# Learning Sparse Additive Models with Interactions in High Dimensions

H. Tyagi, A. Kyrillidis, B. Gärtner, A. Krause

Emails: anastasios@utexas.edu; krausea@ethz.ch; {htyagi, gaertner}@inf.ethz.ch





### Introduction

- Unknown smooth function  $f: \mathbb{R}^d \to \mathbb{R}$ .
- Given:  $\{(\mathbf{x}_1, f(\mathbf{x}_1)), \dots, (\mathbf{x}_n, f(\mathbf{x}_n))\}; \mathbf{x}_i \in G$ , where compact  $G \subset \mathbb{R}^d$ .
- Goal: Using  $\{(\mathbf{x}_i, f(\mathbf{x}_i))\}_{i=1}^n$ , construct  $\widehat{f}: G \to \mathbb{R}$ .
- Applications: Biological systems, Solving PDE's etc.



Curse of dimensionality: For  $C^r$  smooth f,  $n = \Omega(\delta^{-d/r})$  samples needed to ensure  $||f - \widehat{f}||_{\infty} \le \delta$  for any  $\delta \in (0,1)$  (Traub et al. '88).

- $\bullet$  Additional assumption on f low intrinsic dimension. Examples:
- $-f(\mathbf{x}) = g(\mathbf{x}_{\mathcal{S}})$ ; k active vars.
- $-f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$ ; k dim. subspace.
- $-f(\mathbf{x}) = \sum_{p \in \mathcal{S}} \phi_p(x_p)$ ; Sparse additive models (SPAMs).

#### SPAMs with pairwise interactions

$$f(\mathbf{x}) = \sum_{p \in \mathcal{S}_1} \phi_p(x_p) + \sum_{(l,l') \in \mathcal{S}_2} \phi_{(l,l')}(x_l, x_{l'}); \quad \mathcal{S}_1 \subset [d], \mathcal{S}_2 \subset {[d] \choose 2}$$

• l and l' interact  $\Leftrightarrow \partial_l \partial_{l'} \phi_{(l,l')} \not\equiv 0$ .



- Existing work:
- Identify  $S_1, S_2$  as  $n \to \infty$  (Radchenko et al.'10).
- Estimating f in  $L_2$  norm. (Dalalyan et al.'14)
- Special case:  $\phi$  is multi-linear. (Nazer et al.'10)

## **Problem Setup**

- **Setting:** Freedom to query f within  $[-1,1]^d$ .
- $|S_1 \cup S_2^{\text{var}}| = k$  and  $\rho_m$  maximum degree of a variable in interaction graph.
- Unique ANOVA rep. for f:

$$f(\mathbf{x}) = c + \sum_{p \in \mathcal{S}_1} \phi_p(x_p) + \sum_{(l,l') \in \mathcal{S}_2} \phi_{(l,l')}(x_l, x_{l'}) + \sum_{q \in \mathcal{S}_2^{\mathsf{var}}: \rho(q) > 1} \phi_q(x_q),$$

**Goal:** Identify  $S_1, S_2$  from few queries; then uniformly estimate each  $\phi$ .

• If  $S_1, S_2$  known, estimate  $\phi$ 's by additionally querying f along corresponding one/two dim. subspaces.

## Identify $S_1, S_2$ : Noiseless setting

First identify  $S_2$ ; then identify  $S_1$  on reduced SPAM (Tyagi et al. '14). **Identifying**  $S_2$ :

• Observation – For any  $(l, l') \in \binom{[d]}{2}$ :

$$\partial_l \partial_{l'} f = \left\{ egin{array}{ll} \partial_l \partial_{l'} \phi_{(l,l')} & \text{if } (l,l') \in \mathcal{S}_2 \\ 0 & \text{otherwise.} \end{array} 
ight.$$

•  $\nabla^2 f(\mathbf{x})$  sparse – k non-zero rows; at most  $(\rho_m + 1)$  non-zero entries per row.

$$\frac{\nabla f(\mathbf{x} + \mu_1 \mathbf{v'}) - \nabla f(\mathbf{x})}{\mu_1} = \nabla^2 f(\mathbf{x}) \mathbf{v'} + \frac{\mu_1}{2} \begin{pmatrix} \mathbf{v'}^T \nabla^2 \partial_1 f(\zeta_1) \mathbf{v'} \\ \vdots \\ \mathbf{v'}^T \nabla^2 \partial_d f(\zeta_d) \mathbf{v'} \end{pmatrix}.$$

 $\begin{array}{lll} \bullet \ \, \text{Choose} \quad \mathbf{v'} \quad \text{randomly;} \quad \text{compute} \quad O(\rho_m \log d) \quad \text{gradient} \quad \text{differences} \quad \text{to} \quad \text{obtain} \\ \left\{ \nabla^2 f(\mathbf{x}) \mathbf{v}_i' + \mathbf{z}_i \right\}_{i=1}^{m_{v'}}. \end{array}$ 

Estimate k-sparse gradients from  $O(k \log d)$  queries via  $\ell_1$  min.:

$$\frac{f(\mathbf{x} + \mu \mathbf{v}) - f(\mathbf{x} - \mu \mathbf{v})}{2\mu} = \langle \mathbf{v}, \nabla f(\mathbf{x}) \rangle + O(\mu^2).$$

Query f at  $\{f(\mathbf{x} \pm \mu \mathbf{v}_i)\}_{i=1}^{m_v}$ .

- Estimate each row of  $\nabla^2 f(\mathbf{x})$  via  $\ell_1$  minimization; this gives estimates  $\{\widehat{\partial_i}\widehat{\partial_j}f(\mathbf{x}):(i,j)\in {[d]\choose 2}\}$  with  $O(k\rho_m(logd)^2)$  queries.
- How to choose  $\mathbf{x}$ ? Create (d,t) hash family:  $\mathcal{H}_2^d = \{h_1,h_2,\ldots\}$  with  $h_j:[d] \to \{1,2\}$ . Construct  $\chi = \cup_{h \in \mathcal{H}_2^d} \chi(h)$  where

$$\chi(h) := \left\{ \mathbf{x}(h) \in [-1, 1]^d : \mathbf{x}(h) = \sum_{i=1}^2 c_i \mathbf{e}_i(h); c_1, c_2 \in \left\{ -1, -\frac{m_x - 1}{m_x}, \dots, \frac{m_x - 1}{m_x}, 1 \right\} \right\}.$$

 $|\chi| \le (2m_x+1)^2 |\mathcal{H}_2^d| = O(m_x^2 \log d)$ ; uniformly discretizes all canonical 2-dim subspaces.

• Estimate  $\nabla^2 f(\mathbf{x})$  at each  $\mathbf{x} \in \chi$ . Identify  $S_2$  via thresholding.



**Figure 1:** (a)  $\nabla^2 f(\mathbf{x})$  estimated using:  $\widehat{\nabla} f(\mathbf{x})$  and neighborhood gradient estimates (b) Geometric picture: d=3,  $h\in\mathcal{H}_2^3$  with  $h(1)=h(3)\neq h(2)$ . Red disks are points in  $\chi(h)$ .

**Identifying**  $S_1$ : Apply scheme of Tyagi et al. '14 on  $[d] \setminus \widehat{S_2^{\text{var}}}$ . Recovers  $S_1$  with  $O((k - |\widehat{S_2^{\text{var}}}|) \log d)$  queries.

#### Algorithm for identifying $S_2, S_1$ :

- Construct  $\chi \subset [-1,1]^d$  using  $\mathcal{H}_2^d$ . At each  $\mathbf{x} \in \chi$ :
- Estimate  $\nabla^2 f(\mathbf{x})$  to obtain  $\widehat{\partial_i \partial_j} f(\mathbf{x})$  for all  $(i,j) \in {[d] \choose 2}$ .
- For threshold parameter  $\tau' > 0$  update  $\widehat{\mathcal{S}_2} = \widehat{\mathcal{S}_2} \cup \left\{ (i,j) \in {[d] \choose 2} : |\widehat{\partial_i \partial_j} f(\mathbf{x})| > \tau' \right\}$

Apply scheme of Tyagi et al. '14 on  $[d] \setminus \widehat{\mathcal{S}_2^{\text{var}}}$  to obtain  $\widehat{\mathcal{S}_1}$ .

**Theorem 1.** For suitable choice of step sizes and thresholds, we have  $\widehat{\mathcal{S}_2} = \mathcal{S}_2$ ,  $\widehat{\mathcal{S}_1} = \mathcal{S}_1$  w.h.p. Total number of queries made is  $O(k\rho_m(\log d)^3)$ .

## Identify $S_1, S_2$ : Noisy setting

- Two noise models: Arbitrary bounded noise and i.i.d Gaussian noise.
- Arbitrary bounded noise: Observe  $f(\mathbf{x}) + z'$  with  $|z'| < \varepsilon$ , and  $\varepsilon$  known.

**Theorem 2.** If  $\varepsilon = O(\rho_m^{-2}k^{-1/2})$ , then for suitable choice of step sizes and and thresholds, we have  $\widehat{S_2} = S_2$ ,  $\widehat{S_1} = S_1$  w.h.p.

• i.i.d Gaussian noise: Observe  $f(\mathbf{x}) + z'$  with  $z' \sim \mathcal{N}(0, \sigma^2)$ .

**Theorem 3.** If we resample each query  $O(\rho_m^4 k \log d)$  times and average, then for suitable choice of step sizes and and thresholds, we have  $\widehat{S_2} = S_2$ ,  $\widehat{S_1} = S_1$  w.h.p.

- Total number of queries made:  $O(\rho_m^5 k^2 (\log d)^4)$ .

#### Simulation results

(i)  $f_1(\mathbf{x}) = 2x_1 - 3x_2^2 + 4x_3x_4 - 5x_4x_5$ , (ii)  $f_2(\mathbf{x}) = 10\sin(\pi \cdot x_1) + 5e^{-2x_2} + 10\sin(\pi \cdot x_3x_4) + 5e^{-2x_4x_5}$ .



**Figure 2:** First (resp. second) row is for  $f_1$  (resp.  $f_2$ ). 5 independent Monte Carlo trials.

ullet  $\widetilde{C}$  is a constant such that  $m_v := \widetilde{C}k\log{(d/k)}$ ,  $m_{v'} := \widetilde{C}
ho_m\log{(d/
ho_m)}$ .

Acknowledgements. Supported in part by SNSF grant CRSII2\_147633.