

AGENTES E AMBIENTES

BREVE INTRODUÇÃO A AGENTES Prof. Tacla UTFPR/Curitiba

AGENTE SITUADO

Ênfase na visão de IA como agente '**situado**' e '**racional**' em um ambiente que consegue perceber por meio de sensores e no qual consegue executar ações por meio de atuadores.

AGENTES

- São agentes:
 - robôs
 - softbots
 - dispositivos móveis
 - humanos

AGENTES

Função agente (agent function)

Um agente possui uma *função* de mapeamento: de percepções para ações

$$f: \mathcal{P}^* o \mathcal{A}$$
 ações histórico de percepções (percepts)

Programa agente (agent program)

Um programa executa a *função* do agente em uma arquitetura física (software + hardware)

EXEMPLO: aspirador de pó

Percepções: pares locais e conteúdos; ex. [A, sujo]

Ações: left, right, suck, NoOp

Exemplo: percepts

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[B, Clean] $[B, Dirty]$ $[A, Clean], [A, Clean]$	Right
[A, Clean], [A, Dirty]	Suck
tempo	:
atual	!

Exemplo: percepts

Função do agente aspirador

Ser racional é fazer a coisa certa, mas, como o agente sabe o que é certo?

percepções → agente delibera → agente executa ação

estado do ambiente muda

Sequência de ações causa sequência de mudanças de estados no ambiente

$$s_0 \rightarrow a \zeta \tilde{a} o_1 \rightarrow s_1 \rightarrow a \zeta \tilde{a} o_2 \rightarrow s_2 \rightarrow ... \rightarrow a \zeta \tilde{a} o_n \rightarrow sn$$

O agente agiu bem? Fez a coisa certa?

Se os estados do ambiente forem desejáveis, então sim.

O que é desejável?

Desejável é uma noção capturada por uma medida de desempenho.

Exemplo

- **1.** medida de desempenho: quadrados limpos/ações executadas
- 2. Aspirador tem representação interna da geografia do ambiente (fig. abaixo)
- 3. a localização inicial do agente e das sujeiras não são conhecidas
- ações: suck, left, right
 (movem para esq. e dir. qdo na parede não se move; uma vez que um quadrado é limpo, permanece limpo)
- 5. o agente percebe corretamente sua localização e se a localização contém sujeira

Qual sequência de ações tem melhor desempenho?

[suck, right, suck] → desempenho = 2/3 = 66% [suck, suck, left, right, suck] → desempenho = 2/5 = 40%

Agente racional:

Para cada sequência possível de percepções, um agente racional deve selecionar uma ação que se espera venha a <u>maximizar sua</u> <u>medida de desempenho</u>, dada a evidência fornecida pela sequência de <u>percepções</u> e por qualquer <u>conhecimento interno</u> do agente.

Dada a percepção [A, dirty] qual a melhor seleção/escolha de ação baseado no desempenho?

Racional ≠ Onisciência

Percepções podem **não** retratar fielmente o ambiente ou tudo que nele ocorre (informação incompleta)

Resultados das ações podem divergir do esperado

Logo, ser <u>racional</u> não significa necessariamente ter sucesso!

Racionalidade envolve <u>exploração</u>, <u>autonomia</u> e <u>aprendizado</u>

Quando um agente se baseia no conhecimento do seu projetista e não em suas próprias percepções, e não tem capacidade de aprendizado então tem pouca autonomia

Ambientes

- Para construir agentes racionais, devemos conhecer, entre outros, o ambiente onde estarão situados:
 - medida de desempenho
 - sensores
 - atuadores
 - ambiente

Ambientes

Definição:

Env: $S X A \rightarrow y(S)$

S: conjunto de estados do ambiente

A: conjunto de ações possíveis de serem executadas no ambiente pelos agentes $\gamma(S)$: é o conjunto potência de S

Intuição

A execução da ação a em um ambiente cujo estado é s resulta em um ou mais de um dentre os estados de y(S) = cenários possíveis

Exemplo:

Env: $(<A, dirty, dirty>, suck) \rightarrow {<A, clean, dirty>}$

Tipos de Ambientes

Completamente observável

Um só agente

Competitivo

Determinístico

Episódico

Estático

Discreto

Parcialmente observável

Multiagente

Cooperativo

Estocástico

Sequencial

Dinâmico

Contínuo

Observável

Os sensores do agente transcrevem de **forma completa** o **estado do ambiente** a cada instante de tempo?

R: Sim, então o ambiente é completamente observável.

Ambiente completamente observável → agente não precisa manter estado interno, i.e. uma representação interna do que observa.

Monoagente x Multiagente

Um agente capaz de solucionar um quebra-cabeças é claramente um agente único.

Mas, em situações onde há oponentes ou simplesmente outras entidades (ex. carros)?

A outra entidade pode ser vista como algo que se comporta com as leis da física/leis naturais? Neste caso, é parte do ambiente – e estamos na situação de um único agente,

caso contrário, se a outra entidade possui uma <u>função de</u> <u>desempenho</u> ou <u>há comunicação/cooperação/coordenação</u> entre as entidades estamos no caso de um sistema **multiagente**

Competitivo x Cooperativo

objetivo individual

Competitivo: quando um agente maximiza sua medida de desempenho a medida do outro minimiza.

Colaborativo: os objetivos são individuais, porém a ação de um agente colabora para que o outro atinja seu objetivo

Coordenativo: os objetivos são individuais, e as ações dos agentes não interferem (nem ajudam, nem atrapalham) o atingimento dos objetivos dos outros.

objetivo comum

Cooperativo: quando o objetivo perseguido é comum aos agentes. Os agentes têm ganhos adicionais ao trabalharem juntos.

Determinístico x Estocástico

Determinístico: o próximo **estado do ambiente** é completamente definido pela **ação** executada pelo agente?

y(S) é um conjunto unitário

Estocástico: caso contrário.

y(S) é um conjunto de cardinalidade > 1

Obs.:

Na definição do R&N, eles ignoram incerteza originada pelas ações dos outros agentes num ambiente multiagente. Então um ambiente pode ser determinístico mesmo se um agente é incapaz de prever as ações dos outros agentes.

O mundo físico é não-determinístico.

Episódico x Sequencial

Episódico: a escolha da próxima ação depende unicamente do estado atual do ambiente. A próxima deliberação não depende do histórico de escolhas.

Sequencial: a decisão atual afeta as decisões futuras – ex. táxi automatizado ou jogador de xadrez.

Agentes episódicos são muito mais fáceis de serem projetados – não precisam de planos!

Estático x Dinâmico

Estático: se o ambiente não muda enquanto o agente delibera, então estamos no caso estático.

Dinâmico: o ambiente muda enquanto o agente delibera e o agente deve constantemente avaliar estas mudanças.

Semidinâmico: quando o ambiente não muda com o tempo, mas a medida de desempenho sim (ex. no jogo de xadrez com relógio, o jogador perde a vez se o tempo expira, desarmar uma bomba, manutenção em Fukushima)

Contínuo x Discreto

Discreto: se o ambiente tiver um número finito de percepções e ações, se as ações e percepções do agente são conjuntos discretos então é discreto (ex. xadrez sem relógio).

Contínuo: quando o agente deve lidar com grandezas contínuas sejam elas ligadas às percepções ou às ações (ex. carro automatizado – velocidade, localização).

Estrutura dos agentes

entrada: sequência de percepções

Observar a diferença entre a função f e o programa:

- a função considera todas as sequências de percepções de P = todos subconjuntos ordenados de $P(P^*)$.
- O programa considera somente a última percepção já que o ambiente por si só não armazena percepções. Cabe ao agente armazená-las se precisar trabalhar com a sequência de percepções.

Estrutura dos agentes: f x programa

função f representada como uma tabela de P* para ação

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
:	÷

programa para agente reativo considera somente a última percepção

```
function Reflex-Vacuum-Agent([location,status]) returns an action
```

if status = Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

Estrutura dos agentes: reativos

- Agente reativo (+simples)
 - objetivos são codificados <u>implicitamente</u> no agente pelo projetista
 - reage a última percepção (não guarda histórico)
 - acoplamento grande entre percepção e ação
 - normalmente, implementado por regras
 - funciona bem em ambientes completamente observáveis (mas não exclusivamente
 - as percepções retratam o ambiente (ou, ao menos, tudo o que o agente necessita sabe sobre ele)

Agente reativo simples

Agente Reativo em AgentSpeak

```
+dirty <- suck.

+pos(1) <- right.

+pos(2) <- down.

+pos(3) <- up.

+pos(4) <- left.
```

Estrutura dos agentes

- Agente deliberativo (+complexo)
 - possui <u>representações explícitas</u> de crenças e objetivos
 - Há diversos tipos:
 - baseados em mecanismos de escolha (teoria de jogos)
 - baseados em baseado <u>raciocínio prático</u> (voltado à ação: escolha de objetivo + raciocínio instrumental (*planning*)
 - agentes BDI: representam estados e objetivos por meio de crenças (beliefs), desejos (desires) e intenções (intentions) = BDI

Agente baseado em objetivos

Agente deliberativo em AgentSpeak

```
!clean. // initial goal

+!clean : clean <- !move; !clean.
+!clean : dirty <- suck; !move; !clean.
-!clean <- !clean.

+!move : pos(1) <- right.
+!move : pos(2) <- down.
+!move : pos(3) <- up.
+!move : pos(4) <- left.</pre>
```

<u>Proativo</u>: orientado a objetivos

Objetivo de manutenção '!clean' orienta o comportamento do agente Grau de <u>autonomia</u> é limitado (não tem exploração e aprendizado)

Principais características de agentes

- situados em um ambiente
- reatividade: responder a mudanças do ambiente
- proatividade: capacidade de perseguir objetivos
- autonomia: inversa ao grau de interferência (humana)

Agentes x Outros paradigmas

- Quais são as diferenças entre agentes e
 - Sistemas funcionais:
 - F: Inputs → Outputs
 - ex. compilador
 - Objetos:
 - *locus* de decisão externo ao objeto

Referências

- Estes slides foram baseados no capítulo 2 de Russel e Norvig (2ed). Alguns slides são traduções dos slides destes autores.
- Wooldridge, M. Introduction to Multiagent Systems, 2009.