Prova-04

Prof. Dr. Gustavo Teodoro Laureano Profa. Dra. Luciana Berretta Prof. Dr. Thierson Rosa Couto

Sumário

1	Grãos de milho no tabuleiro de xadrez	2
2	Índices da matriz inferior	3
3	N ao cubo	4

1 Grãos de milho no tabuleiro de xadrez

(Adaptado de FARRER, 1999) Faça um algoritmo em linguagem C que calcule e escreva o número de grãos de milho que se pode colocar em um tabuleiro de xadrez, colocando n no primeiro quadro e nos quadros seguintes o dobro de n, caso o quadro seja escuro, e a mesma quantidade de n, caso o quadro seja branco. Percorra o tabuleiro sempre da esquerda para a direita e de baixo para cima. A Figura 1 apresenta um tabuleiro de xadrez típico.

Figura 1: Tabuleiro de xadrez.

Entrada

O programa deve ler uma linha contendo um número inteiro n.

Saída

O programa deve apresentar uma linha contendo a quantidade de grãos que podem ser colocados no tabuleiro.

Exemplo

Entrada
6
Saída
570

Entrada		
11		
Saída		
1045		

2 Índices da matriz inferior

Faça um algoritmo em linguagem C que apresente os pares de índices inferiores à diagonal principal de uma matriz $m \times n$. A diagonal principal corresponde aos elementos $a_{i,i}$.

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}$$
 (1)

Entrada

O programa deve ler as dimensões m e n da matriz, onde m é o número de linhas e n o número de colunas.

Saída

O programa deve apresentar em cada linha os pares de índices de uma mesma linha. Os pares devem ser apresentados entre parênteses e separados por um ífen.

Exemplo

Entrada		
3		
3		
Saída		
(2,1)		
(3,1)-(3,2)		

Entrada			
6			
3			
Saída			
(2,1)			
(3,1)-(3,2)			
(4,1)-(4,2)-(4,3)			
(5,1)-(5,2)-(5,3)			
(6,1)-(6,2)-(6,3)			

3 N ao cubo

(IME-USP) Sabe-se que um número da forma n^3 é igual a soma de n ímpares consecutivos. Exemplo: $1^3 = 1$, $2^3 = 3+5$, $3^3 = 7+9+11$ e $4^3 = 13+15+17+19$. Dado m, determine os ímpares consecutivos cuja soma é igual a n^3 para n assumindo valores de 1 a m.

Entrada

O programa deve ler um número inteiro maior que zero.

Saída

O programa deve apresentar m linhas com a seguinte mensagem: " $k*k*k=x_1+x_2+\ldots+x_k$ ", onde $k=1,2,\ldots,m$ e x_i é a sequência de números ímpares consecutos.

Exemplo

Entrada					
4					
Saída					
1*1*1	=	1			
2*2*2	=	3+5			
3*3*3	=	7+9+11			
4 * 4 * 4	=	13+15+17+19			