



# Meta Reinforcement Learning and Imitation Learning

#### **Prof. Joongheon Kim**

Korea University, School of Electrical Engineering Artificial Intelligence and Mobility Laboratory https://joongheon.github.io joongheon@korea.ac.kr

## Reinforcement Learning





## Reinforcement Learning





$$Q^*(s_t, a_t) \leftarrow Q(s_t, a_t) + a(r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$$





#### Two Approach to Solve





#### **Meta Reinforcement Learning**



#### **Imitation Learning**





**Imitation Learning** 



#### Meta Reinforcement Learning





[1] Timothy Hospedales, Antreas Antoniou, Paul Micaelli and Amos Storkey, "Meta-Learning in Neural Networks: A Survey," arxiv, 2020

## Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks





- [2] Chelsea Finn, Pieter Abbeel and Sergey Levine, "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks," ICML, 2017
- [3] Rui Wang et al., "Enhanced POET: Open-Ended Reinforcement Learning through Unbounded Invention of Learning Challenges and their Solutions," arxiv, 2020

## Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks





## Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks





[4] Code Available: <a href="https://github.com/uber-research/poet">https://github.com/cbfinn/maml rl</a>



#### To optimize for all environments with conventional DRL method,



#### MAML in Details



#### **Algorithm 3** MAML for Reinforcement Learning

**Require:**  $p(\mathcal{T})$ : distribution over tasks **Require:**  $\alpha$ ,  $\beta$ : step size hyperparameters

- 1: randomly initialize  $\theta$  2: **while** not done **do**
- 3: Sample batch of tasks  $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: **for all**  $\mathcal{T}_i$  **do**
- 5: Sample K trajectories  $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\}$  using  $f_{\theta}$  in  $\mathcal{T}_i$
- 7: Compute adapted parameters with gradient descent:
- 8: Sample trajectories  $\mathcal{D}_{i}^{r} = \{(\mathbf{x}_{1}, \mathbf{a}_{1}, ... \mathbf{x}_{H})\}$  using  $f_{\theta_{i}^{r}}$  in  $\mathcal{T}_{i}$
- 9: **end for**
- 10: Update  $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$  using each  $\mathcal{D}'_i$
- and  $\mathcal{L}_{\mathcal{T}_i}$  in Equation 4---

#### **Update Meta-policy**

**Fine Tuning** 



#### Summary of MAML





#### **Model-free Reinforcement Learning**

Markov Decision Process:  $\langle S, A, R, P, \gamma \rangle$ 

With trajectory 
$$D = \{s_1, a_1, r_1, ..., s_{T+1}\}$$

$$\min : \mathcal{L}(\theta, D) = -\mathbb{E}_{(s_t, a_t) \sim \pi_{\theta}} \left[ \sum_{t=1}^{H} R(s_t, a_t) \right] = -\mathbb{E}_{(s_t, a_t) \sim \pi_{\theta}} \left[ \sum_{t=1}^{H} r_t \right]$$

With Gradient Descent Method

$$\nabla_{\theta} \mathcal{L}(\theta, D) = -\mathbb{E}_{(s_t, a_t) \sim \pi_{\theta}} \left[ A^{\pi}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right]$$

**s.t.** 
$$A^{\pi}(s_t, a_t) = \sum_{t'=t}^{H} \gamma^{t'-t} r_{t'} - V^{\pi}(s_t)$$

#### **Model-Agnostic Reinforcement Learning**

Tasks:  $T = \{T_1, ..., T_i, ..., T_I\}$ 

Meta-Policy:  $\pi_{\theta}$ 

Fine-tuned Policy:  $\{\pi_{\theta_1}, ..., \pi_{\theta_i}, ..., \pi_{\theta_l}\}$ 

With Trajectory  $D_i^{train} = \{(s_1, a_1, r_1, ..., s_{T+1})_i\}$ :

$$\theta_{i} = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_{i}}(\theta, D_{i}^{\text{train}})$$

$$= \theta + \alpha \sum_{i} A^{\pi}(s_{t}, a_{t}) \nabla_{\theta}$$

 $= \theta + \alpha \sum_{t=0}^{\infty} A^{\pi}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$  $(s_t, a_t, r_t) \in D_i^{\text{train}}$ 

→ fine-tuning policy

With Trajectory  $D_i^{test}$ ,  $\theta_i$ :

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \boldsymbol{\beta} \sum_{\mathcal{T}_i \sim \mathcal{T}} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{T}_i}(\boldsymbol{\theta}_i, D_i^{\text{test}})$$
**5.t.**  $\mathcal{L}_{\mathcal{T}_i}(\boldsymbol{\theta}_i, D_i^{\text{test}}) = \mathcal{L}_{\mathcal{T}_i}(\boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{T}_i}(\boldsymbol{\theta}, D_i^{\text{train}}), D_i^{\text{test}})$ 

→ Update meta-policy

#### NoRML: No-Reward Meta Learning



#### **Model-Agnostic Reinforcement Learning**

- 1) Tasks:  $T = \{T_1, ..., T_i, ..., T_I\}$
- 2) Meta-Policy:  $\pi_{\theta}$
- 3) Fine-tuned Policy:  $\{\pi_{\theta_1}, ..., \pi_{\theta_i}, ..., \pi_{\theta_l}\}$

With Trajectory 
$$D_i^{train} = \{(s_1, a_1, r_1, ..., s_{T+1})_i\}$$
:

$$\theta_{i} = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_{i}}(\theta, D_{i}^{\text{train}})$$

$$-\theta + \alpha \sum_{i} \Delta^{\pi}(s_{i}, \sigma_{i}) \nabla_{\sigma} \log \sigma_{\sigma}(s_{i}, \sigma_{i}) \nabla_{\sigma}(s_{i}, \sigma_{i})$$

$$= \theta + \alpha \sum_{(s_t, a_t, r_t) \in D_t^{\text{train}}} A^{\pi}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

 $\rightarrow$  fine-tuning policy  $A^{\pi}(s_t, a_t) = \sum_{t'=t}^{H} \gamma^{t'-t} r_{t'} - V^{\pi}(s_t)$ 

With Trajectory  $D_i^{test}$ ,  $\theta_i$ :

$$\begin{aligned} \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \boldsymbol{\beta} \sum_{\mathcal{T}_i \sim \mathcal{T}} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{T}_i}(\boldsymbol{\theta}_i, D_i^{\text{test}}) \\ \text{s.t. } \mathcal{L}_{\mathcal{T}_i}(\boldsymbol{\theta}_i, D_i^{\text{test}}) = \mathcal{L}_{\mathcal{T}_i}(\boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{T}_i}(\boldsymbol{\theta}, D_i^{\text{train}}), D_i^{\text{test}}) \end{aligned}$$

→ Update meta-policy

#### **No Reward Meta Learning**

Goal: develop model-free meta-RL algorithm that can learn to quickly adapt a policy to dynamics changes and sensor drifts w/o external reward.

**Learned advantage function** 

$$A_{\boldsymbol{\psi}}(s_t, \boldsymbol{a}_t, s_{t+1})$$

Offset learning for better exploration

<sup>[5]</sup> Yuxiang Yang, Ken Caluwaerts, Atil Iscen, Jie Tan, Chelsea Finn, "NoRML: No-Reward Meta Learning," AAMAS, 2019

<sup>[6]</sup> Code Available: https://github.com/google-research/google-research/tree/master/norml



## In Previous RL (Task Specific RL Method)







## In MAML-RL (Task General RL Method)



Fast Adaptation & Well Trained but, still not guarantee sparse reward environment



## In NoRML-RL (Task General RL Method)



Fast Adaptation & Well Trained Good performance on sparse reward environment





- ICML 2018 Tutorial
  - https://sites.google.com/view/icml2018-imitation-learning/



Imitation Learning Tutorial ICML 2018



- ICML 2019 Tutorial
  - https://slideslive.com/38917941/imitation-prediction-and-modelbasedreinforcement-learning-for-autonomous-driving



Imitation, Prediction, and Model-Based Reinforcement Learning for Autonomous Driving

Sergey Levine

15th June 2019 - 10:50am



Gameplay

**Pro-Gamer** 



**Trained Agent** 



The goal of Imitation Learning is to train a policy to mimic the expert's demonstrations



Problems of RL







1. Reward Shaping

2. Safe Learning

3. Exploration process

Imitation Learning handles with these problems through the demonstration of the experts.

## Inverse Reinforcement Learning (IRL)



Artificial Intelligence and **M**obility Lab



Reward Function R Reinforcement

Learning  $\arg\max_{\pi} \mathrm{E}[\sum_{t} \gamma^{t} R(s_{t}) | \pi]$ 

Environment Model(MDP)

Optimal Policy  $\pi$ 

Reward **IRL** Function R R that explains **Expert Trajectories** 







## Behavior Cloning

- Define  $P^* = P(s|\pi^*)$  (distribution of states visited by expert)
- Learning objective

$$argmin_{\theta} E_{(s,a_E) \sim P^*} L(a_E, \pi_{\theta}(s))$$
$$L(a_E, \pi_{\theta}(s)) = (a_E - \pi_{\theta}(s))^2$$

#### Discussion

- Works well when  $P^*$  close to the distribution of states visited by  $\pi_{\theta}$
- Minimize 1-step deviation error along the expert trajectories





## Generative Adversarial Imitation Learning (GAIL), NIPS 2016

- Generative adversarial imitation learning (GAIL) learns a policy that can imitate expert demonstration using the adversarial network from generative adversarial network (GAN).
- Learning Objective

$$argmin_{\theta} \ argmax_{\emptyset} \ E[\log(D_{\emptyset}(s,a)] + E[\log(1-D_{\emptyset}(s,a))]$$



#### Imitation Learning Applications: Starcraft2



#### • Starcraft2

**States**: s = minimap, screen

**Action**: a = **select**, **drag** 

**Training set**:  $D = \{\tau := (s, a)\}$  from expert

**Goal**: learn  $\pi_{\theta}(s) \rightarrow a$ 

States: S Action: a Policy:  $\pi_{\theta}$ 

Policy maps states to actions :  $\pi_{\theta}(s) \rightarrow a$ 

• Distributions over actions :  $\pi_{\theta}(s) \rightarrow P(a)$ 

**State Dynamics:** P(s'|s,a)

Typically not known to policy

• Essentially the simulator/environment

**Rollout:** sequentially execute  $\pi_{\theta}(s_0)$  on initial state

• Produce trajectories au

 $P(\tau|\pi)$ : distribution of trajectories induced by a policy

 $P(s|\pi)$ : distribution of states induced by a policy





### Imitation Learning Applications: Autonomous Driving



Autonomous Driving Control

**States**: S = **sensors** 

**Action**: a = **steering wheel**, **brake**, ...

**Training set**:  $D = \{\tau := (s, a)\}$  from expert

**Goal**: learn  $\pi_{\theta}(s) \rightarrow a$ 







Smartphone Security

**States**: s = **apps**, ...

Action: a = use patterns, ...

**Training set**:  $D = \{\tau := (s, a)\}$  from expert

**Goal**: learn  $\pi_{\theta}(s) \rightarrow a$ 





• PPF/RFTN Injection Control in Medicine

**States**: s = **BIS**, **BP**, ...

**Action**: a = PPF, RFTN, ...

**Training set**:  $D = \{\tau := (s, a)\}$  from expert

**Goal**: learn  $\pi_{\theta}(s) \rightarrow a$ 





#### Autonomous Driving with Imitation Learning





M. Shin and J. Kim, "Adversarial Imitation Learning via Random Search in Lane Change Decision-Making," *ICML* 2019 Workshop on AI for Autonomous Driving, 2019.

M. Shin and J. Kim, "Randomized Adversarial Imitation Learning for Autonomous Driving," *IJCAI*, 2019., (Acceptance Rate: 850/4752=17.89%)



## Generative Adversarial Network (GAN) + Random Search for Autonomous Driving



## Thank you for your attention!

- More questions?
  - joongheon@korea.ac.kr