Departamento de Engenharia Mecânica

Departamento de Engenharia Mecânica

CHAVETAS

TÓPICOS ABORDADOS

- 1. INTRODUÇÃO
- 2. CLASSIFICAÇÃO E DEFINIÇÕES
- 3. TIPOS E CARACTERÍSTICAS
 - 4.1. Chaveta Plana
 - 4.2. Chaveta Woodroff
 - 4.3. Chaveta de Pino
 - 4.4. Chaveta Tangencial
 - 4.5. Chaveta de Atrito
- 4. PADRONIZAÇÃO
- 5. DIMENSIONAMENTO
- 6. EXERCÍCIOS Politécnica COPPE

Engenharia

Departamento de Engenharia Mecânica

1. INTRODUÇÃO

1.1. TRANSMISSÃO DE TORQUE - Acoplamento de EIXOS e CUBOS

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

1. INTRODUÇÃO

1.1. TRANSMISSÃO DE TORQUE - Acoplamento de EIXOS e CUBOS

Politécnica COPPE UFRJ

Engenharia Mecânica Pullenga CORPE

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

1. INTRODUÇÃO

1.1. TRANSMISSÃO DE TORQUE - Acoplamento entre EIXOS e CUBOS

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

1. INTRODUÇÃO

1.2. Exemplos de Acoplamento entre EIXOS e CUBOS - Chavetas

Engenharia Mecânica Politécnica - COPPE UFRJ

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

1. INTRODUÇÃO

1.2. Exemplos de Acoplamento entre EIXOS e CUBOS - Chavetas

Engenharia Mecânica Politecnica - COPPE URBJ

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

2. CLASSIFICAÇÃO E DEFINIÇÕES

Engenharia Mecânica Politecnoa - COPPE UFFZ

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

2. CLASSIFICAÇÃO E DEFINIÇÕES

- Elementos de máquina utilizados para acoplamento entre cubos e eixos.
- Podem atuar como "fusível mecânico".

Engenharia Mecânica Politécnica - COPPE UFRJ

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.1. Chavetas Planas - mais utilizadas

COPPE UFRJ

Engenharia Mecânica Politecnica - COPPE LIPPLJ

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.1. Chavetas Planas - montagem

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.1. Chavetas Planas - características principais

Chaveta RETA ou PLANA

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.1. Chavetas Planas - representação

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.1. Chavetas Planas - características dimensionais

As chavetas devem ter todos as bordas e cantos chanfrados e/ou arredondados

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.1. Chavetas Planas - fabricação

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.1. Chavetas Planas - fabricação

UFRJ

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.1. Chavetas Planas - fabricação

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.1. Chavetas Planas - fabricação (cont.)

- Ferramenta para rasgos de chaveta.

Politécnica

- Eixo com rasgos de chaveta.

Prof. Flávio de Marco DEM/UFRJ

Engenharia Mecânica Politécnica - COPPE UFRJ

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.1. Chavetas Planas - fabricação (cont.)

Canto vivo

Deslizante

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.1. Chavetas Planas - fabricação (cont.)

Máquinas "Chaveteiras"

Engenharia Mecânica Politecnica - COPPE UEPE

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.1. Chavetas Planas - fabricação (cont.)

Fresadoras de Topo

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.2. Chavetas Woodruff ou Meia-lua ou semi-circular

- 1. Bastante utilizada na indústria automobilística.
- 2. Permitem grande estabilidade, pois não se deslocam.
- 3. Menor efeito de concentração de tensões.
- 4. Rasgo profundo, enfraquece a árvore.

Engenharia Mecânica

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.2. Chavetas Woodruff (cont.)

Politécn

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.2. Chavetas Woodruff (cont.)

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

- 3.3. Chavetas de Pino
 - Pinos retos ou cônicos 1:200
 - Disposição transversal ou longitudinal

Longitudinal

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.3. Chavetas de Pino (cont.)

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.3. Chavetas de Pino (cont.)

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.3. Chavetas de Pino (cont.)

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

- 3.4. Chavetas Tangencial (cont.)
 - Utilizadas para serviço pesado, como laminadores e etc.

Departamento de Engenharia Mecânica

3. TIPOS E CARACTERÍSTICAS

3.4. Chavetas de atrito ("Taper keys")

- União por atrito Interferência (12)
- União cônica por atrito (13)

- Chaveta SELIM

- possibilitam a mudança de posição em relação ao cubo.

Engenharia Mecânica

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

4. PADRONIZAÇÃO

Tabela II

- Dimensões padronizadas para chavetas planas

Mecâ

Politécr

Designação de uma chaveta paralela retangular do tipo A com as seguintes dimensões:

CHAVETA ABNT — PB-122 — A — 10 x 8 x 36

Altura: 8 mm

Altura: 8 mm

DETALHE A

Comprimento: 36 mm

CHAVETA ABNT — PB-122 — A — 10 x 8 x 36

4.4 Dimensões e tolerâncias para rasgos de chaveta no eixo e no cubo.

DETALHE A

DETALHE A

TABELA II

Dimensões e tolerâncias para rasgos de chavet
(mm)

SECÇÃO X-X

FIGURA 2

Eixo		Chaveta					Rasgos de chaveta												
Diâmetro d acima .						argura			Raio										
		Secção		Afastamentos						Profundidade									
		b x h		ajuste c/ folga no no		ajuste normal no no		ajuste c/ interferên- cia no eixo	Eixo t ₁		Cubo t ₂		,						
de de	até	l v		Eixo H9	Cubo D10	Eixo N9	Cubo JS9	no cubo P9	Nom.	Afasta- mentos	Nom.	Afasta- mentos	Máx.	M					
6	8	2 x 2	2	+ 0,025	+ 0,060	0,004	+ 0,012	0,006	1,2		1		0,16	0					
8	10	3 x 3	3	0	+ 0,020	0,029	0,013	0,031	1,8	+ 0.1	1,4	+ 0,1	0,16	0					
10	12	4 x 4	4	+ 0.030	+ 0,078	0	1 0 015	0.010	2,5	0	1,8	0	0,16	0					
12	17	5 x 5	5	0,030	+ 0,078	— 0,030	+ 0,015	0,012 0,042	3,0		2,3		0,25	0					
17	22	6 x 6	6	U	+ 0,030	- 0,030	0,013	0,042	3,5		2,8		0,25	0					
22	30	8 x 7	8	+ 0,036	+ 0,098	0	+ 0,018	0,015	4,0		3,3		0,25	0					
30	38	10 x 8	10	0	+ 0,010	0,036	- 0,018	0,051	5,0		3,3		0,40	0					
38	44	12 x 8	12						5,0		3,3		0,40	0					
44	50	14 x 9	14	+ 0,043	+ 0,120	0	+ 0,021	0,018	5,5		3,8		0,40	0					
50	58	16 x 10	16	0	+ 0,050	0,043	0,022	0,061	6,0	+ 0,2	4,3	+ 0,2	0,40	0					
58	65	18 x 11	18			177			7,0	0,2	4,4	0,2	0,40	0					
65	75	20 x 12	20						7,5		4,9	"	0,60	0					
75	85	22 x 14	22	+ 0,052	+ 0,149	0	+ 0,026	- 0,022	9,0		5,4		0,60	0					
85	95	25 x 14	25	0	+ 0,065	0,052	0,026	0,074	9,0		5,4		0,60	0					
95	110	28 x 16	28						10,0		6,4		0,60	0					
110	130	32 x 18	32						11,0		7,4		0,60	0					
130	150	36 x 20	36						12,0		8,4		1,00	0					
150	170	40 x 22	40	+ 0,062	+ 0,180	0	+ 0,031	0,026	13,0		9,4		1,00	0					
170	200	45 x 25	45	0	+ 0,080	0,062	0,031	0,088	15,0		10,5		1,00	0					
200	230	50 x 28	50				i i		17,0		11,4		1,00	0					
230	260	56 x 32	56						20,0		12,4		1,60	1					
260	290	63 x 32	63	+ 0,074	+ 0,220	0	+ 0,037	0,032	20,0	+ 0,3	12,4	+ 0,3	1,60	1					
290	330	70 x 36	70	0	+ 0,100	0,074	0,037	0,106	22,0	0	14,4	0	1,60	1					
330	380	80 x 40	80						25,0		15,4		2,50	2					
380	440	90 x 45	90	+ 0,087	+ 0,260	0	+ 0,043	- 0,037	28,0		17,4		2,50	2					
440	500	100 x 50	100	0	+ 0,120	0,087	- 0,044	- 0,124	31,0		19,5		2,50	2					

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

4. PADRONIZAÇÃO

TABELA II Dimensões e tolerâncias para rasgos de chaveta (mm)

Tabela II
- Dimensões
padronizadas
para chavetas
planas

Prof. Flávio de Marco DEM/UFRJ

🦱 | UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

4. PADRONIZAÇÃO

Tabela III

E	ixo	Chaveta						Canaletas						
Diâme	ateo d				La	rgura								
Diâmetro d						Afastamer	itos			Profun	didade		Ra	io r
		Secção b x h		Ajuste c	/ folga no	Ajuste	normal no	Ajuste c/ interferên- - cia no eixo	Eixo	o t _i	Cub	o t ₂		
de	até		Nominal	Eixo H9	Cubo D 10	Eixo N9	Cubo JS 9	no cubo P 9	Nominal	Afasta- mentos	Nominal	Afasta- mentos	Máximo	Mínimo
6 8	8 10	2 x 2 3 x 3	2 3	+ 0,025 0	+ 0,060 + 0,020	0,004 0,029	+ 0,012 0,013	— 0,006 — 0,031	1,2 1,8	+ 0,1	1 1,4	+ 0,1	0,16 0,16	80,0 80,0
10 12 17	12 17 22	4 x 4 5 x 5 6 x 6	4 5 6	+ 0,030	+ 0,078 + 0,030	0 — 0,030	+ 0,015 0,015	— 0,012 — 0,042	2,5 3,0 3,5	0	1,8 2,3 2,8	0	0,16 0,25 0,25	0,08 0,16 0,16
22 30	30 38	8 x 7 10 x 8	8 10	+ 0,036 0	+ 0,098 + 0,040	0 — 0,036	+ 0,018 — 0,018	— 0,015 — 0,051	4,0 5,0	-6	3,3 3,3		0,25 0,40	0,16 0,25
38 44 50 58	50 58 65	12 x 8 14 x 9 16 x 10 18 x 11	12 14 16 18	+ 0,043 0	+ 0,120 + 0,050	0 0,043	+ 0,021 0,022	0,018 0,061	5,0 5,5 6,0 7,0	+ 0,2 0	3,3 3,8 4,3 4,4	+ 0,2	0,40 0,40 0,40 0,40	0,25 0,25 0,25 0,25
65 75 85 95	75 85 95 110	20 x 12 22 x 14 25 x 14 28 x 16	20 22 25 28	+ 0,052 0	+ 0,149 + 0,065	0 — 0,052	+ 0,026 0,026	— 0,022 — 0,074	7,5 9,0 9,0 10,0		4,9 5,4 5,4 6,4		0,60 0,60 0,60 0,60	0,40 0,40 0,40 0,40
110 130 150	130 150 170	32 x 18 36 x 20 40 x 22	32 36 40	+ 0,062	+ 0,180	0	+ 0,031	— 0,026	11,0 12,0 13,0		7,4 8,4 9,4		0,60 1,00 1,00	0,40 0,70 0,70
170 200	200 230	45 x 25 50 x 28	45 50	0	+ 0,080	- 0,062	— 0,031 —————	0,088	15,0 17,0		10,5 11,4		1,00 1,00	0,70
230 260 290 330	260 290 330 380	56 x 32 63 x 32 70 x 36 80 x 40	56 63 70 80	+ 0,074 0	+ 0,220 + 0,100	0 0,074	+ 0,037 - 0,037	0,032 0,106	20,0 20,0 22,0 25,0	+ 0,3	12,4 12,4 14,4 15,4	+ 0,3	1,60 1,60 1,60 2,50	1,20 1,20 1,20 2,00
380 440	440 500	90 x 45 100 x 50	90	+ 0,087	+ 0,260 + 0,120	0 0.087	+ 0,043 — 0,044	0,037 0,124	28,0 31.0		17,4 19,5		2,50 2,50	2,00 2,00

⁽¹⁾ A relação entre o diâmetro do eixo e da secção da chaveta aplica-se para uso normal. Uma secção menor da chaveta pode ser usada quando é adequada para o momento de força transmitido. Neste caso as profundidades t₁ e t₂ devem ser recalculadas, para manter a relação h/2. Uma secção maior da chaveta não deve ser usada.

A tolerância para t_i e t₂ é aproximadamente igual à tolerância k12, que pode ser obtida considerando a espessura h/2 da chaveta como dim são nominal. Chavetas paralelas retangulares ou quadradas

⁽²⁾ A profundidade das canaletas nos eixos e nos cubos deve ser obtida por medição direta ou por medição das dimensões (d — t₁) e (d + t₂). A tolerância indicada para t₁ e t₂ adapta-se às 2 dimensões compostas (d — t₁) e (d + t₂) mas o sinal da tolerância indicado na tabela para t₁ deve ser invertido. A profundidade das canaletas deve ser medida no plano de simetria da canaleta. A tolerância para t₁ e t₂ é aproximadamente igual à tolerância k12, que pode ser obtida considerando a espessura h/2 da chaveta como dimensima.

Departamento de Engenharia Mecânica

5. DIMENSIONAMENTO

- 5.1. Chaveta Plana
 - A) Análise de tensões:
- Tensão de cisalhamento:

$$F = \frac{T}{(d/2)}$$

$$A = b \cdot L$$

$$\Rightarrow \tau = \frac{2 \cdot T}{d \cdot b \cdot L}$$

- Tensão de compressão: $\sigma =$

$$\left. \begin{cases}
F = \frac{T}{(d/2)} \\
A = \frac{t}{2} \cdot L
\end{cases} \Rightarrow \sigma = \frac{4 \cdot T}{d \cdot t \cdot L}$$

Departamento de Engenharia Mecânica

5. DIMENSIONAMENTO

- 5.1. Chaveta Plana
 - B) Tensão Admissível:

$$Ss_y = 0.577 \times S_y$$

Assim,

$$\sigma_{adm} = \frac{S_y}{CS}$$

$$au_{adm} = \frac{Ss_y}{CS}$$

Politécnica COPPE UFRA

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

5. DIMENSIONAMENTO

- 5.1. Chaveta Plana
 - C) Recomendações:
 - 1. Para duas engrenagens montadas no mesmo eixo, transmitindo em direções opostas, utilizar duas chavetas; transmitindo na mesma direção, apenas uma.

Engenharia Mecânica Politécnica - COPPE URBJ

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

5. DIMENSIONAMENTO

- 5.1. Chaveta Plana
 - C) Recomendações: (cont.)
 - 2. Rasgos muito profundos em acoplamentos Woodruff devem ser evitados, utilizado-se duas ou mais chavetas.

3. As chavetas podem ser fixadas ao eixo através de parafusos.

Departamento de Engenharia Mecânica

6. EXERCÍCIOS

1. Especificar a chaveta plana padronizada mais adequada para o acionamento abaixo. Determinar os coeficientes de segurança adequados.

DADOS:

- Material: Aço BS-080M40 - CD $\mid S_v = 430 \text{ MPa}$

 $Su_t = 570 MPa$

- Potência: 100 HP

- Rotação: 200 rpm

- Diâmetro do eixo: 65 mm

- Comprimento do cubo = 80 mm

Politécnica COPPE

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

6. EXERCÍCIOS - Exercício 1 - Solução

 Determinação das dimensões da chaveta:

$$d = 65 \text{ mm}$$

$$b = 18 \text{ mm}$$

$$t = 11 \text{ mm}$$

		TABE				
Dimensões	е	tolerâncias	para	rasgos	de	chaveta
		(mı	n)			

	E	ixo	Chaveta					asgos de cha	aveta							
						1	Largura				Profun	didada	ä	Ra	nio.	
	Diâm	etro	Secção		Afastamentos						170 junuluuue					
	d		b x h	b x h Nomi-	i- ajuste c/ folga		ajuste normal interfe		ajuste c/ interferên- cia no eixo	Eix	Eixo t ₁ Cu		00 t ₂	r		
	acima			"iui	Eixo	Cubo	Eixo	Cubo	no cubo		Afasta-		Afasta-		. 1	
	de	até			H 9	D10	N9	JS9	P9		mentos		10.50	Máx.	Mín.	
	6	8	2 x 2	2	+ 0,025	+ 0,060	- 0,004	+ 0,012	0,006	1,2		1		0,16	0,08	
	8	10	3 x 3	3	0	+ 0,020	0,029	0,013	0,031	1,8	+ 0,1	1,4	+ 0.1	0,16	0,08	
	10	12	4 x 4	4	+ 0.030	+ 0,078	0	+ 0.015	0.012	2,5	0	1,8	0	0,16	0,08	
	12	17	5 x 5	5	0,030	+ 0,078	— 0,030	+ 0,015 $- 0,015$	0,012 0,042	3,0	"	2,3	"	0,25	0,16	
	17	22	6 x 6	6		1 0,030	0,030	0,013	- 0,042	3,5		2,8		0,25	0,16	
	22	30	8 x 7	8	+ 0,036	S. manner	0	+ 0,018	0,015	4,0		3,3		0,25	0,16	
	30	38	10 x 8	10	0	+ 0,010	0,036	0,018	0,051	5,0		3,3		0,40	0,25	
-	38	44	12 x 8	12		5				5,0		3,3		0,40	0,25	
1	44	50	14 x 9	14	+ 0,043	+ 0,120	0	+ 0,021	0,018	5,5		3,8		0,40	0,25	
1	50 58	65	16 x 10 18 x 11	16 18	0	+ 0,050	0,043	0,022	0,061	6,0 7,0	+ 0,2	4,3 4,4	+ 0,2	0,40 0,40	0,25	
1										7,0	0	4,4	0	0,60	0,40	
ĺ	65 75	75 85	20 x 12 22 x 14	20		1 0 140			0.000						0,40	
۱	85	95	25 x 14	22 25	+ 0,052 0	$+ 0,149 \\ + 0,065$	0 0,052	+0,026 $-0,026$	0,022 0,074	9,0 9,0		5,4 5,4		0,60 0,60	0,40	
П	95	110	28 x 16	28	· ·	1 0,005	- 0,032	- 0,020	0,074	10,0		6,4		0,60	0,40	
١	110	130	32 x 18	32						11,0		7,4		0,60	0,40	
1	130	150	36 x 20	36						12,0		8,4		1.00	0,70	
П	150	170	40 x 22	40	+ 0,062	+ 0,180	0	+ 0,031	0,026	13,0		9,4		1,00	0,70	
	170	200	45 x 25	45	0	+ 0,080	- 0,062	- 0,031	- 0,088	15,0		10,5		1,00	0,70	
	200	230	50 x 28	50		(5)				17,0		11,4		1,00	0,70	
	230	260	56 x 32	56						20,0		12,4		1,60	1,20	
	260	290	63 x 32	63	+ 0,074	+ 0,220	0	+ 0,037	0,032	20,0	+ 0,3	12,4	+ 0,3	1,60	1,20	
١	290	330	70 x 36	70	0	+ 0,100	0,074	- 0,037	0,106	22,0	0	14,4	0	1,60	1,20	
	330	380	80 x 40	80						25,0		15,4		2,50	2,00	
	380	440	90 x 45	90	+ 0,087	+ 0,260	0	+ 0,043	0,037	28,0		17,4		2,50	2,00	
	440	500	100 x 50	100	0	+ 0,120	0,087	— 0,044	0,124	31,0		19,5		2,50	2,00	

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

6. EXERCÍCIOS - Exercício 1 - Solução

- Verificação (cálculo dos coeficientes de segurança – CS):

$$CS_{comp} = \frac{Sy}{\sigma_{atuante}} = \frac{430}{249} \Rightarrow CS_{comp} = 1.73$$

$$CS_{cis} = \frac{Ss_{y}}{\tau_{atuante}} = \frac{(0.577 \times 430)}{76.1} \Rightarrow CS_{cis} = 3.3$$

- Cálculo das tensões atuantes:

cisalhante:
$$\tau = \frac{2 \cdot T}{d \cdot b \cdot L} = \frac{2 \times 3560 \times 10^{3}}{65 \times 18 \times 80} \Rightarrow \tau = 76.1 MPa$$

$$compressão: \quad \sigma = \frac{4 \cdot T}{d \cdot t \cdot L} = \frac{4 \times 3560 \times 10^{3}}{65 \times 11 \times 80} \Rightarrow \sigma = 249 MPa$$

$$= \frac{P \cdot k}{n} = \frac{100 \times 7120}{200} \Rightarrow T = 3560 N.m$$

$$\frac{d = 65 mm}{b = 18 mm}$$

$$t = 11 mm$$

Departamento de Engenharia Mecânica

- 6. EXERCÍCIOS Exercício 1 Solução
 - Verificação (cálculo dos coeficientes de segurança CS):
 - Coeficiente de segurança global:

$$CS_{global} = \frac{Sy}{\sigma_{m\acute{a}x}} = \frac{430}{282} \Rightarrow CS_{global} = 1.53$$

Engenharia

- Cálculo da tensão máxima :

$$\sigma_{m\acute{a}x} = \sqrt{\sigma^2 + 3 \cdot \tau^2} = \sqrt{(249)^2 + 3 \times (76.1)^2} \Rightarrow \sigma_{m\acute{a}x} = 282MPa$$

Politécnica COPPE UFRA

Departamento de Engenharia Mecânica

6. EXERCÍCIOS

2. Especificar a chaveta plana padronizada mais adequada para o acionamento abaixo.

DADOS:

- $\begin{cases} Su_t = 530 \text{ MPa} \\ S_y = 385 \text{ MPa} \\ HB = 154 \end{cases}$ - Material: Aço BS-080M20 - CD
- Potência: 35 CV
- Rotação: 300 rpm
- Diâmetro do eixo: 50 mm

Politécnica COPPE

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

6. EXERCÍCIOS - Exercício 2 - Solução

Departamento de Engenharia Mecânica

6. EXERCÍCIOS

3. Uma engrenagem deve ser acoplada a uma árvore através de uma chaveta plana padronizada. Sabendo que ambos são fabricados do mesmo material (aço) e para os dados listados abaixo, determine o seu comprimento.

DADOS:

- Material: $Aço S_y = 420 MPa$
- Torque transmitido: T[N.m] = 800
- Diâmetro do eixo: d [mm] = 40
- -CS = 1.25

Politécnica COPPE UFRJ

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

6. EXERCÍCIOS - Exercício 3 - Solução

Engenharia Mecânica

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

