BJT Amplifiers (Analog Circuits)

EE 101

S. Lodha

Reference material: L. Bobrow's Book

Nobel Prize in Physics 2014

Isamu Akasaki, Hiroshi Amano and Shuji Nakamura

EFFICIENT BLUE LIGHT-EMITTING DIODES LEADING
TO BRIGHT AND ENERGY-SAVING WHITE LIGHT SOURCES

Blue LED

Impact

- Transformed entire lighting industry
 - 20-30% of electricity is used for lighting
 - Standard bulb → 16 lm/W (4% efficiency)
 - LED \rightarrow 300 lm/W (50% efficiency)
 - 100,000 hour lifetime
- Other applications
 - Displays in electronics
 - Sensors etc.

BJT Amplifier: Collector Characteristics

- Active region operation
- Q → quiescent operating point

$$i_C = I_{CO} + i_c = 4 + \sin \omega t$$
 mA

$$i_B = I_{BQ} + i_b = 40 + 10\sin \omega t \ \mu A$$

$$v_{CE}$$
 (V) $v_{CE} = V_{CE} + v_{ce} = 6 - 2\sin \omega t$ V

, AC current gain h_{fe} = β_{ac}

$$h_{fe} = \frac{i_c}{i_b} = \frac{\Delta i_C}{\Delta i_B} = \frac{i_{Cx} - i_{Cy}}{i_{Bx} - i_{By}} = \frac{(5-3) \times 10^{-3}}{(50-30) \times 10^{-6}} = 100$$

DC biasing of BJT: Fixed Bias

Example 1

$$i_{B} = \frac{V_{CC} - v_{BE}}{R_{B}} \qquad i_{C} = h_{FE}i_{B}$$

$$v_{CE} = -R_C h_{FE} i_B + V_{CC}$$

Example 2 (Voltage divider bias)

- In fixed bias, variations (temperature, transistor-to-transistor) in h_{FE} can affect Q point
 - h_{FF} increases, i_C increases

DC biasing of BJT: Self-Bias

$$V_{BB} = R_B i_B + v_{BE} + R_E (i_B + i_C) \Rightarrow i_B = \frac{V_{BB} - v_{BE}}{R_B + (1 + h_{FE})R_E}$$

- If h_{FE} increases $\rightarrow i_C$ tends to increase but i_B decreases and tends to decrease i_C
- More stable Q point, also called self-biasing circuit

How to add ac signal to DC bias?

- Coupling capacitor C → open circuit for DC → no effect on dc Q point
- C large enough → short circuit for ac source v_s
- With active (linear) region biasing → use principle of superposition to analyse

Small signal ac models

- Ac signal is small such that
 - transistor operates in active mode
 - Non-linear effects/distortions can be ignored
 - o/p characteristics are linear and parallel

Small signal model

$$r_{\pi} = (1 + h_{fe})r_e \approx h_{fe}r_e$$

g_m, r_π, r_e

For npn transistor in active mode

$$i_C = I_S(e^{v_{BE}/V_T} - 1) \approx I_S e^{v_{BE}/V_T}$$

$$di_C = d[I_S(e^{v_{BE}/V_T} - 1)] = \frac{1}{V_T}(I_S e^{v_{BE}/V_T}) dv_{BE} \approx \frac{i_C}{V_T} dv_{BE}$$

$$g_m = \frac{i_c}{v_{be}} = \frac{di_C}{dv_{BE}} = \frac{i_C}{V_T}$$

Biased at $i_C = I_{CQ}$,

$$g_{m} = \frac{I_{CQ}}{V_{T}}$$

$$r_{e} = \frac{1}{g_{m}} = \frac{V_{T}}{I_{CQ}}$$

$$r_{\pi} = h_{fe}r_{e} = \frac{h_{fe}V_{T}}{I_{CQ}}$$

At room temperature, $V_T=kT/q=0.026 V$

CE Amplifier: AC gain

$$v_b = r_e(i_b + h_{fe}i_b) + R_E(i_b + h_{fe}i_b)$$

$$\Rightarrow R_b = \frac{v_b}{i_b} = (1+h_{fe})(r_e+R_E) \approx h_{fe}(r_e+R_E) \ \text{reference looking into the transistor}$$

$$R_{in} = (R_1 \parallel R_2) \parallel R_b$$

R_{in} is the resistance between base and reference looking into the amplifier \rightarrow ac input resistance

$$A_{\rm v} = \frac{v_{\rm c}}{v_{\rm b}} = \frac{-R_{\rm C}h_{\rm fe}i_{\rm b}}{R_{\rm b}i_{\rm b}} = \frac{-R_{\rm C}h_{\rm fe}}{(1+h_{\rm fe})(r_{\rm e}+R_{\rm E})} \approx \frac{-R_{\rm C}}{r_{\rm e}+R_{\rm E}} \quad \text{ac voltage gain A}_{\rm v}, \, {\rm v_c\,is~180~degress~out~of~phase~w.r.t.~v_b}$$

- r_e is determined by Q point
- R_F can be decreased to increase gain, but will compromise stability

CE Amplifier: Bypass capacitor

A bypass capacitor added in parallel to R_E with negligible impedance w.r.t R_E

- -Does not affect dc conditions (open circuit, r_e unchanged)
- -Short circuit for ac

$$A_{v} = \frac{v_{c}}{v_{b}} = \frac{-R_{C}h_{fe}}{(1+h_{fe})r_{e}} \approx \frac{-R_{C}}{r_{e}}$$

$$A_{vs} = \frac{v_c}{v_s} = \frac{v_c}{v_b} \frac{v_b}{v_s} = \frac{R_{in}}{R_{in} + R_s} A_v$$
 ac voltage gain A_{vs} from source to output

CE Amplifier with load

$$V_{CC} = R_C i_C + v_{CE} + R_E (i_B + i_C) \approx R_C i_C + v_{CE} + R_E i_C$$

$$\Rightarrow i_C = -\frac{1}{R_C + R_E} v_{CE} + \frac{V_{CC}}{R_C + R_E}$$

DC load line

AC load line

$$v_{CE} = V_{CEQ} + v_{ce}$$
$$v_{ce} = -R_T i_c$$

$$i_{C} = I_{CQ} + i_{c} \Rightarrow i_{c} = i_{C} - I_{CQ}$$

$$v_{CE} = V_{CEQ} - R_{T}(i_{C} - I_{CQ}) \Rightarrow i_{C} = -\frac{1}{R_{T}} v_{CE} + (I_{CQ} + \frac{V_{CEQ}}{R_{T}})$$

AC load line

Current gain

$$R_b = (1 + h_{fe})r_e \approx h_{fe}r_e$$
 $R_{in} = (R_1 \parallel R_2) \parallel R_b$

$$R_{in} = (R_1 \parallel R_2) \parallel R_b$$

$$A_i = \frac{i_L}{i_b} = \frac{-h_{fe}R_C}{R_C + R_L}$$

$$A_{is} = \frac{i_L}{i_s} = \frac{i_L}{i_b} \frac{i_b}{i_s} = \frac{A_i R_p}{R_p + R_b}$$

Output Resistance: Ro

$$i_b + h_{fe}i_b = \frac{v_b}{r_e} \Rightarrow i_b = \frac{v_b}{(1 + h_{fe})r_e} = \frac{-Ri_b}{(1 + h_{fe})r_e} \Rightarrow i_b = 0$$

$$i_o = h_{fe}i_b + \frac{v_o}{R_C} = \frac{v_o}{R_o} \Longrightarrow R_o = R_C$$

Example: Emitter Follower (common collector amplifier)

For $R_T = R_E | | R_L$, and using,

Show that,

- 1. $A_{\rm v} = \frac{v_e}{v_b} \approx \frac{R_T}{r_e + R_T} \quad \text{If R}_{\rm T} >> r_e, \, A_{\rm v} = 1, \, v_e = v_b, \, \text{emitter "follows" base voltage}$ with unity gain
- 2. $R_{in}=R_p\parallel R_b$ For large h_{fe} , R_T , R_1 and R_2 , R_{in} can be made large $R_b=rac{v_b}{i_b}=r_\pi+(1+h_{fe})R_Tpprox r_\pi+h_{fe}R_T$
- 3. $R_o = R_E \parallel (\frac{r_\pi + R}{1 + h_{fe}})$ For large h_{fe} , R_{out} can be made small $R = R_s \parallel (R_1 \parallel R_2)$

Buffer or isolation amplifier

Accurate Hybrid (h) parameter model

$$\left.h_{ie}=rac{v_{be}}{i_b}
ight|_{v_{ce}=0}$$

Short circuit input resistance

$$h_{re} = \frac{v_{be}}{v_{ce}}\bigg|_{i_b = 0}$$

open circuit reverse voltage gain

$$h_{oe} = \frac{i_c}{v}$$
 Open circuit output conductance

$$\left.h_{fe}=rac{i_c}{i_b}
ight|_{v_{ce}=0}$$

short circuit forward current gain

Typical values, h_{ie} =1.5kΩ, h_{re} =10⁻⁴, h_{fe} =100, h_{oe} =10⁻⁵ Ω⁻¹

Frequency response

- So far we have ignored capacitive effects, in general gain is frequency dependent
- $\omega_{\perp} \rightarrow$ coupling and bypass capacitors
- $\omega_H \rightarrow$ determined by internal capacitances of the BJT

Recall: High pass filters

$$V_2 = \frac{j\omega RC}{1 + j\omega RC} V_1$$

$$ang(V_2) = 90^0 - \tan^{-1}(\omega RC) + ang(V_1)$$

$$0 < \tan^{-1}(\omega RC) < 90^0 \Rightarrow ang(V_2) > ang(V_1)$$

 V_2 leads $V_1 \rightarrow$ lead network High pass filter, $\omega_c = 1/RC$

 V_3 leads $V_1 \rightarrow$ also lead network High pass filter, $\omega_c = 1/(R_1 + R_2)C$

Recall: Low pass filter

$$V_2 = \frac{1}{1 + j\omega RC} V_1$$

$$ang(V_2) = ang(V_1) - \tan^{-1}(\omega RC)$$

$$0 < \tan^{-1}(\omega RC) < 90^0 \Rightarrow ang(V_2) < ang(V_1)$$

 V_2 lags $V_1 \rightarrow lag$ network Low pass filter, $\omega_c = 1/RC$

CE amplifier: Effect of coupling capacitor C₁

Ignoring, C₂

$$\omega_1 = \frac{1}{(R_s + R_{in})C_1}$$

$$R_{in} = (R_1 \parallel R_2) \parallel R_b$$
 $R_b = (1 + h_{fe})(r_e)$

Base-equivalent lead network

CE amplifier: Effect of coupling capacitor C₂

Ignoring, C₁

$$\omega_2 = \frac{1}{(R_o + R_L)C_2}$$

$$R_o = R_C$$

Collector-equivalent lead network

CE amplifier: Effect of bypass capacitor C_E

Circuit to determine R_{oe} in series with C_E

$$\frac{v_b}{R} + \frac{v_b - v_o}{r_e} = h_{fe} i_b = \frac{h_{fe} (v_b - v_o)}{(1 + h_{fe}) r_e}$$

$$\Rightarrow v_b = \frac{R/(1 + h_{fe})}{r_e + R/(1 + h_{fe})} v_o$$

Substituting this for v_b in,

$$i_o = \frac{v_o}{R_E} + \frac{v_o - v_b}{r_e}$$

$$R_{oe} = \frac{v_o}{i_o} = R_E \parallel (r_e + \frac{R}{1 + h_{fe}})$$

$$\omega_3 = \frac{1}{R_{oe}C_E}$$

Frequency response

- The lower cut-off frequency is determined by which has the higher value amongst $\omega_1, \omega_2, \omega_3$
- Generally ω_3 is the largest of all three
 - At high ω , C_E behaves as a short circuit and gain increases
 - At low ω , C_E acts less and less as a short circuit and gain decreases

Miller's theorem

Miller's theorem → reflects feedback impedance across to input and output

High frequency Response

Typical values $C_e=100$ pF, $C_c=5$ pF

- At low ω , C_1 , C_2 and C_F need to be accounted for
- At mid ω , C_1 , C_2 and C_E are short circuits and C_C and C_E are open, $A_V = -R_T/r_E$

• At high ω , C_e and C_c need to be accounted for

High frequency response

C_c can be reflected using Miller's theorem

High frequency response

$$\omega_g = \frac{1}{R_g C_g}$$

$$\omega_T = \frac{1}{R_T C_T}$$

- Base and collector "lag" networks
- Upper cut-off frequency is the lower of the two $\rightarrow \omega_{\rm g}, \omega_{\rm T}$

Amplifier Power Analysis

$$v_{CE} = V_{CEO} + v_{ce}$$

$$v_{ce} = -(R_T + R_E)i_c$$

$$i_C = I_{CO} + i_c \Rightarrow i_c = i_C - I_{CO}$$

$$v_{CE} = V_{CEQ} - (R_T + R_E)(i_C - I_{CQ}) \Longrightarrow$$

$$v_{CE} = V_{CEQ} - (R_T + R_E)(i_C - I_{CQ}) \Rightarrow i_C = -\frac{1}{R_T + R_E} v_{CE} + (I_{CQ} + \frac{V_{CEQ}}{R_T + R_E})$$

Amplifier AC Load Line

Assume $i_C(off)=0A$, $v_{CE}(sat)=0V$

$$i_{C(sat)} = I_{CQ} + \frac{V_{CEQ}}{R_T + R_E}$$

$$v_{CE(off)} = V_{CEQ} + (R_T + R_E)I_{CQ}$$

For largest possible ac signal, Q-point should be at the center of load line

$$i_{C(sat)} = I_{CQ} + \frac{V_{CEQ}}{R_T + R_E} = 2I_{CQ} \Longrightarrow \boxed{\frac{V_{CEQ}}{I_{CQ}} = R_T + R_E}$$

Amplifier Power

Q-point at the center of load line gives maximum sinusoidal collector current amplitude Ico

Average ac power absorbed by R_T $P_T = R_T (\frac{I_{CQ}}{\sqrt{2}})^2 = \frac{1}{2} I_{CQ}^2 R_T$

Average ac power absorbed by R_E $P_E = R_E (\frac{I_{CQ}}{\sqrt{2}})^2 = \frac{1}{2}I_{CQ}^2R_E$

 R_{I} Total ac output power

Maximum output power

$$P_o = P_T + P_E = \frac{1}{2} I_{CQ}^2 (R_T + R_E)$$

$$P_o = \frac{1}{2} I_{CQ} V_{CEQ}$$

Efficiency of the amplifier (output signal power/dc power) (max efficiency = 1/4)

$$\eta = \frac{P_o}{P_{dc}} = \frac{P_o}{V_{cc}I_{co}}$$

Instantaneous power dissipation of the BJT (max at center of load line)

$$p = v_{CE}i_C$$

Quiescent power dissipation of the BJT (no ac signal) (max at center of load line)

$$P_{DQ} = V_{CEQ}I_{CQ}$$