Single period optimization

September 29, 2018

1 Alpha Translation

- Variables
 - -N: the number of stocks (including ETFs) in the universe.
 - $-N_e$: the number of ETFs in the universe, note $N_e < N$.
 - $-\Sigma \in \mathbb{R}^{N \times N}$: the asset covariance matrix.
 - $-M \in \mathbb{R}^{N \times N_e}$: the ETF hedging binary matrix, $M_{ij} = 1$ iff stock i is hedged by ETF j.
 - $-tg \in \mathbb{R}^N$: original target position of the instruments (in dollars).
 - $-Sr \in \mathbb{R}^N$: portfolio Sharpe ratio.
 - $-\alpha \in \mathbb{R}^N$: expected alpha of the instruments.
- Expression

$$\alpha = \frac{Sr\sqrt{tg^T\Sigma tg}}{tq(P^{-1}\Sigma tg)^T}P^{-1}\Sigma tg$$

where

$$P = I - M(M^{T}\Sigma^{-1}M)^{-1}M^{T}\Sigma^{-1}$$

please refer to alpha_conversion.pdf - Approach III for process details.

OPTIMIZATON 2

2 Optimizaton

• Variables

- -N: the number of stocks in the universe.
- N_e : the number of ETFs in the universe, note $N_e < N$.
- -K: the number of barra factors.
- K_q : the number of barra industry factors, where $K_q < K$.
- $-tq \in \mathbb{R}^N$: original target of the instruments.
- $-\alpha \in \mathbb{R}^N$: expected alpha of the instruments.
- $-b_k \in \mathbb{R}^N$: the exposure (to barra factors) of all of the instruments wrt barra factor k.
- $-b_{k_q} \in \mathbb{R}^N$: the exposure of all of the instruments wrt barra industry factor k_g .
- $-h \in \mathbb{R}^N$: the optimal position (in dollars).
- $-h_0 \in \mathbb{R}^N$: the starting (current) position (in dollars).
- $-z \in \mathbb{R}^N$: the trading mandate (in dollars), note that $h_0 + z = h$.
- $\Sigma \in \mathbb{R}^{N \times N}$: the asset covariance matrix.
- $-\Omega \in \mathbb{R}^{K \times K}$: the barra factor covariance matrix.
- $-D \in \mathbb{R}^{N \times N}$: barra idiosyncratic volatility. $D = diag(\sigma_i^2)_{i=1:N}$, where $\sigma_i^2 = E(\epsilon_i^2)$.
- $-B \in \mathbb{R}^{N \times K}$: the barra exposure matrix, note that $B = col(b_k)_{k=1:K}$, $\Sigma = B\Omega B^T + D$.
- $-B_g \in \mathbb{R}^{N \times K_g}$: the barra industry exposure matrix, note that $B_g = col(b_g)_{b=1:K_g}$.
- $-M \in \mathbb{R}^{N \times N_e}$: the ETF hedging binary matrix, $M_{ij} = 1$ iff stock i is hedged by ETF j.

• Risk limits

- $m_{b_{k_q}} \in \mathbb{R}^{K_g}$: maximum net exposure for barra industry factor k_g
- $-m_{|b_{k_g}|} \in \mathbb{R}^{K_g}$: maximum gross exposure for barra industry factor k_g
- $-m_{\beta} \in \mathbb{R}$: maximum beta (barra PredBeta) exposure.
- $-m_z \in \mathbb{R}^N$: maximum trade limit
- $-m_h \in \mathbb{R}^N$: maximum position limit
- $-m_{|z|} \in \mathbb{R}$: maximum turnover limit

• Parameters

- $-\lambda_{\sigma} \in \mathbb{R}$: risk aversion coefficient
- $-\theta_i \in \mathbb{R}^N$: market impact model
- $-\theta_{hc} \in \mathbb{R}^N$: holding cost model

P OPTIMIZATON 3

• Problem

$$\max_{h,z} \langle \alpha, h \rangle - \lambda_{\sigma} \langle \Sigma h, h \rangle - \theta_{i}(z) - \theta_{hc}(h)$$

subject to

- $\star \langle B_g, |h| \rangle \leq m_{|b_{k_g}|}$: portfolio-wide industry gross limits.
- $\star |\langle B_g, h \rangle| \leq m_{b_{k_g}}$: portfolio-wide industry net limits.
- $\star |\langle \beta, h \rangle| \leq m_{\beta}$: portfolio-wide beta limit.
- $\star \ \left\langle M^T, h \right\rangle = 0$: portfolio-wide ETF dollar neutrality constraint.
- * $h_i \cdot tg_i \geq 0$: alpha sign constraints for all non-ETF assets $i \in [1:N]$.
- * $|z_i| \leq m_z$: max trade limit for all non-ETF assets $i \in [1:N]$.
- * $|h_i| \leq m_h$: max position limit for all non-ETF assets $i \in [1:N]$.
- $\star \ \|z\|_1 \leq m_{|z|} :$ max turnover limit for the portfolio.

3 JPM Market Impact Model

- Variables
 - $-z \in \mathbb{R}^N$: the trading mandates (in dollars).
 - $-V \in \mathbb{R}^N$: 30-day average daily volumes (in dollars).
 - ν : the pre-trade estimate of the constant trade rate of the order, note $\nu_i \cdot V_i = z_i$ for i = 1 : N.
 - -T: duration of the order (in volume time), note T=1 as we assume all day VWAP.
 - $-\Delta$: the pre-trade estimate of the bid-ask spread of the traded security over the trade period, expressed as the fraction of the price.
 - $-\sigma$: volatility of the traded security
- Parameters
 - $\star \alpha = 518$
 - $\star \ \beta = 0.889$
 - $\star \ \gamma = 0.663$
 - $\star 1 \omega = 0.394$
 - $\star \ \delta = 0.068$
- Expression

$$\theta_i(\cdot) = (10^{-4}\alpha) \times \sigma^{\beta} \times \nu^{\gamma} + \delta \times \Delta$$

Final result is in decimals and annualized.

4 Holding Cost Model

- Variables
 - $-h \in \mathbb{R}^N$: the optimal position (in dollars).
 - $-h_+ \in \mathbb{R}^N$: the positive part of the optimal position, note $(h_i)_+ = \max(h_i, 0)$ for i = 1 : N.
 - $-h_- \in \mathbb{R}^N$: the negative part of the optimal position, note $(h_i)_- = -\min(h_i, 0)$ for i = 1:N.
- Parameters
 - * $s_+ \in \mathbb{R}^N$: the financing fee, note $(s_i)_+ = 0.003$ for i = 1:N.
 - $\star s_{-} \in \mathbb{R}^{N}$: the borrowing fee, note $(s_{i})_{-} = 0.003$ for i = 1 : N.
- Expression

$$\theta_{hc}(\cdot) = s_+^T \cdot h_+ + s_-^T \cdot h_-$$