

ДАНО:

ABCD — прямоугольная трапеция $\angle BCD = 120^0$ CD = 10

НАЙТИ:

$$AD - BC = ?$$

РЕШЕНИЕ:

1)Для начала найдём

 $\angle ADC = 180^0 - \angle BCD = 180^0 - 120^0 = 60^0$ (как односторонние углы при $BC_{\parallel}AD$ и секущей CD),

$$\angle ADC = \angle HDC = 60^{\circ}$$

(Примечание - это один и тот же угол, просто обозначения разные);

- 2) Далее проведём высоту CH и рассмотрим прямоугольный ΔCHD . В нем $\angle HCD = 90^{0} \angle HDC = 90^{0} 60^{0} = 30^{0}$ (по свойству суммы острых углов прямоугольного Δ);
- 3) Далее найдём катет

$$HD = \frac{1}{2}CD = \frac{1}{2} \cdot 10 = 5$$

(по свойству прямоугольного Δ с острым углом в 30⁰);

4) Дальше докажем, что

$$BC = AH : BC_{\parallel}AH$$

(по определению трапеции - основания параллельны) и $AB_{\parallel}CH$ (так как две прямые, перпендикулярные к третьей, между собой параллельны):

 $AB \perp AD \ (ABCD$ — прямоугольная трапеция) и $CH \perp AD \ ($ по построению $)) \Rightarrow ABCH$ -параллелограмм (по признаку параллелограмма) $\Rightarrow BC = AH \ ($ по свойству параллелограмма);

5) Тогда $AD = AH + HD = BC + 5 \Rightarrow AD - BC = 5$.

Ответ: 5.