

FAST SEARCHING / BALANCED TREES

Algorithms and Data Structures 2 Exercise – 2023W Martin Schobesberger, Markus Weninger, Markus Jäger, Florian Beck, Achref Rihani

> Institute of Pervasive Computing Johannes Kepler University Linz teaching@pervasive.jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at

7, 5, 8, 17, 32

List: Access O(n)

BALANCED TREES

Motivation

- Real data is usually not randomly distributed
- Prevent degeneration of binary search trees into linear lists!
- Search/Insert in O(log(n))

Approach

- Monitor tree structure
- Insert/Remove may require restructuring

Binary search trees that guarantee the execution of search, insert and delete operations in O(log(n)) even in worst case \rightarrow height-balanced trees (e.g.: **AVL tree**)

AVL TREES

Properties

- Binary search tree
- o for each **node**, the heights of its two **subtrees** differ by **not more than 1** ("balanced")

Examples Unbalanced node

AVL TREES :: INSERT

Insert is in general the same as for the binary search tree but may cause the AVL tree to become unbalanced > restructuring required!

Restructuring

- 1. Go up from the new node in the tree until the first node \mathbf{x} is found, whose grandparent \mathbf{z} is an unbalanced node
- 2. Define \mathbf{y} as child of \mathbf{z} (= the node we passed on the way to z)
- 3. Define **x** as child of **y**
- 4. Rename **x**,**y**,**z** in **a**,**b**,**c** (according to Inorder traversal!)
- 5. Replace **z** (old subroot of unsorted part-tree) by **b** (new subroot of sorted part-tree)
- 6. Children of **b** are now **a** (left) and **c** (right)
- 7. Children of **a** and **c** are the subtrees $T_0 \dots T_3$, which have been children of **x**, **y** and **z** before
 - → reassign and distinguish 4 cases...

AVL TREES:: ROTATIONS:: 4 CASES

AVL TREES:: ROTATIONS:: 4 CASES

insert '30'

AVL TREES :: REMOVE

- Remove as in binary search tree
- Check the balance starting from the **parent** node of the moved **Inorder** successor towards the root
- Restructure if necessary until the tree is balanced

Procedure

- Search for the first unbalanced node z
- 2. Put **y** on child of **z** with greatest height
- 3. Put **x** on child of **y** with greatest height

AVL TREES :: REMOVE

AVL TREES :: REMOVE

BST remove:

'8' is inorder successor of removed node '7'

'8' was inorder successor of removed node '7' and its parent node is '9'

First unbalanced node = z

Child of z with greatest height = y

Child of y with greatest height = x

Rename to a, b, c according to inorder traversal

Rotate according to 4 cases

Continue balance check towards root

AVL TREES :: REMOVE c=z b=y b=y a=x C=Z a=x (b a C 2 8 10 3 T_0 5 11 T_3

ASSIGNMENT 01

insert(39)

insert(39)
valid AVL tree?

insert(39)valid AVL tree?-> update heights

insert(39)valid AVL tree?-> update heights

insert(39)valid AVL tree?-> update heights

insert(39) valid AVL tree?

-> rebalance

insert(39)
valid AVL tree?
-> rebalance

Go up from the new node in the tree until the first node **x** is found, whose grandparent **z** is an unbalanced node

insert(39)
valid AVL tree?
-> rebalance

Go up from the new node in the tree until the first node **x** is found, whose grandparent **z** is an unbalanced node

insert(39)
valid AVL tree?
-> rebalance

Define \mathbf{y} as child of \mathbf{z} (= the node we passed on the way to z);

insert(39)
valid AVL tree?
-> rebalance

Define \mathbf{y} as child of \mathbf{z} (= the node we passed on the way to z);

insert(39)
valid AVL tree?
-> rebalance

Define **x** as child of **y**

insert(39)
valid AVL tree?
-> rebalance

Define **x** as child of **y**

insert(39)
valid AVL tree?
-> rebalance

insert(39)
valid AVL tree?
-> rebalance

insert(39)
valid AVL tree?
-> rebalance

insert(39)
valid AVL tree?
-> rebalance

insert(39)
valid AVL tree?
-> rebalance

insert(39) valid AVL tree?

-> rebalance

Replace **z** (old subroot of unsorted part-tree) by **b** (new subroot of sorted part-tree)

insert(39)
valid AVL tree?

-> rebalance

Children of **b** are now **a** (left) and **c** (right)

insert(39) valid AVL tree?

-> rebalance

Children of a and c are the subtrees T₀ ...
 T₃, which have been children of x, y and z before → reassign and distinguish 4 cases...

insert(39)
valid AVL tree?

insert(39)
valid AVL tree?
check heights

FAST SEARCHING / BALANCED TREES

Algorithms and Data Structures 2 Exercise – 2023W Martin Schobesberger, Markus Weninger, Markus Jäger, Florian Beck, Achref Rihani

> Institute of Pervasive Computing Johannes Kepler University Linz teaching@pervasive.jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at

