CS 162 Programming languages

Lecture 9: Type Inference

Yu Feng Winter 2020

Hindley-Milner type inference algorithm

Robin Milner

1934-2010

Awarded 1991 Turing Award for "...ML, the first language to include polymorphic type inference and a type-safe exception handling mechanism..."

Type checking

- (Static) type-checking can reject a program before it runs to prevent the possibility of some errors
 - A feature of statically typed languages
- Dynamically typed languages do little (none?)
 - So might try to treat a number as a function at run-time
- ML (and Java, C#, Scala, C, C++) is statically typed
 - Every binding has one type, determined "at compile-time"

Implicitly typed

- ML is statically typed
- ML is implicitly typed: rarely need to write down types

```
fun f x = (* infer val f : int -> int *)
    if x > 3
    then 42
    else x * 2

fun g x = (* report type error *)
    if x > 3
    then true
    else x * 2
```

Explicitly typed: like Java or C++!

Type inference

- Type inference problem: Give every binding/expression a type such that type-checking succeeds
 - Fail if and only if no solution exists
- In principle, could be a pass before the type-checker
 - But often implemented together
- Type inference can be easy, difficult, or impossible
 - Easy: Accept all programs
 - Easy: Reject all programs
 - Subtle, elegant, and not magic: ML

Hindley-Milner algorithm

For each top-level definition, traverse each AST to:

- decorate each AST node with preliminary type variable
- collect type constraints from each AST node
- use unification to solve constraints and produce a substitution
- use substitution to infer type of definition

Simple-typed lambda calculus

$$e ::= x \mid \lambda x : \tau \cdot e \mid e_1 e_2 \mid n$$

$$\tau ::= \text{int} \mid X \mid \tau_1 \to \tau_2$$

To formally define type inference, we introduce a new typing relation:

$$\Gamma \vdash e : \tau \triangleright C$$

Type environment

Meaning: Expression e has type τ provided that every constraint in the set C is satisfied.

Typing rules for STLC

$$\operatorname{CT-Var} \frac{}{\Gamma \vdash x : \tau \rhd \emptyset} x : \tau \in \Gamma$$

CT-INT
$$\overline{\Gamma \vdash n : \mathsf{int} \triangleright \emptyset}$$

CT-ABS
$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2 \triangleright C}{\Gamma \vdash \lambda x : \tau_1 . e : \tau_1 \rightarrow \tau_2 \triangleright C}$$

$$\begin{array}{c} \Gamma \vdash e_1 \colon \tau_1 \rhd C_1 & \Gamma \vdash e_2 \colon \tau_2 \rhd C_2 \\ \\ \text{CT-APP} & \frac{C' = C_1 \cup C_2 \cup \{\tau_1 = \tau_2 \to X\}}{\Gamma \vdash e_1 \ e_2 \colon X \rhd C'} & X \text{ is fresh} \end{array}$$

Example

What is the type of ((x, x) 7)?

How to solve those constraints?

Unification algorithm

```
\begin{array}{ll} \textit{unify}(C) &=& \text{if } C = \emptyset \text{, then } \{\} \\ &\text{else let } \{S = T\} \cup C' = C \text{ in} \\ &\text{if } S = T \\ &\text{then } \textit{unify}(C') \\ &\text{else if } S = X \text{ and } X \not\in FV(T) \\ &\text{then } \textit{unify}(\{X \mapsto T\}C') \circ \{X \mapsto T\} \\ &\text{else if } T = X \text{ and } X \not\in FV(S) \\ &\text{then } \textit{unify}(\{X \mapsto S\}C') \circ \{X \mapsto S\} \\ &\text{else if } S = S_1 {\rightarrow} S_2 \text{ and } T = T_1 {\rightarrow} T_2 \\ &\text{then } \textit{unify}(C' \cup \{S_1 = T_1, S_2 = T_2\}) \\ &\text{else} \\ &\text{fail} \end{array}
```

Types and Programming Languages p326

Example

How to solve those constraints?

$$\begin{bmatrix}
 2 \end{bmatrix} = \begin{bmatrix} 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \end{bmatrix} \\
 \begin{bmatrix} 2 \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} \rightarrow \begin{bmatrix} x \end{bmatrix} \\
 \begin{bmatrix} 3 \end{bmatrix} = \text{number}$$

Action	Stack	Substitution
Initialize	$\llbracket 2 \rrbracket = \llbracket 3 \rrbracket \rightarrow \llbracket 1 \rrbracket$	empty
	$\llbracket 2 \rrbracket = \llbracket \overline{x} \rrbracket \rightarrow \llbracket x \rrbracket$	
	[3] = number	
Step 3	$ \begin{bmatrix} 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} \rightarrow \begin{bmatrix} x \end{bmatrix} $	$ \begin{bmatrix} 2 \end{bmatrix} \mapsto \begin{bmatrix} 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \end{bmatrix} $
	[[3]] = number	
Step 5	$\llbracket 3 \rrbracket = \llbracket x \rrbracket$	$ \begin{bmatrix} 2 \end{bmatrix} \mapsto \begin{bmatrix} 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \end{bmatrix} $
	$\llbracket \boxed{1} \rrbracket = \llbracket x \rrbracket$	
	[[3]] = number	
Step 3	$\llbracket \boxed{1} \rrbracket = \llbracket x \rrbracket$	$\llbracket \ 2 \rrbracket \ \mapsto \ \llbracket x \rrbracket \to \llbracket \ 1 \rrbracket$
	$\llbracket x rbracket =$ number	$ [[3]] \mapsto [x] $
Step 3	$\llbracket x rbracket = number$	$[\![2]\!] \mapsto [\![x]\!] \rightarrow [\![x]\!]$
		$\left[\begin{bmatrix} 3 \end{bmatrix} \right] \mapsto [x]$
		$\llbracket 1 \rrbracket \mapsto \llbracket x \rrbracket$
Step 3	empty	$[2] \mapsto number \rightarrow number$
		$[3] \mapsto number$
		$\llbracket 1 \rrbracket \mapsto number$
		$ [\overline{x}] \mapsto$ number