Probability 1

MML 6.1

Samuel Carton (adapted from Marek Petrik)

8/2025

Probability Space

- Outcome space: Set Ω

• Event space (sigma algebra): $\mathcal{F} \subset 2^{\Omega}$

• Probability function: $P \colon \mathcal{F} \to [0,1]$

Probability Space: Properties

- Outcome space: Set Ω
 - · Finite or infinite
- Event space (sigma algebra): $\mathcal{F} \subset 2^{\Omega}$
 - Contains sample space:
 - Closed under complements:
 - Closed under countable unions:
 - Closed under countable intersections:
- Probability measure: $P \colon \mathcal{F} \to [0,1]$
 - Mesure of sample space equals 1:
 - Countably additive:

Random Variable

A $\mathcal T$ -valued random variable X (upper case!) is a function:

$$X \colon \Omega \to \mathcal{T}$$

Examples $\Omega = \{J, E, M\}$:

4

Random Variable: Common Types

1. Continuous (real-valued)

2. Discrete

Random Variable: Pre-image (inverse)

Pre-image $X^{-1}\colon \mathcal{T} \to 2^\Omega$ defined as

$$X^{-1}(x) = \{ \omega \in \Omega \mid X(\omega) = x \}$$

Examples $\Omega = \{J, E, M\}$:

6

Probability Distribution

Always associated with a random variable for some $X \colon \Omega \to \mathcal{T}$

$$\mathbb{P}\left[X=x\right] = P\left(X^{-1}(x)\right) = P\left(\left\{\omega \in \Omega \mid X(\omega) = x\right\}\right)$$

Probability Distributions

Wikipedia is a good reference for their properties

Discrete random variable:

· Bernoulli: Heads or tails

Binomial: Number of heads

· Geometric: Coin flips until heads

· Poisson: Number of customers

Continuous random variable:

· Normal: Central limit theorem

Multivariate normal: Height and weight

• Laplace: Extreme weather events

Regression vs Classification

Predicting target: $Y: \Omega \to \mathcal{T}$

Regression: continuous target $\mathcal{T} = \mathbb{R}$

- Profits
- Probability of survival

Classification: discrete target: \mathcal{T} is finite

- Color
- State
- Year (could be either)

Machine Learning Choices ...

Source: http://scikit-learn.org/stable/tutorial/machinelearningmap/index.html