Assessing Performance

13 试题

1 point

1.

If the features of Model 1 are a strict subset of those in Model 2, the TRAINING error of the two models can **never** be the same.

- True
- False

1 point

2.

If the features of Model 1 are a strict subset of those in Model 2, which model will USUALLY have lowest TRAINING error?

- () Model 1
- Model 2
- It's impossible to tell with only this information

1 point

3.

	eatures of Model 1 are a strict subset of those in Model h model will USUALLY have lowest TEST error?
\bigcirc	Model 1
\bigcirc	Model 2
	It's impossible to tell with only this information
1 point 4. If the fe	eatures of Model 1 are a strict subset of those in Model
2, whic	h model will USUALLY have lower BIAS?
\bigcirc	Model 1
	Model 2
	It's impossible to tell with only this information
1 point	
5.	

Which of the following plots of model complexity vs. RSS is most likely from TRAINING data (for a fixed data set)?

6.

1 point Which of the following plots of model complexity vs. RSS is most likely from TEST data (for a fixed data set)?

1 point	
8. A simp from:	le model with few parameters is most likely to suffer
	High Bias
	High Variance
1 point	
9. A comp suffer t	olex model with many parameters is most likely to from:
	High Bias
	High Variance
1 point	
	el with many parameters that fits training data very well es poorly on test data is considered to be
	accurate
	biased
	overfitted
	poorly estimated
1 point	:

11.

	mon process for selecting a parameter like the optimal omial degree is:
	Bootstrapping
	Model estimation
	Multiple regression
	Minimizing test error
	Minimizing validation error
1 poin	t
12. Selecti apply):	ng model complexity on test data (choose all that
	Allows you to avoid issues of overfitting to training data
~	Provides an overly optimistic assessment of performance of the resulting model
	Is computationally inefficient
\checkmark	Should never be done
1 poin 13.	t
For a f	of the following statements is true (select all that apply): ixed model complexity , in the limit of an infinite at of training data,
	The noise goes to 0
	Bias goes to 0
/	Variance goes to 0

	Training error goes to 0
	Generalization error goes to 0
<u> </u>	I, 伟臣 沈 , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. 了解荣誉准则的更多信息
	提交测试

r r