DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL

MTH6312 - MÉTHODES STATISTIQUES D'APPRENTISSAGE

Devoir nº 3 - Automne 2024

Date de remise : 14 novembre avant 23h55 (en pdf dans Moodle)

DIRECTIVES:

- ✓ Inclure dans votre rapport le code R (ou Python) que vous avez utilisé. Dans votre code le germe utilisé dans les questions de ré-échantillonnage est votre matricule, c-à-d set.seed(matricule).
- ✓ Lors de la correction, il sera tenu compte de la clarté des démarches ainsi que de la qualité de la présentation du rapport.

QUESTION Nº 1 (10 points). Pour cette question, comme au devoir 2, vous devez d'abord obtenir vos données personnalisées (*mondata1*) en fonction de votre matricule (voir les instructions à cet effet sur le site). Il s'agit d'un échantillon aléatoire de 500 observations de la base de données *Wage* du *package* ISLR2.

Vous disposez ainsi de 500 observations sous la forme $\{(\mathbf{x}_i, y_i), i = 1, ..., 500\}$, où y_i représente l'état de santé du travailleur (health) codée 1 (très bon), 0 (bon ou moins); $\mathbf{x}_i = (x_{i1}, x_{i2})^{\mathsf{T}}$, où x_{i1} est l'âge (age) du travailleur et x_{i2} son salaire (wage).

Pour les données décrites ci-dessus, après avoir déterminé le degré de flexibilité approprié de chaque méthode, on veut sélectionner la meilleure méthode de classification parmi les suivantes : le KNN, la régression logistique, l'analyse discriminante linéaire et l'analyse discriminante quadratique.

a) KNN.

- 1. En utilisant les techniques de validation croisée «LOOCV» et «5-Fold CV» sur les 500 observations, estimer le taux d'erreur test pour différentes valeurs du nombre de voisins, K, avec K = 1, 2, ..., 180. Tracer la courbe du taux d'erreur en fonction de 1/K.
- 2. Compte tenu des résultats ci-dessus, quelle valeur du nombre de voisins *K* devrait-on utiliser pour la classification des données du contexte par le KNN? Justifier brièvement.

b) Régression logistique.

Dans les équations suivantes $p(\mathbf{x})$ représente $p(\mathbf{x}; \boldsymbol{\beta}) = P(Y = 1 \mid X = \mathbf{x})$, la probabilité que le travailleur soit en très bonne santé étant donné les mesures $\mathbf{x} = (x_1, x_2)^{\mathsf{T}}$ observées.

On envisage deux modèles de régression logistique dont les équations sont :

Modèle 1:
$$\ln\left(\frac{p(\mathbf{x})}{1-p(\mathbf{x})}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$
Modèle 2:
$$\ln\left(\frac{p(\mathbf{x})}{1-p(\mathbf{x})}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2.$$

- 1. En utilisant les techniques de validation croisée *«LOOCV»* et *«5-Fold CV»* sur les 500 observations, estimer le taux d'*erreur test* pour chacun des 2 modèles.
- 2. Compte tenu des résultats ci-dessus, lequel des 2 modèles de régression logistique devrait-on utiliser pour la classification des données du contexte? Justifier brièvement.

c) Analyse discriminante.

- 1. En utilisant les techniques de validation croisée *«LOOCV»* et *«5-Fold CV»* sur les 500 observations, estimer le taux d'*erreur test* de l'analyse discriminante linéaire (LDA) et celui de l'analyse discriminante quadratique (QDA).
- 2. Compte tenu des résultats ci-dessus, laquelle des deux analyses discriminantes devrait-on utiliser pour la classification des données du contexte? Justifier brièvement.

d) Résumé graphique et comparaison des méthodes.

Tracer le nuage des 500 points (2 couleurs de votre choix) et ajouter au graphique les courbes (trois en tout, similaires à celles de la figure 5.7 page 207 dans ISLr) séparant les deux classes dans chacun des cas suivants :

- le KNN (avec la valeur optimale retenue du nombre de voisins *K*).
- le modèle de régression logistique retenu (parmi les deux modèles considérés);
- l'analyse discriminante retenue (LDA ou QDA).

Comparer les trois méthodes en utilisant leurs matrices de confusion des indices de performance.

QUESTION N° 2 (5 points). Pour cette question on utilise les données iris (disponibles dans R). Ces données sont de la forme $\{\mathbf{x}_i, i=1,\ldots,n\}$ où n=150 et chaque x_i est de dimension p=4. On considère que chaque $\mathbf{x}_i=(x_{i1},x_{i2},x_{i3},x_{i4})^{\top}$, $i=1,\ldots,n$ est une observation d'un vecteur aléatoire $X=(X_1,X_2,X_3,X_4)^{\top}$, où les variables X_1 et X_2 représentent la longueur et la largeur des sépales, X_3 et X_4 la longueur et la largeur des pétales de fleurs. La distribution des probabilité exacte du vecteur X est inconnue. On s'intéresse ici à l'estimation du paramètre θ défini par

$$\theta = \mathbb{E}\left(\min\left\{X_2 + \log(X_1), X_1 + X_3 - 2X_4, \exp\left\{-|X_1 - X_4|\right\}, X_2 + 3X_3\right\}\right).$$

- a) (1 point) Donner l'expression d'un estimateur $\hat{\theta}$ de θ en fonction des n observations.
- a) (2 points) En utilisant la technique de ré-échantillonnage «Bootstrap» (fonction boot()) avec 3500 répétitions, donner une estimation ponctuelle $\hat{\theta}$. Donner ensuite une estimation du biais et une estimation de l'écart type (erreur-type) de $\hat{\theta}$.
- b) (2 points) Déduire des résultats qui précèdent un intervalle de confiance pour θ au niveau de confiance 95%. Commenter brièvement.

QUESTION Nº 3 (5 points). Exercice nº 8 page 285 ISLr (An Introduction to Statistical Learning). Générer les données (*mondata3*) **en fonction de votre matricule**, voir les instructions à sur le site :

- 1. générer les observations x_i selon une normale $N(\mu, \sigma^2)$ avec μ et σ de votre choix;
- 2. générer les erreurs ε_i selon une normale $N(0, \sigma_{\varepsilon}^2)$ avec un σ_{ε} de votre choix.