École Supérieure de la Statistique et de l'Analyse de l'Information	Classe : 3ème Année
Année Universitaire : 2024-2025	Date: 11.01.2025
Examen de Statistique Bayésienne	Durée : 1h 30

Exercice 1:

Partie I:

Dans la suite, on suppose que :

- $X=(X_1,...,X_n)$ n observations indépendantes distribuées selon la loi $N(\theta,\sigma^2);\,\sigma^2$ connue.
- π La loi à priori sur θ de la forme $\mathbb{N}(a, b^2)$
- 1. Déterminer la loi à postériori $L(\widetilde{\Theta}/(X_1,X_2,...,X_n))=(x_1,x_2,...,x_n)$
- 2. Détermner $\delta^{\pi}(X_1,...,X_n)$ l'estimateur Bayésien relatif à la fonction perte quadratique.
- 3. Déterminer l'expression de l'estimateur Bayésien δ^π dans le cadre de la fonction perte L^1
- 4. Déterminer $\hat{\theta}_n^{MAP}(X_1,...,X_n)$

Partie II:

On pose par la suite :

$$C_{/x}^{\pi}(k) = \{\theta \in \Theta/\pi(\theta/x) \geqslant k\} = [\alpha_k, \beta_k]$$

$$k_{\alpha}(x) = \sup\{k/\mathbb{P}^{\pi}(C_{/x}^{\pi}(k)/X = x) \ge 1 - \alpha\} = [\alpha_{k_{\alpha}}, \beta_{k_{\alpha}}]$$

- 1. Montrer que $\beta_{k_{\alpha}} = h + \sqrt{z}q_{1-\frac{\alpha}{2}}^{N(0,1)}$, avec a et z sont deux quantités à déterminer.
- 2. Montrer que $\alpha_{k_{\alpha}} = h \sqrt{z} q_{1-\frac{\alpha}{2}}^{N(0,1)}$

Exercice 2:

Soit $X \sim \mathcal{N}(\mu, \sigma^2)$, avec σ^2 est connue et que l'on cherche à estimer $\theta = \mu$.

- Déterminer la loi de à priori de Jeffreys.
- 2. Montrer que $\pi(\mu/x_1 \to x_n) \propto \exp\left(-\frac{n}{2\sigma^2}(\overline{x}_n \mu)^2\right)$
- 3. En déduire la loi à posteriori $\pi(\mu/x_1 \to x_n)$ associée à la loi à priori de Jeffreys.
- 4. Déterminer la région H.P.D de niveau $1-\alpha$ associée à la loi de à priori de Jeffreys.
- 5. Déterminer $I(\theta)$ dans le cas où $X \sim \mathcal{N}(\mu, \sigma^2)$, et que l'on cherche à estimer $\theta = (\mu, \sigma^2)$.

Exercice 3:

Soit X_1,\dots,X_n un n-échantillon d'une variable aléatoire X, telle que :

$$P(X = 1) = 1 - P(X = -1) = \theta$$
, avec $\theta \in]0,1[$

- 1. Montrer que l'on peut écrire la densité de X par rapport à la mesure de comptage sous la forme $f(x/\theta) = \theta^{ax+b}(1-\theta)^{cx+d}$, où lon explicitera les paramètres a,b,c et d. Calculer $E_{\theta}(X)$ et $\text{Var}_{\theta}(X)$.
- 2. Calculer la loi a priori do Jeffreys associée que l'on notera π . On reconnaitra une loi usuelle.
- 3. Déterminer la loi a postériori assciée à la loi a priori de Jeffreys.
- 4. On considère la fonction de perte

$$L(heta,a)=(heta-a)^2\sqrt{ heta(1- heta)}$$

Calculer l'estimateur bayésien associé à π et à la fontion de perte L, on le notera $\hat{\theta_n}$.