```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
td = pd.read_csv("Titanic-Dataset.csv")
td.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 891 entries, 0 to 890 \,
     Data columns (total 12 columns):
      # Column
                      Non-Null Count Dtype
      0 PassengerId 891 non-null
                                       int64
                       891 non-null
          Survived
                                       int64
      2
          Pclass
                       891 non-null
                                       int64
                       891 non-null
      3
                                       object
          Name
      4
                       891 non-null
                                       object
          Sex
                                       float64
      5
          Age
                       714 non-null
      6
          SibSp
                       891 non-null
                                       int64
                                       int64
          Parch
                       891 non-null
      8
         Ticket
                       891 non-null
                                       object
         Fare
                       891 non-null
                                       float64
      10 Cabin
                       204 non-null
                                       object
      11 Embarked
                       889 non-null
                                       object
     dtypes: float64(2), int64(5), object(5) memory usage: 83.7+ KB
```

td.describe()

		PassengerId	Survived	Pclass	Age	SibSp	Parch	
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.0
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.2
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.6
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.0
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.9
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.4
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.0
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.3
Saving	g		×					•
td.hea	ad()							

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	
1	2	1	1	Cumings, Mrs. John Bradley (Florence	female	38.0	1	0	PC 17599	7
4										•

Check for null values

td.isnull().any() # As we can see the output below tells us that the dataset has null values

PassengerId	False
Survived	False
Pclass	False
Name	False
Sex	False
Age	True
SibSp	False
Parch	False
Ticket	False
Fare	False
Cabin	True
Embarked	True
dtype: bool	

td.isnull().sum() # This returns the number of null values in each column

```
PassengerId
Survived
                 0
Pclass
                 0
                 0
Name
                 0
Sex
Age
               177
SibSp
                 0
Parch
                 0
Ticket
                 0
Fare
                 0
Cabin
                687
Embarked
dtype: int64
```

Dropping all the irrevelant columns -- Cabin is alos dropped as 77% of the data has null values
td.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis = 1, inplace = True)

 $\label{eq:tdseries} $$td["Age"]$. fillna(td["Age"].mode()[0]) $$\# Impute the mean value of age in place of null values $$$td["Age"]$.$

td["Embarked"] = td["Embarked"].fillna(td["Embarked"].mode()[0]) # As this is also categorical value -- impute it with mode of the value

td.isnull().any() # To check any null values after imputation

Survived False Pclass False Sex False Age False SibSp False Parch False Fare False Embarked False dtype: bool

```
# Data Visualization --
sns.barplot(x = "Embarked", y = "Survived", data = td, ci = None)
```

<ipython-input-79-37addb60ae57>:2: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.

sns.barplot(x = "Embarked", y = "Survived", data = td, ci = None)
<Axes: xlabel='Embarked', ylabel='Survived'>

sns.pairplot(td)

Saving	×

td['Fare'].hist()

td[['Age']].hist()

array([[<Axes: title={'center': 'Age'}>]], dtype=object)

sns.heatmap(td.corr(), annot = True)

<ipython-input-95-fa2f6bb73c7d>:1: FutureWarning: The default value of numeric_onl
 sns.heatmap(td.corr(), annot = True)
<Axes: >

sns.boxplot(td.Fare)

sns.boxplot(td.Age)

Outlier detection

As we see from the above two boxplots, fare and age columns have outliers that needs to be deleted so as to increase accuracy of predi

```
# FOR OUTLIERS IN AGE --- Using IQR method as it given better performance
Q1 = td['Fare'].quantile(0.25)
Q3 = td['Fare'].quantile(0.75)
IQR = Q3 - Q1
d = 1.5

Saving...

Saving...

__lim,upper_lim,np.where(td['Fare']<lower_lim,lower_lim,td['Fare']))</pre>
```

sns.boxplot(td['Fare'])


```
# Using the same technique for removing outliers in Age column
q1 = td['Age'].quantile(0.25)
q3 = td['Age'].quantile(0.75)
iqr = q3 - q1
```

```
9/20/23, 5:04 PM
                                                        Assignment 3.ipynb - Colaboratory
   D = 1.5
   lower_lim1 = q1 - (D*iqr)
   upper_lim1 = q3 + (D*iqr)
   td['Age']=np.where(td['Age']>upper_lim1,upper_lim1,np.where(td['Age']<lower_lim1,lower_lim1,td['Age']))
   sns.boxplot(td.Age)
       <Axes: >
         50
         40
         30
         20
         10
          0
                                       0
   # We also remove the outliers in SibSp and Parch columns
   # For SibSp
   Q1 = td['SibSp'].quantile(0.25)
   Q3 = td['SibSp'].quantile(0.75)
   IQR = Q3 - Q1
   d = 1.5
   lower_lim = Q1 - (d*IQR)
   upper_lim = Q3 + (d*IQR)
   sns.boxplot(td.SibSp)
        <Axes: >
    Saving..
         2.0
         1.5
         1.0
         0.5
         0.0
                                       0
   # For Parch
```

```
Q1 = td['Parch'].quantile(0.25)
Q3 = td['Parch'].quantile(0.75)
IQR = Q3 - Q1
d = 1.5
lower_lim = Q1 - (d*IQR)
upper_lim = Q3 + (d*IQR)
\verb|td['Parch'] = \verb|np.where(td['Parch'] > \verb|upper_lim, upper_lim, np.where(td['Parch'] < \verb|lower_lim, td['Parch']|)||
sns.boxplot(td.Parch)
```


- # Finally we again check if any columns have outliers sns.boxplot(td)
- $\ensuremath{\text{\#}}$ As we dont have any outliers we move to the next step

- # Splitting the data into dependent and independent variables
- x = td.drop(columns = ["Survived"], axis = 1) # Independent variables in the form of 2-D array
- y = td["Survived"] # Survived column is the only dependent variable here

x.head()

Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	
0 3	male	22.0	1.0	0.0	7.2500	S	ili
1 1	female	38.0	1.0	0.0	65.6344	С	
2 3	female	26.0	0.0	0.0	7.9250	S	
3 1	female	35.0	1.0	0.0	53.1000	S	
4 3	male	35.0	0.0	0.0	8.0500	S	

y.head()

- 0
- 1
- 2 1
- 3 1
- Name: Survived, dtype: int64

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

[#] Encoding the categorical columns

```
x["Sex"] = le.fit_transform(x["Sex"])
x["Embarked"] = le.fit_transform(x["Embarked"])
x.head()
```

```
Ħ
  Pclass Sex Age SibSp Parch
                                     Fare Embarked
                                   7.2500
0
            1 22.0
                       1.0
                              0.0
                                                  2
            0 38.0
                       1.0
                              0.0 65.6344
                                                  0
1
       1
2
       3
            0 26.0
                       0.0
                             0.0
                                   7.9250
                                                  2
                                                  2
       1
            0 35.0
                       1.0
                              0.0 53.1000
       3
            1 35.0
                       0.0
                              0.0
                                   8.0500
                                                  2
```

Feature Scaling -- Bringing all the independent variables in a single scalable format in order to process them from sklearn.preprocessing import MinMaxScaler
ms = MinMaxScaler()

```
x_scaled = pd.DataFrame(ms.fit_transform(x), columns = x.columns)
```

```
# Splitting the data in train test set
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.2, random_state = 0)
```

x_train.head()

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	\blacksquare
140	1.0	0.0	0.413462	0.0	0.0	0.232284	0.0	ıl.
439	0.5	1.0	0.548077	0.0	0.0	0.159977	1.0	
817	0.5	1.0	0.548077	0.4	0.0	0.563793	0.0	
378	1.0	1.0	0.336538	0.0	0.0	0.061134	0.0	
491	1.0	1.0	0.355769	0.0	0.0	0.110460	1.0	

x_test.head()

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	
495	1.0	1.0	0.413462	0.0	0.0	0.220285	0.0	ıl.
0 :				0.0	0.0	0.115031	1.0	
Saving				1.0	0.0	0.443746	0.5	
31	0.0	0.0	0.413462	0.4	0.0	1.000000	0.0	
255	1.0	0.0	0.509615	0.0	0.0	0.232284	0.0	

y_train.head()

Name: Survived, dtype: int64

y_test.head()

Name: Survived, dtype: int64

 $\label{eq:print} \texttt{print}(x_\texttt{train.shape}, \ x_\texttt{test.shape}, \ y_\texttt{train.shape}, \ y_\texttt{test.shape})$

(712, 7) (179, 7) (712,) (179,)