RELAZIONE LABORATORIO VIRTUALE

Milani Francesco 5 Al A.S. 2019/2020

RELAZIONE DI SISTEMI E RETI INDICE

1. Scopo dell'esperienza	3
2. Creazione del client 2.1 Note sulla creazione del client	4
3. Installazione Debian	6
3.1 Impostazione utenti e password 3.2 Configurazione orologio	8
3.3 Partizionamento dei dischi	8
3.4 Installazione sistema base	8
3.5 Driver da includere	8
3.6 Configuratore gestore pacchetti	8
3.7 Selezione e installazione del software	8
3.8 Installazione bootloader GRUB su disco fisso	8
3.9 Note sull'installazione di Debian	9
4. Configurazione del client	10
4.1 Installazione software aggiuntivo	10
4.2 Aggiunta uds al gruppo sudo	10
4.3 Comandi utili	10
4.4 Installazione GUI del client	11
4.5 Note sulla configurazione del client	12
5. Creazione e configurazione del server	13
5.1 Note sulla creazione e configurazione del server	13
6. Creazione e configurazione del router	14
6.1 Impostazioni schede di rete del router	14
6.3 Note sulla creazione e configurazione del router	15
7. Installazione e configurazione di m0n0wall	16
7.1 Ridenominazione schede di rete del router	16
8. Impostazioni di rete del client	17
9. Configurazione m0n0wall lato client	18
10. Configurazione m0n0wall dall'host	19
10.1 Configurazione interfacce	19
10.2 Configurazione regole DMZ	20
11. Configurazione degli Aliases	21
12. Migrazione indirizzi IP	22
12.1 Migrazione indirizzo IP client	22

1. Scopo dell'esperienza

Lo scopo di questa esperienza è quello di riuscire a creare un laboratorio virtuale mediante l'uso di VirtualBox, gestendo 3 diverse reti: LAN, WAN e DMZ, e configurando correttamente tutti i loro componenti. Per simulare client e server abbiamo dovuto utilizzare le macchine virtuali non per carenza fisica di dispositivi, ma bensì per ragioni di comodità e semplicità.

2. Creazione del client

- Aprire VirtualBox, e selezionare l'icona "Nuova"
 - Nome: *clientmilani*
 - Tipo: Linux
 - Versione: Debian 64 Bit
 - Dimensione memoria RAM: 1024 MB

Crea subito un nuovo disco fisso virtuale

Ordine di avvio:

Disco fisso

- Creare un nuovo disco fisso
 - Tipo di file: VDI (VirtualBox Disk Image)
 - Archiviazione: *Allocato dinamicamente*
 - Nome: clientmilani.vdi
 - Dimensione: 4GB
- Impostazioni del client
 - Sistema → Ordine di avvio → spuntare Rete
 - Rete:
 - Connessa a : Scheda con Bridge

2.1 Note sulla creazione del client

- Il disco fisso viene allocato dinamicamente in quanto l'allocazione dinamica è meno prestante rispetto all'allocazione statica, ma è più utile per il nostro utilizzo.
- Connettiamo il computer ad una scheda con bridge, ovvero al posto del router verrà creato uno switch virtuale interno all'host. La scheda di rete quindi accetterà le proprie trame, insieme a quelle di broadcast e multicast, e si potrà istruire per ricevere MAC address specifici.

- Come indirizzo MAC verrà utilizzato un indirizzo generico generato automaticamente, che non corrisponde a nessun produttore, in modo da poterlo usare liberamente senza problemi.

3 Installazione Debian

Lingua: Italiano

o Configurare i locale: it IT, it IT@euro

○ Locale prefefinito: *UTF-8*

• Tastiera: Italiano

Rilevare l'hardware di rete

Configurazione automatica

■ Nome host: clientmilani

■ Nome dominio: *milani.intra*

■ Mirror: *http*

■ Nazione del mirror dell'archivio Debian: Italia

Mirror dell'archivio Debian: <u>ftp.it.debian.org</u>

Informazioni del proxy http: http://apt-cacher.fermi.intra:3142

Nome host:

ientmilani.

■ Versione Debian: Stable – buster

Nome del dominio:

3.1 Impostazione utenti e password

• Shadow password: *Sì*

• Permettere il root: Sì

Password: lasolita

Account normale:

■ Nome: *utente di servizio*

Nome utente: *uds*Password: *lasolita*

3.2 Configurazione orologio

NTP: *Sì*Server: *Sì*

• Fuso orario: Europe/Rome

3.3 Partizionamento dei dischi

Manuale

VBOX Hard Disk

• Tabelle: msdos

Spazio libero 1:

■ Nuova partizione: 4.0GB

Primaria

Inizio

■ Usare come: ext4 con journaling

■ Punto di mount: "/"

Opzioni:

discard

• noatime

■ Etichetta: *linuxroot*

■ Flag avviabile: *disattivato*

Abilitare le «shadow password»? <mark><Sî></mark> <No>

Permettere l'accesso a root?

<Sì> <No>

SCSI3 (0,0,0) (sda) – 4.3 GB ATA VBOX HARDDISK pri/log 4.3 GB SPAZIO LIBERO

discard, noatime

linuxroot

standard

disattivato

File system ext4 con journaling

Usare come:

Etichetta:

Punto di mount:

Opzioni di mount:

Blocchi riservati:

Utilizzo tipico:

Flag avviabile:

SCSI3 (0,0,0) (sda) – 4.3 GB ATA VBOX HARDDISK n° 1 primaria 4.0 GB f ext4 pri/log 294.6 MB SPAZIO LIBERO

Spazio libero 2:

■ Nuova partizione: 294.6 MB (Tutto lo spazio rimanente)

Primaria

■ Usare come: area di swap

Usare come: area di swap Flag avviabile: disattivato

3.4 Installazione sistema base

○ linux-image-amd64

linux-image-4.19.0-6-amd64 linux-image-amd64

3.5 Driver da includere

Generico

generico: include tutti i driver disponibili mirato: solo i driver necessari a questo sistema

3.6 Configuratore gestore pacchetti

Software non libero: No

○ Contrib: Sì

Repository API: No

3.7 Selezione e installazione del software

- Nessun aggiornamento
- No raccolta statistiche

3.8 Installazione bootloader GRUB su disco fisso

- Installa
- ∘ Bootloader nel master: Sì → /dev/sda
- Installazione GRUB: No

Inserire il device manualmente /dev/sda (ata–VBOX_HARDDISK_VB13db82bc–98ffef10)

3.9 Note sull'installazione di Debian

- -Il nome Debian nasce dall'unione del nome del suo fondatore Ian Murdock con quello della sua fidanzata Debra
- Viene utilizzato come dominio un sito .intra in quanto questo tipo di dominio non è ancora vendibile quindi non è possibile sia utilizzato da altri.
- Nella rete della scuola è presente un cacher, ovvero uno spazio di memoria dove vegono memorizzati i pacchetti che sono già stati scaricati, in modo da poterli distribuire nella rete in caso di installazioni multiple, senza appesantire il traffico di download.
- UTC sta per Coordinated Universal Time, ed è il fuso orario di riferimento a partire dal quale sono calcolati tutti gli altri fusi orari del mondo. L' UTC+1 è per noi l'ora invernale, mentre L'UTC+2 è l'ora estiva. Per l'estate nel Regno Unito si utilizza il BST, ovvero il British Summer Time.

4. Configurazione del client

- Avviare la macchina
- Accedere come utente di servizio (uds)
- Accedere come root
 - o su -

4.1 Installazione software aggiuntivo:

- o apt install less joe tcpdump mtr-tiny cowsay
- o apt install sudo
- o apt clean → Cancella la cache di installazione

4.2 Aggiunta uds al gruppo sudo

- o adduser uds sudo
- Riavviare la macchina

4.3 Comandi utili:

- \circ *id* \rightarrow Per visualizzare in che utente sono
- ∘ *id uds* → Per visualizzare chi è uds
- pwd → Print Working Directory
- o df -h → Visualizzare il File System
- o apt upgrade → Aggiornamento che scarica il software aggiuntivo
- o apt update → Scansiona e riscarica l'elenco dei software aggiuntivi
- apt dist-update → Aggiorna i pacchetti evitando o alleggerendo le intradipendenze che potrebbero portare al blocco dell'aggiornamento
- ∘ *Shutdown -h now* → Spegne il computer

4.4 Installazione GUI del client

- Accedere come uds
- Accedere come root

Installazione gestore login, windows manager e firefox

- o apt install light dm mate firefox
- o apt clean

Lightdm è il gestore del login grafico, mentre mate è il windows manager

- Riavviare i servizi
 - cd /etc/init.d/
 - ./lightdm status
 - ./lightdm restart

In questa maniera si riavvierà il gestore grafico, facendo quindi apparire il login grafico.

4.5 Note sulla configurazione del client

- E' opportuno lasciare inserito il CD di Debian anche dopo l'installazione, in quanto ha al suo interno altri eseguibili per l'installazione di programmi aggiuntivi. Per non avere problemi all'avvio è necessario spostare l'Hard Disk sopra al CD nella sequenza di avvio.
- Le directory sono determinate dal FHS, che sta per Filesystem Hierarchy Standard, ed è lo standard che definisce le directory principali ed il loro contenuto nel file system dei sistemi operativi Unix, tra cui i sistemi Linux.
- La storia tra Debian e Mozilla è controversa, infatti ci sono state vicende legali a causa del fatto che Debian utilizza solamente software libero. Il problema di Firefox stava nel fatto che l'applicazione in sé è libera, ma il logo è registrato, quindi andava contro le politiche di Debian.

Per anni Debian ha quindi dovuto utilizzare IceWeazel, semplicemente Firefox con nome e logo diverso.

La controversia si è risolta con la creazione di Firefox esr, che prevede l'assorbimento delle patch di sicurezza.

5. Creazione e configurazione del server

- Clonare il client
 - Nome: servermilani
 - Inizializzare nuovamente l'indirizzo MAC
 - o Tipo: Completa

- Avviare il client
- Accedere come utente di servizio (uds)
- Accedere come root
 - o su -
- Modificare il nome della macchina
 - o joe/etc/hosts 127.0.1.1 servermilani.milani.intra servermilan
 - client.milani.intra → server.milani.intra
 - clientmilani → servermilani
- Spegnere la macchina

5.1 Note sulla configurazione del server

- Come icona della clonazione è raffigurata una pecora, in onore di Dolly, il primo mammifero ad essere stato clonato con successo da una cellula somatica.

6. Creazione e configurazione del router

Nuova macchina

• Nome: routermilani

○ Tipo: *BSD*

Versione: FreeBSD (32bit) Memoria RAM: 128 MB

- Disco Fisso
 - VDI
 - Statico
 - Memoria: 64 MB

Avviare la maccchina

∘ File ISO di m0n0wall → /home/itis/Internetfiles/monowall.iso

6.1 Impostazioni schede di rete del router

- Scheda 1:
 - o Connessa a : Scheda con bridge
- Scheda 2:

Connessa a: Rete Interna

Nome: LAN

Scheda 3:

o Connessa a: Rete Interna

○ Nome: *DMZ*

Scheda 3

Scheda 2

Abilita scheda di rete

6.3 Note sulla creazione e configurazione del router

- Nella rete interna viene creato uno switch virtuale, che permetterà la connessione tra i diversi guest, ma non la connessione verso l'esterno, in quanto non connesso.

- m0n0wall è un progetto ormai abbandonato, infatti l'ultima release risale al 15 gennaio 2014.

7. Installazione e configurazione di m0n0wall

- Selezionare l'opzione 7 → Install on Hard Drive
- Spazio di memoria : ad0
- Attendere il riavvio

Dalle impostazioni rimuovere il disco di m0n0wall dal lettore virtuale

7.1 Ridenominazione schede di rete del router

- Avviare il router
- Selezionare l'opzione 1
 - Set up VLANS: *No*
 - Rinominare le schede nel seguente modo:
 - em0: *WAN*
 - em1: *LAN*
 - em2: *DMZ*

Riavviare la macchina

8. Impostazioni di rete del client

• Scheda 1:

o Connessa a: Rete Interna

○ Nome: *LAN*

- Accedere come uds
- Accedere come root
- Inserire il seguente comando
 - ∘ *ip addr* → Per controllare la propria connessione
- Lancio del DHCP manualmente
 - dhclient enp0s3

All'avvio di m0n0wall l'interfaccia WAN non presenta inizialmente un indirizzo IP, in quanto la WAN invia una richiesta DHCP a cui risponderà la mia infrastruttura. Basta aggiornare premendo il tasto invio e verrà così visualizzato l'indirizzo IP.

LAN IP address: 192.168.1.1 WAN IP address: 192.168.1.1 WAN IP address: 192.168.1.219

9. Configurazione m0n0wall lato client

Avviare Firefox

• Connettersi all'indirizzo 192.168.1.1

• Nome utente: admin

Password: mono

Sarà quindi visualizzata la pagina principale di m0n0wall

- Firewall
 - Rules
 - Editare la riga presente su WAN
 - Rimuovere la spunta su Block private networks
 - Save
 - Creare una nuova regola su WAN
 - Source

Type: Single HostAddress: 172.30.4.1

Destination port range

• From: HTTP

To: WAN

Apply changes

10. Configurazione m0n0wall dall'host

- Accesso tramite indirizzo WAN
- System
 - o General setup

• Hostname: routermilani

• Domain: *milani.intra*

• Username: *admin*

Password: lasolita

■ Time: *Europe/Rome*

Save

10.1 Configurazione interfacce

• Interfaces: WAN

• Hostname: routermilani

o Description: accesso web al m0n0wall dal pc ospitante

• Interfaces: OPT1

o Enable Optional 1 Interface

Description: *DMZ*Bridge with: *none*

o IP address: 192.168.101.1

10.2 Configurazione regole DMZ

- Firewall
 - Rules
 - DMZ
 - Aggiungi nuova regola
 - Action: *Block*Protocol: *Any*
 - Source: DMZ Subnet
 - Destination: LAN Subnet
 - Description: Block: DMZ to LAN
 - Save
 - Aggiungi nuova regola basata su quella appena creata
 - Action: *Pass*Source: *DMZ*
 - Destination: Any
 - Protocol: Any
 - Description: Allow: DMZ to ANY
 - Save

11. Configurazione degli Aliases

Gli aliases sono una maniera comoda di ridenominazione degli indirizzi ip, in pratica è possibile sostituire gli ip con nomi a propria scelta. In questo modo, anche in caso di modifica degli indirizzi IP, sarà sufficente cambiare una sola volta l'indirizzo, e tutti i campi collegati a quell'alias saranno aggiornati automaticamente

- Firewall
 - Aliases

12. Migrazione indirizzi IP

E' possibile che possa emergere la necessità di dover cambiare una serie di IP nella nostra rete contemporaneamente. Il rischio maggiore è quello di perdere l'accesso al router modificando gli IP in maniera errata.

Nel nostro caso, si deve migrare l'IP della rete LAN, da 192.168.1.0 a 192.168.31.0.

Il numero 31 indica il numero di postazione nel laboratorio.

12.1 Migrazione indirizzo IP client

- Agire dalla modalità <u>root@client</u>
- Inserire il seguente comando:
 - ifconfig enp0s3 tempIP netmask 255.255.255.0
 - ∘ route add default gw **newGW**
- Entrare nella configurazione web di m0n0wall
- Interfaces: LAN
 - IP: 192.168.31.0
- Services: DHCP server → LAN
 - o Range: 192.168.31.100 to 192.168.31.199
- Riavviare il router
- · Agire dalla modalità uds@client
- sudo dhclient enp0s3 → Richiesta DHCP

In questo momento l'interfaccia di rete avrà due IP assegnati, per risolvere questo problema è necessario:

- Agire dalla modalità <u>root@client</u>
- *ifdown enp0s3* → disabilita interfaccia
- *ifup enp0s3* → abilita interfaccia