Исследование математической модели времени ответа пользователя на задание системы дистанционного обучения

Черыгова Е.Е. - студентка группы 8О-404Б Наумов А.В. - проф., д.ф.-м.н.

Московский авиационный институт Факультет информационные технологии и прикладная математика Кафедра теории вероятностей и компьютерного моделирования

Москва, 2018

1. Модели времени ответа пользователя СДО. Непрерывная модель Ван дер Линдена

Пусть:

- T_{ij} случайная величина, обозначающая время ответа j-го пользователя на i-ю задачу;
- ullet eta_i индивидуальная сложность рассматриваемого задания;
- au_j физиологические особенности пользователя;
- ullet μ общая составляющая для всех пользователей и заданий;
- ullet $arepsilon_{ij}$ случайное отклонение.

Логарифм времени ответа j-го пользователя на i-е задание имеет вид

$$\ln T_{ij} = \mu + \beta_i + \tau_j + \varepsilon_{ij}, \qquad \sum_{i=1}^{I} \beta_i = 0, \qquad \sum_{j=1}^{J} \tau_j = 0,$$
 (1)

где $arepsilon_{ij},\ i=1,\dots,I,\ j=1,\dots,J$ - независимые случайные величины, $arepsilon_{ij}\sim N(0,\sigma^2)$ имеет гауссовское распределение. Таким образом

$$T_{ij} \sim LogN(\mu + \beta_i + \tau_j, \sigma^2).$$

2. Модели времени ответа пользователя СДО. Непрерывная модель Ван дер Линдена (продолжение)

Оценки параметров модели:

$$\hat{\mu} = \frac{\sum_{j=1}^{J} \sum_{i=1}^{I} \ln t_{ij}}{IJ}, \ \hat{\beta}_i = \frac{\sum_{j=1}^{J} \ln t_{ij}}{J} - \hat{\mu},$$
 (2)

$$\hat{\tau}_{j} = \frac{\sum_{i=1}^{I} \ln t_{ij}}{I} - \hat{\mu}, \ \hat{\sigma^{2}} = \frac{\sum_{j=1}^{J} \sum_{i=1}^{I} (\ln t_{ij} - \hat{\tau}_{j} - \hat{\beta}_{i} - \hat{\mu})^{2}}{IJ}$$
(3)

Логнормальная модель времени ответа j-го пользователя на i-е задание с плотностью вероятности вида

$$f(x,\hat{\tau_j},\hat{\beta_i},\hat{\sigma}) = \frac{1}{x\sqrt{2\pi\hat{\sigma}^2}} exp\left\{-\frac{1}{2} \left[\frac{\ln x - (\hat{\mu} + \hat{\beta_i} + \hat{\tau_j})}{\sqrt{\hat{\sigma}^2}} \right]^2 \right\}$$
(4)

3. Модели времени ответа пользователя СДО. Дискретизация времени ответа универсального пользователя на задание.

Обозначим через T_i - случайное время ответа универсального пользователя на i-е задание. Пусть T_i принимает свои значения на интервале $(\underline{t}, \overline{t})$ действительной прямой $(-\infty, \infty)$ и назначено L_i-1 порогов дискретизации разбивающих интервал $(\underline{t}, \overline{t})$ на L подынтервалов (t_{l-1}, t_l) , $l=1,\ldots, L_i$, полагаем $t_0=\underline{t}, t_L=\overline{t}$

$$0 = \underline{t} < t_1 < t_2 < \dots < t_{l-1} < t_l < \dots < t_{L_i-1} < \overline{t} = +\infty.$$

Тогда непрерывной случайной величине T_i может быть сопоставлена дискретная случайная величина Θ_i , определяемая рядом распределения

$ heta_i^l$	$ heta_i^1$	θ_i^2	 $ heta_i^{L_i}$
p_l	p_1	p_2	 p_{L_i}

где
$$\theta_l^i$$
 середины интервалов (t_{l-1},t_l) , а $p_l=\int\limits_{t_{l-1}}^{t_l}f(t,\tau,\beta_i,\sigma)dt$ - соответствующие им вероятности, $l=1,\ldots,L_i$.

4. Постановка задачи определения оптимального набора ограниченных по времени тестовых заданий

Пусть существует множество $Z=(z_1,\dots,z_I)$ из I заданий, разделенных на M различных типов, I_m - число заданий m-го типа, тогда $\sum\limits_{m=1}^M I_m=I,\ m=1,\dots,M.$ Для обозначения принадлежности задания к определенному типу введем матрицу A размерности $I\times M$:

$$A = || a_i^m ||, a_i^m = \begin{cases} 1, & z_i \in Z_m, \\ 0, & z_i \notin Z_m. \end{cases}$$

Пусть $u \in R^I$ вектор принадлежности задания к тесту:

$$u_i = egin{cases} 1, & \text{если задача } i \text{ попала в тестовый набор,} \\ 0, & \text{если задача } i \text{ не попала в тестовый набор.} \end{cases}$$

Определим вектор $w \in R^I$, i-я координата которого является сложностью i-го задания. Пусть c - суммарная сложность теста и k - количество заданий в тесте, $k \geqslant M$.

5. Постановка задачи (продолжение)

Рассмотрим вектор $\Theta \in R^I$:

$$\Theta = (\Theta_1, \dots, \Theta_I)^T.$$

Будем предполагать, что случайные величины $\Theta_i, \ i=1,\ldots,I$ являются независимыми.

Пусть общее время на выполнение теста неизвестно. Обозначим его через φ . Рассмотрим функцию квантили:

$$\Phi_{\alpha}(u) \stackrel{\triangle}{=} min\{\varphi : P\{\Theta^{T}u \leqslant \varphi\} \geqslant \alpha\}.$$
 (5)

6. Постановка задачи (продолжение)

$$u_{\alpha} = Arg \min_{u \in \{0,1\}^{I}} \gamma \frac{|c - w^{T}u|}{\varepsilon} + (1 - \gamma) \frac{\Phi_{\alpha}(u)}{2700}, \tag{6}$$

$$\varphi_{\alpha} = \min_{u \in \{0,1\}^I} \gamma \frac{|c - w^T u|}{\varepsilon} + (1 - \gamma) \frac{\Phi_{\alpha}(u)}{2700}, \tag{7}$$

$$c - w^T u \leqslant \varepsilon, \tag{8}$$

$$w^T u - c \leqslant \varepsilon, \tag{9}$$

$$A^T u \geqslant e_M, \tag{10}$$

$$e^T u = k, (11)$$

где $(\cdot)^T$ - операция транспонирования, $\gamma \in (0,1)$ - весовой коэффициент, $\alpha \in (0,1)$ - заданный уровень доверительной вероятности, $e \in R^I$, $e = (1,\dots,1)^T$, $e_M \in R^M$, $e_M = (1,\dots,1)^T$.

7. Сведение исходной задачи в дискретном случае к задаче частично целочисленного математического программирования

$$u^* = Arg \min_{u \in \{0,1\}^I, \ \varphi \geqslant 0, \ \delta \in \{0,1\}^D} \gamma \frac{|c - w^T u|}{\varepsilon} + (1 - \gamma) \frac{\varphi}{2700}, \quad (12)$$

$$(\theta^d)^T u - \varphi \leqslant ((\theta^d)^T e)\delta_d, \quad d = 1, \dots, D, \quad D = \prod_{i=1}^I L_i, \tag{13}$$

$$|c - w^T u| \leqslant \varepsilon, \tag{14}$$

$$A^T u \geqslant e_M, \tag{15}$$

$$e^T u = k, (16)$$

$$p^T \delta \leqslant 1 - \alpha, \ \delta = (\delta_1, \dots, \delta_D),$$
 (17)

$$p = (p_1, \dots, p_D), p_d = P(\Theta = \theta_d) = \prod_{i=1}^{I} P(\Theta_i = \theta_i^d),$$
 (18)

8. Алгоритм поиска оптимального набора заданий

1. Составить множество \overline{U} всех u, удовлетворяющих неравенствам (14) - (16):

$$\overline{U} \stackrel{\triangle}{=} \{u \in R^I : c - w^T u \leqslant \varepsilon, \ w^T u - c \leqslant \varepsilon, \ A^T u \geqslant e_M, \ e^T u = k, \ u \in \{0,1\}^I\};$$

2. Для каждого $u^s \in \overline{U}$ решить задачу

$$\begin{split} \psi_s^* &= \min_{\varphi_s \geqslant 0, \; \delta_s \in \{0,1\}^B} \gamma \frac{|c - w^T u^s|}{\varepsilon} + (1 - \gamma) \frac{\varphi_s}{2700}, \\ (\varphi_s^*, \delta_s^*) &= \arg \min_{\varphi_s \geqslant 0, \; \delta_s \in \{0,1\}^B} \gamma \frac{|c - w^T u^s|}{\varepsilon} + (1 - \gamma) \frac{\varphi_s}{2700}, \\ (\theta_s^b)^T e - \varphi \leqslant ((\theta_s^b)^T e) \delta_{sb}, \quad b = 1, \dots, B, \quad B = \prod_{i: u_i^s \neq 0} L_i, \\ p_s^T \delta_s \leqslant 1 - \alpha, \\ p_s &= (p_{s1}, \dots, p_{sB}), \quad p_{sb} = P(\Theta_s = \theta_s^b) = \prod_{i: u_i^s \neq 0} P(\Theta_i = \theta_i^b), \\ \delta_s &= (\delta_{s1}, \dots, \delta_{sB}), \end{split}$$

 $e \in R^k, e = (1, ..., 1)^T, \theta^b_s \in R^k, b = 1, ..., B$ - реализация случайного вектора Θ_s , являющегося подвектором исходного вектора Θ , состоящего из координат $\Theta_i:u_i^s\neq 0,\ \Theta_s\in R^k,\ p_s\in R^B$ - вектор со значениями, равными вероятностям появления соотвествующей реализации дискретной случайной величины Θ_i , $i: u_i^s \neq 0, \ \delta_s \in \{0,1\}^B$ - вектор булевых переменных для перебора α -доверительных множеств, L_i - число возможных реализаций CB Θ_i ; 3. Среди всех ψ_s^* выбираем наименьшее (ψ_{s*}^*) ;

4. Полагаем решение исходной задачи (12)-(18) равным $u_{s^*}^*, \psi_{s^*}^*, \varphi_{s^*}^*, \delta_{s^*}^*$

9. Результаты численного эксперимента

Таблица: Количество наборов заданий, удовлетворяющих детерминированным ограничениям

ε	Кол-во ре-	Оптимальное	Оптимальный	Оптимальное	Оптимальный
	шений, удов.	решение ψ^*	набор зада-	решение ψ^*	набор зада-
	дет. огр.	при $\gamma = 0.5$	ний при	при $\gamma = 0$	ний при
			$\gamma = 0.5$		$\gamma = 0$
$4 \cdot 10^{-4}$	3	0,6658	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,5815	$\left[z_5^1, z_8^1, z_3^2, z_7^3, z_9^3 \right]$
$5 \cdot 10^{-4}$	3	0,5908	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,5815	$\boxed{z_5^1, z_8^1, z_3^2, z_7^3, z_9^3}$
$6 \cdot 10^{-4}$	3	0,5408	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,5815	$\boxed{z_5^1, z_8^1, z_3^2, z_7^3, z_9^3}$
$7 \cdot 10^{-4}$	3	0,5050	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,5815	$\left[\begin{array}{c}z_5^1,z_8^1,z_3^2,z_7^3,z_9^3\end{array}\right]$
$8 \cdot 10^{-4}$	4	0,4783	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,5102	$\boxed{z_5^1, z_8^2, z_7^3, z_8^3, z_{10}^3}$
$9 \cdot 10^{-4}$	6	0,4574	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,5023	$\left[\begin{array}{c} z_6^1, z_1^2, z_7^2, z_9^2, z_5^3 \end{array}\right]$
$1\cdot 10^{-3}$	7	0,4408	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,5023	$\left[\begin{array}{c}z_6^1,z_1^2,z_7^2,z_9^2,z_5^3\end{array}\right]$
$2 \cdot 10^{-3}$	21	0.3658	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,4919	$\left[\begin{array}{c} z_6^1, z_7^1, z_4^2, z_7^3, z_8^3 \end{array}\right]$
$3 \cdot 10^{-3}$	30	0.3408	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,4710	$\left[\begin{array}{c}z_{6}^{1},z_{8}^{1},z_{1}^{2},z_{6}^{3},z_{8}^{3}\end{array}\right]$
$4 \cdot 10^{-3}$	35	0.3283	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,4710	$\left[\begin{array}{c}z_{6}^{1},z_{8}^{1},z_{1}^{2},z_{6}^{3},z_{8}^{3}\end{array}\right]$

Таблица: Зависимость значения критериальной функции от γ для $\varepsilon = 4 \cdot 10^{-3}$

γ	Оптимальный	Значение	γ	Оптимальный	Значение
	набор зада-	критерия ψ^*		набор зада-	критерия ψ^*
	ний			ний	
0	$z_6^1, z_8^1, z_1^2, z_6^3, z_8^3$	0,4710	0.55	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,3029
0.05	$z_6^1, z_8^1, z_1^2, z_6^3, z_8^3$	0,4775	0.60	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,2776
0.1	$z_6^1, z_1^2, z_7^2, z_9^2, z_5^3$	0,4721	0.65	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,2523
0.15	$z_6^1, z_1^2, z_7^2, z_9^2, z_5^3$	0,4570	0.70	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,2270
0.20	$z_6^1, z_1^2, z_7^2, z_9^2, z_5^3$	0,4418	0.75	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,2016
0.25	$z_6^1, z_1^2, z_7^2, z_9^2, z_5^3$	0,4267	0.80	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,1763
0.30	$z_6^1, z_1^2, z_7^2, z_9^2, z_5^3$	0,4116	0.85	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,1510
0.35	$z_6^1, z_1^2, z_7^2, z_9^2, z_5^3$	0,3965	0.9	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,1257
0.40	$z_6^1, z_1^2, z_7^2, z_9^2, z_5^3$	0,3789	0.95	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,1003
0.45	$z_6^1, z_1^2, z_7^2, z_9^2, z_5^3$	0,3536	1	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,0750
0.50	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	0,3283			

Рисунок: Зависимость значения критериальной функции от γ для $\varepsilon = 4 \cdot 10^{-3}$

Таблица: Результат численного эксперимента для $\gamma=0$

ε	Оптимальный набор заданий	φ^* (секунды)	φ^* (минуты)	Значение критерия ψ^*
0,0004	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	1570,0833	26,1681	0,5815
0,0005	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	1570,0833	26,1681	0,5815
0,0006	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	1570,0833	26,1681	0,5815
0,0007	$z_5^1, z_8^1, z_3^2, z_7^3, z_9^3$	1570,0833	26,1681	0,5815
0,0008	$z_5^1, z_8^2, z_7^3, z_8^3, z_{10}^3$	1377,6667	22,9611	0,5102
0,0009	$z_6^1, z_1^2, z_7^2, z_9^2, z_5^3$	1356,2	22,6033	0,5023
0,001	$z_6^1, z_1^2, z_7^2, z_9^2, z_5^3$	1356,2	22,6033	0,5023
0,002	$z_6^1, z_7^1, z_4^2, z_7^3, z_8^3$	1328,025	22,1337	0,4919
0,003	$z_6^1, z_8^1, z_1^2, z_6^3, z_8^3$	1271,775	21,1963	0,4710
0,004	$z_6^1, z_8^1, z_1^2, z_6^3, z_8^3$	1271,775	21,1963	0,4710

Таблица: Время выполнения алгоритма

ε	Затраченное время (секунды)	ε	Затраченное время (секунды)
0,0004	4,189767	0,0009	7,365371
0,0005	4,648206	0,001	8,716812
0,0006	4,521878	0,002	23,158336
0,0007	4,178228	0,003	34,178394
0,0008	5,498839	0,004	39,744152

14. Результаты Выпускной квалификационной работы

- предложена постановка задачи формирования теста заданного уровня сложности с минимальным временем выполнения.
 Задача сформулирована в терминах одноэтапной задачи квантильной оптимизации;
- предложен алгоритм решения сформулированной задачи, основанный на её декомпозиции, позволяющий существенно сократить время решения задачи;
- получены результаты численного эксперимента, подтверждающие адекватность предложенной модели;
- опубликованы тезисы в сборниках докладов "XLIII Гагаринских чтений"и "XII Международной конференции по Прикладной математике и механике в аэрокосмической отрасли";
- подготовлена статья для публикации в журнале "Вестник компьютерных и информационных технологий".