The diffusion equation on a circle

$$\frac{\partial \psi}{\partial t} = \frac{\partial^2 \psi}{\partial x^2}$$

FDM: Finite Difference Method

$$x_{j-1}$$
 x_{j}

$$\frac{d\psi}{dx} = \frac{\psi_{j+1} - \psi_{j-1}}{2\Delta x} + O(\Delta x)^2$$

$$\frac{d^2\psi}{dx^2} = \frac{\psi_{j+1} - 2\psi_j + \psi_{j-1}}{(\Delta x)^2} + O(\Delta x)^2$$

$$\frac{d\psi_j}{dt} = \frac{\psi_{j+1} - 2\psi_j + \psi_{j-1}}{(\Delta x)^2}$$

$$\frac{\partial \psi}{\partial t} = \frac{\partial^2 \psi}{\partial x^2}$$

FDM: Finite Difference Method

$$\frac{d\psi_j}{dt} = \frac{\psi_{j+1} - 2\psi_j + \psi_{j-1}}{(\Delta x)^2}$$

$$\frac{d\psi_j}{dt} = f(\psi_1, \psi_2, \cdots, \psi_N)$$

==> Time integration.

Numerical integration

1)
$$I = \Delta x f(a)$$
 Error $\propto O(\Delta x^2)$

2) Trapezoid rule

$$I = \frac{\Delta x}{2} [f(a) + f(b)]$$

Error $\propto O(\Delta x^3)$

3) Simpson's rule

$$I = \frac{\Delta x}{6} \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right]$$

Error $\propto O(\Delta x^5)$

$$\frac{du(t)}{dt} = f(u(t), t)$$

$$u(t_1) = u(t_0) + \int_{t_0}^{t_1} f dt$$

$$f(t) \uparrow$$

$$t_0 \qquad \downarrow$$

$$t_n \qquad t_{n+1}$$

$$\frac{du(t)}{dt} = f(u(t), t)$$
$$u(t_{n+1}) = u(t_n) + \int_{t_n}^{t_{n+1}} f \, dt$$

 $u(t_{n+1}) = u(t_n) + \Delta t f(t_n)$

⇒ 1st order Euler method

2) Trapezoid rule

⇒ 2nd order Runge-Kutta method

3) Simpson's rule

⇒ 4th order Runge-Kutta method

4-step 4th-order Runge-Kutta Integration Method

$$\frac{du(t)}{dt} = f(t, u(t))$$

$$t_0 = t_n$$
 $t_2 = t_0 + 0.5 \, \Delta t$ $u_0 = u(t_0)$ $u_2 = u_0 + 0.5 \, df_2$ $df_1 = \Delta t \, f(t_0, u_0)$ $df_3 = \Delta t \, f(t_2, u_2)$ $t_1 = t_0 + 0.5 \, \Delta t$ $t_3 = t_0 + \Delta t$ $u_1 = u_0 + 0.5 \, df_1$ $u_3 = u_0 + df_3$ $df_2 = \Delta t \, f(t_1, u_1)$ $df_4 = f(t_3, u_3)$ $u_{n+1} = u_n + \frac{1}{6}(df_1 + 2 \, df_2 + 2 \, df_3 + df_4)$

Error $O(\Delta t^5)$ for one step, $O(\Delta t^4)$ in total.