A Simple Sweave Document using Caching

Roger D. Peng

May 1, 2007

First we load the packages which contain the data and functions that we will need later

- > library(datasets)
- > library(utils)

We fit a linear model to the airquality dataset. In this code chunk we will turn caching on so that we cache the airquality data frame and the fit object.

- > data(airquality)
- > fit <- lm(Ozone ~ Temp + Wind + Solar.R, data = airquality)</pre>

We can summarize the regression coefficients and their uncertainties in a table

- > library(xtable)
- > print(xtable(fit))

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-64.3421	23.0547	-2.79	0.0062
Temp	1.6521	0.2535	6.52	0.0000
Wind	-3.3336	0.6544	-5.09	0.0000
Solar.R	0.0598	0.0232	2.58	0.0112

We can also plot some model diagnostics.

Do just a bivariate regression with ozone and temperature.

Plot the data with the regression line Hmm, things seem a little nonlinear here.

```
> par(mfcol = c(2, 2))
> plot(fit)
```


Figure 1: Linear model diagnostic plots

```
> par(mfcol = c(1, 1))
> with(airquality, plot(Temp, Ozone))
> abline(fit)
```


Figure 2: Temperature and ozone data with fitted regression line