08/08/2024, 19:30 Iris.ipynb - Colab

SVC*

print(iris.feature_names)

['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']

print(iris.target_names)

['setosa' 'versicolor' 'virginica']

import pandas as pd
df=pd.DataFrame(iris.data,columns=iris.feature_names)
df.head()

→ *	sepa	l length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
	0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	0.2
	3	4.6	3.1	1.5	0.2
	4	5.0	3.6	1.4	0.2

target=pd.DataFrame(iris.target,columns=['target'])
dataset=pd.concat([df,target],axis='columns')
dataset

→	sepal	length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0
1	145	6.7	3.0	5.2	2.3	2
1	146	6.3	2.5	5.0	1.9	2
1	147	6.5	3.0	5.2	2.0	2
1	148	6.2	3.4	5.4	2.3	2
1	149	5.9	3.0	5.1	1.8	2

150 rows × 5 columns

from matplotlib import pyplot as plt
%matplotlib inline

df0=dataset[dataset.target==0]
df1=dataset[dataset.target==1]
df2=dataset[dataset.target==2]
df0.head()

₹	sepal	length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0

```
plt.xlabel('sepal length (cm)')
plt.ylabel('sepal width (cm)')
plt.scatter(df0['sepal length (cm)'],df0['sepal width (cm)'],color='green',marker='+')
plt.scatter(df1['sepal length (cm)'],df1['sepal width (cm)'],color='red',marker='.')
plt.scatter(df2['sepal length (cm)'],df2['sepal width (cm)'],color='blue',marker='*')
```

<matplotlib.collections.PathCollection at 0x7eed6d8bd5d0>


```
plt.xlabel('petal length (cm)')
plt.ylabel('petal width (cm)')
plt.scatter(df0['petal length (cm)'],df0['petal width (cm)'],color='green',marker='+')
plt.scatter(df1['petal length (cm)'],df1['petal width (cm)'],color='red',marker='*')
plt.scatter(df2['petal length (cm)'],df2['petal width (cm)'],color='blue',marker='*')
```


The SVM will be able to perform better as it can draw a very nice and clear boundary between df0 and df1

```
from sklearn.model_selection import train_test_split
X=dataset.drop(['target'],axis='columns')
y=dataset.target
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=44,test_size=0.2)
```

08/08/2024, 19:30 Iris.ipynb - Colab

from sklearn.svm import SVC
model=SVC()
model.fit(X_train,y_train)

₹ SVC SVC()

model.score(X_test,y_test)

→ 0.96666666666667

Random Forest

from sklearn.ensemble import RandomForestClassifier
model_rf=RandomForestClassifier(n_estimators=10)
model_rf.fit(X_train,y_train)

RandomForestClassifier
RandomForestClassifier(n_estimators=10)

model.score(X_test,y_test)

→ 0.96666666666667

KNN

from sklearn.neighbors import KNeighborsClassifier knn=KNeighborsClassifier(n_neighbors=3) knn.fit(X_{rain},y_{train})

knn.score(X_test,y_test)

→ 0.96666666666667

from sklearn.metrics import confusion_matrix
y_pred=knn.predict(X_test)
cm=confusion_matrix(y_test,y_pred)
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sn
plt.figure(figsize=(7,5))
sn.heatmap(cm,annot=True)
plt.xlabel('Predicted')
plt.ylabel('Truth')

→ Text(58.2222222222214, 0.5, 'Truth')

from sklearn.metrics import classification_report
print(classification_report(y_test,y_pred))

→		precision	recall	f1-score	support
	0	1.00	1.00	1.00	9
	1	0.90	1.00	0.95	9
	2	1.00	0.92	0.96	12
	accuracy			0.97	30
	macro avg	0.97	0.97	0.97	30
	weighted avg	0.97	0.97	0.97	30