关于变态贝塞尔函数I_n(X)和K_n(X) 的计算及FORTRAN程序

成都电讯工程学院 刘跃武

摘要:本文讨论整数阶变态贝塞尔函数 $I_n(x)$ 和 $K_n(x)$ 的计算方法,给出应用于微型机的FORTRAN程序。在不超出微型机浮点数溢出的范围,所得结果有10位有效数字以上精确度。

一、前言

整数阶变态贝塞尔函数 $I_n(x)$ 和 $K_n(x)$ 是在应用物理中广泛使用的一类特殊函数。国际上多年来不断讨论它们的计算方法 $I_n(x)$ 然而国内却很少见到这方面的文献和计算机程序。本文采用逆推和顺推相结合方式计算 $I_n(x)$ 和 $K_n(x)$,具有程序简单,运算速度快的优点。当 x 较小时,由逆推法计算 $I_n(x)$,由此算出 $K_n(x)$,再由 Wronskion 关系顺推得到 $K_n(x)$ (n=1, 2 ……, N)。当 x 较大时,用 $K_n(x)$ 的一个近似公式计算 $K_n(x)$ 和 $K_1(x)$,顺推得到 $K_n(x)$ (n=2, 3 ……, N …… N')。当 N' 是够大时,可认为 I_N ,(I_N)。0,且由 Wronskion关系求得 $I_N'_{-1}(x)$,最后由逆推得到 $I_n(x)$ (I_N 1 — I_N 2 — I_N 3 — I_N 4 — I_N 5 — I_N 6 — I_N 7 — I_N 8 — I_N 8 — I_N 8 — I_N 9 —

二、计算方法

当n为正整数,x为实变数时,I_a(x)和K_a(x)满足以下递推关系:

$$f_{n+1}(x) + \frac{2n}{x} f_n(x) = f_{n-1}(x)$$
 (1)

式中 f_a 代表 I_a 或 $e^{\pi i \, T}$ K_a 。 I_a 和 K_a 的性质, 决定了 I_a 采用逆递推算法, K_a 采用顺递推算法是稳定的 I_a 。

式(1)的通解为[8]

$$i_n(x) = a I_n(x) + b e^{n\pi i} K_n(x)$$
 (2)

式中a和b是任意常数。

设N为所求函数的阶数,M为远大于N或X的整数。只要M取得足够大,可认为

$$i_M(x) \approx 0$$

16

$$i_{M-1}(\mathbf{x}) = \alpha \tag{3}$$

其中α为一任意小的正数。由此,式(2)成为

$$\frac{b}{a} = -\frac{I_M(x)}{e^{M\pi i} K_M(x)} \tag{4}$$

由 $I_{\bullet}(X)$ 和 $K_{\bullet}(X)$ 的级数展开式知, $n \gg \frac{X}{2}$ 时,有

$$I_{n}(x) \rightarrow \left(\frac{2n}{x}\right)^{-n}$$

$$K_{n}(x) \rightarrow \left(\frac{2n}{x}\right)^{n}$$

$$n \gg \frac{x}{2}$$
(5)

式(4)和(5)代入式(2),得

$$i_n(x) = a I_n(x) \left\{ 1 - (-1)^{n-M} \frac{I_M(x) K_n(x)}{I_n(x) K_M(x)} \right\} \approx a I_n(x)$$

$$I_n(x) = i_n(x)/a \qquad n = 0, 1, 2, \dots, N \dots, M$$

由I。(X)的加法定理

即

$$I_0(x) + 2\sum_{k=1}^{\infty} (-1)^k I_{2k}(x) = 1$$
 (7)

求得式(6)中的常数

$$a = i_0(x) + 2 \sum_{k=1}^{[M/2]} (-1)^k i_{2k}(x)$$
 (8)

式中(M/2)表示不超过M/2的最大整数。

由 $Y_{\mathfrak{o}}(X)$ 与 $J_{\mathfrak{o}}(X)$ 的关系^[8],可以得到

$$K_{0}(x) = -\left[\ln\left(\frac{x}{2}\right) + \nu\right] I_{0}(x) + 2 \sum_{k=1}^{\lfloor M/2 \rfloor} \frac{1}{k} I_{2k}(x)$$

$$= \left\{-\left[\ln\left(\frac{x}{2}\right) + \nu\right] i_{0}(x) + 2 \sum_{k=1}^{\lfloor M/2 \rfloor} \frac{1}{k} i_{2k}(x)\right\} / a$$
(9)

其中v为欧拉常数, a由式(8)决定。

I_a(x)和K_o(x)求得后,由Wronskion关系^[7]

$$I_{n}(x) K_{n+1}(x) + I_{n+1}(x) K_{n}(x) = 1/x$$
(10)

顺推得到K₁, K₂……, K_N。

以上推导看出,确定M的取值是关键问题,而M通常是 x 和 N的函数。文献[5]虽然给出确定M的方法,但相当复杂。本文用试探法得到以下经验公式

17

(6)

并保证在0.1≤x<10范围, I。和K。有10位有效数字以上精确度。

原则上讲,以上方法适合于x为任何数值的情形。但是当x较小时,随着阶数n 的增加, $I_{a}(x)$ 急剧减小,很可能超出计算机浮点数下限,为此本文 $x \not< 0.1$ 。由于M(x)和x凭 经 验取值,当x增大时,不易保证 $K_{a}(x)$ 的精度,且 $I_{a}(x)$ 和 $K_{a}(x)$ 也可能超过计算机浮点数范 围。为提高计算精度和扩大x的范围,当 $x \ge 10$ 时,利用 $K_{a}(x)$ 的渐近发散级数表达式 1^{81}

$$K_{n}(x) \approx \sqrt{\frac{\pi}{2x}} e^{-x} \left\{ 1 + \sum_{k=1}^{\infty} \frac{(4n^{2} - 1)(4n^{2} - 3^{2}) \cdots (4n^{2} - (2k - 1)^{2})}{k_{1}(8x)^{k}} \right\}$$
(12)

计算K。和K1。由式(12)中级数的后项与前项之比

$$\left|\frac{a_{k+1}}{a_h}\right| = \left|\frac{4n^2}{(k+1)8x} - \frac{(2k+1)^2}{(k+1)8x}\right| < \left|\frac{4n^2}{(k+1)8x} - \frac{4k+1}{8x}\right|$$

可知, k≤[2x]的各项使该组数递减。

$$K_{0}(x) = \sqrt{\frac{\pi}{2x}} e^{-x} \left\{ 1 + \sum_{k=1}^{M} \frac{(-1)^{k} 1^{2} \cdot 3^{2} \cdot \dots \cdot (2k-1)^{2}}{k! (8x)^{k}} + R_{M}^{(0)} \right\}$$
(13)

$$K_{1}(x) = \sqrt{\frac{\pi}{2x}} e^{-x} \left\{ 1 + \sum_{k=1}^{M} \frac{(4-1^{2})(4-3^{2})\cdots\cdots(4-(2k-1)^{2})}{k! (8x)^{k}} + R_{M}^{(1)} \right\}$$
(14)

当 $M \ge n - \frac{3}{2}$ 时,有 $\left| R_{M}^{(i)} \right| < \left| a_{M}^{(i)} \right|$ (i = 0, 1) [θ]。只要 $\left| a_{M}^{(i)} \right| < 10^{-\theta}$ (i = 0, 1),取式 (13) 和 (14) 中前M 项之和 ($M \le (2x)$),可使 K_0 和 K_1 的相对误差小于 $10^{-\theta}$ 。当x = (x)满足

$$e^{-[2x]}/\sqrt{\pi[x]} < 10^{-9}$$
 (15)

时,便能达到以上要求[1]。

将算出的 K_0 和 K_1 代入式(11),顺推得 K_2 , K_3 ……, K_N ,…… $K_{N'-1}$, $K_{N'}$,这里 N为要计算的阶数,N'为满足式(15)精度时使 $I_{N'}(x)\approx 0$ 的阶数。这样做,还能保证递推过程的相对误差小于 10^{-8} [1]。将 $I_{N'}(x)\approx 0$ 代入式(10),得

$$I_{N'_{-1}}(x) = 1 / (xK_{N'}(x))$$
 (16)

再由式(1),逆推得 $I_{N_{2}}$, $I_{N_{3}}$,…… I_{N} , …… I_{1} , I_{0} 。在10 \leq x \leq 80范围,本程序使 I_{\bullet} 和 K_{\bullet} 有10位有效数字以上精度。

18

应该指出,x的范围主要受计算机浮点数范围的限制。本文的程序在PDP-11/24和VAX-11/780机上均得到良好的结果。

三、FORTRAN程序

哑元说明:

X—**双精度实**变量,输入参数,自变量(0.1≤x≤80)。

N一整变量,输入参数,变态贝塞尔函数阶数。

BSI—双精度实变量、输出参数、表示 $I_N(x)$ 。

BSK—双精度实变量,输出参数,表示 $K_N(x)$ 。

THIS IS THE SUBROUTINE OF MODIFIED BESSEL FUNCTIONS

SUBROUTINE BIK(X,N,BSI,BSK)

DOUBLE PRECISION X, Y1, Y2, Y3, R, RM, SGM, SGN, BM, BI, BK, BSI, BSK,

SKO,SK1

DIMENSION BI(0:300), BK(0:300)

IF(X.GE.10,DO) GOTO 12

 $M = 2,5D0 * \times + 22,D0$

GOTO 15

12 CALL ABF(X,SK0,SK1)

BK(0) = SK0

BK(1) = SK1

DO 13 J1 = 1.300

 $BK(J_1+1) = 2,D_0 * DFLDAT(J_1) * BK(J_1)/X + BK(J_1-1)$

IF(X,GE,18,D0) GOTO 14

 $IF(BK(N)/BK(J_1+1),LE.1.D-9)$ GOTO 8

GOTO 13

- 14 IF(BK(N)/BK(1+1).LE.1.D-11) GOTO 8
- 13 CONTINUE
- 8 N2 = 11 + 1

BI(N2) = 0,D0

 $BI(N2-1) = 1,D0/(\times *BK(N2))$

DO 9 $J2 = J1 - N2 \cdot J1 - 2$

9 BI($J_1 - J_2 - 2$) = 2,D0 * DFLOAT($J_1 - J_2 - 1$) * BI ($J_1 - J_2 - 1$)/× +BI($J_1 - J_2$)

GOTO 30

15 SGM = 0, D0

SGN = 0, D0

DO 10 I = 0.300

```
10 BI(I) = 0,D
   M1 = M/2
   IF(M-2*M1) 16,17,16
16 K = 1
   GOTO 18
17 K = 0
18 Y_1 = 0, D_0
   Y_2 = 1.D - 12
19 RM = DFLOAT(M)
   Y_3 = 2.DO * RM * Y_2/X + Y_1
   IF(M,LT,250) BI(M) = Y2
   M = M - 1
   Y1 = Y2
   Y2 = Y3
   IF(K) 20,21, 20
21 SGN = SON + Y1/BFLOAT(M1)
   SGM = SGM + (-1) * *M1 * Y1
   M1 = M1 - 1
   K = 1
   GOTO 22
20 \quad K = 0
22 JF(M,GT,O) GOTO 19
   BI(0) = Y2
   BM = 2.D0 * SGM + Y2
   R = 5772156649015328D0
   BK(0) = -(DLOG(X/2,DO) + R) * Y2 + 2,D J * SGN
   BK(0) = BK(0)/BM
   D \supseteq 23 I = 0.250
23 BI(I) = BI(I)/BM
   D^{\circ} 27 I = 1, N
27 BK(I) = (1,D0/X-BK(I-1)*BI(I))/BI(I-1)
30 BSI = BI(N)
   BSK = BK(N)
    RETURN
   END
   SUBROUTINE ABF(X,SK0,SK1)
   DOUBLE PRECISION Y(0:40), Z(0:140), SUM1, SUM2, SK0, SK1, X, E, PI
    20
```

```
J = 2.D0 * \times
```

PI = 3.1415926535897932D0

SUM1 = 0.D0

SUM2 = 0.D0

Z(0) = 1.D0

Y(0) = 1.D0

DO 100 N = 1.36

E = DFLOAT(N)

 $Y(N) = Y(N-1)*(2.D0*E-1.D0)**2/(B.D0*E*\times)*(-1.D0)$

Z(N) = Z(N-1)*(4.D0-(2.D0*E-1.D0)**2)/(8.D0*E*X)

IF(X.LT.18,D0,AND.N,EQ.I) GOTO 150

- 100 CONTINUE
- 150 DO 200 M = 1, NSUM1 = SUM1 + Y(M)
- 200 SUM2 = SUM2 + Z(M)

 $SK_0 = DSQRT(P_1/(2.D_0 * X)) * DEXP(-1.D_0 * X) * (1.D_0 + SUM_1)$

SK1 = DSQRT(PI/(2.D0 * X)) * DEYP(-1.D0 * X) * (1.D0 + SUM2)

RETURN

END

参 考 文 献

- [1] M. A. Gatto and J. B. Seery, "Numerical evaluation of the modified Bessel function I and K," Comp. 82. Maths. with Appls. Vol. 7, pp. 203~209, 1981.
- [2] N. M. Temme, "On the numerical evaluation of the modified Bessel function of the third Kind", J. Comput. Phys., Vol. 19, pp.324~337, 1975.
- [3] Y. L. Luke, "Miniaturized tables of Bessel functions", Math. Comp., Vol. 25, pp.323~330, 1971.
- [4] Y. L. Luke, "Miniaturized tables of Bessel functions", Math. Comp., Vol. 25, pp.789~795, 1971.
- [5] H. C. Thacher, Jr., "New backward recurrences for Bessel functions," Math. Comp., Vol. 33, pp 744~764, 1979.
- [6] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Combridge, 1952.
- [7] M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables", Appl. Math. Ser. SS, U.S. Government Printing Office, Washington, D. C., 1964.
- [8] 王竹溪、郭敦仁, 特殊函数概论, P. 406, 科学出版社, 1979.
- [9] N. N. Lebeden, Special functions and their application, Revised English

edition, translated and edited by R. A. Silverman, Printed in the U. S. A, 1965.

Numerical Computation and FORTRAN Program on the Modified Bessel Functions I and K

Liu Yaowu

(Chengdu Institute of Radio Engineering)

Abstract: This paper has given a computation method on the modified Bessel functions $I_n(x)$ and $K_n(x)$ for positive real x and integer n, and a FORTRAN program used in microcomputer. In the range of the floating point figure of the microcomputer, $I_n(x)$ and $K_n(x)$ have accuracy of 10 digits.

关键词: 变态贝塞尔函数, 微型机

初稿收到日期: 1985年10月15日。

定稿收到日期: 1986年1月30日。