Tutorial Vivado

Introdução a ferramenta Xilinx Vivado Rafael Corsi – Mauá

Criando um novo projeto

Nome do projeto

Tipo do projeto

New Project Project Type Specify the type of project to create. RTL Project You will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis, implementation, design planning and analysis. Do not specify sources at this time Post-synthesis Project You will be able to add sources, view device resources, run design analysis, planning and implementation. Do not specify sources at this time J/O Planning Project Do not specify design sources. You will be able to view part/package resources. Imported Project Create a Vivado project from a Synplify, XST or ISE Project File. < Back Next > Finish Cancel

Adicionando arquivos fontes

Nome e tipo do arquivo, repare nos diferentes tipos que podemos escolher.

Verificamos que o novo arquivo foi automaticamente adicionado ao projeto

Adicionando arquivos de configuração (XCD)

Nome do novo arquivo, repare nos tipos.

Selecionando a pastilha

Resumo do projeto

O Viado fornece uma ferramenta para inicio rápido de projetos, aqui podemos configurar as entradas e saídas.

Definindo 3 entras e 3 saídas

Resumo dos arquivos adicionados ao projeto

Vhdl criado pela ferramenta

```
ITS
        20
        22 library IEEE;
        23 use IEEE. STD LOGIC 1164. ALL;
        25 -- Uncomment the following library declaration if using
        26 -- arithmetic functions with Signed or Unsigned values
        27 -- use IEEE. NUMERIC STD. ALL;
        29 -- Uncomment the following library declaration if instantiating
        30 -- any Xilinx leaf cells in this code.
     31 --library UNISIM;
        32 -- use UNISIM. VComponents.all;
×
        34 entity aulal is
             Port ( led0 : out STD LOGIC;
                     led1 : out STD LOGIC;
        37
                     led2 : out STD LOGIC;
        38
                   chave0 : in STD LOGIC;
                chavel : in STD LOGIC;
                    chave2 : in STD LOGIC);
        41 end aulal;
        42
        43 architecture Behavioral of aulal is
        44
        45 begin
        46
        47
        48 end Behavioral;
        49
```

Modificação proposta

```
21
22 library IEEE;
   23 use IEEE.STD LOGIC 1164.ALL;
   25 -- Uncomment the following library declaration if using
   26 -- arithmetic functions with Signed or Unsigned values
   27 -- use IEEE.NUMERIC STD.ALL;
   28
   29 -- Uncomment the following library declaration if instantiating
   30 -- any Xilinx leaf cells in this code.
   31 -- library UNISIM;
   32 -- use UNISIM. VComponents.all;
   33
   34 entity aulal is
   35
          Port ( led0 : out STD LOGIC;
                 led1 : out STD LOGIC;
   37
                 led2 : out STD LOGIC;
   38
                 chave0 : in STD LOGIC;
                 chavel : in STD LOGIC;
   39
   40
                 chave2 : in STD LOGIC);
   41 end aulal;
   43 architecture Behavioral of aulal is
   44
   45 begin
   46
   47 led0 <= chave0;
   48 led1 <= NOT chavel:
   49 led2 <= chave2 AND chavel;
   50
   51
   52 end Behavioral:
   53
```

Vamos verificar agora o RTL desse projeto, rode o "schematic" no "RTL Analysis"

Verificamos a lógica interpretada pela ferramenta

Agora podemos executar a "Synthesis" → run Synthesis.

Verificamos agora o Schematic da synthesis

Aqui verificamos como a lógica RTL será implementada

Precisamos definir os pinos e tipos de sinais de cada porta da entidade aula1, mude o layout da ferramenta para "I/O Planning"

Devemos verificar essa janela no I/O Planning. Note que as portas não estão mapeadas

Modifique conforme exemplo abaixo:

Após a modificação, salve as alterações

Deve aparecer essa janela, selecione o .xdc criado no inicio do projeto

O .xdc foi alterado pela ferramenta, note que poderíamos ter editado o .XDC sem usar a ferramenta gráfica.

Execute a implementação

E abra o seu resultado

Aqui verificamos todas as ligações internas realizadas para implementar o projeto.

Podemos verificar as ligações e os I/Os

Agora vamos gravar o projeto na FPGA, antes é preciso gerar o arquivo de gravação, chamado de Bitstream:

E abriremos a interface de gravação

Na primeira vez é preciso configurar o hardware, → Open a new hardware target

Open New Hardware Target

Hardware Server Settings

Select local or remote hardware server, then configure the host name and port settings. Use Local server if the target is attached to the local machine; otherwise, use Remote server.

Connect to: Local server (target is on local machine) ▼

Click Next to launch and/or connect to the vcse_server (port 60001) and hw_server (port 3121) applications on the local machine.

< <u>B</u>ack <u>N</u>ext > <u>F</u>inish Cancel

Open New Hardware Target

Select Hardware Target

Hardware Targets

Туре	Port	Name	JTAG Clock Frequency
xilinx_tcf		Digilent/210274505220A	15000000 ~

Hardware Devices (for unknown devices, specify the Instruction Register (IR) length)

VCSE server: localhost:60001 Hardware server: localhost:3121

VCSE server: localhost:60001

< <u>B</u>ack

<u>F</u>inish

Cancel

Com o HW configurado, basta clicarmos em "Program device" para gravarmos o programa na FPGA

Escolha o Bitstream e clique em program

FIM