

Tutorial Sheet-02 (Unit-01)

IS4	1-St	atis	tics,	Pro	bab	ility	and	Lin	ear	Prog	gramn	ning
NAME:											Marks:	
USN:											wans.	

Multiple Regression and Random variables

1.	Write the normal	equations for	Y = a +	$bX_1 + cX_2$
----	------------------	---------------	---------	---------------

2. Random Variables

A real number associated with outcome of an experiment is known as a random variable.

Example(1)

Suppose two fair coins are tossed. Then S={HH, HT, TH, TT}

Let X be the random variable corresponding to number of heads. Then X takes values 0,1,2.

Outcome	НН	HT	TH	TT
X	2	1	1	0

Range of random variable

The set of all real numbers of a random variate X is called range of X. In example(1), Range of $X=\{0,1,2\}$

Discrete Probability distribution

Let X be a discrete random variable assuming the values x_1 , x_2 , x_3 x_4 ,.... x_n . With each possible outcome x_i we associate a number $p_i = P(X=x_i) = P(x_i)$ called the probability of x_i .

Then $P(x_i)$ is called the probability mass function (PMF) of the random variable X if the following conditions are satisfied.

(i)
$$P(x_i) \ge 0 \ \forall i$$

(ii)
$$\sum P(x_i) = 1$$

The set $\{P(xi)\}\$ is called the probability distribution of the random variable.

Continuous Probability distribution

Let X be a continuous random variable assuming values x over an interval.

We assign a real number f(x) satisfying the conditions

(i)
$$f(x) \ge 0 \ \forall i$$

(ii)
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

Then f(x) is called the probability density function (PDF) of the continuous variable X.

If (a,b) is a subinterval of the range space of X then the probability of x which lies in (a,b) is denoted by $P(a \le X \le b)$ and is defined as

$$P(a \le X \le b) = \int_a^b f(x) dx$$

3. Cumulative distribution function

Let X be a random variable (discrete or continuous). We define F(x) to be the cumulative distribution function (CDF) or simply distribution function if

$$F(x) = P(X \le x)$$

If X is a discrete random variable, then

$$F(x_i) = P(X \le x_i) = P(x_1) + P(x_2) + \cdots + P(x_i)$$

If X is a continuous variable with PDF f(x) then

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$$

Note:
$$f(x) = \frac{d}{dx}(F(x))$$

4.	Mean and vari	ance: (For both	DRV & CRV
		(

5. **Prove that**
$$\sigma^2 = E(X^2) - [E(X)]^2$$

Tutorial-02

1. Estimate the value of y when $x_1 = 2.5 \& x_2 = 3.5$ by finding the relation of the form $y = a + bx_1 + cx_2$ by the method of least squares for the following data

x_1	2	4	6	8	10	12
x_2	-2	0	1	2	3	4
у	18	15	14	11	11	9

Solution:

x_1	x_2			
2	-2			
4	0			
6	1			
8	2			
10	3			
12	4			

2. The probability distribution of a random variable X is given by the following table. Find k and determine mean & variance.

X	0	1	2	3	4	5
P(X=x)	k	5k	10k	10k	5k	k

3.	The probabi	ity mass	function	of a	variate	X is
----	-------------	----------	----------	------	---------	------

X	0	1	2	3	4	5	6
P(X)	K	3k	5k	7k	9k	11k	13k

Find

- (i) k, P(X < 4), $P(X \ge 5)$, P(3 < X < 6)
- (ii) Mean and variance

A random variable X has the following probability function

X	1	2	3	4	5	6	7
P(X)	k	2k	2k	3k	k^2	$2k^2$	$7k^2+k$

- Find (i) k (ii) $P(X \ge 6)$ (iii) P(X < 6) (iv) $P(1 \le X < 5)$ (v) E(X) (vi) variance

5. Find which of the following is a probability density function.

rand which of the following is a pro		
function	PDF	Reason
	(Yes/No)	
$(2x \ 0 < x < 1)$	(= 0.0.1 (0)	
$f_1(x) = \begin{cases} 2x, 0 < x < 1 \\ 0, otherwise \end{cases}$		
(0. otherwise		
(2x, -1 < x, 1)		
$f_2(x) = \begin{cases} 2x, -1 < x, 1 \\ 0, otherwise \end{cases}$		
(0, otherwise		
(y y < 1)		
$f_3(x) = \begin{cases} x , & x \le 1\\ 0, otherwise \end{cases}$		
(0, otherwise		
$f_4(x) = \begin{cases} 2x, & 0 < x \le 1\\ 4 - 4x, & 1 < x < 2\\ 0, & otherwise \end{cases}$		
$f(x) = \int \frac{dx}{dx} \frac{1}{4x} \frac{1}{2x} \frac{1}{2x}$		
$J_4(x) - J_4 - 4x, 1 < x < 2$		
(0, otherwise		

6. A random variable X has the density function $f(x) = \frac{k}{1+x^2}$, $-\infty < x < \infty$, determine k and evaluate $P(X \ge 0)$. Also find mean and variance.

7. If a continuous random variable X has pdf $f(x) = \begin{cases} \frac{1}{4}, -2 < x < 2 \\ 0, elsewhere \end{cases}$

Obtain (i) P[X < 1] (ii) P[|X| > 1]

(iii) P[2X + 3 > 5]

- 8. Is the function $f(x) = \begin{cases} e^{-x}, 0 \le x < \infty \\ 0, elsewhere \end{cases}$ a density function of the continuous random variable X?
 - i). If so, determine $P(1 \le X \le 2)$.
 - ii). Also, find the cumultive distribution function F(x)

9. The pdf of a random variable X is given by $P(X = x) = \begin{cases} x & \text{, } 0 \le x \le 1 \\ 2 - x & \text{, } 1 < x \le 2 \\ 0 & \text{, } elsewhere \end{cases}$ Find (i) cumulative distribution function F(X) and (ii) P(X \ge 1.5).

10. The diameter of an electric cable is assumed to be a continuous random variable with pdf f(x) = 6x (1-x), $0 \le x \le 1$, 0 elsewhere. Verify that the above is a pdf. Also find its mean and variance.