```
from google.colab import drive
drive.mount('/content/gdrive')
      Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mount("/content/gdrive", force_remount=True).
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_excel(r"/content/gdrive/My Drive/content/2255872-anime_data.xlsx")
df.head(2)
                title description mediaType eps duration ongoing sznOfRelease years_running studio_primary studios_colab ... tag_Superr
             Fullmetal
                         foundation of
            Alchemist:
                           alchemy is
                                                TV
                                                     64
                                                                NaN
                                                                         False
                                                                                         Spring
                                                                                                                1
                                                                                                                                                    0
                                                                                                                              Bones
          Brotherhood
                         based on the
                          Mitsuha and
                          Taki are two
                                                               107.0
                                                                                                                0
                                                                                                                             Others
                                                                                                                                                    0
                                             Movie
                                                                         False
                                                                                     is_missing
           your name.
                                 total
                             strangers
                                livin...
      2 rows × 44 columns
df.shape
      (12101, 44)
df.eps.describe()
                12101.000000
      count
      mean
                    13.393356
      std
                    57.925097
                     1.000000
      min
      25%
                     1.000000
      50%
                     2.000000
      75%
                    12.000000
                  2527.000000
      max
      Name: eps, dtype: float64
df.columns
      Index(['title', 'description', 'mediaType', 'eps', 'duration', 'ongoing',
              'sznOfRelease', 'years_running', 'studio_primary', 'studios_colab',
'contentWarn', 'watched', 'watching', 'wantWatch', 'dropped', 'rating',
              'votes', 'tag_Based_on_a_Manga', 'tag_Comedy', 'tag_Action', 'tag_Fantasy', 'tag_Sci_Fi', 'tag_Shounen', 'tag_Original_Work', 'tag_Non_Human_Protagonists', 'tag_Drama', 'tag_Adventure', 'tag_Family_Friendly', 'tag_Short_Episodes', 'tag_School_Life',
              'tag_Romance', 'tag_Shorts', 'tag_Slice_of_Life', 'tag_Seinen',
              'tag_Supernatural', 'tag_Magic', 'tag_Animal_Protagonists', 'tag_Ecchi',
               'tag_Mecha', 'tag_Based_on_a_Light_Novel', 'tag_CG_Animation',
              'tag_Superpowers', 'tag_Others', 'tag_missing'],
             dtype='object')
df[(df['eps']>24 ) & (df.duration.isna())].shape
      (1493, 44)
df excluding out = df[df['eps']<50]</pre>
df_excluding_out['eps_brackets'] = pd.cut(df_excluding_out['eps'], bins=[1, 10, 20, 30, 40, 50], \
labels=['cats1', 'cats2', 'cats3', 'cats4', 'cats5'])
```

```
<ipython-input-21-d06f3ec059a4>:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See \ the \ caveats \ in \ the \ documentation: \ \underline{https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html \#returning-a-view-versus-a-cc}
       df_excluding_out['eps_brackets'] = pd.cut(df_excluding_out['eps'], bins=[1, 10, 20, 30, 40, 50], \
df_excluding_out .shape
     (11388, 45)
df_excluding_out.groupby(['eps_brackets']).duration.mean()
     {\tt eps\_brackets}
     cats1
             13.556684
               7.419295
     cats2
               7.184783
     cats3
     cats4
               8.549020
               8.823529
     cats5
     Name: duration, dtype: float64
df_excluding_out.groupby(['eps_brackets']).title.count()
     eps_brackets
     cats1
              1901
     cats2
     cats3
              1038
     cats4
               220
     cats5
               169
     Name: title, dtype: int64
df_excluding_out[df_excluding_out['eps_brackets'] =='cats1'].shape
     (1901, 45)
df[(df['eps']<24) &(~df.duration.isna())].describe()</pre>
```

	eps	duration	years_running	studios_colab	contentWarn	watched	watching	wantWatch	dropped	ra [.]
count	7098.000000	7098.000000	7098.000000	7098.000000	7098.000000	7098.000000	7098.000000	7098.000000	7098.000000	7098.000
mean	2.546210	25.080727	0.104959	0.034658	0.095661	1531.826289	42.525923	609.343054	22.749084	2.742
std	3.611337	32.016127	0.556363	0.182924	0.294146	4699.844075	238.987630	1301.861782	72.586285	0.83
min	1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.844
25%	1.000000	4.000000	0.000000	0.000000	0.000000	41.000000	1.000000	28.000000	1.000000	2.07;
50%	1.000000	9.000000	0.000000	0.000000	0.000000	170.000000	5.000000	136.000000	5.000000	2.70
75%	1.000000	30.000000	0.000000	0.000000	0.000000	914.000000	26.000000	622.000000	17.000000	3.38
max	23.000000	163.000000	20.000000	1.000000	1.000000	115949.000000	15732.000000	21733.000000	2010.000000	4.660
8 rows × 38 columns										

 ${\tt df_excluding_out.groupby(['mediaType']).agg(\{'duration':'mean','mediaType':'count'\})}$

df.drop(columns=['title','description'],axis=1,inplace=True)

df.head()

	mediaType	eps	duration	ongoing	sznOfRelease	years_running	studio_primary	studios_colab	contentWarn	watched	•••	tag_Superna
0	TV	64	NaN	False	Spring	1	Bones	0	1	103707.0		
1	Movie	1	107.0	False	is_missing	0	Others	0	0	58831.0		
2	Movie	1	130.0	False	is_missing	0	Kyoto Animation	0	1	45892.0		
3	TV	10	NaN	False	Fall	0	Production I.G	0	0	25134.0		
4	TV	10	NaN	False	Spring	0	Others	0	1	21308.0		
5 rows × 42 columns												

df.rating.describe()

count	12101.000000
mean	2.949037
std	0.827385
min	0.844000
25%	2.304000
50%	2.965000
75%	3.616000

```
4.702000
     max
     Name: rating, dtype: float64
df.dropna(inplace=True)
df.shape
     (7465, 42)
12000-7465
     4535
def continuous_univariate_analysis(data, feature, figsize=(12, 2), kde=False, bins=None):
    # Create subplots with shared x-axis
    f1, (ax_box, ax_hist) = plt.subplots(
       nrows=2,
       sharex=True,
        gridspec_kw={"height_ratios": (0.25, 0.75)},
        figsize=figsize
    )
    # Set color palette
    sns.color_palette("viridis", as_cmap=True)
    # Create a box plot
    sns.boxplot(data=data, x=feature, ax=ax_box, showmeans=True, color="yellow")
    # Create a histogram
    if bins:
        sns.histplot(data=data, x=feature, ax=ax_hist, showmeans=True, color="crest", bins=bins, kde=kde)
        sns.histplot(data=data, x=feature, ax=ax_hist, kde=kde, color="blue")
    # Add vertical lines for mean and median
    ax_hist.axvline(data[feature].mean(), color='cyan', linestyle='--')
    ax_hist.axvline(data[feature].median(), color='orange', linestyle='--')
```

```
def discrete_univariate_analysis(data, feature, perc=False, n=None):
     total = len(data[feature])
     count = data[feature].nunique()
     if n is None:
          plt.figure(figsize=(count + 1, 5))
          plt.figure(figsize=(n + 1, 5))
     plt.xticks(rotation=90, fontsize=15)
     ax = sns.countplot(
          data=data,
          x=feature,
          palette="flare",
          order=data[feature].value\_counts().index[:n].sort\_values(ascending=False)
     for p in ax.patches:
          if perc:
               label = "{:.1f}%".format(100 * p.get_height() / total)
          else:
               label = p.get_height()
          x = p.get_x() + p.get_width() / 2
          y = p.get_height()
          ax.annotate(
               label,
               (x, y),
               ha="center",
               va="center",
               size=12,
               xytext=(0, 5),
               textcoords="offset points"
     plt.show()
df.columns
      Index(['mediaType', 'eps', 'duration', 'ongoing', 'sznOfRelease',
               'years_running', 'studio_primary', 'studios_colab', 'contentWarn', 'watched', 'watching', 'wantWatch', 'dropped', 'rating', 'votes', 'tag_Based_on_a_Manga', 'tag_Comedy', 'tag_Action', 'tag_Fantasy',
               'tag_Sci_Fi', 'tag_Shounen', 'tag_Original_Work',
'tag_Non_Human_Protagonists', 'tag_Drama', 'tag_Adventure',
'tag_Family_Friendly', 'tag_Short_Episodes', 'tag_School_Life',
               'tag_Romance', 'tag_Shorts', 'tag_Slice_of_Life', 'tag_Seinen', 'tag_Supernatural', 'tag_Magic', 'tag_Animal_Protagonists', 'tag_Ecchi',
               'tag_Mecha', 'tag_Based_on_a_Light_Novel', 'tag_CG_Animation',
               'tag_Superpowers', 'tag_Others', 'tag_missing'],
              dtype='object')
continuous_univariate_analysis(df,'rating')
```


continuous_univariate_analysis(df,'duration')

discrete_univariate_analysis(df,"ongoing",perc=True)

discrete_univariate_analysis(df,"sznOfRelease",perc=True)

discrete_univariate_analysis(df,"studio_primary",perc=True)

df[df['rating']>4]['studio_primary'].value_counts(normalize = True).mul(100).round(2)

Others	38.25
Production I.G	8.42
is_missing	7.02
TMS Entertainment	5.96
MADHOUSE	5.96
Sunrise	4.91
Kyoto Animation	4.04
Studio Deen	3.68
Bones	3.68
A-1 Pictures	3.68
Toei Animation	3.51
Shaft	3.33
J.C. Staff	3.16
Studio Pierrot	2.46
XEBEC	0.35
Tatsunoko Production	0.35
Nippon Animation	0.35
OLM	0.35
Shin-Ei Animation	0.35
GONZO	0.18
Name: studio_primary,	dtype: flo

 $\verb|discrete_univariate_analysis(df,"contentWarn",perc=True)|\\$

corr_cols =[item for item in df.columns if "tag" not in item]

```
corr_cols
     ['mediaType',
       'eps',
       'duration',
       'ongoing',
      'sznOfRelease',
      'years_running',
'studio_primary',
      'studios_colab',
      'contentWarn',
       'watched',
      'watching',
       'wantWatch',
      'dropped',
      'rating',
      'votes']
corr_cols = [col for col in corr_cols if pd.api.types.is_numeric_dtype(df[col])]
plt.figure(figsize=(16,7))
sns.heatmap(df[corr_cols].corr(), annot=True, vmin=-1, vmax =1, fmt='.2f', cmap='Spectral')
plt.show()
```


plt.figure(figsize=(15,8))
sns.boxplot(x='sznOfRelease', y='rating',data=df)

<Axes: xlabel='sznOfRelease', ylabel='rating'>

▼ Model Building - Regression

```
1
                              7465 non-null
                                              int64
    eps
    duration
                              7465 non-null
                                              float64
2
3
    ongoing
                              7465 non-null
                                              bool
                              7465 non-null
    sznOfRelease
                                              object
   years_running
                             7465 non-null
                                              int64
6
   studio_primary
                              7465 non-null
                                              object
    studios_colab
                              7465 non-null
                                              int64
8
   contentWarn
                              7465 non-null
                                              int64
   watched
                              7465 non-null
                                              float64
9
10 watching
                              7465 non-null
                                              int64
11 wantWatch
                              7465 non-null
                                              int64
                              7465 non-null
                                              int64
12
   dropped
                              7465 non-null
13 votes
                                              int64
14 tag_Based_on_a_Manga
                              7465 non-null
                                              int64
15 tag_Comedy
                              7465 non-null
                                              int64
                              7465 non-null
16 tag_Action
                                              int64
17 tag_Fantasy
                              7465 non-null
                                              int64
18 tag_Sci_Fi
                              7465 non-null
                                              int64
19 tag_Shounen
                              7465 non-null
                                              int64
20 tag_Original_Work
                              7465 non-null
                                              int64
21
    tag_Non_Human_Protagonists 7465 non-null
                                              int64
22 tag_Drama
                              7465 non-null
                                              int64
23 tag_Adventure
                              7465 non-null
                                              int64
24 tag_Family_Friendly
                              7465 non-null
                                              int64
25 tag_Short_Episodes
                            7465 non-null
                                              int64
                              7465 non-null
26 tag_School_Life
                                              int64
27
   tag_Romance
                              7465 non-null
                                              int64
28 tag_Shorts
                              7465 non-null
                                              int64
29 tag_Slice_of_Life
                              7465 non-null
                                              int64
                              7465 non-null
30 tag_Seinen
                                              int64
31 tag_Supernatural
                              7465 non-null
                                              int64
32 tag_Magic
                              7465 non-null
                                              int64
33 tag_Animal_Protagonists
                              7465 non-null
                                              int64
34 tag_Ecchi
                              7465 non-null
                                              int64
35 tag_Mecha
                              7465 non-null
                                              int64
36 tag_Based_on_a_Light_Novel 7465 non-null
                                              int64
37 tag_CG_Animation
                              7465 non-null
                                              int64
38 tag_Superpowers
                              7465 non-null
                                              int64
                              7465 non-null
39 tag_Others
                                              int64
                              7465 non-null
40 tag_missing
                                             int64
```

dtypes: bool(1), float64(2), int64(35), object(3)

memory usage: 2.3+ MB

 $x = pd.get_dummies(x, columns=x.select_dtypes(include=['object', 'category']).columns.tolist(), drop_first=True)$ x.head()

	eps	duration	ongoing	years_running	studios_colab	contentWarn	watched	watching	wantWatch	dropped	•••	studio_primary_Shaft
1	1	107.0	False	0	0	0	58831.0	1453	21733	124		0
2	1	130.0	False	0	0	1	45892.0	946	17148	132		0
8	1	111.0	False	0	0	0	8454.0	280	6624	150		0
27	1	125.0	False	0	0	0	115949.0	589	12388	161		0
31	1	117.0	False	0	0	0	35896.0	538	15651	130		0
5 rows × 71 columns												

x.drop(columns='ongoing',inplace=True)

x.info()

```
∠o tag_magic
                                               /465 NON-NULL
      29 tag_Animal_Protagonists
                                               7465 non-null
                                                               int64
                                               7465 non-null
      30 tag_Ecchi
                                                               int64
      31 tag_Mecha
                                               7465 non-null
                                                               int64
          tag_Based_on_a_Light_Novel
      32
                                               7465 non-null
                                                               int64
      33 tag_CG_Animation
                                               7465 non-null
                                                               int64
      34 tag_Superpowers
                                               7465 non-null
                                                               int64
      35
                                               7465 non-null
          tag_Others
                                                               int64
                                               7465 non-null
      36 tag missing
                                                               int64
         mediaType_Movie
      37
                                               7465 non-null
                                                               uint8
      38
          mediaType_Music Video
                                               7465 non-null
                                                               uint8
      39 mediaType_OVA
                                               7465 non-null
                                                               uint8
      40 mediaType_Other
                                               7465 non-null
                                                               uint8
     41
          mediaType_TV
                                               7465 non-null
                                                               uint8
      42
          mediaType_TV Special
                                               7465 non-null
      43
                                               7465 non-null
          mediaType Web
                                                               uint8
                                               7465 non-null
      44
         mediaType_is_missing
                                                               uint8
      45
         sznOfRelease_Spring
                                               7465 non-null
                                                               uint8
                                               7465 non-null
      46
          sznOfRelease_Summer
                                               7465 non-null
     47
          sznOfRelease_Winter
                                                               uint8
      48
          sznOfRelease_is_missing
                                               7465 non-null
                                                               uint8
      49
                                               7465 non-null
          studio_primary_AIC
                                                               uint8
                                               7465 non-null
      50 studio_primary_Bones
                                                               uint8
      51
          studio_primary_DLE
                                               7465 non-null
                                                               uint8
      52
          studio_primary_GONZO
                                               7465 non-null
                                                               uint8
         studio_primary_J.C. Staff
                                               7465 non-null
      53
                                                               uint8
      54
         studio_primary_Kyoto Animation
                                               7465 non-null
                                                               uint8
      55
         studio_primary_MADHOUSE
                                               7465 non-null
                                                               uint8
      56 studio_primary_Nippon Animation
                                               7465 non-null
      57
          studio_primary_OLM
                                               7465 non-null
                                                               uint8
      58
          studio_primary_Others
                                               7465 non-null
                                                               uint8
      59
          studio_primary_Production I.G
                                               7465 non-null
                                                               uint8
          studio_primary_Shaft
                                               7465 non-null
                                                               uint8
                                               7465 non-null
      61 studio_primary_Shin-Ei Animation
                                                               uint8
      62
          studio_primary_Studio Deen
                                               7465 non-null
                                                               uint8
      63
          studio_primary_Studio Pierrot
                                               7465 non-null
                                                               uint8
      64 studio_primary_Sunrise
                                               7465 non-null
                                                               uint8
      65
          studio_primary_TMS Entertainment
                                               7465 non-null
                                                               uint8
      66
          {\tt studio\_primary\_Tatsunoko\ Production}
                                               7465 non-null
                                                               uint8
         studio_primary_Toei Animation
                                               7465 non-null
                                                               uint8
      68 studio_primary_XEBEC
                                               7465 non-null
                                                               uint8
          studio_primary_is_missing
                                               7465 non-null
                                                               uint8
     dtypes: float64(2), int64(35), uint8(33)
     memory usage: 2.4 MB
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
X_train, X_test, Y_train, Y_test = train_test_split(x, y, test_size=0.2, random_state=1)
lin_model = LinearRegression()
lin_model.fit(X_train, Y_train)
     ▼ LinearRegression
     LinearRegression()
def Model_performance(model, predictor, target):
    pred = model.predict(predictor)
    r2 = r2_score(target, pred)
    rmse = np.sqrt(mean_squared_error(target, pred))
    results = pd.DataFrame({
        "RMSE": rmse,
        "R2 Score": r2
    },index=[0]
    return results
```

print("Training Data Performance")

▼ Feature Selection technique

- 1. Sequential Search small amount of data
- 2. Grid Search it is very expensive search algo
- 3. Baselan Search faster but it overfits

Feature Selector SFS

```
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
reg = LinearRegression()
sfs = SFS(
     reg,
     k_features=35,
     forward=True,
     floating=False,
     scoring='r2',
     n jobs=-1,
     cv=5
sfs = sfs.fit(X_train, Y_train)
from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs
fig = plot_sfs(sfs.get_metric_dict(), kind='std_err', figsize=(15, 5))
plt.title("Feature Selector - SFS")
plt.xticks(rotation=90)
plt.show()
                                                                                            Feature Selector - SFS
           0.50
           0.45
        Performance
           0.40
           0.35
           0.30
           0.25
                                                                                                        18
19
20
                                                                       11
                                                                            12
                                                                                 13
                                                                                          15
                                                                                                    17
                                                                                                                      feature_index = list(sfs.k_feature_idx_)
print(feature_index)
       [1, 2, 4, 5, 7, 9, 10, 12, 13, 15, 18, 20, 21, 22, 24, 25, 26, 27, 30, 32, 37, 39, 40, 41, 43, 50, 51, 58, 59, 60, 62, 64, 65, 67, 69]
X_train.columns[feature_index]
       Index(['duration', 'years_running', 'contentWarn', 'watched', 'wantWatch',
                  'votes', 'tag_Based_on_a_Manga', 'tag_Action', 'tag_Fantasy',
                votes , tag_based_on_a_manga , tag_Action , 'tag_Fantasy',
'tag_Shounen', 'tag_Drama', 'tag_Family_Friendly', 'tag_Short_Episodes',
'tag_School_Life', 'tag_Shorts', 'tag_Slice_of_Life', 'tag_Seinen',
'tag_Supernatural', 'tag_Ecchi', 'tag_Based_on_a_Light_Novel',
'mediaType_Movie', 'mediaType_OVA', 'mediaType_Other', 'mediaType_TV',
'mediaType_Web', 'studio_primary_Bones', 'studio_primary_DLE',
'studio_primary_Others', 'studio_primary_Production_T_G'
                 'studio_primary_Others', 'studio_primary_Production I.G', 'studio_primary_Studio Deen',
                 'studio_primary_Sunrise', 'studio_primary_TMS Entertainment', 'studio_primary_Toei Animation', 'studio_primary_is_missing'],
               dtype='object')
X_train_final = X_train.iloc[:, feature_index]
```

```
X_train_final = X_train.iloc[:, feature_index]
X test final = X test.iloc[:, feature index]
lin_model_v2 = LinearRegression()
lin_model_v2.fit(X_train_final, Y_train)
       ▼ LinearRegression
       LinearRegression()
print("Training Data Performance")
lin_model_train = Model_performance(lin_model, X_train, Y_train)
print(lin_model_train)
      Training Data Performance
               RMSE R2 Score
      0 0.578282 0.518574
print("Training Data Performance")
lin_model_train = Model_performance(lin_model, X_test, Y_test)
print(lin_model_train)
      Training Data Performance
               RMSE R2 Score
      0 0.564057 0.519399
X_train.columns[feature_index]
      Index(['duration', 'years_running', 'contentWarn', 'watched', 'wantWatch',
                'votes', 'tag_Based_on_a_Manga', 'tag_Action', 'tag_Fantasy',
               'tag_Shounen', 'tag_Drama', 'tag_Family_Friendly', 'tag_Short_Episodes',
               'tag_School_Life', 'tag_Shorts', 'tag_Slice_of_Life', 'tag_Seinen', 'tag_Supernatural', 'tag_Ecchi', 'tag_Based_on_a_Light_Novel', 'mediaType_Movie', 'mediaType_OVA', 'mediaType_Other', 'mediaType_TV', 'mediaType_Web', 'studio_primary_Bones', 'studio_primary_DLE',
               'studio_primary_Others', 'studio_primary_Production I.G',
'studio_primary_Shaft', 'studio_primary_Studio Deen',
               'studio_primary_Sunrise', 'studio_primary_TMS Entertainment',
```