BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Comment on this paper

- a new era of NLP has just begun a few days ago
 - Google Brain Research Scientist Thang Luong
- a milestone, ... Google's tradition of violent aesthetics
 - Baoxun Wang, Chief Scientist of Chinese Al startup Tricorn
- 충격, 공포
 - Naver Clova

Summary

- a new leanguage representation model
- · designed to pre-train deep bidirectional representations
 - by jointingly conditioned on left and right context in all layers
- · can be fine-tuned for a wide range of NLP tasks
- SOTA on 11 NKLP tasks
- only-but-important novelty is bidrectional on transformer

Introduction

Language model pre-training

- · effective for improving NLP tasks such as
 - sentence-level tasks
 - natural language inference
 - para-phrasing
 - token-level tasks
 - · named entity recognitiion
 - SQuAD quetion and answering

two ways of applying pretrained repr to downstream tasks

- · feature-based
 - use tasks-speicific architectures with pre-trained repr as additional features
- fine-tunina
 - such as Generative Pre-trained Transformer (OpenAl GPT)
 - use minimal task-specific parameters,
 - is trained on the downstream tasks by simply fine-tuning the pretrained parameters

Our approach

- · blame on current fine-tuning method
 - only use unidirectional, left-to-right context
 - limits on attention : attend only to left context
- suggest masked language model(MLM)
- · suggest next sentence prediction task

Prerequsites

Transformer

- · Attention is all you need
- https://arxiv.org/pdf/1706.03762.pdf (https://arxiv.org/pdf/1706.03762.pdf)
- http://nlp.seas.harvard.edu/2018/04/03/attention.html (http://nlp.seas.harvard.edu/2018/04/03/attention.html)
- Google, 2017
- 계산이 많이 드는 RNN/LSTM 대신해서 간단한 Product-based attention 기제를 가지고 LM tasks를 풀 수 있다.

Attention Visualizations

Figure 1: The Transformer - model architecture.

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

OpenAl Transformer

- https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language-understanding-paper.pdf)
- · OpenAl, Radfold, 2018
- Transformer를 pre-training 할 때 사용

Figure 1: (**left**) Transformer architecture and training objectives used in this work. (**right**) Input transformations for fine-tuning on different tasks. We convert all structured inputs into token sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

BERT

- · multi-layer bidirectional transformer encoder
 - same as vaswani, 2017, tensor2tensor
 - https://github.com/tensorflow/tensor2tensor (https://github.com/tensorflow/tensor2tensor)
 - http://aclweb.org/anthology/W18-1819 (http://aclweb.org/anthology/W18-1819)
 - **BERT**_{BASE}: L=12, H=768, A=12, Total Parameters=110M
 - **BERT**_{LARGE}: L=24, H=1024, A=16, Total Parameters=340M
- · Input representation
 - able to handle single sentence or pair of sentences
 - CLS first sentence SEP second sentence SEP
 - use WordPiece embedding with 30,000 token vocabulary
 - learned positional embeddings

Figure 2: BERT input representation. The input embeddings is the sum of the token embeddings, the segmentation embeddings and the position embeddings.

Pretrained tasks

Task 1: Masked LM

- predict randomly masked words from single sentence, or pair of sentences
- train set: 256 batch, 15% randomly masked

[CLS] the man went to [MASK] store [SEP]

Task 2: Predict next sentence

- good for Question and Answering, Natural Language Inference(NLI)
- train set generation : positive example from corpus, negative example generation randomly

Label = NotNext

Usage of BERT for downstream tasks

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Experiments

SOTA on various tasks

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

Ablation Studies

- No Next Sentence Prediction
 - but bidirectional, with masked LM
 - NSP 효과 측정
- Left-to-right, NO NSP

■ bidirectional 기여 측정

	Dev Set						
Tasks	MNLI-m	QNLI	MRPC	SST-2	SQuAD		
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)		
BERT _{BASE}	84.4	88.4	86.7	92.7	88.5		
No NSP	83.9	84.9	86.5	92.6	87.9		
LTR & No NSP	82.1	84.3	77.5	92.1	77.8		

BERT is slower than ...

