

Unsupervised models #1

Madson L. D. Dias e Lucas S. Sousa

Huawei / IFCE

March 8, 2021

- Recap
- Clustering Connectivity-based clustering Centroid-based clustering Distribution-based clustering Density-based clustering Clustering using k-means
- Oimensionality reduction Principal Component Analysis

Recap

Clustering Connectivity-based clustering Centroid-based clustering Distribution-based clustering Density-based clustering Clustering using k-means

Dimensionality reduction Principal Component Analysis

- A type of machine learning algorithm used to draw inferences from data sets consisting of input data without labeled responses
- Task of inferring a function to describe hidden structure from unlabeled data.

- A type of machine learning algorithm used to draw inferences from data sets consisting of input data without labeled responses
- Task of inferring a function to describe hidden structure from unlabeled data.

Some applications

Some applications

- Clustering
- Dimensionality reduction
- Anomaly detection
- . . .

Some applications

- Clustering
- Dimensionality reduction
- Anomaly detection
- . .

Some applications

- Clustering
- Dimensionality reduction
- Anomaly detection

• . . .

- Recap
- Clustering Connectivity-based clustering Centroid-based clustering Distribution-based clustering Density-based clustering Clustering using k-means
- Dimensionality reduction Principal Component Analysis

Clustering

• Given a dataset $\mathcal{D} = \{ \boldsymbol{x}_n \in \mathbb{R}^D \}_{n=1}^N$, where \boldsymbol{x} is a vector with D dimensions and N is the number of elements of the data set¹. The task of clustering is to find a function $g(\boldsymbol{x})$ in that $g: \mathbb{R}^D \to \mathbb{N}^K$, where \mathcal{C} is a set of clusters $\mathcal{C} = \{\mathcal{C}_k\}_{k=1}^{K < N}$, and $\mathcal{C}_k = \{\boldsymbol{x}_n: g(\boldsymbol{x}_n) = k\}$ such that

$$C_k \neq \emptyset, \forall k \tag{1}$$

$$\bigcup_{k=1}^{K} \mathcal{C}_k = \mathcal{D} \tag{2}$$

$$C_k \cap C_j = \emptyset, \ \forall k, j \text{ where } k \neq j$$
 (3)

¹The \mathbb{R}^D space is called "data space" or "input space".

Clustering

- Task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters).
- Categorization of clustering algorithms
 - ightarrow Connectivity-based clustering
 - → Centroid-based clustering
 - → Distribution-based clustering
 - → Density-based clustering
 - $\rightarrow \ \mathsf{Grid}\text{-}\mathsf{based} \ \mathsf{clustering}$

- Recap
- Clustering Connectivity-based clustering

Centroid-based clustering
Distribution-based clustering
Density-based clustering
Clustering using k-means

Dimensionality reduction
 Principal Component Analysis

Connectivity-based clustering

 Also known as hierarchical clustering, is based on the core idea of objects being more related to nearby objects than to objects farther away.

- Recap
- Clustering

Connectivity-based clustering
Centroid-based clustering
Distribution-based clustering
Density-based clustering
Clustering using k-means

Dimensionality reduction Principal Component Analysis

Centroid-based clustering

 The clusters are represented by a central vector (centroid), which may not necessarily be a member of the data set.

- Recap
- Clustering

Connectivity-based clustering Centroid-based clustering Distribution-based clustering

Density-based clustering Clustering using k-means

Dimensionality reduction
 Principal Component Analysis

Distribution-based clustering

 Clusters can then easily be defined as objects belonging most likely to the same distribution.

- Recap
- Clustering

Connectivity-based clustering Centroid-based clustering Distribution-based clustering

Density-based clustering

Clustering using k-means

Dimensionality reduction Principal Component Analysis

Density-based clustering

 Clusters are defined as areas of higher density than the remainder of the data set.

- Recap
- Clustering

Connectivity-based clustering Centroid-based clustering Distribution-based clustering Density-based clustering Clustering using k-means

Dimensionality reduction
 Principal Component Analysis

k-means clustering

Definition

• Given a dataset $\mathcal{D} = \{ \boldsymbol{x}_n \in \mathcal{R}^D \}_{n=1}^N$, k-means clustering aims to partition the N observations into $K (\leq N)$ sets so as to minimize the *within-cluster* sum of squares (i.e. variance). Formally, the objective is to find:

$$\mathcal{C}^{\star} = \arg\min_{\mathcal{C}} \sum_{k=1}^{K} \sum_{\boldsymbol{x} \in \mathcal{C}_k} \|\boldsymbol{x} - \boldsymbol{\mu}_k\|^2$$
 (4)

where μ_k is the centroid of the cluster C_k .

k-means clustering

Algorithm

Algorithm 1 k-means algorithm

- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids.
- 3: repeat
- 4: **expectation:** Assign each point to its closest centroid.
- 5: **maximization:** Compute the new centroid (mean) of each cluster.
- 6: **until** The centroid positions do not change.

k-means clustering

"Talk is cheap. Show me the code."

- Linus Torvalds

- Recap
- Clustering Connectivity-based clustering Centroid-based clustering Distribution-based clustering Density-based clustering Clustering using k-means
- Dimensionality reductionPrincipal Component Analysis

Dimensionality reduction

- Transformation of data from a high-dimensional space into a low-dimensional space so that the low-dimensional representation retains some meaningful properties of the original data, ideally close to its *intrinsic dimension*.
- Methods
 - $\rightarrow\,$ Feature selection: filter strategy, the wrapper strategy, and the embedded strategy
 - \rightarrow Feature projection: Principal component analysis (PCA), . . . , Autoencoder

- Recap
- Clustering Connectivity-based clustering Centroid-based clustering Distribution-based clustering Density-based clustering Clustering using k-means
- Dimensionality reductionPrincipal Component Analysis

 PCA is often used to reduce the dimensionality of large data sets, by transforming a large set of variables into a smaller one that still contains most of the information in the large set.

• Consider a set of points $\mathcal{D} = \{x_n\}_{n=1}^N$ in a D-dimensional space, such that their mean $\mu = \mathbf{0}$, i.e., centroid is at the origin.

- The PCA want to finds a line l through the origin that maximizes the projections y_n of the points x_n on l.
- Let q denote the unit vector along line l.

- The projection y_n of \pmb{x}_n on l is $y_n = \pmb{x}_n^\top \pmb{q}$.
- ullet The mean squared projection is the variance V over all points

$$V = \frac{1}{N} \sum_{n=1}^{N} y_n^2 \tag{5}$$

$$=\frac{1}{N}\sum_{n=1}^{N}(\boldsymbol{x}_{n}^{\top}\boldsymbol{q})^{2}$$
(6)

$$= \frac{1}{N} \sum_{n=1}^{N} (\boldsymbol{q}^{\top} \boldsymbol{x}_n) (\boldsymbol{x}_n^{\top} \boldsymbol{q})$$
 (7)

$$= \boldsymbol{q}^{\top} \left[\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\top} \right] \boldsymbol{q}$$
 (8)

• The middle factor is the covariance matrix C of the data points

$$\mathbf{C} = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_n \boldsymbol{x}_n^{\top}$$
 (9)

ullet We want to find a unit vector $oldsymbol{q}$ that maximizes the variance V

$$\boldsymbol{q}^{\star} = \arg\max_{\boldsymbol{q}} \boldsymbol{q}^{\top} \mathbf{C} \boldsymbol{q}, \tag{10}$$

- Put $\|q\| = 1$ constraint to avoid overflow
- The constraint optimization problem

maximize
$$V = \mathbf{q}^{\mathsf{T}} \mathbf{C} \mathbf{q}$$
 subject to $\|\mathbf{q}\| = 1$. (11)

Lagrange multiplier method

• Consider this problem

maximize
$$f(x)$$
 subject to $g(x) = c$. (12)

• Lagrange multiplier method introduces a Lagrange multiplier λ to combine f(x) and g(x) as

$$L(\boldsymbol{x}, \lambda) = f(\boldsymbol{x}) - \lambda(g(\boldsymbol{x}) - c)$$
(13)

Then, we can solve using

$$\frac{\partial L(\boldsymbol{x},\lambda)}{\partial \boldsymbol{x}} = 0, \quad \frac{\partial L(\boldsymbol{x},\lambda)}{\partial \lambda} = 0 \tag{14}$$

- Use Lagrange multiplier method, combine V and the constraint
- Consider this problem

maximize
$$L = \boldsymbol{q}^{\top} \mathbf{C} \boldsymbol{q} - \lambda (\boldsymbol{q}^{\top} \boldsymbol{q} - 1)$$
 (15)

• Now, we differentiate L with respect to q and λ :

$$\frac{\partial L}{\partial \boldsymbol{x}} = 2\boldsymbol{q}^{\mathsf{T}}\mathbf{C} - 2\lambda\boldsymbol{q}^{\mathsf{T}} = 0$$

$$\frac{\partial L}{\partial \lambda} = \boldsymbol{q}^{\mathsf{T}}\boldsymbol{q} - 1 = 0$$
(16)

$$\frac{\partial L}{\partial \lambda} = \boldsymbol{q}^{\mathsf{T}} \boldsymbol{q} - 1 = 0 \tag{17}$$

Eq. (16) gives

$$\mathbf{q}^{\mathsf{T}}\mathbf{C} = \lambda \mathbf{q}^{\mathsf{T}} \Longleftrightarrow \mathbf{C}\mathbf{q} = \lambda \mathbf{q} \tag{18}$$

• This is called an eigenvector equation

General PCA

• PCA transforms x_n into a new vector y_n through Q as follows:

$$\boldsymbol{y}_n = \mathbf{Q}^{\top}(\boldsymbol{x}_n - \boldsymbol{\mu}) = \sum_{m=1}^{M} (\boldsymbol{x}_n - \boldsymbol{\mu})^{\top} \boldsymbol{q}_m \boldsymbol{q}_m$$
 (19)

• Each component of y_n is

$$y_{nm} = (\boldsymbol{x}_n - \boldsymbol{\mu})^{\top} \boldsymbol{q}_m \tag{20}$$

• This is the projection of $x_n - \mu$ on q_m .

Bye-Bye!

Thanks for your attention!