Clustering k-mean clustering

Genome 559: Introduction to Statistical and Computational Genomics

Elhanan Borenstein

A quick review

The clustering problem:

- partition genes into distinct sets with high homogeneity and high separation
- Different representations
- Homogeneity vs Separation
- Many possible distance metrics
 - Method matters; metric matters; definitions matter;

Hierarchical clustering algorithm:

- 1. Assign each object to a separate cluster.
- 2. Find the pair of clusters with the shortest distance, and regroup them into a single cluster.
- 3. Repeat 2 until there is a single cluster.

K-mean clustering

K-mean clustering

 An algorithm for partitioning n observations/points into k clusters such that each observation belongs to the cluster with the nearest mean/center

K-mean clustering: Chicken and egg

An algorithm for partitioning n
observations/points into k clusters such
that each observation belongs to the
cluster with the nearest mean/center

The chicken and egg problem:

I do not know the means before I determine the partitioning into clusters I do not know the partitioning into clusters before I determine the means

K-mean clustering: Chicken and egg

 An algorithm for partitioning n observations/points into k clusters such that each observation belongs to the cluster with the nearest mean/center

The chicken and egg problem:

I do not know the means before I determine the partitioning into clusters I do not know the partitioning into clusters before I determine the means

Key principle - cluster around mobile centers:

 Start with some random locations of means/centers, partition into clusters according to these centers, and then correct the centers according to the clusters [similar to EM (expectation-maximization) algorithms]

K-mean clustering algorithm

 \blacksquare The number of centers, k, has to be specified a-priori

Algorithm:

- 1. Arbitrarily select *k* initial centers
- Assign each element to the closest center
- Re-calculate centers (mean position of the assigned elements)
- 4. Repeat 2 and 3 until ...

K-mean clustering algorithm

The number of centers, k, has to be specified a-priori

Algorithm:

- 1. Arbitrarily select *k* initial centers
- Assign each element to the closest center
- 3. Re-calculate centers (mean position of the assigned elements)
- 4. Repeat 2 and 3 until one of the following termination conditions is reached:
 - The clusters are the same as in the previous iteration
 - ii. The difference between two iterations is smaller than a specified threshold
 - iii. The maximum number of iterations has been reached

How can we do this efficiently?

Voronoi diagram

 Decomposition of a metric space determined by distances to a specified discrete set of "centers" in the space

 Each colored cell represents the collection of all points in this space that are closer to a specific center s than

to any other center

 Several algorithms exist to find the Voronoi diagram.

K-mean clustering algorithm

The number of centers, k, has to be specified a priori

Algorithm:

- 1. Arbitrarily select *k* initial centers
- Assign each element to the closest center (Voronoi)
- Re-calculate centers (mean position of the assigned elements)
- 4. Repeat 2 and 3 until one of the following termination conditions is reached:
 - The clusters are the same as in the previous iteration
 - ii. The difference between two iterations is smaller than a specified threshold
 - iii. The maximum number of iterations has been reached

Two sets of points randomly generated

- 200 centered on (0,0)
- 50 centered on (1,1)

initial conditions

Two points are randomly chosen as centers (stars)

Each dot can now be assigned to the cluster with the closest center

initial conditions

First partition into clusters

iter.max = 1 ; iterations = 1

Centers are re-calculated

And are again used to partition the points

iter.max = 1 ; iterations = 1

Second partition into

clusters

iter.max = 2 ; iterations = 2

Re-calculating centers

again

iter.max = 2 ; iterations = 2

And we can again partition the points

iter.max = 2 ; iterations = 2

Third partition into clusters

iter.max = 3; iterations = 3

After 6 iterations:

iter.max = 6; iterations = 6

The calculated centers remains stable

K-mean clustering: Summary

- The convergence of k-mean is usually quite fast (sometimes 1 iteration results in a stable solution)
- K-means is time- and memory-efficient

Strengths:

- Simple to use
- Fast
- Can be used with very large data sets

Weaknesses:

- The number of clusters has to be predetermined
- The results may vary depending on the initial choice of centers

K-mean clustering: Variations

Expectation-maximization (EM):
maintains probabilistic assignments to clusters,
instead of deterministic assignments, and multivariate
Gaussian distributions instead of means.

k-means++: attempts to choose better starting points.

 Some variations attempt to escape local optima by swapping points between clusters

The take-home message

What else are we missing?

What else are we missing?

What if the clusters are not "linearly separable"?

