

8 Register Map

8.1 COMMON BANK

Table 3: Common Bank

Name		Typo	Default	Commont
Name	Register	Туре		Comment
NAMIO ANA I	Address	р.	Value	Do 100 ID (0, D4)
WHO AM I	0x20	R	1011 0001	Device ID (0xB1)
REVISION_ID	0x21	R	0000 0001	Revision ID Register
BANK SELECT	0x22	R/W	0000 0000	Register Bank Selection
SYSTEM STATUS	0x23	R	Data	System Status Register
GYRO_X_H	0x24	R	Data	Bits [15:8] of X measurement, Gyro
GYRO X L	0x25	R	Data	Bits [07:0] of X measurement, Gyro
GYRO Y H	0x26	R	Data	Bits [15:8] of Y measurement, Gyro
GYRO Y L	0x27	R	Data	Bits [07:0] of Y measurement, Gyro
GYRO Z H	0x28	R	Data	Bits [15:8] of Z measurement, Gyro
GYRO Z L	0x29	R	Data	Bits [07:8] of Z measurement, Gyro
ACC X H	0x2A	R	Data	Bits [15:8] of X measurement, Accel.
ACC X L	0x2B	R	Data	Bits [07:0] of X measurement, Accel.
ACC_Y_H	0x2C	R	Data 🔷	Bits [15:8] of Y measurement, Accel.
ACC Y L	0x2D	R	Data	Bits [07:0] of Y measurement, Accel.
ACC_Z_H	0x2E	R	Data	Bits [15:8] of Z measurement, Accel.
ACC Z L	0x2F	R	Data	Bits [07:8] of Z measurement, Accel.
MAG X H	0x30	R	Data	Bits [15:8] of X measurement, Mag.
MAG X L	0x31	R	Data	Bits [07:0] of X measurement, Mag.
MAG Y H	0x32	R	Data	Bits [15:8] of Y measurement, Mag.
MAG Y L	0x33	R	Data	Bits [07:0] of Y measurement, Mag.
MAG Z H	0x34	R	Data	Bits [15:8] of Z measurement, Mag.
MAG Z L	0x35	R	Data	Bits [07:8] of Z measurement, Mag.
TEMP_H	0x36	R	Data	Bits [15:8] of T measurement
TEMP L	0x37	R	Data	Bits [07:8] of T measurement
RFU	0x38	R	0000 0000	
RFU	0x39	R	0000 0000	
RFU	0x3A	R	0000 0000	
RFU	0x3B	R	0000 0000	
FIFO COUNT	0x3C	R	0000 0000	Available number of FIFO samples
FIFO STATUS	0x3D	R	0000 0000	FIFO Status Flags
FIFO DATA	0x3E	R	Data	FIFO Data, to be read in burst mode
RST REG	0x3F	W & Reset	0000 0000	Reset Register

- Go to <u>USER BANK #0</u>
- Go to <u>USER BANK #1</u>
- Go to USER BANK #2

8.1.1 WHO_AM_I

REG Name	WHO_AM_I: Device Identifier						
REG Address	Bank COMMON - 0x20 (Hex) - 32 (Dec)						
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						
Type - Def. Value	R-10110001						
Content	WHOAMI						

Description

Device Identifier register. This number uniquely identifies the device type.

Parameters

• WHOAMI: Device Identifier 0xB1 (Hex)

8.1.2 REVISION_ID

REG Name	REVISION_	REVISION_ID: Revision ID Register						
REG Address	Bank 1- 0x	Bank 1- 0x21 (Hex) – 33 (Dec)						
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type – Def. Value	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
Content		REVISION_ID						

Description

Revision ID register. This register provides the information about the silicon revision. The WHO_AM_I register wouldn't change in case on a new silicon revision, whilst the REVISION_ID register would track that.

Parameters₄

• **REVISION_ID** : Revision ID Register

8.1.3 BANK_SELECT

REG Name	BANK_SELECT: Bank Selector						
REG Address	Bank COMMON - 0x22 (Hex) - 34 (De	Bank COMMON - 0x22 (Hex) - 34 (Dec)					
	Bit 7 Bit 6 Bit 5	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0					
Type - Def. Value	R-0000	RW-0000					
Content	RFU	BANK SEL					

Description

User Bank selection register. It is used to have at any time 32 locations available for read and write operations, although more than 32 registers are available. The locations from 0x20 up to 0x3F (Common Bank) are always available, while locations from 0x00 to to 0x1F can be selected using the BANK_SEL parameter.

Parameters

• BANK_SEL: These four bits allow addressing 16 different pages of register other than the common bank. Page size is of 32 byte. Default bank is the user (0h) bank. Valid Combinations are:

0000 -> Bank 0 (User bank) 0001 -> Bank 1 (Interrupt bank) Banks beyond Bank 1 are reserved.

8.1.4 SYSTEM_STATUS

REG Name	SYSTEM_S	SYSTEM_STATUS: System Status						
REG Address	Bank COM	Bank COMMON - 0x23 (Hex) - 35 (Dec)						
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type - Def. Value	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
Content	QUAT_ER R	QUAT_D R	MAGN_ER R	MAGN_D R	ACC_ER R	ACC_D R	GRYO_ER R	GYRO_D R

Description

This is the System Status register. It reports two fundamental flags necessary to properly manage the communication with the MAX21100. Ideally, every new data-reading operation from the MAX21100 should only take place when at least a new DATA_READY event has occurred. Failure to have a data reading every DATA_READY may result in either reading twice the same data or missing the data. That is particularly true when the FIFO is disabled. The DR_ERR flag indicates the occurrence of either one of the events described above.

If the FIFO is used, multiple data can be read safely, according to the <u>FIFO COUNT (0x3C)</u> register, even though many DATA_READY have been generated.

The way the DATA_READY flag is reset can be configured using register <u>DR_CFG (0x13)</u>. Every Two bits express the Data ready bit and Error Flag or Quanternion, Magnetometer, Accelerometer and Gyrometer

Parameters

- **GYRO_ERROR**: This bit goes high when a new data is generated before or during gyro meter data reading
- **GYRO_DR**: Gyro meter data ready flag: it goes high when a new set of gyroscope data is available
- ACC_ERROR: This bit goes high when a new data generates before or during accelerometer data reading.
- ACC_DR: Accelerometer data ready flag: it goes high when a new set of accelerometer data is available.
- MAGN_ERR: This bit goes high when a new data generates before or during magnetometer data reading.
- MAGN_DR: Magnetometer data ready flag: it goes high when a new set of magnetometer data is available.
- QUAT_ERR: This bit goes high when a new data generates before or during quaternion data reading.
- QUAT_DR: Quaternion data ready flag: it goes high when a new set of quaternion data is available.

8.1.5 **GYRO_X_H**

REG Name	GYRO_X_H: Gyro Data, X-axis, MSB							
REG Address	Bank COMMON - 0x24 (Hex) - 36 (Dec)							
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type - Def. Value				R-0000	00000			
Content				GYRO_>	(_MSB			

Description

This register stores the most recent gyroscope measurement, specifically the MSB of the X-axis.

Gyroscope measurements are written to these registers at the Output Data Rate as defined in Register GYRO CFG2.

The user is responsible for ensuring a set of single byte reads correspond to a single sampling instant by checking the Data Ready bit, optionally configured as interrupt source.. Each 16-bit gyroscope measurement has a full scale defined in <u>ROWER CFG</u>.

Parameters

• **GYRO_X_MSB**: Gyroscope X output (MSBs). These bits become LSBs if <u>Endian</u> bit = 1.

8.1.6 **GYRO_X_L**

REG Name	GYRO_X_L: Gyro Data, X-axis, LSB							
REG Address	Bank COMMON - 0x25 (Hex) - 37 (Dec)							
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							
Type - Def. Value	R-00000000							
Content	GYRO_X_LSB							

Description

LSB of the X-axis. See GYRO_X_H for additional details.

Parameters

GYROX LSB: Gyroscope X output (LSBs). These bits become MSBs if Endian = 1.

8.1.7 GYRO_Y_H

REG Name	GYRO_Y_H: Gyro Data, Y-axis, MSB						
REG Address	Bank COMMON - 0x26 (Hex) - 38 (Dec)						
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						
Type - Def. Value	R-0000000						
Content	GYRO_Y_MSB						

Description

MSB of the Y-axis. See GYRO_X_H for additional details.

Parameters

• GYRO_Y_MSB: Gyroscope Y output (MSBs). These bits become LSBs if Indian bit = 1.

8.1.8 GYRO_Y_L

REG Name	GYRO_Y_L: Gyro Data, Y-axis, LSB							
REG Address	Bank COMMON - 0x27 (Hex) - 39 (Dec)							
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							
Type - Def. Value	R-00000000							
Content	GYRO_Y_LSB							

Description

LSB of the Y-axis. See GYRO_X_H for additional details.

Parameters

• **GYRO_Y_LSB**: **Gyroscope V** output (LSBs). These bits become MSBs if <u>Endian</u> bit = 1.

8.1.9 GYRO Z H

REG Name	GYRO_Z_H: Gyro Data, Z-axis, MSB					
REG Address	Bank COMMON - 0x28 (Hex) - 40 (Dec)					
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0					
Type - Def. Value	R-00000000					
Content	GYRO_Z_MSB					

Description

MSB of the Z-axis. See GYRO_X_H for additional details.

Parameters

• **GYRO_Z_MSB**: Gyroscope Z output (MSBs). These bits become LSBs if Endian bit = 1.

8.1.10 GYRO_Z_L

REG Name	GYRO_Z_L: Gyro Data, Z-axis, LSB						
REG Address	Bank COMMON - 0x29 (Hex) - 41 (Dec)						
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						
Type - Def. Value	R-00000000						
Content	GYRO_Z_LSB						

Description

LSB of the Z-axis. See GYRO_X_H for additional details.

Parameters

• GYRO_Z_LSB: Gyroscope Z output (LSBs). These bits become MSBs if andian bit = 1.

8.1.11 ACC_X_H

REG Name	ACC_X_H: Ac	ACC_X_H: Accelerometer Data, X-axis, MSB							
REG Address	Bank COMM(Bank COMMON - 0x2A (Hex) - 42 (Dec)							
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Type - Def. Value				R-0000	00000				
Content		ACC_X_MSB							

Description

This register stores the most recent acclerometer measurement, specifically the MSB of the X-axis

Accelerometer measurements are written to these registers at the Output Data Rate as defined in Register ACC CFOLL

The user is responsible for ensuring a set of single byte reads correspond to a single sampling instant by checking the Data Ready bit, optionally configured as interrupt source.. Each 16-bit accelerometer measurement has a full scale defined in <u>PWR_ACC_CFG</u>.

Parameters

ACC_X_MSB: Accelerometer X output (MSBs). These bits become LSBs if Endian bit = 1.

8.1.12 ACC_X_L

REG Name	ACC_X_L: Accelerometer Data, X-axis, LSB	
REG Address	Bank COMMON - 0x2B (Hex) - 43 (Dec)	
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	
Type - Def. Value	R-00000000	
Content	ACC_X_LSB	

Description

LSB of the X-axis. See ACC_X_H for additional details.

Parameters

• ACC_X_LSB: Accelerometer X output (LSBs). These bits become MSBs if Endian bit = 1.

8.1.13 ACC_Y_H

REG Name	ACC_Y_H: Accelerometer [Data, Y-axis, MSB			
REG Address	Bank COMMON - 0x2C (Hex) - 44 (Dec)				
	Bit 7 Bit 6	Bit 5 Bit 4	Bit 3	it 2 Bit 1 E	Bit 0
Type - Def. Value		R-000	00000		
Content		ACC_Y	_MSB		

Description

MSB of the Y-axis. See ACC_X_H for additional details.

Parameters

• ACC_Y_MSB: Accelerometer Y output (MSBs). These bits become LSBs if Endian bit = 1.

8.1.14 ACC_Y_L

REG Name	ACC_Y_L: Accelerometer Data, Y-axis, LSB	
REG Address	Bank COMMON - 0x2D(Hex) - 45 (Dec)	
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	
Type - Def. Value	R-0000000	
Content	ACC_Y_LSB	

Description

LSB of the Y-axis. See ACC_X_H for additional details.

Parameters

ACC_Y_LSB: Accelerometer Y output (LSBs). These bits become MSBs if Endian bit = 1.

8.1.15 ACC_Z_H

REG Name	ACC_Z_H: Accelerometer Data, Z-axis, MSB	
REG Address	Bank COMMON - 0x2E (Hex) - 46 (Dec)	
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	
Type - Def. Value	R-0000000	
Content	ACC_Z_MSB	

Description

MSB of the Z-axis. See ACC_X_H for additional details.

Parameters

ACC_Z_MSB: Accelerometer Z output (MSBs). These bits become LSBs if <u>Endian</u> bit = 1.

8.1.16 ACC_Z_L

REG Name	ACC_Z_L: Accelerometer Data, Y-axis, LSB
REG Address	Bank COMMON - 0x2F (Hex) - 47 (Dec)
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Type - Def. Value	R-0000000
Content	ACC_Z_LSB

Description

LSB of the Z-axis. See ACC_X_H for additional details.

Parameters

• ACC_Z_LSB: Accelerometer Z output (LSBs). These bits become MSBs if Endian bit = 1.

8.1.17 MAG_X_H

REG Name	MAG_X_H: Magnetometer Data, X-axis, MSB		
REG Address	Bank COMMON - 0x30 (Hex) - 48 (Dec)		
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0		
Type - Def. Value	R-0000000		
Content	MAG_X_MSB		

Description

This register stores the most recent acclerometer measurement, specifically the MSB of the X-axis.

Accelerometer measurements are written to these registers at the Output Data Rate as defined in Register ACC_CFG2.

Parameters

MAG_X_MSB: Magnetometer X output (MSBs). These bits become LSBs if <u>Endian</u> bit = 1.

8.1.18 MAG_X_L

REG Name	MAG_X_L: Magnetometer Data, X-axis, LSB	
REG Address	Bank COMMON - 0x30 (Hex) - 48 (Dec)	
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	
Type - Def. Value	R-00000000	
Content	MAG_X_LSB	

Description

LSB of the X-axis. See MAG_X_H for additional details.

Parameters

• MAG_X_LSB: Magnetometer X output (LSBs). These bits become MSBs if Emisan bit = 1.

8.1.19 MAG_Y_H

REG Name	MAG_Y_H: Magnetometer Data, Y-axis, MSB	
REG Address	Bank COMMON - 0x31 (Hex) - 49 (Dec)	
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	
Type - Def. Value	R-00000000	
Content	MAG_Y_MSB	

Description

MSB of the Y-axis. See MAG_X_H for additional details.

Parameters

• MAG_Y_MSB: Magnetometer Y output (MSBs). These bits become LSBs if Endian bit = 1.

8.1.20 MAG_Y_L

REG Name	MAG_Y_L: Magnetometer Data, Y-axis, LSB	
REG Address	Bank COMMON - 0x32 (Hex) - 50 (Dec)	
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	
Type - Def. Value	R-00000000	
Content	MAG_Y_LSB	

Description

LSB of the Y-axis. See MAG_X_H for additional details.

Parameters

• MAG_Y_LSB: Magnetometer Y output (LSBs). These bits become MSBs if Endian bit = 1.

8.1.21 MAG_Z_H

REG Name	MAG_Z_H: Magnetometer Data, Z-axis, MSB	
REG Address	Bank COMMON - 0x33 (Hex) - 51 (Dec)	
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	
Type - Def. Value	R-0000000	
Content	MAG_Z_MSB	

Description

MSB of the Z-axis. See MAG_X_H for additional details.

Parameters

• MAG_Z_MSB: Magnetometer Z output (MSBs). These bits become LSBs if Entian bit = 1.

8.1.22 MAG_Z_L

REG Name	MAG_Z_L: Magnetometer Data, Y-axis, LSB	
REG Address	Bank COMMON - 0x35 (Hex) - 53 (Dec)	
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	
Type - Def. Value	R-00000000	
Content	MAG_Z_LSB	

Description

LSB of the Z-axis. See MAG_X_H for additional details.

Parameters

MAG_Z_LSB: Magnetometer Z output (LSBs). These bits become MSBs if Endian bit = 1.

8.1.23 TEMP_H

REG Name	TEMP_H: Temperature Sensor, MSB	
REG Address	Bank COMMON - 0x36 (Hex) - 54 (Dec)	
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	
Type - Def. Value	R-00000000	
Content	TEMP_MSB	

Description

MSB of the temperature sensor. The temperature data is provided as an absolute value expressed in Celsius degrees. The sensitivity is 256 LSB/deg, which means that the TEMP_H registers changes whenever the temperature varies by 1 degree.

Temperature data cannot be read through the FIFO, it must be read using data registers.

Parameters

• **TEMP_MSB**: Temperature sensor output (MSBs). These bits become LSBs if <u>Endian</u> bit = 1.

8.1.24 TEMP_L

REG Name	TEMP_L: Ter	TEMP_L: Temperature Sensor, LSB						
REG Address	Bank COMM	Bank COMMON - 0x37 (Hex) - 55 (Dec)						
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type - Def. Value				R-000	00000			
Content				TEMP	_LSB			

Description

LSB of the temperature sensor.

Parameters

• **TEMP_LSB**: Temperature sensor output (LSBs). These bits become MSBs if <u>Endian</u> bit = 1.

8.1.25 FIFO_COUNT

REG Name	FIFO_COUNT: Number of samples available in the FIFO				
REG Address	Bank COMMON - 0x3C (Hex) - 60 (Dec)				
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0				
Type - Def. Value	R-00000000				
Content	FIFO_CNT				

Description

FIFO Count Register. This register should be read whenever the FIFO is enabled to make sure that the data read from the FIFO are only valid data. In fact, attention must be paid to the The completed procedure to read data from the FIFO is described in the Programming Examples section.

Parameters

• **FIFO_CNT** The content of this register is the number of samples available

8.1.26 FIFO STATUS

REG Name	FIFO_STATU	FIFO_STATUS: Status of the FIFO							
REG Address	Bank COMN	Bank COMMON - 0x3D (Hex) - 61 (Dec)							
	Bit 7:5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Type - Def. Value	R-000	R-0	R-0	R-0	R-0	R-0			
Content	RFU	FIFO_WR_FULL	FIFO_RD_EMPTY	FIFO_TH	FIFO_FULL	FIFO_EMPTY			

Description

FIFO status register. This register gathers all the bits defining the status of the FIFO. Bits [7:5] are unused.

Parameters

FIFO_WR_FULL : At least one data was written (and lost) whilst the FIFO was full
 FIFO_RD_EMPTY : At least one read has occurred whilst the FIFO was empty

• FIFO_TH : The FIFO contains data above the threshold

FIFO_FULL : The FIFO is fullFIFO_EMPTY : The FIFO is empty

Figure 9: FIFO Flags

- A) The difference between the Write Pointer and the Read Pointer reaches the programmed threshold
- B) FIFO is full, next write operation will cause data to be lost
- C) At least one data has been lost
- D) Read access clears FIFO_FULL and FIFO_WR_FULL flags
- E) Wp-Rp < programmed threshold
- F) FIFO is empty, all the available new data have been read

8.1.27 FIFO_DATA

REG Name	FIFO_DATA: Gyroscope data available through the FIFO			
REG Address	Bank COMMON - 0x3E (Hex) - 62 (Dec)			
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0			
Type - Def. Value	R-0000000			
Content	FIFO_DAT			

Description

This register is used to read and write data from the FIFO buffer.

The contents of the sensor data registers are written into the FIFO buffer when their corresponding FIFO enable flags are set to 1 in FIFO_EN.

If the FIFO buffer has overflowed, the status bit **FIFO_WR_FULL** is automatically set to 1. This bit is located in the <u>FIFO_STATUS (0x3D)</u> register. When the FIFO buffer has overflowed, the oldest data will be lost and new data will be written to the FIFO if the override bit is set in the <u>FIFO_CFG (0x18)</u> register.

If the FIFO buffer is empty, reading this register will return the last byte that was previously read from the FIFO until new data is available. The user should check <u>FIFO COUNT (0x3C)</u> to ensure that the FIFO buffer is not read when empty.

Parameters

- **FIFO_DAT**: When FIFO enables reading this address with burst reading, all the data stored in the FIFO are readable.
- Burst reading allows FIFO address to increment and the FIFO memory to be scrolled

8.1.28 RST_REG

REG Name	RST_REG: Reset Register					
REG Address	Bank COMMON - 0x3F (Hex) - 63 (Dec)					
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3	Bit 2	Bit 1	Bit 0		
Type - Def. Value	R-00000	RW-0	RW-0	RW-0		
Content		PAR RST	HPF A RST	HPF G RST		

Description

Parity and High Pass filters reset register.

Parameters

PAR_RST: Writing '1' resets the I2C/SPI parity error flag.

• HPF_A_RESET: Writing '1' the accelerometer HP filter is reset and output is restored

to baseline

HPE GRESET: Writing '1' the gyroscope HP filter is reset and output is restored to

baseline

8.2 USER BANK #0 (Bank_sel = 0000)

Table 4: User Bank 0

Table 4: User Bank (T	
Name	Register	Туре	Default	Comment
	Address		Value	
POWER CFG	0x00	RW	0000 0111	Power mode configuration
GYRO CFG1	0x01	RW	0010 1000	Gyro configuration : LP and OIS
GYRO CFG2	0x02	RW	0000 0100	Gyro configuration : ODR
GYRO CFG3	0x03	RW	0000 0000	Gyro configuration : HP
PWR ACC CFG	0x04	RW	0000 0111	Accel. Power configuration
ACC_CFG1	0x05	RW	0000 0010	Accel. Configuration : ODR
ACC_CFG2	0x06	RW	0000 0000	Accel. Configuration: HP
MAG SLV CFG	0x07	RW	0000 0110	Magnetometer Slave Configuration
MAG SLV ADD	0x08	RW	0000 0000	Magnetometer Slave Address
MAG SLV REG	0x09	RW	0000 0000	Magnetometer Slave Register
MAG MAP REG	0x0A	RW	0000 0000	Magnetometer Mapping Register
I2C_MST_ADD	0x0B	RW	0000 0000	12C Register Address
I2C_MST_DATA	0x0C	RW	0000 0000	I2C Register Data
MAG OFS X MSB	0x0D	RW	0000 0000	Magnetometer Offset X, LSB
MAG OFS X LSB	0x0E	RW	0000 0000	Magnetometer Offset X, MSB
MAG OFS Y MSB	0x0F	RW	0000 0000	Magnetometer Offset Y, MSB
MAG OFS Y LSB	0x10	RW	0000,0000	Magnetometer Offset Y, LSB
MAG OFS Z MSB	0x11	RW	0000 0000	Magnetometer Offset Z, MSB
MAG OFS Z LSB	0x12	RW	0000 0000	Magnetometer Offset Z, LSB
DR CFG	0x13	RW	0000 0001	Data Ready configuration
IO CFG	0x14	RW	0000 0000	Input/Output configuration
I2C PAD	0x15	RW	0000 0100	I2C Pads configuration Register
I2C_CFG	0x16	RW	0000 0000	I2C configuration
FIFO_TH	0x17	RW	0000 0000	FIFO Threshold configuration
FIFO CFG	0x18	RW	0000 0000	FIFO Mode configuration
RFU	0x19	R	0000 0000	
DSYNC CFG	0x1A	RW	0000 0000	DSYNC Configuration
DSYNC CNT	0x1B	RW	0000 0000	DSYNC Counter
ITF OTP	0x1C	RW	0000 0000	Interface & OTP Status Configuration
RFU A	0x1D	R	0000 0000	
RFU	0x1E	R	0000 0000	
RFU	0x1F	R	0000 0000	
				•

8.2.1 POWER_CFG

REG Name	POWER_CFG	POWER_CFG: Power Configuration						
REG Address	Bank 0 - 0x00	Bank 0 - 0x00 (Hex) - 0 (Dec)						
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type - Def. Value	RW-0	RW-0000		RW-1	RW-1	RW-1		
Content	PWR_SEL	PWR_MODE		SNS_EN_Z	SNS_EN_Y	SNS_EN_X		

Description

Full Scale, Power Mode and axes configuration register.

Parameters

• **PWR_MODE**: configuration of the power mode of the:

Table 5: Power Mode Configuration

PWR_SEL	PWR MODE	Power Mode
0	0000	powerdown mode (default)
0	0001	gyro sleep mode
0	0010	gyro spot mode
0	0011	gyro normal mode
0	0100	not used
0	0101	not used
0	0110	not used
0	0111	not used
0	1000	accelero spot mode
0	1001	not used
0	1010	not used
0	1011	not <mark>u</mark> sed
0	1100	accelero normal mode
0	1101	accelero normal + gyro sleep mode
0	1110	accelero normal + gyro spot mode
0	1111	accelero normal + gyro normal mode
1	0000	powerdown <-> accelero spot
1	0001	powerdown <-> accelero normal
1	0010	powerdown <-> gyro spot
1	0011	powerdown <-> gyro normal
1	0100	powerdown <-> accelero normal + gyro normal
1	0101	powerdown <-> acclero normal + gyro spot
1	0110	gyro sleep <-> gyro normal
1	0111	gyro sleep <-> accelero normal + gyro normal
1	1000	gyro spot <-> accelero normal + gyro normal
1	1001	accelero spot <-> accelero normal + gyro spot
1	1010	accelero normal <->accelero normal + gyro normal
1	1011	accelero normal <-> accelero normal + gyro spot
1	1100	accelero normal <-> accelero normal + gyro normal
1	1101	accelero normal + gyro sleep <-> accelero normal + gyro spot
1	1110	accelero normal + gyro sleep <-> accelero normal + gyro normal

1	1111	accelero normal + gyro spot <-> accelero normal + gyro normal
-		accelere normal . Byto spot x accelere normal . Byto normal

• **PWR_SEL:** When 1, PWR_MODE becomes a transition between power modes controllable by DSYNC pin.

SNS_EN_Z: Z direction enable bit. '1' means enabled.
 SNS_EN_Y: Y direction enable bit. '1' means enabled.
 SNS_EN_X: X direction enable bit. '1' means enabled.

8.2.2 GYRO CFG1

REG Name	GYRO_C	GYRO_CFG1: Sensing chain configuration register #1						
REG Address	Bank 0 -	Bank 0 - 0x01 (Hex) - 1 (Dec)						
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type - Def. Value	RW	-00		RW-1	1010		RW	/-00
Content	SELF_	_TEST		SNS_LP	F_CFG		SNS_DC	OUT_FSC

Description

Low Pass filter, OIS and Self Test configuration register,

Parameters

• **SELF_TEST**: Bit 6 is used to activate the self-test mode. When activated, an offset is generated on the digital output whose amount depends on the full scale selected. Bit 7 can be used to invert the sign of the self-test output. The output of this parameter is affected by a strong spread, in the order of +/- 50%. This test allows detecting both electrical and mechanical issues. The table below summarizes the expected values.

00-> disabled (default)01-> positive sign1x-> negative sign

Table 6: Self-Test Output

Axis F\$= 2000	FS= 1000	FS=500	FS=250
X[dps] 450	225	110	55
Y[dps] -450	-225	-110	-55
Z[dps] 450	225	110	55

SNS_LPF_CFG: Output bandwidth selection bits when SNS_GYR_OIS_LPF=0

Table 7: Bandwidth configuration

SNS_LPF_CFG	BW
0	2Hz
1	4Hz
2	6Hz
3	8Hz
4	10Hz

5	14Hz
6	22Hz
7	32Hz
8	50Hz
9	75Hz
10	100Hz (default)
11	150Hz
12	200Hz
13	250Hz
14	300Hz
15	400Hz

When SNS GYR OIS LPF =1

0xxx = 1kHz1xxx = 2kHz

• **SNS_DOUT_FSC**: Full scale configuration bits:

Table 8: Full Scale configuration

SNS_DOUT_FSC	FS
00	2000 dps (default)
01	1000 dps
10	500 dps
11	250 dps

8.2.3 GYRO_CFG2

REG Name GYRO_CFG2: Sensing chain configuration register #2							
REG Address	Bank 0 - 0x02 (Hex) - 2 (Dec)						
	Bit 7 Bit 6	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0					
Type - Def. Value	R-00	RW-0	RW-0		RW-	0100	
Content	RFU	SNS_GYR_OIS_LPF	SNS_GYR_HPF		SNS_	ODR	

Description

Output Data Rate configuration register. This register selects the preferred Output Data Rate (ODR) according to the description that follows.

Bit 5 is used to activate/de-activate the gyroscope low-pass filter for OIS mode. Bit 4 is used to activate/de-activate the gyroscope hi-pass filter. Bits [7:6] are reserved.

Parameters

- SNS_GYR_OIS_LPF: the selection of the low-pass results as follow: 0 -> off, at the meantime, the SNS_LPF_CFG (GYRO_CFG1) set as gyro low-pass filter 1 -> on
- **SNS_DOUT_CFG**: the selection of the high-pass results as follow:

- 0 -> hi-pass filter deactivated
- 1 -> hi-pass filter activated

SNS_ODR

SNS_ODR	Selected Output Data Rate
0000	gyr_odr = 8 KHz
0001	gyr_odr = 4 KHz
0010	gyr_odr = 2 KHz
0011	gyr_odr = 1 KHz
0100	gyr_odr = 500 Hz (default)
0101	gyr_odr = 250 Hz
0110	gyr_odr = 125 Hz
0111	gyr_odr = 62.5 Hz
1000	gyr_odr = 31.25 Hz
1001	gyr_odr = 15,625 Hz
1010	gyr_odr = 7.8125 Hz
1011-1111	gyr_odr = 3.90625 Hz
0000-0101	gyr_odr = 250 Hz
0110	gyr_odr = 125 Hz
0111	gyr_odr = 62.5 Hz
1XXX	gyr_odr = 31.25 Hz
	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011-1111 0000-0101 0110

8.2.4 **GYRO_CFG3**

REG Name	GYRO_CFG3: Sensing chain configuration register #3							
REG Address	Bank 0 - 0x03 (Hex) - 3 (Dec)							
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type - Def. Value		R-000		RW	<i>'</i> -00		RW-000	
Content		RFU		WAIT_DA	TA_MODE	9	SNS_HPF_CFG	

Description

High Pass filter and Wait Data Mode configuration register.

3 LSBs are used to select the cut-off frequency of the high-pass filter.

Bits [7:5] are reserved.

Parameters

• WAIT_DATA_MODE: the control trigger for wait data modes,

Trig1: from drive ON to sense ON

Trig2: from sense ON to Normal Mode, and the modes could be describes as follow:

00 ->none ÷ none

01 -> freq_lock ÷ freq_lock

10 -> freq_lock ÷ amp_lock

11 -> amp_lock ÷ amp_lock

• **SNS_HPF_CO**: Configuration for the HP filter cutoff frequency:

Table 9: High Pass Filter configuration

SNS_HPF_CFG	BW
0	0 = 0.08Hz
1	1 = 0.24Hz
2	2 = 0.8Hz
3	3 = 2Hz
4	4 = 5Hz
5	5 = 10Hz
6	6 = 20Hz
7	7 = 50Hz

8.2.5 PWR_ACC_CFG

REG Name	PWR_ACC_CFG: Accelerometer Power Configuration					
REG Address	Bank 0 - 0x04 (Hex) - 4 (Dec)					
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0					
Type - Def. Value	RW-00	RW-000	RW-1	RW-1	RW-1	
Content	SNS_ACC_FSC	ACC_SELF_TEST	SNS_EN_Z	SNS_EN_Y	SNS_EN_X	

Description

Full Scale, Power Mode and axes configuration register.

Parameters

• **SNS_ACC_FSC**: Full scale configuration bits:

Table 10: Full Scale configuration

SNS_ACC_FSC	FS
00	16g (Default)
01	8g
10	4g
11	2g

ACC_SELF_TEST: Activate the accelerometer self-test, describes as following:

000 ->No test

0xx ->Positive Force

1xx -> Negative Force

x01 -> X Axis Self-test

x10 -> Y Axis Self-test

x11 -> Z Axis Self-test

• SNS_EN_Z. Z direction enable bit . '1' means enabled.

• SNS EN Y: Y direction enable bit . '1' means enabled.

SNS_EN_X
 X direction enable bit . '1' means enabled.

8.2.6 ACC_CFG1

REG Name	ACC_CFG1: Accelerometer configuration register #1							
REG Address	Bank 0 - 0x05 (Hex) - 5 (Dec)							
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type - Def. Value	R-	00	RW-00		RW-0010			
Content	SNS_ACC_	_HPF_CFG	FG SNS_ACC_LPF_CFG		SNS_ACC_ODR			

Description

Accelerometer configuration register #1. This register selects the preferred Output Data Rate (ODR), the High Pass and Low Pass bandwidths according to the description that follows.

Parameters

• SNS_ACC_HPF_CFG: Configuration for the Accelerometer HP filter cutoff frequency:

Table 11: High Pass Filter configuration

SNS_ACC_HPF_CFG	BW
0	ODR/400 (default)
1	ODR/200
2	ODR/100
3	ODR/50

• SNS_ACC_LPF_CFG: Output bandwidth selection bits

Table 12: Bandwidth configuration

SNS_ACC_LPF_CFG	BW
0	ODR/48 (default)
1	ODR/22
2	ODR/9
3	ODR/3

• SNS_ACC_ODR

SPOT MODE ENABLED	SNS_ODR	Selected Output Data Rate
No	0000	acc_odr = 2 KHz
No	0001	acc_odr = 1 KHz
No	0010	acc_odr = 500 Hz (default)
No	0011	acc_odr = 250 Hz
No	0100	acc_odr = 125 Hz
No	0101	acc_odr = 62.5 Hz
No	0110-1111	$acc_odr = 31.25 Hz$
Yes	0000-0011	acc_odr = 250Hz(default)
Yes	0100	acc_odr = 125Hz
Yes	0101	acc_odr = 62.5Hz
Yes	0110	acc_odr = 31.25Hz
Yes	0111	acc_odr = 15.625Hz
Yes	1000	acc_odr = 7.8125Hz
Yes	1001	acc_odr = 3.90625Hz
Yes	1010	acc_odr = 1.953125Hz
Yes	1011-1111	acc_odr = 0.9765625Hz

MAX21100 User Guide REV 1.1 (Preliminary) Page 37 of 98

8.2.7 ACC_CFG2

REG Name	ACC_CFG2	ACC_CFG2: Accelerometer configuration register #2						
REG Address	Bank 0 - 0	Bank 0 - 0x06 (Hex) – 6 (Dec)						
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type - Def. Value	R-0000			RW-000			RW-0	
Content	RFU			SNS_	ACC_HP_EN			

Description

Accelerometer configuration register #2. This register enables/disables the accelerometer HP filter and selects the preferred Output Data Rate (ODR) for the magnetometer.

Parameters

SNS_MAG_ODR: Magnetometer ODR Frequency = ACC_ODR \(2^SNS_MAG_ODR \)

SNS_MAG_ODR	Magnetometer ODR Frequency
000	ACC_ODR
001	ACC_ODR /2
010	ACC_ODR /4
011	ACC_ODR /8
100	ACC_ODR /16
101	ACC_ODR /32
110	ACC_ODR /64
111	ACC_ODR/128

• SNS_ACC_HP_EN: Accelerometer HP filter enable bit

Table 13: Accelerometer HP filter configuration

, abic	, , , , , , , , , , , , , , , , , , , ,	,,,,,	ou inguiation
	ACC_HP_EN	M	Effect
0			Accelerometer HP Filter disabled (default)
1			Accelerometer HP Filter enabled

8.2.8 MAG SLV CFG

REG Name	MAG_SLV_CFG:	Magnetomete	r I2C Slave cor	nfiguration				
REG Address	Bank0 - 0x07 (He	ex) - 7 (Dec)						
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type - Def. Value	RW-0	RW-0	RW-0	RW-0	RW-0		RW-110	
Content	MAG_EN	MAG_SWAP	MAG_SAFE	MAG_GRP	I2C_STD	N	/IAG_I2C_LEN	J

Description

External Magnetometer I2C Slave configuration

Parameters

• MAG_EN: External Magnetometer Enable (1) /Disable (0)

MAG_SWAP: MSB First (0) /Last(1)

MAG_SAFE: data only Reg ON (0)/OFF (1)
 MAG_GRP: Group Even (0)/Odd(1)
 I2C_STD: 400kHz(0)/100kHz(1)

• MAG_I2C_LEN: Number of bytes to transfer at every I2C access performed by the I2C Master at the ODR selected for the magnetometer.

8.2.9 MAG_SLV_ADD

REG Name	MAG_SLV_A	MAG_SLV_ADD: Magnetometer I2C Slave address				
REG Address	Bank 0 - 0x0	08 (Hex) - 8 (Dec)				
	Bit 7	Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0				
Type - Def. Value	R-0	RW-0000000				
Content	RSU	MAG_SLV_ADD				

Description

External Magnetometer I2C Slave address

Parameters

MAG_SLV_ADD: External Magnetometer I2C Slave address.

MAX21100 User Guide REV 1.1 (Preliminary) Page 39 of 98

8.2.10 MAG_SLV_REG

REG Name	MAG_SLV_REG: Magnetometer I2C Slave register
REG Address	Bank0 - 0x09 (Hex) - 9 (Dec)
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Type - Def. Value	RW-00000000
Content	MAG_SLV_REG

Description

External Magnetometer I2C Slave register address

Parameters

• MAG_SLV_REG: External Magnetometer I2C Slave register address

8.2.11 MAG_MAP_REG

REG Name	MAG_MAP_REG: I	MAG_MAP_REG: I2C Master Mapping Configuration						
REG Address	Bank 0 - 0x0A (Hex) - 10 (Dec)						
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type - Def. Value	RW-00			RW-000		RW-0	RW-0	RW-0
Content	RFU		M	AG_CH_MA	.P	INV_Z	INV_Y	INV_X

Description

Magnetometer I2C master Mapping configuration

Parameters

MAG_CH_MAP
 Channel mapping

MG_CH_MAP	Channel mapping
000	[Xi, Yi, Zi] <= [A, B, C]
001	[Xi, Yi, Zi] <= [A, C, B]
010	[Xi, Yi, Zi] <= [B, A, C]
011	[Xi, Yi, Zi] <= [C, A, B]
100	[Xi, Yi, Zi] <= [B, C, A]
101	[Xi, Yi, Zi] <= [C, B, A]
110	[Xi, Yi, Zi] <= [A, B, C]
111	[Xi, Yi, Zi] <= [A, B, C]

INV_Z: Invert ZINV_Y: Invert YINV_X: Invert X

8.2.12 I2C_MST_ADD

REG Name	I2C_SLV_ADD: I2C Slave address register
REG Address	Bank 0 - 0xB (Hex) - 11 (Dec)
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Type - Def. Value	RW-0000000
Content	I2C_MST_ADD

Description

External Peripheral register address

Parameters

I2C_MST_ADD: External Magnetometer Master I2C Address Register

8.2.13 I2C_MST_DATA

REG Name	I2C_SLV_DAT	I2C_SLV_DATA: I2C Slave register data register						
REG Address	Bank0 - 0x0C	(Hex) - 12	(Dec)	_				
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type - Def. Value				RW-000	000000			
Content				I2C_MST	Γ_DATA			

Description

External Peripheral master I2C data read/write register

Parameters

• I2C_SLV_DATA: External Magnetometer I2C Slave register address

8.2.14 MAG_OFS_X_MSB

REG Name	MAG_OFS_X_MSB: Magnetometer Offset compensation
REG Address	Bank 0 - 0x0D (Hex) - 13 (Dec)
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Type - Def. Value	RW-00000000
Content	MAG_OFS_X_MSB

Description

External Magnetometer X Offset compensation (MSB)

Parameters

MAG_OFS_X_MSB: External Magnetometer X Offset compensation (MSB)

8.2.15 MAG_OFS_X_LSB

REG Name	MAG_OFS_X_LSB: Magnetometer Offset compensation
REG Address	Bank 0- 0x0E (Hex) - 14 (Dec)
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Type - Def. Value	RW-0000000
Content	MAG_OFS_X_LSB

Description

External Magnetometer X Offset compensation (LSB)

Parameters

• MAG_OFS_X_LSB: External Magnetometer X Offset compensation (LSB)

8.2.16 MAG_OFS_Y_MSB

REG Name	MAG_OFS_Y_MSB: Magnetometer Offset compensation								
REG Address	Bank 0 - 0x0F (Hex) - 15 (Dec)								
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
Type - Def. Value	RW-0000000								
Content	MAG_OFS_Y_MSB								

Description

External Magnetometer Y Offset compensation (MSB)

Parameters

• MAG_OFS_Y_MSB: External Magnetometer Y Offset compensation (MSB)

8.2.17 MAG_OFS_Y_LSB

REG Name	MAG_OFS_Y_LSB: Magnetometer Offset compensation						
REG Address	Bank 0 - 0x10 (Hex) - 16 (Dec)						
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						
Type - Def. Value	RW-0000000						
Content	MAG_OFS_Y_LSB						

Description

External Magnetometer Y Offset compensation (LSB)

Parameters

• MAG_OFS_Y_LSB: External Magnetometer Y Offset compensation (LSB)

8.2.18 MAG_OFS_Z_MSB

REG Name	MAG_OFS_Z_MSB: Magnetometer Offset compensation							
REG Address	Bank 0 - 0x11 (Hex) - 17 (Dec)							
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							
Type - Def. Value	RW-0000000							
Content	MAG_OFS_Z_MSB							

Description

External Magnetometer Z Offset compensation (MSB)

Parameters

• MAG_OFS_Z_MSB: External Magnetometer Z Offset compensation (MSB)

8.2.19 MAG_OFS_Z_LSB

REG Name	MAG_OFS_Z_LSB: Magnetometer Offset compensation								
REG Address	Bank 0 - 0x12 (Hex) - 18 (Dec)								
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
Type - Def. Value	RW-0000000								
Content	MAG_OFS_Z_LSB								

Description

External Magnetometer Z Offset compensation (LSB)

Parameters

MAG_OFS_Z_LSB: External Magnetometer Z Offset compensation (LSB)

MAX21100 User Guide REV 1.1 (Preliminary) Page 43 of 98

8.2.20 DR_CFG

REG Name	DR_CFG:	DR_CFG: Data Ready Configuration								
REG Address	Bank 0 - 0	Bank 0 - 0x13 (Hex) - 19 (Dec)								
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Type - Def. Value	RW-0	R-0	RW-0	RW-0	RW-00		RW-0	RW-1		
Content	BYP_EN	RFU	RW_SEL	SNGL_EN	DR RST MODE		COARSE_TEMP	TEMP_EN		

Description

Data Ready configuration register.

Parameters

• BYP_EN : '0' is I2C_MASTER active, '1' is bypass

• **RW_SEL** : '0' is Write, '1' Read

SNGLE_EN : Enable (1) or Disable (0) single R or single Write

• DR_RST_MODE: These bits control the way the DATA_READY is reset and the way the

data updated. 3 available modes:

00: ALL - DATA_READY is cleared when all the active channels are read.

Data Set updates only when all the data are read.

01: ANY - DATA READY is cleared when at least one half active channel is read.

Data Set is not guaranteed because data can be updated immediately

10: STATUS - DATA_READY is cleared when status register is read.

Data Set is maintained until status register is read.

• **COARSE_TEMP**: '0' is fine, '1' is for coarse. If "fine", temperature data updates only

when both bytes are read. If "coarse", reading MSB enables the data update.

TEMP_EN : Enable (1) or Disable (0) the temperature sensor

8.2.21 IO_CFG

REG Name	IO_CFG: Input/output Configuration								
REG Address	Bank 0 - 0x14 (Hex) - 20 (Dec)								
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	1:0		
Type - Def. Value	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	R-00		
Content	DSYNC_PD_EN	DSYNC_PU_EN	INT1_PD_EN	INT1_PU_EN	INT2_PD_EN	INT2_PU_EN	I2C_CFG		

Description

I/O configuration Register. This register controls the pull-up and pull-down resistors of the pins DSYNC, INT1 and INT2.

Parameters

•	DSYNC_PD_EN:	When 1, the internal pull down of the pad is connected
•	DSYNC_PU_EN:	When 1, the internal pull up of the pad is connected
•	INT1_PD_EN:	When 1, the internal pull down of the pad is connected
•	INT1_PU_EN:	When 1, the internal pull up of the pad is connected
•	INT2_PD_EN:	When 1, the internal pull down of the pad is connected
•	INT2_PU_EN:	When 1, the internal pull up of the pad is connected
•	I2C_CFG[1]:	I2C_CFG[1]: Enable (0) or Disable (1) Master I2C Pull-ups
•	12C_CFG[0]:	I2C_CFG[0]: Enable (0) or Disable (1) Slave I2C Pull-ups

8.2.22 I2C_PAD

REG Name	I2C_PAD: I2C Pads Configuration									
REG Address	Bank 0 - 0	Bank 0 - 0x15 (Hex) - 21 (Dec)								
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Type - Def. Value			R-00000	RW-1	RW-0	RW-0				
Content			RFU			SLV_STG	MST_STG	INT_STG		

Description

I2C Pads configuration Register. This register controls the electrical behaviour Bit [7:3] is reserved.

Parameters

SLV_STG: When 1, SDA/SCL Slave drivers are faster, requiring more current
 MST_STG: When 1, SDA/SCL Master drivers are faster, requiring more current
 INT_STG When 1, INT driver is faster, requiring more current

MAX21100 User Guide REV 1.1 (Preliminary) Page 46 of 98

8.2.23 I2C_CFG

REG Name	I2C_CFG: I2C Configura	ation					
REG Address	Bank 0 - 0x16 (Hex) - 22 (Dec)						
	Bit 7 Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type - Def. Value	RW-00		R-000		RW-0	RW-0	RW-0
Content	MST_I2C_CFG		RFU		SPI_3_WIRE	ENDIAN	I2C_OFF

Description

I2C configuration register.

Parameters

MST_I2C_CFG Change the I/O configuration according to the following table:

Table 14: I/O Current Configuration

DRIVE		IOs Configuration				
0	0	MST_I2C without anti-spike filter				
0	1	MST_I2C standard configuration				
1	0	MST_I2C without filters and delays				
1	1	Reserved				

• SPI_3_WIRE : 3 or 4 wires SPI mode. When set SPI 3 wire is enabled

ENDIAN: Big little endian configuration bit.

0 is for big endian (MS Byte, LS Byte),
 1 for little (LS Byte, MS Byte)

• I2C_OFF: This bit is used for turn off the I2C interface. By default, I2C is active. Setting to 1 this bit I2C is turned off. It may be used when connecting several SPI devices in parallel.

MAX21100 User Guide REV 1.1 (Preliminary) Page 47 of 98

8.2.24 FIFO_TH

REG Name	FIFO_TH: FIFO threshold for the interrupt generation							
REG Address	Bank 0 - 0x17 (Hex) - 23 (Dec)							
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type - Def. Value		RW-0000000						
Content				FIFO_SA	MPLES			

Description

FIFO Threshold configuration register. This register defines the number of samples that should be used as threshold to set the FIFO_OVTHOLD bit

Parameters

• **FIFO_SAMPLES**: When the number of samples yet to be read stored in FIFO crosses this number, an interrupt is generated on **FIFO_OVILLED**

Note: This parameter specifies the number of Gyroscope output camples expressed in words (16-bit OR 2 bytes). It does not refer to one single axis but to the overall number of samples coming from entire set the selected axis.

8.2.25 FIFO CFG

REG Name	FIFO_CFG: FIFO configuration bits										
REG Address	Bank 0 - 0x	Bank 0 - 0x18 (Hex) - 24 (Dec)									
	Bit 7 Bit	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1					
Type - Def. Value	RW-00	RW-0	RW-0	RW-0	RW-0	RW-0	í				
Content	FIFO_MOD	FIFO_INT_SEL	FIFO_OVERRUN	FIFO_STORE_QUAT	FIFO_STORE_MAG	FIFO_STORE_ACC	FIFO_S				

Description

FIFO configuration register. This register determines which sensor measurements are loaded into the FIFO buffer and selects the desired FIFO behavior.

Data stored inside the sensor data registers will be loaded into the FIFO buffer if a sensor's respective FIFO_store bit is set to 1 in this register. The behavior of FIFO writes when the FIFO buffer is full can be configured with the FIFO_MODE bit. In order to read the data in the FIFO buffer, the FIFO_MODE must be set to a value >0.

When the FIFO_STORE_{QUAT,MAG,ACC,GYR} bit is enabled in this register, data will be loaded into the FIFO buffer for the corresponding input data.

Parameters

- FIFO_MODE: These bits are used to configure the FIFO mode:
- 00 -> OFF
- 01 -> NORMAL
- 10 -> INTERRUPT
- 11 -> INTERRUPT TOGGL
- **FIFO_INT_SEL**: When an interrupt mode is selected, this bits define which kind of mask must be used:
- 0: use OR mask
- 1: use AND mask
- **FIFO OVERRUN**: When set to TRUE, FIFO data are overwritten and oldest are lost. When FALSE, FIFO is a buffer that stops when full
- FIFO STORE QUAT: When set to TRUE, 16-bits 4 quaternion components are stored in FIFO.
- FIFO_STORE_MAG: When set to TRUE, 16-bits the magnetometer data are stored in FIFO.
- FIFO STORE ACC: When set to TRUE, 16-bits the accelerometer data are stored in FIFO.
- **FIFO STORE_GYRO:** When set to TRUE, 16-bits the gyroscope data are stored in FIFO.

8.2.26 DSYNC CFG

REG Name	DSYNC_CFG: DSYNC Configuration							
REG Address	Bank 0 - 0x1A (Hex) – 26 (Dec)							
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type - Def. Value	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0
Content	DSQ_ENR	DSQ_ENF	DSW_EDG	DSW_LOW	DS_G_ENB	DS_A_ENB	DS_M_ENB	DS_T_ENB

Description

DSYNC configuration register. This register has to be used to configure the way the MAX21100 manages events occurring on the DSYNC pin. Multiple different actions can be taken simultaneously, like changing the power mode, mapping the DSYNC pin value onto the gyroscope LSB data and concurrently triggering the capture of new data.

When the DSYNC pin is configured as active on edge and a dynamic power mode is configured, only the active edge determines the transition. The opposite transition must be done wither in SW or by reversing the active edge.

Parameters

- **DSQ ENR**: When 1, enable data queuing with DSYNC rising
- DSQ_ENF: When 1, enable data queuing with DSYNC falling
- DSW_EDG: When 1, DSYNC is an active on edge. When 0, DSYNC is an active on level
- **DSW_LOW**: When 1, DSYNC is an active low level control to wake up. When 0, DSYNC is an active high level to wake up. This bit affects both the edge and the level modes.
- DS_G_ENB: When 1, the DSYNC signal is mapped onto the Gyro LSB, on every axis
- **DS_A_ENB**: When 1, the DSYNC signal is mapped onto the Accelerometer LSB, on every axis
- **DS_M_ENB**: When 1, the DSYNC signal is mapped onto the Magnetometer LSB, on every axis
- DS_T_ENB: When 1, the DSYNC signal is mapped onto the Temperature LSB

8.2.27 DSYNC_CNT

REG Name	DSYNC_C	DSYNC_CNT: DSYNC Counter										
REG Address	Bank - 0x	Bank - 0x1B (Hex) – 27 (Dec)										
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
Type - Def. Value		RW	-0000		RW-0000							
Content		F	RFU		DSYNC_COUNTER							

Description

DSYNC counter configuration register. This register can be used to track the evolution of the rate signal from the gyroscope immediately after an external event captured on the DSYNC pin.

Parameters

• **DSYNC_COUNTER**: This register specifies the number of samples to be stored into the FIFO upon detecting a DSYNC active edge

8.2.28 ITF_OTP

REG Name	ITF_OTP	ITF_OTP: Interface and OTP control												
REG Address	Bank 0 - 0x1C (Hex) - 28 (Dec)													
	Bit 7	it 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0												
Type - Def. Value	R-0	R-0	RW-0	00	R	-00	R-0	RW-0						
Content	RFU	PARITY_ERROR	IF_PAR	RITY	OTP_E	CC_STAT	OTP_DOWNLOAD	RESTART						

Description

Interface and OTP configuration register

Parameters

• PARITY_ERROR: Error in SPI/I2C address

• IF_PARITY : Interface bit 6 configuration bits:

o 00 -> bit 6 of the register address is used for auto increment mode (default)

o 01 -> bit 6 of the register address represents the even parity bit

o 10 -> bit 6 of the register address represents the odd parity bit

• OTP_ECC_STAT: OTP Download flags:

00: OTP download OK, no error.

01: OTP download OK, 1 bit corrected.

10: OTP download OK after n trays.

11: OTP download completed with errors.

OTP DOWNLOAD:

0 -> internal FSM is performing the OTP download

1 -> internal FSM is not using OTP, OTP available

• **RESTART** Command to reload the OTP trimming values: set it to '1' to start. It automatically reverts to 0 immediately after write. Use OTP_DOWNLOAD flag to understand when OTP downloading finishes.

Note: when WPARTY!= 0, then the burst is auto-incremental by default.

Note: ENDIAN bit only affects the way data are stored into the registers, not the way data sayed into the FIFO.

8.3 USER BANK #1 (Bank_sel = 0001)

Table 15: User Bank 1

Name	Register	Туре	Default	Comment
Name	Address	Туре	Value	Comment
INT REF X	0x00	RW	0000 0000	Interrupt Reference for X-axis
INT REF Y	0x01	RW	0000 0000	Interrupt Reference for Y-axis
INT REF Z	0x02	RW	0000 0000	Interrupt Reference for Z-axis
INT DEB X	0x03	RW	0000 0000	Interrupt Debounce, X
INT DEB Y	0x04	RW	0000 0000	Interrupt Debounce, Y
INT DEB Z	0x05	RW	0000 0000	Interrupt Debounce, Z
INT MSK X	0x06	RW	0000 0000	Interrupt Mask, X-axis zones
INT MSK Y	0x07	RW	0000 0000	Interrupt Mask, Y axis zones
INT MSK Z	0x08	RW	0000 0000	Interrupt Mask, Z-axis zones
INT MASK AO	0x09	RW	0000 0000	Interrupt Masks, AND/OR
INT CFG1	0x0A	RW	0000 0000	Interrupt Configuration #1
INT CFG2	ОхОВ	RW	0010 0100	Interrupt Configuration #2
INT TMO	ОхОС	RW	0000 0000	Interrupt Timeout
INT STS UL	0x0D	R	0000 0000	Interrupt Sources, unlatched
INT STS	0x0E	R	0000 0000	Interrupt status register
INT MSK	0x0F	RW	1000 0010	Interrupt mask register
RFU	0x10	R	0000,0000	, , ,
RFU	0x11	R	0000 0000	
RFU	0x12	R	0000 0000	
RFU	0x13	R	0000 0000	
RFU	0x14	R	0000 0000	
RFU	0x15	R	0000 0000	
RFU	0x16	R	0000 0000	
INT_SRC_SEL	0x17	RW	0011 1100	Interrupt Source Selection
RFU	0x18	R	0000 0000	
RFU	0x19	R	0000 0000	
SERIAL 5	0x1A	R	Variable	Unique Serial Number, Byte 5
SERIAL 4	0x1B	R	Variable	Unique Serial Number, Byte 4
SERIAL 3	0x1C	R	Variable	Unique Serial Number, Byte 3
SERIAL 4	0x1D	R	Variable	Unique Serial Number, Byte 2
SERIAL 1	0x1E	R	Variable	Unique Serial Number, Byte 1
SERIAL 0	0x1F	R	Variable	Unique Serial Number, Byte 0

8.3.1 INT_REF_X

REG Name	INT_REF_	X։ Interruլ	ot Referenc	e for X-axis	, MSB							
REG Address	Bank 1 -	Bank 1 - 0x00 (Hex) - 0 (Dec)										
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
Type - Def. Value		RW-0000000										
Content				INT_	_REF_X							

Description

Motion Interrupt Reference, X-axis.

Parameters

INT_REF_X: These are the 8 MSB of the reference for interrupt of X direction. 8 LSB are
assumed = 0x00. If INT_SINGLE_REF = '1', then the reference is { INT_REF_X, INT_REF_Y },
with INT_REF_X used as MSB and INT_REF_Y used as LSB.

8.3.2 INT_REF_Y

REG Name	INT_REF_	Y: Interru	pt Referenc	e for Y-axis,	MSB							
REG Address	Bank 1- (Bank 1- 0x01 (Hex) - 1 (Dec)										
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
Type - Def. Value				RW-00	0000000							
Content				INT_	_REF_Y							

Description

Motion Interrupt Reference, Y-axis.

Parameters

• INT_REF_Y: These are the 8 MSB of the reference for interrupt of Y direction. 8 LSB are assumed = 0x00. If INT_SINGLE_REF = '1', then the reference is {INT_REF_X, INT_REF_Y}, with INT_REF_X as MSB and INT_REF_Y as LSB.

8.3.3 INT_REF_Z

REG Name	INT_REF_	INT_REF_Z: Interrupt Reference for Z-axis, MSB									
REG Address	Bank 1- (Bank 1- 0x02 (Hex) - 2 (Dec)									
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
Type - Def. Value		RW-0000000									
Content				INT_	_REF_Z						

Description

Motion Interrupt Reference, Z-axis.

Parameters

• INT_REF_Z: These are the 8 MSB of the reference for interrupt of Z direction. 8 LSB are assumed = 0x00. If INT_SINGLE_REF = '1' the reference is {INT_REF_X, INT_REF_Y}, with INT_REF_X used as MSB and INT_REF_Y used as LSB.

8.3.4 INT_DEB_X

REG Name	INT_DEB	_X: Interru	pt Debound	e on X-axis								
REG Address	Bank 1- (Bank 1- 0x03(Hex) - 3 (Dec)										
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
Type - Def. Value		RW-0000 RW-0000										
Content		ı	RFU			INT_D	EB_X					

Description

Motion Interrupt debounce register on X-axis.

This register determines how long (measured in number of samples) the selected AND/OR Motion Interrupt configuration has to stay asserted before the corresponding interrupt source bit is set and the interrupt on either INT1 or INT2 is eventually generated. When the selected AND/OR Motion Interrupt configuration de-asserts (goes to 0) the corresponding interrupt source bit de-asserts immediately, without debounce. Bits [7:4] is reserved.

Parameters

INT_DEB_X: This register allows to count the number of samples (@ODR) requested to
generate the Motion Interrupt signal for the X direction. If INT_SINGLE_DEB = '1' the
debounce is {INT_DEB_X, INT_DEB_Y}, with INT_DEB_X used as MSB and INT_DEB_Y used as
LSB.

8.3.5 INT_DEB_Y

REG Name	INT_DEB	INT_DEB_Y: Interrupt Debounce on Y-axis										
REG Address	Bank - 0	Bank - 0x04 (Hex) - 4 (Dec)										
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
Type - Def. Value		RW	<i>'</i> -0000			RW-	0000					
Content		RFU INT_DEB_Y										

Description

Motion Interrupt debounce register on Y-axis.

This register determines how long (measured in number of samples) the selected AND/OR Motion Interrupt configuration has to stay asserted before the corresponding interrupt source bit is set and the interrupt on either INT1 or INT2 is eventually generated. When the selected AND/OR Motion Interrupt configuration de-asserts (goes to 0) the corresponding interrupt source bit de-asserts immediately, without debounce Bits [7:4] is reserved.

Parameters

• INT_DEB_Y: This register allows to count the number of samples (@ODR) requested to generate the interrupt signal for the Y direction. If INT_SINGLE_DEB = '1' the debounce is {INT_DEB_X, INT_DEB_Y}, with INT_DEB_X used as MSB and INT_DEB_Y used as LSB.

8.3.6 INT_DEB_Z

REG Name	INT_DEB	INT_DEB_Z: Interrupt Debounce on Z-axis									
REG Address	Bank 1- 0x05 (Hex) - 5 (Dec)										
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
Type - Def. Value		RW	/-0000			RW-0	0000				
Content			RFU		INT_DEB_Z						

Description

Motion Interrupt debounce register on Z-axis.

This register determines how long (measured in number of samples) the selected AND/OR Motion interrupt configuration has to stay asserted before the corresponding interrupt source bit is set and the interrupt on either INT1 or INT2 is eventually generated. When the selected AND/OR Motion Interrupt configuration de-asserts (goes to 0) the corresponding interrupt source bit de-asserts immediately, without debounce Bits [7:4] is reserved.

Parameters

• INT_DEB_Z: This register allows to count the number of sample s(@ODR) requested to generate the interrupt signal for the Z direction. If INT_SINGLE_DEB = '1' the debounce is {INT_DEB_X, INT_DEB_Y}, with INT_DEB_X used as MSB and INT_DEB_Y used as LSB.

8.3.7 INT_MSK_X

REG Name	INT_M	INT_MSK_X: Interrupt Mask X-axis									
REG Address	Bank 1	Bank 1- 0x06 (Hex) - 6 (Dec)									
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
Type - Def. Value		RW-0000 R-0 R-0 R-0									
Content		INT_N	IASK_X		X_HIGH_POS	X_LOW_POS	X_HIGH_NEG	X_LOW_NEG			

Description

Motion Interrupt, X-axis configuration register.

This register comprises 2 fields. The 4 LSBs are read-only one-hot encoded bits which indicate whether the rate is positive or negative and whether it is above or below the rate threshold.

The 4 MSBs are writable bits which enable, when set to 1, the generation of interrupts based on configurable AND/OR combination of some of them.

Parameters

- INT_MASK_X: For each bit, enables ('1') or disables ('0') the interrupt generation for the threshold event detection on the X-axis.
 - Bit4: enable ('1')/ disable ('0') the event X_OW_NEG.
 - Bit5: enable ('1')/ disable ('0') the event X_HIGH_NEG.
 - Bit6: enable ('1')/ disable ('0') the event X_LOW_POS.
 - Bit7: enable ('1')/ disable ('0') the event X_HIGH_POS.

For example, writing INT_MASK_X = 4'b0100 enables the condition with X_LOW_POS only active to generate an interrupt.

X_HIGH_POS: Signal is positive, above threshold
 X_LOW_POS: Signal is positive, below threshold
 X_HIGH_NEG: Signal is negative, above threshold
 X_LOW_NEG: Signal is negative, below threshold

See also interrupt and drawing.

8.3.8 INT_MSK_Y

REG Name	INT_N	INT_MSK_Y: Interrupt Mask Y-axis										
REG Address	Bank	Bank 1- 0x07 (Hex) – 7 (Dec)										
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
Type - Def. Value		RW-0000 R-0 R-0 R-0										
Content		INT_M	ASK_Y		Y_HIGH_POS	Y_LOW_POS	Y_HIGH_NEG	Y_LOW_NEG				

Description

Motion Interrupt, Y-axis configuration register.

This register comprises 2 fields. The 4 LSBs are read-only one-hot encoded bits which indicate whether the rate is positive or negative and whether it is above or below the rate threshold.

The 4 MSBs are writable bits which enable, when set to 1, the generation of interrupts based on configurable AND/OR combination of some of them.

Parameters

- INT_MASK_Y: For each bit, enables ('1') or disables ('0') the interrupt generation for threshold event detection on the Y-axis.
 - Bit4: enable ('1')/ disable ('0') the event Y_OW_NEG.
 - Bit5: enable ('1')/ disable ('0') the event Y_HIGH_NEG.
 - Bit6: enable ('1')/ disable ('0') the event \(LOW_POS. \)
 - Bit7: enable ('1')/ disable ('0') the event Y_HIGH_POS.

For example, writing INT_MASK_Y = 4'b0100 enables the condition with Y_LOW_POS only to generate an interrupt.

Here is the meaning of the other bits:

Y_HIGH_POS: Signal is positive, above the threshold
 Y_LOW_POS: Signal is positive, below threshold
 Y_HIGH_NEG: Signal is negative, above threshold
 Y_LOW_NEG: Signal is negative, below threshold

See also Interrupt Zones drawing.

8.3.9 INT MSK Z

REG Name	INT_MSK	INT_MSK_Z: Interrupt Mask Z-axis										
REG Address	Bank 1- 0	Bank 1- 0x08 (Hex) - 8 (Dec)										
	Bit 7 Bit	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
Type - Def. Value	ı	RW-0000 R-0 R-0 R-0										
Content	IN'	T_MASK_Z		Z_HIGH_POS	Z_LOW_POS	Z_HIGH_NEG	Z_LOW_NEG					

Description

Motion Interrupt, Z-axis configuration register.

This register comprises 2 fields. The 4 LSBs are read-only one-hot encoded bits which indicate whether the rate is positive or negative and whether it is above or below the rate threshold.

The 4 MSBs are writable bits which enable, when set to 1, the generation of interrupts based on configurable AND/OR combination of some of them.

Parameters

- INT_MASK_Z: For each bit, enables ('1') or disables ('0') the interrupt generation for the threshold event detection on the Z-axis.
 - Bit4: enable ('1')/ disable ('0') the event Z_LOW_NEG.
 - Bit5: enable ('1')/ disable ('0') the event Z_HIGH_NEG.
 - Bit6: enable ('1')/ disable ('0') the event Z_LOW_POS.
 - Bit7: enable ('1')/ disable ('0') the event Z_HIGH_POS.

For example, writing INT_MASK_Z = 4'b0100 enables the condition with Z_LOW_POS only to generate an interrupt.

Here is the meaning of the other bits:

Z_HIGH_POS: Signal is positive, above threshold
 Z_LOW_POS: Signal is positive, below threshold
 Z_HIGH_NEG: Signal is negative, above threshold
 Z_LOW_NEG: Signal is negative, below threshold

See also herrun Zones drawing.

8.3.10 INT_MSK_AO

REG Name	INT_MA	INT_MASK_AO: Interrupt AND and Interrupt OR masks								
REG Address	Bank 1-	0x09 (Hex) - 9 (D	ec)							
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
Type - Def. Value	R-0	RW-0		RW-000			RW-000			
Content	RFU	INT_FREEZE	INT_	MASK_XYZ_	AND	INT	_MASK_XY	/Z_OR		

Description

Interrupt AND/OR masks register.

Parameters

• INT_FREEZE:

0 -> disables interrupts on threshold freeze;

1 -> enables interrupts on threshold freeze.

When INT_FREEZE = '1' the {X,Y,Z}_{HIGH,LOW}_{NEG,POS} flags hold values until interrupt will be cleared. The INT_FREEZE bit does not affect the behavior of the Interrupt Status Registers at locations 0x0E and 0x0F.

- INT_MASK_XYZ_AND: When the bit is set to 1 it's indicates that the corresponding direction is used in AND
- INT_MASK_XYZ_OR: When the bit is set to 1 it's indicates that the corresponding direction is used in OR

8.3.11 INT_CFG1

REG Name	INT_CFG1: Int	INT_CFG1: Interrupt 1 Configuration Register									
REG Address	Bank 1- 0xA (Bank 1- 0xA (Hex) – 10 (Dec)									
	Bit 7 Bit 6	t 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
Type - Def. Value	RW-00	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0				
Content	SNS_INTP_FSC	INT1_CLK_OUT	INT2_CLK_OUT	INT_SINGLE_DEB	INT_SINGLE_REF	SNS_INTP_HPF	RFU				

Description

Interrupt 1 configuration register.

Parameters

- SNS_INTP_FSC: These two bits are used for set the Full scale used by Motion Interrupts:
 - 00 2000 dps (default)
 - o 01 1000 dps
 - o 10 500 dps
 - o 11 250 dps
- INT1_CLK_OUT: INT1 pad drives out the internal clock (8.8MHz)
 INT2_CLK_OUT: INT2 pad drives out the internal clock (8.8MHz)
- INT_SINGLE_DEB: Single duration is used for all the direction.
 - int_deb_x used as MSB
 - o int_deb_y used as LSB.
- INT_SINGLE_REF: Single threshold is used for all the direction.
 - int_ref_x used as MSB
 - o int_ref_y used as LSB
- **SNS_INTP_CFG** activate the gyro interrupt data hi-pass filter:
 - 0 -> without hi-pass filtering
 - 1 -> with hi-pass filtering

8.3.12 INT_CFG2

REG Name	INT_C	FG2: Interru	pt 2 Configu	ration Registe	er						
REG Address	Bank :	Bank 1- 0xB (Hex) – 11 (Dec)									
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
Type - Def. Value	R-0	RW-0	RW-1	RW-0	RW-0	RW-1	RW-0	RW-0			
Content	RFU	MERGE_IN T	INT1_ENABL E	INT1_ACT_LV L	INT1_MOD E	INT2_ENABL E	INT2_ACT_LV L	INT2_MOD E			

Description

Interrupt 2 configuration register. This register determines how the interrupt lines INT1 and INT2 will behave in terms of :

- Merge Interrupts
- Being enabled/disabled
- Push-Pull vs Open-Drain configuration
- Active level

When the interrupt lines are disabled, they will stay at the selected un-active level regardless the settings in the INT_MSK registers.

Parameters

- MERGE_INT
 - 0 -> INT1 and INT2 are separated
 - 1 -> INT2 is merged with INT1. Interrupt INT1 changes its outputs with both INT1 and INT2
- INT1 ENABLE :
 - 0 -> disable interrupt on INT1
 - 1 -> enable interrupt on INT1
- INT1_ACT_LVL:
 - 0 -> INT1 active High
 - 1 -> INT1 active low
- INT1 MODE :
 - 0-> push pull configuration
 - 2 > open drain configuration
- INT2_ENABLE :
 - o 0 -> disable interrupt on INT2
 - 1 -> enable interrupt on INT2
- INT2_ACT_LVL:
 - 0 -> INT2 active High
 - 1 -> INT2 active low
- INT2_MODE :
 - 0 -> push pull configuration
 - 1 -> open drain configuration

8.3.13 INT TMO

REG Name	INT_TMO: In	INT_TMO: Interrupt timeout and interrupt mode configuration								
REG Address	Bank 1- 0x0C	(Hex) - 12 ([Dec)							
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
Type - Def. Value	RW-	00	RW	-00	RW-0000					
Content	INT1_LATC	H_MODE	INT2_LATO	T2_LATCH_MODE INT_TIMEOUT						

Description

Interrupt Timeout and Interrupt Mode configuration register.

This register allows to configure the interrupt lines to operate as either un latched, latched or timed.

As un-latched, they can be further configured in such a way that interrupt sources (INT1_STS and INT2_STS) can be cleared when they are read or cleared when they are written with a logic 1.

Clearing an interrupt source by writing a logic 1 allows clearing single bits rather than the entire register.

#

Parameters

• INT1 LATCH MODE:

- o 00 -> interrupt is not latched
- o 01 -> latched mode. Interrupt is maintained until cleared on Read
- o 10 -> latched mode. Interrupt is maintained until cleared on Write
- o 11 -> timed.

• INT2_LATCH_MODE:

- 00 -> interrupt is not latched
- o 01 -> latched mode. Interrupt is maintained until cleared on Read
- o 10 -> latched mode. Interrupt is maintained until cleared on Write
- 11 -> timed.

INT TIMEOUT: Interrupt temporary period. This is sharing between INT1 and INT2:

- o 0000 Temporary: 100us
- 0001 Temporary: 200us
- 0010 Temporary: 500us
- o 0011 Temporary: 1ms
- 0100 Temporary: 2ms
- 0101 Temporary: 5ms
- 0110 Temporary: 10ms
- 0111 Temporary: 20ms
- o 1000 Temporary: 50ms
- o 1001 Temporary: 100ms
- o 1010 Temporary: 200ms
- o 1011 Temporary: 500ms

8.3.14 INT_STS_UL

REG Name	INT_STS_U	INT_STS_UL: Interrupt sources, unlatched								
REG Address	Bank 1- 0x	Bank 1- 0x0D (Hex) - 13 (Dec)								
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Type - Def. Value	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
Content	STS_UL_DA TA_RDY	STS_UL_FIFO _EMPTY	STS_UL_FIF O_OVR	STS_UL_FIF O_TH	STS_UL_INT _AND	STS_UL_INT _OR	STS_UL_OT P_DOWNL OAD	STS_UL_ DSYNC		

Description

Interrupt sources, un-latched. These bits are the un-latched version of the interrupt status registers; as these signals are shared by the INT1 generator and the INT2 generator, there is a unique register shared.

This register is the actual source for the interrupt lines when the interrupts are configured as un-latched.

When the interrupt lines are configured as latched, be it both or just one of them, these bits can be used to keep monitoring the status of an interrupt source, previously identified by means of its latched version, to see how it changes after the event.

Parameters

STS_UL_DATA_RDY : DATA_READ status bit (0x22[0])
 STS_UL_FIFO_EMPTY : FIFO empty status bit (0x3D[0])
 STS_UL_FIFO_OVR : FIFO overrun status bit (0x3D[4])
 STS_UL_FIFO_TH : FIFO threshold status bit (0x3D[2])

STS_UL_INT_AND : Motion Interrupt OR status
 STS_UL_INT_OR : Motion Interrupt AND status

STS_UL_OTP_DOWNLOAD : OTP download status (0x1C[0])

8.3.15 INT STS

REG Name	INT_STS: Ir	INT_STS: Interrupt status register (latched)								
REG Address	Bank 1- 0x	Bank 1- 0x0E (Hex) - 14 (Dec)								
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
Type - Def. Value	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
Content	STS_I1_DAT A_RDY	STS_I1_FIFO _EMPTY	STS_I1_FI FO_OVR	STS_I1_FIF O_TH	STS_I2_INT_A ND	STS_I2_INT _OR	STS_I2_OTP _DOWNLO AD	STS_1_D SYNC		

Description

Interrupt status register. These are the latched interrupt sources.

When INT is configured to operate as latched, it can be cleared, when asserted, in two ways:

- Clear-On-Read: by reading the entire INT_STS register
- Clear-On-Write: by selectively writing with ,1' the specific interrupt source bit in INT_STS register, until they are all cleared. Many bits can be cleared at once by forming the appropriate mask.

When INT is configured to operate as either latched or timed, these registers are set to 0.

Parameters

STS_I1_DATA_RDY : DATA READY status bit (always unlatched)

• STS_I1_FIFO_EMPTY : FIFO empty status bit (unlatched if INT1_LATCHED_MODE is configured to be timed)

• STS_I1_FIFO_OVR : FIFO verran status bit

• STS_I1_FIFO_TH : NFO threshold status bit

• STS_I2_INT_AND : Motion Interrupt OR status

STS_I2_INT_OR
 Motion Interrupt AND status

• STS_I2_OTP_DOWNLOAD : OTP download status

• STS_I2_DSYNC : data sync pin status, according to <u>DSYNC_CFG</u>

8.3.16 INT_MSK

REG Name	INT_MSK:	NT_MSK: Interrupt mask register (latched)							
REG Address	Bank 1- 0x	OF (Hex) - 15 (I	Dec)						
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							
Type - Def. Value	RW-1	RW-0	RW-0	RW-0	RW-0	RW-0	RW-1	RW-0	
Content	MSK_I1_DA TA_RDY	MSK_I1_FIFO_ EMPTY	MSK_I1_FIF O_OVR	MSK_I1_FIF O_TH	MSK_I2_INT_ AND	MSK_I2_IN T_OR	MSK_I2_RE START	MSK_I2_ DSYNC	

Description

Interrupt mask register. This register is meant to be used to enable selected interrupt sources in the INT_STS (0x0E) register to activate the INT interrupt line. Interrupt sources are masked (prevented from generating an interrupt) as long as the corresponding bit in the mask register is 0.

Valid configurations are with None, One, Multiple or Every bit set to 1; having multiple possible interrupt sources will require the Interrupt Service routine to identify the correct one(s).

Parameters

MSK_I1_DATA_RDY : DATA_READY mask bit
 MSK_I1_FIFO_EMPTY : FIFO_empty mask bit
 MSK_I1_FIFO_OVR : FIFO_overror mask bit
 MSK_I1_FIFO_TH : FIFO_threshold mask bit
 MSK_I2_INT_AND : Motion interrupt OR mask bit

• MSK_I2_INT_OR : Motion Interrupt AND mask bit

MSK_I2_ OTP_DOWNLOAD download mask bit

MSK_I2_DSYNC : data sync pin mask bit, according to <u>DSYNC_CFG</u>

MAX21100 User Guide REV 1.1 (Preliminary) Page 66 of 98

8.3.17 INT_SRC_SEL

REG Name	INT_S	RC_SE	L: Motion Interru	pt Source Selection	on		
REG Address	Bank	1- 0x1	7 (Hex) - 23 (Dec)				
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit Bit 1 0
Type - Def. Value	RW-	RW -0	RW-1	RW-1	RW-1	RW-1	RW-00
Content	RFU	RFU	MSK_GYR_INT_D_ RDY	MSK_ACC_INT_D_ RDY	MSK_MAG_INT_D_ RDY	MSK_QUA_INT_D_ RDY	INT_SRC_S EL

Description

Motion Interrupt Source selection register.

Parameters

MSK_GYR_INT_D_RDY : When '1' a new gyro data set contributes to data ready interrupt assertion

• MSK_ACC_INT_D_RDY : When '1' a new accelerometer data set contributes to data

ready interrupt assertion

• MSK_MAG_INT_D_RDY
ready interrupt assertion

: When '1' a new magnetometer data set contributes to data

• MSK_QUA_INT_D_RDY : When '1' a new quaternion data set contributes to data ready interrupt assertion

• INT_SRC_SEL =

00: gyr_x, gyr_y, gyr_z

• 10: norm(a_hpf), norm(a_hpf), norm(a_pre_hpf)

11: norm(a_hpf) norm(a_pre_hpf), norm(a_pre_hpf)

8.3.18 SERIAL_5

REG Name	SERIAL_5:	Serial Numb	er byte 5						
REG Address	Bank 1- 0x	1A (Hex) – 2	6 (Dec)						
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							
Type – Def. Value	R	R	R	R	R	R	R	R	
Content				SERI	AL_5				

Description

Serial number, byte 5 register. SERIAL_X registers (with X going from 0 to 5) are 6 registers used to assign a unique identifier to every single MAX21100 sample to enable a complete track-ability of each of them, in terms of LOTs, Assembly history and Test equipment:

Parameters

• **SERIAL_5** : Serial number, byte 5

8.3.19 SERIAL_4

REG Name	SERIAL_4:	Serial Numb	er byte 4	Wild.				
REG Address	Bank 1- 0x	1B (Hex) – 2	7 (Dec)					
	Bit 7							
Type – Def. Value	R	R	R	R	R	R	R	R
Content				SERI	AL_4			

Description

Serial number, byte 4 register.

Parameters

• SERIAL_4 Serial number, byte 4

8.3.20 SERIAL_3

REG Name	SERIAL_3:	Serial Numb	er byte 3					
REG Address	Bank 1- 0x	1C (Hex) – 2	8 (Dec)					
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type – Def. Value	R	R	R	R	R	R	R	R
Content				SERIA	AL_3			

Description

Serial number, byte 3 register.

Parameters

• **SERIAL_3** : Serial number, byte 3

8.3.21 SERIAL_2

REG Name	SERIAL_2:	Serial Numb	er byte 2						
REG Address	Bank 1- 0x	1D (Hex) – 2	9 (Dec)						
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							
Type – Def. Value	R	R	R	R	R	R	R	R	
Content				SERI	AL_2				

Description

Serial number, byte 2 register. SERIAL_X registers (with X going from 0 to 5) are 6 registers used to assign a unique identifier to every single MAX21100 sample to enable a complete track-ability of each of them, in terms of LOTs, assembly history and Test equipment.

Parameters

• SERIAL_2 : Serial number, byte 2

8.3.22 SERIAL_1

REG Name	SERIAL_1:	Serial Numb	er byte 1		Visit John			
REG Address	Bank – 0x1E (Hex) – 30 (Dec)							
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type – Def. Value	R	R	<u>R</u> _	_ R	R	R	R	R
Content				SERI	AL_1			

Description

Serial number, byte 1 register.

Parameters

• **SERIAL_1** Serial number, byte 1

8.3.23 SERIAL 0

REG Name	SERIAL_0:	SERIAL_0: Serial Number byte 0						
REG Address	Bank 1- 0x	Bank 1- 0x1F (Hex) – 31 (Dec)						
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type – Def. Value	R	R	R	R	R	R	R	R
Content				SERI	AL_0			

Description

Serial number, byte 0 register.

Parameters

• **SERIAL_0** : Serial number, byte 0

8.4 USER BANK #2 (Bank_sel = 0010)

Table 16: User Bank 2

Name	Register	Туре	Default	Comment
	Address		Value	
QUATO H	0x00	R	0000 0000	MSB of QUATERNION 0
QUATO L	0x01	R	0000 0000	LSB of QUATERNION 0
QUAT1 H	0x02	R	0000 0000	MSB of QUATERNION 1
QUAT1 L	0x03	R	0000 0000	LSB of QUATERNION 1
QUAT2 H	0x04	R	0000 0000	MSB of QUATERNION 2
QUAT2 L	0x05	R	0000 0000	LSB of QUATERNION 2
QUAT3 H	0x06	R	0000 0000	MSB of QUATERNION 3
QUAT3 L	0x07	R	0000 0000	LSB of QUATERNION 3
RFU	0x08	R	0000 0000	4 4 4
RFU	0x09	R	0000 0000	
RFU	0x0A	R	0000 0000	
RFU	ОхОВ	R	0000 0000	
RFU	ОхОС	R	0000 0000	
RFU	0x0D	R	0000 0000	
RFU	0x0E	R	0000 0000	
RFU	0x0F	R	0000 0000	
RFU	0x10	R	0000 0000	
RFU	0x11	R	0000 0000	
RFU	0x12	R	0000 0000	
BIAS GYRO X H	0x13	RW	0000 0000	GYRO Bias Compensation, X-MSB
BIAS GYRO X L	0x14	RW	0000 0000	GYRO Bias Compensation, X-LSB
BIAS GYRO Y H	0x15	RW	0000 0000	GYRO Bias Compensation, X-MSB
BIAS GYRO Y L	0x16	RW	0000 0000	GYRO Bias Compensation, X-LSB
BIAS GYRO Z H	0x17	RW	0000 0000	GYRO Bias Compensation, X-MSB
BIAS GYRO Z L	0x18	RW	0000 0000	GYRO Bias Compensation, X-LSB
BIAS COMP ACC	0x19	RW	0000 0000	ACC Bias Compensation, X
BIAS COMP ACCEN	0x1A	RW	0000 0000	ACC Bias Compensation, Y
BIAS COMPLACE Z	0x1B	RW	0000 0000	ACC Bias Compensation, Z
FUS CFG0	0x1C	RW	0000 0000	Fusion Engine Configuration Reg. 0
FUS CFGI	0x1D	RW	0101 1000	Fusion Engine Configuration Reg. 1
RFU	0x1E	R	0000 0000	
GYR ODR TRIM	0x1F	RW	0000 0000	Output ODR Trimming Register

8.4.1 QUATO_H

REG Name	QUATO_H: Quaternion Data, MSB		
REG Address	Bank 2- 0x00 (Hex) – 0 (Dec)		
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0		
Type - Def. Value	R-00000000		
Content	QUATERNION_0_MSB		

Description

This register stores the most recent quaternion measurement, specifically the MSB of the component 0 of the quaternion.

Parameters

• QUATERNION_0_MSB

8.4.2 QUATO_L

REG Name	QUATO_L: Quaternion Data, LSB
REG Address	Bank 2- 0x01 (Hex) – 1 (Dec)
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Type - Def. Value	R-00000000
Content	QUATERNION_0_LSB

Description

This register stores the most recent quaternion measurement, specifically the LSB of the component 0 of the quaternion.

Parameters

QUATERNION_0_LSB

8.4.3 QUAT1_H

REG Name	QUAT1_H: Quaternion Data, MSB		
REG Address	Bank 2- 0x02 (Hex) – 2 (Dec)		
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0		
Type - Def. Value	R-00000000		
Content	QUATERNION_1_MSB		

Description

This register stores the most recent quaternion measurement, specifically the MSB of the component 1 of the quaternion.

Parameters

• QUATERNION_1_MSB

8.4.4 QUAT1_L

REG Name	QUAT1_L: Quaternion Data, LSB		
REG Address	Bank 2- 0x03 (Hex) – 3 (Dec)		
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0		
Type - Def. Value	R-0000000		
Content	QUATERNION_1_LSB		

Description

This register stores the most recent quaternion measurement, specifically the LSB of the component 1 of the quaternion.

Parameters

QUATERNION_1_LSB

8.4.5 QUAT2_H

REG Name	QUAT2_H: Quaternion Data, MSB			
REG Address	Bank 2- 0x04 (Hex) – 4 (Dec)			
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0			
Type - Def. Value	R-00000000			
Content	QUATERNION_2_MSB			

Description

This register stores the most recent quaternion measurement, specifically the MSB of the component 2 of the quaternion.

Parameters

• QUATERNION_2_MSB

8.4.6 QUAT2_L

REG Name	QUAT1_L: Quaternion Data, LSB
REG Address	Bank 2- 0x05 (Hex) – 5 (Dec)
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Type - Def. Value	R-00000000
Content	QUATERNION_2_LSB

Description

This register stores the most recent quaternion measurement, specifically the LSB of the component 2 of the quaternion.

Parameters

QUATERNION_2_LSB

8.4.7 QUAT3_H

REG Name	QUAT3_H: Quaternion Data, MSB			
REG Address	Bank 2- 0x06 (Hex) – 6 (Dec)			
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0			
Type - Def. Value	R-00000000			
Content	QUATERNION_3_MSB			

Description

This register stores the most recent quaternion measurement, specifically the MSB of the component 2 of the quaternion.

Parameters

• QUATERNION_3_MSB

8.4.8 QUAT3_L

REG Name	QUAT3_L: Quaternion Data, LSB
REG Address	Bank 2- 0x07 (Hex) – 7 (Dec)
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Type - Def. Value	R-00000000
Content	QUATERNION_3_LSB

Description

This register stores the most recent quaternion measurement, specifically the LSB of the component 2 of the quaternion.

Parameters

QUATERNION_3_LSB

8.4.9 BIAS_GYRO_X_H

REG Name	BIAS_GYRO_X_H: GYRO Bias Compensation, X-MSB		
REG Address	Bank 2- 0x13 (Hex) – 19 (Dec)		
	Bit 7 Bit 6 Bit 5	Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	
Type - Def. Value	RW-000	RW-00000	
Content	RFU	BIAS_GYRO_X_H	

Description

This register stores the MSB of the GYRO bias estimate, X axis.

Parameters

• BIAS_GYRO_X_H

8.4.10 BIAS_GYRO_X_L

REG Name	BIAS_GYRO_X_L: GYRO Bias Compensation, X-LSB			
REG Address	Bank 2- 0x14 (Hex) – 20 (Dec)			
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0			
Type - Def. Value	RW-0000000			
Content	BIAS_GYRO_X_L			

Description

This register stores the LSB of the GYRO bias estimate, X axis.

Parameters

BIAS_GYRO_X

8.4.11 BIAS_GYRO_Y_H

REG Name	BIAS_GYRO_Y_H: GYRO Bias Compensation, Y-MSB		
REG Address	Bank 2- 0x15 (Hex) – 21 (Dec)		
	Bit 7 Bit 6 Bit 5	Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	
Type - Def. Value	RW-000	RW-00000	
Content	RFU	BIAS_GYRO_Y_H	

Description

This register stores the MSB of the GYRO bias estimate, Y axis.

Parameters

BIAS_GYRO_Y_H

8.4.12 BIAS_GYRO_Y_L

REG Name	BIAS_GYRO_Y_L: GYRO Bias Compensation, Y-LSB				
REG Address	Bank 2- 0x16 (Hex) – 22 (Dec)				
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0				
Type - Def. Value	RW-0000000				
Content	BIAS_GYRO_Y_L				

Description

This register stores the LSB of the GYRO bias estimate, Y axis.

Parameters

BIAS_GYRO_Y

8.4.13 BIAS_GYRO_Z_H

REG Name	BIAS_GYRO_Z_H: GYRO Bias Compensation, Z-MSB		
REG Address	Bank 2- 0x17 (Hex) – 23 (Dec)		
	Bit 7 Bit 6 Bit 5	Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	
Type - Def. Value	RW-000	RW-00000	
Content	RFU	BIAS_GYRO_Z_H	

Description

This register stores the MSB of the GYRO bias estimate, Z axis.

Parameters

BIAS_GYRO_Z_H

8.4.14 BIAS_GYRO_Z_L

Description

This register stores the LSB of the GYRO bias estimate, Z axis.

Parameters

BIAS_GYRO_Z_1

8.4.15 BIAS COMP ACC_X

REG Name	BIAS_COMP	BIAS_COMP_ACC_X: Accelerometer Bias Compensation, X-axis						
REG Address	Bank 2- 0x1	9 (Hex) – 25	(Dec)					
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type - Def. Value	R-0			R	W-00000000)		
Content	RFU			BIAS	S_COMP_AC	c_x		

Description

This register stores the the accelerometer bias estimate, X axis.

Parameters

BIAS_COMP_ACC_X

8.4.16 BIAS_COMP_ACC_Y

REG Name	BIAS_COMP	BIAS_COMP_ACC_Y: Accelerometer Bias Compensation, Y-axis						
REG Address	Bank 2- 0x1	A (Hex) – 26	(Dec)					
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type - Def. Value	R-0			R	RW-0000000	0		
Content	RFU			BIAS	S_COMP_AC	C_Y		

Description

This register stores the accelerometer bias estimate, Y axis.

Parameters

BIAS_COMP_ACC_Y

8.4.17 BIAS_COMP_ACC_Z

REG Name	BIAS_COMP	_ACC_Z: Ac	celerometer	Bias Com	pensation	, Z-axis		
REG Address	Bank 2- 0x1	.B (Hex) – 27	' (Dec)					
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type - Def. Value	R-0			F	RW-0000000	00		
Content	RFU	_		BIA	S_COMP_AC	CC_Z		

Description

This register stores the accelerometer bias estimate, Z axis.

Parameters

BIAS_COMP_ACC_Z

8.4.18 FUS_CFG_0

REG Name	FUS_CFG_0: Fusion Configuration 0				
REG Address	Bank 2- 0x1C (Hex) – 2	Bank 2- 0x1C (Hex) – 28 (Dec)			
	Bit 7 Bit 6 Bit 5	Bit 4	Bit 3	Bit 2 Bit 1	Bit 0
Type - Def. Value	RW-000	RW-0	RW-0	RW-00	RW-0
Content	FUS_ ODR	FUS_GR_HD	FUS_AUTO_MODE	FUS_MODE	FUS_EN

Description

The fusion configuration 0

Parameters

FUS ODR: Fusion ODR ratio

FUS_ODR	ODR ratio
000	SNS_ODR(default)
001	SNS_ODR /2
010	SNS_ODR /4
011	SNS_ODR /8
100	SNS_ODR 16
101	SNS_ODR /32
110	SNS_ODR /64
111	SNS_ODR /128

- FUS_GR_HD: when set to '1', gravity and heading estimation is enabled and outputed in place of quaternion
- FUS_AUTO_MODE: when set to '1', the fusion mode is automatically managed according to power modes and sensor anormalies
- FUS_MODE: Four modes in total which is described as following:
 - 00 -> Gryo + Accelerometer + Magnetometer
 - 01 -> Accelerometer + Magnetometer
 - 10 -> Gryo
 - 11 -> Gyro + Accelerometer + Magnetermeter
- FUS_EN: when set to '1', activate the fusion generation

8.4.19 FUS_CFG_1

REG Name	FUS_CFG_1: Fusion Configuration 1					
REG Address	Bank 2- 0x1D (Hex) – 29 (Dec)					
	Bit 7 Bit 6 Bit 5	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0				
Type - Def. Value	RW-010	RW-11	RW-0	RW-0	RW-0	
Content	FUS_ALPHA0_TRIM	FUS_ALPHA1_TRIM	FORCE_MAG_ABNORMAL	MAG_A BNORMAL_MON	MAG_SW	

Description

The fusion configuration 1

Parameters

• FUS_ALPHAO_TRIM: the parameter alpha 0 of adaptive filter

FUS_ALPHA0_TRIM	Parameter alpha 0 of adaptive filter
000	0.95
001	0.96
010	0.97(default)

011	0.98
100	0.99
101	0.994
110	0.997
111	0.999

FUS_ALPHA1_TRIM: the parameter alpha 1 of adaptive filter

FUS_ALPHA1_TRIM	Parameter alpha 1 of adaptive filter
0	alpha0
1	alpha0 *2/3 +1/3
2	alpha0 *1/3 +2/3
3	1(default)

: When set high, magnetometer abnormality is emulated by FORCE_MAG_ABNORMAL SW

: When set high, Mag X read data LSB is used as active high MAG_ABNORMAL_MON

magnetometer abnormal monitor information.

MAG_SW: When set high, magnetometer data is provided externally via SW on ofset fileds after SW compensation.

8.4.20 GYR_ODR_TRIM

REG Name	GYR_ODR_TRIM: Output ODR correction				
REG Address	Bank 2- 0x1F(Hex) - 31 (Dec)				
	Bit 7 Bit 6 Bit 5 Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Type - Def. Value	R-0000	R-0	R-0	R-0	RW-0
Content	GYR_ODR_CORR	GYR_OK	ACC_OK	MAG_OK	RFU

Parameters

FUS ODR: Fusion ODR ratio

GYR_ODR_CORR	Real gryo ODR correction factor
0000	GYR_ODR_CORR = 0.901(real gyro ODR is 11 %
	higher than expected)
0001	GYR_ODR_CORR = 0.915
0010	GYR_ODR_CORR = 0.928
0011	GYR_ODR_CORR = 0.942
0100	GYR_ODR_CORR = 0.956
0101	GYR_ODR_CORR = 0.971
0110	GYR_ODR_CORR = 0.985
0111	GYR_ODR_CORR = 1.000
1000	GYR_ODR_CORR = 1.015

	T
1001	GYR_ODR_CORR = 1.030
1010	GYR_ODR_CORR = 1.046
1011	GYR_ODR_CORR = 1.061
1100	GYR_ODR_CORR = 1.077
1101	GYR_ODR_CORR = 1.093
1110	GYR_ODR_CORR = 1.110
1111	GYR_ODR_CORR = 1.126(real gyro ODR is
	12.6% lower than expected)

- GYR_OK: read back infomation, gyro drive loop is locked in amplitude and gyro sense chain is active
- ACC_OK: read back information, accelerometer sense chain is active.
- MAG_OK: read back information, magnetometer is active and no magnetic abnormal is detected.