3 approaches and rationale

Optimus

- Modify the G4Hunter algorithm to make it applicable for i-motifs.
 - In G4Hunter, one G has a score of 1; in a GG tract, each G is scored 2 and so on. C's get the same score but negated. To make G4Hunter applicable for the CT-based i-motifs, Optimus will be used to find the optimum scoring for each C (positive base, counterpart of G in the case of G-quadruplexes) in a given C-tract length (e.g. the score of each C in a CC tract in an i-motif). Two ways will be tried to score T; (1) T treated as negative base such that it's given the same score as C but negated (2) T treated as the other bases (A, G) such that it's scored 0.

Gradient boosting machines

- Build a machine learning model predicting the T_m/pH_t of a limited sub-universe of CT-based i-motifs.
- Get an idea of the importance of chosen features in terms of prediction.

Eureqa

- Obtain a simple analytical equation expressing T_m/pH_t as a function of the chosen features.
- Reveal relationship of features.

Dependent variables

- Melting temperature (T_m)
- pH at mid-transition (pH_t)

T_{m}

20

Approach A: Optimising G4Hunter Coefficients to deal with i-motifs

- Optimise G4Hunter coefficients for i-motifs
- C positive base, T negative (penalised)
 base
- 3 independent rounds (replicas) of optimisation were done and all arrived at the same set of coefficients/scoring scheme
- Interpreting the table: each C in CC-tract of i-motif (run length=2) is scored 19.6
- Note! May be an artefact of not having (reasonably so) C-tracts shorter than 3, hence for the minimum case only loop lengths were enough.

Score

-10

Score

fc

- Optimise G4Hunter coefficients for i-motifs
- C positive base, rest of bases are given a score of 0.
- 3 independent rounds (replicas) of optimisation were done for each method.
- Interpreting the table: each C in CC-tract of i-motif (run length=4) is scored 24.1.
- Note that in the given sub-universe of the C/T-based i-motifs, C-tract length range from 3 to 6 bases. Therefore, the scores in the table for C-tract lengths less than 3 do not matter in this case.

			SCORE OF POSITIVE BASE PER TRACT LENGTH					
Method	Replica	Pearson's, r	1	2	3	4	5	6
	1	0.8770789	0.3	1	13.2	39.5	-	-
Trad. G4	2	0.8770789	8.8	13.7	18.4	55.1	-	-
	3	0.8770789	0.1	6.2	12.8	38.3	-	-
	1	0.9579802	0	Ω	0	24.1	37.0	45.1
Ext. G4	2	0.9579801	0	0	0	11.6	17.8	21.7
	3	0.9579802	0	0	0	24.1	37.0	45.1

Approach B: Feature Importance with Gradient Boosting Machines

Chosen features of i-motif sequences

- The following features were used for the other modelling methods
 - C length of C tract; [3,6]; per sequence the length of the 4 C tracts are equal
 - **T1** length of 1st T loop; [1,6]
 - **T2** length of 2nd T loop; [1,6]
 - **T3** length of 3rd T loop; [1,6]
 - **length** total sequence length; [15,36]
- Dependent variable: T_m [48,81.9]

Approach B: Feature Quality Control and Preprocessing

• Features not extremely correlated.

- No zero- (predictor have one unique value) and near zero-variance predictors.
- Features centred and scaled.

T_m

Approach B: XGBoost Hyperparameter/Architecture Optimisation

- All 196 sequences were used for this step.
- Features: C, T1, T2, T3, length

Hyperparameter of optimal model architecture

Hyperparameter	value
eta	0.01
max_depth	4
Gamma*	0
colsample_bytree**	1
min_child_weight	5
subsample	0.6
nrounds	1000

^{*}No regularisation (gamma=0, default)

Same optimal hyperparameters obtained with and without including total length as feature.

^{**}All features used by every tree (colsample bytree=1, default)

Approach B: XGBoost (Re)training, Performance and Feature Importance

 Using the identified optimal hyperparameters, the model was tuned using 80% of data for training (randomly chosen). The retrained model was then tested on remaining 20%.

Values based on training with 80% of data:

Metric	All features	No length
RMSE	1.4011	1.376196
r²	0.9758311	0.9767373
MAE	1.135564	1.120195
RMSESD	0.1692699	0.1639031
r ² SD	0.005186407	0.005370633
MAESD	0.1139668	0.1081146

Feature	All features	Feature	No length
С	100	С	100
Т3	5.123308	Т3	5.147290
length	4.841326		
T1	4.253030	T1	4.375894
T2	3.797984	T2	4.289519

Model with all features

Model without length

Approach C: Developing Non-Linear Analytical Equation that Explains T_m

- Allowed forms: Basic (constant, input variable, ±, x, ÷) and Exponential (power, sqrt)
- Error metric is absolute error (default)
- Target expression:

$$T_{\rm m} = f(length, C, T1, T2, T3)$$

SAMPLE MODEL:

$$T_{m} = 102 - T3 - \frac{137 - T2 * T3 + T1}{C}$$

C-run length (C) appears in almost all models obtained.

With features unscaled as in this case, length only appeared in the 2^{nd} least accurate model (T_m =42.3 + length). After centering and scaling, it did appear but only in more complex models, complexity>27 (for reference, sample model has complexity=14).

3 approaches and rationale

Optimus

- Modify the G4Hunter algorithm to make it applicable for i-motifs.
 - In G4Hunter, one G has a score of 1; in a GG tract, each G is scored 2 and so on. C's get the same score but negated. To make G4Hunter applicable for the CT-based i-motifs, Optimus will be used to find the optimum scoring for each C (positive base, counterpart of G in the case of G-quadruplexes) in a given C-tract length (e.g. the score of each C in a CC tract in an i-motif). Two ways will be tried to score T; (1) T treated as negative base such that it's given the same score as C but negated (2) T treated as the other bases (A, G) such that it's scored 0.

Gradient boosting machines

- Build a machine learning model predicting the T_m/pH_t of a limited sub-universe of CT-based i-motifs.
- Get an idea of the importance of chosen features in terms of prediction.

Eureqa

- Obtain a simple analytical equation expressing T_m/pH_t as a function of the chosen features.
- Reveal relationship of features.

Dependent variables

- Melting temperature (T_m)
- pH at mid-transition (pH_t)

pH_t

- Optimise G4Hunter coefficients for i-motifs
- C positive base, T negative (penalised) base
- 3 independent rounds (replicas) of optimisation

` ' ' '	
were also done. Replicas 1-2 arrived at the sam	ıe,
slightly better set of coefficients/scoring schem	ıe

		TRACT/RUN LENGTH					
Replica	Pearson's, r	1	2	3	4	5	6
1	0.9264508	52.8	27.0	0.0	11.4	18.5	22.3
2	0.9264508	52.8	27.0	0.0	11.4	18.5	22.3
3	0.9264507	41.7	21.3	0.0	9.0	14.6	17.6

Same as in T_m's

- Optimise G4Hunter coefficients for i-motifs
- C positive base, rest of bases are given a score of 0.
- 3 independent rounds (replicas) of optimisation were done for each method.
- Interpreting the table: each C in CC-tract of i-motif (run length=4) is scored 24.1.
- Note that in the given sub-universe of the C/T-based i-motifs, C-tract length range from 3 to 6 bases. Therefore, the scores in the table for C-tract lengths less than 3 do not matter in this case.

			SCORE OF POSITIVE BASE PER TRACT LENGTH					
Method	Replica	Pearson's, r	1	2	3	4	5	6
	1	0.8317956	0	0	0	7		
Trad. G4	2	0.8317956	0	0	0	7		
	3	0.8317956	0	0	0	7		
	1	0.9150095	0	0	0	20.2	31.4	38.3
Ext. G4	2	0.9150094	0	0	0	11.7	18.2	22.2
	3	0.9150095	0	0	0	19.3	30.0	36.6

Approach B: Feature Importance with Gradient Boosting Machines

Chosen features of i-motif sequences

- The following features were used for the other modelling methods
 - C length of C tract; [3,6]; per sequence the length of the 4 C tracts are equal
 - **T1** length of 1st T loop; [1,6]
 - **T2** length of 2nd T loop; [1,6]
 - **T3** length of 3rd T loop; [1,6]
 - **length** total sequence length; [15,36]
- Dependent variable: **pHt** [5.96, 6.9]

Approach B: XGBoost Hyperparameter/Architecture Optimisation

pHt

- All 196 sequences were used for this step.
- Features: C, T1, T2, T3, length

Hyperparameter of optimal model architecture

Hyperparameter	All features	No length
eta	0.01	0.01
max_depth	8	6
Gamma*	0	0
colsample_bytree**	1	1
min_child_weight	3	10
subsample	0.6	0.6
nrounds	750	1500

^{*}No regularisation (gamma=0, default)

^{**}All features used by every tree (colsample bytree=1, default)

Approach B: XGBoost (Re)training, Performance and Feature Importance

 Using the identified optimal hyperparameters, the model was tuned using 80% of data for training (randomly chosen). The retrained model was then tested on remaining 20%.

Values based on training with 80% of data:

Metric	All features	No length
RMSE	0.05632807	0.05399737
r²	0.9424578	0.9464987
MAE	0.04353706	0.04250962
RMSESD	0.008222115	0.007408617
r ² SD	0.0180082	0.01318266
MAESD	0.007648299	0.005437334

Feature	All features	Feature	No length
С	100	С	100
length	53.124830		
T1	11.133761	T2	12.234725
Т3	10.844397	T1	11.778001
T2	8.921195	Т3	9.140414

Model with all features

Model without length

Approach C: Developing Non-Linear Analytical Equation that Explains pH_t

- Allowed forms: Basic (constant, input variable, ±, x, ÷)
- Error metric is absolute error (default)
- Target expression:

$$pH_t = f(length, C, T1, T2, T3)$$

SAMPLE MODEL:

$$pH_t = 7.37 - \frac{3.69}{c} - \frac{0.00549*length}{T2}$$

C-run length (C) appears in almost all models obtained.

Features are unscaled in this case, sample model complexity=13. More complex equations were also obtained using C-tract and all 3 loop lengths.

Approach C: Developing Non-Linear Analytical Equation that Explains pH₊

- Allowed forms: Basic (constant, input variable, ±, x, ÷)
- Error metric is absolute error (default)
- Target expression:

$$pH_t = f(length, C, T1, T2, T3)$$

SAMPLE MODEL:

$$pH_t = 7.32 - \frac{0.124}{T2} - \frac{3.47}{C}$$

$$pH_t = 7.37 - \frac{3.69}{C} - \frac{0.00549 * length}{T2}$$

Complexity = 13

$$pH_t = 7.24 + 0.0124T1T2 - 0.0277T1 - \frac{3.48}{C}$$

$$pH_{t} = 7.25 + 0.00469T1T2T3 - 0.0272T3 - \frac{3.2 + 0.124T1}{C}$$

All equations came from the same pool. For these 4, r² increases with increasing complexity based on the Eurega calculations (be wary of overfitting).

Conclusions

- With a restricted sub-universe of the C/T-based i-motifs, all three approaches still resulted to a reasonable quality of T_m and pH_t prediction. For both parameters, the gradient boosting machines performed the best out of the three approaches (T_m : $r^2 = 0.98$, RMSE = 1.4 & pH_t : $r^2 = 0.95$, RMSE = 0.054).
- Out of the 4 suggested methods, in which T is scored 0, to apply the G4Hunter algorithm in predicting i-motif stability, the optimised, extended version performed the best (T_m : r^2 =0.918, pH_t : r^2 =0.837). However, the previous optimised version, in which T is negated, is still slightly better (T_m : r^2 =0.920, pH_t : r^2 =0.858).
- Feature importance analysis from the GBM machine learning approach shows that the most important feature in defining the stability of the i-motifs (in the given sub-universe) both in terms of T_m and pH_t is the length of the C tracts (C). For T_m prediction, the length of the 3rd loop (T3) is slightly more important than that of the other two. For pH_t prediction, this is unclear because the importance ranking of the 3 loops differs whether total sequence length is included or not as a feature.
 - GBM models were built with and without total sequence length because this length can be derived using or is dependent on the other features. This is also why it is not surprising that not specifying length as a feature can result in a model performing comparably (even better in the case of pH_t prediction) than a model with it included.
- The sample model from Eureqa shows that with only a slight compromise in prediction quality, we can have a simple, transparent analytical equation that expresses T_m and pH_t as a function of the chosen features. The T_m equation captures the interplay between the C-tract length and the loop lengths 1-3 in modulating the T_m of i-motifs in the given sub-universe. For pH_t, the chosen equation makes use of C, T2 and length (in turn dictated by the C-tract and loop lengths) to define its value. There is another, betterperforming, equation using C and all 3 loop lengths but is more complex.
 - With nearly all Eureqa equations using C-tract lengths, Eureqa results agree with GBM's that this feature is very important in predicting the stability in terms of T_m and pH_t of this sub-universe of i-motifs.