1. Логика и арифметика

1.0 Определения

1) Булевы функции, примеры. Двойственность.

Определение: Булевая функция от n аргументов - это функция $f: \{0,1\}^n \to \{0,1\}$.

Замечание: Число всевозможных комбинаций аргументов, равно 2^n , а количество булевых функций от n аргументов равно 2^{2^n} (для каждой перестановки аргументов есть два значения функции - это 0 или 1).

Определение: Булевая функция f^* называется двойственной булевой функции f, если она получена из f инвверсией всех аргументов и самой функции, то есть $f^*(x_1,\ldots,x_n) = \neg f(\neg x_1,\ldots, \neg x_n)$

		AND	OR	XOR	Импл.	Эквив.	Штрих Шеффера	Стрелка Пирса	f^*
a	b	$a \wedge b$	$a \lor b$	$a \oplus b$	$a \rightarrow b$	$a \Leftrightarrow b$	$\mid a \mid b$	$a \downarrow b$	$\neg(\neg a \downarrow \neg b)$
0	0	0	0	0	1	1	1	1	1
0	1	0	1	1	1	0	1	0	1
1	0	0	1	1	0	0	1	0	1
1	1	1	1	0	1	1	0	0	0

2) Классы булевых функций

• Класс T_0 функций, сохраняющих 0: $f \in T_0$, если $f(0, \ldots, 0) = 0$ Принадлежат: 0, id, $a \wedge b$, $a \vee b$, $a \oplus b$ Не принадлежат: 1, $\neg a$

• Класс T_1 функций, сохраняющих 1: $f \in T_1$, если $f(1, \ldots, 1) = 1$ Принадлежат: 1, id, $a \wedge b$, $a \vee b$, $a \to b$, $a \Leftrightarrow b$ Не принадлежат: 0, $\neg a$

• Класс M монотонных функций: $f \in M$, если $\forall i (a_i \leqslant b_i) \Rightarrow f(a_1, \ldots, a_n) \leqslant f(b_1, \ldots, b_n)$ Принадлежат: $0, 1, id, a \wedge b, a \vee b,$ Не принадлежат: $\neg a, a \oplus b$

• Класс S самодвойственных функций: $f \in S$, если $f(\overline{x_1}, \dots, \overline{x_n}) = \overline{f(x_1, \dots, x_n)}$ Принадлежат: id, $\neg a$, $(x \land y) \lor (x \land z) \lor (y \land z)$ Не принадлежат: $0.1 \ a \land b$

• Класс L линейных функций: $f \in L$, если $f(x_1, \dots, x_n) = a_0 \oplus a_1 x_1 \oplus \dots \oplus a_n x_n, a_i \in \{0, 1\}$ Принадлежат: $0, 1, id, \neg a, a \Leftrightarrow b, a \oplus b$ Не принадлежат: $a \wedge b$

3) Пропозициональные формулы, КНФ и ДНФ

Построение формул:

1. Переменная – это формула

2. ϕ – формула $\Rightarrow \neg \phi$ – формула

3. ϕ, ψ – формулы $\Rightarrow (\phi \lor \psi), (\phi \land \psi), (\phi \to \psi)$ – формулы

Определение: $[\phi](a_1,\ldots,a_n)$ – значение формулы на наборе $\bar{a}(a_1,\ldots,a_n)$

- 1. $[p_i](\bar{a}) = a_i$
- 2. $[\neg \phi](\bar{a}) = neg([\phi](\bar{a}))$
- 3. $[\phi \wedge \psi](\bar{a}) = and([\phi](\bar{a}), [\psi](\bar{a}))$ и аналогично с or, impl

Определение: Литерал – переменная/формула вида $\neg p$, где p - переменная

Определение: Конъюнкт – конъюнкция литералов (\land)

Определение: Дизъюнкт – дизъюнкция литералов (∨)

Определение: КНФ – конъюнкция дизъюнктов - $f(x, y, z) = (x \lor y) \land (y \lor \neg z)$

Определение: ДНФ – дизъюнкция конъюнктов - $f(x, y, z) = (x \land y) \lor (\neg y \land \neg z)$

Определение: Тавтология – формула, истинная при всех значениях входящих в нее переменных. Например, $((p \land q) \to p)$.

Важные функции: 1) $a \vee \neg a \equiv 1$ 2) $a \wedge \neg a \equiv 0$

СКНФ/СДНФ (Совершенные):

- 1. в ней нет одинаковых простых дизъюнкций (у СКНФ) и конъюнкций (у СДНФ);
- 2. каждая простая дизъюнкция (у СКНФ) и конъюнкция (у СДНФ) полная.

Например, СКНФ: $f(x, y, z) = (x \lor \neg y \lor z) \land (x \lor y \lor \neg z)$

Теорема: Для любой булевой функции, не равной тождественной 1, \exists СКН Φ , ее задающая.

Теорема: Для любой булевой функции, не равной тождественному 0, ∃ СДНФ, ее задающая.

4) Многочлены Жегалкина

Определение: Многочленом Жегалкина называется полином с коэффициентами вида 0 и 1, где в качестве произведения берётся конъюнкция, а в качестве сложения исключающее или: $P = a_{000...000} \oplus a_{100...0} x_1 \oplus a_{010...0} x_2 \oplus \cdots \oplus a_{000...01} x_n \oplus a_{110...0} x_1 x_2 \oplus \cdots \oplus a_{00...011} x_{n-1} x_n \oplus \cdots \oplus a_{11...1} x_1 \dots x_n$ Вазовые функции: а) $\neg p = p \oplus 1$ б) $p \lor q = p \oplus q \oplus pq$

B)
$$p \wedge q = pq$$
 B) $p \rightarrow q = 1 \oplus p \oplus pq$

Вычитание и сложение по сути одно и то же, поскольку все вычисления проходят по mod 2.

5) Аксиомы исчисления высказываний, modus ponens

Теорема (корректности): Любая выводимая формула есть тавтология.

Теорема (полноты): Любая тавтология выводима.

Одним из возможных вариантов (гильбертовской) аксиоматизации логики высказываний является следующая система аксиом:

$$A_1: A \to (B \to A);$$

$$A_2: (A \to (B \to C)) \to ((A \to B) \to (A \to C));$$

$$A_3: A \wedge B \to A;$$

$$A_4: A \wedge B \rightarrow B;$$

$$A_5: A \to (B \to (A \land B));$$

$$A_6: A \to (A \vee B);$$

$$A_7: B \to (A \vee B);$$

$$A_8: (A \to C) \to ((B \to C) \to ((A \lor B) \to C));$$

$$A_9: \neg A \to (A \to B);$$

$$A_{10}: (A \rightarrow B) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A);$$

$$A_{11}: A \vee \neg A$$
.

вместе с единственным правилом: $\frac{A - A \to B}{B}$ (Modus ponens). Эта запись означает, что если выведены формулы A и $A \to B$, то можно вывести B.

6) Логические выводы и выводимые формулы

Определение: Вывод – конечная последовательность формул, каждая из которых либо является аксиомой, либо получается из ранее встретившихся по правилам вывода.

Определение: Формула называется выводимой, если она встречается в некотором выводе. Утверждение о том, что формула ϕ выводима в исчислении высказываний (ИВ), записывается так: $\vdash \phi$.

Пример $\vdash A \rightarrow A$. Обозначим эту формулу B.

```
\begin{array}{lll} 1. \ A \to B & (\text{аксиома 1}) \\ 2. \ A \to (B \to A) & (\text{аксиома 1}) \\ 3. \ (A \to (B \to A)) \to ((A \to B) \to (A \to A)) & (\text{аксиома 2}) \\ 4. \ (A \to B) \to (A \to A) & (2,3, \text{MP}) \\ 5. \ A \to A & (1,4, \text{MP}) \end{array}
```

7) Резолюции

Определение: Если $(A \lor x)$ и $(B \lor \neg x)$ одновременно истинны, то $(A \lor B)$ тоже истинно. Такое рассуждение называется правилом резолюции: $\frac{(A \lor x) - (B \lor \neg x)}{(A \lor B)}$

Определение: Дизъюнкт $(A \lor B)$ называется резольвентой дизъюнктов $(A \lor x)$ и $(B \lor \neg x)$. Замечание: Резольвента дизъюнктов x и $\neg x$ – это пустой дизъюнкт, т.е. \bot .

Метод резолюций для проверки КНФ на выполнимость: Будем добавлять к набору дизъюнктов все возможные резольвенты.

Если в какой-то момент вывели \bot , то формула невыполнима.

Если нельзя применить правило резолюции так, чтобы получить новый дизъюнкт, а \bot не выведен, то формула выполнима.

8) Языки первого порядка

Определение: Языки первого порядка — правила составления формул с кванторами, где кванторы берутся по отдельным объектам.

Алфавит языка первого порядка:

- Индивидная переменная (обычно буквы x,y,z,t,u,v,w) символ формального языка, служащий для обозначения произвольного элемента.
- Сигнатура $\sigma = \langle P_1, \dots, P_k, f_1, \dots, f_m \rangle$ набор предикатных и функциональных символов, обозначающих те или иные связи между объектами.
 - 1. Предикат валентности N на множестве A это функция $P:A^N \to \{0,1\}$ Предикатный символ символ, обозначающий предикат. Например: $P^{(3)}, <^{(2)}, \subset^{(2)}, Prime^{(1)}$
 - 2. Функция валентности N на множестве A это функция $f:A^N\to A$. Функциональный символ символ алфавита, обозначающий функцию. Например: $f^{(3)},+^{(2)},\cap^{(2)},sin^{(1)}$
 - * При этом символы валентности ноль это константы: $11, \pi, e, \emptyset$
- ullet Символы логических операций: $\wedge, \vee, \neg, \rightarrow$
- Кванторы: ∀,∃
- Служебные символы: скобки и запятые.

Определение: Терм – строка, рекурсивно построенная по следующим правилам:

- 1. Индивидная переменная есть терм;
- 2. Функциональный символ валентности ноль (т.е. $f^{(0)} = const$) есть терм;
- 3. Если $k>0,\ f^{(k)}$ функциональный символ валентности k, а t_1,\dots,t_k термы, то $f^{(k)}(t_1,\dots,t_k)$ также терм.

Определение: Атомарной формулой называется выражение вида $P^{(k)}(t_1,...,t_k)$, где k>0, t_1,\ldots,t_k — термы, а $P^{(k)}$ — предикатный символ валентности k.

Определение: Формулой (первого порядка) называется строка, рекурсивно построенная по следующим правилам:

- 1. Атомарная формула является формулой;
- 2. Если ϕ и ψ являются формулами, то строки $(\phi \land \psi), (\phi \lor \psi), (\phi \to \psi), \phi$ также являются формулами;
- 3. Если ϕ является формулой, а x индивидная переменная, то $x\phi$ и $\forall x\phi$ также являются формулами.

9) Интерпретация языка первого порядка, общезначимые формулы

Определение: Пусть фиксирована некоторая сигнатура σ . Чтобы задать интерпретацию сигнатуры σ , необходимо:

- ullet указать некоторое непустое множество M, называемое носителем интерпретации;
- для каждого k-местного предикатного символа $P \in \sigma$ задана некоторая функция $[P]: M^k \to \{0,1\};$
- для каждого k-местного функционального символа $f \in \sigma$ задана некоторая функция $[f]: M^k \to M;$

Определение: Оценкой переменных называется функция $\pi: Var \to M$, где Var — множество индивидных переменных.

- 1. $[\phi](\pi)$ значение формулы ϕ на оценке π
- 2. $[t](\pi)$ значение терма t на оценке π

Пусть фиксированы интерпретация I и оценка π . Тогда для каждого терма t должно возникнуть его значение, которое мы будем обозначать через $[t](\pi)$ (зависимость от интерпретации в явном виде писать не будем, поскольку она не будет меняться в дальнейших определениях, а оценка будет). Поскольку терм строился рекурсивно, его значение также будет определяться последовательно для всех шагов рекурсии.

- * Если t = x, где x переменная, то $[t](\pi) = \pi(x)$
- * Если t=c, где c функциональный символ валентности 0, то $[t](\pi)=[c]$
- * Если $t = f(t_1, \dots, t_k)$, то $[t](\pi) = [f]([t_1](\pi), \dots, [t_k](\pi))$

Значение формулы также определяется рекурсивно.

* Если $\phi = P(t_1, \dots, t_k)$ – атомарная формула, то $[\phi](\pi) = [P]([t_1](\pi), \dots, [t_k](\pi))$

- * Если $\phi = \neg \psi$, то $[\phi](\pi) = not([\psi](\pi))$
- * Если $\phi = \psi \vee \gamma$, то $[\phi](\pi) = or([\psi](\pi), [\gamma](\pi))$ (аналогично для \wedge, \to)

Замечание: Символы логических операций слева от знака равенства являются просто символами, а справа мы обозначаем соответствующую булеву функцию.

Замечание: Множество Var заранее фиксировано, все термы и формулы строятся на его основе, а оценка задаёт значения всех переменных из этого множества.

Определение: Общезначимая формула – формула, истинная при любой интерпретации на любой оценке

 Π ример 1: Для любой формулы ϕ формулы $\forall x \forall y \phi \rightarrow \forall y \forall x \phi$ и $\exists x \exists y \phi \rightarrow \exists y \exists x \phi$

 $Пример\ 2:\ Для\ любой\ формулы\ \phi\ формулы\ <math>\exists x \forall y \phi \to \forall y \exists x \phi.$ Обратная импликация общезначима не всегда. Например, если некоторое блюдо попробовали все гости, то каждый гость попробовал хотя бы одно блюдо. Но если к каждому замку подходит некоторый ключ, это ещё не значит, что один из ключей подходит сразу ко всем замкам

10) Свободные и связные вхождения переменных. Параметры формулы.

Определение: Говорят, что переменные, от которых не зависят значения формул, связаны некоторым оператором (\sum , lim, max или каким-нибудь ещё) и потому называются связанными, а остальные переменные свободны. Более корректно говорить не о связанных и свободных переменных, а о связанных и свободных вхождениях переменных.

Определение: Множеством *параметров* терма t или формулы φ называется множество Param(t) (соотв., $Param(\varphi)$), определяемое рекурсивно таким образом:

- Если t = x, где x —переменная, то $Param(t) = \{x\}$;
- Если t=c, где c константный символ, то $Param(t)=\varnothing;$
- Если $t = f(t_1, \ldots, t_k)$, то $\operatorname{Param}(t) = \bigcup_{i=1}^k \operatorname{Param}(t_i)$;
- Если $\varphi = P(t_1, \dots, t_k)$, то $\operatorname{Param}(\varphi) = \bigcup_{i=1}^k \operatorname{Param}(t_i)$;
- Если $\varphi = \neg \psi$, то $Param(\varphi) = Param(\psi)$;
- Если $\varphi = (\psi \land \eta), \varphi = (\psi \lor \eta)$ или $\varphi = (\psi \to \eta),$ то $\operatorname{Param}(\varphi) = \operatorname{Param}(\psi) \cup \operatorname{Param}(\eta);$
- Если φ = ∃xψ или φ = ∀xψ, то Param(φ) = Param(ψ) \ {x}.

Иначе говоря, любое новое вхождение переменной добавляет её в список параметров, а навешивание квантора — исключает.

11) Выразимость предиката или функции в данной интерпретации.

Зафиксируем некоторую сигнатуру σ и ее интерпретацию с носителем M.

Определение: Формула ϕ с параметрами x_1, \ldots, x_m выражает предикат $P: M^m \to \{0, 1\}$, если $\phi(a_1, \ldots, a_m) = 1 \Leftrightarrow P(a_1, \ldots, a_m) = 1$.

Определение: Функция $f: M^n \to M$ называется выразимой, если существует формула ϕ от n+1 переменной, истинная на любой оценке π , такой что $\pi(x_1) = a_1, \ldots, \pi(x_n) = a_n, \pi(x_{n+1}) = f(a_1, \ldots, a_n)$, и ложная на любой другой оценке.

 Π ример: $x \geqslant y \Leftrightarrow \exists z: x=y+z$ в \mathbb{N} . Предикат \geqslant выразим в интерпретации $\langle \mathbb{N}, +, = \rangle$ и невыразим в интерпретации $\langle \mathbb{Z}, +, = \rangle$.

12) Аксиомы исчисления предикатов, правила Бернайса, правило обобщения.

Аксиомы исчисления предикатов:

- $A_1 A_{11}$ аксиомы исчисления высказываний
- A_{12} : $\forall x \phi \to \phi(t/x)$, где t/x это корректная подстановка терма t в ϕ вместо свободных вхождений x.
- $A_{13}: \phi(t/x) \to \exists x \phi$

Корректная подстановка означает, что терм t не содержит переменных, по которым стоят кванторы в ϕ .

Пример: Следствием из A_{12}, A_{13} является силлогизма: $\forall x \phi(x) \to \exists x \phi$

Правила вывода:

1. Modus ponens:

$$\frac{A \quad A \to B}{B}$$

2. 1-ое правило Бернайса:

$$\frac{\phi \to \psi}{\exists x \ \phi \to \psi}$$

3. 2-ое правило Бернайса:

$$\frac{\phi \to \psi}{\phi \to \forall x \; \psi}$$

4. Правило обобщения:

$$\frac{\phi}{\forall x\;\phi}$$

Пример Имеется формула:

$$\exists x \ \forall y \ \phi \ \rightarrow \ \forall y \ \exists x \ \phi.$$

Продемонстрируем ее вывод:

- 1. $\forall y \ \phi \rightarrow \phi$ (аксиома 12);
- 2. $\phi \to \exists x \phi$ (аксиома 13);
- 3. $\forall y \phi \rightarrow \exists x \phi$ (силлогизм);
- 4. $\exists x \ \forall y \ \phi \rightarrow \exists x \ \phi$ (первое правило Бернайса);
- 5. $\exists x \ \forall y \ \phi \rightarrow \forall y \ \exists x \ \phi$ (второе правило Бернайса).

13) Аксиомы равенства.

Определение: Пусть σ — произвольная сигнатура. Аксиомами равенства в сигнатуре σ будут формулы:

- 1. $\forall x \ (x = x)$ аксиома рефлексивности,
- 2. $\forall x \forall y \ \left((x=y) \to (y=x) \right)$ аксиома симметричности,
- 3. $\forall x \forall y \forall z \ \left(\left((x=y) \land (y=z) \right) \rightarrow (x=z) \right)$ аксиома транзитивности,

а также для каждого функционального символа сформулируем аксиому равенства, которая говорит, что его значение не меняется, если аргументы заменить на равные.

Пример: Для двухместного функционального символа f:

$$\forall x_1 \forall x_2 \forall y_1 \forall y_2 \ \left(\left((x_1 = x_2) \land (y_1 = y_2) \right) \rightarrow \left(f(x_1, y_1) = f(x_2, y_2) \right) \right)$$

Для предикатных символов аксиомы равенства говорят, что истинный предикат остается истинным, если заменить аргументы на равные.

Определение: Формальная арифметика – это аксиоматическая теория, расширяющая исчисление предикатов с равенством.

14) Теории, модели, нормальные модели.

Рассмотрим сигнатуру σ .

Определение: Множество Г замкнутых формул в сигнатуре называется теорией.

Определение: Формула называется замкнутой, если множество ее параметров пусто. Иначе говоря, все переменные замкнутой формулы должны быть связаны кванторами.

Пример:
$$P$$
, $\forall x R(x)$, $\exists x \forall y P(x,y)$, $\forall x Q(x) \rightarrow \neg (\forall x \exists y R(x,y))$

Определение: Интерпретация M сигнатуры σ называется моделью теории Γ , если все формулы из Γ истинны в M.

Определение: Интерпретация M сигнатуры σ называется нормальной, если предикат равенства интерпретируется как тождественное совпадение элементов носителя.

Определение: Интерпретация M сигнатуры σ называется нормальной моделью теории Γ , если она нормальная и все формулы из Γ истинны в M.

15) Аксиомы арифметики Пеано.

Стандартная интерпретация: \mathbb{N} , S – следующее число, 0,+,-,= понимаются как обычно. Аксиомы связанные с порядком:

- 1. $\nexists x Sx = 0$
- 2. $\forall x \forall y \ (Sx = Sy \rightarrow x = y)$
- 3. Принцип индукции: $(\phi(0) \land \forall x (\phi(x) \to \phi(Sx))) \to \forall x \phi(x)$

Аксиомы, связанные с арифметическими действиями:

- 1. $\forall x \ x + 0 = x$
- 2. $\forall x \forall y \ x + Sy = S(x + y)$
- 3. $\forall x \ x \cdot 0 = 0$
- 4. $\forall x \forall y \ x \cdot Sy = x \cdot y + x$

16) Совместность, непротиворечивость, полнота теории.

Определение: Теория Γ называется совместной, если все формулы из Γ могут быть одновременно истинны в некоторой интерпретации.

Определение: Теория Γ называется противоречивой, если из нее выводится некоторая формула ϕ и ее отрицание $\neg \phi$, и непротиворечивой в противном случае.

Определение: Непротиворечивая теория Γ называется полной (в данной сигнатуре), если для любой замкнутой формулы этой сигнатуры либо $\Gamma \vdash \phi$, либо $\Gamma \vdash \neg \phi$.

 $\it \Pi pumep$: Короткий пример : как вывести, что 2+2=4. В нашем языке это означает, что SS0+SS0=SSSS0

1.
$$\forall x \forall y \ x + Sy = S(x+y)$$
 – аксиома

2.
$$SS0 + SS0 = S(SS0 + S0)$$
 – подстановка $x = SS0, \ y = S0$

3.
$$SS0 + S0 = S(SS0 + 0)$$
 – подстановка $x = SS0, y = 0$

4.
$$\forall x \; x + 0 = x$$
 – аксиома

5.
$$SS0 + 0 = SS0$$
 — подстановка $x = SS0$

6.
$$\forall x \forall y \ (x = y \rightarrow Sx = Sy)$$
 – аксиома равенства

7.
$$SS0 + 0 = SS0 \rightarrow S(SS0 + 0) = SSS0$$
 – подстановка $x = SS0 + 0, y = SS0$

8.
$$S(SS0 + 0) = SSS0 - \text{modus ponens}$$

9.
$$SS0 + S0 = SSS0$$
 – по транзитивности

10.
$$S(SS0 + S0) = SSSS0$$
 – подстановка $x = S(SS0 + 0), y = SSS0$

11.
$$SS0 + SS0 = SSSS0$$
 – по транзитивности с 2.