Skriftlig eksamen i Matematik A. Vinteren 2015 - 2016

Onsdag den 17. februar 2016

Dette sæt omfatter 3 sider med 3 opgaver ud over denne forside

Ingen hjælpemidler må medbringes ved eksamen

Københavns Universitet. Økonomisk Institut

1. årsprøve 2016 V-1A rx

Skriftlig eksamen i Matematik A

Onsdag den 17. februar 2016

3 sider med 3 opgaver.

Løsningstid: 2 timer.

Ingen hjælpemidler må medbringes ved eksamen.

Opgave 1. Homogene funktioner.

Lad $C \subseteq \mathbf{R}^n$, for et givet $n \in \mathbf{N}$, være en kegle, hvilket betyder, at betingelsen

$$\forall t > 0 \,\forall x = (x_1, x_2, \dots, x_n) \in C : tx = (tx_1, tx_2, \dots, tx_n) \in C$$

er opfyldt.

(1) Vis, at mængderne

$$C_1 = \{x = (x_1, x_2, x_3) \in \mathbf{R}^3 \mid x_1 > 0 \land x_2 > 0 \land x_3 > 0\}$$

og

$$C_2 = \{x = (x_1, x_2, x_3) \in \mathbf{R}^3 \mid x_1 \ge 0 \land x_2 > 0 \land x_3 < 0\}$$

er kegler i \mathbb{R}^3 .

- (2) Lad $C \subseteq \mathbf{R}^n$ være en kegle, og lad $f: C \to \mathbf{R}$ være en funktion. Forklar, hvad det vil sige, at funktionen f er homogen af grad k.
- (3) Godtgør, at følgende funktioner er homogene, og angiv definitionsmængden og homogenitetsgraden i hvert enkelt tilfælde.

$$\begin{cases} f_1(x_1, x_2) = x_1^5 + 3x_1x_2^4 - x_1^2x_2^3 \\ f_2(x_1, x_2) = e^{\frac{x_1}{x_2}} \\ f_3(x_1, x_2) = x_1^4 + x_1x_2^3 + x_2^4 \\ f_4(x_1, x_2) = \frac{x_1^4 + x_1x_2^3 + x_2^4}{\sqrt{x_1^6 + x_2^6}} \end{cases}$$

Opgave 2. Vi betragter den funktion $f: \mathbb{R}^2 \to \mathbb{R}$, som er defineret ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^3 + xy^2 + x + y.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

i et vilkårligt punkt $(x, y) \in \mathbf{R}^2$.

- (2) Vis, at funktionen f ikke har nogen stationære punkter.
- (3) Bestem Hessematricen H(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.
- (4) Godtgør, at (0,0) er en løsning til ligningen f(x,y) = 0. Vis dernæst, at der findes en omegn U(0) af x = 0, så den variable y er givet implicit som en funktion y = y(x) i denne omegn. Bestem desuden differentialkvotienten y'(0).

Lad $g: \mathbf{R} \to \mathbf{R}$ være den funktion, som er givet ved udsagnet

$$\forall s \in \mathbf{R} : g(s) = f(e^s, e^s).$$

(5) Bestem en forskrift for funktionen g, og bestem Taylorpolynomiet P_2 af 2. orden for funktionen g ud fra punktet $s_0 = 0$.

Opgave 3. For ethvert a > 0 og ethvert x > 0 betragter vi den uendelige række

$$(\S) \qquad \qquad \sum_{n=0}^{\infty} \left(\ln(ax)\right)^n.$$

(1) Bestem for ethvert a > 0 mængden

$$C_a = \{x \in \mathbf{R} \mid (\S) \text{ er konvergent}\}.$$

Bemærk, at C_a afhænger af konstanten a > 0.

(2) Bestem en forskrift for den funktion $f_a: C_a \to \mathbf{R}$, som er defineret ved udtrykket

$$\forall x \in C_a : f_a(x) = \sum_{n=0}^{\infty} \left(\ln(ax) \right)^n.$$

Dette er rækkens sumfunktion.

- (3) Bestem den afledede funktion f_a' , og godtgør, at funktionen f_a er voksende.
- (4) Bestem værdimængden for funktionen f_a .
- (5) Bestem elasticiteten f_a^{ϵ} .