

Entrance Exam 2006 - 2007

Mathematics

Duration: 3 hours

The distribution of grades is over 25

I-(2 pts) The adjacent table is that of a continuous function f defined on IR. The représentative curve (C) of f admits at $+\infty$ an asymptotic direction parallel to the straight line of equation y = x.

1-Determine an equation of the tangent (T) to (C) at the point of

X	-∞		1		$+\infty$
f "(x)		+		+	
f'(x)		+	1/2	+	
f (x)	0		1		$+\infty$

- abscissa 1. 2- Draw (C) and (T).
- 3- Prove that, for all $x \in [1, +\infty[$, (x+1)/2 < f(x) < x.

II-(4 pts) An urn contains 6 identical balls of which 4 are red and 2 are black.

1- We randomly draw two balls from the urn. Consider the three events:

 A_0 : the two drawn balls are red

 A_{I} : the two drawn balls have different colors.

 A_2 : the two drawn balls are black.

Calculate the probability of each of A_0 , A_1 and A_2 .

2- After the first drawing, the urn contains 4 balls. We randomly draw two new balls from the urn. Consider the three events:

 B_0 : the two drawn balls are red

 B_1 : the two drawn balls have different colors.

 B_2 : the two drawn balls are black.

- a) Calculate $p(B_0/A_0)$, $p(B_0/A_1)$ and $p(B_0/A_2)$. Deduce that $p(B_0) = 0.4$
- b) Calculate $p(B_1)$ and $p(B_2)$
- c) Knowing that only one black ball is obtained in the second drawing, calculate the probability that only one black ball has been obtained in the first drawing.
- 3- Calculate the probability that, after the two drawing, the remaining two balls in the urn are red.
- III- (6 pts) The space is referred to a direct orthonormal system $(O; \vec{i}, \vec{j}, \vec{k})$

Consider the point A (-1; 1; 0), the plane (P) of equation x- 2y + 2z - 6 = 0 and the straight line (D) defined by the system x = m+1; y = 2m+1; z = 3m+2.

- 1- Prove that A and (D) determine a plane (Q) and determine an equation of (Q).
- 2- a) Prove that (P) and (Q) intersect along the straight line (Δ) defined by x = 2; y = t 2; z = t.
 - b) Determine the coordinates of A', the orthogonal projection of A on (Δ) .
- 3- M is a variable point of (Δ). Let α be a measure of the angle that (AM) makes with (P).
 - a) Prove that $AM \times \sin \alpha = 3$
 - b) Determine the position of M so that α is maximum. Calculate $\sin \alpha$ in this case.
 - c) What does this value of α represent for the two planes (P) and (Q)?

- 4- Consider the circle (C) of center A tangent to (Δ) and lying in the plane (Q). The orthogonal projection of (C) on the plane (P) is an ellipse (E).
 - a) Calculate the radius of (C).
 - b) Determine the coordinates of the center of (*E*).
 - c) Calculate the eccentricity of (*E*).
 - d) Determine a system of parametric equation of the focal axis of (E).
 - e) Determine the coordinates of each of the two foci of (*E*).
 - f) Calculate the area of the domain bounded by (E) and its auxiliary circle (γ) .

IV- (6 pts) The complex plane is referred to a direct orthonormal system $(O; \overrightarrow{u}, \overrightarrow{v})$

Consider the points A_0 , A_1 and A_2 of respective affixes $z_0 = 5$ - 4i, $z_1 = -1$ -4i et $z_2 = -4$ -i. Let S be the similar transforms A_0 into A_1 and A_2 into A_2

- 1-a) Determine the ratio of S.
 - b) Prove that the point I (2; 2) is the center of the circle (γ) circumscribed about the triangle $A_0A_1A_2$.
 - c) Calculate the radius of the image of (γ) by (S).
- 2-a) Prove that the complex expression of S is $z' = \frac{1-i}{2}z + \frac{i-3}{2}$.
 - b) Deduce the angle of S and the affix d of its center D.
- 3-Let M be any point of affix z, such that $z \neq d$, and M', with affix z', its image by S.
 - a) Determine the nature of the triangle *DMM*′
- b) Deduce that d z' = i(z z').
- 4-Consider the sequence of points (A_n) of first term A_0 defined by $A_{n+1} = S(A_n)$

Let (U_n) be the sequence defined on *IN* by $U_n = A_n A_{n+1}$

- a) Plot the points A_0 , A_1 , A_2 and construct the points A_3 , A_4 , A_5
- b) Prove that the sequence (U_n) is geometric.
- 5- Consider the sequence of points (P_k) defined by $P_k = A_{m+4k}$ where m is a given natural number
 - a) Prove that all the points P_k are collinear.
 - b) Prove that, for all natural numbers k, $P_{k+1} = H(P_k)$ where H is a transformation to be determined.

V-(7 pts) A. Consider the differential equation (1) $y' + 2y^2e^x - y = 0$ where y is a function defined on IR,

such that, for all x in IR, $y(x) \neq 0$. Let $z = \frac{1}{y}$ where z is a differentiable function defined on IR.

- 1- Determine the differential equation (2) satisfied by z.
- 2- Solve the equation (2) and deduce the general solution of equation (1).
- 3- Determine the particular solution of equation (1) that satisfies the condition $y(0) = \frac{1}{2}$

<u>B.</u> Let f be the function defined on IR by $f(x) = \frac{1}{e^{x} + e^{-x}}$. Designate by (C) the representative curve of f in an

orthonormal system $(O; \vec{i}, \vec{j})$

- 1- Prove that f is an even function.
- 2- Set up the table of variations of f.
- 3-a) Set up the table of variations of the function g defined on $[0; +\infty[$ by g(x) = f(x) x.
 - b) Deduce that the equation f(x) = x admits in $[0 : +\infty[$ only one solution α . Verify that $0.4 < \alpha < 0.5$.
 - c) Draw (C) (Unit = 4 cm).
- 4-a) Prove that the restriction de f to the interval $[0; +\infty[$ admits an inverse function f^{-1} .
 - b) Determine the domain of definition of f^{-1} and calculate $f^{-1}(x)$. c) Draw the curve (γ) of f^{-1} in the same system as (C).

C. Let (V_n) be the sequence defined on *IN* by $V_n = \int_{0}^{n} f(x)dx$

- 1-a) Prove that, for all $x \ge 0$, $f(x) < e^{-x}$
 - b) Deduce that, for all n in IN, $V_n \le 1 e^{-n}$
- 2-a) Verify that $V_{n+1} V_n = \int_{-\infty}^{n+1} f(x) dx$
 - b) Deduce that the sequence (V_n) is strictly increasing.
 - c) Prove that the sequence (V_n) is convergent to a limit ℓ such that $0 \le \ell \le 1$.
- 3-Verify that $f(x) = \frac{e^x}{1 + e^{2x}}$ then Calculate V_n in terms of n and determine ℓ
 - 4- Calculate in cm² the area of the domain bounded by (γ) , y'y, x'x and the straight line of equation y = 2.

Entrance Exam 2006 - 2007

Solution of Mathematics

Duration:3 hours

The distribution of grades is over 25

Exercice I

1- The equation of the tangent (T) to (C) at the point of abscissa 1 is $y = f(1) + f'(1)(x-1) = 1 + \frac{1}{2}(x-1)$

$$f'(1) = \frac{1}{2}$$
 and $f(1) = 1$ so $y = \frac{1}{2}x + \frac{1}{2} = \frac{1}{2}(x+1)$

2-

3) For x > 1, the representative curve of f is above the tangent and below the straight line of equation y = x hence $\frac{(x+1)}{2} < f(x) < x$

Exercise II

$$1-p(A_0) = \frac{C_4^2}{C_6^2} = \frac{2}{5}$$

$$p(A_1) = \frac{C_4^1 C_2^1}{C_6^2} = \frac{8}{15}$$

$$p(A_2) = \frac{C_2^2}{C_6^2} = \frac{1}{15}$$

2-a)
$$p(B_0/A_0) = \frac{C_2^2}{C_4^2} = \frac{1}{6}$$
, $p(B_0/A_1) = \frac{C_3^2}{C_4^2} = \frac{1}{2}$, $p(B_0/A_2) = 1$

$$p(B_0) = p(B_0 / A_0).p(A_0) + p(B_0 / A_1).p(A_1) + p(B_0 / A_2).p(A_2) = \frac{1}{6}.\frac{2}{5} + \frac{1}{2}.\frac{8}{15} + \frac{1}{15} = \frac{2}{5} = 0.4$$

$$b) \ p(B_1) = p(B_1 / A_0).p(A_0) + p(B_1 / A_1).p(A_1) + p(B_1 / A_2).p(A_2) = \frac{2}{3}.\frac{2}{5} + \frac{1}{2}.\frac{8}{15} + 0 = \frac{8}{15}$$

or
$$p(B_1/A_2) = 0$$

$$p(B_2) = \frac{1}{6} \cdot \frac{2}{5} = \frac{1}{15}$$

c)
$$p(A_1/B_1) = \frac{p(A_1 \cap B_1)}{p(B_1)} = \frac{p(B_1/A_1) \times p(A_1)}{p(B_1)} = \frac{1}{2}$$

3-
$$p(2R) = p(A_0) \times p(B_2/A_0) + p(A_1) \times p(B_1/A_1) + p(B_0/A_2) \cdot p(A_2) = \frac{2}{5} \cdot \frac{1}{6} + \frac{1}{2} \cdot \frac{8}{15} + 1 \cdot \frac{1}{15} = \frac{2}{5} \cdot \frac{1}{15} + \frac{1}{15} = \frac{2}{5} \cdot \frac{1}{15} + \frac{1}{15} = \frac{2}{5} \cdot \frac{1}{15} + \frac{1}{15} = \frac{2}{15} \cdot \frac{1}{15} + \frac{1}{15} \cdot \frac{1}{15} = \frac{2}{15} \cdot \frac{1}{15} + \frac{1}{15} = \frac{2}{15} \cdot \frac{1}{15} + \frac{1}{15} \cdot \frac{1}{15} = \frac{2}{15} \cdot \frac{1}{15} + \frac{2}{15} \cdot \frac{1}{15} = \frac{2}{15} \cdot$$

Exercise III

1) The point A does not belong to (d) since if -1 = m+1, 1 = 2m+1, 0 = 3m+2

We get
$$m = -2$$
, $m = 0$, $m = -\frac{2}{3}$

Hence A and (d) determine a plan (Q). B (1, 1, 2) is a point of (d) and M(x, y, z) is a variable point of (Q). An equation of (Q) is \overrightarrow{AM} . $(\overrightarrow{AB} \wedge \overrightarrow{v_d}) = 0$ which gives x + y - z = 0

2) a- $\overrightarrow{n_p}(1;-2;2)$ and $\overrightarrow{n_Q}(1;1;-1)$ are not collinear then (P) and (Q) intersect along the straight line (Δ)

Let M (2; t-2; t) be a variable point of (
$$\Delta$$
)
M \in (P) since $x_M - 2y_M + 2z_M - 6 = 2 - 2t + 4 + 2t - 6 = 0$

$$M \in (Q)$$
 since $x_M + y_M - z_M = 2 + t - 2 - t = 0$

Hence x = 2, y = t-2, z = t is a system of parametric equations of (Δ) .

b- A' is a point of (Δ) then A' (2; t-2; t), $\overrightarrow{AA'}$ (3; t-3; t) and $\overrightarrow{v}_{\Delta}$ (0;1;1) are orthogonal, then $\overrightarrow{AA'}.\overrightarrow{v}_{\Delta} = 0$ which gives t-3+t = 0, then t = $\frac{3}{2}$ and consequently A' (2; $-\frac{1}{2}; \frac{3}{2}$)

3) a- Let h be the orthogonal projection of A on (P), the angle that (AM) makes with (P) is $\stackrel{\wedge}{AMH}$.

$$\sin \alpha = \frac{\text{HA}}{\text{AM}} \text{ but } HA = d(A; P) = \frac{|-1 - 2 - 6|}{\sqrt{1 + 4 + 4}} = 3$$

then $\sin \alpha = \frac{3}{AM}$ and consequently $AM \cdot \sin \alpha = 3$

b- α is maximum when AM is minimum that is when M is confounded with A' in this case $AA'(3; -\frac{3}{2}; \frac{3}{2})$ therefore $AA' = \frac{3}{2}\sqrt{6}$

$$\sin\alpha = \frac{\text{HA}}{\text{AA'}} = \frac{3}{\frac{3}{2}\sqrt{6}} = \frac{\sqrt{6}}{3}$$

- c- (AH) \perp (P) then (AH) \perp (Δ) and since (AA') \perp (Δ) then (Δ) \perp (A'H) hence α is the plane angle of the dihedral of (P) and (Q).
- 4) a- The radius of (C) is $r = AA' = \frac{3}{2}\sqrt{6}$
 - b- The center of (E) is the point H. The vector \mathbf{r} $n_p(1;-2;2)$ is a direction vector of (AH). A system of parametric equations of (AH) is $x = \lambda 1$, $y = -2\lambda + 1$, $z = 2\lambda$. H is the point of intersection of (AH) and (P), then $\lambda 1 + 4\lambda 2 + 4\lambda 6 = 0$ which gives $\lambda = 1$ so H(0; -1; 2)
 - c- We know that a = r, $b = r\cos\alpha$ then, $c^2 = a^2 b^2 = r^2 r^2\cos^2\alpha = r^2\sin^2\alpha$ so $c = r\sin\alpha = 3$

$$e = \frac{c}{a} = \frac{r \sin \alpha}{5} \sin \alpha = \frac{\sqrt{6}}{3}$$

- d- The focal axis of (E) is the straight line passing through the center of (E) and parallel to the line (Δ) then $\vec{v}_{\Delta}(0;1;1)$ is the direction vector of the focal axis, a system of parametric equation of the focal axis is : x = 0, y = k-1, z = k+2
- e- Let F be one focus of (E), F belongs to the focal axis then: F(0; k-1; k+2), HF = c = 3 so HF² = 9. But $\overrightarrow{HF}(0;k;k)$ so $k^2 + k^2 = 9$ which gives $k = \frac{3\sqrt{2}}{2}$ or $k = -\frac{3\sqrt{2}}{2}$ therefore F(0; $\frac{3\sqrt{2}}{2} - 1$; $\frac{3\sqrt{2}}{2} + 2$)

 And F(0; $-\frac{3\sqrt{2}}{2} - 1$; $-\frac{3\sqrt{2}}{2} + 2$)
- f- The area of the auxiliary circle is $S_1 = \pi \times a^2 = \pi \times r^2$ and the area of the ellipse is $S_2 = \pi \, a \, b = \pi \times r \times r \cos \alpha$, then the area of the domain bounded by (E) and its auxiliary circle is: $S = S_1 S_2 = \pi \times r^2 \pi \times r^2 \cos \alpha = \pi \times r^2 (1 \cos \alpha) \text{ but } \cos \alpha = \sqrt{1 \sin^2 \alpha} = \frac{\sqrt{3}}{3} \text{ and } r = \frac{3}{2} \sqrt{6}$ then, $S = \frac{27}{2} \pi (1 \frac{\sqrt{3}}{3}) \text{ square units.}$

Exercise IV

1) a-
$$k = \frac{A_1 A_2}{A_0 A_1} = \frac{|z_2 - z_1|}{|z_1 - z_0|} = \frac{|-3 + 3i|}{|-6|} = \frac{\sqrt{2}}{2}$$

b-
$$IA_0 = |z_0 - z_I| = |5 - 4i - 2 - 2i| = |3 - 6i| = 3\sqrt{5}$$
, $IA_1 = |z_1 - z_I| = |-1 - 4i - 2 - 2i| = |-3 - 6i| = 3\sqrt{5}$, $IA_2 = |z_2 - z_I| = |-4 - i - 2 - 2i| = |-6 - 3i| = 3\sqrt{5}$

Then $IA_0 = IA_1 = IA_2$ consequently I (2; 2) is the center of circle (γ) circumscribed about triangle $A_0A_1A_2$

- c- The image of (γ) by S is a circle of radius, $R' = K.R = \frac{\sqrt{2}}{2}.3\sqrt{5} = \frac{3}{2}\sqrt{10}$
- 2) a- The complex expression of a similitude is z'=az+b; $S(A_0)=A_1$ gives $:zA_1=az_{A0}+b$ and $S(A_1)=A_2$ gives $:zA_2=az_{A1}+b$ we get the system :(5-4i) a+b=-1-4i

(-1-4i) a+b= -4-i that has no solution
$$a = \frac{1}{2} - \frac{1}{2}i$$
 and $b = -\frac{3}{2} + \frac{1}{2}i$ then $z' = \frac{1-i}{2}z + \frac{i-3}{2}i$

b-
$$a = \left(\frac{1-i}{2}\right) = \frac{\sqrt{2}}{2} \left(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2} e^{-i\frac{\pi}{4}}$$

then an angle of S is $-\frac{\pi}{4}$ the affix d of the center D of S is $d = \frac{b}{1-a} = -1 + 2i$

3) a-
$$DM' = \frac{\sqrt{2}}{2}DM$$
 and $(\overrightarrow{DM}; \overrightarrow{DM}' = -\frac{\pi}{4}(2\pi)$. Let $DM = \ell$ so $DM' = \frac{\sqrt{2}}{2}\ell$ then
$$MM'^2 = DM^2 + DM'^2 - 2DM \times DM' \cos(\frac{\pi}{4})$$

 $MM'^2 = \ell^2 + \frac{\ell^2}{2} - 2\ell \times \ell \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} = \frac{\ell^2}{2}$ so $MM' = \frac{\sqrt{2}}{2}\ell$ then the triangle DMM' is isosceles at M' and

since $M \stackrel{\circ}{D} M' = \frac{\pi}{4}$ then DMM' is right isosceles at M'.

b-
$$\frac{z'-d}{z'-z} = \frac{DM'}{MM'}e^{i(\overrightarrow{MM}';\overrightarrow{DM}')} = 1e^{i\frac{\pi}{2}} = i$$

$$z'-d = i(z'-z)$$
 and $d - z' = i(z - z')$

4) a-

b-
$$\frac{U_{n+1}}{U_n} = \frac{A_{(n+1)}A_{(n+2)}}{A_{(n)}A_{(n+1)}} but A_{n+1} = S(A_n) and A_{n+2} = S(A_{n+1}) then \frac{A_{(n+1)}A_{(n+2)}}{A_{(n)}A_{(n+1)}} = \frac{\sqrt{2}}{2} \text{ and consequently}$$

$$\frac{U_{n+1}}{U_n} = \frac{\sqrt{2}}{2} \Rightarrow (U_n) \text{ is a geometric sequence of common ratio } \frac{\sqrt{2}}{2} \text{ and of first term } U_0 = A_0 A_1 = 6$$

5) a-
$$(\overrightarrow{DP_k}; \overrightarrow{DP_{k+1}}) = (\overrightarrow{DA_{m+4k}} + \overrightarrow{DA_{m+4k+4}}) = (\overrightarrow{DA_{m+4k}} + \overrightarrow{DA_{m+4k+1}}) + \overrightarrow{DA_{m+4k+1}}; \overrightarrow{DA_{m+4k+2}}) + (\overrightarrow{DA_{m+4k+2}}; \overrightarrow{DA_{m+4k+2}}) + (\overrightarrow{DA_{m+4k+3}}; \overrightarrow{DA_{m+4k+3}}) = -\frac{\pi}{4} - \frac{\pi}{4} - \frac{\pi}{4} - \frac{\pi}{4} - \frac{\pi}{4} = -\pi(2\pi)$$

Then the points D, P_k and P_{k+1} are collinear; consequently all the points P_k belong to the same straight line passing through D.

$$b-\frac{DP_{(k+1)}}{DP_{(k)}} = \frac{DA_{(m+4k+4)}}{DA_{(m+4k)}} = \frac{DA_{(m+4k+4)}}{DA_{(m+4k+3)}} \cdot \frac{DA_{(m+4k+3)}}{DA_{(m+4k+2)}} \cdot \frac{DA_{(m+4k+2)}}{DA_{(m+4k+1)}} \cdot \frac{DA_{(m+4k+1)}}{DA_{(m+4k+1)}}$$
$$= \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} = \frac{1}{4} \Rightarrow (\overrightarrow{DP_k}; \overrightarrow{DP_{k+1}}) = -\pi(2\pi) \ then \ \overrightarrow{DP_{k+1}} = -\frac{1}{4} \overrightarrow{DP_k}$$

Consequently $P_{k+1} = H(P_k)$ where h is the dilatation of center D and ratio -1/4

Exercice V

A-1)
$$z = \frac{1}{y} \Rightarrow y = 1/z$$
 so
 $y' = \frac{z'}{z^2}$ then $y' + 2y^2e^x - y = 0$
Gives $-\frac{z'}{z^2} + 2\frac{1}{z^2}e^x - \frac{1}{z} = 0$ that is $-z' + 2e^x - z = 0$ and $(\beta); z' + z = 2e^x$

2) The general solution of z'+z=0 is $z_1 = C e^{-x}$

$$z_2 = e^x$$
 is a particular solution of the equation (β) then $z = z_1 = z_2 = Ce^{-x} + e^x$ is a general solution of (β)
 $y(x) = \frac{1}{z(x)} = \frac{1}{Ce^{-x} + e^x}$ is a general solution of (α)

3)
$$y(0) = \frac{1}{2} \Rightarrow c = 1 \Rightarrow y(x) = \frac{1}{e^x + e^{-x}}$$
 is a particular solution of (α)

B- 1) The domain of f is centered at O, and $f(-x) = \frac{1}{e^x + e^{-x}} = f(x) \Rightarrow f$ is an even function

2)
$$f'(x) = \frac{e^x - e^{-x}}{(e^x + e^{-x})} = \frac{1 - e^{2x}}{1 + e^{2x}}, f'(x) \ge 0 \text{ for } x \le 0 \text{ than the table of variations of } f \text{ is :}$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x) = 0$$

X	-∞	0	$+\infty$
f '(x)	+	0	-
f(x)	7	1/2	$\sqrt{}$

3) a- g'(x) = f'(x)-, then for x > 0, f'(x) < 0 so x > 0 g'(x) < 0 than the table of variations of g is

X	0		$+\infty$
g '(x)		-	
g (x)	1/2	- J	<u>-∞</u>

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} [f(x) - x] = 0 - \infty = -\infty$$

b- g is continuous and strictly decreasing over $[0; +\infty[$, it decrease from $\frac{1}{2}$ to $-\infty$ then its representative curve cuts the axis x'x at a unique point, consequently g(x) = 0 has one root α , so the equation

$$f(x) = x$$
 has one solution α over $[0; +\infty[$

$$g(0,4) = f(0,4) - 0,4 = 0,0625 > 0$$

$$g(0,6) = f(0,6) - 0,6 = -0,056 < 0$$
 therefore $0,4 < \alpha < 0,5$

c)

4) a-f is continuous and strictly decreasing over $[0; +\infty[$, then it admits an inverse function f^{-1}

b- The domain of definition of f^{-1} is $\left]0;\frac{1}{2}\right]$

$$y = \frac{1}{e^x + e^{-x}} \Rightarrow y = \frac{e^x}{1 + e^{2x}}$$
 then $ye^{2x} + y - e^x = 0$

quadratic equation in e^x , $\Delta=1-4y^2$; $e^x = \frac{1 \pm \sqrt{1-4y^2}}{2y}$; which gives

$$x = \ln\left(\frac{1 \pm \sqrt{1 - 4y^2}}{2y}\right) \text{ for } y = \frac{1}{4}; x = \ln\left[\frac{1 + \sqrt{1 - \frac{1}{4}}}{\frac{1}{2}}\right] = \ln(2 + \sqrt{3}) > 0 \text{ or } x = \ln\left[\frac{1 - \sqrt{1 - \frac{1}{4}}}{\frac{1}{2}}\right] = \ln(2 - \sqrt{3}) < 0$$

so the accepted solution is $x = \ln \left[\frac{1 + \sqrt{1 - 4y^2}}{2y} \right] \Rightarrow f^{-1}(x) = \ln \left[\frac{1 + \sqrt{1 - 4x^2}}{2x} \right]$

c-Drawing of the graph (γ) of f^{-1} in the same system as that of (C).

 (v_n) is the sequence defined on IN by $v_n = \int_0^n f(x)dx$

C-1) a-
$$f(x) - e^{-x} = \frac{1}{e^x + e^{-x}} - e^{-x} = \frac{1 - 1 - e^{-2x}}{e^x + e^{-x}} = \frac{-e^{-2x}}{e^x + e^{-x}} < 0 \text{ then } f(x) < e^{-x}$$

for all x and in particular for $x \ge 0$

b-
$$f(x) < e^{-x}$$
 then $\int_{0}^{n} f(x)dx < \int_{0}^{b} e^{-x}dx \operatorname{so} \int_{0}^{n} f(x)dx < [-e^{-x}]_{0}^{n}$
 $\int_{0}^{n} f(x)dx < 1 - e^{-n} \Rightarrow V_{n} \le 1 - e^{-n}$

2) a-
$$V_{n+1} - V_n = \int_{0}^{n+1} f(x) dx - \int_{0}^{n} f(x) dx = \int_{n}^{0} f(x) dx + \int_{0}^{n+1} f(x) dx = \int_{n}^{n+1} f(x) dx$$

b-Since f(x) > 0 then $\int_{n}^{n+1} f(x) dx > 0$ so $v_{n+1} - v_n > 0$ then $v_{n+1} > v_n$ consequently the sequence (v_n) is strictly increasing.

c – The sequence (ν_n) is increasing and bounded above by 1 then $V_n \le 1 - e^{-n} < 1$ so it is convergent to a limit ℓ . Since $0 \le \nu_n < 1$ then $0 \le \ell \le 1$

3)
$$f(x) = \frac{1}{e^x + e^{-x}} = \frac{e^x}{e^{2x} + 1}$$

$$v_n = \int_0^n \frac{e^x}{e^{2x} + 1} dx = \left[\arctan e^x\right]_0^n = \arctan e^n - \arctan 1 = \arctan e^n - \frac{\pi}{4}$$

$$\lim_{n \to +\infty} v_n = \lim_{n \to \infty} \arctan e^n - \frac{\pi}{4} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \quad \text{since } \lim_{n \to \infty} \arctan e^n = \arctan(+\infty) = \frac{\pi}{2}$$

4) The required area is
$$\int_{0}^{2} f(x)dx = v_2 = \arctan e^2 - \frac{\pi}{4}$$
 square units = $16 \times (\arctan e^2 - \frac{\pi}{4})cm^2$