PROTE BOTO TO THE STATE OF THE USE OF THE US

. 38 ŠT. 8 STR. 297—328

8 Z dovajanjem energije ne moremo odcepiti osamljenega kvarka od bariona. Namesto osamljenega kvarka dobimo poleg bariona še mezon. Nakazana je reakcija, pri kateri nastaneta iz protona in fotona, to je drobca energije elektromagnetnega valovanja, zelo kratkoživi barion Δ^{++} in negativni pion: $p + \gamma \rightarrow \Delta^{++} + \pi^-$

Pri nobenem poskusu še niso opazili prostih kvarkov, čeprav so jih vneto iskali. To uganko morda pojasni posebnost zelo močne sile. Ta sila naj ne bi bila odvisna od razdalje med kvarkom in kvarkom. Za odmik kvarka v protonu za ¹/₄₀ mm od težišča protona bi bilo treba dovesti ogromno energijo okoli 10¹³ MeV ali 1 joule. Za odmik kvarka za polovico radija protona bi bilo treba dovesti okoli 140 MeV energije. To pa bi zadostovalo za nastanek najlažjega hadrona - piona. Preden bi se tedaj kvark zaznavno odmaknil od težišča hadrona, bi na račun dovedene energije nastala kvark in antikvark. Nastali kvark bi se vgradil v hadron, nastali antikvark pa bi se združil v mezon s kvarkom, ki smo ga želeli iztrgati iz hadrona. Tako na koncu ne bi imeli prostega kvarka, ampak mezon poleg hadrona (sl. 8). V takem primeru kvarki ne bi mogli nastopati kot prosti delci.

NOVA SINTEZA KRIPTONOVEGA DIFLUORIDA

Č

A. ŠMALC IN J. SLIVNIK

O kemiji žlahtnih plinov smo pisali že svoj čas (Proteus 33/1971/ 243). V članku smo poskušali prikazati dotedanje dosežke na tem področju in njihov obseg, pri čemer pa smo obravnavali v glavnem le spojine ksenona. O kemiji kriptona je bilo tedaj mogoče zapisati le, da sta edini znani kriptonovi spojini kriptonov difluorid in njegov adukt z antimonovim pentafluoridom. Še danes je področje kemije kriptona v primerjavi s kemijo ksenona skorajda neraziskano. Vzrokov za to je več.

Obstoj kriptonovega difluorida sta prva dokazala Turner in Pimentel leta 1963, ko sta obsevala fluor, porazdeljen v trdni zmesi argona in kriptona, z ultravijolično svetlobo pri - 253° C. S to metodo pa ni bilo mogoče dobiti kriptonovega difluorida v množinah, ki bi zadoščale za obsežnejše raziskave. Kasneje je bilo razvitih nekaj metod za pripravo večjih množin kriptonovega difluorida, ki temeljijo na dovajanju razmeroma visokih energij pri kar se da nizkih temperaturah. Kriptonov difluorid je namreč termodinamsko neobstojna spojina, zato ga ni mogoče pripraviti s segrevanjem zmesi kriptona in fluora kot npr. ksenonove fluoride s segrevanjem zmesi ksenona in fluora. Tako se je posrečilo sintetizirati to spojino z obsevanjem plinaste zmesi kriptona in fluora pri temperaturah okrog – 193° C, npr. z žarki gama, z elektroni z energijo 1,5 MeV ali s protoni z energijo 10 MeV, pa tudi, podobno kot se dobi ozon, z razelektrenjem v plinasti zmesi kriptona in fluora pri nizkih temperaturah in znižanem tlaku. Zadnja izmed naštetih metod se je izkazala kot najuspešnejša, saj je v primerjavi z ostalimi daleč najcenejša. V ilustracijo naj navedemo, da stane gram kriptonovega difluorida, dobljenega z obsevanjem v betatronu, okrog 1000 \$. Žal pa je dobitek kriptonovega difluorida pri metodi z razelektrenjem zelo majhen. Avtorji metode sicer navajajo, da se na ta način dobi okrog 250 mg KrF₂ na uro, česar pa izkušnje drugih laboratorijev niso potrdile, saj so v povprečju lahko pripravili le od 0,5 do 1 g spojine na teden. Reakcijski produkt je razen tega nekoliko onečiščen z drugimi fluoridi (iz elektrodnega materiala idr.), ki pospešujejo njegov razpad.

Spojine kriptona so bistveno manj obstojne kot spojine ksenona. Od binarnih fluoridov so pri ksenonu znani trije — XeF₂, XeF₄ in XeF₆, ki so vsi, zlasti pa prvi, dokaj obstojni, medtem ko je od kriptonovih fluoridov znan le difluorid KrF₂. V nasprotju s ksenonovim difluoridom, ki je popolnoma obstojna spojina in jo lahko hranimo v steklu pri sobni temperaturi neomejeno dolgo — razen tega se raztaplja v vodi, pri čemer vodna raztopina le počasi razpada — je kriptonov difluorid pri temperaturi nad — 20° C neobstojen (hitrost razpadanja pri sobni temperaturi je nekaj odstotkov na uro). V navzočnosti vlage hidrolizira, pri čemer nastaja doslej neidentificirana spojina, ki po vsej verjetnosti sestoji iz kriptona, kisika in fluora. Ta je zelo

občutljiva in že pri rahlem sunku ali segretju brizantno eksplodira. Iz vsega tega sledi, da je tako sinteza kriptonovega difluorida, kot tudi delo s to spojino izredno zahtevno, kar je obenem glavni razlog za to, da kemija kriptona tudi danes še ni kaj dosti raziskana.

Tudi od kompleksnih spojin kriptonovega difluorida, oziroma njegovih aduktov z drugimi fluoridi, jih je znanih le nekaj (gl. tabelo), medtem ko poznamo pri ksenonu celo vrsto takih spojin.

DOSLEJ IZOLIRANE SPOJINE S KRIPTONOVIM DIFLUORIDOM

Skupina periodnega sistema

V B	VIII	VA	0
KrF ₂ .VF ₅ *) KrF ₂ .2NbF ₅ KrF ₂ .TaF ₅ KrF ₂ .2TaF ₅	KrF ₂ .PtF ₅	$2KrF_2.AsF_5$ $KrF_2.AsF_5$ $2KrF_2.SbF_5$ $KrF_2.SbF_5$ $KrF_2.2SbF_5$	KrF ₂ .XeF ₆

^{*)} spojina, izolirana v Laboratoriju za kemijo fluora

V Laboratoriju za kemijo fluora na Institutu »Jožef Stefan« se že od leta 1962 ukvarjamo tudi s kemijo žlahtnih plinov, zato smo želeli raziskave, ki so bile doslej omejene na spojine s ksenonom, razširiti tudi na področje kemije kriptona. Osnovni pogoj za take raziskave pa je zadostna množina izhodnih spojin, predvsem kriptonovega difluorida.

Izmed vseh prej naštetih metod za sintezo kriptonovega difluorida je metoda z razelektrenjem še
najbolj uporabna; ima pa nekatere pomanjkljivosti —
predvsem nizek izkoristek, nečist produkt in razmeroma zahtevno vzdrževanje reakcijskih pogojev. Ker
se v našem laboratoriju že nekaj let ukvarjamo tudi s
fotokemičnimi reakcijami z elementarnim fluorom,
kot je npr. fotosinteza ksenonovega difluorida idr.,
smo poskusili na tej osnovi razviti podobno metodo
za pridobivanje kriptonovega difluorida.

Pri prvih poskusih smo obsevali plinasto zmes kriptona in fluora, podobno kot pri sintezi ksenonovega difluorida, le da smo reakcijsko posodo pri tem hladili na – 196° C. Reakcijska posoda je imela v sredini vodno hlajen »jašek«, v katerem je bil nameščen svetlobni izvor. Kot svetlobni izvor je bila uporabljena 400 vatna srednjetlačna živosrebrna svetilka, ki seva pretežno v bližnjem ultravijoličnem in vidnem območju, kjer je absorpcija svetlobe v fluoru največja. Reakcija med kriptonom in fluorom pa je pri teh pogojih potekala silno počasi, tako da je nastajalo le okrog 1 mg KrF₂ na uro.

Ker je hitrost fotokemične reakcije med kriptonom in fluorom razen od intenzitete svetlobe odvisna še od koncentracije fluora, smo le-to pri nadaljnjih poskusih povečali na ta način, da smo obsevali utekočinjeno zmes fluora in kriptona. V ta namen smo zasnovali in razvili nov fotokemični reaktor, v katerem je mogoče obsevati utekočinjene permanentne pline. Reaktor je v celoti izdelan iz stekla in je shematsko prikazan na sliki 1. Svetlobni izvor z močjo 400 vatov je nameščen v osrednji cevi, ki je obdana s hladilnim plaščem, skozi katerega se pretaka voda; hladilni plašč pa je od reakcijskega prostora z utekočinjeno reakcijsko zmesjo toplotno izoliran z evakuiranim plaščem. Reakcijski prostor, ki je na zunanji strani reaktorja, ima volumen okrog 100 ml in je potopljen v tekoči dušik.

Sintezo smo izvedli tako, da smo v reaktor kondenzirali približno 2 mola fluora (okrog 80 g) in 1 mol kriptona (okrog 84 g) ter nato zmes obsevali 30 ur. Po končanem obsevanju smo s frakcionirano destilacijo najprej pri – 183° C in nato pri – 80° C odstranili prebitni fluor oziroma kripton, v reaktorju pa je ostala bela trdna snov — kriptonov difluorid. Tega smo nato v vakuumu presublimirali v posodico iz poliklortrifluoretilena (KelF), ki smo jo nato shranili nad tekočim dušikom, da bi preprečili razpadanje produkta.

Shematičen prikaz reaktorja za sintezo kriptonovega difluorida

- 1 svetlobni izvor
- 2 jašek za svetlobni izvor
- 3 obrus
- 4 dovod hladilne vode
- 5, 6, 7 hladilni plašč
- 8 odvod hladilne vode
- 9 reakcijski prostor
- 10 evakuirani plašč
- 11 devarska posoda
- 12 hladilo (tekoči dušik)
- 13, 14 priključek z ventilom

Metoda se je izkazala za zelo uspešno, saj znaša dobitek kriptonovega difluorida okrog 300 mg na uro, dobljeni produkt pa je zelo čist. Na ta način je mogoče v razmeroma majhni in enostavni aparaturi pripraviti po 10 g zelo čistega kriptonovega difluorida naenkrat in to le v nekaj več kot enem dnevu, s čimer so dane možnosti za obsežnejše raziskave na tem področju. Tako smo lahko že 14 dni po uspeli sintezi kriptonovega difluorida izolirali novo spojino KrF₂.VF₅, ki smo jo dobili z reakcijo med kriptonovim difluoridom in vanadijevim pentafluoridom.

Ob proučevanju fotosinteze kriptonovega difluorida pa nam je uspelo razviti še eno preparativno metodo — fotosintezo dikisikovega difluorida -O₂F₂. Fluor, ki smo ga bili uporabljali pri reakcijah, namreč ni bil povsem čist in je vseboval še nekaj odstotkov kisika. Pri obsevanju takega fluora v utekočinjenem stanju smo opazili, da se je že po nekaj urah izločila oranžna trdna snov, za katero smo z analizo ugotovili, da je dikisikov difluorid. Tudi to spojino je bilo doslej mogoče pripravljati le v manjših množinah z razelektrenjem v plinasti zmesi fluora in kisika pri znižanem tlaku (5-12 mm Hg) in nizki temperaturi (-183°C). S fotokemično metodo pa lahko v prej opisani aparaturi na enostaven način v nekaj urah pripravimo do 20 g te spojine z obsevanjem utekočinjene zmesi fluora in kisika. Poseben pomen te metode pa je v tem, da je uporabna tudi za odstranjevanje kisika in kisikovega difluorida iz elementarnega fluora. Tako kisik, kot kisikov difluorid - OF2 namreč predstavljata glavni nečistoči v tehničnem fluoru, dobljenem z elektrolizo, in ju je le težko odstraniti. Dosedanja metoda za čiščenje fluora s frakcionirano destilacijo temelji na razliki v vreliščih fluora, kisika in kisikovega difluorida, ki pa je, zlasti v primeru kisika in fluora, razmeroma majhna $(T_v(F_2) = -189^{\circ}C, T_v(O_2) = -183^{\circ}C,$ $T_{\nu}(OF_2) = -145^{\circ}C$). Zato so za tak način čiščenja potrebne dokaj velike nizkotemperaturne destilacijske kolone, ki pa si jih spričo njihove zahtevne izvedbe lahko privoščijo le redke raziskovalne ustanove.

Pri metodi fotokemičnega čiščenja fluora, ki smo jo razvili v našem laboratoriju, lahko kisik in kisikov difluorid že z nekajurnim obsevanjem utekočinjenega fluora prevedemo v dikisikov difluorid. Ta je pri temperaturi – 183° C trden in praktično nehlapen, tako da očiščeni fluor zlahka ločimo od njega z destilacijo pri tej temperaturi. Metoda je enostavna, a učinkovita in omogoča glede na velikost za to potrebne aparature čiščenje razmeroma velikih množin fluora. V ilustracijo naj navedemo, da lahko v opisanem 100 ml reaktorju s štiriurnim obsevanjem očistimo približno 2,5 molov fluora (tj. okrog 56 litrov pri normalnih pogojih) naenkrat. S tem pa so dane možnosti za natančnejše raziskave reakcij z elementarnim fluorom, kot so npr. kinetične meritve in podobno.