Least Squares

Robbert Hofman

July 2016

1 Introduction

hum: humidity measured by gehaka; cycles: cycles measured by our meter

Sample number	Cycles	Humidity
0	3497	11.1
1	3994	11.9
2	4511	13.0
3	4913	14.1
•••		
\mathbf{n}	2900	10.1

$$y_n(x) = \sum_{k=0}^{n} {'a_k T_k(x)}$$

a*cycles+b=hum+error

 $f(a,b) = [hum_0 - (a*cyclos_0)]^2 + [hum_1 - (a*cyclos_1)]^2 + \ldots + [hum_n - (a*cyclos_n)]^2 + \dots + [hum_n - (a*cyclos_n)]^2$

To minimize this distance function, we need to set all first partial derivatives to zero:

 $\frac{\partial}{\partial a}yo$

2 Conclusion