

SPHERIC Beijing International Workshop 17-20 October 2017

A Two-Phase SPH Model for Sediment Transport in Free Surface Flows

Huabin Shi

Postdoc Fellow, Department of Hydraulic Engineering, Tsinghua University

Xiping Yu

Professor, Department of Hydraulic Engineering, Tsinghua University

Robert A. Dalrymple

Professor Emeritus, Department of Civil Engineering, Johns Hopkins University

SPHERIC · Beijing 18 Oct 2017

Sediment transport in violent free-surface flows

Scour around coastal structures

Tsunami-induced beach evolution

Storm-induced beach evolution

Keys to modeling:

- Simulation of violent free surface flows
- Complex coastal topography and structures
- Two-phase modeling of sediment and water

SPH + Two-Phase Modeling

Contents

- Model development
 - Governing equations for two-phase flows
 - Novel EOS for water-sediment mixture
 - SPH formulation
 - Numerical implementation
- Model validation and applications
 - Idealized cases
 - Sand dumping
 - Bed erosion by dam-break flows
- Conclusions

Model Development

What kind of two-phase SPH model?

SPH Two-Phase Models

Multi-density, Multiviscosity Fluid Model

- SPH particles for both water and 'solid'
- · Solid particle is mixture
- · Multi-immiscible-fluid

Interpenetrating-Fluid Model

- Two SPH-particle layers
- overlap
- variable smoothing length

Mixture Model

- · SPH particles for mixture
- · phase difference

SPH-DEM Model

- SPH particles for water DEM for solid
- solid-liquid interaction
- enormous computational cost

Needs

- Two-phase modeling;
- Model the water flow in granular bed materials;
- To model suspended load;
- Reduce the computational cost.

continuum two-phase formulation

+

single-SPH-particle-layer approach

What kind of two-phase SPH model?

A continuum two-phase SPH model

- Continuum two-phase formulation of water-sediment flows
- A single set of SPH particles for the whole flow domain
- Each SPH particle moves with water velocity and carries properties of the two phases
- Use volumetric fraction for sand phase (consider suspended load)
- Fluid and solid phases are interpenetrating

Initial particle distribution for the problem of 2D sand dumping

Governing equations for two-phase flows

□ Continuum two-phase formulation

$$\frac{\partial \alpha_k \rho_k}{\partial t} + \frac{\partial \left(\alpha_k \rho_k u_{k,j}\right)}{\partial x_j} = 0$$

$$\frac{\partial \left(\alpha_{k} \rho_{k} u_{k,i}\right)}{\partial t} + \frac{\partial \left(\alpha_{k} \rho_{k} u_{k,i} u_{k,j}\right)}{\partial x_{j}} = -\alpha_{k} \frac{\partial p}{\partial x_{i}} + \frac{\partial \left(\alpha_{k} \tau_{k,ij}\right)}{\partial x_{j}} + \alpha_{k} \rho_{k} g_{k,i} + F_{k,i}$$

$$k = f, s$$

lpha : volume fraction

 ρ : density

u : velocity

p: pressure

au : viscous stress

F: interphase force

■ Spatially filtering and Favre averaging

$$\frac{\partial \left(\overline{\alpha_{k}\rho_{k}}\right)}{\partial t} + \frac{\partial \left(\overline{\alpha_{k}\rho_{k}}\widetilde{u}_{k,j}\right)}{\partial x_{j}} = 0 \qquad \qquad f_{k}^{\prime o} = \frac{\overline{a_{k}r_{k}f_{k}}}{\overline{a_{k}r_{k}}}$$

$$\frac{\partial \left(\overline{\alpha_{k}\rho_{k}}\widetilde{u}_{k,i}\right)}{\partial t} + \frac{\partial \left(\overline{\alpha_{k}\rho_{k}}\widetilde{u}_{k,i}\widetilde{u}_{k,j}\right)}{\partial x_{j}} = -\overline{\alpha_{k}}\frac{\partial \overline{p}}{\partial x_{i}} + \frac{\partial \left(\tau_{k,ij}^{0} + \tau_{k,ij}^{SPS}\right)}{\partial x_{j}} + \overline{\alpha_{k}\rho_{k}}g_{i} + \overline{F}_{\text{int},i}$$

Governing equations for two-phase flows

■ Lagrangian governing equations for SPH particles

Substantial derivative $\frac{d}{dt} = \frac{\partial}{\partial t} + u_{f,j} \frac{\partial}{\partial x_j}$

$$ightharpoonup$$
 Water density $\frac{d(\alpha_f \rho_f)}{dt} = -\alpha_f \rho_f \frac{\partial u_{f,j}}{\partial x_j}$

$$\begin{aligned} \text{Water velocity} \quad & \frac{du_{f,i}}{dt} = -\frac{1}{\rho_{f0}} \frac{\partial p_f}{\partial x_i} + \frac{1}{\alpha_f \rho_f} \frac{\partial \left[\alpha_f \rho_f \left(\tau_{f,ij}^0 + \tau_{f,ij}^{SPS}\right)\right]}{\partial x_j} + g_i - \frac{\gamma \alpha_s}{\alpha_f \rho_f} \left(u_{f,i} - u_{s,i}\right) \\ & + \frac{\gamma \alpha_s}{\alpha_f \rho_f} \frac{v_f^t}{\alpha_f \text{Sc}} \frac{\partial \ln \alpha_s}{\partial x_i} \end{aligned} \end{aligned} \end{aligned} \\ \text{Interphase force: drag}$$

> Sand concentration $\frac{d\alpha_s}{dt} = -\alpha_s \frac{\partial u_{f,j}}{\partial x_j} - \frac{\partial \left[\alpha_s \left(u_{s,j} - u_{f,j}\right)\right]}{\partial x_j}$

$$\begin{array}{ll} > \text{ Sand velocity } & \frac{du_{s,i}}{dt} = -\frac{1}{\rho_s} \frac{\partial p_f}{\partial x_i} + \frac{1}{\alpha_s \rho_s} \frac{\partial \left[\alpha_s \rho_s \left(\tau_{s,ij}^0 + \tau_{s,ij}^{SPS}\right)\right]}{\partial x_j} + g_i + \frac{\gamma}{\rho_s} \left(u_{f,i} - u_{s,j}\right) \\ & - \frac{\gamma}{\rho_s} \frac{v_f^t}{\alpha_f \text{Sc}} \frac{\partial \ln \alpha_s}{\partial x_i} - \left(u_{s,j} - u_{f,j}\right) \frac{\partial u_{s,i}}{\partial x_j} & \text{inter-particle sediment momentum flux} \end{array}$$

Governing equations for two-phase flows

Turbulence formulation

$$\tau_{k,ij}^{SPS} = v_k^t \left(\frac{\partial u_{k,i}}{\partial x_i} + \frac{\partial u_{k,j}}{\partial x_i} \right)$$

 $oldsymbol{\mathcal{V}}_k^t$: turbulent viscosity coefficient

Smagorinsky model considering effect of solid particles on turbulence

$$\boldsymbol{v}_{k}^{t} = \left(C_{k}\Delta\right)^{2} \left|\boldsymbol{\mathsf{S}}_{k}\right| \left(1 - \frac{\alpha_{s}}{\alpha_{sm}}\right)^{n} \qquad \left|\boldsymbol{\mathsf{S}}_{k}\right| = \sqrt{2S_{k,ij}S_{k,ij}} \qquad S_{k,ij} = \frac{1}{2} \left(\frac{\partial u_{k,i}}{\partial x_{j}} + \frac{\partial u_{k,j}}{\partial x_{i}}\right)$$

$$\left|\mathbf{S}_{k}\right| = \sqrt{2S_{k,ij}S_{k,ij}}$$

$$S_{k,ij} = \frac{1}{2} \left(\frac{\partial u_{k,i}}{\partial x_j} + \frac{\partial u_{k,j}}{\partial x_i} \right)$$

Constitutive relations

$$\tau_{f,ij}^{0} = v_{f}^{0} \left(\frac{\partial u_{f,i}}{\partial x_{i}} + \frac{\partial u_{f,j}}{\partial x_{i}} \right)$$

$$\tau_{f,ij}^0 = v_f^0 \left(\frac{\partial u_{f,i}}{\partial x_j} + \frac{\partial u_{f,j}}{\partial x_i} \right) \qquad \tau_{s,ij}^0 = v_s^0 \left(\frac{\partial u_{s,i}}{\partial x_j} + \frac{\partial u_{s,j}}{\partial x_i} \right) - \frac{p_s}{\rho_s} \delta_{ij} \qquad v_k^0 : \text{kinetic viscosity}$$

Pressure of solid phase in dense sediment-laden flows

$$p_{s} = Fr \frac{\left(\alpha_{s} - \alpha_{*}\right)^{r}}{\left(\alpha^{*} - \alpha_{s}\right)^{s}} + \frac{b^{2}\alpha_{s}^{2}}{\left(\alpha_{s0} - \alpha_{s}\right)^{2}} \left(\mu_{f} + a\rho_{s}d_{s}^{2} \left|\mathbf{S}\right|\right) \left|\mathbf{S}\right|$$

$$v_s^0 = \frac{\eta p_s}{\rho_s |\mathbf{S}_s|}$$

enduring contact

Rheology for collision/friction

 η : friction coefficient

Novel EOS for water-sediment mixture

- Weakly Compressibility Assumption
 - > water is weakly compressible
 - > sediment is incompressible
- Novel Equation of State (EOS) for water pressure in the mixture

$$p = \frac{\rho_{f0}c_0^2}{\xi} \frac{\alpha_f \rho_f + \alpha_s \rho_{f0}}{\alpha_f \rho_f} \left[\left(\frac{\alpha_f \rho_f + \alpha_s \rho_{f0}}{\rho_{f0}} \right)^{\xi} - 1 \right] \qquad \xi = 7 \qquad \rho_{f0} = 1000 \,\text{kg/m}^3$$

☐ Corresponding Shepard filtering to damp pressure oscillation

$$\left(\overline{\rho}_{f}\right)_{a} = \frac{\sum_{b} V_{b} \left(\rho_{f}\right)_{b} W_{ab}}{\sum_{b} V_{b} W_{ab}} = \frac{\sum_{b} \frac{\left(m_{f}\right)_{b}}{1 - \left(\alpha_{s}\right)_{b}} W_{ab}}{\sum_{b} \frac{\left(m_{f}\right)_{b}}{\left(\alpha_{f} \rho_{f}\right)_{b}} W_{ab}} \qquad \left(\overline{\alpha}_{f} \rho_{f}\right)_{a} = \frac{\left(\alpha_{f} \rho_{f}\right)_{a}}{\left(\alpha_{f} \rho_{f}\right)_{a} + \left(\alpha_{s}\right)_{a} \left(\overline{\rho}_{f}\right)_{a}} \left(\overline{\rho}_{f}\right)_{a}} \qquad \left(\overline{\alpha}_{s}\right)_{a} = \frac{\left(\alpha_{f} \rho_{f}\right)_{a} + \left(\alpha_{s}\right)_{a} \left(\overline{\rho}_{f}\right)_{a}}{\left(\alpha_{f} \rho_{f}\right)_{b}} \left(\overline{\alpha}_{s}\right)_{a} = \frac{\left(\alpha_{f} \rho_{f}\right)_{a} + \left(\alpha_{s}\right)_{a} \left(\overline{\rho}_{f}\right)_{a}}{\left(\alpha_{f} \rho_{f}\right)_{a} + \left(\alpha_{s}\right)_{a} \left(\overline{\rho}_{f}\right)_{a}} \left(\overline{\rho}_{f}\right)_{a}}$$

SPH formulation

■ Position of particle *a*

$$\frac{d(X_i)_a}{dt} = (u_{f,i})_a$$

$$\frac{\partial f}{\partial x} = \sum_{b} \frac{\phi_{b}}{\phi_{a}} (f_{b} - f_{a}) \nabla_{a} W_{ab} \frac{m_{b}}{\rho_{b}}$$

$$\frac{\partial f}{\partial x} = \sum_{b} \left(\frac{\phi_{b}}{\phi_{a}} f_{a} + \frac{\phi_{a}}{\phi_{b}} f_{b} \right) \nabla_{a} W_{ab} \frac{m_{b}}{\rho_{b}}$$

□ Velocity of particle *a*

$$\frac{du_{f,i}}{dt} = -\frac{1}{\rho_{f0}} \frac{\partial p_f}{\partial x_i} + \frac{1}{\alpha_f \rho_f} \frac{\partial \tau_f}{\partial x_j} + g_i - \frac{\gamma \alpha_s}{\alpha_f \rho_f} \left(u_{f,i} - u_{s,i}\right) + \frac{\gamma \alpha_s}{\alpha_f \rho_f} \frac{v_f^t}{\alpha_f Sc} \frac{\partial \ln \alpha_s}{\partial x_i}$$

$$\begin{split} \frac{d\left(u_{f,i}\right)_{a}}{dt} &= -\frac{1}{\rho_{f0}} \sum_{b} V_{b} \Big[\Big(p_{f}\Big)_{a} + \Big(p_{f}\Big)_{b} \Big] \Big(\nabla_{a} W_{ab}\Big)_{i} + \frac{1}{\left(\alpha_{f} \rho_{f}\right)_{a}} \sum_{b} V_{b} \Big[\Big(\tau_{f,ij}\Big)_{a} + \Big(\tau_{f,ij}\Big)_{b} \Big] \Big(\nabla_{a} W_{ab}\Big)_{j} + g_{i} \\ &- \frac{\gamma_{a} \left(\alpha_{s}\right)_{a}}{\left(\alpha_{f} \rho_{f}\right)_{a}} \Big(u_{f,i} - u_{s,i}\Big)_{a} + \frac{\gamma_{a} \left(\alpha_{s}\right)_{a}}{\left(\alpha_{f} \rho_{f}\right)_{a}} \frac{\left(v_{f}^{t}\right)_{a}}{\left(\alpha_{f}\right)_{a} \operatorname{Sc}} \sum_{b} V_{b} \ln \frac{\left(\alpha_{s}\right)_{b}}{\left(\alpha_{s}\right)_{a}} \Big(\nabla_{a} W_{ab}\Big)_{i} \end{split}$$

SPH formulation

■ Water density carried by particle a

$$\frac{d(\alpha_f \rho_f)}{dt} = -\alpha_f \rho_f \frac{\partial u_{f,j}}{\partial x_i}$$

$$\frac{\partial f}{\partial x} = \sum_{b} \frac{\phi_{b}}{\phi_{a}} (f_{b} - f_{a}) \nabla_{a} W_{ab} \frac{m_{b}}{\rho_{b}}$$

$$\frac{\partial f}{\partial x} = \sum_{b} \left(\frac{\phi_{b}}{\phi_{a}} f_{a} + \frac{\phi_{a}}{\phi_{b}} f_{b} \right) \nabla_{a} W_{ab} \frac{m_{b}}{\rho_{b}}$$

$$\frac{d\left(\alpha_{f}\rho_{f}\right)_{a}}{dt} = -\left(\alpha_{f}\rho_{f}\right)_{a}\sum_{b}V_{b}\left[\left(u_{f,j}\right)_{a}-\left(u_{f,j}\right)_{b}\right]\left(\nabla_{a}W_{ab}\right)_{j}$$

■ Sediment concentration carried by particle *a*

$$\frac{d\alpha_{s}}{dt} = -\alpha_{s} \frac{\partial u_{f,j}}{\partial x_{j}} - \frac{\partial \left[\alpha_{s} \left(u_{s,j} - u_{f,j}\right)\right]}{\partial x_{j}}$$

$$\frac{d\left(\alpha_{s}\right)_{a}}{dt} = -\left(\alpha_{s}\right)_{a} \sum_{b} V_{b} \left[\left(u_{f,j}\right)_{a} - \left(u_{f,j}\right)_{b}\right] \left(\nabla_{a} W_{ab}\right)_{j}$$

$$-\sum_{b} V_{b} \left\{\left(\alpha_{s}\right)_{a} \max \left[\left(u_{s,j} - u_{f,j}\right)_{a} \left(\nabla_{a} W_{ab}\right)_{j}, 0\right] + \left(\alpha_{s}\right)_{b} \min \left[\left(u_{s,j} - u_{f,j}\right)_{b} \left(\nabla_{a} W_{ab}\right)_{j}, 0\right]\right\}$$

SPH formulation

Sediment velocity carried by particle a

$$\frac{du_{s,i}}{dt} = -\frac{1}{\rho_s} \frac{\partial p_f}{\partial x_i} + \frac{1}{\alpha_s \rho_s} \frac{\partial \left[\alpha_s \rho_s \left(\tau_{s,ij}^0 + \tau_{s,ij}^{SPS}\right)\right]}{\partial x_j} + g_i + \frac{\gamma}{\rho_s} \left(u_{f,i} - u_{s,i}\right)$$

$$-\frac{\gamma}{\rho_s} \frac{v_f^t}{\alpha_f Sc} \frac{\partial \ln \alpha_s}{\partial x_i} - \left(u_{s,j} - u_{f,j}\right) \frac{\partial u_{s,i}}{\partial x_j}$$

$$\begin{vmatrix} \frac{\partial f}{\partial x} = \sum_{b} \frac{\phi_{b}}{\phi_{a}} (f_{b} - f_{a}) \nabla_{a} W_{ab} \frac{m_{b}}{\rho_{b}} \\ \frac{\partial f}{\partial x} = \sum_{b} \left(\frac{\phi_{b}}{\phi_{a}} f_{a} + \frac{\phi_{a}}{\phi_{b}} f_{b} \right) \nabla_{a} W_{ab} \frac{m_{b}}{\rho_{b}}$$

$$\frac{d(u_{s,i})_a}{dt} = -\frac{1}{\rho_s} \sum_b V_b \left[\left(p_f \right)_a + \left(p_f \right)_b \right] \left(\nabla_a W_{ab} \right)_i + \sum_b V_b \left[\left(\frac{\tau_{s,ij}}{\alpha_s \rho_s} \right)_a + \left(\frac{\tau_{s,ij}}{\alpha_s \rho_s} \right)_b \right] \left[1 + \frac{1}{2} \ln \frac{(\alpha_s)_b}{(\alpha_s)_a} \right] \left(\nabla_a W_{ab} \right)_j$$

$$+g_{i} + \frac{\gamma_{a}}{\rho_{s}} \left(u_{f,i} - u_{s,i}\right)_{a} - \frac{\gamma_{a}}{\rho_{s}} \frac{\left(v_{f}^{t}\right)_{a}}{\left(\alpha_{f}\right)_{a}} \operatorname{Sc} \sum_{b} V_{b} \ln \frac{\left(\alpha_{s}\right)_{b}}{\left(\alpha_{s}\right)_{a}} \left(\nabla_{a} W_{ab}\right)_{i}$$

$$+ \sum_{b} V_{b} \min \left[\left(u_{s,j} - u_{f,j}\right)_{b} \left(\nabla_{a} W_{ab}\right)_{j}, 0\right] \left[\left(u_{s,i}\right)_{a} - \left(u_{s,i}\right)_{b}\right]$$

For numerical stability at interface

Upwind scheme for inter-particle sediment momentum flux

Numerical implementation

- Dynamic Boundary Condition for complex coastal structures
- □ Open-source package GPUSPH
 - Programmed with CUDA and C++
 - Parallel computation on Nvidia CUDA-enabled GPU
 - ➤ Nvidia Tesla K40c GPU, 2880 processor cores

Model Validation and Applications

Idealized cases

☐ Still water with neutrally buoyant sediment

- Still water: benchmark case for SPH models
- Pressure satisfies hydrostatic law and sediment concentration keeps unchanged
- Negligible unphysical rise of free surface

Idealized cases

☐ Settling of natural sand in still water

Control equations for idealized 1D problem of gravitational settling of natural sand in still water:

$$\frac{\partial \alpha_s}{\partial t} - \omega_s \left(1 - \alpha_s \right)^{1.65} \frac{\partial \alpha_s}{\partial x_3} = 0$$

Initial distribution of sediment concentration

$$\begin{cases} \alpha_s = \frac{\alpha_{s0}}{2} \left[1 + \cos 2\pi \left(\frac{x_3 - 0.1}{0.4} - \frac{1}{2} \right) \right] & x_3 \ge 0.1 \\ 0 & x_3 < 0.1 \end{cases}$$

Analytical solution by method of characteristics

$$\begin{cases} \alpha_s(t, x_3) = f(\zeta) \\ \zeta = x_3 + \omega_s \left[1 - f(\zeta)\right]^{1.65} t \end{cases}$$

Good agreement between numerical results and analytical solutions. $\mathcal{O}_{\scriptscriptstyle{\mathcal{S}}}$: settling velocity of an individual particle

☐ Sudden dumping of sediment from a line source into a water tank

- Evolution of sand cloud: frontal velocity, width, sediment concentration
- Vibration of free surface
- Water vortex

> Evolution of sand cloud and vibration of free surface

(a) Evolution of sand cloud in fine sediment case, t = 0 - 2.4s

(b) Vibration of free surface at initial stage of settling in coarse Sediment case, t = 0 - 0.54s

> Comparison between computed and measured results

Good agreement between computational and experimental characteristics of sand cloud

Sediment concentration of sand cloud and water vortices

☐ 3D Sudden dumping of sand block into a water tank

(a) Initial distribution of SPH particles for the sand block

(b) Bowl-like configuration of SPH particles for the sand cloud

➤ The sand cloud has a shape of bowl with the maximum concentration located at the center of the cloud, consistent with the experimental results.

Bed erosion by dam-break flows

■ Erodible sand bed

(a) Sketch of the problem

- Complex motion of free surface
- Appropriate constitutive laws for sediment stress

Conclusions

Conclusions

- □ A continuum two-phase SPH model for sediment transport in free surface flows
 - Continuum two-phase formulations
 - Single set SPH particles for sediment-water mixture
 - Novel EOS for solid-fluid mixture
 - Constitutive laws for sediment stress
- Validation of the model in idealized two-phase problems, 2D and 3D sand dumping, and bed erosion by dam-break flows
- ☐ Further application of the model to storm-wave and tsunami induced sediment transport in coastal areas

Thanks for your kind attention

■ Related papers:

- 1. Huabin Shi, Xiping Yu, Robert A. Dalrymple, 2017. Development of a two-phase SPH model for sediment laden flows. *Computer Physics Communications*, 221, 259-272.
- 2. Huabin Shi, Xiping Yu, 2017. A two-phase SPH model for sediment transport in free surface flows. Proceeding of SPHERIC Beijing Workshop.
- 3. Huabin Shi, Pengfei Si, Xiping Yu, Robert Dalrymple. Simulation of sediment transport by dam break flows using a continuum two-phase SPH model. (to be submitted)
- Looking for a postdoc position on sediment transport, fluid dynamics, coastal morphology, or application of SPH method.