임상시험 자료분석|| HW4

Repeated Measures ANOVA

과목명	임상시험 자료분석॥
제출일자	2018.10.13
학과	통계학과
학번	182STG01
이름	고명지

1. 데이터 소개

개선된 마취제는 종종 동물에 대한 영향을 먼저 연구함으로써 개발된다. 한 연구에서, 19마리의 개에게 처음으로 약물 pentobarbital를 투여하였다. 각각의 개는 두 개의 압력 수준의 이산화탄소 환경에서 실험되었고, halothane(H)가 추가된 후 다시 두개의 압력 수준에서 이산화탄소 환경에서 실험되었다. 반응변수는 심장박동간격(단위:밀리초)이다.

- Treatment1 : High CO2 pressure without H - Treatment2 : Low CO2 pressure without H

Treatment3: High CO2 pressure with H
 Treatment4: Low CO2 pressure with H

처리는 H의 여부, CO2의 압력 크기로 2가지이고 각각에 대해 2번을 반복하여 개 한 마리당 총 4번을 반복한 자료이다. 따라서 각 처리에 대한 효과를 Repeated Measures ANOVA를 통해 알아보아야 한다.

2. 자료 탐색

(1) H의 여부

H의 효과를 먼저 그림을 통해 예상해보았다. 예외인 개도 있지만 CO2의 압력 수준에 따라 상관없이 H가 없는 환경보다 H가 추가된 환경에서 개의 심장박동간격이 더 높았다는 것을 알 수 있다. 따라서 H의효과가 있을 것이라고 예상해 보았다.

(2) CO2 압력 수준

H의 여부에 상관없이 다수의 개가 CO2가 높은 수준일 때와 낮은 수준일 때의 심장박동수가 거의 비슷하다는 것을 확인하였다. 하지만 개에 따라서 H가 없을 때와 H가 있을 때 CO2의 압력 수준에 따라 심장박동수의 양상이 다르므로 Repeated measures ANOVA를 이용하여 정확한 분석을 통해 알아볼 필요가 있다.

3. 자료 분석

이 데이터에서는 두 가지의 처리가 존재하고 각각의 수준은 모두 2가지 이므로 모형을 세워보면 $y_{ijk}=\mu+\rho_i+\alpha_i+\beta_k+\varepsilon_{ijk},~i=1,2,\cdots,19,j=1,2,k=1,2$ 로 나타낼 수 있다.

(1) Method 1

SAS에서는 모형을 세우고 각각의 처리에 대하여 test할 때 error를 지정해주어 해줄 수 있지만 R에서는 그러지 못한다. 이 데이터에서는 개가 random 처리가 되지만 각 처리에 대한 F-value를 계산해 줄 때는 error term이 처리와 dog의 교호작용이 된다. 하지만 R에서는 dog에 대해서 random 처리를 해주면 error term이 H*dog, CO2*dog, H*dog*CO2 term이 모두 풀링된 형태가 된다. 따라서 값이 약간 다름을 볼 수 있다. H의 효과에 대한 p-value와 CO2의 효과에 대한 p-value가 SAS와 R에서 모두 0.05보다 작으므로 두 효과는 유의하다고 할 수 있다.

(2) Method 2

			d Measur	28	Procedure Analysis of V ses for Withir			Eff	ects	
Source	DF	T	ype III SS	М	Mean Square		F Value		Pr > F	
Н	1	2	08112.2237		208112.2237		88.26	<.0001		
Error(H)	18		42445.0263		2358.0570					
Source	DF		Type III SS		Mean Square		F Value		r > F	
CO2	1		17130.01316		17130.01316		13.19		0.0019	
Error(CO2)	11	В	23381.23684	4	1298.95760)				
Source	Source DF		Type III SS		Mean Square		F Value		Pr > F	
H*CO2		1	776.96053		776.96053		0.41		0.5294	
Error(H*CO	2) 18		34008.28947		1889.34942					

	Univariate	Type III H	Repeated	i-Measures	ANOVA	Assuming	Sphericity	7
##		Sum Sq	num Df	Error SS	den Df	F value	Pr(>F)	
##	(Intercept)	14630119	1	305394	18	862.3015	< 2.2e-16	***
##	H	208112	1	42445	18	88.2558	2.315e-08	***
##	CO2	17130	1	23381	18	13.1875	0.001909	**
##	H:CO2	777	1	34008	18	0.4112	0.529426	

[R]

이 경우에는 SAS에서와 R에서 같은 값을 가짐을 알 수 있다. H의 여부와 CO2 압력 수준에 따른 p-value가 모두 0.05보다 작으므로 유의하다고 할 수 있지만 교호작용 효과는 유의하지 않다.

[SAS]

INDEX

(1) SAS

```
PROC IMPORT DATAFILE="C:\Users\User\Desktop\대학원\2학기\임상\HW4\sleeping-
dog.csv"
OUT=DOG;
GETNAMES=YES;
RUN;
DATA DOG2; SET DOG(RENAME=(Dog=DOG));
      KEEP DOG H CO2 SCORE;
      LENGTH H$ 3. CO2$ 4.;
      SCORE=TRT1; H="NO"; CO2="HIGH"; OUTPUT;
      SCORE=TRT2; H="NO"; CO2="LOW"; OUTPUT;
      SCORE=TRT3; H="YES"; CO2="HIGH"; OUTPUT;
      SCORE=TRT4; H="YES"; CO2="LOW"; OUTPUT;
RUN;
/*PLOT*/
PROC SGPANEL DATA=DOG2;
      PANELBY CO2;
      SERIES X=H Y=SCORE / GROUP=DOG;
RUN;
PROC SGPANEL DATA=DOG2;
      PANELBY H;
      SERIES X=CO2 Y=SCORE / GROUP=DOG;
RUN;
/*METHOD1*/
PROC GLM DATA=DOG2;
      CLASS DOG H CO2;
      MODEL SCORE=H CO2 DOG H*CO2 H*DOG CO2*DOG;
      RANDOM DOG;
      TEST H=H E=DOG*H;
      TEST H=CO2 E=DOG*CO2;
RUN;
/*METHOD2*/
DATA DOG; SET DOG(RENAME=(Dog=DOG TRT1=NH TRT2=NL TRT3=YH TRT4=YL));
      KEEP DOG NH NL YH YL;
RUN:
PROC GLM DATA=DOG;
      CLASS DOG;
      MODEL NH NL YH YL=;
      REPEATED H 2, CO2 2 / PRINTE SUMMARY;
      QUIT;
RUN;
```

(2) R

```
library(tidyverse); library(nlme); library(car)
 setwd("C:/Users/User/Desktop/대학원/2학기/임상/HW4")
dog.t<-read.csv("sleeping-dog.csv",header=T)</pre>
 dog2<-gather(dog.t, H, score, NH, NL, YH, YL)</pre>
\verb|dog2<-dog2%>\mbox{mutate}("H"=\verb|substr(dog2$H,1,1)|, "CO2"=\verb|substr(dog2$H,2,2)|)|
 dog2<-dog2%>%select(dog,H,CO2,score)%>%arrange(dog)
 # plot
\verb|ggplot(dog2, aes(x=H, y=score, group=dog, col=dog)) + \verb|geom_point() + geom_line() + facet_wrap( \sim CO2) + theme_bw() + theme(legend.p) + theme(legend.p
osition = "bottom")
 \label{eq:gending}  \texttt{ggplot}(\texttt{dog2}, \texttt{aes}(\texttt{x=CO2}, \texttt{y=score}, \texttt{group=dog}, \texttt{col=dog})) + \texttt{geom\_point}() + \texttt{geom\_line}() + \texttt{facet\_wrap}(\sim \texttt{H}) + \texttt{theme\_bw}() + \texttt{theme}(\texttt{legend.point}(\sim \texttt{H})) + \texttt{facet\_wrap}(\sim \texttt{H}) + \texttt{facet\_wrap
 osition = "bottom")
 # method1
\verb|model1<-lme(score~H*CO2+H*dog+CO2*dog,random=~1|dog, data=dog2)|\\
 anova (model1)
 # method2
H<-factor(c("yes","no"));CO2<-factor(c("high","low"))</pre>
HCO2.data<-data.frame(H=factor(rep(H,each=2)),CO2=factor(rep(CO2,2)))
model2.lm<-lm(cbind(NH,NL,YH,YL)~1,data=dog.t)</pre>
 model2<-Anova(model2.lm,idata=HCO2.data,idesign=~H+CO2+H*CO2)
summary(model2)
```