Controlli Automatici - T

Progetto Tipologia b - Traccia 2 Controllo di una tavola rotante motorizzata

Descrizione del problema

Si consideri il sistema in Figura 1 rappresentante una tavola rotante motorizzata dove l'accoppiamento tra motore e tavola avviene tramite un giunto cardanico. Si considerino $\theta(t)$ posizione angolare della tavola e $\omega(t)$ la sua velocità angolare. Si supponga che la dinamica del sistema sia descritta dalla seguente equazione differenziale

$$J\dot{\omega} = \tau(\theta)C_m - \beta\omega - k\theta,\tag{1}$$

dove
$$\tau(\theta) = \frac{\cos(\alpha)}{1 - (\sin(\alpha)\cos(\theta))^2}$$
, (2)

in cui

- $\tau(\theta)$ è il rapporto di trasmissione del giunto cardanico funzione di θ e dell'angolo tra i due alberi α ;
- J è il momento d'inerzia della tavola;
- si considera come input di controllo C_m , ossia la coppia generata dal motore elettrico;
- si considerano infine anche l'attrito viscoso (coefficiente β) e l'elasticità del disco (coefficiente k).

Figura 1: Schema illustrativo della tavola motorizzata.

Si supponga di poter misurare la posizione angolare θ della tavola.

Punto 1

Si riporti il sistema (1) nella forma di stato

$$\dot{x} = f(x, u) \tag{3a}$$

$$y = h(x, u). (3b)$$

In particolare, si dettagli la variabile di stato, la variabile d'ingresso, la variabile d'uscita e la forma delle funzioni f e h. A partire dal valore di equilibrio θ_e (fornito in tabella), si trovi l'intera coppia di equilibrio (x_e, u_e) e si linearizzi il sistema non lineare (3) nell'equilibrio, così da ottenere un sistema linearizzato del tipo

$$\delta \dot{x} = A\delta x + B\delta u \tag{4a}$$

$$\delta y = C\delta x + D\delta u,\tag{4b}$$

con opportune matrici $A, B, C \in D$.

Figura 2: Schema di controllo.

Punto 2

Si calcoli la funzione di trasferimento da δu a δy , ovvero la funzione G(s) tale che $\delta Y(s) = G(s)\delta U(s)$.

Punto 3

Si progetti un regolatore (fisicamente realizzabile) considerando le seguenti specifiche:

- 1) Errore a regime $|e_{\infty}| \le e^* = 0.05$ in risposta a un gradino w(t) = 2(t) e d(t) = 1.2(t)
- 2) Per garantire una certa robustezza del sistema si deve avere un margine di fase $M_f \geq 35^{\circ}$.
- 3) Il sistema può accettare una sovraelongazione percentuale al massimo dell'20%: $S\% \leq 20\%$.
- 4) Il tempo di assestamento alla $\epsilon\%=5\%$ deve essere inferiore al valore fissato: $T_{a,\epsilon}=0.006s$.
- 5) Il disturbo sull'uscita d(t), con una banda limitata nel range di pulsazioni [0, 0.7], deve essere abbattuto di almeno 35 dB.
- 6) Il rumore di misura n(t), con una banda limitata nel range di pulsazioni $[2 \cdot 10^5, 5 \cdot 10^6]$, deve essere abbattuto di almeno 69 dB.

Punto 4

Testare il sistema di controllo sul sistema linearizzato con $w(t)=2(t),\ d(t)=\sum_{k=1}^4 0.2\sin(0.1kt)$ e $n(t)=\sum_{k=1}^4 0.2\sin(2\cdot 10^5kt).$

Punto 5

Testare il sistema di controllo sul modello non lineare (ed in presenza di d(t) ed n(t)).

Punti opzionali

- Sviluppare (in Matlab) un'interfaccia grafica di animazione in cui si mostri la dinamica del sistema.
- Supponendo un riferimento $w(t) \equiv 0$, esplorare il range di condizioni iniziali dello stato del sistema non lineare (nell'intorno del punto di equilibrio) tali per cui l'uscita del sistema in anello chiuso converga a $h(x_e, u_e)$.
- Esplorare il range di ampiezza di riferimenti a gradino tali per cui il controllore rimane efficace sul sistema non lineare.

Note

- 1. Ogni gruppo deve essere composto da un massimo di 4 studenti (per casi eccezionali contattare il docente).
- 2. Il report del progetto deve essere scritto in LATEX e seguire la struttura del template fornito.
- 3. Ogni email relativa al progetto deve avere il seguente oggetto:

"[CAT]-Gruppo X: resto dell'oggetto".

4. In tutte le email devono essere messi in cc il professor Notarstefano, il professor Carnevale, il dr. Brumali, il dr. Tramaloni e agli altri membri del gruppo.

IMPORTANTE: Istruzioni per la consegna finale

- 1. La scadenza per la consegna finale è una settimana prima della data dell'esame.
- 2. Un membro di ogni gruppo deve inviare un'email con oggetto:

"[CAT]-Gruppo X: Consegna progetto",

allegando un link a una cartella OneDrive condivisa con il professor Notarstefano, il professor Carnevale, il dr. Brumali, il dr. Tramaloni e gli altri membri del gruppo.

- 3. La cartella di consegna finale deve contenere:
 - report_gruppo_XX.pdf
 - report una cartella contenente il codice LATEX e una cartella figs con le figure (se presenti)
 - code una cartella contenente il codice, incluso un file README.txt in cui si spiega brevemente quali script eseguire.

k	1000
β	0.77
α	25°
J	549
θ_e	140°

Tabella 1: Parametri del sistema.