

#### УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

| Группа_ М3205                     | К работе допущен |
|-----------------------------------|------------------|
| Студент Тросько Виктория Игоревна | Работа выполнена |
| Преподаватель Хвастунов Николай   | Отчет принят     |

Николаевич

# Рабочий протокол и отчет по лабораторной работе № 1.01

Моделирование случайной величины и исследование ее распределения

1. Цель работы.

Исследование распределения случайной величины на примере многократных измерений определенного интервала времени

- 2. Задачи, решаемые при выполнении работы.
  - 1. Провести многократные измерения определенного интервала времени.
  - 2. Построить гистограмму распределения результатов измерения.
  - 3. Вычислить среднее значение и дисперсию полученной выборки.
  - 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального \_ \_ распределения средним значением и дисперсией
- 3. Объект исследования.

Случайная величина - результат измерения заданного 6-секундного интервала времени

интервала времени
4. Метод экспериментального исследования.

Многократное измерение 6-секундного интервала времени и проверка распределения значений этой случайной величины

5. Рабочие формулы и исходные данные.

$$\rho(t) = \frac{1}{\sigma \sqrt{2 N}} \exp\left(-\frac{(t - \langle t \rangle)^2}{26^2}\right) \quad \text{-} \quad \text{функция Гаусса} \qquad \rho_{\text{max}} = \frac{1}{\sigma \sqrt{2 I I}} \quad \text{-} \quad \text{максимальная "высота" пирамиды}$$
 
$$\langle t \rangle_N = \frac{1}{N} \sum_{i=1}^N t_i \quad \text{-} \quad \text{выборочное среднее}$$
 
$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (t_i - \langle t \rangle_N)^2} \quad \text{-} \quad \text{выборочное среднеквадратичное}$$
 
$$\sigma_{N-1} = \frac{1}{N-1} \sum_{i=1}^N (t_i - \langle t \rangle_N)^2 \quad \text{-} \quad \text{выборочное среднеквадратичное}$$
 
$$\sigma_{N-1} = \frac{N-1}{N-1} \sum_{i=1}^N (t_i - \langle t \rangle_N)^2 \quad \text{-} \quad \text{выборочное среднеквадратичное}$$
 
$$\sigma_{N-1} = \frac{N-1}{N-1} \sum_{i=1}^N (t_i - \langle t \rangle_N)^2 \quad \text{-} \quad \text{выборочное среднеквадратичное}$$
 
$$\sigma_{N-1} = \frac{N-1}{N-1} \sum_{i=1}^N (t_i - \langle t \rangle_N)^2 \quad \text{-} \quad \text{выборочное среднеквадратичное}$$
 
$$\sigma_{N-1} = \frac{N-1}{N-1} \sum_{i=1}^N (t_i - \langle t \rangle_N)^2 \quad \text{-} \quad \text{вероятность попадания в интервал}$$
 
$$\sigma_{N-1} = \frac{N-1}{N-1} \sum_{i=1}^N (t_i - \langle t \rangle_N)^2 \quad \text{-} \quad \text{вероятность попадания в интервал}$$

6. Измерительные приборы.

| № п/п | Наименование | Тип прибора | Используемый<br>диапазон | Погрешность<br>прибора |
|-------|--------------|-------------|--------------------------|------------------------|
| 1     | секундомер   | цифровой    | 0 – 59c                  | <b>0.005</b> c         |
| 2     | Часы         | цифровой    | 0-24ч                    | 0.5c                   |
| 3     |              |             |                          |                        |
| 4     |              |             |                          |                        |

## 7. Схема установки (перечень схем, которые составляют Приложение 1).

Устройство, в котором происходит периодический процесс с частотой порядка нескольких десятых долей герца (часы с секундной стрелкой) , и секундомер с ценой деления не более  $0.01 \, \mathrm{c}$  . Интервал времени составляет 6c.

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

| Nº | $t_i$ , c | $t_i - \langle t \rangle_N$ , c | $(t_i - \langle t \rangle_N)^2 \cdot 10$ , c |
|----|-----------|---------------------------------|----------------------------------------------|
| 1  | 6,02      | 0,05                            | 0,02                                         |
| 2  | 5,85      | -0,12                           | 0,15                                         |
| 3  | 6,01      | 0,04                            | 0,01                                         |
| 4  | 6,12      | 0,15                            | 0,21                                         |
| 5  | 6,15      | 0,18                            | 0,31                                         |
| 6  | 6,05      | 0,08                            | 0,06                                         |
| 7  | 5,91      | -0,06                           | 0,04                                         |
| 8  | 5,83      | -0,14                           | 0,21                                         |
| 9  | 5,72      | -0,25                           | 0,65                                         |
| 10 | 6,15      | 0,18                            | 0,31                                         |
| 11 | 6,01      | 0,04                            | 0,01                                         |
| 12 | 5,85      | -0,12                           | 0,15                                         |
| 13 | 6,07      | 0,10                            | 0,09                                         |
| 14 | 5,78      | -0,19                           | 0,38                                         |
| 15 | 6,18      | 0,21                            | 0,42                                         |
| 16 | 5,95      | -0,02                           | 0,01                                         |
| 17 | 5,92      | -0,05                           | 0,03                                         |
| 18 | 5,71      | -0,26                           | 0,70                                         |
| 19 | 6,15      | 0,18                            | 0,31                                         |
| 20 | 6,02      | 0,05                            | 0,02                                         |
| 21 | 6,03      | 0,06                            | 0,03                                         |
| 22 | 6,07      | 0,10                            | 0,09                                         |
| 23 | 6,08      | 0,11                            | 0,11                                         |
| 24 | 5,86      | -0,11                           | 0,13                                         |
| 25 | 5,77      | -0,20                           | 0,42                                         |
| 26 | 6,04      | 0,07                            | 0,04                                         |
| 27 | 6,00      | 0,03                            | 0,01                                         |
| 28 | 5,89      | -0,08                           | 0,07                                         |
| 29 | 5,98      | 0,01                            | 0,00                                         |
| 30 | 5,93      | -0,04                           | 0,02                                         |
| 31 | 5,72      | -0,25                           | 0,65                                         |
| 32 | 5,96      | -0,01                           | 0,00                                         |
| 33 | 6,01      | 0,04                            | 0,01                                         |
| 34 | 5,70      | -0,27                           | 0,75                                         |
| 35 | 5,79      | -0,18                           | 0,34                                         |
| 36 | 6,14      | 0,17                            | 0,27                                         |
| 37 | 5,99      | 0,02                            | 0,00                                         |
| 38 | 6,15      | 0,18                            | 0,31                                         |
| 39 | 6,09      | 0,12                            | 0,13                                         |
| 40 | 5,90      | -0,07                           | 0,06                                         |
| 41 | 6,03      | 0,06                            | 0,03                                         |
| 42 | 6,10      | 0,13                            | 0,16                                         |
| 43 | 6,09      | 0,12                            | 0,13                                         |
| 44 | 5,87      | -0,10                           | 0,11                                         |
| 45 | 6,16      | 0,19                            | 0,34                                         |

| 46 | 5,97                            | 0,00                                                                 | 0,00                                                    |
|----|---------------------------------|----------------------------------------------------------------------|---------------------------------------------------------|
| 47 | 6,07                            | 0,10                                                                 | 0,09                                                    |
| 48 | 5,81                            | -0,16                                                                | 0,27                                                    |
| 49 | 5,94                            | -0,03                                                                | 0,01                                                    |
| 50 | 5,97                            | 0,00                                                                 | 0,00                                                    |
| 51 | 6,08                            | 0,11                                                                 | 0,11                                                    |
| 52 | 6,03                            | 0,06                                                                 | 0,03                                                    |
| 53 | 6,01                            | 0,04                                                                 | 0,01                                                    |
| 54 | 5,89                            | -0,08                                                                | 0,07                                                    |
| 55 | 6,02                            | 0,05                                                                 | 0,02                                                    |
|    | $\langle t \rangle_N = 5,97, c$ | $\sum_{i=1}^{N} (t_i - \langle t \rangle_N) \cdot 10^{14} = 2,22, c$ | $\sigma_N = 0.13, c$ $\rho_{\text{max}} = 3.10, c^{-1}$ |

# 9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

| Границы       | ΔΝ  | $\frac{\Delta N}{N_{\Delta}t}$ , c <sup>-1</sup> | t, c | $\rho$ , c <sup>-1</sup> |      |
|---------------|-----|--------------------------------------------------|------|--------------------------|------|
| интервалов, с |     |                                                  |      |                          |      |
| 5,70          | 4   | 1,04                                             | 5,74 | 0,55                     |      |
| 5,77          |     |                                                  |      |                          |      |
| 5,77          | - 5 | 1,30                                             | 5,81 | 1,30                     |      |
| 5,84          |     |                                                  |      |                          |      |
| 5,84          | 7   | 1,82                                             | 5,88 | 2,30                     |      |
| 5,91          |     |                                                  |      |                          |      |
| 5,91          | - 8 | 0                                                | 2,08 | 5,95                     | 3,02 |
| 5,98          |     |                                                  |      |                          |      |
| 5,98          | 14  | 3,64                                             | 6,02 | 2,95                     |      |
| 6,05          |     |                                                  |      |                          |      |
| 6,05          | - 9 | 2,34                                             | 6,09 | 2,14                     |      |
| 6,12          |     |                                                  |      |                          |      |
| 6,12          | 8   | 2,08                                             | 6,16 | 1,16                     |      |
| 6,19          |     |                                                  |      |                          |      |

|                                     | Интер | вал, с | ΔΝ | $\frac{\Delta N}{N}$ | Р     |
|-------------------------------------|-------|--------|----|----------------------|-------|
|                                     | ОТ    | до     |    |                      |       |
| $\langle t \rangle_N \pm \sigma_N$  | 5,85  | 6,10   | 38 | 0,69                 | 0,68  |
| $\langle t \rangle_N \pm 2\sigma_N$ | 5,72  | 6,23   | 53 | 0,96                 | 0,95  |
| $\langle t \rangle_N \pm 3\sigma_N$ | 5,59  | 6,36   | 55 | 1,00                 | 0,997 |

# 10. Расчет погрешностей измерений (для прямых и косвенных измерений).

1. Погрешность прибора

Цена деления - 0,01с 
$$\Delta_{ux} = \frac{\text{Цена деления}}{2}$$
  $\Delta_{ux} = \frac{0,01}{2} = 0,005 \text{c}$ 

2. Коэффициент Стьюдента

$$t_{\alpha,N} \approx 2,0049$$

3. Среднеквадратичное отклонение среднего значения

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

$$\sigma_{(t)} = \sqrt{\frac{1}{55 \cdot 54} \sum_{i=1}^{55} (t_i - 5,97)^2}$$

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{55 \cdot 54} \cdot 0.89}$$

$$\sigma_{\langle t \rangle} \approx 1,73 * 10^{-2}$$

4. Дисперсия

$$\sigma^2 = \frac{\sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}{N}$$

$$\sigma^2 = \frac{8,94}{55} = 0.16$$

5. Доверительный интервал для измеряемого в работе промежутка времени  $\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$ 

$$\Delta t = 2,0049 \cdot 1,73 * 10^{-2} = 0.03$$

6. Абсолютная погрешность с учетом погрешности прибора

$$\Delta x = \sqrt{(\Delta \bar{x})^2 + \left(\frac{2}{3}\Delta_{ux}\right)^2}$$

$$\Delta x = \sqrt{0.03^2 + \left(\frac{2}{3} * 0.005\right)^2} = 0.03$$

7. Относительная погрешность измерения

$$\varepsilon_x = \frac{\Delta x}{\bar{x}} \cdot 100\%$$

$$\bar{x} = \frac{\sum_{i=1}^{N} t_i}{N}$$

$$\bar{x} = 5,97c$$

$$\varepsilon_x = \frac{0.03}{5.97} * 100\% = 0.5\%$$

## 11. Графики (перечень графиков, которые составляют Приложение 2).



## 12. Окончательные результаты.

$$t_1 \in [5,97 - 0,13; 5,97 + 0,13], P \approx 0,69$$
  
 $t_2 \in [5,97 - 0,26; 5,97 + 0,26], P \approx 0,96$   
 $t_3 \in [5,97 - 0,39; 5,97 + 0,39], P \approx 1$ 

#### 13. Выводы и анализ результатов работы.

В ходе работы мы провели многократное измерение определенного промежутка времени (6c), после чего построили гистограмму плотности относительной частоты попадания результатов измерения в выбранный интервал. Мы вычислили среднее значение и дисперсию полученной выборки результатов измерения. Мы сравнили построенную гистограмму с графиком функции Гаусса с нормальным распределением, имеющим то же среднее значение и дисперсию, после чего пришли к выводу, что полученная гистограмма не симметрична по оси ординат относительно максимального значения, однако данные гистограммы имеют сходства в поведении построенной функции.

Мы научились измерять случайные величины и понимать их свойства, а также ознакомились с их применением на практике.