МФТИ, сложность вычислений, осень 2023 Семинар 08. Kласс **РН**

Определение. Σ_k^p — класс языков A, для которых существует машина Тьюринга V, работающая за полиномиальное время от длины первого аргумента, т.ч. $x \in A \Leftrightarrow \exists y_1 \forall y_2 \exists y_3 \dots V(x, y_1, y_2, \dots, y_k) = 1$. **Определение.** Π_k^p — класс языков A, для которых существует машина Тьюринга V, работающая за полиномиальное время от длины первого аргумента, т.ч. $x \in A \Leftrightarrow \forall y_1 \exists y_2 \forall y_3 \dots V(x, y_1, y_2, \dots, y_k) = 1$.

Определение. $\mathbf{PH} = \bigcup_{k=0}^{\infty} \Sigma_k^p$

Утверждение. Для произвольного $k \geqslant 1$ следующие условия эквивалентны:

- a) $\Sigma_k^p = \Sigma_{k+1}^p$; б) $\Sigma_k^p = \Pi_k^p$;
- в) $\mathbf{PH} = \Sigma_k^p$. В этом случае говорят, что \mathbf{PH} схлопывается на k-м уровне.

Определение. Язык B называется Σ_k^p -трудным, если $\forall A \in \Sigma_k^p$: $A \leqslant_p B$. Язык B называется Σ_k^p -

полным, если он лежит в Σ_k^p и является Σ_k^p -трудным. Определение для Π_k^p аналогично. **Теорема.** Язык Σ_k SAT = $\{\varphi(\overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_k}) \mid \exists \overrightarrow{x_1} \, \forall \overrightarrow{x_2} \, \exists \overrightarrow{x_3} \dots \varphi(\overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_k}) = 1\}$ является Σ_k^p -полным. Язык Π_k SAT = $\{\varphi(\overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_k}) \mid \forall \overrightarrow{x_1} \, \exists \overrightarrow{x_2} \, \forall \overrightarrow{x_3} \dots \varphi(\overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_k}) = 1\}$ является Σ_k^p -полным. **Теорема.** $\mathbf{P}^{\Sigma_{k-1}^p} \subset \Sigma_k^p \cap \Pi_k^p$; $\Sigma_k^p = \mathbf{N} \mathbf{P}^{\Sigma_{k-1}^p}$; $\Pi_k^p = \mathbf{coN} \mathbf{P}^{\Sigma_{k-1}^p}$

Утверждение. Если A является Σ_k^p -трудным, причём $A\leqslant_p B$, то и B является Σ_k^p -трудным. Аналогично с Π_k^p .

Определение. Раскраска G в k цветов называется кликовой раскраской, если в любой максимальной по включению клике G есть вершины разных цветов.

- **1.** Что такое Σ_k^p и Π_k^p для $k \le 1$? **2.** Докажите, что $\Pi_k^p = \{ \overline{A} \mid A \in \Sigma_k^p \} = \{ A \mid \overline{A} \in \Sigma_k^p \}$. Поэтому уместна запись $\Pi_k^p = \mathbf{co}\Sigma_k^p$.
- 3. Докажите следующие простые свойства классов полиномиальной иерархии.
 - а) Докажите, что классы Σ_k^p и Π_k^p замкнуты относительно объединения и пересечения.
 - б) Что происходит, если один из них оказывается замкнут относительно дополнений?
 - в) Выведите, что $\mathbf{PH} = \bigcup_{k=0}^{\infty} \Pi_k^p$, и $\Sigma_k^p \cup \Pi_k^p \subset \Sigma_{k+1}^p \cap \Pi_{k+1}^p$.
- 4. Докажите, что если в РН есть (РН-)полный язык, то РН схлопывается.
- 5. Классифицируйте как можно точнее в полиномиальной иерархии языки:
 - а) ALL3COL = $\{G \mid \text{любая раскраска вершин графа } G \text{ в три цвета является правильной} \};$
 - б) CHROMNUMBER = $\{(G, k) \mid \chi(G) = k\}$. Почему он вряд ли полон в каком-нибудь классе?
 - в) SYMGRAPH = $\{G \mid \text{для всякой пары вершин } u \text{ и } v \text{ графа } G \text{ существует его автоморфизм, перево$ дящий u в v $\}$.
 - г) ALMOST-TAUT = $\{\varphi \mid \text{пропозициональная формула } \varphi \text{ истинна на всех наборах значений перемен$ ных, кроме не более чем n, где n — число переменных в φ }.
 - д) MINEQCNF = $\{(\varphi, 1^{\ell}) \mid \text{формула } \varphi \text{ эквивалентна некоторой формуле в КНФ длины не более } \ell \}$. Оказывается, он полон в своём классе.
 - $(G, H_1, H_2) \mid$ для любой раскраски вершин графа G в красный и синий цвета найдётся либо красный подграф, изоморфный H_1 , или синий подграф, изоморфный H_2 \}.
 - ж) CLIQUE-CHOOSABILITY = $\{(G,k) \mid B \text{ графе } G \text{ с множеством вершин } V = \{1,2,\ldots,n\}$, как бы ни были заданы k-элементные множества L_1, \ldots, L_n , можно выбрать кликовую раскраску всех вершин с условием, что каждая вершина j будет покрашена в один из цветов множества L_i $\}$.
- **6.** Что такое Σ_1 SAT и Π_1 SAT?
- 7. Определим языки Σ_k 3SAT и Σ_k 3DNFSAT аналогично Σ_k SAT для формул в 3-КНФ и 3-ДНФ соответственно. Аналогично определим Π_k 3SAT и Π_k 3DNFSAT. При каких k языки полны в соответствующих классах? Почему Σ_1 3DNFSAT вряд ли полон в Σ_1^p ? Почему Π_1 3SAT вряд ли полон в Π_1^p ?
- 8. Докажите Π_2^p -полноту языка $3COLEXTENSION = \{(G,k) \mid \text{вершины графа } G \text{ пронумерованы после$ довательными натуральными числами с 1, а любую правильную раскраску в 3 цвета вершин с номерами

- $1, 2, \dots, k$ можно продолжить до правильной раскраски всего G в три цвета $\}$.
- 9. Докажите Π_2^p -полноту языка HAMPATHEXT = $\{(G,k,s,t)\mid$ ориентированный граф G задан списком рёбер e_1, \ldots, e_m , причём при любом выборе по одному элементу из каждой пары $(e_1, e_2), (e_3, e_4), \ldots,$ (e_{2k-1}, e_{2k}) , в G найдётся гамильтонов путь из s в t, использующий выбранные рёбра $\}$.
- **10.** Определим $A = \{k \mid \Sigma_k^p = \Pi_k^p\}$. Что можно сказать о сложности языка A? **11.** Как соотносятся \mathcal{C}^O и $\mathcal{C}^{\overline{O}}$ для любого класса \mathcal{C} и любого оракула O?
- **12.** Пусть $O \in \mathbf{PH}$. Докажите, что $\mathbf{P}^O \subset \mathbf{PH}$.

- 1. $\Sigma_0^p = \mathbf{P} = \Pi_0^p, \ \Sigma_1^p = \mathbf{NP}, \ \Pi_1^p = \mathbf{coNP}.$
- **2.** Если V машина, показывающая принадлежность A к Σ_k^p , то (1-V) показывает принадлежность \overline{A} к Π_k^p .

3.

- а) Возьмите естественную булеву связку верификаторов с независимыми переменными, вынесите кванторы в правильном порядке.
- б) Если Σ_k^p замкнут относительно дополнений, то $\Sigma_k^p = \Pi_k^p$. В общем случае, если \mathcal{C} произвольный сложностной класс, такой что $\mathcal{C} \subset \mathbf{co}\mathcal{C}$, то $\mathcal{C} = \mathbf{co}\mathcal{C}$.
- в) Навесьте фиктивный квантор.
- **4.** Достаточно показать, что из условий $A \in \Sigma_k^p$ и $B \leqslant_p A$ следует, что $B \in \Sigma_k^p$

5.

- a) **P**;
- б) $\Sigma_2^p \cap \Pi_2^p$;
- в) **NP**;
- г) **coNP**;
- Δ) Σ_2^p ;
- e) $\Pi_2^{\bar{p}}$;
- ж) Π_3^p .
- 6. SAT и TAUT.
- 7. Σ_k 3SAT полон в Σ_k^p при нечётных k. Π_k 3SAT полон в Π_k^p при чётных k. Это достигается обычным сведением формулы к виду 3-КНФ за счёт того, что последний квантор квантор существования, который и навешивается на новые переменные.
- **8.** Используйте сведение **3SAT** к **3COL**. Останется (при необходимости) добавить некоторые фиктивные вершины и ввести необходимую нумерацию.
- **9.** Вспомните сводимость **3SAT** к **HAMPATH**. Значение переменной однозначно соответствует выбору первого ребра в соответствующем гаджете.

Обобщите это сведение на сведение Π_2 -3SAT к HAMPATHEXT.

- **10.** $A \in \mathbf{P}$.
- 11. Классы совпадают.
- 12. $O \in \Sigma_k^p$ для некоторого k, так что $\mathbf{P}^O \subset \Sigma_{k+1}^p \cap \Pi_{k+1}^p$.