20. Локални екстремуми. Необходими и достатъчни условия

Галина Люцканова

11 септември 2013 г.

Да напомним определенията за локални екстремуми и теоремата на Ферма:

Определение 20.1: Казваме, че f(x) има локален максимум в някоя вътрешна точка x_0 от своята дефиниционна област, ако съществува околност $(x_0-\varepsilon,x_0+\varepsilon)$ на точката x_0 (съдържаща се в дефиниционната област), такава че за всички x_0 в тази околност е изпълнено $f(x) \leq f(x_0)$.

Определение 20.2: Казваме, че f(x) има локален минимум в някоя вътрешна точка x_0 от своята дефиниционна област, ако съществува околност $(x_0-\varepsilon,x_0+\varepsilon)$ на точката x_0 (съдържаща се в дефиниционната област), такава че за всички x_0 в тази околност е изпълнено $f(x) \ge f(x_0)$.

Теорема 20.1 (на Ферма) : Нека f(x) е диференцируема в точка x_0 и има локален екстремум в точката x_0 . Тогава $f'(x_0) = 0$.

Теорема 20.2: Нека f(x) е диференцируема в $(-\infty, +\infty)$ и съществуват $\lim_{x\to -\infty} f(x)$ и $\lim_{x\to +\infty} f(x)$. Нека $L=\sup f(x)$. Тогава

- 1. $L = \lim_{x \to -\infty} f(x)$
- $2. L = \lim_{x \to +\infty} f(x)$
- 3. L се достига във вътрешна стационарна точка, т.е. f'(x) = 0 (т.е. L се достига в локален екстремум)

Доказателство:

Какво значи това правило? Много просто, то означава, че супремумът се достига или когато функцията клони към $\pm \infty$, или в точка на локален екстремум. Това трябва да е някакси ясно от представата ни за локалните екстремуми.

Твърдение 20.1: Нека f(x) е 2 пъти диференцируема в околност на точката x_0 . Ако $f'(x_0) = 0$, а $f''(x_0) \neq 0$, то f(x) има локален екстремум и

- 1. той е локален минимум, ако $f''(x_0) > 0$
- 2. той е локален максимум, ако $f''(x_0) < 0$

Доказателство:

<u>Теорема 20.3:</u> Нека f(x) е n пъти диференцируема в околност на точката x_0 . Ако $f'(x_0) = f''(x_0) = \dots = f^{(n-1)} = 0$, а $f^{(n)}(x_0) \neq 0$. Тогава

- 1. Ако n е четно, то f(x) има локален екстремум в точката x_0 и
 - (а) той е локален минимум, ако $f^{(n)}(x_0) > 0$
 - (б) той е локален максимум, ако $f^{(n)}(x_0) < 0$
- 2. п е нечетно, то f(x) няма локални екстремуми в точката x_0

Доказателство: