EJERCICIOS EBAU (TODOS)

- (1) **EBAU2004J.** Sea la función $y = 2e^{-2|x|}$
 - a) Estúdiese su monotonía, extremos relativos y asíntotas.
 - b) Calcúlese el área de la región plana comprendida entre la gráfica de la función y las rectas x=1 y x=-1.
- (2) **EBAU2004J.** Sea la recta $r \equiv \left\{ \begin{array}{ll} x+y+1 &= 0 \\ 2x-z+3 &= 0 \end{array} \right.$
 - a) Escríbase la recta en forma paramétrica.
 - b) Para cada punto P de r, determínese la ecuación de la recta que pasa por P y corta perpendicularmente al eje OZ.
- (3) **EBAU2004J.** De todas las primitivas de la función $f(x) = 2 \operatorname{tg} x \operatorname{sec}^2 x$ hállese la que pasa por el punto $P\left(\frac{\pi}{4}, 1\right)$.
- (4) **EBAU2004J.** Demuéstrese que las gráficas de las funciones $f(x) = e^x$ y $g(x) = \frac{1}{x}$ se cortan en un punto x > 0.
- (5) **EBAU2004J.** Se tiene una matriz M cuadrada de orden 3 cuyas columnas son respectivamente C_1 , C_2 y C_3 y cuyo determinante vale 2. Se considera la matriz A cuyas columnas son $-C_2$, $C_3 + C_2$, $3C_1$. Calcúlese razonadamente el determinante de A^{-1} en caso de que exista esa matriz.
- (6) **EBAU2004J.** Determínese si el plano $\pi \equiv 2x + 3y 4 = 0$ corta o no al segmento de extremos A(2,1,3) y B(3,2,1).
- (7) **EBAU2004J.** Se considera el sistema $\begin{cases} x + y + z = \lambda \\ x + y + \lambda z = 1 \\ x + \lambda y + z = 1 \end{cases}$
 - a) Discútase según los valores del parámetro $\lambda.$
 - b) Resuélvase para $\lambda = -3$.
 - c) Resuélvase para $\lambda = 1$.
- (8) **EBAU2004J.** Sea $f(x) = x^3 + ax^2 + bx + c$. Determínense a, b y c de modo que f(x) tenga un extremo relativo en x = 0, la recta tangente a la gráfica de f(x) en x = 1 sea paralela a la recta y 4x = 0, y el área comprendida por la gráfica de f(x), el eje OX y las rectas x = 0, x = 1, sea igual a 1.
- (9) **EBAU2004J.** Calcúlese $\lim_{x\to 0} \left(\frac{1}{x} \frac{1}{\sin x}\right)$

- (10) **EBAU2004J.** Calcúlese $\int \frac{(x-1)^2}{\sqrt{x}} dx$
- (11) **EBAU2004J.** Hállese la ecuación del plano que contiene la recta $r \equiv x = y = z$ y es perpendicular al plano $\pi \equiv x + y z 1 = 0$
- (12) **EBAU2004J.** Dada la matriz $B=\begin{bmatrix}1&2\\1&2\end{bmatrix}$ hállese una matriz X que verifique la ecuación $XB+B=B^{-1}$
- (13) **EBAU2004S.** Sea m un número real y sean r y π la recta y el plano dados respectivamente por:

$$r \equiv \begin{cases} 2x - my + z &= 2 - m \\ x + 2y + z &= 0 \end{cases}$$
, $\pi \equiv 3x + 2z = 2 - m$

- a) Estúdiese la posición relativa de r y π en función del valor de m.
- b) Para el valor m=1, hállese la ecuación del plano que pasa por el punto de corte de r y π y es perpendicular a la recta $t\equiv x=y=z$.
- (14) **EBAU2004S.** Sea f la función dada por $f(x) = x^2 3|x| + 2$, $x \in \mathbb{R}$.
 - a) Estúdiese la derivabilidad de f en x = 0 mediante la definición de derivada.
 - b) Determínense los intervalos de monotonía de f y sus extremos relativos.
 - c) Esbócese la gráfica de f.
- (15) **EBAU2004S.** Sea A una matriz cuadrada de orden 4 cuyo determinante vale 3, y sea la matriz $B = \sqrt[4]{3}A$. Calcúlese el determinante de la matriz B.
- (16) **EBAU2004S.** Calcúlese la distancia entre las rectas r y s de ecuaciones:

$$r \equiv \begin{cases} x = 1 + 2\lambda \\ y = 0 \\ z = -\lambda \end{cases}, s \equiv \frac{x}{-1} = \frac{y-3}{1} = \frac{z-2}{1}$$

- (17) **EBAU2004S.** Calcúlese el valor de $\lim_{x \to \frac{\pi}{2}} \frac{\operatorname{tg}(2x)}{\operatorname{tg}(6x)}$
- (18) **EBAU2004S.** Hállese el área del recinto limitado por las parábolas de ecuaciones respectivas $y = 6x x^2$ e $y = x^2 2x$.
- (19) **EBAU2004S.** Se considera el sistema de ecuaciones lineales $r = \begin{cases} x + 2y + 3z = 1 \\ x + ay + 3z = 2 \\ 2x + (2+a)y + 6z = 3 \end{cases}$
 - a) ¿Existe algún valor del parámetro a para el cual el sistema sea incompatible?
 - b) ¿Existe algún valor del parámetro a para el cual el sistema sea compatible determinado?

- c) Resuelvase el sistema para a = 0.
- (20) EBAU2004S.
 - a) Dada la función $f:[1,e] \to \mathbb{R}$ definida por $f(x) = \frac{1}{x} + \ln x$, determínese de entre todas las rectas tangentes a la gráfica de f la que tiene máxima pendiente. Escríbase la ecuación de dicha recta.
 - b) Calcúlese una función primitiva de f(x) que pase por el punto P(e,2).
- (21) **EBAU2004S.** Dadas las matrices $P = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}$ y $A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, hállese la matriz B sabiendo que $P^{-1}BP = A$.
- (22) **EBAU2004S.** Hállese la ecuación general del plano que pasa por los puntos A(2,2,-1), B(4,0,2) y es perpendicular al plano $\pi \equiv x 5y + 2z 6 = 0$.
- (23) **EBAU2004S.** Hállese el área limitada por las gráficas de las funciones $y = 3x x^2$, y = 2x 2.
- (24) **EBAU2004S.** Determínese el valor del parámetro a para que se verifique $\lim_{x\to +\infty} \left(\sqrt{x^2+ax+1}-x\right)=2.$
- (25) EBAU2005J.
 - a) Discútase el sistema $\begin{cases} x+ay-z=2\\ 2x+y+az &=0\\ 3x+(a+1)y-z=a-1 \end{cases}$, en función del valor de a.
 - b) Para el valor a=1, hállese, si procede, la solución del sistema.
- (26) EBAU2005J.
 - a) Calcúlesen los intervalos de crecimiento y decrecimiento de la función $f(x) = e^{1-x^2}$, sus extremos relativos, puntos de inflexión y asíntotas.
 - b) Esbócese la gráfica de f y calcúlses $\int_1^3 x f(x) \, \mathrm{d}x$
- (27) **EBAU2005J.** Sea A una matriz 2x2 de columnas C_1 , C_2 y determinante 4. Sea B otra matriz 2x2 de determinante 2. Si C es la matriz de columnas $C_1 + C_2$ y $3C_2$, calcúlese el determinante de la matriz $B \cdot C^{-1}$.
- (28) **EBAU2005J.** Calcúlese la distancia del origen al plano π que pasa por A(1,2,0) y contiene la recta $r \equiv (x+2)/2 = (y-1)/3 = z$.
- (29) **EBAU2005J.** Calcúlese $\lim_{x\to\infty} \frac{x \ln x}{e^x}$.

- (30) **EBAU2005J.** Aplicando el teorema de Lagrange de los incrementos finitos, demúestrese que para x>0 se verifica: $\arctan (2x) \arctan (x)$
- (31) EBAU2005J.
 - a) Determínese el punto simétrico de A(-3, 1, -7) respecto de la recta

$$r \equiv x + 1 = \frac{y - 3}{2} = \frac{z + 1}{2}$$

- b) Hállese la distancia entre A y r.
- (32) **EBAU2005J.** Sea $f(x) = e^x + \ln x, x \in (0, \infty)$.
 - a) Estúdiense los intervalos de crecimiento y decrecimiento de f y sus asíntotas.
 - b) Pruébese que f tiene un punto de inflexión en el intervalo $\left[\frac{1}{2},1\right]$ y esbócese la gráfica de f.
- (33) **EBAU2005J.** Dadas las matrices $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 2 \end{bmatrix}$, hállense las matrices X que satisfacen $XC + A = C + A^2$.
- (34) **EBAU2005J.** Dados el punto A(3,5,-1) y la recta $r \equiv \frac{x-1}{2} = y+2 = \frac{z+1}{4}$, hállese el punto B perteneciente a r tal que el vector de extremos A y B es paralelo al plano π de ecuación 3x 2y + z + 5 = 0.
- (35) **EBAU2005J.** Estúdiese, según los valores de los números reales α y β , la continuidad de la función f definida por

$$\begin{cases} \frac{x+\alpha}{1+e^{1/x}} & \text{si } x \neq 0\\ \beta & \text{si } x = 0 \end{cases}$$

(36) EBAU2005J. Hállese el área del recinto limitado por las gráficas de las funciones

$$y = x^2, \ y = \frac{x^2}{2}, \ y = 2x$$

- (37) EBAU2005S.
 - a) Calcúlense los valores de a para los cuales las rectas $r \equiv \begin{cases} 3x + ay 6az + 1 &= 0 \\ -x + y + 3z 3 &= 0 \end{cases}$

$$y s \equiv \begin{cases} x = -1 - \lambda \\ y = 3 + \lambda \\ z = 1 + a\lambda \end{cases}$$
 son perpendiculares.

b) Para a=1, calcúlese la recta que pasa por (1,1,1) y se apoya en r y s.

- (38) EBAU2005S.
 - a) Estúdiese la derivabilidad de $f(x) = \begin{cases} \ln{(1+x^2)} &, x>0 \\ x^2 &, x\leq 0 \end{cases}$, sus intervalos de crecimiento y decrecimiento y sus puntos de inflexión. Esbócese su gráfica.
 - b) Calcúlese el área delimitada por la gráfica de f(x) y las rectas $x=-1,\,x=1,\,y=0.$
- (39) **EBAU2005S.** Sea la matriz $A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$. Calcúlese el determinante de A sabiendo que $A^2 2A + Id = 0$, donde Id es la matriz identidad y 0 es la matriz nula.
- (40) **EBAU2005S.** Discútase, según el valor de a, el rango de la matriz $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 3 \\ 0 & 1 & a \end{bmatrix}.$
- (41) **EBAU2005S.** Calcúlese el simétrico de P(1, 1, 1) respecto del plano x + y + z = 0.
- (42) **EBAU2005S.** Calcúlense los valores $\lambda \neq 0$ para los cuales $\lim_{x\to 0} \frac{\sin x^2}{\cos^2(\lambda x) 1} = -1$.
- (43) **EBAU2005S.** Sea k un número real. Considérese el sistema de ecuaciones lineales

$$\begin{cases} kx + y + z &= 1\\ x + ky + z &= k\\ x + y + kz &= k^2 \end{cases}$$

- a) Discútase según los valores de k e interprétese geométricamente el resultado.
- b) Resuélvase el sistema para k=2.
- (44) **EBAU2005S.** Sea P(a, sen a) un punto de la gráfica de la función f(x) = sen x en el intervalo $[0, \pi]$. Sea r_P la recta tangente a dicha gráfica en el punto P y A_P el área de la región determinada por las rects r_P , x = 0, $x = \pi$, y = 0. Calcúlese el punto P para el cual el área A_P es mínima. (Nota: Puede asumirse, sin demostrar, que la recta r_P se mantiene por encima del eje OX entre 0 y π)
- (45) **EBAU2005S.** Calcúlese $\int \frac{1}{x^2 + 4x + 13} dx$.
- (46) **EBAU2005S.** Sea $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$. Determínense los valores de m para los cuales A + mId no es invertible (donde Id denota la matriz identidad).
- (47) **EBAU2005S.** Calcúlese $\lim_{x\to 0} \ln x \operatorname{sen} x$
- (48) **EBAU2005S.** Calcúlese el volumen del tetraedro de vértices A(1,1,1), B(1,2,3), C(2,3,1) y D(3,1,2).

(49) **EBAU2006J.** Sean r y s las rectas dadas por:

$$r \equiv \left\{ \begin{array}{ll} 2x - y &= m \\ z + 2y &= 3 \end{array} \right. , s \equiv \left\{ \begin{array}{ll} x + y &= 2 \\ x + 2z &= 3 \end{array} \right.$$

- a) Hállese el valor de m para que ambas rectas se corten.
- b) Para m=1, hállese la ecuación del plano que contiene a r y s.
- (50) **EBAU2006J.** Considérense las funciones $f(x) = e^x$, $g(x) = -e^{-x}$. Para cada recta r perpendicular al eje OX, sean A y B los puntos de corte de dicha recta con las gráficas de f y g, respectivamente. Determínese la recta r para la cual el segmento AB es de longitud mínima.
- (51) **EBAU2006J.** Hállense las matrices A cuadradas de orden 2, que verifican la igualdad: $A\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} A$.
- (52) **EBAU2006J.** Calcúlese la distancia del punto P(1,1,1) a la recta: $r \equiv \begin{cases} x = -2 + 2\lambda \\ y = 0 \\ z = -\lambda \end{cases}$
- (53) **EBAU2006J.** Calcúlese el valor de $\lim_{x\to 0} \frac{\ln(\cos(2x))}{x^2}$.
- (54) **EBAU2006J.** Hállese el área del recinto limitado por la parábola $y = -x^2$ y la recta y = 2x 3
- (55) **EBAU2006J.** Se considera el sistema de ecuaciones lineales $\begin{cases} x + 2y + z = 3\\ (1+a)y + z = 4\\ x + 2y + az = 4 \end{cases}$
 - $a)\,$ Discútase el sistema según el valor del parámetro real a.
 - b) Resuélvase el sistema para a=2.
- (56) **EBAU2006J.** Dada la función $f(x) = \frac{x-1}{x+1}$, se pide:
 - a) Determínense los intervalos de crecimiento y decrecimiento, los de concavidad y convexidad, los puntos de inflexión y las asíntotas de f. Esbócese su gráfica.
 - b) Calcúlese el área de la región limitada por dicha gráfica y las rectas x=0, y=0.
- (57) **EBAU2006J.** Dadas las matrices $P = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ -1 & -1 & 1 \end{bmatrix}$ y $A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, hállese razonadamente la matriz B sabiendo que BP = A.
- (58) **EBAU2006J.** Hállese la distancia entre el plano π , que pasa por los puntos A(2,0,-1), B(0,0,0) y C(1,1,2), y el plano β de ecuación x-5y+2z-6=0.

- (59) **EBAU2006J.** Sea $f(x) = ax^3 + bx^2 + cx + d$. Determínense a, b, c y d para que la recta y + 1 = 0 sea tangente a la gráfica de f en el punto (0, -1), y la recta x y 2 = 0 sea tangente a la gráfica de f en el punto (1, -1).
- (60) **EBAU2006J.** Determínense los valores de a y b para los cuales $\lim_{x\to 0}\frac{ax^2+bx+1-\cos x}{\sin x^2}=1.$
- (61) EBAU2006S.
 - a) Hállese el valor de a para el que la recta $r \equiv \begin{cases} x y + 2z = 1 \\ 2x + y 5z = 2 \end{cases}$ y el plano $\pi \equiv ax y + z + 1 = 0$ son paralelos.
 - b) Para a=2, calcúlese la ecuación del plano que contiene a r y es perpendicular a π , y hállese la distancia entre r y π .
- (62) EBAU2006S.
 - a) Estúdiense los intervalos de crecimiento y decrecimiento de $f(x) = xe^{-x}$, sus máximos y mínimos relativos, asíntotas y puntos de inflexión. Demuéstrese que para todo x se tiene que $f(x) \leq \frac{1}{e}$.
 - b) Pruébese que la ecuación $3x = e^x$ tiene alguna solución en $(-\infty, 1]$.
- (63) **EBAU2006S.** Sea m un número real. Discútase, en función de m, el sistema de ecuaciones lineales homogéneo cuya matriz de coeficientes es $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & m & m \\ 2 & m+1 & 2 \end{bmatrix}$.
- (64) **EBAU2006S.** Hállense las ecuaciones de la recta r que pasa por P(2,1,-1), está contenida en el plano $\pi \equiv x+2y+3z=1$, y es perpendicular a la recta $s \equiv \begin{cases} x=2z-3 \\ y=z+4 \end{cases}$
- (65) **EBAU2006S.** Calcúlese $\lim_{x\to 0} \frac{\ln(\cos(x)) 1 + \cos(x)}{x^2}$
- (66) **EBAU2006S.** Calcúlese el área del recinto limitado por la curva de ecuación $y = x^3 3x^2 + 2x$ y la recta tangente a dicha curva en el punto x = 0.
- (67) **EBAU2006S.** Discútase, en función del parámetro real k, el siguiente sistema de ecuaciones lineales: $\begin{cases} kx + 3y = 0 \\ 3x + 2y = k \end{cases}$ Resuélvase el sistema cuando sea posible. 3x + ky = 0
- (68) **EBAU2006S.** Sea $f(x) = \frac{4 2x^2}{x}$.
 - a) Determínese el dominio de f, sus asíntotas, simetrías y máximos y mínimos relativos. Esbócese su gráfica.

- b) Calcúlese $\int_{1}^{\sqrt{2}} f(x) \ln(x) dx$
- (69) **EBAU2006S.** ¿Existen máximo y mínimo absolutos de la función $f(x) = \cos x + 1$ en el intervalo $[0, \pi]$? Justifíquese su existencia y calcúlense.
- (70) **EBAU2006S.** Dada la matriz $P = \begin{bmatrix} 1 & 2 & a \\ 2 & a+1 & 0 \\ 3 & 4 & 5 \end{bmatrix}$, determínense los valores del número real a para los cuales existe la matriz inversa de P.
- (71) **EBAU2006S.** Calcúlense las ecuaciones de las rectas tangente y normal a la gráfica de la función $f(x) = \frac{x^2}{x^2 + 1}$ en el punto x = 0.
- (72) **EBAU2006S.** El triángulo ABC es rectángulo en A, siendo A(3,0,-1), B(6,-4,5), C(5,3,,z). Calcúlese el valor de z y hállese el área del triángulo.
- (73) **EBAU2007J.** Sea el plano $\pi \equiv x + y 2z 5 = 0$ y la recta $r \equiv x = y = z$. Se pide:
 - a) Calcular la distancia de la recta al plano.
 - b) Hallar un plano que contenga a r y sea perpendicular a π .
 - c) Hallar el punto simétrico de P(-1,3,3) respecto a π .
- (74) **EBAU2007J.** Sea la función $f(x) = \frac{x}{x^2 1}$.
 - a) Hallar los intervalos de crecimiento y decrecimiento, los de concavidad y convexidad, los puntos de inflexión y las asíntotas. Esbozar su gráfica.
 - b) Calcular el área de la región limitada por dicha gráfica y las rectas x=-4, x=-2.
- (75) **EBAU2007J.** Hallar para qué valores de a es inversible la matriz $A = \begin{bmatrix} a & 4+3a \\ 1 & a \end{bmatrix}$ y calcular la inversa para a = 0.
- (76) **EBAU2007J.** Calcular $\lim_{x\to 0} \left(\frac{1}{\ln(1+x)} \frac{1}{x}\right)$.
- (77) **EBAU2007J.** Hallar el área del triángulo cuyos vértices son A(1,1,0), B(2,-1,0) y C(2,4,0).
- (78) **EBAU2007J.** Demostrar que las curvas $f(x) = \sin x$ y $g(x) = \frac{1}{x}$ se cortan en algún punto del intervalo $\left(2\pi, \frac{5\pi}{2}\right)$.

(79) **EBAU2007J.** Sean las matrices
$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 7 \\ 2 \\ -2 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$, $E = \begin{bmatrix} 2 \\ 5 \\ 3 \end{bmatrix}$.

- a) Hallar la matriz AB^T donde B^T indica la matriz traspuesta de B. ¿Es inversible?
- b) Hallar el rango de la matriz A^TD .
- c) Calcular $M = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ que verifique la ecuación $(AB^T + C) M = E$.
- (80) **EBAU2007J.** Sea la función $f(x) = x + e^{-x}$.
 - a) Hallar los intervalos de crecimiento y decrecimiento, los extremos relativos, los intervalos de concavidad y convexidad y las asíntotas. Esbozar su gráfica.
 - b) Demostrar que existe algún número real c tal que $c + e^{-c} = 4$.
- (81) **EBAU2007J.** Hallar a y b para que la función

$$f(x) = \begin{cases} a + x \ln x & \text{si } x > 0 \\ b & \text{si } x = 0 \\ \frac{\sec (\pi x)}{x} & \text{si } x < 0 \end{cases}$$

sea continua en todo \mathbb{R} .

- (82) **EBAU2007J.** Dadas las rectas $r \equiv \begin{cases} x+y-z = 0 \\ x+2y = 7 \end{cases}$ y $s \equiv \begin{cases} x = 2 \\ y = -5 \end{cases}$, hallar un punto de cada una de ellas, de tal forma, que el vector que los una sea perpendicular a ambas.
- (83) **EBAU2007J.** Discutir en función de a el sistema $\begin{cases} ax + ay = a \\ x ay = 1 \end{cases}$.
- (84) EBAU2007J. Hallar el área del recinto limitado por las curvas de ecuaciones:

$$y = x^2 - 4$$
, $y = 3x - 6$

- (85) **EBAU2007S.** Se considera el sistema $\begin{cases} x+y+az = 4 \\ ax+y-z = 0 \\ 2x+2y-z = 2 \end{cases}$, donde a es un parámetro real.
 - a) Discutir el sistema en función del valor de a.

- b) Resolver el sistema para a = 1.
- (86) **EBAU2007S.** Sea la función dada por $f(x) = e^{2x-x^2}$.
 - a) Calcular los intervalos de crecimiento y decrecimiento, los extremos relativos y las asíntotas de f.
 - b) Determinar el número de soluciones de la ecuación f(x) = 2 en el intervalo [0,1].
- (87) **EBAU2007S.** Sean X una matriz 2x2, I la matriz identidad 2x2 y $B = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$. Hallar X sabiendo que $BX + B = B^2 + I$.
- (88) **EBAU2007S.** Determinar el punto simétrico de P(4,0,3) respecto del plano de ecuación x=y.
- (89) **EBAU2007S.** Determinar en qué puntos de la gráfica de la función $y = x^3 3x^2 + x + 1$, la recta tangente a la misma es paralela a la recta y = x + 7.
- (90) **EBAU2007S.** Calcular el área del recinto limitado por la curva de ecuación $y = \ln x$, el eje OX y las rectas x = 1 y x = 2.
- (91) **EBAU2007S.** De una recta r se sabe que está contenida en el plano π de ecuación x y = 0, que A(0,0,0) pertenece a r, y que el vector que une A y B(1,0,-1) es perpendicular a r. Determinar la recta r, y calcular la distancia entre r y el plano paralelo a π que pasa por B.
- (92) **EBAU2007S.** Sea la función $f(x) = \frac{x}{x^2 + 4}$. Se pide hallar:
 - a) Los intervalos de crecimiento y decrecimiento de f, los máximos y mínimos relativos y las asíntotas. Esbozar su gráfica.
 - b) El área de la región limitada por la gráfica de f, el eje OX y las rectas x=-2, x=2.
- (93) **EBAU2007S.** Discutir, en función del número real m, el rango de la matriz

$$A = \begin{bmatrix} 2 & 1 & m \\ 1+m & 2 & 3 \\ -2 & -1 & 2 \end{bmatrix}$$

- (94) **EBAU2007S.** Sea A el punto medio del segmento de extremos P(3, 2, 1) y Q(-1, 0, 1). Calcular el volumen del tetraedro de vértices A, B(2, 1, 3), C(1, 2, 3) y D(3, 4, 1).
- (95) **EBAU2007S.** Discutir si la ecuación $x + \operatorname{sen} x = 2$ tiene alguna solución real.
- (96) **EBAU2007S.** Calcular, si existe, el valor de $\lim_{x\to 0} \frac{(e^x e^{-x})^2}{x^2}$.
- (97) **EBAU2008J.** Se considera el plano $\pi \equiv x + ay + 2az = 4$ y la recta $r \equiv \begin{cases} x+y+2z = 2 \\ x+2y-z = 3 \end{cases}$.

- a) Determinar los valores de a para los cuales la recta y el plano son paralelos.
- b) Para a=2, calcular la recta que pasa por P(1,0,-1), es paralela al plano π y se apoya en la recta r.
- (98) **EBAU2008J.** Sea $f(x) = \frac{\ln x}{x^2}$ con $x \in (0, +\infty)$. Se pide:
 - a) Calcular los intervalos de crecimiento y decrecimiento, los extremos relativos y las asíntotas. Esbozar su gráfica.
 - b) Calcular $\int f(x) dx$.
- (99) **EBAU2008J.** Calcular $\lim_{x\to 0} \frac{\sec^2(2x)}{x^3 + x^2}$.
- (100) **EBAU2008J.** Determinar el valor de a para que la recta tangente a la función $f(x) = x^3 + ax$ en el punto x = 0 sea perpendicular a la recta y + x = -3.
- (101) **EBAU2008J.** Sean las matrices $B=\begin{bmatrix}5&3\\3&2\end{bmatrix}$ y $C=\begin{bmatrix}13&8\\8&5\end{bmatrix}$. Calcular la matriz A, sabiendo que $A^2=B$ y $A^3=C$.
- (102) **EBAU2008J.** Sabiendo que tres de los vértices de un paralelogramo son los puntos A(1,1,2), B(1,1,4) y C(3,3,6), hallar el área del mismo.
- (103) **EBAU2008J.** Se considera el sistema $\begin{cases} x-y+z &= -1\\ y+z &= 2a\\ x+2z &= a^2 \end{cases}$ donde a es un parámetro real.
 - a) Discutir el sistema en función del valor de a.
 - b) Resolver el sistema para a=0.
 - c) Resolver el sistema para a = 1.
- (104) **EBAU2008J.** Dada $f(x) = \begin{cases} \frac{\sin(x^2)}{x} & \text{si } x > 0 \\ x^2 2x & \text{si } x \le 0 \end{cases}$
 - a) Estudiar la continuidad y derivabilidad de la función f(x).
 - b) Calcular $\int_{\sqrt{\pi}}^{\sqrt{2\pi}} x^2 f(x) dx$
- (105) **EBAU2008J.** Calcular las asíntotas de la función $f(x) = \frac{(2x-1)^2}{4x^2+1}$.
- (106) **EBAU2008J.** Calcular el rango de la matriz $\begin{bmatrix} 1 & 3 & -1 & -5 \\ -1 & 1 & -3 & -3 \\ 2 & 4 & 0 & -6 \\ 3 & 2 & 4 & -1 \end{bmatrix}$

- (107) **EBAU2008J.** Demostrar que la ecuación $x^3 + x 5 = 0$ tiene al menos una solución en el intervalo (1, 2).
- (108) **EBAU2008J.** Dada la recta $r \equiv 2x + y = 2$, calcular el punto P de la recta r tal que la perpendicular a r por P pase por el punto (1, -1).
- (109) **EBAU2008S.** Sea a un parámetro real. Se considera el sistema

$$\begin{cases} x + ay + z &= 2 + a \\ (1 - a)x + y + 2z &= 1 \\ ax - y - z &= 1 - a \end{cases}$$

- a) Discutir el sistema en función del valor de a.
- b) Resolver el sistema para a = 0.
- c) Resolver el sistema para a = 1.
- (110) **EBAU2008S.** Hallar, de entre los puntos de la parábola de ecuación $y = x^2 1$, los que se encuentran a distancia mínima del punto $A\left(-2, -\frac{1}{2}\right)$.
- (111) **EBAU2008S.** Sea A una matriz 3x3 de columnas C_1 , C_2 y C_3 (en ese orden). Sea B la matriz de columnas $C_1 + C_2$, $2C_1 + 3C_3$ y C_2 (en ese orden). Calcular el determinante de B en función del de A.
- (112) **EBAU2008S.** Hallar la distancia entre el punto A(2,1,4) y la recta $r \equiv \frac{x-1}{2} = y+1=\frac{z}{3}$.
- (113) **EBAU2008S.** Estudiar la continuidad en $\mathbb R$ de la función $\begin{cases} \frac{1-\cos x}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$
- (114) **EBAU2008S.** Calcular $\int \frac{\mathrm{d}x}{x(x+1)}$
- (115) **EBAU2008S.** Se consideran las rectas r y s de ecuaciones respectivas

$$r \equiv \left\{ \begin{array}{ll} y & = 1 \\ z & = 0 \end{array} \right. , \ s \equiv \left\{ \begin{array}{ll} x & = 0 \\ z & = 2 \end{array} \right.$$

- a) Estudiar la posición relativa de r y s.
- b) Determinar la recta que corta perpendicularmente a r y s.
- c) Hallar la distancia entre r y s.
- (116) **EBAU2008S.** Sea $f(x) = 2 x + \ln x \operatorname{con} x \in (0, +\infty)$.
 - a) Determinar los intervalos de crecimiento y decrecimiento, los extremos relativos, los intervalos de concavidad y convexidad y las asíntotas de f. Esbozar la gráfica de f.

- b) Probar que existe un punto $c \, \in \, \left(\frac{1}{e^2},1\right)$ tal que f(c)=0
- (117) **EBAU2008S.** Sea a un número real. Discutir el sistema de ecuaciones siguiente, según los valores de a:

$$\begin{cases} ax + y = 0 \\ 2x + (a-1)y = 0 \end{cases}$$

(118) **EBAU2008S.** Hallar el seno del ángulo formado por la recta r y el plano π dados por

$$r \equiv \left\{ \begin{array}{rcl} x & = z \\ 2y + z & = 3 \end{array} \right. \quad \pi : x + y = z$$

(119) **EBAU2008S.** Calcular los valores del número real a sabiendo que

$$\lim_{x \to 0} \frac{e^{ax} - 1 - ax}{x^2} = 8$$

- (120) **EBAU2008S.** Calcular $\int \frac{dx}{\sqrt{9-(x-1)^2}}$
- (121) **EBAU2009J.** Sea r la recta que pasa por los puntos A(1,1,1) y B(3,1,2), y sea s la recta de ecuaciones $s \equiv \left\{ \begin{array}{ll} x-2z & =1 \\ y-2 & =0 \end{array} \right.$. Se pide:
 - a) Estudiar su posición relativa.
 - b) Si fuera posible, calcular su punto de intersección.
 - c) Calcular, si existe, un plano que las contenga.
- (122) **EBAU2009J.** Sea la función $f(x) = |x^2 x 2|$.
 - a) Hallar los intervalos de crecimiento y decrecimiento, los de concavidad y convexidad y esbozar su gráfica.
 - b) Demostrar que no es derivable en x = 2.
 - c) Calular el área de la región limitada por dicha gráfica, el eje OX y las rectas $x=-2,\,x=0.$
- (123) **EBAU2009J.** Sea A una matriz cuadrada tal que $\det(A) = -1$ y $\det((-2) \cdot A) = 32$. Calcular el tamaño de la matriz A.
- (124) **EBAU2009J.** Calcular la matriz X que verifica $AX = BB^t$, donde $A = \begin{bmatrix} 2 & 1 \\ 3 & -2 \end{bmatrix}$ y $B = \begin{bmatrix} 0 & 1 & 0 \\ 3 & -1 & 2 \end{bmatrix}$, siendo B^t la matriz transpuesta de B.
- (125) **EBAU2009J.** Hallar la distancia desde el punto P(1, 3, -2) a la recta $s \equiv \begin{cases} x = 2 + 3\lambda \\ y = -1 + \lambda \\ z = 1 2\lambda \end{cases}$.

- (126) **EBAU2009J.** Calcular $\int \frac{1}{1-x^2} dx$
- (127) EBAU2009J. Sea el sistema de ecuaciones lineales:

$$\begin{cases} x - y = 5 \\ \lambda y + z = \lambda \\ x - 2z = 3 \end{cases}$$

Se pide:

- a) Discutirlo en función del parámetro $\lambda \in \mathbb{R}$.
- b) Resolverlo cuando sea compatible.
- (128) EBAU2009J. Calcular la distancia entre las rectas de ecuaciones:

$$r \equiv \begin{cases} 3x - y = -1 \\ 7x - z = -4 \end{cases}$$
 $y \ s \equiv x - 2 = \frac{y - 2}{3} = \frac{z - 3}{4}$

- (129) **EBAU2009J.** Resolver la ecuación $\begin{vmatrix} x+1 & x & x \\ x & x+1 & x \\ x & x & x+1 \end{vmatrix} = 0$
- (130) **EBAU2009J.** Estudiar los intervalos de crecimiento y decrecimiento de la función $f(x) = \frac{\ln x}{x}$ en su dominio de definición.
- (131) **EBAU2009J.** Calcular los valores de a para los cuales el área comprendida entre la gráfica de la función $y = -x^2 + a^4$ y el eje OX es de $\frac{256}{3}$ unidades de superficie.
- (132) **EBAU2009S.** Sea la función $f(x) = \frac{x^3}{x^2 + 1}$.
 - a) Hallar su dominio, intervalos de crecimiento y decrecimiento, extremos relativos, intervalos de concavidad y convexidad, puntos de inflexión y asíntotas. Esbozar su gráfica.
 - b) Calcular el valor de $\int_0^1 f(x) dx$.
- (133) **EBAU2009S.** Se consideran la recta $r \equiv \frac{x-1}{3} = \frac{y-2}{2} = z$ y el punto P(1, 8, 2).
 - a) Hállese el punto A de r tal que el vector \overrightarrow{AP} es perpendicular a r.
 - b) Determínese el plano π que es paralelo a r, pasa por B(5,1,0) y por el simétrico de P respecto de r.
- (134) **EBAU2009S.** Calcular el límite $\lim_{x\to 0} \frac{\ln(2^{\sin x})}{e^x 1}$.

- (135) **EBAU2009S.** Hallar los puntos en los que la recta tangente a la gráfica de la función $f(x) = x^3$ es paralela a la recta de ecuación y = 3x + 2.
- (136) **EBAU2009S.** Determinar el ángulo que forman la recta $r \equiv \frac{x}{2} = \frac{y+1}{3} = z$ y el plano $\pi \equiv x + y z = 4$.
- (137) **EBAU2009S.** Resolver la ecuación $\begin{vmatrix} -x & -1 & 2x \\ 2x & -x & -1 x \\ -1 & 2x & 0 \end{vmatrix} = 0.$
- (138) EBAU2009S.
 - a) Discutir, según el valor del parámetro real a, el siguiente sistema de ecuaciones:

$$\begin{cases} 2x + y + z = 4 \\ x - ay + z = a \\ 3x + 2z = 5 \end{cases}$$

- b) Interpretar la discusión realizada en a) en términos d ela posición relativa de los dos planos dados por cada una de las tres ecuaciones del sistema.
- (139) **EBAU2009S.** Sea la función $f(x) = \operatorname{sen} x + \cos x$, definida en el intervalo $[0, 2\pi]$.
 - a) Hallar los intervalos de crecimiento y decrecimiento, y los extremos relativos. Esbozar su gráfica.
 - b) Calcular el área del recinto limitado por la gráfica de f y las rectas de ecuaciones $x=0,\,x=\frac{\pi}{4},$ e y=2.
- (140) **EBAU2009S.** Sea $\alpha \neq 0$ un número real, y las rectas de ecuaciones

$$r \equiv \frac{x}{2} = y = \frac{z}{\alpha}, \quad s \equiv \left\{ egin{array}{ll} x &= 1 + 4\lambda \\ y &= 2\lambda \\ z &= 3 - 2\lambda \end{array} \right.$$

Para el valor de α para el que r y s son paralelas, hallar el plano que las contiene.

(141) **EBAU2009S.** Estudiar, en función del parámetro real λ , el rango de la matriz

$$A = \begin{bmatrix} 2 - \lambda & 1 & 1 \\ 1 & -\lambda & -1 \\ 1 & -1 & 2 - \lambda \end{bmatrix}$$

- (142) **EBAU2009S.** Probar que la ecuación $x^{2009} e^x + 2 = 0$ tiene alguna solución.
- (143) **EBAU2009S.** Calcular $\int \frac{\mathrm{d}x}{(1+x)\sqrt{x}}$.
- (144) EBAU2010J.

- a) Dadas las funciones $f(x) = \ln x$ y g(x) = 1 2x, hallar el área del recinto plano limitado por las rectas x = 1, x = 2 y las gráficas de f(x) y g(x).
- b) Dar un ejemplo de función continua en un punto y que no sea derivable en él.

(145) **EBAU2010J.**

- a) Si el término independiente de un polinomio p(x) es -5 y el valor que toma p(x) para x=3 es 7, ¿se puede asegurar que p(x) toma el valor 2 en algún punto del intervalo [0,3]? Razonar la respuesta y enunciar los resultados teóricos que se utilicen.
- b) Calcular $\int \frac{\cos x}{1 + \sin^2 x} dx$

(146) **EBAU2010J.**

- a) Sea B una matriz cuadrada de tamaño 3x3 que verifica que $B^2 = 16I$, siendo I la matriz unidad. Calcular el determinante de B.
- b) Hallar todas las matrices X que satisfacen la ecuación $\begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \cdot X = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix}$.
- (147) **EBAU2010J.** Se consideran la recta $r \equiv \begin{cases} x y + az = 0 \\ ay z = 4 \end{cases}$ con $a \in \mathbb{R}$, y el plano $\pi \equiv x + y + z 2 = 0$.
 - a) Hallar los valores de a para los que r es paralela a π .
 - b) Para a=2, hallar la distancia de r a π .
 - c) Para a=1, hallar la distancia de r a π .
- (148) **EBAU2010J.** Se desea construir una caja cerrada de base cuadrada con una capacidad de 270 cm^3 . Para la tapa y la superficie lateral se usa un material que cuesta $5~e~/cm^2$ y para la base un material un $50\,\%$ más caro. Hallar las dimensiones de la caja para que el coste sea mínimo.
- (149) **EBAU2010J.** Hallar el valor de a para que se verifique que

$$\lim_{x \to +\infty} \left(\frac{2x+a}{2x-1} \right)^{x+5} = \lim_{x \to 0} \left(\frac{x^2 - x^3}{\operatorname{sen}^2 x} \right)$$

(150) EBAU2010J. Consideramos el sistema de ecuaciones lineales:

$$\begin{cases} 2x - y + az = 1 + a \\ x - ay + z = 1 \\ x + y + 3z = a \end{cases}$$

- a) Discutir el sistema para los distintos valores del parámetro a.
- b) Resolver el sistema para a=1.

- (151) **EBAU2010J.** Dados el punto P(1, 1, -1), la recta $r \equiv x = \frac{y+6}{4} = z-3$ y el plano $\pi \equiv 6x + 6z 12 = 0$, se pide:
 - a) Hallar el punto simétrico de P respecto del plano π .
 - b) Hallar los puntos Q de r que distan de $\frac{1}{\sqrt{2}}$ unidades de longitud de π .
- (152) **EBAU2010S.** Dada la función $f(x) = \frac{(x+3)^2}{e^x}$, se pide determinar:
 - a) El dominio, los puntos de corte con los ejes y las asíntotas.
 - b) Los intervalos de crecimiento y decrecimiento, y los extremos relativos.
 - c) La gráfica de f.
- (153) **EBAU2010S.** Calcula $\int_{1}^{e} \frac{1 + \ln(x^{3}) + (\ln x)^{2}}{x(1 + \ln x)} dx.$
- (154) **EBAU2010S.** Hallar la ecuación general del plano que pasa por el punto A(1,0,-1), es perpendicular al plano $\pi \equiv x-y+2z+1=0$ y es paralelo a la recta $r \equiv \begin{cases} z = 0 \\ x-2y = 0 \end{cases}$
- (155) EBAU2010S.
 - a) Sea A una matriz cuadrada tal que $A^2 3A = -2I$ (siendo I la matriz identidad). Probar que A admite inversa y utilizar la igualdad para expresar A^{-1} en función de A.
 - b) Sea $B=\begin{bmatrix}1&2&m\\2&0&1\\m&1&2\end{bmatrix}$ la matriz de coeficientes de un sistema lineal. Hallar razonadamente los valores de m para los que el sistema es compatible determinado.
- (156) **EBAU2010S.** De $f: \mathbb{R} \to \mathbb{R}$ se sabe que $f''(x) = x^2 + 2x + 2$ y que su gráfica tiene tangente horizontal en el punto P(1,2). Hallar la expresión de f.
- (157) EBAU2010S.
 - a) Sean $f(x) = \frac{x |x|}{2}$ y $g(x) = \begin{cases} 3x & \text{si } x \le 0 \\ x^2 & \text{si } x > 0 \end{cases}$ Hallar g(f(x)).
 - b) Calcular $\int (x+3)e^{x+2}dx$.
- (158) **EBAU2010S.**
 - a) Determinar las coordenadas del punto simétrico de A(-2,1,6) respecto de la recta

$$r\equiv\frac{x+1}{1}=\frac{y-3}{2}=\frac{z+1}{1}$$

b) Hallar la distancia de A a r.

(159) **EBAU2010S.** Sean las matrices
$$A = \begin{bmatrix} 3 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 y $B = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$.

- a) Calcular A^{-1}
- b) Resolver la ecuación matricial AX + 2AB = B
- (160) **EBAU2011J.** Calcular el área de la región finita y limitada por la gráfica de la función $f(x) = x^3 x + 1$ y la recta tangente a la gráfica de f en el punto de abcisa x = 1.

(161) EBAU2011J.

a) Estudiar si la función $f:[0,2]\to\mathbb{R}$ dada por

$$\begin{cases} \sqrt{x} & \text{si } 0 \le x \le 1 \\ -\frac{3}{2}x^2 + \frac{7}{2}x - 1 & \text{si } 1 < x \le 2 \end{cases}$$

verifica la hipótesis del teorema de Rolle. Enunciar dicho teorema.

b) Calcular
$$\lim_{x \to 0} \frac{\cos(2x) - e^{-x} - x}{x \sin x}$$

(162) EBAU2011J.

- a) Calcular el rango de la matriz $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$
- b) Si B es una matriz cuadrada de dimensión 3x3 cuyo determinante vale 4, calcula el determinante de 5B y el de B^2 .

(163) **EBAU2011J.**

- a) Determinar la posición relativa de la recta $r \equiv \left\{ \begin{array}{ll} y-x & =1 \\ z-2x & =0 \end{array} \right.$ y el plano $\pi \equiv x-y=0$
- b) Hallar el plano perpendicular a π que contiene a r.

(164) **EBAU2011J.** Sea
$$f(x) = \frac{x^2 - 3x + 3}{x - 1}$$

- a) Determinar los intervalos de crecimiento y decrecimiento, extremos relativos, intervalos de concavidad y convexidad y sus asíntotas.
- b) Esbozar su gráfica.

(165) **EBAU2011J.**

a) Hallar el valor de los parámetros reales a y b para los que la función

$$f(x) = \begin{cases} \frac{\sin x - ax}{x^2} & \text{si } x > 0\\ x^2 + b & \text{si } x \le 0 \end{cases}$$

es continua en \mathbb{R} .

- b) Calcular $\int \frac{\ln x}{x^2} dx$.
- (166) **EBAU2011J.** Discutir, y resolver cuando sea posible, el sistema de ecuaciones lineales según los valores del parámetro m:

$$\begin{cases} x+y+z &= 1\\ x-y-z &= 0\\ 3x+my+z &= m+1 \end{cases}$$

(167) EBAU2011J.

- a) Hallar la recta r que pasa por el punto A(1,-1,0), está contenida en el plano $\pi \equiv x+y=0$, y corta a la recta s:x=y=z.
- b) Hallar la distancia del punto B(2, -2, 2) a la recta s.
- (168) **EBAU2011S.** Hallar la ecuación de la recta que pasa por el punto (1,2) y determina en el primer cuadrante con los ejes coordenados un triángulo de área mínima. Calcular dicha área.

(169) **EBAU2011S**.

- a) Estudiar la continuidad y derivabilidad de la función f(x) = |x-1| en el intervalo [-2,2]. Calcular la función derivada de f(x) en ese intervalo.
- b) Calcular el área del recinto delimitado en el primer cuadrante, por la gráfica de la función $y = \ln x$ y las rectas y = 0, y = 1 y x = 0.

(170) EBAU2011S.

- a) Averiguar para qué valores de m la matriz $A = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 1 & -m \\ 0 & m & -2 \end{bmatrix}$ no tiene inversa.
- b) Calcula la matriz inversa de A para m=0.
- c) Sabemos que el determinante de una matriz cuadrada A vale -1 y que el determinante de la matriz 2A vale -16 ¿Cuál es el orden de la matriz A?
- (171) **EBAU2011S.** Sea la recta $r \equiv \begin{cases} x+y = 1 \\ my+z = 0 \end{cases}$ y el plano $\pi \equiv x+(m+1)y+mz=m+1$. Estudiar la posición relativa de la recta y el plano según los valores de m.

- (172) **EBAU2011S.** Dada la función $y = \frac{\ln x}{x}$, determinar su dominio de definición, sus asíntotas, extremos relativos y puntos de inflexión. Hacer un esbozo de su representación gráfica.
- (173) **EBAU2011S.** Hallar el valor de m para que el área delimitada, en el primer cuadrante, por la función $y=4x^3$ y la recta y=mx sea de 9 unidades cuadradas.
- (174) **EBAU2011S.** Discutir según los valores de m y resolver cuando sea posible, el sistema de ecuaciones lineales $\begin{cases} mx + y = 2 \\ x + my = m \\ x + y = 2 \end{cases}$
- (175) **EBAU2011S.** Calcular un vector unitario y ortogonal a los vectores v = (1, 2, 0) y w = (-1, 0, 1).
- (176) **EBAU2012J.** Sea $f(t) = \frac{1}{1 + e^t}$.
 - a) Calcular $\int f(t)dt$
 - b) Sea $g(x) = \int_0^x f(t)(d)t$. Calcular $\lim_{x \to 0} \frac{g(x)}{x}$.
- (177) **EBAU2012J.** Dada la función $f(x) = \frac{ae^{2x}}{1+x}$, se pide:
 - a) Hallar a para que la pendiente de la recta tangente a la función en x=0 valga 2.
 - b) Para a=1, estudiar el crecimiento, decrecimiento y extremos relativos.
 - c) Para a = 1, hallar sus asíntotas.
- (178) **EBAU2012J.** Se considera el sistema de ecuaciones $\begin{cases} ax + y + z &= (a 1)(a + 2) \\ x + ay + z &= (a 1)^2(a + 2) \\ x + y + az &= (a 1)^3(a + 2) \end{cases}$
 - a) Discutir el sistema según los valores del parámetro a.
 - b) Resolver el sistema para a=1.
 - c) Resolver el sistema para a = -2.
- (179) **EBAU2012J.** Se consideran las rectas: $r \equiv \frac{x}{1} = \frac{y-1}{-2} = \frac{z-3}{2}$; $s \equiv \frac{x-2}{3} = \frac{y}{1} = \frac{z+1}{-1}$.
 - a) Justificar razonadamente que ambas rectas se cruzan.
 - $b)\ \ {\rm Hallar}$ la perpendicular común y que corta a las dos rectas.
- (180) **EBAU2012J.**

a) Calcular
$$\int \frac{1}{x^2 + x + 3} dx$$

- b) Calcular los valores del parámetro a para que las tangentes a la gráfica de la función $f(x) = ax^3 + 2x^2 + 3$ en los puntos de abcisas x = 1 y x = -1 sean perpendiculares.
- (181) **EBAU2012J.** Se considera la función $f(x) = e^x + \ln x$, $x \in (0, \infty)$ donde $\ln n$ denota el logaritmo neperiano.
 - a) Estudiar la monotonía y las asíntotas de f(x).
 - b) Demostrar que la ecuación $x^2e^x-1=0$ tiene una única solución c en el intervalo [0,1].
 - c) Deducir que f presenta un punto de inflexión en c. Esbozar la gráfica de f.
- (182) **EBAU2012J.** Sea M una matriz cuadrada que cumple la ecuación $M^2 2M = 3I$, donde I denota la matriz identidad.
 - a) Estudiar si existe la matriz inversa de M. En caso afirmativo expresar M^{-1} en términos de M e I.
 - b) Hallar todas las matrices M de la forma $\begin{bmatrix} a & b \\ b & a \end{bmatrix}$ que cumplen la ecuación $M^2 2M = 3I$.
- (183) **EBAU2012J.** Un cuadrado tiene dos vértices consecutivos en los puntos P(2,1,3) y Q(1,3,1); los otros dos sobre una recta r que pasa por el punto R(-4,7,-6).
 - a) Calcular la ecuación de la recta r.
 - b) Calcular la ecuación del plano que contiene al cuadrado.
 - c) Hallar las coordenadas de uno de los otros vértices.
- (184) **EBAU2012S.** Sea la función $f(x) = (2x^2 + 3)e^x$.
 - a) Estudiar asíntotas, crecimiento, decrecimiento, extremos relativos, concavidad, convexidad y puntos de inflexión.
 - b) Esbozar su gráfica.
- (185) **EBAU2012S.**
 - a) Calcular $\int \frac{\sin(2x)}{3 + \sin^2 x} dx$
 - b) Calcular $\lim_{x \to 0} \frac{\ln(1+x)}{x \operatorname{sen} x}$
- (186) **EBAU2012S.** Se considera el sistema $\begin{cases} x+ay-z &= 2\\ 2x+y+az &= 0\\ x+y-z &= a+1 \end{cases}$, donde a es un parámetro real. Se pide:

- a) Discutir el sistema en función del valor de a.
- b) Hallar la solución del sistema para a = 1, si procede.

(187) **EBAU2012S.** Dados el punto
$$A(2,1,1)$$
 y las rectas $r\equiv x=\frac{y+2}{2}=z-1$, y $s\equiv \left\{ \begin{array}{ll} x+y&=0\\ x+z&=2 \end{array} \right.$, se pide:

- a) Hallar la ecuación de la recta que pasa por A y corta a r y s.
- b) Hallar la ecuación del plano perpendicular a r que pasa por A.

(188) **EBAU2012S.**

- a) Determinar en qué puntos de la gráfica de la función $y = x^3 6x^2 + 4x + 8$ la recta tangente a la misma es paralela a la recta y = 4x + 7.
- b) Hallar el área de la región comprendida entre las rectas x=1, x=4 y que está limitada por dichas rectas, la gráfica de la función $f(x)=|x^2-4|$ y el eje OX.

(189) EBAU2012S.

- a) Determinar los extremos absolutos de la función $f(x) = x^2 4x + 4$ en el intervalo [1, 4].
- b) Aplicando la definición, estudiar la continuidad y derivabilidad de la función $f \text{ dada por } f(x) = \begin{cases} x x^2 & \text{si } 0 \leq x \leq 1 \\ \frac{\ln^2 x}{x 1} & \text{si } 1 < x \leq 2 \end{cases} \text{ en el punto } x = 1, \text{ donde ln denota el logaritmo neperiano.}$

(190) EBAU2012S.

- a) Determinar, en función del valor del parámetro real a, el rango de la matriz $A = \begin{bmatrix} 1 & a & -1 \\ 1 & 0 & -1 \\ 3 & a & a \end{bmatrix}$
- b) Sea C una matriz 2x2 de columnas C_1 y C_2 y de determinante 5, y sea B una matriz 2x2 de determinante 2. Si D es la matriz de columnas $4C_2$ y $C_1 C_2$, calcular el determinante de la matriz BD^{-1} .

(191) **EBAU2012S.** Sea
$$s$$
 la recta de ecuaciones paramétricas
$$\begin{cases} x = 3 + 2t \\ y = -1 - t \\ z = 1 \end{cases}$$

- a) Hallar la ecuación de la recta r que pasa por el punto P(1,0,5) y corta perpendicularmente a la recta s.
- b) Hallar la ecuación del plano que contiene a r y a s.

(192) **EBAU2013J.** Sean las matrices
$$A = \begin{bmatrix} 2 \\ 1 \\ a \end{bmatrix}$$
, $B = \begin{bmatrix} 3 \\ -1 \\ -4 \end{bmatrix}$ y $C = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$.

- a) Calcular, cuando sea posible, las matrices $C \cdot B^t$, $B^t \cdot C$, $B \cdot C$.
- b) Hallar a para que el sistema $x \cdot A + y \cdot B = 4 \cdot C$ de tres ecuaciones y dos incógnitas x e y, sea compatible determinado y resolverlo para ese valor de a.
- (193) **EBAU2013J.** Sean los puntos A(1, 2, -1), P(0, 0, 5), Q(1, 0, 4) y R(0, 1, 6).
 - a) Hallar la ecuación de la recta que pasa por el punto A, es paralela al plano que pasa por los puntos P, Q y R, y tal que la primera componente de su vector director es el doble que la segunda.
 - b) Hallar la distancia del punto A al plano que pasa por P, Q y R.
- (194) **EBAU2013J.** Sea la función $f(x) = \begin{cases} a\sqrt{x} + bx & \text{si } 0 \le x \le 1 \\ c \ln x & \text{si } 1 < x \end{cases}$. Hallar a, b y c sabiendo que f(x) es continua en $(0, \infty)$, la recta tangente a f(x) en el punto de abcisa $x = \frac{1}{16}$ es paralela a la recta y = -4x + 3, y se cumple que $\int_1^e f(x) \mathrm{d}x = 2$.
- (195) EBAU2013J.
 - a) Estudiar el crecimiento de la función $f(x) = x^3 + 3x^2 3$.
 - b) Probar que la ecuación $x^3 + 3x^2 3 = 0$ tiene exactamente tres soluciones reales.
- (196) **EBAU2013J.** Sea la matriz $A = \begin{bmatrix} a & -2 & 0 \\ 0 & -2 & 0 \\ 0 & 1 & a \end{bmatrix}$
 - a) ¿Para qué valores de a la matriz A es inversible?
 - b) Estudiar el rango según los valores de a.
 - c) Hallar a para que se cumpla $A^{-1} = \frac{1}{4} \cdot A$
- (197) **EBAU2013J.** Sean los puntos P(1, 4, -1), Q(0, 3, -2) y la recta $r \equiv \begin{cases} x = 1 \\ y z = 4 \end{cases}$
 - a) Hallar la ecuación del plano que pasa por P, por un punto R de la recta r y es perpendicular a la recta que pasa por Q y por R.
 - b) Hallar el ángulo que forman la recta r y el plano $\pi \equiv x y 3 = 0$.
- (198) **EBAU2013J.** Sea la función $f(x) = \frac{x-2}{x+2}$.
 - a) Calcular sus asíntotas y estudiar su crecimiento y decrecimiento.
 - b) Dibujar el recinto comprendido entre la recta y=1, la gráfica de la función f(x), el eje OY y la recta x=2; calcular el área de dicho recinto.

- (199) **EBAU2013J.** Determinar, de entre los triángulos isósceles de perímetro 6 metros, el que tiene área máxima.
- (200) EBAU2013S.
 - a) Discutir el sistema de ecuaciones lineales según los valores del parámetro m:

$$\begin{cases} 3x - y + mz = 0 \\ x + y = m \\ mx - 3y + mz = -2m \end{cases}$$

- b) Resolverlo para m = 0.
- (201) **EBAU2013S.** Sean el plano $\pi \equiv x + y + z = 0$, la recta $r \equiv x = y = z$ y el punto A(3,2,1).
 - a) Hallar la recta que pasa por A, es paralela a π y corta a r.
 - b) Hallar los puntos de r que equidistan de A y de π .
- (202) **EBAU2013S.** Sea $f(x) = (x+1)e^{-x}$. Determinar los intervalos de crecimiento y decrecimiento, extremos relativos, intervalos de concavidad y convexidad, puntos de inflexión y asíntotas. Esbozar su gráfica.
- (203) EBAU2013S.

a) Hallar
$$\lim_{x \to +\infty} \frac{x \ln(x+1)}{x^2+1}$$

b) Calcular
$$\int \frac{\sqrt{x+1}+1}{x+1} dx$$

- (204) **EBAU2013S.** Sea la matriz $M = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -1 & -2 & -2 \end{bmatrix}$.
 - a) Calcular M^{-1} .
 - b) Calcular la matriz X que cumple $X \cdot M + M = 2M^2$.
- (205) **EBAU2013S.** Sean las rectas $r \equiv x = -y = z 1$ y $s \equiv x 2 = y = z m$.
 - a) Determinar m para que las rectas sean coplanarias.
 - b) Para m=2, calcular la distancia entre las rectas.
- (206) EBAU2013S.
 - $a)\,$ Enunciar el teorema del valor medio de Lagrange. Dar su interpretación geométrica.

b) Estudiar la continuidad de la función

$$f(x) = \begin{cases} e^{1/x} & \text{si } x < 0\\ k & \text{si } x = 0\\ \frac{1 - \cos x}{\sin x} & \text{si } x > 0 \end{cases}$$

en el intervalo $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, según los valores de k.

- (207) EBAU2013S.
 - a) Determinar las asíntotas horizontales y verticales de la función $f(x) = \frac{1}{x^2 x 2}$.
 - b) Calcular $\int \frac{1}{x^2 x 2} dx$.
- (208) **EBAU2014J.** Discutir, y resolver cuando sea posible, el sistema de ecuaciones lineales según los valores del parámetro m:

$$\begin{cases} mx + y = 1\\ x + my = m\\ 2mx + 2y = m + 1 \end{cases}$$

- (209) **EBAU2014J.** Sea π el plano que pasa por los puntos A(1, -1, 1), B(2, 3, 2), C(3, 1, 0) y r la recta dada por $r \equiv \frac{x-7}{2} = \frac{y+6}{-1} = \frac{z+3}{2}$.
 - a) Calcular el ángulo que forman la recta r y el plano π .
 - b) Calcular los puntos de r que distan 6 unidades del plano π .
- (210) **EBAU2014J.** Hallar la función polinómica de grado 3 sabiendo que su gráfica pasa por el punto P(1,0), que tiene por tangente en el punto de abcisa x=0 la recta de ecuación y=2x+1, y que su integral entre 0 y 1 vale 3.
- (211) **EBAU2014J.** Sea la función $f(x) = e^{-x^2}$. Calcular sus intervalos de crecimiento y decrecimiento, extremos relativos, puntos de inflexión y asíntotas. Esbozar su gráfica.
- (212) **EBAU2014J.** Sea la matriz $A = \begin{bmatrix} a & a+1 & a+2 \\ a & a+3 & a+4 \\ a & a+5 & a+6 \end{bmatrix}$.
 - a) Discutir su rango en función de los valores de a.
 - b) Para a=1, resolver la ecuación matricial $A^tX=\begin{bmatrix}0\\0\\0\end{bmatrix}$, siendo A^t la matriz traspuesta de A.

- (213) **EBAU2014J.** Calcular la recta contenida en el plano $\pi_1 \equiv x + y + z = 3$, paralela al plano $\pi_2 \equiv x = 0$, y que pasa por el punto simétrico de B(-1, 1, 1) respecto de π_2
- (214) **EBAU2014J.** Sea la función $f(x) = +2\sqrt{x}$.
 - a) Hallar su dominio y sus intervalos de crecimiento y decrecimiento.
 - b) Calcular el punto de la gráfica de f(x) más cercano al punto (4,0).
- (215) **EBAU2014J.** Sea la función $f(x) = \frac{e^x}{(1+e^x)^2}$.
 - a) Calcular un punto de su gráfica tal que la recta tangente en dicho punto sea paralela al eje OX. Escribe la ecuación de la recta tangente.
 - b) Calcular el área limitada por la gráfica de la función, el eje OX y las rectas x=0 y $x=\ln 5$.
- (216) EBAU2014S.
 - a) Resolver la siguiente ecuación matricial $X \cdot A = B C$, siendo $A = \begin{bmatrix} 5 & 2 \\ 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 \\ 3 & -2 \end{bmatrix}$ y $C = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$.
 - b) Sean F_1 , F_2 y F_3 las filas de una matriz cuadrada de orden 3 cuyo determinante vale 5. Calcular razonadamente el valor del determinante de la matriz cuyas filas son respectivamente $3F_1 F_3$, F_2 , y $2F_3$.
- (217) **EBAU2014S.** Sea el punto A(1,1,3) y la recta de ecuación $\begin{cases} x-y+2 &= 0 \\ z &= 2 \end{cases} .$
 - a) Calcular el plano perpendicular a la recta r que pase por A.
 - b) Calcular la distancia del punto Aa la recta r.
- (218) **EBAU2014S.** Sea la función $f(x) = x^2 e x$. Determinar sus intervalos de crecimiento y decrecimiento, extremos relativos, intervalos de concavidad y convexidad, puntos de inflexión y asíntotas. Esbozar su gráfica.
- (219) **EBAU2014S.**
 - a) Hallar el punto en el que la recta tangente a la gráfica de la función $f(x) = x^2 x + 4$ es paralela a la recta de ecuación y = 5x 7.
 - b) Calcular el área delimitada por la parábola de ecuación $y=2x^2$ y la recta y=2x+4.
- (220) **EBAU2014S.** Sea el sistema de ecuaciones lineales $\begin{cases} mx y = 1 \\ -x + my = 1 2m \end{cases}$
 - a) Discutir el sistema según los valores de m.

b) Hallar los valores de m para los que el sistema tenga alguna solución en la que x=2.

(221) EBAU2014S.

- a) Dados el punto A(3,5,1), la recta $r \equiv \frac{x-1}{2} = y+2 = z+1$ y el plano $\pi \equiv 3x-2y+z+5=0$, determinar el punto B de π tal que la recta AB sea paralela a la recta r.
- b) Hallar las coordenadas de un vector de módulo 1 que sea perpendicular a los vectores \overrightarrow{PQ} y \overrightarrow{PR} , siendo P(1,3,-1), Q(2,0,1) y R(-1,1,0).
- (222) **EBAU2014S.** Se desea construir un depósito de chapa (en forma de prisma recto, abierto y de base cuadrada) con una capacidad de 32.000 litros. ¿Cuáles han de ser las dimensiones del depósito para que se precise la menor cantidad de chapa posible en su construcción?

(223) EBAU2014S.

- a) Enunciar e interpretar geométricamente el Teorema de Rolle.
- b) Hallar la primitiva de $f(x) = x^2 \ln x$ cuya gráfica pasa por el punto (1,2).

(224) **EBAU2015J.** Dada la matriz
$$A = \begin{bmatrix} m+2 & 0 & 0 \\ -3 & m+1 & 1 \\ 1 & 0 & m-1 \end{bmatrix}$$
, se pide:

- a) Hallar los valores de m para que la matriz A^{10} tengan inversa.
- b) Para m=0, calcular, si es posible, la matriz inversa de A.

(225) EBAU2015J.

- a) Calcular la recta que corta perpendicularmente al eje OZ y que pasa por el punto P = (1, 2, 3).
- b) Estudiar, en función del parámetro a, la posición relativa de la recta $r\equiv\begin{cases}x=0\\y=0\end{cases}$ y el plano $\pi\equiv x+y+az=1.$
- (226) **EBAU2015J.** Determinar los vértices del rectángulo de área máxima que tiene lados paralelos a los ejes de coordenadas y vértices en el borde del recinto delimitado por las gráficas de las funciones $f(x) = x^2$ y $g(x) = 2 x^2$.

(227) EBAU2015J.

- a) Sea g(x) una función continua y derivable en toda la recta real tal que g(0) = 0 y g(2) = 2. Probar que existe algún punto c del intervalo (0, 2) tal que g'(c) = 1.
- b) Hallar la función f(x) que cumple $f'(x) = x \ln(x^2 + 1)$ y f(0) = 1.

(228) EBAU2015J. Dado el sistema de ecuaciones lineales

$$\begin{cases} x + my = -1 \\ (1-2m)x - y = m \end{cases}$$

se pide:

- a) Discutir el sistema según los valores del parámetro m.
- b) Resolver el sistema en los casos en que la solución no sea única.
- c) Calcular los valores de m para que x = -3, y = 2 sea solución.

(229) EBAU2015J.

- a) ¿Puede haber dos vectores \vec{u} y \vec{v} de \mathbb{R}^3 tales que $\vec{u} \cdot \vec{v} = -3$, $|\vec{u}| = 1$ y $|\vec{v}| = 2$?
- b) Hallar el valor de a para qu
 exista una recta que pase por el punto P(1+a,1-a,a), corte a la recta $r\equiv \left\{ \begin{array}{cc} x+y&=2\\ z&=1 \end{array} \right.$ y sea paralela a la recta $s\equiv \left\{ \begin{array}{cc} x+z&=0\\ y&=0 \end{array} \right.$
- (230) **EBAU2015J.** Dada la función $f(x) = \frac{x}{\ln x}$, determinar su dominio, asíntotas, intervalos de crecimiento y decrecimiento y extremos relativos. Esbozar su gráfica.
- (231) **EBAU2015J**.
 - a) Calcular $\lim_{x\to 0} \left(\frac{1}{x} \frac{1}{\ln(1+x)}\right)$.
 - b) Calcular el área del recinto delimitado por las gráficas de las funciones $f(x)=\frac{1}{x},\ g(x)=\frac{1}{x^2}$ y la recta x=e.
- (232) EBAU2015S. Consideremos el sistema

$$\begin{cases} x + 2y + 3z = 4 \\ (a+3)y = 0 \\ (a+2)z = 1 \end{cases}$$

- a) Discutir el sistema según los valores del parámetro a.
- b) Resolverlo cuando sea posible.
- (233) **EBAU2015S.** Sean las rectas $r \equiv x = y = z$ y $s \equiv \begin{cases} x y = 1 \\ x 3z = 1 \end{cases}$
 - a) Comprobar que las rectas r y s se cruzan.
 - b) Calcular la recta que corta perpendicularmente a las rectas r y s.

(234) **EBAU2015S.** Consideremos la función $f(x) = \frac{x^2 - 1}{x^2 + 1}$. Calcular dominio, asíntotas, intervalos de crecimiento y decrecimiento, extremos relativos y puntos de inflexión.

(235) EBAU2015S.

- a) Enunciar e interpretar geométricamente el Teorema de Rolle.
- b) Hallar la primitiva de la función $f(x) = x^2 \ln x$ cuya gráfica pasa por el punto (1,0).
- (236) **EBAU2015S.** Consideremos la matriz $B = \begin{bmatrix} a(a-4) & a-4 \\ a-4 & a(a-4) \end{bmatrix}$
 - a) Calcular el rango de M en función del parámetro a.
 - b) Para a=1, resolver la ecuación $M\begin{bmatrix} x \\ y \end{bmatrix} = -6\begin{bmatrix} x \\ y \end{bmatrix}$

(237) EBAU2015S.

- a) Determinar la ecuación del plano que es perpendicular al segmento de extremos A=(0,-1,3) y B=(2,-1,1) y que pasa por el punto medio de dicho segmento.
- b) Hallar el área del triángulo cuyos vértices son los cortes del plano 2x+y+2z-2=0 con los ejes coordenados.
- (238) **EBAU2015S.** Consideremos la función definida a trozos $f(x) = \begin{cases} ax^2 + bx + c, & \text{si } x \leq 2 \\ \ln(x-1), & \text{si } x > 2 \end{cases}$ Hallar los valores de a, b y c para que f(x) sea continua en toda la recta real y tenga un extremo relativo en el punto (1,-1).

(239) EBAU2015S.

- a) Calcular $\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}}$
- b) Calcular el área de la región comprendida entre las gráficas de las funciones $\cos x$ y sen x y las rectas x=0 y $x=\frac{\pi}{2}$.

(240) EBAU2016J.

- a) Discutir para qué valores de $a\in\mathbb{R}$ la matriz $M=\begin{bmatrix} -5 & a\\ 10 & -a-1 \end{bmatrix}$ tiene inversa. Calcular M^{-1} para a=0.
- b) Si B es una matriz cuadrad de orden 3 y |B| = -5, calcular $|2B^t|$, donde B^t denota la matriz traspuesta de B.

(241) EBAU2016J.

a) Calcular un vector de módulo 4 que tenga la misma dirección, pero distinto sentido, que el vector $\vec{v} = (2, 1, -2)$.

b) Calcular un punto de la recta $r \equiv \frac{x-1}{-1} = \frac{y+2}{1} = \frac{z-3}{-2}$ cuya distancia al punto A = (-1,2,0) sea mínima.

(242) EBAU2016J.

- a) Calcular a, b y c para que la función $f(x) = x^3 + ax^2 + bx + c$ tenga pendiente nula en el punto (1,1) de su gráfica y, sin embargo, no tenga un extremo relativo en dicho punto.
- b) Probar que la ecuación $x^5 + x 1 = 0$ tiene una única solución real positiva.

(243) EBAU2016J.

- a) Hallar $\lim_{x\to 0^+} \left(\frac{1}{x} \frac{1}{e^x 1}\right)$
- b) Calcular el área de la región delimitada por la gráfica de la función $f(x) = 1 x^2$ y las rectas tangentes a dicha gráfica en los puntos de abcisa x = 1 y x = -1

(244) EBAU2016J.

a) Discutir, según el valor del parámetro m, el sistema de ecuaciones lineales

$$\begin{cases} x + y + mz = 2 \\ x + my + z = 2m \\ x + y - mz = 0 \end{cases}$$

- b) Resolverlo para m=1.
- (245) **EBAU2016J.** Consideremos las rectas $r \equiv \frac{x}{2} = y = \frac{z-1}{2}$ y $s \equiv \frac{x}{2} = \frac{y-1}{3} = z$.
 - a) Comprobar que las rectas r y s se cruzan.
 - b) Hallar la ecuación de la recta que pasa por el origen de coordenadas y cort a las rectas r y s.
- (246) **EBAU2016J.** Tenemos un cartón cuadrado de 6 cm de lado y queremos construir con él una caja sin tapa. Para ello recortamos un cuadrado de x cm de lado en cada vértice del cartón. Calcular x para que el volumen de la caja sea máximo.

(247) EBAU2016J.

- a) Calcular $\lim_{x\to 0^+} \left(1+x^2\right)^{\frac{1}{x}}$
- b) Calcular el área de la región delimitada por la gráfica de la función $f(x) = \ln x$, el eje OX y la recta x = 3.
- (248) **EBAU2017J.** Sean $A = \begin{bmatrix} 1 & -4 \\ -1 & 3 \end{bmatrix}$ y $B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$.
 - a) Estudiar si A y B tienen inversa y calcularla cuando sea posible.

- b) Determinar X tal que AX = 2B + I siendo $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- (249) **EBAU2017J.** Determinar la recta r que es paralela al plano $\pi \equiv x y z = 0$ y que corta perpendicularmente a la recta $s \equiv \frac{x-1}{1} = \frac{y+3}{2} = \frac{z-2}{-4}$ en el punto P(2,-1,-2).

(250) EBAU2017J.

- a) Enunciar el teorema de Bolzano e interpretarlo geométricamente.
- b) Encontrar un intervalo en el que $p(x) = x^6 + x^4 1$ tenga al menos una raíz.

(251) **EBAU2017J.**

- a) Calcular la recta tangente a la curva $f(x) = 4e^{x-1}$ en el punto (1, f(1)).
- b) Calcular el área de la región delimitada en el primer cuadrante por la gráfica de la función $g(x) = x^3$ y la recta y = 4x.
- (252) **EBAU2017J.** Se lanzan dos dados (con forma cúbica) al aire. ¿Cuál es la probabilidad de que la suma de los puntos sea 8?
- (253) EBAU2017J.
 - a) Discutir el siguiente sistema de ecuaciones según los valores del párametro λ :

$$\begin{cases} x + \lambda y + \lambda z = 1 \\ x + y + z = 1 \\ x + 2y + 4z = 2 \end{cases}$$

- b) Resolverlo para $\lambda = 1$.
- (254) **EBAU2017J.** Dado el plano $\pi \equiv 3x + y + z 2 = 0$ y los puntos P(0,1,1), Q(2,-1,-3) que pertenecen al plano π , determinar la recta del plano π que pasa por el punto medio entre P y Q y es perpendicular a la recta que une esos puntos.
- (255) **EBAU2017J.**
 - a) Dado el polinomio $p(x) = \frac{x^3}{3} \frac{3x^2}{2} + 2x + C$, hallar C para que el valor de p(x) en su mínimo relativo sea 1.
 - b) Calcular $\lim_{x\to 0+} x \ln x$.

(256) **EBAU2017J.** Sea
$$f(x) = \begin{cases} (x-1)^2 & \text{si } x \le 1 \\ a + \ln x & \text{si } x > 1 \end{cases}$$

- a) Encontrar a para que la función sea continua.
- b) Hallar el área de la región delimitada por la gráfica de f(x) y las rectas x=1, y=1.

- (257) **EBAU2017J.** La probabilidad de obtener cara al lanzar una moneda es $\frac{1}{2}$. ¿Cuál es la probabilidad de sacar 3 caras en tres lanzamientos?
- (258) EBAU2017S.
 - a) Sea $M=\begin{bmatrix}1&2\\3&a\end{bmatrix}.$ Estudiar, en funció
in del parámetro a, cuando M posee inversa.
 - b) Siendo $A = \begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix}$, calcular A^2 y A^{-1} .

(259) EBAU2017S.

- a) Consideremos los puntos P(-1,-4,0), Q(0,1,3), R(1,0,3). Hallar el plano π que contiene a los puntos P, Q y R.
- b) Calcular a para que el punto S(3,a,2), pertenezca al plano $\pi \equiv x+y-2z+5=0.$
- (260) EBAU2017S.
 - a) Dada la función $f(x)=\begin{cases} x, & \text{si } x<0\\ x^2+ax, & \text{si } x\geq 0 \end{cases}$, calcular a para que f sea derivable en x=0.
 - b) Hallar a, b, y c para que la función $f(x) = ax^2 + b \operatorname{sen} x + c$ verifique f(0) = 0, f'(0) = 1 y f''(0) = 2.
- (261) **EBAU2017S.** Calcular $\lim_{x\to 0} \frac{e^x e^{x^2}}{x}$.
- (262) **EBAU2017S.** Hallar el área de la región del plano comprendida entre las gráficas de las funciones $f(x) = -x^2$, $g(x) = x^2 2$.
- (263) **EBAU2017S.** De una bolsa con 2 bolas blancas, 2 negras y 2 amarillas se extraen dos sin devolución (es decir, una vez extraída una bola no se vuelve a poner en la bolsa). Calcular la probabilidad de que las dos sean blancas.
- (264) EBAU2017S.
 - a) Discutir según los valores del parámetro m el sistema de ecuaciones lineales $\begin{cases} mx + y + z = 1 \\ x + y + 2z = 1 \end{cases}$
 - b) Resolverlo para m=1.

(265) EBAU2017S.

a) Calcular la ecuación de la recta que pasa por el punto P(2,3,4) y es perpendicular al plano $\pi \equiv x + y + 2z + 4 = 0$.

- b) Calcular a para que las rectas $r \equiv x 1 = y 2 = \frac{z 2}{2}$, $s \equiv \frac{x 1}{a} = \frac{y 2}{2} = \frac{z 2}{3}$ sean perpendiculares.
- (266) **EBAU2017S.** Consideremos la función $f(x) = \frac{x^2 + 1}{x^2 + 2}$. Calcular el dominio, asíntotas, intervalos de crecimiento y decrecimiento, extremos relativos. Esbozar su gráfica.
- (267) **EBAU2017S.** Calcular $\lim_{x\to 0} \frac{xe^x \sin x}{x^2}$.
- (268) **EBAU2017S.** Calcular $\int \ln x \, dx$
- (269) **EBAU2017S.** Se tiran al aire, simultáneamente, un dado (con forma cúbica) y una moneda. Teniendo en cuenta que los sucesos son independientes. ¿Cuál es la probabilidad de que en el dado salga un 5 y de que en la moneda salga cara?
- (270) EBAU2018J.
 - a) Discutir el sistema de ecuaciones lineales según los valores del parámetro λ :

$$\begin{cases} \lambda x & + z = 1 \\ x + y + \lambda z = 1 \\ x - y + z = 1 \end{cases}$$

- b) Resolverlo para $\lambda = 1$.
- (271) **EBAU2018J.** Determinar la recta s que es simétrica de $r \equiv x+2=y=z-2$, respecto del plano $\pi \equiv x-z+2=0$.
- (272) **EBAU2018J.** Dada la función $f(x) = 3x^4 + x^3 1$, determínense sus intervalos de crecimiento y decrecimiento, sus extremos relativos y el número total de puntos en los que f(x) se anula.
- (273) **EBAU2018J.** Calcular el área del recinto limitado por la gráfica de la función $f(x) = x \cos x$ y el eje de las x, cuando x pertenece al intervalo $[0, \frac{\pi}{2}]$.
- (274) EBAU2018J.
 - a) Se tira una moneda 3 veces. Calcular la probabilidad de que, sin tener en cuenta el orden, salgan una cara y dos cruces.
 - b) Una persona elige al azar, sin verlas, dos cartas de una baraja española (de 40 cartas, de las cuales 10 son de cada uno de los 4 palos: oros, copas, espadas y bastos). Calcular la probabilidad de que ninguna de las dos cartas elegidas sea de copas.
- (275) **EBAU2018J.** Dadas las matrices $A = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ y $M = \begin{bmatrix} 1 & 1 \\ a & b \end{bmatrix}$, calcúlense a y b para que se verifiquen |MA| = 2 y |M + B| = 3, donde se está usando la notación habitual (con barras verticales) para denotar al determinante de una matriz.

- (276) **EBAU2018J.** Dada la recta $r \equiv x 1 = \frac{y+1}{2} = z 1$ y el plano $\pi \equiv x y + z = 0$, se pide:
 - a) Determinar la posición relativa de r y π .
 - b) Hallar el plano paralelo a π situado a la misma distancia de r que π .
- (277) **EBAU2018J.** Dada la función $f(x) = xe^{-x}$, determínense su dominio de definición, asíntotas, intervalos de crecimiento y decrecimiento, extremos relativos, intervalos de concavidad y convexidad y puntos de inflexión. Esbócese también su gráfica.
- (278) **EBAU2018J.** Calcular $\lim_{x\to 0} \frac{e^x \cos x}{\ln(1+x)}$.
- (279) **EBAU2018J.** Calcular $\int \frac{(\ln x)^2}{x} dx$
- (280) **EBAU2018J.** La variable aleatoria IMC (índice de masa corporal, de modo abreviado) de las personas adultas de un determinado país sigue una distribución normal de media 26 y desviación típica de 6. Si tener un IMC superior a 35 significa ser obeso, encontrar la proporción de personas adultas obesas de ese país.
- (281) **EBAU2018S.** Tres números x, y, z cumplen lo siguiente:
 - \bullet El primero de ellos, x, es la suma de los otros dos.
 - \bullet El segundo, y, es la mitad del primero más el triple del tercero.
 - a) Demostrar que hay infinitos números que cumplen estas condiciones, encontrando una expresión general de la solución.
 - b) Encontrar tres números concretos que cumplan estas condiciones.
- (282) **EBAU2018S.** Dados el plano $\pi: 2x+y+z-3=0$ y la recta $r\equiv \left\{\begin{array}{ll} x+y+z&=0\\ x-y+z&=2 \end{array}\right.$
 - a) Calcular el punto de intersección del plano π y de la recta r.
 - b) Encontrar la ecuación de la recta s contenida en el plano π y que corta perpendicularmente a r.
- (283) **EBAU2018S.** Sea la función $f(x) = \frac{1}{x} + ax + b$
 - a) Encontrar a y b para que la función tenga un mínimo relativo en el punto $\left(\frac{1}{2},6\right)$.
 - b) Suponiendo que a=4 y b=2, estudia su continuidad y, en el caso de tenerlas, sus asíntotas.
- (284) **EBAU2018S.** Sea la función $f(x) = \operatorname{sen} x$

- a) Encontrar las rectas tangentes a la gráfica de la función f(x) en los puntos x=0 y $x=\pi$. Encontrar el punto en que se cortan ambas rectas tangentes.
- b) Hallar el área comprendida entre la gráfica de f(x) y las rectas de ecuaciones y=x e $y=-x+\pi$.
- (285) EBAU2018S. Se lanzan tres monedas al aire:
 - a) Halla el espacio muestral.
 - b) Halla la probabilidad de:
 - 1) Obtener más caras que cruces.
 - 2) Obtener las mismas caras que cruces.
- (286) **EBAU2018S.** Dadas las matrices $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & k \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix}$
 - a) Discutir, según los valores de k, cuándo A tiene inversa y calcularla para k=2.
 - b) Para k = 2, resolver la siguiente ecuación matricial: AX + B = AB.
- (287) **EBAU2018S.** Dados el plano $\pi \equiv ax + y z + b = 0$ y la recta $r \equiv \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-3}{1}$
 - a) Encontrar a y b para que la recta esté contenida en el plano.
 - b) ¿Existen valores a y b para que la recta sea perpendicular al plano? Razonar la posible respuesta negativa o encontrarlos en su caso.
- (288) **EBAU2018S.** De todos los rectángulos cuyo perímetro es 40 cm, encontrar el que tiene la diagonal de menor longitud.
- (289) **EBAU2018S.** Calcular $\lim_{x \to +\infty} \frac{3e^x \sin x}{e^x + x}$.
- (290) **EBAU2018S.** Encontrar el área del recinto limitado por las funciones f(x) = |x| 1 y $g(x) = 1 x^2$.
- (291) **EBAU2018S.** El diámetro del interior de un anillo se distribuye normalmente con una media de 10 cm y una desviación típica de 0'03.
 - a) ¿Cuál es la probabilidad de que un anillo tenga un diámetro mayor de 10'075?
 - b) ¿Cuál es la probabilidad de que un anillo tenga un diámetro entre 9'97 y 10'03?
- (292) **EBAU2019J.** Dado el sistema de ecuaciones: $\begin{bmatrix} 1 & 1 & m \\ 2 & 1 & 0 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ 6 \end{bmatrix}$
 - a) Estudie la existencia y uniic
dad de soluciones según los valores del parámetro m.

- b) Resuelva el sistema de ecuaciones anterior para el caso m=2.
- (293) EBAU2019J.
 - a) Calcular la ecuación del plano π que continen a la recta $r \equiv \frac{x-1}{2} = \frac{y-1}{3} = \frac{z-1}{2}$ y pasa por el punto A = (1, 2, 1).
 - b) Calcule la ecuación de la recta r que pasa por el punto B=(2,1,2) y es perpendicular a las rectas $s_1\equiv\frac{x-1}{2}=\frac{y-1}{2}=\frac{z-1}{2}$ y $s_2\equiv\frac{x-2}{-1}=\frac{y-1}{3}=\frac{z}{2}$.
- (294) **EBAU2019J.** Dada la función $f(x) = 2x^3 + 3x^2 12x$, para $x \in \mathbb{R}$.
 - a) Calcule sus máximos y mínimos relativos y sus intervalos de crecimiento y decrecimiento.
 - b) Calcule el máximo y mínimo absolutos en el intervalo [-2, 2].
- (295) **EBAU2019J.** Calcular $\lim_{x\to 0} \frac{\cos(x) 1}{x \sin x}$
- (296) **EBAU2019J.** Calcular el área encerrada por las gráficas de f(x) = 4x y de $g(x) = x^3$ en el intervalo [0, 2], probando anteriormente que en dicho intervalo $f \ge g$.
- (297) **EBAU2019J.** Las notas de Matemáticas II de 500 alumnos presentados al examen de EBAU tienen una distribución normal con media 6'5 y desviación típica 2.
 - a) Calcule la probabilidad de que un alumno haya obtenido más de 8 puntos.
 - b) ¿Cuántos alumnos obtuvieron notas menores de 5 puntos?
- (298) **EBAU2019J.**
 - a) Encontrar los valores de k para que la matriz $A=\begin{bmatrix}k-1&2&-2\\0&k-2&1\\1&0&1\end{bmatrix}$ sea invertible.
 - b) Encontrar la inversa de A para k=2.
- (299) **EBAU2019J.** Sean la recta $r \equiv \frac{x-1}{m} = \frac{y-1}{2} = \frac{z-1}{4}$ y el plano $\pi \equiv x+y+kz = 0$. Encontrar m y k para que:
 - a) La recta r sea perpendicular a π .
 - b) La recta r esté contenida en el plano $\pi.$
- (300) **EBAU2019J.** Sea el polinomio $f(x) = ax^3 + bx^2 + cx + d$ del cual sabemos que f(0) = 1, f(1) = 0 y que tiene extremos relativos en x = 0 y x = 1. Calcular a, b, c y d.

- (301) **EBAU2019J.** Sea $f(x) = \frac{2x+3}{x^2+3x+1}$. Hallar el área del recinto limitado por la gráfica de f(x), el eje OX y las rectas x=0 y x=2.
- (302) **EBAU2019J.** Calcular $\lim_{x\to 0} \frac{x \sin x}{3\cos(x) 3}$
- (303) **EBAU2019J.** En una competición de tiro olímpico hay 10 rifles, 4 con visor telescópico y 6 sin él. La probabilidad de que un tirador haga blanco con un rifle con visor telescópico es 0'95 y sin él es de 0'65.
 - a) Halla la probabilidad de hacer blanco escogiendo un rifle al azar.
 - b) Si el tirador hace blanco. ¿Es más probable que haya disparado con un rifle con visor telescópico o sin él?

(304) EBAU2019S.

a) Discutir según los valores del parámetro m el sistema de ecuaciones lineales

$$\begin{cases} x + y - z = 1 \\ 2x + y + mz = 4 \end{cases}$$

b) Resolverlo para m=1.

(305) **EBAU2019S.**

- a) Consideremos los vectores $\vec{u} = (1, 1, a)$ y $\vec{u} = (1, -1, a)$. Calcular a para que sean perpendiculares.
- b) Calcular un vector unitario perpendicular a los vectores $\vec{p} = (1, 2, 3)$ y $\vec{q} = (1, -2, -3)$.

(306) **EBAU2019S.** Dada la función
$$f(x) = \begin{cases} -x^2 - 2x, & \text{si } x < 0 \\ x^2 - 4x, & \text{si } x \ge 0 \end{cases}$$

- a) Probar que posee un máximo relativo en -1 y un mínimo relativo en 2.
- b) Probar que no posee extremo relativo en 0.

(307) **EBAU2019S.** Calcular
$$\lim_{x\to 0} \frac{\sin x}{e^x - \cos x}$$

- (308) **EBAU2019S.** Calcular a, siendo a > 1, para que el área de la región del plano comprendida entre las gráficas de las funciones f(x) = x, g(x) = ax y x = 1 sea 1.
- (309) **EBAU2019S.** La temperatura del cuerpo humano sigue una distribución normal media de 37° C y desviación típica de $0'5^{\circ}$ C.
 - a) Calcular la probabilidad de que la temperatura de una persona esté comprendida entre 36° C y 38° C.
 - b) Calcular la probabilidad de que la temperatura de una persona sea menor que $36'5^{\circ}$ C.

- (310) **EBAU2019S.** Dadas las matrices $A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$, $M = \begin{bmatrix} x & 0 \\ y & 1 \\ x y & 1 \end{bmatrix}$, y $N = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$, calcular los valores de x e y para que el producto AM sea igual a la inversa de la matriz N.
- (311) **EBAU2019S.** Hallar a y b para que los vectores (a, -1, 2) y (1, b, -2) sean perpendiculares y las dos primeras coordenadas de su producto vectorial sean iguales.
- (312) EBAU2019S.
 - a) Enunciar el teorema de Rolle.
 - b) Indicar un punto en el que la función $f(x) = 2x \sin x$ tome el valor 0, y demostrar (o bien usando el teorema del apartado previo o bien con algún otro razonamiento) que esta función sólo se anula en ese punto.
- (313) **EBAU2019S.** Determínense los valores de a y de b para los cuales la función definida por:

$$f(x) = \begin{cases} a + \cos x &, \text{ si } x \le 0\\ x^2 - 2bx + 1 &, \text{ si } x > 0 \end{cases}$$

es continua y verifica que $\int_0^1 f(x) dx = \frac{1}{3}$.

- (314) EBAU2019S. En una empresa de alquiler de vehículos con conductor:
 - Trabajan 50 conductores de menos de 45 años, de los cuales 15 hablan inglés.
 - Trabajan 30 conductores de entre 45 y 55 años, de los cuales 6 hablan inglés.
 - \bullet Trabajan 20 conductores de más de 55 años, de los cuales 3 hablan inglés.

Considerando los sucesos: A = "tener menos de 45 años", B = "tener entre 45 y 55 años", C = "tener más de 55 años" e I = "hablar inglés":

- a) Calcular P(I|A), P(I|B) y P(I|C).
- b) Si se elige al azar un conductor, y este habla inglés ¿cuál es la probabilidad de que tenga menos de 45 años?
- (315) **EBAU2020J.** Se considera el sistema de ecuaciones lineales $\begin{cases} x y + az = 0 \\ x z = 0 \\ 2x + ay 2z = 0 \end{cases}$
 - a) Estudie la existencia y número de soluciones según los valores del parámetro real a.
 - b)Resuélvalo, si es posible, para el valor del parámetro a=-1
- (316) **EBAU2020J.** Sea la matriz $\begin{bmatrix} a+1 & 1 \\ a-3 & a-3 \end{bmatrix}$

- a) Indique para qué valores de a existe la matriz inversa A^{-1} .
- b) Si a=4, $B=\begin{bmatrix}2&0\\1&1\end{bmatrix}$, $C=\begin{bmatrix}1&1\\0&2\end{bmatrix}$, encuentre la matriz X que verifica que B+XA=C.
- (317) **EBAU2020J.** Sea el plano $\pi \equiv x 2y + 2z + 1 = 0$, la recta $r \equiv \begin{cases} x y = 0 \\ z + 1 = 0 \end{cases}$ y el putno A = (1, 3, -1).

Hallar la ecuación del plano que pasa por A, es paralelo a r y es perpendicular a π .

- (318) **EBAU2020J.** Dados el punto A(1,2,4) y la recta $r \equiv \frac{x-1}{2} = \frac{y-1}{1} = \frac{z-1}{2}$,
 - a) Hallar el punto B de la recta r de forma que el \overrightarrow{AB} sea paralelo al plano $\pi \equiv x + 2z = 0$.
 - b) Hallar un vector (a, b, c) perpendicular a (1, 0, -1) y (2, 1, 0).
- (319) **EBAU2020J.** Representar gráficamente la función $f(x) = xe^x$, calculando previamente sus extremos relativos, intervalos de crecimiento y decrecimiento, concavidad y convexidad y sus asíntotas.
- (320) **EBAU2020J.** Demuestre que la ecuación $x^3 12x = -2$ tiene una solución en el intervalo [-2, 2] y pruebe además que esa solución es única.
- (321) EBAU2020J.
 - a) Calcular $\lim_{x\to 0} \frac{e^x \cos x x}{e^x + \sin x 1}$.
 - b) Calcular $\int_0^{\pi/2} (\sin x + \cos x) dx$
- (322) EBAU2020J.
 - a) Calcule los puntos de corte de las gráficas de las funciones $f(x) = \frac{2}{x}$ y g(x) = 3 x.
 - b) Sabiendo que en el intervalo [1,2] se verifica que $g(x) \ge f(x)$ calcular el área del recinto limitado por la gráfica de ambas funciones en dicho intervalo.
- (323) **EBAU2020J.** El peso de los alumnos de $2^{\mathbb{Q}}$ de bachillerato de un instituto de León, sigue una distribución normal, de media 75 kg y de desviación típica 5. Si se elige al azar un alumno, calcular la probabilidad de que:
 - a) Tenga un peso entre 70 y 80 kg.
 - b) Tenga un peso superior a 85 kg.
- (324) **EBAU2020J.** La probabilidad de que a un puerto llegue un barco de tonelaje bajo, medio o alto es 0'6, 0'3 y 0'1, respectivamente. La probabilidad de que necesite mantenimiento en el puerto es 0'25 para los barcos de bajo tonelaje, 0'4 para los de tonelaje medio y 0'6 para los de tonelaje alto.

- a) Si llega un barco a puerto, calcule la probabilidad de que necesite mantenimiento.
- b) Si un barco ha necesitado mantenimiento, calcule la probabilidad de que sea de tonelaje medio.

(325) EBAU2020S.

a) Discutir el sistema de ecuaciones lineales según los valores del parámetro λ :

$$\begin{cases} \lambda x + & = 1 \\ x + \lambda y + z = 2 \\ x + y + z = 2 \end{cases}$$

- b) Resolverlo para $\lambda = 1$.
- (326) **EBAU2020S.** Sea la matriz $A = \begin{bmatrix} 1 & 0 \\ m & n \end{bmatrix}$.
 - a) Encontrar los valores de m y n para que se verifique: $A^2 = A^t$ ($A^t \equiv \text{la traspuesta de } A$).
 - b) ¿Para qué valores de m y n la matriz A no es invertible?

(327) **EBAU2020S.** Dados el punto
$$P(2,1,1)$$
 y la recta $r \equiv \frac{x-2}{1} = \frac{y-3}{-1} = \frac{z-4}{-3}$,

- a) Hallar la recta paralela a r que pase por P.
- b) Hallar la ecuación del plano que pasa por el punto P y contiene a la recta r.

(328) EBAU2020S.

- a) Encontrar la ecuación de la recta que pasa por el punto (1,2,3) y es paralela a la recta $r\equiv \left\{ \begin{array}{ll} x-y-z-1&=0\\ x+y+z-3&=0 \end{array} \right.$
- b) Calcular el punto simétrico del (1,2,3) respecto del plano $\pi \equiv 3x+2y+z+4=0$.
- (329) **EBAU2020S.** Determinar la función $f(x) = x^3 + ax^2 + bx + c$, conociendo que tiene un punto de inflexión en x = 1 y que la recta tangente a su gráfica en el punto (-1,0) es el eje de abcisas.
- (330) **EBAU2020S.** Demostrar que la ecuación $x^4 + 3x = 1 + \operatorname{sen} x$ tiene alguna solución real en el intervalo [0, 2]. Probar que la solución es única.
- (331) EBAU2020S.

a) Calcular
$$\lim_{x \to 1} \frac{\sqrt{x^2 - x + 1} - \sqrt{2x - 1}}{1 - x}$$

b) Dada la función $f(x) = \frac{2x - e^{-x}}{x^2 + e^{-x}}$, hallar la función primitiva suya F(x) que verifique F(0) = 3.

(332) EBAU2020S.

- a) Dada la función $f(x) = \frac{\ln x}{x}$. Encontrar sus extremos relativos y los intervalos de crecimiento y decrecimiento.
- b) Dada la función $f(x) = x^2 2x$. Estudiar el signo de la función en el intervalo [1,3] y encontrar el área del recinto comprendido entre su gráfica, el eje OX y las rectas x = 1 y x = 3.
- (333) **EBAU2020S.** El consumo de azúcar en un determinado país, calculado en Kg (kilogramos) por persona y año, varía según una distribución normal de media 15 y desviación típica 5.
 - a) ¿Qué porcentaje de personas de ese país consumen menos de 10 Kg de azúcar al año?
 - b) ¿Cuál es el porcentaje de personas del país cuyo consumo anual de azúcar es superior a 25 Kg?
- (334) **EBAU2020S.** Los estudiantes, que comienzan los estudios de Medicina, en el conjunto formado por las comunidades autónomas de Andalucía, Baleares y Castilla y León, se distribuyen de la siguiente forma: un 50 % de Andalucía, un 15 % de Baleares y un 35 % provienen de Castilla y León. Los porcentajes de dichos estudiantes que no consiguen el título de Médico son los siguientes: 15 % de Andalucía, 10 % de Baleares y 5 % de Castilla y León
 - a) Calcular la probabilidad de que uno de dichos estudiantes, elegido al azar, no consiga el título de Licenciado en Medicina.
 - b) Si un alumno no consigue el título de Licenciado en Medicina, ¿es más probable que provenga de Andalucía o de Castilla y León?

(335) EBAU2021J.

a) Discutir según los valores del parámetro λ el sistema de ecuaciones lineales siguiente:

$$\begin{cases} x - y + z = 0 \\ 2x + y - z = 0 \\ x + y + \lambda z = 0 \end{cases}$$

- b) Resolverlo para $\lambda = -1$
- (336) **EBAU2021J.** Sea la matriz $A = \begin{bmatrix} n-1 & 0 \\ 1 & -1 \end{bmatrix}$
 - a) Determinar los valores de n para los que la matriz A^2 tiene inversa.

- b) Para n=2, hallar la matriz X que verifique la ecuación AX+A=2I, siendo I la matriz identidad de orden 2.
- (337) EBAU2021J.
 - a) Hallar la recta perpendicular al plano $\pi \equiv x + y + z = 1$ que pasa por el punto A = (0,0,0).
 - b) Calcular la ecuación del plano respecto del cual los puntos P=(1,1,1) y Q=(1,3,-1) son simétricos.
- (338) **EBAU2021J.** Dados la recta $r \equiv \frac{x+1}{-1} = \frac{y-2}{1} = \frac{z}{-2}$ y el punto P = (0,0,0), hallar la ecuación del plano π que contiene a r y pasa por el punto P.
- (339) **EBAU2021J.** Representar la función $f(x) = e^{(x^2)}$, determinando antes sus intervalos de crecimiento y decrecimiento, sus extremos relativos, sus intervalos de concavidad y convexidad y sus asíntotas.
- (340) **EBAU2021J.** Calcular $\lim_{x\to 0} \frac{e^x x \cos(3x)}{\sin^2(x)}$
- (341) **EBAU2021J.**
 - a) Dadas las funciones $f(x) = x^2$, $g(x) = -x^2 + 8$, hallar los valores de $x \in \mathbb{R}$ para los que $g(x) \ge f(x)$
 - b) Calcular el área limitada por las gráficas de las funciones f(x) y g(x).
- (342) **EBAU2021J.** Hallar los valores de a, b y c para los cuales el polinomio $P(x) = ax^2 + bx + c$ cumple las siguientes condiciones:
 - P(0) = 1
 - La pendiente de la recta tangente a la gráfica de P(x) en x=0 es m=1.
 - $\bullet \int_0^2 P(x)dx = 12$
- (343) **EBAU2021J.** En un club deportivo, el $55\,\%$ de los socios son hombres y el $45\,\%$ mujeres. Entre los socios, el $60\,\%$ de los hombres practica la natación, así como el $40\,\%$ de las mujeres.
 - a) Describir los sucesos y sus probabilidades, y calcular la probabilidad de que un socio elegido al azar practique la natación.
 - b) Sabiendo que una persona practica la natación, ¿cuál es la probabilidad de que sea una mujer?
- (344) **EBAU2021J.** El tiempo empleado, en minutos, para obtener la respuesta de un test para detectar cierta enfermedad sigue una distribución normal de media 20 y de desviación típica 4.
 - a) ¿En qué porcentaje de test se obtiene el resultado entre 16 y 26 minutos?

- b)¿Cuántos minutos son necesarios para garantizar que se ha obtenido la respuesta del 96'41 % de los test?
- (345) EBAU2021S.
 - a) Discutir según los valores del parámetro λ el sistema de ecuaciones lineales siguiente:

$$\begin{cases} x + y + z = 0 \\ x - \lambda y = 1 \\ 2x + \lambda z = 1 \end{cases}$$

- b) Resolverlo para $\lambda = 1$
- (346) **EBAU2021S.** Dadas las matrices $M = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$ y $N = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$, hallar la matriz P que verifica que $M^{-1}PM = N$
- (347) **EBAU2021S.** Dadas las rectas $r \equiv x = y + 1 = \frac{z 2}{2}$ y $s \equiv \begin{cases} x y + 3 = 0 \\ 2x z + 3 = 0 \end{cases}$, se pide:
 - a) Determinar la posición relativa de r y s.
 - b) Hallar la ecuación del plano que contiene a r y s.
- (348) **EBAU2021S.** Dada la recta $r \equiv x 1 = \frac{y 2}{-1} = \frac{z 1}{2}$
 - a) Calcular el plano π_1 que pasa por A=(1,2,3) y es perpendicular a la recta r.
 - b) Calcular el plano π_2 que pasa por B=(-1,1,-1) y contiene a la recta r.
- (349) **EBAU2021S.** Dada la función $f(x) = x^5 5x 1$, determínense sus intervalos de crecimiento y decrecimiento, sus extremos relativos, sus intervalos de conccavidad y convexidad y sus puntos de inflexión.
- (350) **EBAU2021S.** Calcular el valor de m > 0 para el cual se verifica que

$$\lim_{x \to 0} \frac{1 - \cos(mx)}{x^2} = 2$$

- (351) EBAU2021S.
 - a) Estudiar la continuidad de la función definida por $f(x) = \begin{cases} \frac{1-\cos x}{x} &, \text{ si } x \neq 0 \\ 0 &, \text{ si } x = 0 \end{cases}$
 - b) Calcular $\int x \ln(x^2) dx$
- (352) **EBAU2021S.** Se considera la función $f(x) = x \cos(x)$

- a) Demostrar que la ecuación f(x)=0 tiene al menos una solución en el intervalo $[0,\pi/2].$
- b) Probar que la ecuación f(x) = 0 solo puede tener una solución en el intervalo $[0, \pi/2]$, de modo que la solución del apartado anterior es la única.
- (353) **EBAU2021S.** Dentro de una caja hay bolas de varios colores que tienen todas el mismo tamaño y aspecto, siendo algunas de madera y las otras de metacrilato. Concretamente:
 - \bullet El 48 % son blancas y entre ellas dos tercios son de madera.
 - El 24 % son rojas, y de ellas las tres cuartas partes son de madera.
 - $\bullet\,$ El 28 % son verdes, de las cuales la mitad son de madera.

Considerando los sucesos: B = "ser blanca", R = "ser roja", V = "ser verde" y M = "ser de madera".

- a) Indicar cuales son los valores de P(M|B), P(M|R) y P(M|V).
- b) Calcular la probabilidad de que al sacar al azar una de las bolas de la caja, sea de madera.
- c) Si solo sabemos que una de las bolas de la caja, elegida al azar, es de madera, ¿cual es la probabilidad de que sea blanca?
- (354) **EBAU2021S.** Se sabe que el coeficiente intelectual de la población adulta española sigue una distribución normal de media 100 y desviación típica 20.
 - a)¿Qué porcentaje de españoles adultos se espera que tengan un coeficiente intelectual entre 95 y 105?
 - b) Si se considera que una persona es superdotada cuando su coeficiente intelectual es mayor que 160, calcular el porcentaje de españoles adultos que son superdotados.
- (355) **EBAU2022J.** Dado el sistema $\begin{cases} 2x + 2my z = 0 \\ x + 2y + mz = 0 \\ x my + mz = 0 \end{cases}$
 - a) Discuta el sistema según los distintos valores de m.
 - b) Resuelva el sistema si m=-2
- (356) **EBAU2022J.** Dada la matriz $A = \begin{bmatrix} a & a \\ 0 & 1 \end{bmatrix}$, calcule el valor de a que hace que

$$A^2 = A^{-1} + \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix}$$

(357) **EBAU2022J.**

- a) Dada la recta $r \equiv \frac{x-1}{2} = \frac{y+2}{1} = \frac{z+1}{4}$ y el plano $\pi \equiv 2x+y+mz=0$, calcule m para que la recta y el plano sean perpendiculares.
- b) Calcule el plano perpendicular a los planos $\pi \equiv x+y+z=1$ y $\pi_1 \equiv x-y+z=2$, que pasa por el punto (1,2,3).
- (358) **EBAU2022J.** Considere el punto P = (2, 2, 1) y el plano $\pi \equiv 2x + 3y 3z + 6 = 0$.
 - a) Halle la recta que pasa por P y es perpendicular a π .
 - b) Calcule la distancia del punto Q=(2,2,-2) al plano π .
- (359) **EBAU2022J.** Dada la función $f(x) = xe^x$, determínense su dominio de definición, asíntotas, intervalos de crecimiento y decrecimiento, extremos relativos, intervalos de concavidad y convexidad y puntos de inflexión. Esbócese también su gráfica.
- (360) **EBAU2022J.** Calcule:

a)
$$\lim_{x\to 0} \frac{e^x - x - 1}{x^2}$$

b)
$$\int_0^1 xe^x dx$$

- (361) **EBAU2022J.** Dadas las curvas de ecuaciones $y = \sqrt{3x}$, $y = \frac{1}{3}x^2$,
 - a) Dibuje las curvas y señale el recinto plano comprendido entre ambas.
 - b) Calcule el área de dicho recinto.
- (362) EBAU2022J.
 - a) Halle el área del recinto del plano limitado por la gráfica de $f(x) = x^3 4x$, el eje OX y las rectas x = 0 y x = 2.
 - b) Calcule $\lim_{x\to 0} \frac{x \sin x}{2 2 \cos x}$
- (363) **EBAU2022J.** Una corporación fabrica herramientas de 3 tipos de calidades. Un $10\,\%$ de calidad Alta; un $70\,\%$ de calidad Estándar y un $20\,\%$ de calidad Baja. Se sabe que son defectuosas el $1\,\%$; el $10\,\%$ y el $30\,\%$ del total de las herramientas respectivamente.
 - a) Se elige una herramienta al azar. Definiendo correctamente los sucesos que intervienen, calcúlese la probabilidad de que sea defectuosa.
 - b) Se elige una herramienta que resulta ser defectuosa. Definiendo correctamente los sucesos que intervienen, calcúlese la probabilidad de que la elegida sea de calidad estándar.
- (364) **EBAU2022J.** El tiempo que transcurre hasta la primera avería de una unidad de cierta marca de impresoras viene dado, aproximadamente, por una distribución normal con un promedio de 1500 horas y una desviación típica de 200 horas.

- a) ¿Qué porcentaje de impresoras fallarán antes de 1000 horas de funcionamiento?
- b) Si compramos 500 impresoras ¿Cuántas de esas impresoras tendrán la primera avería entre las 1000 y 2000 horas de uso?

(365) EBAU2022S.

a) Discuta según los valores del parámetro m el sistema de ecuaciones lineales:

$$\begin{cases} x + y + mz = 4 \\ 2x - y + 2z = 3 \\ x - 2y + z = 0 \end{cases}$$

b) Resuélvalo para m=2

(366) EBAU2022S.

- a) Dadas las matrices $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$, hállese la matriz X tal que AX + B = C.
- b) Dadas las matrices $M = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$, $N = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $P = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}$, explíquese cuáles de los productos MN, MP, NP pueden calcularse, y calcúlense cuando se pueda.

(367) EBAU2022S.

- a) Calcule el plano que pasa por el punto (1,0,1) y es paralelo a los vectores $\vec{u} = (1,1,1)$ y $\vec{v} = (1,2,3)$.
- b) Calcule el plano paralelo a 3x + 2y + 2z + 1 = 0 que pasa por el punto (1, 2, 3).

(368) EBAU2022S.

- a) Encuéntrense las ecuaciones de la recta que está contenida en el plano $\alpha \equiv x y = 0$, es paralela al plano $\beta \equiv 2x 3y + z = 4$ y pasa por el punto P = (1, 1, 3).
- b) Hállese la ecuación del plano que es paralelo a $r \equiv x 1 = y + 2 = \frac{z 1}{2}$ y pasa por los puntos A = (0, 3, 1) y B = (-2, 1, -1).

(369) **EBAU2022S.** Dada la función $f(x) = \frac{x^2}{2-x}$, se pide:

- a) Encuentre su dominio y calcule sus asíntotas, si las tiene.
- b) Determine los intervalos de crecimiento y decrecimiento y los máximos y mínimos relativos, si los tiene.

(370) EBAU2022S.

- a) Calcule $\lim_{x\to 0} \frac{\ln(1+x)}{e^x 1}$
- b) Estudiando previamente el signo de la función en el intervalo [0,3], hállese el área limitada por la gráfica de la función $f(x) = x^3 9x$ y el eje de abcisas, cuando x varía en el intervalo [0,3].

(371) EBAU2022S.

- a) Enuncie el teorema de Bolzano.
- b) Averigüe si la función $f(x) = x + \sin x 2$ se anula en algún punto del intervalo $[0, \pi/2]$.

(372) EBAU2022S.

- a) Estudie el signo de la función $f(x) = x^3 4x^2 + 3x$ en el intervalo [0,2].
- b) Calcule el área limitada por la gráfica de la función $f(x) = x^3 4x^2 + 3x$ y el eje de abcisas en el intervalo [0, 2].
- (373) EBAU2022S. Entre los participantes de un torneo internacional de ajedrez:
 - \bullet El 28 % de ellos son rusos, de los cuales las tres cuartas partes son grandes maestros.
 - El 24 % son estadounidenses y entre ellos la mitad son grandes maestros.
 - El 48 % son del resto del mundo, de los cuales un tercio son grandes maestros.

Considerando los sucesos: R = "ser ruso", E = "ser estadounidense", M = "no ser ruso ni estadounidense" y GM = "ser gran maestro".

- a) Indique cuáles son los valores de P(GM|R), P(GM|E) y P(GM|M).
- b) Calcule la probabilidad de que al elegir al azar a uno de los participantes en el torneo, sea un gran maestro.
- c) Si se elige al azar a uno de los grandes maestros del torneo, ¿cuál es la probabilidad de que sea ruso?
- (374) **EBAU2022S.** La variable agudeza visual de una población se ajusta a una distribución normal de media 2 cpg (ciclos por segundo) y desviación típica 1 cpg. A los individuos con una agudeza visual inferior a 1.1 cpg se les considera con "problemas visuales graves".
 - a) ¿Qué porcentaje de la población tiene "problemas visuales graves"?
 - b) ¿Qué porcentaje de la población tiene una agudeza visual entre 2 y 2.9 cpg?