Phase Change of Water

Measuring and Modeling the Absorbtion of Heat by Water Through Various States of Matter

SCH4U Chemistry - Ms. Grundy

Author: Jimmy Liu Group members: Jeffery Hu, Rhea Sharma, and Mina Sagheb

Monday, February 6, 2023

1 Preamble

Purpose: The purpose of this experiment is to investigate the heat changes that result from phase changes in matter and to observe the different stages of heating as solid ice turns into water vapour.

Apparatus:

Digital scale	Wire gauze	Beaker (100 mL)
Analog thermometer	Digital stopwatch	
Hot plate	Beaker tongs	

Materials:

Ice cubes (around 50 g)

2 Diagram of Experiment

Figure 1: Diagram of experiment setup.

3 Final Experimental Procedure

- 1. Each group member was responsible for performing one specific task only. Each responsibility is described below:
 - (a) A digital stopwatch was used by Person A to record the elapsed time, precise to the millisecond.
 - (b) The data was recorded on the Observation Table by Person B, namely, **physical observations** of the experiment and the **quantitative data** needed.

- (c) The analog thermometer was held by Person C. The thermometer was held vertically with its mercury pool positioned 1.5 centimetres above the bottom of the beaker.
- 2. The hot plate power was set to 7, and the hot plate was preheated until its indicator turned off, signifying that the hot plate had reached the maximum temperature at the respective power setting, and the preheating was successful. Step 6 was not started until the hot plate was successfully preheated, but steps 3 5 were performed while waiting for the hot plate to finish preheating.
- 3. The digital scale was zeroed so that it displays 0.00 g with no load. The 100 mL beaker was placed on the digital scale, and the beaker's mass was measured in grams, precise to a hundredth of a gram.
- 4. Roughly 50 grams of ice was placed into the beaker. The ice-filled beaker was placed onto the digital scale again, and the ice-filled beaker's mass was measured using the same scale and precision. The digital scale was not altered, zeroed, or turned off in any way between measurements.
- 5. The analog thermometer was inserted into the ice through the centre of the beaker opening, with the mercury pool positioned 1.5 centimetres above the bottom of the beaker. The thermometer was left in this position until there were no visible changes in the thermometer's temperature reading. The stabilised temperature was recorded in degrees Celsius precise to a tenth of a degree Celsius.
- 6. The ice-filled beaker was immediately placed onto the hot plate using beaker tongs with the thermometer continuously held at the same position described in Step 5. Upon the beaker making contact with the hot plate, the digital stopwatch was started by Person A.
- 7. The time was watched carefully by Person A, and the time was counted down out loud 3 seconds before every 20 seconds had elapsed on the stopwatch. Once the verbal countdown has reached 0, indicating that an interval of exactly 20 seconds has been reached, the 'lap' function on the stopwatch was pressed to record the exact time that the 20 seconds was indicated to the others. The thermometer's temperature was immediately read out loud by Person C. The quantitative temperature measurement dictated by Person C was recorded by Person B on the observation table. In addition, any new qualitative observations were also recorded on the observation table by Person B.
- 8. Step 7 was repeated for every 20-second interval until the water boiled for 4 minutes. Boiling was achieved when the temperature of the water reached 100 °C or no longer underwent significant increases in temperature.
- 9. The beaker was removed from the hot plate using beaker tongs and was set on wire gauze to cool for 10 minutes.
- 10. All materials were gathered and discarded. All apparatus were returned.

4 Experimental Data and Observations

Table 1: Changes in temperature in 20-second intervals of water when placed in a beaker on a hot plate until 4 minutes after boiling

Time Elapsed (s)	Temperature of water (°C)	Qualitative Observations
		• Ice was melting slowly
		• Ice was still solid
0.00	3.5	• Centre of beaker was becoming foggy
		• Small pool of water at bottom
		• Ice melted slightly
20.61	4.0	• Ice was mostly intact
44.63	5.5	Water pool volume increased steadily
		• Ice was melting significantly
61.76	20.0	\bullet Beaker contents consisted of approximately 40% water, 60% ice.
81.68	24.0	
102.16	23.0	
121.26	20.0	• Very small bubbles started to form in the water
142.39	19.0	
161.24	19.5	
180.83	17.0	 Ice continued to melt but the melting began to slow down Now consisted of approximately 70% water,
		• Now consisted of approximately 70% water, 30% ice.
200.75	19.5	

Table 1 (Continued)

Time Elapsed (s)	Temperature of water (°C)	Qualitative Observations
220.77	22.0	Number of bubbles forming increasedSize of bubbles remained constant
242.14	23.0	
260.81	27.0	Approximately 90% water, 10% iceBubbles gathered on the sides of the beaker.
281.33	30.5	
301.29	34.0	• Very little ice remained
321.33	38.5	• All ice has melted
340.78	44.0	
361.05	50.0	
384.83	58.0	
402.18	62.0	
420.58	67.0	
441.48	71.8	• Bubbles rose to water surface quickly
460.62	77.0	Steam began to form from waterBubbles collected at water surface
482.98	82.5	• Bubbles rising faster from the corners of the beaker
500.98	87.0	• Size of bubbles increased

Table 1 (Continued)

Time Elapsed (s)	Temperature of water (°C)	Qualitative Observations
523.13	92.0	
540.93	96.0	Steam and bubbling reach maximum intensityWater has achieved a rolling boil
560.58	99.0	
580.44	99.8	
602.38	99.0	
620.43	99.9	
640.59	100.0	• Condensation formed on the sides of the beaker
661.51	100.0	
683.05	100.0	
700.11	100.0	
719.88	100.0	• Condensation on the sides of the beaker started to drip back into the water
740.58	100.1	
760.27	100.5	
780.44	100.3	• Water has boiled for 4 minutes.

Measured Mass

Mass of beaker: $48.32\,\mathrm{g}$

Initial mass of ice-filled beaker: $104.67\,\mathrm{g}$

Initial mass of ice: $104.67 g - 48.32 g = \underline{56.35 g}$

5 Analysis

5.1 Graph

Figure 2: Graph of temperature (in $^{\circ}$ C) at 20-second intervals of elapsed time.

Temperature of Water (in degrees Celsius) in 20-second intervals of elapsed time (in seconds)

Figure 3: Graph of temperature of water (in $^{\circ}$ C) at 20-second intervals of elapsed time with a sketched trendline/line of best fit.

Temperature of Water (in degrees Celsius) in 20-second intervals of elapsed time (in seconds)

5.2 Heat Absorbtion

To determine the total energy absorbed by the system, the sum of enthalpies undergone by the system yields the requested result.

There are two types of heat changes that are experienced by the system in the experiment:

1. Standard heat transfer in a single state, given by

$$q = mc\Delta T$$

2. State change of the system, given by

$$q = n \cdot \Delta H^{\circ}$$

Variable	Purpose/value		
q	Change in heat of the system		
m	Mass of the system		
c	Specific heat capacity		
n	Molar quantity of system		
l	Latent heat of the phase change		
ΔT	Change in average temperature of the system		
ΔH°	Enthalpy of phase change		

Stages of Heating of the System

- 1. The solid ice melts into liquid water:
 - (a) Enthalpy of melting of water is 6.01 kJ/mol
 - (b) Molar mass of H_2O :

molar mass of
$$H_2O = 2M_H + M_O$$

molar mass of $H_2O = 1.01 \times 2 + 16.00$
molar mass of $H_2O = 18.02 \text{ g/mol}$

(c) Molar quantity of the water:

$$n = \frac{\text{mass}}{\text{molar mass}}$$
 formula for calculating molar quantity
$$n = 56.35\,\text{g} \times \frac{\text{mol}}{18.02\,\text{g}}$$
 substituting values
$$n = 3.127081\,\text{mol}$$

(d) Change in heat from melting:

$$q_{\rm melt} = n \cdot \Delta H_{\rm melt}^{\circ} \qquad \text{formula for calculating molar quantity}$$

$$q_{\rm melt} = 3.12\underline{7}081\,\text{mol} \times 6.01\,\frac{\text{kJ}}{\text{mol}} \qquad \text{substituting values}$$

$$q_{\rm melt} = 18.79375681\,\text{kJ}$$

2. The system's temperature increases from 3.5 °C to 100 °C

$$q_{\rm liquid} = mc\Delta T \quad \text{Formula for heating at a single state}$$

$$q_{\rm liquid} = 56.35\,\mathrm{g} \times 4.19\,\mathrm{J/g^{\circ}C} \times (100.0\,^{\circ}\mathrm{C} - 3.5\,^{\circ}\mathrm{C}) \qquad \qquad \text{Substituting values}$$

$$q_{\rm liquid} = 22.\underline{7}84277\,\mathrm{kJ}$$

- 3. The water changes phase from a liquid to gaseous state.
 - (a) Enthalpy of vapourization of water is 40.7 kJ/mol
 - (b) Change in heat from vapourization:

$$q_{\rm vap} = n \cdot \Delta H_{\rm melt}^{\circ} \quad \text{formula for energy required in a phase change}$$

$$q_{\rm vap} = 3.12\underline{7}081\,\text{mol} \times 40.7\,\frac{\text{kJ}}{\text{mol}} \quad \text{substituting values}$$

$$q_{\rm vap} = 12\underline{7}.27\,\text{kJ}$$

4. The system's temperature increases from 100.0 °C to 100.5 °C

$$q_{\rm gas}=mc\Delta T \quad \text{Formula for heating at a single state}$$

$$q_{\rm gas}=56.35\,{\rm g}\times2.02\,{\rm J/g^\circ C}\times(100.5\,{\rm ^\circ C}-100.0\,{\rm ^\circ C}) \qquad \qquad \text{Substituting values}$$

$$q_{\rm gas}=56.\underline{9}135\,{\rm kJ}$$

In total, the heat absorbed by the system is calculated as:

$$\begin{split} \text{Total heat} &= \Sigma q = q_{\text{melt}} + q_{\text{liquid}} + q_{\text{vap}} + q_{\text{gas}} \\ \Sigma q &= 18.\underline{7}9375681\,\text{kJ} + 22.\underline{7}84277\,\text{kJ} + 12\underline{7}.27\,\text{kJ} + 56.\underline{9}135\,\text{kJ} \\ \Sigma q &= 22\underline{5}.76153381\,\text{kJ} \\ \Sigma q &\approx 2.26\times10^2\,\text{kJ} \end{split}$$

Therefore, the total heat absorbed by the system is $2.26 \times 10^2 \,\mathrm{kJ}$.

6 Sources of Error

Table 2: Experimental Sources of Error Affecting Accuracy of Results

Source of Error	Impact on Results	Rectification in Experiment
Inconsistent	Because the thermometer is held by	In order to achieve more accurate re-
thermometer	a human hand, the unsteadiness of	sults the next time the experiment is
position	the hand causes the position of the	performed, the thermometer should
	thermometer to shift up and down.	be held in place by a stable struc-
	Since the temperature of the water is	ture such as a pole which will ensure
	different at different locations of the	that the position of the thermome-
	beaker, the inconsistent position of	ter is maintained. Ensuring that the
	the thermometer causes erratic tem-	temperature is always measured at a
	perature reading results.	single location will reduce error in the
		experiment.
Not all of the	Since the water only boiled for 4 min-	In order to more accurately deter-
water underwent	utes, there was still significant liq-	mine the heat absorbed by water, we
evaporation	uid water remaining at the end of	can either have the beaker of water
	the experiment. However, the only	kept on the hot plate until all the
	mass value measured was the initial	water has evaporated or measure the
	total mass. When analysing the heat	final mass of water at the end of the
	absorbed by the system, we assume	experiment to determine the exact
	that the mass of water that under-	mass of water that underwent evapo-
	went evaporation was equivalent to	ration. Implementing either of these
	the total mass measured at the be-	improvements will reduce the error in
	ginning of the experiment. In reality,	the analysis.
	only a small percentage of the water	
	evaporated, meaning the data was in-	
	accurate.	
Use of cubed ice	The type of ice that was used in	Using finely crushed ice instead of
	the experiment was cubed ice which	cubed ice significantly reduces the
	contains large gaps between the ice	size of the gaps between pieces of ice.
	cubes. This means that rather than	This allows for maximum contact be-
	measuring the actual temperature of	tween the thermometer and the ice in
	the ice itself, the thermometer is	order to achieve a temperature read-
	measuring the temperature of the air	ing that is much closer to the actual
	in the gaps between the ice. This	temperature of the ice.
	temperature is different from the ac-	
	tual temperature which should be	
	measured, which is the temperature	
	of the ice itself.	

Table 2 (continued): Experimental Sources of Error Affecting Accuracy of Results

Source of Error	Impact on Results	Rectification in Experiment
Use of an ana-	Since mercury analog thermometers	Using a digital or infrared thermome-
log mercury ther-	take a large amount of time to change	ter greatly reduces the error pro-
mometer	between temperatures and adapt to	duced from thermometer readings.
	a new temperature, the thermome-	The time it takes to display the cor-
	ter did not give accurate results at	rect temperature on a digital ther-
	the exact time that the temperature	mometer is significantly less than
	reading was requested. This inac-	that of an analog thermometer.
	curacy especially affected the initial	
	temperature measurement of the ice	
	since the thermometer had to start	
	at room temperature and adapt to a	
	below-zero temperature of the ice.	

7 Conclusion

This experiment was accomplished successfully as we were able to clearly investigate how water absorbs heat over time.

Overall, the experimental procedure was well-executed with the group members following the procedure's instructions very carefully and with very few mistakes. Aside from the experimental sources of error which cause significant inaccuracies in the data, there was very little human error that occurred during the experiment.

When observing the graph produced using the collected data, I noticed that the data points earlier in the experiment had the most inconsistent data. Theoretically, the temperature of the ice should have remained at 0 °C throughout the phase change, but the trendline suggests that the temperature of the ice remained at around 23 °C. The cause of these results is likely the third source of error since the thermometer is measuring the temperature of the air between the ice cubes which is warmer than the ice itself due to convection from the surroundings.

In addition, the final experimental value for the total energy absorbed by the water is $2.26 \times 10^2 \, \text{kJ}$, which is a reasonable value for the amount of energy required to heat ice to a boiling temperature.

In conclusion, the experiment ran smoothly, and there were no major unexpected issues in the data collection, analysis, and the experiment itself.

8 Appendix

8.1 Rough Observation Table

Figure 4: Initial rough observation table (page 1)

Mass of the Lee (g)	Time (sec)	Temperature of ice (°C)	Qualitative Observations
beaker: 18.32 ice - beaker: 104.639	0	3.5°	- menting slavery, steel soile, transporent in toggler center, show poor of welver at bottom
	20.63	4.0 °	slightly melting; impostly intact
	44.63	2.50	pool increasily 11
	60 61.76	20.0°	ice melting significantly 40% whater
	81.68	24.0.	100 1000
	102.16	33.60°	8 tiny, start
	120 121.26	20-00	there are bubbles that form in the wa
196	14239	19.0°	THE WAS THE WAS
	161.24	19,50	
	180 180.83	17.00	70% water, continuer melting for
	200 - 75	19.50	40 5 8 March & Continued Martin 300
	220.77	27.0	bubbles slighty getting more in
	240 242.14	23.06	Put tower on the
	260.81	27.00	90% water bubble God of
	281.33	30.50	Side of beaker
sa: 10°	300 201.29	34.0 °	Amost all water (989, water)
	321.33	38.50	No more 100
	340.78	44.0.	Most definitely noteful

Scanned with CamScanner

Figure 5: Initial rough observation table (page 2)

	360 361.05	20.0	
	384.83	28.0	mare bubbles
	402.18	62.00	
	420 420-5	€6. 67.0°	temp. uses quickey
	- प्रा.प8	71.8	Vising bubbles
700	460.62	77,0	bubbles vising to top storm whiled collect
	480 482.98	83.20	bubbles history to top, steam, bubbles rolled bubbles nowy faster, history at conven
	500.98	87.0	supplies getting larger, home steamer
	523.13	92.0	tought the steamer
	540 540.43	d e· O	BOTLING RAPIDLY
	\$60.58	99.0	
	\$80.44	qq. 8°	failly land boiling
	600 601.38	99.00	
	620.43	99.90	
	640.54	100.00	condensation!
	660 661.51	100.00	
	683-05	100:00	
	700-11	100.00	
	720 719.88	100.0°	som condensation dripping down
	740.58	100.10	boiling quieter
	760.27	(00.50	4 10
	780 780-44	100.5°	Z No. 10 Page
	800.54	100.20	
	820.31	106.10	
ice - broken	842.40	100.00	
= 90.039	861.65	(00.0°	

Scanned with CamScanner

8.2 Initial Lab Procedure

Purpose: The purpose of this experiment is to investigate the heat changes that result from phase changes in matter and to observe the different stages of heating as solid ice turns into water vapour.

Apparatus:

Digital scale	Wire gauze	Beaker (100 mL)
Analog thermometer	Digital stopwatch	
Hot plate	Beaker tongs	

Materials:

Ice cubes (around 50 g)

Procedure:

- 1. Dedicate each person in the group to perform a specific task
 - (a) Keeping track of time
 - (b) Recording and observing the results
 - (c) Holding the thermometer
- 2. Place the 100 mL beaker on a scale and either record the mass or tare the scale to 0 g. Place 50 g of ice and record the new mass, accounting for the mass of the beaker
- 3. Record the initial temperature of the ice.
- 4. Immediately place the beaker on the hot plate to heat the ice on medium to high heat. Ensure that the thermometer is in the ice but not touching the bottom of the beaker.
- 5. Record the temperature stated on the thermometer in 20-second intervals and the exact time in which the temperatures were recorded.
- 6. Continue step 4 until the water has boiled for 4 minutes.
- 7. Afterwards, use the beaker tongs to remove the beaker from the hot plate and let the beaker cool on wire gauze.
- 8. Clean up the lab bench and return materials.