Algorithms and Data Structures

Master's ITMO, 2024

Theoretical tasks

Plan:

1	Acu	имптотические оценки алгоритмов	2
	1.1	Конспект	2
	1.2	Практика	3
2		ементарные структуры данных. Амортизационный анализ.	5
2		ементарные структуры данных. Амортизационный анализ. Конспект	5

Неделя 1. Асимптотические оценки алгоритмов

```
# функция min_search для поиска минимума в массиве arr

def min_search(arr: int[]):
    ans: int = MAX_INT
    for i: int = 0...len(arr)-1:
        if arr[i] < ans:
        ans = arr[i]
    return ans
```

Listing 1: поиск минимума в массиве

Конспект

- ⊳ что такое алгоритм?
 - ★ это конечная последовательность действий для абстрактного вычислителя
 - * алгоритм получает на вход данные input и после завершения работы выдает данные output
- ▶ что такое RAM-модель?
 - * грубо говоря, это очень упрощенная модель компьютера
 - * есть память с произвольным доступом RAM, Random Access Memory
 - * RAM представляет собой последовательный набор ячеек, где у каждой ячейки есть свой адрес
 - \star за одно действие, можем обратится к одной ячейке памяти по ее адресу, для выполнения операции чтения/записи
 - \star за одно действие, можем выполнить любую арифметическую/логическую операцию с двумя ячейками
- ⊳ чем отличается реальный компьютер?
 - ★ про язык ассемблера можно почитать [здесь]
 - * арифметические инструкции (например ADD) работают примерно за один такт процессора, в то время как инструкции работы с оперативной памятью (например MOV) работают за несколько сотен тактов
 - \star для оптимизации процессор $\kappa emupyem$ данные: при обращении в оперативную память к ячейке с адресом i, процессор заодно выгружает из оперативной памяти несколько соседних с i-й ячеек это называется κem - $nunue\check{u}$ и запоминает их в κem -namnam, которая находится прямо в процессоре и очень быстрая; теперь, если мы захотим обратится в оперативную память к ячейке с адресом i+1, процессор не пойдет в оперативную память, а возьмет данные из κem -a
- ⊳ как оценить производительность алгоритма?
 - * засекать время плохо у разных компьютеров разная производительность
 - \star введем функцию T(n) количество абстрактных действий, которые делает наш алгоритм в RAM-модели, если на вход алгоритму подаются входные данные input и размер этих входных данных равен n

- \star определим понятия сложность алгоритма и время работы алгоритма как функцию T(n)
- \star на лекции мы посчитали, что время работы алгоритма [1] поиска минимума в массиве примерно равно $T(n) = 8 \cdot n + 3$ абстрактных операций

Def. Так как нас интересует только *асимптотика* функции T(n) (порядок роста функции T(n) относительно размера n входных данных), мы сказали, что нам интересен только наибольший член этой функции, а так же неинтересны константы. Чтобы формально и коротко это записать, мы ввели следующие обозначения:

- $\star T(n) = \mathcal{O}(f(n))$
- $\star \ T(n) = \Omega(g(n))$
- $\star T(n) = \Theta(h(n))$

В примерах выше, функции f(n), g(n) — это соответственно *оценка сверху* и *оценка снизу* для нашей функции T(n), в то время как h(n) — это *точная оценка*.

Def. Напомним используемые далее определения:

$$\star f(n) = \mathcal{O}(g(n)) \equiv \exists n_0, c > 0 : \forall n \geqslant n_0 : f(n) \leqslant c \cdot g(n)$$

$$\star \ f(n) = \Omega(g(n)) \ \equiv \ \exists n_0, c > 0 : \forall n \geqslant n_0 : f(n) \geqslant c \cdot g(n)$$

$$\star f(n) = \Theta(g(n)) \equiv \exists n_0, c_1, c_2 > 0 : \forall n \geqslant n_0 : c_1 \cdot g(n) \leqslant f(n) \leqslant c_2 \cdot g(n)$$

Практика

 \square Для каждой из рассматриваемых далее функций f(n) найдите наиболее компактно записываемую g(n), такую что $f(n) = \Theta(g(n))$.

1.
$$f(n) = 7n^2 - 7(n-3)^2$$

2.
$$f(n) = 5n + 2\sqrt[3]{n}$$

3.
$$f(n) = 10(n+1)^2 + 3(n-2)$$

4.
$$f(n) = \log(\sqrt{n}) + \sqrt{\log n}$$

5.
$$f(n) = n \cdot 3^{n+1} + n^{10}$$

6.
$$f(n) = \frac{10n^2+2}{7n-1}$$

7.
$$f(n) = \log(2n \log n)$$

 \square Докажите следующие соотношения по определению (подберите константы c и n_0).

8.
$$\log n = \Omega(20)$$

9.
$$2^n = \mathcal{O}(3^n)$$

10.
$$n(n-8) = \Omega(n^2)$$

11.
$$3n + 2\sqrt{n} = \mathcal{O}(n \log n)$$

12.
$$n! = \Omega(5^n)$$

□ Операции с нотацией О-большое. Докажите, что:

13. если
$$f(n) = \mathcal{O}(h(n))$$
 и $g(n) = \mathcal{O}(h(n))$, то верно что $f(n) + g(n) = \mathcal{O}(h(n))$

14.
$$f(n) + g(n) = \mathcal{O}(\max(f(n), g(n)))$$

```
\square Для следующих пар функций f(n) и g(n) покажите, верно ли, что f(n) = \mathcal{O}(g(n)).
```

```
15. f(n) = \log n

g(n) = \sqrt{n}
```

16.
$$f(n) = n!$$

$$g(n) = 2^n$$

17.
$$f(n) = n \log n$$

 $g(n) = \log(n!)$

 \square Время работы некоторого алгоритма задано следующим рекуррентным соотношением. Найдите Θ -асимптотику времени работы этого алгоритма, *построив дерево рекурсивных вызовов*.

18.
$$T(n) = 2 \cdot T(n-1) + 1$$

19.
$$T(n) = T(\frac{n}{2}) + n$$

20.
$$T(n) = 3 \cdot T(\frac{n}{2}) + n$$

21.
$$T(n) = T(\frac{n}{3}) + \log n$$

22.
$$T(n) = T(n-3) + n^3$$

 \square Время работы некоторого алгоритма задано следующим рекуррентным соотношением. Построив *дерево рекурсивных вызовов*, докажите, что:

23. если
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
, то $T(n) = \mathcal{O}(n\log n)$

24. если
$$T(n) = 2T(\frac{n}{2}) + 1$$
, то $T(n) = \mathcal{O}(n)$

□ Гармонический ряд:

25. Докажите, что
$$\sum_{t=1}^{n} \frac{1}{t} = \Omega(\log n)$$
.

 \square Для каждой из приведенных ниже программ найдите и аргументируйте точную \mathcal{O} -асимптотику времени ее работы.

Неделя 2. Элементарные структуры данных. Амортизационный анализ.

Конспект

- > какие элементарные структуры данных бывают?
 - ★ массив, связный список, стек, очередь
- \triangleright массив (фиксированного размера n):
 - * последовательно храним набор элементов в памяти
 - \star можем обратиться к i-му элементу за $\mathcal{O}(1)$
 - \star можем добавить/удалить элемент на позиции сразу после *i*-го элемента за $\mathcal{O}(n)$ (придется сдвинуть оставшиеся элементы массива влево)
- ⊳ стек (на массиве):
 - * девиз: последним вошел первым вышел (LIFO, last-in first-out)
 - * храним указатель H (HEAD) на верхний элемент стека

Рис. 1: Операции со стеком

- ⊳ очередь (на массиве):
 - ★ девиз: первым вошел первым вышел (FIFO, first-in first-out)
 - * храним указатели Н и Т (HEAD и TAIL) на начало и конец очереди соответственно

Рис. 2: Операции с очередью

⊳ связный список:

- ★ объекты разбросаны по разным местам в памяти
- ★ для каждого объекта храним:
 - ★ значение (value)
 - * идентификатор следующего за ним объекта (next)
 - * идентификатор предыдущего перед ним объекта (prev)
 - * уникальный идентификатор объекта (id)
- * храним ссылку HEAD на первый фиктивный элемент связного списка
- \star можем обратиться к i-му элементу за $\mathcal{O}(n)$, так как нужно будет пройти все элементы начиная с HEAD итеративно
- \star можем добавить/удалить элемент на позиции сразу после i-го элемента за $\mathcal{O}(1)$ (при условии что нам дали ссылку на i-ый элемент), так как нужно будет всего лишь поменять несколько ссылок

Практика

- 30. Придумайте модификацию стека, позволяющую за $\mathcal{O}(1)$ времени отвечать на запрос «вернуть сумму всех элементов в стеке».
- 31. Придумайте модификацию стека, позволяющую за $\mathcal{O}(1)$ времени отвечать на запрос «вернуть минимум среди всех элементов в стеке».
- 32. Придумайте модификацию очереди, позволяющую за $\mathcal{O}(1)$ времени отвечать на запрос «вернуть сумму всех элементов в очереди».
- 33. Придумайте модификацию очереди, позволяющую за $\mathcal{O}(1)$ времени отвечать на запрос «вернуть минимум среди всех элементов в очереди».
- 34. Придумайте модификацию очереди (при помощи нескольких стеков), которая поддерживает добавление и удаление элементов из обоих концов, то есть поддерживает следующие операции: push_back(), push_front(), pop_back(), pop_front().

Def. Скобочная последовательность называется *правильной*, если она может быть получена из некоторого арифметического выражения удалением всех не-скобочных символов.

Например: ()[()], [[[] $\{\}$]] и (()[] $\{\}$) — правильные скобочные последовательности, в то время как: ([)], ([$\{\}\}$] и ()] — неправильные.

- 35. Дана скобочная последовательность длины n из одного типа скобок: (). Определите, является ли она правильной. Время $\mathcal{O}(n)$.
- 36. Дана скобочная последовательность длины n из трех типов скобок: () [] и {}. Определите, является ли она правильной. Время $\mathcal{O}(n)$.
- 37. Дано арифметическое выражение в [$nocm \phi u\kappa cho \check{u}$ записи] длины n. Найдите результат вычисления этого выражения за $\mathcal{O}(n)$.

- 38. Дано арифметическое выражение в инфиксной записи со скобками (привычное нам арифметическое выражение). Найдите результат вычисления этого выражения за $\mathcal{O}(n)$.
- 39. Дан массив чисел длины n. Найдите на нем отрезок с максимальной суммой за $\mathcal{O}(n)$ времени.
- 40. Дан массив из целых чисел. Для каждого элемента найдите ближайший элемент слева, меньший его. Время $\mathcal{O}(n)$.
- 41. Как развернуть односвязный список за время $\mathcal{O}(n)$ с $\mathcal{O}(1)$ дополнительной памяти?
- 42. Дан набор из n элементов, в каждом есть ссылка на какой-то другой. Проверьте, правда ли эти элементы образуют один большой кольцевой список (менять ссылки нельзя). Время $\mathcal{O}(n)$, память $\mathcal{O}(1)$.
- 43. Дан набор из n элементов, в каждом есть ссылка на какой-то другой. Пусть гарантируется, что в структуре есть ровно один цикл. Найдите его длину. Время $\mathcal{O}(n)$, память $\mathcal{O}(1)$.
- 44. Дан набор из n элементов, в каждом есть ссылка на какой-то другой. Проверьте, правда ли эти элементы образуют один большой линейный список (начальный элемент неизвестен, менять ссылки нельзя). Время $\mathcal{O}(n)$, память $\mathcal{O}(1)$.
- 45. Дан набор из n элементов, в каждом есть ссылка на следующий и предыдущий. Проверьте, правда ли эти элементы образуют несколько кольцевых списков (менять ссылки нельзя). Время $\mathcal{O}(n)$, память $\mathcal{O}(1)$.
- 46. Дан набор из n элементов, в каждом есть ссылка на следующий и предыдущий. Проверьте, правда ли эти элементы образуют несколько связных списков и, если да, сконкатенируйте эти списки в один большой (в любом порядке). Время $\mathcal{O}(n)$, память O(1).
- 47. Слить два отсортированных односвязных списка в один за время $\mathcal{O}(n)$ с $\mathcal{O}(1)$ дополнительной памяти.
- 48. Отсортировать связный список за время $\mathcal{O}(n \log n)$ с $\mathcal{O}(1)$ дополнительной памяти.