Analysis of Algorithms

Dealing with NP Problems: Intelligent Exponential Search and Approximation Algorithms

Andres Mendez-Vazquez

April 30, 2018

Outline

- Introduction
 - The Dilemma
 - Branches Attacking the Problem
- 2 Intelligent Exhaustive Search
 - Backtracking
 - Example
 - Backtracking Algorithm
 - Branch-and-Bound
 - Algorithm Branch-and-Bound
 - Example
- 3 Approximation Algorithms
 - Introduction
 - Examples
 - Vertex Cover Problem
 - The Traveling-Salesman Problem

Outline

- Introduction
 - The Dilemma
 - Branches Attacking the Problem
- 2 Intelligent Exhaustive Search
 - Backtracking
 - Example
 - Backtracking Algorithm
 - Branch-and-Bound
 - Algorithm Branch-and-Bound
 - Example
- 3 Approximation Algorithms
 - Introduction
 - Examples
 - Vertex Cover Problem
 - The Traveling-Salesman Problem

The Dilemma

We face the following

• NP problems need solutions in real-life!!!

- \\\/\langle

The Dilemma

We face the following

- NP problems need solutions in real-life!!!
- We only know exponential algorithms for them!!!

The Dilemma

We face the following

- NP problems need solutions in real-life!!!
- We only know exponential algorithms for them!!!
- What do we do?

Accuracy

Accuracy issues

• NP problems are often optimization problems.

Accuracy

Accuracy issues

- NP problems are often optimization problems.
- It's hard to find the EXACT answer.

Accuracy

Accuracy issues

- NP problems are often optimization problems.
- It's hard to find the EXACT answer.
- Maybe we just want to know if our answer is close to the exact answer.

Ways of dealing with NP problems

• if the actual input is small, exponential running time may be perfectly satisfactory.

Ways of dealing with NP problems

- if the actual input is small, exponential running time may be perfectly satisfactory.
- It may be possible to isolate special cases solvable in polynomial time.

Ways of dealing with NP problems

- if the actual input is small, exponential running time may be perfectly satisfactory.
- It may be possible to isolate special cases solvable in polynomial time.

Ways of dealing with NP problems

• Third, it may be possible to use some form of intelligent search to avoid almost all the time the worst case.

Ways of dealing with NP problems

- if the actual input is small, exponential running time may be perfectly satisfactory.
- It may be possible to isolate special cases solvable in polynomial time.

Ways of dealing with NP problems

- Third, it may be possible to use some form of intelligent search to avoid almost all the time the worst case.
- Fourth, it may still be possible to find near-optimal solutions in polynomial time (either in the worst case or on average).

Outline

- Introduction
 - The Dilemma
 - Branches Attacking the Problem
- 2 Intelligent Exhaustive Search
 - Backtracking
 - Example
 - Backtracking Algorithm
 - Branch-and-Bound
 - Algorithm Branch-and-Bound
 - Example
- Approximation Algorithms
 - Introduction
 - Examples
 - Vertex Cover Problem
 - The Traveling-Salesman Problem

Intelligent Exponential Search

Procedures that are exponential time in the worst-case, but with the right design can be very efficient on typical instances.

Intelligent Exponential Search

Procedures that are exponential time in the worst-case, but with the right design can be very efficient on typical instances.

Approximation algorithms

Algorithms guaranteed to find a "near optimal" solution, under a certain bound, in polynomial time.

Intelligent Exponential Search

Procedures that are exponential time in the worst-case, but with the right design can be very efficient on typical instances.

Approximation algorithms

Algorithms guaranteed to find a "near optimal" solution, under a certain bound, in polynomial time.

Heuristics

 Useful algorithmic procedures that provide approximated solutions in polynomial time.

Intelligent Exponential Search

Procedures that are exponential time in the worst-case, but with the right design can be very efficient on typical instances.

Approximation algorithms

Algorithms guaranteed to find a "near optimal" solution, under a certain bound, in polynomial time.

Heuristics

- Useful algorithmic procedures that provide approximated solutions in polynomial time.
- They are a trade-off between optimality, completeness, accuracy and precision and running time.

We have something like this

Outline

- Introduction
 - The Dilemma
 - Branches Attacking the Problem
- 2 Intelligent Exhaustive Search
 - Backtracking
 - Example
 - Backtracking Algorithm
 - Branch-and-Bound
 - Algorithm Branch-and-Bound
 - Example
- 3 Approximation Algorithms
 - Introduction
 - Examples
 - Vertex Cover Problem
 - The Traveling-Salesman Problem

Backtracking

Something Notable

Backtracking is based on that it is often possible to reject a solution by looking at just a small portion of it.

Backtracking

Something Notable

Backtracking is based on that it is often possible to reject a solution by looking at just a small portion of it.

Example

If an instance of SAT contains the clause $C_i = (x_1 \vee x_2)$, then all assignments with $x_1 = x_2 = 0$ can be instantly eliminated.

Outline

- Introduction
 - The Dilemma
 - Branches Attacking the Problem
- 2 Intelligent Exhaustive Search
 - Backtracking
 - Example
 - Backtracking Algorithm
 - Branch-and-Bound
 - Algorithm Branch-and-Bound
 - Example
- Approximation Algorithms
 - Introduction
 - Examples
 - Vertex Cover Problem
 - The Traveling-Salesman Problem

Example

Pruning Example

Given the possible values that you can give to two literals:

x_1	x_2
1	1
1	0
0	1
0	0

It is possible to prune a quarter of the entire search space... Can this be systematically exploited?

An example of exploiting this idea in SAT solvers

Consider the following Boolean formula $\phi(w, x, y, z)$

$$(w \lor x \lor y \lor z) \land (w \lor \neg x) \land (x \lor \neg y) \land (y \lor \neg z) \land (z \lor \neg w) \land (\neg w \lor \neg z)$$

Note: This selection does not violate any of the clauses of $\phi\left(w,x,y,z\right)$

An example of exploiting this idea in SAT solvers

Consider the following Boolean formula $\phi\left(w,x,y,z\right)$

$$(w \lor x \lor y \lor z) \land (w \lor \neg x) \land (x \lor \neg y) \land (y \lor \neg z) \land (z \lor \neg w) \land (\neg w \lor \neg z)$$

We start branching in one variable, we can choose \boldsymbol{w}

Initial formula ϕ

Note: This selection does not violate any of the clauses of $\phi\left(w,x,y,z\right)$

Now

The partial assignment w=0, x=1 violates the clause $(w \vee \neg x)$

Initial formula ϕ

Now

In addition

What if w = 0, x = 0

Then, the following clauses are satisfied

- $\neg w = 1$
- **2** $\neg x = 1$

Thus, we have the following left

- Before

 - After

In addition

What if w=0, x=0

Then, the following clauses are satisfied

- \bullet $\neg w = 1$
- **2** $\neg x = 1$

Thus, we have the following left

- Before
 - $(w \lor x \lor y \lor z) \land (w \lor \neg x) \land (x \lor \neg y) \land (y \lor \neg z) \land (z \lor \neg w) \land (\neg w \lor \neg z)$
- After

Finally

We have the following reduced number of equations

$$(y \lor z), (1), (\neg y), (y \lor \neg z), (1), (1) \Leftrightarrow (y \lor z), (\neg y), (y \lor \neg z)$$

Finally

We have the following reduced number of equations

$$(y \lor z), (1), (\neg y), (y \lor \neg z), (1), (1) \Leftrightarrow (y \lor z), (\neg y), (y \lor \neg z)$$

What if w = 0, x = 1

- Before
 - $\bullet \ (w \vee x \vee y \vee z) \wedge (w \vee \neg x) \wedge (x \vee \neg y) \wedge (y \vee \neg z) \wedge (z \vee \neg w) \wedge (\neg w \vee \neg z)$
- After
 - **1** (1) \wedge (0) \wedge (1) \wedge ($y \vee \neg z$) \wedge (1) \wedge (1)

Thus

We have something no satisfiable

$$(1) \land (0) \land (1) \land (y \lor \neg z) \land (1) \land (1) \Leftrightarrow (), (y \lor \neg z)$$

Clearly

We prune that part of the search tree

Note we use " $()\equiv(0)$ " to point out to a "empty clause" ruling out satisfiability.

Thus

We have something no satisfiable

$$(1) \land (0) \land (1) \land (y \lor \neg z) \land (1) \land (1) \Leftrightarrow (), (y \lor \neg z)$$

Clearly

We prune that part of the search tree.

Note we use " $()\equiv(0)$ " to point out to a "empty clause" ruling out satisfiability.

The decisions we need to make in backtracking

First

Which subproblem to expand next.

Second

Which branching variable to use

Remarla

The benefit of backtracking lies in its ability to eliminate portions of the search space.

The decisions we need to make in backtracking

First

Which subproblem to expand next.

Second

Which branching variable to use.

The benefit of backtracking lies in its ability to eliminate portions of the search space.

The decisions we need to make in backtracking

First

Which subproblem to expand next.

Second

Which branching variable to use.

Remark

The benefit of backtracking lies in its ability to eliminate portions of the search space.

Something Notable

A classic strategy:

Something Notable

A classic strategy:

• You choose the subproblem that contains the smallest clause.

Something Notable

A classic strategy:

- You choose the subproblem that contains the smallest clause.
- Then, you branch on a variable in that clause.

Something Notable

A classic strategy:

- You choose the subproblem that contains the smallest clause.
- Then, you branch on a variable in that clause.

Then

If the clause is a singleton then at least one of the resulting branches will be terminated.

The test needs to look at the subproblem to declare quickly if

- **1 Failure**: the subproblem has no solution.

The test needs to look at the subproblem to declare quickly if

- **① Failure**: the subproblem has no solution.
- Success: a solution to the subproblem is found.
- Uncertainty.

- The test declares failure if there is an empty clause
- The test declares success if there are no clauses
 - Uncertainty Otherwise.

The test needs to look at the subproblem to declare quickly if

- **Failure**: the subproblem has no solution.
- Success: a solution to the subproblem is found.
- Uncertainty.

The test needs to look at the subproblem to declare quickly if

- **1** Failure: the subproblem has no solution.
- Success: a solution to the subproblem is found.
- Uncertainty.

What about SAT

• The test declares failure if there is an empty clause

The test needs to look at the subproblem to declare quickly if

- **1** Failure: the subproblem has no solution.
- Success: a solution to the subproblem is found.
- Uncertainty.

What about SAT

- The test declares failure if there is an empty clause
- The test declares success if there are no clauses

The test needs to look at the subproblem to declare quickly if

- **1** Failure: the subproblem has no solution.
- Success: a solution to the subproblem is found.
- Uncertainty.

What about SAT

- The test declares failure if there is an empty clause
- The test declares success if there are no clauses
- Uncertainty Otherwise.

Example

Outline

- Introduction
 - The Dilemma
 - Branches Attacking the Problem
- 2 Intelligent Exhaustive Search
 - Backtracking
 - Example
 - Backtracking Algorithm
 - Branch-and-Bound
 - Algorithm Branch-and-Bound
 - Example
- Approximation Algorithms
 - Introduction
 - Examples
 - Vertex Cover Problem
 - The Traveling-Salesman Problem

We have

- **1** Start with some problem P_0
- 2 Let $S = \{P_0\}$, the set if active subproblems

We have

- **1** Start with some problem P_0
- **2** Let $S = \{P_0\}$, the set if active subproblems
- **3** While $S \neq \emptyset$
- **o** choose a subproblem $P \in \mathcal{S}$ and remove it from \mathcal{S}
- **expand** it into smaller subproblems $P_1, P_2, ..., P_k$

We have

- **1** Start with some problem P_0
- **2** Let $S = \{P_0\}$, the set if active subproblems
- **3** While $S \neq \emptyset$
- **o** choose a subproblem $P \in \mathcal{S}$ and remove it from \mathcal{S}
- **expand** it into smaller subproblems $P_1, P_2, ..., P_k$
- \bullet For each P_i
- $oldsymbol{0}$ if test (P_i) succeeds: halt and return the branch solution
- if test (P_i) fails: discard P_i
- **9** Otherwise: add P_i to S

We have

- **1** Start with some problem P_0
- **2** Let $S = \{P_0\}$, the set if active subproblems
- **3** While $S \neq \emptyset$
- **o** choose a subproblem $P \in \mathcal{S}$ and remove it from \mathcal{S}
- **expand** it into smaller subproblems $P_1, P_2, ..., P_k$
- \bullet For each P_i
- if $test(P_i)$ succeeds: halt and return the branch solution
- if test (P_i) fails: discard P_i
- **9** Otherwise: add P_i to \mathcal{S}
- return there is no solution.

Choose and Expand

For SAT

- 1 The choose procedure picks a clause,
- 2 Expand picks a variable within that clause.

Choose and Expand

For SAT

- The choose procedure picks a clause,
- 2 Expand picks a variable within that clause.

There has been already

A discussion on how to make such choices.

Notes

With the right test, expand, and choose routines

• Backtracking can be remarkably effective in practice

 The backtracking algorithm we showed for SAT is the basis of many successful satisfiability programs

- It is a conjunction (a Boolean and operation) of clauses,
- Where each clause is a disjunction (a Boolean or operation) of two variables or negated variables.

Notes

With the right test, expand, and choose routines

Backtracking can be remarkably effective in practice

Further

• The backtracking algorithm we showed for SAT is the basis of many successful satisfiability programs

Notes

With the right test, expand, and choose routines

Backtracking can be remarkably effective in practice

Further

• The backtracking algorithm we showed for SAT is the basis of many successful satisfiability programs

For Example, 2SAT problems

- It is a conjunction (a Boolean and operation) of clauses,
- Where each clause is a disjunction (a Boolean or operation) of two variables or negated variables.

Then

Backtracking

- If presented with a 2 SAT instance,
 - ▶ it will always find a satisfying assignment, if one exists, in polynomial time!!!

Then

Backtracking

- If presented with a 2 SAT instance,
 - it will always find a satisfying assignment, if one exists, in polynomial time!!!

Something Notable

• Therefore, we depend on the constraints!!!

- These problems are known as
 - Constraint Satisfaction Problems!!!

Then

Backtracking

- If presented with a 2 SAT instance,
 - it will always find a satisfying assignment, if one exists, in polynomial time!!!

Something Notable

• Therefore, we depend on the constraints!!!

These problems are known as

Constraint Satisfaction Problems!!!

Outline

- Introduction
 - The Dilemma
 - Branches Attacking the Problem
- 2 Intelligent Exhaustive Search
 - Backtracking
 - Example
 - Backtracking Algorithm
 - Branch-and-Bound
 - Algorithm Branch-and-Bound
 - Example
- 3 Approximation Algorithms
 - Introduction
 - Examples
 - Vertex Cover Problem
 - The Traveling-Salesman Problem

Branch-and-Bound

This is a search better fitted to optimization problems

Branch-and-Bound

This is a search better fitted to optimization problems

How do we reject subproblems?

First, imagine a minimization problem

Branch-and-Bound

This is a search better fitted to optimization problems

How do we reject subproblems?

First, imagine a minimization problem

 To reject a subproblem, its cost must exceeds the best cost found so far.

```
PROBLEM!!! This is unknown!!!
```

• Thus, we use a quick *lower bound* on this costs

Branch-and-Bound

This is a search better fitted to optimization problems

How do we reject subproblems?

First, imagine a minimization problem

- To reject a subproblem, its cost must exceeds the best cost found so far.
- PROBLEM!!! This is unknown!!!

Branch-and-Bound

This is a search better fitted to optimization problems

How do we reject subproblems?

First, imagine a minimization problem

- To reject a subproblem, its cost must exceeds the best cost found so far.
- PROBLEM!!! This is unknown!!!
- Thus, we use a quick lower bound on this cost.

Lower Bound

We use the info in the problem

To design an efficient way to approximate the solution.

Outline

- Introduction
 - The Dilemma
 - Branches Attacking the Problem
- 2 Intelligent Exhaustive Search
 - Backtracking
 - Example
 - Backtracking Algorithm
 - Branch-and-Bound
 - Algorithm Branch-and-Bound
 - Example
- 3 Approximation Algorithms
 - Introduction
 - Examples
 - Vertex Cover Problem
 - The Traveling-Salesman Problem

Pseudo-code for Branch-and-Bound

We have

$BRANCH-AND-BOUND(P_0)$

- **1** Start with some problem P_0
- **2** Let $S = \{P_0\}$, the set if active subproblems
- **3** bestsofar= ∞

- expand it into smaller subproblems $P_1, P_2, ..., P_k$
- For each Pr
- \bullet if P_i is a complete solution:
- update bestsofar
- if lowerhound(P:) < hestsofar: add P: to ...
- return bestsofar

Pseudo-code for Branch-and-Bound

We have

$BRANCH-AND-BOUND(P_0)$

- **1** Start with some problem P_0
- **2** Let $S = \{P_0\}$, the set if active subproblems
- **3** bestsofar=∞
- **4** While $S \neq \emptyset$
- **6 choose** a subproblem (Partial Solution) $P \in \mathcal{S}$ and remove it from \mathcal{S}
- **6 expand** it into smaller subproblems $P_1, P_2, ..., P_k$

Pseudo-code for Branch-and-Bound

We have

$BRANCH-AND-BOUND(P_0)$

- **1** Start with some problem P_0
- **2** Let $S = \{P_0\}$, the set if active subproblems
- **3** bestsofar=∞
- **4** While $S \neq \emptyset$
- **6 choose** a subproblem (Partial Solution) $P \in \mathcal{S}$ and remove it from \mathcal{S}
- **6 expand** it into smaller subproblems $P_1, P_2, ..., P_k$
- \bullet For each P_i
- if P_i is a complete solution:
- update bestsofar
- else

Pseudo-code for Branch-and-Bound

We have

$BRANCH-AND-BOUND(P_0)$

- **1** Start with some problem P_0
- **2** Let $S = \{P_0\}$, the set if active subproblems
- **3** bestsofar= ∞
- **4** While $S \neq \emptyset$
- **o** choose a subproblem (Partial Solution) $P \in \mathcal{S}$ and remove it from \mathcal{S}
- **o expand** it into smaller subproblems $P_1, P_2, ..., P_k$
- \bullet For each P_i
- if P_i is a complete solution:
- update bestsofar
- else
- if $lowerbound(P_i) < bestsofar: add <math>P_i$ to S

Pseudo-code for Branch-and-Bound

We have

$BRANCH-AND-BOUND(P_0)$

- **1** Start with some problem P_0
- **2** Let $S = \{P_0\}$, the set if active subproblems
- **3** bestsofar= ∞
- **4** While $S \neq \emptyset$
- **Choose** a subproblem (Partial Solution) $P \in \mathcal{S}$ and remove it from \mathcal{S}
- **o expand** it into smaller subproblems $P_1, P_2, ..., P_k$
- \bullet For each P_i
- if P_i is a complete solution:
- update bestsofar
- else
- if $lowerbound(P_i) < bestsofar$: add P_i to S
- return bestsofar

Outline

- Introduction
 - The Dilemma
 - Branches Attacking the Problem
- 2 Intelligent Exhaustive Search
 - Backtracking
 - Example
 - Backtracking Algorithm
 - Branch-and-Bound
 - Algorithm Branch-and-Bound
 - Example
- Approximation Algorithms
 - Introduction
 - Examples
 - Vertex Cover Problem
 - The Traveling-Salesman Problem

Example: The Traveling Salesman Problem

A partial solution to the TSP

It is a simple path $a\leadsto b$ passing through some vertices's $S\subseteq V$ with $a,b\in S.$

ullet Denote this as [a,S,b]

It is necessary to find the best completion of the tour i.e. the cheapest complementary path $b\leadsto a$ with intermediate vertices in V-S.

Example: The Traveling Salesman Problem

A partial solution to the TSP

It is a simple path $a \leadsto b$ passing through some vertices's $S \subseteq V$ with $a,b \in S.$

ullet Denote this as [a,S,b]

The subproblem

It is necessary to find the best completion of the tour i.e. the cheapest complementary path $b \leadsto a$ with intermediate vertices in V-S.

How do we establish a lower bound?

TSP on a graph G = (V, E) with edge lengths $w_e > 0$

- \bullet A partial solution is a simple path $a \leadsto b$
 - $\,\blacktriangleright\,$ Which pass through a series of vertices's $S\subseteq V$

ullet S includes the endpoints a and b

- We extend a particular solution [a, S, b]
 - ▶ in fact, a will be fixed throughout the algorithm

How do we establish a lower bound?

$\overline{\mathsf{TSP}}$ on a graph G = (V, E) with edge lengths $w_e > 0$

- \bullet A partial solution is a simple path $a \leadsto b$
 - $\,\blacktriangleright\,$ Which pass through a series of vertices's $S\subseteq V$

Here

ullet S includes the endpoints a and b.

- We extend a particular solution [a, S, b]
- ▶ in fact, a will be fixed throughout the algorithm

How do we establish a lower bound?

TSP on a graph G = (V, E) with edge lengths $w_e > 0$

- \bullet A partial solution is a simple path $a \leadsto b$
 - $\,\blacktriangleright\,$ Which pass through a series of vertices's $S\subseteq V$

Here

ullet S includes the endpoints a and b.

We denote such solution as

- ullet We extend a particular solution [a,S,b]
 - ▶ in fact, a will be fixed throughout the algorithm

The Subproblem

• The corresponding subproblem is to find the best completion of the tour, that is, the cheapest complementary path

$$b \rightsquigarrow y \rightsquigarrow a$$
, such that $y \in V - S$ (Intermediate Vertex)

The Subproblem

 The corresponding subproblem is to find the best completion of the tour, that is, the cheapest complementary path

 $b \rightsquigarrow y \rightsquigarrow a$, such that $y \in V - S$ (Intermediate Vertex)

Initial problem is the form

$$[a, \{a\}, a]$$
 For any $a \in V$

The Subproblem

 The corresponding subproblem is to find the best completion of the tour, that is, the cheapest complementary path

$$b \rightsquigarrow y \rightsquigarrow a$$
, such that $y \in V - S$ (Intermediate Vertex)

Initial problem is the form

$$[a, \{a\}, a]$$
 For any $a \in V$

At each step of the branch-and-bound

• We extend a particular solution [a,S,b] by a single edge (b,x) where $x \in V-S$

UI VEDUEV

Thus, Given $a \leadsto b$

Leading to |V-S| subproblems

• Of the form $[a, S \cup \{x\}, x]$

However, we will use a simple one!!!

Thus, Given $a \leadsto b$

Leading to |V - S| subproblems

• Of the form $[a, S \cup \{x\}, x]$

Thus, Given $a \rightsquigarrow b$

Leading to |V - S| subproblems

• Of the form $[a, S \cup \{x\}, x]$

How can we lower-bound the cost of completing a partial tour [a, S, b]?

- Many sophisticated methods have been developed for this,
 - ► However, we will use a simple one!!!

The remainder of the tour consists

ullet A path through V-S + edges from a and b to V-S

The remainder of the tour consists

• A path through V-S + edges from a and b to V-S

Therefore

We use the simple strategy, the lower-bound is the sum of the following quantities:

The remainder of the tour consists

ullet A path through V-S + edges from a and b to V-S

Therefore

We use the simple strategy, the lower-bound is the sum of the following quantities:

• The lightest edge from a to V-S.

The remainder of the tour consists

ullet A path through V-S + edges from a and b to V-S

Therefore

We use the simple strategy, the lower-bound is the sum of the following quantities:

- The lightest edge from a to V-S.
- ② The lightest edge from b to V-S.

The remainder of the tour consists

• A path through V-S + edges from a and b to V-S

Therefore

We use the simple strategy, the lower-bound is the sum of the following quantities:

- **1** The lightest edge from a to V S.
- 2 The lightest edge from b to V-S.
- **3** The minimum spanning tree of V S.

Example

Example

Example

This is a quite simple lower bound

Clearly

• The lightest edges and the minimum spanning tree is a good estimation

This is a quite simple lower bound

Clearly

The lightest edges and the minimum spanning tree is a good estimation

Something Notable

Notice how just 28 partial solutions are considered

• The 7! = 5,040 that would arise in a brute-force search.

This is a quite simple lower bound

Clearly

The lightest edges and the minimum spanning tree is a good estimation

Something Notable

Notice how just 28 partial solutions are considered

Instead of

• The 7! = 5,040 that would arise in a brute-force search.

Outline

- Introduction
 - The Dilemma
 - Branches Attacking the Problem
- 2 Intelligent Exhaustive Search
 - Backtracking
 - Example
 - Backtracking Algorithm
 - Branch-and-Bound
 - Algorithm Branch-and-Bound
 - Example
- 3 Approximation Algorithms
 - Introduction
 - Examples
 - Vertex Cover Problem
 - The Traveling-Salesman Problem

Approximation Algorithms

Remarks

- In practice, near-optimality is often good.
- An algorithm that returns near-optimal solutions is called an
 - approximation algorithm.

Approximation Algorithms

Remarks

- In practice, near-optimality is often good.
- An algorithm that returns near-optimal solutions is called an approximation algorithm.

Framework

Suppose that we are working on an optimization problem in which each potential solution has a positive cost.

Framework

Suppose that we are working on an optimization problem in which each potential solution has a positive cost.

• We wish to find a near-optimal solution.

Max cost for a maximization problem

Min cost for a minimization problem.

Framework

Suppose that we are working on an optimization problem in which each potential solution has a positive cost.

• We wish to find a near-optimal solution.

Thus

• Max cost for a maximization problem.

Framework

Suppose that we are working on an optimization problem in which each potential solution has a positive cost.

• We wish to find a near-optimal solution.

Thus

- Max cost for a maximization problem.
- Min cost for a minimization problem.

Framework

Suppose that we are working on an optimization problem in which each potential solution has a positive cost.

• We wish to find a near-optimal solution.

Thus

- Max cost for a maximization problem.
- Min cost for a minimization problem.

Definition

We say that an algorithm for a problem has an approximation ratio of $\rho\left(n\right)$ if:

Definition

We say that an algorithm for a problem has an approximation ratio of $\rho\left(n\right)$ if:

• For any input of size n the cost C of the solution produced by the algorithm is within a factor of $\rho\left(n\right)$ of the cost C^* of an optimal solution:

Definition

We say that an algorithm for a problem has an approximation ratio of $\rho\left(n\right)$ if:

• For any input of size n the cost C of the solution produced by the algorithm is within a factor of $\rho\left(n\right)$ of the cost C^* of an optimal solution:

$$\max\left\{\frac{C}{C^{*}},\frac{C^{*}}{C}\right\} \leq \rho\left(n\right)$$

Definition of approximation algorithms

Definition

If an algorithm achieves an approximation ratio of $\rho\left(n\right)$, we call it a $\rho\left(n\right)$ -approximation algorithm.

The definitions of the approximation ratio and of a ρ (n)-approximation algorithm apply to both minimization and maximization problems.

Definition of approximation algorithms

Definition

If an algorithm achieves an approximation ratio of $\rho(n)$, we call it a $\rho(n)$ -approximation algorithm.

Further

The definitions of the approximation ratio and of a ρ (n)-approximation algorithm apply to both minimization and maximization problems.

The two possibilities

For a maximization problem

We have that $0 < C \le C^*$, then the ratio C^*/C gives the factor by which the cost of an optimal solution is larger than the cost of the approximate solution.

We have that $0 < C^* \le C$, then the ratio C/C^* gives the factor by which the approximate solution is larger than the cost of an optimal solution.

The approximation ratio of an approximation algorithm is never less than

The two possibilities

For a maximization problem

We have that $0 < C \le C^*$, then the ratio C^*/C gives the factor by which the cost of an optimal solution is larger than the cost of the approximate solution.

For a minimization problem

We have that $0 < C^* \le C$, then the ratio $^C\!/C^*$ gives the factor by which the approximate solution is larger than the cost of an optimal solution.

The approximation ratio of an approximation algorithm is never less than

The two possibilities

For a maximization problem

We have that $0 < C \le C^*$, then the ratio C^*/C gives the factor by which the cost of an optimal solution is larger than the cost of the approximate solution.

For a minimization problem

We have that $0 < C^* \le C$, then the ratio $^C\!/C^*$ gives the factor by which the approximate solution is larger than the cost of an optimal solution.

Properties

The approximation ratio of an approximation algorithm is never less than 1.

Approximation algorithms have the following characteristics

- They have polynomial times.
- They are not guarantee to obtain optimal solution
- However, they guarantee good solution within some factor o
- optimum.

Approximation algorithms have the following characteristics

- They have polynomial times.
- They are not guarantee to obtain optimal solutions.

Approximation algorithms have the following characteristics

- They have polynomial times.
- They are not guarantee to obtain optimal solutions.
- However, they guarantee good solution within some factor of the optimum.

Approximation algorithms have the following characteristics

- They have polynomial times.
- They are not guarantee to obtain optimal solutions.
- However, they guarantee good solution within some factor of the optimum.

Further

• They often use algorithms from related problems as subroutines.

Approximation algorithms have the following characteristics

- They have polynomial times.
- They are not guarantee to obtain optimal solutions.
- However, they guarantee good solution within some factor of the optimum.

Further

• They often use algorithms from related problems as subroutines.

We will look at...

Examples

- Vertex Cover problem.
- The Traveling Salesman Problem.

We will look at...

Examples

- Vertex Cover problem.
- The Traveling Salesman Problem.

We will look at...

Examples

- Vertex Cover problem.
- The Traveling Salesman Problem.

This barely scratches

All the theory of approximation algorithms.

Outline

- Introduction
 - The Dilemma
 - Branches Attacking the Problem
- 2 Intelligent Exhaustive Search
 - Backtracking
 - Example
 - Backtracking Algorithm
 - Branch-and-Bound
 - Algorithm Branch-and-Bound
 - Example
- 3 Approximation Algorithms
 - Introduction
 - Examples
 - Vertex Cover Problem
 - The Traveling-Salesman Problem

Outline

- Introduction
 - The Dilemma
 - Branches Attacking the Problem
- 2 Intelligent Exhaustive Search
 - Backtracking
 - Example
 - Backtracking Algorithm
 - Branch-and-Bound
 - Algorithm Branch-and-Bound
 - Example
- 3 Approximation Algorithms
 - Introduction
 - Examples
 - Vertex Cover Problem
 - The Traveling-Salesman Problem

Vertex Cover Problem

Definition of a vertex cover

A vertex cover of an undirected graph G = (V, E) is a subset $V' \subseteq V$ such that if (u, v) is an edge of G. then either $u \in V'$ or $v \in V'$ (Or both).

Vertex Cover Problem

Definition of a vertex cover

A vertex cover of an undirected graph G = (V, E) is a subset $V' \subseteq V$ such that if (u, v) is an edge of G. then either $u \in V'$ or $v \in V'$ (Or both).

Thus

The size of a vertex cover is the number of vertices in it.

Vertex Cover Problem

Definition

The vertex-cover problem is to find a vertex cover of minimum size in a given undirected graph.

Example of Vertex Cover Problem

Example

Determine the smallest subset of vertex that "Cover" the graph on the right.

Vertex cover

Example

Determine the smallest subset of vertex that "Cover" the graph on the right.

ANSWER: $\{1, 3, 4\}$

Approximation vertex cover algorithm

Now, we have

APPROX-VERTEX-COVER(G)

- **2** E' = G.E
- let (u, v) be an arbitrary edge of E'
- $C = C \cup \{u, v\}$
- or remove from E' every edge incident on either u or v
- $\mathbf{0}$ return C

Complexity O(V+E)

Example

Theorem

Theorem 35.1

APPROX-VERTEX-COVER is a polynomial-time 2-approximation algorithm.

Theorem

Theorem 35.1

APPROX-VERTEX-COVER is a polynomial-time 2-approximation algorithm.

Proof

 We know that the algorithms return a vertex cover until it finishes, and it runs in poly-time.

Theorem

Theorem 35.1

APPROX-VERTEX-COVER is a polynomial-time 2-approximation algorithm.

Proof

- We know that the algorithms return a vertex cover until it finishes, and it runs in poly-time.
- Now, we only need to prove that APPROX-VERTEX-COVER returns a vertex cover of at most twice the size of the optimal cover.

First

 \bullet We call C as the set of vertices that is returned by the approximation algorithm.

- \bullet We call C as the set of vertices that is returned by the approximation algorithm.
- ullet Now, given the set of edges A produced by the algorithm.

- \bullet We call C as the set of vertices that is returned by the approximation algorithm.
- ullet Now, given the set of edges A produced by the algorithm.
- Now, given an optimal cover C^* :

- \bullet We call C as the set of vertices that is returned by the approximation algorithm.
- ullet Now, given the set of edges A produced by the algorithm.
- Now, given an optimal cover C^* :
 - $ightharpoonup C^*$ must include at least one endpoint of each edge in A.

- \bullet We call C as the set of vertices that is returned by the approximation algorithm.
- ullet Now, given the set of edges A produced by the algorithm.
- Now, given an optimal cover C^* :
 - C^* must include at least one endpoint of each edge in A.
 - No two edges in A share an endpoint, thus no two edges are covered by the same vertex from C^* :

$$|C^*| \ge |A|$$

Second

Now, each execution in line 4 picks an edge for which neither of its endpoints is already in C, thus we have

$$|C| = 2|A|$$

$$\leq 2|C^*|$$

Finally, we have

$$\frac{|C|}{|C^*|} \le 2$$

Remarks

Did you notice the trick?

We do not know the size of C^* , but we obtain a lower bound for it

Remarks

Did you notice the trick?

We do not know the size of C^* , but we obtain a lower bound for it

Actually

The set A is a **maximal matching** in the graph G.

What is a Maximal Matching?

Definition

Given a graph G=(V,E), a matching M in G is a set of pairwise non-adjacent edges; that is, no two edges share a common vertex.

Maximal Matching

Definition

A Maximal Matching is a matching M of a graph G with the property that if any edge not in M is added to M, it is no longer a matching.

Example

Outline

- Introduction
 - The Dilemma
 - Branches Attacking the Problem
- 2 Intelligent Exhaustive Search
 - Backtracking
 - Example
 - Backtracking Algorithm
 - Branch-and-Bound
 - Algorithm Branch-and-Bound
 - Example
- 3 Approximation Algorithms
 - Introduction
 - Examples
 - Vertex Cover Problem
 - The Traveling-Salesman Problem

The Traveling-Salesman Problem

Given a complete undirected graph G = (V, E)

 \bullet With a no-negative integer cost function c(u,v) associated to each edge $(u,v) \in E$

We need to find a Hamiltonian cycle of G with minimum cos

The Traveling-Salesman Problem

Given a complete undirected graph G = (V, E)

- \bullet With a no-negative integer cost function c(u,v) associated to each edge $(u,v) \in E$
- ullet We need to find a Hamiltonian cycle of G with minimum cost.

Extra notation

As an extension of our notation

Let c(A) denote the total cost of the edges in a subset $A \subseteq E$

$$c(A) = \sum_{(u,v)\in A} c(u,v)$$

The extra assumption: The triangle inequality

Assume

:

We will assume that the cost function satisfies the triangle inequality for all its vertices $u, v, w \in V$ then:

$$c(u, w) \le c(u, v) + c(v, w)$$

Pseudocode

APPROX-TSP-TOUR(G, c, r)

1 select a vertex $r \in G.V$ to be a "root" vertex.

Pseudocode

APPROX-TSP-TOUR(G, c, r)

- select a vertex $r \in G.V$ to be a "root" vertex.
- ② compute a minimum spanning tree T for G from root r using the $\mathsf{MST-PRIM}(G,c,r)$.

Pseudocode

APPROX-TSP-TOUR(G, c, r)

- **1** select a vertex $r \in G.V$ to be a "root" vertex.
- ② compute a minimum spanning tree T for G from root r using the $\mathsf{MST-PRIM}(G,c,r)$.
- ullet Let H be a list of vertices, ordered according to when they are first visited in a preorder tree walk of T.

Pseudocode

APPROX-TSP-TOUR(G, c, r)

- select a vertex $r \in G.V$ to be a "root" vertex.
- ② compute a minimum spanning tree T for G from root r using the $\mathsf{MST-PRIM}(G,c,r)$.
- ullet Let H be a list of vertices, ordered according to when they are first visited in a preorder tree walk of T.
- $oldsymbol{4}$ return the Hamiltonian cycle H

Example

Theorem that supports the claim

Theorem 35.2

APROX-TSP-TOUR is a polynomial-time 2-approximation algorithm for the traveling salesman problem with the triangle inequality.

First

- ullet Let H^* denote an optimal tour for a set of vertices,
 - ► H* is a cycle.
 - \blacktriangleright If from H^* we erase an edge, H^* becomes a tree.
- ullet Let T the minimum spanning tree computed at line 2
- Then

First

- \bullet Let H^{\ast} denote an optimal tour for a set of vertices,
 - ▶ H^* is a cycle.

I hen:

 $c(T) \le c(H^*)$

First

- \bullet Let H^{\ast} denote an optimal tour for a set of vertices,
 - ► H^* is a cycle.
 - ▶ If from H^* we erase an edge, H^* becomes a tree.

First

- ullet Let H^* denote an optimal tour for a set of vertices,
 - ► *H** is a cycle.
 - ▶ If from H^* we erase an edge, H^* becomes a tree.
- Let T the minimum spanning tree computed at line 2

First

- ullet Let H^* denote an optimal tour for a set of vertices,
 - ► H^* is a cycle.
 - ▶ If from H^* we erase an edge, H^* becomes a tree.
- Let T the minimum spanning tree computed at line 2

Then:

$$c(T) \le c(H^*)$$

Full walk

Full walk

Then, we have

Since the full walk traverses every edge of T exactly twice

$$c(W) \le 2c(T)$$

In addition

However, W is not a tour... What can we do?

Then, we have

Since the full walk traverses every edge of T exactly twice

$$c(W) \le 2c(T)$$

In addition

However, W is not a tour... What can we do?

Something Notable

By the triangle inequality, however, we can delete a visit to any vertex from W.

Something Notable

By the triangle inequality, however, we can delete a visit to any vertex from ${\cal W}.$

IMPORTANT

Using the triangle inequality the cost does not increase.

Something Notable

By the triangle inequality, however, we can delete a visit to any vertex from W.

IMPORTANT

Using the triangle inequality the cost does not increase.

Deletion of vertices

ullet Delete a vertex v from W between visits to u and w.

Something Notable

By the triangle inequality, however, we can delete a visit to any vertex from ${\cal W}.$

IMPORTANT

Using the triangle inequality the cost does not increase.

Deletion of vertices

- Delete a vertex v from W between visits to u and w.
 - ightharpoonup The resulting ordering specifies going directly from u and w.

Thus

We get

 $\overline{a,b,c,h,d,e,f,g}$

Minimum Spanning Tree

We have

The previous visiting order is equal to a preorder walking on the previous tree ${\cal T}.$

We have

The previous visiting order is equal to a preorder walking on the previous tree ${\cal T}.$

Now

ullet Let H the cycle obtained by this preorder walking.

We have

The previous visiting order is equal to a preorder walking on the previous tree ${\cal T}.$

Now

- ullet Let H the cycle obtained by this preorder walking.
- It is a Hamiltonian cycle, since every vertex is visited exactly one

We have

The previous visiting order is equal to a preorder walking on the previous tree ${\cal T}.$

Now

- Let H the cycle obtained by this preorder walking.
- It is a Hamiltonian cycle, since every vertex is visited exactly one

Thus

$$c(H) \le c(W) \le 2c(T) \le 2c(H^*)$$

Finally

We have that

$$\frac{c(H)}{c(H^*)} \le 2$$

However

Given the General Traveling-Salesman Problem

If we drop the assumption that the cost function \boldsymbol{c} satisfies the triangle inequality.

Theorem 35.3

If $P \neq NP$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general traveling-salesman problem.

However

Given the General Traveling-Salesman Problem

If we drop the assumption that the cost function \boldsymbol{c} satisfies the triangle inequality.

Theorem 35.3

If $P \neq NP$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general traveling-salesman problem.

Excercises

From Cormen's book solve

- 35.1-1
- 35.1-2
- 35.1-4
- 35.2-1
- 35.2-2
- 35.2-3
- 35.2-5

