$$m_1 = 30 \text{ g} \rightarrow 0,03 \text{ kg}$$
 $T_1 = 258 \text{ K}$
 $m_2 = 50 \text{ g} \rightarrow 0,05 \text{ kg}$ $T_2 = 353 \text{ K}$
 $C_3 = 3,3 \cdot 10^5 \text{ T/kg}$

suppenendo che il contenitore sia isolato termicamente, abbiamo che il calore aduto dall'acqua viene tutto assorbito dal cubetto di ghiaccio:

aghiacus + acqua = 0

Qacqua = $M_2 C_{H_2O}$ (Teq - T_2)

$$Qghiaccio = m_1 Cq (T_0 - T_2) + m_1 C_7 + m_1 CH_{20} (Teq - T_0)$$

calore necessano a scaldare il culoetto di ghiaccio dalla sua temperatua iniziale alla temperatura di fusione (To = 273 K)

calore necessa no a far compiere la transizione du fase al cubetto di ghiaccio

calore necessano a scaldare II ghiacca sciatto dalla temperatura di fusione a quella di equilibro

$$\Rightarrow$$
 - m_2 CH20 (Teq- T_2) = m_1 Cg (To- T_1) + m_1 C $_1$ + m_1 C $_1$ + m_1 C $_1$ + m_2 CH20 (Teq- T_0)

m2 CH20 T2 - M2 CH20 TEq = M1 Cg T0 - M1 Cg T1 + M1 C7 + M1 CH20 TEq - M1 CH20 T0

- M2 CH20 Teq - M1 CH20 Teq = M1 Cg To - M1 CH20 To - M1 Cg T1 - M2 CH20 T2 + M1 CA

 $-\text{Teq CH}_{20}$ (m₁+m₂) = m₁T₀ (cg - CH₂0) - m₁ Cg T₁ - m₂ CH₂0 T₂+ m₁C_a

Teq = $\frac{m_1 T_0 (CH_{20} - C_9) + m_1 C_9 T_1 + m_2 CH_{20} T_2 - m_1 C_A}{CH_{20} (m_1 + m_2)}$

 $T_{eq} = \frac{m_1 \left[T_0 \left(C_{H_{20}} - C_g \right) + C_g T_1 - C_a \right] + m_2 C_{H_{20}} T_2}{C_{H_{20}} \left(m_1 + m_2 \right)}$

= 0,03 kg·105 [2,73·(4,186 J/kg-2,090 J/kg)+ 2,090 J/kg·2,58 - 3,3 J/kg] + 0,05·4,186·3,37·105 J

4,186·103 J/K·008

ESERCIZIO 3

$$T_0 = -196$$
 °C
 $R_0 = 2 \cdot 10^{+5} \text{ J/Kg} \rightarrow \text{NB: cle'un emore nel testo},$
 $R_0 = 10^{-2} \text{ Kg}$
 $R_0 = 4 \cdot 10^2 \text{ J}$
 $R_0 = 10^{-2} \text{ Kg·K}$

L'azoto si troita già alla temperatura di ebollizione, quindi, la quantità di calore necessana a far evaporare una massa m di azoto e:

Vediamo quanto calore può fornire l'oggetto raffreddandosi. Prendiamo come Teq la temperatura dell'azoto, perche possiamo considerare il recipiente molto grande come un serbatoio:

$$Q = m \cdot C_S \cdot (T_0 - T) = 10^{-2} \text{ kg} \cdot 4 \cdot 10^2 \text{ T} \left(-196^{\circ} \text{ C} - 24^{\circ} \text{ C}\right) = -880 \text{ J}$$

quindi la massa di azoto che nesce ad evaporare e:

$$m_{a20bo} = \frac{Q}{h} = \frac{890 \text{ J}}{2 \cdot 10^{15} \text{ J/kg}} = \frac{8,8 \cdot 10^2 \text{ J}}{2 \cdot 10^{15} \text{ J/kg}} = \frac{4,4 \cdot 10^3 \text{ kg}}{2 \cdot 10^{15} \text{ J/kg}}$$