Teoria de Morse em 15 minutos Apresentação de Iniciação Científica

Pietro Mesquita Piccione

Departamento de Matemática Instituto de Matemática e Estatística Universidade de Sao Paulo

26 de novembro de 2020

Bolsa de Iniciação Científica da Fapesp, Processo 2020/04871-0

Teoria de Morse em 2 minutos

Ingredientes

- Mⁿ variedade (compacta).
- Uma função $f: M \to \mathbb{R}$ diferenciável, cujos pontos críticos são não degenerados.

Resultado central da Teoria de Morse

Existe uma relação entre a topologia de M e os pontos críticos de f e seus índices.

Topologia: Complexos celulares, homologia, etc.

Dinâmica: Fluxo do gradiente de *f*.

Esquema geral da Teoria de Morse

Pontos críticos de uma função

- Pontos críticos. Funções de Morse
- Índice de Morse.
- Lema de Morse.

Complexos CW

- Células
- Estrutura celular
- Relação entre estrutura celular e homologia.

Variedades compactas

- Métricas Riemannianas
- Fluxo do campo gradiente
- Dinâmica dos subníveis,
- Estrutura celular associada a uma função de Morse

Pontos críticos de uma função

Definição

Dizemos que $p \in M$ é um ponto crítico de f se:

$$\mathrm{d}f_p=0$$

Dizemos que p é não degenerado se a forma bilinear

$$\boxed{\mathrm{d}^2 f_p \colon T_p M \times T_p M \longrightarrow \mathbb{R}}$$

é não degenerada.

O *índice* de p como ponto crítico da f é o número de autovalores negativos de $d^2 f_p$.

Lema de Morse

Se *f* não tem pontos críticos degenerados, dizemos que *f* é uma *função de Morse*.

Lema de Morse

Se p ponto crítico não degenerado de f, com índice λ , então localmente f se escreve como:

$$f(x) = f(p) - x_1^2 - \dots - x_{\lambda}^2 + x_{\lambda+1}^2 + \dots + x_n^2$$

Exemplo

O clássico exemplo de função de Morse é o a função altura no toro:

Complexos CW - 1

 $D^n \subset \mathbb{R}^n$ disco fechado

Células

Se $h: D^n \to X$ é contínua, e $h|_{\mathring{D}^n}: \mathring{D}^n \to h(\mathring{D}^n)$ é um homeomorfismo. $\Longrightarrow h(D^n)$ é uma n-célula em X

Exemplos:

Figura: 1-célula

Figura: 2-célula

Complexos CW – 2

Uma estrutura celular de um espaço *X* é uma forma de descrever *X* usando células.

Definição

Uma decomposição celular de X é uma sequência:

$$X_1 \subset X_2 \subset \cdots \subset X_n \subset \cdots \subset X$$

Onde

- \blacksquare X_1 é um conjunto *discreto* de pontos
- X_k é formado por k + 1-células.
- $\blacksquare \bigcup X_n = X$
- + condição topológica.

Um complexo CW é um espaço *X* com uma decomposição celular.

Figura: X₁

Figura: X₂

Figura: X₂ com uma 2-célula

Figura: $X_3 = X$

Variedades Riemannianas

Dizemos que uma escolha suave, de um produto interno nos espaços tangentes a M é uma métrica riemanniana em M

Uma variedade riemanniana é M com a escolha de uma métrica g.

Definição

Denotamos por $\nabla f_p \in T_p M$ o vetor definido pela relação

$$g_{\rho}(X, \nabla f_{\rho}) = X(f), \ \forall \ X \in T_{\rho}M$$

Diremos que ∇f_p é o *gradiente de f* em relação a g.

Fluxo do gradiente

Notação: $M^a = f^{-1}((-\infty, a])$ subnível fechado da f

Note: $a < b \implies M^a \subset M^b$.

Lembre:

- Um campo de vetores V tem associado um grupo de difeomorfismos a 1-parâmetro, $(\varphi_t)_{t \in \mathbb{R}}$.
- lacksquare φ é dado pelo fluxo do campo, ou seja,

$$\frac{\partial}{\partial t}\varphi_t(x) = V_{\varphi_t(x)}$$

A prova do resultado abaixo usa o fluxo de $-\nabla f$

Proposição

Se $f^{-1}[a,b]$ não contém pontos críticos, então M^a é difeomorfo a M^b .

Além disso M^a é um retrato por deformação de M^b .

Seja p um ponto crítico não degenerado de índice λ , defina $c \doteq f(p)$.

Proposição

Se $f^{-1}[c-\varepsilon,c+\varepsilon]$ não contém pontos críticos além de p, então $M^{c+\varepsilon}$ tem o tipo de homotopia de $M^{c-\varepsilon}$ com uma λ -célula colada.

Figura: $M^{c-\varepsilon}$

Figura: $M^{c+\varepsilon}$

Figura: $M^{c+\varepsilon}$

Figura: $\sim M^{c+\varepsilon}$

Figura: $\sim M^{c+\varepsilon}$

Figura: $\sim M^{c-\varepsilon} \cup e_1$

Com os dois resultados acima concluímos:

Teorema

Se f é de Morse, então M tem o tipo de homotopia de um complexo CW, com uma célula de dimensão λ para cada ponto crítico com índice λ .

Como consequência do resultado acima, podem se dar estimativas sobre os *números de Betti* da variedade *M* estudando pontos críticos de funções definidas em *M*.

Ou, mudando de perspectivas, podem se dar estimativas sobre o número de pontos críticos de uma função $f: M \to \mathbb{R}$ em termos dos números de Betti da M.

Exemplos

Figura: $h^{-1}((-\infty,0])$

Figura: $h^{-1}((-\infty, .25])$

Exemplos

Figura: $h^{-1}((-\infty, 0.5])$

Figura: $h^{-1}((-\infty, 0.75])$

Exemplos

Figura: $h^{-1}((-\infty,1])$

Pietro Mesquita Piccione

Aplicações da Teoria de Morse em outros contextos

- Geometria Riemanniana
 - Energia
 - Geodésicas
 - Campos de Jacobi
 - Teorema do Índice de Morse
 - Teorema Fundamental da Teoria de Morse
 - Geometria + Topologia
- estudo de multiplicidade de soluções para EDOs ou EDPs variacionais (soluções caraterizadas como pontos críticos de certos funcionais energia)

Espaço de Caminhos

 $p, q \in M$ pontos fixados

$$\Omega_{p,q} \doteq \big\{ \gamma \colon [0,1] \to M : \gamma(0) = p, \gamma(1) = q \big\}$$

Definição

Uma variação de uma curva $\omega \in \Omega_{p,q}$ é uma função

$$\alpha \colon (-\varepsilon, \varepsilon) \to \Omega$$

tal que $\alpha(\mathbf{0}) = \omega$.

Espaço de Caminhos

Se $\tilde{\alpha}(s,t) \doteq \alpha(s)(t)$, $\frac{\partial \tilde{\alpha}}{\partial s}\big|_{s=0} \doteq W \doteq \frac{d\alpha}{ds}\big|_{s=0}$ é o campo variacional ao longo de ω associado à variação α .

 $\mathcal{T}_{\omega}\Omega_{p,q}=\left\{ ext{campos variacionais ao longo de }\omega
ight\}$

Energia e Geodésicas

Definição

Dizemos que a função $E \colon \Omega_{p,q} \to \mathbb{R}$ tal que

$$E(\gamma) = \int_0^1 ||\gamma'(t)||^2 dt$$

é o funcional energia

Definição

Dizemos que $\gamma \in \Omega_{p,q}$ é uma *geodésica* de p a q se for um ponto crítico de $E \colon \Omega \to \mathbb{R}$ no seguinte sentido: Para qualquer variação α de γ temos que

$$\frac{d}{ds}E(\alpha(s))\big|_{s=0}=0$$

Variação por Geodésicas

Campos de Jacobi

Definição

Um campo de vetores, J(t), ao longo de uma geodésica, $\gamma(t)$, é um campo de Jacobi se existe α variação de γ tal que:

- $J = \frac{d\alpha}{ds}\Big|_{s=0}$.
- lacktriangle $\alpha(s)$ é uma geodésica para todo s.

Além disso dizemos que p e q são conjugados por γ se existir J de Jacobi não nulo tal que J(0) = 0 e J(1) = 0.

A multiplicidade de *p* e *q* como pontos conjugados é a dimensão do espaço dos campos de Jacobi que se anulam nos extremos.

Exemplo

Figura: Campo de Jacobi

Índice de Morse

Podemos definir a Hessiana (derivada segunda) $d^2E(\gamma)$ de E em uma geodésica γ .

 ${
m d}^2E(\gamma)$ é uma forma bilinear simétrica definida no espaço de campos variacionais ao longo de γ , cuja expressão é dada por uma integral que envolve a derivada covariante dos campos e um termo de curvatura.

Assim podemos falar do índice de E em uma geodésica γ .

Teorema do Índice de Morse

O índice de γ é igual ao # de pontos, $\gamma(t)$, com $t \in (0,1)$, tal que $\gamma(t)$ é conjugado com p(contado com a multiplicidade).

Em particular, se uma geodésica não possui pontos conjugados, seu índice é nulo, i.e., ela é um mínimo local do funcional energia.

Teorema Fundamental da Teoria de Morse

Se *M* tem a propriedade que todo conjunto fechado e limitado é compacto dizemos que *M* é completa.

Podemos provar que existe um subconjunto de $\Omega_{p,q}$, que é de fato uma variedade, que tem o mesmo tipo de homotopia de $\Omega_{p,q}$.

E assim concluímos que:

Teorema Fundamental da Teoria de Morse

Se $p,q\in M$ pontos não conjugados por qualquer geodésica, então $\Omega_{p,q}$ tem o tipo de homotopia de um complexo-CW com uma λ -célula para cada geodésica com índice λ em Ω .

Geometria + Topologia

O Teorema Fundamental da Teoria de Morse nos da uma conexão entre Geometria e Topologia da seguinte forma:

- A geometria, em particular a curvatura de uma variedade, nos dá informações sobre as geodésicas.
- O teorema dá uma conexão entre as geodésicas e o espaço de caminhos da variedade.
- O espaços de caminhos de uma variedade nos dá informações sobre a topologia da variedade.

Um exemplo de resultados que pode ser obtido com esta técnica:

Teorema de Cartan

Se M é completa, simplesmente conexa com curvatura seccional ≤ 0 , então M é difeomorfa a \mathbb{R}^n .

Muito obrigado!

Extras

Observação: Em geral um espaço X pode admitir admite mais de uma decomposição celular.

Dada uma decomposição celular de X, se c_k for o # de k-células e β_k é o k-ésimo número de Betti então valem as seguintes relações

$$\beta_{0} \leqslant c_{0}$$

$$\beta_{1} - \beta_{0} \leqslant c_{1} - c_{0}$$

$$\beta_{2} - \beta_{1} + \beta_{0} \leqslant c_{2} - c_{1} - c_{0}$$

$$\beta_{3} - \beta_{2} + \beta_{1} - \beta_{0} \leqslant c_{3} - c_{2} + c_{1} - c_{0}$$

$$\vdots$$

Em particular, somando duas desigualdades consecuitivas:

$$\beta_k \leqslant c_k, \quad \forall \ k \geqslant 0.$$