Universidad Rafael Landivar Ingeniería Pensamiento computacional (laboratorio) Manolo Mazariegos

Proyecto Pensamiento Computacional

Luis Chang: 128802 Emilio Solorzano: 1354724

Índice

Introducción	3
Incisos a realizar	4
Procesos	5
Diagramas de flujo	7
Conclusión	8

Introducción

Este programa ofrece una interfaz intuitiva para controlar la operación y movilidad de un robot o vehículo, permitiendo al usuario ingresar información específica del dispositivo, seleccionar entre diferentes modos de operación, como robot, moto o camión, y realizar acciones como verificar su estado, recargar energía, cambiar entre modos y calcular la distancia recorrida según el tipo de vehículo y el tiempo de movilización. Al finalizar cada acción, el programa ofrece la opción de regresar al menú principal o salir del programa, proporcionando una herramienta versátil y fácil de usar para gestionar las actividades del robot o vehículo.

Incisos a realizar

¿Qué acciones debe poder hacer el programa?

- 1. Información del robot
- 2. Desplazamiento en horas
- 3. Distancia y cantidad que se usará de energon
- 4. Posición de energon
- 5. Cambiar de modo robot a vehículo y viceversa
- 6. Salir del programa
- 7. Recargar energon

¿Con qué datos trabajaremos?

¿Qué información debe pedir al usuario?

- 1. Nombre del robot
- 2. Modo del robot
- 3. Posición inicial
- 4. Menú principal
- 5. Horas de movimiento

¿Qué variables utilizaremos para almacenar la información?

- 1. Stings
- 2. Double
- 3. Int
- 4. Switch

¿Qué condiciones o restricciones debe tomar en cuenta?

¿Qué cálculos debe hacer?

- 1. Nivel de energon
- 2. Gastos de energon
- 3. Movimiento (velocidad x distancia)

Procesos

Elegir qué modo se usará (Robot, vehículo);

Auto (a), moto (m) o camión (c).

"Escriba el número de la opción de modo que usará"

1. Ingresar la información del robot

- Nombre "Ingrese el nombre del robot"
- Modo "Seleccione el modo del robot"
- Nivel de energía "Indique el nivel de energía
- Distancia "Indique la posición del robot"

a. Menú principal

- (1) Información del robot
- (2) Cargar energon
- (3) Transformación (cambio de modo)
- (4) Movilizarse

"Escriba el número de la opción que desea realizar"

- (1): Mostrar la información del robot; nombre, modo, nivel y distancia
- (2): +5 a la variable de energon hasta el límiteEnergía de energon = energía de energon + 5Energía de energon = 100 "La energía está al 100%"
- (3) : Cambiar de vehículo a robot o de robot a vehículo Modo = vehículo a robot "Transformación de vehículo a robot" Modo = robot a vehículo "Transformación de robot a vehículo"
- (4): Horas que desea movilizarse (int horas)

Modo = robot

- 5 x horas = < energía de energon FALSE "Solicitar recarga"
- 50 x horas = distancia "La distancia actual es: Distancia"
- 5 x horas Energía actual = Nueva energía de energon "Cantidad de energon disponible es de: Nueva energía de energon"

Modo = vehículo

Case moto (m)

20 x horas = < energía de energon FALSE "Solicitar recarga"

120 x horas = distancia "La distancia actual es: Distancia"

20 x horas - Energía actual = Nueva energía de energon "Cantidad de energon disponible es de: Nueva energía de energon"

Case auto (a)

10 x horas = < energía de energon FALSE "Solicitar recarga"

110 x horas = distancia "La distancia actual es: Distancia"

10 x horas - Energía actual = Nueva energía de energon "Cantidad de energon disponible es de: Nueva energía de energon"

Case camión (c)

25 x horas = < energía de energon FALSE "Solicitar recarga"

85 x horas = distancia "La distancia actual es: Distancia"

25 x horas - Energía actual = Nueva energía de energon "Cantidad de energon disponible es de: Nueva energía de energon"

- Al finalizar la opción seleccionada, ofrecer si desea regresar al menú principal
- Opción "Salir" para cerrar el programa

Diagramas de flujo

Información del robot 1.

3. Transformarse

2. Carga de energon

4. Movilizarse

5. Salir

Conclusión

En resumen, este programa presenta una solución eficaz y conveniente para controlar y administrar tanto robots como vehículos, ofreciendo a los usuarios una interfaz clara y funcional para realizar una variedad de acciones, como supervisar el estado, recargar energía, cambiar entre diferentes modos de operación y moverse según sea necesario. Con su diseño intuitivo y opciones bien organizadas, el programa facilita la optimización del desempeño y la eficiencia en una variedad de tareas, proporcionando una herramienta valiosa para la gestión y operación efectiva de robots y vehículos en una amplia gama de contextos y aplicaciones.