Лабораторная работа №5

Модель эпидемии (SIR)

Алиева Милена Арифовна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	13

Список иллюстраций

3.1	Задание переменных окружения в xcos	7
3.2	Модель SIR в xcos	8
3.3	Задание начальных значений в блоках интегрирования	9
3.4	Задание начальных значений в блоках интегрирования	9
3.5	Эпидемический порог модели SIR при $eta=1, u=0.3$	10
3.6	Модель SIR в xcos с применением блока Modelica	11
3.7	Эпидемический порог модели SIR при $eta=1, u=0.3$	12

Список таблиц

1 Цель работы

Построить модель SIR в xcos и OpenModelica.

2 Задание

- 1. Реализовать модель SIR в в *хсоs*;
- 2. Реализовать модель SIR с помощью блока Modelica в xcos;
- 3. Реализовать модель SIR в OpenModelica;
- 4. Реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica;
- 5. Построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр μ);
- 6. Сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

3 Выполнение лабораторной работы

1. Зафиксируем начальные данные: $\beta=1,\ \nu=0,3, s(0)=0,999,\ i(0)=0,001,\ r(0)=0.$

В меню Моделирование, Установить контекст зададим значения переменных β и ν (рис. 3.1).

Рис. 3.1: Задание переменных окружения в хсоѕ

- 2. Для реализации модели (рис. 3.2) потребуются следующие блоки хсоs:
- CLOCK_c запуск часов модельного времени;
- CSCOPE регистрирующее устройство для построения графика;
- TEXT_f задаёт текст примечаний;
- MUX мультиплексер, позволяющий в данном случае вывести на графике сразу несколько кривых;
- INTEGRAL_m блок интегрирования;

- GAINBLK_f в данном случае позволяет задать значения коэффициентов β и ν ;
- SUMMATION блок суммирования;
- PROD_f поэлементное произведение двух векторов на входе блока.

Рис. 3.2: Модель SIR в хсоѕ

3. В параметрах верхнего и среднего блока интегрирования необходимо задать начальные значения s(0)=0,999 и i(0)=0,001 (рис. 3.3,3.4).

Рис. 3.3: Задание начальных значений в блоках интегрирования

Рис. 3.4: Задание начальных значений в блоках интегрирования

4. В меню "Моделирование -> Установка" зададим конечное время интегрирования, равным времени моделирования, в данном случае 30. Результат мо-

делирования представлен на рис. 3.6, где черной линией обозначен график s(t) (динамика численности уязвимых к болезни особей), красная линия определяет r(t) — динамику численности выздоровевших особей, зеленая линия определяет i(t) — динамику численности заражённых особей. Пересечение трёх линий определяет порог эпидемии.

Рис. 3.5: Эпидемический порог модели SIR при $\beta=1, \nu=0.3$

5. Реализуем модель с помощью блока Modelica в xcos. Для реализации модели SIR с помощью языка Modelica помимо блоков CLOCK_c, CSCOPE, TEXT_f и MUX требуются блоки CONST_m — задаёт константу; MBLOCK (Modelica generic) — блок реализации кода на языке Modelica. Задаём значения переменных β и ν . Готовая модель SIR представлена на рис. 3.6.

Рис. 3.6: Модель SIR в xcos с применением блока Modelica

В результате получаем график (рис. 3.7), построенный с помощью блока Modelica идентичный графику, построенному без них.

Рис. 3.7: Эпидемический порог модели SIR при $\beta=1, \nu=0.3$

4 Выводы

В процессе выполнения лабораторной работы $N^{\circ}5$ я научилась строить модель SIR в xcos и OpenModelica