(2007)(6) 若 P 两条异面直线 l, m 外的任意一点,则(B)

A.过点 P 有且仅有一条直线与 l,m 都平行 B.过点 P 有且仅有一条直线与 l,m 都垂直

C. 过点 P 有且仅有一条直线与l,m 都相交 D.过点 P 有且仅有一条直线与l,m 都异面

变式(1)过空间一点可作 条直线与两异面直线都相交.0,1,或无数条

(2) 在单位立方体 $ABCD - A_iB_iC_iD_i$ 中,过正方形 BCC_iB_i 的中心O作直线PQ与 A_iD_i 、CD分别交于点P、Q,

则 $PQ = ___. \sqrt{6}$

(1997 全国竞赛) 如果空间三条直线 a, b, c 两满成异面直线, 那么与 a, b, c 都相交的直线有 (D)

A.0 条

B. 1 条

C. 多于1 的有限条

D.无穷多条

变式 1: 如何作出一直线与两两异面的三条直线都相交?

变式 2: 如图,在棱长为 k 的正方体 $ABCD - A_iB_iC_iD_i$ 中,E 是正方形 $A_iB_iC_iD_i$ 内的点 σ (不含边界),记 d_1,d_2 分别是其到平面 ADD_1A_1 和 CDD_1C_1 的距离.若空间中

存在直线 l 与四条直线 AC_1 , BE, CD, A_1D_1 均相交,则(

$$A.d_1 + d_2 \ge \frac{\sqrt{2}}{2}k$$

$$B.d_1 + d_2 \le \frac{\sqrt{2}}{2}k$$

$$A.d_1 + d_2 \ge \frac{\sqrt{2}}{2}k$$
 $B.d_1 + d_2 \le \frac{\sqrt{2}}{2}k$ $C.\sqrt{d_1} + \sqrt{d_2} \ge \sqrt{k}$ $D.\sqrt{d_1} + \sqrt{d_2} \le \sqrt{k}$

$$D.\sqrt{d_1} + \sqrt{d_2} \le \sqrt{k}$$

key:如图,由已知得 $EG = d_1, D_1G = d_2$,直线CD上取点P,设CP = x,

作PH / BC交直线AB于H,设平面 $A_iD_1PH \cap AC_1 = Q$,

连
$$PQ$$
交 A_1D_1 于 R ,则 $\frac{D_1Q}{OH} = \frac{D_1C_1}{AH} = \frac{k}{k+x} = \frac{D_1R}{PH} = \frac{D_1R}{k}$,

$$\therefore D_1 R = \frac{k^2}{k+r}, \therefore$$
 直线 PQR 与 BE 相交, $\therefore ER / /PB$

$$\therefore \frac{EG}{GR} = \frac{d_1}{\frac{k^2}{k+x} - d_2} = \frac{x}{k} \mathbb{E}[kd_1 + xd_2] = \frac{k^2x}{k+x} \mathbb{E}[d_2x^2 + (kd_2 + kd_1 - k^2)x + k^2d_1] = 0$$

$$\therefore \Delta = k^2 (d_1 + d_2 - k)^2 - 4k^2 d_1 d_2 \ge 0, \\ \therefore |d_1 + d_2 - k| = k - d_1 - d_2 \ge 2\sqrt{d_1 d_2}, \\ \therefore \sqrt{d_1} + \sqrt{d_2} \le \sqrt{k}$$

A.命题 I 正确, 命题 II 不正确 B.命题 II 正确, 命题 I 不正确

C.两个命题都正确

D.两个命题都不正确

(2010 重庆)到两互相垂直的异面的距离相等的点,在过其中一条直线上于行于另一条直线的平面内的轨

迹是(D)A.直线

B. 椭圆

C. 抛物线

C.双曲线

(2015 高考) (13) 如图,三棱锥 A - BCD中,AB = AC = BD = CD = 3, AD = BC = 2,

点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是_

- 变式 1(1) ①若a与b成60°角,则过P可作 _____ 条直线与a、b都成70°角; 4
- ②若a,b,c两两互相垂直,则过P可作____条直线与a、b、c成等角;4
- ③设直线 $l \subset$ 平面 α ,过平面 α 外一点A且与l、 α 都成30°角的直线有且只有_____条;2
- (2) ①已知两异面直线a与b成60°角,则过空间一定点P可作与a、b所成角都是30°的平面的个数为 .3
- ②(2009 重庆)已知二面角 α l β 的大小为 50°,P 为空间中任意一点,则过点 P 且与平面 α 和平面 β 所成的角都是 25° 的直线的条数为(B) A. 2 B. 3 C. 4 D. 5
- ③过空间一点可作______个平面,与正四棱锥的四个侧面成等角.3
- 变式 2(1)①已知正方体 $ABCD A_iB_iC_iD_i$ 中平面 α 过顶点 A,α / /平面 CB_iD_i,α \cap 平面ABCD = m, α \cap 平面 $ABB_iA_i = n$,则m与n所成角为______. 60°
- ② 在正方体 $ABCD A_iB_iC_iD_i$ 中若P、Q分别是 CC_i 、 A_iD_i 的中点. 则PQ与 BD_i 所成角的余弦值为_____.

- ②三棱锥 D ABC, $\angle ACD = 2\angle ACB = 120^\circ$, CD = 2BC,则异面直线 AD = BC 所成角可能是(B) B
- $A.30^{\circ}$ $B.45^{\circ}$ $C.60^{\circ}$ $D.75^{\circ}$

key:(构造直三棱柱)作 $AF \perp BC \uparrow F$, $DE \perp BC \uparrow E$,

作 EA_1 / / AF,连 AA_1 ,作AG / / BC,连BG,GD

令
$$BC = 1, \angle DEA_1 = \theta$$
,则 $CE = 1, CF = \frac{1}{2}, EF = \frac{3}{2}, AF = \frac{\sqrt{3}}{2}, DE = \sqrt{3},$

$$DA_1 = \sqrt{\frac{15}{4} - 3\cos\theta}, \text{则} \tan\alpha = \frac{2}{3}\sqrt{\frac{15}{4} - 3\cos\theta} \in (\frac{\sqrt{3}}{3}, \sqrt{3})$$

- (2011 竞赛)14. 直三棱柱 $ABC A_1B_1C_1$ 中,底面 $\triangle ABC$ 是正三角形,P, E分别为 BB_1, CC_1 上的动点(含端点),D为BC上的点,且 $PD \perp PE$,则直线AP, PE的夹角为______. 90°

$$\therefore \tan \theta \ge \frac{1 - \tan^2 \theta}{2 \tan \theta} \, \exists \Pi \frac{1}{x} = \tan \theta \ge \frac{1}{\sqrt{3}}, \therefore x \in (0, \sqrt{3}]$$

变式 1 (1) 若 $\triangle ABC$ 的边 BC 上存在一点 M (异于 B.C),将 $\triangle ABM$ 沿 AM 翻折后使得 $AB \perp CM$,则内角 A,B,C 必满足(B)A. $B \ge 90^{\circ}$ B. $B < 90^{\circ}$ C. $A \ge 90^{\circ}$ D. $A < 90^{\circ}$

(2) 如图,在 $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$ 、 $\angle CAB = \theta$,M为AB的中点,将 $\triangle ACM$ 沿着CM翻折至 $\triangle A'CM$,

使得 $A'M \perp MB$,则 θ 的取值不可能为() $A.\frac{\pi}{9}$ $B.\frac{\pi}{6}$ $C.\frac{\pi}{5}$ $D.\frac{\pi}{3}$

key:如图, $4\theta \ge \frac{\pi}{2}$ 即 $\theta \ge \frac{\pi}{8}$

(2012)(10) 已知矩形 ABCD, AB=1, $BC=\sqrt{2}$. 将 $\triangle ABD$ 沿矩形的对角线 BD 所在的直线进行翻折,

在翻折过程中,(B)A. 存在某个位置,使得直线 AC 与直线 BD 垂直

- B. 存在某个位置, 使得直线 AB 与直线 CD 垂直
- C. 存在某个位置, 使得直线 AD 与直线 BC 垂直

D. 对任意位置, 三直线"AC 与 BD", "AB 与 CD", "AD 与 BC"均不垂直 $key: \angle ABA' > 90^{\circ}, \angle ADA' < 90^{\circ}, \therefore$ 选B

变式 1 (1) 如图, 在矩形 ABCD 中, BC = 1, AB = x, BD和AC交于点O, 将 $\triangle BAD$ 沿直线BD翻折,

则下列判断错误的是()A.存在x,在翻折过程中存在某个位置,使得 $AB \perp OC$

B.存在x, 在翻折过程中存在某个位置, 使得 $AC \perp BD$

- C.存在x,在翻折过程中存在某个位置,使得 $AB \perp$ 平面CD
- D.存在x,在翻折过程中存在某个位置,使得 $AC \perp$ 平面ABD

A. $\alpha < \angle A'CA$ B. $\alpha > \angle A'CA$ C. $\alpha < \angle A'CD$ D. $\alpha > \angle A'CD$ key:如图,设 $\angle AEA' = \theta, EB = a, ED = b, 则$

$$\therefore \angle A'CA < \angle ABA' = \alpha$$

