Mixing Limits of the Strange B⁰ Meson

Jamie E. Hegarty

Advised by Phil Gutierrez

Capstone 2005

Background & Motivation

Mixing Limits: Outline

- **★** Background & Motivation
 - * Standard Model Quarks
 - $*B_s$ Production & Detection
 - ★B_s Decay & Mixing
 - ***** The B_s Mixing Process
- ★ Simulating Mixing Events
 - * Raw Decays and Detector Resolution
 - ★ Neutrino Smearing
 - * Tagging
 - * Mistagging

- ★ Analysis & Calculations
 - **★ Fitting to Simulated Data**
 - ***** Dilution Comparison
 - ***** Sensitivity Calculation
- **★** Results & Conclusions
 - ***** Sensitivity Results
 - *To-Do & Preliminary Conclusions
- ★ Ref's & Ack's.

2.18.05

Jamie E. Hegarty - Mixing Limits of the Strange Bo Meson

Standard Model Quarks

★ Quarks come in 6 flavors, and 3 "flavor doublets", as do their antiquarks:

Chg:	Chg: Quarks				Chg:	Antiquarks		
+2/3		С	t	CHARGE CONJUGATION	-2/3		cbar	tbar
-1/3		s	b		+1/3		sbar	bbar

- **★ Hadrons** are composites of 2 or 3 quarks
- **★ Mesons** are hadrons which contain quarkantiquark (q,qbar) pairs.
- **★** The **B**⁰ **meson** contains (bbar,d).
- ★ The strange B⁰ (B_s) contains (bbar,s).

2.18.05

Jamie E. Hegarty - Mixing Limits of the Strange Bo Meson

B_s Production & Detection

- ★ Our B_s currently produced at the Tevatron (Fermilab), detected at DØ.
- ★ DØ only detects stable longlived, charged particles (e, μ, p, etc.)
- ★ B_s not detected directly must be reconstructed from tracks of other particles
- ★ TeV is a hadron collider (not designed for B physics), so reconstruction is *messy*

5

2.18.05

Jamie E. Hegarty - Mixing Limits of the Strange Bo Meson

B_s Decay & Mixing

- ★ Lifetime of B_s must be Reconstructed
- ⇒ inherent error in lifetime measurement

(vertex not always well-defined)

- ★ B_s and B_sbar are *Uncharged*
- ★ Exist in superposition of 2 mass/CP eigenstates (differ by Δm_s)
- \star Δm_s **small** (~10 μ eV ... m_R ~100 MeV)
- ★ B_s may transition to B_sbar or v.v. [mixing]
- ★ "mixing" may occur before decay

B_s Mass Eigenstates

$$B_{S}^{0} = \frac{1}{\sqrt{2}} |B_{S,1}^{0}\rangle + \frac{1}{\sqrt{2}} |B_{S,2}^{0}\rangle$$

$$\overline{B}_{S}^{0} = \frac{1}{\sqrt{2}} |B_{S,1}^{0}\rangle - \frac{1}{\sqrt{2}} |B_{S,2}^{0}\rangle$$

2.18.05 Jamie E. Hegarty - Mixing Limits of the Strange Bo Meson

The B_s Mixing Process

- ★ B_s transforms into B_sbar via exchange of virtual W's between quarks
- ★ Weak, flavor-changing interaction
- ★ Dominated by top quark
- ★ Statistical Frequency of Mixing determined by difference in mass.
- ⇒ Measurement of mixing frequency allows measurement of Am
- $= \cos(\Delta m \cdot t_n)$

Ultimate Goal: Set a Limit on Measurement of Δm

2.18.05 Jamie E. Hegarty - Mixing Limits of the Strange B⁰ Meson

Simulating Mixing Events

"Toy" Monte Carlo Production

Simulating Mixing Events

★ Lifetime t_p Randomly Selected from Raw Exp. Decay Dist. $e^{-t/\tau}$

au is the mean B_s lifetime:

$$\tau$$
 =1.5 * 10⁻¹² s

- ★ t_p is "smeared" to Account for Time-Resolution of the Detector
- \Rightarrow Random "smearing" Value Selected from Gaussian (centered at 0, width σ_t)... added to t_p

2.18.05

2.18.05

Jamie E. Hegarty - Mixing Limits of the Strange B^{0} Meson

Simulating Mixing Events

 \star Lifetime t_p smeared again to account for (unmeasured) neutrinos in primary decay

$$B_s \rightarrow D_s^- + \mu^+ + \nu_\mu$$

- * Higher momentum (longer t_p) B_s decay to higher momentum v_u
- \Rightarrow This smearing is *lifetime-dependent* ($\sigma = t_o \sigma_o$)
- ★ Random Value Selected from Gaussian (cent. at 0, width $t_p\sigma_n$) ... added to t_p

2.18.05

Jamie E. Hegarty - Mixing Limits of the Strange Bo Meson

10

Simulating Mixing Events

★Tagging: Separating B_s from B_sbar

 $U(t_p)$ = "Unmixed" (B_s or B_s bar remained intact) $M(t_p)$ = "Mixed" (B_s became B_s bar, or v.v.)

★ *U*, *M* related by:

$$\frac{U-M}{U+M} = \cos(\Delta m \cdot t_p)$$

★ Random Number Selected from a flat dist. $-1 \le n \le 1$ $n < \cos(\Delta m t_p) \rightarrow \text{Unmixed}$ $n > \cos(\Delta m t_p) \rightarrow \text{Mixed}$

Simulating Mixing Events

- ★ Mistagging: Tagging B_s as B_sbar or v.v.
- \star With mistag rate α :

$$N_u(t_p) = (1 - \alpha)U(t_p) + \alpha M(t_p)$$

$$N_m(t_p) = (1 - \alpha)M(t_p) + \alpha U(t_p)$$

$$\frac{N_u - N_m}{N_u + N_m} = (1 - 2\alpha)\cos(\Delta m \cdot t_p)$$

⇒ Mistagging affects only the *amplitude* of the cosine.

(1-2 α) is called "Dilution"

Jamie E. Hegarty - Mixing Limits of the Strange Bo Meson

2.18.05

11

Jamie E. Hegarty - Mixing Limits of the Strange B⁰ Meson

Analysis & Calculations

Determining Sensitivity of a
Dilution Measurement to Changes
in Other Parameters

Fitting to the Simulated Data

- \star A long, complicated function f(t) was used
 - * **5 parameters** (!): tag, σ_{t-fit} , Δm_{fit} , τ_{fit} , α_{fit}
- ★ Unbinned Likelihood Amplitude Fitting:
 - * [unbinned] MC lifetime data compared event-by-event (rather than being histogrammed first)
 - * [likelihood] Each value of t_p in the MC compared to distribution $f(t_p)$ to determine likelihood that t_p was selected from f(t)
 - * [amplitude] All parameters except α_{fit} held fixed during the fit

 \Rightarrow only fit for Dilution (D=1-2 α)

2.18.05

Jamie E. Hegarty - Mixing Limits of the Strange Bo Meson

14

Analysis: Dilution Comparison

If error in $D_{fit} \ge 1$,

determined!

e ∆m cannot be

- ★ Each fit done ~20 times, varying \(\Delta m_{fit} \) each time.
- ★ Resulting Values of D_{fit} =(1-2 α_{fit}) divided by D_{MC} (dilution in the MC), then plotted against Δm_{fit}
- ★ D_{fit}/D_{MC} peaks to 1 when $\Delta m_{fit} = \Delta m_{MC}$
- ★ Errors in D_{fit} greater for larger $\Delta m_{\rm fit}$

- ★ Goal: Find Δm_{fit} for which error in D_{fit} is $\geq 1 \dots regardless$ of true Δm
- ★ Δm_{MC} set very high (>1eV, or 1000 ps⁻¹) so no peak occurs
- \star Error in D_{fit}/D_{MC} plot vs. Δm_{fit}
- ★ ∆m_{fit} where error = 1: Sensitivity of D to these MC/fit conditions
- ★ Correct D (and \(\Delta m \)) would only be measurable below the Sensitivity value.

m

2.18.05

Jamie E. Hegarty - Mixing Limits of the Strange B⁰ Meson

2.18.05

Jamie E. Hegarty - Mixing Limits of the Strange Bo Meson

16

(Preliminary) Results & Conclusions

Sensitivity Results

★ Sensitivity Calculated for:

- * \pm 20% variation in σ_t (detector time resolution)
- * ± 20% variation in D (dilution)

Fit/MC	0.08	0.10	0.12
0.08	22.07	23.56	-
0.10	17.66	17.74	17.88
0.12	-	15.74	15.00

Fit/MC	0.128	0.160	0.192
0.128	16.35	16.35	-
0.160	17.75	17.74	17.75
0.192	-	18.90	18.91

- *No neutrino smearing used here ($\sigma_n = 0$)
- * Fit values for D are "initial" values

2.18.05

Jamie E. Hegarty - Mixing Limits of the Strange Bo Meson

18

To-Do & Preliminary Conclusions

★ Up Next:

- * Sensitivity for \pm 20% variation in σ_n
- * Add background noise
- ★ Repeat all this with Full DØ-MC

★ Potential Problems:

- * Fit function becomes extremely difficult (non-analytical?) with σ_n included!
- * Signal-to-Noise ratio unknown.
- * We might be entirely forgetting something.

★ Conclusions:

- * This method works great ... up to a point
- * Either σ_n will need to be "ignored" in fitting, or another method must be used.

References & Acknowledgements

* References

- * Anikeev et. Al, "B Physics at the Tevatron: Run II and Beyond", FERMILAB-Pub-01/197, December 2001
- * Perkins, Donald H., <u>Introduction to High Energy Physics</u>, 4th ed., Cambridge UP, 2000
- * "CP Violation in B Meson Decay: FAQ", http://www.physics.uc.edu/~kayk/cpviol/CP_A0.html, 09/30/04
- * Griffiths, David, Introduction to Elementary Particles

★ Acknowledgements

- * Phil Gutierrez (advisor)
- ☀ Peter Williams (theory guru)

★ Images:

- * B-event: http://quarknet.fnal.gov/run2/b_lifetime2.shtml
- * DØ cutaway: http://www-d0.fnal.gov/public/detector/picures.html

2.18.05

19

Jamie E. Hegarty - Mixing Limits of the Strange B⁰ Meson