

VL Deep Learning for Natural Language Processing

14. Convolutional Neural Networks

Prof. Dr. Ralf Krestel AG Information Profiling and Retrieval

Convolutional Neural Networks

- Very sucessful in computer vision
 - Uses convolutions
- Convolutional layer is not densly connected

Convnets

- Various names in the literature
 - Complex representation
 - Convolutional layer consists of multiple phases
 - Simple representation
 - Each phase is considered its own layer
 - Compromise in Keras
 - Convolutional layer
 - + Pooling layer

Learning Goals for this Chapter

- Understand the basics of convnets
 - feature maps
 - convolutions
 - max-pooling
- Augment training data
- Fight over- and underfitting
- Employ pretrained networks
- Fine-tune convnets

- Relevant chapters:
 - P5
 - S11 (2019) https://www.youtube.com/watch?v=EAJoRA0KX71

Libriz eibniz emeinschaft

Topics Today

- 1. Convolutional Neural Networks
- 2. Over- and Underfitting
- 3. Data Augmentation
- 4. Pretrained CNN
- 5. 1D-CNN

CNN Modell

image_height, image_width, image channels

```
Number of features
from keras import layers
from keras import models
                                  Size of patches
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.summary()
```

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 26, 26, 32)	320
maxpooling2d_1 (MaxPooling2D)	(None, 13, 13, 32)	0
conv2d_2 (Conv2D)	(None, 11, 11, 64)	18496
maxpooling2d_2 (MaxPooling2D)	(None, 5, 5, 64)	0
conv2d_3 (Conv2D)	(None, 3, 3, 64)	36928
flatten_1 (Flatten)	(None, 576)	0
dense_1 (Dense)	(None, 64)	36928
dense_2 (Dense)	(None, 10)	650
Total params: 93,322 Trainable params: 93,322 Non-trainable params: 0		

CNN Training und Evaluation


```
from keras.datasets import mnist
from keras.utils import to categorical
(train images, train labels), (test images, test labels) = mnist.load data()
train images = train images.reshape((60000, 28, 28, 1))
train images = train images.astype('float32') / 255
test images = test images.reshape((10000, 28, 28, 1))
test images = test images.astype('float32') / 255
train labels = to categorical(train labels)
test labels = to categorical(test labels)
model.compile(optimizer='rmsprop',
        loss='categorical crossentropy',
        metrics=['accuracy'])
model.fit(train images, train labels, epochs=5, batch size=64)
test loss, test acc = model.evaluate(test images, test labels)
>>> test acc
0.99080
                Test accuracy with
                densly connected
                neural net: 97.8%
```


Convolutional Layer I

- Densly connected layers learn to detect global patterns.
- Convolutional layers learn local patterns.
 - In the previous example these patterns were of size (3,3)
- The learnt patterns are translation invariant.
 - A learnt pattern from the bottom left can also be detected in the top right.

Convolutional Layer II

- Multiple convolutional layers can detect hierarchies of patterns.
 - Increase of complexity of components
 - Possible to learn concepts

Convolutional Layer III

- Input for a convolutional layer are 3D tensors, so-called feature maps
 - Two spacial axes (height/width)
 - One depth axis (channel axis)
- An input image (feature map) is split up in many (overlapping) regions.
 - Depth axis represents
 - o channels in the input
 - filters in the convolutional layer
- Different filters (kernels) are applied to each region.
 - Output: response map for each filter
 - indicates how strong a particular pattern (feature) is present at the given position
- To get the final output, the results of the different regions are assembled in an output feature map.

Convolutional Layer IV

1	0	1
0	7	0
1	0	1

Kernel

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Feature Map

Response Map

)

Distributed

1 1 Entry to En

1 -1 -1 -1 -1 -1 -1 -1 -1 -1

3d Convolution

3x3x3 Filter

4x4x4 Cube

2x2x2 Output

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

https://towardsdatascience.com/step-by-step-implementation-3d-convolutional-neural-network-in-keras-12efbdd7b130

SS 2022

VL DL4NLP

Leibniz Gemeinschaft

1

Padding

padding='same'

keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None,
 dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform',
 bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None,
 activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

etc

Strides

strides=(2, 2)

keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None,
 dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform',
 bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None,
 activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

Leibniz Leibniz Gemeinschaft

Pooling Layer

- Pooling layer compresses the feature maps (similar to convolutions).
 - Typically four pixels are aggregated (window of size (2, 2)).
 - Not overlapping
- Max-Pooling takes the maximum of each channel for a (2, 2) region
 - Analog: average-pooling

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 26, 26, 32)	320
maxpooling2d_1 (MaxPooling2D)	(None, 13, 13, 32)	0
conv2d_2 (Conv2D)	(None, 11, 11, 64)	18496
maxpooling2d_2 (MaxPooling2D)	(None, 5, 5, 64)	0
conv2d_3 (Conv2D)	(None, 3, 3, 64)	36928
flatten_1 (Flatten)	(None, 576)	0
dense_1 (Dense)	(None, 64)	36928
dense_2 (Dense)	(None, 10)	650

Total params: 93,322 Trainable params: 93,322 Non-trainable params: 0

- Pooling is necessary, since without pooling
 - 1. No hierarchy of features could be leant
 - 2. The number of parameters would explode → Overfitting
 - o In our example: 15.8 million parameters

Usually

- Convolution: window=3x3; stride=1
- Pooling: window=2x2; stride=2

Why Pooling?


```
model_no_max_pool = models.Sequential()
model_no_max_pool.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28,28,1)))
model_no_max_pool.add(layers.Conv2D(64, (3, 3), activation='relu'))
model_no_max_pool.add(layers.Conv2D(64, (3, 3), activation='relu'))
```

Layer (type)	Output Shape	Param #
conv2d_4 (Conv2D)	(None, 26, 26, 32)	320
conv2d_5 (Conv2D)	(None, 24, 24, 64)	18496
conv2d_6 (Conv2D)	(None, 22, 22, 64)	36928
Total params: 55,744 Trainable params: 55,744 Non-trainable params: 0		

- Two problems:
 - 1. Cannot learn spatial hierarchy of features
 - First layer (3×3) → Third layer (7×7)
- Overfitting!!!

- 2. Model too complex
 - \circ Final layer has $22 \times 22 \times 64 = 30,976$ coefficients (+ dense layer with 512 units = 15,8 million parameters (weights) to learn)

Convolutional Layer

- Implement the MNIST example.
 - What happens if you change
 - o The number of layers?
 - o The window and/or stride sizes?
 - o The number of channels/features?

VL DL4NLP

Topics Today

- 1. Convolutional Neural Networks
- 2. Over- and Underfitting
- 3. Data Augmentation
- 4. Pretrained CNN
- 5. 1D-CNN

Overfitting

- General problem
 - Optimization vs. Generalization
- At beginning of training...
 - NN learns general patterns
 - Training loss and validation loss decrease
 - The model is underfitted
- After long training
 - NN learns very specific patterns from prevalent in training data
 - Training loss decreases but validation loss increases
 - The model is overfitted
- Right amount of training is important and training process needs to be monitored
 - Using validation data

- Four remedies against overfitting:
 - More training data
 - Decreasing network capacity
 - Regularization of network weights
 - Regularization using dropout

Decreasing Network Capacity I

 Easiest way to prevent overfitting: decreasing size/capacity/number of parameters of the model to to be trained

- More parameters → more possibilities for the model to learn the data by heart
 - Extreme case: More parameter than training samples
- Less parameters → model ist "forced" to detect general patterns
- Too few parameters → underfitting

Decreasing Network Capacity II


```
Validation loss
from keras import models
                                               0.4
from keras import layers
                                                0.3
                                                             10.0
                                                                12.5
                                                                   15.0 17.5
model = models.Sequential()
                                                             Epochs
model.add(layers.Dense(16, activation='relu', input shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model = models.Sequential()
model.add(layers.Dense(4, activation='relu', input shape=(10000,)))
model.add(layers.Dense(4, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
```


Leibniz Gemeinschaft

Original model Smaller model

Decreasing Network Capacity III


```
model = models.Sequential()
model.add(layers.Dense(512, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
```


Leibniz Leibniz Gemeinschaft

Weight Regularization I

- Idea: less complex models are less prone to overfitting.
- Simple model: parameter distribution has low entropy.
 - Goal: Weights rather small
- Penalizing of models with large weights
 - Inclusion in the loss function
 - o E.g. using MSE: objective function to be minimized:

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=0}^{d} w_j^2$$

- L1-Regularization
 - Absolute values of weights (|w|)
 - Side effect: "Unimportant" weights become 0 → smaller model
- L2-Regularization
 - Squared values of weights (w^2)

Weight Regularization II

Weights are included in loss function with 0.001 times their squared value.


```
from keras import regularizers

model = models.Sequential()

model.add(layers.Dense(16,kernel_regularizer=regularizers.12(0.001),
activation='relu',input_shape=(10000,)))

model.add(layers.Dense(16,kernel_regularizer=regularizers.12(0.001),
activation='relu'))

model.add(layers.Dense(1,activation='sigmoid'))
```


Dropout I

0.3	0.2	1.5	0.0	500/	0.0	0.2	1.5	0.0	
0.6	0.1	0.0	0.3	50% dropout	0.6	0.1	0.0	0.3	* 2
0.2	1.9	0.3	1.2		0.0	1.9	0.3	0.0	
0.7	0.5	1.0	0.0		0.7	0.0	0.0	0.0	

- Especially developed for deep learning
- Individual output values are set to 0 randomly during training (dropout).
 - Between 20% and 50%
 - The remaining values are scaled accordingly
- Idea: Including noise prevents the network to learn insignificant, random patterns from training data.

Leibniz Leibniz Gemeinschaft

Dropout II


```
model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation='sigmoid'))
```


Regularization

- How do w_1 and w_2 change when an l_1 or l_2 -regularizer is added?
 - Think of an geometric interpretation!

Start

Topics Today

- 1. Convolutional Neural Networks
- 2. Over- and Underfitting
- 3. Data Augmentation
- 4. Pretrained CNN
- 5. 1D-CNN

Generating Training Data

- More training data = better model
- Overfitting if not enough training data
 - Model generalizes badly
- With infinitely many, different training samples there would be no overfitting.
- How to increase the training samples for a given training data set?
- Data Augmentation
 - Transform input data slightly
 - Goal: During training each training sample is looked at only once

Leibniz Leibniz Gemeinschaft

Data Augmentation to Fight Overfitting

- No new information is generated
- But information is mashed-up in new ways
- Overfitting cannot be prevented completely
 - Dropout before classification layer necessary

```
datagen = ImageDataGenerator(
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    fill_mode='nearest')
```


Image Manipulation Options


```
datagen = ImageDataGenerator(
         rotation range=40,
         width shift range=0.2,
         height_shift range=0.2,
         shear \overline{r}ange=\overline{0}.2,
         zoom range=0.2,
         horizontal flip=True,
         fill mode='nearest')
```


rotation range is a value in degrees (0-180), a range within which to randomly rotate pictures.

• width shift and height shift are ranges (as a fraction of total width or height) within which to randomly translate picture's vertically or horizontally.

• shear range is for randomly applying shearing transformations.

zoom range is for randomly zooming inside pictures.

horizontal flip is for randomly flipping half the images horizontally;

fill mode is the strategy used for filling in newlycreated pixels, which can appear after a rotation or a width/height shift.

Data Augmentation: Example


```
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dropout(0.5))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(loss='binary crossentropy',
        optimizer=optimizers.RMSprop(lr=1e-4),
        metrics=['acc'])
```


Leibniz Leibniz Gemeinschaft

Data Augmentation: Example


```
train datagen = ImageDataGenerator(
                                                          Training and validation accuracy
                                                                                           Training and validation loss
          rescale=1./255,

    Validation acc

          rotation range=40,
          width shift range=0.2,
          height shift range=0.2,
          shear range=0.2,
          zoom range=0.2,
          horizontal flip=True))
test datagen = ImageDataGenerator(rescale=1./255)
                                                                    Note that the validation and test
train generator = train datagen.flow from directory(
          train dir, target size=(150, 150),
                                                                    data shouldn't be augmented!
         batch size=32, class mode='binary')
validation generator = test datagen.flow from directory(
         validation dir, target size=(150, 150),
                                                                    Training and validation accuracy
                                                                                               Training and validation loss
         batch size=32, class mode='binary')
history = model.fit generator(
          train generator, steps per epoch=100,
          epochs=100,
                                                               0.65
                                                                                        0.40
                                                               0.60
          validation data=validation generator,
          validation steps=50)
```


VL DL4NLP

Data Augmentation

- How could data augmentation look like for sequential data?
 - How in particular for textual data?

SS 2022

VL DL4NLP

Topics Today

- 1. Convolutional Neural Networks
- 2. Over- and Underfitting
- 3. Data Augmentation
- 4. Pretrained CNN
- 5. 1D-CNN

Pretrained CNN

- If there is a lack of training data, you can use pretrained networks.
 - E.g. word embeddings trained on a large corpus
 - Or image representations trained for image classification on huge data sets
- Training data needs to be as general as possible
 - Better generalizable
 - Abstract representations of shapes, patterns (text: meaning)
 - Coverage of the complete visual/semantic space
- Pretrained nets provide representations
 - Visual and semantical
- Serve as features/input for a classifier
 - Domain can be different
 - Learnt: animal vs. plant
 - Deployed to recognize cats
 - → Transfer learning

Pretrained Nets for Feature Generation

- Use of learned representations for new input data
- Only the classification part is newly trained
 - Not the feature extraction/convolutional basis
- You can use the convolutional base of another network
 - Generic features
- Classification part is very specific
 - Custom to classification problem
 - Not transferable to other classes
- The deeper in the net, the more complex/specific the features
 - Lines, circles
 - Cat eyes, dog eyes

If data differs significantly: Only reuse the lower layers

Fine-Tuning Pretrained Networks

 Instead of training a whole new network (e.g. 15 million parameters) only train parts of it → fine-tuning

- First steps just like feature extraction
 - 1. Put own classification network on top of pretrained base network
 - 2. Freeze base network parameters
 - Will not be updated or further learnt
 - 3. Train the classifier network
 - 4. Unlock parameters of some layers for training
 - 5. Jointly train the unlocked base layers and the added classification layer

Important! Error signal otherwise too large!

Libriz eibniz emeinschaft

VGG16

Network

Topics Today

- 1. Convolutional Neural Networks
- 2. Over- and Underfitting
- 3. Data Augmentation
- 4. Pretrained CNN
- 5. 1D-CNN

1D-Convolutions

- Traditionally:
 - Image data
 - Convolutions in 2D
- Works similar in 1D
 - E.g. text data
 - Depth not, e.g., 3 color channels
 - But word embeddings dimenstions
- 1D-Pooling
 - Analogous to 2D-pooling
 - A subsequence is replaced by its maximum (max-pooling)

Data Preprocessing


```
from keras.datasets import imdb
from keras.preprocessing import sequence
max features = 10000
max len = 500
print('Loading data...')
(x train, y train), (x test, y_test) =
imdb.load data(num words=max features)
print(len(x train), 'train sequences')
print(len(x test), 'test sequences')
print('Pad sequences (samples x time)')
x train = sequence.pad sequences(x train, maxlen=max len)
x test = sequence.pad sequences(x test, maxlen=max len)
print('x train shape:', x train.shape)
print('x test shape:', x test.shape)
```

Tensors of shape: (samples, time, features)

Training and Evaluation


```
Depth of output
from keras.models import Sequential
from keras import layers
                                                     Large window sizes possible
from keras.optimizers import RMSprop
model = Sequential()
model.add(layers.Embedding(max features, 128, input length=max len))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
                                                             Alternative:
model.add(layers.GlobalMaxPooling1D())
                                                         layers.Flatten()
model.add(layers.Dense(1))
model.summary()
                                                   Output layer:
model.compile(optimizer=RMSprop(lr=1e-4),
                                                  classification or
        loss='binary crossentropy',
                                                    regression
        metrics=['acc'l)
history = model.fit(x train, y train,
        epochs=10,
        batch size=128,
        validation split=0.2)
```


Libriz eibniz Gemeinschaft

Evaluation

- A little worse than LSTM
 - But significantly faster (on CPU and GPU)

Leibniz Leibniz Gemeinschaft

CNNs for Sequencial Data

- What's the advantage of large window sizes for 1D-CNNs?
 - How large is too large?
- How does the concept of spacial hierarchies translate to text data?

VL DL4NLP

Leibniz Leibniz Gemeinschaft

Learning Goals for this Chapter

- Understand the basics of convnets
 - feature maps
 - convolutions
 - max-pooling
- Augment training data
- Fight over- and underfitting
- Employ pretrained networks
- Fine-tune convnets

- Relevant chapters:
 - P5
 - S11 (2019) https://www.youtube.com/watch?v=EAJoRA0KX7I

