Vp140 Recitation II

Haomeng ZHANG

SJTU Joint Institute zhanghaomeng@sjtu.edu.cn

May 30, 2019

1/18

Overview

- Basic Kinematic Quantities in 3D Cartesian Coordinates
- Projectile motion
- 3 Kinematics in Polar Coordinates (2D)
- Matural (or Kinematic) Coordinate System
- Intro to Newton's Laws

Instantaneous acceleration

Different cases

Projectile motion

Example

Shooter and monkey

Exercise I

Exercise I

A projectile thrown from a point P moves in such a way that its distance from P is always increasing. Find the maximum angle above the horizontal with which the projectile could have been thrown. Ignore air resistance.

Polar Coordiantes

Directions

Uniform circular motion

Non-uniform circular motion

Exercise II

Exercise II

A disc of radius R rotates about its axis of symmetry (perpendicular to the disk surface) with constant angular velocity $\dot{\varphi}=\omega=\mathrm{const.}$ At the instant of time t=0 a beetle starts to walk with constant speed v_0 along a radius of the disk, from its center to the edge. Find:

- the position of the beetle and its trajectory in the Cartesian and polar coordinate systems,
- 2 its velocity both systems,
- its acceleration in both systems (Cartesian components, polar components, as well as tangential and normal components).

Natural Coordinate System

Force

What is a force?

- Vector
- Superposition
- Common forces

First law

Newton's First Law

A body acted on by no net force has a constant velocity (which may be zero) and zero acceleration.

Inertia

The tendency of a body to keep moving once it is set in motion.

Inertial frame of reference

Definition

A frame of reference in which Newton's first law is valid.

Example

vehicle accelerates around you.

Second and third laws

Newton's second law

$$\Sigma \vec{F} = m\vec{a}$$

Newton's third law

$$\vec{F}_{A \text{ on } B} = -\vec{F}_{B \text{ on } A}$$

Exercise III

Exercise III

Analyze what will happen if the car starts to move under the constant driving force F_d with initial speed v_0 =0. Both the ground and the floor in the car are smooth. The quantities involved are given in the figure.

The End

- Office hour: Wed 8:00-10:00 (Discussion Room 326I)
- Email: zhanghaomeng@sjtu.edu.cn