Lecture note for Discrete Choice Models #3

At Advanced Transportation Planning

Tetsuro HYODO

"Blue Bus, Red Bus" problem:

There are two modes as follows;

$$P_{rail} = \frac{e^{V_{rail}}}{e^{V_{rail}} + e^{V_{bus}}}$$
, here we assume $V_{rail} = V_{bus}$, so $P_{rail} = P_{bus} = 0.5$

Up to now, the color of buses is blue, and the city transportation sector decided to change the half of bus color to red, so bus has two alternatives such as;

$$P_{rail} = \frac{e^{V_{rail}}}{e^{V_{rail}} + e^{V_{blue-bus}} + e^{V_{red-bus}}}$$

So the share of blue & red bus increases to 2/3.

→ This process does not consider the "similarity among alternatives".

$$\frac{P_{blue-bus}}{P_{red-bus}} = \frac{e^{V_{blue-bus}}}{e^{V_{red-bus}}} = e^{V_{blue-bus}-V_{red-bus}}$$

- → The ratio of blue bus & red bus probability is independent from other alternatives, V_{rail}
- → This property is called "Independence from Irrelevant Alternatives (IIA)"
- → 「選択肢の文脈独立」
- → Sometimes, this property is regarded as one of the disadvantage of Multinomial Logit Model (MNL), so Daniel McFadden developed Nested Logit (NL) Model!

Nested Logit Model (NL):

"Blue bus" vs "Red bus" problem...

→ Independence from Irrelevant Alternatives (IIA)

Let's generate correlated two normally random variables:

$$u_a = \varepsilon_a + \theta \varepsilon_{ab} \tag{\downarrow 独立同一分布}$$

 $u_b = \varepsilon_b + \theta \varepsilon_{ab}$, ε_a , ε_b , $\varepsilon_{ab} \sim N(0,1)$ I.I.D. \rightarrow independent and identically distributed u_a , $u_b \sim N(0,1+\theta^2)$ and covariance of u_a and u_b is θ^2 .

So the coefficient of correlation is $\rho = \frac{\theta^2}{1+\theta^2}$.

a <- rnorm(1000); b <- rnorm(1000); ab <- rnorm(1000); par(ask=T) rho <- 0 ; theta <- sqrt(rho/(1-rho)); ua <- a + theta*ab; ub <- b + theta*ab; plot(ua,ub) rho <- 0.5; theta <- sqrt(rho/(1-rho)); ua <- a + theta*ab; ub <- b + theta*ab; plot(ua,ub) rho <- 0.9; theta <- sqrt(rho/(1-rho)); ua <- a + theta*ab; ub <- b + theta*ab; plot(ua,ub)

"Blue bus" vs "Red bus" problem seems "Similarity" problem.

And "Similarity" can be expressed as "Correlation of error terms"

$$\begin{split} &U_{a} = V_{a|ab} + \varepsilon_{a} + \varepsilon_{ab} \\ &U_{b} = V_{b|ab} + \varepsilon_{b} + \varepsilon_{ab} \\ &U_{c} = V_{c} + \varepsilon_{c} + \varepsilon_{c}' \\ &\varepsilon_{a}, \, \varepsilon_{b}, \varepsilon_{ab} \sim G(0, \lambda) \ \, \text{and} \, \, \varepsilon_{a} + \varepsilon_{ab}, \, \varepsilon_{b} + \varepsilon_{ab}, \varepsilon_{c} + \varepsilon_{c}' \sim G(0, \lambda') \end{split}$$

$$U_{a|ab} = V_{a|ab} + \varepsilon_a, U_{b|ab} = V_{b|ab} + \varepsilon_b \rightarrow P_{a|ab} = \frac{e^{\lambda V_{a|ab}}}{e^{\lambda V_{a|ab}} + e^{\lambda V_{b|ab}}}$$

And the expectation of maximum value of these two utilities is:

$$U'_{ab} = E\left[max\left(U_{a|ab}, U_{b|ab},\right)\right] \sim G\left(\frac{1}{\lambda}ln\left(e^{\lambda V_{a|ab}} + e^{\lambda V_{b|ab}}\right),\lambda\right)$$

The upper tree's utilities are:

$$U_{ab} = U'_{ab} + \varepsilon_{ab} \sim G\left(\frac{1}{\lambda} ln(e^{\lambda V_{a|ab}} + e^{\lambda V_{b|ab}}), \lambda'\right)$$
$$U_{c} \sim G(V_{c}, \lambda')$$

So, the probability of a is as follows:

$$P_{a} = P_{ab} \times P_{a|ab} = \frac{e^{\frac{\lambda'}{\lambda} ln \left(e^{\lambda V_{a|ab}} + e^{\lambda V_{b|ab}}\right)}}{e^{\frac{\lambda'}{\lambda} ln \left(e^{\lambda V_{a|ab}} + e^{\lambda V_{b|ab}}\right)} + e^{\lambda' V_{c}}} \times \frac{e^{\lambda V_{a|ab}}}{e^{\lambda V_{a|ab}} + e^{\lambda V_{b|ab}}}$$

Parameters and one lambda (λ or λ') can not be estimated separately, here we set $\lambda = 1$, then...

$$P_{a} = P_{ab} \times P_{a|ab} = \frac{e^{\lambda' ln\left(e^{V_{a|ab}} + e^{V_{b|ab}}\right)}}{e^{\lambda' ln\left(e^{V_{a|ab}} + e^{V_{b|ab}}\right)} + e^{\lambda' V_{c}}} \times \frac{e^{V_{a|ab}}}{e^{V_{a|ab}} + e^{V_{b|ab}}}$$

 λ' is called "logsum" parameter, and $G(0, \lambda')$ is summation of two error terms, so the variance of $G(0, \lambda')$ is greater than the variance of $G(0, \lambda)$.

It means that
$$\lambda' < \lambda$$
 , therefore, $0 < \frac{\lambda'}{\lambda} = \lambda' < 1$. If $\lambda' = 1$, what ?

The estimated logsum parameter should satisfy $0 < \lambda' < 1$, if the nested tree structure may be reasonable. In other words, this parameter is the index of model validity.

$$\begin{aligned} var[U_{ab}] &= \frac{\pi^2}{6\lambda'^2}, var[U_{a|ab}] &= \frac{\pi^2}{6} \\ \lambda'^2 &= \frac{var[U_{a|ab}]}{var[U_{ab}]} &= \frac{var[U_{a|ab}]}{var[U_{a|ab}] + var[\varepsilon_{ab}]} = 1 - \frac{var[\varepsilon_{ab}]}{var[U_{a|ab}] + var[\varepsilon_{ab}]} \end{aligned}$$

The common term of error ε_{ab} is covariance. So,

$$\lambda'^{2} = 1 - \frac{var[\varepsilon_{ab}]}{var[U_{a|ab}] + var[\varepsilon_{ab}]} = 1 - \frac{cov[U_{a|ab} + \varepsilon_{ab}, U_{b|ab} + \varepsilon_{ab}]}{\sqrt{var[U_{a|ab} + \varepsilon_{ab}] \times var[U_{b|ab} + \varepsilon_{ab}]}}$$
$$= 1 - \rho$$

By using logsum parameter, correlation of errors can be calculated as $ho=1-\lambda'^2$

From the result of previous page, variance-covariance matrix of three alternatives is

$$\frac{\pi^2}{6} \begin{bmatrix} 1 & 1 - \frac{1}{\lambda'^2} & 0 \\ 1 - \frac{1}{\lambda'^2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \frac{\pi^2}{6} \begin{bmatrix} 1 & \rho & 0 \\ \rho & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Multinomial Probit (MNP) model:

Similar error component can be expressed by Multinomial Probit model.

The covariance matrix is defined as follows:

$$\begin{bmatrix} \sigma_a^2 & \sigma_{ab}^2 & 0 \\ \sigma_{ab}^2 & \sigma_b^2 & 0 \\ 0 & 0 & \sigma_c^2 \end{bmatrix} = \sigma^2 \begin{bmatrix} 1 & \rho & 0 \\ \rho & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Here, $\sigma_a^2 = \sigma_b^2 = \sigma_c^2 = \sigma^2$.

However, estimation of MNP is very complicated, and there is "identification problem" for covariance matrix.

R library "MNP" is easy to estimate MNP (developed by Kosuke IMAI:今井耕介). It uses MCMC algorithm. Try it.

Derivation of Nested Logit Model (NL) by GEV:

GEV is "Generalized Extreme Value" models, called "GEV family" proposed by McFadden (1978).

Let
$$Y_j \equiv exp[V_j]$$
 and define "G function" as $G = G(Y_1, ..., Y_J)$, $G_j = \frac{\partial G}{\partial Y_j}$.

Train (2003) explains as: "If this function meets certain conditions, then a discrete choice model can be based upon it. In particular, if G satisfies the conditions that are listed below, then

$$P_i = \frac{Y_i G_i}{G}$$

is the choice probability for a discrete choice model that is consistent with utility maximization. Any model that can be derived in this way is a GEV model. This formula therefore defines the family of GEV models."

The properties that the function must exhibit are the following.

- 1. $G \ge 0$ for all positive values of $Y_i \forall j$.
- 2. G is homogeneous of degree one. That is, if each Y_j is raised by some proportion ρ , G rises by proportion ρ also: $G(\rho Y_1, ..., \rho Y_J) = \rho G(Y_1, ..., Y_J)$.
- 3. $G \to \infty$ as $Y_i \to \infty$ for any j.
- 4. The cross partial derivatives of *G* change signs in a particular way.

$$\frac{\partial^k G}{\partial Y_i^k} \begin{cases} \geq 0 & if \ k \text{ is odd} \\ \leq 0 & if \ k \text{ is even} \end{cases}$$

Logit model:
$$G = \sum_{j=1}^{J} Y_j$$
, $P_i = \frac{Y_i G_i}{G} = \frac{Y_i}{\sum_{j=1}^{J} Y_j} = \frac{e^{V_i}}{\sum_{j=1}^{J} e^{V_j}}$

Nested Logit model:
$$G = \sum_{l=1}^{K} \left(\sum_{j \in B_l} Y_j^{1/\lambda_l} \right)^{\lambda_l}$$

The J alternatives are partitioned into K nests labeled B_1, \ldots, B_K .

The *i* alternative belongs to the *k* nest.

$$G_{i} = \lambda^{k} \left(\sum_{j \in B_{k}} Y_{j}^{1/\lambda_{k}} \right)^{\lambda_{k}-1} \frac{1}{\lambda^{k}} Y_{i}^{1/\lambda_{k}-1} = Y_{i}^{1/\lambda_{k}-1} \left(\sum_{j \in B_{k}} Y_{j}^{1/\lambda_{k}} \right)^{\lambda_{k}-1}$$

$$P_{i} = \frac{Y_{i}G_{i}}{G} = \frac{Y_{i}Y_{i}^{1/\lambda_{k}-1} \left(\sum_{j \in B_{k}} Y_{j}^{1/\lambda_{k}}\right)^{\lambda_{k}-1}}{\sum_{l=1}^{K} \left(\sum_{j \in B_{l}} Y_{i}^{1/\lambda_{l}}\right)^{\lambda_{l}}} = \frac{e^{V_{i}/\lambda_{k}} \left(\sum_{j \in B_{k}} e^{V_{i}/\lambda_{k}}\right)^{\lambda_{k}-1}}{\sum_{l=1}^{K} \left(\sum_{j \in B_{l}} e^{V_{j}/\lambda_{l}}\right)^{\lambda_{l}}}$$

EXERCISE: Please apply & check this equation to three alternatives NL model (ab_c).

Estimation of Nested Logit (NL):

Derived from Generalized Extreme Value (GEV):

$$P_{i} = \frac{e^{V_{i}/\lambda_{k}} \left(\sum_{j \in B_{k}} e^{V_{j}/\lambda_{k}}\right)^{\lambda_{k}-1}}{\sum_{l=1}^{K} \left(\sum_{j \in B_{l}} e^{V_{j}/\lambda_{l}}\right)^{\lambda_{l}}}, \quad i \in B_{k}$$

In case of the following NL,

$$\mathbf{A} \quad \mathbf{B} \quad \mathbf{C} \qquad P_{A} = \frac{e^{\frac{V_{A}}{\lambda}} \left(e^{\frac{V_{A}}{\lambda}} + e^{\frac{V_{B}}{\lambda}}\right)^{\lambda - 1}}{\left(e^{\frac{V_{A}}{\lambda}} + e^{\frac{V_{B}}{\lambda}}\right)^{\lambda} + e^{V_{C}}} = \frac{e^{\frac{V_{A}}{\lambda}}}{e^{\frac{V_{A}}{\lambda}} + e^{\frac{V_{B}}{\lambda}}} \cdot \frac{e^{\lambda \ln\left(e^{\frac{V_{A}}{\lambda}} + e^{\frac{V_{B}}{\lambda}}\right)}}{e^{\lambda \ln\left(e^{\frac{V_{A}}{\lambda}} + e^{\frac{V_{B}}{\lambda}}\right)} + e^{V_{C}}}$$

If the number of alternatives is five, two strata NL has 50 choice sets.

50 NLs estimation code using GEV This case →


```
nn <-26; nest.name <- "n_4_13_25"; nl.st[nn] <- nest.name
    n.nest <- 3 ; a.nest <- numeric(n.nest); aloc <- array(0,c(4,4))
    a.nest[1] <- 1; a.nest[2] <- 2; a.nest[3] <- 2
    aloc[1,1] <- 4
    aloc[2,1] <- 1; aloc[2,2] <- 3
    aloc[3,1] <- 2; aloc[3,2] <- 5
    alns <- numeric(5); for(i in 1:n.nest) for(j in 1:a.nest[i])
alns[aloc[i,j]] <- i</pre>
```

```
## calculating choice probability
prob <- function(b) {
    u <- matrix(0, nr=ns, nc=n.alt) ## utility function
    p <- matrix(0, nr=ns, nc=n.alt) ## probability
    for(i in 1:n.alt) u[,i] <- exp( (x[,i,] %*% b[1:10])/b[n.var+1] )
    nes <- matrix(0, nr=ns, nc=n.nest)
    for(i in 1:n.nest) {
        for(j in 1:a.nest[i]) nes[,i] <- nes[,i] + u[,aloc[i,j]] }
        deno <- numeric(ns)
        for(i in 1:n.nest) deno <- deno + (nes[,i])^b[n.var+1]
        for(i in 1:n.alt) {
            p[,i] <- ( u[,i]*(nes[,alns[i]])^(b[n.var+1]-1) ) / deno }
        return(p)
}</pre>
```

50 NLs estimation code using mlogit This case >

"d1000.csv" is "wide" format for mlogit

```
colnames(dt)[17] <- "wei2.1iba"</pre>
colnames(dt)[18] <- "wei2.2tokyo"</pre>
colnames(dt)[19] <- "wei2.3hachi"</pre>
colnames(dt)[20] <- "wei2.4rail"</pre>
colnames(dt)[21] <- "wei2.5seikan"</pre>
colnames(dt)[22] <- "wei3.1iba"</pre>
colnames(dt)[23] <- "wei3.2tokyo"
colnames(dt)[24] <- "wei3.3hachi"</pre>
colnames(dt)[25] <- "wei3.4rail"</pre>
colnames(dt)[26] <- "wei3.5seikan"</pre>
colnames(dt)[27] <- "wei4.1iba"</pre>
colnames(dt)[28] <- "wei4.2tokyo"</pre>
colnames(dt)[29] <- "wei4.3hachi"</pre>
colnames(dt)[30] <- "wei4.4rail"</pre>
colnames(dt)[31] <- "wei4.5seikan"</pre>
```

```
library(mlogit)
dt <-read.csv("d1000.csv", header=T)
md <- matrix("", nrow=nrow(dt), ncol=1)</pre>
mm <- c("liba", "2tokyo", "3hachi",</pre>
         "4rail", "5seikan")
md <- mm[dt[,1]]; dt[,1] <- md
colnames(dt)[ 2] <- "time.1iba"</pre>
colnames(dt)[3] <- "time.2tokyo"</pre>
colnames(dt)[4] <- "time.3hachi"</pre>
colnames(dt)[5] <- "time.4rail"</pre>
colnames(dt)[ 6] <- "time.5seikan"</pre>
colnames(dt)[ 7] <- "cost.liba"</pre>
colnames(dt)[ 8] <- "cost.2tokyo"</pre>
colnames(dt)[9] <- "cost.3hachi"</pre>
colnames(dt)[10] <- "cost.4rail"</pre>
colnames(dt)[11] <- "cost.5seikan"</pre>
colnames(dt)[12] <- "wei1.1iba"</pre>
colnames(dt)[13] <- "wei1.2tokyo"</pre>
colnames(dt)[14] <- "wei1.3hachi"</pre>
colnames(dt)[15] <- "wei1.4rail"</pre>
colnames(dt)[16] <- "wei1.5seikan"</pre>
```

m_dt <- mlogit.data(dt,varying=c(2:31),shape="wide",choice="mode")</pre>

mnl <- mlogit(mode~time+cost+wei1+wei2+wei3+wei4, m_dt)
summary(mnl)</pre>

```
b0 <- c(summary(mnl)$CoefTable[,1], 1)
#26
nl 4 13 25 <- mlogit(mode~time+cost+wei1+wei2+wei3+wei4, m dt, start=b0,
         nests = list(n4 = c('4rail'), n13 = c('1iba', '3hachi'),
                       n25 = c('2tokyo', '5seikan')), un.nest.el=T)
summary(nl 4 13 25)
para[,26] <- summary(nl 4 13 25)$CoefTable[,1]</pre>
tval[,26] <- summary(nl 4 13 25)$CoefTable[,3]</pre>
                                                         Same logsum parameter
11k[ 26] <- summary(nl 4 13 25)$logLik</pre>
                                                         among nests
nl.st[26] <- "4 13 25"
Coefficients:
                      Estimate Std. Error t-value Pr(>|t|)
2tokyo: (intercept) -0.3272063 0.4268821 -0.7665 0.4433772
3hachi: (intercept) 1.4254311 0.4062168 3.5090 0.0004497 ***
                                0.4322056 -9.6603 < 2.2e-16 ***
4rail: (intercept) -4.1752487
5seikan: (intercept) -0.6970876
                                0.3706330 -1.8808 0.0599987 .
time
                    -0.0142601
                                0.0116942 - 1.2194 0.2226889
cost
                    -0.0125440
                                0.0024346 -5.1523 2.573e-07 ***
wei1
                                0.1223524 0.4272 0.6692566
                    0.0522651
wei2
                   -0.0345885
                                0.0638537 -0.5417 0.5880357
wei3
                                0.1077934 -6.5345 6.381e-11 ***
                   -0.7043788
wei4
                    0.5267615  0.1112178  4.7363  2.176e-06 ***
iv
                     0.5475420 0.1255754 4.3603 1.299e-05 ***
```

Log-Likelihood: -1107.6 McFadden R^2: 0.1851

NL estimation code using Biogeme

Biogeme → BIerlaire's Optimization routines for GEv Model Estimation

MacOS, linux, Windows version are prepared

http://biogeme.epfl.ch/

Biogeme requires its own data format → basically, tab separated + ended with a space

```
from biogeme import *
from headers import *
                                                                                             Microsoft Excel
                                                                                               CSV ファイル
from loglikelihood import *
                                                                                            d1000bio.csv
from statistics import *
from nested import *
ASC 1ibaraki = Beta('ASC 1ibaraki', 0 , -100, 100, 1, 1ibaraki cte.')
              = Beta('ASC 2tokyo',-0.02391, -100, 100, 0,'2tokyo cte.')
ASC 2tokyo
                                                                                     NL_bio_26n4_13_25.py
              = Beta('ASC 3hachi', 2.909, -100, 100, 0, '3hachi cte.')
ASC 3hachi
                                                                                NL bio 26n4 13 25.py
ASC 4rail = Beta('ASC 4rail' ,-3.905 , -100, 100, 0, '4rail cte.')
ASC 5seikan = Beta('ASC 5seikan', -0.2718, -100, 100, 0, '5seikan cte.')
B TIME
            = Beta('B TIME' ,-0.03043, -100, 100, 0,'Travel time')
B COST
             = Beta('B COST' ,-0.01573, -100, 100, 0, 'Travel cost')
            = Beta('D 1weight' , 0.4198 , -100, 100, 0, 'Weight 1')
D 1weight
             = Beta('D 2weight' , 0.2402 , -100, 100, 0, 'Weight 2')
D 2weight
D 3weight
            = Beta('D 3weight' ,-0.8528 , -100, 100, 0, 'Weight 3')
D 4weight
            = Beta('D 4weight' , 0.6752 , -100, 100, 0, 'Weight 4')
             = Beta('D 5weight', 0, -100, 100, 1,'Weight 5')
D 5weight
V1 = ASC 1ibaraki + B TIME * time 1ibaraki + B COST * cost 1ibaraki + D 1weight * weight log10
V2 = ASC 2tokyo + B TIME * time 2tokyo + B COST * cost 2tokyo + D 2weight * weight log10
V3 = ASC 3hachi + B TIME * time 3hachi + B COST * cost 3hachi + D 3weight * weight log10
V4 = ASC 4rail + B TIME * time 4rail + B COST * cost 4rail + D 4weight * weight log10
```

V5 = ASC 5seikan + B TIME * time 5seikan + B COST * cost 5seikan + D 5weight * weight log10

```
V = {1: V1. 2: V2. 3: V3. 4: V4. 5: V5 }
av = \{1: 1, 2: 1, 3: 1, 4: 1, 5: 1\}
### DEFINITION OF THE NESTS:
# 1: nests parameter
nst = Beta('nst', 1, -100, 100, 0,)
# 2: list of alternatives
      = 1/nst, [4]
m4
                        Definition of Biogeme
m13 = 1/nst, \{1, 3\}
m25 = 1/nst, [2, 5]
                        logsum parameter, \lambda, is
                        the inverse of original one,
                        the reason is unknown.
nests = m4, m13, m25
logprob = lognested(V,av,nests,mode)
rowlterator('obslter')
BIOGEME OBJECT.ESTIMATE = Sum(logprob, 'obslter')
nullLoglikelihood(av,'obslter')
choiceSet = [1,2,3,4,5]
cteLoglikelihood(choiceSet,mode,'obslter')
availabilityStatistics(av,'obslter')
```


BIOGEME_OBJECT.PARAMETERS['optimizationAlgorithm'] = "BIO"
BIOGEME_OBJECT.FORMULAS['1ibaraki utility'] = V1
BIOGEME_OBJECT.FORMULAS['2tokyo utility'] = V2
BIOGEME_OBJECT.FORMULAS['3hachi utility'] = V3
BIOGEME_OBJECT.FORMULAS['4rail utility'] = V4
BIOGEME_OBJECT.FORMULAS['5seikan utility'] = V5

Estimation report

Number of estimated parameters: 11

Sample size: 1000

Excluded observations: 0

Init log likelihood: -1152.136
Final log likelihood: -1107.643

Likelihood ratio test for the init. model: 88.986

Rho-square for the init. model: 0.039 Rho-square-bar for the init. model: 0.029

Akaike Information Criterion: 2237.286 Bayesian Information Criterion: 2291.272

Final gradient norm: +8.375e-003

Diagnostic: Trust region algorithm with simple bounds (CGT2000):

Iterations: 13

Data processing time: 00:00

Run time: 00:03

Nbr of threads: 2

Estimated parameters

Click on the headers of the columns to sort the table [Credits]

Name	Value	Std err	t-test	p-value		Robust Std err	Robust t-test	p-value	
ASC_2tokyo	-0.327	0.379	-0.86	0.39	*	0.370	-0.88	0.38	*
ASC_3hachi	1.43	0.359	3.97	0.00		0.369	3.86	0.00	
ASC_4rail	-4.18	0.429	-9.72	0.00		0.443	-9.43	0.00	
ASC_5seikan	-0.697	0.381	-1.83	0.07	*	0.436	-1.60	0.11	*
B_COST	-0.0125	0.00249	-5.03	0.00		0.00308	-4.07	0.00	
B_TIME	-0.0143	0.0105	-1.36	0.17	*	0.00956	-1.49	0.14	*
D_1weight	0.0523	0.125	0.42	0.68	*	0.141	0.37	0.71	*
D_2weight	-0.0346	0.0656	-0.53	0.60	*	0.0713	-0.48	0.63	*
D_3weight	-0.704	0.0947	-7.43	0.00		0.0933	-7.55	0.00	
D_4weight	0.527	0.112	4.69	0.00		0.118	4.47	0.00	
nst	0.547	0.120	4.57	0.00		0.138	3.96	0.00	

		LLK			logsum			VOT		
	NL_str	mlogit	NL	biogeme	mlogit	NL	biogeme	mlogit	NL	biogeme
	3624_1_3_5		-3592.59	-3588.91		57.0264			4,627	4,834
	4012_3_4_5	-3602.15	-3610.74	-3611.13		106.5390			1,760	
Estimation results of 50 NLs	493_5_124	-3583.22	-3588.10	-3589.02	224.4387	56.6258	46.2000		3,462	
Estillation results of 50 MES	233_14_25	-3649.38 -3660.77	-3649.41 -3653.81	-3649.38 -3652.77	29.0261 4.8286	27.4054 18.3827	29.0000 28.3000	-234	-232	
by mlogit, homemade ("NL")	1545_123 3325_1_3_4	-3686.04	-3669.37	-3669.37	1.3295	10.6266	10.6000	1,765 1,851	1,724 1,930	
by imagic, nomemade (NE)	421_3_245	-3651.47	-3651.47	-3651.47	8.7209	8.7584	8.7200		6,309	
and Biogeme.	305_14_23	-3623.52	-3623.52	-3623.52	3.5268	3.5265	3.5300	862	862	-
and biogenie.	3823_1_4_5	-3637.12	-3637.12	-3637.12	3.1184	3.1185	3.1200	1,530	1,530	1,533
	55_1234	-3627.82	-3627.82	-3627.82	2.8298	2.8304	2.8300	2,980	2,979	2,983
	161_23_45	-3656.52	-3656.52	-3656.52	2.5300	2.5304	2.5300	1,918	1,918	1,919
Dut this is not "d1000 sou"	441_5_234	-3637.92	-3637.92	-3637.92	2.3686	2.3686	2.3700		2,539	
But this is not "d1000.csv"	504_5_123	-3652.88	-3652.88	-3652.88	2.2877	2.2872	2.2900	1,594	1,594	
	3714_2_3_5	-3683.15	-3683.15	-3683.15	1.7340	1.7330	1.7300	-	1,961	1,953
data, it's the original data	223_12_45	-3680.94	-3680.94	-3680.94	1.6422	1.6422	1.6400	2,107	2,107	2,109
-	1023_145 915_234	-3680.83 -3682.19	-3680.83 -3682.19	-3680.83 -3682.20	1.5626 1.3980	1.5633 1.3984	1.5600 1.4000	1,794 2,007	1,794 2,007	1,796 2,005
analyzed by a graduation	285 12 34	-3682.70	-3682.70	-3682.71	1.3265	1.3262	1.3300	1,902	1,902	1,903
	11 2345	-3684.58	-3684.58	-3684.58	1.2754	1.2736	1.2800	1,983	1,983	1,985
thesis. The sample size is	295_13_24	-3685.69	-3685.69	-3685.69	1.1085	1.1087	1.1100		2,141	2,136
-	274_15_23	-3686.05	-3686.05	-3686.05	1.0710	1.0710	1.0700	1,870	1,870	
4,204.	814_235	-3686.19	-3686.19	-3686.19	0.9829	0.9832	0.9830	1,950	1,950	1,948
7/2011	33_1245	-3686.19	-3686.19	-3686.19	0.9788	0.9788	0.9780	1,918	1,918	1,923
	472_5_134	-3683.21	-3683.21	-3683.21	0.7889	0.7888	0.7890	1,853	1,853	1,852
	713_245	-3684.33	-3684.33	-3684.33	0.7814	0.7816	0.7810		1,560	
LLK: log likelihood	431_4_235	-3684.67	-3684.67	-3684.67	0.7801	0.7794	0.7800	-	2,313	2,305
LLK. 109 likelillood	3534_1_2_5	-3683.38	-3683.38 -3682.42	-3683.38 -3682.42	0.7624	0.7624	0.7620		1,851	1,853
Loggum narameters	181_25_34 1225_134	-3682.42 -3681.64	-3681.64	-3681.64	0.6610 0.6584	0.6610 0.6584	0.6610 0.6580	1,959	1,969 1,954	1,966 1,956
Logsum parameters	264 13 25	-3674.09	-3674.09	-3674.09	0.5446	0.5446	0.5450		2,386	
VOT. value of time (van /h]	483_4_125	-3678.03	-3678.03	-3678.03	0.5334	0.5334	0.5330		2,633	
VOT: value of time [yen/h]	3913_2_4_5	-3672.07	-3672.07	-3672.07	0.5042	0.5042	0.5040		2,065	
	243_15_24	-3675.36	-3675.36	-3675.36	0.4461	0.4461	0.4460	880	880	881
	44_1235	-3676.35	-3676.35	-3676.35	0.4187	0.4187	0.4190	3,630	3,630	3,627
	192_13_45	-3652.35	-3652.35	-3652.35	0.3620	0.3620	0.3620	-	1,140	
mlogit is slightly unstable,	3145_1_2_3	-3673.81	-3665.37	-3665.37	0.4916	0.2801	0.2800		936	
	452_3_145	-3645.47	-3645.47	-3645.47	0.2503	0.2503	0.2500	1,508	1,508	
Biogeme is the strongest.	3415_2_3_4 254 12 35	-3634.87 -3655.78	-3622.75 -3655.78	-3622.75 -3655.78	0.3705 0.1978	0.2063 0.1978	0.2060 0.1980		4,081 6,074	4,084 6,065
J	3235_1_2_4	-3610.91	-3610.91	-3610.91	0.1110	0.1378	0.1380		10,373	10,357
	212 15 34	-3612.94	-3612.93	-3612.93	0.0486	0.0548	0.0543		1,795	
	1334_125	-3653.68	-3653.45	-3653.43	0.0456	0.0102	-0.0111		2,130	
		-3654.10	-3654.09	-3653.99	0.0101	0.0100	-0.0424	124	129	
	411_2_345	-3607.81	-3610.74	-3606.75	0.0158	106.5390	-0.0730	1,322	1,760	
Homemade may be helpful	462_4_135	-3539.70	-3645.47	-3539.70	-0.2678	0.2503	-0.2680	-3,154	1,508	-3,150
momentum be neighbor	612_345	-3640.82	-3638.43	-3638.43	-0.0175	-0.2794	-0.2790		1,381	1,383
for understanding	202_14_35	-3608.85	-3602.04	-3602.04	0.0222	-0.2932	-0.2930		2,186	
ioi ullucistallulliy 🗡	1124_135	-3579.68	-3579.68	-3579.68	-0.7081	-0.7081	-0.7080	-638	-638	
	22_1345	-3543.79	-3543.79	-3543.79	-0.8587	-0.8588	-0.8590		1,798	
	1435_124	-3646.92	-3646.92	-3646.92	-1.5225	-1.5220	-1.5200	1,770	1,770	1,767