Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики»

Факультет Санкт-Петербургская школа физико-математических и компьютерных наук
Департамент информатики
Основная образовательная программа

Прикладная математика и информатика

Кайсин Илья Сергеевич

Задача обитаемости в системах типов низкого ранга

Выпускная квалификационная работа

Допущена к защите. Зав. кафедрой: д. ф.-м. н., профессор Омельченко А. В.

Научный руководитель: к.ф.-м. н., профессор Москвин Д. Н.

> Рецензент: Пеленицын А. М

Оглавление

1.	Система типов $\lambda_{\wedge \eta}$		3
	1.1.	Подтипизация	3
	1.2.	Существенность η правила	7
2.	Населяющий алгоритм		
	2.1.	Населяющий алгоритм для λ_{\wedge}	8
	2.2.	Населяющий алгоритм для $\lambda_{\wedge \eta}$	9
	2.3.	Отличия алгоритмов	9
3.	Свойства алгоритма		
	3.1.	Корректность	10
	3.2.	Полнота	10
	3.3.	Завершаемость	13
Сп	исок	литературы	15

1. Система типов $\lambda_{\wedge \eta}$

Система типов $\lambda_{\wedge\eta}$ отличается от просто типизированного лямбда исчисления новым типовым конструктором: \wedge , соответствующим пересечению типов. Эту операцию можно понимать в теоретико-множественном смысле: типом $\sigma \wedge \tau$ типизируются такие и только такие термы, которые типизируются и σ , и τ . Правила вывода, соответствующие этому поведению, обозначаются $(I \wedge)$ и $(E \wedge)$ (введение пересечения и элиминация пересечения соответственно).

Кроме того, вводится ещё одно дополнительное правило (η) , позволяющее проводить эта-экспансию.

Таким образом, система состоит из следующих правил вывода: $Ax, I \to, E \to, I \wedge, E \wedge, \eta$.

$$\frac{\Gamma, x \colon \tau \vdash x \colon \tau}{\Gamma, x \colon \sigma \vdash M \colon \tau} (Ax)$$

$$\frac{\Gamma, x \colon \sigma \vdash M \colon \tau}{\Gamma \vdash (\lambda x \cdot M) \colon \sigma \to \tau} (I \to)$$

$$\frac{\Gamma \vdash M \colon \sigma \to \tau}{\Gamma \vdash (MN) \colon \tau} (E \to)$$

$$\frac{\Gamma \vdash M \colon \sigma}{\Gamma \vdash M \colon \sigma \land \tau} (I \land)$$

$$\frac{\Gamma \vdash M \colon \sigma \land \tau}{\Gamma \vdash M \colon \sigma} (E \land)$$

$$\frac{\Gamma \vdash M \colon \sigma}{\Gamma \vdash M \colon \sigma} (F \land)$$

$$\frac{\Gamma \vdash M \colon \sigma}{\Gamma \vdash (\lambda x \cdot M x) \colon \sigma} (\eta)$$

1.1. Подтипизация

Определим на типах отношение подтипизации. С теоретико-множественной точки зрения подтпизация соответствует отношению «быть подмножеством»: если терм типизируется σ , то он типизируется всеми надтипами σ , то есть такими τ , что $\sigma \leqslant \tau$. Отношение определим следующими аксиомами и правилами, аналогично определению из [3].

$$\frac{\sigma \leqslant \sigma}{\sigma \leqslant \sigma \wedge \sigma} (A1)$$

$$\frac{\sigma \leqslant \sigma \wedge \sigma}{\sigma \wedge \tau \leqslant \sigma} (A2)$$

$$\frac{\sigma \wedge \tau \leqslant \sigma}{\sigma \wedge \tau \leqslant \tau} (A3)$$

$$\frac{\sigma \wedge \tau \leqslant \tau}{\sigma \wedge \tau \leqslant \tau} (A4)$$

$$\frac{\sigma \leqslant \sigma' \quad \tau \leqslant \tau'}{\sigma \wedge \tau \leqslant \sigma' \wedge \tau'} (R1)$$

$$\frac{\sigma \leqslant \sigma' \quad \tau \leqslant \tau'}{\sigma' \to \tau \leqslant \sigma \to \tau'} (R2)$$

$$\frac{\tau_1 \leqslant \tau_2 \quad \tau_2 \leqslant \tau_3}{\tau_1 \leqslant \tau_3} (R3)$$

В [2] показано, что правило (η) может быть заменено следующим правилом:

$$\frac{\Gamma \vdash M : \sigma \quad \sigma \leqslant \tau}{\Gamma \vdash M : \tau} \ (\leqslant)$$

На самом деле, поскольку $\sigma \wedge \tau \leqslant \sigma$ и $\sigma \wedge \tau \leqslant \tau$, правило $(E \wedge)$ также избыточно. Таким образом, правила в этой системе следующие:

$$\frac{\Gamma, x \colon \tau \vdash x \colon \tau}{\Gamma \vdash (\lambda x \cdot M) \colon \sigma \to \tau} (Ax)$$

$$\frac{\Gamma, x \colon \sigma \vdash M \colon \tau}{\Gamma \vdash (\lambda x \cdot M) \colon \sigma \to \tau} (I \to)$$

$$\frac{\Gamma \vdash M \colon \sigma \to \tau \quad \Gamma \vdash N \colon \sigma}{\Gamma \vdash (MN) \colon \tau} (E \to)$$

$$\frac{\Gamma \vdash M \colon \sigma \quad \Gamma \vdash M \colon \tau}{\Gamma \vdash M \colon \sigma \land \tau} (I \land)$$

$$\frac{\Gamma \vdash M \colon \sigma \quad \sigma \leqslant \tau}{\Gamma \vdash M \colon \tau} (\leqslant)$$

Полученную систему будем называть $\lambda_{\wedge\leqslant}$. Она эквивалентна $\lambda_{\wedge\eta}$ в смысле типизации: утверждение типизации, верное в системе $\lambda_{\wedge\leqslant}$, верно в $\lambda_{\wedge\eta}$ и наоборот. Поэтому в контексте нашей задачи эти две системы полностью взаимозаменяемы.

Определим отношение эквивалентности на типах следующим образом.

Определение 1. $\sigma \sim \tau \iff \sigma \leqslant \tau \ u \ \tau \leqslant \sigma$

Благодаря правилу (\leq), для эквивалентных типов верно следующее утверждение:

Пемма 1.1. Множества термов, тпизируемых эквивалентными типами, в точности совпадают.

В частности, это означает, что переход к эквивалентному типу не влияет на его обитаемость.

Легко видеть, что отношение «~» является отношением конгруэнтности (в смысле [1]) а именно, верна следующая Лемма:

Лемма 1.2. Пусть $\alpha, \beta, \gamma, \delta$ – типы. Если $\alpha \sim \beta$ и $\gamma \sim \delta$, то $(\alpha \to \gamma) \sim (\beta \to \delta)$, а также $(\alpha \land \gamma) \sim (\beta \land \delta)$.

Для удобства введём следующее обозначение:

Определение 2.

$$\hat{\tau} = \{ \tau_i \mid \tau_1 \wedge \dots \wedge \tau_k = \tau \}$$

 $u \tau_i$ не является пересечением ни для какого i}

То есть $\hat{\tau}$ – множество, полученное разделением всех пересечений на верхнем уровне τ .

В [3] показана следующая экивалентность:

Лемма 1.3.
$$\alpha \to \beta \land \gamma \sim (\alpha \to \beta) \land (\alpha \to \gamma)$$

Применяя её многократно, мы можем привести тип к нормальной форме. А именно, введём операцию «*» следующим образом:

Определение 3.

$$lpha^*=lpha$$
 $ecnu\ lpha-munoвая$ переменная $(\sigma\wedge au)^*=\sigma^*\wedge au^*$ $(\sigma o au)^*=igwedge_{arphi\hat{ au}^*}\sigma oarphi$

Например, $(\alpha \to \gamma \land (\beta \to \gamma \land \delta))^* = (\alpha \to \beta \to \gamma) \land (\alpha \to \beta \to \delta) \land (\alpha \to \gamma)$. Операция «*» переводит тип в эквивалентный.

Лемма 1.4. Для любого $muna \ \tau : \tau \sim \tau^*$

Определение 4. Тип τ находится в нормальной форме, если $\tau^* = \tau$.

Общий вид типа в нормальной форме после применения «*» описывается следующей леммой:

Лемма 1.5. Для любого типа $\tau \colon \tau^* = \bigwedge_i (\varphi_{i1} \to \cdots \to \varphi_{ik_i} \to \alpha_i)$, где α_i - типовая переменная.

Следствие 1.5.1. Типы в нормальной форме без пересечений на верхнем уровне — в точности типы вида $\cdots \to \alpha$, где α — некоторая типовая переменная.

В [3] показано, что отношение (\leq) рекурсивно и существует алгоритм, позволяющий определить для двух типов α и β верно ли, что $\alpha \leq \beta$:

Алгоритм 1.

$$lpha\leqslant eta=(lpha==eta)$$
 $ecnu\ lpha\ u\ eta-munoвые\ nepemehhыe$ $\sigma\leqslant au=False$ $ecnu\ oduh\ us\ munoв-nepemehhas,\ a\ dpyroŭ\ mun\ cmpenoчный $(\sigma_1 o au_1)\leqslant (\sigma_2 o au_2)=(au_1\leqslant au_2)\ \ ext{AND}\ \ (\sigma_2\leqslant \sigma_1)$ $\sigma\leqslant au=orall au_i\in \hat{ au^*}\colon \exists \sigma_j\in \hat{\sigma^*}\colon \sigma_j\leqslant au_i$$

Введём ещё несколько обозначений.

Определение 5. Обозначим множество всех подтипов τ через $\underline{\tau}$, а множество всех его надтипов через $\bar{\tau}$. То есть $\underline{\tau} = \{ \sigma \mid \sigma \leqslant \tau \}, \ \bar{\tau} = \{ \sigma \mid \tau \leqslant \sigma \}.$

Далее будем считать, что надтипы и подтипы могут использоваться везде, где могут использоваться типы. При этом операции над типами «поднимаются» на уровень множеств. Так, например, выражение $\alpha \to \bar{\beta} \to \gamma$ следует понимать как множество $\{\alpha \to \beta' \to \gamma' \mid \beta' \in \bar{\beta}, \gamma' \in \gamma\}.$

Утверждения о типизации, в которых фигурируют надтипы и подтипы, следует считать истинным, если оно истинно ∂ *ля некоторых* элементов соответствующих можеств надтипов и подтипов.

Лемма 1.6. Пусть $\sigma \to \tau$ – тип в нормальной форме. Тогда $\underline{\sigma} \to \underline{\tau} = \varphi \wedge (\overline{\sigma} \to \underline{\tau}),$ для некоторого (возможно, пустого) φ .

Доказательство. Включение $\varphi \wedge (\bar{\sigma} \to \tau) \subseteq \sigma \to \tau$ почти очевидно:

$$\frac{\sigma \leqslant \bar{\sigma} \quad \underline{\tau} \leqslant \tau}{\bar{\sigma} \to \underline{\tau}} (R2)$$
$$\frac{\varphi \wedge (\bar{\sigma} \to \underline{\tau}) \leqslant \sigma \to \tau}{\varphi \wedge (\pi \to \underline{\tau}) \leqslant \sigma \to \tau} (A4)$$

Для включения $\underline{\sigma} \to \underline{\tau} \subseteq \varphi \land (\overline{\sigma} \to \underline{\tau})$ достаточно посмотреть на Алгоритм 1. Подтип $\sigma \to \tau$ — это либо тип из $(\overline{\sigma} \to \underline{\tau})$ (третий случай алгоритма), либо тип-пересечение, один из элементов которого — подтип $\sigma \to \tau$; остальные элементы можно «переместить» в φ перестановкой.

1.2. Существенность η правила

Насколько добавление η - правило меняет систему? Система λ_{\wedge} существенно слабее $\lambda_{\wedge\eta}$, а именно, есть тип, необитаемый в системе без эта-правила и обитаемый в системе с ним.

Лемма 1.7. Утверждение о типизации $x: \alpha \to \beta \land \gamma \vdash x: \alpha \to \beta$ верно в $\lambda_{\land \eta}$ но неверно в λ_{\land} .

Доказательство. Докажем истинность в системе $\lambda_{\wedge \leqslant}$:

$$\frac{\overline{x \colon \alpha \to \beta \land \gamma \vdash x \colon \alpha \to \beta \land \gamma} \quad \alpha \to \beta \land \gamma \leqslant \alpha \to \beta}{x \colon \alpha \to \beta \land \gamma \vdash x \colon \alpha \to \beta}$$

Чтобы доказать, что утверждение неверно в системе λ_{\wedge} , предположим обратное. Рассмотрим последнее правило вывода, которое могло быть применено, чтобы получить данное утверждение. $(I \to)$ и $(E \to)$ не могли быть применены, поскольку они типизируют абстракцию и аппликацию соответственно, а x — типовая переменная. Правило (Ax) требует наличия соответствующей типизации в контексте, правило $(I \wedge)$ приписывает терму тип-пересечение, а не стрелочный тип.

Таким образом, единственным возможным правилом могло быть $(E \land)$:

$$\begin{array}{c}
\vdots \\
x: \alpha \to \beta \land \gamma \vdash x: (\alpha \to \beta) \land \sigma \\
x: \alpha \to \beta \land \gamma \vdash x: \alpha \to \beta
\end{array}$$

Какие правила вывода могли привести к данному утверждению о типизации? Только $(I \to)$ и $(E \to)$. Однако легко видеть, что их «обратное» применение порождает утверждение вида $x \colon \alpha \to \beta \land \gamma \vdash x \colon (\alpha \to \beta) \land \sigma$ для некоторого (возможно, пустого) σ , но утверждение такого вида уже встречалось ранее, и могло быть получено лишь с помощью $(I \to)$ и $(E \to)$. Значит, дерева вывода не существует.

Лемма 1.8. Tun $\delta \wedge (\alpha \to \beta \wedge \gamma) \to \delta \wedge (\alpha \to \beta)$ nycm в λ_{\wedge} , но содержит терм id в $\lambda_{\wedge \eta}$.

Доказательство. Анализом возможных деревьев вывода, аналогичным рассуждениям в предыдущей лемме, получаем, что для существования типизации $\vdash M : \delta \wedge (\alpha \to \beta \wedge \gamma) \to \delta \wedge (\alpha \to \beta)$ необходима и достаточна типизация $x : \alpha \to \beta \wedge \gamma \vdash x : \alpha \to \beta$.

Замечание 1.8.1. Tun $(\alpha \to \beta \land \gamma) \to \alpha \to \beta$ обитаем в обеих системах. В λ_{\land} он содержит $\lambda ab.ab$, но не $\lambda a.a$.

2. Населяющий алгоритм

В [4] был представлен населяющий алгоритм для системы λ_{\wedge} . Однако этот алгоритм описан недостаточно полно, что выяснилось при его реализации. Кроме того, алгоритм и доказательство его корректности содержат ошибку. Данная работа устраняет эти неточности и ошибки. Алгоритм для $\lambda_{\wedge\leqslant}$ является модификацией алгоритма из [4], поэтому сначала рассмотрим его (в исправленном варианте).

2.1. Населяющий алгоритм для λ_{\wedge}

Алгоритм 2. В процессе алгоритма решается система из нескольких задач: $[\Gamma_1 \vdash X : \tau_1, \dots, \Gamma_n \vdash X : \tau_n]$. Решением системы является терм X, удовлетворяющий всем утверждениям типизации одновременно. При этом поддерживается инвариант: все задачи системы имеют общий набор переменных в контексте (при этом одной и той же типовой переменной могут соответствовать разные типы в разных контекстах). Алгоритм заключается в применении следующих преобразований до тех пор, пока это возможно:

- 1. Один из типов τ_i пересечение ($\tau_i = \sigma \wedge \rho$). Тогда i-я задача $\Gamma_i \vdash X : \tau_i$ заменяется двумя: $\Gamma_i \vdash X : \sigma$ и $\Gamma_i \vdash X : \rho$. Таким образом, размер системы увеличивается
- 2. Все типы τ_i стрелочные $(\tau_i = \sigma_i \to \rho_i, i = 1...n)$. Тогда решение системы $X = \lambda x.X'$, где X' решение новой системы $[(\Gamma_1, x : \sigma_1 \vdash X' : \rho_1), \ldots, (\Gamma_n, x : \sigma_n \vdash X' : \rho_n)]$. То есть в этом случае во всех типах редуцируется первый аргумент.
- 3_{\wedge} . Один из типов τ_i это типовая переменная. Тогда X не может быть абстракцией и должен быть (возможно пустой) аппликацией некоторой головной переменной, взятой из контекста, к термам. В этом случае необходимо недетерминированно выбрать из контекста головную переменную x и число $k \geqslant 0$ таким образом, чтобы $\Gamma_i \vdash \lambda z_1 \dots z_k . x z_1 \dots z_k : \rho_i^1 \to \dots \to \rho_i^k \to \tau_i$ для всех $i = 1 \dots n$. Тогда решение $X = x Z^1 \dots Z^k$, где Z^i решение системы $[(\Gamma_1 \vdash Z^i : \rho_1^i), \dots, (\Gamma_n \vdash Z^i : \rho_n^i)]$. Здесь k систем независимы и могут быть решены параллельно.

Если ни одно из преобразований применить невозможно, то система не имеет решения. «Точка выхода» из алгоритма — тот случай в преобразовании 3, при котором k=0, при этом решением является переменная.

В данном алгоритме не совсем ясным является шаг 3_{\wedge} : как именно выбираются ρ_i^j . Типизация $\Gamma_i \vdash \lambda z_1 \dots z_k . x z_1 \dots z_k : \rho_i^1 \to \dots \to \rho_i^k \to \tau_i$ не гарантирует того, что тип x в контексте Γ_i обязан быть $\rho_i^1 \to \dots \to \rho_i^k \to \tau_i$.

2.2. Населяющий алгоритм для $\lambda_{\wedge \eta}$

Алгоритм для системы с η -правилом во многом повторяет алгоритм для λ_{\wedge} . Принципиальное отличие заключается в преобразовании 3.

Алгоритм 3. Поддерживается система из нескольких задач: $\Gamma_1 \vdash X : \tau_1, \dots, \Gamma_n \vdash X : \tau_n$. До тех пор, пока это возможно, выполняется один из четырёх шагов:

- 0. Один из типов τ_i не находится в нормальной форме. Тогда заменим τ_i на τ_i^* .
- Шаги 1 и 2 аналогичны Алгоритму 2.
- $3_{\wedge\eta}$. Один из типов τ_i это типовая переменная. Тогда X не может быть абстракцией и должен быть (возможно, пустой) аппликацией некоторой головной переменной, взятой из контекста, к термам. В этом случае необходимо недетерминированно выбрать переменную x и число $k \geqslant 0$ таким образом, чтобы $\Gamma_i \vdash x : \rho_i^1 \to \cdots \to \rho_i^k \to \tau_i$ для всех $i = 1 \ldots n$. Тогда решение $X = xZ^1 \ldots Z^k$, где Z^i решение системы $(\Gamma_1 \vdash Z^i : \rho_1^i), \ldots, (\Gamma_n \vdash Z^i : \rho_n^i)$. Здесь k систем независимы и могут быть решены параллельно.

Следствие 3.1.3 описывает, как именно устроен недетерминированный выбор x, k и ρ_i^j .

Аналогично алгоритму 2, если ни одно из преобразований применить невозможно, система не имеет решения.

2.3. Отличия алгоритмов

В [4] в качестве населяющего алгоритма для системы λ_{\wedge} приведён алгоритм, почти совпадающий с Алгоритмом 3, описанным выше. Однако на следующем примере можно убедиться, что данный алгоритм не является полным в системе λ_{\wedge} .

Пусть задача – $p: \alpha \to \beta \land \gamma, q: \alpha \vdash X: \beta$. Алгоритм должен произвести преобразование $3_{\land \eta}$, но в контексте нет такого x, что $p: \alpha \to \beta \land \gamma, q: \alpha \vdash x: \cdots \to \beta$, поскольку, согласно Лемме 1.7, утверждение о типизации $p: \alpha \to \beta \land \gamma \vdash p: \alpha \to \beta$ неверно в λ_{\land} . Поэтому алгоритм завершится, не найдя решение X = pq. Но преобразование 3_{\land} применить можно: $p: \alpha \to \beta \land \gamma, q: \alpha \vdash \lambda z.pz: \alpha \to \beta$. Здесь λ позволяет применить $(I \to)$ и удалить \to .

3. Свойства алгоритма

В этом разделе будут доказаны свойства Алгоритма 3 для системы $\lambda_{\wedge \eta}$. А именно, его корректность (soundness), полнота (completeness), завершаемость (termination) на типах ранга ≤ 2 .

3.1. Корректность

Корректность алгоритма означает, что ответ, данный им, удовлетворяет входным условиям. То есть если некий терм был найден, то он действительно типизируется заданным типом.

Теорема 1 (Soundness). Если алгоритм находит терм M для входного типа τ , то $\vdash M \colon \tau$

Доказательство. Усилим утверждение: докажем, что алгоритм корректно решает систему задач. Доказательство – индукция по количеству шагов алгоритма. В базе индукции используется аксиома (Ax). В переходах индукции в шагах 1, 2 и $3_{\wedge\eta}$ используются правила вывода $(I\wedge)$, $(I\to)$ и $(E\to)$ соответственно.

3.2. Полнота

Полнота – гораздо более содержательное свойство. Оно означает, что если существует терм заданного типа, то алгоритм обязательно найдёт или его, или другой терм этого типа. В нашем случае это будет терм в так называемой длинной форме. Далее будет доказан ряд лемм, имеющих отношение к преобразованию $3_{\wedge\eta}$ и проясняющих его смысл.

Лемма 3.1. Пусть x – переменная, M_i – термы, τ – тип в нормальной форме без пересечений на верхнем уровне (см. следствие 1.5.1). Тогда равносильно:

$$\Gamma \vdash x M_1 \dots M_k \colon \tau$$
 \iff
$$\Gamma \vdash x \colon \alpha_1 \to \dots \to \alpha_k \to \tau \ u \ \Gamma \vdash M_i \colon \alpha_i \ \text{для } i = 1 \dots k$$

Доказательство. Докажем равносильность в обе стороны.

- \Leftarrow) применяя правило (E \to) k раз, получаем в точности необходимое утверждение о типизации.
- \Rightarrow) Если k=0, то утверждение леммы очевидно. Иначе докажем индукцией по размеру дерева вывода (анализируя дерево с конца, аналогично доказательству

Леммы 1.7). Рассуждения будет удобнее провести в системе $\lambda_{\wedge\leqslant}$ (3), поскольку в ней меньше правил вывода.

Какое правило вывода могло быть применено последним, чтобы получить утверждение $\Gamma \vdash xM_1 \dots M_k \colon \tau$? Это не могло быть (Ax), так как оно типизирует переменную; это не могло быть $(I \to)$, так как оно типизирует лямбда абстракцию; это не могло быть $(I \wedge)$, поскольку в τ нет пересечений на верхнем уровне. Таким образом, могли быть применены только два правила: (\leqslant) или $(E \to)$.

Согласно Лемме 1.5.1, τ имеет вид $\rho_1 \to \cdots \to \rho_m \to \beta$, где β — типовая переменная. По Лемме 1.6, подтип τ тогда обязан иметь вид $\varphi_1 \wedge (\overline{\rho_1} \to \varphi_2 \wedge (\overline{\rho_2} \to \varphi_3 \wedge \ldots (\overline{\rho_k} \to \beta) \ldots))$. К такой типизации можно или снова применить (\leqslant), получив нечто такой же формы (поскольку $\underline{\tau} = \underline{\tau}$) или применить ($I \wedge$), получив в одной из веток нечто той же формы. Так или иначе, в определённый момент будет применено ($E \to$) к $\underline{\tau}$.

Таким образом, в общем случае дерево вывода имеет следующий вид:

$$\frac{\Gamma \vdash xM_1 \dots M_{k-1} \colon \alpha_k \to \underline{\tau} \quad \Gamma \vdash M_k \colon \alpha_k}{\Gamma \vdash xM_1 \dots M_k \colon \underline{\tau}} \quad (E \to)$$

$$\stackrel{\vdots}{} (\leqslant), (I \wedge)$$

$$\Gamma \vdash xM_1 \dots M_k \colon \underline{\tau}$$

Поскольку $\alpha_k \to \underline{\tau} \leqslant \alpha_k \to \tau$, верно утверждение о типизации $\Gamma \vdash xM_1 \dots M_{k-1} \colon \alpha_k \to \tau$, которое подходит под условия леммы. Поэтому, применив те же рассуждения ещё k-1 раз, получим $\Gamma \vdash x \colon \alpha_1 \to \underline{\alpha_2 \to \dots \to \alpha_k \to \tau}$, а также $\Gamma \vdash M_i \colon \alpha_i$ для $i=1\dots k$.

Легко видеть, что $\alpha_1 \to \underline{\alpha_2 \to \cdots \to \alpha_k \to \tau} \leqslant \alpha_1 \to \cdots \to \alpha_k \to \tau$, поэтому мы можем применить (\leqslant) и получить необходимую типизацию.

Замечание 3.1.1. Условие о том, что τ – тип без пересечений на верхнем уровне, существенно. Так, например, для $\Gamma = \{x : (\alpha \to \beta) \land (\gamma \to \delta), M : (\alpha \land \gamma)\}, \Gamma \vdash xM : \beta \land \gamma$, но при этом $\Gamma \nvdash x : \cdots \to \beta \land \gamma$.

Замечание 3.1.2. Условие о том, что τ – тип в нормальной форме, существенно. Так, например, для $\Gamma = \{x \colon (\alpha \to \varphi \to \beta) \land (\gamma \to \varphi \to \delta), M \colon (\alpha \land \gamma)\}, \ \Gamma \vdash xM \colon \varphi \to (\beta \land \gamma),$ но при этом $\Gamma \nvdash x \colon \cdots \to \varphi \to (\beta \land \gamma).$

Следствие 3.1.1. В условиях предыдущей леммы, при выполнении любой из равносильных частей, $\Gamma \ni x \colon \alpha_1 \to \cdots \to \alpha_k \to \tau$, Доказательство. Для доказательства достаточно провести ещё один шаг в рассуждениях леммы, за тем лишь исключением, что вместо $(E \to)$ должно быть применено (Ax), что и гарантирует наличие нужной типизации в контексте.

Следствие 3.1.2. В условиях предыдущей леммы, при выполнении любой из равносильных частей, в контексте Γ есть типизация x: σ такая, что $\hat{\sigma^*} \ni \overline{\alpha_1} \to \cdots \to \overline{\alpha_k} \to \underline{\tau}$.

B частности, если τ — типовая переменная, то $\hat{\sigma^*} \ni \overline{\alpha_1} \to \cdots \to \overline{\alpha_k} \to \tau$.

Доказательство. Воспользуемся предыдущим следствием и тем наблюдением, что
$$\alpha_1 \to \cdots \to \alpha_k \to \tau = \varphi_1 \wedge (\overline{\alpha_1} \to \varphi_2 \wedge (\overline{\alpha_2} \to \varphi_3 \wedge \dots (\overline{\alpha_k} \to \underline{\tau}) \dots))$$

Следующее следствие проясняет, как с алгоритмической точки зрения устроено преобразование $3_{\wedge \eta}$ в Алгоритме 3. А именно, как выбрать x, k и ρ_i^j .

Следствие 3.1.3. Пусть в шаге $3_{\wedge \eta}$ Алгоритма 3, τ_i – типовая переменная. Тогда для того, чтобы выбрать x, k и ρ_i^j $(j=1\ldots k)$, достаточно перебрать все элементы $(x\colon \sigma)$ контекста такие, что $\hat{\sigma^*}$ содержит тип, заканчивающийся на τ_i , то есть имеющий вид $\rho_i^1 \to \cdots \to \rho_i^k \to \tau_i$.

Для того, чтобы проверить, что выбранный x удовлетворяет всем остальным задачам, а также чтобы подобрать ρ_t^j (для всех $t \neq i$ и $j = 1 \dots k$), достаточно найти среди элементов $\hat{\sigma^*}$ (где $\Gamma_t \ni (x \colon \sigma)$) типы, у которых после «отщепления» k аргументов остаётся подтип τ_t , то есть имеющие вид $\rho_t^1 \to \dots \to \rho_t^k \to \tau_t'$, где $\tau_t' \leqslant \tau_t$.

Теорема 2 (Completeness). Если у системы задач существует решение, то Алгоритм 3 найдёт его или другое решение.

Доказательство – индукция по размеру наибольшего типа в задачах системы. Пусть дана система $T = [\Gamma_1 \vdash X : \tau_1, \dots, \Gamma_n \vdash X : \tau_n]$, а M — её решение.

Если один из τ_i — тип-пересечение, алгоритм разобьёт его на два. При этом решение M останется решением системы, но уменьшится размер задач системы, поэтому можно применить индукционное предположение. Аналогичные рассуждения можно провести в случае, если один из τ_i не находится в нормальной форме (при этом, чтобы размеры типов уменьшились, нужно снять пересечения, сделав несколько раз преобразование 1).

Пусть ни один из типов τ_i не является пересечением. Рассмотрим, как может быть устроено M.

• $M = \lambda x.M'$.

Тогда все типы в задачах должны быть стрелочные: $\tau_i = \alpha_i \to \beta_i$. Алгоритм перейдёт к системе $T = [\Gamma_1, x \colon \alpha_1 \vdash X' \colon \beta_1, \dots, \Gamma_n, x \colon \alpha_n \vdash X' \colon \beta_n]$, у которой существует решение M'.

- $\bullet \ M = xM_1M_2\dots M_k.$
 - Пусть все типы в задачах стрелочные: $\tau_i = \alpha_i \to \beta_i$. Тогда алгоритм, аналогично предыдущему пункту, перейдёт к системе $T = [\Gamma_1, y \colon \alpha_1 \vdash X' \colon \beta_1, \dots, \Gamma_n, y \colon \alpha_n \vdash X' \colon \beta_n]$. решение которой $xM_1M_2 \dots M_ky$.
 - Пусть один из типов в задачах переменная: $\tau_i = \beta$. По Лемме 3.1, верно следующее: $\Gamma_i \vdash x \colon \alpha_i^1 \to \cdots \to \alpha_i^k \to \tau_i$ и $\Gamma_i \vdash M_j \colon \alpha_i^j$ для $i = 1 \dots n, j = 1 \dots k$. Поэтому, выбрав k и x, алгоритм перейдёт к системам $T_j = [(\Gamma_1 \vdash X_j : \overline{\alpha_1^j}), \dots, (\Gamma_n \vdash X_j : \overline{\alpha_n^j})]$. M_j является решением j-й системы.

3.3. Завершаемость

В предыдущих разделах было доказано, что Алгоритм 3 выдаёт корректное решение, если оно существует. Однако от алгоритма требуется, чтобы он завершался за конечное число шагов, даже если тип пустой. В текущей системе типов такие гарантии получить невозможно: задача обитаемости неразрешима [6]. Для обеспечения завершаемости можно ограничить множество входных типов, а именно ввести ограничение на их ранг.

Понятие ранга вводится в [5] и определяется как максимальная глубина вложенности « \wedge » в качестве левого аргумента « \rightarrow ». Более формальное определение следующее:

Определение 6.

$$rank(au)=0$$

$$ecлu\ au-mun\ без\ nepeceчений$$

$$rank(\sigma\wedge au)=max(1,rank(\sigma),rank(au))$$

$$rank(\sigma o au)=max(1+rank(\sigma),rank(au))$$

$$ecлu\ rank(\sigma)>0\ uлu\ rank(au)>0$$

Так, например, $rank(\varphi \land (\tau \rightarrow (\alpha \land \beta) \rightarrow \gamma)) = 1$

Лемма 3.2. Если $rank(\rho_1 \to \cdots \to \rho_k \to \tau) = r > 0$, то $rank(\rho_i) < r$ для всех $i = 1 \dots k$.

Следующее доказательство во многом повторяет доказательство завершаемости из [4].

Теорема 3 (Termination). Пусть τ – тип с рангом не больше двух ($rank(\tau) \leq 2$). Тогда Алгоритм 3 завершается на входе τ .

Доказательство. Пусть $rank(\tau) = 0$, что равносильно тому, что в τ нет пересечений. Тогда алгоритм завершится после линейного числа преобразований 2 (и затем одного $3_{\wedge \eta}$).

Проследим за рангами целевых типов τ_i и типов в контекстах Γ_i .

В преобразованиях 0 и 1 контексты не изменяются, а ранги типов в задачах не увеличиваются.

В преобразовании 2 ранг типов в задачах не увеличивается. А в контексты попадают типы σ_i , находящиеся слева от стрелки в типе $\tau_i = \sigma_i \to \rho_i$, а значит, имеющие или нулевой ранг, или хотя бы на 1 меньший ранг, чем τ_i (см. Лемму 3.2).

В преобразовании $3_{\wedge \eta}$ контексты не изменяются, а в целевыми становятся типы α_i^j , являющиеся аргументами в типах из контекстов, а значит, имеющие на 1 меньший ранг (или нулевой).

Из вышеизложенных соображений следует, что типы в контекстах всегда имеют ранг ≤ 1 , поэтому преобразование $3_{\wedge\eta}$ порождает задачи, в которых целевые типы имеют нулевой ранг. Эти задачи решаются за линейное число шагов. Преобразования 0-2 структурно уменьшают целевые типы, поэтому применяются лишь конечное число раз.

14

Список литературы

- [1] Barendregt H. P. Handbook of Logic in Computer Science (Vol. 2) / Ed. by S. Abramsky, Dov M. Gabbay, S. E. Maibaum. New York, NY, USA: Oxford University Press, Inc., 1992. P. 117–309. Access mode: http://dl.acm.org/citation.cfm?id=162552.162561.
- [2] Hindley J. Roger. Types with intersection: An introduction. Vol. 4, no. 5. P. 470—486. Access mode: https://doi.org/10.1007/BF01211394.
- [3] Hindley J. R. The simple semantics for Coppo-Dezani-Sallé types // International Symposium on Programming / Ed. by Mariangiola Dezani-Ciancaglini, Ugo Montanari. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982. P. 212–226.
- [4] Kuśmierek Dariusz. The Inhabitation Problem for Rank Two Intersection Types // Typed Lambda Calculi and Applications / Ed. by Simona Ronchi Della Rocca. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. P. 240–254.
- [5] Leivant Daniel. Polymorphic Type Inference // Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages.—POPL '83.—New York, NY, USA: ACM.—P. 88–98.—event-place: Austin, Texas. Access mode: http://doi.acm.org/10.1145/567067.567077.
- [6] Urzyczyn Pawel. The Emptiness Problem for Intersection Types. Vol. 64, no. 3. —
 P. 1195–1215. Access mode: http://www.jstor.org/stable/2586625.