# Introduction to molecular biology

Based on slides from
Sandrine Dudoit and Robert Gentleman
(Bioconductor course)

 Cells: the fundamental working units of every living organism.

Metazoa: multicellular organisms.
 E.g. humans: trillions of cells.

Protozoa: unicellular organisms.
 E.g. yeast, bacteria.



### Cells

- Each cell contains a complete copy of an organism's genome, or blueprint for all cellular structures and activities.
- Cells are of many different types (e.g. blood, skin, nerve cells), but all can be traced back to a single cell, the fertilized egg.

### **Chromosomes and DNA**



### **DNA** structure



"We wish to suggest a structure for the salt of deoxyribose nucleic acid (D.N.A.). This structure has novel features which are of considerable biological interest."

### **DNA** structure









### **DNA** structure

- A deoxyribonucleic acid or DNA molecule is a double-stranded polymer composed of four basic molecular units called nucleotides.
- · Each nucleotide comprises
  - a phosphate group;
  - a deoxyribose sugar;
  - one of four nitrogen bases:
    - · purines: adenine (A) and guanine (G),
    - pyrimidines: cytosine (C) and thymine (T).

### **DNA** structure

- Polynucleotide chains are directional molecules, with slightly different structures marking the two ends of the chains, the socalled 3' end and 5' end.
- The 3' and 5' notation refers to the numbering of carbon atoms in the sugar ring.
- The 3' end carries a sugar group and the 5' end carries a phosphate group.
- The two complementary strands of DNA are antiparallel (i.e, 5' end to 3' end directions for each strand are opposite)

### Genomes

The *genome* of a cell is the entirety of its DNA content. A genome is made of one or more *chromosomes*: contiguous piece of double-stranded DNA In bacteria (prokaryotes):

- One circular circular chromosome (2-10 Mb)
- Some small chromosomes called plasmids

#### In human (eukaryote):

- 23 pairs of chromosomes = 22 autosomes pairs + 1 pair of sex chromosome (XX or XY)
- Each chromosome is 50 250 Mb
- Total genome size: 3,000,000,000 bp
- Total length of DNA in one nucleus: 2 meters!

### **DNA** replication



"It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material."

### **DNA** replication



Base pairing provides the mechanism for DNA replication.

### **DNA** replication



Collaboration of Proteins at the Replication Fork

Useful video: <a href="https://www.youtube.com/watch?v=TNKWgcFPHqw">https://www.youtube.com/watch?v=TNKWgcFPHqw</a>

### **Proteins**

Proteins are molecules that perform a huge diversity of functions in the cell:

- Structure (actin, tubulin)
- DNA replication (DNA polymerase) + repairs
- DNA transcription (DNA transcriptase)
- Transport of small molecules (hemoglobin)
- Signaling (kinases)
- Regulation (transcription factors)
- Catalyze reactions (enzymes)
- Etc. etc.



### **Proteins**



### **Proteins**





Source: https://ib.bioninja.com.au/higher-level/topic-7-nucleic-acids/73-translation/visualising-proteins.html

### **Amino acids**

### Amino acids





20 amino acido





# Amino acids

### **Amino acids**





# From DNA to proteins The Central Dogma of Molecular Biology



### Central dogma

The expression of the genetic information stored in the DNA molecule occurs in two stages:

- (i) transcription, during which DNA is transcribed into mRNA:
- (ii) translation, during which mRNA is translated to produce a protein.

DNA → mRNA → protein

Other important aspects of regulation: methylation, alternative splicing, etc.

### RNA

- A ribonucleic acid or RNA molecule is a nucleic acid similar to DNA, but
  - single-stranded;
  - ribose sugar rather than deoxyribose sugar;
  - uracil (U) replaces thymine (T) as one of the bases.
- RNA plays an important role in protein synthesis and other chemical activities of the
- Several classes of RNA molecules, including messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), and other small RNAs.

# **Transcription**

- Analogous to DNA replication: several steps and many enzymes.
- RNA polymerase synthesizes an RNA strand complementary to one of the two DNA strands.
- The RNA polymerase recruits rNTPs (ribonucleotide triphosphate) in the same way that DNA polymerase recruits dNTPs (deoxunucleotide triphospaté).
- However, synthesis is single stranded and only proceeds in the 5' to 3' direction of mRNA (no Okazaki fragments).

### **Transcription**



### messenger RNA template • But how to encode a protein sequence made of amino acids (20 different varieties) from a DNA sequence made of nucleotides (4 different varieties)?

Goal: Produce an protein sequence from a

**Translation** 

## Central dogma



The Central Dogma of Molecular Biology

Useful videos:

### The genetic code

|   |     | U                               |     | С                |     | Α                                            |     | G                                |   |
|---|-----|---------------------------------|-----|------------------|-----|----------------------------------------------|-----|----------------------------------|---|
|   | UUU | phe<br>Leucine                  | UCU | Serine<br>ser    | UAU | Tyrosine                                     | UGU | Cysteine                         | U |
| U | UUC |                                 | UCC |                  | UAC | tyr                                          | UGC | cys                              | C |
|   | UUA |                                 | UCA |                  | UAA | STOP codon                                   | UGA | STOP codon<br>Tryptonphan<br>trp | Α |
|   | UUG |                                 | UCG |                  | UAG |                                              | UGG |                                  | G |
|   | CUU | Leucine<br>leu                  | CCU | Proline<br>pro   | CAU | Histidine<br>his<br>Glutamine<br>gin         | CGU | Arginine<br>arg                  | U |
| c | CUC |                                 | CCC |                  | CAC |                                              | CGC |                                  | С |
| - | CUA |                                 | CCA |                  | CAA |                                              | CGA |                                  | Α |
|   | CUG |                                 | CCG |                  | CAG |                                              | CGG |                                  | G |
|   | AUU | Isoleucine<br>ile               | ACU | Threonine<br>thr | AAU | Asparagine<br>asn<br>Lysine<br>lys           | AGU | Serine<br>ser<br>Arginine<br>arg | U |
| Α | AUC |                                 | ACC |                  | AAC |                                              | AGC |                                  | С |
|   | AUA |                                 | ACA |                  | AAA |                                              | AGA |                                  | Α |
|   | AUG | Methionine<br>met (start codon) | ACG |                  | AAG |                                              | AGG |                                  | G |
|   | GUU | UC Valine<br>UA val             | GCU | Alanine<br>ala   | GAU | Aspartic acid<br>asp<br>Glutamic acid<br>glu | GGU | Glycine<br>gly                   | U |
| G | GUC |                                 | GCC |                  | GAC |                                              | GGC |                                  | С |
| Ĭ | GUA |                                 | GCA |                  | GAA |                                              | GGA |                                  | Α |
|   | GUG |                                 | GCG |                  | GAG |                                              | GGG |                                  | G |

- 61 of the 4<sup>3</sup>=64 triplets of nucleotide (called a codon) are translated to amino acids
- Much redundancy: most aa are encoded by multiple codons
  - Most redundancy is a 3<sup>rd</sup> codon position

#### Special cases:

- ATG encode Met but also means START
- TAA|TAG|TGA = STOP

### **Translation**



### **Translation**

#### Ribosome:

- cellular factory responsible for protein synthesis;
- a large subunit and a small subunit;
- structural RNA and about 80 different proteins.

### transfer RNA (tRNA):

- adaptor molecule, between mRNA and protein;
- specific anticodon and acceptor site;
- specific charger protein, can only bind to that particular tRNA and attach the correct amino acid to the acceptor site.

### **Translation**

- 1) Ribosome searches for the first START codon (but there are many exceptions)
- From there, non-overlapping triplets (codons) are translated to an amino acid
- 3) Until the ribosome encounters an in-frame STOP codon



### **tRNA**



- The tRNA has an anticodon on its mRNA-binding end that is complementary to the codon on the mRNA.
- Each tRNA only binds the appropriate amino acid for its anticodon.