

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Multi-Cycle Processor - 5

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Multi-Cycle Processor - 5

Reetinder Sidhu

Department of Computer Science and Engineering

Course Outline

- Digital Design
 - Combinational logic design
 - Sequential logic design
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)
 - * Multi-Cycle Processor 5

Concepts covered

- Control Logic Structure
- Microarchitecture CPI

MULTI-CYCLE PROCESSOR - 5 Control FSM

Control FSM

Control FSM

Control FSM

Op = R-type

Control FSM

Control FSM

ONLINE

MULTI-CYCLE PROCESSOR - 5 MIPS Multi-Cycle Datapath

MULTI-CYCLE PROCESSOR - 5 Control Logic

Control Unit:

MULTI-CYCLE PROCESSOR - 5 Control Logic

Control Unit:

Main Controller (FSM):

MULTI-CYCLE PROCESSOR - 5 Control Logic

PES UNIVERSITY

Control Unit:

Main Controller (FSM):

ALU Decoder:

ALO Decouer.		
ALUOp	Funct	ALUControl
00	X	010 (add)
X1	X	110 (subtract)
1X	100000 (add)	010 (add)
1X	100010 (sub)	110 (subtract)
1X	100100 (and)	000 (and)
1X	100101 (or)	001 (or)
1X	101010 (slt)	111 (set less than)

MULTI-CYCLE PROCESSOR - 5 Cycles Per Instruction

Instruction	CPI
lw	5
SW	4
R-type	4
beq	3

MULTI-CYCLE PROCESSOR - 5 Cycles Per Instruction

Instruction	CPI
lw	5
SW	4
R-type	4
beq	3

SPECINT2000 CPI

 The SPECINT2000 benchmark consists of approximately 25% loads, 10% stores, 11% branches, 2% jumps, and 52% R-type instructions. Determine the average CPI for this benchmark.

MULTI-CYCLE PROCESSOR - 5 Cycles Per Instruction

Instruction	CPI
lw	5
SW	4
R-type	4
beq	3

SPECINT2000 CPI

- The SPECINT2000 benchmark consists of approximately 25% loads, 10% stores, 11% branches, 2% jumps, and 52% R-type instructions. Determine the average CPI for this benchmark.
 - Average CPI = (0.25)(5) + (0.52 + 0.10)(4) + (0.11 + 0.02)(3) = 4.12

MULTI-CYCLE PROCESSOR - 5 Think About It

- How can a multiplication instruction be supported?
 - Multiplication of two 32-bit registers would produce a 64-bit result
 - What changes to the datapath would be required?