

Pourquoi normaliser ? Qu'est-ce qu'un bon schéma relationnel ? Tous les schémas relationnels sont-ils équivalents ? Z. Kedad

Pourquoi normaliser?

Exemple

Propriété	Nom	Prénom	Adresse	Date achat	Numéro	Marque
	Durand Dupond Dupond	Jean	5, Rue des 12, Avenue 12, Avenue	3/4/89	902FE75 87JI75 788GF21	Renault

- Redondances ⇒ Anomalies
 - » de suppression
 - » d'insertion
 - » de mise à jour

5/7/2021 Z. Kedad

Anomalies de suppression

Exemple

Propriété	Nom	Prénom	Adresse	Date achat	Numéro	Marque
	Durand Dupond	Jean	5, Rue des 12, Avenue	3/4/89	902FE75 87JI75	Peugeot Renault
	Dupond 	Jean 	20, Boulevard	10/12/94	788GF21	Ford

• la suppression du véhicule de la personne « Durand » entraîne la suppression de cette personne

Anomalies d'insertion

Exemple

Propriété	Nom	Prénom	Adresse	Date achat	Numéro	Marque
	Dupond	Jean	5, Rue des 12, Avenue	3/4/89		Renault
	Dupond	Jean 	20, Boulevard	10/12/94	788GF21	Ford

- l'insertion d'un véhicule ne peut se faire sans connaître le propriétaire
- l'insertion d'une personne ne peut se faire s'il n'a pas de véhicule

5/7/2021 Z. Kedad

Anomalies de modification

Exemple

Propriété	Nom	Prénom	Adresse	Date achat	Numéro	Marque
	Durand Dupond Dupond	Jean	5, Rue des 12, Avenue 12, Avenue	3/4/89	788GF21	Renault Ford
					•••••	

la mise à jour de l'adresse de la personne
 « Dupond » doit se faire sur deux tuples

Espace de stockage

- □ Le choix des schémas de relation à un impact sur la place occupée par les données
- □ Schéma 1
 - Personne (Nom, Prenom, Adresse, Date_Achat, Numero, Marque)
- Schéma 2
 - · Personne (Id, Nom, Prenom, Adresse)
 - Voiture (Numero, Marque, Date Achat, Id)

5/7/2021 Z. Kedad

Autres critères

- Performances
 - L'accès à des données réparties sur plusieurs tables nécessite des jointures
- Cohérence
 - La saisie d'une même donnée plusieurs fois peut entraîner des erreurs

5/7/2021

Mesures Informelles

- Simplicité
 - · L'interprétation doit être simple
- □ Limiter la redondance
 - · Anomalies, volume
- □ Limiter les valeurs manquantes
- Eviter les tuples parasites
 - Après une décomposition, les jointures ne doivent pas introduire des tuples parasites

5/7/2021 Z. Kedad

Problème des valeurs manquantes

- □ Sémantique ?
 - · Valeur existante mais non connue
 - Age d'une personne
 - · Valeur non applicable
 - Salaire d'un étudiant
 - Indéterminée...
- □ En pratique, seule la valeur NULL peut être utilisée

5/7/2021

Tuples parasites

□ Table « Visites »

Nom	Ville	Lieu	
Durand	Versailles	Château	
Dupond	Versailles	Jardins	

Décomposition

Visiteurs

Nom	Ville
Durand	Versailles
Dupond	Versailles

Sites

Ville	Lieu
Versailles	Château
Versailles	Jardins

5/7/2021 Z. Kedad

Bilan

- Tous les schémas relationnels ne sont pas équivalents
- Critères informels
 - · Donnent une indication de la qualité du schéma
 - Difficiles à appliquer sur des schémas de grandes taille
- □ Nécessité de disposer d'un outil précis de mesure de la qualité

Dépendances Fonctionnelles

- Une dépendance fonctionnelle (DF) sur un schéma de relation R est une expression X → Y, X, Y ⊆ R
- □ La DF est vérifiée dans une relation *r* si et seulement si :

$$\forall$$
 ti, tj \in r, ti[X] = tj[X] \Rightarrow ti[Y] = tj[Y]

5/7/2021

Z. Kedad

Dépendances Fonctionnelles

- DF Triviale
 - $X \rightarrow Y$ est dite triviale si $Y \subseteq X$

5/7/2021

Dépendances Fonctionnelles

- □ Soit *F* un ensemble de DF
- $\Box F \Rightarrow X \rightarrow Y$
 - Pour toute base de données pour laquelle toutes les DF de F sont vérifié, X → Y est également vérifiée

5/7/2021 Z. Kedad

Dépendances fonctionnelles

- Exemple
 - Véhicule(Numéro, Type, Couleur)
 - \bullet Numéro \rightarrow type
 - Personne(Nom, Prénom, Adresse)
 - Nom, prénom → adresse

5/7/2021

Exercice

- Personne(NSS, NOM, PRENOM, AGE)
 - \bullet NSS \rightarrow NOM
 - $\bullet \ \mathsf{NOM} \to \mathsf{NSS}$
- Voiture(NUMERO, COULEUR, MARQUE, PUISSANCE, TYPE)
 - ightharpoonup PUISSANCE, TYPE ightharpoonup MARQUE
 - ◆ MARQUE → PUISSANCE
 - * PUISSANCE \rightarrow TYPE

5/7/2021

Z. Kedad

Exercice (suite)

- Propriété (NUM_VEHICULE, NUM_PROPRIETAIRE, DATE)
 - NUM_VEHICULE \rightarrow NUM_PROPRIETAIRE
 - NUM_PROPRIETAIRE → NUM_VEHICULE
 - * (NUM_VEHICULE , NUM_PROPRIETAIRE) \rightarrow DATE

5/7/2021

Clé

- Soit R un schéma de relation
- Un ensemble d'attributs K ⊆ R est clé (ou clé candidate) de R par rapport à l'ensemble de DF F si et seulement si :
 - $F \Rightarrow K \rightarrow R$
 - $\forall X \subset K \not = K \rightarrow R$
- □ Un ensemble K d'attributs est une superclé de R s'il contient une clé de R
- □ Parmi les clés candidate de R, on choisit une clé primaire

5/7/2021

Z. Kedad

Inférences de DF: Axiomes d'Armstrong

- □ Réflexivité :
 - Si $Y \subseteq X$ Alors $X \to Y$
 - Nom, Prénom → Nom
 - DF triviale
- Augmentation :
 - Si $X \rightarrow Y$ Alors $(X, Z) \rightarrow (Y, Z)$
 - \bullet si Nss \rightarrow Age alors Nss, Nom \rightarrow Age

5/7/2021

Inférences de DF : Axiomes d'Armstrong

- □ Transitivité :
 - Si $X \rightarrow Y$ et $Y \rightarrow Z$ Alors $X \rightarrow Z$
 - si N°Véhicule → Type et Type → Marque alors N°Véhicule → Marque

5/7/2021

Z. Kedad

Inférence de DF

- □ Soit F un ensemble de DF
- On note F⊢X → Y si X → Y peut être dérivée de F en utilisant les axiomes d'Armstrong

5/7/2021

Autres règles d'inférences

- □ Pseudo-transitivité :
 - Si $X \to Y$ et $(Y, Z) \to T$ Alors $(X, Z) \to T$
 - si N°Véhicule → NSS et
 - NSS, N°Banque → Montant_emprunté
 - Alors N°Véhicule, N°Banque → Montant emprunté
- □ Décomposition :
 - Si $X \rightarrow Y$ et $Z \subseteq Y$ Alors $X \rightarrow Z$
 - si Nss → (Nom, Prénom, Age)
 - $\bullet \ \, \mathsf{alors} \ \mathsf{Nss} \to \mathsf{Nom}, \ \mathsf{Nss} \to \mathsf{Pr\acute{e}nom}, \ \mathsf{Nss} \to \mathsf{Age}$
- Union :
 - Si $X \rightarrow Y$ et $X \rightarrow Z$ Alors $X \rightarrow Y$, Z
 - si Nss → Nom et Nss → Prénom alors
 - Nss → (Nom, Prénom)

5/7/2021 Z. Kedad

Implication de DF

- □ Soit F un ensemble de DF et $X \rightarrow Y$ une DF, comment vérifier $F \vdash X \rightarrow Y$?
 - Montrer que toute relation qui satisfait les DF de F satisfait aussi X → Y ou
 - Trouver une séquence d'axiomes conduisant à X → Y à partir de F ou
 - Utiliser la notion de fermeture

5/7/2021

Fermeture d'un ensemble d'attributs

- □ La fermeture d'un ensemble d'attributs X par rapport à une ensemble de DF *F* est définie par
- \square X⁺ = {A \in R | F \vdash X \rightarrow A}

5/7/2021

Z. Kedad

Fermeture d'un ensemble de dépendances

- □ Ensemble des dépendances fonctionnelles pouvant se déduire logiquement de cet ensemble (en utilisant les axiomes d'Armstrong et règles d'inférences)
- □ La fermeture d'un ensemble de DF *F* est notée *F*⁺

5/7/2021

Dépendance fonctionnelle élémentaire

- □ C'est une dépendance :
 - · non triviale,
 - telle qu'il n'existe aucun ensemble d'attributs inclus dans sa partie gauche et qui détermine sa partie droite
- Exemples
 - $(A, B) \rightarrow A$
 - $D \rightarrow E$, $(D, F) \rightarrow E$
 - $\bullet \ \ G \to H, \quad H \to I, \quad (G,\,J) \to I$

5/7/2021

Couverture minimale

- □ Un ensemble de dépendances fonctionnelles élémentaires F' constitue une couverture minimale d'un ensemble de dépendances F si :
 - F' et F ont la même fermeture
 - Il n'existe pas d'ensemble F" inclus dans F' tel que F" ait la même fermeture que F

Exercice

- □ Trouver les couvertures minimales de l'ensemble de dépendances suivant :
- \blacksquare F1={A \rightarrow B, A \rightarrow C, B \rightarrow C, C \rightarrow B}

Exercice

- □ Soit la relation R(A, B, C, D, E)
- □ Soit I 'ensemble de dépendances :
 - $A \rightarrow B, C, D$
 - $B \rightarrow D, E$
 - $D \rightarrow E$
 - $C \rightarrow E$
 - $A \rightarrow E$
- □ Trouver une couverture minimale de cet ensemble de dépendances fonctionnelles

Z. Kedad

5/7/2021

Egalité et équivalence de deux graphes

- □ G1 = G2
 - ensembles de dépendances identiques
- □ G1 est équivalent à G2
 - · les graphes génèrent la même fermeture

G1 A A $B \longrightarrow$

5/7/2021

Propriétés d'une décomposition

- Décomposition
 - Substitution d'un schéma de relations R par plusieurs schémas de relation R₁, R₂,R_n
 - $R = U_{i=1..n} R_i$
- □ Propriétés d'une décomposition
 - Sans perte
 - « La relation initiale doit être recalculée par jointure
 - Préservant les DF
 - Les DF doivent être vérifiées sans jointures

5/7/2021 Z. Kedad

Décomposition sans perte

- \square R = R1 \cup R2, F un ensemble de DF sur R
- □ La décomposition est sans perte si
- \square $F \vdash R1 \cap R2 \rightarrow R2$ ou $F \vdash R1 \cap R2 \rightarrow R1$

5/7/2021

Décomposition préservant les dépendances

- □ Soit *F* un ensemble de DF sur un schéma de relation *R*
- □ La décomposition $R = \{R_1, R_2,R_n\}$ préserve les dépendances si l'union des ensembles de DF des schémas R_i est égales à F

5/7/2021 Z. Kedad

Première forme normale

- □ Une relation est en 1ère forme normale si chacun de ses attributs prend une valeur atomique
- Personne(Nom, Adresse, Prénom)
 - Si l'attribut Prénom peut prendre plusieurs valeurs (prénom1, prénom2, prénom3) alors la relation personne n'est pas en 1ère forme normale
 - Si adresse est constituée de N°, Rue, Code postal et Ville, la relation personne n'est pas en 1ère forme normale

5/7/2021

Deuxième forme normale

- □ Une relation est en deuxième forme normale si elle est en première forme normale et si chaque attribut non clé dépend de la clé et non d'un sous ensemble de la clé
 - R(<u>A, B,</u> C, D, E)
 - R est en 2ème forme normale si elle est en 1ère forme normale et s'il n'existe pas de dépendances de la forme :
 - \bullet A \rightarrow ou B \rightarrow

5/7/2021

Z. Kedad

Exemple de relation non en 2FN

□ Stock(Pièce, Entrepôt, Quantité, Adresse)

Stock	Pièce	Entrepôt	Adresse	Quantité
	DF45	12	5, Rue des	200
	DF45	45	12, Avenue	154
	BTR5	12	5, Rue des	10

□ Redondance : l'adresse de l'entrepôt est répétée pour chaque pièce qui y est stockée

5/7/2021

Exercice

- Les relations suivantes sont-elles en 2FN ?
 - Voiture(NUMERO, COULEUR, MARQUE, PUISSANCE, TYPE)
 - Propriété (NUM_VEHICULE, NUM_PROPRIETAIRE, TYPE, MARQUE, DATE_ACHAT)
 - On suppose qu'un véhicule peut appartenir à plusieurs propriétaires (à des dates différentes) et qu'un propriétaire peut avoir plusieurs véhicules

5/7/2021

Z. Kedad

Troisième forme normale

- Une relation est en troisième forme normale si elle est en deuxième forme normale et s'il n'existe pas de dépendance entre attributs non clés (DF transitives)
- □ R(<u>A, B</u>, C, D)
 - R est en 3ème forme normale si elle est en 2ème forme normale et s'il n'existe pas de dépendances de la forme :

 \cdot C \rightarrow D ou D \rightarrow C

5/7/2021

Exemple de relation non en 3FN

□ Voiture(Numéro, Marque, Puissance, Type)

Voiture	Numéro	Type	Marque	Puissance
	902FE75 87JI75 788GF21	Fiesta	Ford Ford Ford	4 4 4

□ Redondance : pour chaque occurrence des voitures de même type, on stocke les caractéristiques propres à ce type

5/7/2021 Z. Kedad

Exercice

- □ Les relations suivantes sont-elles en 3FN?
- □ Facture(<u>N°FACTURE</u>, DATE, NOM_CLIENT, PRODUIT, QTE, PRIX_UNITAIRE)
- □ Propriétaire(<u>N°PROPRIETAIRE</u>, NOM)
- □ Conduit(N°CONDUCTEUR, N°VEHICULE, NOM, DATE)

Forme normale de Boyce Codd

- □ Une relation est en forme normale de Boyce Codd si elle est en troisième forme normale et s'il n'existe aucune autre dépendance fonctionnelle que celles liant la clé à un attribut non clé
- □ R(<u>A, B,</u> C)
 - R est en forme normale de Boyce Codd si elle est en FN et s 'il n 'existe pas de DF de la forme :
 - \bullet C \rightarrow A ou C \rightarrow B

5/7/2021 Z. Kedad

Exercice

- Les relations suivantes sont-elles en forme normale de Boyce Codd ?
- □ Employé(<u>N°EMPLOYE</u>, <u>N°ENTREPRISE</u>, NSS, NOM, PRENOM, AGE)
- □ Personne(NSS, NOM, PRENOM, AGE)

5/7/2021

Degré de normalisation

- □ Les redondances sont sources d'anomalies et d'incohérences
- □ La présence de redondance est caractérisée par un degré de normalité :
 - plus le degré de normalité est élevé, moins il y a de redondances

5/7/2021 Z. Kedad

Algorithmes de normalisation

- □ Algorithme de synthèse
 - 3FN
- □ Algorithme de décomposition
 - Forme normale de Boyce Codd, 4FN

5/7/2021

Algorithme de synthèse

- □ Notion de relation universelle :
 - union de tous les attributs des relations constituant la base de données
 - R1(A,B,C)
 - R2(B,D,E,F)
 - U(A,B,C,D,E,F)

5/7/2021

Z. Kedad

Principe de l'algorithme

- □ A partir d'un graphe de dépendances fonctionnelles :
 - 1. Rechercher la fermeture
 - · 2. Rechercher les clés candidates
 - 3. Regrouper les clés candidates équivalentes
 - \star K1 = K2 si K1 → K2 et K2 → K1 (cycle)
 - 4. Rechercher la couverture minimale
 - 5. Synthétiser les relations à partir des groupes de clés

5/7/2021

Exercice

- □ Appliquer l'algorithme de synthèse à la relation universelle suivante :
 - R(A, B, C, D)
- □ Avec l'ensemble de dépendances :
 - $\mathsf{A} \to \mathsf{B}$
 - $-C \rightarrow B$
 - $-(C, D) \rightarrow A$
 - $(C, D) \rightarrow B$

Dépendances Multivaluées

- □ R(A, B, C, D)
- □ A --->> B
 - à A correspond un ensemble de valeurs pour B, indépendant des valeurs des autres attributs de R
 - A --->> B ???

Α	В	С
1	11	110
1	11	110
1	12	112
3	33	330
3	33	440

5/7/2021

Z. Kedad

Quatrième Forme Normale

□ Une relation R est en quatrième forme normale par rapport à un ensemble de DF et de DMV si pour chaque DM A --->> B non triviale, A est une superclé de R.

5/7/2021