Lab 6

Support Vector Machines

Introduction

Objectives

- SPAM dataset: a binary classification problem
- Linear and non-linear Support Vector Machine classifiers
- Hyperparameter selection
- Performance metrics

SVM

Linear SVM classifier:

Separable classes: An SVM classifier seeks the hyperplane that best separates samples from the two classes

Function to minimize:

$$L = \frac{1}{2} \left| \left| \mathbf{w} \right| \right|^2 - \sum_{i=1}^{N} \alpha_i \left(y_i \left(\mathbf{w}^T \mathbf{x}_i + w_0 \right) - 1 \right)$$

We obtain a convex problem depending on α_i . It can be solved using standard optimization software

$$L = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \alpha_{i} \alpha_{k} y_{i} y_{k} \mathbf{x}_{i}^{T} \mathbf{x}_{k} \qquad \text{subject to} \qquad \begin{cases} \alpha_{i} \ge 0 \\ \sum_{i=1}^{N} \alpha_{i} y_{i} = 0 \end{cases}$$

Classification of a vector x

$$\hat{y} = sign(g(\mathbf{x})) = sign(\mathbf{w}^T \mathbf{x} + w_0) = sign\left(\sum_{i=1}^{N_{SV}} \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + w_0\right)$$

SVM

Linear SVM classifier:

Non-separable classes: no hyperplane can separate the classes without error. We permit some training vectors wrongly classified

$$y_i \left(\mathbf{w}^T \mathbf{x}_i + w_o \right) \ge 1 - \xi_i \qquad i = 1, ..., N$$

and introduce a penalization for non-null values of ξ_i :

$$\underset{\boldsymbol{\xi}, \mathbf{w}, w_o}{\text{minimize}} \ \ \frac{1}{2} \left\| \mathbf{w} \right\|^2 + P \sum_{i=1}^N \boldsymbol{\xi}_i \quad \text{ subject to } \begin{cases} \boldsymbol{y}_i \left(\mathbf{w}^T \mathbf{x}_i + \boldsymbol{w}_o \right) \geq 1 - \boldsymbol{\xi}_i \\ \boldsymbol{\xi}_i \geq 0 \end{cases} \qquad i = 1, \dots, N$$

Using the Lagrangian:

$$L = \frac{1}{2} \left| \left| \mathbf{w} \right| \right|^2 + P \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i \left(y_i \left(\mathbf{w}^T \mathbf{x}_i + w_0 \right) - \left(1 - \xi_i \right) \right) - \sum_{i=1}^{N} \beta_i \xi_i$$

The penalization parameter P must be validated

SVM

Non-linear SVM classifier:

Uses kernel functions

$$L = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \alpha_i \alpha_k y_i y_k K(\mathbf{x}_i, \mathbf{x}_k) \qquad \text{subject to} \qquad \begin{cases} 0 \le \alpha_i \le P \\ \sum_{i=1}^{N} \alpha_i y_i = 0 \end{cases}$$

Example: a Gaussian Kernel

$$K(\mathbf{x}_{i}, \mathbf{x}_{k}) = \exp\left(-\frac{1}{\sigma^{2}} ||\mathbf{x}_{i} - \mathbf{x}_{k}||^{2}\right)$$

Classification of a vector x:

 σ^2 is a parameter that must be validated

$$\hat{y} = sign\left(\sum_{i=1}^{N_{SV}} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}) + w_0\right)$$

SPAM dataset

Each vector in the dataset corresponds to a received email

Dataset:

- Classes: c=2 (spam, mail)
- Samples: N = 4601 (1813 spam and 2788 mail)
- Features: d=57 frequency of a particular word in the email. The last features correspond to run-length attributes that measure the length of sequences of consecutive capital letters.

Goal: build a spam filter

Content of a feature vector

Number	Feature	Number	Feature
1	word_freq_make: continuous.	30	word_freq_labs: continuous.
2	word_freq_address: continuous.	31	word_freq_telnet: continuous.
3	word_freq_all: continuous.	32	word_freq_857: continuous.
4	word_freq_3d: continuous.	33	word_freq_data: continuous.
5	word_freq_our: continuous.	34	word_freq_415: continuous.
6	word_freq_over: continuous.	35	word_freq_85: continuous.
7	word_freq_remove: continuous.	36	word_freq_technology: continuous.
8	word_freq_internet: continuous.	37	word_freq_1999: continuous.
9	word_freq_order: continuous.	38	word_freq_parts: continuous.
10	word_freq_mail: continuous.	39	word_freq_pm: continuous.
11	word_freq_receive: continuous.	40	word_freq_direct: continuous.
12	word_freq_will: continuous.	41	word_freq_cs: continuous.
13	word_freq_people: continuous.	42	word_freq_meeting: continuous.
14	word_freq_report: continuous.	43	word_freq_original: continuous.
15	word_freq_addresses: continuous.	44	word_freq_project: continuous.
16	word_freq_free: continuous.	45	word_freq_re: continuous.
17	word_freq_business: continuous.	46	word_freq_edu: continuous.
18	word_freq_email: continuous.	47	word_freq_table: continuous.
19	word_freq_you: continuous.	48	word_freq_conference: continuous
20	word_freq_credit: continuous.	49	char_freq_;: continuous.
21	word_freq_your: continuous.	50	char_freq_(: continuous.
22	word_freq_font: continuous.	51	char_freq_[: continuous.
23	word_freq_000: continuous.	52	char_freq_!: continuous.
24	word_freq_money: continuous.	53	char_freq_\$: continuous.
25	word_freq_hp: continuous.	54	char_freq_#: continuous.
26	word_freq_hpl: continuous.	55	capital_run_length_average: continu
27	word_freq_george: continuous.	56	capital_run_length_longest: continuo
28	word_freq_650: continuous.	57	capital_run_length_total: continuou
29	word_freq_lab: continuous.		

Validation of parameters

Dataset split into 2 subsets (stratified splitting)

```
    Train: X_train, y_train, 80%
```

```
Test: X_test, y_test, 20%
```

Parameter validation (brute force: grid search):

- Split Train set into training (75%) and validation (25%) subsets
- Train linear SVM
 - Find best hyperparameter P
- Train non-linear SVM
 - Find best hyperparameters (P, σ_2)
 - compute f1 score on validation set
- Compute metrics on the train / test set

Machine Learning

Performance metrics

Precision, Recall (=Sensitivity), Specificity:

F score: A measure that combines precision and recall is the harmonic mean of precision and recall, the traditional F-measure or balanced F-score:

$$F_{score} = 2\frac{P \times R}{P + R}$$

SVM in ScikitLearn

```
class sklearn.svm.SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale',
  coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=2
00, class_weight=None, verbose=False, max_iter=1, decision_function_sh
  ape='ovr', break_ties=False, random_state=None)
```

C: Regularization parameter. The strength of the regularization is inversely proportional to C

kernel {'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'} specifies the type of kernel

Be careful sklearn rbf parameter gamma

```
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
```

```
from sklearn import svm
clf = svm.SVC()
clf.fit(X_train, y_train)
clf.predict(X_test)
```


SVM in ScikitLearn

Notes:

- The multiclass support is handled according to a one-vs-one scheme. In total, n_classes * (n_classes 1) / 2 classifiers are constructed and each one trains data from two classes.
- The implementation is based on libsvm. The fit time scales at least quadratically with the number of samples and may be impractical beyond tens of thousands of samples. For large datasets consider using LinearSVC
- Some properties of these support vectors can be found in attributes support_vectors_ get support vectors
 support_ get indices of support vectors
 n_support: get number of support vectors for each class
- In problems where it is desired to give more importance to certain classes or certain individual samples, the parameters class_weight can be used
- Prediction methods: predict or predict_proba, predict_log_proba
 predict For a one-class model, +1 or -1 is returned.
 proba methosds Compute probabilities of possible outcomes for samples in X. The model needs to have probability information computed at training time: fit with attribute probability set to True. The probability model is created using cross validation, so the results can be slightly different than those obtained by predict.

Machine Learning 11