Homework 13

Put your name and student ID here 2020-12-01

Q1: Consider the linear model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \ \epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2), i = 1, \dots, n.$$

- 1. Derive the maximum likelihood estimators (MLE) for β_0, β_1 . Are they consistent with the least square estimators (LSE)?
- 2. Derive the MLE for σ^2 and look at its unbiasedness.
- 3. A very slippery point is whether to treat the x_i as fixed numbers or as random variables. In the class, we treated the predictors x_i as fixed numbers for sake of convenience. Now suppose that the predictors x_i are iid random variables (independent of ϵ_i) with density $f_X(x;\theta)$ for some parameter θ . Write down the likelihood function for all of our data $(x_i, y_i), i = 1, ..., n$. Derive the MLE for β_0, β_1 and see whether the MLE changes if we work with the setting of random predictors?

Q2: Consider the linear model without intercept

$$y_i = \beta x_i + \epsilon_i, \ i = 1, \dots, n,$$

where ϵ_i are independent with $E[\epsilon_i] = 0$ and $Var[\epsilon_i] = \sigma^2$.

- Write down the least square estimator $\hat{\beta}$ for β , and derive an unbiased estiamtor for σ^2 .
- For fixed x_0 , let $\hat{y}_0 = \hat{\beta}x_0$. Work out $Var[\hat{y}_0]$.

Q3: Genetic variability is thought to be a key factor in the survival of a species, the idea being that "diverse" populations should have a better chance of coping with changing environments. Table below summarizes the results of a study designed to test that hypothesis experimentally. Two populations of fruit flies (Drosophila serrata)-one that was cross-bred (Strain A) and the other, in-bred (Strain B)-were put into sealed containers where food and space were kept to a minimum. Recorded every hundred days were the numbers of Drosophila alive in each population.

Date	Day number	Strain A	Strain B
Feb 2	0	100	100
May 13	100	250	203
Aug 21	200	304	214
Nov 29	300	403	295
Mar 8	400	446	330
Jun 16	500	482	324

- Plot day numbers versus population sizes for Strain A and Strain B, respectively. Does the plot look linear? If so, please use least squares to figure out the coefficients and their standard errors, and plot the two regression lines.
- Let β_1^A and β_1^B be the true slopes (i.e., growth rates) for Strain A and Strain B, respectively. Assume the population sizes for the two strains are independent. Under the same assumptions of $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$ for both strains, do we have enough evidence here to reject the null hypothesis that $\beta_1^A \leq \beta_1^B$ (significance level $\alpha = 0.05$)? Or equivalently, do these data support the theory that genetically mixed populations have a better chance of survival in hostile environments. (提示: 仿照方差相同的两个正态总体均值差的假设检验,构造相应的 t 检验统计量)

Q4: Let us consider fitting a straight line, $y = \beta_0 + \beta_1 x$, to points (x_i, y_i) , where i = 1, ..., n.

- 1. Write down the normal equations for the simple linear model via the matrix formalism.
- 2. Solve the normal equations by the matrix approach and see whether the solutions agree with the earlier calculation derived in the simple linear models.

Q5: Consider fitting the curve $y = \beta_0 x + \beta_1 x^2$ to points (x_i, y_i) , where i = 1, ..., n.

- 1. Use the matrix formalism to find expressions for the least squares estimates of β_0 and β_1 .
- 2. Find an expression for the covariance matrix of the estimates.

Q6: Suppose that in the model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \ i = 1, \dots, n,$$

the errors ϵ_i have mean zero and are uncorrelated, but $Var(\epsilon_i) = \rho_i^2 \sigma^2$, where the $\rho_i > 0$ are known constants, so the errors do not have equal variance. Because the variances are not equal, the theory developed in our class does not apply.

- (a) Try to transform suitably the model such that the basic assumptions (i.e., the errors have zero mean and equal variance, and are uncorrelated) of the standard statistical model are satisfied.
- (b) Find the least squares estimates of β_0 and β_1 for the transformed model.
- (c) Find the variances of the estimates of Part (b).