Основания алгебраического подхода к синтезу корректных алгоритмов

Читал - Рудаков К.В. Набивал - Старожилец В.М.

Оглавление

1	Лекция 1	2
	Введение	4
	Поиск решения задачи	ુ

Лекция 1

Введение

Данные лекции предназначены для общего рассмотрения задач машинного обучения не привязываясь каким-либо конкретным методам. Они являются чем-то сродни взгляда сверху.

В первую очередь следует сформулировать задачу машинного обучения в общем виде. По сути это задача построения такого алгоритма который реализует отображение из множества начальных информаций в множество конечных.

Определение. Символом \mathfrak{I}_{i} будем обозначать множество начальных информаций. Например, симптомы болезни.

Определение. Символом $\mathfrak{I}_{\mathfrak{f}}$ будем обозначать множество конечных информаций. Например, диагноз.

Таким образом, на формальном языке нам требуется найти такой алгоритм A, что он осуществляет отображение $\mathfrak{I}_{\mathfrak{i}} \stackrel{A}{\to} \mathfrak{I}_{\mathfrak{f}}$. Пока что задача стоит так, что нам нужно просто найти отображение из одного множества в другое причём абсолютно неважно какое. В такой постановке у нас нет каких либо ограничений и даже просто случайный выбор решает эту задачу. Поэтому вводятся дополнительные ограничения на допустимые алгоритмы. Итак,

Определение. $\mathfrak{M}^* = \{A | A : \mathfrak{I}_{\mathfrak{i}} \xrightarrow{A} \mathfrak{I}_{\mathfrak{f}} \}$ множество всех алгоритмов осуществляющих отображение из $\mathfrak{I}_{\mathfrak{i}}$ в $\mathfrak{I}_{\mathfrak{f}}$.

Определение. I_{str} — $cmpy \kappa myp ная информация. Условия/требования по отношению <math>\kappa$ A.

Определение. $\mathfrak{M}(I_{str})$ - некоторое подмножество \mathfrak{M}^* удовлетворяющее I_{str} .

Теперь у нас есть некоторый механизм (I_{str}) позволяющий вводит дополнительные ограничения к нашей задаче.

Определение (Допустимое отображение). Любое отображение из множества $\mathfrak{M}(I_{str})$ является допустимым.

Определение (Задача Z). Построение алгоритма реализующего допустимое отображение.

Определение (Корректный алгоритм). Любой алгоритм реализующий любое допустимое отображение называется корректным.

В такой формулировке очевидно, что необходимое и достаточное условие разрешимости задачи это $\mathfrak{M}(I_{str}) \neq \emptyset$, а единственности решения: $|\mathfrak{M}(I_{str})| = 1$. Заметим также, что в данной формулировке корректный алгоритм - алгоритм не допускающий ни одной ошибки $(\mathfrak{M}(I_{str}))$ - множество алгоритмов не допускающих ошибок)! Однако, можно поставить условия и несколько мягче, и дать возможность алгоритмам ошибаться.

Поиск решения задачи

Корректный алгоритм надо как-то искать, в связи с этим введем ещё одно понятие.

Определение. $\mathfrak{M}(\pi)$ - некоторое параметрическое семейство отображений.

После того, как мы выбрали некоторое $\mathfrak{M}(\pi)$ и впоследствии взяв там какое-нибудь отображение за начальное попытаться попасть в $\mathfrak{M}(I_{str})$. Это возможно если данные семейства пересекаются. Тут нас ждёт дилемма - с одной стороны чем сложнее наше семейство тем выше шанс что оно пересекается с семейством $\mathfrak{M}(I_{str})$, но попасть в это пересечение если $\mathfrak{M}(\pi)$ сложное может быть очень затратно, причём всегда остаётся вероятность, что мы с $\mathfrak{M}(I_{str})$ не пересекаемся. Тут используют идею расширения множества.

Определение. Пусть f - некотороя операция над множеством \mathfrak{M}^* . Тогда $f(\mathfrak{M}(\pi))$ расширение множества $\mathfrak{M}(\pi)$.

Таким образом мы стараемся расширить некоторое простое множество до пересечения с $\mathfrak{M}(I_{str})$. Однако, не любая функция f нам подходит. Ведь может получиться, что мы расширились до "сложного" множества. Важным является то, что f мы выбираем сами, и можем выбрать его так, чтобы искать нужный алгоритм было не слишком сложно. (какая то ересь получилась. особенно в конце)