

CONCEPTION ET VÉRIFICATION DE SYSTÈMES CRITIQUES INTRODUCTION AUX MÉTHODES FORMELLES

2A Cursus Ingénieurs - ST5 : Modélisation fonctionnelle et régulation

m CentraleSupelec - Université Paris-Saclay - 2024/2025

OUTLINE

- On the need of Verification
- On the need of Formal Methods
- Program Proof
- > First Order Logic
- > Principle of Model-Checking
- > System Modeling

Back to the outline - Back to the begin

OUTLINE

- > On the need of Verification
- On the need of Formal Methods
- Program Proof
- > First Order Logic
- > Principle of Model-Checking
- > System Modeling

Back to the outline - Back to the begin

DEPENDABILITY OF CONTROL SYSTEMS

- A Control System is composed of 3 parts:
 - 1. Sensors
 - 2. Actuators
 - 3. Control Software that is critical in the Nuclear context!

Critical Software

For which a failure can be catastrophic:

- fatal or/and extremely costly
- Some spectacular failures of critical softwares :
 - Crash of Ariane 5
 - LASCAD: Crash of London Ambulance CAD service
 - Therac-25: 7 deaths of cancer patients due to overdoses of radiation

CONTROL SOFTWARE VERIFICATION

- 1. Take the software
- 2. Determine what the software is supposed to do
- 3. Prove that the software does what it is supposed to do

Software verification

Software verification checks/proves whether a system fulfills the qualitative requirements that have been identified in its specification

- Imposed by Certification Organisations
 - Several famous examples of abandoned projects, caused by impossibility of the verification step
 - Ex: P20 portion of the french nuclear reactor protection

VERIFICATION vs TESTING

Testing is a common dynamic technique where the system is executed

• Testing procedure:

- take an implementation
- stimulate it with certain inputs, i.e., the tests
- observe reaction and check whether this is "desired"

• Testing drawbacks:

- number of possible behaviors is very large (or even infinite)
- unexplored behaviors may contain the fatal bug
- testing is biased towards the most probable scenarios
- Testing may prove the presence of errors, not their absence!
- Verification proves the absence of errors (or finds them)

OUTLINE

- On the need of Verification
- On the need of Formal Methods
- > Program Proof
- > First Order Logic
- > Principle of Model-Checking
- > System Modeling

Back to the outline - Back to the begin

ON THE NEED OF FORMAL METHODS

Verification has to be provable!

Definition of Formal Methods:

Formal Methods are the applied mathematics for modeling, analyzing and verifying systems

- The formal form of the verification problem is $M \models^? \varphi$ where:
 - *M* is the formal representation of the system under observation
 - ullet φ is the formal representation of the property to be verified

IAEA SAFETY STANDARDS SERIES

Safety Guide of Nuclear Power Plants - IAEA

- Requirements and descriptions of designs should be stated formally . . .
- When formal languages are used to specify requirements or designs, theorem provers
 and model checkers may also aid in verifiability . . .
- When software requirements have been formally specified, it is possible to undertake **formal code verification**. However, formal verification generally requires considerable expertise, and therefore consulting competent analysts should be considered . . .

6 MYTHS ON FORMAL METHODS

- 1. The use of formal methods guarantees perfect software
 - Nonsense, a formal specification is a model of the real world. Modeling may bring mistakes, omissions and ambiguities
- 2. The use of formal methods is restricted to proving software
 - Before program proving, formal specification of a system forces a detailed analysis, early in the development
- 3. The use of formal methods is restricted to critical systems
 - Industrial developments show that using formal methods reduce costs for all types of systems (of mass production)

6 MYTHS ON FORMAL METHODS

- 4. Only mathematicians can use formal methods
 - Nonsense, the mathematics that are used are elementary
- 5. Formal methods increase development costs
 - Unproved, costs are shifted to the beginning of the cycle
- 6. Formal methods are used only for small systems
 - Several very large projects have used formal methods

OUTLINE

- On the need of Verification
- On the need of Formal Methods
- Program Proof
- First Order Logic
- > Principle of Model-Checking
- > System Modeling

Back to the outline - Back to the begin

FORMAL VERIFICATION OF SEQUENTIAL SOFTWARE

Definition of Sequential Software

A sequence of instructions that terminates and the result is computed from initial data

- Pre-Condition: property satisfied by the program initial data before the execution of the instructions
- Post-Condition: property satisfied by the program result and variables after the execution of the instructions

Verification of Sequential Software (Program Proof)

- Prove that if pre-condition is satisfied then post-condition is satisfied
- Find the most general pre-condition

EXAMPLE

• Software:

Array Sort

■ Initial data:

Array T of size N

Result:

Sorted Array T of size N

• Post-Condition:

$$\forall n, m \in [1..N], \ n < m \Longrightarrow T[n] < T[m]$$

• Most general Pre-Condition:

$$orall n, m \in [1..N], \ n
eq m \Longrightarrow T[n]
eq T[m]$$

THE HOARE PROOF SYSTEM

The Hoare Proof System provides for each type of instructions an **Axiom**/Rule to find the most general pre-condition φ (general form : $\{\varphi\}$ P $\{\psi\}$)

- Assignment axiom :
 - ex:
 - ex:
- Loop axiom:
 - if φ is a loop invariant :
- Choice axiom :
 - if:
 - else:

$$\{ arphi[expr/x] \} \ x = expr \{ arphi \}$$

 $\{ y == 5 \} \ x = y + 5 \{ x == 10 \}$

$$\{x^2 < 4\} \ x = x * x \{x < 4\}$$

$$\{arphi\}$$
 while (C) P $\{arphi \wedge \neg C\}$ $\{arphi \wedge C\}$ P $\{arphi\}$

$$\{\varphi\} \text{ if}(C) \ P1 \text{ else } P2 \ \{\psi\}$$

$$\{\varphi \land C\} \ P1 \ \{\psi\}$$

$$\{\varphi \land \neg C\} \ P2 \ \{\psi\}$$

PROOF EXAMPLE

```
pre-condition: n \geq 0 // initial data : n
 0 == 0 \land 0 \le n
 \sum_{k=0}^{0} k == 0 \land 0 \le n
 i = 0;
\sum_{k=0}^{i} k == 0 \land i \leq n
 res = 0;
\sum_{k=0}^{i} k == res \wedge i \leq n \ / / \ arphi
 while (i < n) { // C
                        (\sum_{k=0}^i k == res \wedge i \leq n) \wedge i < n 
olimits 
olimits 
olimits // 
a 
olimits // 
olimi
                        \sum_{k=0}^i k == res \wedge i < n
                        \sum_{k=0}^{i+1} k == res + i + 1 \wedge (i+1) \leq n
                       i = i + 1;
                        \sum_{k=0}^i k == res + i \wedge i \leq n
                       res = res + i;
                       \sum_{k=0}^i k == res \wedge i \leq n // arphi
 (\sum_{k=0}^i k == res \wedge i \leq n) \wedge i \geq n \; / / \; arphi \wedge 
eg C
 \sum_{k=0}^{i} k == res \wedge i == n
 post-condition: \sum_{k=0}^n k == res // result : res
```

OUTLINE

- On the need of Verification
- On the need of Formal Methods
- > Program Proof
- > First Order Logic
- > Principle of Model-Checking
- > System Modeling

Back to the outline - Back to the begin

FIRST ORDER LOGIC

- Program Proof is based on the Formal System of the First Order Logic (FOL)
 - pre-conditions, post-conditions, invariants, assertions . . .
- FOL is the logic you are used to use in mathematics
- The syntax :

$$egin{array}{lll} t &::= & c \mid x \mid f(t,\ldots,t) \ \phi &::= & true \mid a \mid t = t \mid P(t,\ldots,t) \mid \phi \wedge \phi \mid \neg \phi \mid \exists x. \; \phi \end{array}$$

• The semantics are as usual in mathematics

FOL FORMAL SYSTEM

Definition

- A Formal System consists of a set of **axioms** and a set of **inference rules** (reasoning) that are combined to **derive well formed formulas**
- A derivation that leads to a wff ${\mathcal F}$ is called a **proof** of ${\mathcal F}$

Axioms

$$egin{align} (ax1) \ A_x(t) &\Rightarrow \ \exists x. \ A \ (ax2) \ x = x \ (ax3) \ x = y \Rightarrow (A \Rightarrow A_x(y)) \ (ax4) \ A \Rightarrow (B \Rightarrow A) \ (ax5) \ \neg \neg A \Rightarrow A \ (ax6) \ (A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)) \ \end{pmatrix}$$

Rules

$$egin{array}{lll} (r1) \ A, \ A \Rightarrow B & \vdash B \\ (r2) \ A \Rightarrow B & \vdash \exists x. \ A \Rightarrow B \end{array}$$

FOL FORMAL SYSTEM

Soundness

A formal system is sound if each derived formula is valid i.e. semantically true.

A valid formula is called a theorem

Completeness

A formal system is complete if each valid formula could be derived, i.e. it exists a proof leading to the theorem

- First Order Logic is sound and complete!
- An automatic program prover tries many possible derivations (infinite) and after a time limit :
 - option 1/2 : it reaches the formula to prove → YES!
 - option 2/2 : it doesn't (it needs some help) → Inconclusive
- First Order Logic is semi-decidable!

OUTLINE

- > On the need of Verification
- On the need of Formal Methods
- > Program Proof
- > First Order Logic
- > Principle of Model-Checking
- > System Modeling

Back to the outline - Back to the begin

HISTORY OF FORMAL VERIFICATION METHODS

Before . . .

- Software code was sequential
- Properties were expressed in First-Order Predicate Logic
- Theorem provers : partial/total correctness
- e.g. B Method
- Hardly automated: semi-decidable

After 80's

- Software is **concurrent** and reactive
- Properties are expressed in **Temporal Logic**
- Solving accurate properties like safety, liveness, fairness . . .
- e.g. Model Checking
- Push-Button: decidable

PRINCIPLE OF MODEL-CHECKING

OUTLINE

- On the need of Verification
- On the need of Formal Methods
- Program Proof
- > First Order Logic
- > Principle of Model-Checking
- System Modeling

Back to the outline - Back to the begin

PRINCIPLE OF MODEL-CHECKING

TRANSITION SYSTEMS

- model to describe the behaviour of systems
- digraphs where nodes represent states, and edges represent transitions
- states:
 - the current colour of a traffic light: red, green, orange.
 - software: the current values of all program variables + the program counter
 - hardware: the current value of the registers together with the values of the input bits
- transitions: ("state change")
 - a switch from one colour to another
 - **software**: the execution of a program statement
 - hardware: the change of the registers and output bits for a new input

FORMAL DEFINITION

- A transition system TS is a tuple $(S, \delta, I, AP, \mathcal{L})$ where
 - S is a set of states
 - $\delta\subseteq S imes S$ is a transition relation Notation: s o s' instead of $(s,s')\in \delta$
 - ullet $I\subseteq S$ is a set of initial states
 - lacksquare AP is a set of Atomic Propositions
 - ullet $\mathcal{L}:S\longrightarrow 2^{AP}$ is a Labeling function

EXAMPLE

• States:

$$S = \{pay, select, tea, coffee\}$$

• Initial states:

$$I = \{pay\}$$

• Atomic Propositions, Labeling function:

• suppose
$$AP = S$$
,

$$\mathcal{L}(s) = \{s\}$$

$$ullet$$
 suppose $AP=\{pay,drink\}, \qquad \mathcal{L}(tea)=\mathcal{L}(coffee)=\{drink\}$

$$\mathcal{L}(pay) = \{pay\}, \quad \mathcal{L}(select) = \emptyset$$

FROM PROGRAMMING LANGUAGES TO TRANSITION SYSTEMS

- Transition systems are an elementary modeling language
 - describe all the states that the system may reach
 - describe the behavior of the system (transitions)
- Even a basic system may have thousands of states!
 - int i=0; while(i<1000) i++;</pre>
 - modeling could be tedious!
- What if the transition system is automatically generated from the system's program?
 - modeling would be automatic!
 - many tools exist from C, Java . . . to TS

DETERMINISM AND NONDETERMINISM

• Let $TS = (S, \delta, I, AP, \mathcal{L})$ be a transition system, TS is deterministic

$$lacktriangledown$$
 iff $orall \, s, s_1', s_2' \in S,$

$$lacktriangledown$$
 iff $orall s \in S,$

SOURCES OF NONDETERMINISM

- Incomplete information on the system environment
 - User selection
 - Triggered events

INTERLEAVING OF CONCURRENT SYSTEMS

- the system is composed by many concurrent components
- one transition system for modeling one component behavior
- e.g. threading, distributed algorithms and communication protocols

INTERLEAVING PRINCIPLE

- Actions of independent components are interleaved
 - a single processor is available
 - on which each component executes for a quantum of time
- No assumptions are made on the order of executions
 - possible orders for non-terminating independent components $Loop(P) \parallel Loop(Q)$:

main source of **nondeterminism** that can be avoided by adding a **scheduler** with a particular strategy

INTERLEAVING EXAMPLE

- Justification for interleaving:
 - the effect of concurrently executed independent actions equals the effect when they are successively executed in arbitrary order

INTERLEAVING $TS_1 \parallel TS_2$ FORMAL DEFINITION

Let $TS_i = (S_i, \delta_i, I_i, AP_i, \mathcal{L}_i), i = 1, 2$ be two transition systems.

The Interleaving Product (Asynchronous product) is the transition system:

$$TS_1 \parallel TS_2 = (S_1 imes S_2, \delta, I_1 imes I_2, AP_1 \cup AP_2, \mathcal{L})$$

where δ verifies:

$$rac{s_1 \longrightarrow s_1'}{\langle s_1, s_2
angle \longrightarrow \langle s_1', s_2
angle} \ \ and \ \ rac{s_2 \longrightarrow s_2'}{\langle s_1, s_2
angle \longrightarrow \langle s_1, s_2'
angle}$$

and \mathcal{L} verifies :

$$\mathcal{L}(\langle s_1, s_2
angle) = \mathcal{L}_1(s_1) \cup \mathcal{L}_2(s_2)$$

SEMAPHORE-BASED MUTUAL EXCLUSION

y=0 means "lock is currently possessed"; y=1 means "lock is free"

INTERLEAVING PRODUCT

Typical source of state explosion suppose there were 3 concurrent components

PATHS AND REACHABLE STATES

• An infinite path fragment π is an infinite state sequence:

$$\pi = s_0 s_1 s_2 \ldots$$
 such that $orall i > 0, s_i \longrightarrow s_{i+1} \in \delta$

- ullet Paths(s) is the set of infinite path fragments π with $first(\pi)=s$
- ullet $Paths(TS) = igcup_{s \in I} Paths(s)$ is the set of initial path fragments
- ullet A state $s\in S$ is called **reachable** in TS if there exists an initial path π fragment such that

$$\pi = s_0 s_1 \ldots s_{n-1} (s_n = s) s_{n+1} \ldots \in Paths(TS)$$

ullet Reach(TS) denotes the set of all reachable states in TS

BACK TO OUR EXAMPLE

 $Paths(\langle c_1, w_2, y = 0 \rangle)$?, Paths(TS)?, Reach(TS)?

TRACES

- States are observable through their atomic propositions
- Traces only focus on the (set of) atomic propositions that are valid along the execution (path)
- The trace of the path $\pi = s_0 s_1 s_2 \ldots \in S^{\omega}$ with $\mathcal{L}: S \longrightarrow 2^{AP}$ • $trace(\pi) = \mathcal{L}(s_0)\mathcal{L}(s_1)\mathcal{L}(s_2)\ldots \in (2^{AP})^{\omega}$
- ullet Traces are **infinite** words over the alphabet 2^{AP}
- $\bullet \ trace(\Pi) = \{trace(\pi) | \pi \in \Pi\}, Traces(s) = trace(Paths(s))$

and
$$Traces(TS) = \bigcup_{s \in I} Traces(s)$$

BACK TO OUR EXAMPLE

Let $AP = \{wait_1, crit_1, wait_2, crit_2\}$

 $Trace(\pi \ldots) = \emptyset\{wait_1\}\{crit_1\}\{crit_1, wait_2\}\{wait_2\}\{crit_2\}\ldots$

THANK YOU

PDF version of the slides

Back to the begin - Back to the outline