

Module 2: Machine Learning, Finding Patterns

Instructor: M Bilal Shaikh

Course: Data Mining

M.Phil (Information Technology) Spring 2017

IICT, University of Sindh

Courtesy: Gregory Piatetsky-Shapiro/KDnuggets

Outline

- Machine learning and Classification
- Examples
- *Learning as Search
- Bias
- Weka

Finding patterns

- Goal: programs that detect patterns and regularities in the data
- Strong patterns ⇒ good predictions
 - Problem 1: most patterns are not interesting
 - Problem 2: patterns may be inexact (or spurious)
 - Problem 3: data may be garbled or missing

Machine learning techniques

- Algorithms for acquiring structural descriptions from examples
- Structural descriptions represent patterns explicitly
 - Can be used to predict outcome in new situation
 - Can be used to understand and explain how prediction is derived (may be even more important)
- Methods originate from artificial intelligence, statistics, and research on databases

Can machines really learn?

Definitions of "learning" from dictionary:

```
To get knowledge of by study, experience, or being taught

To become aware by information or from observation

To commit to memory

To be informed of, ascertain; to receive instruction

Difficult to measure

Trivial for computers
```

Operational definition:

Things learn when they change their behavior in a way that makes them perform better in Does a slipper learn? the future.

Does learning imply intention?

Classification

Learn a method for predicting the instance class from pre-labeled (classified) instances

Many approaches: Regression, Decision Trees, Bayesian, Neural Networks,

. . .

Given a set of points from classes • • what is the class of new point •?

Classification: Linear Regression

Linear Regression

$$W_0 + W_1 x + W_2 y >= 0$$

- Regression computes
 w_i from data to
 minimize squared
 error to 'fit' the data
- Not flexible enough

Classification: Decision Trees

if X > 5 then blue else if Y > 3 then blue else if X > 2 then green else blue

Classification: Neural Nets

- Can select more complex regions
- Can be more accurate
- Also can overfit the data – find patterns in random noise

Outline

- Machine learning and Classification
- Examples
- *Learning as Search
- Bias
- Weka

The weather problem

Outlook	Temperature	Humidity	Windy	Play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	mild	normal	false	yes
rainy	mild	normal	true	no
overcast	mild	normal	true	yes
sunny	mild	high	false	no
sunny	mild	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Given past data, Can you come up with the rules for Play/Not Play?

What is the game?

The weather problem

• Given this data, what are the rules for play/not play?

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	Normal	False	Yes

The weather problem

Conditions for playing

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	Normal	False	Yes

```
If outlook = sunny and humidity = high then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity = normal then play = yes

If none of the above then play = yes
```

Weather data with mixed attributes

Outlook	Temperature	Humidity	Windy	Play
sunny	85	85	false	no
sunny	80	90	true	no
overcast	83	86	false	yes
rainy	70	96	false	yes
rainy	68	80	false	yes
rainy	65	70	true	no
overcast	64	65	true	yes
sunny	72	95	false	no
sunny	69	70	false	yes
rainy	75	80	false	yes
sunny	75	70	true	yes
overcast	72	90	true	yes
overcast	81	75	false	yes
rainy	71	91	true	no

Weather data with mixed attributes

How will the rules change when some attributes have numeric values?

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	75	80	False	Yes

Weather data with mixed attributes

Rules with mixed attributes

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	75	80	False	Yes

```
If outlook = sunny and humidity > 83 then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity < 85 then play = yes

If none of the above then play = yes
```

The contact lenses data

Age	Spectacle prescription	Astigmatism	Tear production rate	Recommended lenses
Young	Myope	No	Reduced	None
Young	Myope	No	Normal	Soft
Young	Myope	Yes	Reduced	None
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	No	Reduced	None
Young	Hypermetrope	No	Normal	Soft
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	No	Reduced	None
Pre-presbyopic	Myope	No	Normal	Soft
Pre-presbyopic	Myope	Yes	Reduced	None
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	No	Reduced	None
Pre-presbyopic	Hypermetrope	No	Normal	Soft
Pre-presbyopic	Hypermetrope	Yes	Reduced	None
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	No	Reduced	None
Presbyopic	Myope	No	Normal	None
Presbyopic	Myope	Yes	Reduced	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	No	Reduced	None
Presbyopic	Hypermetrope	No	Normal	Soft
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None

A complete and correct rule set

```
If tear production rate = reduced then recommendation = none
If age = young and astigmatic = no
    and tear production rate = normal then recommendation = soft
If age = pre-presbyopic and astigmatic = no
   and tear production rate = normal then recommendation = soft
If age = presbyopic and spectacle prescription = myope
   and astigmatic = no then recommendation = none
If spectacle prescription = hypermetrope and astigmatic = no
    and tear production rate = normal then recommendation = soft
If spectacle prescription = myope and astigmatic = yes
    and tear production rate = normal then recommendation = hard
If age young and astigmatic = yes
    and tear production rate = normal then recommendation = hard
If age = pre-presbyopic
    and spectacle prescription = hypermetrope
    and astigmatic = yes then recommendation = none
If age = presbyopic and spectacle prescription = hypermetrope
    and astigmatic = yes then recommendation = none
```

A decision tree for this problem

Classifying iris flowers

	Sepal length	Sepal width	Petal length	Petal width	Туре
1	5.1	3.5	1.4	0.2	Iris setosa
2	4.9	3.0	1.4	0.2	Iris setosa
51	7.0	3.2	4.7	1.4	Iris versicolor
52	6.4	3.2	4.5	1.5	Iris versicolor
101	6.3	3.3	6.0	2.5	Iris virginica
102	5.8	2.7	5.1	1.9	Iris virginica

If petal length < 2.45 then Iris setosa

If sepal width < 2.10 then Iris versicolor

. . .

Predicting CPU performance

Example: 209 different computer configurations

	Cycle time (ns)		nemory (b)	Cache (Kb)	Cha	nnels	Performance
	MYCT	MMIN	MMAX	CACH	CHMIN	CHMAX	PRP
1	125	256	6000	256	16	128	198
2	29	8000	32000	32	8	32	269
208	480	512	8000	32	0	0	67
209	480	1000	4000	0	0	0	45

Linear regression function

```
PRP = -55.9 + 0.0489 MYCT + 0.0153 MMIN + 0.0056 MMAX
+ 0.6410 CACH - 0.2700 CHMIN + 1.480 CHMAX
```

Soybean classification

	Attribute	Number of values	Sample value
Environment	Time of occurrence	7	July
•••	Precipitation	3	Above normal
Seed	Condition	2	Normal
	Mold growth	2	Absent
Fruit	Condition of fruit pods	4	Normal
	Fruit spots	5	?
Leaves	Condition	2	Abnormal
	Leaf spot size	3	?
Stem	Condition	2	Abnormal
	Stem lodging	2	Yes
Roots	Condition	3	Normal
Diagnosis		19	Diaporthe stem canker

The role of domain knowledge

```
If leaf condition is normal
and stem condition is abnormal
and stem cankers is below soil line
and canker lesion color is brown

then
diagnosis is rhizoctonia root rot
```

```
If leaf malformation is absent
and stem condition is abnormal
and stem cankers is below soil line
and canker lesion color is brown

then
diagnosis is rhizoctonia root rot
```

But in this domain, "leaf condition is normal" implies "leaf malformation is absent"!

Outline

- Machine learning and Classification
- Examples
- *Learning as Search
- Bias
- Weka

Learning as search

- Inductive learning: find a concept description that fits the data
- Example: rule sets as description language
 - Enormous, but finite, search space
- Simple solution:
 - enumerate the concept space
 - eliminate descriptions that do not fit examples
 - surviving descriptions contain target concept

Enumerating the concept space

- Search space for weather problem
 - $4 \times 4 \times 3 \times 3 \times 2 = 288$ possible combinations
 - With 14 rules \Rightarrow 2.7x10³⁴ possible rule sets
- Solution: candidate-elimination algorithm
- Other practical problems:
 - More than one description may survive
 - No description may survive
 - Language is unable to describe target concept
 - or data contains noise

The version space

- Space of consistent concept descriptions
- Completely determined by two sets
 - L: most specific descriptions that cover all positive examples and no negative ones
 - G: most general descriptions that do not cover any negative examples and all positive ones
- Only L and G need be maintained and updated
- But: still computationally very expensive
- And: does not solve other practical problems

Given: red or green cows or chicken

Start with:

First example:

<green,cow>: positive

How does this change L and G?

Given: red or green cows or chicken

Result:

$$L=\{\}$$
 $G=\{<*, *>\}$

Second example:

<red,chicken>: negative

29

Given: red or green cows or chicken

30

```
Result:

L={<green, cow>}

G={<green,*>,<*,cow>}

Final example:

<green, chicken>: positive
```

Given: red or green cows or chicken

Resultant version space:
$$\mathcal{L} = \{ < \text{green, **>} \}$$

Given: red or green cows or chicken

```
G = \{<*, *>\}
             L={}
<green,cow>: positive
            L = \{ < \text{green, cow} > \} G = \{ < *, * > \}
<red,chicken>: negative
            L=\{\langle \text{green, cow} \rangle\} G=\{\langle \text{green, *}\rangle, \langle \text{*,cow}\rangle\}
<green, chicken>: positive
            L={<green, *>}
                                            G={<green, *>}
```

*Candidate-elimination algorithm

```
Initialize L and G
For each example e:
 If e is positive:
   Delete all elements from G that do not cover e
    For each element r in L that does not cover e:
      Replace r by all of its most specific generalizations
        that 1. cover e and
              2. are more specific than some element in G
    Remove elements from L that
      are more general than some other element in L
 If e is negative:
   Delete all elements from L that cover e
    For each element r in G that covers e:
      Replace r by all of its most general specializations
        that 1. do not cover e and
              2. are more general than some element in L
    Remove elements from G that
      are more specific than some other element in G
```

Outline

- Machine learning and Classification
- Examples
- *Learning as Search
- Bias
- Weka

Bias

- Important decisions in learning systems:
 - Concept description language
 - Order in which the space is searched
 - Way that overfitting to the particular training data is avoided
- These form the "bias" of the search:
 - Language bias
 - Search bias
 - Overfitting-avoidance bias

Language bias

- Important question:
 - is language universal or does it restrict what can be learned?
- Universal language can express arbitrary subsets of examples
- If language includes logical or ("disjunction"), it is universal
- Example: rule sets
- Domain knowledge can be used to exclude some concept descriptions a priori from the search

Search bias

- Search heuristic
 - "Greedy" search: performing the best single step
 - "Beam search": keeping several alternatives
 - ...
- Direction of search
 - General-to-specific
 - E.g. specializing a rule by adding conditions
 - Specific-to-general
 - E.g. generalizing an individual instance into a rule

Overfitting-avoidance bias

- Can be seen as a form of search bias
- Modified evaluation criterion
 - E.g. balancing simplicity and number of errors
- Modified search strategy
 - E.g. pruning (simplifying a description)
 - Pre-pruning: stops at a simple description before search proceeds to an overly complex one
 - Post-pruning: generates a complex description first and simplifies it afterwards

Weka

