1.) Identify your problem statement:

AI USED AT THE PREDICT THE CHRONIC KIDNEY DISEASE

2.)basic info about the dataset (Total number of rows, columns):

399 rows × 25 columns

3.) Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

pe_normal	pcc_present	ba_present	htn_yes	dm_yes	cad_yes	appet_yes	pe_yes	ane_yes	classification_yes
0	0	0	0	Ω	0		3.	0	
+	0	0	0	0	0	4	0	0	1
1	0	0	0	0	0	- 28	0	0	1
1	0	0	0	0	0		0	- 1	1
1	0	0	0	0	0		0	0	,
1941	500		1		H	##	-	110	344
1	0	0	0	- 0	0	- 1	- 0	0	1
1	0	a	- 1		.0	3	0	4	
+	0	0	1		0	0	0	.0	1
1	0	0	1	7	0	,		1	1
1	0	0	0	0	0	- 1	0	0	0

4.)Develop a good model with good evaluation metric ,you have to come up with final model

- 1.Random forest CM = 0.9833333333333333
- 2.Support vector Machine CM = 0.9834018801410106
- 3.DECESION TREE CM= 0.9751481237656352
- 4..LOGISTIC CM = 0.9916844900066377
- 5.KNN CM= 0.9505208333333334
- 6. Naive Bayes CM= 0.9834018801410106
- 5.) All the research values (CM of the models) should be documented. (You can make tabulation or screenshot of the results.)
 - 1.Random forest CM = 0.9833333333333333

2.Support vector Machine CM = 0.9834018801410106

precision recall f1-score support

8 8.96 1.86 8.98 45

1 1.88 8.97 8.99 75

accuracy
macro avg 9.98 9.99 0.98 128

3.DECESION TREE CM= 0.9751481237656352

The fl macro value the best parameter{'criterion': 'gini', 'max_features': 'log2', 'splitter': 'random'}: 0.9751481237656352

print(cm) [[45 0] [3 72]]

print(clf_report)

precision recall f1-score support

```
8 9.94 1.98 9.97 45
1 1.98 9.96 9.98 75
accuracy 9.97 128
macro avg 8.97 9.98 9.97 129
weighted avg 9.98 8.97 9.98 128
```

4.LOGISTIC CM = 0.9916844900066377

The fi macro value the best parameter('penalty': '12', 'random_state': 8, 'solver': 'lbfgs'): 0.9916844980866377

print(cm)

[[45 0] [174]]

print(clf_report)

		precision	recall	f1-score	support
	0	0.98	1,00	0.99	45
	1	1.00	0.99	0.99	75
accuracy				0.99	120
macro	avg	0.99	0.99	0.99	128
weighted	avg	8.99	0.99	0.99	120

5.KNN CM= 0.9505208333333334

The f1 macro value the best parameter('algorithm': 'auto', 'n_neighbors': 5, 'weights': 'distance'): 0.9505208333333334

print(cm)

[[45 0] [6 69]]

print(clf_report)

	precision	recall	f1-score	support
0	0.88	1.00	0.94	45
1	1.00	0.92	0.96	75
accuracy			0.95	120
macro avg	0.94	8.96	0.95	120
weighted avg	0.96	0.95	0.95	120

6. Naive Bayes CM= 0.9834018801410106

The f1 macro value the best parameter{'var_smoothing': 0.006579332246575682}: 0.9834018801410106 [[45 0] [2 73]]

1189-057-1975-6		precision	recall	f1-score	support
	0	0.96	1.00	0.98	45
	1	1.00	0.97	0.99	75
accuracy				0.98	120
macro	avg	0.98	0.99	0.98	120
weighted	avg	0.98	0.98	0.98	120

6.) Mention your final model, justify why u have chosen the same.

1.LOGISTIC CM = 0.9916844900066377

2.CM-VALUE HIGH BUT COMPARISION ANOTHER MODEL