SENAI

(SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL)

Heloisa Maria de Freitas, Igor Maiochi,

Kauane Cristina Bastos

TÍTULO: S.A (Situação de Aprendizagem)

2024

SUMÁRIO

1. Componentes	4
2. Câmara Escura	10
2.1 Componentes:	10
2.2 Aplicabilidade:	11
2.3 Viabilidade de Implantação:	11
2.4 Custo total do projeto:	
3. Monitor de Atividade	12
3.1 Componentes:	12
3.2 Aplicabilidade:	
3.3 Viabilidade da Implantação:	12
3.4 Custo total do projeto:	
4. Projeto Escolhido: Umidificação das Plantas	
4.1 Componentes:	
4.2 Aplicabilidade:	
4.3 Viabilidade da Implantação:	
4.4 Custo total do projeto:	
4.5 Justificativa da Escolha:	14
5. Anexos	15
5.1 Anexo 1: Câmara Escura	15
5.2 Anexo 2: Monitor de Atividade	
5.3 Anexo 3: Umidificação de Plantas	21

LISTA DE ILUSTRAÇÕES

Figura 1 -	Arduino UNO	4
Figura 2 -	Protoboard	4
Figura 3 -	Jumpers	5
Firura 4 -	Resistor	5
Figura 5 -	Sensor LDR	6
Figura 6 -	Potenciômetro	6
Figura 7 -	LCD i2c	7
Figura 8 -	LED	7
Figura 9 -	Buzzer	8
Figura 10 -	Sensor PIR	8
Figura 11 -	Sensor Ultrassônico	9
Figura 12 -	Sensor de Umidade	10
Figura 13 -	Micro-Servo	10
Figura 14 -	Projeto Câmara Escura	11
Figura 15 -	Monitor de Atividade	12
Figura 16 -	Umidificação de Plantas	13
Figura 17 -	Prática	14

1. Componentes

Os componentes são aqueles que permitem com que os projetos possuam funcionalidades. Neste tópico, serão explicados os componentes utilizados nos três projetos que serão apresentados posteriormente.

Placa Arduino Uno: Placa microcontroladora utilizada para receber e enviar sinais aos componentes por meio de pinos 14 de entrada e saída digital e 6 de entrada analógica, podendo realizar a interação com software ao ser conectado ao computador por meio de um cabo USB.

ımagem 1: Arquino Uno via vvikipeqia

Protoboard: Ferramenta que permite a conexão de diversos componentes na montagem de circuitos.

imagem ∠: Protopoard via Eletrogate

Jumpers: Pequenos fios condutores utilizados para conexões entre dois pontos em um circuito.

Imagem 3: Jumpers via Eletrogate

Resistores: Dispositivos utilizados para controle da passagem de corrente elétrica em circuitos, através da conversão de energia elétrica em energia térmica.

ımagem 4: Kesistor via Eletrogate

Sensor LDR: É um transdutor de entrada que converte a luz em valores de resistência conforme a intensidade recebida.

ımagem ɔ: Sensor LDK via **⊑ietrogate**

Potenciômetro: Componente utilizado para ajustar e calibrar valores em equipamentos, como volume de áudio, seleção de temperatura e ajustes de iluminação.

ımagem σ: Potenciometro via **Eletrogate**

LCD i2c: Módulo I2C é utilizado para comunicação entre o display LCD alfanumérico com o Arduino, sendo necessário apenas dois pinos.

Imagem 7: LCD i2c via <u>Eletrogate</u>

LED: O Diodo Emissor de Luz é um componente eletrônico que emite luz pela através da passagem de corrente elétrica.

ımagem δ: LED via <u>⊏ietrogate</u>

Buzzer: É um componente eletrônico que converte um sinal elétrico em onda sonora, este dispositivo é utilizado para sinalização sonora, sendo aplicado em computadores, despertadores, carros, entre outros.

ımagem y: buzzer via ∟ietrogate

Sensor de PIR: É uma ferramenta amplamente utilizada em diversas aplicações para automação, segurança e controle. Tem capacidade de detectar movimentos.

ımagem 10: Sensor ⊬ık via <u>⊨ietrogate</u>

Sensor Ultrassônico: São dispositivos que emitem ondas sonoras de alta frequência e medem o tempo que levam para essas ondas serem refletidas para um objeto.

ımagem 11: Sensor ∪ıtrassonıco via <u>⊏ietrogate</u>

Sensor de umidade: O sensor de umidade opera com base na variação da resistência elétrica do solo conforme sua umidade. Consiste em duas sondas metálicas que são inseridas no solo, ou seja, quando o solo está úmido, sua resistência elétrica é menor devido à presença de água, permitindo que a corrente elétrica flua mais livremente entre as sondas.

ımagem 12: Sensor de Umidade via Eletrogate

Micro-servo: É um pequeno e leve servo motor de alto desempenho, sendo capaz de produzir alto torque e possui uma excelente velocidade de operação. Sua estrutura compacta e peso leve tornam-no perfeito para uma variedade de aplicações, em especial onde o peso é um fator importante.

ımagem 13: ıvııcro-5ervo via ⊑ietrogate

2. Câmara Escura

2.1 Componentes:

Sensor LDR, Potenciômetro, LCD i2c, 1x LED, 1x Placa Arduino Uno, 1x Protoboard, Jumpers, 2x resistores de 1k Ohms.

imagem 14. Projeto Camara Escura

2.2 Aplicabilidade:

Seria utilizado na verificação de luminosidade da sala, por meio do sensor LDR, para a revelação de fotos em uma câmara escura com luz vermelha, informando se a quantidade de luz é favorável ou não por meio do LCD.

2.3 Viabilidade de Implantação:

Levando em consideração o custo, é um projeto viável porém com um objetivo e público muito específico e não essencial.

2.4 Custo total do projeto:

R\$159,80.

3. Monitor de Atividade

3.1 Componentes:

1x Protoboard, 1x resistor 1k Ohms, 1x LED 5mm vermelho, 1x Arduino Uno R3, 12x Jumpers macho/macho, 1x Buzzer Piezo, 1x Sensor PIR, 1x Sensor de Distância Ultrassônico HC-SR04.

ımagem 15: Ivionitor de Atividade

3.2 Aplicabilidade:

Utilizável no monitoramento de atividade em ambientes, por meio de um sensor PIR e sensor de distância ultrassônico é capaz de emitir sinal luminoso e sonoro ao detectar movimento e informar a distância os dados para visualização.

3.3 Viabilidade da Implantação:

Esse projeto propõe uma maneira simples e acessível para monitoramento de ambientes, podendo ser implantado em comércios, residências, em locais em que haja pontos cegos de câmeras de monitoramento, realizando sua função de forma discreta.

3.4 Custo total do projeto:

R\$168,90.

4. Projeto Escolhido: Umidificação das Plantas

4.1 Componentes:

1 arduino uno R3, 1 Sensor de umidade do solo, 1 micro servo, 1 botão, 3 leds, 3 resistores de 1k;

Imagem 16: Umidificação das Plantas

4.2 Aplicabilidade:

Este projeto é adequado para monitorar a umidade do solo em áreas específicas, como plantas ou determinados tipos de solo. Quando o botão é pressionado, o micro-

servo é ativado para simular a irrigação, proporcionando uma representação visual do processo de rega.

4.3 Viabilidade da Implantação:

Este projeto oferece uma maneira eficaz e acessível de monitorar a umidade do solo, beneficiando o cuidado das plantas. Embora não seja essencial, sua implementação é altamente viável e valiosa para garantir a saúde das plantas e áreas de cultivo.

4.4 Custo total do projeto:

R\$155,66.

4.5 Justificativa da Escolha:

Este projeto foi escolhido para ser posto em prática por ser o projeto que mais se encaixa com uma utilidade que poderia ser levada a níveis de grande escala, tanto pelo seu baixo custo quanto por poder ser melhorado para agregar a sustentabilidade onde seria implementado.

Imagem 17: Prática

5. Anexos

5.1 Anexo 1: Câmara Escura

```
//Declaração da biblioteca do LCD (I2C)
#include<LiquidCrystal_I2C.h>
#define col 16
#define lin 2
#define ende 0x20
// Declaração de variáveis
const int pinoLDR = A1;
int leitura = 0;
float tensao = 0.0;
const int Potenciometro = A0;
const int led = 3;
int valor = 0;
int brilho = 0;
LiquidCrystal_I2C lcd(ende,col,lin);
```

```
void setup()
{
 lcd.init();
 lcd.backlight();
 lcd.clear();
 pinMode(Potenciometro, INPUT);
 pinMode(pinoLDR, INPUT);
}
void loop()
{
 leitura = analogRead(pinoLDR);
 valor = analogRead(Potenciometro);
 //Faz com que o brilho do LED vermelho mude gradualmente
 brilho = map(valor, 0, 1023, 0, 255);
 analogWrite(led, brilho);
 //Calculo da Tensão
```

```
tensao = leitura1 * 5.0 / 1024.0;
if (tensao >= 1.27){
 lcd.setCursor(0,0);
 lcd.print("Revelação em");
 lcd.setCursor(0,1);
 lcd.print("procedimento!");
 delay(6000);
 lcd.clear();
} else if (tensao < 1.27){
 lcd.setCursor(0,0);
 lcd.print("Luminosidade");
 lcd.setCursor(0,1);
 lcd.print("baixa! CUIDADO!!");
 delay(1500);
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print("Fotografia");
 lcd.setCursor(0,1);
 lcd.print("em risco!!");
 delay(1500);
```

```
lcd.clear();
 }
}
5.2 Anexo 2: Monitor de Atividade
      // C++ code
      //ultrassônico
      int trig = 8;
      int echo = 7;
      long distancia = 0;
      long duracao = 0;
       //led
      int led = 13;
       //PIR sensor
      int PIRpin = 2;
      int val = 0;
      int pirstate = LOW;
       //buzzer
       int buzz = 12;
```

const int c = 261;

```
const int d = 293;
const int b = 493;
void setup()
{
 Serial.begin(9600);
 pinMode(led, OUTPUT);
 pinMode(PIRpin, INPUT);
 pinMode(echo, INPUT);
}
void loop()
{
 noTone(buzz);
 //pulse ultrassonico
 digitalWrite(trig, LOW);
 delay(10);
 digitalWrite(trig, HIGH);
 delay(10);
 digitalWrite(trig, LOW);
 duracao = pulseIn(echo,HIGH);
 delay(100);
```

```
distancia = duracao/58;
 Serial.print("\ndistancia em cm");
 Serial.print(distancia);
 //recebe estado do PIR na variavel.
 pirstate = digitalRead(PIRpin);
 Serial.print("\nEstado PIR: ");
 Serial.print(pirstate);
 //detecta sinal do PIR
 if(pirstate == HIGH){
 digitalWrite(led, HIGH);//acende o led
 tone(buzz, c);//emite som no buzzer
 delay(10);
 delay(100);
 }
 else {
 digitalWrite(led, LOW);
 delay(100);
 }
}
```

5.3 Anexo 3: Umidificação de Plantas

```
#include <Servo.h>
#define ver 10 // Definindo a entrada 2 como LED vermelho
#define ama 11 // Definindo a entrada 4 como LED azul
#define verd 12 // Definindo a entrada 7 como LED verde
#define umid A5 // Definindo a entrada A0 como o nível de umidade
#define botao 7 // Pino do botão
int umidade = 0;
Servo s;
bool botaoPressionado = false; // Variável para verificar se o botão foi pressionado
void setup() {
 pinMode(umid, INPUT);
 pinMode(ver, OUTPUT);
 pinMode(ama, OUTPUT);
 pinMode(verd, OUTPUT);
```

```
pinMode(botao, INPUT_PULLUP); // Configura o pino do botão com pull-up interno
 Serial.begin(9600);
}
void loop() {
 umidade = analogRead(umid);
 Serial.println(umidade);
 // Controle dos LEDs baseado no nível de umidade
 if (umidade < 300) {
  digitalWrite(ver, HIGH);
  digitalWrite(ama, LOW);
  digitalWrite(verd, LOW);
 } else if (umidade < 600) {
  digitalWrite(ver, LOW);
  digitalWrite(ama, HIGH);
  digitalWrite(verd, LOW);
```

```
} else {
 digitalWrite(ver, LOW);
 digitalWrite(ama, LOW);
 digitalWrite(verd, HIGH);
}
// Verifica se o botão foi pressionado
if (digitalRead(botao) == LOW && !botaoPressionado) {
 botaoPressionado = true; // Atualiza o estado do botão
 s.attach(9); // Anexa o servo
 for (int angulo = 0; angulo \leq 180; angulo ++) {
  s.write(angulo);
  delay(10);
 }
} else if (digitalRead(botao) == HIGH && botaoPressionado) {
 botaoPressionado = false; // Atualiza o estado do botão
 for (int angulo = 180; angulo >= 0; angulo--) {
```

```
s.write(angulo);

delay(10);

s.detach(); // Desanexa o servo

}

delay(10); // Pequeno atraso para estabilidade
}
```

REFERÊNCIAS

https://www.blogdarobotica.com/2020/10/05/utilizando-o-buzzer-ativo-no-arduino/#:~:text=O%20buzzer%20ativo%20possui%20um,o%20buzzer%20ativo%20no%20Arduino. https://www.makerhero.com/produto/micro-servo-9g-sg90-towerpro/ https://www.elektraautomacao.com.br/blog/?s=Sensor+de+Umidadehttps://www.bndes.gov.br/wps/portal/site/home/conhecimento/noticias/noticia/iluminacao-

<u>led#:~:text=Os%20LED%20s%C3%A3o%20dispositivos%20semicondutores,da</u> <u>s%20fontes%20de%20luz%20tradicionais</u>.

https://curtocircuito.com.br/display/alfanumerico

https://www.smartkits.com.br/modulo-serial-i2c-para-displays-

lcd#:~:text=O%20m%C3%B3dulo%20I2C%20%C3%A9%20utilizado,os%20pino s%20SCA%20e%20SCL. https://www.baudaeletronica.com.br/componenteseletronicos/potenciometros