The Faddeev-Reshetikhin-Takhtajan Construction

September 19, 2023

Topological free modules

Let $K=\mathbb{C}[[h]]$ be the algebra of formal power series in h over $\mathbb{C}.$ Take some constant p>1 we have the h-adic norm

$$|a_n h^n + a_{n+1} h^{n+1} + \dots| = p^{-n}$$

which induces the h-adic topology on K in the usual way. Given a \mathbb{C} -vector space V we may define V[[h]] to be topological $\mathbb{C}[[h]]$ -module

$$V[[h]] = \left\{ \sum_{i=0}^{\infty} v_i h^i : v_i \in V \right\}$$

with a similar h-adic norm.

Definition

A **topologically free** module is a K-module of the form V[[h]] for some $\mathbb C$ -vector space V.

Note that all topologically free modules are complete with respect to the h-adic norm.

Topological free modules

Morphisms of topologically free modules are simply $\mathbb{C}[[h]]$ -module maps. These maps are naturally continuous:

Lemma

As usual, we have the identification $V[[h]] = \varprojlim V[[h]]/h^nV[[h]]$.

We now have a problem: the usual tensor product of finite-dimensional modules no longer works properly. For instance, if V is infinite dimensional $V[[h]] \not\cong V \otimes_{\mathbb{C}} K$; $\mathbb{C}[[x]] \otimes_{\mathbb{C}} \mathbb{C}[[y]] \not\cong \mathbb{C}[[x,y]]$ (not the h-adic topology).

Definition

The **topological tensor product** of two $K\mbox{-}\mathrm{modules}\ M,N$ is defined to be the $h\mbox{-}\mathrm{adic}$ completion

$$M \hat{\otimes} N = \underline{\lim} (M \otimes_K N) / h^n (M \otimes_K N)$$

Note that $V[[h]] \hat{\otimes} W[[h]] = (V \otimes W)[[h]]$. So the topological tensor product of two topologically free modules is topologically free.

Deformation algebras

Definition

A deformation (Hopf, bi-) algebra over K is a topologically free K-module A with the required maps defined on topological tensors products.

Given some $a \in A$, a formal power series

$$f(a) = \sum_{n=1}^{\infty} c_i a^n h^n$$

defines an element in A, regarded as an inverse limit. Therefore it makes sense to talk about e^h and e^{ha} for any $a \in A$.

Observation

The quotient A/hA is a \mathbb{C} -vector space which also gains a usual (Hopf, bi-) algebra structure from the maps on the topological algebra A restricted to A/hA. If $A_0 \cong A/hA$, we say A is a **deformation of** A_0 .

$\it h$ -formal groups

Definition

A **formal group** is a topological Hopf algebra isomorphic to $U(\mathfrak{g})^*$ for some Lie algebra \mathfrak{g} . An h-**formal group** is a deformation Hopf algebra H such that H/hH is a formal group.

Let $A^\circ=\operatorname{Hom}_K(A,K)$ be the algebra of K-linear maps on A. We define the dual algebra of an h-formal group H to be the space of continuous K-linear maps $H\to K.$

Proposition

Let A be a QUEA. Then A° where $K = \mathbb{C}[[h]]$ is an h-formal group. Conversely, the dual algebra of an h-formal group H is a QUEA.

Lemma

The dual $U_h(\mathfrak{sl}_2)^{\circ}$ is isomorphic to $SL_h(2)$ as deformation Hopf algebras.

The FRT construction II

Now consider GL_n, SL_n as algebraic groups. We may still define the completion

$$U(\mathfrak{sl}_n)^{\circ} = \varprojlim \Gamma(SL_n)/J^i, U(\mathfrak{gl}_n)^{\circ} = \varprojlim \Gamma(GL_n)/J^i$$

where J is the kernel of ε .

Theorem (FRT deformation version)

Let W be a finite dimensional \mathbb{C} -vector space, and $R \in (\operatorname{End}(W) \otimes \operatorname{End}(W))[[h]]$ an R-matrix such that $R \equiv \operatorname{id} \pmod h$ satisfying the Hecke relation:

$$(\sigma \circ R - p)(\sigma \circ R + q) = 0$$

for $p,q\equiv 1\pmod h$. Define the $\mathbb{C}[[h]]$ -algebra H(R) to be completion of the algebra H_0 generated by T_i^j and similar relations defined by R. Then H(R) is an h-formal group and $H(R)/hH(R)\cong U(\mathfrak{gl}_n)^\circ$. Moreover, there is a universal r-form r induces R on the H(R)-comodule W[[h]].

Comments and Example I

In the last slide, by completion we mean the h-adic completion of $\varprojlim H_0/(\ker \varepsilon)^i$. The Hecke relation ensures the deformation is flat, or in some sense satisfies the *Ore condition* that governs localizations. Define the R-matrix

$$R = e^h \sum_{i \neq j} E_{ii} \otimes E_{ii} + \sum_{i \neq j} E_{ii} \otimes E_{jj} + (e^h - e^{-h}) \sum_{i < j} E_{ij} \otimes E_{ji}$$

Exercise: Compute the case n=2. Show that it satisfies the Hecke relation.

Example I

Define the *q*-determinant

$$\det_q = \sum_{\gamma \in S_n} (-e^{-h})^{|\gamma|} T^1_{\gamma(1)} \cdots T^n_{\gamma(n)}$$

where $|\gamma|$ is the length of the permutation. If R satisfies the Hecke-relation, then we can localize H(R) at \det_q to get $H(R)_{\det_q}$.

Proposition

Let I be the two-sided ideal in $H(R)_{\det_q}$ generated by \det_q^{-1} . Then

$$H(R)_{\det_q}/I \cong U_h(\mathfrak{sl}_n)^{\circ}$$

The case n=2 is precisely what we did in the previous slides (although we need to rearrange the R-matrix).

Properties of topological free modules

Proposition

Let V be a \mathbb{C} -vector space and $\{e_i\}$ a basis of V.

- The K-module generated by $\{e_i\}$ is dense in V[[h]].
- lacktriangle For any separated, completed K-module M, we have a bijection

$$\operatorname{Hom}_K(V[[h]], M) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{C}}(V, M)$$

Proof.

For the first part, show that if $f=\sum v_nh^n$ we may define

$$f_n = \sum_{k=0}^{n-1} v_k h^k = \sum_{k=0}^{n-1} \sum_{i=0}^r a_{ik} e_i h^k = \sum_{i=0}^r \left(\sum_{k=0}^{n-1} a_{ik} h^k \right) e_i \in W$$

and that $|f-f_n|_h=p^{-n}$. For the second part, given a map $g:V\to M$ define $g_n=\sum g:V[[h]]/h^nV[[h]]\to M/h^nM$ and take the completion.

Quantum universal enveloping algebras (again)

Definition

A quantum universal enveloping algebra is a deformation algebra Asuch that $A/hA \cong U(\mathfrak{g})$ for some Lie algebra \mathfrak{g} .

Define
$$U_h(\mathfrak{sl}_2)$$
 as the deformation algebra generated by E,F,H (for $q=e^h$) such that $\varepsilon(E)=\varepsilon(F)=\varepsilon(H)=0$,
$$[E,F]=\frac{q^H-q^{-H}}{q-q^{-1}}, [H,E]=2E, [H,F]=-2F$$

with
$$\Delta(E) = E \otimes q^H + 1 \otimes E$$
, $\Delta(F) = F \otimes 1 + q^{-H} \otimes F$, $\Delta(H) = H \otimes 1 + 1 \otimes H$; $S(E) = -Eq^H$, $S(F) = q^H F$, $S(H) = -H$.

$$\Delta(H) = H \otimes 1 + 1 \otimes H; \ S(E) = -Eq^H, \ S(F) = q^H F, \ S(H) = -H.$$

Lemma

The deformation algebra $U_h(\mathfrak{sl}_2)$ is a QUEA: $U_h(\mathfrak{sl}_2)/hU_h(\mathfrak{sl}_2)=U(\mathfrak{sl}_2)$.

Proof.

The proof is rather easy. The only thing you need is the power series of

Quantum universal enveloping algebras

It is also possible to deform $U(\mathfrak{g})$ for a semisimple Lie algebra (or a Kac-Moody algebra in general).

Definition

The **Drinfeld-Jimbo quantum groups** are the h-deformations of $U(\mathfrak{g})$ generated by elements behaving like E_i, F_i, H_i , and some Serre relations.

$$[H_i, H_j] = 0,$$
 $[H_j, E_i] = a_{ij}E_i,$ $[H_j, F_i] = -a_{ij}F_i,$ (9.2)

$$[E_i, F_j] = \delta_{ij} \frac{q^{d_i h H_i} - q^{-d_i h H_i}}{q^{d_i h} - q^{-d_i h}}, \tag{9.3}$$

$$\sum_{k=0}^{1-a_{ij}} (-1)^k \begin{bmatrix} 1-a_{ij} \\ k \end{bmatrix}_{q^{d_i}} E_i^{1-a_{ij}-k} E_j E_i^k = 0, \quad (9.4)$$

$$\sum_{k=0}^{1-a_{ij}} (-1)^k \begin{bmatrix} 1-a_{ij} \\ k \end{bmatrix}_{q^{d_i}} F_i^{1-a_{ij}-k} F_j F_i^k = 0, \tag{9.5}$$

(from Etingof & Schiffmann)

Structures on QUEA

As K-modules, we always have $A\cong U(\mathfrak{g})[[h]]$ and $A^{\hat{\otimes} n}\cong (U(\mathfrak{g})^{\otimes n})[[h]].$ By the previous proposition, the maps $\mu, \iota, \Delta, \varepsilon$ are all determined by their restrictions to $U(\mathfrak{g})\otimes U(\mathfrak{g})$, \mathbb{C} , etc., which are maps of the form

$$\mu(a\otimes b) = \sum \mu_n(a\otimes b)h^n$$

for any $a,b\in U(\mathfrak{g})$, $\mu_n:U(\mathfrak{g})\otimes U(\mathfrak{g})\to U(\mathfrak{g})$ and μ_0 the multiplication in $U(\mathfrak{g})$. Furthermore, the universal R-matrix on A is given by (consider the first line of this slide)

$$R = \sum R_n h^n, \quad R_n \in U(\mathfrak{g}) \otimes U(\mathfrak{g})$$

such that $R_0=1\otimes 1$. Now if we write $R=1\otimes 1+rh+O(h^2)$, we may define

Definition

The quasiclassical limit of R is the matrix $r=R_1\in A\otimes A$. And R is a quantization of r (from now r no longer means a form).

More about quantization

Lemma

Let $R \in (A \otimes A)[[h]]$ be a solution to the QYBE for some associative algebra A such that $R_0 = 1 \otimes 1$. Then the quasiclassical limit of R is a solution to the classical YBE:

$$[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0$$

Write $R_{21} = \sigma(R)$. Define $t \in A \otimes A$ to be the quasiclassical limit of RR_{21} . Then easily we see that $t = r + r_{21}$ and thus t is symmetric.

Proposition

Let (H,R) be a quasitriangular quantum universal enveloping algebra quantizing $U(\mathfrak{g})$ and r be the quasiclassical limit of R. Then canonical 2-tensor $t=r+r_{21}\in (S^2(\mathfrak{g}))^{\mathfrak{g}}$ in the sense that (the commutator!)

$$[\Delta(x), t] = 0, \quad \forall x \in \mathfrak{g}$$

More about quantization

To understand the theorem, we will need the vague idea of a **Lie** bialgebra, a Lie algebra with a map $\delta: \mathfrak{g} \to \mathfrak{g} \otimes \mathfrak{g}$ such that

$$\delta([X,Y]) = (\operatorname{ad}_X \otimes \operatorname{id} + \operatorname{id} \otimes \operatorname{ad}_X)\delta(Y) - (\operatorname{ad}_Y \otimes \operatorname{id} + \operatorname{id} \otimes \operatorname{ad}_Y)\delta(X)$$

If H is a quantization of $U(\mathfrak{g})$ then we may define on \mathfrak{g}

$$\delta(a) = \frac{\Delta(\tilde{a}) - \sigma(\Delta(\tilde{a}))}{h} \pmod{h}$$

where \tilde{a} is any lift of a to H. Fact: δ turns \mathfrak{g} into a Lie bialgebra. Step 0: Use the Hexagon relations to show that $(\Delta_0 \otimes \mathrm{id})(r) = r_{13} + r_{23}$ and $(\mathrm{id} \otimes \Delta_0)(r) = r_{12} + r_{13}$. Deduce that $r \in \mathfrak{g} \otimes \mathfrak{g}$ and $t \in S^2(\mathfrak{g})$. It remains to see that $t = r + r_{21}$ is invariant.

Step 1: Show that if R is a universal R-matrix of H and r its quasiclassical limit, then $\delta(a) = \partial r \coloneqq [\Delta(a), r]$.

Step 2: Use Step 1 and the skew-symmetric construction of δ , show that $[\Delta(x),t]=0$.

Example II

Let $\mathfrak g$ be the Heisenberg Lie algebra generated by x,y,z such that $[x,y]=z,\ [x,z]=[y,z]=0.$ Then $t=z\otimes z\in (S^2(\mathfrak g))^{\mathfrak g}$ since z sits inside the center of $\mathfrak g$. Let H be the bialgebra $U(\mathfrak g)[[h]]$ and $R=e^{ht/2}$. Then

Proposition

The algebra (H,R) is a quantum universal enveloping algebra of $\mathfrak g$ whose canonical 2-tensor quantizes t.

Proof:

Example II

Example II