Beredien Sousheit & Komplexität

Modul honform

12.12.23

A = B = A l'asst side out Barduziere

 $A < B \iff A \leq B \land \neg (A \geq B)$

multipliziere & addiere

··· < #6 < #6 < **

 $\begin{array}{ccc}
\overline{A} & \overline{A} &$

2) Fo = Eq

 $E_{q} = \{ \omega \# q \mid T(M_{\omega}) = T(M_{q}) \}$

Eq = {0#9 | T(M0) + T(M9)}

Frag: alle metscheidbere Sprachen
aufernander reduziorber? - nein

Frage: innerhalb einer Turing-Grades alle une toleidore anternado reduzierdar?

nicht alle wohren Aussage sind beweisders
Annahme: alle Wahrheiten sind beweisbar Annahme: Amaine ind beweisbar
Annahme: alle Wahrheiten sind beweisbar
Zege: 118
chabrie 1 zähle alle Beweise B auf
)1.40, 41 · 1 · 0
2. falls is beweist, dass 110 mout halt, gis 14 and
Falls alle walve Aussage beneis des existient Beneis defor dass the night half
dass H, nicht half
110 - 20
-> finder B* nak endlicher Zeit
=) Ho semi-entscheider

Im Widerspruch zu unserem Wissen, dass \overline{H}_0 nicht semi-entscheidbar ist (weil sonst das Halteproblem entscheidbar wäre) Also war die Annahme falsch. Es muss also Wahrheiten geben, die nicht beweisbar sind.

Søte v. Rice für Sprade R= { L | List seni-entsche'dbar} SSR, SFR, SFR S = middtriviale Teilmenge v. R, also Thu: C(5) = { w | T(Ms) eS} me + scheicklar! Fall 2: ØES zeige #0 \(C(S)\)
Fall 1: Ø\(\xi\) Zeige \(\text{H}_0 \) \(\xi\) Sranche: Redulctions Letion f: 60 +> f(6) 1 wetto => T(H1)=0 we Ho = f(w) e C(S) eigenschaft f(0)4((5) oet => T(x') = B WEHZED ((U) E ((S) WETTS => UE to => MU last auf E >T(H') = A & S => (H) + ((S) WETO => Muhalt micht auf E => T(M)= & es => f(v) = C(s)

Idee: neue Moschine hat Zähles i; falls is n gehe in Endlosschleife

WHUEZ => Koud alt auf & nach sus S Koud Mo, halt auf & => WI e Ho

W#u & Z = Robeilt auf Enicht

Konst.

=> Hwi half wicht auf E

=> w) & Ho

Beweis der Reduktionseigenschaft

Cinfacter: Deutscheide ab 0#462

Ofalls 0#462 gib triviale halkede TH aus

Ofalls 0#462 gib triviale

uicht Lalkede Th aus

alles ist Beschreibung von f

die Reduktionseigenschaft folgt direkt aus der Konstruktion

(Eg= { W#9 | T(MJ) = P(Mg)}) uicht semi-entscheiden (K= [U] Mu halt auf w] Ho SE9 Idee: ho-struiere Mui & Mg sodass die sich gleich verhalter falls WEK und sonst unterschiedlich R S E9 **Beschreibung von f** branche: f: W -> W#9 sd. WEK @ 0#9 E Eq WEREN Whilt midst and U I Mu al explicat w wicht @ Mus altreptient @ Ku lilt = $T(r_0) = T(r_q)$ T(My)=T(Mg) =>
My elizeptient w micht! (3) f(w) < Eq

Beweis der Reduktionseigenschaft

TODO: mehr Übege für Roderletsone su's 1515