Devoir à la maison n°12

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

Dans tout le corrigé, on pose $f_n: x \mapsto e^{-xn^{\alpha}}$.

1 1.a Soit $x \in \mathbb{R}$. La série $\sum_{n \in \mathbb{N}} e^{-nx}$ est une série géométrique de raison e^{-x} . Elle ne converge donc que si x > 0. De plus, pour tout $x \in \mathbb{R}_+^*$, $S_1(x) = \frac{1}{1 - e^{-x}}$.

1.b On sait que $e^u - 1 \underset{u \to 0}{\sim} u$. On en déduit que $S_1(x) \underset{x \to 0^+}{\sim} \frac{1}{x}$ puis que $\lim_{0^+} S_1 = +\infty$.

1.c Il est clait que $\lim_{x \to +\infty} S_1(x) = 1$. De plus, pour tout x > 0,

$$S_1(x) - 1 = \frac{e^{-x}}{1 - e^{-x}} \underset{x \to +\infty}{\sim} e^{-x}$$

2 2.a Soit $x \ge 0$. Pour tout $n \in \mathbb{N}$, $e^{-xn^{\alpha}} \ge 1$ donc $\sum e^{-n^{\alpha}}$ diverge grossièrement.

2.b Soit x > 0. On peut écrire $n^2 e^{-xn^{\alpha}} = (n^{\alpha})^{\frac{2}{\alpha}} e^{-xn^{\alpha}}$. Par croissances comparées, $\lim_{t \to +\infty} t^{\frac{2}{\alpha}} e^{-xt} = 0$ donc $\lim_{n \to +\infty} n^2 e^{-xn^{\alpha}} = 0$.

Autrement dit, $e^{-xn^{\alpha}} = o\left(\frac{1}{n^2}\right)$. Or $\sum \frac{1}{n^2}$ est une série à termes positifs convergente donc $\sum e^{-xn^{\alpha}}$ converge.

2.c Les questions précédentes montrent que le domaine de définition de S_{α} est \mathbb{R}_{+}^{*} lorsque $\alpha > 0$.

3. Soit $\varepsilon \in \mathbb{R}_+^*$. Par croissance et positivité de l'exponentielle, $||f_n||_{\infty}$, $[\varepsilon, +\infty[=f_n(\varepsilon)]$. D'après la question précédente, $\sum f_n(\varepsilon)$ converge. Ainsi $\sum f_n$ converge normalement.

A fortiori, $\sum f_n$ converge uniformément sur tout intervalle $[\varepsilon, +\infty[$ pour $\varepsilon > 0$. Comme les fonctions f_n sont continues sur \mathbb{R}_+^* , on en déduit que S_α est continue sur $\bigcup_{\varepsilon \in \mathbb{R}_+^*} [\varepsilon, +\infty[= \mathbb{R}_+^*.$

3.b Soit deux réels x et y tels que $0 < x \le y$. Alors pour tout $n \in \mathbb{N}$, $f_n(x) \ge f_n(y)$ donc $S_{\alpha}(x) = \sum_{n=0}^{+\infty} f_n(x) \ge \sum_{n=0}^{+\infty} f_n(x) = S_{\alpha}(y)$. On en déduit que S_{α} est décroissante sur \mathbb{R}_+^* .

D'après le théorème de la limite monotone, S_{α} admet une limite finie ou infinie en 0^+ et $+\infty$.

Remarque. On peut préciser que la limite de S_{α} en 0^+ est finie ou égale à $+\infty$. De plus, comme S_{α} est clairement minorée par 0, sa limite en $+\infty$ est nécessairement finie.

3.c Remarquons que $\lim_{\substack{+\infty \\ +\infty}} f_n = 0$ pour tout $n \in \mathbb{N}^*$ et que $\lim_{\substack{+\infty \\ +\infty}} f_0 = 1$. Comme $\sum f_n$ converge uniformément sur $[1, +\infty[$, on peut appliquer le théorème d'interversion série/limite :

$$\lim_{+\infty} S_{\alpha} = \sum_{n=0}^{+\infty} \lim_{+\infty} f_n = 1$$

3.d Soient x > 0 et $N \in \mathbb{N}$. La somme définissant $S_{\alpha}(x)$ étant à termes positifs, $S_{\alpha}(x) \ge \sum_{n=0}^{N} f_n(x)$. Par passage à la limite en 0^+ (on a vu que S_{α} possédait une limite ℓ en 0^+), on obtient $\ell \ge N + 1$. Ceci étant valide pour tout $N \in \mathbb{N}$, $\ell = +\infty$.

1

4.a Soit $n \in \mathbb{N}$ et $x \in \mathbb{R}_+^*$. Comme $t \mapsto e^{-xt^2}$ est décroissante sur \mathbb{R}_+ ,

$$\forall t \in [n, n+1], \ e^{-x(n+1)^2} \le e^{-xt^2} \le e^{-xn^2}$$

puis, par croissance de l'intégrale

$$e^{-x(n+1)^2} = \int_n^{n+1} e^{-x(n+1)^2} dt \le \int_n^{n+1} e^{-xt^2} dt \le \int_n^{n+1} e^{-xn^2} dt = e^{-x(n+1)^2}$$

4.b D'après la question précédente,

$$\sum_{n=0}^{+\infty} e^{-x(n+1)^2} \le \sum_{n=0}^{+\infty} \int_n^{n+1} e^{-xt^2} \, \mathrm{d}t \le \sum_{n=0}^{+\infty} e^{-xn^2}$$

ou encore

$$S_2(x) - 1 = \sum_{n=1}^{+\infty} e^{-xn^2} \le \int_0^{+\infty} e^{-xt^2} dt \le S_2(x)$$

Par le changement de variable linéaire $u = t\sqrt{x}$, on obtient

$$\int_0^{+\infty} e^{-xt^2} dt = \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2\sqrt{x}}$$

4.c On a donc

$$\forall x > 0, \ \frac{\sqrt{\pi}}{2\sqrt{x}} \le S_2(x) \le \frac{\sqrt{\pi}}{2\sqrt{x}} + 1$$

Puisque $\lim_{x\to 0^+} \frac{\sqrt{\pi}}{2\sqrt{x}} = +\infty$, on obtient $\lim_{0^+} S_2 = +\infty$ par minoration.

De plus,
$$\frac{\sqrt{\pi}}{2\sqrt{x}} + 1 \underset{x \to 0^+}{\sim} \frac{\sqrt{\pi}}{2\sqrt{x}}$$
 donc $S_2(x) \underset{x \to 0^+}{\sim} \frac{\sqrt{\pi}}{2\sqrt{x}}$.

5 5.a Soit x > 0.

$$S_2(x) - 1 - e^{-x} = \sum_{n=2}^{+\infty} e^{-xn^2}$$

Or, pour tout entier $n \ge 2$, $n^2 \ge n$ puis $e^{-xn^2} \le e^{-xn}$ de sorte que

$$S_2(x) - 1 - e^{-x} \le \sum_{n=2}^{+\infty} e^{-xn}$$

5.b On reconnaît la somme d'une série géométrique de raison e^{-x} :

$$\sum_{n=2}^{+\infty} e^{-xn} = \frac{e^{-2x}}{1 - e^{-x}}$$

De plus, $S_2(x) - 1 - e^{-x} = \sum_{n=2}^{+\infty} e^{-xn^2}$ est une somme de termes positifs donc

$$0 \le S_2(x) - 1 - e^{-x} \le \frac{e^{-2x}}{1 - e^{-x}}$$

puis

$$0 \le e^x \left(S_2(x) - 1 - e^{-x} \right) \le \frac{e^{-x}}{1 - e^{-x}}$$

On en déduit à l'aide du théorème des gendarmes que

$$\lim_{x \to +\infty} e^x \left(S_2(x) - 1 - e^{-x} \right) = 0$$

ou encore

$$S_2(x) - 1 - e^{-x} = o(e^{-x})$$

ou enfin

$$S_2(x) = 1 + e^{-x} + o(e^{-x})$$

Ceci signifie également que

$$S_2(x) - 1 \sim_{x \to +\infty} e^{-x}$$

6 6.a Soit x > 0. On a montré que

$$\forall n \in \mathbb{N}, \ e^{-x(n+1)^2} \le \int_n^{n+1} e^{-xt^2} \ dt$$

Ainsi

$$\sum_{n=N+1}^{+\infty} e^{-xn^2} \le \sum_{n=N}^{+\infty} e^{-x(n+1)^2} \le \int_{N}^{+\infty} e^{-xt^2} dt$$

6.b Soit $N \in \mathbb{N}^*$. On effectue le changement de variable $u = xt^2$ i.e. $t = \sqrt{u/x}$, licite car $t \mapsto xt^2$ est une bijection de classe \mathcal{C}^2 strictement croissante de $[N, +\infty[$ sur $[xN^2, +\infty[$:

$$\int_{N}^{+\infty} e^{-xt^2} dt = \frac{1}{2\sqrt{x}} \int_{xN^2}^{+\infty} \frac{e^{-u}}{\sqrt{u}} du$$

Ainsi

$$\mathrm{S}_2(x) - \sum_{n=0}^{\mathrm{N}} e^{-xn^2} = \sum_{n=\mathrm{N}+1}^{+\infty} e^{-xn^2} \leq \sum_{n=\mathrm{N}}^{+\infty} e^{-x(n+1)^2} \leq \int_{\mathrm{N}}^{+\infty} e^{-xt^2} \; \mathrm{d}t = \frac{1}{2\sqrt{x}} \int_{x\mathrm{N}^2}^{+\infty} \frac{e^{-u}}{\sqrt{u}} \; \mathrm{d}u$$

Enfin, pour tout $u \in [xN^2, +\infty[, \frac{1}{\sqrt{u}} \le \frac{1}{N\sqrt{x}}]$ donc

$$\int_{xN^2}^{+\infty} \frac{e^{-u}}{\sqrt{u}} du \le \frac{1}{N\sqrt{x}} \int_{xN^2}^{+\infty} e^{-u} du = -\frac{1}{N\sqrt{x}} \left[e^{-u} \right]_{xN^2}^{+\infty} = \frac{e^{-xN^2}}{N\sqrt{x}}$$

Finalement,

$$S_2(x) - \sum_{n=0}^{N} e^{-xn^2} \le \frac{1}{2\sqrt{x}} \int_{xN^2}^{+\infty} \frac{e^{-u}}{\sqrt{u}} du \le \frac{e^{-xN^2}}{2Nx}$$

6.c Pour déterminer une valeur de $S_2(x)$ à ε près, il suffit de prendre $\sum_{n=0}^{N} e^{-xn^2}$ avec N choisi de telle sorte que $\frac{e^{-xN^2}}{2Nx} < \varepsilon$.

```
import numpy as np

def S2(x, ε):
    N = 1
    S = 1 + np.exp(-x)
    while np.exp(-x*N**2)/(2*N*x) >= ε:
        N += 1
        S += np.exp(-x*N**2)
    return S
```

```
6.2 S2(1,1e-7)
1.386318602399438
```

7 7.a La fonction $u \mapsto e^{-u}u^{\alpha-1}$ est continue sur \mathbb{R}_+^* .

De plus, $e^{-u}u^{\alpha-1} \sim \frac{1}{u^{1-\alpha}}$. On en déduit que $u \mapsto e^{-u}u^{\alpha-1}$ est intégrable sur]0,1] si et seulement si $1-\alpha < 1$ i.e.

 $\alpha > 0$. Comme cette fonction est positive, ceci signifie que $\int_0^1 e^{-u} u^{\alpha - 1} du$ converge si et seulement si $\alpha > 0$.

Par ailleurs, $e^{-u}u^{\alpha-1} = o\left(\frac{1}{u^2}\right)$. On en déduit que $u \mapsto e^{-u}u^{\alpha-1}$ est intégrable sur $[1, +\infty[$ quelle que soit la valeur de α . A fortiori, $\int_{1}^{+\infty} e^{-u}u^{\alpha-1} du$ converge pour tout $\alpha \in \mathbb{R}$.

On en déduit que $\Gamma(\alpha)$ converge si et seulement si $\alpha > 0$.

7.b Soit $\alpha > 0$. Les applications $u \mapsto -e^{-u}$ et $u \mapsto u^{\alpha}$ sont de classe \mathcal{C}^1 sur \mathbb{R}_+^* de sorte que, par intégration par parties,

$$\Gamma(\alpha + 1) = \int_0^{+\infty} e^{-u} u^{\alpha} du = -\left[e^{-u} u^{\alpha}\right]_0^{+\infty} + \alpha \int_0^{+\infty} e^{-u} u^{\alpha - 1} du$$

Cette intégration par parties est légitime puisque les intégrales $\Gamma(\alpha+1)$ et $\Gamma(\alpha)$ convergent. De plus,

$$\lim_{u \to 0^{+}} e^{-u} u^{\alpha} = \lim_{u \to +\infty} e^{-u} u^{\alpha} = 0$$

donc $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$.

On calule sans peine $\Gamma(1) = 1$ et on en déduit par récurrence que $\Gamma(n+1) = n!$ pour tout $n \in \mathbb{N}$.

7.c On effectue comme indiqué le changement de variable $u = xt^{\alpha}$:

$$\Gamma\left(\frac{1}{\alpha}\right) = \int_0^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du = \int_0^{+\infty} e^{-xt^{\alpha}} (xt^{\alpha})^{\frac{1}{\alpha}-1} x \alpha t^{\alpha-1} dt = \alpha x^{\frac{1}{\alpha}} \int_0^{+\infty} e^{-xt^{\alpha}} dt = \alpha x^{\frac{1}{\alpha}} I(\alpha)$$

La nature d'une intégrale étant invariante par changement de variable, $I(\alpha)$ converge.

8.a Soit $n \in \mathbb{N}$. Pour tout $t \in [n, n+1]$,

$$e^{-x(n+1)^{\alpha}} < e^{-xt^{\alpha}} < e^{-xn^{\alpha}}$$

puis

$$e^{-x(n+1)^{\alpha}} \le \int_{n}^{n+1} e^{-xt^{\alpha}} \le e^{-xn^{\alpha}}$$

On en déduit que

$$\sum_{n=0}^{+\infty} e^{-x(n+1)^{\alpha}} \le \sum_{n=0}^{+\infty} \int_{n}^{n+1} e^{-xt^{\alpha}} \le \sum_{n=0}^{+\infty} e^{-xn^{\alpha}}$$

ou encore

$$S_{\alpha}(x) - 1 \le I(\alpha) \le S_{\alpha}(x)$$

En vertu de la question précédente,

$$0 \le S_{\alpha}(x) - \frac{1}{\alpha} \Gamma\left(\frac{1}{\alpha}\right) \frac{1}{x^{1/\alpha}} \le 1$$

8.b Pour tout x > 0,

$$\frac{1}{\alpha}\Gamma\left(\frac{1}{\alpha}\right)\frac{1}{r^{1/\alpha}} \le S_{\alpha}(x)$$

Or $\lim_{x\to 0^+} \frac{1}{x^{1/\alpha}} = +\infty$ donc $\lim_{0^+} S_\alpha = +\infty$ par minoration. De plus.

$$S_{\alpha}(x) = \frac{1}{\alpha} \Gamma\left(\frac{1}{\alpha}\right) \frac{1}{x^{1/\alpha}} + \mathcal{O}(1)$$

et, a fortiori,

$$S_{\alpha}(x) \underset{x \to 0^{+}}{\sim} \frac{1}{\alpha} \Gamma\left(\frac{1}{\alpha}\right) \frac{1}{x^{1/\alpha}}$$

9 9.a On effectue à nouveau le changement de variable $u = xt^{\alpha}$ ($t \mapsto xt^{\alpha}$ est une bijection de classe \mathcal{C}^1 strictement croissante de $[1, +\infty[$ sur $[x, +\infty[)$ pour affirmer que

$$\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du = \int_{1}^{+\infty} e^{-xt^{\alpha}} (xt^{\alpha})^{\frac{1}{\alpha}-1} x \alpha t^{\alpha-1} dt = \alpha x^{1/\alpha} \int_{1}^{+\infty} e^{-xt^{\alpha}} dt$$

On en déduit directement l'égalité demandée.

9.b On effectue maintenant une intégration par parties!

$$\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha} - 1} du = -\left[e^{-u} u^{\frac{1}{\alpha} - 1}\right]_{x}^{+\infty} + \left(\frac{1}{\alpha} - 1\right) \int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha} - 2} du$$

Par croissances comparées, $\lim_{u\to +\infty} e^{-u} u^{\frac{1}{\alpha}-1} = 0$ de sorte que

$$\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du = e^{-x} x^{\frac{1}{\alpha}-1} + \left(\frac{1}{\alpha}-1\right) \int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-2} du$$

Pour tout $u \ge x$,

$$x \cdot u^{\frac{1}{\alpha}-2} e^{-u} \le u \cdot u^{\frac{1}{\alpha}-2} e^{-u}$$

ou encore

$$u^{\frac{1}{\alpha}-2}e^{-u} \le \frac{1}{x}u^{\frac{1}{\alpha}-1}e^{-u}$$

puis

$$0 \le \int_{r}^{+\infty} u^{\frac{1}{\alpha} - 2} e^{-u} du \le \frac{1}{x} \int_{r}^{+\infty} u^{\frac{1}{\alpha} - 1} e^{-u} du$$

Comme $1/x \longrightarrow_{x \to +\infty} 0$, on obtient donc

$$\int_{x}^{+\infty} u^{\frac{1}{\alpha}-2} e^{-u} du = o\left(\int_{x}^{+\infty} u^{\frac{1}{\alpha}-1} e^{-u} du\right)$$

En reprenant l'égalité plus haut,

$$\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha} - 1} du = e^{-x} x^{\frac{1}{\alpha} - 1} + o \left(\int_{x}^{+\infty} u^{\frac{1}{\alpha} - 1} e^{-u} du \right)$$

Autrement dit

$$\int_{r}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du \underset{x \to +\infty}{\sim} e^{-x} x^{\frac{1}{\alpha}-1}$$

9.c D'après la question 9.a,

$$\int_{1}^{+\infty} e^{-xt^{\alpha}} dt \underset{x \to +\infty}{\sim} \frac{1}{\alpha x^{1/\alpha}} e^{-x} x^{\frac{1}{\alpha} - 1} = \frac{e^{-x}}{\alpha x}$$

On en déduit que

$$\int_{1}^{+\infty} e^{-xt^{\alpha}} dt = o(e^{-x})$$

10. On effectue encore une comparaison série intégrale. On se donne $n \in \mathbb{N}^*$. Pour tout $t \in [n, n+1]$, $e^{-x(n+1)^{\alpha}} \le e^{-xt^{\alpha}}$ puis, en intégrant,

$$e^{-x(n+1)^{\alpha}} \leq \int_{n}^{n+1} e^{-xt^{\alpha}} dt$$

et enfin

$$\sum_{n=2}^{+\infty} e^{-xn^{\alpha}} = \sum_{n=1}^{+\infty} e^{-x(n+1)^{\alpha}} \le \sum_{n=1}^{+\infty} \int_{n}^{n+1} e^{-xt^{\alpha}} dt = \int_{1}^{+\infty} e^{-xt^{\alpha}} dt$$

10.b L'inégalité précédente donne

$$0 \le S_{\alpha}(x) - 1 - e^{-x} \le \int_{1}^{+\infty} e^{-xt^{\alpha}} dt$$

En particulier,

$$S_{\alpha}(x) - 1 - e^{-x} = \mathcal{O}\left(\int_{t}^{+\infty} e^{-xt^{\alpha}} dt\right)$$

Mais
$$\int_{1}^{+\infty} e^{-xt^{\alpha}} dt = o(e^{-x})$$
 donc

$$S_{\alpha}(x) - 1 - e^{-x} = o(e^{-x})$$

ce qui signifie que

$$S_{\alpha}(x) - 1 \sim e^{-x}$$

REMARQUE. On peut montrer le même résultat beaucoup plus simplement. En effet,

$$\forall x \in \mathbb{R}_{+}^{*}, \ e^{x}(S(x) - 1) = \sum_{n=1}^{+\infty} e^{x(1 - n^{\alpha})}$$

On prouve sans difficulté qu'en psoant $g_n: x \mapsto e^{x(1-n^{\alpha})}$, la série de fonctions $\sum g_n$ converge normalement et donc uniformément sur $[1, +\infty[$. Par théorème d'interversion série/limite,

$$\lim_{x \to +\infty} e^x (S_{\alpha}(x) - 1) = 1$$

ce qui permet de retrouver l'équivalent demandé.