Assignment 5

Details

1. Author : Akhilesh Murugkar

2. Roll Number: 33151

Batch : K9
 Class : TE9

Problem Statement

Perform the following operations using Python on the Air quality and Heart Diseases data sets

- 1. Data cleaning
- 2. Data integration
- 3. Data transformation
- 4. Error correcting
- Data model building

Implementation details

- Dataset URL: https://archive.ics.uci.edu/ml/datasets/Heart+Disease)
- 2. Python version: 3.7.4
- 3. Imports:
 - A. pandas
 - B. numpy
 - C. matplotlib.pyolot
 - D. seaborn
 - E. sklearn.linear_model.LogisticRegression

Dataset details

- This database contains 76 attributes, but all published experiments refer to using a subset of 14 of them. In particular, the Cleveland database is the only one that has been used by ML researchers to this date.
- 2. The "goal" field refers to the presence of heart disease in the patient.
- 3. It is integer valued from 0 (no presence) to 4. Experiments with the Cleveland database have concentrated on simply attempting to distinguish presence (values 1,2,3,4) from absence (value 0)
- 4. The names and social security numbers of the patients were recently removed from the database, replaced with dummy values.

Importing required libraries

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   %matplotlib inline
```

Loading the dataset

```
In [7]: dataset = pd.read_csv("preprocessed_data.csv", index_col=0)
```

Displaying metadata for dataset (Statistical)

```
In [8]: dataset.shape
Out[8]: (682, 14)
In [9]: |dataset.isnull().sum()
Out[9]: age
                       0
        chest_pain
                       0
        trestbps
                       0
        cholestrol
                       0
        fbs
                       0
        restecg
        thalach
        exang
        oldpeak
                       0
        slope
                       0
                       0
        ca
        thal
        num
        dtype: int64
```

In [10]: dataset.head(15)

Out[10]:

	age	sex	chest_pain	trestbps	cholestrol	fbs	restecg	thalach	exang	oldpeak	slop
0	0.714286	1	1	0.541667	0.386401	1.0	2.0	0.633803	0.0	0.890909	3.
1	0.795918	1	4	0.666667	0.474295	0.0	2.0	0.338028	1.0	0.745455	2.
2	0.795918	1	4	0.333333	0.379768	0.0	2.0	0.485915	1.0	0.945455	2.
4	0.265306	0	2	0.416667	0.338308	0.0	2.0	0.788732	0.0	0.727273	1.
5	0.571429	1	2	0.333333	0.391376	0.0	0.0	0.830986	0.0	0.618182	1.
7	0.591837	0	4	0.333333	0.587065	0.0	0.0	0.725352	1.0	0.581818	1.
8	0.714286	1	4	0.416667	0.421227	0.0	2.0	0.612676	0.0	0.727273	2.
10	0.591837	1	4	0.500000	0.318408	0.0	0.0	0.619718	0.0	0.545455	2.
11	0.571429	0	2	0.500000	0.487562	0.0	2.0	0.654930	0.0	0.709091	2.
12	0.571429	1	3	0.416667	0.424544	1.0	2.0	0.577465	1.0	0.581818	2.
13	0.326531	1	2	0.333333	0.436153	0.0	0.0	0.795775	0.0	0.472727	1.
14	0.489796	1	3	0.766667	0.330017	1.0	0.0	0.718310	0.0	0.563636	1.
15	0.591837	1	3	0.583333	0.278607	0.0	0.0	0.802817	0.0	0.763636	1.
16	0.408163	1	2	0.250000	0.379768	0.0	0.0	0.760563	0.0	0.654545	3.
17	0.530612	1	4	0.500000	0.396352	0.0	0.0	0.704225	0.0	0.690909	1.

Observations:

- 1. There are 682 data points with 14 columns (including target column)
- 2. Null values are removed / replaced and dataset is scaled for numerical variables

A) Feature selection

```
In [11]: # Displaying heatmap for correlation matrix
    fig = plt.figure(figsize=(15, 15))

# Adds subplot on position 1
ax = fig.add_subplot(111)

sns.heatmap(dataset.corr())
plt.show()
```


In [12]: dataset.corr()

Out[12]:

	age	sex	chest_pain	trestbps	cholestrol	fbs	restecg	thalach
age	1.000000	-0.023624	0.145740	0.247017	-0.089696	0.154740	0.223164	-0.340013
sex	-0.023624	1.000000	0.163370	0.003323	-0.199176	0.037774	-0.036257	-0.148256
chest_pain	0.145740	0.163370	1.000000	-0.009134	-0.182046	-0.026207	-0.002091	-0.334507
trestbps	0.247017	0.003323	-0.009134	1.000000	0.066543	0.120023	0.074495	-0.111419
cholestrol	-0.089696	-0.199176	-0.182046	0.066543	1.000000	0.097576	0.143226	0.272218
fbs	0.154740	0.037774	-0.026207	0.120023	0.097576	1.000000	0.113193	0.027782
restecg	0.223164	-0.036257	-0.002091	0.074495	0.143226	0.113193	1.000000	0.082551
thalach	-0.340013	-0.148256	-0.334507	-0.111419	0.272218	0.027782	0.082551	1.000000
exang	0.146912	0.147096	0.415408	0.118941	-0.054860	0.036641	0.024909	-0.351493
oldpeak	0.246984	0.056113	0.229230	0.106618	0.039519	0.062684	0.098591	-0.186849
slope	-0.024984	0.063177	0.074927	0.000372	-0.058404	0.001531	-0.104784	-0.295667
ca	0.321673	0.025315	0.093902	0.037259	0.148186	0.173009	0.289584	-0.006800
thal	0.222136	0.233270	0.239361	0.084489	-0.125926	0.084525	0.147006	-0.152521
num	0.225453	0.279127	0.434501	0.067330	-0.533687	0.019112	-0.000813	-0.450693
4								

Note:

- 1. The above heatmap and the correlation table suggests that all of the data features are significantly correlated with the target variables
- 2. The following features are negatively correlated with the target variable:
 - A. cholestrol
 - B. thalach

Further action:

- 1. No feature drop is necessary due to significant correlation with target variable
- 2. The target variable is considered to be "num" (last column of the dataset)

B) Building the data model

1) Understanding the target variable

```
In [13]: # checking the unique values (categories in the dataset)
dataset.num.unique()

Out[13]: array([0, 1, 3, 2, 4], dtype=int64)
```

Note:

1. The values beyond 0 are indicative of the fact that there is presence of heart disease

Further action:

1. Binarize the target variable for the classes as presence or absence of heart disease

2) Binarizing the target variable

```
In [14]: dataset["num"] = dataset["num"].replace([2, 3, 4], 1)
In [15]: dataset.num.unique()
Out[15]: array([0, 1], dtype=int64)
```

3) Checking distribution of target variable

```
In [16]: # Plotting the count plot for target variable
fig = plt.figure(figsize=(8, 8))

# Adds subplot on position 1
ax = fig.add_subplot(111)

plt.xlabel("num", fontsize=20)
plt.ylabel("count", fontsize=20)

sns.countplot(x=dataset.num)
plt.show()
```



```
In [17]: # creating subsets for target variables for fair distribution in training and tes
dataset_target_0 = dataset[dataset.num == 0]
dataset_target_1 = dataset[dataset.num == 1]
print("Shape of target 1 data : ", dataset_target_1.shape)
print("Shape of target 0 data : ", dataset_target_0.shape)

Shape of target 1 data : (326, 14)
Shape of target 0 data : (356, 14)

In [18]: # Shuffling the data subsets
dataset_target_1 = dataset_target_1.sample(frac=1)
dataset_target_0 = dataset_target_0.sample(frac=1)

# Confirming shapes for no value loss
print("Shape of target 1 data : ", dataset_target_1.shape)
print("Shape of target 0 data : ", dataset_target_0.shape)

Shape of target 1 data : (326, 14)
Shape of target 0 data : (356, 14)
```

4) Creating training and testing data with 80:20 ratio

```
In [19]: # Calculating 80 percent mark
         target_0_mark = int(dataset_target_0.shape[0]*0.8)
         target_1_mark = int(dataset_target_1.shape[0]*0.8)
         # Generating train data
         train_data = pd.concat(
             objs=[
                 dataset_target_0.iloc[:target_0_mark, :],
                 dataset_target_1.iloc[:target_1_mark, :]
             ],
             axis=0
         # Generating test data
         test_data = pd.concat(
             objs=[
                 dataset_target_0.iloc[target_0_mark:, :],
                 dataset_target_1.iloc[target_1_mark:, :]
             ],
             axis=0
         # Shuffling the training and testing data
         train_data = train_data.sample(frac=1)
         test_data = test_data.sample(frac=1)
         # Checking data shapes
         print("Training data shape : ", train_data.shape)
         print("Testing data shape : ", test data.shape)
```

Training data shape : (544, 14) Testing data shape : (138, 14)

5) Splitting training and testing inputs and targets

```
In [20]:
         # Splitting training data
         train inputs = train data.iloc[:, :-1]
         train_targets = train_data.iloc[:, -1]
         # Splitting testing data
         test_inputs = test_data.iloc[:, :-1]
         test_targets = test_data.iloc[:, -1]
         # Checking shape of data
         print("Train inputs shape : ", train_inputs.shape)
         print("Train targets shape : ", train_targets.shape)
         print("Test inputs shape : ", test_inputs.shape)
         print("Test targets shape : ", test_targets.shape)
         Train inputs shape: (544, 13)
         Train targets shape : (544,)
         Test inputs shape: (138, 13)
         Test targets shape: (138,)
```

6) Building the data model

```
In [21]: # Importing model
    from sklearn.linear_model import LogisticRegression

In [22]: logReg_model = LogisticRegression()

In [23]: # Training the model
    logReg_model.fit(train_inputs, train_targets)
    print("Model trained")
```

Model trained

7) Checking accuracy of model on testing data

```
In [24]: logReg_model.score(test_inputs, test_targets)
Out[24]: 0.83333333333334

In [25]: logReg_model.score(train_inputs, train_targets)
Out[25]: 0.8272058823529411
```

Conclusion

- 1. The logistic regression model was fit on the given dataset
- 2. The model gave 89.85% accuracy on testing data and 82.53% accuracy on testing data