Jonathan Pearce

260672004

March 21, 2018

Comp 424 Assignment 3

1a.

b.

Our network is not a polytree. If we remove the edge directions, there is a cycle (G - T - F $_{\text{G}}$ - G).

c.

 $P(G|T,F_G)$

		(ĵ.
Т	F _G	Normal	High
Normal	F_G	У	1-y
Normal	Not F _G	Х	1-x
High	F_G	1-y	у
High	Not F _G	1-x	Х

d.

 $P(A|G,F_A)$

		Į.	4
G	F _A	А	Not A
Normal	F _A	0	1
Normal	Not F _A	0	1
High	F _A	0	1
High	Not F _A	1	0

Notation: Let T, G denote 'high temperature' and $\neg T$, $\neg G$ denote 'normal temperature

$$\begin{split} P(T|A, \neg F_G, \neg F_A) &= \frac{P(T, A, \neg F_G, \neg F_A)}{P(A, \neg F_G, \neg F_A)} \\ &= \frac{\sum_{g \in \{G, \neg G\}} P(T, A, \neg F_G, \neg F_A, g)}{\sum_{g \in \{G, \neg G\}, t \in \{T, \neg T\}} P(A, \neg F_G, \neg F_A, t, g)} \\ &= \frac{\sum_{g \in \{G, \neg G\}} P(T) * P(\neg F_A) * P(\neg F_G|T) * P(g|\neg F_G, T) * P(A|g, \neg F_A)}{\sum_{g \in \{G, \neg G\}, t \in \{T, \neg T\}} P(t) * P(\neg F_A) * P(\neg F_G|t) * P(g|\neg F_G, t) * P(A|g, \neg F_A)} \end{split}$$

We can factor and divide out $P(\neg F_A)$

$$= \frac{\sum_{g \in \{G, \neg G\}} P(T) * P(\neg F_G | T) * P(g | \neg F_G, T) * P(A | g, \neg F_A)}{\sum_{g \in \{G, \neg G\}, t \in \{T, \neg T\}} P(t) * P(\neg F_G | t) * P(g | \neg F_G, t) * P(A | g, \neg F_A)}$$

2a.

$$P(s,r) = \sum_{a,t,b} P(r,s,B = b, A = a, T = t)$$

$$= \sum_{a,t,b} P(r)P(B = b)P(A = a|B = b)P(s|A = a)P(T = t|r, A = a, B = b)$$

а	t	b	P(r)	P(B=b)	P(A=a B=b)	P(S A = a)	P(T = t r, B=b, A=a)	
а	t	b	0.15	0.2	0.6	0.8	0.95	0.01368
а	t	not b	0.15	0.8	0.4	0.8	0.92	0.035328
а	not t	b	0.15	0.2	0.6	0.8	0.05	0.00072
а	not t	not b	0.15	0.8	0.4	0.8	0.08	0.003072
not a	t	b	0.15	0.2	0.4	0.2	0.9	0.00216
not a	t	not b	0.15	0.8	0.6	0.2	0.85	0.01224
not a	not t	b	0.15	0.2	0.4	0.2	0.1	0.00024
not a	not t	not b	0.15	0.8	0.6	0.2	0.15	0.00216
								0.0696

$$P(s,r) = 0.0696$$

2b.

$$P(a, \neg t) = \sum_{b,r,s} P(a, \neg t, B = b, R = r, S = s)$$

$$= \sum_{b,r,s} P(R = r)P(B = b)P(a|B = b)P(S = s|a)P(\neg t|a, R = r, B = b)$$

r	S	b	P(R=r)	P(B=b)	P(a B=b)	P(S=s a)	P(not t R=r, B=b, a)	
r	S	b	0.15	0.2	0.6	0.8	0.05	0.00072
r	S	not b	0.15	0.8	0.4	0.8	0.08	0.003072
r	not s	b	0.15	0.2	0.6	0.2	0.05	0.00018
r	not s	not b	0.15	0.8	0.4	0.2	0.08	0.000768
not r	S	b	0.85	0.2	0.6	0.8	0.65	0.05304
not r	S	not b	0.85	0.8	0.4	0.8	0.4	0.08704
not r	not s	b	0.85	0.2	0.6	0.2	0.65	0.01326
not r	not s	not b	0.85	0.8	0.4	0.2	0.4	0.02176
								0.17984

$$P(a, \neg t) = 0.17984$$

2c.

$$P(t \mid s) = \frac{P(t,s)}{P(s)}$$

$$P(t,s) = \sum_{a,r,b} P(t,s,B=b,A=a,R=r)$$

$$= \sum_{a,r,b} P(R=r)P(B=b)P(A=a|B=b)P(s|A=a)P(t|R=r,A=a,B=b)$$

r	а	b	P(R=r)	P(B=b)	P(A=a B=b)	P(s A=a)	P(t R=r, B=b, A=a)	
r	а	b	0.15	0.2	0.6	0.8	0.95	0.01368
r	а	not b	0.15	0.8	0.4	0.8	0.92	0.035328
r	not a	b	0.15	0.2	0.4	0.2	0.9	0.00216
r	not a	not b	0.15	0.8	0.6	0.2	0.85	0.01224
not r	a	b	0.85	0.2	0.6	0.8	0.35	0.02856
not r	а	not b	0.85	0.8	0.4	0.8	0.6	0.13056
not r	not a	b	0.85	0.2	0.4	0.2	0.4	0.00544
not r	not a	not b	0.85	0.8	0.6	0.2	0.05	0.00408
								0.232048

$$P(t,s) = 0.232048$$

$$P(s) = \sum_{a,r,b,t} P(s,T = t,B = b,A = a,R = r)$$

$$= \sum_{a,r,b,t} P(R=r)P(B=b)P(A=a|B=b)P(s|A=a)P(T=t|R=r,A=a,B=b)$$

t	r	а	b	P(R=r)	P(B=b)	P(A=a B=b)	P(s A=a)	P(T=t R=r, B=b, A=a)	
t	r	а	b	0.15	0.2	0.6	0.8	0.95	0.01368
t	r	а	not b	0.15	0.8	0.4	0.8	0.92	0.035328
t	r	not a	b	0.15	0.2	0.4	0.2	0.9	0.00216
t	r	not a	not b	0.15	0.8	0.6	0.2	0.85	0.01224

t	not r	а	b	0.85	0.2	0.6	0.8	0.35	0.02856
t	not r	а	not b	0.85	0.8	0.4	0.8	0.6	0.13056
t	not r	not a	b	0.85	0.2	0.4	0.2	0.4	0.00544
t	not r	not a	not b	0.85	0.8	0.6	0.2	0.05	0.00408
not t	r	а	b	0.15	0.2	0.6	0.8	0.05	0.00072
not t	r	а	not b	0.15	0.8	0.4	0.8	0.08	0.003072
not t	r	not a	b	0.15	0.2	0.4	0.2	0.1	0.00024
not t	r	not a	not b	0.15	0.8	0.6	0.2	0.15	0.00216
not t	not r	а	b	0.85	0.2	0.6	0.8	0.65	0.05304
not t	not r	а	not b	0.85	0.8	0.4	0.8	0.4	0.08704
not t	not r	not a	b	0.85	0.2	0.4	0.2	0.6	0.00816
not t	not r	not a	not b	0.85	0.8	0.6	0.2	0.95	0.07752
									0.464

$$P(s) = 0.464$$

$$P(t \mid s) = \frac{P(t, s)}{P(s)} = \frac{0.232048}{0.464} = 0.5001$$

3.

Eliminate R:

Factors: P(R), P(B), P(A|B), P(T|A,B,R), P(S|A)

$$m_R(T,A,B) = \sum_{\{r \in R\}} P(r)P(T|A,B,r)$$

$$= P(r)P(T|A,B,r) + P(\neg r)P(T|A,B,\neg r)$$

t	а	b	P(T = t A = a, B = b, r)	P(T = t A = a, B = b, not r)	m _R (T,A,B)
t	а	b	0.95	0.35	0.44
t	а	not b	0.92	0.6	0.648
t	not a	b	0.9	0.4	0.475
t	not a	not b	0.85	0.05	0.17
not t	а	b	0.05	0.65	0.56
not t	а	not b	0.08	0.4	0.352
not t	not a	b	0.1	0.6	0.525
not t	not a	not b	0.15	0.95	0.83

 $m_R(T,A,B)$ represents the joint probability distribution of T,A,B independent of R.

Eliminate S:

Factors: P(B), P(A|B), P(S|A), $m_R(T, A, B)$

$$m_{S}(A) = \sum_{\{s \in S\}} P(s|A)$$
$$= P(s|A) + P(\neg s|A)$$
$$= 1$$

 $m_{\rm S}(A)$ represents the probability distribution of A independent of Independent of R and S.

Eliminate B:

Factors: P(B), P(A|B), $m_R(T, A, B)$, $m_S(A)$

$$m_B(T,A) = \sum_{\{b \in B\}} P(b)P(A|b)m_R(T,A,b)$$

$$= P(b)P(A|b)m_R(T,A,b) + P(\neg b)P(A|\neg b)m_R(T,A,\neg b)$$

t	а	P(A=a b)	P(A=a not b)	m _R (T=t,A=a,b)	m _R (T=t,A=a,not b)	m _B (T,A)
t	а	0.6	0.4	0.44	0.648	0.26016
t	not a	0.4	0.6	0.475	0.17	0.1196
not t	а	0.6	0.4	0.56	0.352	0.17984
not t	not a	0.4	0.6	0.525	0.83	0.4404

 $m_B(T,A)$ represents the joint probability distribution of T,A independent of Independent of R,S and B.

Eliminate A:

Factors: $m_S(A)$, $m_B(T,A)$

$$\delta(A, a) = \begin{cases} 1 & \text{if } A = a \\ 0 & \text{if } A \neq a \end{cases}$$

$$m_A(T) = \sum_{\{a \in A\}} m_B(T, a) m_S(a) \delta(A, a)$$

$$= m_B(T, a) m_S(a)(1) + m_B(T, a) m_S(a)(0)$$

$$= m_B(T,a)m_S(a)(1)$$

	t	m _B (T=t,a)	ms(a)	m _A (T)
	t	0.26016	1	0.26016
r	not t	0.17984	1	0.17984

 $m_A(T)$ represents the probability distribution of T given A=a (provided by the indicator function) independent of R,S.B.

$$m_A(t) > m_A(\neg t)$$

 $\Rightarrow T = t$ is the MAP result of the query.

4a.

i.

$$\theta_{A} = P(A = 1)$$

$$\theta_{B|0} = P(B = 1|A = 0)$$

$$\theta_{B|1} = P(B = 1|A = 1)$$

$$\theta_{C|0} = P(C = 1|A = 0)$$

$$\theta_{C|1} = P(C = 1|A = 1)$$

$$\theta_{D|0,0} = P(D = 1|B = 0, C = 0)$$

$$\theta_{D|1,0} = P(D = 1|B = 1, C = 0)$$

$$\theta_{D|0,1} = P(D = 1|B = 0, C = 1)$$

$$\theta_{D|1,1} = P(D = 1|B = 1, C = 1)$$

ii.

$$\theta_A^{MLE} = P(A = 1) = \frac{49}{146}$$

$$\theta_{B|0}^{MLE} = P(B = 1|A = 0) = \frac{68}{68 + 29} = \frac{68}{97}$$

$$\theta_{B|1}^{MLE} = P(B = 1|A = 1) = \frac{43}{43 + 6} = \frac{43}{49}$$

$$\theta_{C|0}^{MLE} = P(C = 1|A = 0) = \frac{56}{56 + 41} = \frac{56}{97}$$

$$\theta_{C|1}^{MLE} = P(C = 1|A = 1) = \frac{19}{19 + 30} = \frac{19}{49}$$

$$\theta_{D|0,0}^{MLE} = P(D = 1|B = 0, C = 0) = \frac{4}{4 + 2} = \frac{4}{6}$$

$$\theta_{D|0,0}^{MLE} = P(D = 1|B = 1, C = 0) = \frac{21}{21 + 44} = \frac{21}{65}$$

$$\theta_{D|0,1}^{MLE} = P(D = 1|B = 0, C = 1) = \frac{8}{8 + 21} = \frac{8}{29}$$

$$\theta_{D|1,1}^{MLE} = P(D = 1|B = 1, C = 1) = \frac{0}{0 + 46} = \frac{0}{46}$$

iii.

$$\theta_A^{LS} = P(A=1) = \frac{49+1}{146+2} = \frac{50}{148}$$

$$\theta_{B|0}^{LS} = P(B = 1|A = 0) = \frac{68 + 1}{97 + 2} = \frac{69}{99}$$

$$\theta_{B|1}^{LS} = P(B = 1|A = 1) = \frac{43 + 1}{49 + 2} = \frac{44}{51}$$

$$\theta_{C|0}^{LS} = P(C = 1|A = 0) = \frac{56 + 1}{97 + 2} = \frac{57}{99}$$

$$\theta_{C|1}^{LS} = P(C = 1|A = 1) = \frac{19 + 1}{49 + 2} = \frac{20}{51}$$

$$\theta_{D|0,0}^{LS} = P(D = 1|B = 0, C = 0) = \frac{4 + 1}{6 + 2} = \frac{5}{8}$$

$$\theta_{D|1,0}^{LS} = P(D = 1|B = 1, C = 0) = \frac{21 + 1}{65 + 2} = \frac{22}{67}$$

$$\theta_{D|0,1}^{LS} = P(D = 1|B = 0, C = 1) = \frac{8 + 1}{29 + 2} = \frac{9}{31}$$

$$\theta_{D|1,1}^{LS} = P(D = 1|B = 1, C = 1) = \frac{0 + 1}{46 + 2} = \frac{1}{48}$$

b.

i.

$$\begin{split} w_{D_1=1} &= P(D_1 = 1 | A_1, B_1, C_1) \\ &= P(D = 1 | A = 1, B = 0, C = 1) \\ &= \frac{P(D = 1, A = 1, B = 0, C = 1)}{P(A = 1, B = 0, C = 1)} \\ &= \frac{P(A = 1, B = 0, C = 1, D = 1)}{\sum_{\{d \in D\}} P(A = 1, B = 0, C = 1, D = d)} \\ &= \frac{\theta_A (1 - \theta_{B|1}) \theta_{C|1} \theta_{D|0,1}}{\theta_A (1 - \theta_{B|1}) \theta_{C|1} \theta_{D|0,1}} \\ &= \frac{\theta_{D|0,1}}{\theta_{D|0,1} + (1 - \theta_{D|0,1})} \\ &= \frac{\theta_{D|0,1}}{\theta_{D|0,1}} \\ &= \frac{\theta_{D|0,1}}{\theta_{D|0,1}} \\ &\Rightarrow w_{D_1=0} = \frac{21}{29} \end{split}$$

$$w_{C_2=1} = P(C_2 = 1|A_2, B_2, D_2)$$

$$= P(C = 1 | A = 1, B = 1, D = 0)$$

$$= \frac{P(C = 1, A = 1, B = 1, D = 0)}{P(A = 1, B = 1, D = 0)}$$

$$= \frac{P(A = 1, B = 1, C = 1, D = 0)}{\sum_{\{c \in C\}} P(A = 1, B = 1, C = c, D = 0)}$$

$$= \frac{\theta_A \theta_{B|1} \theta_{C|1} (1 - \theta_{D|1,1})}{\theta_A \theta_{B|1} \theta_{C|1} (1 - \theta_{D|1,1})}$$

$$= \frac{\theta_{C|1} (1 - \theta_{D|1,1})}{\theta_{C|1} (1 - \theta_{D|1,1}) + (1 - \theta_{C|1}) (1 - \theta_{D|1,0})}$$

$$= \frac{\frac{19}{49} * (1 - \frac{0}{46})}{\frac{19}{49} * (1 - \frac{0}{46}) + (1 - \frac{19}{49}) * (1 - \frac{21}{65})}$$

$$= \frac{247}{511}$$

$$\Rightarrow w_{C_2=0} = \frac{264}{511}$$

ii.

$$\theta_A^{MLE} = P(A = 1) = \frac{49 + 2}{146 + 2} = \frac{51}{148}$$

$$\theta_{B|0}^{MLE} = P(B = 1|A = 0) = \frac{68}{97}$$

$$\theta_{B|1}^{MLE} = P(B = 1|A = 1) = \frac{43 + 1}{49 + 2} = \frac{44}{51}$$

$$\theta_{C|0}^{MLE} = P(C = 1|A = 0) = \frac{56}{97}$$

$$\theta_{C|1}^{MLE} = P(C = 1|A = 1) = \frac{19 + 1 + w_{C_2 = 1}}{49 + 2} \approx 0.4016$$

$$\theta_{D|0,0}^{MLE} = P(D = 1|B = 0, C = 0) = \frac{4}{6}$$

$$\theta_{D|0,0}^{MLE} = P(D = 1|B = 1, C = 0) = \frac{21}{65 + w_{C_2 = 0}} \approx 0.3205$$

$$\theta_{D|0,1}^{MLE} = P(D = 1|B = 0, C = 1) = \frac{8 + w_{D_1 = 1}}{29 + 1} \approx 0.2759$$

$$\theta_{D|1,1}^{MLE} = P(D = 1|B = 1, C = 1) = \frac{0}{46 + w_{C_2 = 1}} = 0$$

We use the simplified formulas derived in part i.

$$w_{D_1=1} = \theta_{D|0,1}$$

= 0.2759
 $\Rightarrow w_{D_1=0} = 0.7241$

$$\begin{split} w_{C_2=1} &= \frac{\theta_{C|1}(1-\theta_{D|1,1})}{\theta_{C|1}(1-\theta_{D|1,1}) + (1-\theta_{C|1})(1-\theta_{D|1,0})} \\ &= \frac{0.4016*(1-0)}{0.4016*(1-0) + (1-0.4016)(1-0.3205)} \\ &= 0.4969 \\ &\Rightarrow w_{C_2=0} = 0.5031 \end{split}$$