

Church Numerals

CIS352 — Fall 2024

Kris Micinski

This week in class we're going to talk about **Church Encoding**, a technique to express arbitrary Racket code using **only** the lambda calculus.

We will (by hand) compile Racket forms to just LC

Why do this? Answer: illustrate theoretical expressivity of LC

Our goal this lecture: translate simple arithmetic operations over constants to the lambda calculus

$$2 + 1 * 2 = 4$$

We want to express **this** with the lambda calculus

I think this is one of the trickiest things to understand in the course. I first learned this by working out the beta-reductions on paper, and I recommend that approach.

One key problem: how do we represent numbers as lambdas?

Observation 1

(Encoding works on naturals—adaptable to ints, etc..)

Can write any natural number n as:

$$1 + ... + 0$$
n times
$$0 = 0$$

$$1 = 1 + 0$$

$$2 = 1 + 1 + 0$$

$$3 = 1 + 1 + 1 + 0$$

Observation 2: represent the number **n** as a **function** that accepts **another** function g and returns a function that "performs g n times."

$$0 = (\lambda(f) (\lambda(x) x))$$

$$1 = (\lambda(f) (\lambda(x) (f x)))$$

$$2 = (\lambda(f) (\lambda(x) (f (f x))))$$

Observation 2: represent the number **n** as a **function** that accepts **another** function g and returns a function that "performs g n times."

```
(define zero (\lambda (f) (\lambda (x) x)))
(define one (\lambda (f) (\lambda (x) (f x))))
(define two (\lambda (f) (\lambda (x) (f (f x))))
```

Exercise 1: Write the church encoding of 3

Exercise 2: Write two α -equivalent versions of 0

Let's say we have a **church-encoded** number, that is a term like $(\lambda (f) (f (f ... (f x))...))$

We can turn it **back** into a Racket number by calling it in "curried" style

```
;; do add1 n times, starting from 0
;; (add1 (add1 ... (add1 0) ...))
(define (church->nat n)
  ((n add1) 0)
```

Exercise 3: translate the following Church-encoded numbers to Racket natural numbers

Observation 3: when we use this encoding, any expression $\alpha/\beta/\eta$ -equivalent to n is n

$$(((\lambda \ (y) \ (y \ y)) \ (\lambda \ (x) \ x)) \\ (\lambda \ (z) \ (\lambda \ (x) \ (z \ (z \ x)))))$$

$$(BV \beta)$$

$$(((\lambda \ (x) \ x) \ (\lambda \ (x) \ (z \ (z \ x)))))$$

$$(BV \beta)$$

$$(\lambda \ (z) \ (\lambda \ (x) \ (z \ (z \ x))))$$

$$(\lambda \ (z) \ (\lambda \ (x) \ (z \ (z \ x))))$$

This is 2

Exercise 4: Write a derivation sequence to a normal form and obtain the answer for the below term. Note: you **will** have to reduce under lambdas!

$$((\lambda (z) z)$$

 $(\lambda (g) ((\lambda (x) (x x)) (\lambda (x) x)))$

Exercise 4: Write a derivation sequence to a normal form and obtain the answer for the below term. Note: you **will** have to reduce under lambdas!

The solution is **zero**

This also demonstrates the fact that, while β is the primary rule driving computation (function application), determining λ equivalence may require reducing **under** a λ !

Question:

Say I give you a number n. You know its normal-form (when it is fully-reduced) must be **something** like

$$n = (lambda (f) (\lambda (x) (f (f (f ... (f x) ...))))$$

How can you generate n + 1?

Question:

Say I give you a number n. You know its normal-form (when it is fully-reduced) must be **something** like

$$n = (\lambda (f) (\lambda (x) (f (f ... (f x) ...)))$$

How can you generate n + 1?

$$n+1 = (\lambda (f) (\lambda (x) (f (f (f ... (f x) ...))))$$

"Add another f to the front."

$$n+1 = (\lambda (f) (\lambda (x) (f (f (f ... (f x) ...))))$$

"Add another f to the front."

Now, how could I wrote a function, **succ**, which computes n+1 using **only the lambda calculus**?

Now, how could I wrote a function, **succ**, which computes n+1 using **only the lambda calculus**?

```
;; the *argument*
(lambda (n)
  ;; the thing we're *returning* should do f "n+1 times"
  ;; ((n f) x) "applies f n times" and returns a result
  ;;
  (lambda (f) (lambda (x) (f ((n f) x)))))
```

```
(define succ
 (lambda (n) (lambda (f) (lambda (x) (f ((n f) x)))))
        ;; (succ 1) should equal 2
        ((lambda (n)
           (lambda (f) (lambda (x) (f ((n f) x))))
         (lambda (f) (lambda (x) (f x)))
;; (succ 1) should equal 2
(lambda (f)
  (lambda (x) (f (((lambda (f) (lambda (x) (f x))) f) x))))))
;; note here: we're reducing under lambda!
(lambda (f)
 (lambda (x) (f ((lambda (x) (f x)) x))))))
(lambda (f)
 (lambda (x) (f (f x))))))); this is 2!
```

Question:

Now how do you do addition...? Observation: need **two** arguments. We will use a trick named **currying**.

```
plus = (lambda (n) (lambda (k) ...))
one = (lambda (f) (lambda (x) (f x))
We can call this like:
  ((plus one) one);; compute 2
```

Currying

The λ -calculus supports multi-arg functions easily via currying—every function of (x0 x1 ...) is written as (λ (x0) (λ (x1) ...))

But, callsites to those functions must be modified as well— (x0 x1 ...) must become (...(x0 x1) ...)

Exercise 5: Translate the following *Racket* lambda to use the curried style—also translate the callsite of +, assuming it must be curried as well:

(define f (lambda (x y z) (+ x y z))

Exercise 5: Translate the following *Racket* lambda to use the curried style—also translate the callsite of +, assuming it must be curried as well:

```
(define f (lambda (x y z) (+ x y))
(define f (lambda (x y z) ((+ x) y))

(f x y z)
->
(((f x) y) z)
```

Question:

Now how do you do addition...? Observation: need **two** arguments. Use **currying**.

```
plus = (lambda (n) (lambda (k) ...))
one = (lambda (f) (lambda (x) (f x))
We can call this like:
  ((plus one) one)
```

Observe the key idea: plus returns a function that **takes another function** (the second **one**) to complete the work!

```
((n f) x);; applies f to x n times
  ((k f) x);; applies f to x k times

plus =
(lambda (n) (lambda (k)
  (lambda (f) (lambda (x) ((k f) ((n f) x)))))
```

```
((n f) x);; applies f to x n times
  ((k f) x);; applies f to x k times

plus =
(lambda (n) (lambda (k)
    (lambda (f) (lambda (x) ((k f) ((n f) x))))))
```

Exercise **6**: Write a reduction sequence for the following (after converting 0 and 1 to church numerals)

```
((plus 1) 1)
```

Alright, now how do you do multiplication..? Well, do "n **k times**!"

```
(n1 f);; applies f (to some arg) n1 times
(n0 (n1 f));; "does f n1 times" n0 times in row
```

```
(lambda (n0)
(lambda (n1)
(lambda (f) (lambda (x) ((n0 (n1 f)) x))))
```

Optional (homework):

Reduce (to beta-normal-form, i.e., doing all possible reductions) the following (encoding plus, 0, 1, and 2 correctly):

```
(mult 2 1);; (lambda (f) (lambda (x) (f (f x)))
```