

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

09-139377

(43)Date of publication of application: 27.05,1997

(51)Int.Cl.

H01L 21/3065 C23F 4/00 G01N 22/00

(21)Application number: 07-294154

(71)Applicant : FUJITSU LTD

FWITSU VLSI LTD

(22)Date of filing:

13.11.1995

(72)Inventor: SUZUKI MINORU

(54) TERMINAL DETECTION OF DRY ETCHING AND ITS METHOD-

(57)Abstract:

PROBLEM TO BE SOLVED: To allow terminal detection even in dry etching of a film being etched having a small ratio of an area being . etched.

SOLUTION: This device has detection parts 16, 17, 19 detecting the strength of an electric wave of a prescribed wavelength radiated from an etching product generated by ionized etching and/or etching gas, and the terminal deciding parts 20, 21 deciding the terminal of dry etching from a change in a strength of an electric wave of a detected and prescribed wavelength. Thereby, the terminal of dry etching which etches a film being etched is detected by ionized etching gas.

LEGAL STATUS

[Date of request for examination]

28.03.2002

[Date of sending the examiner's decision of rejection]

27.05.2003

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

rejection]

Date of requesting appeal against examiner's decision of

rejection

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

1/1 ページ

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely. 2.**** shows the word which can not be translated.

3. In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The terminal point detection approach of the dry etching characterized by to detect the reinforcement of the electric wave of the predetermined wavelength emitted from the etching product generated by etching and/or the plasma-ized etching gas in the terminal point detection approach of dry etching of detecting the terminal point of the dry etching which etches the etched film with the plasma-rized etching gas, and to determine the terminal point of dry etching based on a change of the electric wave of said predetermined wavelength on the strength. [Claim 2] It is the terminal point detection approach of the dry etching which the electric wave of said predetermined wavelength is an electric wave emitted from said etching product in the terminal point detection approach of dry etching according to claim 1, and is characterized by determining the terminal point of dry etching based on the event of the reinforcement of the electric wave of said predetermined wavelength which was about 1 constant value decreasing, and the percentage reduction showing maximum during dry etching. [Claim 3] It is the terminal point detection approach of the dry etching which the electric wave of said predetermined wavelength is an electric wave emitted from said plasma-ized etching gas in the terminal point detection approach of dry etching according to claim 1, and is characterized by determining the terminal point of dry etching based on the event of the reinforcement of the electric wave of said predetermined wavelength which was about 1 constant value increasing during dry etching, and the rate of increase showing maximum. [Olaim 4] In the terminal point detection equipment of the dry etching which detects the terminal point of the dry etching which etches the etched film with the plasma-ized etching gas The detecting element which detects the reinforcement of the electric wave of the predetermined wavelength emitted from the etching product generated by etching and/or the plasma-ized etching gas, Terminal point detection equipment of the dry etching characterized by having the terminal point decision section which determines the terminal point of dry etching based on change of the reinforcement of the electric wave of said predetermined wavelength detected by said detecting element. [Claim 5] It is the terminal point detection approach of the dry etching characterized by determining the terminal point of dry etching based on the event of said detecting element detecting the electric wave emitted from said etching product in the terminal point detection equipment of dry etching according to claim 4, the reinforcement of the electric wave of said predetermined wavelength which was about 1 constant value decreasing during dry etching , and the percentage reduction showing maximum , as for said terminal point decision section . [Claim 6] It be the terminal point detection approach of the dry etching characterize by determine the terminal point of dry etching based on the event of said detecting element detect the electric wave emit from the plasma-ized etching gas in the terminal point detection equipment of dry etching according to claim 4, the reinforcement of the electric wave of said predetermined wavelength which he shout 1 constant value increase said terminal point decision section during dry etching, and the rate of increase show maximum, [Claim 7] It is terminal point detection equipment of the dry etching characterized by having the heterodyne reception section from which said detecting element changes the electric wave of said predetermined wavelength into a low frequency signal in the terminal point detection equipment of dry etching given in claim 4 thru/or any 1 term of 8, and the datection section which detects the low frequency signal changed by said heterodyne reception aection, and is changed into a voltage signal.....

[Translation done.]

1/4 ページ

* NOTICES *

JPO and NGIPI are not responsible for any damages caused by the use of this translation.

This document has been translated by computer. So the translation may not reflect the original precisely.
 ******* shows the word which can not be translated.
 In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]
[0001]

[Field of the Invention] This invention relates to the terminal point detection approach and equipment of dry etching which detect the terminal point of the dry etching which etches the etched film with the plasma-ized etching gas in the production process of a semiconductor device.

[Description of the Prior Art] In recent years, the dry etching technique excellent in micro-processing nature is also progressing with high integration of a semiconductor device. In a dry etching technique, it becomes the key of the stability of a dry etching process, and dependability to detect the terminal point of dry etching certainly. The dry etching terminal point detection approach using the spectrographic analysis method which carries out the monitor of the variation of the emission spectrum of the proper which the mainly plasma ized for emits conventionally is leamed. In the case of the spectrographic analysis method, the monitor of the emission spectrum of the plasma ized ion (etchant) which is contributed to etching or an etching product is carried out by the light filter, a manachromator, etc., and terminal point detection is performed using optical reinforcement changing corresponding to the change in the etchant near the terminal point, or an etching product.

[0003] The method of detecting the terminal point at the time of carrying out dry etching of the tantalum film as such a dry etching terminal point detection approach is learned (refer to JP,2-234427,A). During etching of the tantalum (Ta) film, the light emitted from the bromine (Br) atom in the plasma was detected using optical/electrical converters, such as a photodicde; and the photomultiplier tube; and the optimal etching processing time which can remove the tantalum film the neither more nor less has been acquired from time amount change of the detected luminescence line.

[0004] Moreover, to detect directly from a change of the reflected light on the strength is tried [that irradiated the laser beam at the wafer, carried out the monitor of the reflected light from the etched film on a wafer, and etching clearance of the etched film was carried out in recent years, and].

[Problem(s) to be Solved by the Invention] However, since the rate of etched surface ratio in a wafer is smaller with high integration and detailed—izing of a semiconductor device in recent years, change of the optical reinforcement by concentration change of etchant [//mear-the dry etching terminal point f and an etching product becomes small relatively, and terminal point detection is difficult.

[0006] Moreover, since the monitor of optical reinforcement is performed via apertures, such as a transparence quartz prepared in the vacuum chamber which is an etching processing room, an aperture will be etched by etchinggas and the etching product, or a spatter will be carried out, the transparency of an aperture will fall, and monitor light will decrease it greatly. In addition, since luminous—intensity change is becoming small by decline in the rate of etched surface ratio, terminal point detection of the dry etching using a spectrographic analysis method will become almost impossible.

[0007] Moreover, when carrying out terminal point detection using a laser beam, terminal point detection of etching is difficult like the spectrographic analysis method mentioned above according to the optical limitation accompanying detailed—izing at the time of having to use an aperture with the sufficient transmission to a laser beam, and carrying out the monitor of the etched part. It is integrated highly increasingly and it has become impossible that thus, it is hard to respond to manufacture of the future semiconductor device made detailed by the spectrographic analysis method mentioned above or the terminal point detecting method using a laser beam.

[0008] The object of this invention is also in the dry etching of the etched film with the small rate of etched surface ratio to offer the dry etching terminal point detection approach and equipment in which terminal point detection is possible.

[Means for Solving the Problem] The above-mentioned object detects the reinforcement of the electric wave of the predetermined wavelength emitted from the etching product generated by etching and/or the plasma-ized etching gas, and is attained by the terminal point detection approach of the dry etching characterized by to determine the terminal point of dry etching based on a change of the electric wave of said predetermined wavelength on the strength in the terminal point detection approach of dry etching of detecting the terminal point of the dry etching which etches the etched film with the plasma-ized etching gas.

http://www4.ipdl,ncipi,go.jp/cgi-bin/tran_web_cgi_ejje

2/4 ~---

[0010] In the terminal point detection approach of the dry etching mentioned above, the electric wave of said predetermined wavelength is an electric wave emitted from said etching product, and it is desirable during dry etching to determine the terminal point of dry etching based on the event of the reinforcement of the electric wave of said predetermined wavelength which was about 1 constant value decreasing, and the percentage reduction showing maximum. In the terminal point detection approach of the dry etching mentioned above, the electric wave-of said predetermined wavelength is an electric wave emitted from said plasma-ized etching gas, and it is desirable during dry etching to determine the terminal point of dry etching based on the event of the reinforcement of the electric wave of said predetermined wavelength which was about 1 constant value increasing, and the rate of increase showing maximum.

[0011] In the terminal point detection equipment of the dry etching which detects the terminal point of the dry etching which etches the etched film with the etching gas which plasma-ized the above-mentioned object. The detecting element which detects the reinforcement of the electric wave of the predetermined wavelength emitted from the etching product generated by stehing and/or the plasma-ized etching gas. It is attained by the terminal point detection equipment of the dry etching characterized by having the terminal point decision section which determines the terminal point of dry etching based on change of the reinforcement of the electric wave of said predetermined wavelength detected by said detecting element.

[0012] In the terminal point detection equipment of the dry etching mentioned above, said detecting element detects the electric wave emitted from said etching product, and, as for said terminal point decision section, it is desirable to determine the terminal point of dry etching based on the event of the reinforcement of the electric wave of said predetermined wavelength which was about 1 constant value decreasing during dry etching, and the percentage reduction showing maximum. In the terminal point detection equipment of the dry etching mentioned above, said detecting element detects the electric wave emitted from the plasma-ized etching gas, and, as for said terminal point decision section, it is desirable to determine the terminal point of dry etching based on the event of the reinforcement of the electric wave of said predetermined wavelength which was about 1 constant value increasing during dry etching, and the rate of increase showing maximum.

[0013] As for said detecting element, in the terminal point detection equipment of the dry etching mentioned above, it is desirable to have the heterodyne reception section which changes the electric wave of said predetermined wavelength into a low frequency signal, and the detection section which detects the low frequency signal changed by said heterodyne reception section, and is changed into a voltage signal.

[Embodiment of the Invention] The terminal point detection equipment of the dry etching by 1 operation gestalt of this invention is explained using <u>drawing 1</u> thru/or <u>drawing 3</u>. <u>Drawing 1</u> shows the dry etching system which has terminal point detection equipment 10 of dry etching. This dry etching system explains as an example the case where RIE etching of the most general silicon oxide (SiO2) is performed.

[0015] The etching processing room 11 has the electrodes 12a and 12b of a couple, and the wafer 13 of an oxide film (SiO2) is put on one electrode 12a. Inlet 11a and exhaust port 11b are prepared in the etching processing room 11. CF4 as etching gas is introduced into the etching processing room 11 from inlet 11a, and the etching product by dry etching is discharged from exhaust port 11b.

[0016] If etching gas is introduced and high-frequency power is added between two-electrodes 12a and 12b by RF generator 14, etching gas will be plasma-ized and etching of the oxide film formed in wafer 13 front face will be performed. Under the present circumstances, CO molecule is generated as one of the etching products by the dry etching of silicon oxide. The aperture 15 formed with the transparent quartz plate etc. is formed in the etching processing room 11, and the monitor of the situation under-etching can be carried out from an aperture 15. The terminal point detection equipment 10 of dry etching carries out the monitor of the electric wave emitted from the aperture of the etching processing room 11, and detects the terminal point of dry etching.

[0017] The terminal point detection equipment 10 of dry etching has the electromagnetic horn 16. An electromagnetic horn 18 estohec the electric wave of a predetermined frequency selectively through the aperture 15 for the monitors of the etching processing room 11 from a 115.3GHz (wavelength: 2.8mm) electric wave with wavelength longer than the light emitted from CO molecule during dry etching. The electric wave caught by the electromagnetic horn 16 is changed into a low frequency signal by the heterodyne reception section 17. The heterodyne reception section 17 has the heterodyne detection circuit of a three-step configuration, and changes the electric wave of a predetermined frequency into a low frequency signal. Each heterodyne detection circuit has mixer 18a, local-oscillator 18b, and intermediate-frequency-amplifier 18c. The electric wave of the predetermined frequency inputted into each heterodyne detection circuit is mixed by mixer 18a as the output of local-oscillator.

18b, and the intermediate frequency signal is amplified by intermediate-frequency-amplifier 18c.

[0018] It is mixed with the 113.8GHz signal oscillated from local-oscillator 18b by mixer 18a of the heterodyne detection circuit of the 1st step, a 1.5GHz intermediate frequency signal is generated, and the 115.3GHz electric wave from CO molecule caught by the electromagnetic horn 16 is amplified by intermediate frequency—amplifier—18c. Next, it is mixed with the 1GHz signal oscillated from local-oscillator 18b by mixer 18a of the heterodyne detection circuit of the 2nd step, a 500MHz intermediate frequency signal is generated, and a 1.5GHz intermediate frequency signal is amplified by intermediate—frequency—amplifier 18c.

[0019] Next, it is mixed with the 450MHz signal oscillated from local—oscillator 18b by mixer 18a of the heterodyne detection circuit of the 3rd step, a 50MHz intermediate frequency signal is generated, and a 500MHz intermediate frequency signal is amplified by intermediate—frequency—amplifier 18o. Thus, by passing through the heterodyne

3/4 ページ

reception section 17, the 115,3GHz electric wave caught by the electromagnetic horn 16 is changed into the low frequency signal which is 50MHz which signal processing tends to carry out, and is made into the monitor signal for terminal point detection of dry etching.

[0020] The intermediate frequency signal acquired in the heterodyne reception section 17 is sent to the detection section 19, and is changed into a voltage signal. This voltage signal is sent to the A-D conversion section 20 from the detection section 19, and is changed into a digital signal from an analog signal in the A-D conversion section 20. The digital signal changed in the A-D conversion section 20 serves as data in which the change on the strength under dry etching of the electric wave of a predetermined frequency is shown.

[0021] Thus, the change on the strength under dry etching of an electric wave with wavelength longer than the light emitted during dry etching is detected by the heterodyne reception section 17, the detection section 19, and the A-D conversion section 20. The data in which this change on the strength is shown are further sent to the data-processing section 21. The data-processing section 21 calculates the time series data based on are recording of the data in which a change on the strength is shown, and determines the terminal point of dry etching. The terminal point of dry etching is detectable as follows from the etched film being lost and the amount of an etching product changing a lot at the terminal point of dry etching.

[0022] Drawing 2 is the monitor wave which showed the reinforcement of the electric wave which CO molecule which is one of the etching products emits corresponding to the elapsed time of etching. This electric wave is a militation and coincidence rapidly as shown in drawing 2, radio field intensity starts to etching initiation and coincidence rapidly. Since the amount of an etching product will reach maximum mostly and will be in a stable state after a while after etching initiation, a radiated wave also passes mostly with maximum.

[0023] After fixed time amount by which generating of an etching product is stabilized from etching initiation passes, the data-processing section 21 starts the operation of time series data. Since it decreases rapidly, and it will be at the etching termination event, reduction will stop and the condition will continue henceforth if an etching product becames etching termination nearness, as shown in <u>drawing 2</u>, the radio field intensity emitted from an etching product also falls according to reduction of an etching product. Furthermore, if etching progresses and the etched film is removed thoroughly, an etching product will also be lost and the reinforcement of a radiated wave will also serve as the almost same level as etching initiation or before.

[0024] Therefore, the data-processing section 21 carries out differential processing of the time series data, and determines the terminal point of dry etching based on the event of percentage reduction showing maximum. For example, as shown in <u>drawing 2</u>, after the rate of strength reduction of a radiated wave shows maximum, the event of changing most is determined as a terminal point of dry etching. The data-processing section 21 outputs a power-off signal to the RF power control section 22 at the same time it determines the terminal point of dry etching. [0025] Thus, although the etched film is lost and the amount of an etching product changes a lot at the terminal point of dry etching, the amount of etchant changes a lot similarly. Therefore, the terminal point of dry etching is detectable with change of the yield of etchant. <u>Drawing 3</u> is the monitor wave which showed the reinforcement of the electric wave which the plasma-ized etching gas (CF4 gas) which is etchant emits corresponding to the elapsed time of etching. Since CF4 plasma-ized gas emits a 124.8GHz (wavelength; 2.4mm) electric wave, an electromagnetic hom 16 is edjusted so that this electric wave may be received selectively.

[0026] An electromagnetic hom 16 catches selectively the electric wave of the predetermined frequency emitted from etchant during dry etching through the sperture 15 for the monitors of the etching processing room 11. The 124.8GHz electric wave caught by the electromagnetic hom 16 is changed into 50MHz signalling frequency by passing through the heterodyne reception section 17. The intermediate frequency signal acquired in the heterodyne reception section 17 passes through the detection section 19 and the A-D conversion section 20, and serves as data in which the change on the strength under dry etching of the electric wave of a predetermined frequency is shown.

[0028] After fixed time amount by which generation of etchant is stabilized from etching initiation passes, the operation of the time series data based on the data-processing section 21 is started. Since it increases rapidly, and it will be at the etching termination event, an increment will step and the candition will continue henceforth if etchant becomes etching termination nearness, as shown in drawing 3, the radio field intensity emitted from etchant also becomes large according to the increment in etchant. Furthermore, if etching progresses and the etchant also becomes large according to the increment and the displacement from exhaust-port 11b balance, etchant will not increase but the reinforcement of a radiated wave will also serve as as [maximum] mostly. [0029] Therefore, the data-processing section 21 carries out differential processing of the time series data, and determines the terminal point of dry etching based on the event of the rate of increase showing maximum. For example, as shown in drawing 3, after the rate of increase of the reinforcement of a radiated wave shows-maximum, the event of changing most is determined as a terminal point of dry etching. The data-processing section 21 outputs a power-off signal to the RF power control section 22 at the same time it determines the terminal point of dry

etching.

[0030] Next, an operation of the dry etching system which has terminal point detection equipment 10 of dry etching is explained. First, CF4 gas as etching gas is introduced into the etching processing room 11 from inlet 11a, and high-frequency power is applied between two-electrodes 12a and 12b by RF generator 14. High-frequency power is added, etching gas is plasma-ized, and etching of the silicon oxide formed in wafer 13 front face is started. Initiation of etching generates CO molecule as one of the etching products of silicon oxide.

[0031] Then, by the electromagnetic horn 16, the radiated wave from etchant or an etching product is caught, and the data which show a change of a radiated wave on the strength to the data—processing section 21 are stored. The data—processing section 21 calculates the time series data based on are recording of the data in which a change on the strength is shown, and determines the terminal point of dry etching. Next, a power—off signal is outputted to terminal point detection and coincidence of dry etching from the data—processing section 21 at the RF power control section 22. If a power—off signal inputs, the RF generator control section 22 will suspend actuation of RF generator 14, and dry etching will end it.

[0032] Thus, according to 1 operation gestalt of this invention, also in the dry etching of the etched film with the rate of etched surface ratio small by carrying out the monitor of the electric wave smitted during dry etching, and detecting radio field intensity by detailed-izing of a semiconductor device, since a terminal point is certainly detectable, it can contribute to improvement in the stability of a dry etching process, and dependability. [0033] Under the present circumstances, since what a monitor is carried out for is an electric wave emitted during dry etching, even if optical cloudy weather arises in the aperture 15 for monitors by etching and the spatter phenomenon by etching gas or the etching product, the monitor signal for terminal point detection is penetrated. without being influenced of cloudy. Moreover, the electric wave which carries out a monitor has long wavelength compared with light, and since it is enough reflected and refracted with the metallic material which constitutes the etching processing room 11, it does not need to put an electromagnetic horn 16 on the location the plasma and the wafer 13 under etching appear directly from an aperture 15. Therefore, the degree of freedom of installation of the terminal point detection equipment 10 of dry etching to the etching processing room 11 increases. In order to double the location of the aperture 15 for acquiring a monitor signal with the terminal point detection equipment 10 of dry etching, it becomes unnecessary therefore, to improve the structure of an etching chamber. [0034] Not only the above-mentioned operation gestalt but various deformation is possible for this invention. For...... example, when the radiated wave which carries out a monitor is a thing from CO molecule, the electric wave of fraquencies other than the frequency of 115.3GHz, for example, an electric wave (110.2GHz and 109.7GHz), is ... sufficient. In addition, if it is a radiated wave with a low frequency of about dozens of MHz, incorporating in the data-processing section will also become possible, without passing through the heterodyne reception section. [0035] Moreover, when etching silicon oxide, you may make it the electric wave emitted from etching products other than CO molecule, for example, O dyad, and SiF4 molecule detect termination of etching. Furthermore, although the above-mentioned operation gestalt explained etching of silicon oxide as an example, this invention can be applied also when etching other etched film. For example, when etching Si film by CF4, you may make it F which is SiF4 molecule which is an etching product, a SiC molecule, and etchant, and the electric wave emitted from CF3 detect termination of etching. Moreover, when etching aluminum film by CCI4, you may make it CI which are AICI3 molecule which is an etching product, C molecule, and etchant, and the electric wave emitted from CCI detect termination of etching.

[0036] [Effect of the Invention] According to this invention the above passage, the change on the strength under dry etching of an electric wave with wavelength longer than the light emitted during dry etching is detected, and since he is trying to detect the terminal point of dry etching based on a change on the strength which detected, also in the dry etching of the etched film with the small rate of etched surface ratio by detailed—izing of a semiconductor device, a terminal point can be detected certainly and it can contribute to improvement in the stability of a dry etching process, and dependability. Moreover, even if optical cloudy weather arises in the aperture by etching and the spatter phenomenon, detection of the monitor signal for terminal point detection can be performed, without being influenced. Moreover, the degree of freedom of installation of the terminal point detection equipment of dry etching to an etching processing room increases.

[0037] Moreover, the reinforcement of the electric wave of the predetermined wavelength which was about 1 constant value decreases, and if the terminal point of dry etching is determined based on the event of the percentage reduction showing maximum, the terminal point of dry etching is detectable during dry etching, using the electric wave emitted from an etching product. Moreover, the reinforcement of the electric wave of the predetermined wavelength which was about 1 constant value increases, and if the terminal point of dry etching is determined based on the event of the rate of increase showing maximum, the terminal point of dry etching is detectable during dry etching, using the electric wave emitted from the plasme—ized etching gas.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely. 2.******** shows the word which can not be translated.

3. In the drawings, any words are not translated.

DRAWINGS

[Drawing 2] エッテング生成物の一つであるCO分子が放射する電波の強度を エッテングの迅速分数に対応して示したモニタ被形

[Drawing 3] エッティントが放射する電波の強逆をエッテングの誘退時間に 対応して形したモニク技形

[Drawing 1]

[Translation done.]

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-139377

(43)公開日 平成9年(1997)5月27日

(51) Int.Cl. ⁶ H 0 1 L 21/30 C 2 3 F 4/00 G 0 1 N 22/00		庁内整理番号	C23F G01N	21/302 4/00 22/00 21/302		技 E F Z C	術表示箇所
			審查請求	未 計求	請求項の数7	OL ((全 7 頁)
(21)出願番号	特願平7-294154		(71)出願人		23 朱式会社		
(22)出顧日	月13日	神奈川県川崎市中原区上小田中4丁目1番					
			(71)出顧人	、000237617 富士通ヴィエルエスアイ株式会社 愛知県春日井市高蔵寺町2丁目1844番2			
			(72)発明者	爱知県和	と 撃日井市高蔵寺『 ブィエルエスアイ		-
			(74)代理人		北野 好人		

(54) 【発明の名称】 ドライエッチングの終点検出方法及び装置

(57)【要約】

【課題】 被エッチング面積比率の小さな被エッチング 膜のドライエッチングにおいても、終点検出が可能なド ライエッチング終点検出方法及び装置を提供する。

【解決手段】 エッチングにより生成されたエッチング 生成物及び/又はプラズマ化したエッチングガスから放射される所定波長の電波の強度を検出する検出部16、17、19と、検出された所定波長の電波の強度の変化に基づいてドライエッチングの終点を決定する終点決定部20、21とを有し、プラズマ化したエッチングガスにより被エッチング膜をエッチングするドライエッチングの終点を検出する。

本発明の一実施影響によるドライエッチングの終点検出装置を 用いたドライエッチング装置を示す図

【特許請求の範囲】

【請求項1】 プラズマ化したエッチングガスにより被エッチング膜をエッチングするドライエッチングの終点を検出するドライエッチングの終点検出方法において、エッチングにより生成されたエッチング生成物及び/又はプラズマ化したエッチングガスから放射される所定波長の電波の強度を検出し、

前記所定波長の電波の強度変化に基づいてドライエッチングの終点を決定することを特徴とするドライエッチングの終点検出方法。

【請求項2】 請求項1記載のドライエッチングの終点 検出方法において、

前記所定波長の電波は、前記エッチング生成物から放射される電波であり、

ドライエッチング中はほぼ一定値であった前記所定波長 の電波の強度が減少し、その減少率が最大値を示す時点 に基づいてドライエッチングの終点を決定することを特 徴とするドライエッチングの終点検出方法。

【請求項3】 請求項1記載のドライエッチングの終点 検出方法において、

前記所定波長の電波は、前記プラズマ化したエッチング ガスから放射される電波であり、

ドライエッチング中はほぼ一定値であった前記所定波長の電波の強度が増加し、その増加率が最大値を示す時点に基づいてドライエッチングの終点を決定することを特徴とするドライエッチングの終点検出方法。

【請求項4】 プラズマ化したエッチングガスにより被エッチング膜をエッチングするドライエッチングの終点を検出するドライエッチングの終点検出装置において、エッチングにより生成されたエッチング生成物及び/又 30はプラズマ化したエッチングガスから放射される所定波長の電波の強度を検出する検出部と、

前記検出部により検出された前記所定波長の電波の強度 の変化に基づいてドライエッチングの終点を決定する終 点決定部とを有することを特徴とするドライエッチング の終点検出装置。

【請求項5】 請求項4記載のドライエッチングの終点 検出装置において、

前記検出部は、前記エッチング生成物から放射される電波を検出し、

前記終点決定部は、ドライエッチング中はほぼ一定値で あった前記所定波長の電波の強度が減少し、その減少率 が最大値を示す時点に基づいてドライエッチングの終点 を決定することを特徴とするドライエッチングの終点検 出方法。

【請求項6】 請求項4記載のドライエッチングの終点 検出装置において、

前記検出部は、プラズマ化したエッチングガスから放射 される電波を検出し、

前記終点決定部は、ドライエッチング中はほぼ一定値で 50

あった前記所定波長の電波の強度が増加し、その増加率 が最大値を示す時点に基づいてドライエッチングの終点 を決定することを特徴とするドライエッチングの終点検 出方法。

【請求項7】 請求項4乃至6のいずれか1項に記載の ドライエッチングの終点検出装置において、

前記検出部は、

前記所定波長の電波を低周波信号に変換するヘテロダイン受信部と、

10 前記へテロダイン受信部により変換された低周波信号を 検波して電圧信号に変換する検波部とを有することを特 徴とするドライエッチングの終点検出装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体装置の製造工程において、プラズマ化したエッチングガスにより被エッチング膜をエッチングするドライエッチングの終点を検出するドライエッチングの終点検出方法及び装置に関する。

20 [0002]

【従来の技術】近年、半導体装置の高集積化に伴い、微細加工性に優れたドライエッチング技術も進歩している。ドライエッチング技術においては、ドライエッチング技術においては、ドライエッチングの終点を確実に検出することがドライエッチング工程の安定性、信頼性の鍵となる。従来、主にプラズマ化したイオンの発する固有の発光スペクトルの変化量をモニタする発光分析法を用いたドライエッチング終点検出方法が知られている。発光分析法の場合、エッチングに寄与するプラズマ化したイオン(エッチャント)、又はエッチング生成物の発光スペクトルを、光学フィルタやモノクロメータ等でモニタし、終点近傍でのエッチャント又はエッチング生成物の増減に対応して光強度が変化するのを利用して終点検出を行っている。

【0003】このようなドライエッチング終点検出方法として、タンタル膜をドライエッチングする際の終点を検出する方法が知られている(特開平2-234427号公報参照)。タンタル(Ta)膜のエッチング中に、プラズマ中の臭素(Br)原子から発せられる光をフォトダイオードや光電子増倍管等の光電変換器を用いて検出し、検出した発光線の時間変化から、タンタル膜を過不足なく除去することができる最適なエッチング処理時間を得ている。

【0004】また、近年、ウエーハにレーザ光を照射し、ウエーハ上の被エッチング膜からの反射光をモニタし、被エッチング膜がエッチング除去されたことを反射光の強度変化から直接的に検出することが試みられている。

[0005]

40

【発明が解決しようとする課題】しかしながら、近年の 半導体装置の高集積化及び微細化に伴い、ウエーハ中の

被エッチング面積比率はより小さくなっているため、ドライエッチング終点近傍におけるエッチャント及びエッチング生成物の濃度変化による光強度の変化が相対的に小さくなって、終点検出が困難となっている。

【0006】また、光強度のモニタは、エッチング処理室である真空チャンパに設けた透明石英等の窓を経由して行われるため、エッチングガスやエッチング生成物により窓がエッチングされたりスパッタされたりして窓の透明度が低下し、モニタ光が大きく減衰してしまう。これに加えて、被エッチング面積比率の低下により光の強10度変化が小さくなってきているので、発光分析法を用いたドライエッチングの終点検出が殆ど不可能になってしまう。

【0007】また、レーザ光を用いて終点検出する場合には、レーザ光に対する透過率のよい窓を使用しなければならず、被エッチング部分をモニタする際の微細化に伴う光学的限界により、上述した発光分析法と同様にエッチングの終点検出が困難となっている。このように、上述した発光分析法やレーザ光を用いた終点検出法では、益々高集積化し、微細化する今後の半導体装置の製 20 造には対応でき難くなっている。

【0008】本発明の目的は、被エッチング面積比率の小さな被エッチング膜のドライエッチングにおいても、終点検出が可能なドライエッチング終点検出方法及び装置を提供することにある。

[0009]

【課題を解決するための手段】上記目的は、プラズマ化したエッチングガスにより被エッチング膜をエッチングするドライエッチングの終点を検出するドライエッチングの終点検出方法において、エッチングにより生成され 30たエッチング生成物及び/又はプラズマ化したエッチングガスから放射される所定波長の電波の強度を検出し、前記所定波長の電波の強度変化に基づいてドライエッチングの終点を決定することを特徴とするドライエッチングの終点検出方法によって達成される。

【0010】上述したドライエッチングの終点検出方法において、前記所定波長の電波は、前記エッチング生成物から放射される電波であり、ドライエッチング中はほぼ一定値であった前記所定波長の電波の強度が減少し、その減少率が最大値を示す時点に基づいてドライエッチングの終点を決定することが望ましい。上述したドライエッチングの終点検出方法において、前記所定波長の電波は、前記プラズマ化したエッチングガスから放射される電波であり、ドライエッチング中はほぼ一定値であった前記所定波長の電波の強度が増加し、その増加率が最大値を示す時点に基づいてドライエッチングの終点を決定することが望ましい。

【0011】上記目的は、プラズマ化したエッチングガスにより被エッチング膜をエッチングするドライエッチングの終点を検出するドライエッチングの終点検出装置 50

において、エッチングにより生成されたエッチング生成 物及び/又はプラズマ化したエッチングガスから放射される所定波長の電波の強度を検出する検出部と、前記検 出部により検出された前記所定波長の電波の強度の変化 に基づいてドライエッチングの終点を決定する終点決定 部とを有することを特徴とするドライエッチングの終点 検出装置によって達成される。

【0012】上述したドライエッチングの終点検出装置において、前記検出部は、前記エッチング生成物から放射される電波を検出し、前記終点決定部は、ドライエッチング中はほぼ一定値であった前記所定波長の電波の強度が減少し、その減少率が最大値を示す時点に基づいてドライエッチングの終点を決定することが望ましい。上述したドライエッチングの終点検出装置において、前記検出部は、プラズマ化したエッチングガスから放射される電波を検出し、前記終点決定部は、ドライエッチング中はほぼ一定値であった前記所定波長の電波の強度が増加し、その増加率が最大値を示す時点に基づいてドライエッチングの終点を決定することが望ましい。

【0013】上述したドライエッチングの終点検出装置において、前記検出部は、前記所定波長の電波を低周波信号に変換するヘテロダイン受信部と、前記ヘテロダイン受信部により変換された低周波信号を検波して電圧信号に変換する検波部とを有することが望ましい。

[0014]

【発明の実施の形態】本発明の一実施形態によるドライエッチングの終点検出装置を図1乃至図3を用いて説明する。図1は、ドライエッチングの終点検出装置10を有するドライエッチング装置を示している。このドライエッチング装置により、最も一般的なシリコン酸化膜(SiO₁)のRIEエッチングを行う場合を例として説明する。

【0015】エッチング処理室11は、一対の電極12 a、12bを有しており、一方の電極12aには酸化膜(SiO₁)のウエーハ13が置かれている。エッチング処理室11には、導入口11aと排気口11bが設けられている。導入口11aからは、エッチングガスとしてのCF₁が、エッチング処理室11に導入され、排出口11bからは、ドライエッチングによるエッチング生成物が排出される。

【0016】エッチングガスを導入して、高周波電源14により両電極12a,12b間に高周波電力が加わると、エッチングガスがプラズマ化され、ウエーハ13表面に形成された酸化膜のエッチングが行われる。この際、シリコン酸化膜のドライエッチングによるエッチング生成物の一つとしてCO分子が生成される。エッチング処理室11には、例えば、透明な石英板等により形成された窓15が設けられており、窓15からエッチング中の様子をモニタすることができる。ドライエッチングの終点検出装置10は、エッチング処理室11の窓から

(4)

10

5

放射される電波をモニタしてドライエッチングの終点を 検出する。

【0017】ドライエッチングの終点検出装置10は、 電磁ホーン16を有している。電磁ホーン16は、エッ チング処理室11のモニタ用の窓15を介して、ドライ エッチング中にCO分子から放射される光より波長の長 い115. 3GHz (波長: 2.6mm) の電波から所 定の周波数の電波を選択的に捕える。電磁ホーン16に より捕えられた電波は、ヘテロダイン受信部17によっ て低周波信号に変換される。 ヘテロダイン受信部17 は、3段構成のヘテロダイン検波回路を有しており、所 定の周波数の電波を低周波信号に変換する。各ヘテロダ イン検波回路は、ミキサ18aと、局部発振器18b と、中間周波増幅器18cを有している。各へテロダイ ン検波回路に入力した所定の周波数の電波は、ミキサ1 8 aにより局部発振器18bの出力とのミキシングさ れ、その中間周波信号が中間周波増幅器18cにより増 幅される。

【0018】電磁ホーン16により捕らえられたCO分子からの115.3GHzの電波は、第1段目のヘテロ 20 ダイン検波回路のミキサ18 aにより、局部発振器18 bから発振された113.8GHzの信号とミキシングされて1.5GHzの中間周波信号が生成され、中間周波増幅器18 cにより増幅される。次に、1.5GHzの中間周波信号は、第2段目のヘテロダイン検波回路のミキサ18 aにより、局部発振器18 bから発振された1GHzの信号とミキシングされて500MHzの中間周波信号が生成され、中間周波増幅器18 cにより増幅される。

【0019】次に、500MHzの中間周波信号は、第 30 3段目のヘテロダイン検波回路のミキサ18aにより、局部発振器18bから発振された450MHzの信号とミキシングされて50MHzの中間周波信号が生成され、中間周波増幅器18cにより増幅される。このように、電磁ホーン16により捕えられた115.3GHzの電波が、ヘテロダイン受信部17を経ることにより、信号処理がしやすい50MHzの低周波信号に変換され、ドライエッチングの終点検出のためのモニタ信号とされる。

【0020】ヘテロダイン受信部17で得られた中間周 40 波信号は、検波部19に送られて電圧信号に変換される。この電圧信号は、検波部19からA-D変換部20 に送られ、A-D変換部20でアナログ信号からデジタル信号に変換される。A-D変換部20で変換されたデジタル信号は、所定の周波数の電波のドライエッチング中における強度変化を示すデータとなる。

【0021】このように、ヘテロダイン受信部17、検 波部19及びA-D変換部20により、ドライエッチン グ中に放射される光より波長の長い電波のドライエッチ ング中における強度変化が検出される。この強度変化を50 示すデータは、更にデータ処理部21に送られる。データ処理部21は、強度変化を示すデータの蓄積による時系列データを演算してドライエッチングの終点を決定する。ドライエッチングの終点では、被エッチング膜がなくなってエッチング生成物の量が大きく変化することから、次のようにしてドライエッチングの終点を検出することができる。

【0022】図2は、エッチング生成物の一つであるC O分子が放射する電波の強度をエッチングの経過時間に対応して示したモニタ波形である。この電波は、電磁ホーン16により捕えられた115.3GHzの電波である。図2に示すように、エッチング開始と同時にエッチング生成物が急激に増加するので、電波強度がエッチング開始と同時に急激に立ち上がる。エッチング開始後、しばらくすると、エッチング生成物の量がほぼ最大値に達して安定状態になるので、放射電波もほぼ最大値のまま経過する。

【0023】エッチング開始からエッチング生成物の発 生が安定する一定時間が経過した後、データ処理部21 が時系列データの演算を開始する。エッチング生成物 は、エッチング終了間近になると急激に減少し、エッチ ング終了時点で減少が止まり以後その状態が持続するの で、図2に示すように、エッチング生成物から放射され る電波強度もエッチング生成物の減少に応じて低下す る。更に、エッチングが進み被エッチング膜が完全に除 去されると、エッチング生成物もなくなり、放射電波の 強度もエッチング開始以前とほぼ同一のレベルとなる。 【0024】従って、データ処理部21は、時系列デー 夕を微分処理し、減少率が最大値を示した時点に基づい てドライエッチングの終点を決定する。例えば、図2に 示すように、放射電波の強度の減少率が最大値を示した 後に最も変化する時点をドライエッチングの終点として 決定する。データ処理部21は、ドライエッチングの終 点を決定すると同時に、高周波電源制御部22にパワー

【0025】このように、ドライエッチングの終点では、被エッチング膜がなくなってエッチング生成物の量が大きく変化するが、同様に、エッチャントの量も大きく変化する。したがって、エッチャントの発生量の変化によってもドライエッチングの終点を検出することができる。図3は、エッチャントであるプラズマ化されたエッチングガス(CF,ガス)が放射する電波の強度をエッチングの経過時間に対応して示したモニタ波形である。プラズマ化されたCF,ガスは124.8GHz(波長:2.4mm)の電波を放射するので、電磁ホーン16はこの電波を選択的に受信するように調整される。

オフ信号を出力する。

【0026】電磁ホーン16は、エッチング処理室11 のモニタ用の窓15を介して、ドライエッチング中にエ ッチャントから放射される所定の周波数の電波を選択的

に捕える。電磁ホーン16により捕えられた124.8 GHzの電波は、ヘテロダイン受信部17を経ることにより、50MHzの周波数信号に変換される。ヘテロダイン受信部17で得られた中間周波信号は、検波部19及びA-D変換部20を経て、所定の周波数の電波のドライエッチング中における強度変化を示すデータとなる。

【0027】データ処理部21は、エッチャントから放射される電波の強度変化を示す時系列データを演算して、ドライエッチングの終点を決定する。エッチャント 10は、エッチング開始と同時に急激に増加するが、エッチング中はほぼ一定値を取り、その後ほぼ一定値のまま経過する。したがって、エッチャントから放射される電波の強度も、図3に示すように、エッチングの増加に応じて強くなり、エッチング中は、ほぼ一定した安定状態となる。

【0028】エッチング開始からエッチャントの生成が安定する一定時間が経過した後、データ処理部21による時系列データの演算を開始する。エッチャントは、エッチング終了間近になると急激に増加し、エッチング終 20 了時点で増加が止まり以後その状態が持続するので、図3に示すように、エッチャントから放射される電波強度もエッチャントの増加に応じて大きくなる。更に、エッチングが進み被エッチング膜がなくなると、エッチャントの生成量と排気口11bからの排気量がバランスしてエッチャントは増加せず、放射電波の強度もほぼ最大値のままとなる。

【0029】従って、データ処理部21は、時系列データを微分処理し、増加率が最大値を示した時点に基づいてドライエッチングの終点を決定する。例えば、図3に 30 示すように、放射電波の強度の増加率が最大値を示した後に最も変化する時点をドライエッチングの終点として決定する。データ処理部21は、ドライエッチングの終点を決定すると同時に、高周波電源制御部22にパワーオフ信号を出力する。

【0030】次に、ドライエッチングの終点検出装置10を有するドライエッチング装置の作用を説明する。まず、導入口11aからエッチング処理室11に、エッチングガスとしてのCF・ガスを導入し、高周波電源14により両電極12a、12b間に高周波電力を加える。高周波電力が加わり、エッチングガスがプラズマ化され、ウエーハ13表面に形成されたシリコン酸化膜のエッチングが開始されると、シリコン酸化膜のエッチング生成物の一つとしてCO分子が生成される。

【0031】続いて、電磁ホーン16により、エッチャント或はエッチング生成物からの放射電波を捕え、データ処理部21に放射電波の強度変化を示すデータを蓄積する。データ処理部21は、強度変化を示すデータの蓄積による時系列データを演算し、ドライエッチングの終50

点を決定する。次に、ドライエッチングの終点検出と同時に、データ処理部21から高周波電源制御部22にパワーオフ信号が出力される。パワーオフ信号が入力すると、高周波電源制御部22は高周波電源14の作動を停止し、ドライエッチングが終了する。

【0032】このように、本発明の一実施形態によれば、ドライエッチング中に放射される電波をモニタして電波強度を検出することにより、半導体装置の微細化による被エッチング面積比率の小さな被エッチング膜のドライエッチングにおいても、確実に終点を検出することができるため、ドライエッチング工程の安定性、信頼性の向上に寄与することができる。

【0033】この際、モニタするのはドライエッチング中に放射される電波であるため、エッチングガスやエッチング生成物によるエッチング及びスパッタ現象でモニタ用の窓15に光学的なくもりが生じても、終点検出のためのモニタ信号はくもりの影響を受けずに透過する。また、モニタする電波は、光に比べて波長が長く、エッチング処理室11を構成する金属材料等で十分反射、屈折するため、プラズマやエッチング中のウエーハ13が窓15から直接見える位置に電磁ホーン16を置く必要がない。従って、エッチング処理室11に対するドライエッチングの終点検出装置10の設置の自由度が増す。よって、モニタ信号を得るための窓15の位置をドライエッチングの終点検出装置10に合わせるために、エッチングチャンバの構造を見直す必要もなくなる。

【0034】本発明は上記実施形態に限らず種々の変形が可能である。例えば、モニタする放射電波がCO分子からのものである場合、周波数115.3GHz以外の周波数の電波、例えば、110.2GHzや109.7GHzの電波でもよい。なお、数十MHz程度の低い周波数の放射電波であれば、ヘテロダイン受信部を経ることなくデータ処理部に取り込むことも可能となる。

【0035】また、シリコン酸化膜をエッチングする場合、CO分子以外のエッチング生成物、例えば、O.分子や、SiF.分子から放射される電波によりエッチングの終了を検出するようにしてもよい。更に、上記実施形態ではシリコン酸化膜のエッチングを具体例として説明したが、他の被エッチング膜をエッチングする場合にも本発明を適用することができる。例えば、Si膜をCF.によりエッチングする場合、エッチング生成物であるSiF.分子や、SiC分子、エッチャントであるFや、CF,から放射される電波によりエッチングの終了を検出するようにしてもよい。また、A1膜をCC1,によりエッチングする場合、エッチング生成物であるA1C1,分子や、C分子、エッチャントであるC1や、CC1から放射される電波によりエッチングの終了を検出するようにしてもよい。

[0036]

40

【発明の効果】以上の通り、本発明によれば、ドライエ

ッチング中に放射される光より波長の長い電波のドライエッチング中における強度変化を検出し、検出した強度変化に基づきドライエッチングの終点を検出するようにしているので、半導体装置の微細化による被エッチング面積比率の小さな被エッチング膜のドライエッチングにおいても、確実に終点を検出することができ、ドライエッチング工程の安定性、信頼性の向上に寄与することができる。また、エッチング及びスパッタ現象で窓に光学的なくもりが生じても、影響を受けずに終点検出のためのモニタ信号の検出ができる。また、エッチング処理室 10に対するドライエッチングの終点検出装置の設置の自由度が増す。

【0037】また、ドライエッチング中はほぼ一定値であった所定波長の電波の強度が減少し、その減少率が最大値を示す時点に基づいてドライエッチングの終点を決定するようにすれば、エッチング生成物から放射される電波を利用してドライエッチングの終点を検出することができる。また、ドライエッチング中はほぼ一定値であった所定波長の電波の強度が増加し、その増加率が最大値を示す時点に基づいてドライエッチングの終点を決定20するようにすれば、プラズマ化したエッチングガスから放射される電波を利用してドライエッチングの終点を検出することができる。

【図面の簡単な説明】

【図1】本発明の一実施形態によるドライエッチングの 終点検出装置を用いたドライエッチング装置を示す図で*

【図2】

エッチング生成物の一つであるCO分子が放射する電波の強度を エッチングの経過時間に対応して示したモニタ波遜

* ある。

【図2】エッチング生成物の一つであるCO分子が放射 する電波の強度をエッチングの経過時間に対応して示し たモニタ波形である。

【図3】エッチャントが放射する電波の強度をエッチングの経過時間に対応して示したモニタ波形である。

【符号の説明】

- 10…ドライエッチングの終点検出装置
- 11…エッチング処理室
- 0 11a…導入口
 - 11b…排気口
 - 12a…電極
 - 12b…電極
 - 13…ウエーハ
 - 14…高周波電源
 - 15…窓
 - 16…電磁ホーン
 - 17…ヘテロダイン受信部
 - 18a…ミキサ
 - 18b…局部発振器
 - 18c…中間周波增幅器
 - 19…検波部
 - 20…A-D変換部
 - 21…データ処理部
 - 22…高周波電源制御部

[図3]

エッチャントが放射する電波の強度をエッチングの経過時間に 対応して示したモニタ波形

【図1】

本発明の一実施形態によるドライエッチングの終点検出装置を 用いたドライエッチング装置を示す図

Ą