

UTFPR - Especialização em Métodos Matemáticos Aplicados

Disciplina: Análise de Decisão Multicritério

Discente: Cintia Izumi Shinoda

Junho 2025

Atividade 2

Tipo de problema: Problema de Ordenação

Método: PROMETHEE

1 Exemplo didático: Escolha de um imóvel

Objetivo: Escolher o melhor imóvel entre três opções, com base em múltiplos critérios relevantes para uma pessoa ou família.

Alternativas:

- A1: Apartamento no centro
- A2: Casa no subúrbio
- A3: Apartamento novo em bairro planejado

2 Estrutura básica do problema para a aplicação do método:

Critérios:

- C1: Preço (menor é melhor)

- C2: Tamanho em m² (maior é melhor)

- C3: Distância do trabalho (menor é melhor)

- C4: Índice de segurança da região (maior é melhor)

- C5: Acesso a transporte público (maior é melhor - escala de 1 a 10)

Pesos:

- Preço: 0,30

- Tamanho: 0,20

- Distância do trabalho: 0,20

- Segurança: 0,20

- Transporte: 0,10

Matriz de Desempenho:

Alternativa	Preço (mil	Tamanho	Distância	Segurança	Transporte
	R\$)	$(\mathbf{m^2})$	(\mathbf{km})	(0-10)	(0-10)
A1	500	70	3	7	10
A2	400	90	12	5	6
A 3	480	80	7	8	8

3 Passos da aplicação do método:

PROMETHEE II (ordenação completa) com função de preferência usual (P=1 se diferença > 0, senão 0)

3.1 Normalização dos dados conforme o sentido do critério: Normalização simples Min-Max:

- Invertida, para critérios de minimização: Preço e Distância

$$Valor\ Normalizado\ =\ \frac{x_{max}-x}{x_{max}-x_{min}}$$

- Direta, para critérios de maximização: Tamanho, Segurança e Transporte

$$Valor\ Normalizado = \frac{x - x_{min}}{x_{max} - x_{min}}$$

Matriz Normalizada:

Alternativa	Preço	Tamanho	Distância	Segurança	Transporte
A1	0	0	1	0,6667	1
A2	1	1	0	0	0
A3	0.2	0,5	0,5556	1	0,5

3.2 Matriz de Preferência $\pi(a, b)$

Cada valor representa o quanto a alternativa da linha é preferida em relação à da coluna.

Para cada par de alternativas (a, b), deseja-se calcular:

$$\pi(a,b) = \sum_{j=1}^{m} w_j. P_j(a,b)$$

Onde:

• $\pi(a,b)$: índice de preferência agregaa da alternativa a sobre b

• w_i : peso do critério j

• $P_j(a,b)$: função de preferência para o critério j entre a e b

Usa-se a função de preferência para transformar a diferença normalizada entre os desempenhos em um valor entre 0 e 1.

Neste caso, usou-se a função de preferência usual:

$$P_j(a,b) = \begin{cases} 1, se \ d_j = f_j(a) - f_j(b) > 0 \\ 0, \text{ caso contrário} \end{cases}$$

- se a alternativa a for melhor que b no critério j, igual a 1
- caso contrário, igual a 0

Multiplicação pelo peso e soma:

Exemplo do cálculo:

$$\pi(A3, A1)$$

Critério	Peso	A 3	A1	Diferença (A3 - A1)	P_{j}
Preço	0,30	0,20	0,00	+ 0,20	1
Tamanho	0,20	0,50	0,00	+ 0,50	1
Distância	0,20	0,56	1,00	- 0,44	0
Segurança	0,20	1,00	0,67	+ 0,33	1
Transporte	0,10	0,50	1,00	- 0,50	0

$$\pi(A3, A1) = (0,30.1) + (0,20.1) + (0,20.0) + (0,20.1) + (0,10.0) = 0,70$$

Matriz de Preferência:

	A1	A2	A 3
A1	0	0,5	0,3
A2	0,5	0	0,5
A 3	0,7	0,5	0

Interpretação:

O valor $\pi(A3,A1) = 0.7$, mostra que A3 é mais preferida que a A1 em três dos cinco critérios, somando um total de 70% de preferência (ponderada).

3.3 Cálculo dos fluxos de preferência:

 φ⁺: Fluxo de Saída: Quanto uma alternativa é preferida em relação às outras;

$$\phi^+(a) = \frac{1}{n-1} \sum_{b \neq a} (a, b)$$

• ϕ^- : Fluxo de Entrada: Quanto as outras alternativas são preferidas em relação a ela

$$\phi^{-}(a) = \frac{1}{n-1} \sum_{b \neq a} (b, a)$$

• ϕ : Fluxo Líquido: $\phi = \phi^+ - \phi^-$

Onde: n = 3 (três alternativas)

- Alternativa A1

$$\phi^+(A1) = (0.5 + 0.3)/2 = 0.4$$

$$\phi^{-}(A1) = (0.5 + 0.7)/2 = 0.6$$

$$\phi(A1) = 0.4 - 0.6 = -0.2$$

- Alternativa A2

$$\phi^+(A2) = (0.5 + 0.5)/2 = 0.5$$

$$\phi^{-}(A2) = (0.5 + 0.5)/2 = 0.5$$

$$\phi(A2) = 0.5 - 0.5 = 0$$

- Alternativa A3

$$\phi^+(A3) = (0.7 + 0.5)/2 = 0.6$$

$$\phi^{-}(A3) = (0.3 + 0.5)/2 = 0.4$$

$$\phi(A3) = 0.6 - 0.4 = 0.2$$

Matriz de fluxos:

Alternativa	$oldsymbol{\phi^+}$ (Saída)	φ ⁻ (Entrada)	φ (Líquido)
A1	0,4	0,6	- 0,20
A2	0,5	0,5	0
A 3	0,6	0,4	0,20

4 Existe alguma sinalização de que o método deve ser reavaliado?

Sim, com base nos resultados, há algumas sinalizações que podem indicar a necessidade de reavaliação.

Algumas sinalizações são:

4.1 Diferenças pequenas nos fluxos líquidos (ϕ)

A diferença entre as alternativas é relativamente pequena (0,2), o que pode indicar que as alternativas são muito próximas em desempenho geral e/ou os critérios e/ou pesos, pode(m) não estar refletindo bem as preferências do decisor.

4.2 Uso da função de preferência usual

A função de preferência utilizada, considera apenas diferença positiva (1) ou nenhuma diferença (0), sem sensibilidade à intensidade da diferença. Dependendo do contexto, pode ser demasiado simplista.

4.3 Possível empate/equilíbrio

A alternativa A2 teve $\phi = 0$, que indica equilíbrio entre preferida e preterida. Podendo significar falta de critérios decisivos.

5 Como é apresentado a resposta final do método?

A resposta final é uma lista ordenada, do maior valor de ϕ para o menor valor de ϕ .

Resultado:

Posição	Alternativa	φ Fluxo Líquido
1°	A3	+ 0,2
2°	A2	0
3°	A1	- 0,2