

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE180514501

FCC REPORT

Applicant: Chengdu Ebyte Electronic Technology Co., Ltd.

Address of Applicant: Innovation Center D347, 4# XI-XIN road, High-tech district(west),

Chengdu, Sichuan, China

Equipment Under Test (EUT)

Product Name: Wireless transceiver module

Model No.: E90-DTU

Trade mark: EBYTE

FCC ID: 2ALPH-E90-DTU

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 30 May., 2018

Date of Test: 30 May., to 14 Jun., 2018

Date of report issued: 15 Jun., 2018

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	15 Jun., 2018	Original

Tested by:

Zora Lee Date: 15 Jun., 2018

Test Engineer

Reviewed by: Date: 15 Jun., 2018

Project Engineer

3 Contents

			Page
1	CO	/ER PAGE	1
2	VER	SION	2
3		NTENTS	
		T SUMMARY	_
4			
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	7
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	17
	6.6	BAND EDGE	
	6.6.		
	6.6.2		
	6.7	Spurious Emission	
	6.7.		
	6.7.2	2 Radiated Emission Method	29
7	TES	T SETUP PHOTO	35
8	EUT	CONSTRUCTIONAL DETAILS	37

4 Test Summary

Section in CFR 47	Result
15.203 & 15.247 (c)	Pass
15.207	Pass
15.247 (b)(3)	Pass
15.247 (a)(2)	Pass
15.247 (e)	Pass
15.247 (d)	Pass
15.205 & 15.209	Pass
	15.203 & 15.247 (c) 15.207 15.247 (b)(3) 15.247 (a)(2) 15.247 (e) 15.247 (d)

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Chengdu Ebyte Electronic Technology Co., Ltd.	
Address:	Innovation Center D347, 4# XI-XIN road, High-tech district(west), Chengdu, Sichuan, China	
Manufacturer/ Factory:	Chengdu Ebyte Electronic Technology Co., Ltd.	
Address:	Innovation Center D347, 4# XI-XIN road, High-tech district(west), Chengdu, Sichuan, China	

5.2 General Description of E.U.T.

Product Name:	Wireless transceiver module
Model No.:	E90-DTU
Operation Frequency:	907 MHz∼922.5 MHz
Channel numbers:	31
Modulation technology:	FSK
Antenna Type:	External Antenna
Antenna gain:	2 dBi
Power supply:	DC 12V

Operation Frequency each of channel for FSK							
Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	907.0MHz	13	913.5MHz	26	920.0MHz		
1	907.5MHz	14	914.0MHz	27	920.5MHz		
2	908.0MHz	15	914.5MHz	28	921.0MHz		
3	908.5MHz	16	915.0MHz	29	921.5MHz		
4	909.0MHz	17	915.5MHz	30	922.0MHz		
5	909.5MHz	18	916.0MHz	31	922.5MHz		
6	910.0MHz	19	916.5MHz				
7	910.5MHz	20	917.0MHz				
8	911.0MHz	21	917.5MHz				
9	911.5MHz	22	918.0MHz				
10	912.0MHz	23	918.5MHz				
11	912.5MHz	24	919.0MHz				
12	913.0MHz	25	919.5MHz				
Remark: Channel 0,	Remark: Channel 0, 16 & 31 selected for GFSK.						

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

Manufacturer	Description	Model	S/N	FCC ID/DoC
LENOVO	Laptop	SL510	2847A65	DoC
Sunshiny	Adapter	XS-1201000SCN	N/A	N/A

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty			
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)			
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)			
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)			
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)			
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)			

Report No: CCISE180514501

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	02-25-2018	02-24-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	02-25-2018	02-24-2019	
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A	
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019	
Simulated Station	Anritsu	MT8820C	6201026545	03-07-2018	03-06-2019	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019
LISN	CHASE	MN2050D	1447	02-25-2018	02-24-2019
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018
ISN	Schwarzbeck	CAT3 8158	CCIS0185	02-25-2018	02-24-2019
ISN	Schwarzbeck	CAT5 8158	CCIS0186	02-25-2018	02-24-2019
ISN	Schwarzbeck	NTFM 8158	CCIS0187	02-25-2018	02-24-2019
Cable	HP	10503A	N/A	03-07-2018	03-06-2019
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is an external antenna which cannot replace by end-user, the best case gain of the antenna is 2.0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207				
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz			
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	·	Limit	(dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logar	ithm of the frequency.			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test setup:	Reference Plane				
	AUX Equipment E.U.T EMI Receiver Remark E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network				
Test Instruments:	Test table height=0.8m Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level =Receiver Read level + LISN Factor + Cable Loss.

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	20.46		
Middle	Middle 20.26		Pass
Highest	20.05		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.796			
Middle	0.796	>500	Pass	
Highest	0.788			
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.816			
Middle	Middle 0.816		N/A	
Highest	0.816			

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	8dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-20.19		
Middle	-18.40	8.00	Pass
Highest	-18.15		

Test plots as follow:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB 558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer						
	Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plots as follow:

6.6.2 Radiated Emission Method

6.6.2 Radiated Emission		-ti 45 O	200	-1 45 005					
Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013and KDB 558074								
Test Frequency Range:	960MHz to 1.240	960MHz to 1.240GHz							
Test site:	Measurement Dis	tance: 3m	1						
Receiver setup:	Frequency	Detect		RBW	VB		Remark		
	960MHz-1GHz	Quasi-p		120kHz	300		Quasi-peak Value		
	Above 1GHz	Peak RMS		1MHz 1MHz	3M 3M		Peak Value Average Value		
Limit:	Frequency			(dBuV/m @:		1 12	Remark		
Limit.	960MHz-1GH			54.00	J,	Q	uasi-peak Value		
				54.00			Average Value		
	Above 1GH:	Z		74.00			Peak Value		
Test Procedure:	/1.5m(above was rotated 3 radiation. 2. The EUT was antenna, whis tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and thenthe state the rotatable maximum restance. 5. The test-recesspecifiedBar 6. If the emission limitspecified	1GHz) ab 360 degre s set 3 me chwas mo height is termine the degree of the change of t	eters abunted varied polari mission was tu d from the Eting of I. Other ted or	the groundat and tetermine the determine to degrees the determine the de	e interfor a variete room of the e anter or 360 conder when the conder was arrised from the conder when the co	eter chon of ference riable-four riseld sonna ar angeod the part of the pass 10 d the pass that ak, qui	e-receiving height antenna meters above the strength. Both e set to make the It to its worst case ter to 4 meters and es to find the action and odB lower than the peak values of the did not have 10dB asi-peak or		
Test setup:	Below 1GHz EUT Tur Tab Ground	m 0.8m	4m			_			

Below 1GHz:

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB 558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer						
	E.U.T						
	Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9KHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above 10112	RMS	1MHz	3MHz	Average Value			
Limit:	Frequency		Limit (dBuV/m	@3m)	Remark			
	30MHz-88MHz		40.0		Quasi-peak Value			
	88MHz-216MHz		43.5		Quasi-peak Value			
	216MHz-960MH	lz	46.0		Quasi-peak Value			
	960MHz-1GHz		54.0		Quasi-peak Value			
	Above 1GHz	-						
Test Procedure:	Above 1GHz 54.0 Above 1GHz 74.0 The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the groundat a 3 meter chamber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasipeak or average method as specified andthen reported in a data							

Measurement Data (worst case):

Below 1GHz:

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Test channel: Lowest channel								
Peak value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1814.00	50.86	25.05	4.13	41.25	38.79	74.00	-35.21	Vertical
2721.00	50.78	26.35	5.07	41.74	40.46	74.00	-33.54	Vertical
3628.00	46.26	27.72	5.92	41.58	38.32	74.00	-35.68	Vertical
4535.00	48.17	29.47	6.84	42.08	42.40	74.00	-31.60	Vertical
5442.00	50.55	30.54	7.16	41.85	46.40	74.00	-27.60	Vertical
1814.00	52.36	25.10	4.12	41.21	40.37	74.00	-33.63	Horizontal
2721.00	50.47	26.35	5.07	41.74	40.15	74.00	-33.85	Horizontal
3628.00	48.75	27.72	5.92	41.58	40.81	74.00	-33.19	Horizontal
4535.00	49.56	29.47	6.84	42.08	43.79	74.00	-30.21	Horizontal
5442.00	54.74	30.54	7.18	41.85	50.61	74.00	-23.39	Horizontal
			,	Average valu	ie			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1814.00	49.69	25.05	4.13	41.25	37.62	54.00	-16.38	Vertical
2721.00	48.57	26.35	5.07	41.74	38.25	54.00	-15.75	Vertical
3628.00	43.26	27.72	5.92	41.58	35.32	54.00	-18.68	Vertical
4535.00	47.25	29.47	6.84	42.08	41.48	54.00	-12.52	Vertical
5442.00	41.24	30.54	7.16	41.85	47.09	54.00	-16.91	Vertical
1814.00	41.28	25.10	4.12	41.21	29.29	54.00	-24.71	Horizontal
2721.00	42.36	26.35	5.07	41.74	32.04	54.00	-21.96	Horizontal
3628.00	43.25	27.72	5.92	41.58	35.31	54.00	-18.69	Horizontal
4535.00	41.57	29.47	6.84	42.08	35.80	54.00	-18.20	Horizontal
5442.00	42.21	30.54	7.18	41.85	38.08	54.00	-15.92	Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Middle channel									
Peak value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
1830.00	50.69	25.05	4.13	41.25	38.62	74.00	-35.38	Vertical	
2745.00	51.54	26.35	5.07	41.74	41.22	74.00	-32.78	Vertical	
3660.00	46.36	27.72	5.92	41.58	38.42	74.00	-35.58	Vertical	
4575.00	48.47	29.47	6.84	42.08	42.70	74.00	-31.30	Vertical	
5490.00	51.26	30.54	7.16	41.85	47.11	74.00	-26.89	Vertical	
1830.00	50.63	25.10	4.12	41.21	38.64	74.00	-35.36	Horizontal	
2745.00	51.42	26.35	5.07	41.74	41.10	74.00	-32.90	Horizontal	
3660.00	50.29	27.72	5.92	41.58	42.35	74.00	-31.65	Horizontal	
4575.00	48.88	29.47	6.84	42.08	43.11	74.00	-30.89	Horizontal	
5490.00	54.75	30.54	7.18	41.85	50.62	74.00	-23.38	Horizontal	
				Average valu	ie				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
1830.00	47.56	25.05	4.13	41.25	35.49	54.00	-18.51	Vertical	
2745.00	47.92	26.35	5.07	41.74	37.60	54.00	-16.40	Vertical	
3660.00	43.22	27.72	5.92	41.58	35.28	54.00	-18.72	Vertical	
4575.00	47.57	29.47	6.84	42.08	41.80	54.00	-12.20	Vertical	
5490.00	40.69	30.54	7.16	41.85	46.54	54.00	-17.46	Vertical	
1830.00	42.36	25.10	4.12	41.21	28.23	54.00	-25.77	Horizontal	
2745.00	42.15	26.35	5.07	41.74	31.83	54.00	-22.17	Horizontal	
3660.00	42.58	27.72	5.92	41.58	34.64	54.00	-19.36	Horizontal	
4575.00	41.96	29.47	6.84	42.08	36.19	54.00	-17.81	Horizontal	
5490.00	42.12	30.54	7.18	41.85	37.99	54.00	-16.01	Horizontal	

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest channel								
Peak value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1845.00	51.23	24.95	4.17	41.31	39.04	74.00	-34.96	Vertical
2767.50	50.14	26.50	5.10	41.70	40.04	74.00	-33.96	Vertical
3690.00	46.69	27.84	5.98	41.66	38.85	74.00	-35.15	Vertical
4612.50	48.55	29.90	6.89	42.12	43.22	74.00	-30.78	Vertical
5535.00	50.45	30.50	7.24	41.81	46.38	74.00	-27.62	Vertical
1845.00	51.75	24.95	4.17	41.31	39.56	74.00	-34.44	Horizontal
2767.50	51.26	26.50	5.10	41.70	41.16	74.00	-32.84	Horizontal
3690.00	49.69	27.84	5.98	41.66	41.85	74.00	-32.15	Horizontal
4612.50	48.57	29.90	6.89	42.12	43.24	74.00	-30.76	Horizontal
5535.00	54.12	30.50	7.24	41.81	50.05	74.00	-23.95	Horizontal
Average value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1845.00	48.55	24.95	4.17	41.31	36.36	54.00	-17.64	Vertical
2767.50	47.12	26.50	5.10	41.70	37.02	54.00	-16.98	Vertical
3690.00	41.22	27.84	5.98	41.66	33.38	54.00	-20.62	Vertical
4612.50	47.53	29.90	6.89	42.12	42.20	54.00	-11.80	Vertical
5535.00	46.56	30.50	7.24	41.81	42.49	54.00	-11.51	Vertical
1845.00	41.36	25.10	4.12	41.21	29.37	54.00	-24.63	Horizontal
2767.50	43.55	26.35	5.07	41.74	33.23	54.00	-20.77	Horizontal
3690.00	41.57	27.72	5.92	41.58	33.63	54.00	-20.37	Horizontal
4612.50	42.92	29.47	6.84	42.08	37.15	54.00	-16.85	Horizontal
5535.00	41.78	30.54	7.18	41.85	37.65	54.00	-16.35	Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.