CALCOLO NUMERICO E MATLAB

Docenti: C. Canuto, S. Falletta, S. Pieraccini

Esercitazione 9

Argomento: Equazioni non lineari¹

- 1. Implementare il metodo di bisezione in una function, arrestando le iterazioni quando il residuo è sceso sotto una tolleranza fissata. Applicarlo agli zeri della funzione $f(x) = \sqrt{x^2 + 1} + x^3 + 4x^2 + 1$.
- 2. Implementare il metodo di Newton in una function, arrestando le iterazioni quando il residuo è sceso sotto una tolleranza fissata. Applicarlo alla funzione $f(x)=x^2-7$ per trovarne la radice positiva. Confrontare con il risultato prodotto dal metodo di bisezione, e con il risultato esatto $\sqrt{7}$.
- 3. Implementare il metodo delle secanti ed applicarlo all'equazione $x^2-7=0$, confrontando con i risultati ottenuti con il metodo di bisezione e il metodo di Newton.
- 4. Verificare sperimentalmente l'ordine di convergenza del metodo di Newton e del metodo delle Secanti negli esempi indicati.
- 5. Applicare il metodo delle iterate di punto fisso al problema di punto fisso $\phi(x) = x$ con le funzioni ϕ di seguito indicate, illustrando graficamente la bisettrice del I-III quadrante, la funzione ϕ e l'andamento delle iterazioni (si usi il comando pause per inserire le iterate una per volta nel grafico).
 - (a) $\phi(x) = \exp(-\frac{x^2}{3})$
 - (b) $\phi(x) = \log(x-1) + 3$ x > 1 (per entrambi i punti fissi)
 - (c) $\phi(x) = \sin(x)$
- 6. Si considerino i seguenti problemi di punto fisso:

$$x^3 - 5 = x$$
, $\frac{2x^3 + 5}{3x^2 - 1} = x$

Si applichi il metodo delle iterate di punto fisso calcolando sperimentalmente l'ordine di convergenza. Si verifichi poi teoricamente l'ordine di convergenza.

¹Gli script per rispondere ai quesiti si possono trovare sul portale della didattica