Worksheet 15: Orthogonal Projections and Orthonormal Bases (§5.1)

(c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License.

Recall the following definitions:

Two vectors \vec{v} , $\vec{w} \in \mathbb{R}^n$ are said to be *orthogonal* if $\vec{v} \cdot \vec{w} = 0$.

The *length* of a vector \vec{v} in \mathbb{R}^n is $||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}}$.

Given any set $S \subseteq \mathbb{R}^n$, the orthogonal complement S^{\perp} of S is the set

$$S^{\perp} = \{ \vec{w} \in \mathbb{R}^n \ : \ \vec{w} \cdot \vec{v} = 0 \text{ for all } \vec{v} \in S \}.$$

Problem 1.

- (a) What is the orthogonal complement of the plane 2x 3y + z = 0 in \mathbb{R}^3 ?
- (b) What is the orthogonal complement of the line Span(\vec{e}_2) in \mathbb{R}^3 ?

Solution: (a) The line spanned by $\begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$. (b) The xz-plane in \mathbb{R}^3 .

Problem 2.

(a) Prove that for any $S \subseteq \mathbb{R}^n$, S^{\perp} is a subspace of \mathbb{R}^n .

Solution: Let $S \subseteq \mathbb{R}^n$. Since $\vec{0} \cdot \vec{v} = 0$ for all $\vec{v} \in S$, $\vec{0} \in S^{\perp}$. If $\vec{u}, \vec{w} \in S^{\perp}$, then for all $\vec{v} \in S$ we have

$$(\vec{u} + \vec{w}) \cdot \vec{v} = \vec{u} \cdot \vec{v} + \vec{w} \cdot \vec{v} = 0 + 0 = 0.$$

so $\vec{u} + \vec{w} \in S^{\perp}$. Similarly, if $\vec{w} \in S^{\perp}$ and $c \in \mathbb{R}$ then $(c\vec{w}) \cdot \vec{v} = c(\vec{w} \cdot \vec{v}) = c0 = 0$ for all $\vec{v} \in S$, so $c\vec{w} \in S^{\perp}$. This shows that S^{\perp} is a subspace of \mathbb{R}^n .

(b) Let $\vec{v} \in \mathbb{R}^n$, let W be any subspace of \mathbb{R}^n , and suppose the subset $\{\vec{w}_1, \dots, \vec{w}_r\} \subseteq W$ is a spanning set for W. Prove that $\vec{v} \in W^{\perp}$ if and only if $\vec{v} \cdot \vec{w}_i = 0$ for each $1 \leq i \leq r$.

Solution: If $\vec{v} \in W^{\perp}$, then of course $\vec{v} \cdot \vec{w_i}$ for each i since each $\vec{w_i}$ belongs to W. Conversely, suppose $\vec{v} \cdot \vec{w_i} = 0$ for each i, and let $\vec{w} \in W$. Then since $\{\vec{w_1}, \ldots, \vec{w_r}\}$ spans W, we can choose scalars c_1, \ldots, c_r such that $\vec{w} = c_1 \vec{w_1} + \cdots + c_r \vec{w_r}$. Then

$$\vec{v} \cdot \vec{w} = \vec{v} \cdot (c_1 \vec{w}_1 + \dots + c_r \vec{w}_r) = c_1 (\vec{v} \cdot \vec{w}_1) + \dots + c_r (\vec{v} \cdot \vec{w}_r) = 0 + \dots + 0 = 0,$$

which shows $\vec{v} \in W^{\perp}$.

Problem 3. Let $(\vec{v}_1, \dots, \vec{v}_r)$ be an *orthonormal* set of vectors in \mathbb{R}^n . This means[†] for each i, j, j

$$\vec{v}_i \cdot \vec{v}_j = \delta_{ij} = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

(Thus each $\vec{v_i}$ is a unit vector, i.e., has length one.) Show that $(\vec{v_1}, \dots, \vec{v_r})$ is linearly independent.

Solution: Let $c_1, \ldots, c_r \in \mathbb{R}$, suppose

$$c_1\vec{v}_1 + \dots + c_r\vec{v}_r = \vec{0},$$

and let $1 \le i \le r$ be arbitrary. Dotting both sides of the above equation by \vec{v}_i , we have

$$0 = \vec{v_i} \cdot \vec{0} = \vec{v_i} \cdot (c_1 \vec{v_1} + \dots + c_r \vec{v_r}) = c_1 (\vec{v_i} \cdot \vec{v_1}) + \dots + c_r (\vec{v_i} \cdot \vec{v_r}) = c_i.$$

So each c_i is zero, which shows that $\{\vec{v}_1, \dots, \vec{v}_r\}$ is linearly independent.

Problem 4. Let W be a subspace of \mathbb{R}^n with orthonormal basis $(\vec{w}_1, \ldots, \vec{w}_r)$, and let $\vec{v} \in \mathbb{R}^n$. Prove that there exists a unique vector $\vec{w} \in W$ such that $\vec{v} - \vec{w} \in W^{\perp}$. The unique vector $\vec{w} \in W$ such that $\vec{v} - \vec{w} \in W^{\perp}$ is called the *(orthogonal) projection* of \vec{v} onto W, written $\operatorname{proj}_W(\vec{v})$.

[HINT: find a formula for \vec{w} in terms of $\vec{w}_1, \ldots, \vec{w}_r$. Also, draw a picture!]

Solution: Let W be a subspace of \mathbb{R}^n , let $\vec{v} \in \mathbb{R}^n$, and let $\vec{w} = \sum_{i=1}^r c_i \vec{w}_i \in W$. Then for each $1 \leq j \leq r$, we have $\vec{w}_j \cdot (\vec{v} - \vec{w}) = 0$ if and only if

$$\vec{w}_j \cdot \vec{v} = \vec{w}_j \cdot \sum_{i=1}^r c_i \vec{w}_i = c_j.$$

Therefore $\vec{v} - \vec{w} \in W^{\perp}$ if and only if $c_j = \vec{w}_j \cdot \vec{v}$ for each $1 \leq j \leq r$. This shows that there is indeed a unique vector $\vec{w} \in W$ such that $\vec{v} - \vec{w} \in W^{\perp}$, namely $\vec{w} = \sum_{i=1}^r (\vec{v} \cdot \vec{w}_i) \vec{w}_i$.

Problem 5. Let W be a subspace of \mathbb{R}^n with orthonormal basis $(\vec{w}_1, \dots, \vec{w}_r)$, and let proj_W be the orthogonal projection onto W, viewed as a transformation from \mathbb{R}^n to \mathbb{R}^n . Is proj_W linear? If so, what are its kernel and image? Can you find its standard matrix?

Solution: Yes, proj_W is linear since the dot product is linear in each argument. The image of proj_W is W, and its kernel is W^{\perp} . To find the standard matrix of proj_W , let $A = [\vec{w}_1 \cdots \vec{w}_r]$ and note that for each $1 \leq i \leq n$,

$$\operatorname{proj}_{W}(\vec{e}_{i}) = \sum_{j=1}^{r} (\vec{e}_{i} \cdot \vec{w}_{j}) \vec{w}_{j} = A \begin{bmatrix} \vec{e}_{i} \cdot \vec{w}_{1} \\ \vdots \\ \vec{e}_{i} \cdot \vec{w}_{r} \end{bmatrix},$$

[†]The symbol δ_{ij} is called the *Kronecker delta*, and is defined to be equal to 1 if i=j and 0 if $i\neq j$.

so that

$$[\operatorname{proj}_W]_{\mathcal{E}} = A \begin{bmatrix} \vec{e}_1 \cdot \vec{w}_1 & \cdots & \vec{e}_n \cdot \vec{w}_1 \\ \vdots & & \vdots \\ \vec{e}_1 \cdot \vec{w}_r & \cdots & \vec{e}_n \cdot \vec{w}_r \end{bmatrix} = AA^T.$$

Alternatively, writing matrix multiplication using outer products, for any $\vec{v} \in \mathbb{R}^n$ we have

$$\operatorname{proj}_{W}(\vec{v}) = \sum_{i=1}^{r} (\vec{v} \cdot \vec{w}_{i}) \vec{w}_{i} = \sum_{i=1}^{r} \vec{w}_{i} \vec{w}_{i}^{T} \vec{v} = \left(\sum_{i=1}^{r} \vec{w}_{i} \vec{w}_{i}^{T} \right) \vec{v} = AA^{T} \vec{v}.$$

Problem 6. Show by induction on dimension that every subspace of \mathbb{R}^n has an orthonormal basis. [HINT: for the inductive step, if V is a (k+1)-dimensional subspace of \mathbb{R}^n , let \vec{v} be some fixed nonzero vector in V and consider the kernel of the linear transformation $T:V\to\mathbb{R}$ defined by $T(\vec{x})=\vec{v}\cdot\vec{x}$.]

Solution: The induction base is trivial (if V is a 1-dimensional subspace of \mathbb{R}^n , just normalize any non-zero vector in V). For the inductive step, let $1 \leq k < n$, suppose every subspace of \mathbb{R}^n of dimension k has an orthonormal basis, and let V be a subspace of \mathbb{R}^n of dimension k+1. Let \vec{v} be some fixed nonzero vector in V, and define the linear transformation $T: V \to \mathbb{R}$ by $T(\vec{x}) = \vec{v} \cdot \vec{x}$. Then $\dim(\operatorname{im}(T)) = 1$, so by Rank-Nullity $\ker(T)$ has dimension k. Using the inductive hypothesis, let $(\vec{u}_1, \ldots, \vec{u}_k)$ be an orthonormal basis of $\ker(T)$. Then

$$\left(\vec{u}_1,\ldots,\vec{u}_k,rac{\vec{v}}{\|\vec{v}\|}
ight)$$

is an orthonormal basis of V, completing the induction.