

SWINBURNE UNIVERSITY OF TECHNOLOGY

**VPNs** 

Lecture fourteen

### **Outline of Lecture**

- Tunnelling protocols
- IPSec
- Internet Key Exchange (IKE)



## Learning objectives

- You should be able to:
  - Explain the basics of tunnelling technology
  - Describe the main components and functions of the IPSec protocol
  - Explain in general terms Internet Key Exchange



# **Basics of tunnelling**

- Tunneling the most important component of VPN technology
- The technique for encapsulating an entire data packet in the packet of another protocol
  - The header of the tunnelling protocol is prepended to the original packet
- Three protocols in a tunnel
  - The carrier protocol
  - The encapsulating protocol
  - The passenger protocol



# Components of tunnelling

- Target network
- Initiator node
- Home Agent (HA)
- Foreign Agent (FA)



# **Tunnel operations**

- Two phases
  - Initiator node requests a VPN session and is authenticated by the corresponding Home Agent (HA)
  - 2. Data transfer occurs across the tunnel



### Phase 1: Initiation

- Initiator sends the connection request to the Foreign Agent (FA) in the local network
- 2. The FA authenticates the request
- If successfully authenticated, the FA sends the request to the target network Home Agent (HA)
- If the request is accepted by the HA the FA sends the encrypted login id and password
- The HA verifies the login. If successful the HA sends a Register Reply message and tunnel id to the FA
- The tunnel is established when the FA receives the Register Reply



### Phase 1: Initiation

1. Initiates the request 2. Sends the request to the HA



- 4. Tunnel is established
- 3. Verifies request and returns tunnel id



### Phase 2: Data transfer

- 1. The initator starts sending data packets to the FA
- 2. The FA creates the tunnel header and a header of a routable protocol and prepends it to the data packet
- 3. The FA forwards the resulting routable encrypted packet to the HA using the supplied tunnel id
- 4. On receiving the encrypted information the HA strips off the tunnel header and routable protocol header
- 5. The original data is then forwarded to the intended destination node



### Phase 2: Data transfer





## **Tunnelled packet format**





## Tunnelled packet format

- Header of routable protocol
  - Addresses of source (FA) and destination (HA)
  - Usually the standard IP packet header
- Tunnel packet header
  - Protocol type of payload
  - Checksum
  - Key
    - identification of initiator
  - Sequence number
  - Source routing
- Payload
  - Original packet sent by the initiator to the FA



# **Tunnelling Protocols**

- Carrier protocol
  - Used to route tunnelled packets to destination across the network
  - Usually IP
- Encapsulating protocol
  - The protocol used to encapsulate the payload
- Passenger protocol
  - The original data that needs to be encapsulated

Faculty of Science, Engineering and Technology

PPP, IP most commonly used



# Tunnel types

- Voluntary tunnels
  - end to end tunnels
  - created at the request of one of the end-points
  - exclusive use by a single communication
- Compulsory tunnels
  - created and configured by an intermediate device
  - typically used to transmit authentication information
    - eg Before a tunnel is created all communications go to a NAS
  - usually shared by multiple communications



### Question

- Which of the following statements about compulsory tunnels is true?:
  - They are known as end-to-end tunnels
  - The number of tunnels depends on the number of communicating pairs
  - An intermediate device plays an important role in these tunnels



### **IPSec**

- Internet Protocol Security (IPSec)
- A suite of protocols
  - AH: Authentication Header
  - ESP: Encapsulating Security Payload
  - FIP-140-2 and others
- Operates at layer 3
  - Tightly integrated with IP
  - Can be used with IPv4
  - Integrated into IPv6
- Very flexible
  - able to integrate into many different authentication and encryption schemes and use many different tunneling technologies



### **IPSec**

- Developed by IETF
- RFC2401
  - Security Architecture for the Internet Protocol
- RFC2402
  - IP Authentication Header
- RFC2406
  - IP Encapsulating Security Payload
- RFC1852
  - IP Authentication using Keyed SHA
- RFC3602
  - The ESP AES-CBC transform



# **IPSec Security Associations (SAs)**

- Security Associations (SAs) a fundamental concept of IPSec
- An SA is a logical unidirectional connection between two entities that uses IPSec services
- SAs are unidirectional
  - bi directional communication requires two SAs to be defined
- An SA defines:
  - Authentication protocol, keys and algorithms
  - Mode and keys for Authentication Header (AH) or Encapsulation Security Payload (ESP) protocols of IPSec suite
  - Key related information
  - SA information
  - Cryptographic synchronisation



# IPSec Security Associations (SAs)

- SAs are made up of three fields
  - Security Parameter Index
    - 32 bit field that identifies the security protocol
  - Destination IP address
    - Always a unicast address
  - Security protocol
    - AH or ESP
- Each SA defines a security association in one direction only for either authentication (AH) or encryption and authentication(ESP)
- To define authentication and encryption in a bidirectional link will require 2 SAs
  - Sometimes an "SA bundle"



# IPSec Security Associations (SAs)

- An SA uses two databases
  - Security Association Database (SAD)
    - keeps track of information related to each SA
  - Security Policy Database
    - specifies what traffic is carried across the tunnel
    - similar to firewall rules



### Authentication Header (AH) Protocol

- Used to ensure integrity of packet
  - not confidentiality
- An authentication header is prepended to the payload
- Uses a shared secret key to construct a hash of the contents of the payload
  - Hash based Message Authentication Code (HMAC)
- Destination uses key to calculate the hash
  - if the same then payload has not been changed
- Most commonly used hash algorithms
  - SHA1 (HMAC-SHA1)
  - SHA256 (HMAC-SHA256)



### **Authentication Header (AH) Protocol**





### **Authentication Header (AH) Protocol**

- Next header
  - Protocol number
- Payload length
- Reserved
- SPI
  - index into SAD for Security Association information
- Sequence number
- Authentication data



# Encapsulating Security Payload (ESP) Protocol

- Provides both confidentiality AND authentication
- ESP uses encryption for confidentiality and hashing for authentication
- Authentication algorithms used are the same as AH
- Encryption algorithms symmetric
  - use shared secret key
    - CBC-AES, 3DES, IDEA most commonly used
- ESP encrypts and authenticates the payload only



# Encapsulating Security Payload (ESP) Protocol





### Question

- We only wish to authenticate our data.
  - Which IPSec protocol do we use?
  - How many SAs?
- We wish to encrypt and authenticate our data
  - Which IPSec protocol do we use?
  - How many SAs?



### **IPSec modes**

- SAs in IPSec can operate in two modes
  - Transport mode
    - protects upper layer protocols only
    - IPSec header is inserted between the IP header and the payload
  - Tunnel mode
    - protects the entire IP datagram
    - New IP header is created and the IPSec header is inserted between the new IP header and the old IP header



### **IPSec transport mode with AH**

Original Packet



AH Transport Mode Packet

Original AH TCP Data
IP Header



### IPSec transport mode with ESP

Original Packet



ESP Transport Mode Packet

Original IP Header

ESP Header

TCP

Data

ESP Trailer ESP Authen. (Opt)



### IPSec tunnel mode with AH

Original Packet IP Header TCP Data

AH Tunnel Mode Packet





### IPSec tunnel mode with ESP







# Key management

- AH and ESP each need separate keys for send and receive
  - Potentially 4 keys
    - Sometimes wish to open an authentication tunnel only, sometimes an encryption and authentication tunnel
- Keys can be distributed manually
  - Changed infrequently
    - not every packet or session
- However, automated key management desirable
  - Large number of users manual key exchange a large overhead
  - Need an automated method of key exchange



# Internet Key Exchange

- RFC 2409
  - Derived from ISAKMP/ Oakley
  - Not technology dependent
    - Can be used with any security mechanism
- Not fast, but key exchange occurs relatively infrequently
- Assumes a secure channel already exists
  - Usually Diffie-Hellman
    - More later when we talk about cryptography
- IKE has two phases



# IKE phase 1

- Authenticates communicating ends
- Establishes secure IKE channel for establishing the SA
- ISAKMP SA established
  - Encryption algorithms
  - Hash functions
  - Authentication mechanisms to protect encryption keys
- Generates shared secret key using Diffie-Helman hybrid key exchange



# IKE phase 2

- Deals with the establishment of SAs for IPSec
- Establishes SA including
  - Authentication methods
  - Hash functions
  - Encryption algorithms
- Typically occur ever 4 to 5 minutes
  - Much more frequently than IKE phase 1



# Cisco IPSec Configuration (Intranet)





# Cisco IPSec Configuration

Extract from R0 running-config

```
Untitled - Notepad
File Edit Format View Help
crypto isakmp policy 99
encr aes
authentication pre-share
group 5
crypto isakmp key cisco address 192.168.0.2
crypto ipsec transform-set vpntransform esp-aes 128 esp-sha-hmac
crypto map vpnmap 999 ipsec-isakmp
set peer 192.168.0.2
set transform-set vpntransform
match address vpnacl
interface SerialO/O/O
ip address 192.168.0.1 255.255.255.252
clock rate 64000
crypto map vpnmap
ip access-list extended vpnacl
permit ip 192.168.1.0 0.0.0.255 192.168.2.0 0.0.0.255
```



### Cisco IPSec Status

```
🐚 Untitled - Notepad
                                                                                                            _ | D | X |
File Edit Format View Help
RO#show crypto ipsec sa
|interface: Serial0/0/0
    Crypto map tag: vpnmap, local addr 192.168.0.1
   protected vrf: (none)
   local ident (addr/mask/prot/port): (192.168.1.0/255.255.255.0/0/0)
   remote ident (addr/mask/prot/port): (192.168.2.0/255.255.255.0/0/0)
   current_peer 192.168.0.2 port 500
   PERMIT, flags={origin_is_acl,}
#pkts encaps: 7, #pkts encrypt: 7, #pkts digest: 0
   #pkts decaps: 6, #pkts decrypt: 6, #pkts verify: 0
   #pkts compressed: 0, #pkts decompressed: 0
   #pkts not compressed: 0, #pkts compr. failed: 0
   #pkts not decompressed: 0, #pkts decompress failed: 0
   #send errors 1, #recv errors 0
     local crypto endpt.: 192.168.0.1, remote crypto endpt.:192.168.0.2
     path mtu 1500, ip mtu 1500, ip mtu idb serialo/0/0
     current outbound spi: 0x0E535F22(240344866)
     inbound esp sas:
      spi: 0x2D956D44(764767556)
        transform: esp-aes 128 esp-sha-hmac ,
         in use settings ={Tunnel, }
        conn id: 2006, flow_id: FPGA:1, crypto map: vpnmap sa timing: remaining key lifetime (k/sec): (4525504/3078)
        IV size: 16 bytes
        replay detection support: N
         Status: ACTIVE
     inbound ah sas:
     inbound pcp sas:
     outbound esp sas:
      spi: 0x0E535F22(240344866)
        transform: esp-aes 128 esp-sha-hmac ,
         in use settings ={Tunnel, }
        conn id: 2007, flow_id: FPGA:1, crypto map: vpnmap sa timing: remaining key lifetime (k/sec): (4525504/3078)
        IV size: 16 bytes
        replay detection support: N
        Status: ACTIVE
     outbound ah sas:
     outbound pcp sas:
```



### Problems with IPSec

### Compression

- Encrypted data does not compress
- Compression algorithms need to be applied before encryption

#### QoS

- QoS makes use of the DSCP field in the IP header
- If this is encrypted then it cannot be read by routers on the transmission path

#### Firewalls and NAT

- If the internal packet is encrypted then NAT cannot translate the IP address
- If internal packet is encrypted then firewall cannot do deep packet inspection or stateful inspection



## **Summary**

- Tunneling protocols
  - Fundamental concept of VPNs
    - Enable private and authenticated communications across public network infrastructure
- IPSec
  - Operates at layer 3
  - Most commonly implemented VPN protocol
  - Authentication Header (AH)
  - Encapsulating Security Payload (ESP)
- IKE
  - Automated exchange of keys

