Dans l'énoncé, on a la densité suivante: $\xi(z) = e^{-\sqrt{z}} T_{io,+ol}$ et on cherche sa fonction de répartition. Exercice 8.2 $F(x) = \int_{-\infty}^{x} \int_{0}^{x} (H) dt = \int_{0}^{x} e^{-\sqrt{x}} dt$ en faisant le changement de variable: t=Vx dt = 1 dx -> dx = 2tdt $\Rightarrow F(\infty) = 2 \int_{0}^{\sqrt{x}} te^{-t} dt = -2 \int_{0}^{\sqrt{x}} t(-e^{-t}) dt$ en faisant une intégration par partie avec v = t V=-et => F(x) = -2 ([te-t] \(\text{T} \) = - (dt) F(x) = -2 (Vx e - [-e]) F(x) = -2 (\frac{1}{x}e^{-\frac{1}{x}}+e^{-\frac{1}{x}}-1) F(2) = 2 (1-(1+1a)e-1a) on a done F(0) = 0 F(n) -> 1 et F est croissante

L'algorithme [A 33] est: Exercice 9.1 Euro-stage Gibbs sampler for i= 42 -- generate 1. YE ~ { YIX (. | 26-1) 2. X++1~ (x1) (1 /y) a) On va monther que (X,), (Y,) et (X,, Y,) sont des chaines de Markor Dans l'algorithme, on a Y 1 (x1x(. 176.) X+ ~ fxix (- ly+) densi à chaque instant t, X et le re dépardent que le 1 et X en de même le couple (Xv, Xv) re dépend que (Xv.1, Xv.1) et per de Xv.2, Xv.2, Xv.3, Xv.3 done (Xo), (Yo) et (Xo, Yo) sont des chaines de Markon b) Con va montrer que fx(a) et fy(a) sont les densités anvariantes de X et Y Le noyau de transition de Xe est: K(x,x*) = Jy fyix(ylx) fxix(x* ly)dy

Gn calcule la quantité: [K(x,x*) fx(x) dx = /x/y fyix (y/x) fxix (x*/y) fx(x)dy dx = by fxix (x*/y) dy fx fxix(ylx) fx(x) dx d'après la formule de Beuges, on a : $\{x,y \mid x,y\} = \{y_{1x} \mid y \mid x\}$ done $\{x \mid (x,x^*) \mid y \mid x \mid x \mid x\}$ $\{x \mid y \mid x \mid y\}$ $\{x \mid y \mid x \mid y \mid x \mid y\}$ done $f_{\times}(\cdot)$ est blen une clenoité invariente de X de même pour fy(0), on montre fy () est bien une denoité invarianté de Xt, de façon synétrique aucas précédent.

Exercise 9.18 X/y $\sim \mathcal{N}(e^{y}, 1-e^{2}) = \frac{1}{\sqrt{2\pi(1-e^{2})}} = \frac{(\alpha-e^{y})^{2}}{\sqrt{2\pi(1-e^{2})}}$ $Y|_{2} \sim \mathcal{R}(e^{x}, 1 - e^{2}) = \frac{1}{\sqrt{2\pi(1-e^{2})}} e^{-\frac{(y-e^{x})^{2}}{2\pi(1-e^{2})}}$ a) K(x*, x) = \(\int \text{ly} \) \(\frac{1}{2} \text{ly} \) \(\frac{1}{2} \text{ly} \) \(\frac{1}{2} \text{ly} \) \(\frac{1}{2} \text{ly} \) $= \sqrt{\frac{1}{\sqrt{2\pi(1-e^2)}}} e^{-\frac{(x-ey)^2}{2(1-e^2)}} \sqrt{\frac{1}{\sqrt{2\pi(1-e^2)}}} e^{-\frac{(y-ex)^2}{2(1-e^2)}} dy$ $= \frac{1}{2\pi(1-e^2)} \begin{cases} -\frac{(x-e_3)^2}{e^{-2(1-e^2)}} & -\frac{(y+e_3)^2}{2(1-e^2)} \\ -\frac{1}{2\pi(1-e^2)} & -\frac{1}{2\pi(1-e^2)} \end{cases}$ g~d(0,1) $\int K(x, x') g(x') dx'' = \int \frac{1}{9\pi(1-x')} \int e^{-\frac{(x-x')^2}{2(1-x')}} e^{-\frac{x^2}{2(1-x')}} \int e^{-\frac{x^2}{2(1-x')}} dx''$ $= \iint e^{\frac{1}{2(1-e^2)}} \left(x^2 - 2eyz + e^2y^2 + y^2 - 2x^2ye + e^2x^2\right) dy e^{-\frac{x^2}{2}} dx^2 = \frac{1}{(2\pi)^{2n}} \frac{1}{(1-e^2)^n}$ $= \iint e^{-\left(\frac{1+e^2}{2(1-e^2)}\left(y^2 - 2y\frac{e(y+x^4)}{e^2+1}\right) + \left(\frac{e(x+x^4)^2}{e^2+1}\right)^2\right)} dy = e^{\left[-\frac{4}{2(1-e^2)}\left(\frac{1}{e^2} + 1\right)(x^2 + e^2x^2) - e^2(x+x^4)^2\right)\right] - \frac{x^{3/2}}{e^2+1}} dy$ $= \int e^{-\frac{1}{2(1-e^4)}} \left(x^{\frac{12}{2}} - 2xx^{\frac{1}{2}}e^{2} + x^{\frac{1}{2}}e^{4} - x^{\frac{1}{2}}e^{4} + x^{\frac{1}{2}} \right) dx^{\frac{1}{2}} \frac{1}{\sqrt{2\pi(1-e^4)}} \sqrt{2\pi}$ $= \int e^{-\frac{1}{2(1-e^{i})}} (|x^{*}-e^{2}x|^{2}) e^{-\frac{1}{2(1-e^{i})}} (-x^{*}e^{i}+x^{2}) dx^{*} \sqrt{2\pi(1-e^{i})} \sqrt{e\pi}$ $= 1 \times \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2(1-e^{i})}(-x^{2}e^{i}+x^{2})} = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}}$ dore of estimations c) (x-ey) + (y-ex) = (1+e) y2-2y (ex+ex*) +x2+e(x*)2 = (1+e2) (y-ex+ex*)2+ 1 (x-e2x)2

Exercise 10.7 0~ (0,1) X10 ~ (0,1) $K(0,0') = \int_{0}^{\infty} \sqrt{\frac{1+\rho}{2\pi}} \exp\left(-\left(0'-\frac{\partial_{0}\rho}{1+\rho}\right)^{\frac{\rho}{2}} \frac{1+\rho}{2}\right) \frac{1+(\partial_{0}-\partial_{0})^{2}}{2} \frac{1+\rho}{\Gamma(\omega)} \exp\left(-\frac{1}{2}\left(1+(\partial_{0}-\partial_{0})^{2}\right)^{\frac{\rho}{2}}\right) \exp\left(-\frac{1}{2}\left(1+(\partial_{0}-\partial_{0})^{2}\right)^{\frac{\rho}{2}}\right) \frac{1+\rho}{\Gamma(\omega)} \exp\left(-\frac{1}{2}\left(1+(\partial_{0}-\partial_{0})^{2}\right)^{\frac{\rho}{2}}\right) \exp\left(-\frac{1}{2}\left(1+(\partial_{0}-\partial_{0})^{2}\right)^{\frac{\rho}{2}}\right)$ on va minorer le terme exp (- (0 - 900) 1+8) par un terme me dépendant que partiellement de p afin de le sortir de l'intégrale Commençous par menous « (0 - 008) = 1+2 précédent pluisque l'on compose par eau qui permettra de mayner le terme $-\left(0'-\frac{0}{1+\ell}\right)^{2}\frac{1+\ell}{2} = \left(-0'^{2}+\frac{200}{1+\ell}-\frac{0^{2}}{(1+\ell)^{2}}\right)^{\frac{1}{2}}$ = -8' 1+1 + 0'0, 7 - 0.202 $= -\frac{0^{2}}{2} - \frac{0^{2}}{2} + \frac{0}{2} + \frac{0$ $-(0-0.8)^{2}1+2-(-10'-0.0')=-0^{2}-0^{2}-0^{2}+0^{2}-0^{2}$ $= -0.9^{2} + 0.20^{2}$ 2(1+9) = 2or $1+\sqrt{2}1$ can $\varrho\in [0,+\infty]$ $\Rightarrow \frac{\varrho_{\circ}^{2}\varrho^{2}}{2} \Rightarrow \frac{\varrho_{\circ}^{2}\varrho^{2}}{2(1+\varrho)}$ $\Rightarrow -\left(0^{2} - \frac{\partial_{0} \ell}{2}\right)^{2} \frac{1+\eta}{2} - \left(-\frac{1}{2}\left(0^{2} - \frac{1}{2}\left(0^{2} - \frac{1}{2}\right)^{2}\right) \geqslant 0$ => - (0'-0.2)2 1+1 > -1 0'-2 (0'-00)2 $\Rightarrow enp(-(0-0,0)^{2} + 1) \Rightarrow enp(-10-0,0) = e^{\frac{1}{2}(0-0,0)} = e^{\frac{1}{2}(0-0,0)}$ de plus 11+0 >1, done on jeutle nune en dans l'expression K(O,O)

Lous allono maintenant minorer 50 2 - tex (-(1+(0-0) 2+(0-0) 2) dp Commençons par calcules l'intégrale, en faisont 21 for une intégration par partie

En faisont me intégration par partie on a:

(2) l'1 eypl-(1+(0-0) +(0-0) 2) de = [1 2 org (-(1+(0-0)) 2+(0-0)) 2) [1+(0-0)] +(0-0) 2 [1+(0-En le fairont >-1 fois ona:

(2 2 1 - (1+(0-0) + (0-0) 2) dy = (y-1)! 2 y-1

(1+(0-0) + (0-0) = (v-1)! 9^v . 1 or $\Gamma(1) = 1$ of $\Gamma(y) = (y-1)\Gamma(1)$ => $\int_{0}^{\infty} \int_{0}^{1} e_{y} \left(-(1+(0-0)^{2}+(0'-0)^{2})\mathbf{1}\right) dy = \frac{2}{(1+(0-0)^{2}+(0'-0)^{2})^{2}}$ Gn minore cette expression:

(-(1+(0-0))2+(0'-00)2)2)dq 2 2 [(1)

(1+(0-0)2)2+(0'-0)2)2

(1+(0-0)2)2+(0'-0)2)2 ce qui permet de simplifier l'expression de K (0,0) > K(0,0') > [1+(0'-0)] = e