第一讲 锐角三角比

锐角三角比的定义

1. 锐角三角比的定义: 锐角 A 的正弦、余弦、正切、余切都叫做 ∠A 的锐角三角比.

①正弦(sine): $Rt \triangle ABC$ 中, $\angle A$ 的对边与斜边的比叫做 $\angle A$ 的正弦,记作 $\sin A$,即 $\sin A = \frac{a}{a}$.

②余弦 (cosine): $Rt\triangle ABC$ 中, $\angle A$ 的邻边与斜边的比叫做 $\angle A$ 的余弦,记作 $\cos A$,即 $\cos A = \frac{b}{a}$.

③正切(tangent): $Rt \triangle ABC$ 中, $\angle A$ 的对边与邻边的比叫做 $\angle A$ 的正切,记作 $\tan A$,即 $\tan A = \frac{a}{b}$.

④余切 (cotangent): $Rt\triangle ABC$ 中, $\angle A$ 的邻边与对边的比叫做 $\angle A$ 的余切,记作 cot A,即 cot $A=\frac{b}{a}$.

Tips 1: 在 $Rt \triangle ABC$ 中, $\angle C = 90^{\circ}$,直角边 BC 和 AC 分别叫做 $\angle A$ 的对边和邻边;

Tips 2: 在 $\triangle ABC$ 中, $\angle A$ 、 $\angle B$ 、 $\angle C$ 的对边通常分别用 a 、 b 、 c 表示.

例题精讲

【例题1】

(1)在直角坐标平面内有一点 A(2,4), 如果 AO 与 x 轴正半轴的夹角为 α , 那么 $\sin \alpha =$ ______.

(2)在 $Rt \triangle ABC$ 中, $\angle BAC = 90^{\circ}$, $AD \perp BC$ 于点 D,则下列结论不正确的是(

$$A \cdot \sin B = \frac{AD}{\Delta B}$$

$$B \cdot \sin B = \frac{AC}{BC}$$

$$C \cdot \sin B = \frac{AD}{AC}$$

$$A \cdot \sin B = \frac{AD}{AB} \qquad B \cdot \sin B = \frac{AC}{BC} \qquad C \cdot \sin B = \frac{AD}{AC} \qquad D \cdot \sin B = \frac{CD}{AC}$$

【分析】 (1) $\sin \alpha = \frac{2\sqrt{5}}{5}$; (2) C

【例题2】

(1)在 $\triangle ABC$ 中, $AD \perp BC$, $\sin B = \frac{4}{5}$, BC = 13 , AD = 12 ,则 $\tan C$ 的值为_____.

(2)在 $Rt\triangle ABC$ 中, $\angle ACB = 90^{\circ}$, $CD \perp AB$,CD = 4, $\cos A = \frac{2}{3}$,那么 $BC = \underline{\hspace{1cm}}$

(3)如图,正方形 DEFG 内接于 $Rt \triangle ABC$, $\angle C = 90^{\circ}$, AE = 4 , BF = 9 ,则 $\tan A =$ ____

(1) $\tan C = 3$; (2) BC = 6; (3) $\tan A = \frac{3}{2}$.

【例题3】

(1)在 \Box ABCD中, $AE \perp BC$, $AF \perp CD$,若AE = 4,AF = 6, $\angle BAE$ 为锐角且 $\sin \angle BAE = \frac{1}{3}$,则 $CF = \frac{1}{3}$

(2)在 $\triangle ABC$ 中, $\angle BAC = 90^{\circ}$, AB = AC , D 为 AC 的中点,联结 BD ,则 $\tan \angle DBC =$ ______.

【分析】 (1)
$$\frac{3\sqrt{2}}{2}$$
; (2) $\frac{1}{3}$;

【例题4】

(1)如图,在 $Rt\triangle ABC$ 中, $\angle ACB = 90^{\circ}$.令 BD = AB,联结 CD,若 $\cot \angle BCD = 3$,则 $\tan A = \underline{}$. (2)如图,在 $Rt\triangle BAD$ 中, $\angle BAD = 90^{\circ}$,令 $DC = \frac{1}{2}BD$,联结 AC,若 $\tan B = \frac{5}{3}$,则 $\tan \angle CAD = \underline{}$.

【分析】 (1) $\frac{3}{2}$; (2) $\frac{1}{5}$;

模块二 锐角三角比计算与性质

1. 特殊锐角三角比:

三角比	30°	45°	60°
sin A	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\cos A$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tan A	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$
cot A	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$

特别地,当 $\angle A = 90^{\circ}$ 时, $\sin A = 1$, $\cos A = 0$, $\cot A = 0$, $\tan A$ 不存在. 当 $\angle A = 0^{\circ}$ 时, $\sin A = 0$, $\cos A = 1$, $\tan A = 0$, $\cot A$ 不存在.

2. 锐角三角比的取值范围:

在
$$Rt \triangle ABC$$
 中, $\angle C = 90^{\circ}$, $a > 0$, $b > 0$, $c > 0$, $a < c$, $b < c$, $\mathbf{X} \sin A = \frac{a}{c}$, $\cos A = \frac{b}{c}$, $\tan A = \frac{a}{b}$, $\cot A = \frac{b}{a}$, 所以 $0 < \sin A < 1$, $0 < \cos A < 1$, $\tan A > 0$, $\cot A > 0$.

3. 三角比关系:

(1)同角三角比关系: $\sin^2 A + \cos^2 A = 1$, $\tan A = \frac{\sin A}{\cos A}$, $\tan A \cdot \cot A = 1$

锐角的正弦(正切)值随角度的增大而增大,锐角的余弦(余切)值随角度的增大而减小. (2)余角三角比关系:

① $\sin A = \cos(90^{\circ} - A)$; ② $\cos A = \sin(90^{\circ} - A)$; ③ $\tan A = \cot(90^{\circ} - A)$; ④ $\cot A = \tan(90^{\circ} - A)$.

例题精讲

【例题5】

(1) 计算: $3\tan 30^\circ + \cot 45^\circ + \cos 30^\circ + 2\sin 60^\circ - 2\cot 45^\circ$

(2)计算:
$$\frac{1}{\sin 60^\circ - \cos 60^\circ} - (\sin 30^\circ)^{-2} + (2015 - \tan 45^\circ)^0$$

(3) 计算:
$$|2\sin 45^\circ - \tan 45^\circ| + \frac{\cos 30^\circ - \tan 60^\circ \cdot \cos 45^\circ}{\cot 30^\circ}$$

(4)在 $\triangle ABC$ 中, $\cos A = \frac{\sqrt{2}}{2}$, $\tan B = \sqrt{3}$,那么 $\triangle ABC$ 是(

A. 钝角三角形 B. 直角三角形 C. 锐角三角形 D. 等腰三角形

【分析】 (1)原式=
$$\frac{5}{2}\sqrt{3}-1$$
; (2)原式= $\sqrt{3}-2$; (3)原式= $\frac{\sqrt{2}}{2}-\frac{1}{2}$; (4) C

【例题6】

- (1) 若 $\tan \alpha = 3$, 求 $\frac{\sin \alpha \cos \alpha \sin^2 \alpha}{1 + 3\sin \alpha \cos \alpha}$ 的值.
- (2) 已知 α 、 β 是直角三角形的两锐角, $\alpha \neq \beta$,且 α 、 β 满足 $3\tan \alpha \tan^2 \alpha = m$, $3\tan \beta \tan^2 \beta = m$. 求: ①m 的值; ② $\sqrt{\tan \alpha} + \sqrt{\tan \beta}$ 的值.

【分析】 (1)原式 = $-\frac{6}{19}$;

(2)由题意可知, $\tan \alpha$ 和 $\tan \beta$ 可看作方程 $x^2 - 3x + m = 0$ 的两根.

由韦达定理, 可知 $\tan \alpha + \tan \beta = 3$, $\tan \alpha \cdot \tan \beta = m = 1$

故
$$\left(\sqrt{\tan\alpha} + \sqrt{\tan\beta}\right)^2 = \tan\alpha + \tan\beta + 2\sqrt{\tan\alpha} \cdot \tan\beta = 5$$
,所以 $\sqrt{\tan\alpha} + \sqrt{\tan\beta} = \sqrt{5}$

【例题7】 用几何方法求15°角的正切值.

【分析】 如图,构造直角三角形 ABC,其中 $\angle ABC = 30^{\circ}$,延长 CB 到点 D,使得 BD = AB

则 $\angle D$ 即为所求的15°角, $\tan 15^\circ = \frac{AC}{CD} = 2 - \sqrt{3}$.

模块三解直角三角形的应用

解直角三角形的应用题中常见的有关概念:

- 1. 仰角与俯角:它们都是在同一铅垂面内视线和水平面的夹角,视线在水平线上方的叫做仰角,视线在水平线下方的叫做俯角. (左图)
- 2. 方向角: 是从正北或正南方向到目标方向所形成的小于九十度的角. (右图)

3. 坡度与坡角

坡面的铅垂高度(h)和水平长度(l)的比叫做坡面坡度(或坡比),记作i($i=\frac{h}{l}$)

坡面与水平面的夹角叫做坡角,记作 α ,($\tan \alpha = i = \frac{h}{l}$). 坡度经常写成1:m的形式,如 i=1:1.5 .

- 4. 用解直角三角形的知识解决实际问题的一般过程是:
 - (1) 将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);
 - (2) 根据条件的特点,适当选用锐角三角比去解直角三角形;
 - (3) 得到数学问题的答案;
 - (4) 得到实际问题的答案.

例题精讲

【例题8】

如图,小山的一个横断面是梯形 BCDE, EB // DC,其中斜坡 DE 的坡长为13米,坡度 i=1:2.4.小山上有一座铁塔 AB,在山坡的坡顶 E 处测得铁塔顶端 A 的仰角为 45° ,在与山坡的坡底 D 相距 5 米的 F 处测得铁塔顶端 A 的仰角为 31° (点 F 、 D 、 C 在一直线上),求铁塔 AB 的高度.

(参考数值: sin 31° ≈ 0.52, cos 31° ≈ 0.86, tan 31° ≈ 0.6)

【分析】 过点 B 、 E 分别作 CD 的垂线,垂足分别为 G 、 H 则 BGHE 为矩形 BG = EH = 5, DH = 12 . 设 AB = x ,则 BE = HG = x , \therefore AG = x + 5 , FG = 17 + x 在 $Rt \triangle AFG$ 中, $\tan F = \frac{AG}{FG}$, 故 $\frac{x + 5}{x + 17} = \frac{3}{5}$,解得 x = 13 故铁塔 AB 的高度为 13 米

本讲巩固

【巩固1】

(1)在 $Rt \triangle ABC$ 中, $\angle C = 90^{\circ}$, $\angle A$ 、 $\angle B$ 、 $\angle C$ 所对边分别为 a 、 b 、 c ,下列不一定成立的是()

$$A \cdot b = a \tan B \qquad B \cdot a = c \cos B$$

$$C \cdot c = \frac{a}{\sin A}$$

$$C \cdot c = \frac{a}{\sin A}$$
 $D \cdot a = b \cos A$

(2)在 $Rt\triangle ABC$ 中, $\angle C = 90^{\circ}$, BC = 1 , $AC = \sqrt{2}$,下列判断正确的是(

$$B$$
. $\angle A = 45^{\circ}$

$$C \cdot \cot A = \frac{\sqrt{2}}{2}$$

$$A \cdot \angle A = 30^{\circ}$$
 $B \cdot \angle A = 45^{\circ}$ $C \cdot \cot A = \frac{\sqrt{2}}{2}$ $D \cdot \tan A = \frac{\sqrt{2}}{2}$;

【分析】 (1) D (2) D

$$(1)$$
 D

【巩固2】

(1)在梯形 ABCD 中, AD//BC , AB = AD = DC = 8 , $\angle B = 60^{\circ}$, 联结 AC , 则 $\cos \angle ACB =$ _____. (2)在 $Rt \triangle ABC$ 中, $\angle C = 90^{\circ}$, AM 是 BC 边上的中线, $\sin \angle CAM = \frac{3}{5}$, 则 $\tan \angle B$ 的值为______.

【分析】 (1) 易知
$$\angle ACB = 30^{\circ}$$
, $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$; (2) $\tan \angle B = \frac{AC}{BC} = \frac{2}{3}$

【巩固3】

(1)在 $\triangle ABC$ 中, $\tan A = 1$, $\cot B = \sqrt{3}$,那么 $\triangle ABC$ 是(

A. 钝角三角形

B. 直角三角形 C. 锐角三角形

D. 等腰三角形

(2)在 $\triangle ABC$ 中,若 $\left|\sin A - \frac{\sqrt{3}}{2}\right| + \left(1 - \tan B\right)^2 = 0$,则 $\angle C$ 的度数是()

A . 45°

 $B \cdot 60^{\circ}$

 $C. 75^{\circ} D. 105^{\circ}$

【分析】 (1) 选A.(2) 选C.

【巩固4】

(1)计算: $\frac{2\sin 30^{\circ}}{2\sin 60^{\circ} - \tan 45^{\circ}} - \frac{3}{2}\cot 60^{\circ}$

(2)计算: $|\cos 30^{\circ} - 1| + (-\cot 45^{\circ})^{2014} + \sin 60^{\circ}$

(3) 化简 $\sqrt{\tan^2 32^\circ + \cot^2 32^\circ - 2}$ 的结果是 . .

【分析】 (1) 原式= $\frac{1}{2}$; (2) 原式=2; (3) 原式= $\cot 32^{\circ} - \tan 32^{\circ}$

【巩固5】

(1)设x为锐角,且满足 $\sin x = 3\cos x$,求 $\sin x\cos x$.

(2)已知 m 为实数,且 $\sin \alpha$ 、 $\cos \alpha$ 是关于 x 的方程 $3x^2 - mx + 1 = 0$ 的两根. 求 $\sin^4 \alpha + \cos^4 \alpha$ 的值.

【分析】 (1)
$$\sin x \cos x = \frac{3}{10}$$
; (2) $\sin^4 \alpha + \cos^4 \alpha = (\sin^2 \alpha + \cos^2 \alpha)^2 - 2(\sin \alpha \cos \alpha)^2 = \frac{7}{9}$

【巩固6】

如图,小明在广场上的 C 处用测角仪正面测量一座楼房墙上的广告屏幕 AB 的长度,测得屏幕下端 B 处的仰角为 30° ,然后他正对大楼方向前进 10 米到达 D 处,又测得该屏幕上端 A 处的仰角为 45° ,已知该楼 AE 高 18.7 米,测角仪 MC 、 ND 的高度为 1.7 米.求广告屏幕 AB 的长.

【分析】 延长 MN 交 AE 于 F . \therefore NF = AF = 17m , \therefore $MF = 27m \Rightarrow BF = 9\sqrt{3}m$ \therefore $AB = (17 - 9\sqrt{3})m$

试题拓展

【拓展1】 求 22.5° 的三角比.

【分析】
$$\sin 22.5^{\circ} = \frac{AB}{AD} = \frac{\sqrt{2 - \sqrt{2}}}{2}$$
, $\cos 22.5^{\circ} = \frac{BD}{AD} = \frac{\sqrt{2 + \sqrt{2}}}{2}$, $\tan 22.5^{\circ} = \frac{AB}{BD} = \sqrt{2} - 1$, $\cot 22.5^{\circ} = \frac{BD}{AB} = \sqrt{2} + 1$

【拓展2】 求 sin 18° 的值.

【分析】 如图,构造黄金三角形 $\triangle ABC$,其中 $\angle BAC=36^{\circ}$,则 $\frac{BC}{AB}=\frac{\sqrt{5}-1}{2}$ 作 $AD\perp BC$ 于点D,可知 $\angle BAD=18^{\circ}$ $\sin 18^{\circ} = \frac{BD}{AB} = \frac{\frac{1}{2}BC}{AB} = \frac{\sqrt{5}-1}{4}$