Задание VI

Текст задания Пусть каждому ребру неориентированного графа соответствует некоторый элемент электрической цепи. Составить линейно независимые системы уравнений Кирхгофа для токов и напряжений. Пусть первому и пятому ребру соответствуют источники тока с ЭДС E_1 и E_2 (полярность выбирается произвольно), а остальные элементы являются сопротивлениями. Используя закон Ома, и, предполагая внутренние сопротивления источников тока равными нулю, получить систему уравнений для токов.

Решение

1. Зададим произвольную ориентацию:

2. Построим произвольное остовное дерево:

2.1.
$$D_1 = (U_1, \emptyset)$$

2.2.
$$D_2 = (\{U_1, U_2\}, \{U_1, U_2\})$$

2.3.
$$D_3 = (\{U_1, U_2, U_3\}, \{U_1, U_2\}, \{U_2, U_3\})$$

2.5.
$$D_5 = D_4 + \{U_5\} + \{U_5, U_4\}$$

2.6.
$$D_6 = D_5 + \{U_7\} + \{U_5, U_7\}$$

2.7.
$$D_7 = D_6 + \{U_6\} + \{U_6, U_4\}$$

3. Найдем базис циклов:

3.3.
$$(D+q_5): \mu_3: U_4-U_5-U_7-U_6-U_4 \Rightarrow C(\mu_3) = (0 \ 0 \ 0 \ 1 \ -1 \ 0 \ 0 \ 0 \ -1 \ 0 \ 1 \ 0 \ 0)$$

3.4.
$$(D+q_6): \mu_4: U_3-U_4-U_6-U_3 \Rightarrow C(\mu_4)=(0\ 0\ 0\ 0\ 0\ -1\ 0\ 0\ 1\ 0\ 1\ 0)$$

$$3.5. \ (D+q_8): \mu_5: U_1-U_2-U_3-U_4-U_1 \Rightarrow C(\mu_5) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

3.6.
$$(D+q_{10}): \mu_6: U_4-U_5-U_7-U_4 \Rightarrow C(\mu_6)=(0\ 0\ 0\ 1\ 0\ 0\ 0\ 1\ 1\ 0\ 0)$$

3.7.
$$(D+q_{13}): \mu_7: U_2-U_3-U_4-U_2 \Rightarrow C(\mu_7)=(0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 1\ 1)$$

4. Цикломатическая матрица графа имеет вид:

5. Выпишем закон Кирхгофа для напряжений:

6. Найдем матрицу инцедентности В орграфа:

	$\mid q_1 \mid$	q_2	q_3	q_4	q_5	$\mid q_6 \mid$	$ q_7 $	q_8	$\mid q_9 \mid$	q_{10}	$ q_{11} $	q_{12}	q_{13}
U_1	-1	-1	0	0	0	0	0	-1	0	0	0	0	0
U_2	0	1	1	0	0	0	-1	0	0	0	0	0	-1
U_3	1	0	0	0	0	-1	1	0	0	0	0	-1	0
U_4	0	0	0	0	0	0	0	1	-1	1	-1	1	-1
U_5	0	0	-1	-1	0	0	0	0	0	0	1	0	0
U_6	0	0	0	0	-1	1	0	0	1	0	0	0	0
U_7	0	0	0	1	1	0	0	0	0	-1	0	0	0

$$B = \begin{pmatrix} -1 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & -1 & 1 & -1 \\ 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \end{pmatrix}$$

7. Выпишем уравнения Кирхгофа для токов:

$$\begin{pmatrix} -1 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & -1 & 1 & -1 \\ 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} I_1 \\ \vdots \\ I_{13} \end{pmatrix} = 0 \Rightarrow$$

$$\begin{cases}
I_1 + I_2 + I_8 = 0 \\
I_2 + I_3 - I_7 + I_{13} = 0 \\
I_1 - I_6 + I_7 - I_{12} = 0 \\
I_{11} - I_3 - I_4 = 0 \\
I_7 - I_6 + I_9 = 0 \\
I_5 + I_6 - I_{10} = 0
\end{cases}$$
(1)

8. Подставим закон Ома:

$$\begin{cases}
E_{1} = I_{2}R_{2} + I_{7}R_{7} \\
E_{2} = I_{4}R_{4} - I_{9}R_{9} + I_{11}R_{11} \\
I_{3}R_{3} + I_{7}R_{7} + I_{11}R_{11} + I_{12}R_{12} = 0 \\
I_{6}R_{6} - I_{9}R_{9} - I_{12}R_{12} = 0 \\
I_{8}R_{8} - I_{7}R_{7} - I_{12}R_{12} = 0 \\
I_{10}R_{10} + I_{4}R_{4} + I_{11}R_{11} = 0 \\
I_{13}R_{13}I_{7}R_{7} + I_{12}R_{12} = 0
\end{cases} \tag{2}$$

9. Совместная система состоит из систем (1) и (2). 13 уравнений и 13 неизвестных — токи $I_1\dots I_{13};$ ЭДС E_1,E_2 Сопротивления $R_2;R_3;R_4;R_5;R_6;R_7;R_8;R_9;R_{10};R_{11};R_{12};R_{13}$ - известны