

The Hashemite University Electrical Engineering Department

Dr. Anas Al Tarabsheh

Digital Electronics

Second Exam First Semester 2008/2009

Exam Duration: 1 hour

Date: 03/12/2008

Q1) Fig. 1 shows a three-input ECL gate with output buffers. The transistors have the following parameters: $\beta_F = 50$, V_{BE} (F.A)= 0.75V, V_{BE} (ECL)= 0.75V.

- A) Assuming for $V_{I1} = V_{I2} = V_{I3} = V_{IH}$, the current $I_x = 1.833mA$ and the collector-to-emitter voltage of Q_{I2} is $V_{CE2} = 1.075 V$:
 - A.1] Determine the reference voltage V_{BB}

<u>Hint</u>: if you <u>can not</u> solve A.1, then you are allowed to assume $V_{BB} = -1V$ for calculations.

- A.2] Calculate the input high-voltage V_{IH}
- A.3] Find the values of R_E and R_{CI} , (Hint: in this circuit: $R_{CI} \neq R_{CR}$)
- A.4] Calculate the output voltage V_{NOR}
- A.5] Calculate the output voltage V_{OR}
- B) Assuming for $V_{I1} = V_{I2} = V_{I3} = V_{IL}$:
 - B.1] Determine the collector-to-emitter voltage of Q_{I3} V_{CE3}
 - B.2] Calculate the input low-voltage V_{IL}
 - B.3] Determine the emitter current I_{RE}
- C) Determine the average dissipated-power in the circuit $P_{EE}(avg)$

Q2) Fig. 2 shows the circuit and the corresponding load line and characteristics of a resistor loaded NMOS inverter. The NMOS inverter operates at the edge-of-saturation (EOS) as shown in Fig.2 b.

- 2.1) Determine the threshold voltage of the NMOS, V_{TN} .
- 2.2) Determine the conduction parameter of the NMOS, K_n
- 2.3) Calculate V_{DD} and R_L
- 2.4) Find the dissipated-power in the NMOS only.
- 2.5) Does the decrease of V_{IN} move the operating point toward the saturation region? Explain.