$D \rightarrow K^+K^-\pi^+\pi^-$ analysis at LHCb and BESIII

Martin Tat

Oxford LHCb

30th May 2022

Outline

- LHCb
 - Summary of LHCb analysis status
- 2 BESIII
 - Measurement of CP even fraction F_+
 - Efficiency corrections
 - Current status
- Summary

$$B^{\pm} \rightarrow (K^+K^-\pi^+\pi^-)_D h^{\pm}$$
 GGSZ+GLW analysis at LHCb

$$B^{\pm} \rightarrow (K^+K^-\pi^+\pi^-)_D h^{\pm}$$

GGSZ+GLW analysis at LHCb

Summary of LHCb analysis status

- Previously on γ measurement in $B^{\pm} \to Dh^{\pm}$, $D \to K^+K^-\pi^+\pi^-$:
 - Model-independent binned GGSZ and inclusive GLW analysis
 - WG approval on 10th March
 - Received 1st comments from RC reviewers, replies sent back

Results for γ

$$\gamma = (103 \pm 14)^{\circ}$$
 $\delta_B^{DK} = (92 \pm 14)^{\circ}$
 $r_B^{DK} = 0.117 \pm 0.020$
 $\delta_B^{D\pi} = (296 \pm 84)^{\circ}$
 $r_B^{D\pi} = 0.004 \pm 0.005$

- Sign error in the strong phase? $\gamma \rightarrow 180^{\circ} \gamma$
- Unfortunately, sign error looks unlikely...
 - Interference fractions agree between LHCb and CLEO models
 - BESIII data seems to support the sign from the model

Resonance	LHCb model phase (rad)	CLEO model (rad)
$D^0 \to [\phi(1020)\rho^0]_{L=0}$	0 (fixed)	0 (fixed)
$D^0 o K_1(1400)^+ K^-$	1.05	-1.79
$D^0 o K_1(1270)^+ K^-$	2.02	-2.56

$D \rightarrow K^+K^-\pi^+\pi^-$ strong-phase analysis as BESIII

$$D \rightarrow K^+K^-\pi^+\pi^-$$

strong-phase analysis as BESIII

Measurement of CP even fraction F_+

- BESIII: e^+e^- collider at $\psi(3770) o D^0 ar{D^0}$ threshold
- Reconstruct signal mode $D o KK\pi\pi$ and a tag mode D o f
- Signal mode is quantum correlated with tag mode
- Measure BF with CP even/odd tags to determine F_+

$$\begin{aligned} \mathsf{BF}(\mathit{KK}\pi\pi|f) = & \mathsf{BF}(\mathit{KK}\pi\pi) \times \left(1 - \lambda_{\mathrm{CP}}(2\mathit{F}_{+} - 1)\right) \\ \mathsf{BF}(\mathit{KK}\pi\pi|f) = & \mathsf{BF}(\mathit{KK}\pi\pi) \times \left(\mathit{K}_{i} + \mathit{K}_{-i} \mp 2\sqrt{\mathit{K}_{i}\mathit{K}_{-i}}\mathit{c}_{i}(2\mathit{F}_{+} - 1)\right) \end{aligned}$$

F_+ measurement with CP, $K_S^0\pi^+\pi^-$ and $K_I^0\pi^+\pi^-$ tags

(c) $K_L^0\pi^+\pi^-$ tag

F_+ combination

Figure 3: F_+ combination

- Observe large anti-correlation in $K_L\pi\pi$ because $F_+^{K_L\pi\pi} \approx 0.354$
 - Yield of $K_L\pi\pi$ is twice as large as that of $K_S\pi\pi$
 - ullet Fractional bin yields and total yield contains information about F_+
 - When $K_L\pi\pi$ BF is available, combine all tags!

Efficiency corrections

- All yields must be corrected for efficiency
- Problem: BESIII simulation uses a very old $KK\pi\pi$ model in EvtGen
- Solution: Reweight BESIII simulation to look like the LHCb model
 - Use Python hep_ml Gradient Boosted Reweighter
 - Variables:

 - $2 m^2 (K^+ \pi^-)$
 - $m^2(K^-\pi^+)$
 - $m^2(\pi^+\pi^-)$

 - $m^2(K^+K^-\pi^+)$

Naive efficiency correction

Figure 4: Before reweighting

Naive efficiency correction

Figure 5: After reweighting

Does the naive reweighting work?

Figure 6: Single tag $D \to KK\pi\pi$ in data and MC after reweighting

Quantum correlated LHCb model

- Problem with naive reweighting:
 - ullet LHCb model assumes a pure $D^0 o K^+ K^- \pi^+ \pi^-$ decay
 - No quantum correlations
 - Example: If tag is $D \to KK$, the $D \to KK\pi\pi$ decay will be CP odd!
- Solution: Separate reweighters for CP even/odd $D \to K^+K^-\pi^+\pi^-$
 - CP even tags: Use efficiencies after reweighting to CP odd model
 - CP odd tags: Use efficiencies after reweighting to CP even model
 - $K_{S,L}\pi\pi$ tags: Do a weighted average of the two efficiencies

Before weighting to CP even/odd models

Figure 7: $m^2(\pi^+\pi^-)$ before reweighting

After weighting to CP even/odd models

Figure 8: $m^2(\pi^+\pi^-)$ after reweighting

No reweighting	Naive reweighting	CP even model	CP odd model
18.0%	19.0%	18.1%	21.9%

Agreement between quantum correlated data and model

- Note: LHCb model knows nothing about quantum correlations
- $D^0/\bar{D^0}$ amplitudes simply combined to obtain CP even/odd models
- Important question: Can the model describe quantum correlated double tag data at all? Answer: Yes!

- (a) Double tags of $KK\pi\pi$ vs CP even
- **(b)** Double tags of $KK\pi\pi$ vs CP odd

Figure 9: $m^2(\pi^+\pi^-)$ in double tags, compared with CP even/odd LHCb models

Current status

- Final fit result: $F_+ = 0.73 \pm 0.04$
 - First model-independent measurement
 - Compare with model prediction: $F_+ = 0.736$
 - ullet Good news for GLW analyses: Can include $D o KK\pi\pi$
- Systematics studies finished
 - Very small, completely statistics dominated
- Analysis note (MEMO) written up and reviewed by charm conveners
 - All three conveners approved last week
 - Next step: Present to BESIII on Friday before entering RC

Summary

- LHCb $B^{\pm} \rightarrow (K^+K^-\pi^+\pi^-)_D h^{\pm}$ GGSZ+GLW analysis:
 - ullet Final result of GGSZ part: $\gamma = 103 \pm 14$
 - In RC, currently waiting for further comments
 - $\gamma(\delta_B^{DK})$ too large(small), still looking for bugs
- BESIII $D \to K^+K^-\pi^+\pi^-$ strong-phase analysis:
 - First model-independent measurement: $F_+ = 0.73 \pm 0.04$
 - Analysis required model-dependent efficiency corrections
 - Will present to BESIII on Friday 3rd June 10th June before entering RC
- What now?
 - Currently studying PID performance with TORCH
 - Start at CERN next Monday!

Thank you!