1. MATHEMATICAL INDUCTION

EXAMPLE 1: Prove that

$$1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \tag{1.1}$$

for any integer $n \geq 1$.

Proof:

STEP 1: For n=1 (1.1) is true, since

$$1 = \frac{1(1+1)}{2}.$$

STEP 2: Suppose (1.1) is true for some $n = k \ge 1$, that is

$$1+2+3+\ldots+k=\frac{k(k+1)}{2}.$$

STEP 3: Prove that (1.1) is true for n = k + 1, that is

$$1+2+3+\ldots+k+(k+1)\stackrel{?}{=}\frac{(k+1)(k+2)}{2}$$
.

We have

$$1+2+3+\ldots+k+(k+1) \stackrel{\mathbf{ST.2}}{=} \frac{k(k+1)}{2} + (k+1) = (k+1)\left(\frac{k}{2}+1\right) = \frac{(k+1)(k+2)}{2}.$$

EXAMPLE 2: Prove that

$$1 + 3 + 5 + \ldots + (2n - 1) = n^2$$
(1.2)

for any integer $n \geq 1$.

Proof:

STEP 1: For n=1 (1.2) is true, since $1 = 1^2$.

STEP 2: Suppose (1.2) is true for some $n = k \ge 1$, that is

$$1+3+5+\ldots+(2k-1)=k^2.$$

STEP 3: Prove that (1.2) is true for n = k + 1, that is

$$1+3+5+\ldots+(2k-1)+(2k+1)\stackrel{?}{=}(k+1)^2.$$

We have: $1+3+5+\ldots+(2k-1)+(2k+1)\stackrel{\mathbf{ST.2}}{=} k^2+(2k+1)=(k+1)^2$.

EXAMPLE 3: Prove that

$$n! < n^n \tag{1.3}$$

for any integer $n \geq 1$.

Proof:

STEP 1: For n=1 (1.3) is true, since $1! = 1^1$.

STEP 2: Suppose (1.3) is true for some $n = k \ge 1$, that is $k! \le k^k$.

STEP 3: Prove that (1.3) is true for n = k + 1, that is $(k + 1)! \stackrel{?}{\leq} (k + 1)^{k+1}$. We have

$$(k+1)! = k! \cdot (k+1) \stackrel{\mathbf{ST.2}}{\leq} k^k \cdot (k+1) < (k+1)^k \cdot (k+1) = (k+1)^{k+1}.$$

EXAMPLE 4: Prove that

$$8 \mid 3^{2n} - 1 \tag{1.4}$$

for any integer $n \geq 0$.

Proof:

STEP 1: For n=0 (1.4) is true, since $8 \mid 3^0 - 1$.

STEP 2: Suppose (1.4) is true for some $n = k \ge 0$, that is $8 \mid 3^{2k} - 1$.

STEP 3: Prove that (1.4) is true for n = k + 1, that is $8 \mid 3^{2(k+1)} - 1$. We have

$$3^{2(k+1)} - 1 = 3^{2k+2} - 1 = 3^{2k} \cdot 9 - 1 = 3^{2k} (8+1) - 1 = \underbrace{3^{2k} \cdot 8}_{\text{div. by } 8} + \underbrace{3^{2k} - 1}_{\text{St. 2}}.$$

EXAMPLE 5: Prove that

$$7 \mid n^7 - n \tag{1.5}$$

for any integer $n \geq 1$.

Proof:

STEP 1: For n=1 (1.5) is true, since $7 \mid 1^7 - 1$.

STEP 2: Suppose (1.5) is true for some $n = k \ge 1$, that is

$$7 | k^7 - k$$
.

STEP 3: Prove that (1.5) is true for n = k + 1, that is $7 \mid (k+1)^7 - (k+1)$. We have

$$(k+1)^7 - (k+1) = k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k + 1 - k - 1$$

$$= \underbrace{k^7 - k}_{\text{St. 2}} + \underbrace{7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k}_{\text{div. by 7}}. \blacksquare$$

2. THE BINOMIAL THEOREM

DEFINITION:

Let n and k be some integers with $0 \le k \le n$. Then

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

is called a binomial coefficient.

PROPERTIES:

1.
$$\binom{n}{0} = \binom{n}{n} = 1$$
.

Proof: We have

$$\binom{n}{0} = \frac{n!}{0!(n-0)!} = \frac{n!}{1 \cdot n!} = 1,$$

$$\binom{n}{n} = \frac{n!}{n!(n-n)!} = \frac{n!}{n! \cdot 0!} = \frac{n!}{n! \cdot 1} = 1. \blacksquare$$

$$2. \binom{n}{1} = \binom{n}{n-1} = n.$$

Proof: We have

$$\binom{n}{1} = \frac{n!}{1!(n-1)!} = \frac{(n-1)! \cdot n}{1! \cdot (n-1)!} = n,$$

$$\binom{n}{n-1} = \frac{n!}{(n-1)![n-(n-1)]!} = \frac{n!}{(n-1)! \cdot 1!} = \frac{(n-1)! \cdot n}{(n-1)! \cdot 1!} = n. \blacksquare$$

$$3. \binom{n}{k} = \binom{n}{n-k}.$$

Proof: We have

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!k!} = \frac{n!}{(n-k)![n-(n-k)]!} = \binom{n}{n-k}. \blacksquare$$

$$4. \binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}.$$

Proof: We have

$$\binom{n}{k} + \binom{n}{k-1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!}$$

$$= \frac{n!(n-k+1)}{k!(n-k)!(n-k+1)} + \frac{n!k}{(k-1)!k(n-k+1)!}$$

$$= \frac{n!(n-k+1)}{k!(n-k+1)!} + \frac{n!k}{k!(n-k+1)!}$$

$$= \frac{n!(n-k+1) + n!k}{k!(n-k+1)!}$$

$$= \frac{n!(n-k+1) + n!k}{k!(n-k+1)!}$$

$$= \frac{n!n - n!k + n! + n!k}{k!(n-k+1)!}$$

$$= \frac{n!n + n!}{k!(n-k+1)!}$$

$$= \frac{n!n + n!}{k!(n-k+1)!}$$

$$= \frac{n!(n+1)}{k!(n-k+1)!} = \frac{(n+1)!}{k!(n-k+1)!} = \frac{(n+1)!}{k!(n+1-k)!} = \binom{n+1}{k}. \blacksquare$$

PROBLEM:

For all integers n and k with $1 \le k \le n$ we have

$$\binom{n}{k-1} + 2\binom{n}{k} + \binom{n}{k+1} = \binom{n+2}{k+1}.$$

Proof: By property 4 we have

$$\binom{n}{k-1} + 2\binom{n}{k} + \binom{n}{k+1} = \binom{n}{k-1} + \binom{n}{k} + \binom{n}{k} + \binom{n}{k+1}$$

$$= \binom{n+1}{k} + \binom{n+1}{k+1} = \binom{n+2}{k+1}. \blacksquare$$

THEOREM (The Binomial Theorem):

Let a and b be any real numbers and let n be any nonnegative integer. Then

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n-2}a^2b^{n-2} + \binom{n}{n-1}ab^{n-1} + b^n.$$

PROBLEM:

For all integers $n \geq 1$ we have

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{n} = 2^n.$$

Proof: Putting a = b = 1 in the Theorem above, we get

 $(1+1)^n$

$$=1^{n}+\binom{n}{1}\cdot 1^{n-1}\cdot 1+\binom{n}{2}\cdot 1^{n-2}\cdot 1^{2}+\ldots+\binom{n}{n-2}\cdot 1^{2}\cdot 1^{n-2}+\binom{n}{n-1}\cdot 1\cdot 1^{n-1}+1^{n},$$

hence

$$2^{n} = 1 + {n \choose 1} + {n \choose 2} + \ldots + {n \choose n-2} + {n \choose n-1} + 1,$$

therefore by property 1 we get

$$2^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{n-2} + \binom{n}{n-1} + \binom{n}{n}. \blacksquare$$

PROBLEM:

For all integers $n \geq 1$ we have

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \ldots + (-1)^n \binom{n}{n} = 0.$$

Proof: Putting a = 1 and b = -1 in the Theorem above, we get

$$(1-1)^n$$

$$= 1^{n} + \binom{n}{1} \cdot 1^{n-1} \cdot (-1) + \binom{n}{2} \cdot 1^{n-2} \cdot (-1)^{2} + \ldots + \binom{n}{n-1} \cdot 1 \cdot (-1)^{n-1} + (-1)^{n},$$

hence

$$0 = 1 - \binom{n}{1} + \binom{n}{2} - \ldots + (-1)^{n-1} \binom{n}{n-1} + (-1)^n,$$

therefore by property 1 we get

$$0 = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^{n-1} \binom{n}{n-1} + (-1)^n \binom{n}{n}. \blacksquare$$

3. RATIONAL AND IRRATIONAL NUMBERS

DEFINITION:

Rational numbers are all numbers of the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

EXAMPLE: $\frac{1}{2}$, $-\frac{5}{3}$, 2, 0, $\frac{50}{10}$, etc.

NOTATIONS:

 \mathbb{N} = all natural numbers, that is, 1, 2, 3, ...

 $\mathbb{Z} = \text{all integer numbers, that is, } 0, \pm 1, \pm 2, \pm 3, \dots$

 $\mathbb{Q} = \text{all rational numbers}$

 \mathbb{R} = all real numbers

DEFINITION:

A number which is not rational is said to be irrational.

PROBLEM 1: Prove that $\sqrt{2}$ is irrational.

Proof: Assume to the contrary that $\sqrt{2}$ is rational, that is

$$\sqrt{2} = \frac{p}{q},$$

where p and q are integers and $q \neq 0$. Moreover, let p and q have no common divisor > 1. Then

$$2 = \frac{p^2}{q^2} \quad \Rightarrow \quad 2q^2 = p^2.$$
 (3.1)

Since $2q^2$ is even, it follows that p^2 is even. Then \underline{p} is also even (in fact, if p is odd, then p^2 is odd). This means that there exists $k \in \mathbb{Z}$ such that

$$p = 2k. (3.2)$$

Substituting (3.2) into (3.1), we get

$$2q^2 = (2k)^2$$
 \Rightarrow $2q^2 = 4k^2$ \Rightarrow $q^2 = 2k^2$.

6

Since $2k^2$ is even, it follows that q^2 is even. Then q is also even. This is a contradiction.

PROBLEM 2: Prove that $\sqrt[3]{4}$ is irrational.

Proof: Assume to the contrary that $\sqrt[3]{4}$ is rational, that is

$$\sqrt[3]{4} = \frac{p}{q},$$

where p and q are integers and $q \neq 0$. Moreover, let p and q have no common divisor > 1. Then

$$4 = \frac{p^3}{q^3} \implies 4q^3 = p^3.$$
 (3.3)

Since $4q^3$ is even, it follows that p^3 is even. Then \underline{p} is also even (in fact, if p is odd, then p^3 is odd). This means that there exists $k \in \mathbb{Z}$ such that

$$p = 2k. (3.4)$$

Substituting (3.4) into (3.3), we get

$$4q^3 = (2k)^3 \quad \Rightarrow \quad 4q^3 = 8k^3 \quad \Rightarrow \quad q^3 = 2k^3.$$

Since $2k^3$ is even, it follows that q^3 is even. Then q is also even. This is a contradiction.

PROBLEM 3: Prove that $\sqrt{6}$ is irrational.

Proof: Assume to the contrary that $\sqrt{6}$ is rational, that is

$$\sqrt{6} = \frac{p}{q},$$

where p and q are integers and $q \neq 0$. Moreover, let p and q have no common divisor > 1. Then

$$6 = \frac{p^2}{q^2} \implies 6q^2 = p^2.$$
 (3.5)

Since $6q^2$ is even, it follows that p^2 is even. Then \underline{p} is also even (in fact, if p is odd, then p^2 is odd). This means that there exists $k \in \mathbb{Z}$ such that

$$p = 2k. (3.6)$$

Substituting (3.6) into (3.5), we get

$$6q^2 = (2k)^2 \implies 6q^2 = 4k^2 \implies 3q^2 = 2k^2$$

Since $2k^2$ is even, it follows that $3q^2$ is even. Then \underline{q} is also even (in fact, if q is odd, then $3q^2$ is odd). This is a contradiction.

PROBLEM 4: Prove that $\frac{1}{3}\sqrt{2} + 5$ is irrational.

Proof: Assume to the contrary that $\frac{1}{3}\sqrt{2} + 5$ is rational, that is

$$\frac{1}{3}\sqrt{2} + 5 = \frac{p}{q},$$

where p and q are integers and $q \neq 0$. Then

$$\sqrt{2} = \frac{3(p - 5q)}{q}.$$

Since $\sqrt{2}$ is irrational and $\frac{3(p-5q)}{q}$ is rational, we obtain a contradiction.

PROBLEM 5: Prove that $\log_5 2$ is irrational.

<u>Proof</u>: Assume to the contrary that $\log_5 2$ is rational, that is

$$\log_5 2 = \frac{p}{q},$$

where p and q are integers and $q \neq 0$. Then

$$5^{p/q} = 2 \quad \Rightarrow \quad 5^p = 2^q.$$

Since 5^p is odd and 2^q is even, we obtain a contradiction.

4. DIVISION ALGORITHM

PROBLEM: Prove that $\sqrt{3}$ is irrational.

Proof: Assume to the contrary that $\sqrt{3}$ is rational, that is

$$\sqrt{3} = \frac{p}{q},$$

where p and q are integers and $q \neq 0$. Moreover, let p and q have no common divisor > 1. Then

$$3 = \frac{p^2}{q^2} \quad \Rightarrow \quad 3q^2 = p^2.$$

Since $3q^2$ is divisible by 3, it follows that p^2 is divisible by 3. Then \underline{p} is also divisible by 3 (in fact, if p is not divisible by 3, then ...???

<u>THEOREM</u> (DIVISION ALGORITHM): For any integers a and b with $a \neq 0$ there exist unique integers q and r such that

$$b = aq + r$$
, where $0 \le r < |a|$.

The integers q and r are called the quotient and the reminder respectively.

EXAMPLE 1: Let b = 49 and a = 4, then $49 = 4 \cdot 12 + 1$, so the quotient is 12 and the reminder is 1.

REMARK: We can also write 49 as $3 \cdot 12 + 13$, but in this case 13 is not a reminder, since it is NOT less than 3.

EXAMPLE 2: Let a=2. Since $0 \le r < 2$, then for any integer number b we have ONLY TWO possibilities:

$$b = 2q$$
 or $b = 2q + 1$.

So, thanks to the Division Algorithm we <u>proved</u> that any integer number is either even or odd.

EXAMPLE 3: Let a=3. Since $0 \le r < 3$, then for any integer number b we have ONLY THREE possibilities:

$$b = 3q$$
, $b = 3q + 1$, or $b = 3q + 2$.

Proof of the Problem: Assume to the contrary that $\sqrt{3}$ is rational, that is

$$\sqrt{3} = \frac{a}{b},$$

where a and b are integers and $b \neq 0$. Moreover, let <u>a</u> and <u>b</u> have no common divisor > 1. Then

$$3 = \frac{a^2}{h^2} \quad \Rightarrow \quad 3b^2 = a^2.$$
 (4.1)

Since $3b^2$ is divisible by 3, it follows that a^2 is divisible by 3. Then \underline{a} is also divisible by 3. In fact, if a is not divisible by 3, then by the Division Algorithm there exists $q \in \mathbb{Z}$ such that

$$a = 3q + 1$$
 or $a = 3q + 2$.

Suppose a = 3q + 1, then

$$a^{2} = (3q+1)^{2} = 9q^{2} + 6q + 1 = 3(\underbrace{3q^{2} + 2q}_{q'}) + 1 = 3q' + 1,$$

which is not divisible by 3. We get a contradiction. Similarly, if a = 3q + 2, then

$$a^{2} = (3q+2)^{2} = 9q^{2} + 12q + 4 = 3(\underbrace{3q^{2} + 4q + 1}_{q''}) + 1 = 3q'' + 1,$$

which is not divisible by 3. We get a contradiction again.

So, we proved that if a^2 is divisible by 3, then \underline{a} is also divisible by 3. This means that there exists $q \in \mathbb{Z}$ such that

$$a = 3q. (4.2)$$

Substituting (4.2) into (4.1), we get

$$3b^2 = (3q)^2 \quad \Rightarrow \quad 3b^2 = 9q^2 \quad \Rightarrow \quad b^2 = 3q^2.$$

Since $3q^2$ is divisible by 3, it follows that b^2 is divisible by 3. Then \underline{b} is also divisible by 3 by the arguments above. This is a contradiction.

5. GREATEST COMMON DIVISOR AND EUCLID'S LEMMA

PROBLEM: Prove that $\sqrt{101}$ is irrational.

Proof: Assume to the contrary that $\sqrt{101}$ is rational, that is

$$\sqrt{101} = \frac{a}{b},$$

where a and b are integers and $b \neq 0$. Moreover, let <u>a</u> and <u>b</u> have no common divisor > 1. Then

$$101 = \frac{a^2}{b^2} \implies 101b^2 = a^2.$$

Since $101b^2$ is divisible by 101, it follows that a^2 is divisible by 101. Then \underline{a} is also divisible by 101. In fact, if a is not divisible by 101, then by the Division Algorithm there exists $q \in \mathbb{Z}$ such that

$$a = 101q + 1$$
 or $a = 101q + 2$ or $a = 101q + 3$ or $a = 101q + 4 \dots????$

DEFINITION:

If a and b are integers with $a \neq 0$, we say that <u>a</u> is a divisor of <u>b</u> if there exists an integer q such that b = aq. We also say that a divides b and we denote this by

$$a \mid b$$
.

EXAMPLE: We have: $4 \mid 12$, since $12 = 4 \cdot 3$ $4 \not\mid 15$, since $15 = 4 \cdot 3.75$

DEFINITION:

A <u>common divisor</u> of nonzero integers a and b is an integer c such that $c \mid a$ and $c \mid b$. The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b.

EXAMPLE: The common divisors of 24 and 84 are ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , and ± 12 . Hence, (24,84)=12. Similarly, looking at sets of common divisors, we find that (15,81)=3, (100,5)=5, (17,25)=1, (-17,289)=17, etc.

THEOREM: If a and b are nonzero integers, then their gcd is a linear combination of a and b, that is there exist integer numbers s and t such that

$$sa + tb = (a, b).$$

Proof: Let d be the least positive integer that is a linear combination of a and b. We write

$$d = sa + tb, (5.1)$$

where s and t are integers.

We first show that $d \mid a$. By the Division Algorithm we have

$$a = dq + r$$
, where $0 \le r < d$.

From this and (5.1) it follows that

$$r = a - dq = a - q(sa + tb) = a - qsa - qtb = (1 - qs)a + (-qt)b.$$

This shows that r is a linear combination of a and b. Since $0 \le r < d$, and d is the least positive linear combination of a and b, we conclude that r = 0, and hence $d \mid a$. In a similar manner, we can show that $d \mid b$.

We have shown that d is a common divisor of a and b. We now show that d is the *greatest* common divisor of a and b. Assume to the contrary that

$$(a,b) = d'$$
 and $d' > d$.

Since $d' \mid a, d' \mid b$, and d = sa + tb, it follows that $d' \mid d$, therefore $d' \leq d$. We obtain a contradiction. So, d is the greatest common divisor of a and b and this concludes the proof.

DEFINITION:

An integer $n \ge 2$ is called <u>prime</u> if its only positive divisors are 1 and n. Otherwise, n is called composite.

EXAMPLE: Numbers 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59... are prime.

THEOREM (Euclid's Lemma): If p is a prime and $p \mid ab$, then $p \mid a$ or $p \mid b$. More generally, if a prime p divides a product $a_1a_2...a_n$, then it must divide at least one of the factors a_i .

Proof: Assume that $p \not\mid a$. We must show that $p \mid b$. By the theorem above, there are integers s and t with

$$sp + ta = (p, a).$$

Since p is prime and $p \nmid a$, we have (p, a) = 1, and so

$$sp + ta = 1$$
.

Multiplying both sides by b, we get

$$spb + tab = b. (5.2)$$

Since $p \mid ab$ and $p \mid spb$, it follows that

$$p \mid (spb + tab).$$

This and (5.2) give $p \mid b$. This completes the proof of the first part of the theorem. The second part (generalization) easily follows by induction on $n \geq 2$.

COROLLARY: If p is a prime and $p \mid a^2$, then $p \mid a$.

Proof: Put a = b in Euclid's Lemma.

THEOREM: Let p be a prime. Then \sqrt{p} is irrational.

Proof: Assume to the contrary that \sqrt{p} is rational, that is

$$\sqrt{p} = \frac{a}{b},$$

where a and b are integers and $b \neq 0$. Moreover, let <u>a</u> and <u>b</u> have no common divisor > 1. Then

$$p = \frac{a^2}{b^2} \quad \Rightarrow \quad pb^2 = a^2. \tag{5.3}$$

Since pb^2 is divisible by p, it follows that a^2 is divisible by p. Then \underline{a} is also divisible by \underline{p} by the Corollary above. This means that there exists $q \in \mathbb{Z}$ such that

$$a = pq. (5.4)$$

Substituting (5.4) into (5.3), we get

$$pb^2 = (pq)^2 \implies b^2 = pq^2.$$

Since pq^2 is divisible by p, it follows that b^2 is divisible by p. Then \underline{b} is also divisible by \underline{p} by the Corollary above. This is a contradiction.

PROBLEM: Prove that $\sqrt{101}$ is irrational.

Proof: Since 101 is prime, the result immediately follows from the Theorem above.

PROBLEM: Prove that if a and b are positive integers with (a,b) = 1, then $(a^2,b^2) = 1$ for all $n \in \mathbb{Z}^+$.

<u>Proof 1</u>: Assume to the contrary that $(a^2, b^2) = n > 1$. Then there is a prime p such that $p \mid a^2$ and $p \mid b^2$. From this by Euclid's Lemma it follows that $p \mid a$ and $p \mid b$, therefore $(a, b) \geq p$. This is a contradiction.

Proof 2 (Hint): Use the Fundamental Theorem of Arithmetic below.

6. FUNDAMENTAL THEOREM OF ARITHMETIC

<u>THEOREM</u> (Fundamental Theorem of Arithmetic): Assume that an integer $a \ge 2$ has factorizations

$$a = p_1 \dots p_m$$
 and $a = q_1 \dots q_n$,

where the p's and q's are primes. Then n = m and the q's may be reindexed so that $q_i = p_i$ for all i.

Proof: We prove by induction on ℓ , the larger of m and n, i. e. $\ell = \max(m, n)$.

Step 1. If $\ell = 1$, then the given equation in $a = p_1 = q_1$, and the result is obvious.

Step 2. Suppose the theorem holds for some $\ell = k \geq 1$.

Step 3. We prove it for $\ell = k + 1$. Let

$$a = p_1 \dots p_m = q_1 \dots q_n, \tag{6.1}$$

where

$$\max(m, n) = k + 1. \tag{6.2}$$

From (6.1) it follows that $p_m \mid q_1 \dots q_n$, therefore by Euclid's Lemma there is some q_i such that $p_m \mid q_i$. But q_i , being a prime, has no positive divisors other than 1, therefore $p_m = q_i$. Reindexing, we may assume that $q_n = p_m$. Canceling, we have

$$p_1 \dots p_{m-1} = q_1 \dots q_{n-1}.$$

Moreover, $\max(m-1, n-1) = k$ by (6.2). Therefore by step 2 q's may be reindexed so that $q_i = p_i$ for all i; plus, m-1 = n-1, hence m = n.

<u>COROLLARY</u>: If $a \ge 2$ is an integer, then there are unique distinct primes p_i and unique integers $e_i > 0$ such that

$$a = p_1^{e_1} \dots p_n^{e_n}.$$

Proof: Just collect like terms in a prime factorization. \blacksquare

EXAMPLE: $120 = 2^3 \cdot 3 \cdot 5$.

PROBLEM: Prove that $\log_3 5$ is irrational.

Proof: Assume to the contrary that $\log_3 5$ is rational, that is

$$\log_3 5 = \frac{p}{q},$$

where p and q are integers and $q \neq 0$. Then

$$3^{p/q} = 5 \quad \Rightarrow \quad 3^p = 5^q,$$

which contradicts the Fundamental Theorem of Arithmetic.

7. EUCLIDEAN ALGORITHM

<u>THEOREM</u> (Euclidean Algorithm): Let a and b be positive integers. Then there is an algorithm that finds (a, b).

LEMMA: If a, b, q, r are integers and a = bq + r, then (a, b) = (b, r).

Proof: We have (a,b) = (bq + r, b) = (b,r).

Proof of the Theorem: The idea is to keep repeating the division algorithm. We have:

$$a = bq_1 + r_1, \quad (a, b) = (b, r_1)$$

$$b = r_1q_2 + r_2, \quad (b, r_1) = (r_1, r_2)$$

$$r_1 = r_2q_3 + r_3, \quad (r_1, r_2) = (r_2, r_3)$$

$$r_2 = r_3q_4 + r_4, \quad (r_2, r_3) = (r_3, r_4)$$
...

$$r_{n-2} = r_{n-1}q_n + r_n, \quad (r_{n-2}, r_{n-1}) = (r_{n-1}, r_n)$$

 $r_{n-1} = r_n q_{n+1}, \quad (r_{n-1}, r_n) = r_n,$

therefore

$$(a,b) = (b,r_1) = (r_1,r_2) = (r_2,r_3) = (r_3,r_4) = \dots = (r_{n-2},r_{n-1}) = (r_{n-1},r_n) = r_n.$$

PROBLEM: Find (326, 78).

Solution: By the Euclidean Algorithm we have

$$326 = 78 \cdot 4 + 14$$

$$78 = 14 \cdot 5 + 8$$

$$14 = 8 \cdot 1 + 6$$

$$8 = 6 \cdot 1 + 2$$

$$6 = 2 \cdot 3$$

therefore (326, 78) = 2.

PROBLEM: Find (252, 198).

Solution: By the Euclidean Algorithm we have

$$252 = 198 \cdot 1 + 54$$
$$198 = 54 \cdot 3 + 36$$
$$54 = 36 \cdot 1 + 18$$
$$36 = 18 \cdot 2$$

therefore (252, 198) = 18.

PROBLEM: Find (4361, 42371).

Solution: By the Euclidean Algorithm we have

$$42371 = 9 \cdot 4361 + 3122$$

$$4361 = 1 \cdot 3122 + 1239$$

$$3122 = 2 \cdot 1239 + 644$$

$$1239 = 1 \cdot 644 + 595$$

$$644 = 1 \cdot 595 + 49$$

$$595 = 12 \cdot 49 + 7$$

$$49 = 7 \cdot 7 + 0,$$

therefore (4361, 42371) = 7.

THEOREM: Let $a=p_1^{e_1}\dots p_n^{e_n}$ and $b=p_1^{f_1}\dots p_n^{f_n}$ be positive integers. Then $(a,b)=p_1^{\min(e_1,f_1)}\dots p_n^{\min(e_n,f_n)}.$

EXAMPLE: Since $720 = 2^4 \cdot 3^2 \cdot 5$ and $2100 = 2^2 \cdot 3 \cdot 5^2 \cdot 7$, we have: $(720, 2100) = 2^2 \cdot 3 \cdot 5 = 60$.

PROBLEM: Let $a \in \mathbb{Z}$. Prove that (2a + 3, a + 2) = 1.

Proof: By the Lemma above we have

$$(2a + 3, a + 2) = (a + 1 + a + 2, a + 2)$$

$$= (a + 1, a + 2)$$

$$= (a + 1, a + 1 + 1)$$

$$= (a + 1, 1)$$

$$= 1. \blacksquare$$

PROBLEM: Let $a \in \mathbb{Z}$. Prove that (7a + 2, 10a + 3) = 1.

Proof: By the Lemma above we have

$$(7k + 2, 10k + 3) = (7k + 2, 7k + 2 + 3k + 1)$$

$$= (7k + 2, 3k + 1)$$

$$= (6k + 2 + k, 3k + 1)$$

$$= (k, 3k + 1)$$

$$= (k, 1)$$

$$= 1. \blacksquare$$

8. FERMAT'S LITTLE THEOREM

Theorem (Fermat's Little Theorem): Let p be a prime. We have

$$p \mid n^p - n \tag{8.1}$$

for any integer $n \geq 1$.

Proof 1:

STEP 1: For n=1 (8.1) is true, since

$$p \mid 1^p - 1$$
.

STEP 2: Suppose (8.1) is true for some $n = k \ge 1$, that is

$$p \mid k^p - k$$
.

STEP 3: Prove that (8.1) is true for n = k + 1, that is

$$p \mid (k+1)^p - (k+1).$$

<u>Lemma:</u> Let p be a prime and ℓ be an integer with $1 \leq \ell \leq p-1$. Then

$$p \mid \binom{p}{\ell}$$
.

Proof: We have

$$\binom{p}{\ell} = \frac{p!}{\ell!(p-\ell)!} = \frac{\ell!(\ell+1)\cdot\ldots\cdot p}{\ell!(p-\ell)!} = \frac{(\ell+1)\cdot\ldots\cdot p}{(p-\ell)!},$$

therefore

$$\binom{p}{\ell}(p-\ell)! = (\ell+1) \cdot \dots \cdot p.$$

Form this it follows that

$$p \mid \binom{p}{\ell}(p-\ell)!,$$

hence by Euclid's Lemma p divides $\binom{p}{\ell}$ or $(p-\ell)!$. It is easy to see that $p \not\mid (p-\ell)!$. Therefore

 $p \mid {l \choose \ell}$. We have

$$(k+1)^p - (k+1)$$

$$= k^{p} + {p \choose 1} k^{p-1} + {p \choose 2} k^{p-2} + \ldots + {p \choose p-1} k + 1 - k - 1$$

$$=\underbrace{k^{p}-k}_{\text{St. 2}} + \underbrace{\binom{p}{1}k^{p-1} + \binom{p}{2}k^{p-2} + \ldots + \binom{p}{p-1}k}_{\text{div. by p by Lemma}}. \blacksquare$$

9. CONGRUENCES

DEFINITION:

Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by

$$a \equiv b \mod m$$
,

if $m \mid (a - b)$.

EXAMPLE:

 $3 \equiv 1 \mod 2$, $6 \equiv 4 \mod 2$, $-14 \equiv 0 \mod 7$, $25 \equiv 16 \mod 9$, $43 \equiv -27 \mod 35$.

PROPERTIES:

Let m be a positive integer and let a, b, c, d be integers. Then

- 1. $a \equiv a \mod m$
- 2. If $a \equiv b \mod m$, then $b \equiv a \mod m$.
- 3. If $a \equiv b \mod m$ and $b \equiv c \mod m$, then $a \equiv c \mod m$.
- 4. (a) If $a \equiv qm + r \mod m$, then $a \equiv r \mod m$.
 - (b) Every integer a is congruent mod m to exactly one of $0, 1, \ldots, m-1$.
- 5. If $a \equiv b \mod m$ and $c \equiv d \mod m$, then

$$a \pm c \equiv b \pm d \mod m$$
 and $ac \equiv bd \mod m$.

5'. If $a \equiv b \mod m$, then

$$a \pm c \equiv b \pm c \mod m$$
 and $ac \equiv bc \mod m$.

5". If $a \equiv b \mod m$, then

$$a^n \equiv b^n \mod m$$
 for any $n \in \mathbb{Z}^+$.

6. If (c, m) = 1 and $ac \equiv bc \mod m$, then $a \equiv b \mod m$.

Proof 2 of Fermat's Little Theorem: We distinguish two cases.

Case A: Let $p \mid n$, then, obviously, $p \mid n^p - n$, and we are done.

Case B: Let $p \nmid n$. Since p is prime, we have

$$(p,n) = 1. (9.1)$$

Consider the following numbers:

$$n, 2n, 3n, \ldots, (p-1)n.$$

We have

$$n \equiv r_1 \mod p$$

 $2n \equiv r_2 \mod p$
 $3n \equiv r_3 \mod p$
 \dots
 $(p-1)n \equiv r_{p-1} \mod p$, (9.2)

where $0 \le r_i \le p-1$. Moreover, $r_i \ne 0$, since otherwise $p \mid in$, and therefore by Euclid'd Lemma $p \mid i$ or $p \mid n$. But this is impossible, since p > i and $p \not\mid n$. So,

$$1 \le r_i \le p - 1. \tag{9.3}$$

From (9.2) by property 5 we have

$$n \cdot 2n \cdot 3n \dots (p-1)n \equiv r_1 r_2 \dots r_{p-1} \mod p$$

 \Downarrow

$$(p-1)!n^{p-1} \equiv r_1 r_2 \dots r_{p-1} \mod p.$$
 (9.4)

Lemma: We have

$$r_1 r_2 \dots r_{p-1} = (p-1)!.$$
 (9.5)

Proof: We first show that

$$r_1, r_2, \dots, r_{p-1}$$
 are all distinct. (9.6)

In fact, assume to the contrary that there are some r_i and r_j with $r_i = r_j$. Then by (9.2) we have $in \equiv jn \mod p$, therefore by property 6 with (9.1) we get $i \equiv j \mod p$, which is impossible. This contradiction proves (9.6).

By the Lemma we have

$$r_1 r_2 \dots r_{p-1} = (p-1)!.$$
 (9.7)

By (9.4) and (9.7) we obtain

$$(p-1)!n^{p-1} \equiv (p-1)! \mod p.$$

Since (p, (p-1)!) = 1, from this by property 6 we get

$$n^{p-1} \equiv 1 \mod p$$
,

hence

$$n^p \equiv n \mod p$$

by property 4'. This means that $n^p - n$ is divisible by p.

COROLLARY: Let p be a prime. Then

$$n^{p-1} \equiv 1 \bmod p$$

for any integer $n \ge 1$ with (n, p) = 1.

THEOREM: If (a, m) = 1, then, for every integer b, the congruence

$$ax \equiv b \bmod m \tag{9.8}$$

has exactly one solution

$$x \equiv bs \bmod m, \tag{9.9}$$

where s is such number that

$$as \equiv 1 \bmod m. \tag{9.10}$$

<u>Proof</u> (Sketch): We show that (9.9) is the solution of (9.8). In fact, if we multiply (9.9) by a and (9.10) by b (we can do that by property 5'), we get

 $ax \equiv abs \mod m$ and $bsa \equiv b \mod m$,

which imply (9.8) by property 3.

Problems

Problem 1: Find all solutions of the congruence

 $2x \equiv 1 \mod 3$.

Solution: We first note that (2,3) = 1. Therefore we can apply the theorem above. Since $2 \cdot 2 \equiv 1 \mod 3$, we get

 $x \equiv 1 \cdot 2 \equiv 2 \mod 3$.

Problem 2: Find all solutions of the following congruence

 $2x \equiv 5 \mod 7$.

<u>Solution</u>: We first note that (2,7)=1. Therefore we can apply the theorem above. Since $2 \cdot 4 \equiv 1 \mod 7$, we get

 $x \equiv 5 \cdot 4 \equiv 6 \mod 7$.

Problem 3: Find all solutions of the congruence

 $3x \equiv 4 \mod 8$.

Solution: We first note that (3,8) = 1. Therefore we can apply the theorem above. Since $3 \cdot 3 \equiv 1 \mod 8$, we get

 $x \equiv 4 \cdot 3 \equiv 12 \equiv 4 \mod 8$.

Problem 4: Find all solutions of the following congruence

 $2x \equiv 5 \mod 8$.

<u>Solution</u>: Since (2,8) = 2, we can't apply the theorem above directly. We now note that $2x \equiv 5 \mod 8$ is equivalent to 2x - 8y = 5, which is impossible, since the left-hand side is divisible by 2, whereas the right-hand side is not. So, this equation has no solutions.

Problem 5: Find all solutions of the congruence

 $8x \equiv 7 \mod 18$.

Solution: Since (8, 18) = 2, we can't apply the theorem above directly. We now note that $8x \equiv 7 \mod 18$ is equivalent to 8x - 18y = 7, which is impossible, since the left-hand side is divisible by 2, whereas the right-hand side is not. So, this equation has no solutions.

Problem 6: Find all solutions of the following congruence

 $4x \equiv 2 \mod 6$.

<u>Solution</u>: Since (4,6) = 2, we can't apply the theorem above directly again. However, canceling out 2 (think about that!), we obtain

 $2x \equiv 1 \mod 3$.

Note that (2,3) = 1. Therefore we can apply the theorem above to the new equation. Since $2 \cdot 2 \equiv 1 \mod 3$, we get

 $x \equiv 1 \cdot 2 \equiv 2 \mod 3$.

Problem 7: Find all solutions of the congruence

 $6x \equiv 3 \mod 15$.

<u>Solution</u>: Since (6,15) = 3, we can't apply the theorem above directly again. However, canceling out 3, we obtain

 $2x \equiv 1 \mod 5$.

Note that (2,5) = 1. Therefore we can apply the theorem above to the new equation. Since $2 \cdot 3 \equiv 1 \mod 5$, we get

 $x \equiv 1 \cdot 3 \equiv 3 \mod 5$.

Problem 8: Find all solutions of the congruence

 $9x + 23 \equiv 28 \mod 25$.

Solution: We first rewrite this congruence as

$$9x \equiv 5 \mod 25$$
.

Note that (9,25) = 1. Therefore we can apply the theorem above. Since $9 \cdot 14 \equiv 1 \mod 25$, we get

$$x \equiv 5 \cdot 14 \equiv 70 \equiv 20 \mod 25$$
.

Problem 9: What is the last digit of 345271⁷⁹³⁹⁹?

Solution: It is obvious that

$$345271 \equiv 1 \mod 10$$
,

therefore by property 5" we have

$$345271^{79399} \equiv 1^{79399} \equiv 1 \mod 10.$$

This means that the last digit of 345271^{79399} is 1.

Problem 10: What is the last digit of 4321^{4321} ?

Solution: It is obvious that

$$4321 \equiv 1 \mod 10$$
,

therefore by property 5" we have

$$4321^{4321} \equiv 1^{4321} \equiv 1 \mod 10.$$

This means that the last digit is 1.

<u>Problem 11</u>: Prove that there is no perfect square a^2 which is congruent to 2 or 3 mod 4.

<u>Solution 1</u>: By the property 4(b) each integer number is congruent to 0 or 1 mod 2. Consider all these cases and use property 4(a):

If $a \equiv 0 \mod 2$, then a = 2k, therefore $a^2 = 4k^2$, hence $a^2 \equiv 0 \mod 4$.

If $a \equiv 1 \mod 2$, then a = 2k + 1, therefore $a^2 = 4k^2 + 4k + 1$, hence $a^2 \equiv 1 \mod 4$.

So, $a^2 \equiv 0$ or 1 mod 4. Therefore $a^2 \not\equiv 2$ or 3 mod 4.

<u>Solution 2</u>: By the property 4(b) each integer number is congruent to 0, 1, 2, or $3 \mod 4$. Consider all these cases and use property 5'':

If $a \equiv 0 \mod 4$, then $a^2 \equiv 0^2 \equiv 0 \mod 4$.

If $a \equiv 1 \mod 4$, then $a^2 \equiv 1^2 \equiv 1 \mod 4$.

If $a \equiv 2 \mod 4$, then $a^2 \equiv 2^2 \equiv 0 \mod 4$.

If $a \equiv 3 \mod 4$, then $a^2 \equiv 3^2 \equiv 1 \mod 4$.

So, $a^2 \equiv 0$ or 1 mod 4. Therefore $a^2 \not\equiv 2$ or 3 mod 4.

Problem 12: Prove that there is no integers a such that a^4 is congruent to 2 or 3 mod 4.

<u>Solution</u>: By the property 4(b) each integer number is congruent to 0, 1, 2, or $3 \mod 4$. Consider all these cases and use property 5'':

If $a \equiv 0 \mod 4$, then $a^4 \equiv 0^4 \equiv 0 \mod 4$.

If $a \equiv 1 \mod 4$, then $a^4 \equiv 1^4 \equiv 1 \mod 4$.

If $a \equiv 2 \mod 4$, then $a^4 \equiv 2^4 \equiv 0 \mod 4$.

If $a \equiv 3 \mod 4$, then $a^4 \equiv 3^4 \equiv 1 \mod 4$.

So, $a^4 \equiv 0$ or 1 mod 4. Therefore $a^4 \not\equiv 2$ or 3 mod 4.

Problem 13: Prove that there is no perfect square a^2 whose last digit is 2, 3, 7 or 8.

<u>Solution</u>: By the property 4(b) each integer number is congruent to $0, 1, 2, \ldots, 8$ or $9 \mod 10$. Consider all these cases and use property 5'':

If $a \equiv 0 \mod 10$, then $a^2 \equiv 0^2 \equiv 0 \mod 10$.

If $a \equiv 1 \mod 10$, then $a^2 \equiv 1^2 \equiv 1 \mod 10$.

If $a \equiv 2 \mod 10$, then $a^2 \equiv 2^2 \equiv 4 \mod 10$.

If $a \equiv 3 \mod 10$, then $a^2 \equiv 3^2 \equiv 9 \mod 10$.

If $a \equiv 4 \mod 10$, then $a^2 \equiv 4^2 \equiv 6 \mod 10$.

If $a \equiv 5 \mod 10$, then $a^2 \equiv 5^2 \equiv 5 \mod 10$.

If $a \equiv 6 \mod 10$, then $a^2 \equiv 6^2 \equiv 6 \mod 10$.

If $a \equiv 7 \mod 10$, then $a^2 \equiv 7^2 \equiv 9 \mod 10$.

If $a \equiv 8 \mod 10$, then $a^2 \equiv 8^2 \equiv 4 \mod 10$.

If $a \equiv 9 \mod 10$, then $a^2 \equiv 9^2 \equiv 1 \mod 10$.

So, $a^2 \equiv 0, 1, 4, 5, 6$ or 9 mod 10. Therefore $a^2 \not\equiv 2, 3, 7$ or 8 mod 10, and the result follows.

Problem 14: Prove that 444444444444444443 is not a perfect square.

Solution: The last digit is 3, which is impossible by Problem 13.

Problem 15: Prove that 888...882 is not a perfect square.

Solution 1: The last digit is 2, which is impossible by Problem 13.

<u>Solution 2</u>: We have 888...882 = 4k+2. Therefore it is congruent to $2 \mod 4$ by property 4(a), which is impossible by Problem 11.

Problem 16: Prove that there is no perfect square a^2 whose last digits are 85.

Solution: It follows from problem 13 that $a^2 \equiv 5 \mod 10$ only if $a \equiv 5 \mod 10$. Therefore $a^2 \equiv 85 \mod 100$ only if $a \equiv 5, 15, 25, \ldots, 95 \mod 100$. If we consider all these cases and use property 5" is the same manner as in problem 13, we will see that $a^2 \equiv 25 \mod 100$. Therefore $a^2 \not\equiv 85 \mod 100$, and the result follows.

Problem 17: Prove that the equation

$$x^4 - 4y = 3$$

has no solutions in integer numbers.

Solution: Rewrite this equation as

$$x^4 = 4y + 3,$$

which means that

$$x^4 \equiv 3 \mod 4$$
,

which is impossible by Problem 12.

Problem 18: Prove that the equation

$$x^2 - 3y = 5$$

has no solutions in integer numbers.

Solution: Rewrite this equation as

$$x^2 = 3y + 5,$$

which means that

$$x^2 \equiv 5 \equiv 2 \mod 3$$
.

By the property 4(a) each integer number is congruent to 0, 1, or $2 \mod 3$. Consider all these cases and use property 5'':

If $a \equiv 0 \mod 3$, then $a^2 \equiv 0^2 \equiv 0 \mod 3$.

If $a \equiv 1 \mod 3$, then $a^2 \equiv 1^2 \equiv 1 \mod 3$.

If $a \equiv 2 \mod 4$, then $a^2 \equiv 2^2 \equiv 1 \mod 3$.

So, $a^2 \equiv 0$ or $1 \mod 3$. Therefore $a^2 \not\equiv 2 \mod 3$.

Problem 19: Prove that the equation

$$3x^2 - 4y = 5$$

has no solutions in integer numbers.

Solution: Rewrite this equation as

$$3x^2 = 4y + 5,$$

which means that

$$3x^2 \equiv 5 \equiv 1 \mod 4$$
.

On the other hand, by Problem 11 we have $x^2 \equiv 0$ or 1 mod 4, hence $3x^2 \equiv 0$ or 3 mod 4. Therefore $x^2 \not\equiv 1 \mod 4$.

Problem 20: Prove that the equation

$$x^2 - y^2 = 2002$$

has no solutions in integer numbers.

<u>Solution</u>: By Problem 11 we have $x^2 \equiv 0$ or $1 \mod 4$, hence $x^2 - y^2 \equiv 0, 1$ or $-1 \mod 4$. On the other hand, $2002 \equiv 2 \mod 4$. Therefore $x^2 - y^2 \not\equiv 2002 \mod 4$,

Problem 21: Prove that $10 \mid 11^{10} - 1$.

<u>Solution</u>: We have $11 \equiv 1 \mod 10$, therefore by property 5" we get $11^{10} \equiv 1^{10} \equiv 1 \mod 10$, which means that $10 \mid 11^{10} - 1$.

Problem 22: Prove that $10 \mid 101^{2003} - 1$.

Solution: We have

$$101 \equiv 1 \mod 10$$
,

therefore by property 5" we get

$$101^{2003} \equiv 1^{2003} \equiv 1 \mod 10,$$

which means that $10 \mid 101^{2003} - 1$.

Problem 23: Prove that $23 \mid a^{154} - 1$ for any $a \in \mathbb{Z}^+$ with (a, 23) = 1.

Solution: By Fermat's Little theorem we have

$$a^{22} \equiv 1 \bmod 23,$$

therefore by property 5'' we get

$$a^{22\cdot7} \equiv 1^7 \equiv 1 \mod 23,$$

and the result follows.

Problem 24: Prove that $17 \mid a^{80} - 1$ for any $a \in \mathbb{Z}^+$ with (a, 17) = 1.

Solution: By Fermat's Little theorem we have $a^{16} \equiv 1 \mod 17$, therefore by property 5" we get $a^{16\cdot 5} \equiv 1^5 \equiv 1 \mod 17$, and the result follows.

Problem 25: What is the remainder after dividing 3^{50} by 7?

<u>Solution</u>: By Fermat's Little theorem we have $3^6 \equiv 1 \mod 7$, therefore by property 5" we get $3^{6\cdot 8} \equiv 1^{48} \equiv 1 \mod 7$, therefore $3^{50} \equiv 9 \equiv 2 \mod 7$.

10. PERMUTATIONS

DEFINITION:

A permutation of a set X is a rearrangement of its elements.

EXAMPLE:

1. Let $X = \{1, 2\}$. Then there are 2 permutations:

12, 21.

2. Let $X = \{1, 2, 3\}$. Then there are 6 permutations:

123, 132, 213, 231, 312, 321.

3. Let $X = \{1, 2, 3, 4\}$. Then there are 24 permutations:

1234, 1243, 1324, 1342, 1423, 1432 2134, 2143, 2314, 2341, 2413, 2431 3214, 3241, 3124, 3142, 3421, 3412 4231, 4213, 4321, 4312, 4123, 4132

REMARK:

One can show that there are exactly n! permutations of the n-element set X.

DEFINITION':

A permutation of a set X is a one-one correspondence (a bijection) from X to itself.

NOTATION:

Let $X = \{1, 2, ..., n\}$ and $\alpha : X \to X$ be a permutation. It is convenient to describe this function in the following way:

$$\alpha = \left(\begin{array}{ccc} 1 & 2 & \dots & n \\ \alpha(1) & \alpha(2) & \dots & \alpha(n) \end{array}\right).$$

EXAMPLE:

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$$

CONCLUSION:

For a permutation we can use two different notations. For example, $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 1 & 3 \end{pmatrix}$ and 24513 are the same permutations.

DEFINITION:

Let $X = \{1, 2, ..., n\}$ and $\alpha : X \to X$ be a permutation. Let $i_1, i_2, ..., i_r$ be distinct numbers from $\{1, 2, ..., n\}$. If

$$\alpha(i_1) = i_2, \quad \alpha(i_2) = i_3, \dots, \ \alpha(i_{r-1}) = i_r, \quad \alpha(i_r) = i_1,$$

and $\alpha(i_{\nu}) = i_{\nu}$ for other numbers from $\{1, 2, \dots, n\}$, then α is called an r-cycle.

NOTATION:

An r-cycle is denoted by $(i_1 \ i_2 \dots i_r)$.

EXAMPLE:

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = (1) \quad 1 - \text{cycle}$$

$$\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = (1) \quad 1 - \text{cycle}$$

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = (12) \quad 2 - \text{cycle}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = (13) \quad 2 - \text{cycle}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (123) \quad 3 - \text{cycle}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix} = (1423) \quad 4 - \text{cycle}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 2 & 1 \end{pmatrix} = (13425) \quad 5 - \text{cycle}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 2 & 1 \end{pmatrix} = (125) \quad 3 - \text{cycle}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 4 & 1 \end{pmatrix} = (125) \quad 3 - \text{cycle}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 4 & 1 \end{pmatrix} = (125) \quad 3 - \text{cycle}$$

REMARK:

We can use different notations for the same cycles. For example,

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = (1) = (2) = (3), \qquad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (123) = (231) = (312).$$

WARNING:

Do not confuse notations of a permutation and a cycle. For example,

$$(123) \neq 123.$$

Instead, (123) = 231 and 123 = (1).

Composition (Product) Of Permutations

$$\alpha = \begin{pmatrix} 1 & 2 & \dots & n \\ \alpha(1) & \alpha(2) & \dots & \alpha(n) \end{pmatrix} \quad \text{and} \quad \beta = \begin{pmatrix} 1 & 2 & \dots & n \\ \beta(1) & \beta(2) & \dots & \beta(n) \end{pmatrix}.$$

$$\alpha \circ \beta = \begin{pmatrix} 1 & 2 & \dots & n \\ \alpha(\beta(1)) & \alpha(\beta(2)) & \dots & \alpha(\beta(n)) \end{pmatrix},$$

Then

$$\beta \circ \alpha = \begin{pmatrix} 1 & 2 & \dots & n \\ \beta(\alpha(1)) & \beta(\alpha(2)) & \dots & \beta(\alpha(n)) \end{pmatrix}.$$

WARNING:

In general, $\alpha \circ \beta \neq \beta \circ \alpha$.

EXAMPLE:

Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 4 & 3 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix}$. We have:

$$\alpha \circ \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 5 & 2 \end{pmatrix},$$

$$\beta \circ \alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 1 & 5 \end{pmatrix}.$$

REMARK:

It is convenient to represent a permutation as the product of circles.

EXAMPLE:

$$\left(\begin{array}{cccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 2 & 6 & 9 & 5 & 7 & 1 & 8 & 4 \end{array}\right) = (1367)(49)(2)(5)(8) = (1367)(49)$$

REMARK:

One can find a composition of permutations using circles.

EXAMPLE:

1. Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (123), \ \beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = (12)(3) = (12).$$
 We have:
$$\alpha \circ \beta = (123)(12) = (13)(2) = (13) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix},$$

$$\beta \circ \alpha = (12)(123) = (1)(23) = (23) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}.$$

2. Let

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 4 & 3 \end{pmatrix} = (1532)(4) = (1532),$$

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix} = (14)(2)(35) = (14)(35).$$

We have:

$$\alpha \circ \beta = (1532)(14)(35) = (1452)(3) = (1452) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 5 & 2 \end{pmatrix},$$
$$\beta \circ \alpha = (14)(35)(1532) = (1324)(5) = (1324) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 1 & 5 \end{pmatrix}.$$

THEOREM:

The inverse of the cycle $\alpha = (i_1 i_2 \dots i_r)$ is the cycle $\alpha^{-1} = (i_r i_{r-1} \dots i_1)$.

EXAMPLE:

Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 4 & 6 & 1 & 7 & 3 & 2 \end{pmatrix} = (15724)(36)$$
. Find α^{-1} . We have:

$$\alpha^{-1} = (42751)(63)$$

In fact,

$$\alpha \circ \alpha^{-1} = (15724)(36)(42751)(63) = (1)$$

and

$$\alpha^{-1} \circ \alpha = (42751)(63)(15724)(36) = (1).$$

THEOREM:

Every permutation α is either a cycle or a product of disjoint (with no common elements) cycles.

Examples

- 1. Determine which permutations are equal:
 - (a) $(12) \neq 12$

(g) (124)(53) = (53)(124)

(b) (1) = 12

(h) (124)(53) = (124)(35)

(c) (1)(2) = (1)

(i) $(124)(53) \neq (142)(53)$

(d) $(12)(34) \neq (1234)$

(j) $(12345) \neq 12345$

(e) (12)(34) = (123)(234)

- (k) (12345) = 23451
- (f) $(12)(34) \neq (123)(234)(341)$
- (1) (23451) = 23451

2. Factor the following permutations into the product of cycles:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 5 & 4 & 6 & 7 & 8 \end{pmatrix} = (4 \ 5)$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 5 & 3 & 10 & 4 & 11 & 12 & 6 & 9 & 1 & 2 & 8 & 7 \end{pmatrix} = (1 \ 5 \ 11 \ 8 \ 9)(2 \ 3 \ 10)(6 \ 12 \ 7)$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & 12 & 7 & 9 & 14 & 8 & 4 & 5 & 3 & 6 & 10 & 11 & 13 & 15 \end{pmatrix} = (3 \ 12 \ 10)(4 \ 7 \ 8)(5 \ 9)(6 \ 14 \ 13 \ 11)$$

3. Find the following products:

$$(12)(34)(56)(1234) = (24)(56)$$

$$(12)(23)(34)(45) = (12345)$$

$$(12)(34)(56) = (12)(34)(56)$$

$$(123)(234)(345) = (12)(45)$$

- 4. Let $\alpha = (135)(24)$, $\beta = (124)(35)$. We have:
 - (a) $\alpha\beta = (143)$
 - (b) $\beta \alpha = (152)$
 - (c) $\beta^{-1} = (421)(53)$
 - (d) $\alpha^{2004} = (1)$

11. GROUPS

DEFINITION:

An operation on a set G is a function $*: G \times G \to G$.

DEFINITION:

A group is a set G which is equipped with an operation * and a special element $e \in G$, called the identity, such that

 $\overline{\text{(i)}}$ the associative law holds: for every $x, y, z \in G$,

$$x * (y * z) = (x * y) * z;$$

(ii) e * x = x = x * e for all $x \in G$;

(iii) for every $x \in G$, there is $x' \in G$ with x * x' = e = x' * x.

EXAMPLE:

Set	Operation "+"	Operation "*"	Additional Condition
N	no	no	
\mathbb{Z}	yes	no	
Q	yes	no	"*" for $\mathbb{Q} \setminus \{0\}$
\mathbb{R}	yes	no	"*" for $\mathbb{R} \setminus \{0\}$
$\mathbb{R}\setminus\mathbb{Q}$	no	no	

EXAMPLE:

Set	Operation "+"	Operation "*"	
$Z_{>0}$	no	no	
$Z_{\geq 0}$	no	no	
$Q_{>0}$	no	yes	
$Q_{\geq 0}$	no	no	
$R_{>0}$	no	yes	
$R_{\geq 0}$	no	no	

EXAMPLE:

Set	Operation "+"	Operation "*"
$\{2n: n \in \mathbb{Z}\}$	yes	no
$\{2n+1:n\in\mathbb{Z}\}$	no	no
$\{3n:n\in\mathbb{Z}\}$	yes	no
$\{kn: n \in \mathbb{Z}\}$, where $k \in \mathbb{N}$ is some fixed number	yes	no
$\{a^n: n \in \mathbb{Z}\}$, where $a \in \mathbb{R}, a \neq 0, \pm 1$, is some fixed number	no	yes
$\left\{\frac{p}{2^n}: p \in \mathbb{Z}, n \in \mathbb{Z}_{\geq 0}\right\}$	yes	no

EXAMPLE:

Set	Operation		
$\mathbb{R}_{>0}$	$a * b = a^2b^2$ no		
$\mathbb{R}_{>0}$	$a*b=a^b$ no		