Javascript 프로그래밍

컴퓨터의 개념 및 실습 2015.11.24 강의 IDB LAB 임유빈 yblim@idb.snu.ac.kr

목차

- 덧셈기
- 정렬 알고리즘 (Sorting Algorithm)
 - 버블 정렬 (Bubble sort)
 - 삽입 정렬 (Insertion sort)
 - 퀵 정렬 (Quick Sort)
- 검색 알고리즘 (Searching Algorithm)
 - 이진 검색 (Binary search)
 - 숫자 예측 프로그램

덧셈기

■ 1부터 100까지 숫자의 덧셈

$$\sum_{n=1}^{100} n = \frac{n(n+1)}{2}$$

■ 프로그래밍 언어로 작성

```
var sum=0;
for(var i=1; i<=100; i++){
   sum += i;
}</pre>
```

덧셈기 예제

■ 다양한 덧셈기 만들기

정렬 알고리즘

- 데이터를 일정한 규칙에 따라 재배열
- 정보 정렬의 필요성
 - 이름 순 정렬
 - 생일 순 정렬
 - 학번 순 정렬

- 버블 정렬 이름의 유래
 - 공기 방울이 물 속에서 물 위로 올라오듯이

- 가장 단순하고 이해하기 쉬운 정렬 알고리즘
- 알고리즘
 - 1. 인접한 데이터의 값 비교
 - 2. 대소관계에 따라 위치 변경
 - 3. 배열의 처음부터 마지막까지 1,2 반복
 - 4. 1~3과정 배열의 데이터 수 만큼 반복

■ 과정 4

•						
Step 1	71	60	4	56	51	62
Step 2	71	62	60	4	56	51
Step 3	71	62	60	56	4	51
Step 4	71	62	60	56	51	4
Step 5	71	62	60	56	51	4
Step 6	71	62	60	56	51	4
				- /		

삽입 정렬

- 정렬되지 않은 공간과 정렬된 공간 함께 운용
- 비정렬 데이터를 정렬된 부분의 적절한 위치에 삽입

비정렬 공간								
62	71	51	56	4	60			
71	51	56	4	60				
51	56	4	60					
56	4	60						
4	60							
60								

삽입 정렬

퀵 정렬

- 일반적으로 정렬 알고리즘 중에서 가장 빠름
- 알고리즘
 - 1. 배열에서 기준 값 하나 선정
 - 2. 기준 값보다 작은 값은 앞으로, 큰 값은 뒤로
 - 3. 나뉘어진 구역에서 1,2를 반복 구역의 데이터가 하나일 때까지
- Divide-and-conquer

퀵 정렬

검색 알고리즘

- 데이터의 집합에서 원하는 값을 검색
- 순차 검색 (Sequential search)

- 이진 검색 (Binary search)
 - 정렬된 데이터 집합을 이분화하며 검색

이진 검색

- 알고리즘
 - 1. min idx = 배열의 처음 위치
 - 2. max_idx = 배열의 마지막 위치
 - 3. median idx = (최소 위치 값 + 최대 위치 값) / 2
 - 4. if $(\min_i dx != \max_i dx)$
 - a. if (search > median) $min_idx = median_idx+1$
 - b. if (search < median) max idx = median idx-1
 - C. if (search = median) return median
 - 5. min_idx가 max_idx보다 커질 때까지 3,4 반복 위 경우에 해당하지 않으면 검색 값은 배열에 없음

이진 검색

■ 데이터가 있는 경우

[1]	[2]	[3]	[4]	[5]	[6]	[7]
1	2	3	4	6	7	9

최소 위치 값 = 1 중간 위치 값 = (1+7)/2 = 4 최대 위치 값 = 7 중간 값 = 4 최소 위치 값 = 4+1=5

1	2	3	4	6	7	9
---	---	---	---	---	---	---

최소 위치 값 = 5 중간 위치 값 = (5+7)/2 = 6 최대 위치 값 = 7 중간 값 = 7 최대 위치 값 = 6-1=5

1 2 3 4 6 7 9

6=6

최소 위치 값 = 5 중간 위치 값 = (5+5)/2 = 5 최대 위치 값 = 5

중간 값 = 6

■ : 제외 공간

이진 검색

■ 데이터가 없는 경우

_	[1]	[2]	[3]	[4]	[5]	[6]	[7]
	1	2	3	4	6	7	9

최소 위치 값 = 1 중간 위치 값 = (1+7)/2 = 4 최대 위치 값 = 7 중간 값 = 4 최소 위치 값 = 4+1=5

1	2	3	4	6	7	9
---	---	---	---	---	---	---

최소 위치 값 = 5 중간 위치 값 = (5+7)/2 = 6 최대 위치 값 = 7 중간 값 = 7 최대 위치 값 = 6-1=5

1 2	3	4	6	7	9
-----	---	---	---	---	---

최소 위치 값 = 5 중간 위치 값 = (5+5)/2 = 5 최대 위치 값 = 5

중간 값 = 6

■ : 제외 공간

숫자 예측 프로그램

■ 1~100 사이의 숫자 중 임의로 선택된 숫자 예측

숫자 예측 프로그램

- 기능
 - EXPECT 버튼
 - 1. 범위 밖 숫자 입력으로 들어올 때 처리

2. 예측 값이 실제 값보다 큰 지 작은지 체크

숫자 예측 프로그램

- 기능
 - 3. 예측 값과 실제 값이 일치 시

RESET 버튼프로그램을 초기 상태로 되돌림