

FUNCIONES MESURABLES

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 16) 15.MARZO.2023

Borelianos Extendidos

Considere la recta real extendida $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\} = [-\infty, +\infty]$.

 $\overline{\mathbb{R}}$ hereda las propiedades de \mathbb{R} , más dos propiedades adicionales:

- $-\infty < t$, $\forall t \in \mathbb{R}$;
- $t < -\infty < t$, $\forall t \in \mathbb{R}$.

Tenemos operaciones aritméticas en $\overline{\mathbb{R}}$ que extienden a la $+ y \cdot de \mathbb{R}$:

+	0	у	$-\infty$	$+\infty$
0	0	у	$-\infty$	$+\infty$
Х	X	x + y	$-\infty$	$+\infty$
$-\infty$	$-\infty$	$-\infty$	$-\infty$	
$+\infty$	$+\infty$	$+\infty$		$+\infty$

	О	⊥ ± y	$-\infty$	$+\infty$
О	0	0	0	0
$\pm x$	0	±xy	$\mp\infty$	$\pm \infty$
$-\infty$	0	$\mp\infty$	$+\infty$	$-\infty$
$+\infty$	0	$\pm \infty$	$-\infty$	$+\infty$

Obs! $\overline{\mathbb{R}}$ no es un cuerpo! Las cantidades $+\infty-\infty$, $\frac{\pm\infty}{\pm\infty}$ no están definidas.

Borelianos Extendidos

Extendemos los borelianos a $\overline{\mathbb{R}}$ de la siguiente forma. Definimos $\mathcal{B}(\overline{\mathbb{R}})$ por

$$B^* \in \mathcal{B}(\overline{\mathbb{R}}) \iff B^* = B \cup S, \text{ donde } B \in \mathcal{B}(\mathbb{R}) \text{ y } S \in \{\varnothing, \{-\infty\}, \{+\infty\}, \{\pm\infty\}\}.$$

Proposición

 $\mathcal{B}(\overline{\mathbb{R}})$ es una σ -álgebra, y su traza respecto de \mathbb{R} es $\mathcal{B}(\mathbb{R})$.

Proposición

$$\mathcal{B}(\mathbb{R}) = \mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R} = \{ A \cap \mathbb{R} : A \in \mathcal{B}(\overline{\mathbb{R}}) \}.$$

Lema

 $\mathcal{B}(\overline{\mathbb{R}})$ es generada por cualquiera de las siguientes colecciones:

- $\mathcal{G} = \{[a, +\infty] : a \in \mathbb{R}\}$,
- $\mathcal{G} = \{(a, +\infty] : a \in \mathbb{R}\},\$
- $\mathcal{G} = \{[-\infty, a] : a \in \mathbb{R}\},$
- $\mathcal{G} = \{ [-\infty, a) : a \in \mathbb{R} \},$

- $\mathcal{G} = \{[a, +\infty] : a \in \mathbb{Q}\},\$
- $\mathcal{G} = \{(a, +\infty] : a \in \mathbb{Q}\},\$
- $\mathcal{G} = \{[-\infty, a] : a \in \mathbb{Q}\}$,
- $\mathcal{G} = \{[-\infty, a) : a \in \mathbb{Q}\}.$

Borelianos Extendidos

Prueba: Mostramos que $\mathcal{G} = \{[a, +\infty] : a \in \mathbb{R}\}$ genera a los borelianos $\mathcal{B}(\overline{\mathbb{R}})$.

Tomamos
$$\mathcal{A} = \sigma(\mathcal{G}) = \sigma([a, +\infty]: a \in \mathbb{R})$$
.

$$\mathsf{Como}\left[a,+\infty\right] = \underbrace{[a,+\infty)}_{\in\mathcal{B}(\mathbb{R})} \cup \underbrace{\{+\infty\}}_{\in\mathsf{S}} \ \Rightarrow [a,+\infty] \in \mathcal{B}(\overline{\mathbb{R}}). \ \mathsf{Asi}, \ \mathcal{G} \subseteq \mathcal{B}(\overline{\mathbb{R}}) \ \Rightarrow \ \sigma(\mathcal{G}) \subseteq \mathcal{B}(\overline{\mathbb{R}}).$$

Además,

$$\{+\infty\} = \bigcap_{\mathbf{k} \in \mathbb{N}} [\mathbf{k}, +\infty], \qquad \{-\infty\} = \bigcap_{\mathbf{k} \in \mathbb{N}} [-\infty, -\mathbf{k}].$$

Esto muestra que $\{-\infty\}, \{+\infty\} \in (\mathcal{G}) \subseteq \mathcal{B}(\overline{\mathbb{R}}).$

Entonces, $\sigma(\mathcal{G})$ contiene a todos los conjuntos de la forma $B \cup S$, donde $B \in \mathcal{B}(\mathbb{R})$ y $S \in \{\emptyset, \{-\infty\}, \{+\infty\}, \{\pm\infty\}\}$.

Esto muestra que $\mathcal{B}(\overline{\mathbb{R}}) \subseteq \sigma(\mathcal{G})$.

Ejemplo 1: Sea (X, A) un espacio mesurable. Entonces, la función indicadora

$$\mathbf{1}_{A}(\mathbf{x}):X o\mathbb{R}$$

$$\mathbf{1}_{A}(\mathbf{x})=\left\{ egin{matrix} 1, & \mathbf{x}\in A; \\ 0, & \mathbf{x}\notin A. \end{matrix}
ight.,$$

en mesurable \iff $A \in A$.

En efecto, consideramos el generador $\mathcal{G} = \{[a, \infty): a \in \mathbb{R}\}$ de los borelianos $\mathcal{B}(\mathbb{R})$. Analizamos el conjunto $\{\mathbf{1}_A \geq a\}$:

$$\{\mathbf{1}_{A}(\mathbf{x}) \geq a\} = egin{cases} \varnothing, & a > 1; \ A, & 0 < a \leq 1; \ X, & a \leq 0. \end{cases}$$

En particular, $\{\mathbf{1}_A \geq a\} \in \mathcal{A}$ es mesurable, para todo $a \in \mathbb{R}$. Esto muestra que si $A \in \mathcal{A} \Rightarrow \mathbf{1}_A$ es mesurable.

Un argumento similar muestra que si $A \notin \mathcal{A}$, no siempre el conjunto $\{\mathbf{1}_A \geq a\}$ es mesurable.

Ejemplo 2: Sea (X, \mathcal{A}) un espacio mesurable, y consideremos $A_1, A_2, \ldots, A_m \in \mathcal{A}$, conjuntos disjuntos a pares. Sean $c_1, c_2, \ldots, c_m \in \mathbb{R}$. La función $f: X \to \mathbb{R}$ dada por

$$f(\mathbf{x}) = \sum_{i=1}^m c_i \, \mathbf{1}_{A_i}(\mathbf{x}),$$

es mesurable.

Observe que, para cualquier $a \in \mathbb{R}$, tenemos

$$\{f \geq a\} = \{\mathbf{x} \in f(\mathbf{x}) \geq a\} = \bigcup_{c \geq a} A_i \in A,$$

ya que es una unión finita (posiblemente vacía) de conjuntos mesurables.

Las funciones de la forma anterior se llaman **funciones simples**. Analizaremos con detalle estas funciones en la próxima aula.

Ejemplo 3: Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de probabilidad, y $X : \Omega \to \mathbb{R}$ una variable aleatoria.

Consideremos la medida push-forward generada por \mathbb{P} sobre los borelianos de \mathbb{R} por X: $\mu = X_* \mathbb{P}$, dada por

$$\mu(B) = \mathbb{P}\big(X^{-1}(B)\big), \;\; \mathsf{para} \; B \in \mathcal{B}(\mathbb{R}).$$

Tomemos un rayo $B=(-\infty,t]\in \mathcal{B}(\mathbb{R})$. La medida μ en B es

$$\mu(B) = \mathbb{P}(X^{-1}(B)) = \mathbb{P}(X^{-1}(-\infty, t]) = \mathbb{P}[X \le t].$$

Observe que μ satisface las siguientes propiedades:

- $0 \le \mu(-\infty, t] \le 1$.
- μ es no-decreciente: $s \le t \Rightarrow \mu(-\infty, s] \le \mu(-\infty, t]$.
- $\lim_{t\to -\infty} \mu(-\infty, t] = 0$ y $\lim_{t\to +\infty} \mu(-\infty, t] = 1$.
- μ es continua a la derecha: $\forall t \in \mathbb{R}$, $\forall \varepsilon >$ o, existe $\delta >$ o tal que

$$\mathbf{t} < \mathbf{x} < \mathbf{t} + \delta \implies \mu(-\infty, \mathbf{x}]) - \mu(-\infty, \mathbf{t}]) < \varepsilon.$$

Probamos la propiedad de semi-continuidad a la derecha:

Consideremos la secuencia de borelianos $A_k = (-\infty, t + \frac{1}{k}]$, $k \ge 1$. Observe que esta es una secuencia decreciente $A_1 \supset A_2 \supset A_3 \supset \dots$

Como $\mu =_* \mathbb{P}$ es una medida finita (ya que $\mathbb{P} \leq$ 1, entonces

$$A_k \searrow (-\infty, t] \Rightarrow \mu(A_k) \searrow \mu(-\infty, t].$$

En particular, para todo > o, existe $n_o \in \mathbb{N}$ tal que

$$n \geq n_0 \implies \mu(A_n) - \mu(-\infty, t] < \varepsilon.$$

Haciendo $\delta = \frac{1}{n_0}$, tenemos que si $t < x < t + \delta$, entonces $(-\infty, t] \subseteq (-\infty, x] \subseteq (-\infty, t + \delta]$. En particular

$$\mu(-\infty, \mathbf{x}] - \mu(-\infty, \mathbf{t}] \leq \mu(-\infty, \mathbf{t} + \delta] - \mu(-\infty, \mathbf{x}] = \mu(\mathbf{A}_{\mathsf{n}_{\mathsf{o}}}) - \mu(-\infty, \mathbf{x}] < \varepsilon.$$

Vale también

$$\mathbb{P}[a < \mathsf{X} \leq b] = \mu(-\infty, b]) - \mu(-\infty, a]) = \mu(a, b].$$

Lo que estamos observando aquí son las propiedades de una función de distribución.

De hecho, la **función de distribución** de X se define como

$$F_X(t) = \mathbb{P}[X \leq t] = \mu(-\infty, t).$$

Así, la función de distribución F_X no es otra cosa que la medida push-forward de $\mathbb P$ bajo la variable aleatoria X en consideración.