Notes for MATH 3210: Foundation of Analysis I

Jing Guo

September 10, 2017

Contents

1	Rin	g and Field	1
	1.1	Ring	2
			2
			2
	1.2		2
	1.3		2
	1.4		4
	1.5	,	5
			5
		1.5.2 Total Order	5
			6
	1.6		8
			8
			9
2	Bas	ic Topology	9
	2.1	1 00	9
	2.2		9
			9
			0
	2.3		0
			_

1 Ring and Field

Notations:

- \mathbb{N} : The set of natural numbers;
- \mathbb{Z} : The set of integers (ring, not field, has no inverse);
- \mathbb{Q} : The set of rational numbers;
- \mathbb{R} : The set of real numbers (ring and field).

1.1 Ring

The set A has two binary operations, addition and multiplication. For any $a,b\in A$,

$$A * A \to A$$
$$a, b \to a + b$$

1.1.1 Addition Axiom

- 1. a + b = b + a (commutative)
- 2. (a+b)+c=a+(b+c) (associative)
- 3. There is an element 0 such that a + 0 = a (additive identity)
- 4. There exists -a (additive inverse) such that a + (-a) = 0

1.1.2 Multiplication Axiom

- 1. $a \cdot b = b \cdot a$
- $2. (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 3. There is an element 1 such that $a \cdot 1 = a$ and $0 \neq 1$
- 4. $a \cdot (b+c) = a \cdot b + a \cdot c$ (distributive)

1.2 Field

A is a field if A is a ring for any $a \in A$ and $a \neq 0$, there exists a^{-1} (inverse of a) such that $a \cdot a^{-1} = 1$.

A has no zero divisors if $x \neq 0, y \neq 0 \rightarrow x \cdot y \neq 0$

Example: $x, y \in A, x \neq 0, y \neq 0, xy = 0$

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

1.3 Construction of Integers

We need to construct \mathbb{Z} from \mathbb{N} with **localization**.

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

Set of equivalence class: $\mathbb{N} \times \mathbb{N}/\sim$

Equivalence relation: $(a, b) \sim (a', b')$ if a + b' = b + a', since a - b = a' - b'

$$(a,b) \sim (a',b') \sim (a'',b'')$$

 $a' + b'' = b' + a''$
 $(a + b'') + b' = (a + b') + b'' = b + a' + b'' = b + b' + a'' = (a'' + b) + b'$
 $\therefore a + b'' = a'' + b$
 $\therefore (a,b) \sim (a'',b'')$

We then should define addition:

$$[(a,b)] + [(a',b')] = [(a+a',b+b')] \tag{1}$$

$$[(a_1, b_1)] + [(a', b')] = [(a_1 + a', b_1 + b')]$$
(2)

Equation 1 and equation 2 are equal since independent of choice of equivalence classes:

$$a + a' + b_1 + b' = a_1 + a' + b + b'$$

 $a + b_1 = a_1 + b$

Additive identity: 0 = [(0, 0)]

For example: [(a,b)] + [(b,a)] = [(a+b,a+b)] = [(0,0)] = 0

We then need to define multiplication:

$$[(a,b)] \cdot [(a',b')] = [(aa' + bb', ab' + a'b)]$$

$$(a - b)(a' - b')$$
= $aa' - ab' - a'b + bb'$
= $(aa' + bb') - (ab' + a'b)$

Multiplicative identity: 1 = [(1,0)]For example: $[(a,b)] \cdot [(1,0)] = [(a,b)]$ $\therefore \mathbb{N} \times \mathbb{N} / \sim$ is a ring, that is, \mathbb{Z} .

$$\begin{split} \mathbb{N} &\longrightarrow \mathbb{Z} \\ m &\longrightarrow [(m,0)] \\ -m &\longrightarrow [(0,m)] = -[(m,0)] \end{split}$$

For example:

$$[(a,b)] = [(a,0)] + [(0,b)]$$
$$= [(a,0)] - [(b,0)]$$

1.4 Construction of Fractions (Rational Numbers)

We need to show that K is a field (with addition and multiplication). Assume A is a commutative ring with no zero divisors, and $A^* = A - \{0\}$.

$$A \times A^* = \{(a, b) \mid a, b \in A, b \neq 0\}$$

Set of equivalence classes: $K = (A \times A^*)/\sim$ (elements of K are fractions) We first need to define addition:

$$(a,b) \sim (a',b')$$
$$\frac{a}{b} = \frac{a'}{b'}$$
$$ab' = a'b$$

[(a,b)]: The equivalence class of (a,b)

$$[(a,b)] + [(a',b')] = [(ab' + a'b,bb')] = \frac{ab' + a'b}{bb'}$$
$$[(0,1)] = 0 \in K \quad \text{(additive identity)}$$

The following is to prove that it is independent of the choice of equivalence class:

$$[(a_1, b_1)] + [(a', b')] = [(a_1b' + a'b_1, b_1b')]$$

$$\therefore (ab' + a'b) \cdot b_1b' = (a_1b' + a'b_1) \cdot bb'$$

$$\therefore left = right$$

We then need to define multiplication:

$$[(a,b)][(a',b')] = [(aa',bb')] = \frac{aa'}{bb'}$$
$$[(1,1)] = 1 \in K \quad \text{(multiplicative identity)}$$

Examples:

$$[(x,y)] + [(0,1)] = [(x,y)]$$
$$[(x,y)] \cdot [(1,1)] = [(x,y)]$$
$$[(x,y)] \neq [(0,1)]$$

So we need to show that K is a field:

$$[(x,y)] \cdot [(y,x)] = [(xy,xy)] = [(1,1)] \quad \text{(Non-zeros have inverse)}$$

$$\therefore ab' = a'b$$

$$(a,b) \sim (a',b')$$

$$\therefore [(xy,xy)] = [(1,1)]$$

Therefore K is a field of fractions of A. We need to show the following map is injective: If $A = \mathbb{Z}$ and $K = \mathbb{Q}$:

$$\begin{split} A &\longrightarrow K \quad \text{(injective)} \\ x &\longrightarrow [(x,1)] \\ x+y &\longrightarrow [(x+y,1)] = [(x,1)] + [(y,1)] \\ x \cdot y &\longrightarrow [(xy,1)] = [(x,1)] \cdot [(y,1)] \end{split}$$

Comm. ring without $0 \longrightarrow \text{Field containing the ring}$

Assume [(a, 1) = [(b, 1)]] where $a, b \in A$:

$$a \cdot 1 = b \cdot 1 \Rightarrow a = b$$

.: The map is injective.

$$P(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n, a \in R$$

Ring of polynomials: $P(x) \times Q(x) \Rightarrow R(x)$ (with no zero divisors)

1.5 Ordered Set

1.5.1 Partial Order

 (S, \leq) is a (partially) ordered set (poset), $\forall x, y, z \in S$:

- 1. $x \leq x$
- $2. \ x \leq y, y \leq x \Rightarrow x = y$
- 3. $x \le y, y \le z \Rightarrow x \le z$

1.5.2 Total Order

Total/Linear order: Either $x \leq y$ or $y \leq x$.

Ordered field is a field K with \leq total order.

Definition:

- 1. If $x \le y$ then $x + z \le y + z$ and
- 2. if $x \ge 0, y \ge 0$ then $x \times y \ge 0$

There is no total order in complex numbers.

First example:

$$\mathbb{Q} = \{(a,b)\}, (a,b) = \frac{a}{b}$$

Since $a \ge 0, b > 0$

 $\therefore \mathbb{Q}$ is an ordered set.

Second example:

$$x \ge 0 \Leftrightarrow -x \le 0$$
$$x \ge 0 \Rightarrow x^2 \ge 0$$
$$x \le 0 \Rightarrow (-x)^2 = x^2 \ge 0$$

$$1^2 = 1 > 0$$

 $2 > 1$
 $3 > 2$
 \vdots
 $n > n - 1$

1.5.3 Least-upper-bound Property

Q: Ordered field of rational numbers (with gaps)

Least-upper-bound property: K has least-upper-bound property if any bounded subset $E \subset K$ has least upper bound.

K is a field with order relation \leq , $E \subset K$ and E is bounded above if $\exists \alpha \in K$ such that $p \leq \alpha, p \in E$.

 β is the least-upper-bound of E if

- 1. β is an upper bound,
- 2. for any other upper bound α , we have $\beta \leq \alpha$.

We call $\beta = \sup E$.

We then need to prove that $\mathbb Q$ does not have least-upper-bound property, that is, there are gaps in $\mathbb Q$.

Proof.

$$E = \{q \in \mathbb{Q} : q^2 \le 2\} \quad \Rightarrow \quad \text{no sup } E$$
$$q \in E \Leftrightarrow -q \in E \quad \text{and} \quad q \ge 0$$

Let $p \in \mathbb{Q}$ such that $p \geq 0, p^2 > 2$.

$$\begin{aligned} \therefore p^2 > 2 &\geq q^2 \Rightarrow p^2 \geq q^2 \\ p^2 - q^2 &= (p+q)(p-q) \geq 0 \quad \text{(property of ordered field)} \\ \therefore p &\geq 0, q > 0 \\ \therefore p + q \geq 0 + q = q \geq 0 \\ \therefore p \geq q \\ p &\in \mathbb{Q}, p \geq 0, p^2 > 2 \text{ are upper bound of } E. \end{aligned}$$

Remark: Let p be upper bound of $E, \forall q \in E, q \leq p, p > 0$. Define p':

$$p' = p - \frac{p^2 - 2}{p + 2} = \frac{2p + 2}{p + 2} = 2\frac{p + 1}{p + 2}$$
$$\therefore p'^2 - 2 = 2\frac{p^2 - 2}{(p + 2)^2}$$

In the above equation, $p^2 - 2 \le 0$ and $(p+2)^2 \ge 0$. Assume $p \in E \Rightarrow p^2 \le 2 \Rightarrow p^2 - 2 \le 0$. $\therefore p'^2 - 2 \le 0 \Rightarrow p' \in E$ and $p' \ge p$.

Assume
$$p \in E \Rightarrow p \leq z \Rightarrow p = z \leq 0$$

 $p : m'^2 = 0 \leq m' \in F \text{ and } m' \leq m$

$$\therefore \text{ Either } p' = p \text{ or } p' > p.$$

But neither of them is possible since $\sqrt{2}$ is irrational:

$$p=p'\Rightarrow p^2=0, p\in\mathbb{Q}$$
 but p is irrational.
 $\therefore p\notin E.$ All upper bounds of E are $\{p\in\mathbb{Q}, p^2>2\}$

r: an upper bound, and $r^2 \geq 2$

$$r' = r - \frac{r^2 - 2}{r^2 + 2}$$
 $\therefore r' < r$ $r'^2 - 2 = 2\frac{r^2}{(r+2)^2} > 0$ $\therefore r'^2 > 2$

 $\therefore r'$ is an upper bound of E.

So we have no upper bound property in E.

1.6 Construction of Real Numbers

Theorem. There exists a total ordered field \mathbb{R} which has least upper bound property. So every subset $E \subset \mathbb{R}$, are bounded above, has a supremum. Such field is **unique**.

$$K \xrightarrow{\varphi} K'$$
$$\varphi(x+y) = \varphi(x) + \varphi(y)$$
$$\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y)$$

if bijective, then isomorphism; otherwise, morphism.

History of construction of real numbers: Dedekind used cuts and Cantor used Cauchy sequence, which works for more general occasions, in 1872.

What is *cuts*?

$$\begin{split} E \subset \mathbb{Q}, E \neq \mathbb{Q} \to E \text{ is bounded above} \\ q \in \mathbb{Q}, E_q = \{p \in \mathbb{Q} : p < q\} \end{split}$$
 If $\alpha \in E, \beta < \alpha \Rightarrow \beta \in \alpha$
 $\gamma \in E, \delta \in E, \delta > \gamma$

1.6.1 Archimedean Property

Theorem (Archimedean Property).

$$x, y \in \mathbb{R}, x > 0, y > 0$$

$$\exists n \in \mathbb{Z}_+, n \cdot x > y$$

Proof. Assume $\{nx \mid n \in \mathbb{Z}\}$ is bounded above, i.e. has least upper bound property.

$$\exists \alpha = \sup\{nx \mid n \in \mathbb{Z}\}$$
$$n \cdot x \le \alpha, \forall n \text{ and } \alpha - x < \alpha$$

 $\alpha = \sup\{nx \mid n \in \mathbb{Z}\}\$

 \therefore $\alpha - x$ is NOT an upper bound. $\exists m$ such that $\alpha - x < n \cdot x$

 $\alpha < (n+1)x$

: Contridication.

 \therefore $\{nx \mid n \in \mathbb{R}\}$ is not bounded above.

1.6.2 Density of Real Numbers

Proof. Assume $x, y \in \mathbb{R}$ and x < y.

There exists $q \in \mathbb{Q}$ such that x < q < y. Because y - x > 0 and 1 > 0, so there exists n such that n(y - x) > 1.

$$nx < m_1, \quad m_1 \in \mathbb{Z}$$

 $-nx < m_2, \quad m_2 \in \mathbb{Z}$
 $\therefore -m_2 < nx < m_1$

Conclusion: $\exists m \in \mathbb{Z}, m-1 \leq nx < m$, so $nx < m \leq nx+1 < ny$.

$$nx < m < ny$$
$$m \le mx + 1$$
$$\therefore x < \frac{m}{n} < y$$

1.7 Construction of Complex Numbers

2 Basic Topology

Metric (distance function) of x_0 and x: $d(x_0, x) = |x - x_0|$

2.1 Metric Space M

$$d: M \times M \to \mathbb{R}$$

- 1. $d(x_0, x_1) \ge 0$ where $x_0, x_1 \in M$
- 2. $d(x_0, x_1) = 0 \iff x_0 = x_1$
- 3. $d(x_0, x_1) = d(x_1, x_0)$ (irrespective of order)
- 4. $d(x,z) \le d(x,y) + d(y,z)$ (triangular inequity)

Euclidean metric on \mathbb{R}^2 : $d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$ Discrete metric: $d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$ Open ball of radius ϵ : $B_{\epsilon}(x_0) = B(x_0, \epsilon) = \{y \in M \mid d(x_0, y) < \epsilon\}$

2.2 Open Sets

2.2.1 Metric Spaces X

 $U \subset X$ is open if for any $x \in U$ there exists $\epsilon > 0$ such that $B(x, \epsilon) \subset U$. Open interval is open set; closed interval is not open set.

2.2.2 Topological Spaces (X, U)

Let U be a family of all sets, X be a set. U is a **topology** on X if

- 1. \emptyset (Empty set) is always open; X is open. $\Leftrightarrow \emptyset$ and X itself belong to U.
- 2. F is a collection of open sets, then $\bigcup_{U \in F} U$ is open. \Leftrightarrow Any union of members of U still belongs to U. (Union)
- 3. F is a *finite* collection of open sets, then $\bigcap_{U \in F} U$ is open. \Leftrightarrow The intersection of any finite number of members of U belongs to U. (Intersection)

Finite case: $x \in \bigcap_{U \in F} U$, $x \in U$, hence $B(x, \epsilon_U) \subset U$

$$\delta = \min \epsilon_U > 0 \quad where \quad U \in F$$
$$B(x, \delta) \subset B(x, \epsilon_U) \subset U$$
$$\therefore B(x, \delta) \subset \bigcap_{U \in F} U$$

Infinite case: For example, the intersection of all intervals of $\left(-\frac{1}{n}, \frac{1}{n}\right)$, where n is a positive number, is the set $\{0\}$ which is not open in the real line.

2.3 Compact Sets

In metric space X, compact sets are <u>closed</u>.

Compact \Leftrightarrow closed and bounded (only for Euclidean metric, \mathbb{R}^n)