A crash course in language models

Sebastian Schuster Saarland University

March 20, 2023

Slides available at:

https://sebschu.com/slides/CUNY_LMs.pdf

Plan for today

- What are language models?
- One type of neural language models (NLMs): Recurrent NLMs
- Using them for linguistic research
 - As tools
 - To test hypotheses about human language processing/ learning

What is a language model?

P(next word | context)

A conditional probability distribution over the **next word** from a fixed vocabulary,

given a sequence of previous words.

What is a language model?

P(next word | "The cat")

Next word	P(next word context)
а	0.000006
aardvark	0.00002
aarhus	0.000001
mat	0.000003
on	0.004
* * *	
sat	0.1
zebra	0.00007

Scoring words and sequences

Scoring words:

P(next word | context)

Scoring sequences:

```
P(on \ a \ mat \mid the \ cat \ sat)
= P(on \mid the \ cat \ sat)
```

the cat

Next word	P(next word the cat)
a	0.000006
aardvark	0.00002
aarhus	0.000001
mat	0.000003
on	0.004
* * *	
sat	0.1
zebra	0.00007

the cat sat

Next word	P(next word the cat)
a	0.000006
aardvark	0.00002
aarhus	0.000001
•••	
mat	0.000003
on	0.004
sat	0.1
zebra	0.00007

the cat sat

Next word	P(next word the cat sat)
a	0.000006
aardvark	0.00002
aarhus	0.000001
mat	0.000003
on	0.15
sat	0.0001
zebra	0.00007

the cat sat on

Next word	P(next word the cat sat on)
а	0.2
aardvark	0.00002
aarhus	0.000001
mat	0.000003
on	0.000015
sat	0.0001
zebra	0.00007

the cat sat on a

Next word	P(next word the cat sat on a)
a	0.00004
aardvark	0.00002
aarhus	0.000001
mat	0.1
on	0.000015
sat	0.0001
zebra	0.007

the cat sat on a mat

Where do the probabilities come from?

Pre-2015ish:

- Counting short sequences in large corpora
- One problem: Estimates are very poor for very rare sequences/sequences that don't appear in the corpus

Post-2015ish:

Neural language models

A neural language model

Context of previous words w_1, w_2, \ldots, w_k

A neural network

$$P\left(w_{k+1}\right)$$

Probability distribution over the next word $P\left(w_{k+1}\right)$

Representing words

- Neural networks can only operate on numbers
- We therefore represent words as high-dimensional vectors
- Vectors for each word are stored in a lookup table (the embedding matrix)

$$\begin{pmatrix} 0.544 \\ -0.678 \\ 0.604 \\ 0.944 \\ 0.632 \end{pmatrix} \begin{pmatrix} -0.023 \\ 1.354 \\ -0.553 \\ -0.367 \\ 0.975 \end{pmatrix} \begin{pmatrix} -1.079 \\ -0.612 \\ 0.594 \\ -1.057 \\ -1.186 \end{pmatrix} \begin{pmatrix} -0.262 \\ -0.923 \\ 1.097 \\ -0.724 \\ -1.078 \end{pmatrix} \begin{pmatrix} 0.352 \\ -0.341 \\ 0.318 \\ 0.345 \\ -1.452 \end{pmatrix}$$

the cat sat on a

A neural language model

 $P\left(w_{k+1}\right)$

Probability distribution over the next word $P\left(w_{k+1}\right)$

A neural language model

Computing the probability of the next word: SoftMax

vector representing the context c

Probability distribution over the next word $P\left(w_{k+1}\right)$

Multinomial logistic
$$P(w_{k+1} \mid c) = \text{regression (aka SoftMax)}$$
classifier using features c

A neural language model

Context of previous words w_1, w_2, \ldots, w_k

Word vectors

A neural network

Vector *c* representing the context

Probability distribution over the next word $P\left(w_{k+1}\right)$

Two methods to compute context representations

Transformers:

- Central idea: Repeatedly compute weighted averages of word representations
- Recurrent Neural Networks (RNNs):
 - Central idea: Combine current word with a hidden state representing the previous words

Recurrent Neural Networks

A neural language model

Training neural networks

- A neural network has many **parameters** (e.g., for composition function, word embedding matrix, ...)
- During training the network makes guesses about the next word
- If the guess is far off, the parameters are updated so that if the network guesses again, it is more likely to make the correct guess
- This process is repeated millions or billions of times

Pre-trained neural networks

- Medium-scale:
 - Available in Python on HuggingFace

- · Large-scale (e.g, GPT-3/4, ChatGPT, Claude):
 - Accessible in the Cloud

How to use them?

- As tools for research tasks:
 - For helping with stimuli generation
 - · Developing classifiers, e.g., for social media analysis
- For testing hypotheses about language processing/ learning:
 - To test hypotheses about online
 - To test hypotheses about learnal

For stimuli generation

h/t Brandon Waldon

Automatic classification: Social media analysis

- Example classification task: code-switching (yes/no)
 - 1. Hand-label a small dataset
 - 2. Fine-tune a classifier using a pre-trained language model
 - 3. Automatically predict labels for the rest of the data

Testing hypotheses about incremental processing

COGNITIVE SCIENCE

A Multidisciplinary Journal

Cognitive Science 45 (2021) e12988 © 2021 Cognitive Science Society LLC

ISSN: 1551-6709 online DOI: 10.1111/cogs.12988

Single-Stage Prediction Models Do Not Explain the Magnitude of Syntactic Disambiguation Difficulty

Marten van Schijndel, PhD,^a • Tal Linzen, PhD^b

^aDepartment of Linguistics, Cornell University
^bDepartment of Linguistics and Center for Data Science, New York University

Received 26 August 2020; received in revised form 21 April 2021; accepted 26 April 2021

Some things to consider when using LMs as cognitive models

- Amount of training data: Recent models are trained on orders of magnitude more linguistic data than a human receives an input over the course of their life
- Autoregressive vs. bidirectional language models:
 There are also popular language models that predict a word based on the left and right context not a good model for left-to-right online processing!
- Tokenization: Most models split up words into smaller units (so-called subword tokens). Many of these units are not linguistically meaningful.

Some things to consider when using LMs as cognitive models

- Memory constraints: Transformer-based models have perfect memory of hundreds, or even thousands of words
- Resist anthropomorphizing: Interacting with models such as ChatGPT can feel sometimes similar to interacting with humans — this doesn't mean the models produce responses like a human would.

•

Takeaways

- Language models are conditional probability distributions over the next word, given a context
- Neural networks constitute a powerful method for learning such a distribution
- Language models can be used as tools for research tasks, and if well justified, for testing hypotheses about human language processing
 - More about that in my talk tomorrow!

Thanks!

Additional resources:

- Jurafksy & Martin: Speech and Language Processing (3rd ed)
- Giuliano Giacaglia: How Transformers Work
- Sasha Rush: The Annotated Transformer
- HuggingFace Model Hub
- Stanford CS224N Lectures
- Slides: https://sebschu.com/slides/CUNY_LMs.pdf