

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-249923

(43)公開日 平成8年(1996)9月27日

(51) Int.CI.6	識別配号	庁内整理番号	FΙ		技術表示箇所
H01B 1/	06		H01B	1/06	Α
G02F 1/	15		G 0 2 F	1/15	4
H01M 8/			H 0 1 M	8/02	M
			宋 葡查審	え 未請求 請求項の数	t5 OL (全7頁)
(21)出願番号	特願平7-47432		(71)出願人	. 000005821	
				松下電器産業株式会	社
(22)出願日	平成7年(1995)3	月7日		大阪府門真市大字門	
	·		(71)出願人		
				日本合成ゴム株式会	社
				東京都中央区築地 2	丁目11番24号
		•	(72)発明者		
		• • • • • • • • • • • • • • • • • • •		大阪府門真市大字門	真1006番地 松下電器
				産業株式会社内	to the first of the second
			(72)発明者	近藤 繁雄	
				大阪府門真市大字門	真1006番地 松下電器
		,		産業株式会社内	
			(74)代理人		(外1名)
					最終頁に続く

(54) 【発明の名称】 プロトン伝導体およびプロトン伝導体を用いた電気化学素子

(57)【要約】

【目的】 プロトン伝導性に優れ、乾燥雰囲気下でもプロトン伝導性の低下がなく、加工性に優れたプロトン伝 導体を得る。

【構成】 酸化ケイ素とプレーンステズ酸を主体とする 化合物、および熱可塑性エラストマーよりなるプロトン 伝導体。 (2)

【特許請求の範囲】

【請求項1】 酸化ケイ素とブレーンステズ酸を主体とする化合物、および熱可塑性エラストマーよりなることを特徴とするプロトン伝導体。

【請求項2】 プレーンステズ酸がリン酸あるいはその 誘導体である請求項1記載のプロトン伝導体。

【請求項3】 ブレーンステズ酸が過塩素酸あるいはその誘導体である請求項1記載のプロトン伝導体。

【請求項4】 酸化ケイ素とブレーンステズ酸を主体とする化合物が、ゾルーゲル法により合成されたものである請求項1記載のプロトン伝導体。

【請求項5】 請求項1~4のいずれかに記載のプロトン伝導体を用いた電気化学素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、プロトンを伝導イオン 種とするプロトン伝導体、およびプロトン伝導体を用い た燃料電池などの電気化学素子に関する。

[0002]

【従来の技術】固体中をイオンが移動する物質は、電池をはじめとする電気化学素子を構成する材料として精力的に研究されており、現在L 1*、A g*、C u*、H*、F など様々な伝導イオン種のイオン伝導体が見いだされている。中でもプロトン(H*)を伝導イオン種とするものは、下記に示すように燃料電池、エレクトロクロミック表示素子など様々な電気化学素子への応用が期待されている。水素を燃料とした燃料電池では、以下の式(1)の反応が生じる。この反応により生成したプロトンは、電解質中を移動し、空気極で式(2)の反応により消費される。すなわち、プロトン伝導体を電解質として用いることにより、水素を燃料とする燃料電池を構成することができることになる。

[0003]

(化1)

$$H_2 \rightarrow 2H^+ + 2e^- \tag{1}$$

$$1/2 \ 0_2 + 2H^+ \rightarrow H_20 \ (2)$$

【0004】現在では、プロトン伝導体としてイオン交換膜を用いた高分子固体電解質型燃料電池の開発が盛んに行われており、据置用電源、電気自動車用の電源など 40への応用が期待されている。酸化タングステン、酸化モリブデンなどの遷移金属酸化物は、結晶格子中のイオンサイトへのプロトンの出入りにより色の変化が生じる。例えば、酸化タングステンは、淡黄色であるが、式(3)で表される電気化学反応により、結晶格子中にプロトンが挿入されることで青色を呈する。この反応が可逆的に生じるため、遷移金属酸化物は、表示素子(エレクトロクロミック表示素子)あるいは調光ガラスの材料となるが、その際には電解質としてプロトン導電性のものを用いることが必要である。50

[0005] 【化2】

 $WO_3 + xH^+ + xe^-$

 $\rightarrow H_x wo_3$ (3

[0.006] 以上のように、プロトン伝導体を電解質として用いることで様々な電気化学素子を構成することができる。このような電気化学素子を構成するために用いられるプロトン伝導体は、室温付近で高いプロトン伝導性を示すことが必要である。このようなプロトン伝導体としては、ウラニルリン酸水和物やモリブドリン酸水和物などの無機物、あるいはフッ化ビニル系高分子にパーフルオロスルフォン酸を含む側鎖のついた高分子イオン交換膜などの有機物が知られている。

[0007]

【発明が解決しようとする課題】上記の無機プロトン伝導体は、結晶水中のプロトンが伝導に寄与しているため、高温下では結晶水が脱離し、プロトン伝導性が低下する課題があった。プロトン伝導体を応用して得られる電気化学素子として、燃料電池は、据置用、電気自動車用などの比較的大電流を発生するための電源としての用途が有望視されており、そのためには大面積の固体電解質層を構成する必要がある。また、エレクトロクロミック表示素子の利点の一つは、視野角の広さである。エレクトロクロミック表示素子は、液晶表示板のように偏光板を用いないため、広い角度から認識することができる。この特性より、エレクトロクロミック素子は、液晶表示を行う際に有効である。このような用途に使用するためにも、電解質層の大面積化は不可欠な技術となっている。

【0008】無機質の物質を薄膜状に形成する方法としては、蒸着法、キャスト法などが挙げられる。しかしながら、蒸着法による薄膜形成は、コストが高いものとなる上に大面積の薄膜を得ることが困難である。キャスト法は、プロトン伝導体を含むゾルを基板上にキャストし、ゲル化することで大面積のプロトン伝導性薄膜を得る方法である。しかし、このような方法で得られる薄膜には、溶媒が蒸発する際に形成される細孔が存在する。その結果、例えばプロトン伝導体を燃料電池へ応用する際には、燃料電池の活物質が水素ならびに酸素の気体であるため、これらの気体がプロトン伝導体ゲルの細孔を通過してしまい、発電効率が低下する問題がある。

【0009】このような課題を解決し、大面積の電解質層を作製する一つの方法として、固体電解質粉末に熱可塑性樹脂を加えて複合化する方法が提案されている。しかしながら、先に述べた結晶水によりプロトン伝導が生じる化合物を熱可塑性樹脂と複合化した場合には、結晶水間でのプロトンのホッピング運動が熱可塑性樹脂により阻害されるため、プロトン伝導性が低下する課題があ50.った。イオン交換膜は、比較的容易に加工性に優れた大

BEST AVAILABLE COPY

特開平8-249923

面積の膜が得られる利点があるが、現在のところ高価なものであり、さらに低コストのプロトン伝導体の開発が望まれていた。また、イオン交換樹脂は、含水量が高い状態(数十%)でのみ高いイオン導電性を示すため、乾燥するとプロトン伝導性が低下するという課題も有していた。本発明は、以上の課題を解決し、プロトン伝導性に優れ、乾燥雰囲気下でもプロトン伝導性の低下のないプロトン伝導体を提供することを目的とするものである。また、本発明は、そのようなプロトン伝導体を用いた電気化学素子を提供する。

[0010]

【課題を解決するための手段】本発明のプロトン伝導体は、酸化ケイ素とプレーンステズ酸を主体とする化合物、および熱可塑性エラストマーよりなるものである。さらに、プレーンステズ酸としては、リン酸あるいはその誘導体を用いる。また、ブレーンステズ酸として、過塩素酸あるいはその誘導体を用いる。また、酸化ケイ素とプレーンステズ酸を主体とする化合物として、ソルーゲル法により合成されたものを用いる。本発明の電気化学素子は、上記のプロトン伝導体を用いる。

[0011]

【作用】酸化ケイ素は、その表面末端基として一〇日基をもち、この一〇日基のプロトンがイオン伝導に寄与する。この酸化ケイ素に、さらにブレーンステズ酸を加えることにより、プレーンステズ酸が酸化ケイ素へのプロトンのドナーとして作用する。その結果、可助イオンの濃度が高いものとなり、高いプロトン伝導性を示す。さらに、このようなプロトン伝導体表面に熱可塑性エラストマーを介在させることにより、一〇日基と熱可塑性エラストマーとの間に相互作用が生じ、その界面に良プロ30トン伝導層が形成される。この結果、高いイオン伝導性を保ったまま、可撓性を有し加工性に富むプロトン伝導体を得ることができる。

【0012】これまでに知られている酸化ケイ素を用い たプロトン伝導体としては、硫酸を表面に担持したシリ カゲルが挙げられる。一方、本発明により得られるプロ トン伝導体においては、ブレーンステズ酸の濃度により -OH基による赤外線吸収スペクトルの位置に変化がみ られる。このことより、本発明によるプロトン伝導体 は、単に酸を表面に担持しただけのものではなく、酸化 40 ケイ素とプレーンステズ酸が化合物を形成したものであ ることがわかる。また、結晶水によりプロトン伝導が生 じる物質を用いた場合には、乾燥雰囲気下では結晶水を 失うことにより、プロトン伝導性が低下する。それに対 して、本発明によるプロトン伝導体においては、プロト ン伝導は酸化ケイ素表面に結合した一〇H基を中心に起 こっている。このように化学結合した-OH基は、乾燥 雰囲気下でも脱離しにくいため、プロトン伝導性の低下 はほとんど生じない。

【0013】また、リン酸あるいはその誘導体は、3価

のブレーンステズ酸であり、この酸を用いてプロトン伝 導体を合成した場合には、プロトン濃度が高いものとな り、高いイオン伝導性を示すプロトン伝導体が得られ る。このことから、ブレーンステズ酸としては、リン酸 あるいはその誘導体が特に好ましく用いられる。また、 過塩素酸は、プロトンドナーとしての作用が強いため、 酸化ケイ素に対するドーパントとしてこのブレーンステ ズ酸を用いた場合、合成されたプロトン伝導体のプロト ン伝導性が高いものとなる。このことより、プレーンス テズ酸としては過塩素酸が特に好ましく用いられる。

【0014】酸化ケイ素に結合した-OH基のほとんどは、酸化ケイ素表面に存在する。ソルーゲル法により合成された酸化ケイ素とブレーンステズ酸とを主体とする化合物は、高表面積のものとなり、-OH基の密度が高いものとなり、その結果、プロトン伝導体の合成法としては、ソルーゲル法が好ましく用いられる。また、このようにして得られたプロトン伝導体は、比較的容易に大面積の薄膜状に形成することができるため、電気化学素子用の電解質として好ましく用いられる。

[0015]

【実施例】以下、本発明について実施例を用いて詳細に 説明する。

[実施例1] 本実施例においては、酸化ケイ素とブレー ンステズ酸を主体とする化合物としてリン酸をドープし たシリカゲルを、また熱可塑性エラストマーとしてスチ レンープタジエンースチレン共重合体の水添物スチレン -エチレン-プテン-スチレン共重合体(以下、SEBSで 表す)をそれぞれ用いて、プロトン伝導体を作製した実 施例について説明する。まず、リン酸をドープしたシリ カゲルを以下の方法により合成した。シリカゲルを合成 するための出発物質としては、テトラエトキシシラン (以下、TEOSで表す)を用い、エタノール中で希釈し た。この時、TEOSとエタノールの混合比はモル比で1: 4となるようにした。この溶液に、さらにTEOSに対して モル比で8の純水、TEOSに対してHC1がモル比で0. 01となる量の3. 6wt%塩酸水溶液、およびTEOSに 対してモル比で
0.01のテトラエチルアンモニウムテ トラフルオロボレートを加え、5分間攪拌した。その 後、85wt%リン酸水溶液をTEOS:H:PO:=1: 0. 5となるよう加え、密閉容器中で3時間攪拌した。 次いで、5時間放置してゲル化した後、60℃で2時間 滅圧乾燥した。こうしてリン酸をドープしたシリカゲル を得た。以上のようにして得たリン酸をドープしたシリ カゲルを粉砕し、SEBSを溶解したトルエン中で攪拌し た。ただし、シリカゲルとSEBSの比が重量比で20:1 となるようにした。最後に、攪拌しつつトルエンを揮発 させ、プロトン伝導体を得た。

【0016】このようにして得たプロトン伝導体のイオン導電率を以下の方法で測定した。プロトン伝導体20

0mgを直径10mmの円盤状ペレットに加圧成形し、その両面に金箔を圧接して電気伝導度測定用の電極を形成した。このようにして構成した電気化学セルを用い、交流インピーダンス法により、室温においてこのプロトン伝導体の電気伝導度を測定した。その結果、イオン導電率は2.9×10°S/cmの値を示した。また、このプロトン伝導体を、乾燥剤として五酸化二リンを入れたデシケーター中に7日間保存し、その後電気伝導度を測定したところ、伝導度の低下はほとんど観測されなかった。以上のように本発明によると、高いイオン導電性 10を示し、乾燥努囲気下でもイオン伝導度の低下のないプロトン伝導体が得られることがわかった。

[0017] [実施例2] 本実施例においては、ブレー ンステズ酸として、実施例1で用いたリン酸に代えて過 塩素酸を用いてプロトン伝導体を合成した例について説 明する。実施例1と同様に、TEOSをエタノールで希釈し たものに純水、塩酸を加え、さらに過塩素酸を加えた。 この時、TEOSとエタノール、純水、塩酸の量は、モル比 で1:8:4:0.05となるようにした。この溶液 に、生成すると考えられる過塩素酸をドープしたシリカ ゲルの重量に対し20%の重量となるように過塩素酸を 加え、室温で3時間攪拌の後、5時間放置してゲル化 し、最後に60℃で2時間減圧乾燥して、過塩素酸をド ープしたシリカゲルを得た。このようにして得た過塩素 酸をドープしたシリカゲルに、SEBSとシリカゲルの重量 比が1:50となるようにSEBSのトルエン溶液を加え、 機枠しつつトルエンを揮発させ、プロトン伝導体を得 た。このようにして得たプロトン伝導体のイオン導電率 を実施例1と同様の方法で測定した。その結果、イオン 導電率は3. 2×10-2S/cmの値を示した。また、 乾燥雰囲気下で保存した場合も導電率の低下は観測され なかった。以上のように本発明によると、高いイオン導 電性を示し、乾燥努囲気下でもイオン伝導度の低下のな いプロトン伝導体が得られることがわかった。

【0018】 [実施例3] 本実施例においては、ブレー ンステズ酸として、実施例1で用いたリン酸に代えてリ ン酸誘導体の一つであるリンタングステン酸(H3PW 12 O40・2 9 H2 O) を用いてプロトン伝導体を合成した 例について説明する。リンタングステン酸をドープした シリカゲルは、過塩素酸に代えてリンタングステン酸を 用いた以外は実施例2と同様の方法で合成した。ただ し、TEOSとエタノール、純水、塩酸の混合溶液にリンタ ングステン酸を加える際には、生成すると考えられるリ ンモリブデン酸をドープしたシリカゲルの重量に対し、 リンタングステン酸の重量が45%なるように加えた。 このようにして得たリンタングステン酸をドープしたシ リカゲルに、SEBSとシリカゲルの重量比が1:70とな るようにSEBSのトルエン溶液を加え、攪拌しつつトルエ ンを揮発させ、プロトン伝導体を得た。このようにして 得たプロトン伝導体のイオン導電率を実施例1と同様の 50

方法で測定した。その結果、イオン導電率は2. 1×10-3S/cmの値を示した。このように、本発明によると、高いイオン導電性を示すプロトン伝導体が得られることがわかった。

【0.019】 [実施例4] 本実施例においては、ブレーンステズ酸として、実施例1で用いたリン酸に代えてリン酸誘導体の一つであるリンモリブデン酸(HsPMo12O40・29H2O)を用いた以外は、実施例3と同様の方法でプロトン伝導体を合成した。合成したプロトン伝導体のイオン導電率を実施例1と同様の方法で測定した結果、イオン導電率は1.8×10⁻³ S/cmの値を示した。このように、本発明によると、高いイオン導電性を示すプロトン伝導体が得られることがわかった。

【0020】 [実施例5] 本実施例においては、酸化ケイ素を生成する原材料として、実施例1で用いたTEOSに代えてシリコンイソプロポキシドを用いた以外は、実施例3と同様の方法でプロトン伝導体を合成した。得られたプロトン伝導体のイオン導電率を実施例1と同様の方法で測定した結果、イオン導電率は1.5×10-3S/cmの値を示した。また、乾燥雰囲気下で保存した場合も導電率の低下は観測されなかった。以上のように本発明によると、高いイオン導電性を示し、乾燥雰囲気下でもイオン伝導度の低下のないプロトン伝導体が得られることがわかった。

【0021】 [実施例6] 本実施例においては、熱可塑性エラストマーであるSEBSの量を変化させた以外は実施例1と同様の方法でプロトン伝導体を得た。リン酸をドープしたシリカゲルは実施例1と同様の方法で合成した。このシリカゲルにSEBSとシリカゲルの重量比が1:50となるようにSEBSのトルエン溶液を加え、攪拌しつつトルエンを揮発させ、プロトン伝導体を得た。このようにして得たプロトン伝導体のイオン導電率を実施例1と同様の方法で測定した。その結果、イオン導電率は4.7×10-3S/cmの値を示した。また、乾燥雰囲気下で保存した場合も導電率の低下は観測されなかった。以上のように本発明によると、高いイオン導電性を示し、乾燥雰囲気下でもイオン伝導度の低下のないプロトン伝導体が得られることがわかった。

【0022】 [実施例7] 本実施例においては、熱可塑性エラストマーとして、実施例1で用いたSEBSに代えて水添スチレンーブタジエン共重合体(日本合成ゴム株式会社製、DYNARON 0900P)を用いた以外は実施例1と同様の方法でプロトン伝導体を得た。このようにして得たプロトン伝導体のイオン導電率を実施例1と同様の方法で測定した結果、イオン導電率は3.2×10-3S/cmの値を示した。また、乾燥雰囲気下で保存した場合も導電率の低下は観測されなかった。以上のように本発明によると、高いイオン導電性を示し、乾燥雰囲気下でもイオン伝導度の低下のないプロトン伝導体が得られることがわかった。

8

得たプロトン伝導体を用い、図3で示した断面をもつ酸 水素燃料電池を構成した例について説明する。まず、実 施例1で得たリン酸をドープしたシリカゲルにSEBSのト ルエン溶液を加えたものをスラリー状となるまで混練 し、ポリ4フッ化エチレン板上にドクタープレード法に より50μmの厚さに塗布した。さらに、減圧下でトル エンを揮発させた後、ポリ4フッ化エチレン板上より剥 がし、燃料電池用の電解質層を得た。ガス拡散電極とし ては、ガス拡散電極 (B-Tech社製、白金担持量 0.35 10 mg/cm²) を用いた。このガス拡散電極に上記の電 解質層を形成したものと同じシリカゲルを分散させたSE BSのトルエン溶液を噴霧し、減圧下で乾燥させ電極とし た。この電極20、21で上記の電解質層22をはさ み、150℃の温度でホットプレスすることで燃料電池

素子を構成した。

【0027】このようにして得た燃料電池素子を図3で 示したように、H2ガス導入孔23、燃料室24、H2ガ ス排出孔25をもつステンレス鋼製プロック29と、〇 2ガス導入孔26、酸素室27、O2ガス排出孔28をも つステンレス鋼製プロック30とで挟み、全体を電気絶 緑性の繊維強化プラスチック製の締め付けロッド31、 32で締め、試験用の燃料電池とした。なお図3中、3 3 はH₂ Oのドレイン、3 4 は負極端子、3 5 は正極端 子である。電池試験には、燃料極には3気圧に加圧した 水素を、また空気極には5気圧に加圧した空気をそれぞ れ通じ、出力電流と電池電圧の関係を調べた。その結果 得られた電圧-電流曲線を図4に示す。400mA/c m² の電流を流した際も電池電圧は 0. 7 V の以上の電 圧を維持しており、本実施例により得られた燃料電池が 優れた高出力特性を示すことがわかった。以上のよう に、本発明によるプロトン伝導体を用いることで、優れ た特性の燃料電池が得られることがわかった。

【0028】なお、上記の実施例においては、熱可塑性 エラストマーとしてスチレン-エチレン-プテン-スチ レン共重合体、水添スチレンープタジエン共重合体、ス チレンーブタジエンプロック共重合体を用いた例につい てのみ説明したが、他の熱可塑性エラストマーを用いた。 場合も同様の効果が得られることはいうまでもなく、本 発明は熱可塑性エラストマーとしてこれら実施例に挙げ た熱可塑性エラストマーに限定されるものではない。ま た、実施例においては、ブレーンステズ酸としてリン 酸、過塩素酸などを用いたものについてのみ説明した が、その他ホウ酸、ケイ酸あるいはこれらのプレーンス テズ酸を複数種用いた場合も同様の効果が得られること もいうまでもなく、本発明はプレーンステズ酸としてこ れら実施例に挙げたプレーンステズ酸にのみ限定される ものではない。また、実施例においては、プロトン伝導 体を用いた電気化学素子として、エレクトロクロミック 表示素子、燃料電池について説明したが、その他pHセ

【0023】 [実施例8] 本実施例においては、熱可塑 性エラストマーとして、実施例1で用いたSEBSに代えて スチレンープタジエンプロック共重合体(日本合成ゴム 株式会社製、TR2000)を用いた以外は実施例1と 同様の方法でプロトン伝導体を得た。このようにして得 たプロトン伝導体のイオン導電率を実施例1と同様の方 法で測定した結果、イオン導電率は2.5×10-3S/ c mの値を示した。また、乾燥雰囲気下で保存した場合 も導電率の低下は観測されなかった。以上のように本発 明によると、高いイオン導電性を示し、乾燥雰囲気下で もイオン伝導度の低下のないプロトン伝導体が得られる ことがわかった。

【0024】 [実施例9] 本実施例では、実施例1で得 たプロトン伝導体を用い、エレクトロクロミック表示素 子を構成した例について説明する。エレクトロクロミッ ク表示素子の表示極4には酸化タングステン(WO₃) 薄膜を用いた。図1に示すように、透明電極としてIT O層2をスパッタ蒸着法により表面に形成したガラス基 板1上に、酸化タングステン薄膜3を電子ピーム蒸着法 により形成した。また、対極8には以下の方法で得たプ ロトンをドープした酸化タングステン (H. WOs) 薄膜 を用いた。まず、上記の表示極と同様にITO電極6を 形成したガラス基板5上に酸化タングステン薄膜7を形 成した。このガラス基板を塩化白金酸 (H2PtCl6) 水溶液中に浸漬し、水素気流中で乾燥させることによ り、酸化タングステンをタングステンプロンズ (H.W O₃)とした。エレクトロクロミック表示素子の質解質 層9は以下の方法で形成した。まず、実施例1で得たり ン酸をドープしたシリカゲルにSEBSのトルエン溶液を加 えた。さらに、この電解質層は、エレクトロクロミック 30 表示素子の反射板も兼ねるので、白色に着色させるため に、アルミナ粉末をシリカゲルに対して重量比で10% の割合で加えた。この混合物をスラリー状となるまで混 練し、ドクタープレード法により、先に得た表示極の表 面に50μmの厚さに塗布し電解質層とした。

【0025】このようにして得た電解質層9を表面に形 成した表示極4に、先に得た対極8を電解質層を覆うよ うにかぶせ、さらに減圧下でトルエンを揮発させた。そ の断面図を図2に示す。さらに、端面を紫外線硬化樹脂 10で接着封止し、エレクトロクロミック表示素子を得 40 た。11および12はそれぞれ表示極および対極のリー ド端子である。このようにして得たエレクトロクロミッ ク表示索子に、対極に対して表示極に-1 Vの電圧を2 秒印加して表示極を着色し、その後+1 Vの電圧を2秒 間印加して消色する作動サイクル試験を行った。その結 果、10000サイクル経過後も性能の低下がなく発色 ・消色を行うことができた。以上のように本発明による プロトン伝導体を用いることにより、エレクトロクロミ ック表示素子が得られることがわかった。

【0026】[実施例10]本実施例では、実施例1で 50 ンサーなどの実施例では説明しなかった電気化学素子を

構成することができることもいうまでもなく、本発明は 電気化学素子としてこれら実施例に挙げたものに限定さ れるものではない。

[0029]

【発明の効果】以上のように本発明によれば、プロトン 伝導性に優れ、かつ乾燥雰囲気下でのプロトン伝導性の 低下のないプロトン伝導体が得られる。また、このプロ トン伝導体を用いることで、優れた特性の電気化学素子 を得ることができる。

【図面の簡単な説明】

【図1】本発明の一実施例におけるエレクトロクロミッ ク表示素子の電極を示す縦断面図である。

【図2】同実施例におけるエレクトロクロミック表示素 子の縦断面図である。

【図3】本発明の一実施例における酸水素燃料電池の縦 断面図である。

【図4】同酸水素燃料電池の特性を示した電流-電圧曲 線である。

【符号の説明】

- 1, 5 ガラス基板
- 2,6 透明電極層(ITO層)

酸化タングステン薄膜

表示極

対極·

電解質層

封止樹脂 1.0

2 1 酸素極

2.2

10 23 H2ガス導入孔

> 2.4 燃料室

H2ガス排出孔

26 O2ガス導入孔

27 酸素室

O2ガス排出孔

プロック 29、

31, 32 締め付けロッド

3 3 ドレイン

3 4 負極端子

3 5 正極端子

[図1]

[図3]

[図2]

[図4]

電流密度(mA/cm²)

BEST AVAILABLE COPY

フロントページの続き

(72)発明者 南 努

大阪府狭山市大野台2丁目7番1号

(72)発明者 辰巳砂 昌弘

大阪府堺市丈六445番31

(72)発明者 竹内 安正

東京都中央区築地2丁目11番24号 日本合

成ゴム株式会社内