Cálculo Numérico Conversão de Base

Wellington José Corrêa

Universidade Tecnológica Federal do Paraná

18 de Fevereiro de 2021

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Decimal para a Parte Binária

O matemático indiano Pingala apresentou a primeira descrição conhecida de um sistema numérico binário no século III a.C., representando os números de 1 a 8 com a sequência (usando símbolos modernos) 001, 010, 011, 100, 101, 110, 111 e 1000.

Mudança da Base Binária para a Base Decimal

- ➤ O matemático indiano Pingala apresentou a primeira descrição conhecida de um sistema numérico binário no século III a.C., representando os números de 1 a 8 com a sequência (usando símbolos modernos) 001, 010, 011, 100, 101, 110, 111 e 1000.
- O sistema numérico binário moderno foi documentado de forma abrangente por Gottfried Leibniz no século XVIII em seu artigo "Explication de l'Arithmétique Binaire". O sistema de Leibniz utilizou 0 e 1, tal como o sistema numérico binário corrente nos dias de hoje.

Gottfried Wilhelm Leibniz (1646-1716)

Figura: Aos 22 anos, foi-lhe recusado o grau de doutor, alegando-se juventude.

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Figura: Leibniz e seu manuscrito sobre os números binários

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Decima para a Parte

Ingressou na Universidade aos 15 anos de idade e, aos 17, já havia adquirido o seu diploma de bacharel. Estudou Teologia, Direito, Filosofia e Matemática na Universidade. Para muitos historiadores, Leibniz é tido como o último erudito que possuía conhecimento universal.

Mudança da Base Binária para a Base Decimal

Mudança da Base Decima para a Parte

- Ingressou na Universidade aos 15 anos de idade e, aos 17, já havia adquirido o seu diploma de bacharel. Estudou Teologia, Direito, Filosofia e Matemática na Universidade. Para muitos historiadores, Leibniz é tido como o último erudito que possuía conhecimento universal.
- O uso de "função" como um termo matemático foi iniciado por Leibniz (1694)

Mudança da Base Binária para a Base Decimal

Mudança da Base Decima para a Parte

▶ É creditado a Leibniz e a Newton o desenvolvimento do cálculo moderno, em particular o desenvolvimento da integral e da regra do produto. Em 1676, já tinha desenvolvido algumas fórmulas elementares do cálculo e tinha descoberto o teorema fundamental do cálculo, que só foi publicado em 11 de julho de 1677, onze anos depois da descoberta não publicada de Newton. A notação hoje utilizada no cálculo infinitesimal é basicamente devida a Leibniz.

Gottfried Wilhelm Leibniz (1646-1716)

► É sabido que Leibniz era capaz de ficar sentado na mesma cadeira por vários dias pensando.

Cálculo Numérico

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

- ► É sabido que Leibniz era capaz de ficar sentado na mesma cadeira por vários dias pensando.
- Leibniz em 1673 aperfeiçoou a máquina de calcular inventada por Blaise Pascal, tornando-a capaz de multiplicar e dividir.

Figura:

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Decimal para a Parte Binária

A maioria dos equipamentos computacionais representa os valores numéricos. Acontece, muitas vezes, que esta transformação pode ser a comedida de erros.

A maioria dos equipamentos computacionais representa os valores numéricos. Acontece, muitas vezes, que esta transformação pode ser a comedida de erros. Um número na base 2 pode ser escrito como:

$$\sum_{i=n}^{m} a_i \, 2^i; \ a_i = \{0,1\}, \ n,m \in \mathbb{Z}; \ n \leq 0 \ \text{e} \ m \geq 0.$$

Numérico

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Decimal para a Parte Binária

A maioria dos equipamentos computacionais representa os valores numéricos. Acontece, muitas vezes, que esta transformação pode ser a comedida de erros. Um número na base 2 pode ser escrito como:

$$\sum_{i=n}^{m} a_i 2^i; \ a_i = \{0,1\}, \ n,m \in \mathbb{Z}; \ n \le 0 \ \text{e} \ m \ge 0.$$

Mudança da Base Binária para a Base Decimal

Para mudar da base 2 para base 10, basta multiplicar o dígito binário por uma potência de 2 adequada.

Mudanca da Base Binária para a Base Decimal

Mudança da Base Decimal

Exemplo

Converta os números binários na base 10:

(a) $(1011)_2$

(b) $(10,1)_2$

(c) $(11,01)_2$

Solução:

Exemplo

Converta os números binários na base 10:

(b)
$$(10,1)_2$$

(c)
$$(11,01)_2$$

Solução:

$$(1011)_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

= 8 + 0 + 2 + 1 = (11)₁₀

Exemplo

Converta os números binários na base 10:

(b)
$$(10,1)_2$$

(c)
$$(11,01)_2$$

Solução:

$$(1011)_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

= 8 + 0 + 2 + 1 = (11)₁₀

$$(10,1)_2 = 1 \cdot 2^1 + 0 \cdot 2^0 + 1 \cdot 2^{-1}$$

= 2 + 0 + 0, 5 = (2,5)₁₀

Mudança da Base Binária para a Base Decimal

(c)
$$(11,01)_2 = 1 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2}$$
$$= 2 + 1 + 0 + 0, 25 = (3,25)_{10}$$

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Decimal para a Parte Binária

Mudança da Base Decimal para a Parte Binária

Para converter um número da base 10 para a base 2, tem-se que aplicar um processo para a parte inteira e outro para a parte fracionária.

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Decimal para a Parte Binária

Mudança da Base Decimal para a Parte Binária

Para converter um número da base 10 para a base 2, tem-se que aplicar um processo para a parte inteira e outro para a parte fracionária.

Parte inteira.

divide-se o número N sucessivamente por 2, armazenando, a cada passo, os restos, r_i , $i=n-1,n-2,\ldots,1$, até que o quociente da divisão seja igual a 1. O número binário é constituído do quociente 1 e pelos restos das divisões $r_{n-1}, r_{n-2}, \ldots, r_1$ nesta ordem dada a seguir:

Cálculo Numérico

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

```
N \quad 2 \quad q_1
```


Cálculo Numérico

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base

Ν	2	
$rac{r_1}{r_1}$	q_1	2
	r_2	q_2

Cálculo Numérico

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base

Ν	2		
(r_1)	q_1	2	
	(r_2)	q_2	2
		r_3	q ₃

Cálculo Numérico

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Ν	2		
r_1	q_1	2	
	(r_2)	q_2	_ 2
		r_3	q_3

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Decimal para a Parte Binária

Portanto,

$$(N)_{10} = (1 r_{n-1} r_{n-2} \dots r_2 r_1)_2$$
.

Cálculo Numérico

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Decimal para a Parte Binária

Exemplo

Converta os números 25 e 11 para a base 2

Solução: Temos que

Cálculo Numérico

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Decimal para a Parte Binária

Exemplo

Converta os números 25 e 11 para a base 2

Solução: Temos que

$$(25)_{10} = (11001)_2$$

Mudança da Base Decimal para a Parte Binária

Exemplo

Converta os números 25 e 11 para a base 2

Solução: Temos que

$$(25)_{10} = (11001)_2$$

 $(11)_{10} = (1011)_2$.

Parte Fracionária.

Cálculo Numérico

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Decimal para a Parte Binária

UTFPR

Cálculo Numérico

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Decimal para a Parte Binária

Parte Fracionária.Temos o procedimento:

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

- Parte Fracionária.Temos o procedimento:
- (a) Multiplica-se o número fracionário por 2;

Mudança da Base Binária para a Base

- Parte Fracionária.Temos o procedimento:
- (a) Multiplica-se o número fracionário por 2;
- (b) Do resultado do passo (a), a parte inteira é o primeiro dígito binário;

Mudança da Base Binária para a Base

- Parte Fracionária.Temos o procedimento:
- (a) Multiplica-se o número fracionário por 2;
- (b) Do resultado do passo (a), a parte inteira é o primeiro dígito binário;
- (c) Do resultado do passo (b), a parte fracionária é novamente multiplicada por 2;

Mudança da Base Binária para a Base Decimal

- Parte Fracionária.Temos o procedimento:
- (a) Multiplica-se o número fracionário por 2;
- (b) Do resultado do passo (a), a parte inteira é o primeiro dígito binário;
- (c) Do resultado do passo (b), a parte fracionária é novamente multiplicada por 2;
- (d) O processo continua até que a parte fracionária seja nula.

Converta para a base 2 os números:

(a) $(0, 1875)_{10}$ (b) $(13, 25)_{10}$

(c) $(0,6)_{10}$

Solução: Note que

(a)

0.1875

 $\times 2$

0, 3750

Converta para a base 2 os números:

(a)
$$(0, 1875)_{10}$$
 (b) $(13, 25)_{10}$

(b)
$$(13, 25)_{10}$$

(c)
$$(0,6)_{10}$$

Solução: Note que

$$0,1875
0,375

\frac{\times 2}{0,3750}
\frac{\times 2}{0,75}$$

Converta para a base 2 os números:

(a)
$$(0,1875)_{10}$$
 (b) $(13,25)_{10}$

(b)
$$(13, 25)_{10}$$

(c)
$$(0,6)_{10}$$

Solução: Note que

Mudanca da para a Base

Mudança da Base Decimal para a Parte Binária

Exemplo

Converta para a base 2 os números:

(a)
$$(0, 1875)_{10}$$
 (b) $(13, 25)_{10}$

(b)
$$(13, 25)_{10}$$

(c)
$$(0,6)_{10}$$

Solução: Note que

Converta para a base 2 os números:

(a)
$$(0, 1875)_{10}$$
 (b) $(13, 25)_{10}$

(b)
$$(13, 25)_{10}$$

(c)
$$(0,6)_{10}$$

Solução: Note que

$$Logo, (0, 1875)_{10} = (0, 0011)_2.$$

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Decimal para a Parte Binária

(b) Note que, $(13,25)_{10} = (13)_{10} + (0,25)_{10}$. Como $(13)_{10} = (1101)_2$ e

Mudança da Base Binária para a Base Decimal

Mudança da Base Decimal para a Parte Binária

(b) Note que, $(13,25)_{10} = (13)_{10} + (0,25)_{10}$. Como $(13)_{10} = (1101)_2$ e

0,25

 $\times 2$

 $\overline{{\color{red}0,50}}$

$$0,25$$
 $0,5$ $\times 2$ $\times 2$ $0,50$ $\times 1,0$

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

(b) Note que, $(13,25)_{10} = (13)_{10} + (0,25)_{10}$. Como $(13)_{10} = (1101)_2$ e

$$0,25$$
 $0,5$ $\times 2$ $\times 2$ $0,50$ $\times 1,0$

donde, $(0,25)_{10} = (0,01)_2$ e, portanto,

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

(b) Note que, $(13,25)_{10} = (13)_{10} + (0,25)_{10}$. Como $(13)_{10} = (1101)_2$ e

$$0,25$$
 $0,5$ $\times 2$ $\times 2$ $0,50$ $\times 1,0$

donde, $(0,25)_{10} = (0,01)_2$ e, portanto,

$$(13,25)_{10} = (13)_{10} + (0,25)_{10}$$

= $(1101)_2 + (0,01)_2$
= $(1101,01)_2$

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Cálculo Numérico

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudanca da Base Binária para a Base Decimal

Mudança da Base Binária para a Base

Mudança da Base Decimal para a Parte . Binária

(c) Temos que

0,6

 $\frac{\times 2}{1,2}$

Cálculo Numérico

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base

Mudança da Base Decimal para a Parte Binária

0,6	0, 2
$\times 2$	$\times 2$
$\overline{1,2}$	$\overline{0,4}$

Cálculo Numérico

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Decimal para a Parte Binária

0,6	0, 2	0,4
$\times 2$	$\times 2$	$\times 2$
1.2	$\overline{0.4}$	0.8

Cálculo Numérico

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Decimal para a Parte Binária

0,6	0, 2	0,4	0,8
$\times 2$	$\times 2$	$\times 2$	$\times 2$
$\overline{1,2}$	$\overline{0,4}$	$\overline{0.8}$	1,6

Wellington José Corrêa

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Decimal para a Parte Binária

0,6	0, 2	0,4	0,8	0,6
$\times 2$	$\times 2$	$\times 2$	$\times 2$	$\times 2$
$\overline{1.2}$	$\overline{0.4}$	0.8	$\overline{1.6}$	$\overline{1,2}$

Mudança da Base Decimal para a Parte Binária

$$\begin{array}{ccccccc} 0,6 & & 0,2 & & 0,4 & & 0,8 & & 0,6 \\ \frac{\times 2}{1,2} & & \frac{\times 2}{0,4} & & \frac{\times 2}{0,8} & & \frac{\times 2}{1,6} & & \frac{\times 2}{1,2} \end{array}$$

logo,
$$(0,6)_{10} = (0, \frac{1001...}{2})_2$$
.

0,6	0, 2	0,4	0,8	0,6
$\times 2$				
$\overline{1,2}$	$\overline{0,4}$	$\overline{0,8}$	$\overline{1,6}$	$\overline{1,2}$

logo, $(0,6)_{10} = (0, \frac{1001...}{2})_2$.

Observe que $(0,6)_{10}$ é uma dízima periódica de período 1001. Assim, o decimal 0,6 não tem uma representação binária, isto é, a representação é aproximada e com isso, apresenta erros.

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal

Mudança da Base Binária para a Base Decimal