# STAT 206B Chapter 3: From Prior Information to Prior Distributions

Winter 2022

- A fundamental basis of Bayesian decision theory is that statistical inference should start with the rigorous determination of three factors.
  - \*\* the distribution family for the observations (sampling distribution),  $f(x \mid \theta)$  for  $x \in \mathcal{X}$
  - \*\* the prior distribution for the parameter  $\pi(\theta)$ ,  $\theta \in \Theta$
  - $\star\star$  the loss association with the decisions,  $L(\theta, \delta) \in [0, +\infty)$ .
- In this chapter, we will discuss prior distributions CR Chapter 3 and JB Chapters 3 & 4.

#### † Priors!

- Priors are carriers of external knowledge (outside the data being modeled and analyzed) that is coherently incorporated via Bayes theorem to the inference.
- Parameters  $(\theta)$  are unobservable.
  - ⇒ Prior specification is **subjective** in nature.
- There is no unique way of choosing a prior distribution.
  - ⇒ There is no such a thing as the prior distribution.
- The choice of the prior distribution has an influence on the resulting inference.
  - → Ungrounded prior distributions produce unjustified posterior inference.

x € {0, 1, 2, ..... }

#### † Is using a prior a problem?

- The elicitation of a model (likelihood) and loss function is highly subjective, and Bayesians merely divide the necessary subjectivity to two sources - that from the model and from the prior.
- Vast amount scientific information coming from theoretical and physical models is guiding specification of priors and merging such information with the data for better inference.
- Being subjective ≠ Being nonscientific

- If complete information is given, an exact prior can be elicited.
   However, it is very rare!
- How to specify priors?
  - \*\* Subjective determination and approximations (Sec 3.2)
  - \*\* Conjugate priors (Sec 3.3)
  - \*\* Noninformative prior distributions (Sec 3.5): have little influence on the posterior distribution
- criticism: Bayesian inference is overly sensitive to the choice of a prior.
  - ⇒ the development of non-informative and robust priors (so change in the prior distribution does not change the posterior inference much)

- † Subjective Determination (Sec 3.2) • (H)
  - Subjective prior distributions exist as a consequence of an ordering of relative likelihoods.
  - Approximations to the prior distribution. e.g.
    - \*\* When the parameter space  $\Theta$  is finite, obtain a subjective evaluation of the probabilities of the different values of  $\theta$ .
    - \*\* When  $\Theta$  is noncountable (e.g. an interval of the real line), may use the histogram approach.
    - Divide Θ into intervals
    - Determine the subjective probability of each interval
    - Plot a probability histogram
    - If needed, a smooth density  $\pi(\theta)$  can be sketched.

Approximations to the prior distribution. (contd)

**JB** Example 1 Assume that  $\Theta = [0, 1]$ . Suppose that

- \*\* the parameter point  $\theta = 3/4$  is felt to be the most likely, while  $\theta = 0$  is the least likely.
- \*\* 3/4 is estimated to be three times as likely to be the true value of  $\theta$  as is 0.
- \*\*  $\theta = 1/2$  and  $\theta = 1$  are twice likely as  $\theta = 0$  while  $\theta = 1/4$  is
  - 1.5 times as likely as  $\theta = 0$ .



$$\pi(\Theta) = \frac{1}{\mathcal{B}(\alpha,\beta)} \Theta^{\alpha+1} (1-\Theta)^{\beta+1}$$

$$\frac{\alpha,\beta}{\alpha}$$

- Approximations to the prior distribution. (contd)
  - \*\* So far we have seen "histogram approach" and "relative likelihood approach".
  - \*\* JB discusses using a subjective construction of CDF in Section 3.2.
- When  $\Theta$  is not bounded, the subjective determination of  $\pi$  is complicated due to the difficulty of subjectively evaluating the probabilities of the extreme regions of  $\Theta$  (will see this from Example 3.2.6).
- Using marginal distribution to determine the prior (JB 3.5)

- Parametric Approximations
  - \*\* How? Assume that  $\pi(\theta)$  is of a given <u>functional form</u> and then choose the density of this given form which most closely matches prior beliefs (through the *moments*, the *quantiles*, etc).
  - Most used (and misused)
  - \*\* Very useful when a density of a standard functional form gives a good match to the prior information.
  - \*\* Also useful when only vague prior information is available.
  - Considerably different functional forms can often be chosen for the prior density (as will be seen in Example 3.2.6).
  - \*\* <u>drawback:</u> The choice of the parameterized family is often based on ease in the mathematical treatment. The resulting posterior inference is affected by the choice.

• Ex 3.2.5 Let  $X_i \sim \text{Bin}(n_i, p_i)$  be the number of passing students in a freshman calculus course of  $n_i$  students. Over the previous years, the average of the  $p_i$  is 0.70, with variance 0.1. If we assume that the  $p_i$ 's are all generated according to the same beta distribution,  $\text{Be}(\alpha, \beta)$ , then we choose the values of  $\alpha$  and  $\beta$  which most closely matches the prior beliefs. That is, set

$$\mu = \frac{\alpha}{\alpha + \beta} \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \text{ and } \tau^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta)^2(\alpha + \beta)}.$$

and solve for  $\alpha$  and  $\beta$ .

We for 
$$\alpha$$
 and  $\beta$ .

$$\alpha = 0.77 \quad \beta \quad \beta = 0.33$$

$$= \left(\frac{\alpha}{\alpha + \beta}\right) \left(\frac{1 - \alpha}{\alpha + \beta}\right) \cdot \frac{1}{(\alpha + \beta + 1)}$$

$$= 0.7 \quad \times \left(1 - 0.7\right) \cdot \frac{1}{\left(\frac{\alpha}{\alpha + 1}\right)} = 0.1$$

$$\theta \in \mathbb{R} = \mathbb{H}$$

• Example 3.2.6 Let 
$$x \sim N(\theta, 1)$$

• Example 3.2.6 Let  $x \sim N(\theta, 1)$ . Assume that the prior median of  $\theta$  is 0, the first quartile is -1, and the third quartile is +1. Use

mcx) is N(μ, σ²+ζ²) " = 1+2.19= 3.19 \*\* Case 1: Assume  $\theta \sim N(\mu, \tau^2)$  and set  $\mu = 0$  and  $\tau^2 = 2.19$ . The same  $\tau^2 = 2.19$ .

$$\Rightarrow \delta_1^{\pi}(x) = x - \frac{x}{3.19}$$

$$\underline{\mu} = ? \qquad \forall \qquad \mu = 0$$

$$(9 - \mu)^2$$

 $\mu(\Theta) = \frac{1}{1 - \frac{5 \pi s^2}{1 - \frac{5$ 

M= 0



$$= 0.25$$

$$= -\frac{1}{\tau}$$

$$= 0.25$$

$$= -\frac{1}{\tau}$$

$$= 0.25$$

$$0 \sim N(0, 2.19)$$

$$0 \sim N(0, 2.19)$$

$$0 \sim N\left(\left(\frac{1}{1} + \frac{1}{2.19}\right)^{-1}\left(\frac{X}{1} + \frac{0}{2.19}\right), \left(\frac{1}{1} + \frac{1}{2.19}\right)^{-1}\right)$$

$$= \sqrt{2.19}$$

$$= \sqrt{2.19}$$

$$\delta_1(x) = \left( l + \frac{2lq}{l} \right)^{-l} x$$

# • Example 3.2.6 (contd)

\*\* Case 2: Assume  $\underline{\theta}$  has a Cauchy distribution and set  $\underline{\theta} \sim$  Cauchy(0,1).

$$\Rightarrow \delta_{2}^{\pi}(x) \approx x - \frac{x}{1+x^{2}} \text{ for } |x| \geq 4$$

$$\pi(\Theta) = \frac{1}{\pi \cdot (1+\hat{\sigma})}, \quad \Theta \in \mathbb{R} = \widehat{\mathbb{N}}$$

$$\pi(\Theta \mid \times) = \frac{\frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\Theta)^{2}}{2}} \cdot \frac{1}{\pi(1+\hat{\sigma}^{2})}}{\int \frac{1}{\pi} e^{-\frac{(x-\Theta)^{2}}{2}} \cdot \frac{1}{\pi(1+\hat{\sigma}^{2})} d\Theta$$

$$\theta \in \mathbb{R} = 0$$

\*\* For x = 4, we have  $\delta_2^{\pi}(x) = 3.76$ .

# • Example 3.2.6 (contd)







• **Example 3.2.6** (contd) Case 1:  $\delta_1^{\pi}(x) = \underline{2.75}$  vs Case 2:  $\delta_2^{\pi}(x) = 3.76$ .



• **Example 3.2.6**(contd) If x = 10 is observed,



• **Example 3.2.6**(contd) If x = 1 is observed,



- Example 3.2.6 (contd) Take-home message;
  - \*\* The selection of the parameterized family greatly affects the inference about  $\theta$ , especially due to the tail of the chosen prior where prior information is scarce.
  - \*\* These posterior discrepancies call for some tests on the validity (or robustness) of the selected priors.

# $\varphi_{i} \sim N(\varphi_{i}, q^{2}), \quad i=1,..., P$



## † Empirical Bayes

- Use data to estimate some features of the prior distribution
- Choose a prior distribution a posteriori! ⇒ It does not belong to the Bayesian paradigm.
- Parametric empirical Bays:
  - $\star\star$  Assume that the prior distribution of  $\theta$  is in some parametric class with unknown parameters.
  - \*\* Use data to specify the unknown parameters.

JB in Section 4.5.2 Assume that  $X_i \mid \theta_i \stackrel{indep}{\sim} N(\theta_i, \sigma^2)$  with known  $\sigma^2$ ,  $i=1,\ldots,p$  and  $\theta_i$  are from a common prior distribution. Specify the prior distribution for  $\theta=(\theta_1,\ldots,\theta_p)$  using data. Assume  $\theta_i \stackrel{iid}{\sim} N(\mu) \tau^2$ . The hyperparameters  $\mu$  and  $\tau^2$  are unknown.

 $X_i$  is the test score of individual i, random about his/her true ability  $\theta_i$  with known "reliability"  $\sigma^2$ . True abilities  $\theta_i$ ,  $i = 1, \ldots, p$  are from an unknown normal population.



JB 4.5.2 (contd) How do we specify values for  $\mu$  and  $\tau^2$ ?

- **\*\*** We use the data to estimate  $\mu$  and  $\tau^2$ .
- \*\* One way is to consider  $m(\mathbf{x} \mid \pi)$  as a likelihood function for  $\pi$  as follows;
- \*\* Intuition  $m(x \mid \underline{\pi})$  is the density according to which X will actually occur.

If  $X_i$  is a test score of individual i which was normally distributed about "true ability"  $\theta_i$ , and the true ability in the population varied according to a normal distribution with mean  $\mu$  and  $\tau^2$ , then  $m(x_i)$  would be the actual distribution of observed test scores.

\*\* Recall we called  $m(x \mid \pi)$  the predictive distribution for x.

$$X_{1}(S) \xrightarrow{\text{Indep}} N(S, \sigma^{2}), \quad T^{2} \text{ known}, \quad \text{in}, \dots, p$$

$$S_{1} \xrightarrow{\text{ind}} N(\mu, \sigma^{2})$$

$$M(x \mid M_{1}, \sigma^{2}) = \int_{T_{1}}^{T_{2}} \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(x_{1}-y_{1})^{2}}{2\sigma^{2}}\right) \cdot \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right)$$

$$M(x \mid M_{1}, \sigma^{2}) = \int_{T_{1}}^{T_{2}} \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(x_{1}-y_{1})^{2}}{2\sigma^{2}}\right) \cdot \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right)$$

$$M(x \mid M_{1}, \sigma^{2}) = \int_{T_{1}}^{T_{2}} \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(x_{1}-y_{1})^{2}}{2\sigma^{2}}\right) \cdot \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right)$$

$$M(x \mid M_{1}, \sigma^{2}) = \int_{T_{1}}^{T_{2}} \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right) \cdot \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right)$$

$$M(x \mid M_{1}, \sigma^{2}) = \int_{T_{1}}^{T_{2}} \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right) \cdot \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right)$$

$$M(x \mid M_{1}, \sigma^{2}) = \int_{T_{1}}^{T_{2}} \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right) \cdot \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right)$$

$$M(x \mid M_{1}, \sigma^{2}) = \int_{T_{1}}^{T_{2}} \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right) \cdot \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right)$$

$$M(x \mid M_{1}, \sigma^{2}) = \int_{T_{1}}^{T_{2}} \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right) \cdot \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right)$$

$$M(x \mid M_{1}, \sigma^{2}) = \int_{T_{1}}^{T_{2}} \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right) \cdot \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right)$$

$$M(x \mid M_{1}, \sigma^{2}) = \int_{T_{1}}^{T_{2}} \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right) \cdot \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right)$$

$$M(x \mid M_{1}, \sigma^{2}) = \int_{T_{1}}^{T_{2}} \frac{1}{\sqrt{2\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right) \cdot \frac{1}{\sqrt{2\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right)$$

$$M(x \mid M_{1}, \sigma^{2}) = \int_{T_{1}}^{T_{2}} \frac{1}{\sqrt{2\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right) \cdot \frac{1}{\sqrt{2\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right)$$

$$M(x \mid M_{1}, \sigma^{2}) = \int_{T_{1}}^{T_{2}} \frac{1}{\sqrt{2\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}-y_{1})^{2}}{2\sigma^{2}}\right) \cdot \frac{1}{\sqrt{2\sigma^{2}}} \cdot \exp\left(-\frac{(y_{1}$$

### JB 4.5.2 (contd)

\*\* Seek to maximize  $m(\mathbf{x} \mid \pi)$  over the hyperparameters  $\mu$  and  $\tau^2$  by maximum likelihood.

Intuition If  $m(x \mid \pi_1) > m(x \mid \pi_2)$ , we can conclude that the data provides more support for  $\pi_1$  than for  $\pi_2$ .

\*\* Recall that

$$m(\mathbf{x} \mid \mu, \tau^{2}) = \prod_{i=1}^{p} \frac{1}{\sqrt{2\pi(\sigma^{2} + \tau^{2})}} \exp\left\{-\frac{(x_{i} - \mu)^{2}}{2(\sigma^{2} + \tau^{2})}\right\}$$

$$= \left\{2\pi(\sigma^{2} + \tau^{2})\right\}^{-p/2} \exp\left\{-\frac{s^{2}}{2(\sigma^{2} + \tau^{2})}\right\} \exp\left\{-\frac{p(\bar{x} - \mu)^{2}}{2(\sigma^{2} + \tau^{2})}\right\},$$

where  $\bar{x} = \sum_{i=1}^{p} x_i/p$  and  $s^2 = \sum_{i=1}^{p} (x_i - \bar{x})^2$ .

# JB 4.5.2 (contd)

\*\* We find the MLEs

$$\widehat{\mu} = \underline{\overline{x}} \text{ and } \widehat{\tau}^2 = \max \left\{ 0, \frac{1}{p} s^2 - \sigma^2 \right\}.$$

- We can pretend that the  $\underline{\theta_i}$  are iid from  $N(\hat{\mu}, \hat{\tau}^2)$  and proceed with a Bayesian analysis.
- **Or** we can use the moment method by matching the first two moments,  $\hat{\mu} = \bar{x}$  and  $\hat{\tau}^2 = \sum_{i=1}^p (x_i \bar{x})^2/(p-1) \sigma^2$ .