Biased Brownian Motion in Confined Geometries

S. Martens ¹, G. Schmid ², P. Hänggi ², and L. Schimansky-Geier ¹

¹Department of Physics, Humboldt University Berlin

²Department of Physics, University of Augsburg

12.09.2011

Free Brownian particle

• free Brownian particle subjected to external force $\mathbf{F} = (F, 0, 0)^T$ in x-direction

$$\eta \dot{\mathbf{q}}(t) = \mathbf{F} + \sqrt{2\eta \, k_B T} \xi(t)$$

• viscosity η , thermal energy k_BT , Gaussian white noise $\xi(t)$

- transport quantities of interest
 - averaged velocity in the long time limit

$$\langle \dot{x} \rangle = \lim_{t \to \infty} \frac{\langle x(t) \rangle}{t}$$

e respectively, the mobility

$$\mu(F) = \langle \dot{x} \rangle / F$$

 \odot effective diffusion coefficient $D_{
m eff}$

$$D_{\text{eff}} = \lim_{t \to \infty} \frac{\left\langle x(t)^2 \right\rangle - \left\langle x(t) \right\rangle^2}{2t}$$

Free Brownian particle

• free Brownian particle subjected to external force $\mathbf{F} = (F, 0, 0)^T$ in x-direction

$$\eta \dot{\mathbf{q}}(t) = \mathbf{F} + \sqrt{2\eta \, k_B T} \xi(t)$$

• viscosity η , thermal energy k_BT , Gaussian white noise $\xi(t)$

transport quantities of interest

averaged velocity in the long time limit

$$\langle \dot{x} \rangle = \lim_{t \to \infty} \frac{\langle x(t) \rangle}{t}$$

respectively, the mobility

$$\mu(F) = \langle \dot{x} \rangle / F$$

 \odot effective diffusion coefficient D_{eff}

$$D_{\mathrm{eff}} = \lim_{t \to \infty} \frac{\left\langle x(t)^2 \right\rangle - \left\langle x(t) \right\rangle^2}{2t}$$

- averaged velocity $\langle \dot{x} \rangle = F/\eta$ is independent of thermal energy $k_B T$
- free mobility is given by $\mu=1/\eta$

• effective diffusion coefficient $D_{\mathrm{eff}} = k_B T/\eta$ is **independent** of external force magnitude F

Sutherland-Einstein-relation $D_{\mathrm{eff}} = \mu \, k_{B} \, T$

Summer School

Brownian particle in confined geometries

 interest in mass transport through confined structures such as microfluidic channels, irregular pores, and zeolites

C. Kettner et al., PRE $\mathbf{61}$,312 (2000)

 Brownian tracer particle evolves in 3D channel under the action of constant external force F in x-direction

Planar 3D channel

3D tube with varying diameter

Qualitative differences to free diffusion

- ullet numerical results for sinusoidal 3D planar channel with $\Delta\Omega=0.1$ and $\Delta\omega=0.01$
- ullet viscosity η and period length L are set to 1

mobility is a nonlinear function of F

 mobility decreases with thermal energy k_BT

Qualitative differences to free diffusion

- ullet numerical results for sinusoidal 3D planar channel with $\Delta\Omega=0.1$ and $\Delta\omega=0.01$
- ullet viscosity η and period length L are set to 1

- effective diffusion coefficient depends on force magnitude F
- ullet broad excess peak of $D_{
 m eff}$ above free diffusion limiting

 violation of Sutherland-Einstein relation for small k_B T

3D planar channel geometry ¹

evolution of probability density

$$\partial_{t}P\left(\mathbf{q},t\right)+
abla_{\mathbf{q}}\cdot\mathbf{J}\left(\mathbf{q},t
ight)=0\,,$$

with no-flux boundary conditions

$$\begin{array}{c} \Delta \omega \\ \Delta \Omega \end{array}$$

$$\mathbf{J}(\mathbf{q},t)\cdot\mathbf{n}=0$$
, $\forall\mathbf{q}\in\mathsf{channel}$ wall.

probability flux

$$\mathbf{J}(\mathbf{q},t) = F \, \mathbf{e}_{\mathsf{x}} P\left(\mathbf{q},t\right) - \nabla P\left(\mathbf{q},t\right)$$

- obeys periodicity condition P(x+m,y,z,t)=P(x,y,z,t), $\forall m\in\mathbb{Z}$ and is normalized $\int\limits_{unit-cell}d^3qP\left(\mathbf{q},t\right)=1$
- focus on stationary probability density $p_{\rm st}(\mathbf{q})$
- geometric parameter

$$\varepsilon = \frac{\Delta\Omega - \Delta\omega}{I}$$

ΔΩ \$ Δω

3D planar channel geometry ¹

evolution of probability density

$$\partial_{t}P\left(\mathbf{q},t\right)+
abla_{\mathbf{q}}\cdot\mathbf{J}\left(\mathbf{q},t
ight)=0\,,$$

with no-flux boundary conditions

$$\sum_{L} \Delta \Omega \int_{\Delta \Omega} \Delta h$$

$$\mathbf{J}(\mathbf{q},t)\cdot\mathbf{n}=0$$
, $\forall\mathbf{q}\in\mathsf{channel}$ wall.

probability flux

$$\mathbf{J}(\mathbf{q},t) = F \, \mathbf{e}_{\mathsf{x}} P\left(\mathbf{q},t\right) - \nabla P\left(\mathbf{q},t\right)$$

- obeys periodicity condition P(x+m,y,z,t)=P(x,y,z,t), $\forall m\in\mathbb{Z}$ and is normalized $\int\limits_{unit-cell}d^3qP\left(\mathbf{q},t\right)=1$
- focus on stationary probability density $p_{\rm st}(\mathbf{q})$
- geometric parameter

$$\varepsilon = \frac{\Delta\Omega - \Delta\omega}{L}$$

¹Martens et al., PRE **83**,051135 (2011)

Long-wave analysis

• pass to dimensionless quantities, e.g., $x = L \overline{x}, y = \varepsilon L \overline{y}, \omega(x) = \varepsilon L h(x)$, and

$$f = \frac{FL}{k_BT}$$

reduction to 2D stationary Smoluchowski equation

$$\implies \quad \boldsymbol{\varepsilon}^2 \partial_x J_{\mathrm{st}}^x(x,y) + \partial_y J_{\mathrm{st}}^y(x,y) = 0 \,,$$

with boundary conditions

$$\varepsilon^2 h_{\pm}^{'}(x) J_{\mathrm{st}}^{x}(x,y) = J_{\mathrm{st}}^{y}(x,y), \quad \forall y \in \mathsf{wall} \,.$$

ullet series expansion in the geometric parameter arepsilon (st will be omitted)

$$p(x,y) = \sum_{n=0}^{\infty} \varepsilon^{2n} p_n(x,y)$$
 and $\mathbf{J}(x,y) = \sum_{n=0}^{\infty} \varepsilon^{2n} \mathbf{J}_n(x,y)$

Zeroth order - Fick-Jacobs equation

- zero-th order: $0 = \partial_y \left[e^{-V} \partial_y \left(e^V p_0(x,y) \right) \right] \quad \hookrightarrow \quad p_0(x,y) = g(x) \, e^{-V(x,y)}$
- integrating $O(\varepsilon^2)$ balance equation over cross section in y and taking no-flux boundary conditions into account, one gets

Fick-Jacobs equation

$$0 = \partial_x \left\{ e^{-A(x)} \partial_x \left(e^{A(x)} p_0(x) \right) \right\}$$

• with the effective "entropic"potential ²

$$A(x) = -f x - \ln \left(\frac{2 h(x)}{h(x)} \right)$$

• reduction of 2D problem with reflecting boundary conditions to 1D coordinate evolving in effective periodic potential

Sinusoidal channel - particle mobility

exemplarily taken boundary function

$$h_{\pm}(x) = \pm h(x) = \pm \frac{1}{4} (b + \sin(2\pi x))$$

where
$$b = \left(1 + rac{\Delta \omega}{\Delta \Omega}
ight) / \left(1 - rac{\Delta \omega}{\Delta \Omega}
ight)$$

mobility within the FJ approximation

$$\mu_0\left(f
ight) = rac{\left\langle \dot{x}(f)
ight
angle_0}{f} = rac{1-\mathrm{e}^{-f}}{f} rac{1}{\int\limits_0^1 dx\,\mathrm{e}^{A(x)}\int\limits_{x-1}^x dx'\,\mathrm{e}^{-A(x')}}$$

Sinusoidal channel - particle mobility

$$\mu_0(f) = \frac{f^2 + (2\pi)^2}{f^2 + \frac{(2\pi)^2}{2} \left\{ \sqrt{\frac{\Delta\Omega}{\Delta\omega}} + \sqrt{\frac{\Delta\omega}{\Delta\Omega}} \right\}}$$

Mobility versus f for fixed maximum width $\Delta\Omega=0.1$.

$$D_{ ext{eff}}(f) = \lim_{t o \infty} rac{\left\langle x(t)^2
ight
angle - \left\langle x(t)
ight
angle^2}{2t}$$

Effective diffusion coefficient versus f for fixed maximum width ρ^{τ} : $\Delta\Omega=0.1$.

Higher order corrections in ε

higher order corrections to mobility and effective diffusion coefficient

$$\lim_{f\to 0} \eta \mu(f) = \lim_{f\to 0} \eta D_{\mathrm{eff}}(f)/k_B T \simeq \frac{2\sqrt{1-\varepsilon L/\Delta\Omega}}{2-\varepsilon L/\Delta\Omega} \frac{\sinh\left(\pi\,\varepsilon/2\right)}{\pi\,\varepsilon/2} + O\left(h''(x)\right) \quad (*)$$

Left: Mobility and $D_{\rm eff}$ versus ε (FJ: solid line, (*): dash-dotted line). Maximum width $\Delta\Omega=0.1$ and $f=10^{-3}$.

Higher order corrections in ε

higher order corrections to mobility and effective diffusion coefficient

$$\lim_{f\to 0} \eta \mu(f) = \lim_{f\to 0} \eta D_{\text{eff}}(f)/k_B T \simeq \frac{2\sqrt{1-\varepsilon L/\Delta\Omega}}{2-\varepsilon L/\Delta\Omega} \frac{\sinh\left(\pi\,\varepsilon/2\right)}{\pi\,\varepsilon/2} + O\left(h''(x)\right) \quad (*)$$

Left: Mobility and $D_{\rm eff}$ versus ε (FJ: solid line, (*): dash-dotted line). Maximum width $\Delta \hat{\Omega}^{\circ, \frac{1}{\sqrt{n}}}$ and $f = 10^{-3}$

Higher order corrections in ε

higher order corrections to mobility and effective diffusion coefficient

$$\lim_{f\to 0} \eta \mu(f) = \lim_{f\to 0} \eta D_{\text{eff}}(f)/k_B T \simeq \frac{2\sqrt{1-\varepsilon L/\Delta\Omega}}{2-\varepsilon L/\Delta\Omega} \frac{\sinh\left(\pi\,\varepsilon/2\right)}{\pi\,\varepsilon/2} + O\left(h''(x)\right) \quad (*)$$

Left: Mobility and $D_{\rm eff}$ versus ε (FJ: solid line, (*): dash-dotted line). Maximum width $\Delta \hat{\Omega}^{\circ, \frac{1}{\sqrt{\epsilon_{\rm re}}}}$