Tempo a disposizione: 1 h 30 min

1. Considerate il linguaggio di tutte le parole sull'alfabeto $\{0,1\}$ che non terminano con 010 (incluse ε e le parole di lunghezza < 3). Definire un'espressione regolare oppure un automa a stati finiti che riconoscano questo linguaggio.

2. Considerate il seguente ε -NFA che riconosce stringhe sull'alfabeto $\Sigma = \{0, 1\}$:

(a) Descrivete il linguaggio riconosciuto dall'automa.

L'automa riconosce il linguaggio di tutte le sequenze di zeri di lunghezza divisibile per 2 o per 3:

$$L = \{0^n \mid n \text{ è divisibile per 2 o per 3}\}$$

(b) Convertite l'automa in un DFA equivalente.

3. Considerate il linguaggio $L_1=\{0^n1^m0^m:n,m>0\}$. Questo linguaggio è regolare? Dimostrare formalmente la risposta.

Il linguaggio non è regolare. Supponiamo per assurdo che lo sia:

- sia h la lunghezza data dal Pumping Lemma;
- consideriamo la parola $w = 01^h0^h$, che appartiene ad L_1 ed è di lunghezza maggiore di h;
- sia w = xyz una suddivisione di w tale che $y \neq \varepsilon$ e $|xy| \leq h$;
- poiché $|xy| \leq h$, allora xy è completamente contenuta nel prefisso 01^h di w. Ci sono due casi possibili.

- Se $x \neq \varepsilon$ allora y è composta solo da 1. Inoltre, siccome $y \neq \varepsilon$, possiamo dire che $y = 1^p$ per qualche valore p > 0. Allora la parola xy^2z è nella forma $01^{h+p}0^h$, e quindi non appartiene al linguaggio perché il numero di 1 è diverso dal numero di 0 nell'ultima parte della parola.
- Se $x = \varepsilon$ allora, siccome $y \neq \varepsilon$, possiamo dire che $y = 01^p$ per qualche valore $p \geq 0$. Notate in questo caso lo zero iniziale è compreso in y (perché x è vuota). Allora la parola xy^0z è nella forma $1^{h-p}0^h$, e quindi non appartiene al linguaggio perché non inizia con 0, mentre tutte le parole di L_1 devono iniziare con 0 perché n > 0.

In entrambi i casi abbiamo trovato un assurdo quindi L_1 non può essere regolare.

4. Sia L un linguaggio regolare su un alfabeto Σ e dimostrate che il seguente linguaggio è regolare:

$$suffixes(L) = \{y \mid xy \in L \text{ per qualche stringa } x \in \Sigma^* \}$$

Intuitivamente, suffixes(L) è il linguaggio di tutti i suffissi delle parole che stanno in L.

Per dimostrare che suffixes(L) è regolare basta mostrare come costruire un automa a stati finiti che riconosce suffixes(L) a partire dall'automa a stati finiti che riconosce L.

Sia quindi $A = (Q, \Sigma, q_0, \delta, F)$ un automa a stati finiti che riconosce il linguaggio L. Costruiamo un ε -NFA $B = (Q \cup \{q'_0\}, \Sigma, q'_0, \delta_B, F)$ che ha uno stato in più di A. Chiamiamo q'_0 questo nuovo stato e gli assegnamo il ruolo di stato iniziale di B. La funzione di transizione del nuovo automa aggiunge una ε -transizione dal nuovo stato iniziale q'_0 verso ogni stato di Q che è raggiungibile dal vecchio stato iniziale. Il resto delle transizioni rimane invariato. Gli stati finali sono gli stessi di A.

5. Costruire una CFG che genera il linguaggio

$$L = \{a^n b^m c^k \mid \text{con } n = m \text{ o } m = k \text{ e } n, m, k \ge 0\}.$$

$$S
ightarrow S_1C\mid AS_2 \ S_1
ightarrow arepsilon\mid aS_1b \ S_2
ightarrow arepsilon\mid bS_2c \ A
ightarrow arepsilon\mid aA \ C
ightarrow arepsilon\mid cC$$