Feature Selection

Presentation

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/f1886e41-1690-4 1ea-98db-73997aa8d8e2/L1-FeatureSelection.pdf

Class Notes

Feature Selection

Given a set of features, some features are more important than others.

- We typically want system to make predictions.
 - In trying to figure out best features, we can do an <u>exhaustive (naive)</u>
 approach:
 - Can train a system for each possible combinations of features, finding out which do the best and use these features (<u>feature set</u>)
 - This can gives a globally optimal solution.
 - Doing this, however, is NOT feasible, especially, when the number of features is high.
 - $\sum_{i=0}^{D} \binom{D}{i} = 2^{D}$ possible systems (if features are binary)

- <u>Ex:</u> 2 binary features would have 4 possible values that they could undertake that we'd need to create to train our system on all possible combinations.
- Another idea is to do a greedy approach:
 - We can start with NO features and train a system with this.
 - Will likely do very poorly.
 - For each iteration t, for each remaining feature j
 - Run learning algorithm for features $F \cup \{j\}$
 - · Ex: Would look like this:

$$\circ F = \{\}, f_1, f_2, f_3$$

- Train system with each feature used individually:
 - $\{f_1\}, \{f_2\}, \{f_3\}$
 - Say that f_2 improved performance.
- Continue training system with the remaining features:
 - $F = \{f_2\}$
 - $\{f_2, f_1\}, \{f_2, f_3\}$
 - Say that $\{f_2,f_1\}$ has better performance.
- · Continue training:
 - $F = \{f_2, f_1\}$
 - At this point, we can stop and determine if adding another feature worsens performance or not.
 - It may be the case that we stop earlier in our search since performance may worsen here.
- $\hbox{$\blacksquare$ This would involve training/evaluating $D+(D-1)+(D-2)+1$} = \sum_{i=1}^D i = \frac{D(D+1)}{2} \hbox{ systems total, ending up with D^2.}$
- We could think about whether we could <u>rank the features (separability</u> <u>feature selection)</u>.

- Instead of having to add each feature at a different iteration, can we just add in the highest ranked one?
 - Here, the question is: How do we rank our features?
 - If we don't have class features, we could use something like covariance or standard deviation to rank the features.
 - Ultimately, we want features that are unique so using some combo of deviations within the feature and similarity with other features to be reduced.
 - If we have supervised information, class labels, then we can maybe rank the feature by how well they do in separating the data by class.
 - We'll focus on this!!!

Entropy-Based Feature Selection

Given a set of features, some features are more important than others:

- Entropy is randomness in a system:
 - Say if we have k different possibilities with a probability of occurring, then we can compute the entropy of the set, based on the following formula.

$$H(P(v_1), ..., P(v_K)) = \sum_{i=1}^{K} (-P(v_i) \log_K P(v_i))$$

- In calculating the entropy of tossing fair coin:
 - The value of 1 means that this is a purely random system.
 - A deterministic system would have a probability of 0.

•
$$v_1 = heads$$
, $v_2 = tails$,

•
$$P(v_1) = 0.5, P(v_2) = 0.5$$

•
$$H\left(\frac{1}{2}, \frac{1}{2}\right) = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1$$

Entropy gives a measure of randomness in a system.

For our purposes, the outcomes are the class target labels:

- We start by taking the subsets generated by a feature, calculating the entropy of this subset, and calculate the weighted average entropy.
- The feature that provides the lowest weighted average entropy for its subsets should be selected.

Weighted Average Entropy

Let H_i be the entropy of subset i.

Let $|C_i|$ be the number of observations in subset i.

Based on this, we can define the average entropy as:

$$\mathbb{E} = \sum_{i=1}^{S} rac{|C_i|}{N} H_i$$

Entropy in general is calculated as:

$$H(P(v_1),...,P(v_k)) = \sum_{i=1}^K (-P(v_i)\log_K P(v_i))$$

Example

$$X = \begin{bmatrix} 1 & 1 \\ 1 & 3 \\ 2 & 2 \\ 1 & 2 \\ 3 & 2 \\ 2 & 2 \end{bmatrix}, Y = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Feature 1 has 3 unique values, creating 3 subsets of data.

- From here, we're going to look at the class values of each subset.
 - Subset 1:
 - Feature observations: Class label 1, Class label 1, Class label 0
 - The probability of being class label 0 is $\frac{1}{3}$
 - The probability of being class label 1 is $\frac{2}{3}$
 - The entropy of this subset = $H_1=-rac{1}{3}\log_2(rac{1}{3})-rac{2}{3}\log_2(rac{2}{3})$
 - Subset 2:
 - Feature observations: Class label 1, Class label 0
 - The probability of being class label 0 is $\frac{1}{2}$
 - The probability of being class label 1 is $\frac{1}{2}$
 - ullet The entropy of this subset resembles that of a fair coin flip: $H_2=1$
 - Subset 3:
 - Feature observations: Class label 0
 - ullet This subset has no entropy (no randomness) ${}_{\!\!\!\!\!-}$ $H_3=0$
- Based on the entropy calculated, we can finally calculate the weighted average entropy:
 - $\circ~$ Weighted average entropy = $rac{3}{6}H_1+rac{1}{2}H_2+rac{1}{6}H_3$
 - First subset has 3 observations, so we weight it with $\frac{3}{6}$. We continue this with the rest of the subsets.

Feature 2 has 3 unique values as well, also creating 3 subsets of data.

- Subset 1 and 3 have no entropy.
- Subset 2, however, is the subset with the largest number of observations and has entropy within it.

$$\mathbb{E}_{1} = \frac{3}{6} \left(-\frac{2}{3} \log_{2} \frac{2}{3} + -\frac{1}{3} \log_{2} \frac{1}{3} \right) + \frac{2}{6} \left(-\frac{1}{2} \log_{2} \frac{1}{2} + -\frac{1}{2} \log_{2} \frac{1}{2} \right) + \frac{1}{6} (0 \log(0) - 1 \log(1)) = 0.7925$$

Feature 2

$$\mathbb{E}_{2} = \frac{1}{6} \left(-\frac{1}{1} \log_{2} 1 + -0 \log_{2} 0 \right) + \frac{4}{6} \left(-\frac{1}{4} \log_{2} \left(\frac{1}{4} \right) + -\frac{3}{4} \log_{2} \left(\frac{3}{4} \right) \right) + \frac{1}{6} \left(-\frac{1}{1} \log \left(\frac{1}{1} \right) - \frac{0}{1} \log \left(\frac{0}{1} \right) \right) = 0.5409$$

$$X = \begin{bmatrix} 1 & 1 \\ 1 & 3 \\ 2 & 2 \\ 1 & 2 \\ 3 & 2 \\ 2 & 2 \end{bmatrix}, Y = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

We can see the feature 2 gives us less entropy, so we'd rank it higher in terms of features that we're considering.

• The second feature would be "more discriminatory," as it helps to discriminate the class of an observation better by having a lower entropy.

Entropy for Multiple Classes

These equations would hold even is there were more than 2 classes.

$$H(P(v_1), \dots, P(v_K)) = \sum_{i=1}^K (-P(v_i) \log_K P(v_i))$$

$$\mathbb{E} = \sum_{i=1}^S \frac{|C_i|}{N} H_i$$

Here, we now consider the value K for the different classes, instead of 2, to ensure that our entropy values are between 0 and 1.

Entropy with Continuous-Valued Features

In a lot of datasets, we may have features that are not finite, rather have a continuous set of values that they can take:

- There are two approaches to handling this:
 - \circ Break up the range of possible values Z internals and assign values to enumerated "bins", effectively converting continuous features into categorical-

ordinal feature (categorizing them)

- Work directly in the continuous space by assuming the data follows some distribution (ex: Normal, Gaussian)
 - Either by assumption or observation of the data

Normal-Gaussian Distribution

Throughout the course, we will often use the normal/Gaussian *probability distribution function* (PDF) to approximate the probability of generating continuous value x given some parameters (μ, σ) .

• This value, which is *proportional* to the actual probability, is computed as:

$$P(x|\mu,\sigma) \propto p(x|\mu,\sigma) = rac{1}{\sigma\sqrt{2\pi}}^{e^{-rac{(x-\mu)^2}{2\sigma^2}}}$$

$$P(x|\mu,\sigma) \propto p(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- \circ The probability of observing value x given this model for the distribution.
- The narrower the deviation (the steeper/higher the distribution), the larger the value of sigma is.
- Our intuition should state that if we use Gaussians to describe each feature of each class, that a good feature is one whose per-class Gaussians are well separated:

- Should we use the feature whose means are furthest apart?
 - Maybe, but what about the deviation?
- <u>Possible intuition:</u> Separate data by class, figure out parameters for this feature for a class
 - A good feature will possibly have its means far from one another for each class.
 They are effectively well-separated.
 - However, there can be overlap in a distribution being steeper and overlapping with a more gradual Gaussian.
- What we're interested in is the probability of a class given an observation → still will be useful in computing our entropy since this is the probability of a feature belonging to a class
 - $\circ~$ Ultimately, we're interested in P(y=k|x)
 - To compute this, we'll use **Bayes' rule**:
 - $lacksquare P(a|b) = rac{P(a)P(b|a)}{P(b)}$
 - ullet P(b|a) generative likelihood
 - P(b) evidence
 - P(a) prior

- Our density function gives us something proportional to the probability of a feature belonging to a certain class.
- Bayes' Rule gives us a mechanism to reverse the relationship between knowing
- Using Bayes rule, we can say this is equal to:

$$\circ \ P(y=k|x) = rac{P(y=k)P(x|\mu_k,\sigma_k)}{P(x)}$$

• We can compute P(x) by using the Law of Total Probability:

$$\circ P(x) = \sum_{i=1}^{K} P(y=k)P(x|y=k)$$

- Sum the probability of all possible values of Y multiplied by the probability of seeing the observation x given that the class is k.
- So finally, our calculation ends up being:

$$\circ \ \ P(y=k|x) = rac{P(y=k)P(x|\mu_k,\sigma_k)}{\sum_{i=1}^K P(y=i)P(x|\mu_i,\sigma_i)}$$

Steps to Calculate Entropy Using Norm PDF

Basic steps are as follows:

- 1. Compute the priors P(y=k) across the entire dataset.
- 2. Separate the dataset into subsets according to *class*.
- 3. For the feature you're computing the entropy for (we'll say feature j), compute the mean and standard deviation of each subset. For class/subset k, we now have the parameters μ_k , σ_k
- 4. For each observation, compute the probability of belonging to each class according to:

a.
$$P(y=k|x_j)=rac{P(y=k)P(x_j|\mu_k,\sigma_k)}{\sum_{i=1}^K P(y=i)P(x_j|\mu_i,\sigma_i)}$$

5. For each observation, we'll compute the probability for each class for our overall entropy computation as the average entropy over all observations:

a.
$$\mathbb{E} = rac{1}{N} \sum_{i=1}^N H(P(y=1)|x_j), P(y=2|x_j), ..., P(y=K|x_j))$$

Example

$$X = \begin{bmatrix} 1.0 & 1.0 \\ 1.0 & 3.0 \\ 2.0 & 2.0 \\ 1.0 & 2.0 \\ 3.0 & 2.0 \\ 2.0 & 2.0 \end{bmatrix}, Y = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Step 1 - Calculate the Priors

Given the data observed, what is the probability of each class? This is **calculating the priors**, which we do FIRST.

•
$$P(y=1)=\frac{3}{6}$$

•
$$P(y=0) = \frac{3}{6}$$

Step 2 - Separate Data by Class and Calculate Statistics

From here, we separate our data by their classes and then calculate the μ and σ for each subset created by a certain feature. Here we arbitrarily chose the first feature.

https://www.notion-draw.art/slug

Step 3 - Calculate Probabilities of Belonging in Each Class

To calculate the probability of the first observation x = [1.0, 1.0] appearing, we can perform the following calculations, while remembering the following relationships:

$$P(y = 0) = \frac{3}{6}$$

$$P(y = 1) = \frac{3}{6}$$

$$\mu_1^{(0)} = 2, \sigma_1^{(0)} = 1$$

$$\mu_1^{(1)} = 1.333, \sigma_1^{(1)} = 0.5774$$

$$P(x|\mu,\sigma) \propto p(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

•
$$p(x_1=1|y=0)=\frac{1}{1\sqrt{2\pi}}e^{-\frac{(1-2)^2}{2(1)^2}}=0.2420^{\text{says: what is the probability of being in class 0, generating the feature x_1 equalling 1}$$

•
$$p(x_1 = 1|y = 1) = \frac{1}{0.5774\sqrt{2\pi}}e^{-\frac{(1-1.333)^2}{2(0.5774)^2}} = 0.5849$$

•
$$P(y = 0|x_1 = 1) \propto P(y = 0)p(x_1 = 1|y = 0) = 0.1210$$

•
$$P(y = 1|x_1 = 1) \propto P(y = 1)p(x_1 = 1|y = 1) = 0.2925$$

•
$$P(y = 0 | x_1 = 1) = \frac{0.1210}{0.1210 + 0.2925} = 0.2926$$
 divided the numerator by the sum of the numerators here

•
$$P(y=1|x_1=1) = \frac{0.2926}{0.1210+0.2925} = 0.7074$$

So, this observation should appear in the second subset (since the second class' posterior was larger).

Compute Average Entropy

Here we see that the weighted average entropy is relatively high, being pprox 0.9183

•
$$X = \begin{bmatrix} 2.0 & 2.0 \\ 3.0 & 2.0 \\ 2.0 & 2.0 \end{bmatrix}, Y = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, H = -\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3}$$
 These observations resulted in a higher probability of class 0
• $X = \begin{bmatrix} 1.0 & 1.0 \\ 1.0 & 3.0 \\ 1.0 & 2.0 \end{bmatrix}, Y = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, H = -\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3}$ These observations results in a higher probability of class 1

- So, the weighed average entropy is $\mathbb{E}_1 = \frac{3}{6} \left(-\frac{1}{3} \log_2 \frac{1}{3} \frac{2}{3} \log_2 \frac{2}{3} \right) + \frac{3}{6} \left(-\frac{1}{3} \log_2 \frac{1}{2} \frac{2}{3} \log_2 \frac{2}{3} \right) \approx 0.9183$
- We can see that in calculating these probabilities that they didn't lead to the best entropy, telling us that feature 1 doesn't give us good class separation.

NOTE: We can also perform these calculations for the second feature!

- However, we run into issues when calculating its standard deviation since it ends up being 0.
 - $\circ~$ To address this, we can add in a numeric stability constant, such as 0.0001 to avoid the σ being 0.
- In setting class features with the $\sigma=0.1$ and going through all the samples, we would get the following:

$$X = \begin{bmatrix} 2.0 & 2.0 \\ 1.0 & 2.0 \\ 3.0 & 2.0 \\ 2.0 & 2.0 \end{bmatrix}, Y = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, H = -\frac{1}{4}log_2\frac{1}{4} - \frac{3}{4}log_2\frac{3}{4}$$
$$X = \begin{bmatrix} 1.0 & 1.0 \\ 1.0 & 3.0 \end{bmatrix}, Y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, H = 0$$

• The weighted average class entropy would then be pprox 0.5409.

$$\mathbb{E}_2 = \frac{4}{6} \left(-\frac{1}{4} \log_2 \frac{1}{4} - \frac{3}{4} \log_2 \frac{3}{4} \right) \approx 0.5409$$

Note on Homework #1

Since we're kind of ahead in covering material from next week, we can get started on the first homework assignment to an extent.