$12a_{0535} \ (K12a_{0535})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{87} - u^{86} + \dots + 2u^3 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 87 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{87} - u^{86} + \dots + 2u^3 + 1 \rangle$$

(i) Arc colorings

Are consistings
$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^3 + u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -u^2 + 1 \\ u^4 - 2u^2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^3 + 2u \\ -u^3 + u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u^7 - 4u^5 + 4u^3 \\ u^7 - 3u^5 + 2u^3 + u \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u^{11} + 6u^9 - 12u^7 + 8u^5 - u^3 + 2u \\ -u^{11} + 5u^9 - 8u^7 + 3u^5 + u^3 + u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u^{13} + 6u^{11} - 13u^9 + 12u^7 - 6u^5 + 4u^3 - u \\ u^{15} - 7u^{13} + 18u^{11} - 19u^9 + 6u^7 - 2u^5 + 4u^3 + u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -u^{28} + 13u^{26} + \dots - u^2 + 1 \\ u^{30} - 14u^{28} + \dots + 8u^4 + u^2 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u^{69} - 32u^{67} + \dots + 2u^3 + u \\ -u^{71} + 33u^{69} + \dots - 3u^5 + u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -u^{37} + 18u^{35} + \dots - 2u^3 - u \\ -u^{37} + 17u^{35} + \dots + u^3 + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{85} + 160u^{83} + \cdots + 4u^2 + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{87} + 41u^{86} + \dots + 2u^2 + 1$
c_2, c_6	$u^{87} - u^{86} + \dots + 2u - 1$
<i>c</i> ₃	$u^{87} + u^{86} + \dots + 200u - 676$
c_4, c_5, c_{10}	$u^{87} + u^{86} + \dots + 2u^3 - 1$
C ₇	$u^{87} - 3u^{86} + \dots + 1868u - 369$
<i>c</i> ₈	$u^{87} + 11u^{86} + \dots - 4u + 1$
c_9, c_{12}	$u^{87} - 13u^{86} + \dots + 672u - 23$
c_{11}	$u^{87} - 3u^{86} + \dots - 760u + 1491$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{87} + 11y^{86} + \dots - 4y - 1$
c_2, c_6	$y^{87} - 41y^{86} + \dots - 2y^2 - 1$
c_3	$y^{87} - 25y^{86} + \dots + 2553368y - 456976$
c_4, c_5, c_{10}	$y^{87} - 81y^{86} + \dots + 6y^2 - 1$
c ₇	$y^{87} + 19y^{86} + \dots - 3993896y - 136161$
c ₈	$y^{87} - y^{86} + \dots + 276y - 1$
c_9, c_{12}	$y^{87} + 71y^{86} + \dots - 2068y - 529$
c_{11}	$y^{87} - 29y^{86} + \dots + 72372232y - 2223081$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.156780 + 0.129439I	-0.70238 - 4.44670I	0
u = 1.156780 - 0.129439I	-0.70238 + 4.44670I	0
u = -1.190410 + 0.114228I	1.68051 - 0.08481I	0
u = -1.190410 - 0.114228I	1.68051 + 0.08481I	0
u = 1.197740 + 0.161716I	-2.06048 + 3.05466I	0
u = 1.197740 - 0.161716I	-2.06048 - 3.05466I	0
u = -0.394345 + 0.684266I	1.51716 - 12.42810I	2.28821 + 10.31032I
u = -0.394345 - 0.684266I	1.51716 + 12.42810I	2.28821 - 10.31032I
u = 0.397280 + 0.677777I	3.75424 + 7.36938I	5.55912 - 6.47433I
u = 0.397280 - 0.677777I	3.75424 - 7.36938I	5.55912 + 6.47433I
u = 0.411947 + 0.661442I	4.96694 + 5.07089I	7.17620 - 6.66777I
u = 0.411947 - 0.661442I	4.96694 - 5.07089I	7.17620 + 6.66777I
u = -0.422450 + 0.650766I	3.87197 - 0.21546I	5.49137 + 0.72436I
u = -0.422450 - 0.650766I	3.87197 + 0.21546I	5.49137 - 0.72436I
u = -0.383227 + 0.669870I	-0.89151 - 4.80723I	-0.97957 + 5.10975I
u = -0.383227 - 0.669870I	-0.89151 + 4.80723I	-0.97957 - 5.10975I
u = -0.526813 + 0.558841I	2.05288 + 8.27457I	3.75896 - 4.30912I
u = -0.526813 - 0.558841I	2.05288 - 8.27457I	3.75896 + 4.30912I
u = -0.477712 + 0.597005I	4.10203 - 3.89674I	6.13861 + 5.88274I
u = -0.477712 - 0.597005I	4.10203 + 3.89674I	6.13861 - 5.88274I
u = 0.515570 + 0.562335I	4.24183 - 3.23972I	7.01693 + 0.29788I
u = 0.515570 - 0.562335I	4.24183 + 3.23972I	7.01693 - 0.29788I
u = 0.490448 + 0.582937I	5.29751 - 0.95847I	8.28381 + 0.09263I
u = 0.490448 - 0.582937I	5.29751 + 0.95847I	8.28381 - 0.09263I
u = -0.503329 + 0.535550I	-0.358919 + 0.797404I	0.536680 + 1.151908I
u = -0.503329 - 0.535550I	-0.358919 - 0.797404I	0.536680 - 1.151908I
u = -1.255210 + 0.203993I	-1.51650 - 2.92945I	0
u = -1.255210 - 0.203993I	-1.51650 + 2.92945I	0
u = 0.332557 + 0.627242I	-2.65475 + 5.15343I	-2.54076 - 7.53067I
u = 0.332557 - 0.627242I	-2.65475 - 5.15343I	-2.54076 + 7.53067I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.29153	2.70892	0
u = -1.275740 + 0.221412I	0.38686 - 10.53480I	0
u = -1.275740 - 0.221412I	0.38686 + 10.53480I	0
u = 1.279400 + 0.209305I	2.71537 + 5.68459I	0
u = 1.279400 - 0.209305I	2.71537 - 5.68459I	0
u = 1.306270 + 0.174474I	4.06397 + 4.13533I	0
u = 1.306270 - 0.174474I	4.06397 - 4.13533I	0
u = -0.354989 + 0.578954I	0.51266 - 1.71188I	2.60562 + 3.92232I
u = -0.354989 - 0.578954I	0.51266 + 1.71188I	2.60562 - 3.92232I
u = -1.332530 + 0.123240I	3.22730 + 0.03439I	0
u = -1.332530 - 0.123240I	3.22730 - 0.03439I	0
u = 0.079050 + 0.640246I	-3.79331 + 7.39706I	-4.18948 - 7.63957I
u = 0.079050 - 0.640246I	-3.79331 - 7.39706I	-4.18948 + 7.63957I
u = 0.269882 + 0.583125I	-2.06224 - 2.16472I	-1.83071 - 0.20236I
u = 0.269882 - 0.583125I	-2.06224 + 2.16472I	-1.83071 + 0.20236I
u = 0.040574 + 0.629744I	-5.47859 - 0.11339I	-7.64972 - 0.43755I
u = 0.040574 - 0.629744I	-5.47859 + 0.11339I	-7.64972 + 0.43755I
u = -0.078398 + 0.618585I	-1.47306 - 2.66672I	-1.11507 + 4.12840I
u = -0.078398 - 0.618585I	-1.47306 + 2.66672I	-1.11507 - 4.12840I
u = 1.389750 + 0.020023I	6.81321 + 0.99479I	0
u = 1.389750 - 0.020023I	6.81321 - 0.99479I	0
u = -1.397660 + 0.038212I	5.01700 - 5.77605I	0
u = -1.397660 - 0.038212I	5.01700 + 5.77605I	0
u = -1.42214 + 0.21746I	3.41028 - 0.73286I	0
u = -1.42214 - 0.21746I	3.41028 + 0.73286I	0
u = 0.522256 + 0.193380I	-0.79956 + 5.07877I	3.26255 - 6.36328I
u = 0.522256 - 0.193380I	-0.79956 - 5.07877I	3.26255 + 6.36328I
u = 0.425921 + 0.358005I	-1.94719 - 1.77409I	0.090741 + 0.339279I
u = 0.425921 - 0.358005I	-1.94719 + 1.77409I	0.090741 - 0.339279I
u = -1.43304 + 0.23763I	3.01862 - 8.32049I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.43304 - 0.23763I	3.01862 + 8.32049I	0
u = -0.121744 + 0.530430I	-0.35102 - 1.54409I	0.33199 + 6.05743I
u = -0.121744 - 0.530430I	-0.35102 + 1.54409I	0.33199 - 6.05743I
u = 1.43839 + 0.22451I	6.28029 + 4.69366I	0
u = 1.43839 - 0.22451I	6.28029 - 4.69366I	0
u = 1.45419 + 0.25130I	5.02090 + 8.17446I	0
u = 1.45419 - 0.25130I	5.02090 - 8.17446I	0
u = 1.46400 + 0.18941I	5.93361 + 1.83428I	0
u = 1.46400 - 0.18941I	5.93361 - 1.83428I	0
u = -1.46040 + 0.25270I	9.7370 - 10.7689I	0
u = -1.46040 - 0.25270I	9.7370 + 10.7689I	0
u = 1.46013 + 0.25560I	7.4888 + 15.8607I	0
u = 1.46013 - 0.25560I	7.4888 - 15.8607I	0
u = -1.46342 + 0.24445I	11.01010 - 8.38279I	0
u = -1.46342 - 0.24445I	11.01010 + 8.38279I	0
u = 1.46517 + 0.23900I	9.95560 + 3.46864I	0
u = 1.46517 - 0.23900I	9.95560 - 3.46864I	0
u = -1.47478 + 0.19157I	10.64660 + 0.51731I	0
u = -1.47478 - 0.19157I	10.64660 - 0.51731I	0
u = -1.47348 + 0.20336I	11.62440 - 1.89999I	0
u = -1.47348 - 0.20336I	11.62440 + 1.89999I	0
u = 1.47312 + 0.20995I	10.39210 + 6.83566I	0
u = 1.47312 - 0.20995I	10.39210 - 6.83566I	0
u = 1.47653 + 0.18742I	8.50190 - 5.59085I	0
u = 1.47653 - 0.18742I	8.50190 + 5.59085I	0
u = -0.459395 + 0.110558I	1.200510 - 0.610350I	7.99355 + 1.68998I
u = -0.459395 - 0.110558I	1.200510 + 0.610350I	7.99355 - 1.68998I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{87} + 41u^{86} + \dots + 2u^2 + 1$
c_{2}, c_{6}	$u^{87} - u^{86} + \dots + 2u - 1$
<i>c</i> ₃	$u^{87} + u^{86} + \dots + 200u - 676$
c_4, c_5, c_{10}	$u^{87} + u^{86} + \dots + 2u^3 - 1$
	$u^{87} - 3u^{86} + \dots + 1868u - 369$
<i>c</i> ₈	$u^{87} + 11u^{86} + \dots - 4u + 1$
c_9,c_{12}	$u^{87} - 13u^{86} + \dots + 672u - 23$
c_{11}	$u^{87} - 3u^{86} + \dots - 760u + 1491$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{87} + 11y^{86} + \dots - 4y - 1$
c_2, c_6	$y^{87} - 41y^{86} + \dots - 2y^2 - 1$
<i>c</i> ₃	$y^{87} - 25y^{86} + \dots + 2553368y - 456976$
c_4, c_5, c_{10}	$y^{87} - 81y^{86} + \dots + 6y^2 - 1$
	$y^{87} + 19y^{86} + \dots - 3993896y - 136161$
<i>C</i> ₈	$y^{87} - y^{86} + \dots + 276y - 1$
c_9, c_{12}	$y^{87} + 71y^{86} + \dots - 2068y - 529$
c_{11}	$y^{87} - 29y^{86} + \dots + 72372232y - 2223081$