FRECUENCIAS ALÉLICAS EN HEMBRAS Y MACHOS

Hasta ahora se han analizado las frecuencias alélicas en una población sin hacer distinción entre machos y hembras, y bajo el supuesto de que la frecuencia alélica entre los sexos es igual o que la diferencia es tan pequeña que se puede desestimar. Sin embargo, en algunos casos las diferencias pueden ser de relevancia para la estructuración genética de las poblaciones. La diferencia de las frecuencias alélicas entre sexos produce un *exceso de heterocigotos* con respecto a lo que se espera en una población bajo equilibrio de HW.

Conocer las diferencias entre sexos es importante durante el manejo de cruzas; por ejemplo, entre distintas cepas o bien entre machos y hembras que provienen de diferentes poblaciones de especies que se desean propagar para su conservación; para el mantenimiento de germoplasma e incluso para especies que son explotadas o manejadas para su propio control. Por ejemplo, en la cría a masiva de moscas de la fruta o gusano barrenador, algunos de los atributos deseados en los machos (competencia para el apareamiento) se pierden durante la cría masiva por lo que se realizan cruzas entre hembras y machos silvestres y de laboratorio para recuperar el carácter (Liedo et al. 2009). Posiblemente las diferencias en las frecuencias alélicas de los loci que intervienen en el carácter pueden afectar la frecuencia del carácter que se desea maximizar.

Dependiendo de la ubicación de los alelos en los cromosomas, se distinguen al menos dos situaciones en las que las frecuencias alélicas pueden diferir entre machos y hembras. Una es en la que los alelos están físicamente en los cromosomas autosómicos y otra en la que los alelos están ubicados en los cromosomas sexuales.

Loci autosómicos

Los alelos loci autosómicos se ubican en los cromosomas autosómicos y la particularidad es sencillamente que no están en la misma frecuencia en una población de machos y hembras. La diferencia puede ser por algún tipo de selección sobre los sexos o por apareamientos preferenciales; una vez que desaparecen los factores de cambio, las frecuencias se igualan entre machos y hembras en relativamente pocas generaciones.

Considere un locus con dos alelos, la frecuencia del alelo A_1 es p_h en hembras y p_m en machos; y la frecuencia del alelo A_2 es q_h y q_m , en machos y hembras, respectivamente. De esta manera, las frecuencias genotípicas de los cigotos están dada por la unión aleatoria de los alelos en machos y hembras, en relación a las frecuencias alélicas en machos y hembras:

	Frecuencias alélicas en gametos		
	p_h	q_h	
p_m	$A_1 A_1 = P$	$A_1 A_2 = H$	
	$p_m p_h$	p_mq_h	
q_m	$A_1 A_2 = H$	$A_2A_2=Q$	
	$q_m p_h$	q_mq_h	
		p_{h} p_{m} $A_{1}A_{1} = P$ $p_{m}p_{h}$ q_{m} $A_{1}A_{2} = H$	

Después de un apareamiento aleatorio las frecuencias genotípicas en la descendencia son:

$$P=p_mp_h$$

$$H = p_m q_h + q_m p_h$$

$$Q=q_mq_h$$

La frecuencia promedio del alelo A_1 en la población es el promedio aritmético de las frecuencias alélicas de los sexos:

$$\bar{p} = \frac{1}{2}(p_m + p_h)$$

y la del alelo A_2 es:

$$\bar{q} = \frac{1}{2} (q_m + q_h)$$

Bajo la consideración de que una mitad de los alelos está en la población de las hembras y la otra en la de machos entonces las frecuencias genotípicas *Promedio* en una población son:

$$\bar{p}^2 = P$$
$$2\bar{p}\bar{q} = H$$
$$\bar{q}^2 = Q$$

La frecuencia del genotipo A_1A_1 en la población tendrá un sesgo del equilibrio de HW equivalente en a $-\frac{1}{4}(p_m-p_h)^2$ respecto a lo esperado (HW). Expresemos la fca. de A_1A_1 como una diferencia:

$$P - \bar{p}^2 = p_m p_h - \left[\frac{1}{2} (p_m + p_h)\right]^2$$

$$= p_m p_h - \left[\frac{1}{4} (p_m^2 + 2p_m p_h + p_h^2)\right]$$

$$= p_m p_h - \left[\frac{1}{4} p_m^2 + \frac{1}{4} 2p_m p_h + \frac{1}{4} p_h^2\right]$$

$$= p_m p_h - \left[\frac{1}{4} p_m^2 - \frac{1}{2} p_m p_h + \frac{1}{4} p_h^2\right]$$

$$= -\left[\frac{1}{4} p_m^2 - \frac{1}{2} p_m p_h + \frac{1}{4} p_h^2\right]$$

$$= -\left[\frac{1}{4} (p_m - p_h)^2\right]$$

De manera similar se puede llegar a demostrar la fracción de la frecuencia de los genotipos A_1A_2 y A_2A_2 que se desvía de las esperadas en equilibro de HW:

$$H - 2\bar{p}\bar{q} = -\frac{1}{2}(p_m - p_h)^2$$
$$Q - \bar{q}^2 = -\frac{1}{4}(q_m - q_h)^2.$$

Anteriormente se dijo que en ausencia de los factores que causan diferenciación de las frecuencias alélicas entre machos y hembras, en pocas generaciones las frecuencias se igualan:

La frecuencia del alelo A_1 en la población inicial es:

$$p = P + \frac{1}{2}H$$

en la siguiente generación es p':

$$p' = p_m p_h + \frac{1}{2} (p_m q_h + p_h q_m) \quad \text{sust. } q_h = (1 - p_h) \text{ y } q_m = (1 - p_m)$$

$$= p_m p_h + \frac{1}{2} [p_m (1 - p_h) + p_h (1 - p_m)]$$

$$= p_m p_h + \frac{1}{2} (p_m - p_h p_m + p_h - p_h p_m)$$

$$= p_m p_h + \frac{1}{2} (p_m - 2p_h p_m + p_h)$$

$$= \frac{1}{2} p_m + \frac{1}{2} p_h$$

$$p' = \frac{1}{2} (p_m + p_h)$$

De la misma manera, la frecuencia del alelo A_2 es:

$$q' = \frac{1}{2}(q_m + q_h)$$

Por lo tanto $p' = p'_m = p'_h$ en equilibrio de HW.

Loci ligados al sexo

Los alelos de los loci que están ubicados en los cromosomas que determinan el sexo de los organismos, convencionalmente señalados como alelos ligados al sexo, tienen el mismo patrón de herencia que todos los genes en organismos haploides o diploides. Si se parte de una población en la que hay diferencias en las frecuencias de alelos de loci ubicados en los cromosomas sexuales, pero que en el que la unión de alelos es aleatoria, entonces las frecuencias de alelos entre machos y hembras se iguala paulatinamente. Suponga que los gametos X y Y determinan el sexo, tal que las hembras son homogaméticas (XX) y los machos heterogaméticos (XY), en algunos organismos puede ser lo contrario. Bajo la

primera situación de determinación sexual, los machos son haploides para los alelos ubicados en el cromosoma X y la heterocigocidad de (XX) sólo se presentar en hembras.

Para un loci con dos alelos en la población de hembras, la frecuencia del alelo A_1 es p_h y la del alelo A_2 es q_h , mientras que en machos la condición es haploide y la frecuencia de estos alelos es p_m y q_m , como se ilustra en el cuadro siguiente:

Cuadro 2. Genotipos y alelos en la población de machos y hembras para un locus con dos alelos

Sexo	Determinación cromosómica	Alelos	Genotipos Diploides	Frecuencia del alelo	Frecuencia genotípica
Hembras	XX	A_1 ; A_2	A_1A_1	p_h y q_h	P_h
(homogaméticas)					
			A_1A_2		H_h
			1 1		0
			A_2A_2		Q_h
Machos	XY	$A_1; A_2$	Haploide	p_m y q_m	P_m
(heterogaméticos)			A_1 y A_2		0
			n_1 y n_2		Q_m

La suma de las frecuencias de los alelos tanto en machos como en hembras es 1, y nótese que en machos que la frecuencia del alelo A_1 es igual a la frecuencia genotípica de estos:

$$p_m = P_m \text{ y } q_m = Q_m$$

En hembras la frecuencia de los alelos es:

$$p_h = P_h + \frac{1}{2} H_h$$

$$q_h = Q_h + \frac{1}{2}H_h$$

Ya que dos tercios de los alelos que son transferidos a la siguiente generación son de las hembras y un tercio es proporcionados por los machos, entonces la frecuencia alélica promedio es

$$\bar{q} = \frac{2}{3} q_h + \frac{1}{3} q_m$$

 $\bar{p} = \frac{2}{3} p_h + \frac{1}{3} p_m$

Las frecuencias genotípicas de los alelos en la progenie de hembras (t_1) se calcula de la misma manera que para un locus autosómico:

Cuadro 3. Frecuencias genotípicas después de una generación de apareamiento al azar para un locus ligado al sexo (X) o para organismos haplo-diploides.

Tipo de Frecuencia		Descendencia: hembras			Descendencia machos	
apareamiento	÷×O				đ đ	
→ × ♂		A_1A_1	A_1A_2	A_2A_2	A_1	$\overline{A_2}$
$A_1A_1 \times A_1$	$P_h P_m$	$P_h P_m$	_	_	$P_h P_m$	_
$A_1A_1 \times A_2$	P_hQ_m	_	P_hQ_m	_	P_hQ_m	_
$A_1A_2 \times A_1$	$H_h P_m$	$^{1}/_{2}H_{h}P_{m}$	$^{1}/_{2}H_{h}P_{m}$	_	$\frac{1}{2}H_{h}P_{m}$	$^{1}/_{2}H_{h}P_{m}$
$A_1A_2 \times A_2$	H_hQ_m		$1/_2 H_h Q_m$	$^{1}/_{2}H_{h}Q_{m}$	$1/_{2}H_{h}Q_{m}$	$1/_{2}H_{h}Q_{m}$
$A_2A_2 \times A_1$	$Q_h P_m$	_	$\overline{Q}_h P_m$			$\overline{Q}_h P_m$
$A_2A_2 \times A_2$	Q_hQ_m	_	_	Q_hQ_m	_	Q_hQ_m
Total	1	$p_h p_m$	$p_hq_m + p_mq_h$	q_hq_m	p_h	q_h

La frecuencia del alelo A_2 en la progenie de hembras de hembras es

$$q'_{h} = Q'_{h} + \frac{1}{2}H'_{h}$$

$$q'_{h} = q_{h}q_{m} + \frac{1}{2}(p_{m}q_{h} + p_{h}q_{m})$$

$$q'_{h} = \frac{1}{2}q_{h}(q_{m} + p_{m}) + \frac{1}{2}q_{m}(p_{h} + q_{h})$$
Note que $q_{m} + p_{m} = 1$ y $p_{h} + q_{h} = 1$ así que $q'_{h} = \frac{1}{2}(q_{h} + q_{m})$

la frecuencia de A_2 en la población de machos es igual a la frecuencias de este alelo en la población de hembras de la generación previa (t-1), $q_m' = q_h$ entoces es posible calcular las tendencias de cambio de las frecuencias alélicas en el tiempo, mediante despejar q_m de $\bar{q} = \frac{2}{3}q_h + \frac{1}{3}q_m$ y sustituyendo el resultado en $q_h' = \frac{1}{2}(q_h + q_m)$, esto se muestra a continuación,

$$\bar{q} = \frac{2}{3} q_h + \frac{1}{3} q_m$$

$$-\frac{1}{3} q_m = \frac{2}{3} q_h - \bar{q}$$

$$-q_m = 2q_h - 3\bar{q}$$

$$q_m = 3\bar{q} - 2q_h$$

$$q'_{h} = \frac{1}{2} (q_{h} + q_{m}) = \frac{1}{2} [(q_{h} + (3\bar{q} - 2q_{h})] = \frac{1}{2} (3\bar{q} - q_{h})]$$

$$q'_{h} = \frac{3}{2} \bar{q} - \frac{1}{2} q_{h}$$

$$q'_{h} = \bar{q} + \frac{1}{2} \bar{q} - \frac{1}{2} q_{h}$$

$$q'_{h} - \bar{q} = \frac{1}{2} \bar{q} - q_{h}$$

$$(q'_{h} - \bar{q}) = -\frac{1}{2} (q_{h} - \bar{q})$$

La última ecuación muestra que las frecuencias alélicas de las hembras se desvían del promedio poblacional de la siguiente generación en una proporción igual a la mitad de la frecuencia observada en población de las hembras de la generación previa. La desviación de los machos es también la mitad ya que $q_m' = q_h$, por lo tanto, las frecuencias alélicas oscilan (**Figura 1**) y se aproximan a $q_h = q_m = \bar{q}$ de manera relativamente rápido

Figura 1. Cambios en las frecuencias alélicas en machos, hembras y la promedio en el transcurso de las poblaciones, partiendo de una frecuencia de $q_h=1$ y $q_m=0$. La frecuencia de machos se obtiene de $q_m'=q_h$, la de hembras se obtiene de $q_h'=\frac{1}{2}(q_h+q_m)$, y finalmente la frecuencia promedio de $\bar{q}=\frac{2}{3}q_h+\frac{1}{3}q_m$

EJEMPLO

Se obtuvo una muestra de machos y hembras de *Anastrepha ludens* Loew de siete Estados de México y se obtuvo su genotipo mediante la expresión de la enzima 6*gpdh* en acetato de celulosa (Molina Nery 2010). Se reconocieron dos alelos con el siguiente número de individuo:

Sexos		Genotipos	
	A_1A_1	A_1A_2	A_2A_2
Hembras	620	184	584
Machos	1012	120	264
Machos	1012	120	204
Total	1632	304	848

Sin hacer distinción de los sexos la frecuencia del alelo A_1 fue de p=0.641, la prueba de Ji-cuadrada mostró que las frecuencias genotípicas no se ajustan a las esperadas en equilibrio de Hardy-Weinberg ($\chi^2=1619.9$)

Para descartar que el sesgo es debido a una diferencia de frecuencia alélica entre sexos se hizo una prueba de heterogeneidad de la frecuencia alélica tratando a los machos y hembras como dos poblaciones diferentes ($\chi^2 = \frac{2NV(\hat{p})}{\overline{pq}} = 404.23$); la prueba resultó significativa, por lo que se procedió a calcular el sesgo de las frecuencias genotípicas genotípicas debidas a la diferencia entre sexos:

Genotipos	Frecuencia esperada sin distinción de sexos	Sesgo debido a la diferencia entre sexos
A_1A_1	0.411	-0.016
A_1A_2	0.460	0.032
A_2A_2	0.129	-0.016

Una vez realizada la corrección se volvió a realizar la prueba estadística de Ji-cuadrada para probar el ajuste de las frecuencias genotípicas corregidas a las esperadas en una población

en equilibrio de HW. Las frecuencias genotípicas no se ajustaron al equilibrio de HW ($\chi^2 = 1312.77$).

Las frecuencias genotípicas de la población de *A. ludens* no se ajusta al equilibrio de HW y la diferencias entre sexos no contribuye a este sesgo. Si los factores ecológicos que sesgan las poblaciones desaparecen la frecuencia alélica se igualará entre los sexos en aproximadamente seis generaciones (Figura 2)

EJEMPLO: A. ludens

Figura 2. Cambios en las frecuencias alélicas en machos y hembras de Anastrepha ludens.