Capítulo I: Fundamentos de imagen digital

Procesamiento Digital de Imágenes

Contenido:

Representación digital: píxeles, 1.1 resolución, profundidad de bits Introducción a la percepción visual humana y su relación con imágenes digitales Espacio de imagen: discretización y cuantización. Modelos de color: RGB, HSV, CMYK; conversiones entre modelos

Contenido:

1.1	Representación digital: píxeles, resolución, profundidad de bits
1.2	Introducción a la percepción visual humana y su relación con imágenes digitales
	Espacio de imagen: discretización y cuantización.
	Modelos de color: RGB, HSV, CMYK; conversiones entre modelos

¿Qué es una imagen y qué es una imagen digital?

Imagen es una representación en 2D pictórica de alguien o algo que generalmente se percibe en una escena 3D.

¿Qué es una imagen y qué es una imagen digital?

 Una imagen es una función bidimensional f(x,y), donde x e y son las coordenadas espaciales (planas), y la amplitud de f en cualquier par de coordenadas (x,y) se denomina intensidad de la imagen en ese nivel.

 Si x,y y los valores de amplitud de f son cantidades finitas y discretas, llamamos a la imagen una imagen digital. Una imagen digital está compuesta por un número finito de elementos denominados píxeles, cada uno de los cuales tiene una ubicación y un valor determinado.

¿Qué es una imagen y qué es una imagen digital?

f"(x",y")

¿Qué es una imagen y qué es una imagen digital?

f(80:85,175:180)=

50	48	36	36	36	36
50	48	80	80	36	36
70	150	8	8	150	70
70	150	8	8	150	70
8	30	150	150	30	8
50	48	36	36	36	36

Considere que la siguiente imagen (338 x 291 píxeles) es una función 2D o una matriz con filas y columnas.

En la representación de 8 bits, los valores de intensidad de los píxeles varían entre: 0 (negro) y 255 (blanco).

f(338,291) = 150

¿Qué es una imagen y qué es una imagen digital?

157	153	174	168	150	152	129	151	172	161	155	156
156	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	105	159	181
206	109	6	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	ы	10	168	134	-11	31	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215
187	196	235	75	1	81	47	٥	6	217	255	211
183	202	237	145	۰	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

				_		_	_	_	_	_	
157	153	174	168	150	152	129	151	172	161	156	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	166	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	96	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	176	13	96	218

Coordenadas convencionales para la representación de imágenes

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & \cdots & f(0,N-1) \\ f(1,0) & f(1,1) & \cdots & f(1,N-1) \\ \vdots & \vdots & & \vdots \\ f(M-1,0) & f(M-1,1) & \cdots & f(M-1,N-1) \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{0,0} & a_{0,1} & \cdots & a_{0,N-1} \\ a_{1,0} & a_{1,1} & \cdots & a_{1,N-1} \\ \vdots & \vdots & & \vdots \\ a_{M-1,0} & a_{M-1,1} & \cdots & a_{M-1,N-1} \end{bmatrix}$$

Tipos de imágenes digitales

Imagen RGB (3 capas)

Cada píxel contiene un vector que representa los componentes rojo, verde y azul.

Tipos de imágenes digitales

Imagen RGB (3 capas)

Cada píxel contiene un vector que representa los componentes rojo, verde y azul.

¿Qué es procesamiento digital de imágenes?

• El procesamiento digital de imágenes es un método para realizar algunas operaciones en una imagen digital, con el fin de obtener una imagen mejorada o extraer alguna información útil de ella.

- Es un tipo de procesamiento de señales en el que la entrada es una imagen y la salida puede ser una imagen o características asociadas a esa imagen.
- El procesamiento digital de imágenes se centra en dos tareas principales.
 - a) Mejora de la información pictórica para la interpretación humana.
 - b) Procesamiento de datos de imágenes para su almacenamiento, transmisión y representación con vistas a la percepción autónoma por parte de máquinas.

¿Qué es procesamiento digital de imágenes?

Niveles del procesamiento digital de imágenes

Contenido:

Introducción a la percepción visual humana y su relación con imágenes digitales cuantización.

Estructura del ojo humano

Estructura del ojo humano

Formación de imágenes en el ojo

Formación de imágenes en el ojo

El sistema visual humano puede percibir aproximadamente 10^{10} niveles diferentes de intensidad luminosa. Pero en cualquier momento apenas podemos discriminar entre 40-50 tonos debido a la adaptación de la luminosidad. Además, la intensidad percibida de una región está relacionada con las intensidades luminosas de las regiones que la rodean.

Formación de imágenes en el ojo (visión estereoscópica)

Formación de imágenes en el ojo (Espectro Electromagnético)

Captación y adquisición de imágenes

La captación de imágenes se realiza mediante un sensor, que convertirá la energía óptica en energía eléctrica o imagen digital.

En la adquisición de imágenes hay tres componentes:

- 1. Iluminación
- 2. Sistema óptico (sistema de lentes)
- 3. Sistema de sensores

Esquema de una Cámara

ESQUEMA COMPACTA

Esquema de una Cámara (percepción de espacio)

Esquema de una Cámara (percepción de espacio – visión estereoscópica)

Esquema de una Cámara (percepción de espacio – visión estereoscópica)

Esquema de una Cámara (Triangulación Láser y Luz Estructurada)

Esquema de una Cámara (Triangulación Láser y Luz Estructurada)

Esquema de una Cámara – Comparación con visión humana

Captación y adquisición de imágenes – ejemplo (https://www.youtube.com/watch?v=RNnKtNrsrmg)

PHASE 1. Data collection.

Need to collect training data in a form of individual images in different orientation and lighting conditions. Hardware augmentation technique is used to ensure higher variance in the training set.

www.cybercontrols.org

Contenido:

Espacio de imagen: discretización y cuantización.

Muestreo y Cuantificación

• El muestreo y la cuantización son dos procesos importantes para convertir una imagen analógica continua en una imagen digital.

 El muestreo de imágenes se refiere a la discretización de coordenadas espaciales, mientras que la cuantización se refiere a la discretización de valores de nivel de gris o valores de amplitud.

 Dada una imagen continua f(x,y) digitalizar los valores de las coordenadas se llama muestreo y digitalizar los valores de amplitud (intensidad) se llama cuantificación.

Muestreo y Cuantificación

Muestreo y Cuantificación

Resolución Espacial

- Resolución: número de píxeles (Ejm., 1920x1080, 1280x720, 640x480, etc.).
- Más píxeles = mayor detalle, pero mayor tamaño de archivo.
- Si "n" es el número de bits por píxel, entonces el número de niveles de gris, "L", es una potencia entera de 2.

$$L=2^n$$

- Cuando una imagen puede tener niveles de gris, es práctica común referirse a la imagen como una «imagen de k bits» Por ejemplo, una imagen con 256 posibles valores de nivel de gris se denomina imagen de 8 bits.
- Por tanto, el número de bits necesarios para almacenar una imagen digitalizada de tamaño M*N es.

$$b = M * N * n$$

- ¿Cuánta capacidad de almacenamiento se necesita para almacenar una imagen con un tamaño de 1024*768 y 256 niveles de gris?
- Como tiene 256 niveles de gris, es una imagen de 8 bits ya que $256 = 2^8$, por lo tanto:

$$b = M * N * n = 1024 * 768 * 8 = 6291456 \ bits = 786432 \ bytes = 786.432 \ KB$$

Resolución Espacial

64x64

256x256

32x32

128x128

16x16

Muestreo y Teorema de Nyquist (temporal)

- Muestreo: Proceso de convertir una señal continua en una señal discreta tomando muestras a intervalos regulares.
- Teorema de Nyquist-Shannon: Para reconstruir una señal sin pérdida, la frecuencia de muestreo (fs) debe ser al menos el doble de la frecuencia máxima de la señal (fmax).

$$f_s = 2 * f_{max}$$

En la imagen: $f_{max} = 5Hz$, por lo que $f_s \ge 10Hz$. Con 10 muestras/s, estamos al límite, pero la reconstrucción aún es aproximada (puntos rojos no capturan perfectamente los picos).

Efectos del Muestreo – Aliasing (temporal)

- Aliasing: Distorsión que ocurre cuando la frecuencia de muestreo es menor que el doble de la frecuencia máxima de la señal $(f_s = 2 * f_{max})$, opacando el teorema de Nyquist.
- Frecuencia de alias: $f_{alias} = |f n * f_s|$, donde n es el entero más cercano que ajusta f al rango $\left[\frac{-f_s}{2}, \frac{f_s}{2}\right]$

En la imagen: f=20Hz, $f_s=15Hz$, n=1, $f_{alias}=|20-15|=5Hz$ por lo que La señal parece una onda de 5 Hz (línea roja).

Muestreo y Teorema de Nyquist (espacial)

Cuantificación

- Cuantización: asignar valores discretos a la intensidad.
- Convierte amplitudes continuas en un conjunto finito de niveles.
- Ejemplo: 256 niveles en 8 bits (0 a 255).
- Rango continuo [Imin,Imax] mapeado a L niveles.
- Fórmula:

$$I_q = ext{round}\left(rac{I - I_{min}}{I_{max} - I_{min}} \cdot (L-1)
ight)$$

Cuantificación

Proceso de Cuantificación

- La cuantización es el proceso de convertir valores continuos de intensidad (o amplitud) en un conjunto finito de valores discretos. En imágenes digitales, esto significa mapear un rango continuo de niveles de gris o color (Ejem., 0 a 1 en valores normalizados) a un número limitado de niveles (Ejem., 256 niveles en 8 bits).
- Propósito: Reducir la cantidad de datos necesarios para representar la imagen, haciéndola procesable por sistemas digitales, pero a costa de perder precisión.
- El rango continuo [*Imin*, *Imax*] representa los valores posibles de intensidad. Por ejemplo:
 - En una imagen en escala de grises, Imin=0 (negro) y Imax=255 (blanco) para 8 bits.
- L: Número de niveles discretos. Ejemplo:
 - L=256 (8 bits, 0 a 255).
 - L=4 (2 bits, 0 a 3).
- La formula $I_q = \mathrm{round}\left(rac{I-I_{min}}{I_{max}-I_{min}}\cdot (L-1)
 ight)$ normaliza el valor de intensidad I al rango [0,L-1] y lo

redondea al entero más cercano. Esto introduce un error de cuantificación.

Proceso de Cuantificación

• Ejemplo: Si L=4, el rango [0,255] se divide en 4 intervalos

$$egin{aligned} [0,63.75) &
ightarrow 0 \ [63.75,127.5) &
ightarrow 1 \ [127.5,191.25) &
ightarrow 2 \ [191.25,255] &
ightarrow 3 \end{aligned}$$

$$I_q = ext{round}\left(rac{I-I_{min}}{I_{max}-I_{min}}\cdot (L-1)
ight)$$

Error de cuantificación

Relación Muestreo y Cuantificación

Imagen Original

Discretización (32x32)

Cuantificación (4 niveles)

Contenido:

	Representación digital: píxeles, resolución, profundidad de bits
	Introducción a la percepción visual humana y su relación con imágenes digitales
	Espacio de imagen: discretización y cuantización.
1.4	Modelos de color: RGB, HSV, CMYK; conversiones entre modelos

¿Qué son los Modelos de Color?

- Un modelo de color es un sistema matemático para representar colores de forma estructurada, permitiendo su uso en dispositivos digitales (pantallas, impresoras) y análisis computacional.
- Tipos de Modelos:
 - Aditivos: Combinan luz (RGB).
 - Sustractivos: Combinan pigmentos (CMYK).
 - Perceptivos: Basados en la percepción humana (HSV, LAB).
- Importancia:
 - Facilitan la captura, procesamiento y reproducción de colores.
 - Diferentes modelos son óptimos para diferentes aplicaciones (pantallas, impresión, análisis de imágenes).

Modelo RGB

- El modelo de color RGB utilizado en los monitores CRT en color.
- En este modelo, Rojo, Verde y Azul se suman para obtener el color resultante BLANCO.
- Cada punto de color dentro de los límites del cubo se representa como la tripleta (R, G, B), donde los valores de R, G y B se asignan en un rango de 0 a 1.
- En este modelo, los colores primarios (rojo, verde y azul) se disponen a 120 grados entre sí.
- La combinación de ROJO + VERDE + AZUL = BLANCO (suma aditiva).
- Todos los demás colores se generan a partir de estos tres colores primarios mediante variaciones en sus intensidades.

Modelo CMY(K)

- El modelo de color CMY utilizado en los dispositivos de impresión a color.
- En este modelo, el Cian, el Magenta y el Amarillo se combinan para obtener el color resultante NEGRO.
- Cada punto de color dentro de los límites del cubo se representa como la tripleta (C, M, Y), donde los valores de C, M e Y también se asignan en un rango de 0 a 1.
- En este modelo, los colores Cian, Magenta y Amarillo se disponen a 120 grados entre sí.
- La combinación de CIAN + MAGENTA + AMARILLO
 NEGRO (mezcla sustractiva).
- Todos los demás colores se generan a partir de estos tres colores primarios mediante variaciones en sus proporciones.

Conversión de RGB a CMY

La transformación se puede expresar como una combinación de multiplicación matricial y suma de un vector:

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Forma compacta (usando operaciones por componentes): $\begin{vmatrix} C \\ M \\ V \end{vmatrix} = \mathbf{I}_{3\times3} \cdot \mathbf{1} - \begin{vmatrix} R \\ G \\ R \end{vmatrix}$

$$egin{bmatrix} C \ M \ Y \end{bmatrix} = \mathbf{I}_{3 imes 3} \cdot \mathbf{1} - egin{bmatrix} R \ G \ B \end{bmatrix}$$

donde $I_{3\times 3}$ es la matriz identidad y 1 es un vector de unos.

Ejemplo: si R=0.2, G=0.5, B=0.8

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 - 0.2 \\ 1 - 0.5 \\ 1 - 0.8 \end{bmatrix} = \begin{bmatrix} 0.8 \\ 0.5 \\ 0.2 \end{bmatrix}$$

Conversión de CMY a RGB

La operación inversa es análoga:

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} C \\ M \\ Y \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Forma compacta (usando operaciones por componentes): $\begin{vmatrix} R \\ G \\ R \end{vmatrix} = \mathbf{I}_{3\times 3} \cdot \mathbf{1} - \begin{vmatrix} C \\ M \\ V \end{vmatrix}$

$$egin{bmatrix} R \ G \ B \end{bmatrix} = \mathbf{I}_{3 imes 3} \cdot \mathbf{1} - egin{bmatrix} C \ M \ Y \end{bmatrix}$$

donde $I_{3\times 3}$ es la matriz identidad y 1 es un vector de unos.

Ejemplo: si C=0.4, M=0.6, Y=0.2

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 - C \\ 1 - M \\ 1 - Y \end{bmatrix} = \begin{bmatrix} 1 - 0.4 \\ 1 - 0.6 \\ 1 - 0.2 \end{bmatrix} = \begin{bmatrix} 0.6 \\ 0.4 \\ 0.8 \end{bmatrix}$$

Modelo YIQ (Luminace, Inphase y Quadrature)

- Modelo de color YIQ es una recodificación del modelo RGB
- El modelo de color YIQ se utiliza en la transmisión de señales de televisión.
- Canal Y: Contiene información de luminancia (suficiente para televisores en blanco y negro).
- Canales I y Q: Contienen información de color (tono y saturación).
- YIQ en televisión: Fue clave en sistemas analógicos como NTSC para optimizar el ancho de banda.
- Propósito clave: Separar la luminancia (brillo) de la información de color, ya que el ojo humano percibe mejor las variaciones de brillo que las de color.
- La ecuación clásica para obtener Y es:

$$Y = 0.299 R + 0.587 G + 0.114 B$$

 Los parámetros I Y Q se calculan restando la luminancia a los componentes rojo y azul del color:

$$I = R - Y,$$

$$Q = B - Y.$$

Conversión de RGB a YIQ

La fórmula matricial para convertir de RGB (valores normalizados entre 0 y 1) a YIQ es:

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.30 & 0.59 & 0.11 \\ 0.60 & -0.27 & -0.32 \\ 0.21 & -0.52 & 0.31 \end{bmatrix} \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Conversión de YIQ a RGB

La fórmula matricial para convertir de YIQ (valores normalizados entre 0 y 1) a RGB es:

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0.96 & 0.62 \\ 1 & -0.27 & -0.65 \\ 1 & -1.11 & 1.70 \end{bmatrix} \cdot \begin{bmatrix} Y \\ I \\ Q \end{bmatrix}$$

Ejemplo: si R=0.8, G=0.6, B=0.2 $Y \approx 0.30 \cdot 0.8 + 0.59 \cdot 0.6 + 0.11 \cdot 0.2 = \textbf{0.59},$ $I \approx 0.60 \cdot 0.8 - 0.27 \cdot 0.6 - 0.32 \cdot 0.2 = \textbf{0.28},$ $Q \approx 0.21 \cdot 0.8 - 0.52 \cdot 0.6 + 0.31 \cdot 0.2 = -\textbf{0.20}.$ $(Y, I, Q) \approx (0.59, 0.28, -0.20)$

Ejemplo: si Y=0.59, I=0.28, Q=-0.2
$$R \approx 1 \cdot 0.59 + 0.96 \cdot 0.28 + 0.62 \cdot (-0.20) = \textbf{0.79},$$
 $G \approx 1 \cdot 0.59 - 0.27 \cdot 0.28 - 0.65 \cdot (-0.20) = \textbf{0.60},$ $B \approx 1 \cdot 0.59 - 1.11 \cdot 0.28 + 1.70 \cdot (-0.20) = \textbf{0.20}.$ $(R, G, B) \approx (0.79, \ 0.60, \ 0.20)$

Modelo HSV (Hue, Saturation y Value)

- Este modelo de color se basa en coordenadas polares, no en coordenadas cartesianas.
- HSV es una versión transformada no linealmente (deformada) del cubo RGB.
- Matiz (Hue): Cantidad que distingue la familia de colores (por ejemplo, rojo del amarillo, verde del azul).
- Saturación (Chroma): Intensidad del color (de fuerte a débil). Representa la pureza del tono o el grado de sensación de color respecto al blanco o gris.
- Valor (Value): Luminancia, que determina si el color es claro u oscuro.

Modelo HSV (Hue, Saturation y Value)

- Hue (H) es el tono de color (por ejemplo, verde, rojo, morado...).
 - Se representa como un ángulo en un círculo cromático (0° a 360°).
- Saturation (S) es la intensidad de esta tonalidad. Cuanta menos saturación, más gris es el color.
 - 0% = gris (sin color), 100% = color puro.
- Value (V) es la luminosidad del color.
 - Valor: 0% = negro, 100% = brillo máximo del color.

Modelo RGB

Modelo RGB

Capítulo I: FIN

Procesamiento Digital de Imágenes