Київський національний університет ім.Т.Шевченка

ФІЗИЧНИЙ ФАКУЛЬТЕТ

ПЕРЕВІРКА ЗАКОНУ ОБЕРНЕНИХ КВАДРАТІВ ТА ВИВЧЕННЯ АНІЗОТРОПНОСТІ ТОЧКОВОГО ДЖЕРЕЛА СВІТЛА

Автор: Холоімов Валерій

19 мая 2021 г.

1 Вступна частина

Мета роботи: Перевірити закон обернених квадратів для точкового джерела світла, побудувати векторну діаграму сили світла лампи розжарювання.

Прилади: Оптична лава, візуальний фотометр, секторний послаблювач, лампи розжарювання

Теоретичні відомості

Точковим вважається джерело світла, розмірами якого можна знехтувати порівняно з відстанню між цим джерелом і точкою спостереження. Точкове джерело в математичному розумінні не має фізичного змісту, оскільки, вважаючи, що воно випромінює кінцеву кількість енергії, ми повинні припустити наявність нескінченно великої густини енергії в самому джерелі. Маючи скінченні розміри, реальне точкове джерело світла в загальному випадку є **анізотропним**, тобто випромінює неоднакову світлову енергію в різних напрямках.

Для точкового джерела між силою світла джерела і освітленістю поверхні, що опромінюється даним джерелом, справедливе співвідношення:

$$E = \frac{F}{S} = \frac{F\cos(\alpha)}{S} = \frac{F\cos(\alpha)}{\Omega r^2} = \frac{I}{r^2}\cos(\alpha)$$

Де r - відстань від джерела до поверхні S, α - кут між r та нормаллю до поверхні S. Зазначене співвідношення має назву **закон обернених квадраті** $(E \approx \frac{1}{r^2})$. Закон обернених квадратів виконуватиметься тим точніше, чим менші розміри джерела порівняно з r.

1.1 Перевірка закону обернених квадратів

Розмістивши лампу розжарювання на відстані r_1 від фотометра, маємо:

$$E_1 = \frac{I_1}{r_1^2} cos(\alpha)$$

Після зменшення сили світла, маємо:

$$E_2 = \frac{I_2}{r_1^2} cos(\alpha)$$

Перемістимо лампу на відстань r+2, щоб виконувалась рівність $E_1=E_2$. Маємо наступну рівність

$$\frac{I_2}{r_2^2} = \frac{I_1}{r_1^2}$$

2 Практична частина

Зменшення сили світла завдяки послаблювачу дорівнює:

$$\frac{I_2}{I_1} = \frac{r_2^2}{r_1^2} = 10$$

Визначення концентрації розчину за допомогою коефіцієнта заломлення

№ досліду	r_1			$\langle r_1 \rangle$	r_2			⟨r ₂ ⟩	$\left(\frac{r_1}{r_2}\right)^2$
1	48,6	48,6	48,5	48,6	144,3	149	146,5	146,7	9,1
2	51,4	50,9	50,7	51	154,1	156	154,4	154,7	9,2
3	54,7	54,5	54,2	54,5	162,4	166	164,1	163,9	9,1
4	57,6	58	57,9	57,8	176	180	177,7	177,9	9,5
5	60,3	60,5	60,8	60,5	182,6	183	185,4	183,8	9,2
6	64,9	65,2	65	65	191,4	194	193,1	193,0	8,8
7	68,8	68,9	68,9	68,9	203	205	204,1	203,9	8,8
8	73,4	73,6	73,7	73,6	210,3	211	210,8	210,7	8,2
9	76,8	76,6	76,6	76,7	222	223	223,2	222,7	8,4

Як видно з розрахунків, найкраще виконується закон обернених квадратів для досліду $\mathbb{N}4$, для якого відношення $\frac{r_2}{r_1}^2=9,5$, є найбільш точним серед отриманих. Оцінимо при якому відношенні відстані r_1 до розмірів джерела закон обернених

квадратів виконується найточніше. Розмір джерела: $\Delta = 2cm$.

$$\frac{r_1}{\Delta} = \frac{57,8}{2} = 23,9$$

Визначення кутового розподілу відносної сили світла лампи 2.1

$$I_x = I_0 \frac{r_x^2}{r_0^2}$$

 I_x - сила світла лампи, I_0 - сила світла еталонної лампи.

Кут повороту лампи	r_0		$\langle r_0 \rangle$	r_{x}		$\langle r_x \rangle$	$\left(\frac{r_x}{r_0}\right)^2$
	93,5	93,3	94,4	105,0	105,2	105,1	1,27
20	96,6	96,6	96,6	101,9	101,9	101,9	1,11
40	96	95,8	95,9	102,5	102,7	102,6	1,14
60	100	100,2	100,1	98,5	98,3	98,4	0,97
80	94,7	95	94,9	103,8	103,5	103,7	1,19
100	95,5	96,2	95,9	103,0	102,3	102,7	1,15
120	94,9	94,7	94,8	103,6	103,8	103,7	1,20
140	94,6	95	94,8	103,9	103,5	103,7	1,20
160	94	93,9	94,0	104,5	104,6	104,6	1,24
180	93,9	93,9	93,9	104,6	104,6	104,6	1,24
200	97,2	97,1	97,2	101,3	101,4	101,4	1,09
220	96	96,2	96,1	102,5	102,3	102,4	1,14
240	97	97,1	97,1	101,5	101,4	101,5	1,09
260	94,7	95,7	95,2	103,8	102,8	103,3	1,18
280	97	95,7	96,4	101,5	102,8	102,2	1,12
300	95	94,8	94,9	103,5	103,7	103,6	1,19
320	92,1	92,4	92,3	106,4	106,1	106,3	1,33
340	92,5	92,7	92,6	106	105,8	105,9	1,31

На графіку можна побачити зображення розподілу сила слітла досліджувальної лампи.

3 Висновок

У данній роботі було перевірено виконання закону обернених квадратів для точкових джерел світла. З експерименту можна побачити, що найкраще закон виконується для відношення

$$\frac{r_1}{\Delta} = \frac{57,8}{2} = 23,9$$

. В роботі також було встановлено кутовий розподіл сили світла джерела. Отриманий розподіл свідчить про анізотропність досліджуваного джерела.