

Example 3 cont.

Schemas
$$< R_1 = ABC, F_1 = \{A \rightarrow BC, C \rightarrow B\} >$$
 and $< R_2 = BCD, F_2 = \{C \rightarrow B, B \rightarrow C, D \rightarrow B\}$

Observe that $r_1 \neq r_1$

 r_1 tuple <2,2,6> is lost in the JOIN and does not appear in r_1 '

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 11- 13

Testing Lossless-Join (or Non-Additive) Decomposition

Definition (good only on binary partition)

If D={ R_1 , R_2 } is a decomposition of R and F is a set of FDs on R, then D has a lossless-join with respect to F if

$$F \Rightarrow (R_1 \cap R_2) \rightarrow (R_1 - R_2)$$
 or $F \Rightarrow (R_1 \cap R_2) \rightarrow (R_2 - R_1)$

Example 4

Consider the previous problem where R=ABC and $F = \{A \rightarrow B\}$.

Let's assess the partition $D_1 = \{AB, AC\}$. Here $R_1 = AB$ and $R_2 = AC$

therefore $R_1 \cap R_2 = A$

 $R_1 - R_2 = B$

 $R_2^1 - R_1^2 = C$

The question $F \Rightarrow (R_1 \cap R_2) \rightarrow (R_1 - R_2)$ is equivalent to $F \Rightarrow A \rightarrow B$ and we know this is true because F contains exactly this dependency.

We must conclude the decomposition D_1 is lossless with respect to F.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesle

Slide 11- 14