TENSOR LIBRARY

Akilbekov Alar

Astana IT University

OUTLINE

- 1. Understanding the Tensor
- 2. Features of project
- 3. Applications
- 4. Advantages and disadvantages
- 5. Patterns
- 6. Summary

ensor Library | Astana IT University

Tensors are multidimensional arrays with a single type.

The rank-n tensor is an n-dimensional array.

Understanding the Tensor

Tensor Implementation

In implementation, Tensor - array of Tensors, except rank-0 Tensor or in other words scalar.

A scalar, shape: []

A vector, shape: [3]

A matrix, shape: [3, 2]

4

3D Tensor

Tensor Library | Astana IT University

A 3-axis tensor, shape: [3, 2, 5]

FEATURES OF PROJECT

- Tensors
- Operations with tensors: elementwise operations, transposition, matrix multiplication, convolution etc
- Convenient creation of your own operations
- Dynamic computation graphs
- Automatic differentiation (AutoGrad)

APPLICATIONS

Machine Learning

Deep Learning

Computer Vision

Physics and geometry

Tensor Library | Astana IT University

APPLICATIONS (COMPUTER VISION)

GUI

Can load and display tensors as images using JavaFX

After that, we can apply any operations on the tensor and look at the result of the image transformation

Tensor Library | Astana IT University

An example of linear-function

(FUNCTION APPROXIMATION)

APPLICATIONS

An example of linear-function approximation using quadratic error minimization

```
\underline{I} = \underline{I}.rand();
\underline{\mathbf{I}} = function(\underline{\mathbf{I}});
Tensor Y = \underline{K}.dot(\underline{I}).add(\underline{B});
Tensor Loss = \underline{T}.sub(Y).pow(2);
Loss._backward_();
Tensor dK = lr.mul(K.getGrad());
\underline{K} = \underline{K}.sub(dK);
Tensor dB = lr.mul(B.getGrad());
B = B.sub(dB);
```

ADVANTAGES AND DISADVANTAGES

ADVANTAGES	DISADVANTAGES
 Lightweight No additional libraries Pure plain java 	• no GPU computing

SUMMARY

Analogue to Math and ML libraries like numpy or pytorch.

Written from scratch in plain java.

Element-by-element execution of operations, without GPU acceleration of calculations.

Tensors are multidimensional arrays that we can transform using operations, build a calculation graph and find a gradient on it at each node.