L3: Analyse matricielle

Devoir N.2

On considère une matrice A à diagonale strictement dominante d'ordre N et $\omega \in]0,1]$. On décompose A sous la forme A=D-E-F avec D la partie diagonale, E et F respectivement les parties inférieure et supérieure de la matrice A.

Soit \mathcal{L}_{ω} la matrice d'itération de la méthode de relaxation, donnée par

$$\mathcal{L}_{\omega} = (D - \omega E)^{-1} \{ (1 - \omega)D + \omega F \}.$$

On pose $L = D^{-1}E$ et $U = D^{-1}F$.

1. Justifier que L et U existent, puis réécrire \mathcal{L}_{ω} en fonction de L et U et montrer que p, le polynôme caractéristique de \mathcal{L}_{ω} s'écrit sous la forme :

$$p(\lambda) = \det((Id - \omega L)^{-1}) \cdot \det(-\lambda (Id - \omega L) + (1 - \omega)Id + \omega U).$$

2. Montrer que si μ est une valeur propre de \mathcal{L}_{ω} de module supérieur à 1, elle satisfait l'équation

$$\det(Id - \alpha(\mu)L - \beta(\mu)U) = 0,$$

où $\alpha(\lambda) := \frac{\lambda \omega}{\lambda + \omega - 1}$ et $\beta(\lambda) := \frac{\omega}{\lambda + \omega - 1}$. On suppose que \mathcal{L}_{ω} admet une valeur propre notée μ de module supérieur à

- 3. Montrer que $|\beta(\mu)| \leq |\alpha(\mu)| < 1$.
- 4. Montrer que la matrice Id L U est à diagonale strictement dominante.
- 5. Montrer que sous l'hypothèse $|\mu| \geq 1$, $Id \alpha(\mu)L \beta(\mu)U$ est diagonale strictement dominante.
- 6. En déduire une contradiction, puis conclure.