- 1. (8 Pts) For a $\overline{S} \overline{R}$ Flip-Flop
 - a. Construct the basic un-clocked Logic Diagram for the circuit functionality
 - **b.** Draw the State Transition Diagram
 - c. Create the State Transition Table
 - **d.** Derive the characteristic (next-state) equation

- 2. (8 Pts) For a S R Flip-Flop
 - a. Construct the Logic Diagram for the circuit functionality
 - **b.** Draw the State Transition Diagram
 - c. Create the State Transition Table
 - **d.** Derive the characteristic (next-state) equation

- 3. (8 Pts) For a Negative-Edge Triggered J K Flip-Flop with Active-Low Preset and Clear
 - **a.** Draw the State Transition Diagram
 - **b.** Create the State Transition Table
 - c. Derive the characteristic (next state) equation
 - **d.** Draw the Block Diagram

4.	 (8 Pts) A Positive-Edge Triggered T Flip-Flop toggles the output when the T-Input is high a. Draw the State Transition Diagram b. Create the State Transition Table c. Derive the characteristic (next state) equation d. Draw the Block Diagram
5.	 (4 Pts) Create a T Flip-Flop using a. J-K Flip Flop and basic logic gates, if needed b. Using a D Flip Flop and basic logic gates, if needed
6.	(2 Pt) Design a gated D-latch using only NAND gates and one inverter.

7. (8 Pts) A latch can be constructed from an OR gate, an AND gate, and an Inverter as follows:

- **a.** What restriction must be placed on R and H so that P will always equal Q' (under steady-state conditions)?
- **b.** Draw the State Transition Diagram
- c. Construct the State Transition Table
- **d.** Derive the characteristic (next state) equation

- **8.** (16 Pts) A Reset-Dominant Flip-Flop behaves like an S-R Flip-Flop, except that the input S=R=1 is allowed and will cause the Latch to Reset
 - a. Draw the State Transition Diagram
 - **b.** Construct the State Transition Table
 - **c.** Derive the characteristic (next state) equation
 - **d.** Show how a Reset-Dominant latch can be constructed by adding gate(s) to an S-R latch.
 - e. Repeat a d for a Set-Dominant Flip-Flop, where S=R=1 is allowed and will Set the Latch.

- **9.** (6 Pts) Design the following conversions by adding external gates
 - **a.** D Flip-Flop to a J-K Flip-Flop
 - **b.** T Flip-Flop to a D Flip-Flop
 - c. T Flip-Flop to a D flip-Flop with Clock Enable

10. (4 Pts) Design a 4-bit register with Data, Load, Clock, and Clear Inputs using D-Flip-Flops. Draw the circuit and explain the function of the design.

11. (4 Pts) Design a Synchronous Serial–In / Serial–Out clocked 8–bit Shift Register using S–R Flip–Flops and an Inverter. Draw the circuit and explain the function of the design.

- **12.** (24 Pts) A stoplight is basically a 3-State Shift Register that shifts from the "Green" state to the "Yellow" state to the "Red", and back to "Green" state based on a Transition input.
 - **a.** Derive the logic equation for the Transition Input.
 - **b.** Is the equations for the Transition Input, combinatorial, sequential, or both. Explain
 - **c.** Draw the State Transition Diagram for the Stoplight with the Transition Input
 - **d.** Derive the State Transition Table for the Stoplight with the Transition Input
 - e. Derive the characteristic (next state) equations for the Stoplight with the Transition Input