Zusammenfassung für Analysis I

(Prof. Dr. Schnürer)

Wintersemester 2014/2015

von Dagmar Sorg

Grundlagen: Logik, Mengenlehre

UND REELLE ZAHLEN

KAP. 1

LOGISCHE GRUNDLAGEN

PART 1.1

Definition (Aussage)

D. 1.1

- (i) Eine Aussage ist etwas, dem der Wahrheitsgehalt "wahr" oder "falsch" zugeordnet ist.
- (ii) Eine Aussageform ist eine Aussage, die eine noch unbestimmte oder freie Variable enthält.

Definition (Negation, Verneinung)

D. 1.3

Ist p eine Aussage, so bezeichnet $\neg p$ die Negation dieser Aussage.

Definition (Konjunktion)

D. 1.5

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \wedge q$ ("p und q") mittels der folgenden Wahrheitstabelle:

$$\begin{array}{c|ccc} p & q & p \wedge q \\ \hline w & w & w \\ w & f & f \\ f & w & f \\ f & f & f \end{array}$$

Definition (Disjunktion)

D. 1.6

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \vee q$ ("p oder q") mittels der folgenden Wahrheitstabelle:

p	q	$p \lor q$
\overline{w}	w	w
w	f	w
f	w	w
f	f	f

Definition (Kontravalenz)

D. 1.7

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \vee q$ ("entweder poder q") mittels der folgenden Wahrheitstabelle:

$$\begin{array}{c|ccc} p & q & p \lor q \\ \hline w & w & f \\ w & f & w \\ f & w & w \\ f & f & f \end{array}$$

Definition (Implikation)

D. 1.8

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \Rightarrow q$ ("p impliziert q") mittels der folgenden Wahrheitstabelle:

$$\begin{array}{c|cccc} p & q & p \Rightarrow q \\ \hline w & w & w \\ w & f & f \\ f & w & w \\ f & f & w \end{array}$$

- (i) p heißt Voraussetzung, Prämisse oder hinreichende Bedingung für q
- (ii) q heißt Behauptung, Konklusion oder notwendige Bedingung

Definition

D. 1.10

(i) Seien p, q Aussagen. Definiere $p \Leftrightarrow q$ ("p und q sind äquivalent", "genau dann, wenn p gilt, gilt auch $q^{\prime\prime}$) durch

p	q	$p \Leftrightarrow q$
w	w	w
w	f	f
f	w	f
f	f	w

(ii) p_1, p_2, \ldots heißen äquivalent, falls für je zwei dieser Aussagen, p und $q, p \Leftrightarrow q$ gilt.

Proposition

P. 1.11

Seien p, q, r Aussagen. Dann gelten

- (i) $\neg \neg p \Leftrightarrow p$
- (ii) $p \lor \neq p$
- (iii) $(p \land q) \Leftrightarrow (q \land p)$

(iv) $(p \lor q) \Leftrightarrow (q \lor p)$

(v) $(p \Leftrightarrow q) \Leftrightarrow (q \Leftrightarrow p)$ (vi) $(p \land p) \Leftrightarrow p$

(vii) $(p \lor p) \Leftrightarrow p$

- (viii) $(p \land q) \Rightarrow p$
- (ix) $p \Rightarrow (p \lor q)$
- (x) $(p \Leftrightarrow q) \Rightarrow ((p \lor r) \Leftrightarrow (q \lor r))$
- (xi) $(p \Leftrightarrow q) \Rightarrow ((p \land r) \Leftrightarrow (q \land r))$
- (xii) $(p \Leftrightarrow q) \Rightarrow ((p \Leftrightarrow r) \Leftrightarrow (q \Leftrightarrow r))$

(xiii) $((p \land q) \land r) \Leftrightarrow (p \land (q \land r))$

(xiv) $((p \lor q) \lor r) \Leftrightarrow (p \lor (q \lor r))$

(xv) $(p \lor (q \land r)) \Leftrightarrow ((p \lor q) \land (p \lor r))$

(xvi) $(p \land (q \lor r)) \Leftrightarrow ((p \land q) \lor (p \land r))$

(xvii) $\neg (p \land q) \Leftrightarrow (\neg p) \lor (\neg q)$

(xviii) $\neg (p \lor q) \Leftrightarrow (\neg p) \land (\neg q)$

(xix) $(p \Leftrightarrow q) \Leftrightarrow ((p \Rightarrow q) \land (q \Rightarrow p))$

- $(xx) ((p \Leftrightarrow q) \land (q \Leftrightarrow r)) \Rightarrow (p \Leftrightarrow r)$ (xxi) $((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$
- (xxii) $(p \Rightarrow q) \Leftrightarrow ((\neg p) \lor q)$
- (xxiii) $(p \Rightarrow q) \Leftrightarrow ((\neg q) \Rightarrow (\neg p))$

(xxiv) $p \Leftrightarrow ((p \land r) \lor (p \land \neg r))$

(Fallunterscheidung)

(Symmetrie)

(Symmetrie)

(Symmetrie)

(Idempotenz)

(Idempotenz)

(Assoziativität)

(Assoziativität)

(Distributivität)

(Distributivität)

(De Morgan)

(De Morgan)

Erste Mengenlehre

PART 1.2

Definition (naive Definition einer Menge)

D. 1.12

Eine Menge ist eine Zusammenfassung von Objekten, Elemente genannt. Ist A eine Menge, x ein Objekt, so schreiben wir $x \in A$, falls x ein Element von A ist. $x \notin A : \Leftrightarrow \neg(x \in A)$ Für eine Menge A, die genau die Elemente a, b und c enthält, schreiben wir $A = \{a, b, c\}$. Es ist irrelevant, ob a mehrfach auftaucht oder wie die Elemente angeordnet werden.

Definition

D. 1.13

Seien A, B Mengen.

- (i) Dann ist A eine Teilmenge von B ($A \subset B$ oder $A \subseteq B$), falls aus $x \in A$ auch $x \in B$
- (ii) A und B heißen gleich (A = B), falls $A \subset B$ und $B \subset A$ gelten. $A \neq B : \Leftrightarrow \neg (A = B)$ (Extensionalitätsaxiom)
- (iii) Schreibe $A \subseteq B$ für $A \subset B$ und $A \neq B$.

L. 1.14 Lemma Seien A, B, C Mengen. Dann gelten: (i) $A \subset A$ (Reflexivität) (ii) $x \in A$ und $A \subset B$ implizieren $x \in B$ (iii) $A \subset B \subset C \Rightarrow A \subset C$ (Transitivität) Axiom (Aussonderungsaxiom) A. 1.15 Sei A eine Menge und a(x) eine Aussageform. Dann gibt es eine Menge B, deren Elemente genau die $x \in A$ sind, die a(x) erfüllen. Schreibe $B = \{x \in A : a(x)\}.$ Bem. 1.17 Bemerkung Zu jeder Menge A gibt es eine Menge B und eine Aussageform $a(x): A = \{x \in B : a(x)\}.$ Nehme $B = A, a(x) = (x \in A)$. Bem. 1.18 Bemerkung (Russelsche Antinomie) Nimmt man im Aussonderungsaxiom statt A die "Allmenge" (Menge aller Elemente), dann bekommt man Probleme: Sei $A = Allmenge, B = \{X \in A : X \notin X\}$. Es gilt $y \in B \Leftrightarrow (y \in A \land y \notin y) \Leftrightarrow y \notin y$. Gilt $B \in B$? \rightarrow Widerspruch. L. 1.19 Lemma (Existenz der leeren Menge) Es gibt eine Menge \emptyset , die leere Menge, die kein Element enthält. Sie erfüllt: (i) $\emptyset \subset A$ für alle Mengen A(ii) ∅ ist eindeutig bestimmt. Part 1.3 QUANTOREN **Definition** D. 1.20 Sei A eine Menge, a(x) eine Aussageform. (i) **Existenzquantor:** Wir schreiben $\exists x \in A : a(x) \text{ oder } \underset{x \in A}{\exists} a(x) \text{ für "Es gibt ein } x \text{ in }$ der Menge A, sodass dieses x a(x) erfüllt." Schreibe $\exists ! x \in A : a(x)$ für es gibt genau ein $x \in A$ mit a(x). Dies zeigt man, indem man $\exists x \in A : a(x)$ und für alle $x, y \in A$ mit a(x), a(y) : x = y zeigt. (ii) **Allquantor:** Schreibe $\forall x \in A : a(x)$ oder $\underset{x \in A}{\forall} a(x)$ manchmal auch $a(x) \forall x \in A$ für "Für alle $x \in A$ gilt a(x)." L. 1.22 Lemma Seien A, B Mengen. p(x), p(x, y) Aussageformen. Dann gelten $(1.1) \bigvee_{x \in A} \bigvee_{y \in B} p(x, y) \iff \bigvee_{y \in B} \bigvee_{x \in A} p(x, y)$ $(1.2) \exists \exists z \in A} p(x, y) \iff \exists z \in A} p(x, y)$ $(1.3) \exists \forall z \in A} p(x, y) \iff \forall z \in A} p(x, y)$ $(1.4) \exists z \in A} p(x, y) \iff \forall z \in A} p(x, y)$ $(1.4) \neg \left(\bigvee_{x \in A} p(x) \right) \Longleftrightarrow \underset{x \in A}{\exists} \neg p(x)$ $(1.5) \neg \left(\underset{x \in A}{\exists} p(x) \right) \Longleftrightarrow \bigvee_{x \in A} \neg p(x)$

WEITERE MENGENLEHRE PART 1.4 A. 1.24 Axiom (Existenz einer Obermenge) Sei \mathcal{M} eine Menge von Mengen. Dann gibt es eine Menge M (=Obermenge) mit $A \in$ $\mathcal{M} \Rightarrow A \subset M$. Bemerkung: M ist eindeutig bestimmt. D. 1.25 **Definition (Vereinigung und Durchschnitt)** Seien A, B Mengen mit Obermenge X. (i) Dann ist die **Vereinigung** von A und B $(A \cup B)$ definiert durch $A \cup B := \{x \in X : x \in A \lor x \in B\}$ (ii) der (Durch-) Schnitt von A und $B (A \cap B)$ ist definiert durch $A \cap B := \{ x \in X : x \in A \land x \in B \}$ Sei \mathcal{M} eine Menge von Mengen mit Obermenge X. (i) Vereinigung: $\bigcup_{A \in \mathcal{M}} A := \{x \in X : (\exists A \in \mathcal{M} : x \in A)\}$ (ii) Schnitt: $\bigcap_{A \in \mathcal{M}} A := \{x \in X : (\forall A \in \mathcal{M} : x \in A)\}$ Bem. 1.26 Bemerkung Enthält $\mathcal M$ keine Menge, so gelten $\bigcup_{A\in\mathcal M}A=\emptyset$ sowie $\bigcap_{A\in\mathcal M}A=X$ **Definition (Disjunkte Mengen)** D. 1.27 Seien A, B Mengen. (i) A und B heißen disjunkt, falls $A \cap B = \emptyset$. Schreibe in diesem Fall $A \cup B$ statt $A \cup B$ (ii) Sei \mathcal{M} eine Menge von Mengen. Dann heißen die Mengen in \mathcal{M} disjunkt, falls für $A, B \in \mathcal{M}, A \neq \emptyset$ stets $A \cap B = \emptyset$ gilt. Schreibe $\bigcup A$ statt $\bigcup A$. D. 1.28 **Definition (Komplement)** Seien A, B Mengen mit fester Obermenge X. (i) Definiere das **Komplement** von A in B durch $B \setminus A := \{x \in B : x \notin A\}$ (ii) Definiere das Komplement von A durch $CA \equiv A^{C} := \{x \in X : x \notin A\}$ P. 1.29 **Proposition** Seien A, B, C Mengen mit Obermenge X. Dann gelten: (i) $A \cup B = B \cup A$ (Kommutativität) (ii) $A \cap B = b \cap A$ (Kommutativität) (iii) $(A \cup B) \cup C = A \cup (B \cup C)$ (Assoziativität) (iv) $(A \cap B) \cap C = A \cap (B \cap C)$ (Assoziativität) (v) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ (Distributivität) (vi) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ (Distributivität) (vii) $C(A \cup B) = CA \cap CB$ (De Morgansche Regel) (viii) $C(A \cap B) = CA \cup CB$ (De Morgansche Regel) (ix) CCA = A(x) $A \cup CA = X$ (xi) $A \setminus B = A \cap \complement B$ A. 1.30 Axiom (Potenzmenge) Sei A eine beliebige Menge. Dann gibt es die Menge $\mathcal{P}(A)$ (oder 2^A), die Potenzmenge von A. Die Elemente von $\mathcal{P}(A)$ sind genau die Teilmengen von A. A. 1.32 Axiom (Kartesisches Produkt) Seien A, B Mengen. Dann gibt es eine Menge, das Kartesische Produkt von A und B $(A \times B)$, die aus allen geordneten Paaren (a,b) mit $a \in A, b \in B$ besteht. a heißt erste, b heißt zweite Komponente des Paares (a, b).

 $A \times B := \{(a, b) : a \in A \land b \in B\}$

Bemerkung	Bem. 1.33
$(a,b) \equiv \{a,\{a,b\}\} \in \mathcal{P}(A \cup \mathcal{P}(A \cup B))$	D 12
Definition (Funktion, Abbleitung) Seien A, B Mengen.	D. 1.3
(i) Eine Funktion (oder Abbildung) f von A nach B , $f: A \to B$, ist eine Teilmenge von	
(1) Eine Funktion (oder Abbindung) f von A hach B , $f:A \to B$, ist eine Femmenge von $A \times B$, sodass es zu jedem $a \in A$ genau ein $b \in B$ mit $(a,b) \in f$ gibt: $\forall a \in A \exists b \in B$	
$B:(a,b)\in f.$	
Schreibe $b = f(a), a \mapsto b$.	
Definiere den Graphen von f :	
$graph \ f := \{(x, f(x)) \in A \times B : x \in A\} = f \subset A \times B$	
(ii) A heißt Definitionsbereich von f , $D(f)$. $f(A) := \{f(x) : x \in A\} \equiv \{y \in B : (\exists x \in A : \underbrace{f(x) = y})\} = im \ f = R(f)$	
heißt $oldsymbol{Bild}$ oder $oldsymbol{Wertebereich}$ von $f.$	
(iii) Sei $M \subset A$ beliebig.	
$f(M) := \{ y \in B : (\exists x \in M : f(x) = y) \} \equiv \{ f(x) : x \in M \}$	
Somit induziert $f: A \to B$ eine Funktion $\mathcal{P}(A) \to \mathcal{P}(B)$, die wir wieder mit f bezeichnen.	
(iv) Zu einer beliebigen Funktion $f:A\to B$ definieren wir die $Urbildabbildung$	
$f^{-1}: \mathcal{P}(B) \to \mathcal{P}(A)$ mit $F^{-1}(M):=\{x \in A: f(x) \in M\}, M \subset B$ beliebig.	
$f^{-1}(M)$ heißt $Urbild$ von M unter f .	
Bemerkung	Bem. 1.3!
$f:A\to B$ und $g:C\to D$ sind gleich, falls sie als Teilmengen von $A\times B$ bzw. $C\times D$ gleich sind, insbesondere $B=D$.	
Definition	D. 1.30
Sei $f: A \to B$.	
(i) f heißt injektiv , falls für alle $x, y \in A$ aus $f(x) = f(y)$ auch $x = y$ folgt.	
(ii) f heißt $surjektiv$, falls $f(A) = B$. Wir sagen, dass f die Menge A auf B abbildet.	
Bei nicht-surjektiven Abbildungen sagt man A wird nach oder in B abgebildet.	
(iii) f heißt $bijektiv$, falls f injektiv und surjektiv ist. f ist eine $Bijektion$.	
(iv) ist f injektiv, so definieren wir die <i>Inverse</i> von f durch	
$f^{-1}: R(f) \to A \text{ mit } f(x) \mapsto x.$	
Es gilt $f^{-1}(f(x)) = x$	Dagg 1 2
Bemerkung (i) $\mathcal{I}(f(x))$ bezeichnet die <i>Inverse</i> von $f(x)$.	Bem. 1.3
(i) $L(f(x))$ bezeichnet die <i>Inverse</i> von $f(x)$. (ii) $U(\{f(x)\})$ bezeichnet die Umkehrabbildung der Menge $\{f(x)\}$, sie ist definiert durch	
(ii) $U(\{f(x)\})$ be zeromet die Umkenrabbildung der Menge $\{f(x)\}$, sie ist denmert durch $U: \mathcal{P}(B) \to \mathcal{P}(A)$ mit $M \subset B \mapsto \{x \in A: f(x) \in M\}$	
(iii) $f: A \to B$ induziert $g: \mathcal{P}(A) \to \mathcal{P}(B)$	
$\Rightarrow \{f(x)\} = g(\{x\})$	
Definition (Komposition von Abbildungen)	D. 1.38
Seien $f:A \to B, g:B \to C$ Abbildungen. Dann heißt	B1 110
$g \circ f : A \to C \text{ mit } x \mapsto g(f(x))$ Komposition von f und g .	
Bemerkung	Bem. 1.40
Seien $f: A \to B, g: B \to C, h: C \to D$ Abbildungen. Dann gilt	Dem. 1.40
Seien $f: A \to B, g: B \to C, h: C \to B$ Abbildungen. Dann gilt $h \circ (g \circ f) = (h \circ g) \circ f$	
Sowie für Inverse und Umkehrabbildungen:	
$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$	

Definition (Relationen)

D. 1.41

Seien A, B Mengen.

- (i) $R \subset A \times B$ heißt **Relation**. Statt $(x,y) \in R$ sagen wir R(x,y) gilt.
- (ii) $R \subset A \times A$ heißt
 - (a) **reflexiv**, falls R(x, x) für alle $x \in A$ gilt
 - (b) **symmetrisch**, falls $R(x,y) \Rightarrow R(y,x)$ für alle $x,y \in A$
 - (c) antisymmetrisch, falls $R(x,y) \wedge R(y,x) \Rightarrow x = y$ für alle $x,y \in A$
 - (d) **transitiv**, falls $R(x,y) \wedge R(y,z) \Rightarrow R(x,z)$ für alle $x,y,z \in A$
- (iii) $R \subset A \times A$ heißt \ddot{A} quivalenzrelation, falls R reflexiv, symmetrisch und transitiv ist. Schreibweise bei Äquivalenzrelationen: $x \sim y$ statt R(x,y)

Definition

D. 1.42

Sei $R \subset A \times A$ eine Äquivalenzrelation. Sei $x \in A$. dann heißt $[x] := \{y \in A : R(x,y)\}$ Äquivalenzklasse von x. Schreibe $y \equiv x \pmod{R}$ für $y \in [x]$. $A/R := \{[x] : x \in A\}$ ist die Menge aller Äquivalenzklassen von R.

DIE REELLEN ZAHLEN

Part 1.5

Definition

D. 1.44

Die reellen Zahlen, R, sind eine Menge mit den folgenden Eigenschaften:

- (A) R ist ein Körper, d.h. es gibt die Abbildung
 - (i) $+: \mathbb{R} \times \mathbb{R}$, die **Addition**, schreibe x + y für x(x, y)
 - (ii) $\cdot : \mathbb{R} \times \mathbb{R}$, die **Multiplikation**, mit $(x,y) \mapsto x \cdot y \equiv xy$ bezeichnet und zwei ausgezeichneten Elementen: 0, 1 mit $0 \neq 1$

Es gilt, soweit nicht anders angegeben, für alle $x, y, z \in \mathbb{R}$:

- (K1) x + (y + z) = (x + y) + z
- (K2) x + y = y + x
- (K3) 0 + x = x
- (K4) $\forall x \in \mathbb{R} \exists y \in \mathbb{R} : x + y = 0$, Schreibe -x für y : x + (-x) = 0
- (K5) (xy)z = x(yz)
- (K6) xy = yx
- (K7) 1x = x
- (K8) $\forall x \in \mathbb{R} \setminus \{0\} \exists y \in \mathbb{R} : xy = 1$, Schreibe x^{-1} für $y : xx^{-1} = 1$
- (K9) x(y+z) = xy + xz
- (B) \mathbb{R} ist ein angeordneter Körper, d.h. es gibt eine Relation $R \subset \mathbb{R} \times \mathbb{R}$ (schreibe $x \leq y$ für R(x,y)), die für alle $x,y,z \in \mathbb{R}$ folgendes erfüllt:
 - (O1) $x \le y \land y \le z \Rightarrow x \le z$

(Transitivität)

(O2) $x \le y \land y \le x \Rightarrow x = y$

(Antisymmetrie)

- (O3) es gilt $x \le y$ oder $y \le x$
- (O4) aus $x \le y$ folgt $x + z \le y + z$
- (O5) aus $0 \le x$ und $0 \le y$ folgt $0 \le xy$.

Schreibe $y \ge x$ statt $x \le y$ und x < y bzw. y > x für $x \le y$ und $x \ne y$

(C) $\mathbb R$ ist vollständig, d.h. jede nicht-leere nach oben beschränkte Teilmenge von $\mathbb R$ besitzt ein Supremum in $\mathbb R$.

Definition (Ordnung)

D. 1.45

Eine transitive, antisymmetrische Relation \leq , für die stets $x \leq y$ oder $y \leq x$ gilt, heißt (totale) Ordnung.

Definition (Supremum, Infimu	•		D. 1.46
(i) $A \subset \mathbb{R}$ heißt $nach \ oben \ beschränk$			
(ii) $x_0 \in \mathbb{R}$ ist eine obere Schranke von			
(iii) $x_0 \in \mathbb{R}$ ist das Supremum von $A \subset A$ state $x \geq x$, gilt, x_0 hoißt blein er			
A stets $x \ge x_0$ gilt. x_0 heißt kleins : (iv) Ist $\sup A \in A$, so heißt $\sup A$ Maxi		runke.	
(v) Ist $Sup H \subset H$, so heldt $Sup H Maximized$		$A = +\infty$ Für alle $r \in \mathbb{R}$ vereinbaren	
$\text{wir } -\infty < x < +\infty.$	e, so gist sup i		
(vi) Entsprechend: nach unten besch	ränkt, unter	e Schranke, Infimum (=größte	
$untere\ Schranke),\ Minimum.$			
Ist A nach unten unbeschränkt, so	gilt inf $A = -$	$-\infty$. Alternativ: $-A = \{-a : a \in$	
$A\},A\subset\mathbb{R}.$ A heißt nach $unten\ beschränkt,$ fa	-A nach c	bben beschränkt ist. $x = \inf A$, falls	
$-x = \sup -A$. (vii) Ist $A \subset \mathbb{R}$ nach oben und unten bese	chränkt, so he	ißt A beschränkt.	
Bemerkung	,		Bem. 1.47
$\sup \emptyset = -\infty \text{ und inf } \emptyset = +\infty$			Dem. 1.47
Definition			D. 1.49
Seien $a, b \in \mathbb{R}, a < b$.			D. 1.43
(i) $(a, b) := \{x \in \mathbb{R} : a < x < b\}$		(offenes Intervall)	
(ii) $(a,b] := \{x \in \mathbb{R} : a < x \le b\}$		(halboffenes Intervall)	
(iii) $[a,b] := \{x \in \mathbb{R} : a \le x < b\}$		(halboffenes Intervall)	
(iv) $[a, b] := \{x \in \mathbb{R} : a \le x \le b\}$		(abgeschlossenes Intervall)	
a,b heißen ${\it Endpunkte}$ der Intervalle.			
Lemma			L. 1.50
Sei $x \in \mathbb{R}$. Dann gilt $x0 = 0x = 0$.			
Lemma			L. 1.51
Sei $x \in \mathbb{R}$. Dann gelten			
(i) $(-1)x = -x$			
(ii) -(-x) = x			
(iii) $(-1)(-1) = 1$			
Lemma			L. 1.52
Sei $x \in \mathbb{R}$. Dann ist die additive Inverse	x - x eindeuti	g bestimmt.	1 1 50
Lemma			L. 1.53
Es gelten $0 < 1$ und $-1 < 0$.			1.154
Lemma	1		L. 1.54
Seien $x, y \in \mathbb{R}$. Dann gilt genau ein der	drei folgender	n Aussagen:	
x < y,	x = y,	x > y	
Lemma			L. 1.55
Gelte $0 < x < y$. Dann gelten:			
(i) $0 < x^{-1}$			
(ii) $0 < y^{-1} < x^{-1}$			1 1 56
Lemma	0		L. 1.56
$x, y \in \mathbb{R}$. Gilt $xy = 0 \Rightarrow x = 0$ oder $y = 0$	U.		1 1 57
Lemma			L. 1.57
Seien $a, b \in \mathbb{R}$.			
 (i) Aus 0 ≤ a ≤ b folgt a² ≤ b² (ii) Aus a² ≤ b² und b ≥ 0 folgt a ≤ b. 			
(ii) Aus $a \geq b$ und $b \geq 0$ loigt $a \leq b$.			
0			

 $\mathrm{Mit}\ a^2 = a \cdot a.$

Definition (Natürliche Zahlen) Die natürlichen Zahlen N sind die kleinste Teilmens	ge $A \subset \mathbb{R}$ mit	D. 1.58
$\begin{array}{ll} (\mathrm{N1}) & = \in A \\ (\mathrm{N2}) & a+1 \in A, \forall a \in A \end{array}$		
\mathbb{N} ist die kleinste Menge mit (N1), (N2) in dem Sir (N1) und (N2) auch $\mathbb{N} \subset \mathcal{N}$ gilt.	nn, dass für alle $\mathcal{N} \subset \mathbb{R}$ mit \mathcal{N} erfüllt	
Lemma		L. 1.59
Es gibt die natürlichen Zahlen. Sie sind eindeutig b Lemma (Peanoaxiome)	pestimmt.	L. 1.60
Es gelten: (i) $0 \in \mathbb{N}$ (ii) jedes $a \in \mathbb{N}$ besitzt genau einen Nachfolger a^+ (iii) 0 ist kein Nachfolger einer natürlichen Zahl (iv) $\forall n, m \in \mathbb{N} : m^+ = n^+ \Rightarrow n = m$ (v) Sei $X \subset \mathbb{R}$ beliebig mit $0 \in X$ und $n^+ \in X, \forall n \in \mathbb{N}$		2, 2,00
Der Nachfolger von $a \in \mathbb{N}$ ist die Zahl $a^+ := a + 1$	$\in \mathbb{N}.$	
Theorem \mathbb{R} ist archimedisch, d.h. zu jedem $x \in \mathbb{R}$ gibt es n_0 $n \geq x$ gilt.	$0 \in \mathbb{N}$, sodass für alle $\mathbb{N} \ni n \ge n_0$ auch	T. 1.61
Korollar		K. 1.62
Sei $x \in \mathbb{R}$ beliebig und sei $a > 0$. (i) Dann gibt es $n \in \mathbb{N}$ mit $an \ge x$		
(ii) Dann gibt es $m \in \mathbb{N}$ mit $0 < \frac{1}{n} \le a$		
(iii) Ist $a \leq \frac{1}{n}$ für alle $n \in \mathbb{N}$ (oder alle $n \in \mathbb{N}$ mit	$n \ge n_0$), so ist $a \le 0$.	
Theorem (Vollständige Induktion)		T. 1.63
Erfüllt $M \subset \mathbb{N}$ die Bedingungen	(7.11)	
(i) $0 \in M$ (ii) $n \in M \Rightarrow n+1 \in M$	$(Induktions an fang) \ (Induktions schritt)$	
so gilt $M = \mathbb{N}$.		
Theorem Sei p eine Aussageform auf \mathbb{N} . Gelten (i) $p(0)$ und (ii) $p(n) \Rightarrow p(n+1)$ für alle $n \in \mathbb{N}$,		T. 1.64
so gilt $p(n)$ für alle $n \in \mathbb{N}$.		
Definition (Familie, Folge)		D. 1.67
 (i) Seien \$\mathcal{I}\$, \$X\$ Mengen, \$f: \$\mathcal{I}\$ → \$X\$ eine Abbildung. mit \$x_i = f(i)\$, \$\forall i \in \mathcal{I}\$ (\$\mathcal{I}\$ bezeichnet die Indexme (ii) Ist \$\mathcal{I}\$ = \$\mathbb{N}\$, so heißt \$(x_i)_{i \in \mathcal{I}}\$ Folge: \$(x_i)_{i \in \mathbb{N}}\$ \subseteq \$X\$. (iii) Ist \$J \subseteq \mathcal{I}\$, so heißt \$(x_j)_{j \in J}\$ Teilfamilie von \$(x_i)\$ men. (iv) Ist \$\mathcal{I}\$ = \$\mathbb{N}\$, \$J \subseteq \mathbb{N}\$ unendlich, so heißt \$(x_j)_{j \in J}\$ Teilfamilie von \$(x_i)\$ men. (iv) Ist \$\mathcal{I}\$ = \$\mathbb{N}\$, \$J \subseteq \mathbb{N}\$ unendlich, so heißt \$(x_j)_{j \in J}\$ Teilfamilie von \$(x_i)\$ men. 	enge). $a_{i\in\mathcal{I}}, \text{ falls die Werte auf } J \text{ "übereinstim-}$ $a_{i\in\mathcal{I}}, \text{ falls die Werte auf } J \text{ "übereinstim-}$ $a_{i\in\mathcal{I}}, \text{ falls die Werte auf } J \text{ "übereinstim-}$	
(v) Sei $(x_i)_{i\in\mathcal{I}}$ eine Familie. Ist $\mathcal{I} = \{1, 2, \dots, n\}$ (-		
 (a) n = 2: Die Familie heißt Paar (x₁, x₂) (b) n = 3: Die Familie heißt Triple (x₁, x₂, x₂ (c) n beliebig: Die Familie heißt n-Tupel (x₁, 		

Definition	D. 1.68
Sei $(A_i)_{i\in\mathcal{I}}$ eine Familie von Mengen mit Obermenge X . (i) $\bigcup_{i\in\mathcal{I}} A_i := \{x \in X : (\exists i \in \mathcal{I} : x \in A_i)\}$	
(ii) $\bigcap_{i\in\mathcal{I}}^{i\in\mathcal{I}} A_i := \{x \in X : (\forall i \in \mathcal{I} : x \in A_i)\}$	
(iii) $\mathcal{I} = \{1, 2, \dots, n\} : \bigcup_{i=1}^{n} A_i = \bigcup_{i \in \mathcal{I}} A_i$, sowie $\bigcap_{i=1}^{n} A_i = \bigcap_{i \in \mathcal{I}} A_i$	
Definition	D. 1.69
Ist $(x_i)_{i\in\mathcal{I}}$ eine Familie reeller Zahlen, so gilt $\sup_{i\in\mathcal{I}} x_i := \sup\{x_i : i\in\mathcal{I}\}$, sowie	
$\inf_{i \in \mathcal{I}} x_i := \inf\{x_i : i \in \mathcal{I}\}.$	
Proposition	P. 1.70
(i) Seien $A, B \subset \mathbb{R}, A \subset B$.	
$\Rightarrow \sup A \leq \sup B$, inf $A \geq \inf B$. (ii) Sei $(A_i)_{i \in \mathcal{I}}$ eine Familie von Mengen $A_i \subset \mathbb{R}, \forall i \in \mathcal{I}$. Dann definiere $A := \bigcup_i A_i$	
$\Rightarrow \sup A = \sup \sup A_i \text{ und inf } A = \inf A_i.$	
	D. 1.71
(i) Sei A eine Menge, $f: A \to \mathbb{R}$ eine Funktion. f heißt $nach \ oben \ (unten) \ beschränkt$, falls für $f(A)$ gilt:	
(a) $\sup f(A) = \sup_{x \in A} f(x)$	
(b) $\inf f(A) = \inf_{x \in A} f(x)$	
(ii) Sei A eine Menge und $f_i: A \to \mathbb{R}$ eine Familie von Funktionen. Gilt für alle $x \in A$, dass $\sup_{i \in \mathcal{I}} f_i(x) < \infty$, so definieren wir die Funktion	
$\sup f_i:A o\mathbb{R}$	
$(\sup_{i \in \mathcal{I}} f_i)(x) := \sup_{i \in \mathcal{I}} f_i(x)$	
(iii) Ohne $\sup f_i(x) < \infty$ erhalten wir mit derselben Definition $\sup f_i : A \to \mathbb{R} \cup \{+\infty\}$	
(iv) Analog für $\inf_{i\in\mathcal{I}}f_i$.	
(v) Ist $\mathcal{I} = \{1, \dots, n\}$ gilt $\sup_{i \in \mathcal{I}} f_i = \sup_{i \in \mathcal{I}} (f_1, \dots, f_n) = \max_{i \in \mathcal{I}} (f_1, \dots, f_n).$	
$\stackrel{i\in\mathcal{I}}{\mathrm{Entsprechend}}$ für Infimum/Minimum.	
Definition (Kartesisches Produkt)	D. 1.72
(i) Sei $\mathcal{I} \neq \emptyset$ und $(A_i)_{i \in \mathcal{I}}$ eine Familie von Mengen. Definiere das <i>kartesische Produkt</i> wie folgt:	
$\prod_{i \in \mathcal{I}} A_i := \{(x_i)_{i \in \mathcal{I}} : (\forall i \in \mathcal{I} : x_i \in A_i)\}$	
(ii) Zu $j \in \mathcal{I}$ definieren wir die j -te Projektionsabbildung $\pi_j : \prod_{i \in \mathcal{I}} A_i \to A_j \text{ mit } \pi_j((x_i)_{i \in \mathcal{I}}) := x_j$	
Axiom	A. 1.74
Sei $(A_i)_{i\in\mathcal{I}}$ eine Familie von Mengen $A_i\neq\emptyset, \forall i\in\mathcal{I}$. Dann gilt $\prod A_i\neq\emptyset,$ d.h. es gibt	
eine Familie $(x_i)_{i\in\mathcal{I}}$ mit $x_i\in A_i, \forall i\in\mathcal{I}.$	

Sei $\mathcal{I} \neq \emptyset$ und $(A_i)_{i \in \mathcal{I}}$ eine Familie von Mengen. Dann gilt $\prod_{i \in \mathcal{I}} A_i = \emptyset \iff \exists i \in \mathcal{I} : A_i \neq \emptyset$.	
Lemma (Zornsches Lemma)	L. 1.70
Sei $M \neq \emptyset$ mit einer Teilordnung (= partielle Ordnung) \leq . Nehme an, jede total geordnete Teilmenge $\Lambda \subset M$ (= Kette) besitzt eine obere Schranke $b \in M$, d.h. $x \leq b, \forall x \in \Lambda$. Dann enthält M ein maximales Element x_0 , d.h. $\exists x_0 \in M : x \geq x_0 \Rightarrow x = x_0$.	
Definition (Ausschöpfung, Partition, Überdeckung)	D. 1.77
Sei A eine Menge. (i) Eine $\ddot{U}berdeckung$ von A ist eine Familie $(A_i)_{i\in\mathcal{I}}$ mit $\bigcup_{i\in\mathcal{I}}\supset A$.	
(ii) Eine Partition von A ist eine Überdeckung $(A_i)_{i\in\mathcal{I}}$ mit $A_i\subset A$ und $A_i\cap A_j=\emptyset, \forall i\neq j\in\mathcal{I}, A=\bigcup_{i\in\mathcal{I}}A_i.$	
(iii) Eine Ausschöpfung von A ist eine aufsteigende Folge $(A_n)_{n\in\mathbb{N}}$ von Teilmengen von A , die $A_m \subset A_n, \forall m \leq n$ und $\bigcup_{n\in\mathbb{N}} A_n = A$ erfüllt.	
Proposition	P. 1.78
(i) Sei \sim eine Äquivalenz relation auf A . Dann bilden die Restklassen von \sim eine Partition	
von A . (ii) Sei $(A_i)_{i\in\mathcal{I}}$ eine Partition von A . Dann ist \sim mit $x\sim y:\Leftrightarrow \exists i\in\mathcal{I}: x,y\in A_i$ eine Äquivalenzrelation auf A .	
Lemma	L. 1.79
Seien A, B Mengen. Sei $(A_n)_{n \in \mathbb{N}}$ eine Ausschöpfung von A . Sei $(f_n)_{n \in \mathbb{N}}$ eine Familie von Abbildungen $f_n : A_n \to B$ mit $f_n _{A_m} = f_m$ für alle $m \le n$. Dann gibt es genau eine Funktion $f : A \to B$ mit $f(x) = f_n(x), \forall x \in A_n$ oder $f _{A_n} = f_n, \forall n \in \mathbb{N}$.	
Proposition (Rekursive Definition)	P. 1.80
Sei $B \neq \emptyset$ eine Menge, $x_0 \in B$ und $F : \mathbb{N} \times B \to B$ eine Funktion. Dann gibt es genau eine Funktion $f : \mathbb{N} \to B$ mit den Ergebnissen: (i) $f(0) = x_0$ und	
(ii) $f(n+1) = F(n, f(n))$ für alle $n \in \mathbb{N}$. f ist eine rekursiv definierte Funktion.	
IZ a didina a a manga	D. D. 1. 6
Kardinalität	PART 1.6
Definition (Mächtigkeit)	D. 1.84
Seien A, B Mengen. (i) A, B heißen gleich mächtig $(A \sim B)$, falls es eine Bijektion $f: A \to B$ gibt.	
(ii) B heißt $m\ddot{a}chtiger$ als A ($B \succ A$) oder A weniger $m\ddot{a}chtig$ als B ($A \prec B$), falls es eine injektive Abbildung $f: A \rightarrow B$ gibt.	
(iii) A heißt $abz\ddot{a}hlbar$, falls $A \sim \mathbb{N}$. (iv) A heißt $h\ddot{o}chstens\ abz\ddot{a}hlbar$, falls $A \prec \mathbb{N}$.	
(v) A heißt $\ddot{u}berabz\ddot{a}hlbar$, falls A nicht höchstens abzählbar ist.	
(vi) Sei A abzählbar, so heißt die Folge $(x_i)_{i\in\mathbb{N}}$ eine Abz ählung von A , falls $x_i\neq x_j$ für $i\neq j$ und $\bigcup_{i\in\mathbb{N}}\{x_i\}=A$.	

P. 1.75

Proposition

Bemerkung	Bem. 1.85
(i) \sim ist Äquivalenzrelation	
(ii) $A \prec B \prec C \Rightarrow A \prec C$	
(iii) $A \prec A$	
(iv) $G := \{2n : n \in \mathbb{N}\}, G \prec \mathbb{N} : 2n \mapsto 2n \text{ und } \mathbb{N} \prec G : n \mapsto 2n.$ Bijektiv: $\mathbb{N} \sim G$	
Theorem (Schröder-Bernstein)	T. 1.86
Aus $A \prec B$ und $B \prec A$ folgt $A \sim B$.	
Proposition	P. 1.87
A,B,C sind Mengen. Seien $\varphi:A\to B,\psi:B\to C$ Abbildungen. Sei $f:A\to B$	
Abbildung. Dann gelten:	
(i) Ist $\psi \circ \varphi$ injektiv, so ist φ injektiv (ii) Ist $\psi \circ \varphi$ surjektiv, so ist ψ surjektiv	
(iii) f surjektiv $\Leftrightarrow \exists g: B \to A, f \circ g = id_B$	
(iv) f injektiv $\Leftrightarrow \exists g: B \to A, g \circ f = id_A$	
Korollar	K. 1.88
$A \prec B \Leftrightarrow \exists f: B \to A, f \text{ ist surjektiv.}$	111213
Definition	D. 1.89
Sei A eine Menge.	
(i) A heißt endlich , falls es eine injektive Abbildung $f:A\to\mathbb{N}$ und $m\in\mathbb{N}$ mit	
$f(a)ym, \forall a \in A \text{ gibt.}$	
(ii) A heißt unendlich , falls A nicht endlich ist.	
(iii) Gibt es eine bijektive Abbildung $f: A \to \{0, 1,, m-1\} \subset \mathbb{N}$, so hat A die Kardinalität $m(A = m)$. Gibt es keine solche Abbildung, so gilt $ A = \infty$.	
(iv) Sei P eine Aussageform auf A . Dann gilt P für $fast$ alle $i \in A$, falls $\{i \in A : \neg P(i)\}$	
endlich ist.	
Lemma	L. 1.91
(i) Für jede endliche Menge A gilt $ A < \infty$, d.h. es gibt ein $m \in \mathbb{N}$ und eine Bijektion	
$f: A o \{0, \ldots, m-1\}.$	
(ii) Seien $m, n \in \mathbb{N}$ und $f : \{0, \dots, m\} \to \{0, \dots, n\}$ eine Bijektion. Dann gilt $n = m$. (\Rightarrow Kardinalität ist wohldefiniert).	
Lemma	L. 1.92
Sei $m \in \mathbb{N} \setminus \{0\}$ und $(a_i)_{1 \leq i \leq m}$ eine endliche Familie natürlicher Zahlen (oder reeller).	
Dann gibt es ein $i \in \{a, \dots, m\} : a_i \le a_j, \forall 1 \le j \le m$.	
Schreibe $a_i = \min\{a_1, \dots, a_m\} \equiv \min(a_1, \dots, a_n)$.	
Entsprechend $\max\{a_1,\ldots,a_m\} \equiv \max(a_1,\ldots,a_n)$.	L. 1.93
Lemma	L. 1.93
Die natürlichen Zahlen sind wohlgeordnet, d.h. jede Menge $M \subset \mathbb{N}, M \neq \emptyset$, besitzt ein kleinstes Element, d.h. $\exists a \in M : a \leq b, \forall b \in M$.	
Lemma	L. 1.94
Sei A eine unendliche Menge. Dann besitzt A eine abzählbare Teilmenge.	
Lemma	L. 1.95
Sei A eine Menge. Dann ist A genau dann höchstes abzählbar, wenn A endlich ist oder	2. 1.50
$A \sim \mathbb{N}$.	
Lemma	L. 1.96
Sei A eine Menge. Dann ist A genau dann höchstens abzählbar, wenn es eine surjektive	
Abbildung $f: \mathbb{N} \to A$ gibt.	5 4 6=
Proposition	P. 1.97
$\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$.	

P. 1.97

Proposition P. 1.98 Sei $k \in \mathbb{N}_{\geq 0}$. Dann ist $\prod_{i=1}^{\kappa} \mathbb{N} = \mathbb{N}^k$ abzählbar. Dies gilt auch, wenn wir \mathbb{N} überall durch $A \sim \mathbb{N}$ ersetzen. L. 1.99 Lemma Sei $(A_i)_{i\in\mathbb{N}}$ eine Folge abzählbarer Mengen. Dann ist $A:=\bigcup_{i\in\mathbb{N}}A_i$ abzählbar. Bem. 1.100 Bemerkung P. 1.98 und L. 1.99 gelten auch mit "höchstens abzählbar" statt abzählbar. T. 1.101 Theorem (Cantor) Sei A eine Menge $\Rightarrow \mathcal{P}(A) \succ A$ und $\mathcal{P}(A) \not\sim A$. Betrag und Wurzel PART 1.7 D. 1.102 **Definition** (i) Sei $x \in \mathbb{R}$. Definiere den **Betrag** von x wie folgt: $|x| := \begin{cases} x, & x \ge 0 \\ -x, & x \le 0 \end{cases}$ (ii) Ist $I \subset \mathbb{R}$ ein Intervall mit Endpunkten a und b, so heißt |a-b| **Länge von** I. P. 1.104 **Proposition** Seien $x, a \in \mathbb{R}$. Dann gelten (i) $x \leq |x|$ (ii) $|x| \le a \Leftrightarrow -a \le x \le a$ (iii) $|x| < a \Leftrightarrow -a < x < a$ K. 1.105 Korollar Sei $A \subset \mathbb{R}$. Dann ist A genau dann beschränkt, wenn es ein $a \in \mathbb{R}$ mit $|x| \leq a, \forall x \in A$ Theorem (Dreiecksungleichung) T. 1.106 Seien $a, b \in \mathbb{R}$. Dann gilt (i) $|a+b| \le |a| + |b|$ (ii) $|a - b| \ge |a| - |b|$ (iii) $|a-b| \ge ||a|-|b||$ Proposition (Existenz der *m*-ten Wurzel) P. 1.107 Seien $m \in \mathbb{N} \setminus \{0\}, a \in \mathbb{R}_{geq0}$. Dann gibt es genau ein $x \in \mathbb{R}_{\geq 0} : x^m = a$. **Definition** D. 1.108 (i) \sqrt{a} ist die Zahl in \mathbb{R}_+ mit $(\sqrt{a})^2 = a$ (ii) $\sqrt[m]{a}$ oder $a^{\frac{1}{m}}$ ist die Zahl in \mathbb{R}_+ mit $(\sqrt[m]{a})^m = a$ (iii) $a^0 := 1, a^{\frac{n}{m}} := \left(a^{\frac{1}{m}}\right)^n$

Weitere Zahlen und Mächtigkeit

Part 1.8

Definition

D. 1.109

- (i) Die Menge der $x \in \mathbb{R}$,sodass es $n, m \in \mathbb{N}$ mit m n = x gibt, heißt die Menge der ganzen Zahlen: $\mathbb{Z} := \{m n : m, n \in \mathbb{N}\}$
- (ii) Die *rationalen Zahlen* sind die Menge aller $x \in \mathbb{R}$, sodass es $m, n \in \mathbb{Z}$ mit $n \neq 0$ und $x = \frac{m}{n}$ gibt: $\mathbb{Q} := \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}$
- (iii) $\mathbb{I} := \mathbb{R} \setminus \mathbb{Q}$ heißt die Menge der *irrationalen Zahlen*.
- (iv) Die **komplexen Zahlen** sind Paare reeller Zahlen : $\mathbb{C} := \{(a, b) : a, b \in \mathbb{R}\}.$

Addition: (a, b) + (c, d) := (a + c, b + d)

Multiplikation: $(a,b) \cdot (c,d) := (ac - bd, bc + ad)$

Schreibe $(a, b) \equiv a + ib$. Es gilt $i^2 = -1$.

Sei z = a + ib. Dann heißt $a = Re \ z$ Realteil von z und $b = Im \ z$ Imaginärteil von z.

 $\overline{a+ib} := a-ib$ heißt **konjugiert komplexe Zahl zu** a+ib.

 $|a+ib| := \sqrt{a^2 + b^2}$ heißt **Betrag von** a+ib.

Für $a, b \in \mathbb{R}, z, w \in \mathbb{C}$ gilt:

- $|a+ib|^2 = (a+ib)\overline{(a+ib)}$
- $\overline{z+w} = \overline{z} + \overline{w}$
- $\overline{zw} = \overline{z} \cdot \overline{w}$
- $|z|^2 = |Re\ z|^2 + |Im\ z|^2$
- $|z|^2 = |\overline{z}|$

Betrachte \mathbb{R} mithilfe von $\mathbb{R} \ni x \mapsto (x,0) \in \mathbb{C}$ als Teilmenge von \mathbb{C} . $x \in \mathbb{R} \Rightarrow \overline{x} = x$.

Bemerkung

Bem. 1.110

- (i) Summen, Differenzen und Produkte ganzer Zahlen sind ganze Zahlen.
- (ii) $\mathbb Q$ bildet einen angeordneten Körper, $\mathbb Q$ ist nicht vollständig.
- (iii) $\mathbb C$ ist ein Körper, $\mathbb C$ ist nicht angeordnet, $\mathbb C$ ist als metrischer Raum vollständig.

$$(a+ib)(a-ib) = a^2 + b^2$$
. Für $(a,b) \neq 0$ ist daher $\frac{a}{a^2 + b^2} + i\frac{-b}{a^2 + b^2} = (a+ib)^{-1}$

- (iv) Seien $z, w \in \mathbb{C} \Rightarrow |z + w| \le |z| + |w|$
- $(\mathbf{v}) |zw| = |z| \cdot |w|$

Theorem (Dichtheit von \mathbb{Q} in \mathbb{R})

Sei $I \subset (a,b) \subset \mathbb{R}$ ein Intervall mit $I \neq \emptyset$. Dann ist $I \cap \mathbb{Q}$ unendlich.

Proposition

 $\mathbb{Q} \sim \mathbb{N}$

Proposition

 $\mathbb{R} \sim \mathcal{P}(\mathbb{N})$

Bemerkung (Cantorsches Diagonalverfahren ($\mathbb{R} \succ \mathbb{N}, \mathbb{R} \not\sim \mathbb{N}$))

Alle reellen Zahlen werden untereinander aufgelistet. Man nimmt die Diagonale und schreibt eine neue Zahl unter die Liste, die zur Diagonale verschieden ist \rightarrow nicht in der Liste!

Bemerkung

 $\mathbb{R} \sim (\mathbb{R} \setminus \mathbb{Q})$

Bem. 1.114

T. 1.111

P. 1.112

P. 1.113

Bem. 1.115

Konvergenz KAP. 2 METRISCHE RÄUME PART 2.1 **Definition (Metrische Räume)** D. 2.1 Sei E eine Menge. (a) Eine Funktion $d: E \times E \to \mathbb{R}_+$ heißt **Metrik**, falls (i) d(x, y) = d(y, x)(Symmetrie) (ii) $d(x,y) = 0 \iff x = y$ ((positive) Definitheit) (iii) $d(x, z) \le d(x, y) + d(y, z)$ (Dreiecksungleichung) (b) Das Paar (E, d) heißt **metrischer Raum**. L. 2.2 Lemma Sei E ein metrischer Raum. Dann gilt die umgekehrte Dreiecksungleichung: $d(x,z) > |d(x,y) - d(y,z)|, \ \forall x,y,z \in E$ Bem. 2.3 Bemerkung \mathbb{K} sein \mathbb{R} oder \mathbb{C} . D. 2.4 **Definition (normierter Raum)** Sei E ein \mathbb{K} -Vektorraum. (a) Dann heißt $\|\cdot\|: E \to \mathbb{R}_+$ Norm, falls für alle $x, y, z \in E$ und $\lambda \in \mathbb{K}$ folgendes gilt: (i) $||x|| = 0 \Longrightarrow x = 0$ ((positive) Definitheit) (ii) $\|\lambda x\| = |\lambda| \cdot \|x\|$ (Homogenität) (iii) $||x + y|| \le ||x|| + ||y||$ (Dreiecksungleichung) (b) Das Paar $(E, \|\cdot\|)$ heißt normierter Raum. L. 2.5 Lemma Sei E ein normierter Raum. Dann gilt die umgekehrte Dreiecksungleichung: $||x - y|| \ge ||x|| - ||y|||, \ \forall x, y \in E$ **Definition** (Skalarproduktraum) D. 2.6 Sei E ein \mathbb{K} -Vektorraum. (a) Dann heißt $\langle \cdot, \cdot \rangle : E \times E \to \mathbb{K}$ **Skalarprodukt**, falls (i) $\langle \lambda x + y, z \rangle = \lambda \langle x, z \rangle + \langle y, z \rangle$ (Linearität im ersten Argument) (ii) $\langle x, y \rangle = \langle y, x \rangle$ (K: Symmetrie, C: Hermizität) (iii) $\langle x, x \rangle \ge 0$ und $(\langle x, x \rangle = 0 \leftrightarrow x = 0)$ (positive Definitheit) (b) $(E, \langle \cdot, \cdot \rangle)$ heißt Skalarproduktraum. T. 2.8 Theorem (Cauchy-Schwarzsche Ungleichung) Sei E ein Skalarproduktraum. Dann gilt $|\langle x,y\rangle|^2 \leq \langle x,x\rangle \cdot \langle y,y\rangle$, $\forall x,y\in E$ (bei Gleichheit gilt lineare Abhängigkeit von x und y). T. 2.9 Theorem Sei E ein Skalarproduktraum. Dann definiert $||x|| := \sqrt{\langle x, x \rangle}$ für $x \in E$ eine Norm auf E. T. 2.10 Theorem Sei E normierter Raum. Dann definiert d(x,y) := ||x|| - ||y|| für $x,y \in E$ eine Metrik auf

Seien $x, y \in \mathbb{R}^n, x = (x^1, \dots, x^n), y = (y^1, \dots, y^n)$. Dann definiert $\langle x, y \rangle := \sum_{i=1}^n x^i y^i$ ein

Skalarprodukt auf \mathbb{R}^n , das *euklidische Skalarprodukt*.

Dies induziert $||x|| = |x| = \left(\sum_{i=1}^n (x^i)^2\right)^{\frac{1}{2}}$ und $d(x,y) = |x-y| = \sqrt{\sum_{i=1}^n (x^i-y^i)^2}$

Bsp. 2.11

Beispiel

Proposition (Polarisationsformeln) P. 2.12 (i) Sei E ein Skalarproduktraum über \mathbb{K} . Dann gilt $||x+y||^2 = ||x||^2 + ||y||^2 + 2Re \langle x, y \rangle$ (ii) ist E ein \mathbb{R} -Vektorraum mit Skalarprodukt $\Rightarrow \langle x, y \rangle = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2)$ $= \frac{1}{2} \left(\|x\|^2 + \|y\|^2 - \|x - y\|^2 \right)$ $= \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right)$ (iii) Ist E ein Skalarproduktraum über \mathbb{C} , so gilt $4\left\langle x,y\right\rangle =\left\Vert x+y\right\Vert ^{2}-\left\Vert x-y\right\Vert ^{2}+i\left\Vert x+iy\right\Vert ^{2}-i\left\Vert x-iy\right\Vert ^{2}$ **Proposition** P. 2.13 Sei E ein normierter Raum über \mathbb{R} . Dann ist die Norm genau dann von einem Skalarprodukt induziert, falls die folgende Parallelogrammgleichung gilt: $2(||x||^2 + ||y||^2) = ||x + y||^2 + ||x - y||^2$ T. 2.14 Theorem Seien $1 \le p, q \le \infty$ konjungierte Exponenten. D.h. es gelte $\frac{1}{p} + \frac{1}{q} = 1$. Sei $x, y \in \mathbb{R}^n$. Dann gelten $\sum_{i=1}^{n} x^{i} y^{i} \leq \left\|x\right\|_{p} \cdot \left\|y\right\|_{q}$ (Höldersche Ungleichung) und $||x+y||_p \le ||x||_p + ||y||_p$ (Minkowskische Ungleichung) FOLGEN PART 2.2 **Definition** D. 2.16 Sei E ein metrischer Raum. Sei $x \in E, \varepsilon > 0$. Definiere $B_{\varepsilon}(x) := \{ y \in E : d(y, x) < \varepsilon \}$ die ε -Kugel. $B_{\varepsilon}(x)$ heißt auch ε -Umgebung von x (In $\mathbb{R}: B_{\varepsilon}(0) = (-\varepsilon, \varepsilon)$). D. 2.17 **Definition (Konvergenz)** Sei $(x_n)_{n\in\mathbb{N}}\subset E$ eine Folge in einem metrischen Raum E. (i) Dann konvergiert $(x_n)_{n\in\mathbb{N}}$ gegen $a\in E$, falls für beliebige $\varepsilon>0$ fast alle (nur endlich viele liegen außerhalb) Folgeglieder in $B_{\varepsilon}(a)$ liegen

(ii) Konvergiert $(x_n)_{n\in\mathbb{N}}$ gegen $a\in E$, so heißt a **Limes** oder **Grenzwert** der Folge $(x_n)_{n\in\mathbb{N}}$:

 $a = \lim_{n \to \infty} x_n \text{ oder } x_n \to a \text{ für } n \to \infty \text{ oder } x_n \xrightarrow{n \to \infty} a.$

Bem. 2.18

D. 2.19

P. 2.21

Bemerkung
Die Definition von Konvergenz ist äquivalent zu

- (i) Für alle $\varepsilon > 0$ gibt es ein $n_0 \in \mathbb{N}$, sodass für $n \in \mathbb{N}$ mit $n \ge n_0$ auch $x_n \in B_{\varepsilon}(a)$ gilt.
- (ii) Für alle $\varepsilon > 0$ gibt es ein $n_0 \in \mathbb{N}$, sodass für $n \in \mathbb{N}$ mit $n \ge n_0$ auch $d(x_n, a) < \varepsilon$ gilt.

Definition

- (i) Eine Teilmenge A eines metrischen Raumes E heißt **beschränkt**, falls es ein $x \in E$ und r > 0 mit $A \subset B_r(x)$ gibt.
- (ii) Eine Teilfolge A eines normierten Raumes E heißt beschränkt, falls es ein r > 0 mit $||x|| \le r$ für alle $x \in A$ gibt.

Proposition

Sei E ein metrischer Raum.

- (i) Der Grenzwert einer in E konvergenten Folge ist eindeutig bestimmt.
- (ii) Jede konvergente Folge in E ist beschränkt.

Proposition	P. 2.2
Seien $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ konvergente Folgen in E . (i) Ist E ein normierter Raum, so konvergiert auch $(x_n + y_n)_{n\in\mathbb{N}}$:	
$\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n$	
(ii) Ist $E = \mathbb{R}$, so konvergiert $(x_n \cdot y_n)_{n \in \mathbb{N}}$:	
$\lim_{n \to \infty} (x_n \cdot y_n) = \left(\lim_{n \to \infty} x_n\right) \cdot \left(\lim_{n \to \infty} y_n\right)$	
Bemerkung	Bem. 2.2
Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge, $a\in E, c>0$. Dann sind äquivalent: (i) $\forall \varepsilon>0 \ \exists n_0\in\mathbb{N} \ \forall n\geq n_0: d(x_n,a)<\varepsilon$	
(ii) $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : d(x_n, a) < c \cdot \varepsilon$	D 0 0
Proposition	P. 2.2
Sei $x_n \to a$ in E . (i) Ist E ein normierter Raum $\Rightarrow x_n \to a $.	
(ii) Ist $E \in \mathbb{R}$ oder $E = \mathbb{C}$, $x_n \neq 0 \forall n, a \neq 0 \Rightarrow x_n^{-1} \to a^{-1}$.	
Definition	D. 2.2!
Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge reeller Zahlen. Dann heißt $(x_n)_{n\in\mathbb{N}}$	
(i) monoton wachsend $(x_n \nearrow)$, falls $x_{n+1} \ge x_n, \forall n \in \mathbb{N}$ gilt.	
(ii) streng monoton wachsend, falls $x_{n+1} > x_n, \forall n \in \mathbb{N}$ gilt.	
(iii) monoton fallend $(x_n \searrow)$, falls $x_{n+1} \leq x_n, \forall n \in \mathbb{N}$ gilt.	
(iv) streng monoton fallend, falls $x_{n+1} < x_n, \forall n \in \mathbb{N}$ gilt. (v) $x_n \nearrow a \Leftrightarrow x_n \to a \text{ und } x_n \nearrow$.	
(vi) $x_n \searrow a \Leftrightarrow x_n \rightarrow a \text{ und } x_n \searrow$.	
Proposition	P. 2.20
Sei $(x_n)_{n\in\mathbb{N}}$ eine monoton beschränkte Folge in \mathbb{R} . Dann konvergiert $(x_n)_{n\in\mathbb{N}}$.	
Beispiel	Bsp. 2.27
(i) $\frac{1}{n} \searrow 0$	
η_{c}	
(ii) $0 < a < 1 \Rightarrow a^n \searrow 0$	D 2.20
Definition	D. 2.28
Sei E ein metrischer Raum, $(x_n)_{n\in\mathbb{N}}\subset E$. Dann heißt $a\in E$ Häufungspunkt (HP) von $(x_n)_{n\in\mathbb{N}}$, falls in jeder ε -Umgebung von A unendlich viele Folgeglieder liegen.	D 0 20
Proposition	P. 2.30
Sei $(x_n)_{n\in\mathbb{N}}\subset E$ eine Folge in einem metrischen Raum. Dann ist a genau dann HP von $(x_n)_{n\in\mathbb{N}}$, falls $(x_n)_{n\in\mathbb{N}}$ eine gegen a konvergente Teilfolge (TF) besitzt.	
Theorem (Bolzano-Weierstraß)	T. 2.3
Sei $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine beschränkte Folge. Dann besitzt $(x_n)_{n\in\mathbb{N}}$ einen Häufungspunkt.	1.2.9.
Definition	D. 2.3
Sei E ein metrischer Raum, $A, B \subset E$ nicht leer.	2.2.0
(i) $diam(A) := \sup_{x,y \in A} d(x,y)$ heißt Durchmesser von A	
(ii) Definiere die Distanz zwischen A und B , $dist(A, B)$, durch $dist(A, B) := \inf\{d(x, y) : x \in A \land y \in B\}$	
$dist(x, B) := dist(\{x\}, B), x \in E$ (ACHTUNG: keine Metrik!)	
Korollar (Bolzano-Weierstraß)	K. 2.3
Sei $(x_k)_{k\in\mathbb{N}}\subset\mathbb{R}^n$ eine beschränkte Folge, d.h. $\exists r>0:x_k\in B_r(0), \forall k\in\mathbb{N}$. Dann besitzt	
Ser $(x_k)_{k\in\mathbb{N}}\subset\mathbb{N}$ eine beschränkte Folge, d.n. $\exists r>0$. $x_k\in B_r(0)$, $\forall k\in\mathbb{N}$. Dann besitzt $(x_k)_{k\in\mathbb{N}}$ eine konvergente Teilfolge mit Grenzwert a und $ a \leq r$. Bemerkung	Bem. 2.34

Lemma Soi $(x, y) = \mathbb{R}$ oine Folge mit $x \to a$. Cilt $x \le a$. $\forall x \in \mathbb{N}$, so folgt $a \le a$.	L. 2.3!
Sei $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine Folge mit $x_n\underset{n\to\infty}{\longrightarrow}a$. Gilt $x_n\leq c,\ \forall n\in\mathbb{N},$ so folgt $a\leq c$. Proposition	P. 2.36
Sei $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine nach oben beschränkte Folge. Sei M die Menge aller ihrer HP. Sei $M\neq\emptyset$. Dann ist sup M ein HP.	1.2.30
Definition	D. 2.37
Sei $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine Folge. Sei M die Menge der HP von $(x_n)_{n\in\mathbb{N}}$.	
$ \limsup_{n \to \infty} x_n = \overline{\lim}_{n \to \infty} x_n := \sup M $	
heißt <i>Limes superior</i> .	
$ \lim_{n \to \infty} \inf x_n = \underline{\lim}_{n \to \infty} x_n := \inf M $	
heißt <i>Limes inferior</i> . Ist $(x_n)_{n\in\mathbb{N}}$ nach oben beschränkt, so gilt $\overline{\lim}_{n\to\infty} x_n \in \mathbb{R} \cup \{-\infty\}$.	
Ist $(x_n)_{n\in\mathbb{N}}$ nach unten beschränkt, so gilt $\lim_{n\to\infty} x_n \in \mathbb{R} \cup \{+\infty\}$.	
Bemerkung "~	Bem. 2.38
Nach Proposition 2.36, $\{HP\} \neq \emptyset, x_n \leq c : \overline{\lim_{n \to \infty}} x_n$ ist größter Limes einer konvergenten Teilfolge.	
Proposition	P. 2.39
Sei $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine beschränkte Folge. Dann gilt $(x_n)_{n\in\mathbb{N}}$ konvergiert $\iff \overline{\lim}_{n\to\infty} x_n =$	
$\lim_{n \to \infty} x_n.$	
Theorem	T. 2.40
Sei E ein metrischer Raum, $(x_n)_{n\in\mathbb{N}}\subset E$. Angenommen, jede Teilfolge von $(x_n)_{n\in\mathbb{N}}$ besitzt eine konvergente Teilfolge und die Grenzwerte aller konvergenten Teilfolgen sind gleich. Dann konvergiert $(x_n)_{n\in\mathbb{N}}$.	
Definition (Cauchyfolge, Vollständigkeit)	D. 2.41
(i) Eine Folge $(x_n)_{n\in\mathbb{N}}$ in einem metrischen Raum E heißt $Cauchyfolge\ (CF)$, falls es	
zu jedem $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ mit $d(x_k, x_l) < \varepsilon, \forall k, l \geq n_0$ gibt. (ii) Ein metrischer Raum, in dem jede CF konvergiert, heißt vollständiger metrischer Raum .	
(iii) Ein normierter Raum, in dem jede CF konvergiert, heißt vollständiger normierter Raum oder Banachraum (BR).	
(iv) Ein vollständiger Skalarproduktraum heißt <i>Hilbertraum (HR)</i> .	D 0.46
Bemerkung Gewing in the state of the state	Bem. 2.42
Cauchyfolgen: $\forall \varepsilon \ \exists n_0 : d(x_k, x_{k+\ell}) < \varepsilon, \forall k \geq n_0, \forall \ell \in \mathbb{N}.$ Lemma	L. 2.43
Sei E ein metrischer Raum. Sei $(x_n)_{n\in\mathbb{N}}\subset E$ konvergent. Dann ist $(x_n)_{n\in\mathbb{N}}$ eine Cauchyfolge.	L. 2.4
Korollar	K. 2.44
In einem vollständigen metrischen Raum konvergiert eine Folge genau dann, wenn sie eine CF ist.	
Proposition	P. 2.45
In einem metrischen Raum E gilt	
(i) Jede CF ist beschränkt.	
(ii) Jede CF bsitzt höchstens einen HP. Korollar	K. 2.46
\mathbb{R}^n mit der euklidischen Metrik ist ein vollständiger metrischer Raum (also auch Hilber-	r. 2.40
traum). Insbesondere: Folge konvergiert \iff Folge ist CF.	

Definition D. 2.47 Sei E ein Vektorraum. Dann heißen zwei Normen $\|\cdot\|_1$ und $\|\cdot\|_2$ auf E äquivalent, falls es $\frac{1}{c} \|x\|_1 \le \|x\|_2 \le c \cdot \|x\|_1 \,, \quad \forall x \in E$ P. 2.48 **Proposition** Sei E ein Vektorraum mit äquivalenten Normen $\|\cdot\|_1$ und $\|\cdot\|_2$. Dann ist $(E,\|\cdot\|_1)$ genau dann vollständig, wenn $(E, \|\cdot\|_2)$ vollständig ist. P. 2.49 **Proposition** Seien $1 \leq p, q \leq \infty$. Dann sind $\|\cdot\|_{\ell^p}$ und $\|\cdot\|_{\ell^q}$ auf \mathbb{R}^n äquivalent. Korollar K. 2.50 Für $1 \leq p \leq \infty$ ist $\ell^p(\mathbb{R}^n)$ ein Banachraum. Part 2.3 REIHEN **Definition** D. 2.52 Sei E ein normierter Raum, sei $(a_n)_{n\in\mathbb{N}}\subset E$ eine Folge. Definiere $(s_n)_{n\in\mathbb{N}}\subset E$ wie folgt: $s_n := \sum_{i=0}^n a_i$ Beide Folgen zusammen heißen Reihen, wobei a_n die Glieder der Reihe und s_n die **Partialsummen der Reihe** sind. Schreibe $((a_n))_{n\in\mathbb{N}}$. $((a_n))_{n\geq n_0}$ heißt **Reihe** oder **Endstück der Reihe** $((a_n))_{n\in\mathbb{N}}$. Existiert $\lim_{n\to\infty} s_n$ in E, so heißt dies **Wert** oder **Summe der Reihe**. $\lim_{n\to\infty} s_n = \sum a_n = \sum_{n=0}^{\infty} a_n.$ Existiert $\sum a_n$ so heißt $((a_n))_{n\in\mathbb{N}}$ konvergent, sonst divergent. P. 2.53 Proposition (Cauchykriterium) Eine Reihe in einem Banachrauch $(((a_n))_{n\in\mathbb{N}})$ konvergiert genau dann, wenn es für jedes $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt, sodass $||s_{n+m} - s_{n-1}|| = \left\| \sum_{k=1}^{n+m} a_k \right\| \le \varepsilon$ für alle $n \geq n_0$ und für alle $m \in \mathbb{N}$ gilt. K. 2.54 Korollar

Eine notwendige Bedingung für die Konvergenz der Reihe $((a_n))_{n\in\mathbb{N}}$ ist $a_n \xrightarrow[n\to\infty]{} 0$.

D. 2.55 Definition

Sei $(a_n)_{n\in\mathbb{N}}\subset E$ (E ist ein normierter Raum) mit $a_n\underset{n\to\infty}{\longrightarrow} 0$. dann heißt $(a_n)_{n\in\mathbb{N}}$ Null folge.

Bem. 2.57 Bemerkung

- (i) konvergente Reihe bilden einen Vektorraum
- (ii) Eine Reihe konvergiert genau dann, wenn ein beliebiges Endstück konvergiert.

P. 2.58 **Proposition**

Sei $((a_n))_{n\in\mathbb{N}}$ eine Reihe in \mathbb{R} mit $a_n\geq 0, \ \forall n\in\mathbb{N}$. Dann konvergiert die Reihe genau dann, wenn sämtliche Partialsummen nach oben beschränkt sind.

P. 2.59 Proposition (Dezimaldarstellung reeller Zahlen) Sei $x \in [0,1) \subset \mathbb{R}$. Dann existiert $d_i \in \{0,1,\ldots,9\} \subset \mathbb{N}, i \in \mathbb{N}$, mit $x = \sum_{i=1}^{\infty} d_i \cdot 10^{-1}$ Schreibweise: $x = 0, d_1 d_2 d_3 \dots$ $y \ge 0$. $n \in \mathbb{N}$ maximal: $n \le y$. $x := y - n \in [0, 1)$ $\Rightarrow y = n + \sum_{i=0}^{\infty} d_i \cdot 10^{-1}$ **Proposition (Majorantenkriterium)** P. 2.60 Seien $((a_n))_{n\in\mathbb{N}}, ((b_n))_{n\in\mathbb{N}}$ Reihen in \mathbb{R} . Angenommen $((b_n))_{n\in\mathbb{N}}$ konvergiert und es gilt $|a_n| \leq b_n, \ \forall n \in \mathbb{N}$ (für fast alle n reicht), so konvergiert auch $((a_n))_{n \in \mathbb{N}}$. $((b_n))_{n \in \mathbb{N}}$ heißt **Majorante** für $((a_n))_{n\in\mathbb{N}}$. P. 2.62 Proposition (Quotientenkriterium) Sei $((a_n))_{n\in\mathbb{N}}$ eine Reihe in $\mathbb{R}-+$. Es gelte $\gamma:=\limsup_{n\to\infty}\frac{a_{n+1}}{a_n}<1$. Dann konvergiert die Reihe. L. 2.64 Lemma Sei I=[a,b] ein beschränktes Intervall, $f,g:I\to\mathbb{R}$ "stetige" Funkionen auf I. Dann $\int_a^b f + g = \int_a^b f + \int_a^b g$ $f \leq g \Rightarrow \int_{a}^{b} f \leq \int_{a}^{b} g$ Ist f eine Konstante, so definieren wir c := f. $\Rightarrow \int_a^b f = c(b-a), \quad a = a_0 < a_1 < \dots a_n = b$ $\Rightarrow \sum_{i=1}^{n-1} \int_{a_{i+1}}^{a_{i+1}} = \int_{a}^{b} f$ **Proposition (Integralkriterium)** P. 2.65 Sei $f: \mathbb{R}_+ \to \mathbb{R}_+$ (stetig,) monoton fallend. Dann konvergiert $((f(n)))_{n \in \mathbb{N}}$ genau dann, wenn $\int_{0}^{\infty} f = \lim_{n \to \infty} \int_{0}^{b} f < \infty$

Proposition (Wurzelkriterium)

Sei $((a_n))_{n\in\mathbb{N}}$ eine Reihe in \mathbb{R}_+ . Ist $\gamma:=\limsup_{n\to\infty}(a_n)^{\frac{1}{n}}<1$, so konvergiert die Reihe.

Definition

Sei $((a_n))_{n\in\mathbb{N}}$ eine Reihe in einem Banachraum. Dann heißt die Reihe **absolut konvergent**, falls $((\|a_n\|))_{n\in\mathbb{N}}$ in \mathbb{R} konvergiert.

P. 2.67

D. 2.69

P. 2.70

Eine konvergente, nicht absolut konvergente Reihe heißt bedingt konvergent.

Proposition

Sei $((a_n))_{n\in\mathbb{N}}$ eine absolut konvergente Reihe in einem Banachraum. Dann konvergiert die Reihe und

$$\left\| \sum_{n=0}^{\infty} a_n \right\| \le \sum_{n=0}^{\infty} \|a_n\|$$

Definition

D. 2.72

- (i) $((a_n x^n))_{n \in \mathbb{N}}$ heißt **Potenzreihe**
- $rac{1}{\lim\sup|a_n|^{rac{1}{n}}}$ heißt $extit{ extit{Konvergenzradius}}$
- (iii) a_n sind **Koeffizienten**

Definition

D. 2.73

P. 2.74

Eine Reihe $((a_n))_{n\in\mathbb{N}}$ heißt **alternierend**, falls $a_n \cdot a_{n+1} \leq 0$ für alle $n \in \mathbb{N}$ gilt.

Proposition (Leibnizkriterium ($(((-1)^n \frac{1}{n}))_{n>1}$)) Sei $((a_n))_{n\in\mathbb{N}}$ eine alternierende Reihe in \mathbb{R} . Gelte $|a_n| \searrow 0$. Dann konvergiert die Reihe

$$\left| \sum_{n=0}^{\infty} a_n \right| \le |a_0|$$

Korollar

K. 2.75

Sei $((a_n))_{n\in\mathbb{N}}$ eine alternierende Reihe in \mathbb{R} . Gelte $|a_n| \searrow 0$. Dann gilt

$$\left| \sum_{n=k}^{\infty} \right| \le |a_k|, \quad \forall k \in \mathbb{N}$$

Definition

D. 2.76

Definiere $\ell^2(\mathbb{N})$ als den Raum aller reellen Folgen $(a_n)_{n\in\mathbb{N}}$ mit $\sum_{n=0}^{\infty} |a_n|^2 < \infty$ (Raum aller quadratsummierbaren Folgen).

Seien $a, b \in \ell^2(\mathbb{N})$. Definiere

$$\langle a, b \rangle := \sum_{n=0}^{\infty} a_n b_n$$

Sei $1 \leq p < \infty$. Definiere $\ell^p(\mathbb{N})$ als den Raum aller reellen Folgen $a = (a_n)_{n \in \mathbb{N}}$ mit

$$\sum_{n=0}^{\infty} |a_n|^p < \infty$$

und wir definieren

$$||a||_{\ell^p(\mathbb{N})} := \left(\sum_{n=0}^{\infty} |a_n|^p\right)^{\frac{1}{p}}$$

Für \mathbb{C} gilt $\ell^p(\mathbb{N};\mathbb{C}): a_n b_n \to a_n \overline{b_n}$. Für $p = \infty$ gilt $\|a\|_{\ell^\infty(\mathbb{N};\mathbb{C})}:=\sup_{n \in \mathbb{N}} |a_n|$

Theorem

T. 2.77

 $\ell^2(\mathbb{N})$ ist ein Hilbertraum, für $a \leq p < \infty$ ist $\ell^p(\mathbb{N})$ ein Banachraum. Die Dimension von $\ell^p(\mathbb{N}) = \infty.$

Definition

D. 2.78

Seien $((a_n))_{n\in\mathbb{N}}, ((b_n))_{n\in\mathbb{N}}$ Reihen in einem normierten Raum E. Dann ist $((b_n))_{n\in\mathbb{N}}$ ein e *Umordnung* von $((a_n))_{n\in\mathbb{N}}$, falls es eine Bijektion $\varphi:\mathbb{N}\to\mathbb{N}$ mit $b_n=a_{\varphi(n)}$ gibt.

Theorem (Umordnungssatz)

T. 2.79

Sei $((a_n))_{n\in\mathbb{N}}$ eine absolut konvergente Reihe in einem Banachraum E. Sei $((b_n))_{n\in\mathbb{N}}$ eine Umordnung von $((a_n))_{n\in\mathbb{N}}$. Dann konvergiert auch $((b_n))_{n\in\mathbb{N}}$ absolut und es gilt

$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} b_n$$

 $(((a_n))_{n\in\mathbb{N}}$ konvergiert **kommutativ**).

- (i) Sei \mathcal{I} eine abzählbare Menge. Eine Familie $(a_i)_{i\in I}$ in einem Banachraum E heißt **absolut summierbar**, falls es eine Bijektion $\varphi: \mathbb{N} \to \mathcal{I}$ gibt, sodass $((a_{\varphi(n)}))_{n\in\mathbb{N}}$ absolut konvergiert.
- (ii) $((a_{\varphi(n)}))_{n\in\mathbb{N}}$ konvergiert unabhängig von der Wahl der Bijektion gegen den selben Wert (Umordnungssatz).

$$\sum_{i\in\mathcal{I}}:=\sum_{n\in\mathbb{N}}a_{\varphi(n)}$$

für eine Bijektion φ .

Proposition

- (i) Eine abzählbare Familie $(a_i)_{i\in\mathcal{I}}$ in einem Banachraum E ist genau dann absolut summierbar, falls für alle endlichen Teilmengen $\mathcal{J}\subset\mathcal{I}$ die Summen $\sum\limits_{j\in\mathcal{J}}\|a_j\|$ gleichmäßig in \mathcal{J} beschränkt sind.
- (ii) Ist $(a_i)_{i\in\mathcal{I}}$ eine absolut summierbare Familie in einem Banachraum E, so gibt es zu $\varepsilon>0$ eine endliche Teilmenge $H\subset\mathcal{I}$, sodass für alle endlichen Teilmengen $K\subset\mathcal{I}\setminus H$ und für alle endlichen Teilemngen $L\subset\mathcal{I}$ mit $H\subset L$

$$\sum_{i \in K} \|a_i\| < \varepsilon$$

und

$$\left\| \sum_{i \in \mathcal{I}} a_i - \sum_{i \in L} a_i \right\| \le 2\varepsilon$$

gelten.

Proposition

Sei $(a_i)_{i\in\mathcal{I}}$ eine Familie mit $\sum_{i\in\mathcal{I}}\|a_i\|:=\sup\{\sum_{i\in J}\|a_i\|:J\subset\mathcal{I}\text{ endlich.}\}$. Sei nun $(a_i)_{i\in\mathcal{I}}$ absolut summierbar im Banachraum E. Sei $J\subset\mathcal{I}$ abzählbar. Dann ist $(a_i)_{i\in J}$ absolut summierbar und $\sum_{i\in J}\|a_i\|\leq \sum_{i\in\mathcal{I}}\|a_i\|$.

Theorem (Assoziativitätstheorem)

Sei $(a_i)_{i\in\mathcal{I}}$ eine absolut summierbare Familie in einem Banachraum E. Sei $(I_n)_{n\in\mathbb{N}}$ eine abzählbare disjunkte Zerteilung von \mathcal{I} in Teilmengen I_n und $b_n := \sum_{i\in I_n} a_i$. Dann ist $((b_n))_{n\in\mathbb{N}}$ absolut summierbar/konvergent und es gilt

$$\sum_{i \in \mathcal{I}} a_i = \sum_{n=0}^{\infty} b_n$$

Theorem (Cauchysche Produktformel)

Seien $((a_n))_{n\in\mathbb{N}}$, $((b_n))_{n\in\mathbb{N}}$ absolut konvergente Reihen in \mathbb{R} . Dann ist $(a_ib_k)_{(i,k)\in\mathbb{N}\times\mathbb{N}}$ eine absolut summierbare Familie und

$$\sum_{(i,k)\in\mathbb{N}\times\mathbb{N}} a_i b_k = \left(\sum_{i\in\mathbb{N}} a_i\right) \left(\sum_{k\in\mathbb{N}} b_k\right) = \sum_{i=0}^{\infty} \sum_{k=0}^{i} a_k b_{i-k}$$

Gleichmässige Konvergenz

PART 2.4

Bemerkung

Bem. 2.87

Sei E eine Menge, F ein vollständiger metrischer Raum, $f_n: E \to F, (f_n)_{n \in \mathbb{N}}$ eine Folge (Familie) von Funktionen. Dann konvergiert die Folge in jedem $x \in E$, falls alle $(f_n(x))_{n \in \mathbb{N}}$ Cauchyfolgen sind, d.h.

$$\bigvee_{\varepsilon>0}\bigvee_{x\in E}\mathop{\exists}\limits_{n_0\in\mathbb{N}}\bigvee_{n,m\geq n_0}d(f_n(x),f_m(x))<\varepsilon$$

 $(f_n)_{n\in\mathbb{N}}$ konvergiert punktweise.

Definition

D. 2.88

(i) Sei E eine Menge und F ein vollständiger metrischer Raum. Dei $(f_n)_{n\in\mathbb{N}}$ eine Folge von Funktionen, $f_n: E \to F$. Dann konvergiert $(f_n)_{n\in\mathbb{N}}$ in E **gleichmäßig**, falls

$$\bigvee_{\varepsilon>0} \underset{n_0\in\mathbb{N}}{\exists} \bigvee_{x\in E} \bigvee_{n,m\geq n_0} d(f_n(x), f_m(x)) < \varepsilon$$

gilt.

Definiere $f: E \to F$: $f(x) := \lim_{n \to \infty} f_n(x), \ \forall x \in E$.

Sprechweise: f_n konvergiert gleichmäßig gegen $f: f_n \Rightarrow f$.

- (ii) Ist E ein metrischer Raum, so heißt $(f_n)_{n\in\mathbb{N}}, f_n: E \to F$, lokal gleichmäßig konvergent, falls es zu jedem $x \in E$ ein $\delta > 0$ gibt, sodass $f_n|_{B_{\delta(x)}}: B_{\delta(x)} \to F$ gleichmäßig konvergiert.
- (iii) Ist F zusätzlich ein Banachraum, so heißt $((f_n))_{n\in\mathbb{N}}, f_n: E \to F$, gleichmäßig konvergent, lokal gleichmäßig konvergent oder absolut konvergent, falls dies für die Folge der Partialsummen

$$s_n(x) := \sum_{k=0}^n f_k(x), \ s_n : E \to F$$

gilt.

Lemma

L. 2.91

Sei E eine Menge, F ein Banachraum, $f_n: E \to F$, $n \in \mathbb{N}$. $((f_n))_{n \in \mathbb{N}}$ konvergiert gleichmäßig absolut, wenn es eine "von x unabhängige" konvergente Majorante gibt:

$$\exists ((a_n))_{n \in \mathbb{N}}$$
 konvergent, $a_n \geq 0 : ||f_n(x)|| \leq a_n, \ \forall x \in E \forall n \in \mathbb{N}$

Definition

D. 2.92

Eine **Doppelfolge** $(a_{nm})_{n,m\in\mathbb{N}}$ in einem metrischen Raum E ist eine Funktionsfolge $f_n: \mathbb{N} \to E: a_{nm} = f_n(m)$.

Theorem

T. 2.93

Sei $(a_{nm})_{n,m\in\mathbb{N}}$ eine Doppelfolge in einem vollständigen metrischen Raum E. Angenommen, $\lim_{n\to\infty}a_{nm}$, $\lim_{m\to\infty}a_{nm}$ existieren $\forall n,m$.

Sei eine dieser konvergent gleichmäßig, ohne Einschränkung konvergiere $(a_{nm})_{n,m\in\mathbb{N}}$ für $n\to\infty$ gleichmäßig in m.

Dann existieren

$$\lim_{m \to \infty} \lim_{n \to \infty} a_{nm} \quad \text{und} \quad \lim_{n \to \infty} \lim_{m \to \infty} a_{nm}$$

und sind gleich.

Lemma

L. 2.95

Sei E ein metrischer Raum. $x_n \to x, \ y_n \to y$ in E für $n \to \infty$. Dann gilt $d(x_n, y_n) \xrightarrow[n \to \infty]{} d(x, y)$.

Lemma

L. 2.96

Sei E ein metrischer Raum, $(x_n)_{n\in\mathbb{N}}$ Cauchyfolgen in E. Sei $(y_n)_{n\in\mathbb{N}}\subset E$.

- $\begin{array}{ll} \text{(i)} & \lim_{n \to \infty} d(x_n,y_n) = 0 \Rightarrow (y_n)_{n \in \mathbb{N}} \text{ sind Cauchyfolgen} \\ \text{(ii)} & \text{Gilt zusätzlich zu oben auch } x_n \to x, \text{ so folgt } y_n \to x. \end{array}$

Theorem

T. 2.97

Sei E ein Banachraum. Konvergiere $((a_{nm}))_n$ gleichmäßig in m. Existiert $\lim_{m\to\infty}anm$ für alle n, so existieren auch

$$\lim_{m \to \infty} \sum_{n=0}^{\infty} a_{nm} \quad \text{und} \quad \sum_{n=0}^{\infty} \lim_{m \to \infty} a_{nm}$$

und stimmen überein.

Korollar

K. 2.98

Sei $x \in \mathbb{R}$. Dann gilt

$$\lim_{m \to \infty} \left(1 + \frac{x}{m} \right) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = \exp(x)$$

Metrische Räume und Stetigkeit Kap. 3

TOPOLOGISCHE GRUNDLAGEN

Part 3.1

Definition (Topologie)

D. 3.1

Sei E eine Menge. Dann heißt $\mathcal{O} \subset \mathcal{P}(E)$ Topologie auf E, falls

- (i) $\emptyset, E \in \mathcal{O}$
- (ii) $A_i \in \mathcal{O}, i \in \mathcal{I} \Rightarrow \bigcup_{i \in \mathcal{I}} A_i \in \mathcal{O}$
- (iii) $A_i \in \mathcal{O}, i = 1, \dots, m \Rightarrow \bigcap_{i=1}^m A_i \in \mathcal{O}$

 (E,\mathcal{O}) heißt **topologischer Raum**. $A \subset E$ heißt **offen**, falls $A \subset \mathcal{O}$.

Definition

D. 3.2

Sei (E, \mathcal{O}) ein topologischer Raum.

- (i) $U \subset E$ heißt $Umgebung \ von \ x \in E$, falls es ein $A \subset \mathcal{O} : x \in A \subset U$. \mathcal{U} bezeichnet die Menge $aller \ Umgebungen \ von \ x \in E$.
- (ii) E heißt Hausdorffraum, wenn $x \neq y \in E$ disjunkte Umgebungen besitzen (T_2 -Raum).

Beispiel

Bsp. 3.3

- (i) Sei (E,d) ein metrischer Raum. Dann heißt $A \subset E$ offen, falls für alle $x \in A$ ein r > 0 mit $B_x(r) \subset A$ existiert.
 - Diese offenen Mengen bilden eine Topologie auf E, diese ist hausdoffsch.
- (ii) $(E, \{\emptyset, E\})$. Für $|E| \ge 2$ ist diese Topologie <u>nicht</u> hausdorffsch.
- (iii) $(E, \mathcal{P}(E))$

Definition

D. 3.4

Sei (E, d) ein metrischer Raum, $x_0 \in E, r > 0$. Definiere

(i) die offene Kugel mit Mittelpunkt x_0 und Radius r:

$$B_{x_0}(r) := \{ x \in E : d(x, x_0) < r \}$$

Sei E nun normiert:

(ii) Die **abgeschlossene Kugel** mit Radius r und Mittelpunkt x_0 :

$$\overline{B_r}(x_0) := \{ x \in E : d(x, x_0) \le r \}$$

(i) Die **Sphäre** mit Radius r und Mittelpunkt x_0 :

$$S_r(x_0) := \{ x \in E : d(x, x_0) = r \}$$

Definition

D. 3.5

Sei E ein metrischer Raum.

- (i) $A \subset E$ heißt **offen**, falls $\forall \exists B_x(r) \subset A$. Offene Mengen bilden eine Topologie.
- (ii) $A \subset E$ heißt **abgeschlossen**, falls CA offen ist. Die Menge aller abgeschlossenen Teilmengen heißt \mathcal{F} .
- (iii) $U \subset E$ heißt **Umgebung von** $x \in E$, falls es ein $A \subset \mathcal{O} : x \in A \subset U$.
- (iv) Eine Familie $(U_i)_{i\in\mathcal{I}}$ von Umgebungen von $x\in E$ heißt Umgebungsbasis von x, falls zu jedem $U\in\mathcal{U}(x)$ ein $i\in\mathcal{I}$ mit $U_i\subset U$ existiert.

Bemerkung Bem. 3.6 Sei E ein metrischer Raum. (i) \emptyset , E sind offen und abgeschlossen. (ii) Eine offene Kugel $B_x(r)$ ist eine offene Menge. Eine abgeschlossene Kugel $\overline{B_r}(x)$ ist eine abgeschlossene Menge. (iii) $[a,b) \subset \mathbb{R}$ ist weder offen noch abgeschlossen (iv) Sei $A \subset E$ endlich. Dann ist A abgeschlossen. (v) Die diskrete Metrik liefert die Topologie $(E, \mathcal{P}(E))$. (vi) $S_r(x) \subset E$ ist abgeschlossen. (vii) Sei $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge, $a_n>0$. Dann ist $\{B_{a_n}(x)\}_{n\in\mathbb{N}}$ Umgebungsbasis von x. **Proposition** P. 3.7 Sei E ein metrischer Raum. (i) Sei $(A_i)_{i\in\mathcal{I}}$ eine Familie von offenen Mengen. Dann gilt $\bigcup_{i\in\mathcal{I}} A_i \in \mathcal{O}$ (ii) Seien $A_i \in \mathcal{O}, 1 \leq i \leq n$. Dann gilt $\bigcap_{i=1}^n A_i \in \mathcal{O}$ (iii) $(A_i)_{i\in\mathcal{I}}: A_i\in\mathcal{F}, A_i$ ist abgeschlossen $\forall i\in\mathcal{I}$. Dann gilt $\bigcap_{i\in\mathcal{I}} A_i\in\mathcal{F}$ (iv) $A_i \in \mathcal{F}, 1 \leq i \leq n$. Dann gilt $\bigcup_{i=1}^n A_i \in \mathcal{F}$ **Definition** D. 3.8 Sei E ein metrischer Raum, $A \subset E$. (i) $x \in A$ heißt **innerer Punkt von** A, falls $A \subset \mathcal{U}(x)$, int $A \equiv \mathring{A} := \{x \in A : x \text{ ist innerer Punkt von } A\}$ (ii) $x \in E$ heißt **Berührpunkt** von A, falls $U \cap A \neq \emptyset$, $\forall U \in \mathcal{U}(x)$. Die Menge aller Berührpunkte von A heißt Abschluss oder abgeschlossene Hülle **von** $A: \overline{A}$, oder auch cl(A). Ist E normiert folgt $\overline{B_r}(x) = B_r(x)$. (iii) $x \in E$ heißt $Randpunkt \ von \ A$, falls in jeder Umgebung von x jeweils mindestens ein Punkt aus A und $\mathbb{C}A$ liegen. Die Menge aller Randpunkte von A heißt **Rand von** A: ∂A . P. 3.9 **Proposition** Sei E ein metrischer Raum, $A \subset E$. Dann gelten int $A = \{x \in A : \exists r > 0 : B_r(x) \subset A\}$ und int $A = \bigcup \{G \in \mathcal{O} : G \subset A\}$ P. 3.10 **Proposition** Sei E ein metrischer Raum, $A, B \subset E$. Dann gelten $A \subset B \Rightarrow \left\{ \begin{array}{l} \mathrm{int}\ (A) \subset \mathrm{int}\ (B) \\ \mathrm{int}\ (A \cap B) = \mathrm{int}\ (A) \cap \mathrm{int}\ (B) \end{array} \right.$ P. 3.11 **Proposition** Sei E ein metrischer Raum. $A, B \subset E$. Dann gilt $A \subset B \Rightarrow \left\{ \begin{array}{l} \overline{A} \subset \overleftarrow{B} \\ \overline{A} = \bigcap \{F \subset \mathcal{F} : A \subset F\} \end{array} \right.$

Somit ist \overline{A} die kleinste abgeschlossene Menge, die A enthält.

Sei $A \subset E$ ein metrischer Raum. Dann ist \overline{A} abgeschlossen.

Proposition	P. 3.
Sei E ein metrischer Raum. $A, B \subset E$. Dann gilt	
${\complement}\overline{A}=\mathrm{int}\;({\complement}A)\mathrm{und}\overline{A\cup B}=\overline{A}\cup\overline{B}$	
Beispiel	Bsp. 3.
(i) E ist ein metrischer Raum, $A \subset E$. Dann gilt	
(a) $\partial A = \partial \mathcal{C} A$	
(b) $\overline{A} = \text{int } (A) \cup \partial A$	
(c) $E = \text{int } (A) \cup \text{int } (\mathbb{C}A) \cup \partial A$ (ii) Sei $A \subset \mathbb{R}^n$ endlich. Dann gilt $A = \overline{A} = \partial A$ sowie int $(A) = \emptyset$.	
Definition Dami gnt $A = A = \partial A$ sowie int $(A) = \emptyset$.	D. 3
Sei E ein metrischer Raum, $A \subset E$. Dann heißt $x \in E$ Häufungspunkt von A , falls $(U \setminus \{x\}) \cap A \neq \emptyset$, $\forall U \in \mathcal{U}(x)$.	D .3
Bemerkung	Bem. 3
 (i) Jeder Häufungspunkt ist ein Berührpunkt, aber im Allgemeinen nicht umgekehrt. (ii) Sei (x_n)_{n∈ℕ} eine Folge. A := {x_n : n ∈ ℕ}. Dann ist jeder Häufungspunkt von A auch ein Häufungspunkt der Folge, die Umkehrung gilt aber in der Regel nicht. 	
Definition	D. 3
Sei E ein metrischer Raum. Dann heißt $A \subset E$ dicht in E , falls $\overline{A} = E$.	
Proposition	P. 3
Sei E ein metrischer Raum, $A \subset E$. Sei d_A die von (E,d) induzierte Metrik auf A . Dann sind die offenen Mengen O_A in (A,d_A) genau die Mengen der Form $O \cap A$, wobei O in (E,d) offen ist.	
Stetigkeit	Part 3
Комрактнеіт	Part 3