Epreuve écrite

Examen de fi	n d'études secondaires 2003	Nom et prénom du candidat		
Section:	B min			
Branche:	Mathématiques II			

I. Soit la fonction f définie par $f(x) = \begin{cases} 2x - |x| \ln x^2 & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$

et soit G sa représentation graphique dans un repère orthonormé. (unité = 2 cm)

- 1) Etudier la continuité et la dérivabilité de f en x = 0.
- 2) En déduire les domaines de définition, de continuité et de dérivabilité de f.
- Calculer les limites aux bornes de dom f et étudier le comportement asymptotique de G.
- 4) Déterminer les points d'intersection de G avec l'axe des x.
- 5) Calculer f'(x) et dresser le tableau de variations.
- 6) Calculer f''(x) et en déduire la concavité de G et les points d'inflexion éventuels.
- 7) Tracer G.
- 8) Calculer l'aire (en cm²) de la surface délimitée par G, l'axe des x et les droites d'équations x = 1 et x = e.

20 pts.

- II. Soit la fonction f définie par $f(x) = \sin \left(\frac{1}{2} \operatorname{Arc} \cos x\right)$
 - Déterminer dom f, im f (ensemble des images par f) et trouver une expression simplifiée de f(x).
 - 2) Sachant que la fonction Arc cotangente est la réciproque de la restriction à]0;π[de la fonction cotangente : Arc cot : R→]0;π[: x → Arc cot x Arc cot x = y ⇔ x = cot y et 0<y<π</p>

calculer: Arc cot $\frac{1}{3}$ + Arc cot $\frac{1}{2}$

- 3) Soit la fonction f définie par $f(x) = Arc \tan \frac{x + a}{1 ax}$ ($a \in \mathbb{R}_0$)
 - a) Déterminer dom f et dom_d f; montrer que f'(x) est indépendant de a. (calculer f'(x))
 - b) Résoudre dans \mathbb{R} l'équation : Arc tan $\frac{x-1}{1+x}$ + Arc tan $x = \frac{\pi}{4}$

15 pts.

Epreuve écrite

L'AMINON WE IM W CLUMES SECONDUM IN CS MO	Examen	de fi	in d	études	secondaires	2003
---	--------	-------	------	--------	-------------	------

Section:

R

June

Branche:

Mathématiques II

Nom et prénom du candidat

- III. 1) Calculer $A = \int_{\pi/4}^{\pi/3} \frac{dx}{\sin x \cos^2 x}$
 - 2) Calculer B = $\int_{0}^{1/2} e^{Arc \cos x} dx$
 - 3) Soit $I_n = \int_0^1 \frac{e^{nx}}{e^x + 1} dx$

Calculer I_1 , $I_n + I_{n+1}$ et en déduire I_2 et I_3 .

12 pts.

- IV. Soit les fonctions f et g définies respectivement par : $f(x) = x^X$ et $g(x) = x^{-X}$ et soit G_f et G_g leurs représentations graphiques dans un même repère orthonormé. (unité = 2 cm)
 - 1) Déterminer les domaines de définition et de dérivabilité de f et de g.
 - 2) Calculer les limites de f et de g aux bornes de leurs domaines de définition.
 - 3) Calculer f'(x) et g'(x) et dresser les tableaux de variations respectifs.
 - 4) Tracer Gf et Gg.
 - 5) Monter que les tangentes à G_f et à G_g en leur point d'intersection d'abscisse x=1 sont perpendiculaires. Ecrire les équations de ces deux tangentes.

13 pts.