Система обеспечения точности геометрических параметров в строительстве ПРАВИЛА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ПАРАМЕТРОВ ЗДАНИЙ И СООРУЖЕНИЙ

Издание официальное

При копировании или воспроизведении на бумажном носителе является копией официального электронного издания Официальное электронное издание. Приобретено ОДО "Этерика", Минский район. Период доступа: 18.04.2025 - 13.04.2026. Пользователь: 10@9104 Текст открыт: 07.10.2025

Ключевые слова: правила выполнения измерения параметров (длин, отметок, превышений, горизонтальных и вертикальных углов, зазоров, уступов, эксцентриситетов), средства и методы измерений, отклонения от номинальных значений параметров, точность и погрешность средств и методов измерений, расчет необходимой точности

Предисловие

1 РАЗРАБОТАН Санкт-Петербургским зональным научно-исследовательским и проектным институтом жилищно-гражданских зданий (СПб ЗНИПИ).

ВНЕСЕН Главным управлением стандартизации, технического нормирования и сертификации Минстроя России.

2 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации и техническому нормированию в строительстве 17 ноября 1994 г.

За принятие стандарта проголосовали:

Наименование государства	Наименование органа государственного управления строительством
Азербайджанская Республика	Госстрой Азербайджанской Республики
Республика Армения	Госупрархитектуры Республики Армения
Республика Беларусь	Минстройархитектуры Республики Беларусь
Республика Казахстан	Минстрой Республики Казахстан
Кыргызская Республика	Госстрой Кыргызской Республики
Российская Федерация	Минстрой России
Республика Таджикистан	Госстрой Республики Таджикистан

ВВЕДЕН В ДЕЙСТВИЕ на территории Республики Беларусь с 1 января 1996 года приказом Министерства архитектуры и строительства Республики Беларусь от 01.06.95 г. № 129.

3 ВВЕДЕН ВПЕРВЫЕ.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателе национальных (государственных) стандартов, издаваемых в этих государствах.

Информация об изменениях к настоящему стандарту публикуется в указателе (каталоге) «Национальные стандарты», а текст изменений — в информационных указателях «Национальные стандарты». В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационном указателе «Национальные стандарты».

© Минстройархитектуры, 2014

Настоящий стандарт не может быть воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Министерства архитектуры и строительства Республики Беларусь

Содержание

1 Область применения	1
2 Нормативные ссылки	
3 Обозначения	
4 Требования	2
Приложение А Схемы и примеры применения средств и методов измерений	
Приложение Б Основные средства измерений геометрических параметров для производства строительных и монтажных работ	19
Приложение В Примеры расчета необходимой точности измерений и выбора методов и средств ее обеспечения	

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Система обеспечения точности геометрических параметров в строительстве ПРАВИЛА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ПАРАМЕТРОВ ЗДАНИИ И СООРУЖЕНИЙ

System of Ensuring geometric Parameters accuracy in Building Rules for measuring parameters of buildings and works

Дата введения 1996-01-01

1 Область применения

Настоящий стандарт устанавливает основные правила измерений геометрических параметров при выполнении и приемке строительных и монтажных работ, законченных строительством зданий, сооружений и их частей. Номенклатура параметров, измерения которых осуществляют в соответствии с настоящим стандартом, определена ГОСТ 21779 и ГОСТ 26607.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 427-75 Линейки измерительные металлические. Технические условия

ГОСТ 3749-77 Угольники поверочные 90°. Технические условия

ГОСТ 5378-88 Угломеры с нониусом. Технические условия

ГОСТ 7502-89 Рулетки измерительные металлические. Технические условия

ГОСТ 7948-80 Отвесы стальные строительные. Технические условия

ГОСТ 9389-75 Проволока стальная углеродистая пружинная. Технические условия

ГОСТ 10528-90 Нивелиры. Общие технические условия

ГОСТ 10529-86 Теодолиты. Общие технические условия

ГОСТ 17435-72 Линейки чертежные. Технические условия

ГОСТ 19223-90 Светодальномеры геодезические. Общие технические условия

ГОСТ 21779-82 Система обеспечения точности геометрических параметров в строительстве. Технологические допуски

ГОСТ 26433.0-85 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений. Общие положения

ГОСТ 26433.1-89 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений. Элементы заводского изготовления

ГОСТ 26607-85 Система обеспечения точности геометрических параметров в строительстве, функциональные допуски.

3 Обозначения

 a_i

 x_i , δx_i определяемый геометрический параметр;

— измеренные длина отрезка прямой линии, горизонтальный и вертикальный углы, l_i, α_i, β_i соответственно:

— отсчет по шкале рулетки, линейки, рейки, взятый по риске (ориентиру) на конструкции, сетке нитей зрительной трубы, нитке или острию отвеса и другому отсчетному устройству;

1 Издание официальное

 a'_i — отсчеты при повторном наблюдении, например, при обратной перестановке сосудов гидростатического нивелира, при втором положении вертикального круга зрительной трубы теодолита, по шкале отсчетного устройства микронивелира при его развороте на 180°, при втором горизонте нивелира и т. д.; — заранее известные длина или угол; l_{oi}, α_{oi} L заданный интервал линейного размера; прямоугольные координаты; x, y, z H_i, h_i действительные отметка и превышение, соответственно; $x_{nom},\ y_{nom},\ z_{nom},\ H_{nom},\ h_{nom},\ \alpha_{nom},\ \beta_{nom}$ и т. д. — номинальные значения геометрических параметров; δx , δy , δz , δH , δh , $\delta \alpha$, $\delta \beta$ и т. д. — отклонения от номинальных значений; — по ГОСТ 26433.0; $\delta x_{cor,i}$ — действительные значения радиусов; R_i, r_i $\rho'' = 206265$ — число секунд в радиане.

4 Требования

- **4.1** Общие требования к выбору методов и средств измерений, выполнению измерений и обработке их результатов по ГОСТ 26433.0.
 - 4.2 Измерения выполняют в соответствии со схемами, приведенными в приложении А.

Предпочтительными являются прямые измерения параметра. При невозможности или неэффективности прямого измерения выполняют косвенное измерение. В этом случае значение параметра определяют по приведенным зависимостям на основе результатов прямых измерений других параметров.

При измерениях с помощью геодезических приборов следует учитывать методики, аттестованные в установленном порядке.

- **4.3** Для измерения линейных размеров и их отклонений применяют линейки по ГОСТ 427 и ГОСТ 17435, рулетки по ГОСТ 7502, светодальномеры по ГОСТ 19223 и другие специальные средства измерения, аттестованные в установленном порядке.
- **4.4** Для измерения горизонтальных и вертикальных углов применяют теодолиты по ГОСТ 10529, для измерения вертикальных углов оптические квадранты по действующей НТД, а для измерения углов между гранями и ребрами строительных конструкций и их элементов угломеры по ГОСТ 5378 и поверочные угольники по ГОСТ 3749.
- **4.5** Для измерения превышений между точками применяют нивелиры по ГОСТ 10528 и гидростатические высотомеры.
- **4.6** Для измерения отклонений от вертикальности применяют отвесы по ГОСТ 7948 и теодолиты совместно со средствами линейных измерений, а также средства специального изготовления, аттестованные в установленном порядке.
- **4.7** Для измерения отклонений от прямолинейности (створности) и плоскостности применяют теодолиты, нивелиры, трубы визирные, а также средства специального изготовления (стальные струны, разметочный шнур, капроновые лески, плоскомеры оптические, лазерные визиры и др.) совместно со средствами линейных измерений.
- **4.8** Правила измерений, выполняемых штангенинструментом, нутромерами, скобами, калибрами, индикаторами часового типа, щупами, микроскопами, принимают по ГОСТ 26433.1.
- **4.9** Средства измерений, обеспечивающие требуемую по ГОСТ 26433.0 точность измерений, а также значения предельных погрешностей средств измерений, которые могут быть использованы при выборе средств и методов измерений, приведены в приложении Б.

Примеры расчета точности измерений, выбора методов и средств ее обеспечения приведены в приложении В.

4.10 Места измерений геометрических параметров для операционного контроля в процессе строительных и монтажных работ и приемочного контроля законченных этапов или готовых зданий и сооружений принимают в соответствии с проектной и технологической документацией. В случае отсутствия указаний в проектной и технологической документации места измерений принимают по настоящему стандарту.

- **4.11** Размеры помещений длину, ширину, высоту измеряют в крайних сечениях, проведенных на расстоянии 50–100 мм от краев и в среднем сечении, если размеры помещений св. 3 м не более 12 м. При размерах св.12 м между крайними сечениями измерения выполняют в дополнительных сечениях.
- **4.12** Отклонение от плоскостности поверхностей конструкций и отклонение от плоскости монтажного горизонта измеряют в точках, размеченных на контролируемой поверхности по прямоугольной сетке или сетке квадратов с шагом от 0,5 до 3 м. При этом крайние точки должны располагаться в 50–100 мм от края контролируемой поверхности.
- **4.13** Отклонение от прямолинейности определяется по результатам измерений расстояний реальной линии от базовой прямой в трех точках, размеченных на расстояниях 50–100 мм от ее краев и в середине, или в точках, размеченных с заданным в проекте шагом.
- **4.14** Отклонение от вертикальности определяется по результатам измерения расстояний от отвесной базовой линии до двух точек конструкции, размеченных в одном вертикальном сечении на расстояниях 50–100 мм от верхнего и нижнего обреза конструкции. Вертикальность колонн и сооружений башенного типа контролируется в двух взаимно перпендикулярных сечениях, а вертикальность стен в крайних сечениях, а также в дополнительных сечениях, в зависимости от особенностей конструкции.
- **4.15** Измерения зазоров, уступов, глубины опирания, эксцентриситетов производятся в характерных местах, влияющих на работу стыковых соединений.
- **4.16** Измерение отклонения элементов конструкций, а также зданий и сооружений от заданного положения в плане и по высоте выполняется в точках, расположенных в крайних сечениях или на расстояниях 50–100 мм от края.
- **4.17** Геодезические пункты разбивочных сетей и ориентиры осей закрепляются на местности и на строительных конструкциях знаками, обеспечивающими требуемую точность разбивочных работ и сохранность ориентиров в процессе строительства и эксплуатации (при необходимости).
- **4.18 В** зависимости от материала, размеров, особенностей геометрической формы и назначения зданий и сооружений могут применяться также не предусмотренные настоящим стандартом средства, обеспечивающие требуемую точность измерений по ГОСТ 26433.0.

Приложение А

(рекомендуемое)

Схемы и примеры применения средств и методов измерений

Таблица А.1

Таблица А.1		
Наименование измеряемого параметра и метода измерений	Схема применения метода и средств измерений	Формула для вычисления измеряемого параметра и пояснения
1 Линейные размеры: длина, ширина, высота, глубина, пролет, зазор, межосевой размер, габаритные размеры и др. Измеряются расстояния: а) между двумя фиксированными точками б) между точкой и прямой, точкой и плоскостью; между двумя параллельными прямыми или плоскостями методом построения и измерения перпендикуляра: с помощью геодезических приборов и других средств угловых и линейных измерений	a_1 x_1 a_2 x_1 a_2 a_3 a_4	
покачиванием линей- ки, рейки, рулетки в на- правлениях, обеспечи- вающих кратчайшее расстояние	a_2 a_{\min} a_i	$x_i = a_{\min} - a_1$, где a_1 — начальный отсчет по шкале средства измерения в фиксированной точке; a_{\min} — минимальный из счетов, полученных в процессе покачивания рейки
1.1 Измерение размера рулеткой, линейкой и другими средствами линейных измерений, укладываемых непосредственно в створе измеряемой линии, когда измеряемый размер:		
а) меньше длины мерного прибора		$x_i = a_2 - a_1,$ где a_1 , a_2 — начальный и конечный отсчеты по шкале средства измерении соответственно;

Наименование измеряемого параметра и метода измерений	Схема применения метода и средств измерений	Формула для вычисления измеряемого параметра и пояснения
б) больше длины мерного прибора	a_{31} l_1 a_{11} a_{3i} l_i a_{1i} a_{3n} a_{1n} a_{1n} a_{1n} a_{1n}	$x_i = \sum_{i=1}^n (a_n - a_3)_i + \sum \delta x_{cor,i}$ где a_3 , a_n — отсчеты по рулетке задний и передний по ходу, соответственно; $\sum \delta x_{cor,i}$ — сумма поправок по ГОСТ 26433.0-85, исключающих известные систематические погрешности из результата измерений
1.2 Измерение размера геодезическим светодальномером или радиодальномером		Вычисление по формуле, приведенной в эксплуатационной документации на данный тип дальномера
1.3 Измерение зазора: а) линейкой	a_2	$x_i = a_2 - a_1,$
б) клиновым калибром		$x_i = a_i,$ где a_i — отсчет по клиновому калибру
в) кронциркулем		$X_i = a_i$
1.4 Измерение глубины опирания: а) линейкой в доступном месте	a_1 l_i a_2	$x_i = l_i = a_2 - a_1$

026. Пользователь: 10@9104.	E H U
на бумажном носителе является копией официального электронного издания е. Приобретено ОДО "Этерика", Минский район. Период доступа: 18.04.2025 - 13.04.2026. Пользователь: 10@	1
При копировании или воспроизведении на бумажном носите Официальное электронное издание. Приобретено О, Текст открыт: 07.10.2025	6 6

Наименование измеряемого параметра и метода измерений	Схема применения метода и средств измерений	Формула для вычисления измеряемого параметра и пояснения
б) линейкой-щупом в перекрытом сечении через гехнологическое (например, коробка электросети) или специально продепанное отверстие		$x_i = a_i$
	1 — отверстие в несущей стене;2 — линейка-щуп; 3 — панель перекрытия;4 — стеновая панель	
в) посредством измерений линейкой перекрытой насти сечения и толщины несущей стены	l_i x_i l_o	$x_i = l_o - l_i$ где l_o — известная или измеренная толщина не сущей стены; l_i — измеренная шириннеперекрытой части се чения
г) после укладки плит перекрытий посредством измерения линейкой расстояния от риски на плите перекрытия до несущей стеновой панели; риска на плите перекрытия маркируется заранее, на фиксированном расстоянии от края плиты		$x_i = l_o - l_i$ где l_o — известное рас стояние от края плиты д фиксированной риски; l_i — измеренный размер
1.5 Измерение расстояния между горизонтальными плоскостями 1.5.1 Измерение рулеткой, рейкой по направлению отвесной линии	a) a_1 a_1 a_2 a_2	a) $x_i = a_2 - a_1$, 6) $x_i = a_2 - a_1$
1.5.2 Измерение методом геометрического нивели- рования а) в пределах одной установки нивелира		$x_i = h_i = a_{3i} - a_{ni},$ где a_3 , a_n — отсчеты п

Наименование измеряемого параметра и метода
измерений
б) при нескольких последовательных установках нивелира

в) при измерении высоты помещения

1.5.4 Измерение методом гидростатического нивелирования

1.6 Измерение расстояния между двумя недоступными точками методом проектирования точек на линию измерения с помощью теодолита, отвеса или оптического прибора

Схема применения метода и средств измерений

I — нивелир; 2 — рейка

1 — уровень; 2 — корпус;
3 — подвижный упор;
4 — отсчетное устройство;
5 — неподвижный упор

1 — горизонт жидкости; 2 — сосуд; 3 — соединительный шланг

 l_i — длина сосудов

Формула для вычисления измеряемого параметра и пояснения

$$\mathbf{x}_{i} = \sum_{i=1}^{n} \mathbf{h}_{i} = \sum_{i=1}^{n} \mathbf{a}_{3i} - \sum_{i=1}^{n} \mathbf{a}_{ni}$$

где a_3 , a_n — отсчеты по задней и передней по ходу рейкам, соответственно; i — номер станции

$$x_i = a_1 + a_2,$$

где a_1 , a_2 — отсчеты по рейке, установленной в положение «0» — вверх и «0» — вниз

$$x_i = h_i = a_i - M0;$$

 $M0 = \frac{1}{2} \cdot (a_i + a'_i)$

$$x_i = h_i = an_i - a_{3i} - M0;$$

 $M0 = l_1 - l_2 = \frac{1}{2} \cdot (a_n - a'_n - a'_n - a'_n - a'_n);$

где a_3 , a_n — отсчеты по шкалам заднего и переднего сосудов соответственно;

 a'_{3} , a'_{n} — то же при обратной перестановке сосудов;

М0 — место нуля

$$x_i = a_2 - a_1,$$

где a_2 , a_1 — отсчеты по рулетке. Рулетка натягивается горизонтально, в одной вертикальной плоскости с измеряемым пролетом. Проектирование с помощью теодолита осуществляется при двух положениях вертикального круга

10@9104.	/ H H H H
эзователь: `	1
3.04.2026. Поль	H
о издания тупа: 18.04.2025 - 1.	!! !! !!
мажном носителе является копией официального электронного издания иобретено ОДО "Этерика", Минский район. Период доступа: 18.04.2025 - 13.04.2026. Пользователь: 10@9104.	
пи воспроизведении на бул ектронное издание. Прі 10.2025	1
При копировании и. Официальное эл Текст открыт: 07.	8

Продолжение таблицы А	.1	
Наименование измеряемого параметра и метода измерений	Схема применения метода и средств измерений	Формула для вычисления измеряемого параметра и пояснения
1.7 Измерение расстояния между двумя вертикальными плоскостями раздвижной рейкой	$\begin{array}{c} a_i \\ \hline \\ x_i \end{array}$	$x_i = a_i$
1.8 Косвенные измерения линейных размеров 1.8.1 Измерение расстояния между двумя фиксированными точками методом параллактического треугольника	a) 6) $\alpha_i = \alpha_i = \alpha_i$	a) $x_i = (l_i/2) \operatorname{ctg}(\alpha_i/2),$ б) $x_i = l_i \operatorname{ctg}\alpha_i,$ где l_i — известный размер; α_i — измеренный горизонтальный угол
1.8.2 Измерение расстояния между фиксированной точкой и прямой	a) 6) α_i α_i	a) $\mathbf{x}_i = l_i \operatorname{ctg} \alpha_i,$ б) $\mathbf{x}_i = l_i \sin \alpha_i,$
1.8.3 Измерение расстояния до недоступной точки методом микротриангуляции	α_1 α_2 l_i	$x_i = (l_i \sin \alpha_1) / \sin(\alpha_1 + \alpha_2)$
1.8.4 Измерение расстояния между двумя недоступными точками методом микротриангуляции	I V. E. /	$\frac{1}{2\cos(\alpha_4-\alpha_2)}$
2 Угловые размеры: гори- зонтальные и вертикаль- ные углы; углы, образован-	$x_i = \sqrt{\sin^2(\alpha_1 + \alpha_2)} + \frac{\sin^2(\alpha_3 + \alpha_4)}{\sin^2(\alpha_3 + \alpha_4)} - \frac{\sin^2(\alpha_1 + \alpha_2)}{\sin^2(\alpha_1 + \alpha_2)}$	$\sin(\alpha_3 + \alpha_4)$

- ные углы; углы, образованные пересечением осей и плоскостей
- 2.1 Прямое измерение углового размера методом сравнения со шкалой угломерного прибора (теодолита, квадранта и др.)

 α_i , β_i — горизонтальные и вертикальные углы, соответственно, измеряются и вычисляются по методикам и формулам, приведенным в эксплуатационной документации на данный тип угломерного прибора

Схема применения метода и средств измерений	Формула для вычисления измеряемого параметра и пояснения
α_i	$\alpha_i = \arccos \frac{l_1^2 + l_2^2 + l_3^2}{2l_1 l_2}$
l_1 α_i α_i	$\alpha_i = \arcsin \frac{l_2 \sin \alpha_1}{l_1}$
α_1 α_2 α_i	$\alpha_i = 180 - (\alpha_1 + \alpha_2)$
$\frac{l_2}{\sigma_1}$	$\alpha_i = \alpha_1 + \alpha_2 + \arcsin\left(\frac{l_3}{l_2}\sin\alpha_2\right) + \arcsin\left(\frac{l_3}{l_1}\sin\alpha_1\right)$
	$\alpha_{\scriptscriptstyle I} = \arcsin\frac{l_{\scriptscriptstyle 4}}{l_{\scriptscriptstyle 2}} \sin\alpha_{\scriptscriptstyle 2} + \\ + \arcsin\frac{l_{\scriptscriptstyle 3}}{l_{\scriptscriptstyle 1}} \sin\alpha_{\scriptscriptstyle 1}$
	$\alpha_{i} = 360^{\circ} - \arccos \frac{l_{1}^{2} + l_{2}^{2} + l_{3}^{2}}{2l_{1}l_{2}} - \\ -\arccos \frac{l_{1}^{2} + l_{4}^{2} + l_{5}^{2}}{2l_{1}l_{4}}$
	$\alpha_{i} = \arccos \frac{l_{1}^{2} + l_{2}^{2} + l_{3}^{2}}{2l_{1}l_{2}} + \\ + \arccos \frac{l_{1}^{2} + l_{4}^{2} + l_{5}^{2}}{2l_{1}l_{4}}$
	и средств измерений α_1 α_2 α_1 α_2 α_3 α_4 α

Щ де но но но но ти
10

Наименование измеряемого параметра и метода измерений	Схема применения метода и средств измерений	Формула для вычисления измеряемого параметра и пояснения
2.2.3 Методом построения вспомогательного угла и измерением отрезков l_1 , l_2 , l_3 , l_4 , l_5 , l_6		$\alpha_{i}=\alpha_{1}-\arcsin\frac{l_{2}-l_{1}}{l_{6}}-$ $-\arcsin\frac{l_{4}-l_{3}}{l_{5}}$
3 Отклонение от совмещения ориентиров, совпадения осей, симметричности установки, совпадения поверхностей Измеряются в стыковом соединении или на интервале <i>L</i> отклонения от совмещения:		
а) ориентира на поверх- ности конструкций с ориен- тирами разбивочной оси	a) δx_i δx_i δx_i δx_i δx_i δx_i	a) $\delta x_i = l_i$, 6) $\delta x_i = l_i - l_o$, B) $\delta x_i = l_i$
б) грани элемента конструкции с ориентирами разбивочной оси	a) δ	a) $\delta x_i = l_i$, 6) $\delta x_i = l_i - l_o$, B) $\delta x_i = l_i$

оизведении на бумажном носителе является копией официального электронного издания ное издание. Приобретено ОДО "Этерика", Минский район. Период доступа: 18.04.2025 - 13.04.2026. Пользователь: 10@9104. 5
зедени <i>к</i> издан <u>ı</u>

Наименование измеряемого параметра и метода измерений	Схема применения метода и средств измерений	Формула для вычисления измеряемого параметра и пояснения
в) граней элементов кон- струкций	a) 6) $l_1 = l_2$	$\delta \mathbf{x}_i = l_i$ $\delta \mathbf{x}_i = l_i$
г) отклонение от совпадения осей или симметричности установки	$\begin{array}{c c} l_1 & l_0 \\ \hline l_1 & l_{01} \\ \hline \\ l_2 & l_{02} \\ \hline \\ \delta x_i \end{array}$	$\delta x_{i} = \left l_{1} - l_{2} \right - \frac{\left l_{01} - l_{02} \right }{2}$
3.1 Прямое измерение от- клонения от совмещения ориентиров 3.1.1 Измерение с помо- щью шаблона с линейкой	a _i	$\delta x_i = a_i$
3.1.2 Измерение линейкой отклонений от створа, заданного теодолитом а) створ проходит по разбивочной оси		$l_i = a_o - 0.5(a_i - a_i') = a_o - \overline{a}_i $ $\delta x_i = l_i$
б) створ проходит по гра- ни стены		$\delta \mathbf{x}_i = l_o - l_i$

Наименование измеряемого параметра и метода измерений	Схема применения метода и средств измерений	Формула для вычисления измеряемого параметра и пояснения
3.1.3 Измерение линейкой от- клонений от створа, заданного струной и отвесом и проходя- щего через ориентиры разби- вочной оси	A THE WAY TO	$\delta x_i = a_{0i} - a_{1i}$
	a_{1i} a_{0i}	
4 Отклонение от заданного положения точки в плане	X_{nom} λ	$\delta r_i = \sqrt{\delta^2 x_i + \delta^2 y_i}$
4.1 Косвенные измерения с использованием средств линейных и угловых измерений (теодолит, рулетка и др.) 4.1.1 Метод полярных координат	δx_i α_{nom}	$\delta\alpha_{i} = \alpha_{i} - \alpha_{nom},$ $\delta l_{i} = l_{i} - l_{nom},$ $\delta r_{i} = \sqrt{\frac{l_{i}^{2}}{\rho^{2}} \delta^{2} \alpha_{i} + \delta^{2} l_{i}}$
4.1.2 Метод прямоугольных координат	y _{nom} ×	$\delta r_i = \sqrt{(x_i - x_{nom})^2 + (y_i - y_{nom})}$
4.1.3 Метод створной засечки	δz_i δz_i δz_i	$\delta r_i = \frac{1}{\sin \alpha_i} \sqrt{l_{1i}^2 + l_{2i}^2 + 2l_{1i}l_{2i}\cos \alpha_i}$

Наименование измеряемого параметра и метода измерений	Схема применения метода и средств измерений	Формула для вычисления измеряемого параметра и пояснения
4.1.4 Метод линейно-створной засечки	$l_{nom} = 180^{\circ}$ $\alpha_{nom} = 180^{\circ}$	$\delta r_i = \sqrt{\left(\delta \alpha_i \cdot l_i / \rho_i\right)^2 + \delta^2 l_i},$ $\delta l_i = l_i - l_{nom},$ $\delta \alpha_i = \alpha_i - 180^\circ$
4.1.5 Метод линейной засечки	$\frac{\delta r_i}{1 \cdot 1 \cdot 1 \cdot 1 \cdot 1}$	$\begin{split} \delta r_i &= \sqrt{\delta l_{1i}^2 + \delta l_{2i}^2 - 2\delta l_{1i} l_{2i} \cos \alpha_{nom}} \\ \delta l_{1i} &= l_{1i} - l_{1nom}, \\ \delta l_{2i} &= l_{2i} - l_{2nom} \end{split}$
4.1.6 Метод прямой угловой засечки	$ \begin{array}{c c} \delta r_i \\ \gamma_{nom} \\ \alpha_{nom} \\ l_o \end{array} $	2
δ	$ir_{i} = \frac{l_{o}}{\rho \sin \gamma} \sqrt{\delta^{2} \alpha_{1} \sin^{2} \alpha_{2i} + \delta^{2} \alpha_{2i} \sin^{2} \alpha_{1i} + 2\delta \alpha_{1}}$	$\delta \alpha_{2i} \sin \alpha_{1i} \sin \alpha_{2i}$
5 Отклонение от отвесной линии колонн, стеновых панелей, стен и других конструкций и их элементов Измеряются отклонения: а) ориентира оси конструкции	a) δx_i 6) l_i	a) $\delta x_i = l_i$, 6) $\delta x_i = l_i - l_o$
б) поверхности грани (ребра) конструкции	a) l_i l_j l_j	a) $\delta x_i = l_i$, b) $\delta x_i = l_i - l_o$
в) точек закрепления осей при их передаче по вертикали на монтажные горизонты	$\begin{cases} \delta r_i \\ \delta y_i \\ \delta x_i \end{cases}$	$\delta r_{i} = \delta x_{i}^{2} + \delta y_{i}^{2} = l_{1i}^{2} + l_{2i}^{2}$

менное сечение по высоте ющая закон изменения меров сечения. Для кол ны, имеющей форму усечного конуса $C = \frac{R-r}{L}(L-l_{01}-l_{02})$ 5.2 Измерения с помощью теодолита и линейки а) теодолит установлен на разбивочной оси $6)$ а) $\delta x_i = 0.5 \cdot (a_i + a_i'),$ б) $\delta x_i = 0.5 \cdot (a_i + a_i') - l_{oi},$ где a_i , a'_i — отсчеты, по	Наименование измеряемого параметра и метода измерений	Схема применения метода и средств измерений	Формула для вычисления измеряемого параметра и пояснения
2 — консоль для подвески отвеса; 3 — линейка; 4 — отвес; 5 — сосуд с вязкой жидкостью; 6 — ориентир оси конструкции (установочная риска) В) относительно боковой грани конструкции, имеющей переменное сечение по высоте $\delta x_i = l_1 - l_2 + C$, где C — поправка, учите ющая закон изменения риска оны, имеющей форму усечного конуса $C = \frac{R-r}{L}(L-l_{01}-l_{02})$ 5.2 Измерения с помощью теодолит и линейки а) теодолит установлен на разбивочной оси $C = \frac{R-r}{L}(L-l_{01}-l_{02})$ об $C = \frac{R-r}{L}(L-l_{01}-l_{02})$ об $C = \frac{R-r}{L}(L-l_{01}-l_{02})$ об $C = \frac{R-r}{L}(L-l_{01}-l_{02})$ госудолит установлен на оси, параллельной разбивочной $C = \frac{R-r}{L}(L-l_{01}-l_{02})$ госудолит установлен на оси, параллельной разбивочной $C = \frac{R-r}{L}(L-l_{01}-l_{02})$ госудолит установлен на оси, параллельной разбивочной $C = \frac{R-r}{L}(L-l_{01}-l_{02})$ госудовку уровня горизонтального круга вертикального круга вертикального круга вертикального круга вертикального круга	стального строительного отвеса и линейки: а) относительно боковой грани б) относительно ориентиров оси конструкции Примечание — В способе б) исключается погрешность изготов-	3 2 3	$\delta x_i = l_{1i} - l_{2i}$
долита и линейки а) теодолит установлен на разбивочной оси б) теодолит установлен на оси, параллельной разбивочной Γ примечание — Особое внимание следует уделять тщательности юстировки уровня горизонтального круга и приведению его пузырька в нульпункт	конструкции, имеющей пере-	2 — консоль для подвески отвеса; 3 — линейка; 4 — отвес; 5 — сосуд с вязкой жидкостью; 6 — ориентир оси конструкции (установочная риска)	где С — поправка, учить ющая закон изменения римеров сечения. Для колны, имеющей форму усеч
	долита и линейки а) теодолит установлен на разбивочной оси б) теодолит установлен на оси, параллельной разбивочной Примечание — Особое внимание следует уделять тщательности юстировки уровня горизонтального круга и приведению его пузырька в нульпункт	a) a _i 6)	а) $\delta x_i = 0.5 \cdot (a_1 + a_1'),$ б) $\delta x_i = 0.5 \cdot (a_1 + a_1') - l_{oi},$ где a_i , a_i' — отсчеты, по ченные при двух положен вертикального круга

Продолжение таблицы А.1		
Наименование измеряемого параметра и метода измерений	Схема применения метода и средств измерений	Формула для вычисления измеряемого параметра и пояснения
5.4 Измерение рейкой-отвесом а) навесной б) ненавесной	а) б) 7 — стеновая панель, 2 — рейка-отвес, 3 — регулируемый упор, 4 — отвес,	$\delta x_i = 0.5 \cdot (a_i + a_i')$ где a_i — отсчет по нити успокоенного отвеса относительно нулевого штриха шкалы; a'_i — то же, после поворота рейки на 180° , $ a_i - a'_i \le 2$ мм
5.5 Измерение рейкой с уровнем а) по шкале на уровне б) подвижной шкалой рейки при положении центра пузырька в нульпункте	5 — школа нивелирной рейки; 6 — шкала отклонений от вертикали; 7 — нулевой штрих шкалы 7 — контролируемая конструкция; 2 — рейка с уровнем; 3 — регулируемый упор, 4 — уровень для контроля правильной установки рейки, 5 — уровень дли	а) $\delta x_i = 0.5 \cdot (a_n - a_n + a'_n + a'_n) \cdot \tau H$, б) $\delta x_i = \frac{(a+a') - 2M0}{2L} \cdot H$, где a_n , a'_n , a_n , a'_n — отсчеты по левому и правому концам пузырька уровня, взятые при прямом и обратном (развернутом на 180°) положении рейки, соответственно; a, a' — отсчеты по подвижному упору при прямом и обратном (развермом и обратном (развер
6 Отклонение точек конструк-	измерения угла наклона контролируемой поверхности; 6— измерительная подвижная шкала	нутом на 180°) положении рейки, соответственно; МО — место нуля (определяют на вертикальной плоскости) $\delta h_i = H_i - H_{nom}$
ций и их элементов от проектных отметок на монтажном горизонте, в котловане и т. д.	1 — горизонтальная линия или плоскость, расположенные на проектной отметке; 2 — исходная горизонтальная плоскость,	

служащая началом отсчета отметок, или имеющая отметку, равную нулю

метрического нивелирования при передаче отметки в котлован 6.2 Измерение методом геометрического нивелирования при контроле ровности монтажного горизонта 7 Отклонение от заданного уклона (наклона) конструкции, элемента конструкции, линейных сооружений, технологического оборудования и др. в вертикальном сечении Измеряется методами нивелирования в соответствии с 1.1.4—1.1.6, 1.2.4 настоящего приложения, а также прямым измерением с помощью квадранта или теодолита 8 Отклонение от прямолинейности конструкции, элемента конструкции, технологического оборудования и др. Отклонение от прямолинейности конструкции, технологического оборудования и др. Отклонение от прямолинейности конструкции, технологического оборудования и др. Отклонение от прямолинейности гономощью квадранта или теодолита	Наименование измеряемого параметра и метода измерений	Схема применения метода и средств измерений	Формула для вычисления измеряемого параметра и пояснения
метрического нивелирования при контроле ровности монтажного горизонта 7 Отклонение от заданного уклона (наклона) конструкции, элемента конструкции, линейных сооружений, технологического оборудования и др. в вертикальном сечении Измеряется методами нивелирования в соответствии с 1.1.4–1.1.6, 1.2.4 настоящего приложения, а также прямым измерением с помощью квадранта или теодолита 8 Отклонение от прямолинейности конструкции, элемента 8 Отклонение от прямолинейности конструкции, элемента	метрического нивелирования при передаче отметки в кот-	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array}$	$H_i = H_{pn} + a_{s1} - a_2 - a_3 - a_{n1}$ $\delta x_i = H_i - H_{nom}$
уклона (наклона) конструкции, элемента конструкции, линейных сооружений, технологического оборудования и др. в вертикальном сечении Измеряется методами нивелирования в соответствии с 1.1.4—1.1.6, 1.2.4 настоящего приложения, а также прямым измерением с помощью квадранта или теодолита 8 Отклонение от прямолинейности конструкции, элемента конструкции, технологического оборудования и др. Отклонение от прямолинейности измеряется методом построения базовой линии: а) расположенной произвольно относительно контролируемого участка или направления поверхности 1 — контролируемый участок; 2 — базовая линия	метрического нивелирования при контроле ровности мон-	Z + + + + + + + ×	где H_{max} , H_{min} — отметк наиболее высокой и ни кой точек монтажного го
ности конструкции, элемента конструкции, технологического оборудования и др. Отклонение от прямолинейности измеряется методом построения базовой линии: а) расположенной произвольно относительно контролируемого участка или направления поверхности	уклона (наклона) конструкции, элемента конструкции, линейных сооружений, технологического оборудования и др. в вертикальном сечении Измеряется методами нивелирования в соответствии с 1.1.4–1.1.6, 1.2.4 настоящего приложения, а также прямым измерением с помощью квад-	β_{nom} β_i	$\delta h_i = h_i - h_{nom},$ б) в угловой мере $\delta \beta_i = \beta_i - \beta_{nom},$ в) в относительной величине $\delta x_i = \delta h/L = (h_i - h_{nom})/L =$
но прямой, соединяющей конеч-	ности конструкции, элемента конструкции, технологического оборудования и др. Отклонение от прямолинейности измеряется методом построения базовой линии: а) расположенной произвольно относительно контролируемого участка или направления поверхности б) расположенной параллель-	1 — контролируемый участок;	$\delta x_i = l_i - l_o,$ при $l_{\scriptscriptstyle K} = l_{\scriptscriptstyle H} = 0$ $\delta x_i = l$

Наименование измеряемого параметра и метода измерений	Схема применения метода и средств измерений	Формула для вычисления измеряемого параметра и пояснения
в) совпадающей с прямой, соединяющей начальную и конечную точки контролируемого участка 8.1.1 Измерение по рейке (линейке) от базовой линии, за-		$\delta x_i = l_i$ $\delta x_i = a_i - l_0$
данной теодолитом		
8.1.2 Измерение линейкой от базовой линии, заданной струной и отвесом		$\delta \mathbf{x}_i = l_i$
9 Отклонение от формы заданных профиля, поверхности 9.1 Прямое измерение отклонений профиля криволинейной поверхности методом измерения отклонений от шаблона		$\delta x_{l1} = l_{l1},$ $\delta x_{l2} = l_{l2},$ $\delta x_{l3} = l_{l3}$
9.2 Измерение отклонений профиля прямолинейного сечения методом измерения от шаблона	l_{i1} l_{ii} l_{i2}	$\delta x_i = (l_{i1} + l_{i2}) - l_o,$ $l_o = l_{nom} - l_{ii}$
9.3 Измерение отклонений профиля сечения дорожного полотна методом измерения действительных значений линейно-угловых размеров и уклонов с помощью линейки, рулетки, теодолита, нивелира	l_i l_{nom} β_i β_{nom} β_i	$\delta \beta_i = \beta_i - \beta_{nom},$ $\delta l_i = l_i - l_{nom},$ $\delta h_i = h_i - h_{nom}$
9.4 Измерение отклонений формы заданного профиля методом определения пространственных координат точек действительной поверхности	z_i z_{nom} y_{nom} y_i	$\delta x_i = x_i - x_{nom},$ $\delta y_i = y_i - y_{nom},$ $\delta z_i = z_i - z_{nom},$ $\delta r_i = \sqrt{\delta^2 x_i + \delta^2 y_i + \delta^2 z_i}$

	.4	
	3.04.2025 - 13.04.2026. Пользователь: 10@910	
нного издания	1 доступа: 18.04.2025 - 13.04.2	
эй официального электро	1инский район. Период	
носителе является копи	зно ОДО "Этерика", №	
зедении на	э издание. Приобрете	
ри копировании или воспроизв	фициальное электронно	7000 OF 10 TO TO TO TO
Ĕ	Ŏ	ř

Наименование измеряемого параметра и метода измерений	Схема применения метода и средств измерений	Формула для вычисления измеряемого параметра и пояснения
10 Отклонение от плоскостности поверхностей конструкций, элементов конструкций и сооружений	Определяется посредством измерения отклонений точек контролируемой поверхности от базовой горизонтальной или вертикальной плоскости с последующим пересчетом этих отклонений относительно условной плоскости по ГОСТ 26433.1	
10.1 Измерение отклонений от плоскостности методами: а) геометрического нивелирования с помощью нивелира и рейки(линейки)	Z	а) условная плоскость проведена через три точки III , IV контролируемой поверхности $\delta z_{\rm l} = \delta z_{\rm ll} = \delta z_{\rm lv} = 0;$ $\delta z_i = z_i - k_1 x_i - k_2 y_i,$ $\zeta z_i = l_1 - l_i;$ $\delta z_{\rm max} - \delta z_{\rm min} \Big \leq \Delta x$
б) бокового нивелирования с помощью теодолита и рейки (линейки)	$Z = \begin{bmatrix} \lambda & \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \lambda & \lambda &$	б) условная плоскости проведена через диаго наль I–III параллельно диагонали II–IV $\delta z_i = \delta z_{\text{III}} = 0;$ $\delta z_i = z_i - b_1 x_i - b_2 y_i;$ $b_1 = \frac{z_{\text{II}} - c}{x_{\text{II}}}, \ b_2 = \frac{z_{\text{IV}} - c}{x_{\text{IV}}},$ $c = \frac{z_{\text{II}} + z_{\text{IV}}}{2} = z_{\text{III}}, \ z_i = l_1 - l_i;$ $ \delta z_{\text{max}} - \delta z_{\text{min}} \leq \Delta x$
11 Измерение методом фотограмметрии комплекса геометрических параметров при выполнении архитектурнотехнических обмеров и приемочном контроле строительных конструкций, зданий и сооружений	$X_i = X_i$	а) Аналитический метод: вычисление пространст венных координат точе объекта по формулам соот ветствующего случая съем ки и определение по ко ординатам действительных значений геометрических параметров б) Аналоговый метод: вычерчивание на специ альном приборе графического изображения проек ций объекта в соответст вующем масштабе и определение геометрических параметров с точностью графических построений

Приложение Б

(справочное)

Основные средства измерений геометрических параметров для производства строительных и монтажных работ

Таблица Б.1 — Основные средства обеспечения точности разбивочных работ

Вид разбивочных	Основные средства				гочнос Т 2177		
работ	обеспечения точности	1	2	3	4	5	6
Разбивка точек и осей в плане	Теодолиты по ГОСТ 10529 Т-1 Т-2 Т-5 Т-30 Теодолиты по ГОСТ 7502 Базисный прибор Светодальномер по ГОСТ 19223 МСД-1М, СПЗ, СТЗН]]
Разбивка и передача высотных отметок	Нивелиры по ГОСТ 10528: H-05, H-1 Нивелир H-3 Нивелир H-10	_		<u> </u>]
	Рейки нивелирные РН-05, РН-1 Рейка нивелирная РН-3 Рейка нивелирная РН-10 Рулетка по ГОСТ 7502			_]
Передача точек и осей по вертикали	Оптические центриры: ЦО-1 ЦО-30 PZL (ГДР) Теодолиты по ГОСТ10529: Т-2 Т-5 Т-30 Отвес по ГОСТ 7948]
Построение створа	Теодолиты по ГОСТ 10529: Т-2, Т-5 Лазерный визир Оптическая струна Струна, разметочный шнур]

Средство измерений	Метод измерения	Предельная погрешность, (±), мм	Диапазон измерений, м, не более
Линейка по ГОСТ 427 или по ГОСТ 17435	Измерение расстояния между ориентирами	1,0	Непосредственный контакт ориентиров
Струна, отвес по ГОСТ 7948 Линейка по ГОСТ 427 или по ГОСТ 17435	Измерение линейкой от- клонений от створа, за- данного калиброванной струной диаметром 0,5 мм и отвесом	4,0	Расстояние между точками закрепления разбивочной оси 80 м
Теодолиты по ГОСТ 10529 типов: Т-2, Т-5, Т-30 Линейка по ГОСТ 427 или по ГОСТ 17435	Измерение линейкой отклонений от створа, заданного визирной осью зрительной трубы теодолита при двух положениях вертикального круга	2,0 4,0	Расстояние между точками закрепления разбивочной оси или створа 50 м

Примечание — Могут быть использованы модификации приборов отечественного и зарубежного производства, соответствующие по точности основным типам, приведенным в таблице Б.1, и более точные.

Таблица Б.3 — Погрешности основных методов и средств измерений отклонений от отвесной линии

Средство измерения	Метод измерения	Предельная погрешность, (±) мм	Диапазон измерения, м, не более
Рейка-отвес	Измерение двумя наблюдениями с поворотом рейки на 180° между наблюдениями	2	3,0
Рейка с уровнем (τ ≤ 2)	То же	2	3,0
Отвес по ГОСТ 7948 и линейка по ГОСТ 427 или по ГОСТ 17435 Теодолиты по ГОСТ 10529 типов: T-2	Исключение ветровых воздействий и гашение колебаний Проектирование коллимационной плоскостью при двух положениях вертикального	5	10
	круга, S ≤ 2 <i>H</i>	<u>H</u> 7	50
T-5		<u>H</u> 3,5	50
T-30		<u>H</u> 1,7	30
Линейка по ГОСТ 427 или по ГОСТ 17435			
Оптические центриры и линейка, или специальная палетка	Проектирование двумя на- блюдениями		
«Зенит ОЦП», «Надир ОЦП» PZL (ГДР)	Высокоточное проектирование	3	100

Примечания

- 1 В таблице приняты следующие обозначения:
- *H* высота, в метрах, контролируемой конструкции;
- S расстояние от теодолита до контролируемого сечения;
- т цена деления уровня.
- 2 Могут быть использованы модификации приборов отечественного и зарубежного производства, соответствующие по точности основным типам, приведенным в таблице Б.2, и более точные.

Таблица Б.4 — Погрешности основных методов и средств измерений отклонений от проектных отметок и заданного уклона

Средство измерений	Метод измерений	Предельная погрешность определения превышений на станции, (±) мм	Диапазон измерений, м, не более
Нивелир по ГОСТ-10528,	Геометрическое нивели-		Расстояние от ниве-
нивелирная рейка:	рование		лира до реек:
Н-05, рейка РН-05	Высокоточное	0,5	50,0
Н-3, рейка РН-3	Точное	3,0	50,0
H-10, рейки PH-3, PH-10	Техническое	7,0	50,0
Гидростатический высо-	Гидростатическое ниве-		Превышение между
тометр:	лирование двойным на-		точками:
	блюдением с переста-		
	новкой сосудов между наблюдениями		
точный		0,2	0,1
технический		3,0	0,5
Микронивелир:	Измерение двойным на-		Длина шага:
	блюдением с разворо-		
	том прибора на 180° меж-		
	ду наблюдениями		
точный		0,2	1,0
технический		3,0	2,0

Примечание — Могут быть использованы модификации приборов отечественного и зарубежного производства, соответствующие по точности основным типам, приведенным в таблице, и более точные.

Приложение В

(рекомендуемое)

Примеры расчета необходимой точности измерений и выбора методов и средств ее обеспечения

- В1 Задание Передать проектную отметку +36,00 м по 3-ему классу точности ГОСТ 21779 на монтажный горизонт строящегося панельного здания.
 - **В1.1** Определяем по ГОСТ 21779 значение допуска $\Delta x = 10,0$ мм.
- **B1.2** Определяем по ГОСТ 26433.0 предельную и среднюю квадратическую погрешности измерения

 $\sigma x_{met} = 0.4 \cdot 10 = 4 \text{ MM}; \quad \sigma x_{met} = 4 : 2.5 = 1.6 \text{ MM}$

и принимаем, что суммарные расчетные погрешности не должны превышать величин:

$$\delta x_{y_{met}} \le 4$$
 MM; $\sigma x_{\sum met} \le 1,6$ MM

- **В1.3** Для передачи отметки принимаем метод геометрического нивелирования по схеме измерений в соответствии с 6.1 таблицы А.1; при этом полагаем, что передача отметки производится двумя нивелирами, двумя нивелирными рейками и металлической рулеткой длиной 50 м и при одновременном снятии отсчетов по рулетке.
- **B1.4** Определяем совокупность факторов, влияющих на суммарную погрешность результата измерений:
 - установка пузырька уровня нивелира в нуль-пункт;
- отклонение от параллельности визирной оси и оси уровня (несоблюдение главного условия нивелира);
 - отсчет по рейке (рулетке);
 - компарирование рулетки;
 - компарирование рейки;
 - натяжение рулетки;
 - установка рейки (рулетки) по вертикали.
- **В1.5** Принимаем принцип равного влияния для всех факторов и, учитывая, что погрешности из-за отклонения реек и рулетки от вертикали оказывают систематическое влияние, а влияние погрешностей компарирования реек и рулетки в связи с одноразовым их применением в конкретном случае можно отнести к случайным, получим:

$$\sigma_i = \frac{\sigma x_{met}}{\sqrt{r + u^2}} = \pm \frac{1,6}{\sqrt{12 + 3^2}} = \pm 0,35 \text{ MM},$$

где r — количество факторов, оказывающих случайное воздействие на результат измерения; u — то же, но систематическое.

- **B1.6** Определяем допустимые средние квадратические погрешности регистрации и учета каждого из перечисленных факторов.
 - В1.6.1 Установка пузырька уровня в нуль-пункт

$$\sigma_1'' = \frac{\sigma_i \rho}{l} = \frac{0.35 \cdot 2 \cdot 10^5}{50 \cdot 10^3} = \pm 1.4,$$

где σ''_1 — погрешность установки пузырька уровня в нуль-пункт;

– расстояние от нивелира до рейки;

 $\rho'' = 206265$

Погрешность установки пузырька контактного уровня находится в пределах $0.04\tau''$, где τ'' — цена деления уровня.

Следовательно:

$$\tau'' = \frac{1,4''}{0.04} = 35'',$$

в связи с чем достаточно использовать нивелир с ценой деления уровня $\tau \leq 30$ ". При использовании нивелира H-3, имеющего т = 15", будет двойной запас точности по данному фактору.

В1.6.2 Отклонение от параллельности визирной оси и оси цилиндрического уровня

$$\sigma_2 = \pm \frac{1}{2} \Delta S \cdot \frac{i''}{\rho''},$$

где $\sigma_2 = \sigma_i$ — погрешность из-за непараллельности визирной оси и оси цилиндрического уровня; i — угол между визирной осью зрительной трубы и осью цилиндрического уровня; ΔS — неравенство плеч.

Полагая, что главное условие соблюдается с погрешностью $i'' = \pm 10''$, получим допустимое неравенство плеч

$$\Delta S = \frac{2\sigma_2 \rho}{i} = \frac{0.35 \cdot 2 \cdot 2 \cdot 10^5}{10} = 14 \text{ m}.$$

В1.6.3 Отсчет по рейке (рулетке)

При снятии отсчетов по рейке с шашечными сантиметровыми делениями, установленной на расстоянии 50 м, ошибка однократного отсчета по рейке составит величину порядка ±1 мм.

В1.6.4 Компарирование

Относительная погрешность компарирования рулетки составит:

$$\frac{\sigma_i}{l} = \frac{0.35}{36 \cdot 10^3} \approx \frac{1}{100\,000}.$$

то же для рейки:

$$\frac{\sigma_i}{l_o} = \frac{0.35}{3 \cdot 10^3} \approx \frac{1}{10000},$$

где l_0 — длина рейки.

В1.6.5 Натяжение рулетки

$$\sigma_{p} = \frac{\sigma_{i}EF}{l} = \frac{0.35 \cdot 19.62 \cdot 10^{4} \cdot 1}{36 \cdot 10^{3}} = 1.86 \text{ H},$$

где σ_{ρ} — погрешность определения натяжения;

 σ_{i} — огрешность измеряемого размера из-за погрешности натяжения;

/ — измеряемый размер;

Е — модуль Юнга;

 F — площадь поперечного сечения полотна рулетки. При натяжении рулетки гирей следует учитывать массу рулетки.

В1.6.6 Установка рейки и рулетки по вертикали

$$\sigma_{y1} = \sqrt{\frac{\sigma_i \cdot 2}{l_o}} \cdot \rho'' = 2 \cdot 10^5 \sqrt{\frac{0.35 \cdot 2}{3 \cdot 10^3}} = 51',$$

то же, для рулетки:

$$\sigma_{y2} = \sqrt{\frac{\sigma_i \cdot 2}{I}} \cdot \rho'' = 2 \cdot 10^5 \sqrt{\frac{0.35 \cdot 2}{36 \cdot 10^3}} = 14.7',$$

где $\sigma_{y1}, \, \sigma_{y2} \,$ — погрешности установки рейки и рулетки по вертикали.

В1.7 Выполняем анализ полученных погрешностей и назначаем методы и средства их обеспечения.

Используются два нивелира H-3; двусторонние шашечные рейки с сантиметровыми делениями и рулетка металлическая длиной 50 м. Отсчеты по рейкам снимаются по черной и красной стороне при двух горизонтах приборов, в связи с чем погрешность отсчета составит величину $1/\sqrt{4} = 0,50$ мм, что больше допустимых $\pm 0,35$ мм. Однако, это незначительное превышение можно компенсировать натяжением рулетки гирей, масса которой совместно с массой растянутого полотна рулетки определяется с точностью до ± 50 г, что в три раза уменьшит соответствующую погрешность, и установкой

При копировании или воспроизведении на бумажном носителе является копией официального электронного издания Официальное электронное издание. Приобретено ОДО "Этерика", Минский район. Период доступа: 18.04.2025 - 13.04.2026. Пользователь: 10@9104. Текст открыт: 07.10.2025

реек в вертикальное положение по круглому уровню с ценой деления 10′, что также уменьшит соответствующую погрешность в 4 раза. Рулетка компарируется на стационарном компараторе с погрешностью 0,00001; длины сантиметровых, дециметровых и метровых интервалов на рейках определяются женевской линейкой, нормальным метром и др.

При соблюдении указанных мероприятий следует ожидать, что с вероятностью P = 0.988 вынесенная в натуру отметка строительного репера будет находиться в пределах допуска $\Delta x = 10$ мм.

- В2 *Задание* Выполнить передачу оси по вертикали на монтажный горизонт с отметкой H = +36 м по 3-ему классу точности ГОСТ 21779.
 - **B2.1** Определяем по ГОСТ 21779 значение допуска $\Delta x = 6$ мм.
 - В2.2 Определяем по ГОСТ 26433.0 предельную и среднюю квадратические погрешности измерения:

$$\delta x_{met} = 0.4 \cdot 6 = 2.4 \text{ MM}; \quad \sigma x_{met} = 2.4 : 2.5 = 0.96 \text{ M}$$

и принимаем, что суммарные расчетные погрешности не должны превышать величин:

$$\delta \textit{x}_{\sum \textit{met}} \leq 2,4$$
 MM; $\sigma \textit{x}_{\sum \textit{met}} \leq 0,96$ MM.

- **B2.3** Для передачи оси по вертикали принимаем метод проектирования коллимационной плоскостью теодолита при двух положениях вертикального круга.
- **B2.4** Определяем совокупность факторов, влияющих на суммарную погрешность результата измерений:
 - поверка и юстировка цилиндрического уровня горизонтального круга;
 - установка пузырька цилиндрического уровня горизонтального круга в нуль-пункт;
 - центрирование теодолита на оси;
 - визирование;
- отклонение от перпендикулярности визирной оси к оси вращения зрительной трубы (коллимационная погрешность);
- отклонение от перпендикулярности оси вращения зрительной трубы к вертикальной оси вращения прибора (неравенство подставок);
 - фиксация оси на монтажном горизонте.
- **B2.5** Принимаем принцип равного влияния для всех факторов и учитывая, что первый из перечисленных выше факторов оказывает систематическое влияние, а пятый и шестой (коллимационная погрешность и неравенство подставок), исключаются проектированием при двух положениях вертикального круга, получим

$$\sigma_i = \frac{\sigma X_{\sum met}}{\sqrt{r + \mu^2}} = \pm \frac{0.96 \cdot \sqrt{2}}{\sqrt{5 + 1}} = \pm 0.55$$
 MM.

- **B2.6** Определяем допустимые средние квадратические погрешности по регистрации и учету каждого из перечисленных факторов.
 - **В2.6.1** Проверка и юстировка уровня v_1 , установка пузырька уровня в нуль-пункт, v_2

$$V_1 = V_2 = \frac{\sigma_i \rho''}{H} = \frac{0.56 \cdot 2 \cdot 10^5}{36 \cdot 10^3} = 3.1'',$$

где v_1 — погрешность поверки и юстировки уровня;

*v*₂ — погрешность установки пузырька уровня в нуль-пункт;

Н — высота передачи;

 $\rho - 206265$ ".

В2.6.2 Центрирование теодолита

$$e = \frac{\sigma_i D}{d}$$

где е — погрешность центрирования;

 д — расстояние на горизонтальной плоскости между точкой закрепления оси на исходном горизонте и проекцией на этот горизонт точки закрепления оси на монтажном горизонте;

D — горизонтальное расстояние от теодолита до точки закрепления оси на исходном горизонте.

При D = 40 м, d = 2 м имеем:

$$e = \frac{0.56 \cdot 40 \cdot 10^3}{2 \cdot 10^3} = 11.2 \text{ MM}.$$

В2.6.3 Визирование

$$\Gamma^{\mathsf{x}} = \frac{30"l}{\rho"\sigma_i},$$

где Γ^{x} — увеличение зрительной трубы;

30" — погрешность визирования невооруженным глазом на расстоянии наилучшего зрения (250 мм);

— расстояние до точки визирования.

В данном случае

$$\Gamma^{x} = \frac{30 \cdot 40 \cdot 10^{3}}{2 \cdot 10^{5} \cdot 0.56} = 10,7^{x}.$$

B2.7 Выполняем анализ полученных погрешностей и назначаем следующие методы и средства их обеспечения.

При выборе теодолита следует учесть, что поверка уровня при алидаде горизонтального круга осуществляется с ошибкой порядка $0.2\tau''$, где τ'' — цена деления уровня, т. е. $0.2\tau = v_{1,2}''$.

В связи с этим теодолит должен быть оснащен в данном случае уровнем с ценой деления

$$\tau'' = \frac{3'' \cdot 2}{0.2} = 15.5''.$$

Приведенным выше условиям полностью отвечает теодолит Т-2, имеющий увеличение зрительной трубы 25^x и цену деления уровня при алидаде горизонтального круга τ " = 15".

Погрешность 0,55 мм фиксации оси на монтажном горизонте можно обеспечить прочерчиванием карандашом по гладкой поверхности.

При соблюдении указанных мероприятий следует ожидать, что с вероятностью P=0,988 плановое положение ориентира, закрепляющего ось на монтажном горизонте +36,0 м, будет в пределах допуска $\Delta x=6$ мм.