Thomas A. Berrueta

CONTACT	tberrueta@u.northwestern.edu	tberrueta.github.io
EDUCATION	Northwestern University, Evanston, IL Ph.D. Candidate in Mechanical Engineering	Harvey Mudd College, Claremont, CA B.S. Engineering, Graduated with Honors
Honors	 Presidential Fellow (Highest honor attainable by NU graduate students) Microsoft Ada Lovelace Fellowship Finalist (top 20 of 600+ applicants) Walter P. Murphy Fellowship Harvey S. Mudd Merit Scholarship Dean's List 	

RESEARCH

Center for Robotics and Biosystems

- I study complex physical systems and their emergent capabilities through the lens of robotics. I look to the physics of self-organization for designing control strategies in settings where most methods fail.
- I develop algorithms that identify emergent simplicity and discrete structure arising from the interactions of robot swarms, many-body systems, and human-machine systems.
- I derive techniques that simultaneously leverage modern machine learning, control theory, statistical physics, and information theory towards making complex systems controllable.

PUBLICATIONS

Journal Papers (* indicates equal authorship)

- P. Chvykov, **T. A. Berrueta**, A. Vardhan, W. Savoie, A. Samland, T. D. Murphey, K. Wiesenfeld, D. I. Goldman, J. L. England, "Low rattling: A predictive principle for self-organization in active collectives." *Science*, vol. 371, no. 6524, pp. 90-95 (2021).
- J. F. Yang, A. T. Liu, **T. A. Berrueta**, G. Zhang, A. M. Brooks, V. B. Koman, S. Yang, X. Gong, T. D. Murphey, M. S. Strano, "Memristor circuits for colloidal robotics: Temporal access to memory, sensing, and actuation." *Advanced Intelligent Systems*, 2100205 (2021).
- A. Taylor, **T. A. Berrueta**, T. D. Murphey, "Active learning in robotics: A review of control principles." *Mechatronics*, vol. 77, 102576, (2021).
- W. Savoie, **T. A. Berrueta**, Z. Jackson, A. Pervan, R. Warkentin, S. Li, T. D. Murphey, K. Wiesenfeld, D. I. Goldman, "A robot made of robots: Emergent transport and control of a smarticle ensemble." *Science Robotics*, vol. 4, no. 34 (2019).
- T. A. Berrueta, A. Pervan, K. Fitzsimons, T. D. Murphey, "Dynamical system segmentation for information measures in motion." *IEEE Robotics and Automation Letters*, 4 (1), 169-176 (2019).

Conference Papers (* indicates equal authorship)

- A. Taylor, **T. A. Berrueta**, A. Pinosky, T. D. Murphey, "Constrained ergodic specifications for safe exploration." *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, (Submitted, 2022).
- A. Q. Nilles*, A. Pervan*, **T. A. Berrueta***, T.D. Murphey, S. M. LaValle, "Information requirements of collision-based micromanipulation." *Proceedings of the Workshop on the Algorithmic Foundations of Robotics (WAFR)* (2020).
- A. Kalinowska, **T. A. Berrueta**, T. D. Murphey, "Data-driven gait segmentation for walking assistance in a lower-limb assistive device." *IEEE International Conference on Robotics and Automation (ICRA)* (2019).

Book Chapters

• T. A. Berrueta, I. Abraham, T. D. Murphey, "Experimental applications of the Koopman operator in active learning for control." *The Koopman Operator in Systems and Control*, Springer (2020).

Workshop Papers

- T. A. Berrueta, J. F. Yang, A. M. Brooks, A. T. Liu, M. S. Strano, T. D. Murphey, "Emergent beating in colloidal matter: Stabilization via symmetry breaking." *Bulletin of the American Physical Society*, (2022).
- A. Taylor, **T. A. Berrueta**, T. D. Murphey, "Optimizing the locomotion of a robotic active matter system of smarticles." *Bulletin of the American Physical Society*, (2021).
- A. Q. Nilles, A. Pervan, **T. A. Berrueta**, T. D. Murphey, "Controlling active Brownian particles with "active billiard" particles." *Bulletin of the American Physical Society*, (2020).
- T. A. Berrueta, A. Pervan, T. D. Murphey, "Towards robust motion planning for synthetic cells in a circulatory system." Workshop on Robust Task and Motion Planning at Robotics: Science and Systems, (2019).

INVITED TALKS

- T. A. Berrueta, "Robot thermodynamics: Analysis, control, and design of complex systems." Allen Discovery Center Invited Seminar, Department of Biology, Tufts University, April 26th, 2022.
- T. A. Berrueta, "Online learning in physical systems." SIAM Dynamical Systems, Symposium on Leveraging Machine Learning for Dynamics and Control, May 26th, 2021, YouTube Video.
- T. A. Berrueta, "Low rattling: Predicting driven self-organization." Center for Robotics and Biosystems Seminar Series, Northwestern University, Dec. 4th, 2020, YouTube Video.

EXPERIENCE

Northwestern University

ME314: Theory of Machines - Dynamics

Co-teacher (2019), Grader (2018, 2021)

- Lectured large senior-level course (\sim 70 students) on rigid body dynamics and Lagrangian mechanics.
- Redesigned class content and homeworks as it pivoted to an online-friendly format.

Harvey Mudd College

Kaiam Corporation Capstone

2016-2017

- Designed a MEMS-based laser diode burn-in platform for the testing of optical transceivers, which are crucial to data centers world-wide.
- Implemented embedded temperature and current controllers for the microscopic laser diodes.

Amazon Lab126 Capstone

2016

• Designed a hardware platform for testing the voice-responsiveness of the Amazon Echo in various experimental conditions capable of autonomous maneuvering and obstacle avoidance in rooms.

Northrop Grumman

IR and Visual Control Systems Intern: Survivability Group

2016

• Developed an infra-red (IR) signature estimator model for autonomous aircraft control, and developed algorithms that optimize aircraft trajectories to minimize IR exposure in real-time.

SpaceX

Vehicle Engineering Intern: Engine Dynamics Group

2014-2015

• Modelled and characterized flight environments experienced by M1D and MVacD rocket engines in order to anticipate design failure modes and ensure mission safety.

Leadership & Outreach

Northwestern University

- Board member of the Northwestern Mechanical Engineering Graduate Student Society (2017-2019).
- Organizer of recruitment activities for incoming mechanical engineering graduate students (2018).
- Mentor to 8 Ph.D. and Masters students through the department mentorship program (2017-current).
- Volunteer at the Chicago Museum of Science and Industry, teaching members of the public about robots and technology (2017-current).

Harvey Mudd College

- Member of the Harvey Mudd College Entrepreneurial Network (2017).
- Mentor in the Harvey Mudd College mentorship program (2016-2017).

SKILLS

Technical

- Proficient in Python, C++, and MATLAB.
- Expertise in control theory and analysis of dynamical systems, as well as machine learning, information theory, statistical physics, and optimization.

Other

- I am fluent in Spanish and English, and conversational in French.
- I have played jazz guitar/bass since 2008.
- I do music composition and production in my spare time.
- I love to run, and ran competitively in an NCAA college track and field team.

Notable Press

- Science Magazine Podcast, "The uncertain future of North America's ash trees, and organizing robot swarms," (2021).
- Gizmodo, "Meet the Pint-Sized Robots that Spontaneously Dance," (2020).
- Popular Mechanics, "These Robots Literally Just Flap Their Wings. That's It. But the Army Loves Them.," (2019).
- Scientific American, "Prehistoric Suckers, Slapping Robots and Three Billion Birds Gone," (2019).
- Science Magazine News, "Watch a robot made of robots move around," (2019).