NCERT 12.10.5.9 1

Find the position vector of a point R which divides the line joining two points P and Q whose Position Vectors are $2\vec{a} + \vec{b}$ and $\vec{a} - 3\vec{b}$ externally in the ration 1: 2. Also, Show that P is the mid point of the line segment RQ

Construction steps:

1. Let us, Consider Point vectors and the ratio is

Symbol	value	Description
Ӧ́Р	$2\vec{a} + \vec{b}$	point vector P
\vec{OQ}	$\vec{a} - 3\vec{b}$	point vector Q

$$m: n=2:1 \tag{1}$$

For finding the position vector R,

$$\vec{OR} = \frac{2(2\vec{a} + \vec{b}) - 1(\vec{a} - 3\vec{b})}{2 - 1} \tag{2}$$

$$\vec{OR} = \frac{4\vec{a} + 2\vec{b} - \vec{a} + 3\vec{b}}{1}$$

$$\vec{OR} = 3\vec{a} + 5\vec{b}$$
(3)

$$\vec{OR} = 3\vec{a} + 5\vec{b} \tag{4}$$

2. Now The point vectors P,Q and R are For showing P is the midpoint of

symbol	Value	Description
\vec{OP}	$2\vec{a} + \vec{b}$	point vector P
\vec{OQ}	$\vec{a} - 3\vec{b}$	point vector Q
\vec{OR}	$3\vec{a} + 5\vec{b}$	point vector R

the line segment RQ

$$\vec{OP} = \frac{\vec{OR} + \vec{OQ}}{2} \tag{5}$$

$$\vec{OP} = \frac{\vec{OR} + \vec{OQ}}{2}$$

$$\vec{OP} = \frac{3\vec{a} + 5\vec{b} + \vec{a} - 3\vec{b}}{2}$$

$$\vec{OP} = \frac{\vec{OP} + \vec{OP} + \vec{A} + \vec{A}}{2}$$

$$\vec{OP} = \vec{OP} + \vec{OP} + \vec{OP} + \vec{OP}$$

$$\vec{OP} = \vec{OP} + \vec{OP} + \vec{OP} + \vec{OP}$$

$$\vec{OP} = \vec{OP} + \vec{OP} + \vec{OP} + \vec{OP}$$

$$\vec{OP} = \vec{OP} + \vec{OP} +$$

$$\vec{OP} = 2\vec{a} + \vec{b} \tag{7}$$

So, it is proved that P is the midpoint of RQ.

3. The Plot showing the Vector representation of the point vectors P,Q and R is

Figure 1: point vectors P,Q,R