EDCO4B ESTRUTURAS DE DADOS 2

Aula 06 - Quick Sort

Prof. Rafael G. Mantovani

Prof. Luiz Fernando Carvalho

Roteiro

- 1 Introdução
- 2 Quick Sort
- 3 Exemplo
- 4 Exercício
- 5 Referências

Roteiro

- 1 Introdução
- 2 Quick Sort
- 3 Exemplo
- 4 Exercício
- 5 Referências

Roteiro

- 1 Introdução
- 2 Quick Sort
- 3 Exemplo
- 4 Exercício
- 5 Referências

Ordenação por Troca de Partições

- * ideia básica: dividir e conquistar
- * divide recursivamente o conjunto de dados até que cada subconjunto possua um elemento

Funcionamento

* Dividir e conquistar:

1. Um elemento é escolhido como **pivô**

Funcionamento

- * Dividir e conquistar:
 - 1. Um elemento é escolhido como pivô
 - 2. Função auxiliar chamada particionar: os dados são rearranjados

Funcionamento

- * Dividir e conquistar:
 - 1. Um elemento é escolhido como pivô
 - 2. Função auxiliar chamada particionar: os dados são rearranjados
 - a. valores menores que o pivô são colocados antes dele
 - b. valores maiores que o pivô são colocados depois dele

Funcionamento

- * Dividir e conquistar:
 - 1. Um elemento é escolhido como **pivô**
 - 2. Função auxiliar chamada particionar: os dados são rearranjados
 - a. valores menores que o pivô são colocados antes dele
 - b. valores maiores que o pivô são colocados depois dele
 - 3. Recursivamente ordena as duas partições

0	•		3		5	6
23	4	67	-8	90	54	21

QuickSort(V, 0, 6)

Encontrar um pivô:

Posicionar o pivô

Posicionar o pivô

pivô ficam à esquerda

Posicionar o pivô

Valores maiores que o pivô ficam à direita

Chamar recursivamente, desconsiderando o pivô:

• • •

Chamar recursivamente, desconsiderando o pivô:

• • •

Chamar recursivamente, desconsiderando o pivô:

• • •

Desempenho

```
* melhor caso: O(N log N)
* pior caso: O(N²), mas é muito raro
* caso médio: O(N log N)
```

Desempenho

```
* melhor caso: O(N log N)
* pior caso: O(N²), mas é muito raro
* caso médio: O(N log N)
```

Obs: O pior caso do Quick Sort ocorre quando o vetor já está ordenado.

Nesse caso, a complexidade do Insertion Sort é O(N)

Pseudocódigo

- 1. QuickSort: divide os dados em vetores cada vez menores
- 2. Particiona: elege um pivô e particiona de maneira que ...
 - * todos os elementos menores que o pivô estão antes dele
 - * todos os elementos maiores que o pivô estão depois dele

Pseudocódigo (função principal)

```
    QuickSort (V, Inicio, Fim)
    Se (Inicio < Fim), então:</li>
    Pivo = Particiona(V, Inicio, Fim)
    QuickSort(V, Inicio, Pivo-1)
    QuickSort(V, Pivo+1, Fim)
```

Pseudocódigo (função auxiliar)

```
Particiona (V, Inicio, Fim)
2.
        Esq = Inicio
3.
        Dir = Fim
4.
        Pivo = V[Inicio]
5.
        Enquanto (Esq < Dir) faça:
            Enquanto (V[Esq] \leq Pivo & Esq \leq final) faça:
6.
7.
                Incrementa Esq
8.
            Enquanto (V[Dir] > Pivo & Dir \ge Inicio) faça:
9.
                Decrementa Dir
10.
            Se Esq < Dir então:
11.
                Troca V[Esq] e V[Dir]
12.
       Troca V[Dir] com V[Inicio]
13.
        Return (Dir)
```

Roteiro

- 1 Introdução
- 2 Quick Sort
- 3 Exemplo
- 4 Exercícios
- 5 Referências

23 4 67 -8 90 54 21

vetor não ordenado

0	1	2	3	4	5	6
23	4	67	-8	90	54	21

QuickSort(V, 0, 6)

Particiona(V, 0, 6)

Esq = Inicio = 0
Dir = Fim = 6
pivô =
$$v[Inicio] = 23$$

Particiona(V, 0, 6)

Esq = Inicio = 0
Dir = Fim = 6
pivô =
$$v[Inicio] = 23$$

Particiona(V, 0, 6)

Esq =
$$Inicio = 0$$

Dir =
$$Fim = 6$$

$$piv\hat{o} = v[Inicio] = 23$$

Particiona(V, 0, 6)

V[Esq] > Pivô: Comparar Dir

Particiona(V, 0, 6)

V[Esq] > Pivô: Comparar Dir

V[Dir] < Pivô Esq < Dir: Trocar V[Esq], V[Dir]

Particiona(V, 0, 6)

V[Esq] > Pivô: Comparar Dir

Particiona(V, 0, 6)

V[Dir] < Pivô Dir < Esq: terminar while

Particiona(V, 0, 6)

V[Dir] < Pivô Dir < Esq: terminar while

Trocar V[Dir] e V[Inicio]

0

-8

-8

pivô

4

4

Resumindo

Vetor Ordenado

Quick Sort

Vantagens

- * elegante e eficiente
- * costuma ser a melhor opção prática para a ordenação de grandes conjuntos de dados

Desvantagens

- * Recursivo
- * não é estável
- * escolha do pivô (particionamento não balanceado)
 - partições com 0 e n-1 elementos

Roteiro

- 1 Introdução
- 2 Quick Sort
- 3 Exemplo
- 4 Exercícios
- 5 Referências

Exercícios

HANDS ON:)))

Exercícios

1) Reuna-se com seu grupo e execute o teste de mesa (simulação) do algoritmo **Quick Sort** para a sua sequência de números aleatórios, definida na planilha de grupos da disciplina.

Exercícios

2) Implemente o mergeSort em Python considerando a seguinte assinatura de função:

```
/* Ordena o vetor usando Quick Sort
Parâmetros:
    array: vetor a ser ordenado
    option: 1 - ordenação crescente, 2 - ordenação decrescente

Esse algoritmo tem um comportamento assintótico O(N log N) */

def quickSort(array, option):
```

Roteiro

- 1 Introdução
- 2 Quick Sort
- 3 Exemplo
- 4 Exercícios
- 5 Referências

Referências sugeridas

[Cormen et al, 2018]

[Drozdek, 2017]

Referências sugeridas

[Ziviani, 2010]

[Folk & Zoellick, 1992]

Perguntas?

Prof. Rafael G. Mantovani

rafaelmantovani@utfpr.edu.br