АСПЕКТЫ ИССЛЕДОВАНИЯ КАЧЕСТВА ИЗОБРАЖЕНИЯ ДЛЯ ОБЪЕКТИВОВ СОВРЕМЕННЫХ ЦИФРОВЫХ КАМЕР

А.В. Баландин, И.Г. Бронштейн, О.Н. Власов, И.Л. Лившиц

В статье обсуждаются вопросы оценки качества изображения, получаемого современными фото/видео системами, и распознавания объектов цифровыми камерами. Приводятся примеры объективов для современных цифровых камер

Введение

Под системой будет пониматься комплекс, состоящий из объектива, светочувствительного устройства и устройства воспроизведения информации. Примером такого комплекса является обыкновенный пленочный фотоаппарат. В этом случае изображение, получаемое с помощью объектива, формируется на фотоприемнике (фотопленке), затем оно увеличивается с использованием объектива фотоувеличителя для получения отпечатка на фотобумаге. Обычно основное внимание уделяется только качеству фотообъектива, однако необходимо уделять внимание характеристикам всего комплекса в целом, так как в конечном итоге будет рассматриваться только фотоотпечаток. Для исследования подобных систем, как правило, вводится понятие передаточной функции [1]. Традиционно при анализе оптической системы используется частотно-контрастная характеристика (ЧКХ).

Современные цифровые фото/видео камеры работают аналогично традиционным пленочным аппаратам, но используют в качестве приемника изображения ПЗС-матрицу. В работе показывается, что для оценки качества изображения таких систем также используется ЧКХ как его критерий.

Исследование качества изображения цифровых камер

При определении качества фотографии несколько десятков лет назад внимание прежде всего уделялось разрешающей способности объективов и пленок, которая измерялась в парах линий на миллиметр, но единого стандарта выработано не было. Обычно фотографировался тест-объект для определения разрешения (мира), затем визуально определялось, какие линии различимы. Поскольку каждому наблюдателю эти цифры могли казаться разными, то сравнение оптических систем было затруднено. Проблема объективного определения разрешения, контраста и четкости была решена за счет изобретения ЧКХ [1], которая описывает структуру изображения в виде функции пространственных частот, что является преобразованием Фурье пространственного распределения изображения. На рис. 1 [2] показано влияние формы ЧКХ на качество изображения при одинаковом предельном разрешении систем. При сравнении систем A, B и C при контрасте 0,1 все три системы имеют одинаковое разрешение, а при контрасте 0,5 их ЧКХ существенно различаются. Очевидно, что система С имеет наилучшее качество изображения.

ЧКХ может служить удобным критерием для оценки качества изображающих оптических систем по таким критическим параметрам, как пространственная частота (лн/мм) для объектива, линия на пиксель (лн/мм) или пространственное расположение пикселей –пиксель на миллиметр (пикс/мм) для приемника изображения.

Очевидно, видеосистему целесообразно проектировать с учетом соответствия разрешающей способности объектива и приемника изображения. Например, матрица с расстоянием между пикселями 6 мкм будет соответствовать граничной частоте (частота Найквиста [4]) 83 лн/мм или 166 пикс/мм. Для такой матрицы использование объективов с более высоким предельным разрешением, чем указанная граничная частота приемника изображения, не имеет смысла.

Рис. 1. Пример, объясняющий связь качества изображения и формы ЧКХ

Для определения требований, предъявляемых к объективам цифровых камер необходимо ответить на следующие вопросы:

- как соотнести разрешающую способность объектива с размерами пикселя?
- какое цифровое увеличение с целью распознавания объекта требуется получить?
- какое количество пикселей нужно для распознания объекта (лица человека, текста)?

В последнее время наблюдается тенденция к уменьшению размеров пикселя. Это удобно проследить, например, по развитию цифровых фотоаппаратов Canon PowerShot серии G [3], так как фотоаппараты этой серии от модели к модели сохраняли один и тот же размер матрицы — 1/1,8 дюйма. При этом растет количество пикселей и соответственно растет такой важный параметр матрицы, как количество пикселей, приходящихся на миллиметр матрицы (например, по вертикали). Поскольку частота Найквиста определяется как половина величины пикселей на миллиметр [4, 5], то разрешение матрицы размером 1/1,8 дюйма в фотоаппарате Canon PowerShot растет. Для последней модели G6 частота Найквиста равна 216 лн/мм.

Рассмотрим тест-объект с резким краем в виде прямоугольника. На его изображении край будет размазан в виде каймы с переменным наклоном профиля сечения, поскольку объектив имеет остаточные аберрации. Для исследования надо получить черно-белое изображение. Такое изображение в цифровой камере будет представлять собой числовую матрицу в формате bitmap. Для обработки данных импортируем полученный .bmp файл в программное обеспечение Mathcad [11]. Полученную матрицу можно продифференцировать по колонкам и получить функции рассеяния линии (ФРЛ). Эти функции могут быть приведены с помощью преобразования Фурье к одномерным ЧКХ. Для компенсации влияния оцифровки необходимо, чтобы тест-объект был наклонен по отношению к колонкам матрицы на небольшой угол, например, 5°. Используя несколько ФРЛ для различных колонок матрицы, получим усредненный результат, т.е. ЧКХ изображающей системы для интересующей части поля зрения (например, для осевой точки предмета).

Описанная процедура автоматически выполняется в программном обеспечении Imatest [6]. Однако ее можно производить с помощью любых вычислительных программ или даже калькулятора. На рис. 2 представлен пример математической обработки для исследования ЧКХ. Изображение тест-объекта получено с помощью фотоаппарата Canon EOS300D (135.6 пикс/мм) и объектива Canon EF-S (f=18, F8) (рис. 2). Вычисления выполнены с помощью программного обеспечения Mathcad.

Рис. 2. Пример математической обработки для исследования ЧКХ

Произведя аналогичные вычисления по тест-фотографиям, представленным dpreview [3], проследим тенденции улучшения качества изображения объективов для фотоаппаратов этой фирмы (рис. 3), которые, безусловно, определяются увеличением разрешающей способности сенсорных матриц.

Рис. 3. Пример развития фотоаппаратов Canon, использующих матрицу 1/1,8 (5,32 мм по вертикали)

Распознавание объектов цифровыми камерами

Современные цифровые камеры находят широкое применение в системах видеонаблюдения. Обычно для таких систем достаточным считается разрешение 640×480 пикселей в формате VGA.

Чтобы уверенно распознавать людей в записанном видео, разрешение должно достигать 40 точек изображения на 1 фут (0.30 м) [7]. Например, определим максимальное поле зрения для такой системы по горизонтали. Для этого, поделив 640 точек на 40 точек изображения и умножив на линейный размер, получим максимальное поле зрения 4,8 м. Обычно на практике требуется большее поле наблюдения (50–100 м), т.е. при использовании одиночной камеры с указанными параметрами возможна потеря информации. Для решения этой проблемы возможны варианты:

- 1. увеличение количества камер для достижения требуемого поля наблюдения,
- 2. использование сканирующей системы,
- 3. увеличение разрешающей способности цифровой камеры.

Именно третий вариант и представляется наиболее перспективным. Это означает, что на сегодняшний момент существует потребность в создании многопиксельных цифровых камер с большей разрешающей способностью для преодоления существующих ограничений.

В результате проведенного поиска были найдены примеры таких камер:

- BCi4-6600 6-мегапиксельная камера компании C-Cam Technologies [8].
- FCi4-14000 14-мегапиксельная камера компании C-Cam Technologies [8].
- VED-11DP-C 3-мегапиксельная камера компании VISTA [9].

Сегодняшние телевизионные камеры производят 30 кадров в секунду, что может просматриваться на мониторе для проведения наблюдения в реальном времени. Современные аналоговые и цифровые видеокамеры для видеонаблюдения вынужденно работают с уменьшенной скоростью записи (1–4 кадр/сек) для увеличения времени записываемого материала. Из-за высокого числа регистрируемых точек имеются три ключевых рабочих элемента, которые ограничивают скорость кадров:

- производительность и скорость ввода-вывода процессора изображения в камере;
- передача данных от камеры на записывающее устройство;
- производительность и скорость ввода-вывода записывающего устройства.

Необходимо специально спроектированное цифровое управление, чтобы обеспечить требуемую высокую информативность, а также быстрое соединение через Ethernet между камерой и персональным компьютером для передачи данных с высокой скоростью, достаточной, чтобы передавать сжатый поток данных сверхвысокого разрешения. Чтобы обеспечить запись в течение одного дня, персональный компьютер должен работать на частоте более 2 ГГц с емкостью памяти до 500 Гбайт.

Примеры объективов для современных цифровых камер

Цифровые многопиксельные камеры уже разрабатываются многими компаниями в мире [8, 9]. В этом случае возможно наблюдение за большими площадями с последующим цифровым увеличением при воспроизведении. Для таких камер, безусловно, требуется создание оптики с высокой разрешающей способностью. Разработкой указанных систем занимаются специализированные конструкторские бюро, например, [10, 13, 14].

На рис. 4 показан кадр сделанный цифровой видеоголовкой, оборудованной объективом LJ-10 (f=19.56mm, F6.5) с оптическим размером 1/2 и 3,1 миллионами точек отображения.

Для этой матрицы частота Найквиста составляет 160 лн/мм, а ЧКХ объектива значительно превосходит эту величину. Поэтому в дальнейших разработках предполагается использовать матрицу того же размера, но с большим количеством пикселей (возможно, 6 мегапикселей). Интересно сравнить изображение, полученное видеокамерой с объективом LJ-10, которое по качеству не уступает изображению, сделанному фотоаппаратом Olympus3040. Разработана серия объективов специальной конструкции с вынесенным вперед входным зрачком (пинхол) [10] с высоким разрешением, таких как LJ-44 (f'=11.2 мм, F5.6) – рис. 5. ЧКХ на уровне контраста 50% для этого объектива составляет около 125 лн/мм. Другой интересный объектив типа пинхол – это LJ-717 $(f'=3.6 \text{ мм}; \text{F4}; 2\omega=116^\circ)$; его оптическая схема представлена на рис. 6.

Рис. 4. Кадр, полученный компьютерной камерой с матрицей 1/2 (4,92 мм по высоте) и объективом LJ-10 (f'=19.56mm, F6,5)

Рис. 5. ЧКХ объектива LJ-44, рассчитанная при помощи программного обеспечения Synopsys [12]

Рис. 6. Оптическая схема и ЧКХ, рассчитанные для объектива "LJ-717"

Недавно был разработан новый объектив LJ-501(f'=6 mm; F6; 2ω =90°) [10]. Этот объектив обладает увеличенным выносом зрачка – 1.8 мм.

Рис. 7. Оптическая схема и ЧКХ для объектива LJ-501, рассчитанные с помощью программного обеспечения Synopsys

Интернет-обзор цифровых фотокамер dpreview [3] для сравнения фокусных расстояний предложил ввести так называемый «35-мм эквивалент» фокусного расстояния, так как при использовании матриц различного размера трудно оценить реальное фокусное расстояние объектива и сопоставить с его полем зрения. Например, 30 лн/мм для обыкновенного фотоаппарата, использующего 35-мм фотопленку (диагональ фотоприемника равна 43.26 мм), соответствует приблизительно 45 лн/мм для фотоаппарата

Canon EOS300 (диагональ фотоприемника 27.22 мм), а также 130 лн/мм для цифрового фотоаппарата Olympus3040 (диагональ фотоприемника 8.93 мм).

В результате можно придти к выводу, что для сравнения различных оптических систем нужно приводить разрешающую способность системы, т.е. (ЧКХ(50%) и ЧКХ(10%)) к стандарту 35-мм фотокамеры. Приведенная на рис. 8 диаграмма построена только на основе геометрических соотношений, в целом она показывает современные тенденции развития оптических систем, предъявляющих требования к разработке современных объективов с более высокой разрешающей способностью и улучшенной формой ЧКХ. Таким образом, в настоящее время в ответ на требования миниатюризации фото/видео техники используются матрицы отображения меньшего размера.

Рис. 8. Разрешающая способность цифровых фото/видео камер по ЧКХ(50%), приведенная к формату 35 мм фотоаппарата

Заключение

Проведенные исследования позволили сделать следующие выводы:

- для современных цифровых фото/видео камер применимы классические критерии оценки качества изображения;
- оценка качества изображения цифровых камер подтверждает, что существует ограниченное количество объективов, удовлетворяющее высоким требованиям, предъявляемым к таким камерам;
- объективы для современных цифровых камер по качеству изображения должны приближаться к дифракционному пределу разрешения.

Литература

- 1. Проектирование оптических систем / Под ред. Р. Шеннона, Дж. Вайанта. М.: Мир, 1983.
- 2. RIT Alphanumeric Resolution Test Object is available from the Rochester Institute of Technology (716-475-2739).
- 3. www.dpreview.com

- 4. H. Nyquist, "Certain topics in telegraph transmission theory" // Trans. AIEE. 1928. V.47. P. 617–644.
- 5. Котельников В.А. О пропускной способности эфира и проволоки в электросвязи. Всесоюзный энергетический комитет.// Материалы к І Всесоюзному съезду по вопросам технической реконструкции дела связи и развития слаботочной промышленности, 1933.
- 6. www.imatest.com
- 7. www.sentryscope.com
- 8. www.vista-cctv.com
- 9. www.vector-international.be
- 10. www.jupiter.spb.ru/
- 11. www.mathsoft.com
- 12. www.synopsys.com
- 13. www.canon.com
- 14. www.olympus-global.com