Reg. No.	
----------	--

B.Tech/ M.Tech (Integrated) DEGREE EXAMINATION, MAY 2024

Third Semester

21CSS201T - COMPUTER ORGANIZATION AND ARCHITECTURE

(For the candidates admitted from the academic year 2022-2023 onwards)

70.7		
	O fo	
-13	ULC	

(i) **Part - A** should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

(ii)		- B and Part - C should be answer						
Γime: 3	Hours	3			Max.	Ma	rks:	75
		$PART - A (20 \times 1)$	1 = 201V	(arks)	Marks	BL	СО	PO
		Answer ALL						
1	771- 0	representation of hexadecimal:			1	1	1	1
1.	(A)	6*162+13*161+14*160	(R)	6 * 162 + 12 * 161 + 13 * 160				
	(C)	6 * 162 + 11 * 161 + 14 * 160	(D)	0*102+14*101+15*100				
2	1'e c	omplement of 1011101 is			1	1	1	1
4.		0101110		1001101				
	(C)		. /	1100101				
	(C)	0100010	(D)	1100101				
3	Whi	ch of the following gate will gi	ve a 0 v	when both of its inputs are 1?	1	1	1	1
٥.		AND		OR				
	` '	NAND	. ,	EXOR				
	(0)	11111	(-)					
4.		are universal gates.			1	1	1	1
		NOT	(B)	NAND & NOR				
	(C)	AND	(D)	NOT, AND & OR				
	. ,							
5.		is the sequence of operation	on perf	formed by CPU in processing an	. 1	1	2	1
	instr	uction.		**				
	(A)	Execute cycle	. ,	Fetch cycle				
	(C)	Decode	(D)	Instruction cycle				
_			• (. 1	1	2	1
6.			nary ini	formation either to the right or the	, -	-		
		is called a	(D)	Comical magnington				
		Parallel register	` '	Serial register				
	(C)	Shift register	(D)	Storage register				
7	Whi	ch interrupt services save all th	e regist	ter and flags	1	1	2	1
		Save interrupt		Input output interrupt				
		Service interrupt		Save and service interrupt				
	(C)	Service interrupt		Save and Service morning.				
8.	In r	nultiple bus organization, the	e regist	ters are collectively placed and	1 1	1	2	1
3.		rred as	Ü	•				
		Set registers	(B)	Register file				
		Register block	(D)	T				

9.	Wh	ich of the following is used for b	inary	multiplication?	1	1	3	1
	(A)	Restoring multiplication		Booth's algorithm				
		Pascal's rule		Digit-by-digit multiplication				
10.		cording to De-Morgan's theorem:	NAI	ND =	1	1	3	1
	(A)	Bubbled AND	(B)	Bubbled NOR				
	(C)	Bubbled XOR	(D)	Bubbled OR				
11.		sign followed by the string of di	gits is	s called as	1	1	3	1
		Significant	(B)	Determinant				
	(C)	Mantissa	(D)	Exponent				
12.		2 bit representation the scale fact	or as	a range of	1	1	3	1
		–128 to 127		–256 to 255				
	(C)	0 to 255	(D)	-128 to 255				
13.		at does the RUN signal do?			1	1	4	1
	(A)		(B)	It causes a particular signal to				
		signal		performs its operation				
	(C)		(D)	It increments the step counter by				
		end		one				
14.		disadvantage/s of the hardwired			1	1	4	1
	(A)	It is less flexible	(B)	It cannot be used for complex				
	(0)	W. *		instructions				
	(C)	It is costly	(D)	Less flexile and cannot be used				
				for complex instructions				
15.		pelining each stage is given			1	1	4	1
		Equal	` '	Different				
	(C)	Infinite	(D)	No / zero				
16.	The	instruction processing unit fetcl	hes a	nd decodes and	1	1	4	1
		uctions.						
		Vector, sub vector		Pipelines, parallel task				
	(C)	Scalar, vector	(D)	Pipelines, scalar				
17,		ID stands for			1	1	5	1
	(A)	Multiple input multiple data	(B)	Memory input multiple data				
	(C)	Multiple instruction multiple	(D)	Memory instruction multiple				
		data		data				
18.	Whe	n the processor is executing in wide.	ARM	I stage, then all instructions are	1	1	5	1
	(A)	8 bits	(B)	16 bits				
	(C)	32 bits		64 bits				
19.	The i	frequency of load / store instructi	on is	around	1	1	5	1
	(A)	20%		10%				
	(C)	40%	(D)	670/				

20.	During a write operation if the required block is not present in the cache then occurs				1	5	1
	(A) Write miss (B) (C) Write hit (D)	,	Write latency Write delay				
	$PART - B (5 \times 8 = 40)$ Answer ALL Ques			Marks	BL	со	РО
21. a.	Differentiate between decimal, binary, o			8	1	1	1
b.i.	(OR) Subtract 111001 ₂ from 101011 ₂ using the	e 1'	's complement method.	4	1	1	1,2
	Subtract 101011 ₂ from 111001 ₂ using the			4	1	1	1,2
22. a.	. Give the control sequence for execution of instruction.			8	2	2	1
b.	(OR) Describe the importance of different architecture.	a a c	ddressing modes in computer	8	2	2	1
23. a.	Assume $A = (+8)$ and $B = (+5)$. Multipalgorithm show the step-by-step multipli			8	3	3	1,2
b.	(OR) Write the IEEE 754 format for representing floating point number in single precision and double precision format represent the decimal number 10.25 using IEEE 754 single precision floating point format.			8	2	3	1,2
24. a.	Find the complete control sequence for exR1 for the single bus CPU.	κecι	ution of the instruction Add(R3),	8	2	4	1
Ъ.	(OR) Discuss about branch prediction with exa	amp	ole.	8	2	4	1
25. a.	Explain in detail about MESI protocol wa	ith	a neat diagram.	8	2	5	1
b.	(OR) The parallel computer architecture adds a of computer system by using more an principle, performance of a single proces and describe the need of parallelism. Conneed for the real time scenario.	nd 1 sor	more number of processor. In at a given point of time. Justify	8	1	5	1
886 62	PART – C (1 × 15 Answer ANY ON			Marks	BI.	CO	PO
26.	An instruction is stores at location 300 windless field has the value 400. An number 200. Evaluate the effective address instruction is.	pro	cessor register R1 contains the	15	3	2	1

- (i) direct
- (ii) immediate
- (iii) relative
- (iv) register indirect
- (v) index with R1 as the index register
- 27. Demonstrate the general configuration of micro programmed control unit 15 2 4 1 with a neat block diagram.
