This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

FIGURE 1

1 - anti- EGFr PoAB RK-2

2 - Cyt-356 MoAB/RAM 3 - RAM

FIGURE 2D FIGURE 2B FIGURE 2A

SUBSTITUTE SHEET (RULE 26)

FIGURE 4

100.5

72.0

43.0

28.5

FIGURE 5

FIGURE 6A

FIGURE 6B

FIGURE 7

FIGURE 8

FIGURE 9

4 —

3 –

2-

1.6-

FIGURE 10

FIGURE 11

1 2 3

9.5___ 7.5___

4.4___

2.4 ___

1.4 ___

FIGURE 12A

FIGURE 12B

13/130 FIGURE 13

FIGURE 14-1

Done on sequence PMSANTIGEN. Total number of residues is: 750. Analysis done on the complete sequence.

î Z A 264 309 101 CNAT CNAT CNAT CNAT -75 -88 0 II n n conformation conformation conformation conformation (E) Extended Helical Turn Coil In In

Sequence shown with conformation codes.

given conformation Ø in residues more or Ŋ stretch of Consecutive ov rlined.

are

163 二 II 回 II II II H II 1= 田 IX 10 E II IU II 回 10 回 IH 10 161 10 回 II 回 I 田 F 田田 IH 团 H 10 臼 H 10 H 10 H 国 10 回 E 10 团 二 10 回 II II IH 一二 I IH IX II 二 II I 1= IH II IH H 工 IX IX IH IE II 工 田 II II E 161 II II II IX. 1 II 二 田 31 61

15/130

•					15/	130	:				
H	H	ΙΞ	नि	<u></u>	ाध	E	国	नि	ပ	ن	i E
ाध	H	स्य	ि	ध्य	E	EI	िल	नि	H	नि	lE1
E	ပ	िल	धि	H	IE	ध	िल	नि	ပ	ाध	lEi
लि	. O	旧	लि	लि	IEI	回	ाष्ट्र	E	ပ	ाध	ध
ल	C	ाध	ाध	ाष्ट्र	IEI	धि	ाध	ाध	ပ	ाध	नि
मि	ပ	नि	लि	लि	ပ	नि	ाध	E	E	E	E
IX	H	।ध्य	ि	回	H	IM	i E	नि	H	नि	IX
IX	H	लि	धि	ie.	H	IM	िध	E	E	H	IH
	ि	ि	ि	H	H	ाध	ि	E	E	<u>U</u>	II
IX.	回	ाल	ाध	E	मि	ভি	. #	IE	E	ပ	IΞ
II	IFI	C	लि	नि	ाध	ပ	(L)	. ບ	ध्य	U	I=
I	लि	U	िल	लि	वि	U	E	ی	H	E	IΞ
II	लि	C	E	लि	वि	IM	E+	ပ	U	H	ΙΞ
III.	×	H	E	नि	जि	E	त्य	ပ	ပ	H	I =
II	ပ	U	E	ा	नि	<u>।</u> जि	H	E	ບົ	ပ	II
ပ	ပ	Ü	II	धि	I EI	E	Ü	EJ.	E	ر ا	IX
ပ	H	E	II	ाध	लि	回	ပ	ल	1四,	ပ	ΙΞ
H	S	H	I	lea .	लि	लि	Ü	II	मि	IX	II
	लि	लि	II	I	U	लि	Ö	II	ाध	IX	ີບ .
<u>च</u>	मि	ा ध्य	II	I#	H	IEI	H	I	लि	IX	U
त्य	लि	ाष्ट्र	I	II,	H	Ξ	H	IX	लि	I	ပ
EI	F	E	II	IΞ	Ö	= .	H	1=	EI	II	Ų
ပ	मि		IX		ပ	ि	E	I	iei	E	I=
=	मि	नि	II	II	Ħ	नि	II	ပ	ाध	দো	I
E	田	le1	IX	II	H	回	II	E	ভি	ल	IX
I II	नि	l E		II	H	IE	II	O.	回	E	II
I	ပ	मि	II	Ċ	H	lei	II	लि	 E	Ħ	I
H	O	नि	II	ပ	H	U.	I	E	回	H	ΙΞ
王.	H	लि	三王	E	团	U .	i=	लि	लि	I	IX
X	H	H	II	E	园	ပ	II	नि	lei	ပ	I
91	21	51	81	11	11	17	11	=		<u> </u>	_

FIGURE 14-3

				16/	130		i	:	
Ħ	लि	H	IX	IX	न	E	IEI	ပ	IX
X	लि	ပ	II	II	E	E	回	Ŋ	IX
H	लि	ध	IX	II	िल	ाध	田	II	II
I	िल	E	II	H	 	ັບ	धि	II	IX.
Ξ	नि	H	IX	ाध	्राध्य	ပ	旧	II	IH
H	H	ഥ	II	लि	164	\vdash	E	II	IX.
I	IU	田	II	回	धि	H	मि	II	II
I	10	ध्य	II	lEI	IX	H	H	II	IH
F	10	ပ	IX.	नि	II	1=	ပ	II	II
田	10	· U	I	ध	IX	I=	ပ	II	II
ध्य	IU	ပ	I	IX	IX	I	O	II	ΙΞ
F	٢	E	II	ĮΞ	IX	IX.	E	EI,	ΙX
凹	Ħ	II	II	II	ပ	II	E	田	IX
ចា		II	II		ບ		E	H	धि
ध	II	II	ि	I	H		凹	旧	P
E	I=	II	ि	ि	नि	II	II	163	E
ध	IX	II	ि	163	E	IX	IX	E	lè
田	II	Œ	163	ाध्य	लि	12	II	ा	धि
ध	II	E	E	ाध्य	लि			F	ाष्ट्र
មា	II	E	मि	िल	लि	II	II	回	E
ध	II	lo I	E	मि	II	II	ΙX	H	IEI
H	II	IO	ाष्ट्र) E	IX	II	133	Ö	IX
H		IO	U	ाष्ट्र	II	IX		· U	II
Ħ	II	IO	1	le1	IX	I	IX	ပ	IX
田	II	10	IE	I	II	IX	IX	Ö	II
ပ	IΞ	चि	IE	िध	IX	IX	II	H	IX
ပ	II	ाध्य	IE	II	II	I		IE	IX
EJ.	.0	ि	IE	IX.	II	IX	ा ध्य	回	IX
ल	ပ	िल	(L)	IX	II	IX	 回	E	II
回	I	धि			I		E	回	ပ
121	481	511	541	571	601	631	661	691	721

FIGURE 14-4

11 11 11

Symbols used in the semi-graphical representation:

Conformation: > Coil conformation:	Turn conformation: > Coil conformation:			,		
		Turn	Conformation:	^	Conformation.	*

SNEAT	X<***
 FGWFIKSSNE	***XXXX
FFLLGFL	XX
ALVLAGG	
	X<********XXXXXXX
 SAVATARE	XXXXX
NLLHETD	XXXXXXX
MM	××

700		SOW
		AKQIO
90	<u>.</u>	NFOL
		AGTED
O		I PHL
5 0		NFTO
		IITPKHNMKAFLDELKAENIKKFLYNFTQIPHLAGTEQNFQLAKQIQSQW
70		CAENI
		LDELY
.09	-	MKAF
		PKHN
		LIN

14-5
IRE
20
正

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	KXXXXXXXX KXXXXXXXX		**********	*X-XXI
110	120	130	140	150
KEFGLDSVELAHYDVLLSYPNKTHPNYISIINEDGNEIFNTSLFEPPPPG	OVLLSYPNKTI	 HPNYISII	NEDGNEI FNTSI	 FEPPPPG
->++*XXXXXXXXXX>>++<+>++XXXXXXXXXX	**<<<		<x**<*-< td=""><td>\\ # # # \\</td></x**<*-<>	\\ # # # \\
160	170	180	190	200
	 FSPQGMPEGD	 LVYVNYAR	 Tedffklerdmk	INCSGKI

.XX>>>	250 DGWNLPG	>>>-##- >>>>	300 VHPIGYY	350 	* * *	400
**************************************	240 KFAPGVKSYP	^	290 **	340 1 GNFSTQKVK	*-*XXXXXX-*	390
14-6	210 220 230 240 250 SKVFRGNKVKNAQLAGAKGVILYSDPADYFAPGVKSYPDGWNLPG		260 270 280 290 300	310 320 330 340 350		360 370 380 390 400
FIGURE ************************************	220 KNAQLAGAKG	>**XXXXXXX***<	270 GDPLTPGYPA	320 PDSSWRGSLK		370
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	210 VIARYGKVFRGNKV	** ^	260 	310 310 DAQKLLEKMGGSAPI	XXXXXXX->>>*****>->->	360 EVTRIYNVIGTLRGA

450 ERGVAYI	X:	500 YESWTKK	XXX>>>* XXX>>>*	550 NKFSGYP	>>> * *	009
440 WAEENSRLLQ	XXXXXXXXX	490 PDEGFEGKSL	XXXXXXXXX	540 Rarytknwet	^-^^#-^^	590
430 EFGLLGSTE	XXXXX***XXXX	480 /HNLTKELKS]	XXXXXXX**	530 FFQRLGIASG	(XXXX>***-	580
420 RTILFASWDAE	(XXX*	470 /DCTPLMYSL/	(X	520 KLGSGNDFEVI	\	570
410 LKKEGWRPRP	-<****			510 PEFSGMPRISK		560
	420 430 440 RPRRTILFASWDAEEFGLLGSTEWAEENSRLLQERGV	410	410	410	410	410 420 430 440 LKKEGWRPRTILFASWDAEEFGLLGSTEWAEENSRLLQERGV **>>>***>*XXXXXXXXX****XXXXXXXXXXX

FIGURE 14-8

LYHSVYETYELVEKFYDPMFKYHLTVAQVRGGMVFELANSIVLPFDCRDY	XXX <xxxxxxxxxxxxxxxxxxxxxxxxxxxxx< th=""></xxxxxxxxxxxxxxxxxxxxxxxxxxxxx<>
LYHSVYETYELVI	XXXXXXX

XXXXXXXXXXXXXXXXX-XXXXXXXX	XXXXXXXX	X-X)	xxxx	XXX<
610	620	630	640	650
	I SMKH PQEM!	TYSVSFDSLF!	 SAVKNFTEIA	SKFSERL
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	X***XXXX	(XXX)	XXXXXXXXX	XXXXXXX

700	VIYAPSSHNKY
069	RPFYRHVIYA
680	retopeksepol
670	NDQLMCLERA
099	QDFDKSNPIVLRMMNDQLMCLERAFIDPLGLPDRPFYRHV

21/130

***	****
XXXXXXXXXXX>>+++	KXXXXXXXXXX>>+++
-XXXXXXXXXX	-XXXXXXXXXX
(XX)	(X>>>>**<< <x)< td=""></x)<>

750	LSEVA
740	
730	 WGEVKRQIY
720	 IESKVDPSKA
710	

--XXXXXXXXXXX -XXXXXXXXXXXX ---XXXXXX*****XXXXXXX--<-----XXXXXXX****XXXXXXX--<-

22/130 FIGURE 15A

FIGURE 15B

* PREDICTION OF ANTIGENIC DETERMINANTS *

Done on sequence PMSANTIGEN.

T tal number of residues is: 750.

Analysis done on the complete sequence.

the authors averaging group length is: 6 amino acids. The method used is that of Hopp and Woods. the value recommended by -> This is The

The three highest points of hydrophilicity are:

Asp-Glu-Leu-Lys-Ala-Glu Asn-Glu-Asp-Gly-Asn-Glu Lys-Ser-Pro-Asp-Glu-Gly 137 487 to to 63 132 482 From From From . 62 **1 1 2 1**

Ah stands for: Average hydrophilicity.

third points only the highest point was in 100% second and group. The proportion of 33% of incorrect predictions a known antigenic control proteins, Note that, on a group of to of the cases assigned gave

	14	_	_
24	/1	3	U

The best	Scores are:	initn initl	opt
CHKTFER			321
RATTRFR			311
HUMTFRR	Human transfer	5 145	266
CHKTFER 51.9%	G.gallus mRNA for transferrin receptor 203 identity in 717 nt overlap	3 120	321
pmsgen	1020 1030 1040 1050 1060 1070 pmsgen rgrccagcgrgaaatarcctaaatctgaatggrgcaggagacctctcaccaccaggtta	1070 rcacaccaggt7	
CHKTFE	AACTGGAGACCCTTV 1020 1030	CCCAGGC1 1040	130
pmsgen	1080 1090 1100 1110 1120 1130 CCCAGCAAATGAATAGCGTTATAGGCGTGGAATTGCAGAGGCTGTTGGTTTCCAAGTAT :::::::::::::::::::::::::::::::::	1130 TTCCAAGTA: ::	5
CHKTFE	CCCTTCGTTCAACCACCCAGTTTCCACCAGTTGAATCTTCAGGACTACCCCACAT 1050 1060 1060 1070 1080 1090 1100	ACCCCACAT 1100	T) 00
pmsgen	1140 1150 1160 1170 1180 1190 pmsgen rccrgrrcaarrgaracrargargcacagagcrccragaaaaaarrggcrccrc :::::::::::::::::::::::::::::	1190 AAAATGGGTGGCTC :::::::: AAAATGGATGGAGA 1150 1160	ည့ ု ဇု

pmsgen CHKTFE	1200 1210 1220 1230 AGCACCACAGATAGCAGCTGGAGAGGAGTCTCAAAGTG :: :: :: :: :: :: :: :: :: :: :: :: ::
pmsgen CHKTFE	1260 1270 1280 1290 1390 CTTTACTGGAAACTTTTCTACACAAAAAGTCAAGATGCACATCCACTCTA : :::::::::::::::::::::::::::::::::::
msgen HKTFE	pmsgen GACAAGAATTTACAATGTGATAGGTACTCTCAGAGGAGCAGTGGAACCAGACAGA
pmsgen	1380 1390 1400 1410 1420 1430 pmsgen CATTCTGGGAGTCATCGGGACTCATTGGTGTATTGACCCTCAGAGTGGAGC : :::::::::::::::::::::::::::::::::::

	26/	130	
1440 1450 1460 1470 1480 1490 AGCTGTTGTTCATGAAATTGTGAGGAGCTTTGGAACACTGAAAAAGGAAGGGTGGAG ::::::::::::::::::::	pmsgen ACCTAGAACAATTTTGTTTGCAAGCTGGGATGCAGAAGAATTTGGTTTTTGGTTC ::::::::::::::::::::::::	1610 SCTTATATTAA :::::::	1670 CACCGCTGATG :: :: :: 3CCCCTTGCTG 1620
1480 1490 AACACTGAAAAAGGAAGGGTG : ::::::::::::::::::::::::::::::::	1540 AAGAATTTGGTC ::::::::::::::::::::::::::::::::	1600 AGCGTGGCGTG : : CCAAAGCTTTC, 1550	AGTTGATTGTA(::::::::::::::::::::::::::::
1440 1450 1460 1470 1480 1490 AGCTGTTCATGAAATTGTGAGGAGCTTTGGAACACTGAAAAAGGAAGGGTGGAG ::::::::::::::::::::	1500 1510 1520 1530 1540 1550 ACCTAGAAGAATTTTGTTTGCAAGCTGGGATGCAGAAGTTTGGTCTTCTTGGTTC :::::::::::::::::::::	TACTGAGTGGGCAGAGAATTCAAGACTCCTTCAAGAGCGTGGCGTGGCTTATATTAA :::::::::::::::::::::::::::::	1620 1630 1640 1650 1660 1670 pmsgen TGC-TGACTCTATAGAAGGAAACTA-CACTCTGAGAGTTGTACTACACCGCTGATG :::::::::::::::::::::::::::::::::
1460 ATTGTGAGC ::: : CTTGCCCGTGTC	TGTTTGCAAGGE X:::::	0 1580 GAGAATTCAAGA : : : X GGGTACTCTGCC	1640 IGAAGGAAACTA : : : : ICCTGGGAGCAA
1450 TGTTCATGAAA : ::: ATTGTTGGAAC	1500 1510 ACCTAGAAGAACAATTT :::::::::::::::::::::::::::::::	0 1570 GTGGGCAGAGG ::: ::: ATGGCTGGAGG	20 1630 ACTCATCTATAG : :: : GATGCTCCAGTC 0 1580
1440 pmsgen AGCTGT :::: CHKTFE TGCTAT 1390	1500 pmsgen ACCTAGA ::::: CHKTFE ACCGAGG		1620 pmsgen TGC-TGAC :: :: CHKTFE -GCTTGGA
pms	pms	pmsgen	pms

	1680	1690	1700	1710	1720	1730
pasgen	PMSGen TACAGCTTGGTACACAACCTAACAAAAGAGCTGAAAAGCCCTGATGAAGGCTTTGAAGGC	ACACAACCTA	ACAAAAGAGCT	GAAAAGCCCT	IGATGAAGGCT	TTGAAGGC
	••	••	••	••		••
CHKTFE	CHKTFE TATATGCTGCTGGGAGTATTATGAAGGGGGTGAAGAATCCAGCAGCAGTCTCAGAGAGC	3GGGAGTATT/	ATGAAGGGGG	GAAGAATCCA	NGCAGCAGTCT	CAGAGAGC
	1630	1640	1650	1660	1670	1680
	1740	1750	1760	1770	1780	1790
pmsgen	pmsgen AAATCTCTTTATGAAAGTTGGACTAAAAAAAGTCCTTCCCCAGAGTTCAGTGGCATGCCC	GAAAGTTGGA	CTAAAAAAA	TCCTTCCCCA	GAGTTCAGTG	SCATGCCC
	•••	••	••			
CHKTFE	CTCTATAACAGACTTGGCCCAGACTGGGTAAAAGCAGTTGTTCCTCTTGGCCTGGA	CAGACTTGGC	CCAGACTGGG	TAAAAGCAGT	TGTTCCTCTT	SGCCTGGA
	1690	1700	1700 1710 1720	1720	1730	

164 164 311	1240 1250 AAAGTGCCCTACAATGTTGGACCTGGCTT-	GTTGGAATATAGATTC 660	1310 \CTCT-ACCAATG \::::::::: \CTGTGAACAATGTACT 720
RATTRFR Rat transferrin receptor mRNA, 3' end. 55.5% identity in 560 nt overlap	1210 1230 1240 1250 pmsgen ccaccagatagcagctggaggaggagggagggggggggg	RATTRF TGCAGAAAAGCTATTCAAAACATGGAAAGGAAACTGTCCTCCTAGTTGGAATATAGATTC 610 620 630 640 650 650	1260 1270 1280 1290 1300 1310 pmsg n -TACTGGAAACTTTTCTACACAAAAAGTCAAGATGCACATC-CACTCT-ACCAATG : :: :: :: :: :: :: :: :: :: :: :: ::

```
GGATTTAGACCCAGCAGGAGTATTATCTTTGCCAGCTGGACTGCAGGAGACTATGGAGCT
                                                                                                                               RATTRF CTACATTGTAGTAGGAGCCCAGAGAGACGCTTGGGGCCCTGGT-GTTGCGAAGTCCAGTG
                                                                                                                                                                                                                                                                                                             GGGTGGAGACCTAGAAGAACAATTTTGTTTGCAAGCTGGGATGCAGAAGAATTTTGGTCTT
                                                                                                            pmsgen ATATGTCATTCTGGGAGGTCACCGGGACTCATGGGTGTTTGGTGTTTGACCCTCAGAG
                                                                                                                                                                                                            pmsgen T-GGAGCAGCTGTTGTTCATGAAATTGTGAGGAGCTTTGGAACA-CTGA---AAAAGGAA
                                                                                                                                                                                                                                             RATTRF TGGGAACAGGTCTT-CTGTTGAAACTTGCCCAAGTATTCTCAGATATGATTTCAAAAGAT
              --AAGTGACAAGAATTTACAATGTGATAGGTACTCTCAGAGGAGCAGTGGAACCAGACAG
                                            RATTRF GAAAGAAACAAGAATACTTAACATCTTTGGCGTTATTAAAGGCTATGAGGAACCAGACCG
1370
                                                                                                                                                                                                                                                                                                                                ...
                                                                                                                                                                                              1480
                                                                                                                                                                                                                                                                006
                                                                                                                                                                                                                                                                                                                                                                096
                                                                 780
1360
                                                                                               1420
                                                                                                                                                                                                                                                                                               1530
                                                                                                                                                                                                                                                                 890
                                                                                                                                                                  830
                                                                                                                                                                                               1470
                                                                                              1410
 1350
                                                                                                                                                                                                                                                                                                1520
                                                                                                                                                                                                                                                                  880
                                                                                                                                                                                                1460
                                                                  760
                                                                                                1400
  1340
                                                                                                                                                                                                                                                                                                  1510
                                                                                                                                                                    810.
                                                                                                                                                                                                   1450
                                                                                                1390
                                                                    750
    1330
                                                                                                                                                                                                                                                                                                 1500
                                                                                                                                                                                                                                                                     860
                                                                                                                                                                                                    1440
                                                                      740
                                                                                                                                                                     800
                                                                                                     1380
     1320
                                                                                                                                                                                                                                                                                                   1490
                                                                                                                                                                                                                                                                      850
                                                                                                                                                                                                                                                                                                                      pmsgen
                       _
                        pmag
```

pmsgen RATTRF	1550 CTTGGTTCTAC :::::::: GTTGGTCCGAC 970 9	1560 15 TGAGTGGGCAGA :::::::: TGAGTGGCTGGA 80 990	0 1570 1580 1590 1 GTGGCAGAGAATTCAAGACTCCTTCAAGAGCGTG ::::::::::::::::::::::::::::::::::	1580 TCAAGACTCC' ::::::::::::::::::::::::::::::::::	1590 TTCAAGAGCG ::::::	1600 GTGGCGTG : : GCTTTC 1020	30
pmsgen Ratyrf	pmsgen GCTTATATTAATGCTGACTCTATAGAAGGAAACTA-CACTCTGAGAGTTGTAC ::::::::::::::::::::::::::::::::::::	1620 3CTGACTCATG ::: : : -CTGGATAAAG 1040	1630 CTATAGAAGGA : :: GTCGTCCTGGG	AACTA-CACT ::::::: TACTAGCAAC	GGAAACTA-CACTCTGAGAGTTGAT ::::::::::::::::::::::::::::	ATTGTAC : : CTGCCAG	7130
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1670	1680 1680	1680 1690 1700 1710 1720 1720 1720 1720 1720 172	1700 AAAAGAGCTG	1710 AAAAGC-CCT	1720 GATGAAG	

	1730	1740		1750	1760	1770
pmsden	pmsqen GCTTTGAAGGCAAA	AAATCTCTTT	TCTCTTTAT-GAA	AGTTGGACTAAAAAAAGTCCTTCCCCAG	AAAAAAAGTO	CTTCCCCAG
•	••		••	••	•••	
RATTRF	TTGATGGA	AAATATCTAT.	ATCGAAACAC	TTGATGGAAAATATCTATATCGAAACAGTAATTGGATTAGCAAAATTGAGGAACTTT	AGCAAAATT	SAGGAACTTT
	1140	1150	1160	1170	1180	1190
	1780	1790	1800	1810	1820	1830
pmsgen	pmsgen AGTTCAGTGGCATGCCCAGGATAAGCAAATTGGGATCTGGAAATGATTTTGAGGTGTTTT	ATGCCCAGGA'	FAAGCAAA TT	GGGATCTGGA	AATGATTTT	SAGGTGTTCT
RATTRF	RATTRF CCTTGGACAATGCTGCATTCCCTTTTCTTGCATATTCAGGAATCCCAGCAGTTTCTTTC	SCTGCATTCC	CTTTTCTTG	CATATTCAGGA	ATCCCAGCA	STTTCTTTCT
	1200	1210	1220	1230	1240	1250

1440

1430

CCGGGACTCATGGGTGTTTGGTCGTCACCCTCAGAGT-GGAGCAGCTGTTGTTCATG

1410

1400

pmsgen

HUMTFR GAGAGATGCATGGGGCCCTGGAGCTGCAAAATC-CGGTGTAGGCACAGCTCTCTCTTGA

1360

FIGURE 16-9

266 145 145 Human transferrin receptor mRNA, complete cd identity in 464 nt overlap 54.3% HUMTFRR

AC TC	0 %:: AA	o છ ∷ છ
CTAC : AACC	1330 TTACA : : TCTTA	1390 AGGTC : :
O TTTT : : TGGT 90	GAAT ::: AAAT 50	TTGGGAG : :: : STTGGGG
1270 AAACTT : : AGGATG	1320 GACAAGA : : : : GATAAAA 1250	1380 CATTCTG : : TGTAGTT 1310
-TGG/ :: ATGT/	1320 1330 AAGTGACAAGAATTTACAA ::::::::::::::::::::::::::::::	1380 TATGTCATT ::::: CTATGTTGTA 300
60 TTAC::: CTAC:	A : TGAA 1240	0 GATA' :: ACTA' 1300
1260 CCTGGCTTTAC- : :: :: ACAGACTCTACA 0 1180	i	1370 GACAG :: GATCA
ACCTO BACA AACA 70	1310 C-CACTCT-ACCAATG : ::: : :::: CTCACTGTGAGCAATG	1360 1 CAGTGGAACCAGA :::::::: TTGTAGAACCAGA 1290
1250 TTGGAC : GGAAAA 1170	1 T-AC: TGAG	1360 GTGGA ::::: GTAGA
AATG	ACTC::ACTG	GCAG GTTTG
1240 CCCTAC CCCTCT	1300 TC-C : : : GCTC 1220	350 AGAGGA : ::: AAAGGC 1280
12 TGCC	CACA	1350 TCAGA:::::
30 TCAAAG GAGACT 1150	290 AAGATG : :: AGAATG	OGTACTC GAGTTA 1270
1230 TCTC AGGA	1290 TCAAG : : CAAGA	1340 TAGGT : :: TTGGA
GAAG	AAAGU	TGAT
n AG R TA	1280 en AA : : FR AG	n TG R CA
1230 1240 1250 1260 1270 pmsgen AGGAAGTCTCAAAGTGCCTACAATGTTGGACCTGGCTTTAC-TGGAAACTTTTCTACAC :::::::::::::::::::::::::	1280 1290 1300 1310 1320 1330 pmsgen AAAAAGTCAAGATGCACATC-CACTCT-ACCAATGAAGTGACAAGAATTTACAA ::::::::::::::::::::::::::::::	pmsg n TGTGATAGGTACTCTCAGAGGAGCAGTGGAACCAGACAGA
		jude sing

5 5	٠ ٧٠٠٧	E o	ပ ဖ
ACA : AGC	GCA	ATC : :	F-A FGA:
AGA ::: AGA		CTC	GG GG
1500 CCTAGAAGAAC ::::::: CCCAGCAGAAG	1560 TGAG' ::: TGAA'	1620 TGAC :: GGAT	1680 GCTTGG :::: GCTTAT
CCC.	15 CTC :::3	GCI	A-G ACG
GAG	CT.	AAT X : : X	FAC::
O GGA TTC	1550 1560 TTGGTTCTACTGAGTGGG :::::::::::::::::::::::::::::::	10 ATT ATT	70 VTG: TG:
1490 GGTG(:::	1550 TTGG :::: TTGG	1610 CTTATATTAATG :::::::X CTTATATTAATC 1540	1670 168 CCGCTGATGTACA-GCTT :::::::::::::::::::::::::::::::::::
AAG : X ATG	rtc		CGC
AGG • AG	FTC	TGG	CAC
1480 149 SAAAAAGGAAGGGTG ::: X::: TTAAAAGATGGGTG	1540 TTTGC:::: TTTGC	1600 GGCG : GCTT	1660 TGTA : GCCA
rGAZ	15 ATT :: CTT	GTG GTG AGG	ATT : : :
ZAC:	AGA AGA	AGC	rtg. :: rtt
70 :AAC : :TAT	O AGA : TGG	90 AAG,	50 3AG 13 10 10
1470 1480 1490 1500 AGCTTTGGAACACTGAAAAAGGAAGGATGGAGCCTAGAAGAACAA :: : : : : : : : : : : : : : : : : :	1530 1540 ATGCAGAAGAATTTGG :::::::::::::::::::::::::::	1590 FTCAA : :: FGCAT	1650 GAGA : CAAG
CTT	GGA SAG	Σ. τ. Σ.	TCI:
GAG : GTT	TGGG ::: TGGA	ACT TC-	CAC
1460 TGAGG ::: AGATG	1520 CAAG(: :: CCAG1	1580 CAAG : TTCG' 510	1640 ACTA : CCAG
CAC	510 1520 TTTTGTTTGCAAG :: ::::::::: TTATCTTTGCCAG	158 TTCAA : CTTTC	164 AGGAAACT :::: FGGTACCA
5 5 5 5 5	rrr :::	3AA FAC	\GG\ ::
ATT :: CTT	rrc Trc	1570 1-GGAGAA ::::	GAZ
. AAA :: AAC 1380	1510 n TTT :: R TTA	1570 A-GG : :: AGGG	1630 ATAG : GTTC 1560
pmsgen AAATTGTGAGGAGCTTTGGAACACTGAAAAAGGAAGGGTGGAGCCTAGAACAA ::::::::::::::::::::::::::::::::	1510 1520 1530 1540 1550 1560 pmsgen TTTTGTTTGCAAGCTGGATGCAGAAGAATTTGGTCTTCTTGGTTCTACTGAGTGGGCAG :::::::::::::::::::::::::::::::::	1570 1580 1590 1600 1610 1620 pmsgen A-GGAGAATTCAAGACTCCTTCAAGAGCGTGGCGTTATATTAATGCTGACTCATCT :::::::::::::::::::::::::::::::	1630 1640 1650 1660 1670 1680 pmsgen ATAGAAGGAAACTACACTCTGAGTTGATTGTACACGCTGATGTACA-GCTTGGT-AC : :::::::::::::::::::::::::::::::::::
pms HUM') mec	msg UMT	msg UMT
	14 15		Q I

pmsgen	ACAACCTAACAAAG	1700 Caaaagagg	1710	1720	1730	1740	
	••			Carcaraca	LIGAAGGCA	:	
HUMTFR	HUMTER AAAACAATGCAAAT	CAAAATGTGA	AGCATCCGG	TTACTGGGCA	ATTTCTATAT	ATGTGAAGCATCCGGTTACTGGGCAATTTCTATATCAGGACAGCAAC	
	0791	1630	1640	1650	1660	1670	94

35/130 FIGURE 17A

FIGURE 17B

FIGURE 17C

SUBSTITUTE SHEET (RULE 25)

FIGURE 18

1 2

100 –

68 –

43 -

FIGURE 19

1 2 3 4

200 kDa ----

100 kDa —

69 kDa ----

- PSM

FIGURE 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

400

350

FIGURE 21

1 2 3 4 5 6 7 8 9 10

298 bp

260 bp

FIGURE 22

1 2 3 4 5 6 7 8 9

298 bp

41/130 FIGURE 23

CELL LINE/TYPE	11p11.2-13 REGION	METASTATIC	PSM RNA DETECTED	PSM DNA DETECTED
LNCap			++	ND
HUMAN PROSTATE			++	ND
A9 (FIBROSARCOMA)	NO	NO	-	-
A9(11) (A9+HUM. 11)	YES	NO	-	REPEAT
AT6.1 (RAT PROSTATE)	NO	YES	_	:
AT6.1-11-c11	YES	NO.	+	++
AT6.1-11-c12	NO	YES	- "	-
R1564 (RAT MAMMARY)	NO	YES	-	-
R1564-11-c14	YES	YES	-	+
R1564-11-c15	YES	YES	_	REPEAT
R1564-11-c16	YES	YES	_	ND
R1564-11-c12	YES	YES	ND	+
·				

42/130

FIGURE 24B

FIGI	IRF	30

Patient	Stage	Tr atm nt	PSA	PAP	PSA-PCR	PSM-PCR
1	T2NxMo	None	8.9	0.7	- .	+
2	T2NoMo	RRP 7/93	6.1		- /	, +
3	T2CNoMo	PLND 5/93	4.5	0.1	-	+
4	T2BNoMo	RRP 3/92	NMA	0.4	-	+
5	T3NxMo	Proscar + Flutamide	51.3	1.0	_	+
6	Recur T3	I-125 1986	54.7	1.4	_	+
7	T3ANoMo	RRP 10/92	NMA	0.3	_	+
8	T3NxMo	XRT 1987	7.5	0.1	-	· – .
9	ТЗЛхМо	Proscar + Flutamide	35.4	0.7	-	- · ·
10	D2	S/P XRT Flutamide + Emcyt	311	4.5	+	+
11 	D2	RRP 4/91 Lupron 10/92 Velban + Emcyt 12/92	1534	1.4	+	+
. 12	T2NoMo	RRP 8/91	NMA	0.5	· • •	+
13	T3NoMo	RRP 1/88 Lupron + Flutamide 5/92	0.1	0.3	-	-
14	D1	PLND 1989 XRT 1989	1.6	0.4	- · · · · · · · · · · · · · · · · · · ·	-
15	D1	Proscar + Flutamide	20.8	0.5	·. —	- ,
16	T2CNoMo	RRP 4/92	0.1	0.3		-

FIGURE 31A

•	10	20	30	40	50	60
1	AAGGGTGCTC	CTTAGGCTGA	ATGCTTGCAG	ACAGGATGCT	TGGTTACAGA	TGGGCTGTGA
	·	GAATCCGACT	TACGAACGTC	TGTCCTACGA	ACCAATGTCT	ACCCGACACT
61	CTCGAGTGGA	GTTTTATAAG	GGTGCTCCTT	AGGCTGAATG	CTTGCAGACA	GGATGCTTGG
	· ·	CAAAATATTC	CCACGAGGAA	TCCGACTTAC	GAACGTCTGT	CCTACGAACC
121	TTACAGATGG	GCTGTGAGCT CGACACTCGA	GGGTGCTTGT	AAGAGGATGC	TTGGGTGCTA	AGTGAGCCAT
	·	CONCACTOON	CCCACGAACA	TICICCIACG	AACCCACGAT	TCACTCGGTA
181	TTGCAGTTGA	CCCTATTCTT GGGATAAGAA	GGAACATTCA	TTCCCCTCTA	CCCCTGTTTC	TGTTCCTGCC
	rate i care i	GGGATAAGAA	CCITGIANGI	ANGGGGAGAI	GGGGACAAAG	ACAAGGACGG
241	AGCTAAGCCC	ATTITTCATT	TTTCTTTTAA	CTCCTTAGCG	CTCCGCAAAA	CTTAATCAAT
	TCGATTCGGG	TAAAAAGTAA	AAAGAAAATT	GAGGAATCGC	GAGGCGTTTT	GAATTAGTTA
301	TTCTTTAAAC	CTCAGTTTTC	TTATCTGTAA	AAGGTAAATA	ATAATACAGG	GTGCAACAGA
	AAGAAATTIG	GAGTCAAAAG	AATAGACATT	TTCCATTTAT	TATTATGTCC	CACGTTGTCT
361	AAAATCTAGT	GTGGTTTACA	TAATCACCTG	TTAGAGATTT	TAAATTATTT	CAGGATAAGT
	TTTTAGATCA	CACCAAATGT	ATTAGTGGAC	AATCTCTAAA	ATTTAATAAA	GTCCTATTCA
421	CATGATAATT	AAATGAAATA	ATGCACATAA	AGCACATAGT	GTGGTGTCCT	CCATATAGAA
	GIACIATIAA	TTTACTTTAT	TACGTGTATT	TCGTGTATCA	CACCACAGGA	GGTATATCTT
481	AATGCTCAGT	ATATTGGTTA	TTAACTACTT	GTTGAAGGTT	TATCTTCTCC	ACTAAACTGT
	TIACGAGICA	TATAACCAAT	AATTGATGAA	CAACITCCAA	ATAGAAGAGG	TGATTTGACA
541	AAGTTCCACA	AGCCTTACAA	TATGTGACAG	ATATTCATTC	ATTGTCTGAA	TTCTTCAAAT
	TTCAAGGTGT	TCGGAATGTT	ATACACTGTC	TATAAGTAAG	TAACAGACTT	AAGAAGTTTA
601	ACATCCTCTT	CACCATAGCG	TCTTATTAAT	TGAATTATTA	ATTGAATAAA	TTCTATTGTT
	TGTAGGAGAA	GTGGTATCGC	AGAATAA TTA	ACTTAATAAT	TAACTTATTT	AAGATAACAA
661	CAAAAATCAC	TTTTATATTT	AACTGAAATT	TGCTTACTTA	TAATCACATC	TAACCTTCAA
	GIIIIIAGIG	AAATATAAA	TIGACTITAA	ACGAATGAAT	ATTAGTGTAG	ATTGGAAGTT
721	AGAAAACACA TOTTUTOO	TTAACCAACT AATTGGTTGA	GTACTGGGTA	ATGTTACTGG	GTGATCCCAC	GTTTTACAAA
	retitieder	VYIIOOIIOV	CATGACCCAT	INCHALONCE	CACTAGGGTG	CAAAATGTTT

FIGURE 31B

781	TGAGAAGATA	A TATTCTGGTA	AGTTGAATAC	TTAGCACCCA	GGGGTAATCA	GCTTGGACAG
	ACTCTTCTAT	T ATAAGACCAT	TCAACTTATG	AATCGTGGGT	CCCCATTAGT	CGAACCTGTC
841	GACCAGGTCC	AAAGACTGTT	AAGAGTCTTC	TGACTCCAAA	CTCAGTGCTC	CCTCCAGTGC
	CTGGTCCAGG	TTTCTGACAA	TTCTCAGAAG	ACTGAGGTTT	GAGTCACGAG	GGAGGTCACG
901	CACAAGCAAA	CTCCATAAAG	GTATCCTGTG	CTGAATAGAG	ACTGTAGAGT	GGTACAAAGT
	GTGTTCGTTT	GAGGTATTTC	CATAGGACAC	GACTTATCTC	TGACATCTCA	CCATGTTTCA
961	AAGACAGACA	TTATATTAAG	TCTTAGCTTT	GTGACTTCGA	ATGACTTACC	TAATCTAGCT
	TTCTGTCTGT	AATATAATTC	AGAATCGAAA	CACTGAAGCT	TACTGAATGG	ATTAGATCGA
1021	AAATTTCAGI	TTTACCATGT	GTAAATCAGG	AAGAGTAATA	GAACAAACCT	TGAAGGGTCC
	TTTAAAGTCA	AAATGGTACA	CATTTAGTCC	TTCTCATTAT	CTTGTTTGGA	ACTTCCCAGG
1081	CAATGGTGAT	TAAATGAGGT	GATGTACATA	ACATGCATCA	CTCATAATAA	GTGCTCTTTA
	GTTACCACTA	ATTTACTCCA	CTACATGTAT	TGTACGTAGT	GAGTATTATT	CACGAGAAAT
1141	AATATTAGTC	ACTATTATTA	GCCATCTCTG	ATTAGATTTG	ACAATAGGAA	CATTAGGAAA
	TTATAATCAG	TGATAATAAT	CGGTAGAGAC	TAATCTAAAC	TGTTATCCTT	GTAATCCTTT
	CTATATCATG	ATTCAGGATT TAAGTCCTAA	AACAATCTTT	CTCTACTTCT	TTAAGGGAAG.	GAAGGACGGG
	ATCCASTAGA	AGGAGTTGTC TCCTCAACAG	TACCAAGTAA	CAACTGTTTA	ATTAAAAGGG	TTTAAAAAGT
	GAAACGAGTC	AAAGTCTACA TTTCAGATGT	AGCTTCGTGG	GTTCTGACAT	GTTAGATCAG	GTAGAAAAG
1381	CACTTAACTC	ATACTGTGCT	CTCCCTTTCT	CAAAGCAAAC	TGTTTGCTAT	TCCTTGAATA
	GTGAATTGAG	TATGACACGA	GAGGGAAAGA	GTTTCGTTTG	ACAAACGATA	AGGAACTTAT
	GTGAGACTCA	TTTCTGCCTT AAAGACGGAA	ACGGATGAGT	CGACCGGGTA	CCGGGGATTA	CAAAGAAGAG
	TAGAGGTGAC	GGTCAAATCC CCAGTTTAGG	ATGGACATGG	AATACCAAGA	CAATTITCGT	CACGAAGGTA
1561	AAAGTACTCC	TAGCAAATGC	ACGGCCTCTC	TCACGGATTA	TAAGAACACA	GTTTATTTTA

FIGURE 31C

	TTTCATGAGG	ATCGTTTACG	TGCCGGAGAG	AGTGCCTAAT	ATTCTTGTGT	CAAATAAAAT
1621	TAAAGCATGT ATTTCGTACA				ATTATTAAGA TAATAATTCT	
1681	GGGATATAAT CCCTATATTA				CCAAGATTGA GGTTCTAACT	
1741	ATTACGTAAG TAATGCATTC				ATAAAGTCTC TATTTCAGAG	
1801	AAGTTCCAGT TTCAAGGTCA				CCCTTCCCCT	
1861	CCCTTTCCCT GGGAAAGGGA				CTCTGTCACC GAGACAGTGG	
1921	GCAGTGGCGC CGTCACCGCG				CGGTTCAAGC GCCAAGTTCG	
1981	CCTCAGCCTC GGAGTCGGAG				CCACGCCCAG GGTGCGGGTC	
2041	TATTTTTAGT ATAAAAATCA				TGGTCTCGAT ACCAGAGCTA	
2101	CGTGATCCGC GCACTAGGCG				CAGGCGTGAG GTCCGCACTC	
2161	CGGCTTTAAA GCCGAAATTT				TACCCTACAT ATGGGATGTA	
2221	AACAATAATA TTGTTATTAT				TACACTGATG ATGTGACTAC	
2281	CCGACTATGG GGCTGATACC				TTATTCAGTA AATAAGTCAT	
2341	GAGATTGTAT CTCTAACATA				TAATTATAGG ATTAATATCC	

FIGURE 31D

2401		TTTCTTCCTT				
2461		TTTTTAAGGC AAAAATTCCG				
2521		TCTCTCTCGC AGAGAGAGCG				
2581	GÄGAAACTGG CTCTTTGACC	ACCCAGGTC TGGGGTCCAG	TGGAGCGAAT ACCTCGCTTA	TCCAGCCTGC AGGTCGGACG	AGGGCTGATA TCCCGACTAT	AGCGAGGCAT TCGCTCCGTA
2641		GAGAGAGACT CTCTCTCTGA				
2701		GCGGGTCCG CGCCCAGGGC				
2761		ACTCGGCTGT TGAGCCGACA				
2821		CGGGTGGCTT GCCCACCGAA				
2881	GGAGCAAACC CCTCGTTTGG	TCGGAGTCTT AGCCTCAGAA	CCCCGTGGTG GGGGCACCAC	CCGCGGTGCT GGCGCCACGA	GGGACTCGCG CCCTGAGCGC	GGTCAGCTGC CCAGTCGACG
2941		CCTGTTGCTG GGACAACGAC				
3001	GGTGAGCACC CCACTCGTGG					

FIGURE 32

Potential binding sites on the PSM promoter*

Site	Seq	**Location	#nt matched
AP1	TKAGTCA	1145	7/7
E2-RS	ACCNNNNNNGGT	1940 1951	12/12 12/12
GHF	NNNTAAATNNN	580 753 1340 1882 1930 1979 2001 2334 2374 2591 2620 2686	11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11
JVC repeat	GGGNGGRR	1185 1175 1180 1185 1190	8/8 8/8 8/8 8/8 8/8
NFkB	GGGRHTYYHC	961	10/10
uteroglobi	RYYWSGTG	250 921 1104	8/8 8/8 8/8
IFN AAW	AANGAAAGGR590	13/13	Cell 41:509 (1985)

^{*} the PSM promoter sequence 683XFRVS (Fig. 1) starts from the 5' end of the promoter fragment. The 3' region overlapps the previously published PSM cDNA at nt#2485,i.e. the putatative transcription start site is at nt#2485 on sequence 683XFRVS. **The number referred to in this table is in reference to sequence 683XF107 which is the complement and inverse of 683XFRVS.

54/130

SUBSTITUTE SHEET (RULE 26)

FIGURE 34

CTCAAAAGGGGCCGGATTTCCT

BOACCCC AND TCTUBAGCDAATTCCA UCCTBCAUDGCTDATAAGCGADGCATTAUTGAUATTGAGAGACTTTACCC COCOOTIGGAGGCCCCCAGT AGAGCAGCAGCACGCCGGGTCCCGGGAGGCCGGGTCTGCTCGCCGCGAG TCT TUBAUUCABATOTIOCCICICICICICUCICUUAITOOTICAUTOCACICIABAAACACIOCIGIOOTOOABAAACI

ATO TOO AAT CTC CTT CAC OAA ACC OAC TCO OCT OTO OCC ACC OCO COC COC COC TOO CTO Trp Lou Pro Arg Arg Arg N N Ę Val Ale Asp Ser Ala Glu Thr Met Trp Aen Leu Leu His OCT GOG GCG CTG GTG GCG GGT GUCTTC TIT CTC CTC GGC TTC CTC TTC GGA TGG TTT ٦ Phe Leu Gly Phe Phe Leu Leu Gly Leu Vai Leu Ain Oly **5** 917 Cye Ale 10C

ATA AAA TCC TCC AAT BAA BCT ACT AAC ATT ACT CCA AAB CAT AAT ATB AAA BCA TTT TTB BAT BAA 20 Ala Phe Leu Lye Hie Aen Met Lye Thr Pro Ala Thr Asn 110 Ser Aen Glu 110 Lys Ser YCY 1 TOO AAA OCT GAG AAC ATC AAG AAG TTC TTA TAT AAT TTT ACA CAU ATA CCA CAT TTA GCA OGA Gly IIIs Leu Ale 11e Pro Lys Lys Phe Leu Tyr Asn Phe Thr Gin Ale Glu Aen 11e

SUBSTITUTE SHEET (RULE 26)

	10	20	. 30	4.0	50	. 60
1	TTTGCAGACT	TGACCAACTT	TCTAAGAAAA	GCAGAACCAC	ACAGGCAAGC	TCAGACTCTT
	AAACGTCTGA	ACTGGTTGAA	AGATTCTTTT	CGTCTTGGTG	TGTCCGTTCG	AGTCTGAGAA
61	TTATTAAATT	CCAGTTTTGA	CTTTGCCACT	TCTTAGTGGC	CTTGAACAAG	TTACCGAGTC
	AATAATTAA	GGTCAAAACT	GAAACGGTGA	AGAATCACCG	GAACTTGTTC	AATGGCTCAG
121	CTCTCAGCGT	TAGTTACCCT	ATTTTAATGA	TGAGGATAAT	ATTATCTGCC	CAAATTATTG
	GAGAGTCGCA	ATCAATGGGA	TAAAATTACT	ACTCCTATTA	TAATAGACGG	GTTTAATAAC
161	GTATAGTAAA	TATATAGCAT	GTAAATCTCC	TAGCAGAGTA	CTGGGATTTC	GCCACTITAT
	CATATCATTT	ATATATCGTA	CATTTAGAGG	ATCGTCTCAT	GACCCTAAAG	CGGTGAAATA
241	TTCTTCTTTA	CCAAGATACT	CCTATTGGAC	TTAATACACA	GGACTAGTCT	AAGGTATCAC
	AAGAAGAAAT	GGTTCTATGA	GGATAACCTG	AATTATGTGT	CCTGATCAGA	TTCCATAGTG
301	CAGGTAGTCC	ACTCCTGCTC	GGAATCTGAC	CCGGGATTAG	AGTAGGGCAT	GGACCAGATG
	GTCCATCAGG	TGAGGACGAG	CCTTAGACTG	GGCCCTAATC	TCATCCCGTA	CCTGGTCTAC
361	GGTTTAAACA	AATTCAATAT	CTTCCACTAG	CTTCACCTTG	GGGTTGTAAA	AGTTTTTGAA
	CCAAATTTGT	TTAAGTTATA	GAAGGTGATC	GAAGTGGAAC	CCCAACATTT	TCAAAAACTT
421	DEACACACTG	TGCTCATAAC	AATCTTCATC	TCTTAAAAGG	ATTTTATTCT	TCCTGGTATC
	SSTSTGTGAC	ACGAGTATTG	TTAGAAGTAG	AGAATTTTCC	TAAAATAAGA	AGGACCATAG
481	CTCACTCTCA	TCCCTTGTAT	TCCGTGCTCA	GTGGCTGACA	CAGAAGAGTT	CTTTATHHNH
	GAGTGAGAGT	AGGGAACATA	AGGCACGAGT	CACCGACTGT	GTCTTCTCAA	GAAATAHHNH
541	אממממממממ	CATCCTGTTC	ATTTTTCAGA	TCTCAGTTCA	AGCATCTCGT	CCTCAGTGTG
	ממממממממממ	GTAGGACAAG	TAAAAAGTCT	AGAGTCAAGT	TCGTAGAGCA	GGAGTCACAC
601	GTGTTNNCTG	ATCCCTCACT	CTAATCCAAG	TCTTTCTGTT	TTATGCACAG	GTTGGAATCT
	CACAANNGAC	TAGGGAGTGA	GATTAGGTTC	AGAAAGACAA	AATACGTGTC	CAACCTTAGA
661	TATTTCCGTT	TGCGNNCCAA	TCNAATNGTA	TTTAATATGC	ATGTATATAT	GTATGTGCAT
	ATAAAGGCAA	ACGCNNGGTT	AGNTTANCAT	AAATTATACG	TACATATATA	CATACACGTA
721	TTGTATGCTA	NGCGATTAAG	AACTAGAATA	ATTAATAATT	GGAAGTCTAG	AAGTGG
	AACATACGAT	NCGCTAATTC	TTGATCTTAT	TAATTATTAA	CCTTCAGATC	TTCACC

FIGURE 40A

	1	0 2	0 30) 40	5.0	
		1	1			
. (1 TGAAAAATA	C ATCAAAAAT	GCATGAGAT			
	ACTITITATO	G TAGTTTTA	T CCGTACTCTA	TOTTOGRATI	TOTAROGACI	TATTTTTAT
			- coluctor	. IGCICGGAIA	CICIATCCTGA	ATAAAAAATA
	,					
6:	TATTGTTGT	A TGTATTATT	T GTAAAACACA		` \ TT\ 0 ====	
	ATAACAACAT	T ACATAATAA	CATTTTGTGT	, was say camp	ATTACCTCTG	ACATTAGGTO
				TINNINGIIA	TAATGGAGAC	TGTAATCCAC
	•	• •				
12:	AGATATTCT	AATTTTAAT	TCTCTTGCCT	ر کا سیسیس کا حیات		
	TCTATAAGAC	TTAAAATTA	AGAGAACGGA	TGAAAGTGAG	TTTTTCTCL)	ATGCAAACAG
	•			· TONNOTONO	. IIIIICICAG	TACGTTTGTC
		•				
181	ATTTTTAAGT	TĞCAAACGA	TTGCAAAATA	الله لا للالملململيك	- CAA	
	TAAAAATTCA	ACGTTTGGTT	AACGTTTAT	AAAAAAATAG	CANCILLAR.	GATAGGTATT
				195555TA	GITGWWGIIW	CTATCCATAA
241	GCTGTTAATI	CTAAGATATO	CATTAATTGT	ТТСААСТААТ	GOSTOTONAN	66161767
	CGACAATTAA	GATTCTATAC	GTAATTAACA	AAGTTGATTA	CCCACACTOR	CGAGATGTTC
				. D.O.I.OMIIA	CCCACAGITI	GCTCTACAAG
				•		
301	TGAAAATGAA	GGCAAAAAGG	AGATOCACCT	TOTACTTTCA	TALACTUMENT	3 T COM COM CO
	ACTITIACTI	CCGTTTTTCC	TCTAGGTGGA	AGATGAAAGT	ATTTCAARCA	TACARCA
					ni i i caman	INGAAGGAGA
						•
361	GCTGACTCAA	ATAAGCATTI	AATACATTTT	ATAACGAATT	2277270227	ATA
	CGACTGAGTT	TATTOSTALA	TTATGTAAAA	TATTGCTTAA	TTAATACTTA	TATARA CEME
	•	•				**************************************
421	TAAATAAATT	ATTTCCAAGT	GTTGAAGGAA	ATTCAGACTT	CTAATTTGCT	CTC ATTCTC &
	ATTTATTTAA	TAAAGGTTCA	CAACTTCCTT	TAAGTCTGAA	GATTAAACGA	GACTAAGACT
	•			•		ONCIANDACI
		·				
481	AACTAAAACA	AATGCTCTGT	GAGAGTTTGC	GTTTCCAGTG	AASTAGCGTG	AGAAATCCAA
	TIGATITIGT	TTACGAGACA	CTCTCAAACG	CAAAGGTCAC	TTCATCGCAC	TCTTTAGGTT
	•					
	C TO 1 C 1 C 1 C 1				•	
241	GTCAGACAGC	TACATGAAAC	TACATTTACC	AGCTCTCTGC	CAGACACCAG	TGCACGATAG
	CAGTCTGTCG	ATGTACTITG	ATGTAAATGG	TCGAGAGACG.	GTCTGTGGTC	ACGTGCTATC
	•		,	•		
601	00010110					
601	CGCAGAACAT	GTAGCTAGAT	CTCAGTCATA	GCTNNNNNNN	имимимими	AGACCTTGCA
•	GCGTCTTGTA	CATCGATCTA	GAGTCAGTAT	CGANNNNNNN	инининини	TCTGGAACGT
		•				
663	come e e e e e e e e e e e e e e e e e e			•		
991	GIIGGCITTT	AACCTGAAGG	AGATAAGGCA	AGATTCCAGG	GTTTATTTAG	AGAAATTACA
	CAACCGAAAA	TTGGACTTCC	TCTATTCCGT	TCTAAGGTCC	CAAATAAATC	TCTTTAATGT
	•	•				
777	CCI MODOCCO					
12,1	CONTACTOGGA	ATAAAGTAGT	TACAAAATTA	GTCCCCAACC	AGCTTTCATG	GAGCTTTCAA
	CCTAGACCCT	TATTTCATCA	ATGTTTTAAT	CAGGGGTTGG	TCGAAAGTAC	CTCGAAACTET

FIGURE 40B

, 0 1	1171177117	TICINGILLI	INVICACATA	CATACAATGC	ACATACATAT	ATACATGCAT
	AATAATTAAT	AAGATCAAGA	ATTAGCGTAC	GTATGTTACG	TGTATGTATA	TATGTACGTA
			•			
841	ATTAAAATAC	ATGATTGGAC	GCAAACGGAA	ATAAGATTCC	ACCTGTGCAT	AAAACAGAAE
	TAATTTTATG	TACTAACCTG	CGTTTGCCTT	TATTCTAAGG	TGGACACGTA	TATALCH CALCAL
	•					
		•				
901	GACTTGGTTA	GAGTGAGGGA	TCAGGAAACA	CCACACTGAG	GACGAGATON	· NOSMANANANA
	CTGAACCAAT	CTCACTCCCT	AGTCCTTTGT	GGTGTGACTC	CTCCTCTA-CN	MANAGAMANANA
				oololonol.c	CIGCICINCH	имимимими
						: .
961	NTAGTGGGTG	GGGGGGGAC	ATCAATAAAG	AACTCTTCTC	TOTONOCONO	TC) CC) CCC)
	NATCACCCAC	CCCCCCCCTG	TACHLY HALL	TTGAGAAGAC	A CARCOCCAC	1 GAGCACGGA
				11 GAGAAGAC	VCV31C0010	ACTEGTGEE
	_					
1021	ATAAAGGGAT	GAGASTGAGG	GCAANTACCA	CAACAATAAA	2 TO COMPANY 2 2	616166116
	TATHTOOMA	CTCTCACTCC	COTTUNTOCT	OVY COVY I VVVV	TACCALLIAN	GAGATGAAGA
		CIC.CAC.CC	COLIMATOG.	CIICIIAII.	IAGGAAAA.I	CICIACTICT
			•		•	
1081	Tree-manage	CACAGTGTGT	CC):==CAAAA) TOTAL		
1001	AACAATACTC	GTGTCACACA	CCN's Catalog	TACARA	AACCCCAAGG	TGAAGCTAGT
	MCMINCIC	3.3.chchch	CCMANGITII	INGAAAATIG	TIGGGGTTCC	ACTICGATCA
1141	TOCARCATAT			ome emecans e		
1171	1 CONTOUNT WI	TTGAATTTGT	1 TAAACCCA1	CIGGICCIAG	CCCTATTCTT	TGAATCCGAA
	ACCITCIAIN	AACTTAAACA	AAGGGTA	GACCAGGATC	GGGATAAGAA	ACTTAGGCTT
			•	•	•	
1201	CACCTOLLO	1770001001	61.55 0.00			
1201	CMCC1 CAAGA	ATTECGASCA	GAGIGGACIA	CCTGTGATAC	CITAGACTAG	TCCTGTGTAT
	CICCAGTICT	TAAGGCTCGT	CICACCIGAT	GGACACTATG	GAATCTGATC	AGGACACATA
1261	50110500					•
1501		TGAGAGTATC				
	AGTTCAGGTT	ACTOTOATAG	ACATTCTCTT	ATTCACGCTT	TAGGTCTAGA	

FIGURE 41

	10		30	Ĩ	50	60
1	GGATTCTGTT	GAGCCCTAGC	TCATTATGAT	GTCCTGTTGT	CCTACCCAAA	TAAGACTCAT
	CCTAAGACAA	CTCGGGATCG	AGTAATACTA	CAGGACAACA	GGATGGGTTT	ATTCTGAGTA
61	CCCAACTACA	TCTCAATAAT	TAATGAAGAT	GGAAATGAGG	TAAAAAATAA	ATAAATAAAT
	GGGTTGATGT	AGAGTTATTA	ATTACTTCTA	CCTTTACTCC	ATTTTTTATT	TATTTATTTA
121	AAAAGAAACA	TTCCCCCCA	TTTATTATTT	TTTCAAATAC	CTTCTATGAA	ATAATGTTCT
	TTTTCTTTGT	AAGGGGGGGT	AAATAATAAA	AAAGTTTATG	GAAGATACTT	TATTACAAGA
181	ATCCCTCTCT	AAATATTAAT	AGAAATCAAT	ATTATTGGAA	CTGTGAATAC	CTTTAATATC
	TAGGGAGAGA	TTTATAATTA	TCTTTAGTTA	TAATAACCTT	GACACTTATG	GAAATTATAG
241	TCATTATCCG	GTGTCAACTA	CTTTCCTATG	ATGTTGAGTT	ACTGGGTTTA	GAAGTCGGGA
	ASTAATAGGC	CACAGTTGAT	GAAAGGATAC	TACAACTCAA	TGACCCAAAT	CTTCAGCCCT
301	AATAATGCTG	TAAANNNUNN	AGTTAGTCTA	CACACCAATA	TCAAATATGA	TATACTTGTA
	TTATTACGAC	ATTTUNNUNN	TCAATCAGAT	GTGTGGTTAT	AGTTTATACT	ATATGAACAT
361	AACCTCCAAG TTGGAGGTTC	CATAAAAAGA GTATTTTTCT	GATACTTTAT CTATGAAATA	AAAAGAGGTT TTTTCTCCAA	CTTTTTTTCT GAAAAAAAGA	TTTTTTTTTT
411	TOCAGATEGA	GTTT DACTOC	TGTCAGGCAG	GCNGAGTGCA	GTGGTGCCAT	CTCGGCTCAC
	AGGTCTACCT	CAAASTSAGG	ACAGTCCGTC	CGNCTCACGT	CACCACGGTA	GAGCCGAGTG
461	TGCAACCTCC	ACCTCCCATG	TT DAAGGGAT	TCTCCTTCCT	CAGTCTCCTG	AGTAGCTGGG
	ACGTTGGAGG	TGGAGGGTAC	AAGTTCCCTA	AGAGGAAGGA	GTCAGAGGAC	TCATCGACCC
541	ATTACAGGTG	TGCACCACCA	CACCCAGCTA	ATTTTTGTAT	TTTTAATAGA	GACAGGGTTT
	TAATGTCCAC	ACGTGGTGGT	STGGGTCGAT	TAAAAACATA	AAAATTATCT	CTGTCCCAAA
	CGATCGATGT	TGGCCAGGCT	AGTCTCGAAC	TCCTGACCTC	TAGGTGATCC	ACCCGCTCAG
	GCTAGCTAGA	ACCGGTCCGA	TCAGAGCTTG	AGGACTGGAG	ATCCACTAGG	TGGGCGAGTC
661	CTCCCAAAGT	TGTAGAATTA	CACGTGTGAG	GCACTGCGCC	TTGCCAGGAG	ATACATTTTT
	GAGGGTTTCA	ACATCTTAAT	GTGCACACTC	CGTGACGCGG	AACGGTCCTC	TATGTAAAAA
721	GATAGGTTTA	ATTTATAAAG	ACACTGCACA	GATTTGAGTT	GCTGGGÄAAT	GCACGGATTC
	CTATCCAAAT	TAAATATTTC	TGTGACGTGT	CTAAACTCAA	CGACCCTTTA	CGTGCCTAAG

781 CAGTATGCA GTCATACGT

9 TTAGTTTTIAT 1"FIGTCAATF TCAAACTAAT GATATTAGTT TGTGTTTTTT TTACTTATAA AAACAGTTAA AGTTTGATTA CTATAATCAA ACACAAAAAA AATGAATATT 50 2 30 AATCAAAATA

FIGURE 42

61 ATCTTTTATG TCAGTAGAGG GTGAATGAAT CCTTGAGAT TTTGATGATA GTATCAGATA TAGAAAATAC AGTCATCTCC CACTTACTTA GGAACTCCTA AAACTACTAT CATAGTCTAT CCCAGCACTA TGCTAGAAGT TGTGAAGAAT TCAGGAGATG AATAAATCAC AGATTCTGTC TTATTAGTG TCTAAGACAG GGGTCGTGAT ACGATCTTCA ACACTTCTTA AGTGCTCTAC 121

CTCANAATGG TTAGATCTAT TCAGGAAACA AAGCTAAAAA AACCCCACCA ATAACTAAAA TTCGGGTGGT TATTGATTTT GAGTTTTACC AATCTAGATA AGTCCTTTGG TTCGATTTTT 181

241 ATCAACCAAA TGAAAAACAA CAATCATAAA ATAAGTAAGT ACCTATAGAA AGAAAAGCTC TCTTTTCGAG TGGATATCTT PAGTIGGITT ACTITITIGIT GITTAGTATIT TATTICATICA

301 AGAGGAGGTA AAAAGAATCT CCTTAAAAGG AATACTATAT ACTGTAAAAC TGTGACTGAT TCTCCTCCAT TITTTTAGA GGAATTTTCC TTATGATATA TGACATTTTG ACACTGACTA

361 AGAAGGAA TCTTCCTT

FIGURE 43A

	10	20	. 30	40	50	60
1	TATGGGAAAG ATACCCTTTC	TTTTCAGAGG AAAAGTCTCC				
61	CCAATGTAAA GGTTACATTT	AAGTTATAGT TTCAATATCA				
121	AATACCATTA TTATGGTAAT	TTTTCTTGTA AAAAGAACAT				
181	GGTTATATCC CCAATATAGG	CGGGGTTAAA GCCCCAATTT				
241	AACAGAACAA TIGICTIGIT	TTTTTCTGTG AAAAAGACAC				
	GGTTTATTAT CCAAATAATA					
361	ATTAAATTGT TAATTTAACA	AGTATGAATT TCATACTTAA				
421	AAAAATTACT TTTTTAATGA	GTCATTTGAT CAGTAAACTA				
481	AAAATTCCTT TTTTAAGGAA	TOGACTOTOA AGCTGACAGT				
541	TAGAGTCTAG ATCTCAGATC	AATGCAATCT TTACGTTAGA				
601	TGAGAAACTA ACTCTTTGAT	TTCCAGACCT AAGGTCTGGA				
661	CAGGGTGACT GTCCCACTGA	TCTNCCTCNN AGANGGAGNN				
721	ACAATTAATC TGTTAATTAG	AACTAGCATT TTGATCGTAA				

FIGURE 43B

781 TGAAGCTTTN NTCACTGTCA ATTCTGATCA GATATATGAC AATTTTAAAT TATTTGCAGT ACTTCGAAAN NAGTGACAGT TAAGACTAGT CTATATACTG TTAAAATTTA ATAAACGTCA

841 GTGTAAGAAA CGCTTCAGGT AGTTTAAATT TAAGGCT CACATTCTTT GCGAAGTCCA TCAAATTTAA ATTCCGA

FIGURE 44A

•	10	20	30	40	50 i	. 60
1	CTCCTTTGGC	CCCTGCCAGC	TGGGCATTTT	TAACCTAGTT	TACACAGTGT	CTTTTTTTCC
	GAGGAAACCG	GGGACGGTCG	ACCCGTAAAA	ATTGGATCAA	ATGTGTCACA	GAAAAAAGG
61	TTATTTTAAA AATAAAATTT	TTGGTTGTTC AACCAACAAG	CAGATTCGGT GTCTAAGCCA	AATATCAATT TTATAGTTAA	TTTAATATTA. AAATTATAAT	CACTTAAATG GTGAATTTAC
121	AGTACCAGAA	CTTTATCTTC	AACCTTTTTC	TCATTAGGCC	TACAACATAG	GACATCTCGG
	TCATGGTCTT	GAAATAGAAG	TTGGAAAAAG	AGTAATCCGG	ATGTTGTATC	CTGTAGAGCC
181	ATAGAATTTC	CTTTTCTTTT	TGCTACTATA	AGCTGCTAAA	ATCCTCAGAA	CATCAGATTT
	TATCTTAAAG	GAAAAGAAAA	ACGATGATAT	TCGACGATTT	TAGGAGTCTT	GTAGTCTAAA
241	AGAAATGTTC	TTATTAGTGG	TAGTGAGCAT	TTGCTATTTC	CTACCACTAG	CTTACAAATA
	TCTTTACAAG	AATAATCACC	ATCACTCGTA	AACGATAAAG	GATGGTGATC	GAATGTTTAT
301	TAATAAGCAA	GTAGACCCCA	CAGGCCAAAT	TCCTATTTGT	TCTACAGTCG	AAAGGGAATT
	ATTATTCGTT	CATCTGGGGT	GTCCGGTTTA	AGGATAAACA	AGATGTCAGC	TTTCCCTTAA
361	TTAAAATT AAAATTTAAAA	TAATTTCCAC ATTAAASGTG	TAAAGAGAAA ATTTCTCTTT	AATATATTAA TTATATAATT	CAATCAAATT GTTAGTTTAA	GACAGTCGAT CTGTCAGCTA
411	TTTAATTSCT	ATGTGTALATT	GTTTTCCCTC	ATTATTTATA	ACAATTCATA	CTACAATTTA
	AAATTAACGA	TAGAGATTALA	CAAAAGGGAG.	TAATAATAT	TGTTAAGTAT	GATGTTAAAT
481	ATTTAGTAAA	CATTTTTGTA	GACCATATTT	AAAACAAAGA	TACTGAAAGT	TAATATAAAC
	TAAATCATTT	GTAAAAA TAT	CTGGTATAAA	TTTTGTTTCT	ATGACTTTCA	ATTATATTTG
E41,	COASTGCATS GGTCACGTAC	CTCTCTGTAG GAGAGACATC				
601	TTACTCTAAA	CATCTAIACT	GGCCAAATTC	CAATGCTCGA	ATTTAACCC	GGGATATAAC
	AATGAGATTT.	GTAGATITGA	CCGGTTTAAG	GTTACGAGCT	TAAATTGGGG	CCCTATATTG
661						CAATCAATGG GTTAGTTACC
721						ACTTTTTACA TGAAAAATGT

FIGURE 44B

641 CATATOTGGO AATTACAATT TTOCCAGAGO AATTGATTT CATGTCCCGT TCC GTATAGACCG TTAATGTTAA AAGGGTCTCG TTAACTAAAA GTACAGGGCA AGG

FIGURE 45A

	10	20	30	40	50	6:
.	GATGCTATTT	GGGCAATTTC	TTATTGACAG	TTTTGAAATG	TTAGGCTTTT	ATCTCCATTT
	CTACGATAAA	CCCGTTAAAG	AATAACTGTC	AAAACTTTAC	AATCCGAAAA	TAGAGGTAAA
61	TTTAGTACTT	AAATTTTCCA	ACATGGGTGT	TGCTTGTTAT	TTTATCAGTA	TAAAATAGAA
	AAATCATGAA	TTTAAAAGGT	TGTACCCACA	ACGAACAATA	AAATAGTCAT	ATTTTATCTT
121	GAGTGGTTCT	GTTCTGGAAT	TTAGTATATA	CATGAGTATC	TAGTGTATGT	CAGCCATGAA
	CTCACCAAGA	CAAGACCTTA	AATCATATAT	GTACTCATAG	ATCACATACA	GTCGGTACTT
181	AATGAACCTT	TCAGATGTTT	AACTTCAGGG	AACCTAATTG	AGTCATTGCT	CCAGACATTG
	TTACTTGGAA	AGTCTACAAA	TTGAAGTCCC	TTGGATTAAC	TCAGTAACGA	GGTCTGTAAC
241	TIGCTTTGAA AACG AAA CTT	CCCACTATAT GGGTGATATA	THENSURANTE	CGGGCAATSA GCCCGTTACT	CTCAGTGTGG GAGTCACACC	CAAGGATACT GTTCCTATGA
301	ACTGCAGGCC	TGTTTCTGGA	AGGCACTGGA	CTCCTCTGAT	GCAAACTTTG	GCCAGGGACT
	TJACGTCCGG	ACAAAGACCT	TCCGTGACCT	GAGGAGACTA	CGTTTGAAAC	CGGTCCCTGA
351	CCTTGATAGC	TCTTAAATAG:	ATGCTGCACC	AACACTCTCT	TTCTTTTCTC	TCTTTTTCTT
	GGAACTATCG	AGAATTTATC	TACGACGTGG	TTGTGAGAGA	AAGAAAAAAA	AGAAAAAGAA
421	TATTCAATAT	TAGACTACAA	GCAST STAAS	GACTTOTCAG	GGTTTCTAGC	TCTCTCTCAT
	ATAAGTTÄTA	ATCTGATGTT	CGT SAGATTS	ST SAAGAGTO	CCAAAGATCG	AGAGAGAGTA
481	TTCACACATG AAGTGTGTAC	CTTTCCTAGT GAAAGGATCA	AATCTCTACT TTAGAGATGA	CATATATCTT GTATATAGAA	ACTGCTACGC TGACGATGCG	TGGGGCCAGA ACCCCGGTCT
541	TAACHNNHNH	CTTCCATTTT	GTTTTTATCT	CTATTCTTCT	TCCCCTTCTG	CTTTCATTAT
	ATTGHNNHNH	GAAGGTAAAA	CAAAAATAGA	GATAAGAAGA	AGGGGAAGAC	GAAAGTAATA
601	TGAAACTTTC	TGCTTTCATT	ATTGAAACTT	TCCCAGATTT	GTTCTGCTTA	ACCTGGCATT
	ACTTTGAAAG	ACGAAAGTAA	TAACTTTGAA	AGGGTCTAAA	CAAGACGAAT	TGGACCGTAA
661	GGAACTGTTT CCTTGACAAA	CCTCTTCCCT GGAGAAGGGA	GTGCTGCTTT CACGACGAAA	CTCCCATTGC GAGGGTAACG	CATGTCCTTT GTACAGGAAA	TTTTTTTTT
721	TTTTTTTTTT	TGAGACAGTG ACTCTGTCAC	TCACTCTGTT AGTGAGACAA	GCCCAGGCTG CGGGTCCGAC	GAGTGCAATG CTCACGTTAC	GTGCAATCTT CACGTTAGAA

FIGURE 45B

781					CCTGCCTCAG	
•	CCGGTGACGT	TGGGGCTGAG	GCCCAAGTTC	ACTAAGAGAT	GGACGGAGTC	GGAGGACTCA
841	AGCTGGGATT	ACAGGTGCCA	CCACTATGCC	GGCTGATTTT	GTATTTTAGT	AGAGATGGGT
	TCGACCCTAA	TGTCCACGGT	GGTGATACGG	CCGACTAAAA	CATAAAATCA	TCTCTACCCA
901	TCACATGCAG	ATCAGCTGTT	CCGACTCTGA	CCAGNHHNNN	имимимими	ATCAAAGTCA
					אממממממממ	
961	GCCAAAGTGC	TAGGCTTAGA	GTAATTGTGT	AATTTCCACA	CAAGTGCAAC	CTAGTGTAAT
	CGGTTTCACG	ATCCGAATCT	CATTAACACA	TTAAAGGTGT	GTTCACGTTG	GATCACATTA
1:::	SCOTCAAGAA	TGTNNNTATG	AATGTCTCGA	ACGTTAGTAA	CTAATAACAA	GTAGTTAGTT
	CIGAGTICTT	ACAMMMATAC	TTACAGAGCT	TGCAATCATT	GATTATTGTT	CATCAATCA
1681	TATAGATGTA	TCCTAGTATG	TAGCA			
		AGGATCATAC			•	

FIGURE 46A

	10	20	30	40	50	60
1	CACAAAAAA GTGTTTTTT	GATTATTAGC CTAATAATCG	CACAAAAAA GTGTTTTTT	CCTTGAAGTA GGAACTTCAT	ACGCATTAAA TGCGTAATTT	ATGTTAATGG TACAATTACC
61	ATTCACTTTA TAAGTGAAAT	TTGAGCATCT AACTCGTAGA	GCTCATAATA CGAGTATTAT	CTTTAATGAG GAAATTACTC	TGCAAAGTGC ACGTTTCACG	TTTGAATATA AAACTTATAT
121	ATACGTCATT TATGCAGTAA	TAAACCTTAC ATTTGGAATG	CATAATTCTG GTATTAAGAC	AGGAATTGCT TCCTTAACGA	ACCTCCACTT TGGAGGTGAA	CACAGATGGG GTGTCTACCC
181	GCACAGGAGG CGTGTCCTCC	CTTAGATAAC GAATCTATTG	ATGCCCAAAG TACGGGTTTC	TCATGCTTCT AGTACGAAGA	AGTAAATGGA TCATTTACCT	TATAATTAAG ATATTAATTC
241	ATTCAAATTA TAAGTTTAAT	TTGATAAGAA AACTATTCTT	TTTGATCTGC AAACTAGACG	OTTACCASTA GAATGSTOAT	TCTAGTAGTA AGATCATCAT	AATCTAAAAG TTAGATTTTC
301		AGCATGTGCT TCGTACACGA				
361		CTCACTGGTA GAGTGACCAT				
421		CAAAGATAGG GTTTCTATCC				
481		TCAGGCAGAC AGTCCGTCTG				
541		AGAAAACATG TCTTTTGTAC				
601		CCTTTACTGT GGAAATGACA				
661		ACTTTTACTA TGAAAATGAT				
721		TGTTCAAACT ACAAGTTTGA				

FIGURE 46B

- 781 CCAGCTGTAA GGCAAAACAG ACTCTTGGCT ACACGGCATT TGTCTGTTAA TGATACTCAA GGTCGACATT CCGTTTTGTC TGAGAACCGA TGTGCCGTAA ACAGACAATT ACTATGAGTT
- 641 COTTAACCGT CACTTAATAA TGCTGAATAA TGTCATTAAT CTGAGATGTT AGTATGATCA GGAATTGGCA GTGAATTATT ACGACTTATT ACAGTAATTA GACTCTACAA TCATACTAGT
- 911 ATGGGAATCA CTGCTGAGCT CTCGAAGCCC TACCCTTAGT GACGACTCGA GAGCTTCGGG

⋖
1
4
ш
$\overline{\mathbf{z}}$
=
(5
=
ш

-120	300	160	270	360	450	340
	83	84	E	ង្គ	2 5 S	84
88 38	8	₹\$.	A. A.	TAC	82	77.
500	23	P t	₹ 5	3. S.	1 2 3	S S
25.50	2.5	AAT	GI ⁿ	23	Pro Pro	GTT
MIT	23	CAT B1.	Z E	CTG Leu	Pro Pro	17.
200	84	AAG Lys	917	01C V•1	GA Glu	GTC V•1
2000	85	82	A1.6	GAT GTC CTG Amp Val Lou	TTT GAA	GGC GAT CTA GTG TAT GTT Gly Asp Leu Val Tyr Val
1564 1705	N-S	T F	117 Leu	CAT TAT	ACA TCA TTA The Ser Leu	CAT Asp
	23	A11	CAT	CAT BIS	TCA Ser	GGC G17
100A	223	A a	7 SC	A1.	ACA	C Lu
AAAC KXAC	82	ACT AMC ATT ACT CCA AMG CAT AMI The Asn Ile The Pro Lys Bie Asn	ATA 11.	CTA Leu	A AC	CCA Pro
ACY.A	CX TOG CTG TOC OCT GOG GOG CTG GTG CTG GOG GOT ATR TEP Leu Cyn Ale Gly Ale Leu Vel Leu Ale Gly	814 A14	TIT ACA CAN ATA CCA CAT ITA UCA GGA PILO The Glin Ilo Pro Bio Lou Ala Gly	GAG G1u	TTC Pie	ATG Het.
1554 1505	Pro	AAT GAA Aan Glu	ACA Thr	ا سخه		954 617
(X) TO	CCC VIE	A.n.	EÉ	TCT GT	9 7 0	C. G.In
200	UCG COS: COC COO	TCC Sor	AAT nuk nuk	GAT A.p	CAT CGA AAT C	TIC AGI GCT TIC TGT CCT CAA GGA ATG CCA Phe Ser Ale Phe Ser Pro Gin Gly Het. Pro
¥¥ÇÇ	NI.	AAA TCC Lye Ser	TAT	0.TG	66A 61y	ICT Ser
10.17	ğğ	AAA Ly•	71.	600 61y	A.P	TTC Ph.
1001	AL.	G 10G ITT AIA A	AAG TTC	GAA 11T Glu fh•	₹ 3	A1.
7,761 GTG:	'N -		AAG Ly•	CAA G1"	AAT	AGT Ser
WHT COXIC	Ale Vel	2 E	AAG I.y•	₹.	ATT 11•	TTC Phe
XCCC	TCC Ser	35	ATC 11.	150 gr	ATA 11.	CCI Pro
2012	\$ &	E E	A. n	CAG GIn	70. 2	CCA Pro
	A ti	25.3	GAG G14	36.	ATC 11.	GTA Vel
	3 5	ΕĒ	A L	S. G.	TAC	ATT 11.
EATC EATC	3 =	89	Ly.	ATT IL•	A&C Aen	CAI
X110	CTT	C C	21	¥ S F S	82	TCG Ser
KATA TATE	25.3	5 3	45	ANG Ly•	CAT B1.	GTT Val
CTOCTOGAGOCACA TOT TOCCOCTOTOTOCICO TOCOCONTINATION POLICIAN POR DECINARIA AND TOCAGOCOCAGO TOTOCAGOCATION POLICIANO COLOCAGOCOCATION PARA CARA CARA CARA CARA CARA CARA CARA	ATG TOG AAT CTC CTT CAC GAA ACC GAC TCG	GOC ITC III CIC CIC GOC ITC CIC IIC GOO GIY Phe Phe Leu Leu Gly Ine Leu Phe Gly	TTG GAT GAA TTG AAA GCT GAG AAC ATG	CAG CTT OCA AAG CAA ATT CAA TCC CAG TOG OLB Leu Ale Lye Gln Ile Gln Ser Gln Trp	AAT AAG ACT CAT CCC AAC TAC ATC TCA ATA Agn Lye The Bis Pro Aen Tyr Ile Ser Ile	TAT GAA AAT GIT ICG GAI AIT GIA CCA CCI TYE Glu Agn Val Ser Asp Ile Val Pro Pro
1302	17.0	E.E	23	173	Z 2	gg gg
D 3	ATC	85	Eé	25	Y S	1AT

FIGURE 47B

630 210	720	810 270	300	990	1080
Ş ;	AAG Ly•	CCA	TAT Tyr	917	500
E &	616 V•1	Z ž	1xc	CTT Vel	ATA 1.
1 7 2 7	555 C17	CTC 15.	55	AAT	6T6 • 1
₹;	CC1	Pro	ATT 11•	77.	M
35	A .	CAC A.p	CCA	8 ca	175
Tyr.	E E	GGA GLY	CAT III.	CTG Vel	ATT 110
A 4.	TAC Tyr	A. A.	CIT Vel	₹\$	AGA
₹	CAC CAC	CST CLY	CC1 Pro	CTC Leu	ACA 1947
; :	AI.	A	ATT 11.	AGT Ser	GTG Vel
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	cct Pro	CTG L•11	AGT Ser	GGA GLY	CAA G1:
Lys 11e Val	CAC	AAT A.s.u	វូរួ	A:A A:8	AA.T Aen
ار ۲.	100 5.	CT.	CTT Lea	16; 11p	7.C
65	TAC	ATC II•	1331 13.17	8 . S	CAL TOT
Se	€.	AAT AT	CTT Va.1	\$	₹ =
Lye IIe Apr.Cye	A11	GIY CIY	OCT Ala	CAT A.p	ATC 11
)	100	CCT	. .	1.'A	
<u> </u>	A:0	C.A.G.	۵.۷ ۱۷	CCA	ATC:
!	AAA L.y.	GTC Val	A11	A A	.y•
Leu Glu Ara Ann Met.	A16	5.5	(35A	TCA 30 c	GTC Vel
, <u>.</u>	85.7 7.7	61y	Are	6.50 0.17	Ly.
V	ALA AL	9 CCA	TAT ACG	. <u>2</u> 2	3 5
3 5	CAG CTG (XIA	CCT Pro	TAT	ATG Het	A TACA
	VU	r crr	84	1.7.	r rcr Ser
	¥ 5	TOG AAT	A AAT GAA TAT OCT 1	AAG CTC CTA GAA Lye Leu Leu Glu	Agn Phe
Ě	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7 T	4 GV	CCT	₹ ₹ ₹
1 £	± ₹ ±	r ccr	- ¥ ¥	CH	1 GGA
\$ =	GTT AM ANT GCC C	× •	84	ρ. ζ.Υ.	TACT
35	AAT AAG	r och	F Pro	A CAG	THE N
Are The Glu Asp Phe Phe Lye	¥ .	1AT 7	T TAC 7	7 GCA	1 680
35	617	S. S.	921	SA P	8 2

IGURE 47C

Ser 390	1260	1350	1440	1530	1620	1710 570
% F	AOC Ser	ATT 110	GAG Glu	8=	A A I	E£
35	84	TAT Tyr	LY.	ATG Het	₹\$	ATG
Pr S	E &	Al.	A H	986	35	Pro RA
3 2	125	GT0 V•1	CT P	AGT Sec	TAT TY	25.4
110	ATT 11•	85.	AAC A.S.	E E	Ar.	TAT
25.5	A F	\$ 5	3 =	gyo gra	84	E &
95	AGA Arg	CAA GAU GLn Glu	GTA V•1	S S	AGA Arg	ANG Ly•
= E	ACA Arg	₹5	21	TCC Ser	55.	₹ 3
2 - N	72	113	8 % r	CT Pro	Sec Sec	010 V•1
3 5	AGA Arg	575	17C	AGT Ser	Al.	11G
1	100 1 r p	AGA CTC CTT Arg Lou Lou	ATG Het	AAA Ly•	ATA 11.	GAG Glu
7 to 1	\$ 15 5 5	ICA Ser	CTG Leu	Ly.	96A C1,	TAT
A 25.	GAA G Lu	AAT Aen	35	ĀĘ	E	A F
3=	AAG 1.ye	5 C C C C C C C C C C C C C C C C C C C	ACA The	155 7 - T	Ara Ara	CAA GL
COA COT CAC	Ly.	CAG C1.	151 C, y	AGT Ser	35	TAT
X 5	0.16 L•1	¥ 7 ×	A. U.	₹ S S	11 E	CTC Val
11.	ACA Thr	15.2	115 V • 1	TAT Tyr	EE	AGT Ser
1:	6;3 61,4	S 52.0	AGA Ara	CTT	CTC V-1	3=
7.5	E É	THE THE	CTG L•u	ICT Ser	280 C1.u	TAT
1A1 1yr	ACC Ser	101	ACT	AA Ly	E &	CTC
Pro Asp Ark	A (A	GGI CII CII GGI Gly Lou Lou Gly	AAC TAC	8.5	GAT Asp	5 5
4 6	GT(;	113	A P.	6. 6. 6.	Ash	TAT
3 2	ATT 11.	15.3	₹ 5	E E	61.7 61.7	9.5 5.4
₹	₹50 100 100 100 100 100 100 100 100 100 1	25.5	CAA G1	61,7	TCT Ser	AOC Ser
Ale Vel	EAT HE	Glu Phe	TCT ATA Ser 110	CAA Glu	61,7	71C
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CTT Val	85 P	7C1	CAT	177 Leu	
Aca cca	4.11 V-1	35	TCA Ser	CCT Pro	AAA Lys	A AAC
F F	84	A 264	CAC A	AGC Ser	A AGC	A ACA
	AL.	CAT	r oct	AAA Lye	ATA 6	S GAA
E E	92. 1.7	55	Ash na	23	A B B B	85

FIGURE 47D

009	1890	1980	2070	2160	22 S0 7 S0	2368
CAT TAT 1800 Asp Tyr 600	A B D A T	GTA Vel	7.5 4.1	SAC A B D	At S	TT.
£ 54	E.E	ATA 11.	CAT	CT0 V•1	CTA Vel	AAAT
\$ 3	3. T.	7 S	Ars.	Ly.	₹3	STTC:
25	GTA Vel	A C	IAI Iyr	\$ ¥ 90	AGT Ser	TW I
As p	AGT 3ec	Ser Ser	EĚ	G. C.	23	₹
E.E	TAC TYT	Ly.	Pro Pro	F.	P F	ITT
Pro Ct	ACA Thr	P P C C C C C C C C C C	A CCA GAC AGG	A.p	GAG	XTA1
CTC 2	AAG Ly•	E£	OAC As p	ËÆ	Ale Ale	MIT
010 V•1	ATG AAG Het Lye	SAC A.P.	8 82 8 82 8 83 8 83 8 83 8 83 8 83 8 83	C10	A.A.	ITAN
ATA 11.	CAA G Lu	CAG GLn	114	ALA	A A	MTT
GGA GAS ATS STIS TIT GAG CTA GCS AAT TCC ATA GTG CTC GLY GLY Het Sel Ine Glu Less Alm Amm Ser Ile Vel Leu	35	CTC	000 G17	SAT	5 E	iata
₩ Ven	S S	AGA Ara	11A	TAT Tyt	CTC V•1	TAT
¥1.03	AAA CAT CCA C	GAG	Pro Leu	ATT TAT	TTC ACA GTG C	OST A
14 14 14	. ₹ ₹	¥:	Anp	55	ĔĚ	AATG
070 C1°	ATG Het	11C	OLA ITT ATT GAT ALS	CCA	OCA OCC Ale Ale	1707
11 14	TOT Ser	THE AAG	11 11 11	11C	• ک	N:N
	A11		4.0 • [A	CAG 1CA Glu Ser	7 ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹	W:W
ATr:	AST ::	Ale	AGA Arg	9 T	TAT	.w.1€
3 5 5 5	T.M. Tyr	A T T	CTG GAA Leu Glu	933 617	CAG ATT	TrT
617 617	ATC 11•	GAA	CTC	8.4 A.6	CAG	TEO!
Ar &	L.y.	A.A.	E£	AAG TAT Lye Tyr	AGA :	10101
GTT V•1	CAC		ATG Het	1, A	S AAG L Lye	W11
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	A1.	AAT Agii	CTC 1	AAC Aeu	GAA GTG	ATTG.
AL•	TAT		₹5 5 5 5 6	CAC Bis	35	CCC (
CTC V•1	AAG Ly•	GTA Vel	18 8 18 8 18 8 18 8 18 8 18 8 18 8 18 8	AOC Ser		GA T
P. F.	AGA I	A 44	AAT A		. 133 173	1764
25 1	¥2.3		d ATC		V V	CANCENTITAGAGANTCCGTATTGAATTTGTGTWTATTTCM.TCM.TCM.AAMWAATCGTAATTWAAAATTTTAAAAATTTTGGTATATTTWAAALAAATATAA
1 GC	A 077 1 Vel		A ATO			OGAT
A TAT			A AGA			
Ly.	84	25	Z Z	11.	8 =	14

FIGURE 48

79/130

FIGURE 51

8 9 M H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

81/130

		JRE	E 2
H	(- 1	IKE	2
	\sim	<i>_</i> 1_	V =

- ··				•		clone 1	clone 2				clone 4	clone 6
Markers	Uncut	t RNA	LnCap	PC3	AT6.1	AT6.1-11	AT6.1-11	67	A9 (II)	R1564	R1564-11	R1564-1

82/130

FIGURE 53

TISSIE/ CELL	CANCIRCELL	1 NO INSA	PSM RNA
-Z-T			·
HUMAN PROSTATE	1.7.	•	. +
HUMAN MAMMARY	7.7.	*	: : 1
V16.1	ADENOCARCINOMA	•	· •
- AT6.1-11-CL1	=	+	: ! +
AT6.1-11-CL2	= =	:	
K1564	RAT MAMIMARY ADENOCARCINOMA	:	
R1564-11-C1.2		+	
R1564-11-C1.4	= .	+	: '
R1564-11-(1.5	=	+	:
R1564-11-('1.6	=	+	· : :
49	MOUSE		
A ⁰ (11)	=	•	

Prostate Specific Promoter: Cytosine Deaminase Chimera

FIGURE 58A

10 20 30 40 50 60 1 GCGCCTTANA NAMANANA TITOTTGGAN ANTGCCACC TCTTGCTTAN ATATANAT CCGCGNATT TITTTTTTS ANAGACCTT TTACAGGTCG AGAACGAAT TATATTTAN 61 GANAGGAAGA NAGAGACTCT CCTCTCTCA CTCCTATAAT TATGAGGAAC TTTATTCAN CTTTCCTTCT TTCTCTGAGA GGANAGAGT GAGGATATTA ATACTCCTTG ANAATAAGTT 121 CTCTSANATT CTATACAATC TCTACAATAC TCTACTATA ATACTCCTTG ANAATAAGTT 122 CTCTSANATT CTATACAATC TCTACAATAC TCTACTATA ATACTCCTTG ANAATAAGTT 123 CTCTSANATT CTATACAATC TCTACAATAC TCTACTGAT ARAAGCAGAG CAGAAAAAGC GAGACTTTA GATATGTTAG AGAATGTTA GAGATGACTA TTTTCGTCTC GCTTTTTCG 181 TSCSSCTTTT TCCCATAGT GGGAATGTT GTCATCAGT TATATCACCA CCGCGCGCTT ACSSCGAAAAA AAGGTATCAG CCCTTACGAT GAGATGACA ATTTACCTC CACTTACATT ACAGGAAAAAA AAGGTATCAG CCCTTACGAA CAGTAGTCAC ATTTACCTC CACTTACATT AAAGGATTTT TTATAAAAC CAGTAGTAT TGTACATCCC ATAATAGGG GCGCGGGAA 241 TTTCCTAAAG AATATTATT TATATATAA ACATCAAGCC TATATCCTC CACTTACATT AAAAGGAAT TTTTTAAAGC CGGGGGGGGG GCCCGCCCCC TAGAATAGGG TATATCCAC GCACTTTGGG TSTTTTGGTA AAAAATTTATT TGTACATCCC ATAATAGGG TCGTGAAAACCC 181 AGGCCCAAGA AGSISGATCA CGAAGTGGAC TATATCCAC GCACTTTGGG TSTTTTGGTA AAAAAATTTAT TGTACATCCC ATAATAGGG TCGTGAAAACCC 411 AACSISATCT TCCSSCTAGT GCTTCAAGAC TTTAGCTCTG GTAGGACCGG TTGTACCACT 412 AACSISATCT TCCSSCTAGA CGAAGAATTTA TATACACCGCCC TACCCGCCGG AGGACATCAC 413 AACSISATCT CTACCAAAAA TACAAAAATT ASITTTAAC CGGGGAGG GAGGATCCAC GGTCSAATAA TACCGCAACT ATSTTTTAAA TCGACCCGCA CTACCCGCCG AGGACATCAC 414 AACSISATCAG AAGGGAAAAC GCGACTGAC CTACCCGCCG AGGACACCAC 415 TCAGCCAAGA TACCGCAAC CCGCCCCCCCC GCCCCCCCCCC		•	٠.			- ,	
61 GARAGGARGA ARGAGACTOT COTOTOTORA CTOCTATART TRIGAGGARC TITTATTORA CTOTTCCTTCT TICTCTGAGA GGARAGAGT GAGACTATA ATACTCCTTG ARATTACAT CTATCCTTCT TICTCTGAGA GGARAGAGT GAGACTATA ATACTCCTTG ARATTACAT CTATCCTTATA ATACTCCTTG ARATTACAT CTATCCTATA ATACTCCTTG ARATTACAT CTATCCTATA ATACTCCTTG ARATTACAT GAGACTATA ATACTCCTTG ARATTACACA CAGACCTATA GAACATATA TACTCCTTA GACATTACA AGATGACTA ATACTCCTC GACTTATCG GAGACTATA AGAGCACTA ATACTCCA CCCGCGCCTT ACCCGARAGAA AAGGTATCAG CCCTTACAAT GACACTACACA CATTACACA CCCGCGGGAA ACCCGARAAAA AAGGTATCAG CCCTTACAAT TACTCCAAAAA AAGGTATCAG CCCTTACAAT TACTCACACA CATTACACTA ATACTCCA CACTTACAAT AAAGGAATTAT TACTACACACA ATACTCCA ATACT			_	-	· ī	Ì	60
61 GARAGGARGA ARGAGACTOT COTOTOTORA CTOCTATART TRIGAGGARC TITTATTORA CTOTTCCTTCT TICTCTGAGA GGARAGAGT GAGACTATA ATACTCCTTG ARATTACAT CTATCCTTCT TICTCTGAGA GGARAGAGT GAGACTATA ATACTCCTTG ARATTACAT CTATCCTTATA ATACTCCTTG ARATTACAT CTATCCTATA ATACTCCTTG ARATTACAT CTATCCTATA ATACTCCTTG ARATTACAT GAGACTATA ATACTCCTTG ARATTACACA CAGACCTATA GAACATATA TACTCCTTA GACATTACA AGATGACTA ATACTCCTC GACTTATCG GAGACTATA AGAGCACTA ATACTCCA CCCGCGCCTT ACCCGARAGAA AAGGTATCAG CCCTTACAAT GACACTACACA CATTACACA CCCGCGGGAA ACCCGARAAAA AAGGTATCAG CCCTTACAAT TACTCCAAAAA AAGGTATCAG CCCTTACAAT TACTCACACA CATTACACTA ATACTCCA CACTTACAAT AAAGGAATTAT TACTACACACA ATACTCCA ATACT	•	CCCCCTTAAA	 	TTCTTGGAÅ	AATGTCCAGC	TCTTGCTTAA	ATATAAAAAT
121 CTCTSAAAT CTATACAATC TCTACAATAC TCTACTGAT AAAAGCAGAG CAGAAAAAGC GAGACTTTAA GATAGTTAG AGATGTTATG AGATGACTTA TTTTCGTCTC GTCTTTTTCG GAGACTTTAA GATAGTTAG AGATGTTATG AGATGACTTA TTTTCGTCTC GTCTTTTTCG GAGACTTAA GATAGTTAG AGATGTTATG AGATGACTA TTTTCGTCTC GTCTTTTTCG GAGACTTAA GATAGTTAG GAGACTATA TTTTCGTCTC GTCTTTTTCG ACGCGCCTT ACGCGAAAAA AAGGTATCAG CCCTTACGAA CAGTAGTCAC ATTTAGTGGT GGCGCGGGAA AAGGGAAAAA AAGGTATCAG CCCTTACAATT TCTACATCCC ATAATAGGAG GTGAAATGTAA AAAAGTATT TCTACATCCC ATAATAGGAG GTGAAATGTAA AAAAATTTAT TCTACATCCC ATAATAGGAG GTGAAAACCAT TTTTTAAAAC CAGGGGGAGG GGCCGCACCA CCCACCGCC TGTAATCCCA GCACTTTGGG TGTTTTTGGTA AAAAATTTCG GCCCGCACCA CCGACCGC TGTAATCCCA GCACTTTGGG TGTTTTTGGTA AAAAATTTCG GCCCGCACCA CCACCGCCG ACATTAGGGT CGTGAAACCCC TTTAGCTCTG GTAGGACCCG TTGTACCACT TTTGGGGTGG TCCGCAAGACCC TTTAGCTCTG GTAGGACCGG TTGTACCACT TTTGGGGTTG TCCGCTAAAAA TACAAAAATT ACCTGGGGGG GGTGGGGGGG TCCTGTAGGTC ACCTGGGCAACCCC ACCACCGCCGA CCACCGCCGA AGGACATCAG ACCTGGACACTCAACGTC ACCTGGAAAAAA TACAAAAAATT ACCTGGAGACTT GCCCCTCCCCAACGTC GCCCCTCCGAACAACGTC ACCTGGAAAAAA TACAAAAAATT ACCTGGAAAAA TACACAGAAAA TACACAGAAAA TACACAGAAAA TACACAGAAAA TACACAGAAAA TACCAGAAAAA TACCAGAAAAA TACCAGAAAAA TACCAGAAAAA TACCAGAACTT ACCTCCCTTC CCTCCCCTCC	• 🚣	CGCGGAATTT	TITTTTTTT 2	TTDDAAGAL44	TTACAGGTCG	AGAACGAATT	ININIIII
121 CTCTSAAAT CTATACAATC TCTACAATAC TCTACTGAT AAAAGCAGAG CAGAAAAAGC GAGACTTTAA GATAGTTAG AGATGTTATG AGATGACTTA TTTTCGTCTC GTCTTTTTCG GAGACTTTAA GATAGTTAG AGATGTTATG AGATGACTTA TTTTCGTCTC GTCTTTTTCG GAGACTTAA GATAGTTAG AGATGTTATG AGATGACTA TTTTCGTCTC GTCTTTTTCG GAGACTTAA GATAGTTAG GAGACTATA TTTTCGTCTC GTCTTTTTCG ACGCGCCTT ACGCGAAAAA AAGGTATCAG CCCTTACGAA CAGTAGTCAC ATTTAGTGGT GGCGCGGGAA AAGGGAAAAA AAGGTATCAG CCCTTACAATT TCTACATCCC ATAATAGGAG GTGAAATGTAA AAAAGTATT TCTACATCCC ATAATAGGAG GTGAAATGTAA AAAAATTTAT TCTACATCCC ATAATAGGAG GTGAAAACCAT TTTTTAAAAC CAGGGGGAGG GGCCGCACCA CCCACCGCC TGTAATCCCA GCACTTTGGG TGTTTTTGGTA AAAAATTTCG GCCCGCACCA CCGACCGC TGTAATCCCA GCACTTTGGG TGTTTTTGGTA AAAAATTTCG GCCCGCACCA CCACCGCCG ACATTAGGGT CGTGAAACCCC TTTAGCTCTG GTAGGACCCG TTGTACCACT TTTGGGGTGG TCCGCAAGACCC TTTAGCTCTG GTAGGACCGG TTGTACCACT TTTGGGGTTG TCCGCTAAAAA TACAAAAATT ACCTGGGGGG GGTGGGGGGG TCCTGTAGGTC ACCTGGGCAACCCC ACCACCGCCGA CCACCGCCGA AGGACATCAG ACCTGGACACTCAACGTC ACCTGGAAAAAA TACAAAAAATT ACCTGGAGACTT GCCCCTCCCCAACGTC GCCCCTCCGAACAACGTC ACCTGGAAAAAA TACAAAAAATT ACCTGGAAAAA TACACAGAAAA TACACAGAAAA TACACAGAAAA TACACAGAAAA TACACAGAAAA TACCAGAAAAA TACCAGAAAAA TACCAGAAAAA TACCAGAAAAA TACCAGAACTT ACCTCCCTTC CCTCCCCTCC					CTCCTATAAT	TATGAGGAAC	TTTTATTCAA
121 CTCTSAAATT CTATACAATC TCTACAATAC TCTACTGAAT AAAAGCAAG CAGAAAAAGC SAGACTTTAA GATAGTTAG AGATGTTATG AGATGACTTA TTTTCGTCTC GTCTTTTCC SAGACTTTAA GATAGTTAG AGATGTTATG AGATGACTTA TTTTCGTCTC GTCTTTTCC SAGACTTTAA GATAGTTAG AGATGTTATG AGATGACTA TTTTCGTCTC GTCTTTTTCC ACGGAAAAA AAGGTATCAG CCCTTACGAA CAGTAGTCAC ATTTAGTGT GGCGCGGGAA CAGTAGTAAAAAAAAAA	é:	GAAAGGAAGA	AAGAGACTCT (TTCTCTGAGA (GGAGAGAGGT	GAGGATATTA	ATACTCCTTG	AAAATAAGTT
181 TSCSCTTTTT TTCCATAGTC GGGAATSCTT GTCATCAGTG TAAATCACCA CCGCGCCCTT ACSCGAAAAA AAGGTATCAG CCCTTACGAA CAGTAGTCAC ATTTAGTGGT GGCGCGGGAA CAGTAGTCAC ATTTAGTGGT GGCGCGGGAA CAGTAGTCAC ATTTAGTGGT GGCGCGGGAA CAGTAGTCAC ATTTAGTGGT GGCGCGGGAA CAGTAGTCAC ATTTAGTCCT CACTTACATT AAAGGATTTC TTATAATAAC AATAATTATT TGTACATCC ATAATAGGAG GCACTTTGGG TGTTTTTGGTA AAAAAATTTCG GGCGCGAACA SISAGTGGG ACATTAGGGT CGTGAAACCC TGTTTTTTAAAGC CGGGGGGGGG AAATCGAAGA CATCCTGGGC AAAATCGTGA ACAATAGTCGA GCCCGCACCA SISAGTGGGG ACATTAGGGT CGTGAAACCC TGTTTTTTTTTT			•				•
181 TSCSCTTTTT TTCCATAGTC GGGAATSCTT GTCATCAGTG TAAATCACCA CCGCGCCCTT ACSCGAAAAA AAGGTATCAG CCCTTACGAA CAGTAGTCAC ATTTAGTGGT GGCGCGGGAA CAGTAGTCAC ATTTAGTGGT GGCGCGGGAA CAGTAGTCAC ATTTAGTGGT GGCGCGGGAA CAGTAGTCAC ATTTAGTGGT GGCGCGGGAA CAGTAGTCAC ATTTAGTCCT CACTTACATT AAAGGATTTC TTATAATAAC AATAATTATT TGTACATCC ATAATAGGAG GCACTTTGGG TGTTTTTGGTA AAAAAATTTCG GGCGCGAACA SISAGTGGG ACATTAGGGT CGTGAAACCC TGTTTTTTAAAGC CGGGGGGGGG AAATCGAAGA CATCCTGGGC AAAATCGTGA ACAATAGTCGA GCCCGCACCA SISAGTGGGG ACATTAGGGT CGTGAAACCC TGTTTTTTTTTT	121	CTCTGAAATT	CTATACAATC	TCTACAATAC	TOTACTGAAT	AAAAGCAGAG	CAGAAAAAGC GTCTTTTTCG
241 TITOCTAAAG AATATTATTS TIATTAATAA ACATGTAGGG TATTATCCTC CACTTACATT ALAGGATITO TIATAATAAC AATATTATT TGTACATCC ATAATAGAG GCACTTAGGAT ALAGGATITO TIATAATAAC AATAATTATT TGTACATCCC ATAATAGAG GCACTTTAGGA ALAAATTATT TGTACATCCC ATAATAGAG GCACTTTAGGA ALAAATTATO GCCCGCACCA COSAGGAGAG ACATTAGGGT CGTGAAACCC TSTTTTGGTA AAAAATTTCS GCCCGCACCA COSAGGAGAC CATCCTGGCC ALAATGGTGA CGTGAAACCC TCCGGCCACCA CCGCCGGACA CACATTAGGGT CGTGAAACCC TCCGGGCACCA CCACCGCGG TTGTACCACT TCGGGGGGGGT TCCGGAAACCC TCCGGAAACCC TTGAGGACCG TTGTACCACT TCGGGGGGAGGA GAGGACATCAS ACATCAGGA GAGGACATCAS ACAGGAGAGA GAGGACATCAS ACAGGAGAGA TAGGGGGAAG GGAGGACACCG CCCCACGCCGC CCCCAAGAAA ACACGGGTTCT ACCGGGGAAG GGAGGGGAAG GGAGGGGAAG GGAGGGGAAG GGAGGGGAAG GGAGGGGAAG GGAGGGGAAG CCTCCAAGAAA AGTCGGTTCT ATCGCGGTGA CCTTCCCTTC		GAGACTITAA	GATATGTTAG	AIG. IAIG	AGAIGAGIII		, .
241 TITOCTAAAG AATATTATTS TIATTAATAA ACATGTAGGG TATTATCCTC CACTTACATT ALAGGATITO TIATAATAAC AATATTATT TGTACATCC ATAATAGAG GCACTTAGGAT ALAGGATITO TIATAATAAC AATAATTATT TGTACATCCC ATAATAGAG GCACTTTAGGA ALAAATTATT TGTACATCCC ATAATAGAG GCACTTTAGGA ALAAATTATO GCCCGCACCA COSAGGAGAG ACATTAGGGT CGTGAAACCC TSTTTTGGTA AAAAATTTCS GCCCGCACCA COSAGGAGAC CATCCTGGCC ALAATGGTGA CGTGAAACCC TCCGGCCACCA CCGCCGGACA CACATTAGGGT CGTGAAACCC TCCGGGCACCA CCACCGCGG TTGTACCACT TCGGGGGGGGT TCCGGAAACCC TCCGGAAACCC TTGAGGACCG TTGTACCACT TCGGGGGGAGGA GAGGACATCAS ACATCAGGA GAGGACATCAS ACAGGAGAGA GAGGACATCAS ACAGGAGAGA TAGGGGGAAG GGAGGACACCG CCCCACGCCGC CCCCAAGAAA ACACGGGTTCT ACCGGGGAAG GGAGGGGAAG GGAGGGGAAG GGAGGGGAAG GGAGGGGAAG GGAGGGGAAG GGAGGGGAAG CCTCCAAGAAA AGTCGGTTCT ATCGCGGTGA CCTTCCCTTC			TTCCATAGTC	GGGAATSCTT	GTCATCAGTG	TAAATCACCA	CCGCGCCCTT
ANAGGATITO TTATAATAC AATACTATA TOTACAGE TATAATCCA GCACTTTGGG TSTTTTGGTA AAAAATTTCS GCCCGCACCA LISAGTGCG ACATTAGGGT CGTGAAACCC 361 ASGCCCAGAC ASSISSATCA CSAASTCGAG AAATCGAGAC CATCCTGGCC AALATGGTGA TSISSGTCTG TCCSSSTAST GCTTCAGCTC TTTAGCTCTG GTAGGACCGG TTGTACCACT 401 AACCCCATGT CTACTAAAAA TATAAAAATT ASSITSGGGT GGTGGCGGGC TCCTGTAGTC TTSGGGTAGA GATGATTTTT ATSITSTAAA CSGGGAGGGG GAGGTTGCAG GGTCSATSAS TCCTCCSACT CCGTTCTTT ASCCGGAACTTS GCCCCTCCG CTCCAACGTC 541 TCAGGCAAGA TAGCSCGACT SCACTGGAGG TCGTGAGACA AGTGAGACT CCTCAAGAAA AGTCGGTTCT ATCGCSSTGA CSTSACCTCS GACCACTGTC TCACTCTGAG GGASTTCTTT 601 GAAASSAAGG GAAGGGAAAG SGAASSAAGS GGAGGGGAAG GGAGGGGAGG CTTTCCTTCC CTTCCCTTCC CCTCCCCTTC CCTCCCCTCC 661 AAAGAAAAGA ATACTGGAAC TTGTTGAAGG CAGAGACTT ATTTTCATAT CCCGGCTATG TTTCTTTTCT TATGACCTTG AACAACTTCC GTCTCTGAAA TAAAAAGTATA GGGCCGATAC	16_	ACGCGAAAAA	AAGGTATCAG	CCCTTACGAA	CAGTAGTCAC	ATTTAGTGGT	GGCGCGGGAA
ANAGGATITO TTATAATAC AATACTATA TOTACAGE TATAATCCA GCACTTTGGG TSTTTTGGTA AAAAATTTCS GCCCGCACCA LISAGTGCG ACATTAGGGT CGTGAAACCC 361 ASGCCCAGAC ASSISSATCA CSAASTCGAG AAATCGAGAC CATCCTGGCC AALATGGTGA TSISSGTCTG TCCSSSTAST GCTTCAGCTC TTTAGCTCTG GTAGGACCGG TTGTACCACT 401 AACCCCATGT CTACTAAAAA TATAAAAATT ASSITSGGGT GGTGGCGGGC TCCTGTAGTC TTSGGGTAGA GATGATTTTT ATSITSTAAA CSGGGAGGGG GAGGTTGCAG GGTCSATSAS TCCTCCSACT CCGTTCTTT ASCCGGAACTTS GCCCCTCCG CTCCAACGTC 541 TCAGGCAAGA TAGCSCGACT SCACTGGAGG TCGTGAGACA AGTGAGACT CCTCAAGAAA AGTCGGTTCT ATCGCSSTGA CSTSACCTCS GACCACTGTC TCACTCTGAG GGASTTCTTT 601 GAAASSAAGG GAAGGGAAAG SGAASSAAGS GGAGGGGAAG GGAGGGGAGG CTTTCCTTCC CTTCCCTTCC CCTCCCCTTC CCTCCCCTCC 661 AAAGAAAAGA ATACTGGAAC TTGTTGAAGG CAGAGACTT ATTTTCATAT CCCGGCTATG TTTCTTTTCT TATGACCTTG AACAACTTCC GTCTCTGAAA TAAAAAGTATA GGGCCGATAC		·		•) 0) MCT) 506	エンサマンエクでで	CACTTACATT
201 ADARANCOAT TITTTANAGE CGGGCSTGGT GSCTCACGCC TSTANTECCA GCACTTTGGG TSTTTTGGTA AAAAATTTCS GCCCGCACCA DISAGTGCGG ACATTAGGGT CGTGAAACCC 201 ASGCCCAGAC AGSCSSATCA CSAASTCGAG AAATCGAGAC CATCCTGGCC AACATGGTGA TOUSGGTCG TCCSUUTAST GCTTCAGCTC TITAGCTCTG GTAGGACCGG TIGTACCACT 401 AACCCCATCT CTACTANAAA TACAMAAATT AGCTGGGGG GGTGGGGGGC TCCTGTAGTC TTGGGGTAGA GATGATTTTT ATSTUTTAA TUGACCCGCA CCACCGCCCG AGGACATCAG 401 DARCTACTC AGSAGSCTGA GSCASSASAA TUGCTTGAAC CGGGGAGGCG GAGGTTGCAG GGTCGATGAG TCCTCCGACT CCGTTCGTT AGCGAACTTG GCCCCTCCGC CTCCAACGAC 541 TCAGGCAAGA TAGCGCGACT GCGTGGAGG TCGGGAACCTTG GCCCCTCCGC CTCCAACGACA AGTCGGTTCT ATCGCSGTGA CGTGGACCTCG GACCACTGTC TCACTCTGAG GGAGTTCTTT 601 GAAAGGAAGG GAAGGGAAAG GGAAGGGAAGG GGAGGGGAGG CCTCCCCTTCC CCTTCCCTTCC CCTCCCCTTC CCTCCCCTTCC 661 AAAGAAAAGA ATACTGGAAC TTGTTGAAGG CAGAGACTTT ATTTTCATAT CCCGGCTATG TTTCTTTTCT TATGACCTTG AACAACTTCC GCTTCGGATTA ACCAGAAGAA	241	TTTCCTAAAG	AATATTATTG	TIATTAATAA TIATTAATAA	TGTACATCCC	ATAATAGGAG	GTGAATGTAA
ASSOCIAGAD ASSISSATION DEALSTOCKS PARTICIPATED CATCUTAGE AND ASSISSATION DETERMINATION TO SERVICE T							
ASSOCIAGAD ASSISSATION DEALSTOCKS PARTICIPATED CATCUTAGE AND ASSISSATION DETERMINATION TO SERVICE T	301	ACAAAACCAT	TTTTTAAAGC	CGGGGGTGGT	CODOROTORS	TGTAATCCCA	GCACTTTGGG CGTGAAACCC
AACCCCATCC 411 AACCCCATCT CTACTAAAA TATAAAAATT ASTTSGGGGT GGTGGGGGG TCCTGTAGTC TTSGGGTAGA GATGATTTTT ATSTTTTAA TUSACCCGCA CCACCGCCCG AGGACATCAG 481 CTASTTACTC AGGAGGTGA GGCASGAGAA TUSCTTGAAC CGGGGAGGGG GAGGTTGCAG GGTCGATGAG TCCTCCGACT CCGTTGTTT AGGGAACTTG GCCCCTCCGC CTCCAACGTC 541 TCAGCCAAGA TAGCGGGACT GCATGGAGT TTSGTGACAG AGTGAGACTC CCTCAAGAAA AGTCGGTTCT ATCGCGGTGA CGTGACCTCG GACCACTGTC TCACTCTGAG GGAGTGGAGG CTTTCCTTCC CTTCCCTTTC CCTTCCCTTCC CCTCCCCTCC 661 AAAGAAAAGA ATACTGGAAC TTGTTGAAGG CAGAGACTTT ATTTTCATAT CCCGGCTATG TTTCTTTTCT TATGACCTTG AACAACTTCC GTCTCTTGAAGTATA ACCAGAAGAA		TGTTTTGGT	A AAAAATTTOG	GCCCGTALLF	LIBAGIGEGG	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
AACCCCATCC 411 AACCCCATCT CTACTAAAA TATAAAAATT ASTTSGGGGT GGTGGGGGG TCCTGTAGTC TTSGGGTAGA GATGATTTTT ATSTTTTAA TUSACCCGCA CCACCGCCCG AGGACATCAG 481 CTASTTACTC AGGAGGTGA GGCASGAGAA TUSCTTGAAC CGGGGAGGGG GAGGTTGCAG GGTCGATGAG TCCTCCGACT CCGTTGTTT AGGGAACTTG GCCCCTCCGC CTCCAACGTC 541 TCAGCCAAGA TAGCGGGACT GCATGGAGT TTSGTGACAG AGTGAGACTC CCTCAAGAAA AGTCGGTTCT ATCGCGGTGA CGTGACCTCG GACCACTGTC TCACTCTGAG GGAGTGGAGG CTTTCCTTCC CTTCCCTTTC CCTTCCCTTCC CCTCCCCTCC 661 AAAGAAAAGA ATACTGGAAC TTGTTGAAGG CAGAGACTTT ATTTTCATAT CCCGGCTATG TTTCTTTTCT TATGACCTTG AACAACTTCC GTCTCTTGAAGTATA ACCAGAAGAA			- >000000	COLLETCGAS	AAATCGAGAC	CATCCTGGC	AACATGGTGA
481 CONSCINCTO AGRASSITSA GERASSAGAN TESCTTGANC CEGGGAGGEG GAGGTTGCAG GGTCSATSAS TECTCOGNOT COSTICUTIT NECGANCTTS GCCCCTCCGC CTCCANCGTC 541 TCAGCCNAGA TAGCGCCACT SCACTSGASC TESCTGACAG AGTGAGACTC CCTCAAGAAN AGTCGGTTCT ATCGCSSTGA CSTSACCTCS GACCACTGTC TCACTCTGAG GGASTTOTTT 601 GAAASSAAGG GAAGGGAAAG SSAASSAASS GGAGGGGAGG GGAGGGGAGG CTTTCCTTCC CTTCCCTTTC CCTTCCTTCC CCTCCCCTCC 661 AAAGAAAAGA ATACTGGAAC TTGTTGAAGG CAGAGACTTT ATTTTCATAT CCCGGCTATG TTTCTTTTCT TATGACCTTG AACAACTTCC GTCTCTGAAA TAAAAGTATA GGGCCGATAC	,361	TOOGGGTCT	G TOCGUCTAGE	GCTTCAGCTC	TITAGCTCTC	GTAGGACCGC	TIGIACCACT
481 CONSCINCTO AGRASSITSA GERASSAGAN TESCTTGANC CEGGGAGGEG GAGGTTGCAG GGTCSATSAS TECTCOGNOT COSTICUTIT NECGANCTTS GCCCCTCCGC CTCCANCGTC 541 TCAGCCNAGA TAGCGCCACT SCACTSGASC TESCTGACAG AGTGAGACTC CCTCAAGAAN AGTCGGTTCT ATCGCSSTGA CSTSACCTCS GACCACTGTC TCACTCTGAG GGASTTOTTT 601 GAAASSAAGG GAAGGGAAAG SSAASSAASS GGAGGGGAGG GGAGGGGAGG CTTTCCTTCC CTTCCCTTTC CCTTCCTTCC CCTCCCCTCC 661 AAAGAAAAGA ATACTGGAAC TTGTTGAAGG CAGAGACTTT ATTTTCATAT CCCGGCTATG TTTCTTTTCT TATGACCTTG AACAACTTCC GTCTCTGAAA TAAAAGTATA GGGCCGATAC				•			TOOTSTAGTS
481 STARSTARTS AGRAGATINA GREATHARAS TESTTIGANS CREGRAGES GAGGTTGCAG GGTSATINA TESTERACT GEOCOTOCOC CTCCAACGTC 541 TCAGGCANGA TAGGSCOACT SCACTAGASI CTAGTGACAG AGTGAGACTC CCTCAAGAAA AGTCGGTTCT ATCGCSSTGA CSTSACCTCS GACCACTGTC TCACTCTGAG GGAGTTCTTT 601 GAAASSAAGG GAAGGGAAAG SSAASSAAGS GGAGGGAAG GGAGGGAG	4 2 3	AACCCCATC	T CTACTAAAAA	TA DALALAN AT STITTINA	ATTTGGGGG	A CEACCGCEC	AGGACATCAG
541 TCAGCCAAGA TAGCGCGACT GCACTGGAGC CTGAAGAAA AGTCGGTTCT ATCGCGGTGA CGTGACCTCG GACCACTGTC TCACTCTGAG GGAGTTCTTT 601 GAAAGGAAGG GAAGGGAAAG GGAAGGGAAGG GGAGGGGAGG CCTCCCCTCC				. •			
541 TCAGCCAAGA TAGCGCGACT GCACTGGAGC CTGAAGAAA AGTCGGTTCT ATCGCGGTGA CGTGACCTCG GACCACTGTC TCACTCTGAG GGAGTTCTTT 601 GAAAGGAAGG GAAGGGAAAG GGAAGGGAAGG GGAGGGGAGG CCTCCCCTCC	4 8	: ccasctact	C AGGAGGCTGA	ASSESACE	A TOSCTTGAA	C CGGGGAGGC	G GAGGTTGCAG
AGTOGGTTOT ATCGCGGTA COLORES ON		GGTCGATGA	TOKEDOTOOT E.	COSTICTION	- AUCCAACIA	3 600001000	
AGTOGGTTOT ATCGCGGTA COLORES ON				>	n stagtgaca	G AGTGAGACT	C CCTCAAGAAA
601 GAAASSAAGG GAAGGGAAAG SSAASSAAGS SGAGGGGAAG GGAGGGGAGG CTTCCTTCC CTTCCCTTCC	54	1 TCAGUUAAG AGTCGGTTC	T ATCGCGGTGA	A CSTGACCTC	G GACCACTGT	C TCACTCTGA	G GGAGTTOTTT
CTTTCCTTCC CTTCCCTTC CCTTCCTTCC CCTTCCTTCC CCTTCCTTCC CTTCCTTCC CTTCCTTCATAT CCCGGCTATG 661 AAAGAAAAGA ATACTGGAAC TTGTTGAAGG CAGAGACTTT ATTTTCATAT CCCGGCTATG TTTCTTTTCT TATGACCTTG AACAACTTCC GTCTCTGAAA TAAAAGTATA GGGCCGATAC			• .				
661 AAAGAAAGA ATACTGGAAC TTGTTGAAGG CAGAGACTTT ATTTTCATAT CCCGGCTATG TTTCTTTTCT TATGACCTTG AACAACTTCC GTCTCTGAAA TAAAAGTATA GGGCCGATAC	60	1 GAAAGGAAG	G GAAGGGAAAG	S GGAAGGAAG COTTOSTTO	SO GGAGGGGAA SO COTOCOCTT	C CCTCCCCTC	C CCTCCCCTCC
TTTCTTTTCT TATGACCIIG AACAACIICO OOOOO		*		•		•	
TTTCTTTTCT TATGACCIIG AACAACIICO OOOOO			SA ATACTGGAA	C_TTGTTGAAC	G CAGAGACTT	T ATTTTCATA	T CCCGGCTATG
721 TCTGGCTACT GTCTTACGTA ATAGATATAA AATCAATCTT GGTTGGATTA ACCAGAAGAA AGACCGATGA CAGAATGCAT TATCTATATT TTAGTTAGAA CCAACCTAAT TGGTCTTCTT	96	TTTCTTTT	CT TATGACCTT	G AACAACTTO	CC GTCTCTGAA	W INWANGINI	n dooconinc
721 TCTGGCTACT GTCTTACGTA ALAGALAIAA AALGATAGAA CCAACCTAAT TGGTCTTCTT AGACCGATGA CAGAATGCAT TATCTATATT TTAGTTAGAA CCAACCTAAT TGGTCTTCTT	٠					TT GGTTGGAT	TA ACCAGAAGAA
	72	1 TCTGGCTA AGACCGAT	CT GTCTTACGT GA CAGAATGCA	T.TATCTATA	TT TTAGTTAG	A CCAACCTA	AT TGGTCTTCTT

FIGURE 58B

781	TGAGAAGA ACTCTTCT	ATA TA	ATTCTGGTA TAAGACCAT	AGTTGAATAC TCAACTTATG	TTAGCACCCA AAICGTGGGT	GGGGTAATCA CCCCATTAGT	CCTTCGACAG CCAACCTGTC
841	GACCAGG? CTGGTCC	TCC A	AAGACTGTT TTCTGACAA	AAGAGTCTTC TTCTCAGAAG	TGACTCCAAA ACTGAGGTTT	CTCAGTGCTC GAGTCACGAG	CCTCCAGTGC GGAGGTCACG
901	CACAAGC: GTGTTCG!	NA C	TCCATAAAG AGGTATTTC	GTATCCTGTG CATAGGACAC	CTGAATAGAG GACTTATCTC	ACTGTAGAGT TGACATCTCA	CCATCTTTCA
961	AAGACAG TICTGTC	ACA T TGT A	TATATTAAG ATATAATTC	TCTTAGCTTT AGAATCGAAA	GTGACTTCGA CACTGAAGCT	ATGACTTACC TACTGAATGG	TAATCTAGCT ATTAGATCGA
1021	AAATTTC TTTAAAG	AGT T TCA A	TTACCATGT AATGGTACA	GTAAATCAGG CATTTAGTCC	AAGAGTAATA TTCTCATTAT	GAACAAACCT CTTGTTTGGA	TGAAGGGTCC ACTTCCCAGG
1081	CAATGGT GTTACCA	GAT I	CARATGREET ATTACTECA	GATGTACATA CTACATGTAT	ACATGCATCA TGTACGTAGT	CTCATAATAA GAGTATTATT	GTGCTCTTTA CACGAGAAAT
1141	AATATTA TTATAAT	GTC A	ACTATTATTA T AA TAATADT	GCCATCTCTC CGGTAGAGAG	TAATCTAAAC	ACANTAGGAN TGTTATCCTT	CATTAGGAAA GTAATCCTTT
1201	GATATAG CTATATO	TAC I	ATTCAGGATT TAAGTCCTAA	TTGTTAGAA. AACAATCTT	A GAGATGAAGA I CTCTACTIC	AATTCCCTTC	CANGENCECE
1261	TAGGTCA ATCCAGT	TOT A	AGGAGTTGTC TCCTCAACAG	ATGGTTCAT TACCAAGIA	GTTGACAAA	TAATTTTCCC A ATTAAAAGC	ANATTITICA TITANANAOT
1321	CTTTGCT GAAACGI	CAG A	AAAGTCTACA TTTCAGATGT	TCGAASCAC AGOTTCGTS	CAAGACTGT	A CAATCTAGT T GTTAGATCA	CATCITITIC COLGANANG
138	CACTTAL GTGAAT	ACTC TGAG	ATACTUIGC: TAIGACACG	CTCCCTTTC A GAGGGAAAG	T CAAAGCAAA A STTTCGTTT	C TGTTTGCTA G ACAAACGAT	T TCCTTGAATA A AGGAACTTAT
144	CACTOTY GTGAGA	GAGT CTCA	TTTCTGCCT AAAGACGGA	TIGOCIACTO A ACGGATGAG	A SCTGGCCA T CBACCGGST	T GGCCCCTAA A CCGGGGATT	T GTTTCTTCTC A CAAAGAAGAG
150	ATCTCC. TAGAGG	ACTG TGAC	GGTCAAATC CCAGTTTAG	C TACCTGTAC C ATGGACATO	C TTATESTIC G AATACCAAS	T GTTAAAAGC	A GTGCTTCCAT T CACGAAGGTA
156	1 AAAGTA	CICC	TAGCAAATG ATCGTTTAC	C ACGSCCTCT	C TOACGGATT	A TAAGAACAC T ATTCTTGTG	A GTTTATTTA T CAAATAAAAT
162							A ATTTATAGCA T TAAATATCGT
168	1 GGGATA CCCTAT	TAAT ATTA	TTTGTATGA AAACATACT	T GATTCTTC A CTAAGAAG	TG GTTAATCCI AC CAATTAGG	M CCAAGATTO	TITTATATOT ET AAATATAGA
174	1 ATTACC TAATGC	TAAG Cattc	ACAGTAGE TGTCATCGC	ea gacatago PT ctgtatog	CG GGATATGA GC CCTATACT	AA ATAAAGTC TT TATTTCAG	TO TOCCTTCAAC AG ACOGAAGTTG
	TICAM	BOTCA	TANGACO	JA 2010011111			CT CCCCTTCCTT
18	61 CCCTT	TCCCI	TCCCTTCC	TT TOTTTOTT	CT CCCTCAG	CCA CTCTGTCA LGT GAGACAG1	CC AGGCTCCAGT CG TCCGAGGTCA

FIGURE 58C

	•					
1921	GCAGTGGCGC CGTCACCGCG	TATCITGGCT ATAGAACCGA	CTGACGTTSG	YGCCCTCCC YGCCCTCCC	CGGTTCAAGC (GCCAAGTTCG	CTANGAGGAC
1981	CCTCAGCCTC GGAGTCGGAG	CTGAGTAGCT GACTCATCGA	GGGACTACAG CCCTGATGTC	GAGCCCGCCA CTCGGGCGGT	CCACGCCCAG GGTGCGGGTC	CTAATTTTTG GATTAAAAC
2041	TATTTTTAGT ATAAAAATCA	AGAGATGGGG TCTCTACCCC	TTTCACCATG AAAGIGGTAC	TTGGCCAGGA AACCGGTCCT	TGGTCTCGAT ACCAGAGCTA	tictogactt Aagagctgaa
2101	CGTGATCCGC GCACTAGGCG	CTGTCTGGGC GACAGACCGG	CTCCCAAAGT GAGGGTTTCA	GCTGGGATTA CGACCCTAAT	CAGGCGTGAG GTCCGCACTC	CCACCACGCC GGTGGTGCGG
2161	CCCCALATTT	AAATGGTTTT TTTACCAAAA	GTANTGTANG CATTACATTC	TGGAGGATAA ACCTCCTATT	TACCCTACAT ATGGGATGTA	GTTTATTAAT CAAATAATTA
2221	AACAATAATA TIGTTATTAT	TICTTIAGGA AAGAAATCCT	ANAGOGEGE TTTTCCCGCG	CCACCACTAA	TACACTGATG ATGTGACTAC	ACAAGCATTC TGTTCGTAAG
2281	CCGACTATGG GGCTGATACC	AAAAAAAGCG TTTTTTTCGC	CAGCTTTTTC GTCGAAAAAG	TGCTCTGCTT ACGAGACGAA	TTATTCAGTA AATAAGTCAT	GAGTATTGTA CTCATAACAT
2341	GAGATTGTAT CTCTAACATA	AGAATTTCAG TCITAAAGTC	AGTIGAATAA TCAACTTATT	AAGTTCCTCA TTCAAGGAG1	TAATTATAGG TATTAATATCC	AGTGGAGAGA TCACCICTCT
2401	GGAGAGTCTC CCTCTCAGAG	TTTCTTCCTT	TCATTTTTAT AGTAAAAATA	ATTTANGCAN TANATTCOTT	GAGCTGGACA CTCGACCTGT	TTTTCCAAGA AAAAGGTTCT
2461	AAGTTTTTTT	TTTTTAAGGC	GCCTCTCAAA CGGAGAGTTT	TCCCCGCCT	TITECTTETE ALAGGAAGAG	CTGGAGGCAG GACCTCCGTC
2521	ATGTTGCCTC TACAACGGAG	TCTCTCTCGC AGAGAGAGCG	TCGGATTGGT AGCCTAACCA	TCAGTGCACT ASTCACGTG	CTAGAAACAC GATCTTTGTG	TGCTGTGGTG ACGACACCAC
2581	GAGAAACTGG CTCTTTGACC	ACCCAGGTC TGGGGTCCAG	TGGAGCGAAT ACCTCGCTTA	TCCAGCCTG(AGGTCGGAC	AGGGCTGATA TCCCGACTAT	AGCGAGGCAT TCGCTCCGTA
2641	TAGTGAGATT ATCACTCTAA	GAGAGAGACT CTCTCTCTGA	TTACCCCGCC AATGGGGCGG	CACCACCAA	CTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	AGTAGAGCAG TCATCTCGTC
2701	CASCACAGGG GTCGTGTCCG	: cccccxoccc	CCTCCGGCCG	TOTECTOSO AGACGABOB	COORGATGTG GGCTCTACAC	GAATCTCCTT
2761	CACGAAACCG	ACTOGGCTGT TGAGCOGACA	CCCGCTGGCG	ceccacca ceccacca	C GCTGGCTGTG C GGACGGACAC	CCCTGGGGCC
2821	CTGGTGCTGG	GCCCACCGAA	GAAAGAGGAG	G GGCTTCCTC G CCGAAGGAG	T TCGGTAGGGG A AGCCATCCCC	CCCCCCCACACCC
2881	GGAGCAAACG	TOGGAGTOTT AGCOTCAGAA	CCCCGTGGTG	COCCOCTOC GGCCCACG	T GGGACTCGCG A CCCTGAGCGG	GGTCAGCTGC CCAGTCGACG
2941	CGAGTGGGAT GCTCACCCTI	CCTGTTGCTG	GTCTTCCCCI CAGAASGGG	, cccccccc , cccccccc	A TTAGGGTCGG T AATCCCAGCG	GGTAATOTGG CCATTACACC
3001	CCACTOSTG					

FIG. 59

HO₂C
$$\stackrel{\circ}{=}$$
 $\stackrel{\circ}{=}$ $\stackrel{\circ}{=}$

Acivicin

Azotomycin, becomes active by in vivo conversion to DON

6-diazo-5-oxo-norleucine, DON

NAAG 1 Identical in all respects to an authentic sample from Sigma.

- N.N-dimethylformamide - palladium on charcoal tetrahydrofurane - acetic anhydride Pd/C = palladlum on ErOAc = ethylacetate DMF

HOA

FIG. 67

FIG. 69

541 GCTCAGACTC TTTTATTAAA TTCCAGTTTT GACTTTGCCA CTTCTTAGTG GCCTTGAACA CGAGTCTGAG AAATAATTT AAGGTCAAAA CTGAAACGGT GAAGAATCAC CGGAACTTGT

FIG. 72A

. 60	Grecregaac	GGCGATTAGG CCGCTAATCC	GGAACGGTGC CCTTGCCACG	gtagaactga catcttgact	GACAGAGGAA CTGTCTCCTT	TGTTTGTTTG ACAAACAAAC	GCTTGGGAAC	GCTGTTTTTC CGACAAAAG	ACACAGGCAA TGTGTCCGTT
	TGGTGCCGCG GTGCTGGGAC ACCACGCCGC CACGACCCTG	CCCCAGGGGC	AGGGTAGCTG TCCCATCGAC	CAGGTTGAGG GTCCAACTCC	AGCCCTGCAA TCGGGACGTT	TTGTTTTGTT	ACAGAGGCAA TGTCTCCGTT	COGGTCTTTT	AAGCAGAACC ACACAGGCAA TICGICIIGG IGIGICGGII
40	GTCTTCCCCG	TGCTGGTCTT	ACTTAGGAGG TCAATCCTCC	GACAGTCACT	CAAGTGCTGG GTTCACGACC	ttgttttgtt Aacaaaacaa	CTTGGAAGTA GAACCTTCAT	TCTTTACCAG AGAAATGGTC	TTTCTAAGAA AAAGATTCTT
3.0	AAACCTCGGA TTTGGAGGCT	GGGATCCTGT	GCACCCCTCG	CTGCTGGTAG	AGGAAGGTTC TCCTTCCAAG	TTGTTTTGTT AACAAAACAA	TTCTTTCTTC AAGAAAGAAG	TCTGGACAGG Agacctgtcc	TTGATCCAAC AACTAGGTTG
20	CCTCGCGGAG	GCTGCCGAGT	TGTGGGGTGA ACACCCCACT	TCTC3ACAAG CTGCTGGTAG AGAGCTGTTC GACGACCATC	AACTGGGCGT AGGAAGGTTC TTGACCCGCA TCCTTCCAAG	TGCTTTTGTT ACGAAAACAA	TCTCTGTGCA AGAGACACGT	TGTGTGAACC AGGTCAGCAA ACACACTTGG TCCAGTCGTT	ATTTGCAGAC TAAACGTCTG
01	TAGGGGGGGG ATCCCCCCGC	TCGCGGGTCA AGCGCCCAGT	GTCGGGGTAA	AGGGCTGAGT TCCCGACTCA	GAGAACCTGA CTCTTGGACT	GTTTTTTT CAAAAAAAAAAAAAA	TTTTTTACC AAAAAATGG	TGTGTGAACC ACACACTTGG	CTGGGTACTG GACCCATGAC
	- . न	61	121	181	14.	301	361	421	481

TATAATAGAC ATATTATCTG GATGAGGATA CTACTCCTAT GGATAAAATA CCTATTTAT TCCCTCTCAG CGTTAGTTAC AGGGAGAGTC GCAATCAATG TCAATGGCTC AGTTACCGAG 601

TACTGGGATT GGATCGTGTC ATGACCCTAA CCTAGCACAG ATGTAAATCT TACATTTAGA TATTATATCG ATATATAGC CATTATCATT GTAATACTAA CAAATTATTO GTTTAATAAC 661

TACTCCTCAT TGGACTITAA TACACAGGAC ATGAGGAGTA ACCTGAAATT ATGTGTCCTG TTTACCAAGA ATAAAGAAGA TATTTCTTCT AAGCGGTGAA TTCGCCACTT

721

TTCTTGACCC TCTTTCGGGA AAGAACTGGG AGAAAGCCCT CTGCTCGGAA GACGAGCCTT TATCACCAGG TAGTCCACTC ATCAGGTGAG ATAGTGGTCC TAGTCTAAGG ATCAGATTCC 781

TITAAACAAA TICAATAICI ICCACTAGGI

AAGTTATAGA AGGTGATCGA

TGCTCATAAC ATCCCGTACC TGGTCTACCC AAATTTGTTT AAATCTTCTT

ACCAGATOGO

TAGGGCATGG

TTTAGAAGAA

841

AATCTTCATC TTAGAAGTAG CTAAAAACTT GGTGTGTGAC ACGAGTATTG GATITITICAL CCACACACTG GTTGTTANA CAACAATTTT AGTGGAACCC TCACCTTGGG 106

TAAGGCACGA ATTCCGTGCT ICCIGGIAIT GCCCTCACIC ICAICCCIGI AGGACCATAA CGGGAGTGAG AGTAGGGACA TAAATAAAA ATTTTATTCT TCTTAAAAGG AGAATTTTCC 961

1011 PARTEGETER CRERGARGAS TICITIATIG ATGICCOCC CCCACCCACT AGGATICICI	GICACCGACT GIGTCTTCTC AGGAATAAC TACAGGCGGG GGGTGGGTGA TCCTAAGAGA
CCCACCCACT	GGGTGGSTGA
ATGTCCGCCC	TACAGGCGGG
TTCTTTATTG	AAGAAATAAC
CACAGAAGAG	GTGTCTTCTC
ADECOUPENCY	GTCACCGACT
1021	

FIG. 72C

CAGATCTCAG GTCTAGAGTC GTTCATTTT CAAGTAAAAA AGAAGTAGGA TCTTCATCCT CGGAGGTAGG GCCTCCATCC GGGGGATGTC CCCCCTACAG GCTCTCCCCT CGAGAGGGGA 1081

CAAGICITIC GTTCAGAAAG CACTCTAATC GTGAGATTAG CCTGATCCCT GGACTAGGGA TGTGGTGTTT AGCAGGAGTC ACACCACAAA TCGTCCTCAG AAGTTCGTAG TTCAAGCATC 1141

TTTAATAGC CAAACGCAGG TTAGTACATA AAATTATACG AATCATGTAT GITTGCGICC TGTCCACCTT AGAATAAAGG TCTTATTTCC ACAGGTGGAA ACANATACG TGTTTTATGC 1201

TTAATAATTG AATTATTAAC TGATCTTATT ACTAGAATAA GCGATTAAGA CATACACGIA AACATACGIA TTGTATGCAT GTATCTGCAT ATGTATATAT **TACATATATA** 1261

CCAGATCCTG GGTCTAGGAC TACTTTATTC ATGAAATAAG ATTTTGTAAC 1 TTGGGGGACTA AACCCCTGAT ACTITCGACC TGAAAGCTGG GALAGCTCCA CTTTCGAGGT 1321

AAGCCAACTG TTCGGTTGAC TTCAGGTTAA AAGTCCAATT CCTTATCTCC TITATITIGG ACCITAGAAC TCGAATCTTG AAATAAACCC TAATTTCTCT ATTAAAGAGA 1381

ACCCACCTGA TGCGTGCACT CCATTGITIC IGGCCGCCTA GGTAACAAAG ACCGGCGGAT TAGATCGATA ATCTAGCTAT TGACTGCAGG ACTGACGTCC STTCCAGATT CAAGGTCTAA 1441

CTGAACCTAA GACTTGGATT GTAGCTGTCT CATCGACAGA TAGTTTCATT (GGGTAAATTG CCCATTTAAC CAGAGAGGCT GTCTCTCCGA GGGTGTCTGG CCACAGACC 1501

GITICAGAAT

TITIGITITA

TCTCACAGCA

AATAAACTTT

TTGTGAACCT

TTAAAGGAAG

ATCTTCAGAC

GTCTCGTTTA

CANAGICTIA TTATTTGAAA AATAATTTAT TTATTAAATA AAAACAAAT AACACTTGGA AGAGTCTCCT AATTTCCTTC TITGCGITIG AAACGCAAAC TAGAAGTCTG ACTTCACTGG TGAAGTGACC AGAGTGCGGA CAGAGCAAAT TCTCACGCCT 1561 1621

CAGCAGAGGA GICGICTCCT TTATTTGAGT AATAAACTCA TATTAAATGC ATAATTTACG TATAAAAATG TAATTAAGCA ATATTTTAC ATTAATTCGT ATATAAGTAT TATATTCATA 1681

FIG. 72D

TTCAGAACAT AACTCTTGTA ACGGAAGTAA TGCCTTCATT AAATACTTTC ATCTTCCACC TAGAGGAAAA TAGAAGGTGG ATCTCCTTTT AGATAGAAAC TTTATGAAAG **FCTATCTTTG** 1741

GATTATCTCA CTAATAGAGT TTTCGTCCT AAAAGCAGGA CITIGIAAIT ACAGIAAAAI TGTCATTTTA GAAACATTAA GGGTAATCAA CCCATTAGIT GAGCAAATGT CTCGTTTACA 1801

CAGCAATACC TATCATTGAA GTTGGATAAG AAATATTTTG GTCGTTATGG ATAGTAACTY CAACCTATTC TTTATAAAAC CTTAGAATAA GAATCTTATT TAAAACATTT ATTTTCTANA 1861

AGTAGGCAAG TCATCCGTTC AATCTGTTTG CATGACTCTT TTTCAGTGAA TTAGACAAAC GTACTGAGAA AAAGTCACTT GCAACTTAAA GGTTGAATTT CAATTGGITT GTTAACCAAA 1921

ATCTCACCTA ATGTCAGAGG TAATATTGAT AATTTGTGTT TAGAGTGGAT TACAGTCTCC ATTATAACTA TTAAACACAA TCTTTAATTT TAAGTCTTTA ATTCAGAAAT AGANATTAAA 1981

ATCTATAGGC TCGTATCTCA TIAITCAGGA TAGATATCCG AGCATAGAGT AATAAGTCCT AATGITTATT ATGTATGTTG TTATTACTTT AATAATGAAA TTACAAATAA TACATACAAC 2041

2101 TGCCTATTTT TGGATGTATT TTTCA ACGGATAAAA ACCTACATAA AAAGT

TATTTTAT ATAMAMATA AGATAGGACT TCTATCCTGA ACGAGCCTAT TGCTCGGATA GCCATGAGAT CCCTACTCTA ATCAAAAATA TAGTTTTAT ACTITITATG TGAAAATAC

FIG. 73A

ATTACCTCTG ACATTAGGTG TAATGGAGAC TGTAATGCAC AATTATCAAT TTAATAGTTA CATTTTGTGT GTAAAACACA TGTATTATT ACATAATAAA TATTGTTGTA 5

ATGCAAACAG TACGTTTGTC AAAAAGAGTC ACTITCACTG TGAAAGTGAC ACAGAACGGA TOTOTIGGGT TTAMATTA AATTTTAATT *TCTATAAGAC* AGATATTCTG 121

GATAGGTATT CAACTTCAAT TITITITATC (AACGTTTTAT TTGCAAAATA ACGTTTGGTT TGCAACCAA TAAAAATTCA ATTTTAAGT 181

CGAGATGTTC GCTCTACAAG GGGTGTCANA CCCACAGITIT TTCAACTAAT (GTAATTAACA CATTAATTGT GATTCTATAC CTAAGATATG CGACAATTAA GCTGTTAATT 241

ATCTTCCTCT TAGAAGGAGA ATTTCAAAGA TAAAGTTTCT TCTACTTTCA AGATCCACCT TOTAGE TOTAGE CCGTTTTTCC GGCANANAGG TGAAAATGAA ACTTTTACTT 301

AATTATGAAT ATATTTCAAA TTAATACTTA TATAAAGTTT ATAACGAATT TATTGCTTAA AATACATTTT ATAAGCATTT TATTCGTAAA CGACTGAGTT GCTGACTCAA 361

CTGATTCTGA GACTAAGACT CTAATTTGCT TAAGTCTGAA GATTAAACGA ATTCAGACTT CAACTTCCTT GTTGAAGGAA ATTTCCAAGT TAAAGGTTCA TAAATAAATT ATTTATTA 421

FIG. 73B

AACTAAAACA AATGCTCTGT GAGAGTTTGC GTTTCCAGTG AAGTAGCGTG AGAAATCCAA TTGATTTTGT TTACGAGACA CTCTCAAACG CAAAGGTCAC TTCATCGCAC TCTTTAGGTT AACTAAAACA 481

CAGACACCAG TGCACGATAG GTCTGTGGTC ACGTGCTATC GTCAGACAGC TACATGAAAC TACATTTACC AGCTCTGTGC CAGTCTGTCG ATGTACTTTG ATGTAAATGG TCGAGAGACG 541

NNNNNNNN AGACCTTGCA NNNNNNNNN TCTGGAACGT CCANNNNNN GCTNNNNNNN CGCAGAACAT GTAGCTAGAT CTCAGTCATA GCGTCTTGTA CATCGATCTA GAGTCAGTAT CGCAGAACAT 601

GTITATITAG AGAAATTACA CAAATAAATC TCTITAATGT CTTGGCTITT AACCTGAAGG AGATAAGGCA AGATTCCAGG CAACCGAAAA TTGGACTTCC TCTATTCCGT TCTAAGGTCC CTTGGCTTTT 661

721 GGATCTGGGA ATAAAGTAGT TACAAAATTA GTCCCCAACC AGCTTTCATG GAGCTTTCAA CCTAGACCCT TATTTCATCA ATGTTTTAAT CAGGGGTTGG TCGAAAGTAC CTCGAAAGTT

FIG. 73C

ATACATGCAT TATGTACGTA ACATACATAT I TTCTAGTTCT TAATCGCATG CATACAATGC AAGATCAAGA ATTAGCGTAC GTATGTTACG AATAATTAAT TTATTAATTA 781

TTTTGTCTTT AAAACAGAAA ATGAITGGAC GCAAACGGAA ATAAGAITCC ACCTGTGCAT TACTAACCTG CGTTTGCCTT TATTCTAAGG TGGACACGTA TAATTTTATG ATTANATAC 841

TCAGGAAACA CCACACTGAG GACGAGATGN NNNNNNNNN AGTCCTTTGT GGTGTGACTC CTGCTCTACN NNNNNNNNNN CIGAACCAAT CICACICCCI AGICCITIGI GGIGIGACIC GAGTGAGGGA GACTIGGITA 901

961 NTAGTGGGTG GGGGGGGGG ATCAATAAAG AACTCTTCTG TGTCAGCCAC TGAGCACGGA NATCACCCCAC CCCCGGCTG TAGTTATTTC TTGAGAAGAC ACAGTCGGTG ACTCGTGCCT

GAGATGAAGA CTCTACTICT ATAAAGGGAT GAGAGTGAGG GCAANTACCA GAAGAATAAA ATCCTTTTAA TATTTCCCTA CTCTCACTCC CGTTNATGGT CTTCTTATTT TAGGAAAAIT 1021 ATAAAGGGAT

TOARGCTAGT ACTTCGATCA GIGICACACA CCNAAGITIT TAGAAATTG TIGGGGITCC GONTICAAAA ATCTITIAAC AACCCCAAGG CACAGTGTGT TTGTTATGAG AACAATACTC 1001

TIMAACCCAT CIGGICCIAG CCCIATICII IGAAICCCGA ACCITCIATA AACITAAACA AATITGGGTA GACCAGGATC GGGATAAGAA ACITAGGGCT TGGAAGATAT TTGAATTTGT

FIG. 73D

- GATACCTTAG ACTAGTCCTG TGATCAGGAC AGAATTCCCA GCAGGAGTGG ACTACCTGGT GATACCTTAG TCTTAAGGCT CGTCCTCACC TGATGGACCA CTATGGAATC AAGAGGGTCA TTCTCCCAGT 1201
- CGANATCCC GCTTTTAGGG TGTAITANAG TCCAATGAGG AGTATCTTGG TAAAATAATA ANTAAAGTCC ACATAATTTC AGGTTACTCC TCATAGAACC ATTTTATTAT TTATTTCAGG 1261
- AGTACTGTGC TAGGAGATTI ACATGCTATA TTATTTACTA TNNNNNNNN AATTTGCAGA TCATGACACG ATCCTCTAAA TGTACGATAT AATAAATGAT ANNNNNNNN TFAAACGTCT 1321
- GAGGGACTCG GRAACTTSTT CTCCCTGAGC CATTGAACAA CTCATCATAA AATAGGGTAA CTAACGCTGA GAGTAGTAIT TTATCCCATT GATTGCGACT TAATATTATC ATTATATAG 1381
- CTOGAATITI AATAAAAGAG TCTAGCTTGC GACCILAAAA TTATITITCTC AGATCGAACG AAGAAGTGGC AAAGTCAAAA TTCTTCACCG TTTCAGTTTT CAAGGCCACT GTTCCGGTGA 1441
- CTGCTTTTCT TAGAAAGTTG GANNAAGTCT CANATCAGTA CCCAGGAAAA GACGAAAAAGA ATCTTTCAAC CTNNTTCAGA GTNTAGTCAT GGGTCCTTTT GACACACCAA CTGTGTGGTT 1501
- 1561 ACAGCAAAAG ACCCGCTGGT AAAGACCTGT CCAGATTGCT GACCTGGTTC ACACANNTCC

FIG. 73E

TGTCGTTTTC TGGGCGACCA TTTCTGGACA GGTCTAACGA CTGGACCAAG TGTGTNNAGG

CTGTTACTTC CAASGAAGAA AGAATGCACA GAGAGGTAAA AAAACAAACA GACAATGAAG GTTCCTTCTT TCTTACGTGT CTCTCCATTT TTTTGTTTGT TTCGAACGGA 1621 AAGCTTGCCT

AAACTTCCTC TTTGAAGGAG TIGGTITGIT 1681 AACCAAACAA

GGCTCCAGCA CTTGGAACCT TCCTACGTCC TANTTTCAGG TTCTCTCAGT CCGAGGTCGT GAACCTTGGA AGGATGCAGG AINAAAGTCC AAGAGAGTCA ACAGAACGTC 1741 TGTCTTGCAG

ACCTGAGTGA CTGTCCTACC AGCAGCTTGT CGAGAACTCA GCCCTGCACC TGGACTCACT GACAGGATGG TCGTCGAACA GCTCTTGAGT CGGGACGTGG 1801 TCTACCCTCA ACCTGAGTGA AGATGGGAGT

1861 GITCCCAGCT ACCCTCCTCC TAACTCGASG GGIGCT CAAGGGICGA TGGGAGGAGG ATIGAGCTCC CCACGA

FIG. 74A

9-	taagactcat Attctgagta
o –	CCTACCCAAA
	GTCCTGTTGT CAGGACAACA
00	TCATTATGAT AGTAATACTA
20	GAGCCCTAGC
10	1 GGATICTGTT GAGCCCTAGC TCATTATGAT GTCCTGTTGT CCTACCCAAÁ TAAGACTCAT CCTAAGACAA CTCGGGATCG AGTAATACTA CAGGACAACA GGATGGGTTT ATTCTGAGTA

CCCAACTACA TCTCAATAAT TAATGAAGAT GGAAATGAGG TAAAAAATAA ATAAAAAAT GGGTTGATGT AGAGTTATTA ATTACTTCTA CCTTTACTCC ATTITITATT TATTTATTTA 61

<u>-</u>

ATAATGTTCT TATTACAAGA CTTCTATGAA 2 TTCCCCCCCA TTTATTATTT TTTCAATAC AAGGGGGGT AATAATAAA AAAGTTTATG TITICITIGE AAAAGAAACA 121

CTGTGAATAC CTTTAATATC GACACTTATG GAAATTATAG TAGGGAGAGA TITATAAITA TCTITAGITA TAATAACCTI

ATCCCTCTCT AAATATTAAT AGAAATCAAT ATTATTGGAA

181

GAAGTCGGGA TCATTATCCG GTGTCAACTA CTTTCCTATG ATGTTGAGTT ACTGGGTTTA AGTAATAGGC CACAGTTGAT GAAAGCATAC TACAACTCAA TGACCCAAAT 241

AATAATGCTG TAAANNNNN AGTTAGTCTA CACACCAATA TCAAATATGA TATACTTGTA TTATTACGAC ATTINNNNNN TCAATCAGAT GTGTGGTTAT AGTTTATACT ATATGAACAT 301 AATAATGCTG TAAANNNNN AGTTAGTCTA

CITITITICI TITITITITI GARARANGA AAAAAAAAAA AAAGAGGTT CTATGAATA TTTTCTCCAA CATAAAAAA GATACTTTAT GTATTTTTCT CTATGAAATA 361 AACCTCCAAG TTGGAGGTTC

FIG. 74B

GACCCGAGTG CTCGGCTCAC TCCAGATGGA GITICACICC TGTCAGGCAG GCNGAGTGCA GTGGTGCCAT AGGTCTACCT CAAAGTGAGG ACAGTCCGTC CGNCTCACGT CACCACGGTA TCCAGATGGA 421

TGCAACCICC ACCICCCAIG ITCAAGGGAT ICTCCITCCI CAGICTCCIG AGTAGCIGGG ACCITOGAGO TOGAGGOTAC AAGIICCCIA AGAGGAAGGA OICAGAGGAC ICAICGACCC 481

ATTACAGGIG IGCACCACCA CACCCAGCIA AITTIIGIAT ITTIAATAGA GACAGGGIIT TAATGICCAC ACGIGGIGGI GIGGGICGAI TAAAAACAIA AAAATIAICI CIGICCCAAA 541

CATCGATGIT GGCCAGGCIA GICTCGAACT CCTGACCICT AGGIGATCCA CCCGCCTCAG GTAGCIACAA CCGGTCCGAT CAGAGCTTGA GGACTGGAGA TCCACTAGGT GGGCGGAGTC CATCGATGTT 601

GGAGGGTTTC AACATCTTAA TGTGCACACT CCGTGACGAG ACCGGTCCTC TATGTAAAAA 661 CCTCCCAAAG TTGTAGAATT ACACGTGTGA GGCACTGCTC TGGCCAGGAG ATACATTTTT

CTATCCAAAT TAAATATTTC TGTGACGTGT CTAAACCTCA ACGACCCTTT AGTGCTAGGT 721 GATAGGITTA ATTIATAAAG ACACTGCACA GATTTGGAGT TGCTGGGAAA TCACGATCCA

TITITITIEG TACITAATSA TTATATCTCA ATTGATCAGG CIGGGTCGTT AAAAATAACC ATGAATTACT AATATAGAGT TAACTAGTCC GACCCAGCAA CTATGCATT CATACGTANA 781

FIG. 74C

TIGAACTCTG IGCGAAGAAT INGIGIGIGG ACATITGAGA GGACAGITTG GAGGCAAGGI AACITGAGAC ACGCTICITA AACACACAC IGTAAACTCT CCIGICAAAC CICCGITCCA TTGAACTCTG 841

TTTCAATCTT GTTTGCAAGT TGGGGCNTAT ACTGAGAAAG TAMANICATO TAMATITICIT ANACITAGAA CAAACGITCA ACCCCGIAIA TGACTCTITIC ATTTAAAGAA 901 ATTITAGIAG

GCAGATAAAT TGATATATT ATTATGATGT ATGTTCAATA TGAAAGATCA CGTCTATTTA ACTATATAA TAATACTACA TACAAGTTAT ACTTTCTAGT AGAAGACAAT TCTTCTGTTA 961

GTATGTANNT AGAATGAATT GTATGGAGTC AAAATCTCGA TGGCATACAT CATACATINNA TCTTACTTAA CATACCTCAG ITTTAGAGCT ACCGTATGTA CAAAATATA GTTITATATT 1021

TITUTATITA GGTAAGITCC ITTAGICCTI TIAITACTGG GCACTCTTAA GAAGAGTCCA CTTCTCAGGT 1081

CITGRAATAT GICCAGIIIG AGCAGIGAAC IGAAAAIGIC AIGIGAIIAA TCGTCACTTG ACTTTTAGAG TACACTAATT GAACTITATA CAGGICAAAC TTACATGTAG AATGTACATC 1141

CATAGIAGGT CAATAACCTC CTTTTATTGA CTAATGAATC GIAFCATCCA GITATTGGAG GAAAATAACT GATTACTTAG GTACATATAT AATTITITI TTANAMANA CATGTATATA 1207

1261 ACTICICIAA TGATTATAGG TCAAGAGATT ACTAATATGC

FIG. 75A

9-0	AATGAATATT TTACTTATAA
8	aatcaaaatà aaacagitaà agitigaità ciataatcaà acacaaaaa aatgaatati Tiagititat titgicaati icaaactaat gataitagit igigititit tiacitata
, 0.4	CTATAATCAÅ GATATTAGTT
30	agitigatta Tcaaactaat
50	AAACAGTTAA TTTGTCAATT
10	1 AATCAAAATÀ TTAGTTTTAT

GTATCAGATA	CATAGTCTAT
TTTGATGATA	AAACTACTAT
CCTTCAGGAT	GGAAGTCCTA
GTSAATGAAT	CACTTACTTA
TCAGTAGAGG	AGTCATCTCC
61 ATCITITATG TCAGTAGAGG GTGAATGAAT CCITCAGGAT TITGATGATA GTATCAGATA	TAGAAAATAC AGTCATCTCC CACTTACTTA GGAAGTCCTA AAACTACTAT CATAGTCTAI
61	-

AGATTCTOTC	SEGICETEAT ACGATETICA ACACTICITA AGIECTETAC TIATITAGIG ICTAAGACAG	
121 CCCAGCACTA TGCTAGAAGT TGTGAAGAAT TCACGAGATG AATAAATCAC AGATTCTGTC	TTATTTAGTG	
TCACGAGATG	AGTGCTCTAC	-
TGTGAAGAAT	ACACTTCTTA	
TGCTAGAAGT	ACGATCTTCA	
CCCAGCACTA	GGGTCGTGAT	
121		

	_
ATAACTAAAA	TATTGATTTT
AACCCCACCA	TIGGGGTGGT
181 CTCAAAATGG TTAGATCTAT TCAGGAAACA AAGCTAAAAA AACCCCACCA ATAACTAAAA	GAGITTIACC AATCTAGATA AGTCCTITGT TTCGATTITT TTGGGGTGGT TATTGATTIT
TCAGGAAACA	AGTCCTTTGT
TTAGATCTAT	AATCTAGATA
CTCAAAATGG	GAGTTTTACC
181	

AGAMAAGCTC	TCTTTTCGAG
ACCTATAGAA	TGGATATCTT
ATAAGTAAGT	TATTCATTCA
CAATCATAAA	GITAGIATIT
TGAAAAACAA	ACTITITIGIT
241 ATCAACCAAA TGAAAAACAA CAATCATAAA ATAAGTAAGT ACCTATAGAA AGAAAAGCTC	TAGITGGITT ACTITITGIT GITAGIAITI TAITCAITCA TGGATAICIT TCITITCGAG
241	

CTGTGTACTG	GACACATGAC
ATACTGTAAA	TATOACATTT
GGAATACTAT	CCTTATGATA
TCTTCCAAAA	AGAAGGTTTT
AAAAGATAAC	TTTTCTATIG
301 AGAGGAGGTA AAAAGATAAC TCTTCCAAAA GGAATACTAT ATACTGIAAA CTGTGTACTG	TCTCCTCCAT TITICIATIG AGAAGGITIT CCTIATGATA TATGACATIT GACACAIGAC
301	

CTAGTGTGAA	GATCACACTT
ACATACTAAG	TGTATGATTC
TAAGTGGCAT	ATTCACCGTA
NNNNNNTO	NNNNNNNAC
GAATTAGAAA	CITAAICITI
361 ATAGAAGGAA GAATTAGAAA NNNNNNNTG TAAGTGGCAT ACATACTAAG CTAGTGTGAA	TAICTICCIT CITAAICTIT NNNNNNAC AIICACGIA IGIAIGAIIG GAICACACIT
361	

FIG. 75E

CTCATGAATT CATTTAATTG GAGTACTTAA GTAATTAAC TTATACATCA ACGAAGTGTC TTCCAATCTT AATAIGTAGT TGCTTCACAG AAGGTTAGAA CACAAGCCTA GTGTTCGGAT

TTATGGTTTA AATACCAAAT CTTTCTAAAA GAAAGATTTT CGATTITGGA GCTAAAACCT TCTTGAGAGA ACTTGTAAGG ACTAAGCTTT TGATTCGAAA TGAACATTCC AGAACTCTCT

AAAAAGTACC TITGITIGGI AAICICAAIC AITATAATAG IGCITAGATA AIACCTAGGA ITITITCAIGG AAACAAACCA ITAGAGITAG TAATAITAIC ACGAAICIAI IAIGGAICCI 541

CACAACTGGC TAACCCCTTA GTGTTGACCG ATTGGGGAAT ACTITAAAAA AAAGTACATG TGAAATITIT ITICATGIAC ACAAATTAAA TATTAAATTT TGTTTAATTT ATAATTTAAA ACANATTANA 601

AAAAACACTG AACCAAATAT TTGGTTTATA TTTTTGTGAC CTTACTAGAT TCTCTNNNNN NATATGCACT GAAAAGAATG CITITCTIAC NTATACGTGA GAATGATCTA AGAGANNNN 199

AAGGAATATC AGAAGCAAAA TCTTCGITTI TTCCTTATAG TTAAATTGGA AAAAAATAGT AATTTAACCT TTTTTTATCA AAGTTTAAAA TTCAAATTTT 721 NIGITITIT NACAAAAAA

FIG. 750

AAACCGAAAC GAATCTACCT CTTAGATGGA TTIGGCTTTG ATCGTGCTTT TAGCACGAAA TCCTCAGAGG AGGAGTCTCC ANAGCAAGAA TTTCGTTCTT AAATAAATG TTTATTAC 781

GGTTCACATA GTTTANAGCT AGTCCTCAAT TCAGGAGTTA ACTITICCIA TCAAAAGGAT GATACCGGGT CTATGGCCCA TCTATCAAAG AGATAGTTTC 841

AACAACATA TCCTGACCAG TTGTTGTTAT AGGACTGGTC CACCAGATTC GTGGTCTAAG GTGCATAAAG CACGTATTTC GCAGAAGACT CGTCTTCTGA ATGGAATCTA TACCTTAGAT 106

GATCACGASG CTAGTGCTCC AAGGTGGGTG TTCCACCCAC TTGGGAGCCC TNCCAGCACT ANGGTCGTGA TCACNCTNAA AGTGNGANTT GTGAGGGGGC CACTCCCCC 196

CCTCTCTACT AAAAATAGAA GCAGAGATGA TTTTTATCTT TGACCAACAT GGTGAAACCG CCACTTEGG ACTGGTTGTA DAGACCAGCC CTCTGGTCGG TCAGGAGTTT 1021

CAGGAGACTG AGACAGGAGA TCTCTCTCT GTCCTCTGAC CAGCTGAACT GTCGACTTGA AAATTAGCCG NGCCTACGTG CTTCTAATCC TTTAATCGGC NCGGATGCAC GAAGATTAGG TTTAATCGGC 1081

AGGGTGCAAA TCCCACGTTT ACTCCAGCCT TGAGGTCGGA 1141 ATCACTTGAA CCCAGCATGC AAGCTTNNNN NNGCCACTGC TAGTGAACTT GGGTCGTACG TTCGAANNN NNCGGTGACG

1201 AAAAAAAA ANGACACATT ACTCAGGTAA GGTAATCAAT AA TITITITITI INCTGTGTAA TGAGTCCATT CCATTAGTTA TT

FIG. 76A

•	AAGG AAGG	111	111		ĪĪĪ	ĪĪĪ	III			1 1	CAAT	GTA		AGTI	 ATAG	_
	IIII	111		111		111	111		111	111			111	1111	CATT	-
	1111	111	4 I I I	411	111	111	111	111	111	111	1111		111	111	TTAC TTAC	
-	TAGO	TTA	TAT	000	GGGG	III ATT:	TAK.	TCG.	AGC.	ATT	GGA	ATT:	rece	CAG!	rgtag rgtag	
-	ATG	TTTA	GAG	TGA	ACAC	AAC	I I I	TTT	TTC	TGT	GCT	TAC	AGGT	TAT	OCT.	-
_	TGG	CCT	CYY	CAA	GCA:	reci	CIG	GGT	TTA	TTA	TTA	ACT:	LICY	GTA	TCTTI TCTTI	c –
- -	GTT		KTAZ	111	TCI	ACAJ		TGI	TTA	LCTA	AAT	TAA	ATT	TAG	TATGI TATGI	-
-	1 1 1	111	1 1 1 1	111	111		1111		111	. 1 1 1	111	111	111	111	IIII IIII	ł
_	111	1 1 1	1-1-1-1	1111	111	111		1 1		1 1 1 1		111		1111	ATTA ATTA	1
_	ATT	TTA	AAA	LLA	ccc	TTT	CGÀ	CTGI	[AG]	AACI	LAAI	AGG	AAT.	rtgg	CCTG	T -

FIG. 76B

_	ATTI	TAAA	TAAL	TCCC	TTTC	ACTO	TAG	rycyy	ATAG	BAATT	recc	TGT -	•
-	ĪĪĪĪ	1111	1111	1111		1111	11.11		.	11111	ATAGC ATAGC	111	
	TITI	1111	1111	1111	1111	1111					TGAGG TGAGG	111	•
	1111			1111	1111	1111	1111	1 1		11111	GAGAT GAGAT		-
-	1111	1111	1111	1111	1111	\mathbf{H}	1111	1111	1111	1111	TGGT/ TGGT/	111	-
-	1 1 1	1111	1 1 1 1	1 1 1	1111	1111	1111	1111	1111	1111	CAAC	111	_
-	111			AAAGA AAAGA	1111	$\Pi\Pi$			1			·	

FIG. 77A

9	CGGTAATATC GCCATTATAG	
O	GTTCCAGATT CAAGGTCTAA	
0 –	TAAATTGGTT ATTTAACCAA	
0-	TTCCTTATTT AAGGAATAAA	
70	GTGTCTTTCT	
10	1 AGAAAACACA GTGTCTTTCT TTCCTTATTT TAAATTGGTT GTTCCAGATT CGGTAATATC TCTTTTGTGT CACAGAAAGA AAGGAATAAA ATTTAACCAA CAAGGTCTAA GCCATTATAG	
	7	

AATTITCAAT ATTACACTIA AATGAGTACC AGAACTITAT CTICAACCTT TICTCATIAG TIAAAAAGTIA TAATGIGAAT TIACTCAIGG ICTIGAAATA GAAGTIGGAA AAGAGTAATC AATTTTCAAT

GCCTACAACA AAGGACATCT CGGATAGAAT TTCCCTTTTC TTTTTGCTAC TATAAGCTCT CGGATGTTGT TTCCTGTAGA GCCTATCTTA AAGGGAAAAG AAAAACGATG ATATTCGAGA GCCTACAACA 121

AAAAATCCTC AGAACATCAG ATTTAGAAAT GTTCTTATTA GTGGTAGTGA GCATTTGCTA TTTTTAGGAG TCTTGTAGTC TAAATCTTTA CAAGAATAAT CACCATCACT CGTAAACGAT AAAATCCTC 181

AAATTCCTAT TTTAAGGATA CCCACAGGCC AATATAATA GCAAGTAGAC TTATATATT CGTTCATCTG CTAGCTTACA AAAGGATGGT TTTCCTACCA 241

AGAAAAATAT TCTTTTATA GTCGAAAGGG AATTITITAA AATTITAATIT CCCACTAAAG CAGCTITICCC TTAAAAAATT TTAAATTAAA GGGTGATITIC AACAAGATGT TTGTTCTACA 301

TTTCCCTCAT TAAACGATAC ACATTTAACA AAAGGGAGTA ATTAACAAAT CAAATGACAG TAATITITAA ATTIGCTAIG IGTAAATIGT TAATTGTITA GITTACIGIC ATTAAAAATT TAAACGAIAC ACATITAACA ATTAACAAAT 361

421 TATTTATAC AATTCATACT ACAATTTAAT TTAGTAACA TTTTTGTAGA AAATATTTAA ATAAATATTG TTAAGTATGA TGTTAAATTA AATCATTTG AAAAACATCT TTTATAAATT

FIG. 77B

CCACAGCCAT ITGITTCIAT GACTITICAAT TATANTITGG GTCACGTACG AAGAACATCC GGIGTCGGTA TTCTTGTAGG CAGTGCATGC ATATNAAACC CTGAAAGTTA 481 AACAAAGATA

GCCANATICC TIGGACATIC GIGICITII AAACAAGACA AIGAGAITIG IAGAIGIGAC CGGITIAAGG ATCTACACIG TITGITCTGT TACTCTAAAC 541 AACCTGTAAG CACAGAAAA

601 AATGCTCGAA TITAACCCCG GGATATAACC TAGTAAATGT GTCCTCTCTG TAAGGTGGGC TAACGTGGGC CAATTTGG ATCATTTACA CAGGAGAGAC ATTCCACCCG

ATGTCACAGA ATACAAGAAA ATAATGGTAT TCATAAAGTT TTAAGAAAAT GATTCTACAC TACAGIGICI TAIGITCITI TAITACCAIA AGTAITICAA AATICITITA CTAAGAIGIG 661

TACATITITG GIGATATIDA AAAAIGIAAC CCCCICTCIT TITITCICIA TIAAAAAIGG CACTATAACT TITTACATTG GGGAGAGAA AAAAAGAGAT AAITITIACC 721 ATGTAAAACC

781 TT AA

FIG. 78A

09	ATCTCCATTT TAGAGGTAAA
80 0	TTAGGCTTTT AATCCGAAAA
40	TTTTGAAATG
30	TTATTGACAG
. 50	 GOGCAATTTC CCCGTTAAAG
10	datgctattt gogcaatttc ttattgacag tittgaaatg ttaggctitt atctccattt ctacgataaa cccgttaaag aataactgtc aaaactttac aatccgaaaa tagaggtaaa

TITAGTACTT AAATTITCCA ACATGGGTGI TGCTTGTTAT TITATCAGTA TAAAATAGAA AAATGATGAA TITAAAAAGGI TGTACCCACA ACGAACAATA AAATAGTCAT ATTITATCTT 61

GTTCTGGAAT TTAGTATATA CATGAGTATC TAGTGTATGT CAGCCATGAA CAAGACCTTA AATCATATAT GTACTCATAG ATCACATACA GTGGGTACTT CTCACCAAGA GACTGGTTCT 121

CCAGACATTG GGTCTGTAAC AATGAACCTT TCAGATGTTT AACTTCAGGG AACCTAATTG AGTCATTGCT TTACTTGGAA AGTCTACAAA TTGAAGTCCC TTGGATTAAC TCAGTAACGA AATGAACCTT 181

CTCAGTGTG CAAGGATACT GITCCTATGA GAGTCACACC CGGGCAATGA GGGTGATATA ANNNNNNNGA GCCCGTTACT CCCACTATAT TNNNNNNCT AACGAAACTT TTGCTTTGAA 241

ACTGCAGGCC TGTTTCTGGA AGGCACTGGA CTCCTCTGAT GCAAACTTTG GCCAGGGACT TGACGTCCGG ACAAGACCT TCCGTGACCT GAGGAGACTA CGTTTGAAAC CGGTCCCTGA ACTGCAGGCC 301

TCTTANATAG ATGCTGCACC AACACTCTCT TTCTTTTCTC TCTTTTTCTT AGAAAAGAA GGAACTATCG CCTTGATAGC 361

FIG. 78E

TCTCTCTCAT ATAAGTTATA ATCTGATGTT CGTCAGATTC CTGAAGAGTC CCAAAGATCG AGAGAGAGTA GGTTTCTAGC TATICAATAT TAGACTACAA GCAGICIAAG GACTICICAG 421

GAAAGGATCA TTAGAGATGA GTAIATAGAA TGACGATGCG ACCCCGGTCT TGGGGCCAGA ACTOCTACGC CTITCCIAGI AAICTCIACI CAIATAICII AAGTGTGTAC TTCACACATG 481

CAAAAATAGA GATAAGAAGA AGGGGAAGAC GAAAGTAATA CTTTCATTAT CTATTCTTCT TCCCCTTCTG GTTTTATCT CTTCCATTT GAAGGTAAAA ATTGNNNNN TAACNNNNNN 541

TGCITTCATT ATTGAAACTT TCCCAGATTT GTTCTGCTTA ACCTGGCATT ACGAAAGTAA TAACTTTGAA AGGGTCTAAA CAAGACGAAT TGGACCGTAA 601 TGAAACTTTC ACTTTGAAAG

GGAGAAGGGA CACGACGAAA GAGGGTAACG GTACAGGAAA AAAAAAAAA CATGICCITY ITITITITI GIGCIGCITI CICCCATIGC CCTCTTCCCT CCTTGACAAA GGAACTGTTT 661

TOAGACAGTG TCACTCTGTT GCCCAGGCTG GAGTGCAATG GTGCAATCTT ACTCTGTCAC TCACGTTAC CACGTTAGAA 721 TTTTTTTTT AAAAAAAAA FIG. 78C

CIGCCICAGC CICCIGAGIA CAGGACTCAT 781 GGCCACTGCA ACCCCCGCCT CCCGGGTTCA AGTGATTCTC CTGCCTCAGC CCGGTGACGT TCGCTAAGAG GACGGAGTCG TTGTATTTT AGTAGAGATN AACATAAAA TCATCTCTAN GCTGGGATTA CAGGTGCCCA CCACTATGCC CGGCTGATTT CGACCCTAAT GTCCACGGGT GGTGATACGG GCCGACTAAA

841

CCTGACCGCA GTGANTCCGC GGACTGGCGT CACTNAGGCG CAGAGCITGA NNNNNNTTT CACCATNGCT GATCAGGCTG GTCTCGAACT NNNNNNNAAA GTGGTANCGA CTAGTCCGAC CAGAGCTTGA POI NNNNNNNTTE

CAGGCATGAG TCACTGCGNC CAGCCACCAT GTCCGTACTC AGTGACGCNG GTCGGTGGTA CTCCCAAAGT GCTGACATTA GAGGGTTTCA CGACTCTAAT 961 CCTCCTTGGC GGAGGAACCG TATTCTCTAG AGGTGAGAA ACACTGGCTC TTCTAACAAG TTGAAATTTG ATAGAGACC ATAAGAGATC TCCACTCTCT TGTGACCGAG AAGATTGTTC AACTTTAAAC TATCTCTGG 1021

FIG. 79A

• ·	atgt'faatgg Tacaattacc
on-	ACGCATTAAA TGCGTAATTT
4	CCTTGAAGTÅ GGAACTTCAT
000	CACAAAAAA GIGITITITI
50	GATTATTAGC CTAATAATCG
10	1 CACAAAAAA GATTATTAG CACAAAAAA CCTTGAAGTA ACGCATTAAA ATGTTAATGG GTGTTTTTTT CTAATAATCG GTGTTTTTTT GGAACTTCAT TGCGTAATTT TACAATTACC

ATTCACTITA TIGAGCATCT GCTCATAATA CTITAAIGAG IGCAAAGIGC TITGAATATA IAAGIGAAAT AACTCGIAGA CGAGTATIAT GAAATTACTC ACGITICACG AAACTIAIAT

CACAGATGGG TGGAGGTGAA GTGTCTACCC ACCTCCACTT ATACGICATY TAAACCTTAC CATAATICIG AGGAATIGCT TAIGCAGIAA ATTIGGAAIG GIATIFAAGAC TCCTIAACGA 121

TATAATTAAG CGIGICCICC GAAICIAIIG IACGGGIIIC AGIACGAAGA ICAITIACCI ATAIIAAIIC AGTAAATGGA GCACAGGAGG CTTAGATAAC ATGCCCANAG TCATGCTTCT 181

AATCTAAAAG TTAGATTTTC 241 ATTCAAATTA TIGATAAGAA TTIGATCIGC CITACCAGTA TCTAGTAGTA TAAGTTTAAT AACTATCIT AACTAGACG GAATGGTCAT AGATCATCAT AATTTTCCAT AACTCTCTGA TTGAGAGACT GCGAAAGGIC ICGIACACGA CAACIAICTC GAACIACAGA CGCTTTCCAG AGCATGTGCT GTTGATAGAG CTTGATGTCT 301

TACTAAGAAG ATGATTCTTC TCTTATITIGI CICACIGGIA TATAGITATI TITIACTACI ITCATACACC AGAATAAACA GAGIGACCAI ATATCAATAA AAAAIGAIGA AAGTAIGIGG 361 TCTTATITIGT CICACTGGTA TATAGITATT TITLACTACT

FIG. 79B

ATTIMATIC CITACGGATT TCGAAGTGCA TAAAATTAAG AGCTTCACGT ATTTCATTTA DAATGCTAA TGTCCTCCTA GITTCTATCC TAAAGTAAAT CAARGATAGG 421 ACAGGAGGAT

TGCCATGGIC CCTGGITAIC TITCAGCAGG ACGGIACCAG GGACCAATAG AAAGICGICC AGAATAAGAT TCAGGCAGAC CACCAGTATA TGCCATGGTC TCITATICIA AGICCGICIG GIGGICATAI 481

541 IGACCGAGAA AGAAAACAIG GIAAIGII'A IGAAAIGGIG GGIICTIGIA GITTCACTIC ACIGGCICII ICITITGIAC CATIACAAAI ACITIACCAC CCAAGAACAI CAAAGIGAAG

TOGATTAACT TATTCTTGAT ATGGGCATGT ACCTAATTGA ATAAGAACTA TACCCGTACA CCTTTACTGF ATTAAGATGA
GGAAATGACA TAATTCTACT 601 AACATATCTG TTGTATAGAC GAGAGACAAA IGTGTTTCCA GACAAACITA CTCTCTGTTT ACACAAAGGT CIGTTTGAAT AAAACAATAT ACTTTTACTA AACAGCTACA TTTTSTTATA TGAAAATGAT TTGTCGATGT 661

AGAGACIGAG TGTTCAAACT GAATAATCTC GACCTTAATT GIAACTATAT TITATGAAAT TCTCTGACTC ACAAGTTTGA CTTATTAGAG CTGGAATTAA CATTGATATA AAATACTTTA 721

FIG. 79C

Trectertan CCCGTANAC AAGGACAATN GGGCATTTTG GGCAAAAACA GACTTCTTTG GGCCTACCAC CCGTTTTTGT CTGAAGAAAC CCGGATGGTG 781 CCAGCTGTAA GGTCGACATT GCCTGGAAAT AAATGTCATT TIGGAATITG GGIGCAGGIG AATITATIAC CGGACCIIIA TITACAGIAA CCACGICCAC TIANATANIG NNNATGAGGT NNNTACTCCA 841

GTGGAGAATT TCAATCTGTC CACCTCTTAA AGTTAGACAG ATACTGAGAT GITTAGTTAT GANATCAAAA TATGACTCTA CAAAICAATA CTTTAGTTIT ATCTGATATT ATACTGAGAT GITTAGITAT TAGACTATAA 901

GCTGTGCGGT GCAGCATGCT CGACACGCCA CGTCGTACGA CTGTAAGCTT TCTCTGCGGT CACGACCCTC ATGCACTCAG GCTGTGCGGT GACATTCGAA AGAGACGCCA GTGCTGGGAG TACGTGAGTC CGACACGCCA 961

TICCTGICTA CCIGITICAG AAGGACAGAI GGACAAACIC CTGTCATGTC TGTTTTCTTC TGCCTGTACA CGGGTGGTTG GACAGTACAG ACAAAAGAAG ACGGACATGT GCCCACCAAC 1021

TGTTAGTCAT CAATAAGGAA 4 GITATICCIT 1 TACGINNNNN NCTAGAATCT ACTGCACATG ATGCANNNNN NGATCTTAGA TGACGTGTAC GAAATATGAA CTTTATACTT 1081

ACAATCAGTA

1141 AGAATCACTT TCTCGTGGAA AATTCATTAG AATTAACATC TCGTTTTAAA ATGCTCTATC

FIG. 79D

ATATTAAACA AGGAGTTTGT ATATTAACA TCCTCAAACA TATAATTTGT CTCTTTTCCC TTTTTCACTA GAGAAAAGTGAT ATTAAGGAGA TAATTCCTCT 1201 AAGTGTAAA TTTCACATTT

TOTTATITIA CCCTCCATAT ACANTAAAT GCCACGTATA 1261 GAATTTCAAG TAATGTATTA TAAATTTATT TAANNTATTT CTTAAAGTTC ATTACATAAT ATTTAAATAA ATTNNATAAA

ATACATAGTC AAAACAGCAG TATGTATCAG TITTGTCGTC AACATGANNN NNNCATTGGT AGAAAGCACA TTGTACTNNN NNNGTAACCA TCTTTCGTGT 1321 AGCATCAAGC TCGTAGTTCG

AAACGITITC CGITCATITC ITATATGIAI AIGAAITAAI GCAAGTAAAG AATATACATA TACTTAATTA 1381 AGTATTAAAT AAACAGAAAA TITGCAAAAG TTTGTCTTTT TCATAATTTA GALATITAGT AAGCAGATAA IGGGGGCAAC CITTAAATCA ITCGICIATI ACCCCCGIIG 1441 TACATAAAAT ATTGATACAG GAGGTAGAAA ATGIATITIA TAACTATGIC CICCATCTIT

CAATAAATTA TITITITIT TTTTCGTCGG GITATITAAT AAAAAAAA AAAAGCAGCC CCTTCTAACA GGAAGATTGT 1501 AGAGTCCTCA GCAGAGCTTC TCTCAGGAGT CGTCTCGAAG 1561 CTAACAAAA GCAGCCTGAA AAATCGAGCT GCAAACATAG ATTAGCAATC GGCTGAAAGT

FIG. 79E

GATTOTTTT CGTCGGACTT TTTAGCTCGA CGTTTGTATC TAATCGTTAG CCGACTTTCA

GGCGCGTGGC CACGGITATC ATTICCCGAT GGACCICGGC CCGCGCACCG CCTGGAGCCO GCTGGCAGCT GTGCCAATAG TAAAGGGCTA CGACCGTCGA GCGGGAGAAT CGCCCTCTTA 1621

CGGATCACCT GAGGTCGGGA GCCTAGTGGA CTCCAGCCCT TCACGCTGTA ATCCCAGCAC TTTGGGAGGG CGAGGCAACG AGTGCGACAT TAGGGTCGTG AAACCCTCCC GCTCCGTTGC TCACGCTGTA 1681

AGCCCGACCA ACATGGAGAA ACCCCGTCTC TACTAAAAA AAAAAAAAA TCGGGCTGGT TGTACCTCTT TGGGGCAGAG ATGATTTTT TTTTTTTTT CAAACTCTAG GTTTGAGATC

AATGAGCCGG GCATGGTGGC ACATGCCTTG CACATCCCAG CTGAGGCAGG TTACTCGGCC CGTACCACCG TGTACGGAAC GTGTAGGGTC GACTCCGTCC TTTCCGTTTT AAAGGCAAAA 1801

TGAACCTGGG AGGTAGAGT TGCGGTGAAG CGAGATCACG TCATTGCACT ACTTGGACCC TCCATCTCTA ACGCCACTTC GCTCTAGTGC AGTAACGTGA AGAATTCACT TCTTAAGTGA 1961

AAANNCAAA GAAAAA CTTTTT TITINNCTIT CCAGCCIGGG CAAAAGAGC AAAACTIAGI CICAAAAAAA GITITICICG TITIGAATCA GAGIITITIT GGTCGGACCC 1921

Genomic Organization of PSM Gene

FIG. 80

