/423; 424/424; 424/425; 424/426; 521/60; 528/328; 530/300; 623/18.11	Hwa Julia al.	a et
US 6326025 B1	USPAT	20011204	6	Tissue reactive adhesive compositions	424/444	424/484; 514/438; 514/441; 526/256; 602/42; 602/43; 602/48; 602/50;	Sigl Gerr al.	er;

					602/904;	
					606/213	
US 6051272	USPAT	20000418	Method for	427/2.26	427/2.27;	Stupp;
Α			synthesizing		427/327;	Samuel
			organoapatites		427/409;	I. et al.
			on to surgical		427/414;	
			metal alloys		427/435	
US 5932539	USPAT	19990803	Biodegradable	514/2	514/53;	Stupp;
Α			polymer matrix		514/57;	Samuel
			for tissue repair		525/54.1;	I. et al.
					525/54.11;	
					525/54.2;	İ
					525/54.3;	ļ
					527/200;	
					527/207;	
					527/300;	
					527/311;	
					527/315	
US 5733868	USPAT	19980331	Poly(amino	514/2	156/328;	Peterson
A	0 ,-2		acid) adhesive		156/336;	Dale R.
			tissue grafts		524/20	et al.
US 5412144	USPAT	19950502	Organic	558/406	359/328;	Stupp;
A			materials with		359/329;	Samuel
			nonlinear		526/285;	I. et al.
			optical		560/59	
Less maniers &	100000		properties			
US 5229474	USPAT	19930720	Synthesis of	526/298	526/273;	Stupp;
A	-1111		two-		526/313;	Samuel
	MIII - 15		dimensional		526/320	I.
			polymers by			
			molecular			
			recognition and			
			chemical			
			reaction among			
			high molar mass			
Marie XVIII		11223223111	monomers			
US 4160760	USPAT	19790710	Process for	523/333	260/DIG.23;	Carr;
A	1187		preparing	11	524/173;	Stephen
			polyacrylonitrile		524/235;	H. et al.
			doped with		524/401;	
			Prussion blue		524/424;	
			13/4		524/566	