Lec 4: X-ray tube

Figure 1: Typical K-alpha/K-beta spectra taken by the two single hit CCD cameras show clearly measurable K-alpha and K-beta peaks.

X-ray tube: basic parts

- Filament (or cathode): held at –ve voltage, temp. ~ 2200°C for thermionic emission
- Target (or anode): held at +ve voltage (~ 150 kV)
- Housing: Vacuum tube, surrounded by oil. Lead shield, with a glass window.

Filament

www.crtsite.com

Filament current is used to heat up the cathode.

Thermionic emission: electrons leave the filament surface <u>due to</u> thermal energy (~ 2200°C).

Work function

Work function (\$\phi\$): Energy needed to free a <u>loosely-</u> <u>bound valence</u> electron from the surface of the cathode.

Filament current

Filament current density: $J = AT^2 e^{-\phi/kT}$

(Richardson-Dushman equation)

$$A = \frac{4\pi emk^2}{h^3} = 1.2 \times 10^6 \text{A/m}^2 \text{K}^2$$

Nobel prize to Richardson in 1928 for thermionic emission

Space charge

Cloud of emitted electrons around the filament.

Makes it difficult for further electrons to be emitted.

Cathode

Filament + focusing cup = cathode (-ve charge)

"Sun burn" of the filament

- Particles vaporize under high heat and solidify on the glass.
- Destroys the vacuum integrity of the tube.

New filament materials:

- 1. Reduced work function (certain oxide coatings)
- 2. Low sun-burn effect (add thorium to tungsten)

Dual filament

Small filament: Resolve fine features due to tight focus.

5 mm

Big filament: Gives short, intense exposure (high electron emission). Useful to avoid motion blurring.

Tube current

Electrons released from the cathode and traveling towards the anode.

