DISCIPLINE SPECIFIC CORE COURSE -11 (DSC-11): Carbohydrates, Lipids and Heterocyclic Compounds

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre- requisite of
		Lecture	Tutorial	Practical/		the course
				Practice		(if any)
Carbohydra tes, Lipids and Hetero cyclic Compounds (DSC-11, Organic Chemistry IV)	04	03		01	Class 12 th with Physics, Chemistry	

Learning Objectives

The Objectives of this course are as follows:

- To familiarize students with the chemistry of carbohydrates, lipids, and heterocyclic compounds
- To enable students to develop novel, efficient, convenient, selective and environmentally benign synthetic methods for synthesis of heterocyclic compounds.

Learning outcomes

By studying this course, the students will be able to:

- Describe uses and applications carbohydrates, lipids and heterocycles
- Use the knowledge gained from study of carbohydrates, lipids and heterocycles to propose greener and better synthetic routes.
- Use the chemistry and biology of carbohydrates, lipids and heterocycles to better serve the mankind.

SYLLABUS OF DSC-11

Unit-1: Carbohydrates & Lipids

Monosaccharides: Constitution and absolute configuration of glucose and fructose, epimers and anomers, mutarotation, determination of ring size of glucose and fructose, Haworth projection and conformational structures; Interconversion of aldoses and ketoses; Killiani-Fischer synthesis and Ruff degradation; Linkage between monosaccharides: Comparative study of the structure of disaccharides (sucrose, maltose, lactose) and polysaccharides (starch, cellulose and glycogen) excluding their structure elucidation. Reactions of disaccharides-reducing property, hydrolysis, methylation and acetylation.

Lipids: Introduction to lipids, classification. Oils and fats: Common fatty acids present in oils and fats, Omega-3&6 fatty acids, trans fats, hydrogenation, hydrolysis, acid value, saponification value, iodine number. Biological importance of triglycerides, phospholipids, glycolipids, and steroids (cholesterol).

Unit-2: Heterocyclic Compounds

(Hours:21)

(Hours: 24)

Classification and nomenclature of heterocyclic compounds (containing only one hetero atom). Structure, aromaticity in 5-membered and 6-membered rings containing one heteroatom; Basicity and relative reactivity towards electrophilic substitution reactions (amongst five membered and six membered rings.

General methods of synthesis for: furan, thiophene, pyrrole (Paal-Knorr synthesis, Hantzsch synthesis), pyridine (Hantzsch synthesis), indole (Fischer Indole synthesis), quinoline (Skraup synthesis, Friedlander's synthesis, Knorr quinoline synthesis, Doebner-Miller synthesis)

Properties: Physical properties, discussion on the following reaction (with mechanism) for furan, pyrrole, thiophene, pyridine, indole and quinoline: Electrophilic substitution- nitration, sulphonation, halogenation, formylation, acylation, mercuration and carboxylation. Oxidation, reduction, addition, reactions showing acidic /basic character, reaction with diazonium salts, ring opening, ring expansion and nucleophilic substitution reaction wherever applicable should be discussed.

Practical: Credits: 01

(Laboratory periods: 15 classes of 2 hours each)

- 1. Estimation of sugars by using Fehling solution.
- 2. Functional group tests for amine, nitro and amides.
- 3. Determination of saponification value of the given oil.
- 4. Determination of iodine number of the given oil.
- 5. Systematic qualitative analysis of the given organic compounds containing monofunctional groups (carboxylic acids, carbonyl compounds, carbohydrates and esters) and preparation of one suitable derivative.

Essential/recommended readings

Theory:

- 1. Berg, J.M., Tymoczko, J.L., Stryer, L. (2019), **Biochemistry**, 9th Edition W.H. Freeman and Co.
- 2. Nelson, D.L., Cox, M.M., Lehninger, A.L. (2017), **Principles of Biochemistry**. W.H. Freeman and Co., International Edition.
- 3. Morrison, R. N., Boyd, R. N., Bhattacharjee, S.K. (2010), **Organic Chemistry**, 7th Edition, Dorling Kindersley (India) Pvt. Ltd., Pearson Education.
- 4. Parashar, R.K., Negi, B. (2016) Chemistry of Heterocyclic Compounds, Ane Books Pvt Ltd.
- 5. Kuashik, S., Singh, A. (2023), **Biomolecules: From Genes to Proteins**, Ist Edition, Berlin, Boston: De Gruyter.
- 6. Finar, I.L., (2012), **Organic Chemistry** Volume 1, 6th Edition, Pearson Education.
- 7. Singh J, Awasthi S K, Singh J, **Fundamentals of Organic Chemistry**, Pragati Prakashan Meerut.

Practical:

- 1. Vogel, A.I. (2012), Quantitative Organic Analysis, Part 3, Pearson Education.
- 2. Mann, F.G., Saunders, B.C. (2009), Practical Organic Chemistry, Pearson Education.
- 3. Ahluwalia, V.K., Dhingra, S. (2004), Comprehensive Practical Organic Chemistry: Qualitative Analysis, University Press.
- 4. Ahluwalia, V.K., Aggarwal, R. (2004), Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press
- 5. Pasricha, S., Chaudhary, A. (2021), **Practical Organic Chemistry: Volume–I**, I K International Publishing house Pvt. Ltd, New Delhi
- 6. Pasricha, S., Chaudhary, A. (2021), **Practical Organic Chemistry: Volume–II**, I K International Publishing house Pvt. Ltd, New Delhi

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.