Universidade de Brasília Faculdade Gama Engenharia de Software

Disciplina: 203291 - MED / Medição e Análise

UCP – Use Case Points

Elaine Venson

elainevenson@unb.br

Conteúdo

- Objetivos e o modelo PCU
- Processo de contagem de pontos de caso de uso
- Estimativa de esforço
- Vantagens e desvantagens
- Comparação APF

UCP - Use Case Points

- É um método de estimativa de tamanho de projeto de software orientado a objetos
- Desenvolvido por Gustav Karner da Object Systems (mais tarde Rational e agora IBM)
- Concebido por desenvolvedores que trabalhavam com UML e RUP
- Baseado na APF, Mark II e no Modelo de Casos de Uso
- Estima o tamanho do software de acordo com a visão do usuário final
- A unidade de medida é o UCP (use case points) ou PCU (pontos de caso de uso)

1 - Classificar e somar atores (UAW)

2 – Classificar e somar casos de uso (UUCW)

3 – Obter UCP não ajustado (UUCP = UAW + UUCW)

4 – Calcular complexidade técnica (TCF)

5 – Calcular complexidade ambiental (EF)

6 – Calcular UCP Ajustados

UCP - Principais Conceitos

1 - Classificar e somar atores (UAW)

2 – Classificar e somar casos de uso (UUCW)

3 – Obter UCP não ajustado (UUCP = UAW + UUCW)

4 – Calcular complexidade técnica (TCF)

5 – Calcular complexidade ambiental (EF)

6 – Calcular UCP Ajustados

UCP – Atores

1 - Classificar e somar atores (UAW)

Classificação de acordo com a tabela

Complexidade do ator	Descrição	Peso
Simples	Representa um outro sistema com Interface de Programas definida	1
Médio	Representa um outro sistema que interage através de protocolos ou quando há interação humana através de terminal	2
Complexo	É uma pessoa que interage através de Interface Gráfica ou página Web	3

UCP – Identificar atores

1 - Classificar e somar atores (UAW)

- O número de atores no modelo de casos de uso afeta a estimativa
- Se 2 ou + atores tem muito em comum, a estimativa melhora através da generalização dos atores em um super ator e a contagem do ator apenas uma vez

2 – Classificar e somar casos de uso (UUCW)

4 – Calcular complexidade técnica (TCF)

5 – Calcular complexidade ambiental (EF)

6 – Calcular UCP Ajustados

UCP - Casos de Uso

2 – Classificar e somar casos de uso (UUCW)

Classificação de acordo com a tabela

Complexidade do caso de uso	Descrição	Peso
Simples	Até 3 transações	5
Médio	4 a 7 transações	10
Complexo	Acima de 7 transações	15

UCP - Casos de Uso

2 – Classificar e somar casos de uso (UUCW)

- A classificação dos casos de uso é baseada no número de transações
- Uma transação é definida como um conjunto de atividades atômicas, as quais são executadas completamente ou não
- Ivar Jacobson, inventor do caso de uso, define a transação como uma ida e volta (round trip) do usuário para o sistema e novamente para o usuário
- Transações repetidas em vários casos de uso (como login ou procedimentos de segurança) devem ser contadas uma única vez

UCP - Casos de Uso

- 2 Classificar e somar casos de uso (UUCW)
- Exemplos de transações:
 - 1) O usuário seleciona X e Ys e confirma.
 - O sistema recupera os dados e apresenta o resultado.

. . . .

- 1) O usuário seleciona X e confirma.
- 2) O sistema apresenta os Ys relacionados com X.
- 3) O usuário seleciona um ou mais Ys e confirma.
- 4) O sistema recupera os dados e apresenta o resultado.

Transação 1

Transação 1

Transação 2

1 - Classificar e somar atores (UAW)

2 – Classificar e somar casos de uso (UUCW)

3 – Obter UCP não ajustado (UUCP = UAW + UUCW)

4 – Calcular complexidade técnica (TCF)

5 – Calcular complexidade ambiental (EF)

6 – Calcular UCP Ajustados

UAW => Unadjusted Actor Weights
UUCW => Unadjusted Use Case Weights
UUCP = > Unadjusted Use Case Points

1 - Classificar e somar atores (UAW)

2 – Classificar e somar casos de uso (UUCW)

3 – Obter UCP não ajustado (UUCP = UAW + UUCW)

4 – Calcular complexidade técnica (TCF)

5 – Calcular complexidade ambiental (EF)

6 – Calcular UCP Ajustados

UCP – Fatores Técnicos

4 – Calcular complexidade técnica (TCF)

- Os fatores técnicos são ponderados de acordo com o seu nível de influência no projeto de software
- Esses fatores variam de acordo com a complexidade do projeto

UCP – Fatores Técnicos

4 – Calcular complexidade técnica (TCF)

- O nível de influência pode variar de 0 a 5:
 - 0 não presente ou sem influência;
 - 1 indica pouca criticidade e baixa complexidade (irrelevante para o projeto);
 - 2 indica influência moderada;
 - 3 indica influência média;
 - 4 indica influência significante;
 - 5 indica forte influência ou alta criticidade e complexidade (essencial).

UCP - Fatores Técnicos

Fator	Descrição	Peso
T1	Sistemas Distribuídos	2
T2	Tempo de resposta/desempenho	1
Т3	Eficiência do usuário final (on-line)	1
T4	Processamento interno complexo	1
T5	Reusabilidade do código em outras aplicações	1
T6	Facilidade de instalação	0.5
T7	Usabilidade (facilidade operacional)	0.5
T8	Portabilidade	2
Т9	Facilidade de manutenção	1
T10	Acessos simultâneos (concorrência)	1
T11	Aspectos especiais de segurança	1
T12	Acesso direto para terceiros	1
T13	Facilidades especiais de treinamento	1

UCP – Fatores Técnicos

4 – Calcular complexidade técnica (TCF)

- Para cada fator é atribuído um valor de 0 a 5, de acordo com sua influência no projeto
- O valor TFactor é calculado multiplicando-se o valor de cada um dos fatores (T1 a T13) pelo seu peso e somandose todos os valores obtidos
- A complexidade técnica é calculada de acordo com a fórmula:

$$TCF = 0.6 + (0.01 * TFactor)$$

1 - Classificar e somar atores (UAW)

2 – Classificar e somar casos de uso (UUCW)

3 – Obter UCP não ajustado (UUCP = UAW + UUCW)

4 – Calcular complexidade técnica (TCF)

5 – Calcular complexidade ambiental (EF)

6 – Calcular UCP Ajustados

5 – Calcular complexidade ambiental (EF)

- Os fatores ambientais são ponderados de acordo com o seu nível de influência no projeto de software
- Esses fatores variam de acordo com a experiência da equipe
- O nível de influência pode variar de 0 a 5:
 - 0 indica baixa habilidade (pouca experiência no assunto);
 - 1 indica alguma habilidade;
 - 2 indica habilidade moderada;
 - 3 indica habilidade média;
 - 4 indica habilidade significante;
 - 5 indica domínio e competência no assunto.

5 – Calcular complexidade ambiental (EF)

Fator	Descrição	Peso
F1	Familiaridade com o processo de desenvolvimento de software	1.5
F2	Experiência na aplicação	0.5
F3	Experiência com OO, na linguagem e na técnica de desenvolvimento	1.0
F4	Capacidade do Líder de Projeto	0.5
F5	Motivação	1.0
F6	Requisitos estáveis	2.0
F7	Trabalhadores com dedicação parcial	-1.0
F8	Dificuldade da Linguagem de Programação	-1.0

5 – complexidade ambiental (EF)

- Para o fator F5 (Motivação)
 - 0 significa sem motivação para o projeto
 - 3 média
 - 5 alta motivação
- Para o fator F6 (Requisitos Estáveis)
 - 0 significa extremamente instável
 - 3 médio
 - 5 estável
- Para o fator F7 (Trabalhadores com dedicação parcial)
 - 0 significa poucos ou nenhum colaborador em tempo parcial
 - 3 médio
 - 5 todos os colaboradores de período parcial

5 – Calcular complexidade ambiental (EF)

- Para cada fator é atribuído um valor de 0 a 5, de acordo com sua influência no projeto
- O valor EFactor é calculado multiplicando-se o valor de cada um dos fatores (F1 a F8) pelo seu peso e somando-se todos os valores obtidos
- A complexidade técnica é calculada de acordo com a fórmula:

$$EF = 1.4 + (-0.03 * EFactor)$$

1 - Classificar e somar atores (UAW)

2 – Classificar e somar casos de uso (UUCW)

3 – Obter UCP não ajustado (UUCP = UAW + UUCW)

4 – Calcular complexidade técnica (TCF)

5 – Calcular complexidade ambiental (EF)

6 – Calcular UCP Ajustados

UCP – Cálculo UCP Ajustados

6 - Calcular UCP Ajustados

O valor final dos UCP ajustados é calculado de acordo com a fórmula:

UCP => Use Case Points

UUCP => *Unadjusted Use Case Points*

TCF => Technical Factor

EF => Environmental Factor

UCP – Estimativa de Esforço

- Karner sugere a utilização de 20 homens/hora por UCP
- Schneider e Winters sugerem um refinamento:
 - X = total de ítens de F1 a F6 com pontuação abaixo de 3
 - Y = total de ítens de F7 a F8 com pontuação acima de 3
 - Se X + Y < 3 pontos, usar 20 como produtividade
 - Se X + Y > ou = 3 e < 5 pontos, usar 28 como unidade produtividade
 - Se X + Y >= 5, deve-se tentar modificar o projeto de forma a baixar o número, pois o risco de insucesso é relativamente alto.
- Estimativa de esforço = UCP * homens/hora por UCP

UCP – Vantagens

- Baseado no uso de UML, amplamente utilizada em desenvolvimento Web
- Tem suporte da Rational Software (IBM) e é resultado do estudo de uma grande base de projetos
- É uma técnica simples, exceto pela decisão dos 3 níveis de complexidade dos casos de uso
- Não requer certificação

UCP – Desvantagens

- Casos de uso variam enormemente em tamanho e na técnica de UCP são classificados em apenas 3 níveis de complexidade
- Possui 21 fatores que ajustam o tamanho do software.
 No entanto esses fatores deveriam afetar a produtividade (ou taxa de entrega), o tamanho do software não deveria ser alterado

Diferenças entre UCP e APF

- O UCP teve forte influência da APF, no entanto há diferenças significativas:
 - APF não requer que os documentos de entrada sigam uma notação particular. UCP é baseado no modelo de casos de uso.
 - Existem padrões internacionais para contar pontos de função. O conceito de UCP não alcançou o mesmo nível de padronização.
 Sem um padrão que descreva o nível de detalhamento adequado dos requisitos podem haver diferenças significativas de contagem entre diferentes pessoas e organizações

Sistema de Aluguel de Carros

- O ator cliente utiliza o sistema para registrar-se:
 - A ator cliente preenche suas informações: nome completo, CPF, telefone, e-mail, endereço, ocupação, login, senha. Adicionalmente preenche também um campo para confirmação da senha.
 - O sistema valida as informações, verificando também se o CPF ainda não está cadastrado.
 - O sistema registra os dados e retorna mensagem de sucesso ao usuário.

Os atores cliente e funcionário utilizam também o sistema para realizar login, no qual informam seu login e senha para obter acesso ao sistema. Neste caso, o sistema deve primeiro verificar se usuário é um funcionário. Para isso ele acessa o registro de funcionários no Sistema de Recursos Humanos (SRH) para tentar autenticar o usuário. Se o usuário não for encontrado no SRH o sistema tenta autenticá-lo (cliente) no próprio Sistema de Aluguel de Carros.

- O ator cliente também tem a possibilidade de buscar carros, para isso realiza os seguintes passos:
 - O ator preenche campos para filtrar a busca, tais como: período do aluguel (data retirada e data devolução), marca, modelo, opção de ar-condicionado, opção de direção elétrica/hidráulica. Todos os campos são opcionais, exceto o período.
 - O sistema recupera os carros disponíveis no periodo, de acordo com os campos de filtro, e apresenta uma lista para o usuário com as seguintes informações: marca, modelo, ar-condicionado, direção elétrica/hidráulica, valor da diária, valor total da locação.

- A partir da busca de carros, o ator cliente pode realizar a reserva de um carro.
 - Ao clicar sobre um dos carros na listagem, o sistema apresenta as informações básicas do carro e os seguintes campos para preenchimento: número da CNH, horário da retirada, dados de cartão de crédito para garantia (bandeira, número do cartão, código de segurança, mês/ano de validade).
 - O ator preenche as informações.
 - O sistema valida e armazena as informações gerando um número único de reserva para o carro selecionado, no período.
 - Obs.: para esta versão do sistema não há validação do cartão em operadoras de cartões.
 - O sistema retorna mensagem de sucesso ao usuário apresentado o número de reserva, bem como: modelo e marca do carro, período da reserva e horário da retirada.
 - Por fim, o sistema envia uma mensagem de e-mail para o usuário, contendo as mesmas informações.

O caso de uso Manter Informações de Carro é utilizado pelo funcionário para incluir, alterar, excluir e consultar os carros da locadora. As informações mantidas são: marca, modelo, placa, ano do modelo, possui ar-condicionado (sim/não), possui direção elétrica/hidráulica (sim/não), valor da diária.

O ator funcionário ainda pode visualizar um relatório de aluguéis, o qual apresenta as seguintes informações para cada um dos próximos 30 dias: data, quantidade de carros reservados, quantidade de carros disponíveis, valor a receber.