Universidade do Minho Folha 1

- 0. Indução e recursão nos naturais
- **0.1** Prove, de duas formas diferentes, que, para todo o número natural $n \ge 2$, $2n \le n^2$.
- **0.2** Prove por indução que, para todo o número natural n > 4, $n^2 < 2^n$. Note como é útil provar simultaneamente $2n + 1 < n^2$.
- **0.3** Para $n \in \mathbb{N}$, seja P(n) a propriedade: $2^n < n!$.
 - a) Mostre que: para $k \in \mathbb{N}$ e k > 3, se P(k) é verdadeira, P(k+1) também é verdadeira.
 - b) Indique, justificando, quais os naturais n para os quais P(n) é verdadeira.
- **0.4** Prove que, para qualquer $n \in \mathbb{N}$, 1 + ... + n = n(n+1)/2.
- **0.5** Prove que, para cada $n \in \mathbb{N}_0$:
 - a) $\sum_{i=0}^{n} 2i = n^2 + n;$ b) $\sum_{i=0}^{n} (2i+1) = (n+1)^2;$ c) $\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6};$ d) $\sum_{i=0}^{n} x^i = \frac{x^{n+1}-1}{x-1}, \text{ com } x \in \mathbb{R} \setminus \{1\}.$
- **0.6** Seja $f: \mathbb{N}_0 \to \mathbb{N}_0$ a função definida recursivamente por f(0) = 1 e f(n+1) = 2f(n), para cada $n \in \mathbb{N}_0$.
 - a) Calcule f(1) e f(2).
 - **b)** Mostre que, para cada $n \in \mathbb{N}_0$, $f(n) = 2^n$.
- **0.7** Seja $s: \mathbb{N} \to \mathbb{Q}$ a função definida por s(1) = 2 e $s(n+1) = \frac{2}{s(n)}$.
 - a) Determine $s(1), s(2) \in s(3)$.
 - b) Determine o contradomínio de s. Prove a sua afirmação por indução.
- **0.8** Sejam $a, b \in \mathbb{R}$ com $b \neq 1$ e seja $f : \mathbb{N} \to \mathbb{R}$ a função definida recursivamente por f(1) = a e $f(n+1) = f(n) + ab^n$ para cada $n \in \mathbb{N}$.
 - a) Verifique que $f(n) = \frac{a(1-b^n)}{1-b}$ para $n \in \{1,2,3\}$.
 - **b)** Mostre que, para cada $n \in \mathbb{N}$, $f(n) = \frac{a(1-b^n)}{1-b}$.
- **0.9** Seja A um conjunto finito.
 - a) Prove que, se A tem n subconjuntos e $a \notin A$, então $A \cup \{a\}$ tem 2n subconjuntos.
 - **b)** Prove que: $\#\mathcal{P}(A) = 2^{\#A}$.
 - c) Qual é o número de subconjuntos de A^3 , quando A é um conjunto com 3 elementos?

Exercícios de **Lógica EI**

Universidade do Minho Folha 2

1. Indução e recursão estruturais

- **1.1** Seja S o subconjunto de $\mathbb{Q} \setminus \{0\}$ definido indutivamente pelas 3 regras apresentadas de seguida: (1) $1 \in S$; (2) $2 \in S$; (3) $q \in S \implies \frac{1}{q} \in S$.
 - a) Dê exemplos de elementos de S.
 - **b)** Mostre que o conjunto $\{\frac{1}{2}, 2\}$ é fechado para a operação $f : \mathbb{Q} \setminus \{0\} \to \mathbb{Q} \setminus \{0\}$ tal que $f(q) = \frac{1}{q}$, para qualquer $q \in \mathbb{Q} \setminus \{0\}$.
 - c) Determine o conjunto S.
- **1.2** Seja $A = \{a, b, c, d\}$ e seja $f: A \times A \to A$ a operação em A definida pela tabela que se segue.

- a) Calcule os conjuntos indutivos, sobre A, de base $\{b\}$ e conjunto de operações $\{f\}$.
- b) Prove que c é um dos elementos do conjunto gerado pela definição indutiva ($\{b\}, \{f\}$).
- c) Indique qual é o conjunto gerado pela definição indutiva ($\{b\}, \{f\}$).
- 1.3 Apresente definições indutivas de cada um dos conjuntos que se seguem, explicitando a respetiva base e respetivo conjunto de operações.
 - a) Conjunto dos naturais múltiplos de 5.
 - b) Conjunto dos números inteiros.
 - c) Conjunto das palavras sobre o alfabeto $A = \{0, 1\}$ cujo comprimento é impar.
 - d) Conjunto das palavras sobre o alfabeto $A=\{a,b\}$ que têm um número par de ocorrências do símbolo a.
- **1.4** Seja $A = \{1, 2, 3\}$ e seja G o subconjunto de A^* dado pela seguinte definição indutiva determinista:
 - $(1) 1 \in G;$
 - (2) se $x \in G$ então $2x \in G$, para todo $x \in A^*$;
 - (3) se $x, y \in G$ então $3xy \in G$, para todo $x, y \in A^*$.

Considere ainda a função $S:G\longrightarrow \mathbb{N}$ definida, por recursão estrutural, do seguinte modo:

- S(1) = 1;
- para todo $x \in G$, S(2x) = 2 + S(x);
- para todo $x, y \in G$, S(3xy) = 3 + S(x) + S(y).
- a) Para cada letra $a \in A$, indique uma palavra $u \in G$ cuja primeira letra seja a e apresente uma sequência de formação de u.
- b) Indique uma sequência de formação do elemento v = 3213211 de G.
- c) Defina por recursão estrutural a função $C:G\longrightarrow \mathbb{N}$ tal que, para todo $x\in G,$ C(x) é o comprimento da palavra x.
- **d)** Calcule S(3211) e C(3211).
- e) Enuncie o Princípio de Indução Estrutural para G.
- f) Mostre que, para todo $x \in G$, i. S(x) é impar; ii. $C(x) \leq S(x)$.

Universidade do Minho Folha 3

- **1.5** Seja V o conjunto numerável formado pelos símbolos $v_0, v_1, v_2, ...$ (designados por variáveis) e seja A o alfabeto $V \cup \{c, f, g, (,), ,\}$. Considere que E é a linguagem em A definida indutivamente do seguinte modo:
 - (1) $c \in E$;
 - (2) $v_n \in E$, para todo $n \in \mathbb{N}_0$;
 - (3) se $t \in E$, então $f(t) \in E$, para todo $t \in A^*$;
 - (4) se $t_1 \in E$ e $t_2 \in E$, então $g(t_1, t_2) \in E$, para todo $t_1, t_2 \in A^*$.
 - a) Dê exemplos de palavras sobre A que pertençam à linguagem E e de palavras sobre A que não pertençam a E.
 - b) Investigue se a linguagem E é fechada para cada uma das operações que se seguem.

- c) Para cada um das seguintes palavras pertencentes a E, indique 2 sequências de formação cujos comprimentos sejam diferentes.
 - i) c ii) $f(v_2)$ iii) $g(g(v_0,c),c)$ iv) $f(g(f(v_1),f(v_1)))$
- d) Defina funções $n_a, n_g : E \longrightarrow \mathbb{N}_0$, por recursão estrutural, que a cada palavra $e \in E$ façam corresponder, o número de ocorrências de *átomos* (i.e. variáveis ou a letra c) em e e o número de ocorrências da letra g em e, respetivamente,.
- \mathbf{e}) Enuncie o teorema de indução estrutural para a linguagem E.
- f) Mostre que, para todo $e \in E$, $n_q(e) = n_a(e) 1$.
- **1.6** Seja $A = \{0,1\}$ e seja G o subconjunto de A^* dado pela seguinte definição indutiva determinista:
 - 1. $1 \in G$;
 - 2. se $x \in G$, então $x0 \in G$ e $x1 \in G$, para todo $x \in A^*$;

Considere ainda a função $i: G \longrightarrow \mathbb{N}$ definida, por recursão estrutural, do seguinte modo:

- i(1) = 1;
- para todo o $x \in G$, i(x0) = 2i(x);
- para todo o $x \in G$, i(x1) = 2i(x) + 1.
- a) Indique os elementos de G que admitem sequências de formação de comprimento inferior a 3.
- **b**) Defina por recursão estrutural a função $h:G\longrightarrow G$ tal que, para cada $x\in G$, h(x)=1x.
- c) Determine i(11) e i(101).
- d) Enuncie o teorema de indução estrutural para G.
- e) Mostre que, para todo o $x \in G$, $i(h(x)) = 2^n + i(x)$, em que n é o comprimento da palavra x.

Universidade do Minho Folha 4

2. Sintaxe do Cálculo Proposicional

- **2.1** Represente as seguintes frases através de fórmulas do Cálculo Proposicional, utilizando variáveis proposicionais para representar *frases atómicas*:
 - a) Se o Sr. João é feliz, a sua mulher é infeliz e se o Sr. João é infeliz, a sua mulher também o é.
 - b) Vou de comboio e perco o avião ou vou de camioneta e não perco o avião.
 - c) Se ganho sempre que jogo bem e não ganhei, então não joguei bem.
 - d) Não se pode ter sol na eira e chuva no nabal.
 - e) Sou preso por ter cão, mas também sou preso por o não ter.
 - f) Uma condição necessária para aprovação a Lógica por avaliação periódica é ter pelo menos 7 valores no primeiro teste.
 - g) Uma condição suficiente para aprovação a Lógica é ter 14 valores no primeiro teste e 7 valores no segundo teste.
- **2.2** Encontre exemplos de *frases verdadeiras* que possam ser representadas através das seguintes fórmulas:
 - **a**) $(p_1 \to ((\neg p_2) \lor p_3))$. **b**) $((p_4 \land (\neg p_0)) \lor p_6)$.
 - c) $(p_{13} \leftrightarrow (\neg p_8))$. d) $((p_{98} \land (p_{98} \rightarrow p_{99})) \rightarrow p_{99})$.
- **2.3** De entre as seguintes palavras sobre o alfabeto do Cálculo Proposicional, indique, justificando, aquelas que pertencem ao conjunto \mathcal{F}^{CP} :
 - **a**) $(\neg (p_1 \lor p_2))$. **b**) $((p_0 \land \neg p_0) \rightarrow \bot)$.
 - \mathbf{c}) $((\neg p_5) \to (\neg p_6))$. \mathbf{d}) (\bot) .
 - e) $((p_3 \wedge p_1) \vee (\dots \quad \mathbf{f}) \quad (((p_9 \rightarrow ((p_3 \vee (\neg p_8)) \wedge p_{12})) \leftrightarrow (\neg p_4)) \rightarrow (p_7 \vee \bot))).$
- 2.4 Para cada uma das seguintes fórmulas do Cálculo Proposicional:
 - i) p_{2015} . ii) $\neg \bot \lor \bot$. iii) $p_0 \to (\neg p_0 \to \neg p_1)$.
 - a) construa sequências de formação;
 - b) indique o número mínimo de elementos numa sua sequência de formação e diga quantas destas sequências de formação de comprimento mínimo existem.
- **2.5** Para cada fórmula φ do exercício anterior, calcule $\varphi[p_2/p_0]$, $\varphi[p_0 \land p_1/p_1]$ e $\varphi[p_{2016}/p_{2015}]$.
- 2.6 Defina por recursão estrutural as seguintes funções
 - a) $p: \mathcal{F}^{CP} \to \mathbb{N}_0$ tal que $p(\varphi) =$ número de ocorrências de parêntesis em φ .
 - **b)** $v: \mathcal{F}^{CP} \to \mathbb{N}_0$ tal que $v(\varphi) =$ número de ocorrências de vars. proposicionais em φ .
 - c) $c: \mathcal{F}^{CP} \to \mathcal{P}(BIN)$ tal que $c(\varphi) = \{ \Box \in BIN : \Box \text{ ocorre em } \varphi \}$, onde $BIN = \{ \land, \lor, \rightarrow, \leftrightarrow \}$.
 - d) $n: \mathcal{F}^{CP} \to \mathbb{N}$ tal que $n(\varphi) = 0$ número de nodos na árvore sintática de φ .
 - e) $_{-}[\perp/p_{7}]: \mathcal{F}^{CP} \to \mathcal{F}^{CP}$ tal que $\varphi[\perp/p_{7}]=$ resultado de substituir em φ todas as ocorrências de p_{7} por \perp .

Universidade do Minho Folha 5

- 2.7 Considere de novo as funções definidas no exercício anterior. Prove, por indução estrutural, que, para todo $\varphi \in \mathcal{F}^{CP}$:
 - a) $v(\varphi) \ge \#var(\varphi)$.
- **b)** $p(\varphi) \geq \#c(\varphi)$.
- c) $v(\varphi) \ge v(\varphi[\perp/p_7])$. d) $c(\varphi) = c(\varphi[\perp/p_7])$.
- e) se $c(\varphi) \neq \emptyset$ então $p(\varphi) > 0$. f) se $p_7 \notin var(\varphi)$ então $\varphi[\perp /p_7] = \varphi$.
- **2.8** Para cada fórmula φ do exercício 2.4, indique o conjunto das suas subfórmulas.
- **2.9** Considere a função n do exercício 2.6.
 - a) Dê exemplo de fórmulas φ e ψ , com 3 subfórmulas, tais que $n(\varphi) = 3$ e $n(\psi) > 3$
 - **b)** Mostre que, para todo $\varphi \in \mathcal{F}^{CP}$, $n(\varphi) \geq \#subf(\varphi)$.
- 2.10 Mostre que:
 - a) se S é uma sequência de formação de ψ e φ é uma subfórmula de ψ , então φ é um dos elementos de S;
 - b) toda a fórmula ψ admite uma sequência de formação que contém apenas subfórmulas
 - c) uma fórmula ψ tem n subfórmulas se e só se as sequências de formação de ψ mais curtas têm n elementos.
- **2.11** Considere que \mathcal{F}_X^{CP} denota o subconjunto de \mathcal{F}^{CP} cujos conetivos pertencem ao conjunto
 - a) Dê uma definição indutiva determinista do conjunto $\mathcal{F}_{\{\neg,\vee\}}^{CP}$.
 - b) Enuncie o Teorema da Indução Estrutural para $\mathcal{F}^{CP}_{\{\neg,\vee\}}.$
 - c) Defina por recursão estrutural a função $f: \mathcal{F}^{CP}_{\{\neg, \lor\}} \to \mathcal{P}(\mathcal{F}^{CP}_{\{\neg, \lor\}})$ tal que $f(\varphi)$ é o conjunto das subfórmulas de φ .
 - d) Prove que: para todo $\varphi \in \mathcal{F}^{CP}_{\{\neg,\lor\}}$, se \lor não ocorre em φ , então $\#f(\varphi)-1$ é o número de ocorrências de \neg em φ .
- **2.12** Seja Γ o subconjunto de \mathcal{F}^{CP} dado pela seguinte definição indutiva determinista:
 - (i) Para cada variável proposicional $p, p \in \Gamma$.
 - (ii) Para cada variável proposicional $p, \neg p \in \Gamma$.
 - (iii) Se $\varphi, \psi \in \Gamma$ então $\varphi \vee \psi \in \Gamma$.
 - a) Indique, justificando, fórmulas em Γ .
 - **b)** Enuncie o Teorema da Indução Estrutural para Γ.
 - c) Prove que: para todo $\varphi \in \Gamma$, \perp não ocorre em φ .
 - d) Defina por recursão estrutural a função $f:\Gamma\to\mathbb{N}_0$ tal que $f(\varphi)$ é o número de ocorrências de \neg em φ .
 - e) Diga se $\Gamma \subseteq \mathcal{F}^{CP}_{\{\neg,\vee\}}$ e se $\mathcal{F}^{CP}_{\{\neg,\vee\}} \subseteq \Gamma$.