高雄市立高雄中學 106 學年度第二次期中考高二社會組數學科試題題目卷填充題(每格5分) 請將答案填寫到答案卷上

- 1. 已知 sec67°50' = 2.650 , csc 22°20' = 2.632 , 若 360° < θ < 540° , 且 secθ = -2.641 , 求 θ=
- 2. 一塔高為 150 公尺 , 樹 A 在塔之正東 , 樹 B 在塔的東 60°南 , 一人從塔頂測得 A 的俯角 為 75° , B 的俯角為 45° , 求兩樹距離=_____公尺
- 3. 在山頂測得地面上一點之俯角為 45° ,沿山坡下行 $\frac{4}{5}$ 的坡長,再測之得其俯角為 22.5° ,若山坡之斜角為 α ,求 $\tan\alpha=$
- 4. 平行四邊形 OABC, $D \in \overrightarrow{OA}$, $E \in \overrightarrow{OC}$, $\overrightarrow{OD}: \overrightarrow{DA} = 2:1$, $\overrightarrow{OE}: \overrightarrow{EC} = 3:5$, $\overrightarrow{ACD} \text{ Proposition in } P \text{ Proposition } P \text{ P$
- 5. 如圖 $\triangle ABC$, $\overrightarrow{AG} = 2\overrightarrow{GB}$, $\overrightarrow{BD} = \overrightarrow{EC} = \frac{1}{2}\overrightarrow{DE}$, F 為 \overrightarrow{AC} 中點 , 已知 \overrightarrow{GE} 與 \overrightarrow{DF} 交於 P, 若 $\overrightarrow{AP} = x\overrightarrow{AG} + y\overrightarrow{AF}$ $x \cdot y \in R$, 求數對 $(x \cdot y)$

- 6. DABC, D, E, F 依序在 \overrightarrow{BC} , \overrightarrow{CA} , \overrightarrow{AB} 上 , $\overrightarrow{BD} = 3\overrightarrow{DC}$, $\overrightarrow{CE} = 3\overrightarrow{EA}$, $\overrightarrow{AF} = \frac{3}{2}\overrightarrow{FB}$, \overrightarrow{BD} 。 \overrightarrow{BD} 。 \overrightarrow{AB} 。 \overrightarrow{AB} 。 \overrightarrow{AB} 。 \overrightarrow{AF} 。
- 7. A(1,2),B(-1,3),C(2,-1),P 為 ΔABC 內部一點 ,若 ΔPBC:ΔPAC:ΔPAB=2:1:3, 求 P 坐標=_____

8. 設
$$\overrightarrow{a} = (106, 2017), \overrightarrow{b} = (17, 940),$$
 若 $(2x-3y-7)$ $\overrightarrow{a} + (4x+5y-3)$ $\overrightarrow{b} = \overset{\checkmark}{0}$, 求 數對 $(x, y) = \underline{}$

$$10.A$$
, B , C 三點不共線,若($a+1$) \overrightarrow{AB} +($2a-b$) \overrightarrow{BC} +($a+b+2$) \overrightarrow{CA} = $\overrightarrow{0}$, 求 $a+b=$ _____

11. 設
$$P$$
 為坐標平面一點, $\triangle ABC$ 為一三角形滿足 $\overrightarrow{AP} = \frac{1}{7} \overrightarrow{AB} + \frac{2}{7} \overrightarrow{AC}$,則 $\frac{\triangle ABP}{\triangle ABC}$ 面積 =_____

12. 設
$$|\overrightarrow{u}| = 2$$
, $|\overrightarrow{v}| = 3$ 且 $\overrightarrow{u} \perp \overrightarrow{v}$, 求 $\overrightarrow{u} + 2 \overrightarrow{v}$ 與 $3 \overrightarrow{u} + \overrightarrow{v}$ 之夾角=_____

13. 平面上三向量 \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} ,

若
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{O}$$
 , 且 | \overrightarrow{OA} | = 2 , | \overrightarrow{OB} | = 3 , | \overrightarrow{OC} | = 4 , 求 \overrightarrow{DOBC} 面積 = ___

14. 平面三點 A(1,-1), B(2,1), C(-1,2),

- 15. 設 A(5,-1), B(-1,2), C(15,6), P 為線段 \overline{BC} 上的一點 ,且 \overline{AP} 在 \overline{AB} 上的正射影向量 為 $(\frac{-16}{5},\frac{8}{5})$, 求 P 點坐標=_____
- 16. 設 $x, y \in R$, 满足 x-3y=2,且在 $x^2+y^2-2x+4y+1$ 有最小值 a 時,此時 x=m, y=n 求 a+m+n=_____
- 17. 設 \overrightarrow{u} , \overrightarrow{v} 為雨非零向量。以 $|\overrightarrow{u}|$ 表 \overrightarrow{u} 之長度, $\overrightarrow{a} = 2|\overrightarrow{v}| = |2\overrightarrow{u}+3\overrightarrow{v}|, \quad \underline{B} \quad \underline{B} \quad \overline{V} \quad \underline{V} \quad \underline{$
- 18. ABCD 為等腰梯形 , 其中 \overrightarrow{AD} // \overrightarrow{BC} , \overrightarrow{AB} = \overrightarrow{CD} , \overrightarrow{AB} = (12,-1) , \overrightarrow{AD} = (-2,5) , 求 \overrightarrow{DC} =

19. $\overrightarrow{a} = (3,4)$, $\overrightarrow{b} = (2,-1)$, $\overrightarrow{a} \cdot \overrightarrow{c} = 2$, 求 $|\overrightarrow{b} + \overrightarrow{c}|$ 的最小值=_____

			5
7	8	9(1)	9(2)
11	12	13	14
16	17	18	19
	11	11 12	11 12 13

1	2	3	4	5
472°15'	$75(3\sqrt{2}-\sqrt{6})$	$\frac{8+2\sqrt{2}}{7}$	$(\frac{17}{5}, -\frac{19}{10})$	$(\frac{63}{88},\frac{15}{22})$
6	7	8	9(1)	9(2)
$(\frac{1}{3}, \frac{1}{3})$	(7/6,2/3)	(2,-1)	25: 6	$(\frac{10}{19}, \frac{9}{19})$
10	11	12	13	14
-1	$\frac{2}{7}$	45°	$\frac{3}{4}\sqrt{15}$	84
15	16	17	18	19
(3,3)	-3/2	$\frac{\sqrt{15}}{8}$	(8,9)	4/5