2. Split the data using the code below, where set1 will be the training set for future analyses and set2 the test set:

```
set . seed (46685326 , kind =" Mersenne - Twister ")
perm <- sample (x= nrow ( vehdata ))
set1 <- vehdata [ which ( perm <= 3* nrow ( vehdata )/4) , ]
set2 <- vehdata [ which ( perm > 3* nrow ( vehdata )/4) , ]
```

	print(head(set2,	6))												
-			Circular	ity Ra	dius.Ratio Pr.Axi	s Asnect Ratio M	av Length A	nect Ratio S	catter Ratio F	longatedness P	r Avis Rect	angularity	May Length Rect	angularit
6	107	57		106	172	50 50	ax. Length. As	6	255	76	I .AXIS.RECE	28	Max. Length. Rect	16
11	86	36		70	143	61		9	133	50		18		130
12	90	34		66	136	55		6	123	54		17		11/
14	89	42		85	144	58		10	152	44		19		14/
15	94	49		79	203	71		5	174	37		21		154
16		55		103	201	65		9	204	32		23		166
	Scaled.Variance			arianc	e.Along.Minor.Axi		of.Gyration	Skewness.Abo	out.Major.Axis	Skewness.About	.Minor.Axis	Kurtosis.A	About.Minor.Axis	;
6		280			95		264		85		5		9	1
11		153			26		127		66		2		10	1
12	2	148			22		118		65		5		26	,
14		1/3			34		161		72		8		13	
15		196 227			46		206		/1		6		4	
16				1	62	4	246		/4		0		4	
6	Kurtosis.About.	Major.Axis Hollow 181	183 is.katio	BUS										
11		194	202	VAN										
12	,	196	202	4D										
14	i	187	197	VAN										
15		197	199	BUS										
16	1	186	194	2n										

- 3. Run a KNN analysis on the training data using m = 1.
- (a) Show the confusion matrix for the test data. Comment on how well separated the four classes are. In particular, are there classes that are easier/harder to separate?
- (b) Compute and report the test misclassification rate and approximate standard error.

```
50 ##### 3. Run a KNN analysis on the training data using m = 1.
51 # (a) Show the confusion matrix for the test data. Comment on how well
52 # separated the four classes are. In particular, are there classes that are
53 # easier/harder to separate?
54 X.train.raw = set1[,-19]
55 X.valid.raw = set2[,-19]
57 Y.valid = as.matrix(set2[,19])
58
59 ### Rescale x1 using the means and SDs of x2
60 \cdot \text{scale.1} \leftarrow \text{function}(x1,x2)
    for(col in 1:ncol(x1)){
62
       a \leftarrow mean(x2[,col])
63
       b \leftarrow sd(x2[,col])
64
       x1[,col] <- (x1[,col]-a)/b
65 ^
     }
66
     x1
67 - }
68
69 ### Rescale our training and validation sets
70 X.train = scale.1(X.train.raw, X.train.raw)
71 X.valid = scale.1(X.valid.raw, X.train.raw) # Watch the order
72
73 pred.knn = knn(X.train, X.valid, cl = set1[,19], k=1)
74
75 ### Let's make a confusion matrix.
76 table(pred.knn, Y.valid, dnn = c("Predicted", "Observed"))
> table(pred.knn, Y.valid, dnn = c("Predicted", "Observed"))
           Observed
Predicted 2D 4D BUS VAN
           25 18
       2D
                      1
            26 29
                      1
                           2
       4D
       BUS 0 1
                     46
                           6
       VAN 4
                 6
                      1
                          46
80 # (b) Compute and report the test misclassification rate and approximate standard
81 # error
82
83 ### Next, let's get the misclassification rate
84 (misclass.knn = mean(pred.knn != Y.valid))
> (misclass.knn = mean(pred.knn != Y.valid))
[1] 0.3113208
```