No. 2	
Date · · ·	
Date: Angust 19, 2025	
Based on MIT OCW [8.0]SC Video Lecture 11,12	
Maximum and Minimum problems	
Ex.) MAX	
done!	
min	
=) Easy to find max and min with sketch!	
Goal: short cuts!)
Cey to finding max + min only need to look up at	
critical points	
end points	
points of discontinuity	
Ex. Wire length 1	
4 cut into 2 pieces, each pieces encloses a square	
2 steps:	
(Draw diagram	
2. Nome variables	
)
(1-10) (4	
U-704)
-	

Date

$$(Area) = \begin{pmatrix} x \\ 4 \end{pmatrix}^{2} + \begin{pmatrix} 1-x \\ 4 \end{pmatrix}^{2}$$

$$\Rightarrow A' = \frac{x}{8} - \frac{(1-x)}{8}$$

$$\Rightarrow \text{when } A' = 0$$

7= 1-2 0 22= 1 0 9= =

e critical point (value

A(生)=(計二十十十二方

-) Not done!

Check end points 0 < x < 1 $A(0^{+}) = 0^{+} + (\frac{1}{4})^{2} = \frac{1}{16}$ $A(1^{-}) = (\frac{1}{4})^{2} + 0 = \frac{1}{16}$

Least area enclosed: 32 when 2= 1 lequal square)

What is the Minimam? => 1/32

where is the Minimum? $\Rightarrow x = \sqrt{2}$ $\left(\frac{1}{2}, \frac{1}{32}\right)$

Code asser Seales

Largest area enclosed: to (in the limit 270+

Ex. 2 Find the box without a top with least surface area for a fixed valume

Diagram, variables

No. 30 y= V => A= n2+4x (-1) = x2+40/7 => A'= 2n-4U 5 critical point =) when A=D; $2\pi = \frac{4V}{2^2} \Rightarrow 2\pi^3 = 4V \Rightarrow \pi = 2^{\frac{1}{2}}V^{\frac{1}{3}}$ Ends Ocaco $A(0^+) = x^2 + \frac{4V}{2} \Big|_{x=0^+} = \infty$ $A(\omega) = \infty$ a min! Afternative to checking ends: 2nd derivative test A"=2+= >0 Concave up -> critical point is a min point => minimum: 7= 23 V3 $y = \frac{V}{(2\frac{1}{3}V^{\frac{1}{3}})^{\frac{1}{4}}} = 2^{-\frac{1}{3}}V^{\frac{1}{3}}$ $A = \left(2^{\frac{1}{3}}V^{\frac{1}{3}}\right)^{\frac{1}{4}} + \frac{4V}{2\frac{1}{3}V^{\frac{1}{3}}}$ = 3.23,1/3 More meaningful answers: dinention was variable A/V= 3.23 x/y = 2 3 V 3 2 best answer e optimal shape Ex. 2 by implicit differentiation V=2241 A= 22 426 goal: min of A with U constant

0		No.3	
<u> </u>		Dato	
	-	, , , , , , , , , , , , , , , , , , , ,	
	-d (v=x24) => ()= 224+224'		and Philad
	$\frac{d}{dx}\left(V=x^{2}\psi\right) \Rightarrow 0 = 2xy + x^{2}y'$ $\Rightarrow y' = \frac{-2xy}{x^{2}}$ $\Rightarrow -\frac{2y}{x}$	Lander Co.	
2 3/18	$=$ $\frac{2y}{x}$		
0	- 3t = 2x + 4x + 4xy		
	$= 2x + 4y + 4z \left(\frac{-24}{x}\right)$ $\Rightarrow \text{ when } \frac{dA}{dx} = 0$	Set Piller	d been
	\Rightarrow when $\frac{dA}{dx} = 0$:		
	22+44-64=0	2.2	STATE OF
	=) 2x=44		
	=> 12/y=2 Faster and Vicor	in the second	
	disadvantage:	10,000	
	did not check whether	this critica	paint in A
	max/min/neither		
0			
'97			· · · · · ·
0			
		-11	
0		-	
0		*	
1			
0			
0			
1			
0			
	KOKUYO	LOOSE-LEAF Z-KB36	BT 6 mm ruled × 36 lines