Ref. No.: Ex/CE/5/T/105/2018(Old)

BACHELOR OF CIVIL ENGINEERING (EVENING) EXAMINATION 2018 (First Year, Second Semester)

SUBJECT: NUMERICAL ANALYSIS AND COMPUTER PROGRAMMING

Time: Three Hours

Full Marks 100

(50 marks for each part)

Use a separate Answer-Script for each part

No. of questions	Part (Mark		
	Answer Question No.1 and any Two from the rest.	<u> </u>		
1.	Answer any one question	1		
	a) Write a computer program in FORTRAN 77 using False Position method that finds a root of the equation $x^2 + x - 2 = 0$ between 1.50 and 2.00, using tolerance of 0.001.	' "		
	b) Write a FORTRAN 77 program to estimate a value y at a point x from a given table of values of x and y by using n th order Lagrange interpolation polynomial.	10		
2.	a) Using Newton-Raphson method, using two iterations ,determine the roots of the following non-linear simultaneous equations, close approximation to start with $x = 1.00$ and $y = 1.00$ $x^3 - y^2 = -1$ $x^2 - 2x + y^3 = 2$	12		
	b) Solve the following system of equations by simple Gauss elimination method.	8		
	2x - y + z = 9			
	x + 3y + 2z = -1 4x + 4y + z = 5			
Ĺ	a) What is an initial-value problem? How is it different from a boundary value problem?			
	b) State the formula of Euler's method. Illustrate its concept graphically.	3		
	c) Explain Predictor – Corrector method for solving initial-value problem for the type	4		
	$\frac{dy}{dx} = f(x,y) \text{ with initial condition } y = y_i \text{ at } x = x_i.$	6		
	d) Using Runge-Kutta method of order four find y at $x = 0.50$ and 1.00 by solving $y' = y(x^2 - 1)$, $y(0) = 1.0$. Assume step size $(h) = 0.50$.	7		
	a) Explain the principle of Secant method. What is the difference between false position method and Secant method?	4		
	b) Using Newton-Raphson method, using two iterations ,find a root of the function $f(x) = x^2 - 4x - 10 = 0$, in the vicinity of $x = 4.00$.	4		
	c) What is interpolation? Given a set of n+1 points, state the general form of nth dogree	4		
	d) For the following table of values:			
		8		
	f(x) 7.00 26.00 63.00 124.00			
	find $f(x)$ for $x = 3.5$ using Lagrange interpolation. What order of polynomial would you use in the above problem?			

B.CIVIL ENGG. (EVENING). 1st YEAR 2nd SEMESTER EXAM 2018 (2ND Semester / Repeat / Supplementary / Annual / Bianual)

SUBJECT: NUMERICAL ANALYSIS AND COMPUTER PROGRAMMING (old) (Name in full)

Time: Two hours/Three hours/Four hours/ Six hours

Full Marks 1 (50 marks for each pa

	Use a separate Answer-Script for each part	
No. of Question	PART – II	
1.(a)	Write the equivalent FORTRAN expression for the following arithmetic statement: $Y=c+d^k+e^{-x}$	
(b)	Write the equivalent arithmetic expression for the following FORTRAN statement: Y=a**b/c+d**e*f-h/p*r+q	
(c)	What will be the printed output, at the end of the following program segment? m=-478 a=66.5	
	b=22E-02 WRITE(*,8) m,a,b 8 FORMAT(2X,18,F8.2,E10.2) END	
(d)	What will be the value of the variable n, at the end of the following program segment? n=1.0	
!	x=10.0 y=x**2 n=n+(y/x) WRITE(*,*)n END	
(e)	What will be the value of the variable n, at the end of the following program segment? X=0 DO I=1,6,3 Do J=2,3 X=X+1.0	
	END DO END DO WRITE (*,*) X END	
2.	Write short notes on any four of the following.	
	a) Different block if –statement.	
	b) Function subprogram and subroutine subprogram	
	c) Rules to be followed in written DO-Loop.	
	d) Library function in FORTRAN	
	e) Rules of writing FORTRAN program in a file.	

	of stion		
1)	3.	Answer any two Questions.	15x2=3
1 Dai	a)	 i) Write a FORTRAN program to print ascending order form given input as N number integer. 	8
		ii) Write step-wise Algorithm and draw the flow chart to find big number from given three integer number.	7
2	b)	i) Write a FORTRAN program, to product of two Matrices [A] and [B], both of size (2x3) and (3X2) respectively and store the result in a separate matrix [C]. Implied do loop use for output matrices and format it.	7
2			8
		ii) Write a FORTRAN program to the sum of following series for the first N terms, using function subprogram.	
		Y=1+ 2/2 + 3/3 +	
2	c)	i) Write a FORTRAN program to find the value of "c _r , using subroutine subprogram.	8
		ii) Write a FORTRAN program to find out roots of given a quadratic equation.	7