SRN	7							Marie Control
			_		_		- 9	

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE17/18CS251

December 2021: END SEMESTER ASSESSMENT (ESA) B.Tech. IV SEMESTER

UE17/18CS251: DESIGN AND ANALYSIS OF ALGORITHMS

Max Marks: 100 Answer All Questions Time: 3 Hrs.

	a)	What is an algorithm? With a neat diagram, explain the algorithm design and ana									
1.	b)	Consider the following algorithm. Algorithm Example(n) //Input: A nonnegative integer n S ← 0 for i ← 1 to n do S ← S + i * i return S i). What does this algorithm compute? ii). What is its basic operation? iii). How many times is the basic operation executed?									
	c)	iv). What is the efficiency class of this algorithm? Define asymptotic notations big theta and big omega. Illustrate the definitions using graph.									
	a)	Write and explain how the Brute Force String Matching Algorithm functions with an example. Give its worst case efficiency.									
2.	b)	What is Divide and Conquer technique? State master theorem									
	c)	Explain the divide and conquer strategy for multiplying two large integers.									
3.	a) b)	Apply insertion sort to sort the list E, X, A, M, P, L, E in alphabetical order. At what condition the insertion sort will have worst case input. Write the pseudocode for lexicographic-order algorithm. Generate all permutations of {1, 2, 2} by the lexicographic order algorithm.									
	c)	2, 3} by the lexicographic-order algorithm What are the two kinds of nodes in 2-3 Tree? Explain with neat diagram									
	(0)										
4.	a)	knapsack p	roblem for o	ynamic pro capacity W= 2 2 20 \$	gramming a = 6. Write to 3 1 1 15 \$	algorithm the optimal 4 4 40 \$	to the followabset. 5 5 5 \$	wing instance of the	8		
	b)	List and explain the methods of achieving time efficiency at the cost of space.									
	c)	Apply Warshall's algorithm to find the transitive closure of the digraph defined by the following adjacency matrix									

							SRN			
		2 "					1	-		
			0	1	0	0				
			0	0	1	0				
			0	0	0	1				
			0	0	0	0	*			
5.	a) Write Dijkstra's algorithm. Explain the use data structure "priority queue" in implementing the algorithm									
	b)	Define the following: i) Class P ,ii) Class NP , iii) NP Complete problem								
	c)	What is decision tree? Explain with three-element selection sort.								