In [1]: import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: data = pd.read_csv(r"C:\Users\ASUS\Downloads\blinkit_data.csv")

In [3]: data.head()

Out[3]:

Outlet Type	Outlet Size	Outlet Location Type	Outlet Identifier	Outlet Establishment Year	Item Type	Item Identifier	Item Fat Content	
Supermarke Type	Medium	Tier 1	OUT049	2012	Fruits and Vegetables	FDX32	Regular	0
Supermarke Type2	Medium	Tier 3	OUT018	2022	Health and Hygiene	NCB42	Low Fat	1
Supermarke Type	Small	Tier 1	OUT046	2010	Frozen Foods	FDR28	Regular	2
Supermarke Type	High	Tier 3	OUT013	2000	Canned	FDL50	Regular	3
Supermarke Type	Small	Tier 2	OUT045	2015	Soft Drinks	DRI25	Low Fat	4
•			_		_	_		4

In [4]: data.tail()

Out[4]:

	Item Fat Content	Item Identifier	Item Type	Outlet Establishment Year	Outlet Identifier	Outlet Location Type	Outlet Size	Outlet Typ
8518	low fat	NCT53	Health and Hygiene	1998	OUT027	Tier 3	Medium	Supermark Type
8519	low fat	FDN09	Snack Foods	1998	OUT027	Tier 3	Medium	Supermark Type
8520	low fat	DRE13	Soft Drinks	1998	OUT027	Tier 3	Medium	Supermark Type
8521	reg	FDT50	Dairy	1998	OUT027	Tier 3	Medium	Supermark Type
8522	reg	FDM58	Snack Foods	1998	OUT027	Tier 3	Medium	Supermark Type
4 6								

```
In [5]: data.shape
Out[5]: (8523, 12)
In [6]: data.columns
Out[6]: Index(['Item Fat Content', 'Item Identifier', 'Item Type',
                'Outlet Establishment Year', 'Outlet Identifier',
                'Outlet Location Type', 'Outlet Size', 'Outlet Type', 'Item Visibility',
                'Item Weight', 'Sales', 'Rating'],
               dtype='object')
In [7]: data.dtypes
Out[7]: Item Fat Content
                                       object
        Item Identifier
                                       object
        Item Type
                                       object
        Outlet Establishment Year
                                       int64
        Outlet Identifier
                                       object
        Outlet Location Type
                                       object
        Outlet Size
                                       object
        Outlet Type
                                       object
        Item Visibility
                                      float64
                                      float64
        Item Weight
                                      float64
        Sales
        Rating
                                      float64
        dtype: object
In [8]: data['Item Fat Content'].unique()
Out[8]: array(['Regular', 'Low Fat', 'low fat', 'LF', 'reg'], dtype=object)
In [9]: data['Item Fat Content'] = data['Item Fat Content'].replace({'LF' : 'Low Fat',
                                                                   'low fat' : 'Low Fat',
                                                                   'reg' : 'Regular'})
In [ ]:
```

Business Requirements

```
In [12]: # TOTAL SALES
    total_sales = data['Sales'].sum()

In [13]: total_sales

Out[13]: 1201681.4808

In [14]: # AVERAGE SALES
    Avg_Sales = data['Sales'].mean()

In [15]: Avg_Sales
```

```
Out[15]: 140.9927819781767
In [16]: # No. of Items Sold
         no of items sold = data['Sales'].count()
In [17]: no_of_items_sold
Out[17]: 8523
In [18]: # Average Ratings
         avg_ratings = data['Rating'].mean()
In [19]: avg ratings
Out[19]: 3.965857092573038
In [41]: print(f"Total Sales: ${total_sales:,.0f}")
         print(f"Avg Sales: ${Avg_Sales:,.0f}")
         print(f"Number of items Sold: ${no_of_items_sold:,.0f}")
         print(f"Average Rating: ${avg_ratings:,.1f}")
        Total Sales: $1,201,681
        Avg Sales: $141
        Number of items Sold: $8,523
        Average Rating: $4.0
In [ ]:
```

Charts Requirements

Total Sales by Fat Content

```
In [58]: sales_by_fat = data.groupby('Item Fat Content')['Sales'].sum()
    plt.pie(sales_by_fat, labels = sales_by_fat.index, autopct = '%.1f%%', startangle =
    plt.title('Sales by Fat Content')
    plt.axis('equal')
    plt.show()
```

Sales by Fat Content

Total Sales by Item Type

Fat Content by Outlet for Total Sales

```
In [80]: grouped = data.groupby(['Outlet Location Type', 'Item Fat Content'])['Sales'].sum()
grouped = grouped[['Regular','Low Fat']]

ax = grouped.plot(kind = 'bar', figsize = (8,5), title = 'Outlet Tier by Item Fat C
plt.xlabel('Outlet Location Tier')
plt.ylabel('Total Sales')
plt.legend(title = 'Item Fat Content')
plt.tight_layout()
plt.show()
```


Total Sales by Outlet Establishment

```
In [85]: sales_by_year = data.groupby('Outlet Establishment Year')['Sales'].sum().sort_index

plt.figure(figsize=(9,5))
plt.plot(sales_by_year.index, sales_by_year.values, marker = 'o', linestyle = '-')

plt.xlabel('Outlet Establishment Year')
plt.ylabel('Total Sales')
plt.title('Outlet Establishment')

for x,y in zip(sales_by_year.index, sales_by_year.values):
    plt.text(x,y,f'{y:,.0f}', ha = 'center', va = 'bottom', fontsize = 8)

plt.tight_layout()
plt.show()
```


Outlet Establishment Year

Sales by Outlet Size

```
sales_by_size = data.groupby('Outlet Size')['Sales'].sum()
```

plt.figure(figsize=(4,4)) plt.pie(sales_by_size, labels = sales_by_size.index, autopct = '%1.1f%%', startangle = 90) plt.title('Outlet Size') plt.tight_layout() plt.show()

Sales by Outlet Location

```
In [93]: sales_by_location = data.groupby('Outlet Location Type')['Sales'].sum().reset_index
sales_by_location = sales_by_location.sort_values('Sales', ascending = False)

plt.figure(figsize=(8,3)) # Smaller height, enough width
ax = sns.barplot(x = 'Sales', y = 'Outlet Location Type', data = sales_by_location)

plt.title('Total Sales by Outlet Location Type')
plt.xlabel('Total Sales')
plt.ylabel('Outlet Location Type')

plt.tight_layout()
plt.show()
```

Total Sales by Outlet Location Type

In []: