# Interpolation

HES 505 Fall 2023: Session 19

Matt Williamson

# Objectives

By the end of today you should be able to:

- Distinguish deterministic and stochastic processes
- Define autocorrelation and describe its estimation
- Articulate the benefits and drawbacks of autocorrelation
- Leverage point patterns and autocorrelation to interpolate missing data

# But first...

# Patterns as realizations of spatial processes

- A **spatial process** is a description of how a spatial pattern might be *generated*
- Generative models
- An observed pattern as a *possible realization* of an hypothesized process

• Deterministic processes: always produce the same outcome

$$z = 2x + 3y$$

• Results in a spatially continuous field

```
1 x <- rast(nrows = 10, ncols=10, xmin = 0, xmax=10, ymin = 0, ymax=10)
2 values(x) <- 1
3 z <- x
4 values(z) <- 2 * crds(x)[,1] + 3*crds(x)[,2]</pre>
```

 Stochastic processes: variation makes each realization difficult to predict

$$z = 2x + 3y + d$$

- The *process* is random, not the result (!!)
- Measurement error makes deterministic processes appear stochastic

```
1 x <- rast(nrows = 10, ncols=10, xmin = 0,
2 values(x) <- 1
3 fun <- function(z){
4 a <- z
5 d <- runif(ncell(z), -50,50)
6 values(a) <- 2 * crds(x)[,1] + 3*crds(x)[,
7 return(a)
8 }
9
10 b <- replicate(n=6, fun(z=x), simplify=FAI
11 d <- do.call(c, b)</pre>
```



# Expected values and hypothesis testing

- Considering each outcome as the realization of a process allows us to generate expected values
- The simplest spatial process is Completely Spatial Random (CSR) process
- First Order effects: any event has an equal probability of occurring in a location
- **Second Order** effects: the location of one event is independent of the other events



From Manuel Gimond

### Generating expactations for CSR



- We can use quadrat counts to estimate the expected number of events in a given area
- The probability of each possible count is given by:

$$P(n,k) = \binom{n}{x} p^k (1-p)^{n-k}$$

• Given total coverage of quadrats, then  $p = \frac{\frac{\alpha}{x}}{a}$  and

$$P(k, n, x) = {n \choose k} \left(\frac{1}{x}\right)^k \left(\frac{x-1}{x}\right)^{n-k}$$

# Revisiting Ripley's K

- Nearest neighbor methods throw away a lot of information
- If points have independent, fixed marginal densities, then they exhibit *complete*, spatial randomness (CSR)
- The *K* function is an alternative, based on a series of circles with increasing radius

$$K(d) = \lambda^{-1} E(N_d)$$

• We can test for clustering by comparing to the expectation:

$$K_{CSR}(d) = \pi d^2$$

• if  $k(d) > K_{CSR}(d)$  then there is clustering at the scale defined by d

- When working with a sample the distribution of K is unknown
- Estimate with

$$\hat{K}(d) = \hat{\lambda}^{-1} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{I(d_{ij} < d)}{n(n-1)}$$

where:

$$\hat{\lambda} = \frac{n}{|A|}$$

```
1 kf <- Kest(bramblecanes, correction-"border")
2 plot(kf)</pre>
```



accounting for variation in d

```
1 kf.env <- envelope(bramblecanes, correction="border", envelope = FALSE, ver
2 plot(kf.env)</pre>
```



#### Other functions

- L function: square root transformation of K
- G function: the cummulative frequency distribution of the nearest neighbor distances
- F function: similar to G but based on randomly located points



# Tobler's Law

'everything is usually related to all else but those which are near to each other are more related when compared to those that are further away'. Waldo Tobler

# Spatial autocorrelation



From Manuel Gimond

#### (One) Measure of autocorrelation

#### • Moran's I

$$I(d) = \frac{\sum_{i}^{n} \sum_{j \neq i}^{n} w_{ij} (x_{i} - \overline{x}) (x_{j} - \overline{x})}{S^{2} \sum_{i}^{n} \sum_{j \neq i}^{n} w_{ij}}$$



### Moran's I: An example

- Use **spdep** package
- Estimate neighbors
- Generate weighted average

```
1 set.seed(2354)
2 # Load the shapefile
3 s <- readRDS(url("https://github.com/mgimond/Data/raw/gh-pages
4
5 # Define the neighbors (use queen case)
6 nb <- poly2nb(s, queen=TRUE)
7
8 # Compute the neighboring average homicide rates
9 lw <- nb2listw(nb, style="W", zero.policy=TRUE)
10 #estimate Moran's I
11 moran.test(s$HR80,lw, alternative="greater")</pre>
```

```
Moran I test under randomisation

data: s$HR80
weights: lw

Moran I statistic standard deviate = 1.8891, p-value = 0.02944
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance
0.136277593 -0.015151515 0.006425761
```



### Moran's I: An example

```
1 M1 <- moran.mc(s$HR80, lw, nsim=9999, alte
2
3
4
5 # Display the resulting statistics
6 M1</pre>
```

Monte-Carlo simulation of Moran I

```
data: s$HR80
weights: lw
number of simulations + 1: 10000

statistic = 0.13628, observed rank = 9575, p-
value = 0.0425
alternative hypothesis: greater
```



## The challenge of areal data

- Spatial autocorrelation threatens *second order* randomness
- Areal data means an infinite number of potential distances
- $\bullet$  Neighbor matrices, W, allow different characterizations

# Interpolation

## Interpolation

- Goal: estimate the value of z at new points in  $x_i$
- Most useful for continuous values
- Nearest-neighbor, Inverse Distance Weighting, Kriging

## Nearest neighbor

- find i such that  $|\mathbf{x_i} \mathbf{x}|$  is minimized
- The estimate of z is z<sub>i</sub>

```
aq <- read csv("data/ad viz plotval data.csv") %>%
      st as sf(., coords = c("SITE LONGITUDE", "SITE LATITUDE"),
      st transform(., crs = "EPSG:8826") %>%
     mutate(date = as date(parse datetime(Date, "%m/%d/%Y"))) %>9
     filter(., date >= 2023-07-01) %>%
     filter(., date > "2023-07-01" & date < "2023-07-31")
   aq.sum <- aq %>%
      group by(., `Site Name`) %>%
      summarise(., meanpm25 = mean(DAILY AQI VALUE))
 9
10
   nodes <- st make grid(ag.sum,</pre>
                           what = "centers")
12
13
   dist <- distance(vect(nodes), vect(aq.sum))</pre>
   nearest <- apply(dist, 1, function(x) which(x == min(x)))
   aq.nn <- aq.sum$meanpm25[nearest]</pre>
   preds <- st as sf(nodes)</pre>
   preds$aq <- aq.nn</pre>
19
   preds <- as(preds, "Spatial")</pre>
   sp::gridded(preds) <- TRUE</pre>
22 preds.rast <- rast(preds)</pre>
```



Weight closer observations more heavily

$$\hat{z}(\mathbf{x}) = \frac{\sum_{i=1}^{i=1} W_i z_i}{\sum_{i=1}^{i=1} W_i}$$

where

$$\mathbf{w}_{i} = |\mathbf{x} - \mathbf{x}_{i}|^{-\alpha}$$

and  $\alpha > 0$  ( $\alpha = 1$  is inverse;  $\alpha = 2$  is inverse square)

- terra::interpolate provides flexible interpolation methods
- Use the gstat package to develop the formula



idp=0.5







