Tutorial on SAT Solvers

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell

February 5, 2021

SAT Solvers

- lacktriangle SAT solvers take as input a CNF formula F and return:
 - lacktriangle sat(+ model): if F is satisfiable
 - lacktriangle unsat: if F is unsatisfiable
- We will be using kissat (developed by Armin Biere)
- Usage: kissat [<option> ...] <input>
- See options with kissat -h

Input Format: DIMACS (I)

- First some optional comment lines: c_{\u00e4}<comment>
- Then a line: pucnfu<num_vars>u<num_clauses>
- Then clauses:
 - ullet Each variable is represented with an integer ≥ 1
 - Negated literals are negative integers
 - ◆ Literals in a clause separated by blank spaces
 - 0 marks the end of a clause

Input Format: DIMACS (II)

 $\blacksquare \quad (x_1 \vee x_2) \wedge \neg x_3$

```
c This is an example of SAT formula
p cnf 3 2
1 2 0
-3 0
```

 $(x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2)$

```
c This is an example of UNSAT formula
p cnf 2 4
1 2 0
1 -2 0
-1 2 0
-1 -2 0
```

Output Format

- There may be comment lines started with c that should be ignored (as in the input format)
- 1st line of the remaining lines is one of:
 - ◆ s SATISFIABLE
 - ◆ s UNSATISFIABLE
- If satisfiable, then comes a list of true literals.

 Each following line is of the form v tst of lits>

Example: output for formula $(x_1 \lor x_2) \land \neg x_3$

```
s SATISFIABLE v 1 2 -3 0
```

Interpretation I with $I(x_1) = I(x_2) = 1, I(x_3) = 0$ is model