Inteligência Artificial – ACH2016 Aula 14 – Representação do Conhecimento e Lógica *Fuzzy*

Norton Trevisan Roman (norton@usp.br)

29 de abril de 2019

Ontologias

 São o primeiro passo na formalização lógica de um domínio

- São o primeiro passo na formalização lógica de um domínio
- Buscam organizar tudo conforme uma hierarquia de categorias

- São o primeiro passo na formalização lógica de um domínio
- Buscam organizar tudo conforme uma hierarquia de categorias
 - Descrição dos tipos de objetos que temos em nosso mundo e suas possíveis propriedades e relações

- São o primeiro passo na formalização lógica de um domínio
- Buscam organizar tudo conforme uma hierarquia de categorias
 - Descrição dos tipos de objetos que temos em nosso mundo e suas possíveis propriedades e relações
 - Cobrem também conceitos gerais: ações, tempo, objetos físicos e crenças

- São o primeiro passo na formalização lógica de um domínio
- Buscam organizar tudo conforme uma hierarquia de categorias
 - Descrição dos tipos de objetos que temos em nosso mundo e suas possíveis propriedades e relações
 - Cobrem também conceitos gerais: ações, tempo, objetos físicos e crenças
 - A representação de tais conceitos é conhecida como Engenharia ontológica

Vantagens

 Organizam o conhecimento em categorias e sub-categorias

- Organizam o conhecimento em categorias e sub-categorias
 - Ainda que a interação com o mundo aconteça com objetos individuais, pode ser útil raciocinar em termos de categorias

- Organizam o conhecimento em categorias e sub-categorias
 - Ainda que a interação com o mundo aconteça com objetos individuais, pode ser útil raciocinar em termos de categorias
- Permitem fazer previsões sobre objetos, uma vez que foram classificados

- Organizam o conhecimento em categorias e sub-categorias
 - Ainda que a interação com o mundo aconteça com objetos individuais, pode ser útil raciocinar em termos de categorias
- Permitem fazer previsões sobre objetos, uma vez que foram classificados
 - A partir da percepção de forma e cor (sensores), podemos inferir que um objeto é um melão

- Organizam o conhecimento em categorias e sub-categorias
 - Ainda que a interação com o mundo aconteça com objetos individuais, pode ser útil raciocinar em termos de categorias
- Permitem fazer previsões sobre objetos, uma vez que foram classificados
 - A partir da percepção de forma e cor (sensores), podemos inferir que um objeto é um melão
 - A partir dessa classificação, podemos inferir que é bom em salada de frutas

Representando categorias como predicados

A categoria é um predicado

- A categoria é um predicado
- Exemplo:

- A categoria é um predicado
- Exemplo:
 - $\forall x \ comida(x) \Rightarrow comestivel(x)$

- A categoria é um predicado
- Exemplo:
 - $\forall x \ comida(x) \Rightarrow comestivel(x)$
 - $\forall x \ fruta(x) \Rightarrow comida(x)$

- A categoria é um predicado
- Exemplo:
 - $\forall x \ comida(x) \Rightarrow comestivel(x)$
 - $\forall x \ fruta(x) \Rightarrow comida(x)$
 - $\forall x \ maç\tilde{a}(x) \Rightarrow fruta(x)$

- A categoria é um predicado
- Exemplo:
 - $\forall x \ comida(x) \Rightarrow comestivel(x)$
 - $\forall x \ fruta(x) \Rightarrow comida(x)$
 - $\forall x \ maç\tilde{a}(x) \Rightarrow fruta(x)$
 - maçã(M)

- A categoria é um predicado
- Exemplo:
 - $\forall x \ comida(x) \Rightarrow comestivel(x)$
 - $\forall x \ fruta(x) \Rightarrow comida(x)$
 - $\forall x \ maç\tilde{a}(x) \Rightarrow fruta(x)$
 - maçã(M)
 - Deduzimos então que M é comestível

- A categoria é um predicado
- Exemplo:
 - $\forall x \ comida(x) \Rightarrow comestivel(x)$
 - $\forall x \ fruta(x) \Rightarrow comida(x)$
 - $\forall x \ maç\tilde{a}(x) \Rightarrow fruta(x)$
 - maçã(M)
 - Deduzimos então que M é comestível
 - M pertence à categoria das maçãs, que pertence à categoria das frutas, que pertence à categoria das comidas, que pertence à categoria das coisas comestíveis

Representando categorias como objetos

A categoria é um objeto

- A categoria é um objeto
 - Transformar predicado em objeto chama-se reificação

- A categoria é um objeto
 - Transformar predicado em objeto chama-se reificação
- Precisamos de predicados para definir que um objeto pertence a uma categoria

- A categoria é um objeto
 - Transformar predicado em objeto chama-se reificação
- Precisamos de predicados para definir que um objeto pertence a uma categoria
 - $\forall x \; membro(x, comida) \Rightarrow membro(x, comestível)$

- A categoria é um objeto
 - Transformar predicado em objeto chama-se reificação
- Precisamos de predicados para definir que um objeto pertence a uma categoria
 - $\forall x \; membro(x, comida) \Rightarrow membro(x, comestível)$
 - $\forall x \; membro(x, fruta) \Rightarrow membro(x, comida)$

- A categoria é um objeto
 - Transformar predicado em objeto chama-se reificação
- Precisamos de predicados para definir que um objeto pertence a uma categoria
 - $\forall x \; membro(x, comida) \Rightarrow membro(x, comestível)$
 - $\forall x \; membro(x, fruta) \Rightarrow membro(x, comida)$
 - $\forall x \; membro(x, maçã) \Rightarrow membro(x, fruta)$

- A categoria é um objeto
 - Transformar predicado em objeto chama-se reificação
- Precisamos de predicados para definir que um objeto pertence a uma categoria
 - $\forall x \; membro(x, comida) \Rightarrow membro(x, comestível)$
 - $\forall x \; membro(x, fruta) \Rightarrow membro(x, comida)$
 - $\forall x \; membro(x, maç\tilde{a}) \Rightarrow membro(x, fruta)$
 - membro(M, maçã)

- A categoria é um objeto
 - Transformar predicado em objeto chama-se reificação
- Precisamos de predicados para definir que um objeto pertence a uma categoria
 - $\forall x \; membro(x, comida) \Rightarrow membro(x, comestível)$
 - $\forall x \; membro(x, fruta) \Rightarrow membro(x, comida)$
 - $\forall x \; membro(x, maçã) \Rightarrow membro(x, fruta)$
 - membro(M, maçã)
 - Também podemos deduzir que *M* é comestível

Herança

Herança

Serve para organizar e simplificar a base de conhecimentos

Herança

- Serve para organizar e simplificar a base de conhecimentos
 - Qualquer propriedade pertencente a uma categoria é herdada pelas suas sub-categorias

Herança

- Serve para organizar e simplificar a base de conhecimentos
 - Qualquer propriedade pertencente a uma categoria é herdada pelas suas sub-categorias
 - Propriedades de "comestível" são herdadas por "comida", "fruta" e "maçã"

Taxonomia

Taxonomia

• Hierarquia de classes e subclasses

Taxonomia

- Hierarquia de classes e subclasses
 - Arranjo particular dos elementos de uma ontologia

Taxonomia

- Hierarquia de classes e subclasses
 - Arranjo particular dos elementos de uma ontologia
- Definida pelas relações entre subclasses:

Ontologias

Taxonomia

- Hierarquia de classes e subclasses
 - Arranjo particular dos elementos de uma ontologia
- Definida pelas relações entre subclasses:

Usada por séculos e em várias áreas

Ontologias

Taxonomia

- Hierarquia de classes e subclasses
 - Arranjo particular dos elementos de uma ontologia
- Definida pelas relações entre subclasses:

- Usada por séculos e em várias áreas
 - Biologia: Reino- filo classe ordem família gênero

Lógica Nebulosa (*Fuzzy*)

Imprecisão

 A lógica vista até agora apresenta um comprometimento ontológico claro:

- A lógica vista até agora apresenta um comprometimento ontológico claro:
 - Proposições são verdadeiras ou falsas no mundo

- A lógica vista até agora apresenta um comprometimento ontológico claro:
 - Proposições são verdadeiras ou falsas no mundo
- Contudo, quando descrevemos algo, muitas vezes o fazemos de forma vaga e ambígua

- A lógica vista até agora apresenta um comprometimento ontológico claro:
 - Proposições são verdadeiras ou falsas no mundo
- Contudo, quando descrevemos algo, muitas vezes o fazemos de forma vaga e ambígua
 - "Embora esteja <u>um pouco</u> pesado, o mecanismo aguenta mais um tempo"

- A lógica vista até agora apresenta um comprometimento ontológico claro:
 - Proposições são verdadeiras ou falsas no mundo
- Contudo, quando descrevemos algo, muitas vezes o fazemos de forma vaga e ambígua
 - "Embora esteja <u>um pouco</u> pesado, o mecanismo aguenta mais um tempo"
 - O que isso significa?

- A lógica vista até agora apresenta um comprometimento ontológico claro:
 - Proposições são verdadeiras ou falsas no mundo
- Contudo, quando descrevemos algo, muitas vezes o fazemos de forma vaga e ambígua
 - "Embora esteja <u>um pouco</u> pesado, o mecanismo aguenta mais um tempo"
 - O que isso significa?
 - Mais importante, como representamos isso?

Lógica Fuzzy

 A solução passa por uma ontologia que permita imprecisão

- A solução passa por uma ontologia que permita imprecisão
 - Em que proposições podem ser "meio que" verdadeiras

- A solução passa por uma ontologia que permita imprecisão
 - Em que proposições podem ser "meio que" verdadeiras
 - Essa é a **Lógica Nebulosa** (Fuzzy Logic)

- A solução passa por uma ontologia que permita imprecisão
 - Em que proposições podem ser "meio que" verdadeiras
 - Essa é a Lógica Nebulosa (Fuzzy Logic)
- Lembre, contudo, que lógica nebulosa não se trata de uma lógica que é nebulosa

- A solução passa por uma ontologia que permita imprecisão
 - Em que proposições podem ser "meio que" verdadeiras
 - Essa é a **Lógica Nebulosa** (Fuzzy Logic)
- Lembre, contudo, que lógica nebulosa não se trata de uma lógica que é nebulosa
 - Em vez disso, se trata de lógica usada para descrever imprecisão

- A solução passa por uma ontologia que permita imprecisão
 - Em que proposições podem ser "meio que" verdadeiras
 - Essa é a **Lógica Nebulosa** (Fuzzy Logic)
- Lembre, contudo, que lógica nebulosa não se trata de uma lógica que é nebulosa
 - Em vez disso, se trata de lógica usada para descrever imprecisão
 - Ou seja, lógica que trata de descrições nebulosas

Lógica Fuzzy

 Baseia-se na ideia de que todas as coisas admitem graus de veracidade

- Baseia-se na ideia de que todas as coisas admitem graus de veracidade
 - "O motor está quente" × "O motor está realmente quente"

- Baseia-se na ideia de que todas as coisas admitem graus de veracidade
 - "O motor está quente" × "O motor está realmente quente"
 - Como diferenciar um do outro, no limiar que os divide?

- Baseia-se na ideia de que todas as coisas admitem graus de veracidade
 - ullet "O motor está quente" imes "O motor está realmente quente"
 - Como diferenciar um do outro, no limiar que os divide?
- A lógica convencional nos força a criar linhas entre membros e não-membros de uma classe

- Baseia-se na ideia de que todas as coisas admitem graus de veracidade
 - ullet "O motor está quente" imes "O motor está realmente quente"
 - Como diferenciar um do outro, no limiar que os divide?
- A lógica convencional nos força a criar linhas entre membros e não-membros de uma classe
 - "Pedro é alto, tem 1,81m" $(Alto(x) \Rightarrow Altura(x) \ge 1,80)$

- Baseia-se na ideia de que todas as coisas admitem graus de veracidade
 - "O motor está quente" × "O motor está realmente quente"
 - Como diferenciar um do outro, no limiar que os divide?
- A lógica convencional nos força a criar linhas entre membros e não-membros de uma classe
 - "Pedro é alto, tem 1,81m" $(Alto(x) \Rightarrow Altura(x) \ge 1,80)$
 - Como fica então João, que tem 1,79?

- Baseia-se na ideia de que todas as coisas admitem graus de veracidade
 - "O motor está quente" × "O motor está realmente quente"
 - Como diferenciar um do outro, no limiar que os divide?
- A lógica convencional nos força a criar linhas entre membros e não-membros de uma classe
 - "Pedro é alto, tem 1,81m" $(Alto(x) \Rightarrow Altura(x) \ge 1,80)$
 - Como fica então João, que tem 1,79?
 - Não é uma questão de incerteza. Sabemos as alturas de Pedro e João, só não sabemos classificá-las

Teoria dos Conjuntos Fuzzy

 Lógica nebulosa baseia-se na teoria dos conjuntos nebulosos

- Lógica nebulosa baseia-se na teoria dos conjuntos nebulosos
- Conjuntos nebulosos?

- Lógica nebulosa baseia-se na teoria dos conjuntos nebulosos
- Conjuntos nebulosos?

Fonte: https://hiveminer.com/User/periklis

- Lógica nebulosa baseia-se na teoria dos conjuntos nebulosos
- Conjuntos nebulosos?
 - Modo de especificar o quanto um objeto satisfaz uma descrição vaga

Fonte: https://hiveminer.com/User/periklis

Teoria dos Conjuntos Fuzzy

- Lógica nebulosa baseia-se na teoria dos conjuntos nebulosos
- Conjuntos nebulosos?
 - Modo de especificar o quanto um objeto satisfaz uma descrição vaga

Fonte: https://hiveminer.com/User/periklis

• A ideia básica dos conjuntos nebulosos é que um elemento pertence a um conjunto com um certo grau de adesão

- Lógica nebulosa baseia-se na teoria dos conjuntos nebulosos
- Conjuntos nebulosos?
 - Modo de especificar o quanto um objeto satisfaz uma descrição vaga

Fonte: https://hiveminer.com/User/periklis

- A ideia básica dos conjuntos nebulosos é que um elemento pertence a um conjunto com um certo grau de adesão
- Assim, uma proposição pode ser parte verdadeira e parte falsa

Teoria dos Conjuntos *Fuzzy* – Exemplo

Pedro é alto?

Teoria de Conjuntos Clássica

Quão alto é Pedro?

Teoria de Conjuntos Nebulosos

Fonte: Al. Negnevitsky.

Teoria dos Conjuntos Fuzzy – Exemplo

Pedro é alto?

• Quão alto é Pedro?

Teoria de Conjuntos Clássica

Teoria de Conjuntos Nebulosos Fonte: Al. Negnevitsky.

Alto(x) é tratado como um predicado nebuloso:

Teoria dos Conjuntos *Fuzzy* – Exemplo

• Pedro é alto?

• Quão alto é Pedro?

Teoria de Conjuntos Clássica

Teoria de Conjuntos Nebulosos

• Alto(x) é tratado como um predicado nebuloso:

Fonte: Al. Negnevitsky.

 Seu valor verdade é um número entre 0 e 1, em vez de ser verdadeiro ou falso

Teoria dos Conjuntos Fuzzy

• O conjunto A é definido por sua **função de pertinência** $\mu_A(x) \in [0, 1]$:

Teoria de Conjuntos Clássica

Teoria de Conjuntos Nebulosos Fonte: Al. Negnevitsky.

- O conjunto A é definido por sua **função de pertinência** $\mu_A(x) \in [0,1]$:
 - $\mu_A(x) = 1 \rightarrow x$ está totalmente em A

Teoria de Conjuntos Clássica

Teoria de Conjuntos Nebulosos Fonte: Al. Negnevitsky.

- O conjunto A é definido por sua **função de pertinência** $\mu_A(x) \in [0,1]$:
 - $\mu_A(x) = 1 \rightarrow x$ está totalmente em A
 - $\mu_A(x) = 0 \rightarrow x$ não está em A

Teoria de Conjuntos Clássica

Teoria de Conjuntos Nebulosos Fonte: Al. Negnevitsky.

- O conjunto A é definido por sua **função de pertinência** $\mu_A(x) \in [0,1]$:
 - $\mu_A(x) = 1 \rightarrow x$ está totalmente em A
 - $\mu_A(x) = 0 \rightarrow x$ não está em A
 - $0 < \mu_A(x) < 1 \rightarrow x$ está parcialmente em A

Teoria de Conjuntos Clássica

Teoria de Conjuntos Nebulosos Fonte: Al. Negnevitsky.

- O conjunto A é definido por sua **função de pertinência** $\mu_A(x) \in [0,1]$:
 - $\mu_A(x) = 1 \rightarrow x$ está totalmente em A
 - $\mu_A(x) = 0 \rightarrow x$ não está em A
 - $0 < \mu_A(x) < 1 \rightarrow x$ está parcialmente em A
- Teoria clássica:

Teoria de Conjuntos Clássica

Teoria de Conjuntos Nebulosos Fonte: Al. Negnevitsky.

Representação do Conhecimento

Teoria dos Conjuntos Fuzzy

- O conjunto A é definido por sua **função de pertinência** $\mu_A(x) \in [0,1]$:
 - $\mu_A(x) = 1 \rightarrow x$ está totalmente em A
 - $\mu_A(x) = 0 \rightarrow x$ não está em A
 - $0 < \mu_A(x) < 1 \rightarrow x$ está parcialmente em A
- Teoria clássica:
 - $\mu_A(x) \in \{0,1\}$ (ou $x \in A$, ou $x \notin A$)

Teoria de Conjuntos Clássica

Teoria de Conjuntos Nebulosos Fonte: Al. Negnevitsky.

Função de Pertinência (Membership)

• Para cada elemento x do universo X, $\mu_A(x)$ define o grau de compatibilidade de x em relação a A

Função de Pertinência (Membership)

- Para cada elemento x do universo X, $\mu_A(x)$ define o grau de compatibilidade de x em relação a A
 - Chamado grau de pertinência de x em A

Função de Pertinência (Membership)

- Para cada elemento x do universo X, $\mu_A(x)$ define o grau de compatibilidade de x em relação a A
 - Chamado grau de pertinência de x em A
- Ex: $A = \{Baixo, Médio, Alto\}$

Teoria de Conjuntos Clássica

Teoria de Conjuntos Nebulosos

Fonte: Al. Negnevitsky.

Função de Pertinência (Membership)

- Para cada elemento x do universo X, $\mu_A(x)$ define o grau de compatibilidade de x em relação a A
 - Chamado grau de pertinência de x em A

• Ex: $A = \{Baixo, Médio, Alto\}$

Teoria de Conjuntos Clássica

Note que 1,84m é 0.4

Teoria de Conjuntos Nebulosos

Fonte: Al. Negnevitsky.

Subconjuntos

• $A \subseteq X$ é um subconjunto nebuloso de X sse

Subconjuntos

- $A \subseteq X$ é um subconjunto nebuloso de X sse
 - $A = \{(x, \mu_A(x))\}, x \in X, \mu_A(x) : X \to [0, 1]$

Subconjuntos

- $A \subseteq X$ é um subconjunto nebuloso de X sse
 - $A = \{(x, \mu_A(x))\}, x \in X, \mu_A(x) : X \to [0, 1]$
 - No caso particular em que $\mu_A(x): X \to \{0,1\}$, o subconjunto nebuloso torna-se rígido

Subconjuntos

- $A \subseteq X$ é um subconjunto nebuloso de X sse
 - $A = \{(x, \mu_A(x))\}, x \in X, \mu_A(x) : X \to [0, 1]$
 - No caso particular em que $\mu_A(x): X \to \{0,1\}$, o subconjunto nebuloso torna-se rígido

Representação de subconjuntos nebulosos e rígidos Fonte: Al. Negnevitsky.

Operações em conjuntos nebulosos

Complemento:

- Complemento:
 - O quanto os elementos não pertencem ao conjunto?

- Complemento:
 - O quanto os elementos não pertencem ao conjunto?
 - $\mu_{\neg A}(x) = 1 \mu_A(x)$, $\forall x \in X \ (X \ \text{\'e o conjunto universo})$

- Complemento:
 - O quanto os elementos não pertencem ao conjunto?
 - $\mu_{\neg A}(x) = 1 \mu_A(x)$, $\forall x \in X \ (X \ \text{\'e o conjunto universo})$
- Inclusão:

- Complemento:
 - O quanto os elementos não pertencem ao conjunto?
 - $\mu_{\neg A}(x) = 1 \mu_A(x)$, $\forall x \in X \ (X \ \text{\'e o conjunto universo})$
- Inclusão:
 - Que conjuntos pertencem a outros conjuntos?

- Complemento:
 - O quanto os elementos não pertencem ao conjunto?
 - $\mu_{\neg A}(x) = 1 \mu_A(x)$, $\forall x \in X \ (X \ \text{\'e o conjunto universo})$
- Inclusão:
 - Que conjuntos pertencem a outros conjuntos?
 - $A \subseteq B \Leftrightarrow \mu_A(x) \le \mu_B(x), \ \forall x \in X$

- Complemento:
 - O quanto os elementos não pertencem ao conjunto?
 - $\mu_{\neg A}(x) = 1 \mu_A(x)$, $\forall x \in X \ (X \ \text{\'e o conjunto universo})$
- Inclusão:
 - Que conjuntos pertencem a outros conjuntos?
 - $A \subseteq B \Leftrightarrow \mu_A(x) \le \mu_B(x), \ \forall x \in X$
- Interseção

- Complemento:
 - O quanto os elementos não pertencem ao conjunto?
 - $\mu_{\neg A}(x) = 1 \mu_A(x), \ \forall x \in X \ (X \ \text{\'e o conjunto universo})$
- Inclusão:
 - Que conjuntos pertencem a outros conjuntos?
 - $A \subseteq B \Leftrightarrow \mu_A(x) \leq \mu_B(x), \ \forall x \in X$
- Interseção
 - Quanto do elemento está em ambos os conjuntos?

- Complemento:
 - O quanto os elementos não pertencem ao conjunto?
 - $\mu_{\neg A}(x) = 1 \mu_A(x)$, $\forall x \in X \ (X \text{ \'e o conjunto universo})$
- Inclusão:
 - Que conjuntos pertencem a outros conjuntos?
 - $A \subseteq B \Leftrightarrow \mu_A(x) \leq \mu_B(x), \ \forall x \in X$
- Interseção
 - Quanto do elemento está em ambos os conjuntos?
 - $\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x)) = \mu_A(x) \cap \mu_B(x), \ \forall x \in X$

Operações em conjuntos nebulosos

União:

- União:
 - Quanto do elemento está em algum dos conjuntos?

- União:
 - Quanto do elemento está em algum dos conjuntos?
 - $\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x)) = \mu_A(x) \cup \mu_B(x), \ \forall x \in X$

- União:
 - Quanto do elemento está em algum dos conjuntos?
 - $\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x)) = \mu_A(x) \cup \mu_B(x), \ \forall x \in X$
- Comutatividade, associatividade, distributividade, idempotência, identidade, transitividade e De Morgan permanecem as mesmas dos conjuntos clássicos

Representação em um computador

• Primeiro determinamos a função de pertinência

- Primeiro determinamos a função de pertinência
 - A partir de conhecimento de um ou mais especialistas

- Primeiro determinamos a função de pertinência
 - A partir de conhecimento de um ou mais especialistas
 - A partir de análise estatística de frequência

- Primeiro determinamos a função de pertinência
 - A partir de conhecimento de um ou mais especialistas
 - A partir de análise estatística de frequência
 - Aprendida via redes neurais

- Primeiro determinamos a função de pertinência
 - A partir de conhecimento de um ou mais especialistas
 - A partir de análise estatística de frequência
 - Aprendida via redes neurais
 - Etc

- Primeiro determinamos a função de pertinência
 - A partir de conhecimento de um ou mais especialistas
 - A partir de análise estatística de frequência
 - Aprendida via redes neurais
 - Etc
- Em seguida mapeamos os elementos do conjunto ao seu grau de pertinência

- Primeiro determinamos a função de pertinência
 - A partir de conhecimento de um ou mais especialistas
 - A partir de análise estatística de frequência
 - Aprendida via redes neurais
 - Etc
- Em seguida mapeamos os elementos do conjunto ao seu grau de pertinência
 - Se o conjunto for contínuo, precisamos expressá-lo como uma função

Lógica Fuzzy

 Método para raciocinar com expressões lógicas dentro de conjuntos nebulosos

- Método para raciocinar com expressões lógicas dentro de conjuntos nebulosos
 - Ex: Alto(Pedro) ∧ Pesado(Pedro)

- Método para raciocinar com expressões lógicas dentro de conjuntos nebulosos
 - Ex: Alto(Pedro) ∧ Pesado(Pedro)
 - Seu valor verdade nebuloso (fuzzy) é uma função do valor verdade de seus componentes

- Método para raciocinar com expressões lógicas dentro de conjuntos nebulosos
 - Ex: Alto(Pedro) ∧ Pesado(Pedro)
 - Seu valor verdade nebuloso (fuzzy) é uma função do valor verdade de seus componentes
- Trata-se de uma lógica multivalorada

- Método para raciocinar com expressões lógicas dentro de conjuntos nebulosos
 - Ex: Alto(Pedro) ∧ Pesado(Pedro)
 - Seu valor verdade nebuloso (fuzzy) é uma função do valor verdade de seus componentes
- Trata-se de uma lógica multivalorada
 - Lida com graus de pertinência e graus de verdade

- Método para raciocinar com expressões lógicas dentro de conjuntos nebulosos
 - Ex: Alto(Pedro) ∧ Pesado(Pedro)
 - Seu valor verdade nebuloso (fuzzy) é uma função do valor verdade de seus componentes
- Trata-se de uma lógica multivalorada
 - Lida com graus de pertinência e graus de verdade
 - A lógica clássica pode ser vista como um caso especial da multivalorada

Lógica *Fuzzy*

 Trabalha com um contínuo de valores lógicos entre 0 (totalmente falso) e 1 (totalmente verdadeiro)

- Trabalha com um contínuo de valores lógicos entre 0 (totalmente falso) e 1 (totalmente verdadeiro)
 - Aceita que coisas possam ser parcialmente verdadeiras ao mesmo tempo em que são também parcialmente falsas

- Trabalha com um contínuo de valores lógicos entre 0 (totalmente falso) e 1 (totalmente verdadeiro)
 - Aceita que coisas possam ser parcialmente verdadeiras ao mesmo tempo em que são também parcialmente falsas
- As variáveis usadas em expressões fuzzy são denominadas variáveis linguísticas

- Trabalha com um contínuo de valores lógicos entre 0 (totalmente falso) e 1 (totalmente verdadeiro)
 - Aceita que coisas possam ser parcialmente verdadeiras ao mesmo tempo em que são também parcialmente falsas
- As variáveis usadas em expressões fuzzy são denominadas variáveis linguísticas
 - Ex: "Pedro é alto" → a variável linguística Pedro recebe o valor linguístico alto

- Trabalha com um contínuo de valores lógicos entre 0 (totalmente falso) e 1 (totalmente verdadeiro)
 - Aceita que coisas possam ser parcialmente verdadeiras ao mesmo tempo em que são também parcialmente falsas
- As variáveis usadas em expressões fuzzy são denominadas variáveis linguísticas
 - Ex: "Pedro é alto" → a variável linguística Pedro recebe o valor linguístico alto
 - A gama de valores possíveis para uma variável linguística representa seu universo de discurso

Variáveis Linguísticas

 Trazem consigo o conceito de qualificadores fuzzy, ou hedges

- Trazem consigo o conceito de qualificadores fuzzy, ou hedges
 - Termos que modificam a forma dos conjuntos nebulosos

- Trazem consigo o conceito de qualificadores fuzzy, ou hedges
 - Termos que modificam a forma dos conjuntos nebulosos
- Hedges são usados como:

- Trazem consigo o conceito de qualificadores fuzzy, ou hedges
 - Termos que modificam a forma dos conjuntos nebulosos
- Hedges são usados como:
 - Modificadores de propósito geral: muito, um tanto, extremamente ...

- Trazem consigo o conceito de qualificadores fuzzy, ou hedges
 - Termos que modificam a forma dos conjuntos nebulosos
- Hedges são usados como:
 - Modificadores de propósito geral: muito, um tanto, extremamente ...
 - Valores verdade: bastante verdade, majoritariamente falso ...

- Trazem consigo o conceito de qualificadores fuzzy, ou hedges
 - Termos que modificam a forma dos conjuntos nebulosos
- Hedges são usados como:
 - Modificadores de propósito geral: *muito*, *um tanto*, *extremamente* ...
 - Valores verdade: bastante verdade, majoritariamente falso ...
 - Probabilidades: provável, não muito provável ...

- Trazem consigo o conceito de qualificadores fuzzy, ou hedges
 - Termos que modificam a forma dos conjuntos nebulosos
- Hedges são usados como:
 - Modificadores de propósito geral: muito, um tanto, extremamente ...
 - Valores verdade: bastante verdade, majoritariamente falso ...
 - Probabilidades: provável, não muito provável ...
 - Quantificadores: a maioria, muitos, poucos ...

- Trazem consigo o conceito de qualificadores fuzzy, ou hedges
 - Termos que modificam a forma dos conjuntos nebulosos
- Hedges são usados como:
 - Modificadores de propósito geral: *muito*, *um tanto*, *extremamente* ...
 - Valores verdade: bastante verdade, majoritariamente falso ...
 - Probabilidades: provável, não muito provável ...
 - Quantificadores: a maioria, muitos, poucos ...
 - Possibilidades: quase impossível, bastante possível ...

Variáveis Linguísticas

Hedges também agem como operações

- Hedges também agem como operações
 - Ex: muito, quando aplicado ao conjunto de homens altos, gera o subconjunto de homens muito altos

- Hedges também agem como operações
 - Ex: muito, quando aplicado ao conjunto de homens altos, gera o subconjunto de homens muito altos

Conjunto modificado pelo qualificador *muito* Fonte: Al. Negnevitsky.

Variáveis Linguísticas

- Hedges também agem como operações
 - Ex: muito, quando aplicado ao conjunto de homens altos, gera o subconjunto de homens muito altos

Conjunto modificado pelo qualificador *muito* Fonte: Al. Negnevitsky.

Também quebram contínuos em intervalos fuzzy

- Hedges também agem como operações
 - Ex: muito, quando aplicado ao conjunto de homens altos, gera o subconjunto de homens muito altos

Conjunto modificado pelo qualificador *muito* Fonte: Al. Negnevitsky.

- Também quebram contínuos em intervalos fuzzy
 - Ex: muito frio, frio, normal, quente e muito quente

Hedges frequentemente usados

Muito

- Muito
 - $\mu_A^{muito}(x) = [\mu_A(x)]^2$

- Muito
 - $\mu_A^{muito}(x) = [\mu_A(x)]^2$
 - Uma pertinência de 0.8 em $A = alto (\mu_{alto}(x) = 0, 8)$ corresponde a 0,64 em muito alto $(\mu_{alto}^{muito}(x) = 0, 64)$

- Muito
 - $\mu_A^{muito}(x) = [\mu_A(x)]^2$
 - Uma pertinência de 0.8 em $A = alto (\mu_{alto}(x) = 0,8)$ corresponde a 0,64 em muito alto $(\mu_{alto}^{muito}(x) = 0,64)$
- Extremamente

- Muito
 - $\mu_A^{muito}(x) = [\mu_A(x)]^2$
 - Uma pertinência de 0.8 em $A = alto (\mu_{alto}(x) = 0, 8)$ corresponde a 0,64 em muito alto $(\mu_{alto}^{muito}(x) = 0, 64)$
- Extremamente
 - $\mu_A^{\text{extremamente}}(x) = [\mu_A(x)]^3$

- Muito
 - $\mu_A^{muito}(x) = [\mu_A(x)]^2$
 - Uma pertinência de 0.8 em $A = alto (\mu_{alto}(x) = 0,8)$ corresponde a 0,64 em muito alto $(\mu_{alto}^{muito}(x) = 0,64)$
- Extremamente
 - $\mu_A^{\text{extremamente}}(x) = [\mu_A(x)]^3$
- Muitíssimo

- Muito
 - $\mu_A^{muito}(x) = [\mu_A(x)]^2$
 - Uma pertinência de 0.8 em $A = alto (\mu_{alto}(x) = 0,8)$ corresponde a 0,64 em muito alto $(\mu_{alto}^{muito}(x) = 0,64)$
- Extremamente
 - $\mu_A^{\text{extremamente}}(x) = [\mu_A(x)]^3$
- Muitíssimo
 - $\mu_A^{muit(ssimo}(x) = [\mu_A^{muito}(x)]^2 = [\mu_A(x)]^4$

Hedges frequentemente usados

Mais ou menos

- Mais ou menos
 - $\mu_A^{maisoumenos}(x) = \sqrt{\mu_A(x)}$

- Mais ou menos
 - $\mu_A^{maisoumenos}(x) = \sqrt{\mu_A(x)}$
- Certamente

- Mais ou menos
 - $\mu_A^{maisoumenos}(x) = \sqrt{\mu_A(x)}$
- Certamente

•
$$\mu_A^{certamente}(x) = \begin{cases} 2[\mu_A(x)]^2 & \text{se } 0 \le \mu_A(x) \le 0.5 \\ 1 - 2[1 - \mu_A(x)]^2 & \text{se } 0.5 < \mu_A(x) \le 1 \end{cases}$$

Hedges frequentemente usados

- Mais ou menos
 - $\mu_A^{maisoumenos}(x) = \sqrt{\mu_A(x)}$
- Certamente

•
$$\mu_A^{certamente}(x) = \begin{cases} 2[\mu_A(x)]^2 & \text{se } 0 \le \mu_A(x) \le 0.5 \\ 1 - 2[1 - \mu_A(x)]^2 & \text{se } 0.5 < \mu_A(x) \le 1 \end{cases}$$

• Essas definições, contudo, podem ser modificadas, adequando-se ao domínio em questão

Operadores

 Os operadores padrão para avaliar a veracidade de sentenças complexas seguem suas definições correspondentes em conjuntos

- Os operadores padrão para avaliar a veracidade de sentenças complexas seguem suas definições correspondentes em conjuntos
 - $T(A \land B) = min(T(A), T(B))$ (interseção de conjuntos)

- Os operadores padrão para avaliar a veracidade de sentenças complexas seguem suas definições correspondentes em conjuntos
 - $T(A \land B) = min(T(A), T(B))$ (interseção de conjuntos)
 - Nessa notação, $T(Alto(Pedro)) = \mu_{Alto}(Pedro)$

- Os operadores padrão para avaliar a veracidade de sentenças complexas seguem suas definições correspondentes em conjuntos
 - $T(A \land B) = min(T(A), T(B))$ (interseção de conjuntos)
 - Nessa notação, $T(Alto(Pedro)) = \mu_{Alto}(Pedro)$
 - $T(A \lor B) = max(T(A), T(B))$ (união de conjuntos)

- Os operadores padrão para avaliar a veracidade de sentenças complexas seguem suas definições correspondentes em conjuntos
 - $T(A \land B) = min(T(A), T(B))$ (interseção de conjuntos)
 - Nessa notação, $T(Alto(Pedro)) = \mu_{Alto}(Pedro)$
 - $T(A \lor B) = max(T(A), T(B))$ (união de conjuntos)
 - $T(\neg A) = 1 T(A)$ (complemento de um conjunto)

Operadores

- Os operadores padrão para avaliar a veracidade de sentenças complexas seguem suas definições correspondentes em conjuntos
 - $T(A \land B) = min(T(A), T(B))$ (interseção de conjuntos)
 - Nessa notação, $T(Alto(Pedro)) = \mu_{Alto}(Pedro)$
 - $T(A \lor B) = max(T(A), T(B))$ (união de conjuntos)
 - $T(\neg A) = 1 T(A)$ (complemento de um conjunto)
- Estes, contudo, podem ser customizados se necessário

Operadores

- Os operadores padrão para avaliar a veracidade de sentenças complexas seguem suas definições correspondentes em conjuntos
 - $T(A \land B) = min(T(A), T(B))$ (interseção de conjuntos)
 - Nessa notação, $T(Alto(Pedro)) = \mu_{Alto}(Pedro)$
 - $T(A \lor B) = max(T(A), T(B))$ (união de conjuntos)
 - $T(\neg A) = 1 T(A)$ (complemento de um conjunto)
- Estes, contudo, podem ser customizados se necessário
 - Ex: Podemos fazer $T(A \wedge B) = T(A) \times T(B)$

Operadores – Problema

• Suponha que sabemos que T(Alto(Pedro)) = 0,6 e T(Pesado(Pedro)) = 0,4

- Suponha que sabemos que T(Alto(Pedro)) = 0,6 e T(Pesado(Pedro)) = 0,4
 - Então $T(Alto(Pedro) \land Pesado(Pedro)) = min(T(Alto(Pedro)), T(Pesado(Pedro))) = 0,4$

- Suponha que sabemos que T(Alto(Pedro)) = 0,6 e T(Pesado(Pedro)) = 0,4
 - Então $T(Alto(Pedro) \land Pesado(Pedro)) = min(T(Alto(Pedro)), T(Pesado(Pedro))) = 0, 4$
 - Parece razoável

- Suponha que sabemos que T(Alto(Pedro)) = 0,6 e T(Pesado(Pedro)) = 0,4
 - Então $T(Alto(Pedro) \land Pesado(Pedro)) = min(T(Alto(Pedro)), T(Pesado(Pedro))) = 0,4$
 - Parece razoável
- E $T(Alto(Pedro) \land \neg Alto(Pedro))$?

- Suponha que sabemos que T(Alto(Pedro)) = 0,6 e T(Pesado(Pedro)) = 0,4
 - Então $T(Alto(Pedro) \land Pesado(Pedro)) = min(T(Alto(Pedro)), T(Pesado(Pedro))) = 0,4$
 - Parece razoável
- E $T(Alto(Pedro) \land \neg Alto(Pedro))$?
 - $T(Alto(Pedro) \land \neg Alto(Pedro)) = min(T(Alto(Pedro)), 1-T(Alto(Pedro))) = 0, 4$

- Suponha que sabemos que T(Alto(Pedro)) = 0,6 e T(Pesado(Pedro)) = 0,4
 - Então $T(Alto(Pedro) \land Pesado(Pedro)) = min(T(Alto(Pedro)), T(Pesado(Pedro))) = 0,4$
 - Parece razoável
- E $T(Alto(Pedro) \land \neg Alto(Pedro))$?
 - $T(Alto(Pedro) \land \neg Alto(Pedro)) = min(T(Alto(Pedro)), 1-T(Alto(Pedro))) = 0, 4$
 - Soa, no mínimo, estranho...

Înferência

Inferência

 Processo de mapeamento de uma entrada a uma saída, usando a teoria de conjuntos nebulosos

- Processo de mapeamento de uma entrada a uma saída, usando a teoria de conjuntos nebulosos
- Baseia-se em conjuntos de Regras Fuzzy

- Processo de mapeamento de uma entrada a uma saída, usando a teoria de conjuntos nebulosos
- Baseia-se em conjuntos de Regras Fuzzy
 - Condicionais na forma "SE x é A ENTÃO y é B"
 Onde x e y são variáveis linguísticas, e A e B são valores linguísticos determinados por conjuntos nebulosos no universo dos discursos X e Y, respectivamente

- Processo de mapeamento de uma entrada a uma saída, usando a teoria de conjuntos nebulosos
- Baseia-se em conjuntos de Regras Fuzzy
 - Condicionais na forma "SE x é A ENTÃO y é B"
 Onde x e y são variáveis linguísticas, e A e B são valores linguísticos determinados por conjuntos nebulosos no universo dos discursos X e Y, respectivamente
- Note que essas não são booleanas

- Processo de mapeamento de uma entrada a uma saída, usando a teoria de conjuntos nebulosos
- Baseia-se em conjuntos de Regras Fuzzy
 - Condicionais na forma "SE x é A ENTÃO y é B"
 Onde x e y são variáveis linguísticas, e A e B são valores linguísticos determinados por conjuntos nebulosos no universo dos discursos X e Y, respectivamente
- Note que essas não são booleanas
 - x = Pedro ser A = Alto n\(\tilde{a}\)o remove completamente de outros conjuntos, como Mediano e Baixo

Regras Fuzzy

• O raciocínio com regras fuzzy compreende:

- O raciocínio com regras fuzzy compreende:
 - Avaliar o antecedente (SE)

- O raciocínio com regras fuzzy compreende:
 - Avaliar o antecedente (SE)
 - Executar a implicação \rightarrow aplicar o resultado ao consequente (ENTÃO)

- O raciocínio com regras fuzzy compreende:
 - Avaliar o antecedente (SE)
 - Executar a implicação \rightarrow aplicar o resultado ao consequente (ENTÃO)
- Em sistemas nebulosos, contudo, o antecedente também é nebuloso

- O raciocínio com regras fuzzy compreende:
 - Avaliar o antecedente (SE)
 - Executar a implicação \rightarrow aplicar o resultado ao consequente (ENTÃO)
- Em sistemas nebulosos, contudo, o antecedente também é nebuloso
 - Todas as regras são ativadas, pelo menos parcialmente

- O raciocínio com regras fuzzy compreende:
 - Avaliar o antecedente (SE)
 - Executar a implicação \rightarrow aplicar o resultado ao consequente (ENTÃO)
- Em sistemas nebulosos, contudo, o antecedente também é nebuloso
 - Todas as regras são ativadas, pelo menos parcialmente
 - Isso porque se o antecedente é verdadeiro com um certo grau de pertinência, então o consequente também o será com o mesmo grau de pertinência

Regras Fuzzy

 Esse tipo de inferência é chamado de Seleção Monotônica

- Esse tipo de inferência é chamado de Seleção Monotônica
 - Onde o valor de pertinência do consequente pode ser estimado diretamente do valor de pertinência do antecedente

- Esse tipo de inferência é chamado de Seleção Monotônica
 - Onde o valor de pertinência do consequente pode ser estimado diretamente do valor de pertinência do antecedente
 - Ex: "SE altura é Alta ENTÃO peso é Pesado"

- Esse tipo de inferência é chamado de Seleção Monotônica
 - Onde o valor de pertinência do consequente pode ser estimado diretamente do valor de pertinência do antecedente
 - Ex: "SE altura é Alta ENTÃO peso é Pesado"

Regras Fuzzy

• Uma regra pode ter múltiplos antecedentes

- Uma regra pode ter múltiplos antecedentes
 - SE duração é Longa ∧ caixa é Baixo ENTÃO risco é Alto

- Uma regra pode ter múltiplos antecedentes
 - SE duração é Longa ∧ caixa é Baixo ENTÃO risco é Alto
 - Todas as partes do antecedente são calculadas e resolvidas usando os operadores fuzzy, resultando em um único número

- Uma regra pode ter múltiplos antecedentes
 - SE duração é Longa ∧ caixa é Baixo ENTÃO risco é Alto
 - Todas as partes do antecedente são calculadas e resolvidas usando os operadores fuzzy, resultando em um único número
 - Este é então mapeado ao consequente (seleção monotônica)

- Uma regra pode ter múltiplos antecedentes
 - SE duração é Longa ∧ caixa é Baixo ENTÃO risco é Alto
 - Todas as partes do antecedente são calculadas e resolvidas usando os operadores fuzzy, resultando em um único número
 - Este é então mapeado ao consequente (seleção monotônica)
- E também pode ter múltiplos consequentes:

- Uma regra pode ter múltiplos antecedentes
 - SE duração é Longa ∧ caixa é Baixo ENTÃO risco é Alto
 - Todas as partes do antecedente são calculadas e resolvidas usando os operadores fuzzy, resultando em um único número
 - Este é então mapeado ao consequente (seleção monotônica)
- E também pode ter múltiplos consequentes:
 - SE temperatura é Quente ENTÃO água_quente é Muita;
 água_fria é Pouca

- Uma regra pode ter múltiplos antecedentes
 - SE duração é Longa ∧ caixa é Baixo ENTÃO risco é Alto
 - Todas as partes do antecedente são calculadas e resolvidas usando os operadores fuzzy, resultando em um único número
 - Este é então mapeado ao consequente (seleção monotônica)
- E também pode ter múltiplos consequentes:
 - SE temperatura é Quente ENTÃO água_quente é Muita; água_fria é Pouca
 - Nesse caso, todas as partes do consequente são afetadas igualmente pelo antecedente (mesmo valor de pertinência)

Técnica de (Ebrahim) Mamdani (1975)

Técnica de (Ebrahim) Mamdani (1975)

Técnica comum de inferência

Técnica de (Ebrahim) Mamdani (1975)

- Técnica comum de inferência
 - Há outras, contudo...

Técnica de (Ebrahim) Mamdani (1975)

- Técnica comum de inferência
 - Há outras, contudo...
- Constitui de 4 passos:

- Técnica comum de inferência
 - Há outras, contudo...
- Constitui de 4 passos:
 - Fuzzificação das variáveis de entrada

- Técnica comum de inferência
 - Há outras, contudo...
- Constitui de 4 passos:
 - Fuzzificação das variáveis de entrada
 - Aplicação das regras

- Técnica comum de inferência
 - Há outras, contudo...
- Constitui de 4 passos:
 - Fuzzificação das variáveis de entrada
 - Aplicação das regras
 - Agregação das saídas das regras

- Técnica comum de inferência
 - Há outras, contudo...
- Constitui de 4 passos:
 - Fuzzificação das variáveis de entrada
 - Aplicação das regras
 - Agregação das saídas das regras
 - Defuzzificação

Técnica de Mamdani – Exemplo

- Considere as seguintes regras:
 - 1. $SE \times e A_3 \vee y \in B_1 ENTÃO z \in C_1$
 - 2. $SE \times e A_2 \wedge y \in B_2 ENTÃO z \in C_2$
 - 3. $SE \times e A_1 ENTÃO z e C_3$
- Onde
 - x, y e z são variáveis linguísticas
 - A₁, A₂ e A₃ são valores linguísticos (não numéricos) representados por conjuntos nebulosos no universo de discurso X
 - B_1 e B_2 , e C_1 , C_2 e C_3 correspondem aos universos Y e Z

Técnica de Mamdani – Exemplo

- 1. Fuzzificação das variáveis de entrada
 - Determina o grau com que as entradas (valores numéricos) pertencem a cada conjunto nebuloso

Técnica de Mamdani – Exemplo

2. Aplicação das regras

 Aplicação das entradas fuzzificadas aos antecedentes das regras, cujo resultado é então aplicado ao seus consequentes

Fonte: Al. Negnevitsky.

Técnica de Mamdani – Exemplo

- 2. Aplicação das regras
 - Aplicação das entradas fuzzificadas aos antecedentes das regras, cujo resultado é então aplicado ao seus consequentes

Fonte: Al. Negnevitsky.

• Note a aplicação de $T(A \lor B) = max(T(A), T(B))$

Técnica de Mamdani – Exemplo

2. Aplicação das regras (cont.)

Técnica de Mamdani – Exemplo

- 3. Agregação das saídas das regras
 - Processo de unificação das saídas de todas as regras

Técnica de Mamdani – Exemplo

- 3. Agregação das saídas das regras
 - Processo de unificação das saídas de todas as regras

Fonte: Al. Negnevitsky.

 Ao unirmos simplesmente definimos o grau de pertinência de cada valor C_i em Z

Técnica de Mamdani – Exemplo

- 4. Defuzzificação
 - O resultado final de um sistema nebuloso tem que ser um valor – uma resposta final ao problema

Técnica de Mamdani – Exemplo

- 4. Defuzzificação
 - O resultado final de um sistema nebuloso tem que ser um valor – uma resposta final ao problema

Fonte: Al. Negnevitsky.

 Há várias técnicas para calcular isso. Uma delas é a Técnica do Centróide

Defuzzificação – Técnica do Centróide

 Busca o ponto de divisão do conjunto em duas massas iguais

Defuzzificação - Técnica do Centróide

- Busca o ponto de divisão do conjunto em duas massas iguais
 - Ou seja, busca o centro de gravidade do conjunto

$$CG = \frac{\int_{a}^{b} \mu_{A}(x) x dx}{\int_{a}^{b} \mu_{A}(x) dx}$$

Defuzzificação - Técnica do Centróide

- Busca o ponto de divisão do conjunto em duas massas iguais
 - Ou seja, busca o centro de gravidade do conjunto

$$CG = \frac{\int_{a}^{b} \mu_{A}(x) x dx}{\int_{a}^{b} \mu_{A}(x) dx}$$

 E temos o centro de gravidade do conjunto nebuloso A no intervalo [a, b]

Defuzzificação – Técnica do Centróide

 Essa função, contudo, é calculada sobre um contínuo de pontos

Defuzzificação - Técnica do Centróide

- Essa função, contudo, é calculada sobre um contínuo de pontos
 - Podemos aproximar essa função calculando o centro de gravidade em uma amostra de pontos

$$CG = \frac{\sum_{x=a}^{b} \mu_{A}(x)x}{\sum_{x=a}^{b} \mu_{A}(x)}$$

Referências

- Russell, S.; Norvig P. (2010): Artificial Intelligence: A Modern Approach.
 Prentice Hall. 3a ed.
 - Slides do livro: aima.eecs.berkeley.edu/slides-pdf/
- Negnevitsky, M. (2005): Artificial Intelligence: A Guide to Intelligent Systems. Addison-Wesley. 2a ed.
- ocw.mit.edu/OcwWeb/Electrical-Engineeringand-Computer-Science/6-034Spring-2005/LectureNotes/index. htm
- https://artint.info/html/ArtInt_335.html
- https://en.wikipedia.org/wiki/Frame_problem
- http://www.dma.fi.upm.es/recursos/aplicaciones/logica_ borrosa/web/fuzzy_inferencia/main_en.htm