Rent Analysis and Prediction

FOR APARTMENTS IN GERMANY

FEMI ONAFALUJO

SPRINGBOARD DATA SCIENCE

SEPTEMBER 26, 2021

"The more you know about the past, the better prepared you are for the future."

- THEODORE ROOSEVELT (1858-1919)

Project Objectives

Problem

 Help landlords set the rent for their apartments

Solution

 Develop a predictive model

It is a Journey: Solutions Areas & Scopes

Data Wrangling

Collect and organize data

Clean data

Exploratory Data Analysis

Relationships between rent and numerical features

Relationship between rent and categories

Machine Learning

Training data development

Metrics and testing

Model development

Model selection

Model application

Data Wrangling

COLLECTING DATA | CLEANING DATA

Primary Dataset – Rental Information

Source: Immoscout24 – largest real estate website in Germany

Information: Record of apartments for rent

Size: 267,859 records, 49 features

Examples of features

- Heating cost
- Rent (€)
- Living space (square meters)
- Number of rooms
- Interior quality
- Location information (State, city / town, municipality, zip code, street address, house number)
- Facilities (Balcony, garden, cellar, etc.)

Secondary Dataset – State Information

Source: Wikipedia

Information: State macro-economic data

Size: 16 states x 5 features

Features

- State area
- State population
- State population per area
- GDP per capita
- Human development index (HDI)

Issues: Cleaning the data

Exploratory Data Analysis

RENT VS. NUMERICAL AND CATEGORICAL FEATURES

Relationship between rent and living space for all listings

Plot of median rent versus median living space at the state, city / town, municipality, and zip code level

Relationship between rent and service charge for all listings

Plot of median rent versus median service charge at the state, city / town, municipality, and zip code level

Relationship between rent and condition

Machine Learning

TRAINING DATA DEVELOPMENT | METRICS | TESTING | MODEL DEVELOPMENT | SELECTION | APPLICATION

Training data development

Application-set:

• 5 random samples

Training-set:

70% of remaining observations

Test-set:

• 30% or remaining observations

Metrics

R-squared score (R2)

$$1 - \frac{Residual sum of square errors}{Total sum of square errors}$$

Mean Absolute Error (MAE)

$$\sum \frac{|y - \hat{y}|}{N}$$

Testing strategy on training-set (70% of data)

Cross-validation on 70% training set (5 fold)

Test set performance

MAE performance

R2performance

Baseline model – linear regression

	R2 score	Mae (€)
Train set	0.73	146.36
Test set	0.75	147.29

Linear

Lasso regression

Ridge regression

Tree induction

Random forest

XGBoost

Feature selection

Used feature importance for tree-induction model

Gini importance threshold value of 0.001

Hyperparameter tuning

Random forest

- Number of estimators
- Maximum depth of tree

XGBoost

- Subsample
- Maximum depth of tree
- Column sample

Model Performance: r-squared

Model	Mean cv r2 score	Stdev of cv r2 scores	R2 test score
XGBoost	0.837	0.045	0.866
XGBoost w/ feat sel.	0.838	0.045	0.863
Random forest w/ hyper	0.819	0.047	0.861
XGBoost w/ hyper	0.827	0.047	0.849
Random forest w/ feat sel.	0.809	0.045	0.848
Random forest	0.807	0.049	0.841
Ridge	0.730	0.048	0.748
Lasso	0.730	0.048	0.747

Model performance: mean absolute error

Model	Mean cv mae score (€)	Stdev of cv mae scores	mae test score (€)
		(€)	
Random forest w/ hyper	91.34	0.67	90.34
XGBoost	91.90	0.31	92.04
XGBoost w/ feat sel.	91.79	0.52	92.14
Random forest w/ feat sel.	97.44	0.66	97.19
Random forest	97.30	0.80	97.20
XGBoost w/ hyper	103.52	0.35	103.49
Lasso	145.63	0.81	146.49
Ridge	146.35	0.82	147.20

Common important features

Service charge Median city picture count

Median zip code service charge Luxurious interior quality

Living space

Median city service charge

Median city living space

Model selection: XGBoost

Data	Mean	Stdev of	Mean	Stdev	
	cv r2	cv r2	cv mae	of cv	
	score	scores	score	mae	
			(€)	scores	
				(€)	
All	0.774	0.073	114.73	29.66	
Training	0.837	0.045	91.90	0.31	

Mean residual: €0 | Median residual: - €5 | Stdev: €157.5 | Skew: 46.5

Model application results

#	State	City/Town	Condition	rooms	Area (sqm)	Predicted rent (€)	Lower limit (€)	Set rent (€)	Higher limit (€)
1	Brandenburg	Uckermark	First time use	3.0	50.51	578.25	493.18	300.00	722.65
2	Schleswig Holstein	Dithmarschen	First time use after refurbishment	3.0	112.24	910.22	825.14	589.26	1054.61
3	Sachsen	Chemnitz	refurbished	2.0	51.67	641.11	556.03	518.00	785.50
4	Sachsen Anhalt	Halle Saale	negotiable	1.0	28.75	328.69	243.61	285.00	473.08
5	Hessen	Main Kinzig	Well kept	2.5	50.00	429.64	344.56	320.00	574.03

Conclusion / Recommendation

Determined most important factors for rent

- Living space
- Service charge
- Interior quality luxurious

Predicted rent with XGBoost model

- R-squared: 0.77
- Mean absolute error: €114.73

Assumptions/Limitations/Opportunities

Analysis of text features (i.e. description and facilities)

Including time features in model

Uncertainty around sampling methodology

Higher compute capabilities for hyperparameter tuning

