Алгебры операторов Лакса и интегрируемые системы Шейнман О.К., г. Москва

sheinman@mi.ras.ru

Содержание

Лекция 1. Алгеора операторов Лакса	1
1. Данные Тюрина	1
2. Алгебры операторов Лакса	2
3. Почти градуированная структура	2
4. Центральные расширения	3
5. Почти градуированные цнетральные расширения	
и локальные коциклы	4
6. Построение локальных коциклов	4
7. Классификация почти градуированных	
центральных расширений	4
Лекция 2. Интегрируемость. Уравнения типа Лакса.	
Иерархии коммутирующих потоков	4
8. Интегрируемость по Лиувиллю	4
9. Уравнения типа Лакса	5
10. M -операторы и времена	5
11. Где принимают значения M -операторы	6
12. Построение иерархии	7
Лекция 3. Гамильтоновость Лаксовых уравнений.	
Системы Калоджеро-Мозера	7
13. Симплектическая структура Кричевера-Фонга	7
и гамильтонианы	7
14. Некоторые сведения о функциях Вейерштрасса	8
15. Эллиптическая система Калоджеро-Мозера 8	
16. Тригонометрический, гиперболический и рацио-	
нальный случаи систем Калоджеро-Мозера	16
17. Симплектическое обобщение	10

Лекция 1. Алгебры операторов Лакса

В этой лекции вводится новый класс алгебр Ли, естественно обобщающий (нескрученные) алгебры Каца-Муди.

1. Данные Тюрина

Пусть Σ — компактная риманова поверхность рода g, которую мы рассматриваем как алгебраическую кривую над \mathbb{C} . Отметим на Σ две точки P_{\pm} и K точек γ_s , $s=1,\ldots,K$. Каждой точке γ_s мы сопоставляем вектор $\alpha_s \in \mathbb{C}^n$, заданный с точностью до пропорциональности. Систему данных

$$T := \{ (\gamma_s, \alpha_s) \mid s = 1, \dots, K \}$$

$$\tag{1}$$

назовем данными Тюрина. Эти данные связаны с модулями голоморфных векторных расслоений на Σ . В частности, для общих значений (γ_s , α_s) с $\alpha_s \neq 0$ и K = ng данные Тюрина параметризуют полустабильные оснащенные голоморфные векторные расслоения ранга n и степени ng на Σ .

Пусть \mathfrak{g} обозначает одну из классических матричных алгебр Ли $\mathfrak{gl}(n)$, $\mathfrak{so}(n)$, $\mathfrak{sp}(2n)$ или $\mathfrak{sn}(n)$, где последняя — алгебра скалярных матриц.

2. Алгебры операторов Лакса

Для каждой тройки Σ, T, \mathfrak{g} мы определим бесконечномерную алгебру Ли, которую будем называть *алгеброй операторов Лакса* и обозначать $\overline{\mathfrak{g}}$.

Назовем L-оператором мероморфную \mathfrak{g} -значную функцию L на Σ , голоморфную вне $\{P_+,P_-\}$ и всех γ_s , а в каждой точке $\gamma=\gamma_s$ имеющую разложение

$$L = \frac{L_{-2}}{(z - z_{\gamma})^2} + \frac{L_{-1}}{z - z_{\gamma}} + L_0 + \dots , \qquad (2)$$

где z — локальная координата в окрестности γ, z_{γ} — координата самой точки $\gamma, L_{-2}, L_{-1}, L_0, L_1, \ldots \in \mathfrak{g}$. Мы предполагаем, что

$$L_{-2} = 0$$
, если $\mathfrak{g} \neq \mathfrak{sp}(2n)$ и $L_{-2} = \nu \alpha \alpha^t \sigma$, если $\mathfrak{g} \neq \mathfrak{sp}(2n)$, (3)

$$L_{-1} = \begin{cases} \alpha \beta^t, & \mathfrak{g} = \mathfrak{gl}(n) \\ \alpha \beta^t - \beta \alpha^t, & \mathfrak{g} = \mathfrak{so}(n) \\ (\alpha \beta^t + \beta \alpha^t) \sigma, & \mathfrak{g} = \mathfrak{sp}(2n) \end{cases}$$
(4)

где α — вектор, ассоциированный с γ , $\beta \in \mathbb{C}^n$ — некоторый вектор, а t вверху — знак транспонирования, σ — матрица симплектической формы;

$$\beta^t \alpha = 0$$
 для $\mathfrak{g} = \mathfrak{gl}(n), \mathfrak{so}(n); \ \beta^t \sigma \alpha = 0$ для $\mathfrak{g} = \mathfrak{sp}(2n); \ L_0 \alpha = k \alpha,$ (5)

где $k \in \mathbb{C}$;

$$\alpha^t \alpha = \beta^t \alpha (= \alpha^t \beta) = 0$$
 для $\mathfrak{g} = \mathfrak{so}(n); \quad \alpha^t \sigma L_1 \alpha = 0$ для $\mathfrak{g} = \mathfrak{sp}(2n).$ (6)

Теорема 1. Операторы Лакса образуют алгебру Ли по операции поточечного коммутирования.

Пример. Пусть риманова поверхность Σ — это сфера с отмеченными точками 0 и ∞ , а точек γ вообще нет. Тогда алгебры операторов Лакса совпадают с известными алгебрами петель.

3. Почти градуированная структура Пусть

$$\mathfrak{g}_m = \{ L \in \overline{\mathfrak{g}} \mid (L) + D \ge 0 \},$$

где (L) — дивизор \mathfrak{g} -значной функции L, и для $\mathfrak{g} = \mathfrak{sl}(n)$, $\mathfrak{g} = \mathfrak{so}(n)$

$$D = -mP_{+} + (m+g)P_{-} + \sum_{s=1}^{K} \gamma_{s},$$

а для $\mathfrak{g} = \mathfrak{sp}(2n)$

$$D = -mP_{+} + (m+g)P_{-} + 2\sum_{s=1}^{K} \gamma_{s}.$$

Мы называем \mathfrak{g}_m (почти однородным) подпространством степени m алгебры Ли $\bar{\mathfrak{g}}$.

Теорема 2. Для $\mathfrak{g} = \mathfrak{sl}(n), \ \mathfrak{so}(n), \ \mathfrak{sp}(2n)$

$$1^{\circ}$$
. dim $\mathfrak{g}_m = \dim \mathfrak{g}$.

$$2^{\circ}$$
. $\overline{\mathfrak{g}} = \bigoplus_{m=-\infty}^{\infty} \mathfrak{g}_m$.

$$2^{\circ}. \quad \overline{\mathfrak{g}} = \bigoplus_{m=-\infty}^{\infty} \mathfrak{g}_m.$$
$$3^{\circ}. \quad [\mathfrak{g}_k, \mathfrak{g}_l] \subseteq \bigoplus_{m=k+l}^{k+l+g} \mathfrak{g}_m.$$

4. Центральные расширения

Центральные расширения алгебр Ли — важный объект в теории представлений и в приложениях к квантовой физике. Например, алгебра Гейзенберга является центральным расширением коммутативной алгебры Ли. Здесь мы рассмотрим центральные расширения алгебр операторов Лакса.

Центральным расширением алгебры Ли $\overline{\mathfrak{g}}$ называется короткая точная последовательность алгебр Ли

$$0 \longrightarrow \mathbb{C} \xrightarrow{i} \widehat{\mathfrak{g}} \xrightarrow{p} \overline{\mathfrak{g}} \longrightarrow 0, \tag{7}$$

где $\operatorname{Im}(i) = \ker(p)$ — центр в $\widehat{\mathfrak{g}}$.

Два центральных расширения называются эквивалентными, если существует изоморфизм e (эквивалентность), такой, что коммутативна диаграмма

2-коиuклом на $\overline{\mathfrak{g}}$ называется билинейный кососимметрический функционал γ на $\overline{\mathfrak{g}}$, такой, что для любой тройки элементов $X,Y,Z\in \overline{\mathfrak{g}}$ выполняется равенство $\gamma([X,Y],Z)+$ $\gamma([Z,X],Y)+\gamma([Y,Z],X)=0.$ Если $\gamma(X,Y)=\phi([X,Y]),$ где $\phi\in\overline{\mathfrak{g}}^*,$ то γ называется кограницей (и обозначается $\delta \phi$). Если $\gamma - \gamma' = \delta \phi$, то γ и γ' называются когомологичными.

Если $\gamma-2$ -коцикл на $\overline{\mathfrak{g}}$, можно построить ассоциированное центральное расширение $\widehat{\mathfrak{g}}_{\gamma}$. По определению это векторное пространство $\widehat{\mathfrak{g}}_{\gamma} = \overline{\mathfrak{g}} \oplus \mathbb{C} t$ со следующим коммутатором:

$$\widehat{[L,L']} = [L,L'] + \gamma(L,L') \cdot t, \quad \widehat{[L,t]} = 0, \qquad L,L' \in \overline{\mathfrak{g}}.$$
(9)

Каждое центральное расширение может быть получено таким образом путем выбора сечения $s: \overline{\mathfrak{g}} \to \widehat{\mathfrak{g}}$. Два центральных расширения $\widehat{\mathfrak{g}}_{\gamma}$ и $\widehat{\mathfrak{g}}_{\gamma'}$ эквивалентны, если определяющие их коциклы γ и γ' когомологичны.

Пример. Стандартным примером коцикла на алгебре токов является

$$\gamma_{st}(L, L') = \operatorname{res}_{P_+} \operatorname{tr}(L \cdot dL').$$

5. Почти градуированные центральные расширения и локальные коциклы

Центральные расширения вообще говоря не единственны, даже с точностью до эквивалентности. В последнем примере мы могли бы взять не вычет, а интеграл по любому контуру на римановой поверхности. Однако если брать центральные расширения в категории почти градуированных алгебр Ли, возникает теорема единственности, по крайней мере в случае простой алгебры \mathfrak{g} . Такие центральные расширения называют *почти градуированными*. Почти градуированные центральные расширения задаются локальными коциклами. Коцикл γ называется *покальным*, если для $L \in \mathfrak{g}_m$, $L' \in \mathfrak{g}_{m'}$ из $\gamma(L, L') \neq 0$ следует, что $|m+m'| \leq M$, где M — постоянное число, не зависящее от m, m', L, L'. Например, для алгебр Каца-Муди M = 0.

6. Построение локальных коциклов

Стандартный коцикл из нашего примера не является локальным, но его можно подправить на кограницу так чтобы получился локальный коцикл. Пусть \mathcal{L} — матричнозначная 1-форма, в окрестности γ равная

$$\mathcal{L} = \mathcal{L}_{-2} \frac{dz}{(z - z_{\gamma})^2} + \mathcal{L}_{-1} \frac{dz}{z - z_{\gamma}} + \mathcal{L}_0 dz + \dots ,$$

причем \mathcal{L} удовлетворяет тем же условиям, что и L, с одним лишь отличием: $\tilde{\beta}^t \alpha = 1$, где $\tilde{\beta}$ играет для \mathcal{L} ту же роль, что β для L.

Теорема 3. Для каждого \mathcal{L} , удовлетворяющего перечисленным свойствам, 1-форма $\operatorname{tr}(L\,dL'-[L,L']\mathcal{L})$ регулярна за исключением точек P_{\pm} , и выражение

$$\gamma(L, L') = \operatorname{res}_{P_+} \operatorname{tr} \left(L \, dL' - [L, L'] \mathcal{L} \right)$$

дает локальный коцикл на алгебре операторов Лакса.

Задача. Докажите, что $\gamma(L, L') = \operatorname{res}_{P_+} \operatorname{tr} \left(L \cdot (d + ad\mathcal{L}) L' \right)$.

Таким образом γ_{st} из нашего примера станет локальным коциклом, если обычное дифференцирование оператора L' заменить ковариантным. Интересно, что ковариантные дифференцирования такого вида играют основную роль в уравнениях изомонодромных дефомаций на римановых поверхностях, введенных И.М. Кричевером.

7. Классификация почти градуированных центральных расширений

Теорема 4. Для $\mathfrak{g} = \mathfrak{sl}(n), \mathfrak{so}(n), \mathfrak{sp}(2n)$ почти градуированное центральное расширение единственно с точностью до эквивалентности и умножения коцикла на число, и соответствует построенному выше (теорема 3) коциклу. Для $\mathfrak{gl}(n)$ есть еще одно расширение, заданное коциклом $\gamma'(L, L') = res_{P_+} \operatorname{tr}(L \cdot L')$.

Лекция 2. Интегрируемость. Уравнения типа Лакса. Иерархии коммутирующих потоков

8. Интегрируемость по Лиувиллю

Фазовое пространство — это гладкое симплектическое многообразие. Динамическая система — это система обыкновенных дифференциальных уравнений на кривую x = x(t) в фазовом пространстве, имеющая вид $\dot{x} = \xi(x)$, где ξ — векторное поле (точка вверху обозначает производную по времени).

Пусть ω — симплектическая форма, \mathbf{i} — изоморфизм между векторными полями и 1-формами, заданный с помощью ω : векторному полю η сопоставляется 1-форма $\mathbf{i}\eta(\xi) =$

 $\omega(\xi,\eta)$. Скобка Пуассона двух функций f и g на M определяется как функция $\{f,g\} = \omega(\mathbf{i}^{-1}df,\mathbf{i}^{-1}dg)$. Если $\{f,g\} = 0$, то говорят, что f и g находятся в инволюции.

Векторное поле ξ называется гамильтоновым, если $\xi = \mathbf{i}^{-1}dH$ для некоторой функции H. В этом случае H называется его гамильтонианом. Динамическая система $\dot{x} = \xi(x)$ называется гамильтоновой с гамильтонианом H, если для любой гладкой функции u на фазовом пространстве ее производная в силу системы удовлетворяет уравнению $\dot{u} = \{H, u\}$. Условия гамильтоновости динамической системы и соответствующего векторного поля эквивалентны.

Гамильтонова система называется вполне интегрируемой, если число ее (функционально) независимых первых интегралов равно половине размерности фазового пространства.

Теорема Лиувилля. Если гамильтонова система вполне интегрируема, то существует такая система канонических координат I_s , φ_s , что совместные поверхности уровня набора функций $I = \{I_s\}$ — торы, φ_s — угловые координаты на них, и в силу системы $\dot{I}_s = 0$, $\dot{\varphi}_s = w(I)$, где w — некоторая функция.

Пример. Эллиптическая система Калоджеро-Мозера — гамильтонова система, заданная гамильтонианом

$$H = -\frac{1}{2}(p_1^2 + \ldots + p_n^2) + \sum_{\alpha \in R_+} \wp(q_\alpha),$$

где R — система корней ранга $n, \langle \cdot, \cdot \rangle$ — ее инвариантная форма, $q = (q_1, \dots, q_n), q_\alpha = \langle q, \alpha \rangle,$ \wp — функция Вейерштрасса. Ниже показано, что эта система вполне интегрируема.

9. Уравнения типа Лакса

Мы определим фазовое пространство как подпространство плоского пространства с координатами γ_s , α_s , k_s , β_s . Пусть L и M — функции этих параметров со значениями в пространстве мероморфных функций на Σ . Пусть пространство \mathcal{L}^D образовано теми наборами параметров, для которых $\{L \in \overline{\mathfrak{g}} \mid (L) + D + \delta \sum \gamma_s \geq 0\}$, где $D = \sum_i m_i P_i$ — произвольный положительный дивизор на Σ не содержащий точек γ (δ равно 2 для симплектической алгебры и 1 для всех остальных). При фиксированных α и γ функция L удовлетворяет условиям, сформулированным в прошлой лекции. Уравнения типа Лакса — это уравнения на параметры, вытекающие из соотношения $L_t = [L, M]$. Ниже излагается общий метод построения уравнений типа Лакса, обладающих свойствами гамильтоновости и интегрируемости.

10. М-операторы и времена

Выше мы подробно рассмотрели свойства L-операторов. Рассмотрим теперь свойства M-операторов.

Пусть $M:\Sigma\to \mathfrak{g}$ — мероморфная функция. Мы требуем, чтобы в точке $\gamma=\gamma_s$ она имела разложение того же типа, что и L (определяемое типом алгебры \mathfrak{g}):

$$M = \frac{M_{-2}}{(z - z_{\gamma})^2} + \frac{M_{-1}}{z - z_{\gamma}} + M_0 + \dots , \qquad (10)$$

где z — фиксированная локальная координата в окрестности $\gamma,\,z_\gamma$ — координата самой точки $\gamma,\,M_{-2},M_{-1},M_0,M_1,\ldots\in\mathfrak{g}$ и

$$M_{-2} = \lambda \alpha \alpha^t \sigma, \qquad M_{-1} = (\alpha \mu^t + \varepsilon \mu \alpha^t) \sigma,$$
 (11)

где $\lambda \in \mathbb{C}$, $\mu \in \mathbb{C}^n$, σ — матрица $n \times n$, верхнее t обозначает транспонирование матриц

$$\lambda \equiv 0, \ \varepsilon = 0, \quad \sigma = id \quad \text{для } \mathfrak{g} = \mathfrak{gl}(n), \mathfrak{sl}(n),$$

$$\lambda \equiv 0, \ \varepsilon = -1, \ \sigma = id \quad \text{для } \mathfrak{g} = \mathfrak{so}(n),$$

$$\varepsilon = 1 \qquad \qquad \text{для } \mathfrak{g} = \mathfrak{sp}(2n),$$

$$(12)$$

и σ — матрица симплектической формы, если $\mathfrak{g} = \mathfrak{sp}(2n)$. Здесь и ниже мы опускаем индексы s, γ , указывающие на точку γ , за исключением обозначения z_{γ} .

Каждый M-оператор и скалярная функция k на фазовом пространстве в силу Лаксова уравнения определяют динамическую систему. В частности, на данных Тюрина

$$\dot{z}_{\gamma} = -\mu^t \sigma \alpha, \quad \dot{\alpha} = -M_0 \alpha + k\alpha. \tag{13}$$

Пусть M_a и M_b — два M-оператора, ∂_a и ∂_b — времена соответствующих динамических систем.

Лемма 5. Для любых двух M-операторов M_a , M_b u соответствующих времен выражение

$$M_{ab} = \partial_a M_b - \partial_b M_a + [M_a, M_b]$$

также является M-оператором.

11. Где принимают значения M-операторы

С этого момента будем предполагать, что в лаксовом уравнении $L \in \overline{\mathfrak{g}}, M \in \overline{\mathfrak{g}}^{\diamond}$, где между \mathfrak{g} и \mathfrak{g}^{\diamond} имеется соответствие:

$$\mathfrak{g}^{\diamond} = \begin{cases} \mathfrak{gl}(n) & \text{если } \mathfrak{g} = \mathfrak{gl}(n), \mathfrak{sl}(n) \\ \mathfrak{so}(2n+1) & \text{если } \mathfrak{g} = \mathfrak{so}(2n), \mathfrak{so}(2n+1) \\ \mathfrak{tsp}(2n) & \text{если } \mathfrak{g} = \mathfrak{sp}(2n). \end{cases}$$

Здесь $\mathfrak{tsp}(2n)$ — это подалгебра алгебры Ли $\mathfrak{sp}(2n+2)$, состоящая из матриц с нулевыми первым столбцом и последней строкой. Во всех случаях предполагается, что \mathfrak{g} стандартным образом вложена в \mathfrak{g}^{\diamond} , таким образом коммутатор [L,M] определен. Как и выше, с дивизором $D = \sum m_i P_i$ свяжем полный дивизор особенностей L и M-операторов $\widetilde{D} = D + \delta \sum_{s=1}^K \gamma_s$, где

$$\delta = \begin{cases} 1, & \mathfrak{g} = \mathfrak{gl}(n), \ \mathfrak{so}(n), \ \mathfrak{so}(2n), \ \mathfrak{so}(2n+1), \\ 2, & \mathfrak{g} = \mathfrak{sp}(2n). \end{cases}$$

Настало время уточнить значение K. Пусть

$$K = \begin{cases} ng, & \mathfrak{g} = \mathfrak{gl}(n), \ \mathfrak{so}(2n), \ \mathfrak{so}(2n+1), \\ (n+1)g, & \mathfrak{g} = \mathfrak{sp}(2n). \end{cases}$$

Определим $\mathcal{N}^D \subset \overline{\mathfrak{g}^\diamond}$ как подпространство M-операторов, таких что $(M) + \widetilde{D} \geq 0$. Лемма 6. $\dim \mathcal{N}^D = (\dim \mathfrak{g}^\diamond)(\deg D + 1)$.

12. Построение иерархии

Зафиксируем дополнительно точку $P_0 \in \Sigma$. Пусть w_0, w_i — локальные координаты в окрестностях точек P_0, P_i соответственно. Определим a как тройку

$$a = (P_i, k, m), \quad k > 0, \quad m > -m_i,$$
 (14)

где k, m — целые числа, $k \equiv 1 \pmod{2}$ для $\mathfrak{g} = \mathfrak{so}(2n)$, $\mathfrak{g} = \mathfrak{so}(2n+1)$ и $\mathfrak{g} = \mathfrak{sp}(2n)$ (тем самым мы занумеровали времена геометрическими объектами).

Теорема 7. Для каждого $L \in \overline{\mathfrak{g}}$ в общем положении существует единственный \mathfrak{g}^{\diamond} -значный M-оператор M_a , такой что

 \bullet (i) вне γ -точек он имеет полюс только в P_i и

$$M_a(q) = w_i^{-m} L^k(q) + O(1),$$

то есть сингулярные части M_a и $w_i^{-m}L^k$ совпадают;

• (ii) M_a нормирован условием $M_a(P_0) = 0$.

Подчеркием, что в случае $\mathfrak{g} = \mathfrak{sp}(2n)$ для M_a выполняется соотношение $\alpha \sigma M_{a1} \alpha = 0$.

Теорма 8. Уравнения

$$\partial_a L = [L, M_a], \ \partial_a = \partial/\partial t_a$$
 (15)

определяют семейство (иерархию) коммутирующих потоков на открытом подмножестве пространства \mathcal{L}^D .

Коммутативность означает, что $[\partial_a + M_a, \partial_b + M_b] = 0.$

Лекция 3. Гамильтоновость лаксовых уравнений. Системы Калоджеро-Мозера

13. Симплектическая структура Кричевера-Фонга и гамильтононианы

Симплектическая структура на пространстве \mathcal{L}^D введена И.М. Кричевером и Д. Фонгом в случае $\mathfrak{g} = \mathfrak{gl}(n)$ и затем использовалась Кричевером для доказательства гамильтоновости лаксовых уравнений того типа, которые мы здесь рассматриваем. Эта структура имеет универсальный характер и применяется во многих вопросах теории солитонов.

Пусть Ψ — матрица, образованная левыми собственными векторами L, нормированными условием $\sum \psi_i = 1$. Она определена с точностью до перестановки своих столбцов. Мы рассматриваем L и Ψ как матричные функции на \mathcal{L}^D со значениями в пространстве мероморфных функций на Σ . Пусть δL и $\delta \Psi$ — дифференциалы этих функций, то есть 1-формы на \mathcal{L}^D . Рассмотрим диагональную форму K матричной функции L,

$$\Psi L = K \Psi$$
,

имеющую собственные значения L на диагонали, и матричнозначную 1-форму δK . Пусть Ω — 2-форма на \mathcal{L}^D со значениями в пространстве мероморфных функций на Σ , определенная соотношением

$$\Omega = \operatorname{tr}(\delta \Psi \wedge \delta L \cdot \Psi^{-1} - \delta K \wedge \delta \Psi \cdot \Psi^{-1}).$$

 Ω уже не зависит от порядка столбцов Ψ (собственных значений K) и следовательно корректно определена на \mathcal{L}^D .

Выберем голоморфный дифференциал (1-форму) dz на Σ и определим 2-форму ω на \mathcal{L}^D со значениями в \mathbb{C} :

$$\omega = -\frac{1}{2} \left(\sum_{s=1}^{K} \operatorname{res}_{\gamma_s} \Omega dz + \sum_{P_i \in D} \Omega dz \right).$$

Задача. $\Omega = 2\delta \operatorname{tr} \left(\delta \Psi \cdot \Psi^{-1} K \right)$.

Теорема 9. Форма ω кососимметрична, невырождена и замкнута на \mathcal{L}^D .

Вклад γ -точек в ω с точностью до пропорциональности равен

$$\tilde{\omega} = \sum_{s} (\delta k_s \wedge \delta z_s + \delta \alpha_s^t \wedge \delta \beta_s). \tag{16}$$

Теорема 10 (И.М. Кричевер). Динамическая система $\partial_a L = [L, M_a]$ является гамильтоновой с гамильтонианом

$$H_a = \frac{1}{k+1} \operatorname{res}_{P_i} \operatorname{tr}(w^{-m} L^{k+1}) dz, \ a = (P_i, k, m).$$

 Π ри заданном L эти гамильтонианы находятся в инволюции относительно скобки Π уассона, отвечающей симплектической форме Кричевера-Фонга.

14. Некоторые сведения о функциях Вейерштрасса

Эти сведения понадобятся для построения нашего основного примера — эллиптической системы Калоджеро-Мозера. Пусть ω , ω' — пара комплексных чисел, таких что Im $\frac{\omega'}{\omega} > 0$. Рассмотрим решетку в \mathbb{C} с образующими 2ω , $2\omega'$.

Существует единственная функция \wp на $\mathbb C$ с периодами 2ω , $2\omega'$, имеющая двойной полюс при z=0 и такая, что $\wp(0)=0$ (\wp -функция Вейерштрасса). Имеет место формула

$$\wp(z) = \frac{1}{z^2} + \sum_{m,n}' \left[\frac{1}{(z - 2m\omega - 2n\omega')^2} - \frac{1}{(2m\omega + 2n\omega')^2} \right]$$

 (Σ') означает суммирование за исключением нулевой точки решетки). Функция \wp четна:

 $\wp(z) = \wp(-z)$. Пусть ζ — единственное нечетное решение уравнения $\wp(z) = -\zeta'(z)$. Уравнение $\zeta(z) = \frac{\sigma(z)'}{\sigma(z)}$ определяет целую функцию на \mathbb{C} , такую, что $\sigma(z) = z + O(z^5)$. Имеют место следующие законы преобразования:

$$\zeta(z+2\omega) = \zeta(z) + 2\eta, \quad \zeta(z+2\omega') = \zeta(z) + 2\eta'$$
$$\sigma(z+2\omega) = -\sigma(z) \exp[2\eta(z+\omega)], \quad \sigma(z+2\omega') = -\sigma(z) \exp[2\eta'(z+\omega')]$$

и формула сложения:

$$\frac{\sigma(u+v)\sigma(u-v)}{\sigma(u)^2\sigma(v)^2} = \wp(v) - \wp(u).$$

15. Эллиптическая система Калоджеро-Мозера Возьмем оператор Лакса

$$L_{ij}(z) = \frac{\sigma(z + q_j - q_i)\sigma(z - q_j)\sigma(q_i)}{\sigma(z)\sigma(z - q_i)\sigma(q_j - q_i)\sigma(q_j)} \ (i \neq j), \quad L_{jj} = p_j.$$

$$(17)$$

Дивизор D состоит из одной точки z=0 с кратностью 1; γ -точки здесь обозначены q_i . Функция L корректно определена на той эллиптической кривой, где определена σ -функция.

В каждой точке $z=q_i$ имеет место разложение

$$L = -\alpha_i \beta_i^t (z - q_i)^{-1} + L_{0i} + \dots,$$

где

$$\alpha_{i} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \beta_{i} = \begin{pmatrix} -1 \\ \vdots \\ 0 \\ \vdots \\ -1 \end{pmatrix}, \quad L_{0i} = \begin{pmatrix} 0 \\ & \ddots \\ & * & p_{i} & * \\ & & \ddots \\ & & & 0 \end{pmatrix}$$

(в α_i отличен от 0 единственный элемент с номером i, точно так же в β_i отличен от -1 единственный элемент с тем же номером, а в матрице L_{0i} только одна ненулевая строка).

Вычисляя гамильтониан второго порядка по теореме 10, получим, с точностью до нормировки

$$H = -\frac{1}{2}\operatorname{res}_{z=0}\operatorname{tr}(z^{-1}L^2) = -\frac{1}{2}\sum_{j=1}^{n}p_j^2 + \operatorname{res}_{z=0}\sum_{i < j}\frac{\sigma(z + q_i - q_j)\sigma(z + q_j - q_i)}{\sigma(z)^2\sigma(q_i - q_j)^2}.$$

Применяя формулу сложения для σ -функции, и учитывая, что $\operatorname{res}_{z=0}(z^{-1}\wp(z))=0$ получаем

$$H = -\frac{1}{2} \sum_{j=1}^{n} p_j^2 + \sum_{i < j} \wp(q_i - q_j).$$

H называется эллиптическим гамильтонианом Калоджеро-Мозера. Он описывает движение частиц с попарным взаимодействием на эллиптической кривой. Так как при $q_i = q_j$ потенциал сингулярен, эти гиперплоскости являются запрещенными. В вещественном случае частицы движутся по окружности и не выходят из камеры Вейля алгебры $\mathfrak{sl}(n)$. Ввиду периодичности можно считать это движением в аффинной камере Вейля.

По общей формуле $\omega = \sum_{i=1}^n (\delta \alpha_i^t \wedge \delta \beta_i + \delta z_i \wedge \delta k_j)$. В данном случае α_i и β_i постоянны, и их вклад исчезает. По определению $z_i = q_i$, и, кроме того, очевидно, что $L_{0i}\alpha_i = p_i\alpha_i$, то есть $k_i = p_i$. Таким образом $\omega = \sum_{i=1}^n \delta q_i \wedge \delta p_i$, то есть имеет канонический вид.

Открытый вопрос: к чему приведет указанная схема для рода 2?

16. Тригонометрический, гиперболический и рациональный случаи систем Калоджеро-Мозера

Функция \wp удовлетворяет уравнению $\wp'^2=4(\wp-e_1)(\wp-e_2)(\wp-e_3),$ где $e_\alpha=\wp(\omega_\alpha),$ ω_1 и ω_3 — полупериоды, $\omega_2=-\omega_1-\omega_3.$

При
$$e_1 = e_2 = a$$
, $e_3 = -2a$

$$\wp(z) = a + 3a \operatorname{sh}(\sqrt{3a} z)^{-2}.$$

При
$$e_1 = 2a$$
, $e_2 = e_3 = -a$,

$$\wp(z) = -a + 3a\sin(\sqrt{3a}z)^{-2}.$$

При
$$e_1 = e_2 = e_3 = 0$$
 $\wp(z) = z^{-2}$.

При соответствующих соотношениях между e_1,e_2 и e_3 мы получаем гиперболический, тригонометрический и рациональный случай систем Калоджеро-Мозера. Отметим, что тригонометрический и эллиптический случаи соответствуют движению финитного типа, а в остальных двух случаях движение инфинитно.

Лаксово представление для эллиптической системы Калоджеро-Мозера найдено в 1980 г. Кричевером, а для остальных потенциалов ранее Ольшанецким и Переломовым.

17. Симплектическое обобщение

Вычислим гамильтониан второго порядка $H=-\frac{1}{2}\operatorname{res}_{z=0}\operatorname{tr}(z^{-1}L^2)$ для оператора Лакса

$$L = \begin{pmatrix} A & B \\ C & -A^t \end{pmatrix} \in \overline{\mathfrak{sp}(2n)}. \tag{18}$$

Матрицу A возьмем равной оператору Лакса рассмотренной выше задачи Калоджеро-Мозера:

$$A_{ij} = \frac{\sigma(z + q_j - q_i)\sigma(z - q_j)\sigma(q_i)}{\sigma(z)\sigma(z - q_i)\sigma(q_j - q_i)\sigma(q_j)} \ (i \neq j), \quad A_{jj} = p_j, \tag{19}$$

а В и С возьмем диагональными:

$$B_{jj} = \wp(z - q_j), \quad C_{jj} = \varepsilon_j(\wp(z) - \wp(q_j))^2,$$

где ε_i — произвольное комплексное число. Тогда

$$H = -\sum_{j=1}^{n} p_j^2 + \sum_{i \neq j} \wp(q_i - q_j) + \sum_{j=1}^{n} V(q_j),$$

где

$$V(q_j) = \frac{1}{2}\varepsilon_j \left(\wp^3(q_j) + \wp(q_j)\wp''(q_j) + \wp(q_j)\frac{g_2}{10} + \frac{1}{24}\wp^{(IV)}(q_j) \right).$$

Мы получили гамильтониан Калоджеро-Мозера с добавкой, зависящей от координаты частицы, что соответствует внешнему потенциальному полю. Произвольность множителя ε_i означает, что мы можем это поле (или любую его компоненту) как угодно отмасштабировать, или вообще "выключить" без потери интегрируемости системы.

Таким образом в симплектическом случае алгебры операторов Лакса приводят к системе Калоджеро-Мозера, соответствующей системе корней A_n , с внешним полем. Но для произвольных систем корней R широко известны системы Калоджеро-Мозера, задаваемые гамильтонианами вида

$$H = -\frac{1}{2} \sum_{j=1}^{\operatorname{rank} R} p_j^2 + \sum_{\alpha \in R_+} \wp(\langle q, \alpha \rangle).$$

Для систем корней классических алгебр Ли их тоже можно получить с помощью развиваемых здесь методов. Получаются также все известные интегрируемые случаи движения твердого тела, в том числе волчки Манакова, Лагранжа, Ковалевской, и многое другое.

Список литературы

- [1] I.M. Krichever. Vector bundles and Lax equations on algebraic curves. Comm. Math. Phys. **229**, 2002, p. 229–269.
- [2] И.М. Кричевер, О.К. Шейнман. Алгебры операторов Лакса. Функциональный анализ и его приложения, т. **41**, №4, 2007, с. 46–59, arXiv: math.RT/0701648.
- [3] M. Schlichenmaier, O.K. Sheinman. Central extensions of Lax operator algebras, arXiv: $\mathtt{math.QA/0711.4688}$.
- [4] О.К. Шейнман. Алгебры операторов Лакса и интегрируемые иерархии. Труды математического института им. В.А.Стеклова, т. **263**, 2008.
- [5] A.N. Tyurin. Classification of vector bundles on an algebraic curve of an arbitrary genus. Soviet Izvestia, ser. Math., **29**, p. 657–688.