

References to Matlab / Python LR-Related Functions

- Matlab
 - http://www.mathworks.com/help/stats/multiple-linear-regression.html
 - LinearModel class http://www.mathworks.com/help/stats/linearmodel-class.html

- Python
 - http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

Linear Regression (LR) Concepts

- LR models must have numerical *responses* (i.e. dependent vars, target features).
 - LR estimates *linear parameters* (i.e. a line) to fit data to minimize residue or error.
 - LR search/optimize *linear parameters* to fit data and minimize residue.
- Model relationships between a *scalar dependent variable* $y \& 1^+$ variables in X.
 - Y is our target (response, dependent), X is our **features** (predictors, independent vars).
 - *Univariate linear regression* has ONE independent variable.
 - *Multivariate linear regression* has 1+ independent variables
- Linear regression
 - 1) Build a regression model by computing coefficients θ as $\hat{y} = \theta^T X$
 - 2) Verify \hat{y} against Y

$$\hat{y} = \boldsymbol{b} + \boldsymbol{w}_1 \times \boldsymbol{x}_1 + \dots + \boldsymbol{w}_n \times \boldsymbol{x}_n$$

$$\hat{y} = \boldsymbol{b} + \boldsymbol{w} \boldsymbol{X}$$

$$\boldsymbol{h}(\theta) = \hat{y} = \theta^{\mathrm{T}} \boldsymbol{X} = \theta_0 \times \mathbf{1} + \theta_1 \times \boldsymbol{x}_1 + \dots + \theta_n \times \boldsymbol{x}_n$$

Multivariate Linear Regression

■ Machine derives weights (importance) for each predictor to predict target.

X / Predictors / Features / Independent Variables

0.5 Weights = 0.08-1.48 -0.01 9.7 Height Weight Systolic Age Gender Smoker HealthStatus 1 'Excellent' 176 124 38 'Male' 71 1 Smith 0 'Fair' 43 'Male' 69 163 2 Johnson 38 'Female' 64 131 0 'Good' 125 3 Williams 117 40 'Female' 67 133 0 'Fair' 4 Jones 64 0 'Good' 122 49 'Female' 119 5 Brown 121 46 'Female' 0 'Good' 68 142 6 Davis 33 'Female' 1 'Good' 130 64 142 7 Miller 115 0 'Good' 8 Wilson 40 'Male' 68 180

68

66

183

132

Y Target Dependent Response

115

118

Initialize a random weight for each predictor, then...

28 'Male'

31 'Female'

■ Try to reduce error (i.e. *cost*)

9 Moore

10 Taylor

• You define "error".

X	Y
1	\$4
2	\$8
3	\$12

0 'Excellent' 0 'Excellent'

Linear Regression (LR) vs. Classification

- Linear regression
 - 1) Build a regression model by computing coefficients θ as $\hat{y} = \theta_0 + \theta^T X$
 - 2) Verify \hat{y} against Y
- LR models must have <u>numerical</u> responses (i.e. dependent vars, target features).
 - If responses are categorical, use "Classification".
 - Classification—find a "boundary" to **separate** data points based on their classes

$$h(\theta) = \hat{y} = \theta^{T}X = \theta_{0} \times 1 + \theta_{1} \times x_{1} + \dots + \theta_{n} \times x_{n}$$

- LR basic concept → find $h_{\theta}(x)$ hypothesis by estimating θ .
- Estimate the insurance cost (dependent var) from predictor (i.e. # workers)...
 - **Training** data \rightarrow (x = 1 worker, y = \$4). (x = 2 workers, y = \$8)...
 - Univariate LR: $\hat{y} = \theta_0 + \theta_1 \times x_1$
 - Assume we find slop = $4 = \theta_1$. (8-4)/(2-1)
 - Assume we find intercept = $\theta_0 = 0$.
 - Expected price $\hat{y} = 0 + 4X$.

•
$$\theta = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$
, $X = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ 1 & 2 & 3 \end{bmatrix}$,

- $\hat{y} = \theta^{T} X = \begin{bmatrix} 0 & 4 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 8 & 12 \end{bmatrix}.$
- $\theta_1 > 0$ means $\uparrow \text{var} \rightarrow \uparrow \$$.
 - Add a dozen, add $\theta_1 = 4$ to \$ (positive effect).
- $\theta_1 < 0$ means $\uparrow \text{var} \rightarrow \downarrow \$$.
- $\theta_1 = 0$ means ...

Linear Regression, $\hat{\mathbf{y}} = \theta^{\mathrm{T}} \mathbf{X}$

- Linear regression
 - Build a model by learning coefficients θ as $\hat{y} = \theta^T X$ (column) or $\hat{y} = \theta X^T$
 - Verify \hat{y} against Y

$$h(\theta) = \hat{y} = \theta^{T}X = \theta_{0} \times 1 + \theta_{1} \times x_{1} + \dots + \theta_{n} \times x_{n}$$

$$\theta = \begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix}, \frac{\mathbf{Base}}{\mathbf{W}} \qquad X = \begin{bmatrix} \mathbf{R_1} & \mathbf{R_2} \\ 2 & 6 \\ 4 & 3 \end{bmatrix} \frac{\mathbf{H}}{\mathbf{W}} \qquad \hat{y} = \theta^{\mathsf{T}} \mathbf{X}$$

$$\theta = \begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix}, \begin{array}{ll} \textbf{Base} \\ \textbf{W} \end{array} \qquad X = \begin{bmatrix} 2 & 6 \\ 4 & 3 \end{bmatrix} \begin{array}{ll} \textbf{H} \\ \textbf{W} \end{array} \qquad \hat{y} = \theta^{T}X \qquad \qquad \theta = \begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix}, \begin{array}{ll} \textbf{Base} \\ \textbf{H} \\ \textbf{W} \end{array} \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 6 \\ 4 & 3 \end{bmatrix} \begin{array}{ll} \textbf{Base} \\ \textbf{H} \\ \textbf{W} \end{array} \qquad \hat{y} = \theta^{T}X$$

$$\theta = [3 \ 1 \ 5], X = \begin{bmatrix} \mathbf{B}, & \mathbf{H}, & \mathbf{W} \\ \mathbf{1} & 2 & 4 \\ \mathbf{1} & 6 & 3 \end{bmatrix} \begin{bmatrix} \mathbf{R}_1 \\ \mathbf{R}_2 \end{bmatrix} \hat{y} = \theta \mathbf{X}^{\mathrm{T}}$$

Visualizing Regression

- Predicting response (indicator, dependent) variable y,
 - By computing some function from known independent (attribute) variables x_i .
 - \hat{y} is the sum of x_i (all p attributes) w/ coefficients θ : $\hat{y} = \theta^T X = \theta_0 \times 1 + \sum_{i=1}^p \theta_i x_i$
 - Understand the impact x_i on \hat{y} (θ_i = magnitude and direction of x_i) (signs of θ_i).
 - Find a line (or a plane) that minimizes the distance from points to the line.
 - Error = the sum of all those distances. Sum-of-squares of the errors = $\sum_{j=1}^{N} e_j^2$.
 - Predicting unobserved values of the response y(x) for new unseen x.

© Copyright 2018 by Dr. Chih Lai

Page: 8

Root Mean Square Errors (RMSE)

- All machine learning methods are based on measuring some kinds of error.
- Measure *square sum of error* (SS_E) or **Residuals**.
 - $SS_E = \sum_i (y_i \hat{y}_i)^2$ How good (or difference) LR model fits to training data?
 - Purposes of squaring: To make error all positive.
 - Mean Square of Errors (MSE) = $\frac{\sum_{i=1}^{n} (y_i \hat{y}_i)^2}{n}$.
 - Root Mean Square of Errors (*RMSE*) = $\sqrt{\frac{\sum_{i=1}^{n}(y_i \hat{y}_i)^2}{n}}$
 - $\sqrt{\ }$ so RMSE has the same unit as predictors.

Matlab Linear Regression Function fitlm()

- $h(\theta) = \hat{y} = \theta^{T} X$ $h(\theta) = \theta_{0} \times 1 + \theta_{1} \times x_{1} + \dots + \theta_{n} \times x_{n}$
- Use Matlab function fitlm() to build a LR model.
 - To estimate θ for the LR model.
 - To measure *square sum of error* (SS_E) or **Residuals**.
 - $SS_E = \sum_i (y_i \hat{y}_i)^2$

How much difference between LR model and training data?

- Mean Square of Errors (MSE) = $\frac{\sum_{i=1}^{n} (y_i \hat{y}_i)^2}{n}$.
- Root Mean Square of Errors $(RMSE) = \sqrt{\frac{\sum_{i=1}^{n}(y_i \hat{y}_i)^2}{n}} = RMSD.$

% inputs must be row vector

% rows = records, columns = vars

$$X = [1 \ 2 \ 3]'; Y = [4 \ 8 \ 12]';$$

lm = fitlm(X, Y)

plot(lm)

regr = linear_model.LinearRegression()
regr.fit(x, y)

R: fit <- lm(y \sim x1 + x2 + x3, data=mydata)

$$X = [1 \ 2 \ 3]';$$

$$Y=[-4 -8 -12]';$$

$$lm = fitlm(X, Y)$$

plot(lm)

Output from Matlab fitlm() Function

- A standard error column for each estimated coefficient.
- If p Value derived from t test for x_1 is very small \rightarrow Good predictors to y.
- If pValue > 0.01 → Not a good predictor to y.
- \blacksquare R^2 , adjusted R^2 , and F statistics.

$$\blacksquare \quad \mathbf{RMSE} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}}.$$

R-Square, R² (Coefficient of Determination)

$$0 \le R^2 \le 1$$
 (??)

- Blue squares (area) = squared residuals against $LR = SSE = \sum_i (y_i \hat{y}_i)^2$
- Red squares (area) = squared residuals against average = SST (total) = $\sum_i (y_i \bar{y})^2$

•
$$R^2 = 1 - \frac{SSE}{SST} = 1 - \frac{unexplaned}{amount of variation}$$

• Smaller residual (LR fits better to data) comparing to average \rightarrow R² closer to 1.

Estimated Co	efficients: Estimate	SE	tStat	pValue	
(Intercept) x1	-1.3567e-15		-3.7253e-09 2.3727e+07	1 2.6832e-08	

Number of observations: 3, Error degrees of freedom: 1

Root Mean Squared Error: 2.38e-07 R-squared: 1, Adjusted R-Squared 1

F-statistic vs. constant model: 5.63e+14, p-value = 2.68e-08

(see Appendix for details)

http://en.wikipedia.org/wiki/Coefficient_of_determination

http://www.unc.edu/~nielsen/soci709/m1/m1004.gif

Adjusted R-Square

$$0 \le R^2 \le 1$$

$$R^2 = 1 - \frac{SSE}{SST}$$

- Smaller residual (LR fits better to data) comparing to average \rightarrow R² closer to 1.
- Tell us how many points fall within the line of estimated regression equation.
- Adjusted \mathbb{R}^2 .

• **Def 1** =
$$1 - \frac{(1-R^2)(n-1)}{n-k-1}$$
.

$$\mathbf{Def 2} = 1 - \frac{n-1}{n-p} \times \frac{SSE}{SST}$$

- Adj $R^2 \downarrow$ if adding k predictors in the model. $k \uparrow \rightarrow Def1 \downarrow unless R^2 \uparrow$.
- Adj_ R^2 is normalized by p predictors for comparing models w/ different # of predictors.
- Why Adjusted R²?
 - R² increases w/ every added predictor
 - more model wiggle room to reduce explained variations).
 - As R² always increases & never decreases.
 - Model appear better fit w/ more predictors. → misleading.
 - A model w/ too many predictors → overfitting.

Linear Regression in scikit-learn

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

```
import matplotlib.pyplot as plt
import numpy as np
from sklearn import linear model
from sklearn.metrics import mean squared error, r2 score
# Load dataset.....
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(X_train, y_train)
# Make predictions using the testing set
y_pred = regr.predict(X_test)
# The coefficients
print('Coefficients: \n', regr.coef_ )
# The mean squared error
print("MSE: %.2f" %mean_squared_error(y_test, y_pred))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % r2_score(y_test, y_pred))
# Plot outputs
plt.scatter(X_test, y_test, color='black')
plt.plot(X_test, y_pred, color='blue', linewidth=3)
plt.xticks(());
                   plt.yticks(());
                                   plt.show()
```


http://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html

Robust linear estimator

estimation using RANSAC

Detailed Information Returned from Matlab LR

http://www.mathworks.com/help/stats/linearmodel-class.html

$$X = [1 \ 2 \ 3]'; Y = [4 \ 8 \ 12]';$$

 $lm = fitlm(X, Y)$

- MSE
- Residuals, .Raw
- Fitted
- SSE, SST, SSR
- Coefficients .Estimate
- Rsquared .Ordinary .Adjusted
- Diagnostics, .Leverage .CooksDistance
- LogLikelihood

1x1 LinearModel			
Property A	Value	Min	Max
⊞ MSE	15,6785	15.6785	15.6785
Robust	[]		
Residuals	100x4 table		
Fitted	100x1 double	9.9068	32.6362
Diagnostics	100x7 table		
RMSE	3.9596	3.9596	3.9596
- Steps	[]		
Formula	1x1 classreg.regr.LinearF		
LogLikelihood	-261.2133	-261,2	-261.2
DFE	91	91	91
SSE	1.4267e+03	1.4267	1.4267
SST	6.0053e+03	6.0053	6.0053
<u></u> SSR	4.5785e+03	4.5785	4.5785
CoefficientCovariance	[2.4820,-8.8216e-04,0.05	-8.821	2.4820
OoefficientNames	1x3 cell		
NumCoefficients	3	3	3
NumEstimatedCoefficients	3	3	3
Coefficients	3x4 table		
Rsquared	1x1 struct		
ModelCriterion	1x1 struct		
■ VariableInfo	3x4 table		
ObservationInfo	100x4 table		
■ Variables	100x3 table		
NumVariables	3	3	3
VariableNames	3x1 cell		
NumPredictors	2	2	2
PredictorNames	2x1 cell		
ResponseName	'y'		
NumObservations	94	94	94
ObservationNames	0x0 cell		

Prediction **AFTER** Building An LR Model

```
X = [1 \ 2 \ 3]';
Y = [4 \ 8 \ 12]';
                                                     % Y=[5 8 10];
mdl = fitlm(X, Y),
testX = [2.5, 3]';
                                   % testX must be raw vector. Raws are records, Cols are vars.
% method 1
[newY1 Conf] = predict(mdl, testX); % http://www.mathworks.com/help/stats/linearmodel.predict.html
% method 2
newY2 = feval(mdl, testX)
                                                                           \theta = \begin{bmatrix} \approx 0 \\ 4 \end{bmatrix}, \quad X = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ 2.5 & 3 \end{bmatrix}, \ \hat{y} = \theta^{\mathsf{T}} X = \begin{bmatrix} 0 & 4 \end{bmatrix} \times \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ 2.5 & 3 \end{bmatrix}.
% method 3
%% Compute prediction yourself, \theta^{T}X
newY3 = (mdl.Coefficients.Estimate) * [ones(1, 2); testX']
% check yourself,
                                    newY1 == newY2 == newY3 = [10, 12]
```

© Copyright 2018 by Dr. Chih Lai

T = [0;4]; x = [1 1; 2.5 3]; t'*x

Visualizing Higher Dimension LR

- Shows \hat{y} against *adjusted* predictors. (Adjusted Response Plot)
 - Predictors are averaged out by the averaged \hat{y} .
 - Adjusted data points are computed by adding the residual to \hat{y} for each observation.
- Which predictor is more significant? plotSlice()

figure, syms x1 x2; **hold on,**

% 3-D plot

```
% 0+ 4.0745*x1+-1.5745*x2

ezmesh([b(1,:) '+' b(2,:) '*x1' '+' b(3,:) '*x2'], [-3 5 8 15])

scatter3(X2(:, 1), X2(:, 2), Y2, 'filled', 'r'), hold off

title('\bf Data'), xlabel('\bf X1'), ylabel('\bf X2')

© Copyright 2018 by Dr. Chih Lai
```


Normal Probability Plot of Residual Distribution

- Norm-Plot can be used to spot potential outliers.
 - A solid line connects the 25th and 75th percentiles in the data.

Diagnostics

- Measure how each data x_i influence the LR model?
 - Leverage,
 - Cooks Distance (Influence).
 - See Appendix for details.

- Simple intuitive explanation...
 - Leverage $\approx |x_i \bar{x}| = \text{how much predictor vars diff from mean of predictor vars.}$
 - **D** very close to the μ of predictor, almost no impact to LR.
 - A, C, B very far from the μ of predictor, **potential** impact to (the **slope** of) LR.
 - Cooks distance (influence) \approx measures the effect of deleting a given observation.
 - A & C has large error (far from LR line). B & D has small error (close to LR line).
 - Shows the influence of each observation to the fitted response (predicted \hat{y}).
 - A point likely be an outlier IF its Cook's distance $> (3 \times \text{average Cook's distance})$.

Leverage & Cooks Distance

- mdl.Diagnostics.Leverage
- mdl.Diagnostics.CooksDistance

```
X2 = [1 2 3]'; Y2=[5 8 10]';

mdl = fitlm(X2, Y2);

figure,

subplot(3,1,1), plot(mdl)

subplot(3,1,2),

plotDiagnostics(mdl)

subplot(3,1,3),

plotDiagnostics(mdl,'cookd')
```


statsmodels.stats.outliers_influence.OLSInfluence

15 \rightarrow Data Fit Confidence bounds 1.5 2.5 x1 Case order plot of leverage 1.5 Larger leverage when data is far from average (e.g. points 1 & 3) Leverage 0.5 1.5 2.5 Row number Case order plot of Cook's distance effect of deleting a given data point Cook's distance **Deleting boundary points 1 & 3** has greater impact 2.5 1.5 3 Row number

y vs. x1

http://www.statsmodels.org/devel/generated/statsmodels.stats.outliers_influence.OLSInfluence.html

Impact of Outliers w.r.t. Leverage and Distance

- Two influences of each data x_i on LR include:
 - Leverage $\approx |x_i \bar{x}| = \text{how much predictor vars diff from mean of predictor vars.}$
 - Distance $\approx |y_i \widehat{y}_i|$ = measures the effect of deleting a given observation.

Diagnoses of Point A

X	Y
1	2
2	3
3	5
4	6
8	7

```
X = [1; 2; 3; 4; 8];
Y = [2; 3; 5; 6; 7];
                                           % A
X(end + 1) = -5; Y(end + 1) = 15;
% X(end + 1) = 15; Y(end + 1) = 15;
                                           % B
% X(end + 1) = 15; Y(end + 1) = 4;
                                           % C
\frac{\%}{6}X(end + 1) = 3.6; Y(end + 1) = 4.6;
                                           % D
mdl = fitlm(X, Y)
plot(mdl)
figure,
subplot(3,1,1),
plot(mdl)
subplot(3,1,2),
plotDiagnostics(mdl)
subplot(3,1,3),
plotDiagnostics(mdl,'cookd')
mdl.Diagnostics
                            % print Diagnostics info.
```


© Copyright 2018 by Dr. Chih Lai

Matlab Summary of LR Diagnoses

Summary of Output and Diagnostic Statistics

Name	LinearModel	regstats	
"Cook's Distance" on page 9-70	CooksDistance and cookd	cookd	
"Coefficient Confidence Intervals" on page 9-75	coefCI	N/A	
"Coefficient Covariance and Standard Errors" on page 9-74	CoefficientCovariance	covb	
"Coefficient of Determination (R- Squared)" on page 9-78	Rsquared: Ordinary, Adjusted	rsquare, adjrsquare	
"Delete-1 Change in Covariance (covratio)" on page 9-81	CovRatio	covratio	
"Delete-1 Scaled Difference in Coefficient Estimates (Dfbetas)" on page 9-84	Dfbetas	dfbetas	
"Delete-1 Scaled Change in Fitted Values (Dffits)" on page 9-85	Dffits	dffits	
"Delete-1 Variance (S2_i)" on page 9-88	\$2_i	s2_i	
"Durbin-Watson Test" on page 9-91	dwtest	dwstat	
"F-statistic" on page 9-93	Fstat	fstat	
"Hat Matrix" on page 9-99	HatMatrix	hatmat	
"Leverage" on page 9-100	Leverage	leverage	
"Residuals" on page 9-103	Residuals: Raw, Pearson, Studentized, Standardized	r, studres, standres	
"t-statistic" on page 9-96	tstats	tstat	

Predict MPG... First, Understand Data

- gplotmatrix()— a matrix of scatter plots.
 - Each axis contains a scatter plot of predictors *X* against response(s) *Y*.
- More clear relationship between displacement, horsepower, weight, to MPG.
 - Newer cars tend to be lighter and have better MPG than older cars.

Forming Strategies

- So, we are going to build an LR model
 - To explain MPG.
 - Based on Displacement, Horsepower, and Weight.

load carsmall

```
X = [Displacement Horsepower Weight];
Y = [MPG];
mdl = fitlm(X, Y)
Plot LR Figures(mdl)
function Plot_LR_Figures(mdl)
figure,
subplot(2, 3, 1), plot(mdl),
subplot(2, 3, 2), plotDiagnostics(mdl),
subplot(2, 3, 3), plotDiagnostics(mdl,'cookd')
subplot(2, 3, 4), plotResiduals(mdl),
subplot(2, 3, 5), plotResiduals(mdl, 'probability')
% above probability plot = normplot(abs(mdl.Residuals.Raw))
subplot(2, 3, 6), plotResiduals(mdl, 'fitted')
figure,
for i = 1: mdl.NumCoefficients,
  subplot(mdl.NumCoefficients, 1, i),
 plotAdded(mdl, mdl.CoefficientNames{i});
end
```


1st Try, Result 1

- PRG in the carsmall.m program file.
- Based on Displacement, Horsepower, and Weight.
- Displacement has largest p-value.
- Two likely outliers from the histogram & probability plots.

Estimate	Estimated Coefficients:									
		Estimate	SE	tStat	pValue					
(Int	ercept)	47.182	2.0973	22.497	1.7329e-38					
x1	disp.	-0.0053631	0.010574	-0.50719	0.61328					
x 2	H.P.	-0.034562	0.023824	-1.4507	0.15037					
x 3 W.		-0.0062775	0.0011978	-5.2409	1.0646e-06					

Number of observations: 93, Error degrees of freedom: 89

Root Mean Squared Error: 4.08

R-squared: 0.753, Adjusted R-Squared 0.744

F-statistic vs. constant model: 90.3, p-value = 6.51e-27

1st Try, Result 2

- PRG in the carsmall.m program file.
- Based on Displacement, Horsepower, and Weight.
- Displacement has largest p-value.
- Displacement has flat Added Plot.
 - See Appendix for details.

Estimated Coefficients:								
		Estimate	Estimate SE		pValue			
(In	tercept)	47.182	2.0973	22.497	1.7329e-38			
x1	disp.	-0.0053631	0.010574	-0.50719	0.61328			
x2	H.P.	-0.034562	0.023824	-1.4507	0.15037			
ж3	\mathbf{W} .	-0.0062775	0.0011978	-5.2409	1.0646e-06			
Number (of observa	ations: 93, Err	or degrees of	freedom: 89				
		d Error: 4.08	01 0091000 01	iiioodom. 05				
	-							
R-square	ed: 0.753,	Adjusted R-S	quared 0.744					
F-stati:	stic vs. o	constant model:	90.3, p-valu	e = 6.51e-27				

2nd Try, Result 1

- Remove Displacement.
- Based on Horsepower, and Weight.
- ➤ No significant impact on RMSE & R².
- Next, we are going to remove 2 outliers.
- Two likely outliers from the histogram & probability plots.

	=		an.	+a+-+	
		Estimate	SE	tStat	pValue
(Intercept)		47.769	1.7417	27.427	1.751e-45
x1	H.P.	-0.042018	0.018671	-2.2504	0.02686
x2	W.	-0.0065651	0.0010507	-6.2484	1.3519e-08

Number of observations: 93, Error degrees of freedom: 90

Root Mean Squared Error: 4.07

R-squared: 0.752, Adjusted R-Squared 0.747

F-statistic vs. constant model: 136, p-value = 5.57e-28

2nd Try, Result 2

• Next, we are going to remove 2 outliers.

		Estimate	SE	tStat	pValue				
(Int	ercept)	47.769	1.7417	27.427	1.751e-45				
x1	H.P.	-0.042018	0.018671	-2.2504	0.02686				
x2	W.	-0.0065651	0.0010507	-6.2484	1.3519e-08				
Number o	f observa	ations: 93, Err	or degrees of	freedom: 9	0				
Root Mea	n Squared	d Error: 4.07							
R-square	R-squared: 0.752, Adjusted R-Squared 0.747								
F-statistic vs. constant model: 136, p-value = 5.57e-28									

Third Try, Result 1

- After removing outlier rec 90 & 97.
- Reduce RMSE & increase R².

		Estimate	SE	tStat	pValue	
(Inte	rcept)	47.418	1.5443	30.706	8.3991e-49	
x1	H.P.	-0.029339	0.016659	-1.7612	0.081686	
x 2	W.	-0.0070135	0.00093311	-7.5162	4.4572e-11	

Number of observations: 91, Error degrees of freedom: 88

Root Mean Squared Error: 3.59

R-squared: 0.789, Adjusted R-Squared 0.784

F-statistic vs. constant model: 165, p-value = 1.8e-30

Third Try, Result 2

- After removing outlier rec 90 & 97.
- Reduce RMSE & increase R².

		Estimate	SE	tStat	pValue
(Int	cercept)	47.418	1.5443	30.706	8.3991e-49
x1	H.P.	-0.029339	0.016659	-1.7612	0.081686
x2	W.	-0.0070135	0.00093311	-7.5162	4.4572e-11

Number of observations: 91, Error degrees of freedom: 88

Root Mean Squared Error: 3.59

R-squared: 0.789, Adjusted R-Squared 0.784

F-statistic vs. constant model: 165, p-value = 1.8e-30

Predicting Car Prices

Can we identify outliers before building any regression model?

Predicting Car Prices MDL-01 2018 spring

Saleh Alkadayar Rathana Sorn Jose Rodriguez Julie Flater Gassan Zaid

Remove Outliers before Regression?

- So far we remove outliers based on regression results.
- Can we remove outliers before regression?
- Build different models for cars in different MSRP ranges...

Jose Rodriguez Julie Flater Gassan Zaid

Summary of Steps

- Linear Regression Workflow
 - Step 1. Understand data.
 - Step 2. Create a fitted model & evaluate prediction quality.
 - Step 3. Simplify the model (by removing some predictors).
 - Step 3. Locate and remove outliers.
 - Step 5. Predict responses to new data.

- Linear Regression Summary
 - Measuring overall accuracy: RMSE \downarrow , R² \uparrow .
 - Identifying outliers: leverage, Cook's distance, probability plot, residual histogram.
 - Identifying useful variables: p-value, Added-Variable plot, plotSlice. θ ???

Hospital Example—Which Predictor Has Greater Impact???

• "hospital.xls" has patient names, gender, age, weight, blood pressure, & treatments.

	name	sex	age	wgt	smoke	sys	dia	trial1	trial2	trial3	trial4
YPL-320	'SMITH'	'm'	38	176	1	124	93	18	-99	-99	-99

- Predict systolic pressure as a function of sex, age, wgt, smoke.
- sex, age, & weight have high *p*-values, indicating some of them unnecessary.
- plotResiduals(mdl) and improve RMSE & R² after removing outliers.

(Intercept)		118.28	9.1557e-28
x1	gender	0.88162	0.76549
	age	0.08602	0.20438
	wgt	-0.016685	0.76524
x4	smoke	9.884	1.9546e-15
RMSE = 4.81,		$R^2 = 0.508$	

(Intercept)		115	2.3258e-27	
x1	gender	0.22181	0.93846	
x2	age	0.10678	0.10721	
х3	wgt	0.00036854	0.9946	
x4	smoke	10.002	2.8087e-16	
RMSE = 4.66 , $\mathbf{R}^2 = 0.536$				

Output Interpretation

- Risk of high systolic pressure appears to be... (w/o considering p-values)
 - **MUCH** higher among smokers (or non-smokers??).
 - Higher among males or females??
 - Increasing with age. But, how much???
 - Compare to weight?
 - "Gender" and "Smoke" are categorical var.

		$oldsymbol{ heta}$				
(In	tercept)	115	2.3258e-27			
x1	gender	0.22181	0.93846			
x2	age	0.10678	0.10721			
x 3	wgt	0.00036854	0.9946			
x 4	smoke	10.002	2.8087e-16			
$ RMSE = 4.66, R^2 = 0.536 $						

Trained θ May Flip After Standardization

load patients

patients = table(Systolic, Age, Gender, Height, Weight, Smoker, Location, SelfAssessedHealthStatus, 'RowNames', LastName);

Y = Systolic;

X = [**Age Weight**];

mdl = fitlm(X, Y)

pValue

(Intercept)	112.84	2.3
x1	0.11248	
x 2	0.036567	

2.3349e-125 0.22943 0.15086

pValue

$$mdl2 = fitlm(zscore(X), Y)$$

2.3349e-125 0.22943 0.15086

mean(X),

% 38.28, 154.00

std(X)

% 7.2154, 26.5714

$$z_i = \frac{x_i - \mu}{SD}$$

Standardize New Data After Building A Model, Before Prediction

- If we build model with standardized dataset, do we need to standardize the <u>new</u> <u>data</u> before prediction?
- Yes, but how???

```
%% *** Assume you have zscore your <u>training</u> data:
[Z, mu, sigma] = zscore(X)
```

```
%% *** Before predicting \hat{y} for <u>new</u> data, do followings:
tmp = newX - mu;
z_i = \frac{x_i - \mu}{SD}
newZ = tmp \cdot/ sigma;
% sigma = STD
```

%% if you have multiple records of new data, do followings:

After Removing Outliers, Standardization Again!!

 $z_i = \frac{x_i - \mu}{SD}$

■ After removing outliers, standardization <u>again</u> before building a new model!!!

-						ng an O				ML	2017 spr	ing	
Statistics fo	or Original	Data					Statistics 1	or Data wit	h Outlier I	Removed			
	Age	Height	Weight					Age	Height	Weight			
Std_Dev	7.2154	2.8365	26.5714				Std_Dev	7.2510	2.8431	26.4826			
Mean	38.2800	67.0700	154.0000				Mean	38.2929	67.0909	154.3434			
		iginal Data 100 rows)	a		iginal Data			and give the day of	Outlier R			Outlier Re	
row	Age	Height	Weight	Age	Height	Weight	row	Age	Height	Weight	Age	Height	Weight
1	38	71	176	-0.0388	1.3855	0.8280	1	38	71	176	-0.0404	1.3749	0.8178
2	43	69	163	0.6542	0.6804	0.3387	2	43	69	163	0.6492	0.6715	0.3269
3	38	64	131	-0.0388	-1.0823	-0.8656	3	38	64	131	-0.0404	-1.0871	-0.8815
4	40	67	133	0.2384	-0.0247	-0.7903	4	40	67	133	0.2354	-0.0320	-0.8059
5	49	64	119	1.4857	-1.0823	-1.3172	5	49	64	119	1.4766	-1.0871	-1.3346
6	46	68	142	1.0699	0.3279	-0.4516	6	46	68	142	1.0629	0.3197	-0.4661
7	33	64	142	-0.7318	-1.0823	-0.4516	7	33	64	142	-0.7300	-1.0871	-0.4661
8	40	68	180	0.2384	0.3279	0.9785	8	40	68	180	0.2354	0.3197	0.9688
9	28	68	183	-1.4247	0.3279	1.0914	9	28	68	183	-1.4195	0.3197	1.0821
10	31	66	132	-1.0090	-0.3772	-0.8280	10	31	66	132	-1.0058	-0.3837	-0.8437
11	45	68	128	0.9313	0.3279	-0.9785	11	45	68	128	0.9250	0.3197	-0.9947
12	42	66	137	0.5156	-0.3772	-0.6398	12	42	66	137	0.5113	-0.3837	-0.6549
13	25	71	174	-1.8405	1.3855	0.7527	13	25	71	174	-1.8333	1.3749	0.7422
14	39	72	202	0.0998	1.7381	1.8065	14	39	72	202	0.0975	1.7266	1.7995
15	36	65	129	-0.3160	-0.7298	-0.9409	15	36	65	129	-0.3162	-0.7354	-0.9570
16	48	71	181	1.3471	1.3855	1.0161	16	48	71	181	1.3387	1.3749	1.0066

Python Z-Score

http://scikit-learn.org/stable/modules/preprocessing.html

from sklearn import preprocessing

Categorical Variables

- Major variable types:
 - Continuous variables: age, income, salary.
 - Categorical variables: gender, rank, department, city, etc.
- How to represent categorical variables in LR?
 - Use 100, 200, 300, etc. for cities? How about use Zip Code?
 - But, this assumes "order" and "magnitude". city 300 > city 200 > city 100.
 - Zip code 90210 > 55105? 90210 more important than 55105?
- Use binary variables (or dummies).
 - Dummies?? → not real variables, they are just to help representing something else.

Dummy Variables

- Use binary variables (or dummies).
 - Refer to as indicators (to indicate if a record **has** a particular value **or not**).
 - **0** represents the *reference group*.
 - One categorical variable with c categories <u>usually</u> represented by c-1 indicators.
 - 3 categories??
 - Let a categorical variable with levels {Small, Medium, Large}.
 - Represent it using $\underline{\mathbf{two}}$ dummy variables D_1 and D_2 .
 - A record with Medium $[D_1, D_2] = [1, 0]$. Large [0, 1]. Small [0, 0].
 - The category represented by all **0**s is the *reference group*.

	S M L	M L
Small	1 0 0	0 0
Medium	0 1 0	1 0
Large	0 0 1	0 1

		M	$\searrow_{\mathbf{L}}$
		D_1	D_2
M	010	1	0
M	010	1	0
S	100	0	0
L	001	0	1
S	100	0	0

Creating Dummy Variables in Matlab

- Data
 - gender = nominal({'Male'; 'Female'; 'Female'; 'Male'; 'Female'});
- Covert categorical data to dummy variables
 - $dv = \underline{dummyvar}(gender)$

- How to use dummy variables in a regression model?
 - Must delete a column (to create a reference group), (or do not use θ_0 in an LR model).
 - Gender example → use only one column of the dummy variable.
 - LR coefficients remain the same but **opposite signs**, if **complement** the dummy.
- References to Matlab Dummy variables.
 - http://www.mathworks.com/help/stats/dummyvar.html
 - http://www.mathworks.com/help/stats/dummy-indicator-variables.html

Car Example with Dummy Variables (Cyclinders)

- Similar way / example.
 - http://www.mathworks.com/help/stats/group-comparisons-using-categorical-arrays.html

```
clear all, close all hidden
load carsmall;
figure, gscatter(Weight, MPG, Cylinders, 'bgr', 'x.o')
title('MPG vs. Weight, Grouped by Cylinders')

X = [Weight, Cylinders];
Y = MPG;
lm = fitlm(X, Y)

dv_CL = dummyvar(Cylinders);
DX_CL = [Weight, dv_CL(:, [6 8])]; % WHY 6, 8?
D_lm = fitlm(DX_CL, Y)
```

```
(Intercept)MPG 48.908 can tell
x1 W -0.0056549 it was
x2 CYL -1.5302 degrading.

Root Mean Squared Error: 3.96
R-squared: 0.762, Adjusted R-Squared 0.757
```


Car Example with Dummy Variables (Model Years)

- Similar way / example.
 - http://www.mathworks.com/help/stats/group-comparisons-using-categorical-arrays.html

```
clear all, close all hidden
load carsmall;
figure, gscatter(Weight, MPG, Model_Year, 'bgr', 'x.o')
title('MPG vs. Weight, Grouped by Model_Year ')

X = [Weight, Model_Year];
Y = MPG;
lm = fitlm(X, Y)

dv_MY = dummyvar(Model_Year);
DX_MY = [Weight, dv_MY(:, [76 82])]; % WHY 76, 82
D_lm = fitlm(DX_MY, Y)
```


 $E(MPG) = \theta_0 + \theta_1 Weight + \theta_2 D[1976] + \theta_2 D[1982].$

```
(Intercept) MPG -5.7045 can tell x1 W -0.0068023 general x2 YR 0.65127 improvement.
Root Mean Squared Error: 3.06
R-squared: 0.858, Adjusted R-Squared 0.855
```

```
able to
(Intercept) MPG
                     40.11
                                tell how much
x1
               -0.0066475
                                MPG
            76
x^2
                                improves
            82
                    7.9093
x3
                                from '70s.
Root Mean Squared Error: 2.92
R-squared: 0.873, Adjusted R-Squared 0.868
```

Dummy Variables using **pandas** or **sklearn**

```
import pandas as pd
import numpy as np
s = ['a', 'b', 'c', 'a']
dmy = pd.get_dummies(s)
print(dmy, '\n')
#x = np.zeros(4, 3)
x = np.array(dmy)
print(x, '\n')
print(x[:, 1:]) # get c - 1 columns
```

```
a b c
0 1 0 0
1 0 1 0
2 0 0 1
3 1 0 0

[[1 0 0]
[0 1 0]
[1 0 0]]

[[0 0]
[1 0]
[0 1]
[0 0]
```

```
from sklearn.preprocessing import OneHotEncoder

s = [[1], [2], [3], [1]]

enc = OneHotEncoder()

enc.fit(s)

x = enc.transform(s).toarray()

print(x)
```

```
[[ 1. 0. 0.]
[ 0. 1. 0.]
[ 0. 0. 1.]
[ 1. 0. 0.]]
```

```
from sklearn.preprocessing import OneHotEncoder

s = [[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]

print(s, '\n')

enc = OneHotEncoder()

enc.fit(s)

print(enc.transform(s).toarray())
```

```
[[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]

[[1. 0. 1. 0. 0. 0. 0. 0. 1.]

[0. 1. 0. 1. 0. 1. 0. 0. 0.]

[1. 0. 0. 0. 1. 0. 1. 0. 0.]

[0. 1. 1. 0. 0. 0. 0. 1. 0.]
```

Predicting Car Prices

Any preprocessing?

Predicting Car Prices MDL-01 2018 spring

Saleh Alkadayar Rathana Sorn Jose Rodriguez Julie Flater Gassan Zaid

Removing Less Useful Predictors? Which One(s)?

• "hospital.xls" has patient names, sex, age, weight, blood pressure, & treatments.

	name	sex	age	wgt	smoke	sys	dia	trial1	trial2	trial3	trial4
YPL-320	'SMITH'	'm'	38	176	1	124	93	18	-99	-99	-99

- sex, age, & weight have high p-values, indicating some of them unnecessary.
- Later, we will use "regularization" to...
 - Identify useful predictors to simplify model, & maintain *similar* prediction quality.

(In	tercept)	115	2.3258e-27		
x1	gender	0.22181	0.93846		
x2	age	0.10678	0.10721		
х3	wgt	0.00036854	0.9946		
x4	smoke	10.002	2.8087e-16		
RMSE = 4.66, $R^2 = 0.536$					

More Irregular Data-Blood Sugar Over Time

Possible to fit this data into a <u>linear</u> model?

X = [1 : length(Y)];

Fit A Linear Model

- Overall, not a good fit.
- But, easy to interpret.

mdl = fitlm(X, Y)

PlotFigures(mdl)

Fit Polynomial Degree 9

- Much better R^2 and Adjusted R^2 .
 - Interpretation???
 - Should we use higher degree?!

$$mdl9 = fitlm(X, Y, 'poly9')$$

	Estimate	SE	tStat	pValue
(Intercept)	0	0	NaN	Nal
x1	0	0	NaN	Nal
x1^2	0	0	NaN	Nal
x1^3	0	0	NaN	Nal
x1^4	0.0015597	0.00022262	7.0063	3.1191e-1
x1^5	-9.5687e-05	1.5474e-05	-6.1837	1.4453e-0
x1^6	2.3463e-06	4.2002e-07	5.5863	2.0807e-0
x1^7	-2.8574e-08	5.5723e-09	-5.1278	1.4776e-0
x1^8	1.724e-10	3.6199e-11	4.7625	6.6187e-0
x1^9	-4.1193e-13	9.229e-14	-4.4634	2.1579e-0
umber of observa	tions: 108, Err	or degrees of	freedom: 10	2
oot Mean Squared	Error: 53.4			
-squared: 0.44,	Adjusted R-Squ	ared 0.413 🔷		
-statistic vs. c	onstant model:	16.1. p-value	= 1.18e-11	

Fit Non-Linear Model in Matlab

- Specify non-linear model in the Matlab linear regression function →
 - mdl = fitlm(tbl, modelspec)
 - fitlm(X, Y, 'poly9')
 - fitlm(X, Y, 'y ~ $x1^6 + x1^2$ ')
 - Multivariant non-linear model:

possible "modelspect":

String	Model Type	http://www.mathworks.com/help/stats/fitlm.html#inputarg_modelspe
'constant'	Model contains on	lly a constant (intercept) term.
'linear'	Model contains an	intercept and linear terms for each predictor.
'interactions'	Model contains an (no squared terms	intercept, linear terms, and all products of pairs of distinct predictors
'purequadratic'	Model contains an	intercept, linear terms, and squared terms.
'quadratic'	Model contains an	intercept, linear terms, interactions, and squared terms.
'poly <i>ijk</i> '	second predictor,	mial with all terms up to degree i in the first predictor, degree j in the etc. Use numerals 0 through 9. For example, 'poly2111' has a near and product terms, and also contains terms with predictor 1

Appendix

Another LR Example Predicting Chlorophyll Amount from Special Images

Dimensionality and R²

Dimensionality = 3072 / 128 = 24

Root Mean Squared Error: 7.04

R-squared: 0.92,

Adjusted R-Squared 0.892

F-statistic vs. constant model: 32,

p-value = 7.35e-16

Dimensionality = 3072 / 64 = 48

Root Mean Squared Error: 7.2

R-squared: 0.968,

Adjusted R-Squared 0.887

F-statistic vs. constant model: 12,

p-value = 6.79e-06

Dimensionality = 3072

Root Mean Squared Error: 0

R-squared: 1,

Adjusted R-Squared NaN

F-statistic vs. constant model: NaN,

p-value = NaN

F-Statistics

$$F = \frac{\text{explained variance}}{\text{unexplained variance}}$$

■ *F*-Statistics.

- F statistic is the distance from black dashed line to the y-axis.
- The *p* value is the dark blue area under the curve from *F* to infinity.
- Higher F values correspond to lower p values (better).
- http://stats.stackexchange.com/questions/12398/how-to-interpret-f-and-p-value-in-anova
- In linear regression, the *F*-statistic is the test statistic for the analysis of variance (ANOVA) approach to test the significance of the terms or components in the model.

Estimated Co	Defficients: Estimate	SE	tStat	pValue
(Intercept) x1	-1.3567e-15		-3.7253e-09 2.3727e+07	1 2.6832e-08

Number of observations: 3, Error degrees of freedom: 1

Root Mean Squared Error: 2.38e-07 R-squared: 1, Adjusted R-Squared 1

F-statistic vs. constant model: 5.63e+14, p-value = 2.68e-08

http://stats.stackexchange.com/questions/12398/how-to-interpret-f-and-p-value-in-anova

Explained / Unexplained Variance

https://en.wikipedia.org/wiki/Coefficient of determination

 \mathbb{R}^2

• SST (total) =
$$\sum_i (y_i - \overline{y})^2$$
 SSE = $\sum_i (y_i - \widehat{y}_i)^2$

$$\mathbf{SSE} = \sum_{i} (y_i - \widehat{y}_i)^2$$

$$R^2 = 1 - \frac{SSE}{SST}$$

Explained sum of square = $\sum_{i} (\hat{y}_{i} - \overline{y})^{2}$

- Consider point A...
 - \mathbb{R}^2 is close to 1.

Your text here

http://en.wikipedia.org/wiki/Coefficient_of_determination

- Explained sum of square (green area) is large.
- F is VERY large.

$$F = \frac{explained\ variance}{unexplained\ variance}$$

Leverage

- A measure of how a point affects the regression predictions due to its position.
- Generally, more leverage a point may have if it is farther from the center of input.
- A point i is a potential outlier if its leverage >> the mean leverage value, L/n, where L is the sum of the leverage values.
- * Leverage = the diagonal of the influence matrix $H = X(X^TX)^{-1}X^T$
 - * $h_{ii} = \frac{\partial \hat{y}_i}{\partial y_i} \approx \text{how much influence to } \hat{y}_i \text{ by changing of } y_i.$

More Details on Influence Matrix

Influence matrix $H = X(X^TX)^{-1}X^T$

$$h_{ii} = \frac{1}{n} + \frac{(xi - \bar{x})}{SX}$$

*
$$SX = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} (\sum_{i=1}^{n} x_i)^2$$

- http://en.wikipedia.org/wiki/Leverage_%28statistics%29
- http://en.wikipedia.org/wiki/Hat matrix

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \Rightarrow X^T X = \begin{bmatrix} n & \sum_{i=1}^n x_i \\ \sum_{i=1}^n x_i & \sum_{i=1}^n x_i^2 \end{bmatrix}$$

$$\Rightarrow (X^T X)^{-1} = \frac{1}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2} \begin{bmatrix} \sum_{i=1}^n x_i^2 & -\sum_{i=1}^n x_i \\ -\sum_{i=1}^n x_i & n \end{bmatrix}$$

Note the definition of

$$SXX = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2$$

$$(X^TX)^{-1} = \frac{1}{SXX} \begin{bmatrix} \frac{1}{n} \sum_{i=1}^n x_i^2 & -\bar{x} \\ -\bar{x} & 1 \end{bmatrix}$$

Note the definition of
$$SXX = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i\right)^2$$
 Hence you may rewrite $(X^TX)^{-1} = \frac{1}{SXX} \begin{bmatrix} \frac{1}{n} \sum_{i=1}^{n} x_i^2 & -\bar{x} \\ -\bar{x} & 1 \end{bmatrix}$
$$\Rightarrow X(X^TX)^{-1} = \frac{1}{SXX} \begin{bmatrix} \frac{1}{n} \sum_{i=1}^{n} x_i^2 - x_1 \bar{x} & -\bar{x} + x_1 \\ \frac{1}{n} \sum_{i=1}^{n} x_i^2 - x_2 \bar{x} & -\bar{x} + x_2 \\ \vdots & \vdots & \vdots \\ \frac{1}{n} \sum_{i=1}^{n} x_i^2 - x_n \bar{x} & -\bar{x} + x_n \end{bmatrix}$$
 Phence, $h_{ii} = \frac{1}{SXX} \left[1 \times \left(\frac{1}{n} \sum_{j=1}^{n} x_j^2 - x_i \bar{x} \right) + x_i \times (-\bar{x} + x_i) \right]$ Page: 60

$$h_{ii} = \frac{1}{SXX} \left[1 \times \left(\frac{1}{n} \sum_{j=1}^{n} x_j^2 - x_i \bar{x} \right) + x_i \times (-\bar{x} + x_i) \right]$$

$$= \frac{1}{SXX} \left[\frac{1}{n} \sum_{j=1}^{n} x_{j}^{2} - (\bar{x})^{2} + (\bar{x})^{2} - 2x_{i}\bar{x} + x_{i}^{2} \right]$$

$$= \frac{1}{nSXX} \left[\sum_{j=1}^{n} x_j^2 - \frac{1}{n} \left(\sum_{j=1}^{n} x_j \right)^2 \right] + \frac{(x_i - \bar{x})^2}{SXX}$$

$$= \frac{1}{n} + \frac{(x_i - \bar{x})^2}{SXX}$$

Cook's Distance

- Cook's distance measures the effect of deleting a given observation.
 - Shows the influence of each observation to the fitted response (predicted \hat{y}).
 - A point likely be an outlier IF Cook's distance $> (3 \times \text{average Cook's distance})$.
 - Points w/ \tau residuals (outliers) and/or \tau leverage may distort LR and its accuracy.
 - Points w/ †Cook's distance are considered to merit closer check in the analysis.

- Cook's Distance = $D_i = \frac{\sum_{j=1}^{n} (\hat{Y}_j \hat{Y}_{j(i)})^2}{p \text{ MSE}}$
 - \hat{y}_i is the prediction from the full regression model for observation j;
 - $\hat{y}_{i(j)}$ is the prediction for observation j from a refitted regression model in which observation i has been **deleted**;
 - *p* is the number of fitted parameters in the model;
 - MSE is the mean square error of the regression model.
 - http://en.wikipedia.org/wiki/Cook%27s_distance

Added-Variable Plot ≈ plotSlice()

- Construction of an Added-Variable Plot.
 - Let the original LR be $\hat{y} = \theta^T X = \theta_0 \times 1 + \theta_1 \times x_1 + \theta_2 \times x_2 + \theta_3 \times x_3$.
 - Build a model with variables $x_2 & x_3$ against y as $\widehat{y}_{i1} = \theta^T X = \theta_0 + \theta_2 \times x_2 + \theta_3 \times x_3$.
 - Compute residual $\mathbf{R}_{yi} = y_i \widehat{y_{i1}}$.
 - Build a model with variables $x_2 \& x_3$ against x_1 as $\widehat{x_{i1}} = \theta^T X = \theta_0 + \theta_2 \times x_2 + \theta_3 \times x_3$.
 - Compute residual $\mathbf{R}_{xi} = x_{i1} \hat{x}_{i1}$.
 - Build a regression with R_{vi} against R_{xi} .
 - i.e. find a slope to fit R_{xi} to R_{yi} .

Purposes and interpretation:

- \triangleright If a line *i* near horizontal, then variable x_i is insignificant.
 - $R_{vi} = y_i \widehat{y_{i1}}$ closes to be constant (low fit error) while R_{xi} keeps changing (or growing).
- To evaluate the marginal role of each variable in the multiple regression models.
- To evaluate if a variable is significantly associated with **Y** to be included in LR.
- Also refer to as *partial regression plots*.

Identify Insignificant Variables

• Ry closes to constant while R_1 changing

```
 \begin{aligned} &\text{rng}(5), & Y = [5;8;10]; \\ &X = [\text{rand}(3,1)\,Y]; & \text{\% X1} & \text{X2, where X2} = Y \end{aligned} \\ &\text{mdl} = \text{fitlm}(X,Y) \\ &\text{figure, plot}(\text{mdl}), & \text{\% whole add-var plot} \text{ unable to tell important vars} \\ &\text{figure,} \\ &\text{for } i = 1: \text{mdl.NumCoefficients,} \\ &\text{subplot}(\text{mdl.NumCoefficients,} 1, i), \\ &\text{plotAdded}(\text{mdl, mdl.CoefficientNames}\{i\}); \\ &\text{end} \\ &\text{plotSlice}(\text{mdl}) \end{aligned}
```


