Project 1

February 27, 2024

Contents

Problem 3: Learning Bayesian networks from protein data
Preparation to run the code
Loading data
Variables and observations
Visualisation of transformed data
Defining functions
Default parameters
Different parameters
Retraining the best BN
Render this .rmd into a pdf

Problem 3: Learning Bayesian networks from protein data

Preparation to run the code

Setting seed for reproducibility and loading packages.

```
library("GGally")
library("BiDAG")
library("igraph")
```

Loading data

##

2

```
data <- read.table("2005_sachs_2_cd3cd28icam2_log_std.csv", sep=",", header=TRUE)</pre>
```

Variables and observations

```
num_variables <- ncol(data)
num_observations <- nrow(data)</pre>
```

Visualisation of transformed data

```
png(file="plot.png", width=650, height=1000)
ggpairs(data, progress=FALSE)
dev.off()
## pdf
```


Figure 1: Plot of transformed data

Defining functions

```
splitting_data <- function(data) {</pre>
    # Shuffling data
    indices <- 1:nrow(data)</pre>
    indices <- sample(length(indices))</pre>
    # Splitting data
    train_size <- ceiling(nrow(data)*0.8)</pre>
    train_indices <- indices[1:train_size]</pre>
    test_indices <- indices[(train_size+1):(length(indices))]</pre>
    # Checking if there is no overlap
    if(length(unique(c(train_indices, test_indices))) != length(c(train_indices, test_indices))) {
        print("Overlap!")
    }
    train_data <- data[row.names(data) %in% train_indices, ]</pre>
    test_data <- data[row.names(data) %in% test_indices, ]</pre>
    split_data <- list("train_data"=train_data, "test_data"=test_data)</pre>
    return(split_data)
}
training_BN <- function(data, bgepar) {</pre>
    library("BiDAG")
    init_score_par <- scoreparameters("bge", data$train_data, bgepar)</pre>
    learnt_BN <- iterativeMCMC(init_score_par, verbose=FALSE)</pre>
    return(learnt_BN)
}
testing_BN <- function(data, BN, bgepar) {</pre>
    library("BiDAG")
    test_score_par <- scoreparameters("bge", data$test_data, bgepar)</pre>
    test_score <- scoreagainstDAG(test_score_par, BN$DAG)</pre>
    return(mean(test_score))
}
plot_DAG <- function(BN) {</pre>
    library("igraph")
    g <- graph_from_adjacency_matrix(BN$DAG)</pre>
    plot(g)
}
get_number_of_edges <- function(BN) {</pre>
    library("igraph")
    return(length(E(graph_from_adjacency_matrix(BN$DAG))))
}
```

Default parameters

```
bgepar <- list(am=1, aw=NULL, edgepf=1)
split_data <- splitting_data(data)
learnt_BN <- training_BN(split_data, bgepar)
mean_test_score <- testing_BN(split_data, learnt_BN, bgepar)
print(paste0("Average BGe score on testing data: ", mean_test_score))
## [1] "Average BGe score on testing data: -12.4139751176187"
plot_DAG(learnt_BN)</pre>
```


Different parameters

```
library(parallel)
library(doParallel)

# Set the number of cores to use
num_cores <- detectCores()

# Register parallel backend
cl <- makeCluster(num_cores)
registerDoParallel(cl)

ams <- c(10^(-5), 10^(-3), 10^(-1), 10, 10^2)

res <- foreach(am = ams, .combine=c) %dopar% {</pre>
```

```
set.seed(42)
    bgepar <- list(am=am, aw=NULL, edgepf=1)</pre>
    numbers_of_edges <- c()</pre>
    mean_test_scores <- c()</pre>
    for(i in 1:10) {
        RNGkind("L'Ecuyer-CMRG")
        split_data <- splitting_data(data)</pre>
        learnt BN <- training BN(split data, bgepar)</pre>
        number_of_edges <- get_number_of_edges(learnt_BN)</pre>
        numbers_of_edges <- append(numbers_of_edges, number_of_edges)</pre>
        mean_test_score <- testing_BN(split_data, learnt_BN, bgepar)</pre>
        mean_test_scores <- append(mean_test_scores, mean_test_score)</pre>
    return(c(am, mean(numbers_of_edges), mean(mean_test_scores)))
}
stopCluster(cl)
res_m <- t(matrix(data=res, nrow=5, ncol=3, byrow=TRUE))</pre>
rownames(res_m) <- c("Parameter am", "Average number of edges", "Average BGe score of the test data")
print(res_m)
                                                         [,2]
##
                                               [,1]
                                                                    [,3]
                                                                               [,4]
                                           0.00001
                                                      0.00100
                                                                 0.10000 10.00000 100.00000
## Parameter am
## Average number of edges
                                           7.00000
                                                      7.00000
                                                                 9.10000 13.40000 16.70000
## Average BGe score of the test data -12.73416 -12.73416 -12.70972 -12.80457 -13.58552
Retraining the best BN
The best BN (based on the highest BGe score) was the one with \alpha_m = 10^{-1}.
set.seed(42)
bgepar <- list(am=10^(-1), aw=NULL, edgepf=1)</pre>
split_data <- splitting_data(data)</pre>
learnt_BN <- training_BN(split_data, bgepar)</pre>
mean_test_score <- testing_BN(split_data, learnt_BN, bgepar)</pre>
```

print(paste0("Average BGe score on testing data: ", mean_test_score))

[1] "Average BGe score on testing data: -12.1209831813562"

plot DAG(learnt BN)

Render this .rmd into a pdf

```
library(rmarkdown)
render("1.Rmd", pdf_document(TRUE), "1.pdf") # TRUE adds table of content
```