Animation et Moteurs Physiques

M 2 INFO 2022-2023

sommaire

		2.1.5.Problèmes d'ordre supérieur	24 25 25 27
Dynamique du Point	2	2.2.2.Schéma de Euler Explicite	27
1. Un exemple analytique	3 3 3	2.2.3.Schéma de Euler Implicite	31 33
1.1.2.Résolution analytique	4	Systemes Masses-Ressorts	34
1.1.3.Animation 1.2. Enrichissement du modèle 1.2.1.Résistance du milieu ambiant 1.2.2.Courbes d'Interpolation 1.3. Suite de la trajectoire: 1.3.1.Modèle de choc solide 1.4. Résolution pas-à-pas 1.4.1.Principe	6 8 10 11 11 13 13	3. L'oscillateur mécanique	35 36 37 39 39 42 44
1.4.2.Exemple du tir balistique	14	4. Systèmes Complexes	49
Resolution Numerique	16 17 17 17 18 18 22	4.1. Réseau masses/ressorts 4.1.1. Système linéaire en dimension 1 4.1.2. Représentation matricielle 4.1.3. Formalisation du processus approché 4.2. Représentation Modale 4.2.1. Systèmes diagonalisable 4.2.2. Modèle Modal	50 50 51 52 54 54 56 59
2.1.4.Formulation Intégrale	22	4.2.3.Stabilité des Systèmes Complexes	29

Dynamique du Point Equation Differentielle Ordinaire

I. Un exemple analytique: tir balistique

Décrire la trajectoire et les déformations d'un ballon sous différentes conditions :

- formulation simplifiée et mise en équation
- résolution analytique
- mise en évidence des trajectoires, courbes de vélocité
- · complexification du modèle
 - limites de la méthode analytique
 - solution par interpolation ad-hoc
 - solution par résolution pas-à-pas
- introduction aux schémas d'intégration numérique

I.1. Problème simplifié

1.1. Formulation - Mise en équation

Description : balle sphérique élastique

- de masse m et de rayon r
- lancée d'une position initiale $p_0 \begin{vmatrix} x_0 \\ y_0 \end{vmatrix}$
- influence extérieure :

soumise au seul *champ de force* gravitationnel $\vec{G} \Big|_{-g}^{0}$ (supposé constant et uniforme)¹

¹c'est un modèle descriptif

Premières simplifications :

- balle indéformable → masse ponctuelle
- vitesse initiale $\vec{v_0}\begin{vmatrix} \dot{x}_0 \\ \dot{y}_0 \\ \dot{z}_0 \end{vmatrix}$ et accélération initiale nulle
- trajectoire dans le plan défini par $(p_0, \overrightarrow{v_0}), \overrightarrow{G}$

Problème réduit : dans le plan $IR^2(\Omega, \vec{x}, \vec{z})$ défini par $\vec{\Omega} \begin{vmatrix} x_0 \\ y_0 \end{vmatrix} \vec{x} \begin{vmatrix} \dot{x}_0 \\ \dot{y}_0 \end{vmatrix}$, $\vec{z} = \vec{z}$

- conditions initiales $p_0\begin{vmatrix} x_0 = 0 \\ z_0 \end{vmatrix} \overrightarrow{v_0}\begin{vmatrix} \dot{x}_0 \\ \dot{z}_0 \end{vmatrix} \overrightarrow{a_0}\begin{vmatrix} 0 \\ 0 \end{vmatrix}$
- gravité $\vec{\mathsf{G}} \Big|_{-\mathsf{g}}^{\mathsf{0}}$

Formulation (bilan dynamique) : équation fondamentale de la dynamique (2º loi de Newton)

$$\vec{m} \vec{a}(t) = \sum \vec{F}(t) \iff \vec{m} \frac{\vec{d^2 p}}{dt^2}(t) = -\vec{m} \vec{G}$$
 (1)

1.2. Résolution analytique

Équation d'État : système différentiel d'ordre 2 :

$$\begin{cases} \ddot{x}(t) = 0 \\ \ddot{z}(t) = -g \end{cases} \Rightarrow \exists \begin{vmatrix} b_x, c_x \\ a_z, b_z, c_z \end{vmatrix} \text{ tels que } \begin{cases} x(t) = b_x t + c_x \\ z(t) = a_z t^2 + b_z t + c_z \end{cases} \text{ quadratique en } t$$
 (2)

 (b_x,c_x) et (a_z,b_z,c_z) dépendent des conditions initiales $p_0\begin{vmatrix} x_0 & \overrightarrow{v_0} & \dot{z_0} \\ \dot{z_0} & \vdots \end{vmatrix}$:

$$p(0) = p_0 \Longrightarrow \begin{cases} c_x = 0 & \overrightarrow{\frac{dp}{dt}}(0) = \overrightarrow{v}_0 \Longrightarrow \begin{cases} b_x = \dot{x}_0 & \overrightarrow{\frac{d^2p}{dt^2}}(0) = \begin{vmatrix} 0 \\ -g \end{vmatrix} \Longrightarrow a_z = -\frac{g}{2} \end{cases}$$
(3)

Trajectoire Spatiale:

Formulation paramétrique : trajectoires temporelles

$$\begin{cases} x(t) = \dot{x}_0.t \\ z(t) = -\frac{g}{2}.t^2 + \dot{z}_0.t + z_0 & portion de parabole \end{cases}$$
 (4)

Formulation cartésienne : trajectoire spatiale

$$z(x) = -\frac{g}{2\dot{x}_0^2}.x^2 + \frac{\dot{z}_0}{\dot{x}_0}.x + z_0 \quad \text{portion de parabole}$$
 (5)

Points remarquables

apogée (point d'altitude maximale) :

$$\dot{z}(t_a) = 0 \Rightarrow t_a = \frac{\dot{z}_0}{g} \Rightarrow A \frac{|\frac{\dot{x}_0.\dot{z}_0}{g}|}{|z_0 + \frac{\dot{z}_0^2}{2g}}$$
 (6)

• impact (point d'altitude nulle) :

$$z(t_i) = 0 \Rightarrow t_i = \text{solution} > 0 \text{ d'une équ. de degré 2}$$
 (7)

La trajectoire géométrique z(x) décrit $o\dot{u}$ passe la balle mais pas *quand* elle y passe. Pour connaître cette information il faut connaître les trajectoires temporelles x(t), z(t)

1.3. Animation : découpage spatial et temporel de la scène "keyframes"

Courbes temporelles:

I.2. Enrichissement du modèle

2.1. Résistance du milieu ambiant

a Modèle de résistance de l'air : poussée d'Archimède.

«Tout corps plongé dans un fluide incompressible reçoit une force opposée au poids du fluide déplacé»

- I'air *n'est pas* incompressible \Rightarrow masse volumique variable.
- le volume / la masse d'air déplacé dépend de la vitesse de l'objet
- le volume / la masse d'air déplacé dépend du volume de l'objet : notre objet n'a pas de volume

b Modèle de frottement visqueux cinétique (modèle descritif très simple)

- On introduit un paramètre $\alpha \ge 0$ caractérisant le milieu ambiant.
- force de frottement visqueux appliquée en un point de vitesse $\vec{v}(t)$ modélisée par $\vec{F_v}(t) = -\alpha \vec{v}(t)$

Formulation (bilan dynamique):

$$\vec{m} \cdot \vec{a}(t) = \sum \vec{F}(t) \iff \vec{m} \frac{d^2 p}{dt^2}(t) = -\vec{m} \cdot \vec{G} - \alpha \vec{v}(t)$$
 (8)

Équation d'État : système différentiel d'ordre 2 (avec $\omega = \frac{m}{\alpha}$) :

$$\begin{cases} \ddot{x}(t) + \frac{1}{\omega}\dot{x}(t) = 0 \\ \ddot{z}(t) + \frac{1}{\omega}\dot{z}(t) + g = 0 \end{cases} \Rightarrow \text{ solutions générale de la forme } u(t) = A.e^{-t/\omega} + B.t + C$$
 (9)

c **Résolution**

Courbes de vélocité (première intégration)

accélération :
$$\begin{cases} \ddot{x}(t) = (\frac{\dot{x}_0}{\omega}).e^{-t/\omega} \\ \ddot{z}(t) = (\frac{\dot{z}_0}{\omega} + g).e^{-t/\omega} \end{cases} \text{ vitesse} : \begin{cases} \dot{x}(t) = (\dot{x}_0).e^{-t/\omega} \\ \dot{z}(t) = (\dot{z}_0 + g.\omega).e^{-t/\omega} - g.\omega \end{cases}$$
 (10)

Trajectoires temporelles

$$\begin{cases} x(t) = x_0 + \omega \cdot (\dot{x}_0) \cdot \left(1 - e^{-t/\omega}\right) \\ z(t) = z_0 + \omega \cdot (g \cdot \omega + \dot{z}_0) \cdot \left(1 - e^{-t/\omega}\right) - g \cdot \omega \cdot t \end{cases}$$
(11)

Trajectoire géométrique

$$z(x) = z_0 + (g.\omega + \dot{z}_0).\frac{x(t) - x_0}{\dot{x}_0} + g.\omega^2.\log\left(1 - \frac{x(t) - x_0}{\omega.\dot{x}_0}\right)$$
 (12)

Points remarquables

- l'apogée et surtout le point d'impact sont plus difficiles à extraire
- vitesse de chute limite : $\dot{z}_{\infty} = -g.\omega$ dépend de m et α
- il faudrait en plus prendre en compte la surface de l'objet → cf. Dynamique du Solide
- on atteint les limites du modèle d'objet particulaire
- I'usage des Courbes d'Interpolation permet encore de s'approcher d'une solution réaliste
- 🖛 ... tant que ça reste relativement simple

2.2. Courbes d'Interpolation

2023

I.3. Suite de la trajectoire : les rebonds

On connaît:

- le point d'impact : $z_i = 0 \Rightarrow t_i \Rightarrow x_i$
- la vitesse d'impact : $\overrightarrow{v_i}\begin{vmatrix} \dot{x}(t_i) \\ \dot{z}(t_i) \end{vmatrix}$
- il faut un modèle descriptif de gestion de collision

3.1. Modèle de choc solide

a Choc élastique conservatif sans amortissement, sans glissement

 La vitesse après impact w

i a la même intensité mais une direction symétrique par rapport à la normale à l'obstacle au point d'impact (cf. RayTracing).

$$\overrightarrow{W}_{i} \begin{vmatrix} \dot{x}(t_{i}) \\ -\dot{z}(t_{i}) \end{vmatrix}$$

$$\overrightarrow{w}_i = 2(\overrightarrow{v}_i \bullet \overrightarrow{N})\overrightarrow{N} - \overrightarrow{v}_i$$

• On a les nouvelles conditions initiales $\overrightarrow{p_0}\Big|_{Z_i}^{X_i}$ et $\overrightarrow{v_0} = \overrightarrow{w_i} \Rightarrow$ on recommence.

b Choc élastique dissipatif amorti, avec glissement

- La vitesse après impact a une intensité plus faible et une direction pas tout à fait symétrique par rapport à la normale au point d'impact.
- On utilise un premier modèle descriptif de choc visco-élastique
 - on introduit un coeff. d'élasticité k ∈ IR et un coeff. de rugosité z ∈ IR caractérisant la surface d'impact.
 - on décompose la vitesse d'impact sur la surface en composantes normale $\overrightarrow{v_N}$ et tangentielle $\overrightarrow{v_T}$ telles que $\overrightarrow{v_i} = \overrightarrow{v_N} + \overrightarrow{v_T}$
 - on définit la vitesse après impact par : $\overrightarrow{w_i} = -k\overrightarrow{v_N} + z\overrightarrow{v_T}$

- pour garder un certain *réalisme* physique, il faut $0 \le k \le z \le ||\overrightarrow{v_i}||$
- ce modèle est simple et pratique, mais atteint vite ses limites (cf. plus tard).

I.4. Résolution pas-à-pas "physique impulsionnelle"

4.1. Principe (approche naïve)

On travaille dans un univers discret dans lequel tous les événements (contraintes, interactions, échanges d'information) ont lieu sous forme *impulsionnelle*, i.e. à des instants discrets.

- La gravité n'est pas une force continue constante mais un train d'impulsions ponctuelles
- Entre deux impulsions, il ne se passe rien: mouvements libres et conservatifs, aucune interaction.
- on note $(t_n)_{n\in\mathbb{N}}$ les instants impulsionnels et dt le laps de temps (constant) entre 2 impulsions.
- on suppose que l'on connaît la position x_n d'un point à l'impulsion n et sa vitesse $v_{(n,n+1)}$, constante, entre la fin de l'impulsion n et le début de l'impulsion (n+1).
- on peut alors déduire la position à l'instant (n + 1): $x_{n+1} = x_n + dt.v_{(n,n+1)}$ (mouvements libres).
- on en déduit une expression de la vitesse inter-impulsionnelle : $v_{(n,n+1)} = (x_{n+1} x_n)/dt$

Cette expression évoque, lorsque le pas inter-impulsion tend vers 0, l'expression mathématique de l'opérateur de dérivation : $v(t) = \frac{dx}{dt} = \dot{x}(t) = \lim_{dt \to 0} \frac{x(t+dt)-x(t)}{dt} = \lim_{dt \to 0} \frac{x(t)-x(t-dt)}{dt}$

Une question se pose encore : la vitesse inter-impulsionnelle $v_{(n,n+1)}$ est-elle évaluée

- à la fin de l'impulsion n dans ce cas c'est v_n (approximation de $v(t) = \lim_{dt \to 0} \frac{x(t+dt)-x(t)}{dt}$) ?
- au début de l'impulsion (n + 1) c'est v_{n+1} (approximation de $v(t + dt) = \lim_{dt \to 0} \frac{x(t+dt)-x(t)}{dt}$) ?

4.2. Exemple du tir balistique

On suppose que

- on connaît l'état complet du système (pos., vit., bilan dyn.) à un (ou plusieurs) instant(s) (t-1) t
- on dispose d'un schéma d'approximation de l'opérateur de dérivation
- on a fixé dt, intervalle de temps inter-impulsion
- on va essayer de déterminer une approximation de l'état suivant t+1
- État à l'instant t :
 - position $\vec{x}(t)$
 - vitesse $\vec{v}(t)$
 - bilan dyn. $\vec{a}(t) = -\vec{G} \frac{\alpha}{m} \vec{v}(t)$

a Première approximation (évaluation en fin d'impulsion)

On utilise l'opérateur de dérivation anticipée : $\dot{u}(t) = \lim_{dt \to 0} \frac{u(t+dt)-u(t)}{dt}$

• Intégration :

état à l'instant t+dt

•
$$\overrightarrow{v}(t) = \frac{\overrightarrow{x}(t+dt) - \overrightarrow{x}(t)}{dt} \implies \overrightarrow{x}(t+dt) = \overrightarrow{x}(t) + \overrightarrow{v}(t).dt$$

- Problème : avec le schéma $\dot{u}(t) = \frac{u(t+dt)-u(t)}{dt}$, on évalue la dérivée en t avec la valeur u(t+dt) que I'on ne connaît pas encore².
- on est incapable d'évaluer la validité de la solution pas-à-pas calculée.

²puisque c'est précisément ce que l'on cherche à calculer!!

2023

b Deuxième approximation (évaluation en début d'impulsion)

On utilise l'opérateur de dérivation retardée : $\dot{u}(t) = \lim_{dt \to 0} \frac{u(t) - u(t - dt)}{dt}$

- avec ce schéma on évalue la dérivée u(t) avec les valeurs u(t dt) et u(t) que l'on connaît.
- on peut évaluer à tout instant la validité de la solution pas-à-pas calculée.
- la mise à jour de l'état du système se fait dans l'ordre inverse (en début d'impulsion).

$$\begin{array}{c} \text{\'etat \`a l'instant } t + dt \\ \bullet \overrightarrow{a}(t+dt) = \overrightarrow{\overrightarrow{v}(t+dt)-\overrightarrow{v}(t)} \\ \Rightarrow \overrightarrow{v}(t+dt) = \overrightarrow{v}(t) + \overrightarrow{a}(t+dt)dt \\ \Rightarrow \overrightarrow{v}(t+dt) = \overrightarrow{v}(t) + \left(-\overrightarrow{v}(t+dt)\frac{\alpha}{m} - \overrightarrow{G}\right)dt \\ \Rightarrow \overrightarrow{v}(t+dt)\left(1 - \frac{\alpha}{m}dt\right) = \overrightarrow{v}(t) - \overrightarrow{G}.dt \\ \Rightarrow \overrightarrow{v}(t+dt) = \left(1 - \frac{m}{m+\alpha.dt}\right)\overrightarrow{v}(t) - \left(\frac{m.dt}{m+\alpha.dt}\right)\overrightarrow{G} \end{array}$$

Intégration :

- $\overrightarrow{v}(t + dt) = \frac{\overrightarrow{X}(t+dt) \overrightarrow{X}(t)}{dt}$ \Rightarrow $\overrightarrow{X}(t + dt) = \overrightarrow{X}(t) + \overrightarrow{v}(t + dt).dt$
- bilan dynamique (à t+2dt) $\Rightarrow \vec{a}(t + 2dt) = -\vec{G} \frac{\alpha}{m}\vec{v}(t + dt)$
- Problème : si l'expression du bilan dynamique est plus complexe, ça se complique ! bilan dyn. \Rightarrow $\overrightarrow{ma}(t)dt = \Phi(t, \overrightarrow{v}(t), \overrightarrow{x}(t))$ \Rightarrow $\overrightarrow{v}(t+dt) = \overrightarrow{v}(t) + \frac{dt}{m}\Phi(t+dt, \overrightarrow{v}(t+dt), \overrightarrow{x}(t+dt))$ \Rightarrow $\overrightarrow{v}(t+dt) = \overrightarrow{v}(t) + \frac{dt}{m}\Phi(t+dt, \overrightarrow{v}(t+dt), \overrightarrow{v}(t+dt).dt + \overrightarrow{x}(t))$
 - ⇒ ça peut devenir très très très difficile!