₁₎ EP 0 626 577 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:12.08.1998 Bulletin 1998/33

(51) Int Cl.6: G01N 27/42

- (21) Application number: 94108101.0
- (22) Date of filing: 25.05.1994
- (54) Method of monitoring metal ion content in plating baths

Verfahren zur Überwachung der Ionenkonzentration in galvanischen Bädern Procédé de surveillance de la concentration ionique dans les bains à métalliser

- (84) Designated Contracting States: DE ES FR GB IT
- (30) Priority: 28.05.1993 US 68030
- (43) Date of publication of application: 30.11.1994 Bulletin 1994/48
- (73) Proprietor: TECHNIC, INC. Cranston, Rhode Island 02910 (US)
- (72) Inventors:
 - Eliash, Bruce M.
 Los Angeles, California 90034 (US)

- Ludwig, Frank A.
 Rancho Palos Verdes, California 90274 (US)
- Phan, Nguyet H.
 Los Angeles, California 90025 (US)
- Reddy, Vilambi NRK New Jersey 07403 (US)
- (74) Representative: KUHNEN, WACKER & PARTNER Alois-Steinecker-Strasse 22 85354 Freising (DE)
- (56) References cited:

CH-A- 659 327 US-A- 4 631 116 US-A- 5 298 131 FR-A- 2 566 535 US-A- 4 786 373

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

10

25

40

Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to plating baths and methods for monitoring the constituents contained therein. More particularly, the method of the present invention relates to a voltammetric analysis method which accurately indicates metal ion concentrations within the bath. The method can be used to maintain desired metal ion concentrations in order to ensure optimal plating bath performance.

2. Description of Related Art

A typical plating bath solution is comprised of a combination of several distinct electrochemical constituents which can be broadly divided into major constituents and trace constituents. The major constituents typically make up about 2 to 30 percent of the total bath weight or volume. Trace constituents are present in smaller quantities, usually less than 1 percent of the total weight or volume. Metal ions are the source of plated metal, and, therefore, are an important type of major constituent found in all plating baths.

The concentration levels of both major and trace constituents will influence the quality of the resultant plating deposit, and should therefore be regularly monitored. Methods have been developed for in-tank monitoring of trace constituents as well as certain major constituents. For example, U.S. Patent No. 4,631,116 discloses a method for monitoring trace constituents such as organic addition agents using an in-tank electrochemical sensor. The above patent is owned by the same assignee as the present invention and is hereby incorporated by reference.

In general, the high concentrations of metal ions in their respective plating baths can interfere with voltammetric analysis and other wet chemical measurement techniques. Therefore, a sample of the plating bath solution is usually drawn from the plating tank and diluted or added to a buffer solution prior to analysis of metal ion concentration. Supporting electrolytes may then be added to the diluted or buffered sample to improve measurement accuracy. The sample can be either manually or automatically drawn. (See EG&G Princeton Applied Research, Application Note Plat-2, "Application of Polarography to the Plating Industry," 1985 for further detail.) US-A-478 6373 uses a similar voltammetric analysis method for analysing a liquid which further employs a pretreatment of the sensing electrode.

The diluted sample is typically analyzed using either wet chemical analysis or voltammetry. Linear sweep voltammetry is one voltammetric technique which may be used, typically in conjunction with a dropping mercury electrode. The dropping mercury electrode provides a

continuously renewed interface and therefore repeatable measurement results. However, the mercury electrode is not well-suited for in-tank use due to the practical difficulties of incorporating a dropping mercury electrode into an in-tank sensor as well as the danger of inadvertent mercury contamination of the plating bath solution.

Monitoring the concentration of certain types of metal ions using currently available techniques is thus costly and time-consuming. The measurements must be performed by highly skilled personnel using specialized equipment and supplies. The techniques are not suitable for in-tank measurements. Furthermore, the delay between drawing samples and receiving measurement results can be anywhere from several hours to several days. The slow response time of the current techniques therefore limits the extent to which a high quality plating bath can be continuously maintained.

As is apparent from the above, there presently is a need for an inexpensive real time method of monitoring the concentration of metal ions within a plating bath. The method should measure metal ion content without drawing a sample of the plating bath solution or using a dropping mercury electrode. The method should complement and be easily integrated with known techniques and equipment suitable for measuring trace and major constituents, resulting in an efficient and complete plating bath analysis system.

SUMMARY OF THE INVENTION

In accordance with the present invention, a method for monitoring the concentration of metal ions within a plating bath is provided. The present invention is based upon the discovery that dc sweep voltammetry applied to a properly cleaned and activated electrode can be used to make rapid and accurate in tank and on-line measurements of metal ion concentration.

Although dc sweep voltammetry has been used for measuring diluted or buffered samples of plating bath solution using special probes, it has not heretofore been considered possible to apply these techniques to direct in-tank measurements of the solution.

The method of the present invention involves the steps of applying a pretreatment signal to a sensing electrode positioned within a plating bath solution containing metal ions. A sweep signal is then applied to the pretreated sensing electrode, producing a response signal having a voltammetric peak current which can be measured. The voltammetric peak current is proportional to the concentration of metal ions in the plating bath.

As a feature of the present invention, the method eliminates the delay, expense and complexity typically associated with presently used metal ion measurement methods. Specialized equipment and analysis personnel are no longer required. The measurement results are available on-line in real time so that desired metal ion concentration levels, and thereby the quality of the

15

- 35

plating bath, can be continuously and efficiently maintained.

As another feature of the present invention, the response signal includes a readily identifiable current peak, the magnitude of which provides an accurate indication of metal ion concentration.

As a further feature of the present invention, the method is easily integrated with known plating bath constituent measurement methods and equipment, thus permitting measurement of all plating bath constituents using a single set of equipment. For example, in the case of an acid copper plating bath, the present invention monitors copper ions using equipment compatible with that used for monitoring trace organic addition agents, as disclosed in U.S. Patent No. 4,631,116.

As an additional feature of the present invention, the measurements may be made using an in-tank sensor. A dropping mercury electrode is no longer required, and a variety of solid electrodes suitable for immersion in a plating bath may be used. It is therefore no longer necessary to draw a sample of the plating bath solution for analysis.

The above-discussed features and attendant advantages of the present invention will become better understood by reference to the following detailed description of the preferred embodiment and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic representation of a preferred embodiment for conducting the method of the present invention.

FIG. 2 shows an exemplary response signal obtained by applying the method of the present invention to an acid copper plating bath.

FIG. 3 is a graph of the response signal voltammetric peak current as a function of copper ion concentration in acid copper plating baths.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention uses dc voltammetry to perform in-tank measurement of metal ion concentration levels. The method is particularly well-suited to measuring the concentration of certain types of metal ions which are typically present in high concentrations and plate at a high current efficiency, including nickel, tin and copper ions. These metal ions are typically present in a concentration of about 1 to 12 oz/gallon (7.5 to 90 grams/liter). The preferred embodiment described herein will be applied to an exemplary acid copper plating bath for purposes of demonstrating the method. It should be understood, however, that the method discloses general techniques which are useful for monitoring many other types of plating baths and the metal ions contained therein.

The exemplary system described herein is similar

to the equipment used in the trace constituent analysis system disclosed in U.S. Patent No. 4,631,116.

The schematic diagram of FIG. 1 illustrates a preferred embodiment of a voltammetric system used to conduct the method of the present invention. The plating bath solution is located within an electrochemical cell 9. The electrochemical cell 9 is preferably part of an in-tank electrochemical sensor submerged within the plating bath. A pump (not shown) can be used to draw the solution through the cell 9. A potentiostat 8 generates appropriate pretreatment and dc voltage sweep signals which are applied to sensing electrode 10 within cell 9 via output 15 and line 18. Alternatively, the pretreatment and sweep signals are supplied to potentiostat 8 by an external function generator (not shown). The specific characteristics of the pretreatment and sweep signals will be described in greater detail below. The potentiostat 8 limits fluctuations in the pretreatment and sweep signal waveforms resulting from changes in current flow through the electrochemical cell 9. The exemplary system of FIG. 1 uses a PAR 273 potentiostat, available from Princeton Applied Research, Princeton, New Jer-

The sensing electrode 10 is preferably constructed of platinum. Other inert materials such as gold or palladium may also be used. The cell 9 also contains a counter electrode 12 and a standard calomel reference electrode 11. The reference electrode 11 and counter electrode 12 are connected to potentiostat ports 16, 17 via lines 19, 20, respectively. This three-electrode sensor design is suitable for use with many different voltammetric measurement techniques. It should be understood, however, that alternative electrode arrangements may also be used with the method of the present invention.

When the sweep signal is applied to sensing electrode 10, a response current is generated between sensing electrode 10 and counter electrode 12. Response current signal characteristics vary depending upon the electrochemical processes occurring at the surface of the sensing electrode 10. Since the electrochemical processes are a function of metal ion concentration, the response current reflects this concentration in a manner to be further discussed below.

The response current passes back through potentiostat 8 and is applied to the input 22 of strip chart recorder 7 via line 23 from potentiostat voltage output 21. Strip chart recorder 7 displays the response current (DCV data) as a function of time as shown in FIG. 2. Alternative display or measurement means could also be used. One response current characteristic which provides an accurate indication of metal ion content is the voltammetric peak current. This peak is designated as P1 in FIG. 2. One type of voltammetric peak current is a limiting current which represents the maximum deposition current for the particular metal ion being measured. The magnitude and position of the voltammetric peak current as a function of time will therefore vary depending upon the type of metal ions present in the plat-

15

. 25

40

50

ing bath solution. The exemplary response current of FIG. 2 was produced by applying a dc voltage sweep to an exemplary acid copper bath containing copper ions. The response current displays thus represent unique spectra which indicate the metal ion content of the plating bath solution.

The pretreatment and sweep signal parameters used to produce response current spectra as illustrated in FIG. 2 will now he described. The pretreatment signals serve to remove organic addition agents or other plating bath constituents which may have adsorbed on sensing electrode 10. In addition, the pretreatment signal activates the electrode and prepares it for subsequent deposition of metal ions. Measurement repeatability is significantly improved by proper cleaning and activation of the electrode prior to measurement. The pretreatment signal is preferably an anodic potential of about 2 to 3 volts applied for a period of about 5 to 15 seconds. The exact potential and duration will vary depending upon the type of plating bath and the constituents it contains. In certain cases it may be preferable to apply two or more pretreatment signals in sequence prior to measurement. An example of a pretreatment signal sequence is 3 volts applied for 10 seconds followed by 1.5 volts applied for 10 seconds.

In general, the voltammetric sweep signal will be swept from about +1.0 volts to about -1.0 volts at a sweep rate of about 10 to 100 mv/second. Although the exact parameter values will vary depending upon the type of plating bath, the negative limit of the voltage sweep should be such that the metal ion maximum deposition current is reached. The response current will then exhibit a voltammetric peak current which can be used to monitor metal ion content.

The pretreatment and sweep signal parameters described above should be varied to determine the appropriate range of settings for a given plating bath. The signal parameters which should be varied include pretreatment signal potential and duration, the number of pretreatment signals applied, and the sweep signal voltage range and sweep rate. These parameters were independently varied to determine suitable ranges for using the preferred voltammetric system of FIG. 1 to monitor copper ion concentration in an exemplary LeaRonal CLX acid copper plating bath, available from LeaRonal of Freeport, New York. It should be emphasized that while the parameter ranges below are particularly wellsuited to copper ion content measurements, the method may produce useful results using parameters outside the specified ranges.

The parameters found to be most suitable for measurement of copper ions in an acid copper plating bath are as follows. A single pretreatment signal having an anodic potential of about +3.0 volts was applied for a period of about 10 seconds. A linear dc voltage ramp signal was then applied to the sensing electrode. The ramp was swept from about +0.5 volts to about -0.6 volts at a sweep rate of about 20 mv/second. An exemplary

current waveform produced in response to the sweep signal is shown in FIG. 2. The magnitude of peak P1 measures approximately 0.13 volts and corresponds to a copper ion concentration of about 2.6 oz/gallon (19.5 grams/liter).

The measurements were repeated with solutions having different copper ion concentrations to produce the calibration curve shown in FIG. 3. The curve shows the change in the magnitude of the voltammetric peak current as a function of copper ion concentration. Point P1 in FIG. 3 corresponds to the peak P1 in FIG. 2. Point P2 measures about 0.11 volts and shows the effect of reducing the copper ion concentration to about 2.2 oz/ gallon (16.5 grams/liter). Point P3 measures about 0.15 volts and corresponds to an increase in copper ion content to about 2.93 oz/gallon (22 grams/liter). It can be seen from FIG. 3 that the response signal voltammetric peak current is a linear function of copper ion content. Further measurements (not shown) over a range of about 1.8 to 3.6 oz/gallon (13.5 to 27 grams/liter) also conformed to the linear calibration curve of FIG. 3. In addition, the measurements are consistent with results produced using wet chemical analysis of the same solutions.

The measurements shown in FIG. 3 were performed on three distinct acid copper plating bath solutions. In addition to the differences in copper ion content, the solutions contained different concentrations of other plating bath constituents such as sulfuric acid, chloride ions and organic addition agents. Therefore, the linear curve of FIG. 3 also indicates that the method of the present invention is insensitive to the concentrations of other plating bath constituents.

Although the above description has been directed to monitoring the voltammetric peak current produced in response to a linear dc voltage sweep, this is by way of illustration and not limitation. For example, alternative voltammetric measurement signals could be used, and other signal characteristics of the response current could be monitored. It will be understood by those skilled in the art that many such alternate implementations of this method are possible without deviating from the scope of the invention, which is limited only by the appended claims.

Claims

 A method of monitoring the concentration of metal ions within a plating bath solution contained within a plating tank, said method comprising the steps of:

> applying at least one pretreatment signal having a potential and a duration to a sensing electrode positioned within said plating bath solution to remove contaminants from the sensing electrode producing a pretreated sensing electrode;

applying a sweep signal having a voltage range and a sweep rate to said pretreated sensing electrode to thereby produce a response signal having a voltammetric peak current, said voltammetric peak current having a magnitude proportional to said concentration of metal ions; and

measuring said magnitude of said voltammetric peak current to thereby determine the concentration of metal ions on-line in the plating tank.

- 2. The method of claim 1 wherein two pretreatment signals are applied in sequence prior to application of said sweep signal.
- 3. The method of claim 1 wherein three pretreatment signals are applied in sequence prior to application of said sweep signal.
- 4. The method of claim 1 wherein said sweep signal is a linear dc voltage sweep signal.
- The method of claim 1 wherein said plating bath is an acid copper plating bath and said metal ions are copper ions.
- **6.** The method of claim 5 wherein said pretreatment signal is an anodic potential of about 3.0 volts.
- 7. The method of claim 5 wherein said sweep signal is swept from about +0.5 volts to about -0.6 volts.
- 8. The method of claim 5 wherein said sweep signal has a sweep rate of about 20 mv/sec.
- 9. The method of claim 1 wherein

the measuring of said magnitude of said voltammetric peak current is preformed while varying in combination each parameter comprising said potential and said duration of said pretreatment signal, and said voltage range and said sweep rate of said sweep signal, to determine the specific value of each said parameters which, when taken in combination with the remaining said parameters, provides maximum accuracy of said voltammetric peak current as an indicator of said concentration of metal ions.

Patentansprüche

 Ein Verfahren zum Überwachen der Konzentration von Metallionen innerhalb einer Galvanisierbadlösung, die in einem Galvanisiertank enthalten ist, wobei das Verfahren die Schritte aufweist:

Anlegen wenigstens eines Vorbehandlungssignals mit einem Potential und einer Dauer an

eine Abtastelektrode, die innerhalb der Galvanisierbadlösung positioniert ist, um Kontaminaten von der Abtastelektrode zu entfernen und eine vorbehandelte Abtastelektrode zu erzeugen;

Anlegen eines Wobbelsignales mit einem Spannungsbereich und einer Wobbelfrequenz an die vorbehandelte Abtastelektrode, um dadurch ein Antwortsignal mit einem voltametrischen Spitzenstrom zu erzeugen, wobei der voltametrische Spitzenstrom eine Größe besitzt, die proportional zu der Konzentration der Metallionen ist; und

Messen der Größe des voltametrischen Spitzenstromes, um dadurch die Konzentration der Metallionen in dem Galvanisiertank online zu bestimmen.

- Das Verfahren nach Anspruch 1, worin zwei Vorbehandlungssignale in Folge vor dem Anlegen des Wobbelsignales angelegt werden.
- 25 3. Das Verfahren nach Anspruch 1, worin drei Vorbehandlungssignale in Folge vor dem Anlegen des Wobbelsignales angelegt werden.
- Das Verfahren nach Anspruch 1, worin das Wobbelsignal ein lineares Gleichstromspannungswobbelsignal ist.
 - Das Verfahren nach Anspruch 1, worin das Galvanisierbad ein saures Kupfergalvanisierbad und die Metallionen Kupferionen sind.
 - Das Verfahren nach Anspruch 5, worin das Vorbehandlungssignal ein anodisches Potential von ungefähr 3,0 Volt besitzt.
 - Das Verfahren nach Anspruch 5, worin das Wobbelsignal von ungefähr +0,5 Volt bis ungefähr -0,6 Volt gewobbelt wird.
- 45 8. Das Verfahren nach Anspruch 5, worin das Wobbelsignal eine Wobbelfrequenz von ungefähr 20 mV/Sek besitzt.
 - 9. Das Verfahren nach Anspruch 1, worin das Messen der Größe des votametrischen Spitzenstroms durchgeführt wird während man in Kombination jeden Parameter, der das Potential und die Dauer des Vorbehandlungssignales umfaßt, und den Spannungsbereich und die Wobbelfrequenz des Wobbelsignales, variiert, um den spezifischen Wert eines jeden der Parameter zu bestimmen, welcher, wenn er in Kombination mit den übrigen der Parameter genommen wird, maximale Genauigkeit des

15

20

5.

35

55

voltametrischen Spitzenstromes als ein Indikator der Konzentration der Metallionen liefert.

Revendications

Procédé pour surveiller la concentration d'ions métalliques à l'intérieur d'une solution de bain à métalliser contenue à l'intérieur d'un réservoir de métallisation, ledit procédé comprenant les étapes consistant à :

appliquer au moins un signal de traitement préalable ayant un certain potentiel et une certaine durée à une électrode de détection positionnée à l'intérieur de ladite solution de bain à métalliser pour supprimer les contaminants de l'électrode de détection, produisant une électrode de détection traitée à l'avance ; appliquer un signal de balayage ayant une certaine plage de tension et une certaine vitesse de balavage à ladite électrode de détection traitée à l'avance pour produire ainsi un signal de réponse avant un courant de crête voltamétrique, ledit courant de crête voltamétrique ayant une amplitude proportionnelle à ladite concentration d'ions métalliques; et mesurer ladite amplitude dudit courant de crête voltamétrique pour déterminer ainsi la concentration d'ions métalliques en ligne dans le réservoir de métallisation.

- Procédé selon la revendication 1, dans lequel deux signaux de traitement préalable sont appliqués en séquence avant l'application dudit signal de balayage.
- Procédé selon la revendication 1, dans lequel trois signaux de traitement préalable sont appliqués en séquence avant l'application dudit signal de balayaqe.
- 4. Procédé selon la revendication 1, dans lequel ledit signal de balayage est un signal de balayage de tension en courant continu linéaire.
- Procédé selon la revendication 1, dans lequel ledit bain à métalliser est un bain à métalliser acide au cuivre et lesdits ions métalliques sont des ions de cuivre.
- 6. Procédé selon la revendication 5, dans lequel ledit signal de traitement préalable est un potentiel anodique d'environ 3,0 volts.
- Procédé selon la revendication 5, dans lequel ledit signal de balayage balaie d'environ +0,5 volt à environ -0,6 volt.

8. Procédé selon la revendication 5, dans lequel ledit signal de balayage a une vitesse de balayage d'environ 20 mv/sec.

9. Procédé selon la revendication 1, dans lequel la mesure de ladite amplitude dudit courant de crête voltamétrique est effectuée en faisant varier en combinaison de chaque paramètre comprenant ledit potentiel et ladite durée dudit signal de traitement préalable et ladite plage de tension et ladite vitesse de balayage dudit signal de balayage pour déterminer la valeur spécifique de chacun desdits paramètres qui, pris en combinaison avec lesdits paramètres restants, fournit une précision maximale dudit courant voltamétrique de crête comme indicateur de ladite concentration d'ions métalliques.

