Development of a Belief Merging Framework for dlvhex

Christoph Redl

May 31, 2010

Outline

- 1 Motivation
- 2 Reasons for Incompatibility
- 3 Task Definition
- 4 Architecture of the Belief Merging Framework
- 5 Using the Framework Hands-on
- 6 Application Scenario
- 7 Summary

Usage of multiple belief bases

Usually we have more than one knowledge base

Usage of multiple belief bases

- Usually we have more than one knowledge base
- In many applications, knowledge sources are often provided by third-parties

Usage of multiple belief bases

- Usually we have more than one knowledge base
- In many applications, knowledge sources are often provided by third-parties
- ... but rarely synchronized

Usage of multiple belief bases

- Usually we have more than one knowledge base
- In many applications, knowledge sources are often provided by third-parties
- ... but rarely synchronized

Combining the contents

■ We do not want to restrict ourselves to one source

Usage of multiple belief bases

- Usually we have more than one knowledge base
- In many applications, knowledge sources are often provided by third-parties
- ... but rarely synchronized

Combining the contents

- We do not want to restrict ourselves to one source
- Naive union can introduce contradictions

Usage of multiple belief bases

- Usually we have more than one knowledge base
- In many applications, knowledge sources are often provided by third-parties
- ... but rarely synchronized

Combining the contents

- We do not want to restrict ourselves to one source
- Naive union can introduce contradictions
- Many different merging techniques

Belief Revision

Incorporation of knowledge into existing belief base

Belief Revision

- Incorporation of knowledge into existing belief base
- AGM postulates: "minimal change"

Belief Revision

- Incorporation of knowledge into existing belief base
- AGM postulates: "minimal change"

Belief Merging

- Aggregation of sources
- No single formula with absolute priority

Belief Revision

- Incorporation of knowledge into existing belief base
- AGM postulates: "minimal change"

Belief Merging

- Aggregation of sources
- No single formula with absolute priority
- Variants of AGM postulates are reasonable: informally, minimize differences between sources and merged belief base

Belief Revision

- Incorporation of knowledge into existing belief base
- AGM postulates: "minimal change"

Belief Merging

- Aggregation of sources
- No single formula with absolute priority
- Variants of AGM postulates are reasonable: informally, minimize differences between sources and merged belief base

Applications

judgment aggregation

Belief Revision

- Incorporation of knowledge into existing belief base
- AGM postulates: "minimal change"

Belief Merging

- Aggregation of sources
- No single formula with absolute priority
- Variants of AGM postulates are reasonable: informally, minimize differences between sources and merged belief base

Applications

- judgment aggregation
- merging of decision diagrams

Belief Revision

- Incorporation of knowledge into existing belief base
- AGM postulates: "minimal change"

Belief Merging

- Aggregation of sources
- No single formula with absolute priority
- Variants of AGM postulates are reasonable: informally, minimize differences between sources and merged belief base

Applications

- judgment aggregation
- merging of decision diagrams
- fusion of business databases

Syntactic Incompatibility

- Sources are written in different formalisms
- Preprocessing step needed

Syntactic Incompatibility

- Sources are written in different formalisms
- Preprocessing step needed

Examples

- relational databases
- object-orientated databases
- RDF ontologies
- logic programs

Logic Inconsistencies

Union of data sets leads to contradictions:

$$\bigcup_{i} \mathit{KB}_i \models \bot$$

Logic Inconsistencies

Union of data sets leads to contradictions:

$$\bigcup_{i} \mathit{KB}_i \models \bot$$

likewise

constraint violation: $\bigcup_i KB_i \not\models C$

Logic Inconsistencies

Union of data sets leads to contradictions:

$$\bigcup_{i} \mathit{KB}_i \models \bot$$

likewise

constraint violation:
$$\bigcup_i KB_i \not\models C$$

Example

<u>name</u> is the primary key; a constraint forces the height to be unique for each person.

(a) name height
Marge 1,78m
Homer 1,82m
Bart 1,67m

(b)	name	height
	Marge	1,78m
	Homer	1,82m
	Bart	1,65m

Data Cleanness

- Remain after logic inconsistencies resolved
- Detection requires advanced algorithms: data cleansing

Data Cleanness

- Remain after logic inconsistencies resolved
- Detection requires advanced algorithms: data cleansing

Undesired artefacts concerning

- Differing naming conventions
 e.g., academic degrees, addresses, ...
- Different entries referring to the same real-world object

Data Cleanness

- Remain after logic inconsistencies resolved
- Detection requires advanced algorithms: data cleansing

Undesired artefacts concerning

- Differing naming conventions
 e.g., academic degrees, addresses, ...
- Different entries referring to the same real-world object

Example

Merging of address tables, one with and one without abbreviations

Logic Programs as Belief Bases

Given

```
\pi = (P_1, \dots, P_n) vector of belief bases
Given as logic programs with answer sets AS(P_i)
```

Logic Programs as Belief Bases

Given

```
\pi = (P_1, \dots, P_n) vector of belief bases
```

Given as *logic programs* with answer sets $AS(P_i)$

Answer sets of programs are considered to be the stored knowledge

Logic Programs as Belief Bases

Given

 $\pi = (P_1, \dots, P_n)$ vector of belief bases Given as *logic programs* with answer sets $AS(P_i)$

Answer sets of programs are considered to be the stored knowledge

common signature vector of mapping functions merging operators merging plan

Solve the problem of syntactic incompatibility

Solve the problem of syntactic incompatibility

Common Signature

$$\ \ \Sigma^C = (\Sigma^C_c, \Sigma^C_p)$$

expressive enough to represent any of sources

Solve the problem of syntactic incompatibility

Common Signature

- $\ \ \Sigma^C = (\Sigma^C_c, \Sigma^C_p)$
- expressive enough to represent any of sources

Mappings

■ Let $\mathcal{A} = 2^{Lit_{\Sigma^C}}$ (set of potential answer sets over Σ^C)

Solve the problem of syntactic incompatibility

Common Signature

- $\ \ \Sigma^C = (\Sigma^C_c, \Sigma^C_p)$
- expressive enough to represent any of sources

Mappings

- Let $\mathcal{A} = 2^{Lit_{\Sigma^C}}$ (set of potential answer sets over Σ^C)
- $\blacksquare \mu_i : \{AS(P_i)\} \to 2^{\mathcal{A}}$

Solve the problem of syntactic incompatibility

Common Signature

- $\ \ \Sigma^C = (\Sigma^C_c, \Sigma^C_p)$
- expressive enough to represent any of sources

Mappings

- Let $\mathcal{A} = 2^{Lit_{\Sigma^C}}$ (set of potential answer sets over Σ^C)
- $\blacksquare \mu_i : \{AS(P_i)\} \to 2^{\mathcal{A}}$
- answer sets stay semantically equivalent!

Merging Operators

Resolve logic inconsistencies (plus: may perform data cleansing tasks)

Merging Operators

Resolve logic inconsistencies (plus: may perform data cleansing tasks)

$$\circ_{i}^{n,m}: \underbrace{2^{\mathcal{A}} \times \dots \times 2^{\mathcal{A}}}_{n \text{ times}} \times \underbrace{\mathcal{D}_{1} \times \dots \times \mathcal{D}_{m}}_{additional \ parameters} \rightarrow 2^{\mathcal{A}}$$

Merging Operators

Resolve logic inconsistencies (plus: may perform data cleansing tasks)

$$\circ_{i}^{n,m}: \underbrace{2^{\mathcal{A}} \times \cdots \times 2^{\mathcal{A}}}_{n \text{ times}} \times \underbrace{\mathcal{D}_{1} \times \ldots \times \mathcal{D}_{m}}_{additional \ parameters} \rightarrow 2^{\mathcal{A}}$$

Example for a merging operator

The union operator $\circ_{U}^{2,0}$ is defined as follows:

$$\circ^{2,0}_{\cup}:2^{\mathcal{A}}\times2^{\mathcal{A}}\rightarrow2^{\mathcal{A}}$$

$$\circ_{\cup}^{2,0}(SAS_1,SAS_2) = \{AS_1 \cup AS_2 | AS_1 \in SAS_1, AS_2 \in SAS_2, AS_1 \cup AS_2 \not\models \bot\}$$

 $(\circ_{\cup}^2$ is binary, no additional parameters)

Merging Plans

A merging plan is hierarchical and defines

- the order
- of operators
- to be applied on which belief bases

Merging Plans

A merging plan is hierarchical and defines

- the order
- of operators
- to be applied on which belief bases

The result

the set of answer sets delivered by the topmost operator

Example merging plan

Merging Input

Steps

- designing a merging language
- implementing the merging plan compiler
- implementing external atoms (mergingplugin)

Steps

- designing a merging language
- implementing the merging plan compiler
- implementing external atoms (mergingplugin)

Steps

- designing a merging language
- implementing the merging plan compiler
- implementing external atoms (mergingplugin)

merging plan compiler

translates merging plan into HEX program

answer sets = result of the merging plan

merging plan compiler

Steps

- designing a merging language
- implementing the merging plan compiler
- implementing external atoms (mergingplugin)

merging plan compiler

translates merging plan into HEX program

answer sets = result of the merging plan

mergingplugin <uses>> dlvhex

HEX program

merging plan compiler

merging input

mergingplugin

defines external atoms for:

- calling of nested HEX programs
- calling of merging operators

Rapid prototyping

- Rapid prototyping
- Routine tasks like information flow management is done automatically

- Rapid prototyping
- Routine tasks like information flow management is done automatically
- Experiment with different merging plans and operators by parameterizing them

- Rapid prototyping
- Routine tasks like information flow management is done automatically
- Experiment with different merging plans and operators by parameterizing them
- Develop merging operators once, apply them in many scenarios

Steps

- 1 Define your merging task "merging.mp"
- 2 Run the merging plan compiler (mpcompiler) on this input
- 3 Execute the result by dlvhex

Steps

- Define your merging task "merging.mp"
- 2 Run the merging plan compiler (mpcompiler) on this input
- Execute the result by dlvhex
- 4 (filter the output since the translation of merging plans in HEX programs requires the derivation of some intermediate atoms)

Steps

- Define your merging task "merging.mp"
- 2 Run the merging plan compiler (mpcompiler) on this input
- 3 Execute the result by dlvhex
- 4 (filter the output since the translation of merging plans in HEX programs requires the derivation of some intermediate atoms)

Typical call

Command-line:

```
$ mpcompiler merging.mp | dlvhex --filter=a,b,c --
```

Steps

- Define your merging task "merging.mp"
- 2 Run the merging plan compiler (mpcompiler) on this input
- 3 Execute the result by dlvhex
- 4 (filter the output since the translation of merging plans in HEX programs requires the derivation of some intermediate atoms)

Typical call

- Command-line:
 - \$ mpcompiler merging.mp | dlvhex --filter=a,b,c --
- Alternatively:
 - \$ dlvhex --merging --filter=a,b,c merging.mp

Merging plan language: merging.mp

```
[common signature]
   predicate: a/0:
   predicate: b/0:
   predicate: c/0:
   predicate: p/1:
   predicate: q/3;
[belief base]
   name:bb1;
   mapping: "some_rule."; % query external source here
   mapping: "q(X, Y, Z) := &rdf["..."](X, Y, Z).";
[belief base]
   name:bb2:
   source: "some_program.hex"; % or within this program
```

```
Merging plan language: merging.mp (ctn'd.)
    [merging plan]
       operator: setminus;
            operator: union;
                  operator: neg;
                     {bb1};
               {bb2};
               {bb3};
         operator: union;
            {bb4};
            {bb5};
          };
```

Definition of implemented version

■ Belief bases $K = (AS(P_1), \dots, AS(P_n))$ \mathcal{A} = set of all potential answer sets

Definition of implemented version

- Belief bases $K = (AS(P_1), \dots, AS(P_n))$ \mathcal{A} = set of all potential answer sets
- Answer set distance function: $\underline{d}: A \times A \rightarrow \mathbb{R}$

Definition of implemented version

- Belief bases $K = (AS(P_1), \dots, AS(P_n))$ \mathcal{A} = set of all potential answer sets
- Answer set distance function: $\underline{d}: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}$
- Answer set to belief base-distances:

$$d(A, P_i) = \min_{J \in AS(P_i)} \underline{d}(A, J)$$

Definition of implemented version

- Belief bases $K = (AS(P_1), \dots, AS(P_n))$ A = set of all potential answer sets
- Answer set distance function: $\underline{d}: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}$
- Answer set to belief base-distances:

$$d(A, P_i) = \min_{J \in AS(P_i)} \underline{d}(A, J)$$

■ Aggregate function: $D: \mathbb{R}^n \to \mathbb{R}$

$$D^d(A,K) = D(d(A,P_1),\ldots,d(A,P_n))$$

Definition of implemented version

- Belief bases $K = (AS(P_1), \dots, AS(P_n))$ A = set of all potential answer sets
- Answer set distance function: $\underline{d}: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}$
- Answer set to belief base-distances:

$$d(A, P_i) = \min_{J \in AS(P_i)} \underline{d}(A, J)$$

■ Aggregate function: $D: \mathbb{R}^n \to \mathbb{R}$

$$D^d(A,K) = D(d(A,P_1),\ldots,d(A,P_n))$$

$$\bullet \circ^n(K) = \arg\min_{G \in \mathcal{A}: consistent} D^d(G, K)$$

Fault Diagnosis

Finding an explanation for some observation

Definition

Propositional abduction problem (PAP): $\mathscr{P} = \langle V, H, M, T \rangle$

- V is a finite set of propositional variables
- \blacksquare $H \subseteq V$ is a set of hypothesis
- lacksquare $M \subseteq V$ is the set of manifestations
- T is a consistent theory

Fault Diagnosis

Finding an explanation for some observation

Definition

Propositional abduction problem (PAP): $\mathscr{P} = \langle V, H, M, T \rangle$

- V is a finite set of propositional variables
- \blacksquare $H \subseteq V$ is a set of hypothesis
- lacksquare $M \subseteq V$ is the set of manifestations
- T is a consistent theory

 $S \subseteq H$ is a solution iff $T \cup S$ is consistent and $T \cup S \models M$

Fault Diagnosis

Finding an explanation for some observation

Definition

Propositional abduction problem (PAP): $\mathscr{P} = \langle V, H, M, T \rangle$

- V is a finite set of propositional variables
- \blacksquare $H \subseteq V$ is a set of hypothesis
- lacksquare $M \subseteq V$ is the set of manifestations
- T is a consistent theory

 $S \subseteq H$ is a solution iff $T \cup S$ is consistent and $T \cup S \models M$

Challenge: *multiple* experts with *different* explanations S_i **Task:** Finding a group decision S_G s.t.

- \blacksquare S_G is a solution to \mathscr{P}
- \blacksquare S_G is as similar to $S_i \forall i$ as possible

Full Adder - Example interpretation

Full Adder - Malfunctioning

Implemented as logic program "fulladder.dl" (theory) with observations "fault.obs"

Implemented as logic program "fulladder.dl" (theory) with observations "fault.obs"
Suppose we have 3 experts with different hypotheses

1 ab(haAnd1).ab(haXor1).ab(haAnd2).ab(haXor2).ab(faOr1).

Implemented as logic program "fulladder.dl" (theory) with observations "fault.obs"
Suppose we have 3 experts with different hypotheses

- ab(haAnd1).ab(haXor1).ab(haAnd2).ab(haXor2).ab(faOr1).
- ab(haAnd1).ab(haAnd2).ab(haXor2).ab(faOr1). no ab(haXor1)!

Implemented as logic program "fulladder.dl" (theory) with observations "fault.obs"

Suppose we have 3 experts with different hypotheses

- 1 ab(haAnd1).ab(haXor1).ab(haAnd2).ab(haXor2).ab(faOr1).
- $\begin{tabular}{ll} 2 & ab(haAnd1).ab(haAnd2).ab(haXor2).ab(faOr1). \\ & no & ab(haXor1)! \end{tabular}$
- **3** ab(haAnd1).ab(haAnd2).ab(haXor2).ab(faOr1). **no** ab(haXor2)!

Implemented as logic program "fulladder.dl" (theory) with observations "fault.obs"

Suppose we have 3 experts with different hypotheses

- ab(haAnd1).ab(haXor1).ab(haAnd2).ab(haXor2).ab(faOr1).
- ab(haAnd1).ab(haAnd2).ab(haXor2).ab(faOr1). no ab(haXor1)!
- ab(haAnd1).ab(haAnd2).ab(haXor2).ab(faOr1). no ab(haXor2)!

(Minimal) Solutions

$$AS(P_{J_2}) = \{\{ab(haXor2)\}\}$$

$$AS(P_{J_3}) = \{\{ab(haXor1)\}\}$$

Requirements

The group decision must be an explanation and should be similar to the individual's

Requirements

The group decision must be an explanation and should be similar to the individual's

Distance function

I = individual explanation

G = group explanation

Penalize ignoring of individual beliefs, i.e., $a \in I \land a \notin G$

$$\neg a \in I \land \neg a \notin G$$

Requirements

The group decision must be an explanation and should be similar to the individual's

Distance function

I = individual explanation

G = group explanation

- Penalize ignoring of individual beliefs, i.e., $a \in I \land a \notin G$ $\neg a \in I \land \neg a \notin G$
- Penalize group beliefs unfounded for an individual, i.e., $a \in G \land a \notin I$ $\neg a \in G \land \neg a \notin I$

Requirements

The group decision must be an explanation and should be similar to the individual's

Distance function

I = individual explanation

G = group explanation

- Penalize ignoring of individual beliefs, i.e., $a \in I \land a \notin G$ $\neg a \in I \land \neg a \notin G$
- Penalize group beliefs unfounded for an individual, i.e., $a \in G \land a \notin I$ $\neg a \in G \land \neg a \notin I$

```
[common signature]
predicate:ab/1;
[belief base]
name: juror1;
dlvargs: "-FRmin fulladder.dl abnormal1.hyp fault.obs";
[belief base] name: juror2; ...
[belief base] name: juror3; ...
[merging plan]
operator: dalal; aggregate: "sum";
penalize: "ignoring";
constraints: "fulladder.dl"; constraints: "fault.obs";
{juror1}; {juror2}; {juror3};
```

Full Adder - Group Decision

Individual explanations

Possible group explanations

$$\begin{array}{lll} \textbf{1} & AS(P_{J_1}) = & \textbf{1} & E_1 = \\ & \left\{ \{ab(haXor1)\}, \{ab(haXor2)\} \right\} & \left\{ ab(haXor1), ab(haXor2) \right\} \\ \textbf{2} & AS(P_{J_2}) = \left\{ \{ab(haXor2)\} \right\} & \textbf{2} & E_2 = \left\{ ab(haXor1) \right\} \\ \end{array}$$

Full Adder - Group Decision

Individual explanations

Possible group explanations

$$\begin{array}{ll} \textbf{1} \ AS(P_{J_1}) = & \textbf{1} \ E_1 = \\ \{\{ab(haXor1)\}, \{ab(haXor2)\}\} & \{ab(haXor1), ab(haXor2)\} \\ \end{array}$$

2
$$AS(P_{J_2}) = \{\{ab(haXor2)\}\}$$
 2 $E_2 = \{ab(haXor1)\}$

$$AS(P_{J_3}) = \{\{ab(haXor1)\}\}\$$
 $E_3 = \{ab(haXor2)\}$

Distances to Individuals

Penalizing ignoring only

	$AS(P_{J_1})$	$AS(P_{J_2})$	$AS(P_{J_3})$	Sum
$\mathbf{E_1}$	0	0	0	0 ⇐
E_2	0	1	0	1
E_3	0	0	1	1

Full Adder - Group Decision

Individual explanations

Possible group explanations

1
$$AS(P_{J_1}) =$$
 1 $E_1 =$ $\{\{ab(haXor1)\}, \{ab(haXor2)\}\}$ $\{ab(haXor1), ab(haXor2)\}$

$$AS(P_{J_2}) = \{\{ab(haXor2)\}\}\$$
 $E_2 = \{ab(haXor1)\}$

$$AS(P_{J_3}) = \{\{ab(haXor1)\}\}\$$
 $E_3 = \{ab(haXor2)\}$

Distances to Individuals

Penalizing ignoring and unfounded group beliefs ($|I\Delta G|$)

	$AS(P_{J_1})$	$AS(P_{J_2})$	$AS(P_{J_3})$	Sum
E_1	1	1	1	3
$\mathbf{E_2}$	0	2	0	2 ←
$\mathbf{E_3}$	0	0	2	2 ⇐

Summary

■ Task: Merging of several belief bases

Summary

- Task: Merging of several belief bases
- Approach: Merging language
 - with user-defined merging operators
- lacktriangledown merging input \Rightarrow compiler \Rightarrow dlvhex \Rightarrow answer sets

Summary

Advantages

- Develop merging operators only once or select one of the preinstalled ones (like Dalal)
- No need for manual re-merging after each change of the setting
- Try out several operators and evaluate which behaves best
- No routine tasks (like information flow between sources)
- User can focus on development and optimization of merging procedures in narrower sense!