

Workshop 4

COMP90051 Machine Learning Semester 2, 2020

Learning outcomes

At the end of this workshop you should:

- be able to explain how the optimisation problems for linear regression and logistic regression differ
- be able to implement logistic regression using the iteratively reweighted least-squares (IRLS) algorithm and gradient descent
- be able to explain benefits/drawbacks of IRLS versus gradient descent

Solving logistic regression

Logistic regression optimisation problem:

$$\mathbf{w}^* \in \arg\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, \mu_i)$$

$$= -y \log \mu - (1 - y) \log(1 - \mu)$$

- where $\mu_i = \frac{1}{1+\mathrm{e}^{-\mathrm{x}_i^\mathsf{T}\mathrm{w}}}$ and $\ell(y,\mu) = -y\log\mu (1-y)\log(1-\mu)$
- Can apply gradient descent, but it's slow to converge
- Iteratively reweighted least-squares (IRLS) is faster option:
 - Equivalent to Newton's method (uses the second-order derivative)
 - * End up solving a sequence of weighted linear regression problems—interesting connection to last week's workshop!

Worksheet 4

Linearly separable case

- When the data is linearly separable, the optimal weight vector satisfies $\|\mathbf{w}^*\|_{\infty} \to \infty$
- $p(y|\mathbf{x}) = \operatorname{sigmoid}(\mathbf{x}^{\mathsf{T}}\mathbf{w}^{*})$ transitions abruptly from 0 to 1 at the decision boundary (like a step function)

IRLS in the separable case

A key step in the IRLS algorithm is computing the linearised response:

$$\mathbf{b}_t = \mathbf{X}\mathbf{w}_t + \underbrace{\mathbf{M}_t^{-1}(\mathbf{y} - \mathbf{\mu}_t)}_{\mathbf{v}_t}$$

where $\mathbf{M}_t = \operatorname{diag}(\mathbf{\mu}_t(1 - \mathbf{\mu}_t))$ and $\mu_{i,t} = \operatorname{sigmoid}(\mathbf{x}_i^{\mathsf{T}}\mathbf{w}_t)$

However, when the data is linearly separable

$$\mu_{i,t} \to \begin{cases} 0, & \text{if } y_i = 0 \\ 1, & \text{if } y_i = 1 \end{cases}$$

as $t \to \infty$.

Why is this problematic numerically? We can't compute \mathbf{M}_t^{-1}

IRLS in the separable case

To avoid division by zero when computing \mathbf{M}_t^{-1} , we compute the second term \mathbf{v}_t as:

$$v_{i,t} = \begin{cases} \frac{1 - \mu_{i,t}}{\mu_{i,t}}, & y_i = 1\\ -\frac{1}{1 - \mu_{i,t}}, & y_i = 0 \end{cases}$$

Optional exercise: verify that this works and implement in worksheet 4