

Ch.32 Process and Project Metrics

A Good Manager Measures

Why Do We Measure?

- assess the status of an ongoing project
- track potential risks
- uncover problem areas before they go "critical,"
- adjust work flow or tasks,
- evaluate the project team's ability to control quality of software work products.

Process Measurement

- We measure the efficacy of a software process indirectly.
 - That is, we derive a set of metrics based on the outcomes that can be derived from the process.
 - Outcomes include
 - measures of errors uncovered before release of the software
 - defects delivered to and reported by end-users
 - work products delivered (productivity)
 - human effort expended
 - calendar time expended
 - schedule conformance
 - other measures.
- We also derive process metrics by measuring the characteristics of specific software engineering tasks.

Process Metrics Guidelines

- Use common sense and organizational sensitivity when interpreting metrics data.
- Provide regular feedback to the individuals and teams who collect measures and metrics.
- Don't use metrics to appraise individuals.
- Work with practitioners and teams to set clear goals and metrics that will be used to achieve them.
- Never use metrics to threaten individuals or teams.
- Metrics data that indicate a problem area should not be considered "negative." These data are merely an indicator for process improvement.
- Don't obsess on a single metric to the exclusion of other important metrics.

Software Process Improvement

Process Metrics

- Quality-related
 - focus on quality of work products and deliverables
- Productivity-related
 - Production of work-products related to effort expended
- Statistical SQA data
 - error categorization & analysis
- Defect removal efficiency
 - propagation of errors from process activity to activity
- Reuse data
 - The number of components produced and their degree of reusability

Process Metrics

- used to minimize the development schedule by making the adjustments necessary to avoid delays and mitigate potential problems and risks
- used to assess product quality on an ongoing basis and, when necessary, modify the technical approach to improve quality.
- every project should measure:
 - inputs—measures of the resources (e.g., people, tools) required to do the work.
 - outputs—measures of the deliverables or work products created during the software engineering process.
 - results—measures that indicate the effectiveness of the deliverables.

Typical Project Metrics

- Effort/time per software engineering task
- Errors uncovered per review hour
- Scheduled vs. actual milestone dates
- Changes (number) and their characteristics
- Distribution of effort on software engineering tasks

Metrics Guidelines

- Use common sense and organizational sensitivity when interpreting metrics data.
- Provide regular feedback to the individuals and teams who have worked to collect measures and metrics.
- Don't use metrics to appraise individuals.
- Work with practitioners and teams to set clear goals and metrics that will be used to achieve them.
- Never use metrics to threaten individuals or teams.
- Metrics data that indicate a problem area should not be considered "negative." These data are merely an indicator for process improvement.
- Don't obsess on a single metric to the exclusion of other important metrics.

Typical Size-Oriented Metrics

- errors per KLOC (thousand lines of code)
- defects per KLOC
- \$ per LOC
- pages of documentation per KLOC
- errors per person-month
- errors per review hour
- LOC per person-month
- \$ per page of documentation

Typical Function-Oriented Metrics

- errors per FP (thousand lines of code)
- defects per FP
- \$ per FP
- pages of documentation per FP
- FP per person-month

Comparing LOC and FP

Programming	L	OC per Fund	t		
Language	avg.	median	low	high	
Ada	154	-	104	205	
Assembler	337	315	91	694	
С	162	109	33	704	
C++	66	53	29	178	
COBOL	77	77	14	400	
Java	63	53	77	-	
JavaSc ript	58	63	42	75	
Perl	60	-	-	-	
PL/1	78	67	22	263	
Powerbuilder	32	31	11	105	
SAS	40	41	33	49	
Smalltalk	26	19	10	55	
SQL	40	37	7	110	
Visual Basic	47	42	16	158	

Representative values developed by QSM

13

Why Opt for FP?

- Programming language independent
- Used readily countable characteristics that are determined early in the software process
- Does not "penalize" inventive (short) implementations that use fewer LOC that other more clumsy versions
- Makes it easier to measure the impact of reusable components

Object-Oriented Metrics

- Number of scenario scripts (use-cases)
- Number of support classes (required to implement the system but are not immediately related to the problem domain)
- Average number of support classes per key class (analysis class)
- Number of subsystems (an aggregation of classes that support a function that is visible to the end-user of a system)

15

WebApp Project Metrics

- Number of static Web pages (the end-user has no control over the content displayed on the page)
- Number of dynamic Web pages (end-user actions result in customized content displayed on the page)
- Number of internal page links (internal page links are pointers that provide a hyperlink to some other Web page within the WebApp)
- Number of persistent data objects
- Number of external systems interfaced
- Number of static content objects
- Number of dynamic content objects
- Number of executable functions

Measuring Quality

- Correctness the degree to which a program operates according to specification
- Maintainability—the degree to which a program is amenable to change
- Integrity—the degree to which a program is impervious to outside attack
- Usability—the degree to which a program is easy to use

Defect Removal Efficiency

$$DRE = E/(E+D)$$

where:

E is the number of errors found before delivery of the software to the end-user *D* is the number of defects found after delivery.

Metrics for Small Organizations

- time (hours or days) elapsed from the time a request is made until evaluation is complete, t_{queue}.
- effort (person-hours) to perform the evaluation, W_{eval}.
- time (hours or days) elapsed from completion of evaluation to assignment of change order to personnel, t_{eval}.
- effort (person-hours) required to make the change, W_{change}.
- time required (hours or days) to make the change, t_{change}.
- errors uncovered during work to make change, E_{change}.
- defects uncovered after change is released to the customer base, D_{change}.

Establishing a Metrics Program

- Identify your business goals.
- Identify what you want to know or learn.
- Identify your subgoals.
- Identify the entities and attributes related to your subgoals.
- Formalize your measurement goals.
- Identify quantifiable questions and the related indicators that you will use to help you achieve your measurement goals.
- Identify the data elements that you will collect to construct the indicators that help answer your questions.
- Define the measures to be used, and make these definitions operational.
- Identify the actions that you will take to implement the measures.
- Prepare a plan for implementing the measures.

