Escuela Secundaria N° 34 "Carlos Villamil"

Cursos: 4to - Física

Profesoras: Ritter Laura **Cel:** 3454182374

Trabajo Práctico N°3

Con lo practicado en el trabajo N°2 de M.R.U.:

Resolver los siguientes problemas:

- 1) Un avión se mueve en línea recta a una velocidad constante de 400 km/h durante 1,5 h de su recorrido. ¿Qué distancia recorrió en ese tiempo?
- 2) En cierto lugar de la Ciudad de la Habana se escucha el "Cañonazo" a las 420 seg ¿A qué distancia de la "Fortaleza de la Cabaña" se encontrará dicho lugar? (velocidad del sonido 330 m/s)
- 3) Un caballo recorre con movimiento uniforme 95 km en 9 horas. Calcular su velocidad.
- 4) ¿Cuánto tiempo tardaré en completar la distancia de una maratón (140 km) si corro a una velocidad media de 15 km/h?
- 5) ¿Qué espacio recorre en 24 horas un tren cuya velocidad es de 67 km/h?
- 6) Un móvil recorre 95 km/h. Calcular el tiempo empleado en 16 km.
- 7) Un avión se mueve en línea recta a una velocidad constante de 400 km/h durante 1,5 h de su recorrido. ¿Qué distancia recorrió en ese tiempo?
- 8) ¿Cuál es el tiempo empleado por un motociclista que se desplaza a 110 km/h para recorrer una distancia de 75 km?
- 9) Un barco recorre la distancia que separa Gran Canaria de Tenerife (90 km) en 8 horas. ¿Cuál es la velocidad del barco?
- 10) Dos pueblos distanciados por 1200 m, están unidos por una carretera recta. Un ciclista viaja de un pueblo al otro con una velocidad constante de 10 m/s. Calcula el tiempo que emplea.
- 11) ¿Qué tiempo demorará una señal de radio enviada desde la Tierra en llegar a la Luna? Sabiendo que la velocidad de la luz es de 300 000 km/s y la distancia desde la Tierra hasta la Luna 400 000 km
- 12) Se produce un disparo a 3284 m de donde se encuentra un policía, ¿cuánto tarda el policía en oírlo si la velocidad del sonido en el aire es de 340 m/s?
- 13) Un móvil recorre 98 km en 5 h, calcular: Su velocidad y ¿Cuántos kilómetros recorrerá en 3 h con la misma velocidad?

Movimiento Rectilíneo Uniformemente Variado (M.R.U.V.)

El movimiento rectilíneo uniformemente variado (MRUV) es un movimiento cuya trayectoria es una recta, pero la velocidad no es necesariamente constante porque existe una aceleración.

Fórmulas del MRUV

- ♣ Distancia (x) **X= Vi** * **t** + $\frac{1}{2}$ * **a** * **t**² (velocidad inicial por tiempo, más $\frac{1}{2}$ por aceleración por tiempo al cuadrado)
- ↓ Velocidad (v) Vf = Vi + a * t (velocidad inicial más aceleración por el tiempo)
- + Aceleración (a) $a=\frac{v_f-v_i}{t}$ (velocidad final menos velocidad inicial, dividido por el tiempo)

Las unidades son:

- Distancia: **km** o **m** (kilometro o metro)
- Tiempo: h o seg (hora o segundos)
- Velocidad: km/h o m/seg (kilometro/hora o metro/segundo)
- Aceleración: m/seg² (metro/segundo al cuadrado)

Problemas:

Para poder resolver los problemas del M.R.U.V. se deben seguir unos ciertos pasos:

- Leer el problema las veces que sea necesario.
- Poder identificar los datos, los cuales son números acompañados de una unidad (arriba mencionadas)
- Identificar que dato me está faltando (mayormente me lo pregunta o lo indica con el nombre)
- Buscar la fórmula correspondiente para resolverlo.
- Reemplazo mis datos en la fórmula y procedo a resolverla.
- NUNCA olvidar de poner todas las unidades.

Datos a tener en cuenta:

- Si en el problema me dicen que algo está en reposo, significa que su velocidad inicial es = 0
- ♣ Si en el problema me dicen que algo se frena o detiene, significa que su velocidad final es = 0

Ejemplos:

Problema 1

Calcular la aceleración que se aplica para que un móvil que se desplaza en línea recta a 25 m/seg reduzca su velocidad a 13,9 m/seg en 25 segundos.

Datos: Velocidad inicial: 25 m/seg Velocidad final: 13,9 m/seg Tiempo: 25 seg Aceleración: ?

Sustituimos los datos en la fórmula de la aceleración que obtuvimos anteriormente:

$$a = \frac{Vf - Vi}{t}$$

$$a = \frac{13.9 \frac{m}{seg} - 25 m/seg}{25 seg}$$

$$a = \frac{-11.1 m/seg}{25 seg}$$

$$a \cong -0.4 m/seg2$$

Por tanto, la aceleración es de -0.4 m/s2

Como la velocidad inicial es positiva y el móvil va frenándose, entonces la aceleración es negativa.

Problema 2

Un tren de alta velocidad en reposo comienza su trayecto en línea recta con una aceleración constante de 0.5m/s2. Calcular la velocidad que alcanza el tren a los 3 minutos.

<u>Datos:</u> Velocidad inicial: 0 Velocidad final: ? Tiempo: 3 min (180 seg) Aceleración: 0.5m/s2

Como el tren está en reposo, la velocidad inicial es 0.

Calculamos la velocidad aplicando la fórmula:

$$Vf = Vi + a * t$$

 $Vf = 0 + 0.5 m/s^2 * 180 seg$ (el cuadrado del segundo se simplifica con el otro segundo)

$$Vf = 90 \text{ m/seg}$$

Problema 3

Un auto parte del reposo con una aceleración de 6m/s2. Hallar la distancia que recorre al segundo 4.

<u>Datos:</u> Velocidad inicial: 0 Tiempo: 4 seg Aceleración: 6m/s2 Distancia: ?

Calculamos la distancia aplicando la fórmula: $X = Vi * t + \frac{1}{2} * a * t^2$

$$X = 0 * 4seg + \frac{1}{2} * 6m/seg2 * (4seg)^2$$

 $X = 0 + \frac{1}{2} * 6m/seg2 * 16 seg^2$ (los segundos al cuadrado se

simplifican)

Resolver los siguientes problemas:

- 1. Un móvil parte del reposo con una aceleración de 20 m/s² constante. Calcular:
 - a) ¿Qué velocidad tendrá después de 15 s?
 - b) ¿Qué espacio recorrió?
- 2. Un auto parte del reposo, a los 5 s tiene una velocidad de 324 m/s, si su aceleración es constante, calcular:
 - a) La aceleración
 - b) El espacio recorrido
- 3. Un automóvil parte del reposo con una aceleración constante de 3 m/s², determinar:
 - a) ¿Qué velocidad tendrá a los 8 s de haber iniciado el movimiento?
 - b) ¿Qué distancia habrá recorrido en ese lapso?
- 4. Un tren de alta velocidad en reposo comienza su trayecto en línea recta con una aceleración constante de a = 0.5m/s2. Calcular la velocidad que alcanza el tren a los 3 minutos.
- 5. Un ciclista que va a 108 m/s, aplica los frenos y logra detener la bicicleta en 4 segundos. Calcular:
 - a) ¿Qué desaceleración produjeron los frenos?
 - b) ¿Qué espacio necesito para frenar?
- 6. La bala de un rifle, cuyo cañón mide 1,4 m, sale con una velocidad de 1.400 m/s. Calcular:
 - a) ¿Qué aceleración experimenta la bala?
 - b) ¿Cuánto tarda en salir del rifle?
- 7. Un automóvil parte del reposo con una aceleración constante de 3 m/s², determinar:
 - a) ¿Qué velocidad tendrá a los 8 s de haber iniciado el movimiento?
 - b) ¿Qué distancia habrá recorrido en ese lapso?
- 8. Un automóvil que viaja a una velocidad constante de 432 m/s, demora 10 s en detenerse. Calcular: ¿Qué espacio necesitó para detenerse?
- 9. ¿Cuánto tiempo tarda un automóvil en alcanzar una velocidad de 60km/h, si parte del reposo con una aceleración de 20 km/h²?
- 10. Un auto parte del reposo con una aceleración de 3m/s². Hallar la distancia que recorre al segundo 15.