

Дисперсионный анализ. Метод главных компонент. Логистическая регрессия

Теория вероятностей и математическая статистика / Урок 8

Дисперсионный анализ

Дисперсионный анализ

Дисперсионный анализ — метод в математической статистике, направленный на поиск зависимостей в данных, в которых целевая переменная является количественной, а факторы являются категориальными.

В однофакторном дисперсионном анализе исследуется влияние одного категориального фактора x на переменную y. Допустим, у фактора x имеется k разных значений или уровней. На практике это означает, что у нас имеется k выборок:

$$Y_1, \ldots, Y_k,$$

и выборка Y_i соответствует значениям переменной y на i-м уровне фактора x. Итак, нулевая гипотеза H_0 утверждает, что средние по всем этим выборкам равны:

$$H_0: \overline{Y_1} = \dots = \overline{Y_k}$$

Другими словами, нулевая гипотеза заключается в том, что фактор x никак не влияет на значения переменной y.

Однофакторный дисперсионный анализ

Для проверки гипотез в дисперсионном анализе используется F-критерий Фишера. Используемая статистика представляет из себя отношение дисперсии между уровнями к дисперсии внутри уровней.

Пусть в каждой выборке Y_i содержится n_i элементов. Обозначим через Y объединение всех выборок, т.е. выборку размера $n=n_1+\cdots+n_k$.

Рассмотрим две суммы квадратов:

$$SS_b = \sum_{i=1}^{k} (\overline{Y_i} - \overline{Y})^2 n_i, \ SS_w = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \overline{Y_i})^2,$$

где y_{ij} — j-й элемент i-й выборки.

Первая сумма — отклонения между группами («b» от слова Between — между), вторая — отклонения внутри групп («w» от слова Within — внутри).

Однофакторный дисперсионный анализ

По этим значениям вычисляются соответствующие несмещённые оценки дисперсий:

$$\sigma_b^2 = \frac{SS_b}{k-1}, \ \sigma_w^2 = \frac{SS_w}{n-k}$$

Итак, статистика для проверки гипотезы H_0 :

$$F = \frac{\sigma_b^2}{\sigma_w^2}$$

В предположении верности гипотезы H_0 статистика F имеет распределение Фишера с параметрами $k_1=k-1$, $k_2=n-k$. Критическая область здесь правосторонняя:

$$\Omega_{\alpha} = (t_{1-\alpha, k_1, k_2}, \infty),$$

где $t_{x,\,k_1,k_2}$ — квантиль порядка x для распределения Фишера с параметрами k_1 , k_2 .

Двухфакторный дисперсионный анализ

Существует также процедура двухфакторного дисперсионного анализа для случая, когда имеется пара категориальных факторов, и требуется исследовать влияние каждого из них на целевую переменную.

Про двухфакторный дисперсионный анализ читайте в дополнительных материалах к уроку.

Метод главных компонент

Метод главных компонент

Метод главных компонент — один из методов анализа факторов и понижения их размерности, т.е. приведения множества непосредственно наблюдаемых факторов $x_i, i=1,\ldots,m$, к меньшему числу новых линейно независимых факторов $y_j, j=1,\ldots,q,\ q< m$.

С помощью этого метода можно:

- Проанализировать уровень совокупной линейной зависимости в имеющихся данных (а не только лишь попарной, как в корреляционном анализе).
- Понизить размерность в данных и одновременно избавиться от линейной зависимости, контролируя при этом уровень потери информации.

В основе метода главных компонент лежит работа с собственными векторами и собственными числами матрицы ковариаций. В дополнительных материалах к уроку представлен краткий экскурс в эту тематику.

Собственные векторы и собственные значения

В контексте метода главных компонент нас интересует следующее: для матрицы ковариаций собственные векторы являются главными направлениями вариативности в данных (или главными компонентами).

Причём чем больше собственное значение, тем сильнее степень вариативности данных в этом направлении.

Метод главных компонент

Итак,

- ① метод главных компонент перераспределяет вариативность внутри факторов x_1, \ldots, x_m вдоль главных компонент,
- при этом главные компоненты с малым уровнем вариативности (т.е. с малыми собственными значениями) можно исключить.

Метод главных компонент

Итак,

- ① метод главных компонент перераспределяет вариативность внутри факторов x_1, \ldots, x_m вдоль главных компонент,
- при этом главные компоненты с малым уровнем вариативности (т.е. с малыми собственными значениями) можно исключить.

Допустим, имеется матрица объект-признак: $X=(x_{ij})_{n\times m}$ (т.е. n объектов, m признаков). Предположим также, что в процессе преобразования данных мы готовы потерять не более, чем долю p от имеющейся информации (например, это может быть ограничение в 5%).

Этапы метода главных компонент

- Центрируем матрицу X, т.е. вычтем из каждого столбца среднее по этому столбцу. В результате получится матрица $X^* = \left(x_{ij}^*\right)_{n \times m}$, в которой средние по столбцам равны 0. Обозначим сумму дисперсий признаков за σ_X , она нам ещё пригодится.
- $oldsymbol{arrho}$ Вычислим матрицу ковариаций $\Sigma = \left(\sigma_{ij}
 ight)_{m imes m}.$
- § Вычислим собственные векторы и собственные значения матрицы Σ . Пусть это собственные значения $\lambda_1,\dots,\lambda_m$, расположенные в порядке убывания, и им соответствуют векторы v_1,\dots,v_m . Сумма собственных значений равна σ_X . Собственные векторы v_i называются главными компонентами, и уровень вариативности данных вдоль каждой компоненты равен λ_i .

Этапы метода главных компонент

4 Найдём наименьшее k, для которого верно:

$$\frac{\lambda_1 + \dots + \lambda_k}{\sigma_X} \ge 1 - p$$

Значение слева называется долей объяснённой дисперсии выбранных главных компонент: в знаменателе стоит дисперсия признаков до применения метода, а в числителе стоит то, что будет дисперсией новых признаков.

5 Составим матрицу T из первых k собственных векторов (столбцов). Тогда новая матрица объект-признак: $Y = X^* \cdot T$.

Логистическая регрессия возникает в задачах бинарной классификации: исследуется набор объектов, и каждому объекту приписана бинарная метка (0 или 1).

В модели логистической регрессии вероятность объекта $x=(x_1,\dots,x_m)$ принадлежать классу 1 моделируется следующим образом:

$$P(y = 1|x) = \sigma(b_0 + b_1x_1 + \dots + b_mx_m),$$

где $\sigma(z)$ — логистическая функция или сигмоида:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Сигмоида принимает в качестве аргумента вещественное число, а отдаёт число из промежутка [0,1].

Замечание. Как и ранее в линейной регрессии, мы вводим дополнительный нулевой фактор x_0 , равный 1 для каждого объекта, который нужен просто чтобы записать выражение в векторном виде:

$$P(y = 1|x) = \sigma(x \cdot b),$$

где $b = (b_0, b_1, \dots, b_m)$ — вектор коэффициентов модели.

Замечание. Как и ранее в линейной регрессии, мы вводим дополнительный нулевой фактор x_0 , равный 1 для каждого объекта, который нужен просто чтобы записать выражение в векторном виде:

$$P(y = 1|x) = \sigma(x \cdot b),$$

где $b = (b_0, b_1, \dots, b_m)$ — вектор коэффициентов модели.

Для оптимизации параметров модели используется метод максимального правдоподобия. Его схему можно изобразить следующим образом:

$$\prod_{i=1}^{n} P(y = y_i | x = x_i) \to \max_b$$

По сути мы подбираем набор параметров так, чтобы максимизировать вероятность наблюдать ту выборку, которая у нас есть.

Тут кроме формулы для P(y=1|x) нам понадобится также формула вероятности принадлежности объекта к нулевому классу:

$$P(y = 0|x) = 1 - \sigma(x \cdot b)$$

Отсюда запишем общую вероятность:

$$P(y|x) = \sigma(x \cdot b)^{y} \cdot (1 - \sigma(x \cdot b))^{1-y}$$

Такие вероятности и используются в методе максимального правдоподобия.

Метод максимального правдоподобия

В практическом смысле удобнее оптимизировать не саму функцию, а её логарифм (поскольку в этом случае множители превращаются в слагаемые). Кроме того, традиционно оптимизационные задачи записываются именно как задачи минимизации, поэтому добавим перед всем выражением минус.

Итак, минимизируется функционал:

$$Q(b) = -\sum_{i=1}^{n} \left[y_i \cdot \ln \left(\sigma(x_i \cdot b) \right) + (1 - y_i) \cdot \ln \left(1 - \sigma(x_i \cdot b) \right) \right],$$

где x_i — набор признаков i-го объекта, y_i — его метка (0 или 1). Такой функционал называют бинарной кросс-энтропией.

Градиентный спуск

Для нахождения оптимального решения используют оптимизационные методы, например, градиентный спуск. В нём используется вектор градиента, который состоит из частных производных функционала Q(b) по переменным b_j :

$$\nabla Q = \left(\frac{\partial Q}{\partial b_0}, \dots, \frac{\partial Q}{\partial b_m}\right)$$

Результат взятия каждой частной производной вычисляется по формуле:

$$\frac{\partial Q}{\partial b_j} = \sum_{i=1}^n \left(\sigma(b_0 x_{i0} + \dots + b_m x_{im}) - y_i \right) x_{ij},$$

Вектор градиента указывает направление наискорейшего роста.

Градиентный спуск

Непосредственно метод градиентного спуска заключается в следующем. Сначала выбираются начальные значения параметров b_0,\dots,b_m , т.е. вектор $b^{[0]}$. Затем итеративно повторяется вычисление:

$$b^{[k+1]} = b^{[k]} - \lambda_k \nabla Q \left(b^{[k]} \right)$$

Иначе говоря, на каждой итерации мы делаем шаг размера λ_k против направления вектора градиента.

Почему против? Потому что вектор градиента указывает направление наискорейшего роста, следовательно, обратное направление является направлением *наискорейшего убывания*.

Описанный выше процесс повторяется, пока соседние векторы $b^{[k+1]}$, $b^{[k]}$ не перестанут сильно отличаться друг от друга.

Начальные коэффициенты и скорость спуска

Результат оптимизации очень сильно зависит от выбора начальных коэффициентов $b^{[0]}$, а также параметров λ_k , отвечающих за скорость спуска.

Малые значения λ_k приводят к низкой скорости спуска, тогда как высокие значения λ_k могут привести к расхождению метода.

Выбор этих значений — важная задача в теории оптимизации.

Оценка модели логистической регрессии

Для оценки качества моделей бинарной классификации используют confusion matrix, или матрицу ошибок:

$$M = \left(\begin{array}{cc} TP & FP \\ FN & TN \end{array}\right),$$

где:

- TP true positive, т.е. число объектов, верно причисленных к классу 1,
- FP false positive, число ошибок первого рода, т.е. объектов, ложно причисленных к классу 1,
- \bullet FN false negative, ошибки второго рода,
- TN true negative, число объектов, верно причисленных к классу 0.

Оценка модели логистической регрессии

На основании матрицы ошибок можно получить многие известные метрики качества:

$$accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$precision = \frac{TP}{TP + FP}, \ recall = \frac{TP}{TP + FN}$$

