Correlation vs Regression

Oliver Snellman oliver.snellman@gmail.com

May 2022

Abstract

Correlation and regression coefficients both describe a certain type of relation between two variables. Here I provide a visual intuition on how they differ.

co-vary linearly.

Pearson's correlation coefficient ρ Linear Regression coefficient β_1 exexpresses how much variables X and Y presses how one variable Y depends on another variable X linearly.

$$\rho = \frac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y} \in [-1, 1] \qquad Y = \beta_0 + \beta_1 X + \varepsilon$$
 (1)

and $\sigma_X = \mathbb{E}[(X - \mu_X)^2]^{\frac{1}{2}}$ is the standard ε is an iid error term. deviation of X, and similarly for Y.

where $\mu_X = \mathbb{E}[X]$ is the expected value—where $\beta_0, \beta_1 \in \mathbb{R}$, β_0 is an intercept and

Correlation coefficient ρ describes how tightly the points (X,Y) align on a plane.

Regression coefficient β_1 predicts the increase in Y, when X increases by one.

 ρ does not tell us about the relative sizes of X and Y, that is what β_1 does.

 β_1 does not tell us how close the values of Y are from the prediction line, that is expressed by ρ and ε .

Next I visualize how variables can perfectly correlate $|\rho| = 1$, while the regression coefficient β_1 differs. Likewise, the same value of β_1 can occur for differing ρ .

Figure 1: Each scatterplot has 51 observations with X and Y values, simulated from a linear model in Eq 1 without and with an error term. In the **left column** (no error terms) we can see that the correlation ρ equals one for points in all straight ascending lines, it is undefined for the horizontal line because of a zero in the denominator, and it equals minus one for all descending straight lines. **The rows** illustrate that the regression coefficient β_1 (the slope of the blue line) can have the same value for differently correlated variables. I left out the case of a straight vertical line, because it would require more explaining.