Analysis of Development Projects in Louisville, Kentucky

The dataset that I have selected for the purpose of this project is about the applications for development projects submitted to Planning and Design Services in the city of Louisville, Kentucky between January 2010 and June 2018.

I have used the tools R, Python and SQL to analyze and provide inferences and draw conclusions from the dataset.

Research questions that I have analyzed this dataset and answered using the abovementioned programming tools:

1. How many number of projects are there per Project type?

Approach 1: Python

Out[180]:		739
	restaurant	257
	office	230
	retail	219
	multi-family	198
	warehouse	167
	single-family	160
	auto services	123
	medical	74
	mini-warehouse	60
	convenience store	56
	religious	52
	commercial	51
	manufacturing	48
	hotel	37
	banking	33
	industrial	28
	senior living	23
	recreation	23
	grocery	19
	contractor	17
	distribution center	15
	daycare	13
	assisted living	13
	private club	12
	fuel kiosk	10
	storage	9
	distillery	8
	funeral home	7
	veternary	5
	nursing home	5
	museum	4
	conference center	4

```
bed & breakfast
                             4
gallery
                             3
shelter/food service
                             3
                             3
brewery
                             3
landscaper
movie theatre
                             2
training facility
                             2
kennel
                             2
salon
                             2
nightclub
                             2
wagering
                             1
union
                             1
recycling
                             1
need sqft - restaurant
maintenance
                             1
orphanage
                             1
animal shelter
                             1
Name: ProjType, dtype: int64
```

From the above counts, it can be seen that the Zoned project type has the highest number of projects, at 739, followed by Restaurants at 257.

Visualization:

Approach 2: R

bed & breakfa	banking	auto services	assisted living	animal shelter
	33	123	13	1
convenience sto	contractor	conference center	commercial	brewery
	17	4	51	3
funeral ho	fuel kiosk	distribution center	distillery	daycare
	10	15	8	13
kenn	industrial	hotel	grocery	gallery
	28	37	19	3
mini-warehou	medical	manufacturing	maintenance	landscaper
	74	48	1	3
nightcl	t - restaurant	museum	multi-family	movie theatre
	1	4	198	2
recreati	private club	orphanage	office	nursing home
	12	1	230	5
sal	retail	restaurant	religious	recycling
	219	257	52	1
training facili	storage	single-family	shelter/food service	senior living
	9	160	3	23
Zon	warehouse	wagering	veternary	union
7	167	1	5	1

Approach 3: SQL

PROJ_TYPE	NUMBER_OF_PROJECTS
1 Zoned	739
2 restaurant	257
3 office	230
4 retail	219
5 multi-family	198
6 warehouse	167
7 single-family	160
8 auto services	123
9 medical	74
10 mini-warehouse	60
11 convenience store	56
12 religious	52
13 commercial	51
14 manufacturing	48
15 hotel	37
16 banking	33
17 industrial	28
18 senior living	23
19 recreation	23
	19
20 grocery	
21 contractor	17
22 distribution center	15
23 assisted living	13
24 daycare	13
25 private club	12
26 fuel kiosk	10
27 storage	9
28 distillery	8
29 funeral home	7
30 veternary	5
31 nursing home	5
32 museum	4
33 bed & breakfast	4
34 conference center	4
35 gallery	3
36 brewery	3
37 shelter/food service	3
38 landscaper	3
39 nightclub	2
40 salon	2
41 training facility	2
42 kennel	2
43 movie theatre	2
44 need sqft - restaurant	1
45 wagering	1
46 union	1
47 recycling	1
48 maintenance	1
49 orphanage	1
50 animal shelter	1
animal shelter	1

2. Identify the number of projects per Application Type and Category.

Approach 1: Python

```
# 2. Identify the number of projects per Application Type and Category.
pd.set option("display.max rows", None)
development subset.AppType.value counts()
SITEPLAN
            1298
SUBDIV
             841
ZONE
             539
URBAN
              61
ADMIN
              12
               1
Name: AppType, dtype: int64
pd.set option("display.max rows", None)
development_subset.Category.value_counts()
commercial
                 1209
minorplat
                  739
industrial
                  298
multi family
                  234
single family
                  160
institutional
                   72
hotel
                   40
```

Visualization:

Name: Category, dtype: int64

Approach 2: SQL

	APP_TYPE	PROJ_TYPE	NUMBER_OF_PROJECTS
1	SITEPLAN	commercial	1298
2	SUBDIV	single-family	841
3	ZONE	multi-family	539
4	URBAN	commercial	61
5	ADMIN	restaurant	12
6		retail	1

CATEGORY_	PROJ_TYPE	NUMBER_OF_PROJECTS
1 commercial	office	1209
2 minorplat	Zoned	739
3 industrial	storage	298
4 multi family	multi-family	234
5 single family	single-family	160
6 institutional	recreation	72
7 hotel	hotel	40

3. Which category and Application Type have the highest number of projects?

Approach 1: Python

```
# 3. Which category and Application Type have the highest number of projects?

pd.set_option("display.max_rows", None)
development_subset.AppType.value_counts().head(1)

SITEPLAN 1298
Name: AppType, dtype: int64

pd.set_option("display.max_rows", None)
development_subset.Category.value_counts().head(1)

commercial 1209
Name: Category, dtype: int64
```

Approach 2: SQL

APP_TYPE	PROJ_TYPE	NUMBER_OF_PROJECTS
1 SITEPLAN	commercial	1298

	CATEGORY_	PROJ_TYPE	NUMBER_OF_PROJECTS
1	commercial	office	1209

4. List and count of projects that are hospitals.

Approach 1: Python

	SqFootage	ProjType	Rooms	АррТуре	ProjName	Category	CreYear	LastYear	BOZA	PC	LDT	DRC	Units
770	172263	medical	0	ZONE	Norton Brownsboro Hospital	commercial	2017	2018	Approved				0
783	13842	medical	0	ZONE	Norton Children's Hospital	commercial	2017	2017	Approved				0
1377	86266	medical	0	SITEPLAN	Hospital expansion	commercial	2015	2016	Approved			Approved	0
1415	2200	medical	0	SITEPLAN	Norton Brownsboro Hospital	commercial	2015	2015	Approved				0
1555	3235	office	0	ZONE	American Hospital Directory	commercial	2014	2014		Approved	Sent to PC		0
2165	7000	medical	0	ZONE	BAPTIST HOSPITAL EAST CANCER C	commercial	2012	2012	Approved				0
2225	120000	medical	0	ZONE	NORTON WOMEN'S HOSPITAL KOSAIR	commercial	2012	2012	Approved				0
2404	0	Zoned	0	SUBDIV	JEWISH HOSPITAL @ ST MARY'S HE	minorplat	2011	2012					0
2647	2404	veternary	0	SITEPLAN	JEFFERSON ANIMAL HOSPITAL	commercial	2010	2010	Approved			Approved	0

Approach 2: SQL

5. Identify the range for the Square Footage (area) of projects and Square Footage (area) per category. Also identify the summary statistics for the Square Footage (area) of projects.

Approach 1: R

Square Footage of the Projects

Square Footage per Category:

Square Footage per Category

From the above boxplots of Sq Footage per Category, it can be inferred that in general, Industrial projects have the highest area among all the categories of projects, followed by Commercial Projects.

6. Which project has highest square footage and highest number of rooms?

A warehouse project with the name of 'Southport Warehouses' has the highest area among all the projects, with an area of 2555000 sq. feet. This project belongs to the 'Industrial' Projects Category.

A Hotel with the name of 'Omni Louisville Hotel' has the highest number of rooms among all the projects, with 600 rooms. This project belongs to the 'Hotel Category.

Approach 2: SQL

7. How many projects are proposed to be built on a highway?

Approach 1: Python

It can be seen that there are 6 projects that are proposed to be built on highways.

Approach 2: SQL

```
COUNT(PROJ_NAME)

1
```

8. How many projects have been actioned upon for more than a year, since the initial application date?

Approach 1: R

The proportion of projects that have been active for 0, 1, 2, 3 and 4 years:

It shows that majority of the projects (78.8 %) have not been actioned upon for more than a year and 18.6 % of the projects have been active for 1 year.

The individual counts of the projects, grouped by the number of active years:

```
> sum(development_data$duration == 0)
[1] 2170
> sum(development_data$duration == 1)
[1] 512
> sum(development_data$duration == 2)
[1] 61
> sum(development_data$duration == 3)
[1] 6
> sum(development_data$duration == 4)
[1] 3
> |
```

Visual representation of the individual counts of the projects, grouped by the number of active years:

9. What proportion of projects have received the required approval of construction from the appropriate Boards/ Committees?

Approach 1: SQL

BOZA:

BOZA	COUNT(BOZA)
1 No decision	2417
2 Approved	335

Of the 2752 total projects, 335 applications have received the approval from BOZA (Board of Zoning Adjustment)

PC:

PC	COUNT(PC)
1 No decision	2355
2 Approved	389
3 No Recommendation	1
4 Continued	3
5 Agreed with DRC	3
6 Agreed with LD&T	1

Of the 2752 total projects, 389 applications have received the approval from PC (Planning Commission)

LDT:

LDT	COUNT(LDT)
1 No decision	2224
2 Sent to PC	323
3 Approved	194
4 Continued	10
5 Continued to DRC	1

Of the 2752 total projects, 194 applications have received the approval from LDT (Land Development & Transportation Committee)

DRC:

DRC	COUNT(DRC)
1 No decision	2088
2 Approved	638
3 Deferred	2
4 Continued	10
5 Sent to PC	8
6 Deferred to LDT	1
7 Approve	5

Of the 2752 total projects, 638 applications have received the approval from LDT (Development Review Committee)

Approach 2: R (Visualization)

BOZA:

Plotting a bar graph to depict the proportion of projects have received the required approval of construction from BOZA:

Plotting a bar graph to depict the proportion of projects have received the required approval of construction from PC:

DRC:

Plotting a bar graph to depict the proportion of projects have received the required approval of construction from DRC:

LDT:

Plotting a bar graph to depict the proportion of projects have received the required approval of construction from LDT:

Further Analysis beyond the research questions:

Relationship between Project Type and the number of multi family dwelling units in a project:

The above plot shows that the Projects that have the highest number of dwelling units belong to the 'multi-family' category, followed by the 'assisted-living' category.

Regression model to determine Project Type from the number of dwelling units:

Fitting a logistic regression model in R to determine Project Type from the number of dwelling units:

```
> development_data$ProjType <- as.factor(development_data$ProjType)
> set.seed(1000)
> split <- sample.split(development_data, SplitRatio = 0.8)
> train <- subset(development_data, split == "TRUE")
> test <- subset(development_data, split == "FALSE")</pre>
```

```
> logistc_model <- glm(ProjType ~ Units, data = train, family = 'binomial')
Warning messages:
1: glm.fit: algorithm did not converge
2: glm.fit: fitted probabilities numerically 0 or 1 occurred
> summary(logistc_model)
glm(formula = ProjType ~ Units, family = "binomial", data = train)
Deviance Residuals:
   Min
                  Median
                                3Q
              1Q
                                        Max
-3.8953
          0.0319
                   0.0319
                            0.0319
                                     0.0319
coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)
               7.586
                          1.000
                                  7.584 3.34e-14
Units
               4.556
                        570.175
                                  0.008
                                           0.994
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 17.358 on 2162 degrees of freedom
Residual deviance: 17.173
                           on 2161
                                    degrees of freedom
AIC: 21.173
Number of Fisher Scoring iterations: 25
```

As can be seen from the summary statistics of the logistic regression model, the model has a low AIC score of 21.173. This indicates that the variable 'Units' (the number of inhabitable units in a project) can be used to predict the Project Type to a certain degree.

Visualizing the Logistic Regression Model:

