(六)數據整理與計算分析

1.質點式鋼體轉動慣量測量

懸掛物	轉動半徑
m(kg)	r(m)
0.08832	0.00905

a 是由光電計時器測得的角速度乘上半徑 0.00905~m(我們光電閘架在轉動軸)推 得 v,再和時間作圖得出斜率 a。(以下實驗的 a 都是這樣求得的,便不再贅述)

a: 單位:m/s^2

軸	全
6.00E-03	4.00E-03

摩擦力 f:

軸(N)	全(N)
0.1175	0.1211

質點	質點	I軸	I全	I點實驗	I點理論	24404
M(kg)	R(m)	kg*m^2	kg*m^2	值	值	error
0.02868	0.1	0.010204	0.010443	2.39E-04	2.87E-04	16.7%

此視為質點,所以理論轉動慣量公式為 MR^2 。 依據 $I\alpha = r(m(g-a)-f)$ 推得實驗值 I。

2. 盤與環的轉動慣量測量

懸掛物	轉動半徑
m(kg)	r(m)
0.08832	0.00905

摩擦力 f: 單位:牛頓

盤	環	直立盤
0.0891114	0.0513275	0.08478208

	M(kg)	半徑(m)	a(m / s^2)	I實驗	I理論	error
盤	1.4777	0.108	32	0.008	0.007942	0.00865	8%
直立	1.4777	0.108	32	0.005	0.00488	0.004325	-13%
環	1.5114	0.0526	0.064	0.007	0.005763	0.005186	-11%

I 盤 = MR^2 / 2; I 環 = M(R_1 ^ 2 + R_2 ^ 2) / 2; I 直立 = MR^2 / 4 實驗值 I 皆依據 $I\alpha$ = r(m(g-a)-f) 推得。

3. 平行軸

	盤固+軌	軌	盤動+軌
摩擦力 (N)	0.11	0.15	0.09
mg(N)	0.865536	0.865536	0.865536
a(m/s^2)	9.91E-04	0.001	0.00092
r(m)	0.00905	0.00905	0.00905

I 盤固+軌	I 軌	I 盤動+軌
0.691865	0.682361	0.747045

	理論	實驗	誤差
I固	0.00865	9.50E-03	-10%
I動	0.073816	6.47E-02	12%

理論值 I:盤固: $I=ICM+Md^2$ 、盤動: $I=Md^2$ 。 我們的 d=0.21 m

4.角動量守恆

	M(kg)	R(m)	
環	1.5114	4 0.0526 0	
盤	1.4777	0.1082	

當環掉落在轉動的盤上,系統內沒有力矩,因此角動量並沒有改變。角動量守恆。 $L=I\omega=I'\omega'$ 。

初始角速度和掉落之後的角速度測量結果:

單位: 角度/秒

wi		wf	
	19.038		12.315

	前	後
I	0.00865	0.013836
w	19.038	12.315

Ⅰ盤和Ⅰ盤+環:續用實驗 2.的數據

單位: 角度/秒

·		
wf 理論	wf 實驗	
值	值	
11.902	12.315	

誤差 -3%

(七)結果與討論

1.質點式剛體之轉動慣量測量

可能誤差來源:

- a.摩擦力測量誤差:我們測摩擦力的方法是慢慢掛上小紙張始知等加速度,但很難等加速度。
- b.垂掛物不夠穩定:懸掛物下降時,懸掛物晃動,會影響繩張力,進而影響實驗值,造成誤差。
- c.空氣阻力:轉動平台旋轉時,勢必與空氣產生阻力,而造成力矩。

2.盤與環的轉動慣量

可能誤差來源:

- a.摩擦力測量誤差:理由同實驗 1
- b.測量環半徑時判斷失誤:即用游標尺測量內、外徑時,並沒有量到真正的半徑。還有在判斷刻度時,估計值誤差等。
- c.棉線:本來應該平行於桌面且被拉動的棉繩不完全平行於桌面水,和 平。還有滑輪和懸掛物的棉線和造成軸的切線未成一直線造成,產生分量,使 實際的力矩低於預期。

3.平行軸定理:

可能誤差來源:

- a.摩擦力測量誤差:理由同實驗 1
- b.質量半徑測量誤差:同實驗 2.
- c.棉線:同實驗 2.
- d.轉動盤有摩擦力:在盤可轉動時:盤和他自己的轉軸也摩擦力存在。
- e.水平校正:在圓盤上放上重物,儘管把圓盤固定,不可避免地,圓盤往重物方 向傾斜,而這個傾斜產生角度會使得重物的正向力產生水平分量,對圓盤產生 力矩。
- 4.角動量守恆
- a.摩擦力存在:使得前後角動量不守恆
- b.將環放上時,環的質心沒有在轉動軸上。如果沒有在轉動軸上,則環的轉動 慣量會增加 Md^2(d 為環質心和轉軸的距離)。

(八)問題與討論

1.(實驗 質點)為什麼調水平時,要在轉動平台鎖定一方塊剛體?

A:因為在實驗時我們會將質點放在平台其中一邊,會使得平台傾斜,而為了避免這個傾斜對實驗的影響,在水平校正時將一個方塊鋼體,放在以後要放點的那一邊,再做水平校正。

2.(實驗 角動量守恆)實驗得到的角速度數據是否與理論值相符?

A:有-3%的誤差

3.(實驗 角動量守恆)碰撞過程中喪失多少百分比的轉動動能?計算之。

	前	後
I	0.00865	0.013836
w	19.038	12.315
轉動動能	3.135132	2.098384
損失轉動能百分比	-33%	

(九)心得與建議

這次的實驗需要滿滿的耐心與細心,因為要測摩擦力! 摩擦力影響又不 小,常常誤差太大,我和隊友摩擦力一值重測。

轉動慣量,高中老師有教一些,記得老師說把這部分課綱的委員是不是腦袋有問題,還有同學上課睡覺被叫去黑板上積分轉動慣量秀一波,所以這部份我印像很深刻,這次實驗沒有托得太晚,給自己一個讚。