Network Modeling and Simulation

Academic Year 2019-2020

Professors Luca Marchetti and Federico Reali

Mathematical modelling of cancer stem cell-targeted immunotherapy

Daniel Sigal, Michelle Przedborski, Darshan Sivaloganathan, Mohammad Kohandel

Cancer Cells: CSCs and nCSCs

Cancer Stem Cells (CSCs) - ALDH high:

Non-differentiated cells

Most potential for self-renewal and differentiation

Only constitute about 1-10% of the tumor size

Contribute to faster tumor growth (high tumorigenicity)

Non-CSC (nCSCs) - ALDH low:

Differentiated cells

Include cancer cells with different features

Different degrees of differentiation

Introduction

Normal Differentiation

Cancer Stem Cell

Main Goal:

Modelling tumor growth and therapy response discriminating between CSCs and nCSCs

Populations Considered by the Model:

CSCs (S)

nCSCs (P)

Dendritic Cells (D_i) Either CSC or

Cytotoxic T-cells (T_i) nCSC specific

Chemotherapeutic agent (C)

Model

Assumptions:

- Dendritic cells activate cytotoxic T-cells giving rise to 2 phenotypes Ts, Tp
- All cells die by natural processes
- T-helper cells activity not considered

$$\begin{split} \frac{dS}{dt} &= \alpha_S S + \rho_{PS} P - \rho_{SP} S - \beta_S S T_S - \delta_S S - \Gamma_S S C \\ \frac{dP}{dt} &= \alpha_P P + \alpha_{SP} S + 2\rho_{SP} S - \rho_{PS} P - \beta_P P T_P - \delta_P P - \Gamma_P P C \\ \frac{dT_S}{dt} &= \kappa_{TS} T_S^n \frac{D_S}{s_{TS} + D_S} - \delta_{TS} T_S \\ \frac{dT_P}{dt} &= \kappa_{TP} T_P^n \frac{D_P}{s_{TP} + D_P} - \delta_{TP} T_P \\ \frac{dD_S}{dt} &= \gamma_{DS} D S - \beta_{DS} D_S T_S - \delta_{DS} D_S \\ \frac{dD_P}{dt} &= \gamma_{DP} D P - \beta_{DP} D_P T_P - \delta_{DP} D_P \\ \frac{dC}{dt} &= -e_C C \end{split}$$

Parameters

Parameter values were estimated exactly only in the case they are not host specific or drug specific. In all the other cases boundaries were set

Parameter	Description	Units	
α_i	reproduction rate of cell type <i>i</i>	$ m day^{-1}$	
$lpha_{ij}$	production of cell type j through the asymmetrical division of cell type i	nCSC/CSC·day-1	
ρ_{ij}	conversion rate of cell type j to type i	day ^{−1}	
β_i	death rate of cell type i due to CTCs	aCTC cells ^{−1} ·day ^{−1}	
δ_i	death rate of cell type i due to natural processes	day ⁻¹	
T_i^n	population of naive CTCs specific to cell type i (constant)	mDCs	
κ_i	saturated activation rate of CTCs due to activation by mDCs	(aCTCs/nCTCs) · day ⁻¹	
s_i	mDC EC_{50} for CTC activation rate	mDCs	
γi	maturation rate of DCs due to consumption of cancer cells	(mDCs/iDCs) · day -1 · cancer cell -1	
D	population of iDCs (constant)	iDCs	
Γ_i	rate of killing of cell type i by the chemotherapeutic agent	$day^{-1} \cdot (\mu g/mL)^{-1}$	
e_C	elimination rate of the chemotherapeutic agent	day^{-1}	

Host-specific parameter	Value		
a_S	0.14 - 0.76 day ⁻¹		
α_{SP}	$0.4 - 6 \text{ day}^{-1}$		
α_P	0 - 0.8 day ⁻¹		
ρ_{PS}	fit as needed to keep %CSCs within 1-10% (see A.3)		
ρ_{SP}	0 - 0.76 day ⁻¹		
δ_S	0 - 0.25 day ⁻¹		
δ_{p}	0 - 0.39 day-1		
δ_{DS} , δ_{DP}	0.2 - 0.8 day ⁻¹		
Non-host-specific parameter	Value		
$\beta_{S_{P}}$ $\overline{\beta}_{P}$	$6.2 \times 10^{-8} \frac{1}{\text{aCTCs-day}}$		
$\kappa_{T_S} T_S^n$, $\kappa_{T_P} T_P^n$	$4.5 \times 10^4 \frac{\text{(aCTCs}/\mu\text{L})}{\text{day}}$		
s_{T_S} , s_{T_P}	$2.5 \times 10^4 \mathrm{mDCs/\mu L}$		
δ_{T_S} , δ_{T_P}	0.02 day ⁻¹		
$\gamma_{D_S}D$, $\gamma_{D_P}D$	$0.0063 \frac{\text{mDCs} / \mu \text{L}}{\text{day-cancer} \text{ cell} / \mu \text{L}}$		
β_{D_S} , β_{D_P}	$6.2 \times 10^{-8} \frac{1}{\text{aCTC}} \frac{1}{\text{cells} / \mu \text{L-day}}$		
Drug-specific parameter	Value		
Γ_S	7.8 - $14 \times 10^{-4} \text{ day}^{-1} \cdot (\mu \text{g/mL})^{-1}$		
Γ_P	$5.2 - 7.0 \times 10^{-3} \text{ day}^{-1} \cdot (\mu \text{g/mL})^{-1}$		
e_C	49 - 124 day ⁻¹		

Deterministic Simulations

Runge Kutta45 employed for the simulatons

Settings:

2 Simulations representing inoculation of 50,000 CSCs and nCSCs respectively

12 days necessary for taking roots

Numerical differences because of different algorithms

Deterministic Simulations

- Non treated
- Immunotherapy (CTCs , CTCp)
- Chemotherapy
- Immunotherapy + chemotherapy

Stochastic Simulations

ODEs translated into reactions to perform a stochastic simulation.

Discretised direct method used in the simulation.

1.
$$S \rightarrow 2S$$
 $c = r_S$

2.
$$P \rightarrow S$$
 $c = \rho_{PS}$

3.
$$S \rightarrow 2P$$
 $c = \rho_{SP}$

4.
$$P \rightarrow 2P$$
 $c = r_P$

5.
$$S \rightarrow S + P$$
 $c = \alpha_{SP}$

Similar results to deterministic setting but faster computations:

Deterministic ~ 0.08 s

Stochastic ~ 67 s

Stochastic Simulations

Stochasticity only plays a significant role when considering low cell numbers

Paper Parameter estimation

- Boundaries set empirically from literature
- Should be estimated independently to avoid overfitting

Non specific parameters determined fitting experimental data or making averages from different article estimations

Host and drug specific parameters must be estimated every time for each case fitting experimental data

Host-specific parameter	Value			
α_S	0.14 - 0.76 day ⁻¹			
α_{SP}	$0.4 - 6 \text{ day}^{-1}$			
α_P	$0 - 0.8 \text{ day}^{-1}$			
ρ _{PS}	fit as needed to keep %CSCs within 1-10% (see A.3)			
ρ_{SP}	0 - 0.76 day ⁻¹			
δ_S	0 - 0.25 day-1			
δ_P	0 - 0.39 day-1			
δ_{DS} , δ_{DP}	0.2 - 0.8 day ⁻¹			
Non-host-specific parameter	Value			
β_S , β_P	$6.2 \times 10^{-8} \frac{1}{\text{aCTCs-day}}$			
$\kappa_{T_S} T_S^n$, $\kappa_{T_P} T_P^n$	$4.5 \times 10^4 \frac{\text{(aCTCs / }\mu\text{L)}}{\text{day}}$			
s_{T_S} , s_{T_P}	$2.5 \times 10^4 \mathrm{mDCs/\mu L}$			
δ_{T_S} , δ_{T_P}	0.02 day ⁻¹			
$\gamma_{D_S} D$, $\gamma_{D_P} D$	$0.0063 \frac{\text{mDCs} / \mu \text{L}}{\text{day-cancer} \text{ cell} / \mu \text{L}}$			
β_{D_S} , β_{D_P}	$6.2 \times 10^{-8} \frac{1}{\text{aCTC}} \frac{1}{\text{cells} / \mu \text{L-day}}$			
Drug-specific parameter	Value			
Γ_S	7.8 - $14 \times 10^{-4} \text{ day}^{-1} \cdot (\mu \text{g/mL})^{-1}$			
Γ_{P}	$5.2 - 7.0 \times 10^{-3} \text{ day}^{-1} \cdot (\mu \text{g/mL})^{-1}$			
e_C	49 - 124 day ⁻¹			

Our Parameter estimation

No experimental data available in our case!

Considered data generated by the model affected by an error following a standard normal

Multistart non linear least square method employed for finding parameters value in first simulation

Model par	r _s = 0.3000	ρ_{ps} = 5.3 x 10 ⁻⁴	ρ _{sp} = 0.1500	r _p = 0.0500	$\alpha_{\rm sp}$ = 1.8000
Our par	r _s = 0.4747	$ \rho_{ps} = 10^{-4} $	ρ_{sp} = 0.7600	$r_p = 0.0279$	$\alpha_{sp} = 1.4930$

Conclusions

- The optimal treatment is combining the chemotherapy with CSC specific immunotherapy
- Ensures high tumor size reduction and low CSC amounts (recurring tumors less likely)
- Assumptions of the deterministic model are not fully satisfied
- Stochasticity is negligible at high cell numbers
- Stochastic approach is still necessary if we want to model early tumor phases
- Possible applications in the medical field to decide optimal treatment

