	Sullday, 19 November 2025, 11.46 Alvi
	Finished
	Sunday, 19 November 2023, 12:27 PM
	40 mins 52 secs
Grade	9.00 out of 10.00 (90 %)
uestion 1	
orrect	
lark 1.00 out of 1.00	
Flag question	
Channel equalizatio	n refers to
Select one:	
Removing the e	ffect of ISI ✓
_	hannel gains equal
	hannel gains equal
 iviaking the cha 	nnels of different users equal
Your answer is corre	ct.
The correct answer	s: Removing the effect of ISI
orrect Mark 1.00 out of 1.00 Flag question	
orrect flark 1.00 out of 1.00 Flag question Consider an Inter 1 $1 + v(k)$. Let an on symbols $y(k)$, $y(k)$	Symbol Interference channel $y(k) = h(0)x(k) + h(1)x(k - r)$ r = 2 tap channel equalizer be designed for this scenario based $(k + 1)$ to detect $x(k)$. Let the equalizer vector be denoted by channel matrix by H . The matrix H for this scenario is
orrect fark 1.00 out of 1.00 Flag question Consider an Inter 1 $1) + v(k)$. Let an on symbols $y(k)$, y c and the effective Select one:	r=2 tap channel equalizer be designed for this scenario based $(k+1)$ to detect $x(k)$. Let the equalizer vector be denoted by channel matrix by H . The matrix H for this scenario is
orrect fark 1.00 out of 1.00 Flag question Consider an Inter 1 $1) + v(k)$. Let an on symbols $y(k)$, y c and the effective Select one:	r=2 tap channel equalizer be designed for this scenario based $(k+1)$ to detect $x(k)$. Let the equalizer vector be denoted by channel matrix by H . The matrix H for this scenario is
orrect lark 1.00 out of 1.00 Flag question Consider an Inter 1) + $v(k)$. Let an on symbols $y(k)$, y c and the effective Select one: $\begin{bmatrix} h(0) & h(1) \\ 0 & h(0) \end{bmatrix}$	r=2 tap channel equalizer be designed for this scenario based $(k+1)$ to detect $x(k)$. Let the equalizer vector be denoted by channel matrix by H . The matrix H for this scenario is
orrect fark 1.00 out of 1.00 Flag question Consider an Inter 1 $1) + v(k)$. Let an on symbols $y(k)$, y c and the effective Select one:	r=2 tap channel equalizer be designed for this scenario based $(k+1)$ to detect $x(k)$. Let the equalizer vector be denoted by channel matrix by H . The matrix H for this scenario is
orrect flark 1.00 out of 1.00 Flag question Consider an Inter 1 1) + $v(k)$. Let an on symbols $y(k)$, y c and the effective Select one: $\begin{bmatrix} h(0) & h(1) \\ 0 & h(0) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(0) \end{bmatrix}$	$r=2$ tap channel equalizer be designed for this scenario based $(k+1)$ to detect $x(k)$. Let the equalizer vector be denoted by channel matrix by H . The matrix H for this scenario is $\begin{bmatrix}0\\h(1)\end{bmatrix}$
orrect flark 1.00 out of 1.00 Flag question Consider an Inter 1 1) + $v(k)$. Let an on symbols $y(k)$, y c and the effective Select one: $\begin{bmatrix} h(0) & h(1) \\ 0 & h(0) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ 0 & h(0) \end{bmatrix}$	$r=2$ tap channel equalizer be designed for this scenario based $(k+1)$ to detect $x(k)$. Let the equalizer vector be denoted by channel matrix by \mathbf{H} . The matrix \mathbf{H} for this scenario is $\begin{bmatrix} 0 \\ h(1) \end{bmatrix}$
orrect flark 1.00 out of 1.00 Flag question Consider an Inter 1 1) + $v(k)$. Let an on symbols $y(k)$, y c and the effective Select one: $\begin{bmatrix} h(0) & h(1) \\ 0 & h(0) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(1) & h(0) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(1) & h(0) \\ h(1) & h(1) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(1) \end{bmatrix}$	$r=2$ tap channel equalizer be designed for this scenario based $(k+1)$ to detect $x(k)$. Let the equalizer vector be denoted by channel matrix by \mathbf{H} . The matrix \mathbf{H} for this scenario is $\begin{bmatrix} 0 \\ h(1) \end{bmatrix}$
orrect flark 1.00 out of 1.00 Flag question Consider an Inter 1 1) + $v(k)$. Let an on symbols $y(k)$, y c and the effective Select one: $\begin{bmatrix} h(0) & h(1) \\ 0 & h(0) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(1) & h(0) \\ h(1) & h(1) \end{bmatrix}$ $\begin{bmatrix} h(1) & h(0) \\ h(1) & h(1) \end{bmatrix}$	$r=2$ tap channel equalizer be designed for this scenario based $(k+1)$ to detect $x(k)$. Let the equalizer vector be denoted by channel matrix by H . The matrix H for this scenario is $\begin{bmatrix}0\\h(1)\end{bmatrix}$
orrect flark 1.00 out of 1.00 Flag question Consider an Inter 1 1) + $v(k)$. Let an on symbols $y(k)$, y c and the effective Select one: $\begin{bmatrix} h(0) & h(1) \\ 0 & h(0) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(1) & h(0) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(1) & h(0) \\ h(1) & h(1) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(1) \end{bmatrix}$	$r=2$ tap channel equalizer be designed for this scenario based $(k+1)$ to detect $x(k)$. Let the equalizer vector be denoted by channel matrix by \mathbf{H} . The matrix \mathbf{H} for this scenario is $\begin{bmatrix} 0 \\ h(1) \end{bmatrix}$
orrect flark 1.00 out of 1.00 Flag question Consider an Inter 1 1) + $v(k)$. Let an on symbols $y(k)$, y c and the effective Select one: $\begin{bmatrix} h(0) & h(1) \\ 0 & h(0) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(1) & h(0) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(1) & h(0) \\ h(1) & h(1) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(1) \end{bmatrix}$	$r=2$ tap channel equalizer be designed for this scenario based $(k+1)$ to detect $x(k)$. Let the equalizer vector be denoted by channel matrix by \mathbf{H} . The matrix \mathbf{H} for this scenario is $\begin{bmatrix} 0 \\ h(1) \end{bmatrix}$
Flag question Consider an Inter 1 1) + $v(k)$. Let an on symbols $y(k)$, y c and the effective Select one: $\begin{bmatrix} h(0) & h(1) \\ 0 & h(0) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(1) & h(0) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(0) \end{bmatrix}$ Your answer is corrected.	$r=2$ tap channel equalizer be designed for this scenario based $(k+1)$ to detect $x(k)$. Let the equalizer vector be denoted by channel matrix by \mathbf{H} . The matrix \mathbf{H} for this scenario is $\begin{bmatrix} 0 \\ h(1) \end{bmatrix} $
Flag question Consider an Inter 1 1) + $v(k)$. Let an on symbols $y(k)$, y c and the effective Select one: $\begin{bmatrix} h(0) & h(1) \\ 0 & h(0) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(1) & h(0) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(0) \end{bmatrix}$ Your answer is corrected.	$r=2$ tap channel equalizer be designed for this scenario based $(k+1)$ to detect $x(k)$. Let the equalizer vector be denoted by channel matrix by \mathbf{H} . The matrix \mathbf{H} for this scenario is $\begin{bmatrix} 0 \\ h(1) \end{bmatrix}$
Flag question Consider an Inter 1 1) + $v(k)$. Let an on symbols $y(k)$, y c and the effective Select one: $\begin{bmatrix} h(0) & h(1) \\ 0 & h(0) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(1) & h(0) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(0) \end{bmatrix}$ Your answer is corrected.	$r=2$ tap channel equalizer be designed for this scenario based $(k+1)$ to detect $x(k)$. Let the equalizer vector be denoted by channel matrix by \mathbf{H} . The matrix \mathbf{H} for this scenario is $\begin{bmatrix} 0 \\ h(1) \end{bmatrix} $
orrect flark 1.00 out of 1.00 Flag question Consider an Inter 1 1) + $v(k)$. Let an on symbols $y(k)$, y c and the effective Select one: $\begin{bmatrix} h(0) & h(1) \\ 0 & h(0) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(1) & h(0) \\ 0 & h(1) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(0) & h(1) \end{bmatrix}$ Your answer is correct. The correct answer	$r=2$ tap channel equalizer be designed for this scenario based $(k+1)$ to detect $x(k)$. Let the equalizer vector be denoted by channel matrix by \mathbf{H} . The matrix \mathbf{H} for this scenario is $\begin{bmatrix} 0 \\ h(1) \end{bmatrix} $
Flag question Consider an Inter 1 1) + $v(k)$. Let an on symbols $y(k)$, y c and the effective Select one: $\begin{bmatrix} h(0) & h(1) \\ 0 & h(0) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(1) & h(0) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(0) \end{bmatrix}$ Your answer is correct answer	$r=2$ tap channel equalizer be designed for this scenario based $(k+1)$ to detect $x(k)$. Let the equalizer vector be denoted by channel matrix by \mathbf{H} . The matrix \mathbf{H} for this scenario is $\begin{bmatrix} 0 \\ h(1) \end{bmatrix} $
orrect flark 1.00 out of 1.00 Flag question Consider an Inter 1 1) + $v(k)$. Let an on symbols $y(k)$, y c and the effective Select one: $\begin{bmatrix} h(0) & h(1) \\ 0 & h(0) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(1) & h(0) \\ h(1) & h(1) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(0) & h(1) \end{bmatrix}$ Your answer is correct The correct answer	$r=2$ tap channel equalizer be designed for this scenario based $(k+1)$ to detect $x(k)$. Let the equalizer vector be denoted by channel matrix by \mathbf{H} . The matrix \mathbf{H} for this scenario is $\begin{bmatrix} 0 \\ h(1) \end{bmatrix} $
Flag question Consider an Inter 1 1) + $v(k)$. Let an on symbols $y(k)$, y c and the effective Select one: $\begin{bmatrix} h(0) & h(1) \\ 0 & h(0) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(1) & h(0) \\ h(1) & h(0) \end{bmatrix}$ $\begin{bmatrix} h(0) & h(1) \\ h(1) & h(0) \end{bmatrix}$ Your answer is correct answer	$r=2$ tap channel equalizer be designed for this scenario based $(k+1)$ to detect $x(k)$. Let the equalizer vector be denoted by channel matrix by \mathbf{H} . The matrix \mathbf{H} for this scenario is $\begin{bmatrix} 0 \\ h(1) \end{bmatrix} $

Started on Sunday, 19 November 2023, 11:46 AM

Consider an inter symbol interference channel $y(k) = h(0)x(k) + h(1)x(k - 1) + v(k)$. Let an $r = 2$ tap channel equalizer be designed for this scenario based on symbols $y(k)$, $y(k + 1)$ to detect $x(k)$. Let the effective channel matrix for this scenario be denoted by H . The projection matrix $P_{\mathbf{H}}$ of \mathbf{H}^T is,		
Select one:		
$(\mathbf{H}^T\mathbf{H})^{-1}$		
$H(\mathbf{H}^T\mathbf{H})^{-1}\mathbf{H}^T$		
Your answer is correct.		
The correct answer is: $\mathbf{H}^T(\mathbf{H}\mathbf{H}^T)^{-1}\mathbf{H}$		
Question 4		
Correct		
Mark 1.00 out of 1.00		
▼ Flag question		
ISI in a wireless system results when		
Select one:		
Symbol duration is very large		
Symbol duration is very small		
 Velocity of the mobile is large 		
 Velocity of the mobile is small 		
Your answer is correct.		
The correct answer is: Symbol duration is very small		
Question 5		
Correct		
Mark 1.00 out of 1.00		
♥ Flag question		

Select one:

- The output symbols across the subcarriers are a linear convolution between the channel filter and the time-domain transmit samples obtained after IFFT
- The output symbols across the subcarriers are a circular convolution between the channel filter and the transmit symbols loaded on the subcarriers
- The output time-domain samples are a circular convolution between the channel filter and the time-domain transmit samples obtained after IFFT

 ✓
- The output time-domain samples are a multiplication of the FFT coefficients of the channel filter and the time-domain transmit samples obtained after IFFT

Your answer is correct.

The correct answer is: The output time-domain samples are a circular convolution between the channel filter and the time-domain transmit samples obtained after IFFT

Question **6**

Incorrect

Mark 0.00 out of 1.00

Remove flag

Consider a two tap frequency selective channel with channel taps h(0), h(1). Let x(l), $0 \le l \le 3$ denote the samples obtained via IFFT. These are transmitted over the channel after addition of a cyclic prefix of length 2 symbols. Let v(l) denote the noise sample at time l. The received symbol y(0) at time l = 0 is

Select one:

- h(0)x(0) + v(0) ×
- h(0)x(1) + h(1)x(0) + v(1)
- h(0)x(0) + h(1)x(1) + v(0)
- h(0)x(0) + h(1)x(3) + v(0)

Your answer is incorrect.

The correct answer is: h(0)x(0) + h(1)x(3) + v(0)

Question **7**

Correct

Mark 1.00 out of 1.00

Remove flag

Consider a two tap frequency selective channel with channel taps h(0), h(1). Let x(l), $0 \le l \le 3$ denote the samples obtained via IFFT. Then, the channel coefficient H(2) across subcarrier k = 2 is

Select one:

- h(0) + h(1)
- 0 h(0) jh(1)
- h(0) + jh(1)

Your answer is correct.

The correct answer is: h(0) - h(1)

Question **8**

Correct

Mark 1.00 out of 1.00

Remove flag

Consider an N=4 subcarrier OFDM system with **conventional** channel estimation i.e. pilot symbols transmitted on all the subcarriers. The ISI channel has L=2 taps, denoted by h(0), h(1). The received samples y(k) for k=0,1,2,3 are respectively $1, -\frac{1}{2}j, -\frac{1}{2}j, 1$. The symbol Y(1) received on subcarrier k=1 in the frequency domain is

Select one:

$$\bigcirc \quad \frac{1}{2} + \frac{1}{2}j$$

$$\bigcirc \quad \frac{1}{2} - \frac{3}{2}j$$

$$\bigcirc \quad -\frac{1}{2} + \frac{1}{2}j$$

Your answer is correct.

The correct answer is: $\frac{1}{2} + \frac{3}{2}j$

Question **9**

Correct

Mark 1.00 out of 1.00

Consider the multiple transmit antenna channel estimation model given by $\bar{\mathbf{y}} = \mathbf{X}\bar{\mathbf{h}} + \bar{\mathbf{v}}$, with $\bar{\mathbf{v}}$ denoting the additive noise vector comprising of zero-mean i.i.d. Gaussian noise samples. The MMSE estimate at high SNR for this scenario reduces to the

Select one:

- Matched Filter
- ML estimate
- LMMSE estimate
- Unbiased Estimate

Your answer is correct.

The correct answer is: ML estimate

Question 10

Correct

Mark 1.00 out of 1.00

▼ Flag question

Consider the multiple transmit antenna channel estimation model given by $\bar{\mathbf{y}} = \mathbf{X}\bar{\mathbf{h}} + \bar{\mathbf{v}}$, with, $\mathbf{X}, \bar{\mathbf{y}}$ denoting the pilot matrix, output vector, respectively and $\bar{\mathbf{v}}$ denoting the additive noise vector comprising of zero-mean i.i.d. Gaussian noise samples of variance σ^2 . The channel coefficients are zero-mean i.i.d. Gaussian with variance σ_h^2 . The covariance matrix \mathbf{R}_{yy} of the output vector y is

Select one:

$$\bigcirc \quad \sigma_h^2 \mathbf{I} + \sigma^2 \mathbf{X} \mathbf{X}^T$$

Your answer is correct.

The correct answer is: $\sigma_h^2 \mathbf{X} \mathbf{X}^T + \sigma^2 \mathbf{I}$

Finish review