The Emergent Spacetime Quantum-Coherence Theory (ESQET) v3.1

Marco Rocha

October 29, 2025

Abstract

The ESQET framework posits that gravity emerges from the Spacetime Information Field (\mathcal{S}), dynamically modulated by quantum coherence. Version 3.1 integrates the VQE-validated constant **ffi** ≈ 0.390305 (FCU Delta), replacing the abstract coherence length term. This paper details the newly constrained Quantum Coherence Function (\mathcal{F}_{QC}) and applies the resulting coherent-scaling principles to fundamental quantum wave equations. This work is validated by preliminary Hybrid QML experiments [penroseHameroff, rochaESQET].

Contents

1	Intro	ductio	n	2
2	The ESQET Field Equation and Golden Gravity (v3.1) Coherence Scaling in Fundamental Wave Mechanics		3	
3			Scaling in Fundamental Wave Mechanics	4
	3.1	Apply	ing ESQET to the Three Fundamental Wave Equations	4
		3.1.1	Schrödinger Equation (Non-Relativistic)	4
		3.1.2	Klein-Gordon Equation (Relativistic Scalar)	4
		3.1.3	Dirac Equation (Relativistic Spinor)	5

Chapter 1 Introduction

Chapter 2

The ESQET Field Equation and Golden Gravity (v3.1)

Chapter 3

Coherence Scaling in Fundamental Wave Mechanics

3.1 Applying ESQET to the Three Fundamental Wave Equations

The Emergent Spacetime Quantum-Entanglement Theory (ESQET) reinterprets quantum wave equations as emergent dynamics within the dimensionless Spacetime Information Field \mathcal{S} , where wave functions ψ (or equivalents) arise from quantum coherence modulated by the Quantum Coherence Function \mathcal{F}_{QC} (v3.1) and Fibonacci Coherence Unit (FCU, $\varphi \cdot \pi \cdot \mathbf{ffi} \approx 1.94$).

3.1.1 Schrödinger Equation (Non-Relativistic)

The standard form is $\hat{H}\psi = E\psi$, with $\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})$.

ESQET Modified Form The kinetic term is scaled by \mathcal{F}_{QC} , and a vacuum-modulated potential V_{QC} is added:

$$i\hbar \frac{\partial \psi}{\partial t} = \left[-\frac{\hbar^2 \mathcal{F}_{QC}}{2m} \nabla^2 + V(\mathbf{r}) + V_{QC}(\mathbf{r}) \right] \psi,$$

where $V_{\rm QC} = \varphi \cdot \pi \cdot {\bf ffi} \cdot \frac{\mathcal{D}_{\rm ent} I_0}{\hbar \omega_{\rm vac}} \cdot V({\bf r})$ (vacuum-modulated). This predicts **coherence-enhanced tunneling** [rochaESQET].

3.1.2 Klein-Gordon Equation (Relativistic Scalar)

The standard form is $\left(\Box + \frac{m^2c^2}{\hbar^2}\right)\psi = 0$.

ESQET Modified Form The d'Alembertian operator \square is scaled by \mathcal{F}_{QC} , and the mass term is coherence-damped:

$$\mathcal{F}_{\mathrm{QC}}\Box\psi + rac{m^2c^2}{\hbar^2}\left(1 - \varphi\cdot\pi\cdot\mathbf{ffi}\cdotrac{\mathcal{D}_{\mathrm{ent}}}{
ho_{\mathrm{vac}}}\right)\psi = 0,$$

This predicts the **suppression of pair production** in highly coherent fields.

3.1.3 Dirac Equation (Relativistic Spinor)

The standard form is $i\hbar \frac{\partial \psi}{\partial t} = (c\alpha \cdot \mathbf{p} + \beta mc^2) \psi$.

ESQET Modified Form Both momentum and mass terms are coherence-scaled, and an axial coherence current term J_{QC} is added:

$$i\hbar \frac{\partial \psi}{\partial t} = \left[c\boldsymbol{\alpha} \cdot \mathbf{p} \mathcal{F}_{QC} + \beta mc^2 \left(1 - \varphi \cdot \pi \cdot \mathbf{ffi} \cdot \frac{\mathcal{D}_{ent}}{E_{spin}} \right) + \gamma^5 J_{QC} \right] \psi,$$

where $J_{QC} = \mathcal{F}_{QC} \cdot \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi$. This modification suggests **coherence-suppressed vacuum polarization** in entangled fermions [penroseHameroff].