Probeklausur in Experimentalphysik 4

Prof. Dr. S. Schönert Sommersemester 2016 21.6.2016

Zugelassene Hilfsmittel:

- 1 Doppelseitig handbeschriebenes DIN A4 Blatt
- 1 nichtprogrammierbarer Taschenrechner

Die Bearbeitungszeit beträgt 90 Minuten. Es müssen nicht alle Aufgaben vollständig gelöst sein, um die Note 1,0 zu erhalten.

Aufgabe 1 (5 Punkte)

Die Wellenfunktion $\psi(r)$ eines Teilchens in einem eindimensionalen Potential sei

$$\psi(r) = N \frac{e^{ip_0 r/\hbar}}{\sqrt{a^2 + r^2}}$$

wobei a, p_0 reelle Parameter und N die Normierungskonstante ist.

- (a) Bestimmen Sie die Normierungskonstante N.
- (b) Sie messen den Ort r des Teilchens. Mit welcher Wahrscheinlichkeit findet man das Teilchen im Intervall $\left[\frac{-a}{\sqrt{3}}, \frac{a}{\sqrt{3}}\right]$?
- (c) Bestimmen Sie die Erwartungswerte für Ort $\langle r \rangle = \int_{-\infty}^{\infty} dr \psi^*(r) r \psi(r)$ und den Impuls $\langle p \rangle = \int_{-\infty}^{\infty} dr \psi^*(r) (-i\hbar \frac{\partial}{\partial r}) \psi(r)$ des Teilchens.

Hinweis: $\int \frac{1}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}$

Lösung

(a)

$$\langle \psi | \psi \rangle = 1 = N^2 \int_{-\infty}^{\infty} \frac{e^{-ip_0 r/\hbar} e^{ip_0 r/\hbar}}{a^2 + r^2} dr = N^2 \int_{-\infty}^{\infty} \frac{1}{a^2 + r^2} dr = \frac{N^2}{a} \arctan \frac{r}{a} \Big|_{-\infty}^{\infty} = \frac{N^2}{a} \pi \Rightarrow N = \sqrt{\frac{a}{\pi}}$$

$$[1,5]$$

(b)
$$\frac{a}{\pi} \int_{\frac{-a}{\sqrt{3}}}^{\frac{a}{\sqrt{3}}} \frac{1}{a^2 + r^2} dr = \frac{a}{\pi} \frac{1}{a} \arctan \frac{r}{a} \Big|_{\frac{-a}{\sqrt{3}}}^{\frac{a}{\sqrt{3}}} = \frac{1}{3}$$

[1]

$$\langle r \rangle = \int_{-\infty}^{\infty} dr \psi^*(r) r \psi(r) = \frac{a}{\pi} \int_{-\infty}^{\infty} \frac{r}{a^2 + r^2} dr = 0$$

wegen Symmetrie.

[1]

Es gilt:

$$\frac{\partial}{\partial r}\psi(r) = \left(\frac{ip_0}{\hbar} - \frac{r}{a^2 + r^2}\right)\psi(r). \tag{1}$$

$$\langle p \rangle = \int_{-\infty}^{\infty} dr \psi^*(r) (-i\hbar \frac{\partial}{\partial r}) \psi(r)$$
 (2)

$$= \int_{-\infty}^{\infty} dr \left(p_0 \psi^*(r) \psi(r) + i\hbar \psi^*(r) \frac{r}{a^2 + r^2} \psi(r) \right)$$
 (3)

$$= p_0 \tag{4}$$

wegen Symmetrie.

Alternativ:

$$\langle p \rangle = -\frac{i\hbar a}{\pi} \int_{-\infty}^{\infty} \left(\frac{ip_0}{\hbar \sqrt{a^2 + r^2}} - \frac{r}{(a^2 + r^2)^2} dr \right)$$
 (5)

$$= -\frac{i\hbar a}{\pi} \left(\frac{1}{a} \frac{ip_0}{\hbar} \arctan \frac{r}{a} \Big|_{-\infty}^{\infty} + \frac{1}{2} \frac{1}{a^2 + r^2} \Big|_{-\infty}^{\infty} \right)$$
 (6)

$$= -\frac{i\hbar a}{\pi} \left(\frac{ip_0}{a\hbar} \pi + 0 \right) = p_0 \tag{7}$$

[1,5]

Aufgabe 2 (6 Punkte)

In dieser Aufgabe wollen wir das System Erde-Sonne als "gravitatives Wasserstoffatom" betrachten. Ersetzen Sie dazu die Konstanten des Wasserstoffatoms $\frac{e^2}{4\pi\epsilon_0}$ durch GMm von Sonne-Erde $(m=5,98\cdot 10^{24}{\rm kg},M=1,99\cdot 10^{30}{\rm kg},G=6,67\cdot 10^{-11}\frac{{\rm m}^3}{{\rm s}^2{\rm kg}})$.

Hinweis: Einige der Werte in dieser Aufgabe können mit den meisten Taschenrechnern nicht direkt berechnet werden weil sie zu klein/groß sind. In solchen Fällen bietet es sich an, Zehnerpotenzen getrennt zu berechnen.

- (a) Berechnen Sie den "Bohr Radius" a_g des Systems.
- (b) Geben Sie die Energie E_n des Zustands n an.
- (c) Setzen Sie die klassische Energie E_{Ges} des Planeten gleich E_n . Zeigen Sie, dass $n = \sqrt{r_0/a_g}$ für einen Planeten der Masse m auf einer Kreisbahn mit Radius r_0 ($1AU = 1.496 \cdot 10^{11} \text{m}$) und schätzen Sie die Quantenzahl n_0 der Erde .
- (d) Welche Energie würde bei einem Übergang der Erde in den Zustand n_0-1 freigesetzt? Welche Wellenlänge hätte das dabei emittierte Photon (oder Graviton)? **Hinweis:** $\frac{1}{(n-1)^2} \approx \frac{1}{n^2} \frac{n+2}{n}$ für $n \gg 1$.

Lösung:

(a) Es ist

$$a_0 = \frac{4\pi\epsilon_0}{e^2} \frac{\hbar^2}{m} \tag{8}$$

und damit nach Teil (a)

$$a_g = \frac{\hbar^2}{GMm^2} = 2.34 \cdot 10^{-138} \text{m}$$
 (9)

[1]

(b) Aus den Wasserstoffenergien

$$E_n^{\rm H} = -\left(\frac{e^2}{4\pi\epsilon_0}\right)^2 \frac{m}{2\hbar^2} \frac{1}{n^2} \tag{10}$$

folgt mit Teil (a)

$$E_n = -(GMm)^2 \frac{m}{2\hbar^2} \frac{1}{n^2} \,. \tag{11}$$

[1]

(c) Es ist

$$E_{\text{Ges}} = \frac{1}{2}mv^2 - G\frac{Mm}{r_0} \,. \tag{12}$$

Mit der Kreisbahn-Bedingung

$$G\frac{Mm}{r_0^2} = \frac{mv^2}{r_0} \tag{13}$$

folgt:

$$E_{\text{Ges}} = -\frac{GMm}{2r_0} \,. \tag{14}$$

Damit:

$$E_{\text{Ges}} \stackrel{!}{=} E_n \Rightarrow n^2 = \frac{GMm^2}{\hbar^2} r_0 = \frac{r_0}{a_g} \Rightarrow n = \sqrt{\frac{r_0}{a_g}}.$$
 (15)

Für die Quantenzahl der Erde berechnet man daraus mit $r_0\approx 1.496\cdot 10^{-11}\mathrm{m}$:

$$n_0 = \sqrt{\frac{1.496 \cdot 10^{11}}{2.34 \cdot 10^{-138}}} = 2.53 \cdot 10^{74} \,. \tag{16}$$

[2]

(d) Mit Hilfe des Hinweises berechnet man:

$$\frac{1}{(n-1)^2} - \frac{1}{n^2} \approx \frac{1}{n^2} \left(\frac{n+2}{n} - 1 \right) = \frac{2}{n^3} \,. \tag{17}$$

Damit:

$$\Delta E = -\left(\frac{G^2 M^2 m^3}{2\hbar^2}\right) \left[\frac{1}{(n-1)^2} - \frac{1}{n^2}\right] \approx -\frac{G^2 M^2 m^3}{\hbar^2 n^3}$$
 (18)

Mit $n = n_0$:

$$\Delta E_0 = -2.09 \cdot 10^{-41} J \tag{19}$$

und da $|\Delta E| = \frac{hc}{\lambda}$:

$$\lambda = 9.50 \cdot 10^{15} \,\mathrm{m} \,. \tag{20}$$

[2]

Aufgabe 3 (7 Punkte)

- (a) Berechnen Sie nach dem Bohrschen Atommodell den Bahnradius und die Gesamtenergie im Grundzustand für ein negatives Myon μ^- ($m_\mu \approx 207 \cdot m_e$) im Feld eines Zinn-Kerns (Z=50, A=112)
- (b) Wie groß ist die Aufenthaltswahrscheinlichkeit des Myons im 1s-Zustand innerhalb des (Volumens des) Zinn-Kerns ($R \approx 1, 3\sqrt[3]{A}$ fm? Verwenden Sie die radiale Wellenfunktion $R_{10} = \sqrt{\frac{\beta^3}{2}} \cdot e^{-\frac{\beta}{2}r}$ mit $\beta = \frac{2Z}{a_0}$.

Hinweis: $\int x^2 e^{-\beta x} dx = -e^{-\beta x} \left(\frac{x^2}{\beta} + \frac{2x}{\beta^2} + \frac{2}{\beta^3} \right)$

- (c) Nehmen Sie nun an, ein Anti-Proton \overline{p} (Masse und alle Quantenzahlen ansonsten wie beim Proton) werde von einem Zinn-Kern eingefangen. Welche ist die tiefste Bohrsche Bahn, auf der das Anti-Proton den Kern noch **nicht** berührt?
- (d) Wie groß ist die Bindungsenergie für diese Bahn?

Lösung

(a) Mit n=1, Z=50 und $m_{\mu}=207 \cdot m_e$ erhält man für a_0 und E_R im Fall eines negativen Myons μ^- :

$$a_0 = \frac{4\pi\epsilon_0}{e^2} \frac{\hbar^2}{m_\mu} \quad \Rightarrow \quad a_0^\mu = \frac{1}{207} \cdot a_0$$
 (21)

$$r^{\mu} = a_0^{\mu} \frac{n^2}{Z} \tag{22}$$

$$E_R = -\frac{1}{2} \left(\frac{e^2}{4\pi\epsilon_0} \right)^2 \frac{m_e Z^2}{\hbar^2 n^2} \quad \Rightarrow \quad E_R^{\mu} = 207 \cdot E_R \cdot Z^2 \tag{23}$$

Einsetzen der Zahlenwerte ergibt

$$r_1^{\mu}(Sn) = 5, 12 \cdot 10^{-15} \text{m} \tag{24}$$

$$E_1^{\mu}(Sn) = -7,04 \text{MeV}$$
 (25)

[2]

(b) Die radiale Aufenthaltswahrscheinlichkeit erhält man durch die Integration bis zum Kernrand

$$P_{10}(R) = \int_0^R r^2 |R_{10}(r)|^2 dr = \frac{\beta^3}{2} \int_0^R r^2 e^{-\beta r} dr$$

Mit $\beta^{(\mu)}=\frac{2Z}{a_0^{(\mu)}},\,R\approx 1,3\cdot A^{\frac{1}{3}}$ fm = 6,3·10⁻¹⁵m und dem Hinweis aus der Angabe erhält man für die Aufenthaltswahrscheinlichkeit

$$P_{10}(R) = \frac{\beta^3}{2} \left[-e^{\beta R} \left(\frac{R^2}{\beta} + \frac{2R}{\beta^2} + \frac{2}{\beta^3} \right) + \frac{2}{\beta^3} \right]$$
 (26)

$$=1 - e^{-\beta R} \left(\frac{\beta^2 R^2}{2} + \beta R + 1 \right)$$
 (27)

Damit ergibt sich für das Myon

$$P_{10}(R) = 0,45 \tag{28}$$

(c) Der Bahnradius für ein Anti-Proton ergibt sich mit dem Bohrschen Radius zu

$$r_n^{\overline{p}} = \frac{m_{\overline{p}}}{m_e} \cdot a_0 \frac{n^2}{Z} = \frac{a_0}{1836} \frac{n^2}{Z} = \frac{5,29 \cdot 10^{-11} \text{m}}{1836 \cdot 50} \cdot n^2 = 5,8 \cdot 10^{-16} \text{m} \cdot n^2$$
 (29)

mit $m_{\overline{p}} \approx 938 {\rm MeV}/c^2, \; m_{e^-} \approx 511 {\rm keV}.$ Damit sich das Anti-Proton und der Zinn-Kern $(R_A \approx 1, 3 \cdot A^{\frac{1}{3}})$ nicht berühren, muss gelten

$$r_n^{\overline{p}} \stackrel{!}{>} R = R_{Sn} + R_{\overline{p}} \tag{30}$$

$$r_n^{\overline{p}} \stackrel{!}{>} R = R_{Sn} + R_{\overline{p}}$$

$$r_n^{\overline{p}} = 5, 8 \cdot 10^{-16} \,\mathrm{m} \cdot n^2 > R = (6, 3 + 1, 3) \cdot 10^{-15} \,\mathrm{m} \Rightarrow n = 4 : r_4^{\overline{p}} = 9, 28 \cdot 10^{-15} \,\mathrm{m}$$
(30)

[2]

(d) Die Bindungsenergie E_n erhält man aus

$$E_n = -\frac{m_e}{m_{\overline{p}}} \cdot E_R \cdot \frac{Z^2}{n^2} \tag{32}$$

Einsetzen der Zahlenwerte ergibt

$$E_4 = -1836 \cdot \left(\frac{50}{4}\right)^2 \cdot 13,6 \text{eV} = -3,9 \text{MeV}$$
 (33)

[1]

Aufgabe 4 (4 Punkte)

Der Wechselwirkungsoperator der Spin-Bahn Kopplung ist gegeben durch

$$\hat{V}_{LS} = \frac{Ze^2\mu_0}{8\pi m^2} \frac{1}{r^3} \left(\hat{L} \cdot \hat{S} \right)$$

(a) Stellen Sie den allgemeinen Ausdruck für die Energieverschiebung $\Delta E_{LS} = \left\langle \hat{V}_{LS} \right\rangle$ in Abhängigkeit von seinen Quantenzahlen auf.

Hinweis: Verwenden Sie $\left\langle \frac{1}{r^3} \right\rangle = \left(1 - \delta_{l0}\right) \frac{Z^3}{a_0^3 n^3 l(l + \frac{1}{2})(l + 1)}$

(b) Welchen Wert haben im Wasserstoffatom für n=30 die kleinste und die größte Verschiebung?

Lösung

(a)

$$\Delta E_{LS} = \left\langle \hat{V}_{LS} \right\rangle \qquad \hat{J} = \hat{L} + \hat{S} \Rightarrow \qquad \hat{L} \cdot \hat{S} = \frac{1}{2} \left(\hat{J}^2 - \hat{S}^2 - \hat{L}^2 \right) \qquad \left\langle \frac{1}{r^3} \right\rangle = \frac{Z^3}{a_0^3 n^3 l (l + \frac{1}{2})(l + 1)}$$

$$\Delta E_{LS} = \frac{Ze^2\mu_0}{8\pi m^2} \left\langle \frac{1}{r^3} \right\rangle \left\langle \hat{L} \cdot \hat{S} \right\rangle = \frac{Ze^2\mu_0}{8\pi m^2} \frac{\hbar^2 Z^3}{a_0^3 n^3 l(l+\frac{1}{2})(l+1)} \frac{j(j+1) - l(l+1) - s(s+1)}{2}$$
(34)

 $=\frac{\hbar^2 Z^4 e^2 \mu_0}{16\pi m^2 a_0^3} \frac{j(j+1) - l(l+1) - s(s+1)}{n^3 l(l+\frac{1}{2})(l+1)}$ (35)

[2]

(b)
$$n = 30, l = 1, j = 1/2 \Rightarrow \Delta E_{LS} = -8, 9 \cdot 10^{-9} \text{eV}$$

 $n = 30, l = 1, j = 3/2 \Rightarrow \Delta E_{LS} = -4, 8 \cdot 10^{-9} \text{eV}$
 $n = 30, l = 29, j = 29 + 1/2 \Rightarrow \Delta E_{LS} = -1, 5 \cdot 10^{-11} \text{eV}$

[2]

Aufgabe 5 (8 Punkte)

Es soll der Übergang $1^2S_{\frac{1}{2}} \to 2^2P_{\frac{3}{2}}$ von Wasserstoff in einem relativ schwachen Magnetfeld B_0 analysiert werden. Die Hyperfeinstruktur wird vernachlässigt.

- (a) Bestimmen Sie die Lande-Faktoren der beiden beteiligten Niveaus.
- (b) In wieviele Linien spaltet der Übergang auf? Zeichnen Sie die Energieniveaus, die möglichen Übergänge und deren Polarisation. Geben Sie an um welche Energie (in Einheiten von $\mu_B B$) sich die Übergänge von dem Übergang $1^2 S_{\frac{1}{2}} \to 2^3 P_{\frac{3}{2}}$ ohne Magnetfeld unterscheiden.
- (c) Wie stark muss das Magnetfeld B_0 mindestens sein, damit die Vernachlässigung der Hyperfeinstruktur gerechtfertigt ist? **Hinweis:** Vergleichen Sie die Hyperfeinaufspaltung des Grundzustandes mit der Energie der Wechselwirkung mit dem Magnetfeld.
- (d) Die durch den Dopplereffekt verursachte Verbreiterung für den betrachteten Übergang beträgt bei Raumtemperatur $\Delta\omega_d=2\pi\cdot30\mathrm{GHz}$. Wie groß müsste das angelegte Magnetfeld B_0 mindestens sein, um alle Linien noch trennen zu können? Ist das sinnvoll?

Lösung

(a)

$$g = 1 + \frac{j(j+1) + s(s+1) - l(l+1)}{2j(j+1)}$$
(36)

$$g_{\frac{1}{2}} = 2$$
 (37)

$$g_{\frac{3}{2}} = \frac{4}{3} \tag{38}$$

[1,5]

(b) Da das Magnetfeld nur schwach ist, gilt der anomale Zeeman-Effekt. Der Übergang spaltet in sechs Linien auf. Die Übergänge verschieben sich im Gegensatz zur ursprünglichen Linie um:

$$\Delta E = (g_{j'}m_{j'} - g_j m_j)\mu_B B$$

$$\Delta E_1 = \frac{5}{3}\mu_B B; \Delta E_2 = \mu_B B; \Delta E_3 = \frac{1}{3}\mu_B B; \Delta E_4 = -\frac{1}{3}\mu_B B; \Delta E_5 = -\mu_B B; \Delta E_6 = -\frac{5}{3}\mu_B B; \Delta E_6 = -\frac{5}{3}\mu_B B; \Delta E_9 = -\frac{5}{$$

(c) Hyperfeinaufspaltung:

$$F \in \{|J - I|, ..., J + I\} \qquad I = \frac{1}{2} \qquad J = \frac{1}{2}$$

$$F_1 = 1 \qquad \Delta E_{HFS} = \frac{A}{2}[F(F+1) - J(J+1) - I(I+1)] = \frac{A}{4} \qquad F_2 = 0 \qquad \Delta E_{HFS} = -\frac{3}{4}A$$

Deshalb ist der Abstand der beiden Niveaus der Hyperfeinaufspaltung $A=5,9\cdot 10^{-6} {\rm eV}.$ Der Abstand der Zeemanaufspaltung ist minimal: $\frac{2}{3}\mu_B B$

$$\frac{2}{3}\mu_B B >> A = 5,9 \cdot 10^{-6} \text{eV} \Rightarrow B >> 0,153 \text{T}$$

 $[1,\!5]$

(d) Damit die Zeemanaufspaltung größer ist als die Verbreiterung durch den Dopplereffekt muss gelten:

$$\frac{2}{3}\mu_B B > \hbar \Delta \omega_d \Rightarrow B_0 > \frac{3\hbar \Delta \omega_d}{2\mu_B} = 3,22$$
T

Das ist kein schwaches Magnetfeld mehr, deshalb kein Zeeman-Effekt mehr.

[1]

Aufgabe 6 (5 Punkte)

Ein Operator \hat{A} repräsentiere die Variable A und habe die normierten Eigenzustände ψ_1 und ψ_2 zu den Eigenwerten a_1 und a_2 . Ein Operator \hat{B} repräsentiere die Variable B und habe die normierten Eigenzustände ϕ_1 und ϕ_2 zu den Eigenwerten b_1 und b_2 . Es gälten folgende Relationen:

$$\psi_1 = \frac{1}{5}(3\phi_1 + 4\phi_2) \qquad \psi_2 = \frac{1}{5}(4\phi_1 - 3\phi_2) \tag{39}$$

(a) Die Observable A wird mit dem Ergbenis a_1 gemessen. In welchem Zustand befindet sich das System unmittelbar nach der Messung?

- (b) Was sind nun die möglichen Ergebnisse einer Messung von B und welche Wahrscheinlichkeiten haben sie?
- (c) Sofort im Anschluss an die Messung von B werde A wieder gemessen. Mit welcher Wahrscheinlichkeit ist das Ergebnis a_1 ?
- (d) Mit welcher Wahrscheinlichkeit ist a_1 das Ergebnis der zweiten Messung von A wenn zuvor der Wert b_1 für B gemessen wurde?

Lösung:

(a) Die Messung kollabiert die Wellenfunktion zu ψ_1 .

[1]

(b) Die prinzipiell möglichen Ergebnisse der Messung einer Variablen sind alle Eigenwerte. Die Wahrscheinlichkeit einen Eigenwert i im Zustand Ψ zu messen ist gegeben durch $|\langle \Psi | \chi_i \rangle|^2$ mit der Eigenfunktion χ_i zu i.

Wir messen also b_1 mit der Wahrscheinlichkeit $\frac{9}{25}$ und b_2 mit der Wahrscheinlichkeit $\frac{16}{25}$.

[1]

(c) Die Messung von B kollabiert die Wellenfunktion zu ϕ_1 (Wahrscheinlichkeit $P_1 = \frac{9}{25}$) oder ϕ_2 (Wahrscheinlichkeit $P_2 = \frac{16}{25}$). Wir finden:

$$\phi_1 = \frac{1}{5}(3\psi_1 + 4\psi_2) \tag{40}$$

$$\phi_2 = \frac{1}{5} (4\psi_1 - 3\psi_2) \,. \tag{41}$$

Im ersten Fall messen wir a_1 mit $P_{\rm I}=\frac{9}{25}$ und im zweiten Fall mit $P_{\rm II}=\frac{16}{25}$. Insgesamt messen wir also a_1 mit einer Wahrscheinlichkeit $P=P_1P_1+P_2P_{\rm II}=\left(\frac{9}{25}\right)^2+\left(\frac{16}{25}\right)^2=0,5392$.

[2]

(d) Jetzt wissen wir, dass die Wellenfunktion zu ϕ_1 kollabiert ist. Damit haben wir eine Wahrscheinlichkeit von $\frac{9}{25}$ für a_1 .

[1]

Aufgabe 7 (5 Punkte)

- (a) Leiten Sie alle Termsymbole eines Siliziumatoms in der Konfiguration $1s^22s^22p^63s^23p^2$ ab. Sie dürfen die LS-Kopplung vernachlässigen, d.h. Sie müssen die Kopplung von L und S zu J nicht angeben.
- (b) Geben Sie die ersten beiden Hund'schen Regeln stichwortartig an. Bringen Sie die Termsybole, die Sie im vorhergehenden Aufgabenteil bestimmt haben, in die richtige energetische Reihenfolge. Welcher Zustand ist der Grundzustand?

Lösung:

(a) Wichtig für die folgenden Betrachtungen sind nur die 3p-Elektronen.

Die Drehimpulse der beiden Elektronen in der 3p-Schale sind $l_1 = 1$ und $l_2 = 1$. Das ergibt L = 0, 1, 2. Die Spins können zu S = 0, 1 koppeln.

Für L = 0 müssen die Spins $s_1 = 1/2$ und $s_2 = 1/2$ entgegengerichtet sein, da sonst das Pauli-Prinzip verletzt wird, d.h. es muss gelten S = 0. Es ergibt sich der Zustand 1S .

Für L=1 sind die Spins gleichgerichtet (S=1), die Elektronen haben die Drehimpulsquantenzahlen $m_{l_1}=-1,0,1$, oder 0, bzw. $m_{l_2}=0,-1,0$, oder 1. Es ergibt sich der Zustand 3P . Der Zustand 1P existiert nicht, wegen des Pauli-Prinzips.

Für L=2 sind die Drehimpulsquantenzahlen $m_{l_1}=-1,1$, bzw. $m_{l_2}=1,-1$. Die Spins müssen wieder einander entgegengerichtet sein (S=0). Es ergibt sich der Zustand 1D .

[3]

- (b) **1. Hund'sche Regel:** Der Zustand mit größter Multiplizität (größtes S) hat die niedrigste Energie.
 - 2. Hund'sche Regel: Für festes S hat der Zustand mit dem größsten L die niedrigste Energie.

$$\Rightarrow$$
 3P $<$ 1D $<$ 1S

[2]

Konstanten

$$\begin{split} \hbar &= 1.05 \cdot 10^{-34} \text{Js} & m_e = 9.11 \cdot 10^{-31} \text{kg} \\ e &= 1.6 \cdot 10^{-19} \text{C} & m_p = 1.67 \cdot 10^{-27} \text{kg} \\ \epsilon_0 &= 8.85 \cdot 10^{-12} \text{As/V/m} & \alpha = 7.3 \cdot 10^{-3} \\ a_0 &= \frac{4\pi \varepsilon_0}{e^2} \frac{\hbar^2}{m_e} = 5, 3 \cdot 10^{-11} \text{m} & \mu_B = \frac{e \cdot \hbar}{2m_e} = 9, 27 \cdot 10^{-24} \text{N/A}^2 \\ R_\infty &= \frac{m_e e^4}{8c \epsilon_0^2 h^3} = 1, 10 \cdot 10^7 \text{m}^{-1} & A = 5, 9 \cdot 10^{-6} \text{eV} \end{split}$$