Assignment 18

R1: 9 R2: 9

	HAS R1	MAX R1	HAS R2	MAX R2
A	0	6	0	8
В	0	8	0	2
С	0	4	0	1

1.

A: alloc_R1(2)
A: alloc_R2(1)
B: alloc_R1(3)
B: alloc_R2(1)
C: alloc_R1(2)
C: alloc_R2(1)

	HAS R1	MAX R1	HAS R2	MAX R2
A	2	6	1	8
В	3	8	1	2
С	2	4	1	1

C: alloc_R1(2): C finishes

	HAS R1	MAX R1	HAS R2	MAX R2
A	2	6	1	8
В	3	8	1	2
С	-	-	-	-

A: alloc_R1(4), A: alloc_R2(7): A finishes

	HAS R1	MAX R1	HAS R2	MAX R2
A	-	-	-	-
В	3	8	1	2
С	-	-	-	-

B: alloc_R1(5), alloc_R2(1): B finishes

	HAS R1	MAX R1	HAS R2	MAX R2
A	-	-	-	-
В	-	-	-	-
С	-	-	-	-

Therefore, the state described after the initial allocation is a safe state.

2.

A: release_R1(1)
B: alloc_R1(2)

Run Banker's:

	HAS R1	MAX R1	HAS R2	MAX R2
A	1	6	1	8
В	5	8	1	2
С	2	4	1	1

We see that any further allocation from R1 will not fulfill the need of any of the three processes, while the needs of B and C from resource R2 could be satisfied, but that's irrelevant as none of the processes can finish. Therefore this state is unsafe and B request should be denied and that process put into waiting.

3.

	HAS R1	MAX R1	HAS R2	MAX R2
A	1	6	1	8
В	3	8	1	2
С	-	-	-	-

Run Banker's:

E = 9 9

A = 5 6 C = 1 1

3 1

N = 5 75 1

As we can see, B requires 5 of R1 and 1 of R2 to complete. Therefore granting B it's requested amount of 2 would result in a safe state from which B could finish. Conversely A could also finish before B without any release of resources, but B is further along so logically that one should be allowed to finish.