Algebraic geometry 1 Exercise sheet 8

Solutions by: Eric Rudolph and David Čadež

5. Dezember 2023

Exercise 1.

Exercise 2.

Exercise 3.

1. In exercise 2 we showed that all invertible quasicoherent sheaves on \mathbb{P}^n_k are isomorphic to $\mathcal{O}_{\mathbb{P}^n_k}(d)$ for some $d \geq 0$. So we have to show $f^*\mathcal{O}_{\mathbb{P}^m_k}(1)$ is an invertible sheaf.

Since invertible $\mathcal{O}_{\mathbb{P}^n_k}$ -modules are same as line bundles, we have to show that locally $f^*\mathcal{O}_{\mathbb{P}^n_k}(1)$ is isomorphic to the structure sheaf $\mathcal{O}_{\mathbb{P}^n_k}$.

By definition $f^*\mathcal{O}_{\mathbb{P}^m_k}(1) = f^{-1}\mathcal{O}_{\mathbb{P}^m_k}(1) \otimes_{f^{-1}\mathcal{O}_{\mathbb{P}^m_k}} \mathcal{O}_{\mathbb{P}^n_k}$. Pick some $x \in \mathbb{P}^n_k$. Pick small enough affine neighborhood $f(x) \in U \subseteq \mathbb{P}^m_k$ such that $\mathcal{O}_{\mathbb{P}^m_k}(1)$ is isomorphic to the structure sheaf $\mathcal{O}_{\mathbb{P}^m_k}$ on U. Now pick neighborhood $x \in W \subseteq \mathbb{P}^m_k$ such that $f(W) \subseteq U$.

Then

$$\begin{split} f^{-1}\mathcal{O}_{\mathbb{P}^m_k}(1)(W) &= \operatorname{colim}_{f(W)\subseteq V} \mathcal{O}_{\mathbb{P}^m_k}(1)(V) \\ &= \operatorname{colim}_{f(W)\subseteq V\subseteq U} \mathcal{O}_{\mathbb{P}^m_k}(1)(V) \\ &\cong \operatorname{colim}_{f(W)\subseteq V\subseteq U} \mathcal{O}_{\mathbb{P}^m_k}(V) \\ &\cong f^{-1}\mathcal{O}_{\mathbb{P}^m_k}(W). \end{split}$$

So locally $f^{-1}\mathcal{O}_{\mathbb{P}^m_k}(1)$ is isomorphic to $f^{-1}\mathcal{O}_{\mathbb{P}^m_k}$, so $f^{-1}\mathcal{O}_{\mathbb{P}^m_k}(1)\otimes_{f^{-1}\mathcal{O}_{\mathbb{P}^m_k}}$ $\mathcal{O}_{\mathbb{P}^n_k}$ is locally isomorphic to $\mathcal{O}_{\mathbb{P}^n_k}$, which proves that $f^*\mathcal{O}_{\mathbb{P}^m_k}(1)$ is an invertible $\mathcal{O}_{\mathbb{P}^n_k}$ -module and thus isomorphic to $\mathcal{O}_{\mathbb{P}^n_k}(d)$ for some $d \geq 0$.