Отчет о выполнении лабораторной работы 3.5.1 Изучение плазмы газового разряда в неоне.

Фитэль Алёна, Попеску Полина группа Б06-103

15 сентября 2024 г.

Аннотация. В ходе работы снята вольт-амперная характеристика тлеющего разряда и зондовые характеристики при разных токах разряда. По результатам измерений рассчитаны концентрация и температура электронов в плазме, плазменная частота, поляризационная длина, дебаевский радиус экранирования и степень ионизации.

Теоретическое введение

Плазма. В ионизированном газе поле ионов «экранируется» электронами. Для поля ${\bf E}$ и плотности ρ электрического заряда

div
$$\mathbf{E} = 4\pi \rho$$
.

а с учётом сферической симметрии и $\mathbf{E} = -\mathrm{grad} \ \varphi$:

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi\rho. \tag{1}$$

Плотности заряда электронов и ионов (которые мы считаем бесконечно тяжёлыми и поэтому неподвижными)

$$\rho_e = -ne \cdot \exp\left(\frac{e\varphi}{kT_e}\right),$$

$$\rho_i = ne.$$
(2)

Тогда из (1) в предположении $\frac{e\varphi}{kT_e}\ll 1$ получим

$$\varphi = \frac{Ze}{r}e^{-r/r_D},\tag{3}$$

где $r_D = \sqrt{\frac{kT_e}{4\pi n e^2}}$ – радиус Дебая. Среднее число ионов в сфере такого радиуса

$$N_D = n \frac{4}{3} \pi r_D^2. (4)$$

Теперь выделим параллелепипед с плотностью n электронов (рис. 1), сместим их на x. Возникнут поверхностные заряды $\sigma=nex$, поле от которых будет придавать электронам ускорение:

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{4\pi ne^2}{m}x.$$

Отсюда получаем плазменную (ленгмюровскую) частоту колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi ne^2}{m}}. (5)$$

Одиночный зонд. При внесении в плазму уединённого проводника – зонда – с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS, \quad I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
 (6)

где $\langle v_e \rangle$ и $\langle v_i \rangle$ — средние скорости электронов и ионов, S — площадь зонда, n — плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновестного напряжения $-U_f$ — плавающего потенциала.

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока $I_{\rm eh}$ – электронный ток насыщения, а минимальное $I_{\rm ih}$ – ионный ток насыщения. Значение из эмпирической формулы Бомона:

Рис. 2: Вольт-амперная характеристика одиночного зонда

$$I_{iH} = 0.4 neS \sqrt{\frac{2kT_e}{m_i}}. (7)$$

Двойной зонд. Двойной зонд – система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U=U_2-U_1=\Delta U_2-\Delta U_1$. Через первый электрод

$$I_1 = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS \langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right).$$
(8)

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{9}$$

Из (7) и (8) с учётом последовательного соединение зондов ($I_1 = -I_2 = I$):

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{iii}} \right)$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{i\text{H}}} \right)$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, \quad I = I_{iH} \tanh \frac{eU}{2kT_e}.$$
 (10)

Реальная зависимость выглядит несколько иначе и описывается формулой

Рис. 3: Вольт-амперная характеристика двойного зонда

$$I = I_{iH} \tanh \frac{eU}{2kT_e} + AU. \tag{11}$$

Из этой формулы можно найти формулу для T_e : для U=0 мы найдём $I_{i\mathrm{H}}$, продифференцируем в точке U=0 и с учётом $\tan \alpha \approx \alpha$ при малых α и $A\to 0$ получим:

$$kT_e = \frac{1}{2} \frac{eI_{i\text{H}}}{\frac{dI}{dU}|_{U=0}}.$$
(12)

Экспериментальная установка

Схема установки для исследования плазмы газового разряда в неоне представлена на рис. 1. Стеклянная газоразрядная трубка имеет холодный (ненагреваемый) полый катод, три анода и геттерный узел - стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (геттер). Трубка наполнена изотопом неона 22 Ne при давлении 2 мм рт. ст. Катод и один из анодов (I или II) с помощью переключателя Π_1 под-ключаются через балластный резистор $R_{\sigma}(\sim 450 \, \mathrm{kOm})$ к регулируемому высоковольтному источнику питания (ВИП) с выходным напряжением до 5 кВ.

Рис. 4: Схема установки для исследования газового разряда

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке цифровым вольтметром V_1 (мультиметром GDM), подключённым к трубке через высокомный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находится двойной зонд, используемый для диагностики плазмы положительного столба.

Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяется с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром $V_2(\text{GDM})$. Для измерения зондового тока используется мультиметр $A_2(\text{GDM})$. Анод-III в нашей работе не используется.

Результаты измерений и обработка данных

Для начала, плавно увеличивая напряжение на ВИП определим напряжение зажигания разряда $U_{\text{заж}}=31.68\mathrm{B}.$

Теперь снимем зависимость напряжения разряда U_p от его тока I_p как при его увеличении, так и при убывании (табл. 1).

I_p , дел	1.5	2.0	2.5	3	3.5	4	4.5
$U_p \downarrow$, B	31.69	30.44	28.38	27.65	27.25	27.15	27.18
$U_p \uparrow$, B	31.58	29.37	28.11	27.56	27.23	27.16	27.18

Таблица 1: Вольт-амперная характеристика разряда

Изобразим полученные данные на графике (рис. 5)

4) $GPS: U_2 = 25, GDM: U = 24.98$

Проведем серию измерений для вольт-амперной характеристики двойного зонда при различных разрядных токах (табл. 2).

$I_p=5~\mathrm{mA}$												
U_3 , B	25.081	22.006	18.079	16.009	13.019	10.014	8.060	6.030	4.007	1.997	0.052	
I_3 , MKA	120.20	117.17	114.15	110.51	105.10	96.53	88.30	77.24	60.83	46.01	27.36	
$-U_3$, B	25.064	22.002	19.010	16.040	13.043	10.071	8.053	6.022	4.006	1.986	0.014	
$-I_3$, MKA	104.11	100.86	97.73	94.01	88.11	78.39	68.45	55.01	38.19	19.26	0.73	
$I_p=4~\mathrm{mA}$												
U_3 , B	25.068	22.105	19.010	16.094	13.028	10.224	8.028	6.112	4.060	1.996	0.028	
I_3 , MKA	92.48	89.86	87.25	84.08	80.25	75.37	68.72	60.50	48.76	33.92	17.46	
$-U_3$, B	25.069	22.064	19.102	16.119	13.025	10.193	8.018	6.162	4.121	2.019	0.030	
$-I_3$, мкА	75.98	73.44	71.02	68.31	64.33	57.87	49.80	40.17	26.55	9.84	-7.43	
$I_p=3~\mathrm{mA}$												
U_3 , B	25.065	21.977	19.012	16.002	19.150	10.024	8.092	6.065	4.097	1.997	0.019	
I_3 , MKA	69.52	67.35	65.31	63.17	60.74	56.61	52.44	46.02	37.43	25.67	12.47	
$-U_3$, B	25.068	22.035	19.009	16.129	13.040	10.050	8.086	6.026	4.006	2.154	0.018	
$-I_3$, мкА	53.36	51.52	49.74	48.00	45.55	40.83	35.54	27.52	17.21	5.81	-8.84	
				Ì	$T_p = 2 \text{ MA}$	1						
U_3 , B	25.069	22.129	19.174	16.212	13.041	10.030	8.006	6.084	4.084	2.051	0.018	
I_3 , MKA	46.43	44.91	43.39	41.83	40.09	37.57	34.81	30.94	25.28	17.72	8.54	
$-U_3$, B	25.069	22.046	18.983	16.006	13.058	10.028	8.065	5.990	4.143	2.037	0.020	
$-I_3$, мкА	33.01	31.87	30.76	29.68	28.33	25.48	22.19	17.03	10.82	2.03	-7.33	
$I_p=1\mathrm{mA}$												
U_3 , B	25.069	22.135	19.076	16.085	12.995	10.018	8.051	6.020	4.186	2.040	0.017	
I_3 , MKA	24.85	23.94	23.00	22.08	21.04	19.57	18.04	15.81	13.12	9.10	4.59	
$-U_3$, B	25.069	22.076	19.010	16.041	13.005	10.032	8.072	6.039	4.091	2.065	0.012	
$-I_3$, мкА	15.91	15.47	15.01	14.54	13.90	12.40	10.59	7.90	4.55	0.36	-4.33	

Таблица 2: Зондовые характеристики при разных токах

Теперь отобразим данные на графиках и определим $I_{i \text{H}}$ и производную в нуле.

Рис. 5: ВАХ двойного зонда при $I_p=1$ мА

Также изобразим все ВАХ на одном графике (рис. 7)

Рис. 6: ВАХ двойного зонда при различных токах

Теперь из (12) можем вычислить температуру электронов T_e .

Также из (7) расчитаем концентрацию ионов n_i , полагая ее равной концентрации электронов n_e .

Из (5) получим плазменную частоту колебаний электронов ω_p

Рис. 7: График завиисимости $T_e(I_p)$

Рис. 8: График завиисимости $n_e(I_p)$

Расчитаем электронную поляризационную длину r_{D_e} , радиус Дебая r_D и по формуле (4) вычислим среднее число ионов в сфере такого радиуса $< N_D >$. Степень ионизации α получим по соотношению $\alpha = n_i/n$, где n – общее число частиц в единице объема (давление $P = nkT_i \approx 1$ мбар). Все результаты занесем в таблицу 3.

I_p , мА	$I_{\scriptscriptstyle \mathrm{H}}$, мА	$\frac{dI}{dU} _{U=0}, \frac{\text{MA}}{\text{B}}$	$T_e, 10^4, \mathrm{K}$	$n_e, 10^{15} \text{M}^{-3}$	$\omega_p, 10^3 \frac{\text{рад}}{\text{сек}}$	r_D e, 10^{-4} cm	$< N_D > ,10^4$ частиц	$\alpha, 10^{-10}$
5	95±4	$1,01\pm0,5$	54 ± 3	22,4	8,9	$7,6 \pm 0,1$	41 ±1	8,37±0,6
4	69 ± 3	$0,93\pm0,4$	43 ±3	18,3	8,0	$8,3 \pm 0,1$	45 ±2	$6,81\pm0,5$
3	52±3	$0,70\pm0,4$	43 ±3	13,8	6,9	$9,6 \pm 0,1$	52 ±2	$5,12\pm0,05$
2	33±2	$0,52 \pm 0,2$	36±2	9,5	5,7	$11,7 \pm 0,1$	62 ±2	$3,52\pm0,04$
1	17±2	$0,31\pm0,2$	32 ±2	5,24	4,3	$15,6 \pm 0,1$	84 ±3	$1,95 \pm 0,04$

Таблица 3: Вычисленные характеристики

Подведение итогов

В ходе работы снята вольт-амперная характеристика тлеющего разряда и зондовые характеристики при разных токах разряда. По результатам измерений рассчитаны концентрация и температура электронов в плазме, плазменная частота, поляризационная длина, дебаевский радиус экранирования и степень ионизации.

По полученным значениям характеристик можно заключить, что плазма не является квазинейтральной, т.к. электронная поляризационная длина не сильно превосходит дебаевский радиус.