AMENDMENTS TO THE CLAIMS:

Please amend claims as follows:

- 1-3. (Canceled).
- 4. (Currently amended). A compound according to claim 32, selected from the group consisting of: the compounds of formulas IIa, IIb, IIc, IId, IIe, IIf, IIg and IIh,

$$(R^8)_p$$
 H
 R^6
 R^7
 H
 X
 X
 R^{10}
 $(R^9)_q$
IIIb

$$(R^8)_p \xrightarrow{H} \overset{R^6}{\overset{}_{V}} \overset{R^7}{\overset{}_{V}} \overset{H}{\overset{}_{V}} \overset{(R^9)_q}{\overset{}_{Q}} \overset{R^{10}}{\overset{}_{V}} \overset{IId}{\overset{}_{V}}$$

$$\mathbb{R}^{8} \xrightarrow{O-N} \mathbb{Y} \xrightarrow{Y} \mathbb{Y} \xrightarrow{\mathbb{N}} \mathbb{R}^{7} \mathbb{H} \xrightarrow{\mathbb{N}^{9}} \mathbb{Q} \mathbb{R}^{9} \mathbb{Q}$$
 IIe

$$R^{8} \xrightarrow{O-N} Y \xrightarrow{Y} Y \xrightarrow{X} R^{10}$$

$$(R^{9})_{q}$$
IIIf

$$R^{8} \xrightarrow{N-O} Y \xrightarrow{Y} Y \xrightarrow{R^{7} H} (R^{9})_{q} \xrightarrow{N} Ilg$$

$$R^{8} \longrightarrow N^{-0} \longrightarrow Y \longrightarrow X \longrightarrow N^{10} \longrightarrow N^{$$

wherein R⁶, R⁷, R⁸, p, X, Y, R⁹, q are as defined in claim 32 and R¹⁰ is H or as defined in claim 32; or a pharmaceutically acceptable salt thereof.

5. (Canceled).

- 6. (Withdrawn) The compound according to claim 32 as a medicament.
- 7. (Withdrawn) The compound according to claim 32 as a kinase inhibitor.
- 8. (Withdrawn, currently amended) The compound according to claim 7, wherein the kinase are is selected from the group consisting of raf-kinases and VEGFR kinases.
- 9. (Previously presented) A pharmaceutical composition, comprising the compound according to claim 32 and one or more pharmaceutical ingredients.
- 10. (Withdrawn) Pharmaceutical composition according to claim 9, characterized in that it contains one or more additional compounds other than said compound, selected from the group consisting of physiologically acceptable excipients, auxiliaries, adjuvants, carriers and pharmaceutical active ingredients.
- 11. (Withdrawn) Process for the manufacture of a pharmaceutical composition, characterized in that one or more compounds according to claim 32 and one or more compounds, selected from the group consisting of carriers, excipients, auxiliaries and pharmaceutical active ingredients other than the compounds according to claim 32, is processed by mechanical means into a pharmaceutical composition that is suitable as dosageform for application and/or administration to a patient.
- 12. (Canceled).
- 13. (Canceled).

- 14. (Canceled).
- 15. (Withdrawn) The method of claim 25, wherein the disorders are caused, mediated and/or propagated by kinases selected from raf-kinases and VEGFR kinases.
- 16. (Withdrawn) The method of claim 25, wherein the disorders are selected from the group consisting of hyperproliferative and nonhyperproliferative disorders.
- 17. (Withdrawn) The method of claim 16, wherein the disorder is cancer.
- 18. (Withdrawn) The method of claim 16, wherein the disorder is noncancerous.
- 19. (Withdrawn, currently amended) The method of claim 18, wherein the noncancerous disorders are selected from the group consisting of psioarsis, arthritis, inflammation, endometriosis, scarring, begnin benign prostatic hyperplasia, immunological diseases, autoimmune diseases and immunodeficiency diseases.
- 20. (Withdrawn) The method of claim 17, wherein the disorders are selected from the group consisting of brain cancer, lung cancer, squamous cell cancer, bladder cancer, gastric cancer, pancreatic cancer, hepatic cancer, renal cancer, colorectal cancer, breast cancer, head cancer, neck cancer, oesophageal cancer, gynaecological cancer, thyroid cancer, lymphoma, chronic leukaemia and acute leukaemia.
- 21. (Withdrawn) The method of claim 16, wherein the disorders are selected from the group consisting of arthritis, restenosis; fibrotic disorders;

mesangial cell proliferative disorders, diabetic nephropathy, malignant nephrosclerosis, thrombotic microangiopathy syndromes, organ transplant rejection, glomerulopathies, metabolic disorders, inflammation and neurodegenerative diseases.

- 22. (Withdrawn) The method of claim 16, wherein the disorders are selected from the group consisting of rheumatoid arthritis, inflammation, autoimmune disease, chronic obstructive pulmonary disease, asthma, inflammatory bowel disease, fibrosis, atherosclerosis, restenosis, vascular disease, cardiovascular disease, inflammation, renal disease and angiogenesis disorders.
- 23. (Canceled).
- 24. (Withdrawn) The method of claim 15, wherein the kinase is one or more raf-kinases, selected from the group consisting of A-Raf, B-Raf and Raf-1.
- 25. (Withdrawn) A method for the treatment and/or prophylaxis of disorders, wherein the compound according to claim 32 is administered to a patient in need of such a treatment.
- 26. (Withdrawn) A method for the treatment and/or prophylaxis of disorders wherein the pharmaceutical composition according to claim 9 is administered.
- 27. (Canceled).
- 28. (Withdrawn) The method of claim 25, wherein the one or more disorders result from cancerous cell growth mediated by one or more kinases.

- 29. (Withdrawn) A method for producing the compound of claim 32, wherein:
 - a) a compound of formula III

$$(R^8)_p$$
 Ar^1 N Y Y Y Y Y Y

wherein

L¹ is CI, Br, I, OH, an esterified OH-group or a diazonium moiety, and R⁶, R⁷, R⁸, p, Ar¹, Y are as defined in claim 32,

is reacted

b) with a compound of formula IV,

$$L_{N}^{2}$$
 $(R^{9})_{q}$ IV

wherein

L², L³ are independently from one another H or a metal ion, and R⁹, q, X, Ar², R¹⁰ and r are as as defined in claim 32,

and optionally

- c) isolating and/or treating the compound of formula II obtained by said reaction with an acid, to obtain the salt thereof.
- 30. (Withdrawn) Compound of formula III,

$$(R^8)_p$$
 Ar^1 N R^6 R^7 L^1 M Y Y Y Y

wherein

- L¹ is CI, Br, I, OH, an esterified OH-group or a diazonium moiety, and R⁶, R⁷, R⁸, p, Ar¹, Y are as defined in claim 3.
- 31. (Withdrawn) Compound of formula IV,

$$L_{N}^{2}$$
 $(R^{9})_{q}$ IV

wherein

- L^2 , L^3 are independently from one another H or a metal ion, and R^9 , q, X, Ar^2 , R^{10} and r are as defined in claim 3.
- 32. (Currently amended) A compound of formula II:

wherein

Ar¹ is phenyl, pyridinyl, oxazolyl, isoxazolyl, pyrazolyl or imidazolyl,

Ar² is pyridinyl,

is selected from the group consisting of alkyl comprising having 1 to 4 carbon atoms, alkoxy comprising having 1 to 4 carbon atoms, Hal, CH₂Hal, CH(Hal)₂, perhaloalkyl comprising having 1 to 4 carbon atoms, NO₂, (CH₂)_nCN, (CH₂)_nNR¹¹R¹², (CH₂)_nO(CH₂)_kNR¹¹R¹², (CH₂)_nCOR¹³, (CH₂)_nCOOR¹³, (CH₂)_nCONR¹¹R¹², (CH₂)_nSO₂NR¹¹R¹² and (CH₂)_nS(O)_uR¹³,

k is 0, 1 or 2,

r is 0, 1 or 2;

R⁶, R⁷ are independently selected from the meanings given for R⁸, R⁹, or R⁶ and R⁷ together form a carbocyclic residue comprising having 3 to 7 carbon atoms or a heterocyclic residue comprising having 1, 2 or 3 hetero atoms, selected from the group consisting of O, N and S, and 2 to 6 carbon atoms, said carbocyclic or heterocyclic residue being unsubstituted or comprising having 1, 2 or 3 substituents, selected from the meanings given for R⁸, R⁹ and R¹⁰,

- R^8 R^9 are independently selected from a group consisting of H, A, cycloalkyl comprising having 3 to 7 carbon atoms, Hal, CH₂Hal, $CH(Hal)_2$, $C(Hal)_3$, NO_2 , $(CH_2)_nCN$, $(CH_2)_nNR^{11}R^{12}$, $(CH_2)_nOR^{11}$, $(CH_2)_nO(CH_2)_kNR^{11}R^{12}$, $(CH_2)_nCOOR^{12}$, $(CH_2)_nCONR^{11}R^{12}$, $(CH_2)_nNR^{11}COR^{13}$, $(CH_2)_nNR^{11}CONR^{11}R^{12}$, $(CH_2)_nNR^{11}SO_2A$, $(CH_2)_nSO_2NR^{11}R^{12}$, $(CH_2)_nS(O)_{II}R^{13}$, $(CH_2)_nOC(O)R^{13}$, (CH₂)_nCOR¹³, (CH₂)_nSR¹¹, CH=N-OA, CH₂CH=N-OA, $(CH_2)_nNHOA$, $(CH_2)_nCH=N-R^{11}$, $(CH_2)_nOC(O)NR^{11}R^{12}$, (CH₂)_nNR¹¹COOR¹², (CH₂)_nN(R¹¹)CH₂CH₂OR¹³, (CH₂)_nN(R¹¹)CH₂CH₂OCF₃, (CH₂)_nN(R¹¹)C(R¹³)HCOOR¹², C(R¹³)HCOR¹², (CH₂)_nN(R¹¹)CH₂CH₂N(R¹²)CH₂COOR¹², (CH₂)_nN(R¹¹)CH₂CH₂NR¹¹R¹², CH=CHCOOR¹¹, CH=CHCH₂NR¹¹R¹², CH=CHCH₂NR¹¹R¹², CH=CHCH₂OR¹³, $(CH_2)_nN(COOR^{11})COOR^{12}$, $(CH_2)_nN(CONH_2)COOR^{11}$. $(CH_2)_nN(CONH_2)CONH_2$, $(CH_2)_nN(CH_2COOR^{11})COOR^{12}$, (CH₂)_nN(CH₂CONH₂)COOR¹¹, (CH₂)_nN(CH₂CONH₂)CONH₂, (CH₂)_nCHR¹³COR¹¹. (CH₂)_nCHR¹³COOR¹¹. (CH₂)_nCHR¹³CH₂OR¹⁴, (CH₂)_nOCN and (CH₂)_nNCO, wherein
- R^{11} , R^{12} are independently selected from a group consisting of H, A and $(CH_2)_mAr^3$ or in $NR^{11}R^{12}$,
- R¹¹ and R¹² form, together with the N-Atom they are bound to, a 5-, 6- or 7-membered heterocyclus which optionally contains, optionally having 1 or 2 additional hetero atoms, selected from N, O an and S,
- R^{13} , R^{14} are independently selected from a group consisting of H, Hal, A, $(CH_2)_mAr^4$ and $(CH_2)_mHet$,

A is selected from the group consisting of alkyl, alkenyl, cycloalkyl, alkylenecycloalkyl, alkoxy and alkoxyalkyl,

Ar³, Ar⁴ are independently from one another aromatic hydrocarbon residues having 5 to 12 carbon atoms which are optionally substituted by one or more substituents, selected from a group consisting of A, Hal, NO₂, CN, OR¹⁵, NR¹⁵R¹⁶, COOR¹⁵, CONR¹⁵R¹⁶, NR¹⁵COR¹⁶, NR¹⁵CONR¹⁵R¹⁶, NR¹⁶SO₂A, COR¹⁵, SO₂R¹⁵R¹⁶, S(O)_uA and OOCR¹⁵,

Het is a saturated, unsaturated or aromatic heterocyclic residue which is optionally substituted by one ore more substituents, selected from a group consisting of A, Hal, NO₂, CN, OR¹⁵, NR¹⁵R¹⁶, COOR¹⁵, CONR¹⁵R¹⁶, NR¹⁵COR¹⁶, NR¹⁵CONR¹⁵R¹⁶, NR¹⁶SO₂A, COR¹⁵, SO₂R¹⁵R¹⁶, S(O)_uA and OOCR¹⁵,

 R^{15} , R^{16} are independently selected from a group consisting of H, A, and $(CH_2)_mAr^6$, wherein

Ar⁶ is a 5- or 6-membered aromatic hydrocarbon which is optionally substituted by one or more substituents selected from a group consisting of methyl, ethyl, propyl, 2-propyl, tert.-butyl, Hal, CN, OH, NH₂ and CF₃,

m and n are independently of one another 0, 1, 2, 3, 4, or 5,

X is selected from the group consisting of O, S, NR¹¹, CHOR¹¹, CH₂, CH₂CH₂, OCH₂, CH₂O, OCH₂CH₂, CH₂CH₂O

h, i are independently from each other 0, 1, 2, 3, 4, 5, or 6, and

j is 1, 2, 3, 4, 5, or 6,

Y is selected from O, S, NR^{21} , $C(R^{22})$ - NO_2 , $C(R^{22})$ -CN and $C(CN)_2$, wherein

R²¹ is independently selected from the meanings given for R¹³, R¹⁴ and

R²² is independently selected from the meanings given for R¹¹, R¹²,

p is 0, 1, 2, 3, 4 or 5,

q is 0, 1, 2, 3 or 4,

u is 0, 1, 2 or 3,

and

Hal is independently selected from a group consisting of F, Cl, Br and I;

or a pharmaceutically acceptable salt thereof.

33. (Currently amended) A compound according to claim 32, selected from the group consisting of <u>a compound</u> the compounds of formula A-NH-CO-CH₂-CO-NH-B, wherein A and B are as given below:

A B

(1) FFFF

(2) F F F CI

(5) FFF

(6) FFF

(7) CI

(8) CI

(9) CI

ON

0 (N

 \bigcirc

 $\bigcirc \bigcirc \bigcirc N$

ON

O

(10)	CI
------	----

$$- \hspace{-1.5cm} \stackrel{\bigcirc}{\longrightarrow} \hspace{-1.5cm} N$$

$$-\sqrt{} - O - \sqrt{} N$$

(24)
$$H_3C$$
 H_3C-O

(25)
$$H_3C$$
 O H_3C-O

(26)
$$H_3C$$

$$H_3C-O$$

$$CH_3$$
 HN
 O
 N

$$CH_3$$
 N
 O
 N

(32) CH₃

(33) H₃C

(34) H₃C

(35) H₃C

(36) H₃C

(37) Br

(38) Br

 $\begin{array}{c} & & \text{CH}_3 \\ & & \text{HN} \\ & & \text{O} \end{array}$

0 (N

CH₃

HN O N

CH₃
HN
O
N

 CH_3 HN O N

$$- \bigcirc - O - \bigcirc N$$

$$- - O - N$$

$$- \hspace{-1.5cm} \stackrel{\bigcirc}{\hspace{-1.5cm}} \hspace{-1.5cm} \stackrel{\longrightarrow}{\hspace{-1.5cm}} \hspace{-1.5cm} \stackrel{\longrightarrow}$$

(46)	H ₃ C	$ \bigcirc$ \bigcirc \bigcirc N
(47)	H ₃ C	CH ₃ HN O
(48)	H ₃ C	CH ₃ HN O N
(49)	Br—	$ \bigcirc$ $ \bigcirc$ $ \bigcirc$ $ -$
(50)	Br—	O
(51)	Br—	CH ₃ HN O
(52)		CH ₃
	Br—	$-\sqrt{}$ O $-\sqrt{}$ N
(53)	_	

(54)	F—	CH_3 HN O N CH_3
(55)	F—	CH ₃ HN O N
(56)	CI	$ \bigcirc$ $ \bigcirc$ N
(57)	CI	O
(58)	CI	CH ₃ HN O N
(59)	CI—	HN O
(60)	H ₃ C	$ \bigcirc$ O
(61)	H ₃ C	HN O N

$$- \hspace{-1.5cm} \stackrel{\bigcirc}{\longleftarrow} \hspace{-1.5cm} \stackrel{\bigcirc}{\longrightarrow} \hspace{-1.5cm} \hspace{-1.5cm} \stackrel{\bigcirc}{\longrightarrow} \hspace{-1.5cm} \stackrel{\bigcirc}{\longrightarrow} \hspace{-1.5cm} \stackrel{\bigcirc}{\longrightarrow} \hspace{-1.5cm} \hspace{-1.5cm} \stackrel{\longrightarrow}{\longrightarrow} \hspace{-1.5cm} \stackrel{\longrightarrow}{\longrightarrow} \hspace{-1.5cm} \stackrel{\longrightarrow}{\longrightarrow} \hspace{-1.5cm}$$

$$\begin{array}{c} CH_3 \\ HN \\ O \end{array}$$

$$\bigcirc$$
O

$$- \begin{array}{c} CH_3 \\ HN \\ O \end{array}$$

$$\begin{array}{c} & & \text{CH}_3 \\ & & \text{HN} \\ & & \text{O} \end{array}$$

(80)
$$H_3C$$
 CH_3

(82)
$$CH_3$$

$$CH_3$$

$$\begin{array}{c} CH_3 \\ HN \\ O \end{array}$$

$$\begin{array}{c} & & \text{CH}_3 \\ & & \text{HN} \\ & & \text{O} \end{array}$$

(98)
$$H_3C$$

(104)	F F F CI	CH_3 HN O N
(105)	CI	$ \bigcirc$ $ \bigcirc$ N
(106)	CI	O
(107)	H ₃ C O	$-\langle \rangle$
(108)	CH ₃	O
(109)	CI	$ \bigcirc$ $ \bigcirc$ $ \bigcirc$ $ \bigcirc$ $ -$
(110)	F	O
(111)	O-(O

$$- \bigvee_{O} O - \bigvee_{N} N$$

(121)
$$H_3C$$

(122) H_3C

(123) H_3C
 H_3C
 H_3C

(124) H_3C
 H_3C
 H_3C

(125) H_3C
 H_3C

(128)	CI CH.
	CH ₃

$$\begin{array}{c} H_{3}C \stackrel{CH_{3}}{\longleftarrow} \\ H_{3}C \stackrel{}{\longleftarrow} \end{array}$$

$$\begin{array}{c} CH_3 \\ HN \\ O \end{array}$$

$$\bigcirc$$
O

$$\bigcirc$$

$$\bigcirc$$

$$\bigcirc$$

$$\bigcirc \bigcirc \bigcirc N$$

$$\bigcirc$$
O

$$O \subset N$$

$$\bigcirc$$

$$\bigcirc$$

(163)
$$H_3C$$

$$\bigcirc$$

$$\bigcirc$$

$$\begin{array}{c} CH_3 \\ \hline \\ N \end{array}$$

$$\bigcirc$$

(182)
$$H_3C-S$$

(183) H_3C

(184) H_3C

(185) H_3C

(186) H_3C

(187) H_3C

(188) H_3C

(188)

$$\text{CO}_{N}$$

$$\bigcirc$$

$$\bigcirc$$

$$\begin{array}{ccc} & & & & & \\ \text{(197)} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

$$\mathbf{O}_{\mathbb{N}}$$

$$CH_3$$
 HN
 O
 N

$$\bigcirc \bigcirc \bigcirc_{N}$$

$$\bigcirc$$

$$- V - O - V - N$$

(215)
$$H_3C$$
 CH_3 $HN = 0$ CH_3 $HN = 0$ CH_3 $HN = 0$ CH_3 $HN = 0$ CH_3 CH_3

(219)

or a pharmaceutically acceptable salt thereof.