

4. 塑膠部智能工廠推動進度

塑膠部智能工廠推動由副總主導,每月召集檢討,以推動全員AI為目標。將生產管理及 營運管理導入大數據分析,並利用模擬軟體輔助建構,主要分為2個部分:

- 1. 模擬工廠與整廠優化: 包括資料數位化、製程安全管理、製程管理優化、品質管理優化、設備監控管理、工廠安全管理,以化工模擬軟體結合AI預測模型將生產設備由自動化朝向數位工廠演進。
- 2. <mark>營運數位化:</mark>將產銷管理、市場預測及營運管理,導入雲端運算、行動裝置,以大數據分析及人工智慧等技術,朝向營運數位化的目標努力。

模擬工廠與整廠優化

資料數位化

即時數據資料庫現場輪班管理數位化

製程管理優化

製程單元預測模組 製程跨單元整合優化

設備監控管理

設備保全/電氣SCADA系統 設備性能與預警模組

製程安全管理

腐蝕監控預警 反應器溫度控制AI分析

品質管理優化

包裝袋車縫影像辨識 膠粒MI預測

工廠安全管理

槽車收料安全影像辨識 危險氣體洩漏影像監控

營運數位化

產銷管理

成品預約出貨系統 智能化生產排程

市場預測

產品損益預估分析 商業智能平台

營業管理

內/外銷銷售及交運狀態產品自動搜尋與客戶歷程

塑膠部模擬工廠與整廠優化開發: 開發內容及項目分為6大部分,預定2024年11月全部完成。

	塑膠部	PC廠 (麥寮)		PP廠 (海豐)		PABS廠 (麥寮)		PABS廠 (新港)		PABS廠 (寧波)		合計
	模擬工廠	已完成 /總數	完成日 (預完日)	已完成/總數	完成日 (預完日)	已完成/總數	完成日 (預完日)	已完成/總數	完成日 (預完日)	已完成/總數	完成日 (預完日)	已完成 /總數
1	建立全廠即時 數據資料庫	14951 /14951	2020. 02	11205 /11205	2018. 6	12739 /12739	2018. 10	16497 /16497	2018. 10	14, 365 /14, 365	2021. 12	69, 397
2	開發製程單元 預測模組	14/29	<mark>(2024. 11)</mark>	7/19	<mark>(2024. 6)</mark>	7/22	<mark>(2023. 11)</mark>	11/26	<mark>(2023. 12)</mark>	8/31	(<mark>2024. 6</mark>)	57/74
3	開發跨單元整 合預測模組	0/3	(2024. 11)	0/1	(2024. 4)	0/0	ı	0/0	1	0/0	_	0/4
4	開發設備性能 及預警模組	45/45	2022. 3	129/130	(2023. 5)	63/64	(2022. 12)	34/62	(2023. 6)	14/32	(2023. 11)	285/333
5	開發製程模擬 模型	3/12	(2024. 9)	1/3	(2024.7)	2/6	(2023. 7)	4/9	(2023. 10)	0/8	(2024. 5)	10/38
6	開發腐蝕智慧 監控系統	1/3	(2024. 11)	0/1	(2023.11)	0/1	(2023. 11)	0/1	(2023. 12)	0/1	(2024. 8)	1/7

4. 塑膠部智能工廠推動進度

塑膠部模擬工廠「製程單元預測模組」案件彙總:

項次	項目	內容摘要	年效益 (千元)	完成日		
1	PP廠(海豐)製粒機膠粒 MI預測(3案)	縮短改製時間,降低過渡料。				
2	PC廠(麥寮)寡聚合溶液 品質預測(3案)	維持寡聚合溶液濃度在控制標準值間。				
3	PABS 廠 (麥 寮)SAN DMF純化系統效能預測	溶劑DMF回收過程,減少蒸汽 使用量。。				
4	PABS廠(新港)凝聚段 KOH添加優化	縮短pH值穩定時間,提升產品品質。				
5	PABS廠(寧波)凝聚段 KOH添加優化	縮短pH值穩定時間,提升產品品質。				
6	6 已完成案件(含上述案件):57案					
7	進行中案件:17案					
	合計共74案					

案例:製粒機膠粒MI(熔融指數)預測模組開發

PP膠粒經常生產的規格有64種,其中加斷鏈劑的規格有32種,規格改製較為頻繁,主要 是調整斷鏈劑添加量及混煉段閘門開度,來改變熔融指數,作為規格改製完成的指標。

動機: 規格改製過程中,樣品熔融指數檢測時間需要2小時,若能用AI模組提前預測熔 融指數,可縮短斷鏈劑添加量及閘門開度調整時間,減少過渡品產生量。

案例:製粒機膠粒MI(熔融指數)預測模組開發

22

預測模組開發流程:

1. 定義問題與目標:

PP規格改製頻繁造成過渡料多→以預測模組建議值調整控制,縮短規格改製時間。

2. 資料盤點與清理:

收集規格改製數據→排除停開車及數據異常的資料→清理後有13,782筆訓練數據。

3. 數據探索分析:

利用皮爾森相關係數進行重要性分析,將50個特徵變數篩選出8個高度相關的變數。

4. 模組開發:

使用6種監督式演算法做交叉驗證比對,選用絕對百分比誤差最低的極限梯度提升演算法來 開發預測模組。

5. 線上應用:

於RTPMS頁面顯示的熔融指數預測數據,作為盤控人員操作調整的參考。

案例:製粒機膠粒MI(熔融指數)預測模組開發

- 1. 定義問題與目標 2. 資料盤點與清理 3. 數據探索分析 4. 模組開發 5. 3
 - 5. 線上應用
 - 1. PP廠開發熔融指數預測模組,盤控人員依據規格改製單輸入規格名稱,再依模組每10 分鐘提供的預測熔融指數,提早進行斷鏈劑及閘門開度調整,判斷熔融指數是否達到 目標值,縮短改製時間,減少過渡品的發生量。

2. 將模組上線進行訓練及驗證,發現因PP產品規格多,熔融指數操作區間較大,熔融指數由0.3到95的規格都有,模組整體的平均誤差值(MAPE)為10.2%,高於目標誤差值5%,模組整體準確度不佳,需再進行改善及修模。

案例: 製粒機膠粒MI(熔融指數)預測模組開發

3. 數據探索分析 4. 模組開發 1. 定義問題與目標 2. 資料盤點與清理 5. 線上應用

模組分模及改善:

以2021年9月品管檢測數據與AI模組預測數據進行比對,發現不同的MI操作範圍,平均 絕對百分比誤差值亦不相同。

2. <mark>經過製程與AI開發小組檢討後,決定將原有模組</mark>依不同熔融指數操作區間,分成3個模 組進行修模及重新訓練驗證。分模後3個模組平均絕對百分比誤差值(MAPE),均小於 5%, 符合目標要求, 代表分模的做法有效。

MI區域	平均絕對百分比誤差(MAPE)				
MI < 5	3%				
5 < MI < 40	1.2%				
MI > 40	2.8%				

1. 定義問題與目標 2. 資料盤點與清理 3. 數據探索分析 4. 模組開發 5. 線上應用

線上應用:

- 1. 模組上線後,可於即時生產管理系統(RTPMS)畫面顯示即時操作數據、趨勢圖及熔融指數預測值。
 - (1)顯示目前的生產規格及產速。
 - (2)提供熔融指數即時預測值及最新的品管熔融指數實測值,供盤控人員進行操作比較。
 - (3)顯示即時斷鏈劑添加量及閘門開度。

2. 本案平行展開到第一系列及第二系列後,合計的年效益