Minor Exam-I

Indian Institute of Technology Jodhpur Mathematics-II: MAL1020

(February 08, 2024)

Duration: 50 minutes Maximum Marks: 15

Answer all questions:

 $(3\times 5=15)$

- 1. (a) Check and justify whether U is a subspace of the vector space V over \mathbb{R} . U and V are as follows:
 - (i) $U = \{(a, b) \in \mathbb{R}^2 : 2a + 3b = 0\}, V = \mathbb{R}^2$
 - $(ii)\ U=\mathbb{Q}, V=\mathbb{R}$
 - (iii) $U = \{a + 0i : a \in \mathbb{R}\}, V = \mathbb{C}$

(b) Prove that, $P_2(\mathbb{R})$ is a subspace of $P_3(\mathbb{R})$ over the real field.

[3 + 2]

- (a) Check and justify whether the subset S is linearly independent or dependent in V. S and V are as follows:
 - (i) $S = \{(1,3,2), (1,2,3), (2,4,6)\}, V = \mathbb{R}^3$
 - (ii) $S = \{1, i\}, V = \mathbb{C}$
 - (iii) $S = \{1, 1+t, 1+t^2\}, V = P_2(\mathbb{R})$
 - (b) Find a basis and the dimension of the subspace W of \mathbb{R}^3 , where $W = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}.$ [3 + 2]
- 3 (a) The maps $f, g: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3$, $g(x) = \cos(x)$. Check and justify whether these are linear transformations or not.
 - (b) Let $T_1, T_2: V \to W$ be linear transformations. Let a and b be scalars. Define $T: V \to W$ by $T(x) = a T_1(x) + b T_2(x)$ for $x \in V$. Check and Justify whether T is a linear transformation or not.
 - (c) The matrix of a linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^2$ relative to the order bases $\{(0,1,1), (1,0,1), (1,1,0)\}$ of \mathbb{R}^3 and $\{(1,0), (1,1)\}$ of \mathbb{R}^2 is $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 1 & 0 \end{pmatrix}$. Find the mapping T. Also, find the matrix of T relative to the ordered bases $\{(1,1,0), (1,0,1), (0,1,1)\}$ of \mathbb{R}^3 and $\{(1,1), (0,1)\}$ of \mathbb{R}^2 . [1+1+3]