Métodos Numéricos

Tempo gasto 1 hora 51 minutos Nota 3,8/6,0

Painel do utilizador As minhas unidades curriculares Métodos Numéricos Exames Exame 1ª Chamada / 1st Call Exam - 13/01/2020

Nota 12,8 de um máximo de 20,0 (64%) Pergunta 1 Parcialmente correta Pontuou 0,60 de 1,00 💎 Destacar pergunta

Início Segunda, 13 Janeiro 2020, 09:07 Estado Prova submetida Data de Segunda, 13 Janeiro 2020, 10:58

Considere a seguinte função real de variável real, cujos zeros pretendemos determinar

$$f(x) = sin(x) + x^5 - 0.2x + 0.5$$

- a. Quantos zeros tem a função f(x)? 1
- b. Qual dos seguintes intervalos contém a menor raíz da equação f(x)=0 ?]-1,0[♦ ✓
- c. Preencha o quadro com o valor mais aproximado da raiz R, do erro absoluto caba e do erro relativo cada no metodo da bissecção sucessiva, partindo do intervalo escolhido na alínea anterior:

R	-0,58594	~
ε _{abs}	0,003996	×
ε _{rel}	0,015625	×

Comentário: Cálculo dos erros incorrecto, O valor "exacto" seria o valor pedido como melhor aproximação da raíz.

Pergunta 2 Incorreta Pontuou 0,00 de 1,00 🌵 Destacar pergunta

Considere o seguinte sistema de equações não lineares:

$$\begin{cases} x^2 - y - a &= 0 \\ -x + y^2 - b &= 0 \end{cases}$$

Usando os seguintes valores para os parâmetros

a	b
2.0	2.0

Calcule duas iterações pelo método de Newton, partindo do ponto dado.

Preencha o quadro com os valores corretos.

x _n		y _n	
1.50000 0.80000			
-1,36000	×	0,25000	×
-1,937500	×	-0,150400	×

números decimais em vírgula flutuante, com pelo menos 5 decimais na mantissa, no formato (2000.00000). E±000.

números decimais em vírgula fixa, com pelo menos 5 decimais, no formato (2000.00000).

Pergunta 3 Parcialmente correta Pontuou 0,70 de 1,00 🌵 Destacar pergunta

O comprimento ${\bf L}$ do arco, entre as abcissas ${\bf x}={\bf a}$ e ${\bf x}={\bf b}$, de uma curva de equação é dado por:

$$y = f(x)$$
 é dado por:

 $L = \int_a^b \sqrt{1 + (y')^2} \, dx$

Recorrendo aos métodos numéricos de Simpson e dos Trapézios, pretendemos determinar o comprimento do arco entre x= a e x= b, da curva

Partindo dos seguintes dados:

k	a	b	Passo de integração h
2.5	1	2	0.25

Estime o valor do erro absoluto, independentemente do valor obtido para o quociente de convergência.

	M. Trapézios	M. Simpson	
h	0.25	0.25	
h'	0,12500	0,12500	
h"	0,06250	0,06250	
L	56,25470	54,36630	
L'	54,93500	54,49510	
L"	54,60310	54,49240	

	Quociente de convergência QC		.97580		15,43640		
	Erro estimado absoluto ε		L,7595408574459175 ×		-0,00089		
As		nte, com pelo menos 5 decimais na mant om pelo menos 5 decimais, no formato d					
Com	entário: Não derivou y Erro dos trapézios i	mal calculado					
Per	gunta 4 Correta Pontuou 1,00 de 1,00) ▼ Destacar pergunta					
A ten	nperatura $ au$ de um corpo varia com o tempo	t segundo a seguinte lei:					
	$rac{dT}{dt}=-0.25\left(T-T_a ight)$						
	em que T_a é a temperatura do meio envolv. Supondo as seguintes condições iniciais:	vente.					
		$c_a = 52$					
	Usando o <i>Método de Euler</i> com passo tem	poral 0,4 , calcule o valor da temperatura	do corpo ao fim de dois passos de tempo				
As •		nte, com pelo menos 5 decimais na manti om pelo menos 5 decimais, no formato					
Resp	iosta: 12,31 🗸						
Resp	osta correta: 12,31						
Per	gunta 5 Parcialmente correta Pontuoi	u 0,68 de 1,00					
Os re	esultados de uma experiência ajustam-se be	em à expressão					
1	$y = x + \frac{(x-2)^2}{(\sin x) + 4}$						
no in	tervalo de $-1 \le x \le 2$.						
	o método da Secção Áurea para pesquisa ncha as células em branco com o valor num						
		X ₂ X ₃	X ₄	f(x ₁)	f(x ₂)		
1	-1.000000 2.00	00000 0.1458980	0.854102	1.849428	2.000000	f(x ₃) 0.975181	f(x ₄) 1.130309
-1	-1.000000 2.00 	00000 0.1458980 0,145898 ×	0.854102			0.975181	
				1.849428	2.000000 1,1303088539773039	0.975181 0,9751810670641506 0,975	1.130309
0,1	0,854102	0,145898 X 0,145898 V	0,145898 ×	1.849428 1,8494276787426047	2.000000 1,1303088539773039 1,1303088539773039	0,975181 0,9751810670641506 0,975 0,9751810670641506 0,975	1.130309 1810670641506
0,1	0,854102 45898 × 0,854102	0,145898 × 0,145898 v o extremo num intervalo em x com a amp	0,145898 × 0,145898 × 0,145898 ×	1.849428 1,8494276787426047	2.000000 1,1303088539773039 1,1303088539773039	0,975181 0,9751810670641506 0,975 0,9751810670641506 0,975	1.130309 1810670641506
O,11 As ite	0,854102 45898	0,145898 × 0,145898 v o extremo num intervalo em x com a amp	0,145898 × 0,145898 × 0,145898 ×	1.849428 1,8494276787426047	2.000000 1,1303088539773039 1,1303088539773039	0,975181 0,9751810670641506 0,975 0,9751810670641506 0,975	1.130309 1810670641506
As ite	v 0,854102 45898 × 0,854102 erações apresentadas permitem enquadrar respostas numéricas são números decimal entário: s 10%	0,145898 × 0,145898 v o extremo num intervalo em x com a amp	0,145898 × 0,145898 × 0,145898 ×	1.849428 1,8494276787426047	2.000000 1,1303088539773039 1,1303088539773039	0,975181 0,9751810670641506 0,975 0,9751810670641506 0,975	1.130309 1810670641506
As ite	v 0,854102 45898 x 0,854102 erações apresentadas permitem enquadrar respostas numéricas são números decimal entário: s 1096	0,145898 × 0,145898 v o extremo num intervalo em x com a amp	0,145898 × 0,145898 × 0,145898 ×	1.849428 1,8494276787426047	2.000000 1,1303088539773039 1,1303088539773039	0,975181 0,9751810670641506 0,975 0,9751810670641506 0,975	1.130309 1810670641506
As ite	v 0,854102 45898 x 0,854102 erações apresentadas permitem enquadrar respostas numéricas são números decimal solves tobe solves	0,145898 × 0,145898 v 0 extremo num intervalo em x com a amp s em virgula fixa, com pelo menos 5 deci	0,145898 × 0,145898 × 0,145898 × 0,145898 × 0,7082040 × 0,7082040	1.849428 1,8494276787426047	2.000000 1,1303088539773039 1,1303088539773039	0,975181 0,9751810670641506 0,975 0,9751810670641506 0,975	1.130309 1810670641506
As ite	45898 \times 0,854102 45898 \times 0,854102 erações apresentadas permitem enquadrar respostas numéricas são números decimal solve solve su considere a função não línear que se pretector $Z(x,y) = 3x^2 - xy + 11y + y^2 - 8x$ Complete o quadro com os valores em falt	0,145898 × 0,145898 v 0 extremo num intervalo em x com a amp s em virgula fixa, com pelo menos 5 deci	0,145898	1.849428 1,8494276787426047	2.000000 1,1303088539773039 1,1303088539773039	0,975181 0,9751810670641506 0,975 0,9751810670641506 0,975	1.130309 1810670641506
As ite	v 0,854102	0,145898 0,145898 0 extremo num intervalo em x com a amp s em virgula fixa, com pelo menos 5 deci 10,85 de 1,00 Destacar pergunta ende minimizar, por aplicação do Método a, para um passo efectivo de minimizaçã	0,145898	1.849428 1.8494276787426047	2.000000 1,1303088539773039 1,1303088539773039	0,975181 0,9751810670641506 0,975 0,9751810670641506 0,975	1.130309 1810670641506
As ite	45898 \times 0,854102 45898 \times 0,854102 erações apresentadas permitem enquadrar respostas numéricas são números decimal solve solve su considere a função não línear que se pretector $Z(x,y) = 3x^2 - xy + 11y + y^2 - 8x$ Complete o quadro com os valores em falt	0,145898 × 0,145898 v 0 extremo num intervalo em x com a amp s em virgula fixa, com pelo menos 5 deci	0,145898	1.849428 1.8494276787426047 0.9751810670641506 Gradiente 2.00000	2,000000 1,1303088539773039 1,1303088539773039	0,975181 0,9751810670641506 0,975 0,9751810670641506 0,975	1.130309 1810670641506
As ite	v 0,854102	0,145898 0,145898 0 extremo num intervalo em x com a amp s em virgula fixa, com pelo menos 5 deci 10,85 de 1,00 Destacar pergunta ende minimizar, por aplicação do Método a, para um passo efectivo de minimizaçã	0,145898	1.849428 1.8494276787426047 0.9751810670641506	2,000000 1,1303088539773039 1,1303088539773039	0,975181 0,9751810670641506 0,975 0,9751810670641506 0,975	1.130309 1810670641506
As ite	v 0,854102	0,145898 × 0,145898 v 0 extremo num intervalo em x com a amp s em virgula fixa, com pelo menos 5 deci 1,0,85 de 1,00 v Destacar pergunta ende minimizar, por aplicação do Método a, para um passo efectivo de minimizaçã	0,145898 0,145898 0,145898 whilitude 0,7082040 mais.	1.849428 1.8494276787426047 0.9751810670641506 Gradiente 2.00000	2,000000 1,1303088539773039 1,1303088539773039	0,975181 0,9751810670641506 0,975 0,9751810670641506 0,975	1.130309 1810670641506
As ite	v 0,854102	0,145898 × 0,145898 × 0 extremo num intervalo em x com a amy s em virgula fixa, com pelo menos 5 deci 0,85 de 1,00 P Destacar pergunta ende minimizar, por aplicação do Método a, para um passo efectivo de minimizaçã X _n 2 1,50000 × -1,25000 ×	0,145898	1.849428 1.8494276787426047 0.9751810670641506 Gradiente 2.00000	2,000000 1,1303088539773039 1,1303088539773039	0,975181 0,9751810670641506 0,975 0,9751810670641506 0,975	1.130309 1810670641506
O.1.1 As itt	45898 \times 0,854102 45898 \times 0,854102 erações apresentadas permitem enquadrar respostas numéricas são números decimal entário: s 10% Considere a função não linear que se prete $Z(x,y) = 3x^2 - xy + 11y + y^2 - 8x$ Complete o quadro com os valoras em falt Escolha o melhor valor os valoras.	0,145898 × 0,145898 × 0 extremo num intervalo em x com a amy s em virgula fixa, com pelo menos 5 deci 0,85 de 1,00 P Destacar pergunta ende minimizar, por aplicação do Método a, para um passo efectivo de minimizaçã X _n 2 1,50000 × -1,25000 ×	0,145898	1.849428 1.8494276787426047 0.9751810670641506 Gradiente 2.00000	2,000000 1,1303088539773039 1,1303088539773039	0,975181 0,9751810670641506 0,975 0,9751810670641506 0,975	1.130309 1810670641506
O.1.1 As itt	45898 0,854102 45898 0,854102 45898 0,854102 respostas numéricas são números decimal respostas numéricas são números decimal entário: s 10% Considere a função não linear que se prete $Z(x,y) = 3x^2 - xy + 11y + y^2 - 8x$ Complete o quadro com os valoras em falte Escolha o melhor valor para λ . N° Iteração N° Iteração As respostas numéricas são números de entário:	0,145898 × 0,145898 × 0 extremo num intervalo em x com a amy s em virgula fixa, com pelo menos 5 deci 0,85 de 1,00 P Destacar pergunta ende minimizar, por aplicação do Método a, para um passo efectivo de minimizaçã X _n 2 1,50000 × -1,25000 ×	0,145898	1.849428 1.8494276787426047 0.9751810670641506 Gradiente 2.00000	2,000000 1,1303088539773039 1,1303088539773039	0,975181 0,9751810670641506 0,975 0,9751810670641506 0,975	1.130309 1810670641506
O.1.1 As ite	45898 0,854102 45898 0,854102 45898 0,854102 respostas numéricas são números decimal respostas numéricas são números decimal entário: s 10% Considere a função não linear que se prete $Z(x,y) = 3x^2 - xy + 11y + y^2 - 8x$ Complete o quadro com os valoras em falte Escolha o melhor valor para λ . N° Iteração N° Iteração As respostas numéricas são números de entário:	0,145898 × 0,145898 v 0 extremo num intervalo em x com a amy s em virgula fixa, com pelo menos 5 deci 10,85 de 1,00 v Destacar pergunta ende minimizar, por aplicação do Método a, para um passo efectivo de minimizaçã X _n 2 2 1,50000 × 1,25000 × 2 2 2cimais em virgula fixa; com pelo menos	0,145898	1.849428 1.8494276787426047 0.9751810670641506 Gradiente 2.00000	2,000000 1,1303088539773039 1,1303088539773039	0,975181 0,9751810670641506 0,975 0,9751810670641506 0,975	1.130309 1810670641506 1810670641506 Terminar revisão