

A7670 系列 硬件设计手册

LTE 模块

芯讯通无线科技(上海)有限公司

上海市长宁区金钟路633号晨讯科技大楼B座6楼

电话: 86-21-31575100

技术支持邮箱: support@simcom.com

官网: www.simcom.com

文档名称:	A7670 系列硬件设计手册
版本:	V1.02
日期:	2020-10-10
状态:	已发布

前言

此模块主要用于语音或者数据通讯,本公司不承担由于用户不正常操作造成的财产损失或者人身伤害责任。 请用户按照手册中的技术规格和参考设计开发相应的产品。同时注意使用移动产品应该关注的一般安全事项。 在未声明之前,本公司有权根据技术发展的需要对本手册内容进行修改。

版权声明

本手册包含芯讯通无线科技(上海)有限公司(简称:芯讯通)的技术信息。除非经芯讯通书面许可,任何单位和个人不得擅自摘抄、复制本手册内容的部分或全部,并不得以任何形式传播,违反者将被追究法律责任。对技术信息涉及的专利、实用新型或者外观设计等知识产权,芯讯通保留一切权利。芯讯通有权在不通知的情况下随时更新本手册的具体内容。

本手册版权属于芯讯通,任何人未经我公司书面同意进行复制、引用或者修改本手册都将承担法律责任。

芯讯通无线科技(上海)有限公司

上海市长宁区金钟路 633 号晨讯科技大楼 B 座 6 楼

电话: 86-21-31575100

邮箱: simcom@simcom.com 官网: www.simcom.com

了解更多资料,请点击以下链接:

http://cn.simcom.com/download/list-230-cn.html

技术支持,请点击以下链接:

http://cn.simcom.com/ask/index-cn.html 或发送邮件至 support@simcom.com

版权所有 © 芯讯通无线科技(上海)有限公司 2020, 保留一切权利。

www.simcom.com 2/67

版本历史

日期	版本	变更描述	作者
2020-06-02	1.00	初版	刘忠艺 潘起明、岳培林
2020-08-31	1.01	基带耗流数据更新(3.1 节、5.4 节); 模块开关机时序图更新(3.2 节); 串口说明更新,流控 CTS/RTS 更新(3.3 节); 射频数据更新(4.1 节);	刘忠艺 岳培林
2020-10-10	1.02	增加 A7670C-LAAE、A7670C-LAAL 模块描述	陈中友

www.simcom.com 3/67

目录

1	绪论	9
	1.1 模块综述	
	1.2 接口概述	10
	1.3 模块框图	11
	1.4 主要特性	12
2	封装信息	14
	2.1 引脚分布图	14
	2.2 引脚描述	17
	2.3 机械尺寸	23
	2.4 推荐 PCB 封装尺寸	24
	2.5 推荐钢网尺寸	25
3	应用接口	26
	3.1 供电输入	26
	3.1.1 供电参考设计	27
	3.1.2 推荐外部电源电路	28
	3.1.3 电源监测	28
	3.2 开机/关机/复位	29
	3.2.1 模块开机	29
	3.2.2 模块关机	30
	3.2.3 模块复位	31
	3.3 串口	32
	3.3.1 串口参考设计	
	3.3.2 RI 和 DTR 描述	34
	3.4 USB 接口	34
	3.4.1 USB 参考设计	35
	3.4.2 USB_BOOT 接口	35
	3.5 USIM 卡接口	36
	3.5.1 USIM 参考设计	37
	3.5.2 USIM 卡座的选择	38
	3.6 模拟音频接口	39
	3.6.1 模拟音频参考设计	39
	3.7 PCM 接口	40
	3.7.1 PCM 时序	40
	3.7.2 PCM 参考设计(软件开发中)	41
	3.8 键盘接口	41
	3.9 GPIO 接口操作说明	42
	3.10 I2C 总线	43
	3.11 网络状态指示	44
	3.12 其他接口	45

	3.12.1 模数转换器(ADC)	45
	3.12.2 LDO	45
4	射频参数	46
	4.1 GSM/LTE 射频参数	
	4.2 GSM/LTE 天线参考设计	48
	4.3 GSM/LTE 天线要求	48
5	电气参数	50
	5.1 极限参数	
	5.2 正常工作条件	50
	5.3 工作模式	
	5.3.1 工作模式定义	51
	5.3.2 休眠模式	52
	5.3.3 功能模式	
	5.4 耗流	52
	5.5 静电防护	53
6	贴片生产	55
	6.1 模块的顶视图和底视图	
	6.2 标签信息	56
	6.3 典型焊接炉温曲线	57
	6.4 湿敏特性	57
7	包装	59
8	附录	
•	8.1 编码方式及最大数据速率	
	8.2 参考文档	
	8.3 术语和解释	
	8.4 安全警告	

表格索引

表 1:	A7670 系列模块频段列表	9
表 2:	A7670 系列模块硬件接口列表	10
表 3:	模块主要特性	12
表 4:	引脚定义列表	16
表 5:	引脚参数缩写	17
表 6:	1.8V 引脚电气特性	17
表 7:	I2C/USIM 引脚电气特性	18
表 8:	引脚描述	19
表 9:	VBAT 引脚电气参数	26
表 10:	: 推荐的 TVS 管列表	27
表 11:	: 开机时序参数	30
表 12:	: 关机时序参数	31
表 13:	: RESET 引脚电气参数	32
表 14:	: USB_BOOT 描述	35
表 15:	:1.8V 模式时 USIM 接口电气参数(USIM_VDD=1.8V)	36
表 16:	: 3.0V 模式时 USIM 接口电气参数(USIM_VDD=3V)	37
	: Amphenol USIM 卡座引脚描述	
表 18:	: 模拟 MIC 输入 ADC 参数表	39
表 19:	: 模拟音频输出通路	39
表 20:	: PCM 参数表	40
表 21:	: 键盘接口引脚描述	41
表 22:	: A7670C/A7670E/A7670SA 标准版软件 GPIO 资源	42
表 23:	: A7670C-LAAE/A7670C-LAAL 标准版软件 GPIO 资源	43
表 24:	: 2G 制式下 NETLIGHT 工作状态	44
表 25:	: LTE 制式下 NETLIGHT 工作状态	44
表 26:	: ADC 电气特性	45
表 27:	: VDD_1V8 电气特性	45
表 28:	: 传导发射功率	46
表 29:	: 2G 频段信息	46
表 30:	: 4G 频段信息	47
表 31:	: 2G 传导接收灵敏度	47
表 32:	: 4G 传导灵敏度(QPSK)	47
表 33:	: TVS 推荐型号列表	48
表 34:	: GSM/LTE 天线要求	49
表 35:	: 极限参数	50
表 36:	: 模块推荐工作电压	50
表 37:	: 1.8V 数字接口特性*	50
表 38:	: 模块工作温度	51

表 39:	工作模式定义	.51
表 40:	VBAT 耗流(VBAT=3.8V)	.52
表 41:	ESD 性能参数(温度: 25℃,湿度: 45%)	.53
表 42:	模块信息描述	. 56
表 43:	模块湿敏特性	.57
表 44:	托盘尺寸信息	.60
表 45:	小卡通箱尺寸信息	.60
表 46:	大卡通箱尺寸信息	.61
表 47:	编码方式和最大数据速率	.62
表 48:	参考文档	. 64
表 49:	术语和解释	.65
表 50:	安全警告	67

图片索引

图 1:	模块框图	11
图 2:	A7670C/A7670E/A7670SA 模块引脚图(正面视图)	14
图 3:	A7670C-LAAE/A7670C-LAAL 模块引脚图(正面视图)	15
图 4:	三维尺寸(单位:毫米)	23
图 5:	推荐 PCB 封装尺寸(单位:毫米)	24
图 6:	推荐钢网尺寸(单位: 毫米)	25
图 7:	突发电流时 VBAT 的跌落	26
图 8:	VBAT 输入参考电路	27
图 9:	线性电源推荐电路	28
图 10:	: 开关电源推荐电路	28
图 11:	: 开关机参考电路	29
图 12:	: PWRKEY 开机时序	30
图 13:	: PWRKEY 关机时序	31
图 14:	: 复位推荐电路	32
图 15:	: 串口连接图(全功能模式)	33
图 16:	: 串口连接图(NULL 模式)	33
图 17:	: 三极管电平转换电路	33
图 18:	: RI 上电平变化(短信,URC)	34
图 19	: USB 连接图	35
图 20:	: USB_BOOT 连接图	36
图 21:	: 强制下载端口	36
图 22:	: USIM 接口推荐电路	37
图 23:	: Amphenol C707 10M006 512 USIM 卡座尺寸图	38
图 24:	: 模拟音频接口推荐电路	40
图 25:	: PCM 时序	41
图 26:	: PCM 推荐电路	41
图 27	: 键盘参考设计	42
图 28:	: I2C 接口参考电路	43
图 29:	: NETLIGHT 参考电路	44
图 30:	: 天线接口连接电路	48
图 31:	: 模块顶视图和底视图	55
图 32:	: 标签信息	56
图 33:	: 推荐焊接炉温曲线图 (无铅工艺)	57
图 34:	: 模块包装示意图	59
图 35:	: 托盘尺寸图	59
图 36:	: 小卡通箱尺寸图	60
图 37:	: 大卡通箱尺寸图	60

■1 绪论

本文档描述了模块的硬件接口,可以帮助用户快速的了解模块的接口定义、电气性能和结构尺寸的详细信息。结合本文档和其他的应用文档,用户可以快速的使用模块来设计移动通讯应用方案。SIMcom提供一套评估板,以方便A7670系列模块测试和使用。所述评估板工具包括EVB板,USB线,天线,和其他外设。

1.1 模块综述

A7670系列模块可支持GSM , LTE-TDD和LTE-FDD。用户可以选用此型号模块以满足多样化的市场需求。

详细的频段描述请参考下表:

表 1: A7670 系列模块频段列表

网络类型	频段	A7670C	A7670C- LAAE	A7670C- LAAL	A7670E	A7670SA
GSM	GSM850MHz					R
	EGSM900MHz	B	B		B	B
	DCS1800MHz	B	B		B	B
	PCS1900MHz					B
LTE-FDD	LTE-FDD B1	R	B	B	B	B
	LTE-FDD B2					B
	LTE-FDD B3	R	B	B	B	B
	LTE-FDD B4					B
	LTE-FDD B5	R	B	B	B	B
	LTE-FDD B7				B	B
	LTE-FDD B8	R	B	B	B	B
	LTE-FDD B20				B	
	LTE-FDD B28					B
	LTE-FDD B66					B
LTE-TDD	LTE TDD B34	R	B	B		
	LTE TDD B38	R	B	B		
	LTE TDD B39	R	B	B		
	LTE TDD B40	R	B	B		
	LTE TDD B41	R	B	B		
Category		CAT1	CAT1	CAT1	CAT1	CAT1

模块的尺寸只有24*24*2.5 mm,几乎可以满足所有M2M应用中的对空间尺寸的要求,例如车载,计量,安防,路由,无线POS,移动计算设备,PDA,平板电脑等。

A7670系列模块共提供88个引脚,包括外圈68个LGA引脚和内圈20个LGA引脚,本文将针对所有的功能引脚展开介绍。

www.simcom.com 9/67

1.2 接口概述

A7670系列模块提供了如下的硬件接口:

- ●一路电源输入
- ●一路USB 2.0接口
- ●三路UART接口,一组全功能串口,一组两线普通串口,一组DEBUG串口
- ●一路USIM卡接口
- ●多个可编程的通用输入输出接口(GPIO)
- ●ADC接口

A7670C、A7670E和A7670SA: 支持1路ADC A7670C-LAAE和A7670C-LAAL: 支持2路ADC

●4*4键盘接口

A7670C、A7670E和A7670SA: 不支持 A7670C-LAAE和A7670C-LAAL: 支持

●模拟音频MIC输入接口

A7670C、A7670E和A7670SA: 不支持 A7670C-LAAE和A7670C-LAAL: 支持

●模拟音频SPK输出接口

A7670C、A7670E和A7670SA: 不支持 A7670C-LAAE和A7670C-LAAL: 支持

- ●一路供电输出
- ●一路PCM数字音频接口
- ●一路I2C接口
- ●一路USB_BOOT下载引导接口
- ●网络状态指示接口
- ●一个天线接口
- ●模块运行状态指示接口

表 2: A7670 系列模块硬件接口列表

硬件接口	A7670C	A7670C- LAAE	A7670C- LAAL	A7670E	A7670SA
电源输入	R	B	R	B	B
USB2.0	B	R	R	B	B
全功能串口	B	R	B	B	B
两线普通串口	R	R	B	B	B
DEBUG串口	R	R	B	B	B
USIM卡	B	R	B	B	B
GPIO	R	R	B	B	B
ADC	1 路	2 路	2 路	1路	1 路
4*4 键盘		R	R		
模拟音频MIC输入		B	R		
模拟音频SPK输出		B	R		
供电输出	B	B	B	B	B
PCM数字音频	B	B	B	B	B

www.simcom.com 10/67

I2C	B	R	R	B	R
USB_BOOT下载引导	B	B	R	R	B
网络状态指示	R	R	R	R	R
天线	R	B	R	R	R
模块运行状态指示	B	B	R	B	B

1.3 模块框图

下图列出了模块内部主要功能构架:

图 1: 模块框图

※ 特别注意

框图中蓝色高亮部分线路仅 A7670C-LAAE 和 A7670C-LAAL 模块支持。

www.simcom.com 11/67

1.4 主要特性

表 3: 模块主要特性

特性	·····································
供电	电压范围: 3.4V ~4.2V,推荐值3.8V
休眠功耗	休眠模式下的耗流: <2.5mA
频段	请参考表 1
发射功率	GSM/GPRS功率等级:
	●GSM850/EGSM900: 4 (33dBm±2dB)
	●DCS1800/PCS1900: 1 (30dBm±2dB)
	EDGE功率等级:
	●EGSM900: E2 (27dBm±3dB) ●DCS1800: E1 (26dBm+3dB/-4dB)
	LTE功率等级 3 (23dBm±2.7dB)
数据传输	GPRS 多时隙等级 12
25C4H 17 1113	EDGE 多时隙等级 12
	FDD-LTE类别 1: 10 Mbps (下行),5 Mbps (上行)
	TDD-LTE类别 1: 8.96 Mbps (下行),3.1Mbps (上行)
天线接口	GSM/LTE 天线接口
短消息 (SMS)	MT, MO, CB, Text 和 PDU 模式
	短消息(SMS)存储设备: USIM卡, CB不支持保存在SIM卡
	支持CS域和PS域短信
USIM卡接口	支持的 1.8V/3V USIM卡
USIM应用工具包	支持SAT 等级 3, GSM 11.14 版本 99
)	支持 USAT
通讯录管理	SM/FD/ON/AP/SDN
音频接口	支持一路PCM数字音频接口 支持一路模拟音频MIC输入接口(仅A7670C-LAAE和A7670C-LAAL模块支持)
	支持一路模拟音频SPK输出接口(仅A7670C-LAAE和A7670C-LAAL模块支持)
事口	●主串口UART
	波特率支持从 300bps到 3686400bps
	可以通过串口发送AT命令和数据
	支持RTS/CTS硬件流控
	支持符合GSM 07.10 协议的串口复用功能
	●串口UART_LOG
	支持Debug用途
	●串口UART3 並通用AP B D
IICD按口	普通两线串口
USB接口	符合USB 2.0 规范,支持从模式,不支持主模式可用于AT命令发送,数据传输,软件调试和升级
软件升级	通过USB口升级软件
物理尺寸	尺寸: 24*24*2.5mm
, , , , , ,	重量: 3.08g (典型值)

www.simcom.com 12/67

温度范围 工作温度: -30℃~+80℃

扩展工作温度: -40℃~+85℃*

存储温度: -45℃~+90℃

※ 特别注意

在扩展工作温度范围内,模块可以正常工作,但不保证完全符合 3GPP 测试规范。

13/67 www.simcom.com

■ 2 封装信息

2.1 引脚分布图

A7670C、A7670E和A7670SA模块俯视图Pin脚分布如下图:

A7670C/A7670E/A7670SA

图 2: A7670C/A7670E/A7670SA 模块引脚图(正面视图)

www.simcom.com 14/67

A7670C-LAAE和A7670C-LAAL模块俯视图Pin脚分布如下图:

A7670C-LAAE/A7670C-LAAL

图 3: A7670C-LAAE/A7670C-LAAL 模块引脚图(正面视图)

www.simcom.com 15/67

表 4: 引脚定义列表

A7670C/A7670E/A7670SA				A7670C-LAAE/A7670C-LAAL			
引脚 序号	引脚名称	引脚 序号	引脚名称	引脚 序号	引脚名称	引脚 序号	引脚名称
1	PWRKEY	2	GND	1	PWRKEY	2	GND
3	DTR	4	RI	3	DTR	4	RI
5	DCD	6	USB_BOOT●	5	DCD	6	USB_BOOT●
7	CTS	8	RTS	7	CTS	8	RTS
9	TXD	10	RXD	9	TXD	10	RXD
11	PCM_CLK	12	PCM_SYNC	11	PCM_CLK	12	PCM_SYNC
13	PCM_DIN	14	PCM_OUT	13	PCM_DIN	14	PCM_OUT
15	VDD_1V8	16	RESET	15	VDD_1V8	16	RESET
17	GND	18	GND	17	GND	18	GND
19	GPIO1	20	GPIO2	19	GPIO1	20	GPIO2/MK_IN_3
21	GPIO3	22	UART_LOG_RX	21	GPIO3/MK_OUT_3	22	UART_LOG_RX
23	UART_LOG_TX	24	VBUS	23	UART_LOG_TX	24	VBUS
25	ADC	26	NC	25	ADC1	26	GPIO4
27	USB_DP	28	USB_DM	27	USB_DP	28	USB_DM
29	GND	30	SIM_VDD	29	GND	30	SIM_VDD
31	SIM_DATA	32	SIM_CLK	31	SIM_DATA	32	SIM_CLK
33	SIM_RST	34	SIM_DET	33	SIM_RST	34	SIM_DET
35	NC	36	NC	35	GPIO5/MK_OUT_1	36	GPIO6/MK_IN_1
37	I2C_SDA	38	I2C_SCL	37	I2C_SDA	38	I2C_SCL
39	GND	40	NC	39	GND	40	REC_SPK_P
41	NC	42	NC	41	REC_SPK_N	42	MIC_P
43	NC	44	NC	43	MIC_N	44	GPIO7/MK_OUT_2
45	GND	46	GND	45	GND	46	GND
47	NC	48	GPIO9	47	GPIO8/MK_IN_2	48	GPIO9
49	GPIO4	50	GPIO5	49	GPIO10	50	GPIO11
	(UART3_RX)		(UART3_TX)		(UART3_RX)		(UART3_TX)
51	NC	52	NETLIGHT	51	ADC2	52	NETLIGHT
53	NC	54	GND	53	GPIO12	54	GND
55	VBAT	56	VBAT	55	VBAT	56	VBAT
57	VBAT	58	GND	57	VBAT	58	GND
59	GND	60	RF_ANT	59	GND	60	RF_ANT
61	GND	62	GND	61	GND	62	GND
63	GND	64	GND	63	GND	64	GND
65	GND	66	STATUS	65	GND	66	STATUS
67	GPIO10	68	GPIO11	67	GPIO13/MK_OUT_ 5	68	GPIO14/MK_IN_5
69	GND	70	GND	69	GND	70	GND

www.simcom.com 16/67

71	GND	72	GND	71	GND	72	GND
73	GND	74	GND	73	GND	74	GND
75	GND	76	GND	75	GND	76	GND
77	GND	78	GND	77	GND	78	GND
79	GND	80	GND	79	GND	80	GND
81	GND	82	GND	81	GND	82	GND
83	GND	84	GND	83	GND	84	GND
85	GND	86	GND	85	GND	86	GND
87	GND	88	GND	87	GND	88	GND

※ 特别注意

●表示这些信号在开机前不可上拉, 否则会影响模块正常开机。

2.2 引脚描述

表 5: 引脚参数缩写

缩写	
PI	电源输入
PO	电源输出
Al	模拟输入
AO	模拟输出
I/O	输入或输出
DI	数字输入
DO	数字输出
DOH	默认输出高电平
DOL	默认输出低电平
PU	上拉
PD	下拉
OD	开漏

表 6: 1.8V 引脚电气特性

引脚电压域属性	缩写	描述	最小值	典型值	最大值				
1.8V	直流输入条件(VCC=1.8V)								
	VIH	输入有效高电平	VCC * 0.7	1.8V	VCC + 0.4				
	VIL	输入有效低电平	-0.4	0V	VCC *0.25				
	Rpu	模块内部上拉电阻	-	100 ΚΩ	-				
	Rpd	模块内部下拉电阻	-	100 ΚΩ	-				
1.8V	直流输入	条件(VCC=1.8V)							

www.simcom.com 17/67

IIL	输入漏电流	-	-	10uA
	件(VCC=1.8V)			
VOH	输出高电平范围	VCC - 0.4	-	VCC
VOL	输出低电平范围	-	-	0.2V
DCS[1:0]= 00 01 10 11	高电平输出时最大 电流驱动能力		IOH = (mA min) 1 mA 2 mA 4 mA 5 mA	

表 7: I2C/USIM 引脚电气特性

引脚电压域属性	缩写	描述	最小值	典型值	最大值			
	直流输)	\条件(VCC=1.8V)						
	VIH	输入有效高电平	VCC * 0.7	1.8V	VCC + 0.4			
	VIL	输入有效低电平	-0.4	0V	VCC *0.25			
	VOH	输出高电平范围	VCC - 0.4	-	VCC			
	VOL	输出低电平范围	-	<u>-</u>	0.2V			
1.8V(I2C/USIM)	Rpu	模块内部上拉电阻	-	25 ΚΩ	-			
1.0 (120/001101)	Rpd	模块内部下拉电阻	-	25 ΚΩ	-			
	IIL	输入漏电流	-	-	2uA			
	SR= 00 01 10 11	高电平输出时最大 电流驱动能力	IOH = (mA min) 1 mA 2 mA 3 mA 4 mA					
	直流输入条件(VCC=3V)							
	VIH	输入有效高电平	VCC * 0.75	-	VCC + 0.4			
	VIL	输入有效低电平	-0.4	-	VCC * 0.25			
	VOH	输出高电平范围	VCC - 0.4	<u>-</u>	VCC			
	VOL	输出低电平范围	-	-	0.3V			
3V(USIM)	Rpu	模块内部上拉电阻	-	50K	-			
ov (oonvi)	Rpd	模块内部下拉电阻	-	50K	-			
	IIL	输入漏电流	-	<u>-</u>	2uA			
	SR= 00 01 10 11	高电平输出时最大 电流驱动能力						

www.simcom.com 18/67

表 8: 引脚描述

引脚名称	引脚序号	引脚属性		描述	备注	
		电压域	类型	-	I	
供电						
VBAT	55,56,57	-	PI	模块供电输入,输入电压范围 从3.4V~4.2V,典型3.8V供电电 流要求可达到2A。		
VDD_1V8	15	-	PO	内部 1.8V 电源输出,输出电流 最大 50mA,不能给大功率负载 供电,可为电平转换电路等提 供电源。	如不使用,悬空即 可。	
GND	2,17,18,2 9,39,45,4 6,54,58,5 9,61,62,6 3,64,65,6 9,70,71,7 2,73,74,7 5,76,77,7 8,79,80,8 1,82,83,8 4,85,86,8 7,88	-	-	接地		
系统控制						
PWRKEY	1	-	DI,PU	开关机控制输入,低电平有效 开机键默认高电平 VIH: 0.7*VBAT VIL: 0.5V	PMU 内部已通过 50K(Typical)上 拉到 VBAT 。	
RESET	16	-	DI,PU	硬件复位控制输入, 低电平有效 VIH: 0.7*VBAT VIL: 0.5V	PMU 内部已通过 50K(Typical)上 拉到 VBAT 。	
USIM 接口						
SIM_DATA	31	1.8/3.0 V	I/O,PU	USIM 总线数据,模块内部有 4.7KΩ电阻上拉到 USIM VDD		
SIM_RST	33	1.8/3.0 V	I/O,PU	USIM 总线复位输出		
SIM_CLK	32	1.8/3.0 V	I/O,PU	USIM 总线时钟输出		
SIM_VDD	30	1.8/3.0 V	PO	USIM 卡供电输出,输出电压可根据外接卡片类型动态改变,输出电流最大 50mA		
USB 接口						
VBUS	24	-	Al	VBUS 在位检测输入,高电平有效,最低有效电压 3.5V,最高极限电压 5.2V		
USB_DN	28	-	I/O	USB 总线差分负极		

www.simcom.com

USB_DP	27	_	I/O	USB 总线差分正极	
 主串口	1				j
RTS	8	1.8V	DI	RTS 输入	如不使用,悬空即
CTS	7	1.8V	DO	CTS 输出	可。
RXD	10	1.8V	DI	数据接收	
TXD	9	1.8V	DOH	数据发送	
RI	4	1.8V	DO	振铃指示	
DCD	5	1.8V	DO	载波检测	
DTR	3	1.8V	DI	DTE 准备就绪	
调试串口					
UART_LOG_TX D	23	1.8V	DOH	CP_UART 输出	默认作为调试端
UART_LOG_RX D	22	1.8V	DI	CP_UART 输入	口。
串口3					
UART3_TXD	50	1.8V	DOH	UART3 输出	复用功能串口。
UART3_RXD	49	1.8V	DI	UART3 输入	
I2C 接口					
I2C_SCL	38	1.8V	DO	I2C 总线时钟输出	如不使用,悬空即
I2C_SDA	37	1.8V	I/O	I2C 总线数据输入/输出	可。模块内部已加 2.2KΩ上拉电阻到 VDD_1.8V 电 源 (模块 15 脚)。在模 块外不能使用外部 电源上拉,否则会 串电。
PCM 接口					
PCM_OUT	14	1.8V	DO,PD	PCM 总线数据输出	如不使用,悬空即
PCM_DIN	13	1.8V	DI,PD	PCM 总线数据输入	可。
PCM_SYNC	12	1.8V	I/O,PD	PCM 总线同步输出	
PCM_CLK	11	1.8V	I/O,PU	PCM 总线时钟输出	
通用输入输出接	口(A7670				
GPIO1	19	1.8V	IO,PU	通用输入/输出口	如不使用,悬空即可。
GPIO2	20	1.8V	IO,PD	通用输入/输出口	如不使用,悬空即可。
GPIO3	21	1.8V	IO,PU	通用输入/输出口	如不使用,悬空即可。
GPIO4	49	1.8V	IO,PU	通用输入/输出口	如不使用,悬空即可。
GPIO5	50	1.8V	IO,PU	通用输入/输出口	如不使用,悬空即 可。
GPIO9	48	1.8V	IO,PD	通用输入/输出口	如不使用,悬空即

www.simcom.com 20/67

					可。
GPIO10	67	1.8V	IO,PU	通用输入/输出口	如不使用,悬空即
					可。
GPIO11	68	1.8V	IO,PU	通用输入/输出口	如不使用,悬空即
					可。
通用输入输出接	美口(A7670	C-LAAI	E/A7670	C-LAAL)	
GPIO1	19	1.8V	IO,PU	通用输入/输出口	如不使用,悬空即 可。
GPIO2	20	1.8V	IO,PD	通用输入/输出口	如不使用,悬空即可。
GPIO3	21	1.8V	IO,PD	通用输入/输出口	如不使用,悬空即
00104		4.007	10 511) Z [[] (A,) (A,) []	可。
GPIO4	26	1.8V	IO,PU	通用输入/输出口	如不使用,悬空即可。
GPIO5	35	1.8V	IO,PD	通用输入/输出口	如不使用,悬空即可。
GPIO6	36	1.8V	IO,PD	通用输入/输出口	如不使用,悬空即
J. 100			,.	(C) 14 III.7 (C) III.4 (E) (C)	可。
GPIO7	44	1.8V	IO,PD	通用输入/输出口	如不使用,悬空即
GPIO8	47	1.8V	IO,PD	通用输入/输出口	可。 如不使用,悬空即
GF106	41	1.0 V	10,50	迪用制 //制山口	可。
GPIO9	48	1.8V	IO,PD	通用输入/输出口	如不使用,悬空即
					可。
GPIO10	49	1.8V	IO,PU	通用输入/输出口	如不使用,悬空即
					可。
GPIO11	50	1.8V	IO,PU	通用输入/输出口	如不使用,悬空即
CDIO42	5 0	4.0\/	IO DI I		可。
GPIO12	53	1.8V	IO,PU	通用输入/输出口	如不使用,悬空即可。
GPIO13	67	1.8V	IO,PU	通用输入/输出口	如不使用,悬空即
01 10 10	O1	1.0 V	10,1 0		可。
GPIO14	68	1.8V	IO,PU	通用输入/输出口	如不使用,悬空即
					可。
天线接口					
RF_ANT	60	-	AIO	主天线接口	
其他功能引脚					
ADC	25, (51)	_	Al	通用模拟数字转换器接口	如不使用,悬空即
7.50	20, (01)		1	迪 用快级大程式的	可。
NETLIGHT	52	1.8V	DO	网络注册状态指示(指示灯)	7 0
				驱动方案见 3.9 章节	
STATUS	66	1.8V	DO	模块状态指示	
USB_BOOT	6	1.8V	DI	强制下载接口,开机前拉高到	建议放置测试点,
				1.8V,连接 USB 再开机,A7670	方便调试及升级。 在正常开机前,不

www.simcom.com 21/67

将进入 USB 下载模式;

能上拉

USB_BOOT

※ 特别注意

请为 USB_BOOT, VDD_EXT 和 UART_LOG_TX 保留测试点。如果没有 USB 连接器,请同时为 USB_VBUS, USB_DP 和 USB_DM 保留测试点以进行固件升级。

www.simcom.com 22/67

2.3 机械尺寸

以下图片描述了 A7670 系列模块的封装尺寸。

Top View

Bot View

图 4: 三维尺寸(单位:毫米)

※ 特别注意

边长尺寸 24.00±0.15mm 不包括毛刺区域。

www.simcom.com 23/67

2.4 推荐 PCB 封装尺寸

图 5: 推荐 PCB 封装尺寸(单位:毫米)

www.simcom.com 24/67

2.5 推荐钢网尺寸

推荐钢网厚度≥0.12mm,≤0.15mm.

图 6: 推荐钢网尺寸(单位: 毫米)

www.simcom.com 25/67

■3 应用接口

3.1 供电输入

A7670 系列模块使用单一电源供电,共有 3 个引脚(55,56 和 57 引脚)作为 VBAT 电源输入。A7670 通过这 3 个引脚给内部的射频和基带电路供电。

当模块在 GSM 模式下以最大功率发射时,电流峰值瞬间最高可达到 2A,从而导致在 VBAT 上有较大的电压跌落。为保证电压跌落小于 300mV,在最大电压跌落时供电电压不小于 3.4V,必须保证外部电源供电能力不小于 2A。

下图是 VBAT 电压跌落的示意图。

图 7: 突发电流时 VBAT 的跌落

※ 特别注意

测试条件: VBAT 供电 3.8V, 模块带 TE 板测试, 电源输出端有 330UF 钽电容(ESR 等于 0.7Ω)。

表 9: VBAT 引脚电气参数

符号	符号描述	最小	典型	最大	単位	
VBAT	模块供电输入电压	3.4	3.8	4.2	V	
I _{VBAT(peak)}	模块耗流峰值	-	2	-	Α	
I _{VBAT} (average)	模块平均耗流(正常模式)		用多名仪 30			
I _{VBAT(sleep)}	模块平均耗流 (休眠模式)					
I _{VBAT} (power-off)	模块平均耗流(关机状态)	-	-	20	uA	

www.simcom.com 26/67

3.1.1 供电参考设计

在用户的设计中,必须特别注意电源部分的设计。如果电压跌落低于 3.4V,模块射频性能将会受到影响,电压过低会导致模块关机。建议选择带使能脚的 LDO 或 DC-DC 芯片,使能脚由 MCU 控制。

※ 特别注意

当电源能够提供 2A 的峰值电流时,外部供电电容总容值,建议不小于 300uF;若不能提供 2A 的峰值电流,则建议外部电容总容值不小于 600uF,以保证任何时候 VBAT 引脚上电压跌落不超过 300mV。

建议靠近 VBAT 放置 33pf/10pf/0.1/1µF 共四个陶瓷电容,以改善射频性能及系统稳定性。与此同时,建议 PCB 上供电电源到模块间的 VBAT 走线宽度至少 3mm。参考设计推荐如下:

如果 VBAT 输入含有高频干扰,建议增加磁珠进行滤波,磁珠推荐型号为 BLM21PG300SN1D 和 MPZ2012S221A。

图 8: VBAT 输入参考电路

此外,为防止浪涌及过压对 A7670 系列模块的损坏,建议在模块 VBAT 引脚上并联一个 TVS 管。

表 10: 推荐的 TVS 管列表

编号	厂家	料号	工作电压	封装
1	长电	ESDBW5V0A1	5V	DFN1006-2L
3	长园维安	WS05DPF-B	5V	DFN1006-2L
4	韦尔	ESD5611N	5V	DFN1006-2L
5	韦尔	ESD56151W05	5V	SOD-323

www.simcom.com 27/67

※ 特别注意

客户自行选择 TVS 时,需要关注浪涌防护时的钳位电压,100V 浪涌输入时钳位电压不要高于 10V。

3.1.2 推荐外部电源电路

客户设计上 MCU 必须具备给模块断电的功能,但模块能正常关机或重启时禁止使用,只有模块出现异常导致无法正常关机或重启了,才可对模块断电,推荐选择带使能脚的 LDO 或者 DC-DC 芯片。如果使用模块的 OPEN LINUX 二次开发功能,由于没有 MCU,可以外加一个低成本单片机起到拉 POWERKEY 开机和能够断电的硬件看门狗作用。

线性电源推荐电路如下图所示,其中 PWR CTRL 为控制脚。

图 9: 线性电源推荐电路

开关电源推荐电路如下图所示,其中 PWR_CTRL 为控制脚:

图 10: 开关电源推荐电路

3.1.3 电源监测

AT 命令"AT+CBC"可以用来监测 VBAT 电源电压。

AT 命令"AT+CVALARM"可以设置高/低压报警电压,当实际电压超出预设值范围时,会通过 AT 口上报警告信息。

使用"AT+CPMVT"可以设置高/低压关机电压,当实际电压超出预设值范围时,模块将直接自动关闭。

www.simcom.com 28/67

※ 特别注意

过压报警及过压关机功能默认关闭。相关 AT 命令的详细信息,请参考文档【1】。

3.2 开机/关机/复位

3.2.1 模块开机

用户通过拉低 PWRKEY 引脚使模块开机。此引脚已在模块内部上拉到 VBAT。 推荐客户在设计时,模块引脚处增加 TVS 管可以有效的增强模块的抗静电能力,推荐电路如下图:

图 11: 开关机参考电路

※ 特别注意

如客户不需要上电自动开机,请不要在 PWRKEY 和 RESET 上并联超过 10nF 的电容,否则上电检测到 低电平会导致模块自动开机。

因 PWRKEY 和 RESET 都有拉低开机功能,禁止开机流程中短时间内先后拉 PWRKEY 和 RESET,否则有可能导致开机异常。

www.simcom.com 29/67

图 12: PWRKEY 开机时序

表 11: 开机时序参数

符号	描述	最小值	典型值	最大值	单位
Ton	开机低电平脉冲宽度	-	50	-	ms
T _{on(status)}	开机时间(根据 STATUS 引脚判断)	-	11.2	-	S
T _{on(uart)}	开机时间(根据 UART 判断)	-	11.1	-	S
T _{on(usb)}	开机时间(根据 USB 判断)	-	9	-	S
V_{IH}	PWRKEY 引脚输入高电平电压	2.94V	-	VBAT	
V _{IL}	PWRKEY 引脚输入低电平电压	0	0	0.5V	

3.2.2 模块关机

A7670 系列模块模块有以下几种关机方法:

- 使用 PWRKEY 引脚关机
- 使用 "AT+CPOF"命令关机
- 高/低压过压关机,使用"AT+CPMVT"设置电压范围。
- 高低温过温关机

强烈建议客户使用 PWRKEY 或者 AT+CPOF 进行关机,关机之后再对 VBAT 断电(特别是模块完全不需要工作的情况下),另外不能通过断开 VBAT 进行关机,这样可能会对 FLASH 造成损伤。

※ 特别*注意*

当温度超过-30~+80°C范围时, A7670 系列模块会通过 AT 口上报警告信息。当温度超过-40~+85°C范围时, A7670 系列模块自动关机。"AT+CPOF"和"AT+CPMVT"的详细描述,请参考文档【1】。

用户可以通过把PWRKEY信号拉低来关机,关机时序图如下图所示:

www.simcom.com 30/67

图 13: PWRKEY 关机时序

表 12: 关机时序参数

符号	描述	最小值	典型值	最大值	单位
T _{off}	关机机低电平脉冲宽度	2.5	-	-	S
$T_{\text{off(status)}}$	关机时间(根据 STATUS 引脚判断)	-	1.9	-	S
$T_{\text{off(uart)}}$	关机时间(根据 UART 判断)	-	1.9	-	S
$T_{\text{off(usb)}}$	关机时间(根据 USB 判断)	-	1.9	-	S
T _{off-on}	关机-开机缓冲时间	2	_	-	S

※ 特别注意

STATUS 引脚可以用来判断是否已开机,当模块已上电且初始化完成后,STATUS 输出高电平,否则一直维持低电平。

3.2.3 模块复位

A7670系列模块可以通过拉低模块的RESET引脚来重启模块。RESET引脚也有拉低开机功能(无关机功能),模块仅在第一次上电有开机功能,开机后PMU的寄存器会被改写禁用RESET键的开机功能。推荐使用PWRKEY开关机,将RESET仅作为复位功能使用。

在模块内部已经有50KΩ上拉电阻, 所以外部无需再加上拉电阻, 推荐电路如下:

www.simcom.com 31/67

图 14: 复位推荐电路

表 13: RESET 引脚电气参数

参数	描述	最小值	典型值	最大值	单位
T _{reset}	重启低电平脉冲宽度	-	1.5	-	S
V_{IH}	RESET 引脚输入高电平电压	2.94	-	VBAT	V
V_{IL}	RESET 引脚输入低电平电压	0	0	0.5	V

※ 特别注意

建议仅在紧急情况,比如模块无响应时,使用 RESET 引脚。RESET 复位时间推荐 1.5s。

3.3 串口

A7670系列模块提供三路串口,主全功能通讯串口UART,一路普通两线串口和一路打印LOG串口UART_LOG。模块是DCE (Data Communication Equipment)设备。

3.3.1 串口参考设计

当用户使用全功能串口时,可以参考下图连接方式

www.simcom.com 32/67

图 15: 串口连接图 (全功能模式)

使用2线串口时可以参考下图连接方式:

图 16: 串口连接图 (NULL 模式)

下图展示了使用三极管进行电路转换,虚线部分的电路可以参考实线 TXD 和 RXD 的电路,需要注意信号的方向。此处推荐三极管型号为 MMBT3904。

图 17: 三极管电平转换电路

www.simcom.com 33/67

※ 特别注意

- 1. 模块(DCE)的 CTS 连接主控(DTE)的 CTS,模块(DCE)的 RTS 连接主控(DTE)的 RTS。
- 2. A7670 系列模块支持如下波特率: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600, 1842000, 3686400。默认波特率为 115200bps。
- 3. 由于三极管寄生电容的存在,会对高速数字信号的边沿产生影响,信号速度高于 115200bps 时不建议使用该电路。

3.3.2 RI 和 DTR 描述

RI通常情况下保持高电平输出,当收到短消息或 URC 上报时,RI 输出 120ms (短消息) /60ms (URC) 低电平,然后恢复高电平状态; RI 会输出低电平。当作为被呼叫方收到电话呼叫时,RI 输出低电平,RI 在输出低电平后,会一直保持低电平,直到主机使用"ATA"命令接受呼叫,或者呼叫方停止呼叫 RI 才会恢复输出高电平。

图 18: RI 上电平变化 (短信, URC)

当用户设置"AT+CSCLK=1"后,拉高DTR引脚,模块将自动进入休眠模式,此时串口功能不能正常通讯。 当A7670系列模块进入休眠模式后,拉低DTR可以唤醒A7670系列模块模块。

在设置"AT+CSCLK=0"的模式下,拉高DTR引脚,则不会有任何影响,串口功能正常通讯不受影响。

3.4 USB接口

A7670系列模块拥有一路USB2.0接口,不支持USB充电功能,不支持USB HOST模式。支持高速(480Mbps)和全速(12Mbps),接口可用于AT指令发送,数据传输,软件调试和升级。在linux或者android系统下映射出ttyUSB1-ttyUSB2(具体参考linux或者android调试文档)。

USB是主要的调试口和软件升级接口,建议客户在设计时预留USB测试点,如果接到了主控芯片,设计时需要预留OR电阻用于切换外部测试点,如下图所示。

www.simcom.com 34/67

3.4.1 USB 参考设计

A7670系列模块可以作为USB从设备,支持USB休眠及唤醒机制,连接电路图推荐如下:

图 19: USB 连接图

客户在使用时应该注意D3器件的选型,建议选择防静电和防浪涌二合一器件,可以放置一颗TVS管,推荐型号ESD5681N07。

※ 特别注意

1.USB 数据线必须严格按 $90\,\Omega$ +/-10% 差分形式走线,数据线上的 TVS 器件 D1 和 D2 必须选用等效电容值小于 1pF 的,TVS 器件靠近 USB 连接器或者测试点放置,推荐型号 ESD73011N 和 WS05DUCFM。 2.USB2.0 速率的检测确定,由 USB 协议自动完成,客户不需要外部上拉 DP,否则可能会影响设备 USB 枚举。

3.4.2 USB_BOOT 接口

模块提供强制下载引导接口 USB_BOOT。

表 14: USB_BOOT 描述

引脚编号	引脚名称	I/O	功能描述	电压域	默认状态	备注
6	USB_BOOT	DI	强制下载引导端口	1.8V	B-PD	

如果模块升级异常无法开机,可以通过USB_BOOT口强制升级。 在模块开机前,把 USB_BOOT 脚上拉到 1.8V,然后给模块加上 VBAT 电源,接下 RESET,模块即进入下

在模块开机前,把 USB_BOOT 脚上拉到 1.8V,然后给模块加上 VBAT 电源,按下 RESET,模块即进入下载模式。进入下载模式后需要释放掉 USB_BOOT,去除上拉。

www.simcom.com 35/67

图 20: USB_BOOT 连接图

客户可在widows系统的设备管理器端口中查看到下载端口。

图 21: 强制下载端口

※ 特别注意

USB_BOOT 只在开机前具有强制下载引导功能(不可上拉),开机后为其他功能。

3.5 USIM 卡接口

A7670系列模块支持1.8V和3.0V 的USIM卡。USIM卡的接口电源由模块内部的电压稳压器提供,正常电压值为3V或者1.8V。

表 15: 1.8V 模式时 USIM 接口电气参数(USIM_VDD=1.8V)

符号	描述	最小值	典型值	最大值	単位
USIM_VDD	输出给 USIM 卡的电源电压	1.62	1.8	1.98	V
V _{IH}	输入高电平电压	0.7*USIM_VDD	-	USIM_VDD +0.4	V
VIL	输入低电平电压	-0.4	0	0.25*USIM_VDD	V
Vон	输出高电平电压	USIM_VDD -0.4	-	USIM_VDD	V
V _{OL}	输出低电平电压	0	0	0.2	V

www.simcom.com 36/67

表 16:	3.0V	模式时	USIM	接口电	气参数	(USIM	VDD=3V)
-------	------	-----	------	-----	-----	-------	---------

符号	描述	最小值	典型值	最大值	单位
USIM_VDD	输出给 USIM 卡的电源电压	2.7	3	3.3	V
V_{IH}	输入高电平电压	0.7*USIM_VDD	-	USIM_VDD +0.4	V
V _{IL}	输入低电平电压	-0.4	0	0.25*USIM_VDD	V
Vон	输出高电平电压	USIM_VDD -0.45	-	USIM_VDD	V
V _{OL}	输出低电平电压	0	0	0.3	V

3.5.1 USIM 参考设计

下图是USIM卡推荐接口电路。为了保护USIM卡,建议使用ST(www.st.com)公司的ESDA6V15W器件或者ON SEMI (www.onsemi.com)公司的SMF15C器件来做静电保护。SIM卡的外围电路器件应该靠近USIM卡座放置。8引脚USIM卡座的推荐电路如下图。

参考电路如下图所示。

图 22: USIM 接口推荐电路

※ 特别注意

USIM_DATA 已通过 4.7KΩ电阻上拉到 USIM_VDD,外部电路不需要上拉。另外,在 USIM_VDD 上的 100nF 去耦电容建议必须保留。如需更多关于 USIM 卡操作的 AT 命令,请参考文档【1】。

SIM卡电路比较容易受到干扰,引起不识卡或掉卡等情况,所以在设计时请遵循以下原则:

- 在 PCB 布局阶段一定要将 USIM 卡座远离主天线。
- USIM 卡走线要尽量远离 RF 线、VBAT 和高速信号线,同时 USIM 卡走线不要太长。
- USIM 卡座的 GND 要和模块的 GND 保持良好的联通性, 使二者 GND 等电位。
- 为防止 USIM_CLK 对其他信号干扰,建议将 USIM_CLK 做单独包地保护处理。
- 建议在 USIM_VDD 信号线上靠近 USIM 卡座放置一个 220nF 电容。
- 在靠近 USIM 卡座的地方放置 TVS,该 TVS的寄生电容不应大于 50pF的,如 ESD9L5.0ST5G。

www.simcom.com 37/67

- 在 USIM 卡座和模块之间串联 22 Ω 电阻可以增强 ESD 防护性能。
- 为了使走线最为顺畅,建议使用单路 TVS,靠近卡座的各个引脚放置。
- USIM_CLK 信号非常重要,客户应保证 USIM_CLK 信号的上升沿和下降沿时间小于 40ns,否则可能会出现识卡异常的现象。

3.5.2 USIM 卡座的选择

6引脚的USIM卡座推荐使用Amphenol公司的C707 10M006 512。请浏览http://www.amphenol.com网页了解更多信息!

图 23: Amphenol C707 10M006 512 USIM 卡座尺寸图

表 17: Amphenol USIM 卡座引脚描述

引脚名称	信号	描述
C1	USIM_VDD	USIM 卡供电引脚
C2	USIM_RST	USIM 卡复位引脚
C3	USIM_CLK	USIM 卡时钟引脚
C5	GND	接地
C6	VPP	不连接
C7	USIM_DATA	USIM 卡数据输入/输出引脚

www.simcom.com 38/67

※ 特别注意

如果客户设计的是车载产品,请选择可靠性更好的 SIM 卡座。

3.6 模拟音频接口

A7670C-LAAE和A7670C-LAAL模块集成了音频编解码器和音频前端,提供1路模拟音频MIC输入接口和1路模拟音频SPK输出接口,客户可以外接电话手柄进行语音通话。

--ADC: 90db SNR@20~20KHz,16bit

--DAC: 90db SNR@20~20KHz

--Class-G: THD<-90dB@32-ohm 负载

--Class-AB: THD<-90dB@32-ohm 负载

--REC_SPK_P 、REC_SPK_N输出默认支持听筒,如需外部接功放(请联系SIMcom定制硬件版本)

表 18: 模拟 MIC 输入 ADC 参数表

参数	最小值	典型值	最大值	单位
时钟频率	-	6.144	-	MHz

表 19: 模拟音频输出通路

参数	条件	DR(典型值)	THD+N(典型值)	最大功率
DAC	RL=10KΩ	TBD	TBD	1.59Vp
听筒	单声道,32Ω,差分	TBD	TBD	37mW

音频播放支持格式: AMR-NB(.amr;.3gp)、MP3(.mp3)、MIDI(.mid)

音频录制支持格式: AMR-NB(.amr)

3.6.1 模拟音频参考设计

模拟音频推荐电路如下图:

www.simcom.com 39/67

图 24: 模拟音频接口推荐电路

3.7 PCM 接口

A7670系列模块提供一组PCM音频接口,可以外接音频编解码芯片,只支持主模式,16位线性短帧格式。A7670系列模块支持语音功能,客户可以在PCM上外挂codec进行语音通话。具体参数和事项参照软件相关手册。

表 20: PCM 参数表

特性	描述	
编码格式	线性	
数据位	16bits	
主从模式	主模式	
PCM 时钟	8KHz/16KHz	
PCM 帧同步	短帧	
数据格式	MSB	

3.7.1 PCM 时序

相关PCM时序如下图所示:

www.simcom.com 40/67

图 25: PCM 时序

3.7.2 PCM 参考设计(软件开发中)

PCM推荐电路如下图:

图 26: PCM 推荐电路

Codec支持型号为NAU8810。

※ 特别注意

请在 PCM 通路上预留 0R 串位电阻。

3.8 键盘接口

模块提供一组4×4键盘输入接口。

表 21: 键盘接口引脚描述

www.simcom.com 41/67

模块 PIN 脚名称	复用功能	引脚	I/O	描述	备注
GPIO6	MK_IN1	36	IO	键盘输入信号	
GPIO8	MK_IN2	47	Ю		
GPIO2	MK_IN3	20	Ю		
GPIO14	MK_IN5	68	Ю		
GPIO5	MK_OUT1	35	Ю	键盘输出信号	
GPIO7	MK_OUT2	44	IO		
GPIO3	MK_OUT3	21	IO		
GPIO13	MK_OUT5	67	IO		

键盘接口参考设计:

图 27: 键盘参考设计

3.9 GPIO 接口操作说明

A7670系列模块模块提供客户多个GPIO使用。

表 22: A7670C/A7670E/A7670SA 标准版软件 GPIO 资源

引脚 编号	引脚 名称	AT 指令操作 的 GPIO 编 号	引脚 属性	电压域	默认 状态	默认 功能	中断 功能
19	GPIO1	GPIO1	Ю	1.8V	PU	通用输入/输出口	支持
20	GPIO2	GPIO2	Ю	1.8V	PD	通用输入/输出口	支持
21	GPIO3	GPIO3	Ю	1.8V	PU	通用输入/输出口	支持
49	GPIO4	GPIO4	Ю	1.8V	PU	通用输入/输出口	支持
50	GPIO5	GPIO5	Ю	1.8V	PU	通用输入/输出口	支持

www.simcom.com 42/67

48	GPIO9	GPIO9	Ю	1.8V	PD	通用输入/输出口	支持
67	GPIO10	GPIO10	Ю	1.8V	PU	通用输入/输出口	支持
68	GPIO11	GPIO11	Ю	1.8V	PU	通用输入/输出口	支持

表 23: A7670C-LAAE/A7670C-LAAL 标准版软件 GPIO 资源

引脚 编号	引脚 名称	AT 指令操作 的 GPIO 编 号	引脚 属性	电压域	默认 状态	默认 功能	中断 功能
19	GPIO1	GPIO1	Ю	1.8V	PU	通用输入/输出口	支持
20	GPIO2	GPIO2	Ю	1.8V	PD	通用输入/输出口	支持
21	GPIO3	GPIO3	IO	1.8V	PD	通用输入/输出口	支持
26	GPIO4	GPIO4	IO	1.8V	PU	通用输入/输出口	支持
35	GPIO5	GPIO5	Ю	1.8V	PD	通用输入/输出口	支持
36	GPIO6	GPIO6	IO	1.8V	PD	通用输入/输出口	支持
44	GPIO7	GPIO7	Ю	1.8V	PD	通用输入/输出口	支持
47	GPIO8	GPIO8	IO	1.8V	PD	通用输入/输出口	支持
48	GPIO9	GPIO9	IO	1.8V	PD	通用输入/输出口	支持
49	GPIO10	GPIO10	IO	1.8V	PU	通用输入/输出口	支持
50	GPIO11	GPIO11	IO	1.8V	PU	通用输入/输出口	支持
53	GPIO12	GPIO12	Ю	1.8V	PU	通用输入/输出口	支持
67	GPIO13	GPIO13	IO	1.8V	PU	通用输入/输出口	支持
68	GPIO14	GPIO14	IO	1.8V	PU	通用输入/输出口	支持

3.10 I2C 总线

模块提供一组硬件 I2C 协议接口,支持标准模式 100Kbps,支持高速模式 400Kbps,工作电压为 1.8V。 I2C为开漏输出,参考电路如下图:

图 28: I2C 接口参考电路

www.simcom.com 43/67

A7670C、A7670E 和 A7670SA 的 SCL 和 SDA 引脚内部有上拉电阻,外部无需上拉。如走线过长,预留上拉的上拉电源必须是模块输出的 VDD 1V8。

A7670C-LAAE/A7670C-LAAL 的 SCL 和 SDA 引脚内部无上拉电阻,需要外部上拉。上拉电源必须是模块输出的 VDD_1V8。

3.11 网络状态指示

NETLIGHT 可以指示当前网络状态,通常用来驱动指示网络状态的 LED 灯,其参考电路如下图:

图 29: NETLIGHT 参考电路

※ 特别注意

上图中电阻 R 的阻值需依赖于 VBAT 及 LED 的具体参数而定。

NETLIGHT信号用来控制指示网络状态的LED灯,该引脚的工作状态如下表:

表 24: 2G 制式下 NETLIGHT 工作状态

网络灯状态	模块工作状况		
常亮	搜网		
200ms 亮/ 200ms 熄灭	数据连接已建立		
800ms 亮/ 800ms 熄灭	网络已注册		
熄灭	关机,或条件满足 AT+CSCLK=1,并且 DTR 被拉高。		

表 25: LTE 制式下 NETLIGHT 工作状态

www.simcom.com 44/67

网络灯状态	模块工作状况
常亮	搜网
200ms 亮/ 200ms 熄灭	数据连接已建立, 或网络已注册
熄灭	关机,或条件满足 AT+CSCLK=1,并且 DTR 被拉高。

3.12 其他接口

3.12.1 模数转换器 (ADC)

A7670C/A7670E/A7670SA模块提供1路ADC, A7670C-LAAE/A7670C-LAAL模块提供2路ADC, 其电气特性如下:

表 26: ADC 电气特性

特性	最小值	典型值	最大值	单位
ADC分辨率	_	12	_	bits
输入电压范围	0.1	_	1.3	V
输入电阻	1	_	_	ΜΩ

※ 特别注意

使用 "AT+CADC"可以读取 ADC 引脚上的电压值。更多信息请参考文档【1】。

3.12.2 LDO

A7670系列模块提供一路电源输出: VDD_1V8 VDD_1V8为模块的系统IO电源,仅可提供50mA的电流能力,不可用做大电流驱动源。

表 27: VDD_1V8 电气特性

符号	描述	最小值	典型值	最大值	单位
V _{VDD_1V8}	输出电压	-	1.8	-	V
l ₀	输出电流	-	-	50	mA

※ 特别注意

该电源为系统电源,如损伤会影响系统启动,建议客户外加 TVS 防护,推荐型号 ESD56051N。

www.simcom.com 45/67

4 射频参数

4.1 GSM/LTE 射频参数

表 28: 传导发射功率

频率	功率	最小值
GSM850	33dBm ±2dB	5dBm ± 5dB
EGSM900	33dBm ±2dB	5dBm ± 5dB
DCS1800	30dBm ±2dB	0dBm ± 5dB
PCS1900	30dBm ±2dB	0dBm ± 5dB
GSM850 (8-PSK)	27dBm ±3dB	5dBm ± 5dB
EGSM900 (8-PSK)	27dBm ±3dB	5dBm ± 5dB
DCS1800 (8-PSK)	26dBm +3/-4dB	0dBm ±5dB
PCS1900 (8-PSK)	26dBm +3/-4dB	0dBm ±5dB
LTE-FDD B1	23dBm +/-2.7dB	<-40dBm
LTE-FDD B2	23dBm +/-2.7dB	<-40dBm
LTE-FDD B3	23dBm +/-2.7dB	<-40dBm
LTE-FDD B4	23dBm +/-2.7dB	<-40dBm
LTE-FDD B5	23dBm +/-2.7dB	<-40dBm
LTE-FDD B7	23dBm +/-2.7dB	<-40dBm
LTE-FDD B8	23dBm +/-2.7dB	<-40dBm
LTE-FDD B20	23dBm +/-2.7dB	<-40dBm
LTE-FDD B28	23dBm +/-2.7dB	<-40dBm
LTE-FDD B66	23dBm +/-2.7dB	<-40dBm
LTE-TDD B34	23dBm +/-2.7dB	<-40dBm
LTE-TDD B38	23dBm +/-2.7dB	<-40dBm
LTE-TDD B39	23dBm +/-2.7dB	<-40dBm
LTE-TDD B40	23dBm +/-2.7dB	<-40dBm
LTE-TDD B41	23dBm +/-2.7dB	<-40dBm

表 29: 2G 频段信息

频率	DL	UL
GSM850	869~894 MHz	824~849MHz
EGSM900	925~960MHz	880~915 MHz

www.simcom.com 46/67

DCS1800	1805~1880 MHz	1710~1785 MHz
DCS1900	1850~1910MHz	1930~1990MHz

表 30: 4G 频段信息

E-UTRA 频段编号	上行操作频段	下行操作频段	双工模式
1	1920 ~1980 MHz	2110 ~2170 MHz	FDD
2	1850~1910MHz	1930~1990MHz	FDD
3	1710 ~1785 MHz	1805 ~1880 MHz	FDD
4	1710~1755MHz	2110~2155MHZ	FDD
5	869∼894 MHz	824∼849MHz	FDD
7	2500~2570MHz	2620~2690MHz	FDD
8	880 ~915 MHz	925 ~960 MHz	FDD
20	832~862MHz	791~821MHz	FDD
28	703~748MHz	758~803MHz	FDD
66	1710~1780MHz	2110~2180MHz	FDD
34	2010∼2025MHz	2010∼2025 MHz	TDD
38	2570 ~2620 MHz	2570 ~2620 MHz	TDD
39	1880 ~1920 MHz	1880 ~1920 MHz	TDD
40	2300 ~2400 MHz	2300 ~2400 MHz	TDD
41	2496 ~2690 MHz	2496 ~2690 MHz	TDD

表 31: 2G 传导接收灵敏度

频率	灵敏度(典型)	灵敏度(最大)
EGSM900	< -108dBm	3GPP
EGSM900	< -108dBm	3GPP
DCS1800	< -108dBm	3GPP
DCS1800	< -108dBm	3GPP

表 32: 4G 传导灵敏度(QPSK)

E-UTRA	3GPP 标准						实测值	双工
频段编号	1.4 MHz	3MHz	5MHz	10MHz	15 MHz	20 MHz	10 MHz	模式
1	-	-	-100	-97	-95.2	-94	-98.5	FDD
2	-102.7	-99.7	-98	-95	-93.2	-92	TBD	FDD
3	-101.7	-98.7	-97	-94	-92.2	-91	-98.1	FDD
4	-104.7	-101.7	-100	-97	-95.2	-94	TBD	FDD
5	-103.2	-100.2	-98	-95	-	-	-98.6	FDD

www.simcom.com 47/67

7			-98	-95	-93.2	-92	-98	FDD
8	-102.2	-99.2	-97	-94	-	-	-98.1	FDD
20			-97	-94	-91.2	-90	-99	FDD
28		-100.2	-98.5	-95.5	-93.7	-91	TBD	FDD
66	-104.7	-101.7	-100	-97	-95.2	-94	TBD	FDD
34	-	-	-100	-97	-95.2	-	-97.5	TDD
38	-	-	-100	-97	-95.2	-94	-98.6	TDD
39	-	-	-100	-97	-95.2	-94	-97.8	TDD
40	-	-	-100	-97	-95.2	-94	-98.2	TDD
41	-	-	-98	-95	-93.2	-92	-98.6	TDD

4.2 GSM/LTE 天线参考设计

在天线电路设计时,在模块和天线之间的走线必须保证50Ω走线阻抗。推荐增加射频测试座以便于校准及测试,增加射频匹配电路以便于天线调试。推荐电路如下图:

图 30: 天线接口连接电路

上图中匹配电路中的 R1, C1, C2 和 R2 的具体值,通常由天线厂提供,由天线优化而定。其中,R1 和 R2 默认贴 0Ω ,C1 和 C2 默认不贴。D1 为一双向 TVS 器件,建议选贴,电容值要求小于 0.2pF,以避免模块内部器件损坏。推荐的 TVS 型号如下表:

表 33: TVS 推荐型号列表

封装	型号	供应商
0201	CE0201S05G01R	硕凯
0402	PESD0402-03	PRISEMI

4.3 GSM/LTE 天线要求

为了更好的整机性能,推荐天线设计参考如下表指标要求。

www.simcom.com 48/67

表 34: GSM/LTE 天线要求

天线指标	指标要求
工作频段	参考频段范围表
方向性	Omni Directional
增益	> -3dBi (Avg)
阻抗	50Ω
效率	>50 %
最大输入功率	50W
VSWR	< 2
隔离度	>20dB
射频走线插损(<1GHz)	<0.5dB
射频走线插损(1GHz~2.2GHz)	<0.8dB
射频走线插损 (2.3GHz~2.7GHz)	<1.2dB

www.simcom.com 49/67

5 电气参数

5.1 极限参数

下表显示了在非正常工作情况下绝对最大值的状态。超过这些极限值将可能会导致模块永久性损坏。

表 35: 极限参数

参数	ł		典型值	最大值	单位
VBAT 引脚极限电压		-0.5	-	4.7	V
VBUS 引脚极限电压		-0.5	-	5.4	V
IO 口极限电压: GPIO,I2C,SPI,UART 和 PCM		-0.3	-	2.1	V
IO 口极限电压:		-0.3	-	2.1	V
USIM		-0.3	-	3.9	V
PWRKEY、RESET		-0.3	-	4.7	V
5.2 正常工作条件 長 36 : 模块推荐工作电压					
参数		小值	典型值	最大值	单位

表 36: 模块推荐工作电压

参数	最小值	典型值	最大值	单位
VBAT 引脚工作电压	3.4	3.8	4.2	V
VBUS 引脚工作电压	3.5	5.0	5.2	V

表 37: 1.8V 数字接口特性*

参数	描述	最小值	典型值	最大值	单位
V_{IH}	输入高电平电压	1.35	1.8	2.1	V
V_{IL}	输入低电平电压	-0.3	-	0.45	V
Vон	输出高电平电压	1.35	-	1.8	V
V_{OL}	输出低电平电压	0	-	0.4	V
I _{OH}	高电平输出电流 (模块未配置下拉电阻时)	1	-	5	mA
I _{OL}	低电平输出电流(模块未配置上拉拉电阻时)	-1	-	-5	mA
I _{IH}	高电平输入电流(模块未配置下拉电阻时)	-	-	10	uA
I _{IL}	低电平输入电流(模块未配置上拉拉电阻时)	-10	-	-	uA

50/67 www.simcom.com

※ 特别注意

以上参数适用于: GPIO, I2C, UART, PCM。

表 38: 模块工作温度

参数	最小值	典型值	最大值	单位
普通工作温度	-30	25	80	$^{\circ}\!\mathbb{C}$
扩展工作温度	-40	25	85	$^{\circ}\!\mathbb{C}$
存储温度	-45	25	90	$^{\circ}\!\mathbb{C}$

※ 特别注意

在扩展工作温度下工作时,模块射频指标可能不能满足 3GPP 规范。

5.3 工作模式

5.3.1 工作模式定义

下表简要介绍了后续章节将要提到的多种工作模式。

表 39: 工作模式定义

模式功能		定义
	GSM / LTE休眠	在这种状态下,模块的电流消耗会降到最低,模块仍能接收寻呼信息和SMS。
	GSM/LTE空闲	软件正常运行,模块已经注册到网络上,并可以随时发送和接收数据。
正常工作模式	GSM / LTE通话	两个用户处于连接中,在这种情况下模块的功耗和网络及模块的 配置有关。
	GSM/LTE待机	模块随时准备着数据传输,但是当前没有发送或接收数据。这种情况下,功耗取决于网络状况和配置。
	GPRS/EDGE/LTE数据传输	数据正在传输中。在这种情况下,功耗取决于网络状况(例如:功率控制等级),上下行数据链路的数据速率,以及网络配置(例如:使用多时隙配置)。
最小功能模式		在不断电的情况下,可以使用 "AT+CFUN=0" 命令把模块配置成最小功能模式。在这种情况下, RF部分和USIM卡部分都不工作,但串口和USB仍可以使用,此时功耗比正常工作模式低。
飞行模式		在不断电的情况下,使用 "AT+CFUN=4" 命令或拉低

www.simcom.com 51/67

	FLIGHTMODE引脚,可把模块配置成飞行模式。在这种情况下, RF部分不工作,但串口和USB仍可以使用,此时功耗比正常工 作模式低。
关机模式	通过 "AT+CPOF"命令或拉低PWRKEY引脚可关闭A7670系列模块。此时,模块内部的各个电源均被关闭,软件也停止运行。 串口和USB均不可用。

5.3.2 休眠模式

在休眠模式下,模块的电流消耗会降到最低,但模块仍能接收寻呼信息和 SMS。 当模块满足以下软硬件条件时,A7670系列模块可自动进入休眠模式:

- ●UART条件
- ●USB条件
- ●软件设置条件

有关休眠模式的详细信息,请参考文档【24】。

5.3.3 功能模式

可以通过命令 "AT+CFUN=<fun>"把模块设置到该模式下,这条命令提供三种选择,用于以设置不同功能。

- ●AT+CFUN=0: 最小功能模式;
- ●AT+CFUN=1: 全功能模式(默认);
- ●AT+CFUN=4: 飞行模式。

设置"AT+CFUN=0"后,模块进入最小功能模式,关闭射频功能和USIM卡的功能。在这种情况下,串口和USB仍然可以继续使用,但是与射频和USIM卡相关的功能以及部分AT命令不能使用。

设置"AT+CFUN=4"后,模块进入飞行模式,关闭射频功能。在这种情况下,模块的串口和USB仍然可以使用,但是与射频相关的功能以及部分AT命令不可使用。

当模块进入最小功能模式或者进入飞行模式后,都可以通过命令"AT+CFUN=1"使之返回全功能模式。 有关"AT+CFUN"命令详细信息,请参考文档【1】。

5.4 耗流

表 40: VBAT 耗流(VBAT=3.8V)

GSM 休眠/空闲	
GSM/GPRS 耗流	休眠模式 @BS_PA_MFRMS=2 典型值: 2mA
(不带USB连接)	空闲模式 @BS_PA_MFRMS=2 典型值: 14.5mA
LTE休眠/空闲	
LTE supply current	休眠模式@DRX=0.32S 典型值: 2.3mA
(不带USB连接)	空闲模式@DRX=0.32S 典型值: 14.5mA
GSM 通话	
EGSM 900	@功率等级 #5 典型值: 320 mA
DCS1800	@功率等级 #0 典型值: 262 mA
GPRS 数据传输	

www.simcom.com 52/67

EGSM 900(1 收,4 发)	@功率等级 #5 典型值: 630 mA
DCS1800(1收,4发)	@功率等级 #0 典型值: 395 mA
EGSM 900(3 收, 2 发)	@功率等级 #5 典型值: 370 mA
DCS1800(3 收, 2 发)	@功率等级 #0 典型值: 275 mA
,	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩
EDGE数据传输	
EGSM 900(1 收,4 发)	@功率等级 #8 典型值: 460 mA
DCS1800(1收,4发)	@功率等级 #2 典型值: 300 mA
EGSM 900(3 收, 2 发)	@功率等级 #8 典型值: 336 mA
DCS1800(3收,2发)	@功率等级 #2 典型值: 208 mA
LTE 数据传输	
LTE-FDD B1	@10MHz 23dBm 典型值:490 mA
LTE-FDD B2	@10MHz 23dBm 典型值:TBD
LTE-FDD B3	@10MHz 23dBm 典型值:670 mA
LTE-FDD B4	@10MHz 23dBm 典型值:TBD
LTE-FDD B5	@10MHz 23dBm 典型值:510 mA
LTE-FDD B7	@10MHz 23dBm 典型值:540mA
LTE-FDD B8	@10MHz 23dBm 典型值:490mA
LTE-FDD B20	@10MHz 23dBm 典型值:493mA
LTE-FDD B28	@10MHz 23dBm 典型值:TBD
LTE-FDD B66	@10MHz 23dBm 典型值:TBD
LTE-TDD B34	@10MHz 23dBm 典型值:505mA
LTE-TDD B38	@10MHz 23dBm 典型值:607 mA
LTE-TDD B39	@10MHz 23dBm 典型值:526 mA
LTE-TDD B40	@10MHz 23dBm 典型值:640mA
LTE-TDD B41	@10MHz 23dBm 典型值:594mA

5.5 静电防护

A7670系列模块是静电敏感器件,因此,用户在生产、装配和操作模块时必须注意静电防护。模块的静电性能参数如下表:

表 41: ESD 性能参数 (温度: 25℃,湿度: 45%)

引脚	接触放电	空气放电
VBAT,GND	+/-5K	+/-10K
天线端口	+/-5K	+/-10K
USB接口	+/-4K	+/-8K
UART接口	+/-4K	+/-6K
其它引脚	+/-1K	+/-2K

www.simcom.com 53/67

※ 特别注意

测试条件:模块在芯讯通开发板上(开发板带必要的 ESD 保护器件)

www.simcom.com 54/67

■ 6 贴片生产

6.1 模块的顶视图和底视图

图 31: 模块顶视图和底视图

※ 特别注意

如上为模块设计效果图,提供参考,实际外观请以实物为准。

55/67 www.simcom.com

6.2 标签信息

图 32: 标签信息

表 42: 模块信息描述

项次	描述
Α	项目名字
В	模块 P/N 号
С	模块 SN 号
D	模块 IMEI 号
Е	二维码

www.simcom.com 56/67

6.3 典型焊接炉温曲线

图 33: 推荐焊接炉温曲线图 (无铅工艺)

※ 特别注意

更多二次贴片介绍请参考文档【21】。

6.4 湿敏特性

A7670 系列模块的湿敏特性为 3 级。

如果满足如下二个条件的任何一条,**A7670**系列模块在进行回流焊前应该进行充分的烘烤,否则模块可能在回流焊过程中造成永久性的损坏。

拆封或真空包装破损漏气后,在温度<30度和相对湿度<60%的环境条件下,A7670系列模块需168小时内进行SMT贴片。如不满足上述条件需进行烘烤。

真空包装未拆封,但超过保质期的,也需要进行烘烤。

烘烤条件: 在湿度小于5%,温度40+5/-0°C条件下需要烘烤192小时;在湿度小于5%,温度85+5/-0°C条件下需要烘烤72小时(如果使用托盘,请注意托盘是否抗热变形)。

表 43: 模块湿敏特性

等级	车间寿命(工厂环境≦+30℃/60%RH)
1	无限期保质在环境≦+30℃/85% RH 条件下
2	1 年
2a	4 周
3	168 小时
4	72 小时

www.simcom.com 57/67

5	48 小时
5a	24 小时
6	强制烘烤后再使用。经过烘烤,模块必须在标签上规定的时限内贴片。

※ 特别注意

产品搬运、存储、加工过程必须遵循 IPC/JEDEC J-STD-033。

www.simcom.com 58/67

7 包装

模块支持托盘包装。

图 34: 模块包装示意图

下面是模块托盘(Module tray)尺寸图:

图 35: 托盘尺寸图

www.simcom.com 59/67

表 44: 托盘尺寸信息

托盘长度(±3mm)	托盘宽度(±3mm)	标准包装数
242.0	161.0	20

下面是托盘小卡通箱(Small carton)尺寸图:

图 36: 小卡通箱尺寸图

表 45: 小卡通箱尺寸信息

盒长(±10mm)	盒宽(±10mm)	盒高(±10mm)	标准包装数
270	180	120	20*20=400

下面是托盘大卡通箱(Big carton)尺寸图:

图 37: 大卡通箱尺寸图

www.simcom.com 60/67

表 46: 大卡通箱尺寸信息

盒长(± 10mm)	盒宽(±10mm)	盒高(± 10mm)	标准包装数
380	280	280	400*4=1600

www.simcom.com 61/67

8 附录

8.1 编码方式及最大数据速率

表 47: 编码方式和最大数据速率

Slot class	DL slot number	UL slot number	Active slot number
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5
GPRS coding scheme	Max data rata (4	slots)	Modulation type
CS 1 = 9.05 kb/s / time slot	36.2 kb/s		GMSK
CS 2 = 13.4 kb/s / time slot	53.6 kb/s		GMSK
CS 3 = 15.6 kb/s / time slot	62.4 kb/s		GMSK
CS 4 = 21.4 kb/s / time slot	85.6 kb/s		GMSK
EDGE coding scheme	Max data rata (4	slots)	Modulation type
MCS 1 = 8.8 kb/s/ time slot	35.2 kb/s		GMSK
	44.8 kb/s		GMSK
MCS 2 = 11.2 kb/s/ time slot	44.8 kb/s 59.2 kb/s		GMSK GMSK
MCS 2 = 11.2 kb/s/ time slot MCS 3 = 14.8 kb/s/ time slot MCS 4 = 17.6 kb/s/ time slot			
MCS 2 = 11.2 kb/s/ time slot MCS 3 = 14.8 kb/s/ time slot	59.2 kb/s		GMSK
MCS 2 = 11.2 kb/s/ time slot MCS 3 = 14.8 kb/s/ time slot MCS 4 = 17.6 kb/s/ time slot MCS 5 = 22.4 kb/s/ time slot	59.2 kb/s 70.4 kb/s		GMSK GMSK
MCS 2 = 11.2 kb/s/ time slot MCS 3 = 14.8 kb/s/ time slot MCS 4 = 17.6 kb/s/ time slot MCS 5 = 22.4 kb/s/ time slot MCS 6 = 29.6 kb/s/ time slot	59.2 kb/s 70.4 kb/s 89.6 kb/s		GMSK GMSK 8PSK
MCS 2 = 11.2 kb/s/ time slot MCS 3 = 14.8 kb/s/ time slot MCS 4 = 17.6 kb/s/ time slot MCS 5 = 22.4 kb/s/ time slot MCS 6 = 29.6 kb/s/ time slot MCS 7 = 44.8 kb/s/ time slot	59.2 kb/s 70.4 kb/s 89.6 kb/s 118.4 kb/s		GMSK GMSK 8PSK 8PSK
MCS 2 = 11.2 kb/s/ time slot MCS 3 = 14.8 kb/s/ time slot MCS 4 = 17.6 kb/s/ time slot MCS 5 = 22.4 kb/s/ time slot MCS 6 = 29.6 kb/s/ time slot MCS 7 = 44.8 kb/s/ time slot MCS 8 = 54.4 kb/s/ time slot	59.2 kb/s 70.4 kb/s 89.6 kb/s 118.4 kb/s 179.2 kb/s		GMSK GMSK 8PSK 8PSK 8PSK
MCS 2 = 11.2 kb/s/ time slot MCS 3 = 14.8 kb/s/ time slot MCS 4 = 17.6 kb/s/ time slot	59.2 kb/s 70.4 kb/s 89.6 kb/s 118.4 kb/s 179.2 kb/s 217.6 kb/s 236.8 kb/s	oeak)	GMSK GMSK 8PSK 8PSK 8PSK 8PSK

www.simcom.com 62/67

Category 2	1.2Mbps	16QAM,QPSK
Category 3	1.8Mbps	16QAM,QPSK
Category 4	1.8Mbps	16QAM,QPSK
Category 5	3.6Mbps	16QAM,QPSK
Category 6	3.6Mbps	16QAM,QPSK
Category 7	7.2Mbps	16QAM,QPSK
Category 8	7.2Mbps	16QAM,QPSK
Category 9	10.2Mbps	16QAM,QPSK
Category 10	14.4Mbps	16QAM,QPSK
Category 11	0.9Mbps	QPSK
Category 12	1.8Mbps	QPSK
Category 13	17.6Mbps	64QAM
Category 14	21.1Mbps	64QAM
Category 15	23.4Mbps	16QAM
Category 16	28Mbps	16QAM
Category 17	23.4Mbps	64QAM
Category 18	28Mbps	64QAM
Category 19	35.5Mbps	64QAM
Category 20	42Mbps	64QAM
Category 21	23.4Mbps	16QAM
Category 22	28Mbps	16QAM
Category 23	35.5Mbps	64QAM
Category 24	42.2Mbps	64QAM
HSUPA device category	Max data rate (peak)	Modulation type
Category 1	0.96Mbps	QPSK
Category 2	1.92Mbps	QPSK
Category 3	1.92Mbps	QPSK
Category 4	3.84Mbps	QPSK
Category 5	3.84Mbps	QPSK
Category 6	5.76Mbps	QPSK
LTE-FDD device category	Max data rate (peak)	Modulation type
(Downlink)	*	
Category 1	10Mbps	QPSK/16QAM/64QAM
Category 2	50Mbps	QPSK/16QAM/64QAM
Category 3	100Mbps	QPSK/16QAM/64QAM
Category 4	150Mbps	QPSK/16QAM/64QAM
LTE-FDD device category (Uplink)	Max data rate (peak)	Modulation type
Category 1	5Mbps	QPSK/16QAM
Category 1 Category 2	5Mbps 25Mbps	QPSK/16QAM QPSK/16QAM

www.simcom.com 63/67

Category 4	50Mbps	QPSK/16QAM
0 ,	•	

8.2 参考文档

表 48:参考文档

序号	文档名称	注释
[1]	A7600 Series_AT Command	AT Command Manual
[2]	Manual ITU-T Draft new recommendationV.25ter	Serial asynchronous automatic dialing and control
[3]	GSM 07.07	Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME)
[4]	GSM 07.10	Support GSM 07.10 multiplexing protocol
[5]	GSM 07.05	Digital cellular telecommunications (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
[6]	GSM 11.14	Digital cellular telecommunications system (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface
[7]	GSM 11.11	Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface
[8]	GSM 03.38	Digital cellular telecommunications system (Phase 2+); Alphabets and language-specific information
[9]	GSM 11.10	Digital cellular telecommunications system (Phase 2); Mobile Station (MS) conformance specification; Part 1: Conformance specification
[10]	3GPP TS 51.010-1	Digital cellular telecommunications system (Release 5); Mobile Station (MS) conformance specification
[11]	3GPP TS 34.124	Electromagnetic Compatibility (EMC) for mobile terminals and
[40]		ancillary equipment.
[12]	3GPP TS 34.121	Electromagnetic Compatibility (EMC) for mobile terminals and ancillary equipment.
[13]	3GPP TS 34.123-1	Technical Specification Group Radio Access Network; Terminal conformance specification; Radio transmission and reception (FDD)
[14]	3GPP TS 34.123-3	User Equipment (UE) conformance specification; Part 3: Abstract Test Suites.
[15]	EN 301 908-02 V2.2.1	Electromagnetic compatibility and Radio spectrum Matters (ERM); Base Stations (BS) and User Equipment (UE) for IMT-2000. Third Generation cellular networks; Part 2: Harmonized EN for IMT-2000, CDMA Direct Spread (UTRA FDD) (UE) covering essential requirements of article 3.2 of the R&TTE Directive
[16]	EN 301 489-24 V1.2.1	Electromagnetic compatibility and Radio Spectrum Matters (ERM); Electromagnetic Compatibility (EMC) standard for radio equipment and services; Part 24: Specific conditions for IMT-2000 CDMA Direct Spread (UTRA) for Mobile and portable (UE) radio and ancillary equipment

www.simcom.com 64/67

[17]	IEC/EN60950-1(2001)	Safety of information technology equipment (2000)
[18]	3GPP TS 51.010-1	Digital cellular telecommunications system (Release 5); Mobile Station (MS) conformance specification
[19]	GCF-CC V3.23.1	Global Certification Forum - Certification Criteria
[20]	2002/95/EC	Directive of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)
[21]	Module secondary-SMT-UGD-V1.xx	Module secondary SMT Guidelines
[22]	A7600Series_UART_Applicati on Note_V1.xx	This document describes how to use UART interface of SIMCom modules.
[23]	Antenna design guidelines for diversity receiver system	Antenna design guidelines for diversity receiver system
[24]	A7600 Series_SleepMode_Applicatio n Note_V1.xx	Sleep Mode Application Note

8.3 术语和解释

表 49: 术语和解释

术语	解释
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-Rate
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send
DTE	Data Terminal Equipment (typically computer, terminal, printer)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
ESD	Electrostatic Discharge
ETS	European Telecommunication Standard
FR	Full Rate
GPRS	General Packet Radio Service
GSM	Global Standard for Mobile Communications
HR	Half Rate
IMEI	International Mobile Equipment Identity
Li-ion	Lithium-lon
MO	Mobile Originated
MS	Mobile Station (GSM engine), also referred to as TE
MT	Mobile Terminated
PAP	Password Authentication Protocol
PBCCH	Packet Broadcast Control Channel

www.simcom.com 65/67

PCB	Printed Circuit Board
PCL	Power Control Level
PCS	Personal Communication System, also referred to as GSM 1900
PDU	Protocol Data Unit
PPP	Point-to-point protocol
RF	Radio Frequency
RMS	Root Mean Square (value)
RTC	Real Time Clock
RX	Receive Direction
SIM	Subscriber Identification Module
SMS	Short Message Service
TE	Terminal Equipment, also referred to as DTE
TX	Transmit Direction
UART	Universal Asynchronous Receiver & Transmitter
URC	Unsolicited Result Code
USSD	Unstructured Supplementary Service Data
电话本缩写	
FD	SIM fix dialing phonebook
LD	SIM last dialing phonebook (list of numbers most recently dialed)
MC	Mobile Equipment list of unanswered MT calls (missed calls)
ON	SIM (or ME) own numbers (MSISDNs) list
RC	Mobile Equipment list of received calls
SM	SIM phonebook
NC	Not connect

www.simcom.com 66/67

8.4 安全警告

在使用或者维修任何包含模块的终端或者手机的过程中要留心以下的安全防范。终端设备上应当告知用户以下的安全信息。否则 SIMCom 将不承担任何因用户没有按这些警告操作而产生的后果。

表 50: 安全警告

标识 要求

当在医院或者医疗设备旁,观察使用手机的限制。如果需要请关闭终端或者手机,否则医 疗设备可能会因为射频的干扰而导致误操作。

登机前关闭无线终端或者手机。为防止对通信系统的干扰,飞机上禁止使用无线通信设备。 忽略以上事项将违反当地法律并有可能导致飞行事故。

不要在易燃气体前使用移动终端或者手机。当靠近爆炸作业、化学工厂、燃料库或者加油站时要关掉手机终端。在任何潜在爆炸可能的电器设备旁操作移动终端都是很危险的。

手机终端在开机的状态时会接收或者发射射频能量。当靠近电视、收音机、电脑或者其它 电器设备时会对其产生干扰。

道路安全第一! 在驾驶交通工具时不要用手持终端或手机,请使用免提装置。在使用手持终端或手机前应先停车。

GSM手机终端在射频信号和蜂窝网下操作,但不能保证在所用的情况下都能连接。例如,没有话费或者无效的SIM卡。当处于这种情况而需要紧急服务,记得使用紧急电话。为了能够呼叫和接收电话,手机终端必须开机而且要在移动信号足够强的服务区域。当一些确定的网络服务或者电话功能在使用时不允许使用紧急电话,例如功能锁定,键盘锁定。在使用紧急电话前,要解除这些功能。一些网络需要有效的SIM卡支持。

www.simcom.com 67/67