3-2 Postulates of quantum mechanics

§2.2 Postulates of quantum mechanics

Postulate 1 (state space)

A quantum state $|\psi\rangle$ completely describes a closed quantum system.

 $|\psi\rangle$ is a unit vector in a Hilber space.

- closed system: No exchange of any form energy, particles, etc.—with the environment
- open system, otherwise
- how do we handle open systems?

Postulate 2 (dynamics)

The time evolution of a closed quantum system is described by a unitary transformation.

closed \Rightarrow H (Hermian operator called "Hamiltonian") is conserved and satisfies

$$i\frac{d}{dt}|\psi(t)\rangle=H|\psi(t)\rangle$$
 Schrödinger equation
$$|\psi(t)\rangle=\underbrace{e^{-iHt}}|\psi(0)\rangle$$
 $U(t)\equiv e^{-iHt}$ time-evolution operator, unitary

Postulate 3 (measurement)

An observable is a Hermitian operator $A=A^{\dagger}=\sum_{m}a_{m}|m\rangle\langle m|$.

 $a_m \in \mathbb{R}, \{|m\rangle\}$: orthonormal basis

Let
$$P_m \equiv |m\rangle\langle m|$$
 projector $(P_m^2 = P_m)$
 $A = \sum_m a_m P_m$ $P_m P_n = 0$ for $m \neq n, \sum_m P_m = I$

A measurement of A goes as follows:

If $|\psi\rangle$ is the state before the measurement,

the measurement outcome is a_m with probability $P(a_m) = \langle \psi | P_m | \psi \rangle$.

After measuring a_m , the state becomes $\frac{P_m|\psi\rangle}{\||P_m\psi\rangle\|}$ <u>irreversibly.</u>

non-unitary, how?

ex) measurement of $Z = |0\rangle\langle 0| - |1\rangle\langle 1|$

Postulate 4 (composite systems)

Suppose system A is in state $|\psi\rangle_A$ in Hilbert space \mathcal{H}_A .

Suppose system B is in state $|\psi\rangle_B$ in Hilbert space \mathcal{H}_B .

Then, system A + B is in state $|\psi\rangle_A \otimes |\psi\rangle_B$ in Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$.