Vika 2: Núllstöðvar; helmingunaraðferð, fastapunktsaðferð, sniðilsaðferð og aðferð Newtons

Töluleg greining, STÆ405G, 17. og 22. janúar 2014

Benedikt Steinar Magnússon, bsm@hi.is

2.1

Yfirlit

Vika 2: Núllstöðvar

Nr.	Heiti á viðfangsefni	Bls.	Glærur
2.1	Helmingunaraðferð	58-68	3-7
2.3	Fastapunktsaðferð	81-93	8-15
2.5	Sniðilsaðferð	107-111	16-23
2.4	Newton-aðferð	95-104	24-29
2.4	Samanburður á aðferðunum		30
2.4	Matlab-forrit fyrir aðferð Newtons		31-35

2.2

2.1 Nálgun á núllstöð f(x) = 0:

Upprifjun

Munum að talan $p \in I$ sögð vera $n \acute{u}llst \ddot{o} \eth$ fallsins $f:I \to \mathbb{R}$ ef

$$f(p) = 0.$$

Milligildissetningin úr stærðfræðigreiningu segir:

Ef f er samfellt á [a,b] og y er einhver tala á milli f(a) og f(b), þá er til c þannig að a < c < b og f(c) = y.

Afleiðing

Svo ef við höfum a og b þannig að a < b og þannig að f(a) og f(b) hafi ólík formerki, þá hefur f núllstöð p á bilinu [a,b].

2.3

2.1 Helmingunaraðferð (e. bisection method):

Notum okkur þetta til þess að finna rætur.

- (1) Látum $x = \frac{1}{2}(a+b)$ vera miðpunkt [a, b].
- (2) Reiknum f(x), þá geta þrjú tilvik komið upp:
 - (i) f(x) = 0 og leitinni að rót er lokið.
 - (ii) f(a) og f(x) hafa sama formerki, þannig að við leitum að rót á bilinu [x, b].
 - (iii) f(x) og f(b) hafa sama formerki, þannig að við leitum að rót á bilinu [a, x].

Í tilviki (ii) segir milligildissetningin að f hafi rót á bilinu [x, b], og í tilviki (iii) er rótin á bilinu [a, x]. Þá getum við farið aftur í skref 1, nema með helmingi minna bil en áður.

Með því að ítreka þetta ferli n sinnum fáum við minnkandi runu af bilum

$$[a,b] = [a_1,b_1] \supset [a_2,b_2] \supset \cdots \supset [a_n,b_n].$$

Billengdin helmingast í hverju skrefi og milligildissetningin segir okkur að það sé núllstöð á öllum bilunum.

2.4

2.1 Helmingunaraðferð, nánar:

Rununa af bilunum

$$[a,b] = [a_0,b_0] \supset [a_1,b_1] \supset \cdots \supset [a_n,b_n] \supset \cdots$$

skilgreinum við með ítrun og notum til þess rununa $x_n = \frac{1}{2}(a_n + b_n)$.

Upphafsskref: Setjum $a_0 = a$, $b_0 = b$, og $x_0 = \frac{1}{2}(a+b)$.

Ítrekunarskref: Gefið er x_0, \ldots, x_n . Reiknum $f(x_n)$.

- (i) Ef $f(x_n) = 0$, þá er núllstöð fundin og við hættum.
- (ii) Ef $f(x_n)$ og $f(a_n)$ hafa sama formerki, þá setjum við $a_{n+1}=x_n,\ b_{n+1}=b_n,$ og $x_{n+1}=\frac{1}{2}(a_{n+1}+b_{n+1})$
- (iii) annars setjum við $a_{n+1} = a_n$, $b_{n+1} = x_n$, og $x_{n+1} = \frac{1}{2}(a_{n+1} + b_{n+1})$.

2.5

2.1 Skekkjumat í helmingunaraðferð:

Ef við látum miðpunktinn $p_n=\frac{1}{2}(a_n+b_n)$ vera nálgunargildi okkar fyrir núllstöð fallsins f í bilinu $[a_n,b_n]$, þá er skekkjan í nálguninni

$$e_n = p - p_n$$

og við höfum skekkjumatið

$$|e_n| \le \frac{b_n - a_n}{2} = \frac{b_{n-1} - a_{n-1}}{2^2} = \dots = \frac{b_1 - a_1}{2^n},$$

það er

$$|e_n| < \frac{b-a}{2^n}.$$

2.6

2.1. Fyrirframmat á skekkju

Nú er auðvelt að meta hversu margar ítrekanir þarf að framkvæma til þess að nálgunin lendi innan gefinna skekkjumarka.

Ef $\varepsilon > 0$ er gefið og við viljum að $|e_n| < \varepsilon$, þá dugir að

$$|e_n| \le \frac{b-a}{2^n} < \varepsilon.$$

Seinni ójafnan jafngildir því að

$$n > \frac{\ln\left((b-a)/\varepsilon\right)}{\ln 2}.$$

2.7

2.3 Fastapunktsaðferð (e. fixed point method)

Skilgreining

Látum $f:[a,b]\to\mathbb{R}$ vera samfellt fall. Punktur $r\in[a,b]$ þannig að

$$f(r) = r$$

kallast fastapunktur fallsins f.

Athugasemd

Athugum að í fastapunktum skerast graf fallsins y = f(x) og línan y = x. Verkefnið að ákvarða fastapunkta fallsins r er því jafngilt því að athuga hvar graf f sker línuna y = x.

Tengin við núllstöðvar

Verkefnið að finna fastapunkta fallsins f(x) er jafngilt því að finna núllstöðvar fallsins g(x) = f(x) - x.

2.3 Fastapunktsaðferð

Upphafsskref: Valin er tala $x_0 \in [a, b]$.

Ítrekunarskref: Ef x_0, \ldots, x_n hafa verið valin, þá setjum við

$$x_{n+1} = f(x_n)$$

Athugasemd

Til þess að þetta sé vel skilgreind runa, þá verðum við að gera ráð fyrir að $f(x) \in [a, b]$ fyrir öll $x \in [a, b]$. Þetta skilyrði er einnig skrifað

$$f([a,b]) \subset [a,b].$$

Athugasemd

Ef f er samfellt og runan er samleitin með markgildið r, þá er

$$r = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) = f(r).$$

Þetta segir okkur að ef við getum séð til þess að runan verði samleitin, þá er markgildið fastapunktur.

2.9

2.3 Herping

Skilgreining

Fall $f:[a,b]\to\mathbb{R}$ er sagt vera herping ef til er fasti $\lambda\in[0,1[$ þannig að

$$|f(x) - f(y)| \le \lambda |x - y|$$
 fyrir öll $x, y \in [a, b]$.

Athugasemd

Sérhver herping er samfellt fall.

Athugasemd

Ef f er deildanlegt fall á a, b, þá gefur meðalgildissetningin okkur til er ξ milli x og y þannig að

$$f(x) - f(y) = f'(\xi)(x - y).$$

Ef til er $\lambda \in [0,1[$ þannig að $|f'(x)| \leq \lambda$ fyrir öll $x \in [a,b]$, þá er greinilegt að f er herping.

2.10

2.3 Fastapunktssetning

Setning

Látum $f:[a,b] \to [a,b]$ vera herpingu. Þá hefur f nákvæmlega einn fastapunkt r á bilinu [a,b] og runan (x_n) þar sem

$$x_0 \in [a,b]$$
 getur verið hvaða tala sem er og $x_{n+1} = f(x_n), \quad n \ge 0,$

stefnir á fastapunktinn.

Sönnunina brjótum við upp í nokkur skref.

2.11

2.3 Sönnun: 1. skref, herping hefur í mesta lagi einn fastapunkt

Sönnum þetta með mótsögn.

Gerum ráð fyrir að r og s séu tveir ólíkir fastapunktar á [a,b]. Þá er

$$|r - s| = |f(r) - f(s)| \le \lambda |r - s| < |r - s|$$

því $\lambda < 1$. Þetta fær ekki staðist, þannig að fjöldi fastapunkta er í mesta lagi einn

2.3 Sönnun: 2. skref, fallið f hefur fastapunkt:

Látum g(x)=f(x)-x, þá eru núllstöðvar g nákvæmlega fastapunktar f. Par sem $a\leq f(x)\leq b$ fyrir öll $x\in [a,b]$ er

$$\begin{cases} g(a) = f(a) - a \ge 0 \\ g(b) = f(b) - b \le 0 \end{cases}$$

Ef annað hvort g(a) = 0 eða g(b) = 0 höfum við fundið fastapunkt fallsins f og við getum hætt.

Ef hins vegar g(a) > 0 og g(b) < 0 þá hefur g ólík formerki í endapunktum bilsins [a, b] og hefur því núllstöð r á bilinu skv. milligildissetninguninni. Þá er r jafnframt fastapunktur f.

Skref 1 og 2 sýna því að fallið f hefur nákvæmlega einn fastapunkt á bilinu.

2.13

2.3 Sönnun: 3. skref, runan (x_n) er samleitin

Látum r vera ótvírætt ákvarðaða fastapunktinn á [a, b].

Við notfærum okkur að fer herping og að rer fastapunktur f, þá fæst að fyrir sérhvert $k\in\mathbb{N}$ þá er

$$|r - x_k| = |f(r) - f(x_{k-1})| \le \lambda |r - x_{k-1}|$$

það er $|r - x_k| \le \lambda |r - x_{k-1}|$.

Með því að nota þetta n-sinnum þá fæst að

$$|r - x_n| \le \lambda |r - x_{n-1}| \qquad (k = n)$$

$$\le \lambda^2 |r - x_{n-2}| \qquad (k = n - 1)$$

$$\vdots \qquad \vdots$$

$$\le \lambda^n |r - x_0| \qquad (k = 1).$$

Par sem $\lambda < 1$ er því

$$\lim_{n \to +\infty} |r - x_n| = \lim_{n \to +\infty} \lambda^n |r - x_0| = 0,$$

það er runan x_n stefnir á r.

2.14

2.3 Fastapunktsaðferð er að minnsta kosti línulega samleitin

Af skilgreiningunni á rununni x_n leiðir beint að

$$|e_{n+1}| = |r - x_{n+1}| = |f(r) - f(x_n)| \le \lambda |r - x_n| = \lambda |e_n|$$

sem segir okkur að fastapunktsaðferð sé að minnsta kosti línulega samleitin ef f er herping.

2.15

2.5 Sniðilsaðferð

Gefið er fallið $f:[a,b]\to\mathbb{R}$. Við ætlum að ákvarða núllstöð f, þ.e.a.s. $p\in[a,b]$ þannig að

$$f(p) = 0.$$

Rifjum upp að $sni\partial ill$ við graf f gegnum punktana $(\alpha, f(\alpha))$ og $(\beta, f(\beta))$ er gefinn með jöfnunni

$$y = f(\alpha) + f[\alpha, \beta](x - \alpha)$$

þar sem hallatalan er

$$f[\alpha, \beta] = \frac{f(\beta) - f(\alpha)}{\beta - \alpha} = \frac{f(\alpha) - f(\beta)}{\alpha - \beta}.$$

Sniðillinn sker x-ásinn í punkti s þar sem

$$0 = f(\alpha) + f[\alpha, \beta](s - \alpha) \quad \text{sem jafngildir því að} \quad s = \alpha - \frac{f(\alpha)}{f[\alpha, \beta]}.$$

2.5 Sniðilsaðferð

Byrjunarskref: Giskað er á tvö gildi x_0 og x_1 .

Ítrekunarskref: Gefin eru x_0, \ldots, x_n . Punkturinn x_{n+1} er skurðpunktur sniðilsins gegnum $(x_{n-1}, f(x_{n-1}))$ og $(x_n, f(x_n))$ við x-ás,

$$x_{n+1} = x_n - \frac{f(x_n)}{f[x_n, x_{n-1}]}.$$

2.17

2.5 Samleitin runa stefnir á núllstöð f

Gefum okkur að runan (x_n) sé samleitin að markgildinu r. Meðalgildissetningin segir okkur þá að til sé punktur η_n á milli x_{n-1} og x_n þannig að

$$f[x_n, x_{n-1}] = f'(\eta_n),$$

og greinilegt er að $\eta_n \to r$.

Við fáum því

$$r = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \left(x_n - \frac{f(x_n)}{f'(\eta_n)} \right) = r - \frac{f(r)}{f'(r)}$$

Pessi jafna jafngildir því að f(r) = 0.

2.18

2.5 Skekkjumat í nálgun á f(x) með $p_n(x)$

Sniðilinn sem við notum er graf 1. stigs margliðunnar

$$p_n(x) = f(x_n) + \frac{f(x_{n-1}) - f(x_n)}{x_{n-1} - x_n}(x - x_n) = f(x_n) + f[x_n, x_{n-1}](x - x_n)$$

Samkvæmt skilgreiningu er $p_n(x_{n+1}) = 0$ svo x_{n+1} uppfyllir jöfnuna

$$x_{n+1} = x_n - \frac{f(x_n)}{f[x_n, x_{n-1}]}.$$

Við þurfum að vita hver skekkjan er á því að nálga f(x) með $p_n(x)$.

Við munum sýna fram á: Til er ξ_n sem liggur í minnsta bilinu sem inniheldur $x,\,x_n$ og x_{n-1} þannig að

$$f(x) - p_n(x) = \frac{1}{2}f''(\xi_n)(x - x_n)(x - x_{n-1})$$

2.19

2.5 Skekkjumat í sniðilsaðferð

Gefum okkur að þessi staðhæfing sé rétt og skoðum hvað af henni leiðir:

Nú er f(r) = 0 og því

$$-p_n(r) = \frac{1}{2}f''(\xi_n)e_n \cdot e_{n-1}.$$

Eins er $p_n(x_{n+1}) = 0$ og því

$$-p_n(r) = p_n(x_{n+1}) - p_n(r) = -f[x_n, x_{n-1}]e_{n+1} = -f'(\eta_n)e_{n+1},$$

þar sem η_n fæst úr meðalgildissetningunni og liggur á milli x_n og x_{n+1} . Niðurstaðan verður því

$$e_{n+1} = \frac{-\frac{1}{2}f''(\xi_n)}{f[x_n, x_{n+1}]}e_n e_{n-1} = \frac{-\frac{1}{2}f''(\xi_n)}{f'(\eta_n)}e_n e_{n-1}$$

2.5 Sniðilsaðferð er ofurlínuleg

það er

$$\lim_{n \to \infty} \frac{e_{n+1}}{e_n e_{n-1}} = \lim_{n \to \infty} \frac{-\frac{1}{2} f''(\xi_n)}{f'(\eta_n)} = \frac{-\frac{1}{2} f''(r)}{f'(r)}.$$

Setning

Ef sniðilsaðferð er samleitin, $f \in C^2([a,b])$ (tvisvar diffranlegt) og $f'(r) \neq 0$, þá er sniðilsaðferðin ofurlínuleg.

Sönnun

$$\lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|} = \lim_{n \to \infty} \frac{|e_{n+1}e_{n-1}|}{|e_ne_{n-1}|} = \lim_{n \to \infty} \frac{|e_{n-1}\frac{1}{2}f''(r)|}{|f'(r)|} = 0$$

Athugasemd

Nánar tiltekið þá er sniðilsaðferðin samleitin af stigi $\alpha = (1+\sqrt{5})/2 \approx 1,618$ og með $\lambda = \left(\frac{f''(r)}{2f'(r)}\right)^{\alpha-1}$, sjá kennslubók bls. 110.

2.21

2.5 Skekkjumat í nálgun á f(x) með $p_n(x)$

Við megum ekki gleyma að sanna skekkjumatið.

Hjálparsetning

Til er ξ_n sem liggur í minnsta bilinu sem inniheldur x, x_n og x_{n-1} þannig að

$$f(x) - p_n(x) = \frac{1}{2}f''(\xi_n)(x - x_n)(x - x_{n-1})$$

Sönnun

Ljóst er að matið gildir ef $x = x_{n-1}$ eða $x = x_n$.

Festum því punktinn x og gerum ráð fyrir að $x \neq x_n$ og $x \neq x_n$.

Skilgreinum fallið

$$g(t) = f(t) - p_n(t) - \lambda(t - x_n)(t - x_{n-1})$$

þar sem λ er valið þannig að g(x) = 0.

2.22

Látum nú $\alpha < \beta < \gamma$ vera uppröðun á punktunum x_{n-1}, x_n og x. Fallið

$$g(t) = f(t) - p_n(t) - \lambda(t - x_n)(t - x_{n-1})$$

hefur núllstöð í öllum punktunum þremur.

Meðalgildissetningin gefur þá að g'(t) hefur eina núllstöð í punkti á bilinu α, β og aðra í β, γ .

Af því leiðir aftur að g''(t) hefur núllstöð, ξ_n , í $[\alpha, \gamma]$, sem er minnsta bilið sem inniheldur alla punktana x_{n-1} , x_n og x.

Af þessu leiðir

$$0 = g''(\xi_n) = f''(\xi_n) - 2\lambda$$
 þþaa $\lambda = \frac{1}{2}f''(\xi_n)$.

Nú var λ upprunalega valið þannig að g(x) = 0. Þar með er

$$f(x) - p_n(x) = \frac{1}{2}f''(\xi_n)(x - x_n)(x - x_{n-1}).$$

2.23

2.4 Aðferð Newtons

Í sniðilsaðferðinni létum við x_{n+1} vera skurðpunkt sniðils gegnum $(x_{n-1}, f(x_{n-1}))$ og $(x_n, f(x_n))$ við x-ás og fengum við rakningarformúluna

$$x_{n+1} = x_n - \frac{f(x_n)}{f[x_n, x_{n-1}]}.$$

Aðferð Newtons er nánast eins, nema í stað sniðils tökum við snertil í punktinum $(x_n, f(x_n))$.

Rakningarformúlan er eins, nema hallatalan verður $f'(x_n)$ í stað $f[x_n, x_{n-1}]$

2.4 Aðferð Newtons

Byrjunarskref: Giskað er á eitt gildi x_0 .

Ítrekunarskref: Gefin eru x_0, \ldots, x_n . Punkturinn x_{n+1} er skurðpunktur snertils gegnum $(x_n, f(x_n))$ við x-ás,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Upprifjun

Munum að snertill við graf f í punktinum x_n er

$$y = f(x_n) + f'(x_n)(x - x_n),$$

þessi lína sker x-ásinn (y = 0) þegar $x = x_n - \frac{f(x_n)}{f'(x_n)}$.

2.25

2.4 Samleitin runa stefnir á núllstöð f

Gefum okkur að runan (x_n) sé samleitin með markgildið r. Við fáum því

$$r = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \left(x_n - \frac{f(x_n)}{f'(x_n)} \right) = r - \frac{f(r)}{f'(r)}$$

Þessi jafna jafngildir því að f(r) = 0.

Þannig að ef runan er samleitin þá fáum við núllstöð.

2.26

2.4 Skekkjumat í nálgun á f(x) með $p_n(x)$

Fallið sem hefur snertilinn fyrir graf er 1. stigs margliðan

$$p_n(x) = f(x_n) + f'(x_n)(x - x_n)$$

Samkvæmt skilgreiningu er $p_n(x_{n+1}) = 0$ svo x_{n+1} uppfyllir jöfnuna

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Athugum að p_n er fyrsta Taylor nálgunin við fallið f kringum x_n . Setning Taylors gefur að til er ξ_n sem liggur á milli x og x_n þannig að

$$f(x) - p_n(x) = \frac{1}{2}f''(\xi_n)(x - x_n)^2.$$

2.27

2.4 Skekkjumat í aðferð Newtons

Nú er f(r) = 0 og því

$$-p_n(r) = \frac{1}{2}f''(\xi_n)e_n^2.$$

Eins er $p_n(x_{n+1}) = 0$ og því

$$-p_n(r) = p_n(x_{n+1}) - p_n(r) = -f'(x_n)e_{n+1}$$

Niðurstaðan verður því

$$e_{n+1} = \frac{-\frac{1}{2}f''(\xi_n)}{f'(x_n)}e_n^2$$

2.4 Aðferð Newtons er að minnsta kosti ferningssamleitin

Setning

Ef aðferð Newtons fyrir fallið f er samleitin, $f \in C^2([a,b])$ og $f'(r) \neq 0$, þá fáum við:

$$\lim_{n \to \infty} \frac{e_{n+1}}{e_n^2} = \frac{-\frac{1}{2}f''(r)}{f'(r)}$$

Það er, aðferð Newtons er ferningssamleitin.

Sönnun

$$\lim_{n \to \infty} \frac{e_{n+1}}{e_n^2} = \lim_{n \to \infty} \frac{-\frac{1}{2}f''(\xi_n)}{f'(x_n)} = \frac{-\frac{1}{2}f''(r)}{f'(r)}$$

Athugasemd

Athugið að það er ekki sjálfgefið að aðferð Newtons sé samleitin.

Auðvelt er að finna dæmi þar sem vond upphafságiskun x_0 skilar runu sem er ekki samleitin.

2.29

2.4 Samanburður á aðferðum

Bók	Aðferð	Samleitin	Stig samleitni
2.1	Helmingunaraðferð	$J\acute{a}, \text{ ef } f(a)f(b) < 0$	1, línuleg
	(bisection method)		
2.2	Rangstöðuaðferð	$J\acute{a}, \text{ ef } f(a)f(b) < 0$	1, línuleg
	(false position m.)		
2.3	Fastapunktsaðferð	Ekki alltaf. En saml.	amk 1
	(fixed point iteration)	ef f er herping	
2.4	Aðferð Newtons	Ekki alltaf	2, ef $f'(r) \neq 0$
	(Newtons method)		
2.5	Sniðilsaðferð	Ekki alltaf	$\approx 1,618, \text{ ef } f'(r) \neq 0$
	(secant method)		

Athugasemd

Pó að aðferð Newtons sé samleitin af stigi 2, en sniðilsaðferðin af stigi u.þ.b. 1,618, þá er í vissum tilfellum hagkvæmara að nota sniðilsaðferðina ef það er erfitt að reikna gildin á afleiðunni f'.

2.30

2.4 Matlab-forrit fyrir Aðferð Newtons

Þegar við forritum Newton aðferðina gerum við ráð fyrir að $f'(r) \neq 0$. Þá er aðferðin a.m.k. ferningssamleitin, og við notum matið

$$|e_{n+1}| = |x_{n+1} - x_n|$$

sem stöðvunarskilyrði. Við athugum þó að

$$|x_{n+1} - x_n| = \left| \left(x_n - \frac{f(x_n)}{f'(x_n)} \right) - x_n \right| = \left| \frac{f(x_n)}{f'(x_n)} \right|$$

og notum hægri hliðina sem villumat til að forðast reikniskekkjur.

2.31

2.4 Matlab-forrit fyrir Aðferð Newtons

function x = newtonNull(f,df,x0,epsilon)

% newtonNull(f,df,x0,epsilon)

%

% Nálgar núllstöð fallsins f : R --> R með aðferð Newtons.

% Fallið df er afleiða f, x0 er upphafságiskun á núllstöð

% og epsilon er tilætluð nákvæmni.

```
x = x0;
mis = f(x)/df(x);
% Ítrum meðan tilefni er til
while (abs(mis) >= epsilon)
    x = x - mis;
    mis = f(x)/df(x);
end
```

2.32

2.4 Matlab-forrit fyrir aðferð Newtons

Athugasemd

Athugið að við þurfum ekki að skoða sérstaklega hvort x sé núllstöð f, því ef svo er er abs(mis) = 0 sem er vissulega minna en öll skynsamlega valin epsilon og því hættir forritið sjálfkrafa.

Athugasemd

Athugið að forritið geymir ekki x_n , heldur uppfærir bara ágiskunina x í hvert skipti sem ítrunin er keyrð.

Athugasemd

Forritið athugar ekki hversu oft það er búið að ítra, þannig að ef aðferðin er ekki samleitin þá hættir forritið aldrei. Þetta er ekki skynsamlegt.

2.33

2.4 Sýnidæmi

Við skulum nálga 9. rót tölunnar 1381 með nákvæmni upp á $\varepsilon=10^{-8}$ með aðferð Newtons. Köllum rótina r, þá uppfyllir r jöfnuna

$$r^9 - 1381 = 0$$

Verkefnið snýst því um að nálga núllstöð fallsins $f(x) = x^9 - 1381$. Athugið að f er margliða af oddatölustigi og hefur því virkilega núllstöð. Nú er $2^9 = 512$, svo $x_0 = 2$ er ágætis upphafságiskun á r.

2.34

2.4 Sýnidæmi:

Þegar við ítrum með forritinu okkar fæst

n	x_n	$ e_{n-1} \approx x_n - x_{n-1} $
0	2	
1	2.377170138888889	0.377170138888889
2	2.263516747674327	0.113653391214562
3	2.234695019689070	0.028821727985257
4	2.233115984281294	0.001579035407775
5	2.233111503379273	0.000004480902021
6	2.233111503343308	0.000000000035965

Eftir sex ítranir er skekkjan orðin minni en ε , og við nálgum því r með 2.233111503.

Áhrif upphafságiskana sjást ágætlega með að prófa til dæmis $x_0 = 0.5$, þá skilar aðferðin alveg jafn góðri nálgun en þarf um 90 ítranir til þess.

2.35

Kafli 2: Fræðilegar spurningar:

- 1. Hvernig er ítrekunarskrefið í helmingunaraðferð?
- 2. Hvernig er skekkjumatið í helmingunaraðferð?
- 3. Hvað þýðir að punkturinn p sé fastapunktur fallsins f?
- 4. Hvernig er ítrekunarskrefið í fastapunktsaðferð?
- 5. Hvað þýðir að fall $f:[a,b] \to \mathbb{R}$ sé herping?
- 6. Setjið fram fastapunktssetninguna.
- 7. Rökstyðjið að fastapunktsaðferð sé a.m.k. línulega samleitin.
- 8. Hvernig er ítrekunarskrefið í sniðilsaðferð?
- 9. Hvernig er skekkjuformúlan í sniðilsaðferð?

- 10. Rökstyðjið að hægt sé að nota $|x_{n+1}-x_n|$ fyrir mat á skekkju í sniðilsaðferð. 11. Hvernig er ítrekunarskrefið í aðferð Newtons?
- 12. Hvernig er skekkjumatið í aðferð Newtons?
- 13. Rökstyðjið að aðferð Newtons sé a.m.k. ferningssamleitin.