개별 연구

최종 보고서

학	과	컴퓨터공학과
학	번	2017112292
이	름	김준하

- 1. 코드 구현에 사용된 모델과 데이터셋
 - ◆ 1차 코드 구현
 - 모델: ARIMA, SARIMA 모델
 - 데이터셋: 최근 5년간의 삼성전자 주가 데이터(첨부된 파일 'samsung_1차' 파일을 'samsung' 으로 이름 변경 후 사용)
 - ◆ 3차 코드 구현
 - 모델: LSTM 모델
 - 데이터셋: 최근 5년간의 삼성전자 주가 데이터(첨부된 파일 'samsung_3차' 파일을 'samsung' 으로 이름 변경 후 사용)

2. 개발 환경

- Google Colab
 - 다음과 같이 주식 데이터 파일(samsung.csv)을 업로드하여 실행

3. 모델링 과정

- ◆ ARIMA, SARIMA 모델의 모델링 과정(1차 구현)
 - I. 데이터 전처리
 - i. 정상성(stationarity) 확인

위 그림은 원본 데이터를 시계열 분해한 모습이다.

원본 데이터만 보아도 시점에 관계없이 평균과 분산이 일정하지 않으므로 정상성을 만족하지 않을 것이라고 예상할 수 있다. 즉, 차분이 필요할 것으로 예상된다.

ii. 데이터가 stationary하지 않다면 전처리(transformation, differencing) 과정을 통해 stationary하게 바꾸어준다.

	Close				
Date		D-+-	-		
2017-10-19	52980	Date	000.0		
2017-10-20	53840	2017-10-20	860.0		
2017-10-23	54300	2017-10-23	460.0		
2017-10-24	54040	2017-10-24	-260.0		
2017-10-25	53900	2017-10-25	-140.0		
		2017-10-26	-1500.0		
2021-10-12	69000				
2021-10-13	68800	2021-10-12	-2500.0		
2021-10-14	69400	2021-10-13	-200.0		
2021-10-15	70100	2021-10-14	600.0		
2021-10-13	70200	2021-10-15	700.0		
2021-10-10	70200	2021-10-18	100.0		
[982 rows x	1 columns]	Name: Close,		981, dtype:	float64

왼쪽 데이터가 원본 데이터, 오른쪽 데이터가 차분을 진행한 데이터의 모습이다.

Ⅱ. 시범적으로 시행해 볼 만한 모델 찾기

여러 방법 중 한 가지로 'Graphical method'가 있는데, 방법은 다음과 같다.

i. 데이터를 사용하여 ACF, PACF plot을 생성하고 그 패턴으로부터 어떠한 모델을 사용할 지 선택.

모델	ACF	Partial ACF
MA(q)	q시차 이후 0으로 급감	지수적으로 감소, 소멸하는
		sine함수 형태

AR(p)	지수적으로 감소, 소멸하는	p시차 이후 0으로 급감			
	sine함수 형태				
ARMA(p,q)	시차 (q-p)이후 급감	시차 (q-p)이후 급감			

ii. ACF, PACF plot이 다음과 같은 형태일 때, 각각 MA, AR, ARMA 모델이 적합하다고 알려져 있음.

패턴을 파악하는 과정이 주관적일 수 있음.

(시차는 lag를 의미)

원본 데이터를 사용하여 그린 ACF, PACF 그래프의 모습이다. ACF가 점진적으로 작아지는 것으로 보아 stationary하지 않다는 점을 알 수 있다.

여기에서 1차 차분을 진행하여 다음과 같은 데이터를 얻었다.

차분한 데이터는 보기에는 정상성이 있는 것으로 예상할 수 있다. 이를 정확히 확인하기 위해 ACF, PACF 그래프를 그려 보았다.

다음은 차분한 데이터를 이용하여 ACF, PACF 그래프를 그린 모습이다.

차분한 데이터의 ACF, PACF 그래프를 보면 정상성이 존재한다고 볼 수 있다. 이를 통해 graphical method를 사용하여 어떠한 모델을 사용할 것인지 정할 수 있다.

차분한 데이터에 graphical method를 적용하면 시점 1 이후에 급감하므로 ARMA(p,d,q)에서 q-p=1이 된다. 여기에서 1차 차분을 적용했으므로 ARIMA(1,1,2) 모델을 선정해 보았다.

III. parameter 추정

SARIMAX Results								
Dep. Variab	le: y	N	No. Observations: 982					
Model:	ARIMA(1,	1, 2)	Log Likelihood		3116.739			
Date:	Thu, 27 C	oct 2022	AIC		6241.478			
Time:	02:32:56		BIC		6261.033			
Sample:	0		HQIC		6248.917			
	- 982							
Covariance Ty	Covariance Type: opg							
CO	ef std err	z P	z [0.025	0.975	j]			
ar.L1 -0.518	2 0.867	-0.598 0.5	550 -2.217	1.180				
ma.L1 0.5501	0.868	0.634 0.5	526 -1.150	2.250				
ma.L2 0.0356	0.032	1.116 0.2	264 -0.027	0.098				
sigma2 9.0246	+05 2.68e+04	4 33.622 0.0	000 8.5e+05	9.55e+	05			
Ljung-Box ((L1) (Q): 0.0	0 Jarque-E	Bera (JB): 30	7.91				
Prob(0	0.9	6 Prob	(JB): 0.	00				
Heteroskedas	ticity (H): 1.8	0 Sk e	ew: 0.	42				
Prob(H) (two	o-sided): 0.0	0 Kurt	osis: 5.	61				

ARIMA(1,1,2) 모델을 사용하여 훈련을 진행하고 얻은 결과이다. 이는 단순히 graphical method 를 사용하여 p, q를 추정한 것이다.

IV. 모델이 괜찮은지 확인

총 4개의 모델을 만들어 보았다.

- ① ARIMA 모델1 (statsmodel.tsa.arima.model.ARIMA)
- ② SARIMA 모델1 (statsmodel.tsa.statespace.sarimax.SARIMAX)
- ③ ARIMA 모델2 (pmdarima.arima.auto_arima)
- ④ SARIMA 모델2 (pmdarima.arima.auto_arima)

'ARIMA 모델1'에서는 p와 q는 0~3의 범위, d는 1~2의 범위를 주어 최적의 조합을 탐색했다.

'SARIMA 모델1'에서는 SARIMA(0,1,0)(0,1,0,12) 부터 SARIMA(2,1,2)(2,1,2,12) 까지의 조합을 탐색한 결과, SARIMA 모델은 탐색 시간이 오래 걸려서 이후에는 탐색의 범위를 줄였다.

그 결과 다음과 같이 각각 ARIMA(2,1,2) 모델과 SARIMA(1,1,0)(0,1,2,12)가 AIC값이 가장 낮은 최적의 조합임을 확인할 수 있다.

	SARIMAX F	Results				CARINAAN	. B II		
Dep. Variable:	У	No. Obser	vations: 982			SARIMAX			
Model:	ARIMA(2, 1, 2)	Log Like	lihood -8109.215	Dep. Variable	e: y			No. Observations	: 982
Date:	Thu. 27 Oct 2022			Model:	SARIMAX	(1, 1, 0)x(0, 1,	[1, 2], 12)	Log Likelihood	-8154.245
Time:	06:29:51	BIC		Date:	Thu, 27 C	ct 2022		AIC	16316.490
				Time:	06:39:47			BIC	16335.995
Sample:	0	HQI	IC 16237.729	Sample:	0			HOIC	16323,915
	- 982			Sample.	-			TIQIC	10323.913
Covariance Type	: opg				- 982				
coef	std err z	P> z [0.0	025 0.9751	Covariance Ty	pe: opg				
ar.L1 1.1737		0.000 1.088	-	co	oef std er	r z P>	z [0.025	0.975]	
ar.L2 -0.9114	0.044 -20.483	0.000 -0.99	9 -0.824	ar.L1 0.044	40 0.025	1.753 0.08	30 -0.005	0.093	
ma.L1 -1.1379	0.045 -25.271	0.000 -1.22	.6 -1.050	ma.S.L12 -0.69	93 0.013	-55.632 0.00	00 -0.724	-0.675	
ma.L2 0.9063	0.047 19.208	0.000 0.814	4 0.999	ma.S.L24 -0.20	0.008	-26.146 0.00	00 -0.217	-0.187	
sigma2 9.024e+0	5 2.8e+04 32.178	0.000 8.47e	e+05 9.57e+05	sigma2 1.059	9e+06 3.2e+0	4 33.110 0.00	00 9.96e+05	5 1.12e+06	
Ljung-Box (L1)	(Q): 0.24 Jarqu	e-Bera (JB):	: 304.31	Ljung-Box (l	L 1) (Q): 0.0	4 Jarque-Bera	(JB): 746.3	38	
Prob(Q):	0.62 Pi	rob(JB):	0.00	Prob(Q	0.8	5 Prob(JB): 0.00		
Heteroskedastic	ity (H): 1.80	Skew:	0.43	Heteroskedast	ticity (H): 1.1	3 Skew:	-0.37	,	
Prob(H) (two-s	ided): 0.00 K	urtosis:	5.59	Prob(H) (two	-sided): 0.2	7 Kurtosi	s: 7.23		

'ARIMA 모델2'와 'SARIMA 모델2'는 앞선 모델들과 비교해서 사용하는 함수만 다르고, 동일한 방식으로 여러 조합들 중에서 최적의 조합을 선택하여 모델을 만든다. 그런데 동일한 조합의 모델이라고 해도 약간의 차이가 있는 것을 볼 수 있었는데, 이는 다른 함수를 사용하기 때문이라고 생각된다.

다음은 순서대로 'ARIMA 모델2'와 'SARIMA 모델2'의 분석 결과인데, ARIMA 모델2는 ARIMA(2,1,2) 모델, SARIMA 모델2는 SARIMA(0,1,0)(0,1,1,12) 모델이 최적의 조합임을 알 수 있다.

	SARIMAX R	esults						
Dep. Variable:	У	No. Observation	s: 982			SARIMAX Resu	ults	
Model:	SARIMAX(2, 1, 2)	Log Likelihood	-8109.090	Dep. Variable:	У		No. Observations	982
Date:	Thu, 27 Oct 2022	AIC	16230.181	Model:	SARIMAX(0,	1, 0)x(0, 1, [1],	12) Log Likelihood	-8179.188
	06:43:08	BIC	16259.512	Date:	Thu, 27 Oct	2022	AIC	16362.376
Sample:	0 - 982	HQIC	16241.339	Time:	06:46:26		BIC	16372.129
Covariance Type:				Sample:	0		HQIC	16366.089
coef	std err z	P> z [0.025	0.975]		- 982			
intercept 16.6461	24.149 0.689	0.491 -30.684	63.976	Covariance Type	: opg			
ar.L1 1.1739		38 0.000 1.089	1.259	coef	std err	z P> z	[0.025 0.975]	
ar.L2 -0.9118 ma.L1 -1.1382		97 0.000 -0.999 16 0.000 -1.226	-0.825 -1.050	ma.S.L12 -0.7448		-78.933 0.000		
ma.L2 0.9066	0.047 19.23	35 0.000 0.814	0.999	sigma2 1.085e-	+06 3.22e+04	33.714 0.000	1.02e+06 1.15e+06	
sigma2 9.022e+	-05 2.87e+04 31.43	35 0.000 8.46e+0	5 9.58e+05	Ljung-Box (L1)	(Q): 0.38 Ja	arque-Bera (JE	3): 4232.31	
, , , , ,	(Q): 0.24 Jarque		5	Prob(Q):	0.54	Prob(JB):	0.00	
Prob(Q):		ob(JB): 0.00		Heteroskedastici	ity (H): 0.98	Skew:	-1.03	
Heteroskedastici Prob(H) (two-si		Skew: 0.43 urtosis: 5.59		Prob(H) (two-s	ided): 0.86	Kurtosis:	13.03	

◆ LSTM 모델의 모델링 과정

I. 설정

- ° random seed를 설정하지 않으면 실행마다 결과가 달라지므로 설정 후 실행한다.
- Ⅱ. 데이터 전처리

- Volume이 0인 값들은 거래량이 0인 데이터로 생각된다. 이는 데이터로서 가치가 없으므로 사용하지 못하는 데이터로 바꾼다.
- ° na값은 의미 없는 데이터이므로 이에 해당하는 행들을 삭제한다.

III. 변수 scaling

에이터 간의 범위 차이가 큰 경우 학습에 부정적인 영향을 미칠 수 있고, 실제 운영에서
 도 학습에서 사용되지 않은 큰 데이터가 들어오면 모델이 강하게 발산할 여지가 존재하므로 정규화를 통하여 모델을 안정적으로 만들어주는 과정이 필요하다.

IV. shifting을 통해 window 생성

° 이전의 데이터들을 사용하여 다음의 데이터 값을 예측하기 위해 사용되는 sliding window를 생성한다.

V. 훈련셋과 테스트셋 생성

° scaling이 완료된 window로 이루어진 특징 리스트와 라벨 리스트에서 8:2의 비율로 훈 련셋과 테스트셋을 구성한다.

VI. LSTM 모델 생성

- 여러 층의 레이어를 선형으로 연결하여 구성하기 위하여 Sequential 모델을 생성하고, 활성화 함수로 tanh를 사용하는 LSTM셀과 활성화 함수로 선형 함수를 사용하는 Dense 층을 하나씩 추가하였다.
- ° 모델은 손실함수로 평균제곱오차(mse), 옵티마이저로 adam, 측정항목함수(metrics)로 평 균절대오차(mae)로 학습방식을 설정하였다.

VII. 훈련셋을 사용한 모델 훈련

- ° Early stopping을 사용하여 validation loss가 5번 연속으로 증가하면 모델 훈련을 멈추도록 하였다.
 - 총 100번을 반복하여 훈련하고 훈련이 진행되는 batch의 크기는 16으로 설정하였다.

```
#특정 조건에 도달하면 종료하기 위해 EarlyStopping을 사용한다.
early_stop = EarlyStopping(monitor='val_loss', patience=5)

model.fit(x_train, y_train,
    validation_data=(x_test, y_test),
    epochs=100, batch_size=16,
    callbacks=[early_stop])

Epoch 1/100

59/59 [=========] - 4s 35ms/step - loss: 0.0161 - mae: 0.0717 - val_loss: 0.0013 - val_mae: 0.0286
```

VIII. 테스트셋을 사용한 테스팅

4. 분석

I. ARIMA, SARIMA 모델에 대한 분석1

오른쪽과 같은 모델에 대해 분석해 보고자 한다.

- 가장 최적의 모델은 AIC 값이 가장 낮은 모델을 말한다.
- Ljung-Box(Q) 값은 residual이 백색 잡음인지에 대한 통계량으로, Prob(Q) 값이 0.05보다 작으면 자기 상관 성이 존재한다. 0.05보다 크면 자기 상관성이 존재하지 않는다(백색 잡음이다).
- SARIMAX Results Dep. Variable: y No. Observations: 982 Log Likelihood -8116.739 Model: ARIMA(1, 1, 2) Date: Thu, 27 Oct 2022 AIC 16241.478 Time: 02:32:56 BIC 16261.033 16248.917 Sample: HQIC Covariance Type: opg z P>|z| [0.025 0.975] coef std err -0.5182 -0.598 0.550 -2.217 1.180 0.867 ma.L1 0.5501 0.868 0.634 0.526 -1.150 2.250 1.116 0.264 -0.027 0.098 ma.L2 0.0356 0.032 sigma2 9.024e+05 2.68e+04 33.622 0.000 8.5e+05 9.55e+05 Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 307.91 Prob(Q): 0.96 Prob(JB): Heteroskedasticity (H): 1.80 Skew: Prob(H) (two-sided): 0.00
- Jarque-Bera(JB) 값은 residual이 정규성을 띠는지에 대 한 통계량으로, Prob(JB) 값이 0.05보다 작으면 정규성을 따르지 않는다. 0.05보다 크면 정규성을 따른다.
- Heteroskedasticity(H) 값은 residual이 이분산을 띠는지에 대한 통계량이다.
- skew(비대칭도)는 0에 가까울수록 residual이 정규 분포를 따른다.
- Kurtosis(첨도)는 3에 가까울수록 residual이 정규 분포를 따른다.

II. ARIMA, SARIMA 모델에 대한 분석2

- Standardized residual은 residual을 시계열로 나타낸 것이다. 백색 잡음이므로 시계열이 평균 0을 중심으로 무작위하게 움직인다.
- Correlogram은 residual의 ACF를 나타낸 것이다. 위에 주어진 Correlogram은 허용 범위 안에 위치하므로 자기 상관성이 존재하지 않음을 알 수 있다.
- Histogram plus estimated density는 residual의 히스토그램으로, 정규 분포 N(0,1)과 밀도를 추정한 그래프를 겹쳐서 보여준다.
- Normal Q-Q는 정규성을 만족하면 빨간 일직선 위에 점들이 분포한다. 위에 주어진 그래프 에서는 대부분 정규성을 만족하지만 양쪽 끝 부분에서 약간 벗어난다.

III. pmdarima.arima.auto_arima 함수에 대한 분석

```
auto_arima_model = auto_arima(train_data, start_p=1, start_q=1,max_p=1, max_q=1, m=12, seasonal=True, d=1, D=1, max_P=1, max_Q=2,trace=True, error_action='ignore', suppress_warnings=True, stepwise=False)
```

- ° d: 차분의 차수 (기본값 none)
- ° D: 계절성 차분의 차수. (기본값 none)
- ° start_p, max_p: AR(p)에서 p의 범위. (기본값 2~5)
- ° start_q ,max_q: MA(q)에서 q의 범위. (기본값 2~5)
- ° m: 계절적 차분이 필요할 때 쓸 수 있는 모수. 4이면 분기별, 12이면 월별, 1이면 계절적 특징을 띠지 않는 데이터를 의미한다. (기본값 1)
- ° seasonal: 계절성. SARIMA (기본값 True)
- ° stepwise: 최적의 모수를 찾기 위해 사용하는 힌드만-칸다카르 알고리즘의 사용 여부. False이면 모든 모수 조합으로 모형을 적합한다. (기본값 True)
- ° trace: 각 stepwise로 모델을 적합할 때마다 결과를 프린트. (기본값 False)
- ° start P, max P: SARIMA에서 P의 범위. (기본값 1~2)
- ° start_Q, max_Q: SARIMA에서 Q의 범위. (기본값 1~2)
- ° error_action: 에러가 발생했을 때 처리 방법. (기본값 'warn')
- ° suppress_warnings: 모델 내부에서 발생하는 많은 warning들을 무시. (기본값 True)

5. 결과

- I. ARIMA, SARIMA 모델
 - ◆ 다음은 ARIMA와 SARIMA 모델들의 순서대로 실제값과 예측한 결과를 나타낸 그림이다. 예측한 지점은 훈련 데이터의 마지막 부분(전체 데이터의 80% 지점)이다.

그래프 상으로는 두 번째 모델인 SARIMA 모델2가 가장 좋은 예측을 보이는 것을 확인할 수 있다.

II. LSTM 모델

- 모델에 테스트셋을 적용하여 예측을 적용한 후 실제값과 함께 출력한 모습이다.

- 예측 결과값을 사용하여 평균 절대 백분율 오차(MAPE)를 구한 결과이다.

```
# 평균 절대 백분율 오차를 계산한다.

print( np.sum(abs(y_test-pred)/y_test) / len(x_test) )

0.02516224327821375
```

III. LSTM에서 층을 하나 추가한 결과

- 왼쪽은 기존대로 하나의 LSTM셀 레이어만 사용한 결과이고, 오른쪽은 하나의 레이어를 추가로 사용한 결과이다. MAPE를 계산한 결과를 보면 두 결과의 차이가 거의 나지 않음을 알 수 있다. 하나의 레이어를 추가하는 것은 큰 차이를 보이지 않았다.

```
# 평균 절대 백분율 오차를 계산한다. # 평균 절대 백분율 오차를 계산한다.

print( np.sum(abs(y_test-pred)/y_test) / len(x_test) ) print( np.sum(abs(y_test-pred)/y_test) / len(x_test) )

0.02516224327821375 0.025624423965300226
```

IV. LSTM의 활성화 함수를 ReLU로 사용한 결과

- 왼쪽은 기존대로 LSTM의 활성화 함수로 tanh를 사용한 결과이고, 오른쪽은 활성화 함수로 ReLU를 사용한 결과이다. 오른쪽은 결과는 MAPE가 기존의 결과보다 높으므로 비교적 덜 정확한 모델이라고 볼 수 있다.

```
# 평균 절대 백분율 오차를 계산한다. # 평균 절대 백분율 오차를 계산한다.
print( np.sum(abs(y_test-pred)/y_test) / len(x_test) )
0.02516224327821375 # 9.029576010967483628
```

V. window의 크기를 다르게 사용한 결과

- 아래 결과는 기존대로 window의 크기를 40으로 사용한 결과이다.

```
# 평균 절대 백분율 오차를 계산한다.
print( np.sum(abs(y_test-pred)/y_test) / len(x_test) )
0.02516224327821375
```

- 아래 결과는 왼쪽 위에서부터 순서대로 window의 크기가 5, 10, 20, 50, 60일 때의 결과이다. window의 크기가 너무 작아도 성능이 좋지 못하고 너무 커도 좋지 못하다는 것을 알 수 있다. 결과들 중에서는 window의 크기가 50인 경우에 가장 적절하여 좋은 성능을 가진다는 것을 알 수 있다.

```
# 평균 절대 백분율 오차를 계산한다.

print( np. sum(abs(y_test-pred)/y_test) / len(x_test) )

0.06750810836273029

0.048170421562024286

# 평균 절대 백분율 오차를 계산한다.

print( np. sum(abs(y_test-pred)/y_test) / len(x_test) )

print( np. sum(abs(y_test-pred)/y_test) / len(x_test) )

print( np. sum(abs(y_test-pred)/y_test) / len(x_test) )

0.04569349168550582

# 평균 절대 백분율 오차를 계산한다.

print( np. sum(abs(y_test-pred)/y_test) / len(x_test) )

0.024368936960163647

# 평균 절대 백분율 오차를 계산한다.

print( np. sum(abs(y_test-pred)/y_test) / len(x_test) )

0.0302543157779466658
```