Announcements

- No labs next week!
- Farnaz's lab students:
 - She will be available in her office (SW2-363) during lab times (and other times - see Learning Hub) and by email
- My lab students:
 - I'll be in DTC Thursday 5 Dec and BBY Friday 6 Dec; email me if you wish to meet

More announcements

- We do have LECTURE next week
 - A little more material
 - Last minute final-exam review
- Final exam is Monday 9 Dec, 8am
- I'll be posting some review materials soon watch Learning Hub

Backtracking and Branch & Bound

(Chapter 12)

Backtracking and Branch & Bound

- Backtracking
 - n–Queens problem
- Branch & Bound
 - Assignment problem

Backtracking

- Suppose you have to make a series of decisions, among various choices, where
 - You don't have enough information to know what to choose
 - Each decision leads to a new set of choices
 - Some sequence of choices (possibly more than one) may be a solution to your problem
- Backtracking is a methodical way of trying out various sequences of decisions, until you find one that "works"

Golf-tee puzzle

Valid move

Backtracking

- Think of the solutions as being organized in a tree
 - The root represents initial state before the search begins
 - Nodes at first level represent first choice
 - Second... second choice..etc

State-space tree

Backtracking in words

▶ IDEA:

- Construct solutions one component at a time
- If a partial solution can be developed further without violating constraints:
 - Choose first legitimate option for the next component
- If there is no option for the next component
 - Backtrack to replace the last component of partial solution

Backtracking - Abstract Example

- Starting at Root, your options are A and B. You choose A.
- At A, your options are C and D.
 You choose C.
- C is bad. Go back to A.
- At A, you have already tried C, and it failed. Try D.
- D is bad. Go back to A.
- At A, you have no options left to try. Go back to Root.
- At Root, you have already tried A. Try B.
- At B, your options are E and F. Try E.
- E is good. Congratulations!

Backtracking (animation)

The tree used to build solutions is called the *state-space tree*The nodes are *partial solutions*The edges are *choices*

Example: n-Queens Problem

- Place n queens on an n-by-n chess board so that no pair of them are in the same row, column or diagonal
 - i.e. no queens are attacking each other

Example: 4-Queens

 \rightarrow n=4

- We can solve it by backtracking
 - Root is empty board
 - At level i... put a queen in row i

State-Space Tree of 4-Queens

Hamiltonian cycle example

Backtracking and Branch & Bound

- Backtracking
 - n–Queens problem
- Branch and Bound
 - Assignment problem

Branch and Bound

- The idea:
 - Set up a bounding function, which is used to compute a bound (for the value of the objective function) at a node on a state-space tree and determine if it is promising
 - Promising (if the bound is better than the value of the best solution so far): expand beyond the node.
 - Non-promising (if the bound is no better than the value of the best solution so far): do not expand beyond the node (pruning the state-space tree).

Assignment problem

Select one element in each row of the cost matrix C so that:

- no two selected elements are in the same column
- the sum is minimized

	Job 1	Job 2	Job 3	Job 4
Person a	9	2	7	8
Person b	6	4	3	7
Person c	5	8	1	8
Person d	7	6	9	4

Assignment Problem (Brute Force)

Lower bound: Any solution to this problem will have total cost at least 10

lb =	2+3+1	+4	=1	0
------	-------	----	----	---

Start

	Job 1	Job 2	Job 3	Job 4
a	9	2	7	8
b	6	4	3	7
С	5	8		8
d	7	6	9	4

	Job 1	Job 2	Job 3	Job 4
a	9	2	7	8
b	6	4	3	7
С	5	8		8
d	7	6	9	4

	Job 1	Job 2	Job 3	Job 4
a	9	2	7	8
b	6	4	3	7
С	5	8	1	8
d	7	6	9	4

	Job 1	Job 2	Job 3	Job 4
a	9	2	7	8
b	6	4	3	7
С	5	8		8
d	7	6	9	4

$$b = 8+3+1+6 = 18$$
 $a \leftarrow 4$

	Job 1	Job 2	Job 3	Job 4
a	9	2	7	8
b	6	4	3	7
С	5	8	1	8
d	7	6	9	4

$$1b = 8 + 3 + 1 + 6 = 18$$

$$a \leftarrow 4$$

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Limitations of Algorithms

(Chapter 11)

What We Have Seen So Far

- Lots of algorithms
 - Different kinds
 - (e.g. divide and conquer/dyn. programming)
 - Different applications
 - (e.g sorting/graph probs)
- Focus on efficient problem solving
- Today:
 - What are the *limits* of algorithmic problem solving?

Types of Problems

- Decision problems
 - Problems that have a yes/no answer
 - Example:
 - Does this graph have a Hamiltonian cycle?
- Optimization problems
 - Problems that involve maximizing or minimizing some parameter
 - Example:
 - What is the shortest path from A to B?

Types of Problems

Optimization problems can be framed as decision problems...

- Example
 - How many colors are needed to color this map?
 Vs.
 - Can I color this map with 4 colors?
- This is often called the decision problem version of an optimization problem

A Basic Question

- Can every decision problem be solved by an algorithm?
- In other words:
 - Can we always write down a step by step process that will give the right yes/no answer to a question?

Program Termination

We can write a program that never stops

```
X ← true
while (X)
{
}
```

- This can happen by accident too
 - And it is irritating to debug
 - It would be nice if we could know in advance if our program was going to run forever

The Halting Problem

Here is a important theoretical question:

Can we write a program that tests whether or not an arbitrary program will terminate?

- This is *The Halting Problem*
 - Originally posed by Alan Turing
 - (The actual question is a bit more precise)

The Halting Problem

- We will prove that no such program exists
- The proof is by contradiction
 - So we assume that the program does exist...
 - Then we show that assumption leads to nonsense
- This is a standard method of proof in math

Proof - Step 1

- Suppose we have a program called *Test* such that:
 - It takes a program P as input
 - It returns true if the program P terminates
 - It returns *false* if the program P runs forever

Proof - Step 2

- Now create another program called Strange made of two parts:
 - A copy of Test at the beginning
 - An empty loop—a loop with an empty body—at the end.
 - The loop uses X as the testing variable, which is actually the output of the Test program.
 - This program also uses P as the input.

Proof – Step 3

- So now we have written the program Strange
 - It takes any program as input
 - So we can put Strange as the input for itself

What We Showed

- If we assume *Test* exists, then:
 - The program Strange also exists
- But the program Strange can not exist
 - Because it terminates AND does not terminate at the same time
- ▶ Therefore... the program *Test* does not exist

There is no program that tests whether or not an arbitrary program will terminate.

What We Showed (cont.)

- We started with a simple decision problem:
 - Does an input program ever terminate?
- We showed that there is no program that solves this problem

What This Means

- There are decision problems that can not be solved by any algorithm
 - The Halting Problem is an example

We say a decision problem is **undecidable** if it can not be solved by any algorithm.

- So what we normally say:
 - The Halting Problem is undecidable