Matematica Discreta 28 Maggio 2012

Recupero Compitini Modulo 1: Esercizi 1 e 2

Recupero Compitini Modulo 2: Esercizi 4 e 6

Compito Completo 12 crediti (a.a.2012): Esercizi 1,2,4,7

Compito Completo 12 crediti (a.a.2011): Esercizi 1,2,3,4

Matematica Discreta 6 crediti: Esercizi 3,4.

1. Provare che la cardinalità dell'insieme $\mathcal{P}(A)$ delle parti di un insieme A di cardinalità n è 2^n .

2. Si provi per induzione che

$$\sum_{k=0}^{x+1} (2k+1) = (x+1)^2.$$

3. Dato l'insieme $V=\{1,2,3,4,5,\ldots,n\}$ e due permutazioni σ e τ di V, si considerino i seguenti due grafi:

- G = (V, E), ove $E = \{ \{ \sigma(i), \sigma(j) \} : i \neq j \in V \};$
- $G_1 = (V, E_1)$, ove $E_1 = \{\{\tau(i), \tau(j)\} : i \neq j \in V\}$.
- (a) Quanti lati hanno $G \in G_1$?
- (b) Che grado ha il vertice i in G e in G_1 per ogni $i \in V$?
- (c) Si dica se G e G_1 sono isomorfi, costruendo un isomorfismo tra G e G_1 nel caso affermativo o provando che l'isomorfismo non esiste nel caso opposto.
- 4. Si provi che almeno uno dei due grafi G e \overline{G} , il complementare di G, è connesso (Suggerimento: se G non è connesso, esistono almeno 2 componenti connesse. Se x e y sono due vertici, e si vuole costruire un cammino da x a y in \overline{G} , si consideri prima il caso in cui x e y siano vertici di due componenti connesse distinte di G, e successivamente il caso in cui x e y siano vertici della medesima componente connessa di G, sfruttando il caso precedente).
- 5. Sia $V=R^2$ l'usuale spazio vettoriale su R, ove R è il campo dei numeri reali. Si dica, giustificando la risposta, se i seguenti sottoinsiemi di V sono o meno sottospazi vettoriali di V e, in caso affermativo, si trovi una base del sottospazio.
 - (a) $X = \{r(\pi, \sqrt{5}) : r \in R\}.$
 - (b) $Y = \{r(\pi, \sqrt{5}) + r(\sqrt{5}, \pi) : r \in R\}.$

6. (a) Si risolva, utilizzando il metodo di riduzione a scala per righe, il seguente sistema di equazioni lineari a coefficienti in *R*:

$$\begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & -3 \\ 4 & 3 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$

- (b) Sia $\phi: R^3 \to R^3$ lapplicazione lineare dallo spazio vettoriale R^3 in se, ove R è il campo dei numeri reali, tale che $\phi(a,b,c)=(2a+b+3c,a+2b-3c,4a+3b+3c)$. Si calcolino $\phi^{-1}(2,1,3)$ e $\phi^{-1}(0,0,0)$.
- (c) Si calcoli la dimensione di $Ker(\phi)$.
- 7. Si dica se la seguente matrice A è invertibile e in caso affermativo se ne calcoli l'inversa:

$$\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)$$