ICCS24 - 24th International Conference on Composite Structures

FEUP - Faculty of Engineering, University of Porto, Portugal, 14 - 18 June 2021

DESIGN OF LOCALLY RESONANT METAMATERIAL CURVED DOUBLE WALL WITH EMBEDDED RESONATORS TO IMPROVE SOUND INSULATION AT RING AND MASS-SPRING-MASS RESONANCE

Zibo Liu, Romain Rumpler, Leping Feng

8/29/2021

MY BACKGROUND

Born: Shijiazhuang

Bachelor:

BIT, Beijing

Master: **NUDT, Changsha**

PhD: KTH, Stockholm

2011-2014

2014-2019

1989-2007

Research engineer:

- Yiduo Co. Ltd.
- **Tongji University**
- **SYSU**
- Tsinghua...

2019-2021

Postdoc at Tsinghua

2007-2011

2021-2023?

Background and experiences:

- Acoustic metamaterials, smart structure design and application;
- Sound insulation and absorption/NVH control;
- Acoustic/elastic waves;
- Tribology

Turbine noise

Fan noise

- Lightweight
- Bad insulation in particular frequency regions
- Limitations in traditional method

New treatment desired to improve the sound insulation properties of different types of panels

Environmental noise

Depiction of sound transmission

Sandwich structures

Cylindrical shells

Double walls

Theoretical estimation Second 10 Theoretical estimation Theoretical estimation To a second 10 Theoretical estimation Theoretical

NEEDS:

To improve

- Coincidence for sandwiches
- Ring frequency for shells
- Double-wall resonance

DESIGN OF METAMATERIAL PANELS: SCIENTIFIC PROBLEM

- Acoustic metamaterials (AM)
 - Nontrivial behaviour
 - Limited working frequency region
- Locally resonant AM
 - Host panel
 - Resonators

- Unexpected results
- Limited working frequency region

Resonators

- Investigate the physical insights;
- Explore the potential ways to improve the sound insulation behavior in the relevant specific frequency regions.

Under the Thin Plate Assumption:

• Continuity of Velocity:
$$\rho_0 \frac{\partial \vec{v}_z}{\partial t} = -\vec{\nabla}_z \hat{p}$$

• Newton's second law:
$$\hat{p}_1 - \hat{p}_2 = \mathbf{Z} \cdot \hat{v}$$

$$\chi \stackrel{\nabla y}{=} x \varphi = 0; \theta = \frac{\pi}{3}$$

Z Impedance of the panel

• Transmission coefficient:
$$\tau = \frac{P_{\text{trans}}}{P_{\text{inc}}} \rightarrow \left| 1 + \frac{Z \cos \theta}{2 \rho_0 c_0} \right|^{-2}$$

•
$$\hat{p}_2 = \hat{p}_{\text{trans}}$$

 $\hat{p}_{\scriptscriptstyle 1} = \hat{p}_{\scriptscriptstyle \mathrm{inc}} + \hat{p}_{\scriptscriptstyle \mathrm{ref}}$

• Sound transmission loss:
$$STL = 10\log\left(\frac{1}{\tau}\right)$$

Infinitely extended

Infinitely extended

For metamaterial panels:

DESIGN OF METAMATERIAL PANELS: METAMATERIAL SANDWICH

Composite Structures Volume 200, 15 September 2018, Pages 165-172

Metamaterial sandwich with embedded resonators:

A systematic tuning criterion

$$f_{\text{co}}\left(\sqrt{1+\frac{\delta}{2}}-\sqrt{\frac{\delta}{2}}\right) \le f_{\text{res}} \le f_{\text{co}}\left(\sqrt{1+\frac{\delta}{2}}+\sqrt{\frac{\delta}{2}}\right)$$

- where δ is the ratio of the resonator to the host panel
- **Working frequency range:**

Suppress the radiation from the resonators

Overcome the coincidence effect Broaden the working frequency range

Advantages:

- **Coincidence effect**
- Radiation from the resonators
- **Working frequency range**
- **Practicability**

DESIGN OF METAMATERIAL PANELS: METAMATERIAL SHELL

Coincidence:

$$Z = j\omega m \left(1 - \frac{f^2}{f_{co}^2} \right)$$

$$Z_{\rm eff} = Z + Z_{\rm eq}^{\rm r}$$

Ring:

$$Z = j\omega m \left(1 - \frac{f^{2}}{f_{co}^{2}} - \frac{f_{ri}^{2}}{f^{2}} \right)$$

$$Z_{\rm eff} = Z + Z_{\rm eq}^{\rm r}$$

'Side effects'

DESIGN OF METAMATERIAL PANELS: METAMATERIAL SHELL

Journal of Applied Physics **125**, 115105 (2019); https://doi.org/10.1063/1.5081134

Metamaterial cylindrical shell

Tuning conventional resonators to the ring frequency of curved panels generates two side dips despite a sharp improvement.

Z	Resonator	Flat	Shell
Below the freq.	+	+	-
Above the freq.	-	-	+

The 'side effects' from the resonators

Physical insights: Phase change

Resonators: mass-to stiffness-controlled Shell at ring: stiffness- to mass-controlled

- Effective impedance approach;
- Allow for the design of suitable resonators to resolve the ring frequency effect.

- Double wall:
 - Double-wall resonance
- Curved double walls

- Ring frequency effect
- Mass-spring-mass resonance effect

Side wall of an aircraft fuselage

• Transmission coefficient: $\tau = \left| 1 + \frac{Z}{2Z} \right|^{-1}$

$$\tau = \left| 1 + \frac{Z}{2Z_{\rm a}} \right|^{-2}$$

$$Z^{d} = \frac{\mathbf{Z}_{1}}{S} + \frac{\mathbf{j}\omega}{S} \left(\frac{\mathbf{Z}_{1}}{S} + \frac{\mathbf{Z}_{a}}{S} \right) \left(\frac{\mathbf{Z}_{2}}{S} + \frac{\mathbf{Z}_{a}}{S} \right)$$

$$Z^{\text{cd}} = Z_1^{\text{c}} + Z_2^{\text{c}} + \frac{j\omega}{s} \left(Z_1^{\text{c}} + Z_a \right) \left(Z_2^{\text{c}} + Z_a \right)$$

• Estimation of characteristic frequencies:

$$f_1^{\text{cd}} = f_{\text{ri}}$$

$$f_2^{\text{cd}} = \sqrt{f_{\text{msm}}^{\text{d}}^2 + f_{\text{ri}}^2}$$

- Curved double walls → Broad 'valley' → can be narrowed
- Metamaterials

 Limited working frequency range
- Design method
 - 1. Narrow the 'valley'
 - 2. Mount tuned resonators

- Design approach
 - 1. Narrow the 'valley'
 - 2. Mount tuned resonators

1. Resonators on both panels

2. Resonators on one panel

The total added mass is kept constant

Non-identical:

Curved double wall

'Apparent Impedance' formula

$$Z^{cd} = \frac{\mathbf{Z}_{1}^{c} + \mathbf{Z}_{2}^{c} + \frac{j\omega}{s} \left(\mathbf{Z}_{1}^{c} + \mathbf{Z}_{a}\right) \left(\mathbf{Z}_{2}^{c} + \mathbf{Z}_{a}\right)$$

Step 1. Design of the host panel: narrowed 'valley'

Step 2. Mounted with damped resonators

- Apparent impedance approach introduced, validated against the Finite Element method.
- Improvement of sound transmission loss performance around characteristic frequencies.

Thank you for your attention!

Current address:
Zibo Liu
zibo@tsinghua.edu.cn
Department of Mechanical Engineering;
Tsinghua University;
Beijing, China