

Convergence Analysis of a Momentum Algorithm with Adaptive Step Size for Nonconvex Optimization

Anas Barakat and Pascal Bianchi

LTCI, Télécom Paris, Institut Polytechnique de Paris, France anas.barakat@telecom-paristech.fr

Problem

$$\min_{x \in \mathbb{R}^d} f(x)$$

- f non-convex differentiable.
- ∇f is L-Lipschitz continuous.
- $\inf_{x \in \mathbb{R}^d} f(x) > -\infty$.

Summary

Main Idea:

clipping the adaptive step size using a bound depending on $L(\nabla F)$.

Contributions:

- sublinear rates in deterministic and stochastic contexts (no bounded gradients compared to [1], dimension free).
- convergence rates on the function value sequence under Kurdyka-Łojasiewicz (KL) property.

A momentum algorithm

$$\begin{cases} x_{n+1} = x_n - a_{n+1} p_{n+1} \\ p_{n+1} = p_n + b \left(\nabla f(x_n) - p_n \right) \end{cases}$$

- coordinatewise product.
- $a_n \in \mathbb{R}^d$ may depend on the past gradients $g_k := \nabla f(x_k)$ and the iterates x_k for $k \leq n$.
- includes SGD, Heavy Ball, ADAM and other adaptive algorithms [2].

Mild Assumption (verified for ADAM)

There exists $\alpha > 0$ s.t. $a_{n+1} \leq \frac{a_n}{\alpha}$.

A descent lemma

$$\forall n \in \mathbb{N}, \quad H_n := f(x_n) + \frac{1}{2h} \langle a_n, p_n^2 \rangle.$$

Lemma. Under previous assumptions, $\forall n \in \mathbb{N}, \forall u \in \mathbb{R}_+$,

$$H_{n+1} \le H_n - \langle a_{n+1} p_{n+1}^2, A_{n+1} \rangle,$$

where
$$A_{n+1} := 1 - \frac{a_{n+1}L}{2} - \frac{|b - (1 - \alpha)|}{2u} - \frac{1 - \alpha}{2b}$$

Deterministic setting

Theorem. Let previous assumptions hold. Assume $1 - \alpha < b \le 1$ and :

• Let
$$\varepsilon > 0$$
 s.t. $a_{\sup} := \frac{2}{L} \left(1 - \frac{(b - (1 - \alpha))^2}{2b\alpha} - \frac{1 - \alpha}{2b} - \varepsilon \right) \ge 0$.

• Let
$$\delta > 0$$
 s.t. $\forall n \in \mathbb{N}$, $\delta \leq a_{n+1} \leq \min(a_{\sup}, \frac{a_n}{\alpha})$. (1)

Then (H_n) is nonincreasing, $\lim \nabla f(x_n) \to 0$ as $n \to +\infty$ and

$$\forall n \ge 1, \quad \min_{0 \le k \le n-1} \|\nabla f(x_k)\|^2 \le \frac{4}{nb^2} \left(\frac{H_0 - \inf f}{\delta \varepsilon} + \|p_0\|^2 \right).$$

Stochastic setting

Theorem. Let previous assumptions hold. Assume $1-\alpha < b \leq 1$ and :

- $\forall x \in \mathbb{R}^d$, $\mathbb{E} \|\nabla f(x,\xi) \nabla F(x)\|^2 \le \sigma^2$.
- Let $\varepsilon > 0$ s.t. $\bar{a}_{\sup} := \frac{1}{L} \left(1 \frac{(b (1 \alpha))^2}{b\alpha} \frac{1 \alpha}{b} \varepsilon \right) \ge 0$.
- Let $\delta > 0$ s.t. $\forall n \geq 1$, almost surely, $\delta \leq a_{n+1} \leq \min(\bar{a}_{\sup}, \frac{a_n}{\alpha})$.

$$\mathbb{E}[\|\nabla F(x_{\tau})\|^{2}] \leq \frac{4}{n\delta b^{2}\alpha} \left(\frac{H_{0} - \inf f}{\varepsilon} + \|\sqrt{a_{0}}p_{0}\|^{2} + \frac{n\bar{a}_{\sup}\sigma^{2}}{2\varepsilon}\right)$$

where x_{τ} is an iterate uniformly randomly chosen from $\{x_0, \dots, x_{n-1}\}$.

KL inequality

• satisfied by nonsmooth deep neural networks built from activations ReLU $(\max(0,t))$, $t\mapsto t^2$ and $\log\exp(\log(1+e^t))$.

$$\Phi_{\eta} := \{ \varphi \in C^0[0, \eta) \cap C^1(0, \eta) : \varphi(0) = 0, \ \varphi \text{ concave and } \varphi' > 0 \}.$$

Definition. (KŁ property, [3, Appendix]) A proper l.s.c function $H: \mathbb{R}^{2d} \to (-\infty, +\infty]$ has the KŁ property locally at $\bar{z} \in \text{dom } H$ if there exist $\eta > 0$, $\varphi \in \Phi_{\eta}$ and a neighborhood $U(\bar{z})$ s.t. for all $z \in U(\bar{z}) \cap [H(\bar{z}) < H < H(\bar{z}) + \eta]$:

$$\|\nabla(\varphi\circ(H(\cdot)-H(\bar{z})))(z)\|\geq 1.$$

• H becomes sharp under a reparameterization of its values through the so-called desingularizing function φ .

KL rates (similar techniques to [3, 4])

$$\forall z \in \mathbb{R}^d \times \mathbb{R}^d, \ H(z) = H(x, y) = f(x) + \frac{1}{2b} ||y||^2.$$

Theorem. Let $z_k = (x_k, y_k)$ where $y_k = \sqrt{a_k} p_k$, $f(x_*) = \lim H(z_k)$ where $\nabla f(x_*) = 0$. Suppose that f is coercive, condition (1) holds and

- H is a KŁ function with KŁ exponent θ i.e. $\varphi(s) = \frac{\bar{c}}{\theta} s^{\theta}$, $\theta \in (0, 1]$.
- (i) If $\theta = 1$, then $f(x_k)$ converges in a finite number of iterations.
- (ii) If $1/2 \le \theta < 1$, then $\exists q \in (0,1), C > 0$ s.t. $f(x_k) f(x_*) \le C q^k$.
- (iii) If $0 < \theta < 1/2$, then $f(x_k) f(x_*) = O(k^{\frac{1}{2\theta-1}})$.

References

- [1] M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar. Adaptive methods for nonconvex optimization. In *Advances in Neural Information Processing Systems*, pages 9793–9803, 2018.
- [2] P. Ochs, Y. Chen, T. Brox, and T. Pock. ipiano: Inertial proximal algorithm for nonconvex optimization. *SIAM Journal on Imaging Sciences*, 7(2):1388–1419, 2014.
- [3] J. Bolte, S. Sabach, M. Teboulle, and Y. Vaisbourd. First order methods beyond convexity and lipschitz gradient continuity with applications to quadratic inverse problems. *SIAM Journal on Optimization*, 28(3):2131–2151, 2018.
- [4] P. R. Johnstone and P. Moulin. Convergence rates of inertial splitting schemes for nonconvex composite optimization. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4716–4720.