G53KRR answers to the 4th formal/assessed exercise ex4.

- 1. Translate the following statements into ALC, using atomic concepts Actor, FilmActor, TheatreActor, Film, TheatrePerformance, roles actIn (actIn(x,y) means x acts in y), friend (friend(x,y) means x has friend y), and constant john:
 - S1 Film actor is an actor who acts in some film.

 $FilmActor \doteq Actor \sqcap \exists \ actIn.Film$

S2 Theatre actor is an actor who only acts in theatre performances.

 $TheatreActor \doteq Actor \cap \forall \ actIn. TheatrePerformance$

S3 All actors are either film actors or theatre actors (there are no other kinds of actors).

 $Actor \doteq FilmActor \sqcup TheatreActor$ (correct logically, but circular definitions are not approved of in description logic).

Can say $Actor \sqcap \neg (FilmActor \sqcup TheatreActor) \sqsubseteq \bot$, and separately $Actor \sqsubseteq FilmActor \sqcup TheatreActor$.

S4 John is a film actor who has a friend who is a theatre actor.

 $(FilmActor \sqcap \exists friend.TheatreActor)(john)$

S5 John is someone all of whose friends are actors.

 $\forall friend.Actor(john)$

S6 John has a friend who has a friend who is not an actor.

 $\exists friend. \exists friend. \neg Actor(john)$

2. Is the following sentence valid:

$$\exists r.C_1 \sqcap \exists r.C_2 \sqsubseteq \exists r.(C_1 \sqcap C_2)$$
?

Explain your answer. If the subsumption does not hold, give a interpretation where $I(\exists r.C_1 \sqcap \exists r.C_2)$ is not included in $I(\exists r.(C_1 \sqcap C_2))$.

The sentence is not valid. A counterexample interpretation is J=(D,I), where $D=\{d_1,d_2,d_3\}$, $I(r)=\{(d_1,d_2),(d_1,d_3)\}$, $I(C_1)=\{d_2\}$ and $I(C_2)=\{d_3\}$. Then $d_1\in I(\exists r.C_1\sqcap\exists r.C_2)$, and $I(\exists r.(C_1\sqcap C_2))$ is empty.

3. Does $A \doteq \forall r.(C_1 \sqcap C_2)$ entail $A \sqsubseteq \forall r.(C_1 \sqcup C_2)$? Explain your answer. If the entailment does not hold, give a interpretation where $A \doteq \forall r.(C_1 \sqcap C_2)$ is true and $A \sqsubseteq \forall r.(C_1 \sqcup C_2)$ is false.

Yes, if $I(A) = I(\forall r.(C_1 \sqcap C_2))$ then for objects in I(A), all r edges should be to objects in $I(C_1 \sqcap C_2)$. Then since $I(C_1) \cap I(C_2) \subseteq I(C_1) \subseteq I(C_1) \cup I(C_2)$, all r edges are to $I(C_1 \sqcup C_2)$.