

Deep learning basis

Jose Quesada DSR 09 Jan 2017

Smart money

Artificial intelligence deals, worldwide

The one second rule

Anything that takes a person less than one second of thought we can automate using AI either now or in the future

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species [‡]
52	6.4	3.2	4.5	1.5	versicolor
122	5.6	2.8	4.9	2.0	virginica
143	5.8	2.7	5.1	1.9	virginica
150	5.9	3.0	5.1	1.8	virginica
104	6.3	2.9	5.6	1.8	virginica
107	4.9	2.5	4.5	1.7	virginica
100	5.7	2.8	4.1	1.3	versicolor
128	6.1	3.0	4.9	1.8	virginica
55	6.5	2.8	4.6	1.5	versicolor
140	6.9	3.1	5.4	2.1	virginica
31	4.8	3.1	1.6	0.2	setosa
20	5.1	3.8	1.5	0.3	setosa
137	6.3	3.4	5.6	2.4	virginica
73	6.3	2.5	4.9	1.5	versicolor
56	5.7	2.8	4.5	1.3	versicolor
135	6.1	2.6	5.6	1.4	virginica
96	5.7	3.0	4.2	1.2	versicolor
105	6.5	3.0	5.8	2.2	virginica
86	6.0	3.4	4.5	1.6	versicolor
142	6.9	3.1	5.1	2.3	virginica
127	6.2	2.8	4.8	1.8	virginica
108	7.3	2.9	6.3	1.8	virginica
93	5.8	2.6	4.0	1.2	versicolor
39	4.4	3.0	1.3	0.2	setosa
16	5.7	4.4	1.5	0.4	setosa
126	7.2	3.2	6.0	1.8	virginica
124	6.3	2.7	4.9	1.8	virginica
66	6.7	3.1	4.4	1.4	versicolor
42	4.5	2.3	1.3	0.3	setosa
60	5.2	2.7	3.9	1.4	versicolor

Predictions

Deep learning solves a central problem in 'representation': it learns representations that are expressed in terms of other, simpler representations

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species	
52	6.4	3.2	4.5	1.5	versicolor	
122	5.6	2.8	4.9	2.0	virginica	
143	5.8	2.7	5.1	1.9	virginica	
150	5.9	3.0	5.1	1.8	virginica	
104	6.3	2.9	5.6	1.8	virginica	
107	4.9	2.5	4.5	1.7	virginica	
100	5.7		4.1	1.3	versicolor	
128	6.1			1.8	virginica	
55				1.5	versicolor	
140		3.1		2.1	virginica	
31		3.1	1.6		setosa	
20			1.5	\	setosa	
137	/ /3		5.6	_/ /	virginica	
73	.3		4.9		versicolor	
56	7	X	4.5		versicolo	
135		2.6		eg I	virginica	
96		3.0		þ	versicolor	
105		3.0		2.2	virginica	
86				1.6	versicolor	
142	6.5			2.3	virginica	
127	6.2		4.8	1.8	virginica	
108	7.3	2.9	6.3	1.8	virginica	
93	5.8	2.6	4.0	1.2	versicolor	
39	4.4	3.0	1.3	0.2	setosa	
16	5.7	4.4	1.5	0.4	setosa	
126	7.2	3.2	6.0	1.8	virginica	
124	6.3	2.7	4.9	1.8	virginica	
66	6.7	3.1	4.4	1.4	versicolor	
42	4.5	2.3	1.3	0.3	setosa	
60	5.2	2.7	3.9	1.4	versicolor	

Deep Learning Flow

The end of feature engineering?

And the beginning of architecture engineering?

Neurons

Outputs

Inputs

What is a neuron, and how do you represent it with math?

Structure of artificial neuron

Activation functions

Networks

Finding minima

Backpropagation

It's an algorithm that, given the error in the output of the network, tries to determine how to distribute it to the weights (determining how much each weight is responsible for the final error), so that you know how to update the weights

Based on Spreading activation, vector by matrix multiplication

ra science retreat®

ATA SCIENCE RETREAT®

GPUs vs CPUs (or why do we need nvidia?)

GPUs are designed with one goal in mind: process graphics really fast. Since this is the only concern they have, there have been some specialized optimizations in place that allow for certain calculations to go a LOT faster than they would in a traditional processor.

Most deep learning libraries - and in fact most software applications in general - just use a single thread. This means that multi-core CPUs are rather useless.

	(Desktop CPU				Server CPU					GPU			
		1	2	4	8	1	2	4	8	16	32	G.980	G.1080	T.K8
FCN-5	Caffe	0.919	0.495	0.480	-	0.769	0.446	0.354	0.269	0.287	0.688	0.020	0.017	0.028
	CNTK	2.351	1.239	0.961	0.810	2.311	1.229	0.827	0.546	0.530	0.549	0.043	0.033	0.052
	TF	7.205	4.904	2.626	1.933	7.449	5.203	2.803	1.574	0.857	0.594	0.071	0.063	0.098
	Torch	1.227	0.655	0.661	-	1.030	0.740	0.535	0.440	0.425	0.892	0.044	0.039	0.056
FCN-8	Caffe	1.035	0.857	0.572	-	0.888	0.613	0.391	0.319	0.316	0.810	0.023	0.019	0.033
	CNTK	2.641	1.402	1.393	0.919	2.514	1.391	0.884	0.633	0.579	0.653	0.048	0.037	0.059
	TF	7.166	4.863	2.629	1.955	7.759	5.198	2.896	1.577	0.891	0.619	0.074	0.065	0.106
İ	Torch	1.316	0.706	0.448	0.881	1.106	0.774	0.559	0.475	0.443	0.975	0.046	0.046	0.057
AlexNet	Caffe	2.507	1.492	1.005	1.460	1.917	1.281	0.975	0.996	1.035	1.239	0.042	0.038	0.089
	CNTK	6.661	3.556	2.123	4.232	6.716	3.966	2.618	1.987	1.446	1.578	0.052	0.043	0.089
	TF	3.192	2.219	1.346	1.134	3.720	2.671	1.416	0.812	0.516	0.627	0.037	0.012	0.064
	Torch	4.689	2.473	2.090	4.012	3.293	1.883	1.156	1.145	1.083	1.182	0.036	0.034	0.073
	Caffe	7.810	5.312	4.056	5.876	6.150	5.390	4.314	4.124	4.500	5.034	-	0.208	0.353
ResNet	CNTK	-	5-	-	-	j I -	-	8-1	S-1	-	-	0.289	0.261	0.468
	TF	21.63	12.19	7.655	6.340	20.49	14.340	7.703	4.600	2.890	3.937	0.226	0.085	0.392
	Torch	12.10	7.147	-	-	10.16	6.928	4.856	3.757	3.524	4.165	0.216	0.181	0.412
LSTM-32	CNTK	0.579	0.391	0.306	1.153	0.591	0.418	0.353	0.338	0.342	0.442	0.433	0.366	0.602
	TF	9.305	3.432	2.020	1.722	6.453	3.782	2.167	1.228	0.769	0.706	0.086	0.083	0.122
	Torch	4.872	2.680	2.366	3.645	4.704	2.971	2.067	1.706	1.763	2.900	0.124	0.098	0.204
LSTM-64	CNTK	1.026	0.690	0.535	1.860	1.043	0.756	0.622	0.585	0.648	0.790	0.779	0.649	1.052
	TF	11.69	7.292	3.515	3.476	12.76	7.823	4.402	2.524	1.590	1.469	0.178	0.173	0.233
	Torch	9.622	5.323	4.980	6.975	9.364	5.613	4.054	3.252	3.357	5.815	0.247	0.194	0.406
										-			ATA SCIENCE RE	TREAT

Source: 'Deep learning with Python', Jason Brownlee (2017) Online self-published book, with author's permission

Multilayer perceptron (simple starting point)

Quiz time. Recreating classic models with NN

A regression problem

A binary classification problem

A multiclass classification problem

MNIST multilayer perceptron in Keras

python mnist mlp baseline.py Using TensorFlow backend. Train on 60000 samples, validate on 10000 samples Epoch 1/10 4s - loss: 0.2836 - acc: 0.9189 - val loss: 0.1400 - val acc: 0.9593 Epoch 2/10 4s - loss: 0.1123 - acc: 0.9670 - val loss: 0.0932 - val acc: 0.9718 Epoch 3/10 4s - loss: 0.0724 - acc: 0.9790 - val loss: 0.0781 - val acc: 0.9767 Epoch 4/10 4s - loss: 0.0511 - acc: 0.9854 - val loss: 0.0733 - val acc: 0.9775 Epoch 5/10 4s - loss: 0.0376 - acc: 0.9896 - val loss: 0.0689 - val acc: 0.9783 Epoch 6/10 4s - loss: 0.0271 - acc: 0.9925 - val loss: 0.0643 - val acc: 0.9803 Epoch 7/10 5s - loss: 0.0206 - acc: 0.9949 - val loss: 0.0588 - val acc: 0.9818 Epoch 8/10 5s - loss: 0.0135 - acc: 0.9974 - val loss: 0.0595 - val acc: 0.9814 Epoch 9/10 5s - loss: 0.0110 - acc: 0.9977 - val loss: 0.0559 - val acc: 0.9817 Epoch 10/10 5s - loss: 0.0083 - acc: 0.9985 - val loss: 0.0581 - val acc: 0.9825 DATA SCIENCE RETREAT® Baseline Error: 1.75%

Convolutional NN

There are three types of layers in a Convolutional Neural Network:

- 1. Convolutional Layers
- 2. Pooling Layers
- 3. Fully-Connected Layers

1. Convolutional Layers

Neurons of a convolutional layer, connected to their receptive field (source: Wikipedia)

2. Pooling Layers

Max pooling with a 2x2 filter and stride = 2 (source: Wikipedia)

3. Fully-Connected Layers

They combine into an 'architecture'

What can we change?

- Regularization
- Learning rate

Minibatch size

- Augmentation
- More convolutions filters
- Dropout
- Momentum
- Better Optimizer

- 1. ReLUs (Or other state of the art activation functions)
- 2. Learning rate •
- 3. Mini batch Size
- 4. Momentum / Better Optimizer

And only if the system is learning:

5. Regularization

- 6. More convolutions filters
- 7. Dropout

Exercise: Deep net Convnet for mnist, sample architecture

Using TensorFlow backend. Train on 60000 samples, validate on 10000 samples Epoch 1/10 88s - loss: 0.2537 - acc: 0.9279 - val loss: 0.0854 - val acc: 0.9751 Epoch 2/10 97s - loss: 0.0766 - acc: 0.9773 - val loss: 0.0596 - val acc: 0.9803 Epoch 3/10 99s - loss: 0.0544 - acc: 0.9832 - val loss: 0.0451 - val acc: 0.9861 Epoch 4/10 101s - loss: 0.0423 - acc: 0.9873 - val loss: 0.0371 - val acc: 0.9880 Epoch 5/10 101s - loss: 0.0340 - acc: 0.9895 - val loss: 0.0389 - val acc: 0.9883 Epoch 6/10 100s - loss: 0.0286 - acc: 0.9910 - val loss: 0.0317 - val acc: 0.9901 Epoch 7/10 99s - loss: 0.0234 - acc: 0.9927 - val loss: 0.0327 - val acc: 0.9895 Epoch 8/10 99s - loss: 0.0189 - acc: 0.9938 - val loss: 0.0321 - val acc: 0.9899 Epoch 9/10 99s - loss: 0.0170 - acc: 0.9944 - val loss: 0.0345 - val acc: 0.9901 Epoch 10/10 100s - loss: 0.0143 - acc: 0.9957 - val loss: 0.0305 - val acc: 0.9913 DATA SCIENCE RETREAT® **CNN Error: 0.87%**

python mnist cnn.py

(optional) Hands-on time, imdb sentiment analysis

LSTM

RNN and LTSM networks

Recurrent Networks

https://web.stanford.edu/group/pdplab/pdphandbook/handbookch8.html , Elman 1990

Some issues that needed to be resolved for the network to be useful:

1. How to train the network with Back-propagation.

2. How to stop gradients vanishing or exploding during training.

Unrolling

Vanishing (and Exploding) Gradients

LSTMs contain information outside the normal flow of the recurrent network in a gated cell. Information can be stored in, written to, or read from a cell, much like data in a computer's memory

re 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used a hidden layers of a recurrent neural network.

End-to-end LSTM-based dialog control optimized with supervised and reinforcement learning

How can I help you? Call Jason Which type of phone: mobile or work? Oh, actually call Mike on his office phone Calling Michael Seltzer, work. PlaceCall

Results

When to use

Use the simplest possible model first

When to use

As a rule of thumb, SVMs are great for relatively small data sets with fewer outliers. Random forests may require more data but they almost always come up with a pretty robust model.

Deep learning algorithms require "relatively" large datasets to work well, and you also need the infrastructure to train them in reasonable time.

Deep learning algorithms require much more experience: Setting up a neural network using deep learning algorithms is much more tedious than using an off-the-shelf classifiers such as random forests and SVM

Pros and cons

PROS

- No feature engineering necessary
- Setting the state of the art for
 - computer vision
 - speech recognition and
 - some text analysis
- Full potential still unknown
- They get better with more data

CONS

- Doesn't work out of the box
 - Many choices
 - Architecture
 - Hyper parameters
 - learning algorithm
- Needs huge amounts of data
- Computationally expensive
- → lots of expensive experiments

Can we get rid of traffic lights?

