SP_N Update

Stuart R. Slattery Engineering Physics Department University of Wisconsin - Madison

March 20, 2013

Neutron Transport Solution Methods

$$\hat{\Omega} \cdot \vec{\nabla} \psi(\vec{r}, \hat{\Omega}, E) + \sigma(\vec{r}, E) \psi(\vec{r}, \hat{\Omega}, E) =
\int \int \sigma_{s}(\vec{r}, E' \to E, \hat{\Omega}' \to \hat{\Omega}) \psi(\vec{r}, \hat{\Omega}', E') d\Omega' dE' + q(\vec{r}, \hat{\Omega}, E) \quad (1)$$

- S_N transport is expensive
 - Difficult to parallelize: sweeps in space, pipelining in angle, energy decoupling
 - · Large storage requirements
 - Ray effects
- P_N equations still expensive
 - Complicated system: $(N+1)^2$ equations in 3D
 - Coupling of equations through both angular moments and spatial derivatives

SP_N Approximation

- Ad-hoc generalization of planar P_N equations by Gelbard in the 1960's
- Rigorous formulation through asymptotic and variational analysis in 1990's and 2000's
- Simpler system (N+1)/2 equations in 3D
- Yields elliptic, diffusion-like equations
- Applicable when diffusion theory is applicable: reasonable flux gradients, full-core transport
- ullet Typically does not converge to transport solution as $N o\infty$
- Can build the full linear operator
- Parallelism through the linear solver

SP_N Approximation

SP_N Equations

$$-\nabla \cdot \left[\frac{n}{2n+1} \frac{1}{\Sigma_{n-1}} \nabla \left(\frac{n-1}{2n-1} \phi_{n-2} + \frac{n}{2n-1} \phi_n \right) + \frac{n+1}{2n+1} \frac{1}{\Sigma_{n+1}} \nabla \left(\frac{n+1}{2n+3} \phi_n + \frac{n+2}{2n+3} \phi_{n+2} \right) \right] + \Sigma_n \phi_n = q \delta_{n0} \qquad n = 0, 2, 4, \dots, N, \quad (2)$$

SP_N Numerical Spectral Analysis

- Monte Carlo methods for have strong restrictions on the eigenvalues of the operator for convergence
- MCSA has the same restrictions on the outer stationary iteration
- We need to compute these eigenvalues for various forms of the SP_N equations to verify convergence of these methods.

We need eigenvalues for A, H_J, and H_{GS} with:

$$\mathbf{H}_{\mathsf{J}} = \mathbf{I} - \mathbf{D}^{-1} \mathbf{A} \tag{3}$$

where $\mathbf{D} = diag(\mathbf{A})$ and

$$\mathbf{H}_{\mathsf{GS}} = (\mathbf{L} + \mathbf{D})^{-1} \mathbf{U} \tag{4}$$

SP_7 , P_3 , 3 groups, reflecting boundaries

3×10⁻¹⁵
2-0
11
12:001529
1-1
-2
0
2
4
6
8
10
12
14

Figure: Linear operator sparsity pattern

Figure: Linear operator eigenvalues

SP_7 , P_3 , 3 groups, reflecting boundaries

Figure: Jacobi iteration matrix eigenvalues

Figure: Gauss-Seidel iteration matrix eigenvalues

Oh No!

 The Jacobi method won't converge - all that stuff I said in my prelim won't work

Solution

- Bug fix in Denovo SP_N implementation
- ullet A new kind of preconditioning \cdots

Multigroup Matrix Pattern

Figure: Linear operator sparsity pattern

Block Jacobi Preconditioning

Figure: Block Jacobi Preconditioner

Point Jacobi Results

Block Jacobi Results

Conclusions

- Block Jacobi preconditioning is a simple and appropriate solution for preconditioning the SP_N equations
- Implementation is general slides right into ANA framework
- Implementation is scalable local operations only
- Implementation works can move on with research