

DIGITAL IMAGE PROCESSING

Image Enhancement in Spatial Domain: Session 2

Dr. Mrinmoy Ghorai

Indian Institute of Information Technology Sri City, Andhra Pradesh

Today's Lecture

- Image Enhancement in Spatial Domain
 - Histogram Equalization
 - Histogram Matching

Histogram Processing

Histogram
$$h(r_k) = n_k$$

 r_k is the k^{th} intensity value

 n_k is the number of pixels in the image with intensity r_k

Normalized histogram
$$p(r_k) = \frac{n_k}{MN}$$

 n_k : the number of pixels in the image of size M×N with intensity r_k

Histogram Processing

Histogram Equalization

$$s = T(r)$$
 $0 \le r \le L - 1$

- T(r) is single-valued and strictly monotonically increasing function in the interval $0 \le r \le L - 1$.
- b) $0 \le T(r) \le L 1$ for $0 \le r \le L 1$.

FIGURE 3.17

a b

(a) Monotonically increasing function, showing how multiple values can map to a single value. (b) Strictly monotonically increasing function. This is a one-to-one mapping, both ways.

Image Enhancement in Spatial Doma Histogram Equalization

- The objective is to get a uniform histogram of the resultant image T(r).
- The intensity level in an image may be viewed as random variables in the interval [0 L 1].
- Let $p_r(r)$ and $p_s(s)$ denote the probability density function (PDF) of random variables r and s.
- T(r) is continuous and differentiable
- If $p_r(r)$ and T(r) are known and $T^{-1}(s)$ satisfies condition (a) then the PDF $p_s(s)$ of the transformed random variable s can be obtained by

$$p_s(s) = p_r(r) \frac{dr}{ds}$$

SRICITY SRICITY

Histogram Equalization

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$
 Cumulative Distribution Function Satisfies condition (a) and (b)

$$\frac{ds}{dr} = \frac{dT(r)}{dr} = (L-1)\frac{d}{dr} \left[\int_0^r p_r(w)dw \right]$$
$$= (L-1)p_r(r)$$

$$p_{s}(s) = \frac{p_{r}(r)dr}{ds} = \frac{p_{r}(r)}{ds} = \frac{p_{r}(r)}{(L-1)p_{r}(r)} = \frac{1}{L-1}$$

Image Enhancement in Spatial Doma Histogram Equalization

FIGURE 3.18 (a) An arbitrary PDF. (b) Result of applying the transformation in Eq. (3.3-4) to all intensity levels, r. The resulting intensities, s, have a uniform PDF, independently of the form of the PDF of the r's.

a b

Image Enhancement in Spatial Doma Histogram Equalization: Example

Suppose that the (continuous) intensity values in an image have the PDF

$$p_r(r) = \begin{cases} \frac{2r}{(L-1)^2}, & \text{for } 0 \le r \le L-1\\ 0, & \text{otherwise} \end{cases}$$

Find the transformation function for equalizing the image histogram.

SRICITY SRICITY

Histogram Equalization: Example

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

$$= (L-1) \int_0^r \frac{2w}{(L-1)^2} dw$$

$$= \frac{r^2}{L-1}$$

Image Enhancement in Spatial Doma Histogram Equalization

Continuous case:

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

Discrete values:

$$\begin{split} s_k &= T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j) & p_r(r_j) \text{ is the probability of } \\ &= (L-1) \sum_{j=0}^k \frac{n_j}{MN} = \frac{L-1}{MN} \sum_{j=0}^k n_j & \text{k=0,1,..., L-1} \end{split}$$

histogram equalization or linearization

Histogram Equalization: Example

Suppose that a 3-bit image (L = 8) of size 64×64 pixels (MN = 4096) has the intensity distribution shown in following table. Get the histogram equalization transformation function and give the $p_s(s_k)$ for each s_k .

n_k	$p_r(r_k) = n_k/MN$
790	0.19
1023	0.25
850	0.21
656	0.16
329	0.08
245	0.06
122	0.03
81	0.02
	790 1023 850 656 329 245 122

Image Enhancement in Spatial Doma Histogram Equalization: Example

Image Enhancement in Spatial Doma Histogram Equalization: Example

a b c

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

FIGURE 3.20 Left column: images from Fig. 3.16. Center column: corresponding histogram-equalized images. Right column: histograms of the images in the center column.

Image Enhancement in Spatial Doma Histogram Matching (Histogram Specification)

 Generate a processed image that has a specified histogram

Let $p_r(r)$ and $p_z(z)$ denote the continous probability density functions of the variables r and z. $p_z(z)$ is the specified probability density function.

Let s be the random variable with the probability

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

Define a random variable z with the probability

$$G(z) = (L-1) \int_0^z p_z(t) dt = s$$

Image Enhancement in Spatial Doma Histogram Matching (Histogram Specification)

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

$$G(z) = (L-1) \int_0^z p_z(t) dt = s$$

$$z = G^{-1}(s) = G^{-1} [T(r)]$$

Note: T(r) can be obtained once $p_r(r)$ has been estimated from the input image. G(z) can be obtained since $p_z(z)$ is given.

Image Enhancement in Spatial Doma Histogram Matching: Procedure

• Obtain $p_r(r)$ from the input image and then obtain the values of s

 $s = (L-1) \int_0^r p_r(w) dw$

 Use the specified PDF and obtain the transformation function G(z)

$$G(z) = (L-1) \int_0^z p_z(t) dt = s$$

Mapping from s to z

$$z = G^{-1}(s)$$

Histogram Matching: Example

 Assuming continuous intensity values, suppose that an image has the intensity PDF

$$p_r(r) = \begin{cases} \frac{2r}{(L-1)^2}, & \text{for } 0 \le r \le L-1\\ 0, & \text{otherwise} \end{cases}$$

 Find the transformation function that will produce an image whose intensity PDF is

$$p_z(z) = \begin{cases} \frac{3z^2}{(L-1)^3}, & \text{for } 0 \le z \le (L-1)\\ 0, & \text{otherwise} \end{cases}$$

Information Jechnology SRICITY

Histogram Matching: Example

Find the histogram equalization transformation for the input image

$$s = T(r) = (L-1) \int_0^r p_r(w) dw = (L-1) \int_0^r \frac{2w}{(L-1)^2} dw$$

 Find the histogram equalization transformation for the specified histogram

$$G(z) = (L-1) \int_0^z p_z(t) dt = (L-1) \int_0^z \frac{3t^2}{(L-1)^3} dt = \frac{z^3}{(L-1)^2} = s$$

The transformation function

$$z = \left[(L-1)^2 s \right]^{1/3} = \left[(L-1)^2 \frac{r^2}{L-1} \right]^{1/3} = \left[(L-1)r^2 \right]^{1/3}$$

Image Enhancement in Spatial Doma Histogram Matching: Discrete Case

• Obtain $p_r(r_j)$ from the input image and then obtain the values of s_k , round the value to the integer range [0 L - 1].

$$S_k = T(r_k) = (L-1)\sum_{j=0}^k p_r(r_j) = \frac{(L-1)}{MN}\sum_{j=0}^k n_j$$

• Use the specified PDF and obtain the transformation function $G(z_q)$, round the value to the integer range

[0 L - 1].
$$G(z_q) = (L-1)\sum_{i=0}^{q} p_z(z_i) = s_k$$

Mapping from s_k to z_q

$$z_{a} = G^{-1}(s_{k})$$

Histogram Matching: Example (Discrete Case)

Suppose that a 3-bit image (L = 8) of size 64×64 pixels (MN = 4096) has the intensity distribution shown in following table(on the left). Get the histogram transformation function and make the output image with the specified histogram, listed in the table on the right.

n_k	$p_r(r_k) = n_k/MN$
790	0.19
1023	0.25
850	0.21
656	0.16
329	0.08
245	0.06
122	0.03
81	0.02
	790 1023 850 656 329 245 122

z_q	Specified $p_z(z_q)$	Actual $p_z(z_k)$	
$z_0 = 0$	0.00	0.00	
$z_1 = 1$	0.00	0.00	
$z_2 = 2$	0.00	0.00	
$z_3 = 3$	0.15	0.19	
$z_4 = 4$	0.20	0.25	
$z_5 = 5$	0.30	0.21	
$z_6 = 6$	0.20	0.24	
$z_7 = 7$	0.15	0.11	

Image Enhancement in Spatial Doma Histogram Matching: Example (Discrete Case)

Obtain the scaled histogram-equalized values,

$$s_0 = 1, s_1 = 3, s_2 = 5, s_3 = 6, s_4 = 7,$$

 $s_5 = 7, s_6 = 7, s_7 = 7.$

Compute all the values of the transformation function G,

$$G(z_0) = 7\sum_{j=0}^{0} p_z(z_j) = 0.00 \rightarrow 0$$

$$G(z_1) = 0.00 \rightarrow 0 \qquad G(z_2) = 0.00 \rightarrow 0$$

$$G(z_3) = 1.05 \rightarrow 1 \qquad G(z_4) = 2.45 \rightarrow 2$$

$$G(z_5) = 4.55 \rightarrow 5 \qquad G(z_6) = 5.95 \rightarrow 6$$

$$G(z_7) = 7.00 \rightarrow 7$$

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

z_q	Specified $p_z(z_q)$	Actual $p_z(z_k)$
$z_0 = 0$	0.00	0.00
$z_1 = 1$	0.00	0.00
$z_2 = 2$	0.00	0.00
$z_3 = 3$	0.15	0.19
$z_4 = 4$	0.20	0.25
$z_5 = 5$	0.30	0.21
$z_6 = 6$	0.20	0.24
$z_7 = 7$	0.15	0.11

Histogram Matching: Example (Discrete Case)

FIGURE 3.22

- (a) Histogram of a 3-bit image. (b) Specified histogram.
- (c) Transformation function obtained from the specified histogram.
- (d) Result of performing histogram specification. Compare (b) and (d).

Image Enhancement in Spatial Doma Histogram Matching: Example (Discrete Case)

Obtain the scaled histogram-equalized values,

$$s_0 = 1, s_1 = 3, s_2 = 5, s_3 = 6, s_4 = 7,$$

 $s_5 = 7, s_6 = 7, s_7 = 7.$

Compute all the values of the transformation function
 G,

$$\begin{split} G(z_0) &= 7 \sum_{j=0}^{0} p_z(z_j) = 0.00 & \to 0 \\ G(z_1) &= 0.00 & \to 0 & G(z_2) = 0.00 & \to 0 \\ G(z_3) &= 1.05 & \to 1 & \mathbf{s_0} & G(z_4) = 2.45 & \to 2 & \mathbf{s_1} \\ G(z_5) &= 4.55 & \to 5 & \mathbf{s_2} & G(z_6) = 5.95 & \to 6 & \mathbf{s_3} \\ G(z_7) &= 7.00 & \to 7 & \mathbf{s_4} & \mathbf{s_5} & \mathbf{s_6} & \mathbf{s_7} \end{split}$$

Histogram Matching: Example (Discrete Case)

Histogram Matching: Example (Discrete Case)

$$r_k \to z_q$$

$$0 \rightarrow 3$$

$$1 \rightarrow 4$$

$$2 \rightarrow 5$$

$$3 \rightarrow 6$$

$$4 \rightarrow 7$$

$$5 \rightarrow 7$$

$$6 \rightarrow 7$$

$$7 \rightarrow 7$$

a b

FIGURE 3.23

(a) Image of the Mars moon Phobos taken by NASA's *Mars Global Surveyor*. (b) Histogram. (Original image courtesy of NASA.)

Histogram Matching: Example

a b

FIGURE 3,24

- (a) Transformation function for histogram equalization.
- (b) Histogramequalized image (note the washedout appearance).
- (c) Histogram of (b).

Histogram Matching: Example

Intensity

a

FIGURE 3.25

- (a) Specified histogram.
- (b) Transformations.
- c) Enhanced image using mappings from curve (2).
- (d) Histogram of (c).

Next Class

- Image Enhancement in Spatial Domain
 - **Local Histogram Processing**
 - Using Histogram Statistics for Image Enhancement

Thank you: Question?