선반에서 기계 학습을 통해 공구 마모 진단을 위한 빅데이터 수집 장치 개발

정석준(홍익대학교), 정승원(홍익대학교), 한태연(홍익대학교)

Keywords: Machine learning, Tool wear diagnosis, Sensor fusion, Piezo sensor, Microphone

연구 목적

- 공구 마모의 진단과 예측을 통한 적절한 시기의 교체는 가공의 생산 효율 향상과 직결됨
- 중소 가공 업체에서 진단 시스템의 적용은 비용적 부담과 기존에 사용 중인 선반과의 호환성의 문제가 있음
- 저비용의 장비를 이용하여 간편한 부착 방식의 데이터 수집 모듈을 제작하고, 기계 학습을 통해 자체적으로 공 구 마모 진단이 가능한 장치를 개발

센서 선정

• 고성능의 가속도계와 마이크로폰을 대신하여 저가의 피 에조 센서와 마이크로폰을 공구 마모 진단 장치 탑재용 으로 사용

	고성능	저비용
Microphone	CRY333-T1	GY-MAX9814
Vibration sensor	AC214-1D	DFR0052

공구 마모 진단 가능성 검증

• FFT 분석 결과, 진동은 6kHz 부근에서, 소음은 10k~ 15kHz 에서 공구 상태에 따른 차이가 확인됨

센서 신뢰도 검증

표1. 고성능, 저비용 센서 모델명

	Kurtosis		Skewness	Skewness		
	Mean	Std	Mean	Std		
ACC	3.33	0.54	1.65	0.07		
Piezo	2.31	1.14	1.14	0.31		
Mic High	2.19	1.11	0.99	0.17		
Mic Low	1.58	0.59	1.06 0.13			
표2. 고성능, 저비용 센서의 4회 실험에 대한 첨도와 왜도의 평균과 표준편차						

데이터 수집

공구 마모 진단 장치 개발

• 탈부착이 용이하도록 자석을 이용, 가공 과정에 영향을 미치지 않는 Tool Slide에 위치 시킴

마모 공구 Sequence : **20회**

그림1 라즈베리 파이와 저비용 센서를 이용한 기기 그림2. Tool Slide에 부착한 데이터 수집 실험 사진

시퀀스 설계

• 현업의 가공 실태를 고려하여, 서로 다른 가공 조건의 공정을 합친 일련의 공정 시퀀스 설계

			Spindle speed(rpm)	Feed rate(mm/re	Depth v) of cut(mm)	Length (mm)	
	_	Proess1	900	0.33	2	25	
		Proess2	900	0.24	2	20	
		Proess3	900	0.24	3	15	
	Process 3 Process 2	표3. 각각의 프로세스 별 가공 조건			Insert : CNMG120408B25-NC3030 Workpiece : S45C		
◆	Process 1	Sequence 1			정상 공구 Sequence : 32회		

그림3. 세개의 프로세스를 통한 1개의 시퀀스 설계

데이터 전처리과정

데이터 분석 및 학습

Kurtosis

그림4. 데이터 전처리 과정

Filtered data

머신러닝 알고리즘 모델 선정

• 정밀도가 가장 좋은 XGBoost를 공구 마모 진단 장치 탑재용 알고리즘으로 선정

공구 마모 진단 결과 도출 과정

• 센서 별 알고리즘의 결과를 종합하여 진단 결과 도출

공구 마모 진단 장치 성능 검증

• 임의의 공구를 이용한 시퀀스 실험 결과 공구 마모 진 단 정확성 95.8% 달성

그림8. XGBoost 실험 결과 Scatter plot (a)Piezo Sensor (b) Microphone

고성능 장비에 비해 97.6% 비용 감축 _(8,046,680₩ -> 189,770₩)

향후 계획

- 전용 부품 사용을 통한 소형화와 데이터 수집 성능 향상
- 저가형 공구 마모 진단 장치 보급화의 가능성 시사