整数列 $\{L_n\}$ の項数を $N(\geq 3)$ とおく。 $\{L_n\}$ は広義単調増加であるとしてよい。 $\{L_n\}$ から第 i,j 項 (i < j) を選んでそれぞれ $a = L_i, b = L_j$ とおき,

$$a + b \le L_n \tag{1}$$

をみたす最小の n を $l_{a,b}$ とおく。ただし, $\{L_n\}$ の最後の項が a+b より小さいとき,およびそのときのみ,(1) を満たす最小の n は存在しないから,そのときは $l_{a,b}=N+1$ とおく。

 $\{L_n\}$ の単調増加性により、整数 k が閉区間 $[j+1,l_{a,b}-1]$ に含まれるとき、およびそのときのみ、 L_k は次を満たす:

$$b \le L_k < a + b \tag{2}$$

ここで、 $1 \le a \le b \le c$ のとき、

$$\begin{cases} a < b + c \\ b < c + a \\ c < a + b \end{cases} \iff c < a + b$$

であるから、すべてのa,bの組合せに対して(2)を満たす L_k の個数、すなわち

$$\sum_{i=1}^{N-2} \sum_{j=i+1}^{N-1} \max\{(l_{a,b}-1) - (j+1) + 1, 0\}$$

が求める値である。