Réseaux de neurones convolutionnels

Les réseaux neurones convolutifs et bio inspiration

abilistic

ibution

Principe d'un réseau de neurone CNN

La convolution en détail

Le kernel

Padding

Stride

Feature Map

Description de l'image en termes de caractéristique associée à chaque pixel.

UNE IMAGE EN NB ET UNE CONVOLUTION, CA FAIT QUOI ?

UNE IMAGES AVEC DEUX OU n FILTRES CA DONNE;

ET EN COULEURS, ALORS!

Plus il y a de kernel, plus on rit!

La couche de pooling 2D

- Le pooling s'applique sur la features map et la rééchantillonne.
- Similaire à la convolution -> la fenêtre se déplace sur la features map.
 - > Réduit la charge de calcul
 - > Réduit le nombre de paramètres

La couche de pooling 2D

Définition dans keras :

- Stride (pas)
- Padding
- Size

model.add(AveragePooling2D(pool_size = (2,2), strides=(2,2), padding="valid"))

Maxpooling2D

- Elle sélectionne 4 valeurs et garde en mémoire la plus grande.
- Dans cette configuration, la Pooled feature map est 4x moins grande que la feature map.

Average Pooling 2D

- Identique au Maxpooling, mais au lieu de sélectionner la valeur la plus élevée, l'Average Pooling fait la moyenne de toutes les valeurs observées.

Schéma du fonctionnement du modèle CNN

Extraction des informations de l'image grâce à un enchaînement de filtres (et de simplifications)

Prédiction de la classe de l'image

Architecture typique d'un CNN

Un réseau CNN est constitué de trois parties :

- Une partie convolutive (features extraction)
- Un Flatten()
- Une partie fully-connected

Architecture LeNet-5

"Gradient-Based Learning Applied To Document Recognition" 1998 par Yann LeCun, Léon Bottou, Yoshua Bengio, et Patrick Haffner

Architecture LeNet-5

- 3 couches de convolution et 2 couches de sous-échantillonnage (AveragePooling)
- 2 couches fully-connected
- Reprise de l'architecture classique : convolution / fully-connected

Architecture LeNet-5 avec Keras

Utilisation de la fonction Tangente hyperbolique.


```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, Dense, Flatten, AveragePooling2D

model = Sequential()

model.add(Conv2D(filters = 6, kernel_size=(5,5), strides=1, activation='tanh', input_shape=(28, 28, 1), padding="same"))
model.add(AveragePooling2D(pool_size = (2,2), strides=(2,2), padding="valid"))

model.add(Conv2D(filters = 16, kernel_size=(5,5), strides=1, activation='tanh', padding="valid"))
model.add(AveragePooling2D(pool_size = (2,2), strides=(2,2), padding="valid"))

model.add(Conv2D(filters=120, kernel_size=(5, 5), strides=(1, 1), activation='tanh', padding='valid'))

model.add(Flatten())

model.add(Dense(units = 84, activation='tanh'))
model.add(Dense(units = 10, activation='softmax'))

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
```

1 model.summary()

Model: "sequential"

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	28, 28, 6)	156
average_pooling2d (AveragePo	(None,	14, 14, 6)	0
conv2d_1 (Conv2D)	(None,	10, 10, 16)	2416
average_pooling2d_1 (Average	(None,	5, 5, 16)	Ø
conv2d_2 (Conv2D)	(None,	1, 1, 120)	48120
flatten (Flatten)	(None,	120)	0
dense (Dense)	(None,	84)	10164
dense 1 (Dense)	(None,	10)	850

Architecture LeNet-5

- Son application majeure a été pour la reconnaissance de caractères manuscrits (MNIST)
- Automatisation du classement des chèques de banque.

Vous n'avez pas de questions?!

Une équipe à votre service

