

미세먼지 영향인자 분석 및 개선안 도출

C반 김민정

■ 분석 배경

- 세계적으로 환경, 기후변화 문제가 중요해짐에 따라 ESG 경영과 같은 기업의 사회적 책무가 거론됨
- 이에 따라 매년 사회적 이슈로 떠오르는 미세먼지 문제에 대해 각 산업별 해결책을 강구하고자 함

■ 분석 방향

- 미세먼지 주요 영향인자 분석
- 해당 주요 영향인자와 기업 간의 상관관계
- 해당 주요 영향인자와 각 산업 군별 상관관계

■ 미세먼지란?

- 대기 중에 떠다니거나 흩날려 내려오는 입자상물질로, 입자의 지름이 10μm 이하인 먼지(PM-10, 미세먼지)와 지름이 2.5μm 이하인 먼지(PM-2.5, 초미세먼지)로 구분

■ 미세먼지 발생원

- 자연적 발생원 : 흙먼지, 바닷물에서 생기는 소금, 식물의 꽃가루 등
- 인위적 발생원 : 화석연료를 사용할 때 생기는 매연, 자동차 배기가스, 건설현장에서 발생하는 날림먼지, 공장 내 분말형태의 원자재·부자재, 취급공정에서의 가루성분, 소각장 연기 등

■ 미세먼지 1차/2차 발생원

- 굴뚝 등 여러 발생원에서 고체 상태의 먼지로 나오는 경우(1차 발생원)와 이러한 1차 발생원에서 가스 상태로 나온 물질이 공기 중에서 다른 물질과 화학반응을 일으켜 미세먼지가 되는 경우(2차 발생원)로 나누어짐

분석 계획

목적	분석방법	주요내용	담당자	일정	비고
기초통계 분석 데이터 특성 파악		데이터의 타입, 평균, 표준편차, 최소값, 최대값 등의 기본 정보 확인	김민정	8/14	
결측치 분석		데이터에 결측치가 있는지 확인 후 처리	김민정	8/14	
	Histogram 분석	전체 데이터의 구간별 분포 현황과 패턴 확인	김민정	8/14	
	Box Plot 분석	Box plot을 이용하여 데이터에 이상치가 있는지 확인 후 처리	김민정	8/14	
전체 데이터의 분포 특성 및 변수 간의 관련성 확인	산점도 분석	목표변수와 설명변수 간 분포, 패턴, 관계 확인	김민정	8/14	
	상관 분석	목표변수와 설명변수 간 양/음의 상관관계 파악	김민정	8/14	
	Heatmap 분석	상관 분석 진행한 데이터로 시각화하여 조합별 비교	김민정	8/14	
	회귀 분석	회귀분석을 통하여 잠재인자 도출, 다중공선성 확인	김민정	8/14	
잠재인자 (Vital Few) 탐색	Decision Tree	Decision Tree를 통해 변수 별 중요도 확인 후 잠재인자 도출	김민정	8/14	
급세한지 (Vital rew) 급격	Random Forest	Random Forest를 통해 변수 별 중요도 확인 후 잠재인자 도출	김민정	8/14	
	Gradient Boosting	Gradient Boosting을 통해 변수 별 중요도 확인 후 잠재인자 도출	김민정	8/14	
	회귀 분석	도출된 잠재인자를 통하여 예측 회귀모델 생성	김민정	8/14	
예측 모델링 진행	Decision Tree	도출된 잠재인자를 통하여 예측 DT모델 생성	김민정	8/14	
에득 모델당 선행	Random Forest	도출된 잠재인자를 통하여 예측 RF모델 생성	김민정	8/14	
	Gradient Boosting	도출된 잠재인자를 통하여 예측 GB모델 생성	김민정	8/14	
모델 평가	오차함수/Bar chart	Bar chart를 통해 mse,rmse,mae,mape 확인 및 최종 모델평가	김민정	8/14	
추가 데이터 분석	기초통계/Pie chart	위 과정을 통해 도출된 Vital few와 산업군 간 영향력 분석	김민정	8/14	

■ 결측치 처리

- PM10: 목표변수로 대체가 어려워 제외 처리
- CO: 산점도 확인 결과 목표변수(PM10)와 주요한 관계에 있을 것으로 예상되어 중앙값으로 대체

■ 이상치 처리

- PM10: IQR 최대값을 넘긴 이상치가 보이나, 특정 환경에서 관측될 수 있는 부분으로 생각하여 이상치 처리하지 않음
- (ex) 경험상 봄~겨울에 고농도 미세먼지가 많이 발생하는 경향을 보이며, 이상치를 제외하지 않았을 때 해당 관계 역시 분석이 가능할 것으로 예측

- Scatter Matrix를 통한 잠재인자 확인
- NO2: (+) 양의 비례 관계 확인
- CO: 강한 (+) 양의 비례 관계 확인
- TEMP: (-) 음의 관계 확인
- CLOUD: 약한 (-) 음의 관계 확인

- 상관분석 / Heatmap을 통한 잠재인자 확인
- CO > SO2 > NO 순으로 (+) 양의 상관관계가 있으며
- TEMP와는 (-) 음의 상관관계가 있음을 확인함

- 선택 변수
- CO/O3/TEMP: 4개의 모델에서 모두 공통으로 선택된 변수
- CLOUD/WIND_DIR: 3개의 모델에서 공통으로 선택된 변수
- NO2/WIND: 2개의 모델에서 공통으로 선택된 변수

모델 종류	다중선형회귀분석	Decision Tree	Random Forest	Gradient Boosting	
예측률	44.4%	100%	93%	88.9%	
	O3	<mark>co</mark>	co	co	
	NO2	<mark>03</mark>	O3	<mark>03</mark>	
ᄌᄋᄖᄉ	co	TEMP	TEMP	TEMP	
중요변수	TEMP	CLOUD	CLOUD	WIND_DIR	
	WIND_DIR	WIND	WIND_DIR	CLOUD	
	ATM_PRESS	ATM_PRESS	WIND	NO2	

*회귀분석 진행 시 설명변수 간 다중 공선성은 나타나지 않아 따로 고려하지 않음

모델간 예측률 비교

- 다중선형회귀분석 모델이 48.8%로 가장 높은 정확도를 보여 최종 모델로 선정 R-square에 따라 모델의 설명도는 49.5%로 다소 낮지만, F-statistic 통계량은 유의수준 (0.05)보다 낮아 모델 자체는 유의함 해당 모델에 따르면 변수 CLOUD는 유의하지 않은 변수임을 알 수 있다.

모델 종류	다중선형회귀분석	Decision Tree	Random Forest	Gradient Boosting
예측률	48.8% (R)	31.8%	42.8%	48.4%

D 1/ 1	•		410	-			0 1105
Dep. Variable:		PM10		R-squared:			0.495
Model:		OLS			R-squared:		0.484
Method:		Least Squar		F-statistic:			43.60
Date:	Mo	on, 15 Aug 20		Prob (F-statistic):			1.92e-48
Time:		06:26:07		Log-Likelihood:			-1403.3
No. Observa			365	AIC:			2825.
Df Residual	s:	356 BIC:			2860.		
Df Model:	_		8				
Covariance	Type:	nonrob	ust				
7	coef	std err		t	P> t	[0.025	0.975]
Intercept	307.2840	150.132	2	.047	0.041	12.028	602.540
03	612.4717	78.825	7	.770	0.000	457.450	767.493
CO	65.4300	7.546	8	. 671	0.000	50.590	80.270
N02	508.0278	122.590	4	.144	0.000	266.937	749.118
TEMP	-0.5621	0.125	-4	. 495	0.000	-0.808	-0.316
WIND_DIR	0.0384	0.010	3	.834	0.000	0.019	0.058
ATM_PRESS	-0.3380	0.148	-2	. 288	0.023	-0.629	-0.047
CLOUD	-0.2412	0.261	-0	. 924	0.356	-0.755	0.272
WIND	2.4212	1.131	2	. 141	0.033	0.197	4.645
Omnibus:		96.1	893	Durbin	n-Watson:		1.196
Prob(Omnibus):		0.000		Jarque-Bera (JB):		263.658	
Skew:		1.247		Prob(JB):		5.59e-58	
Kurtosis:		6.1	335	Cond.	No.		2.70e+05

• 추가 데이터 분석

- 앞선 분석을 통하여 Vital few로 CO/O3/TEMP/NO2/WIND/WIND_DIR/ATM_PRESS 를 도출함
- 이러한 영향인자들이 실제로 각 산업군과 어떻게 연관이 있는지 확인해보기 위하여 추가 데이터 분석 진행함
- Data는 국가미세먼지정보센터의 2019년 배출량 통계 이용함

CO 주요 배출원: 생물성 연소> 비도로이동오염원 > 도로이동오염원

PM10 주요 배출원: 비산먼지>제조업연소>비도로이동오염원

비산먼지

결론/대안제시

■ 분석결과

- PM10 농도의 경우 CO, O3, TEMP, NO2, WIND, WIND_DIR, ATM_PRESS와 상관관계가 있음을 알 수 있다.
- PM10의 경우 비산먼지 > 제조업연소 > 비도로이동오염원 순으로 주요 배출원임을 알 수 있다.
- CO의 경우 생물성 연소 > 비도로이동오염원 > 도로이동오염원 순으로 주요 배출원임을 알 수 있다.
- NO의 경우 도로이동오염원 > 비도로이동오염원 > 제조업연소 순으로 주요 배출원임을 알 수 있다.
- TEMP, WIND, WIND DIR, ATM PRESS의 경우 기업의 생산활동과 직접적인 연관성을 찾지 못하여 추가 분석이 필요하다.
- 다만, 해당 분석을 통해 산업군 중 건설업, 제조업, 축산업 등이 미세먼지 영향인자와 밀접 관련이 있음을 알 수 있다.

■ 배출원 분류

배출원 대분류	배출원 중분류	
에너지산업 연소	공공발전시설, 지역난방시설, 석유정제시설, 민간발전시설	
비산업 연소	상업 및 공공기관 시설, 주거용시설, 농업·축산·수산업시설	
<mark>제조업 연소</mark>	<u>연소시설, 공정로, 기타</u>	
생산공정	석유제품, 산업, 제철제강업, 무기화학제품제조업, 유기화학제품제조업, 목재・펄프제조업, 식음료가공, 기타제조업	
에너지수송 및 저장	휘발유공급	
유기용제 사용	도장시설, 세정시설, 세탁시설, 기타 유기용제사용	
<mark>도로이동오염원</mark>	RV, 승용차, 택시, 승합차, 버스, 화물차, 특수차, 이륜차	
<mark>비도로이동오염원</mark>	<mark>철도, 선박, 항공, 농업기계, 건설장비</mark>	
폐기물처리	폐기물소각, 기타 폐기물 처리	
농업	분뇨관리, 비료사용농경지	
기타 면오염원	산불 및 화재, 동물	
비산먼지	건설공사, 나대지, 농업활동, 도로재비산먼지, 비포장도로 비산먼지, 축산활동, 폐기물처리, 하역 및 야적	
<mark>생물성 연소</mark>	고기 및 생선구이, 노천 소각, 농업잔재물 소각, 목재 난로 및 보일러, 숯가마, 아궁이	

- 미세먼지 영향
- 앞서 도출된 미세먼지 영향인자는 아래와 같이 인체에 악영향을 주어 사회적 문제를 야기함

〈미세먼지가 인체에 미치는 영향〉

- 개선안 도출
- 미세먼지 영향인자와 밀접 관련한 산업: 기업 내부에서 미세먼지 저감 대책 강구함으로써 ESG 경영 성과 향상 기대
- 하기 타사 사례를 참고하여 벤치마킹하는 것이 필요

*신형 집진기가 설치된 슬래그 포트에 슬래그를 따라내는 과정 그림3)

❖ 포스코: 환경설비 투자

성과: 미세먼지 배출을 기존 比 최대 90%까지 저감 가능

- 배가스 청정브리더 신규 적용
- 배관 설비 내 먼지 포집 설비 추가
- 하강기류를 생성해 집진 효율을 높이는 집진 신기술 개발

Lesion Learn

- ✓ 기존에 해왔던 데이터 분석과 달리 주요 영향인자부터 개선안 도출까지 진행하는 것은 처음이라 막막하기도 했으나, 그래도 step by step으로 배웠던 기법들을 이용해보려 했습니다.
- ✓ 이번 분석을 통해서 실제 데이터 분석 진행 전 데이터 분석에 대한 시나리오 개괄을 짜는 것이 중요하다고 느꼈습니다.
- ✓ 또한, 모델링 함에 있어 회귀분석이나 ML 모델에 대해 깊이 있는 이해를 바탕으로 분석하여야 정확한 결과를 도출 할 수 있는 것 같습니다.
- ✓ 주어진 데이터를 바탕으로 미세먼지 농도와 주요 영향인자 간의 상관분석 뿐만 아니라, 이를 바탕으로 각 산업군에서는 미세먼지 농도에 어떠한 영향을 미치는지에 대해 통계적으로 분석해보고 싶었으나 파생변수에 대한 지식이 부족함을 느꼈습니다.
- ✓ 통계 기초지식이 부족하여 발생한 문제인 것 같아 추후 통계 공부가 더 필요함을 느꼈고, 도메인 지식 역시 중요함을 배웠습니다.

출처

- 그래프 1: https://www.oecd-ilibrary.org/sites/e9ed300b-en/index.html?itemId=/content/component/e9ed300b-en
- 그래프2: <a href="http://www.fki.or.kr/FkiAct/Promotion/Report/View.aspx?content_id=610cfd06-8a31-4874-a275-40bdc333bdd6&cPage=&search_type=0&search_keyword="http://www.fki.or.kr/FkiAct/Promotion/Report/View.aspx?content_id=610cfd06-8a31-4874-a275-40bdc333bdd6&cPage=&search_type=0&search_keyword="http://www.fki.or.kr/FkiAct/Promotion/Report/View.aspx?content_id=610cfd06-8a31-4874-a275-40bdc333bdd6&cPage=&search_type=0&search_keyword="http://www.fki.or.kr/FkiAct/Promotion/Report/View.aspx?content_id=610cfd06-8a31-4874-a275-40bdc333bdd6&cPage=&search_type=0&search_keyword="http://www.fki.or.kr/FkiAct/Promotion/Report/View.aspx?content_id=610cfd06-8a31-4874-a275-40bdc333bdd6&cPage=&search_type=0&search_keyword="http://www.fki.or.kr/FkiAct/Promotion/Report/View.aspx?content_id=610cfd06-8a31-4874-a275-40bdc333bdd6&cPage=&search_type=0&search_keyword="http://www.fki.or.kr/FkiAct/Promotion/Report/View.aspx?content_id=610cfd06-8a31-4874-a275-40bdc333bdd6&cPage=&search_type=0&search_keyword="http://www.fki.or.kr/FkiAct/Promotion/Report/View.aspx.content_id=610cfd06-8a31-4874-a275-40bdc333bdd6&cPage=&search_type=0&search_keyword="http://www.fki.or.kr/FkiAct/Promotion/Report/View.aspx.content_id=610cfd06-8a31-4874-a275-40bdc333bdd6&cPage=&search_keyword="http://www.fki.or.kr/FkiAct/Promotion/Report/View.aspx.content_id=610cfd06-8a31-4874-a275-40bdc333bdd6&cPage=&search_keyword="http://www.fki.or.kr/FkiAct/Promotion/Report/View.aspx.content_id=610cfd06-8a31-4874-a275-40bdc333bdd6&cPage=&search_keyword=#http://www.fki.or.kr/FkiAct/Promotion/Report/View.aspx.content_id=610cfd06-8a31-4874-a275-40bdc384-a275-40bdc3
- 그림 1: https://www.air.go.kr/index.do
- 그림 2: https://www.air.go.kr/index.do
- 그림 3: https://www.posco.co.kr/
- 추가 데이터: https://www.air.go.kr/index.do