$oldsymbol{U}$ niversité $oldsymbol{M}$ oulay $oldsymbol{I}$ smaïl

$m{E}$ cole $m{N}$ ationale $m{S}$ upérieure d' $m{A}$ rts et $m{M}$ étiers — $m{M}$ eknès

CONCOURS D'ENTREE en 1ère Année

Filières : Sciences Expérimentales et Techniques

Epreuve de Mathématiques

Jeudi 26 Juillet 2012 - Durée : 2h 00mn

Ouestions à réponse présise Partie A

Questions à réponse précise, Partie A		
NB : Chaque question est notée sur (1Pt)		
Questions	Réponses	
Trouver la prériode T de la fonction suivante : $f(x) = \sin\left(\frac{x}{2}\right) + \cos\left(x\right)$		
Résoudre dans IR l'équation : $\cos^4(x) - \sin^4(x) = 1$		
Déterminer $a, b \in \mathbb{R}$ tels que $(1+i)^9 = a+ib$		
Déterminer le réel a pour que le nombre complexe $z = \frac{1+ai}{2a+(a^2-1)i} \text{ soit imaginaire pur}$		
Donner un exemple de fonction non nulle $f: \mathbb{R} \longrightarrow \mathbb{R}$ telle que $f(x+y) = f(x) f(y) \forall (x,y) \in \mathbb{R}^2$		
Soit f une fonction dérivable sur IR , calculer la dérivée de $g(x) = \exp\left(\left(f\left(x^2\right)\right)^2\right)$		
Soit $E = \mathbb{R} \setminus \{-2\}$ et soit $f : E \longrightarrow \mathbb{R}$ telle que $f(x) = \frac{x+1}{x+2}$, déterminer $f(E)$		
Trouver les maximums et les minimums de la fonction $f:[-1, 1] \longrightarrow \mathbb{R}$ définie par $f(x) = \left x^2 - x\right + \left x\right $		
On donne les points $A(1,2)$, $B(-2,1)$ et $C(0,4)$. Déterminer l'angle \widehat{BAC} en radian		
Soit x un réel positif. Combien y-a-t-il d'entiers naturels pairs entre 0 et x ?		

Questions	Pánangas
·	Réponses
Soit E un ensemble, et A , B deux sous ensembles de E . On appelle différence symétrique de A et B , notée $A\Delta B$, le sous-ensemble de E : $A\Delta B = \{x \in A \cup B \mid x \notin A \cap B\}$. Calculer $A\Delta E$ et $A\Delta C_E^A$	
Le périmètre d'un triangle isocèle vaut 1. Déterminer les dimensions de ce triangle pour que son aire soit la plus grande possible.	
Calculer $I = \int_{-1}^{1} \frac{1}{x^2 - 2} dx$	
Calculer $J = \int_{n\pi}^{(n+1)\pi} e^{-x} \sin x dx$	
Pour les deux fonctions $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ définies respectivement par $f(x) = \begin{cases} x+3 & \text{si } x \geq 0 \\ 2 & \text{otherwise} \end{cases}$ et	
respectivement par $f(x) = \begin{cases} x+3 & \text{si } x \ge 0 \\ x^2 & \text{si } x < 0 \end{cases}$ et $g(x) = \begin{cases} 2x+1 & \text{si } x \ge 3 \\ x & \text{si } x < 3 \end{cases}$. Calculer $g \circ f$	
Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction définie par $f(x) = \begin{cases} \sqrt{x^4 + 1} - \left(ax^2 + b\right) + \frac{1 - \cos\left(cx\right)}{x^2} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ Déterminer $a, b, c \in \mathbb{R}$ de sorte que f est continue en 0 et $\lim_{x \to +\infty} f(x) = -3$	
Résoudre dans $I\!\!R$ l'équation	
$\sqrt{x+2\sqrt{x-1}} + \sqrt{x-2\sqrt{x-1}} = 1$	
Calculer $A = \lim_{n \to +\infty} n \ln \sqrt{\frac{n+1}{n-1}}$	
De combien de façon peut-on payer 10 DHS avec des pièces de 10 et 20 centimes ? (1 DH = 100 centimes)	
Soient x_1 , x_2 et x_3 les racines de $x^3 + 2x - 1 = 0$, calculer $X = x_1^3 + x_2^3 + x_3^3$	
Représenter graphiquement la partie de $\mathscr C$ définie par $ \pi - \arg{(z)} < \frac{\pi}{4}$	
Déterminer la projection orthogonale du point $M(x_0, y_0)$ sur la droite (D) d'équations : $x+3y-5=0$	
Déterminer le quotient et le reste de la division euli- dienne de $X^5 - 7X^4 - X^2 - 9X + 9$ par $X^2 - 5X + 4$	

$oldsymbol{U}$ niversité $oldsymbol{M}$ oulay $oldsymbol{I}$ smaïl

Ecole Nationale Supérieure d'Arts et Métiers — Meknès

CONCOURS D'ENTREE en 1ère Année

Filières : Sciences Expérimentales et Techniques

Epreuve de Mathématiques

Jeudi 26 Juillet 2012 - Durée : 2h 00mn

Questions à réponse précise, Partie A

NB : Chaque question est notée sur (1Pt)	
Questions	Réponses
Trouver la prériode T de la fonction suivante : $f(x) = \sin\left(\frac{x}{2}\right) + \cos\left(x\right)$	$f(n+4\pi) = \sin(2\pi + \frac{n}{2}) + \cos(n+4\pi)$ = $f(n)$ =) $T = 4\pi$
Résoudre dans IR l'équation : $\cos^4(x) - \sin^4(x) = 1$	S={KT/KEZZ
Déterminer $a, b \in IR$ tels que $(1+i)^9 = a+ib$	a=b=16
Déterminer le réel a pour que le nombre complexe $z = \frac{1+ai}{2a+(a^2-1)i}$ soit imaginaire pur	
Donner un exemple de fonction non nulle $f: \mathbb{R} \longrightarrow \mathbb{R}$ telle que $f(x+y) = f(x) f(y) \forall (x,y) \in \mathbb{R}^2$	
Soit f une fonction dérivable sur IR , calculer la dérivée de $g(x) = \exp\left(\left(f\left(x^2\right)\right)^2\right)$	g(n) = 4n f(n2) f'(n1)g(n)
Soit $E = \mathbb{R} \setminus \{-2\}$ et soit $f : E \longrightarrow \mathbb{R}$ telle que $f(x) = \frac{x+1}{x+2}$, déterminer $f(E)$	f(E) = R \ { 1}
Trouver les maximums et les minimums de la fonction $f: [-1, 1] \longrightarrow \mathbb{R}$ définie par $f(x) = x^2 - x + x $	Max $f(u) = 3$ $M_{\text{ef-1,1}} f(u) = 0$ $M_{\text{ef-1,1}} f(u) = 0$
On donne les points $A(1,2)$, $B(-2,1)$ et $C(0,4)$. Déterminer l'angle \widehat{BAC} en radian	$\cos B\widehat{A}C = \frac{AB^2 + AC^2 - BC^2}{2AB - AC} = 902$ $=) B\widehat{A}C = 1.55 \text{ rad}$
Soit x un réel positif. Combien y-a-t-il d'entiers naturels pairs entre 0 et x ?	

NB : Chaque question est notée sur (2Pts)	
Questions	Réponses
Soit E un ensemble, et A , B deux sous ensembles de E . On appelle différence symétrique de A et B , notée $A\Delta B$, le sous-ensemble de E : $A\Delta B = \{x \in A \cup B \mid x \notin A \cap B\}$. Calculer $A\Delta E$ et $A\Delta C_E^A$	Par definition $A\Delta E = (AUE)(ANE) = E A = \overline{A}$ $A\Delta \overline{A} = (AU\overline{A})(AN\overline{A}) = E \phi = E$
Le périmètre d'un triangle isocèle vaut 1. Déterminer les dimensions de ce triangle pour que son aire soit la plus grande possible.	$AB = AC = BC = \frac{1}{3}$
Calculer $I = \int_{-1}^{1} \frac{1}{x^2 - 2} dx$	I= 1/2 ln (1/2-1)
Calculer $J = \int_{n\pi}^{(n+1)\pi} e^{-x} \sin x \ dx$	$J = \frac{(-1)^n e^{-n\pi} (e^{-\pi} + 1)}{2}$
Pour les deux fonctions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ définies respectivement par $f(x) = \left\{ \begin{array}{ll} x+3 & \text{si } x \geq 0 \\ x^2 & \text{si } x < 0 \end{array} \right.$ et $g(x) = \left\{ \begin{array}{ll} 2x+1 & \text{si } x \geq 3 \\ x & \text{si } x < 3 \end{array} \right.$ Calculer $g \circ f$	$gof = \frac{2n+7}{3} \text{ si } n \in [0,+\infty[$ $2n^2+3 \text{ si } n \in [-\sqrt{3},0[$ $2n^2+3 \text{ n } \in]-\infty,-1$
Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = \begin{cases} \sqrt{x^4+1} - \left(ax^2+b\right) + \frac{1-\cos\left(cx\right)}{x^2} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ Déterminer $a, b, c \in \mathbb{R}$ de sorte que f est continue en 0 et $\lim_{x \to +\infty} f(x) = -3$	
Résoudre dans $I\!\!R$ l'équation $\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=1$ Calculer $A=\lim_{n\to +\infty} n\ln\sqrt{\frac{n+1}{n-1}}$	
De combien de façon peut-on payer 10 DHS avec des pièces de 10 et 20 centimes ? (1 DH = 100 centimes)	
Soient x_1 , x_2 et x_3 les racines de $x^3 + 2x - 1 = 0$, calculer $X = x_1^3 + x_2^3 + x_3^3$	
Représenter graphiquement la partie de ${\cal C}$ définie par $ \pi - { m arg}(z) < rac{\pi}{4}$	
Déterminer la projection orthogonale du point $M(x_0, y_0)$ sur la droite (D) d'équations : $x+3y-5=0$	
Déterminer le quotient et le reste de la division euli- dienne de $X^5 - 7X^4 - X^2 - 9X + 9$ par $X^2 - 5X + 4$	1