

Facet Extraction, Annotation and Alignment in Dataspaces

Riccardo Porrini

DISCo, University of Milano-Bicocca

7Pixel s.r.l.

riccardo.porrini@disco.unimib.it

About Me

- ▶ PhD Student @ UniMiB (Milan) from January 2013 supervisor: Matteo Palmonari
- currently visiting ADVIS Lab @ UIC under the supervision of Prof. Isabel Cruz
- ▶ 5 years as back-end software developer for 7Pixel eCommerce and price comparison domain mainly facing Data Integration issues

- information systems
- data integration
- semantic web
- linked data
- ... follow the rest of the presentation :)

Dataspaces with Multiple Classifications

Taxonomy-based Classification

taxonomy: categories organized through a hierarchical structure (informal)

USA (320) France (91)

Italy (40)

Spain (18) Australia (17)

Bulgaria (10)

+ See more

2013 (72)

2011 (84) 2010 (50) + See more

Chile (8)

Vintage

Facet-based Classification

facet: a clearly defined, mutually exclusive, and collectively exhaustive aspect, property, or characteristic of a class or specific subject [Taylor 2004]

[Taylor 2004] A.G. Taylor, Wynars introduction to cataloging and classification, Libraries Unlimited, 2004

Multiple Classifications in Action: Product Autocomplete

^{*} translated from Italian

[Porrini et al. 2014] R. Porrini, M. Palmonari and G. Vizzari. Composite Match Autocompletion (COMMA): a Semantic Result-Oriented Autocompletion Technique for e-Marketplaces. Web Intelligence and Agent Systems Journal, 2014

Multiple Classifications in Action: Product Autocomplete

support for explorative keyword queries

[Porrini et al. 2014] R. Porrini, M. Palmonari and G. Vizzari. Composite Match Autocompletion (COMMA): a Semantic Result-Oriented Autocompletion Technique for e-Marketplaces. Web Intelligence and Agent Systems Journal, 2014

^{*} translated from Italian

Multiple Classifications in Action: Product Autocomplete

support for explorative keyword queries

facets and categories are considered in result-driven completion of the guery

[Porrini et al. 2014] R. Porrini, M. Palmonari and G. Vizzari. Composite Match Autocompletion (COMMA): a Semantic Result-Oriented Autocompletion Technique for e-Marketplaces. Web Intelligence and Agent Systems Journal, 2014

^{*} translated from Italian

Mappings

Mappings

usually, source taxonomies provide much more granular classification

Faceted Classifications Maintenance

faceted classification bootstrapping

- ▶ time and effort consuming
- requires detailed knowledge about dataspace instances

Faceted Classifications Maintenance

faceted classification bootstrapping

- time and effort consuming
- requires detailed knowledge about dataspace instances

however

- source taxonomies usually provide much more granular classification
- ▶ this granular information is lost when mapping specific source categories to generic global ones

Faceted Classifications Maintenance

faceted classification bootstrapping

- time and effort consuming
- requires detailed knowledge about dataspace instances

however

- source taxonomies usually provide much more granular classification
- ▶ this granular information is lost when mapping specific source categories to generic global ones

how about extracting facets from those lost fine-grained source taxonomies?

Problem Statement

Facet Extraction Problem

given a global category g, a set of mappings M from source categories s_1, \ldots, s_n to g, extract a set \mathcal{F}^g of facets \mathcal{F}^g

Problem Statement

Facet Extraction Problem

given a global category g, a set of mappings M from source categories s_1, \ldots, s_n to g, extract a set \mathcal{F}^g of facets \mathcal{F}^g

Wines

Problem Statement

Facet Extraction Problem

given a global category g, a set of mappings M from source categories s_1, \ldots, s_n to g, extract a set \mathcal{F}^g of facets \mathcal{F}^g

Wines

Winery Country of Origin	Wine Alcohol By Volume	Grape Variety	Wine Bottle Volume	
USA	Under 10%	Blend - White	☐ 375 mL	
China	10% to 12%	Blend - Other	■ 500 mL	
Australia	2% to 14%	Fruit	750 mL	
Italy	14% & Up	Muscadine		
Specialty Wine Type	Wine Vintage	Cabernet Sauvignon		
Sustainable	2011	Pinot Noir		
Small Lot	2010	Chardonnay		
Kosher	2009			
Gluten-Free	2008			
	2007			

Source taxonomies are:

many

e.g., 3900 within the TrovaPrezzi Italian price comparison engine

Source taxonomies are:

- many
 - e.g., 3900 within the TrovaPrezzi Italian price comparison engine
- noisy

type > white > by vine > chardonnay > producer > firriato

Source taxonomies are:

- many e.g., 3900 within the TrovaPrezzi Italian price comparison engine
- noisy type > white > by vine > chardonnay > producer > firriato
- heterogeneous type > white > by vine > chardonnay > producer > firriato wines > white wines > greco di tufo

Source taxonomies are:

- many e.g., 3900 within the TrovaPrezzi Italian price comparison engine
- noisy type > white > by vine > chardonnay > producer > firriato
- heterogeneous type > white > by vine > chardonnay > producer > firriato wines > white wines > greco di tufo
- ▶ ambiguous different meaning in different domains red is a wine type for wines and a color for shirts

Facet extraction

[Porrini et al. 2014] R. Porrini, M. Palmonari and C. Batini. Extracting Facets from Lost Fine-Grained Classifications in Dataspaces. CAiSE, 2014

Facet extraction

[Porrini et al. 2014] R. Porrini, M. Palmonari and C. Batini. Extracting Facets from Lost Fine-Grained Classifications in Dataspaces. CAiSE, 2014

Facet extraction

[Porrini et al. 2014] R. Porrini, M. Palmonari and C. Batini. Extracting Facets from Lost Fine-Grained Classifications in Dataspaces. CAiSE, 2014

principle

the more two values refer to mutually exclusive categories, the more they should be grouped together into the same facet

$$\mathsf{TLD}(s_1,s_2)=1-rac{|\mathcal{L}_{s_1}\cap\mathcal{L}_{s_2}|}{|\mathcal{L}_{s_1}\cup\mathcal{L}_{s_2}|}$$

Jaccard Distance between the two sets of taxonomy layers where two categories s_1 and s_2 occur.

cabernet

cabernet chianti

$$\mathsf{TLD}(s_1, s_2) = 1 - rac{|L_{s_1} \cap L_{s_2}|}{|L_{s_1} \cup L_{s_2}|}$$

Jaccard Distance between the two sets of taxonomy layers where two categories s₁ and s₂ occur

cabernet chianti

$$\mathsf{TLD}(\textit{cabernet}, \textit{chianti}) = 1 - \frac{|L_{\textit{cabernet}} \cap L_{\textit{chianti}}|}{|L_{\textit{cabernet}} \cup L_{\textit{chianti}}|} = 1 - \frac{2}{3} = \frac{1}{3}$$

Example of Extracted Facets

LC	$F_1^{\mathcal{E}} = \{ \text{Wine, Red Wine, White Wine, } \dots, \text{Piedmont, Lombardy, } \dots, \text{Sicily, Donnafugata, Cusumano, } \dots, \text{Alessandro di Camporeale, } \dots, \text{France} \} (98)$
WP	$F_1^{\mathcal{E}} = \{ \text{Wine, Red Wine, White Wine, } \dots, \text{Piedmont, Lombardy, } \dots, \text{Sicily, Donnafugata, Cusumano, } \dots, \text{France} \} $ (100)
TLD	$ F_6^g = \{ \text{ Piedmont, Tuscany, Sicily, }, \dots, \text{ France } \} (14) $ $ F_5^g = \{ \text{ Red, White, Rosé } \} (3) $ $ F_3^g = \{ \text{ Red Wine, White Wine, Rosé Wine } \} (3) $ $ F_4^g = \{ \text{ Moscato, Chardonnay, }, \dots, \text{ Merlot } \} (13) $ $ F_5^g = \{ \text{ Tuscany Wine, Sicily Wine} \} (2) $ $ F_6^g = \{ \text{ Donnafugata, Cusumano, }, \dots, \text{ Principi di Butera } \} (27) $
Gold Standard	$F_1^g = \{ \text{ Piedmont, Lombardy, } \dots, \text{ Sicily } \} $ (21) $F_2^g = \{ \text{ Red Wine, White Wine, } \dots, \text{ Rosé Wine } \} $ (14) $F_3^g = \{ \text{ Donnafugata, Cusumano, } \dots, \text{ Alessandro di Camporeale} \} $ (12)

- LC: Leacock and Chodorow similarity [Leacock and Chodorow 1998]
- ▶ WP: Wu and Palmer similarity [Wu and Palmer 1994]

so far

only facet values were extracted

so far

- only facet values were extracted
- ▶ what about facet roles?

so far

- only facet values were extracted
- what about facet roles?

recurrent problem in different domains

only partially tackled by previous work on facet extraction [Dou et al. 2011, Kong and Allan 2013] ...

so far

- only facet values were extracted
- what about facet roles?

recurrent problem in different domains

- only partially tackled by previous work on facet extraction [Dou et al. 2011, Kong and Allan 2013] ...
- interpretation of results from clustering algorithms [Carmel et al. 2009] ...

so far

- only facet values were extracted
- what about facet roles?

recurrent problem in different domains

- only partially tackled by previous work on facet extraction [Dou et al. 2011, Kong and Allan 2013] ...
- interpretation of results from clustering algorithms [Carmel et al. 2009] ...
- Web table interpretation and annotation [Limaye et al. 2010, Venetis et al. 2011] . . .

HammerSky 2010 Red Handed	Red	2010	U.S.A.
2009 Tignanello, Tuscany 750 mL	Red	2009	Italy
2012 Paulinshof Urstueck 750 mL	White	2012	Germany
2012 Sobremesa Vineyards VRM	White	2012	Argentina

ongoing joint work with Prof. Isabel Cruz, Advis Lab - UIC

goal

link a facet F to a suitable representation of the role that facet values play in the characterization of instances from a specific facet domain D

ongoing joint work with Prof. Isabel Cruz, Advis Lab - UIC

goal

link a facet F to a suitable representation of the role that facet values play in the characterization of instances from a specific facet domain D

again, ambiguity is challenging:

2011 2012 2013

ongoing joint work with Prof. Isabel Cruz, Advis Lab - UIC

goal

link a facet F to a suitable representation of the role that facet values play in the characterization of instances from a specific facet domain D

		vintage
again, ambiguity is challenging:	wines	2011
		2012
		2013

ongoing joint work with Prof. Isabel Cruz, Advis Lab - UIC

goal

link a facet F to a suitable representation of the role that facet values play in the characterization of instances from a specific facet domain D

release year

again, ambiguity is challenging:

2011 music albums 2012 2013

intuitions adapted from Web table annotation approaches

- **properties** from existing ontologies provide the semantics that we are looking for
- a knowledge base can provide evidence of certain properties holding between entities from domains similar to the facet domain and facet values

bonus points

- machine readable semantics
- ▶ facets published on the Web can be annotated with it (e.g., RDFa)

Approach Overview

basic idea

given a facet F with f_1, \ldots, f_n facet values and a facet domain D

Approach Overview

basic idea

given a facet F with f_1, \ldots, f_n facet values and a facet domain D select a set P of properties from triples $\langle s, p, o \rangle$ such that

- ▶ the facet domain *D* matches the type(s) of *s*
- lacktriangle one or more facet values $f_1,\ldots,f_n\in F$ match o (entity or literal)

Approach Overview

basic idea

given a facet F with f_1, \ldots, f_n facet values and a facet domain D select a set P of properties from triples $\langle s, p, o \rangle$ such that

- ▶ the facet domain D matches the type(s) of s
- ▶ one or more facet values $f_1, \ldots, f_n \in F$ match o (entity or literal)

then, rank $p \in P$ according to several criteria

- facet values coverage
- weighted frequency w.r.t. D
- specificity w.r.t. D

facet annotation

what if a facet role is already provided (in natual language)? syntactic-based property alignment techniques [Cheatham and Hitzler 2014] annotation of facets already published on the Web

facet annotation

▶ what if a facet role is already provided (in natual language)? syntactic-based property alignment techniques [Cheatham and Hitzler 2014] annotation of facets already published on the Web

extension to Web table annotation

apply the facet annotation technique to Web Table columns in literature, little study of relation annotation compared to type/entity

extension to property aligment in LOD

▶ incorporate insights from facet annotation into property aligment techniques for LOD, by considering their usage

extension to property aligment in LOD

▶ incorporate insights from facet annotation into property aligment techniques for LOD, by considering their usage

classification evolution

study how to evolve facets (and also their values) over time all mobile phones have a digital camera: that facet is not important anymore a new operating system for mobile phones is released

Questions?

riccardo.porrini@disco.unimib.it
 http://rporrini.info

References

- [Taylor 2004] A.G. Taylor. Wynars introduction to cataloging and classification. Libraries Unlimited, 2004
- [Porrini et al. 2014] R. Porrini, M. Palmonari and G. Vizzari, Composite Match Autocompletion (COMMA): a Semantic Result-Oriented Autocompletion Technique for e-Marketplaces. Web Intelligence and Agent Systems Journal, 2014
- [Porrini et al. 2014] R. Porrini, M. Palmonari and C. Batini. Extracting Facets from Lost Fine-Grained Classifications in Dataspaces. CAiSE, 2014
- [Wu and Palmer 1994] Z. Wu and M. Palmer, Verb semantics and lexical selection, ACL, 1994
- [Leacock and Chodorow 1998] C. Leacock and M. Chodorow. Combining local context and wordnet similarity for word sense identification. MIT Press, 1998
- [Dou et al. 2011] Z. Dou, S. Hu, Y. Luo, R. Song and J.R. Wen. Finding dimensions for queries. CIKM, 2011 [Kong and Allan 2013] W. Kong and J. Allan. Extracting query facets from search results. SIGIR, 2013
- [Carmel et al. 2009] D. Carmel, H. Roitman and N. Zwerdling. Enhancing Cluster Labelling Using Wikipedia.
- SIGIR. 2009 [Limaye et al. 2010] G. Limaye, S. Sarawagy and S. Chakrabarti. Annotating and Searching Web Tables Using
- Entities, Types and Relationship. VLDB, 2010 [Venetis et al. 2011] P. Venetis, A. Halevy, J. Madhavan, M. Pasca, W. Shen, F Wu, G. Miao and C. Wu.
- Recovering Semantics of Tables on the Web. VLDB, 2011
- [Cheatham and Hitzler 2014] M. Cheatham and P. Hitzler. The Properties of Property Alignment. OM, 2014

