Enrollment No.....

7

6

5

5

5

Faculty of Engineering

End Sem (Odd) Examination Dec-2017

EE3CO07 / EX3CO07 Circuit Analysis and Synthesis
Programme: B.Tech. Branch/Specialisation: EE/EX

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Q.1 i. When the superposition theorem is applied to any circuit, the 1 dependent voltage source in that circuit is always
 - (a) Opened (b) Shorted (c) Active (d) None of these
 - ii. Indicate the dual of series network consists of voltage source, 1 capacitance, inductance in
 - (a) Parallel combination of resistance, capacitance & inductance
 - (b) Series combination of current source, capacitance & inductance
 - (c) Parallel combination of current source, inductance & capacitance
 - (d) None of these
 - iii. The time constant of a series RL circuit is
 - (a) LR (b) $\frac{L}{R}$ (c) $\frac{R}{L}$ (d) $e^{-R/L}$
 - iv. The tie-set schedule gives the relation between
 - (a) Branch currents and link currents(b) Branch voltages and link currents
 - (c) Branch current and link voltages
 - (d) None of these
 - v. The laplace transform of the integral of function f(t) is
 -) $\frac{F(s)}{s}$ (b) sF(s) f(0)
 - (c) F(s) f(0) (d) f'(0)
 - vi. The final value theorem is used to find the
 - (a) Steady state value of the system output
 - (b) Initial value of the system output
 - (c) Transient behaviour of the system output
 - (d) None of these

 e^{-1} $i_1(t)$ $i_2(t)$ $i_2(t)$ i

OR iii. Expand the full rectified sine wave into a Fourier series.

Q.5 i. Derive the relationship between z-parameters and y-parameters

ii. Obtain the z-parameters for the network shown in figure as function of s.

OR iii. Find z-parameters for the circuit shown below

Q.6 Attempt any two:

i. Find the first Foster form of the driving point function of

 $Z(s) = \frac{s(s+2)(s+5)}{(s+4)(s+6)}$

ii. Find the first cauer form of the function

 $Z(s) = \frac{(s+3)(s+7)}{(s+2)(s+4)}$

iii. Find the second Foster form of RL network for the function

$$Y(s) = \frac{s^2 + 8s + 15}{s^2 + 5s + 4}$$

1

1

1

1

- The number of possible combinations generated by four variables 1 taken two at a time in a two-port network is
 - (a) Four
- (b) Two
- (c) Six
- (d) Five

1

1

2

- viii. For a two-port network to be reciprocal.
 - (a) $Z_{11} = Z_{22}$
- (b) $Y_{21} = Y_{22}$
- (c) $h_{21} = -h_{12}$
- (d) AD BC = 0
- A polynomial must satisfy the condition that

 - (a) Z(s) is a real function
 - (b) All the roots of P(s) have zero real parts, or negative real parts
 - (c) Both (a) and (b)
 - (d) None of these
- In the first Foster form, the presence of first element capacitor C_0 1 indicates
 - (a) Pole at $\omega=0$
- (b) Pole at $\omega = \infty$
- (c) Zero at ω =0

ii.

- (d) Zero at $\omega = \infty$
- State the limitations of superposition theorem. Q.2 i.
 - State and explain reciprocity theorem.
 - Find the value of voltage V which results in $Vs = 5 \angle 0^0$ in the 5 iii. circuit shown in fig below

Determine the voltage V which results in a zero current through 5 OR iv. the $2+i3 \Omega$ impedence in the circuit shown in figure below

- Q.3 i. Define the following:
 - (a) Tree
- (b) Co-tree (c) Twig
- (d) Link

In the network below switch K is closed at t=0. Determine 8 i_c , i_L , $\frac{dv_1}{dt}$, $\frac{dv_2}{dt}$ at $t=0^+$.

OR The circuit shown in figure consists of resistance, inductance and 8 capacitance in series with a 100V constant source when the switch is closed at t=0. Find the current transient using differential equation method.

- Find F(s) 3 Q.4 i.
 - For the circuit shown in figure below determine the total current 7 when the switch S is closed at t=0 using Laplace transform method.

P.T.O.

EE3CO07 / EX3CO07 Circuit Analysis and Synthesis

Marking Scheme

Q.1	i. ii.			1 1
	iii.	(b) $\frac{L}{R}$		1
	iv.	(a) branch currents and link cu	rrents	1
	v.	V. (a) $\frac{F(s)}{s}$		
	vi. (a) steady state value of the system output			1
	vii. (c) six			1
	viii.	viii. (c) $h_{21} = -h_{12}$ ix. (c) both (a) and (b)		1
	ix.			1
	х.	(a) pole at $\omega = 0$		1
Q.2	i.	Limitations minimum 4 points (0.5 mark * 4 = 2 marks) 2		
	ii.	Statement – 1 mark		3
		Explanation – 2 marks		
	iii.	For Equation (i) – 1 mark		5
		For Equation (ii) – 1 mark		
		For Equation (iii) – 1 mark		
		For Voltage Va – 1 mark		
		For Voltage V – 1 mark		
OR	iv.	For Equation (i) – 1 mark		5
		For Equation (ii) – 1 mark For Va – 1.5 marks		
		For $V1 - 1.5$ marks		
Q.3	i.	Definition each 0.5 mark $(0.5 \text{ mark} * 4 = 2 \text{ marks})$		2
	ii.	(a) ic	2 marks	8
		(b) i _L -	2 marks	
		(c) dv_1/dt –	2 marks	
		(d) dv_2/dt –	2 marks	
OR	iii.	(a) C.F –	2 marks	8
		(b) P.I –	2 marks	
		(c) Value of Constants –	2 marks	
		(d) Expression –	2 marks	

Q.4	i.	(a) Time domain expression $f(t) - 1.5$ marks	3
		(b) Laplace of f(t) - 1.5 marks	
	ii.	(a) $i_1(t) \& I_1(s) - 2$ marks	7
		(b) $i_2(t) \& I_2(s) - 2$ marks	
		(c) $i(t) \& I(s) - 3 \text{ marks}$	
OR	iii.	Diagram – 1 mark	7
		Calculate a_0 , a_n , b_n and expression of fourier series -6 marks	
Q.5	i.	(a) Z-parameters to Y-parameters – 2 marks	4
		(b) Y-parameters to Z-parameters − 2 marks	
	ii.	For each z parameter 2 marks $(2 \text{ marks } * 3 = 6 \text{ marks})$	6
OR	iii.	For each z parameter 2 marks (2 marks $*$ 3 = 6 marks)	6
Q.6		Attempt any two:	
	i.	Calculations – 3 marks	5
		Diagram – 2 marks	
	ii.	Calculations – 3 marks	5
		Diagram – 2 marks	
	iii.	Calculations – 3 marks	5
		Diagram – 2 marks	
