GG606

Data transformations and wrangling

Homework

- folder structure for the workflow
 - we spoke about keeping raw data separate from processed data and keeping figures and/or tables together)
- use the here package and function
- R script to load data from pangaea.de or www.frdr-dfdr.ca
 - example, read_csv(here("folder", "file"))
- create and save a figure to an appropriate folder
 - hint, use the ggsave and here functions
- Put a screenshot of your success on discord

Homework

Transformations

- Organisation
- Reproducible
- Inputs & Outputs
- R-Script vs R-Markdown/Quarto vs Function

Intro

- vector, matrix, data.frame, tibble
- import -> tidy -> save?
- So many data types

- MATLAB array: [1 2 3 4] (row vector)
- MATLAB vector: [1 2 3; 4 5 6; 7 8 9]
- •
- •
- •
- •

- MATLAB array: [1 2 3 4] (row vector)
- MATLAB vector: [1 2 3; 4 5 6; 7 8 9]
- Rarray: array(1, 2, 3)(≥1 dimensions)
- R vector: c(1, 2, 3) (fixed size, same type)
- •
- •

- MATLAB array: [1 2 3 4] (row vector)
- MATLAB vector: [1 2 3; 4 5 6; 7 8 9]
- Rarray: array(1, 2, 3)(≥1 dimensions)
- R vector: c(1, 2, 3) (fixed size, same type)
- R matrix: 2-dimensional vector
- R data.frame (table): (1 type per column, header names) data.frame(a=1:3, b=4:6)

tibbles

• data.frame(a=1:3, b=4:6)

```
> data.frame(a=1:3, b=4:6)
   a b
1 1 4
2 2 5
3 3 6
```

• tibble(a=1:3, b=4:6)

tibbles

- Prints 10 rows
- Column type
- (default options can be changed)
- Strict(er) behaviour can be useful
- Tools for identifying data types
- Can easily convert:

tibbles

Can easily convert:

```
x ← tibble(a=1:3, b=4:6)
y ← as.data.frame(x)
y
```

Data import

readr

- read_csv vs read.csv
- Your examples
- A few examples

I spent a whole day once trying to get Swedish lake names to read-in properly. And the Mac vs PC encoding was a nightmare for reproducible code.

I spent a whole day once trying to get Swedish lake names to read-in properly. And the Mac vs PC encoding was a nightmare for reproducible code.

Johannes Feldbauer 3 months ago

Yes I agree. I think I use UTF-8 encoding and usually I try not to use special characters and instead write something like "mu". But I think everybody here had at least some bad experience with text files (not to mention horribly formated excell tables \bigcirc)

Parsing

```
parse_functions
 - parse_logical() parse_integer()
 - parse_double() parse_number()
 - parse_character()
 - parse factor()
 - parse_datetime() parse_date() parse_time()
 - guess_parser()
```

Parsing Numbers

- parse_double("1.23")
- parse_double("1,23", locale =
 locale(decimal_mark = ","))
- •
- lacktrian

Parsing Numbers

- parse_double("1.23")
- parse_double("1,23", locale =
 locale(decimal_mark = ","))
- parse_number("\$100")
- parse_number("123.456.789", locale =
 locale(grouping mark = "."))

Parsing Dates

- parse_datetime("2021-01-01T0001")
- ISO8601 by default
- What if no time?
- hms & lubridate packages

Parsing Dates

- parse_date("01/02/15", "%m/%d/%y")
- parse_date("01/02/15", "%d/%m/%y")
- parse_date("01/02/15", "%y/%m/%d")
- Can be infuriating

Parsing Dates

```
• parse_date("1 janvier 2015",
    "%d %B %Y", locale = locale("fr"))
```

- •
- Can be infuriating
- Also time zones

COMMENT

Open Access

CrossMark

Gene name errors are widespread in the

scientific literature

Mark Ziemann¹, Yotam Eren^{1,2} and Assam El-Osta^{1,3*}

Abstract

The spreadsheet software Microsoft Excel, when used with default settings, is known to convert gene names to dates and floating-point numbers. A programmatic scan of leading genomics journals reveals that approximately one-fifth of papers with supplementary Excel gene lists contain erroneous gene name conversions.

Keywords: Microsoft Excel, Gene symbol, Supplementary data

Abbreviations: GEO, Gene Expression Omnibus; JIF, journal impact factor

Economic Policy

An alarming number of scientific papers contain Excel errors

By **Christopher Ingraham** Reporter

August 26, 2016 at 6:17 a.m. EDT

What you type	What you see	How Excel stores it
MARCH1	1-MAR	42430
SEPT2	2-SEP	42615

BMC Bioinformatics

Correspondence

Open Access

Mistaken Identifiers: Gene name errors can be introduced inadvertently when using Excel in bioinformatics

Barry R Zeeberg^{†1}, Joseph Riss^{†2}, David W Kane³, Kimberly J Bussey¹, Edward Uchio⁴, W Marston Linehan⁴, J Carl Barrett² and John N Weinstein^{*1}

Address: ¹Genomics & Bioinformatics Group, Laboratory of Molecular Pharmacology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bldg 37 Rm 5041, NIH, 9000 Rockville Pike, Bethesda, MD 20892 USA, ²Laboratory of Biosystems and Cancer, CCR, Bldg 37 Rm 5032, NIH, 9000 Rockville Pike, Bethesda, MD 20892 USA, ³SRA International, 4300 Fair Lakes CT, Fairfax, VA 22033 USA and ⁴Urologic Oncology Branch, Bldg 10 Rm 2B47, National Institutes of Health, Bethesda, MD 20892 USA

Email: Barry R Zeeberg - barry@discover.nci.nih.gov; Joseph Riss - rissj@helix.nih.gov; David W Kane - david_kane@sra.com; Kimberly J Bussey - busseyk@mail.nih.gov; Edward Uchio - eu8v@nih.gov; W Marston Linehan - linehanm@mail.nih.gov; J Carl Barrett - barrett@mail.nih.gov; John N Weinstein* - weinstein@dtpvx2.ncifcrf.gov

* Corresponding author †Equal contributors

Published: 23 June 2004

BMC Bioinformatics 2004, 5:80 doi:10.1186/1471-2105-5-80

Received: 05 March 2004 Accepted: 23 June 2004

This article is available from: http://www.biomedcentral.com/1471-2105/5/80

© 2004 Zeeberg et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.

BMC Bioin1

000

Back

Internet zone

Correspondence

Mistaken Identifiers inadvertently when Barry R Zeeberg^{†1}, Jose[‡]

Address: 1 Genomics & Bioinformatics Gro Institute (NCI), National Institutes of Hea Biosystems and Cancer, CCR, Bldg 37 Rm Fairfax, VA 22033 USA and 4Urologic Onc

Email: Barry R Zeeberg - barry@discover.n Kimberly J Bussey - busseyk@mail.nih.gov Carl Barrett - barrett@mail.nih.gov; John ! * Corresponding author †Equal contribu

Published: 23 June 2004

BMC Bioinformatics 2004, 5:80 doi:10.1186/

This article is available from: http://www.bion

© 2004 Zeeberg et al; licensee BioMed Centi media for any purpose, provided this notice i

Cocusting Report

@ Apple Support @ Apple Store @ (Tools @ Mac OS X @ Microsoft MacTopia

Refresh

Home

www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=4735

Open Access

duced

Bussey¹, nn N Weinstein*1

h (CCR), National Cancer 20892 USA, 2Laboratory of rnational, 4300 Fair Lakes CT, da. MD 20892 USA

ine@sra.com; ail.nih.gov; J

of this article are permitted in all

COMMENT

Open Access

CrossMark

Gene name errors are widespread in the scientific literature

Mark Ziemann¹, Yotam Eren^{1,2} and Assam El-Osta^{1,3*}

The problem of Excel software (Microsoft Corp., Redmond, WA, USA) inadvertently converting gene symbols to dates and floating-point numbers was originally described in 2004 [1]. For example, gene symbols such as SEPT2 (Septin 2) and MARCH1 [Membrane-Associated Ring Finger (C3HC4) 1, E3 Ubiquitin Protein Ligase are converted by default to '2-Sep' and '1-Mar', respectively. Furthermore, RIKEN identifiers were described to be automatically converted to floating point numbers (i.e. from accession '2310009E13' to '2.31E+13'). Since that report, we have uncovered further instances where gene symbols were converted to dates in supplementary data of recently published papers (e.g. 'SEPT2' converted to '2006/09/02'). This suggests that gene name errors continue to be a problem in supplementary files accompanying articles. Inadvertent gene symbol conversion is problematic because these supplementary files are an important resource in the genomics community that are

Strategies

- readr used to uses heuristic over first 1000 rows – now uses periodic rows + 1st and last
- guess_parser()

Save

- Import
- Tidy
- Save write_csv() or write_rds()
- How would you organise multiple R scripts to: import, tidy, save & load, continue

12 Points

 Karl W. Broman & Kara H. Woo (2018) Data Organization in Spreadsheets, The American Statistician, 72:1, 2-10, https://doi.org/10.1080/00031305.2017.1375989

Be Consistent

- Names
- Codes
- Identifiers
- Extra spaces

Good Names

- Avoid spaces
- No special characters or symbols

Table 1. Examples of good and bad variable names.

good name	good alternative	avoid
Max_temp_C Precipitation_mm Mean_year_growth sex weight cell_type Observation_01		Maximum Temp (°C) precmm Mean growth/year M/F w. Cell type 1st Obs.

Dates

 YYYY-MM-DD ISO8601

	Α	В	С
1	Date	Assay date	Weight
2		12/9/05	54.9
3		12/9/05	45.3
4	12/6/2005	е	47
5		е	45.7
6		е	52.9
7		1/11/2006	46.1
8		1/11/2006	38.6

Figure 1. A spreadsheet with inconsistent date formats. This spreadsheet does not adhere to our recommendations for consistency of date format.

No Empty Cells

Empty vs NA

•	٠.	
-		
•	٠.	

	Α	В	С
1	id	date	glucose
2	101	2015-06-14	149.3
3	102		95.3
4	103	2015-06-18	97.5
5	104		117.0
6	105		108.0
7	106	2015-06-20	149.0
8	107		169.4

В

	Α	В	С	D	E	F	G	Н	- 1
1		1 min				5 min			
2	strain	normal		mutant		normal		mutant	
3	А	147	139	166	179	334	354	451	474
4	В	246	240	178	172	514	611	412	447

One Thing Per Cell

a place for everything and everything in its place

Finally, do not merge cells. It might look pretty, but you end up breaking the rule of *no empty cells*.

Rectangle

	A	В	С	D	E	F
1						
2		101	102	103	104	105
3	sex	Male	Female	Male	Male	Male
4						
5		101	102	103	104	105
6	glucose	134.1	120.0	124.8	83.1	105.2
7						
8		101	102	103	104	105
9	insulin	0.60	1.18	1.23	1.16	0.73

	Α	В	С	D	E	F	G
1	1MIN						
2			Normal			Mutant	
3	B6	146.6	138.6	155.6	166	179.3	186.9
4	BTBR	245.7	240	243.1	177.8	171.6	188.1
5							
6	5MIN						
7			Normal			Mutant	
8	B6	333.6	353.6	408.8	450.6	474.4	423.8
9	BTBR	514.4	610.6	597.9	412.1	447.4	446.5

	A	В	С	D	E	F	G
1							
2	Date	11/3/14					
3	Days on diet	126					
4	Mouse #	43					
5	sex	f					
6	experiment		values			mean	SD
7	control		0.186	0.191	1.081	0.49	0.52
8	treatment A		7.414	1.468	2.254	3.71	3.23
9	treatment B		9.811	9.259	11.296	10.12	1.05
10							
11	fold change		values			mean	SD
12	treatment A		15.26	3.02	4.64	7.64	6.65
13	treatment B		20.19	19.05	23.24	20.83	2.17

	A	В	С	D	E	F
1		GTT date	GTT weight	time	glucose mg/dl	insulin ng/ml
2	321	2/9/15	24.5	0	99.2	lo off curve
3				5	349.3	0.205
4				15	286.1	0.129
5				30	312	0.175
6				60	99.9	0.122
7				120	217.9	lo off curve
8	322	2/9/15	18.9	0	185.8	0.251
9				5	297.4	2.228
10				15	439	2.078
11				30	362.3	0.775
12				60	232.7	0.5
13				120	260.7	0.523
14	323	2/9/15	24.7	0	198.5	0.151
15				5	530.6	off curve lo

Figure 5. Examples of spreadsheets with nonrectangular layouts. These layouts are likely to cause problems in analysis.

Data Dictionary

Metadata

	A	В	С	D
1	name	plot_name	group	description
2	mouse	Mouse	demographic	Animal identifier
3	sex	Sex	demographic	Male (M) or Female (F)
4	sac_date	Date of sac	demographic	Date mouse was sacrificed
5	partial_inflation	Partial inflation	clinical	Indicates if mouse showed partial pancreatic inflation
6	coat_color	Coat color	demographic	Coat color, by visual inspection
7	crumblers	Crumblers	clinical	Indicates if mouse stored food in their bedding
8	diet_days	Days on diet	clinical	Number of days on high-fat diet

Figure 9. An example data dictionary.

No Calcs in Data Files

- Really
- This will be difficult for some people

(Has this happened to you? You open an Excel file and start typing and nothing happens, and then you select a cell and you can start typing. Where did all of that initial text go? Well, sometimes it got entered into some random cell, to be discovered later during data analysis.)

Your primary data file should be a pristine store of data. Write-protect it, back it up, and do not touch it.

Colour & Highlights Are Not Data

Α

	Α	В	С
1	id	date	glucose
2	101	2015-06-14	149.3
3	102	2015-06-14	95.3
4	103	2015-06-18	97.5
5	104	2015-06-18	1.1
6	105	2015-06-18	108.0
7	106	2015-06-20	149.0
8	107	2015-06-20	169.4

В

	Α	В	С	D
1	id	date	glucose	outlier
2	101	2015-06-14	149.3	FALSE
3	102	2015-06-14	95.3	FALSE
4	103	2015-06-18	97.5	FALSE
5	104	2015-06-18	1.1	TRUE
6	105	2015-06-18	108.0	FALSE
7	106	2015-06-20	149.0	FALSE
8	107	2015-06-20	169.4	FALSE

Figure 10. Highlighting in spreadsheets. (a) A potential outlier indicated by highlighting the cell. (b) The preferred method for indicating outliers, via an additional column.

Backups

- March 31 is World Backup Day
- http://www.worldbackupday.com

Data Validation

 Feature in spreadsheets to help with data entry

Save Plain Text

Good test

Α

A В C D E id glucose triglyc sex insulin 2 101 Male 134.1 0.60 273.4 3 102 Female 120.0 1.18 243.6 4 103 Male 124.8 1.23 297.6 5 104 Male 83.1 1.16 142.4 105 Male 105.2 0.73 215.7 6

В

```
id, sex, glucose, insulin, triglyc

101, Male, 134.1, 0.60, 273.4

102, Female, 120.0, 1.18, 243.6

103, Male, 124.8, 1.23, 297.6

104, Male, 83.1, 1.16, 142.4

105, Male, 105.2, 0.73, 215.7
```

Figure 11. (a) An example spreadsheet. (b) The same data as a plain text file in CSV format.

A TTC Example

- Sharla Gelfand
 https://sharlagelfand.netlify.app/posts/tidy-ttc/
- https://open.toronto. ca/dataset/ttc-riders hip-analysis/

Homework

- Pick a year: https://doi.org/10.5683/SP3/OUWVZ3 (physical, chemical, biological)
- Use this: https://doi.org/10.5683/SP2/TNYTQL "NW-20-C2-Chronology-Dspec50-2019-with-self-attenuation-SimpleView.xlsx" "NW-50-Chronology-Dspec649-2019-withdensity-SIMPLEVIEW with graphs v3.tab"