Conditional on \mathcal{F}_t , there are three ways $N_k(t+1) - N_k(t)$ can be non-zero.

(II) The half-edge of the new vertex attaches to a particular k degree vertex. Then, $N_k(t)$ decreases by 1 to $N_k(t+1)$. The probability of this event is

$$\sum_{\substack{1 \le i \le t+2: \\ D_i(t)=k}} \sum_{\substack{k_1,k_2,\dots,\\ k_d \in [t+2] \setminus \{i\}}} \left\{ \prod_{j=1}^d \frac{D_{k_j}(t)}{2(t+1)} \right\} \frac{D_i(t)}{2(t+1) - S_t(\{k_1,\dots,k_d\})}$$

$$= \sum_{\substack{k_1,k_2,\dots,\\ j=1}} \left\{ \prod_{j=1}^d \frac{D_{k_j}(t)}{2(t+1)} \right\} \frac{(k)N_k(t)}{2(t+1) - S_t(\{k_1,\dots,k_d\})} = kN_k(t)P_{j_0}(t),$$

where j_0 is a particular k degree vertex at time t.