NGS - variant analysis

Sequencing and alignment

Image from: G. Silva (2016)

Illumina sequencing

- Sequencing-by-synthesis: 2nd generation sequencing
- Massive throughput: up to 500x10⁹ bases/run
- Most used platform today

Illumina sequencing

- 50 300 bp
- Paired-end (or single-end)

Illumina libray prep

fastq

fasta + basequality (fasta + q = fastq)

$$BASEQ = -10log_{10} \Pr\{base \ is \ wrong\}$$

$$-10log_{10} (0.01) = 20$$

 $-10log_{10} (0.1) = 10$
 $-10log_{10} (0.5) = 3$

fastq

Base quality (phred)

```
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
33
                                           104
                                                        126
0.2......41
S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 41)
  with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
  (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

Image from: Wikipedia (https://en.wikipedia.org/wiki/FASTQ_format)

Quiz Question 3

Illumina - limitations

- Bridge amplification
- Lengths are limited by out-of-phase of signal

Long reads (3rd generation)

- Crux: maximizing signal from a singlemolecule base read-out
- Single molecule, so no out-of-phase signal
- Two frequently used platforms:
 - PacBio SMRT sequencing
 - Oxford Nanopore Technology

Long reads

- More error -> difficulties for variant analysis
- But:
 - PacBio CCS: high baseQ + no bias
 - Long reads can have higher mapping qualities
 - Long reads improve haplotyping

What to sequence?

- Whole genome/metagenome
- Reduced representation:
 - Bait capture/whole exome sequencing
 - Restriction Enzyme based (e.g. RAD seq)
 - Amplicon sequencing
 - RNA-seq

Read alignment (phred)

Software

- Basic alignment:
 - bowtie2
 - bwa-mem
- Long reads:
 - minimap2

Mapping quality

$$MAPQ = -10log_{10} \Pr\{mapping \ position \ is \ wrong\}$$

$$-10log_{10} \ (0.01) = 20$$

$$-10log_{10} \ (0.5) = 3$$

Quiz Question 4

sam

sequence alignment format

sam header

```
@HD VN:1.0 S0:coordinate
@SQ SN:U00096.3 LN:4641652
@PG ID:bowtie2 PN:bowtie2 VN:2.4.1 CL: bowtie2-
align-s --wrapper basic-0 -x ref.fasta -1 reads_1.fastq -2
reads_2.fastq"
```

SAM column	example
read name	SRR519926.5
flag	89
reference	chr20
start position	61
mapping quality	42
CIGAR string	150M
reference name mate is mapped	=
start position mate	476
fragment length	515
sequence	CATCACCATTCCCAC
base quality	@>4:4C@89+&9CC@
optional	AS:i:-2
optional	XN:i:0

Quiz Question 5

Marking duplicates

Marking duplicates

- Variant calling: each read is an independent observation of the genome
- Duplicates (can) have the same molecular origin -> not independent
- Removing duplicates probably doesn't have a big effect on variant analysis

Ebbert MTW et al. (2016) Evaluating the necessity of PCR duplicate removal from next-generation sequencing data and a comparison of approaches. BMC Bioinformatics.

Unique Molecular Identifiers

- UMI added before PCR reaction
- Detect PCR duplicates and PCR errors