8.5 PreQuiz Circle Sectors

- 1. The shaded sector of the unit circle is one fifth of the whole circle, as shown. (Circle circumference and area formulas: $C=2\pi r,\ A=\pi r^2$)
 - (a) Find $m \angle AOB$ in degrees.
 - (b) Find the length of the arc \widehat{AB} in terms of π .
 - (c) Find the area of the shaded sector in terms of π .

2. Convert units of radians and degrees ($2\pi=360^{\circ},\,\pi=180^{\circ}$). Apply the appropriate formula.

$$d = r \times \frac{180}{\pi}$$

$$r = d \times \frac{\pi}{180}$$

(a)
$$m \angle A = \frac{\pi}{5} = ?$$
 degrees

(b)
$$m\angle B = 60^{\circ} = ?$$
 radians (in terms of π)

3. Given a triangle $\triangle ABC$ having angles with measures $m\angle A=42^\circ$ and $m\angle B=89^\circ$. Find the measure of the third angle, $m\angle C$.

- 4. The *pie chart* below shows the proportion of two subsets of a population, one represented in blue and one in orange. Dotted lines divide the circle in ten equal sectors for reference.
 - (a) Estimate the area of the blue sector as a fraction of the circle and as a decimal.
 - (b) The central angle of the orange sector measures 50°. Find the fraction of circle's area shaded orange as a fraction and a decimal.

- 5. Given circle with center O and $m\angle QPR=39^{\circ}$. Find the measure of each arc or angle.
 - (a) $m\widehat{QR}$
 - (b) $m \angle PQO$
 - (c) $m\angle QOR$
 - (d) $m \angle POQ$

- 6. Right $\triangle ABC$ is drawn in *standard position* with vertex A on the origin and right $\angle C$ on the x-axis, as shown.
 - (a) Find the length of the hypotenuse AB using the Pythagorean Theorem $a^2 + b^2 = c^2$. (leave as a radical)
- B(5,8) B(5,8) B(5,8) C C

2

1

(b) Find the slope of the line segment \overline{AB} as a decimal.

7. Convert between units.

General method: if A=B multiply by $\frac{A}{B}$ or $\frac{B}{A}$. For example, π radians = 180 degrees so $r=d\times\frac{\pi}{180}$ and $d=r\times\frac{180}{\pi}$

(a) $40^{\circ} = ? \text{ radians}$

(e) 1 euro = 1.21 dollars

20 euro =

(b) $\frac{\pi}{7} = ?$ degrees

(f) 100 dollars =

(c) 1 foot = 12 inches

3.5 feet =

(g) 1 mile = 5,280 feet

10,000 feet =

(d) 54 inches =

(h) $\frac{1}{2}$ mile =

- 8. Line segment \overline{AB} , A(1,8), B(9,2), is the diameter of circle M.
 - (a) On the grid, mark and label as a coordinate pair the midpoint of the segment, the circle center M.
 - (b) Calculate the length of \overline{AB} and hence, the radius of the circle.
 - (c) Write down the equation of the circle.
 - (d) Sketch the circle on the grid or draw it with Geogebra or Graspable Math.

