Self-adjoint Operators

Definition: Self-adjoint

Let H be a Hilbert space and $A \in \mathcal{B}(H)$. To say that A is *self-adjoint* means:

$$A^* = A$$

Thus, $\langle A\vec{x}, \vec{y} \rangle = \langle \vec{x}, A\vec{y} \rangle$.

Examples

1). $H = C^N$ and $A \in \mathcal{B}(H)$.

$$[A]_e = [a_{ij}]$$
 and $[A^*]_e = [\overline{a_{ji}}]$.

So for
$$A = A^*$$
, $a_{ij} = \overline{a_{ji}}$.

Such a matrix is called Hermitian.

2). Let $H=L^2[a,b]$ and let $f_0\in H$ such that f_0 is continuous and real-valued.

Let
$$T \in \mathcal{B}(H)$$
 where $Tf = f_0 f$

Claim: T is self-adjoint.

$$\langle Tf, g \rangle = \int_{a}^{b} (f_0 f) \overline{g} = \int_{a}^{b} f \overline{f_0 g} = \langle f, Tg \rangle$$

3). Let $H=L^2[a,b]$ and let $T\in\mathcal{B}(H)$ where:

$$(Tf)(s) = \int_{a}^{b} K(s,t)f(t)dt$$

where $K \in L^2(Q)$ for $Q = [a, b] \times [a, b]$.

Claim: T is self-adjoint iff $K(s,t) = \overline{K(t,s)}$

Assume $f, g \in L^2[a, b]$:

$$\langle Tf, g \rangle = \int_{a}^{b} (Tf)(s)\overline{g(s)}ds$$

$$= \int_{a}^{b} \left[\int_{a}^{b} K(s,t)f(t)dt \right] \overline{g(s)}ds$$

$$= \int_{a}^{b} \left[\int_{a}^{b} K(s,t)f(t)\overline{g(s)}dt \right] ds$$

$$= \int_{a}^{b} \left[\int_{a}^{b} K(s,t)f(t)\overline{g(s)}ds \right] dt$$

$$= \int_{a}^{b} f(t) \left[\int_{a}^{b} K(s,t)\overline{g(s)}ds \right] dt$$

$$= \int_{a}^{b} f(t) \left[\int_{a}^{b} \overline{K(s,t)}g(s)ds \right] dt$$

$$= \int_{a}^{b} f(s) \overline{\left[\int_{a}^{b} \overline{K(t,s)} g(t) dt \right]} ds$$
$$= \langle f, T^{*}g \rangle$$

where
$$(T^*g)(s) = \int_a^b \overline{K(t,s)}g(t)dt$$

Therefore
$$T = T^*$$
 iff $K(s,t) = \overline{K(t,s)}$

Theorem

Let H be a Hilbert space and let $A \in \mathcal{B}(H)$:

- 1). $A + A^*$ is self-adjoint.
- 2). A^*A is self-adjoint.

Proof

Assume $\vec{x}, \vec{y} \in H$.

1).
$$\langle (A+A^*)\vec{x}, \vec{y} \rangle = \langle \vec{x}, (A+A^*)^*\vec{y} \rangle = \langle \vec{x}, (A^*+(A^*)^*)\vec{y} \rangle = \langle \vec{x}, (A^*+A)\vec{y} \rangle = \langle \vec{x}, (A+A^*)\vec{y} \rangle$$

2).
$$\langle (A^*A)\vec{x}, \vec{y} \rangle = \langle \vec{x}, (A^*A)^*\vec{y} \rangle = \langle \vec{x}, (A^*(A^*)^*)\vec{y} \rangle = \langle \vec{x}, (A^*A)\vec{y} \rangle$$

Theorem

Let H be a Hilbert space and let $T \in \mathcal{B}(H)$. There exists unique self-adjoint $A, B \in \mathcal{B}(H)$ such that:

•
$$T = A + iB$$

•
$$T^* = A - iB$$

Proof

Solving for A and B:

$$A = \frac{1}{2}(T + T^*)$$

$$B = \frac{1}{2i}(T - T^*)$$

and this solution is unique. Furthermore:

$$A^* = \left[\frac{1}{2}(T+T^*)\right]^* = \frac{1}{2}(T+T^*)^* = \frac{1}{2}(T+T^*) = A$$

$$B^* = \left[\frac{1}{2i}(T - T^*)\right]^* = -\frac{1}{2i}(T^* - T) = \frac{1}{2i}(T - T^*) = B$$

Theorem

Let H be a Hilbert space and let $A, B \in \mathcal{B}(H)$ be self-adjoint:

AB is self-adjoint iff A and B commute.

Proof

 \implies Assume AB is self-adjoint.

$$(AB)^* = B^*A^* = BA$$

 \iff Assume A and B commute.

$$AB = (AB)^* = BA$$

Corollary

Let $p(z) = \sum_{k=1}^{n} \alpha_k z^n$ be a polynomial such that $\alpha_k \in \mathbb{R}$. Let H be a Hilbert space and let $A \in \mathcal{B}(H)$ be self-adjoint:

$$p(A)$$
 is self-adjoint.

Proof

$$p(A)^* = \left[\sum_{k=1}^n \alpha_k A^k\right]^* = \sum_{k=1}^n \overline{\alpha_k} (A^*)^k = \sum_{k=1}^n \alpha_k A^k = p(A)$$

Theorem

Let H be a Hilbert space and let $A \in \mathcal{B}(H)$ such that A is self-adjoint:

$$||A|| = \sup_{||\vec{x}||=1} |\langle A\vec{x}, \vec{x} \rangle|$$

Proof

Let
$$M = \sup_{\|\vec{x}\|=1} |\langle A\vec{x}, \vec{x} \rangle|$$
.

Assume $\|\vec{x}\| = 1$.

$$\left|\left\langle A\vec{x},\vec{x}\right\rangle\right|\leq\left\|A\vec{x}\right\|\left\|\vec{x}\right\|=\left\|A\vec{x}\right\|\leq\left\|A\right\|\left\|\vec{x}\right\|=\left\|A\right\|$$

$$\therefore M \leq ||A||.$$