

INTELLIGENT AGENT

Ramaditia D – rama@unram.ac.id

Outline

- Agent & Environment
- Konsep Rational Agents
- PEAS
- Jenis Environment
- Jenis-jenis Agent

A Agent

- Kecerdasan buatan tidak akan berfungsi / berguna apabila tidak diterapkan pada suatu obyek / entitas yang dapat bertindak berdasarkan kecerdasan buatan tersebut
- Entitas yang dirancang untuk bisa bertindak dan mempergunakan kecerdasan buatan disebut AGENT
- Agent → suatu entitas yang menerima input dari lingkungannya (Persepsi) dan bertindak (Aksi) sesuai dengan pengetahuan yang dimilikinya.
- Atau secara abstrak, agent merupakan suatu fungsi (agent function) dari persepsi menjadi aksi.

$$[f: \mathcal{P}^{\star} \rightarrow \mathcal{A}]$$

Agent & Environment

Keterangan:

- Percepts : masukan yang ditangkap dari sensor
- Actions : tindakan yang dilakukan oleh Agent
- Actuators : yang digunakan untuk melakukan tindakan
- Environments:
 lingkungan dimana si
 Agent berada

Gambar 1. Konsep Agent & Environment

Jenis Agent

Human Agent

- Mata, telinga dan organ tubuh lain yang dapat menjadi sensor
- Tangan, kaki, mulut dan organ tubuh lain yang dapat menjadi actuator.

Robotic Agent

- Kamera, infrared untuk sebagai sensor
- Mesin yang dimiliki sebagai actuator

Software Agent

- Keystroke, file contents, network packets sebagai sensor inputan
- Menampilkan sesuatu pada layer, penulisan file-file dan mengirimpakn paket data ke jaraing sebagai actuator

Aturan sesuatu disebut sebagai Agent

- Kemampuan untuk memahami (Perceive) lingkungan
- Dapat melakukan observasi yang digunakan untuk membuat keputusan
- Keputusan selanjutnya akan menghasilkan sebuah aksi
- Rational (menghasilkan aksi yang terbaik)

Konsep Rational Agent

- Rational: melakukan hal yang terbaik.
- Agent seharusnya berupaya melakukan tindakan yang benar atau terbaik agar berhasil.
- Perlu untuk mendifinisikan tujuan (goal) dari agent sebagai kriteria keberhasilan perilaku agent.
- Tujuan ini dapat dinyatakan sebagai performance measure.
- Contoh: A vacuum-cleaner agent
 - ✓ jumlah kotoran yang dibersihkan
 - ✓ jumlah waktu yang dibutuhkan
 - √ jumlah konsumsi listrik
 - √ jumlah kebisingan yang dihasilkan
 - ✓ dll

Contoh Performance Measure lainnya

Goal	Performance Measure
Lulus Kuliah	IPK
Cepat Kaya	Gaji Bulanan
Bahagia	Tingkat kebahagiaan

Rational Agent

Definisi

Rational agent: Untuk setiap persepsi yang diterima sebuah agent, agent harus memaksimasikan kemungkinan keberhasilan berdasarkan bukti yang diberikan percept dan pengetahuannya sendiri.

- Rasionalitas berbeda dari kemahatahuan (mengetahui segala sesuatu tanpa batas)
- Agent melakukan tindakan memperbaiki wawasan kedepan untuk memperoleh informasi penting (information gathering, exploration)
- Agent disebut autonomous jika perilaku ditentukan oleh pengalaman sendiri (kemampuan untuk belajar dan beradaptasi)

1 PEAS

Definisi

PEAS: Performance measure, Environment, Actuators, Sensors

- Ketika merancang sebuah agent, harus mendefinisikan lingkungan masalah (task environment), yakni:
 - O Performance measure : apa saja komponen pengukur keberhasilan si agent?
 - <u>Environment</u>: kondisi apa saja yang ada disekitar si agent?
 - O Actuators : apa saja yang bisa dilakukan si agent?
 - Sensors : apa saja yang menjadi input si agent?

Contoh: Taksi Otomatis

Source: https://www.youtube.com/watch?v=uHbMt6WDhQ8

Contoh: Tesla Self Driving

PEAS: Taksi Otomatis

Sebuah agent Medical diagnosis system yang mendiagnosa pasien secara otomatis:

- Performance measure: sampai tujuan, tidak melanggar aturan lalu lintas, perjalanan nyaman, hemat bensin
- Environment: jalan, lalu lintas, pejalan kaki, pelanggan
- Actuators: arah stir, gas, rem, klakson, sinyal kiri atau kanan
- Sensors: Camera, speedometer, GPS, keyboard, engine sensor, sonar, accelerometer

Contoh: Medical diagnosis system

Sebuah agent Medical diagnosis system yang mendiagnosa pasien secara otomatis:

- Performance measure: pasien sembuh (kesehatan pasien), biaya murah, tidak menyalahi hukum
- Environment: pasien, rumah sakit, staf
- Actuators: layar monitor (pertanyaan, tes, diagnosa, treatment, petunjuk)
- Sensors: keyboard (masukan gejala penyakit, jawaban pasien)

Contoh: Satellite image analysis system

Sebuah agent satelit untuk menganalisa gambar secara otomatis:

- Performance measure: ???
- Environment: ???
- Actuators: ???
- Sensors: ???

Contoh: Satellite image analysis system

Sebuah agent untuk menganalisa gambar dari satelit secara otomatis:

- Performance measure: persentase benar dalam kategorisasi gambar
- Environment: Downlink dari satelit yang mengorbit
- Actuators: layar monitor (menampilkan gambar dan hasil kategorisasi)
- Sensors: array dari pixel warna

Contoh: Robot pabrik penjamin mutu

Sebuah robot yang melakukan pemisahan komponen yang bermutu tinggi pada ban berjalan ke dalam kotak berbeda:

- Performance measure: ???
- Environment: ???
- Actuators: ???
- Sensors: ???

Contoh: Robot pabrik penjamin mutu

Sebuah robot yang melakukan pemisahan komponen yang bermutu tinggi pada conveyor belt (ban berjalan) ke dalam kotak berbeda:

- Performance measure: prosentase jumlah komponen yg diletakkan pada kotak yang benar
- Environment: komponen conveyor belt, komponen yang diuji, kotak
- Actuators: gerak lengan dan tangan robot
- Sensors: kamera, sensor fisik

Contoh: Interactive English tutor

Sebuah agent tutor yang memberikan latihan english secara interaktif:

- Performance measure: ???
- Environment: ???
- Actuators: ???
- Sensors: ???

Contoh: Interactive English tutor

Sebuah agent tutor yang memberikan latihan english secara interaktif:

- Performance measure: nilai skor maksimal
- Environment: kumpulan siswa, testing agency
- Actuators: layar monitor (latihan, saran koreksi)
- Sensors: keyboard

1 Jenis Environment

Environment merupakan lingkungan dimana agent akan beroperasi akan sangat mempengaruhi design agent itu sendiri.

Jenis Environment:

- Fully observable vs. partially observable
- Deterministic vs. stochastic
- Episodic vs. sequential
- Static vs. dynamic
- Discrete vs. continuous
- Single agent vs. multi agent

Ragam Linkungan Agent

Tingkat Observasi: penuh atau sebagian

Tingkat observasi akan menentukan apakah semua informasi linkungan dapat sepenuhnya terlihat atau samar-samar (sebagian).

Contoh: Game catur vs Taxi Driving

Pemetaan Dampak Aksi: deterministik atau stokastik

Pemetaan dampak aksi akan menjelaskan apakah suatu tindakan agent akan mengubah suatu keadaan menjadi keadaan lain yang dapat ditentukan dengan pasti (deterministik) atau tidak (stokastik).

Contoh: Game Catur vs Taxi Driving

Ragam Linkungan Agent (2)

Solusi yang diharapkan: episodik atau sekuensial

Menjelaskan apakah solusi hanya digunakan untuk sekali pakai (episodik) atau akan digunakan dalam menentukan solusi selanjutnya (sekuensial).

Contoh: Image Analysis vs Game Catur

Lingkungan pencarian informasi: statik atau dinamik

Lingkungan pencarian menjelaskan apakah informasi langsung dapat digunakan dan jarang berubah (statik) atau selalu berubah (dinamik) ketika ada tindakan dari agent.

Contoh: Crossword Puzzle vs Taxi Driving

Ragam Linkungan Agent (3)

Sifat paramater pencarian: diskrit atau kontinu

Sifat paramater akan menjelaskan apakah parameter pencarian bersifat tunggal dan dapat dipilah-pilah seperti bilangan integer (diskrit) atau satu parameter bersifat berkelanjutan seperti bilangan real (kontinu).

Contoh: Game catur vs Image Analysis

Sifat komunikasi: agen tunggal atau multi agen

Menjelaskan bagaimana agen berinteraksi dengan lingkungannya, apakah dipengaruhi juga oleh informasi dari agen lainnya (multi agen) atau tidak (agen tunggal).

Contoh: Image Analysis vs Taxi Driving

Ringkasan Contoh Jenis Environment

Jenis Environment	Agent		
	Crossword Puzzle	Image Analysis	Taxi Driving
Fully observable	Ya	Ya	Tidak
Deterministic	Ya	Ya	Tidak
Episodic	Tidak (sequential)	Ya	Tidak
Static	Ya	Ya	Tidak
Discrete	Ya	Tidak (continous)	Tidak
Single agent	Ya	Ya	Tidak

Di dunia nyata pada umumnya partially observable, stochastic, sequential, dynamic, continuous, multi-agent

Arsitektur Agent

- Tugas dari AI adalah untuk mendesign sebuah agent program yang mengimplementasi agent function (f).
- Agent program menjalankan architecture untuk menghasilkan f.

agent = *architecture* + *program*

Architecture = device komputer dengan sensor dan actuator.

Contoh:

Program return action "Walk", maka architecture yang bagus adalah yang memiliki kaki.

Kerangka Agent Program

- Inputnya adalah current percept dari sensor.
- Outputnya adalah sebuah aksi ke actuator.

```
function TABLE-DRIVEN-AGENT(percept) returns an action

persistent: percepts, a sequence, initially empty

table, a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts

action \leftarrow Lookup(percepts, table)

return action
```

Gambar 2. The TABLE-DRIVEN-AGENT program is invoked for each new percept and returns an action each time.

Contoh Agent Program

 Agent program untuk agent reflex sederhana pada 2 state vacuum environment.

```
function Reflex-Vacuum-Agent([location,status]) returns an action
if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left
```

Gambar 3. Contoh agent program

Jenis-jenis Agent

- 1. Simple reflex agents
- 2. Model-based reflex agents
- 3. Goal-based agents
- 4. Utility-based agents
- 5. Learning agents

Simple reflex agents

Berdasarkan current percept (persepsi saat ini)

Gambar 4. Schematic diagram of a simple reflex agent.

Model-based reflex agents

- Memiliki representasi internal tentang keadaan sekitar
- Paling efektif untuk lingkungan partial observable.

Gambar 5. Schematic diagram of a model-based reflex agent.

Goal-based agents

 Memiliki informasi tentang tujuan, memilih tindakan yang mencapai tujuan.

Gambar 6. Schematic diagram of a goal-based reflex agent.

Utility-based agents

 Melakukan penilaian kuantitatif terhadap suatu keadaan lingkungan (utility function)

Gambar 7. Schematic diagram of a utility-based agent.

Learning agents

Belajar dari pengalaman, meningkatkan kinerja

Rangkuman

- Agent adalah sesuatu yang mempersepsikan dan bertindak dalam suatu lingkungan.
- Performance measure digunakan untuk mengevaluasi tindakan agent.
- Rational agent harus memiliki tujuan (goal) dan harus bertindak untuk memasimalkan nilai dari performance measure.
- Sebuah task environment mendefiniskan performance measure, environment, action, dan sensors (PEAS) sebuah agent.
- Jenis-jenis agent: simple reflex, model-based, goal-based, utilitybased, dan learning.

Referensi

- Stuart Russell & Peter Norvig. 2010. Artificial Intelligence A Modern Approach 3rd Edition. Prentice Hall.
- Slide perkuliahan Kecerdasan Buatan oleh Ario Yudo Husodo (Teknik Informatika – Universitas Mataram)
- Slide perkuliahan Kecerdasan Buatan oleh Chastine Fatichah (Institut Teknologi Sepuluh Nopember)

http://share.its.ac.id/pluginfile.php/1358/mod_resource/content/1/2. _Agent_Cerdas.pdf