Der Satz von Rice

Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

November 2011

Bisher betrachtete Probleme

Die Diagonalsprache:

$$D = \{ w \in \{0,1\}^* \mid w = w_i \text{ und } M_i \text{ akzeptiert } w \text{ nicht} \}$$

Das Halteproblem:

$$H = \{\langle M \rangle w \mid M \text{ hält auf } w\}$$

Das spezielle Halteproblem:

$$H_{\epsilon} = \{\langle M \rangle \mid M \text{ hält auf Eingabe } \epsilon\}$$

Alle diese Probleme sind nicht rekursiv. Was haben diese Probleme gemeinsam?

Von TM berechnete Funktionen sind partielle Funktionen

Da TM nicht auf jeder Eingabe halten, berechnen sie "partielle Funktionen". Das können wir wie folgt formalisieren:

• Die von einer TM M berechnete Funktion ist von der Form

$$f_M: \{0,1\}^* \to \{0,1\}^* \cup \{\bot\}$$
.

Das Zeichen \perp steht dabei für *undefiniert* und bedeutet, dass die Maschine nicht hält.

 Im Fall von Entscheidungsproblemen vereinfacht sich die Funktion zu

$$f_M: \{0,1\}^* \to \{0,1,\bot\}$$
 .

Dabei steht 0 für *Verwerfen*, 1 für *Akzeptieren* und \perp für *Nicht-Halten*.

Satz von Rice

Satz:

Sei $\mathcal R$ die Menge der von TM berechenbaren partiellen Funktionen und S eine Teilmenge von $\mathcal R$ mit $\emptyset \neq S \neq \mathcal R$. Dann ist die Sprache

$$L(S) = \{ \langle M \rangle \mid M \text{ berechnet eine Funktion aus } S \}$$

nicht rekursiv.

In anderen Worten: Aussagen über die von einer TM berechneten Funktion sind nicht entscheidbar.

Satz von Rice – Anwendungsbeispiele

Beispiel 1:

- Sei $S = \{f_M \mid f_M(\epsilon) \neq \perp\}.$
- Dann ist

$$L(S) = \{ \langle M \rangle \mid M \text{ berechnet eine Funktion aus } S \}$$

$$= \{ \langle M \rangle \mid M \text{ hält auf Eingabe } \epsilon \}$$

$$= H_{\epsilon}$$

• Gemäß Satz von Rice ist H_{ϵ} nicht entscheidbar. (Aber das wussten wir ja schon ;-)

Satz von Rice – Anwendungsbeispiele

Beispiel 2:

- Sei $S = \{f_M \mid \forall w \in \{0,1\}^* : f_M(w) \neq \bot\}.$
- Dann ist

$$L(S) = \{ \langle M \rangle \mid M \text{ berechnet eine Funktion aus } S \}$$
$$= \{ \langle M \rangle \mid M \text{ hält auf jeder Eingabe } \}$$

- Diese Sprache ist auch als das allgemeine Halteproblem H_{all} bekannt.
- Gemäß Satz von Rice ist Hall nicht entscheidbar.

Satz von Rice – Beweis

Beweis:

Wir nutzen die Unterprogrammtechnik. Aus einer TM $M_{L(S)}$, die L(S) entscheidet, konstruieren wir eine TM M_{ϵ} , die das spezielle Halteproblem H_{ϵ} entscheidet.

Einige Vereinbarungen:

- Sei *u* die überall undefinierte Funktion.
- O.B.d.A. *u* ∉ *S*.
- Sei f eine Funktion aus S.
- Sei N eine TM, die f berechnet.

Bemerkung: Im Falle $u \in S$ betrachten wir $\mathcal{R} \setminus S$ statt S und zeigen die Unentscheidbarkeit von $L(\mathcal{R} \setminus S)$. Hieraus ergibt sich dann unmittelbar die Unentscheidbarkeit von L(S).

Satz von Rice – Fortsetzung Beweis

Die TM M_{ϵ} mit Unterprogramm $M_{L(S)}$ arbeitet wie folgt

- 1) Falls die Eingabe nicht aus einer korrekten Gödelnummer besteht, verwirft M_{ϵ} die Eingabe.
- 2) Sonst berechnet M_{ϵ} aus der Eingabe $\langle M \rangle$ die Gödelnummer der TM M^* (nächste Folie).
- 3) Starte $M_{L(S)}$ mit der Eingabe $\langle M^* \rangle$ und akzeptiere (verwerfe) genau dann, wenn $M_{L(S)}$ akzeptiert (verwirft).

Satz von Rice – Fortsetzung Beweis

Verhalten von M^* auf Eingabe x

- Schritt A: Simuliere das Verhalten von M bei Eingabe ϵ auf einer für diesen Zweck reservierten Spur.
- **Schritt B:** Simuliere das Verhalten von N auf x, stoppe sobald N stoppt und übernehme die Ausgabe.

Satz von Rice – Fortsetzung Beweis

Korrektheit:

Bei Eingabe von $w = \langle M \rangle$ gilt:

$$w \in H_{\epsilon} \implies M \text{ h\"alt auf } \epsilon$$

$$\Rightarrow M^* \text{ berechnet } f$$

$$\stackrel{f \in S}{\Rightarrow} \langle M^* \rangle \in L(S)$$

$$\Rightarrow M_{L(S)} \text{ akzeptiert } \langle M^* \rangle$$

$$\Rightarrow M_{\epsilon} \text{ akzeptiert } w$$

$$w \notin H_{\epsilon} \implies M \text{ h\"alt nicht auf } \epsilon$$

$$\Rightarrow M^* \text{ berechnet } u$$

$$\stackrel{u \notin S}{\Rightarrow} \langle M^* \rangle \notin L(S)$$

$$\Rightarrow M_{L(S)} \text{ verwirft } \langle M^* \rangle$$

$$\Rightarrow M_{\epsilon} \text{ verwirft } w$$

Satz von Rice – Weitere Anwendungsbeispiele

Beispiel 3:

- Sei $L_{17} = \{ \langle M \rangle \mid M \text{ berechnet bei Eingabe der Zahl 17 die Zahl 42} \}.$
- Es ist $L_{17} = L(S)$ für $S = \{f_M \mid f_M(bin(17)) = bin(42)\}.$
- Somit ist diese Sprache gemäß dem Satz von Rice nicht entscheidbar.

Beispiel 4:

- Sei $H_{17} = \{ \langle M \rangle \mid \text{Auf jeder Eingabe stoppt } M \text{ nach } \leq 17 \text{ Schritten} \}.$
- Über diese Sprache sagt der Satz von Rice nichts aus!!!
- Ist H_{17} entscheidbar?