Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2024-05-01	yes	Jet Classification	https://github.com/science/tree/main/jeclassify	fasRamtichenPleussicing/fa	stRdal-time classification of particle jets using HL-LHC simulation features	classification, real-time ML, jet tagging, QKeras	This benchmark evaluates ML models for real-time classification of particle jets using high-level features derived from simulated LHC data. It includes both full-precision \nand quantized models optimized for FPGA deployment.	Classification	Real-time model performance

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
			1	1	l	l			
2024-05-01	yes	Irregular Sensor Data Com- pression	science/tree/main/se data-compression	fa stamtidlen Elegasivi ng/fa nsor-	pression of sparse sensor data with autoencoders	compression, autoencoder, sparse data, irregular sam- pling	This benchmark addresses lossy compression of irregularly sampled sensor data from \nparticle detectors using real-time autoencoder architectures, targeting	Compression	Reconstruction compression
							latency-critical \napplications in physics experiments.		

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
		I	I					l	
2024-05-01	yes	Beam Con-	https://github.com/	fa sAncebbriatedes rni ag ∮lfa	stRdinforcement	RL, beam sta-	Beam Control	Control	Policy per
		trol	science/tree/main/b	ea M agnets	learning con-	bilization, con-	explores real-time		simulated
			control		trol of accel-	trol systems,	reinforcement		control
					erator beam	simulation	learning strategies		
					position		for maintain-		
							ing stable beam		
							trajectories in par-		
							ticle accelerators.		
							The benchmark		
							is based on the		
							BOOSTR en-		
							vironment for		
							accelerator simula-		
							tion.		

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2024-07-08	yes	Ultrafast jet clas- sification at the HL-LHC	https://arxiv.org/pd	lf/P4002.clie8F6ysics	FPGA- optimized real-time jet origin classifi- cation at the HL-LHC	jet classification, FPGA, quantization-aware training, Deep Sets, Interaction Networks	Demonstrates three ML models (MLP, Deep Sets, Interaction Net- works) optimized for FPGA deploy- ment with O(100 ns) inference using quantized models and hls4ml, tar- geting real-time jet tagging in the L1 trigger envi- ronment at the high-luminosity LHC. Data is avail- able on Zenodo DOI:10.5281/zenodo	Classification	Real-time i der FPGA

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
		l	I			I		1	I
2024-10-15	yes	Quench de-	https://indico.cern.c	h/Avenle/rk387540/auocht	ribRutådortsiy/6el53618/	at pachch ents/t29:48	44Ex 5182077 /1fast_n o l <u>f_</u> r	na gmens 2024 eficatliqued Quench lo-	Real-time
		tection		Magnets	detection of	tion, autoen-	real-time quench	calization	detection
					superconduct-	coder, anomaly	detection using		modal sens
					ing magnet	detection,	unsupervised and		
					quenches using	real-time	RL approaches,		
					ML		combining multi-		
							modal sensor data		
							(BPM, power supply, acous-		
							supply, acoustic), operating on		
							kHz-MHz streams		
							with anomaly		
							detection and		
							frequency-domain		
							features.		
			1	1	I		1		1

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2024-10-15	yes	DUNE	https://indico.fnal.go	vPereidle6Bh29icsontri	buRicadst/i360e42281/at	ta EhthNeE ts/1 8248 9	25/05/08//fæst_ml_dended	aq lsigger19el&cf24 ppdflime-series	Low-latence
	J				for DUNE	series, real-	time ML methods	anomaly detection	tection
					DAQ time-	time, trigger	to time-series	, and the second	
					series data		data from DUNE		
							detectors, explor-		
							ing trigger-level		
							anomaly detection and event selection		
							with low latency		
							constraints.		

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2025-01-08	yes	Intelligent exper- iments through real-time AI	https://arxiv.org/pd	F/EstPrussessation and Detectors; Nuclear Physics; Particle Physics	Real-time FPGA-based triggering and detector control for sPHENIX and future EIC	FPGA, Graph Neural Net- work, hls4ml, real-time infer- ence, detector control	Resaerch and Development demonstrator for real-time processing of high-rate tracking data from the sPHENIX detector (RHIC) and future EIC systems. Uses GNNs with hls4ml for FPGA-based trigger generation to identify rare events (heavy flavor, DIS electrons) within 10 µs latency. Demonstrated improved accuracy and latency on Alveo/FELIX platforms.	Trigger classification, Detector control, Real-time inference	Low-latence on

Hardware-
latency inf

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
				·			'	'	
2024-06-24	yes	Smart Pix-	https://arxiv.org/ab	s/ P406 idl 4 860Physics;	On-sensor, in-	smart pixel,	Presents a	Image Classification, Data fil-	On-chip, lo
		els for LHC		Instrumentation	pixel ML fil-	on-sensor in-	256x256-pixel	tering	ference; da
				and Detectors	tering for high-	ference, data	ROIC in 28 nm		
					rate LHC pixel detectors	reduction, trigger	CMOS with embedded 2-layer		
					detectors	trigger	NN for cluster		
							filtering at 25 ns,		
							achieving 54-75%		
							data reduction		
							while maintaining		
							noise and latency		
							constraints. Pro-		
							totype consumes		
							~300 μW/pixel and operates in com-		
							binatorial digital		
							logic.		

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2023-10-03	yes	HEDM BraggNN	https://arxiv.org/aba	s/ V000&:fi81 9 &:ience	Fast Bragg peak analysis using deep learning in diffraction microscopy	BraggNN, diffraction, peak finding, HEDM	Uses BraggNN, a deep neural network, for rapid Bragg peak localization in high-energy diffraction microscopy, achieving ~13x speedup compared to Voigtbased methods while maintaining sub-pixel accuracy.	Peak detection	High-throu localization
2023-12-03	yes	4D-STEM	https://openreview.r	et/lpdfilial=S7.jtBN:000V	VReal-time ML for scanning transmission electron mi- croscopy	4D-STEM, electron mi- croscopy, real- time, image processing	Proposes ML methods for real-time analysis of 4D scanning transmission electron microscopy	Image Classification, Streamed data inference	Real-time microscopy
							datasets; frame- work details in progress.		

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2023-12-05	yes	In-Situ High-Speed Computer Vision	https://arxiv.org/ab	s/ ២ដូ រ៉ ្ សា ទី 2 8 sma	Real-time image classification for in-situ plasma diagnostics	plasma, insitu vision, real-time ML	Applies low-latency CNN models for image classification of plasma diagnostics streams; supports deployment on embedded platforms.	Image Classification	Real-time inference
							deployment on em-		

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2020 01 01		Danah Caumai	https://www.boocho	bu Gaidanah / A IDan ala /	End to and AI	h on oh moonline	AIDamah ia	Theiring Informed End to	Creations loss
2020-01-01	yes	BenchCounci AIBench	l https://www.benchc	outieriumg/AIBench/	End-to-end AI benchmarking across micro, component, and application levels	benchmarking, AI systems, application- level evaluation	AIBench is a comprehensive benchmark suite that evaluates AI workloads at different levels (micro, component, application) across hardware systems—covering image generation, object detection, translation, recommendation, video prediction, etc.	Training, Inference, End-to-end AI workloads	System-lev load perfor

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2020-01-01	yes	BenchCounci Big- DataBench	l https://www.benchc	ouficilored/BigDataBer	AI bench- marking across struc- tured, semi- structured, and unstructured data workloads	big data, AI benchmarking, data analytics	BigDataBench provides benchmarks for evaluating big data and AI workloads with realistic datasets (13 sources) and pipelines across analytics, graph, warehouse, NoSQL, streaming, and AI.	Data preprocessing, Inference, End-to-end data pipelines	Data proce model infer mance at s

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2021-10-20	yes	MLPerf HPC	https://github.com/	mate, Protein Structure, Cataly- sis	Scientific ML training and inference on HPC systems	HPC, training, inference, scientific ML	MLPerf HPC introduces scientific model benchmarks (e.g., CosmoFlow, DeepCAM) aimed at large-scale HPC evaluation with >10x performance scaling through system-level optimizations.	Training, Inference	Scaling training t accuracy o

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2023-06-01	yes	MLCommons Science	https://github.com/	mEanthqual/sciSatel- lite Image, Drug Discovery, Electron Microscope, CFD	AI benchmarks for scientific applications including time- series, imaging, and simulation	science AI, benchmark, MLCommons, HPC	MLCommons Science assembles benchmark tasks with datasets, targets, and implementations across earthquake forecasting, satellite imagery, drug screening, electron microscopy, and CFD to drive scientific ML reproducibility.	Time-series analysis, Image classification, Simulation surrogate modeling	Inference simulation generalizat

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2021-07-05	yes	LHC New Physics Dataset	https://arxiv.org/pd	f/Ph07.cl2157Physics; Real-time Trigger- ing	Real-time LHC event filtering for anomaly	anomaly de- tection, proton collision, real-	A dataset of proton-proton collision events	Anomaly detection, Event classification	Unsupervis detection tency and
				6	detection using proton collision data	time inference, event filtering, unsupervised ML	emulating a 40 MHz real-time data stream from LHC detectors, pre-filtered on electron or muon presence. Designed for unsupervised newphysics detection algorithms under latency/bandwidth constraints.		constraints
							constraints.		

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2023-07-17	yes	MLCommons Medical AI	https://github.com/	m kloalthoas ∉me kliedi - cal AI	Federated benchmarking and evaluation of medical AI models across diverse real- world clinical data	medical AI, federated evaluation, privacy-preserving, fairness, healthcare benchmarks	The MLCommons Medical AI working group develops benchmarks, best practices, and platforms (Med-Perf, GaNDLF, COFE) to accelerate robust, privacy-preserving AI development for healthcare. MedPerf enables federated testing of clinical models on diverse datasets, improving generalizability and equity while keeping data onsite.	Federated evaluation, Model validation	Clinical ac ness, gen privacy con

2024-10-28 yes CaloChallenge http://arxiv.org/abs/ZHRC.21Ghlorimeter; Particle Physics winder shower simulation evaluation with the particle Physics of the particle Physics winder simulation with the particle Physics winder winder shower simulation evaluation with the particle Physics winder winder with the particle Physics with the par	Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
Particle Physics generative- model-based calorimeter shower simula- tion evaluation End of the physics generative- model-based calorimeter shower simula- tion evaluation End of the physics generative- models, surro- gate modeling, LHC, fast simulation End of the physics generative models, surro- gate models submissions (VAEs, GANs, Flows, Diffusion) on four calorimeter shower datasets; benchmarking shower quality, generation speed, and model com-										
	2024-10-28	yes	CaloChalleng 2022	ge http://arxiv.org/abs	/24HC216Horimeter; Particle Physics	generative- model-based calorimeter shower simula-	simulation, generative models, surro- gate modeling, LHC, fast	ter Simulation Challenge 2022 assessed 31 generative-model submissions (VAEs, GANs, Flows, Diffusion) on four calorimeter shower datasets; benchmarking shower quality, generation speed, and model com-	Surrogate modeling	Simulation speed, effic

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
ongoing	yes	Papers With Code- SOTA Platform	https://paperswithco	dGennr#sotML; All domains	Open plat- form tracking state-of-the-art results, bench- marks, and implementa- tions across ML tasks and papers	leaderboard, benchmarking, reproducibility, open-source	Papers With Code (PWC) aggregates benchmark suites, tasks, and code across ML research: 12,423 benchmarks, 5,358 unique tasks, and 154,766 papers with code links. It tracks SOTA metrics and fosters reproducibility.	Multiple (Classification, Detection, NLP, etc.)	Model across task F1, BLEU
2022-01-01	yes	Codabench	https://www.codabe	n Georg /al ML; Mul- tiple	Open-source platform for organizing reproducible AI benchmarks and competitions	benchmark platform, code submission, competi- tions, meta- benchmark	Codabench (successor to CodaLab) is a flexible, easy-to-use, reproducible API platform for hosting AI benchmarks and code-submission challenges. It supports custom scoring, inverted benchmarks, and scalable public or private queues	Multiple	Model rep performand datasets

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2021-09-27	yes	Sabath - SBI-FAIR	https://sbi-fair.github.io/docs/s	Systems; Metadata oftware/sabath/	FAIR metadata framework for ML-driven surrogate workflows in HPC systems	meta- benchmark, metadata, HPC, surro- gate modeling	Sabath is a metadata framework from the SBI-FAIR group (UTK, Argonne, Virginia) facilitating FAIR-compliant benchmarking and surrogate execution logging across HPC systems	Systems benchmarking	Metadata producible flows
2022-10-13	yes	PDEBench	https://github.com/	pdfbDych/Pl Weiteheh Modeling	Benchmark suite for ML-based surrogates solving time- dependent PDEs	PDEs, CFD, scientific ML, surrogate mod- eling, NeurIPS	PDEBench offers forward/inverse PDE tasks with large ready-to-use datasets and baselines (FNO, U-Net, PINN), packaged via a unified API. It won the SimTech Best Paper Award 2023.	Supervised Learning	Time-depe modeling; curacy

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2024-12-03	yes	The Well	https://polymathic-ai.org/the_well/	biological systems, fluid dynamics, acoustic scattering, astrophysical MHD	Foundation model + sur- rogate dataset spanning 16 physical simu- lation domains	surrogate modeling, foundation model, physics simulations, spatiotemporal dynamics	A 15 TB collection of ML-ready physics simulation datasets (HDF5), covering 16 domains—from biology to astrophysical magnetohydrodynamic simulations—with unified API and metadata. Ideal for training surrogate and foundation models on scientific data.	Supervised Learning	Surrogate ing, p prediction
2024-10-31	yes	LLM- Inference- Bench	https://github.com/.lcf/LLM-Inference-Bench	ar guni ç- HPC/inference	Hardware performance benchmarking of LLMs on AI accelerators	LLM, inference benchmark- ing, GPU, accelerator, throughput	A suite evaluating inference performance of LLMs (LLaMA, Mistral, Qwen) across diverse accelerators (NVIDIA, AMD, Intel, SambaNova) and frameworks (vLLM, DeepSpeed-MII, etc.), with an interactive dashboard and per-platform metrics.	Inference Benchmarking	Inference latency, he lization

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2023-12-12	yes	SGLang Framework	https://github.com/project/sglang/tree/	gLLM Vision main/benchmark	Fast serving framework for LLMs and vision-language models	LLM serving, vision-language, RadixAttention, performance, JSON decoding	A highperformance open-source serving framework combining efficient backend runtime (RadixAttention, batching, quantization) and expressive frontend language, boosting LLM/VLM inference throughput up to ~3x over alternatives.	Model serving framework	Serving JSON/task latency

	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
yes	vLLM Inference and	https://github.com/v	vllbif-M; aiH/B@ylchferærkse	High- throughput,	LLM inference, PagedAtten-	vLLM is a fast, high-throughput,	Inference Benchmarking	Throughpu memory ef
	Engine			efficient in- ference and serving engine for LLMs	graph, streaming API, quantization	inference and serving engine for large language models, featuring PagedAttention, continuous batching, and support for quantized and		
						execution. Benchmarks compare it to TensorRT-LLM, SGLang, and others		
y	es	ference and Serving	ference and project/vllm/tree/m Serving	ference and project/vllm/tree/maiHJ/Revinhferærkse Serving	ference and Serving Engine project/vllm/tree/maiH/Be/inferences throughput, memory- efficient in- ference and serving engine	ference and Serving Engine project/vllm/tree/mai H/Beyichhierarks e throughput, memory-tion, CUDA efficient inference and serving engine quantization	ference and Serving Engine project/vllm/tree/maiH/Bevichhierarkse throughput, memory-efficient inference and serving engine for LLMs throughput, memory-efficient inference and serving engine for LLMs high-throughput, memory-efficient inference and serving engine for large language models, featuring PagedAttention, continuous batching, and support for quantized and pipelined model execution. Benchmarks compare it to TensorRT-LLM, SGLang,	ference and Serving Engine project/vllm/tree/maihl@cyichhieraerkse throughput, memory-efficient inference and serving engine for LLMs throughput, memory-efficient inference and serving engine for LLMs high-throughput, memory-efficient inference and serving engine for large language models, featuring PagedAttention, continuous batching, and support for quantized and pipelined model execution. Benchmarks compare it to TensorRT-LLM, SGLang,

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2022-06-22	yes	vLLM Per- formance Dashboard	https://simon-mo- workspace.observable dashboard-v0/	LLM; eh lil PlGyithftellen ce	Interactive dashboard showing in- ference per- formance of vLLM	Dashboard, Throughput visualization, Latency analysis, Metric tracking	A live visual dashboard for vLLM showcasing throughput, latency, and other inference metrics across models and hardware configurations.	Performance visualization	Throughp hardware
2022-04-01	yes	Nixtla Neural- Forecast	https://github.com/	Ni Ftla∉nenical for €oaet casting; General ML	High- performance neural forecast- ing library with >30 models	time-series, neural forecast- ing, NBEATS, NHITS, TFT, probabilistic forecasting, usability	NeuralForecast offers scalable, user-friendly im- plementations of over 30 neural forecasting mod- els (NBEATS, NHITS, TFT,	Time-series forecasting	Forecast a terpretabil
							DeepAR, etc.), emphasizing qual- ity, usability, interpretability, and performance.		

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2023-06-01	yes	Nixtla Neural Forecast NHITS	https://github.com/	Ni Ftin∉sseni esfor €ee st eral ML	Official NHITS implementation for long-horizon time series forecasting	NHITS, long-horizon fore-casting, neural interpolation, time-series	NHITS (Neural Hierarchical Interpolation for Time Series) is a state-of-the-art model that improved accuracy by ~25% and reduced compute by 50x compared to Transformer baselines, using hierarchical interpolation and multi-rate sampling	Time-series forecasting	Accuracy, ficiency for
2023-10-03	yes	Nixtla Neural Forecast TimeLLM	https://github.com/	Ni Ktin¢ıse niuslfor ©eas t eral ML	Reprogramming LLMs for time series forecast- ing	Time-LLM, language model, time- series, repro- gramming	Time-LLM uses reprogramming layers to adapt frozen LLMs for time series forecasting, treating forecasting as a language task.	Time-series forecasting	Model reus few-shot fo

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2023-10-05	yes	Nixtla Neural Forecast TimeGPT	https://github.com/	Ni Ktin¢⊪enius ifor ©east eral ML	Time-series foundation model "TimeGPT" for forecasting and anomaly detection	TimeGPT, foundation model, time- series, genera- tive model	TimeGPT is a transformer-based generative pre-trained model on 100B+ time series data for zero-shot forecasting and anomaly detection via API.	Time-series forecasting, Anomaly detection	Zero-shot anomaly de
2025-03-03	yes	HDR ML Anomaly Challenge- Gravi- tational Waves	https://www.codabe	nc hsorg/bysipe ;titions/ Time-series	2626/ecting anomalous gravitational- wave sig- nals from LIGO/Virgo datasets	anomaly detection, gravitational waves, astrophysics, time-series	A benchmark for detecting anomalous transient gravitational-wave signals, including "unknown-unknowns," using preprocessed LIGO time-series at 4096 Hz. Competitors submit inference models on Codabench for continuous 50 ms segments from dual interferometers.	Anomaly detection	Novel ever in physical

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2025-03-03	yes	HDR ML Anomaly Challenge- Butterfly	https://www.codabe	n dieng/rios npetit ions / age/CV	hybrid but- terflies via image anomaly detection in genomic- informed dataset	anomaly detection, computer vision, genomics, butterfly hybrids	Image-based challenge for detecting butterfly hybrids in microscopydriven species data. Participants evaluate models on Codabench using image segmentation/classification.	Anomaly detection	Hybrid det ological sys
2025-03-03	yes	HDR ML Anomaly Challenge- Sea Level Rise	https://www.codabe	nælimedeomfsetittions/ Time-series, Im- age/CV	32284/ecting anomalous sealevel rise and flooding events via time-series and satellite imagery	anomaly detection, climate science, sealevel rise, time-series, remote sensing	A challenge combining North Atlantic sea-level time-series and satellite imagery to detect flooding anomalies. Models submitted via Codabench.	Anomaly detection	Detection mental and

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2025-01-24	yes	Single Qubit Readout on QICK System	https://github.com/quantum-readout	fa &mact tinel€amipugt/m ing	l-Real-time single-qubit state clas- sification using FPGA firmware	qubit readout, hls4ml, FPGA, QICK	Implements realtime ML models for single-qubit readout on the Quantum Instrumentation Control Kit (QICK), using hls4ml to deploy quantized neural networks on RFSoC FPGAs. Offers high-fidelity, low-latency quantum state discrimination.	Classification	Single-shot ference late
2023-11-20	yes	GPQA A Gradu- ate Level Google Proof Ques- tion and Answer Benchmark	https://arxiv.org/ab	s/33ikhd&022{Biology, Physics, Chem- istry)	Graduate- level, expert- validated multiple-choice questions hard even with web access	Google-proof, multiple- choice, expert reasoning, science QA	Contains 448 challenging questions written by domain experts, with expert accuracy at 65% (74% discounting clear errors) and non-experts reaching just 34%. GPT-4 baseline scores ~39%—designed for scalable oversight evaluation.	Multiple choice	Scientific knowledge

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2024-12-13	yes	SeafloorAI	https://neurips.cc/v	rtMah/12024/pssiten¢0,74 Vision-Language	32 Large-scale vision- language dataset for seafloor map- ping and geological classification	sonar imagery, vision-language, seafloor mapping, segmentation, QA	A first-of-its-kind dataset covering 17,300 sq km of seafloor with 696K sonar images, 827K segmentation masks, and 696K natural-language descriptions plus "7M QA pairs—designed for both vision and language-based ML models in marine science	Image segmentation, Vision-language QA	Geospatial standing, reasoning
2024-12-13	yes	SuperCon3D	https://neurips.cc/v	rtMat/2021s/pssien¢9,7	5Dataset and models for predicting and generating high-Tc superconductors using 3D crystal structures	superconductivit crystal struc- tures, equiv- ariant GNN, generative models	y, SuperCon3D introduces 3D crystal structures with associated critical temperatures (Tc) and two deeplearning models: SODNet (equivariant graph model) and DiffCSP-SC (diffusion generator) designed to screen and synthesize high-Tc candidates.	Regression (Tc prediction), Generative modeling	Structure- prediction, generation

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Ty
2024-12-13	yes	GeSS	https://neurips.cc/v	rirtSrab/12024 And Steir/97. metric Deep Learn- ing	suite evaluating geometric deep learning models under real-world distribution shifts	geometric deep learning, dis- tribution shift, OOD robust- ness, scientific applications	GeSS provides 30 benchmark scenarios across particle physics, materials science, and biochemistry, evaluating 3 GDL backbones and 11 algorithms under covariate, concept, and conditional shifts, with varied OOD access	Classification, Regression	OOD pe scientific

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
									1
2024-12-13	yes	Vocal Call Locator	https://neurips.cc/v	irtNet/1202it/100ster/974 Bioacoustics	47Benchmarking sound-source localization of rodent vocalizations from multi-channel audio	source lo- calization, bioacoustics, time-series, SSL	The first large-scale benchmark (767K sounds across 9 conditions) for localizing rodent vocal calls using synchronized audio and video in standard lab environments, enabling systematic evaluation of sound-source localization algorithms in bioacoustics	Sound source localization	Source loc curacy in settings

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2024-12-13	yes	MassSpecGy	mhttps://neurips.cc/v	irtGhb/1902fb/posties/978 Molecular Discov- ery	23Benchmark suite for discovery and identification of molecules via MS/MS	mass spectrometry, molecular structure, de novo generation, retrieval, dataset	MassSpecGym curates the largest public MS/MS dataset with three standardized tasks—de novo structure generation, molecule retrieval, and spectrum simulation—using challenging generalization splits to propel ML-driven molecule discovery	De novo generation, Retrieval, Simulation	Molecular tion and from spect
2024-12-13	yes	Urban Data Layer	https://neurips.cc/v	irtiiab/2014/poputtin/977	3Unified data pipeline for multi-modal urban science research	data pipeline, urban science, multi-modal, benchmark	UrbanDataLayer standardizes heterogeneous urban data formats and provides pipelines for tasks like air quality prediction and land-use classification, enabling the rapid creation of multi-modal urban benchmarks.	Prediction, Classification	Multi-mod inference, tion

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2024-12-13	yes	Delta Squared- DFT	https://neurips.cc/vi	rt Gal//2024/joostl er/977 Chemistry; Mate- rials Science	8&enchmarking machine-learning corrections to DFT using	density functional theory, Delta Squared- ML correction, reaction ener-	Introduces the Delta Squared-ML paradigm—using ML corrections to DFT to predict	Regression	High-accur prediction, rection
					Delta Squared- trained models for reaction energies	getics, quantum chemistry	reaction energies with accuracy comparable to CCSD(T), while training on small CC datasets. Evaluated across 10 reaction datasets covering organic and organometallic transformations.		
2024-12-13	yes	LLMs for Crop Science	https://neurips.cc/vi	rt Agi/20124/p bste S/9 75 ence; NLP	7 © valuating LLMs on crop trait QA and textual in- ference tasks with domain- specific prompts	crop science, prompt en- gineering, domain adap- tation, ques- tion answering	Establishes a benchmark of 3,500 expertannotated prompts and QA pairs covering crop traits, growth stages, and environmental interactions. Tests GPT-style LLMs on accuracy and domain reasoning using in-context, chain-of-thought, and retrieval-augmented prompts.	Question Answering, Inference	Scientific crop reason

Date	Expiration	Valid	Name	URL	Domain	Focus	Keywords	Description	Task Typ
2024-12-1	3 yes	SPIQA LLM	https://neurips.cc/v	irtMal/t2024/41osscie/1975 tific QA; Computer Vision	7Evaluating LLMs on image-based scientific paper figure QA tasks (LLM Adapter performance)	multimodal QA, scientific figures, image+text, chain-of- thought prompting	A workshop version of SPIQA comparing 10 LLM adapter methods on the SPIQA benchmark with scientific diagram/questions. Highlights performance differences between chain-of-thought and end-to-end adapter models.	Multimodal QA	Visual scientific fi standing

References

- [1] J. Duarte, N. Tran, B. Hawks, et al., Fastml science benchmarks: Accelerating real-time scientific edge machine learning, 2022. arXiv: 2207.07958 [cs.LG]. [Online]. Available: https://arxiv.org/abs/2207.07958.
- J. Duarte, N. Tran, B. Hawks, et al., Fastml science benchmarks: Accelerating real-time scientific edge machine learning, 2022. arXiv: 2207.07958 [cs.LG]. [Online]. Available: https://arxiv.org/abs/ 2207.07958.
- [3] D. Kafkes and J. S. John, *Boostr: A dataset for accelerator control systems*, 2021. arXiv: 2101.08359 [physics.acc-ph]. [Online]. Available: https://arxiv.org/abs/2101.08359.
- [4] J. Duarte, N. Tran, B. Hawks, et al., Fastml science benchmarks: Accelerating real-time scientific edge machine learning, 2022. arXiv: 2207.07958 [cs.LG]. [Online]. Available: https://arxiv.org/abs/ 2207.07958.
- [5] P. Odagiu, Z. Que, J. Duarte, et al., "Ultrafast jet classification at the hl-lhc," Machine Learning: Science and Technology, vol. 5, no. 3, p. 035017, Jul. 2024, ISSN: 2632-2153. DOI: 10.1088/2632-2153/ad5f10. [Online]. Available: http://dx.doi.org/10.1088/2632-2153/ad5f10.
- [6] J. Kvapil, G. Borca-Tasciuc, H. Bossi, et al., Intelligent experiments through real-time ai: Fast data processing and autonomous detector control for sphenix and future eic detectors, 2025. arXiv: 2501. 04845 [physics.ins-det]. [Online]. Available: https://arxiv.org/abs/2501.04845.
- [7] J. Weitz, D. Demler, L. McDermott, N. Tran, and J. Duarte, Neural architecture codesign for fast physics applications, 2025. arXiv: 2501.05515 [cs.LG]. [Online]. Available: https://arxiv.org/abs/2501.05515.
- [8] B. Parpillon, C. Syal, J. Yoo, et al., Smart pixels: In-pixel ai for on-sensor data filtering, 2024. arXiv: 2406.14860 [physics.ins-det]. [Online]. Available: https://arxiv.org/abs/2406.14860.
- [9] Z. Liu, H. Sharma, J.-S. Park, et al., Braggnn: Fast x-ray bragg peak analysis using deep learning, 2021. arXiv: 2008.08198 [eess.IV]. [Online]. Available: https://arxiv.org/abs/2008.08198.
- [10] S. Qin, J. Agar, and N. Tran, "Extremely noisy 4d-tem strain mapping using cycle consistent spatial transforming autoencoders," in *AI for Accelerated Materials Design NeurIPS 2023 Workshop*, 2023. [Online]. Available: https://openreview.net/forum?id=7yt3N0o0W9.
- [11] Y. Wei, R. F. Forelli, C. Hansen, et al., "Low latency optical-based mode tracking with machine learning deployed on fpgas on a tokamak," Review of Scientific Instruments, vol. 95, no. 7, Jul. 2024, ISSN: 1089-7623. DOI: 10.1063/5.0190354. [Online]. Available: http://dx.doi.org/10.1063/5.0190354.
- [12] W. Gao, F. Tang, L. Wang, et al., Aibench: An industry standard internet service ai benchmark suite, 2019. arXiv: 1908.08998 [cs.CV]. [Online]. Available: https://arxiv.org/abs/1908.08998.
- [13] W. Gao, J. Zhan, L. Wang, et al., Bigdatabench: A scalable and unified big data and ai benchmark suite, 2018. arXiv: 1802.08254 [cs.DC]. [Online]. Available: https://arxiv.org/abs/1802.08254.
- [14] S. Farrell, M. Emani, J. Balma, et al., Mlperf hpc: A holistic benchmark suite for scientific machine learning on hpc systems, 2021. arXiv: 2110.11466 [cs.LG]. [Online]. Available: https://arxiv.org/ abs/2110.11466.
- [15] M. S. W. Group, *Mlcommons science working group benchmarks*, 2023. [Online]. Available: https://github.com/mlcommons/science.
- [16] T. Aarrestad, E. Govorkova, J. Ngadiuba, E. Puljak, M. Pierini, and K. A. Wozniak, *Unsupervised new physics detection at 40 mhz: Training dataset*, version v2, Jun. 2021. DOI: 10.5281/zenodo.5046428. [Online]. Available: https://doi.org/10.5281/zenodo.5046428.
- [17] A. Karargyris, M. J. Sheller, et al., "Federated benchmarking of medical artificial intelligence with medperf," Nature Machine Intelligence, 2023. [Online]. Available: https://www.nature.com/articles/s42256-023-00652-2.
- [18] C. Krause, M. F. Giannelli, G. Kasieczka, et al., Calochallenge 2022: A community challenge for fast calorimeter simulation, 2024. arXiv: 2410.21611 [physics.ins-det]. [Online]. Available: https://arxiv.org/abs/2410.21611.

- [19] P. W. Code, Papers with code: Open machine learning benchmarks and leaderboards, 2025. [Online]. Available: https://paperswithcode.com.
- [20] Z. Xu, S. Escalera, et al., "Codabench: Flexible, easy-to-use, and reproducible meta-benchmark platform," Patterns, vol. 3, no. 7, p. 100543, 2022. DOI: 10.1016/j.patter.2022.100543.
- [21] P. Luszczek *et al.*, "Sabath: Fair metadata technology for surrogate benchmarks," University of Tennessee, Tech. Rep., 2021.
- [22] M. Takamoto, T. Praditia, R. Leiteritz, et al., Pdebench: An extensive benchmark for scientific machine learning, 2024. arXiv: 2210.07182 [cs.LG]. [Online]. Available: https://arxiv.org/abs/2210. 07182.
- [23] R. Ohana, M. McCabe, L. Meyer, et al., "The well: A large-scale collection of diverse physics simulations for machine learning," NeurIPS, vol. 37, pp. 44989–45037, 2024.
- [24] K. T. Chitty-Venkata, S. Raskar, B. Kale, et al., Llm-inference-bench: Inference benchmarking of large language models on ai accelerators, 2024. arXiv: 2411.00136 [cs.LG]. [Online]. Available: https://arxiv.org/abs/2411.00136.
- [25] L. Zheng, L. Yin, Z. Xie, et al., Sglang: Efficient execution of structured language model programs, 2024. arXiv: 2312.07104 [cs.AI]. [Online]. Available: https://arxiv.org/abs/2312.07104.
- [26] W. Kwon et al., "Efficient memory management for large language model serving with pagedattention," in SOSP 2023, 2023.
- [27] S. Mo, Vllm performance dashboard, 2024. [Online]. Available: https://simon-mo-workspace.observablehq.cloud/vllm-dashboard-v0/.
- [28] K. G. Olivares, C. Challú, et al., Neuralforecast: User friendly state-of-the-art neural forecasting models, PyCon US, 2022. [Online]. Available: https://github.com/Nixtla/neuralforecast.
- [29] C. Challu, K. G. Olivares, et al., "Nhits: Neural hierarchical interpolation for time series forecasting," in AAAI 2023, 2023.
- [30] M. Jin, S. Wang, L. Ma, et al., Time-llm: Time series forecasting by reprogramming large language models, 2024. arXiv: 2310.01728 [cs.LG]. [Online]. Available: https://arxiv.org/abs/2310.01728.
- [31] A. Garza, C. Challu, and M. Mergenthaler-Canseco, *Timegpt-1*, 2024. arXiv: 2310.03589 [cs.LG]. [Online]. Available: https://arxiv.org/abs/2310.03589.
- [32] E. G. Campolongo, Y.-T. Chou, E. Govorkova, et al., Building machine learning challenges for anomaly detection in science, 2025. arXiv: 2503.02112 [cs.LG]. [Online]. Available: https://arxiv.org/abs/2503.02112.
- [33] E. G. Campolongo, Y.-T. Chou, E. Govorkova, et al., Building machine learning challenges for anomaly detection in science, 2025. arXiv: 2503.02112 [cs.LG]. [Online]. Available: https://arxiv.org/abs/2503.02112.
- [34] E. G. Campolongo, Y.-T. Chou, E. Govorkova, et al., Building machine learning challenges for anomaly detection in science, 2025. arXiv: 2503.02112 [cs.LG]. [Online]. Available: https://arxiv.org/abs/2503.02112.
- [35] G. D. Guglielmo, B. Du, J. Campos, et al., End-to-end workflow for machine learning-based qubit readout with qick and hls4ml, 2025. arXiv: 2501.14663 [quant-ph]. [Online]. Available: https://arxiv.org/abs/2501.14663.
- [36] D. Rein, B. L. Hou, A. C. Stickland, et al., Gpqa: A graduate-level google-proof q&a benchmark, 2023. arXiv: 2311.12022 [cs.AI]. [Online]. Available: https://arxiv.org/abs/2311.12022.
- [37] K. X. Nguyen, F. Qiao, A. Trembanis, and X. Peng, Seafloorai: A large-scale vision-language dataset for seafloor geological survey, 2024. arXiv: 2411.00172 [cs.CV]. [Online]. Available: https://arxiv.org/abs/2411.00172.
- [38] Z. Zuo et al., Supercon3d: Learning superconductivity from ordered and disordered material structures, NeurIPS Poster, 2024.

- [39] D. Zou, S. Liu, et al., Gess: Benchmarking geometric deep learning under scientific applications with distribution shifts, NeurIPS Poster, 2024.
- [40] R. Peterson, A. Tanelus, et al., Vocal call locator benchmark for localizing rodent vocalizations, NeurIPS Poster, 2024. [Online]. Available: https://neurips.cc/virtual/2024/poster/97470.
- [41] R. Bushuiev, A. Bushuiev, et al., Massspecgym: A benchmark for the discovery and identification of molecules, NeurIPS Spotlight Poster, 2024. [Online]. Available: https://neurips.cc/virtual/2024/poster/97823.
- [42] Y. Wang, T. Wang, et al., Urbandatalayer: A unified data pipeline for urban science, NeurIPS Poster, 2024. [Online]. Available: https://neurips.cc/virtual/2024/poster/97837.
- [43] W. Liu, R. Chen, et al., Delta squared-dft: Machine-learning corrected density functional theory for reaction energetics, NeurIPS Poster, 2024. [Online]. Available: https://neurips.cc/virtual/2024/poster/97788.
- [44] D. Patel, L. Zhao, et al., Large language models for crop science: Benchmarking domain reasoning and qa, NeurIPS Poster, 2024. [Online]. Available: https://neurips.cc/virtual/2024/poster/97570.
- [45] X. Zhong, Y. Gao, et al., Spiqa-llm: Evaluating llm adapters on scientific figure qa, NeurIPS Poster, 2024. [Online]. Available: https://neurips.cc/virtual/2024/poster/97575.