Fiche d'entraînement : équations différentielles

- 1) **a)** Déterminer toutes les solutions de l'équation différentielle (E_1) : y' + 2y = 0
 - **b)** Déterminer la solution f_1 de (E_1) vérifiant la condition $f_1(0) = 4$
- 2) a) Déterminer toutes les solutions de l'équation différentielle (E_2) : y' = 3y 2
 - **b)** Déterminer la solution f_2 de (E_2) vérifiant la condition $f_2(0) = 2$
- 3) a) Déterminer toutes les solutions de l'équation différentielle $(E_3): 2y' 3y = 0$
 - **b)** Déterminer la solution f_3 de (E_3) vérifiant la condition $f_3(1) = 5$
- **a)** Déterminer toutes les solutions de l'équation différentielle (E_4) : y = 2y'
 - **b)** Déterminer la solution f_4 de (E_4) vérifiant la condition $f_4(0) = 1$
- **5)** a) Déterminer toutes les solutions de l'équation différentielle (E_5) : y' + 4y = 5
 - **b)** Déterminer la solution f_5 de (E_5) vérifiant la condition $f_5(1) = 3$
- **6) a)** Déterminer toutes les solutions de l'équation différentielle (E_6) : y' = -2y + 1
 - **b)** Déterminer la solution f_6 de (E_6) vérifiant la condition $f_6'(0) = -1$
- 7) **a)** Déterminer toutes les solutions de l'équation différentielle (E_7) : y' = 5y
 - **b)** Déterminer la solution f_7 de (E_7) vérifiant la condition $f_7'(2) = 4$
- 8) a) Déterminer toutes les solutions de l'équation différentielle (E_8) : 3y'-y=6
 - **b)** Déterminer la solution f_8 de (E_8) vérifiant la condition $f_8'(0) = 4$
- 9) a) Déterminer toutes les solutions de l'équation différentielle $(E_9): 2y' 6y = 4$
 - **b)** Déterminer la solution f_9 de (E_9) vérifiant la condition $f_9(-2) = 4$
- **10)** a) Déterminer toutes les solutions de l'équation différentielle $(E_{10}):3y'+2y=0$
 - **b)** Déterminer la solution f_{10} de (E_{10}) vérifiant la condition $f'_{10}(3) = 2$
- 11) Soit l'équation différentielle (E_{11}) : $y' + 2y = e^{-x}$
 - a) Montrer que la fonction u_1 définie sur \mathbb{R} par $u_1(x) = e^{-x}$ est une solution de (E_{11}) .
 - **b)** En déduire toutes les solutions de (E_{11}) .
 - **c)** Déterminer la solution f_{11} de (E_{11}) vérifiant la condition $f_{11}(0) = 3$
- 12) Soit l'équation différentielle (E_{12}) : y' 3y = 4x
 - a) Déterminer les réels a et b pour que la fonction u_2 définie sur \mathbb{R} par $u_2(x) = ax + b$ soit une solution de (E_{12}) .
 - **b)** En déduire toutes les solutions de (E_{12}) .
 - c) Déterminer la solution f_{12} de (E_{12}) vérifiant la condition $f_{12}(2) = 4$
- **13)** Soit l'équation différentielle (E_{13}) : $y' + 4y = 5xe^x$
 - a) Montrer que la fonction u_3 définie sur \mathbb{R} par $u_3(x) = \left(x \frac{1}{5}\right) e^x$ est une solution de (E_{13}) .
 - **b)** En déduire toutes les solutions de (E_{13}) .
 - c) Déterminer la solution f_{13} de (E_{13}) vérifiant la condition $f_{13}(3) = -1$
- **14)** Soit l'équation différentielle (E_{14}) : $y' 2y = e^{2x}$
 - a) Montrer que la fonction u_4 définie sur \mathbb{R} par $u_4(x) = x e^{2x}$ est une solution de (E_{14}) .
 - **b)** En déduire toutes les solutions de (E_{14}) .
 - c) Déterminer la solution f_{14} de (E_{14}) vérifiant la condition $f'_{14}(4) = 2$
- **15)** Soit l'équation différentielle (E_{15}) : 2y' + 3y = 3x 5
 - a) Déterminer les réels a et b pour que la fonction u_5 définie sur \mathbb{R} par $u_5(x) = ax + b$ soit une solution de (E_{15}) .
 - **b)** En déduire toutes les solutions de (E_{15}) .
 - c) Déterminer la solution f_{15} de (E_{15}) vérifiant la condition $f'_{15}(-1) = 0$

Solutions

1) a)
$$y' + 2y = 0 \iff y' = -2y$$
.

On est donc sous la forme y' = ay donc les solutions sont les fonctions $x \mapsto k e^{-2x}$

b)
$$f_1(0) = k e^{-2 \times 0} = k e^0 = k \times 1 = k \text{ donc } k = 4 \text{ et donc } f_1(x) = 4 e^{-2x}$$

2) a)
$$y' = 3y - 2$$

On est donc sous la forme y' = ay + b donc les solutions sont les fonctions $x \mapsto k e^{3x} - \frac{-2}{3}$ donc $x \mapsto k e^{3x} + \frac{2}{3}$

b)
$$f_2(0) = k e^{3 \times 0} + \frac{2}{3} = k e^0 + \frac{2}{3} = k \times 1 + \frac{2}{3} = k + \frac{2}{3} = 2 \text{ donc } k = 2 - \frac{2}{3} = \frac{4}{3} \text{ et donc } f_2(x) = \frac{4}{3} e^{3x} + \frac{2}{3}$$

3) a)
$$2y' - 3y = 0 \iff y' = \frac{3}{2}y$$

On est donc sous la forme y' = ay donc les solutions sont les fonctions $x \mapsto k e^{\frac{3}{2}x}$

b)
$$f_3(1) = k e^{\frac{3}{2}} = 5 \text{ donc } k = \frac{5}{e^{\frac{3}{2}}} = 5 e^{-\frac{3}{2}} \text{ et donc } f_3(x) = 5 e^{-\frac{3}{2}} e^{\frac{3}{2}x} = \boxed{5 e^{\frac{3}{2}x - \frac{3}{2}} = 5 e^{\frac{3}{2}(x - 1)} = f_3(x)}$$

4) a)
$$y = 2y' \iff y' = \frac{1}{2}y$$

On est donc sous la forme y' = ay donc les solutions sont les fonctions $x \mapsto k e^{\frac{1}{2}x}$

b)
$$f_4(0) = k e^{\frac{1}{2} \times 0} = k = 1 \text{ donc } f_4(x) = e^{\frac{1}{2}x}$$

5) a)
$$y' + 4y = 5 \iff y' = -4y + 5$$

On est donc sous la forme y' = ay + b donc les solutions sont les fonctions $x \mapsto k e^{-4x} - \frac{5}{-4}$ donc $\left| x \mapsto k e^{-4x} + \frac{5}{4} \right|$

b)
$$f_5(1) = ke^{-4} + \frac{5}{4} = 3 \text{ donc } k = \frac{3 - \frac{5}{4}}{e^{-4}} = \frac{7}{4}e^4 \text{ donc } f_5(x) = \frac{7}{4}e^4e^{-4x} + \frac{5}{4} = \boxed{\frac{7}{4}e^{-4x+4} + \frac{5}{4} = f_5(x)}$$

6) a)
$$y' = -2y + 1$$

On est donc sous la forme y' = ay + b donc les solutions sont les fonctions $x \mapsto k e^{-2x} - \frac{1}{-2}$ donc $x \mapsto k e^{-2x} + \frac{1}{2}$

b)
$$f_6'(x) = -2ke^{-2x} \operatorname{donc} f_6'(0) = -2ke^{-2\times 0} = -2k = -1 \operatorname{donc} k = \frac{1}{2} \operatorname{etdonc} f_6(x) = \frac{1}{2}e^{-2x} + \frac{1}{2}e^{-2x}$$

7) a)
$$y' = 5y$$

On est donc sous la forme y' = ay donc les solutions sont les fonctions $x \mapsto k e^{5x}$

b)
$$f_7'(x) = 5ke^{5x} \operatorname{donc} f_7'(2) = 5ke^{10} = 4 \operatorname{donc} k = \frac{4}{5e^{10}} = \frac{4}{5}e^{-10} \operatorname{et} \operatorname{donc} f_7(x) = \frac{4}{5}e^{-10}e^{5x} = \left| \frac{4}{5}e^{5x-10} = f_7(x) \right|$$

8) a)
$$3y' - y = 6 \iff y' = \frac{1}{3}y + 2$$

On est donc sous la forme y' = ay + b donc les solutions sont les fonctions $x \mapsto k e^{\frac{1}{3}x} - \frac{2}{\frac{1}{3}}$ donc $x \mapsto k e^{\frac{1}{3}x} - 6$

b)
$$f_8'(x) = \frac{1}{3}ke^{\frac{1}{3}x}$$
 donc $f_8'(0) = \frac{1}{3} \times k \times e^{\frac{1}{3} \times 0} = \frac{1}{3}k = 4$ donc $k = \frac{4}{\frac{1}{3}} = 12$ et donc $f_8(x) = 12e^{\frac{1}{3}x} - 6$

9) a)
$$2y' - 6y = 4 \iff y' = 3y + 2$$

On est donc sous la forme y' = ay + b donc les solutions sont les fonctions $x \mapsto k e^{3x} - \frac{2}{3}$

b)
$$f_9(-2) = ke^{-6} - \frac{2}{3} = 4 \text{ donc } k = \frac{4 + \frac{2}{3}}{e^{-6}} = \frac{14}{3}e^6 \text{ et donc } f_9(x) = \frac{14}{3}e^6 e^{3x} - \frac{2}{3} = \boxed{\frac{14}{3}e^{3x+6} - \frac{2}{3} = f_9(x)}$$

10) a)
$$3y' + 2y = 0 \iff y' = -\frac{2}{3}y$$

On est donc sous la forme y' = ay donc les solutions sont les fonctions $x \mapsto k e^{-\frac{2}{3}x}$

b)
$$f'_{10}(x) = -\frac{2}{3}ke^{-\frac{2}{3}x}$$
 donc $f'_{10}(3) = -\frac{2}{3}ke^{-2} = 2$ donc $k = \frac{2}{-\frac{2}{3}e^{-2}} = -3e^2$ donc $f_{10}(x) = -3e^2e^{-\frac{2}{3}x} = \boxed{-3e^{-\frac{2}{3}x+2} = f_{10}(x)}$

11) a)
$$u_1'(x) = -e^{-x}$$
 donc $u_1'(x) + 2u_1(x) = -e^{-x} + 2e^{-x} = e^{-x}$ donc u_1 est bien solution de (E_{11})

b)
$$y' + 2y = e^{-x} \iff y' = -2y + e^{-x}$$

On est donc sous la forme $y' = ay + f$ et u_1 est une solution particulière de (E_{11}) donc les solutions sont les fonctions $x \mapsto ke^{-2x} + e^{-x}$

c)
$$f_{11}(0) = k e^0 + e^0 = k + 1 = 3 \text{ donc } k = 2 \text{ et donc}$$
 $f_{11}(x) = 2 e^{-2x} + e^{-x}$

12) a)
$$u_2(x) = ax + b \operatorname{donc} u_2'(x) = a \operatorname{et} \operatorname{donc} u_2'(x) - 3u_2(x) = 4x \iff a - 3(ax + b) = 4x \iff a - 3ax - 3b = 4x \operatorname{et}$$

$$\operatorname{donc} -3ax + a - 3b = 4x \operatorname{et} \operatorname{donc}, \operatorname{par} \operatorname{identification}, \operatorname{on obtient} \begin{cases} -3a = 4 \\ a - 3b = 0 \end{cases} \iff \begin{cases} a = -\frac{4}{3} \\ b = -\frac{4}{9} \end{cases}$$

b)
$$y' - 3y = 4x \iff y' = 3y + 4x$$

On est donc sous la forme $y' = ay + f$ et $u_2(x) = -\frac{4}{3}x - \frac{4}{9}$ est une solution particulière de (E_{12}) donc les solutions sont les fonctions $x \mapsto k e^{3x} - \frac{4}{3}x - \frac{4}{9}$

c)
$$f_{12}(2) = ke^6 - \frac{4}{3} \times 2 - \frac{4}{9} = ke^6 - \frac{28}{9} = 4 \text{ donc } k = \frac{4 + \frac{28}{9}}{e^6} = \frac{64}{9}e^{-6} \text{ et donc } f_{12}(x) = \frac{64}{9}e^{-6}e^{3x} - \frac{4}{3}x - \frac{4}{9} \text{ ou}$$

$$\boxed{f_{12}(x) = \frac{64}{9}e^{3x - 6} - \frac{4}{3}x - \frac{4}{9}}$$

13) **a)**
$$u_3'(x) = e^x + \left(x - \frac{1}{5}\right)e^x = \left(1 + x - \frac{1}{5}\right)e^x = \left(x + \frac{4}{5}\right)e^x$$
 donc:
 $u_3'(x) + 4u_3(x) = \left(x + \frac{4}{5}\right)e^x + 4\left(x - \frac{1}{5}\right)e^x = \left(x + \frac{4}{5} + 4x - \frac{4}{5}\right)e^x = 5xe^x$ donc u_3 est bien une solution de (E_{13})

b)
$$y' + 4y = 5xe^x \iff y' = -4y + 5xe^x$$

On est donc sous la forme $y' = ay + f$ et u_3 est une solution particulière de (E_{13}) donc les solutions sont les fonctions $x \mapsto ke^{-4x} + \left(x - \frac{1}{5}\right)e^x$

c)
$$f_{13}(3) = ke^{-12} + \left(3 - \frac{1}{5}\right)e^3 = ke^{-12} + \frac{14}{5}e^3 = -1 \text{ donc } k = \frac{-1 - \frac{14}{5}e^3}{e^{-12}} = \left(-1 - \frac{14}{5}e^3\right)e^{12} = -e^{12} - \frac{14}{5}e^{15} \text{ et donc } f_{13}(x) = \left(-e^{12} - \frac{14}{5}e^{15}\right)e^{-4x} + \left(x - \frac{1}{5}\right)e^x = \left[-e^{-4x+12} - \frac{14}{5}e^{-4x+15} + \left(x - \frac{1}{5}\right)e^x = f_{13}(x)\right]$$

14) a)
$$u_4(x) = xe^{2x} \operatorname{donc} u_4'(x) = e^{2x} + x \times 2e^{2x} = (2x+1)e^{2x} \operatorname{donc} :$$

 $u_4'(x) - 2u_4(x) = (2x+1)e^{2x} - 2xe^{2x} = 2xe^{2x} + e^{2x} - 2xe^{2x} = e^{2x} \operatorname{donc} u_4 \text{ est bien une solution de } (E_{14})$

b)
$$y'-2y=e^{2x} \iff y'=2y+e^{2x}$$

On est donc sous la forme $y'=ay+f$ et u_4 est une solution particulière de (E_{14}) donc les solutions sont les fonctions $x \mapsto k e^{2x} + x e^{2x}$

c)
$$f'_{14}(x) = 2ke^{2x} + e^{2x} + 2xe^{2x} = (2k+1+2x)e^{2x}$$
 donc $f'_{14}(4) = (2k+1+8)e^{8} = (2k+9)e^{8} = 2ke^{8} + 9e^{8} = 2$ donc $k = \frac{2-9e^{8}}{2e^{8}} = (2-9e^{8}) \times \frac{1}{2}e^{-8} = e^{-8} - \frac{9}{2}$ et donc : $f_{14}(x) = \left(e^{-8} - \frac{9}{2}\right)e^{2x} + xe^{2x} = \left[\left(x + e^{-8} - \frac{9}{2}\right)e^{2x} = f_{14}(x)\right]$

15) a)
$$u_5(x) = ax + b \text{ donc } u_5'(x) = a \text{ et donc } 2u_5'(x) + 3u_5(x) = 3x - 5 \iff 2a + 3(ax + b) = 3x - 5 \text{ et donc}$$

$$2a + 3ax + 3b = 3x - 5 \iff 3ax + 2a + 3b = 3x - 5 \text{ et donc, par identification, on obtient } \begin{cases} 3a = 3 \\ 2a + 3b = -5 \end{cases}$$

$$donc \ a = 1 \text{ et } b = -\frac{7}{3}$$

b)
$$2y' + 3y = 3x - 5 \iff y' = -\frac{3}{2}y + \frac{3}{2}x - \frac{5}{2}$$

On est donc sous la forme $y' = ay + f$ et $u_5(x) = x - \frac{7}{3}$ est une solution particulière de (E_{15}) donc les solutions sont les fonctions $x \mapsto k e^{-\frac{3}{2}x} + x - \frac{7}{3}$

c)
$$f'_{15}(x) = -\frac{3}{2}ke^{-\frac{3}{2}x} + 1 \text{ donc } f'_{15}(-1) = -\frac{3}{2}ke^{\frac{3}{2}} + 1 = 0 \text{ donc } k = \frac{-1}{-\frac{3}{2}e^{\frac{3}{2}}} = \frac{2}{3}e^{-\frac{3}{2}} \text{ et donc } :$$

$$f_{15}(x) = \frac{2}{3}e^{-\frac{3}{2}}e^{-\frac{3}{2}x} + x - \frac{7}{3} = \begin{bmatrix} \frac{2}{3}e^{-\frac{3}{2}x - \frac{3}{2}} + x - \frac{7}{3} = f_{15}(x) \end{bmatrix}$$