

Oleh : Dwi Listya Nurina

Dosen Pembimbing : Dr. Irhamah, S.<mark>Si,</mark> M.Si

Penyediaan air bersih untuk masyarakat mempunyai peranan yang sangat penting dalam meningkatkan kesehatan lingkungan atau masyarakat, yaitu mempunyai peranan dalam menurunkan angka penderita penyakit, khususnya yang berhubungan dengan air, dan berperan dalam meningkatkan standar atau taraf / kualitas hidup masyarakat.

Sampai saat ini, penyediaan air bersih untuk masyarakat di indonesia masih dihadapkan pada beberapa permasalahan yang belum dapat diatasi sepenuhnya. Salah satu masalah yang masih dihadapi sampai saat ini yaitu masih rendahnya tingkat pelayanan air bersih untuk masyarakat.

BUMN

Menurut Permendagri No. 23 tahun 2006 tentang Pedoman Teknis dan Tata Cara Pengaturan Tarif Air Minum pada Perusahaan Daerah Air Minum, Departemen dalam Negeri Republik Indonesia, Air minum adalah air yang melalui proses pengolahan atau tanpa pengolahan yang memenuhi syarat kesehatan dan dapat langsung diminum, untuk memenuhi kebutuhan air b<mark>ers</mark>ih, maka dibangun beberapa pengolahan air bersih yang dikelola oleh Badan Usaha Milik Negara yaitu Perusahaan Daerah Air Minum (PDAM).

Permasalahan

- 1. Bagaimana menentukan model peramalan terbaik dari data volume pemakaian air dengan menggunakan Fungsi Transfer pada periode bulan Januari 2000-Desember 2012?
- 2. Bagaimana peramalan dari data volume pemakaian air untuk beberapa periode mendatang?
- 1. Megetahui model peramalan terbaik dari data volume pemakaian air dengan menggunakan Fungsi Transfer pada periode bulan januari Januari 2000-Desember 2012.
- 2. Mengetahui peramalan dari data volume pemakaian air beberapa periode mendatang.

Metode Time Series

Fungsi Autokorelasi (ACF) dan Fungsi Autokorelasi Parsial (PACF)

Fungsi Transfer

Fungsi Autokorelasi adalah (Wei, 2006):
$$\rho_k = \frac{cov(X_t, X_{t+k})}{\sqrt{var(X_t)}\sqrt{var(X_{t+k})}} = \frac{\gamma_k}{\gamma_0}$$
 dan kovarians antara X_t dan X_{t+k} :

$$\gamma_k = cov(X_t, X_{t+k}) = E(X_t - \mu)(X_{t+k} - \mu)$$

dimana $Var(X_t) = Var(X_{t+k}) = \gamma_o, \gamma_k$ notasi dari Autocovariance Function, ρ_k notasi Autocorrelation Function (ACF).

Fungsi Autokorelasi dihitung berdasarkan sampel pengambilan data :

$$\hat{\rho}_k = \frac{\sum_{t=1}^{n-k} (X_t - \bar{X})(X_{t+k} - \bar{X})}{\sum_{t=1}^{n} (X_t - \bar{X})^2}$$
 untuk k = 0, 1, 2, ...

Dalam pengamatan *time series* dimana sampel PACF dinotasikan dengan pehitungan $\widehat{\emptyset}_{k+1,k+1} = \frac{\widehat{\rho}_{k+1} - \sum_{j=1}^k \widehat{\emptyset}_{kj} \widehat{\rho}_{k+1-j}}{1 - \sum_{j=1}^k \widehat{\emptyset}_{kj} \widehat{\rho}_j}$

dimana
$$\widehat{\emptyset}_{k+1,j} = \widehat{\emptyset}_{kj} - \widehat{\emptyset}_{k+1,k+1} \widehat{\emptyset}_{k,k+1-j}$$

Metode Time Series

Identifikasi Model ARIMA Box-Jenkins

Transfer

Proses	ACF	PACF	
AP (p)	Dies Down (turun	Cut off after lag p	
AR (p)	eksponensial)	(terpotong setelah lag-p)	
NA (a)	Cut off after lag q	Dies Down (turun	
MA (q)	(terpotong setelah lag-q)	eksponen-sial)	
AR (p)/MA (q)	Cut off after lag q	Cut off after lag p	
	Dies Down (turun	Dies Down (turun	
ARMA (p,q)	eksponensial menuju nol	eksponensial menuju nol	
	setelah lag q-p)	setelah lag p-q)	

Tinjauan Pustaka

Metodologi Penelitian

Analisis Data & Pembahasan

Kesimpulan

Metode Time Series

Uji Signifikan Parameter

Fungs Transfer

 $H_o: \theta_i = 0$ (parameter tidak signifikan)

 $H_1: \theta_i \neq 0$ (parameter signifikan)

Statistik Uji :
$$t = \frac{\hat{\theta}_t}{SE(\hat{\theta}_t)}$$

Daerah penolakan:

Tolak
$$H_0$$
 jika $t_{nitung} > t_{\alpha} < t_{\alpha} < t_{\alpha}$ atau P -value $< \alpha$.

Uji Diagnostic Checking

Uji White Noise

 $H_0: \rho_1 = \rho_2 = \dots = \rho_j = 0$

 H_1 : minimum ada satu $\rho_j \neq 0$; j = 1, 2, ..., k

Statistik Uji:

$$Q = n(n+2) \sum_{k=1}^{n} \hat{\rho}_k^2 (n+k)^{-1}$$

r_k adalah taksiran autokorelasi residual lag k Daerah penolakan :

Tolak H_o jika *P*-value <α artinya bahwa residual tidak memenuhi asumsi *white noise*

Uji Distribusi Normal

Ho: Residual berdistribusi normal

H₁: Residual tidak berdistribusi normal

Statistik Uji : $D = \sup |s(x) - F_0(x)|$

s(x) : Distribusi frekwensi kumulatif observasi.

F_o(x): Fungsi distribusi frekwensi kumulatif te<mark>orit</mark>is di bawah hipotesis nol.

Daerah penolakan:

Tolak H_0 jika P-value $<\alpha$.

Analisis Data & Pembahasan

Kesimpulan

Time Series

Fungsi Transfer

$$y_t = v(B)x_t + n_t$$

dimana

yt adalah deret output, xt adalah deret input, nt merupakan deret noise

Dalam fungsi transfer v(B) dituliskan dalam bentuk :

$$v(B) = \frac{\omega_s(B)B^b}{\delta_r(B)}$$

dimana:
$$\omega_s(B) = \omega_0 - \omega_1 B - \omega_2 B^2 - \cdots - \omega_s B^s$$

$$\delta_r(B) = 1 - \delta_1 B - \delta_2 B^2 - \dots - \delta_r B^r$$

Bentuk model fungsi transfer single input adalah

$$y_{t} = \frac{\omega_{s}(B)}{\delta_{r}(B)} B^{b} x_{t} + n_{t} \text{ atau } y_{t} = \frac{\omega_{s}(B)}{\delta_{r}(B)} x_{t-b} + \frac{\theta(B)}{\emptyset(B)} a_{t}$$

Sumber Data dan Variabel Penelitian

Data yang digunakan dalam penelitian ini merupakan data sekunder yang diperoleh dari Perusahaan Daerah Air Minum (PDAM) di Kabupaten Gresik y_t adalah volume pemakaian air untuk sektor Rumah Tangga

x_t adalah jumlah pelanggan untuk sektor Rumah Tangga. Tinjauan Pustaka

Metodologi Penelitian

Analisis Data & Pembahasan

Kesimpulan

Langkah Analisis

- 1. Mempersiapkan deret input (jumlah pelanggan) dan deret output (volume pemakaian air)
- 2. Melakukan identifikasi pada *time series* plot, ACF dan PACF.
- 3. Penentuan model ARIMA untuk jumlah pelanggan
- 4. Melakukan uji kesesuaian model dengan memenuhi asumsi white noise dan kenormalan.
- 5. Melakukan *prewhitening* pada deret input untuk memperoleh α_t.
- 6. Melakukan *prewhitening* pada deret output untuk memperoleh β_t .

- 7. Melakukan perhitungan korelasi silang dan autokorelasi untuk deret input dan output yang telah di *prewhitening*.
 - 8. Menetapkan nilai (b,r,s) yang menghubungkan deret input dan output untuk menduga model fungsi transfer.
 - 9. Identifikasi deret noise (n_t)
- 10. Menetapkan (p_n, q_{n)} untuk model ARIMA (p_n, o, q_n) dari de<mark>ret</mark> noise (n_t).
 - 11. Penaksiran parameter model fungsi transfer
 - 12. Uji diagnostik model fungsi transfer
 - 13. Melakukan peramalan

1. Permodelan dengan ARIMA
Pada Deret input (Jumlah
Pelanggan untuk Sektor
Rumah Tangga)

dilakukan differencing telah stasioner dalam mean dan varians.

Pada plot ACF terdapat lag yang keluar pada pengamatan ke1,2,3,6,19

Pada plot PACF terdapat lag yang keluar pada pengamatan ke1,6,13,38

2. Pemilihan Model Terbaik Berdasarkan Kriteria In Sample

Model	AIC
ARIMA (1,1,1)	1871.899
ARIMA ([1,6,13],1,[3])	1869.599
ARIMA ([1,6],1,[1,3])	Sehingga model ARIMA
ARIMA ([1,6],1,[3,19])	1 ([1,6,13],1, [3,19]) layak sebagai
ARIMA ([1,6],1,[1,3,19])	model terbaik.
ARIMA ([1,13],1,[1,6,19])	1868.972
ARIMA ([1,6,13],1,[1,3])	1868.47
ARIMA ([1,6,13],1,[3,19])	1864.858

3. Prewhitening Deret Input (Jumlah Pelanggan untuk Sektor Rumah Tangga)
Terhadap Deret Output (Pemakaian Air untuk Sektor Rumah Tangga)

Berdasarkan pemilihan model terbaik didapatkan model ARIMA ([1,2,3,6] 1 [19]) didapatkan persamaan :

$$X_{t} = X_{t-1} + 0.30209X_{t-1} - 0.30209X_{t-2} + 0.40904X_{t-3} - 0.40904X_{t-7} + 0.20731X_{t-13} - 0.20731X_{t-14} + a_{t} + 0.23136a_{t-3} + 0.26325a_{t-19}$$

Sehingga *prewhitening* deret input (jumlah pelanggan untuk sektor rumah tangga)

$$\alpha_{t} = X_{t+1} + 0.30209X_{t+1} - 0.30209X_{t+2} + 0.40904X_{t+3} - 0.40904X_{t+7} + 0.20731X_{t+12} - 0.20731X_{t+14} + \alpha_{t} + 0.23136\alpha_{t+2} + 0.26325\alpha_{t+17}$$

Sedangkan *prewhitening* untuk deret input (pemakaian air untuk sektor rumah tangga)

$$\beta_{t} = X_{t-1} + 0.30209X_{t-1} - 0.30209X_{t-2} + 0.40904X_{t-3} - 0.40904X_{t-7} + 0.20731X_{t-13} - 0.20731X_{t-14} + \beta_{t} + 0.23136\beta_{t-3} + 0.26325\beta_{t-19}$$

4. Penetapan (b,s,r) untuk model fungsi transfer

Metodologia

Analisis Data

Pada plot ACF terdapat *lag* yang keluar pada pengamatan ke-1,12,24 dan pada plot PACF terdapat *lag* yang keluar pada pengamatan ke-1,6,8,9,11

Dari Plot ACF dan PACF di dapatkan pendugaan sementara dari model ARMA yaitu ARMA ([12,24],1), ARMA ([12],[1,6]), dan ARMA ([12,24],[1,6]).

	Model	Parameter	Estimasi	P_value
		$\omega_{\rm o}$	16. <mark>34</mark> 604	0.0017
Uji Signifikansi	b=8, s=0, r=0	$\emptyset_{_{12}}$	0.2665	0.0031
Parameter Model Fungsi Transfer	ARMA ([12,24],1)	Ø ₂₄	o.3 <mark>38</mark> 55	0.0003
		θ_1	0.66111	0.0001
		ω_{o}	16. <mark>294</mark> 98	0.0001
A A A	b=8, s=0, r=0	Ø ₁₂	0.33018	0.0002
	ARMA ([12],[1,6])	θ_1	0.76225	0.0001
		θ_6	0.23775	0.0001
	b=8, s=0, r=0 ARMA ([12,24],[1,6])	ω_{o}	16.5332	0.0001
		$\emptyset_{_{12}}$	0.25108	0.005
		Ø ₂₄	0.29836	0.0015
		$\theta_{\mathtt{1}}$	0.78301	0.0001
		θ_6	0.21699	0.0001

Dari Plot ACF dan PACF di dapatkan pendugaan sementara dari model ARMA yaitu ARMA ([1,6] 12)

Uji White Noise Pada Model Fungsi Transfer	

Model	Lag	P_value	Keput <mark>us</mark> an	
	6	0.1557		
b=8, s=0, r=0	12/1	0.2122	White Noise	
ARMA ([12,24],1)	18	0.2433	vviille Noise	
THE THE THE	24	0.3998		
	6	0.0752		
b=8, s=0, r=0	12,	0.4359	White Noise	
ARMA ([12],[1,6])	18	0.2372	Willite Moise	
The first of	24	0.0989		
	6	0.1557		
b=8, s=0, r=0	12	0.5641	White Noise	
ARMA ([12,24],[1,6])	18	0.4076	willte Noise	
	24	- 0.590 8 -	ت ا	

Uji Normalitas P<mark>ada</mark> Mo<mark>del</mark> Fungsi Transfer

Model	P_value	Keputusan	
b=8, s=0, r=0		Berdistribusi Normal	
ARMA ([12,24],1)	0.15	Defuistribusi Norma	
b=8, s=0, r=0	0.0618	Berdistribusi Normal	
ARMA ([12],[1,6])	0.0018	Defuistribusi Norma	
b=8, s=0, r=0		Berdistribusi Normal	
ARMA ([12,24],[1,6])	0.0523	Defuistribusi Normal	

Pemilihan Model Terbaik Pada Model Fungsi Transfer

AIC
3179.41
3179.922
3170.821

Pada model fungsi transfer didapatkan nilai AIC terkecil pada model ARMA ([12,24],[1,6]) sebesar 3170.821. Sehingga model ARMA ([12,24],[1,6]) layak sebagai model terbaik.

Perhitungan Data Out Sample Pada Model Fungsi Transfer

Persentase kesalahan dalam meramalkan jumlah pelanggan dengan volume pemakaian air.

Sehingga model fungsi transfer dengan nilai b=8, s=0, r=0 dapat ditulis persamaan sebagai berikut :

$$Y_{t} = 0.25108Y_{t-12} + 0.29836Y_{t-24} + 16.5332X_{t-3} - 4.1511X_{t-20} - 4.9328X_{t-32} + a_{t} - 0.78301a_{t-1} - 0.21699a_{t-6}$$

5. Peramalan Pada Deret Output (Volume Pemakaian Air)

Hasil ramalan menunjukkan bahwa volume pemakaian air mengalami kenaikan dan penurunan dimana pemakaian air tertinggi pada bulan November 2013 sebesar 1149960 m³ dan pemakaian air terendah pada bulan Maret 2013 sebesar 1061642 m³

1. Model ARMA pada data volume pemakaian air dengan menggunakan Fungsi Transfer pada periode bulan Januari 2000-Mei 2013 adalah model ARMA ([12,24],[1,6]) dengan persamaan : $Y_t = 0.25108Y_{t-12} + 0.29836Y_{t-24} + 16.5332X_{t-8} - 4.1511X_{t-20} - 4.9328X_{t-32} + a_t - 0.78301a_{t-1} - 0.21699a_{t-6}$

2. Nilai ramalan dari pemodelan volume pemakaian air pada periode bulan Juni 2013-Desember 2013 bahwa pemakaian air tertinggi pada bulan November 2013 sebesar 1149960 m³ dan pemakaian air terendah pada bulan Maret 2013 sebesar 1061642 m³.

Daftar Pustaka

Cryer, J. D, (1986), *Time Series Analysis*, PWS-KENT Publishing Company, Boston

Daniel, W., (1989), Statistika Non Parametrika, Gramedia, Jakarta.

Makridakis, S., Wheelright, S.C., dan McGee, V.E., (1998), Metode dan Aplikasi Peramalan, edisi ke-2, jilid I, Alih Bahasa : Andriyanto, U.S., dan Basith, A., Erlangga, Jakarta.

Wei, W.W.S., (2006), *Time Analysis Univariate And Multivariate Methods*, Addison Wesley Publishing Company, Inc. America.

Astyarini, Agatha. (2012). Makalah Air Bersih. http://athaagathawordpress.com/2012/11/28/makalah-air-bersih/

Anonim. (2013). Aspek Kesehatan Penyediaan Air Bersih. http://www.indonesian-publichealth.com/2013/03/aspek-kesehat-an-penyediaan-air-bersih.html

Malik, Abdul. (2013). Pemkab Gresik akan Evaluasi Kinerja Dirut PDAM.

http://antarajatim.com/lihat/berita/103681/-pemkab-gresik-akan-evaluasikinerja-dirut-pdam

Anonim. (2012). Air Bersih Di Gresik Sulit Didapat. http://suarakawen.com/o1/08/2012/air-bersih-di-gresik-sulit-didapat/

Aulia, F.P,(2012), Peramalan Volume Distribusi Air Di Pdam Kabupaten Bojonegoro Dengan Metode Arima Box-Jenkins, Laporan Tugas Akhir, FMIPA-ITS, Surabaya.

Anam, Fachrul, (2010), Analisis Fungsi Transfer Untuk Meramalkan Volume Air Di Waduk Pacal Kabupaten Bojonegoro Jawa Timur, Laporan Tugas Akhir, FMIPA-ITS, Sura-baya.

Aristia, Rifki, (2011), Peramalan Produksi Air De-Ngan Metode Arima Di Perusahaan Daerah Air Minum (PDAM) Surya Sembada Surabaya, Laporan Tugas Akhir, FMIPA-ITS, Surabaya.

Yusmiharti, Candra, (2009), Peramalan Volume Konsumsi Air Pdam Kota Surabaya Dengan Metode Regresi Runtun Waktu, Laporan Tugas Akhir, FMIPA-ITS, Surabaya.