

ENHANCEMENT OF SECURITY IN VIDEO COMMUNICATION THROUGH VISUAL CRYPTOGRAPHY AND FIREFLY OPTIMIZATION

TEAM MEMBERS:

1.ADITI E 123003006, CSE

2.BHAVYA BHARATHI 123015020,IT

3.BYSANI VENKATA LAKSHMI SAI JYOTHIKA 123015125,IT

GUIDE:
BHASKARAN S
Asst. Professor- II

OUTLINE

- It is to ensure and improve secure communication of the video frames through hidden water-marking which is implemented using cryptography.
- The video frames are extracted using firefly algorithm based on certain threshold value after which watermark is processed using visual cryptography.
- The data is embedded into video frames using a reversible data hiding procedure.
- The watermark is extracted after performing various types of attacks.

INTRODUCTION

The high exchange of information in various forms has brought new challenges in protecting data.

Attackers are trying to get access to secret information and this is also part of a violation of privacy.

To protect confidential data, reversible data hiding techniques that are histogram-based are mostly used.

The histogram bit shifting method is a technique that is used to achieve reversible data hiding in images.

A watermark is embedded in the image in a secured manner.

The work in this project is based on using this technique for video communication.

The quality of the frame is defined by some parameters and there is a quality threshold for the selection of frames.

This threshold value is measured using the firefly optimization algorithm.

WORKPLAN

AIM: The aim is to achieve high security and video quality compared to other reversible data hiding techniques.

OBJECTIVES: The video frame should be able to accommodate and embed high capacity data and should be able to recover them with minimum distortion

- To understand and implement firefly optimization.
- To achieve good quality in the processing of water-marking symbol.
- To understand and implement embedding procedure
- To analyze data extraction algorithm

► LINK: https://github.com/wssmanojkumar/Watermaking-Sample-datset

DATASET DESCRIPTION

- This dataset is used to validate and ensure quality of the watermarked video and BER(Bit Error Rate) is used to test the robustness against various attacks.
- The quality and robustness of the approach is estimated using performance parameters such as peak signal-to-noise-ratio (PSNR) and bit error rate (BER).

WORKFLOW ARCHITECTURE

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

THANJAVUR KUMBAKONAM CHENNAI

EXPECTED OUTCOME

- To achieve high security and video quality compared to other reversible data hiding techniques.
- The video frame should be able to accommodate and embed high capacity data and should be able to recover them with minimum distortion.

RELATED WORKS:

(U/S 3 of the UGC Act, 1956)

THINK MERIT | THINK TRANSPARENCY | THINK SASTR

Agilandeswari and ganesan (2016) High robust watermarking scheme Plane slicing based watermarking a THINKME embed coloured watermarking images on the colour video using Discrete Wavelet Transform(DWT), Singular value decomposition(SVD).

<u>High level of robustness</u> watermark can survive even if the watermarked data go through distortions.

High value of PSNR.

Good fidelity- watermark is not visible to the user and it does not degrade the quality of the content.

Arab and karmakar (2016)
Altering the frequency coefficients using DCT.

<u>Discrete Cosine Transform(DCT)</u> based rotation attack resistant video watermarking scheme.

Algorithm also <u>implemented in matlab</u> and has been tested against three different standard videos.

Resistant against any type of rotation attacks and video attacks.

Kulkarni and Kulkarni (2018)
Cryptography-based greyscale image
watermarking scheme.

This scheme was given to two shares of the images and finds out the results for three greyscale images.

Satisfies - security, robustness and blindness.

Tang et al (2019) Reversible data hiding approach.

Huffman code- to reduce the size of embedding location maps.
Not suitable for JPEG images but good for data hiding capacity and computational time.

(U/S 3 of the UGC Act, 1956)

T H A N J A V U R | K U M B A K O N A M | C H E N N A I

- 1. Initialize parameters
- 2. Generate population of n fireflies
- 3. Calculate fitness value of each firefly
- 4. Check if(t:=1 to Maxt)
- 5. Update position and light intensity for each firefly
- 6. Report the best solution.

OBJECTIVE FUNCTION:

objective =
$$PSNR + \emptyset * [BER(w, w') + \sum_{i=1}^{At} BER(w, w'_i)]$$

Based on the given objective function there are certain number of weights or parameters that are to be considered to calculate the threshold value based on which we select frames for embedding our watermark picture.

We are still exploring what those parameters are and how to optimize them into a single threshold or complexity value.

VISUAL CRYPTOGRAPHY

It's an encryption technique on images or text in which decryption is done by

human visual system.

DEEMED TO BE UNIVERSITY
(U/S 3 of the UGC Act, 1956)

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

T H A N J A V U R | K U M B A K O N A M | C H E N N A I

Figure 4

File Edit View Insert Tools Desktop Window Help

(U/S 3 of the UGC Act, 1956)
THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

T H A N J A V U R | K U M B A K O N A M | C H E N N A I

Processing a video and extraction of frames

SASTRA ENGINEERING - MANAGEMENT - LAW - SCIENCES - HUMANITIES - EDUCATION

DEEMED TO BE UNIVERSITY

(U/S 3 of the UGC Act, 1956

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

THANJAVUR KUMBAKONAM CHENNAI

Embedding and extracting watermark in one frame of the video

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

THANIAVUR KUMBAKONAM CHENNAI

HELLO

Hidden Image Thresholded at 70

HELLO

Original Grayscale Starting Image

Hidden Image to be Inserted into Bit Plane 3

Final Watermarked Image without added Noise

Watermarked Image with added Noise

Watermark Recovered from Bit Plane 3 of Noise-Free Watermarked Image

Watermark Recovered from Bit Plane 3 of Noisy Watermarked Image

Cost function output graph for 5 iterations

(U/S 3 of the UGC Act, 1956

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

Complexity factor and cost after 5 iterations for each firefly.

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

T H A N J A V U R | K U M B A K O N A M | C H E N N A I

(U/S 3 of the UGC Act, 1956)

Best costs after each iterations

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

THANJAVUR KUMBAKONAM CHENNAI

Embedded watermark Extracted watermark

After extraction

HANJAVUR KUMBAKONAM CHENNA

Results and discussion

Video 1 with 50 iterations

Video 1 with 25 iterations

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

H A N J A V U R | K U M B A K O N A M | C H E N N A I

Video 1 with 100 iterations

Video 1 with no firefly algorithm

DEEMED TO BE UNIVERSITY

(U/S 3 of the UGC Act, 1956)

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

T H A N J A V U R | K U M B A K O N A M | C H E N N A

172.1551

T H A N J A V U R | K U M B A K O N A M | C H E N N A I

T H A N J A V U R | K U M B A K O N A M | C H E N N A

Video 2 with 100 iterations

Video 2 with 50 iterations

Video 2 with 25 iterations

Video 2 with no firefly algorithm

(U/S 3 of the UGC Act, 1956)

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

Video 3 with 100 iterations

Video 3 with 50 iterations

SASTRA SASTRA

(U/S 3 of the UGC Act, 1956)

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

THANJAVUR KUMBAKONAM CHENNAI

Video 3 with 25 iterations

Video 3 with no firefly algorithm

```
Editor - C:\Users\user\OneDrive\Desktop\Mini Project\review2\noFirefly.m
   fireflyAlgo.m × process.m × complexityFactor.m × create sl
            videoObject = VideoReader("iceage.wmv");
            frames = videoObject.NumFrames;
            video = read(videoObject);
   3
   4
            %k = video(:, :, :, 1);
            %toembed = rgb2gray(k);
            total_cost = 0.0;
   6
            for x = 1: frames
   7
            frame = video(:, :, :, x);
   9
            grayImage = rgb2gray(frame);
            toembed = grayImage;
  10
            [rows, columns] = size(toembed);
  11
  12
            %histogram of grayscale image
            hist_original = imhist(toembed);
  13
            %disp(hist original);
  14
            %finding the maximum value of the intensity
  15
  16
            hist peak=0;
            hist_max=0;
  17
  18
            for i=1:256
                if hist original(i) > hist max
  19
  20
                    hist_max = hist_original(i);
  21
                    hist_peak = i;
  22
                end
            end
Command Window
  >> nortreity
    172.1558
  >> noFirefly
     172.1552
  >> noFirefly
    199.1721
fx >>
```


DEEMED TO BE UNIVERSITY

(U/S 3 of the UGC Act, 1956)
THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

THANJAVUR KUMBAKONAM CHENNAI

Video 4 with 100 iterations Figure 1 File Edit View Insert Tools Desktop Window Help 14 BO D & B BC Best Cost 20 30 40 50 Iteration

Video 4 with 50 iterations

SASTRA ENGINEERING - MANAGEMENT - LAW - SCIENCES - HUMANITIES - EDUCATION

DEEMED TO BE UNIVERSITY
(U/S 3 of the UGC Act, 1956)

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

T H A N J A V U R | K U M B A K O N A M | C H E N N A I

Video 4 with 25 iterations

Video 4 with no firefly algorithm

```
Editor - C:\Users\user\OneDrive\Desktop\Mini Project\review2\noFirefly.m
                             complexityFactor.m X | create sha
  fireflyAlgo.m
                 process.m ×
           videoObject = VideoReader("smurfi2.wmv");
           frames = videoObject.NumFrames;
           video = read(videoObject);
           %k = video(:, :, :, 1);
   4
   5
           %toembed = rgb2gray(k);
   6
           total cost = 0.0;
           for x = 1: frames
           frame = video(:, :, :, x);
   8
  9
           grayImage = rgb2gray(frame);
           toembed = grayImage;
  10
           [rows, columns] = size(toembed);
  11
           %histogram of grayscale image
  12
           hist original = imhist(toembed);
  13
           %disp(hist_original);
  14
           %finding the maximum value of the intensity
  15
           hist peak=0;
  16
           hist max=0;
  17
           for i=1:256
  18
  19
               if hist original(i) > hist max
                   hist_max = hist_original(i);
  20
                   hist peak = i:
  21
  22
               end
Command Window
  Iteration 95: Best Cost = 135.9089
  Iteration 96: Best Cost = 135.9089
  Iteration 97: Best Cost = 135.9089
  Iteration 98: Best Cost = 135.9089
  Iteration 99: Best Cost = 135.9089
  Iteration 100: Best Cost = 135.9089
  >> noFirefly
    138.5073
```


(U/S 3 of the UGC Act, 1956)

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

THANJAVUR KUMBAKONAM CHENNAI

With firefly

Without firefly

(U/S 3 of the UGC Act, 1956)

THINK MERIT | THINK TRANSPARENCY | THINK SASTRA THAN JAVUR | KUMBAKONAM | CHENNA

- 1 no attacks
- 2 median attack
- 3 salt and pepper noise
- 4 average filter
- 5 sharpen attack
- 6 speckle noise

With firefly

Without firefly

- 2 median attack
- 3 salt and pepper noise
- 4 average filter
- 5 sharpen attack
- 6 speckle noise
- 7 gaussian noise

Merits and Demerits of the work

HANJAVUR KUMBAKONAM CHENNAI

MERITS

- Histogram bit shifting is used, which gives a good data hiding capacity for reversible data hiding.
- Gives low BER when firefly algorithm is used, than the usual method.

DEMERITS

- The firefly algorithm has probability of being trapped in local optima because they are local search algorithms.
- Processing time is higher because the threshold value changes for each video.

Conclusion and future work

HANJAVUR KUMB<u>AKONAM CHENNAI</u>

In this project first we create two shares using visual cryptography in which one is used for embedding and other is used later while making the whole watermarked video. For embedding we find a threshold value through firefly algorithm and embed it to those frames using histogram bit shifting which is a reversible data hiding technique. And we perform a few attacks as explained in our project and finally extract the watermarked image and see for any distortions. We can see an increase in PSNR values which is good as it means it has good quality.

Hence, in the future, this technique can be tested for other geometrical attacks and we can also improve the technique for embedding watermarks in the video.

- 1. Amirtharajan, R. & Sulthana, Samreen & Rayappan, John Bosco Balaguru, (2013). Seeing and Believing is a Threat: A Visual Cryptography Schemes. Research Journal of Information Technology. 5. 435-441. 10.3923/rjit.2013.435.441.
- 2. Surafel Luleseged Tilahun, Hong Choon Ong, (2012) "Modified Firefly Algorithm", Journal of Applied Mathematics, vol. 2012, Article ID 467631, 12 pages, 2012.
- 3. Ali, Musrrat & Ahn, Chang Wook & Pant, Millie. (2016). Intelligent Watermarking Scheme Employing the Concepts of Block Based Singular Value Decomposition and Firefly Algorithm. 10.15579/gcsr.vol5.ch3.
- 4. K. Vijaya Durga; G. Mamatha; Ch. Hima Bindu (2015). SVD based image watermarking with firefly algorithm.
- 5. Huailin Dong; Mingyuan He; Ming Qiu (2015). Optimized Gray-Scale Image Watermarking Algorithm Based on DWTDCT-SVD and Chaotic Firefly Algorithm.

- 6. Huang H-C, Chen Y-H, Abraham A (2010) Optimized watermarking using swarm-based bacterial foraging. J Inf Hiding Multimed Signal Process 1(1):51-58
- 7. Firefly algorithm udemy https://www.udemy.com/course/firefly-optimization-algorithm-in-matlab/learn/lecture/ 11336#reviews
- 8. Firefly algorithm code github https://github.com/smkalami/ypea112-firefly-algorithm/tree/master/Firefly%20Algorithm
- 9. Kumar, M., Aggarwal, J., Rani, A. et al. (2022). Secure video communication using firefly optimization and visual cryptography. Artif Intell Rev 55, 2997-3017.

THANK YOU!

T H A N J A V U R | K U M B A K O N A M | C H E N N A I