Winter 2011 Jim Fowler

Immersion theory. This week, we'll study Imm(M, N), the space of immersions from M to N. The most important result is

Theorem (Smale–Hirsch). Let M be a closed smooth manifold, and N a smooth manifold. Then map $\mathrm{Imm}(M,N) \to \mathrm{Mono}(TM,TN)$ which sends f to Df is a homotopy equivalence. Here, $\mathrm{Mono}(TM,TN)$ consists of pairs of continuous maps $f:M\to N$ and a smooth bundle map $TM\to f^*TN$ which is fiberwise injective. Note that an element of $\mathrm{Mono}(TM,TN)$ need not arise from an immersion and its derivative.

Email me with questions at fowler@math.osu.edu. The exercises below should be handed in on Monday, March 7, 2011.

Problem 9.1 (Bicycle chain redux)

Compute $\pi_0(\text{Mono}(TS^1, T\mathbb{R}^2))$, and use this result to say something about (regular homotopy¹ classes of) immersions of the circle in the plane.

Problem 9.2 (Sphere eversion is possible)

Let $i: S^2 \to \mathbb{R}^3$ be the standard inclusion, and let $r: S^2 \to S^2$ be the map given by r(v) = -v. Show that the immersions i and $i \circ r$ are homotopic through immersions. For a bonus point, for which $S^n \hookrightarrow \mathbb{R}^{n+1}$ is sphere eversion possible?

¹A regular homotopy is a homotopy through immersions which extends continuously to a homotopy of the tangent bundles.