The group G is isomorphic to the projective special linear group PSU(3,3). Ordinary character table of $G \cong PSU(3,3)$:

	1a	2a	3a	3b	4a	4b	4c	6a	7a	7b	8a	8b	12a	12b
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	6	-2	-3	0	-2	-2	2	1	-1	-1	0	0	1	1
χ_3	7	-1	-2	1	3	3	-1	2	0	0	-1	-1	0	0
χ_4	7	3	-2	1	-1 - 2 * E(4)	-1 + 2 * E(4)	1	0	0	0	E(4)	-E(4)	-1 - E(4)	-1 + E(4)
χ_5	7	3	-2	1	-1 + 2 * E(4)	-1 - 2 * E(4)	1	0	0	0	-E(4)	E(4)	-1 + E(4)	-1 - E(4)
χ_6	14	-2	5	-1	2	2	2	1	0	0	0	0	-1	-1
χ_7	21	5	3	0	1	1	1	-1	0	0	-1	-1	1	1
χ_8	21	1	3	0	-3 + 2 * E(4)	-3 - 2 * E(4)	-1	1	0	0	E(4)	-E(4)	E(4)	-E(4)
χ_9	21	1	3	0	-3 - 2 * E(4)	-3 + 2 * E(4)	-1	1	0	0	-E(4)	E(4)	-E(4)	E(4)
χ_{10}	27	3	0	0	3	3	-1	0	-1	-1	1	1	0	0
χ_{11}	28	-4	1	1	4 * E(4)	-4 * E(4)	0	-1	0	0	0	0	-E(4)	E(4)
χ_{12}	28	-4	1	1	-4 * E(4)	4 * E(4)	0	-1	0	0	0	0	E(4)	-E(4)
χ_{13}	32	0	-4	-1	0	0	0	0	$-E(7)^3 - E(7)^5 - E(7)^6$	$-E(7) - E(7)^2 - E(7)^4$	0	0	0	0
χ_{14}	32	0	-4	-1	0	0	0	0	$-E(7) - E(7)^2 - E(7)^4$	$-E(7)^3 - E(7)^5 - E(7)^6$	0	0	0	0

Trivial source character table of $G \cong PSU(3,3)$ at p = 7

$Normalisers N_i$	N_1														
$p-subgroups \ of \ G \ up \ to \ conjugacy \ in \ G$	$\overline{P_1}$														
Representatives $n_j \in N_i$	1a	2a	3a	3b	4a	4b	4c	6a	8a	8b	12a	12b	1 <i>a</i>	3b	3b
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	28	4	1	1	4	4	0	1	2	2	1	1	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14}$	70	-2	-11	-2	-2	-2	2	1	0	0	1	1	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	7	-1	-2	1	3	3	-1	2	-1	-1	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	7	3	-2	1	-1 - 2 * E(4)	-1 + 2 * E(4)	1	0	E(4)	-E(4)	-1 - E(4)	-1 + E(4)	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	7	3	-2	1	-1 + 2 * E(4)	-1 - 2 * E(4)	1	0	-E(4)	E(4)	-1 + E(4)	-1 - E(4)	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	14	-2	5	-1	2	2	2	1	0	0	-1	-1	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	21	5	3	0	1	1	1	-1	-1	-1	1	1	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	21	1	3	0	-3 + 2 * E(4)	-3 - 2 * E(4)	-1	1	E(4)	-E(4)	E(4)	-E(4)	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	21	1	3	0	-3 - 2 * E(4)	-3 + 2 * E(4)	-1	1	-E(4)	E(4)	-E(4)	E(4)	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14}$	91	3	-8	-2	3	3	-1	0	1	1	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	28	-4	1	1	-4 * E(4)	4 * E(4)	0	-1	0	0	E(4)	-E(4)	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	28	-4	1	1	4 * E(4)	-4 * E(4)	0	-1	0	0	-E(4)	E(4)	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14}$	64	0	-8	-2	0	0	0	0	0	0	0	0	1	E(3)	$E(3)^{} 2$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14}$		0	-8	-2	0	0	0	0	0	0	0	0	1	$E(3)^{} 2$	E(3)

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 23, 2, 15, 19, 24, 22)(3, 11, 17, 9, 20, 27, 7)(4, 14, 21, 5, 26, 12, 28)(6, 8, 25, 16, 18, 10, 13)]) \cong C7$

 $N_1 = Group([(2,3)(4,6)(5,8)(7,11)(9,13)(10,15)(12,14)(16,20)(17,22)(18,23)(24,27)(25,28), (1,2,4,7,12,17)(3,5,9,14,19,22)(6,10,13,18,24,23)(8,11,16,21,26,28)(20,25,27)]) \cong PSU(3,3)$ $N_2 = Group([(2,23,19)(3,21,16)(4,25,9)(5,6,17)(7,12,8)(10,11,28)(13,27,14)(15,24,22)(18,20,26), (1,23,2,15,19,24,22)(3,11,17,9,20,27,7)(4,14,21,5,26,12,28)(6,8,25,16,18,10,13)]) \cong C7: C3$