Assignment 5 due by November 28, 2023

第七組

410650161 008 陳威旭

410650229 010 林可翰

410650252 011 何少鈞

410650377 015 張哲瑋

410650880 033 鄭暐瀚

- 1. (100 pt.) Do Problem 6.3 step by step, and include the pseudo-Ftest if necessary.
- 6.3要按照6.2題敘述, 在A、B因子為隨機效果, C因子為固定效果進行檢定統計量F的推演。

模型假設:

$$Y_{mijk} = \mu + A_i + B_j + C_k + AB_{ij} + AC_{ik} + BC_{jk} + ABC_{ijk} + \varepsilon_{m(ijk)}$$

i=1,2,...,a;j=1,2,...,b;k=1,2,...,c;m=1,2,...,n.

$$\begin{split} &A_{i} \sim \mathsf{NID}(0,\sigma_{A}^{2}); B_{j} \sim \mathsf{NID}(0,\sigma_{B}^{2}); \sum_{k=1}^{c} C_{k} = 0; \\ &AB_{ij} \sim \mathsf{NID}(0,\sigma_{AB}^{2}); AC_{ik} \sim \mathsf{NID}(0,\sigma_{AC}^{2}); BC_{jk} \sim \mathsf{NID}(0,\sigma_{BC}^{2}); \\ &ABC_{ijk} \sim \mathsf{NID}(0,\sigma_{ABC}^{2}); \\ &\epsilon_{m(ijk)} \sim \mathsf{NID}(0,\sigma^{2}) \; . \end{split}$$

$$\begin{split} &\sum_{k=1}^{c} AC_{ik} = 0; \sum_{i=1}^{a} AC_{ik} \neq 0, \sum_{k=1}^{c} BC_{jk} = 0; \sum_{j=1}^{b} BC_{jk} \neq 0, \\ &\sum_{k=1}^{a} ABC_{ijk} \neq 0; \sum_{i=1}^{b} ABC_{ijk} \neq 0; \sum_{k=1}^{c} ABC_{ijk} = 0. \\ &A_{i}, B_{j}, AB_{ij}, AC_{ik}, BC_{jk}, ABC_{ijk}, \varepsilon_{m(ijk)}$$
相互獨立。

第一步: 將包含誤差、各個效果和它們的交互作用寫在行排頭。

A_{i}		
B_{j}		
C_k		
AB_{ij}		
AC_{ik}		
BC_{jk}		
ABC_{ijk}		
$\varepsilon_{m(ijk)}$		

第二步:

將各下標所對應的個數、因子是固定還是隨機的(固定以F, 隨機以R標示)和因子下標符號依序寫在列排頭。

	а	b	С	n
	R	R	F	R
	i	j	k	m
A_i				
B_{j}				
C_k				
AB_{ij}				
AC_{ik}				
BC_{jk}				
ABC_{ijk}				
$\varepsilon_{m(ijk)}$				

第三步:

將該效果或交互作用中沒有出現的下標所對應的個數寫在對應 格子中。

	а	b	С	n
	R	R	F	R
	i	j	k	m
A_i		b	С	n
B_{j}	а		С	n
C_k	а	b		n
AB_{ij}			С	n
AC_{ik}		b		n
BC_{jk}	а			n
ABC_{ijk}				n
$\varepsilon_{m(ijk)}$				

第四步: 將該效果或交互作用中括號內的下標所對應的格子中寫上1。

	а	b	С	n
	R	R	F	R
	i	j	k	m
A_i		b	С	n
B_{j}	а		С	n
C_k	а	b		n
AB_{ij}			С	n
AC_{ik}		b		n
BC_{jk}	а			n
ABC_{ijk}				n
$\varepsilon_{m(ijk)}$	1	1	1	

第五步:

剩餘的空格子要是該格直行對應的是F(固定)填入'0', 要是直行對應的是R(隨機)填入'1'。

	а	b	С	n
	R	R	F	R
	i	j	k	m
A_i	1	b	С	n
B_{j}	а	1	С	n
C_k	а	b	0	n
AB_{ij}	1	1	С	n
AC_{ik}	1	b	0	n
BC_{jk}	а	1	0	n
ABC_{ijk}	1	1	0	n
$\varepsilon_{m(ijk)}$	1	1	1	1

第六步:

將各效果或交互作用不在括號內的下標所在的列忽略,剩餘的橫列相乘作為對應變異的係數,剩下只要將有關變異相加就是對應忽略的下標的效果或交互作用的EMS。

	а	b	С	n	
	R	R	F	R	EMS
	i	j	k	m	
A_i	1	b	С	n	$\sigma^2 + nc\sigma_{AB}^2 + nbc\sigma_A^2$
B_{j}	а	1	С	n	$\sigma^2 + nc\sigma_{AB}^2 + nac\sigma_B^2$
C_k	а	b	0	n	$\sigma^2 + n\sigma_{ABC}^2 + nb\sigma_{AC}^2 + na\sigma_{BC}^2 + nab\phi_C^*$
AB_{ij}	1	1	С	n	$\sigma^2 + nc\sigma_{AB}^2$
AC_{ik}	1	b	0	n	$\sigma^2 + n\sigma_{ABC}^2 + nb\sigma_{AC}^2$
BC_{jk}	а	1	0	n	$\sigma^2 + n\sigma_{ABC}^2 + na\sigma_{BC}^2$
ABC_{ijk}	1	1	0	n	$\sigma^2 + n\sigma_{ABC}^2$
$\varepsilon_{m(ijk)}$	1	1	1	1	σ^2

*
$$\Phi_C = \frac{\sum_{k=1}^{c} C_k^2}{c-1}$$

檢定與檢定統計量F:

$$H_{01} : \sigma_A^2 = 0; H_{11} : \sigma_A^2 > 0$$

檢定統計量
$$F = \frac{MS_A}{MS_{AB}}$$

$$H_{02}: \sigma_B^2 = 0; H_{12} \sigma_B^2 > 0$$

檢定統計量
$$F = \frac{MS_B}{MS_{AB}}$$

$$H_{03}: C_1 = C_2 = \dots = C_c = 0; H_{13}: 至少有一 $C_k \neq 0$$$

因為無法找到確切的檢定統計量F, 需透過線性組合的方式估計 (Pseudo-F test)。

檢定統計量
$$F = \frac{MS_C}{MS_{AC} + MS_{BC} - MS_{ABC}}$$

$$H_{04} : \sigma_{AB}^2 = 0; H_{14} : \sigma_{AB}^2 > 0$$

檢定統計量F=
$$\frac{MS_{AB}}{MSE}$$

$$H_{05} : \sigma_{AC}^2 = 0; H_{15} : \sigma_{AC}^2 > 0$$

檢定統計量
$$F = \frac{MS_{AC}}{MS_{ABC}}$$

$$H_{06}: \sigma_{RC}^2 = 0; H_{16}: \sigma_{RC}^2 > 0$$

檢定統計量
$$F = \frac{MS_{BC}}{MS_{ABC}}$$

$$H_{07} : \sigma_{ABC}^2 = 0; H_{17} : \sigma_{ABC}^2 > 0$$

檢定統計量F=
$$\frac{MS_{ABC}}{MSE}$$