Sistemas de ecuaciones no lineales (SENL)

Objetivo

Hallar raíces o ceros de un sistema de ecuaciones:

$$\vec{F}(\vec{x}) = \vec{0}$$

$$f_1(x_1, x_2, ..., x_n,) = 0$$

$$f_2(x_1, x_2, ..., x_n,) = 0$$

$$f_n(x_1, x_2, ..., x_n,) = 0$$

En principio se pueden aplicar los mismos métodos vistos para una variable

Aplicaciones conocidas?

- Básicas: Extremos locales en 2 variables (o mas).

Intersección de funciones

- No básicas: Problemas inversos / Optimización

Regresión No Lineal y Logistica / Redes Neuronales

Ejercicio SENL

Calcular la solución del siguiente sistema de ecuaciones por el método de Newton-Raphson.

$$\begin{cases} \frac{x^2}{25} = 1 - \frac{y^2}{4} \\ 2x + 5y = 10 \end{cases}$$

$$x, y?$$

Sistema de 2 ecuaciones con 2 incógnitas ¿Lineal? ¿Cuántas soluciones tiene?

Aplicamos el mismo concepto que en 1 variable, con un vector incógnita: $\bar{x} = \begin{bmatrix} x \\ y \end{bmatrix}$

$$g(x) = x - \frac{f(x)}{f'(x)} \implies \bar{G}(\bar{x}) = \bar{x} - \frac{\bar{F}(\bar{x})}{\bar{F}'(\bar{x})} = \bar{x} - \bar{\bar{J}}(\bar{x})^{-1}\bar{F}(\bar{x}) \implies \frac{\bar{G}(\bar{x}) - \bar{G}(\bar{x})}{\bar{G}(\bar{x})} = \frac{\bar{G}(\bar{x})}{\bar{G}(\bar{x})} = \frac{\bar{G}(\bar{x})$$

$$\bar{x}_{k+1} = \bar{x}_k - \bar{\bar{J}}(\bar{x}_k)^{-1}\bar{F}(\bar{x}_k)$$

$$\downarrow$$

$$J(\bar{x}_k) * (\bar{x}_{k+1} - \bar{x}_k) = -\bar{F}(\bar{x}_k)$$

Forma iterativa para un vector \vec{x} : se debe invertir una matriz distinta en cada iteración (costoso computacionalmente)

Opción para no invertir una matriz? resolver un SEL en cada iteración

Ejercicio SENL

$$\frac{x^2}{25} = 1 - \frac{y^2}{4} \implies \bar{F}(\bar{x}) \ y \ \bar{\bar{J}}(\bar{x})? \implies f_1(x,y) = \frac{x^2}{25} + \frac{y^2}{4} - 1$$

$$2x + 5y = 10 \qquad f_2(x,y) = 2x + 5y - 10$$

Queremos encontrar la solución a:
$$\begin{cases} f_1(x,y) = 0 \\ f_2(x,y) = 0 \end{cases}$$

Matriz Jacobiana para un sistema de 2x2:

$$\bar{\bar{J}}(x,y) = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{2}{25}x & \frac{1}{2}y \\ \frac{2}{2} & \frac{1}{2}y \end{bmatrix}$$

Semilla? También es un vector: $\bar{x}_0 = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$

Ejercicio SENL

Supongamos
$$\bar{x}_0 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$J(X_k) \cdot \underbrace{(X_{k+1} - X_k)}_{\Delta X_{k+1}} = -F(X_k) \longrightarrow \begin{bmatrix} \frac{2x_k}{25} & \frac{y_k}{2} \\ 2 & 5 \end{bmatrix} * \underbrace{(\begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} - \begin{bmatrix} x_k \\ y_k \end{bmatrix}}_{\Delta X_{k+1}} = -\begin{bmatrix} f_1(x_k; y_k) \\ f_2(x_k; y_k) \end{bmatrix}$$

$$\stackrel{\mathsf{K=0}}{\longrightarrow} \begin{bmatrix} \frac{2x_0}{25} & \frac{y_0}{2} \\ \frac{2}{5} & \frac{z}{5} \end{bmatrix} * (\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} - \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}) = - \begin{bmatrix} f_1(x_0; y_0) \\ f_2(x_0; y_0) \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} \frac{4}{25} & \frac{1}{2} \\ 2 & 5 \end{bmatrix} * \Delta X_1 = -\begin{bmatrix} 0,16 \\ 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0,16 & 0,5 \\ 2 & 5 \end{bmatrix} * \Delta X_1 = -\begin{bmatrix} 0,16 \\ 4 \end{bmatrix}$$

$$\rightarrow \Delta X_1 = \begin{bmatrix} -2,66 \\ 0.266 \end{bmatrix}$$

$$\rightarrow X_{k+1} = \Delta X_{k+1} + X_k \qquad \rightarrow \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} -2,66 \\ 0,266 \end{bmatrix} + \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} -0,66 \\ 2,26 \end{bmatrix}$$

Resultados luego de iterar con $\bar{x}_0 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$

k	x_k	y_k	$\Delta x = x_k - x_{k-1} $	$\Delta y = y_k - y_{k-1} $	$\Delta x/x_k$	$\Delta y/y_k$	λ_1	λ_2	p_1	p ₂
0	2	2								
1	-0.66667	2.26667	2.67	0.267	38	0.13				
2	-0.07018	2.02807	0.597	0.239	623	0.12				
3	-0.00096	2.00038	0.0692	0.0277	377222	0.014	0.143	3.11E+10	1.42	19.4
4	-1.8E-07	2	0.00096	0.00038	1.3E+11	0.00019	0.193	0.477	1.98	1.98
5	-7E-15	2	1.83E-07	7.3E-08	49,9E+7	3.7E-08	0.199	0.499	1.99	1.99
6	-3.7E-16	2	6.7E-15	2.7E-15	18.12	1.3E-15	0.201	0.505	2.00	2.00
7	-3.7E-16	2	0	0	0	0				

¿Cuál fue el criterio de corte?

¿Qué sucede con la columna $\Delta x/x_k$?

¿Qué sucede con la columna y_k?

Ojo con el criterio de corte relativo si la solución es el "0"

Resultados para la semilla
$$\bar{x}_0 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

k	X _k	$\mathbf{y}_{\mathbf{k}}$	$\Delta x = x_k - x_{k-1} $	$\Delta y = y_k - y_{k-1} $	$\Delta x/x_k$	$\Delta y/y_k$	λ_1	λ_2	p_1	p_2
0	1	2								
1	-0.125	2.05	1.125	0.05	378	0.024985				
2	-0.00298	2.00119	0.122024	0.04881	68962	0.024405				
3	-1.8E-06	2.000001	0.002974	0.00119	4.75E+09	0.000595	0.100	1.6E+199	1.67	154.13
4	-6.3E-13	2	1.77E-06	7.08E-07	5.2E+09	3.54E-07	0.199	0.498	1.99	1.99
5	-3.4E-16	2	6.25E-13	2.5E-13	1838.327	1.25E-13	0.200	0.500	2.00	2.00
6	-3.4E-16		0	0	0	0			65535	65535

Se llegó a la misma solución en aproximadamente la misma cantidad de iteraciones

Resultados para la semilla
$$\bar{x}_0 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

k	x_k	y_k	$\Delta x = x_k - x_{k-1} $	$\Delta y = y_k - y_{k-1} $	$\Delta x/x_k$	$\Delta y/y_k$	λ_1	λ_2	p_1	p ₂
0	4	1								
1	7.416667	-0.96667	3.416667	1.966667	0.610781	8.27824				
2	5.593927	-0.23757	1.82274	0.729096	0.360439	31.97417	0.167	0.316	1.945	1.231
3	5.057007	-0.0228	0.53692	0.214768	0.10737	844.9293	0.177	0.384	1.844	1.844
4	5.000635	-0.00025	0.056371	0.022548	0.011274	698167	0.194	0.481	1.990	1.990
5	5	-3.2E-08	0.000635	0.000254	0.000127	3.03E+11	0.199	0.499	1.999	1.999
6	5	-8.4E-16	8.07E-08	3.23E-08	1.61E-08	6.46E+08	0.155	0.305	1.965	1.940
7	5	5E-17	1.78E-15	8.88E-16	3.55E-16	17.76901			65535	65535
8	5	5E-17	0	0	0	0				

Se llegó una solución diferente del [0,2]

Por qué sucede esto?

En SENL puede ocurrir: solución unica, más de 1 solución o ninguna (no existencia) ¿Cual es la explicación geométrica para este ejemplo?

Evolución de cada semilla <u>en el plano xy</u> según la iteración. Convergencia a 2 soluciones diferentes

Método de Punto Fijo

¿Cual podría ser una matriz jacobiana en el método de punto fijo?

En Newton Raphson:

En Punto Fijo:

matriz jacobiana

$$\bar{\bar{J}}(x,y) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

¿Era la única opción para $\bar{I}(x,y)$?

¿Ventajas y desventajas de uno y otro método?

Resultados PF - Caso A

Aplicamos la forma basica de punto fijo al sistema resuelto anteriormente:

Resultados luego de iterar con: $\bar{x}_0 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$

k	X_k	$\mathbf{y}_{\mathbf{k}}$	$\Delta x = x_k - x_{k-1} $	$\Delta y = y_k - y_{k-1} $	$\Delta x/x_k$	$\Delta y/y_k$	λ_1	λ_2	p_1	p ₂
0	2	2								
1	1.84	-2	0.16	4	0.093865	0.27933				
2	1.7045	14.32	0.135424	16.32	0.002782	0.321962				
3	-48.67	-50.68	50.38182	65.00915	0.064197	0.209632	7.64E-30	4.17	-35.4	0.98
4	-784.8	310.1	736.1265	360.8003	0.014882	1.063796	124	2.03	0.45	1.23
5	-49462.7	339.1	48677.9	29.052	0.000497	0.000298	1.60	166837	1.56	-1.46
6	-9.8E+07	97578	97891125	97239.59	2.55E-07	0.000497	0.305	5.03E+09	1.81	-3.22
7	-3.8E+14	1.95E+08	3.84E+14	1.95E+08	6.52E-14	2.55E-07	0.0431	4136	1.99	0.937

No converge

Resultados PF - Caso B

Calcular la solución del siguiente sistema de ecuaciones por el método de punto fijo.

$$\begin{cases} \frac{x^2}{25} = 1 - \frac{y^2}{4} \\ 2x + 5y = 10 \end{cases} \longrightarrow x, y?$$

Aplicamos el mismo concepto que en 1 variable, con un vector incógnita: $\bar{x} = \begin{bmatrix} x \\ y \end{bmatrix}$

$$g1(X) = \sqrt[2]{\frac{1-y^2}{4} * 25}$$

$$x_{k+1} = \sqrt[2]{\frac{1 - y_k^2}{4} * 25}$$
$$y_{k+1} = \frac{10 - 2x_k}{5}$$

Opción simil Jacobi

$$g2(X)=\frac{10-2x}{5}$$

$$x_{k+1} = \sqrt[2]{\frac{1 - y_k^2}{4} * 25}$$

$$y_{k+1} = \frac{10 - 2x_{k+1}}{5}$$

Opción simil Gauss Seidel

Método de Cuasi Newton

Aproximación de las derivadas parciales - Matriz Jacobiana

En Newton Raphson:

matriz jacobiana

$$\bar{\bar{J}}(x,y) = \begin{vmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{vmatrix}$$

En Cuasi Newton:

$$\frac{\partial F_i(x_k)}{\partial x_i} \approx \frac{F_i(x_k + he_j) - F_i(x_k)}{h}$$

matriz jacobiana aproximada

$$f_1(x,y) = \frac{x^2}{25} + \frac{y^2}{4} - 1$$

$$\frac{\partial f_{1}(x_{k}, y_{k})}{\partial x} \approx \frac{\left[\frac{(x+h)^{2}}{25} + \frac{y^{2}}{4} - 1\right] - \left[\frac{x^{2}}{25} + \frac{y^{2}}{4} - 1\right]}{h}$$

$$\frac{\partial f_{1}(x_{k}, y_{k})}{\partial y} \approx \frac{\left[\frac{x^{2}}{25} + \frac{(y+h)^{2}}{4} - 1\right] - \left[\frac{x^{2}}{25} + \frac{y^{2}}{4} - 1\right]}{h}$$

$$f_2(x,y) = 2x + 5y - 10$$

$$\frac{\partial f_2(x,y)}{\partial x}$$

$$\frac{\partial f_2(x,y)}{\partial x}$$

$$\frac{\partial f_2(x_k, y_k)}{\partial x} \approx \frac{[2(x+h) + 5y - 10] - [2x + 5y - 10]}{h}$$
$$\frac{\partial f_2(x_k, y_k)}{\partial y} \approx \frac{[2x + 5(y+h) - 10] - [2x + 5y - 10]}{h}$$

Método de Cuasi Newton

¿Qué ocurre si no actualizo la matriz jacobiana en cada iteración?

En Newton Raphson:

Si no actualizo la matriz en cada iteración: