Задачи для практических занятий

Математический анализ (базовый уровень) — 1 семестр

Занятие 6. Предел функции

- I. предел функции по определению Коши
- II. предел функции по определению Гейне
- III. исследование сходимости функции (в командах)
- IV. вычисление пределов по арифметическим свойствам (методами раскрытия неопределённостей)

Источники:

Составила: Шиманская Г.С., Правдин К.В.

Редакторы: Правдин К.В.

В аудитории

І. Предел функции по определению Коши

Исходя из определения предела функии по Коши, докажите следующие равенства:

Задача 1. Исходя из определения предела функии по Коши, докажите следующие равенства:

a)
$$\lim_{x \to 1} (3x - 8) = -5$$
; 6) $\lim_{x \to +\infty} \frac{5x + 1}{3x + 9} = \frac{5}{3}$; B) $\lim_{x \to 1} \frac{1}{(1 - x)^2} = +\infty$; $\lim_{x \to 4} \frac{x^2 - 16}{x^2 - 4x} = 2$.

II. Предел функции по определению Гейне

Задача 2. Пользуясь определением предела функции по Гейне и теоремами о пределах последовательностей, докажите, что $\lim_{r\to 2} \frac{3x+1}{5x+4} = \frac{1}{2}$.

Задача 3. Докажите, что предел не существует:

a)
$$\lim_{x\to 0} \sin\left(\frac{\pi}{x}\right)$$
; 6) $\lim_{x\to 0} 2^{\frac{1}{x}}$.

III. Исследование сходимости функции (в командах)

Задача 4. Дана функция $f(x) = \left(\frac{2x-3}{3x+8}\right)^{4x+11}$. Известно, что $\lim_{x \to +\infty} f(x) = 0$ и $\lim_{x \to -\infty} f(x) = +\infty$.

- 1. Постройте график функции f(x) в графическом редакторе Desmos: https://www.desmos.com/
- 2. Проиллюстрируйте сходимость (расходимость) функции на бесконечностях:
 - а. сформулируйте определение конечного предела и бесконечных пределов функции в терминах $\varepsilon \delta$ и неравенств;
 - b. выберите по три различных положительных числа $\varepsilon_1>\varepsilon_2>\varepsilon_3$ для $x\to +\infty$ и $x\to -\infty$ отлельно:
 - с. для каждого такого числа изобразите на графике соответствующую ε -окрестность пределов (для $x \to +\infty$ и $x \to -\infty$ отдельно);
- 3. для каждого выбранного ε найдите на графике наибольшую δ -окрестность переменных x, в которой все значения функции f(x) попадают в ε -окрестность, или установите, что такой окрестности нет.

Варианты:

1)
$$f(x) = \left(\frac{2x-3}{3x+8}\right)^{4x+11}$$
; 2) $f(x) = \left(\frac{1-x^2}{2-7x^2}\right)^{x-13}$; 3) $f(x) = \left(\frac{x^3-1}{3x^3+1}\right)^{x^3-3}$; 4) $f(x) = \left(\frac{1-x}{2-10x}\right)^{5x-3}$;

5)
$$f(x) = \left(\frac{3x-1}{2x+11}\right)^{1-3x}$$
; 6) $f(x) = \left(\frac{4+3x}{5+x}\right)^{7x+2}$; 7) $f(x) = \left(\frac{13x+8}{10x-1}\right)^{x^3-1}$; 8) $f(x) = \left(\frac{5-3x}{1-2x}\right)^{0,3x-3}$.

Задачи для практических занятий

Математический анализ (базовый уровень) — 1 семестр

Консультация

IV. Вычисление пределов по арифметическим свойствам (методами раскрытия неопределённостей)

Для всех основных элементарных функций в любой точке их области определения имеет место равенство:

$$\lim_{x \to a} f(x) = f\left(\lim_{x \to a} x\right) = f(a).$$

Это свойство непрерывности функции в точке, оно будет доказано в лекциях позднее (см. раздел 2).

Задача 5. Вычислить пределы функций:

a)
$$\lim_{x \to 1} \frac{4x^5 + 9x + 7}{3x^6 + x^3 + 1}$$
; 6) $\lim_{x \to 2} \frac{x^3 + 3x^2 - 9x - 2}{x^3 - x - 6}$; B) $\lim_{x \to -1} \frac{x + 1}{\sqrt{6x^2 + 3} + 3x}$; $\lim_{x \to 1} \frac{x^p - 1}{x^q - 1}$ $(p, q \in \mathbb{N})$.

Задача 6. Вычислить пределы функций:

a)
$$\lim_{x \to \infty} \left(\frac{x^3}{3x^2 - 4} - \frac{x^2}{3x + 2} \right)$$
; 6) $\lim_{x \to +\infty} \left(\sqrt{9x^2 + 1} - 3x \right)$; B) $\lim_{x \to +\infty} \frac{2\sqrt{x} + 3\sqrt[3]{x} + 5\sqrt[5]{x}}{\sqrt{3x - 2} - \sqrt[3]{2x - 3}}$;

г)
$$\lim_{x \to -\infty} \left(\sqrt{2x^2 - 3} - 5x \right)$$
; д) $\lim_{x \to +\infty} x \left(\sqrt{x^2 + 1} - x \right)$; е) $\lim_{x \to \pm \infty} \frac{\sqrt{2x^2 + 3}}{4x + 2}$; ж) $\lim_{x \to \infty} 5^{\frac{2x}{x + 3}}$.

Задача 7. Вычислить пределы функций:

a)
$$\lim_{x \to 1} \frac{2x - 2}{\sqrt[3]{26 + x} - 3}$$
; 6) $\lim_{x \to -1} \frac{x + 1}{\sqrt[4]{x + 17} - 2}$; B) $\lim_{x \to -1} \frac{1 + \sqrt[3]{x}}{1 + \sqrt[5]{x}}$;

$$\text{r)} \lim_{x \to 0} \frac{\sqrt[k]{1+x}-1}{x} \ (k \in \mathbb{N}); \quad \text{д)} \lim_{x \to \frac{\pi}{6}} \frac{\sin\left(x-\frac{\pi}{6}\right)}{\sqrt{3}-2\cos x}; \quad \text{e)} \lim_{x \to \frac{\pi}{2}-0} \frac{\cos x}{\sqrt[3]{(1-\sin x)^2}}; \quad \text{ж)} \lim_{x \to \frac{\pi}{6}} \frac{2\sin^2 x + \sin x - 1}{2\sin^2 x - 3\sin x + 1}.$$

Самостоятельно

Предел функции по определению Коши

Задача 8. Исходя из определения предела функии по Коши, докажите следующие равенства: a)
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x}-1} = 2$$
; 6) $\lim_{x \to -7} \frac{5x^2 + 34x - 7}{x+7} = -36$; B) $\lim_{x \to +\infty} \frac{2x-1}{3x+2} = \frac{2}{3}$.

II. Предел функции по определению Гейне

Задача 9. Докажите, что предел не существует:

a)
$$\lim_{x\to 0} \arctan\left(\frac{1}{x}\right)$$
; 6) $\lim_{x\to +\infty} \cos x$.