Science des données II: tp3

Classification hiérarchique

Guyliann Engels & Philippe Grosjean

Université de Mons, Belgique Laboratoire d'Écologie numérique des Milieux aquatiques

 $\label{eq:http://biodatascience-course.sciviews.org} $$ sdd@sciviews.org $$$

Classification hiérarchique

En partant d'une matrice de (dis)similarité, la classification hiérarchique permet de réaliser des regroupements. Ex: parmi les 6 stations des 68 stations que comporte le jeu de données Marphy, pouvons nous les regrouper en différents groupes selon les conditions physico-chimiques des stations.

Dans le cadre de ce TP, les méthodes agglomératives sont employées via :

- Liens simples
- Liens complets
- Liens moyens
- Ward

Sélection de 6 stations du jeu de données marphy.

	Temperature	Salinity	Fluorescence	Density	
A	13.082	38.166	0.958	28.8436	
В	13.070	38.162	0.931	28.8430	
\mathbf{C}	12.868	38.283	1.552	28.9787	
D	12.993	38.372	1.477	29.0218	
\mathbf{E}	13.062	38.412	0.993	29.0384	
\mathbf{F}	13.025	38.409	1.064	29.0438	

Matrice de distance réalisée avec la distance euclidienne

	A	В	С	D	E	F
A	0.00	0.18	3.85	3.39	2.98	3.09
В	0.18	0.00	3.82	3.42	3.00	3.10
\mathbf{C}	3.85	3.82	0.00	1.82	3.41	2.94
D	3.39	3.42	1.82	0.00	1.99	1.59
\mathbf{E}	2.98	3.00	3.41	1.99	0.00	0.53
F	3.09	3.10	2.94	1.59	0.53	0.00

Dendrogramme

marphydist hclust (*, "single")

Transect: Marphy & Marbio

Transect entre Nice et Calvi

- Employez la fonction hclust() pour réaliser votre classification
- Employez la fonction plot() pour afficher votre classification

Cluster Dendrogram

Consignes

- Employer la distance euclidienne pour réaliser votre matrice
- Employer la méthode des liens complets

marphy_dst hclust (*, "complete")


```
plot(complete)
abline(h = 0.48, col = "red", lty = "solid",
    lwd = 2)
```

Consignes

- Déterminez vos groupes et ajoutez une ligne rouge sur votre graphique avec la fonction abline
- Employer différents indices et différents types de lien pour obtenir la meilleure classification selon yous.

Cluster Dendrogram

marphy_dst hclust (*, "complete")

Classification hiérarchique : procédure

Si nous devions résumer la procédure de traitements des données, les étapes sont les suivantes :

- Transformation des données si nécéssaire
- Choix de l'indice pour la matrice de distance
- Choix de la méthode de regroupements pour le dendrogramme
- Choix du nombre de classe

Marbio

Appliquez la procédure précédente sur le jeu de données ${\tt Marbio}$

