19年杭电高数下A期中考试题及答案(19年5月)

一、选择题

1	过 <i>u</i> 轴与点(1.	-2.3	的平面方程是()
1.	人 リーコー ハハしょく	4,01		/ •

((A)	x	-u	 2	=	0
١	∠ 1 .	$, \omega$		\sim		v

(B)
$$3x - z = 0$$

(C)
$$2x + y = 0$$

$$x = 0$$
 (B) $3x - z = 0$ (C) $2x + y = 0$ (D) $3x + 2y = 0$

2. 函数
$$z = f(x,y)$$
 在点 (x_0,y_0) 处连续是函数在该点具有偏导数的 ().

(B) 充分但非必要条件

(D) 既非充分又非必要条件

3. 设
$$D = \{(x,y) \mid x^2 + y^2 \le 1\}$$
, $I_1 = \iint_D \sqrt{\cos(x^2 + y^2)} d\sigma$, $I_2 = \iint_D \cos(x^2 + y^2) d\sigma$, $I_3 = \iint_0 \cos\sqrt{x^2 + y^2} d\sigma$, 则下列关系成立的是().

(A)
$$I_1 > I_2 > I_3$$

(B)
$$I_3 > I_2 > I_1$$

(C)
$$I_2 > I_1 > I_3$$

(D)
$$I_2 > I_3 > I_1$$

4. 设函数
$$z = f(x,y)$$
 由方程 $yz = \sin(x+y+z)$ 所确定,则 $\frac{\partial z}{\partial x} = ($).

(A)
$$\frac{\cos(x+y+z)}{y+\cos(x+y+z)}$$

(B)
$$\frac{\cos(x+y+z)}{y-\cos(x+y+z)}$$

(C)
$$\frac{y + \cos(x + y + z)}{\cos(x + y + z)}$$

(D)
$$\frac{y - \cos(x + y + z)}{\cos(x + y + z)}$$

5. 设
$$z = x^2 + y^2$$
,则 z 在点 $(1,1)$ 处的方向导数最大值是().

(A)
$$2\sqrt{6}$$

(B)
$$\sqrt{2}$$

$$(C)2\sqrt{2}$$

(D) 2

6. 二次积分
$$\int_0^1 dx \int_{-x}^{\sqrt{1-x^2}} f(x,y) dy$$
 可写成 ().

(A)
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^1 f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$$

(B)
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{\frac{1}{\cos\theta + \sin\theta}} f(\rho\cos\theta, \rho\sin\theta) \rho d\rho$$

(C)
$$\int_0^{\frac{\pi}{2}} d\theta \int_{\frac{1}{\cos\theta + \sin\theta}}^1 f(\rho \cos\theta, \rho \sin\theta) \rho d\rho$$

(D)
$$\int_0^{\frac{\pi}{2}} d\theta \int_1^{\frac{1}{\cos\theta + \sin\theta}} f(\rho\cos\theta, \rho\sin\theta) \rho d\rho$$

二、填空题

- 7. $\lim_{(x,y)\to(0,2)} \frac{\tan(xy)}{x} =$ ______.
- 8. 点 (1,0,-1) 到平面 3x+4y+5z=1 的距离=_____
- 9. 设 D 是由曲线 $y=1-x^2$ 与 $y=x^2-1$ 所围成的闭区域,则 $I=\iint_D (x^3+y^3+xy)d\sigma=$.
- 10. 曲线 $\begin{cases} x = t^2, \\ y = t, (0 \le t \le 2) \end{cases}$ 在点 (1,1,2) 处的法平面方程为______. $z = 2t^4,$
- 11. 设 f(u) 可微,且 $f'(0) = \frac{1}{2}$,则 $z = f(4x^2 y^2)$ 在点 (1,2)处的全微分 $dz|_{(1,2)} =$
- 12. 交换积分次序 $\int_0^{\frac{1}{4}} dy \int_y^{\sqrt{y}} f(x,y) dx + \int_{\frac{1}{4}}^{\frac{1}{2}} dy \int_y^{\frac{1}{2}} f(x,y) dx = ______.$

三、简单计算题

13. 设z = z(x,y)由方程 $z = e^{\sin(xy)} + 2y$ 确定,求全微分dz.

14. 设 $z = f(2x - y, e^x \sin y)$, 其中f(u, v) 具有二阶连续偏导数, 求 $\frac{\partial^2 z}{\partial x \partial u}$.

15. 证明函数
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, x^2 + y^2 \neq 0 \\ 0, x^2 + y^2 = 0 \end{cases}$$
 在点 $(0,0)$ 处不连续.

16. 求曲线
$$\begin{cases} x^2 + y^2 + z^2 = 6 \\ x + y + z = 0 \end{cases}$$
 在点 $(1, -2, 1)$ 处的切线方程.

17. 求旋转抛物面 $z=x^2+y^2$ 被平面z=4所截出的曲面面积.

18. 己知 $\iint_D \sqrt{a^2-x^2-y^2}\,dxdy=\pi$,其中 $D:x^2+y^2\leqslant a^2$,求 a .

四、综合题

19. 设
$$f(x,y)$$
连续,且 $f(x,y) = xy + \iint_D f(u,v) du dv$,其中 $D \oplus y = 0$, $y = x^2$, $x = 1$ 围成,求 $f(x,y)$ 表达式.

20. 求积分
$$\iint_{\Omega}(x+z)dv$$
,其中 Ω 由曲面 $z=\sqrt{x^2+y^2}$ 与 $z=\sqrt{1-x^2-y^2}$ 所围成的闭区域.

五、应用计算题

21. 求椭球面 $x^2 + y^2 + \frac{z^2}{4} = 1$ 的内接长方体的最大体积.

六、证明题

22. 设
$$f(x)$$
为连续函数, $\Phi(t) = \int_0^t dy \int_y^t f(x) dx$,求 $\Phi'(3)$.

参考答案

仅附上答案,如若有不会的题目,或想知道解题过程,欢迎加入 HDU 数学营: 797646975 讨论

一、选择题

- 1. B
- 2. D
- 3. A
- 4. B
- 5. C
- 6. C

二、填空题

- 7. 2
- $8. \quad \frac{3\sqrt{2}}{10}$
- 9. 0
- 10. 2x + y + 8z 19 = 0
- 11. 4dx 2dy
- 12. $\int_0^{\frac{1}{2}} dx \int_{x^2}^x f(x,y) dy$

三、简单计算题

- 13. $dz = y\cos(xy)e^{\sin(xy)}dx + [x\cos(xy)e^{\sin(xy)} + 2]dy$
- 14. $-2\int_{11}^{y} +e^{2x}\sin y\cos y \int_{22}^{y} +(2e^{x}\cos y e^{x}\sin y)\int_{12}^{y} +e^{x}\cos y \int_{22}^{y}$
- 15. 略(分别沿 x 轴和 y 轴讨论)
- 16. $\frac{x-1}{1} = \frac{y+2}{0} = \frac{z-1}{-1}$

- 17. $\frac{\pi(17\sqrt{17}-1)}{6}$
- 18. $\sqrt[3]{\frac{3}{2}}$

四、综合题

- 19. $f(x,y) = xy + \frac{1}{8}$
- 20. $\frac{\pi}{8}$

五、应用计算题

21. $\frac{16\sqrt{3}}{9}$

六、证明题

22. 3f(3)