Cálculo Diferencial

Juan Cribillero Aching

Mayo 22, 2024

Sesión 02

- 1 Aproximación lineal
- 2 Diferenciales
- 3 Referencias

Definición

Cuando $f:D\to\mathbb{R}$ es derivable en un punto a interior de D, definimos lo siguiente: La linealización de f en a es la función $\ell\colon\mathbb{R}\to\mathbb{R}$, dada por

$$\ell(x) = f(a) + f'(a)(x - a)$$

- Cuando f es continua en a aprendimos que $x \approx a \Rightarrow f(x) \approx f(a)$.
- Cuando f es derivable en a podemos mejorar la aproximación: $x \approx a \Rightarrow f(x) \approx \ell(x)$.

Esta última aproximación es llamada aproximación lineal.

Observación

La recta tangente L es la gráfica de la linealización ℓ .

Teorema

Si f es derivable en a y ℓ es la linealización de f en a, entonces

$$\lim_{x \to a} \frac{|f(x) - \ell(x)|}{|x - a|} = 0$$

es decir, cuando $x \approx a$ el error $|f(x) - \ell(x)|$ es mucho menor que la distancia |x-a|.

Defina la linealización de la función f, definida por $f(x) = \sqrt[3]{x(x-2)}$, en torno al punto $x_0 = 1$.

La función $f(x) = \sqrt[3]{x(x-2)}$ es diferenciable en $x_0 = 1$, luego,

$$f'(x_0) = \frac{1}{3} \frac{1}{\sqrt[3]{[x_0(x_0-2)]^2}} \cdot (2x-2)$$
$$f'(1) = 0$$

Finalmente,

$$\ell(x) = f(1) + f'(1)(x - 1)$$

$$\ell(x) = -1 + 0 \cdot (x - 1)$$

$$\ell(x) = -1$$

Use la linealización de una función en torno a un punto, elegido convenientemente, para aproximar el valor de $\sqrt{17}$.

Sea
$$f(x)=\sqrt{x}$$
 y $x_0=16$. La función f es diferenciable en $x_0=16$, luego
$$f'(x_0) = \frac{1}{2\sqrt{x_0}}$$

$$f'(16) = \frac{1}{8}$$

Finalmente,
$$\ell(x) = f(16) + f'(16)(x-16)$$

$$\ell(x) = 4 + \frac{1}{8} \cdot (x-16)$$

Así, $\ell(17) = 4 + \frac{1}{8}(17 - 16) = 4.125$ comparando con f(17) = 4.123 se tiene una buena aproximación.

Así,
$$\ell(17)=4+\frac{1}{8}(17-16)=4.125$$
 comparando con $f(17)=4.123$ se tiene una buena aproximación.

Definición

Sea $f\colon I\to\mathbb{R}$ una función definida sobre el intervalo $I\subset\mathbb{R}$ y $x_0\in I$. La variación de x entre x_0 y x es

$$\Delta x = x - x_0$$

La variación de la función f entre x_0 y x, también llamada "variación de y", es

$$\Delta y = y - y_0 = f(x) - f(x_0) = f(x_0 + \Delta x) - f(x_0)$$

El costo total en dólares de fabricar q unidades de cierto artículo es

$$C(q) = 3q^2 + 5q + 10$$

Calcule la variación del costo de 40 a 41 unidades, y de 40 a 42 unidades.

En ambos casos, $q_0 = 40$.

■ En el primer caso q=41, $\Delta q=1$ y $\Delta C=C(41)-C(40)=5258-5010=248$.

Interpretación: produciendo 40 unidades, cuando se aumenta una unidad, el costo aumenta 248 dólares.

■ En el segundo caso, q=42, $\Delta q=2$ y $\Delta C=C(42)-C(40)=5512-5010=502$.

Interpretación: produciendo 40 unidades, cuando se aumenta dos unidades, el costo aumenta 502 dólares.

Sesión 02

- 1 Aproximación lineal
- 2 Diferenciales
- 3 Referencias

Definición (Diferencial)

Sea $f: I \to \mathbb{R}$ una función derivable en $x_0 \in I$. Entonces para valores pequeños de Δx , tenemos

$$f'(x) \approx \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{\Delta y}{\Delta x}$$

es decir $\Delta y \approx f'(x_0) \Delta x$.

El diferencial de f en x_0 , que depende de Δx , se denota como dy y se define como

$$dy = f'(x_0)\Delta x$$

Esta definición hace que dy sea la variación aproximada de y entre x_0 y $(x_0 + \Delta x)$

Interpretación geométrica

Observación

Si y = I(x) = x, entonces para cualquier x_0 y Δx , se tiene que el diferencial de la función I(x) es

$$I'(x_0)\Delta x = \Delta x$$

Debido a esto, en adelante denotaremos Δx como dx. Este diferencial será llamado diferencial de la variable independiente x. Usando la notación anterior, podemos escribir $dy = f'(x_0) dx$.

Calcule un valor aproximado de $\sqrt{65}$ usando el diferencial como una aproximación al incremento de alguna función adecuada.

Considere $y=f(x)=\sqrt{x}$, para $x\geq 0$, cuya derivada es $f'(x)=\frac{1}{2\sqrt{2}}$ para x>0. Considerando $x_0=64$ y $\Delta x=1$, se tiene

$$f(65) - f(64) = \Delta y \approx dy = f'(x_0)\Delta x = \frac{1}{16}$$

Así,
$$\sqrt{65} \approx \sqrt{64} + \frac{1}{16} = 8,0625$$

El costo total, en miles de dólares, de fabricar q miles de unidades de cierto artículo es

$$C(q) = 0.01q^2 + 2.5q - 50$$

Siendo el nivel actual de producción de $100\,000$ unidades, se planea disminuirlo en $95\,000$ unidades. Determinar la variación aproximada del costo debida a tal cambio.

En este caso $q_0=100$ y $\Delta q=-5$. Como C'(q)=0.02q+2.5, entonces

$$dC = C'(q_0)\Delta q = (4.5)(-5) = -22.5$$

Comparando con la variación real:

$$\Delta C = C(q_0 + \Delta q) - C(q_0) = C(95) - C(100) = -22.25$$

Sesión 02

- 1 Aproximación lineal
- 2 Diferenciales
- 3 Referencias

Referencias

- James Stewart Cálculo de una variable - Trascendentes tempranas. 8e Cengage Learning
- Jon Rogawski Cálculo - Una variable. 2da ed. W. H. Freeman and Company
- Ron Larson Bruce Edwards Cálculo, Tomo I. 10ma ed. Cengage Learning

