Extended crystals and Hernandez-Leclerc categories

Euiyong Park

University of Seoul

September 22, 2022

This talk is based on a joint work with M. Kashiwara (arXiv:2111.07255 and 2207.11644.

Motivation and Idea

Let

Motivation and Idea 000

- $V_q(\mathfrak{g}) := a$ quantum affine algebra (q: indeterminate)
- $ightharpoonup \mathscr{C}_{\mathfrak{g}}:=$ the category of finite-dimensional integrable $U_a'(\mathfrak{g})$ -modules (It has a rich structure, e.g., non-semisimplicity, tensor, rigidity, etc.)
- $ightharpoonup \mathscr{C}_{\mathfrak{a}}^0 := \text{Hernandez-Leclerc category of } \mathscr{C}_{\mathfrak{a}}$

Motivation and Idea 000

- ([Hernandez-Leclerc]) Distinguished subcategories $\mathscr{C}_{\mathfrak{a}}^{-}$, $\mathscr{C}_{\mathfrak{a}}^{\ell}$ of $\mathscr{C}_{\mathfrak{a}}^{0}$, Cluster algebra structure of $K(\mathscr{C}_{\mathfrak{q}}^{-})$ and $K(\mathscr{C}_{\mathfrak{q}}^{\ell})$
- ([Kashiwara-Kim-Oh-P.]) (Monoidal categorification) The category $\mathscr{C}^0_{\mathfrak{q}}$ (and various subcategories) provide monoidal categorifications of cluster algebras.

Motivation and Idea 000

- ([Hernandez-Leclerc]) Distinguished subcategories $\mathscr{C}_{\mathfrak{a}}^{-}$, $\mathscr{C}_{\mathfrak{a}}^{\ell}$ of $\mathscr{C}_{\mathfrak{a}}^{0}$, Cluster algebra structure of $K(\mathscr{C}_{\mathfrak{a}}^{-})$ and $K(\mathscr{C}_{\mathfrak{a}}^{\ell})$
- ([Kashiwara-Kim-Oh-P.]) (Monoidal categorification) The category $\mathscr{C}_{\mathfrak{g}}^0$ (and various subcategories) provide monoidal categorifications of cluster algebras.
- ([Hernandez-Leclerc], [Oh-Suh], [Oh-Scrimshaw], [Fujita-Oh]) There exist distinguished subcategories $\mathscr{C}_{\mathcal{O}}$ for a Q-datum \mathcal{Q} . Moreover.
 - $U_a^-(\mathfrak{a}_{fin})^{\vee} \simeq K_t(\mathscr{C}_{\mathcal{O}}) \cdots (*)$ ([Hernandez-Leclerc, Hernandez-Ova, Fujita-Hernandez-Oh-Ova])
- ([Kang-Kashiwara-Kim], [Kashiwara-Kim-Oh-P.]) $R_{\mathfrak{a}_{\operatorname{fin}}} = \operatorname{symmetric} \operatorname{quiver} \operatorname{Hecke} \operatorname{algebra} \operatorname{associated} \operatorname{with} \mathfrak{g}_{\operatorname{fin}}.$ For a complete duality datum \mathcal{D} , $\mathcal{F}_{\mathcal{D}}: \mathrm{R}_{\mathfrak{a}_{\mathrm{fin}}}\operatorname{-gmod} \longrightarrow \mathscr{C}_{\mathcal{D}} \subset \mathscr{C}^{0}_{\mathfrak{a}}$ (Generalized Schur-Weyl duality)

Main idea

Motivation and Idea ○○●

Let $\mathcal D$ be a complete duality datum of $\mathscr C^0_{\mathfrak g}$.

- (a) ([Khovanov-Lauda], [Rouquier]) $U_q^-(\mathfrak{g}_{\mathrm{fin}})^\vee \simeq \mathcal{K}(R_{\mathfrak{g}_{\mathrm{fin}}}\text{-gmod})$,
- (b) ([Lauda-Vazirani]) $B_{\mathfrak{g}_{\mathrm{fin}}}(\infty) \simeq \{ \text{simple } R_{\mathfrak{g}_{\mathrm{fin}}}\text{-modules} \}$ as a crystal,
- (c) {simple $R_{g_{\text{fin}}}$ -modules} $\leftarrow \frac{\mathcal{F}_{\mathcal{D}}}{1-1}$ {simple modules in $\mathscr{C}_{\mathcal{D}}$ }
- (d) $K(\mathscr{C}^0_{\mathfrak{g}}) \approx$ a product of infinite copies of $K(\mathscr{C}_{\mathcal{D}})$

Main idea

Motivation and Idea 000

Let \mathcal{D} be a complete duality datum of $\mathscr{C}_{\mathfrak{g}}^0$.

- (a) ([Khovanov-Lauda], [Rouquier]) $U_{\sigma}^{-}(\mathfrak{g}_{\mathrm{fin}})^{\vee} \simeq K(R_{\mathfrak{g}_{\mathrm{fin}}}\text{-gmod})$,
- (b) ([Lauda-Vazirani]) $B_{\mathfrak{q}_{\mathrm{fin}}}(\infty) \simeq \{\text{simple } R_{\mathfrak{q}_{\mathrm{fin}}}\text{-modules}\}$ as a crystal,
- (c) {simple $R_{g_{\text{fin}}}$ -modules} $\leftarrow \xrightarrow{\mathcal{F}_{\mathcal{D}}}$ {simple modules in $\mathscr{C}_{\mathcal{D}}$ }
- (d) $K(\mathscr{C}_{\mathfrak{g}}^{0}) \approx$ a product of infinite copies of $K(\mathscr{C}_{\mathcal{D}})$

$$\prod_{\mathbb{Z}} B_{\mathfrak{g}_{\mathrm{fin}}}(\infty) \stackrel{???}{\longleftarrow} \text{ simple modules in } \mathscr{C}^0_{\mathfrak{g}}$$

Goal: Find a crystal-theoretic approach to interpret \mathscr{C}_n^0 !

Let

- A := $(a_{ii})_{i,j \in I}$ (symmetrizable generalized Cartan matrix)
- $\Pi := \{\alpha_i \mid i \in I\}$ (simple roots)
- $\Pi^{\vee} := \{h_i \mid i \in I\}$ (simple coroots) $(\langle h_i, \alpha_i \rangle = a_{i,j} \text{ for all } i, j)$
- Q := $\bigoplus_{i \in I} \mathbb{Z} \alpha_i$ (root lattice)
- P := weight lattice
- P^V := dual weight lattice

Definition (Quantum group)

- (i) $U_q(\mathfrak{g}) :=$ the algebra over $\mathbb{Q}(q)$ generated by e_i, f_i $(i \in I)$ and q^h $(h \in \mathsf{P}^\vee)$ satisfying certain defining relations determined by A.
- (ii) $U_q^-(\mathfrak{g}):=$ the subalgebra of $U_q(\mathfrak{g})$ generated by f_i $(i\in I)$.

The notion of crystals was introduced by Kashiwara, which is one of the most powerful combinatorial tool to study quantum groups and their representations.

A $U_q(\mathfrak{g})$ -crystal is a set B endowed with maps

$$\begin{array}{l} \mathsf{wt} \colon B \to \mathsf{P}, \\ \varphi_i, \ \varepsilon_i \colon B \to \mathbb{Z} \ \sqcup \left\{\infty\right\} \\ \tilde{e}_i, \ \tilde{f}_i \colon B \to B \ \sqcup \left\{0\right\} \end{array}$$

for all $i \in I$ which satisfy the following axioms:

- $\varphi_i(b) = \varepsilon_i(b) + \langle h_i, \operatorname{wt}(b) \rangle$
- \blacktriangleright wt (\tilde{e}_ib) = wt(b) + α_i if $\tilde{e}_ib \in B$, and wt (\tilde{f}_ib) = wt(b) α_i if $\tilde{f}_ib \in B$,
- ▶ for $b, b' \in B$ and $i \in I$, $b' = \tilde{e}_i b$ if and only if $b = \tilde{f}_i b'$,
- for $b \in B$, if $\varphi_i(b) = -\infty$, then $\tilde{e}_i b = \tilde{f}_i b = 0$,
- \blacktriangleright if $b \in B$ and $\tilde{e}_i b \in B$, then $\varepsilon_i(\tilde{e}_i b) = \varepsilon_i(b) 1$ and $\varphi_i(\tilde{e}_i b) = \varphi_i(b) + 1$,
- ▶ if $b \in B$ and $\tilde{f_i}b \in B$, then $\varepsilon_i(\tilde{f_i}b) = \varepsilon_i(b) + 1$ and $\varphi_i(\tilde{f_i}b) = \varphi_i(b) 1$.

A crystal B has an I-colored graph structure as follows:

- ► Vertices := B
- ▶ Arrows : $b \xrightarrow{i} b'$ if and only if $b' = \tilde{f}_i(b)$

A crystal B has an I-colored graph structure as follows:

- \triangleright Vertices := B
- Arrows: $b \xrightarrow{i} b'$ if and only if $b' = \tilde{f}_i(b)$

 $B_{\mathfrak{g}}(\infty) := \text{the crystal of the half } U_{\mathfrak{g}}^{-}(\mathfrak{g})$ Definition

Properties

- (i) $B_{\mathfrak{a}}(\infty)$ is connected.
- (ii) $B_{\mathfrak{q}}(\infty)$ has the highest weight vector 1 with weight 0.
- (iii) There is an involution $*: B_{\mathfrak{q}}(\infty) \to B_{\mathfrak{q}}(\infty)$, which provides another crystal structure with \tilde{e}_{i}^{*} , \tilde{f}_{i}^{*} , ε_{i}^{*} , φ_{i}^{*} .
- (iv) \tilde{e}_i is locally nilpotent on $B_{\mathfrak{a}}(\infty)$.

Extended crystals

Let

- A = $(a_{i,j})_{i,j \in I}$ be a symmetrizable generalized Cartan matrix,
- $U_q(\mathfrak{g}) =$ the corresponding quantum group.

Extended crystals

Let

- A = $(a_{i,j})_{i,j\in I}$ be a symmetrizable generalized Cartan matrix,
- $U_{a}(\mathfrak{g}) =$ the corresponding quantum group.

Definition

$$\widehat{B}_{\mathfrak{g}}(\infty) := \Big\{ (b_k)_{k \in \mathbb{Z}} \in \prod_{k \in \mathbb{Z}} B_{\mathfrak{g}}(\infty) \bigm| b_k = 1 \text{ for all but finitely many } k \Big\},$$

and set

$$\mathbf{1} := (1)_{k \in \mathbb{Z}} \in \widehat{B}_{\mathfrak{g}}(\infty).$$

▶ We define $\widehat{I} := I \times \mathbb{Z}$.

Extended crystal structure

- ightharpoonup We define $\widehat{I} := I \times \mathbb{Z}$.
- ► For any $(i, k) \in \widehat{I}$ and $\mathbf{b} = (b_k)_{k \in \mathbb{Z}} \in \widehat{B}_{\mathfrak{a}}(\infty)$, define

$$\operatorname{wt}_k(\mathbf{b}) := (-1)^k \operatorname{wt}(b_k), \quad \varepsilon_{(i,k)}(\mathbf{b}) := \varepsilon_i(b_k), \quad \varepsilon_{(i,k)}^*(\mathbf{b}) := \varepsilon_i^*(b_k).$$

- ightharpoonup We define $\widehat{I} := I \times \mathbb{Z}$.
- ▶ For any $(i,k) \in \widehat{I}$ and $\mathbf{b} = (b_k)_{k \in \mathbb{Z}} \in \widehat{B}_{\mathfrak{g}}(\infty)$, define

$$\operatorname{wt}_k(\mathbf{b}) := (-1)^k \operatorname{wt}(b_k), \quad \varepsilon_{(i,k)}(\mathbf{b}) := \varepsilon_i(b_k), \quad \varepsilon_{(i,k)}^*(\mathbf{b}) := \varepsilon_i^*(b_k).$$

We define

$$\widehat{\mathsf{wt}}(\mathbf{b}) := \sum_{k \in \mathbb{Z}} \mathsf{wt}_k(\mathbf{b}), \qquad \widehat{\varepsilon}_{(i,k)}(\mathbf{b}) := \varepsilon_{(i,k)}(\mathbf{b}) - \varepsilon^*_{(i,k+1)}(\mathbf{b}),$$

which gives the maps

$$\widehat{\operatorname{wt}} \colon \widehat{B}_{\mathfrak{g}}(\infty) \longrightarrow \mathsf{P}, \qquad \widehat{\varepsilon}_{(i,k)} \colon \widehat{B}_{\mathfrak{g}}(\infty) \longrightarrow \mathbb{Z}$$

▶ For any $(i, k) \in \widehat{I}$, the extended crystal operators

$$\widetilde{F}_{(i,k)}\colon \widehat{B}_{\mathfrak{g}}(\infty) \longrightarrow \widehat{B}_{\mathfrak{g}}(\infty) \quad \text{and} \quad \widetilde{E}_{(i,k)}\colon \widehat{B}_{\mathfrak{g}}(\infty) \longrightarrow \widehat{B}_{\mathfrak{g}}(\infty),$$

are defined by

$$\widetilde{F}_{(i,k)}(\mathbf{b}) := \begin{cases} (\cdots, b_{k+2}, b_{k+1}, \widetilde{f}_i(b_k), b_{k-1}, \cdots) & \text{if } \widehat{\varepsilon}_{(i,k)}(\mathbf{b}) \geq 0, \\ (\cdots, b_{k+2}, \widetilde{e}_i^*(b_{k+1}), b_k, b_{k-1}, \cdots) & \text{if } \widehat{\varepsilon}_{(i,k)}(\mathbf{b}) < 0, \end{cases}$$

$$\widetilde{E}_{(i,k)}(\mathbf{b}) := \begin{cases} (\cdots, b_{k+2}, b_{k+1}, \tilde{\mathbf{e}}_i(b_k), b_{k-1}, \cdots) & \text{if } \widehat{\varepsilon}_{(i,k)}(\mathbf{b}) > 0, \\ (\cdots, b_{k+2}, \tilde{\mathbf{f}}_i^*(b_{k+1}), b_k, b_{k-1}, \cdots) & \text{if } \widehat{\varepsilon}_{(i,k)}(\mathbf{b}) \leq 0, \end{cases}$$

for any $(i, k) \in \widehat{I}$ and $\mathbf{b} = (b_k)_{k \in \mathbb{Z}} \in \widehat{B}_{\mathfrak{g}}(\infty)$.

Let $\mathbf{b} \in \widehat{B}_{\sigma}(\infty)$ and $(i, k) \in \widehat{I}$. **Proposition** ([Kashiwara-P.])

- (i) $\widehat{\text{wt}}(\widetilde{F}_{i,k}(\mathbf{b})) = \widehat{\text{wt}}(\mathbf{b}) + (-1)^{k+1}\alpha_i$
- (ii) $\widehat{\operatorname{wt}}(\widetilde{E}_{i,k}(\mathbf{b})) = \widehat{\operatorname{wt}}(\mathbf{b}) + (-1)^k \alpha_i$.
- (iii) $\widehat{\varepsilon}_{i,k}(\widetilde{F}_{i,k}(\mathbf{b})) = \widehat{\varepsilon}_{i,k}(\mathbf{b}) + 1$
- (iv) $\widehat{\varepsilon}_{i,k}(\widetilde{E}_{i,k}(\mathbf{b})) = \widehat{\varepsilon}_{i,k}(\mathbf{b}) 1$.
- (v) $\widetilde{F}_{i,k}$ and $\widetilde{E}_{i,k}$ are inverse to each other.
- (vi) $\widetilde{E}_{i,k}(\mathbf{b})$ is non-zero for any $\mathbf{b} \in \widehat{B}_{\sigma}(\infty)$.

Extended crystal graph

As a usual crystal, the set $\widehat{B}_{\mathfrak{a}}(\infty)$ has the \widehat{I} -colored graph structure induced by the operators $\widetilde{F}_{i,k}$ for $(i,k) \in \widehat{I}$.

- (a) vertices := $\widehat{B}_{\sigma}(\infty)$
- (b) arrows: $\mathbf{b} \xrightarrow{(i,k)} \mathbf{b}'$ if and only if $\mathbf{b}' = \widetilde{F}_{i,k}\mathbf{b}$ $((i,k) \in \widehat{I})$

We call $\widehat{B}_{\mathfrak{a}}(\infty)$ the extended crystal of $B_{\mathfrak{a}}(\infty)$.

Extended crystal graph

As a usual crystal, the set $\widehat{B}_{\mathfrak{a}}(\infty)$ has the \widehat{I} -colored graph structure induced by the operators $\widetilde{F}_{i,k}$ for $(i,k) \in \widehat{I}$.

- (a) vertices := $\widehat{B}_{\sigma}(\infty)$
- (b) arrows: $\mathbf{b} \xrightarrow{(i,k)} \mathbf{b}'$ if and only if $\mathbf{b}' = \widetilde{F}_{i,k} \mathbf{b}$ ($(i,k) \in \widehat{I}$)

We call $\widehat{B}_{\mathfrak{a}}(\infty)$ the extended crystal of $B_{\mathfrak{a}}(\infty)$.

Proposition ([Kashiwara-P.])

(i) For $k \in \mathbb{Z}$, \exists injection $\iota_k : B_{\mathfrak{a}}(\infty) \rightarrow \widehat{B}_{\mathfrak{a}}(\infty)$ s. t., for $b \in B_{\mathfrak{a}}(\infty)$,

$$\widetilde{F}_{i,k}(\iota_k(b)) = \iota_k(\widetilde{f}_i(b)),$$
 $\widetilde{E}_{i,k}(\iota_k(b)) = \iota_k(\widetilde{e}_i(b)) \quad \text{if } \widetilde{e}_i(b) \neq 0.$

(ii) As an \widehat{I} -colored graph, $\widehat{B}_{\mathfrak{g}}(\infty)$ is connected.

1 plays the role of a highest weight vector of $\widehat{B}_{\alpha}(\infty)$ Note

For
$$t\in\mathbb{Z}$$
 and $\mathbf{b}=(b_k)_{k\in\mathbb{Z}}\in\widehat{B}_{\mathfrak{g}}(\infty)$, define $\mathrm{D}^t(\mathbf{b})=(b_k')_{k\in\mathbb{Z}}$ by

$$b_k' = b_{k-t}$$
 for any $k \in \mathbb{Z}$.

This gives a bijection

$$D^t : \widehat{B}_{\mathfrak{g}}(\infty) \longrightarrow \widehat{B}_{\mathfrak{g}}(\infty).$$

Proposition For any $(i, k) \in \widehat{I}$,

$$D^{t}(\widetilde{F}_{i,k}(\mathbf{b})) = \widetilde{F}_{i,k+t}(D^{t}(\mathbf{b})).$$

Example $(\mathfrak{sl}_2 \text{ case})$

Let $I = \{1\}$ and let $B(\infty)$ be the crystal of $U_a^-(\mathfrak{sl}_2)$.

We identify $B(\infty)$ with $\mathbb{Z}_{>0}$, and simply write \widetilde{F}_k instead of $\widetilde{F}_{1,k}$.

Example $(\mathfrak{sl}_2 \text{ case})$

Let $I = \{1\}$ and let $B(\infty)$ be the crystal of $U_a^-(\mathfrak{sl}_2)$.

We identify $B(\infty)$ with $\mathbb{Z}_{>0}$, and simply write \widetilde{F}_k instead of $\widetilde{F}_{1.k}$.

Then we have the following.

 $ightharpoonup \widehat{B}(\infty)$ is equal to $(\mathbb{Z}_{\geq 0})^{\oplus \mathbb{Z}}$,

Example (\mathfrak{sl}_2 case)

Let $I = \{1\}$ and let $B(\infty)$ be the crystal of $U_a^-(\mathfrak{sl}_2)$.

We identify $B(\infty)$ with $\mathbb{Z}_{\geq 0}$, and simply write \widetilde{F}_k instead of $\widetilde{F}_{1,k}$.

Then we have the following.

- $ightharpoonup \widehat{B}(\infty)$ is equal to $(\mathbb{Z}_{\geq 0})^{\oplus \mathbb{Z}}$,
- For any $k \in \mathbb{Z}$ and $\mathbf{b} = (b_k)_{k \in \mathbb{Z}} \in \widehat{B}(\infty)$, we have

$$\widetilde{F}_k(\mathbf{b}) = \begin{cases} (\cdots, b_{k+2}, b_{k+1}, b_k + 1, b_{k-1}, \cdots) & \text{if } b_{k+1} \le b_k, \\ (\cdots, b_{k+2}, b_{k+1} - 1, b_k, b_{k-1}, \cdots) & \text{if } b_{k+1} > b_k. \end{cases}$$

▶ If $\mathbf{b} = (\cdots, 0, 0, 0, 1, 2, 3, 4, 5, 0, \cdots)$ (here, denotes the 0-position), then

$$D^{2}(\mathbf{b}) = (\cdots, 0, 1, 2, 3, 4, \underline{5}, 0, 0, 0, \cdots).$$

Categorical crystal for HL category

Let

- A = $(a_{i,i})_{i,i \in I}$ = affine Cartan matrix
- $U_q(\mathfrak{g}) = \text{quantum affine alg associated with A } (q: \text{ indeterminate})$
- $U'_{a}(\mathfrak{g}) = \text{the subalgebra of } U_{a}(\mathfrak{g}) \text{ generated by}$ $e_i, f_i, K_i := q_i^{\pm h_i} \ (i \in I)$, where $q_i := q^{(\alpha_i, \alpha_i)/2}$.
- $\mathscr{C}_{\mathfrak{g}} :=$ the category of finite-dimensional integrable $U'_{\mathfrak{g}}(\mathfrak{g})$ -modules \otimes : tensor, $hd(M \otimes N) = the head of <math>M \otimes N$ $\mathcal{D} := \text{right dual functor}. \ \mathcal{D}^{-1} := \text{left dual functor}.$
- $\mathscr{C}^0_{\mathfrak{a}} := \mathsf{Hernandez}\mathsf{-Leclerc}$ category of $\mathscr{C}_{\mathfrak{a}}$

- $\mathcal{D} := \{L_i\}_{i \in I_{\text{fin}}}$ a complete duality datum for $\mathscr{C}^0_{\mathfrak{q}}$ $(\Leftrightarrow L_i \text{ are simple modules with certain conditions.})$
- $ightharpoonup \mathscr{C}_{\mathcal{D}}:=$ the smallest full subcategory of $\mathscr{C}_{\mathfrak{a}}^0$ such that
 - (a) it contains $\mathcal{F}_{\mathcal{D}}(L)$ for any simple $R_{\mathfrak{g}_{\mathrm{fin}}}$ -module L,
 - (b) it is stable by taking subquotients, extensions, and tensor products.

Type of g	$A_n^{(1)}$	$B_n^{(1)}$	$C_n^{(1)}$	$D_n^{(1)}$	$A_{2n}^{(2)}$	$A_{2n-1}^{(2)}$	$D_{n+1}^{(2)}$
	$(n \ge 1)$	$(n \ge 2)$	$(n \ge 3)$	$(n \ge 4)$	$(n \ge 1)$	$(n \ge 2)$	$(n \geq 3)$
Type of $\mathfrak{g}_{\mathrm{fin}}$	An	A_{2n-1}	D_{n+1}	D_n	A_{2n}	A_{2n-1}	D_{n+1}
Type of g	$E_6^{(1)}$	$E_7^{(1)}$	E ₈ ⁽¹⁾	$F_4^{(1)}$	$G_2^{(1)}$	$E_6^{(2)}$	$D_4^{(3)}$
Type of $\mathfrak{g}_{\mathrm{fin}}$	E ₆	E ₇	E ₈	E_6	D_4	E_6	D_4

Let

- $ightharpoonup \widehat{B}_{\mathfrak{g}_{\mathrm{fin}}}(\infty) := \mathsf{the} \ \mathsf{extended} \ \mathsf{crystal} \ \mathsf{of} \ B_{\mathfrak{g}_{\mathrm{fin}}}(\infty).$
- ▶ For $\mathbf{b} = (b_k)_{k \in \mathbb{Z}} \in \widehat{B}_{\mathfrak{g}_{\mathrm{fin}}}(\infty)$, define

$$\mathscr{L}_{\mathcal{D}}(\mathbf{b}) := \mathsf{hd}(\cdots \otimes \mathscr{D}^2 M_2 \otimes \mathscr{D} M_1 \otimes M_0 \otimes \mathscr{D}^{-1} M_{-1} \otimes \cdots) \in \mathscr{C}^0_{\mathfrak{g}},$$

where $M_k := \mathcal{L}_{\mathcal{D}}(b_k)$ for $k \in \mathbb{Z}$.

Theorem ([Kashiwara-P.])

(i) Let $\mathcal{B}(\mathfrak{g}):=$ the set of simple modules in $\mathscr{C}^0_\mathfrak{g}.$

$$\Phi_{\mathcal{D}} \colon \widehat{\mathcal{B}}_{\mathfrak{g}_{\mathrm{fin}}}(\infty) \overset{1-1}{\longrightarrow} \mathcal{B}(\mathfrak{g}), \qquad \mathbf{b} \mapsto \mathscr{L}_{\mathcal{D}}(\mathbf{b}).$$

 $(\Rightarrow$ new parametrization of $\mathcal{B}(\mathfrak{g})!)$

(ii) For any $t\in\mathbb{Z}$ and $\mathbf{b}\in\widehat{B}_{\mathfrak{g}_{\mathrm{fin}}}(\infty)$, we have

$$\Phi_{\mathcal{D}}(\mathrm{D}^t(\mathbf{b})) = \mathscr{D}^t(\Phi_{\mathcal{D}}(\mathbf{b})),$$

Theorem ([Kashiwara-P.]) (continued)

(iii) For $M \in \mathcal{B}(\mathfrak{g})$ and $(i,k) \in \widehat{I}_{\mathrm{fin}}$, define

$$\widetilde{\mathcal{F}}_{i,k}(M) := \mathsf{hd}((\mathscr{D}^k \mathsf{L}_i) \otimes M) \quad \text{ and } \quad \widetilde{\mathcal{E}}_{i,k}(M) := \mathsf{hd}(M \otimes (\mathscr{D}^{k+1} \mathsf{L}_i)).$$

Then, for $(i,k)\in \widehat{I}_{\mathrm{fin}}$ and $\mathbf{b}\in \widehat{B}_{\mathfrak{g}_{\mathrm{fin}}}(\infty)$, we have

$$\Phi_{\mathcal{D}}(\widetilde{\mathcal{F}}_{i,k}(\mathbf{b})) = \widetilde{\mathcal{F}}_{i,k}(\Phi_{\mathcal{D}}(\mathbf{b})), \qquad \Phi_{\mathcal{D}}(\widetilde{\mathcal{E}}_{i,k}(\mathbf{b})) = \widetilde{\mathcal{E}}_{i,k}(\Phi_{\mathcal{D}}(\mathbf{b})).$$

(v) $\mathcal{B}(\mathfrak{g})$ has an extended crystal structure and

$$\Phi_{\mathcal{D}}:\widehat{B}_{\mathfrak{g}_{\mathrm{fin}}}(\infty)\simeq\mathcal{B}(\mathfrak{g})$$
 as an extended crystal.

This is denoted by $\mathcal{B}_{\mathcal{D}}(\mathfrak{g})$.

(vi) $\mathcal{B}_{\mathcal{D}}(\mathfrak{g})$ has an $\widehat{l}_{\mathrm{fin}}$ -colored graph structure ($\simeq \widehat{\mathcal{B}}_{\mathfrak{g}_{\mathrm{fin}}}(\infty)$).

Braid group action on $\widehat{B}(\infty)$

Question

Can we extend the Saito crystal reflections on $B(\infty)$ to the extended crystal $\widehat{B}(\infty)$?

Let A be of finite type. For any $i \in I$, we set

$$_{i}B(\infty) := \{b \in B(\infty) \mid \varepsilon_{i}(b) = 0\},\$$

 $B_{i}(\infty) := \{b \in B(\infty) \mid \varepsilon_{i}^{*}(b) = 0\}.$

The Saito crystal reflections on the crystal $B(\infty)$ are defined as follows

$$\mathrm{T}_i: {}_iB(\infty) \to B_i(\infty), \qquad \mathrm{T}_i(b) := \tilde{f}_i^{\varphi_i^*(b)} \tilde{e}_i^{*\varepsilon_i^*(b)}(b), \ \mathrm{T}_i^*: B_i(\infty) \to {}_iB(\infty), \qquad \mathrm{T}_i^*(b) := \tilde{f}_i^{*\varphi_i(b)} \tilde{e}_i^{\varepsilon_i(b)}(b).$$

Let A be of finite type. For any $i \in I$, we set

$$_{i}B(\infty) := \{b \in B(\infty) \mid \varepsilon_{i}(b) = 0\},\ B_{i}(\infty) := \{b \in B(\infty) \mid \varepsilon_{i}^{*}(b) = 0\}.$$

The Saito crystal reflections on the crystal $B(\infty)$ are defined as follows

$$\mathrm{T}_i: {}_iB(\infty) \to B_i(\infty), \qquad \mathrm{T}_i(b) := \tilde{f}_i^{\varphi_i^*(b)} \tilde{e}_i^{*\varepsilon_i^*(b)}(b), \ \mathrm{T}_i^*: B_i(\infty) \to {}_iB(\infty), \qquad \mathrm{T}_i^*(b) := \tilde{f}_i^{*\varphi_i(b)} \tilde{e}_i^{\varepsilon_i(b)}(b).$$

Let

$$_{i}\pi(b):= ilde{e}_{i}^{\max}(b) \quad ext{ and } \quad \pi_{i}(b):= ilde{e}_{i}^{*\max}(b) \qquad ext{ for } b\in B(\infty),$$

and we set

$$\widetilde{\mathrm{T}}_i := \mathrm{T}_i \circ_i \pi : B(\infty) \longrightarrow B_i(\infty) \subset B(\infty),$$

$$\widetilde{\mathrm{T}}_i^* := \mathrm{T}_i^* \circ \pi_i : B(\infty) \longrightarrow_i B(\infty) \subset B(\infty).$$

For $i \in I$ and $\mathbf{b} = (b_k)_{k \in \mathbb{Z}} \in \widehat{B}(\infty)$, we define

$$\mathsf{R}_i(\mathbf{b}) = (b_k')_{k \in \mathbb{Z}}$$
 and $\mathsf{R}_i^*(\mathbf{b}) = (b_k'')_{k \in \mathbb{Z}}$

by

$$b_k' := ilde{f}_i^{*arepsilon_i(b_{k-1})} \left(\widetilde{\mathrm{T}}_i(b_k)
ight) \qquad ext{ and } \qquad b_k'' := ilde{f}_i^{arepsilon_i^*(b_{k+1})} \left(\widetilde{\mathrm{T}}_i^*(b_k)
ight)$$

for any $k \in \mathbb{Z}$ respectively. Thus we have the maps

$$R_i: \widehat{B}(\infty) \longrightarrow \widehat{B}(\infty)$$
 and $R_i^*: \widehat{B}(\infty) \longrightarrow \widehat{B}(\infty)$.

Theorem (P.) Let $i \in I$.

- $ightharpoonup R_i$ and R_i^* are bijective.
- $ightharpoonup R_i^*$ are inverse to each other.
- $ightharpoonup R_i \circ D = D \circ R_i$ and $R_i^* \circ D = D \circ R_i^*$.
- For any $\mathbf{b} \in \widehat{B}(\infty)$, we have

$$\widehat{\mathrm{wt}}(\mathsf{R}_i(\mathbf{b})) = s_i(\widehat{\mathrm{wt}}(\mathbf{b}))$$
 and $\widehat{\mathrm{wt}}(\mathsf{R}_i^*(\mathbf{b})) = s_i(\widehat{\mathrm{wt}}(\mathbf{b})).$

Recall that $A = (a_{i,j})_{i,j \in I}$ is a Cartan matrix of finite type. For $i,j \in I$ with $i \neq i$, we set

$$m(i,j) := \begin{cases} 2 & \text{if } a_{i,j}a_{j,i} = 0, \\ 3 & \text{if } a_{i,j}a_{j,i} = 1, \\ 4 & \text{if } a_{i,j}a_{j,i} = 2, \\ 6 & \text{if } a_{i,j}a_{j,i} = 3. \end{cases}$$

We denote by \mathfrak{B} the generalized braid group (or Artin-Tits group) defined by the generators r_i ($i \in I$) and the following defining relations:

$$\underbrace{r_i r_j r_i r_j \cdots}_{m(i,j) \text{ factors}} = \underbrace{r_j r_i r_j r_i \cdots}_{m(j,i) \text{ factors}} \qquad \text{for } i,j \in I \text{ with } i \neq j.$$

Theorem (P.) The bijections R_i and R_i^* satisfy the braid group relations for \mathfrak{B} , i.e., for $i, j \in I$ with $i \neq j$,

$$\underbrace{\mathsf{R}_i^*\mathsf{R}_j^*\mathsf{R}_i^*\mathsf{R}_j\cdots}_{\textit{m}(i,j) \text{ factors}} = \underbrace{\mathsf{R}_j^*\mathsf{R}_i^*\mathsf{R}_j^*\mathsf{R}_i\cdots}_{\textit{m}(j,i) \text{ factors}} \quad \text{ and } \quad \underbrace{\mathsf{R}_i^*\mathsf{R}_j^*\mathsf{R}_i^*\mathsf{R}_j^*\cdots}_{\textit{m}(i,j) \text{ factors}} = \underbrace{\mathsf{R}_j^*\mathsf{R}_i^*\mathsf{R}_j^*\mathsf{R}_i^*\cdots}_{\textit{m}(j,i) \text{ factors}}.$$

(Idea of Proof) PBW crystals.

Theorem (P.) The bijections R_i and R_i^* satisfy the braid group relations for \mathfrak{B} , i.e., for $i, j \in I$ with $i \neq j$,

$$\underbrace{\mathbb{R}_{i}^{i}\mathbb{R}_{j}^{i}\mathbb{R}_{i}^{i}\cdots}_{m(i,j) \text{ factors}} = \underbrace{\mathbb{R}_{j}^{i}\mathbb{R}_{i}^{i}\mathbb{R}_{j}^{i}\cdots}_{m(j,i) \text{ factors}} \quad \text{and} \quad \underbrace{\mathbb{R}_{i}^{*}\mathbb{R}_{j}^{*}\mathbb{R}_{i}^{*}\mathbb{R}_{j}^{*}\cdots}_{m(i,j) \text{ factors}} = \underbrace{\mathbb{R}_{j}^{*}\mathbb{R}_{i}^{*}\mathbb{R}_{j}^{*}\mathbb{R}_{i}^{*}\cdots}_{m(j,i) \text{ factors}}.$$

(Idea of Proof) PBW crystals.

The braid group \mathfrak{B} acts on the extended crystal $\widehat{B}(\infty)$ as follows:

$$r_i \cdot \mathbf{b} := \mathsf{R}_i(b)$$
 and $r_i^{-1} \cdot \mathbf{b} := \mathsf{R}_i^*(b)$ for $i \in I$ and $\mathbf{b} \in \widehat{B}(\infty)$.

 \rightarrow $\widehat{B}(\infty)$ is a \mathfrak{B} -set!

As a \mathfrak{B} -set, $\widehat{B}(\infty)$ is not transitive. **Question** As a \mathfrak{B} -set, is $\widehat{B}(\infty)$ faithful?

Properties

▶ For any $i \in I$, we have $R_i \circ \zeta = \zeta \circ R_{\zeta(i)}$ and $R_i^* \circ \zeta = \zeta \circ R_{\zeta(i)}^*$, where $\zeta: i \mapsto i^*$. (Here $\alpha_{i^*} = -w_0 \alpha_i$)

Properties

- ► For any $i \in I$, we have $R_i \circ \zeta = \zeta \circ R_{\zeta(i)}$ and $R_i^* \circ \zeta = \zeta \circ R_{\zeta(i)}^*$, where $\zeta: i \mapsto i^*$. (Here $\alpha_{i^*} = -w_0\alpha_i$)
- For any reduced expression $w_0 = s_{i_1} \dots s_{i_\ell}$, we have

$$\mathsf{R}_{i_1}\cdots\mathsf{R}_{i_\ell}=\mathrm{D}\circ\zeta$$
 and $\mathsf{R}_{i_1}^*\cdots\mathsf{R}_{i_\ell}^*\mathbf{i}=\mathrm{D}^{-1}\circ\zeta.$

In particular, unless the Cartan matrix A is of type A_n $(n \in \mathbb{Z}_{>1}), D_n$ (n is odd) or E_6 , we have

$$R_{i_1} \cdots R_{i_\ell} = D$$
 and $R_{i_1}^* \cdots R_{i_\ell}^* = D^{-1}$.

Properties

- ► For any $i \in I$, we have $R_i \circ \zeta = \zeta \circ R_{\zeta(i)}$ and $R_i^* \circ \zeta = \zeta \circ R_{\zeta(i)}^*$, where $\zeta: i \mapsto i^*$. (Here $\alpha_{i^*} = -w_0 \alpha_i$)
- For any reduced expression $w_0 = s_{i_1} \dots s_{i_\ell}$, we have

$$\mathsf{R}_{i_1}\cdots\mathsf{R}_{i_\ell}=\mathrm{D}\circ\zeta$$
 and $\mathsf{R}_{i_1}^*\cdots\mathsf{R}_{i_\ell}^*\mathbf{i}=\mathrm{D}^{-1}\circ\zeta.$

In particular, unless the Cartan matrix A is of type A_n $(n \in \mathbb{Z}_{>1}), D_n$ (n is odd) or E_6 , we have

$$\mathsf{R}_{i_1}\cdots\mathsf{R}_{i_\ell}=\mathrm{D}$$
 and $\mathsf{R}_{i_1}^*\cdots\mathsf{R}_{i_\ell}^*=\mathrm{D}^{-1}.$

▶ Similarity for the extended crystal $\widehat{B}(\infty)$ exists.

R_i is a crystal-theoretic shadow of the conjectural autofunctor [KKOP] on the Hernandez-Leclerc category $\mathscr{C}^0_{\mathfrak{q}}$,

Connection to HL category

R; is a crystal-theoretic shadow of the conjectural autofunctor [KKOP] on the Hernandez-Leclerc category $\mathscr{C}^0_{\mathfrak{a}}$, i.e.,

we assume that the conjectural autofunctors \mathscr{R}_i ($i \in I_{\text{fin}}$) exist in $\mathscr{C}_{\mathfrak{g}}^0$. Then we have

$$\Phi_{\mathcal{D}}(\mathsf{R}_i(\mathbf{b})) = \mathscr{R}_i(\Phi_{\mathcal{D}}(\mathbf{b})) \qquad \text{ for any } \mathbf{b} \in \widehat{B}_{\mathfrak{g}_{\mathrm{fin}}}(\infty) \text{ and } i \in \mathit{I}_{\mathrm{fin}},$$

where $\Phi_{\mathcal{D}} : \widehat{B}_{\mathfrak{a}_{\text{fin}}}(\infty) \xrightarrow{\sim} \mathcal{B}_{\mathcal{D}}(\mathfrak{g})$ is the extended crystal isomorphism.

THANK YOU

