Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра алгоритмических языков

Отчет по заданию

«Численное решение трехмерного гиперболического уравнения в частных производных на ПВС IBM Blue Gene/P и IBM Polus»

Выполнил студент 624 группы Пучкин Данила Андреевич Вариант 5

Москва 2018

Математическая постановка задачи

Целью задания является исследование производительности алгоритма получения численного решения гиперболического уравнения с использованием технологий MPI и MPI/OpenMP на ПВС IBM Blue Gene/P и IBM Polus. В варианте 5 подразумевалось использование граничных условий 1-го рода для переменных y и z и использование периодических условий для переменной x.

Рассмотрим математическую постановку задачи:

В трехмерной замкнутой области

$$\Omega = [0 \le x \le L_x] \times [0 \le y \le L_y] \times [0 \le z \le L_z],$$

для $(0 \le t \le T]$ требуется найти решение u(x,y,z,t) уравнения в частных производных

$$\frac{\delta^2 u}{\delta t^2} = \Delta u \tag{1}$$

с начальными условиями

$$u|_{t=0} = \phi(x, y, z) \tag{2}$$

$$\frac{\delta u}{\delta t} \mid_{t=0} = 0, \tag{3}$$

при условии, что на границах области заданы граничные условия

$$u(0, y, z, t) = u(L_x, y, z, t)$$
 $u_x(0, y, z, t) = u_x(L_x, y, z, t)$ (4)

$$u(x, 0, z, t) = 0$$
 $u(x, L_y, z, t) = 0$ (5)

$$u(x, y, 0, t) = 0$$
 $u(x, y, L_z, t) = 0$ (6)

Численный метод решения

Для численного решения задачи введем на Ω сетку $\omega_{h\tau} = \overline{\omega_h} \times \omega_{\tau}$, где

$$T = T_0, \quad L_x = L_{x_0}, \quad L_y = L_{y_0}, \quad L_z = L_{z_0}$$

$$\overline{\omega_h} = \{(x_i = ih_x, y_j = jh_y, z_k = kh_k), i, j, k = 0, 1, ..., N, h_x N = L_x, h_y N = L_y, h_z N = L_z\},$$

$$\omega_\tau = \{t_n = n\tau, n = 0, 1, ..., K, \tau K = T\}.$$

Для аппроксимации уравнения воспользуемся следующей системой уравнений:

$$\frac{u_{ijk}^{n+1} - 2u_{ijk}^n + u_{ijk}^{n-1}}{\tau^2} = \Delta_h u^n, \quad (x_i, y_j, z_k) \in \omega_h, \quad n = 1, 2, ..., K - 1,$$

где $\Delta_h u^n$ - семиточечный разностный аналог оператора Лапласа:

$$\Delta_h u^n = \frac{u_{i-1,j,k}^n - 2u_{i,j,k}^n + u_{i+1,j,k}^n}{h^2} + \frac{u_{i,j-1,k}^n - 2u_{i,j,k}^n + u_{i,j+1,k}^n}{h^2} + \frac{u_{i,j,k+1}^n - 2u_{i,j,k}^n + u_{i,j,k+1}^n}{h^2}.$$

Для начала счета должны быть заданы:

$$u_{ijk}^0 = \phi(x_i, y_j, z_k), \quad (x_i, y_j, z_k) \in \omega_h$$
$$u_{ijk}^1 = u_{ijk}^0 + \frac{\tau^2}{2} \Delta_h \phi(x_i, y_j, z_k)$$

Функция начального условия была выбрана следущей:

$$f(x, y, z) = \cos(x)\sin(y)\sin(z).$$

Тогда аналитическое решение задачи представимо в следующем виде:

$$f(x, y, z, t) = \cos(x)\sin(y)\sin(z)\cos(\sqrt{3}t).$$

Невязка вычислений находилась по следующим формулам:

$$\delta_n = \frac{\sum_{i,j,k} |u_{i,j,k}^n - u(x_i, y_j, z_k)|}{N^3}, \qquad \delta = \frac{\sum_0^{K-1} \delta_n}{K}.$$

Программная реализация

В качестве программной реализации был построен алгоритм на языке C++, осуществляющий блочное трехмерное разбиение сетки $\overline{\omega}_h$ между процессами (см. код в Приложении 1). Для параллельной обработки полученного блочного разбиения алгоритм использует технологии MPI и OpenMP: каждый блок разбиения обрабатывается своим процессом, при этом внутри процесса операторы цикла выполняются различными потоками. На вход алгоритм принимает 4 параметра: линейный размер

сетки $\overline{\omega}_h$ и 3 линейных размера блочного разбиения (размеры указывают число блоков по соответствующей оси). В качестве результата алгоритм выводит на экран время работы алгоритма и полученную при решении невязку. Вычисления производились на ПВС IBM Blue Gene/P и ПВС IBM Polus.

Основная программа хранится в файле main.cpp. Компиляция и запуск программы производится по разному на ПВС IBM Blue Gene/P и IMB Polus. В дальнейшем будем использовать следующие обозначения:

Х0 - число процессов;

X1 - линейный размер сетки $\overline{\omega}_h$;

Х2, Х3, Х4 - линейные размеры блочного разбиения.

Компиляция MPI-программы на IBM Polus: mpicxx main.cpp

Запуск MPI-программы на IBM Polus: bsub -n <X0> -W 00:30 mpirun -n <X1> a.out <X1> <X2> <X3> <X4>

Компиляция MPI-программы на IBM Blue Gene/P: mpicxx main.cpp

Запуск MPI-программы на IBM Blue Gene/P: mpisubmit.bg -n <X0> -m smp -e "OMP_NUM_THREADS = 4" a.out <X1> <X2> <X3> <X4>

Компиляция MPI/OpenMP-программы на IBM Blue Gene/P: mpixlcxx_r -qsmp=omp main.cpp

Запуск MPI/OpenMP-программы на IBM Blue Gene/P: mpisubmit.bg -n <X0> -m smp -e "OMP_NUM_THREADS = 3" a.out <X1> <X2> <X3> <X4>

Допольнительные возможности реализации:

В качестве дополнительного задания была реализована возможность разбиения сетки на произвольное число областей, в том числе и на нечетное. Единственным требованием является кратность размера сетки числу блоков по каждой оси.

Также в качестве дополнительного задания реализована аппроксимация периодических условий, не выходящих за границы области, что достигается путем передачи и хранения каждым процессом соседних для блока граней.

Результаты расчетов

Далее приводятся таблицы с полученными результатами запусков программы на Polus и на Blue Gene P.

Polus									
Число процессоров $N_{m{ u}}$	Число точек сетки <i>N</i> ³	Время решения <i>Т</i>	Ускорение <i>§</i>	Невязка δ					
1	128³	17,09	1,0	1,40E-06					
2	128 ³	9,82	1,9	1,40E-06					
4	128 ³	5,85	3,9	1,40E-06					
8	128 ³	2,70	7,4	1,40E-06					
1	256³	135,88	1,0	6,87E-07					
2	256³	103,38	1,7	6,87E-07					
4	256 ³	45,23	3,9	6,87E-07					
8	256³	18,34	8,6	6,87E-07					
1	512 ³	1071,39	1,0	3,41E-07					
2	512 ³	673,84	1,7	3,41E-07					
4	512 ³	363,41	3,9	3,41E-07					
8	512 ³	140,32	8,4	3,41E-07					

Blue Gene/P									
Число процессоров N _p	Число точек сетки N ³	Невязка δ	Время решения <i>Т_{МРІ}</i>	Ускорение <i>Ѕ_{МРІ}</i>	Время решения Т _{МРІ/ОрепМР}	Ускорение <i>S_{MPI/OpenMP}</i>	$\frac{T_{MPI}}{T_{MPI/OpenMP}}$		
128	128³	0,0059	3,3	1,00	0,5	6,60	6,94		
256	128 ³	0,0059	1,7	0,52	0,2	16,50	7,10		
512	128 ³	0,0059	0,9	0,27	0,1	33,00	6,26		
128	256 ³	0,0092	26,1	1,00	3,4	7,68	7,72		
256	256 ³	0,0092	13,1	0,50	1,7	15,35	7,85		
512	256 ³	0,0092	6,6	0,25	0,9	29,00	7,57		
128	512 ³	0,0102	207,6	1,00	26,4	7,85	7,85		
256	512 ³	0,0102	103,8	2,00	13,0	15,97	7,98		
512	512 ³	0,0102	52,1	3,99	6,7	31,17	7,82		
128	1024 ³	0,0051			208,6				
256	1024 ³	0,0051			103,3				
512	1024 ³	0,0051			52,4				
128	1536 ³	0,0026			697,0				
256	1536 ³	0,0026			350,9				
512	1536 ³	0,0026			174,7				