Pesquisa e Ordenação

Métodos de Ordenação (Sorting)

Entende-se a atividade de ordenação como sendo o processo de rearranjo de um certo conjunto de objetos de acordo com um critério (ordem) específico. O objetivo da ordenação é facilitar a localização dos membros de um conjunto de dados. Exemplos: lista telefônica, índices, dicionários etc.

A dependência da escolha de um algoritmo quanto à estrutura de dados a ser processada é tão forte no caso da ordenação que os métodos utilizados são, em geral, classificados em 2 categorias:

Classificação interna (vetores/listas dinâmicas)

Estrutura de dados armazenadas na memória "interna" dos computadores

Classificação externa (arquivos)

Estrutura de dados armazenadas em memória "externa"

Por Inserção: Inserção Direta, Inserção Binária (usa Busca Binária) e Shell

Por Seleção: Seleção Direta e Heap Por Troca: Bolha, Shake e Quick

Intercalação: Merge Sort ou Fusão Direta

Medidas para Análise de Eficiência:

- A medida padrão de eficiência é o esforço do algoritmo, ou seja, o número medido de comparações entre os elementos do conjunto.
- Outro critério utilizado é o número de trocas efetuadas.

Ordenação por Inserção Direta

WIRTH págs. 53-55 AZEREDO págs. 16-20

→ Utilizado pelos jogadores de cartas.

Análise de Eficiência

	Comparações	Movimentações
Mínimo	n-1	3*(n-1)
Médio	$(n^2 + n - 2)/4$	$(n^2 + 9n - 10)/4$
Máximo	$(n^2 + n - 4)/4$	$(n^2 + 3n - 4)/2$

- Número mínimo ocorre se os elementos estiverem, inicialmente ordenados
- Número máximo ocorre se os elementos estiverem, inicialmente em ordem reversa
- Processo estável de ordenação, mantém inalterada a ordem dos elementos que possuem chaves iguais

Ordenação por Inserção Binária

WIRTH págs. 55-56 AZEREDO págs. 20-21

O algoritmo de inserção é aperfeiçoado utilizando um método mais rápido para determinar o ponto correto de inserção: busca binária.

Análise de Eficiência

	Comparações	Movimentações
Mínimo	n*(log log + 0.5)	3*(n-1)
Médio	$n*(\log_n - \log_e \pm 0.5)$ e = 2.71828	$(n^2 + 9n - 10)/4$
Máximo		$(n^2 + 3n - 4)/2$

⁻ Movimentações continuam iguais

Obs: O tipo de ordenação por inserção (direta e binária) não parece adequado para os computadores digitais (a inserção de um elemento significa deslocar todos os outros elementos).

⁻ Se estiverem já ordenados, leva mais tempo que inserção direta