Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2022/2

INF/UFG – LFA 2022/2 – H. Longo

(1 - 1 de d

Roteiro

INF/UFG - LFA 2022/2 - H. Longo

Operações com cadeias (2 - 10 de 88)

Definições

Alfabeto: conjunto finito de símbolos ou caracteres.

 \triangleright {0, 1}, {a, b}, {a, b, c, ..., z}.

Cadeia de símbolos: sequência de zero ou mais símbolos (de um alfabeto)

justapostos.

 \triangleright ϵ , 0, 1, 010, 1010101010101010..., abbbbb, abc...

Palavra: cadeia finita de símbolos.

 \triangleright ε , 0, 1, 010, 1010101010101010, abbbbb, abc...xyz.

Notação

 Σ : conjunto de símbolos (um alfabeto).

ε: cadeia ou palavra vazia.

 Σ^* : conjunto de todas as cadeias possíveis sobre Σ .

 Σ^+ : $\Sigma^* - \{\varepsilon\}$.

|w|: comprimento ou tamanho da cadeia w (número de símbolos que compõem w)

Palavra, prefixo, sufixo, tamanho

Prefixo : subsequência inicial de símbolos de uma palavra.

Sufixo : subsequência final de símbolos de uma palavra.

Subpalavra : sequência de símbolos contíguos de uma palavra.

Exemplo 1.1

- ▶ Se $\Sigma = \{a, b\}$, então:
 - $\Sigma^+ = \{a, b, aa, ab, ba, bb, aaa, ...\}.$
 - $\triangleright \Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, \ldots\}.$
- ► Se abcb é uma palavra sobre o alfabeto $\Sigma = \{a, b, c\}$, então:
 - $|abcb| = 4 e |\varepsilon| = 0.$
 - \triangleright ε , a, ab, abc, abcb são os prefixos;
 - \triangleright $\varepsilon, b, cb, bcb, abcb$ são os sufixos;
 - \triangleright ε , ab, bc, bcb são exemplos de subpalavras.

NF/UFG - LFA 2022/2 - H, Longo Operações com cadeias (3 - 10 de 88) NF/UFG - LFA 2022/2 - H, Longo Operações com cadeias (4 - 10 de 88)

Concatenação de palavras

- ▶ Operação binária, definida sobre uma linguagem £, que associa a cada par de palavras uma palavra formada pela justaposição da primeira com a segunda.
 - Se $v, w \in \mathcal{L}$, então vw é a concatenação de v e w.
- Não é necessariamente fechada em ⊥:
 - a concatenação de duas palavras de uma linguagem não necessariamente resulta em uma palavra da linguagem.
- É associativa:
 - ► Se $t, v, w \in \mathcal{L}$, então v(wt) = (vw)t = vwt
- ► A palavra vazia é o elemento neutro à esquerda e à direita:
 - $\triangleright \varepsilon w = w = w\varepsilon$.

Comprimento de uma cadeia

|w|: Definição recursiva.

$$|w| = \begin{cases} 0 & \text{se } w = \varepsilon; \\ |v| + 1 & \text{se } w = va, \text{ tal que } v \in \Sigma^* \text{ e } a \in \Sigma. \end{cases}$$

 $|w|_a$: Nr. de ocorrências do símbolo a na palavra w.

- \triangleright Ex.: $|\varepsilon|_a = 0$, $|abb|_a = 1$, $|aba|_a = 2$, ...
- Definição recursiva:

$$|w|_a = \begin{cases} 0 & \text{se } w = \varepsilon; \\ |v|_a & \text{se } w = vb \text{ e } a \neq b \quad (v \in \Sigma^* \text{ e } a, b \in \Sigma); \\ |v|_a + 1 & \text{se } w = va \quad (v \in \Sigma^* \text{ e } a \in \Sigma). \end{cases}$$

INF/UFG - LFA 2022/2 - H. Longo

Operações com cadeias (5 - 10 de 88

INF/UFG - LFA 2022/2 - H. Longo

Operações com cadeias (6 - 10 de 88

Concatenação de palavras

Definição 1.2

▶ Sejam $u, v \in \Sigma^*$. A concatenação de u e v (uv) é uma operação binária em Σ^* definida como:

Base: Se |v| = 0, então $v = \varepsilon$ e uv = u.

Recursão: Se v é uma cadeia com |v| = n > 0, então uv = (uw)a e v = wa, para alguma cadeia w tal que |w| = n - 1 e $a \in \Sigma$.

Definição 1.3

 \triangleright w^n : n concatenações sucessivas da palavra $w \in \mathcal{L}$:

Base: $w^0 = \varepsilon$.

Recursão: $w^n = w^{n-1}w$, para n > 0.

Concatenação de palavras

Teorema 1.4

Se $u, v, w \in \Sigma^*$, então (uv)w = u(vw).

Demonstração (Indução no comprimento de w).

Base: Se |w| = 0, então $w = \varepsilon$ e (uv)w = uv (pela definição de concatenação). Por outro lado, u(vw) = u(v) = uv.

Hipótese: Suponha que (uv)w = u(vw) para toda cadeia w com |w| = n.

Concatenação de palavras

Teorema 1.4

► Se $u, v, w \in \Sigma^*$, então (uv)w = u(vw).

Demonstração (Indução no comprimento de w).

Passo indutivo: Seja uma cadeia w com |w| = n + 1. Então w = xa para alguma cadeia x de comprimento n e $a \in \Sigma$.

INF/UFG - LFA 2022/2 - H. Longo

Operações com cadeias (9 - 10 de 88

Concatenação de palavras

Teorema 1.4

► Se $u, v, w \in \Sigma^*$, então (uv)w = u(vw).

Demonstração (Indução no comprimento de w).

Passo indutivo: Seja uma cadeia w com |w| = n + 1. Então w = xa para alguma cadeia x de comprimento n e $a \in \Sigma$.

$$(uv)w = (uv)(xa)$$
 (substituição, $w = xa$)
 $= (uv)xa$ (definição de concatenação)
 $= ((uv)x)a$ (definição de concatenação)
 $= (u(vx))a$ (hipótese indutiva, $|x| = n$)
 $= u((vx)a)$ (definição de concatenação)
 $= u(v(xa))$ (definição de concatenação)
 $= u(v(w))$ (substituição, $xa = w$)
 $= u(vw)$.

INF/UFG - LFA 2022/2 - H. Longo

Operações com cadeias (10 - 10 de 88

Reverso de uma cadeia

Definição 1.5

▶ Seja a cadeia $u \in \Sigma^*$. A cadeia reversa u^R de u é definida como:

Base: Se |u| = 0, então $u = \varepsilon$ e $\varepsilon^R = \varepsilon$.

Recursão: Se |u| = n > 0 e u = wa, com $w \in \Sigma^*$, |w| = n - 1 e $a \in \Sigma$, então $u^R = aw^R$.

Exemplo 1.6

 $\bullet \ (abc)^R = c(ab)^R = c(b(a)^R) = c(b(a(\varepsilon)^R)) = c(b(a(\varepsilon))) \equiv cba.$

Reverso de uma cadeia

Teorema 1.7

• Seja $u, v \in \Sigma^*$. Então $(uv)^R = v^R u^R$.

Demonstração (Indução no comprimento de v).

Base: Se |v| = 0, então $v = \varepsilon$ e $(uv)^R = u^R$. De forma semelhante, $v^R u^R = \varepsilon^R u^R = u^R$.

Hipótese: Suponha que $(uv)^R = v^R u^R$ para toda cadeia v com |v| = n.

Reverso de uma cadeia

Teorema 1.7

► Seja $u, v \in \Sigma^*$. Então $(uv)^R = v^R u^R$.

Demonstração (Indução no comprimento de *v*).

Passo indutivo: Se v é uma cadeia com |v| = n + 1, então v = wa para alguma cadeia w de comprimento $n \in a \in \Sigma$.

$$(uv)^R = (u(wa))^R$$

 $= ((uw)a)^R$ (associatividade da concatenação)
 $= a(uw)^R$ (definição de reverso)
 $= a(w^Ru^R)$ (hipótese indutiva: $|w| = n$)
 $= (aw^R)u^R$ (associatividade da concatenação)
 $= (wa)^Ru^R$ (definição de reverso)
 $= v^Ru^R$.

Operações com cadeias (13 - 26 de 88

Linguagens formais

- ightharpoonup Dado um alfabeto Σ , uma linguagem em Σ é um conjunto de sequências de símbolos (palavras) do alfabeto.
- Se $\Sigma = \{a, b\}$, então são linguagens sobre Σ :
 - Finitas: o conjunto vazio e o conjunto formado pela palavra vazia. (Atenção: $\{\} \neq \{\varepsilon\} \neq \varepsilon$).
 - Finitas: $\{a, b, aa, ab, ba, bb\}, \{\varepsilon, aaa, bbb\}, \{aaa, aab, aba, abb\}.$
 - Infinitas: o conjunto $\{\varepsilon, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, ...\}$ de palíndromos sobre Σ .
- Linguagem Σ^* : conjunto de todas as sequências de símbolos do alfabeto Σ .
 - $\epsilon \in \Sigma^*$.
 - $\mathcal{L} \subseteq \Sigma^*$, se \mathcal{L} é uma linguagem em Σ .

INF/UFG - LFA 2022/2 - H. Longo

INF/UFG - LFA 2022/2 - H. Longo

Operações com cadeias (14 - 26 de 88

Linguagens formais

- Especificação de uma linguagem:
 - Descrição não ambígua das cadeias da linguagem.
- Linguagem finita:
 - Enumeração de suas cadeias.
- Linguagem infinita:
 - Definição recursiva das cadeias (para linguagens com estrutura sintática simples).
 - Construção a partir de conjuntos finitos através dos operadores de conjuntos.
 - Definição por expressões regulares.
 - Definição por gramática regular.

Conjuntos definidos por indução

Uma definição indutiva/recursiva de um conjunto C tem a seguinte forma:

Base: Especificação de um ou mais elementos "iniciais" de C (todos os elementos de menor tamanho possível).

Recursão: Uma ou mais regras para construção de "novos" elementos de C a partir de elementos "antigos" de C.

Fecho: O conjunto *C* consiste exatamente dos elementos que podem ser obtidos, começando-se com os elementos iniciais de C, aplicando-se as regras de recursão para a construção de novos elementos.

▶ **Obs.:** A condição de fechamento é frequentemente omitida, uma vez que é sempre assumida nas definições indutivas.

Definição recursiva de linguagens

Exemplo 1.8

Seja Σ um alfabeto. A definição recursiva do conjunto Σ*, das cadeias definidas sobre Σ. é:

Base: $\varepsilon \in \Sigma^*$.

Recursão: Se $w \in \Sigma^*$ e $a \in \Sigma$, então $wa \in \Sigma^*$.

Fecho: $w \in \Sigma^*$ se w pode ser obtida a partir de ε com um número finito de aplicações do passo recursivo.

INF/UFG - LFA 2022/2 - H. Longo

Operações com cadeias (17 - 26 de 88

Definição recursiva de linguagens

Exemplo 1.9

Linguagem \mathcal{L} , sobre o alfabeto $\Sigma = \{a, b\}$, que contém cadeias de comprimento par e começam com a:

Base: $aa, ab \in \mathcal{L}$.

Recursão: Se $u \in \mathcal{L}$, então $uaa, uab, uba, ubb \in \mathcal{L}$.

Fecho: Uma cadeia $u \in \mathcal{L}$ se pode ser obtida a partir das cadeias básicas, com a aplicação um número finito de vezes da recursão.

38) INF/UFG – LFA 2022/2 – H. Longo

Operações com cadeias (18 - 26 de 88

Definição recursiva de linguagens

Exemplo 1.10

Linguagem \mathcal{L} , sobre o alfabeto $\Sigma = \{a, b\}$, que contém cadeias de comprimento múltiplo de 3:

Base: $\varepsilon \in \mathcal{L}$.

Recursão: Se $u \in \mathcal{L}$, então aaau, aabu, abau, abau, baau, babu, bbau, $bbbu \in \mathcal{L}$. Fecho: Uma cadeia $u \in \mathcal{L}$ se pode ser obtida a partir das cadeias básicas, com a aplicação um número finito de vezes da recursão.

Definição recursiva de linguagens

Exemplo 1.11

Linguagem \mathcal{L} , sobre o alfabeto $\Sigma = \{a, b\}$, cujas cadeias contém quantidade ímpar de ocorrências de ab:

Base: $ab \in \mathcal{L}$.

Recursão: Seja $u \in \mathcal{L}$. Se u = av, $v \in \Sigma^+$, au, $bu \in \mathcal{L}$; se u = bv, $v \in \Sigma^+$, bu, auab, $abau \in \mathcal{L}$; se u = va, $v \in \Sigma^+$, ua, abub, $ubab \in \mathcal{L}$; se u = vb, $v \in \Sigma^+$, ua, $ub \in \mathcal{L}$.

Fecho: Uma cadeia $u \in \mathcal{L}$ se pode ser obtida a partir das cadeias básicas, com a aplicação um número finito de vezes da recursão.

Definição recursiva de linguagens

Exemplo 1.12

▶ Linguagem \mathcal{L} , sobre o alfabeto $\Sigma = \{a, b\}$, que contém cadeias em que cada ocorrência de um b é precedida de um a:

Base: $\varepsilon \in \mathcal{L}$.

Recursão: Se $u \in \mathcal{L}$, então $ua, uab \in \mathcal{L}$.

Fecho: Uma cadeia $u \in \mathcal{L}$ se pode ser obtida a partir das cadeias básicas, com a aplicação um número finito de vezes da recursão.

▶ Linguagem \mathcal{L} , sobre o alfabeto $\Sigma = \{a, b\}$, cujas cadeias não contém *b*'s consecutivos:

Base: $\varepsilon, b \in \mathcal{L}$.

Recursão: Se $u \in \mathcal{L}$, então $ua, uab \in \mathcal{L}$.

Fecho: Uma cadeia $u \in \mathcal{L}$ se pode ser obtida a partir das cadeias básicas,

com a aplicação um número finito de vezes da recursão.

Livros texto

Discrete and Combinatorial Mathematics - An Applied Introduction. Addison Wesley, 1994.

How To Prove It – A Structured Approach.

Introdução à Teoria de Autômatos, Linguagens e Computação.

T. A. Sudkamp.

Languages and Machines - An Introduction to the Theory of Computer Science. Addison Wesley Longman, Inc. 1998.

Theory of Finite Automata - With an Introduction to Formal Languages.

Introduction to the Theory of Computation.

PWS Publishing Company, 1997.

H. R. Lewis; C. H. Papadimitriou

Elementos de Teoria da Computação. Bookman, 2000.

INF/UFG - LFA 2022/2 - H. Longo INF/UFG - LFA 2022/2 - H. Longo Operações com cadeias (21 - 26 de 88) Bibliografia (22 - 26 de 88)