BIGTREE TECH

ADXL345 V2.0

User Manual

CONTENTS

CONTENTS 2
Revision Log3
Product Profile
Feature Highlights4
Specifications4
Firmware Support 4
Dimensions
Peripheral Interfaces
Pin Description6
Interface Introduction
Connecting to BTT Pi V1.2 (Type-C)
Connecting to Manta M8P (Type-C)
Connecting to Manta M8P (Soldering Wires)
Klipper Firmware
Compiling Klipper Firmware8
Firmware Update via DFU9
Configuring Klipper9
Assembly

Revision Log

Version	Date	Revisions
v1.00	23rd August 2023	Initial Version
v1.01	May 29, 2024	Add V2.0.1 explanation to the Pin diagram
v1.02	May 7th, 2025	Modify the menuconfig to Flash chip (GENERIC_03H with CLKDIV 4)

Product Profile

BIGTREETECH ADXL345 V2.0 is a module for printer resonance compensation. It can communicate through USB, greatly simplifying wiring.

Feature Highlights

- The board has a reserved BOOT button for easy firmware updates.
- Reserved solder points enable users to customize wiring easily.
- The USB port has an added ESD protection chip to prevent the MCU from being damaged by static electricity through the USB.

Specifications

Dimensions 33.25 x 15.5mm

Installation Dimensions See **BIGTREETECH ADXL345 V2.0-SIZE.pdf** for

details.

Microprocessor RP2040 Dual ARM Cortex-M0+ @ 133MHz

Input Voltage DC 5V

Logic Voltage DC 3.3V

Communication with PC USB2.0

Sensor ADXL345

Sensor Communication 4Line SPI

Resolution Up to 3.9mg/LSB.

Output Data Rate 0.1-3200Hz

Sensor Operating -40°C to +85°C

Temperature Range

Firmware Support

This product currently only supports Klipper firmware.

Dimensions

Peripheral Interfaces

Pin Description

Version V2.0.1 adds: INT1-GPI04, INT2-GPI03

Interface Introduction

Connecting to BTT Pi V1.2 (Type-C)

Connecting to Manta M8P (Type-C)

Connecting to Manta M8P (Soldering Wires)

Klipper Firmware

Compiling Klipper Firmware

 Connect to CB1/Raspberry Pi via SSH and enter the following commands:

cd ~/klipper/ make menuconfig

Configure the firmware as shown in the provided image (update Klipper firmware to the latest version if options are not available).

```
[*] Enable extra low-level configuration options
   Micro-controller Architecture (Raspberry Pi RP2040/RP235x) --->
   Processor model (rp2040) --->
   Bootloader offset (No bootloader) --->
   Flash chip (GENERIC_03H with CLKDIV 4) --->
   Communication Interface (USBSERIAL) --->
   USB ids --->
[*] Optimize stepper code for 'step on both edges'
() GPIO pins to set at micro-controller startup
```

[*] Enable extra low-level configuration options

Micro-controller Architecture (Raspberry Pi RP2040/RP235x) --->
Processor model (rp2040) --->

Bootloader offset (No bootloader) --->

Flash chip (GENERIC_03H with CLKDIV 4) --->

Communication Interface (USBSERIAL) --->

- 2. After configuration, press **q** to exit, and select **Yes** when prompted to save.
- Enter make to compile the firmware. The resulting klipper.bin file will be in the home/pi/klipper/out folder. This can be directly downloaded to your computer from the SSH software's left panel.

Firmware Update via DFU

Raspberry Pi or CB1 update via DFU.

- 1. Hold the **Boot** button and connect the board to Raspberry Pi/CB1 via Type-C cable to enter DFU mode.
- 2. Enter **Isusb** in the SSH terminal to query the DFU device ID.

3. Enter

cd klipper

navigate to the Klipper directory, and enter

make flash FLASH_DEVICE=2e8a:0003

start flashing the firmware (Note: Replace 2e8a:0003 with the actual device ID found in the previous step.)

4. After flashing, enter

Is /dev/serial/by-id/

to query the device's Serial ID (only applicable for USB communication, not for CANBus).

 For USB communication, you don't need to press the Boot button for subsequent updates. Enter the following command to flash the firmware make flash FLASH_DEVICE=/dev/serial/by-id/usb-Klipper_rp2040_4550357128922FC8-if00

(Note: replacing /dev/serial/by-id/xxx with the actual ID found in the previous step).

Configuring Klipper

1. Download the **sample-bigtreetech-adxl345-v2.0.cfg** config file from: https://github.com/bigtreetech/ADXL345

Upload to the Configuration Files.

- In printer.cfg, add: [include sample-bigtreetech-adxl345-v2.0.cfg]
- 4. Set the correct ID number for your board.(USB serial)
- Configure the module's functions according to the instructions in the link below:

https://www.klipper3d.org/Config_Reference.html#adx1345

The **axes_map** parameter needs to be set according to the direction of the module installation and the movement direction of the printer. The first parameter represents the direction of the accelerometer module corresponding to the axis when the printer's X-axis moves in the positive direction (the silk screen on the module shows the direction of each axis of the module), and the second parameter represents the direction of the accelerometer when the Y-axis moves in the positive direction.

6. After configuring and installing the module and successfully connecting to the printer, you can start the resonance compensation test. Follow the instructions in the link below to start testing:

https://www.klipper3d.org/G-Codes.html#shaper calibrate

In Mainsail's Console, enter the following command to start X axis calibration:

SHAPER CALIBRATE AXIS=X

Enter the following command to start Y axis calibration:

SHAPER_CALIBRATE AXIS=Y

After calibration is complete, follow the prompts and enter SAVE_CONFIG to save the calibration parameters.

Note: After the resonance compensation test, the module can be removed. The module configuration needs to be commented out in the "printer.cfg" file, otherwise the printer will fail to start if it cannot find the module. Comment out the module configuration by adding "#" in front of the config file name:

[include sample-bigtreetech-adxl345-v2.0.cfg]

Assembly

Note: Avoid overtightening screws during installation to prevent damage.

Example using the Voron StealthBurner:

Method 1:

Install on the side bracket with the dual holes (matches official spacing).

Method 2:

Use screws through the PCB and rubber ring on the heater block as shown.

If you need further resources for this product, you can find them at [GitHub](https://github.com/bigtreetech/). If you cannot find what you need, you may contact our after-sales support(service005@biqu3d.com).

If you encounter any other problems during use or have suggestions or feedback, please contact us. Thank you for choosing BIGTREETECH products.