Geometry of Manifolds Qualifying Examination Spring 1998

(Yetter and Miller)

This examination is in two parts: in part A, answers with a brief explanation will suffice; in part B, detailed calculations or proofs are expected unless a sketch of a proof is explicitly requested.

Part A Do all six (6) questions in part A.

- 1. What is the fundamental group of
 - (a) S^3 (the 3-sphere)
 - (b) $S^2 \times S^1$
 - (c) $T^*(\mathbb{RP}^2)$, the total space of the cotangent bundle to the real projective plane
- 2. Describe in detail the flows of the vectorfield on \mathbb{R}^3 given by

$$(x^2 + y^2 - 4)\frac{\partial}{\partial z}$$

- 3. (a) Give an example of a simply connected compact manifold with non-trivial tangent bundle.
 - (b) Give an example of a simply connected compact manifold with trivial tangent bundle.
 - (c) Give an example of a non-simply connected compact manifold.

Note: Manifold means manifold without boundary.

- 4. (a) If $M = \mathbf{S}^3$, what is the dimension of the total space of the second exterior bundle $\Lambda^2(M)$?
 - (b) What are sections of the second exterior bundle called?
- 5. Let Z be the vector space of closed 1-forms on $\mathbf{S^1} \times \mathbf{S^1}$ and B be the vector space of exact 1-forms on $\mathbf{S^1} \times \mathbf{S^1}$. What is the dimension of Z/B?
- 6. Let $\mathbf{S^2} = \{(x, y, z) | x^2 + y^2 + z^2 = 1\} \subset \mathbb{R}^3$. with the induced orientation. Calculate

$$\int_{\mathbf{S}^2} z dx \wedge dy - y dx \wedge dz + x dy \wedge dz$$

Part B. Choose four (4) and only four of the following problems.

- 1. Let G be a Lie group
 - (a) Define its Lie algebra.
 - (b) Describe the correspondence between the Lie algebra and the 1-parameter subgroups of G.
 - (c) Define the exponential mapping for G.
 - (d) Derive the from of the exponential mapping for the group of non-singular $n \times n$ real matrices.
- 2. Prove that S^n for n > 1 is an orientable manifold.
- 3. Let $p \in \mathbb{RP}^2$, and let $X = \mathbb{RP}^2 \times \{0,1\}/\equiv$ where \equiv is the equivalence relation generated by $(p,0) \equiv (p,1)$. Compute in detail $\pi_1(X)$.
- 4. Let (M, g) be a Riemannian manifold, and let X be a smooth vectorfield on M. Define a function on M by $f(m) = ||X(m)||^2$ and let Y be the gradient vectorfield of f. Show that X(m) = 0 implies Y(m) = 0.
- 5. Let B be the 2-dimensional subbundle of the tangent bundle to \mathbb{R}^3 whose fibre at each point is spanned by the vectorfields $X_1 = z \frac{\partial}{\partial x} + \frac{\partial}{\partial z}$ and $X_2 = \frac{\partial}{\partial y} + \frac{\partial}{\partial z}$. Use the Frobenius Theorem to determine whether B is integrable. Here (x, y, z) is the standard Euclidean coordinate system.
- 6. Consider a 2-dimensional Riemannian manifold (M, g), where M is an open subset of \mathbb{R}^2 and $g = f^2(dx^2 + dy^2)$ for some positive function f(y) depending only on y.
 - (a) Write down the simplest moving orthonormal frame you can think of.

$$e_1 = e_2 =$$

(b) The moving coframe dual to (e_1, e_2) is

$$\theta^1 = \quad ; \quad \theta^2 =$$

- (c) Now find a 1-form ω such that $d\theta^1 = \omega \wedge \theta^2$ and $d\theta^2 = -\omega \wedge \theta^1$.
- (d) Find K so that $d\omega = -K\theta^1 \wedge \theta^2$.
- (e) What is the Gaussian curvature when $ds^2 = \frac{1}{y^2}(dx^2 + dy^2)$?

2