Collision

Kuan-Yu Chen (陳冠宇)

2018/12/17 @ TR-212, NTUST

Review

- Hash table is a data structure in which keys are mapped to array positions by a hash function
- When two or more keys map to the same memory location, a collision is said to occur

Collision

- Collisions occur when the hash function maps two different keys to the same location
- A method used to solve the problem of collision, also called collision resolution technique, is applied
 - Open addressing
 - Chaining

Open Addressing

- By using the technique, the hash table contains two types of values: **sentinel values** (e.g., -1) and **data values**
 - The sentinel value indicates that the location contains no data value at present but can be used to hold a value
- If the location already has some data value stored in it, then other slots are examined systematically in the forward direction to find a free slot
 - If even a single free location is not found, then we have an OVERFLOW condition
- The process of examining memory locations in the hash table is called **probing**
 - linear probing, quadratic probing, double hashing, and rehashing

Linear Probing

- The simplest approach to resolve a collision is linear probing
- If a value is already stored at a location generated by h(x), then the following hash function is used to resolve the collision

$$h(x,i) = [h'(x) + i] \bmod M$$

- M is the size of the hash table, $h'(x) = x \mod M$, and i is the probe number that varies from 0 to M- 1
- When we have to store a value, we try the slots: $[h'(x)] \mod M$, $[h'(x) + 1] \mod M$, $[h'(x) + 2] \mod M$, $[h'(x) + 3] \mod M$, and so no, until a vacant location is found

Example.

- Consider a hash table of size 10. Using linear probing, insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table
 - Initial

	•			•					9
-1	-1	–1	–1	-1	–1	-1	-1	-1	-1

- Step 1
 - x = 72
 - $h(72,0) = [h'(72) + 0] \mod 10$ = $[(72 \mod 10) + 0] \mod 10 = 2$

0	1	2	3	4	5	6	7	8	9
-1	-1	72	–1	-1	-1	-1	-1	-1	-1

Example..

- Consider a hash table of size 10. Using linear probing, insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table
 - Step 2
 - x = 27
 - $h(27,0) = [h'(27) + 0] \mod 10$ = $[(27 \mod 10) + 0] \mod 10 = 7$

									9
-1	-1	72	–1	-1	-1	–1	27	-1	-1

- Step 3
 - x = 36
 - $h(36,0) = [h'(36) + 0] \mod 10$ = $[(36 \mod 10) + 0] \mod 10 = 6$

0	1	2	3	4	5	6	7	8	9
–1	-1	72	–1	-1	-1	36	27	–1	-1

Example...

- Consider a hash table of size 10. Using linear probing, insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table
 - Step 4
 - x = 24
 - $h(24,0) = [h'(24) + 0] \mod 10$ = $[(24 \mod 10) + 0] \mod 10 = 4$

0	1	2	3	4	5	6	7	8	9
-1	-1	72	–1	24	–1	36	27	-1	-1

- Step 5
 - x = 63
 - $h(63,0) = [h'(63) + 0] \mod 10$ = $[(63 \mod 10) + 0] \mod 10 = 3$

0	-	2	•	•	•	•		•	
-1	-1	72	63	24	-1	36	27	-1	-1

Example....

- Consider a hash table of size 10. Using linear probing, insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table
 - Step 6

			\circ
	v	_	\mathbf{x}_{1}
•	λ		$\mathbf{O}\mathbf{I}$

0									
0	81	72	63	24	-1	36	27	-1	-1

- $h(81,0) = [h'(81) + 0] \mod 10$ = $[(81 \mod 10) + 0] \mod 10 = 1$
- Step 7

•
$$x = 92$$

0									
-1	81	72	63	24	92	36	27	-1	–1

- $h(92,0) = [h'(92) + 0] \mod 10$ = $[(92 \mod 10) + 0] \mod 10 = 2$
- $h(92,1) = [h'(92) + 1] \mod 10$ = $[(92 \mod 10) + 1] \mod 10 = 3$
- $h(92,2) = [h'(92) + 2] \mod 10$ = $[(92 \mod 10) + 2] \mod 10 = 4$
- $h(92,3) = [h'(92) + 3] \mod 10$ = $[(92 \mod 10) + 3] \mod 10 = 5$

Example.....

- Consider a hash table of size 10. Using linear probing, insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table
 - Step 8
 - x = 101
 - $h(101,0) = [h'(101) + 0] \mod 10$ = $[(101 \mod 10) + 0] \mod 10 = 1$
 - $h(101,0) = [h'(101) + 1] \mod 10$ = $[(101 \mod 10) + 1] \mod 10 = 2$
 - ...
 - $h(101,0) = [h'(101) + 7] \mod 10$ = $[(101 \mod 10) + 7] \mod 10 = 8$

0	1	2	3	4	5	6	7	8	9
-1	81	72	63	24	92	36	27	101	–1

Quadratic Probing

• If a value is already stored at a location generated by h(x), then the following hash function is used to resolve the collision

$$h(x,i) = [h'(x) + c_1 \times i + c_2 \times i^2] \mod M$$

- M is the size of the hash table, $h'(x) = x \mod M$, i is the probe number that varies from 0 to M-1, and c_1 and c_2 are constants such that $c_1 \neq 0$ and $c_2 \neq 0$

Example.

• Consider a hash table of size 10. Using linear probing, insert the keys 72, 27, 36, 24, 63, 81, 101, and 92 into the table. Take $c_1 = 1$ and $c_2 = 3$.

- Initial

	•			•			•		9
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

- Step 1
 - x = 72
 - $h(72,0) = [h'(72) + 1 \times 0 + 3 \times 0^2] \mod 10$ = $[(72 \mod 10) + 0 + 0] \mod 10 = 2$

0	1	2	3	4	5	6	7	8	9
-1	-1	72	-1	-1	-1	-1	-1	-1	-1

Example..

- Consider a hash table of size 10. Using linear probing, insert the keys 72, 27, 36, 24, 63, 81, 101, and 92 into the table. Take $c_1 = 1$ and $c_2 = 3$.
 - Step 2
 - x = 27
 - $h(27,0) = [h'(27) + 1 \times 0 + 3 \times 0^2] \mod 10$ = $[(27 \mod 10) + 0 + 0] \mod 10 = 7$

0	1	2	3	4	5	6	7	8	9
-1	–1	72	–1	-1	-1	– 1	27	–1	-1

- Step 3
 - x = 36
 - $h(36,0) = [h'(36) + 1 \times 0 + 3 \times 0^2] \mod 10$ = $[(36 \mod 10) + 0 + 0] \mod 10 = 6$

0	1	2	3	4	5	6	7	8	9
-1	-1	72	-1	-1	-1	36	27	-1	–1

Example...

- Consider a hash table of size 10. Using linear probing, insert the keys 72, 27, 36, 24, 63, 81, 101, and 92 into the table. Take $c_1 = 1$ and $c_2 = 3$.
 - Step 4

•
$$h(24,0) = [h'(24) + 1 \times 0 + 3 \times 0^2] \mod 10$$

= $[(24 \mod 10) + 0 + 0] \mod 10 = 4$

- Step 5

•
$$h(63,0) = [h'(63) + 1 \times 0 + 3 \times 0^2] \mod 10$$

= $[(63 \mod 10) + 0 + 0] \mod 10 = 3$

- Step 6

•
$$h(81,0) = [h'(81) + 1 \times 0 + 3 \times 0^2] \mod 10$$

= $[(81 \mod 10) + 0 + 0] \mod 10 = 1$

0	1	2	3	4	5	6	7	8	9
-1	81	72	63	24	-1	36	27	-1	–1

$$h(x,i) = [h'(x) + c_1 \times i + c_2 \times i^2] \mod M$$

Example....

- Consider a hash table of size 10. Using linear probing, insert the keys 72, 27, 36, 24, 63, 81, 101, and 92 into the table. Take $c_1 = 1$ and $c_2 = 3$.
 - Step 7
 - $h(101,0) = [h'(101) + 1 \times 0 + 3 \times 0^2] \mod 10$ = $[(101 \mod 10) + 0 + 0] \mod 10 = 1$
 - $h(101,1) = [h'(101) + 1 \times 1 + 3 \times 1^2] \mod 10$ = $[(101 \mod 10) + 1 + 3] \mod 10 = 5$

0	1	2	3	4	5	6	7	8	9
-1	81	72	63	24	101	36	27	-1	-1

Example.....

- Consider a hash table of size 10. Using linear probing, insert the keys 72, 27, 36, 24, 63, 81, 101, and 92 into the table. Take $c_1 = 1$ and $c_2 = 3$.
 - Step 8
 - $h(92,0) = [h'(92) + 1 \times 0 + 3 \times 0^2] \mod 10$ = $[(92 \mod 10) + 0 + 0] \mod 10 = 2$
 - $h(92,1) = [h'(92) + 1 \times 1 + 3 \times 1^2] \mod 10$ = $[(92 \mod 10) + 1 + 3] \mod 10 = 6$
 - $h(92,2) = [h'(92) + 1 \times 2 + 3 \times 2^2] \mod 10$ = $[(92 \mod 10) + 2 + 12] \mod 10 = 6$
 - $h(92,3) = [h'(92) + 1 \times 3 + 3 \times 3^2] \mod 10$ = $[(92 \mod 10) + 3 + 27] \mod 10 = 2$
 - $h(92,4) = [h'(92) + 1 \times 4 + 3 \times 4^2] \mod 10$ = $[(92 \mod 10) + 4 + 48] \mod 10 = 4$
 - $h(92,5) = [h'(92) + 1 \times 5 + 3 \times 5^2] \mod 10$ = $[(92 \mod 10) + 5 + 75] \mod 10 = 2$

Example.....

- Consider a hash table of size 10. Using linear probing, insert the keys 72, 27, 36, 24, 63, 81, 101, and 92 into the table. Take $c_1 = 1$ and $c_2 = 3$.
 - $h(92,6) = [h'(92) + 1 \times 6 + 3 \times 6^2] \mod 10$ = $[(92 \mod 10) + 6 + 108] \mod 10 = 6$
 - $h(92,7) = [h'(92) + 1 \times 7 + 3 \times 7^2] \mod 10$ = $[(92 \mod 10) + 7 + 147] \mod 10 = 6$
 - $h(92,8) = [h'(92) + 1 \times 8 + 3 \times 8^2] \mod 10$ = $[(92 \mod 10) + 8 + 192] \mod 10 = 2$
 - $h(92,9) = [h'(92) + 1 \times 9 + 3 \times 9^2] \mod 10$ = $[(92 \mod 10) + 9 + 243] \mod 10 = 4$
 - One of the major drawbacks of quadratic probing is that a sequence of successive probes may only explore a fraction of the table, and this fraction may be quite small
 - If this happens, then we will not be able to find an empty location in the table despite the fact that the table is by no means full

Double Hashing

- Double hashing uses one hash value and then repeatedly steps forward an interval until an empty location is reached
 - The interval is decided using a second, independent hash function, hence the name **double hashing**
 - In double hashing, we use two hash functions rather than a single function

$$h(x,i) = [h_1(x) + i \times h_2(x)] \bmod M$$

- M is the size of the hash table, $h_1(x)$ and $h_2(x)$ are two hash functions given as $h_1(x) = x \mod M$ and $h_2(x) = x \mod M'$, i is the probe number that varies from 0 to M-1, and M' is chosen to be less than M
 - We can choose M' = M 1 or M' = M 2

Example.

- Consider a hash table of size 10. Using linear probing, insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table. Take $h_1 = x \mod 10$ and $h_2 = x \mod 8$.
 - Initial

				•					9
-1	-1	-1	–1	-1	-1	-1	-1	-1	-1

- Step 1
 - x = 72
 - $h(72,0) = [h_1(72) + 0 \times h_2(72)] \mod 10$ = $[(72 \mod 10) + 0 \times (72 \mod 8)] \mod 10 = 2$
- Step 2
 - x = 27
 - $h(27,0) = [h_1(27) + 0 \times h_2(27)] \mod 10$ = $[(27 \mod 10) + 0 \times (27 \mod 8)] \mod 10 = 7$

Example..

- Consider a hash table of size 10. Using linear probing, insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table. Take $h_1 = x \mod 10$ and $h_2 = x \mod 8$.
 - Step 3
 - x = 36
 - $h(36,0) = [h_1(36) + 0 \times h_2(36)] \mod 10$ = $[(36 \mod 10) + 0 \times (36 \mod 8)] \mod 10 = 6$
 - Step 4
 - x = 24
 - $h(24,0) = [h_1(24) + 0 \times h_2(24)] \mod 10$ = $[(24 \mod 10) + 0 \times (24 \mod 8)] \mod 10 = 4$
 - Step 5
 - x = 63
 - $h(63,0) = [h_1(63) + 0 \times h_2(63)] \mod 10$ = $[(63 \mod 10) + 0 \times (63 \mod 8)] \mod 10 = 3$

Example...

- Consider a hash table of size 10. Using linear probing, insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table. Take $h_1 = x \mod 10$ and $h_2 = x \mod 8$.
 - Step 6
 - x = 81
 - $h(81,0) = [h_1(81) + 0 \times h_2(81)] \mod 10$ = $[(81 \mod 10) + 0 \times (81 \mod 8)] \mod 10 = 1$
 - Step 7
 - x = 92
 - $h(92,0) = [h_1(92) + 0 \times h_2(92)] \mod 10$ = $[(92 \mod 10) + 0 \times (92 \mod 8)] \mod 10 = 2$
 - $h(92,1) = [h_1(92) + 1 \times h_2(92)] \mod 10$ = $[(92 \mod 10) + 1 \times (92 \mod 8)] \mod 10 = 6$
 - $h(92,2) = [h_1(92) + 2 \times h_2(92)] \mod 10$ = $[(92 \mod 10) + 2 \times (92 \mod 8)] \mod 10 = 0$

Example....

• Consider a hash table of size 10. Using linear probing, insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the table. Take $h_1 = x \mod 10$ and $h_2 = x \mod 8$.

0	1	2	3	4	5	6	7	8	9
92	81	72	63	24	-1	36	27	-1	-1

- Step 8

- x = 101
- $h(101,0) = [h_1(101) + 0 \times h_2(101)] \mod 10$ = $[(101 \mod 10) + 0 \times (101 \mod 8)] \mod 10 = 1$
- $h(101,1) = [h_1(101) + 1 \times h_2(101)] \mod 10$ = $[(101 \mod 10) + 1 \times (101 \mod 8)] \mod 10 = 6$
- $h(101,2) = [h_1(101) + 2 \times h_2(101)] \mod 10$ = $[(101 \mod 10) + 2 \times (101 \mod 8)] \mod 10 = 1$

•

Rehashing

- When the hash table becomes nearly full, the number of collisions increases, thereby degrading the performance of insertion and search operations
 - A better option is to create a new hash table with size double of the original hash table
- By performing the rehashing, all the entries in the original hash table will then have to be moved to the new hash table
 - This is done by taking each entry, computing its new hash value, and then inserting it in the new hash table
- Though rehashing seems to be a simple process, it is quite expensive and must therefore not be done frequently

Example

- Consider the hash table of size 5 given below
 - The hash function used is $h(x) = x \mod 5$

0	1	2	3	4
	26	31	43	17

- Rehash the entries into to a new hash table
 - Note that the new hash table is of 10 locations, double the size of the original table
 - Rehash the key values from the old hash table into the new one using hash function $h(x) = x \mod 10$

0	1	2	3	4	5	6	7	8	9
	31		43			26	17		

Chaining

- In chaining, each location in a hash table stores a pointer to a linked list that contains all the key values that were hashed to that location
 - Location n in the hash table points to the head of the linked list of all the key values that hashed to n
 - If no key value hashes to n, then location n in the hash table contains NULL

Example.

- Insert the keys 7, 24, 18, 52, 36, 54, 11, and 23 in a chained hash table of 9 memory locations. Use $h(x) = x \mod 9$.
 - Step 1
 - x = 7
 - $h(7) = 7 \mod 9 = 7$
 - Step 2
 - x = 24
 - $h(24) = 24 \mod 9 = 6$
 - Step 3
 - x = 18
 - $h(18) = 18 \mod 9 = 0$
 - Step 4
 - x = 52
 - $h(52) = 52 \mod 9 = 7$

Example..

- Insert the keys 7, 24, 18, 52, 36, 54, 11, and 23 in a chained hash table of 9 memory locations. Use $h(x) = x \mod 9$.
 - Step 5
 - x = 36
 - $h(36) = 36 \mod 9 = 0$
 - Step 6
 - x = 54
 - $h(54) = 54 \mod 9 = 0$
 - Step 7
 - x = 11
 - $h(11) = 11 \mod 9 = 2$
 - Step 8
 - x = 23
 - $h(23) = 23 \mod 9 = 5$

Questions?

kychen@mail.ntust.edu.tw