Question and Answers

Data are known ____

- a. Information
- b. Facts
- c. Decision
- d. Tables

Data can be represented in ____

- a. Alphabets and special characters
- b. Only digits
- c. Only alphabets and digits
- d. Alphabets, digits and special characters

File is a collection of related data stored in secondary memory. All the following are disadvantages of the file organization approach except

- Data is related
- b. Difficulty in accessing data
- c. Data isolation
- d. Integrity Problems

What is the full form of DBMS?

- a. Data of Binary Management System
- b. Database Management System
- c. Database Management Service
- d. Data Backup Management System

What is a database?

- a) Organized collection of information that cannot be accessed, updated, and managed
- b) Collection of data or information without organizing
- c) Organized collection of data or information that can be accessed, updated and managed
- d) Organized collection of data that cannot be updated

Which of the following is a feature of the database?

- a) No-backup for the data stored
- b) User interface provided
- c) Lack of Authentication
- d) Store data in multiple locations

Which of the following is not a function of the database?

- a) Managing stored data
- b) Manipulating data
- c) Security for stored data
- d) Analysing code

Which of the following is a function of the DBMS?

- a) Storing data
- b) Providing multi-users access control
- c) Data Integrity
- d) All of the above

What does an RDBMS consist of?

- a) Collection of Records
- b) Collection of Keys
- c) Collection of Tables
- d) Collection of Fields

Entity is a thing or object in the ____

- a) Entity relationship diagram
- b) Real world
- c) Enhanced entity relation diagram
- d) Database

In a given ERD scenario, entities are mostly identified using ____

- a) Noun
- b) Their cardinality
- c) Their relationship type
- d) Proper noun

Lo	gical data refers to the data for the table created by the user in the
a.	Primary memory
b.	Secondary memory
C.	All of the above
d.	None of the above
Ph	ysical data refers to the data for the table created by the user in the
a.	Primary memory

Secondary memory

c. All of the above

d. None of the above

The three level of architecture in the DBMS are

- a. ERD, EER, SQL
- b. Entity, attribute, cardinality
- c. External, conceptual, internal
- d. DBA, DA, DBMS

Application programmers and online users are example of database users. Another example of database user is ____ user

- a. MySQL
- b. Naïve
- c. ERD
- d. Entity

All the following are database language except ____

- a. Data definition language
- b. Data manipulation language
- c. Data control language
- d. Database administrator language

Data definition language enable users to ____

- a. Create tables in the database
- b. Manipulate table records in the database
- c. Specify user authorization to the table data
- d. None of the above

Data control language enable users to ____

- a. Create tables in the database
- b. Manipulate table records in the database
- c. Specify user authorization to the table data
- d. None of the above

Data manipulation language enable users to ____

- a. Create tables in the database
- b. Manipulate table records in the database
- c. Specify user authorization to the table data
- d. None of the above

Data control language enable users to ____

- a. Create tables in the database
- b. Manipulate table records in the database
- c. Specify user authorization to the table data
- d. None of the above

Data manipulation language enable users to ____

- a. Create tables in the database
- b. Manipulate table records in the database
- c. Specify user authorization to the table data
- d. None of the above

- Which of the following gives a logical structure of the database graphically?
- a) Entity-relationship diagram
- b) Entity diagram
- c) Database diagram
- d) Architectural representation

The entity relationship set is represented in E-R diagram as

- a) Double diamonds
- b) Undivided rectangles
- c) Dashed lines
- d) Diamond

An entity set that cannot exist without the existence of another entity is termed

- as a _____
- a) Strong entity set
- b) Variant set
- c) Weak entity set
- d) Variable set

- Which of the following gives a logical structure of the database graphically?
- a) Entity-relationship diagram
- b) Entity diagram
- c) Database diagram
- d) Architectural representation

The entity relationship set is represented in E-R diagram as

- a) Double diamonds
- b) Undivided rectangles
- c) Dashed lines
- d) Diamond

An entity set that cannot exist without the existence of another entity is termed

- as a _____
- a) Strong entity set
- b) Variant set
- c) Weak entity set
- d) Variable set

Weak entity set is represented as _____

- a) Underline
- b) Double line
- c) Double diamond
- d) Double rectangle

The relationship between Customer and Order is _____

- a. Many-to-Many
- b. Zero-to-Many
- c. Zero-to-One-to-Many
- d. <mark>One-to-Many</mark>

The maximum cardinality is ____ for Customer and ___ for Order

- a. Many and One
- b. One and Many
- c. Zero and Many
- d. Many and Many

The minimum cardinality for both entities is _____

- a. Many
- b. Optional
- c. Optional or One
- d. <mark>one</mark>

The ____ attribute is a multivalued attribute

- a. <mark>Hobby</mark>
- b. Price
- c. SKU
- d. Email

The ____ attribute is a derived attribute

- a. Hobby
- b. Price
- c. SKU
- d. Email

The possible attribute in the Product entity that could be used as foreign key in the User entity is _____

- a. Hobby
- b. Price
- c. SKU
- d. Email

The possible attribute in the User entity that could be used as foreign key in the Product entity is ______

- a. Hobby
- b. Price
- c. SKU
- d. <mark>Email</mark>

ER DIAGRAM FOR STUDENT ENROLLMENT SYSTEM

ER DIAGRAM FOR STUDENT ENROLLMENT SYSTEM

The Many-to-Many relationship in the ERD can be seen between

- a. Subjects and Lecture
- b. Student and Lecture
- c. Only A
- d. A and B

a.

Which of the following is not true about the model

- a. Software product is a subclass of product
- b. Product "is a" software product
- c. Educational product is a child of product
- d. Product is a generalized superclass

The software product entity has the following attributes

- a. Name, price, and ageGroup
- b. Price, name, platforms, and ageGroup
- c. Price, name, and platforms
- d. Product, software product, educational product

How many specialization of Employee are shown in the EERD

- a. <mark>4</mark>
- b. 5
- c. 7
- d. 2

____ is not a specialization of Employee

- a. Secretary
- b. Manager
- c. Engineer
- d. Project

Without counting any subclass entity, how many entities are shown in the EERD?

- a. 4
- b. 5
- c. <mark>3</mark>
- d. 2

The following are local attributes belonging to the Employee subclasses

- a. Typing_speed, Tgrade, and Eng_type
- b. Salary, Pay_scale, and Employee
- c. Employee, Project, and Trade_union
- d. Employee, Manager, and Project

The 3 subclasses of Employee are all attribute defined specialization based on the ____ attribute

- a. Ssn
- b. Name
- c. <mark>Job_type</mark>
- d. disjoint

The basic constraints that can apply to specialization/generalization are

- a. Disjoint, IS-A, and Overlapping
- b. Total and Partial
- c. Specialization and Generalization
- d. Disjointness, Overlapping, and Completeness

If the subclasses are disjoint, then an entity occurrence can be a member of ____

- a. Only one of the subclasses
- b. Many subclasses
- c. All of the above
- d. None of the above

____ applies when an entity occurrence may be a member of more than one subclass

- a. Overlapping constraint
- b. Disjoint constraint
- c. Total constraint
- d. Partial constraint

Which of the following is a disjoint constraint

- a. {mandatory}
- b. {or}
- c. {and}
- d. {optional}

Which of the following is an overlapping constraint

- a. {mandatory}
- b. {or}
- c. {and}
- d. {optional}

Which of the following is a completeness total constraint

- a. {mandatory}
- b. {or}
- c. {and}
- d. {optional}

A subclass with more than one superclass is called a _____

- a. Tree subclass
- b. Specialized subclass
- c. Shared subclass
- d. Generalized subclass

In a lattice or hierarchy, a subclass inherits attributes not only of its direct superclass, but also of all its predecessor

- a. Subclasses
- b. Superclasses
- c. All of the above
- d. None of the above

What will be the output of the following MySQL command?

SELECT*

FROM employee

WHERE title='HEAD TELLER';

- a. All columns and rows belong to table employee
- b. All columns but only those rows which contain 'HEAD TELLER' as a "title"
- c. All columns don't belong to table employee
- d. None of the mentioned

What will be the output of the following MySQL command?

SELECT*

FROM employee

WHERE (title='HEAD TELLER') AND (start_date=2013-01-24);

- a. All columns and rows belong to table employee
- b. All columns but only those rows which contain 'HEAD TELLER' as a "title" and 2013-01-24 as a "start date"
- c. All rows belong to table employee
- None of the mentioned

What will be the output of the following MySQL command?

SELECT emp_id, fname, lname FROM employee WHERE title='HEAD TELLER' AND start_date=2008-11-24;

- a) All columns
- b) Only those columns which are mention with "SELECT" clause
- c) Columns mention with "SELECT" clause and only those rows which contain 'HEAD TELLER' as a "title" and start_date as 2008-11-24
- d) None of the mentioned

What will be the output of the following MySQL command?

CREATE table PERSON(ID int(10), Name varchar(20), Phone varchar(10), Address varchar(100));

- a) A table within database with new name will be created
- b) New table named person without attributes will be created
- c) A Person table with four attributes will be created
- d) None of the above

What MySQL query will generate the following table?

```
+----+
| CUST_NAME | CUST_COUNTRY | OUTSTANDING_AMT |
+----+
| Micheal | USA | 6000.00 |
| Albert | USA | 6000.00 |
```

- a. select CUST_NAME, CUST_COUNTRY, OUTSTANDING_AMT FROM customer WHERE CUST_COUNTRY = 'USA' AND OUTSTANDING_AMT > 3000;
- b. select CUST_NAME, CUST_COUNTRY, OUTSTANDING_AMT FROM customer WHERE CUST_COUNTRY = 'USA' AND OUTSTANDING_AMT >= 3000;
- c. A and B
- d. None of the above

What will be the output of the following MySQL command if we consider the table below?

 $SELECTsum(outstanding_amt), max(outstanding_amt), min(outstanding_amt), avg(outstanding_amt) FROM CUSTOMER;$

- a. 600, 6000, 12000, and 600
- b. 6000, 12000, 6000, and 9000
- c. 12000, 6000, 6000, and 6000
- d. 3000, 6000, 12000, and 600

customer_id	first_name	last_name	age	country
	John	Doe	31	USA
2	Robert	Luna	22	USA
3	David	Robinson	22	UK
4	John	Reinhardt	25	UK
5	Betty	Doe	28	UAE

Table: Customers

customer_id	first_name	last_name	age	country
1	Johnny	Doe	31	USA
2	Robert	Luna	22	USA
3	David	Robinson	22	UK
4	John	Reinhardt	25	UK
5	Harry	Potter	31	USA

The following query will add the Harry Potter record to the table on the right-hand side.

- a. Alter table customer add customer_id = 5, first_name = Harry, last_name = Potter, age = 31, and country = 'USA';
- b. Insert into customer values(5, 'Harry', 'Potter', 31, 'USA');
- c. Insert into customer values(5, 'Harry', 'Potter', 31, 'USA');
- d. Insert into customer value (5, 'Harry', 'Potter', 31, 'USA');

customer_id	first_name	last_name	age	country
	John	Doe	31	USA
2	Robert	Luna	22	USA
3	David	Robinson	22	UK
4	John	Reinhardt	25	UK
5	Betty	Doe	28	UAE

Table: Customers

customer_id	first_name	last_name	age	country
1	Johnny	Doe	31	USA
2	Robert	Luna	22	USA
3	David	Robinson	22	UK
4	John	Reinhardt	25	UK
5	Harry	Potter	31	USA

The following query will change John from the left-hand table to Johnny as in the right-hand table

- a. Alter table customer change first_name = 'Johnny' where first_name = 'John';
- b. Update from customer first_name = 'Johnny' where customer_id = 1;
- c. Alter table customer pdate first_name = 'Johnny' where customer_id = 1;
- d. Update customer set first_name = 'Johnny' where customer_id = 1;