Questi lucidi sono basati su una traduzione in italiano dei lucidi in inglese del Prof. Jeffrey D. Ullman

http://infolab.stanford.edu/~ullman/ialc/spr1 0/spr10.html#LECTURE%20NOTES

http://www-db.Stanford.edu/~Ullman/ialc.html

Proprietà di chiusura dei Linguaggi Context-Free

Proprietà di chiusura dei CFL

- ◆I CFL sono chiusi rispetto all'unione, alla concatenazione e allo star di Kleene.
- Ma non sono chiusi rispetto all'intersezione o alla differenza.
- E quindi non sono chiusi rispetto al complemento.

Chiusura dei CFL rispetto all' unione

- Siano L ed M due CFL con grammatiche
 G e H, rispettivamente.
- Assumiamo che G ed H non hanno variabili in comune.
 - I nomi delle variabili non influenzano il linguaggio.
- ◆Siano S₁ ed S₂ i simboli iniziali di G e H.

Chiusura rispetto all'Unione – (2)

- ◆Formiamo una nuova grammatica per L ∪ M prendendo tutti i simboli e le produzioni di G e H.
- Poi aggiungiamo un nuovo simbolo iniziale S.
- igoplus Aggiungiamo le produzioni $S \rightarrow S_1 \mid S_2$.

Chiusura rispetto all'Unione – (3)

- Nella nuova grammatica, tutte le derivazioni iniziano con S.
- ◆Il primo passo sostituisce S con S₁ o con S₂.
- Nel primo caso, il risultato deve essere una stringa in L(G) = L nel secondo caso una stringa in L(H) = M.

Chiusura dei CFL rispetto alla Concatenazione

- Siano L ed M due CFL con grammatiche
 G e H, rispettivamente.
- Assumiamo che G ed H non hanno variabili in comune.
- ◆Siano S₁ ed S₂ i simboli iniziali di G e H.

Chiusura rispetto alla Concatenazione – (2)

- Formiamo una nuova grammatica per LM iniziando con tutti i simboli e le produzioni di G e H.
- Aggiungiamo un nuovo simbolo iniziale S.
- \bullet Aggiungiamo la produzione S -> S_1S_2 .
- Ogni derivazione da S produce una stringa in L seguita da una in M.

Chiusura rispetto allo Star

- ◆Sia L generato dalla grammatica G, con simbolo iniziale S₁.
- ♦ Formiamo una nuova grammatica per L* introducendo in G un nuovo simbolo iniziale S e le produzioni S -> S_1S | ε.
- ◆Un derivazione (a destra) da S genera una sequenza di zero o più S₁, ciascuno dei quali genera una stringa in L.

Chiusura dei CFL rispetto all'inversione

- Se L è un CFL con grammatica G, formiamo una grammatica per L^R prendendo il "reverse" del lato destro di ogni produzione.
- ◆Esempio: Sia G definita da S -> 0S1 | 01.
- ◆L(G)^R è generato dalla grammatica S -> 1S0 | 10.

Non chiusura rispetto all'Intersezione

- ◆ Diversamente dai linguaggi regolari, la classe dei CFL non è chiusa rispetto a ○.
- Sappiamo che $L_1 = \{0^n1^n2^n \mid n \ge 1\}$ non è un CFL (usare il pumping lemma).
- ◆Invece $L_2 = \{0^n1^n2^i \mid n \ge 1, i \ge 1\}$ lo è.
 - ◆ CFG: S -> AB, A -> 0A1 | 01, B -> 2B | 2.
- ◆E lo è anche $L_3 = \{0^i 1^n 2^n \mid n \ge 1, i \ge 1\}$.
- lacktriangle Ma $L_1 = L_2 \cap L_3$.

Non chiusura rispetto alla Differenza

- Possiamo provare qualcosa di più generale:
 - Ogni classe di linguaggi che è chiusa rispetto alla differenza è chiusa rispetto all'intersezione.
- ♦ Prova: $L \cap M = L (L M)$.
- Quindi, se i CFL fossero chiusi rispetto alla differenza, sarebbero chiusi rispetto all'intersezione, ma non lo sono.

Intersezione con un linguaggio Regolare

- L'intersezione di due CFL non è necessariamente context free.
- Ma l'intersezione di un CFL con un linguaggio regolare è sempre un CFL.
- Prova "eseguiamo" un DFA e un PDA in parallelo e notiamo che il risultato è un PDA.
 - I PDA accettano per stato finale.

DFA e PDA in Parallelo

Nota: nei due trasparenti seguenti useremo lo stesso simbolo per la funzione di transizione e per la funzione di transizione estesa del DFA A.

Costruzione Formale

- \bullet Sia δ_{Δ} la funzione di transizione del DFA A.
- \bullet Sia δ_P la funzione di transizione del PDA P.
- Gli stati del nuovo PDA sono [q,p], dove q è uno stato di A e p è uno stato di P.
- $\delta([q,p], a, X)$ contiene ($[\delta_A(q,a),r], \alpha$) se $\delta_P(p, a, X)$ contiene (r, α).
 - Nota che a potrebbe essere ε , nel qual caso $\delta_A(q,a) = q$.

Costruzione Formale – (2)

Gli stati finali del nuovo PDA sono gli stati [q,p] tali che q è uno stato finale di A e p è uno stato finale di P.

Costruzione Formale – (3)

◆ Facile induzione:

```
([q_0,p_0], w, Z_0)+* ([q,p], ε, α)
se e solo se
\delta_A(q_0,w) = q
e in P: (p_0, w, Z_0)+*(p, ε, α).
```