Equilibrio químico en fase gas

PROBLEMAS

Con datos del equilibrio

- Se introducen en un reactor 0,5 moles de SbCl₅(g) a 25 °C, y tras alcanzar el siguiente equilibrio, SbCl₅(g) \rightleftharpoons SbCl₃(g) + Cl₂(g), se obtienen 0,15 moles de Cl₂(g), siendo la presión total de 3 atm. Calcule:
 - a) La presión parcial de cada gas en el equilibrio.

b) El valor de K_p y K_c.

(A.B.A.U. extr. 24)

Rta.: a) $p(SbCl_5)_e = 1,62$ atm; $p(SbCl_3)_e = p(Cl_2)_e = 0,692$ atm; b) $K_c = 0,0121$; $K_p = 0,297$.

Datos Cifras significativas: 3

 $n_0(SbCl_5) = 0,500 \text{ mol}$ Cantidad inicial de PCl₅

 $t = 25 \,^{\circ}\text{C} = 298 \,^{\circ}\text{K}$ Temperatura

Cantidad de Cl₂ en el equilibrio $n_{\rm e}({\rm Cl_2}) = 0.150 \; {\rm mol}$

Presión total en el equilibrio p = 3,00 atm

 $R = 0.0820 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ Constante de los gases ideales

Incógnitas

 $p(SbCl_5), p(SbCl_3), p(Cl_2)$ Presiones parciales de cada especie en el equilibrio

Constantes de equilibrio $K_{\rm c}, K_{\rm p}$

Otros símbolos

Cantidad de la substancia A en el equilibrio $n_{\rm e}({\rm A})$

Ecuaciones

Fracción molar de la substancia A $x(A) = n(A) / n_t$ Presión parcial de la substancia A $p(A) = x(A) \cdot p_t$

 $K_{c} = \frac{\left[\mathbf{C}\right]_{e}^{c} \cdot \left[\mathbf{D}\right]_{e}^{d}}{\left[\mathbf{A}\right]_{e}^{d} \cdot \left[\mathbf{B}\right]_{e}^{d}} \quad K_{p} = \frac{p_{e}^{c}(\mathbf{C}) \cdot p_{e}^{d}(\mathbf{D})}{p_{e}^{d}(\mathbf{A}) \cdot p_{e}^{b}(\mathbf{R})}$ Constantes del equilibrio: $a A + b B \rightleftharpoons c C + d D$

Solución:

a) La ecuación de disociación es:

$$SbCl_5(g) \rightleftharpoons SbCl_3(g) + Cl_2(g)$$

Se llama x a la cantidad de PCl₅ disociada. Por la estequiometría de la reacción,

		SbCl ₅	=	SbCl ₃	Cl_2	
Cantidad inicial	n_0	0,500		0	0	mol
Cantidad que reacciona o si forma	n_{r}	х	\rightarrow	х	х	mol
Cantidad en el equilibrio	$n_{\rm e}$				0,150	mol

La cantidad de gas cloro que hay en el equilibrio es la que se formó: x = 0,150 mol disociados. Por lo tanto, las cantidades en el equilibrio serán:

$$n_{\rm e}({\rm SbCl_5}) = 0.500 - x = 0.500 - 0.150 = 0.350 \text{ mol SbCl_5}$$
 en el equilibrio

$$n_{\rm e}({\rm Cl_2}) = n_{\rm e}({\rm SbCl_3}) = x = 0.150 \; {\rm mol}$$

La cantidad total de gas en el equilibrio es la suma:

$$n_{\rm e\ t} = 0.350 + 0.150 + 0.150 = 0.650 \ {\rm mol}$$

Para calcular las presiones parciales en el equilibrio se calculan primero las fracciones molares:

$$x(\text{Cl}_2) = \frac{n(\text{Cl}_2)}{n_t} = \frac{0.150 \text{ [mol Cl}_2]}{0.650 \text{ [mol total]}} = 0.231$$
$$x_e(\text{SbCl}_3) = x_e(\text{Cl}_2) = 0.231$$

$$x_e(SbCl_5) = 1 - x_e(Cl_2) - x_e(SbCl_3) = 1 - 0.231 - 0.231 = 0.538$$

Las presiones parciales en el equilibrio serán:

$$p(\text{SbCl}_5)_e = 0.538 \cdot 3.00 \text{ [atm]} = 1.62 \text{ atm}$$

, $p(\text{SbCl}_3)_e = p(\text{Cl}_2)_e = 0.231 \cdot 3.00 \text{ [atm]} = 0.692 \text{ atm}$

b) La constante de equilibrio en función de las concentraciones es

$$K_p = \frac{p_e(\text{SbCl}_3) \cdot p_e(\text{Cl}_2)}{p_e(\text{SbCl}_5)} = \frac{0.692 \cdot 0.692}{1.62} = 0.297 \text{ (presiones en atm)}$$

La constante de equilibrio en función de las presiones se puede escribir en relación con el constante de equilibrio en función de las concentraciones:

$$K_{p} = \frac{p_{e}(\text{SbCl}_{3}) \cdot p_{e}(\text{Cl}_{2})}{p_{e}(\text{SbCl}_{5})} = \frac{[\text{SbCl}_{3}]_{e} \cdot R \cdot T [\text{Cl}_{2}]_{e} \cdot R \cdot T}{[\text{SbCl}_{5}]_{e} \cdot R \cdot T} = \frac{[\text{SbCl}_{3}]_{e} \cdot [\text{Cl}_{2}]_{e}}{[\text{SbCl}_{5}]_{e}} \cdot R \cdot T = K_{c} \cdot R \cdot T$$

$$K_{c} = \frac{K_{p}}{R \cdot T} = \frac{0.297}{0.082 \ 0.0298} = 0.012 \ \text{1(concentraciones en mol/dm}^{3})$$

- 2. En un matraz de 5 dm³ se introducen 0,80 moles de N_2 y 0,40 moles de O_2 y se calienta a 2200 K, estableciéndose el siguiente equilibrio: $N_2(g) + O_2(g) \rightleftharpoons 2$ NO(g). Teniendo en cuenta que en esas condiciones reacciona el 1,1 % del N_2 inicial:
 - a) Calcula el valor de la constante K_c .
 - b) Calcula la constante K_p y discute razonadamente qué sucederá en el equilibrio si se aumenta la presión del sistema.

(A.B.A.U. ord. 24)

Rta.: a) $K_c = 1,0.10^{-3}$; b) $K_p = 1,0.10^{-3}$. Nada.

Datos	Cifras significativas: 3
Gas: volumen	$V = 5,00 \text{ dm}^3$
temperatura	T = 2200 K
Cantidad inicial: nitrógeno	$n_0(N_2) = 0.800 \text{ mol}$
oxígeno	$n_0(O_2) = 0,400 \text{ mol}$
Porcentaje de nitrógeno que reacciona	$\%$ reacciona: 1,10 $\%$ $N_{\scriptscriptstyle 2}$
Constante de los gases ideales	$R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$
Incógnitas	
Constante de equilibrio de las concentraciones	$K_{ m c}$
Constante de equilibrio de las presiones	$K_{\mathtt{p}}$
Otros símbolos	
Concentración de una especie X	[X]
Cantidad de la sustancia X en el equilibrio	$n_{e}(X)$

Ecuaciones

Concentración de la sustancia X [X] = n(X) / V Ecuación de estado de los gases ideales $p \cdot V = n \cdot R \cdot T$

Ecuaciones

Constantes del equilibrio: $a A + b B \rightleftharpoons c C + d D$

$$K_{c} = \frac{\left[\mathbf{C}\right]_{e}^{c} \cdot \left[\mathbf{D}\right]_{e}^{d}}{\left[\mathbf{A}\right]_{e}^{d} \cdot \left[\mathbf{B}\right]_{e}^{d}} \quad K_{p} = \frac{\boldsymbol{p}_{e}^{c}(\mathbf{C}) \cdot \boldsymbol{p}_{e}^{d}(\mathbf{D})}{\boldsymbol{p}_{e}^{d}(\mathbf{A}) \cdot \boldsymbol{p}_{e}^{b}(\mathbf{B})}$$

Solución:

a) La cantidad de N2 que reacciona es:

$$n = 1.10 / 100 \cdot 0.800 = 0.0088 \text{ mol N}_2$$

Se hace una tabla con las cantidades de cada gas y, de la estequiometría de la reacción, se calculan las restantes cantidades en el equilibrio.

		N_2	O_2	=	2 NO	
Cantidad inicial	n_0	0,800	0,400		0	mol
Cantidad que reacciona	n_{r}	0,0088	0,0088	\rightarrow	0,0176	mol
Cantidad en el equilibrio	$n_{\rm e}$	0,800 - 0,0088 = 0,791	0,400 - 0,0088 = 0,391		0,0176	mol

a) La constante de equilibrio en función de las concentraciones es:

$$K_c = \frac{[\text{NO}]_e^2}{[\text{N}_2]_e \cdot [\text{O}_2]_e} = \frac{(0.017 \text{ } 65.00)^2}{(0.791/5.00) \cdot (0.391/5.00)} = 1.00 \cdot 10^{-3} \text{ (concentraciones en mol/dm³)}$$

b) La constante de equilibrio en función de las presiones vale lo mismo:

$$K_{p} = \frac{p_{e}^{2}(NO)}{p_{e}(N_{2}) \cdot p_{e}(O_{2})} = \frac{[NO]_{e}^{2} \cdot (R \cdot T)^{2}}{[N_{2}]_{e} \cdot R \cdot T \cdot [O_{2}]_{e} \cdot R \cdot T} = \frac{[NO]_{e}^{2}}{[N_{2}]_{e}[O_{2}]_{e}} = K_{c}$$

Según el principio de Lee Chatelier, si un sistema en equilibrio es sometido a un cambio, el sistema tiende a ajustarse para minimizar el efecto de esta perturbación. Si se aumenta la presión, el sistema no varía, puesto que la presión es a misma en cualquier fase de la reacción. La presión en cualquiera estado de equilibrio es la misma que la presión inicial, porque la cantidad total de gas no varía.

- 3. En un reactor de 5 dm³ se introducen 15,3 g de CS_2 y 0,82 g de H_2 . Al elevar la temperatura hasta 300 °C se alcanza el siguiente equilibrio: $CS_2(g) + 4 H_2(g) \rightleftharpoons 2 H_2S(g) + CH_4(g)$, donde la concentración de metano en equilibrio es de 0,01 mol/dm³.
 - a) Calcula las concentraciones molares de las especies CS₂(g), H₂(g) y H₂S(g) en el equilibrio.
 - b) Determina el valor de K_c y discute razonadamente qué le sucederá al sistema en equilibrio si añadimos más cantidad de CS₂(g) manteniendo el volumen y la temperatura constantes.

Dato: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$. (A.B.A.U. ord. 23) **Rta.:** a) $[CS_2] = 0.0302$; $[H_2] = 0.0413$; $[H_2S] = 0.0200 \text{ mol/dm}^3$; b) $K_c = 45.3$; hacia la derecha.

Datos Cifras significativas: 3

Gas: volumen $V = 5,00 \text{ dm}^3$

temperatura $T = 300 \text{ }^{\circ}\text{C} = 573 \text{ K}$

Masa inicial: disulfuro de carbono $m_0(CS_2) = 15,3 \text{ g}$

hidrógeno $m_0(\mathrm{H_2}) = 0.820 \mathrm{g}$

Concentración de metano en el equilibrio $[CH_4]_e = 0,0100 \text{ mol/dm}^3$

Masa molar: disulfuro de carbono $M(CS_2) = 76.1 \text{ g/mol}$

hidrógeno $M(H_2) = 2,02 \text{ g/mol}$

Constante de los gases ideales $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Concentración molar de cada especie en el equilibrio [CS₂]_e, [H₂]_e, [H₂S]_e

Constante de equilibrio de las concentraciones K_c

Otros símbolos

Concentración de una especie X [X]

Cantidad de la sustancia X en el equilibrio $n_{\rm e}({\rm X})$

Ecuaciones

Concentración de la sustancia X [X] = n(X) / V

Ecuación de estado de los gases ideales $p \cdot V = n \cdot R \cdot T$

Constante do equilibrio: $a \, A + b \, B \Longrightarrow c \, C + d \, D$ $K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^d}{\left[A\right]_e^d \cdot \left[B\right]_e^b}$

Solución:

a) Las cantidades iniciales de CS₂ y H₂ son:

$$n_0(\text{CS}_2) = \frac{15.3 \text{ g}}{76.1 \text{ g/mol}} = 0,201 \text{ mol CS}_2$$

$$n_0(H_2) = \frac{0.820 \text{ g}}{2.02 \text{ g/mol}} = 0.407 \text{ mol } H_2$$

Si en el equilibrio hay 0,0100 mol/dm³ de CH₄, la cantidad de este que se formó fue:

$$n_{\rm e}({\rm CH_4}) = 0.0100 \; {\rm mol/dm^3 \cdot 5.00 \; dm^3} = 0.0500 \; {\rm mol}$$

Se hace una tabla con las cantidades de cada gas y, de la estequiometría de la reacción, se calculan las restantes cantidades en el equilibrio.

		CS ₂	4 H ₂	\rightleftharpoons	2 H ₂ S	CH ₄	
Cantidad inicial	n_0	0,201	0,407		0	0	mol
Cantidad que reacciona	$n_{\rm r}$	0,0500	0,200	\rightarrow	0,100	0,0500	mol
Cantidad en el equilibrio	$n_{\rm e}$	0,201 - 0,0500 = 0,151	0,407 - 0,200 = 0,207		0,100	0,0500	mol

Las concentraciones en el equilibrio serán:

$$\begin{split} [CS_2]_e &= 00{,}151 \; mol \; CS_2/\; 5{,}00 \; dm^3 = 0{,}0302 \; mol \; / \; dm^3 \\ [H_2]_e &= 0{,}207 \; mol \; / \; 5{,}00 \; dm^3 = 0{,}0413 \; mol \; / \; dm^3 \end{split}$$

$$[H_2S]_e = 0.100 \text{ mol} / 5.00 \text{ dm}^3 = 0.0200 \text{ mol} / \text{dm}^3$$

b) La constante de equilibrio en función de las concentraciones es:

$$K_{c} = \frac{\left[H_{2}S\right]_{e}^{2} \cdot \left[CH_{4}\right]_{e}}{\left[CS_{2}\right]_{e} \cdot \left[H_{2}\right]_{e}^{4}} = \frac{\left(0.020\ \right)^{2} \cdot 0.010\ 0}{0.030\ 2\left(0.041\ \right)^{4}} = 45.3 = 0.016\ \varepsilon \text{ (concentraciones en mol/dm}^{3}\text{)}$$

Según el principio de Lee Chatelier, si añadimos más CS_2 al sistema en equilibrio manteniendo el volumen y la temperatura constantes, el sistema se reajustará para minimizar el efecto de esta perturbación. En este caso, se consumirá más CS_2 y H_2 para formar más H_2S y CH_4 hasta que se alcance un nuevo estado de equilibrio. Por lo tanto, las concentraciones de CS_2 y H_2 disminuirán mientras que las concentraciones de H_2S y CH_4 aumentarán.

4. El cloro gas se puede obtener según la reacción: $4 \text{ HCl}(g) + O_2(g) \rightarrow 2 \text{ Cl}_2(g) + 2 \text{ H}_2O(g)$. Se introducen 0,90 moles de HCl y 1,2 moles de O_2 en un recipiente cerrado de 10 dm³ en el que previamente se hizo el vacío. Se calienta la mezcla a 390 °C y, cuando se alcanza el equilibrio a esta temperatura, se observa la formación de 0,40 moles de Cl_2 .

a) Calcula el valor de la constante K_c .

b) Calcula la presión parcial de cada componente en el equilibrio y a partir de ellas calcula el valor de K_n .

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa. (A.B.A.U. ord. 19)

Rta.: a) $K_c = 2,56 \cdot 10^3$; b) p(HCl) = 0,544; $p(O_2) = 5,44$ atm; $p(Cl_2) = p(H_2O) = 2,18$ atm; $K_p = 47,0$.

Datos Cifras significativas: 3

Gas: volumen $V = 10,0 \text{ dm}^3$

temperatura $T = 390 \text{ }^{\circ}\text{C} = 663 \text{ K}$

Cantidad inicial de HCl $n_0(HCl) = 0,900 \text{ mol HCl}$

Cantidad inicial de O_2 $n_0(O_2) = 1,20 \text{ mol } O_2$

Cantidad en el equilibrio de Cl_2 $n_e(Cl_2) = 0,400 \text{ mol } Cl_2$

Incógnitas

Constante del equilibrio K_c K_c

Presiones parciales de cada componente p(HCl), $p(O_2)$, $p(Cl_2)$, $p(H_2O)$

Constante del equilibrio K_p K_p

Ecuaciones

Ecuación de estado de los gases ideales $p \cdot V = n \cdot R \cdot T \Rightarrow p = \frac{n \cdot R \cdot T}{V}$

Concentración de la sustancia X [X] = n(X) / V

Constantes del equilibrio: $a \, A + b \, B \rightleftharpoons c \, C + d \, D$ $K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^d}{\left[A\right]_e^a \cdot \left[B\right]_e^b} \quad K_p = \frac{p_e^c(C) \cdot p_e^d(D)}{p_e^d(A) \cdot p_e^b(B)}$

Solución:

a) De la estequiometría de la reacción:

$$4 \text{ HCl}(g) + O_2(g) \rightarrow 2 \text{ Cl}_2(g) + 2 \text{ H}_2O(g)$$

Reaccionaron 0,800 mol de HCl y 0,200 mol de O₂ y se formó la misma cantidad de H₂O que de Cl₂. Representamos en un cuadro las cantidades (moles) de cada gas en cada fase:

		4 HCl	O_2	=	2 Cl ₂	2 H ₂ O	
Cantidad inicial	n_0	0,900	1,20		0,0	0,0	mol
Cantidad que reacciona o se forma	$n_{\rm r}$	0,800	0,200		0,400	0,400	mol
Cantidad en el equilibrio	$n_{\rm e}$	0,900 - 0,800 = 0,100	1,20 - 0,200 = 1,00		0,400	0,400	mol

En el equilibrio habrá:

$$n_e(HCl) = 0.100 \text{ mol}; n_e(O_2) = 1.00 \text{ mol}; n_e(Cl_2) = n_e(H_2O) = 0.400 \text{ mol}$$

Las concentraciones serán:

[HCl] =
$$\frac{n_e(\text{HCl})}{V}$$
 = $\frac{0,100 \text{ mol HCl}}{10,0 \text{ dm}^3}$ = 0,0100 mol/dm³

$$[O_2] = \frac{n_e(O_2)}{V} = \frac{1,00 \text{ mol } O_2}{10,0 \text{ dm}^3} = 0,100 \text{ mol/dm}^3$$

$$[Cl_2] = [H_2O] = \frac{n_e(Cl_2)}{V} = \frac{0.400 \text{ mol}}{10.0 \text{ dm}^3} = 0.0400 \text{ mol/dm}^3$$

La constante de equilibrio en función de las concentraciones es:

$$K_{c} = \frac{\left[\text{Cl}_{2}\right]_{e}^{2}\left[\text{H}_{2}\text{O}\right]_{e}^{2}}{\left[\text{HCl}\right]_{e}^{4}\left[\text{O}_{2}\right]_{e}} = \frac{0.0400^{2} \cdot 0.0400^{2}}{0.0100^{4} \cdot 0.00100} = 2,56 \cdot 10^{3} \text{ (concentraciones en mol/dm}^{3}\text{)}$$

b) La presión parcial de cada uno de los gases, supuesto comportamiento ideal, es la que ejercería si se encontrase solo en el recipiente.

$$p(\text{HCl}) = \frac{n(\text{HCl}) \cdot R \cdot T}{V_{\text{T}}} = \frac{0,100 \text{ mol} \cdot 0,082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 663 \text{ K}}{10,0 \text{ dm}^{3}} = 0,544 \text{ atm}$$

$$p(\text{O}_{2}) = \frac{n(\text{O}_{2}) \cdot R \cdot T}{V_{\text{T}}} = \frac{1,00 \text{ mol} \cdot 0,082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 663 \text{ K}}{10,0 \text{ dm}^{3}} = 5,44 \text{ atm}$$

$$p(\text{Cl}_{2}) = \frac{n(\text{Cl}_{2}) \cdot R \cdot T}{V_{\text{T}}} = \frac{0,400 \text{ mol} \cdot 0,082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 663 \text{ K}}{10,0 \text{ dm}^{3}} = 2,18 \text{ atm}$$

$$p(\text{H}_{2}\text{O}) = p(\text{Cl}_{2}) = 2,18 \text{ atm}$$

$$K_{p} = \frac{p_{e}^{2}(\text{Cl}_{2}) \cdot p_{e}^{2}(\text{H}_{2}\text{O})}{p_{e}^{4}(\text{HCl}) \cdot p_{e}(\text{O}_{2})} = \frac{2,18^{2} \cdot 2,18^{2}}{0,544^{4} \cdot 5,44} = 47,0 \text{ (presiones en atm)}$$

- 5. En un recipiente de 2,0 L se introducen 2,1 moles de CO_2 y 1,6 moles de H_2 y se calienta a 1800 °C. Una vez alcanzado el siguiente equilibrio: $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$ se analiza la mezcla y se encuentran 0,90 moles de CO_2 . Calcula:
 - a) La concentración de cada especie en el equilibrio.
 - b) El valor de las constantes K_c y K_p la esa temperatura.

(A.B.A.U. ord. 17)

Rta.: a) $[CO_2] = 0.45 \text{ mol/dm}^3$; $[H_2] = 0.20 \text{ mol/dm}^3$; $[CO] = [H_2O] = 0.60 \text{ mol/dm}^3$; b) $K_p = K_c = 4.0$.

Datos	Cifras significativas: 3
-------	--------------------------

Gas:	volumen	$V = 2,00 \text{ dm}^3$
	temperatura	$T = 1800 ^{\circ}\text{C} = 2073 \text{ K}$
Cantid	ad inicial de CO ₂	$n_0(CO_2) = 2{,}10 \text{ mol } CO_2$
Cantid	ad inicial de H ₂	$n_0(H_2) = 1,60 \text{ mol } H_2$
Cantid	ad de CO₂ en el equilibrio	$n_{\rm e}({\rm CO_2}) = 0.900 \; {\rm mol} \; {\rm CO_2}$

Incógnitas

Cantidad (moles) de cada componente en el equilibrio $n_e(H_2), n_e(CO), n_e(H_2O)$ Constantes de equilibrio K_c, K_p

Ecuaciones

Concentración de la sustancia X [X] = n(X) / VConstantes del equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_c = \frac{[C]_e^c \cdot [D]_e^d}{[A]_e^a \cdot [B]_e^b} K_p = \frac{p_e^c(C) \cdot p_e^d(D)}{p_e^a(A) \cdot p_e^b(B)}$

Solución:

a) Si quedan 0,900 mol de los 2,10 mol que había inicialmente, es que reaccionaron:

$$n_r(CO_2) = 2.10 - 0.900 = 1.20 \text{ mol } CO_2 \text{ que reaccionaron}$$

De la estequiometría de la reacción:

$$CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$$

Reaccionaron 1,20 mol de H_2 y se formaron los mismos de CO y H_2 O. Representamos en un cuadro las cantidades (moles) de cada gas en cada fase:

		CO ₂	H ₂	\rightleftharpoons	H ₂ O	СО	
Cantidad inicial	n_0	2,10	1,60		0,0	0,0	mol
Cantidad que reacciona o se forma	$n_{ m r}$	1,20	1,20		1,20	1,20	mol
Cantidad en el equilibrio	$n_{\rm e}$	0,90	0,40		1,20	1,20	mol

En el equilibrio habrá:

$$n_e(CO_2) = 0.90 \text{ mol}; n_e(H_2) = 0.40 \text{ mol}; n_e(CO) = n_e(H_2O) = 1.20 \text{ mol}$$

Las concentraciones serán:

$$[CO_{2}] = \frac{n_{e}(CO_{2})}{V} = \frac{0.90 \text{ mol } CO_{2}}{2.00 \text{ dm}^{3}} = 0.45 \text{ mol/dm}^{3}$$

$$[H_{2}] = \frac{n_{e}(H_{2})}{V} = \frac{0.40 \text{ mol } H_{2}}{2.00 \text{ dm}^{3}} = 0.20 \text{ mol/dm}^{3}$$

$$[CO] = [H_{2}O] = \frac{n_{e}(H_{2}O)}{V} = \frac{1.20 \text{ mol}}{2.00 \text{ dm}^{3}} = 0.60 \text{ mol/dm}^{3}$$

b) La expresión de la constante de equilibrio en función de las concentraciones es:

$$K_{c} = \frac{[\text{H}_{2}\text{O}]_{e} \cdot [\text{CO}]_{e}}{[\text{H}_{2}]_{e} \cdot [\text{CO}_{2}]_{e}} = \frac{\frac{1,20 \text{ mol H}_{2}\text{O}}{2,00 \text{ dm}^{3}} \frac{1,20 \text{ mol CO}}{2,00 \text{ dm}^{3}}}{\frac{0,40 \text{ mol CO}_{2}}{2,00 \text{ dm}^{3}}} = 4,0$$

La relación entre K_p y K_c para esta reacción es

$$K_{p} = \frac{p_{e}(\mathbf{H}_{2}\mathbf{O}) \cdot p_{e}(\mathbf{CO})}{p_{e}(\mathbf{H}_{2}) \cdot p_{e}(\mathbf{CO}_{2})} = \frac{\frac{n_{e}(\mathbf{H}_{2}\mathbf{O}) \cdot R \cdot T}{V} \cdot \frac{n_{e}(\mathbf{CO}) \cdot R \cdot T}{V}}{\frac{n_{e}(\mathbf{CO}_{2}) \cdot R \cdot T}{V} \cdot \frac{n_{e}(\mathbf{CO}_{2}) \cdot R \cdot T}{V}} = \frac{[\mathbf{H}_{2}\mathbf{O}]_{e} \cdot [\mathbf{CO}]_{e}}{[\mathbf{H}_{2}]_{e} \cdot [\mathbf{CO}_{2}]_{e}} = K_{c}$$

Por lo que

$$K_p = K_c = 4.0$$

- Considera lo siguiente equilibrio: $CO_2(g) + H_2S(g) \rightleftharpoons COS(g) + H_2O(g)$. Se introducen 4,4 g de CO_2 en un recipiente de 2 dm³ a 337 °C y una cantidad suficiente de H₂S para que, una vez alcanzado el equilibrio, la presión total sea de 10 atm. Si en la mezcla en equilibrio hay 0,01 moles de agua, calculla:
 - a) Las concentraciones de cada una de las especies en el equilibrio.
 - b) Los valores de K_c y K_p a la dicha temperatura.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm= 101,3 kPa.

(A.B.A.U. extr. 22)

Rta.: a) $[CO_2] = 0.0450$: $[H_2S] = 0.145$; $[COS] = [H_2O] = 0.00500 \text{ mol/dm}^3$; b) $K_c = K_p = 0.00384$.

Datos Cifras significativas: 3

 $m_0(CO_2) = 4.40 \text{ g}$ Masa inicial de CO₂

 $V = 2.00 \text{ dm}^3 = 2.00 \cdot 10^{-3} \text{ m}^3$ Gas: volumen

 $T = 337 \, ^{\circ}\text{C} = 610 \, \text{K}$ temperatura

 $p_{t0} = 10.0 \text{ atm} = 1.013 \cdot 10^6 \text{ Pa}$ presión $n_{\rm e}({\rm H_2O}) = 0.0100 \; {\rm mol} \; {\rm H_2O}$

 $R = 0.082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ Constante de los gases ideales

Masa molar del dióxido de carbono $M(CO_2) = 44.0 \text{ g/mol}$

Incógnitas

Cantidad de agua en el equilibrio

Concentraciones de cada una dlas especies en el equilibrio $[CO_2]_e$, $[H_2S]_e$, $[COS]_e$, $[H_2O]_e$

Incógnitas

Constantes de equilibrio

 K_c, K_p

Ecuaciones

Cantidad (número de moles)

n = m / M

Ecuación de estado de los gases ideales

$$p \cdot V = n \cdot R \cdot T \Longrightarrow p = \frac{n \cdot R \cdot T}{V}$$

Concentración de la sustancia X

$$[X] = n(X) / V$$

Constantes del equilibrio: $a A + b B \rightleftharpoons c C + d D$

$$K_{c} = \frac{\left[C\right]_{e}^{c} \cdot \left[D\right]_{e}^{d}}{\left[A\right]_{e}^{a} \cdot \left[B\right]_{e}^{b}} \quad K_{p} = \frac{p_{e}^{c}(C) \cdot p_{e}^{d}(D)}{p_{e}^{a}(A) \cdot p_{e}^{b}(B)}$$

Solución:

a) La cantidad inicial de CO2 es:

$$n_0(\text{CO}_2) = 4,40 \text{ g CO}_2 \cdot \frac{1 \text{ mol CO}_2}{44,0 \text{ g CO}_2} = 0,100 \text{ mol CO}_2$$

Una vez alcanzado el equilibrio, la cantidad total de gas (supuesto comportamiento ideal) es:

$$n_{\text{et}} = \frac{p \cdot V}{R \cdot T} = \frac{1,013 \cdot 10^6 \text{ Pa} \cdot 2,00 \cdot 10^{-3} \text{ m}^3}{8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 610 \text{ K}} = 0,399 \text{ mol total}$$

De la ecuación química se deduce que la cantidad total de gas no varía con el progreso de la reacción.

$$CO_2(g) + H_2S(g) \rightleftharpoons COS(g) + H_2O(g)$$

Una forma de comprobarlo es suposición que inicialmente hay n_1 mols de $CO_2(g)$ y n_2 moles de $H_2S(g)$. Llamando x a la cantidad de $CO_2(g)$ que reacciona hasta que se alcanza el equilibrio, se calcula la cantidad final de gas:

		CO ₂	H ₂ S	#	COS	H ₂ O	
Cantidad inicial	n_0	n_1	n_2		0,00	0,00	mol
Cantidad que reacciona o se forma	$n_{\rm r}$	х	х	\rightarrow	х	х	mol
Cantidad en el equilibrio	$n_{\rm e}$	$n_1 - x$	$n_2 - x$		x	х	mol

$$n_{\text{te}} = (n_1 - x) + (n_2 - x) + x + x = n_1 + n_2$$

Se ve que es igual que la que había inicialmente.

Por tanto, la cantidad de H₂S(g) que había inicialmente era:

$$n_0(H_2S) = 0.399 \text{ [mol total]} - 0.100 \text{ [mol CO}_2\text{]} = 0.299 \text{ mol } H_2S$$

Se escribe en un cuadro las cantidades (moles) de cada gas en cada fase:

		CO ₂	H ₂ S	\rightleftharpoons	COS	H ₂ O	
Cantidad inicial	n_0	0,100	0,299		0,00	0,00	mol
Cantidad que reacciona o se forma	$n_{\rm r}$	х	х	\rightarrow	x	х	mol
Cantidad en el equilibrio	$n_{\rm e}$					0,0100	mol
		х	х	\rightarrow	х	0,01	.00

Se ve que se formaron 0,0100 mol de H₂O(g)

$$x = 0.0100 \text{ mol}$$

Las cantidades de todos los gases en el equilibrio son:

 $n_{\rm e}({\rm CO_2})=0.100$ [mol iniciales] – 0,0100 [mol que reaccionan] = 0,090 mol CO₂ en el equilibrio $n_{\rm e}({\rm H_2S})=0.299$ [mol iniciales] – 0,0100 [mol que reaccionan] = 0,289 mol H₂S en el equilibrio $n_{\rm e}({\rm COS})=0.0100$ [mol formados] = 0,0100 mol COS en el equilibrio

Dividiendo cada una de ellas por el volumen (2 dm³) del recipiente, se obtiene la concentración de cada especie en el equilibrio.

$$[CO_{2}]_{e} = \frac{0,090 \text{ mol } CO_{2}}{2,00 \text{ dm}^{3}} = 0,045 \text{ mol/dm}^{3}$$

$$[H_{2}S]_{e} = \frac{0,289 \text{ mol } H_{2}S}{2,00 \text{ dm}^{3}} = 0,145 \text{ mol/dm}^{3}$$

$$[COS]_{e} = [H_{2}O]_{e} = \frac{0,0100 \text{ mol}}{2,00 \text{ dm}^{3}} = 0,00500 \text{ mol/dm}^{3}$$

b) La expresión de la constante de equilibrio en función de las concentraciones es:

$$K_{c} = \frac{[\text{H}_{2}\text{O}]_{\text{e}} \cdot [\text{CO}\text{S}]_{\text{e}}}{[\text{H}_{2}\text{S}]_{\text{e}} \cdot [\text{CO}_{2}]_{\text{e}}} = \frac{0,00500 \text{ mol H}_{2}\text{O}/\text{dm}^{3} 0,00500 \text{ mol COS}/\text{dm}^{3}}{0,145 \text{ mol H}_{2}\text{S}/\text{dm}^{3} 0,045 \text{ mol CO}_{2}/\text{dm}^{3}} = 3,8 \cdot 10^{-3}$$

Como uno de los factores (0,090 mol CO₂) tiene solo dos cifras significativas, la constante solo puede tener dos cifras significativas.

La relación entre K_p y K_c para esta reacción es:

$$K_{p} = \frac{p_{e}(H_{2}O) \cdot p_{e}(COS)}{p_{e}(H_{2}S) \cdot p_{e}(CO_{2})} = \frac{\frac{n_{e}(H_{2}O) \cdot R \cdot T}{V} \cdot \frac{n_{e}(COS) \cdot R \cdot T}{V}}{\frac{n_{e}(CO_{2}) \cdot R \cdot T}{V} \cdot \frac{n_{e}(CO_{2}) \cdot R \cdot T}{V}} = \frac{[H_{2}O]_{e} \cdot [COS]_{e}}{[H_{2}S]_{e} \cdot [CO_{2}]_{e}} = K_{c}$$

Por lo que

$$K_p = K_c = 3.8 \cdot 10^{-3}$$

- 7. Se introducen 0,2 moles de Br_2 en un recipiente de 0,5 L de capacidad a 600 °C. Una vez establecido el equilibrio $Br_2(g) \rightleftharpoons 2$ Br(g) en estas condiciones, el grado de disociación es 0,8.
 - a) Calcula $K_c y K_p$.
 - b) Determina las presiones parciales ejercidas por cada componente de la mezcla en el equilibrio. Datos: R = 0.082 atm·L·K⁻¹·mol⁻¹ = 8,31 J·K⁻¹·mol⁻¹. (A.B.A.U. extr. 17)

Rta.: a) $K_c = 5.12$; $K_p = 367$; b) $p(Br_2) = 5.7$ atm; p(Br) = 45.9 atm.

Datos	Cifras significativas: 3
Gas: volumen	$V = 0,500 \text{ dm}^3$
temperatura	$T = 600 ^{\circ}\text{C} = 873 \text{K}$
Cantidad inicial de Br ₂	$n_0({\rm Br}_2) = 0{,}200~{\rm mol}~{\rm Br}_2$
Grado de disociación	$\alpha = 0.800$
Constante de los gases ideales	$R = 0.0820 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$
Incógnitas	
Constantes del equilibrio K_c y K_p	K_c,K_p
Presión parcial ejercida por cada componente	$p(Br_2), p(Br)$

Otros símbolos

Cantidad de Br_2 que se ha disociado $n_d(Br_2)$

Ecuaciones

Concentración de la sustancia X [X] = n(X) / V

Grado de disociación $\alpha = \frac{n_{\rm d}}{n_{\rm o}}$

Ecuaciones

Constantes del equilibrio: $a A + b B \rightleftharpoons c C + d D$

$$K_{c} = \frac{\left[C\right]_{e}^{c} \cdot \left[D\right]_{e}^{d}}{\left[A\right]_{e}^{a} \cdot \left[B\right]_{e}^{b}} \quad K_{p} = \frac{p_{e}^{c}(C) \cdot p_{e}^{d}(D)}{p_{e}^{d}(A) \cdot p_{e}^{b}(B)}$$

Solución:

La ecuación de disociación química del bromo es:

$$Br_2(g) \rightleftharpoons 2 Br(g)$$

Se han disociado:

$$n_d(Br_2) = \alpha \cdot n_0(Br_2) = 0.800 \cdot 0.200 \text{ [mol Br}_2\text{]} = 0.160 \text{ mol Br}_2 \text{ disociados}$$

Por la estequiometría de la reacción, las cantidades de bromo atómico formado y en equilibrio son:

		Br ₂	=	2 Br	
Cantidad inicial	n_0	0,200		0	mol
Cantidad que reacciona o se forma	$n_{ m r}$	0,160	\rightarrow	0,320	mol
Cantidad en el equilibrio	n_{e}	0,200 - 0,160 = 0,040		0,320	mol
Concentración en el equilibrio	[X] _e	0,040 / 0,500 = 0,080		0,640	mol/dm³

La expresión de la constante de equilibrio en función de las concentraciones es:

$$K_c = \frac{[\text{Br}]_e^2}{[\text{Br}_2]_e} = \frac{(0,640)^2}{0,080} = 5,12$$
 (concentraciones en mol/dm³)

Si consideramos comportamiento ideal para los gases, podemos escribir:

$$K_{p} = \frac{p_{e}^{2}(Br)}{p_{e}(Br_{2})} = \frac{([Br]_{e} \cdot R \cdot T)^{2}}{[Br_{2}]_{e} \cdot R \cdot T} = \frac{[Br]_{e}^{2}}{[Br_{2}]_{e}} = K_{c} = \cdot R \cdot T = 5,12 \cdot 0,0820 \cdot 873 = 367 \text{ (presiones en atm)}$$

b) La presión parcial de cada uno de los gases, supuesto comportamiento ideal, es la que ejercería si se encontrase solo en el recipiente.

$$p(Br) = \frac{n(Br) \cdot R \cdot T}{V_T} = \frac{0,640 \text{ mol} \cdot 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 873 \text{ K}}{0,500 \cdot 10^{-3} \text{ m}^3} = 4,65 \cdot 10^6 \text{ Pa} = 45,9 \text{ atm}$$

$$p(Br_2) = \frac{n(Br_2) \cdot R \cdot T}{V_T} = \frac{0,080 \text{ mol} \cdot 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 873 \text{ K}}{0,500 \cdot 10^{-3} \text{ m}^3} = 5,8 \cdot 10^5 \text{ Pa} = 5,7 \text{ atm}$$

b) En un matraz de 1,5 dm³, en el que se hizo el vacío, se introducen 0,08 moles de N₂O₄ y se calienta a 35 °C. Parte del N_2O_4 se disocia según la reacción: $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ y cuando se alcanza el equilibrio la presión total es de 2,27 atm. Calcula el porcentaje de N₂O₄ disociado. Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa.

(A.B.A.U. extr. 19)

Rta.: b)
$$\alpha = 69 \%$$
.

b)

Datos

Cifras significativas: 3

 $V = 1,50 \text{ dm}^3 = 1,50 \cdot 10^{-3} \text{ m}^3$ Volumen

 $T = 35 \text{ }^{\circ}\text{C} = 308 \text{ K}$ Temperatura

 $n_0(N_2O_4) = 0.0800 \text{ mol}$ Cantidad inicial de tetraóxido de dinitrógeno

p = 2,27 atm = $2,30 \cdot 10^5$ Pa Presión en el equilibrio

 $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ Constante de los gases ideales

Incógnitas

Porcentaje de N₂O₄ disociado

α

Ecuaciones

Concentración de la sustancia X

[X] = n(X) / V

Ecuación de estado de los gases ideales

$$p \cdot V = n \cdot R \cdot T \Longrightarrow p = \frac{n \cdot R \cdot T}{V}$$

Constante do equilibrio: $a A + b B \rightleftharpoons c C + d D$

$$K_{c} = \frac{\left[\mathbf{C}\right]_{e}^{c} \cdot \left[\mathbf{D}\right]_{e}^{d}}{\left[\mathbf{A}\right]_{a}^{a} \cdot \left[\mathbf{B}\right]_{e}^{b}}$$

Solución:

b) La ecuación química es:

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

Llamando x a la cantidad de N₂O₄ que se disocia hasta llegar al equilibrio, se puede escribir:

		N_2O_4	\rightleftharpoons	2 NO ₂	
Cantidad inicial	n_0	0,0800		0	mol
Cantidad que reacciona o se forma	$n_{ m r}$	х	\rightarrow	2 x	mol
Cantidad en el equilibrio	$n_{\rm e}$	0,0800 - x		2 x	mol

La cantidad total de gas en el equilibrio será

$$n_t = 0.0800 - x + 2 \ x = 0.0800 + x$$

Por otra parte, se puede calcular la cantidad de gas a partir de la presión total

$$n_{\rm t} = \frac{p \cdot V}{R \cdot T} = \frac{2,30 \cdot 10^5 \text{ Pa} \cdot 1,50 \cdot 10^{-3} \text{ dm}^3}{8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \cdot 308 \text{ K}} = 0,135 \text{ mol gas}$$

Despejando

$$x = 0.135 - 0.080 = 0.055$$
 mol de N₂O₄ que se disocian

El porcentaje de N₂O₄ disociado es:

$$\alpha = \frac{n_{\rm r}}{n_0} = \frac{0.055}{0.080} = 0.69 = 69 \%$$

- 9. En un reactor de 10 L se introducen 2,5 moles de PCI_5 y se calienta hasta 270 °C, produciéndose la siguiente reacción: PCI_5 (g) $\rightleftharpoons PCI_3$ (g) + CI_2 (g). Una vez alcanzado el equilibrio se comprueba que la presión en el reactor es de 15,7 atm. Calcula:
 - a) El número de moles de todas las especies presentes en el equilibrio.
 - b) El valor de las constantes K_c y K_p a dicha temperatura.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa.

(A.B.A.U. ord. 18)

Rta.: a) $n(PCl_5) = 1,48 \text{ mol } PCl_5$; $n(PCl_3) = n(Cl_2) = 1,02 \text{ mol}$; b) $K_c = 0,0708$; $K_p = 3,15$.

Datos Cifras significativas: 3

Cantidad inicial de PCl_5 $n_0(PCl_5) = 2,50 \text{ mol}$

Gas: volumen $V = 10.0 \text{ dm}^3$

temperatura $t = 270 \, ^{\circ}\text{C} = 543 \, \text{K}$

Presión total en el equilibrio p = 15,7 atm

Constante de los gases ideales $R = 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Concentraciones de cada especie en el equilibrio [PCl₅], [PCl₃], [Cl₂]

Incógnitas

Constantes de equilibrio

 K_c, K_p

Otros símbolos

Cantidad de la sustancia X en el equilibrio

 $n_{\rm e}({\rm X})$

Ecuaciones

Concentración de la sustancia X

[X] = n(X) / V

Ecuación de estado de los gases ideales

 $p \cdot V = n \cdot R \cdot T$

Constantes del equilibrio: $a A + b B \rightleftharpoons c C + d D$

 $K_{c} = \frac{\left[C\right]_{e}^{c} \cdot \left[D\right]_{e}^{d}}{\left[A\right]_{e}^{d} \cdot \left[B\right]_{e}^{b}} \quad K_{p} = \frac{p_{e}^{c}(C) \cdot p_{e}^{d}(D)}{p_{e}^{d}(A) \cdot p_{e}^{b}(B)}$

Solución:

a) Suponiendo comportamiento ideal para los gases:

$$n_{\text{e t}} = \frac{p \cdot V}{R \cdot T} = \frac{15.7 \text{ atm} \cdot 10.0 \text{ L}}{0.0820 \text{ atm} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 543 \text{ K}} = 3.52 \text{ mol de gases en el equilibrio}$$

La ecuación de disociación es:

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

Se llama x a la cantidad de PCl₅ disociada. Por la estequiometría de la reacción,

		PCl ₅	\rightleftharpoons	PCl ₃	Cl ₂	
Cantidad inicial	n_0	n_{0}		0	0	mol
Cantidad que reacciona o se forma	n_{r}	х	\rightarrow	х	x	mol
Cantidad en el equilibrio	$n_{\rm e}$	$n_0 - x$		x	x	mol

La cantidad de gas que hay en el equilibrio es: $n_{\rm et} = n_0 - x + x + x = n_0 + x$ Comparando con el resultado anterior,

$$3,52 = 2,50 + x$$

$$x = 3.52 - 2.50 = 1.02$$
 moles disociados

Las cantidades en el equilibrio serán:

$$n_e(PCl_5) = n_0 - x = 2,50 - 1,02 = 1,48 \text{ mol PCl}_5$$
 en el equilibrio
$$n_e(Cl_2) = n_e(PCl_3) = x = 1,02 \text{ mol}$$

Y las concentraciones serán:

$$[PCl_5]_e = 1,48 \text{ mol } PCl_5 / 10,0 \text{ dm}^3 = 0,148 \text{ mol/dm}^3$$

 $[Cl_2]_e = [PCl_3]_e = 1,02 \text{ mol/10},0 \text{ dm}^3 = 0,102 \text{ mol/dm}^3$

b) La constante de equilibrio en función de las concentraciones es

$$K_c = \frac{[PCl_3]_e \cdot [Cl_2]_e}{[PCl_e]_a} = \frac{0,102 \cdot 0,102}{0.148} = 0,0708$$
 (concentraciones en mol/dm³)

La constante de equilibrio en función de las presiones es

$$K_{p} = \frac{p_{e}(PCl_{3}) \cdot p_{e}(Cl_{2})}{p_{e}(PCl_{5})} = \frac{[PCl_{3}]_{e} \cdot R \cdot T[Cl_{2}]_{e} \cdot R \cdot T}{[PCl_{5}]_{e} \cdot R \cdot T} = \frac{[PCl_{3}]_{e} \cdot [Cl_{2}]_{e}}{[PCl_{5}]_{e}} \cdot R \cdot T = K_{c} \cdot R \cdot T$$

$$K_{p} = K_{c} \cdot R \cdot T = 0,0708 \cdot 0,082 \cdot 543 = 3,15 \text{ (presiones en atm)}$$

10. En un recipiente cerrado de 5 dm³, en el que previamente se hizo el vacío, se introducen 0,4 moles de SO_2Cl_2 y se calienta a 400 °C, descomponiéndose según la reacción: $SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$. Cuando se alcanza el equilibrio, se observa que se descompuso el 36,5 % del SO_2Cl_2 inicial. Calcula:

a) Las presiones parciales de cada componente de la mezcla en el equilibrio.

b) El valor de K_c y K_p a dicha temperatura.

Dato: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

(A.B.A.U. ord. 22)

Rta.: a) $p(SO_2Cl_2) = 2.81$ atm; $p(SO_2) = p(Cl_2) = 1.61$ atm; b) $K_c = 0.0168$; $K_p = 0.927$.

Datos Cifras significativas: 3

Gas: volumen $V = 5,00 \text{ dm}^3$

temperatura $T = 400 \text{ }^{\circ}\text{C} = 673 \text{ K}$

Cantidad inicial de SO_2Cl_2 $n_0 = 0,400 \text{ mol}$

Grado de disociación $\alpha = 36,5 \% = 0,365$

Constante de los gases ideales $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Presiones parciales de cada especie en el equilibrio $p(SO_2Cl_2), p(SO_2), p(Cl_2)$

Constantes de equilibrio K_c, K_p

Otros símbolos

Concentración de una especie X [X]

Cantidad de la sustancia X en el equilibrio $n_{\rm e}({\rm X})$

Ecuaciones

Ley de Dalton de las presiones parciales $p_t = \sum p_i$

Concentración de la sustancia X [X] = n(X) / V

Ecuación de estado de los gases ideales $p \cdot V = n \cdot R \cdot T$

Grado de disociación $\alpha = \frac{n_{\rm d}}{n_{\rm o}}$

Constantes del equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_{c} = \frac{[C]_{e}^{c} \cdot [D]_{e}^{d}}{[A]_{e}^{a} \cdot [B]_{e}^{b}} \quad K_{p} = \frac{p_{e}^{c}(C) \cdot p_{e}^{d}(D)}{p_{e}^{d}(A) \cdot p_{e}^{b}(B)}$

Solución:

a) La ecuación de disociación es:

 $SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$

Como el grado de disociación es:

 $\alpha = \frac{n_{\rm d}}{n_{\rm 0}}$

La cantidad de SO₂Cl₂ disociada será:

 $n_{\rm d} = \alpha \cdot n_0 = 0.365 \cdot 0.400 = 0.146 \text{ mol SO}_2\text{Cl}_2$ disociados.

Con la estequiometría de la reacción, se calculan las cantidades de cada gas en el equilibrio.

		SO_2Cl_2	\rightleftharpoons	SO ₂	Cl ₂	
Cantidad inicial	n_0	0,400		0	0	mol
Cantidad que reacciona o se forma	n_{r}	0,146	\rightarrow	0,146	0,146	mol
Cantidad en el equilibrio	$n_{\rm e}$	0,400 - 0,146 = 0,254		0,146	0,146	mol

Las concentraciones serán:

$$[SO_2Cl_2]_e = 0.254 \text{ mol } SO_2Cl_2/5,00 \text{ dm}^3 = 0.0508 \text{ mol } / \text{ dm}^3$$

 $[Cl_2]_e = [SO_2]_e = 0.146 \text{ mol } / 5.00 \text{ dm}^3 = 0.0292 \text{ mol } / \text{ dm}^3$

Suponiendo comportamiento ideal para los gases, las presiones parciales valdrán:

$$p(SO_{2}Cl_{2}) = \frac{n(SO_{2}Cl_{2}) \cdot R \cdot T}{V} = [SO_{2}Cl_{2}] \cdot R \cdot T = 0,0508 \text{ mol} \cdot 0,082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 673 \text{ K} = 2,81 \text{ atm}$$

$$p(Cl_{2}) = p(SO_{2}) = \frac{n(Cl_{2}) \cdot R \cdot T}{V} = [Cl_{2}] \cdot R \cdot T = 0,0292 \text{ mol} \cdot 0,082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 673 \text{ K} = 1,61 \text{ atm}$$

a) La constante de equilibrio en función de las concentraciones es:

$$K_c = \frac{[SO_2]_e \cdot [Cl_2]_e}{[SO_2Cl_2]_e} = \frac{0,0292 \cdot 0,0292}{0,0580} = 0,0168$$
 (concentraciones en mol/dm³)

La constante de equilibrio en función de las presiones es

$$K_{p} = \frac{p_{e}(SO_{2}) \cdot p_{e}(Cl_{2})}{p_{e}(SO_{2}Cl_{2})} = \frac{[SO_{2}]_{e} \cdot R \cdot T [Cl_{2}]_{e} \cdot R \cdot T}{[SO_{2}Cl_{2}]_{e} \cdot R \cdot T} = \frac{[SO_{2}]_{e} \cdot [Cl_{2}]_{e}}{[SO_{2}Cl_{2}]_{e}} \cdot R \cdot T = K_{c} \cdot R \cdot T$$

$$K_{p} = K_{c} \cdot R \cdot T = 0,0168 \cdot 0,082 \cdot 673 = 0,927 \text{ (presiones en atm)}$$

- 11. En un recipiente cerrado se introducen 2,0 moles de CH_4 y 1,0 mol de H_2S a la temperatura de 727 °C, estableciéndose el siguiente equilibrio: $CH_4(g) + 2 H_2S(g) \rightleftharpoons CS_2(g) + 4 H_2(g)$. Una vez alcanzado el equilibrio, la presión parcial del H_2 es 0,20 atm y la presión total es de 0,85 atm. Calcula:
 - a) Los moles de cada sustancia en el equilibrio y el volumen del recipiente.
 - b) El valor de K_c y K_p .

(A.B.A.U. ord. 20)

Rta.: a) $n_e(CH_4) = 1,80 \text{ mol}$; $n_e(H_2S) = 0,60 \text{ mol}$; $n_e(CS_2) = 0,200 \text{ mol}$; $n_e(H_2) = 0,800 \text{ mol}$; $V = 328 \text{ dm}^3$; b) $K_p = 0,0079$; $K_c = 1,2 \cdot 10^{-6}$.

Datos	Cifras significativas: 3
Temperatura	$T = 727 ^{\circ}\text{C} = 1000 ^{\circ}\text{K}$
Cantidad inicial de metano	$n_0(CH_4) = 2,00 \text{ mol } CH_4$
Cantidad inicial de sulfuro de hidrógeno	$n_0(H_2S) = 1,00 \text{ mol } H_2S$
Presión parcial del hidrógeno en el equilibrio	$p_{\rm e}({\rm H}_2) = 0.200~{\rm atm}$
Presión total en el equilibrio	$p_{\rm e} = 0.850 { m atm}$
Incógnitas	
Cantidad en el equilibrio de cada sustancia	$n_{\rm e}({\rm CH_4}), \ n_{\rm e}({\rm H_2S}), \ n_{\rm e}({\rm CS_2}), \ n_{\rm e}({\rm H_2})$
Volumen del recipiente	V
Constante del equilibrio K_c	K_c
Constante del equilibrio K_p	K_p
Ecuaciones	
Ecuación de estado de los gases ideales	$p \cdot V = n \cdot R \cdot T \Longrightarrow p = \frac{n \cdot R \cdot T}{V}$
Concentración de la sustancia X	[X] = n(X) / V
Constantes del equilibrio: $a A + b B \rightleftharpoons c C + d D$	$K_{c} = \frac{\left[\mathbf{C}\right]_{e}^{c} \cdot \left[\mathbf{D}\right]_{e}^{d}}{\left[\mathbf{A}\right]_{e}^{a} \cdot \left[\mathbf{B}\right]_{e}^{b}} K_{p} = \frac{p_{e}^{c}(\mathbf{C}) \cdot p_{e}^{d}(\mathbf{D})}{p_{e}^{a}(\mathbf{A}) \cdot p_{e}^{b}(\mathbf{B})}$

Solución:

a) La ecuación química es:

$$CH_4(g) + 2 H_2S(g) \rightleftharpoons CS_2(g) + 4 H_2(g)$$

Llamando x a la cantidad de metano que reaccionó hasta conseguir el equilibrio podemos escribir

		CH ₄	$2 H_2S$	=	CS ₂	4 H ₂	
Cantidad inicial	n_0	2,00	1,00		0,0	0,0	mol
Cantidad que reacciona o se forma	n_{r}	х	2 x		х	4 x	mol
Cantidad en el equilibrio	n_{e}	2,00 - x	1,00 - 2 x		x	4 x	mol

En el equilibrio habrá en total:

$$n_e = (2.00 - x) + (1.00 - 2 x) + x + 4 x = 3.00 + 2 x$$

De la presión parcial del hidrógeno podemos deducir:

$$p \cdot V = n \cdot R \cdot T \implies n_{e}(H_{2}) = \frac{p_{e}(H_{2}) \cdot V}{R \cdot T} = \frac{0,200 \text{ atm} \cdot V}{0,082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 1000 \text{ K}} = 0,00244 \cdot V \text{ mol } H_{2}$$

$$4 \times R = 0.0244 \cdot V$$

De la presión total podemos deducir:

$$n_{\rm e} = \frac{p_{\rm e} \cdot V}{R \cdot T} = \frac{0.850 \text{ atm} \cdot V}{0.082 \text{ atm} \cdot \text{dm}^2 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 1000 \text{ K}} = 0.0104 \cdot V \text{ mol}$$

$$3.00 + 2 \times 10.01 \times V$$

Del sistema de dos ecuaciones con dos incógnitas,

$$4x = 0.00244 \cdot V$$

 $3.00 + 2x = 0.0104 \cdot V$

deducimos el volumen V del recipiente y la cantidad x de metano que reaccionó hasta conseguir el equilibrio.

$$\frac{3,00+2x}{4x} = \frac{0,0104 \cdot V}{0,00244 \cdot V} = 4,25$$
$$3,00+2 \ x = 17,0 \ x$$
$$x = 0,200 \ \text{mol}$$
$$V = 328 \ \text{dm}^3$$

Las cantidades de las sustancias en el equilibrio son:

$$n_{\rm e}({\rm CH_4}) = 2,00 - x = 2,00 - 0,200 = 1,80 \; {\rm mol} \; {\rm CH_4}$$

 $n_{\rm e}({\rm H_2S}) = 1,00 - 2 \; x = 1,00 - 2 \cdot 0,200 = 0,60 \; {\rm mol} \; {\rm H_2S}$
 $n_{\rm e}({\rm CS_2}) = x = 0,200 \; {\rm mol} \; {\rm CS_2}$
 $n_{\rm e}({\rm H_2}) = 4 \cdot x = 0,800 \; {\rm mol} \; {\rm H_2}$

La constante de equilibrio en función de las concentraciones es:

$$K_{c} = \frac{\left[\text{CS}_{2} \right]_{e} \cdot \left[\text{H}_{2} \right]_{e}^{4}}{\left[\text{CH}_{4} \right]_{e} \cdot \left[\text{H}_{2} \right]_{e}^{2}} = \frac{\frac{n_{e}(\text{CS}_{2}) \cdot \left(\frac{n_{e}(\text{H}_{2})}{V} \right)^{4}}{V} \cdot \left(\frac{n_{e}(\text{H}_{2}S)}{V} \right)^{2}}{\left[\text{CH}_{4} \right] \cdot \left(\frac{n_{e}(\text{H}_{2}S)}{V} \right)^{2}} = \frac{n_{e}(\text{CS}_{2}) \cdot n_{e}^{4}(\text{H}_{2})}{n_{e}(\text{CH}_{4}) \cdot n_{e}^{2}(\text{H}_{2}S)} \cdot \frac{1}{V^{2}} = \frac{0,200 \cdot 0,800^{4}}{1,80 \cdot 0,60^{2}} \cdot \frac{1}{328^{2}} = 1,2 \cdot 10^{-6}$$
(concentraciones en mol/dm³)

Si consideramos comportamiento ideal para los gases, podemos escribir:

$$K_{p} = \frac{p_{e}(CS_{2}) \cdot p_{e}^{4}(H_{2})}{p_{e}(CH_{4}) \cdot p_{e}^{2}(H_{2}S)} = \frac{[CS_{2}]_{e} \cdot R \cdot T \cdot ([H_{2}]_{e} \cdot R \cdot T)^{4}}{[CH_{4}]_{e} \cdot R \cdot T \cdot ([H_{2}S]_{e} \cdot R \cdot T)^{2}} = \frac{[CS_{2}]_{e} \cdot ([H_{2}]_{e})^{4}}{[CH_{4}]_{e} \cdot ([H_{2}S]_{e})^{2}} \cdot (R \cdot T)^{2} = K_{c} \cdot (R \cdot T)^{2}$$

$$K_p = 1.2 \cdot 10^{-6} \cdot (0.082 \cdot 1000)^2 = 0.0079$$
 (presiones en atm)

- 12. Al calentar HgO(s) en un recipiente cerrado en el que se hizo el vacío, se disocia según la reacción: $2 HgO(s) \rightleftharpoons 2 Hg(g) + O_2(g)$. Cuando se alcanza el equilibrio a 380 °C, la presión total en el recipiente es de 0,185 atm. Calcula:
 - a) Las presiones parciales de las especies presentes en el equilibrio.

b) El valor de las constantes K_c y K_p de la reacción.

Datos: $R = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa.

(A.B.A.U. extr. 18)

Rta.: a) p(Hg) = 0.123 atm; $p(O_2) = 0.0617$ atm; b) $K_c = 6.1 \cdot 10^{-9}$; $K_p = 9.4 \cdot 10^{-4}$.

Datos Cifras significativas: 3

Temperatura $t = 380 \text{ }^{\circ}\text{C} = 653 \text{ K}$

Presión total en el equilibrio p = 0,185 atm

Constante de los gases ideales $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Presiones parciales de las especies en el equilibrio p(HgO), p(Hg), $p(O_2)$

Constantes de equilibrio K_c, K_p

Otros símbolos

Cantidad de la sustancia X en el equilibrio $n_e(X)$

Ecuaciones

Concentración de la sustancia X [X] = n(X) / V

Ecuación de los gases ideales $p \cdot V = n \cdot R \cdot T \Rightarrow p_i = [i] \cdot R \cdot T$

Constantes del equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_{c} = \frac{[C]_{e}^{c} \cdot [D]_{e}^{d}}{[A]_{e}^{a} \cdot [B]_{e}^{b}} \quad K_{p} = \frac{p_{e}^{c}(C) \cdot p_{e}^{d}(D)}{p_{e}^{a}(A) \cdot p_{e}^{b}(B)}$

Solución:

a) La ecuación de disociación es:

$$HgO(s) \rightleftharpoons 2 Hg(g) + O_2(g)$$

		HgO	\rightleftharpoons	Hg	O ₂	
Cantidad inicial	n_0	n_0		0	0	mol
Cantidad que reacciona o se forma	$n_{\rm r}$	х	\rightarrow	2 x	x	mol
Cantidad en el equilibrio	$n_{\rm e}$	$n_0 - x$		2 x	x	mol

En el equilibrio a presión total es la suma de las presiones parciales de los gases $Hg y O_2$. La presión del Hg es el doble que la presión de O_2 . Llamando y a la presión del oxígeno, queda:

$$p = p(Hg) + p(O_2)$$

 $0.185 = 2 \cdot y + y = 3 y$
 $y = 0.0617 atm$

Y las presiones serán:

$$p(O_2) = 0.0617 \text{ atm}$$

 $p(Hg) = 0.123 \text{ atm}$

A presión del HgO es nula, pues no es un gas.

b) La constante de equilibrio en función de las presiones es

$$K_p = p_e^2(\text{Hg}) \cdot p_e(O_2) = 0.123^2 \cdot 0.0617 = 9.38 \cdot 10^{-4}$$
 (presiones en atm)

La constante de equilibrio en función de las concentraciones es

$$K_c = [Hg]_e^2 \cdot [O_2]_e = \left(\frac{p_e(Hg)}{R \cdot T}\right)^2 \cdot \frac{p_e(O_2)}{R \cdot T} = \frac{K_c}{(R \cdot T)^3} = \frac{9.38 \cdot 10^{-4}}{(0.082 \cdot 653)^3} = 6.1 \cdot 10^{-9}$$
 (concentraciones en mol/dm³)

• Con la constante como dato

- 1. Para la reacción $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$, el valor de $K_c = 5$ a 530 °C. Si reaccionan 2,0 moles de CO(g) con 2,0 moles de $H_2O(g)$ en un reactor de 2 dm³:
 - a) Calcula la concentración molar de cada especie en el equilibrio a dicha temperatura.
 - b) Determina el valor de K_p y razona cómo se verá afectado el equilibrio si introducimos en el reactor más cantidad de CO(g) sin variar la temperatura ni el volumen.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm= 101,3 kPa.

(A.B.A.U. extr. 23)

Rta.: a) [CO] = 0,309; [H₂O] = 0,309; [CO₂] = 0,691; [H₂] = 0,691 mol/dm³; b) $K_p = 5,00$.

Datos Cifras significativas: 2

Constante de equilibrio $K_c = 5,0$

Temperatura $T = 530 \text{ }^{\circ}\text{C} = 803 \text{ K}$

Cantidad inicial de CO $n_0(CO) = 2,0 \text{ mol CO}$

Concentración inicial de H_2O $n_0(H_2O) = 2,0 \text{ mol } H_2O$

Volumen $V = 2.0 \text{ dm}^3$

Incógnitas

Concentraciones en el equilibrio [H₂]_e, [CO₂]_e, [H₂O]_e, [CO]_e

Constante de equilibrio en función de las presiones

 K_p

Ecuaciones

Concentración de la sustancia X [X] = n(X) / V

Constantes del equilibrio: $a \, A + b \, B \rightleftharpoons c \, C + d \, D$ $K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^d}{\left[A\right]_e^b \cdot \left[B\right]_e^b} \quad K_p = \frac{p_e^c(C) \cdot p_e^d(D)}{p_e^d(A) \cdot p_e^b(B)}$

Solución:

a) Las concentraciones iniciales son:

$$[H_2O]_0 = [CO]_0 = 2.0 \text{ mol} / 2 \text{ dm}^3 = 1 \text{ mol/dm}^3$$

Llamando x a las concentraciones en mol/dm³ de CO que reaccionan se pode escribir:

		СО	H ₂ O	\Rightarrow	CO_2	H_2	
Concentración inicial	[X] ₀	1,0	1,0		0	0	mol/dm³
Concentración que reacciona o se forma	[X] _r	x	x	\rightarrow	x	x	mol/dm³
Concentración en el equilibrio	[X] _{eb}	1,0 - x	1,0-x		x	x	mol/dm³

La expresión de la constante de equilibrio en función de las concentraciones es:

$$K_c = \frac{[\text{CO}_2]_{\text{e}} \cdot [\text{H}_2]_{\text{e}}}{[\text{H}_2\text{O}]_{\text{e}} \cdot [\text{CO}]_{\text{e}}} = \frac{x \cdot x}{(1,0-x) \cdot (1,0-x)} = 5,0$$

Resolviendo la ecuación de segundo grado da dos soluciones.

$$\frac{x}{(1,0-x)} = \pm \sqrt{5,0} = \pm 2,2$$

$$x = \pm 2.2 (1.0 - x)$$

$$x + 2.2 x = 2.2 \implies x = 2.2 / 3.2 = 0.69$$

$$x - 2.2 x = 2.2 \implies x = -2.2 / 1.2 = -1.8$$

Una de ellas (-1,8) no es válida, ya que supondría la existencia de concentraciones negativas en el equilibrio. La otra solución es $x = 0,69 \text{ mol/dm}^3$.

Las concentraciones en el equilibrio son:

Ecuación de estado de los gases ideales

$$[CO_2]_e = [H_2]_e = 0.69 \text{ mol/dm}^3$$

 $[CO]_e = [H_2O]_e = 1.0 - 0.69 = 0.3 \text{ mol/dm}^3$

b) La constante de equilibrio en función de las presiones será:

$$K_{p} = \frac{p_{e}(\text{CO}_{2}) \cdot p_{e}(\text{H}_{2})}{p_{e}(\text{H}_{2}O) \cdot p_{e}(\text{CO})} = \frac{\left(\frac{n_{e}(\text{CO}_{2}) \cdot R \cdot T}{V}\right) \cdot \left(\frac{n_{e}(\text{H}_{2}) \cdot R \cdot T}{V}\right)}{\left(\frac{n_{e}(\text{H}_{2}O) \cdot R \cdot T}{V}\right) \cdot \left(\frac{n_{e}(\text{CO}) \cdot R \cdot T}{V}\right)} = \frac{\left[\text{CO}_{2}\right]_{e} \cdot \left[\text{H}_{2}\right]_{e}}{\left[\text{H}_{2}O\right]_{e} \cdot \left[\text{CO}\right]_{e}} \cdot \frac{R \cdot T \cdot R \cdot T}{R \cdot T \cdot R \cdot T} = K_{c} = 5,0$$

La constante de equilibrio sólo depende de la temperatura. No varía aunque cambien las cantidades de reactivos o productos, o disminuya el volumen.

Si se aumenta la cantidad de monóxido de carbono, para que K_c permanezca constante, o bien deberá aumentar el numerador $n_{\rm e}({\rm CO_2})$ y $n_{\rm e}({\rm H_2})$, o disminuir la cantidad de agua en el denominador $n_{\rm e}({\rm H_2O})$. El equilibrio se desplazará (hacia la derecha) hasta alcanzar un nuevo estado de equilibrio en el que habrá más ${\rm CO_2}$ y ${\rm H_2}$ y menos ${\rm H_2O}$.

- 2. En un recipiente de 10 litros se introducen 2 moles de N_2O_4 gaseoso a 50 °C produciéndose el siguiente equilibrio de disociación: $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$. Si la constante K_p a dicha temperatura es de 1,06. Calcula:
 - a) Las concentraciones de los dos gases tras alcanzar el equilibrio y el porcentaje de disociación del N_2O_4 .
 - b) Las presiones parciales de cada gas y la presión total en el equilibrio.

(A.B.A.U. extr. 21)

 $p \cdot V = n \cdot R \cdot T$

Rta.: a) $[N_2O_4] = 0.160 \text{ mol/dm}^3$; $[NO_2] = 0.0800 \text{ mol/dm}^3$; $\alpha = 20.0 \%$; b) $p(N_2O_4) = 4.24 \text{ atm} = 430 \text{ kP}$; $p(N_2O_4) = 2.12 \text{ atm} = 215 \text{ kPa}$; $p_{\text{et}} = 6.36 \text{ atm} = 645 \text{ kPa}$.

Datos	Cifras significativas: 3
Gas: volumen	$V = 10,0 \text{ dm}^3$
temperatura	$T = 50 ^{\circ}\text{C} = 323 \text{K}$
Cantidad inicial de tetraóxido de dinitrógeno	$n_0(N_2O_4) = 2,00 \text{ mol } N_2O_4$
Constante de equilibrio (en función de las presiones en atm)	$K_c = 1,06$
Constante de los gases ideales	$R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$
Incógnitas	
Concentraciones de los dos gases en el equilibrio	$[\mathrm{N_2O_4}]_\mathrm{e}, [\mathrm{NO_2}]_\mathrm{e}$
Presión parcial de cada gas y presión total en el equilibrio	$p_{\rm e}({ m N}_2{ m O}_4),p_{\rm e}({ m NO}_2),p_{\rm et}$
Ecuaciones	
Ley de Dalton de las presiones parciales	$p_{\rm t} = \sum p_i$
Concentración de la sustancia X	[X] = n(X) / V
Grado de disociación	$\alpha = \frac{n_{\rm d}}{}$

Ecuaciones

Constante del equilibrio: $a A + b B \rightleftharpoons c C + d D$

$$K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^d}{\left[A\right]_e^a \cdot \left[B\right]_e^b} \quad K_p = \frac{p_e^c(C) \cdot p_e^d(D)}{p_e^d(A) \cdot p_e^b(B)}$$

Solución:

b) La ecuación química es:

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

La ecuación de la constante de equilibrio en función de las presiones (en atm) es:

$$K_{p} = \frac{p_{e}^{2}(NO_{2})}{p_{e}(N_{2}O_{4})}$$

Suponiendo comportamiento ideal para los gases, la presión viene dada por:

$$p = \frac{n \cdot R \cdot T}{V}$$

La presión inicial del tetraóxido de dinitrógeno es:

$$p(N_2O_4) = \frac{2,00 \text{ mol } N_2O_4 \cdot 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 323 \text{ K}}{10.0 \text{ dm}^3} = 5,30 \text{ atm}$$

Se llama x a la presión de tetraóxido de dinitrógeno que se transforma en dióxido de nitrógeno. Por la estequiometría de la reacción,

		N_2O_4	=	2 NO ₂	
Presión inicial	p_0	5,30		0	atm
Presión que reacciona o se forma	p_{r}	x		2 x	atm
Presión en el equilibrio	p_{e}	5,30 - x		2 x	atm

Sustituyendo en la ecuación de la constante obtenemos:

$$1,06 = \frac{(2x)^2}{5,30 - x}$$
$$5,62 - 1,06 \ x = 4 \ x^2$$
$$x = 1,06 \ \text{atm}$$

Las presiones parciales serían:

$$p_e(NO_2) = 2 \ x = 2,12 \ atm$$

 $p_e(N_2O_4) = 5,30 - x = 5,30 - 1,06 = 4,24 \ atm$

Y la presión total se obtiene por la ley de Dalton:

$$p_{\text{et}} = p(NO_2) + p(N_2O_4) = 2.12 + 4.24 = 6.36 \text{ atm}$$

a) La concentración se obtiene de la ecuación de los gases ideales:

$$p = \frac{n \cdot R \cdot T}{V} \implies \frac{n}{V} = \frac{p}{R \cdot T}$$

$$[NO_2]_e = \frac{2,12 \text{ atm}}{0,082 \cdot \text{atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 323 \text{ K}} = 0,0800 \text{ mol/dm}^3$$

$$[N_2O_4]_e = \frac{4,24 \text{ atm}}{0.082 \cdot \text{atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 323 \text{ K}} = 0,160 \text{ mol/dm}^3$$

El grado de disociación es:

$$\alpha = \frac{n_{\rm d}}{n_0} = \frac{p_{\rm d}}{p_0} = \frac{1,06}{5,30} = 0,200 = 20 \%$$

- 3. Considera el siguiente equilibrio que tiene lugar a 150 °C: $I_2(g) + Br_2(g) \rightleftharpoons 2 IBr(g)$, con una $K_c = 120$. En un recipiente de 5,0 dm³ de capacidad se introducen 0,0015 moles de yodo y 0,0015 moles de bromo. Calcula:
 - a) La concentración de cada especie cuando se alcanza el equilibrio.
 - b) Las presiones parciales y la constante K_p .

(A.B.A.U. ord. 21)

Rta.: a) $[I_2] = [Br_2] = 4.63 \cdot 10^{-5} \text{ mol/dm}^3$; $[IBr] = 5.07 \cdot 10^{-4} \text{ mol/dm}^3$; b) $p(I_2) = p(Br_2) = 163 \text{ Pa} = 0.00161 \text{ atm}$; $p(IBr) = 1.79 \cdot 10^3 \text{ Pa} = 0.0176 \text{ atm}$; $K_p = 120$.

Datos Cifras significativas: 3

Gas: volumen $V = 5,00 \text{ dm}^3$

temperatura $T = 150 \text{ }^{\circ}\text{C} = 423 \text{ K}$

Cantidad inicial de yodo $n_0(I_2) = 0,00150 \text{ mol } I_2$

Cantidad inicial de bromo $n_0(Br_2) = 0,00150 \text{ mol } Br_2$

Constante de equilibrio (en función de las concentraciones) $K_c = 120$

Constante de los gases ideales $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Concentración de cada especie en el equilibrio $[I_2]_e$, $[Br_2]_e$, $[Br_2]_e$

Presión parcial de cada gas en el equilibrio $p(I_2)$, $p(Br_2)$, p(Br)

Constante de equilibrio en función de las presiones K_p

Ecuaciones

Ley de Dalton de las presiones parciales $p_t = \sum p_i$

Concentración de la sustancia X [X] = n(X) / V

Ecuación de estado de los gases ideales $p \cdot V = n \cdot R \cdot T$

Constantes del equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_{c} = \frac{[C]_{e}^{c} \cdot [D]_{e}^{d}}{[A]_{e}^{d} \cdot [B]_{e}^{d}} \quad K_{p} = \frac{p_{e}^{c}(C) \cdot p_{e}^{d}(D)}{p_{e}^{d}(A) \cdot p_{e}^{d}(B)}$

Solución:

a) La ecuación química es:

$$I_2(g) + Br_2(g) \rightleftharpoons 2 \ IBr(g)$$

Se llama x a la cantidad de yodo que se transforma en bromuro de yodo. Por la estequiometría de la reacción,

		I_2	Br_{2}	1	2 IBr	
Cantidad inicial	n_0	0,00150	0,00150		0	mol
Cantidad que reacciona o se forma	$n_{ m r}$	х	х		2 x	mol
Cantidad en el equilibrio	$n_{\rm e}$	0,00150 - x	0,00150 - x		2 x	mol

La ecuación de la constante de equilibrio es:

$$K_c = \frac{[\mathrm{IBr}]_{\mathrm{e}}^2}{[\mathrm{I}_2]_{\mathrm{e}} \cdot [\mathrm{Br}_2]_{\mathrm{e}}}$$

La concentración en mol·dm⁻³ se obtiene dividiendo la cantidad entre el volumen (en dm³):

$$K_{c}=120 = \frac{\left(\frac{n_{e}(\text{IBr})}{V}\right)^{2}}{\left(\frac{n_{e}(\text{I}_{2})}{V}\right) \cdot \left(\frac{n_{e}(\text{Br}_{2})}{V}\right)} = \frac{\left(\frac{2x}{5,00}\right)^{2}}{\left(\frac{0,00150 - x}{5,00}\right) \left(\frac{0,00150 - x}{5,00}\right)} = \frac{(2x)^{2}}{(0,00150 - x)^{2}}$$

$$\pm \sqrt{120} = \frac{2x}{0,00150 - x} = \pm 11,0$$

$$x = 0,00127 \text{ mol}$$

Las cantidades en el equilibrio serán:

$$n_{\rm e}({\rm IBr}) = 2~x = 0,00254~{
m mol~IBr}$$

$$n_{\rm e}({\rm Br}_2) = n_{\rm e}({\rm I}_2) = 0,00150 - x = 2,3\cdot 10^{-4}~{
m mol}$$

Las concentraciones serían:

[IBr]_e =
$$\frac{0,00254 \text{ mol IBr}}{5,00 \text{ dm}^3}$$
 = 5,07 · 10⁻⁴ mol/dm³

$$[Br_2]_e = [I_2]_e = \frac{2.3 \cdot 10^{-4} \text{ mol}}{5.00 \text{ dm}^3} = 4.6 \cdot 10^{-4} \text{ mol/dm}^3$$

b) Suponiendo comportamiento ideal para los gases, la presión parcial de cada uno de ellos viene dada por:

$$p_{i} = \frac{n_{i} \cdot R \cdot T}{V}$$

$$p(\text{IBr}) = \frac{0,00254 \text{ mol HI} \cdot 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 423 \text{ K}}{5,00 \cdot 10^{-3} \text{ m}^{3}} = 1,79 \cdot 10^{3} \text{ Pa}$$

$$p(\text{IBr}) = 1,79 \cdot 10^{3} \text{ Pa} \cdot \frac{0,082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}}{8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}} \cdot \frac{\text{J}}{\text{Pa} \cdot \text{m}^{3}} \cdot \frac{1 \text{ m}^{3}}{10^{3} \text{ dm}^{3}} = 0,0176 \text{ atm}$$

$$p(\text{Br}_{2}) = p(\text{I}_{2}) = \frac{2,3 \cdot 10^{-4} \text{ mol} \cdot 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 423 \text{ K}}{5,00 \cdot 10^{-3} \text{ m}^{3}} = 160 \text{ Pa}$$

$$p(\text{Br}_{2}) = p(\text{I}_{2}) = 160 \text{ Pa} \cdot \frac{0,082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}}{8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}} \cdot \frac{\text{J}}{\text{Pa} \cdot \text{m}^{3}} \cdot \frac{1 \text{ m}^{3}}{10^{3} \text{ dm}^{3}} = 0,0016 \text{ atm}$$

La constante de equilibrio en función de las presiones será:

$$K_{p} = \frac{p_{e}^{2}(\operatorname{IBr})}{p_{e}(\operatorname{Br}_{2}) \cdot p_{e}(\operatorname{I}_{2})} = \frac{\left(\frac{n_{e}(\operatorname{IBr}) \cdot R \cdot T}{V}\right)^{2}}{\left(\frac{n_{e}(\operatorname{Br}_{2}) \cdot R \cdot T}{V}\right) \cdot \left(\frac{n_{e}(\operatorname{I}_{2}) \cdot R \cdot T}{V}\right)} = \frac{[\operatorname{IBr}]_{e}^{2}}{[\operatorname{Br}_{2}]_{e} \cdot [\operatorname{I}_{2}]_{e}} \cdot \frac{(R \cdot T)^{2}}{R \cdot T \cdot R \cdot T} = K_{c} = 120$$

- 4. Se introduce fosgeno (COCl₂) en un recipiente vacío de 2 dm³ de volumen a una presión de 0,82 atm y una temperatura de 227 °C, produciéndose su descomposición segundo el equilibrio:
 - $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$. Sabiendo que en estas condiciones el valor de K_p es 0,189; calcula: a) La concentración de todas las especies presentes en el equilibrio.
 - b) La presión parcial de cada una de las especies presentes en el equilibrio.

(A.B.A.U. extr. 20)

Rta.: a) $[COCl_2]_e = 0.0124 \text{ mol/dm}^3$; $[CO]_e = [Cl_2]_e = 0.00756 \text{ mol/dm}^3$ b) $p_e(COCl_2) = 0.510 \text{ atm}$; $p_e(CO) = p_e(Cl_2) = 0.310 \text{ atm}$.

Datos Cifras significativas: 3

Gas: volumen $V = 2,00 \text{ dm}^3$ temperatura $T = 227 \text{ }^{\circ}\text{C} = 500 \text{ K}$

Cifras significativas: 3

Presión inicial de fosgeno $p_0(COCl_2) = 0,820 \text{ atm } COCl_2$

Constante de equilibrio (en función de las presiones en atm) $K_p = 0,189$

Constante de los gases ideales $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Concentración de cada una de las especies en el equilibrio $[COCl_2]_e$, $[CO]_e$, $[Cl_2]_e$ Presión parcial de cada una de las especies en el equilibrio $p_e(COCl_2)$, $p_e(CO)$, $p_e(Cl_2)$

Ecuaciones

Ley de Dalton de las presiones parciales $p_{\rm t} = \sum p_i$ Concentración de la sustancia X $[{\rm X}] = n({\rm X}) \ / \ V$

Ecuación de estado de los gases ideales $p \cdot V = n \cdot R \cdot T$

Constante de presiones del equilibrio: $a \, A + b \, B \rightleftharpoons c \, C + d \, D$ $K_p = \frac{p_e^c(C) \cdot p_e^d(D)}{p_e^d(A) \cdot p_e^b(B)}$

Solución:

a) La ecuación química es:

$$COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$$

Si se llama x a la presión parcial del fosgeno que se disocia

		COCl ₂	=	СО	Cl ₂	
Presión inicial	p_0	0,820		0	0	atm
Presión que reacciona o se forma	p_{r}	x	\rightarrow	x	x	atm
Presión en el equilibrio	p_{e}	0,820 - x		x	x	atm

La ecuación de la constante de equilibrio en función de las presiones es:

$$K_{p} = \frac{p_{e}(CO) \cdot p_{e}(Cl_{2})}{p_{e}(COCl_{2})}$$

$$0,189 = \frac{x \cdot x}{0,820 - x}$$

$$x^2 + 0,189 x - 0,155 = 0$$

$$x = 0.310$$
 atm

Se calculan primero las presiones parciales en el equilibrio:

$$p_{\rm e}({\rm CO}) = p_{\rm e}({\rm Cl_2}) = x = 0.310 \text{ atm}$$

$$p_e(COCl_2) = 0.820 - x = 0.510 \text{ atm}$$

b) Suponiendo comportamiento ideal para los gases, la presión parcial de cada uno de ellos viene dada por:

$$p_i = \frac{n_i \cdot R \cdot T}{V}$$

Las concentraciones serán:

$$[CO]_e = [Cl_2]_e = \frac{p(Cl_2)}{R \cdot T} = \frac{0,310 \text{ atm}}{0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 500 \text{ K}} = 0,00756 \text{ mol/dm}^3$$

$$[COCl_2]_e = \frac{p(COCl_2)}{R \cdot T} = \frac{0,510 \text{ atm}}{0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 500 \text{ K}} = 0,0124 \text{ mol/dm}^3$$

CUESTIONES

1. Para la reacción en equilibrio: $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g) \Delta H^0 < 0$; explica razonadamente cómo se desplazará el equilibrio si se añade $H_2(g)$.

(A.B.A.U. ord. 20)

Solución:

La constante de equilibrio en función de las concentraciones puede escribirse así:

$$K_{c} = \frac{[\mathrm{NH_{3}}]_{\mathrm{e}}^{2}}{[\mathrm{N_{2}}]_{\mathrm{e}} \cdot [\mathrm{H_{2}}]_{\mathrm{e}}^{3}} = \frac{\frac{n_{\mathrm{e}}^{2}(\mathrm{NH_{3}})}{V^{2}}}{\frac{n_{\mathrm{e}}(\mathrm{N_{2}})}{V} \cdot \frac{n_{\mathrm{e}}^{3}(\mathrm{H_{2}})}{V^{3}}} = \frac{n_{\mathrm{e}}^{2}(\mathrm{NH_{3}})}{n_{\mathrm{e}}(\mathrm{N_{2}}) \cdot n_{\mathrm{e}}^{3}(\mathrm{H_{2}})} V^{2}$$

La constante de equilibrio solo depende de la temperatura. No varía aunque cambien las cantidades de reactivos o productos, o disminuya el volumen.

Si se añade hidrógeno, para que K_c permanezca constante, o bien deberá aumentar el numerador $n_e(\mathrm{NH_3})$, o disminuir la cantidad de nitrógeno en el denominador $n_e(\mathrm{N_2})$. El equilibrio se desplazará (hacia la derecha) hasta alcanzar un nuevo estado de equilibrio en el que habrá más $\mathrm{NH_3}$ y menos $\mathrm{N_2}$.

2. a) Dada la reacción: $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$, $\Delta H^o < 0$, razona cómo influye sobre el equilibrio un aumento de la temperatura.

(A.B.A.U. extr. 19)

Solución:

a) La constante de equilibrio varía con la temperatura segundo la ecuación de Van't Hoff:

$$\ln \frac{K_2}{K_1} = \frac{-\Delta H \circ}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

Para una reacción exotérmica (ΔH° < 0), si $T_2 > T_1$:

$$\frac{1}{T_{2}} < \frac{1}{T_{1}} \implies \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right) < 0$$

$$\ln \frac{K_{2}}{K_{1}} = \frac{-\Delta H^{\circ}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right) = \frac{-\cdot (-)}{+} \cdot (-) < 0$$

$$K_{2} < K_{1}$$

La constante disminuye al aumentar la temperatura.

ACLARACIONES

Los datos de los enunciados de los problemas no suelen tener un número adecuado de cifras significativas. Por eso he supuesto que los datos tienen un número de cifras significativas razonables, casi siempre tres cifras significativas. Menos cifras darían resultados, en ciertos casos, con amplio margen de incertidumbre. Así que cuando tomo un dato como V = 1 dm³ y lo reescribo como:

Cifras significativas: 3

 $V = 1,00 \text{ dm}^3$

lo que quiero indicar es que supongo que el dato original tiene tres cifras significativas (no que las tenga en realidad) para poder realizar los cálculos con un margen de incertidumbre más pequeño que el que tendría

si lo tomara tal como lo dan. (1 dm³ tiene una sola cifra significativa, y una incertidumbre relativa del ¡100 %! Como las incertidumbres se acumulan a lo largo del cálculo, la incertidumbre final sería inadmisible. Entonces, ¿para qué realizar los cálculos? Con una estimación sería suficiente).

Cuestiones y problemas de las <u>Pruebas de evaluación de Bachillerato para el acceso a la Universidad</u> (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.

Algunos cálculos se hicieron con una hoja de cálculo de LibreOffice del mismo autor.

Algunas ecuaciones y las fórmulas orgánicas se construyeron con la extensión <u>CLC09</u> de Charles Lalanne-Cassou.

La traducción al/desde el gallego se realizó con la ayuda de <u>traducindote</u>, y del <u>traductor de la CIXUG</u>.

Se procuró seguir las <u>recomendaciones</u> del Centro Español de Metrología (CEM).

Se consultó al Copilot de Microsoft Edge y se tuvieron en cuenta algunas de sus respuestas en las cuestiones.

Actualizado: 17/07/24

Sumario

EQUILIBRIO QUÍMICO EN FASE GAS	
PROBLEMAS	1
Con datos del equilibrio	
Con la constante como dato	
CUESTIONES	
Índice de pruebas A.B.A.U.	
2017	
1. (ord.)	6
2. (extr.)	9
2018	
1. (ord.)	11
2. (extr.)	16
2019	
1. (ord.)	5
2. (extr.)	10, 23
2020	
1. (ord.)	14, 23
2. (extr.)	21
2021	
1. (ord.)	20
2. (extr.)	
2022	
1. (ord.)	13
2. (extr.)	7
2023	
1. (ord.)	3
2. (extr.)	
2024	
1. (ord.)	
2. (extr.)	1