Assignment 1

Name: Shiyin Lin UFID: 49619012

1 Cycle Finding

1.1 Pseudo-code

```
algorithm 1 Disjoint-set data structure
Input: Array Edges
Output: bool
 1: function DSU(Array)
       if x is not already in the forest then
 2:
 3:
          x.patent := x
       end if
 4:
       for each edge in Edges do
 5:
          pf := FIND(edge.fr)
 6:
          pt := FIND(edge.to)
 7:
          if pf = pt then
 8:
              Find\ cycle
 9:
              return true
10:
          end if
11:
          y.parent := x
12:
       end for
13:
       No\ cycle
14:
       return false
15:
16: end function
17:
18: function FIND(x) is
       while x.parent \neq x do
19:
          (x, x.parent) := (x.parent, x.parent.parent)
20:
21:
       end while
       return x
22:
23: end function
```

1.2 Proof of Correctness

Assume the edge's node x and node y are in the set but cannot form a cycle. node x and node y are in the set \Rightarrow node x is connected to node y node x and node y cannot form a cycle \Rightarrow No edge contains node x and node y \Rightarrow contradiction \Rightarrow node x and node y in the set can form a cycle

1.3 Algorithm's running time

When initializing the parent array, the loop is n times, and the complexity is $\Theta(n)$. If the lookup path contains s nodes, it is obvious that the time complexity of the lookup is $\Theta(s)$. The time complexity of the find(a) and union(a) operation can be proven to be $\Theta(\alpha(n))$ if no node's potential energy increases due to optimization using path compression and at least $s - \alpha(n)$ nodes have their potential energy reduced by at least 1. So the total cost is $\Theta(n) + \Theta(\alpha(n))$

1.4 Implement

1.4.1 Graph Generator

```
1 | func generateUndirected(nnum int, enum int) graph.Undirected {
       r := rand.New(rand.NewSource(time.Now().Unix())
2
3
       return graph. GnmUnidirected (nnum, enum, r)
4
  }
5
6
   func generateEdges(g graph.Undirected) [][] int {
7
       edgeCollect := [][]int
8
       for fr, to := range g.AdjacencyList {
           for \_, to := range to \{
9
10
               if graph.NI(fr) < to {
11
                   tmp := [] int {}
12
                   tmp = append(tmp, fr)
                   tmp = append(tmp, int(to))
13
                    edgeCollect = append(edgeCollect, tmp)
14
15
           }
16
17
18
       return edgeCollect
19 }
```

1.4.2 Test Code

```
func Test() {
    nodes := 10000000
    edges := 20000000

    g := generateUndirected(nodes, edges)
    edgeCollect := generateEdges(g)
```

```
start := time.Now()
FindCycleDSU(edgeCollect)
elapsed := time.Since(start)
fmt.Println("total cost:", elapsed)
}
```

1.4.3 Test algorithm for increasing graph size

Node	Edge	t1	t2	t3	ave
10	20	$25.025 \mu s$	$25.826 \mu s$	$26.6\mu s$	$25.817 \mu s$
100	200	$24.165 \mu s$	$26.877 \mu s$	$27.149 \mu s$	$26.064 \mu s$
1000	2000	$34.612 \mu s$	$32.773 \mu s$	$33.821 \mu s$	$33.735 \mu s$
10000	20000	$97.649 \mu s$	$111.776 \mu s$	$98.966 \ \mu s$	$102.797 \mu s$
100000	200000	$508.58 \mu s$	$452.34 \mu s$	$629.028 \mu s$	$529.983 \mu s$
1000000	2000000	7.098ms	8.127ms	8.371 ms	7.865ms
10000000	20000000	114.545ms	109.498ms	95.398ms	106.48ms

1.4.4 Plot running time

2 Minimum Spanning Tree for sparse graphs

2.1 Pseudo-code

algorithm 2 Kruskal

```
Input: Int numOfNodes, Int numOfEdges, Array EdgesWithWright
Output: Null
 1: function Kruskal(Int, Int, Array)
       if node is not already in the forest then
 2:
           node.patent := node
 3:
 4:
       end if
       QUICKSSORE(Edges)
 5:
       while i < \text{numOfEdges do}
 6:
           pf := \text{FIND}(\text{edge}[i].\text{fr})
 7:
           pt := FIND(edge[i].to)
 8:
           if pf \neq pt then
 9:
              pt.parent = pf
10:
11:
              resault + = edge.weight
           end if
12:
       end while
13:
       if not result then
14:
           Can't find MST
15:
16:
       else
           MST\ is:\ result
17:
       end if
18:
19: end function
```

2.2 Proof of Correct

Suppose that the graph G has n vertices, then the spanning tree must have n-1 edges. Since the number of spanning trees of a graph is finite, there is at least one tree with minimum cost, which is assumed to be U. First make the following assumptions.

- 1) The output tree is T.
- 2) The number of different edges in U and T is k, and the other n-1-k edges are the same, and these n-1-k edges form the edge set E.
- 3) The edges in T but not in U are $a_1, a_2, ...$ in order of cost from smallest to largest. , a_k .
- 4) The edges in U but not in T are $x_1, x_2, ...$ in order of cost from smallest to largest. , x_k .

By converting U to T (moving the edges of T into U in order), to prove that U and T have the same cost.

First, we move a_1 into U. Since U itself is a tree, adding any edge at this point constitutes a cycle, so the addition of a_1 must produce a cycle, and this cycle must include the edges in $x_1, x_2, ..., x_k, x_k$. (Otherwise a_1 and the edges in E form a cycle, and E is also in T, which contradicts the absence of a cycle in T.)

In this cycle delete edges belonging to $x_1, x_2, ..., x_k$ and the most costly edge x_i forms a new spanning tree V.

Assuming that a_1 cost is less than x_i , the cost of V is less than U. This contradicts that U is a minimum cost tree, so a_1 cannot be less than x_i . Assuming that a_1 is greater than x_i , according to Kruskal's algorithm, the edge with small cost is considered first, then when Kruskal's algorithm is executed, x_i should be considered before a_1 , which in turn is considered before $a_2, ..., a_k$ before considering x_i , so before considering x_i , the edges in T can only be edges in E. And since x_i did not join the tree T, it means that x_i must constitute a cycle with some edges in E. But x_i and E are in U at the same time, which contradicts with U being a spanning tree, so a_1 cannot be larger than x_i either.

Therefore, the newly obtained tree V has the same cost as T.

By analogy, adding the edges of $a_1, a_2, ...$, the edges of a_k are gradually added to U, and the final obtained tree T has the same cost as U.

2.3 Algorithm's running time

Since the algorithm is optimized using the DSU of path compression, the complexity is $\Theta(n) + \Theta(\alpha(n))$, and since it contains a quick sort operation, the consultation complexity is $\Theta(n) + \Theta(\alpha(n)) + \Theta(mlogm)$

2.4 Implement

2.4.1 Graph Generator

```
func generateConnectGraph(nnum int, enum int) graph.Undirected {
    n, _ := rand2.Int(rand2.Reader, big.NewInt(65536)
    r := rand.New(rand.NewSource(n.Int64()))
    g := graph.GnmUndirected(nnum, enum, r)
    if !g.IsConnected() {
        generateConnectGraph(nnum, enum)
    }
    return g
    }
}
return g
func generateWEdges(g graph.Undirected, enum int) [][] int {
```

```
12
     weight := make([]int, enum)
13
     for i := 0; i < enum; i ++  {
14
15
       n, = rand2.Int(rand2.Reader, big.NewInt(int64(20)))
16
       if n.Int64() = 0 {
17
         weight[i] = int(n.Int64()) + 1
18
        else {
19
         weight[i] = int(n.Int64())
20
21
22
     edgeCollect := [][] int{}
23
     for fr, to := range g.AdjacencyList {
24
       for _, to := range to {
25
         if graph.NI(fr) < to {
26
           tmp := [] int {} {}
27
           tmp = append(tmp, fr)
28
           tmp = append(tmp, int(to))
29
           edgeCollect = append(edgeCollect, tmp)
30
31
       }
32
33
     for i := 0; i < \text{enum}; i ++ \{
34
       edgeCollect[i] = append(edgeCollect[i], weight[i])
35
36
     return edgeCollect
37
```

2.4.2 Test Code

```
1 func Test2() {
      nodes := 10
 2
 3
      edges := 18
 4
      if edges < nodes-1 {
 5
         fmt. Println ("too less edges")
 6
         os. \operatorname{Exit}(-1)
 7
 8
      g := generateConnectGraph(nodes, edges)
 9
      edgeCollect := generateWEdges(g, edges)
10
      fmt.Println(edgeCollect)
      sort.\,Slice\,(\,edgeCollect\,[\,:\,edges\,]\,,\,\,func\,(\,i\,,\,j\,\,\,int\,)\,\,bool\,\,\{\,\,return\,\,edgeCollect\,[\,i\,]\,[\,2\,]\,<\,edgeCollect\,[\,j\,]\,[\,2\,]
11
12
13
14
      fmt.Println(edgeCollect)
15
      start := time.Now()
      kruskal(nodes, edges, edgeCollect)
16
17
      elapsed := time.Since(start)
18
      fmt.Println("total cost:", elapsed)
19 }
```

2.4.3 Test algorithm for increasing graph size

Node	Edge	t1	t2	t3	ave
10	18	$4.048 \mu s$	$3.732 \mu s$	$5.301 \mu s$	$4.36\mu s$
20	28	$5.059 \mu s$	$5.263 \mu s$	$5.503\mu s$	$5.275 \mu s$
30	38	$5.912 \mu s$	$6.125 \mu s$	$5.426 \mu s$	$5.821 \mu s$
40	48	$5.534 \mu s$	$6.11 \mu s$	$6.466 \mu s$	$6.037 \mu s$
50	58	$9.591 \mu s$	$9.011 \mu s$	$9.313 \mu s$	$9.305 \mu s$
60	68	$9.369 \mu s$	$9.515 \mu s$	$9.561 \mu s$	$9.482 \mu s$
70	78	$10.076 \mu s$	$11.741 \mu s$	$12.044 \mu s$	$11.287 \mu s$

2.4.4 Plot running time

