Méthodes de localisation par Apriltag à l'usage d'un dirigeable autonome Projet Cobra

Localisation par Apriltag

1. Principe

2. Théorie

3. Choix d'une configuration

1. Principe

Utilisation

Apriltags:

https://april.eecs.umich.edu/software/apriltag

Matériel à disposition

Nano-ordinateurs:

- Raspberry Pi Zero 2 W
- Raspberry Pi 5

Caméras:

- Pi Camera module V2
- Pi Camera module V3
- Pi Camera module V3 Wide

Feuilles A4 avec **tags**:

Code

Tag36h11

TagCircle21h7

TagCircle49h12

TagCustom48h12

Raspberry Pi OS

Système d'exploitation :

Raspberry Pi OS

Bibliothèques utilisées :

- Récupération des images : Picamera2
- Détection des tags : dt-apriltags
- Traitement d'image : **OpenCV**
- Calcul matriciel: Numpy

Avantages et inconvénients

Avantages	Inconvénients
 Relativement économique Précision suffisante (quelques cm) Tags simples à installer 	 Sensible à luminosité Dépend du champ de vision de la caméra Nécessite l'installation de tags sur le sol

2. Théorie

Calibration de la caméra

P.image distordue P.image rectifiée

Distorsion Radiale

$$\chi_{0} = \chi \left(1 + K_{1} \eta^{2} + K_{2} \eta^{4} + K_{3} \eta^{6} \right)$$

$$y_{0} = y \left(1 + K_{1} \eta^{2} + K_{2} \eta^{4} + K_{3} \eta^{6} \right)$$

(x,y)

- - - •
- P.image distordue
- P.image rectifiée

Distorsion Tangentielle

$$\chi_{0} = \chi + \left[2 \frac{1}{1} x y + \frac{1}{12} (n^{2} + 2x^{2}) \right]$$

$$y_{0} = y + \left[\frac{1}{12} (n^{2} + 2y^{2}) + 2 \frac{1}{12} x y \right]$$

Rectification de l'image

Détection du tag et algorithme pour la localisation

Detector.detect(img_undistored)

tag_id : identifiant du tag

center : coordonnées du centre du tag

pose_R: (matrice 3x3)

pose_t : (vecteur)

Algorithme pour la localisation

pose_R (matrice 3x3)
pose_t (vecteur)
matrice intrinsèque
position du tag par rapport au sol

Position de la caméra/sol Son orientation

3. Choix d'une configuration

- Différentes mesures pour choisir la bonne configuration.
- A notre disposition : Deux nano-ordinateurs et 3 caméras.
- Mesures à une distance fixe d'un tag :
 - O Précision de position et d'angle : fil à plomb et mètre ruban
 - O Temps de rafraîchissement : chronomètre implémenté dans le code
 - Consommation électrique : multimètre USB
- Environnement de test : Lumière, distance, configuration... identiques pour assurer la répétabilité de l'expérience.

Précision et temps de rafraîchissement

Caméra : Position (0,0,1275) et Angle (0,0,0) Tag : Position (0,0,0) et Angle (0,0,0)														
Résolution	Pi Camera V2			Pi Camera V3			Pi Camera V3 Wide							
	Temp: rafraîchisse		Position xyz	Angle (°)	Temps rafraîchisse		Position xyz	xyz (°)			Temps rafraîchisse		Position xyz	Angle (°)
	Pi 0	Pi 5	- (mm)		Pi 0	Pi 5	- (mm)		Pi 0	Pi 5	- (mm)			
640 x 480 (recadrage)	Re	cadrage tr	op importan	t										
1536 x 864 (recadrage)					0.23	0.06	(7.67, 13.28, 1300.74)	(1.92, -2.60, -1.44)	0.24	0.04	(2.50, -7.21, 1281,49)	(1.30, 1.94, 0.81)		
1640 x 1232	0.27		(-3.13, 4.91, 1274.82)	(-0.41, -0.80, -0.41)										
1920 x 1080 (recadrage)	Recadrage trop important													
3280 x 2464	Mémoire insuffisante		(-1.07, 2.20, 1252,90)	(1.67, -0.88, -2.66)										
4608 x 2592					Mémoire insuffisante	0.51	(5.33 , -4.52, 1198.05)	(1.09, -2.73, 1.22)	Mémoire insuffisante	0.40	(-7.14, -6.21, 1280.54)	(1.64, -0.78, -0.54)		

Temps de rafraîchissement

Précision

Choix d'une résolution

- Résolutions élevées : (3280 x 2464 et 4608 x 2592)
 - Raspberry Pi 0 : Pas assez de mémoire 🔀
 - Raspberry Pi 5 : Temps de rafraîchissement trop élevé X
 - Bonne précision
- Résolutions moyennes : (1640 x 1232 et 1536 x 864)
 - Raspberry Pi 0 : Temps de rafraîchissement trop élevé X
 - Raspberry Pi 5 : Temps de rafraîchissement idéal
 - Bonne précision

Choix d'une caméra

- Pi Camera V3 Wide : Plus large champ de vision malgré le recadrage 🔽
- Pi Camera V2 : Précision légèrement meilleure (≈ 5mm), mais champ de vision légèrement moins bon
- Pi Camera V3 : Faible champ de vision 🔀

Pi Camera V3 (recadrage)

Pi Camera V2

Pi Camera V3 Wide (recadrage)

Masse et consommation, choix d'une carte

Masse et consommation					
Carte	Masse (g)	Consommation moyenne (W)			
Pi 0	12	1.8			
Pi 5	66	7			

<u>Problème</u>: Masse de la Pi 5 trop élevée, et puissance de calcul de la Pi 0 trop faible.

Solution:

- Compute module, puissance d'une Pi 5 mais masse de 16g!
- Inconvénient : Nécessite un PCB supplémentaire.

Bilan

• Configuration choisie :

o Carte : Pi 5 Compute Module

o Caméra : Pi Camera V3 Wide

o Résolution : 1536 x 864 px

Performances attendues					
	0-1 cm selon x et y, et 0-8 cm selon				
Erreur absolue de position à 1,275 m du sol	z				
Erreur absolue d'angle à 1,275 m du sol	0-3° sur les 3 angles				
Temps de rafraîchissement	0,05 s, soit 20 Hz				
Consommation	7 W				
Masse	20 g				

Pistes d'améliorations

- Calibration
- Position de la caméra
- Taille des tag
- Nombre de tags (moyennage des positions)

Bibliographie

Localisation via la vision avec la bibliothèque Apriltags, Gilles Arthur FADE, Anthony JUTON, Revue 3EI

https://april.eecs.umich.edu/software/apriltag

https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html

https://github.com/elenagiraldo3/april tags autolocalization

https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html

Comparaison des différentes solutions

Solution	Avantages	Inconvénients	Précision
Accéléromètre	Léger, compact, facile à utiliser	Mesure uniquement une variation de position, risque de dérive, ne peut être utilisé seul	± 2° pour le lacet
GPS-Indoor (ultrason)	Précis, insensible aux perturbations électromagnétiques	Obstruction possible des ondes sonores, nécessite d'installer des balises actives, coût, masse	± 2 cm
Télémètre (infrarouge)	Rapide, petit, léger	Portée limitée à 8 m, sensible à la nature du sol, mesure sur 1 axe uniquement	±1 cm
Vision (Apriltags)	Position complète avec orientation, tags peu chers et faciles à installer	Obstruction possible des tags, sensible à luminosité, nécessite l'installation de tags	±1 cm selon x et y, ±10 cm selon z ±3° pour les 3 angles