UMD DATA605 - Big Data Systems Python Dask

GP Saggese gsaggese@umd.edu

with thanks to Alan Sussman, Amol Deshpande, and authors of www.mmds.org

Dask: Resources

- Web resources:
 - Dask project
 - Dask examples
- Tutorial
 - Dask tutorial
 - Dask advanced tutorial
- Class project
- Mastery
 - Data science with Python and Dask, 2019
 - Amazon

Dataset Size Issues

- Small datasets (< 1 GB)
 - Fits into RAM
 - Manipulation doesn't require paging to disk
- Medium dataset (< 1TB)
 - Doesn't fit into RAM
 - Fits into local disk
 - Performance penalty imposed by using local disk
 - Need multiple CPU cores
 - Difficult to take advantage of parallelism with Python / Pandas
- Large dataset (> 1TB)
 - Doesn't fit into RAM
 - Doesn't fit into local disk
 - Need multiple servers
 - Python / Pandas were not built to operate on distributed datasets
 - Use frameworks for massive datasets
 - E.g., Hadoop, Spark, Dask, Ray

Dataset Size Issues

- Small datasets
 - < 1 GB
- Medium dataset
 - ₋ < 1TB
- Large dataset
 - ₋ > 1TB
- The thresholds are fuzzy and changing over time
 - E.g., you can scale the computer 10x and get 10x bigger data sets
- Problem with scaling datasets
 - Long run times
 - Rewriting code in different language / API for datasets of different size
 - Need to think about what to do it and how to do it efficiently
 - Cumbersome framework (Pandas easy, Hadoop difficult)

Dask

Dask is written in Python

- It scales natively Numpy, Pandas, sklearn
- Dask objects are wrappers (don't just mirror the interface) objects from the respective libraries (e.g., Pandas DataFrame, numpy array)
- Parallel parts are called "chunks" or "partitions"
 - Are queued to be worked on
 - Shipped between machines
 - Worked locally on a machine

Pros

- Users don't need to learn a new language, but can use familiar interfaces
- Can focus on writing code that is optimized for parallelism
 - Dask does the heavy lifting

Scaling Dask is easy

- Users can write a prototype task on a local machines and use a cluster when needed
- No need to refactor existing code
- No need to handle cluster-specific issues
 - E.g., resource management, data recovery, data movement
- Dask runs on multi-core
- Dask can use cluster managers
 - E.g., Yarn, Mesos, Kubernetes, AWS ECS

dask

Dask Layers

Scaling Up vs Scaling Out

Scaling up

- = replace equipment with larger, faster equipments
 - E.g., buy a larger pot, replace knife with food processor

- Pros

You got better hardware, nothing else needs to change (e.g., code)

Cons

- There will be a time where you exceed the capacity of the current machines
- Cost: more powerful machines are expensive

Scaling out

- = divide the work between many workers in parallel
 - E.g., buy more pots and hire more cooks

Pros

- Task scheduler organizes computation, assigning workers to each task
- More cost-effective solution since no specialized hardware is needed

Cons

- Need to write code to expose parallelism
- Costs of maintaining a cluster

Dask: Computation

Lazy computations

- User defines the transformations on the data
- No need to wait for one computation to finish before defining the next
- Avoid loading the entire data in memory by operating in chunks
- E.g.,
 - Split a 2GB file into 32 64MB chunks
 - Operate on 8 chunks at a time on each server
 - The max memory consumption doesn't exceed 512MB = (8 x 32)
- Each task tracks object dimensions and data types
 - No code is executed

compute()

- Running a computation (aka materializing)
missing_count_pct = missing_count.compute()

persist()

- As soon as a node in the graph emits results, its intermediate work is
- discarded to minimize memory usage
- If we need to do additional computation on intermediate nodes we need to re-run the graph
- persist() tells Dask to keep the intermediate result in memory
- This speeds up a large and complex DAG that needs to be reused many times

Dask: Data Structures

- Dask DataFrame implements Pandas DataFrame
 - Tabular / relational data

- Dask Array implements numpy ndarray
 - Multidimensional array

- Dag Bag coordinates Python lists of objects
 - Parallelize computations on unstructured or semi-structured data

```
[1, 2, 3, 4, 5]
[1, 2, 3] [4, 5]
```

Dask Reading Data

```
import dask.dataframe as dd
df = dd.read_csv('nyc-parking-tickets-2017.csv')
missing_values = df.isnull().sum()
missing_values
```

- dask.dataframe.read_csv()
 - Doesn't load the data in memory with
 - Tries to infer the types of the columns
 - By randomly sampling some data
 - Best to set the data types
 - Even better is to use Parquet since it stores data and types together
- Partitions = chunks of data that can be worked independently
 - E.g., 33 partitions
 - Graph is composed of 99 tasks
 - Each partition reads data, splits data, initializes df object

dataframe-sum-agg

Low Level APIs: Delayed

- Handle computations that don't fit in native Dask data structures (e.g., Dask DataFrame)
- In the example below there is parallelism that can be exploited

```
def inc(x):
    return x + 1
def double(x):
    return x * 2
def add(x, y):
    return x + y
data = [1, 2, 3, 4, 5]
output = []
for x in data:
    \# (x + 1) + (x * 2) = 3x + 1
    a = inc(x)
    b = double(x)
    c = add(a, b)
    # 1 -> 4
    # 2 -> 7
    # 3 -> 10
    # 4 -> 13
    # 5 -> 16
    output.append(c)
\# 4 + 7 + 10 + 13 + 16 = 20 + 20 + 10 = 50
total = sum(output)
print(total)
```


Low Level APIs: Futures

- In parallel programming, a "future" encapsulates the asynchronous execution of a callable, representing the eventual result of the operation
- Futures is the most general way of specifying concurrency in Dask
 - Everything can be expressed in terms of futures
 - User can specify what's blocking and what's not blocking
- Python concurrent.futures
 - High-level interface for asynchronously executing callables
 - Thread pool or Process pool (same interface Executor)
- Dask extends concurrent.futures
 - Dask client can be used anywhere concurrent.futures can be used


```
def inc(x):
    return x + 1

def add(x, y):
    return x + y

a = client.submit(inc, 10)
b = client.submit(inc, 20)

>>> a

<Future: status: pending, key: inc-b8aaf26b99466a7a1980efa1ade6701d>

>>> a

<Future: status: finished, type: int, key: inc-b8aaf26b99466a7a1980efa1ade6701d>

>>> a.result() # blocks until task completes and data arrives
```

© UMD DATA605

11

Different Types of Parallel Workload

- Break program in medium-size tasks of computation
 - E.g., a function call

Embarrassingly Parallel

Hadoop/Spark/Dask/Airflow/Prefect

MapReduce

Hadoop/Spark/Dask

Encoding Task Graph

Dask encodes tasks in terms of Python dicts and functions


```
import dask.dataframe as dd

df = dd.read_csv('myfile.*.csv')

df = df + 100

df = df[df.name == 'Alice']
```

```
{
# From the dask.dataframe.read_csv call
('read-csv', 0): (pandas.read_csv, 'myfile.0.csv'),
('read-csv', 1): (pandas.read_csv, 'myfile.1.csv'),
('read-csv', 2): (pandas.read_csv, 'myfile.2.csv'),
('read-csv', 3): (pandas.read_csv, 'myfile.3.csv'),

# From the df + 100 call
('add', 0): (operator.add, ('read-csv', 0), 100),
('add', 1): (operator.add, ('read-csv', 1), 100),
('add', 2): (operator.add, ('read-csv', 2), 100),
('add', 3): (operator.add, ('read-csv', 3), 100),

# From the df[df.name == 'Alice'] call
('filter', 0): (lambda part: part[part.name == 'Alice'], ('add', 0)),
('filter', 1): (lambda part: part[part.name == 'Alice'], ('add', 1)),
('filter', 3): (lambda part: part[part.name == 'Alice'], ('add', 2)),
('filter', 3): (lambda part: part[part.name == 'Alice'], ('add', 3)),
}
```

Task Scheduling

- Data collections (Bags, Arrays, DataFrame) and their operations create task graphs
 - Nodes in the task graph are Python functions
 - Edges are dependencies (e.g., output from one task used as input in another task)
- Task graphs are scheduled for execution
- Single-machine scheduler
 - Use local process or thread pool
 - Simple but it can only run on a single machine
- Distributed scheduler
 - It can run locally or distributed across a cluster

Task Scheduling

- Dask task scheduler orchestrates the work dynamically
 - Not a static scheduling of operations like a relational DB
 - When the computation takes place, Dask dynamically assesses:
 - What tasks has been completed
 - What tasks is left to do
 - What resources (CPUs) are free
 - Where the data is located
- This dynamic approach handles a variety issues:
 - Worker failure
 - Just re-run
 - Workers completing work at different speeds because of:
 - Different computation
 - Different hardware
 - Different workloads on the servers
 - Slower access to the data
 - Network unreliability
 - Just re-run or remove the isolated nodes

Dask vs Spark

Spark has

- Pros

- Popular framework for analyzing large datasets
- In-memory alternative to MapReduce / Hadoop

- Cons

- Spark is a Java library, supporting Python through PySpark API
 - Python code is executed on JVM through `py4j`
 - Difficult to debug since execution occurs outside Python
- Different DataFrame API than Pandas
 - Learn how to do things "the Spark way"
 - You might need to implement things twice to go from exploratory analysis to large experiments / production
- Optimized for MapReduce operations over a collection

Difficult to set-up and configure

Tutorial

Tutorial

From the official documentation
 https://docs.dask.org/en/stable/10-minutes-to
 -dask.html