

# Constructivist Cognitive Architecture



Laboratoire d'InfoRmatique en Image et Systèmes d'information

Jianyong XUE

Supervisors: Salima Hassas, Olivier Georgeon











### Context

#### **Context:**

- Knowledge acquisition through developmental process is an active research area.
- Traditional AI approaches rely on an abstraction of the environment proposed by a system designer<sup>[1]</sup>. Hence the agent's adaptation to different problems and complex environment is limited.
- Mastering the laws of feedback contingencies is essential to constructivist artificial agents<sup>[2]</sup>.
- Constructivist epistemology suggests an approach to make an autonomous agent iteratively construct a representation of an unknown environment<sup>[3]</sup>.
- Little AI: Playing a constructivist robot<sup>[3]</sup>.

### **Conceptions:**

- Cognitive architecture<sup>[4]</sup>
- The Constructivist Paradigm and the Realist Paradigm

<sup>[2]</sup> Olivier L. Georgeon, Mathieu Guillermin. Mastering the laws of feedback contingencies is essential to constructivist artificial agents. Constructivist Foundations, 2018, 13 (2), pp.300-301.



<sup>[1]</sup> Guériau M, Armetta F, Hassas S, et al. A constructivist approach for a self-adaptive decision-making system: application to road traffic control[C], 2016 IEEE 28th International Conference on. IEEE, 2016: 670-677.

## **Objectives**

### Through my research, I hope to:

- Create an environment and the agent and analysis traces that the agent produces when interacting with the environment.
- Let the agent build knowledge about the environment and itself and to revise its behavior more quickly and efficiently by interacting with the environment to adapt to it.
- Transfer the agent to another new and more complicated environment, and extend the capabilities of the agent to adapt to different kinds situation environment.
- Build a more powerful cognitive architecture that can meet the needs of a single-agent and or of a multi-agent system.



# Working of the first year

- The learning of MOOC on Developmental Artificial Learning and lectures on Developmental Learning.
- The research of radical constructivism<sup>[5]</sup> and autonomous agent.
- Followed with the constructivist paradigm, we develop a self-motivated<sup>[6]</sup> agent to construct causality from learning feedback of interactions with the environment.
- Inspired by Van der Aalst's  $\alpha$ -algorithm<sup>[7]</sup> and Georgeon et al. 's work<sup>[8]</sup>, the agent learns a Petri Net to explain causality and regularities of interactions.



**Fig. 1.** Causal model (Petri Net) learned by the agent from regularities of interactions

<sup>[6]</sup> Oudeyer, P-Y., Jacqueline Gottlieb, and Manuel Lopes. "Intrinsic motivation, curiosity, and learning: Theory and applications in educational technologies." Progress in brain research. Vol. 229. Elsevier, 2016. 257-284.



<sup>[7]</sup> Van der Aalst, W. & Weijters, A. & Maruster, L (2003). Workflow Mining: Discovering process models from event logs, IEEE Transactions on Knowledge and Data Engineering, vol 16.

<sup>[5]</sup> Von Glasersfeld, E. An introduction to radical constructivism. The invented reality, vol(1740) 1984.

# **Conclusion and Perspective**

#### The questions still remain:

- 1. The construction of spatial knowledge.
- 2. The petri-net will be too tremendous in more complex tasks.
- 3. low-level learning.

#### Future work will be mainly focused on:

- 1. Improve the learning efficiency by memorizing these patterns in the stream of interaction feedback traces.
- 2. Combination with biological inspirations (Place Cells, landmarks) to let the agent has capabilities of spatial cognition.
- 3. Research of Causality and hierarchical sequence learning for high-level learning.



### **Publications**

Jianyong XUE, Olivier Georgeon. Causality Reconstruction by An Autonomous Agent, 2018 Annual International Conference on Biologically Inspired Cognitive Architectures, Prague (Accepted for presentation in August 2018).

Thanks for your attention!

