Development and evaluation of a Kubernetes cluster simulator based on Batsim

Presented by: Théo Larue

Supervised by: Olivier Richard & Michael Mercier

Université Grenoble Alpes

August 31, 2020

Table of contents

- 1 Introduction
- 2 Literature review
- 3 Integrating Kubernetes schedulers to Batsim
- 4 Study of the simulator
- 5 Discussion and future work

Introduction

Computer infrastructures

A distributed system is a system whose components are located on different networked computers, which communicate and coordinate their actions by passing messages to one another. 1

¹Andrew 2002

Computer infrastructures

A distributed system is a system whose components are located on different networked computers, which communicate and coordinate their actions by passing messages to one another. ¹

Many domains

Grid, Edge, HPC, Cloud, P2P, Volunteer.

¹Andrew 2002

Studying distributed systems I

Why studying these infrastructures?

Studying distributed systems II

TODO One problem in particular: scheduling.

How to study these infra?

Theoretical study.

- Theoretical study.
- Real experiments.

- Theoretical study.
- Real experiments.
- Emulation.

- Theoretical study.
- Real experiments.
- Emulation.
- Simulation.

Literature review

Domain specific simulators

refs on domain specific simulators, summed up in a table. Explain briefly the concept behind some of them.

Software specific simulators

YARNSim, SLURM simulator

Publication specific simulators

"Publish and perish" - Milian Poquet

SimGrid

SimGrid: Versatile, scalable, accurate.

Cpu = a computation speed.

Storage = a seek time and a data transfert rate.

Network = a flow model, modeling bandwith sharing behaviors.

Simple models but thoroughly validated.

Batsim

Aimed at studying RJMS. Strong decoupling decision process / simulator.

Batsim - related work

Alea: modular, extensible.

Accasim: supports additional information (temperature, power consuption). Very efficient in terms of simulation time and memory usage.

Both outperform Batsim in terms of scalability. However it is not fair to compare them on this point because Batsim relies on well thought models, when these two only implement delay jobs.

Kubernetes

Explain containers real quick.

Container orchestration software, description based.

Kubernetes cluster simulation

k8s-cluster-simulator: open source, student project, delay jobs. Schedulers provided via a Go interface. joySim: closed-source, fully fledged kubernetes cluster simulator, service oriented (mock nodes).

Technical challenges

Challenges to tackle

Integration with Kubernetes.

Technical challenges

Challenges to tackle

- Integration with Kubernetes.
- 2 Intercepting scheduler time.

Technical challenges

Challenges to tackle

- Integration with Kubernetes.
- Intercepting scheduler time.
- Time synchronization between Batsim and the scheduler.

Batsim concepts

source https://batsim.readthedocs.io

Batsim events and protocol. User defined workloads. (insert json examples?)

Kubernetes concepts

source: https://kubernetes.io/docs/concepts/overview/components/

Kubernetes components.

Kubernetes concepts

source: https://kubernetes.io/docs/concepts/overview/components/

Kubernetes components.

Different paradigms

Batsim: event based, simulation time.

Kubernetes scheduler: asynchronous calls to the API, machine time.

The goal is to make the scheduler event based and relying on simulation time for Batsim, and make Batsim a kube-api-server to the scheduler.

Batkube integration with Kubernetes

Reimplementation of a custom API.

Architeture of Batkube

Global architecture of Batkube.

Similar resources

source: https://kubernetes.io/docs/tutorials/
kubernetes-basics/explore/explore-intro/

Translation between Kubernetes and Batsim

- A Pod = a job.
- A Node = a compute resource.

Time interception

Schedulers are patched to redirect their time.

batsky-go

Exchanges between the scheduler, batsky-go ("time") and Batsim

Time synchronization I

TODO: explain CML

Time synchronization II

Time synchronization between Batsim and the scheduler

Parameters of the synchronization

Parameters of the synchronization

Timeout value

Parameters of the synchronization

Simulation time step \in [base-simulation-timestep, max-simulation-timestep]

Time synchronization breakdown

Time synchronization between Batsim and the scheduler

Study of the simulator

Studied workloads and platforms

TODO

Minimum delay I

Note: inclure ce graphe?

Minimum delay II

Timeout I

Timeout II

Maximum simulation timestep I

Maximum simulation timestep II

Experimentation on a real cluster

Deviation with reality

	makespan				mean waiting time			
workload	emulated		simulated		emulated		simulated	
	μ	σ	μ	σ	μ	σ	μ	σ
burst	2467	28.3	2215 (-252)	0.508	1077	10.6	970 (-107)	12.6
spaced	2468	5.14	2257 (-211)	16.9	146	1.67	48.1 (-97.9)	9.44
realistic	32556	-	32555 (-1)	1.30	2884	-	2020 (-864)	950

Discussion and future work

Capabilities of Batkube

- delay jobs
- cpu and memory requests
- can patch any kubernetes scheduler written in Go
- the api only supports the default scheduler

Limitations

- memory hungry (in fact, the scheduler is memory hungry)
- some problems with the scheduler
- not scalable

Perspectives for future work

- parallel jobs
- storage
- more complete api: support for more schedulers but also tools (monitoring tools)

References I

Andrew, S (2002). Tanenbaum, Maarten van Steen." Distributed Systems. Principles and paradigms".