teoria de números computacional

cláudia mendes araújo

2024/2025

lcc+lmat | uminho

números primos

teorema fundamental da aritmética

teorema. (teorema fundamental da aritmética) Todo o inteiro positivo maior que 1 escreve-se, de modo único, como um produto de primos, com os fatores primos no produto escritos por ordem não decrescente.

Uma aplicação deste resultado é a prova de que $\sqrt{2}$ é um número irracional:

Suponhamos que $\sqrt{2}$ é um número racional. Então, podemos escrever

$$\sqrt{2} = \frac{a}{b}$$

onde a e b são inteiros primos entre si, com $b \neq 0$. Elevando ambos os membros ao quadrado, obtemos

$$2=\frac{a^2}{b^2},$$

o que implica que

$$2b^2=a^2.$$

1

teorema fundamental da aritmética

Como 2 divide a^2 , segue-se que 2 também divide a.

Assim, podemos escrever a = 2c para algum inteiro c.

Substituindo na equação anterior, obtemos

$$b^2=2c^2.$$

Dado que 2 divide b^2 , conclui-se que 2 também divide b.

Contudo, isto contradiz a hipótese inicial de que a e b são primos entre si, pois 2 não pode dividir simultaneamente ambos.

Esta contradição demonstra que $\sqrt{2}$ é um número irracional.

testes de primalidade

Os testes que distinguem entre números primos e compostos são fundamentais. Tais testes são chamados testes de primalidade.

Sabemos que, se n for um número composto, então n tem um fator primo que não excede \sqrt{n} .

De facto, sendo n composto, podemos escrever n=ab, onde a e b são inteiros tais que $1 < a \le b < n$.

Suponhamos que $a>\sqrt{n}$. Temos $b\geq a>\sqrt{n}$, e, portanto, ab>n, o que é uma contradição. Sabemos que a tem um divisor primo, o qual também é divisor de n e, claramente, não excede \sqrt{n} .

O teste de primalidade mais básico é a **divisão por tentativa**, que nos diz que um número inteiro n é primo se e somente se não for divisível por nenhum número primo que não exceda \sqrt{n} .

divisão por tentativa

divisão por tentativa (n é primo?):

testar a divisibilidade de n pelos primos p tais que $p \leq \lfloor \sqrt{n} \rfloor$.

exemplo: Testemos se 531 é primo pela divisão por tentativa.

Tendo em conta que

$$529 = 23^2 < 531 < 24^2 = 576,$$

sabemos que $23 < \sqrt{531} < 24$.

Assim, $\lfloor \sqrt{531} \rfloor = 23$, pelo que basta percorrer a divisibilidade de 531 pelos primos p tais que $p \le 23$ para averiguar se 531 é ou não primo. 2 não divide 531, mas 3 divide 531, donde 531 não é primo.

exemplo: Testemos, agora, se 37 é primo pela divisão por tentativa.

Tendo em conta que

$$36 = 6^2 < 37 < 7^2 = 49,$$

sabemos que $6 < \sqrt{37} < 7$.

Assim, $\lfloor \sqrt{37} \rfloor = 6$, pelo que basta averiguar a divisibilidade de 37 por 2, 3 e 5. Como 2 // 37, 3 // 37 e 5 // 37, podemos concluir que 37 é primo.

crivo de Eratóstenes

Podemos utilizar o facto de que todo o número composto n admite um divisor primo que não excede \sqrt{n} para encontrar todos os números primos menores ou iguais a um dado número positivo n. Este procedimento é conhecido como **Crivo de Eratóstenes** (300 a.C), pois foi inventado pelo matemático grego Eratóstenes.

crivo de Fratóstenes:

- (1) Listam-se todos os inteiros de 2 a n de acordo com a ordem usual;
- (2) Eliminam-se, sistematicamente, todos os números compostos, cancelando todos os múltiplos de primos p (distintos de p), com p tais que $p \le \sqrt{n}$;
- (3) Os elementos restantes (i.e., os números que não passaram no crivo) são os primos inferiores a *n*.

exemplo. Para determinar todos os primos inferiores a 100, começamos por listar todos os naturais de 2 a 100:

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Eliminando os múltiplos de 2 superiores a 2, obtemos:

	2	3		5		7		9	1
11		13		15	5	17	13	19	2
21	22	23	1	25	75	27	73	29	<u></u>
31	=	33	=	35	5	37	3	39	4)
41	42	43	4	45	4 j	47	43	49	<u>.</u>
51		53	5	55	5	57	<u> </u>	59	
61		63	\Box	65	6	67	6 3	69	
71		73	7	75	75	77	13	79	
81		83		85	(3	87	8	89	9
91	\subseteq	93	\subseteq	95	5	97	\subseteq	99	1 (

Eliminando os múltiplos de 3 distintos deste primo, obtemos:

	2	3		5	Ü	7	Ü		1
11		13		15	5	17	13	19	2
	22	23	1	25	75	27	73	29	<u></u>
31	=	3	=	35	5	37	3	3	4)
41	4	43	4	45	45	47	43	49	[]
<u>=</u>		53	5	55	5	9	<u> </u>	59	
61			\Box	65	6	67	6 3		
71		73	7	75	75	77	13	79	
		83		85	(5)		8	89	9
91	<u></u>	\$	9	95	5	97	9	9	1 (

Eliminando os múltiplos de 5 distintos de 5, obtemos:

	2	3		5	Ü	7	Ü		
11		13	_	5		17		19	
	22	23	21	25	75	27	3	29	1
31	=	3	=	35	5	37	3	3	4
41	4	43	4	45	45	47	43	49	
	\Box	53	=	5	5	5	5	59	
61	\bigcirc	6	\Box	6	6	67	6		
71	\square	73	\blacksquare	73	75	77	13	79	
	\Box	83	\Box	8	(3		8	89	9
91	<u></u>	\$	9	95	5	97	9	9	1

Por fim, eliminando os múltiplos de 7 distintos deste primo, obtemos os primos inferiores a 100:

	2	3		5	ij.	7	ø		1	
11	<u></u>	13	_	15		17		19	\supset	
	2	23	7	5	75		3	29	3	
31	32	3	1	3	35	37	3	3		
41	42	43	4	45	4)	47	43	4	9	
<u></u>	\Box	53	!	5	5		5	59		
61	\bigcirc		\Box	6	6	67	\Box			
71	72	73	7	13	75		13	79		
=	\Box	83	\Box	8	8		8	89	9	
	\square	5	\subseteq	5	5	97	\subseteq	9	1 0	

Descrevemos, de seguida, uma técnica de fatorização interessante, embora nem sempre eficiente. Esta técnica, descoberta por **Fermat** (séc. XVII), é conhecida como **fatorização de Fermat** e baseia-se no seguinte lema:

lema. Se n for um número inteiro positivo ímpar, então existe uma correspondência biunívoca entre as fatorizações de n em dois inteiros positivos e as diferenças de dois quadrados iguais a n.

demonstração. Seja n um número inteiro positivo ímpar e considere-se uma fatorização n=ab, com a e b inteiros positivos.

Então, n pode ser escrito como a diferença de dois quadrados:

$$n = ab = s^2 - t^2,$$

onde

$$s=\frac{a+b}{2}, \quad t=\frac{a-b}{2}$$

são ambos inteiros, pois a e b são ímpares.

Reciprocamente, se n for a diferença de dois quadrados, ou seja, $n=s^2-t^2$, então podemos fatorizar n como:

$$n=(s-t)(s+t).$$

fatorização de Fermat:

Para aplicar este método, procuramos soluções da equação:

$$n=s^2-t^2,$$

isto é, procuramos quadrados perfeitos da forma

$$s^2-n$$
.

Note-se que se s é tal que $s^2-n=t^2$, então, $s^2=n+t^2\geq n$. Assim, s tem de ser grande o suficiente para que s^2 seja maior ou igual a n. O menor valor possível para s que satisfaça $s^2\geq n$ é $s=\lceil \sqrt{n}\rceil$.

Assim, para encontrar fatorizações de n, investigamos a sequência de inteiros:

$$s^2 - n$$
, $(s+1)^2 - n$, $(s+2)^2 - n$, ...

onde s é o menor inteiro maior que \sqrt{n} .

Começamos com $s = \lceil \sqrt{n} \rceil$ e vamos aumentando s, verificando se $s^2 - n$ é um quadrado perfeito.

O pior caso acontece quando s cresce até atingir $s=\frac{n+1}{2}$: neste ponto, a diferença de quadrados torna-se:

$$s^2 - t^2 = \left(\frac{n+1}{2}\right)^2 - \left(\frac{n-1}{2}\right)^2 = n,$$

o que equivale à fatorização trivial $n = n \times 1$.

Este procedimento garante que a fatorização será eventualmente encontrada.

fatorização de Fermat — exemplo

exemplo: Fatorizemos n = 5959 pelo método de Fermat.

Começamos por notar que $\lceil \sqrt{5959} \rceil = 78$.

Tomamos s = 78 e calculamos $s^2 - n$. Como

$$s^2 - n = 78^2 - 5959 = 85$$

e 85 não é um quadrado perfeito, incrementamos s.

Consideramos s = 79 e calculamos $s^2 - n$. Dado que

$$s^2 - n = 79^2 - 5959 = 244$$

e 244 não é um quadrado perfeito, aumentamos s.

Tomamos s = 80 e calculamos $s^2 - n$. Como

$$s^2 - n = 80^2 - 5959 = 441 = 21^2$$

encontramos a fatorização

$$5959 = (80 - 21)(80 + 21)$$
$$= 59 \times 101.$$

A fatorização de Fermat pode ser muito ineficiente. Para fatorizar n usando esta técnica, pode ser necessário verificar até $\frac{n+1}{2}-\lfloor\sqrt{n}\rfloor$ números para determinar se são quadrados perfeitos.

Este algoritmo é eficiente quanto temos poucos passos no incremento de s (até obter s^2-n quadrado perfeito).

O método é mais eficaz quando n tem dois fatores próximos. Se um número tiver um fator pequeno e outro muito grande, o algoritmo pode demorar muito tempo a encontrar a fatorização. Embora raramente seja utilizado para fatorizar números grandes, a sua ideia fundamental serve de base para algoritmos de fatorização mais avançados, amplamente usados em cálculos computacionais.