

CLAIMS

What is claimed is:

- 1 1. An apparatus comprising:
 - 2 a quotient pre-calculation array (QPA);
 - 3 a main array ; and
 - 4 a quotient pre-calculation circuit, to ensure a true remainder during a following
 - 5 cycle is evenly divisible by a radix.

- 1 2. The apparatus of claim 1 wherein the main array and the QPA comprises:
 - 2 a first multiplicand-add multiplexer (MAM) in the main array to couple at least
 - 3 a multiplicand bit with a first carry save adder (CSA) in the main array;
 - 4 a first modulus-add multiplexer (MM) in the QPA to couple at least a modulus
 - 5 bit with a first CSA in the QPA;
 - 6 a second CSA in the main array coupled with the first CSA in the main array
 - 7 and with a first MM in the main array; and
 - 8 a second CSA in the QPA coupled with the first CSA in the QPA, and with a
 - 9 second MM in the QPA.

- 1 3. The apparatus of claim 2, wherein the quotient pre-calculation circuit is coupled
- 2 with the second MM in the QPA, the second MM in the main array, and with the first
- 3 MM in the QPA.

- 1 4. An apparatus as in claim 1, wherein the main array is optimized for area, and
- 2 the quotient pre-calculation array is optimized for speed.

1 5. An apparatus as in claim 2 wherein the CSAs have three inputs, a sum output
2 and a carry output.

1 6. An apparatus as in claim 2 wherein the second CSA in the main array is further
2 coupled to the first CSA in the QPA through a flip-flop.

1 7. An apparatus as in claim 2, wherein the second CSA in the QPA is coupled to a
2 buffer.

1 8. An apparatus as in claim 2, wherein the MAM is coupled to at least one
2 multiplier bit.

1 9. An apparatus as in claim 2 wherein, the second MM in the main array and the
2 first MM in the QPA are coupled to the quotient pre-calculation array via a flip-flop.

1 10. An apparatus as in claim 2, wherein the QPA processes Q bits of a Montgomery
2 multiplication, and the main array processes N-Q bits of the Montgomery
3 multiplication.

1 11. An apparatus as in claim 10 wherein the main array is Q bits to the left of the
2 quotient pre-calculation array.

1 12. An apparatus comprising:
2 a quotient pre-calculation array (QPA), an add-one array, and a main array
3 comprising
4 a first multiplicand-add multiplexer (MAM) in the main array to couple at least
5 a multiplicand bit with a first carry save adder (CSA) in the main array;

6 a first modulus-add multiplexer (MM) in the QPA to couple at least a modulus
7 bit with a first CSA in the QPA;
8 a first add-one multiplexer (AOM) in the add-one array to couple at least a
9 binary one bit with a first CSA in the add-one array;
10 a second CSA in the main array coupled with the first CSA in the main array
11 and with a first MM in the main array;
12 a second CSA in the QPA coupled with the first CSA in the QPA, and with a
13 second MM in the QPA;
14 a second CSA in the add-one array coupled with the first CSA in the add-one
15 array, and with a first MM in the add-one array; and
16 a quotient pre-calculation circuit, to pre-calculate a quotient, coupled with the second
17 MM in the QPA, the second MM in the main array, and with the first MM in the QPA.

1 13. An apparatus as in claim 12, wherein the first add-one multiplexer is coupled to
2 at least one multiplier bit via flip-flops.

1 14. An apparatus as in claim 12, wherein the second CSA in the main array is
2 further coupled to the first CSA in the add-one array, and the second CSA in the add-
3 one array is coupled to the first CSA in the QPA through one or more flip-flops.

1 15. A method comprising:
2 adding at least one multiplicand bit from a first multiplicand-add multiplexer in a main
3 array of a Montgomery multiplier with at least one modulus bit from a first modulus-
4 add multiplexer in the main array;

5 adding at least one modulus bit from a first modulus-add multiplexer in a quotient pre-
6 calculation array with at least one modulus bit from a second modulus-add multiplexer
7 in the quotient pre-calculation array;
8 pre-calculating the quotient during a first cycle; and
9 sending at least one value to control the first modulus-add multiplexer in the main
10 array, the first modulus-add multiplexer in the quotient pre-calculation array, and the
11 second modulus-add multiplexer in the quotient pre-calculation array so that the value
12 of the quotient is evenly divisible by the radix during a second cycle through the
13 Montgomery multiplier.

1 16. A method as in claim 15, further comprising performing an additional cycle
2 through the Montgomery multiplier to synchronize the bits in the main array and in the
3 quotient pre-calculation array.

1 17. A method as in claim 15, wherein during the additional cycle the second
2 modulus-add multiplexer outputs a 0 bit.

1 18. A method as in claim 15 further comprising inserting a 1 bit when necessary to
2 complete a 2's complement of the multiplicand.

1 19. A method as in claim 15 wherein the first multiplicand-add multiplexer has
2 values at its inputs consisting at least one of -2 x the multiplicand, -1 x the
3 multiplicand, 0, 1 x the multiplicand, and 2 x the multiplicand.

1 20. An apparatus comprising:
2 means for adding at least one multiplicand bit from a first multiplicand add
3 multiplexer in a main array of a Montgomery multiplier with at least one modulus bit
4 from a first modulus-add multiplexer in the main array;
5 means for adding at least one modulus bit from a first modulus-add multiplexer
6 in a quotient pre-calculation array with at least one modulus bit from a second
7 modulus-add multiplexer in the quotient pre-calculation array;
8 means for pre-calculating the quotient during a first cycle; and
9 means for sending at least one value to control the first modulus-add
10 multiplexer in the main array, the first modulus-add multiplexer in the quotient pre-
11 calculation array, and the second modulus-add multiplexer in the quotient pre-
12 calculation array so that the value of the quotient is evenly divisible by the radix during
13 a second cycle through the Montgomery multiplier.

1 21. An apparatus as in claim 20, further comprising means for performing an
2 additional cycle through the Montgomery multiplier to synchronize the bits in the main
3 array and in the quotient pre-calculation array.

1 22. An apparatus as in claim 20, wherein the means for pre-calculating the quotient
2 causes the second modulus-add multiplexer to output a 0 bit during the additional cycle
3 through the Montgomery multiplier.