10 класс

Задача 1. Мешок и трение

Мешочек с песком бросают с горизонтальной поверхности земли под некоторым углом α к горизонту с начальной скоростью v_0 . После приземления он теряет вертикальную составляющую скорости. Найдите максимальное горизонтальное перемещение мешочка относительно точки бросания и угол α , при котором оно достигается. Коэффициент трения между мешком и плоскостью равен μ . Ускорение свободного падения g. Время удара считайте малым.

Задача 2. Процессы в сосуде

Горизонтально расположенный теплоизолированный цилиндрический сосуд разделён на два отсека неподвижной теплопроводящей перегородкой. Второй отсек отделён от атмосферы подвижным не проводящим тепло поршнем. Оба отсека наполнены азотом; система находится в равновесии. Газ в первом отсеке быстро нагревают. Известно, что с момента сразу после нагрева до восстановления теплового равновесия суммарная внутренняя энергия газа изменилась на ΔU . Найдите изменение внутренней энергии ΔU_1 азота в первом отсеке за тот же промежуток времени. Теплоёмкостью сосуда и поршней можно пренебречь.

Задача 3. Два шарика

Два одинаковых маленьких шарика массы m связаны невесомой и нерастяжимой нитью длины l и покоятся на гладкой горизонтальной плоскости (рис. 7). Правому шарику сообщается вертикальная скорость v_0 . Ускорение свободного падения g.

- 1. Найдите радиус кривизны траектории верхнего шарика в момент, когда нить вертикальна.
- 2. При каком значении начальной скорости v_0 нижний шарик в этот момент перестанет давить на плоскость?

Задача 4. Эксперимент

Два вертикальных цилиндрических сосуда соединены в нижней части трубкой с манометром пренебрежимо малого объёма (рис. 8). Внутри цилиндров установлены поршни, в верхней части цилиндров — упоры, ограничивающие подъём поршней. Расстояния от нижней

части поршней до дна цилиндров при верхнем расположении поршней одинаковы и равны h=1 м. Под поршнями находится один моль идеального газа, атмосферное давление $p_0=10^5$ Па. Поршни могут перемещатся в цилиндрах без трения.

В таблице представлены результаты измерений давления в цилиндрах при пяти различных значениях температуры газа:

t, °C	-50,0	-32,4	27,8	174,7	264,1
$p, 10^5 \Pi a$	2,0	2,0	2,5	2,5	3,0

Определите массы обоих поршней m_1, m_2 и площади сечения цилиндров $S_1, S_2.$

Задача 5. Электрическая цепь

В схеме (рис. 9) все элементы можно считать идеальными. ЭДС источника $\mathscr{E}=4,0\,\mathrm{B},$ сопротивления резисторов $r=50\,\mathrm{кOm},$ $R=150\,\mathrm{кOm},$ ёмкость конденсатора $C=2,0\,\mathrm{m\Phi}.$ До замыкания ключа ток в цепи отсутствовал. Ключ замыкают на некоторое время, а затем размыкают. За время, пока ключ был замкнут, в схеме выделилось количество теплоты $Q_1=7,43\,\mathrm{мДж},$ а после размыкания ключа, в схеме выделилось количество теплоты $Q_2=1,00\,\mathrm{мДж}.$

- 1. Какой заряд протёк через резистор R пока ключ был замкнут?
- 2. На какое время замкнули ключ?