COMS21202: Symbols, Patterns and Signals

Problem Sheet 3: Probabilistic Models

1. You were consulted by a Physics student who is trying to estimate the voltage (V) given current (I) and resistance (R) information. The student informs you that the physical model is

$$I = \frac{V}{B} + \epsilon$$

subject to a measurement error $\epsilon \sim \mathcal{N}(0, \sigma^2)$. Assuming *i.i.d* observations, the likelihood of p(D|V) where V is the model's only parameter and D is the observed data is equal to:

$$p(D|V) = \prod_{i} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2} \frac{(I_{i} - \frac{V}{R_{i}})^{2}}{\sigma^{2}}}$$

where I_i is the current value for observation i and R_i is the resistance value for observation i. Prove, using the Maximum Likelihood Estimation (MLE) recipe, that $V_{ML} = \sum \frac{I_i}{R_i} / \sum \frac{1}{R^2}$

2. For a given probabilistic model,

$$p(D|\theta) = b \ e^{-(3-\theta)^2}$$

where b is a normalising constant and a known prior of

$$p(\theta) = c e^{-\theta(\theta-1)}$$

where c is a normalising constant, Find the maximum a posteriori value of the model parameters θ . Clearly show the steps you followed in finding the answer.

3. Suppose that X is a discrete random variable with the following probability mass function, where $0 \le \theta \le 1$ is a parameter.

X	0	1	2	3
P(X)	$\frac{2\theta}{3}$	$\frac{\theta}{3}$	$\frac{2(1-\theta)}{3}$	$\frac{(1-\theta)}{3}$

The following 10 independent observations were taken from this distribution:

3	0	2	1	3	2	1	0	2	1

- (a) What is the Maximum Likelihood estimate of θ
- (b) Assume you have prior knowledge that $p(\theta) = b \theta (1 \theta)$, what would the Maximum a Posteriori (MAP) be?