$11a_{111} \ (K11a_{111})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{51} - u^{50} + \dots + 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 51 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{51} - u^{50} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{6} - u^{4} + 1 \\ -u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{14} - 3u^{12} + 4u^{10} - u^{8} + 1 \\ -u^{16} + 4u^{14} - 8u^{12} + 8u^{10} - 4u^{8} - 2u^{6} + 4u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{9} - 2u^{7} + u^{5} + 2u^{3} - u \\ -u^{9} + 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{23} - 6u^{21} + 16u^{19} - 20u^{17} + 4u^{15} + 22u^{13} - 26u^{11} + 6u^{9} + 9u^{7} - 6u^{5} \\ -u^{23} + 7u^{21} + \dots - 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{39} - 10u^{37} + \dots - 7u^{7} + 6u^{5} \\ -u^{41} + 11u^{39} + \dots - 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{39} - 10u^{37} + \dots - 7u^{7} + 6u^{5} \\ -u^{41} + 11u^{39} + \dots - 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{50} + 60u^{48} + \cdots + 4u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{51} + u^{50} + \dots + 2u + 1$
c_2	$u^{51} + 29u^{50} + \dots + 2u + 1$
<i>c</i> ₃	$u^{51} - 3u^{50} + \dots + 96u + 77$
c_4, c_8	$u^{51} - u^{50} + \dots - u^2 + 1$
c_6, c_{10}, c_{11}	$u^{51} + 3u^{50} + \dots + 38u + 5$
<i>C</i> ₇	$u^{51} + u^{50} + \dots - 15u^2 + 25$
c_9	$u^{51} + 25u^{50} + \dots + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{51} - 29y^{50} + \dots + 2y - 1$
c_2	$y^{51} - 13y^{50} + \dots - 6y - 1$
c_3	$y^{51} + 19y^{50} + \dots - 47918y - 5929$
c_4, c_8	$y^{51} - 25y^{50} + \dots + 2y - 1$
c_6, c_{10}, c_{11}	$y^{51} + 55y^{50} + \dots - 386y - 25$
c ₇	$y^{51} + 7y^{50} + \dots + 750y - 625$
<i>c</i> ₉	$y^{51} + 3y^{50} + \dots - 6y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.909027 + 0.447242I	0.92869 + 3.49340I	1.60875 - 7.12715I
u = -0.909027 - 0.447242I	0.92869 - 3.49340I	1.60875 + 7.12715I
u = 1.011050 + 0.194989I	-2.03194 - 0.41812I	-5.90669 + 0.63067I
u = 1.011050 - 0.194989I	-2.03194 + 0.41812I	-5.90669 - 0.63067I
u = 0.836766 + 0.445768I	-0.270561 + 0.850318I	-0.462815 + 0.737967I
u = 0.836766 - 0.445768I	-0.270561 - 0.850318I	-0.462815 - 0.737967I
u = -1.074180 + 0.167529I	-4.56731 - 3.82886I	-9.37121 + 3.42519I
u = -1.074180 - 0.167529I	-4.56731 + 3.82886I	-9.37121 - 3.42519I
u = -0.984457 + 0.470779I	-0.06113 + 5.08804I	-0.46068 - 6.66773I
u = -0.984457 - 0.470779I	-0.06113 - 5.08804I	-0.46068 + 6.66773I
u = -1.075750 + 0.257928I	-5.35579 + 3.64528I	-10.51815 - 4.55101I
u = -1.075750 - 0.257928I	-5.35579 - 3.64528I	-10.51815 + 4.55101I
u = 1.032300 + 0.426575I	-4.14364 - 2.64621I	-7.99299 + 4.07353I
u = 1.032300 - 0.426575I	-4.14364 + 2.64621I	-7.99299 - 4.07353I
u = 1.004620 + 0.490092I	-2.26947 - 9.85775I	-3.99323 + 10.36767I
u = 1.004620 - 0.490092I	-2.26947 + 9.85775I	-3.99323 - 10.36767I
u = 0.060601 + 0.870392I	-7.17725 + 8.76370I	-4.62718 - 5.86372I
u = 0.060601 - 0.870392I	-7.17725 - 8.76370I	-4.62718 + 5.86372I
u = 0.032672 + 0.871748I	-8.95121 + 0.59562I	-7.09212 + 0.32730I
u = 0.032672 - 0.871748I	-8.95121 - 0.59562I	-7.09212 - 0.32730I
u = -0.052236 + 0.858648I	-4.58264 - 3.82645I	-1.55259 + 2.33220I
u = -0.052236 - 0.858648I	-4.58264 + 3.82645I	-1.55259 - 2.33220I
u = 0.821385	-1.34152	-6.99070
u = -0.026625 + 0.803166I	-2.30918 - 2.29408I	-0.51230 + 3.47946I
u = -0.026625 - 0.803166I	-2.30918 + 2.29408I	-0.51230 - 3.47946I
u = 0.635709 + 0.474037I	0.27984 - 4.75284I	0.98705 + 6.79611I
u = 0.635709 - 0.474037I	0.27984 + 4.75284I	0.98705 - 6.79611I
u = -0.553405 + 0.447723I	1.91457 + 0.33323I	4.99514 - 0.71543I
u = -0.553405 - 0.447723I	1.91457 - 0.33323I	4.99514 + 0.71543I
u = 1.216530 + 0.449635I	-5.95571 - 2.15027I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.216530 - 0.449635I	-5.95571 + 2.15027I	0
u = -1.216530 + 0.469683I	-5.81085 + 6.89215I	0
u = -1.216530 - 0.469683I	-5.81085 - 6.89215I	0
u = 1.247240 + 0.434621I	-8.51754 - 0.71518I	0
u = 1.247240 - 0.434621I	-8.51754 + 0.71518I	0
u = 0.372815 + 0.567071I	-0.52649 + 5.64440I	-0.46144 - 5.74990I
u = 0.372815 - 0.567071I	-0.52649 - 5.64440I	-0.46144 + 5.74990I
u = -1.254950 + 0.430017I	-11.18690 - 4.20609I	0
u = -1.254950 - 0.430017I	-11.18690 + 4.20609I	0
u = -1.234600 + 0.488294I	-8.12762 + 8.67382I	0
u = -1.234600 - 0.488294I	-8.12762 - 8.67382I	0
u = -1.253400 + 0.446739I	-12.85550 + 4.06120I	0
u = -1.253400 - 0.446739I	-12.85550 - 4.06120I	0
u = 1.238160 + 0.494203I	-10.7190 - 13.6745I	0
u = 1.238160 - 0.494203I	-10.7190 + 13.6745I	0
u = 1.243900 + 0.481364I	-12.60200 - 5.44150I	0
u = 1.243900 - 0.481364I	-12.60200 + 5.44150I	0
u = -0.402436 + 0.501968I	1.52817 - 1.07520I	3.83656 + 1.33985I
u = -0.402436 - 0.501968I	1.52817 + 1.07520I	3.83656 - 1.33985I
u = 0.194561 + 0.529394I	-1.92663 - 1.10660I	-3.70247 + 0.77639I
u = 0.194561 - 0.529394I	-1.92663 + 1.10660I	-3.70247 - 0.77639I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{51} + u^{50} + \dots + 2u + 1$
c_2	$u^{51} + 29u^{50} + \dots + 2u + 1$
<i>c</i> ₃	$u^{51} - 3u^{50} + \dots + 96u + 77$
c_4, c_8	$u^{51} - u^{50} + \dots - u^2 + 1$
c_6, c_{10}, c_{11}	$u^{51} + 3u^{50} + \dots + 38u + 5$
c_7	$u^{51} + u^{50} + \dots - 15u^2 + 25$
c_9	$u^{51} + 25u^{50} + \dots + 2u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{51} - 29y^{50} + \dots + 2y - 1$
c_2	$y^{51} - 13y^{50} + \dots - 6y - 1$
c_3	$y^{51} + 19y^{50} + \dots - 47918y - 5929$
c_4, c_8	$y^{51} - 25y^{50} + \dots + 2y - 1$
c_6, c_{10}, c_{11}	$y^{51} + 55y^{50} + \dots - 386y - 25$
c ₇	$y^{51} + 7y^{50} + \dots + 750y - 625$
<i>c</i> ₉	$y^{51} + 3y^{50} + \dots - 6y - 1$