Two dooks
- Numerical optimization by Nocedal & Wright
- Convex Optimization by Boyd & Vendenberghe
Grading
- 40% Hornework (4, coding)
- 30 % Midterm exam
-30% Final exam
Topics: - Gradient descent
7
A == 1
- Conjugate gradient militaria
- Stochastic gradient descent
- Interior point method constrained Optimization
- Coordinate descent
- Linear programming
- APMM (Angmented Lagrangian Methods).

O. Basic Lihear Algebra

$$\frac{\partial \cdot l \ \text{Vectors}}{\text{XER}^d}, \ \chi = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix}, \ \chi^T = [\chi_1, \chi_2 \cdots \chi_d]$$

vector norms:

Vector norms.

$$\|\chi\|_{2} = \int \chi_{1}^{2} + \dots + \chi_{2}^{2} - \dots + |\chi_{2}|^{p} + \dots + |\chi_{2$$

- Given two vectors X, y & Rd inner product xty = Exti $(\hat{x}^T y) \hat{x} = projection of youx$ unit vector: $\hat{\chi} = \frac{\chi}{||\chi||}$

 $(\hat{x}\hat{x}^T)Y$ of $\hat{x}\hat{x}^T$] Y

projection matrix

COS $0 = \frac{\hat{x}^T y}{||x||} = \frac{x^T y}{||x|| ||y||}$

x + 4 (=) xTy=0

0.1 Matrix

 $\chi \mapsto A\chi$

... operatu viene

Norm of matrix - liAllF = J [Ai] _ Operation norm (induced norm) $||A||_p = \max_{x \neq 0} \frac{||Ax||_p}{||X||_p}$ 11 All = max 11 AX 1/2 = 6, 0-3. Eigenvalue Decomposition AERMAN Def: If $Ax=\lambda x$, λ is an eigenvalue x is an eigenvector $\langle \Rightarrow (A - \lambda I) \hat{\chi} = 0$) is an eigenvalue (=> A-AI is singular (=) [let (A-, /I) =0] degreen polynomial on A A is symmetric (=) A=AT A=AT and ASAGER v -) All eigenvalues are / real V => Eigenvectors corresponding to different eigenvalues " ure orthogonal AVI=1/11, AVI=1/2 NI VI ON Y/VI=0

Det : A is postive remidefinite (A > 0) A= VA VT (=> Yx, xTAx 20 ATAX- XTVAVX 与入るこの サルナノ・・・・ハ 2000 2 -0, A 1 = 2 1/2 = 0 VITAVA >0 not: H is positive definite (A>0) (=> YX=0, x AX > 0 G7 /2 >0 Vit, ..., n 0.4 Singular Value Decomposition (SVD) AER MXh A: M) Signlar value svD of A: (m≥n) $m \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix} \begin{bmatrix} 6_{16} & 0 \\ 0 & 6_{n} \end{bmatrix} \begin{bmatrix} y_2 & \dots & y_n \end{bmatrix}$ 11, 1. UU-I, VIV=I Do bi is a singular value Ui is a left singular vector Vi is a right singular vector 6, 2 62 7 --- 7 6n 20

Thm: SVD exists for any mxn matrices. I law irralupe rup unique

 $A \left[V_1 \cdots V_n \right] = \left[u_1 \cdots u_n \right]^{\left[\delta_1 \cdots \delta_n \right]}$ physial meanings: I. A=UBVT => AV=UZ => Ava = Un : 6; (eigendown. Vi-> in Vin) Vi A Gilli $II. x \mapsto Ax$ $x \mapsto U I y x$ $\frac{1}{x^{2}} = \frac{1}{x^{2}}$ $\frac{1}{x^{2}} = \frac{1}{x^{2}}$ || All = max ||Ax/ = 61

III. If A is low rank A is runker, per min (m, n) 6, 262 -- 7 6r 70 6rt1 = 6n=0 A= [U] [0.40] [V] V, A U161 V2 A U162 Vr41 A O What's the nullspace of A. {x/Ax=0} = span (Vrt1 ... Vn)

The range respace (column space) of A

{y | y=Ax = 3 = 5pan (U1 --- Ur >

0.5 Taylor expansion.

Thm: $f: R \rightarrow R$ is continuously differentiable, then

(Mean | $f(x+p) = f(x) + \nabla f(x+tp)^T p$ Theorem | For some $t \in (0,1)$

Thm: It f is twice continuous differentiable, then $f(x+p) = \nabla_x f(x) + (\nabla^2 f(x+tp) \cdot p)_x$ for some $t \in [0,1)$, $\forall x$

Thm: If f is twice withness differentiable, then $f(x+p) = f(x) + of(x)^T p + f(x+tp) p$ for some $t \in (0,1)$.

Thm: If f is twice differentiable and $ML \ge \sqrt{f(x)} \ge mL$ $\forall x \in \text{dom}(f)$, then $f(x+p) \ge f(x) + \forall f(x)^T p + \frac{1}{2} m \|p\|_2^2$ and $f(x+p) \le f(x) + \partial f(x)^T p + \frac{1}{2} m \|p\|_2^2$