What is claimed is:

1	1. A radio receiver comprising:
2	at least one amplifier to receive radio signals; and
3	a control circuit coupled to the at least one amplifier, wherein the control circuit
4	adjusts the operation of the at least one amplifier based on the received radio signals.
1	2. The radio receiver of claim 1, wherein the at least one amplifier is a LNA
2	to receive a RF signal and produce an amplified signal that is coupled to a down-
3	converting mixer that produces a mixer output, and the control circuit comprises:
4	a peak detector coupled to receive the mixer output to produce a peak signal;
5	an integrator coupled to the peak detector to receive the peak signal and produce
6	an integrated signal;
7	a mixer coupled to receive the integrated signal and a transmit power indicator to
8	produce a current control signal that is coupled to the LNA to control a bias current of the
9	LNA, wherein cross modulation associated with the received RF signal is reduced.
1	3. The radio receiver of claim 2, further comprising a second mixer coupled
2	to the output of the integrator and a receiver gain control signal to produce a VCO current
3	control signal that is coupled to a VČO associated with a PLL that drives the down-
4	converting mixer, wherein reciprocal mixing associated with the received RF signal is
5	reduced by adjustment of the VCO associated with the PLL.
1	4. An adaptive system for use with a radio receiver to adapt to interfering
2	signals associated with a received RF signal, the radio receiver includes a LNA to receive
3	the RF signal and produce an amplified signal that is coupled to a down-converting mixer
4	that produces a mixer output, the adaptive system comprises:
5	a peak detector coupled to receive the mixer output to produce a peak signal;
6	an integrator coupled to the peak detector to receive the peak signal and produce
7	an integrated signal; and
8	a mixer coupled to receive the integrated signal and a transmit power indicator to
9	produce a current control signal that is coupled to the LNA to control a bias current of the

1

2

3

4

5

1

2

1

2

1

4

5

- 10 LNA, wherein cross modulation associated with the received RF signal is reduced.
- The adaptive system of claim 4, further comprising a filter coupled to receive the mixer output and produce a filtered output that is coupled to the peak detector.
- The adaptive system of claim 4, further comprising a LNA control circuit coupled to the mixer to receive the current control signal and produce a LNA control signal that is coupled to the LNA to control a bias current of the LNA, wherein cross modulation associated with the received RF signal is reduced.
 - 7. The adaptive system of claim 4, further comprising a second mixer coupled to the output of the integrator and a receiver gain control signal to produce a VCO current control signal that is coupled to a VCO associated with a PLL that drives the down-converting mixer, wherein reciprocal mixing associated with the received RF signal is reduced by adjustment of the VCO associated with the PLL.
 - 8. The adaptive system of claim 7, wherein the VČO control current is coupled to the VĆO associated with the PLL via a VĆO control circuit.
 - 9. The adaptive system of claim 4, further comprising a buffer coupled between the mixer output and a non-linear element.
- 1 10. The adaptive system of claim 9, wherein the non-linear element comprises 2 a diode element.
 - 11. The adaptive system of claim 9, further comprising:
- an second integrator coupled to the non-linear element and the buffer to produce a second integrator output; and
 - a third mixer coupled to receive the second integrator output and a receiver power indicator to produce a receive control signal.
- 1 12. The adaptive system of claim 11, wherein the receive control signal is coupled to a receive control circuit, and wherein an output of the receive control circuit is coupled to the down-converting mixer to adjust the down-converting mixer to reduce intermodulation distortion.

Ì

1	13. A method for providing an adaptive system for use with a radio receiver to
2	adapt to interfering signals associated with a received RF signal, the radio receiver
3	includes an LNA to receive the RF signal and produce an amplified signal that is coupled
4	to a down-converting mixer that produces a mixer output, the method comprising steps
5	of:
6	deriving a peak signal from the mixer output;
7	integrating the peak signal to produce an integrated signal;
8	mixing the integrated signal and a transmit power indicator to produce a current
9	control signal; and
10	controlling a bias current of the LNA with the current control signal, wherein
11	cross modulation associated with the received RF signal is reduced.
1	14. The method of claim 13, wherein the step of mixing is a step of:
2	mixing the integrated signal and a receive power indicator to produce a VČO
3	control signal; and
4	the step of controlling is a step of:
5	controlling a VČÖ based on the VČÖ control signal, wherein the VČÖ is
6	associated with a PLL coupled to the down-converting mixer, and wherein reciprocal
7	mixing associated with the received RF signal is reduced by adjustment of the VČO
8	associated with the PLL
1	15. The method of claim 13, wherein the step of mixing is a step of:
2	mixing the integrated signal and a receive power indicator to produce a receive
3	control signal; and
4	the step of controlling is a step of:
5	controlling the down-converting mixer based on the receive control signal,
6	wherein intermodulation distortion associated with the received RF signal is reduced.