Machine Learning 4771

Instructor: Itsik Pe'er

Reminder: Parameter Estimation

A-Posteriori → Regularization

$$R_{regularized}(\theta) = \frac{1}{N} \sum_{i=1}^{N} Loss(y_i, f(x_i; \theta)) + \frac{\lambda}{2} \|\theta\|^2$$

$$\theta^* = (\mathbf{X}^T \mathbf{X} + \lambda NI)^{-1} \mathbf{X}^T \mathbf{y}$$

Classification

Density/Structure Estimation Clustering

Feature Selection

Regression, f(x)=y

Anomaly Detection

Supervised

Class 6

- Classification
- Logistic Regression
- Gradient Descent

Classification Problems

Determine student admission to Columbia based on GPA, prev. school rank, tests

Classification Problems

Determine student admission to Columbia based on GPA, prev. school rank, tests

Decide malignant or benign tumors

based on size, density, speed of growth

Formalizing Classification

Classification is another important learning problem

Classification:
$$X = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}, x_i \in \mathbb{R}^D, y_i \in \{0,1\}$$

Classification is like Regression

Classification is another important learning problem

Classification:
$$X = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}, x_i \in \mathbb{R}^D, y_i \in \{0, 1\}$$

Regression:

$$X = \{(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \dots, (\mathbf{x}_N, t_N)\}, \mathbf{x}_i \in \mathbf{R}^D, t_i \in \mathbf{R}^D$$

Classification is like Regression

Classification is another important learning problem

Classification:
$$X = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}, x_i \in \mathbb{R}^D, y_i \in \{0, 1\}$$

Regression:

$$X = \{(x_1, t_1), (x_2, t_2), \dots, (x_N, t_N)\}, x_i \in \mathbb{R}^D, t_i \in \mathbb{R}^D$$

•Should we solve this as a least squares regression problem?

Short hand for Linear Functions

Hiding the intercept by notation

$$f(\mathbf{x}; \theta) = \theta^T \mathbf{x} + \theta_0$$

$$= \begin{bmatrix} \theta(1) \\ \theta(2) \\ \vdots \\ \theta(D) \end{bmatrix} \begin{bmatrix} \mathbf{x}(1) \\ \mathbf{x}(2) \\ \vdots \\ \mathbf{x}(D) \end{bmatrix} + \theta_0 = \begin{bmatrix} \theta_0 \\ \theta(1) \\ \theta(2) \\ \vdots \\ \theta(D) \end{bmatrix} \begin{bmatrix} 1 \\ \mathbf{x}(1) \\ \mathbf{x}(2) \\ \vdots \\ \mathbf{x}(D) \end{bmatrix} = \vec{\theta}^T \vec{\mathbf{x}}$$

$$\lim_{\theta^T x \to \infty} \hat{y} = 1$$

$$\hat{Y}_{\theta^T x \to \infty} = 1 - \exp(-\theta^T x)$$

$$\lim_{\theta^T x \to -\infty} \hat{y} = 0$$

$$\widehat{Y} \underset{\theta^T x \to -\infty}{\cong} \exp(\theta^T x)$$

•Given a classification problem with binary outputs

$$X = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}, x_i \in \mathbb{R}^D, y_i \in \{0, 1\}$$

•Use this function and output 1 if f(x)>0.5 and 0 otherwise

$$f(\mathbf{x};\theta) = \frac{1}{1 + exp(-\theta^T \mathbf{x})}$$

•Given a classification problem with binary outputs

$$X = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}, x \in \mathbb{R}^D, y \in \{0, 1\}$$

•Use this function and output 1 if f(x)>0.5 and 0 otherwise

$$f(\mathbf{x};\theta) = \frac{1}{1 + exp(-\theta^T \mathbf{x})}$$

•Given a classification problem with binary outputs

$$X = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}, x \in \mathbb{R}^D, y \in \{0, 1\}$$

•Use this function and output 1 if f(x) > 0.5 and 0 otherwise

$$f(\mathbf{x};\theta) = \frac{1}{1 + exp(-\theta^T \mathbf{x})}$$

• Assume $Pr(y = 1) = f(x; \theta)$

•Given a classification problem with binary outputs

$$X = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}, x \in \mathbb{R}^D, y \in \{0, 1\}$$

•Use this function and output 1 if f(x)>0.5 and 0 otherwise

$$f(\mathbf{x};\theta) = \frac{1}{1 + exp(-\theta^T \mathbf{x})}$$

 $= \sum_{i} \left[y_i \log f(\mathbf{x}_i; \theta) + (1 - y_i) \log \left(1 - f(\mathbf{x}_i; \theta) \right) \right]$

•Given a classification problem with binary outputs

$$X = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}, x \in \mathbb{R}^D, y \in \{0, 1\}$$

•Use this function and output 1 if f(x) > 0.5 and 0 otherwise

$$f(x;\theta) = \frac{1}{1 + exp(-\theta^T x)}$$
•Assume $\Pr(y_i = 1) = f(x_i; \theta)$

$$\Pr(y|f(x;\theta)) = = \prod_{y_i=0} (1 - f(x_i; \theta)) \prod_{y_i=1} f(x_i; \theta)$$
•log $\Pr(y|f(x; \theta)) =$

•Given a classification problem with binary outputs

$$X = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}, x \in \mathbb{R}^D, y \in \{0, 1\}$$

•Use this function and output 1 if f(x) > 0.5 and 0 otherwise

$$f(\mathbf{x};\theta) = \frac{1}{1 + exp(-\theta^T \mathbf{x})}$$

- •Instead of squared loss, use Logistic Loss (i.e. negative binomial likelihood) $Loss_{log}(y, f(x; \theta)) = (y 1) \log(1 f(x; \theta)) y \log(f(x; \theta))$
- •The resulting method is called Logistic Regression.
- •Empirical Risk:

•Given a classification problem with binary outputs

$$X = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}, x \in \mathbb{R}^D, y \in \{0, 1\}$$

•Use this function and output 1 if f(x)>0.5 and 0 otherwise

$$f(\mathbf{x}; \theta) = \frac{1}{1 + exp(-\theta^T \mathbf{x})}$$

•Instead of squared loss, use Logistic Loss (i.e. negative binomial likelihood)
$$Loss_{log}(y, f(x; \theta)) = (y - 1) \log(1 - f(x; \theta)) - y \log(f(x; \theta))$$

- •The resulting method is called Logistic Regression.
- •Empirical Risk:

$$R_{emp}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left[(y_i - 1) \log(1 - f(\boldsymbol{x_i}; \theta)) - y_i \log(f(\boldsymbol{x_i}; \theta)) \right]$$

•With empirical logistic risk has no closed form solution:

$$R_{emp}(\theta) = \frac{1}{N} \sum_{i=1}^{N} (y_i - 1) \log(1 - f(\mathbf{x_i}; \theta)) - y_i \log(f(\mathbf{x_i}; \theta))$$

$$f(x;\theta) = \frac{1}{1 + exp(-\theta^T x)}$$

•With empirical logistic risk has no closed form solution:

$$R_{emp}(\theta) = \frac{1}{N} \sum_{i=1}^{N} (y_i - 1) \log(1 - f(\mathbf{x_i}; \theta)) - y_i \log(f(\mathbf{x_i}; \theta))$$

where
$$R_{emp}(\theta) = \frac{1}{N} \sum_{i=1}^{N} (y_i - 1) \log(1 - f(x_i; \theta)) - y_i \log(f(x_i; \theta))$$

$$\nabla_{\theta} R = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{1 - y_i}{1 - f(x_i; \theta)} - \frac{y_i}{f(x_i; \theta)} \right) f'(x_i; \theta) = 0 \quad ??????$$
where
$$f(x; \theta) = \frac{1}{1 + exp(-\theta^T x)} = g(\theta^T x)$$
in the solution.

$$f(\mathbf{x}; \theta) = \frac{1}{1 + exp(-\theta^T \mathbf{x})} = g(\theta^T \mathbf{x})$$

$$g(z) = \frac{1}{1 + exp(-z)}$$
 $g'(z) = g(z)(1 - g(z))$

Gradient Descent

- •Useful when we can't get minimum solution in closed form
- Gradient points in direction of fastest increase
- Take step in the opposite direction!

Gradient Descent

- Useful when we can't get minimum solution in closed form
- •Gradient points in direction of fastest increase
- Take step in the opposite direction!
- Gradient Descent Algorithm

choose scalar step size η , & tolerance ε initialize $\theta^0 = \text{small random vector}$

$$\theta^1 \leftarrow \theta^0 - \eta_0 \nabla_{\theta} R_{emp}|_{\theta^0} ; t \leftarrow 1$$

while
$$\|\theta^t - \theta^{t-1}\| \ge \epsilon$$
 {

$$\theta^{t+1} \leftarrow \theta^t - \eta_t \nabla_{\theta} R_{emp}|_{\theta^t} ; t \leftarrow t+1$$

ullet For appropriate $\{\eta_t\}$, this will converge to local minimum

Gradient Descent Convergence

$$R_{emp}(\theta) = \frac{1}{N} \sum_{i=1}^{N} (y_i - 1) \log(1 - f(\boldsymbol{x_i}; \theta)) - y_i \log(f(\boldsymbol{x_i}; \theta))$$

is a convex function, so local minimum is global

Gradient Descent Convergence

$$R_{emp}(\theta) = \frac{1}{N} \sum_{i=1}^{N} (y_i - 1) \log(1 - f(\boldsymbol{x_i}; \theta)) - y_i \log(f(\boldsymbol{x_i}; \theta))$$

is a convex function, so local minimum is global

Proof:

Convex combination of convex functions

$$-\log(1-f(x_i;\theta))$$
 and $-\log(f(x_i;\theta))$

$$-\log(f(x_i;\theta))$$
 is a convex function

$$\nabla_{0}\left[f(\cdot,\frac{1}{1+\exp(\cdot\sigma^{\dagger}X_{i})}\right] = \frac{-\exp(\cdot\sigma^{\dagger}X_{i})\cdot X_{i}}{1+\exp(\cdot\sigma^{\dagger}X_{i})}$$

 $-\log(f(x_i;\theta))$ is a convex function

$$\nabla_{\theta} \left[-\log(f(\mathbf{x_i}; \theta)) \right] =$$

$$= \nabla_{\theta} \left[-\log\left(\frac{1}{1 + \exp(-\theta^T x_i)}\right) \right]$$

 $= \nabla_{\theta} [\log(1 + \exp(-\theta^T x_i))]$

$$= \frac{-\exp(-\theta^T x_i) x_i}{1 + \exp(-\theta^T x_i)}$$

 $-\log(f(x_i; \theta))$ is a convex function

$$\nabla_{\theta}^{2} \left[-\log(f(x_{i}; \theta)) \right]$$

$$= \nabla_{\theta} \left[\left(\frac{1}{1 + \exp(-\theta^{T} x_{i})} - 1 \right) x_{i} \right] =$$

$$= \underbrace{1}_{H \in \mathcal{X}_{\theta}(-\theta^{T} x_{i})} \underbrace{-2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} + \underbrace{2 \left[\left(-\theta^{T} x_{i} \right) - 1 \right] x_{i}}_{I + exp(-\theta^{T} x_{i})} +$$

 $-\log(f(x_i;\theta))$ is a convex function

$$\begin{aligned} \mathbf{\nabla}_{\theta}^{2} \left[-\log(f(\mathbf{x}_{i}; \theta)) \right] \mathbf{z} \\ &= \nabla_{\theta} \left[\left(\frac{1}{1 + \exp(-\theta^{T} \mathbf{x}_{i})} - 1 \right) \mathbf{x}_{i} \right] \\ &= \frac{1}{1 + \exp(-\theta^{T} \mathbf{x}_{i})} \frac{\exp(-\theta^{T} \mathbf{x}_{i})}{1 + \exp(-\theta^{T} \mathbf{x}_{i})} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \end{aligned}$$

 $-\log(f(x_i;\theta))$ is a convex function

$$z^{T} \nabla_{\theta}^{2} \left[-\log(f(\boldsymbol{x_{i}}; \theta)) \right] z =$$

$$z^{T} \frac{1}{1 + \exp(-\theta^{T} x_{i})} \frac{\exp(-\theta^{T} x_{i})}{1 + \exp(-\theta^{T} x_{i})} x_{i} x_{i}^{T} z$$

$$= \frac{1}{1 + \exp(-\theta^{T} x_{i})} \frac{\exp(-\theta^{T} x_{i})}{1 + \exp(-\theta^{T} x_{i})} (x_{i}^{T} z)^{2}$$

$$\int_{0}^{-\log(1-f(x_{i};\theta))} \text{ is a convex function}$$

$$\int_{0}^{-\log(1-f(x_{i};\theta))} \exp(-\theta X)$$

 $-\log(1-f(x_i;\theta))$ is a convex function

$$\begin{aligned} \nabla_{\theta} \left[-\log \left(1 - f(\mathbf{x}_{i}; \theta) \right) \right] &= \\ &= \nabla_{\theta} \left[-\log \left(\frac{\exp(-\theta^{T} x_{i})}{1 + \exp(-\theta^{T} x_{i})} \right) \right] \\ &= \nabla_{\theta} \left[\theta^{T} x_{i} + \log(1 + \exp(-\theta^{T} x_{i})) \right] \\ &= x_{i} + \nabla_{\theta} \left[\log(1 + \exp(-\theta^{T} x_{i})) \right] \end{aligned}$$

 $-\log(1 - f(x_i; \theta))$ is a convex function

$$\nabla_{\theta}^{2} \left[-\log(1 - f(\mathbf{x}_{i}; \theta)) \right] =$$

$$= \nabla_{\theta}^{2} \left[\log(1 + \exp(-\theta^{T} \mathbf{x}_{i})) \right]$$

Newton's method for the derivative

Newton's method for the derivative

Summary

- Classification
- •Logistic Regression
- Gradient Descent