

planetmath.org

Math for the people, by the people.

example of polyadic algebra

Canonical name ExampleOfPolyadicAlgebra

Date of creation 2013-03-22 17:53:20 Last modified on 2013-03-22 17:53:20

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 15

Author CWoo (3771) Entry type Example Classification msc 03G15

Defines functional polyadic algebra

Recall that the canonical example of a monadic algebra is that of a functional monadic algebra, which is a pair (B, \exists) such that B is the set of all functions from a non-empty set X to a Boolean algebra A such that, for each $f \in B$, the supremum and the infimum of f(X) exist, and \exists is a function on B that maps each element f to f^{\exists} , a constant element whose range is a singleton consisting of the supremum of f(X).

The canonical example of a polyadic algebra is an extension (generalization) of a functional monadic algebra, known as the functional polyadic algebra. Instead of looking at functions from X to A, we look at functions from X^I (where I is some set), the I-fold cartesian power of X, to A. In this entry, an element $x \in X^I$ is written as a sequence of elements of A: $(x_i)_{i \in I}$ where $x_i \in A$, or (x_i) for short.

Before constructing the functional polyadic algebra based on the sets X, I and the Boolean algebra A, we first introduce the following notations:

• for any $J \subseteq I$ and $x \in X^I$, define the subset (of X^I)

$$[x]_J := \{ y \in X^I \mid x_i = y_i \text{ for every } i \notin J \},$$

• for any function $\tau: I \to I$ and any $f: X^I \to A$, define the function f_τ from X^I to A, given by

$$f_{\tau}(x_i) := f(x_{\tau(i)}).$$

Now, let B be the set of all functions from X^I to A such that

1. for every $f \in B$, every $J \subseteq I$ and every $x \in X^I$, the arbitrary join

$$\bigvee f\left([x]_J\right)$$

exists.

Before stating the next condition, we introduce, for each $f \in B$, a function $f^{\exists J}: X^I \to A$ as follows:

$$f^{\exists J}(x) := \bigvee f([x]_J).$$

Now, we are ready for the next condition:

2. if $f \in B$, then $f^{\exists J} \in B$,

3. if $f \in B$, then $f_{\tau} \in B$ for $\tau : I \to I$.

Note that if A were a complete Boolean algebra, we can take B to be A^{X^I} , the set of all functions from X^I to A.

Next, define $\exists: P(I) \to B^B$ by $\exists (J)(f) = f^{\exists J}$, and let S be the semigroup of functions on I (with functional compositions as multiplications), then we call the quadruple (B, I, \exists, S) the functional polyadic algebra for the triple (A, X, I).

Remarks. Let (B, I, \exists, S) be the functional polyadic algebra for (A, X, I).

- (B, I, \exists, S) is a polyadic algebra. The proof of this is not difficult, but involved, and can be found in the reference below.
- If I is a singleton, then (B, I, \exists, S) can be identified with the functional monadic algebra (B, \exists) for (A, X), for S is just I, and X^I is just X.
- If I is \varnothing , then (B, I, \exists, S) can be identified with the Boolean algebra A, for $S = \varnothing$ and X^I is a singleton, and hence the set of functions from X^I to A is identified with A.

References

[1] P. Halmos, Algebraic Logic, Chelsea Publishing Co. New York (1962).