Världens största tal

Fredrik Engström

Du har ju själv sagt: Jag skall låta det gå dig väl och göra dina ättlingar oräkneliga, de skall bli som sanden vid havet. (1 Mos 32:12)

- 1 En tävling
- 2 Några stora(?) tal
- 3 Hur skapar man stora tal?
- Matematikens grundvalar
- **5** Oändliga tal

Tävling

- Två tävlande får en halv minut på sig att på var sitt papper skriva ner ett så stort (naturligt) tal som möjligt.
- Man får använda sig av svenska och matematisk notation som finns i den "matematiska litteraturen."
- En matematiker, givet ett av papprena måste kunna förstå (i princip) vilket tal som avses.
- Den som har skrivit ner det största talet vinner tävlingen.

- 999999999999999999999999

- 11¹¹¹¹¹¹¹

Vardagliga tal

- 63 ("Minst 63 döda i rysk brand")
- 600.000 ("600.000 kronor blev lönelyftet för Vattenfalls vd")
- 123 miljarder ("I de över 100 svenskregistrerade fonderna med etisk profil förvaltas nu sammanlagt 123 miljarder kronor.")
- $10^{12}=1.000.000.000.000=1$ Tera ("Värst på mässan är nog Hitachi med en kamera med ett inbyggt minne på en terabyte.")

- 1 AU $\approx 10^{11}$ meter (avstånd mellan jorden och solen)
- $10^6~\text{AU} \approx 10^{17}~\text{meter}$ (avstånd mellan solen och närmsta stjärnan)
- 10¹⁷ sekunder (ålder på universum)
- 10²⁶ meter (diameter på universum)
- 10⁷⁹ (antal atomer i universum)
- \bullet 1 googol = 10^{100}

• $100^{200.40.70} = 10^{5.600.000}$ (Antal möjliga böcker på 200 sidor.)

• Skewes tal $s=e^{e^{e^{79}}} \approx 10^{10^{10^{34}}}$ är sådant att

$$\pi(s) \geq \int_2^s \frac{dt}{\ln t}$$

där $\pi(x)$ är antalet primtal mindre än x.

- Antalet sandkorn det skulle behövas för att fylla universum.
- Myriad = 10.000 (största talet i bibeln)
- En myriad myriader = 10^8
- Första ordningen: upp till 10⁸, 10⁸ andra ordningens enhet.
- Andra ordningen: multiplar av andra ordningens enhet, upp till

•
$$a \cdot b = a + a + ... + a$$

- $a^b = a \cdot a \cdot \ldots \cdot a = a \uparrow b$
- $a \uparrow \uparrow b = a \uparrow a \uparrow ... \uparrow a (b \text{ stycken } a)$
- $8 \uparrow \uparrow 4 = 8 \uparrow 8 \uparrow 8 \uparrow 8 = 8^{8^8}$
- $a \uparrow \uparrow \uparrow b = a \uparrow \uparrow a \uparrow \uparrow \dots \uparrow \uparrow a$. (b stycken a)
- $8 \uparrow \uparrow \uparrow \uparrow 4 = 8 \uparrow \uparrow 8 \uparrow \uparrow 8 \uparrow \uparrow 8$
- $a \uparrow \uparrow \uparrow \uparrow \uparrow b = a \uparrow \uparrow \uparrow \uparrow a \uparrow \uparrow \uparrow \uparrow \dots \uparrow \uparrow \uparrow \uparrow a$. (b stycken a)
- ullet Skewes tal $pprox 10^{10^{10^{34}}}pprox 10\uparrow\uparrow 4=10^{10^{10^{10}}}$

Conways pilkedjor

- $a \rightarrow b = a^b$
- $a \rightarrow b \rightarrow c = a \uparrow \dots \uparrow b \ (c \text{ stycken } \uparrow)$
- ullet Generellt har vi att, om X är en pilkedja och a och b tal så är
 - $X \rightarrow 1 = X$
 - $X \to a \to (b+1) =$ $X \to (X \to (\dots (X \to (X) \to b) \dots) \to b) \to b$ (a stycken X)
- Skewes tal $\approx 10^{10^{10^{34}}} \approx 10 \rightarrow$ 4 \rightarrow 2 = 10 $\uparrow \uparrow$ 4.
- Grahams tal $\approx 3 \rightarrow 3 \rightarrow 64 \rightarrow 2$
- $2 \rightarrow 4 \rightarrow 3 = 2 \uparrow \uparrow \uparrow 4 = 2 \uparrow \uparrow 65536$

Herkules och Hydran

Första ordningens aritmetik (FOA)

- FOA är ett formellt system i vilket våra mest grundläggande intuitioner om aritmetik (naturliga tal, addition och multiplikation) är formaliserade. Några av axiomen:
 - Det finns oändligt många naturliga tal.
 - Rekursiva definitioner för addition och multiplikation, t.ex. $x \cdot (y+1) = x \cdot y + x$.
 - Induktion: Om $\varphi(0)$ gäller, och om $\varphi(x)$ så gäller även $\varphi(x+1)$, i så fall gäller $\varphi(x)$ för alla naturliga tal x.

- Om f är en definierad med Conways pilkedjor så följer det från FOA att 'för alla x finns y så att f(x) = y'. (f är bevisbart total.)
- Dock följer det inte att 'Herkules vinner alltid över Hydran', eller mer formaliserat 'För varje x finns y så att HH(x) = y'. (HH är inte bevisbart total.)
- Det finns många andra rekursiva funktioner som inte heller är bevisbart totala i FOA.
- De bevisbart totala rekursiva funktionerna "mäter" i någon mån styrkan hos teorin FOA.
- Det finns alltså följder/funktioner som helt enkelt växer för snabbt för FOA att kunna hantera.

Kardinalitet

- A och B mängder: de har samma kardinalitet om vi kan para ihop As element med Bs element bijektivt.
- Att ha samma kardinalitet = Att ha lika många element.
- ullet N har samma kardinalitet som \mathbb{Z} .
- ullet N har samma kardinalitet som \mathbb{Q} .
- ullet R har större kardinalitet än \mathbb{N} .

- Kardinaltalen är representanter ur ekvivalensklasserna.
- De ändliga kardinaltalen är precis de naturliga talen.
- \aleph_0 är första oändliga kardinaltalet (samma kardinalitet som \mathbb{N}).
- ℵ₁ är det andra oändliga kardinaltalet (samma kardinalitet som ℝ?).
- ℵ_{ℵ₀} är det ℵ₀:e oändliga kardinaltalet.
- \aleph_{\aleph_0} är det \aleph_{\aleph_0} :e oändliga kardinaltalet.
- "Keep 'em coming."
- Dessa kardinaltal är små eftersom existensen av dem följer från mängdteorin (ZFC).

Stora kardinaltal

- Låt $P(\kappa)$ vara en möjlig egenskap hos kardinaltalet κ .
- $Q = \text{'Det finns kardinaltal } \kappa \text{ så att } P(\kappa)$.'
- Q är ett stort kardinaltalsaxiom om Q inte följer från ZFC men ZFC + Q är konsistent.
- Det finns kardinaltalsaxiom som "troligen" implicerar alla andra, dvs ett "största" kardinaltalsaxiom.
- H. Friedman: Vissa aritmetiska "matematiska" påståenden implicerar existensen av vissa stora kardinaltal.
- Alltså: Kunskap om de naturliga talen ger oss kunskap om stora kardinaltal (och tvärt om).

Storleken har betydelse.