See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/276947968

Experimental Densities and Excess Volumes for Binary Mixtures Containing Propionic Acid, Acetone, and Water from 283.15 K to 323.15 K at Atmospheric Pressure

ARTICLE in JOURNAL OF CHEMICAL & ENGINEERING DATA · NOVEMBER 2003

Impact Factor: 2.04 · DOI: 10.1021/je030102f

CITATIONS READS
21 11

21

5 AUTHORS, INCLUDING:

Alejandro Estrada-Baltazar

Instituto Tecnológico de Celaya

31 PUBLICATIONS 233 CITATIONS

SEE PROFILE

Kenneth R. Hall

Texas A&M University

251 PUBLICATIONS **4,004** CITATIONS

SEE PROFILE

Antonio De León-Rodríguez

Instituto Potosino de Investigación Científica...

58 PUBLICATIONS 968 CITATIONS

SEE PROFILE

Mariana Ramos-Estrada

Universidad Michoacana de San Nicolás de H...

19 PUBLICATIONS 146 CITATIONS

SEE PROFILE

Experimental Densities and Excess Volumes for Binary Mixtures Containing Propionic Acid, Acetone, and Water from 283.15 K to 323.15 K at Atmospheric Pressure

Alejandro Estrada-Baltazar

Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, CP 78210, México

Antonio De León-Rodríguez

Departamento de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, SLP, CP 78210, México

Kenneth R. Hall

Chemical Engineering Department, Texas A&M University, College Station, Texas 77843

Mariana Ramos-Estrada and Gustavo A. Iglesias-Silva*

Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, Celaya Gto. CP 38010, Mexico

We present experimental density measurements for the binary systems acetone + water, propionic acid + water, and acetone + propionic acid from 283.15 K to 323.15 K over the entire composition range. A vibrating tube densimeter produced the experimental densities. We have also calculated excess volumes and correlated them with a Redlich-Kister polynomial form.

Introduction

Experimental densities are important for design of and production in industrial plants. Also, excess volumes are of great importance for understanding the nature of molecular interactions. These properties have been used extensively to comprehend how the molecules interact within a mixture. Experimental density measurements for polar systems are needed to develop new correlations or equations of state. Highly polar substances, such as water, produce strong interactions because of its small volume and its large polarity.

Experimental density measurements for the acetone + water mixture come from Dizechi and Marschell,¹ Noda et al.,² Howard and McAllister,³ Lebed and Eddin,⁴ Winnick and Kong,⁵ Tsuji et al.,⁶ Baldauf and Knapp,⁶ Konobeev and Lyapin,⁶ Subnis et al.,⁶ Ernst et al.,¹⁰ and Yergovich et al.¹¹ For the propionic acid + water mixture, Lebed and Eddin⁴ measured the liquid density at 298.15 K over a reduced concentration range. Also, Korpela¹² measured the compression of propionic acid + water and from their results calculated liquid densities at three different temperatures. For propionic acid + acetone, the only existing measurements are those by Lebed and Eddin⁴ at 298.15 K and molar compositions higher than 0.7.

In this work, we have measured the density of acetone + water, propionic acid + water, and acetone + propionic acid from 283.15 K to 323.15 K using a vibrating densimeter. We have calculated excess molar volumes from the measured densities and represented their behavior with a Redlich-Kister type polynomial.

Experimental Section

Apparatus and Procedures. We have used a vibrating densimeter, DMA 5000, from Anton Paar to measure the densities of the three binary systems. The manufacturers stated accuracy for the density measurement is ± 0.005 kg·m $^{-3}$. The cell contains a platinum resistance thermometer that has an accuracy of ± 0.01 K on the ITS-90. The precision in the density and temperature measurements is ± 0.001 kg·m $^{-3}$ and ± 0.001 K, respectively. The measurement cell consists of a borosilicate glass U tube inside a thermostated jacket. The tube holds approximately 1 mL of sample. When the U tube oscillates, assuming that the sample volume trapped in the oscillations node is constant, then the sample density is a function of the oscillation frequency

$$\rho = \frac{(\tau^2 c - 4\pi^2 m)}{4\pi^2 v} \tag{1}$$

where ρ is the sample density, v is the cell volume, m is the cell mass, and c is a spring constant. The manufacturer calibrated the apparatus with ultrapure water and air. To test the calibration, we have measured the density of water before and after measuring all the binary mixture densities.

Chemicals. Fermont International supplied the acetone with a stated purity of 99.7%. Water, propionic acid, and methanol came from J.T. Baker. The stated purities for propionic acid and methanol were 99% and 99.8%, respectively. The water grade was HPLC. We used the reagents as received because the chemicals contain small quantities of several impurities and the manufacturer attempted to

^{*} Corresponding author.

Figure 1. Percentage deviations of experimental densities of water from the equation of state given by Wagner and Pruss: ¹³ ○, before the experimental measurements; ●, after the experimental measurements.

Figure 2. Percentage deviations of experimental densities of methanol from the equation of state given by de Reuck and Craven: 14 ●, this work; ■, Nikam et al.; 35 ▲, Dizechi and Marshall; 1 ▼, Ortega; 36 ◆, Papanastasiou and Ziogas; 37 ○, Garcia; 38 △, Tu et al.; 39 □, Tu et al. 40

remove them using the same techniques available to us. We prepared mixtures gravimetrically using an analytical balance (Ohaus model AS120S) with a precision of ± 0.1 mg. The overall uncertainty in the mole fractions is $\pm 0.2\%$.

Results and Discussion

We have measured the densities of pure water before and after the experiment to check for possible instabilities during the measurement. Figure 1 shows the deviations of the water measurements from the formulation adopted by the International Association for the Properties of Water and Steam (IAPWS) developed by Wagner and Pruss. 13 Also, we have measured the density of methanol, and we have compared it with the values of different authors as well as with the value from the equation of state from the International Union of Pure and Applied Chemistry developed by de Reuck and Craven.¹⁴ Figure 2 shows that our densities agree with the equation of state within $\pm 0.05\%$. The agreement with different authors is within $\pm 0.08\%$. We have also measured the densities of acetone and propionic acid. Table 1 shows that our densities for these two pure substances agree with the literature values within an average value of ± 0.24 kg·cm⁻³.

We have measured experimental densities (ρ) from 283.15 K to 323.15 K at atmospheric pressure. Tables 2–4 show the results for propionic acid + water, acetone + water, and acetone + propionic acid, respectively. We have compared our experimental results with values reported

Table 1. Comparison of Experimental Density Measurements with Literature Values

		$ ho/\mathrm{kg}\cdot\mathrm{m}^{-3}$			
substance	<i>T</i> /K	this work	lit. (ref no.)		
acetone	288.15	796.037	795.80 (17)		
			795.71 (18)		
	293.15	790.355	790.02 (19)		
			790.15 (20)		
			790.30 (21)		
			790.10 (22)		
	298.15	784.638	785.00 (4)		
			784.37 (23)		
			784.80 (24)		
			784.37 (18)		
			784.45 (19)		
			784.40 (17)		
			784.70 (2)		
	303.15	778.876	780.39 (19)		
			779.23 (25)		
			779.00 (26)		
	308.15	773.065	772.81 (18)		
			773.00 (22)		
	313.15	767.205	767.40 (27)		
	318.15	761.288	761.04 (18)		
			761.30 (22)		
propionic acid	293.15	993.261	993.30 (28)		
			993.48 (29)		
	298.15	987.847	998.08 (30)		
			987.80 (12)		
			987.87 (31)		
			987.90 (32)		
	303.15	982.440	982.60 (33)		
	308.15	977.037	977.58 (34)		
	313.15	971.635	971.70 (12)		
			971.87 (29)		
			971.74 (31)		

Figure 3. Densities of acetone (1) + water (2) as a function of mole fraction at different temperatures. This work: ●, 293.15 K; ■, 298.15 K; ▲, 303.15 K; \blacktriangledown , 323.15 K. Howard and McAllister:³ \bigcirc , 293.15 K; \square , 298.15 K; \triangle , 323.15 K. Dizechi and Marschall:¹ dot in a box, 293.15 K; dot in a circle, 298.15 K; dot in an up triangle, 303.15 K; dot in a down triangle, 323.15 K. Noda et al.:² plus in a diamond, 298.15 K. Lebed and Eddin:⁴ plus in a circle, 298.15 K.

in the literature. Figures 3-5 show that our measurements agree with the values published for acetone + water and propionic acid + water but not with the values published for the system acetone + propionic acid. Our densities agree

Table 2. Experimental Densities (ρ) and Excess Molar Volumes (V^{E}) for the Propionic Acid (1) + Water (2) Mixture

	T	ρ	$V^{\!\scriptscriptstyle m E}$		T	ρ	$V_{\rm E}$		T	ρ	$V^{\rm E}$
X_1	K	kg·m ⁻³	$\overline{\mathrm{cm}^3 \cdot \mathrm{mol}^{-1}}$	<i>X</i> ₁	K	kg⋅m ⁻³	cm³⋅mol ⁻¹	X_1	K	kg⋅m ⁻³	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$
1.0000 0.8915 0.7965 0.6974	283.151 283.155 283.153 283.151	1004.112 1010.323 1015.434 1020.512	$-0.44880 \\ -0.75208 \\ -0.99021$	0.5989 0.5008 0.4007 0.3012	283.153 283.150 283.152 283.152	1025.171 1029.263 1032.634 1034.467	-1.146 62 -1.223 02 -1.220 36 -1.127 36	0.2029 0.1298 0.0000	283.153 283.151 283.150	1033.970 1026.892 999.691	-0.948 42 -0.655 73
1.0000 0.8915 0.7965 0.6974	288.149 288.144 288.148 288.149	998.688 1005.044 1010.263 1015.460	-0.42766 -0.71395 -0.93775	0.5989 0.5008 0.4007 0.3012	288.148 288.148 288.144 288.148	1020.223 1024.441 1027.989 1029.920	$-1.082\ 28$ $-1.151\ 10$ $-1.145\ 74$ $-1.050\ 12$	0.2029 0.1298 0.0000	288.148 288.148 288.148	1030.054 1023.974 999.083	$-0.88688 \\ -0.61670$
1.0000 0.8915 0.7965 0.6974	293.146 293.146 293.147 293.145	993.261 999.760 1005.103 1010.391	$-0.408\ 39$ $-0.680\ 11$ $-0.889\ 12$	0.5989 0.5008 0.4007 0.3012	293.147 293.146 293.146 293.145	1015.256 1019.592 1023.308 1025.583	-1.02263 -1.08421 -1.07629 -0.98638	0.2029 0.1298 0.0000	293.145 293.146 293.145	1026.077 1020.975 998.181	-0.830 09 -0.582 00
1.0000 0.8915 0.7965 0.6974	298.146 298.146 298.144 298.145	987.847 994.478 999.927 1005.312	$-0.390\ 26$ $-0.647\ 69$ $-0.843\ 52$	0.5989 0.5008 0.4007 0.3012	298.147 298.145 298.146 298.144	1010.279 1014.722 1018.606 1021.142	-0.96696 -1.02150 -1.01152 -0.92487	0.2029 0.1298 0.0000	298.145 298.147 298.146	1022.053 1017.845 997.019	$-0.77758 \\ -0.54965$
1.0000 0.8915 0.7965 0.6974	303.145 303.147 303.145 303.149	982.440 989.192 994.744 1000.223	$-0.373\ 00$ $-0.617\ 22$ $-0.800\ 77$	0.5989 0.5008 0.4007 0.3012	303.145 303.145 303.145 303.145	1005.287 1009.797 1013.877 1016.760	$ \begin{array}{r} -0.91473 \\ -0.96104 \\ -0.95078 \\ -0.87057 \end{array} $	0.2029 0.1298 0.0000	303.148 303.145 303.145	1017.971 1014.610 995.617	-0.72857 -0.51979
1.0000 0.8915 0.7965 0.6974	308.147 308.146 308.145 308.146	977.037 983.905 989.551 995.120	-0.35689 -0.58841 -0.76039	0.5989 0.5008 0.4007 0.3012	308.146 308.147 308.149 308.149	1000.274 1004.168 1009.120 1012.254	$ \begin{array}{r} -0.865\ 26 \\ -0.872\ 68 \\ -0.893\ 49 \\ -0.816\ 77 \end{array} $	0.2029 0.1298 0.0000	308.146 308.149 308.147	1013.836 1011.276 994.001	-0.68264 -0.49203
1.0000 0.8915 0.7965 0.6974	313.145 313.145 313.146 313.145	971.635 978.613 984.345 990.001	$-0.341\ 71$ $-0.561\ 03$ $-0.722\ 17$	0.5989 0.5008 0.4007 0.3012	313.145 313.145 313.146 313.145	995.242 999.956 1004.329 1007.692	-0.81849 -0.85315 -0.83921 -0.76552	0.2029 0.1298 0.0000	313.145 313.145 313.146	1009.645 1007.848 992.181	-0.639 49 -0.466 27
1.0000 0.8915 0.7965 0.6974	318.145 318.145 318.145 318.145	966.240 973.307 979.126 984.864	-0.326 69 $-0.535 16$ $-0.686 24$	0.5989 0.5008 0.4007 0.3012	318.145 318.145 318.145 318.145	990.186 994.902 999.507 1003.085	$ \begin{array}{r} -0.774\ 56 \\ -0.799\ 68 \\ -0.788\ 61 \\ -0.717\ 76 \end{array} $	0.2029 0.1298 0.0000	318.145 318.145 318.145	1005.395 1004.324 990.130	$-0.59960 \\ -0.44301$
1.0000 0.8915 0.7965 0.6974	323.150 323.144 323.144 323.149	960.843 967.999 973.895 979.705	$-0.312 \ 02$ $-0.509 \ 27$ $-0.649 \ 99$	0.5989 0.5008 0.4007 0.3012	323.144 323.147 323.145 323.145	985.106 990.008 994.651 998.434	-0.73050 -0.75488 -0.73794 -0.66983	0.2029 0.1298 0.0000	323.145 323.144 323.145	1001.085 1000.708 988.003	$-0.559\ 36$ $-0.418\ 97$

Figure 4. Densities of propionic acid (1) + water (2) as a function of the mole fraction at 298.15 K: ●, this work; ○, Lebed and Eddin;⁴ □, Korpalla.¹²

with the experimental values of Leben and Eddin⁴ at mole fractions between 0.8 and 1. At compositions between 0.6 and 0.8 a disagreement exists with their values. However, our experimental values for pure propionic acid agree with

Figure 5. Densities of acetone (1) + propionic acid (2) as a function of the mole fraction at 298.15 K: ●, this work; ○, Lebed and Eddin.4

the values published in the literature. This means that according to the values published by Leben and Eddin⁴ the densities must have a change in the slope with respect to composition. Such an anomalous behavior would be difficult to believe.

Table 3. Experimental Densities (ρ) and Excess Molar Volumes (V^{E}) for the Acetone (1) + Water (2) Mixture

			4 /			` '		` '	` '		
	T	ρ	$V^{\!\scriptscriptstyle m E}$		T	ρ	$V^{\!\scriptscriptstyle m E}$		T	ρ	$V^{\!\scriptscriptstyle m E}$
X_1	K	kg⋅m ⁻³	cm³⋅mol ⁻¹	x_1	K	kg⋅m ⁻³	cm³⋅mol ⁻¹	<i>X</i> ₁	K	kg⋅m ⁻³	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$
1.0000 0.8916 0.7934 0.6984	283.154 283.154 283.151 283.151	801.669 812.997 824.028 836.647	0.505 35 0.856 42 1.029 31	0.5903 0.4986 0.3998 0.2973	283.152 283.151 283.151 283.152	853.092 868.988 889.080 913.382	1.084 99 1.035 25 0.873 44 0.630 51	0.2193 0.0988 0.0000	283.152 283.152 283.150	932.823 966.507 999.691	0.462 92 0.218 23
1.0000 0.8916 0.7934 0.6984	288.149 288.149 288.148 288.150	796.037 807.424 818.534 831.252	0.525 20 0.907 10 1.094 19	0.5903 0.4986 0.3998 0.2973	288.149 288.149 288.148 288.148	847.829 863.861 884.145 908.777	1.160 73 1.115 95 0.954 59 0.705 21	0.2193 0.0988 0.0000	288.148 288.149 288.148	928.610 963.567 999.083	0.535 03 0.256 38
1.0000 0.8916 0.7934 0.6984	293.146 293.146 293.146 293.146	790.355 801.797 812.982 825.797	0.564 31 0.956 46 1.157 07	0.5903 0.4986 0.3998 0.2973	293.146 293.146 293.145 293.145	842.508 858.674 879.148 904.105	1.233 55 1.193 32 1.032 03 0.776 02	0.2193 0.0988 0.0000	293.145 293.146 293.145	924.322 960.497 998.181	0.596 92 0.291 76
1.0000 0.8916 0.7934 0.6984	298.146 298.145 298.145 298.145	784.638 796.130 807.383 820.292	0.592 88 1.004 98 1.218 52	0.5903 0.4986 0.3998 0.2973	298.144 298.146 298.145 298.145	837.135 853.436 874.098 899.375	1.304 28 1.267 98 1.106 39 0.843 53	0.2193 0.0988 0.0000	298.145 298.144 298.146	919.968 957.313 997.019	0.655 52 0.324 70
1.0000 0.8916 0.7934 0.6984	303.145 303.145 303.145 303.145	778.876 790.413 801.735 814.735	0.621 15 1.052 45 1.278 54	0.5903 0.4986 0.3998 0.2973	303.145 303.145 303.144 303.144	831.707 848.142 868.996 894.587	1.373 12 1.340 35 1.177 86 0.908 05	0.2193 0.0988 0.0000	303.145 303.146 303.145	915.544 954.010 995.617	0.711 33 0.355 74
1.0000 0.8916 0.7934 0.6984	308.146 308.146 308.149 308.146	773.065 784.645 796.028 809.120	0.649 01 1.099 65 1.337 65	0.5903 0.4986 0.3998 0.2973	308.145 308.149 308.149 308.149	826.220 842.791 863.836 889.735	1.440 57 1.410 82 1.247 13 0.970 27	0.2193 0.0988 0.0000	308.147 308.146 308.147	911.052 950.610 994.001	0.764 76 0.384 83
1.0000 0.8916 0.7934 0.6984	313.145 313.145 313.145 313.145	767.205 778.818 790.262 803.446	0.677 24 1.146 70 1.396 09	0.5903 0.4986 0.3998 0.2973	313.145 313.146 313.145 313.145	820.677 837.381 858.617 884.822	1.506 64 1.479 71 1.314 45 1.030 30	0.2193 0.0988 0.0000	313.145 313.145 313.146	906.488 947.117 992.181	0.816 17 0.412 07
1.0000 0.8916 0.7934 0.6984	318.145 318.145 318.145 318.149	761.288 772.936 784.437 797.707	0.704 81 1.192 92 1.453 60	0.5903 0.4986 0.3998 0.2973	318.148 318.145 318.145 318.145	815.068 831.924 853.341 879.849	1.571 25 1.545 66 1.379 06 1.087 46	0.2193 0.0988 0.0000	318.145 318.146 318.145	901.855 943.497 990.130	0.864 85 0.437 77
1.0000 0.8916 0.7934 0.6984	323.144 323.144 323.143 323.145	755.314 766.990 778.546 791.900	0.733 31 1.240 38 1.512 50	0.5903 0.4986 0.3998 0.2973	323.146 323.145 323.144 323.144	809.395 826.399 848.021 874.812	1.636 86 1.612 72 1.443 46 1.145 12	0.2193 0.0988 0.0000	323.148 323.146 323.145	897.151 939.767 988.003	0.914 08 0.464 58

We have calculated excess molar volumes from the experimental values using

$$V^{E} = \frac{x_{1}M_{1} + x_{2}M_{2}}{\rho} - \left(\frac{x_{1}M_{1}}{\rho_{1}} + \frac{x_{2}M_{2}}{\rho_{2}}\right)$$
(2)

where ρ is the mixture density, x_i is the mole fraction of species i, ρ_1 and ρ_2 are the pure densities of components 1 and 2, and M_1 and M_2 are the molar masses of pure components 1 and 2. Calculated excess volume values appear in Tables 2–4.

A Redlich–Kister¹⁵ type equation can fit the calculated excess molar volumes using a least-squares method from SAS.¹⁶ The Redlich–Kister equation is

$$V^{E} = x_{1}x_{2} \sum a_{i}(x_{1} - x_{2})^{i}$$
 (3)

where a_i are the adjusted coefficients and they appear in Table 5 together with their standard deviations defined as

$$\sigma = \left[\frac{\sum (V_{\text{exp}}^{\text{E}} - V_{\text{cal}}^{\text{E}})^2}{n - m} \right]^{1/2} \tag{4}$$

In eq 4, n is the number of experimental points and m is the number of parameters. Figure 6 shows the variation of the excess molar volumes of acetone + water with mole fraction at different temperatures. This system shows positive deviations and an increase in the excess volume with temperature. This is an indication that, even though water can form hydrogen bonds with acetone, they are not strong enough to form a compact structure. On the other

Figure 6. Excess molar volume for the acetone (1) + water (2) mixture as a function of the mole fraction at different temperatures: ●, 283.15 K; ■, 293.15 K; \blacktriangle , 303.15 K; \blacktriangledown , 313.15 K; \spadesuit , 323.15 K; \frown , eq 3.

hand, propionic acid + water and acetone + propionic acid systems show negative deviations from ideal solution behavior, as shown in Figures 7 and 8, respectively.

Table 4. Experimental Densities (ρ) and Excess Molar Volumes (V^{E}) for the Acetone (1) + Propionic Acid (2) Mixture

	T	ρ	$V^{\!\scriptscriptstyle m E}$		T	ρ	$V^{\rm E}$		T	ρ	$V^{\!\scriptscriptstyle m E}$
<i>X</i> ₁	K	kg⋅m ⁻³	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	x_1	K	kg⋅m ⁻³	cm³⋅mol ⁻¹	x_1	K	kg⋅m ⁻³	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$
1.0000 0.8987 0.7703 0.6887	283.154 283.151 283.150 283.151	801.669 826.598 856.850 874.585	$-0.724\ 31$ $-1.393\ 61$ $-1.620\ 78$	0.6030 0.5001 0.4011 0.3046	283.153 283.152 283.150 283.151	892.899 913.785 933.088 951.246	-1.778 68 $-1.805 24$ $-1.696 24$ $-1.471 78$	0.1991 0.1014 0.0000	283.151 283.151 283.151	970.353 987.375 1004.110	$-1.093\ 46$ $-0.625\ 31$
1.0000 0.8987 0.7703 0.6887	288.149 288.149 288.149 288.149	796.037 821.062 851.407 869.180	-0.74353 -1.42939 -1.66185	0.6030 0.5001 0.4011 0.3046	288.148 288.148 288.148 288.148	887.520 908.446 927.765 945.944	-1.82257 -1.85055 -1.73888 -1.51036	0.1991 0.1014 0.0000	288.149 288.149 288.149	965.023 982.013 998.688	$-1.12162 \\ -0.64165$
1.0000 0.8987 0.7703 0.6887	293.146 293.146 293.147 293.147	790.355 815.482 845.923 863.740	-0.76361 -1.46638 -1.70451	0.6030 0.5001 0.4011 0.3046	293.147 293.146 293.146 293.146	882.117 903.081 922.423 940.613	-1.86872 -1.89758 -1.78332 -1.54939	0.1991 0.1014 0.0000	293.146 293.146 293.146	959.680 976.644 993.261	-1.15073 -0.65860
1.0000 0.8987 0.7703 0.6887	298.146 298.145 298.145 298.145	784.638 809.870 840.415 858.280	-0.784 30 -1.504 74 -1.748 76	0.6030 0.5001 0.4011 0.3046	298.146 298.145 298.145 298.146	876.699 897.705 917.072 935.277	$ \begin{array}{r} -1.916\ 65 \\ -1.946\ 31 \\ -1.829\ 12 \\ -1.589\ 53 \end{array} $	0.1991 0.1014 0.0000	298.145 298.146 298.146	954.344 971.282 987.847	$-1.181\ 12$ $-0.676\ 06$
1.0000 0.8987 0.7703 0.6887	303.145 303.145 303.145 303.145	778.876 804.221 834.877 852.794	-0.806 02 $-1.544 83$ $-1.794 92$	0.6030 0.5001 0.4011 0.3046	303.145 303.143 303.145 303.145	871.260 892.312 911.708 929.933	$ \begin{array}{r} -1.966 \ 65 \\ -1.997 \ 00 \\ -1.876 \ 66 \\ -1.631 \ 17 \end{array} $	0.1991 0.1014 0.0000	303.145 303.145 303.145	948.999 965.920 982.440	$-1.212\ 11$ $-0.693\ 95$
1.0000 0.8987 0.7703 0.6887	308.146 308.148 308.148 308.149	773.065 798.532 829.305 847.276	-0.828 99 -1.586 79 -1.842 97	0.6030 0.5001 0.4011 0.3046	308.146 308.148 308.148 308.15	865.798 886.900 906.330 924.579	$ \begin{array}{r} -2.019\ 06 \\ -2.049\ 98 \\ -1.926\ 30 \\ -1.674\ 58 \end{array} $	0.1991 0.1014 0.0000	308.148 308.146 308.147	943.653 960.555 977.037	-1.24473 -0.71240
1.0000 0.8987 0.7703 0.6887	313.145 313.146 313.145 313.146	767.205 792.797 823.695 841.731	-0.852 71 -1.630 37 -1.893 50	0.6030 0.5001 0.4011 0.3046	313.145 313.146 313.146 313.146	860.309 881.462 900.935 919.210	$ \begin{array}{r} -2.073 \ 69 \\ -2.104 \ 81 \\ -1.977 \ 99 \\ -1.719 \ 52 \end{array} $	0.1991 0.1014 0.0000	313.146 313.145 313.145	938.294 955.192 971.635	-1.278 19 -0.731 96
1.0000 0.8987 0.7703 0.6887	318.145 318.145 318.145 318.145	761.288 787.018 818.051 836.154	-0.878 01 -1.676 52 -1.946 56	0.6030 0.5001 0.4011 0.3046	318.145 318.145 318.145 318.145	854.791 876.007 895.523 913.828	$ \begin{array}{r} -2.130\ 80 \\ -2.162\ 58 \\ -2.031\ 93 \\ -1.766\ 24 \end{array} $	0.1991 0.1014 0.0000	318.145 318.145 318.145	932.928 949.825 966.240	$-1.31290 \\ -0.75196$
1.0000 0.8987 0.7703 0.6887	323.144 323.145 323.144 323.148	755.314 781.194 812.366 830.541	$-0.905\ 07$ $-1.724\ 94$ $-2.002\ 21$	0.6030 0.5001 0.4011 0.3046	323.146 323.144 323.144	849.244 890.087 908.430	-2.19083 -2.08802 -1.81502	0.1991 0.1014 0.0000	323.144 323.148 323.148	927.551 944.448 960.843	$-1.34909 \\ -0.77249$

Table 5. Parameters for the Redlich-Kister Equation

Table 5.	Paramete	ers for the	Redlich-K	lister Equa	ition
T/K	a_0	a_1	a_2	a_3	σ
		Acetone	+ Water		
283.15	4.0987	2.4597	-0.4727	-1.0397	0.0130
288.15	4.4208	2.4004	-0.3995	-1.0624	0.0132
293.15	4.6829	2.3522	0.0000	-1.0927	0.0177
298.15	4.9897	2.3130	0.0000	-1.0996	0.0163
303.15	5.2862	2.2825	0.0000	-1.1036	0.0152
308.15	5.5748	2.2603	0.0000	-1.1028	0.0144
313.15	5.8567	2.2439	0.0000	-1.0878	0.0138
318.15	6.1290	2.2411	0.0000	-1.0843	0.0132
323.15	6.4050	2.2482	0.0000	-1.0997	0.0128
		Propionic A	cid + Water		
283.15	-4.9046	0.8884	-0.7600	0.0000	0.0142
288.15	-4.6112	0.7704	-0.7412	0.0000	0.0129
293.15	-4.3424	0.6732	-0.7429	0.0000	0.0109
298.15	-4.0900	0.5824	-0.7430	0.0000	0.0097
303.15	-3.8529	0.5046	-0.7522	0.0000	0.0083
308.15	-3.5858	0.4285	-0.8914	0.0000	0.0140
313.15	-3.4164	0.2292	-0.7736	0.3913	0.0045
318.15	-3.2121	0.1425	-0.8019	0.4682	0.0037
323.15	-3.0186	0.0000	-0.7948	0.6665	0.0036
	A	Acetone + Pr	ropionic Aci	d	
283.15	-7.2251	-0.8322	-0.3736	0.0000	0.0102
288.15	-7.4061	-0.8511	-0.3999	0.0000	0.0103
293.15	-7.5941	-0.8731	-0.4248	0.0000	0.0104
298.15	-7.7887	-0.8965	-0.4508	0.0000	0.0106
303.15	-7.9913	-0.9238	-0.4756	0.0000	0.0107
308.15	-8.2029	-0.9529	-0.5025	0.0000	0.0109
313.15	-8.4229	-0.9845	-0.5302	0.0000	0.0110
318.15	-8.6534	-1.0217	-0.5591	0.0000	0.0111
323.15	-8.8955	-1.0637	-0.5871	0.0000	0.0122

For the system propionic acid + water, the excess molar volume decreases with temperature while, in the system acetone + propionic acid, the excess molar volume increases

Figure 7. Excess molar volume for the propionic acid (1) + water (2) mixture as a function of the mole fraction at different temperatures: •, 283.15 K; ■, 293.15 K; ▲, 303.15 K; ▼, 313.15 K; ♠, 323.15 K; —, eq 3.

with temperature. Because the two systems show negative deviations, this is an indication that systems with propionic

Figure 8. Excess molar volume for the acetone (1) + propionic acid (2) mixture as a function of the mole fraction at different temperatures: •, 283.15 K; ■, 293.15 K; ▲, 313.15 K; ▼, 323.15 K; —, eq 3.

acid form more compact structures than systems such as acetone + water.

Conclusions

We have measured liquid densities for acetone + water, propionic acid + water, and acetone + propionic acid binary systems using a vibrating densimeter. Also, we have calculated the excess molar volume using a Redlich-Kister type equation. The new measurements can facilitate understanding of behavior among polar substances and developing new theories or equations of state.

Literature Cited

- (1) Dizechi, M.; Marschall, E. Viscosity of Some Binary and Ternary Liquid Mixtures. J. Chem. Eng. Data 1982, 27, 358-363.
- Noda, K.; Ohashi, M.; Ishida, K. Viscosities and Densities at 298.15 K for Mixtures of Methanol, Acetone, and Water. J. Chem. Eng. Data 1982, 27, 326-328.
- (3) Howard, K. S.; McAllister, R. A. Surface Tension of Acetonewater Solutions Up to Their Normal Boiling Points. AIChE J. **1957**, *3*, 325–329.
- Lebed, V. I.; Eddin, F. S. Physico-Chemical Properties of the Solutions of Acetic, Propionic, Butyric and Benzoic Acids in Water-Organic Solvents. Part 2. Systems (Propionic, Butyric, Benzoic Acids + Water + Acetone). Zh. Khim. Niev. Rast. 1992, 1, 153-
- (5) Winnick, J.; Kong, J. Excess Volumes of Mixtures Containing Polar Liquids. *Ind. Eng. Chem. Fundam.* 1974, *13*, 292–293.
 (6) Tsuji, K.; Ichikawa, K.; Yamamoto, H. Solubilities of Oxygen and Nitrogen in Acetone + Water Mixed Solvent. *Kagaku Kogaku Ronbunshu* 1987, *6*, 825–830.
- Baldauf, W.; Knapp, H. Experimental Determination of Diffusion Coefficients, Viscosities, Densities and Refractive Indexes of 11 Binary Liquid Systems. Ber. Bunsen-Ges. Phys. Chem. 1983, 87, 304–309.
- (8) Konobeev, B. I.; Lyapin, V. V. Density, Viscosity, and Surface Tension Data on Certain Binary Systems. Zh. Prikl. Khim (Leningrad) 1970, 43, 806-813.
- Subnis, S. W.; Bhagwat, W. V.; Kanugo, R. B. Application of Mixture Law to Rheochor. Part II. J. Indian Chem. Soc. 1948,
- (10) Enrst, R. C.; Litkenhous, E. E.; Spanyer, J. W. The Physical Properties of the Ternary System Acetone-*n*-Butyl Alcohol-Water. *J. Phys. Chem.* **1932**, *36*, 842–854.

- (11) Yergovich, T. W.; Swift, G. W.; Kurata, F. Density and Viscosity of Aqueous Solutions of Methanol and Acetone from Freezing Point to 10 °C. J. Chem. Eng. Data 1971, 16, 222–226.
- (12) Korpela, J. The Densities and Compression Isotherms of Formic Acid-, Acetic acid-, Propionic Acid-, and Isobutyric Acid-Water Mixtures. *Acta Chem. Scand.* 1971, 25, 2852–2864.
 (13) Wagner, W.; Pruss, A. The IAPWS Formulation 1995 for the
- Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data 2002, 31,
- (14) de Reuck, K. M.; Craven, R. J. B. Methanol, International Thermodynamic Tables of the Fluid State-12; IUPAC; Blackwell Scientific Publications: London, 1993.
- (15) Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Ind. Eng. *Čhem.* **1948**, 40, 345–348.
- (16) SAS. The SAS System for Windows, Release 6.08; SAS Institute Inc.: Cary, NC, 1991.
- (17) Marino, G.; Piñeiro, M. M.; Iglesias, M.; Orge, B.; Tojo, J. Temperature Dependence of Binary Mixing Properties for Acetone, Methanol, and Linear Aliphatic Alkanes (C₆-C₈). *J. Chem. Eng. Data* **2001**, *46*, 728-734.
- (18) Frech, H. T. Excess Enthalpies of (Acetone + Water) at 278.15, 288.15, 298.15, 308.15, 318.15 and 323.15 K. *J. Chem. Thermodyn.* **1989**, *21*, 801–809.
- (19) Kinart, C. M.; Kinart, W. J.; Cwiklinska, A. Density and Viscosity at Various Temperatures for 2-Methoxyethanol + Acetone Mixtures. J. Chem. Eng. Data 2002, 47, 76-78.
- Tsierkezos, N. G.; Molinou, I. E. Densities and Viscosities of Ethylene Glycol Binary Mixtures at 293.15. J. Chem. Eng. Data **1999**, 44, 955-968.
- (21) Baglai, A. K.; Gurarii, L. L.; Kuleshov, G. G. Physical Properties of Compounds used in Vitamin Synthesis. J. Chem. Eng. Data **1988**, *33*, 512–518.
- (22) Hafez, M.; Hartland, S. Densities and Viscosities of Binary Systems Toluene-Acetone and 4-Methyl-2-pentanone-Acetic Acid at 20, 25, 35, and 45 °C. J. Chem. Eng. Data 1976, 21, 179-182.
- Comelli, F.; Francesconi, R. Densities and Excess Volumes of Binary Mixtures Containing Propylene Carbonate + Linear pr Cyclic Ketones at 298.15 K. *J. Chem. Eng. Data* **1995**, *40*, 805 –
- (24)Comelli, F.; Francesconi, R. Densities and Excess Volumes of $Binary\ Mixtures\ Containing\ Diethyl\ Carbonate + Linear\ or\ Cyclic$ Ketones at 298.15 K. *J. Chem. Eng. Data* **1995**, *40*, 25–27
- Nath, J.; Tripathi, A. D. Binary Excess Systems of 1,1,2,2-Tetrachloroethane with Benzene, Toluene, p-Xylene, Acetone, and Cyclohexane. 1. Excess Volumes, Ultrasonic Velocities, and Adiabatic Compressibilities at 298.15 and 308.15 K. J. Chem. Eng. Data 1983, 28, 263-266.
- Subbarao, B. V.; Rao, C. V. Isobaric Ternary Vapor-Liquid Equilibria System. J. Chem. Eng. Data 1966, 11, 158–162. Chandak, B. S.; Nageshwar, G. D.; Mene, P. S. Excess Gibbs Free
- Energy, Enthalpy, and Volume and Viscosity of Acetone-Methyl Cellosolve Mixtures. *J. Chem. Eng. Data* **1979**, *24*, 267–269.
- Malijevska, I.; Vlckova, D. Vapour-Liquid Equilibrium in Strongly Associated Systems. The propionic Acid-n-Heptane System. Collect. Czech. Chem. Commun. 1985, 50, 2101–2110.
 Kohler, F.; Atrops, H.; Kalali, H.; Liebermann, E.; Wilhelm, E.;
- Ratkovics, F.; Salamon, T. Molecular Interactions in Mixtures of Carboxilic Acids with Amines 1. Melting Curves and Viscosities. J. Phys. Chem. 1981, 85, 2520-2524.
- (30) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, Physical Properties and Methods of Purification; Wiley-Intercience: New York, 1986.
- Comelli, F.; Francesconi, R. Excess Molar Enthalpies and Excess Molar Volumes of Propionic Acid + Octane, + Cyclohexane, + 1,3,5-Trimethylbenzene, + Oxane, or 1,4-Dioxane at 313.15 K. J. Chem. Eng. Data 1996, 41, 101–104. Wisniak, J.; Tamir, A. Vapor-Liquid Equilibria in the Ternary
- Systems water + formic acid + acetic acid and water + acetic acid + propionic acid. *J. Chem. Eng. Data* **1977**, *22*, 253–260.
- (33) Hales, J. L.; Gundry, H. A.; Ellender, J. H. Liquid Densities from 288 to 490 K of four Organic Oxygen Compounds. J. Chem. Thermodyn. 1983, 15, 211-215.
- (34) Drabek, Ö.; Cibulka, I. Excess Molar Volumes of Binary Mixtures of Acetic Acid and Propionic Acid with some members of Homologous series of alkanes. Collect. Czech. Chem. Commun. 1991, 56, 736 - 744
- (35) Nikam, P. S.; Jadhav, M. C.; Hasan, M. Density and Viscosity of Mixtures of Dimethyl Sulfoxide + Methanol, + Ethanol, + Propan-1-ol, + Propan-2-ol, + Butan-1-ol, + 2-Methylpropan-1ol, and + 2-Methylpropan-2-ol at 298.15 K and 303.15 K. J. Chem. Eng. Data 1996, 41, 1028-1031.
- (36) Ortega, J. Densities and Refractive Indices of Pure Alcohols as a Function of Temperature. J. Chem. Eng. Data 1982, 27, 312-
- Papanastasiou, G. E.; Ziogas, I. I. Physical Behavior of Some Reaction Media. 3. Density, Viscosity, Dielectric Constant, and

- Refractive Index Changes of Methanol + Dioxane Mixtures at
- Refractive Index Changes of Methanol + Dioxane Mixtures at Several Temperatures. *J. Chem. Eng. Data* 1992, *37*, 167–172.
 (38) Garcia, B.; Herrera, C.; Leal, J. M. Shear Viscosities of Binary Mixtures: 2-pyrrolidinone with 1-alkanols. *J. Chem. Eng. Data* 1991, *36*, 269–274.
 (39) Tu, Ch. H.; Lee, S. L.; Peng, I. H. Excess Volumes and Viscosities of Binary Mixtures of Aliphatic Alcohols (C₁ C₄) with Nitromethane. *J. Chem. Eng. Data* 2001, *46*, 151–155.
 (40) Tu, Ch. H.; Ku, H. Ch.; Wang, W. F.; Chou, Y. T. Volumetric and Viscometric Properties of Methanol, Ethanol, Propan-2-ol, and

2-Methylpropan-2-ol with a Synthetic C_{6+} Mixtures from 298.15 K to 318.15 K. $\emph{J. Chem. Eng. Data}$ 2001, $46,\,317-321.$

Received for review January 6, 2003. Accepted July 28, 2003. The Texas Engineering Experiment Station, COSNET Project 647.02-P, Convenio de financiamiento C02-FAI-04-17.22, and CONACyT have provided financial support for this work.

JE030102F