

MATHEMATICAL TRIPOS

Part III

Friday, 3 June, 2016 $\,$ 9:00 am to 12:00 pm $\,$

Draft 25 July, 2016

PAPER 118

COMPLEX MANIFOLDS

Attempt no more than FOUR questions.

There are FIVE questions in total.

The questions carry equal weight.

 $STATIONERY\ REQUIREMENTS$

 $\begin{array}{c} \textbf{SPECIAL} \ \textbf{REQUIREMENTS} \\ None \end{array}$

Cover sheet Treasury Tag Script paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

(a) Let M be a complex manifold. Define the space $\mathcal{A}^{p,q}(M)$ of forms of type (p,q) on M. Define the operators $\partial: \mathcal{A}^{p,q}(M) \to \mathcal{A}^{p+1,q}(M)$ and $\bar{\partial}: \mathcal{A}^{p,q}(M) \to \mathcal{A}^{p,q+1}(M)$.

Given a holomorphic map $f:M\to N$, show that f induces a pull-back map $f^*:\mathcal{A}^{p,q}(N)\to\mathcal{A}^{p,q}(M)$.

- (b) Let $D = \{(z_1, \ldots, z_n) \in \mathbb{C}^n \mid |z_i| < 1\}$. Show that if α is a (p,q)-form on D with $d\alpha = 0$, then there is a form β which is a sum of forms of type (p-1,q) and (p,q-1) with $d\beta = \alpha$.
- (c) Let $\omega = \frac{i}{2}(dz_1 \wedge d\bar{z}_1 + dz_2 \wedge d\bar{z}_2)$ be the standard Kähler form on \mathbb{C}^2 . Find a different Kähler form ω' on $\mathbb{C}^2 \{(0,0)\}$ such that the two corresponding metrics have the same volume form. [Hint: Look for $\omega' = i\partial\bar{\partial}\varphi(|z_1|^2 + |z_2|^2)$, where $\varphi : \mathbb{R}_{>0} \to \mathbb{R}$ is a function.]

 $\mathbf{2}$

- (a) Show that on a Kähler manifold, holomorphic functions are harmonic with respect to Δ_d .
- (b) On a Riemannian manifold M with metric g_{ij} , the Laplacian Δ_d on functions (i.e., 0-forms) takes the form

$$\Delta_d(u) = \sum_{k,l=1}^n \frac{1}{\sqrt{\det(g_{ij})}} \frac{\partial}{\partial x_k} \left(\sqrt{\det(g_{ij})} g^{kl} \frac{\partial u}{\partial x_l} \right)$$

where $(g^{ij}) = (g_{ij})^{-1}$. Show that if M is in fact a complex manifold of dimension n, with local complex coordinates $z_j = x_j + \sqrt{-1}x_{n+j}$, and g is a Kähler metric, then this simplifies to

$$\Delta_d(u) = \sum_{k,l=1}^{2n} g^{kl} \frac{\partial^2 u}{\partial x_k \partial x_l}.$$

- (c) Let $X_1=\mathbb{C}^{g_1}/\Lambda_1$, $X_2=\mathbb{C}^{g_2}/\Lambda_2$ be complex tori. Let $f:X_1\to X_2$ be a holomorphic map. Show that there exists an $x\in\mathbb{C}^{g_2}$ and a linear transformation $\tilde{f}:\mathbb{C}^{g_1}\to\mathbb{C}^{g_2}$ with $\tilde{f}(\Lambda_1)\subseteq\Lambda_2$ such that $f(z+\Lambda_1)=\tilde{f}(z)+x+\Lambda_2$.
 - (d) Show that if $X = V/\Lambda$ is a complex torus, then there are isomorphisms

$$H^{p,q}_{\bar\partial}(X)\cong \bigwedge\nolimits^p\mathrm{Hom}_{\mathbb{C}}(V,\mathbb{C})\otimes \bigwedge\nolimits^q\mathrm{Hom}_{\overline{\mathbb{C}}}(V,\mathbb{C})$$

where

$$\operatorname{Hom}_{\overline{\mathbb{C}}}(V,\mathbb{C}) = \{ f : V \to \mathbb{C} | f \text{ } \mathbb{R} \text{-linear and } f(cv) = \bar{c}f(v) \text{ for all } c \in \mathbb{C}, v \in V \}$$

denotes the space of \mathbb{C} -antilinear homomorphisms.

3

(a) Let E be a vector bundle. Define the notion of a connection D on E, and define the curvature Θ of D.

If E_1, E_2 are two vector bundles with connections D_1, D_2 , construct a connection on $E_1 \otimes E_2$ from D_1, D_2 , and prove that the curvature Θ of this connection satisfies

$$\Theta = \Theta_1 \otimes 1 + 1 \otimes \Theta_2.$$

- (b) Given a Hermitian metric h on a holomorphic vector bundle E over a complex manifold M, prove there is a unique connection D on E compatible with both the metric and holomorphic structure on E. Describe this connection in terms of a holomorphic frame as a matrix of 1-forms.
- (c) Let h be a Hermitian metric on a holomorphic vector bundle E over a complex manifold M. Let $S \subseteq E$ be a holomorphic sub-bundle. Then S inherits a Hermitian structure from E. In particular, E and S carry connections D_E and D_S given by (b).

Show that the quotient bundle Q = E/S can be naturally identified with $S^{\perp} \subseteq E$ as C^{∞} vector bundles, and thus Q inherits a Hermitian structure.

Let $\pi_S: E \to S$ denote the orthogonal projection, inducing also $\pi_S: T_M^* \otimes E \to T_M^* \otimes S$. Show that $D_S = \pi_S \circ D_E$.

Define the operator A on C^{∞} sections of S by

$$A(s) = D_E(s) - D_S(s).$$

Show that A(s) is a C^{∞} section of $T_M \otimes Q$ (viewing Q as a subbundle of E) and that

$$A(fs) = fA(s)$$

for f a C^{∞} function on M.

- (a) Let X be a topological space and \mathfrak{U} an open cover of X. Let \mathcal{F} be a sheaf on X. Define the Čech cohomology group $\check{H}^q(\mathfrak{U}, \mathcal{F})$.
 - (b) Let $X = \mathbb{C}^2 \setminus \{(0,0)\}, \mathfrak{U} = \{U_1, U_2\}$ the open cover given by

$$U_1 = X \setminus \{(z,0) \mid z \in \mathbb{C} \setminus \{0\}\},$$

$$U_2 = X \setminus \{(0,z) \mid z \in \mathbb{C} \setminus \{0\}\},$$

Calculate $\check{H}^1(\mathfrak{U},\mathcal{O}_X)$. Sketch an argument that $\check{H}^1(\mathfrak{U},\mathcal{O}_X) \cong H^1(X,\mathcal{O}_X)$.

(c) Let X be a topological space, $x \in X$ a point and G a group. Consider the skyscraper sheaf \mathcal{G} defined by

$$\mathcal{G}(U) = \begin{cases} G & x \in U, \\ 0 & x \notin U, \end{cases}$$

with restriction maps $\mathcal{G}(U) \to \mathcal{G}(V)$ being the identity whenever both groups are G. Verify that \mathcal{G} satisfies the sheaf axioms. Calculate the stalks \mathcal{G}_y of \mathcal{G} for all points $y \in X$.

(d) Let X be a Riemann surface (i.e., $\dim_{\mathbb{C}} X = 1$). Denote by \mathcal{M}_X the sheaf of meromorphic functions on X. As every holomorphic function is meromorphic, there is a natural inclusion $\mathcal{O}_X \hookrightarrow \mathcal{M}_X$. Describe the stalks of $\mathcal{M}_X/\mathcal{O}_X$, and describe this sheaf as a direct sum of skyscraper sheaves. Interpret the connecting homomorphism in the exact sequence

$$0 \to H^0(X, \mathcal{O}_X) \to H^0(X, \mathcal{M}_X) \to H^0(X, \mathcal{M}_X/\mathcal{O}_X) \to H^1(X, \mathcal{O}_X)$$

in terms of the existence of meromorphic functions with certain specified properties.

5

Let $Y \subseteq X$ be a smooth hypersurface in a complex manifold X of dimension n, and let α be a meromorphic section of $K_X = \Omega_X^n$ the canonical line bundle of X. Assume α only has a pole along Y, and that this pole is simple (order one). Locally in a coordinate system z_1, \ldots, z_n where Y is given by $z_1 = 0$ one can write

$$\alpha = h \cdot \frac{dz_1}{z_1} \wedge dz_2 \wedge \dots \wedge dz_n$$

with $z_1 = 0$ defining Y and h a holomorphic function. We set

$$\operatorname{Res}_Y(\alpha) = (h \cdot dz_2 \wedge \cdots \wedge dz_n)|_Y.$$

- (a) Show that $\operatorname{Res}_Y(\alpha)$ is well-defined and it yields an element of $\Gamma(Y, K_Y)$.
- (b) Now let $X = \mathbb{P}^n$, and suppose Y is a smooth hypersurface defined by an irreducible homogeneous polynomial f of degree n + 1. Show that

$$\alpha := \sum (-1)^i z_i f^{-1} dz_0 \wedge \dots \wedge \widehat{dz_i} \wedge \dots \wedge dz_n$$

can be interpreted as a meromorphic section of $K_{\mathbb{P}^n}$ with simple poles along Y. Furthermore, show that $\operatorname{Res}_Y(\alpha) \in H^0(Y, K_Y)$ is a nowhere vanishing section of K_Y . [Hint: Make use of sections $Z: U \to \mathbb{C}^{n+1} \setminus \{0\}$ of the quotient map $\mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{P}^n$. For the last statement, you may use without proof that if f is an irreducible homogeneous polynomial, then the equation f = 0 defines a smooth hypersurface Y if and only if $\partial f/\partial z_0, \ldots, \partial f/\partial z_n$ do not vanish simultaneously on Y.]

END OF PAPER