Chapitre

Nombres complexes

6. Généralités

6.1. Définitions

- L'ensemble des nombres de la forme a+ib, où a et b sont des réels et i est tel que $i^2=-1$, est appelé ensemble des nombres complexes. On le note $\mathbb C$.
- L'écriture z = a + ib est la forme algébrique du nombre complexe z, où a est la partie réelle de z, b sa partie imaginaire.

On note Re(z) = a, Im(z) = b.

 \mathbb{R} est une partie de \mathbb{C} , \mathbb{R} contient les nombres complexes dont la partie imaginaire b est nulle.

• Tout nombre complexe dont la partie réelle a est nulle est appelé nombre imaginaire pur.

6.1. Propriétés

Inférieur Ou supérieur

Il n'y a pas de relation d'ordre sur \mathbb{C} . On ne peut pas dire qu'un nombre complexe est plus grand qu'un autre.

Opérations usuelles

Soient z = a + ib et z' = a' + ib' deux nombres complexes.

$$z + z' = (a + a') + i(b + b')$$

$$\cdot z \times z' = (aa' - bb') + i(ab' + a'b)$$

$$\cdot \ \frac{1}{z} = \frac{a}{a^2 + b^2} - i \frac{b}{a^2 + b^2}$$

Opérations de conjugaison

•
$$\bar{z} = a - ib$$

$$\overline{z+z'}=\overline{z}+\overline{z'}$$

•
$$Re(z) = \frac{z + \bar{z}}{2}$$

•
$$Im(z) = \frac{z - \bar{z}}{2i}$$

$$z \in \mathbb{R} \iff z = \overline{z}$$

$$\cdot \ \overline{\overline{z}} = z.$$

6.1. Module d'un nombre complexe

Définitions

Le module est noté $|z| = \sqrt{z\overline{z}}$ i

Le module d'un nombre complexe est la prolongement à $\mathbb C$ de la valeur absolue qui existe sur $\mathbb R$. On a |z|=OM. Il défini une distance sur $\mathbb C$

i Info

La notation \sqrt{x} est réservée au Réels positifs. Or le module est une valeur réelle positive, on peut donc l'utiliser ici

Propriétés

• Si
$$z = x + iy$$
 alors $|z| = \sqrt{x^2 + y^2}$

$$\cdot |z| = |\overline{z}|, \quad z \times \overline{z} = x^2 + y^2$$

$$\cdot \ |z\times z'| = |z|\times |z'|, \quad \left|\frac{1}{z}\right| = \tfrac{1}{|z|}, \quad \left|\tfrac{z}{z'}\right| = \tfrac{|z|}{|z'|}.$$

$$\cdot |z + z'| \le |z| + |z'|$$

$$|z^n| = |z|^n$$
, *n* entier naturel.

négalité triangulaire

$$||z| - |z'|| \le |z + z'| \le |z| + |z'|$$

T Preuve 1.1

$$|zz'|^2 = zz' \times \overline{zz'} = z\overline{z} \times z'\overline{z'} = |z|^2|z'|^2$$

Montrons que $|z+z'| \leq |z|+|z'|$. Pour cela, comparons leur carré : $(|z|+|z'|)^2-(|z+z'|)^2$. En développant, on trouve $2|zz'|-(z'\overline{z}+z\overline{z}')=2(z\overline{z}'-Re(z\overline{z}'))\geq 0$ d'après le lemme suivant.

Lemme : $|Re(z)| \le |z|$. En effet, $|z|^2 = a^2 + b^2 \ge a^2$

Fin de la preuve : $(|z|+|z'|)^2 \ge |z+z'|^2$. Comme ce sont des réels positifs, on en déduit que $|z|+|z'| \ge |z+z'|$.

Module négatif

 $z=-3e^{i\frac{\pi}{4}}$ n'est pas sous forme polaire. On sait que $e^{i\pi}=-$ 1, donc $z=3e^{i(\frac{\pi}{4}+\pi)}.$

6.1. Argument

Définition

Soit M un point d'affixe le nombre complexe z non nul. On appelle argument de z tous les réels θ , mesure en radians de l'angle $\left(\overrightarrow{e_1};\overrightarrow{OM}\right)$.

On note $arg(z)=\theta+2k\pi,\quad k\in\mathbb{Z}\quad \text{ou } arg(z)=\theta\quad [2\pi]$ (modulo $[2\pi]$).

Argument du nombre 0

Le nombre complexe o n'a pas d'argument car la définition $arg(z)=\left(\overrightarrow{e_1};\overrightarrow{OM}\right)$ suppose $M\neq 0$.

Propriétés

- Si z est un réel strictement positif alors arg(z) = 0 [2π].
- Si z est un réel strictement négatif alors $arg(z) = \pi$ [2 π].
- Si z est un imaginaire pur non nul alors $arg(z) = \frac{\pi}{2}$ [π].
- Si $arg(z) = \theta$ [2π] alors $arg(-z) = \theta + \pi$ [2π]
- Si $arg(z) = \theta$ [2 π] alors $arg(\overline{z}) = -\theta$ [2 π].

Règles de calcul

- arg(zz') = arg(z) + arg(z')
- $\arg(\frac{z}{z'}) = \arg(z) \arg(z')$
- $arg(\frac{1}{z'}) = -arg(z')$

Astuce

Autrement dit, un nombre complexe non nul a une infinité d'arguments. Si θ est l'un d'entre eux, tout autre argument de z s'écrit $\theta+2k\pi$. On dit aussi qu'un argument de z est défini modulo 2π .

•
$$arg(z^n) = n arg(z)$$

•
$$arg(\bar{z}) = -arg(z)$$

On note : $z = |z|e^{i\theta} = |z|(\cos(\theta) + i\sin(\theta))$

6.1. Formules d'Euler

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

$$\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

π Théorème 1.2 : Propriétés

 $\forall \theta, \theta' \in \mathbb{R}$

•
$$e^{i\theta}e^{i\theta'}=e^{i(\theta+\theta')}$$

•
$$\overline{e^{i\theta}} = e^{-i\theta} = \frac{1}{e^{i\theta}}$$

• Formule de Moivre :
$$(e^{i\theta})^n = e^{in\theta}$$

π Preuve 1.2 : Règles précédentes

$$e^{i\theta}e^{i\theta'} = (\cos(\theta)\cos(\theta') - \sin(\theta)\sin(\theta')) + (\cos(\theta)\sin(\theta') + \sin(\theta)\cos(\theta')) = \cos(\theta + \theta') + i\sin(\theta + \theta') = e^{i(\theta + \theta')}$$

Formule de Moivre : On fait par récurrence : $H_n: e^{in\theta} = (e^{i\theta})^n$

Initialisation: Claire, par convention

 $\begin{array}{l} \text{H\'er\'edit\'e}: \operatorname{Supposons} H_n: (e^{i\theta})^n = e^{in\theta} \Rightarrow (e^{i\theta})^n e^{i\theta} = e^{in\theta+\theta} \iff (e^{i\theta})^{n+1} = e^{i(n+1)\theta}. \end{array}$

6.1. Exponentielle complexe

On définit l'exponentielle complexe sur $\mathbb C$ par $\exp:C\to C, z\to e^{a+ib}$

Elle vérifie les mêmes propriétés que dans les réels. :

- $\exp(z + z') = \exp(z) \exp(z')$
- $\exp(nz) = (\exp(z))^n$
- Elle prolonge à $\mathbb C$ l'exponentielle réelle. Il ne faut pas le confondre avec la forme exponentielle d'un nombre complexe.

6. Equations du 2nd degré

L'équation $Az^2+bz+c=0$, notée E admet 2 solutions complexes, qui sont :

•
$$z_1=z_2=\frac{-b}{2a}$$
 si $\Delta=0$

•
$$z_1=\frac{-b+\delta}{2a}, z_1=\frac{-b-\delta}{2a}$$
, avec $\delta^2=\Delta$

π Preuve 2.1

On écrit le polynome sous forme canonique :

$$\begin{split} E &= a((z + \frac{b}{2a})^2 - \frac{\Delta}{4a^2}) = 0 \\ &= a((z + \frac{b}{2a})^2 - (\frac{\delta}{2a})^2) \\ &= a(z - \frac{-b + \delta}{2a})(z - \frac{-b - \delta}{2a}) \end{split}$$

Théorème 2.2 : Théorème fondamental de l'algèbre

Toute fonction polynôme de degré n admet n racines dans \mathbb{C} .

6. Racines n-eme de l'unité

z est une racine de l'unité si $z^n=1$. Si z une racine énième de l'unité, son module vaut 1. De plus, il se trouve sur le cercle de centre o et de rayon 1. De plus $\frac{z}{|z|}$ est toujours de module 1.

6. Méthode

6.4 Résoudre une équation de la forme $e^z=a+ib$

6.4. Calculer les racines d'un nombre complexe

On cherche les racines z_1,z_2 d'un nombre complexe, noté w. Si w=0,z=0

- 1. On calcule le module de w
- 2. Comme $z^2=w\Rightarrow |z|^2=|w|\Rightarrow \sqrt{a^2+b^2}^2=|w|$, on en déduit finalement que $a^2+b^2=|w|$
- 3. De plus, $z^2=(a+ib)^2=(a^2-b^2)+2iab$. On en déduit que la partie réelle de w est a^2-b^2 et que la partie imaginaire est 2ab.
- 4. On obtient un système à 3 équations. les 2 premières nous permettent de déterminer $\pm a$ et $\pm b$. La dernière nous donne le signe : si 2ab est positif, a et b sont de même signe, dans le cas contraire, ils sont de signe contraire.

En résumé, on doit résoudre ce système pour trouver les solutions :

$$\begin{cases} a^2 + b^2 &= |w| \\ a^2 - b^2 &= Re(w) \\ 2ab &= Im(w) \end{cases}$$

6.4. Calcul des racines nieme de l'unité

$$z^2 = 1 \iff z = 1, -1$$

 $\begin{array}{ll} z^3 \iff z=1, etc. \ z \ \text{est un complexe de module 1, i.e.} \ z=e^{i\theta}, \ \text{alors} \\ z^3=e^{3i\theta}=e^{i\times 0} \iff 3\theta=0+2k\pi \iff \theta=\frac{2k\pi}{3} \ \text{On prend} \ 0 \le k \le 2. \\ \text{Les solutions sont donc 1}, e^{2i\pi/3}, e^{4i\pi/3}. \end{array}$

La multiplication est stable dans le groupe des racines. On obtient une racine en multipliant/divisant 2 racines. Il y a n racines nieme de l'unité

6.4. Utiliser les formules d'Euler (6.11)