# Machine Learning and Causal Inference

MIXTAPE TRACK



Imagine you are a life insurance underwriter. You receive an application for life insurance from someone with the following characteristics:

male

- male
- ▶ age 67

- male
- ▶ age 67
- high blood pressure

- ▶ male
- ▶ age 67
- high blood pressure
- high cholesterol

- male
- ▶ age 67
- high blood pressure
- high cholesterol
- family history of heart disease

- male
- ▶ age 67
- high blood pressure
- ▶ high cholesterol
- family history of heart disease
- ▶ and . . .

- ▶ male
- ▶ age 67
- high blood pressure
- high cholesterol
- ► family history of heart disease
- ▶ and . . .
- was admitted to the hospital yesterday



Now imagine you are a loved one of someone with the following characteristics:

male

- male
- age 67

- male
- age 67
- high blood pressure

- male
- ▶ age 67
- high blood pressure
- high cholesterol

- male
- age 67
- high blood pressure
- high cholesterol
- family history of heart disease

- male
- age 67
- high blood pressure
- high cholesterol
- family history of heart disease
- ▶ and . . .

- male
- ▶ age 67
- high blood pressure
- high cholesterol
- ► family history of heart disease
- ▶ and . . .
- is having chest pains.

- male
- ▶ age 67
- high blood pressure
- ▶ high cholesterol
- ► family history of heart disease
- ▶ and . . .
- ▶ is having chest pains.
- Should you take him to the hospital?











#### **Prepare**

➤ A loan officer wants to know the likelihood of an individual repaying a loan based on income, employment, and other characteristics.





#### **Prepare**

A loan officer wants to know the likelihood of an individual repaying a loan based on income, employment, and other characteristics.



#### Influence

► A mortgage lender wants to know if direct debit will increase loan repayments







#### **Prepare**

► In order to decide whether to invest in a start-up, an investor needs to know how likely the start-up is to succeed, given the entrepreneur's experience and the characteristics of the industry.

#### Influence





#### **Prepare**

► In order to decide whether to invest in a start-up, an investor needs to know how likely the start-up is to succeed, given the entrepreneur's experience and the characteristics of the industry.



#### Influence

An entrepreneur needs to know what the effect of receiving funding from a private equity investor (rather than getting a loan) is on the ultimate success of an enterprise.







#### Prepare

A bail hearing judge needs to know how likely a defendant is to flee before trial, given his or her charges, criminal history, and other characteristics

#### Influence





#### **Prepare**

➤ A bail hearing judge needs to know how likely a defendant is to flee before trial, given his or her charges, criminal history, and other characteristics



#### Influence

▶ A policy maker needs to know the effect of being released on bail (rather than detained) prior to trial on ultimate conviction







#### **Prepare**

 A home seller wants to know what price homes with the characteristics of his or her home typically sell for

#### Influence





#### **Prepare**

➤ A home seller wants to know what price homes with the characteristics of his or her home typically sell for



#### Influence

A home seller wants to know by how much installing new windows will raise the value of his or her home







#### **Prepare**

➤ A Harvard admissions officer wants to know how likely an applicant with given credentials is to graduate in 4 years

#### Influence





#### **Prepare**

➤ A Harvard admissions officer wants to know how likely an applicant with given credentials is to graduate in 4 years



#### Influence

▶ A labor economist wants to know whether individuals of a certain ethnic background are less likely to get into Harvard than applicants with similar academic credentials



# Prediction vs. Causality: Target

$$y_i = \alpha + \beta x_i + \varepsilon_i$$



# Prediction vs. Causality: Target

#### Prediction

$$y_i = \underbrace{\alpha + \beta x_i}_{\hat{v}} + \varepsilon_i$$



# Prediction vs. Causality: Target

Causality

$$y_i = \alpha + \beta x_i + \varepsilon_i$$



Causality

#### Causality

► Gold standard: RCT



#### Causality

► Gold standard: RCT



► Aluminum standard: Regression or IV strategies that approximate controlled experiments

#### Causality

► Gold standard: RCT



► Aluminum standard: Regression or IV strategies that approximate controlled experiments

#### Prediction

#### Causality

► Gold standard: RCT



► Aluminum standard: Regression or IV strategies that approximate controlled experiments

#### Prediction

Supervised machine learning algorithms

#### Prediction vs. Causality: Where shall the twain meet?

We've seen that prediction and causality

answer different questions

We've seen that prediction and causality

- answer different questions
- serve different purposes

We've seen that prediction and causality

- answer different questions
- serve different purposes
- seek different targets

We've seen that prediction and causality

- answer different questions
- serve different purposes
- seek different targets
- use different methods

We've seen that prediction and causality

- answer different questions
- serve different purposes
- seek different targets
- use different methods

Different strokes for different folks, or complementary tools in an applied economist's toolkit?

We've seen that prediction and causality

- answer different questions
- serve different purposes
- seek different targets
- use different methods

Different strokes for different folks, or complementary tools in an applied economist's toolkit?

We've seen that prediction and causality

- answer different questions
- serve different purposes
- seek different targets
- use different methods

Different strokes for different folks, or **complementary tools in** an applied economist's toolkit?

► Illustrate using the Oregon Health Insurance Experiment (go to python)

Traditional regression strategy:

1. Regress  $Y_i$  on  $X_i$  and compute the residuals,

$$\begin{aligned} \tilde{Y}_i &= Y_i - \hat{Y}_i^{OLS}, \\ \hat{Y}_i^{OLS} &= X_i' \left( X'X \right)^{-1} X'Y \end{aligned}$$

2. Regress  $D_i$  on  $X_i$  and compute the residuals,

$$\begin{array}{rcl} \tilde{D}_{i} & = & D_{i} - \hat{D}_{i}^{OLS}, \\ \hat{D}_{i}^{OLS} & = & X_{i}' \left( X'X \right)^{-1} X'D \end{array}$$

3. Regress  $\tilde{Y}_i$  on  $\tilde{D}_i$ .

Traditional regression strategy:

1. Regress  $Y_i$  on  $X_i$  and compute the residuals,

$$\begin{array}{rcl} \tilde{Y}_i & = & Y_i - \hat{Y}_i^{OLS}, \\ \hat{Y}_i^{OLS} & = & X_i' \left( X'X \right)^{-1} X'Y \end{array}$$

2. Regress  $D_i$  on  $X_i$  and compute the residuals,

$$\tilde{D}_{i} = D_{i} - \hat{D}_{i}^{OLS}, 
\hat{D}_{i}^{OLS} = X'_{i} (X'X)^{-1} X'D$$

3. Regress  $\tilde{Y}_i$  on  $\tilde{D}_i$ .

When OLS might not be the right tool for the job:

- $\triangleright$  there are many variables in  $X_i$
- $\blacktriangleright$  the relationship between  $X_i$  and  $Y_i$  or  $D_i$  may not be linear

#### ML-augmented regression strategy:

1. Predict  $Y_i$  using  $X_i$  with ML and compute the residuals,

$$egin{array}{lll} ilde{Y}_i &=& Y_i - \hat{Y}_i^{ML}, \\ \hat{Y}_i^{ML} &=& ext{prediction generated by ML} \end{array}$$

2. Predict  $D_i$  using  $X_i$  with ML and compute the residuals,

$$\tilde{D}_i = D_i - \hat{D}_i^{ML},$$
 $\hat{D}_i^{ML} = \text{prediction generated by ML}$ 

3. Regress  $\tilde{Y}_i$  on  $\tilde{D}_i$ .

#### ML-augmented regression strategy:

1. Predict  $Y_i$  using  $X_i$  with ML and compute the residuals,

$$egin{array}{lll} ilde{Y}_i &=& Y_i - \hat{Y}_i^{ML}, \\ \hat{Y}_i^{ML} &=& ext{prediction generated by ML} \end{array}$$

2. Predict  $D_i$  using  $X_i$  with ML and compute the residuals,

$$\tilde{D}_i = D_i - \hat{D}_i^{ML},$$
 $\hat{D}_i^{ML} = \text{prediction generated by ML}$ 

3. Regress  $\tilde{Y}_i$  on  $\tilde{D}_i$ .

Most common ML methods in applied economics:

- Lasso
- Ridge
- ► Elastic net
- ▶ Random forest



# Getting serious about prediction

► **Goal:** Predict an out-of-sample outcome *Y* 



# Getting serious about prediction

- ► **Goal:** Predict an out-of-sample outcome *Y*
- ▶ as a function,  $\hat{f}(X)$ , of **features**  $X = (1, X_1, X_2, \dots, X_K)'$ .



# Getting serious about prediction

- ▶ Goal: Predict an out-of-sample outcome Y
- ▶ as a function,  $\hat{f}(X)$ , of **features**  $X = (1, X_1, X_2, \dots, X_K)'$ .
- Estimate the function f̂ (aka "train the model") based on training sample {(Y<sub>i</sub>, X<sub>i</sub>); i = 1, ..., N}



► Want our prediction to be "close," i.e. minimize the expected loss function:

$$\min_{f(x)} E\left[L\left(Y - f\left(x\right)\right)|X = x\right]$$



► Want our prediction to be "close," i.e. minimize the expected loss function:

$$\min_{f(x)} E\left[L\left(Y - f\left(x\right)\right)|X = x\right]$$

▶ Squared loss:  $L(d) = d^2 \implies f^*(x) = E[Y|X = x]$ 



Want our prediction to be "close," i.e. minimize the expected loss function:

$$\min_{f(x)} E\left[L\left(Y - f\left(x\right)\right)|X = x\right]$$

- ▶ Squared loss:  $L(d) = d^2 \implies f^*(x) = E[Y|X = x]$
- ▶ Absolute loss:  $L(d) = |d| \implies f^*(x) = Med[Y|X = x]$



Want our prediction to be "close," i.e. minimize the expected loss function:

$$\min_{f(x)} E[L(Y - f(x))|X = x]$$

- ▶ Squared loss:  $L(d) = d^2 \implies f^*(x) = E[Y|X = x]$
- ▶ Absolute loss:  $L(d) = |d| \implies f^*(x) = Med[Y|X = x]$
- ► Asymmetric loss:

$$L_{\tau}(d) = d(\tau - 1(d < 0)) \implies f^{*}(x) = Q_{1-\tau}[Y|X = x]$$



▶ Prediction problem solved if we knew  $f^*(x) = E[Y|X = x]$ 

- ▶ Prediction problem solved if we knew  $f^*(x) = E[Y|X = x]$
- ▶ But we have to settle for an estimate:  $\hat{f}(x)$ ;

$$E\left[\left(Y-\hat{f}\left(x\right)\right)^{2}\middle|X=x\right]$$
 becomes:

$$\left(E\left[\hat{f}(x) - f^*(x)\right]\right)^2 + E\left[\left(\hat{f}(x) - E\left[\hat{f}(x)\right]\right)^2\right] + E\left[(Y - f^*(x))^2 | X = x\right]$$

prediction bias squared prediction variance irreducible error.

- ▶ Prediction problem solved if we knew  $f^*(x) = E[Y|X = x]$
- ▶ But we have to settle for an estimate:  $\hat{f}(x)$ ;

$$E\left[\left(Y-\hat{f}\left(X\right)\right)^{2}\middle|X=X\right]$$
 becomes:

$$\left(E\left[\hat{f}\left(x\right)-f^{*}\left(x\right)\right]\right)^{2} \qquad \text{prediction bias square}$$

$$+E\left[\left(\hat{f}\left(x\right)-E\left[\hat{f}\left(x\right)\right]\right)^{2}\right] \qquad \text{prediction variance}$$

$$+E\left[\left(Y-f^{*}\left(x\right)\right)^{2}|X=x\right] \qquad \text{irreducible error.}$$

prediction bias squared irreducible error.



- ▶ Prediction problem solved if we knew  $f^*(x) = E[Y|X = x]$
- ▶ But we have to settle for an estimate:  $\hat{f}(x)$ ;

$$E\left[\left(Y-\hat{f}\left(X\right)\right)^{2}\middle|X=X\right]$$
 becomes:

$$\left(E\left[\hat{f}(x) - f^*(x)\right]\right)^2 + E\left[\left(\hat{f}(x) - E\left[\hat{f}(x)\right]\right)^2\right] + E\left[(Y - f^*(x))^2 | X = x\right]$$

prediction bias squared prediction variance irreducible error.



Python example: predicting earnings in the  $\ensuremath{\mathsf{NLSY}}$ 

# Penalized Regression: Lasso

- When is it the right tool for the job:
  - When you have a large number of potential regressors (including powers or other transformations), maybe even more than the sample size!
  - Out of these, only a relatively few (but you don't know which) really matter (what do we mean by "matter?"). We call this approximate sparsity
- Theoretical definition:

$$\arg\min_{b} \sum_{i=1}^{n} (y_i - x_i'b)^2 + \lambda \sum_{j=1}^{k} |b_j|$$

What does  $\lambda$  do and how do we choose it?

- Caveats and considerations:
  - Important to standardize regressors pre-lasso
  - ► Can give unexpected results with dummy variables
  - Resist the temptation to interpret coefficients or the included variables as the "true model!"
- Let's give it a go in python!



# Choosing Tuning Parameters: Cross-Validation

All supervised ML methods have tuning parameters:

Lasso:  $\lambda$  Ridge:  $\alpha$ 

► Random forests: tree depth, etc.

Tuning parameters are the rudder by which we navigate the bias-variance tradeoff.



# Choosing Tuning Parameters: Cross-Validation



Cross-validation procedure: Divide sample in K folds

- lacktriangle Choose some value of the tuning parameter,  $\lambda$
- For each fold  $k = 1, \dots, K$ 
  - 1. Train model leaving out fold k
  - 2. Generate predictions in fold k
  - 3. Compute MSE for fold k:  $MSE_k = \frac{1}{n_k} \sum_{i \in k} (Y_i \hat{Y}_i)^2$
- ► Compute overall MSE correponding to the current choice of  $\lambda$ :  $MSE(\lambda) = \frac{1}{K} \sum_{k=1}^{K} MSE_k$

Repeat the above for many values of  $\lambda$ , and choose the value  $\lambda^*$  with the lowest cross-validated MSE—time for python!

# Penalized Regression: Ridge

- When is it the right tool for the job:
  - When you have a large number of regressors including highly collinear ones
- Theoretical definition:

$$\arg\min_{b} \sum_{i=1}^{n} (y_i - x_i' b)^2 + \alpha \sum_{j=1}^{k} b_j^2$$
$$= (X'X + \alpha I)^{-1} X'Y$$

- Caveats and considerations:
  - Important to standardize regressors pre-ridge
  - Shrinks (biases) coefficients towards zero, but not all the way (unlike lasso)
- Let's give it a go in python!

### Penalized Regression: Elastic Net

- Combines lasso and ridge approaches
- Theoretical definition:

$$\arg\min_{b} \sum_{i=1}^{n} (y_{i} - x_{i}'b)^{2} + \alpha \gamma \sum_{j=1}^{k} |b_{j}| + .5\alpha (1 - \gamma) \sum_{j=1}^{k} b_{j}^{2}$$

- Caveats and considerations:
  - ightharpoonup Two tuning parameters:  $\alpha$  and  $\gamma$
  - Important to standardize regressors pre-ridge
  - Zeros out many regressors, shrinks (biases) remaining coefficients towards zero
- Let's give it a go in python!

Initial node

Medicaid eligible Medicaid ineligible Income

Number of children









- Medicaid eligible
- Medicaid ineligible



Number of children



- ▶ Where to split: Choose the feature from  $\{x_1, ..., x_p\}$  and the value of that feature to minimize MSE in the resulting child nodes
- Tuning parameters
  - Max depth
  - Min training obs per leaf
  - Min improvement in fit in order to go ahead with a split
- Let's try it in python!

# Wisdom of the crowd: predict my father's age!



#### Forest for the Trees



- Value proposition: reduce variance by averaging together multiple predictions
- The catch: individual trees need to be de-correlated
- Algorithm:
  - ► Grow *B* trees, each on a different bootstrapped sample
  - At each split, consider only a random subset of features
  - Average together the individual predictions
- Let's grow some trees in python!

