HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG KHOA CƠ BẢN 1 **BÔ MÔN TOÁN**

ĐỀ MINH HOA THI HẾT HOC PHẦN Môn: Giải tích 2

Số lượng câu hỏi: 40 câu Thời gian làm bài: 80 phút

Số báo danh: 1.29 Mã đề thi 107 Họ và tên sinh viên:... Lưu ý: Sinh viên không được sử dụng tài liệu.

Câu 1. Cho hàm $f(x,y) = \begin{cases} \frac{xy\sin x}{x^2 + 4y^2} & \text{nếu } (x,y) \neq (0,0) \\ 0 & \text{nếu } (x,y) = (0,0) \end{cases}$. Đặt $L = \lim_{(x,y) \to (0,0)} f(x,y)$. Khẳng định nào sau đây **đúng? A.** Không tồn tại $\lim_{x \to \infty} f(x,y)$.

B.
$$L = \infty$$
.

C. L = 2.

$$\mathbf{D} L = 0.$$

Câu 2. Cho hàm số $u = e^{2x+3y} \sin 2z$. Khẳng định nào dưới đây về đạo hàm riêng cấp $n \in \mathbb{N}^*$ là **đúng**?

A. $u_{x^{n-2}yz}^{(n)} = 3 \cdot 2^{n-2} e^{2x+3y} \cos 2z$.

B.
$$u_{x^{n-3}yz^2}^{(n)} = 3 \cdot 2^{n-1} e^{2x+3y} \sin 2z$$
.

C. $u_{x^{n-1}z}^{(n)} = 2^n e^{2x+3y} \cos 2z$.

D.
$$u_{x^{n-1}z}^{(n)} = 2^n e^{2x+3y} \sin 2z$$
.

Câu 3. Cho $I = \iint x^3 dy dz + y^3 dz dx + z^3 dx dy$, với S là mặt ngoài của nửa trên mặt cầu bán kính R có phương trình

 $x^2 + y^2 + z^2 = R^2; z \ge 0$. Khẳng định nào dưới đây **đúng?**

A.
$$I = \frac{6\pi}{5}R^5$$
.

B.
$$I = \frac{2\pi}{3}R^5$$
.

C.
$$I = \frac{\pi}{3} R^5$$
.

D.
$$I = \frac{3\pi}{5}R^5$$
.

Câu 4. Tính $\Phi = \iint_S z dx dy$; trong đó S là mặt ngoài của mặt cầu có phương trình $x^2 + y^2 + z^2 = 9$. Khẳng định nào sau

đây đúng?

A.
$$\Phi = 27\pi$$
.

B.
$$\Phi = 36\pi$$
.

C.
$$\Phi = 33\pi$$
.

D.
$$\Phi = 81\pi$$
.

Câu 5. Cho các hàm số f(x, y) = xy và $g(x, y) = \cos(xy)$. Khẳng định nào sau đây **đúng**?

 $\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} = -\left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\right)\sin(xy).$

B.
$$\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} = -\left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\right)\cos(xy).$$

C.
$$\frac{\partial g}{\partial x} - \frac{\partial g}{\partial y} = \left(\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y}\right) \cos(xy)$$
.

D.
$$\frac{\partial g}{\partial x} - \frac{\partial g}{\partial y} = \left(\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y}\right) \sin(xy).$$

Câu 6. Tính tích phân $I = \int_{-\infty}^{\infty} (3x + y)ds$, với C là tam giác với các đỉnh O(0,0); A(1,0); B(0,1). Khẳng định nào sau đây

đưng?

(A.) =
$$2(\sqrt{2} + 1)$$
.

B.
$$I = 2\sqrt{2} + 1$$
.

C.
$$I = 2\sqrt{2} - 1$$
.

D
$$I = \sqrt{2} \pm 2$$

Câu 7. Tính thể tích V của hình giới hạn bởi các mặt có phương trình: x = 0, y = 0, z = 0, x + y = 3, x + y - z = 0. Khẳng định nào sau đây đúng?

A. V = 6.

B.
$$V = \frac{7}{2}$$
.

C.
$$V = \frac{9}{2}$$
.

$$0 < x < 3$$

$$0 < y < 3 - 3$$

$$0 < y < 3 - 3$$

Câu 8. Chuyển $I = \iint (x^2 - y^2) dx dy$; $D = \{(x, y) \mid 0 \le x - y \le 1; \ 0 \le x + y \le 2\}$ về tích phân lặp bằng cách đổi biến x + y = u

, x - y = v. Khẳng định nào dưới đây **đúng**?

A.
$$I = \frac{1}{2} \int_{0}^{2} du \int_{0}^{1} (u - v) dv$$
. **B** $I = \frac{1}{2} \int_{0}^{2} du \int_{0}^{1} uv dv$. **C.** $I = 2 \int_{0}^{1} du \int_{0}^{2} (u^{2} - v^{2}) dv$. **D.** $I = 2 \int_{0}^{1} dv \int_{0}^{2} (u + v) du$.

$$\mathbf{B}I = \frac{1}{2} \int_{0}^{2} du \int_{0}^{1} uvd$$

C.
$$I = 2 \int_{-\infty}^{1} du \int_{-\infty}^{2} (u^2 - v^2) dv$$
.

D.
$$I = 2 \int_{0}^{1} dv \int_{0}^{2} (u+v)du$$

Câu 9. Cho hàm số $u = x^3 + y^3 + z^3 - 3xyz$ và điểm M(1; -1; 1). Khẳng định nào dưới đây **đúng? A.** $\overrightarrow{grad} \ u(M) = (6; 0; -6)$. **B.** $\overrightarrow{grad} \ u(M) = (0; 2; 6)$. **C.** $|\overrightarrow{grad} \ u(M)| = 6\sqrt{2}$. **D.** $|\overrightarrow{grad} \ u(M)| = 6\sqrt{2}$.

B.
$$\overrightarrow{grad} \ u(M) = (0; 2; 6)$$

$$\textbf{C.} |\overrightarrow{grad} \ u(M)| = 6 \sqrt{2}.$$

D.
$$\overrightarrow{grad} \ u(M) = (6; 2; 0).$$

Câu 10. Cho hàm $f(x, y) = \ln 4(x + y)$. Khẳng định nào sau đây **không đúng**?

A. $f''_{xx} = f''_{yy}$.

$$\mathbf{B.}\ f_x' = f_y'.$$

C.
$$yf'_x + xf'_y = 1$$
.

Câu 11. Cho hàm f(x, y) khả tích trong miền đóng và bị chặn D. Khẳng định nào sau đây **không đúng?**

A.
$$D: \begin{cases} a \le x \le b \\ \varphi_1(x) \le y \le \varphi_2(x) \end{cases} \Rightarrow \iint_D f(x,y) dx dy = \int_a^b \left(\int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) dy \right) dx.$$

C.
$$\iint_D dxdy = S; S \text{ là diện tích của miền } D.$$

$$\mathbf{D.} \ D : \begin{cases} c \le y \le d \\ \varphi_1(y) \le x \le \varphi_2(y) \end{cases} \Rightarrow \iint_D f(x,y) dx dy = \int_c^d \left(\int_{\varphi_1(y)}^{\varphi_2(y)} f(x,y) dx \right) dy.$$

Câu 12. Cho hàm số $f(x,y) = \frac{xy}{\sqrt{8-x^2-y^2}}$, gọi D_f là miền xác định của f. Khẳng định nào sau đây **đúng**?

A.
$$D_f = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \ge 8\}.$$

B.
$$D_f = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 8\}.$$

C.
$$D_f = \mathbb{R}^2$$
.

D.
$$D_f = \{(x, y) \in \mathbb{R}^2 \mid 8 - x^2 - y^2 \ge 0\}$$

Câu 13. Cho u = u(x, y), v = v(x, y) là các hàm số ẩn xác định từ hệ:

$$\begin{cases} x^3u^2 = y + x \\ 2y - u = x - 2v^2 \end{cases}$$

Biết rằng u(1,0) = 1, v(1,0) = 1, tính du(1,0), dv(1,0). Khẳng định nào dưới đây **đúng**?

A.
$$du(1,0) = -dx - \frac{1}{2}dy$$
, $dv(1,0) = -\frac{3}{8}dy$.

B.
$$du(1,0) = -dx + \frac{1}{2}dy$$
, $dv(1,0) = -\frac{3}{8}dy$.

C.
$$du(1,0) = dx - \frac{1}{2}dy$$
, $dv(1,0) = \frac{3}{8}dy$.

D.
$$du(1,0) = -dx + \frac{1}{2}dy$$
, $dv(1,0) = -\frac{3}{4}dy$.

Câu 14. Chuyển tích phân $I = \iint_D f(x,y) dx dy$ sang tọa độ cực ta được $I = \int_{\pi/4}^{\pi/2} d\varphi \int_{0}^{2\cos\varphi} dr$. Tìm hàm f(x,y) và miền lấy tích

phân D. Khẳng định nào dưới đây đúng?

A.
$$f(x,y) = \sqrt{x^2 + y^2}; D = \{(x,y) \mid x^2 + y^2 \le 2x; y \ge x\}$$

A.
$$f(x,y) = \sqrt{x^2 + y^2}; D = \{(x,y) \mid x^2 + y^2 \le 2x; y \ge x\}.$$
 B $f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}; D = \{(x,y) \mid x^2 + y^2 \le 2x; y \ge x\}.$

C.
$$f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}; D = \{(x,y) \mid x^2 + y^2 \ge 2x; y \le x\}$$
. D. $f(x,y) = \sqrt{x^2 + y^2}; D = \{(x,y) \mid x^2 + y^2 \ge 2x; y \le x\}$.

D.
$$f(x, y) = \sqrt{x^2 + y^2}$$
; $D = \{(x, y) \mid x^2 + y^2 \ge 2x$; $y \le x\}$

Câu 15. Tính diện tích S của mặt cầu $x^2 + y^2 + z^2 = 4a^2$, z > 0 nằm trong hình trụ $x^2 + y^2 = a^2$ với a là hằng số dương. Khẳng định nào dưới đây đúng?

A.
$$S = 8\sqrt{3}\pi a^2$$
.

B.
$$S = 2\pi a^2(\sqrt{3} + 1)$$
.

C.
$$S = 4\pi a^2 (\sqrt{3} - 1)$$
.

C.
$$S = 4\pi a^2(\sqrt{3} - 1)$$
. $S = 4\pi a^2(2 - \sqrt{3})$.

Câu 16. Tìm nghiệm tổng quát của phương trình y'' + 9y = 18x. Khẳng định nào sau đây **đúng**?

A. $y = (C_1x + C_2)e^{3x} + 9x$; C_1 , C_2 là hai hằng số tùy ý.

B. $y = C_1 \cos 3x + C_2 \sin 3x + 6x$; C_1 , C_2 là hai hằng số tùy ý.

C. $y = C_1 \cos 3x - C_2 \sin 3x + 2x$; C_1 , C_2 là hai hằng số tùy ý.

D. $y = C_1 e^{3x} + C_2 e^{-3x} + 6x$; C_1 , C_2 là hai hằng số tùy ý.

Câu 17. Cho $I = \iint_D (x+y) dx dy$, với $D = \{(x,y) \mid x^2 + y^2 \le 1, y \ge 0\}$. Khẳng định nào dưới đây **đúng**?

A.
$$I = \frac{1}{2}$$
.

B.
$$I = \frac{1}{3}$$
.

$$C.I = \frac{2}{3}$$
.

D.
$$I = \frac{2}{5}$$
.

Câu 18. Gọi z = z(x, y) là hàm số ẩn được xác định từ phương trình $e^{xy} - y^3z = 0$. Khẳng định nào dưới đây **đúng? A.** dz(0, 1) = dx + 3dy. **B.** dz(0, 1) = dx - 3dy. **C.** dz(0, 1) = 3dx - 2dy. **D.** dz(0, 1) = 2dx - 3dy.

B.
$$dz(0,1) = dx - 3dy$$
.

C.
$$dz(0,1) = 3dx - 2dy$$
.

D.
$$dz(0,1) = 2dx - 3dy$$

Câu 19. Tìm nghiệm tổng quát của phương trình $y'' + 2y' + y = e^x + e^{-x}$. Khẳng định nào sau đây **đúng**?

A. $y = (C_1 + xC_2 + \frac{1}{2}x^2)e^{-x} + \frac{1}{4}e^x$; C_1 , C_2 là hai hằng số tùy ý.

B. $y = (C_1x + C_2)e^{-x} + 9e^x$; C_1 , C_2 là hai hằng số tùy ý.

C. $y = C_1 e^x + C_2 e^{-x} + 6x e^x$; C_1 , C_2 là hai hằng số tùy ý.

D. $y = C_1 \cos x + C_2 \sin x + 2e^x$; C_1 , C_2 là hai hằng số tùy ý.

Câu 20. Tìm khối lượng m của bản phẳng D được giới hạn bởi các parabol $y = x^2$, $x = y^2$. Biết khối lượng riêng tại điểm (x, y) trên D là $\rho(x, y) = 2\sqrt{y}$. Bỏ qua đơn vị tính khối lượng, chọn đáp án **đúng**?

A.
$$m = \frac{1}{7}$$
.

B.
$$m = \frac{5}{14}$$
.

C.
$$m = \frac{3}{7}$$
.

D.
$$m = \frac{2}{7}$$
.

Câu 21. Tính $I = \iint 4((x-2)^2 + y^2) dx dy$, với $D = \{(x,y) \mid x^2 + y^2 \le 1, y \ge 0\}$. Khẳng định nào sau đây **đúng**? **D.** $I = 4\pi$. **Câu 22.** Cho hàm số $z = (x + y^2)e^{\frac{x}{3}}$ và điểm M(-3,0). Khẳng định nào sau đây **đúng**? **A.** *M* không phải là điểm dừng của *z*. **B.** *M* là điểm cực đại của *z*. **C.** *M* là điểm cực tiểu của *z*. **D.** M là điểm dừng nhưng không phải là điểm cực trị của z. **Câu 23.** Cho hàm số $z = 2x + 5y + \ln \sqrt{x^2 + y^2}$, tính $d^2z(1,0)$. Khẳng định nào sau đây **đúng**? **B.** $d^2z(1,0) = dx^2 + dxdy + dy^2$. **D.** $d^2z(1,0) = dx^2 + dxdy - dy^2$. $\mathbf{A} \cdot d^2 z(1,0) = dx^2 + dy^2.$ $C \cdot d^2 z(1,0) = -dx^2 + dy^2$ **Câu 24.** Tính tích phân $I = \iiint_V \frac{z^3}{\sqrt{x^2 + y^2}} dx dy dz$, với miền V được giới hạn bởi $x^2 + y^2 \le 2x$ và $0 \le z \le 2$. Khẳng định nào dưới đây đúng? **A.** $I = -18\pi$. **C.** I = -18. **Câu 25.** Đạo hàm riêng cấp hai $\frac{\partial^2 z}{\partial x^2}$ của hàm số hai biến $z = xe^y + e^x y^2 + 3y \sin x$ là **B.** $\frac{\partial^2 z}{\partial x^2} = e^y + 2ye^x - 3y\sin x.$ $\frac{\partial^2 z}{\partial x^2} = xe^y + e^x y^2 + y \sin x.$ **D.** $\frac{\partial^2 z}{\partial x^2} = xe^y + e^x y^2 + 3y \cos x$. C. $\frac{d^2z}{dz} = e^x y^2 - 3y \sin x$. **Câu 26.** Cho hàm ẩn z = f(x, y) xác định bởi phương trình $z = xy^3 + ye^{\frac{x}{z}}$. Giá trị nào dưới đây có thể xem là giá trị gần đúng của z(0,02;0,99)? C. 1.08. **A.** 0, 92. **D.** 1, 12. **Câu 27.** Tìm nghiệm tổng quát của phương trình vi phân $y' - \frac{y}{x} = 1$. Khẳng định nào sau đây **đúng**? **B.** $y = |x| (C + \ln |x|)$; C là hằng số tùy ý. **A.** $y = |x|(C + \ln x)$; C là hằng số tùy ý. C. $y = x(C + \ln |x|)$; C là hằng số tùy ý. **D.** $y = x(C + \ln x)$; C là hằng số tùy ý. **Câu 28.** Thay đổi thứ tự lấy tích phân $\int_{0}^{4} dy \int_{0}^{4} f(x,y)dx$. Khẳng định nào sau đây **đúng**? **A.** $\int_{-2}^{4} dy \int_{x^2}^{y+4} f(x,y) dx = \int_{-2}^{2} dx \int_{-x}^{0} f(x,y) dy + \int_{2}^{4} dx \int_{0}^{\sqrt{x}} f(x,y) dy.$ **B.** $\int_{2}^{4} dy \int_{2}^{y+4} f(x,y) dx = \int_{2}^{2} dx \int_{x}^{\sqrt{2}x} f(x,y) dy + \int_{2}^{4} dx \int_{0}^{\sqrt{x}} f(x,y) dy.$ C. $\int_{1}^{4} dy \int_{0}^{y+4} f(x,y) dx = \int_{0}^{2} dx \int_{-\infty}^{\sqrt{2}x} f(x,y) dy + \int_{2}^{8} dx \int_{-\infty}^{\sqrt{2}x} f(x,y) dy.$ $\mathbf{D.} \int_{-2}^{4} dy \int_{-2}^{y+4} f(x,y) dx = \int_{0}^{2} dx \int_{-\infty}^{\sqrt{2x}} f(x,y) dy + \int_{2}^{4} dx \int_{0}^{\sqrt{2x}} f(x,y) dy.$

Câu 29. Biết rằng $\Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 4, \sqrt{x^2 + y^2} \le z\}$, hãy chuyển tích phân $I = \iiint_{\Omega} f(x, y, z) dx dy dz$ sang hệ

tọa độ cầu. Khẳng định nào sau đây đúng?

$$\mathbf{A.} I = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/4} \sin\theta d\theta \int_{0}^{2\pi} f(r\cos\varphi\cos\theta, r\sin\varphi\cos\theta, r\sin\theta)r^{2}dr.$$

$$\mathbf{B.} I = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/4} \sin\theta d\theta \int_{0}^{2\pi} f(r\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta)r^{2}dr.$$

$$\mathbf{C.} I = \int_{0}^{2\pi} d\varphi \int_{0}^{3\pi/4} \sin\theta d\theta \int_{0}^{2} f(r\cos\varphi\cos\theta, r\sin\varphi\cos\theta, r\sin\theta) r^{2} dr.$$

$$\mathbf{D.} I = \int_{0}^{2\pi} d\varphi \int_{0}^{3\pi/4} \sin\theta d\theta \int_{0}^{2} f(r\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta) r^{2} dr.$$

D.
$$I = \int_{0}^{2\pi} d\varphi \int_{0}^{3\pi/4} \sin\theta d\theta \int_{0}^{2} f(r\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta)r^{2}dr.$$

Câu 30. Cho hàm số $f(x, y) = x^2 e^{\frac{y}{x}}$; tìm df(x, y). Khẳng định nào sau đây **đúng**?

$$\mathbf{A.} df(x,y) = e^{\frac{y}{x}} (2x - y) dx + x dy.$$

B.
$$df(x, y) = (2x + y)dx + e^{\frac{y}{x}}xdy$$
.

$$\mathbf{C.} df(x, y) = (x - 2y)dx + xdy.$$

$$\mathbf{D} df(x,y) = e^{\frac{y}{x}} \left((2x - y)dx + xdy \right).$$

Câu 31. Phương trình vi phân nào sau đây là phương trình vi phân toàn phần?

A.
$$(ye^x + 2x\sin y + 3y)dx + (e^x + x^2\cos y + 3x)dy = 0$$
.

B.
$$(ye^x + x \sin y + 5x)dx + (e^x + y \cos x + 5y)dy = 0.$$

C.
$$(ye^x + x \sin y + xy)dx + (e^x + x^2 \cos y + xy)dy = 0$$
.

D.
$$(ye^x + x\cos y - 2)dx + (e^x + y\sin x - 2)dy = 0.$$

Câu 32. Cho hàm f(x, y, z) khả tích trong miền đóng và bị chặn Ω . Khẳng định nào sau đây **không đúng?**

A.
$$\iiint_{\Omega} f(x, y, z) dx dy dz = \iiint_{\Omega} f(u, v, w) du dv dw.$$

 Ω B. f(x, y, z) khả tích trong miền Ω do đó liên tục trong Ω .

C. $\forall (x, y, z) \in \Omega : m \le f(x, y, z) \le M; V$ là thể tích hình Ω thì

$$mV \le \iiint\limits_{\Omega} f(x, y, z) dx dy dz \le MV.$$

D.
$$\Omega = \{(x, y, z) \mid (x, y) \in D; z_1(x, y) \le z \le z_2(x, y)\} \Rightarrow$$

$$\iiint\limits_{\Omega} f(x,y,z) dx dy dz = \iint\limits_{D} dx dy \int\limits_{z_{1}(x,y)}^{z_{2}(x,y)} f(x,y,z) dz.$$

Câu 33. Cho $I = \iint f(x,y) dx dy$, với D là miền được giới hạn bởi các đường $y = x^2$, y = 4. Khẳng định nào sau đây

không đúng?

$$\mathbf{A.}\ I = \int_{0}^{4} dy \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y) dx.$$

C.
$$I = \int_{-2}^{0} dx \int_{x^2}^{4} f(x, y) dy + \int_{0}^{2} dx \int_{x^2}^{4} f(x, y) dy$$
.

B.
$$I = \int_{0}^{4} dy \int_{-2}^{2} f(x, y) dx$$
.

D.
$$I = \int_{2}^{2} dx \int_{2}^{4} f(x, y) dy$$
.

Câu 34. Tìm hàm U(x, y) thỏa mãn $dU(x, y) = (6xy^2 - 3x^2y)dx + (6x^2y - x^3)dy$ và tính $I = \int_{-\infty}^{\infty} (6xy^2 - 3x^2y)dx + (6x^2y - x^3)dy$;

cung AB có phương trình $x = y^2$ và nối A(1,1) đến B(4,2). Khẳng định nào sau đây **đúng**?

A.
$$U = 3x^2y^2 - yx^3 + C$$
; C là hằng số tùy ý; $I = 62$.

B.
$$U = 6xy^2 - y^3x + C$$
; C là hằng số tùy ý; $I = 9\sqrt{3}$.

C.
$$U = 3x^2y - y^2x + C$$
; C là hằng số tùy ý; $I = 12\sqrt{3}$.

D.
$$U = 3xy^2 - y^3x^2 + C$$
; C là hằng số tùy ý; $I = 53$.

Câu 35. Tính f'(1) của hàm ẩn y = f(x) xác định bới phương trình $xy^5 - x^3y^4 + 6x^5y + \cos(x-1) = 7$. Khẳng định nào sau đây đúng?

A.
$$f'(1) = \frac{7}{2}$$
.

B.
$$f'(1) = 12$$
.

C.
$$f'(1) = \frac{17}{3}$$
.

D.
$$f'(1) = -4$$
.

Câu 36. Tìm giá trị lớn nhất của hàm số $z = x^2 - y^2$ trong miền $D = \{(x, y)|x^2 + y^2 \le 1\}$. Khẳng định nào dưới đây **đúng?**

A. Hàm số z đạt giá trị lớn nhất là 2.

B. Hàm số z đạt giá trị lớn nhất là 3.

C. Hàm số không đạt giá trị lớn nhất.

D. Hàm số z đạt giá trị lớn nhất là 1.

Câu 37. Chuyển sang tọa độ cực của tích phân $I = \iint f(x,y)dxdy$, với D là miền xác định bởi $x^2 + y^2 \le 4y$. Khẳng định

nào dưới đây đúng?

A.
$$I = \int_{0}^{\pi} d\varphi \int_{0}^{4\cos\varphi} f(r\cos\varphi, r\sin\varphi)rdr.$$

B.
$$I = \int_{0}^{2\pi} d\varphi \int_{0}^{4\sin\varphi} f(r\cos\varphi, r\sin\varphi)rdr.$$

$$\mathbf{D}.\ I = \int_{0}^{\pi/2} d\varphi \int_{0}^{2a\cos\varphi} f(r\cos\varphi, r\sin\varphi) dr.$$

Câu 38. Tính tích phân $I = \iint_D \left(\sqrt{x^2 + y^2} + xy\right) dx dy$, $D = \{(x, y) \mid x^2 + y^2 \le R^2\}$. Khẳng định nào sau đây **đúng**?

A.
$$I = \frac{\pi}{3}R^3$$

B.
$$I = \frac{3}{4}\pi R^4$$
. **C.** $I = \frac{3}{2}\pi R^4$.

C.
$$I = \frac{3}{2}\pi R^4$$

D.
$$I = \frac{2}{3}\pi R^3$$

Câu 39. Cho $I = \iint_D (x-1)(y+2)dxdy; D = \left\{ (x,y) \mid \frac{x^2}{4} + \frac{y^2}{9} \le 1 \right\}$. Khẳng định nào dưới đây **đúng**? 20

A.
$$I = -6\pi$$

$$B = -12\pi$$
.

C.
$$I = 8\pi$$

D.
$$I = \frac{3}{2}\pi$$
.

Câu 40. Tích phân tổng quát của phương trình vi phân $\frac{dx}{1+x^2} + \frac{ydy}{\sqrt{3+y^2}} = 0$ là

A.
$$\arctan x + \frac{2}{\sqrt{3+y^2}} = C$$
; với C là hằng số tùy ý.

B. $\arccos x + \ln |y + \sqrt{3+y^2}| = C$; với C là hằng số tùy ý.

C. $\arctan x + \sqrt{3+y^2} = C$; với C là hằng số tùy ý.

D. $\arcsin x + \ln |y + \sqrt{3+y^2}| = C$; với C là hằng số tùy ý.

B.
$$\operatorname{arccos} x + \ln |y + \sqrt{3 + y^2}| = C$$
; với C là hằng số tùy ý.

C.
$$\arctan x + \sqrt{3 + y^2} = C$$
; với C là hằng số tùy ý.

D.
$$\arcsin x + \ln |y + \sqrt{3 + y^2}| = C$$
; với C là hằng số tùy ý.

ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã	đề	thi	107
ivia	ue	uu	10/

1. D	2. C	3. A	4. B	5. A	6. A	7. D	8. B	9. C	10. D
11. B	12. B	13. B	14. B	15. D	16. C	17. C	18. B	19. A	20. C
21. A	22. C	23. C	24. D	25. C	26. B	27. C	28. C	29. B	30. D
31. A	32. B	33. B	34. A	35. D	36. D	37. C	38. D	39. B	40. C