Labelled Transition System for Traversals

- Input: λ -term $M \in \Lambda$ where $\Lambda @ \Lambda \mid \Lambda x \cdot \Lambda \mid x$;
- State space is a set of chains of the following view n_1, \ldots, n_m, \ldots , where $\forall i, n_i$ is a token (a tree node) of M;
- Transition labels (optional) is a node to be added in the traversal on current state.

Some notes about traversals:

- There are two different kinds of pointers. Note that any traversal element has both of them.
 - First kind is either:
 - * A pointer to the last unfinished application. I.e. a pointer to the last application within one run of head linear reduction (in other words, this pointer can not to get over | sing) whose left had side is being under consideration or has been consedered yet while right hand side (argument of application) has not consedered and has not bound by some (Lam)-node. On traversal diagrams this kind of pointer is denoted
 - * A pointer to the last unfinished application that is between nodes in different head linear reduction runs (in other words, this pointer has to get over at least one | | sing). On traversal diagrams this kind of pointer is denoted as \rightarrow .
 - * A pointer that binds (Lam)-node with its argument. (for example, for λx node this pointer point to the application whose argument has to be substituted instead of x variable occurrence in the future). On traversal diagrams this kind of pointer is denoted as \rightarrow .
 - Note that pointers described above can points only to some application in current history.
 - The second pointer is a binder pointer that for:
 - * Bound variables points to the corresponding binder;
 - * Free variables points to nowhere;
 - * Application nodes and lambda nodes it points to the parent in scence of tree structure of input term.
 - On traversal diagrams binder pointer is denoted as \rightarrow .
 - A pointer -> (dotted binder pointer) denotes "there exists a path between this to nodes by the chain of binder pointers".
 - \rightarrow denotes either \rightarrow or \rightarrow .

1.1 Rules

1. (BVars)

• (BVar – Lam)

 $\rightarrow^{\lambda y}$

• (BVar – App)

 \rightarrow $^{@}_{2}$

• (BVar - BVar)

 \longrightarrow^y , where $\exists \lambda y$ in history such that there is a chain of green pointers from $@_1$ to this λy

• (BVar - FVar)

 \longrightarrow^y , where $\exists \lambda y$ in history such that there is a chain of green pointers from $@_1$ to this λy

- 2. (FVars) and (BVars) without arguments
 - (FVar Not-FVar)

 \longrightarrow^n , where n is a right child of $@_1$ and $n \neq (FVar) \&\& n \neq (BVar)$

• (FVar - FVar)

 \longrightarrow^x , where n is a right child of $@_1$ and n = (FVar)

• (FVar – BVar)

 \longrightarrow^x , where $@_1 = \dots @x$ (BVar)

- 3. (Apps)
 - (App BVar)

 \longrightarrow^x , where $@_1 = x @ \dots (BVar)$

• (App - FVar)

 \dots $@_1$

 \longrightarrow^y , such that $\not\exists \lambda y$ in tarversal: $@_1-->\lambda y$

 \bigcirc

 \longrightarrow^x , где $\not\exists \lambda x$ в истории, доступная по цепочке зеленых указателей из λy 00 00 ... λy 0 x

5. (Lam-Browns) and (Lam-Violet)

• (Lam-Brown – FVar) $\dots \dots \hat{\mathbb{Q}_1} \dots \lambda y$

 \longrightarrow^x , где $\not\exists~\lambda x$ в истории, доступная по цепочке зеленых указателей из λy

• (Lam-Brown – Lam) $\dots \dots \hat{\mathbb{Q}_1} \dots \lambda y$

 $\longrightarrow^{\lambda x}$

• (Lam-Brown – App)

 \longrightarrow [@]₂

 $\ldots \ldots \overset{\frown}{\mathbb{Q}_1} \ldots \overset{}{\lambda_y} \overset{\frown}{\mathbb{Q}_2}$