

# 2D SIMILARITY, DIVERSITY AND CLUSTERING IN ROKIT

Roger Sayle
NextMove Software, Cambridge, UK



# BACK STORY

Greg remembered that at the 6<sup>th</sup> RDKit UGM in 2017
 I had mentioned that MaxMin Diversity selection and Taylor-Butina clustering were related, and both had efficient implementations...



# MOTIVATION: COMPOUND ACQUISITION

- Given a existing screening collection of X
  compounds, and with Y vendor compounds available
  for purchase, how should I select the next Z diverse
  compounds to buy.
- Typically, X is about 2M and Y is about 720M.

• Previously  $^{\circ}O(N^3)$ , replaced with  $<< O(N^2)$ .



# THE SIMILARITY PRINCIPLE

 Compounds with high Tanimoto values are likely to have similar biological activity.



- Briem & Lessel benchmark (Persp. Drug Discov. Des. 20:231, 2000)
- 380 actives (in 5 activity classes) and 574 decoys.



# THE SIMILARITY PRINCIPLE

Real-life differences can be ignored for the rest of this talk.



- The take home is that 0.35 is a reasonable threshold for ECFP4 (and 0.7 is not!).
- The slope of this curve is important in classification, and not its location.



# RDKIT'S MAXMINPICKER

- RDKit's MaxMinPicker is described in a number of blog posts by Greg Landrum and Tim Dudgeon:
  - Picking diverse compounds from large sets, 2014/08
  - Optimizing Diversity Picking in the RDKit, 2014/08
  - Revisiting the MaxMinPicker, 2017/11
- M. Ashton, J. Barnard, P. Willett et al., "Identification of Diverse Database Subsets using Property-based and Fragment-based Molecular Descriptors", Quant. Struct.-Act. Relat., Vol. 21, pp. 598-604, 2002.
- R. Kennard and L. Stone, "Computer aided design of experiments", Technometrics, 11(1), pp. 137-148, 1969.



# SELECTION VISUALIZATION





Image Credits: Antoine Stevens, the ProspectR package on github



# MAXMIN CONCEPTUAL ALGORITHM

- If no compounds have been picked so far, choose the first picked compound at random.
- Repeatedly select the compound furthest from it's nearest picked compound [hence the name maximum-minimum distance].
- Continue until the desired number of picked compounds has been selected (or the pool of available compounds has been exhausted).



# MAXMIN AND MINIMAX

- "Minimax is a decision rule used in AI"
  - Wikipedia
- A miracle of computer science/mathematics:
- $\max_{i}(\max_{j}(a_{ij}))$  and  $\min_{i}(\min_{j}(a_{ij}))$  require testing every item  $a_{ij}$ .
- $\min_{i}(\max_{j}(a_{ij}))$  and  $\max_{i}(\min_{j}(a_{ij}))$  can be calculate more efficiently.



# MINIMAX IN CHESS AI



Los Alamos Chess (6x6 board) White has 16 possible moves. The 10 that don't check, lose. Five checks, lose the queen.





# MINIMAX IN CHESS AI



Los Alamos Chess (6x6 board) White has 16 possible moves. The 10 that don't check, lose. Five checks, lose the queen.



Alpha cut-offs allow us to prune the search tree.



# CLASSIC MAXMIN PICKING

## **Candidate Pool**



Minimums 3 1 0 1 3 3 2 1 2 3 Maximum 3



# CURRENT MAXMIN PICKING

## **Candidate Pool**



< Bounds 3 1 0 1 3 3 2 <u>3</u> 2 3

Maximum 3



# ITERATIVE MAXMIN PICKING

## **Candidate Pool**





# PERFORMANCE IMPROVEMENT

- Using Andrew Dalke's data set of 12386
   benzodiazepines, using the first one thousand as the
   existing screening library, select the next 18 most
   diverse molecules from the remaining set (of 11386).
  - Original RDKit Implementation:
    - 224,688,273 FP comparisons 96.30s
  - Pruning using alpha cut-off:
    - 16,069,573 FP comparisons 6.79s (14x)
  - Preserving bounds across picks:
    - 1,047,982 FP comparisons 0.46s (209x)
  - Timings on Dell laptop, using 2048 bit Morgan radius 2 FPs.

# SCREENING LIBRARY ENHANCEMENT

• Selecting 500 compounds to purchase from Enamine REAL 2017 (171M) to enhance ChEMBL 23 (1.7M).

– Reading mols/FP gen: 77194s + 1204s

- 1<sup>st</sup> compound: 181.32B FP cmps (1/82750).

- 10<sup>th</sup> compound: 301.67B FP cmps.

- 50<sup>th</sup> compound: 469.46B FP cmps.

100<sup>th</sup> compound: 748.97B FP cmps.

- 500<sup>th</sup> compound: 2446.80B FP cmps.

 A traditional distance matrix requires 60 petabytes of storage, and 1.5E16 FP comparisons (15 quadrillion).

# TRACKING PROGRESS OF MAXMIN

| threshold | clusters | 1870461 | comparisons   | 1749.3T |
|-----------|----------|---------|---------------|---------|
| 0.20      | 2294     | 0.12%   | 702845018     | 0.04%   |
| 0.25      | 8935     | 0.48%   | 3253794011    | 0.19%   |
| 0.30      | 26131    | 1.40%   | 11549883033   | 0.66%   |
| 0.35      | 56353    | 3.01%   | 29091751345   | 1.66%   |
| 0.40      | 99149    | 5.30%   | 57519725846   | 3.29%   |
| 0.45      | 157651   | 8.43%   | 101629196314  | 5.81%   |
| 0.50      | 224670   | 12.01%  | 158848339798  | 9.08%   |
| 0.55      | 322770   | 17.26%  | 249793024261  | 14.28%  |
| 0.60      | 435222   | 23.27%  | 364077628967  | 20.81%  |
| 0.65      | 585325   | 31.29%  | 527089593168  | 30.13%  |
| 0.70      | 762874   | 40.79%  | 731808136660  | 41.83%  |
| 0.75      | 969454   | 51.83%  | 973312937318  | 55.64%  |
| 0.80      | 1207052  | 64.53%  | 1251324722214 | 71.53%  |
| 0.85      | 1433204  | 76.62%  | 1490057349953 | 85.18%  |
| 0.90      | 1587024  | 84.85%  | 1623213653052 | 92.79%  |
| 0.95      | 1703806  | 91.09%  | 1696761101537 | 97.00%  |
| 1.00      | 1752412  | 93.69%  | 1719216584093 | 98.28%  |

# MAXMIN TO ANALYSE DATA SETS

 The rate at which molecules are picked and their thresholds can be used to assess data set diversity.

WuXi screening: 215M

Enamine REAL: 680M

ChEMBL 23: 1.7M

| Count |    | WuXi     | Enamine  | ChEMBL23 |
|-------|----|----------|----------|----------|
|       | 2  | 0        | 0        | 0        |
|       | 3  | 0        | 0.019608 | 0        |
|       | 4  | 0        | 0.025    | 0        |
|       | 5  | 0        |          | _        |
|       | 6  | 0        | 0.035294 | 0        |
|       | 7  | 0        | 0.042254 | _        |
|       | 8  | _        |          |          |
|       | 9  |          |          |          |
|       | 10 |          | 0.05     |          |
|       | 11 |          |          |          |
|       | 12 |          |          |          |
|       | 13 | 0.022222 | 0.053571 | 0        |
|       | 14 |          | 0.053571 | 0        |
|       | 15 | 0.02439  | 0.054795 | 0        |
|       | 16 | 0.025974 | 0.055556 | 0        |
|       | 17 | 0.027778 | 0.058824 | 0        |
|       | 18 | 0.03125  | 0.058824 | 0        |
|       | 19 | 0.03125  | 0.060606 | 0        |
|       | 20 | 0.036364 | 0.064935 | 0        |
|       | 21 | 0.038462 | 0.066667 | 0        |
|       | 22 | 0.04     | 0.068493 | 0        |
|       | 23 | 0.041667 | 0.068966 | 0        |
|       | 24 | 0.042254 | 0.068966 | 0        |
|       | 25 | 0.043478 | 0.070175 | 0        |

# MAXMIN EARLY DIVERSITY ANALYSIS



WuXi covers ~2x space of Enamine, even though Enamine is 3x bigger.



# MAXMIN FULL ANALYSIS









# THE USES OF CLUSTERING

- "Round like a circle in a spiral, like a wheel with a wheel...
   Like the circles that you find in the windmills of your mind!"
- The clustering that we are interesting in are for coverage, with bounds on distance to "core points", hence DISE, Taylor-Butina and MaxMin clustering.
- For classification/grouping (of chemotypes), long stringy clusters may be appropriate, using methods such as DBSCAN and Jarvis-Patrick.
- Cluster membership in DBSCAN and Jarvis-Patrick may be calculated efficiently on-the-fly.

# COVERAGE CLUSTERING SPECTRUM

## Taylor-Butina

Specify radius

Bounds on cluster

Can be seeded

Traditionally O(n<sup>2</sup>)

Now  $<< O(n^2)$ 

## MaxMin

Iterate radius/clusters

Bounds on cluster

Can be seeded

Traditionally O(n<sup>3</sup>)

Now  $<< O(n^2)$ 

## K-Means

Specify clusters

No bounds on cluster

Can be seeded

Traditionally O(n<sup>2</sup>)

Now  $< O(n^2)$ 



# MAXMIN VS. SPHERE EXCLUSION

- MaxMin and Butina-Taylor (sphere exclusion) clustering produce equivalent results.
  - For sphere exclusion, one specifies the threshold radius,
     and the method returns the number of clusters.
  - For MaxMin, the method returns the threshold required for each number of clusters.
- Historically, MaxMin was  $O(n^3)$  and sphere exclusion was  $O(n^2)$ , but both are now < (or <<)  $O(n^2)$ .
- So how do these two methods compare?
  - Darko Butina, JCICS 39(4):747-750, 1999.
  - Alberto Gobbi and Man-Ling Lee, JCICS 43(1):317-323.



# VARIANTS OF LEADER ALGORITHM

- Several variants of sphere exclusion cluster exist.
- All follow the "leader selection" approach but differ in the order in which the input is presented.
- The simplest variants use the provided input ordering or variants thereof.
- Taylor-Butina clustering orders the input to produce large clusters first.
- Alberto Gobbi's "Directed Sphere Exclusion (DISE) order compounds by similarity to sildenafil!
- Additionally I'd recommend order by price!



# SEQUENTIAL ALGORITHMS

#### Check-Past Variant

```
unsigned int sphere exclusion(T *db,
    unsigned int N, T *cluster)
{ unsigned int clusters = 0;
for (unsigned int i=0; i<N; i++) {
  bool found = false:
  for (unsigned int j=0; j<clusters; j++)
   if (tanimoto(db[i],cluster[j]) >= threshold) {
    found = true;
    break;
  if (!found)
   cluster[clusters++] = db[i];
return clusters;
```

#### Filter-Future Variant

```
unsigned int compact(T seed, T *src, T *dst,
                        unsigned int n)
{ unsigned int count = 0;
for(unsigned int j=0; j<n; ++)
  if (tanimoto(seed,src[i]) < threshold) {</pre>
   dst[count++] = src[i];
return count;
unsigned int sphere exclusion(T *db,
    unsigned int N, T *cluster)
{ unsigned int clusters = 0;
unsigned int left = N;
for (unsigned int i=1; i<=left; i++) {
  left = i+compact(db[i-1],db+i,db+i,left-i);
  cluster[clusters++] = db[i];
return clusters;
```

# PARALLEL ALGORITHM

- Although both "check-past" and "filter-future" sequential algorithms are equally efficient, requiring the same number of comparisons (<<O(N<sup>2</sup>)) on a single processor, the filter-future variant is more suitable for parallel execution.
- This concept is effective parallelism vs. redundancy.
- The remaining challenge is called "stream compaction" in parallel computing.
- In python: lst=filter(lambda x: tanimoto(x,seed)<thresh,lst)</li>
   or lst = [x for x in lst if tanimoto(x,seed)<thresh]</li>

# COROUTINES WITH PTHREADS' BARRIER

#### Inefficient idiom

```
void *work(void *arg);

pthread_t tid[NPROCS];

for (unsigned int i=0; i<N; i++) {
  for (unsigned long n=0; n<NPROCS; n++)
    pthread_create(&tid[n],NULL,work,(void*)n);
  for (unsigned int n=0; n<NPROCS; n++)
    pthread_join(tid[n],0);
}</pre>
```

```
pthread barrier t wait, done;
bool all done = false;
void *task(void *arg) {
 for(;;) {
  pthread barrier wait(&wait);
  if (all done) return (void*)0;
  work(arg);
  pthread barrier wait(&done);
pthread barrier init(&wait,NULL,NPROCS+1);
pthread barrier init(&done,NULL,NPROCS+1);
for (unsigned long n=0; n<NPROCS; n++)
  pthread create(&tid[n],NULL,task,(void*)n);
for (unsigned int i=0; i<N; i++) {
 pthread barrier wait(&wait);
 pthread barrier wait(&done);
all done = true;
pthread barrier wait(&wait);
for (unsigned int n=0; n<NPROCS; n++)
 pthread join(tid[n],0);
```

# PROCESSING A LINKED LIST IN PARALLEL

### Sequential Implementation

```
unsigned int next[];
unsigned int head;
unsigned int curr = head;
do {
  work(curr);
} while (curr = next[curr]);
```

## • Parallel Implementation

```
void thread_work(unsigned int id)
{
  unsigned int cycle = id;
  unsigned int curr = head;
  do {
   if (cycle == 0) {
     work(curr);
     cycle = NPROCS-1;
   } else cycle--;
  } while (curr = next[curr]);
}
```



# LOCK-FREE LAZY STREAM COMPACTION

- The input array is conceptually organized into blocks of a fixed number of elements, say 10K each.
- Each block is processed by a single processor at a time, and internally uses a sequential compaction algorithm (\*dst++=\*src++) and it's current length.
- Blocks are organized as (singly) linked lists.



# LOCK-FREE LAZY STREAM COMPACTION

- The input array is conceptually organized into blocks of a fixed number of elements, say 10K each.
- Each block is processed by a single processor at a time, and internally uses a sequential compaction algorithm (\*dst++=\*src++) and it's current length.
- Blocks are organized as (singly) linked lists.
- On each iteration, threads process each consecutive pair of blocks, allowing them to be coalesced.
- Race-conditions/synchronization are avoided using "tick-tock" multi-buffering of block next pointers.





| Block 1   | Block 2   | Block 3   | Block 4   | Block 5   | Block 6   | Block 7   | Block 8   | Block 9   |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Next[0] 2 | Next[0] 3 | Next[0] 4 | Next[0] 5 | Next[0] 6 | Next[0] 7 | Next[0] 8 | Next[0] 9 | Next[0] 0 |
| Next[1] 2 | Next[1] 3 | Next[1] 4 | Next[1] 5 | Next[1] 6 | Next[1] 7 | Next[1] 8 | Next[1] 9 | Next[1] 0 |
|           |           |           |           |           |           |           |           |           |



| Block 1   | Block 2   | Block 3   | Block 4   | Block 5   | Block 6   | Block 7   | Block 8   | Block 9   |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Next[0] 2 | Next[0] 3 | Next[0] 4 | Next[0] 5 | Next[0] 6 | Next[0] 7 | Next[0] 8 | Next[0] 9 | Next[0] 0 |
| Next[1] 2 | Next[1] 3 | Next[1] 4 | Next[1] 5 | Next[1] 6 | Next[1] 7 | Next[1] 8 | Next[1] 9 | Next[1] 0 |
|           |           |           |           |           |           |           |           |           |



| Block 1   | Block 2   | Block 3   | Block 4   | Block 5   | Block 6   | Block 7   | Block 8   | Block 9   |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Next[0] 2 | Next[0] 3 | Next[0] 4 | Next[0] 5 | Next[0] 6 | Next[0] 7 | Next[0] 8 | Next[0] 9 | Next[0] 0 |
| Next[1] 2 | Next[1] 3 | Next[1] 4 | Next[1] 5 | Next[1] 6 | Next[1] 7 | Next[1] 8 | Next[1] 9 | Next[1] 0 |
|           |           |           |           |           |           |           |           |           |



| Block 1   | Block 2   | Block 3   | Block 4   | Block 5   | Block 6   | Block 7   | Block 8   | Block 9   |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Next[0] 2 | Next[0] 3 | Next[0] 4 | Next[0] 5 | Next[0] 6 | Next[0] 7 | Next[0] 8 | Next[0] 9 | Next[0] 0 |
| Next[1] 2 | Next[1] 3 | Next[1] 4 | Next[1] 5 | Next[1] 6 | Next[1] 7 | Next[1] 8 | Next[1] 9 | Next[1] 0 |
|           |           |           |           |           |           |           |           |           |



| Block 1   | Block 2   | Block 3   | Block 4   | Block 5   | Block 6   | Block 7   | Block 8   | Block 9   |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Next[0] 2 | Next[0] 3 | Next[0] 4 | Next[0] 5 | Next[0] 6 | Next[0] 7 | Next[0] 8 | Next[0] 9 | Next[0] 0 |
| Next[1] 2 | Next[1] 3 | Next[1] 4 | Next[1] 5 | Next[1] 6 | Next[1] 7 | Next[1] 8 | Next[1] 9 | Next[1] 0 |
|           |           |           |           |           |           |           |           |           |



| Block 1   | Block 2   | Block 3   | Block 4   | Block 5   | Block 6   | Block 7   | Block 8   | Block 9   |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Next[0] 2 | Next[0] 3 | Next[0] 4 | Next[0] 5 | Next[0] 6 | Next[0] 7 | Next[0] 8 | Next[0] 9 | Next[0] 0 |
| Next[1] 2 | Next[1] 3 | Next[1] 4 | Next[1] 5 | Next[1] 6 | Next[1] 7 | Next[1] 8 | Next[1] 9 | Next[1] 0 |
|           |           |           |           |           |           |           |           |           |



| Block 1   | Block 2   | Block 3   | Block 4   | Block 5   | Block 6   | Block 7   | Block 8   | Block 9   |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Next[0] 2 | Next[0] 3 | Next[0] 4 | Next[0] 5 | Next[0] 6 | Next[0] 7 | Next[0] 8 | Next[0] 9 | Next[0] 0 |
| Next[1] 2 | Next[1] 3 | Next[1] 4 | Next[1] 5 | Next[1] 6 | Next[1] 7 | Next[1] 8 | Next[1] 9 | Next[1] 0 |
|           |           |           |           |           |           |           |           |           |



| Block 1   | Block 2   | Block 3   | Block 4   | Block 5   | Block 6   | Block 7   | Block 8   | Block 9   |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Next[0] 2 | Next[0] 3 | Next[0] 4 | Next[0] 5 | Next[0] 6 | Next[0] 7 | Next[0] 8 | Next[0] 9 | Next[0] 0 |
| Next[1] 2 | Next[1] 3 | Next[1] 4 | Next[1] 5 | Next[1] 6 | Next[1] 7 | Next[1] 8 | Next[1] 9 | Next[1] 0 |
|           |           |           |           |           |           |           |           |           |



| Block 1   | Block 2   | Block 3   | Block 4   | Block 5   | Block 6   | Block 7   | Block 8   | Block 9   |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Next[0] 3 | Next[0] 3 | Next[0] 5 | Next[0] 5 | Next[0] 6 | Next[0] 7 | Next[0] 9 | Next[0] 9 | Next[0] 0 |
| Next[1] 3 | Next[1] 3 | Next[1] 5 | Next[1] 5 | Next[1] 6 | Next[1] 7 | Next[1] 9 | Next[1] 9 | Next[1] 0 |
|           |           |           |           |           |           |           |           |           |



| Block 1   | Block 2   | Block 3   | Block 4   | Block 5   | Block 6   | Block 7   | Block 8   | Block 9   |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Next[0] 3 | Next[0] 3 | Next[0] 5 | Next[0] 5 | Next[0] 6 | Next[0] 7 | Next[0] 9 | Next[0] 9 | Next[0] 0 |
| Next[1] 3 | Next[1] 3 | Next[1] 5 | Next[1] 5 | Next[1] 6 | Next[1] 7 | Next[1] 9 | Next[1] 9 | Next[1] 0 |
|           |           |           |           |           |           |           |           |           |



# HEAD-TO-HEAD RESULTS (CHEMBL2S)

|        |          | N       | <b>laxMin</b> |        | Sphere Exclusion |         |               |        |        |
|--------|----------|---------|---------------|--------|------------------|---------|---------------|--------|--------|
| Radius | Clusters | 1870461 | Comparisons   | Fract  | Clusters         | 1870461 | Comparisons   | Fract  | Diff   |
| 0.05   | 45       | 0.00%   | 702845018     | 0.04%  | 38               | 0.11%   | 102463588     | 0.01%  | 18.42% |
| 0.10   | 129      | 0.01%   | 3253794011    | 0.19%  | 123              | 0.42%   | 845022242     | 0.05%  | 4.88%  |
| 0.15   | 506      | 0.03%   | 11549883033   | 0.66%  | 456              | 1.26%   | 4887372526    | 0.28%  | 10.96% |
| 0.20   | 2294     | 0.12%   | 702845018     | 0.04%  | 1996             | 0.11%   | 102463588     | 0.01%  | 14.93% |
| 0.25   | 8935     | 0.48%   | 3253794011    | 0.19%  | 7925             | 0.42%   | 845022242     | 0.05%  | 12.74% |
| 0.30   | 26131    | 1.40%   | 11549883033   | 0.66%  | 23491            | 1.26%   | 4887372526    | 0.28%  | 11.24% |
| 0.35   | 56353    | 3.01%   | 29091751345   | 1.66%  | 51116            | 2.73%   | 17480894303   | 1.00%  | 10.25% |
| 0.40   | 99149    | 5.30%   | 57519725846   | 3.29%  | 90618            | 4.84%   | 42127957348   | 2.41%  | 9.41%  |
| 0.45   | 157651   | 8.43%   | 101629196314  | 5.81%  | 145302           | 7.77%   | 82429903195   | 4.71%  | 8.50%  |
| 0.50   | 224670   | 12.01%  | 158848339798  | 9.08%  | 207837           | 11.11%  | 133346950697  | 7.62%  | 8.10%  |
| 0.55   | 322770   | 17.26%  | 249793024261  | 14.28% | 299906           | 16.03%  | 213032407381  | 12.18% | 7.62%  |
| 0.60   | 435222   | 23.27%  | 364077628967  | 20.81% | 407264           | 21.77%  | 309049333081  | 17.67% | 6.86%  |
| 0.65   | 585325   | 31.29%  | 527089593168  | 30.13% | 552511           | 29.54%  | 442005491670  | 25.27% | 5.94%  |
| 0.70   | 762874   | 40.79%  | 731808136660  | 41.83% | 728662           | 38.96%  | 607768508390  | 34.74% | 4.70%  |
| 0.75   | 969454   | 51.83%  | 973312937318  | 55.64% | 938051           | 50.15%  | 809400682200  | 46.27% | 3.35%  |
| 0.80   | 1207052  | 64.53%  | 1251324722214 | 71.53% | 1184636          | 63.33%  | 1049631030937 | 60.00% | 1.89%  |
| 0.85   | 1433204  | 76.62%  | 1490057349953 | 85.18% | 1422992          | 76.08%  | 1234924388417 | 70.59% | 0.72%  |
| 0.90   | 1587024  | 84.85%  | 1623213653052 | 92.79% | 1583659          | 84.67%  | 1443068043947 | 82.49% | 0.21%  |
| 0.95   | 1703806  | 91.09%  | 1696761101537 | 97.00% | 1703268          | 91.06%  | 1565047511449 | 89.47% | 0.03%  |
| 1.00   | 1752412  | 93.69%  | 1719216584093 | 98.28% | 1752412          | 93.69%  | 1616082787269 | 92.38% | 0.00%  |

### EXECUTIVE SUMMARY

- In the threshold region we care about, MaxMin diversity selection is generating about 10% more clusters than Sphere exclusion.
- This selects about 3% of the original data set for about 1.5% of the comparisons required by all-vs-all.



## SO WHAT'S HAPPENING?

- The difference is analogous to the difference between the molecular surface and solvent excluded volume in computational chemistry.
- MaxMin diversity selection extrapolates at the boundaries, where sphere exclusion finds the points that are sufficient to cover/interpolate a data set.

 Best results are obtained using MaxMin to determine a threshold followed by sphere exclusion (DISE).



# SO WHAT'S HAPPENING?



## STOCHASTIC STABILITY (FOR GREG)

Input permutations on SE clusters. ChEMBL25 @ 0.35

| _ | Input | 51116 | 17480894303 |
|---|-------|-------|-------------|
| _ | 1     | 50272 | 10624678066 |
| _ | 2     | 50338 | 10657316452 |
| _ | 3     | 50210 | 10594460327 |
| _ | 4     | 50214 | 10514469457 |
| _ | 5     | 50199 | 10660887976 |
| _ | 6     | 50281 | 10632572608 |
| _ | 7     | 50243 | 10641276910 |
| _ | 8     | 50449 | 10714607581 |
| _ | 9     | 50299 | 10583545862 |
| _ | 10    | 50144 | 10600053655 |



### GRAND CHALLENGE: ENAMINE 720M

- All vs All: N.(N-1)/2 = 258628544238449001 cmps.
- At 400M cmps/s:~20.5 years, 1.0345 exabytes.
- MaxMin diversity selection of N=719205874 mols.
  - 0.05: 82 clusters, 747435533 cmps.
  - 0.10: 1630 clusters, 23317011669 cmps.
  - 0.15: 16272 clusters, 513682528576 cmps.
  - 0.20: 107838 clusters, 4312321854941 cmps.
  - 0.216: 187361 clusters, 8055848864691 cmps. [0.0031%]
- Sphere exclusion clustering on N=719205874 mols.
  - 0.35: 4077677 clusters, 23954793226736 cmps. [0.0093%]
    - Requires 4.5 days using 16 threads on a recent Intel workstation.



#### CONCLUSIONS

- Efficient algorithms exist for selecting representatives of large data sets without calculating the full distance matrix.
- For compound collections, sphere exclusion clustering is surprisingly effective, and Gobbi's heuristic is insightful (less crazy than it sounds), working from dense chemical space outwards.



### ACKNOWLEDGEMENTS

- Thanks to...
  - Greg Landrum, T5 Informatics.
  - Roman Affentranger, Nicolas Zorn and Jerome Hert at Hoffman La-Roche, Basel, Switzerland..
  - John Mayfield, NextMove Software.
  - Noel O'Boyle, now at Sosei-Heptares.
  - Andrew Pannifer, Medicines Discovery Catapult.
  - Andrew Dalke, Dalke Scientific Software.
- I've skipped over some details(?!), so please feel free to ask questions at any time.

### EFFICIENT TANIMOTO SIMILARITY

- Tanimoto(A,B) =  $\frac{|A \cap B|}{|A \cup B|}$
- Tanimoto(A,B) = popcnt(A&B)/popcnt(A|B)
- Even with modern hardware, popcnt is significantly slower than than bit-wise AND and OR.
- When performing large numbers of comparisons, we can pre-compute the popcnts to reduce the number of popcnts performed in the critical loop.
- Tanimoto(A,B) = popcnt(A&B)/ (popnt(A)+popcnt(B)-popcnt(A&B))



#### "THE MYTH OF 0.7"

 Bioinformaticians have long known that the significance of database hits in sequence searching depends on the substitution matrix used, the database composition and the query sequence.



- J.F. Collins, A.F.W. Coulson and A. Lyall, "The Significance of Protein Sequence Similarities", CABIOS, Vol. 4, No. 1, pp. 67-71, 1988.
- https://www.daylight.com/meetings/emug97/Bradshaw/Significant\_Similarity/Significant\_Similarity.html

### LINGOS SIMILARITY ON BRIEM & LESSEL



Image courtesy of Andrew Grant, AstraZeneca (2006)

### WHY DISTANCE BOUNDS/SPHERES?

- For this use case, we'd hope to have representative compound in our screening collection with similar biological activity to any purchasable compound (as a proxy for any possible compound).
- The Martin-Brown/Brown-Martin hypothesis is 2D similar compounds (by Tanimoto) correlate with biological activity (see next slides).
- Hence, MaxMin and sphere exclusion clustering are more appropriate than Single Linkage, Jarvis-Patrick, DBScan, K-means or K-medians.