Exploring Delinquency in High Risk Students using Longitudinal Zero-Inflated Poisson Bayesian Multilevel Models

Christopher David Desjardins, Jeffrey D. Long, and Chi-Keung Chan Department of Educational Psychology, University of Minnesota, Minneapolis, Minnesota

Introduction/Background

- \blacktriangleright Delinquency emerges in the lower grades, peaks in middle and high school, and declines in adulthood 1
- ▶ It has been associated with poor parental supervision, violent parents, child abuse, low family income, peer delinquency and academic failure²
- ► High risk students face additional stresses that may increase delinquency:
- ► They experience higher parental distress, cumulative risk stress, depression, and higher exposure to adversity³
- ► This heightened stress can carry over and negatively impact achievement and behavior
- ► Suspensions from school are one measure for assessing childhood delinquency
- ► Most studies have been cross-sectional or not accounted for correlations associated with repeated measurements or nesting of students in school
- ► How should a researcher deal with over dispersed longitudinal data where the majority of the students have no suspensions?

Research Questions

- ► Do suspensions follow a similar growth trajectory to other delinquent behaviors and is there a risk gradient?
- ▶ Is there a developmental component to suspensions? Do the timing and patterns of trajectories differ by gender or gender + ethnicity?
- ▶ Do models that account for zero-inflation fit better than traditional Poisson models?

Methods

Sample

RED

- ▶ Data were collected by Minneapolis Public Schools
- ▶ 81,724 students in grades 1 12
- ► 175,975 data points
- All students included in study had complete data on the independent variables

Risk Classification

- ► HHM > 1 Students were homeless or highly mobile (HHM) more than once
- ► HHM Students were HHM only once
- ► FREE Students were on free lunch but not HHM
- RED Students were on reduced-priced lunch but not HHM
 ADV Neither HHM nor FREE or

Descriptive Stats

- ▶ 127 schools examined
- ► Males and females evenly distributed through risk groups
- ► Special education ranges from 34% in HHM > 1 to 10% in ADV.
- ► 86% of all data points are zeros.
- ► 72%, in HHM > 1, 77% in HHM, 83% in FREE, 89% in RED, and 96% in ADV

Statistical Methods/Analysis

Zero-Inflated Poisson Models (ZIP)

- ► Poisson and ZIP Bayesian multilevel models were examined
- ► ZIP models are mixture models consisting of a zero-inflation and Poisson component
- Zeros arise from both components
- Complex model
- ▶ Requires MCMC burn-in of 10,000 and 30,000 iterations to converge
- ► Estimates parameters for binomial (zero-inflated) and Poisson components
- ▶ Requires specification of a prior on B-, G-, and R- structures
- ► However, the R-structure is fixed because the residual cannot be estimated in binomial models, but the G-structure is highly susceptible to priors

Analysis: Question 1

- ► To answer question 1, ZIP multilevel quadratic models with covariate-intercept interactions were examined
- ▶ Included a school level effect (i.e. nesting of students within schools)
- ► Flat prior on B-structure ($\mu = 0$; $\sigma^2 = I \cdot 1e10$)
- ► Prior on R-structure was fixed
- ► G-structure had a half-Cauchy prior (scale parameter = 2)
- ► Compared growth curve to other delinquent behaviors and examined Bayesian confidence intervals and posterior modes

Analysis: Question 2

- ► Examined timing and trajectories of males and females
- ▶ If developmental, then females should have an earlier suspension crescendo
- ► Examined timing and trajectories of gender by ethnicity
- ▶ If developmental, crescendo of African American females should be first, followed by other groups

Analysis: Question 3

- ► Examination of proportion of students with no suspensions accounted for by:
- Poisson component
- ► Poisson + zero-inflation component

Results

Results: Question 1

Parameter Estimates	Posterior Mode	95% Bayesian Cl
$\overline{HHM}\ v.\ HHM > 1$	-0.349	-0.456, -0.194
FREE v. HHM > 1	-0.606	-0.740, -0.491
RED v. HHM > 1	-1.127	-1.279, -0.946
ADV v. HHM > 1	-2.021	-2.15, -1.885
African American v. White	1.369	1.311, 1.475
Asian v. White	-1.404	-1.561, -1.302
Hispanic v. White	-0.114	-0.213, -0.013
Native American v. White	1.153	1.002, 1.252
Special Education	0.894	0.822, 0.938
Gender	1.032	0.979, 1.085
Grade	0.961	0.933, 1.002
Grade ²	-0.065	-0.067, -0.062

Mail: desja004@umn.edu

Results

Results: Question 2

Grade	Observed	Poisson	${\sf Poisson} + {\sf Zero-inflation}$
1	0.96	0.83	0.91
2	0.94	0.62	0.80
3	0.92	0.33	0.66
4	0.90	0.12	0.55
5	0.88	0.03	0.50
6	0.80	0.01	0.49
7	0.74	0.00	0.49
8	0.74	0.00	0.49
9	0.81	0.01	0.49
10	0.82	0.02	0.50
11	0.87	0.10	0.53
12	0.94	0.28	0.63

Conclusions

► Suspensions showed a similar growth trajectory to other delinquent behaviors

Suspensions by Grade

- ► However, the timing was earlier (peaked in 7th and 8th grade)
- Strong school effect (not presented)
- ► Should control for school-level effects when examining delinquency
- ▶ No difference in timing of crescendo by gender or gender + ethnicity
- ► However, African American and non-Hispanic White students peaked earliest
- ► The zero-inflation component greatly increased the predictive validity
- ▶ However, this is still does not account for all students with no suspensions
- ► The use of the zero-inflation Poisson models required the use of Bayesian statistics and MCMC
- ► Bayesian approaches possess many optimality properties and allow development and testing of more complex models
- ► A sensitivity analysis can be performed to examine robustness of posterior under different priors
- ► Future work will examine the ZIP and Poisson models with over dispersed data

References/Acknowledgments

¹Moffitt, T. (1993). Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. *Psychological Review*, 100(4), 674-701.

²Farrington, D. P.(1998) Predictors, causes, and correlates of male youth violence. In M. Tony & M. Moore (Eds.) *Youth and Violence: Vol 24. Crime and justice* 421-475. Chicago: University of Chicago Press. ³Rafferty, Y., & Shinn, M. (1991). The impact of homelessness on children. *American Psychologist*, 46 (11), 1170-1179. ⁴Hadfield, J. (2010). MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. *Journal of Statistical Software*, 33(2), 1 - 22. We are indebted to Dr. Jarrod Hadfield, at the University of Edinburgh, for his statistical advice. **This work was supported by the Interdisciplinary Education Sciences Training Program (IES Award # R305C050059; University of Minnesota PRF# 473473).**