

TTT4260/65 Elektronisk sysdemdesign og -analyse I/II 2023

Designprosjekt 6: Operasjonsforsterker versjon 2.0

Problemstilling

En operasjonsforsterker (opamp) er en krets med fem tilkobligspunkter som vist i figur 1 a) og med en modell som vist i figur 1 b).

Figur 1: Operasjonsforsterker: a) symbol, b) modell

En ideell opamp har følgende egenskaper:

- 1. inngangsmotstanden R_i er uendelig stor
- 2. utgangsmotstanden $R_{\rm o} = 0$.
- 3. utgangen er gitt som

$$v_{o} = f(v^{+}, v^{-}) = \begin{cases} \min\{V, A(v^{+} - v^{-})\} & \text{for } v^{+} - v^{-} > 0\\ \max\{V, A(v^{+} - v^{-})\} & \text{for } v^{+} - v^{-} < 0 \end{cases}$$
 (1)

dvs. som vist i figur 2. Konstanten A er opampens åpen løkke-forsterking.

En reell operasjonsforsterker er et elektronisk system som i større eller mindre grad oppfyller betingelesene ovenfor. Typiske avvik er at inngangs- og utgangsmotstandene har endelige verdier. Videre er utgangen gitt som en funksjon

$$v_{\rm o} = f(v^+, v^-)$$

som ikke eksakt oppfyller den vi har i (1).

Figur 2: Karakteristikk for ideell operasjonsforsterker

Oppdrag

Design og bygg "din" operasjonsforsterker. Designet skal dokumenteres slik at en kompetent leser ("Olga") kan forstå hvordan du har tenkt og selv kunne replikere arbeidet. Forsyninsspenningen V skal være ± 5 volt.

Spesielt skal følgende egenskaper undersøkes:

- Forsterking A ved sinuspåtrykk med frekvens f = 1 kHz
- Total harmonisk distorsjon ved sinuspåtrykk med frekvens f = 1 kHz

De to punktene skal undersøkes ved to forskjellige lastmotstander: $R_{\rm L}=100$ kohm og $R_{\rm L}=100$ ohm. Du kan velge amplitude og DC-nivå på inngangssignalet selv.

Det skal også undersøkes hvor godt kretsløsningen virker som opamp i en inverterende forsterkerkobling med forsterking 10. Undersøk de samme egenskapene som for åpen løkke-forsterkning og med de samme to lastmotstandene $R_{\rm L}=100$ kohm og $R_{\rm L}=100$ ohm.

Frivillig: Mål inngangs- og utgangsmotstand for operasjonsforsterken med åpen løkke og negativ tilbakekobling.

Noen retningslinjer for vurdering

- Selve designet kan være enkelt. Det vil da resultere i en "dårlig opamp", men dersom du skriver en grundig analyse av virkemåte oppførsel, vil det gi et fullgodt resultat.
- Ved et mer avansert design, som på en eller flere måter ligger nærmere det ideelle, stilles mindre strenge krav til teoretisk beskrivelse av virkemåte.
- Forklaring av prinsipiell virkemåte kan i stor grad være kvalitativ. (Ikke nødvendig med mye matematikk). Husk at "teori" først og fremst har verdi i den grad den kan brukes til å forklare observasjoner av oppførselen til det ferdige systemet. Bruk gjerne referanser (for eksempel til) videoer for begrunnelser av detaljer i forklaringen.

• Dette prosjektet skal være dimensjonert slik at det skal være mulig å gjøre ferdig i løpet av en uke. Forventningene våre til kvaliteten på designet er justert tilsvarende. Den sene fristen er satt slik at de som ikke har mulighet til å jobbe denne uka skal få tid til å gjøre ferdig prosjektet. Det er altså ikke tiltenkt eller forventet fra vår side at dere skal jobbe med dette prosjektet utover den avsatte uka.

Tips

- Les gjennom hele dette designprosjektnotatet for å være sikker på hva som er forventet.
- Prøv å koble kretsen tett på koblingsbrettet og unngå bruk av lange ledninger. Da begrenser du strøkapasitanser og -induktanser som kan skape uheldige effekter i kretsen.
- Fungerer ikke systemet, prøv å koble tettere med kortere ledninger.
- Fungerer det fortsatt ikke, prøv å bytt ut transistorene.