1.

CP3.1 Determine a state variable representation for the following transfer functions (without feedback) using the ss function:

(a)
$$G(s) = \frac{1}{s+10}$$

(b)
$$G(s) = \frac{s^2 + 5s + 3}{s^2 + 8s + 5}$$

(c)
$$G(s) = \frac{s+1}{s^3+3s^2+3s+1}$$

2.

CP3.2 Determine a transfer function representation for the following state variable models using the tf function:

(a)
$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 2 & 8 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}$

(b)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ -2 & 0 & 4 \\ 5 & 4 & -7 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

(c)
$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} -2 & 1 \end{bmatrix}$.

3.

CP3.4 Consider the system

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -3 & -2 & -5 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t),$$

$$y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}(t).$$

- (a) Using the tf function, determine the transfer function Y(s)/U(s).
- (b) Plot the response of the system to the initial condition $\mathbf{x}(0) = \begin{bmatrix} 0 & -1 & 1 \end{bmatrix}^T$ for $0 \le t \le 10$.
- (c) Compute the state transition matrix using the expm function, and determine $\mathbf{x}(t)$ at t = 10 for the initial condition given in part (b). Compare the result with the system response obtained in part (b).

4.

CP3.7 Consider the following system:

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}(t)$$

with

$$\mathbf{x}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Using the lsim function obtain and plot the system response (for $x_1(t)$ and $x_2(t)$) when u(t) = 0.

CP3.8 Consider the state variable model with parameter *K* given by

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -K & -2 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t),$$

$$y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}(t).$$

Plot the characteristic values of the system as a function of K in the range $0 \le K \le 100$. Determine that range of K for which all the characteristic values lie in the left half-plane.