MOD500 Decision Analysis with Artificial Intelligence Support

Enrico Riccardi¹

Department of Energy Resources, University of Stavanger (UiS). 1

Oct 17, 2024

A bias recap from last classes

Metrics and distributions

2 Information Theory

3 Comparing information

Probability distribution

A metric is needed

Amount of uncertainty

Number of Modes: unimodal, bimodal, polymodal

Metrics

Triangle inequality

Considering a vectors in an N-dimensional space, to be a distance it must satisfy the triangle inequality:

$$d_{ij} + d_{im} \geq d_{jm}$$

If also $d_{jj} = 0$, if i = j and $d_{jj} - d_{ii} = 0$, then we call it a *metric*.

Metris example

Common metrics:

- Counting
- Euclidean

$$d_{ij}^{(E)} = \left[\sum_{k=1}^{N} (x_{ik} - x_{jk})^{2}\right]^{\frac{1}{2}}$$

Categorical variables do not necessarily satisfy these relations.

Metris example

Common metrics:

- Counting
- Euclidean

$$d_{ij}^{(E)} = \left[\sum_{k=1}^{N} (x_{ik} - x_{jk})^2\right]^{\frac{1}{2}}$$

Categorical variables do not necessarily satisfy these relations.

Task assignment

Code a discrete probability distribution in Python
Calculate the Mean and Standard Deviation
How to get an experiment out of this distribution?

Metrics and distributions

2 Information Theory

Comparing information

- Daddy: Claude Shannon (1940)
- His initial work has been done on signal transmission.
- It uses Entropy as key measurement of information uncertainty.

- Daddy: Claude Shannon (1940)
- His initial work has been done on signal transmission.
- It uses Entropy as key measurement of information uncertainty

- Daddy: Claude Shannon (1940)
- His initial work has been done on signal transmission.
- It uses Entropy as key measurement of information uncertainty.

- Daddy: Claude Shannon (1940)
- His initial work has been done on signal transmission.
- It uses Entropy as key measurement of information uncertainty.

It is an interface between data and decisions.

A question to sum up the idea

Does more data bring value?

It has permitted the advances of several fields:

cryptography, neurobiology, signal processing, linguistics, bioinformatics, statistical physics, black holes, quantum computing, information retrieval, intelligence gathering, plagiarism detection, pattern recognition, anomaly detection, etc

It is an interface between data and decisions.

A question to sum up the idea

Does more data bring value?

It has permitted the advances of several fields:

cryptography, neurobiology, signal processing, linguistics, bioinformatics, statistical physics, black holes, quantum computing, information retrieval, intelligence gathering, plagiarism detection, pattern recognition, anomaly detection, etc

It is an interface between data and decisions.

A question to sum up the idea

Does more data bring value?

It has permitted the advances of several fields:

cryptography, neurobiology, signal processing, linguistics, bioinformatics, statistical physics, black holes, quantum computing, information retrieval, intelligence gathering, plagiarism detection, pattern recognition, anomaly detection, etc

It is an interface between data and decisions.

A question to sum up the idea

Does more data bring value?

It has permitted the advances of several fields:

cryptography, neurobiology, signal processing, linguistics, bioinformatics, statistical physics, black holes, quantum computing, information retrieval, intelligence gathering, plagiarism detection, pattern recognition, anomaly detection, etc

Entropy of an information source

$$H_X = -\sum_i (p_i) log(p_i)$$

 H_X of a discrete random variable X is a measure of the amount of uncertainty associated with the value of X when only its distribution is known

What is p_i ?

It is a numerical descriptions of how likely an event is to occur

Assigned probability and computed probability are different

Entropy of an information source

$$H_X = -\sum_i (p_i) log(p_i)$$

 H_X of a discrete random variable X is a measure of the amount of uncertainty associated with the value of X when only its distribution is known

What is p_i ?

It is a numerical descriptions of how likely an event is to occur

Assigned probability and computed probability are different

Entropy of an information source

$$H_X = -\sum_i (p_i) log(p_i)$$

 H_X of a discrete random variable X is a measure of the amount of uncertainty associated with the value of X when only its distribution is known

What is p_i ?

It is a numerical descriptions of how likely an event is to occur

Do not mix the concepts!

Assigned probability and computed probability are different

Shannon's entropy shape

$$H_X = -\sum_i (p_i) log(p_i)$$

Task assignment [2]

Code a discrete probability distribution in Python

Calculate the Mean and Standard Deviation

How to get an experiment out of this distribution?

Calculate Shannon's Entropy as a function of the number of experiments

Metrics and distributions

2 Information Theory

Comparing information

Comparing information

A distribution can be the sum of multiple distributions

Kullback-Leibler divergence (information gain)

How to compare multiple information sources?

$$D_{KL} = \sum_{i} (p_i) log(\frac{p_i}{q_i})$$

- It is a divergence, as it is asymmetric
- It is NOT a metric

Kullback-Leibler divergence (information gain)

How to compare multiple information sources?

$$D_{KL} = \sum_{i} (p_i) log(\frac{p_i}{q_i})$$

- It is a divergence, as it is asymmetric
- It is NOT a metric

Task assignment [3]

Dowload a discrete probability distribution

Calculate Kullback-Leibler divergence

Find the distribution that minimise K-L divergence