CS2109S: Introduction to AI and Machine Learning

Lecture 7: Support Vector Machines

13 October 2023

Announcements

Final Assessment

- Correction of release and due date:
 - Release Date: November 25, 2023 (Saturday), at 20:00
 - Due Date: November 26, 2023 (Sunday) at 23:59
- Format: Take-home exam
- We will calibrate it such that it can be completed within 3-5 hours
- Mock assessment will be available ~2 weeks before the final exam
 - People can have a chance to try

Quick notes on Midterm

- Q1: Standard uninformed search formulation
- Q2: A* search + Heuristics
- Q3: Decision Trees
- Q4: Game tree + $\alpha\beta$ -pruning
- Q5: For fun.

Solutions uploaded!

Grading on progress, maybe end of next week...

Midterm Survey

Due Today

1. How do you find the lectures?

* Required

S/N	Multiple Choice Option	Count	Percentage	Sort By Percentage
1	Lectures are clear and I am able to follow the material quite well	123	51.9%	
2	Lectures are no different from the other classes at campus	67	28.3%	
3	I have no idea what's happening half the time	28	11.8%	
4	Lectures are way cool. Easily the best class that I've taken at NUS	13	5.5%	
5	I have no clue what the lecturer is talking about most of the time	4	1.7%	
6	Sorry, I have not been attending the lectures.	2	0.8%	

Highlights some of the points

Certainly! Here are some highlighted points from the feedback:

1. Audio Quality and Volume:

- * 2 The lecture audio is quite bad
- 27 Not sure if its a issue on my laptop (Windows) only, but the audio for the lectures are always very low
- * 77 Audio quality is so bad. can't listen through speaker
- 96 Volume of the lecture recordings is too low.

2. Professor's Teaching Style and Clarity:

- 6 Prof Rizki can explain the concepts very clearly and easy to understand
- 11 Prof Rizki is a good lecturer and explains things clearly!
- 32 You are very considerate. Honestly he cares a lot about whether we get the content of the lecture
- 105 He is clear about the concepts and content that he is delivering
- 138 Clear and concise
- 177 Prof Rizki is very eloquent, his lectures are very well paced and easily understandable
- 188 Professor Rizki is one of the best profs I have ever seen. He is able to explain concepts clearly and it is a joy listening to his lectures.

3. Slide Content and Presentation:

- 4 + for pronunciation and articulation for slides as some "implied" information is not really implied
- 24 Should look through slides before presenting. Sometimes there are mistakes in the slides
- * 33 may be the slides could have been annotated better
- 55 Lectures are generally easy to follow
- * 145 explain materials very clearly, makes lectures interesting

4. Specific Topics:

- 35 Nice pace of lectures, especially love the TED talk during the break to have a change of atmosphere.
- 57 hes good at teaching
- 61 I think Prof Rizki is very passionate about his field of expertise, which makes learning under him an enjoyable and uplifting experience.
- 78 Very clear teaching
- 110 Excellent!

These are the highlighted points that represent the key feedback themes.

Handpicked feedback

- Some topics need elaboration and more examples
 - E.g., alpha beta pruning
- Notations can be made clearer
- Regarding answering questions during lecture
 - "Having so many questions answered during the lecture is a bit distracting."
 - "Lecture is quite good. However, sometimes he is too nice to answer all students' questions."
 - "Thanks for taking time to answer the questions during lecture."

3. How effective are the Tutorials in facilitating your learning?

* Required

S/N	Multiple Choice Option	Count	Percentage Sort By Percentage
1	Tutorials are helpful for my learning	129	54.4%
2	Tutorials are okay	57	24.1%
3	Tutorials are brilliant. Every module at NUS should have them!	43	18.1%
4	I have no idea what's going on/I have no idea what the Tutor or my peers are saying most of the time	7	3.0%
5	They are a complete waste of my time	1	0.4%
6	Sorry, I haven't been attending the tutorials.	0	0.0%

1. Comment on the difficulty of the midterm.

* Required

S/N	Multiple Choice Option	Count	Percentage	Sort By Percentage
1	Somewhat hard	129	54.4%	
2	Just right	69	29.1%	
3	Way over your head	36	15.2%	
4	Somewhat easy	2	0.8%	
5	Too easy	1	0.4%	

^{2.} Comment on time allocated for the midterm.

^{*} Required

S/N	Multiple Choice Option	Count	Percentage Sort By Percentage
1	Time is somewhat short	110	46.4%
2	Way too little. Too long, too little time.	93	39.2%
3	Time allocated is just nice	34	14.3%
4	Too much time, too little to do	0	0.0%
5	I can nap for an hour during the midterm and still finish every question	0	0.0%

Materials

Recap

- Logistic Regression
 - Classification with Continuous Inputs
 - Cross-entropy Loss
 - Logistic Regression with Gradient Descent
- Logistic Regression: Challenges and Solutions
 - Logistic Regression with Many Attributes
 - Dealing with Non-Linear Decision Boundary
- Multi-class Classification
- (More) Performance Measure
 - Receiver Operating Characteristic (ROC)
 - Area under ROC (AUC)
- Model Evaluation & Selection
 - Bias & Variance
- Hyperparameter Tuning

Logistic Regression with Cross-Entropy Loss

For a set of m examples $\{(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})\}$ we can compute the **binary cross entropy** <u>loss</u> as follows.

$$J_{BCE}(w) = \frac{1}{m} \sum_{i=1}^{m} BCE\left(\mathbf{y^{(i)}, h_w(x^{(i)})}\right)$$

$$h_w(x) = \sigma(w_0 + w_1x_1 + w_2x_2) \text{ (Probability output)}$$

Proof: Use second order definition of convexity

Show that the eigenvalues of this loss function's Hessian matrix are all always nonnegative.

Dealing with Non-Linear Decision Boundary

Generally:

$$h_{w}(x) = w_{0} + w_{1}f_{1} + w_{2}f_{2} + w_{3}f_{3} + \dots + w_{n}f_{n}$$

Transformed features:

$$e. g., f_1 = x_1, f_2 = x_2, f_3 = x_1^2, f_4 = x_2^2$$

Decision boundary

$$h_{\mathbf{w}}(x) = \sigma(\mathbf{w}_0 + \mathbf{w}_1 x_1 + \mathbf{w}_2 x_2 + \mathbf{w}_3 x_1^2 + \mathbf{w}_4 x_2^2)$$

$$h_{\mathbf{w}}(x) = \sigma(-2 + 0x_1 + 0x_2 + 1x_1^2 + 1x_2^2)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Outline

- The problem of overfitting
- Linear regression with regularization
- Logistic regression with regularization
- Support Vector Machines
 - Hard-margin SVM
 - Soft-margin SVM
- Kernel Methods & Kernel Trick

Outline

- The problem of overfitting
- Linear regression with regularization
- Logistic regression with regularization
- Support Vector Machines
 - Hard-margin SVM
 - Soft-margin SVM
- Kernel Methods & Kernel Trick

The problem of overfitting: logistic regression

$$\sigma(w_0 + w_1x_1 + w_2x_2)$$

Underfitting

$$\sigma(w_0 + w_1x_1 + w_2x_2 + w_3x_1^2 + w_4x_2^2 + w_5x_1x_2)$$

$$\sigma(w_0 + w_1x_1 + w_2x_1^2 + w_3x_1^2x_2 + w_4x_1^2x_2^2 + \cdots)$$

t"

Overfitting

The problem of overfitting: linear regression

$$w_0 + w_1 x$$

$$w_0 + w_1 x + w_2 x^2$$

$$w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$$

Underfitting

"Just Right"

Overfitting

Addressing overfitting

- 1. Reduce the number of features
 - High degree polynomial → low degree

$$w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$$

• Keep all features, but reduce the magnitude w_i

$$w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$$

Occam's razor: simple is usually better

How to reduce?

Addressing overfitting: regularization

Suppose that we want w_3 and w_4 to be really small

$$w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$$
small

Wants this to be small

How to know which ones to penalize?

Don't know, penalize all of them! Linear regression objective:

$$J(w) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2 + 1000w_3^2 + 1000w_4^2 \right]$$
Not anymore!

ts this to be small
If predicts correctly then J(w) will be small
Needs to be small! Profit! 21

If predicts correctly then J(w) will be small

Addressing overfitting: regularization

Suppose that we want w_3 and w_4 to be really small

$$w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$$
small

How to know which ones to penalize?

Linear regression objective: Don't know, penalize all of them!

$$J(\mathbf{w}) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\mathbf{w}}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{i=1}^{n} w_i^2 \right]$$

Outline

- The problem of overfitting
- Linear regression with regularization
- Logistic regression with regularization
- Support Vector Machines
 - Hard-margin SVM
 - Soft-margin SVM
- Kernel Methods & Kernel Trick

Hypothesis:

$$h_w(x): \mathbf{w}^T x$$

Cost function:

$$J(\mathbf{w}) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\mathbf{w}}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{i=1}^{n} w_i^2 \right]$$
fitting data "well" avoid "over-fitting"

OG linear regression

regularization parameter

$$\lambda = 0$$

$$J(\mathbf{w}) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\mathbf{w}}(x^{(i)}) - y^{(i)})^2 + \mathbf{0} \sum_{i=1}^{n} w_i^2 \right]$$

 $w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$

$$w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$$

$$\lambda = 0$$

$$J(\mathbf{w}) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\mathbf{w}}(x^{(i)}) - y^{(i)})^2 + \frac{1000}{1000} w_i^2 \right]$$

$$w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$$

$$\lambda = 0$$

$$J(\mathbf{w}) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\mathbf{w}}(x^{(i)}) - y^{(i)})^2 + 2 \sum_{i=1}^{n} w_i^2 \right]$$

Hypothesis:

$$h_{\mathbf{w}}(x) : \mathbf{w}^T x$$

Cost Function:

$$J(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\mathbf{w}}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{i=1}^{n} w_{i}^{2}$$

Gradient Descent:

$$w_n := w_n - \alpha \frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} - \frac{\lambda}{m} w_n$$

Linear Regression w/ Regz: Optimization

$$J(\mathbf{w}) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\mathbf{w}}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{i=1}^{n} w_i^2 \right]$$

Optimization goal: $\min_{w} J(w)$

- 1. Gradient Descent
- 2. Normal Equation

Linear Regression w/ Regz: Gradient Descent

$$J(w) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{i=1}^{n} w_i^2 \right]$$
Optimization goal: min $J(w)$

$$\text{Repeat } \left\{ w_0 := w_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)} \right\}$$

$$w_1 := w_1 - \alpha \frac{1}{m} \left[\sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)} - \lambda w_1 \right]$$

$$w_n := w_n - \alpha \frac{1}{m} \left[\sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} - \lambda w_n \right]$$
Why does
$$\text{this work?}$$

Linear Regression w/ Regz: Gradient Descent

$$J(\mathbf{w}) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\mathbf{w}}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{i=1}^{n} w_i^2 \right]$$

Optimization goal: $\min_{w} J(w)$

These are usually small -

Intuition: shrink parameters!

$$:= \left(1 - \frac{\alpha \lambda}{m}\right) w_n - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_w(x^{(i)}) - y^{(i)}\right) \cdot x_n^{(i)}$$

$$w_n := w_n - \alpha \frac{1}{m} \left[\sum_{i=1}^m \left(h_w(x^{(i)}) - y^{(i)}\right) \cdot x_n^{(i)} - \frac{\lambda}{k} w_n \right]$$
slightly we regular gradient descent

Why does this work?

Linear Regression w/ Regz: Gradient Descent

$$J(\mathbf{w}) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\mathbf{w}}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{i=1}^{n} w_i^2 \right]$$

Optimization goal: $\min_{\mathbf{w}} J(\mathbf{w})$

$$\mathbf{w_n} := \mathbf{w_n} - \alpha \frac{1}{m} \left[\sum_{i=1}^{m} (h_{\mathbf{w}}(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} - \lambda \mathbf{w_n} \right]$$

These are usually small

Intuition: shrink parameters!

$$:= \left(1 - \frac{\alpha \lambda}{m}\right) w_n - \alpha \frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)}$$

slightly < 1 "regular" gradient descent

Why does this work?

Linear Regression w/ Regz: Normal Equation

$$J(w) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{i=1}^{n} w_i^2 \right]$$
Do a bunch of math
$$w = (X^T X + \lambda) \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right]^{-1} X^T Y$$

This works even if X^TX is non-invertible if $\lambda > 0$!

Outline

- The problem of overfitting
- Linear regression with regularization
- Logistic regression with regularization
- Support Vector Machines
 - Hard-margin SVM
 - Soft-margin SVM
- Kernel Methods & Kernel Trick

Logistic Regression with Regularization

Hypothesis:

$$h_{\mathbf{w}}(x): \frac{1}{1 + e^{-\mathbf{w}^T x}}$$

Cost Function:

$$J(\mathbf{w}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\mathbf{w}}(x^{(i)}) + (1 - y^{(i)}) \log \left(1 - h_{\mathbf{w}}(x^{(i)})\right) + \frac{\lambda}{2m} \sum_{i=1}^{n} w_{i}^{2}$$

Gradient Descent:

$$w_n := w_n - \alpha \frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} - \alpha \frac{\lambda}{m} w_n$$

Outline

- The problem of overfitting
- Linear regression with regularization
- Logistic regression with regularization
- Support Vector Machines
 - Hard-margin SVM
 - Soft-margin SVM
- Kernel Methods & Kernel Trick

Decision Boundaries

Maximize the *margin* between + and –

"Widest street approach"

Maximize the *margin* between + and -

"Maximize the width of the street"

How do we get a model that maximizes the margin?

1. Define the appropriate decision rule

$$\mathbf{w} \cdot \mathbf{x} + \mathbf{b} \ge 0$$
 then +

2. Find the equation of the margin

$$margin = \frac{2}{\|\mathbf{w}\|}$$

3. Derive the objective that maximizes the margin

$$\max_{\mathbf{w}} \frac{2}{\|\mathbf{w}\|}$$

s.t.
$$\bar{y}^{(i)}(\mathbf{w} \cdot x^{(i)} + \mathbf{b}) - 1 \ge 0$$

Background: Linear Algebra

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$||u|| = \sqrt{u_1^2 + u_2^2} \in R$$

$$u \cdot v = u^T v = p||v||, \qquad p \in R$$

Decision Rule:

$$w \cdot x \ge c$$
 then + $w \cdot x + b \ge 0$ then +

Add constraints: Define:

$$w \cdot x^{+} + b \ge 1$$

$$w \cdot x^{-} + b \le -1$$

$$\bar{y}^{(a)}$$

$$w \cdot x^+ + b \ge 1$$
 $\bar{y}^{(i)} = +1$ for + samples $w \cdot x^- + b \le -1$ $= -1$ for - samples

$$\bar{y}^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
$$\bar{y}^{(i)}(w \cdot x^{(i)} + b) - 1 \ge 0$$

$$\bar{y}^{(i)}(w \cdot x^{(i)} + b) - 1 = 0$$
 for all $x^{(i)}$ in margin

Decision Rule:

$$w \cdot x \ge c$$
 then + $w \cdot x + b \ge 0$ then +

Add constraints: Define:

$$w \cdot x^+ + b \ge 1$$
 $\bar{y}^{(i)} = +1$ for + samples $w \cdot x^- + b \le -1$ $= -1$ for - samples

$$\bar{y}^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
$$\bar{y}^{(i)}(w \cdot x^{(i)} + b) - 1 \ge 0$$

$$\bar{y}^{(i)}(w \cdot x^{(i)} + b) - 1 = 0$$
 for all $x^{(i)}$ in margin

Decision Rule:

$$w \cdot x \ge c$$
 then + $w \cdot x + b \ge 0$ then +

Add constraints: Define:

$w \cdot x^- + b \le -1$

$$w \cdot x^+ + b \ge 1$$
 $\bar{y}^{(i)} = +1$ for + samples $w \cdot x^- + b \le -1$ $= -1$ for - samples

$$\bar{y}^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
$$\bar{y}^{(i)}(w \cdot x^{(i)} + b) - 1 \ge 0$$

$$\bar{y}^{(i)}(w \cdot x^{(i)} + b) - 1 = 0$$
 for all $x^{(i)}$ in margin

Decision Rule:

$$w \cdot x \ge c$$
 then + $w \cdot x + b \ge 0$ then +

Add constraints: Define:

$w \cdot x^+ + b \ge 1$ $\bar{y}^{(i)} = +1$ for + samples $w \cdot x^- + b \le -1$

$$\bar{y}^{(i)} = +1$$
 for + samples
= -1 for - samples

$$\bar{y}^{(i)}(w \cdot x^{(i)} + b) - 1 = 0 \text{ for all } x^{(i)} \text{ in margin}$$
$$(w \cdot x^{(i)} + b) = \frac{1}{\bar{y}^{(i)}}$$

$$w \cdot x^{+} + b = +1$$

 $w \cdot x^{-} + b = -1$
 $w \cdot x^{+} = 1 - b$
 $w \cdot x^{-} = -1 - b$

$$w \cdot x^{+} + b = +1$$
 $w \cdot x^{+} = 1 - b$ $w \cdot x^{-} + b = -1$ $w \cdot x^{-} = -1 - b$

Decision Rule:

$$w \cdot x \ge c$$
 then + $w \cdot x + b \ge 0$ then +

Add constraints: Define:

$$w \cdot x^+ + b \ge 1$$
 $\bar{y}^{(i)} = +1$ for + samples $w \cdot x^- + b \le -1$ $= -1$ for - samples

$$\bar{y}^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
$$\bar{y}^{(i)}(w \cdot x^{(i)} + b) - 1 \ge 0$$

$$\bar{y}^{(i)}(w \cdot x^{(i)} + b) - 1 = 0$$
 for all $x^{(i)}$ in margin

"Maximize margin" "Classify correctly"

$$\max \frac{2}{\|w\|} \to \max \frac{1}{\|w\|} \to \min \|w\| \to \min \frac{1}{2} \|w\|^2 \qquad \text{"Maximize gap"}$$

s.t.
$$\bar{y}^{(i)}(w \cdot x^{(i)} + b) - 1 \ge 0$$
 "Classify correctly"

Objective (Dual):

$$L(w,\alpha) = \frac{1}{2} \|w\|^2 - \sum_{i} \alpha^{(i)} [\bar{y}^{(i)}(w \cdot x^{(i)} + b) - 1], \forall_i \alpha^{(i)} \ge 0$$

$$\frac{\partial L(w,\alpha)}{\partial w} = w - \sum_{i} \alpha^{(i)} \bar{y}^{(i)} x^{(i)} = 0$$

$$\frac{\partial L(w,\alpha)}{\partial b} = \sum_{i} \alpha^{(i)} \bar{y}^{(i)} = 0$$
Samples with non-zero $\alpha^{(i)}$ = support vectors

$$\frac{\partial L(w,\alpha)}{\partial b} = \sum_{i} \alpha^{(i)} \bar{y}^{(i)} = 0$$

... a few math later ...

Maximize
$$L(\alpha) = \sum_{i} \alpha^{(i)} - \frac{1}{2} \sum_{i} \sum_{j} \alpha^{(i)} \alpha^{(j)} \bar{y}^{(i)} \bar{y}^{(j)} x^{(i)} \cdot x^{(j)}$$

How do we get a model that maximizes the margin?

1. Define the appropriate decision rule

$$w \cdot x + b \ge 0$$
 then +

2. Find the equation of the margin

$$margin = \frac{2}{\|w\|}$$

3. Derive the objective that maximizes the margin

$$\min \frac{1}{2} ||w||^{2}$$
s.t. $\bar{y}^{(i)}(w \cdot x^{(i)} + b) - 1 \ge 0$
...or...
$$\max_{a} \sum_{i} \alpha^{(i)} - \frac{1}{2} \sum_{i} \sum_{j} \alpha^{(i)} \alpha^{(j)} \bar{y}^{(i)} \bar{y}^{(j)} x^{(i)} \cdot x^{(j)}$$

What if the data is <u>not</u> linearly-separable?

Soft-Margin

Soft-Margin

Support Vector Machines (SVM)

Introduce slack variables:

Soft-Margin

Support Vector Machines (SVM)

Hypothesis:

$$h_w(x) = \begin{cases} 1, & \text{if } w^T x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

Objective (Unconstrained):
$$\frac{1}{2} ||w||^2$$

$$J(w) = \frac{1}{2} \sum_{i=1}^{n} w_i^2 + C \sum_{i} \max\{0, 1 - \bar{y}^{(i)}(w^T x^{(i)})\}$$

$$= C \sum_{i} \max\{0, 1 - \bar{y}^{(i)}(w^T x^{(i)})\} + \frac{1}{2} \sum_{i=1}^{n} w_i^2$$

$$= C \sum_{i=1}^{m} y^{(i)} cost_1(w^T x^{(i)}) + (1 - y^{(i)}) cost_0(w^T x^{(i)}) + \frac{1}{2} \sum_{i=1}^{n} w_i^2$$

Recover the standard notation:
$$b = w_0$$

$$cost_1(z) = max\{0, 1 - z\}$$

 $cost_0(z) = max\{0, 1 + z\}$

Soft-margin SVM

 $J(w) = \frac{1}{m} \sum_{i=1}^{m} y^{(i)} \left(-\log\left(h_w(x^{(i)})\right)\right) + (1 - y^{(i)}) \left(-\log\left(1 - h_w(x^{(i)})\right)\right) + \frac{\lambda}{2m} \sum_{i=1}^{m} w_i^2$

Logistic Regression with regularization

What if the data is not linearly-separable?

truly

Outline

- The problem of overfitting
- Linear regression with regularization
- Logistic regression with regularization
- Support Vector Machines
 - Hard-margin SVM
 - Soft-margin SVM
- Kernel Methods & Kernel Trick

Handling non-linear decision boundary (1D)

$$\phi(x) = [x]^T$$

FAIL

$$|w_0 + w_1 x + w_2 x^2 \ge 0 \text{ then } +$$

SUCCESS

Handling non-linear decision boundary (2D)

$$\phi(x) = [x_1, x_2]^T$$

$$w^T \phi(x) \ge 0$$
 then +

$$w_0 + w_1 x_1 + w_2 x_2 \ge 0$$
 then +

FAIL

$$\phi(x) = [x_1, x_2, x_1 x_2, x_1^2, x_2^2, \dots]^T$$

$$w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1 x_2 + w_4 x_1^2 + \dots \ge 0 \text{ then } +$$

SUCCESS

 ϕ can produce a huge number of features! Not scalable!

Kernels

Polynomial degree 1:

$$K(u, v) = \phi(u) \cdot \phi(v) = [u_1, u_2]^T \cdot [v_1, v_2]^T = u_1v_1 + u_2v_2 = u \cdot v$$

Polynomial degree 2:

$$K(u,v) = \phi(u) \cdot \phi(v) = \left[u_1^2, \sqrt{2}u_1u_2, u_2^2 \right]^T \cdot \left[v_1^2, \sqrt{2}v_1v, v_2^2 \right]^T = \dots = (u \cdot v)^2$$

d=6, n=100, about 1.6 billion terms!

Polynomial degree d (n^d terms):

$$K(u, v) = \phi(u) \cdot \phi(v) = (u \cdot v)^d$$

Kernel

Kernels

 $\phi(u)$ maps to **infinite-dimensional** features (discussed in Tutorial)

So what?

Source: https://medium.com/jun94-devpblog/cv-2-gaussian-and-median-filter-separable-2d-filter-2d11ee022c66

SVM with Kernel Trick

From Before:

$$w = \sum_{i} \alpha^{(i)} \, \hat{y}^{(i)} x^{(i)}$$

Objective:

$$J(w) = \frac{1}{2} ||w||^2 - \sum_{i} \alpha^{(i)} [\bar{y}^{(i)}(w \cdot \phi(x^{(i)}) + b) - 1]$$

$$\frac{\partial J(w)}{\partial w} = w - \sum_{i} \alpha^{(i)} \bar{y}^{(i)} \phi(x^{(i)}) = 0$$

$$\frac{\partial J(w)}{\partial b} = \sum_{i} \alpha^{(i)} \bar{y}^{(i)} = 0$$

Decision Rule:

$$w \cdot \phi(x) + b \ge 0 \text{ then } +$$

$$\sum_{i} \alpha^{(i)} \hat{y}^{(i)} \phi(x^{(i)}) \cdot \phi(x) + b \ge 0 \text{ then } +$$

$$\sum_{i} \alpha^{(i)} \hat{y}^{(i)} \quad K(x^{(i)}, x) + b \ge 0 \text{ then } +$$

... a few math later ...

$$J(w) = \sum_{i} \alpha^{(i)} - \frac{1}{2} \sum_{i} \sum_{j} \alpha^{(i)} \alpha^{(j)} \bar{y}^{(i)} \bar{y}^{(j)} \phi(x^{(i)}) \cdot \phi(x^{(j)})$$

$$J(w) = \sum_{i} \alpha^{(i)} - \frac{1}{2} \sum_{i} \sum_{j} \alpha^{(i)} \alpha^{(j)} \bar{y}^{(i)} \bar{y}^{(j)} K(x^{(i)}, x^{(j)})$$

There is <u>no need</u> to compute the transformed features **explicitly**!

Can have SVM with infinite-dimensional features!

Family of kernels

- Not all similarity functions yield valid kernels (aka might not converge)
- Need to satisfy Mercer's theorem
 - (i.e., continuous, symmetric, positive semidefinite)
- Other kernels:
 - String kernel
 - Chi-squared kernel
 - tanh kernel

Summary

- Overfitting
- Regularization
 - Linear and logistic regression
- Support Vector Machine (SVM)
 - Hard-margin SVM
 - Soft-margin SVM
- Kernel
 - SVM with Kernel Trick

Logistic Regression / SVM With x as features

Logistic Regression / SVM With $\phi(x)$ as features

SVM with Kernel Trick With $\phi(x)$ mapping to finite-dimensional features

SVM with Kernel Trick With $\phi(x)$ mapping to infinite-dimensional features

Coming Up Next Week

- Perceptron
 - Perceptron Update Rule
- Gradient Descent with Perceptron
- Neural Networks
 - Multi-layer neural networks

To Do

- Lecture Training 7
 - +100 Free EXP
 - +50 Early bird bonus
- Midterm Survey
 - Due tonight 25:59