EXERCICES — CHAPITRE 8

- Exercice 1 (*) On considère la matrice $A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$.

 1. Montrer que $X = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ est un vecteur propre de A associé à une valeur propre à préciser.
- 2. Montrer que $Y = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ est un vecteur propre de A associé à une valeur propre à préciser.
- 3. Montrer que $Z = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ est un vecteur propre de A associé à une valeur propre à préciser.

Exercice 2 $(\star\star)$ – On considère la matrice $A = \begin{pmatrix} 4 & 1 \\ 3 & 6 \end{pmatrix}$. Montrer que les réels 3 et 7 sont valeurs propres de A et donner un vecteur propre associé à chacune de ces valeurs propres.

Exercice 3 (**) – On considère la matrice $A = \begin{pmatrix} \frac{3}{2} & 1\\ -\frac{1}{2} & 0 \end{pmatrix}$. 1. Calculer $2A^3 - 3A^2 + A$.

- 2. En déduire les valeurs propres possibles de la matrice *A*.
- 3. Déterminer lesquelles sont effectivement valeurs propres et trouver des vecteurs propres associés.

Exercice 4 (**) – On considère la matrice $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$.

- 1. Montrer que $A(A-I)(A-2I)=0_3$ et en déduire les valeurs propres possibles de A.
- 2. Vérifier que les valeurs trouvées à la question précédente sont effectivement valeurs propres de A et donner un vecteur propre pour chacune d'elles.

Exercice 5 $(\star\star)$ – On considère les matrices $B = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ et $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- 1. Calculer $B^2 2B + 2I$ puis en déduire que la matrice B n'a aucune valeur propre.
- 2. En déduire également que B est inversible et donner son inverse en fonction de B et I.

Exercice 6 $(\star\star)$ – On considère la matrice $M = \begin{pmatrix} 2 & 4 \\ 1 & -1 \end{pmatrix}$.

- 1. Vérifier l'égalité $M^2 M 6I_2 = 0_2$ et en déduire les valeurs propres possibles de M.
- 2. Vérifier que les valeurs trouvées à la question précédente sont effectivement valeurs propres de M et donner un vecteur propre pour chacune d'elles.
- 3. On pose $P = \begin{pmatrix} 1 & 4 \\ -1 & 1 \end{pmatrix}$. Montrer que P est inversible.
- 4. On pose $D = \begin{pmatrix} -2 & 0 \\ 0 & 3 \end{pmatrix}$. Vérifier l'égalité MP = PD. Que peut-on en déduire?

Exercice 7 $(\star \star \star)$ – On considère la matrice $A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$.

- 1. Montrer que le polynôme $x^3 3x^2 + 4$ est un polynôme annulateur de A et en déduire
- les valeurs propres possibles de A.

 2. Soient les trois matrices colonnes $V_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $V_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ et $V_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$.

Vérifier que V_1 , V_2 et V_3 sont trois vecteurs propres de A et préciser pour chacun d'eux la valeur propre associée.

- 3. On note P la matrice dont la première colonne est V_1 , la deuxième est V_2 et la dernière est V_3 . Calculer $P^3 - 3P^2 + 5P - 3I_3$. En déduire que P est inversible et donner une expression de P^{-1} en fonction de I_3 , P et P^2 .
- 4. Vérifier l'égalité AP = PD, où $D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.
- 5. En déduire que A est diagonalisable.

Exercice 8 $(\star \star \star)$ – On considère la matrice $A = \begin{pmatrix} 7 & 2 \\ -4 & 1 \end{pmatrix}$.

- 1. a) Calculer A^2 et $8A 15I_2$ puis déterminer un polynôme annulateur de A. En déduire les valeurs propres possibles de *A*.
 - b) Vérifier que les valeurs trouvées à la question précédente sont effectivement valeurs propres de A et donner un vecteur propre pour chacune d'elles.
- 2. a) Soit $P = \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix}$. Montrer que P est inversible et donner son inverse.
 - b) Soit $D = \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix}$. Montrer que AP = PD.

- 3. Montrer que pour tout entier naturel $n \in \mathbb{N}$, $A^n = PD^nP^{-1}$, puis donner l'expression de A^n en fonction de n pour tout entier n.
- 4. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ les suites définies par $u_0=1$, $v_0=1$ et pour tout entier $n\in\mathbb{N}$:

$$\begin{cases} u_{n+1} = 7u_n + 2v_n \\ v_{n+1} = -4u_n + v_n \end{cases}$$

- a) On note $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$. Exprimer X_{n+1} en fonction de A et X_n .
- b) En déduire que pour tout entier naturel n, $X_n = A^n X_0$, puis donner l'expression de u_n et v_n en fonction de n.

Exercice 9 $(\star \star \star)$ – Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie par les trois premiers termes $u_0 = 1$, $u_1 = 1$, $u_2 = -2$ et la relation de récurrence

$$\forall n \in \mathbb{N}$$
, $u_{n+3} = 6u_n - 11u_{n+1} + 6u_{n+2}$

On pose $M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{pmatrix}$ et pour tout entier naturel $n \in \mathbb{N}$, $X_n = \begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix}$.

- 1. Montrer que pour tout entier naturel n, $MX_n = X_{n+1}$. En déduire l'expression de X_n en fonction des matrices M, X_0 et de l'entier naturel n.
- 2. a) Calculer (M-I)(M-2I)(M-3I) puis en déduire les valeurs propres possibles de la matrice M.
 - b) Vérifier que les valeurs trouvées à la question précédente sont effectivement valeurs propres de M et donner un vecteur propre pour chacune d'elles.
- 3. a) Soient $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$ et $Q = \begin{pmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1 \end{pmatrix}$. Calculer PQ.

En déduire que P est inversible et donner son inverse P^{-1} .

- b) Soit $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. Montrer que MP = PD.
- c) La matrice *M* est-elle diagonalisable?
- 4. a) Montrer que pour tout entier naturel n, $M^n = PD^nP^{-1}$.
 - b) En déduire, pour tout entier naturel n, les coefficients de la première ligne de M^n . Donner alors l'expression de u_n en fonction de n.

Exercice 10 $(\star \star \star)$ – On considère les suites $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}}$ et $(w_n)_{n \in \mathbb{N}}$ définies par

$$u_0 = v_0 = w_0 = 1 \quad \text{et} \quad \begin{cases} u_{n+1} = 2u_n - v_n + w_n \\ v_{n+1} = u_n - w_n \\ w_{n+1} = 2u_n - 2v_n + w_n \end{cases}$$
On note $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$.

- 1. a) Déterminer une matrice A telle que pour tout $n \in \mathbb{N}$, $X_{n+1} = AX_n$.
 - b) Montrer que pour tout $n \in \mathbb{N}$, $X_n = A^n X_0$.
- 2. a) Vérifier que le polynôme P(x) = (x-1)(x+1)(x-3) est annulateur de A. En déduire les valeurs propres possibles de A.
 - b) Vérifier que les valeurs trouvées à la question précédente sont effectivement valeurs propres de *A* et donner un vecteur propre pour chacune d'elles.
- 3. a) Soit $P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$. Montrer que P est inversible et donner son inverse.
 - b) Soit $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. Montrer que AP = PD.

La matrice A est-elle diagonalisable?

- 4. Montrer que pour tout entier $n \in \mathbb{N}$, $A^n = PD^nP^{-1}$, puis donner l'expression de A^n en fonction de n pour tout entier n.
- 5. En déduire pour tout entier $n \in \mathbb{N}$, une expression explicite de u_n , v_n et w_n .