CS7880: Rigorous Approaches to Data Privacy, Spring 2017 POTW #1

Instructor: Jonathan Ullman

Problem 1 (Random Subsampling).

Given a dataset $x \in \mathcal{X}^n$, and $m \in \{0, 1, ..., n\}$, a random m-subsample of x is a new (random) dataset $x' \in \mathcal{X}^m$ formed by keeping a random subset of m rows from x and throwing out the remaining n - m rows.

- (a) Show that for every $n \in \mathbb{N}$, $|\mathcal{X}| \ge 2$, $m \in \{1, ..., n\}$, $\varepsilon > 0$, and $\delta < m/n$, the algorithm A(x) that outputs a random m-subsample of $x \in \mathcal{X}^n$ is not (ε, δ) -differentially private.
- (b) Although random subsamples do not ensure differential privacy on their own, a random subsample does have the effect of "amplifying" differential privacy. Let $A: \mathcal{X}^m \to \mathcal{R}$ be any algorithm. We define the algorithm $A'(x): \mathcal{X}^n \to \mathcal{R}$ as follows: choose x' to be a random m-subsample of x, then output A(x').

Prove that if A is (ε, δ) -differentially private, then A' is $(\frac{(e^{\varepsilon}-1)m}{n}, \frac{\delta m}{n})$ -differentially private. Thus, if we have an algorithm with the relatively weak guarantee of 1-differential privacy, we can get an algorithm with ε -differential privacy by using a random subsample of a dataset that is larger by a factor of $1/(e^{\varepsilon}-1)=O(1/\varepsilon)$.

(c) (**Optional.**) We can also show that some sort of converse is true—for many tasks achieving (ε, δ) -differential privacy *requires* $\Omega(1/\varepsilon)$ more samples than achieving $(1, \delta)$ -differential privacy. Let $\mathbf{q}(x) = (q_1(x), \dots, q_k(x))$ be a collection of statistical queries.¹ Assume that there is $no(1, \delta)$ -differentially private algorithm $A : \mathcal{X}^n \to \mathbb{R}^k$, such that

$$\forall x \in \mathcal{X}^n$$
 $\mathbb{E}[\|A(x) - \mathbf{q}(x)\|_{\infty}] \le 1/100.$

Show that for some $n' = \Omega(n/\varepsilon)$, there is *no* $(\varepsilon, \varepsilon \delta/100)$ -differentially private algorithm $A: \mathcal{X}^{n'} \to \mathbb{R}^k$ such that

$$\forall x' \in \mathcal{X}^{n'}$$
 $\mathbb{E}\left[\|A(x') - \mathbf{q}(x')\|_{\infty}\right] \le 1/100.$

Solution 1.

(a) Let $\mathcal{X} = \{0,1\}$ and consider the two datasets $x = 0^n$ and $x' = 10^{n-1}$. Now define $S = \{z \in \{0,1\}^m \mid z \neq 0^m\}$. Then for every ϵ and every $\delta < m/n$

$$e^{\varepsilon} \Pr[A(x) \in S] + \delta = \delta < \frac{m}{n} = \Pr[A(x') \in S],$$

contradicting (ε, δ) -dp of M.

¹Recall that a statistical query q(x) takes a dataset $x = (x_1, x_2, ...) \in \mathcal{X}^*$ of arbitrary size, and outputs $\mathbb{E}_{x_i \sim x}[\phi(x_i)]$ for some function $\phi : \mathcal{X} \to [0, 1]$.

(b) We'll use $T \subseteq \{1, ..., n\}$ to denote the identities of the m-subsampled rows (i.e. their row number, not their actual contents). Note that T is a random variable, and that the randomness of A' includes both the randomness of the sample T and the random coins of A. Let $x \sim x'$ be adjacent databases and assume that x and x' differ only on some row t. Let x_T (or x_T') be a subsample from x (or x') containing the rows in T. Let S be an arbitrary subset of the range of A'. For convenience, define p = m/n

To show $(p(e^{\varepsilon}-1), p\delta)$ -dp, we have to bound the ratio

$$\frac{\Pr[A'(x) \in S] - p\delta}{\Pr[A'(x') \in S]} = \frac{p\Pr[A(x_T) \in S \mid i \in T] + (1 - p)\Pr[A(x_T) \in S \mid i \notin T] - p\delta}{p\Pr[A(x'_T) \in S \mid i \in T] + (1 - p)\Pr[A(x'_T) \in S \mid i \notin T]}$$

by $e^{p(e^{\varepsilon}-1)}$. For convenience, define the quantities

$$C = \Pr[A(x_T) \in S \mid i \in T]$$

$$C' = \Pr[A(x_T') \in S \mid i \in T]$$

$$D = \Pr[A(x_T) \in S \mid i \notin T] = \Pr[A(x_T') \in S \mid i \notin T]$$

We can rewrite the ratio as

$$\frac{\Pr[A'(x) \in S]}{\Pr[A'(x') \in S]} = \frac{pC + (1-p)D - p\delta}{pC' + (1-p)D}$$

Now we use the fact that, by (ε, δ) -dp, $A \le e^{\varepsilon} \min\{C', D\} + \delta$. The rest is a calculation:

So we've succeeded in bounding the necessary ratio of probabilities. Note, if you are willing to settle for $(O(\varepsilon m/n), O(\delta m/n))$ -dp the calculation is much simpler. All this algebra is mostly just to get the tight bound.

(c) Assume for the sake of contradiction that there is an (ε, δ) -dp algorithm $A': \mathcal{X}^{n'} \to \mathbb{R}^k$ such that

$$\forall x' \in \mathcal{X}^{n'} \quad \mathbb{E}\left[\|A'(x') - \mathbf{q}(x')\|_{\infty}\right] \le 1/100.$$

where $n' \approx n/\varepsilon$ will be chosen later. We will construct a $(1, e\delta/\varepsilon)$ -dp algorithm $A : \mathcal{X}^n \to \mathbb{R}^k$ that satisfies

$$\forall x \in \mathcal{X}^n$$
 $\mathbb{E}[\|A(x) - \mathbf{q}(x)\|_{\infty}] \le 1/100$,

which violates the assumption.

Let n = n'/m for $m = 1/\varepsilon$. We will simply assume that n'/m is an integer. Given a dataset $x \in \mathcal{X}^n$, we construct the dataset $x \in \mathcal{X}^{n'}$ by making m identical copies of each row of x. Now, two observations:

• If x, y are any two datasets in \mathcal{X}^n that differ on at most one row, then the resulting datasets $x_{\otimes m}, y_{\otimes m}$ are datasets in $\mathcal{X}^{n'}$ that differ on at most m rows. Therefore, if we define the algorithm $A: \mathcal{X}^m \to \mathbb{R}^k$ to be $A(x) = A'(x_{\otimes m})$, then the resulting algorithm A satisfies (ε', δ') -differential privacy for

$$\varepsilon' = m\varepsilon = 1$$
 $\delta' = me^{\varepsilon m}\delta = e\delta/\varepsilon$

by the "group privacy" property of differential privacy.

• Since statistical queries are linear, for every **q**, we have $\mathbf{q}(x) = \mathbf{q}(x_{\otimes m})$. Therefore, by assumption

$$\forall x \in \mathcal{X}^n$$
 $\mathbb{E}[\|A(x) - \mathbf{q}(x)\|_{\infty}] \le 1/100.$

However, combining these two facts contradicts our assumption that no such $(1, e\delta/\varepsilon)$ differentially private algorithm $A: \mathcal{X}^n \to \mathbb{R}^k$ exists.