Cognitive Robotics

06. Non-Parametric Filters: Discrete Filter, Particle Filter, Monte Carlo Localization

AbdElMoniem Bayoumi, PhD

Acknowledgment

 These slides have been created by Wolfram Burgard, Dieter Fox, Cyrill Stachniss and Maren Bennewitz

$$Bel(x \mid z, u) = \alpha p(z \mid x) \int_{x'} p(x \mid u, x') Bel(x') dx'$$

Discrete Filter: Piecewise Constant

Bayes Filter Algorithm

```
Algorithm Bayes_filter( Bel(x),d ):
2.
     \eta = 0
3.
      If d is a perceptual data item z then
4.
         For all x do
             Bel'(x) = P(z \mid x)Bel(x)
5.
             \eta = \eta + Bel'(x)
6.
7.
         For all x do
             Bel'(x) = \eta^{-1}Bel'(x)
8.
9.
      Else if d is an action data item u then
                                                       sum over all
                                                       discrete states
10.
         For all x do
             Bel'(x) = \sum P(x \mid u, x') Bel(x')
11.
      Return Bel'(x)
                                          motion model, Ch. 4
```

Piecewise Constant Representation

Implementation

- To update the belief, one has to iterate over all cells of the grid
- When the belief is peaked, one wants to avoid updating irrelevant aspects of the state space
- Monitor whether the robot is de-localized or not
- Consider the likelihood of the observation in the relevant components of the state space
- Assume a bounded Gaussian for the motion uncertainty

Grid-Based Localization

Sonars and Occupancy Grid Map

Summary: Discrete Filters

- Discrete filters are an alternative way for implementing the Bayes Filter
- Histograms for representing the density
- Can represent multi-modal beliefs and recover from localization errors
- Huge memory and processing requirements
- Accuracy depends on the resolution of the grid
- In practice: approximations needed

Motivation: Particle Filter

- Discrete filter
 - High memory complexity
 - In general: fixed resolution
- Particle filters are a way to efficiently represent non-Gaussian distributions
- Basic principle
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest

Example: Sample-Based Localization (Sonar)

Motivation

Goal: approach for dealing with **arbitrary distributions**

Key Idea: Samples

Use a set of weighted samples to represent arbitrary distributions

Particle Set

Set of weighted samples

$$\mathcal{X} = \left\{ \left\langle x^{[j]}, w^{[j]} \right\rangle \right\}_{j=1,...,J}$$
 state importance hypothesis weight

The samples represent the posterior

$$p(x) = \sum_{j=1}^{J} w^{[j]} \delta_{x^{[j]}}(x)$$

Particles for Approximation

Particles for function approximation

 The more particles fall into a region, the higher the probability of the region

How to obtain such samples?

Closed Form Sampling is Only Possible for Few Distributions

Example: Gaussian

How to sample from other distributions?

Importance Sampling Principle

- We can use a different distribution π to generate samples from f
- Account for the "differences between π and f " using a weight $\omega = f(x)/\pi(x)$
- target f
- proposal π
- Pre-condition:

$$f(x) > 0 \to \pi(x) > 0$$

X 18

Particle Filter

- Recursive Bayes filter
- Non-parametric approach
- Models the distribution by weighted samples
- Prediction: draw from the proposal
- Correction: weigh particles by the ratio of target and proposal

The more samples we use, the better is the estimate!

Particle Filter Algorithm

Sample the particles using the proposal distribution

$$x_t^{[j]} \sim proposal(x_t \mid \ldots)$$

2. Compute the importance weights

$$w_t^{[j]} = \frac{target(x_t^{[j]})}{proposal(x_t^{[j]})}$$

3. Resampling: Draw sample i with probability $\boldsymbol{w}_t^{[i]}$ and repeat J times

Monte Carlo Localization

- Each particle is a pose hypothesis
- Prediction: For each particle, sample a new pose from the the motion model

$$x_t^{[j]} \sim p(x_t \mid x_{t-1}^{[j]}, u_t)$$

 Correction: Weigh samples according to the observation model

$$w_t^{[j]} \propto p(z_t \mid x_t^{[j]})$$

- Resampling: Draw sample i with probability $\boldsymbol{w}_t^{[i]}$ and repeat J times

According to the estimated motion

Decompose the motion into

- Traveled distance
- Start rotation
- End rotation

- Uncertainty in the translation of the robot:
 Gaussian over the traveled distance
- Uncertainty in the rotation of the robot:
 Gaussians over start and end rotation
- For each particle, draw a new pose by sampling from three normal distributions

- Noise in odometry $u = (\delta_{rot1}, \delta_{trans}, \delta_{rot2})$
- Example: Gaussian noise

$$u \sim \mathcal{N}(0, \Sigma)$$

Reminder: Proximity Sensor Model

measured distance

Particle Filter for Localization

```
Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):
    ar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset
2: for j = 1 to J do
3: sample x_t^{[j]} \sim p(x_t \mid u_t, x_{t-1}^{[j]})
4: w_t^{[j]} = p(z_t \mid x_t^{[j]})
5: \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[j]}, w_t^{[j]} \rangle
     end for
7:
     for j = 1 to J do
                   draw i \in {1, \ldots, J} with probability \propto w_{+}^{[i]}
 8:
                   add x_t^{[i]} to \mathcal{X}_t
           endfor
10:
       return \ \mathcal{X}_t
 11:
```

MCL – Correction Step

MCL - Prediction Step

MCL – Correction Step

MCL - Prediction Step

Example: Sample-Based Localization (Sonar)

Resampling

- Repeat J times: Draw sample i with probability $w_t^{[i]}$
- Informally: "Replace unlikely samples by more likely ones"
- Survival-of-the-fittest principle
- "Trick" to avoid that many samples cover unlikely states
- Needed as we have a limited number of samples

Assumption: normalized weights

Resampling

"roulette wheel"

- Draw randomly between 0 and 1
- Binary search
- Repeat J times
- O(J log J)

initial value between 0 and 1/Jstep size = 1/J

- Systematic resampling
- Low variance resampl.
- O(J)
- Also called "stochastic universal resampling" 34

Low Variance Resampling

```
Low_variance_resampling(\mathcal{X}_t, \mathcal{W}_t):
       \mathcal{X}_t = \emptyset
1:
2: r = \text{rand}(0; J^{-1}) initialization
c = w_t^{[1]} cumulative sum of weights
4: i = 1
5: for j = 1 to J do J = #particles
             U = r + (j-1)J^{-1} step size = 1/J
6:
7:
             while \ U > c decide whether or not
                 i = i + 1 to take particle i
8:
                 c = c + w_{t}^{[i]}
9:
10:
             endwhile
            add x_t^{[i]} to \bar{\mathcal{X}}_t
11:
12: endfor
13: return \bar{\mathcal{X}}_t
```


Courtesy: Thrun, Burgard, Fox 36

Courtesy: Thrun, Burgard, Fox 37

Courtesy: Thrun, Burgard, Fox 38

Courtesy: Thrun, Burgard, Fox 39

Courtesy: Thrun, Burgard, Fox 40

Courtesy: Thrun, Burgard, Fox 41

Courtesy: Thrun, Burgard, Fox 42

Courtesy: Thrun, Burgard, Fox 43

Courtesy: Thrun, Burgard, Fox 44

Courtesy: Thrun, Burgard, Fox 45

Courtesy: Thrun, Burgard, Fox 46

Courtesy: Thrun, Burgard, Fox 47

Courtesy: Thrun, Burgard, Fox 48

Using Ceiling Maps for Localization

Vision-Based Localization

Under a Light

Measurement z:

Next to a Light

Measurement z:

P(z/x):

Elsewhere

Measurement z:

Global Localization Using Vision

How to deal with localization errors?

- The approach described so far is able
 - to track the pose of a mobile robot and
 - to globally localize the robot
- How can we deal with localization errors (i.e., the kidnapped robot problem)?

Approaches

- At each time step, randomly insert a fixed number of samples
- Alternatively, insert random samples proportional to the average likelihood of the particles

Summary – Particle Filters

- Particle filters are non-parametric Bayes filters
- Belief represented by a set of weighted samples
- Proposal distribution to draw the samples for the next time step
- Particle weight to account for the differences between the proposal and the target
- Re-sampling: Draw new particles with a probability proportional to the weight

Summary – PF Localization

- Particles are propagated according to the motion model
- Particles are weighted according to the likelihood of the observation
- Called: Monte-Carlo localization (MCL)
- Used in many practical localization systems
- The art is to design appropriate motion and sensor models

Acknowledgment

 These slides have been created by Wolfram Burgard, Dieter Fox, Cyrill Stachniss and Maren Bennewitz