

Calcolo integrale — Compito di pre-esonero 28 Aprile 2023 — Compito n. 00110

Istruzioni: le prime due caselle (\mathbf{V} / \mathbf{F}) permettono di selezionare la risposta vero/falso. La casella " \mathbf{C} " serve a correggere eventuali errori invertendo la risposta data.

Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes o \bigcirc).

Nome:					
Cognome:					
J					1
Matricola:					

Punteggi: 1 punto per ogni risposta esatta, 0 punti per risposte sbagliate o lasciate in bianco.

1) Sia

$$F(t) = \int_0^t \left[6x^2 + \cos^2(7x) \right] dx$$

- **1A)** La funzione F(t) è derivabile su tutto \mathbb{R} .
- **1B)** Si ha F'(0) = 1.
- **1C)** La funzione F(t) è decrescente su \mathbb{R} .
- **1D)** Si ha F(6) > 0.
- 2) Dire se le seguenti affermazioni sono vere o false.
- 2A)

$$\int_0^1 (15x^2 + 6x + 5) \, dx = 0 \, .$$

2B)

$$\int_0^{\frac{1}{3}} 36 x e^{3x} dx = 4.$$

2C)

$$\int_0^{8\pi} \cos(2x) \, dx = 4 \, .$$

2D)

$$\int_0^{\sqrt{10}} \frac{4 x}{10 + x^2} dx = 2 \log(2).$$

- **3)** Dire se le seguenti affermazioni sono vere o false.
- 3A)

$$\int_{c}^{6} \left[7x^3 + \sin(2x) \right] dx = 0.$$

3B)

$$\int_{-6}^{6} \left[7 x^2 + 5 x |x| \right] dx < 0.$$

3C)

$$\int_{-\pi}^{6} \left[9 x^3 + 9 x \right] dx = 0.$$

3D)

$$\int_{3}^{2} \frac{x^5}{9+x^4} \, dx > 0 \, .$$

- 4) Dire se le seguenti affermazioni sono vere o false.
- 4A)

$$\int_{4}^{8} \frac{dx}{x-2} = \log(2).$$

4B)

$$\int_{6}^{12} \frac{dx}{(x-3)^2} = \frac{2}{9}.$$

4C)

$$\int_{8}^{9} \frac{dx}{(x-5)(x-7)} = \frac{1}{2} \log(2/3).$$

4D)

$$\int_{-9}^{-8} \frac{dx}{x^2 + 18x + 82} = \frac{\pi}{4}.$$

5) Determinare una primitiva delle funzioni $f(x),\,g(x),\,h(x)$ e k(x), e calcolare gli integrali.

a)
$$f(x) = x \sin(3x)$$
, $\int_{1}^{13\pi} f(x) dx$,

$$\mathbf{a}) \ f(x) = x \, \sin(3\,x) \,, \quad \int_0^{13\,\pi} \ f(x) \, dx \,, \qquad \mathbf{b}) \ g(x) = x^2 \, \mathrm{e}^{5\,x^3} \,, \quad \int_0^{\sqrt[3]{5}} \ g(x) \, dx \,,$$

c)
$$h(x) = (4x^2 + 15x + 7) e^x$$
, $\int_{-\frac{7}{4}}^0 h(x) dx$, d) $k(x) = \frac{1}{1 + 9x^2}$, $\int_0^1 k(x) dx$.

d)
$$k(x) = \frac{1}{1+9x^2}$$
, $\int_0^1 k(x) dx$

Cogno	ome Nome	Matricola	Compito 00110
-------	----------	-----------	---------------

6) Sia

$$F(t) = \int_0^t \left[5 e^{x^2} + 8 \right] dx.$$

- a) Dimostrare che F(t) è derivabile per ogni t in \mathbb{R} . b) Calcolare F(0) e $F'(\sqrt{7})$. c) Dimostrare che F(t) è una funzione crescente e dispari. d) Dimostrare che

$$\lim_{t \to +\infty} F(t) = +\infty.$$

Soluzioni del compito 00110

1) Sia

$$F(t) = \int_0^t \left[6x^2 + \cos^2(7x) \right] dx$$

1A) La funzione F(t) è derivabile su tutto \mathbb{R} .

Vero: Dato che la funzione $x \mapsto 6x^2 + \cos^2(7x)$ è continua su \mathbb{R} , la funzione F(t) è derivabile su \mathbb{R} per il teorema fondamentale del calcolo integrale, e si ha $F'(t) = 6x^2 + \cos^2(7t)$.

1B) Si ha F'(0) = 1.

Vero: Dato che per il teorema fondamentale del calcolo integrale si ha $F'(t) = 6t^2 + \cos^2(7t)$, si ha F'(0) = 1.

1C) La funzione F(t) è decrescente su \mathbb{R} .

Falso: Dato che per il teorema fondamentale del calcolo integrale si ha $F'(t) = 6t^2 + \cos^2(7t)$, si ha $F'(t) \ge 0$ per ogni t in \mathbb{R} , e quindi la funzione F(t) è crescente su \mathbb{R} .

1D) Si ha F(6) > 0.

Vero: Dato che la funzione F(t) è crescente (si veda l'esercizio $\mathbf{1C}$), si ha

$$F(6) > F(0) = 0$$
.

2A)

$$\int_0^1 (15x^2 + 6x + 5) \, dx = 0 \, .$$

Falso: Dato che

$$\int (15x^2 + 6x + 5) dx = \frac{15}{3}x^3 + \frac{6}{2}x^2 + 5x = 5x^3 + 3x^2 + 5x + c,$$

si ha

$$\int_0^1 (15x^2 + 6x + 5) \, dx = 5x^3 + 3x^2 + 5x \Big|_0^1 = 5 + 3 + 5 = 13 \neq 0.$$

Alternativamente, si poteva osservare che l'integrale non poteva essere uguale a zero perché la funzione integranda è strettamente positiva sull'intervallo di integrazione.

2B)

$$\int_0^{\frac{1}{3}} 36 x e^{3x} dx = 4.$$

Vero: Si ha, con la sostituzione y = 3x, da cui dy = 3x,

$$\int_0^{\frac{1}{3}} 36 x e^{3x} dx = 4 \int_0^{\frac{1}{3}} (3 x) e^{3x} (3 dx) = 4 \int_0^1 y e^y dy.$$

Dato che una primitiva di $y e^y$ è $(y-1) e^y$, si ha

$$\int_0^{\frac{1}{3}} 36 x e^{3x} dx = 4 (y - 1) e^y \Big|_0^1 = 4.$$

2C)

$$\int_0^{8\pi} \cos(2x) \, dx = 4.$$

Falso: Si ha

$$\int_0^{8\pi} \cos(2x) \, dx = \frac{\sin(2x)}{2} \Big|_0^{8\pi} = \frac{\sin(16\pi) - \sin(0)}{2} = 0 \neq 4.$$

2D)

$$\int_0^{\sqrt{10}} \frac{4x}{10+x^2} dx = 2 \log(2).$$

Vero: Dato che

$$\frac{4x}{10+x^2} = 2\frac{2x}{10+x^2} = 2\frac{(10+x^2)'}{10+x^2},$$

si ha

$$\int_0^{\sqrt{10}} \frac{4x}{10+x^2} dx = 2 \log(10+x^2) \Big|_0^{\sqrt{10}} = 2 \left[\log(20) - \log(10) \right] = 2 \log(20/10) = 2 \log(2).$$

3) Dire se le seguenti affermazioni sono vere o false.

3A)

$$\int_{-6}^{6} \left[7x^3 + \sin(2x) \right] dx = 0.$$

Vero: La funzione integranda è dispari, e l'intervallo di integrazione è simmetrico rispetto all'origine. Pertanto, l'integrale vale zero.

3B)

$$\int_{-6}^{6} \left[7 x^2 + 5 x |x| \right] dx < 0.$$

Falso: La funzione $x \mapsto 7x^2$ è pari, mentre la funzione $x \mapsto 5x|x|$ è dispari. Dato che l'intervallo è simmetrico rispetto all'origine, si ha

$$\int_{-6}^{6} \left[7 x^2 + 5 x |x| \right] dx = \int_{-6}^{6} 7 x^2 dx = 2 \int_{0}^{6} 7 x^2 dx > 0,$$

dato che la funzione integranda è positiva.

3C)

$$\int_{-5}^{6} \left[9 x^3 + 9 x \right] dx = 0.$$

Falso: La funzione integranda è dispari; pertanto, si ha

$$\int_{-5}^{6} \left[9\,x^3 + 9\,x \right] dx = \int_{-5}^{5} \left[9\,x^3 + 9\,x \right] dx + \int_{5}^{6} \left[9\,x^3 + 9\,x \right] dx = \int_{5}^{6} \left[9\,x^3 + 9\,x \right] dx \,,$$

e l'ultimo integrale è positivo essendo l'integrale di una funzione positiva.

3D)

$$\int_{-3}^{2} \frac{x^5}{9+x^4} \, dx > 0 \, .$$

Falso: Dato che la funzione integranda è dispari, si ha

$$\int_{-3}^{2} \frac{x^5}{9+x^4} dx = \int_{-3}^{-2} \frac{x^5}{9+x^4} dx + \int_{-2}^{2} \frac{x^5}{9+x^4} dx = \int_{-3}^{-2} \frac{x^5}{9+x^4} dx < 0,$$

dato che la funzione integranda è negativa.

4A)

$$\int_{4}^{8} \frac{dx}{x-2} = \log(2).$$

Falso: Si ha

$$\int_4^8 \frac{dx}{x-2} = \log(|x-2|) \Big|_4^8 = \log(6) - \log(2) = \log(6/2) = \log(3) \neq \log(2).$$

4B)

$$\int_{6}^{12} \frac{dx}{(x-3)^2} = \frac{2}{9}.$$

Vero: Ricordando che

$$\int \frac{dx}{(x-a)^2} = \frac{1}{a-x} + c,$$

si ha

$$\int_{6}^{12} \frac{dx}{(x-3)^2} = \frac{1}{3-x} \Big|_{6}^{12} = -\frac{1}{9} + \frac{1}{3} = \frac{2}{9}.$$

4C)

$$\int_{8}^{9} \frac{dx}{(x-5)(x-7)} = \frac{1}{2} \log(2/3).$$

Falso: Dall'identità

$$\frac{1}{(x-5)(x-7)} = \frac{A}{x-7} + \frac{B}{x-5}$$

si ricava (moltiplicando per (x-5)(x-7)) che deve essere

$$1 = A(x-5) + B(x-7)$$
.

Scegliendo x=5 si ricava $B=-\frac{1}{2},$ e scegliendo x=7 si ricava $A=\frac{1}{2}.$ Pertanto,

$$\frac{1}{(x-5)(x-7)} = \frac{1}{2} \left[\frac{1}{x-7} - \frac{1}{x-5} \right].$$

Ne segue che

$$\int \frac{dx}{(x-5)(x-7)} = \frac{1}{2} \log \left(\left| \frac{x-7}{x-5} \right| \right) + c,$$

cosicché

$$\int_{8}^{9} \frac{dx}{(x-5)(x-7)} = \frac{1}{2} \left[\log(1/2) - \log(1/3) \right] = \frac{1}{2} \log(3/2) \neq \frac{1}{2} \log(2/3).$$

Alternativamente, si poteva osservare che, essendo la funzione integranda positiva sull'intervallo di integrazione, l'integrale non poteva essere negativo.

4D)

$$\int_{-9}^{-8} \frac{dx}{x^2 + 18x + 82} = \frac{\pi}{4}.$$

Vero: Si ha

$$x^2 + 18x + 82 = (x+9)^2 + 1$$

e quindi

$$\int \frac{dx}{x^2 + 18x + 82} = \int \frac{dx}{1 + (x+9)^2}.$$

Con la sostituzione y = x + 9, da cui dx = dy, si ha

$$\int \frac{dx}{x^2 + 18x + 82} = \int \frac{dy}{1 + y^2} = \arctan(y) + c = \arctan(x + 9) + c.$$

Pertanto,

$$\int_{-9}^{-8} \frac{dx}{x^2 + 18x + 82} = \arctan(x+9)\Big|_{-9}^{-8} = \arctan(1) - \arctan(0) = \frac{\pi}{4}.$$

5) Determinare una primitiva delle funzioni f(x), g(x), h(x) e k(x), e calcolare gli integrali.

a)
$$f(x) = x \sin(3x)$$
, $\int_0^{13\pi} f(x) dx$, **b)** $g(x) = x^2 e^{5x^3}$, $\int_0^{\sqrt[3]{5}} g(x) dx$, **c)** $h(x) = (4x^2 + 15x + 7) e^x$, $\int_{-\frac{7}{4}}^0 h(x) dx$, **d)** $k(x) = \frac{1}{1 + 9x^2}$, $\int_0^1 k(x) dx$.

Soluzione:

a) Si ha, integrando per parti, e ponendo $f'(x) = \sin(3x)$, da cui $f(x) = -\frac{\cos(3x)}{3}$ e g(x) = x, da cui g'(x) = 1,

$$\int x \sin(3x) = -\frac{x \cos(3x)}{3} + \int 1 \cdot \frac{\cos(3x)}{3} dx = -\frac{x \cos(3x)}{3} + \frac{\sin(3x)}{9} + c.$$

Pertanto,

$$\int_0^{13\,\pi}\,x\,\sin(3\,x)\,dx = -\frac{x\,\cos(3\,x)}{3} + \frac{\sin(3\,x)}{9}\Big|_0^{13\,\pi} = -\frac{13\,\pi\,\cos(39\,\pi)}{3} = \frac{13}{3}\,\pi\;.$$

b) Si ha, con la sostituzione $y = 5 x^3$, da cui $dy = 15 x^2 dx$ (e quindi $x^2 dx = \frac{dy}{15}$),

$$\int x^2 e^{5x^3} dx = \frac{1}{15} \int e^y dy = \frac{e^y}{15} + c = \frac{e^{5x^3}}{15} + c,$$

da cui segue che

$$\int_0^{\sqrt[3]{5}} x^2 e^{5x^3} dx = \frac{e^{5x^3}}{15} \Big|_0^{\sqrt[3]{5}} = \frac{e^{25} - 1}{15}.$$

c) Ricordiamo che se $P_2(x)$ è un polinomio di grado 2, allora

$$\int P_2(x) e^x dx = Q_2(x) e^x,$$

con $Q_2(x)$ un polinomio di grado 2 tale che $Q_2(x) + Q'_2(x) = P_2(x)$. Pertanto, se $Q_2(x) = a x^2 + b x + c$, deve essere

$$Q_2(x) + Q'_2(x) = a x^2 + (2a + b) x + b + c = 4x^2 + 15x + 7.$$

Da questa relazione si ricava a=4, 2a+b=15 e b+c=7; risolvendo, si trova a=4, b=7 e c=0. Pertanto,

$$\int (4x^2 + 15x + 7) e^x dx = (4x^2 + 7x) e^x + c,$$

da cui segue che

$$\int_{-\frac{7}{4}}^{0} (4x^2 + 15x + 7) e^x dx = (4x^2 + 7x) e^x \Big|_{-\frac{7}{4}}^{0} = 0.$$

d) Si ha, con la sostituzione y = 3x, da cui $dx = \frac{dy}{3}$,

$$\int \frac{dx}{1+9 x^2} = \frac{1}{3} \int \frac{dy}{1+y^2} = \frac{\arctan(y)}{3} + c = \frac{\arctan(3 x)}{3} + c.$$

Pertanto,

$$\int_0^1 \frac{dx}{1+9x^2} = \frac{\arctan(3x)}{3} \Big|_0^1 = \frac{\arctan(3)}{3}.$$

6) Sia

$$F(t) = \int_0^t [5 e^{x^2} + 8] dx.$$

- a) Dimostrare che F(t) è derivabile per ogni t in \mathbb{R} .
- **b)** Calcolare F(0) e $F'(\sqrt{7})$.
- c) Dimostrare che F(t) è una funzione crescente e dispari.
- d) Dimostrare che

$$\lim_{t \to +\infty} F(t) = +\infty.$$

Soluzione:

a) La funzione $f(x) = 5e^{x^2} + 8$ è continua su \mathbb{R} . Pertanto, per il teorema fondamentale del calcolo integrale, la funzione F(t) è derivabile per ogni t in \mathbb{R} e si ha

(1)
$$F'(t) = f(t) = 5e^{t^2} + 8, \quad \forall t \in \mathbb{R}.$$

b) Si ha

$$F(0) = \int_0^0 \left[5 e^{x^2} + 8 \right] dx = 0,$$

e, per la (1),

$$F'(\sqrt{7}) = f(\sqrt{7}) = 5 e^7 + 8.$$

c) Dato che per la (1) la derivata di F(t) è positiva, la funzione F(t) è crescente. Inoltre, dato che la funzione f(x) è pari, la funzione F(t) è dispari. Infatti, con la sostituzione x=-y, da cui dx=-dy,

$$F(-t) = \int_0^{-t} \left[5 e^{x^2} + 8 \right] dx = -\int_0^t \left[5 e^{(-y)^2} + 8 \right] dy = -\int_0^t \left[5 e^{y^2} + 8 \right] dy = -F(t).$$

d) Si ha, se $t \ge 0$, e dato che $f(x) \ge 8$,

$$F(t) = \int_0^t \left[5 e^{x^2} + 8 \right] dx \ge \int_0^t 8 dx = 8t,$$

da cui segue che (si noti che il limite di F(t) esiste perché F(t) è crescente)

$$\lim_{t \to +\infty} F(t) \ge \lim_{t \to +\infty} 8t = +\infty.$$