भारतीय अङ्क एवं सङ्ख्या प्रणाली

दिनेश मोहन जोशी¹, गिरीशभट्ट बि²

¹मानविकी एवं समाज विज्ञान विभाग, भारतीय प्रौद्योगिकी संस्थान, मुम्बई ²सिद्धान्तज्यौतिषशास्त्र में विद्यावारिधिशोधच्छात्त्र, राष्ट्रियसंस्कृतविश्वविद्यालय, तिरुपति

सारांश

व्यावहारिक दृष्टि से विश्व की सभी सभ्यताओं में गणित का महत्त्वपूर्ण स्थान रहा है । सभ्यता और गणित एक ही सिक्के के दो पहलू हैं एसा कहना अतिशयोक्ति नहीं होगी । ब्रह्माण्ड में कोई भी व्यवहार गणित के बिना सम्भव नहीं है और अङ्क, गणित के श्वास हैं । अङ्कों के बिना हम गणित की कल्पना भी नहीं कर सकते । इस शोध पत्र में हम अङ्कों एवं सङ्ख्याओं के इतिहास एवं लेखन पद्धति पर विस्तार से चर्चा करेंगे ।

कूटशब्दः गणित, अर्थशास्त्र, दशमलव, शब्दाङ्क, कटपयादि, ब्राह्मी, नानाघाट

International Journa
of Trend in Scientific
Research and

How to cite this paper: Dinesh Mohan Joshi | Girish Bhatt B "Indian Numeral

and Number System" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-6

6470, Volume-6 | Issue-4, June 2022, pp.1690-1705, URL:

Copyright © 2022 by author(s) and International Journal of Trend in Scientific Research and Development

www.ijtsrd.com/papers/ijtsrd50364.pdf

Journal. This is an Open Access article distributed under the

terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

प्रस्तावना

महावीराचार्य (850 A. D) ने गणित की व्यापकता को बताते हुये अपने ग्रन्थ गणितसारसङ्ग्रह में विशेष रूप से गणित के महत्व को बताया है-

लौकिके वैदिके वापि तथा सामायिकेऽपि यः व्यापारस्तत्र सर्वत्र संख्यानमुपयुज्यते ॥ कामतन्त्रेऽर्थशास्त्रे च गान्धर्वे नाटकेऽपि वा । सूपशास्त्रे तथा वैद्ये वास्तुविद्यादिवस्तुषु ॥ छन्दोऽलङ्कारकाव्येषु तर्के व्याकरणादिषु । कलागुणेषु सर्वेषु प्रस्तुतं गणितं परम् ॥ सूर्यादिग्रहचारेषु ग्रहणे ग्रहसंयुतौ । त्रिप्रश्ने चन्द्रवृत्तौ च सर्वत्राङ्गीकृतं हि तत् ॥ द्वीपसागरशैलानां सङ्ख्याव्यासपरिक्षिपः । भवनव्यन्तरज्योतिर्लोककल्पाधिवासिनाम् ॥ नारकाणां च सर्वेषां श्रेणीबन्धेन्द्रकोत्कराः । प्रकीर्णकप्रमाणाद्या बुध्यन्ते गणितेन ते ॥ प्राणिनां तत्र संस्थानमायुरष्टगुणादयः ।

यात्राद्याः संहिताद्याश्च सर्वे ते गणिताश्रयाः ॥ बहुभिर्विप्रलापैः किं त्रैलोक्ये सचराचरे । यत्किंचिद्वस्तुं तत्सर्वं गणितेन विना न हि ॥ तीर्थकृद्भ्यः कृतार्थेभ्यः पूज्येभ्यो जगदीश्वरैः । तेषां शिष्यप्रशिष्येभ्यः प्रसिद्धाद्गुरुपर्वतः ॥ जलधेरिव रत्नानि पाषाणादिव काञ्चनम् । शुक्तेर्मुक्ताफलानीव सङ्ख्याज्ञानमहोदधेः ॥ किञ्चिदुदृत्य तत्सारं वक्ष्येऽहं मतिशक्तितः । अल्पं ग्रन्थमनल्पार्थं गणितं सारसंग्रहम् ॥ संज्ञाम्भोभिरथो पूर्ण परिकर्मोरुवेदिके । कलासवर्णसंरूढलुठत्पाठीनसंकुले ॥ प्रकीर्णकमहाग्राहे त्रैराशिकतरङ्गिणि । मिश्रकव्यवहारोद्यत्पूक्तिरत्नांशुपिञ्जरे ॥ क्षेत्रविस्तीर्णपाताले खाताख्यसिकताकुले । करणस्कन्धसम्बन्धच्छायावेलाविराजिते ॥ गुणकैर्गुणसंपूर्णैस्तदर्थमणयोऽमलाः 1 गृह्यन्ते करणोपायैः सारसङ्गहवारिधौ ॥1

तात्पर्य यह है कि लौकिक एवं वैदिक अनुष्ठानों, व्यापार, कामतन्त्र, अर्थशास्त्र, गान्धर्व, नाटक, सूपशास्त्र, चिकित्साशास्त्र, वास्तु, छन्द अलङ्कार, काव्य, व्याकरण, दर्शन सूर्य इत्यादि ग्रहों की गतियों, त्रिप्रश्न (दिक्, देश, काल), ग्रहण, द्वीप, सागर, पर्वत इत्यादि का व्यास इत्यादि विषयों में सर्वत्र गणित की अवश्यकता है, अर्थात् सम्पूर्ण ब्रह्माण्ड गणिताश्रित है, कोई भी व्यवहार गणित के अभाव में सम्भव नहीं है ।

``गणित'' शब्द का सर्वप्रथम प्रयोग

सर्वप्रथम 'गणित' शब्द का प्रयोग वेदाङ्गज्योतिष (1200 B. C) में किया गया है, इसमें गणित को वेदाङ्गों में सर्वश्रेष्ठ बताया गया है । यथा-

यथा शिखा मयूराणां नागानां मणयो यथा । तथा वेदाङ्गशास्त्रेषु ज्योतिषं मूर्धनि स्थितम् ॥²

जैसे मोरों में शिखा और नागों में मणि का स्थान सबसे ऊपर है, वैसे ही सभी वेदांग और शास्त्रों मे गणित का स्थान सबसे ऊपर है।

गणित का महत्त्व

गणित के महत्त्व को भास्करचार्य ने अपने ग्रन्थ सिद्धान्तिशरोमणि में बहुत ही सुन्दर ढंग से प्रस्तुत किया है-

यः सिद्धान्तमनन्तयुक्तिविततं नो वेत्ति भित्तौ यथा

राजा चित्रमयोऽथवा सुघटितः काष्ठस्य कण्ठीरवः ।

गर्जत्कुञ्जरवर्जिता नृपचमूरप्यूर्जिताऽश्वादिकैः

¹ गणितसारसङ्गहः, संज्ञाध्यायः, श्लोक 9-23

² आर्चज्योतिष 35, याजुषज्योतिष, 4

उद्यानं च्युतचूतवृक्षमथवा पाथोविहीनं सरः ।

योषित्प्रोषितन्तनप्रियतमा यद्वन्न भात्युच्चकैः

ज्योतिःशास्त्रमिदं तथैव विबुधाः सिद्धान्तहीनम् जगुः ॥3

सिद्धान्त गणित को जो ज्योतिषी नहीं जानता वह भित्ति पर बनाये गये चित्र, काष्ठ से बनाये गये गर्जनाहीन सिंह तथा पङ्किरहित हाथी, अश्व व बिना घोडों एवं सेना के राजा, बिना आम के वृक्षों के नीरस उद्यान, जल विहीन तालाब, यौवना स्त्री के परदेश गया हुआ पति का वियोग जिस प्रकार शोभा नहीं पाते उसी प्रकार यह जगत भी ज्योतिष शास्त्र के सिद्धान्त (गणित) से विहीन होने पर प्रकाशित नहीं होता अर्थात् शोभा नहीं पाता । (ज्योतिष) ग्रह गणित सिद्धान्त से रहित ज्योतिषी की भी एसी ही स्थिति कही गई है ।

गणित की अवधारणा

गणित शब्द से अभिप्राय ''गणना के विज्ञान'' से है । गणेशदैवज्ञ ने लीलावती (1150 A. D) पर अपने भाष्य बुद्धिविलासिनी (1540 A. D) में मङ्गलाचरण की व्याख्या के अन्तर्गत गणित को इस प्रकार परिभाषित किया है-

गुण्यते सङ्ख्यायते तद् गणितम् । तत्प्रतिपादकत्वेन तत्संज्ञं शास्त्रमुच्यते ।

बौद्ध साहित्य में गणित को तीन भागों में विभक्त किया गया है जो क्रमशः मुद्रा, गणना एवं सङ्ख्या नाम से प्रसिद्ध हैं । इनकी चर्चा धीगनिकाय, विनयपटिक, दिव्यावदान एवं मिलिन्दपाञ्हों में की गई है । सङ्ख्या शब्द का प्रयोग गणित के अर्थ में भद्रबाहु ने भी प्रयोग किया है।

दशमलव पद्धति (Decimal place value system)

गणित व्यवहार के लिये सङ्ख्याओं का ज्ञान परमावश्यक है, सङ्ख्याओं के अभाव में हम गणित की कल्पना ही नहीं कर सकते हैं। सङ्ख्या गणित का पर्याय है । पाटीगणित (arithmetic) विशेष रूप से अङ्कों पर ही आधारित है । भारत का गणित के क्षेत्र में दशमलव एवं शून्य का अविष्कार एक बहुत बडी उपलब्धि है । वर्तमान समय में सबसे प्रसिद्ध अङ्क पद्धति दशमलव पद्धति है । इस पद्धति की विशेषता 1 से लेकर 9 अङ्क एवं 0 का प्रयोग करते हुये पूर्णाङ्कों का स्थान निर्धारण (place value) करना है । दशमलव पद्धति निरूपण से पूर्व गणित में अङ्कों को प्रदर्शित करना बहुत कठिन होता था परन्तु भारतीय मनीषियों के विवेक से गणित को एक नई दिशा मिली । सर्वप्रथम सङ्घाओं को शब्दों में लिखा जाता था । इसका सबसे प्राचीन उदाहरण ऋग्वेद से है-

त्रीणि शता त्रीसहस्राण्यग्निं त्रिंशश्च देवा न चासपर्यन् । औक्षन् घृतैरसृणन् बर्हिरस्सा ------

इससे हमें 3339 सङ्ख्या प्राप्त होती है । दशमलव पद्धति के संस्कृत साहित्य में पर्याप्त प्रमाण उपलब्ध हैं । अधिकतर गणितज्ञ एवं इतिहासकार इस बात से सहमत हैं दशमलव पद्धति एवं शून्य (zero) की जन्मभूमि भारत हैं एवं समय के साथ इनका प्रचार विश्व के अन्य भागों में हुआ । जार्ज सार्टन (George Sarton) के शब्दों में

Our numerals and the use of zero were invented by the Hindus and transmitted to us by the Arabs (hence the name Arabic numerals which we often give them.)⁵

परन्तु कतिपय विद्वानों के विचार जार्ज सार्टन के विचारों से भिन्न हैं । इनमें George R. Kaye एवं Neugebauer प्रमुख हैं । Neugebauer ने अपनी पुस्तक The Exact Sciences in Antiquity में लिखा है कि ''बैबिलान (Babylon)

³ सिद्धान्तशिरोमणि, मध्यमाधिकार, श्लोक 7b-8

⁴ ऋग्वेद, 3.9.9

⁵ Sarton, G. The Appreciation of Ancient and Medieval Science during the Renaissance (1450-1600), Philadelphia Univ., p. 151. 1955.

(1600 B. C) में सङ्ख्या स्थान (place value) में 60 आधार (sexagesimal) माना जाता था और यही आधार बाद में ग्रीक और हिन्दुओं ने माना । अन्त में इन्हीं के सहयोग से सङ्ख्या स्थान पद्धित का उदय हुआ'' । Neugebauer के शब्दों में -

Thus the "sexagesimal" order eventually became the main numerical system and with it the place value writing derived from the use of bigger and smaller signs. The decimal substratum, however, always remained visible for all numbers up to 60. Similarly, other systems of units were never completely extinguished. Only the purely mathematical texts, which we find well represented about 1500 years after the beginning of writing, have fully utilized the great advantage of a consistent sexagesimal place value notation. Again 1000 years later, this method became the essential tool in the development of a mathematical astronomy, whence it spread to the Greeks and then to the Hindus, who contributed the final step, namely, the use of the place value notation also for the smaller decimal units. It is this system that we use today.⁶

दशमलव पद्धित को समझने के लिये उदाहरणस्वरूप सङ्ख्या 42 को लेते हैं । इसमें 4, 4 \times 10 दर्शाता है । अरब के लोग भारत में व्यापार के लिये आते थे अतः वह भी इसी अङ्क पद्धित का अनुसरण करने लगे इसीलिये इस पद्धित को हिन्दु-अरबी अङ्क पद्धित के नाम से भी जाना जाता है । इस पद्धित ने गणित के क्षेत्र में बहुत बड़ी क्रान्ति पैदा कर दी, फलस्वरूप धन, ऋण, गुणन, भाग इत्यादि सरल हो गये । हिन्दु-अरबी अङ्क पद्धित में 10^5 , 10^4 , 10^3 , 10^2 , 10, 1 एसे लिखा जाता है । दशमलव पद्धित के अनुसार 434 को $(4 \times 10^2) + (3 \times 10) + (4 \times 1)$ एसे लिखा जा सकता है । यही पद्धित आज पूरे विश्व में स्वीकृत है । नीचे सारिणी 1 में कुछ महत्वपूर्ण वैदिक ग्रन्थों से दशमलव पद्धित के अनुसार सङ्ख्याओं को उद्धृत किया गया है । प्रत्येक सङ्ख्या क्रमशः दश गुणित होती जा रही है, इसी को भास्कराचार्य द्वितीय ने ''दशगुणोत्तर संज्ञा'' कहा है ।

सङ्ख्या	यजुर्वेदसंहिता7	तैत्तिरीयसंहिता ⁸	मैत्रायणी संहिता ⁹	पञ्चविंशब्राह्मण	
100	एक 🦠	<mark>। Sएक: 245</mark> 6	6470 एक 🧷 🆊	📝 एक	
101	दश	दश	दश	दश	
102	शत	शत	शत	शत	
103	सहस्र	सहस्र	सहस्र	सहस्र	
104	अयुत	अयुत	अयुत	अयुत	
105	नियुत	नियुत	नियुत	नियुत	
106	प्रयुत	प्रयुत	प्रयुत	प्रयुत	
107	अर्बुद	अर्बुद	अर्बुद	अर्बुद	
108	न्यर्बुद	न्यर्बुद	न्यर्बुद	न्यर्बुद	
109	समुद्र	समुद्र	समुद्र	समुद्र	
1010	मध्य	मध्य	मध्य	मध्य	
1011	अन्त	अन्त	अन्त	अन्त	
1012	परार्ध	परार्ध	परार्ध	परार्ध	

Table 1: विविध वैदिक ग्रन्थों में दशमलव पद्धति

⁶ Neugebauer. O. *The exact Science in Antiquity*, p. 19-20, 1952.

⁷ xvii, 2.

⁸ iv, 40. 11.4.

⁹ Ii, 8. 14.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

सारिणी में अर्बुद 10^7 है परन्तु बाद के संस्कृत साहित्य में अर्बुद को 10^8 माना गया है ।

मोहनजोदडो (3000 B. C) की खुदाई से वहां दशमलव पद्धित (decimal system) के कई प्रमाण मिले हैं । जैन ग्रन्थ जो कि 500-100 B. C के समय के बीच सूर्यप्रज्ञित, द्वीपप्रज्ञित, स्थानायसूत्र, उत्ताराध्यनसूत्र, भगवतीसूत्र एवं अनुयोगद्वारसूत्र में बडी सङ्ख्याओं को दशमलव पद्धित में बताया गया है । बौद्ध ग्रन्थ लिलतिवस्तर में गणितज्ञ अर्जुन और बोधिसत्त्व के बीच हुये संवाद में सङ्ख्याओं को निम्नलिखित प्रकार से प्रस्तुत किया गया है-

अथार्जुनो गणको महामात्रो बोधिसत्त्वमेवमाह - जानीषे त्वं कुमार कोटिशतोत्तरा नाम गणना विधिम् ?

आह – जानाम्यहम् ।

आह - कथं पुनः कोटिशतोत्तरा गणना गतिरनुप्रवेष्टव्या ?

बोधिसत्त्व आह - शतमयुतानां नियुतं नामोच्यते । शतं नियुतानां कङ्कारं नामोच्यते । शतं कङ्काराणां विवरं नामोच्यते । शतं विवराणां अक्षोभ्यं नामोच्यते । शतमक्षोभ्याणां विवाहण नामोच्यते । शतं विवाहानां उत्सङ्गं नामोच्यते । शतमुत्सङ्गानां बहुलं नामोच्यते । शतं बहुलानां नागबलं नामोच्यते । शतं नागबलानां तिटिलम्भं नामोच्यते । शतं तिटिलम्भानां व्यवस्थानप्रज्ञप्तिः नामोच्यते । शतं व्यवस्थानप्रज्ञप्तीनां हेतुहिलं नामोच्यते । शतं हेतुहिलानां करहूर्नामोच्यते । शतं करहूणां हेत्विन्द्रियं नामोच्यते । शतं हेत्विन्द्रियाणां समाप्तलम्भं नामोच्यते । शतं समाप्तलम्भानां गणनागतिर्नामोच्यते । शतं गणनागतीनां निरवद्यं नामोच्यते । शतं निरवद्यानां मुद्राबलं नामोच्यते । शतं मुद्राबलानां सर्वबलं नामोच्यते । शतं विभूतङ्गमानां विभूतङ्गमा नामोच्यते । शतं विभूतङ्गमानां तल्लक्षणं नामोच्यते । शतं विभूतङ्गमानां तल्लक्षणं नामोच्यते । ।

इसमें तल्लक्षण (10⁵³) तक मान बताये गये हैं । काच्चायन के पाली व्याकरण में 10¹⁴⁰ (असङ्ख्येय) बताई गई हैं । अनुयोगद्वारसूत्र (100 B. C) में समय की ईकाई ''शीर्षप्रहेलिका'' का मान 8400000²⁸ बताया गया है ।

भारतीय दर्शन ग्रन्थों में भी दशमलव एवं स्थानाङ्क से सम्बन्धित उद्धरण प्राप्त होते हैं । पातञ्जलि योगसूत्र, व्यासभाष्य में कहा गया है-

यथैका रेखा शतस्थाने शतं दशस्थाने दश एका च एक स्थाने दश एका च एकस्थाने यथा चैकत्वेपि स्त्री माता चोच्यते दुहिता च स्वसा चेति ।¹¹

इसी प्रकार शङ्कराचार्य जी ने ब्रह्मसूत्रभाष्य में कहा है-

यथा एकोऽपि सन् देवदत्तः लोके स्वरूपं सम्बन्धिरूपं च अपेक्ष्य अनेकशब्दप्रत्यय-भाग्भवति - मनुष्यः, ब्रह्मणः, श्रोत्रियः, वदान्यः, बालः, युवा, स्थविरः, पिता, पुत्रः, पौत्रः, भ्राता, जामाता इति । यथा च एकापि सती रेखा (अङ्कः) स्थानन्यत्वेन निविशमाना एक-दश-शत-सहस्रादि शब्दप्रत्ययभेदं अनुभवति, तथा सम्बन्धिनोरेव

इससे यह प्रमाणित होता है कि शङ्कराचार्य जी के समय में दशमलव एवं स्थानाङ्क पद्धित का विकास हो चुका था । विष्णुपुराण में भी इसका प्रसङ्ग है-

स्थानात् स्थानं दशगुणमेकस्माद् गुण्यते द्विज । ततोऽष्टादशमे भागे परार्धमभिधीयते ॥12

हे द्विज! एक स्थान से दूसरा स्थान दशगुणित है, इसलिये 18वां स्थान 1017 होता है ।

¹⁰ ललितविस्तर, 168-69.

¹¹ III. 13.

¹² विष्णुपुराण, 6.3.4.

भारत में लगभग 595 A. D से लेकर 972 A. D तक एसे शिलालेख मिले हैं जो उस समय में दशमलव पद्धित की प्रसिद्धि होने का प्रमाण देते हैं । प्राचीन पद्धित एवं नवीन पद्धित दोनों में बड़ी सङ्ख्याओं को बायें रखा जाता था परन्तु नवीन पद्धित में अङ्कों की स्थिति (place value) को इङ्गित किया जाता है । शिलालेखों के आधार पर अनुमान लगाया जा सकता है कि आठवीं शताब्दी में दशमलव पद्धित बहुत प्रसिद्ध हो चुकी थी । इतिहासकारों का मानना है कि ग्रीक में अक्षर सङ्केत चिह्नों का अविष्कार 700 B. C में हो चुका था परन्तु ईसा की प्रथम शताब्दी में यह पूर्ण रूप से विकसित हो चुकी थी । कहने का अभिप्राय यह है कि अक्षर सङ्केत चिह्नों को जनसामान्य तक पहुंचने तक लगभग 900 वर्ष लग गये । इसी प्रकार अरब में भी अक्षर सङ्केत चिह्नों को प्रसिद्धि मिलने में लगभग 600 वर्ष लग गये । इन्हीं तथ्यों के आधार पर हम कह सकते हैं कि स्थानाङ्क पद्धित का भी 100 B. C के लगभग अविष्कार हुआ होगा और आठवीं शताब्दी तक जनसामान्य तक पहुंच गई ।

शब्दाङ्क पद्धति (भूतसङ्ख्या) (Word numerals)

शब्दाङ्क पद्धित और इसका दशमलव में प्रयोग गणित में बहुत बडा योगदान है । ऋग्वेद का उदाहरण हम इससे पूर्व दे चुके हैं । इस पद्धित के अन्तर्गत सङ्ख्याओं को लिखने के लिये भारतीय गणितज्ञों एवं खगोलिवदों ने एसी पद्धित का निर्माण किया जिससे बडी बडी सङ्ख्याओं को सुलभता से लिखा जा सके । श्लोकबद्ध होने के कारण चिरकाल तक स्मरण रखने के सन्दर्भ में यह पद्धित बहुत ही प्रसिद्ध हुई । यह पद्धित सर्वाधिक प्राचीन एवं प्रसिद्ध मानी जाती है । इस पद्धित को भूतसङ्ख्या के नाम से जाना जाता है । भूतसङ्ख्या "भूतानां सङ्ख्या" अर्थात् प्रकृति सम्बन्धी अङ्क जैसे पृथ्वी, सूर्य, चन्द्र, ग्रह, नक्षत्र, समुद्र, पर्वत, अग्नि, आकाश, नेत्र, शरीराङ्ग, शिव, इन्द्र, मनु, राम, ऋतु, पक्ष, तिथि, दिशा इत्यादि एवं इनके पर्यायवाची । नीचे दी गई सारिणी 2 में अङ्कों को उनके सम्भावित भूतसङ्ख्या सम्बन्धित शब्दों के सामने दर्शाया गया है ।

	~ Q_ V A
अङ्क	अङ्कों के लिये प्रयुक्त भूतों के नाम
0	खं, आकाश, नभ, व्योम, अन्तरिक्ष
1	चन्द्र, इन्दु, हिमांशु, मृगाङ्क, शशाङ्क, शशधर, पृथ्वी, क्षिति, वसुन्धरा, कु, धरणि, धरा
2	अक्षि, चक्षु, नयन, नेत्र, बाहु, भुज, हस्त, कर्ण, जानु, कुच, अश्विनौ
3	अग्नि, अनल, हुताशन, शिखिन्, विह्न, भुवनम्, जगत्, लोक, राम (राम, बलराम, परशुराम), होतृ (अध्वर्यु, होता, उद्गाता)
4	अब्धि, उदिधि, जलिध, वारिधि, पयोधि, अर्णव, श्रुति, वेद, युग, आश्रमम, वर्ण, दिक्, कृत
5	इशु, शर, बाण, इन्द्रिय, अक्ष, विषय, महाभूत, प्राण
6	अङ्ग, ऋतु, कारक, रस, अरि, दर्शन
7	अग, अचल, अद्रि, गिरि, भूधर, क्षमाधर, अश्व, तुरग, वाजिन्, हय, ऋषि, मुनि, स्वर, द्वीप, वार
8	हस्तिन्, गज, दिग्गज, कुञ्जर, दन्तिन्, इभ, नाग, सर्प, तक्ष, अहि, वसु, सिद्धि
9	रन्ध्र, छिद्र, अङ्क, ग्रह, दुर्गा, गो, नन्द
10	अङ्गुलि, आशा, दिक्, अवतार, रावणशिर, पङ्कि
11	ईश, ईश्वर, रुद्र, शङ्कर, शिव, हर, अक्षौहिणी
12	सूर्य, अर्क, भानु, आदित्य, दिवाकर, मास, राशि
13	विश्व, विश्वेदेवा., अतिजगति, अघोष
14	इन्द्र, शक्र, मनु, लोक
15	तिथि, दिन, पक्ष
16	अष्टि, कला
17	अत्यष्टि
20	नख
23	विकृति
24	अर्हत्, जिन, सिद्ध, गायत्री
25	तत्त्व
27	नक्षत्र, भं, तारा
32	रद, दन्त
33	अमर, देव, सुर
48	जगति

Table 2: भूतसङ्ख्या पद्धति

अग्निपुराण में सर्वप्रथम स्थानाङ्कों के साथ शब्दाङ्कों का प्रयोग किया गया है । भट्टोत्पल ने बृहत्संहिता की व्याख्या में पौलिश सिद्धान्त (400 A. D) की चर्चा करते हुये इसमें ख = 0, ख = 0, अष्ट = 8, मुनिः = 7, रामः = 3, अश्व = 2, अष्ट = 8, शर = 5, रात्रिपाः = 1 दिया गया है । ''अङ्कानां वामतो गितः'' इस नियम से 158237800 प्राप्त हुआ । सूर्यसिद्धान्त (300 A. D), पञ्चसिद्धान्तिका (505 A. D), महाभास्करीय (522 A. D), ब्रह्मस्फुटसिद्धान्तः (628 A. D), त्रिशितका (750 A. D) एवं गणितसारसङ्ग्रहः (850 A. D) इत्यादि सिद्धान्त ग्रन्थों में ग्रहों के भगणमान, सौरमास, चान्द्रमास, अधिकमास, क्षयमास इत्यादि की सङ्ख्यायों को बताने के लिये शब्दाङ्क पद्धित का प्रयोग सर्वत्र किया गया है । बखशाली पाण्डुलिपि (Bakhshālī manuscripts) (300 A. D) में शब्दाङ्क पद्धित को इस प्रकार दिया गया है षिड्वंशश्च (26), त्रिपञ्चाश्च (53), एकोनित्रंशत् (29) इत्यादि सङ्ख्या बताई गई हैं इसके विपरीत 54 के लिये चतुः (4), पञ्च (5) लिखा गया है । जिनभद्रगणि (575 A. D) ने ''बृहत्क्षेत्रसमास'' में सङ्ख्याओं को बायें से दायें लिखने का क्रम बताया है परन्तु प्रायः यह देखा गया है कि शब्दाङ्क दायें से बायें प्रयोग किये जाते हैं । सभी सिद्धान्त ग्रन्थों में दाये से बायें लिखने की ही प्रथा पाई जाती है ।

आर्यभट्टकृत अक्षराङ्क निरूपण विधि वर्गाक्षराणि वर्गेऽवर्गेऽवर्गाक्षराणि कात् ङ्गौ यः । खद्विनवके स्वरा नव वर्गेऽवर्गे नवान्त्यवर्गे वा ॥¹³

वर्गाक्षर (क से म, लिखने चाहिये) वर्गस्थान में एवं अवर्ग (य से ह) अवर्ग स्थान में । (वर्गाक्षरों के मान क्रमशः 1, 2, 3 25 तक हैं) क से लेकर (प्रथम अवर्गाक्षर का मान) य = ञ+म (5+25) है । नौ जोडों में शून्य (18 बार) लिखें (स्थाननिरूपण के लिये लिखें) सभी 9 स्वरों को लिखें । (प्रत्येक जोडे में वर्ग और अवर्ग के स्थान पर एक स्वराक्षर लिखें) वर्ग (अवर्ग) स्थान में अवश्यकता पड़ने पर 9 से ज्यादा जोडे भी बना सकते हैं । onal Journal

आर्यभट (499 A. D) ने एक एसी पद्धित का अविष्कार किया जिसमें स्वर एवं व्यञ्जनों की सहायता से सङ्ख्याओं को लिखा जाता था । इस पद्धित में क से म तक 25 व्यञ्जनों को वर्ग कहा जाता हैं एवं क्रमानुसार इनका मान 1 से 25 तक है । य से ह तक वर्णों को अवर्ग कहा जाता है । इन अवर्गों का मान क्रमशः 30 से 100 तक माना गया है । यह सिद्धान्त दशमलव स्थानाङ्क (decimal place value) को पृष्ट करता है । आर्यभट ने स्थानाङ्क निरुप के लिये स्वरों का प्रयोग किया । श्लोक में दिया गया विवरण नीचे दी गई सारिणी में स्पष्ट है । एक उदाहरण के माध्यम से इस श्लोक के भाव को सारिणी की सहायता से समझने का प्रयास करेंगे ।

उदाहरण के लिये हमने आर्भटीय से ही एक शब्द ''ख्युघृ'' लिया है । श्लोक में ख् + यु + घृ तीन अक्षर हैं । सर्वप्रथम हमें यह देखना है कि व्यञ्जन वर्ग वाला है या अवर्ग वाला । तत्पश्चात् यह देखना है कि व्यञ्जनों के साथ कौनसा स्वर सम्बन्धित है । जो वर्ग हो एवं जो सम्बन्धित स्वर हो उसके अनुसार सारिणी में स्थापित करेंगे तो ''शब्द'' का मान आ जायेगा । हमारे उदाहरण में ''ख'' वर्ग वाला हैं एवं इससे ''उ'' स्वर सम्बन्धित है । हमने ''ख'' को सारिणी में 'उ' के नीचे वर्गस्थान में रख दिया, इसी प्रकार 'य' को भी किया । सम्पूर्ण प्रक्रिया करने पार 4320000 प्राप्त हुआ । सारिणी 3 में स्पष्ट है ।

इसमें V से अभिप्राय वर्गसङ्ख्या से है एवं A से भाव अवर्ग सङ्ख्या से है । इस प्रक्रिया को दूसरे प्रकार से भी दर्शाया जा सकता है । इस प्रक्रिया के अन्तर्गत हम अवर्गाक्षरों के मान 3 से 10 तक मानते हैं । फिर अ से और तक सभी 9 स्वरों के मान वर्गावर्ग व्यञ्जनों के लिये स्थापित करते हैं । इस विषय को सारिणी 3 में स्पष्ट किया गया है ।

उदाहरण - ख्युघृ = खु + यु + घृ दिया गया है । द्वितीय प्रकार के अनुसार ''ख्'' वर्गाङ्क है और इसका मान 2 है, इसके साथ ''यु'' है जोकि अवर्गाङ्क है एवं ''उ'' स्वर इसके साथ है, इसका मान 10⁵ है, इसी प्रकार ''घ'' का मान 4 है एवं यह वर्गाङ्क है, ''ऋ'' स्वर इसके साथ है और इसका मान 10⁶ है । इस प्रकार करने पर

¹³ आर्यभटीयम्, गीतिकापादः, श्लोकः 2.

 $4 \times 10^4 + 3 \times 10^5 + 4 \times 10^6 = 4320000$

प्राप्त हुआ । यद्यपि यह पद्धित अधिक जटिल है परन्तु बडी बडी सङ्ख्याओं को लिखने में सक्षम है । अधिक जटिलता के कारण किसी ओर सैद्धान्तिक ग्रन्थ में इसका उल्लेख नहीं मिलता । निम्नलिखित सारिणी 4 में आर्यभट द्वारा प्रदत्त स्वरों के वर्ग एवं अवर्ग स्थानों के मानों को दिया गया है ।

स्वर	वर्गाक्षर के साथ मान	अवर्गाक्षर के साथ मान
अ	10^{0}	10^{1}
इ	10^{2}	10^{3}
उ	10^{4}	10^{5}
' ऋ	10^{6}	10^{7}
लृ	10^{8}	10^{9}
ए	10^{10}	1011
ऐ	10^{12}	10^{13}
ओ	10^{14}	10^{15}
औ	10^{16}	10 ¹⁷

Table 4: आर्भयटानुसार वर्ग एवं अवर्ग स्थानों में स्वरों के मान

आर्यभट की दशमलव पद्धति (सङ्ख्यास्थान निर्वचन) cienti

एकं च दश च शतं च सहस्रमयुतिनयुते तथा प्रयुतम् ।

कोट्यर्बुदं च वृन्दं स्थानात्स्थानं दशगुणं स्यात् ।। 14

आर्यभटीयभाष्य में भास्कर प्रथम ने बहुत ही स्पष्ट ढंग से दशमलव पद्धति का निरुपण किया है । तद्यथा-

एकं च दश च शतं च सहस्रम् । एतेषां एकदशशतसहस्राणां प्रथमद्वितीयतृतीय-चतुर्थानि स्थानानि । तु पादपूरणे । अयुनियुते अयुतं च नियुतं च अयुतिनयते । अयुतस्य पञ्चमं स्थानम् । दशसहस्राणि अयुतम् । नियुतस्य षष्ठं स्थानम् । नियुतं लक्षः । तथा तेनैव प्रकारेण प्रयुतस्य सप्तमं स्थानम् । दशलक्षाः प्रयुतम् । कोटिः, कोट्याः अष्टमं स्थानम् । लक्षाः शतं, कोटिः । अर्बुदम्, अर्बुदस्य नवमं स्थानम् । दशकोट्योर्बुदम् । वृन्दम्, वृन्दस्य दशमं स्थानम् । कोटिशतं वृन्दम् ।

स्थानात्स्थानं दशगुणं स्यात् । स्थानात्स्थानमन्यत् दशगुणं स्वपरिकल्पितस्थानात् उत्तरं स्थानं दशगुणं भवतीति यावत् । किमर्थिमिदमुच्यते । ननु च एतानि स्थानानि अनन्तरापेक्षया दशगुणान्येव । यद्येभ्योऽन्यस्थानपरिग्रहार्थं वचनं तथा सित स्थानाभिधानमनर्थकम् । कुतः ? स्थानात् स्थानं दशगुणं स्यादित्यनेनैवा-भिहिता, अभिहितस्थानपरिग्रहस्य सिद्धत्वात् । नैषः दोषः । स्थानात्स्थानं दशगुणं स्यादित्येतल्लक्षणम् । एकादीनि स्थानान्यस्य लक्षणस्योदाहतानि । नैतदस्ति । न हि सूत्रकाराः संक्षेपविवक्षवो लक्षणमुदाहरणं ब्रूयुः । नैवं विज्ञायतेव। यदा लक्षणमुदाहरणं च निरर्थकं तर्हि एकादिवृन्दान्तायाः सङ्ख्यायाः संज्ञा निरूप्यन्ते । स्थानात्स्थानं दशगुणमिति एकादिसङख्यायाः स्थाननिरूपण-मात्रमेव उपदिश्यते, उपयोगाभावात्र सङ्ख्यासंज्ञा ।

अत्रैतत्प्रष्टव्यम् - केषां स्थानानां शक्तिः, यदेकं रूपं दश शतं सहस्रं च भवति । सत्यां चैतस्यां स्थानशक्तौ क्रयका विशेषेष्टक्रय्यभाजनाः स्युः । क्रय्यं च विवक्षातोऽल्पं बहु च स्यात् । एवं च सित लोकव्यवहारान्यथाभावप्रसङ्गः । नैषः दोषः । स्थाने व्यस्थितानि रूपाणि दशादीनि कृतानि । किं तिर्हि तैः । तानि प्रतिपाद्यन्ते लेखागमन्यायेन । अथवा लघ्वर्थं स्थानानि प्रक्रम्यन्त इत्युक्तमस्माभिः । न्यासश्च स्थानानाम् -

¹⁴ आर्भटीयम्, गणितपादः, श्लोक 2.

0 0 0 0 0 0 0 0 0

इसी सन्दर्भ में लीलावती में भास्कराचार्य ने भी कहा है-

एकदशशतसहस्रायुतलक्षप्रयुतकोटयः क्रमशः ।

अर्बुदमब्जं खर्वीनेखर्वमहापद्मशङ्कवस्तस्मात् ॥

जलधिश्चान्त्यं मध्यं परार्धीमिति दशगुणोत्तराः संज्ञाः ।

सङ्ख्यायाः स्थानानां व्यवहारार्थं कृताः पूर्वैः ॥

एक, दश, शत, सहस्र, अयुत, लक्ष, प्रयुत, कोटि, अर्बुद, अब्ज, खर्व, निखर्व, महापद्य, शङ्कु, जलिध, अन्त्य, मध्य, परार्ध इस प्रकार पूर्वाचार्यों ने सङ्ख्या के व्यवहार के लिये पूर्व भूव की अपेक्षा उत्तरोत्तर दशगुणी संज्ञा कही है, जैसे - एक से दशगुणा दश, दश से दशगुणा शत, शत से दशगुणा सहस्र इत्यादि ।

सारिणी 5 में आर्यभट एवं भास्कर II के सङ्ख्यानस्थानिर्वचन दिये गये हैं । कोटि 10^8 तक दोनों की सङ्ख्यायें समान हैं परन्तु 10^9 में आर्यभट ने वृन्द एवं भास्कर II ने अब्ज कहा गया है । आर्यभट के सङ्ख्यास्थानिर्वचन 10^8 तक ही है जबिक भास्कर II के परार्ध 10^{17} तक हैं । श्रीधर (750 A. D) का सङ्ख्यानिर्वचन दो स्थानों महापद्म और जलिंध को छोड़कर भास्कर II के सङ्ख्यानिर्वचन के समान ही है । महापद्म और जलिंध के स्थान पर श्रीधर ने क्रमशः महासरोज एवं सिरतापित शब्द का प्रयोग किया है । नारायण पण्डित (1356 A. D) ने श्रीधर के अब्ज, महासरोज एवं सिरतापित के स्थान पर क्रमशः सरोज, महाब्ज एवं पारावार शब्दों का प्रयोग किया है ।

सङ्ख्या	आर्यभट	भास्कर II	सङ्ख्या	भास्कर II	
10^{0}	एक	एक	10^{10}	खर्व	
10^{1}	दश	दश	10^{11}	निखर्व	
10^{2}	शत	शत	10^{12}	महापद्म	
10^{3}	सहस्र	सहस्र	10^{13}	शङ्क	
10^{4}	अयुत	अयुत	10^{14}	जलिध	
10^{5}	नियुत	लक्ष	10^{15}	अन्त्य	
10^{6}	प्रयुत	प्रयुत	10^{16}	मध्य	
10^{7}	कोटि	कोटि	10 ¹⁷	परार्ध	
10 ⁸	अर्बुद	अर्बुद			
10 ⁹	वृन्द	अब्ज			
	C S	10.89 19			

Table 5: आर्भयट एवं भास्कर II द्वारा प्रतिपादित सङ्ख्यास्थाननिर्वचन

कटपयादि पद्धति

कटपयादि से अभिप्राय क, ट, प, य इत्यादि वर्णों से सम्बन्धित है जिनको अङ्कों के स्थान पर लिखा जाता है । इस पद्धित के अनुसार स्वर अकेला रहने पर शून्य माना जाता है परन्तु व्यञ्जन के साथ रहने पर उसका कोई मान नहीं रहता । क से लेकर ह तक के व्यञ्जनों का मान सारिणी 6 में बताया गया है-

अङ्क	1	2	3	4	5	6	7	8	9	0
	क	ख	ग	घ	ङ	च	छ	ज	झ	ञ
व्यञ्जन	ਟ	ਰ	ड	ढ	ण	त	थ	द	ध	न
	प	फ	ब	भ	म	-	-	-	-	-
	य	र	ਲ	व	श	ष	स	ह	ळ	-

Table 6: कटपयादि पद्धति का विवरण

इस पद्धित का सर्वप्रथम प्रयोग वररुचि (400 A. D) ने चन्द्रवाक्यों की रचना करने के सन्दर्भ में किया था । उनका प्रथम चन्द्रवाक्य ''गीर्नः श्रेयः'' है । इसको अगर हम कटपयादि पद्धित से देखें तो 12°03' बनेगा ।

नीचे दिया गया श्लोक शङ्करवर्मन (1830 A. D) की सद्रत्नमाला से उद्धत है जो कटपयादि पद्धति की प्रक्रिया को बताता है-

नञावचश्च शून्यानि सङ्ख्या कटपयादयः ।

मिश्रे तूपान्त्यहल्सङ्ख्या न च चिन्त्यो हलः स्वरः ॥15

अर्थात् न, ञ एवं सभी स्वरों को शून्य मानो । शेष क, ट, प, य इत्यादि व्यञ्जनों को सङ्ख्या मानो । क्रमशः इनको 1, 2, 3 इत्यादि अङ्को से अङ्कित करें । स्वरों का व्यञ्जनों के साथ होने पार स्वरों का कोई मान नहीं होता । संयुक्ताक्षरों में से उसी व्यञ्जन को लेना है जिसके साथ स्वर हो । उदाहरण - ''हे विष्णो निहितं कृत्स्नं'' वाक्य लेने पर हम देखेंगे कि हे = 8, वि = 4, ष्णो = 5, नि = 0, हि = 8, तं = 6, कृत्स्नम् = 01 प्राप्त हुआ, सङ्ख्या 1680548 हुई । इसी प्रकार हम किसी भी शब्द को सङ्ख्या में परिवर्तित कर सकते हैं ।

दशमलव पद्धति के महत्व को बताते हुये जाने माने गणितज्ञ लेप्लेस (Laplace) (1749-1827 A. D) ने कहा है

The idea of expressing all quantities by nine figures (or digits) whereby is imparted to them both an absolute value and one by position is so simple that this very simplicity is the reason for our not being sufficiently aware how much admiration it deserves.

शून्य की परिकल्पना एवं प्रमाण

"भारत ने विश्व को शून्य दिया है" यह वाक्य सुनने में बहुत ही विचित्र लग रहा है लेकिन यह सत्य है । शून्य पर अगर एक नजर डालें तो कुछ विशेष नहीं दिखता है परन्तु अगर इसके अन्दर से कुछ देखें तो सब कुछ दिखाई पडता है । यही इसका रहस्य है । शून्य का अविष्कार किसने किया ? यह प्रश्न प्रायः सभी की मस्तिष्क में दौडता रहता है परन्तु इसका उत्तर इतना आसान नहीं है, इसका कारण इसकी जटिलता है । उत्तर मिल भी सकता है परन्तु सन्तोषजनक उत्तर पाना थोडा कठिन है । शून्य गणित के क्षेत्र में स्वयं में एक बहुत बडा अनुसन्धान है । इतिहास के पन्नों को कुरेदने से शून्य की परिकल्पना के भिन्न भिन्न स्नोत हमें मिलते हैं । भारतीय परिपेक्ष्य में शून्य का प्रयोग दो विभिन्न परिस्थितियों में होता है । एक तो शून्य "अभाव" को द्योतित करने के लिये और दूसरा अङ्क के रूप में । zero जो हम बोलते हैं वह अरबी के sift शब्द से उत्पन्न हुआ है इसको cipher भी कहा जाता है ।

शून्य के सन्दर्भ में G. B. Halsted ने कहा है-

The importance of the creation of the zero can never be exaggerated. This giving to airy nothing, not merely a local habitation and a name, a picture, a symbol, but helpful power, is the characteristic of the Hindu race whence it sprang. It is like coining the *Nirvāṇa* into Dynamics. No single mathematical creation has been more potent for the general on-go of intelligence and power.¹⁶

शून्य गणित का इतना सहज विषय नहीं है । एसा नहीं है कि किसी एक व्यक्ति ने अनुसन्धान किया और अन्य लोगों ने इसको प्रयोग में लाना प्रारम्भ कर दिया । पिङ्गल के छन्दःसूत्र (300 B. C) में शून्य शब्द का प्रयोग किया गया है। तद्यथा-

¹⁵ सद्रत्नमाला, पञ्चाङ्गप्रकरणम्, श्लोक 3.

¹⁶ G. B. Halsted, On the foundation and technique of Arithmetic, Chicago, 1912, p. 20.

द्विरर्धे । रूपे शून्यम् । द्विशून्ये । तावदर्धे तद्गुणितम् ।17

यहां शून्य को एक चिह्न के रूप में प्रयोग किया गया है न कि अङ्क के रूप में । पाणिनि (500 B. C) ने अष्टाध्यायी में अदर्शनं लोपः'' सूत्र में अभाव की तरफ सङ्केत किया है ।

चिरकाल से ''यावत्-तावत्'' का प्रयोग गणित में एसी सङ्ख्याओं के लिये किया गया है जिनका मान अज्ञात होता है परन्तु बखशाली पाण्डुलिपि (300 A. D) में ''यावत्-तावत्'' के स्थान पर ''यदच्छा'' शब्द का प्रयोग किया गया है और इसके लिये शून्य (0) चिह्न का प्रयोग किया गया है । पञ्चसिद्धान्तिका (505 A. D) में भूतसङ्ख्या पद्धित में सङ्ख्याओं को लिखने के लिये शून्य का प्रयोग किया गया है । श्री जिनभद्र गणि (529-589 A. D) ने भी शून्य के सन्दर्भ कुछ सङ्ख्याओं को अपने ग्रन्थ ''बृहत्क्षेत्रसमास'' दिया है । यथा 224400000000000^{19} 32004000000000^{20} इत्यादि प्रमुख उदाहरण हैं ।

ब्रह्मगुप्त (628 A. D) के समय से सिद्धान्तज्योतिष के ग्रन्थों में शून्य सम्बन्धी चर्चा के प्रमाण मिलते हैं । ब्रह्मस्फुटसिद्धान्त के 18वें अध्याय कुट्टकाध्याय में ''धनर्णषड्विधम्'' की चर्चा की गई है जिसमें शून्य के साथ धन, ऋण, गुणन इत्यादि के करने की प्रिक्रिया बताई गई है । इस प्रक्रिया से सम्बन्धित निम्नलिखित छः श्लोक एवं इनका विवरण इस प्रकार हैं-

धनयोर्धनमृणमृणयोर्धनर्णयोरन्तरं समैक्यं खम् ।

ऋणमैक्यं च धनमृणधनशून्ययोः शून्ययोः शून्यम् ॥

ऋण + शून्य → शून्य ^{SCIE}

धन + शून्य → धन

शून्य + शून्य \rightarrow शून्य

ऊनमधिकाद्विशोध्यं धनं धनादणमृणादधिकमूनात्।

व्यस्तं तदन्तरं स्यादृणं धनं धनमृणं भवति ॥ Development

श्र्न्यविहीनमृणमृणं धनं धनं भवति शून्यमाकाशम् । 2456-647

शोध्यं यदा धनमृणादृणं धनाद्वा तदा क्षेप्यम् ॥

ऋण X शून्य \rightarrow शून्य

धन X शून्य ightarrow धन

शून्य X शून्य \rightarrow शून्य

ऋणमृणधनयोर्घातो धनमृणयोर्धनवधो धनं भवति ।

शून्यर्णयोः खघनयोः खशून्ययोर्वा वधः शून्यम् ॥

ऋण X शून्य \rightarrow शून्य

धन X शून्य \rightarrow धन

शून्य X शून्य \rightarrow शून्य

¹⁷ छन्दःशास्त्रम्, 8.28-31

¹⁸ प्रथम अध्याय, श्लोक 17, द्वितीय अध्याय, श्लोक 12, चतुर्थ अध्याय, श्लोक 7, 11, अष्टम अध्याय, श्लोक 5, 45.

¹⁹ Bṛhatkṣetrasamāsa of Jinabhadra Gani, edited with the commentary of Malayagiri, Bombay, i. 69.

²⁰ Bṛhatkṣetrasamāsa of Jinabhadra Gani, edited with the commentary of Malayagiri, Bombay, i. 71.

धनभक्तं धनमृणहृतमृणं धनं भवित खं खभक्तं खम् । भक्तमृणेन धनमृणं धनेन हृतमृणमृणं भविति ॥ खोद्धृतमृणं धनं वा तच्छेदं²¹ खमृणधनविभक्तं वा ।। ऋणधनयोर्वर्गः स्वं खं खस्य पदं कृतिर्यत् तत् ॥²²

$$\begin{array}{ccc} \frac{\overline{\chi}_{1}^{2}}{\overline{\chi}_{1}^{2}} & \rightarrow & \overline{\chi}_{1}^{2} \\ \frac{\overline{\mu}_{1}}{\overline{\chi}_{1}^{2}} & \rightarrow & \overline{\Lambda}_{2}^{2} \\ \frac{\overline{\chi}_{1}^{2}}{\overline{\chi}_{1}^{2}} & \rightarrow & \overline{\Lambda}_{2}^{2} \\ \frac{\overline{\chi}_{1}^{2}}{\overline{\mu}_{1}^{2}} & \rightarrow & \overline{\Lambda}_{2}^{2} \\ \frac{\overline{\chi}_{1}^{2}}{\overline{\chi}_{1}^{2}} & \rightarrow & \overline{\Lambda}_{2}^{2} \\ \frac$$

इसी प्रकार भास्कर (1150 A. D) ने भी अपने ग्रन्थ बीजगणित में शून्य सम्बन्धी गणित की चर्चा की है। भास्कर के अनन्त की कल्पना ईशावास्योपनिषद् के मङ्गलश्लोक के समान ही है। ²³ भास्कर ने बीजगणित में कहा है-

अस्मिन् विकारः खहरे न राशाविप प्रविष्टेष्विप निःसृतेषु । विकारः खहरे न राशाविप प्रविष्टेष्विप निःसृतेषु ।

अर्थात् किसी सङ्ख्या को शून्य से भाग देने पर लब्धि विष्णु भगवान की तरह अनन्त होगी । लीलावती में भी भास्कर ने उदाहरण सहित इस विषय पर चर्चा की है 125

अङ्कों का विकास

लिखने की प्रक्रिया का प्रारम्भ भारत में कब से हुआ इस पर इतिहासकारों में मतभेद है । कितपय पाश्चात्य इतिहासकारों का कहना है कि 800 B. C के लगभग पश्चिम देशों से भारत में अङ्को को लिखने की परम्परा का प्रारम्भ हुआ परन्तु यह तर्कसङ्गत प्रतीत नहीं होता क्योंकि ऋग्वेद में ''सहस्रं मे ददतो अष्टकरण्यः''²⁶ का उल्लेख है जिसका अभिप्राय ''मुझे 1000 एसी गायें चाहिये जिनके कान पर 8 लिखा हो'' इस कथन में कुछ इतिहासकारों को आपित है पर इसका समाधान पाणिनी ने ''कर्णो वर्णलक्षणात्''²⁷ से कर दिया है । इन तथ्यों के आधार पर पाश्चात्य इतिहासकारों के तर्कों का खण्डन कर दिया गया है ।

प्राचीन अङ्क

मोहनजोदडो (3000 B. C) से प्राप्त अङ्क लिपि में स्पष्टता का अभाव है । इसमें छोटी छोटी रेखायें दी गई हैं जो कि छोटे अङ्कों 1, 2, 3, 4 इत्यादि को द्योतित करती हैं बडी सङ्ख्याओं को लिखने के प्रमाण वहां नहीं मिलते है परन्तु ऋग्वेद एवं यजुर्वेद में बडी सङ्ख्याओं को लिखने के प्रमाण हमारे पास उपलब्ध हैं, यजुर्वेद के 1012 की चर्चा हम पीछे कर चुके हैं । अशोक के समय में

²¹ शून्य को छोडकर अन्य अङ्क अथवा सङ्ख्या जब शून्य से भाग दी जाती है तो उस अङ्क अथवा सङ्ख्या को तच्छेद कहा जाता है ।

²² ब्रह्मस्फुटसिद्धान्त, कुट्टकाध्याय, श्लोक 30-35.

²³ Bijagaṇita of Bhāskarācārya, Ed. by Muralidhara Jha, Benaras 1927, vāsanā on Khaṣaḍavidham 3, p. 6.

²⁴ बीजगणित, खषड्विधम्, श्लोक 20.

²⁵ Līlāvatī of Bhāskarācārya, Ed. by H. C. Bannerjee, Calcutta 1927, Vāsanā on verses 45-46, pp. 14-15.

²⁶ ऋग्वेद, 10-62.7

²⁷ लघुसिद्धान्तकौमुदी, 6-2.12.

ब्राह्मी और ख्रोष्ठी का प्रचार था यह अशोक के शिलालेखों से ज्ञात होता है । नीचे हम ख्रोष्ठी एवं ब्राह्मी अङ्कों का संक्षेप में विवरण प्रस्तुत कर रहे हैं ।

ख्रोष्ठी अङ्क

ख्रोष्ठी को दायें से बायें लिखा जाता था । यह पद्धित गान्धार एवं पञ्जाब इत्यादि क्षेत्रों में अधिक प्रयोग होती थी । इतिहासकारों का मानना है कि इसका प्रयोग 400 B. C से लेकर 300 A. D के बीच रहा होगा । अशोक के शिलालेखों में ख्रोष्ठी के 1, 2, 3, 4 तक के अङ्कों का प्रयोग हुआ है जो इस प्रकार हैं –

इस पद्धित का विकास शकों के शिलालेखों (100 B. C) में दिखाई देता है । जो इस प्रकार है (image khroshti complete) इसमें 9 के अङ्क के लिये कुछ नहीं दिया गया है । इतिहासकार यह भी मानते हैं कि ख्रोष्ठी एक विदेशी लिपि है जिसका कालान्तर में भारत में प्रचार हुआ ।

ब्राह्मी अङ्क

इस अङ्क पद्धित का प्रचार सम्पूर्ण भारतवर्ष में रहा है । यह शुद्ध रूप से भारतीय मूल की अङ्क पद्धित है । साक्ष्यों के अभाव में यह निश्चित तौर पर कह पाना बहुत कठिन है कि ब्राह्मी अङ्कों का आधार क्या है परन्तु इस अङ्क पद्धित का प्रयोग सर्वप्रथम अशोक (300 B. C) के शिलालेखों में पाया गया है । ब्राह्मी अङ्कों में अनुनासिक, अनुस्वार एवं उपध्मानीय का बहुशः प्रयोग हुआ है अतः यह सीधा भारतीय मूल की होने का प्रमाण है क्यूंकि यह सभी चिह्न संस्कृत में पाये जाते हैं ।

नानाघाट अङ्क

नानाघाट की गुफाओं से प्राप्त अङ्क पद्धित भी भारतीय मूल की ही है, इन गुफाओं का निर्माण राजा वेदीश्री ने किया था जो इस प्रकार है²⁸-

एसा माना जाता है कि भारत में प्रयोग होने वाली प्रत्येक लिपि अथवा अङ्क एक दूसरे से भिन्न है परन्तु सबका स्रोत ब्राह्मी लिपि ही है । अल बैरूनी (Al-Bīrūnī) के शब्दों में –

As in difference parts of India, the letters have different shapes the numerical signs, too, which is call *anka*, differ.²⁹

²⁸ "On Ancient Nāgari Numeration from an inscription at Nānāghāt", *Journ. of the Bombay Branch of the Royal Asiatic Society*, 1876, vol. XII, p. 404.

वर्तमान अङ्क पद्धति

वर्तमान में भारत में प्रयुक्त होने वाली अङ्क पद्धित का नाम ''नागरी'' है जो कि नीचे प्रदत्त सारिणी 7 के अनुसार है-

Table 7: वर्तमान नागरी अङ्कपद्धति

कतिपय विद्वानों के अङ्क सम्बन्धी मत

गणित एवं खगोलविद् Pierre Simon Laplace (1749-1827 A. D) ने भारत की प्रंशसा करते हुये कहा है-

The idea of expressing all numbers by the ten digits whereby is imparted to them both an absolute and a positional value is so simple that very simplicity is the reason for our not being sufficiently aware how much admiration it deserves. It is India that gave us this ingenious method.

बिभूतिभूषण दत्ता के शब्दों में30 -

The Hindus adopted decimal system very early. The numerical language of no other notation is so scientific and attained as high a state of perfection as that of Ancient Indians. In symbolism they succeeded with ten digits to express any number most elegantly and simply. It is the beauty of Hindu numerical notation which attracted the attention of all civilized people of the world and charm them to adopt it.

Prof. J. Ginsburg के शब्दों में31-

Hindu notation was carried to Arabia about 770 A. D by Hindu scholar Kanka who was invited from Ujjain to the famous court of Baghdad by Abbaside Khalif Ali-Mansur. Kanka taught Hindu Astronomy and Mathematics to Arab scholars and with his help, they translated 'Brahma-Sphuta-Siddhanta' of Brahmagupta.

अरब के इतिहासकार Abul Hassan Al-Masūdi (943 A. D) कहते हैं-

A Congress of Sages at the command of creator Brahma invented the nine digits and also their astronomy and other sciences.

अल-बैरूनी (Al-Birūni) एक प्रसिद्ध पारसी लेखक थे जो कि भारत में लगभग 13 वर्ष (1017-1030 A. D) तक रहे एवं उन्होंने ''तारिक अलिहन्द'' (Chronical of India) नाम की पुस्तक लिखी । उसमें अल-बैरूनी कहते हैं-

The numerical signs which we use are derived from the finest forms of Hindu digits. I have composed a treatise showing how far possibly, the Hindus are ahead of us in this subject.

निष्कर्ष

सृष्ट्यादि से ही गणित किसी न किसी रूप में मानव जीवन में विद्यमान रहा है क्यूंकि कोई भी व्यवहार गणित के अभाव में सम्भव नहीं । इसी बात को ध्यान में रखते हुये महावीराचार्य ने अपने ग्रन्थ गणितसारसङ्ग्रह में बडे सुन्दर शब्दों में गणित के महत्व को

²⁹ Alberuni's Indian, I, p. 74

³⁰ Indian Historical Society, vol. 3, pp. 530-540.

³¹ New light on our numbers, Bulletin of American Mathematical Society, vol. 23, pp. 366-369.

प्रस्तुत किया । हमने इस शोध पत्र में अङ्कों की उत्पत्ति सम्बन्धी तथ्यों को भारत के सन्दर्भ में प्रतिपादित करने का प्रयास किया एवं भारत में समय समय पर विद्यमान सङ्ख्याओं को लिखने वाली पद्धतियों का वर्णन किया । दशमलव पद्धति एवं शून्य के अनुसन्धान इत्यादि विषयों पर विशेष चर्चा की गई । अपने तर्कों को पुष्ट करने के लिये पाश्चात्य इतिहासकारों एवं गणितज्ञों के मतों को भी यथास्थान प्रस्तुत किया गया है ।

सन्दर्भग्रन्थ

- [1] Āryabhaṭīya of Āryabhaṭa (499 A. D): Ed. and Tr. by K. S. Shukla and K. V. Sarma, Indian National Science Academy, New Delhi 1976.
- [2] *Āryabhaṭīya* of Āryabhaṭa with the commentary of Bhāskara I and Someśvara, ed. by K. S. Shukla, INSA, New Delhi 1976.
- [3] *Āryabhaṭīya* of Āryabhaṭācārya with the *Mahābhāṣya* of Nīlakaṇṭha Somasutvan, Part I, *Gaṇitapāda*, ed. by Sāmbaśiva Śāstrī, Trivandrum Sanskrit Series 101, Trivandrum 1930.
- [4] Āryabhaṭīya of Āryabhaṭācārya with the Mahābhāṣya of Nīlakaṇṭha Somasutvan, Part II, Kālakriyāpāda, ed. by Sāmbaśiva Śāstrī, Trivandrum Sanskrit Series 110, Trivandrum 1931.
- [5] Āryabhaṭīya of Āryabhaṭācārya with the Mahābhāṣya of Nīlakaṇṭha Somasutvan, Part III, Golapāda, ed. by Śūranāḍ Kuñjan Pillai, Trivandrum Sanskrit Series 185, Trivandrum 1957.
- [6] Brahmasphuṭasiddhānta (628 A. D) of Brahmagupta: Mathematics Chap-ters (XIII, XVIII) translated in H. T. Colebrooke Algebra with Arithmetic and Mensuration from the Sanskrit of Brahmagupta and Bhāskara, London 1817. Ed. by Sudhakara Dvivedi, Varanasi 1902.
- [7] *Bījagaṇita* (1150 A. D) of Bhāskarācārya II: Tr. in H. T. Colebrooke, *Algebra with Arithmetic Mensuration from the Sanskrit of Brahmagupta and Bhāskara* London 1817. Ed. with Bhāskara's *Vāsanā* by Muralidhara Jha, Benares 1927, Chaukhamba Rep. 1994.
- [8] *Bṛhatkṣetravyavahāra* of Jinabhadra Gani, editec with the commentary of Malayagiri, Bombay.
- [9] *Gaṇitasārasaṅgraha* (850 A. D) of Mahāvīra: Ed. and tr. by M. Rangacharya, Govt. Press, Madras 1912. Ed. with Hindi Tr. by L C Jain, Jain Sarnskrit Samrakshaka Sangha, Sholapur 1963.
- [10] HISTORY OF HINDU MATHEMATIC A SOURCE BOOK PARTS I AND II BY BIBHUTIBHUSHAN DATTA AND AVADESH NARAYANA SINGH, 1935.
- [11] Kriyākramakarī (1535 A. D) of Śaṅkara Vāriyar on Līlāvatī of Bhāskara II: Ed. by K. V. Sarma, Hoshiarpur, 1975.
- [12] Laghubhāskarīya of Bhāskara I, ed. and tr. with notes by K. S. Shukla, Lucknow 1963.

- [13] Līlāvatī (1150 A. D) of Bhāskarācārya II: Tr. in H. T. Colebrooke, Algebra with Arithmetic and Mensuration from the Sanskrit of Brahmagupta bra and Bhāskara, London 1817. Ed. with Bhāskara's Vāsanā and Buddhivilāsinī of Gaņeśa Daivajña (1545 A. D) by V. G. Apte, 2 Vols, Pune 1937.
- [14] Mahābhāskarīya of Bhāskara I, ed. and tr. with notes by K. S. Shukla, Lucknow 1960.
- [15] *Pañcasiddhāntikā* of Varāhamihira, ed. and tr. by T. S. Kuppanna Sastri and K. V. Sarma, PPST Foundation, Chennai 1993.
- [16] Sadratnamālā of Śankaravarman, tr. by S. Madhavan, KSRI, Chennai 2011.
- [17] *Siddhāntaśiromaṇi* of Bhāskara II, with Bhāskara's *Vāsanā* and Nṛsiṃha Daivajña's Vāsanāvārtika, ed. by Muralidhara Chaturvedi, Varanasi 1981.
- [18] *Tantrasangraha* of Nīlakaṇṭha Somayājī, with *Laghuvivṛti*, ed. by S. K. Pillai, Trivandrum 1958.428.
- [19] Tantrasangraha of Nīlakaṇṭha Somayājī, with Yuktidīpikā (for chapters I–IV) and Laghuvivṛti (for chapters V–VIII) of Śaṅkara Vārīyar ed. by K. V. Sarma, VVRI, Hoshiarpur 1977.
- [20] Tantrasangraha of Nīlakaṇṭha Somayājī, tr. by V. S. Nara- simhan, Indian Journal History of Science, INSA, New Delhi 1998–99.
- [21] Tantrasangraha of Nīlakantha Somayājī, tr. with mathematical
- [22] notes by K. Ramasubramanian and M. S. Sriram, HBA, Delhi and Springer,
- [23] London 2011.
- [24] The History of Ancient Indian Mathematics by C. N. Srinivas Iengar, The world press private LTD. Calcutta, 1967.
- [25] Vedānga Jyotiṣa of Lagadha, with the translation and notes of Prof. T. S. Kuppanna Sastry, critically edited by K. V. Sarma, INSA, New Delhi.