Алгоритмы компьютерной алгебры

Конспект лекций

2019

Содержание

1	Лек	ция 1.	3
	1.1	Основные факты из теории многочленов	3
	1.2	Многочлены с рациональными коэффициентами	4
		1.2.1 Алгоритм Кронекера	4
		1.2.2 Алгоритм Евклида	E.

1. Лекция 1.

Предмет изучения компьютерной алгебры - точные вычисления. Рассматриваются именно алгоритмы точного, а не приближенного вычисления, как в вычислительной математике. Эти алгоритмы лежат в основе математических пакетов МАТLAB, Mathematica. Основной объект исследований - числовые системы с точными вычислениями.

1.1. Основные факты из теории многочленов

Определение 1. *Числовым полем* называется множество $F \subset \mathbb{C}$, если:

- 1. $0, 1 \in F$,
- 2. $|F| \ge 2$,
- 3. $\forall a, b \in F : a \pm b, \ ab \in F; \ b \neq 0, \frac{a}{b} \in F.$

Пример 1. Числовые поля - \mathbb{C} , \mathbb{R} , \mathbb{Q} , $\{a+b\sqrt{2}, a,b\in\mathbb{Q}\}$

Множество многочленов над полем рациональных чисел обозначается как $\mathbb{Q}[x]$, над целыми — $\mathbb{Z}[x]$, над произвольным числовым полем F - F[x].

Определение 2. Многочлен $f(x) \in F[x]$, отличный от константы, называют **приводимым** над полем F, если он допускает представление вида $f(x) = \varphi(x)\psi(x)$, где $\varphi(x), \psi(x) \in F[x]$ и $\deg \varphi, \deg \psi < \deg f$, и **неприводимым**, если он не допускает такого разложения (то есть один из многочленов φ, ψ является константой).

1. $\deg f = 1$. Пусть f допускает разложение: $f(x) = \varphi(x)\psi(x)$.

$$\deg_{=0} \varphi, \deg_{=0} \psi < \deg_{f} \Rightarrow \deg_{f} = 0.$$

Полученное противоречие доказывает неприводимость любого многочлена первой степени.

2. Пусть $\deg f > 1$ и $f(\alpha) = 0, \alpha \in F$.

$$(x - \alpha) \mid f(x) \Rightarrow \exists g(x) : f(x) = (x - \alpha)g(x).$$

$$\deg(x - \alpha) = 1 < \deg f.$$

$$\deg g = \deg f - 1 < \deg f.$$

Если многочлен f имеет корень в поле F, то f приводим над полем F.

Обратное утверждение. Если многочлен $f \in F[x]$ степени 2 или 3 приводим над полем F, то он имеет в этом поле корень.

Доказательство. Допустим, многочлен приводим, следовательно, $f(x) = \varphi(x)\psi(x)$.

$$\deg \varphi, \deg \psi < \deg f \Rightarrow \deg \varphi = 1$$
 или $\deg \psi = 1$.

Допустим,
$$\varphi(x) = ax + b, a \neq 0 \Rightarrow \alpha = -\frac{b}{a}, \alpha \in F.$$

Пример 2.

- 1. $f(x) = x^2 1 = (x 1)(x + 1)$. Многочлен приводим над полями $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- 2. $f(x) = x^2 2 \in \mathbb{Q}[x]$. У него нет рациональных корней, следовательно, он неприводим над \mathbb{Q} . Но $f(x) = (x \sqrt{2})(x + \sqrt{2}) \Rightarrow f(x)$ приводим над \mathbb{R} .
- 3. $f(x) = x^2 + 1$ неприводим над \mathbb{Q} и \mathbb{R} . Но $f(x) = (x i)(x + i) \Rightarrow f(x)$ приводим над \mathbb{C} .

Многочлены второй и третьей степени приводимы над полем F тогда и только тогда, когда имеют в этом корень. Для многочленов степени, больше чем 3, данное утверждение не является справедливым.

Пример 3. $f(x) = (x^2 + 1)^2 \in \mathbb{R}[x]$ не имеет действительных корней, но приводим.

Определение 3. Многочлен называется **нормированным**, если его старший коэффициент равен единице.

Теорема 1 (Фундаментальная теорема о многочленах). Пусть $f \in F[x]$, $deg \ f \geqslant 1$. Тогда f допускает разложение $f(x) = a_0 \varphi_1(x) \varphi_2(x) ... \varphi_k(x)$, где $a_0 \in F$, $\varphi_i \in F[x]$ и любой многочлен φ_i - нормированный и неприводимый. При этом данное разложение является единственным с точностью до порядка следования сомножителей.

1.2. Многочлены с рациональными коэффициентами

Дан многочлен с рациональными коэффициентами. Задача: найти разложение этого многочлена в произведение многочленов с рациональными коэффициентами.

Пусть $f \in \mathbb{Q}[x]$. Если мы умножим этот многочлен на подходящее число N (наименьшее общее кратное коэффициентов членов многочлена), то $Nf(x) \in \mathbb{Z}[x]$. Таким образом, приводимость f равносильна приводимости Nf, следовательно, разложение многочлена с рациональными коэффициентами можно свести к разложению многочлена с целыми коэффициентами.

Теорема 2. Если многочлен $f \in \mathbb{Z}[x]$ допускает разложение в произведение многочленов с рациональными коэффициентами, то он допускает разложение в произведение многочленов тех же степеней с целыми коэффициентами.

1.2.1. Алгоритм Кронекера

Дан многочлен $f \in \mathbb{Z}[x]$, $deg \ f > 1$. Можно ли подобрать $u(x), v(x), \ u, v \in \mathbb{Z}[x]$ и $deg \ u, \ deg \ v < deg \ f$?

Предположение 1. Все возникающие натуральные числа можно факторизовать.

Предположение 2. Многочлен формальной степени n можно найти c помощью интерполяционного многочлена по n+1 точке $x_0, x_1, ..., x_n$ и значениям многочлена e этих точках $f(x_0), f(x_1), ..., f(x_n)$.

$$\begin{cases} f(x_0) = u(x_0)v(x_0), \\ f(x_1) = u(x_1)v(x_1), \\ \dots \\ f(x_n) = u(x_n)v(x_n). \end{cases}$$

Рассмотрим точки $x_0, x_1, ..., x_n \in \mathbb{Z} \Rightarrow \forall i \in [0, n] : f(x_i) \in \mathbb{Z} \Rightarrow u(x_i), v(x_i) \in \mathbb{Z}$. Пусть все рассматриваемые точки - не корни многочлена f. Тогда $u(x_i) \mid f(x_i)$

1.2.2. Алгоритм Евклида

Если многочлены $f,g \in F[x], g \neq 0$, то имеет место следующее представление: $f(x) = g(x)h(x) + r(x), h, r \in F[x]$ и r = 0 или $r \neq 0$, $deg\ r < deg\ g$. Если считать, что степень нулевого многочлена r = 0 равна $-\infty$, то можно рассматривать только вариант $deg\ r < deg\ g$.

Определение 4. Если многочлены $f, g \in F[x]$, то многочлен $\varphi \in F[x]$ называют наибольшим общим делителем (НОД) f и g, если:

1.
$$\varphi(x) \mid f(x), \ \varphi(x) \mid g(x),$$

2.
$$\forall \psi \in F[x] : \psi(x) \mid f(x), \ \psi(x) \mid g(x) \Rightarrow \psi(x) \mid \varphi(x)$$
.

Можно доказать, что НОД всегда существует и находится с точностью до множителя. Если старши

Пример 4. Получить каноническое разложение многочлена

$$f(x) = (x-1)(x-2)(x^2 + x + 1)^2(x^2 - x + 1)^2(x^3 - 2)^3.$$

$$f(x) = \varphi_1(x)(\varphi_2(x))^2(\varphi_3(x))^3.$$

$$\varphi_1(x) = (x-1)(x-2).$$

$$\varphi_2(x) = (x^2 + x + 1)(x^2 - x + 1).$$

$$\varphi_3(x) = x^3 - 2.$$