基于Hellinger-Reissner原理的变分一致型伽辽金无网格法

汇报人: 吴新瑜

指导教师: 赵珧冰 吴俊超

汇报日期: 2023年10月11日

- > 开题内容
- > 完成情况
- > 后续安排

- > 开题内容
- > 完成情况
- > 后续安排

变分一致型的伽辽金无网格法

假定应变理论

$$oxed{\sigma_{ij}^h(oldsymbol{x}) = oldsymbol{a}_{ij}^Toldsymbol{q}(oldsymbol{x})}$$

满足积分约束条件的数值积分方案

- ・稳定节点积分法(Chen et al, 2001, 2002)
- 变分一致积分法(Chen et al, 2013)
- 一致性积分法(Duan et al, 2012)

- ・嵌套子域积分法(Wu and Wang, 2016)
- ・再生光滑梯度积分法(Wu and Wang, 2019)
- 一致投影积分法(Wang and Ren, 2023)

再生光滑梯度缺乏一个完备的变分理论基础

变分一致性的本质边界条件施加方案

本质边界条件施加方案	变分一致性	消除人工参数依赖性	避免高阶梯度计算
罚函数法(Penalty)	×	×	\checkmark
拉格朗日乘子法(LM)	×	\checkmark	\checkmark
Nitsche法	\checkmark	×	×

缺乏一种高效鲁棒的变分一致性本质边界条件施加方案

基于Hellinger-Reissner原理的变分一致型伽辽金无网格法

Hellinger-Reissner变分原理

位移离散: $u_i^h(\boldsymbol{x}) = \sum_{I=1}^{n_p} \Psi_I(\boldsymbol{x}) d_{iI}$

应力离散: $\sigma_{ij}^h(\boldsymbol{x}) = \sum_{I=1}^{n_p} \boldsymbol{a}_{ij}^T(\boldsymbol{x}) \boldsymbol{q}(\boldsymbol{x})$, in Ω_C

$$\overline{\Pi}(\boldsymbol{\sigma},\boldsymbol{u}) = \frac{1}{2} \int_{\Omega} \sigma_{ij} C_{ijkl}^{-1} \sigma_{kl} d\Omega - \int_{\Gamma^g} \boldsymbol{\sigma}_{ij} \boldsymbol{n}_j \boldsymbol{g}_i d\Gamma - \int_{\Gamma^t} u_i (\sigma_{ij} \boldsymbol{n}_j - t_i) d\Gamma + \int_{\Omega} u_i (\sigma_{ij,j} + b_i) d\Gamma$$

- ✓ 再生光滑梯度缺乏一个完备的变分理论基础 满足变分一致性
- ✓ 缺乏一种高效鲁棒的变分一致性本质边界条件施加方案 消除人工参数依赖性

- > 开题内容
- > 完成情况
- > 后续安排

进度安排

时间	研究内容	进度情况	
2022.1- 2022.6	建立基于Hellinger-Reissner原理的变分一致型伽 辽金无网格法	•	
2022.7- 2022.12	弹性力学问题的Hellinger-Reissner变分原理本质 边界条件施加方案	•	
2023.1- 2023.6	薄板问题的Hellinger-Reissner变分原理本质边界 条件施加方案	•	
2023.7- 2023.12	Hellinger-Reissner变分原理在薄板结构动力分析 中的应用,整理成果并完成论文初稿撰写	0	
2024.1- 2024.3	进一步修改完善论文,形成并提交论文终稿		
●已完成 ○正在进行			

- 10元队 ○止仕进行
- 吴俊超,吴新瑜,赵珧冰,王东东.基于赫林格-赖斯纳变分原理的一致高效无网格本质边界条件施加方法.力学学报,2022,54(9): 1-14 doi: 10.6052/0459-1879-22-151
- Junchao Wu, Xinyu Wu, Yaobing Zhao, Dongdong Wang. 《A rotation-free Hellinger-Reissner meshfree thin plate formulation naturally accommodating essential boundary conditions》. Engineering Analysis with Boundary Elements 154(2023) 122-140

悬臂梁问题

位移误差收敛图

理论误差收敛率: 位移: 3.0; 能量: 2.0

能量误差收敛图

无限大平板问题

无限大平板模型及应力云图

薄板问题

薄板模型

$$\boldsymbol{w} = \overline{\boldsymbol{w}} \quad \text{on } \Gamma_{\boldsymbol{w}}, \text{at } \boldsymbol{c}_{\boldsymbol{w}} \quad \theta_{\boldsymbol{n}} = \overline{\theta}_{\boldsymbol{n}} \quad \text{on } \Gamma_{\boldsymbol{\theta}}$$

Nitsche法:

- 稳定项中需要人工参数
- 一致项需要计算形函数高阶梯度

人工参数敏感性分析

简支方板问题

简支方板问题模型

位移误差收敛图

理论误差收敛率: 位移: 4.0; 能量: 3.0

能量误差收敛图

简支等边三角形板问题

简支等边三角形板模型及弯矩云图

本质边界条件施加效率对比

- > 开题内容
- > 完成情况
- > 后续安排

薄板问题动力分析

中心挠度误差对比图

薄板动力问题模型

目前存在问题:

所提方法在薄板结构动力分析中的结果出 现不稳定的现象,和预期结果不符。

拟采用解决方案:

- 对所提方法进行频谱分析,预测动力分析过程计算精度和稳定性
- 在时域积分采用保辛算法提高稳定性

实际工程算例

薄板 数值分析

后续安排

时间	研究内容	进度情况
2023.09	撰写弹性力学问题HR弱形式方面的毕业论文内容	•
2023.10	撰写薄板问题HR弱形式方面的毕业论文内容	0
2023.11	撰写伽辽金无网格法及本质边界条件施加方案的毕 业论文内容	
2023.12	撰写薄板问题+动力分析的毕业论文内容	
2024.01	撰写工程实践问题+引言+结论的毕业论文的内容	
	●已完成	○正在进行

恳请各位老师批评指正