300104

December, 2019 B.TECH. (CE/CSE/IT) - Ist SEMESTER Semiconductor Physics (BSC101D)

Time: 3 Hours

[Max. Marks: 75 obside the second of the second

Instructions:

- It is compulsory to answer all the questions (1.5 marks 1. each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

- (a) What is drift velocity? i aimo a sar a (a)
 - (b) Explain the concept of hole as a consequence of effective mass. Earlin Schottky innotical.
- (c) Why a semiconductor acts as an insulator at absolute na a mod moment ment adord inteq tod aniteC (1.5)
- (d) Assuming there are 5×10^{28} atoms/m³ in copper, determine the Hall Coefficient. (1.5)

(f)	Differentiate between diffusion and drift mech		
	for flow of electrons.	(1.5)	
(g)	What do you mean by knee voltage when PN ju diode is in forward bias?	en PN junction (1.5)	
(h)	In 100 nsec a pulse of 8×10^6 photons of wavelength 1300 nm falls on a photo detector. On an average 6.4×10^6 electron hole pairs are generated. What is the		
	quantum efficiency of photo detector?	(1.5)	
(i)	What do you understand by optoelectronic devices?		
	Give two examples.	(1.5)	
(j)	Explain the structure of buckyballs.	(1.5)	
	PA PT.R		

- (a) What is the effect of periodic potential on the energy of electrons in a metal? Explain it on the basis of Kronig-Penney model and explain the formation of energy bands.
 - (b) Define effective mass. Prove that it is dependent on energy and wave vector. (5)
- (a) Draw the energy band diagram of a metal semiconductor junction and label the important quantities such as Fermi level, band bending, etc. (7)

- (b) For intrinsic semiconductor with a gap width of 1 eV calculate the position of Fermi level at T = 0° K and at $T = 300^{\circ}$ K if $m_h^* = 6 m_e^*$ where m_h^* and m_e^* are effective masses of hole and electrons respectively. Boltzmann constant $k = 1.4 \times 10^{-16} \text{ ergs/0°K}$. (8)
- (a) Explain four probe methods. Derive an equation to calculate resistivity of a thin semiconductor. (7)
 - (b) Distinguish between metals, semiconductors and insulators using band theory. (8)
- 5 (a) Explain photovoltaic effect. With required diagrams discuss construction and working of solar cell.
 - What is radiative and non-radiative transition? Explain in brief the optical joint density of states. (10)
- (a) Define following terms with respect to Lightsemiconductor devices. (i) Absorption of radiation. (ii) Spontaneous emission (iii) Stimulated emission (10)(iv) Meta stable state.
 - (b) Discuss UV-VIS method for band gap measurement (5)of semiconductors.

004101/490/111/1

004101/490/111/1

IP.T.O.