→ Probabilités conditionnelles : devoir maison pour le 13/10/2021

Exercice 1 Partie A

On s'intéresse au nombre de dons de sang lors de collectes organisées au sein de l'Établissement Français du Sang (EFS) depuis 2010.

Année	2010	2011	2012	2013	2014
Nombre de dons de sang (en milliers)	2300	2 450	2500	2600	2650

- 1. Déterminer à 0,01 % près, le pourcentage d'augmentation de dons de sang entre 2010 et 2014.
- 2. En déduire l'augmentation annuelle moyenne entre 2010 et 2014, % arrondie à 0,01 %.
- 3. En supposant que l'augmentation du nombre de dons suivra la même évolution, combien de dons de sang peut-on espérer collecter en 2017?
 On arrondira au millier.

Partie B

Dans une région, 56 % des donneurs sont des hommes.

Parmi eux, 38 % ont moins de 40 ans.

Parmi les femmes donnant leur sang, 45 % ont moins de 40 ans.

On interroge au hasard un donneur de sang dans cette région et on considère les événements suivants :

- H: « la personne interrogée est un homme »
- Q: « la personne interrogée a moins de 40 ans ».

 \overline{H} désigne l'évènement contraire de H et $P_H(Q)$ la probabilité de Q sachant H.

1. À l'aide de l'énoncé, donner P(H) et $P_H(Q)$.

- **2.** Recopier et compléter l'arbre pondéré ci-contre.
- **3.** Calculer $P(H \cap Q)$. Interpréter le résultat obtenu.
- 4. Calculer la probabilité que la personne interrogée ait moins de 40 ans.
- **5.** La personne interrogée a plus de 40 ans. Déterminer la probabilité que ce soit un homme. On arrondira à 10^{-4} .

Exercice 2 En 2016 une étude réalisée dans une grande entreprise révèle que 55% des employés peuvent venir travailler grâce aux transports en commun. Parmi ceux-ci, 80% déclarent venir tout de même en voiture. Parmi ceux qui n'ont pas accès aux transports en commun, 95% viennent travailler en voiture.

On choisit au hasard un employé de cette entreprise et on considère les évènements suivants :

T: «L'employ'e peut utiliser les transports en commun »;

V : « l'employé vient travailler en voiture ».

On notera \overline{T} et \overline{V} les évènements contraires. Les résultats seront tous donnés à 0,001 près.

1. Recopier et compléter l'arbre pondéré donné ci-dessous.

TSTMG TSTMG

- **2.** Calculer la probabilité de l'évènement $T \cap V$.
- **3.** Déterminer la probabilité que l'employé ne puisse pas utiliser les transports en commun et ne vienne pas travailler en voiture.
- 4. Calculer la probabilité de l'évènement V et justifier par une phrase ou une formule le calcul.
- **5.** Sachant que l'employé vient en voiture, quelle est la probabilité qu'il ait accès aux transports en commun?

Exercice 3 1. Calculer, sans calculatrice:

$$\frac{\frac{1}{\frac{1}{12}}}{\frac{1}{3}}$$

- **2.** Sept cars pleins de touristes aux deux tiers se dirigent vers Sète. A Troyes, un quart des touristes en descend. Peut-on alors mettre les trois-quarts restant dans trois cars?
- **3.** Je pense à deux fractions. Le numérateur de la première est le double de son dénominateur. Le numérateur de la seconde est le triple de son dénominateur. Peut-on prévoir la somme de ces deux fractions? Si oui, laquelle?
- 4. Calculer les trois quarts d'un douzième.
- **5.** Calculer $\frac{54}{26}$ moins sa partie entière.