Compressed Sensing

May 17, 2020

1 Preliminaries

We define useful mappings used in convex optimization, namely the proximal mapping

$$\operatorname{Prox}_{f}^{\lambda}(y) = \arg\min_{x} \left(f(x) + \frac{1}{2\lambda} ||x - y|| \right)$$

2 Overview

We are given an incomplete matrix M with known entries $(i, j) \in \Omega$. In the general form matrix completion reads

$$\min ||X||_*$$
 s.t. $\mathcal{A}(X) = B$

where \mathcal{A} is a linear map $\mathcal{A}: \mathbb{R}^{m \times n} \longrightarrow \mathbb{R}^{|\Omega|}$

and B encodes our knowlege of M. In our case we choose $A = \mathcal{P}_{\Omega}$ with

$$[\mathcal{P}_{\Omega}(X)]_{i,j} = \begin{cases} \operatorname{vec}(X)_{j+mi} & \text{if } (i,j) \in \Omega \\ 0, & \text{otherwise} \end{cases}$$

We denote $A \in \mathbb{R}^{|\Omega| \times mn}$ the matrix corresponding to the mapping \mathcal{P}_{Ω} . With this we can rewrite the objective above:

$$\min ||X||_*$$
 s.t. $\mathcal{P}_{\Omega}(X) = A \operatorname{vec}(X) = B = \mathcal{P}_{\Omega}(M)$

3 Douglas- Rachford Splitting

In the noiseless case we can use DRS to solve this numerically via a fixed-point iteration:

$$\boldsymbol{z}^{(k+1)} = \boldsymbol{z}^{(k)} + \operatorname{Prox}_g^{\gamma} \left(2 \operatorname{Prox}_f^{\gamma}(\boldsymbol{z}^{(k)}) - \boldsymbol{z}^{(k)} \right) - \operatorname{Prox}_g^{\gamma}(\boldsymbol{z}^{(k)})$$

To do this, we express our objective as a sum of two functions f + q where $f(X) = \delta_C(X)$ with $C = \{X | AX = B\}$ and $g(X) = ||X||_*$. We then obtain

$$Prox_f^{\gamma}(x) = \Pi_C(x) = x + A^{+}(b - Ax)$$

= $x + A^{T}(AA^{T})^{-1}(b - Ax)$
= $x + A^{T}(b - Ax)$

To express the proximal mapping of the nuclear norm, we define the singular value thresholding operator \mathcal{D}_{γ} . For a matrix Y with the SVD $Y = U\Sigma V^T =$ $U\operatorname{diag}(\sigma(Y))V^T$ it is expressed by $\mathcal{D}_{\gamma}(Y) = U\operatorname{diag}(\sigma(Y) - \lambda)_+V^T$. Thus we

$$Prox_g^{\gamma}(x) = U(\sigma(x) - \gamma)_+ V^T$$
$$= \mathcal{D}_{\gamma}(x)$$

FISTA 4

In the noisy case we are trying to minimize the following objective (in the Lagrangian formulation):

$$\min_{X} \lambda ||X||_* + \frac{1}{2} ||AX - B||_2^2 \tag{4.1}$$

For some $\lambda > 0$. The FISTA algorithm is formulated with respect to the following objective:

$$\min_{X} f(x) + g(x)$$

where we assume f and g to be sufficiently smooth, i.e. $f \in C^{1,1}(\mathbb{R}^n)$, which means

$$\exists L(f): ||\nabla f(x) - \nabla f(y)|| \le L(f)||x - y|| \forall x, y \in \mathbb{R}^n$$

In our case we have $f(x) = \frac{1}{2}||AX - B||_2^2 = \frac{1}{2}\langle AX - B, AX - B \rangle$ and $g(x) = \lambda ||X||_*$. By simple calculation we get

$$\nabla f(X) = A^T A X - A^T B = A^T (AX - B) \tag{4.2}$$

$$L(f) = 2\lambda_{\max}(A^T A) \tag{4.3}$$

Algorithm 1 FISTA with constant step size

Input Lipschitz- constant L(f) of ∇f , $y_1 = x_0 \in \mathbb{R}^n$, $t_1 = 1$

- 1: **for** k = 1, ... **do**
- $x_k = p_L(y_k)$
- $t_{k+1} = \frac{1 + \sqrt{1 + 4 \cdot t_k^2}}{2}$ $y_{k+1} = x_k + \frac{t_k 1}{t_{k+1}} (x_k x_{k-1})$

In this algorithm we def.

$$\begin{aligned} Q_L(x,y) &= f(y) + \langle x - y, \nabla f(y) \rangle + \frac{L(f)}{2} ||x - y||^2 + g(x) \\ p_L(y) &= \operatorname*{arg\,min}_x Q_L(x,y) \\ &= \operatorname*{arg\,min}_x \left(g(x) + \frac{L(f)}{2} \left\| x - \left(y - \frac{1}{L} \nabla f(y) \right) \right\|^2 \right) \\ &= \operatorname*{arg\,min}_x \left(\frac{g(x)}{\lambda} + \frac{L(f)}{2\lambda} \left\| x - \left(y - \frac{1}{L} \nabla f(y) \right) \right\|^2 \right) \\ &= \operatorname*{Prox}_{g/\lambda}^{\lambda/L} \left(y - \frac{1}{L} \nabla f(y) \right) \end{aligned}$$

Since we are trying to find the proximal mapping for the nuclear norm, we can apply the thresholding operator just like in our iteration step for DRS. We get

$$\operatorname{Prox}_{g/\lambda}^{\lambda/L} \left(y - \frac{1}{L} \nabla f(y) \right) = U \operatorname{diag} \left(\sigma \left(y - \frac{1}{L} \nabla f(y) \right) - \frac{\lambda}{L} \right)_{+} V^{T}$$
$$= \mathcal{D}_{\lambda/L} \left(y - \frac{1}{L} \nabla f(y) \right)$$
$$= \mathcal{D}_{\lambda/L} \left(y - \frac{1}{L} A^{T} (Ay - B) \right)$$

I'm not sure if this is correct