#### Class 36: Outline

Hour 1:

Concept Review / Overview

PRS Questions – Possible Exam Questions

Hour 2:

Sample Exam

### Yell if you have any questions

### **Before Starting...**

All of your grades should now be posted (with possible exception of last problem set). If this is not the case contact me immediately.

### **Final Exam Topics**

#### Maxwell's Equations:

- 1. Gauss's Law (and "Magnetic Gauss's Law")
- 2. Faraday's Law
- Ampere's Law (with Displacement Current)
   & Biot-Savart & Magnetic moments

#### **Electric and Magnetic Fields:**

- 1. Have associated potentials (you only know E)
- 2. Exert a force
- 3. Move as waves (that can interfere & diffract)
- 4. Contain and transport energy

Circuit Elements: Inductors, Capacitors, Resistors

#### **Test Format**

Six Total "Questions"

One with 10 Multiple Choice Questions

Five Analytic Questions

1/3 Questions on New Material

2/3 Questions on Old Material

# Maxwell's Equations

### Maxwell's Equations

$$\oint_{S} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{Q_{in}}{\varepsilon_{0}} \qquad (Gauss's Law)$$

$$\oint_{C} \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} = -\frac{d\Phi_{B}}{dt} \qquad (Faraday's Law)$$

$$\oint_{S} \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = 0 \qquad (Magnetic Gauss's Law)$$

$$\oint_{C} \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_{0}I_{enc} + \mu_{0}\varepsilon_{0}\frac{d\Phi_{E}}{dt} \qquad (Ampere-Maxwell Law)$$

### Gauss's Law:

$$\iint_{S} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{q_{in}}{\varepsilon_0}$$



Spherical Symmetry



Cylindrical Symmetry



Planar Symmetry

# Maxwell's Equations

### Faraday's Law of Induction

$$\mathcal{E} = \oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} = -N \frac{d\Phi_B}{dt}$$

$$= -N \frac{d}{dt} (BA \cos \theta)$$
Ramp B Rotate area in field

#### Lenz's Law:

Induced EMF is in direction that opposes the change in flux that caused it

### Maxwell's Equations

# Ampere's Law: $\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 I_{enc}$

Long
Circular
Symmetry





(Infinite) Current Sheet



Torus/Coax

Solenoid

2 Current Sheets





### **Displacement Current**



$$E = \frac{Q}{\varepsilon_0 A} \Rightarrow Q = \varepsilon_0 E A = \varepsilon_0 \Phi_E$$

$$\frac{dQ}{dt} = \varepsilon_0 \frac{d\Phi_E}{dt} \equiv I_d$$

$$\begin{split} \oint_{C} \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} &= \mu_{0} (I_{encl} + I_{d}) \quad \text{EM Waves} \\ &= \mu_{0} I_{encl} + \mu_{0} \varepsilon_{0} \frac{d\Phi_{E}}{dt} \end{split}$$

### Maxwell's Equations

$$\oint_{S} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{Q_{in}}{\varepsilon_{0}} \qquad (Gauss's Law)$$

$$\oint_{C} \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} = -\frac{d\Phi_{B}}{dt} \qquad (Faraday's Law)$$

$$\oint_{S} \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = 0 \qquad (Magnetic Gauss's Law)$$

$$\oint_{C} \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_{0} I_{enc} + \mu_{0} \varepsilon_{0} \frac{d\Phi_{E}}{dt} \qquad (Ampere-Maxwell Law)$$

I am nearly certain that you will have one of each They are very standard – know how to do them all

### **EM Field Details...**

#### **Electric Potential**

$$\Delta V = -\int_{A}^{B} \vec{\mathbf{E}} \cdot d \, \vec{\mathbf{s}} = V_{B} - V_{A}$$

$$= -E d \quad \text{(if E constant - e.g. Parallel Plate C)}$$

Common second step to Gauss' Law

$$\vec{\mathbf{E}} = -\nabla V = \text{e.g.} -\frac{dV}{dx}\hat{\mathbf{i}}$$

Less Common – Give plot of V, ask for E

#### **Force**

#### Lorentz Force:

$$\vec{\mathbf{F}} = q \left( \vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}} \right)$$

- Single Charge Motion
- Cyclotron Motion
- Cross E & B for no force

### Magnetic Force:

$$d\vec{\mathbf{F}}_{B} = Id\vec{\mathbf{s}} \times \vec{\mathbf{B}} \Longrightarrow \vec{\mathbf{F}}_{B} = I(\vec{\mathbf{L}} \times \vec{\mathbf{B}})$$

- Parallel Currents Attract
- Force on Moving Bar (w/ Faraday)

#### **The Biot-Savart Law**

Current element of length ds carrying current I (or equivalently charge q with velocity v) produces a magnetic field:



$$\vec{\mathbf{B}} = \frac{\mu_o}{4\pi} \frac{q \, \mathbf{v} \, \mathbf{x} \, \mathbf{r}}{r^2}$$

$$\mathbf{d\vec{B}} = \frac{\mu_0}{4\pi} \frac{I \, d\vec{\mathbf{s}} \times \hat{\mathbf{r}}}{r^2}$$

### **Magnetic Dipole Moments**



$$\vec{\mu} \equiv IA\hat{\mathbf{n}} \equiv IA$$

#### **Generate:**



#### Feel:

- 1) Torque aligns with external field  $\vec{\tau} = \vec{\mu} \times \vec{B}$
- 2) Forces as for bar magnets

# **Traveling Sine Wave**

- Wavelength:  $\lambda$
- Frequency: f

$$\vec{\mathbf{E}} = \hat{\mathbf{E}}E_0 \sin(kx - \omega t)$$

- Wave Number:  $k = \frac{2\pi}{\lambda}$
- Angular Frequency:  $\omega = 2\pi f$
- Period:  $T = \frac{1}{f} = \frac{2\pi}{\omega}$

Good chance this will be one question!

- Speed of Propagation:  $v = \frac{\omega}{k} = \lambda f$
- Direction of Propagation: +x

#### **EM Waves**

Travel (through vacuum) with

speed of light 
$$v = c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3 \times 10^8 \frac{m}{s}$$



At every point in the wave and any instant of time, E and B are in phase with one another, with

$$\frac{E}{B} = \frac{E_0}{B_0} = c$$

E and B fields perpendicular to one another, and to the direction of propagation (they are transverse):

Direction of propagation = Direction of  $\vec{E} \times \vec{B}$ 

# Interference (& Diffraction)

$$\Delta L = m\lambda$$
  $\Rightarrow$  Constructive Interference

$$\Delta L = (m + \frac{1}{2})\lambda \Rightarrow$$
 Destructive Interference

Likely multiple choice problem?



### **Energy Storage**

### Energy is stored in E & B Fields

$$u_E = \frac{\varepsilon_o E^2}{2}$$

: Electric Energy Density

In capacitor:  $U_C = \frac{1}{2}CV^2$ In EM Wave

$$u_B = \frac{B^2}{2\mu_o}$$

: Magnetic Energy Density

In inductor:  $U_L = \frac{1}{2}LI^2$  In EM Wave

### **Energy Flow**

Poynting vector: 
$$\vec{S} = \frac{\vec{E} \times \vec{B}}{\mu_0}$$

- (Dis)charging C, L
- Resistor (always in)
- EM Radiation

### For EM Radiation

Intensity: 
$$I = \langle S \rangle = \frac{E_0 B_0}{2\mu_0} = \frac{E_0^2}{2\mu_0 c} = \frac{c B_0^2}{2\mu_0}$$

### **Circuits**

There will be no quantitative circuit questions on the final and no questions regarding driven RLC Circuits

Only in the multiple choice will there be circuit type questions

BUT....

### **Circuit Elements**

| NAME      | Value                      | V/E               | Power /<br>Energy |
|-----------|----------------------------|-------------------|-------------------|
| Resistor  | $R = \frac{\rho \ell}{A}$  | IR                | $I^2R$            |
| Capacitor | $C = \frac{Q}{ \Delta V }$ | $\frac{Q}{C}$     | $\frac{1}{2}CV^2$ |
| Inductor  | $L = \frac{N\Phi}{I}$      | $-L\frac{dI}{dt}$ | $\frac{1}{2}LI^2$ |

#### **Circuits**

For "what happens just after switch is thrown":

Capacitor: Uncharged is short, charged is open

Inductor: Current doesn't change instantly!

Initially looks like open, steady state is short

RC & RL Circuits have "charging" and "discharging" curves that go exponentially with a time constant:

LC & RLC Circuits oscillate:

$$V, Q, I \propto \cos(\omega t)$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

### **SAMPLE EXAM**

#### F2002 #5, S2003 #3, SFB#1, SFC#1, SFD#1

#### **Problem 1: Gauss's Law**



A circular capacitor of spacing *d* and radius *R* is in a circuit carrying the steady current *i* shown.

At time t=0 it is uncharged

- 1. Find the electric field **E**(t) at P vs. time t (mag. & dir.)
- 2. Find the potential at P, V(t), given that the potential at the right hand plate is fixed at 0
- 3. Find the magnetic field **B**(t) at P
- 4. Find the total field energy between the plates U(t)

#### Solution 1: Gauss's Law



1. Find the electric field **E**(t):

Assume a charge q on the left plate (-q on the right)

Gauss's Law:

$$\iint_{S} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = EA = \frac{Q_{in}}{\mathcal{E}_{0}} = \frac{\sigma A}{\mathcal{E}_{0}}$$

$$E = \frac{\sigma}{\varepsilon_0} = \frac{q}{\pi R^2 \varepsilon_0}$$

Since 
$$q(t=0) = 0$$
,  $q = it$ 

$$\vec{\mathbf{E}}(t) = \frac{it}{\pi R^2 \varepsilon_0} \text{ to the right}$$

#### Solution 1.2: Gauss's Law



2. Find the potential V(t):

Since the E field is uniform, V = E \* distance

$$V(t) = \left| \vec{\mathbf{E}}(t) \right| (d - d') = \frac{it}{\pi R^2 \varepsilon_0} (d - d')$$

Check: This should be positive since its between a positive plate (left) and zero potential (right)

### Solution 1.3: Gauss's Law



$$\Phi_E = EA = \left(\frac{it}{\pi R^2 \varepsilon_0}\right) \pi r^2$$

$$\frac{d\Phi_E}{dt} = \frac{r^2 i}{R^2 \varepsilon_0}$$

3.Find **B**(t):

Ampere's Law:

$$\oint_{C} \vec{\mathbf{B}} \cdot d \vec{\mathbf{s}} = \mu_0 I_{enc} + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$$

$$2\pi rB = 0 + \mu_0 \varepsilon_0 \frac{r^2 i}{R^2 \varepsilon_0}$$

$$\vec{\mathbf{B}}(t) = \frac{\mu_0 ir}{2\pi R^2}$$
 out of the page

#### Solution 1.4: Gauss's Law

4. Find **Total Field Energy** between the plates

E Field Energy Density: 
$$u_E = \frac{\varepsilon_o E^2}{2} = \frac{\varepsilon_o}{2} \left( \frac{it}{\pi R^2 \varepsilon_0} \right)^2$$

B Field Energy Density: 
$$u_B = \frac{B^2}{2\mu_o} = \frac{1}{2\mu_o} \left(\frac{\mu_o ir}{2\pi R^2}\right)^2$$

Total Energy  $U = \iiint (u_E + u_B) dV$  (Integrate over cylinder)

$$= \frac{\varepsilon_o}{2} \left( \frac{it}{\pi R^2 \varepsilon_o} \right)^2 \bullet \pi R^2 d + \frac{1}{2\mu_o} \left( \frac{\mu_o i}{2\pi R^2} \right)^2 \int r^2 \bullet d \cdot 2\pi r \ dr$$

$$= \frac{(it)^{2}}{2} \frac{d}{\varepsilon_{0} \pi R^{2}} + \frac{1}{2} \frac{\mu_{o} d}{8\pi} i^{2} \qquad \left( = \frac{q^{2}}{2C} + \frac{1}{2} L i^{2} \right)$$

### Problem 2: Faraday's Law



A simple electric generator rotates with frequency *f* about the y-axis in a uniform *B* field. The rotor consists of n windings of area S. It powers a lightbulb of resistance R (all other wires have no resistance).

- 1. What is the maximum value  $I_{max}$  of the induced current? What is the orientation of the coil when this current is achieved?
- 2. What power must be supplied to maintain the rotation (ignoring friction)?

# Solution 2: Faraday's Law



Faraday's Law: 
$$\oint_C \vec{\mathbf{E}} \cdot d \vec{\mathbf{s}} = -\frac{d\Phi_B}{dt}$$

$$I = \frac{\varepsilon}{R} = -\frac{1}{R} \frac{d\Phi_B}{dt} = -\frac{1}{R} \frac{d}{dt} (nBS \cos(\omega t)) = \frac{nBS}{R} \omega \sin(\omega t)$$

$$I_{\text{max}} = \frac{nBS}{R}\omega = \frac{nBS}{R}2\pi f$$

 $I_{\text{max}} = \frac{nBS}{R}\omega = \frac{nBS}{R}2\pi f$  | iviax when flux is changing the most – at Max when flux is 90° to current picture

### Solution 2.2: Faraday's Law



#### 2. Power delivered?

Power delivered must equal power dissipated!

$$P = I^{2}R = \left(\frac{nBS}{R} 2\pi f \sin(\omega t)\right)^{2} R = R\left(\frac{nBS}{R} 2\pi f\right)^{2} \sin^{2}(\omega t)$$

$$\langle P \rangle = \frac{R}{2} \left( \frac{nBS}{R} 2\pi f \right)^2$$

### Problem 3: Ampere's Law



Consider the two long current sheets at left, each carrying a current density  $J_0$  (out the top, in the bottom)

- a) Use Ampere's law to find the magnetic field for all z. Make sure that you show your choice of Amperian loop for each region.
- At t=0 the current starts decreasing:  $J(t)=J_0-at$
- b) Calculate the electric field (magnitude and direction) at the bottom of the top sheet.
- c) Calculate the Poynting vector at the same location

# $\hat{z}$ Solution 3.1: Ampere's Law



By symmetry, above the top and below the bottom the B field must be 0.

Elsewhere B is to right

Region 1:

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 I_{enc} \Rightarrow B\ell = \mu_0 J_0 z\ell \Rightarrow B = \mu_0 J_0 z$$

Region 2:

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 I_{enc} \Longrightarrow B\ell = \mu_0 J_0 d\ell \Longrightarrow B = \mu_0 J_0 d$$

Region 3:

$$B\ell = \mu_0 \left( J_0 d - J_0 \left( z - 2d \right) \right) \ell \Longrightarrow B = \mu_0 J_0 \left( 3d - z \right)$$

### Solution 3.2: Ampere's Law



Why is there an electric field?

Changing magnetic field → Faraday's Law!

$$\oint_C \vec{\mathbf{E}} \cdot d \vec{\mathbf{s}} = -\frac{d\Phi_B}{dt}$$

 $\oint_C \vec{\mathbf{E}} \cdot d \vec{\mathbf{s}} = -\frac{d\Phi_B}{dt}$  Use rectangle of sides *d*, *s* to find **E** at bottom of top plate

J is decreasing → B to right is decreasing → induced field wants to make B to right → E out of page

$$2sE = \frac{d}{dt}(Bsd) = sd\frac{d}{dt}(\mu_0 dJ) = sd^2\mu_0 \frac{dJ}{dt}$$

$$\Rightarrow \vec{\mathbf{E}} = \frac{1}{2}d^2\mu_0 a$$
 out of page

# $\hat{z}$ Solution 3.3: Ampere's Law



Calculate the Poynting vector (at bottom of top plate):

$$\vec{\mathbf{S}} = \frac{1}{\mu_0} \vec{\mathbf{E}} \times \vec{\mathbf{B}} = \frac{1}{\mu_0} \left( \frac{1}{4} d^2 \mu_0 a \right) (\mu_0 J d) \hat{\mathbf{z}}$$

That is, energy is leaving the system (discharging)

If this were a solenoid I would have you integrate over the outer edge and show that this = d/dt(1/2 LI<sup>2</sup>)

#### **Problem 4: EM Wave**

The magnetic field of a plane EM wave is:

$$\vec{\mathbf{B}} = 10^{-9} \cos\left(\left(\pi \mathbf{m}^{-1}\right) y + \left(3\pi \times 10^8 \,\mathrm{s}^{-1}\right) t\right) \hat{\mathbf{i}} \text{ Tesla}$$

- (a) In what direction does the wave travel?
- (b) What is the wavelength, frequency & speed of the wave?
- (c) Write the complete vector expression for E
- (d) What is the time-average energy flux carried in the wave? What is the direction of energy flow? ( $\mu_o = 4 \pi \times 10^{-7}$  in SI units; retain fractions and the factor  $\pi$  in your answer.)

#### Solution 4.1: EM Wave

$$\vec{\mathbf{B}} = 10^{-9} \cos\left(\left(\pi \mathbf{m}^{-1}\right) y + \left(3\pi \times 10^8 \,\mathrm{s}^{-1}\right) t\right) \hat{\mathbf{i}} \text{ Tesla}$$

(a) Travels in the  $-\hat{\mathbf{j}}$  direction (-y)

(b) 
$$k = \pi \text{m}^{-1} \Rightarrow \lambda = \frac{2\pi}{k} = 2 \text{ m}$$

$$\omega = 3\pi \times 10^8 \text{ s}^{-1} \Rightarrow f = \frac{\omega}{2\pi} = \frac{3}{2} \times 10^8 \text{ s}^{-1}$$

$$v = \frac{\omega}{k} = \lambda f = 3 \times 10^8 \frac{\text{m}}{\text{s}}$$

(c)

$$\vec{\mathbf{E}} = -3 \times 10^{-1} \cos((\pi \text{m}^{-1}) y + (3\pi \times 10^8 \text{s}^{-1}) t) \hat{\mathbf{k}} \text{ V/m}$$

#### Solution 4.2: EM Wave

$$\vec{\mathbf{B}} = 10^{-9} \cos\left(\left(\pi \mathbf{m}^{-1}\right) y + \left(3\pi \times 10^8 \,\mathrm{s}^{-1}\right) t\right) \hat{\mathbf{i}} \text{ Tesla}$$

(d) 
$$\langle \vec{\mathbf{S}} \rangle = \left\langle \frac{1}{\mu_0} \vec{\mathbf{E}} \times \vec{\mathbf{B}} \right\rangle$$
 S points along direction of travel:  $-\hat{\mathbf{j}}$ 

$$= \frac{1}{2} \frac{1}{\mu_0} E_0 B_0$$

$$= \frac{1}{2} \left( \frac{1}{4\pi \times 10^{-7}} \right) (3 \times 10^{-1}) (10^{-9}) \frac{W}{m^2 s}$$

#### **Problem 5: Interference**

In an experiment you shine red laser light ( $\lambda$ =600 nm) at a slide and see the following pattern on a screen placed 1 m away:



You measure the distance between successive fringes to be 20 mm

- a) Are you looking at a single slit or at two slits?
- b) What are the relevant lengths (width, separation if 2 slits)? What is the orientation of the slits?

### Solution 5.1: Interference



First translate the picture to a plot:



### Solution 5.2: Interference



$$y = L \tan \theta \approx L \sin \theta = L \frac{m\lambda}{d}$$

$$d = L \frac{m\lambda}{y} = (1m) \frac{(1)(600nm)}{(20mm)}$$



$$= (1m) \frac{(6 \times 10^{-7})}{(2 \times 10^{-2})} = 3 \times 10^{-5} \text{m}$$

At 60 mm...

$$\frac{a\sin\theta = (1)\lambda}{d\sin\theta = (3)\lambda} \Rightarrow \frac{a}{d} = \frac{1}{3}$$

 $a = 10^{-5} \text{m}$ 

P36 -45

# Why is the sky blue?

400 nm

Wavelength

700 nm

Small particles preferentially scatter small wavelengths

You also might have seen a red moon last fall – during the lunar eclipse.

When totally eclipsed by the Earth the only light illuminating the moon is diffracted by Earth's atmosphere