		Page No.
	Week 3:	10401
	Myperparameter Tuning:	18
(80)	1) Tuning process	
	[X]	- most important (x)
	P20.9	- 2 10 - 310
	T, P2, E ~ 0-9, 0.999, 10	5-0
	# layers # hidden writs	
	# learning nate decay	Slevenna
	mini-batch size	
	Tu 122 122	3
	My nandom values: Don't use	a gnid
	Wester parameter 2 > My	· · ·
doch	3	
	34.	1.00/40
EG.	Julistanagood y mundage	
90	Course to line sampling schemo	
4		
	,	30 10 11
		- 11
		Sample mone
Low	4	Smaller Sauce
1379		That et signale
2		Makaha

	Page No. Date
	2) Using an appropriate scale to pick hyperparameter.
	n [] = 50,, 100
	50 100
	LAX X XXX X
	# layers L: 2-4
	2,3,4
	deg not make some for willow
_	$\mathcal{X} = 0.0601$,, 1
	X XXX XX XX XX Tinear
	0.0001
	0.1
_	10.1.
	0.0001 0.001 0.01 0.1 (logarithmic
	=0
	-> this will be a sampling uniformly at nardon
	In python:
	$1 = -4 + 1$ and $2m \cdot 1$ and $2m \cdot 1 = 1 + 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =$
	$\alpha = 10^{1}$ $\Rightarrow \alpha \in [0.000], 1$
	9 10 6
	$10^{9} \cdot \cdot \cdot \cdot 10^{10}$ $10^{10} \cdot \cdot$
	$X = 10^{\circ}$

Myperparameters for emponentially weighted and averages

B = 0.9, ..., 0.999

The proposed average of average of 10 values 1000 values

Rich Rich does not make sense for writorn Sampling hence avoid. Consider, 1-B=0.1, ..., 0.001 0.1 b. 0.001 10-2 10-3 $\Lambda \in [-3,-1]$ Buby sitting one model: Panda affronch La 6 17 day

.

Training many modely in parallel the best (Cavier Strategy) -> Pich one that works The approach astrategy that we fich agrends on the computational resources we have. If enough computers to train a lot of models in parallel then go with cavier, else if the model is too big which handles a lot of data at the same time then use pandas approach. Batch Normalization: 1) Nonmalizing activations in a network: Nonmolizing inpluts to speed up learning X = x/0 =

Use Z(i)[1] instead of z(i)[1] for later Batch your consumes that the hidden units have shurdardised mean and variance to and I and I consume to which are controlled by 88B 2) rithing Batch Monm into a NN $\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2}$ parameters: W (1) b(1) w (2) b(1) ..., w (1) b(19) BC17 (17 , BED, P(1) Note: These values of B are different than the B we had as an hyperpuras. meter in memertum, RMS prof and Adam algorithms.

Update parameters: $w^{(1)} := w^{(1)} - \alpha dw^{(1)}$ $\beta^{(1)} := \beta^{(1)} - \alpha d\beta^{(1)}$ $\beta^{(1)} := \gamma^{(1)} - \alpha d\beta^{(1)}$ Note: Also works with other algos like
RMS prop, adam. 4) (Carning on Shifting input distribution 5) Both Norm at test time Batch norm processed the train data in mini-batches but in test during test phase we will need to process the champles one at a time. Puring test timo: u, 5-2: extimate using emponentially weighted average (wing mini-batcher) X 413, X 423, X 433, 43[1] (13[1]) (13[1]) -2 (13 W -2 (2) (x) Znorm = Z-4 1 Z = 8 Znorm + B

Multi-class Classification 1) Softman Regnession
eg: Recognizing cats, dogs, and budy dicks
(= # dasses = 4 (0,1,7,3) g is (4,1) because it gives Softman layer:

P=[g(1), g(2), ... g(m)] Gradiat descent with softman: Back prop: dz[2] = ŷ - y[2]