DEPARTAMENT DE MATEMÀTICA APLICADA (etsinf)

CUESTIONARIO DE LA SEGUNDA PRÁCTICA (Modelo B)

Para realizar	este	cuestionario	nos	ayudaremos	de	las	funciones	:
---------------	------	--------------	-----	------------	----	-----	-----------	---

$$f(x) = \frac{x^3 - 3x^2 + x + 1}{x^2 + x - 1}$$
, $g(x) = x$, $h(x) = \sin^4(x) + \cos^4(x)$

que debes introducir como funciones D5W en la línea de edición.

1. La bisectriz del primer cuadrante, de ecuación y = x corresponde a la función g(x) = x. Representa gráficamente esta recta y la función f(x). Al reducir la gráfica se observa que las gráficas se cortan en dos puntos.

Obtén gráficamente el punto de corte que tiene abscisa negativa e indica los tres primeros decimales de sus coordenadas.

2. Representa gráficamente h(x) superpuesta a su derivada.

¿En cuántos puntos se cortan ambas gráficas, h(x) y h'(x), en el intervalo [1, 3]?

3. Representa las funciones $j(x) = e^{-x}$ y $k(x) = \log(x)$. Verás que las dos gráficas tienen un punto en común.

Punto de corte:

Distancia al origen:

A partir de la gráfica, calcula las coordenadas de ese punto y su distancia al origen.

4. Determina las ecuaciones de las tres asíntotas de la función f(x).

Asíntotas:

5. Determina las simetrías de las funciones del enunciado. Para ello, calcula las expresiones que se indican y concluye si la función correspondiente es par (o simétrica respecto del eje OY), impar(o simétrica respecto del origen) o ninguna de las dos.

f(x) + f(-x) = $\Rightarrow | f(x)$ es g(x) + g(-x) =

h(x) + h(-x) = $\Rightarrow h(x) \text{ es}$

Equipo n^o

g(x) es

APELLIDOS: **NOMBRE: GRUPO:**