GRAVITATIONAL LENSING 13 - BINARY LENSES

Massimo Meneghetti AA 2017-2018

BINARY LENSES (SEE NOTEBOOK)

➤ Lens equation:

$$z_s = z - \frac{m_1}{z^* - z_1^*} - \frac{m_2}{z^* - z_2^*}$$

➤ determinant of the Jacobian:

$$\det A = 1 - \left| \frac{\partial z_s}{\partial z^*} \right|^2$$

$$\frac{\partial z_s}{\partial z^*} = \frac{m_1}{(z^* - z_1^*)^2} + \frac{m_2}{(z^* - z_2^*)^2}$$

> condition for critical points:

$$\frac{\partial z_s}{\partial z^*} = e^{i\phi}$$

resulting fourth grade polynomial $(z_2=-z_1)$:

$$z^4 - z^2(2z_1^{*2} + e^{i\phi}) - zz_1^{*2}(m_1 - m_2)e^{i\phi} + z_1^{*2}(z_1^{*2} - e^{i\phi}) = 0$$

critical lines

caustics

critical lines

caustics

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

caustics

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

.....

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

caustics

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

caustics

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

caustics

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

BINARY LENSES: TOPOLOGY CLASSIFICATION

q=1.0000 wide d=2.40 1 separate 4 x_2 y_2 cusp caustics -1-1-2 -2 -1 -1 -2 -2 2 0 1 0 1 x_1 y_1 q=0.1000 2 2 d=2.40 1 x_2 y_2 -1-1-2 -2 -1 -1 0 1 0 1 x_1 y_1

BINARY LENSES: TOPOLOGY CLASSIFICATION

q=1.0000 intermediate d=1.40 1 single 6-cusp x_2 0 y_2 caustic -1-1-2 -2 -1 -1 -2 -2 2 0 1 0 1 x_1 y_1 q = 0.10002 d=1.40 1 x_2 0 y_2 -1-2 -2 -1 -1 0 1 2 0 1 x_1 y_1

BINARY LENSES: TOPOLOGY CLASSIFICATION

TRANSITIONS

Touching critical lines = saddle points of detA

TRANSITIONS

.....

-2

-1

0

 y_1

Touching critical lines

$$\det A = 0$$

$$\frac{\partial \det A}{\partial z^*} = 0$$

-2

-1

0

 x_1

MULTIPLE IMAGES

➤ Lens equation:

$$z_s = z - \frac{m_1}{z^* - z_1^*} - \frac{m_2}{z^* - z_2^*}$$

complex polynomial:

$$p_5(z) = \sum_{i=0}^{5} c_i z^i$$

$$\Delta m = \frac{m_1 - m_2}{2} \qquad m = \frac{m_1 + m_2}{2} \qquad z_2 = -z_1 \qquad z_1 = z_1^*$$

$$c_0 = z_1^2 [4(\Delta m)^2 z_s + 4m\Delta m z_1 + 4\Delta m z_s z_s^* z_1 + 2m z_s^* z_1^2 + z_s z_s^{*2} z_1^2 - 2\Delta m z_1^3 - z_s z_1^4]$$

$$c_1 = -8m\Delta m z_s z_1 - 4(\Delta m)^2 z_1^2 - 4m^2 z_1^2 - 4m z_s z_s^* z_1^2 - 4\Delta m z_s^* z_1^3 - z_s^{*2} z_1^4 + z_1^6$$

$$c_2 = 4m^2 z_s + 4m\Delta m z_1 - 4\Delta m z_s z_s^* z_1 - 2z_s z_s^{*2} z_1^2 + 4\Delta m z_1^3 + 2z_s z_1^4$$
 Witt & Mao, 1995,
$$c_3 = 4m z_s z_s^* + 4\Delta m z_s^* z_1 + 2z_s^{*2} z_1^2 - 2z_1^4$$

$$c_4 = -2m z_s^* + z_s z_s^{*2} - 2\Delta m z_1 - z_s z_1^2$$

$$c_5 = z_1^2 - z_s^{*2}$$

> 3 or 5 images

IMAGE MAGNIFICATION

magnification at the image position:

$$\mu = \det A^{-1} = \left[1 - \left| \frac{m_1}{(z^* - z_1^*)^2} + \frac{m_2}{(z^* - z_2^*)^2} \right| \right]^{-1}$$

➤ total magnification:

$$\mu_{tot} = \sum_{i=1}^{n_i} |\mu_i|$$

➤ of course, the magnification varies as a function of z and consequently as a function of t, if the source moves relative to the lens...