Maximal repetition & "Runs" conjecture

Riccardo Lo Iacono Docente: Gabriele Fici 24 ottobre 2024

Notazione

- \cdot Σ è un alfabeto ordinato e finito di simboli
- Un elemento $S \in \Sigma^*$ è detto stringa, la cui lunghezza è denotata da |S|
- L'i-esimo carattere di S sarà denotato da S[i], $1 \le i \le n = |S|$
- Per ogni i, j S[i, j] indica la sottostringa compresa tra le posizioni i e j, $1 \le i \le j \le n = |S|$

Periodo ed esponente

Definizione: Data S una stringa, si definisce *periodo* un intero

 $p \ge 1$ tale che S[i] = S[i + p], $\forall i = 1, ..., |S| - p$

Definizione: Si definisce esponente exp il rapporto tra la

lunghezza di S e del suo più piccolo periodo.

Ripetizioni massimali

Definizione: Una coppia (i, j) è detta ripetizione massimale (o run) di una stringa S, se $\exp\{S[i,j]\} \ge 2p$ e la periodicità non può essere estesa ne a destra ne a sinistra.

Sia $Runs\{S\}$ l'insieme dei run in S, $\rho(S)$ la sua cardinalità.

Un esempio

Sia considerata la stringa S = babbabbabbabbabbabc che contiene nove run, mostrati in Figura 1.

Figura 1: Illustrazione run nella stringa S = babbabbabbabbabc.

Background storico

Kolpakov e Kucherov¹ dimostrano che $\rho(S) = \mathcal{O}(|S|)$.

Congettura (Runs conjecture): $\rho(S) < |S|$ per ogni stringa S.

¹R. M. KUCHEROV AND G. KOLPAKOV, Finding maximal repetitions in a word in linear time. FOCS, 1999

Punti chiave della discussione

- · Dimostrazione della runs conjecture.
- Soluzione algoritmica per il calcolo delle ripetizioni massimali in $\mathcal{O}(n)$.