CLAIMS

We claim:

- 1. A method for timing recovery in an orthogonal frequency division multiplexing (OFDM) system,
 2 comprising the steps of:
- detecting a lack of a synchronization symbol;
 - determining a timing offset from calculating the Average Group delay over a set of OFDM symbols;

feeding back the timing offset to a demodulator; and

adjusting the symbol timing based on the Average Group Delay fed back to the demodulator.

- 2. The method of claim 1, wherein the step of determining the phase offset further comprises the step of determining the phase offset directly from the OFDM symbols using a discriminator in a feedback loop.
- 1 3. The method of claim 1, wherein the step of determining a phase offset comprises the step of using
- 2 a phasor to estimate the average delay of a multi-carrier modulation symbol.
- 4. The method of claim 1, wherein the step of adjusting the symbol comprises the step of adjusting
- 2 the symbol timing towards a target phase rotation.
- 5. The method of claim 1, wherein the method further comprises the step of maintaining symbol
- 2 synchronization without ever detecting the synchronization symbol.
- 1 6. A method for timing recovery in an orthogonal frequency division multiplexing (OFDM) system,
- 2 comprises:
- detecting a negative phase in a OFDM modulated signal;
- 4 narrowing a search window for the synchronization symbol; and

{WP072000,1}

5	adjust timing to an earlier arriving signal detected by a synchronization symbol recovery
6	detector.
1	7. A method for timing recovery in an orthogonal frequency division multiplexing (OFDM) system,
2	comprises:
3	detecting a negative phase;
4	disabling a synchronization symbol recovery algorithm; and
5	adjusting the phase until a non-negative phase is detected.
5 11112 133 14	8. A digital receiver unit, comprising:
5 2	a receiver;
<u>.</u> 3	an orthogonal frequency division multiplexing demodulator; and
4	a processor coupled to the receiver and the demodulator, wherein the processor is
<u>±</u> 5	programmed to:
1 16	detect a lack of a synchronization symbol;
7 5 2 8	determine a phase offset from a set of OFDM symbols;
<u> </u>	feed back the phase offset to the demodulator; and
9	adjust the symbol timing based on the phase offset fed back to the
10	demodulator.
1	9. A digital receiver unit of claim 8, wherein the digital receiver unit further comprises a phase
2	detector coupled to the processor, wherein the phase detector detect the phase offset.
1	10. The digital receiver unit of claim 8, wherein the processor is further programmed to determine

2

1 2

11. The digital receiver unit of claim 8, wherein the processor is further programmed to determine

the phase offset using a phasor to estimate the average delay of a multi-carrier modulation symbol.

the phase offset directly from the OFDM symbols using a discriminator in a feedback loop.

- 1 12. The digital receiver unit of claim 8, wherein the processor is further programmed to adjusting
- 2 the symbol timing towards a target phase rotation.
- 1 13. The digital receiver unit of claim 8, wherein the processor is further programmed to maintain
- 2 symbol synchronization without ever detecting the synchronization symbol and only using the phase
- 3 offset.