

SF1625 Envariabelanalys Tentamen Fredagen den 11 mars 2022

Skrivtid: 8.00-11.00 Tillåtna hjälpmedel: inga Examinator: Kristian Bjerklöv

Tentamen består av sex uppgifter, som vardera ger maximalt 6 poäng. Till antalet erhållna poäng från Uppgift 1 adderas dina bonuspoäng, upp till som mest 6 poäng. Poängsumman på Uppgift 1 kan alltså bli högst 6 poäng, bonuspoäng medräknade. Bonuspoängen beräknas automatiskt och antalet bonuspoäng framgår av din resultatsida.

Betygsgränserna vid tentamen kommer att ges av

Betyg	A	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade.

DEL A

- 1. Bestäm primitiva funktioner till $f(x) = x^{2022} \ln x$ och $g(x) = \frac{(\ln x)^{2022}}{x}$. (3+3 p)
- 2. Låt $f(x) = \arctan(x^2)$.
 - (a) Bestäm Taylorpolynomet av grad 2 till f kring x = 0. (3 p)
 - (b) Beräkna gränsvärdet $\lim_{x\to 0} \frac{\arctan(x^2)}{x^2+x^3}$. (3 p)

DEL B

- 3. Vi betraktar funktionen $f(x) = \frac{1}{x \ln(x)}$. (6 p)
 - Lös olikheten f(x) < 0.
 - \bullet Bestäm de intervall där f är växande respektive avtagande och bestäm alla lokala extrempunkter.
 - Finn alla asymptoter till kurvan y = f(x).

Använd informationen ovan för att skissa kurvan y = f(x).

- 4. (a) Avgör om serien $\sum_{k=1}^{\infty} \frac{k}{e^k}$ är konvergent eller divergent. (3 p)
 - (b) Avgör om den generaliserade integralen $\int_0^1 \frac{dx}{x + \sqrt{x}}$ är konvergent eller divergent. (3 p)

DEL C

- 5. (a) Antag att funktionen f är deriverbar i punkten x_0 . Visa att funktionen f är kontinuerlig i punkten x_0 . (3 **p**)
 - (b) Antag att funktionen f är deriverbar i punkten x_0 och att $f(x_0) \neq 0$. Visa att funktionen 1/f är deriverbar i punkten x_0 . (3 p)
- 6. Bestäm en tangent till kurvan $y = e^{2x} 2e^{-x} + x$ som inte är parallell med någon annan tangent till kurvan. (6 p)