Série d'exercices : Aspects énergétiques

Exercice 1: Les ressorts se trouvent dans plusieurs appareils mécaniques, comme les voitures et les bicyclettes ... et produisent des oscillations mécaniques .Cette partie a pour objectif, l'étude énergétique d'un système oscillant (corps solide - ressort) dans une position horizontale. Soit un oscillateur mécanique horizontal composé d'un corps solide (S) de masse \mathbf{m} et de centre d'inertie \mathbf{G} fixé à l'extrémité d'un ressort à spires non jointives et de masse négligeable et de raideur $\mathbf{K} = \mathbf{10} \ \mathbf{N}.\mathbf{m}^{-1}$. L'autre extrémité du ressort est fixée à un support fixe. Le corps (S) glisse sans frottement sur le plan horizontal.

On étudie le mouvement de l'oscillateur dans le repère $(0, 1 \rightarrow)$ lié à la Terre et dont l'origine est confondue avec la position de G à l'équilibre de (S) .On repère la position de G à l'instant t par son abscisse . (**Figure1**) On écarte le corps (S) horizontalement de sa position d'équilibre dans le sens positif d'une distance X_0 et on le libère sans vitesse initiale à l'instant pris comme origine des dates.

On choisit le plan horizontal passant par G comme référence de l'énergie potentielle de pesanteur, et l'état dans lequel le ressort n'est pas déformé comme référence de l'énergie potentielle élastique. A l'aide d'un dispositif informatique adéquat, on obtient les deux courbes représentant les variation de l'énergie EC cinétique et l'énergie potentielle élastique **Epe** du système oscillant en fonction du temps. (**Figure 2**).

- 1- Indiquer parmi les courbes (1) et (2) celle qui représente les variations de l'énergie cinétique E_C. justifier.
- **2-** Déterminer la valeur de l'énergie mécanique E_m du système oscillant.
- 3- En déduire la valeur de la distance X_0 .
- 5- En utilisant la variation de l'énergie potentielle élastique du système oscillant, trouver le travail de la force de rappel \overline{T} exercée par le ressort sur (S) lors du déplacement de G de la position A d'abscisse $x_A = X_0$ vers la position O.

Exercice 2 On étudie dans cette partie le mouvement d'un système oscillant { corps solide - ressort } dans une situation où les frottement fluides ne sont pas négligeables .

On considère un corps solide (S), de masse m et de centre d'inertie G, fixé à l'extrémité d'un ressort de masse négligeable et à spires non jointives et de raideur $K = 20 \ N.m^{-1}$ l'autre extrémité du ressort est fixée en A à un support fixe . A l'aide d'une tige , on fixe une plaque au corps (S) , et on plonge une partie d'elle dans un liquide visqueux comme indiqué sur la figure 1.

- On néglige la masse de la tige et de la plaque devant celle du corps (S).
- On repère la position de G à l'instant par l'abscisse x sur l'axe (OX).
- L'abscisse de G₀, position de G à l'équilibre, correspond à O, origine de l'axe (Ox)
- On étudie le mouvement de G dans un référentiel terrestre supposé galiléen.
- On choisit la position G₀ comme référence de l'énergie potentielle élastique.

Un appareil de saisie informatique a permis de tracer la courbe de variation de l'abscisse du centre d'inertie G en fonction du temps, **figure 2** A l'équilibre le ressort n' est pas déformé.et le plan horizontal passant par G comme référence de l'énergie potentielle de pesanteur. On écarte le corps (S) de la distance d de sa position d'équilibre et on le lâche sans vitesse initiale

- 1-Quel régime des oscillations est mis en évidence par la courbe représentée sur la **figure 2**
- 2- En calculant la variation de l''énergie potentielle élastique de

l'oscillateur entre les instants $t_0 = 0$ et $t_2 = 1,2s$ trouver le travail W(F) de la force de rappel exercée par le ressort entre ces deux instants

3-Determiner la variation de l'énergie mécanique ΔE_m du système entre les instants t_0 et t_1 et donner une explication au résultat obtenu.

x (cm)

1

0

-1

0

0,3

0,6

0,9

1,2

1,5

1,8

On donne : le moment d'inertie de la tige par rapport à l'axe de rotation (Δ) : $J_{\Delta}=2,9.10^{-3}kg.m^2$.

I- on considère les frottements sont négligeables

- 1. Déterminer l'expression de l'énergie mécanique E_m , en fonction de , J_{Δ} , θ et $\dot{\theta}$.
- 2. En dérivant l'énergie mécanique, établir l'équation différentielle du mouvement du pendule de torsion.

II- La courbe de **la figure 2** représente les variations de l'énergie potentielle de torsion E_{Pt} en fonction du temps . En vous aidant de cette courbe ;

- 1- Déterminer l'énergie mécanique E_m de ce pendule et la période propre T_0 .
- 2- Déterminer la constante de torsion ${\bf C}$ du fil métallique.
- 3- Trouver la valeur absolue de la vitesse angulaire $\dot{\theta}$ à l'instant $t_1 = 0.5$ s.
- 4- Calculer le travail $W(M_c)$ du couple de torsion entre les instants $\mathbf{t_0} = \mathbf{0}$ et $\mathbf{t_1}$

Exercice 4

Un système oscillant est constitué d'un solide (S), de centre d'inertie G et de masse m, et d'un ressort horizontal, à spires non jointives, de masse négligeable et de raideur $K = 20 N.m^{-1}$.

Le solide (S) est accroché à l'une des deux extrémités du ressort, l'autre extrémité est fixée à un support immobile.

On écarte le solide (S) de sa position d'équilibre d'une distance X_m puis on le lâche sans vitesse initiale. Le solide (S) oscille sans frottements sur un plan horizontal. (figure1)

On étudie le mouvement du centre d'inertie G dans un

repère (O, i) lié à un référentiel terrestre considéré comme galiléen. L'origine O de l'axe coïncide avec la position de G lorsque le solide (S) est à l'équilibre.

On repère ,dans le repère (O, \vec{i}) , la position de G à un instant t par l'abscisse x

On choisit le plan horizontal passant par G comme référence de l'énergie potentielle de pesanteur et l'état où G est à la position d'équilibre (x=0) comme référence de l'énergie potentielle élastique.

L'équation horaire du mouvement de G s'écrit sous forme $x(t) = X_m \cdot \cos(\frac{2\pi t}{T_m} + \varphi)$.

La courbe de la figure 2 représente le diagramme des abscisses x (t).

- 1- En appliquant la $2^{\text{ème}}$ loi de Newton, Trouver l'équation différentielle vérifier par l'abscisse x(t).
- 2- Trouver l'expression de la période propre T₀.
- **3-** Déterminer graphiquement les valeurs de X_m , T_0 et de φ .
- **4-** Calculer la valeur absolue de la vitesse |x | lorsque | le corps (S) passe par sa position d'équilibre à la première fois.
- 5- S'assurer que la masse du corps (S) est : m = 20 g
- **6-** Calculer l'énergie mécanique E_m d'oscillateur étudié.
- 7- Calculer la valeur de l'énergie cinétique Ec de l'oscillateur mécanique à l'instant $t_1 = 0,1$ s
- 8- Calculer le travail $W(T \rightarrow)_{A \rightarrow B}$ de la force de rappel, lorsque le corps (S) se déplace de la position $x_A = X_m$ à la position d'équilibre x_B . Et déduire ΔE_{pe}

Exercice 5 La figure 1 représente un système mécanique formé d'un solide de masse m=100g et un ressort horizontal, à spires non jointives de masse négligeable et de raideur k. A l'équilibre la position du centre de gravité G du solide (S) coïncide avec l'origine des abscisses O du repère $(0; 1 \rightarrow)$ lié à la terre et considéré comme galiléen.

- -Les frottements sont négligés.
- On écarte (S) de sa position d'équilibre dans le sens positif d'une distance X_M et on l'abandonne sans vitesse initiale à la date $t_o = 0$.
- On choisit le plan horizontal passant par G comme référence de l'énergie potentielle de pesanteur ($E_{pp}=0$), et l'état dans lequel le ressort n'est pas déformé comme référence de l'énergie potentielle élastique ($E_{pe}=0$)

La **figure 2 représente** les diagrammes d'énergies cinétique E_c et potentielle élastique E_{Pe} en fonction de x

1-	rane correspondre a chaque courbe, en justifiant, renergie qui fui convient.
2-	Ecrire l'expression de l'énergie mécanique en fonction de m , k, x et \dot{x} .
3-	En dérivant l'énergie mécanique, établir l'équation différentielle du mouvement
4-	En exploitant la figure 2 déterminer :
	a - l'amplitude de mouvement X_M b - l'énergie mécanique E_M c - La constante de raideur K
5-	Montrer que l'expression de l'énergie cinétique s'écrit sous la forme : $E_c = \frac{1}{K}(X^2 - x^2)$
	2 m
6-	Déduire l'expression de l'énergie mécanique en fonction k et X_M .
7-	Déterminer la vitesse maximale du corps (S) lors de son passage la position d'équilibre dans le sens positif.
8-	Trouver les abscisses x_1 et x_2 de G lorsque $E_c = 3 E_{pe}$
9-	Déterminer la valeur du travail W (F) de la force de rappel du ressort exercée sur (S) au cours du
	déplacement de G de x_1 à x_2
	deplacement de G de x1 à x2

• • • • •	
• • • • •	
• • • • •	
• • • • • •	
• • • • •	
• • • • •	

,
•

,
•