Wall-NUT: An Ensemble of BERT-based Models Approach to Identifying Informative COVID-19 English Tweets

Thai Hoang

University of Washington qthai912@cs.washington.edu

Phuong Vu

University of Rochester
pvu3@u.rochester.edu

Abstract

As of 2020 when the COVID-19 pandemic is full-blown on a global scale, people's need to have access to legitimate information regarding COVID-19 is more urgent than ever, especially via online media where the abundance of irrelevant information overshadows the more informative ones. In response to such, we proposed a model that, given an English tweet, automatically identifies whether that tweet bears informative content regarding COVID-19 or not. Using primarily an ensemble of BERT-based models, we have achieved competitive results that are only shy of those by top performing teams by less than 0.1%. In the post-competition period, we have also experimented with various other approaches that potentially boosts generalization to a new dataset.

1 Introduction

People use social network a lot = ξ Can help spreading information in the case of a natural disaster/calamity = ξ May self-built crow sourcing tools rely on social networks = ξ Highlight the need for an automatic system : informative/uninf.

The task we try to tackle in this paper is da Shared task 2: bla bla by bla bla. Goal of the challenge is: ... (cite here).

Informativeness is defined as \dots . All other = ξ uninformative. Help people to filter the giant mess of tweets they encounter everyday.

Nowadays people use social network a lot. Besides serving as a platform for various types of entertainment, social media is particularly helpful in spreading information, and we can leverage such to keep the majority of its user well-informed of the most updated news amidst a natural disaster or calamity. During the height of COVID-19, have been built (e.g. The John Hopkins Coronavirus Dashboard) as a means to trace and record the de-

Figure 1: An overview of our model for identify Informative COVID-19 English Tweets

velopment of the outbreak. These systems rely on crowdsourcing and manual search for updates.

2 Related work

- THAI Basic classifier: SVM, LR. BERT
- XLNet
- Roberta

3 System Description

We use the pre-trained language model BERTweet as the core for our system. To accomplish the task of identifying Informative/Uninformative COVID-19 English tweets, we attach a classification block on top of our Transformer block. Figure 1 indicates the high level detail of our system.

3.1 BERTweet

BERTweet (?) is a large-scale language model pretrained for English Tweets. Because of its nature of being a domain-specific model, BERTweet has achieved state-of-the-art performances on many downstream Tweet NLP tasks of Part-of-speech tagging, Named entity recognition and text classification, outperformed top models such as RoBERTabase (?) and XLM-R-base (?). Trained on 845M Tweets streamed from 01/2012 to 08/2019 and 5M Tweets related the COVID-19 pandemic as pretraining resources, BERTweet has an advantage compares to other models for our particular task of classifying COVID-19 related English Tweets.

3.1.1 Embedding Extractions

Each Transformer layer learns different information. We experiments different ways of extracting the pooled token from our BERTweet model to analyze the performance on this downstream task. More detail would be discussed in the "Experiments" section.

3.1.2 Global Local BERTweet

Due to the informal nature of writing Tweets, many tweets have noteworthy information at particular part of the tweets. Therefore, besides reading the whole Tweets, paying more attention to local parts of the Tweets is also important. Inspired by that idea, we propose a method to concurrently training 3 BERTweet models: one for reading the whole sequence, one for reading the first part of the sequence, and one for reading the remaining part. The pooled token from each model would then extracted and concatenated together for the system to learn both global and local information of the Tweets.

3.2 Classification Block

The classification block contains one or more linear layers stacked onto each other. The final layer is then used to classify whether a Tweet is informative or not.

4 Experiments

4.1 Datasets

We use the Dataset released by the competition organizer, consisting of 10,000 COVID-19 English Tweet. Each Tweet in the dataset is annotated by 3 annotators independently, and the overall inter-annotator agreement score of Fleiss' Kappa is 0.818. The dataset is then divided into 3 distinct set for training, validation, and testing, with the ratio of 70/10/20, respectively.

Table 1 shows the division of the dataset.

4.1.1 Re-splitting Data

During the Evaluation Phrase, we re-splitting our dataset by combining Training and Validation sets then dividing randomly with the ratio of 90/10.

	Informative	Uninformative
Training Set	3303	3697
Validation Set	472	528
Test Set	944	1056

Table 1: Dataset

	Informative	Uninformative
Training Set		
Validation Set	•••	

Table 2: Dataset

Table 2 shows the division of the dataset (not including the Test set).

4.2 Implementation

4.2.1 Main Library and Framework

We use the transformers library (?) with PyTorch framework (?) to run our codes.

4.2.2 Two-Phrases Training

During Training progress, we follow the Twophrases training, in which we freeze all BERTweet parameters during the first phrase and start with high learning rate to focus on training the Classification block. Because the Classification block is a combination of Linear layers, the training stage only takes a small amount of time to reach convergence.

4.2.3 Optimizer

Phuong: ADAM.

4.2.4 Hyperparameters Configuration

By examining the dataset, we observe that the longest sequence in the dataset has 89 words and 110 tokens (VERIFY). Therefore, we set the max length for padding and truncating before feeding into the BERTweet model to be 256, which helps decreasing training time and memory used.

We train our models on 1 NVIDIA DGX V100 and 1 NVIDIA RTX 2080. To fit the machine, we alternatively use batch size of 16 and 32.

Phuong: Within the Two-phrase training that we have discussed above, we use 10-12 epochs to train the classification block with the learning rate of 5^{-4} and 4-6 epochs to finetune the whole system with the learning rate of 10^{-5} .

200	Model F1	250
201	1 0.9028	251
202	Table 3: Caption	252
203		253
204	40.35.339.0	254
205	4.3 Model Performance	255
206	4.3.1 Baselines	256
207	Phuong	257
208	4.2.2 DEDTweet with different embedding	258
209	4.3.2 BERTweet with different embedding selections	259
210		260
211	We experiment different ways to extract embedding from the Transformer model. Table 3 shows the	261 262
212	evaluation of these implementation.	262
213	The reported results are the F1 Score of predic-	
214 215	tions on the original validation set.	264 265
		266
216217	4.3.3 Ensembling	267
218	Phuong	268
219	4.4 Additional Works	269
220	4.4 Additional Works	270
221		271
222	5 Future work	272
223		273
224	6 Conclusion	274
225	PHUONG	275
226		276
227		277
228		278
229		279
230		280
231		281
232		282
233		283
234		284
235		285
236		286
237		287
238		288
239		289
240		290
241		291
242		292
243		293
244		294
245		295
246		296
247		297
248		298
249		299