NGC 3201

Globular Cluster

Written by Maria F and Evgenii N.

Aim is to calculate the Distance and Age of NGC 3201

Distance

Table 1: Estimates of apparent visual distance modulus, reddening and distance from the literature.

Apparent visual distance modulus (m-M) _v [mag]	Reddening E(B-V) [mag]	Distance [kpc]	Source
14.08 ± 0.06 ± 0.1	N/A	N/A	Mazur et al. 2003, https://arxiv.org/abs/astro-ph/0304359
14.10	0.14	5.4	Alcaino 1976, https://ui.adsabs.harvard.edu/abs/1976A% 26AS26251A/abstract
14.20	0.24	4.9	Harris 2010, https://arxiv.org/abs/1012.3224 , the catalog: http://physwww.mcmaster.ca/~harris/mwgc.dat
14.2	0.21± 0.02	5.2	Lee 1977, https://ui.adsabs.harvard.edu/abs/1977A% 26AS28409L/abstract
N/A	0.25 ± 0.02	4.67 ± 0.24	Layden et al. 2003, https://ui.adsabs.harvard.edu/abs/2003AJ. 125208L/abstract
N/A	0.25 ± 0.01	5.1 ± 0.1 kpc	Monty et al. 2018, https://arxiv.org/abs/1808.05271

Notes about distance modulus

Literature usually gives apparent visual distance modulus (m-M) $_{V}$ (Table 1.) To calculate the distance, we first need to calculate the *true distance modulus* (m-M) $_{0}$, which is the apparent distance modulus minus the light extinction term $A_{V} = R_{V} E(B - V)$:

$$(m-M)_0 = (m-M)_V - R_V E(B - V),$$

where

- R_v = 3 is optical total-to-selective extinction ratio value that is dependent upon the density of the interstellar medium. I don't know where this number 3 comes from, but they all use it.
- E(B V) is the extinction correction value (aka "reddening") of the (B-V) colour (given by Table 1).

Once we calculate (m-M)₀, we can find distance d (in pc) from equation:

$$(m-M)_0=5 \log_{10}[d/(10 pc)].$$

Age

The method we will use to determine the age of NGC 3201 is through a comparison with theoretical isochrones. The isochrones that we generate are plotted on a Colour Magnitude Diagram (CMD), where absolute magnitude in the UBVRI filter is plotted against colour. In the literature, these isochrones are presented as trendlines indicating where the globular cluster data will lie, thus giving an approximate age estimate determined by fitting isochrones to the CMD of the cluster.

Table 2: Ages for NGC 3201 found through Isochrone Fitting from literature

Age (Gyr)	Source
13.4 ± 0.5	Layden et al. 2003 https://ui.adsabs.harvard.edu/abs/2003AJ125208 L/abstract
12.2 ± 0.5	Monty et al. 2018 https://ui.adsabs.harvard.edu/abs/2018ApJ86516 0M/abstract
12.00 ± 0.75	Dotter et al. 2010 https://arxiv.org/abs/0911.2469

Munoz et al. 2013 https://arxiv.org/abs/astro-ph/0109433
Calamida et al. 2008 s://ui.adsabs.harvard.edu/abs/2009IAUS25818 9C/abstract

An example result of calculating the age of NGC 3201:

LAYDEN & SARAJEDINI

Figure 1. NGC 3201 against V-band as a function of (B - V) colour on the left side, right side, V band is a function of (V - I) colour. The curves mark the isochrones, where we have ages 10.0, 12.6 and 15.8 Gyrs. (Layden et al. 2003)

Therefore, Layden et al. suggests from the isochrone fitting that NGC 3201 has an age of 13.4 ± 0.5 .