Polonium $\equiv 1^{st}$ radioactive element discovered (1898)

Happy 148th Birthday, Marie 7 November 2015

A Tribute to the Discoverer

Polonium solution stability

R. Collé -- NIST Radioactivity Group Talk 25 November 2015

²⁰⁹Po at NBS/NIST

Since
Feb 2014
talk

1990	polonium	solution	stability
------	----------	----------	-----------

R. Collé, *Radioact. Radiochem.* **4**, no.2, 20-35 (1993).

1993 -- ²⁰⁹Po SRM 4326

R. Collé, Z. Lin, et al., J. Res. Natl. Inst. Std. Tech. 100, 1-36 (1995).

1994 -- ²⁰⁹Po decay scheme

F.J Schima and R. Collé, Nucl. Instrum. Meth, Phys. Res. A369, 498-502 (1996).

1994 -- ²⁰⁵Pb delayed isomeric state / LS implications

R. Collé, Z. Lin, et al., Appl. Radiat. Isotop. 45, 1165-1175 (1994).

2005 -- ²⁰⁹Po SRM 4326 recertification

R. Collé, L. Laureano-Perez, et al. [Certificate]

2005 -- ²⁰⁹Po half-life discrepancy

R. Collé, L. Laureano-Perez, et al., Appl. Radiat. Isotop. 65, 728-730 (2007).

2006 -- ²¹⁰Pb SRM 4337

L. Laureano-Perez, R. Collé, et al., Appl. Radiat. Isotop. 65, 1368-1380 (2007).

2007 -- ²⁰⁹Po & ²¹⁰Pb std methodology

R. Collé, L. Laureano-Perez, LSC 2008, Radiocarbon, 2009, pp.77-85

2008 -- ²¹⁰Pb intercomparison (NPL)

R. Collé, L. Laureano-Perez, LSC 2008, Radiocarbon, 2009, pp.77-85

2013 -- New ²⁰⁹Po standardization method

R. Collé, R. Fitzgerald, L. Laureano-Perez, J. Res. NIST 120, 138-162 (2015)

2013 -- ²⁰⁹Po SRM 4326a

R. Collé, L. Laureano-Perez, J. Res. NIST 120, 138-162 (2015)

2013 -- ²⁰⁹Po definitive half-life

R. Collé, R. Fitzgerald, L. Laureano-Perez, J. Phys. G. 41, 1051103 (2014)

2015 -- Critique Pommé ²⁰⁹Po half-life

R. Collé, A. Collé, J. Radioanal Nucl. Chem, DOI.. (2015)

2015 -- Po solution stability

R. Collé, R. Fitzgerald, L. Laureano-Perez

Po Solution Stability

Belief in 1990

<u>Po solutions</u> at trace concentrations, under various alkaline, neutral,, or weakly acidic conditions are known to be <u>unstable</u>: being readily hydrolyzed, chemically deposited, or volatilized,; exhibiting "radiocolloidal" behavior; and undergoing "plate-out" or adsorption onto glass surfaces.

Stored Po solutions are generally <u>considered by NIST</u> to be stable in the acid range of 0.1 to 1.0 normality, but scant data exist on any possible long-term effects, particularly for very dilute, carrier free, aged solutions.

c. 1990 Collé study

(indebted to Jim Noyce for his meticulous records)

Carrier-free ²⁰⁸Po and ²¹⁰Po solutions with "known" massic activity reassayed after aged storage in flame-sealed glass ampoules storage

Number solutions studied 11

Range of solution ages (1.2 to 8.8) years

Range of HCl normality (0.09 to 2.0) mol/L

Range of massic activity (< 0.1 to 3600) Bq/g

Range of recoveries found (< 0.1 to 1.03) %

Typical recovery uncertainty > 20 % at 0.1 Bq/g (k = 1) 1.2 % at 200 Bq/g

Conclusions

< 0.3 mol/L – "clearly unstable"

0.3 to 0.5 mol/L - "somewhat equivocal"

≥ 1 mol/L — "appear to be stable over many years approaching a decade"

Therefore use 2 mol/L

R. Collé, *Radioact. Radiochem.* **4**, no.2, 20-35 (1993).

Half-life determination by decay

ASSUMED stability of the stored

CARRIER-FREE solutions over 20+ years

N.B. each plotted value based on multiple measurements. Including present 2015 results, 34 data sets over a period of 22.6 years, with 744 LS measurements on 61 counting sources

Carrier-free in 2 mol·L⁻¹ HCl

Per gram of solution

4.32 (10¹¹) atoms of Po

1.20 (10²¹) atoms of Cl

3.34 (10^{22}) molecules of H_2O

Po in solution is 1 part in 77 billion parts of H₂O put in perspective

CARRIER
FREE
SOLUTION
APPEARS
TO BE
VERY
STABLE

40	Aluminum 26.9815385	Silicon 28.085*	20.97376200	Sullur 32.06*	Onjonne 35.45*	Argon 39.948
12	[Ne]3s ² 3p	[Ne]3s ² 3p ²	[Ne]3s ² 3p ³	[Ne]3s ² 3p ⁴	[Ne]3s ² 3p ⁵	[Ne]3s ² 3p ⁶
IIB	5.9858	8.1517	10.4867			15.7596
0 1S ₀		32 ³ P ₀		34 ³ P ₂	12.9676 35 ² P _{3/2}	36 ¹s₀
Zn	Ga	Ge	As	Se	Br	Kr
Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
65.38	69,723	72,630	74,921595	78,971	79,904*	83,798
[Ar]3d ¹⁰ 4s ²	[Ar]3d ¹⁰ 4s ² 4p	[Ar]3d ¹⁰ 4s ² 4p ²	[Ar]3d ¹⁰ 4s ² 4p ³	[Ar]3d ¹⁰ 4s ² 4p ⁴	[Ar]3d ¹⁰ 4s ² 4p ⁵	[Ar]3d ¹⁰ 4s ² 4p ⁶
9.3942	5.9993	7.8994	9.7886	9.7524	11.8138	13.9996
8 1S ₀	49 ² P _{1/2}	50 ³ P ₀	51 ⁴ S _{3/2}	52 3P	53 ² P ⁹ _{3/2}	54 ¹s₀
Cd	In	Sn	Sb /	Te		Xe
Cadmium	Indium	Tin	Antimony	Te urium	lodine	Xenon
112.414	114.818	118.710	121.760	127.60	126.90447	131.293
[Kr]4d ¹⁰ 5s ²	[Kr]4d ¹⁰ 5s ² 5p	[Kr]4d ¹⁰ 5s ² 5p ²	[Kr]4d ¹⁰ 5s ² 5p	[Kr]4d ¹⁰ 5s ² 5p ⁴	[Kr]4d ¹⁰ 5s ² 5p ⁵	[Kr]4d ¹⁰ 5s ² 5p ⁶
8.9938	5.7864	7.3439	8.6084	9.0097	10.4513	12.1298
15 ₀	81 ² P _{1/2}	82 ³ P ₀	83 ⁴ S _{3/2}	84 ³ P ₂	85 ² P _{3/2}	86 ¹s₀
Hg	Tl	Pb	Bi	Po	At	Rn
Mercury	Tha ll ium	Lead	Bismuth	Polonium	Astatine	Radon
200.592	204.38*	207_2	208.98040	(209)	(210)	(222)
e]4f ¹⁴ 5d ¹⁰ 6s ²	[Hg]6p	[Hg]6p ²	[Hg]6p ³	[Hg]6p*	[Hg]6p ⁵	[Hg]6p°
10.4375	6.1083	7.4167	7.2855	8.414	9.31751	10.7485
12	113	114	115	116	117	118
Cn	Uut	Fl	Uup	$\mathbf{L}\mathbf{v}$	Uus	Uuo
opernicium	Ununtrium	Flerovium	Ununpentium	Livermorium	Ununseptium	Ununoctium

Not good Homolog

Most common oxidation states are +6 +4 -2

Most common oxidation state for Po is +2 with sp³ hybridization (other states are rare)

NPL Experience

ampoules of SRM 4326

EXPT	ampoule id	solution mass (g)	sealed	opened	age (a)	
1	# 183 R	1.81	20 Nov 2013	17 Sept 2015	1.82	different procedure
2	# 146 R	3.09	7 Nov 2005	24 Sept 2015	9.88	dirty ampoule
3	# RX3	5.14	8 March 1993	7 Oct 2015	22.42	original ampoule
4	# 40 R	2.70	24 Feb 1994	26 Oct 2015	21.67	

Empty the ampoule & assay

rinse transfer pycnometer

rinse ampoule base

rinse ampoule top

	PR	PR2	BR	BR2	TR	TR2	Base	Тор
1	(1.340 ± 0.006) %	***	(1.0805 ± 0.006) %	***	(0.360 ± 0.005) %	***	(0.055 ± 0.003) %	(0.056 ± 0.002) %
2	(0.497	(0.006	(0.772	(0.024	(0.116	(-0.002	(0.405	(0.098
	±	±	±	±	±	±	±	±
	0.007)	0.003)	0.007)	0.005)	0.005)	0.002)	0.014)	0.012)
	%	%	%	%	%	%	%	%
3	(0.2096	(0.006	(0.341	(0	(0.065	(-0.002	(0.006	(0.0048
	±	±	±	±	±	±	±	±
	0.0014)	0.017)	0.002)	0.003)	0.015)	0.001)	0.005)	0.0012)
	%	%	%	%	%	%	%	%
4	0.770	0.0098	0.941	0.0011	0.172	0.004	0.009	(0.012
	±	±	±	±	±	±	±	±
	0.003)	0.0031)	0.004)	0.0028)	0.005)	0.003)	0.012)	0.006)
	%	%	%	%	%	%	%	%

Percent of total activity in ampoule

EXPT	1 2 (2013) (2005)		3 (1993)	4 (1994)
age	1.82 a	9.88 a	22.42 a	21.67 a
solution mass	1.81 g	3.09 g	5.14 g	2.70 g
In glass	0.111 ± 0.005	0.503 ± 0.026	0.011 ± 0.006	0.021 ± 0.021
In rinses	2.780 ± 0.010	1.413 ± 0.013	0.617 ± 0.023	1.898 ± 0.009

different procedure

dirty ampoule

original ampoule

2015 assay results in consideration of 2013 half-life determination

Each grand mean from the 4 expts based on 3 sources each measured for 3 cycles on Beckman LS counter; uncertainty *S* on grand mean for each trial includes withinand between-source variance

T / a	<i>∆T</i> / d	grand mean E_{α} / (s ⁻¹ g ⁻¹)	<i>5 </i> %	U / %	n
2015.71657	1.119	75.773	0.20	0.25	3
2015.74152	3.228	75.903	0.17	0.23	3
2015.77882	3.991	75.791	0.16	0.22	3
2015.82904	3.195	75.885	0.09	0.17	3

Great-grand mean $E_{\alpha} = 75.838 \text{ s}^{-1} \text{ g}^{-1}$

S = 0.16 %

U = 0.22 %

N = 4

T = 2015.77281 a

 $\Delta T = 22.696 d$

Compare to previous determinations using half-life = 125.2 a (Collé et al., 2014)

N.B. two 193 values were combined as in half-life paper

<i>T /</i> a	<i>∆T </i> d	great-grand mean E_{α} / (s ⁻¹ g ⁻¹)	<i>s</i> / %	U / %	n	decay time / a	<i>E</i> _α at 2015	% diff from 2015 E _α
1993.31445	86.848	85.913	0.20	0.23	12	22.45837	75.868	+ 0.040
1994.18493	7.521	85.434	0.12	0.19	4	21.58788	75.810	- 0.037
2005.86486	3.172	80.210	0.10	0.14	4	9.90795	75.929	+ 0.119
2013.92065	9.316	76.526	0.23	0.34	8	1.85216	75.745	- 0.122
2015.77281	22.696	75.883	0.16	0.22	4	0		

Ergo, half-life is correct

and solution is stable to sampling over 22.5 years

2013 half-life determination

with n = 4 values (combining two 1993 results)

Fitzgerald, private communication (2015)

- ".. change in value is about 20 % of the original uncertainty in the fit, or about 30 % of the new uncertainty in the fit ... and 10 % of the total uncertainty reported in the paper" (since we included the warping uncertainty)
- "... validates our choice of 'delta' for the warping uncertainty as being not too small to account for any solution instabilities" (i.e., long-term effects)

CREDITS

Thanks for loan of the balance

You can get it back now – but I'd prefer NOT!!!

CREDIT MEMES

DOES MOST OF MY WORK

