1. Продолжите равенства $(\lambda + \mu)a = \dots$ и $\lambda(a+b) = \dots$, где $\lambda, \mu \in \mathbb{F}$ — элементы из поля, а $a,b \in L$ — элементы линейного пространства.

Ответ:

•
$$(\lambda + \mu)a = \lambda a + \mu a$$

•
$$\lambda(a+b) = \lambda a + \lambda b$$

2. Используя аксиомы линейного пространства и следствия из него, покажите, что $(-\lambda)a = \lambda \cdot (-a)$ и $\lambda(a-b) = (-\lambda)(b-a)$, где $\lambda \in \mathbb{F}$ — элемент из поля, а $a,b \in L$ — элементы линейного пространства.

Ответ:

•
$$(-\lambda)a = \lambda \cdot (-a)$$

•
$$\lambda(a-b) = (-\lambda)(b-a)$$

Объяснение:

Эти равенства можно доказать, используя аксиомы линейного пространства и свойства умножения на скаляр. Например, $(-\lambda)a=\lambda\cdot(-a)$ следует из того, что умножение на отрицательный скаляр эквивалентно умножению на положительный скаляр и отрицательный вектор.

3. Какие линейные пространства называются вещественными? Комплексными?

Ответ:

- ullet Вещественные линейные пространства: пространства над полем вещественных чисел ${\mathbb R}.$
- Комплексные линейные пространства: пространства над полем комплексных чисел С.

Объяснение:

Тип линейного пространства определяется полем, над которым оно построено. Вещественные пространства используют вещественные числа, а комплексные — комплексные числа.

4. Какое пространство называется арифметическим (координатным) над полем F?

Ответ:

Арифметическое пространство над полем $\mathbb F$ — это пространство $\mathbb F^n$, где элементы представляют собой наборы из n элементов поля $\mathbb F$.

Объяснение:

Арифметическое пространство — это пространство, где векторы представляют собой наборы чисел из поля $\mathbb F$. Например, $\mathbb R^3$ — это арифметическое пространство над полем вещественных чисел.

5. Почему вещественные многочлены $\mathbb{R}[x]$ фиксированной степени n с естественными операциями сложения и умножения на скаляр не являются линейным пространством? Какая аксиома линейного пространства нарушается?

Ответ:

Вещественные многочлены фиксированной степени n не образуют линейное пространство, так как они не замкнуты относительно сложения.

Объяснение:

Если взять два многочлена степени n, их сумма может быть многочленом степени выше n, что нарушает аксиому замкнутости относительно сложения.

6. Сформулируйте определение линейной комбинации векторов.

Ответ:

Линейная комбинация векторов v_1, v_2, \ldots, v_n — это вектор вида $\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n$, где $\lambda_1, \lambda_2, \ldots, \lambda_n$ — скаляры из поля $\mathbb F$.

Объяснение:

Линейная комбинация — это способ представления одного вектора как суммы других векторов, умноженных на скаляры.

7. Сформулируйте определение линейной оболочки. Как обозначается линейная оболочка векторов из множества S ?

Ответ:

Линейная оболочка множества векторов S — это множество всех линейных комбинаций векторов из S. Обозначается как $\mathrm{span}(S)$.

Объяснение:

Линейная оболочка — это наименьшее линейное пространство, содержащее все векторы из множества S.

8. В каком случае пространство L порождается множеством векторов S ?

Ответ:

Пространство L порождается множеством векторов S, если $L=\mathrm{span}(S)$.

Объяснение:

Это означает, что любой вектор в пространстве L может быть представлен как линейная комбинация векторов из S.

9. Какая линейная комбинация векторов называется тривиальной? Нетривиальной?

Ответ:

- Тривиальная линейная комбинация: когда все коэффициенты равны нулю.
- Нетривиальная линейная комбинация: когда хотя бы один коэффициент не равен нулю.

Объяснение:

Тривиальная комбинация всегда дает нулевой вектор, в то время как нетривиальная может давать любой вектор.

10. В каком случае векторы называются линейно зависимыми? Независимыми?

Ответ:

- Линейно зависимые векторы: если существует нетривиальная линейная комбинация, равная нулевому вектору.
- Линейно независимые векторы: если единственная линейная комбинация, равная нулевому вектору, — это тривиальная комбинация.

Объяснение:

Линейная зависимость означает, что один вектор может быть выражен через другие, а линейная независимость — что это невозможно.

11. Дайте определение понятия системы векторов? Чем система отличается от множества?

Ответ:

Система векторов — это упорядоченный набор векторов. Множество векторов — это неупорядоченный набор векторов.

Объяснение:

В системе важен порядок векторов, в то время как в множестве порядок не имеет значения.

12. В каком случае система векторов называется линейно зависимой?

Ответ:

Система векторов называется линейно зависимой, если существует нетривиальная линейная комбинация векторов этой системы, равная нулевому вектору.

Объяснение:

Это означает, что один из векторов системы может быть выражен через другие векторы этой системы.

13. Может ли система, состоящая из одного вектора, быть линейно зависимой? Почему?

Ответ:

Да, если этот вектор — нулевой вектор.

Объяснение:

Нулевой вектор всегда линейно зависим, так как $\lambda \cdot 0 = 0$ для любого скаляра λ .

14. Сформулируйте определение базиса линейного пространства.

Ответ:

Базис линейного пространства — это линейно независимая система векторов, которая порождает это пространство.

Объяснение:

Базис позволяет любой вектор в пространстве представить как линейную комбинацию базисных векторов.

15. Может ли в линейно независимой системе векторов быть линейно зависимая подсистема? Почему?

Ответ:

Нет, не может.

Объяснение:

Если бы в линейно независимой системе была линейно зависимая подсистема, то вся система была бы линейно зависимой.

16. Укажите возможный базис пространства \mathbb{F}^n .

Ответ:

Одним из возможных базисов пространства \mathbb{F}^n является стандартный базис $\{e_1, e_2, \dots, e_n\}$, где e_i — вектор с единицей на i-й позиции и нулями на остальных.

Объяснение:

Этот базис линейно независим и порождает пространство \mathbb{F}^n .

17. Приведите пример базиса в пространстве матриц размерности 2×3 .

Ответ:

Пример базиса в пространстве матриц размерности 2×3 :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Объяснение:

Эти матрицы линейно независимы и порождают пространство всех матриц размерности 2 imes 3.

18. Что называется размерностью векторного пространства? Как обозначается размерность пространства L ?

Ответ:

Размерность векторного пространства — это количество векторов в любом его базисе. Обозначается как $\dim(L)$.

Объяснение:

Размерность показывает, сколько линейно независимых векторов нужно для порождения всего пространства.

19. Чему равна размерность пространства $\{0\}$?

Ответ:

Размерность пространства {0} равна 0.

Объяснение:

Это пространство состоит только из нулевого вектора и не имеет базиса.

20. Какое линейное пространство называется конечномерным? Бесконечномерным?

Ответ:

- Конечномерное пространство: пространство, у которого есть конечный базис.
- Бесконечномерное пространство: пространство, у которого нет конечного базиса.

Объяснение:

Конечномерные пространства имеют конечную размерность, а бесконечномерные бесконечную.

21. В каком случае подмножество $U \subset L$ будет являться подпространством L ?

Ответ:

Подмножество $U \subset L$ будет являться подпространством L, если U само является линейным пространством относительно тех же операций сложения и умножения на скаляр.

Объяснение:

Подпространство должно быть замкнуто относительно этих операций и содержать нулевой вектор.

22. Какие подпространства L называются тривиальными?

Ответ:

Тривиальные подпространства: $\{0\}$ и само пространство L.

Объяснение:

Эти подпространства содержат либо только нулевой вектор, либо все векторы пространства $L. \$

23. Как связаны размерности подпространства и пространства, если они конечномерны?

Ответ:

Размерность подпространства всегда меньше или равна размерности пространства.

Объяснение:

Подпространство не может иметь большую размерность, чем само пространство.

24. Какое множество называется линейным многообразием? Как определяется его размерность?

Ответ:

Линейное многообразие — это множество вида v+U, где v — вектор, а U — подпространство. Размерность линейного многообразия равна размерности подпространства U.

Объяснение:

Линейное многообразие — это сдвиг подпространства на вектор v.

25. При каком условии линейное многообразие называют гиперплоскостью в линейном пространстве? Как иначе называют гиперплоскость в пространстве $\dim V = 2$.

Ответ:

Линейное многообразие называют гиперплоскостью, если его размерность на единицу меньше размерности пространства. В пространстве $\dim V=2$ гиперплоскость называется прямой.

Объяснение:

Гиперплоскость — это подпространство, размерность которого на единицу меньше размерности всего пространства.

26. При каком условии линейное многообразие является подпространством?

Ответ:

Линейное многообразие является подпространством, если оно проходит через начало координат (нулевой вектор).

Объяснение:

Подпространство должно содержать нулевой вектор.

27. В каком случае размерность подпространства $U\leqslant V$ совпадает с размерностью пространства V ?

Ответ:

Размерность подпространства U совпадает с размерностью пространства V, если U=V.

Объяснение:

Если подпространство совпадает с самим пространством, их размерности равны.

28. Напишите размерности пространства диагональных матриц $\mathrm{Mat}_n^D(\mathbb{R})$, пространства полиномов $\mathbb{R}[x]\leqslant n$ степени не выше n, комплексного арифметического пространства $\mathbb{C}n$.

Ответ:

- Размерность пространства диагональных матриц $\operatorname{Mat}_n^D(\mathbb{R})$ равна n.
- Размерность пространства полиномов $\mathbb{R}[x] \leqslant n$ степени не выше n равна n+1.
- Размерность комплексного арифметического пространства $\mathbb{C}n$ равна n.

Объяснение:

Эти размерности определяются количеством линейно независимых элементов в каждом пространстве.

29. Какие линейные пространства называются изоморфными?

Ответ:

Линейные пространства называются изоморфными, если существует взаимно-однозначное линейное отображение между ними.

Объяснение:

Изоморфные пространства имеют одинаковую структуру и свойства.

30. Благодаря чему существует возможность построить изоморфизм между линейным пространством и координатным пространством той же размерности?

Ответ:

Изоморфизм между линейным пространством и координатным пространством той же размерности можно построить благодаря существованию базиса.

Объяснение:

Базис позволяет установить взаимно-однозначное соответствие между векторами линейного пространства и их координатами в координатном пространстве.

31. Почему изоморфность линейных пространств является отношением эквивалентности?

Ответ:

Изоморфность линейных пространств является отношением эквивалентности, так как она рефлексивна, симметрична и транзитивна.

Объяснение:

- Рефлексивность: любое пространство изоморфно самому себе.
- Симметричность: если L_1 изоморфно L_2 , то L_2 изоморфно L_1 .
- Транзитивность: если L_1 изоморфно L_2 и L_2 изоморфно L_3 , то L_1 изоморфно L_3 .

32. Назовите достаточное условие того, чтобы линейные пространства были изоморфными.

Ответ:

Достаточное условие для изоморфности линейных пространств — это равенство их размерностей.

Объяснение:

Если два линейных пространства имеют одинаковую размерность, они изоморфны.

33. Сформулируйте определение ранга матрицы.

Ответ:

Ранг матрицы — это максимальное количество линейно независимых строк (или столбцов) этой матрицы.

Объяснение:

Ранг показывает, сколько линейно независимых векторов можно найти в матрице.

34. Дайте определение базисного минора.

Ответ:

Базисный минор — это ненулевой минор максимального порядка в матрице.

Объяснение:

Базисный минор определяет базисные строки и столбцы матрицы.

35. Сформулируйте теорему о базисном миноре.

Ответ:

Теорема о базисном миноре утверждает, что ранг матрицы равен порядку её базисного минора.

Объяснение:

Эта теорема связывает ранг матрицы с её базисными минорами.

36. Как найти ранг ступенчатой матрицы?

Ответ:

Ранг ступенчатой матрицы равен количеству ненулевых строк.

Объяснение:

В ступенчатой матрице ненулевые строки линейно независимы.

37. Сформулируйте теорему о ранге суммы и произведения матриц.

Ответ:

Теорема о ранге суммы и произведения матриц утверждает, что:

- Ранг суммы двух матриц не превосходит суммы их рангов.
- Ранг произведения двух матриц не превосходит минимального из рангов этих матриц.

Объяснение:

Эти неравенства помогают оценить ранг сложных матричных выражений.

38. О чём говорит характеристика совместности СЛАУ? Несовместности?

Ответ:

- Совместность СЛАУ: система имеет хотя бы одно решение.
- Несовместность СЛАУ: система не имеет решений.

Объяснение:

Совместность означает, что существует набор значений переменных, удовлетворяющий всем уравнениям системы.

39. Напишите теорему Кронекера-Капелли.

Ответ:

Теорема Кронекера-Капелли утверждает, что система линейных уравнений совместна тогда и только тогда, когда ранг расширенной матрицы равен рангу матрицы коэффициентов.

Объяснение:

Эта теорема дает критерий совместности системы линейных уравнений.

40. Что можно сказать о решениях СЛАУ, если $rk(A\mid b)=rk(A)=n$, где n - количество неизвестных, $rk(A\mid b), rk(A)$ - ранги расширенной матрицы и матрицы коэффициентов соответственно?

Ответ:

Если $rk(A \mid b) = rk(A) = n$, то система имеет единственное решение.

Объяснение:

Это означает, что система совместна и определена однозначно.

41. Что можно сказать о решениях СЛАУ, если $rk(A \mid b) = rk(A) + 1$, где $rk(A \mid b), rk(A)$ ранги расширенной матрицы и матрицы коэффициентов соответственно?

Ответ:

Если $rk(A \mid b) = rk(A) + 1$, то система несовместна.

Объяснение:

Это означает, что не существует решений, удовлетворяющих всем уравнениям системы.

42. Что можно сказать о решениях СЛАУ, если $rk(A\mid b)=rk(A)< n$ где n - количество неизвестных, $rk(A\mid b), rk(A)$ - ранги расширенной матрицы и матрицы коэффициентов соответственно?

Ответ

Если $rk(A \mid b) = rk(A) < n$, то система имеет бесконечно много решений.

Объяснение:

Это означает, что система совместна, но не определена однозначно.

43. В каком случае СЛАУ называется однородной? Неоднородной?

Ответ:

- Однородная СЛАУ: система, в которой все свободные члены равны нулю.
- Неоднородная СЛАУ: система, в которой хотя бы один свободный член не равен нулю.

Объяснение:

Однородные системы имеют нулевой вектор в качестве решения.

44. Какой алгебраической структурой обладает множество решений однородной СЛАУ?

Ответ:

Множество решений однородной СЛАУ обладает структурой линейного пространства.

Объяснение:

Это означает, что любая линейная комбинация решений также является решением.

45. Когда однородная СЛАУ имеет ненулевое решение?

OTRET

Однородная СЛАУ имеет ненулевое решение, если ранг матрицы коэффициентов меньше количества неизвестных.

Объяснение:

Это означает, что система имеет бесконечно много решений.

46. Чему равна размерность пространства X решений однородной СЛАУ с n неизвестными и матрицей коэффициентов A ?

Ответ:

Размерность пространства решений однородной СЛАУ равна n-rk(A), где rk(A) — ранг матрицы коэффициентов.

Объяснение:

Это следует из теоремы о размерности пространства решений однородной системы.

47. Сформулируйте определение ФСР (фундаментальной системы решений).

Ответ:

Фундаментальная система решений (ФСР) — это базис пространства решений однородной СЛАУ.

Объяснение:

ФСР состоит из линейно независимых решений, которые порождают все пространство решений.

48. Что называется общим решением однородной СЛАУ?

Ответ:

Общее решение однородной СЛАУ — это выражение, представляющее все решения системы в виде линейной комбинации базисных решений.

Объяснение:

Общее решение позволяет получить любое решение системы, изменяя коэффициенты линейной комбинации.

49. Опишите способ задания подпространства как решения однородной СЛАУ?

Ответ:

Подпространство можно задать как множество решений однородной СЛАУ.

Объяснение:

Это означает, что любое решение системы принадлежит этому подпространству.

50. Запишите теорему о структуре решений неоднородной СЛАУ.

Ответ:

Теорема о структуре решений неоднородной СЛАУ утверждает, что общее решение неоднородной СЛАУ можно представить как сумму частного решения и общего решения соответствующей однородной СЛАУ.

Объяснение:

Это означает, что любое решение неоднородной системы можно получить, добавив частное решение к любому решению однородной системы.

51. Запишите альтернативу Фредгольма.

Ответ:

Альтернатива Фредгольма утверждает, что для линейного оператора A и вектора b одно из следующих утверждений верно:

- 1. Уравнение Ax = b имеет решение.
- 2. Сопряженное уравнение $A^{st}y=0$ имеет ненулевое решение.

Объяснение:

Эта альтернатива связывает решения прямого и сопряженного уравнений.

52. Пусть $U, W \leqslant L$. Как определяется сумма U и W ?

Ответ

Сумма подпространств U и W определяется как множество всех сумм векторов из U и W: $U+W=\{u+w\mid u\in U, w\in W\}$

Объяснение:

Сумма подпространств — это наименьшее подпространство, содержащее оба подпространства.

53. Из каких элементов состоит пересечение подпространств U и W ? Как обозначается пересечение пространств?

Ответ:

Пересечение подпространств U и W состоит из всех векторов, принадлежащих обоим подпространствам:

$$U \cap W = \{v \mid v \in U \text{ и } v \in W\}$$

Объяснение:

Пересечение подпространств — это наибольшее подпространство, содержащееся в обоих подпространствах.

54. Какой из операций с подпространствами U и V определяется наименьшее подпространство, содержащее оба эти подпространства?

Ответ:

Сумма подпространств U и V определяет наименьшее подпространство, содержащее оба эти подпространства.

Объяснение:

Сумма подпространств — это наименьшее подпространство, которое включает все векторы из обоих подпространств.

55. Какой из операций с подпространствами U и V определяется наибольшее подпространство, которое содержится в обоих подпространствах?

Ответ:

Пересечение подпространств U и V определяет наибольшее подпространство, которое содержится в обоих подпространствах.

Объяснение:

Пересечение подпространств — это наибольшее подпространство, которое включает только те векторы, которые принадлежат обоим подпространствам.

56. В каком случае базис называется согласованным с подпространством?

Ответ:

Базис называется согласованным с подпространством, если он содержит базис этого подпространства.

Объяснение:

Согласованный базис позволяет легко работать с подпространством в контексте всего пространства.

57. Напишите формулу Грассмана.

Ответ:

Формула Грассмана для подпространств U и W пространства V: $\dim(U+W)=\dim(U)+\dim(W)-\dim(U\cap W)$

Объяснение:

Эта формула связывает размерности суммы и пересечения подпространств.

58. В каком случае сумма подпространств U и W называется прямой? Как обозначается прямая сумма этих пространств?

Ответ:

Сумма подпространств U и W называется прямой, если $U\cap W=\{0\}$. Обозначается как $U\oplus W$.

Объяснение:

Прямая сумма означает, что подпространства не пересекаются, кроме нулевого вектора.

59. Сформулируйте необходимое и достаточное условие, при котором сумма двух подпространств является прямой.

Ответ:

Сумма двух подпространств U и W является прямой тогда и только тогда, когда $U \cap W = \{0\}$.

Объяснение:

Это условие гарантирует, что подпространства не пересекаются, кроме нулевого вектора.

60. Пусть $U\leqslant V$. Какое пространство называется прямым дополнением U в V ?

Ответ:

Пространство W называется прямым дополнением U в V, если $V=U\oplus W$.

Объяснение:

Прямое дополнение позволяет разложить пространство V на два непересекающихся подпространства.

61. Пусть $\oplus_{i=1}^n U_i = V$. Что называется проекцией вектора $v \in V$ на подпространство U_i ?

Ответ:

Проекция вектора $v\in V$ на подпространство U_i — это уникальный вектор $u_i\in U_i$, такой что $v=u_1+u_2+\ldots+u_n$, где $u_j\in U_j$ для всех j.

Объяснение:

Проекция позволяет разложить вектор на компоненты в каждом из подпространств,

62. Что позволяет представить конечномерное пространство в виде прямой суммы одномерных пространств?

Ответ:

Базис конечномерного пространства позволяет представить его в виде прямой суммы одномерных пространств.

Объяснение:

Каждый базисный вектор порождает одномерное подпространство, и их прямая сумма дает все пространство.

63. Дайте определение матрице перехода. Как она обозначается?

Ответ:

Матрица перехода — это матрица, которая переводит координаты вектора из одного базиса в другой. Обозначается как $C=(e
ightharpoonup ar{e})$.

Объяснение:

Матрица перехода позволяет пересчитывать координаты вектора при смене базиса.

64. Как связать с помощью матрицы перехода две строки, элементы которых являются базисными векторами?

Ответ

Матрица перехода связывает две строки базисных векторов следующим образом: $ar{e}_i = \sum_i C_{ji} e_j$

Объяснение:

Это означает, что каждый новый базисный вектор выражается через старые базисные векторы с коэффициентами из матрицы перехода.

65. Запишите свойства матрицы перехода.

Ответ:

Матрица перехода является квадратной и обратимой.

Объяснение:

Эти свойства гарантируют, что матрица перехода может быть использована для пересчета координат в обоих направлениях.

66. Пусть $C=(e
ightharpoonup ar{e})-$ матрица перехода, \widetilde{X},X - координатные столбцы вектора $x\in V$ в базисе e и $ar{e}$ соответственно. Запишите связь между перечисленными объектами.

Ответ:

Связь между координатными столбцами вектора x в базисах e и \bar{e} задается следующим образом:

$$\widetilde{X} = C^{-1}X$$

Объяснение:

Это означает, что координаты вектора в новом базисе получаются умножением координат в старом базисе на обратную матрицу перехода.

67. Какое преобразование называется контравариантным?

Ответ:

Контравариантное преобразование — это преобразование координат вектора при смене базиса с использованием обратной матрицы перехода.

Объяснение:

Контравариантное преобразование позволяет сохранить вектор неизменным при смене базиса.

68. Что такое полная линейная группа и как она обозначается?

Ответ:

Полная линейная группа — это группа всех обратимых линейных преобразований пространства. Обозначается как $GL(n,\mathbb{F})$.

Объяснение:

Эта группа включает все линейные преобразования, которые имеют обратные.

69. Что такое специальная линейная группа и как она обозначается?

Ответ:

Специальная линейная группа — это группа всех линейных преобразований с определителем, равным 1. Обозначается как $SL(n,\mathbb{F})$.

Объяснение:

Эта группа включает линейные преобразования, которые сохраняют ориентацию.

70. Какие матрицы содержатся в унитреугольной группе?

OTRAT

Унитреугольная группа содержит все верхнетреугольные матрицы с единицами на диагонали.

Объяснение:

Эти матрицы имеют нули ниже главной диагонали и единицы на диагонали.

71. Каким свойством обладают ортогональные матрицы по определению?

Ответ:

Ортогональные матрицы обладают свойством $A^TA=I$, где A^T — транспонированная матрица, а I — единичная матрица.

Объяснение:

Это означает, что ортогональные матрицы сохраняют скалярное произведение и длины векторов.

72. Запишите общий вид матрицы поворота в двумерном пространстве.

Ответ:

Общий вид матрицы поворота на угол θ в двумерном пространстве:

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Объяснение:

Эта матрица поворачивает векторы на угол heta против часовой стрелки.

73. Какие объекты необходимо задать, чтобы определить элемент евклидовой группы?

Ответ:

Для определения элемента евклидовой группы необходимо задать ортогональную матрицу и вектор переноса.

Объяснение:

Эвклидова группа включает повороты, отражения и переносы, которые сохраняют расстояния и углы.