Day 4: Martingales

Dain Kim

December 8th

Today's Reading

[B] Chapter 1.5. Martingales

Martingales

$$(\Omega, \mathcal{F}, \mathbf{P})$$
 : a probability space $\{\mathcal{F}_t\}_{t \in \Sigma}$: a filtration

A stochastic process X(t), $t \in \Sigma$, is called a *martingale* w.r.t. the filtration $\{\mathcal{F}_t\}_{t \in \Sigma}$ if

- 1) $\mathbf{E}|X(t)| < \infty$ for every $t \in \Sigma$,
- 2) For every $t \in \Sigma$, the r.v. X(t) is \mathcal{F}_t -measurable.
- 3) $\mathbf{E}\{X(t)|X(s)\} = X(s)$.

3 / 10

Examples of Martingales

Let η_l , $l=1,2,\ldots$ be i.i.d. r.v.s and $\mathcal{F}_k=\sigma(\eta_l:1\leq l\leq k)$.

1) If $\mathbf{E}\eta_1=0$, the process

$$X(k) = \sum_{l=1}^{k} \eta_l,$$

 $l = 1, 2, \ldots$, is a martingale.

2) If $\mathbf{E}\eta_1=0$, $\mathbf{E}\eta_1^2=\sigma^2<\infty$, the process

$$Y(k) = \left(\sum_{l=1}^{k} \eta_l\right)^2 - k\sigma^2,$$

 $k = 1, 2, \ldots$, is a martingale.

4 / 10

Examples of Martingales

3) Let $\phi(\alpha) = \mathbf{E}e^{i\alpha\eta_1}$ be the characteristic function of the r.v. η_1 . Then the process

$$Z(k) = \frac{1}{\phi^k(\alpha)} \exp\left(i\alpha \sum_{l=1}^k \eta_l\right),$$

 $I = 1, 2, \dots$ is a martingale.

4) Let η_l be Bernoulli's random variables s.t. $\mathbf{P}(\eta_1=1)=p$ and $\mathbf{P}(\eta_1=-1)=1-p$. Then the process

$$U(k) = \left(\frac{1-p}{p}\right)^{\sum_{l=1}^{k} \eta_l},\,$$

 $k = 1, 2, \ldots$, is a martingale.

5 / 10

Supermartingales and Submartingales

```
(\Omega, \mathcal{F}, \mathbf{P}) : a probability space \{\mathcal{F}_t\}_{t \in \Sigma} : a filtration
```

A stochastic process X(t), $t \in \Sigma$, is called a *supermartingale* (resp. *submartingales*) w.r.t. the filtration $\{\mathcal{F}_t\}_{t \in \Sigma}$ if

- 1) $\mathbf{E}|X(t)| < \infty$ for every $t \in \Sigma$,
- 2) For every $t \in \Sigma$, the r.v. X(t) is \mathcal{F}_t -measurable.
- 3) $E\{X(t)|X(s)\} \le X(s)$ (resp. $E\{X(t)|X(s)\} \ge X(s)$).

6/10

A random time change

Theorem

Let $(X(k), \mathcal{F}_k)$, $k=1,2,\ldots$ be a supermartingale. If σ and τ are integer-valued bounded stopping times w.r.t. $\{\mathcal{F}_k\}_{k=1}^{\infty}$ such that

$$1 \le \sigma(\omega) \le \tau(\omega) \le n$$

for almost all $\omega \in \Omega$ and some integer n. Then $X(\sigma)$ is \mathcal{F}_{σ} -measurable and

$$\mathbf{E}\{X(\tau)|\mathcal{F}_{\sigma}\} \leq X(\sigma)$$
 a.s.

Corollary

If $(X(k), \mathcal{F}_k)$, k = 1, 2, ... is a supermartingale and $1 \le \rho \le n$ be an integer-valued stopping time w.r.t. $\{\mathcal{F}_k\}_{k=1}^n$, then

$$\mathsf{E}X(1) \ge \mathsf{E}X(\rho) \ge \mathsf{E}X(n)$$
.

◆ロト ◆個ト ◆ 差ト ◆ 差ト を 多くで

7 / 10

Decomposition of submartingales

Theorem (Doob's decomposition)

Any submartingale $(X(k), \mathcal{F}_k)$, $k = 0, 1, 2, \dots$ has a unique decomposition as

$$X(k) = M(k) + A(k),$$

where $(M(k), \mathcal{F}_k)$ is a martingale and A(k) is an \mathcal{F}_{k-1} -measurable nondecreasing process, A(0) = 0.

Construction.
$$M(0) = X(0)$$
, $A(0) = 0$, and

$$M(k) = M(k-1) + (X(k) - \mathbf{E}\{X(k)|\mathcal{F}_{k-1}\})$$

$$A(k) = A(k-1) + (\mathbf{E}\{X(k)|\mathcal{F}_{k-1}\} - X(k-1)).$$

December 8th

Convergence of martingales

Theorem

Let $X(k), \mathcal{F}_k$), $k=1,2,\ldots$ be a submartingale such that

$$\sup_{k} \mathbf{E} X^{+}(k) < \infty.$$

Then X(k) converges a.s. as $k \to \infty$ to a limit X_{∞} and $\mathbf{E}|X_{\infty}| < \infty$.

9 / 10

Strong Law of Large Numbers

Theorem

Let X_k , k = 1, 2, ..., be i.i.d. r.v.s with $\text{Var } X_1 < \infty$. Then

$$\frac{1}{n}\sum_{k=1}^n X_k \to \mathbf{E}X_1.$$

Lemma. Let x_k , k = 1, 2, ... be a sequence of real numbers such that $\sum_{k=1}^{\infty} x_k$ converges. Let b_k , $k=1,2,\ldots$ be a monotone sequence of positive numbers tending to infinity. Then

$$\frac{1}{b_n}\sum_{k=1}^n b_k x_k \to 0.$$

December 8th