Jiayu di HW 2 Rof. Shinko Due. 10/14

Problem 1. Find the time complexity of T(n) satisfying $T(n) = 9T(n/3) + O(n^2)$.

Solve: According the Master method $At \text{ the k-th level, the Tupit is size } \frac{n}{3^k}$ so the number of steps there is $\frac{n^2}{7^k}$ $At \text{ the k-th level, there are } 9^k \text{ nodes,}$ So in total, the number of steps at the k-th level is $\frac{9^kn^2}{9^k} = n^2$ $Then \text{ we have the series } n^2 + n^2 + n^2 + \cdots \text{ with log_3(n) terms.}$ So the total number of steps is $n^2 \log n$.

Therefore, $T(n) = O(n^2 \log n)$

A

Problem 2. Find the time complexity of T(n) satisfying $T(n) = 50T(n/3) + O(n^3)$.

Silve: At the 14th level, the ruput size is $\frac{n}{3k}$, so the number of steps is $\frac{n^3}{27k}$ At the 16th level, there are sok nodes, so an total, the number of steps at the 12th level is $\frac{50^{k}n^{3}}{27^{k}}$

Then we have the series

$$n^3 + \frac{50}{57}n^3 + \left(\frac{50}{57}\right)^2 n^3 + \cdots$$
 with $\log_5(n)$

$$\frac{\left[\frac{50}{57}\right]^{10}-1}{\frac{50}{57}-1}$$

This is a geometric series, so its sum is
$$\frac{\frac{|\widehat{N}|^{\log_3|n|}-1}{|\widehat{N}|^2-1}}{\frac{\widehat{N}|^2-1}{\widehat{N}|^2-1}} n^3$$
which is big-0 of $n^{\log_3(\widehat{N})}n^3=n^{\log_3 S_0}$

Problem 3. Find the time complexity of T(n) satisfying $T(n) = 10T(n/4) + O(n^2)$.

Solve: At the kth level, the imput size is $\frac{n}{4k}$, so the number of steps is $\frac{n^2}{1b^R}$.

At the 16th level, those one 10th modes,

So an total, the number of Staps at the kth level is $\frac{Jo^k n^2}{Jb^k} = \left(\frac{1}{8}\right)^k n^2$

Then we have the series

The infinite series $n'(1+\frac{5}{8}+|\frac{5}{8}|^2+\cdots)$ converges.

So the above series is just a constant times n^2 Therefore, $Tin = O(n^2)$.

```
# A is an integer array

def foo(A):
    n = len(A)
    if n <= 1:
        print("hello")
    else:
        for i in range(n):
            for j in range(i):
                 print(j)
                print(i)
        foo(A[: n//2])
        foo(A[n//4 : 3*n//4])
        foo(A[n//2:])
```

We can get $T(n) = 3T(\frac{n}{2}) + O(n^2)$ At the kth level, the imput size is $\frac{n}{3k}$, so the number of steps is $\frac{n^2}{4k}$. At the kth level, there are 3^k nodes, so in total, the number of steps at the kth level is $\frac{3^kn^2}{4^k}$. Then we have the series $n^2 + \frac{2}{4}n^2 + (\frac{1}{4})^2n^2 + \cdots$ with $\log_2(n)$. The infinite series $n^2(1+\frac{1}{4}+(\frac{1}{4})^2+\cdots)$ converges. So the above series is Just a constant times n^2 .