Университет ИТМО Физико-технически й мегафакультет Физический факультет

Группа <u>М3213</u>	К работе допущен
Студент Алексеева Виктория,	Работа выполнена
Балакирева Виктория	
Преподаватель Громова Наира	Отчет принят
Рустемовна	

Рабочий протокол и отчет по лабораторной работе №1.04

Цели работы:

- 1. Проверка основного закона динамики вращения.
- 2. Проверка зависимости момента инерции от положения масс относительно оси вращения.

Задачи:

- 1. Измерение времени падения груза при разной массе груза и разном положении утяжелителей на крестовине.
- 2. Расчёт ускорения груза, углового ускорения крестовины и мо- мента силы натяжения нити.
- 3. Расчёт момента инерции крестовины с утяжелителями и момен- та силы трения.
- 4. Исследование зависимости момента силы натяжения нити от углового ускорения. Проверка основного закона динамики вращения.
- 5. Исследование зависимости момента инерции от положения масс относительно оси вращения. Проверка теоремы Штейнера.

Объект исследования:

Вращательное движение. Маятник Обербека

Формулы:

Название	Формула	Nº
Второй закон Ньютона	ma = mg - T	1
Ускорение	$a = \frac{2h}{t^2}$	2
Угловое ускорение	$\varepsilon = \frac{2a}{d}$	3
Сила натяжения нити	T = m(g-a)	4
Момент силы	$M = \frac{md}{2}(g - a)$	5
Основной закон динамики вращения для крестовины	$I\varepsilon = M - MTp$	6
Теорема Штейнера для момента инерции	$I = I0 + 4myTR^2$	7
Момент силы натяжения нити	$M = I\epsilon + M_{T}p$	8
Расстояние между осью О вращения и центром С утяжелителя	$R = l1 + (n-1)l0 + \frac{1}{2}b$	9

σ - среднеквадратично е отклонение среднего значения	$\sigma\langle t\rangle = \sqrt{\frac{1}{N(N-1)}\sum_{i=1}^{N}(ti-tcp)^2}$	10
Формула коэффициента b прямой при МНК	$\frac{\sum (xi - x')(yi - y')}{\sum (xi - x')^2}$	11
Формула коэффициента а прямой при МНК	a = y' - b * x'	12

Масса каретки	(47,0±0,5) г
Масса шайбы	(220,0±0,5) г
Масса грузов на крестовине	(408,0±0,5) г
Расстояние от оси вращения до первой риски	(57,0±0,5) мм
Расстояние между рисками	(25,0±0,2) мм
Диаметр ступицы	(46,0±0,5) мм
Диаметр груза на крестовине	(40,0±0,5) mm
Размер утяжелителя вдоль спицы	(40,0±0,5) мм
Значение коэффициента	
Стьюдента при доверительной вероятности α=0,95 и	$t_{\alpha,N}=4,3$
количестве измерений $N=3$	

Установка:

1 — основание; 2 — рукоятка сцепления крестовин; 3 — устройство принудительного трения; 4 — поперечина; 5 — груз крестовины; 6 — трубчатая направляющая; 7 — передняя крестовина; 8 — задняя крестовина; 9 — шайбы каретки; 10 — каретка; 11 — система передних стоек.

Nº	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	цифровой	0,00-15,00 c	0,005 с
2	Металлическая линейка	физический	0-750 мм	0,5 мм

Ход работы:

Таблица 1. Результаты прямых измерений.

Масса груза, г		Положение утяжелителей					
		1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
m_1	t ₁	4,48	5,62	6,7	7,39	8,23	9,98
	t_2	4,05	5,53	6,9	7,36	8,51	9,55
	t_3	4,15	5,75	6,78	7,58	7,53	9,5
	t _{cp}	4,22667	5,63333	6,79333	7,44333	8,09	9,67667

m_2	t_1	3,06	3,88	4,85	5,4	6,01	6,91
	t_2	3,43	4,15	5	5,41	6,13	7,01
	t_3	3,3	4,00	4,65	5,41	6	7,01
	t_{cp}	3,26333	4,01	4,83333	5,40667	6,04667	6,97667
m_3	t_1	2,85	3,51	3,66	4,34	4,8	5,81
	t_2	2,63	3,46	3,9	4,28	5,15	5,8
	t_3	2,68	3,51	3,98	4,31	5,04	6,1
	t_{cp}	2,72	3,49	3,84667	4,31	4,99667	5,90333
m_4	t_1	2,3	2,9	3,28	3,86	4,32	4,88
	t_2	2,55	2,66	3,19	3,88	4,66	5,13
	t_3	2,53	3,03	3,16	3,84	4,4	4,95
	t_{cp}	2,46	2,86333	3,21	3,86	4,46	4,98667

Таблица 2. Расчет результатов косвенных измерений

Масса груза, г		Положение утяжелителей					
		1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
m_1	a, m/c ²	0,07837	0,04412	0,03034	0,02527	0,02139	0,01495
	ϵ , рад/ c^2	3,40725	1,91809	1,31897	1,09866	0,93004	0,65005
	M, кг/м ²	0,0597	0,05991	0,06	0,06003	0,06005	0,06009
	t_{cp}	4,22667	5,63333	6,79333	7,44333	8,09	9,67667
m_2	а, м/c ²	0,131464	0,08706	0,05993	0,04789	0,03829	0,02876
	ϵ , рад/ c^2	5,7158	3,7854	2,60559	2,08229	1,66482	1,25056
	M, кг/м ²	0,1083	0,10879	0,1091	0,10923	0,10934	0,10945
	t_{cp}	3,26333	4,01	4,83333	5,40667	6,04667	6,97667
m_3	a, m/c ²	0,18923	0,11494	0,09461	0,07537	0,05607	0,04017
	ϵ , рад/ c^2	8,2274	4,98793	4,11369	3,27677	2,43803	1,74665

	M, кг/м ²	0,15628	0,15749	0,15782	0,15813	0,15845	0,15871
	t_{cp}	2,72	3,49	3,84667	4,31	4,99667	5,90333
m ₄	а, м/c ²	0,23134	0,17076	0,13587	0,09396	0,07038	0,0563
	ϵ , рад/ c^2	10,05843	7,42431	5,90732	4,08532	3,06006	2,44782
	М, кг/м ²	0,20401	0,20531	0,20605	0,20694	0,20745	0,20775
	$t_{\rm cp}$	2,46	2,86333	3,21	3,86	4,46	4,98667

Рассчитаем для каждого положения утяжелителей по методу наименьших квадратов (МНК) момент инерции крестовины I с утяжелителями и момент силы трения Мтр. Теоретическая связь между моментом силы натяжения нити и угловым ускорением крестовины описывается уравнением: M = Mтр + $I\varepsilon$.

Для начала найдем средние значения M и ε :

$$M' = \frac{1}{n} \sum Mi$$

$$\varepsilon' = \frac{1}{n} \sum \varepsilon i$$

Используя формулу для МНК, вычислим I по формуле:

$$\mathbf{I} = \frac{\sum (\varepsilon i - \varepsilon')(\mathbf{M}i - \mathbf{M}')}{\sum (\varepsilon i - \varepsilon')^{2}}$$

Найдем момент силы трения Мтр по формуле:

$$M\tau p = M' - I\varepsilon'$$

Найдем для каждого положения утяжелителей расстояние R между осью вращения и центром утяжелителя:

$$R = l_1 + (n-1)l_0 + \frac{1}{2}b$$

где l_1 — расстояние от оси вращения до первой риски; n — номер риски, на которой установлены утяжелители; l_0 — расстояние между соседними рисками; b — размер утяжелителя вдоль спицы.

Номер риски	I, кг/м	Мтр, Н*М	R, м	R^2, m^2
1	0,021329	-0,014080	0,077	0,00592
2	0,026901	0,011040	0,102	0,01040
3	0,031693	0,022749	0,127	0,01612
4	0,047983	0,007110	0,152	0,02310

5	0,068458	-0,004683	0,177	0,03133
6	0,083224	0,007186	0,202	0,04080

На основе найденных значений I и R^2 с помощью МНК определим значения I0 и mут, а также их погрешности $\Delta I0$ и Δm ут.

$$I = I0 + 4myTR^2$$

По МНК:

$$I' = \frac{1}{n} \sum Ii = 0,0466 \text{ кг/м^2}$$

$$R^2' = \frac{1}{n} \sum_{i} R^{2i} i = 0,02128 \text{ m}^2$$

4тут =
$$\frac{\sum (Ri - R^2)(Ii - I')}{\sum (Ri - R^2)^2}$$
 = 1,86631 кг

$$10 = 1'-4myTR^2 = 0,00688 KF/M^2$$

Погрешности:

1. Найдем погрешность среднего значения времени для первого значения в таблице. $tcp = \frac{t1+t2+t3}{3} = 4,22667$ - среднее время измерений.

$$\Delta t = \sqrt{(t_1 - t_{cp})^2 + (t_1 - t_{cp})^2 + (t_1 - t_{cg})^2} = \sqrt{(4,48 - 4,22667)^2 + (4,05 - 4,22667)^2 + (4,15 - 4,22667)^2} = 0,31822 \text{ c}$$

$$\sigma \langle t \rangle = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (ti - tcp)^2} = 0,129915$$
 - среднеквадратичное отклонение среднего

значения

 $\alpha = 0.95$, $t\alpha$, N = 4.3 - коэффициент Стьюдента.

Доверительный интервал:

$$\Delta t1 = t\alpha, N \cdot \sigma \langle t \rangle = 4.3 * 0.129915 = 0.558632$$

2. Найдем погрешность для первых значений ускорения груза (a), углового ускорения (ε), момента силы (М).

$$\Delta a1 = \sqrt{\left(\frac{\partial a}{\partial h}\Delta h\right)^2 + \left(\frac{\partial a}{\partial t}\Delta t\right)^2} = \sqrt{\left(\frac{2}{t^2}\Delta h\right)^2 + \left(\frac{4h}{t^3}\Delta t\right)^2}$$

$$\Delta a1 = \sqrt{\left(\frac{2}{422667^2} * 0,005\right)^2 + \left(\frac{4*0.07}{422667^3} * 0,31822\right)^2} = 0,0118135$$

$$\Delta \varepsilon 1 = \sqrt{\left(\frac{\partial \varepsilon}{\partial a} \Delta a\right)^2 + \left(\frac{\partial \varepsilon}{\partial h} \Delta d\right)^2} = \sqrt{\left(\frac{2}{d} \Delta a\right)^2 + \left(\frac{2a}{d^2} \Delta d\right)^2}$$

$$\Delta \varepsilon 1 = \sqrt{\left(\frac{2}{0.046} * 0,0118135\right)^2 + \left(\frac{2*0.07837}{0.046^2} \Delta * 0,0005\right)} = 0,514964$$

$$\Delta M1 = \sqrt{\left(\frac{\partial M}{\partial a}\Delta a\right)^{2} + \left(\frac{\partial M}{\partial m}\Delta m\right)^{2} + \left(\frac{\partial M}{\partial m}\Delta d\right)^{2}} = \sqrt{\left(\frac{md(g-1)}{2}\Delta a\right)^{2} + \left(\frac{d(g-a)}{2}\Delta m\right)^{2} + \left(\frac{m(g-a)}{2}\Delta d\right)^{2}}$$

$$\Delta M1 = \sqrt{\left(\frac{0,267*0,046(9,81-1)}{2}*0,0118135\right)^{2} + \left(\frac{0,0046(9,81-0,07837)}{2}*0,0005\right)^{2} + \left(\frac{0,267(9,81-0,07837)}{2}*0,0005\right)^{2}} = 0,000918141$$

3. Найдем погрешность для и $\Delta I0$ и Δm ут:

$$\Delta I0 = \sqrt{\left(\frac{\partial I0}{\partial I'}\Delta I'\right)^2 + \left(\frac{\partial I0}{\partial (4\text{MyT})}\Delta 4\text{MyT}\right)^2 + \left(\frac{\partial I0}{\partial R^2}\Delta R^2\right)^2} = 0,0059 \text{ kg/m}^2$$

$$\Delta myt = \sqrt{\left(\frac{\partial myt}{\partial Ri}\Delta Ri\right)^2 + \left(\frac{\partial myt}{\partial Ii}\Delta Ii\right)^2} = 0,15595 \text{ kg}$$

Графики:

График 1. Зависимости момента силы натяжения нити и углового ускорения крестовины для всех положений утяжелителей $M(\epsilon)$

График 2. Зависимость момента инерции крестовины от расстояния между центрами грузов и осью вращения $I(R^2)$.

Вывод:

В результате проверки основного закона динамики вращения установлено, что момент силы натяжения нити M линейно зависит от углового ускорения крестовины ϵ , что подтверждает закон динамики вращательного движения. Изучение зависимости момента инерции от положения масс относительно оси вращения показало, что с увеличением расстояния утяжелителей от оси вращения момент инерции возрастает, что соответствует теореме Штейнера.

Были произведены измерения времени падения груза при различных массах и положении утяжелителей на крестовине, рассчитаны ускорение груза, угловое ускорение крестовины, момент силы натяжения нити, момент инерции системы и момент силы трения. Анализ зависимостей показал, что положения утяжелителей значительно влияют на момент инерции, что подтверждает экспериментальную часть теории.