DS-SF-27 Final Project

Andrew Burke

Project Problem & Hypothesis

Problem

I want to predict when a user will be retained after using our mobile app for the first time. If we are able to reliably predict this, we can then design features to improve retention.

Hypothesis

As users add more streams/view more articles/enable push notifications in their first session,
 the higher the probability they will be retained.

Machine Learning Model

• This is a classification problem, and the outcome of the machine learning model will be the probability that a user will be retained after their first session.

New User Flow

Launch App

Enable Notifications

Add Streams

View Articles

The Data

```
df = pd.read_csv(os.path.join('..', 'Datasets', 'BR_data.csv'))
df = df.set_index('user_identities.identity')
df
```

	articles_viewed	streams_added	sessions	greater_than_5_sessions	push_enabled
user_identities.identity					
4.32E+17	1	1	1	0	0
2.39E+18	1	5	1	0	0
5.27E+18	2	5	1	0	0
00000000000000a419698266553970235	3	3	1	0	0
0000000000000a6409315927365159953	1	8	1	0	0
ffeeaa76195841efab257d819dac7bbb	2	27	12	1	0
fff0a4ec1e7548b2a8b3245defbeabc1	15	51	9	1	0
fff16bbe71f74b06a2e0b58186be2db9	1	5	2	0	0
fff8033f52ac4d67ae61f2e70559e681	2	3	3	0	0
fffc6535ff9441ee81e321e95374ed77	2	28	6	1	1

df.describe()

	articles_viewed	streams_added	sessions	greater_than_5_sessions	push_enabled
count	25854.000000	25854.000000	25854.000000	25854.000000	25854.000000
mean	6.213623	65.120716	12.847026	0.637812	0.092597
std	10.057690	196.832907	15.016058	0.480642	0.289872
min	1.000000	1.000000	1.000000	0.000000	0.000000
25%	2.000000	8.000000	4.000000	0.000000	0.000000
50%	3.000000	21.000000	8.000000	1.000000	0.000000
75%	7.000000	58.000000	16.000000	1.000000	0.000000
max	481.000000	9953.000000	288.000000	1.000000	1.000000

df.corr()

	articles_viewed	streams_added	sessions	greater_than_5_sessions	push_enabled
articles_viewed	1.000000	0.202627	0.582199	0.277830	-0.038056
streams_added	0.202627	1.000000	0.415350	0.188577	-0.024599
sessions	0.582199	0.415350	1.000000	0.492285	-0.018064
greater_than_5_sessions	0.277830	0.188577	0.492285	1.000000	-0.001644
push_enabled	-0.038056	-0.024599	-0.018064	-0.001644	1.000000


```
df[['articles_viewed', 'streams_added', 'sessions']].plot(kind = 'box')
```

<matplotlib.axes._subplots.AxesSubplot at 0x11c470090>


```
pd.tools.plotting.scatter_matrix(df[ ['articles_viewed', 'streams_added', 'sessions'] ], s = 200,
figsize = (8, 8), c = color)
array([[<matplotlib.axes. subplots.AxesSubplot object at 0x1250d7d10>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x1258a6dd0>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x1258344d0>],
       [<matplotlib.axes. subplots.AxesSubplot object at 0x125602610>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x12541f690>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x125484450>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x123b2c4d0>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x125978690>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x125c5d490>]], dtype=object)
  articles_viewed
   10008
streams_added
   6000
   2000
  sessions
     50
                                                      150
                                                         200
          articles viewed
                                                    sessions
                              streams_added
```



```
Q1_sa = df.streams_added.quantile(0.25)
Q3 sa = df.streams added.quantile(0.75)
IQR sa = Q3 sa - Q1 sa
IQR sa
50.0
df.drop(df[df.streams added > Q3 sa + 1.5 * IQR sa].index, inplace = True)
df.shape[0]
23025
Q1 av = df.articles viewed.quantile(0.25)
Q3 av = df.articles viewed.quantile(0.75)
IQR_av = Q3_av - Q1_av
IQR_av
5.0
df.drop(df[df.articles_viewed > Q3_av + 1.5 * IQR_av].index, inplace = True)
df.shape[0]
21242
```



```
df[['articles_viewed', 'streams_added', 'sessions']].plot(kind = 'box')
```

<matplotlib.axes._subplots.AxesSubplot at 0x11dea2650>


```
articles_per_stream = df.articles_viewed / df.streams_added
articles per_stream
```

```
user_identities.identity
4.32E+17
                                     1.000000
2.39E+18
                                     0.200000
                                     0.400000
5.27E+18
00000000000000a419698266553970235
                                     1.000000
0000000000000a6409315927365159953
                                     0.125000
                                       . . .
ffebf65d7954494cabf9c7d932f5c916
                                     0.500000
ffeeaa76195841efab257d819dac7bbb
                                     0.074074
fff16bbe71f74b06a2e0b58186be2db9
                                     0.200000
fff8033f52ac4d67ae61f2e70559e681
                                     0.666667
fffc6535ff9441ee81e321e95374ed77
                                     0.071429
dtype: float64
```

sm.qqplot(articles_per_stream, line = 's')
pass


```
sm.qqplot(df.streams_added.apply(lambda x: np.log(1 + x)), line = 's')
#sm.qqplot(df.streams_added, line = 's')
pass
```


Next Steps

- Random forest and feature importance
- Set up training and test sets
- Run cross validation on training set for logistic regression model
- Evaluate model
- Run final model on test set