

X-Class HiPerFET™ **Power MOSFET**

IXFT30N60X IXFQ30N60X IXFH30N60X

600V **30A** I_{D25} $155m\Omega$ R_{DS(on)}

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

TO-3P (IXFQ)

G = Gate	D	=	Drain
S = Source	Tab	=	Drain

Fe	atı	ır	29
	au	uı'	c3

- International Standard Packages
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages	
------------	--

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- · AC and DC Motor Drives
- Robotics and Servo Controls

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	600	V	
V _{DGR}	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	600	V	
V _{GSS}	Continuous	±30	V	
V _{GSM}	Transient	±40	V	
I _{D25}	T _C = 25°C	30	Α	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	60	Α	
I _A	T _C = 25°C	10	Α	
E _{AS}	$T_{c} = 25^{\circ}C$	1	J	
dv/dt	$I_{S} \le I_{DM}, V_{DD} \le V_{DSS}, T_{J} \le 150^{\circ}C$	50	V/ns	
P _D	T _C = 25°C	500	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
$T_{\mathtt{SOLD}}$	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d	Mounting Torque (TO-247 & TO-3P)	1.13 / 10	Nm/lb.in	
Weight	TO-268 TO-3P	4.0 5.5	g g g	
Weight				

Symbol Test Conditions Character (T _x = 25°C, Unless Otherwise Specified) Min.		cteristic Values Typ.		
BV _{DSS}	$V_{gs} = 0V, I_{D} = 1mA$	600		V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 4mA$	2.5		4.5 V
I _{GSS}	$V_{gs} = \pm 30V, V_{DS} = 0V$			±100 nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			25 μA 750 μA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			155 mΩ

Symbol	Test Conditions		acteristic	
	Jnless Otherwise Specified)	Min.	Тур.	Max
g _{fs}	$V_{DS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$	10	17	S
\mathbf{R}_{Gi}	Gate Input Resistance		2.6	Ω
C _{iss}			2270	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1610	pF
C _{rss}			14	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related \ V _{GS} = 0V		120	pF
$C_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		375	pF
t _{d(on)}	Resistive Switching Times		21	ns
t,	<u> </u>		43	ns
t _{d(off)}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_D = 0.5 \cdot I_{D25}$		58	ns
t _f	$R_{\rm G} = 5\Omega$ (External)		33	ns
$\mathbf{Q}_{g(on)}$			56	nC
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		12	nC
Q _{gd}	do 50 500 5 520		28	nC
R _{thJC}				0.25 °C/W
R _{thCS}	TO-247 & TO-3P		0.25	°C/W

Source-Drain Diode

SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		cteristic Typ.	Values Max		
I _s	$V_{GS} = 0V$			30	Α
I _{SM}	Repetitive, pulse Width Limited by $T_{_{JM}}$			120	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left. egin{array}{c} \mathbf{t}_{rr} & \ \mathbf{Q}_{RM} & \ \mathbf{I}_{RM} & \end{array} ight. ight.$	$I_{_{\rm F}} = 15 {\rm A}, -{\rm di}/{\rm dt} = 100 {\rm A}/\mu {\rm s}$ $V_{_{\rm R}} = 100 {\rm V}$		145 860 12		ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 15A$ Value vs.

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 15A Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

0.1 0.0001 0.0001 0.001 0.01 0.1 1 10 Pulse Width - Seconds

Fig. 15. Maximum Transient Thermal Impedance

IXFT30N60X IXFQ30N60X IXFH30N60X

