Select E as the subset of the labeled NRC lexicon where each word w_i is marked with at least one emotion, and $\{w_i\}$ are unique after our text normalization and processing.

 w_1 10 0 0 1 0 0 0 w_2 w_3 w_4 w_5 w_6 w_6 w_6 w_6 w_6 w_7 w_8 w_8 w

Each region is then represented by a projection induced by the word embedding subset $\{w_i\}$ as follows. Let $w \in \{w_i\}$, and π_w^{-1} be the inverse of the permutation that sorts $\cos(w_1,w),\cdots,\cos(w_n,w)$; π_w^{-1} is then the representation of w.

Finally, a region embedding X is composed by all word representations $\pi_{w_i}^{-1}$

$$\cos(u, v) = \frac{\sum_{i=1}^{n} u_i \cdot v_i}{\sqrt{\sum_{i=1}^{n} u_i^2} \sqrt{\sum_{i=1}^{n} v_i^2}}$$

The distance between two regions word embeddings X,Y is then determined as follows;

$$d(X,Y) = \sum_{j=1}^{n} \sqrt{\sum_{i=1}^{n} (X_{i,j} - Y_{i,j})^{2}}$$

Computes d(X,Y) for all regions to obtain the affinity matrix. Normalize to 1 dividing all distances by the maximum distance in the matrix.

$$X_{n \times n} = \left(\begin{array}{ccc} \pi_{w_1}^{-1} & \cdots & \pi_{w_n}^{-1} \end{array} \right)$$

The i-th coordinate of π^{-1} contains the index where the i appears in π . We use each π^{-1} as a vector to create the regional matrix.

