STATS FORMULAS

Variance:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2$$

STD: $s = \sqrt{s^2}$

Permutation:
$$P_r^n = \frac{n!}{(n-r)!}$$

Combination:
$$C_r^n = \frac{n!}{r!(n-r)!}$$

Probability of Intersection of Two Events:
$$P(A \cap B) = P(A)P(B|A), P(B)P(A|B)$$

Chance of A and B occurring relative to S:
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

If A and B are independent:

$$P(A|B) = P(A)$$

$$P(B|A) = P(B)$$

$$P(A \cap B) = P(A)P(B)$$

Dependent: P(A) * P(B|A)

General Addition Rule: A or B occurring relative to S

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

A and B are mutually exclusive, $P(A \cap B)=0$: $P(A \cup B)=P(A)+P(B)$

Total Probability: $P(A) = \sum_{i=1}^{n} P(A|Bi)P(Bi)$

Bayes' Theorem with P(A)>0 and P(B)>0:
$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

If
$$0 < P(B) < 1$$
: $P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|B')P(B')}$

Probability Mass Function:
$$p(y) = P(Y = y)$$

Expected: E(Y) = 1/p

Variance: $\frac{1-p}{p^2}$

Binomial Distribution: $p(y) = \binom{n}{y} p^y q^{n-y}$

Geometric Distribution: $p(y) = P(Y = y) = q^{y-1}p$ Success occurs on or before nth trial: $P(X \le n) = 1 - (1-p)^n$ Success occurs before the nth trial: $P(X < n) = 1 - (1-p)^{n-1}$ Success occurs on or after nth trial: $P(X \ge n) = (1-p)^{n-1}$ Success occurs after the nth trial: $P(X > n) = (1-p)^n$ Hypergeometric Probability Distribution: $p(y) = \frac{\binom{r}{y}\binom{N-r}{n-y}}{\binom{N}{n}}$ Poisson Probability Distribution: $p(y) = \frac{\lambda^y}{y!}e^{-\lambda}$

Expected value of continuous random variable Y: $E(Y) = \int_{-\infty}^{\infty} y f(y) dy$ Variance of continuous random variable = $E(Y^2) - E(Y)^2$

Uniform Probability Distribution: $f(y) = \begin{cases} \frac{1}{\theta^2 - \theta^1}, & \theta 1 \leq y \leq \theta^2, \\ 0, & elsewhere. \end{cases}$

Normal Probability Distribution: $f(y) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$, $-\infty < y < \infty$

Gamma Probability Distribution: $f(y) = \begin{cases} \frac{y^{\alpha-1}e^{-\frac{y}{\beta}}}{\beta^{\alpha}T(\alpha)} \\ 0, & elsewhere \end{cases}$

Exponential distribution with parameter $\beta > 0$: $\begin{cases} \frac{1}{\beta}e^{-\frac{y}{\beta}} \\ 0, & \textit{elsewhere} \end{cases}, 0 \leq y < \infty,$

Beta Probability Distribution:
$$f(y) = \begin{cases} \frac{y^{a-1}(1-y)^{\beta-1}}{B(\alpha,\beta)}, & 0 \leq y \leq 1, \\ 0, & elsewhere \end{cases}$$

Testing if Y_1 and Y_2 are jointly continuous random variables:

$$\int_{v_2}^{y_1} f(t_1, t_2) dt_2 dt_1$$

Conditional discrete probability function: $p(y_1|y_2) = \frac{p(y_1,y_2)}{p_2(y_2)}$

Showing that Y_1 and Y_2 are independent given a density function f(y1,y2):

$$f_1(y_1) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_2$$

$$f_1(y_2) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_1$$

$$f(y_1, y_2) = f_1(y_1) f_2(y_2)$$