Préparation Mines Telecom Réplique de la mission InSIGHT ★ – Sujet

On s'intéresse ici au système de déploiement du sous-système SEIS. Il est basé sur un instrument hybride composé :

- ▶ d'un système de déploiement (DPL);
- ▶ d'une sphère (SEIS) comportant trois capteurs sismiques à très larges bandes et leurs capteurs de température;
- ▶ d'une boîte électronique d'acquisition dont la structure est donnée par le diagramme de définition des blocs.

On donne figure 4 le diagramme partiel des exigences.

La figure 2 représente la structure du système de déploiement DPL.

D'après concours Commun INP 2019 – MP.

FIGURE 1 – Sous-système SEIS

FIGURE 2 – Schématisation cinématique du bras de déploiement

Bâti 0 Le bâti 0 est doté du repère $\mathcal{R}_0\left(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}\right)$.

Bras 1 Le bras 1 est doté du repère $\mathcal{R}_1\left(O; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}\right)$. Le mouvement de 1 par rapport à 0 est une rotation d'axe $\left(O, \overrightarrow{z_0}\right)$ et d'angle $\theta_1 = \left(\overrightarrow{x_0}, \overrightarrow{x_1}\right) = \left(\overrightarrow{y_0}, \overrightarrow{y_1}\right)$. Le centre d'inertie G_1 est paramétré par $\overrightarrow{OG_1} = \frac{L}{2}\overrightarrow{x_1}$. De plus $\overrightarrow{OQ} = L\overrightarrow{x_1}$. Enfin, $m_1 = 352$ g et L = 0,5 m.

La figure 3 présente le modèle volumique du bras 1. Les plans $(G_1, \overrightarrow{x_1}, \overrightarrow{y_1})$ et $(G_1, \overrightarrow{y_1}, \overrightarrow{z_1})$ sont des plans de symétrie matérielle du bras 1.

Le mouvement de 1 par rapport à 0 est commandé par un actionneur M_{01} , constitué d'un moteur pas à pas et d'un réducteur de vitesse à couronne dentée flexible de rapport de transmission $\lambda = 82$, d'encombrement et de masse très faibles en regard des autres solides, logés à l'intérieur de la liaison (0/1).

Avant-bras 2 L'avant-bras 2 est doté du repère $\Re_2\left(Q;\overrightarrow{x_2},\overrightarrow{y_2},\overrightarrow{z_2}\right)$. Le mouvement de 2 par rapport à 0 est une rotation d'axe $\left(Q,\overrightarrow{z_1}\right)$ et d'angle $\theta_2=\left(\overrightarrow{x_1},\overrightarrow{x_2}\right)=\left(\overrightarrow{y_1},\overrightarrow{y_2}\right)$. Le centre d'inertie G_2 est paramétré par $\overrightarrow{OG_2}=\frac{L}{2}\overrightarrow{x_2}$. De plus $\overrightarrow{QP}=L\overrightarrow{x_2}$. Enfin, $m_2=352$ g et L=0.5 m.

FIGURE 3 – Bras 1

L'extrémité en P est équipée d'une pince de masse négligeable qui saisit la sphère SEIS. On note K_{O2} le moment d'inertie de l'avant-bras 2 par rapport à l'axe $\left(O, \overrightarrow{z_0}\right)$ dans la position la plus défavorable. Le mouvement de 2 par rapport à 1 est commandé par un actionneur M_{12} , constitué d'un moteur pas à pas et d'un réducteur de vitesse à couronne dentée flexible de rapport de transmission $\lambda = 82$, d'encombrement et de masse très faibles en regard des autres solides, logés à l'intérieur de la liaison (1/2).

Sphère du SEIS : S On considère que l'amplitude du mouvement (S/2) est très faible. La position (S/0) repérée par : $\overrightarrow{OP} = X_P(t)\overrightarrow{x_0} + Y_P(t)\overrightarrow{y_0}$. La masse $m_s = 1,2$ kg est considérée comme ponctuelle en son centre d'inertie G_S par rapport aux autres mouvements. G_S est tel que $\overrightarrow{PG_S} = -R\overrightarrow{y_0}$ (R est une constante positive).

On note K_{OS} le moment d'inertie de la sphère S par rapport à l'axe $(O, \overrightarrow{z_0})$ dans la position $\theta_1 = \theta_2 = 0$.

FIGURE 4 – Diagramme partiel des exigences

0.1 Validation de la capacité statique du système de déploiement

Objectif

Déterminer le couple statique du moto-réducteur M_{01} qui permet l'équilibre du système de déploiement.

On note $\overrightarrow{g} = -g\overrightarrow{y_0}$ l'accélération du champ de pesanteur terrestre avec $g = 9.81 \text{ ms}^{-2}$.

Question 1 Exprimer puis calculer le couple statique, noté C_{01} , que doit exercer le moto-réducteur M_{01} dans la position du système de déploiement la plus défavorable. Préciser clairement le système isolé ainsi que le principe/théorème utilisé.

Question 2 En déduire la valeur minimale du couple de maintien, noté C_{mlmin} , dont doit disposer le moteur pas à pas.

0.2 Validation des capacités dynamiques du système de déploiement

Objectif

Déterminer le couple du moto-réducteur M_{01} qui permet la manipulation de la sphère SEIS par le système de déploiement.

La figure 2 présente la schématisation du bras de déploiement, noté $\Sigma = \{1, 2, S\}$.

Question 3 Exprimer le moment d'inertie K_{O1} du bras 1 au point O suivant $\overrightarrow{z_0}$ en fonction des paramètres cinétiques.

Question 4 Exprimer le moment d'inertie $K_{O\Sigma}$ de l'ensemble Σ au point O suivant $\overrightarrow{z_0}$ en fonction des paramètres cinétiques.

On considère, pour la suite, que le moteur M_{02} est à l'arrêt dans la position $\theta_2 = 0$ et que seul le moteur M_{01} est en fonctionnement.

Question 5 Pour effectuer une modélisation dynamique du système, établir l'équation donnant le couple, noté C_{01} , du moteur M_{01} en fonction des paramètres cinétiques du système de déploiement. Préciser clairement le système isolé ainsi que le principe/théorème utilisé.

Des calculs amènent à considérer que la valeur de $K_{O\Sigma}$ est très faible et donc pratiquement négligeable.

Question 6 Donner l'expression de l'équation précédente limitée au voisinage de la position du système de déploiement la plus défavorable.

