2. Übungseinheit vom 17.04.2018

1 Wannier-Stark Effekt

Im Festkörper sind Elektronen über das gesamte Gitter delokalisiert (mit Maxima der Aufenthaltswahrscheinlichkeit zwischen den Rumpfionen). Mit einem hinreichend starken äußeren, elektrischen (konstanten) Feld $E_{el} = konst$. bekommt man ein linear mit dem Ort anwachsendes Potential $V(x) = -\int_0^x E_{el} dx' = E_{el} \cdot x$, woraus folgt, dass die niederenergetischsten Elektronzustände beginnen sich in den tiefsten Potentialtöpfen des Kristallgitters zu loaklisieren.

Für die Berechnung der ersten 20 stationären Elektroneigenzustände $|\phi_i(x)\rangle$ soll ein Gitter mit 10 Potentialtöpfen der Breite 5 a.u. und Abstand 5 a.u. (und genug Vakuum am Rand) simuliert werden. Diese Berechnung soll für externe Felder $E_{el}=0-10^{-2}a.u.$ duchgeführt werden.

Das fortran script wannier.f95 implementiert die Simulation durch Lösung der stationären Schrödingergleichung

$$\hat{H} |\phi(x)\rangle = E |\phi(x)\rangle \tag{1}$$

als Eigenwertgleichung mit den Energie
eigenwerten E und der Matrixdarstellung des Hamilton
operators in Ortsdarstellung $\hat{H} = -\frac{\hbar^2}{2m_e}\Delta + E_{el}\cdot x$ und gibt die Eigenvektoren $|\phi_i(x)\rangle$ im file wannierEV.dat und die Energie
eigenwerte E_i im file wannierEW.dat aus.

Das bash script plot20EV.sh erzeugt ein GnuPlot .gif mit dem Betragsquadrat der 20 niedernergetischsten Eigenvektoren $|\psi_i(x)|^2$ (d.h. der Aufenthaltswahrscheinlichkeit) bei einem angelegten elektrischen Feldes E_{el} (wannierAllEVE—.gif), plotAllEnergies.sh ein GnuPlot .gif mit dem Betragsquadrat der 20 niedernergetischsten Eigenvektoren für die Felder $E_{el}=0.0,\,0.001,\,0.002,\,0.004,\,0.006,\,0.008,\,0.01,\,0.012,\,0.014,\,0.016,\,0.018,\,0.02.$ (die gifs mit Namen wannier.gif) Die zur Simulation verwendete Auflösung des Gitters liegt bei dx=0.07 a.u.. **NOTE:** Das script wannier.f95 verwendet die LAPACK Subroutine ssyyev.