## Segmenting a Low-Depth-of-Field Image Using Morphological Filters and Region Merging

陈承勃

Sun Yat-sen University



Nov 20th, 2018



#### Outline

- Introduction
  - Definition of Low-Depth-of-Field(DOF)
  - Task Description
  - Motivation
- Methodology
  - Feature Space Transformation Using HOS
  - HOS Map Simplification by Morphological Filtering by

#### Reconstruction

- Region Merging and Adaptive Thresholding
- 3 Experiments
- 4 Conclusion



Introduction

#### Outline

- Introduction
  - Definition of Low-Depth-of-Field(DOF)
  - Task Description
  - Motivation
- - Feature Space Transformation Using HOS
  - HOS Map Simplification by Morphological Filtering by

- Region Merging and Adaptive Thresholding



### Definition of Low-Depth-of-Field(DOF)



Figure 1: Optical geometry of a typical camera.

Definition of Low-Depth-of-Field(DOF)

#### Examples of Low DOF Images







Figure 2: Low-DOF images.

Definition of Low-Depth-of-Field(DOF)

### Examples of Low DOF Images



Figure 3: A color image.

#### Outline

- Introduction
  - Definition of Low-Depth-of-Field(DOF)
  - Task Description
  - Motivation
- 2 Methodology
  - Feature Space Transformation Using HOS
  - HOS Map Simplification by Morphological Filtering by

#### Reconstruction

- Region Merging and Adaptive Thresholding
- 3 Experiments
- 4 Conclusion



### Task Description

Partion an image with low depth-of-field (DOF) into focused object-of-interest (OOI) and defocused background.



Figure 4: Original Low-DOF image



Figure 5: Focused OOI

#### Outline

- Introduction
  - Definition of Low-Depth-of-Field(DOF)
  - Task Description
  - Motivation
- 2 Methodology
  - Feature Space Transformation Using HOS
  - HOS Map Simplification by Morphological Filtering by

#### Reconstruction

- Region Merging and Adaptive Thresholding
- 3 Experiments
- 4 Conclusion



#### Related Works

Two approaches to segmentation of low-DOF images:

- Edge-based approaches
  - extract boundary of the object by measuring the amount of defocus at each edge pixel.
  - defect: fail to detect boundary edges of the natural object.
- Region-based approaches
  - exploit high frequency areas in the image.
  - defect: high-frequency components in defocused regions and nearly constant gray levels in focused regions.

#### Examples of errors

Motivation





Figure 6: An example of error





Figure 7: An example of error

## Methodology

#### Proposed algorithm:

- step 1: Feature space transformation using HOS (higher order statistics)
- step 2: Morphological filtering by reconstruction
- step 3: Region merging and adaptive thresholding

#### Outline

- Introduction
  - Definition of Low-Depth-of-Field(DOF)
  - Task Description
  - Motivation
- 2 Methodology
  - Feature Space Transformation Using HOS
  - HOS Map Simplification by Morphological Filtering by

#### Reconstruction

- Region Merging and Adaptive Thresholding
- 3 Experiments
- 4 Conclusion



## Feature Space Transformation Using HOS

HOS (Higher Order of Statistics) can suppress Gaussian noise and preserve some of the non-Gaussian information. The fourth-order moment:

$$\hat{m}^{(4)}(x,y) = \frac{1}{N_{\eta}} \sum_{(s,t) \in \eta(x,y)} (I(s,t) - \hat{m}(x,y))^4 \tag{1}$$

HOS map: each pixel is limited to [0, 255]

$$HOS(x, y) = min(255, \frac{\hat{m}^{(4)}(x, y)}{DSF})$$
 (2)

### An example of HOS map

HOS map yields denser and higher values in the focus areas, suppressing noise in the focused regions.



Figure 8: Feature space transformed by (a) local variance (b) higher order statistics.

Notice that small dark and bright patches in focused and defocused regions, respectively.



#### Outline

- Introduction
  - Definition of Low-Depth-of-Field(DOF)
  - Task Description
  - Motivation
- 2 Methodology
  - Feature Space Transformation Using HOS
  - HOS Map Simplification by Morphological Filtering by

#### Reconstruction

- Region Merging and Adaptive Thresholding
- 3 Experiments
- 4 Conclusion



HOS Map Simplification by Morphological Filtering by Reconstruction

## Morphological filtering

• Let B denote a window or flat structuring element.

HOS Map Simplification by Morphological Filtering by Reconstruction

## Morphological filtering

- Let B denote a window or flat structuring element.
- Erosion:  $\epsilon_B(O)$ , dilation:  $\delta_B(O)$

## Morphological filtering

- Let B denote a window or flat structuring element.
- Erosion:  $\epsilon_B(O)$ , dilation:  $\delta_B(O)$
- Opening operator  $\gamma_B(O) = \delta_B(\epsilon_B(O))$  removes **bright** components that do not fit within the structuring element B.

## Morphological filtering

- Let B denote a window or flat structuring element.
- Erosion:  $\epsilon_B(O)$ , dilation:  $\delta_B(O)$
- Opening operator  $\gamma_B(O) = \delta_B(\epsilon_B(O))$  removes **bright** components that do not fit within the structuring element B.
- Closing operator  $\psi_B(O) = \epsilon_B(\delta_B(O))$  removes **dark** components that do not fit within the structuring element B.

Conclusion

## Morphological filtering

- Let B denote a window or flat structuring element.
- Erosion:  $\epsilon_B(O)$ , dilation:  $\delta_B(O)$
- Opening operator  $\gamma_B(O) = \delta_B(\epsilon_B(O))$  removes **bright** components that do not fit within the structuring element B.
- Closing operator  $\psi_B(O) = \epsilon_B(\delta_B(O))$  removes **dark** components that do not fit within the structuring element B.
- Disadvantage: do not allow a perfect preservation of contour information.

Conclusion

## Proposed morphological operators

• Erosion:  $\epsilon^{(1)}(O, O_R)(x, y) = \max\{\epsilon_B(O)(x, y), O_R(x, y)\}$ 

## Proposed morphological operators

- Erosion:  $\epsilon^{(1)}(O, O_R)(x, y) = \max\{\epsilon_B(O)(x, y), O_R(x, y)\}$
- Dilation:  $\delta^{(1)}(O, O_R)(x, y) = min\{\delta_B(O)(x, y), O_R(x, y)\}$

HOS Map Simplification by Morphological Filtering by Reconstruction

### Proposed morphological operators

- Erosion:  $\epsilon^{(1)}(O, O_R)(x, y) = \max\{\epsilon_B(O)(x, y), O_R(x, y)\}$
- Dilation:  $\delta^{(1)}(O, O_R)(x, y) = min\{\delta_B(O)(x, y), O_R(x, y)\}$
- Reconstruction by erosion:

$$\psi^{(rec)}(O, O_R) = \epsilon^{(\infty)}(O, O_R) = \epsilon^{(1)} \circ \epsilon^{(1)} \circ \cdots \circ \epsilon^{(1)}(O, O_R)$$

## Proposed morphological operators

- Erosion:  $\epsilon^{(1)}(O, O_R)(x, y) = \max\{\epsilon_B(O)(x, y), O_R(x, y)\}$
- Dilation:  $\delta^{(1)}(O, O_R)(x, y) = min\{\delta_B(O)(x, y), O_R(x, y)\}$
- Reconstruction by erosion:

$$\psi^{(rec)}(O, O_R) = \epsilon^{(\infty)}(O, O_R) = \epsilon^{(1)} \circ \epsilon^{(1)} \circ \cdots \circ \epsilon^{(1)}(O, O_R)$$

• Reconstruction by dilation:

$$\gamma^{(rec)}(O, O_R) = \delta^{(\infty)}(O, O_R) = \delta^{(1)} \circ \delta^{(1)} \circ \cdots \circ \delta^{(1)}(O, O_R)$$

Conclusion

HOS Map Simplification by Morphological Filtering by Reconstruction

## Proposed morphological operators

- Erosion:  $\epsilon^{(1)}(O, O_R)(x, y) = \max\{\epsilon_R(O)(x, y), O_R(x, y)\}$
- Dilation:  $\delta^{(1)}(O, O_R)(x, y) = min\{\delta_R(O)(x, y), O_R(x, y)\}$
- Reconstruction by erosion:

$$\psi^{(rec)}(O, O_R) = \epsilon^{(\infty)}(O, O_R) = \epsilon^{(1)} \circ \epsilon^{(1)} \circ \cdots \circ \epsilon^{(1)}(O, O_R)$$

Reconstruction by dilation:

$$\gamma^{(rec)}(O,O_R) = \delta^{(\infty)}(O,O_R) = \delta^{(1)} \circ \delta^{(1)} \circ \cdots \circ \delta^{(1)}(O,O_R)$$

• Opening by reconstruction:  $\gamma^{(rec)}(\epsilon_B(O), O)$ 

## Proposed morphological operators

- Erosion:  $\epsilon^{(1)}(O, O_R)(x, y) = \max\{\epsilon_B(O)(x, y), O_R(x, y)\}$
- Dilation:  $\delta^{(1)}(O, O_R)(x, y) = min\{\delta_B(O)(x, y), O_R(x, y)\}$
- Reconstruction by erosion:

$$\psi^{(rec)}(O, O_R) = \epsilon^{(\infty)}(O, O_R) = \epsilon^{(1)} \circ \epsilon^{(1)} \circ \cdots \circ \epsilon^{(1)}(O, O_R)$$

Reconstruction by dilation:

$$\gamma^{(rec)}(O,O_R) = \delta^{(\infty)}(O,O_R) = \delta^{(1)} \circ \delta^{(1)} \circ \cdots \circ \delta^{(1)}(O,O_R)$$

- Opening by reconstruction:  $\gamma^{(rec)}(\epsilon_B(O), O)$
- Closing by reconstruction:  $\psi^{(rec)}(\delta_B(O), O)$

Conclusion

# HOS Map Simplification by proposed morphological operators

Employ morphological closing-opening by reconstruction.

#### Strength:

- Fills small dark holes
- Removes small bright patches.
- perfectly preserving other components and their contours.

### An example of HOS map simplification



Figure 9: (a) Low-DOF image. (b) HOS map. (c) Simplified image.

#### Outline

- Introduction
  - Definition of Low-Depth-of-Field(DOF)
  - Task Description
  - Motivation
- 2 Methodology
  - Feature Space Transformation Using HOS
  - HOS Map Simplification by Morphological Filtering by

#### Reconstruction

- Region Merging and Adaptive Thresholding
- 3 Experiments
- 4 Conclusion



## Region Merging

- Typical morphological segmentation techniques: marker extraction and watershed algorithm.
- In this task, extract focused region (OOI) rather than partitioning.

Suppose OOI of an image is defined as:

$$OOI = \bigcup_{i=1}^{N_{OOI}} = R_i \tag{3}$$

Iteratively assign  $R_i$  to OOI or  $OOI^c$  based on  $\frac{p(nob_i|OOI)}{p(nob_i|OOI^c)}$ .

## Schematic diagram of Region Merging



Figure 10: Evolution of *OOI* by the proposed region merging. (a) Initial *OOI* and three uncertain regions with pixel values  $(T_L; v_h)$  in the simplified HOS map.(b) $R_i$  is merged into *OOI*. (c) Final *OOI*, after  $R_j$  is merged into *OOI*. Note that  $R_k$  is not decided as *OOI* since it has a value less than that of  $OOI_2$ .

## An Example of Region Merging



Figure 11: Pictorial illustration of the proposed algorithm. (a) Low-DOF image. (b) HOS map. (c) Simplified image. (d) Region merging. (e) Final decision by thresholding.

### Experiment results from each process



Figure 12: Experimental results from each process. (a) Low-DOF image. (b) HOS map. (c) Simplified image. (d) Region merging. (e) Final decision by thresholding.

## Visual Comparison of Segmentation Results



Figure 13: Visual comparison of segmentation results. (a) Low-DOF images. (b) Results from [2]. (c) Results from [8]. (d) Results from [9]. (e) Results from the proposed algorithm. (f) References by human manual segmentation.

#### Conclusion

Proposed algorithm to extract object-of-image (OOI):

- Transformation using higher order of statistics (HOS)
- Morphological filtering by reconstruction
- Region merging and adaptive thresholding

## Bibliography I



#### Changick Kim.

Segmenting a Low-Depth-of-Field Image Using Morphological Filters and Region Merging.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 10, OCTOBER 2005.