Robotic surgical tool manipulator - Recognition, control and manipulation of laparoscopic tools

Alexios Karadimos

Deparment of Electrical and Computer Engineering

Patras, September 2021

Table of Contents

- Introduction
- Robotic arm Kinematic Analysis
- Grasping
- 4 Scene and object recognition with Computer Vision
- Path Planning
- Trajectory Planning Laparoscopic tool manipulation
 - Trajectory planning in cartesian coordinates
 - Trajectory planning in joint angles space
- System Control
- ROS framework
- Experiments and Results
- 10 Conclusions and Future Work

Outline

- Introduction
- 2 Robotic arm Kinematic Analysis
- Grasping
- 4 Scene and object recognition with Computer Vision
- Path Planning
- 6 Trajectory Planning Laparoscopic tool manipulation
 - Trajectory planning in cartesian coordinates
 - Trajectory planning in joint angles space
- System Control
- ROS framework
- Experiments and Results
- 10 Conclusions and Future Work

Historical Overview of Surgical robotics

Surgical Robotics Procedure

Advantages & Disadvantages of Surgical robotics

Problem statement

Outline

- Introduction
- 2 Robotic arm Kinematic Analysis
- Grasping
- 4 Scene and object recognition with Computer Vision
 - Path Planning
- 6 Trajectory Planning Laparoscopic tool manipulation
 - Trajectory planning in cartesian coordinates
 - Trajectory planning in joint angles space
- System Control
- ROS framework
- Experiments and Results
- 10 Conclusions and Future Work

Robotic arm & DH parameters

Forward Kinematics

Inverse Kinematics - Decoupling Technique

7DoF numerical solutions

Outline

- Introduction
- Robotic arm Kinematic Analysis
- Grasping
- 4 Scene and object recognition with Computer Vision
- Path Planning
- 6 Trajectory Planning Laparoscopic tool manipulation
 - Trajectory planning in cartesian coordinates
 - Trajectory planning in joint angles space
- System Control
- ROS framework
- Experiments and Results
- 10 Conclusions and Future Work

Gripper & Forward Kinematics

Gripper Inverse Kinematics

Outline

- Introduction
- 2 Robotic arm Kinematic Analysis
- Grasping
- Scene and object recognition with Computer Vision
- Path Planning
- Trajectory Planning Laparoscopic tool manipulation
 - Trajectory planning in cartesian coordinates
 - Trajectory planning in joint angles space
- System Control
- ROS framework
- Experiments and Results
- Conclusions and Future Work

Laparoscopic tool detection

Stereoscopic vision

Calculation of tool position and orientation

Calculation of grasping points

Trocar detection & Estimation of fulcrum point

Outline

- Introduction
- 2 Robotic arm Kinematic Analysis
- Grasping
- 4 Scene and object recognition with Computer Vision
- 6 Path Planning
- Trajectory Planning Laparoscopic tool manipulation
 - Trajectory planning in cartesian coordinates
 - Trajectory planning in joint angles space
- System Control
- ROS framework
- Experiments and Results
- Conclusions and Future Work

Path Planning - Sampling methods

Pick and place algorithm

Task space analysis

Outline

- Introduction
- 2 Robotic arm Kinematic Analysis
- Grasping
- 4 Scene and object recognition with Computer Vision
- Path Planning
- Trajectory Planning Laparoscopic tool manipulation
 - Trajectory planning in cartesian coordinates
 - Trajectory planning in joint angles space
- System Control
- ROS framework
- Experiments and Results
- 10 Conclusions and Future Work

Tool pose & the Fulcrum Effect

Circular trajectory of tool tip

Circular arc trajectory of tool tip

Line segment trajectory of tool tip

Cubic Spline trajectory of tool tip

B-Spline trajectory of tool tip

Polynomials of 5th order

Planning with velocity profiles

Outline

- Introduction
- 2 Robotic arm Kinematic Analysis
- Grasping
- 4 Scene and object recognition with Computer Vision
- Path Planning
- 6 Trajectory Planning Laparoscopic tool manipulation
 - Trajectory planning in cartesian coordinates
 - Trajectory planning in joint angles space
- System Control
- **8** ROS framework
- Experiments and Results
- Conclusions and Future Work

Firm grasping algorithm & Force control

Position based visual servoing

Image based visual servoing

Outline

- Introduction
- Robotic arm Kinematic Analysis
- Grasping
- 4 Scene and object recognition with Computer Vision
 - Path Planning
- 6 Trajectory Planning Laparoscopic tool manipulation
 - Trajectory planning in cartesian coordinates
 - Trajectory planning in joint angles space
- System Control
- 8 ROS framework
- Experiments and Results
- Conclusions and Future Work

Introduction to the ROS framework

Gazebo simulation environment

Visualization with RViz

Motion Planning with Moveit

Tools, Packages and Libraries

Outline

- Introduction
- 2 Robotic arm Kinematic Analysis
- Grasping
- 4 Scene and object recognition with Computer Vision
- Path Planning
- Trajectory Planning Laparoscopic tool manipulation
 - Trajectory planning in cartesian coordinates
 - Trajectory planning in joint angles space
- System Control
- ROS framework
- Experiments and Results
- 10 Conclusions and Future Work

Robot Planner 1: Simple Movelt planning

Robot Planner 2: Simulation layout and reachability experiments

Robot Planner 3a: Circular and Circular arc trajectories in task space

Robot Planner 3b: Line segment trajectories in task space

Robot Planner 3c: Cubic Spline trajectories in task spac

Robot Planner 3d: B-Spline trajectories in task space

Robot Planner 3e: Polynomial trajectories in joint space

Robot Planner 3f: Trajectories in joint space with <u>trapezoidal velocity</u> profile

Robot Planner 3g: Trajectories in joint space with s-curve velocity profile

Robot Planner 4: Simple cube pick-and-place experiment

Robot Planner 5: Visual servoing

Outline

- Introduction
- 2 Robotic arm Kinematic Analysis
- Grasping
- 4 Scene and object recognition with Computer Vision
- Path Planning
- 6 Trajectory Planning Laparoscopic tool manipulation
 - Trajectory planning in cartesian coordinates
 - Trajectory planning in joint angles space
- System Control
- ROS framework
- Experiments and Results
- 10 Conclusions and Future Work

Conclusions & Comparison with similar projects

Future Work