

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW

III ETAP WOJEWÓDZKI

09 lutego 2015

Ważne informacje:

- 1. Masz 120 minut na rozwiązanie wszystkich zadań.
- 2. Zapisuj szczegółowe obliczenia i komentarze do rozwiązań zadań prezentujące sposób twojego rozumowania. Możesz korzystać z kalkulatora.
- 3. Pisz długopisem lub piórem, nie używaj korektora. Jeżeli się pomylisz, przekreśl błąd i napisz ponownie. Wykonuj staranne rysunki, korzystając z przyborów geometrycznych.
- 4. Pisz czytelnie i zamieszczaj odpowiedzi w miejscu na to przeznaczonym. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	30	100%	
Uzyskana liczba punktów		%	
Podpis osoby sprawdzającej			

W zadaniach 1. -4. wybierz i zaznacz, z podanych propozycji prawidłowe zakończenie zdania lub prawidłową odpowiedź.

Zadanie 1. (1pkt.)

Dwa przewody skrzyżowane nie dotykające się umieszczone są jak na rysunku. Identyczne prądy *I* płyną w obu przewodach w kierunkach wskazanych na rysunku.

Osłabienie wypadkowego pola magnetycznego powstałego w wyniku nakładania się na siebie pól magnetycznych wytwarzanych przez przewodniki z prądem:

- A. nie występuje w żadnym z zaznaczonych obszarów.
- B. występuje we wszystkich zaznaczonych obszarach.
- C. występuje w obszarach 1 i 4.
- D. występuje w obszarach 2 i 3.

Zadanie 2. (1pkt.)

Podczas doświadczenia, w którym badano obrazy przedmiotów otrzymywanych za pomocą soczewek skupiających otrzymano najpierw wyraźny obraz przedmiotu na ekranie. Następnie połowa soczewki została zaklejona czarnym papierem i nie zmieniając położenia przedmiotu, soczewki i ekranu otrzymano na ekranie:

- A. obraz taki sam, jak w przypadku użycia soczewki bez zaklejenia jej połowy papierem.
- B. cały obraz o jasności mniejszej niż poprzednio.
- C. cały obraz o jasności większej niż poprzednio.
- D. tylko połowę obrazu.

Zadanie 3. (1pkt.)

Przewód o oporze R przecięto w połowie długości i otrzymane części połączono równolegle. Opór tak otrzymanego przewodnika wynosi:

A. 2R.

B. R.

C. $\frac{1}{2}R$. D. $\frac{1}{4}R$.

Zadanie 4. (1pkt.)

Pod działaniem siły F ciało przesunęło się po osi x. Na rysunku przedstawiono wykres zależności wartości siły F od położenia ciała na osi x. Na podstawie wykresu możemy wnioskować, że praca wykonana przez tę siłę na drodze 2 m, wynosi:

A. 0 J.

B. 2 J.

C. -2 J.

D. 4 J.

Nr zadania	1	2	3	4
Maks. ilość punktów	1	1	1	1
Uzyskana przez ucznia liczba punktów				

Zadanie 5. (5 pkt.)

Pewną ilość wody o temperaturze 20°C ogrzewano doprowadzając jednostajnie ciepło. Po
upływie 5 minut i 20 sekund woda osiągnęła temperaturę 100°C a po dalszych 36 minutach
zamieniła się całkowicie w parę. Dokonaj analizy zjawisk występujących w sytuacji opisanej
w treści zadania. Określ zależność pomiędzy ilością doprowadzonego ciepła i czasem
ogrzewania. Oblicz ciepło parowania wody. Ciepło właściwe wody 4200 $\frac{J}{kg \cdot {}^o C}$.

Zadanie 6. (5 pkt.)

Uzwojenie pierwotne transformatora składające się z 690 zwojów zasilane jest napięcier
230 V. Obwód wtórny tego transformatora stanowi metalowa rynienka w kształci
pierścienia, mająca opór 3 mΩ, do której nalano 15 g wody o temperaturze 20°C. Oblicz, p
jakim czasie od włączenia transformatora do sieci woda w rynience zagotuje się? Oblic
natężenia prądów płynących w uzwojeniu wtórnym i pierwotnym transformatora. Przyjmij, ż
podczas pracy transformatora nie ma żadnych strat energii oraz pomiń przyrost energi
J
wewnętrznej rynienki. Ciepło właściwe wody 4200 $\frac{J}{kg^{o}C}$.

Zadanie 7. (4 pkt.)

Ciśnienie atmosferyczne na powierzchni wody w odkrytym basenie wynosi 1013 hPa. Oblicz: a) głębokość, na której ciśnienie wynosi 1,5·10⁵ Pa, b) o ile procent większe ciśnienie (w stosunku do ciśnienia atmosferycznego) musi wytrzymać nurek nurkujący na głębokości 7 m, c) ciśnienie na wysokości 1,2 km nad powierzchnią wody w basenie zakładamy, że gęstość powietrza nie zmienia się wraz z wysokością. Gęstość wody 1000 $\frac{kg}{m^3}$, gęstość powietrza 1,29 $\frac{kg}{m^3}$, $g \approx 10 \frac{m}{s^2}$

.....

Zadanie 8. (5pkt.)

Kulka metalowa o bardzo małych rozmiarach spada swobodnie z punktu znajdującego się na
wysokości 7 cm ponad osią aparatu fotograficznego. Tor kulki przecina tę oś w odległośc
70 cm od obiektywu aparatu fotograficznego. Aparat jest ustawiony na ostrość na ta
odległość. Ogniskowa obiektywu wynosi 7 cm. Migawka aparatu fotograficznego otwiera się
w chwili, gdy kulka znajduje się na osi obiektywu, zamyka się po upływie 0,01 sekundy
Wykonując odpowiednie obliczenia podaj trzy cechy obrazu spadającej kulki na kliszy. Dla
uproszczenia obliczeń zakładamy, że kulka jest punktem oraz promienie światła docieraja
jednocześnie z położenia początkowego i końcowego kulki do obiektywu ($c = 3.10^5 \frac{km}{s}$)
Wykonaj rysunek pomocniczy. Zakładamy, że $g = 10 \frac{m}{s^2}$.

Zadanie 9. (4 pkt.)

Pocisk o masie 10 g porusza się z szybkością 800 $\frac{m}{s}$, przebija drzewo o grubości 30 cm
i porusza się dalej z szybkością 300 $\frac{m}{s}$. Oblicz:
a) pracę wykonaną przez siły tarcia podczas przebijania drzewa przez pocisk,
b) średnią siłę oporu działającą na pocisk podczas przebijania drzewa,
c) czas przebijania drzewa przez pocisk.

Zadanie 10. (3 pkt.)

Masz do dyspozycji 3 idealnie sprężyste kule o jednakowych masach zawieszone na niciach
Zaprojektuj doświadczenie, którego przeprowadzenie – analiza zachowania się kul, będzie
świadczyć o tym, że spełnione są zasady zachowania energii kinetycznej i pędu. Uzasadni
swoją odpowiedź (projekt).

Brudnopis