Worksheet 09 Memory 3

1. A system uses pure segmentation (no paging). A segment table contains the following segment sizes and starting physical addresses.

	Size	Address
•••	•••	
5	830	1640
6 779		1130
7	981	620

Translate each of the following logical addresses (LA) into physical addresses (PA) or enter "illegal" if the LA is not within the segment.

 $\begin{array}{ll}
(1) \text{ segment = 6} \\
\text{ of fset = 635} \\
\text{ offset < 535} \\
\text{ offset < 535}
\end{array}$ $\begin{array}{ll}
\text{ Segment = 7} \\
\text{ of fset = 1053} \\
\text{ offset < 512c?} : 10534981
\end{array}$ $\begin{array}{ll}
\text{ The gal}
\end{array}$

ing. Page size is 512 words. Each segment table entry s contains 2. A system uses segmentation with page the size and the frame numbers of the page table (PT) of segment s.

	Size	Frame number of PT
7		1
9	1	12

For each segment, determine the starting address of PT

For
$$7 = 1.512 = 512$$
 (frame # of PT=1; Size = 512; frame # * \$12e = 512)

For $9 = 2.512 = 1024$ (11 | 1 = 1024)

A system uses segmentation with paging. Page size is 1024 words. A segment table contains the following segment sizes.

	Size	5	Pages rounded u
3	6080	J 3	60801102426
	ļ		
5	2700	l. 5	2700/1024=3

For each segment, determine:

(a) the number of pages occupied by the segment
$$6050 - 5 \times 1024 = 600 - 120 = 960$$

130

- 4. A memory system employs both paging and segmentation:
 - The logical address size is 32 bits. 1092 32 = 9
 - 1092 512 = 9 Page size is 512 words.
 - 1092213 =13 The segment table contains 213 entries.
 - What is the size of offset (w)?
 - What is the maximum umber of pages per segment?

$$(0.1)^{13} \rightarrow \text{off set} = 13$$

$$(0.1)^{13} \rightarrow \text{off set} = 13$$

Page Size = 512 ! W= 9 bits

Seyment # requires 13 / offset=9 bits

32-13-9=10 / thus each pase table contains 2'0 entries => max # pages per segment