# ساختمان داده و الگوريتم ها (CE203)

جلسه یازدهم: معرفی گراف و نمایش گراف گراف گراف گراف

سجاد شیرعلی شهرضا پاییز 1401 *دوشنبه، 16 آبان 1401* 

## اطلاع رساني

• بخش مرتبط كتاب براى اين جلسه: 22



تعريف ونمونه

Partial graph of the Internet (in 2005), where each "node" is an IP address, and the "edges" between them reveal connectivity delays (shorter lines = closer IP addresses)



Each "node" is an airport, and flight routes are represented by the "edge" in between them



Neural networks! Each "node" represents a module of the neural network, and "edge" represent output/input relationships



Graph of characters in the third book of Game of Thrones, where each "node" is a character, and "edge" reveal frequency of interaction (i.e. 2 names appearing within 15 words of one another).



CE prerequisites!

"nodes" are classes
and an "edge" from
class A to class B
means "class B
depends on class A"



#### WHAT ARE GRAPHS USED FOR?

- There are a lot of diverse problems that can be represented as graphs, and we want to answer questions about them
- For example:
  - How do we most efficiently route packets across the internet?
  - Are there natural "clusters" or "communities" in a graph?
  - Which character(s) are least related with \_\_\_\_\_?
  - How should I sign up for classes without violating pre-req constraints?

But first off, some terminology!

We'll deal with both kinds of graphs in this class.

#### **UNDIRECTED GRAPHS**

An undirected graph has a set of vertices (V) & a set of edges (E)



$$V = \{A, B, C, D\}$$
  
 $E = \{ \{A, B\}, \{A, C\}, \{A, D\}, \{B, D\}, \{C, D\} \}$ 

We'll deal with both kinds of graphs in this class.

#### UNDIRECTED GRAPHS

An undirected graph has a set of vertices (V) & a set of edges (E)



$$V = \{A, B, C, D\}$$
  
 $E = \{ \{A, B\}, \{A, C\}, \{A, D\}, \{B, D\}, \{C, D\} \}$ 

#### **DIRECTED GRAPHS**

A directed graph has a set of vertices (V) & a set of **DIRECTED** edges (E)



$$V = \{A, B, C, D\}$$
  
 $E = \{ [A, B], [A, C], [A, D], [B, D], [C, D], [D, B] \}$ 

We'll deal with both kinds of graphs in this class.

#### **UNDIRECTED GRAPHS**

An undirected graph has a set of vertices (V) & a set of edges (E)



The **degree** of vertex D is 3 Vertex D's **neighbors** are A, B, and C

#### **DIRECTED GRAPHS**

A directed graph has a set of vertices (V) & a set of **DIRECTED** edges (E)



The **in-degree** of vertex D is 3. The **out-degree** of vertex D is 1.

Vertex D's **incoming neighbors** are A, B, & C

Vertex D's **outgoing neighbor** is B

We'll deal with both kinds of graphs in this class.

#### **UNDIRECTED GRAPHS**

#### **DIRECTED GRAPHS**

a set

Today, we're only working with *unweighted* graphs.

These are graphs where edges aren't assigned weights, or all edges are assumed to have the same weight.

edges (E)

Formally, G = (V, E)

Formally, **G = (V, E)** 

D

The **degree** of vertex D is 3 Vertex D's **neighbors** are A, B, and C



The **in-degree** of vertex D is 3. The **out-degree** of vertex D is 1.

Vertex D's **incoming neighbors** are A, B, & C

Vertex D's **outgoing neighbor** is B

#### **OPTION 1: ADJACENCY MATRIX**



(An undirected graph)



#### **OPTION 1: ADJACENCY MATRIX**



(A directed graph)



#### **OPTION 2: ADJACENCY LISTS**



(An undirected graph)



Each list stores a node's neighbors

#### **OPTION 2: ADJACENCY LISTS**



(A directed graph)



Tracks outgoing neighbors.

(You could also do the same for incoming neighbors as well)

| For a graph G = (V, E)<br>where  V  = <b>n</b> , and  E  = <b>m</b> | $\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$ | ф<br>ф<br>ф<br>ф<br>ф |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------|
| EDGE MEMBERSHIP<br>Is e = {v, w} in E?                              |                                                                                                  |                       |
| <b>NEIGHBOR QUERY</b> Give me v's neighbors                         |                                                                                                  |                       |
| SPACE REQUIREMENTS                                                  |                                                                                                  |                       |

| For a graph G = (V, E)<br>where  V  = <b>n</b> , and  E  = <b>m</b> | $\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$ | 0000<br>0000 |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------|
| EDGE MEMBERSHIP<br>Is e = {v, w} in E?                              | O(1)                                                                                             |              |
| <b>NEIGHBOR QUERY</b> Give me v's neighbors                         |                                                                                                  |              |
| SPACE REQUIREMENTS                                                  |                                                                                                  |              |

| For a graph G = (V, E)<br>where  V  = <b>n</b> , and  E  = <b>m</b> | $\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$ | 0000<br>0 0               |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------|
| EDGE MEMBERSHIP<br>Is e = {v, w} in E?                              | O(1)                                                                                             | O(deg(v)) or<br>O(deg(w)) |
| <b>NEIGHBOR QUERY</b> Give me v's neighbors                         |                                                                                                  |                           |
| SPACE REQUIREMENTS                                                  |                                                                                                  |                           |

| For a graph G = (V, E)<br>where  V  = <b>n</b> , and  E  = <b>m</b> | $\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$ | 0000<br>0000              |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------|
| EDGE MEMBERSHIP<br>Is e = {v, w} in E?                              | O(1)                                                                                             | O(deg(v)) or<br>O(deg(w)) |
| <b>NEIGHBOR QUERY</b> Give me v's neighbors                         | O(n)                                                                                             |                           |
| SPACE REQUIREMENTS                                                  |                                                                                                  |                           |

| For a graph G = (V, E)<br>where  V  = <b>n</b> , and  E  = <b>m</b> | $\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$ | 0000<br>0 0               |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------|
| EDGE MEMBERSHIP  Is e = {v, w} in E?                                | O(1)                                                                                             | O(deg(v)) or<br>O(deg(w)) |
| <b>NEIGHBOR QUERY</b> Give me v's neighbors                         | O(n)                                                                                             | O(deg(v))                 |
| SPACE REQUIREMENTS                                                  |                                                                                                  |                           |

| For a graph G = (V, E)<br>where  V  = <b>n</b> , and  E  = <b>m</b> | $\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$ | 0000<br>0000              |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------|
| EDGE MEMBERSHIP<br>Is e = {v, w} in E?                              | O(1)                                                                                             | O(deg(v)) or<br>O(deg(w)) |
| <b>NEIGHBOR QUERY</b> Give me v's neighbors                         | O(n)                                                                                             | O(deg(v))                 |
| SPACE REQUIREMENTS                                                  | O(n²)                                                                                            |                           |

| For a graph G = (V, E)<br>where  V  = <b>n</b> , and  E  = <b>m</b> | $\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$ | 0000<br>0<br>0            |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------|
| EDGE MEMBERSHIP  Is e = {v, w} in E?                                | O(1)                                                                                             | O(deg(v)) or<br>O(deg(w)) |
| <b>NEIGHBOR QUERY</b> Give me v's neighbors                         | O(n)                                                                                             | O(deg(v))                 |
| SPACE REQUIREMENTS                                                  | O(n²)                                                                                            | O(n + m)                  |

| For a graph G = (V, E)<br>where  V  = <b>n</b> , and  E  = <b>m</b> | $\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$ | <del>-</del> |                                                                         |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| EDGE MEMBERSHIP  Is e = {v, w} in E?                                | O(1)                                                                                             | O(deg(v)) or<br>O(deg(w))                                                                                                         | Generally, better for sparse graphs (where m << n²).  We'll assume this |
| <b>NEIGHBOR QUERY</b> Give me v's neighbors                         | O(n)                                                                                             | O(deg(v))                                                                                                                         | representation,<br>unless otherwise<br>stated.                          |
| SPACE REQUIREMENTS                                                  | O(n²)                                                                                            | O(n + m)                                                                                                                          |                                                                         |

