

QUÍMICA NIVEL MEDIO PRUEBA 1

Miércoles 17 de noviembre de 2004 (tarde)

45 minutos

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.

8804-6110 11 páginas

7		·	Tabla perió	periód	dica						κ	4	v	9	7	0
	1		Número atómico	atómico						,						2 He 4,00
4 Be 9,01			Masa atómica	tómica							5 B 10,81	6 C 12,01	7 N 14,01	8 O 16,00	9 F 19,00	10 Ne 20,18
12 Mg 24,31		•									13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,06	17 CI 35,45	18 Ar 39,95
20 Ca 40,08	21 Sc 3 44,96	22 Ti 47,90	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,71	29 Cu 63,55	30 Zn 65,37	31 Ga 69,72	32 Ge 72,59	33 As 74,92	34 Se 78,96	35 Br 79,90	36 Kr 83,80
38 Sr 87,62	39 Y 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,94	43 Tc 98,91	44 Ru 101,07	45 Rh 102,91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,40	49 In 114,82	50 Sn 118,69	51 Sb 121,75	52 Te 127,60	53 I 126,90	54 Xe 131,30
56 Ba 37,3	56 57 † Ba La 137,34 138,91	72 Hf 178,49	73 Ta 180,95	74 W 183,85	75 Re 186,21	76 Os 190,21	77 Ir 192,22	78 Pt 195,09	79 Au 196,97	80 Hg 200,59	81 TI 204,37	82 Pb 207,19	83 Bi 208,98	84 Po (210)	85 At (210)	86 Rn (222)
88 Ra (226)	89 ‡ Ac (227)															
		58 Ce 140,12	59 Pr 140,91	60 Nd 144,24	61 Pm 146,92	62 Sm 150,35	63 Eu 151,96	64 Gd 157,25	65 Tb 158,92	66 Dy 162,50	67 Ho 164,93	68 Er 167,26	69 Tm 168,93	70 Yb 173,04	71 Lu 174,97	
	**	90 Th 232,04	91 Pa 231,04	92 U 238,03	93 N p (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)	

- A. 1 g de CH₃Cl
- B. 1 g de CH₂Cl₂
- C. 1 g de CHCl₃
- D. 1 g de CCl₄

2. ¿Cuál(es) de los siguientes compuestos tiene(n) fórmula empírica CH₂O?

- I. CH₃COOH
- II. $C_6H_{12}O_6$
- III. $C_{12}H_{22}O_{11}$
- A. Sólo II
- B. Sólo III
- C. Sólo I y II
- D. Sólo II y III

3. Considere la siguiente ecuación.

$$Fe(s)+S(s) \rightarrow FeS(s)$$

-3-

Si se calienta 10,0 g de hierro con 10,0 g de azufre para formar sulfuro de hierro(II), ¿cuál es el rendimiento teórico de FeS expresado en gramos?

- A. 10,0 + 10,0
- B. $\frac{87,91\times10,0}{55,85}$
- C. $\frac{87,91\times10,0}{32,06}$
- $D = \frac{55,85 \times 10,0}{32,06}$

- **4.** Suponiendo que la reacción se completa, ¿qué volumen de HCl (aq) de concentración 0,200 moldm⁻³ se requiere para neutralizar 25,0 cm³ de Ba(OH)₂(aq) de concentración 0,200 moldm⁻³?
 - A. 12,5 cm³
 - B. $25,0 \text{ cm}^3$
 - C. 50.0 cm^3
 - D. 75.0 cm³
- 5. Una muestra del elemento Z contiene 60% de ^{69}Z y 40% de ^{71}Z . ¿Cuál es la masa atómica relativa del elemento Z en esta muestra?
 - A. 69,2
 - B. 69,8
 - C. 70,0
 - D. 70,2
- **6.** ¿En qué se diferencian dos átomos neutros representados por los símbolos $_{27}^{59}$ Co y $_{28}^{59}$ Ni ?
 - A. Sólo en el número de neutrones.
 - B. Sólo en el número de protones y electrones.
 - C. Sólo en el número de protones y neutrones.
 - D. En el número de protones, neutrones y electrones.
- 7. El rubidio es un elemento que se encuentra en el mismo grupo de la tabla periódica que el litio y el sodio. Es probable que sea un metal que tenga
 - A. elevado punto de fusión y reaccione lentamente con el agua.
 - B. elevado punto de fusión y reaccione vigorosamente con el agua.
 - C. punto de fusión bajo y reaccione vigorosamente con el agua.
 - D. punto de fusión bajo y reaccione lentamente con el agua.

0	Cuandala		annanian an d	an an an da famer		ata da arra madica	¿cuál es el orden	- a
δ.	CHando ia	is signienies	especies se a	sponen de forma	i creciente respe	cio de sus radios	⇒chai es ei orden	corrector
•	C ddiidC ic	as significan	especies se a	oponen ae ronne	t of coloured rospe	oto ao bab inaiob,	L'ouar op or oracir	COLLECTO.

- A. Cl^- , Ar, K^+
- B. K^+ , Ar, Cl^-
- C. Cl^{-}, K^{+}, Ar
- D. Ar, Cl^-, K^+

9. De acuerdo con la teoría TRPEV, la repulsión entre los pares electrónicos en la capa de valencia disminuye en el orden

- A. par solitario-par solitario > par solitario-par enlazante > par enlazante-par enlazante.
- B. par enlazante-par enlazante > par solitario-par enlazante > par solitario-par solitario.
- C. par solitario-par solitario > par enlazante-par enlazante > par enlazante-par solitario.
- D. par enlazante-par enlazante > par solitario-par solitario > par solitario-par enlazante

10. ¿Qué molécula es lineal?

- A. SO₂
- B. CO,
- C. H₂S
- D. Cl₂O

11. ¿Por qué el punto de ebullición del PH_3 es menor que el del NH_3 ?

- A. El PH_3 es no polar mientras que el NH_3 es polar.
- B. El PH₃ no forma enlaces de hidrógeno mientras que el NH₃ forma enlaces de hidrógeno.
- C. Las fuerzas de Van der Waals en el PH₃ son más débiles que en el NH₃.
- D. La masa molar del PH₃ es mayor que la del NH₃.

- 12. ¿Qué molécula es no polar?
 - A. H₂CO
 - B. SO_3
 - C. NF₃
 - D. CHCl₃
- 13. ¿Bajo qué condiciones un mol de metano gaseoso, CH₄, ocuparía menor volumen?
 - A. $273 \text{ K y } 1,01 \times 10^5 \text{ Pa}$
 - B. 273 K y 2,02×10⁵ Pa
 - C. $546 \text{ K y } 1,01 \times 10^5 \text{ Pa}$
 - D. 546 K y 2,02×10⁵ Pa
- **14.** La temperatura de 2,0 dm³ de un gas ideal, expresada en Kelvin, se duplica y su presión se aumenta cuatro veces. ¿Cuál es el volumen final del gas?
 - A. 1,0 dm³
 - B. 2,0 dm³
 - C. 3,0 dm³
 - D. 4,0 dm³

15. Considere las siguientes ecuaciones.

Mg(s)+
$$\frac{1}{2}$$
O₂(g) → MgO(s) $\Delta H^{\Theta} = -602 \text{ kJ}$
H₂(g)+ $\frac{1}{2}$ O₂(g) → H₂O(g) $\Delta H^{\Theta} = -242 \text{ kJ}$

¿Cuál es el valor de ΔH^{Θ} (expresado en kJ) para la siguiente reacción?

$$MgO(s) + H_2(g) \rightarrow Mg(s) + H_2O(g)$$

- A. -844
- B. -360
- C. +360
- D. +844

16. ¿Para cuál de los siguientes procesos el signo de la variación de entalpía es diferente al de los otros tres?

- A. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
- B. $Na(g) \rightarrow Na^+(g) + e^-$
- C. $CO_2(s) \rightarrow CO_2(g)$
- D. $2Cl(g) \rightarrow Cl_2(g)$

17. ¿Qué reacción tiene variación de entropía, ΔS^{Θ} , positiva?

- A. $H_2O(g) \rightarrow H_2O(l)$
- B. $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$
- C. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
- D. $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

- **18.** Volúmenes iguales de dos soluciones de HCl(aq) y H₂SO₄(aq) de la misma concentración se neutralizaron completamente por separado con NaOH(aq). El calor desprendido fue *X* kJ e *Y* kJ respectivamente. ¿Qué enunciado es correcto?
 - A. X = Y
 - B. Y = 2X
 - C. X = 2Y
 - D. Y = 3X
- 19. ¿Por qué la velocidad de una reacción dada aumenta cuando las concentraciones de los reactivos aumentan?
 - A. Porque la frecuencia de las colisiones moleculares aumenta.
 - B. Porque la energía de activación aumenta.
 - C. Porque la energía cinética media de las moléculas aumenta.
 - D. Porque la constante de velocidad aumenta.
- **20.** ¿Qué enunciado es correcto cuando se refiere a la siguiente reacción?

$$4P + O \rightarrow 2R + 2S$$

- A. La velocidad de formación de R es igual a la mitad de la velocidad de desaparición de Q.
- B. La velocidad de desaparición de Q es igual a un cuarto de la velocidad de desaparición de P.
- C. Las velocidades de formación de R y S no son iguales.
- D. La velocidad de formación de S es igual al doble de la velocidad de desaparición de P.
- 21. En el proceso Haber para sintetizar amoníaco, ¿qué efectos tiene el catalizador?

	Velocidad de formación de NH ₃ (g)	Cantidad de NH ₃ (g) formado
A.	Aumenta	Aumenta
B.	Aumenta	Disminuye
C.	Aumenta	No cambia
D.	No cambia	Aumenta

22. ¿Qué sucederá si se deja que el CO₂(g) escape de la siguiente mezcla de reacción en equilibrio?

$$CO_2(g) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

- A. El pH disminuirá.
- B. El pH aumentará.
- C. El pH se mantendrá constante.
- D. El pH alcanzará el valor cero.
- 23. Considere el siguiente equilibrio para el ácido carbónico en solución $0,10 \, \text{mol} \, \text{dm}^{-3}$.

$$H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

$$HCO_3^-(aq) \rightleftharpoons H^+(aq) + CO_3^{2-}(aq)$$

¿Qué especie se halla en mayor concentración?

- A. $H_2CO_3(aq)$
- $H^+(aq)$
- C. $HCO_3^-(aq)$
- D. CO_3^{2-} (aq)
- **24.** El pH de una solución es igual a 2. Si se aumenta su pH hasta 6, ¿cuántas veces mayor es la [H⁺] en la solución original?
 - A. 3
 - B. 4
 - C. 1000
 - D. 10000

25. Considere la siguiente reacción.

$$H_2SO_3(aq) + Sn^{4+}(aq) + H_2O(l) \rightarrow Sn^{2+}(aq) + HSO_4^-(aq) + 3H^+(aq)$$

¿Qué enunciado es correcto?

- A. El H₂SO₃ es el agente reductor porque se reduce.
- B. El H₂SO₃ es el agente reductor porque se oxida.
- C. El ion Sn⁴⁺ es el agente oxidante porque se oxida.
- D. El ion Sn⁴⁺ es el agente reductor porque se oxida.

26. ¿En qué cambio se produce oxidación?

A.
$$CH_3CHO \rightarrow CH_3CH_2OH$$

B.
$$\operatorname{CrO}_4^{2-} \to \operatorname{Cr}_2\operatorname{O}_7^{2-}$$

C.
$$SO_4^{2-} \rightarrow SO_3^{2-}$$

D.
$$NO_2^- \rightarrow NO_3^-$$

27. ¿Qué sucede en el electrodo positivo de una celda voltaica y de una celda electrolítica?

	Celda voltaica	Celda electrolítica
A.	Oxidación	Reducción
B.	Reducción	Oxidación
C.	Oxidación	Oxidación
D.	Reducción	Reducción

- **28.** ¿Cuál de los siguientes compuestos tiene menor punto de ebullición?
 - A. CH₃CH₂CH(CH₃)CH₃
 - B. $(CH_3)_4C$
 - C. CH₃CH₂CH₂CH₂CH₃
 - D. CH₃CH₂OCH₂CH₃
- **29.** ¿Qué especie presentará actividad óptica?
 - A. 1-cloropentano
 - B. 3-cloropentano
 - C. 1-cloro-2-metilpentano
 - D. 2-cloro-2-metilpentano
- **30.** ¿Qué tipo de reacción representa la siguiente ecuación?

$$CH_2=CH_2 + Br_2 \rightarrow BrCH_2CH_2Br$$

- A. Sustitución
- B. Condensación
- C. Reducción
- D. Adición