INT'L. APPLN. NO.: PCT/JP2004/004638 INT'L. FILING DATE: 31 MARCH 2004 ATTORNEY DOCKET NO.: U 015954-0

SERIAL NO.: 10/551,164

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2003-226638 (P2003-226638A)

(43)公開日 平成15年8月12日(2003.8.12)

(51) Int.Cl.⁷

識別記号

FΙ

テーマコート*(参考)

A 6 1 K 9/127

A 6 1 K 9/127

4C076

審査請求 未請求 請求項の数8 OI

OL (全 12 頁)

(21)出願番号

特顧2002-22575(P2002-22575)

(71)出顧人 301021533

(22)出願日

平成14年1月30日(2002.1.30)

東京都千代田区霞が関1-3-1 (72)発明者 山嵜 登

茨城県つくば市東1-1-1 独立行政法

人産業技術総合研究所つくばセンター内

独立行政法人産業技術総合研究所

(72)発明者 小島 周二

茨城県つくば市東1-1-1 独立行政法

人産業技術総合研究所つくばセンター内

Fターム(参考) 40076 AA19 AA95 CC27 EE45 EE50

(54)【発明の名称】 標的指向性リポソーム

(57)【要約】

【課題】医薬品、化粧品をはじめ医学・薬学分野において応用し得る、癌などの標的細胞・組織を認識し局所的に薬剤や遺伝子を患部に送り込むための治療用のドラッグデリバリーシステムや診断用の細胞・組織センシングプローブとして利用できるリポソームを提供する

【解決手段】糖鎖をリンカー蛋白質を介してリポソームに結合せしめた糖修飾リポソームにおいて、糖鎖の分子構造を種々変更することにより、標的細胞、組織の取り込みを選択的に制御しうるリポソームを構築し、治療用ドラッグデリバリーシステムあるいは診断用の細胞・組織センシングプローブとして有用なリポソームを提供する。

EXPRESS MAIL LABEL NO.: EV 815 584 441US

る。

【特許請求の範囲】

【請求項1】 糖鎖がリンカー蛋白質を介してリポソーム膜に結合されているものであって、糖鎖が、ルイスX型三糖鎖、シアリルルイスX型四糖鎖、3'-シアリルラクトサミン三糖鎖、6'-シアリルラクトサミン三糖鎖から選ばれたものであることを特徴とする糖鎖修飾リポソーム。

【請求項2】リポソーム膜にトリス(ヒドロキシメチル)アミノメタンを結合せしめたものである請求項1記載の糖鎖修飾リポソーム。

【請求項3】 リンカー蛋白質がヒト血清アルブミンまたはウシ血清アルブミンである請求項1または2記載の糖鎖修飾リポソーム。

【請求項4】 リンカー蛋白質が親水性化されたものである請求項1~3いずれか一項記載の糖鎖修飾リポソーム。

【請求項5】 リポソーム膜にトリス(ヒドロキシメチル)アミノメタンが結合せしめられたことを特徴とする リポソーム

【請求項6】 リポソーム膜に糖鎖がリンカー蛋白質を 介して結合されているを特徴とする請求項5に記載の糖 鎖修飾リポソーム。

【請求項7】 糖鎖が、リンカー蛋白質を介してリポソーム膜に結合されているリポソームであって、リポソーム膜およびリンカー蛋白質のいずれもが親水性化されていることを特徴とする糖鎖修飾リポソーム。

【請求項8】 請求項1~7いずれか一項記載のリポソームに薬剤を封入したリポソーム製剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、医薬品、化粧品をはじめ医学・薬学分野において応用し得る、癌などの標的細胞・組織を認識し局所的に薬剤や遺伝子を患部に送り込むための治療用のドラッグデリバリーシステムや診断用の細胞・組織センシングプローブとして利用できる糖鎖修飾リポソーム、および薬剤あるいは遺伝子等を封入したリポソーム製剤に関する。

[0002]

【従来の技術】米国の国家ナノテク戦略(NNI)によって実現を目指す具体的目標の一例として、「癌細胞や標的組織を狙い撃ちする薬物や遺伝子送達システム(DDS:ドラッグデリバリーシステム)」を掲げた。日本の総合科学技術会議のナノテクノロジー・材料分野推進戦略でも、重点領域として「医療用極小システム・材料、生物のメカニズムを活用し制御するナノバイオロジー」があり、その5年間の研究開発目標の1つとして「健康寿命延伸のための生体機能材料・ピンポイント治療等技術の基本シーズ確立」が掲げられている。一方、高齢化社会となるに伴い癌の発症率・死亡率は年々増えており、新規な治療材料である標的指向DDSの開発が

待望されている。その他の病気においても副作用のない 標的指向DDSナノ材料の重要性が注目されており、そ の市場規模は近い将来に10兆円を超えると予測されて いる。また、これらの材料は治療とともに診断への利用 においても期待されている。

【0003】医薬品の治療効果は、薬物が特定の標的部 位に到達し、そこで作用することにより発現される。そ の一方で、医薬品による副作用とは、薬物が不必要な部 位に作用してしまうことである。従って、薬物を有効か つ安全に使用するためにもドラッグデリバリーシステム の開発が求められている。その中でも特に標的指向(タ ーゲティング)DDSとは、薬物を「体内の必要な部位 に」、「必要な量を」、「必要な時間だけ」送り込むと いった概念である。そのための代表的な材料としての微 粒子性キャリアーであるリポソームが注目されている。 この粒子に標的指向機能をもたせるために、リポソーム の脂質の種類、組成比、粒子径、表面電荷を変化させる などの受動的ターゲティング法が試みられているが、い まだ本法は不十分であり更なる改良が求められている。 【0004】一方、高機能のターゲティングを可能にす るために、能動的ターゲティング法も試みられている。 これは"ミサイルドラッグ"ともよばれ理想的なターゲ ティング法であるが、国内外においていまだ完成された ものはなく今後の発展が大いに期待されているものであ る。本法は、リポソーム膜面上にリガンドを結合させ、 標的組織の細胞膜面上に存在するレセプターに特異的に 認識させることによって、積極的にターゲティングを可 能にさせる方法である。この能動的ターゲティング法で の標的となる細胞膜面上に存在するレセプターのリガン ドとしては、抗原、抗体、ペプチド、糖脂質や糖蛋白質 などが考えられる。これらのうち、糖脂質や糖蛋白質の 糖鎖は、生体組織の発生や形態形成、細胞の増殖や分 化、生体防御や受精機構、癌化とその転移機構などの様 々な細胞間コミュニケーションにおいて情報分子として の重要な役割を果たしていることが明らかにされつつあ

【0005】また、その標的となる各組織の細胞膜面上に存在するレセプターとしてのセレクチン、シグレック、ガレクチンなどの各種のレクチン(糖鎖認識蛋白質)についての研究も進んできたことから、各種の分子構造を有する糖鎖は新しいDDSリガンドとして注目されてきている(①Yamazaki, N., Kojima, S., Bovin, N.V., Andre, S., Gabius, S. and Gabius, H.-J. (2000) Adv. Drug Delivery Rev. 43, 225-244. ②Yamazaki, N., Jigami, Y., Gabius, H.-J., Kojima, S (2001) Trends in Glycoscience and Glycotechnology 13, 319-329. http://www.gak.co.jp/TIGG/71PDF/yamazaki.pd f)。

【0006】外膜表面にリガンドを結合したリポソーム については、癌などの標的部位に選択的に薬物や遺伝子

などを送達するためのDDS材料として多くの研究がな されてきた。しかしながら、それらは、生体外では標的 細胞に結合するが、生体内では期待される標的細胞や組 織にターゲティングされないものがほとんどである(① Forssen, E. and Willis, M. (1998) Adv. Drug Delive ry Rev. 29, 249-271. ②髙橋俊雄・橋田充編(1999)、今 日のDDS・薬物送達システム、159-167頁、医薬ジャ ーナル社、大阪)。糖鎖の分子認識機能を利用したDD S材料の研究開発においても、糖鎖を有する糖脂質を導 入したリポソームについて若干の研究が知られている が、それらの機能評価は生体外 (in vitro) によるもの のみであり、糖鎖を有する糖蛋白質を導入したリポソー ムの研究はほとんど進んでいない。 (①DeFrees, S.A., Phillips, L., Guo, L. and Zalipsky, S. (1996) J. 11, C., Charych, D.H., Dasqupta, F. and Nagy, J.O. (1996) J. Med. Chem. 39, 1018-1020. 3Stahn, R., Schafer, H., Kernchen, F. and Schreiber, J. (1998) Glycobiology 8,311-319. (4) Yamazaki, N., Jigami, Y., Gabius, H.-J., Kojima, S (2001) Trends in Glyc oscience and Glycotechnology 13, 319-329. http://w ww.gak.co.jp/TIGG/71PDF/yamazaki.pdf)。したがっ て、糖脂質や糖蛋白質の多種多様な糖鎖を結合したリポ ソームについての調製法と生体内動態 (in vivo) 解析 を含めた体系的な研究は、これまで未開発で今後の進展 が期待される重要課題である。

[0007]

【発明が解決しようとする課題】そこで本発明の課題は、各種組織の細胞表面上に存在する各種のレクチン(糖鎖認識蛋白質)に対して特異的な結合活性を有する糖鎖を結合したリポソームであって、実際の生体内の細胞、組織を識別して薬剤あるいは遺伝子を効率的に輸送し得るリポソームを提供することにある。

[0008]

【課題を解決するための手段】上記の課題を解決するために、本発明者等は、リポソーム表面の性質あるいは該表面に結合させる糖鎖およびリンカー蛋白質について種々の実験、検討を加え、糖鎖の構造により各組織への指向性を実際に制御できることに加え、リポソーム表面および/またはリンカー蛋白質を水和処理すれば、各組織に対するリポソームの移行量をさらに増大し得、これにより薬剤あるいは遺伝子を標的細胞、組織に効率的に輸送できることを見いだし、本発明を完成するに至ったものである。すなわち本発明は、以下の(1)~(8)に関するものである。

(1) 糖鎖がリンカー蛋白質を介してリポソーム膜に結合されているものであって、糖鎖が、ルイスX型三糖鎖、シアリルルイスX型四糖鎖、3'-シアリルラクトサミン三糖鎖、6'-シアリルラクトサミン三糖鎖から選ばれたものであることを特徴とする糖鎖修飾リポソーム。

- (2) リポソーム膜にトリス(ヒドロキシメチル) アミノメタンを結合せしめたものである上記(1) に記載の 糖鎖修飾リポソーム。
- (3) リンカー蛋白質がヒト血清アルブミンまたはウシ血清アルブミンである、上記(1)または(2)に記載の糖鎖修飾リポソーム。
- (4) リンカー蛋白質が親水性化されたものである上記(1)~(3)いずれかーに記載の糖鎖修飾リポソーム。
- (5) リポソーム膜にトリス(ヒドロキシメチル)ア ミノメタンが結合せしめられたことを特徴とするリポソ ーム
- (6) リポソーム膜に糖鎖がリンカー蛋白質を介して 結合されているを特徴とする、上記(5)に記載の糖鎖 修飾リポソーム。
- (7) 糖鎖が、リンカー蛋白質を介してリポソーム膜に結合されているリポソームであって、リポソーム膜およびリンカー蛋白質のいずれもが親水性化されていることを特徴とする糖鎖修飾リポソーム。
- (8)上記(1)~(7)いずれか一に記載のリポソームに薬剤を封入したリポソーム製剤。

[0009]

【発明の実施の形態】以下、本発明をさらに詳細に説明 する。リポソームとは、通常、膜状に集合した脂質層お よび内部の水層から構成される閉鎖小胞を意味する。本 発明のリポソームは、第1~第4図に示されるように、 その表面すなわち脂質層に糖鎖が、ヒト血清アルブミン のようなリンカー蛋白質を介して、共有結合している。 但し、第1~4図においては、糖鎖-蛋白質はリポソー ムに1つしか結合していない様に記載されているが、こ れら図(第5図を含めて)は模式図であって、実際に は、糖鎖ーリンカー蛋白質はリポソーム表面に多数結合 している。糖鎖としては、例えば、第1図に示されるル イスX型三糖鎖(Gal. beta. 1-4(Fuc. alpha. 1-3)GlcNA c)、第2図に示されるシアリルルイスX型四糖鎖 (Neu5 Ac. alpha. 2-3 Gal. beta. 1-4(Fuc. alpha. 1-3)GlcNAc) 第3図に示される3'ーシアリルラクトサミン三糖鎖 (Neu5Ac. alpha. 2-3 Gal. beta. 1-4GlcNAc) 、および第 4図に示される6'-シアリルラクトサミン三糖鎖 (Neu5 Ac. alpha. 2-6Gal. beta. 1-4GlcNAc) が挙げられ、リン カー蛋白質としては、例えば、ヒト血清アルブミン (H SA)、ウシ血清アルブミン(BSA)等の動物の血清 アルブミンが挙げられるが、特にヒト血清アルブミンを 使用する場合は、各組織に対する取り込みが多いことが マウスについての実験により確かめられている。

【0010】本発明のリポソームを構成する脂質としては、例えば、フォスファチジルコリン類、フォスファチジルエタノールアミン類、フォスファチジン酸類、ガングリオシド類または糖脂質類またはフォスファチジルグリセロール類、コレステロール等が挙げられ、フォスフ

ァチジルコリン類としては、ジミリストイルフォスファ チジルコリン、ジパルミトイルフォスファチジルコリ ン、ジステアロイルフォスファチジルコリン等が、ま た、フォスファチジルエタノールアミン類としては、ジ ミリストイルフォスファチジルエタノールアミン、ジパ ルミトイルフォスファチジルエタノールアミン、ジステ アロイルフォスファチジルエタノールアミン等が、フォ スファチジン酸類としては、ジミリストイルフォスファ チジン酸、ジパルミトイルフォスファチジン酸、ジステ アロイルフォスファチジン酸、ジセチルリン酸等が、ガ ングリオシド類としては、ガングリオシドGM1、ガン グリオシドGD1a、ガングリオシドGT1b等が、糖 脂質類としては、ガラクトシルセラミド、グルコシルセ ラミド、ラクトシルセラミド、フォスファチド、グロボ シド等が、フォスファチジルグリセロール類としては、 ジミリストイルフォスファチジルグリセロール、ジパル ミトイルフォスファチジルグリセロール、ジステアロイ ルフォスファチジルグリセロール等が好ましい。

【0011】本発明において使用するリポソームは、通常のものでも使用できるが、その表面は親水性化されていることが望ましい。

【0012】リポソーム自体は、周知の方法に従い製造することができるが、これには、薄膜法、逆層蒸発法、エタノール注入法、脱水ー再水和法等をを挙げることができる。

【0013】また、超音波照射法、エクストルージョン法、フレンチプレス法、ホモジナイゼーション法等を用いて、リポソームの粒子径を調節ことも可能である。本発明のリポソーム自体の製法について、具体的に述べると、例えば、まず、フォスファチジルコリン類、コレステロール、フォスファチジルエタノールアミン類、フォスファチジン酸類、ガングリオシド類または糖脂質類またはフォスファチジルグリセロール類を配合成分とする脂質と界面活性剤コール酸ナトリウムとの混合ミセルを調製する。

【0014】とりわけ、フォスファチジルエタノールアミン類の配合は親水性化反応部位として、ガングリオシド類または糖脂質類またはフォスファチジルグリセロール類の配合はリンカー蛋白質の結合部位として必須のものである。そして、これにより得られる混合ミセルの限外濾過を行うことによりリポソームを作製する。続いて、リポソーム膜の脂質フォスファチジルエタノールアミン上に架橋用の2価試薬とトリス(ヒドロキシメチル)アミノメタンとを用いてリポソーム表面を親水性化する。

【0015】リポソームの親水性化は、従来公知の方法、例えば、ポリエチレングリコール、ポリビニルアルコール、無水マレイン酸共重合体等を共有結合により結合させたリン脂質を用いてリポソームを作成する方法(特開20010-302686号)等も用いることが

可能ではあるが、本発明においては、トリス (ヒドロキシメチル) アミノメタンを用いてリポソーム表面を親水性化することが特に好ましい。

【0016】本発明のトリス(ヒドロキシメチル)アミノメタンを用いる手法は、ポリエチレングリコールなどを用いる従来の親水性化方法と比較していくつかの点で好ましい。例えば、本発明のように糖鎖をリポソーム上に結合してその分子認識機能を標的指向性に利用するものでは、トリス(ヒドロキシメチル)アミノメタンは低分子量物質であるので従来のポリエチレングリコールなどの高分子量物質を用いる方法に比べて、糖鎖に対する立体障害となりにくく標的細胞膜面上のレクチン(糖鎖認識蛋白質)による糖鎖分子認識反応の進行を妨げないので特に好ましい。

【0017】また、本発明によるリポソームは該親水化処理後においても粒径分布や成分組成、分散特性が良好であり、長時間の保存性や生体内安定性も優れているのでリポソーム製剤化して利用するために好ましい。

【0018】トリス(ヒドロキシメチル)アミノメタン を用いてリポソーム表面を親水性化するには、例えばジ ミリストイルフォスファチジルエタノールアミン、ジパ ルミトイルフォスファチジルエタノールアミン、ジステ アロイルフォスファチジルエタノールアミン等の脂質を 用いて、常法により得たリポソーム溶液にビススルフォ スクシニミヂルスベラート、ジスクシニミヂルグルタレ ート、ジチオビススクシニミヂルプロピオネート、ジス クシニミヂルスベラート、3,3'-ジチオビススルフォス クシニミヂルプロピオネート、エチレングリコールビス スクシニミヂルスクシネート、エチレングリコールビス スルフォスクシニミヂルスクシネート等の2価試薬加え て反応させることにより、リポソーム膜上のジパルミト イルフォスファチジルエタノールアミン等の脂質に2価 試薬を結合させ、次いでトリス (ヒドロキシメチル) ア ミノメタンを、該2価試薬の一方の結合手と反応させる ことにより、リポソーム表面にトリス(ヒドロキシメチ ル)アミノメタンを結合せしめる。

【0019】本発明においては、リポソームに、さらに、糖鎖をリンカー蛋白質を介して結合させるが、この手段としては、まず、リポソームを、NaIO4、Pb(O2CCH3)4、NaBiO3等の酸化剤で処理して、リポソーム膜面に存在するガングリオシドを酸化し、次いで、NaBH3CN、NaBH4等の試薬を用いて、リンカー蛋白質とリポソーム膜面上のガングリオシドを、還元的アミノ化反応により結合させる。このリンカー蛋白も、親水性化するのが好ましく、これにはリンカー蛋白質にヒドロキシ基を有する化合物を結合させるが、例えば、ビススルフォスクシニミデルスベラート、ジスクシニミデルグルタレート、ジチオビススクシニミデルプロピオネート、ジスクシニミデルプロピオネート、ジスクシニミデルプロピオ

ネート、エチレングリコールビススクシニミヂルスクシネート、エチレングリコールビススルフォスクシニミヂルスクシネート等の2価試薬を用いて、トリス(ヒドロキシメチル)アミノメタンをリポソーム上のリンカー蛋白質と結合させればよい。

【0020】これを具体的に述べると、まず、リンカー蛋白質の全てのアミノ基に架橋用2価試薬の一端を結合する。そして、各種糖鎖の還元末端をグリコシルアミノ化反応して得られる糖鎖グリコシルアミン化合物を調製し、この糖鎖のアミノ基とリポソーム上の上記で結合された架橋2価試薬の一部分の他の未反応末端とを結合する。

【0021】次に、このようにして得られる糖鎖結合リポソーム膜面上蛋白質の表面に糖鎖が結合していない未反応で残っている大部分の2価試薬未反応末端を用いて親水性化処理を行う。つまり、このリポソーム上蛋白質に結合している2価試薬の未反応末端とトリス(ヒドロキシメチル)アミノメタンとの結合反応を行い、リポソーム表面を親水性化することにより本発明のリポソームを得ることができる。

【0022】リポソーム表面およびリンカー蛋白質の親水性化は、各種組織への移行性、および血中における滞留性および各種組織への移行性を向上させる。これは、リポソーム表面およびリンカー蛋白質表面が親水性化されることによって、 糖鎖以外の部分が、各組織等においてはあたかも生体内水分であるかのようにみえ、これにより、標的以外の組織等に認識されず、糖鎖のみがその標的組織のレクチン(糖鎖認識蛋白質)により認識されることに起因するものと思われる。

【0023】本発明においては、糖鎖は、リポソーム上のリンカー蛋白質に結合させるが、これには、糖鎖を構成する糖類の還元末端を、 NH_4HCO_3 、 NH_2COONH_4 等のアンモニウム塩を用いてグリコシルアミノ化し、次いで、ビススルフォスクシニミデルスベラート、ジスクシニミデルグルタレート、ジチオビススクシニミデルプロピオネート、ジスクシニミデルプロピオネート、エチレングリコールビススクシニミデルスクシネート、エチレングリコールビススルフォスクシニミデルスクシネート等の2価試薬を用いて、リポソーム膜面上に結合したリンカー蛋白質と、上記グリコシルアミノ化された糖類とを結合させ、201~41に示されるようなリポソームを得る。なお、これらの糖鎖は市販されている。

【0024】本発明においては、使用する糖鎖の構造を種々選択することにより、各標的細胞、組織に対する指向性を制御することができる。例えば、実施例における図6~13においては、図1~図4に示されるルイスX型三糖鎖、シアリルルイスX型四糖鎖、3'-シアリルラクトサミン三糖鎖、6'-シアリルラクトサミン三糖鎖の

4種の糖鎖修飾リポソーム(LX、SLX、3SLN、6SLN)は、ガン組織、炎症組織に対して全般的に指向性が高いが、シアリルルイスX型四糖鎖修飾リポソーム(SLX)は、特にリンパ節、脳、肝臓、脾臓に、3'ーシアリルラクトサミン三糖鎖修飾リポソーム(3SLN)はガン組織、脳、血中に、6'-シアリルラクトサミン三糖鎖修飾リポソーム(6SLN)は、肺、血中に対する指向性がそれぞれ特に高い。

【0025】したがって、本発明のリポソームに、治療あるいは診断に供しうる薬剤あるいは遺伝子を封入することによって得られるリポソーム製剤は、ガン組織、炎症組織、各種組織への移行性が選択的に制御されたものであり、治療薬剤あるいは診断剤の標的細胞、組織への集中による効力の増強あるいは他の細胞、組織に対する薬剤の取り込みの減少による副作用の軽減化等を図れるものである。

【0026】リポソームへ薬剤等を封入するには、周知の方法を用いればよく、例えば、薬剤等の含有溶液とフォスファチジルコリン類、フォスファチジルエタノールアミン類の脂質を用いてリポソームを形成することにより、薬剤等はリポソーム内に封入される。以下、本発明の実施例を示すが本発明は特にこれらにより限定されるものではない。

[0027]

【実施例1】リポソームの調製

リポソームは既報の手法 (Yamazaki, N., Kodama, M. a nd Gabius, H.-J. (1994) Methods Enzymol. 242, 56-65) により、改良型コール酸透析法を用いて調製した。すなわち、ジパルミトイルフォスファチジルコリン、コレステロール、ジセチルフォスフェート、ガングリオシド及びジパルミトイルフォスファチジルエタノールアミンをモル比でそれぞれ35:40:5:15:5の割合の合計脂質量45.6mgにコール酸ナトリウムを46.9mg添加し、クロロホルム/メタノール溶液3mlに溶解した。この溶液を蒸発させ、沈殿物を真空中で乾燥させることによって脂質膜を得た。得られた脂質膜をTAPS緩衝液 (pH 8.4) 3mlに懸濁、超音波処理して、透明なミセル懸濁液を得た。さらに、ミセル懸濁液をPM10膜 (Amicon Co., USA)とPBS緩衝液(pH 7.2)を用いた限外濾過にかけ均一リポソーム(平均粒径100mm) 10mlを調製した。

[0028]

【実施例2】リポソーム脂質膜面上の親水性化処理 実施例1で調製したリポソーム溶液10mlをXM300膜 (Ami con Co., USA) とCBS緩衝液(pH 8.5)を用いた限外遮過に かけ溶液のpHを8.5にした。次に、架橋試薬bis(sulfosu ccinimidyl)suberate (BS³; Pierce Co., USA)10mlを加 え、25℃で2時間拇拌した。その後、更に7℃で一晩投拌 してリポソーム膜上の脂質ジパルミトイルフォスファチ ジルエタノールアミンとBS³との化学結合反応を完結し た。そして、このリポソーム液をXM300膜とCBS緩衝液(p H 8.5)で限外濾過にかけた。次に、CBS緩衝液(pH 8.5)1 mlに溶かしたtris(hydroxymethyl)aminomethane 40mgをリポソーム液10mlに加えて、25℃で2時間攪拌後、7℃で一晩攪拌してリポソーム膜上の脂質に結合したBS3とtris(hydroxymethyl)aminomethaneとの化学結合反応を完結した。これにより、リポソーム膜の脂質ジパルミトイルフォスファチジルエタノールアミン上にtris(hydroxymethyl)aminomethaneの水酸基が配位して水和性化された。

[0029]

【実施例3】リポソーム膜面上へのヒト血清アルブミン (HSA) の結合

既報の手法(Yamazaki、N.、Kodama、M. and Gabius、H.-J.(1994)MethodsEnzymol. 242, 56-65)により、カップリング反応法を用いて調製した。すなわち、この反応は2段階化学反応で行い、まずはじめに、10mlのリポソーム膜面上に存在するガングリオシドを1mlのTAPS緩衝液(pH 8.4)に溶かしたメタ過ヨウ素酸をナトリウム43 mgを加えて室温で2時間撹拌して過ヨウ素酸酸化した後、XM300膜とPBS緩衝液(pH 8.0)で限外濾過することにより酸化されたリポソーム10mlを得た。このリポソーム液に、20mgのヒト血清アルブミン(HSA)を加えて25℃で2時間撹拌し、次にPBS(pH 8.0)に2M NaBH3CN 100 μ 1を加えて10℃で一晩撹拌してリポソーム上のガングリオシドとHSAとのカップリング反応でHSAを結合した。そして、XM300膜とCBS緩衝液(pH 8.5)で限外濾過をした後、HSA結合リポソーム液10mlを得た。

[0030]

【実施例4】リポソーム膜面結合ヒト血清アルブミン (HSA) 上へのルイスX型三糖鎖の結合

ルイスX型三糖鎖(Calbiochem Co., USA)50μgを0.25gの NH₄HCO₃を溶かした0.5m1水溶液に加え、37℃で3日間攪 拌した後、0.45μmのフィルターで濾過して糖鎖の還元 末端のアミノ化反応を完結してルイスX型三糖鎖のグリ コシルアミン化合物50 µgを得た。次に、(実施例3) で得たリポソーム液の一部分1mlに架橋試薬3,3'-dithi obis(sulfosuccinimidyl propionate (DTSSP; Pierce C o., USA) 1mgを加えて25℃で2時間、続いて7℃で一晩攪拌 し、XM300膜とCBS緩衝液(pH 8.5)で限外濾過してDTSSP がリポソーム上のHSAに結合したリポソーム1mlを得た。 次に、このリポソーム液に上記のルイスX型三糖鎖のグ リコシルアミン化合物50 µgを加えて、25℃で2時間攪拌 し、その後7℃で一晩攪拌し、XM300膜とPBS緩衝液(pH 7.2)で限外濾過してリポソーム膜面結合ヒト血清アルブ ミン上のDTSSPにルイスX型三糖鎖の結合を行った。そ の結果、図1で示されるルイスX型三糖鎖とヒト血清ア ルブミンとリポソームとが結合したリポソーム(略称: LX) 2ml (総脂質量2mg、総蛋白量200μg、平均粒 径100nm) が得られた。

[0031]

【実施例5】リポソーム膜面結合ヒト血清アルブミン (HSA) 上へのシアリルルイスX型四糖鎖の結合 シアリルルイスX型四糖鎖(Calbiochem Co., USA)50 μg を0.25gのNH₄HCO₃を溶かした0.5ml水溶液に加え、37℃ で3日間攪拌した後、0.45μmのフィルターで濾過して糖 鎖の還元末端のアミノ化反応を完結してシアリルルイス Χ型四糖鎖のグリコシルアミン化合物50μgを得た。次 に、(実施例3)で得たリポソーム液の一部分1mlに架 橋試薬3,3'-dithiobis(sulfosuccinimidyl propionate (DTSSP; Pierce Co., USA) 1mgを加えて25℃で2時間、続 いて7℃で一晩攪拌し、XM300膜とCBS緩衝液(pH 8.5)で 限外濾過してDTSSPがリポソーム上のHSA に結合したリ ポソーム1mlを得た。次に、このリポソーム液に上記の シアリルルイスX型四糖鎖のグリコシルアミン化合物50 µgを加えて、25℃で2時間攪拌し、その後7℃で一晩攪 拌し、XM300膜とPBS緩衝液(pH 7.2)で限外濾過してリポ ソーム膜面結合ヒト血清アルブミン上のDTSSPにシアリ ルルイスX型四糖鎖の結合を行った。その結果、図2で 示されるシアリルルイスX型四糖鎖とヒト血清アルブミ ンとリポソームとが結合したリポソーム(略称:SLX) 2ml (総脂質量2mg、総蛋白量200 μg、平均粒径100n m) が得られた。

[0032]

【実施例6】リポソーム膜面結合ヒト血清アルブミン (HSA) 上への3'-シアリルラクトサミン三糖鎖の結合 3'-シアリルラクトサミン三糖鎖(Seikagakukogyou C o., Japan)50 μ gを0. 25gのNH₄HCO₃を溶かした0. 5m1水溶 液に加え、37℃で3日間攪拌した後、0.45µmのフィルタ ーで濾過して糖鎖の還元末端のアミノ化反応を完結して 3'-シアリルラクトサミン三糖鎖のグリコシルアミン化 合物50μgを得た。次に、(実施例3)で得たリポソー ム液の一部分1mlに架橋試薬3,3'-dithiobis(sulfosucc inimidyl propionate (DTSSP; Pierce Co., USA)1mgを加 えて25℃で2時間、続いて7℃で一晩攪拌し、XM300膜とC BS緩衝液(pH 8.5)で限外濾過してDTSSPがリポソーム上 のHSAに結合したリポソーム1mlを得た。次に、このリポ ソーム液に上記の3'-シアリルラクトサミン三糖鎖のグ リコシルアミン化合物50μgを加えて、25℃で2時間攪拌 し、その後7℃で一晩攪拌し、XM300膜とPBS緩衝液(pH 7.2)で限外濾過してリポソーム膜面結合ヒト血清アルブ ミン上のDTSSPに3'-シアリルラクトサミン三糖鎖の結 合を行った。その結果、図3で示される3'-シアリルラ クトサミンとヒト血清アルブミンとリポソームとが結合 したリポソーム (略称: 3 S L N) 2ml (総脂質量2m g、総蛋白量200 µg、平均粒径100nm)が得られた。

[0033]

【実施例7】リポソーム膜面結合ヒト血清アルブミン (HSA) 上への6'-シアリルラクトサミン三糖鎖の結合6'-シアリルラクトサミン三糖鎖(Seikagakukogyou Co., Japan)50 μ gを0.25gのNH₄HCO₃を溶かした0.5ml水溶

液に加え、37℃で3日間攪拌した後、0.45µmのフィルタ ーで濾過して糖鎖の還元末端のアミノ化反応を完結して 6'-シアリルラクトサミン三糖鎖のグリコシルアミン化 合物50μgを得た。次に、実施例3で得たリポソーム液 の一部分1mlに架橋試薬3,3'-dithiobis(sulfosuccinim idyl propionate (DTSSP; Pierce Co., USA) 1mgを加えて 25℃で2時間、続いて7℃で一晩投拌し、XM300膜とCBS緩 衝液(pH 8.5)で限外濾過してDTSSPがリポソーム上のHSA に結合したリポソーム1mlを得た。次に、このリポソー ム液に上記の6'-シアリルラクトサミン三糖鎖のグリコ シルアミン化合物50 µgを加えて、25℃で2時間攪拌し、 その後7℃で一晩攪拌し、XM300膜とPBS緩衝液(pH 7.2) で限外濾過してリポソーム膜面結合ヒト血清アルブミン 上のDTSSPに6'-シアリルラクトサミン三糖鎖の結合を 行った。その結果、図4で示される6'-シアリルラクト サミンとヒト血清アルブミンとリポソームとが結合した リポソーム (略称: 6 S L N) 2ml (総脂質量2mg、総 蛋白量200 µg、平均粒径100nm)が得られた。

[0034]

【実施例8】リポソーム膜面結合ヒト血清アルブミン (HSA) 上へのtris(hydroxymethyl)aminomethaneの結合 比較試料としてのリポソームを調製するために、実施例 3で得たリポソーム液の一部分1mlに架橋試薬3.3'-dit hiobis(sulfosuccinimidyl propionate (DTSSP; Pierce Co., USA) 1mgを加えて25℃で2時間、続いて7℃で一晩攪 拌し、XM300膜とCBS緩衝液(pH 8.5)で限外濾過してDTSS Pがリポソーム上のHSAに結合したリポソーム1mlを得 た。次に、このリポソーム液にtris(hydroxymethyl)ami nomethane(Wako Co., Japan)13mgを加えて、25℃で2時間 攪拌し、その後7℃で一晩攪拌し、XM300膜とPBS緩衝液 (pH 7.2)で限外濾過してリポソーム膜面結合ヒト血清ア ルブミン上のDTSSPにtris(hydroxymethyl)aminomethane の結合を行った。その結果、図5で示されるtris(hydrox ymethyl)aminomethaneとヒト血清アルブミンとリポソー ムとが結合した比較試料としてのリポソーム(略称:T RIS) 2ml (総脂質量2mg、総蛋白量200μg、平均粒 径100nm) が得られた。

[0035]

【実施例9】リポソーム膜面結合ヒト血清アルブミン (HSA) 上の親水性化処理

実施例 4~7において調製された4種類の糖鎖が結合したリポソームについて、それぞれ別々に以下の手順によりリポソーム上のHSA 蛋白質表面の水和性化処理を行った。4種の糖鎖結合リポソーム2m1に、別々に、tris(hydroxymethyl)aminomethane 13mgを加えて、25℃で2時間、その後7℃で一晩投拌した後、XM300膜とPBS緩衝液(pH 7.2)で限外濾過し未反応物を除去して、最終産物である水和性化処理された4種類の糖鎖結合リポソーム複合体(略称: LX、SLX、3SLN、6SLN)を各2m1を得た。

[0036]

【実施例10】各種の糖鎖結合リポソーム複合体による レクチン結合活性阻害効果の測定

実施例4~7および実施例9で調製した4種の糖鎖結合 リポソーム複合体のinvitroでのレクチン結合活性は、 常法(Yamazaki, N. (1999) Drug Delivery System, 14, 4 98-505)に従いレクチン固定化マイクロプレートを用い た阻害実験で測定した。すなわち、レクチン(E-selecti n; R&D Systems Co., USA)を96穴マイクロプレートに固 化定した。このレクチン固定化プレートに、比較リガン ドであるビオチン化したフコシル化フェチュイン0.1 µg とともに、濃度の異なる各種の糖鎖結合リポソーム複合 体(蛋白質量として、0.01 µg、0.04 µg、0.11 µg、0.3 $3\mu g$ 、 $1\mu g$)を加え、4℃で2時間インキュベートした。 PBS(pH 7.2)で3回洗浄した後、horseradish peroxidase (HRP0)結合ストレプトアビジンを添加し、さらに4℃で1 時間インキュベート、PBS(pH 7.2)で3回洗浄し、ペルオ キシダーゼ基質を添加して室温で静置、405nmの吸光度 をマイクロプレートリーダー(Molecular Devices Cor p., USA)で測定した。フコシル化フェチュインのビオチ ン化は、sulfo-NHS-biotin reagent(Pierce Co., USA)処 理後、Centricon-30(Amicon Co., USA)により精製した。 HRPO結合ストレプトアビジンは、HRPOの酸化とNaBH₃CN を用いた還元アミノ化法によるストレプトアビジンの結 合により調製した。この測定結果を表1に示す。

【表 1 】

設1: 各種の筋弧結合リボソーム複合体がレクチン結合活性阻害効果を示す実験結果

リポソーム	リポソーム複合体の各濃度		(µg蛋白質)	における阻害効果(吸光度)	
複合体	0.01 µ g	0.04 μ g	0.11 µ g	0.33 μ g	1 μg
LX	0.199	0.195	0.195	0.195	0.129
SLX	0.105	0.100	0.100	0.084	0.073
3SLN	0.175	0.158	0.144	0.131	0.095
6SLN	0.256	0.245	0.233	0.200	0.141

[0037]

【実施例 1 1】 クロラミンT法による各種糖鎖結合リポソームの125[標識

クロラミンT (Wako Pure Chemical Co., Japan) 溶液並びに二亜硫酸ナトリウム溶液をそれぞれ3mg/ml 並びに5mg/ml となるように用事調製して用いた。 (実施例

4) から (実施例9) により調製した4種の糖鎖結合リポソーム並びにtris(hydroxymethyl)aminomethane結合リポソームとを 50μ l ずつ別々にエッペンチューブに入れ、続いて 125 I-NaI (NEN Life Science Product, Inc. USA) を 15μ l、クロラミンT溶液を 10μ l 加え反応させた。5 分ごとにクロラミンT溶液 10μ lを加え、この操作

を2 回繰り返した後15 分後に還元剤として二亜硫酸ナトリウム100 μ l 加え、反応を停止させた。次に、Sepha dex G-50 (Phramacia Biotech. Sweden) カラムクロマト上に乗せ、PBS で溶出、標識体を精製した。最後に、非標識-リポソーム複合体を添加して比活性 (4 x 10⁶ Bq/mg protein) を調整して5種類の125 [標識リポソーム液を得た。

[0038]

【実施例12】各種の糖鎖結合リポソーム複合体の担癌 マウスでの各組織への分布量の測定

Ehrlich ascites tumor (EAT) 細胞 (約2×107 個)を 雄性ddY マウス (7 週齢) 大腿部皮下に移植し、癌組織 が0.3-0.6gに発育 (6-8 日後) したものを本実験に用いた。この担癌マウスに (実施例 1 1) により1251標識した4種の糖鎖並びにtris(hydroxymethyl)aminomethane結合リポソーム複合体0.2mlを蛋白質量として3μg/一匹の割合となるように尾静脈に注入投与し、60 分後に組織 (血液、肝臓、脾臓、肺、脳、癌組織、癌の周囲の炎症組織、リンパ節)を摘出、各組織の放射能をガンマカウンタ (Aloka ARC 300) で測定した。なお、各組織への放射能分布量は、投与全放射能に対する各組織1g 当たりの放射能の割合 (%投与量/g組織)で表示した。この結果を図6~図13に示す。

[0039]

【発明の効果】上記実施例13に示したように、ルイス X型三糖鎖とヒト血清アルブミン (リンカー) とリポソームとが結合したリポソーム、シアリルルイス X型四糖 鎖とヒト血清アルブミン (リンカー) とリポソームとが 結合したリポソーム、3'-シアリルラクトサミン三糖鎖 とヒト血清アルブミン (リンカー) とリポソームとが結合したリポソーム、6'-シアリルラクトサミン三糖鎖とヒト血清アルブミン (リンカー) とリポソームとが結合したリポソームを作製し、マウスでの各種組織への体内動態、特に癌組織への取込についてエールリッヒ固形癌担癌マウスを用いて解析した結果、糖鎖の分子構造の差を利用することによって、実際の生体においてリポソー

ムの各種組織への体内動態を促進あるいは抑制して制御することができ、これに基づく効率の良い癌組織をはじめとする目的組織(血中、肝臓、脾臓、肺、脳、癌組織、炎症組織、リンパ節)へのターゲティング機能をDDS材料に付与することができることが明らかとなった。 このように、本発明により、医学・薬学分野において極めて有用な、標的指向性を制御し得るリポソームを提供することができた。

【図面の簡単な説明】

【図1】はルイスX型三糖鎖を結合したリポソームの模式図である。

【図2】シアリルルイスX型四糖鎖を結合したリポソームの模式図である。

【図3】は3'-シアリルラクトサミン三糖鎖を結合したリポソームの模式図である。

【図4】は6'-シアリルラクトサミン三糖鎖を結合した リポソームの模式図である。

【図5】は比較試料としてのtris(hydroxymethyl)amino methaneを結合したリポソームの模式図である。

【図6】は5種のリポソーム複合体の静脈内投与60分後の血中への分布量を示す図である。

【図7】は5種のリポソーム複合体の静脈内投与60分後の肝臓への分布量を示す図である。

【図8】は5種のリポソーム複合体の静脈内投与60分後の脾臓への分布量を示す図である。

【図9】は5種のリポソーム複合体の静脈内投与60分後の肺への分布量を示す図である。

【図10】は5種のリポソーム複合体の静脈内投与60 分後の脳への分布量を示す図である。

【図11】は5種のリポソーム複合体の静脈内投与60 分後の癌組織への分布量を示す図である。

【図12】は5種のリポソーム複合体の静脈内投与60 分後の炎症組織への分布量を示す図である。

【図13】は5種のリポソーム複合体の静脈内投与60 分後のリンパ節への分布量を示す図である。

【図3】

【図1】

【図1】ルイスX型三糖鎖を結合した標的指向制御性リポソームの模式図

【図2】

【図 2】シアリルルイス X 型四糖鎖を結合した標的指向制御性リポソームの模式図

【図5】

【図4】

【図4】6'-シアリルラクトサミン三糖鎖を結合した標的指向制御性リポソームの模式図

【図7】

【図6】 5種のリポソーム複合体の野駅内投与60分益の血中への分布量

【図7】 6種のリポソーム複合体の静脈内投与60分後の肝臓への分布量

【図9】

【図8】 5種のリポソーム複合体の静脈内登与60分後の疎縁への分布量

【図9】 5種のリポソーム複合体の静脈内投与60分後の脚への分布量

【図11】

【図10】5種のリポソーム複合体の野原内投与60分後の脳への分布量

【図11】 5種のリポソーム複合体の静脈内投与80分後の癌組織への分布量

【図12】

【図13】

【図12】5種のリポソーム複合体の静脈内投与60分後の炎症組織への分布量

【図13】5種のリポソーム複合体の静原内投与60分後のリンパ節への分布量