Lecture 1

Qiong Wang

Formulation definition standard form

Lecture 1

Linear Programming: Formulation and Solution

Qiong Wang

Department of Industrial and Enterprise Systems Engineering University of Illinois at Urbana-Champaign

August 21-23, 2023

Example

Lecture 1

Qiong Wang

Formulation
definition
standard form
Solution

You plan to invest in three companies. Expected returns from investment in companies 1, 2, and 3 are $r_1 = 0.05$, $r_2 = 0.12$, and $r_3 = 0.09$ respectively. For strategic reasons, you do not want to invest more than 40% your budget in company 1, 50% in company 2, and at least 30% in company 3. Determine the percentage of your budget to be invested in each company to maximize your expected return?

- variables: x_1, x_2, x_3 be the fractions invested in three companies.
- objective function:

$$\max_{x_1, x_2, x_3} \left\{ 0.05x_1 + 0.12x_2 + 0.09x_3 \right\}$$

constraints:

$$x_1 + x_2 + x_3 \le 1,$$

 $x_1 \le 0.4, x_2 \le 0.5, x_3 \ge 0.3,$
 $x_1 > 0, x_2 > 0, x_3 > 0.$

More general formulation

Lecture 1

Qiong Wang

Formulation definition standard form You plan to invest in n different assets with the expected returns r_i $(i=1,\cdots,n)$. You are required to invest at least a fraction of s_i and at most S_i of your budget in asset i $(i=1,\cdots,n)$. Determine an investment solution to maximize the total expected returns.

 x_i : fraction of the budget in excess of s_i invested in asset i (the actual fraction is $x_i + s_i$), $i = 1, \dots, n$.

let

$$\Delta s_i = S_i - s_i, \quad i = 1, \dots, n, \quad \bar{s} = \sum_{i=1}^n s_i, \quad \bar{R} = \sum_{i=1}^n r_i s_i.$$

$$\max_{\substack{x_1,\ldots,x_n\\ \text{ whilet to:}}} \left\{ r_1 x_1 + \ldots + r_n x_n \right\} + \bar{R}$$

subject to:
$$x_1 \leq \Delta s_1, \ x_2 \leq \Delta s_2, ..., x_n \leq \Delta s_n,$$
 $x_1 + ... + x_n \leq 1 - \overline{s},$ $x_1 \geq 0, \ x_2 \geq 0, ..., x_n \geq 0.$

Definition of Linear Programming Problem

Lecture 1

Qiong Wang

Formulation
definition
standard form
Solution

Linear Programming (LP) is an optimization model in which

- all decision variables take real values,
- the objective is a linear function of decision variables,
- all constraints are linear (in)equalities of decision variables.

$$\max_{x_1,...,x_n} \left\{ r_1 x_1 + + r_n x_n \right\} + \bar{R}$$
 subject to:
$$x_1 \leq \Delta s_1, \ x_2 \leq \Delta s_2, ..., x_n \leq \Delta s_n,$$

$$x_1 + ... + x_n \leq 1 - \bar{s},$$

$$x_1 \geq 0, \ x_2 \geq 0, ..., x_n \geq 0.$$

n decision variables: $x_1, ..., x_n$.

2n+2 parameters: \bar{R} , \bar{s} , $(r_1,...,r_n)$ and $(\Delta s_1,...,\Delta s_n)$. (n+1) "regular" constraints and n nonnegativity constraints.

Standard Form

Lecture 1

Qiong Wang

Formulation

definition

standard form

LP in standard form:

- Maximize an objective.
- 2 Left Hand Side (LHS) of each constraint, which is a linear combination of decision variables, is less than or equal to its Right Hand Side (RHS), which is a constant.
- All decision variables are positive.

LP formulation with n decision variables and m = n + k constraints

$$\max_{x_1,\dots,x_n}\left\{c_1x_1+\dots+c_nx_n\right\}$$
 subject to:
$$a_{11}x_1+\dots+a_{1n}x_n\leq b_1,\\ \dots\\ a_{k1}x_1+\dots+a_{kn}x_n\leq b_k,\\ x_1\geq 0,\dots,x_n\geq 0.$$

Transform an LP into Its Standard Form

Lecture 1

Qiong Wang

Formulation definition standard form

$$\max_{\substack{x_1,\ldots,x_n\\ x_1\neq \ldots}}\{c_1x_1+\ldots+c_nx_n\}$$
 subject to:
$$a_{j1}x_1+\ldots+a_{jn}x_n\leq b_j,\ \ j=1,\cdots,k$$

$$x_1\geq 0,\ldots,x_n\geq 0.$$

how to fit following situations into the standard LP form?

• the objective is $\min_{x_1,...,x_n} \{c_1x_1 + + c_nx_n\}$?

$$\max_{x_1,...,x_n} \{-c_1 x_1 - - c_n x_n\}$$

• constraint $a_{j1}x_1 + ... + a_{jn}x_n \ge b_j$?

$$-a_{j1}x_1-...-a_{jn}x_n\leq -b_j,$$

• constraint $a_{j1}x_1 + ... + a_{jn}x_n = b_j$?

$$a_{j1}x_1 + \ldots + a_{jn}x_n \le b_j$$
 and $a_{j1}x_1 + \ldots + a_{jn}x_n \ge b_j$.

i.e,
$$a_{j1}x_1 + ... + a_{jn}x_n \le b_j$$
 and $-a_{j1}x_1 - ... - a_{jn}x_n \le -b_j$.

• a decision variable x can be negative?

$$x = y_1 - y_2, \ y_1 \ge 0, y_2 \ge 0.$$

Another Standard Formulation

Lecture 1

Qiong Wang

Formulation
definition
standard form

Dual of the maximization problem (to be discussed later in the course):

instead of

$$\max_{x_1,...,x_n} \{c_1 x_1 + + c_n x_n\}$$

write the objective function as

$$\min_{y_1,...,y_n} \{h_1 y_1 + + h_n y_n\}$$

instead of

$$a_{j1}x_1+...+a_{jn}x_n\leq b_j$$

make the LHS of constraints greater than or equal to the RHS:

$$a_{11}y_1 + ... + a_{n1}y_n \geq d_1,$$

all decision variables are positive.

$$y_1 \ge 0,, y_n \ge 0.$$

Linear Programming (LP) in Standard Form

Lecture 1

Qiong Wang

Formulation definition standard form

$$\max_{\substack{x_1,\ldots,x_n\\ \text{subject to}}} \quad \left\{ c_1x_1+\ldots +c_nx_n \right\}$$
 subject to
$$a_{11}x_1+\ldots +a_{1n}x_n \leq b_1, \\ \ldots \\ a_{k1}x_1+\ldots +a_{kn}x_n \leq b_k, \\ x_1 \geq 0, \ldots, x_n \geq 0.$$

- all decision variables take non-negative real values;
- the objective is to maximize a linear function of decision variables;
- ullet all constraints are linear inequalities of decision variables; variables are on the LHS and the constant is on the RHS LHS < RHS.

Why Solving LP Needs a New Approach

Lecture 1

Qiong Wang

Formulation

definition

standard form

Solution

$$\max_{x_1,x_2} \left\{ g(x_1,x_2) = 6x_1 - x_1^2 + x_2 - 2x_2^2 \right\},$$

Basic calculus, we know how to solve a (simple) optimization problem like

by the use of the first-order condition

$$\frac{\partial g}{\partial x_1} = 6 - 2x_1 = 0$$
 and $\frac{\partial g}{\partial x_2} = 1 - 4x_2 = 0$,

the optimal solution $x_1^* = 3$, $x_2^* = 1/4$ and $g(x_1^*, x_2^*) = 9\frac{1}{8}$.

Try this approach on a linear objective function, e.g.,

$$g(x_1,x_2)=6x_1+x_2$$
?

what happened, and why?

Linear versus Nonlinear Optimization

Lecture 1

Qiong Wang

Formulation definition standard form

Solution

nonlinear function:

linear function:

implications of the above comparisons:

- a meaningful LP problem must have constraints.
- optimal solution at the boundary of some constraints.

"Push to the Boundary" in the 2-Dimensional Case

Lecture 1

Solution

"Corner Feasible Point" (CFP) solutions

•
$$(x_1, x_2) = (0, 0)$$

• $(x_1, x_2) = (0, 6)$

$$\longrightarrow$$
 $2x_1 + x_2 = 0$ $(x_1 = 0, x_2 = 0).$

$$\longrightarrow$$
 2 $x_1 + x_2 = 6$ ($x_1 = 0, x_2 = 6$).

$$(x_1, x_2) = (2, 6) \longrightarrow$$

$$2x_1+x_2=10$$
 $(3x_1+2x_2=18, x_2=6).$

•
$$(x_1, x_2) = (4, 0)$$
 \longrightarrow

$$\longrightarrow$$
 2 $x_1 + x_2 = 8$ ($x_1 = 4, x_2 = 0$).

$$(x_1, x_2) = (4,3)$$

$$\longrightarrow$$

$$2x_1+x_2=11$$
 $(x_1=4,3x_1+2x_2=18).$

What about Other Points at the "Boundary"

Lecture 1

Qiong Wang

Formulation definition standard form

Let point * in the figure be $\mathbf{x} = (x_1, x_2)$.

$$\mathbf{x} = \alpha * (2,6) + (1-\alpha) * (4,3)$$
 i.e. $x_1 = 2\alpha + 4(1-\alpha), x_2 = 6\alpha + 3(1-\alpha)$

and

$$2x_1+x_2=\alpha(2*2+6)+(1-\alpha)*(2*4+3)\leq \max\{2*2+6,2*4+3\}.$$

so the objective value at * cannot be better than both CFP solutions.

A Fundamental Fact about LP

Lecture 1

Qiong Wang

Formulatio definition standard form

 ${\sf Solution}$

If the optimal objective value of an LP exists and is finite, then this value can always be obtained at one of the "corner points" (solutions to n simultaneous equations).

Systems of Equations and Feasible Solutions

Lecture 1

Qiong Wang

Formulation definition standard form

Solution

 $\begin{array}{ll} \text{max} & \{2x_1+x_2\} \\ \text{subject to} & x_1 \leq 4, \\ & x_2 \leq 6, \\ & 3x_1+2x_2 \leq 18, \\ & x_1 > 0, \ x_2 > 0. \end{array}$

observation: to solve for n=2 variables, we need a pair of equations. question: with 3+2 (regular+non-negativity) constraints, how many pairs of equations can we possibly have? 10.

question: why we only get five pairs of equations?

• some pairs of equations have no solution: e.g.,

$$x_1 = 0$$
 and $x_1 = 4$.

some solutions violate other constraints: e.g.,

$$x_1 = 4$$
 and $x_2 = 6$ or $x_1 = 0$ and $3x_1 + 2x_2 = 18$.

Possible Procedure

Lecture 1

Qiong Wang

Formulation
definition
standard form
Solution

select n out of n+m (m regular, n non-negativity) constraints to form a system of equations

- if the system has no solution, next!
- if the solution does not satisfy another constraint, next!
- if the solution is feasible for all constraints, evaluate the corresponding objective value.
- compare all objective values to pick the best solution.

Question: how many systems of equations we need to evaluate?

•
$$n = 2$$
 and $m + n = 10$?

$$\frac{10\times9}{2}=45$$

• n = 20 and m + n = 30?

$$\frac{30 \times 29 \times \times 11}{20!} = \text{huge (about 30 million)}$$

• n = 10k and m + n = 30k?

don't even think about it!

Searching Optimal Solutions

Lecture 1

Qiong Wang

Formulation
definition
standard form

Solution

$$x_1 = 0, x_2 = 0, (2x_1 + x_2 = 0)$$
:

neighbors:
$$x_1 = 4, x_2 = 0 \rightarrow 2x_1 + x_2 = 8$$

$$x_1 = 0, x_2 = 6 \rightarrow 2x_1 + x_2 = 6.$$

$$x_1 = 4, x_2 = 0, (2x_1 + x_2 = 8)$$
:

new neighbor:
$$x_1 = 4, 3x_1 + 2x_2 = 18 \rightarrow (x_1, x_2) = (4, 3) \rightarrow 2x_1 + x_2 = 11.$$

$$x_1 = 4, x_2 = 3, (2x_1 + x_2 = 11)$$
:

new neighbor:
$$3x_1+2x_2=18, x_2=6 \rightarrow (x_1, x_2)=(2, 6) \rightarrow 2x_1+x_2=10.$$

Illustration: Optimality of the Solution

Lecture 1

Qiong Wang

Formulation
definition
standard form

Solution

write the objective function in vector form $c^T x = c_1 x_1 + \cdots + c_n x_n$

 \mathbf{x}^0 is a corner solution and \mathbf{x}^1 and \mathbf{x}^2 are its neighbors, and

$$c^T x^0 \ge c^T x^1$$
, $c^T x^0 \ge c^T x^2$.

- if x^0 is not optimal, then there exists \bar{x} such that $c^T \bar{x} > c^T x^0$.
- lines $x^1 x^2$, and $x^0 \bar{x}$ must intersect at some point \hat{x} , so

$$\hat{x} = \alpha x^{1} + (1 - \alpha)x^{2} = \beta x^{0} + (1 - \beta)\bar{x}, \quad 0 < \alpha, \beta < 1.$$

a contradiction:

$$c^{T}\hat{x} = \alpha c^{T}x^{1} + (1 - \alpha)c^{T}x^{2} \le c^{T}x^{0} < \beta c^{T}x^{0} + (1 - \beta)c^{T}\bar{x} = c^{T}\hat{x}.$$

General Idea of SIMPLEX Method

Lecture 1

Qiong Wang

Formulation definition standard form

Solution

- **1 Fact 1:** The objective function of an LP is optimized by solutions to one of *n* simultaneous equations.
- Fact 2: If a solution is not optimal, then it is always possible to get a better solution by swapping in/out one equation.

SIMPLEX procedure:

- start from a feasible solution to a system of *n* equations, compare its objective value with that of its "adjacent solutions".
- ② if the current solution is better than all its adjacent solutions, stop! the current solution is optimal.
- otherwise, move to an adjacent solution with higher objective value.
- repeat steps 2 and 3 until the optimal solution is found.

https://www.youtube.com/watch?v=x8rYyQjEMMs

Special Case (Non-unique Optimal Solutions)

Lecture 1

Qiong Wang

Formulation definition standard form

Solution

 $\begin{array}{ll} \max & \left\{ 3x_1 + 2x_2 \right\} \\ \text{subject to} & x_1 \leq 4, \\ & x_2 \leq 6, \\ & 3x_1 + 2x_2 \leq 18, \\ & x_1 \geq 0, \ x_2 \geq 0. \end{array}$

- every points on a segment of $3x_1 + 2x_2 = 18$ is an optimal solution.
- both (2,6) and (4,3) are optimal.

so we can still maximize the LP objective function by going through solutions of n simultaneous equations.

Exceptions (Don't solve, fix the model!)

Lecture 1

Solution

max $\{2x_1+x_2\}$ $x_1 \leq 4, \ x_2 \leq 6,$ subject to $3x_1 + 2x_2 < -1$,

$$\begin{array}{ll} \text{max} & \{2x_1+x_2\} \\ \text{subject to} & x_1 \leq 4, \\ & x_1 \geq 0, \ x_2 \geq 0. \end{array}$$

