Computer Simulation of Liquids Michael P. Allen and Dominic J. Tildesley

Second edition, Oxford University Press, 2017 List of errata up to January 24, 2019

Line numbers below do not include section headings, equations, figures etc. Negative line numbers are counted up from the bottom of the page.

Chapter 1

p11 ℓ –16 'It quite possible' \rightarrow 'It is quite possible'. **p14** In eqn (1.15) the signs of the odd-order terms are wrong:

F Perez
2017-10-07
MPA
2017-04-04

$$+T_{\alpha} \rightarrow -T_{\alpha}$$
 and $+\frac{1}{3}T_{\alpha\beta\gamma} \rightarrow -\frac{1}{3}T_{\alpha\beta\gamma}$.

Chapter 3

p116 All the masses in eqns (3.49ab) should be raised to the power −1:

$$\mathbf{r}_{12}(t+\delta t) = \mathbf{r}'_{12}(t+\delta t) + \left(m_1^{-1} + m_2^{-1}\right)\lambda_{12}^{(r)}\mathbf{r}_{12}(t) - m_2^{-1}\lambda_{23}^{(r)}\mathbf{r}_{23}(t)$$

$$\mathbf{r}_{23}(t+\delta t) = \mathbf{r}'_{23}(t+\delta t) - m_2^{-1}\lambda_{12}^{(r)}\mathbf{r}_{12}(t) + \left(m_2^{-1} + m_3^{-1}\right)\lambda_{22}^{(r)}\mathbf{r}_{23}(t).$$

The same correction should be applied to eqns (3.53ab); in addition, all the bond vectors in eqns (3.53ab) should be evaluated at $t + \delta t$:

$$\begin{aligned} \mathbf{v}_{12}(t+\delta t) &= \mathbf{v}_{12}'(t+\delta t) + \left(m_1^{-1} + m_2^{-1}\right)\lambda_{12}^{(v)}\mathbf{r}_{12}(t+\delta t) - m_2^{-1}\lambda_{23}^{(v)}\mathbf{r}_{23}(t+\delta t) \\ \mathbf{v}_{23}(t+\delta t) &= \mathbf{v}_{23}'(t+\delta t) - m_2^{-1}\lambda_{12}^{(v)}\mathbf{r}_{12}(t+\delta t) + \left(m_2^{-1} + m_3^{-1}\right)\lambda_{23}^{(v)}\mathbf{r}_{23}(t+\delta t) \end{aligned}$$

p141 In the equation at the top of the page the sign of $\mathbf{r} \cdot \mathbf{f}$ is wrong:

 $\mathcal{P}' = \mathcal{P} + (d/g)\mathbf{p} \cdot \mathbf{p}/m = \frac{1}{dV}(\alpha \mathbf{p} \cdot \mathbf{p}/m + \mathbf{r} \cdot \mathbf{f}) - \frac{\partial V}{\partial V}.$

p142 The expression for iL'_2 should have a factor of d:

MPA 2017-04-30

MPA

2017-04-30

A Fleury 2018-08-02

$$iL_2' = d(\mathcal{P}' - P)V \frac{\partial}{\partial p_F}.$$

Chapter 4

p162 In the second part of eqn (4.34), defining the terms $V_m^{(12)}$ and $V_m^{(6)}$, the negative sign is wrong: $-V_m^{(6)} \to +V_m^{(6)}$, giving

$$\mathcal{V}_m = 4\epsilon \sum_{i} \sum_{j>i} \left(\frac{\sigma}{L_m s_{ij}^m}\right)^{12} - 4\epsilon \sum_{i} \sum_{j>i} \left(\frac{\sigma}{L_m s_{ij}^m}\right)^{6}$$
$$= \mathcal{V}_m^{(12)} + \mathcal{V}_m^{(6)}.$$

Chapter 6

p229 ℓ 8 'charges densities' \rightarrow 'charge densities'.

Also, in eqn (6.43) there is a superfluous right parenthesis in the denominator, should be

MPA 2017-04-19 snafumeander 2019-01-24

$$b(k_x) = \frac{\exp(\mathrm{i}(P-1)k_x\ell)}{\sum_{q=0}^{P-2} \exp(\mathrm{i}k_x\ell q) M_P(q+1)}.$$

p251 In eqn (6.106) the factor V should be 1/V:

J Dürholt 2018-04-13

$$\mathcal{V}_{\text{correction}}^{qq} = \frac{2\pi}{V} \left(\sum_{i} q_i z_i \right)^2$$

Chapter 10

p344 In eqn (10.2b) $\int_{r \in A} \rightarrow \int_{r \in B}$.

MPA 2017-03-07