Fault Detection in Antenna Receiver System: Machine Learning Approach

T. Ansah-Narh (Ph.D)

February 19, 2025

Antenna Subsystems

Figure 1: A block diagram showing the overall MeerKAT signal transport and data processing architecture. *Credit*: Justin L. Jonas paper

Antenna Subsystems

Figure 2: The main components of MeerKAT L-Band (950 – 1760 MHz) receiver system. *Credit*: Tan, Gie Han, et al. 2016

Machine Learning Approach

Figure 3: Traditional modelling Vs Machine learning

Machine Learning Approach

Figure 4: ML Vs DL

CNN application in Radio astronomy

Figure 5: U-Net network design. Credit: J. Akeret et al., 2017

Problem with Feed Forward Neural Network

- Not designed for sequences/ time series data, hence the results with time series data are bad.
- Does not model memory.
- Examples of sequential data: Sentences, Stock prices, Video Stream,
 Sensor data, etc.

Figure 6: Convolutional Neural Network design. Credit: Simplilearn site

Recurrent Neural Networks (RNNs)

- RNNs are types of neural networks designed to record information from time series data.
- RNN has a recursive/ periodic formula: $S_t = R_w(S_{t-1}, X_t)$
 - X_t Input at time t
 - S_t Current state at time t
 - S_{t-1} Initial state at time t-1
 - R_w Periodic function
- Simple case: $S_t = \tanh(W_s S_{t-1} + W_x X_t)$
- Output becomes: $Y_t = W_y S_t$

How RNNs works

- Use the outputs (Y_t) to calculate the loss.
- Update the weights in each state by multiplying the gradients.
- Update in each weight = $0.01^{100} \approx 0$.

Figure 7: Basic RNN (unfolded).

Credit: The Semicolon RNN lecture, 2018.

Figure 8: Problem of vanishing gradient. *Credit*: The Semicolon RNN lecture, 2018.

LSTM

• Input Gate:

$$i_t = \sigma(W_i S_{t-1} + W_i X_i)$$

• Forget Gate:

$$f_t = \sigma(W_f S_{t-1} + W_f X_f)$$

Output Gate:

$$o_t = \sigma(W_o S_{t-1} + W_o X_o)$$

Cell State:

$$c_t = (i_t * \tilde{C}_t) + (f_t * c_{t-1})$$

• Intermediate cell state:

$$\tilde{C}_t = \tanh(W_c S_{t-1} + W_c X_c)$$

TAN

Anomaly detection test

