* Fixed Point Theorem

Def) Given a set X and a function $f: X \to X$, $X^* \in X$ is a fixed point of $f: X \to X$,

Mote: Existence problems in Economics can often be formulated as a fixed point problem.

The will talk about 3 types of "Fixed point theorem"

- Restrictions on X, every continuous function f on X has a fixed point on X Brouwer: $X \subseteq IR^n$ compact and convex. Kakutani: for correspondence.
- · Restrictions on f (Contractions)

 Takski: f increasing, not continuous, X: generalized rectangle.

Brouwer

Thim If $X = [a, b] \le IR$ and $f: X \to X$ is continuous, then f has a fixed point.

prof) f(a)=a or f(b)=b, we are alone.

Otherwise, f(a)>a and f(b)<bDefine g(a)=f(a)-A. Then g(a)>a and g(b)<aMoreover, g is antinuous since f is continuous.

The intermediate value theorem implies that

there is a $A \neq (a,b)$ such thee $g(a \neq b)=a$. Hence $f(a \neq b)=a \neq b$. II

$$e_{X}$$
): $X = (0, \frac{1}{3}) \cup (\frac{1}{3}, \infty)$

$$f(x) = \begin{cases} \frac{1}{4}, & \text{if } x = \frac{1}{4} \\ 0, & \text{otherwise} \end{cases}$$

X is not closed, not bounded, not connected.

Also, 7 not continuous

 \Rightarrow But. $\alpha * = \frac{1}{4}$ is a fixed point of +.

ex:) For failure of the assumptions

Let $f: X \to X$ be a continuous function mapping a compact and convex set X into itself. Then, f has a fixed point in X.

Kakutani

A correspondence on a set X is a function f from X into the set of subsets of X: $f: X
ightharpoonup IP(X)_{K}$ power set of X

X* EX is a fixed point of A: X = P(x) iff of E+(xxx)

Note Any continuous function has a closed graph.

Thm) < kakutani Fixed Point Theorem>

If $X \subseteq IR^n$ is non-empty, compact and convex, then every correspondence $f: X \rightrightarrows P(X)$, that is non-empty valued, convex valued, and has a closed graph has a fixed point. (Sometimes equivalently stated by f who and f a

For each $t \in \{1, 2, ..., 3\}$, define $\emptyset_t: X \Longrightarrow P(x)$ such that for any $\Re \in X$, $\Im \in \mathscr{P}_t(\Re)$ iff $\Im \in X$ and there is a point (\Re, y) in the graph of f such that $d(\Re, y).(\Re, \Re) > \frac{1}{t}$.

The graph of the looks like a tube around the graph of f.

The correspondence \$\mathcal{P}_{\text{t}}\$ is non-empty valued, convex-valued and the set given by the glaph of \$\mathcal{P}_{\text{t}}\$ is open relative to \$\times_{\times} \times_{\times} \times_{\times}

By the Michael's selection theorem, (e,g. Border (1985))

there exists a antinuous function gt: X -> X such that thex, george of

Jt is called a antinuous selection from \$4.

By Browner, $\forall t$, $\exists \hat{\mathcal{R}}_t \in X$ s.t. $g_t(\hat{\mathcal{R}}_t) = \hat{\mathcal{R}}_t$. $\forall t$, by anstruction of g_t and g_t .

there is a (Nt. yt) in the graph of f such that d (Nt. yt), (Rt. Rt) (+

Since $X \times X$ is compact, there is a $x^* \in X$ set a subsequence of $(\widehat{A}_{k}, \widehat{x}_{k})$ converges to (x^*, x^*) .

By the triangle inequality, $d((x_t, y_t), (x_t, x_t)) \leq d((x_t, y_t), (x_t, x_t)) \rightarrow 0$ + $d((x_t, x_t), (x_t, x_t))$

along the subsequence (x_t, y_t) must likewise converges to (x_t, x_t^*) .

Since the graph of f is closed, (x_t^*, x_t^*) is in the graph of f.

Hence, $(x_t^* \in f(x_t^*))$. 11

Contraction Mapping Theorem

- (Def) Let (X, d) be a metric space. A function $f: X \to X$ is a <u>contraction</u> iff there is a number $\beta \in (0, 1)$ $S.t. \forall \beta, x \in X$, $d(f(\beta), f(x)) \leq \beta d(\beta, x)$
- Thin (Contraction Mapping Theorem / Banach Fixed point theorem)

 Let (X,d) be a metric space and let $f: X \to X$ be a contraction mapping. Then there exists a unique $x^* \in X$ satisfying $f(x^*) = x^*$.

 Moreover, for any $x_0 \in X$, the sequence $x_1 = f(x_0)$, $x_n = f(x_{n-1})$ converges to x^* .

Proof) Note that $d(N_{n+1}, N_n) = d(f(N_n), f(N_{n-1})) \leq \beta \cdot d(N_n, N_{n-1}) \leq \beta^n d(N_1, N_n)$ For any $m \leq n$, we get $d(N_n, N_m) \leq \sum_{i=m}^{n-1} d(N_{i+1}, N_i) \leq \sum_{i=m}^{n-1} \beta^i d(N_i, N_n)$ $\leq \beta^m d(N_i, N_n) \sum_{i=n}^{n-m-1} \beta^i \qquad (\neg d(N_i, N_n) \text{ is independent} \\ from i)$ $\leq \beta^m d(N_i, N_n) \sum_{i=n}^{n} \beta^i = \frac{\beta^m}{1-\beta^n} d(N_i, N_n) \rightarrow 0$ As $m \to \infty$

So, $\frac{B^m}{1-B}$ d(x1, x0) converges to 0 as $m \to \infty$.

This implies that $\{x''' | is a Cauchy segmence. Since X is amplete.$ It has a limit $x'' \in X$. Since f is a contraction, it is antinuous.

Hence, $f(x'') = \lim_{k \to \infty} f(x_n) = \lim_{k$

Suppose there is comother point $x' \in X$, $x' \neq x''$ satisfying $f(x') = \alpha'$. Then, $d(x', \alpha'') = d(f(x'), f(x'')) < d(x', \alpha'')$, which is contradiction, So, x' = x''. II Thm < Tarski Fixed point theorem> (weaker assumption for f)

Let f be a non-decreasing function mapping the n-dimensional cube $[0,1]^n = [0,1] \times ... \times [0,1]$ into itself. Then, f has a fixed point.

- · If for=0, we are done
- · For f(0)70, Since f jumps at most up wards, it cannot cross the 45° line at a jump.

 Since f(1) = 1. + must choss the 45° line somewhere

11