Corso di Laurea in Informatica - A.A. 2014 - 2015 Esame di Fisica - 07/09/2015

Esercizio 1

Siano dati i vettori $\vec{a} = -5 \vec{i} + 4\vec{j}$ e $\vec{b} = +4 \vec{i} - \vec{j}$. Calcolare $2\vec{a} + 5\vec{b}$ ed il modulo di \vec{a} . Calcolare anche il prodotto scalare $\vec{a} \cdot \vec{b}$

Esercizio 2

Nel piano xy di un sistema di assi cartesiani ortogonali (x, y, z) vi è un rettangolo di lati $L \in \ell$. Il lato di lunghezza L è parallelo all'asse y, quello di lunghezza ℓ è parallelo all'asse x.

Ai vertici di questo rettangolo ci sono quattro cariche puntiformi Q ed il rettangolo si muove con velocità costante $\vec{v} = u\vec{j}$.

In tutto lo spazio vi è un campo magnetico costante $\vec{B} = a\vec{j} + b\vec{k}$. Risolvere i seguenti punti.

- a) Calcolare il flusso del campo magnetico attraverso il rettangolo.
- b) Calcolare la forza dovuta al campo magnetico che agisce su una qualsiasi delle cariche (si rammenti che la forza è un vettore).
- c) Assumendo che tutte le cariche abbiano coordinate x ed y positive, calcolare la forza elettrostatica sulla carica più vicina all'origine degli assi.

Esercizio 3

Nel circuito mostrato in figura le f.e.m. valgono rispettivamente $\varepsilon_1 = \varepsilon_2 = V_0$, e $\varepsilon_3 = 2V_0$. Calcolare in funzione di V_0 e R:

- a) la potenza totale dissipata nel circuito;
- b) la differenza di potenziale $V_A V_B$.

Successivamente si inserisce un resistore di valore R tra i punti A e B e si sostituisce la f.e.m. ε_2 con una nuova f.e.m. $\tilde{\varepsilon}_2$

c) Che valore dovrebbe avere $\tilde{\varepsilon}_2$ affinchè nel nuovo resistore non passi corrente?

