$12a_{0726} (K12a_{0726})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{51} - u^{50} + \dots - 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 51 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{51} - u^{50} + \dots - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u\\-u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1\\-u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} + 1\\-u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{7} - 4u^{5} + 4u^{3} - 2u\\u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{18} - 11u^{16} + 48u^{14} - 107u^{12} + 133u^{10} - 95u^{8} + 34u^{6} - 2u^{4} - 3u^{2} + 1\\u^{18} - 10u^{16} + 37u^{14} - 60u^{12} + 35u^{10} + 8u^{8} - 16u^{6} + 2u^{4} + 3u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{7} + 4u^{5} - 4u^{3} + 2u\\-u^{9} + 5u^{7} - 7u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{18} - 11u^{16} + 48u^{14} - 107u^{12} + 133u^{10} - 95u^{8} + 34u^{6} - 2u^{4} - 3u^{2} + 1\\-u^{9} + 5u^{7} - 7u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{45} - 28u^{43} + \dots + 14u^{3} - 3u\\u^{47} - 29u^{45} + \dots + 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{47} 120u^{45} + \cdots 16u 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{51} + 27u^{50} + \dots + 2u - 1$
c_2, c_8	$u^{51} - u^{50} + \dots + u^2 - 1$
c_3, c_7	$u^{51} + u^{50} + \dots - 40u - 13$
c_4, c_5, c_6 c_{10}, c_{11}	$u^{51} - u^{50} + \dots - 2u - 1$
c_9, c_{12}	$u^{51} - 5u^{50} + \dots + 42u + 5$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{51} - 5y^{50} + \dots + 34y - 1$
c_{2}, c_{8}	$y^{51} + 27y^{50} + \dots + 2y - 1$
c_3, c_7	$y^{51} - 37y^{50} + \dots + 4018y - 169$
$c_4, c_5, c_6 \\ c_{10}, c_{11}$	$y^{51} - 65y^{50} + \dots + 2y - 1$
c_9, c_{12}	$y^{51} + 23y^{50} + \dots + 974y - 25$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.934654 + 0.359124I	-4.89993 + 10.88520I	-13.9898 - 9.1011I
u = -0.934654 - 0.359124I	-4.89993 - 10.88520I	-13.9898 + 9.1011I
u = -0.942251 + 0.324875I	-5.98706 + 2.32675I	-15.9409 - 2.8840I
u = -0.942251 - 0.324875I	-5.98706 - 2.32675I	-15.9409 + 2.8840I
u = 0.922701 + 0.345886I	-1.94667 - 6.07625I	-10.83807 + 6.02977I
u = 0.922701 - 0.345886I	-1.94667 + 6.07625I	-10.83807 - 6.02977I
u = 1.03108	-5.66531	-15.3850
u = -1.061590 + 0.031424I	-9.08913 + 4.30907I	-18.5429 - 3.7969I
u = -1.061590 - 0.031424I	-9.08913 - 4.30907I	-18.5429 + 3.7969I
u = 0.855219 + 0.348235I	0.95095 - 5.30967I	-8.63248 + 7.99988I
u = 0.855219 - 0.348235I	0.95095 + 5.30967I	-8.63248 - 7.99988I
u = 0.892740 + 0.163983I	-3.77255 - 2.37268I	-17.3684 + 5.1349I
u = 0.892740 - 0.163983I	-3.77255 + 2.37268I	-17.3684 - 5.1349I
u = -0.812894 + 0.338645I	1.22174 + 0.86320I	-7.59219 - 0.99621I
u = -0.812894 - 0.338645I	1.22174 - 0.86320I	-7.59219 + 0.99621I
u = -0.691855 + 0.295789I	-0.586592 - 0.013554I	-8.91489 - 1.65499I
u = -0.691855 - 0.295789I	-0.586592 + 0.013554I	-8.91489 + 1.65499I
u = 0.657710 + 0.357951I	-3.33920 + 4.49491I	-12.31496 - 1.64994I
u = 0.657710 - 0.357951I	-3.33920 - 4.49491I	-12.31496 + 1.64994I
u = 0.540749 + 0.318050I	-3.97102 - 3.50003I	-13.5801 + 5.9294I
u = 0.540749 - 0.318050I	-3.97102 + 3.50003I	-13.5801 - 5.9294I
u = 0.115498 + 0.577206I	-1.68827 - 7.70971I	-8.54080 + 7.04880I
u = 0.115498 - 0.577206I	-1.68827 + 7.70971I	-8.54080 - 7.04880I
u = -0.100340 + 0.556105I	1.17823 + 3.01006I	-4.93958 - 3.82395I
u = -0.100340 - 0.556105I	1.17823 - 3.01006I	-4.93958 + 3.82395I
u = -0.020722 + 0.563068I	3.60258 + 2.21222I	-2.70323 - 3.95953I
u = -0.020722 - 0.563068I	3.60258 - 2.21222I	-2.70323 + 3.95953I
u = 0.139590 + 0.529892I	-2.67990 + 0.58466I	-10.09274 + 1.02853I
u = 0.139590 - 0.529892I	-2.67990 - 0.58466I	-10.09274 - 1.02853I
u = -0.520487	-0.898575	-10.9920

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.63571 + 0.03530I	-11.22280 - 3.45035I	0
u = -1.63571 - 0.03530I	-11.22280 + 3.45035I	0
u = 1.65326 + 0.04846I	-8.88936 - 1.01253I	0
u = 1.65326 - 0.04846I	-8.88936 + 1.01253I	0
u = -0.204173 + 0.278298I	-0.541427 + 0.901076I	-9.58787 - 7.23419I
u = -0.204173 - 0.278298I	-0.541427 - 0.901076I	-9.58787 + 7.23419I
u = 1.66447 + 0.07584I	-7.44083 - 2.35904I	0
u = 1.66447 - 0.07584I	-7.44083 + 2.35904I	0
u = -1.67378 + 0.08451I	-7.89647 + 6.93113I	0
u = -1.67378 - 0.08451I	-7.89647 - 6.93113I	0
u = -1.68671 + 0.04546I	-12.89560 + 3.20312I	0
u = -1.68671 - 0.04546I	-12.89560 - 3.20312I	0
u = -1.69407 + 0.08990I	-11.14410 + 7.77795I	0
u = -1.69407 - 0.08990I	-11.14410 - 7.77795I	0
u = 1.69703 + 0.09424I	-14.1457 - 12.6661I	0
u = 1.69703 - 0.09424I	-14.1457 + 12.6661I	0
u = 1.69987 + 0.08445I	-15.2980 - 3.9376I	0
u = 1.69987 - 0.08445I	-15.2980 + 3.9376I	0
u = -1.71763	-15.4613	0
u = 1.72344 + 0.00640I	-19.0178 - 4.4514I	0
u = 1.72344 - 0.00640I	-19.0178 + 4.4514I	0

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{51} + 27u^{50} + \dots + 2u - 1$
c_2, c_8	$u^{51} - u^{50} + \dots + u^2 - 1$
c_3, c_7	$u^{51} + u^{50} + \dots - 40u - 13$
c_4, c_5, c_6 c_{10}, c_{11}	$u^{51} - u^{50} + \dots - 2u - 1$
c_9, c_{12}	$u^{51} - 5u^{50} + \dots + 42u + 5$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{51} - 5y^{50} + \dots + 34y - 1$
c_2, c_8	$y^{51} + 27y^{50} + \dots + 2y - 1$
c_3, c_7	$y^{51} - 37y^{50} + \dots + 4018y - 169$
c_4, c_5, c_6 c_{10}, c_{11}	$y^{51} - 65y^{50} + \dots + 2y - 1$
c_9, c_{12}	$y^{51} + 23y^{50} + \dots + 974y - 25$