1. Structures and Theories

1.1. Language and Structures

1.1.1. Definition

a language \mathcal{L} is defined by the following data

- 1. a set of functions $\mathcal F$ and positive integers n_f for each $f\in\mathcal F$ which is the arity of each function
- 2. a set of relations $\mathcal R$ and positive integers n_R foreach $R \in \mathcal R$ which is the arity of each relation
- 3. a set of constant symbols $\mathcal C$

all sets can be empty

1.1.2. Examples

- 1. the language of rings $\mathcal{L}_r = \{+, -, \cdot, 0, 1\}$
- 2. the language of ordered rings $\mathcal{L}_{or} = \mathcal{L}_r \cup \{<\}$
- 3. the language of pure sets $\mathcal{L} = \emptyset$
- 4. the language of graphs $\mathcal{L} = \{R\}$ where R is a binary relation

Remark: Seems to me that it resembles a lot the concept of an abstract interface in programming languages like: Interfaces in Java, Traits in Rust, Typeclasses in Haskell, Concepts in C++

1.1.3. Definition

An \mathcal{L} -structure \mathcal{M} is given by the following data:

- 1. a non empty set M called universe/domain/underlying set of $\mathcal M$
- 2. a function $f^{\mathcal{M}}: M^{n_f} \to M$ for each $f \in \mathcal{F}$
- 3. a set $R^{\mathcal{M}} \subseteq M^{n_R}$ for each $R \in \mathcal{R}$
- 4. an element $c^{\mathcal{M}} \in M$ for each $c \in \mathcal{C}$

the last 3 are called interpretations of their counterpart

 \mathcal{M} is generally given by a tuple of its components

1.1.4. Examples

for example we have the language of groups being $\mathcal{L}_g=\{\cdot,e\}$. an \mathcal{L} -structure $G=(\mathbb{R},\cdot,1)$ or even $G=(\mathbb{Z},+,0)$

Remark: This in turn looks to me like the implementation of the structure in programming languages

1.1.5. Definition

suppose \mathcal{M}, \mathcal{N} are structures of \mathcal{L} with universes M, N, an \mathcal{L} -embedding $\eta: \mathcal{M} \to \mathcal{N}$ is a one-to-one embedding map $\eta: M \to N$ that preserves structure as follows:

- 1. $\eta(f^{\mathcal{M}}(a_1, ..., a_n)) = f^{\mathcal{N}}(\eta(n_1), ..., \eta(n_n))$
- 2. $(a_1,...,a_m) \in R^{\mathcal{M}}$ iff $(\eta(a_1),...,\eta(a_m)) \in R^{\mathcal{N}}$
- 3. $\eta(n^{\mathcal{M}}) = c^{\eta(N)}$

some special cases:

- a bijective \mathcal{L} -embedding is callend an \mathcal{L} -isomorphism.
- if $M\subseteq N$ and inclusion map is an \mathcal{L} -embedding then \mathcal{M} is a substructure of \mathcal{N} and \mathcal{N} is an extension of \mathcal{M}

1.1.6. Examples

if $\eta:\mathbb{Z}\to\mathbb{R}$ is $\eta(x)=e^x$ then it is \mathcal{L} -embedding of $(\mathbb{Z},+,0)$ into $(R,\cdot,1)$

1.1.7. Definition

 \mathcal{L} -terms is the smallest set \mathcal{T} such that

- 1. $\forall c \in \mathcal{C}, c \in \mathcal{T}$
- 2. each variable symbol $v_i \in \mathcal{T}$ for $i \in \mathbb{N}^*$
- 3. if $t_1, ..., t_n \in \mathcal{T}$ and $f \in \mathcal{F}$ then $f(t_1, ..., t_n) \in \mathcal{T}$

1.1.8. Examples

for \mathcal{L}_r (ring language) we have \cdot $(v_1,-(v_3,1))$ and +(1,+(1,+(1,1))) this example is written in S-expressions like lisp but it works with infix

Remark: this also is exactly the same thing as defining what is a valid term in programming languages