Introduction to Quantitative Ecology Fall 2018 Chris Sutherland csutherland@umass.edu

Group evaluations

- 1. Specifically for the assignment due tomorrow, how would you describe your comfort levels with R and Excel?
 - A) Uncomfortable with both
 - B) Comfortable with Excel, but not R
 - C) Comfortable with R, but not Excel
 - D) Comfortable with both

i clicker.

Group evaluations

Is there a significant association between salamander sex and $habitat\ type?$

$$\chi^2 = \sum \frac{(\mathrm{Obs} - \mathrm{Exp})^2}{\mathrm{Exp}}$$

- 1. Calculate χ^2 .
- 2. Calculate DF
- 3. Is there a significant association?

	Dry	Moist	Wet	\(\sum_{\text{Row}} \)
Female	370	198	187	
Male	359	110	160	
\sum Col				

df	0.05
1	3.84
2	5.99
3	7.81
_ 4	9.49
5	11.07
6	12.59
7	14.07
8	15.51
9	16.92
10	18.31

What are associations?

- ▶ dealing with two categorical variables
- ▶ known as a *contingency table*
 - data are *cross tabulated* frequencies
 - each cell represents a count

- ▶ dealing with two categorical variables
- ▶ known as a *contingency table*
 - data are *cross tabulated* frequencies
 - each cell represents a count

Salamander	Upland	Wetland	Floodplain
Present	38	30	24
Absent	12	20	26

- ▶ dealing with two categorical variables
- ▶ known as a *contingency table*
 - data are *cross tabulated* frequencies
 - each cell represents a count
- ▶ visualize using a bar chart

The key question with contingency tables:

- ▶ is there a significant association between the categorical variable A and categorical variable B?
- ▶ are these numbers different to what we would expect to see by chance?

The key question with contingency tables:

- ▶ is there a significant association between the categorical variable A and categorical variable B?
- ▶ are these number different to what we would expect to see by chance?
- ▶ answer using the *Chi-squared test*

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

- ▶ O: the observed data
- ► E: the expected value if there was no association
- \triangleright χ^2 : the test statistic

In a Chi-squared test from the following contingency table, I get a test statistic of $\chi^2=8.32$. Is there a significant association between spotted salamander presence and vernal pool type at the 5% level?

Salamander	Upland	Wetland	Floodplain
Present	38	30	24
Absent	12	20	26

A)	Yes,	its	significant!
----	------	-----	--------------

B) No, it's not significant!

df	0.05
1	3.84
2	5.99
3	7.81
_ 4	9.49
5	11.07
6	12.59
7	14.07
8	15.51
9	16.92
10	18.31

In a Chi-squared test from the following contingency table, I get a test statistic of $\chi^2 = 8.32$. Is there a significant association between spotted salamander presence and vernal pool type at the 5% level?

Salamander	Upland	Wetland	Floodplain
Present	38	30	24
Absent	12	20	26

A) Yes, its significant!

B) No, it's not significant!

df	0.05
1	3.84
2	5.99
3	7.81
_ 4	9.49
5	11.07
6	12.59
7	14.07
8	15.51
9	16.92
10	18.31

Associations - observed

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

The observed values (O):

- ▶ the data we observe (obviously!)
- cross tabulated counts

Associations - expected

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

The expected values (E):

- ▶ the data we would expect by change
- ▶ the data we would expect if there was no association

$$E = \frac{\text{row total} \cdot \text{col total}}{\text{grand total}}$$

Associations - expected

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

Degrees of freedom:

$$DF = (no.columns - 1) \times (no.rows - 1)$$

Associations - expected

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

Table I. Critical Values of χ^2

		LEVEL OF	SIGNIFICANCE	FOR TWO-TA	ILED TEST	
df	.20	.10	.05	.02	.01	.001
1	1.64	2.71	3.84	5.41	6.64	10.83
2	3.22	4.60	5.99	7.82	9.21	13.82
3	4.64	6.25	7.82	9.84	11.34	16.27
4	5.99	7.78	9.49	11.67	13.28	18.46
5	7.29	9.24	11.07	13.39	15.09	20.52
6	8.56	10.64	12.59	15.03	16.81	22.46
7	9.80	12.02	14.07	16.62	18.48	24.32
8	11.03	13.36	15.51	18.17	20.09	26.12
9	12.24	14.68	16.92	19.68	21.67	27.88
10	13.44	15.99	18.31	21.16	23.21	29.59
11	14.63	17.28	19.68	22.62	24.72	31.26
12	15.81	18.55	21.03	24.05	26.22	32.91
13	16.98	19.81	22.36	25.47	27.69	34.53
14	18.15	21.06	23.68	26.87	29.14	36.12
15	19.31	22.31	25.00	28.26	30.58	37.70

Invertebrate group habitat selection:

	Ant	Bug	Beetle	Total
Upper leaf	15	13	68	96
Lower leaf	12	11	15	38
Stem	65	78	5	148
Bud	3	21	3	27
Total	95	123	91	309

First we need to state the hypotheses!

▶ Null hypothesis:

First we need to state the hypotheses!

- ▶ Null hypothesis:
- ▶ the no habitat preference hypothesis
- ► random!

"There is no association between invertebrate group and habitat"

First we need to state the hypotheses!

- ► Null hypothesis:
- ▶ the no habitat preference hypothesis
- ► random!

"There is no association between invertebrate group and habitat"

► Alternative hypothesis:

First we need to state the hypotheses!

- ▶ Null hypothesis:
- ▶ the no habitat preference hypothesis
- ► random!

"There is no association between invertebrate group and habitat"

- ► Alternative hypothesis:
- ▶ the *habitat preference* hypothesis
 - direction not explicitly stated
 - can be positive or negative
- ▶ not random!

"There is an association between invertebrate group and habitat"

Demo in Excel

- ▶ The test statistic is $\chi^2 = 146.98$.
- ▶ What do we conclude?

- ▶ The test statistic is $\chi^2 = 146.98$.
- ▶ What do we conclude?
 - p < 0.05
 - reject the null hypothesis
 - accept the alternative hypothesis
 - ightharpoonup there is a significant association between inverts and habitat!

- ▶ The test statistic is $\chi^2 = 146.98$.
- ▶ What do we conclude?
 - p < 0.05
 - reject the null hypothesis
 - accept the alternative hypothesis
 - ▶ there is a significant association between inverts and habitat!
- ▶ BUT! which associations are significant?

	Ant	Bug	Beetle	Total
Upper leaf	15	13	68	96
Lower leaf	12	11	15	38
Stem	65	78	5	148
Bud	3	21	3	27
Total	95	123	91	309

Associations - significant associations

Two ways we can evaluate which associations are likely to be significant:

- 1. Cell-specific χ^2 values
 - reater than 3.8 is likely to be significant
 - ▶ 3.8 is significant test statistic with 1 degree of freedom

Associations - significant associations

Two ways we can evaluate which associations are likely to be significant:

1. Cell-specific χ^2 values

- reater than 3.8 is likely to be significant
- ▶ 3.8 is significant test statistic with 1 degree of freedom

2. Pearson residuals

- provides sign of association
- provides relative size of the association
- ightharpoonup if residual is >2 or <-2 then likely to be significant

$$Residual = \frac{\text{Observed} - \text{Expected}}{\sqrt{\text{Expected}}}$$

Back to Excel

Two Excel functions for doing Chi-squared or Goodness of fit tests but no method in *Analysis Tool Pack*:

Two Excel functions for doing Chi-squared or Goodness of fit tests but no method in *Analysis Tool Pack*:

- ► CHITEST(observed, expected)
 - must calculate the expected values
 - must be in the same table format

Two Excel functions for doing Chi-squared or Goodness of fit tests but no method in *Analysis Tool Pack*:

- ► CHITEST(observed, expected)
 - must calculate the *expected* values
 - must be in the same table format
- ► CHIDIST (Chi value, derees of freedom)
 - ightharpoonup must calculate χ^2 and DF
 - ▶ just calculates a *p*-value

Demo in Excel

- Chi-square test in R
 - chisq.test(contingency table)
 - data must be formatted like a contingency table
 - can make a data.frame

- Chi-square test in R
 - chisq.test(contingency table)
 - data must be formatted like a contingency table
 - can make a matrix

- Chi-square test in R
 - chisq.test(contingency table)
 - data must be formatted like a contingency table
 - can make a data.frame or a matrix

```
# conduct the Chi-square test
chisq.test(tab.df)

Pearson's Chi-squared test

data: tab.df
X-squared = 146.98, df = 6, p-value < 2.2e-16</pre>
```

- Chi-square test in R
 - chisq.test(contingency table)
 - data must be formatted like a contingency table
 - can make a data.frame or a matrix

- Chi-square test in R
 - chisq.test(contingency table)
 - data must be formatted like a contingency table
 - can make a data.frame or a matrix

```
# calculate the Pearson residuals
obs <- tab.df
exp <- chisq.test(tab.df) expected
(obs-exp) / sqrt(exp)
Ant Bug Beetle
Upper -2.6716883 -4.078738 7.471733
Lower 0.0927883 -1.060930 1.138636
Stem 2.8905810 2.486807 -5.844599
Bud -1.8398862 3.127314 -1.755940
```

What can we conclude from our analysis of the invertebrate data using the Chi-square test for association?

```
# conduct the Chi-square test
chisq.test(tab.df)

Pearson's Chi-squared test

data: tab.df
X-squared = 146.98, df = 6, p-value < 2.2e-16</pre>
```

```
# Pearson residuals
(obs-exp) / sqrt(exp)
Ant Bug Beetle
Upper -2.6716883 -4.078738 7.471733
Lower 0.0927883 -1.060930 1.138636
Stem 2.8905810 2.486807 -5.844599
Bud -1.8398862 3.127314 -1.755940
```

'Pioneer Valley Camera Trapping Data'

The data:

- ▶ 142 camera traps placed throughout the valley
- ▶ each camera has 2 categorical covariates:
 - land use: 'altered' (A), 'natural' (N) and 'urban' (U)
 - scent lure: 'Badlands Bob' (BB) and 'Powder River' (PR)
- we will focus on four species:
 - bobcat *lynx rufus*
 - domestic cat felis catus
 - coyote canis latrans
 - domestic dog canis familiaris

Group exercise

Using the 'Pioneer Valley Camera Trapping Data' investigate whether there is a statistically significant association between the four species and:

- 1. habitat type
- 2. scent lure

(i.e., conduct two analyses)

