GENERACIÓ D'HORARIS D'INSTITUT AMB OPERACIONS LÒGIQUES

Ismael El Habri Tutors: Dr. Josep Suy i Dr. Jordi Coll

Universitat de Girona

10 de setembre del 2019

Índex

- Introducció
 - Marc de treball
 - Objectius
 - Metodologia
 - Planificació
 - Pressuposts
- 2 Implementació
 - Parser
 - Model
 - Restriccions
- Conclusions i Resultats
 - Resultats
 - Conclusions
- Demostració

Introducció

Confecció d'horaris, problema recurrent amb el que es troben els instituts \Rightarrow High School TimeTabling problem (HSTT)

	Dilluns	Dimarts	Dimecres	Dijous	Divendres			
8:30 - 9:30	Tecnologia	Naturals	Socials	Socials	Català			
9:30 - 10:30	Matemàtiques	Anglès	Optativa	Castellà	Castellà			
11:30 - 12:00		PATI						
12:00 - 13:00	Castellà	Música	Anglès	Català	Naturals			
13:00 - 14:00	Anglès	Català	Matemàtiques	Naturals	Ed.Física			
14:00 - 15:00	Ed. Física	Tecnologia	Música	Tutoria	Matemàtiques			

- Alta combinatòria i complexitat, és un problema NP-Complet.
- Repartir events i recursos de manera viable i tenint en compte preferències del professorat.
- Diferents països, diferents necessitats ⇒ més complexitat!

Marc de treball

• Grup de recerca de Lògica i Programació

- API SMT desenvolupada pel Dr. Jordi Coll. API per a la codificació de problemes SAT, SMT o MaxSAT, actuant com a interfície per a diferents solvers. En aquest treball s'utilitzarà el Yices 2. També té implementades les diferents implementacions de múltiples restriccions globals.
- Com a punt de partida s'ha utilitzat el treball realitzat el 2015 per en Cristòfor Nogueira. Mentre ell ha utilitzat BitVectors i MaxSAT, en aquest treball s'utilitzarà LIA. Així s'han aconseguit uns resultats superiors pel que fa el temps d'execució.

Objectius

- Aprofundir sobre el tema.
 - Problema de generació d'horaris d'institut.
 - Problemes de satisfacció de restriccions(CSP).
 - Tècniques per resoldre problemes CSP com ara SAT i extensions.
- Crear un generador.

Metodologia

- Estudi del treball previ i estat de l'art
 - SAT
 - MaxSAT
 - SMT
- Entregues periòdiques
- Prototipatge

Planificació

- Estudi del problema i la seva duresa.
- ② Disseny i implementació
 - Parser i estructura de dades
 - 2 Codificació model i restriccions
 - Tractament de la solució
- Estudi dels resultats

Pressuposts

	€/h	Hores	Cost
Programador	14	260	2520

	Cost Total
Ordinador Principal	828
Ordinador Portatil Secundari	200
Total	1028

	Hores
Josep Suy	30
Jordi Coll	20

Índex

- Introducció
 - Marc de treball
 - Objectius
 - Metodologia
 - Planificació
 - Pressuposts
- 2 Implementació
 - Parser
 - Model
 - Restriccions
- Conclusions i Resultats
 - Resultats
 - Conclusions
- Demostració

Implementació: Esquema

Implementació: Model de dades

Implementació: Model d'objectes

Parser

```
<Resources>
    <ResourceTypes>
        <ResourceType Id="Room">
                                                   <PreferTimesConstraint Id="PreferredTimes">
            <Name>Room</Name>
                                                       <Name>Times for duration 2</Name>
        </ResourceType>
                                                       <Required>true</Required>
    </ResourceTypes>
                                                       <Weight>1</Weight>
    <ResourceGroups>
                                                       <CostFunction>Linear</CostFunction>
        <ResourceGroup Id="Rooms">
                                                       <AppliesTo>
            <Name>Rooms</Name>
                                                           <EventGroups>
            <ResourceType Reference="Room"/>
                                                               <EventGroup Reference="gr_AllEvents"/>
        </ResourceGroup>
                                                           </EventGroups>
    </ResourceGroups>
                                                       </AppliesTo>
    <Resource Id="Room1">
                                                       <TimeGroups>
        <Name>Room1</Name>
                                                           <TimeGroup Reference="gr_TimesDurationTwo"/>
        <ResourceType Reference="Room"/>
                                                       </TimeGroups>
        <ResourceGroups>
                                                       <Duration>2</Duration>
            <ResourceGroup Reference="Rooms"/>
                                                   </PreferTimesConstraint>
        </ResourceGroups>
    </Resource>
</Resources>
```

Instància XHSTT \Rightarrow dades + restriccions

Model

- $Xt_{0,0}...Xt_{|Events|-1,|Times|-1}$ Cada variable ens indica si en un espai de temps, es dona lloc l'event corresponent.
- Xs_{0,0}...Xs_{|Events|-1,|Times|-1}
 Cada variable ens indica si en un espai de temps, comença l'event corresponent.
- Xd_{0,1,0}...Xd_{|Events|-1,event.duration,|Times|-1}
 Cada variable ens indica si comença una lliçó de la durada i en l'espai de temps que representa la variable.

Clàusules de Channeling

Clàusules de Channeling

Si un event comença a una hora determinada, llavors té una duració:

$$orall e \in 0...|Events| - 1 \ orall i \in 0...|Times| - 1 \ Xs_{e,i}
ightarrow exactly_one(\{Xd_{e,1...e.duration,i}\})$$

• Si un event té lloc a t però no a t-1, és que comença:

$$orall e \in 0...|Events| - 1 \ orall i \in 0...|Times| - 1 \ (Xt_{e,i} \land \neg Xt_{e,i-1})
ightarrow Xs_{e,i}$$

• Si un event comença amb duració d, llavors té lloc en d hores consecutives:

$$orall e \in 0...|Events| - 1 \ orall din1...e.duration \ orall i \in 0...|Times| - 1 \ orall j \in i...i + d - 1 \ Xd_{e,d,i} o Xt_{e,j}$$

Assign Times Constraint i Distribute Split Constraint

Assign Times Constraint

Restricció per imposar que tots els events se'ls assigni els espais de temps corresponents.

$$\forall e \in \textit{Events exactly}_\textit{k}(\{\textit{Xt}_{e,0...|\textit{Times}|-1}\}, e.\textit{duration})$$

Distribute Split Constraint

Restricció que limita el nombre de events d'una duració determinada, per tant limita la cardinalitat de variables *Xd*.

$$\forall e \in \textit{Events } \textit{at_most_k}\big(\{\textit{Xd}_{e,d,0...|\textit{Times}|-1}\}, \textit{max}\big) \qquad \textit{si max} < \frac{e.\textit{duration}}{d}$$

$$\forall e \in \textit{Events } \textit{at_most_k}\big(\{\textit{Xd}_{e,d,0...|\textit{Times}|-1}\}, \textit{min}\big) \qquad \textit{si min} > 0$$

Split Events Constraint

Limita la manera en com es fragmenten els events.

Nombre de sessions:

$$\forall e \in Events \ at_most_k(\{Xs_{e,0}...Xs_{e,|Times|-1}\}, MaximumAmount)$$

$$\forall e \in \textit{Events at_least_k}(\{\textit{Xs}_{e,0}...\textit{Xs}_{e,|\textit{Times}|-1}\}, \textit{MinimumAmount})$$

Durada de les sessions:

$$\forall e \in \textit{Events} \ \forall d \notin \textit{MinimumDuration}...\textit{MaximumDuration} \land d \in 1...e.\textit{duration}$$

 $\forall t \in 0...|\textit{Times}| - 1 \quad (\neg Xd_{e,d,t})$

Prefer Times Constraint i Spread Events Constraint

Prefer Times Constraint

Restricció que indica en quins espais de temps no es poden programar certes sessions.

$$\forall e \in Events \ \forall t \in Times \land t \notin Ta$$

$$(\neg Xd_{e,d,t})$$

Spread Events Constraint

Restricció posa límits en el nombre de sessions de cada event que es poden celebrar en certs dies.

$$\forall e \in \textit{Events} \ \forall g \in \textit{Tg}$$
 $at_most_k(\{Xs_{e,t}|t \leftarrow g\}, max)$ $\forall e \in \textit{Events} \ \forall g \in \textit{Tg}$ $at_least_k(\{Xs_{e,t}|t \leftarrow g\}, max)$

Avoid Clashes Constraint i Avoid Unavailable Times Constraint

Avoid Clashes Constraint

Aquesta restricció imposa que certs recursos no poden tenir assignats més d'un event al mateix temps.

$$\forall r \in \textit{Resources} \ \forall t \in \textit{Times}$$
 $\textit{at_most_one}(\{Xt_{e,t}|e \leftarrow E_r\})$

Avoid Unavailable Times Constraint

Restricció que indica que hi ha certs espais de temps durant les quals no podem utilitzar certs recursos.

$$\forall r \in Resources \ \forall t \in T \ \forall e \in E_r \ (\neg Xt_{e,t})$$

Limit Idle Times Constraint

Restricció que limita el nombre d'espais de temps lliure entre dos espais de temps ocupats a l'horari de certs recursos.

Per a cada recurs r es fan les clàusules següents:

$$\forall g \in Tg \ \forall t \in g \ \forall e \in E_r$$

$$(Idle_i \to \neg Xt_{e,t}) \qquad \qquad si \ (B_t \neq \emptyset \ \&A_t \neq \emptyset)$$

$$\forall g \in Tg \ \forall t \in g \qquad \qquad (\neg Idle_t \lor \{Xt_{e \leftarrow E_r, b \leftarrow B_t}\}) \qquad \qquad si \ (B_t \neq \emptyset)$$

$$\forall g \in Tg \ \forall t \in g \qquad \qquad (\neg Idle_t \lor \{Xt_{e \leftarrow E_r, a \leftarrow A_t}\}) \qquad \qquad si \ (A_t \neq \emptyset)$$

$$\forall g \in Tg \ \forall t \in g \ \forall b \in B_t \ \forall a \in A_t \qquad \qquad \forall e1 \in E_r \ \forall e_2 \in E_r \ \forall e_3 \in E_r \qquad \qquad (\neg Xt_{e_1,t} \land Xt_{e_2,b} \land \neg Xt_{e_3,a} \to Idle_t) \quad si \ (B_t \neq \emptyset \ \&A_t \neq \emptyset)$$

Limit Idle Times Constraint

Un cop definides i lligades les variables auxiliars cal imposar les restriccions de cardinalitat:

$$\forall r \in Resources$$
 $at_most_k(\{Idle_t | t \leftarrow Times\}, max)$ $at_least_k(\{Idle_t | t \leftarrow Times\}, min)$

 Cluster Busy Times Constraint
 Restricció que imposa límits sobre el nombre de dies en què un recurs pot estar ocupat.

Per a cada recurs r es fan les clàusules següents:

$$orall g \in Tg$$
 $(
eg Busy_g \lor (\forall e \in E_r \ \forall t \in g \quad Xt_{e,t}))$ $\forall g \in Tg \ \forall t \in g \ \forall e \in E_r$ $(
eg Xt_{e,t} \lor Bsuy_g)$

Un cop definides i lligades les variables auxiliars l'únic que queda és, per cada recurs, imposar les restriccions de cardinalitat:

$$\forall r \in \textit{Resources}$$
 $at_\textit{most_k}(\{\textit{Busy}_g | g \leftarrow \textit{Tg}\}, \textit{max})$ $at_\textit{least_k}(\{\textit{Busy}_g | g \leftarrow \textit{Tg}\}, \textit{min})$

Funció objectiu

Per cada clàusula soft afegim una variable auxiliar aux_i i ens guardem el pes w_i d'aquesta.

Per a la optimització afegim la següent clàusula pseudobooleana, per a *n* clàusules *soft*:

$$aux_0w_0 + ... + aux_{n-1}w_{n-1} \le UPPERBOUND$$

Índex

- Introducció
 - Marc de treball
 - Objectius
 - Metodologia
 - Planificació
 - Pressuposts
- 2 Implementació
 - Parser
 - Model
 - Restriccions
- Conclusions i Resultats
 - Resultats
 - Conclusions
- Demostració

Diferents Encodings

- at_most_one
 - Quadràtic
 - Logarítimic
 - Ladder
 - Heule
- Restriccions de cardinalitat
 - Sorter
 - Totalizer

Temps de resolució

Encodings	BrazilInstance1 Sorter Totalizer		BrazilInstance2		BrazilInstance3	
Liicouiligs	Sorter	Totalizer	Sorter	Totalizer	Sorter	Totalizer
Quadràtic						
Logarítmic	1.126					
Ladder	1.275	1.300	6.084	6.123	12.492	15.015
Heule	1.242	1.105	6.437	7.142	11.815	10.604

Encodings	BrazilInstance4		BrazilInstance5		BrazilInstance6		BrazilInstance7	
Encodings	Sorter	Totalizer	Sorter	Totalizer	Sorter	Totalizer	Sorter	Totalizer
Quadràtic	02:56.91	05:19.96	28.63	28.235	35.45	36.191	01:52.45	01:50.34
Logarítmic								
Ladder	Timeout	07:24.02	31.018	31.006	39.797	01:06.33	02:22.87	02:27.35
Heule	05:03.38	25:24.81	28.934	29.046	40.441	36.852	02:38.68	02:38.79

Variables generades

Encodings	BrazilInstance1		BrazilInstance2		BrazilInstance3	
	Sorter	Totalizer	Sorter	Totalizer	Sorter	Totalizer
Quadrátic	131,391	131,349	924,783	924,807	1,223,115	1,223,085
Logarítmic	131,941	131,899	926,208	926,232	1,224,765	1,224,735
Ladder	132,166	132,124	927,433	927,457	1,225,965	1,225,935
Heule	131,841	131,799	927,283	927,307	1,225,615	1,225,585

Variables generades

Encodings	Brazilln:	stance4	BrazilInstance5		
Liicouiligs	Sorter	Totalizer	Sorter	Totalizer	
			3,535,238		
Logarítmic			3,537,838		
Ladder			3,540,088		
Heule	3,715,756	3,715,822	3,539,588	3,539,588	

Encodings	Brazilln	stance6	BrazilInstance7		
Liteoutings	Sorter	Totalizer	Sorter	Totalizer	
Quadràtic	4,652,421	4,652,523	9,835,793	9,835,793	
Logarítmic	4,655,646	4,655,748	9,840,268	9,840,268	
Ladder	4,658,321	4,658,423	9,844,718	9,844,718	
Heule	4,657,946	4,658,048	9,844,718	9,844,718	

Clàusules generades

Encodings	BrazilInstance1 Sorter Totalizer		Brazilln	stance2	BrazilInstance3	
Liteodings	Sorter	Totalizer	Sorter	Totalizer	Sorter	Totalizer
Quadrátic	703,680	703,666	3,556,395	3,556,497	5,960,643	
			3,556,120			
			3,553,195			
Heule	703,380	703,366	3,553,045	3,553,147	5,958,093	5,958,155

Clàusules generades

Encodings	Brazilln	stance4	BrazilInstance5		
Liicouiiigs	Sorter	Totalizer	Sorter	Totalizer	
Quadràtic	14,414,235	14,414,410	16,200,714	16,200,714	
Logarítmic	14,412,135	14,412,310	16,200,039	16,200,039	
Ladder	Timeout	14,405,635	16,194,739	16,194,739	
Heule	14,405,335	14,405,510	16,194,239	16,194,239	

Encodings	Brazilln	stance6	BrazilInstance7		
Liicouiiigs	Sorter	Totalizer	Sorter	Totalizer	
			38,762,136		
Logarítmic	18,665,275	18,665,548	38,760,036	38,760,036	
Ladder	18,657,900	18,658,173	38,749,361	38,749,361	
Heule	18,657,525	18,657,798	38,749,361	38,749,361	

Resultats optimització

Optimitzador	Temps	Cost	Cost de la millor solució
BrazilInstance1	1:07.66	79	41
BrazilInstance 2	Timeout	_	_
BrazilInstance3	Timeout	_	_

Conclusions

- Estudi, repàs i aplicació de diferents tècniques de programació amb restriccions.
- Objectius:
 - Resolució en temps raonable ⇒ aconseguit
 - ullet Optimització en temps raonable \Rightarrow no aconseguit

Treball futur:

- Afegir tipus de instàncies suportades
- Intentar provar altres teories de SMT.
- Millorar codificacions i model en sí.
- Intentar millorar la optimització.

Demostració