考試時間 120 分鐘‧題目卷為兩張紙‧共三頁‧滿分 110 分。為避免產生爭議‧不建議使用鉛筆作答‧假設使用鉛筆‧除分數加總錯誤外‧均不受理成績更改。所有題目的答案都請依題號順序依序寫在答案卷上‧而是非與填充題必須寫在第一頁。答案卷務必寫學號、姓名‧題目卷不必繳回。考試開始 30 分鐘後不得入場‧開始 40 分鐘內不得離場。考試期間禁止使用字典、計算機、任何通訊器材並請勿自行攜帶任何紙張‧違者成績以零分計算‧監試人員不得回答任何關於試題的疑問。Questions are to be answered on the answer sheet provided.

是非題 **True or False** (20 points) · 請答 **T** (True) 或 **F** (False) 。每題 2 分。(不需詳列過程 · 請依題 號順序依序寫在答案卷第一頁上。)

- 1. If $\lim_{x\to c} f(x) \neq 0$ then $\lim_{x\to c} |f(x)| \neq 0$.
- **2.** Suppose f(x) is a function defined on the closed interval [1,3] and $f(1) \cdot f(3) < 0$, then there exists a number c in (1,3) such that f(c) = 0.
- **3.** If f and g both are odd functions and the range of g lies in the domain of f, then f(g(x)) is an odd function of x.
- **4.** The statement $\lim_{x\to c} f(x) = L$ means that for some $\epsilon > 0$ there exists $\delta > 0$ such that if $0 < |x-c| < \delta$ then $|f(x) L| < \epsilon$.
- 5. The statement $\lim_{x\to c} (f\circ g)(x) = \lim_{x\to c} (f(g(x))) = f(\lim_{x\to c} g(x))$ is true.
- **6.** If f'(a) does not exist, then it is still possible that f is continuous at a.
- 7. $\lim_{x \to (-2)^+} \frac{8}{x^2 4} = \infty.$
- 8. $\frac{d^{99}}{dx^{99}}\cos x = \cos\left(x + \frac{\pi}{2}\right)$.
- **9.** If f(x) is an even function of x, then f'(x) is an odd function of x.
- **10.** If $y = \sec x$, then $\frac{d^2y}{dx^2} = \sec^3 x + \sec x \tan x$.

填充題 Short answer questions (40 points) · 每題 5 分。(不需詳列過程 · 僅將答案依題號順序依序寫在答案卷第一頁上即可。)

1. Find $\lim_{x \to -\infty} (2x + \sqrt{4x^2 + 3x - 2})$.

Answer: ______.

2. Find the linearization L(x) of

$$f(x) = \cos(x^2 + x) + \frac{1}{2x + 1}$$

at x = 0. Answer:_____.

3. Suppose A, B are two real numbers such that $\lim_{x\to 0^+} f(x) = A$ and $\lim_{x\to 0^-} f(x) = B$. Find

$$\lim_{x \to 0^-} f(x^3 - x).$$

Answer:_____.

4. Find $\lim_{\theta \to \pi/4} \frac{\tan \theta - 1}{\theta - \pi/4}$.

Answer:_____.

5. Let $y = x^3 - 3\sqrt{x}$. Find dy.

Answer:_____.

- **6.** Find the natural domain of the function $f(x) = \sin(\sqrt{1-x}) \frac{1}{\sqrt{x}}$. Answer:
- 7. Find $\lim_{x\to 0} \frac{x x\cos x}{\sin^2 3x}$.

Answer:_____.

8. Find the values of a and b so that the function

$$f(x) = \begin{cases} ax^2 - b, & \text{if } x > -1\\ bx^3 - 2, & \text{if } x \le -1 \end{cases}$$

is differentiable for all x-values. Answer:_____.

計算問答證明題 Show all your work (50 points) · 每題 10 分 · 請依題號順序依序寫在答案卷上 · 可 以用中文或英文作答。詳列計算過程、否則不予計分。需標明題號但不必抄題。

1. (10 points) Find dy/dx of the curve

$$x^2\cos^2(2y) - \sin(2y) = 0$$

by using implicit differentiation and find the equation of the line that is tangent to the curve at the point $\left(0, \frac{\pi}{2}\right)$.

- 2. (10 points) Let f(x) be a function satisfying $|f(x)| \le x^2$ for $-1 \le x \le 1$. Show that f is differentiable at x = 0 and find f'(0).
- 3. (10 points) Coffee is draining from a conical filter into a cylindrical coffeepot at the rate of 160 $\rm cm^3/$ min. (The volume of the circular cone with base radius r and height h is $V = \frac{1}{3}\pi h r^2$.)

- a. How fast is the level in the pot rising when the coffee in the cone is 12 cm deep?
- **b.** How fast is the level in the cone falling then?
- 4. (10 points) Find all horizontal and vertical asymptotes of the graph of

$$f(x) = \frac{|x|^3 + 1}{x^3 + 2}.$$

5. (10 points) Find dy/dx.

a.
$$y = (\cos^2 3x) \tan (x^{-2})$$

a.
$$y = (\cos^2 3x) \tan (x^{-2})$$

b. $y = \frac{(x+1)(x+2)}{(x-1)(x-2)}$

(試題結束)

考試時間 120 分鐘‧題目卷為兩張紙‧共三頁‧滿分 110 分。為避免產生爭議‧不建議使用鉛筆作答‧假設使用鉛筆‧除分數加總錯誤外‧均不受理成績更改。所有題目的答案都請依題號順序依序寫在答案卷上‧而是非與填充題必須寫在第一頁。答案卷務必寫學號、姓名‧題目卷不必繳回。考試開始 30 分鐘後不得入場‧開始 40 分鐘內不得離場。考試期間禁止使用字典、計算機、任何通訊器材並請勿自行攜帶任何紙張‧違者成績以零分計算‧監試人員不得回答任何關於試題的疑問。Questions are to be answered on the answer sheet provided.

是非題 **True or False** (20 points) · 請答 **T** (True) 或 **F** (False) 。每題 2 分。(不需詳列過程 · 請依題 號順序依序寫在答案卷第一頁上。)

- 1. The function $f(x) = |x^3 9x|$ have 5 critical points.
- 2. $\int \sqrt{2x+1} \, dx = \sqrt{x^2+x} + C$.
- 3. If f is odd, continuous and $\int_0^1 f(x) dx = 3$, then $\int_{-1}^0 f(x) dx = -3$.
- **4.** Suppose that f(0) = 2 and f'(x) = 0 for all $x \in \mathbb{R}$. Then f(-1) = 2.
- 5. Let f(0) = -3 and $f'(x) \le 5$ for all $x \in \mathbb{R}$. Then f(2) can be 8.

6.
$$\lim_{n \to \infty} \frac{\sqrt{1} + \sqrt{2} + \sqrt{3} + \dots + \sqrt{n}}{n\sqrt{n}} = \frac{2}{3}$$
.

- 7. If $\int_0^1 |f(x)| dx$ exists, then $\int_0^1 f(x) dx$ exists.
- 8. If f is continuous on (a, b), then f must attain a minimum and a maximum.
- 9. A continuous function is an integrable function.
- 10. If $f''(x_0) = 0$, then x_0 is a point of inflection of f.

填充題 Short answer questions (4θ points),每題 5 分。(不需詳列過程,僅將答案依題號順序依序寫在答案卷第一頁上即可。)

1. Find
$$\frac{dy}{dx}$$
, if

$$y = \int_0^{\sin x} \frac{dt}{\sqrt{1 - t^2}}, \quad |x| < \frac{\pi}{2}.$$

Answer: ______.

2. Calculate the smallest distance from the parabola $y^2 = 2x$ to the point (1,4).

Answer:_____.

3. Evaluate the integral

$$\int \frac{\sin(2t+1)}{\cos^2(2t+1)} dt.$$

Answer:_____.

4. Find the area of the region enclosed by the graphs of $y=x,\,y=\frac{x^2}{4}$ and y=1.

Answer:_____.

5. Use the integral to evaluate

$$\lim_{n \to \infty} \left[\frac{1^2}{n^3} + \frac{2^2}{n^3} + \frac{3^2}{n^3} + \dots + \frac{(n-1)^2}{n^3} \right].$$

Answer:_____.

6. Find the average value of

$$f(x) = \sqrt{16 - x^2}$$

on [-4,0]. Answer:_____.

7. Suppose f is a continuous function having

$$\int_{1}^{x} f(y)dy = x^{3} - 2x^{2} + 1.$$

Find f(x). Answer:_____.

8. Find the length of the curve

$$y = (1/3)(x^2 + 2)^{3/2}$$

from x = 0 to x = 3. Answer:_____.

計算問答證明題 Show all your work (50 points) · 每題 10 分 · 請依題號順序依序寫在答案卷上 · 可以用中文或英文作答 · **詳列計算過程** · 否則不予計分 · 需標明題號但不必抄題 ·

- 1. (10 points) Graph the function $f(x) = x^4 2x^2$.
 - a. Find the intervals on which f is increasing and the intervals on which f is decreasing. (3 points)
 - **b.** Find where f is concave up and where f is concave down. (3 points)
 - c. Plot some specific points, such as the local maximum and minimum points, inflection points. Then sketch the curve. (4 points)
- 2. (10 points)
 - a. Find the volume of the solid generated by revolving the region bounded by

$$y = \sec x, \quad y = \sqrt{2}, \quad -\frac{\pi}{4} \le x \le \frac{\pi}{4}$$

about the x-axis. (5 points)

b. Find the volume of the solid generated by revolving the region bounded by

$$y = -x(x-2), \quad y = 0$$

about the line x = -1. (5 points)

- 3. (10 points) Find the center of mass of a thin plate covering the region bounded above by the parabola $y = 9 x^2$ and below by the x-axis, if the density of the plate at the point (x, y) is $\delta(x) = x^2$.
- 4. (10 points) Evaluate the following integrals

a.
$$\int \csc(x) \cot(x) dx$$
. (5 points)

b.
$$\int_0^3 \frac{\sqrt{x}}{\sqrt{x} + \sqrt{3-x}} dx.$$
 (5 points)

5. (10 points) If $f(x) = x^3 + 3x + \cos x$, prove that f has at most one fixed point. (A point x_0 is called a fixed point of f if $f(x_0) = x_0$.)

考試時間 120 分鐘‧題目卷為兩張紙‧共三頁‧滿分 110 分。為避免產生爭議‧不建議使用鉛筆作答‧假設使用鉛筆‧除分數加總錯誤外‧均不受理成績更改。所有題目的答案都請依題號順序依序寫在答案卷上‧而是非與填充題必須寫在第一頁。答案卷務必寫學號、姓名‧題目卷不必繳回。考試開始 30 分鐘後不得入場‧開始 40 分鐘內不得離場。考試期間禁止使用字典、計算機、任何通訊器材並請勿自行攜帶任何紙張‧違者成績以零分計算‧監試人員不得回答任何關於試題的疑問。Questions are to be answered on the answer sheet provided.

是非題 **True or False** (20 points) · 請答 **T** (True) 或 **F** (False) 。每題 2 分。(不需詳列過程 · 請依題 號順序依序寫在答案卷第一頁上。)

- 1. Suppose f(x) is a function defined on the closed interval [1,3] and $f(1) \cdot f(3) < 0$, then there exists a number c in (1,3) such that f(c) = 0.
- 2. The statement $\lim_{x\to c} (f\circ g)(x) = \lim_{x\to c} (f(g(x))) = f(\lim_{x\to c} g(x))$ is true.
- 3. $\int_{1}^{2} \frac{dx}{x(\ln x)^{p}}$ converges for p < 1.
- 4. $\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$ converges.
- 5. If $f, g: (-1,1) \to \mathbb{R}$ with f, g > 0 on (-1,1), $\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0$ then $\lim_{x \to 0} f(x)^{g(x)} = 1$. That is " $0^0 = 1$ ".
- **6.** $\int_0^3 (x-1)^{-3} dx = \left[\frac{-1}{2(x-1)^2} \right]_0^3 = \frac{3}{8}.$
- 7. Because $\cos\left(-\frac{\pi}{3}\right) = \frac{1}{2}$, it follows that $\cos^{-1}\left(\frac{1}{2}\right) = -\frac{\pi}{3}$.
- 8. If f is decreasing, concave up and $f' \neq 0$, then its inverse function is concave down.
- **9.** The function $f(x) = x^{1/(x-1)}$ has a continuous extension to x = 1.
- 10. $\int_0^\infty \frac{1}{x^p} dx$ diverges for all $p \in \mathbb{R}$.

填充題 Short answer questions (40 points),每題 5 分。(不需詳列過程,僅將答案依題號順序依序寫在答案卷第一頁上即可。)

1. Find the values of a and b so that the function

$$f(x) = \begin{cases} ax^2 - b, & \text{if } x > -1\\ bx^3 - 2, & \text{if } x \le -1 \end{cases}$$

is differentiable for all x-values. Answer: _____.

2. Evaluate the limit:

$$\lim_{x \to 0^+} \frac{(\tan^{-1}\sqrt{x})^2}{x\sqrt{x+1}}.$$

Answer: .

3. Evaluate the integral.

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sec^4 x}{\tan x} \, dx$$

Answer:______.

4. Let $f(x) = x^3 + 27x + 31$. Find $(f^{-1})'(31)$.

Answer:_____.

5. Evaluate the integral.

$$\int_0^1 2^{-\theta} d\theta$$

Answer: .

6. Evaluate the integral.

$$\int \cos^3 \theta \sin 2\theta \ d\theta$$

Answer:_____.

7. Let

$$f(x) = \begin{cases} e^{-1/x^2}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0. \end{cases}$$

Find f'(0). Answer:_____.

8. Order the following functions from slowest growing to fastest growing as $x \to \infty$.

a.
$$e^{x^2}$$
, **b.** x^2 , **c.** $\ln(1+x^4)$, **d.** x^x .

Answer:_____.

計算問答證明題 Show all your work (50 points) · 每題 10 分 · 請依題號順序依序寫在答案卷上 · 可 以用中文或英文作答。詳列計算過程,否則不予計分。需標明題號但不必抄題。

- 1. (10 points) If $f(x) = x^3 + 3x + \cos x$, prove that f has at most one fixed point. (A point x_0 is called a fixed point of f if $f(x_0) = x_0$.)
- 2. (10 points) Evaluate the integrals.

$$\mathbf{a.} \int_0^{\pi/4} \sec^3 x dx$$

b.
$$\int_0^{\ln 4} \frac{e^t}{\sqrt{e^{2t}+9}} dt$$

3. (10 points) Determine if

$$\int_0^1 \frac{dt}{t - \sin t}$$

converges or not.

4. (10 points) Find the limits.

a.
$$\lim_{x \to 0^+} x^2$$

a.
$$\lim_{x\to 0^+} x^x$$

b. $\lim_{x\to \infty} \left(x - \sqrt{x^2 + x}\right)$

5. (10 points) Evaluate

$$\int \frac{5x^3 - 6x^2 + 13x - 28}{(x-1)^2(x^2 + 2x + 5)} dx.$$