

C2C电商平台 推荐系统架构演进

张相於

成为软件技术专家 全球软件开发大会 的必经之路

[北京站] 2018

2018年4月20-22日 北京·国际会议中心

十二购票中,每张立减2040元

团购享受更多优惠

识别二维码了解更多

下载极客时间App 获取有声IT新闻、技术产品专栏,每日更新

扫一扫下载极客时间App

AICON

全球人工智能与机器学习技术大会

助力人工智能落地

2018.1.13 - 1.14 北京国际会议中心

扫描关注大会官网

SPEAKER INTRODUCE

张相於 (zhangxy@live.com)

转转 推荐算法部 技术负责人

多年来一直从事推荐系统、机器学习系统相关工作。

主导构建、优化了多套推荐系统,具有丰富的踩坑经验。

分享提纲

C2C市场&转转介绍

feed流推荐服务架构演变

用户画像系统架构演变

总结

分享提纲

C2C市场&转转介绍

feed流推荐服务架构演变

用户画像系统架构演变

总结

C2C市场&转转介绍

- · 真·个人对个人的marketplace
- · C2C平台的意义
 - 物品交易
 - 技能交换
 - 发现世界

C2C市场的特点和挑战

- 信息发布随意性
- 商品库存唯一性
- 买卖时效敏感性

分享提纲

C2C市场&转转介绍

feed流推荐服务架构演变

用户画像系统架构演变

总结

石器时代

粗粒度个性化推荐

问题

个性化程度低

召回维度单一

复用率低

缓存效率低

青铜时代

细粒度多维度个性化推荐

主要改进

细粒度个性化

•类别级->单品级

增加召回维度

●CF+画像

增强数据复用性

●用户->商品=用户->X + X->商品

效果:转化率共提升78%

工业革命I

实时推荐系统

主要改进

离线挖掘实时化

●商品画像、CF关系等重要数据

用户兴趣实时化

•实时兴趣效果优于离线兴趣

效果:转化率共提升89%

还在持续提升中

工业革命II

机器学习驱动的推荐系统

主要改进

基于ML的排序模型

●目标明确、可量化的排序策略

基于ML的召回模型

•提升召回质量,把好相关性第一关

基于ML的用户兴趣模型

•基于过去预测未来,摆脱拍脑袋决策

效果:转化率总提升109%

还在持续提升中

推荐系统演变主线总结 型化 时化 序多维 精细化

未来发展方向

实时化

- •特征实时化
- ●模型实时化

模型化

- •召回模型化
- ●模型复杂化

分享提纲

C2C市场&转转介绍

feed流推荐服务架构演变

用户画像系统架构演变

总结

面向用户画像的用户画像

用户画像第一原则:做有用的用户画像

有效连接

细致刻画

寻求差异

多维度用户画像

问题

生效时间不统一

使用方式不统一

管理升级不统一

多维度商品画像统一生成框架

如何更好地预测用户兴趣?

- 用户画像=物品画像+兴趣模型
- 老方法:基于规则
 - 不同时间发生的不同行为赋予不同权重
 - 将权重做累加计算
- 问题
 - 拍脑袋规则量化不准确
 - 无法合理利用负反馈

机器学习驱动的用户兴趣模型

机器学习的优势

利用负反馈

规则量化

探索扩展

画像系统演变主线总结

未来发展方向

维度更精细

模型更准确

兴趣 更发散 综合
兴趣体

广告:招聘高级推荐算法& 架构工程师 (zhangxy@live.com)

如有需求,欢迎至[讲师交流会议室]与我们的讲师进一步交流

