2. Übung zur Einführung in die Algebra

Abgabe online in WueCampus bis zum 06.11.2023, 12 Uhr

Aufgabe 2.1 (4 Punkte)

Sei G eine Gruppe mit neutralem Element 1. Für jedes Element $g \in G$ gelte $g^2 = 1$. Zeigen Sie, dass G dann abelsch ist.

Aufgabe 2.2 (2+2 Punkte)

Sei K ein endlicher Körper mit $q \in \mathbb{N}^*$ Elementen.

- (a) Zeigen Sie, dass es genau $\prod_{k=0}^{n-1}(q^n-q^k)$ geordnete Basen des K-Vektorraums K^n gibt. Unter einer geordneten Basis des K-Vektorraums K^n verstehen wir hierbei ein n-Tupel $(b_1,...,b_n)$ linear unabhängiger Vektoren $b_1,...,b_n \in K^n$.
- (b) Nutzen Sie Teilaufgabe (a), um nachzuweisen, dass die Gruppe $GL_n(K)$ aus Beispiel 2.4 (d) die Ordnung $\prod_{k=0}^{n-1} (q^n q^k)$ besitzt.

Aufgabe 2.3 (4 Punkte)

Wir betrachten die komplexen (2×2) -Matrizen

$$E:=\begin{pmatrix}1&0\\0&1\end{pmatrix},\quad I:=\begin{pmatrix}i&0\\0&-i\end{pmatrix},\quad J:=\begin{pmatrix}0&1\\-1&0\end{pmatrix},\quad K:=\begin{pmatrix}0&i\\i&0\end{pmatrix}.$$

Zeigen Sie, dass die Menge $Q_8 := \{\pm E, \pm I, \pm J, \pm K\}$ zusammen mit der Matrixmultiplikation eine nicht-abelsche Gruppe der Ordnung 8 bildet. Man nennt Q_8 auch die *Quaternionengruppe der Ordnung 8*.

Hinweis: Ein paar konkrete Matrixmultiplikationen werden Sie bei dieser Aufgabe ausrechnen müssen. Versuchen Sie, deren Anzahl gering zu halten und möglichst viel aus Ihren bereits durchgeführten Rechnungen zu schließen.

Aufgabe 2.4 (4 Punkte)

Sei *G* eine Gruppe der Ordnung 4. Zeigen Sie, dass *G* abelsch ist.

Weitere Informationen zur Veranstaltung finden sich online im zugehörigen WueCampus-Kurs.