Ejercicios No. 6

Crecimiento Económico 2016-2017 Profesor: Félix Jiménez

- 1. Hay 11 economías que tienen la misma función de producción Y (t) = $K(t)^{0.4}L(t)^{0.6}$, la misma tasa de depreciación (5 por ciento), la misma tasa de crecimiento de su fuerza laboral (1por ciento) y el mismo stock de capital per cápita inicial (1 unidad). No existe progreso técnico. Estas economías se diferencian en sus tasas de ahorro. La primera economía ahorra un 0% de su renta; la segunda un 10%; la tercera un 20%; y así sucesivamente hasta la decimoprimera economía que ahorra un 100%.
 - a. Calcule el stock de capital per cápita, la renta per cápita y el consumo per cápita a los que tienden cada una de estas economías, es decir, en sus estados estacionarios.
 - b. ¿Qué efectos tendrá la tasa de ahorro sobre estas variables? Para responder esta pregunta, haga tres gráficos en los que incluya la tasa de ahorro en el eje de abscisas y cada una de estas variables en las ordenadas. ¿Hay una tasa de ahorro que corresponde a la Regla de Oro?
- 2. Suponga una función de producción Cobb-Douglas $Y = AK^{\alpha}L^{1-\alpha}$:
 - a. Halle la velocidad de convergencia utilizando la expansión de Taylor de primer grado
 - b. La ecuación de la tasa de crecimiento del capital per cápita en el estado estacionario es una ecuación diferencial. Explicítelo y resuélvalo:
 - c. Utilice la ecuación hallada en b) para determinar el período de t años durante el cual k_t estará a mitad de camino entre k_0 y k^{ee} .
 - d. En cuanto tiempo desaparecerá la mitad de la distancia existente entre el capital per cápita inicial y el capital per cápita del estado estacionario, si $\alpha = 0.80$, n = 0.01 y $\delta = 0.05$. ¿Aumentarán o se reducirán los años si $\alpha = 0.40$?
- 3. Un sistema que capta la proposición teórica de la inestabilidad en los modelos de Harrod y Domar, es el siguiente:
 - (1) sY = I: Condición de equilibrio en el mercado de bienes.
 - (2) $\delta = \frac{Y}{\sigma K}$: Tasa de utilización (Y/Y_d). Indica sobre o subutilización de K.
 - (3) $\frac{dK}{dt} = I$: Ecuación de acumulación de capital.
 - (4) $g = \frac{I}{\kappa}$: Definición de la tasa de crecimiento.
 - (5) $\frac{dg}{dt} = \alpha(\delta 1)$: Esta ecuación indica que si la tasa de utilización es mayor que uno, los capitalistas aumentan la tasa de crecimiento del capital por encima del nivel que tenía previamente; y viceversa.

Donde:

 σ : Relación producto capital deseada; Y: producto; I: demanda de inversión; s: propensión a ahorrar (s<1); δ : Tasa de utilización; K: stock de capital; q: tasa de crecimiento del capital (igual a la tasa de crecimiento del producto); α : constante distinta de cero.

Encuentre la forma reducida del sistema y muestre que la tasa de crecimiento no converge a $s\sigma$ (tasa de crecimiento garantizada); es decir, la tasa de crecimiento no converge a la tasa de crecimiento garantizada $\frac{s}{v_d}$ donde la relación capital producto deseada es igual a $v_{\scriptscriptstyle d} = \frac{K}{Y_{\scriptscriptstyle d}}$ es la inversa de $s\sigma$.