Machine Learning

A. G. Schwing & M. Telgarsky

University of Illinois at Urbana-Champaign, 2018

L8: Deep Neural Networks.

Lecture outline.

- Review & motivation.
- Basic neural networks.
- Some modern usage.

Reading.

• I. Goodfellow et al.; Deep Learning; Chapters 6-9.

Review & Motivation.

Review.

- Lecture 1. Basic ML; *k*-nn (*k* nearest neighbor).
- Lectures 2, 3, 6. Linear predictors (least squares, logistic regression, SVM).
- Lectures 4, 5. Convexity and optimization (e.g., *how we can learn* linear predictors).
 - Lecture 7. Multiclass and nonlinear (kernel) SVM.
 - Lecture 8. Deep neural networks.

Limitations of linear predictors?

No linear separator classifies perfectly!

Limitations of linear predictors?

No linear separator classifies perfectly!

Magic fix:

$$\text{use features } \phi(\textbf{\textit{x}}) \coloneqq \textbf{\textit{x}}_1 \cdot \textbf{\textit{x}}_2, \\ \text{whereby } y = \text{sgn}\left(\textbf{\textit{w}}^\top \phi(\textbf{\textit{x}})\right) \text{ with } \textbf{\textit{w}} = [1] \in \mathbb{R}^1.$$

Kernel SVM can be trained in the dual kernels:

$$\begin{aligned} & \max_{\boldsymbol{\alpha} \in [0,C]^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \left\| \sum_{i=1}^n \alpha_i y^{(i)} \phi(\mathbf{x}^{(i)}) \right\|^2 \\ &= \max_{\boldsymbol{\alpha} \in [0,C]^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (\phi(\mathbf{x}^{(i)}))^\top \phi(\mathbf{x}^{(j)}) \\ &= \max_{\boldsymbol{\alpha} \in [0,C]^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} \kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}). \end{aligned}$$

Why do this?

Kernel SVM can be trained in the dual kernels:

$$\begin{aligned} \max_{\boldsymbol{\alpha} \in [0,C]^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \left\| \sum_{i=1}^n \alpha_i y^{(i)} \phi(\mathbf{x}^{(i)}) \right\|^2 \\ = \max_{\boldsymbol{\alpha} \in [0,C]^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (\phi(\mathbf{x}^{(i)}))^\top \phi(\mathbf{x}^{(j)}) \\ = \max_{\boldsymbol{\alpha} \in [0,C]^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} \kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}). \end{aligned}$$

Why do this? When writing out $\phi(\mathbf{x})$ is expensive.

Kernel SVM can be trained in the dual kernels:

$$\max_{\boldsymbol{\alpha} \in [0,C]^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} \kappa(\mathbf{x}^{(i)},\mathbf{x}^{(j)}).$$

Why do this? When writing out $\phi(\mathbf{x})$ is expensive.

Kernel SVM can be trained in the dual kernels:

$$\max_{\boldsymbol{\alpha} \in [0,C]^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} \kappa(\mathbf{x}^{(i)},\mathbf{x}^{(j)}).$$

Why do this? When writing out $\phi(\mathbf{x})$ is expensive.

• Back to our example, which needed "magic feature" $\phi(\mathbf{x}) = \mathbf{x}_1 \cdot \mathbf{x}_2$.

We can use polynomial kernel κ .

Kernel SVM can be trained in the dual kernels:

$$\max_{\boldsymbol{\alpha} \in [0,C]^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} \kappa(\mathbf{x}^{(i)},\mathbf{x}^{(j)}).$$

Why do this? When writing out $\phi(\mathbf{x})$ is expensive.

• Back to our example, which needed "magic feature" $\phi(\mathbf{x}) = \mathbf{x}_1 \cdot \mathbf{x}_2$.

We can use polynomial kernel κ . But this is still magic...

Kernel SVM can be trained in the dual kernels:

$$\max_{\boldsymbol{\alpha} \in [0,C]^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} \kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}).$$

Why do this? When writing out $\phi(\mathbf{x})$ is expensive.

• Back to our example, which needed "magic feature" $\phi(\mathbf{x}) = \mathbf{x}_1 \cdot \mathbf{x}_2$.

We can use polynomial kernel κ . But this is still magic. . . Solution (today's lecture): Learn ϕ .

• After lecture 4:

After lecture 4:

After lecture 6:

• After lecture 4:

• After lecture 6:

After lecture 8: ???

After lecture 4:

• After lecture 6:

After lecture 8: ???

Observations.

- Everything explicitly in threads.
- Implicit: communication insufficient (e.g., piazza).
- Implicit: homeworks not fun.
- What else?

Second aside: naming.

Artificial neural networks. (8 syllables.)

Neural networks. (4 syllables.)

Deep nets. (2 syllables.)

Basic neural networks.

Neural networks via features.

To make a linear predictor nonlinear, we rely upon feature mapping ϕ :

$$\mathbf{x} \mapsto \mathbf{w}^{\top} \mathbf{x}$$
 becomes $\mathbf{x} \mapsto \mathbf{w}^{\top} \phi(\mathbf{x})$.

We are at the mercy of the quality of ϕ .

Neural networks via features.

To make a linear predictor nonlinear, we rely upon feature mapping ϕ :

$$\mathbf{x} \mapsto \mathbf{w}^{\top} \mathbf{x}$$
 becomes $\mathbf{x} \mapsto \mathbf{w}^{\top} \phi(\mathbf{x})$.

We are at the mercy of the quality of ϕ .

Why not *learn* ϕ ?

Neural networks via features.

To make a linear predictor nonlinear, we rely upon feature mapping ϕ :

$$\mathbf{x} \mapsto \mathbf{w}^{\top} \mathbf{x}$$
 becomes $\mathbf{x} \mapsto \mathbf{w}^{\top} \phi(\mathbf{x})$.

We are at the mercy of the quality of ϕ .

Why not *learn* ϕ ? e.g.,

$$\underset{\boldsymbol{w}}{\arg\min} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y^{(i)} \boldsymbol{w}^{\top} \mathbf{x}^{(i)}\right) \quad \text{becomes} \quad \underset{\boldsymbol{w}, \phi \in \mathcal{F}}{\arg\min} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y^{(i)} \boldsymbol{w}^{\top} \phi(\mathbf{x}^{(i)})\right)$$

where \mathcal{F} is some class of functions (why not every function?).

Natural choice: build feature maps out of linear predictors!

Natural choice: build feature maps out of linear predictors!

$$\pmb{x} \mapsto \pmb{w}^{\top} \pmb{x}$$
 becomes $\pmb{x} \mapsto \pmb{v}^{\top} \phi(\pmb{x})$ where $\phi(\pmb{x}) = \pmb{A} \pmb{x} + \pmb{b}$

with $\mathbf{w} \in \mathbb{R}^d$, $\mathbf{v} \in \mathbb{R}^m$, $\mathbf{A} \in \mathbb{R}^{m \times d}$, $\mathbf{b} \in \mathbb{R}^m$.

Natural choice: build feature maps out of linear predictors!

$$\mathbf{x} \mapsto \mathbf{w}^{\top} \mathbf{x}$$
 becomes $\mathbf{x} \mapsto \mathbf{v}^{\top} \phi(\mathbf{x})$ where $\phi(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ with $\mathbf{w} \in \mathbb{R}^d$, $\mathbf{v} \in \mathbb{R}^m$, $\mathbf{A} \in \mathbb{R}^{m \times d}$, $\mathbf{b} \in \mathbb{R}^m$.

There is something wrong with this!

Natural choice: build feature maps out of linear predictors!

$$\mathbf{x} \mapsto \mathbf{w}^{\top} \mathbf{x}$$
 becomes $\mathbf{x} \mapsto \mathbf{v}^{\top} \phi(\mathbf{x})$ where $\phi(\mathbf{x}) = \mathbf{A} \mathbf{x} + \mathbf{b}$

with $\mathbf{w} \in \mathbb{R}^d$, $\mathbf{v} \in \mathbb{R}^m$, $\mathbf{A} \in \mathbb{R}^{m \times d}$, $\mathbf{b} \in \mathbb{R}^m$.

There is something wrong with this!

Gained nothing! $\mathbf{v}^{\top}(\mathbf{A}\mathbf{x} + \mathbf{b}) = (\mathbf{A}^{\top}\mathbf{v})^{\top}\mathbf{x} + \mathbf{v}^{\top}\mathbf{b}$.

Natural choice: build feature maps out of linear predictors!

$$\mathbf{x} \mapsto \mathbf{w}^{\top} \mathbf{x}$$
 becomes $\mathbf{x} \mapsto \mathbf{v}^{\top} \phi(\mathbf{x})$ where $\phi(\mathbf{x}) = \mathbf{A} \mathbf{x} + \mathbf{b}$

with $\mathbf{w} \in \mathbb{R}^d$, $\mathbf{v} \in \mathbb{R}^m$, $\mathbf{A} \in \mathbb{R}^{m \times d}$, $\mathbf{b} \in \mathbb{R}^m$.

There is something wrong with this!

Gained nothing! $\mathbf{v}^{\top}(\mathbf{A}\mathbf{x} + \mathbf{b}) = (\mathbf{A}^{\top}\mathbf{v})^{\top}\mathbf{x} + \mathbf{v}^{\top}\mathbf{b}$.

Fix: introduce **nonlinearity/transfer/activation** $\sigma : \mathbb{R}^m \to \mathbb{R}^m$:

$$\phi(\mathbf{x}) := \sigma(\mathbf{A}\mathbf{x} + \mathbf{b}).$$

We will predict with

$$\mathbf{x} \mapsto \mathbf{w}^{\top} \phi(\mathbf{x})$$
 where $\phi(\mathbf{x}) = \sigma(\mathbf{A}\mathbf{x} + \mathbf{b})$.

We will train with

$$\underset{\boldsymbol{w} \in \mathbb{R}^{m}, \boldsymbol{A} \in \mathbb{R}^{m \times d}, \boldsymbol{b} \in \mathbb{R}^{m}}{\arg \min} \frac{1}{n} \sum_{i=1}^{n} \ell \left(y^{(i)} \boldsymbol{w}^{\top} \sigma \left(\boldsymbol{A} \boldsymbol{x}^{(i)} + \boldsymbol{b} \right) \right).$$

(Question: which training procedure? Why does it work?)

We will predict with

$$\mathbf{x} \mapsto \mathbf{w}^{\top} \phi(\mathbf{x})$$
 where $\phi(\mathbf{x}) = \sigma(\mathbf{A}\mathbf{x} + \mathbf{b})$.

We will train with

$$\underset{\boldsymbol{w} \in \mathbb{R}^m, \boldsymbol{A} \in \mathbb{R}^{m \times d}, \boldsymbol{b} \in \mathbb{R}^m}{\arg \min} \frac{1}{n} \sum_{i=1}^n \ell \left(y^{(i)} \boldsymbol{w}^\top \sigma \left(\boldsymbol{A} \boldsymbol{x}^{(i)} + \boldsymbol{b} \right) \right).$$

(Question: which training procedure? Why does it work?)

Why stop there? We can also do

$$\mathbf{x} \mapsto \mathbf{w}^{\top} \sigma_1 \left(\mathbf{A}_1 \phi(\mathbf{x}) + \mathbf{b}_1 \right)$$
 where $\phi(\mathbf{x}) = \sigma_2 \left(\mathbf{A}_2 \mathbf{x} + \mathbf{b}_2 \right)$,

and iterate further.

We will predict with

$$\mathbf{x} \mapsto \mathbf{w}^{\top} \phi(\mathbf{x})$$
 where $\phi(\mathbf{x}) = \sigma(\mathbf{A}\mathbf{x} + \mathbf{b})$.

We will train with

$$\underset{\boldsymbol{w} \in \mathbb{R}^m, \boldsymbol{A} \in \mathbb{R}^{m \times d}, \boldsymbol{b} \in \mathbb{R}^m}{\arg \min} \frac{1}{n} \sum_{i=1}^n \ell \left(y^{(i)} \boldsymbol{w}^\top \sigma \left(\boldsymbol{A} \boldsymbol{x}^{(i)} + \boldsymbol{b} \right) \right).$$

(Question: which training procedure? Why does it work?)

Why stop there? We can also do

$$\mathbf{x} \mapsto \mathbf{w}^{\top} \sigma_1 \left(\mathbf{A}_1 \phi(\mathbf{x}) + \mathbf{b}_1 \right)$$
 where $\phi(\mathbf{x}) = \sigma_2 \left(\mathbf{A}_2 \mathbf{x} + \mathbf{b}_2 \right)$,

and iterate further. This is a neural network.

("Classical" because tensorflow "computation graphs" differ slightly.)

("Classical" because tensorflow "computation graphs" differ slightly.)

Node *j* in this graph:

- Collects a vector z from its in-edges;
- Computes $\mathbf{z} \mapsto \sigma_j(\mathbf{w}_i^{\top} \mathbf{z} + b_j)$;
- Propagates this value along its out-edges.

("Classical" because tensorflow "computation graphs" differ slightly.)

Node *j* in this graph:

- Collects a vector z from its in-edges;
- Computes $\mathbf{z} \mapsto \sigma_j(\mathbf{w}_i^{\top} \mathbf{z} + b_i)$;
- Propagates this value along its out-edges.

Computation of whole network can be written this way.

("Classical" because tensorflow "computation graphs" differ slightly.)

Node *j* in this graph:

- Collects a vector z from its in-edges;
- Computes $\mathbf{z} \mapsto \sigma_i(\mathbf{w}_i^{\top} \mathbf{z} + b_i)$;
- Propagates this value along its out-edges.

Computation of whole network can be written this way.

Tensorflow computation graphs: everything needed to train is in the graph; e.g., parameters get nodes.

Neural networks as functions.

A linear predictor (one layer network) has the form

$$\mathbf{x} \mapsto \mathbf{w}^{\top} \mathbf{x}$$
.

A two layer network has the form

$$\mathbf{x} \mapsto \mathbf{w}^{\top} \sigma_1 \left(\mathbf{A}_1 \mathbf{x} + \mathbf{b}_1 \right).$$

Iterating, a multi-layer network has the form

$$\mathbf{x} \mapsto \mathbf{w}^{\top} \sigma_1 \left(\mathbf{A}_1 \sigma_2 \left(\cdots \mathbf{A}_{L-2} \sigma_{L-1} \left(\mathbf{A}_{L-1} \mathbf{x} + \mathbf{b}_{L-1} \right) + \mathbf{b}_{L-2} \cdots \right) + \mathbf{b}_1 \right).$$

Neural networks as functions.

A linear predictor (one layer network) has the form

$$\mathbf{x} \mapsto \mathbf{w}^{\top} \mathbf{x}$$
.

A two layer network has the form

$$\mathbf{x} \mapsto \mathbf{w}^{\top} \sigma_1 \left(\mathbf{A}_1 \mathbf{x} + \mathbf{b}_1 \right).$$

Iterating, a multi-layer network has the form

$$\mathbf{x} \mapsto \mathbf{w}^{\top} \sigma_1 \left(\mathbf{A}_1 \sigma_2 \left(\cdots \mathbf{A}_{L-2} \sigma_{L-1} \left(\mathbf{A}_{L-1} \mathbf{x} + \mathbf{b}_{L-1} \right) + \mathbf{b}_{L-2} \cdots \right) + \mathbf{b}_1 \right).$$

ERM now takes the form

$$\underset{\boldsymbol{w},\boldsymbol{A}_{1},\ldots,\boldsymbol{A}_{L-1},\boldsymbol{b}_{1},\ldots,\boldsymbol{b}_{L-1}}{\arg\min} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y^{(i)} \boldsymbol{w}^{\top} \sigma_{1} \left(\cdots \sigma_{L-1} (\boldsymbol{A}_{L-1} \boldsymbol{x}^{(i)} + \boldsymbol{b}_{L-1})\cdots\right)\right).$$

Neural network (univariate) activations.

We mentioned that **nodes** compute

$$\mathbf{z} \mapsto \sigma \left(\mathbf{v}^{\top} \mathbf{z} \right),$$

where activation/transfer/nonlinearity $\sigma: \mathbb{R} \to \mathbb{R}$ is:

- ReLU (Rectified Linear Unit) $z \mapsto \max\{0, z\}$;
- Sigmoid $z \mapsto \frac{1}{1 + \exp(-z)}$;
-

By
$$\mathbf{z}\mapsto\sigma(\mathbf{A}\mathbf{z}+\mathbf{b}),$$

we meant "apply a univariate σ coordinate-wise".

Neural network (univariate) activations.

We mentioned that **nodes** compute

$$\mathbf{Z} \mapsto \sigma \left(\mathbf{V}^{\top} \mathbf{Z} \right),$$

where activation/transfer/nonlinearity $\sigma: \mathbb{R} \to \mathbb{R}$ is:

- ReLU (Rectified Linear Unit) z → max{0, z};
- Sigmoid $z \mapsto \frac{1}{1 + \exp(-z)}$;
-

By
$$\mathbf{z} \mapsto \sigma(\mathbf{A}\mathbf{z} + \mathbf{b})$$
,

we meant "apply a univariate σ coordinate-wise".

Soon we will see multivariate nonlinearities, sometimes with output dimension \neq input dimension!

Some modern usage.

Multiclass output.

Modern networks often end with **softmax** nonlinearity:

$$\mathbf{z} \mapsto \sum_{i=1}^k \frac{\exp(\mathbf{z}_i)\mathbf{e}_i}{\sum_{j=1}^k \exp(\mathbf{z}_j)}$$

(where \mathbf{e}_i is i^{th} standard basis vector.) Output is now a probability vector!

Multiclass output.

Modern networks often end with **softmax** nonlinearity:

$$\mathbf{z} \mapsto \sum_{i=1}^k \frac{\exp(\mathbf{z}_i)\mathbf{e}_i}{\sum_{j=1}^k \exp(\mathbf{z}_j)}$$

(where \mathbf{e}_i is i^{th} standard basis vector.) Output is now a probability vector!

Alternate notation: output vector $\mathbf{v}_i \propto \exp(\mathbf{z}_i)$.

Cross-entropy loss.

Given one hot $\mathbf{y} \in \{\mathbf{e}_1, \dots, \mathbf{e}_k\}$ and probability vector $\hat{\mathbf{y}} \in \mathbb{R}^k$,

$$\ell(y,\hat{y}) = -\sum_{i=1}^k \mathbf{y}_i \ln(\hat{\mathbf{y}}).$$

Combined with softmax $\hat{\boldsymbol{y}} \propto \exp(\boldsymbol{z})$:

$$-\sum_{i=1}^k \boldsymbol{y}_i \ln \left(\frac{\exp(\boldsymbol{z}_i)}{\sum_j \exp(\boldsymbol{z}_j)} \right) = -\sum_{i=1}^k \boldsymbol{y}_i \boldsymbol{z}_i + \ln \left(\sum_{i=1}^k \exp(\boldsymbol{z}_i) \right).$$

(For numerical stability, use $\ln \sum_i \exp v_i = c + \ln \sum_i \exp(v_i - c)$.)

Cross-entropy loss.

Given one hot $\mathbf{y} \in \{\mathbf{e}_1, \dots, \mathbf{e}_k\}$ and probability vector $\hat{\mathbf{y}} \in \mathbb{R}^k$,

$$\ell(y,\hat{y}) = -\sum_{i=1}^k \mathbf{y}_i \ln(\hat{\mathbf{y}}).$$

Combined with softmax $\hat{\boldsymbol{y}} \propto \exp(\boldsymbol{z})$:

$$-\sum_{i=1}^k \boldsymbol{y}_i \ln \left(\frac{\exp(\boldsymbol{z}_i)}{\sum_j \exp(\boldsymbol{z}_j)} \right) = -\sum_{i=1}^k \boldsymbol{y}_i \boldsymbol{z}_i + \ln \left(\sum_{i=1}^k \exp(\boldsymbol{z}_i) \right).$$

(For numerical stability, use $\ln \sum_i \exp v_i = c + \ln \sum_i \exp(v_i - c)$.) (In binary case k = 2: generalizes logistic loss.)

Cross-entropy loss.

Given one hot $\mathbf{y} \in \{\mathbf{e}_1, \dots, \mathbf{e}_k\}$ and probability vector $\hat{\mathbf{y}} \in \mathbb{R}^k$,

$$\ell(y,\hat{y}) = -\sum_{i=1}^k \mathbf{y}_i \ln(\hat{\mathbf{y}}).$$

Combined with softmax $\hat{\boldsymbol{y}} \propto \exp(\boldsymbol{z})$:

$$-\sum_{i=1}^k \boldsymbol{y}_i \ln \left(\frac{\exp(\boldsymbol{z}_i)}{\sum_j \exp(\boldsymbol{z}_j)} \right) = -\sum_{i=1}^k \boldsymbol{y}_i \boldsymbol{z}_i + \ln \left(\sum_{i=1}^k \exp(\boldsymbol{z}_i) \right).$$

(For numerical stability, use $\ln \sum_i \exp v_i = c + \ln \sum_i \exp(v_i - c)$.) (In binary case k = 2: generalizes logistic loss.)

Question: since last expression is convex in *z*, is the corresponding ERM problem convex?

120	190	140	150	200
17	21	30	8	27
89	123	150	73	56
10	178	140	150	18
190	14	76	69	87

120	190	140	150	200
17	21	30	8	27
89	123	150	73	56
10	178	140	150	18
190	14	76	69	87

120	190	140	150	200
17	21	30	8	27
89	123	150	73	56
10	178	140	150	18
190	14	76	69	87

	98	98	93	

120	190	140	150	200
17	21	30	8	27
89	123	150	73	56
10	178	140	150	18
190	14	76	69	87

120	190	140	150	200
17	21	30	8	27
89	123	150	73	56
10	178	140	150	18
190	14	76	69	87

	98	98	93	
	84	97	72	

120	190	140	150	200
17	21	30	8	27
89	123	150	73	56
10	178	140	150	18
190	14	76	69	87

	98	98	93	
	84	97	72	
	108			

,
3
3
7

120	190	140	150	200
17	21	30	8	27
89	123	150	73	56
10	178	140	150	18
190	14	76	69	87

	98	98	93	
	84	97	72	
	108	108	91	

Convolve input with a filter:

120	190	140	150	200
17	21	30	8	27
89	123	150	73	56
10	178	140	150	18
190	14	76	69	87

	98	98	93	
	84	97	72	
	108	108	91	

Written as matrix-vector product **Ax**:

$$\begin{bmatrix} \text{offset 0} \\ \text{offset 1} \\ \text{offset 2} \\ \text{offset 3} \end{bmatrix} \begin{bmatrix} \uparrow \\ \mathbf{x} \\ \downarrow \end{bmatrix}.$$

Convolve input with a filter:

Written as matrix-vector product **Ax**:

 $\begin{bmatrix} \text{offset 0} \\ \text{offset 1} \\ \text{offset 2} \\ \text{offset 3} \end{bmatrix} \begin{bmatrix} \uparrow \\ \mathbf{x} \\ \downarrow \end{bmatrix}.$

Why? Major space savings (#params = filter size). Magical effectiveness on real-world data.

Pooling.

Again slide a window over the input; now take average or maximum.

Pooling.

Again slide a window over the input; now take average or maximum.

Why? Major space savings (output dim < input dim). Effectiveness on real-world data.

... What? Modern version:

... What? Modern version: 2dconv, relu, 2dmaxpool; 2dconv, relu, 2dmaxpool; dense, relu; dense, relu; dense, softmax.

... What? Modern version:

2dconv, relu, 2dmaxpool;

2dconv, relu, 2dmaxpool;

dense, relu;

dense, relu;

dense, softmax.

Differences with original: no "two "tubes" (there for GPUs), no normalization, filter size and stride tweaks...

Regularization.

- "Weight decay": $+\frac{\lambda}{2} ||\mathbf{v}||^2$ in objective (\mathbf{v} = all params).
- Dropout: randomly nullify node outputs in training.
- Batch normalization: "standardize" node output distribution.
- Use SGD! (Implicit regularization.)

Advanced topics.

- Recurrent links; loops.
- Conditional execution.
- "Differentiable" programming.

Summary.

Deep networks

as learning features; iterated linear predictors; graphs.

Cross-entropy loss, convolution layers, max-pooling.