

T5 - 4D STEM data analysis

Exit Wave Power Cepstrum

The **Exit Wave Power Cepstrum** (EWPC):

Aberration Corrected High Angle Annular Dark | FT(ln(*I*(*k*))) |

- Points correspond to local projected interatomic spacings
- Robust to
 - sample mistilts
 - thickness
 - randomly-oriented nanoparticles

Cepstrum (spectrum) transform

The "classic" power cepstrum (PC),*

$$PC(f(t)) = \left| \mathcal{F}(\ln(|\mathcal{F}(f(t))|^2)) \right|^2$$

separates convolved signals:

$$PC(\alpha(t) * \beta(t)) \approx PC(\alpha(t)) + PC(\beta(t))$$

Since the diffraction pattern is : $I(q) = |\mathcal{F}(\phi(x))|^2$

An "exit wave power cepstrum" (EWPC) can be calculated as:

$$\text{EWPC}_{\phi}(\mathbf{x}) = \text{PC}(\phi(\mathbf{x})) = \left| \mathcal{F}(\ln(I(\mathbf{q}))) \right|^2$$

Or simply

$$EWPC = \left| \mathcal{F} \left(\ln(I(\boldsymbol{q})) \right) \right|$$

[*] Bogert, B. P. (1963). The quefrency alanysis of time series for echoes; Cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking. *Time series analysis*, 209-243.

Exit-Wave Power Cepstrum (EWPC)

Strong phase approximation for diffraction:

$$I(q) = \left| \Phi_{\mathbf{p}}(q) \otimes \left(E(q) \cdot V(q) \right) \right|^{2} \approx |E(q)|^{2} \cdot \left| \Phi_{\mathbf{p}}(q) \otimes V(q) \right|^{2}$$

where $\Phi_{\rm p}(\boldsymbol{q})$ - probe function, $V(\boldsymbol{q})$ - projected atomic potential, $E(\boldsymbol{q})$ - slowly varying envelope damping function (carries tilt and thickness information)

$$\text{EWPC}_{\phi}(\mathbf{x}) = \left| \mathcal{F} \left(\ln(I(q)) \right) \right| \approx \text{PC}(\epsilon(\mathbf{x})) + |\phi_{P}(\mathbf{x})|^{2} \cdot \text{PC}(v_{0}(\mathbf{x}))$$

$$\text{Ewald sphere envelope} \qquad \text{Probe function lattice potential}$$

Tilt and thickness artifacts are decomposed from the atomic distance information

EWPC: Tilt and thickness decomposition

$$EWPC_{\phi}(\mathbf{x}) = PC(\epsilon(\mathbf{x})) + |\phi_{P}(\mathbf{x})|^{2} \cdot PC(v_{0}(\mathbf{x}))$$

PARADIM EWPC application: PbTiO₃ domains in strained film

Padgett, Elliot, et al. *Ultramicroscopy* (2020): 112994.

(Optional) Browsing 4D STEM data on NION Swift

Install Nion Swift Plugins

Windows

Copy the folders into "C:\Users\#userName\AppData\Roaming\Nion\ Nion Swift\PlugIns"

Mac

Users/#userName/Library/Application Support/Nion/Nion Swift/PlugIns

Optional: Prepare your own data

1. Nion Swift 4D Tools only accepts tif format 4D data. Use ImageJ to make your file into a tif. Drag & drop the file.

2. Once the 4D data is loaded, the following popup window will show up. Change number of images accordingly.

3. Click on "Format EMPAD Tool" icon. Type real space coordinates.

4. Once you see a window like the following, save as a tif format.

Load Data

Set Variables

2. Set Adjustment under Inspector window to Log

Map 4D

5. 4D Tools > Map 4D

6. Select *Ellipse tool* from *Toolbar*. Draw a circle on the DP.

Tip: shift+drag allows you to draw a circle rather than an ellipse.

Only the region within this circle will be used to get real space image. Select a diffraction spot you're interested in looking at. You can move/adjust size of this circle later.

7. Click Select map graphic from the Computation window. (You can open this window from Window> Computation).

8. You can now view the 4D STEM data!

Q: What happens when you move the circular mask around?

Q: What is the role of this mask? What is the equivalent part in the microscope?

Example Windows

Example Windows

Example Windows

