

A Walk on the Web's Wild Side

STUDIENARBEIT

für die Prüfung zum

Bachelor of Science

des Studiengangs Informatik Studienrichtung Angewandte Informatik

an der

Dualen Hochschule Baden-Württemberg Karlsruhe

von

Samuel Philipp Daniel Brown Jan-Eric Gaidusch

12. Mai 2017

Bearbeitungszeitraum

Matrikelnummern

Kurs

Ausbildungsfirma

Gutachter der Studienakademie

6 Monate 9207236, 3788021, 8296876 TINF14B2 Fiducia & GAD IT AG Dr. Martin Johns Abstract _____ Daniel

Erklärung Seite I

Erklärung

(gemäß §5(3) der "Studien- und Prüfungsordnung DHBW Technik" vom 29.9.2015)

Wir versichern hiermit, dass wir unsere Studienarbeit mit dem Thema:

"A walk on the web's wild side"

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben. Wir versichern zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Karlsruhe, den 12. Mai 2017	
Ort, Datum	Samuel Philipp
	11
Karlsruhe, den 12. Mai 2017	
<u> </u>	
Ort, Datum	Daniel Brown
Karlsruhe, den 12. Mai 2017	
Ort, Datum	Jan-Eric Gaidusch

Inhaltsverzeichnis Seite II

Inhaltsverzeichnis

Αl	okürz	ungsverzeichnis	V
Αl	bild	ingsverzeichnis	VI
Та	belle	nverzeichnis	VII
Li	sting	V	III
1	Einl	eitung	1
	1.1	Einführung	1
	1.2	Hintergrund	1
	1.3	Aufgabenstellung	1
	1.4	Team	2
	1.5	webifier	3
2	Gru	ndlagen	4
	2.1	Frontend Technologien und Frameworks	4
	2.2	Backend Technologien und Frameworks	5
	2.3	Technologien und Frameworks der Tests	8
	2.4	Angriffstypen	9
		2.4.1 Malware	10
		2.4.2 Request Header Investigation	12
		2.4.3 JavaScript Port Scanning	12
		2.4.4 JavaScript IP Scanning	12
		2.4.5 Clickjacking	12
		2.4.6 Phishing	13
3	Kon	zept	17
	3.1	Gesamtkonzept	17
		3.1.1 webifier Tests	17

Inhaltsverzeichnis Seite III

5	Ana	lyse		24
		4.2.9	Screenshot	23
		4.2.8	Erkennung von Phishing	23
		4.2.7	Überprüfung des Zertifikats	22
		4.2.6	Google Safe Browsing	22
		4.2.5	Linkchecker	22
		4.2.4	Test auf IP Scanning	22
		4.2.3	Test auf Port Scanning	22
		4.2.2	Vergleich in verschiedenen Browsern	22
		4.2.1	Virenscan	22
	4.2	Tests .		22
		4.1.6	webifier Statistics	21
		4.1.5	webifier Data	21
		4.1.4	webifier Mail	21
		4.1.3	webifier Platform	21
		4.1.2	webifier Tester	21
		4.1.1	webifier Tests	21
	4.1	Gesam	ntanwendung	21
4	Ums	setzunç	9	21
		3.2.9	Screenshot	20
		3.2.8	Erkennung von Phishing	20
		3.2.7	Überprüfung des Zertifikats	19
		3.2.6	Google Safe Browsing	19
		3.2.5	Link Checker	19
		3.2.4	Test auf IP Scanning	19
		3.2.3	Test auf Port Scanning	19
		3.2.2	Vergleich in verschiedenen Browsern	18
		3.2.1	Virenscan	18
	3.2	Testar	ten	18
		3.1.6	webifier Statistics	18
		3.1.5	webifier Data	17
		3.1.4	webifier Mail	17
		3.1.3	webifier Platform	17
		3.1.2	webifier Tester	17

In	halts	verzeichnis	Seite IV	<i>J</i>
6	Aus	sblick	25	5
	6.1	Weitere Tests	25	5
	6.2	Weitere Module	25	5
7	Faz	it	20	6
	7.1	Zusammenfassung	26	6
	7.2	Bewertung der Ergebnisse	26	6

Literaturverzeichnis

X

Abkürzungsverzeichnis

WWW World Wide Web

HTML Hypertext Markup Language

CSS Cascading Style Sheets

UI User Interface

JVM Java Virtual Machine

API Application Programming Interface

DRY Don't Repeat Yourself

REST Representational State Transfer

URI Uniform Ressource Identifier

NIDS Network Intrusion Detection System

Abbildungsverzeichnis

1	Secutitysquad - Logo	2
2	webifier - Logo	3
3	Malware Statistik	12
4	PayPal Phishing Webseite	15
5	PayPal Original Webseite	16

Tabellenverzeichnis Seite VII

Tabellenverzeichnis

Listings Seite VIII

Listings

1	Beispiel.html	5
2	Phishing Lockmail	13

1 Einleitung Seite 1

1 Einleitung

1.1 Einführung

Samuel

1.2 Hintergrund

Normale Nutzer sind heutzutage im World Wide Web ein gefragtes Angriffsziel für webbasierte Angriffe. Häufig wird hierfür der Nutzer auf maliziöse Webseiten gelockt. Diese Webseiten nutzen dann unter Anderem Sicherheitslücken im Browser des Nutzers um Schadsoftware zu verbreiten oder den Anwender auszuspähen. Die nachfolgende Studienarbeit beschäftigt sich mit diesen Webseiten und analysiert deren Bedrohungspotenzial.

1.3 Aufgabenstellung

Anbieter von zwielichtigen Web-Angeboten greifen ihre User mit diversen Clientseitigen Methoden an. Beispiele für solche Angriffe sind Malware Downloads, Phishing, JavaScript Intranet Angriffe, oder Browser Exploits.

Ziel der Arbeit ist eine systematische Untersuchung der Aktivitäten von semi-legalen Webseiten im World Wide Web (WWW). Das erwartete Ergebnis ist ein Prüfportal, auf dem jene Webseiten automatisiert analysiert werden und Ergebnisse präsentiert werden sollen.

1 Einleitung Seite 2

Nach dem ersten Schaffen einer Übersicht von interessanten Zielen, wie z.B. One-Click-Hoster oder File-sharing Sites sollen ausgewählte Webseiten manuell untersucht werden. Außerdem sollen verschiedene Angriffsszenarien zur weiteren Prüfung ausgewählt werden. Der Untersuchungsprozes der Webseiten soll im Verlauf dieser Arbeit stückweise automatisiert und in den Rahmen einer Prüfanwendung gebracht werden.

Abschließend sollen eine Vielzahl von Webseiten mit der Anwendung getestet und die Ergebnisse ausgewertet und dokumentiert werden.

Abbildung 1: Secutitysquad - Logo

1.4 Team

Das Entwicklerteam besteht aus drei Studenten der angewandten Informatik: Samuel Philipp, Daniel Brown und Jan-Eric Gaidusch. Der Name der Arbeitsgruppe ist *SecuritySquad* ¹.

Die Studienarbeit wird von Dr. Martin Johns betreut, der an der DHBW Karlsruhe die Vorlesung Datensicherheit hält. Hauptberuflich ist er Forscher ebendieses Gebietes am CEC Karlsruhe der SAP AG².

Der Name *SecuritySquad* ist angelehnt an den Titel des US-amerikanischen Actionfilms *Suicide Squad*.

² Johns (2017)

1 Einleitung Seite 3

1.5 webifier

Abbildung 2: webifier - Logo

webifier ist eine Anwendung, mit der Webseiten auf deren Seriosität und mögliche clientseitige Angriffe auf den Nutzer geprüft werden können. Sie besteht aus mehreren eigenständigen Teilanwendungen. Im Zentrum steht der Tester, welcher die einzelnen Tests verwaltet, ausführt und anschließend die Ergebnisse auswertet. Jeder einzelne Test ist eine weitere isolierte Teilanwendung des Testers. So kann jeder Test unabhänig von allen anderen betrieben werden.

Die Platform ist eine Webanwendung welche den Endnutzern eine grafische Oberfläche zur Verfügung stellt, um Webseiten zu überprüfen. Im Hintergrund setzt die Plattform auf den Tester auf. webifier Mail ist ein Dienst mit dem Links aus E-Mails überprüft werden können. Anschließend erhält der Sender eine E-Mail mit den Resultaten zurück.

Eine weitere Teilanwendung von webifier ist das Data-Modul. Es stellt eine Schnittstelle für den Tester bereit, um alle Testergebisse sammeln zu können. Das Statisitik-Modul ist die letzte Teilanwendung von webifier. Es setzt auf das Data-Modul auf und stellt Funktionen zur Auswertung aller Testergebnisse bereit.

Um die Techniken und Algorithmen von webifier verstehen zu können sind einige Grundlagen erforderlich, welche nun im nächsten Kapitel genauer vorgsetellt werden.

2 Grundlagen

In diesem Kapitel werden die Grundlagen, welche für das weitere Verständnis der Arbeit und der gesamten Anwendung notwendig sind, näher beschrieben. Zunächst werden die verschiedenen Technologien und Frameworks, sowohl des Frontends, als auch des Backends dargestellt. Anschließend werden einige gängige Angriffstypen im WWW erläutert.

2.1 Frontend Technologien und Frameworks

Dieser Abschnitt behandelt diejenigen Technologien, die die Interaktion des Benutzers visualisieren. Da es sich bei webifier um eine Webanwendung handelt, sind dies ausschließlich Webtechnologien, welche von grafischen Browsern unterstützt werden.

Die grundlegende Informationssprache des WWW heißt Hypertext Markup Language (HTML). Sie wurde ursprünglich entwickelt um wissenschaftliche Dokumente semantisch zu beschreiben (engl. 'to mark up'). Heute wird sie jedoch in weitaus größerem Umfang genutzt.³ HTML-Dateien bestehen aus zwei Arten von Informationen: Textdaten und Markupinformationen. Erstere sind verantwortlich für den textuellen Inhalt der Webseite. Dazu zählen alle abgebildeten Texte wie sie auch in Überschriften, Abschnitten, Menüs, usw. stehen. Sie sind die Informationen, die Betrachter der Webseite direkt über das grafische Browserfenster lesen kann. Markupinformationen hingegen definieren den Aufbau und die Semantik der Inhalte. Diese sind für den normalen Betrachter nicht unbedingt sichtbar. Hierbei handelt es sich um sogenannte *Tags*, die im Quellcode in spitzen Klammern stehen und aus einer Menge von bestimmten Werten stammen. Tags treten immer in Paaren auf, wobei der zweite Tag (Endtag) zusätzlich einen Backslash zwischen aufgehender spitzer Klammer und Tagnamen hat (s. z.B. Listing 1 Zeile 5, 10, 11). Innerhalb dieser beiden Tags können wiederum neue

³ Vgl. World Wide Web Consortium (W3C) (2014)

Tags (Zeile), aber auch einfache Textdaten stehen (s. Zeilen 4, 7, 8, 9). Diese Verschachtelung führt dazu, dass meist ein komplexer Baum von Tagelementen entsteht. Zu den wichtigsten Tags zählt der <html>-Tag. Er ist der äußerste Wurzeltag, der alle anderen Tags umschließt. Der <head>- und <body>-Tag stehen beide eine Ebene tiefer und beinhalten Metadaten für das gesamte Dokument bzw. den Seiteninhalt.⁴

```
<!DOCTYPE html>
1
   <html>
2
3
   <head>
4
           <title>Testseite</title>
5
   </head>
   <body>
6
7
           <h1>Überschrift</h1>
8
           Abschnitt 1
9
           Abschnitt 2
10
   </body>
11
   </html>
```

Listing 1: Beispiel.html

2.2 Backend Technologien und Frameworks

In diesem Abschnitt werden nun alle Technologien und Frameworks vorgestellt welche in den Backends der einzelnen Teilanwendungen zum Einsatz kamen.

Wohl am häufigsten kam die Programmiersprache Java zum Einsatz. Java ist eine universal einsetzbare, nebenläufige, klassenbarierte und objektorientierte Programmiersprache. Sie wurde möglichst einfach gestaltet um von vielen Entwicklern genutzt zu werden. In ihrer Syntax ähnelt sie den Programmiersprachen C und C++. Außerdem ist sie stark und statisch typisiert. Vorallem aber zeichnet sich Java durch seine plattformunabhängigkeit aus. Diese wird dadurch umgesetzt, dass Java-Quellcode in plattformunabhängigen Byte-Code kompiliert wird, welcher von einer Java Virtual Machine (JVM) ausgeführt wird. Java ist eine Hochsprache, die mit Hilfe des so genannten "Garbage Collectors" eine automatische Speicherverwaltung bereitstellt.⁵

Daniel schrei-

ben: CSS

Daniel schrei-ben: Ja-vaScript

Daniel schreiben:

jQuery

Daniel schreiben: Bootstrap

⁴ Vgl. Jackson (2007), S. 57

⁵ Vgl. Gosling u. a. (2014), S. 1

In einigen Teilprojekten wurde das auf Java basierende *Spring*-Framework verwendet. *Spring* stellt eine vereinfachte Möglichkeit auf den Zugriff auf viele Application Programming Interface (API) der Standard-Version zur Verfügung. Ein weiterer wesentlicher Bestandteil des *Spring*-Frameworks ist die *Dependency Injection*. Hierbei suchen sich Objekte ihre Referenzen nicht selbst, sondern bekommen diese Anhand einer Konfiguration injiziert. Dadurch sind sie eigenständig und können in verschiedenen Umgebungen eingesetzt werden. Des weiteren bringt *Spring* eine Unterstützung für aspektorientierte Programmierung mit, wodurch mit verschiedenen Abstraktionsschichten einzelne Module abgekapselt werden können.⁶

Aufbauend auf dem *Spring* Basis-Modul werden noch weitere Module, wie beispielsweise Spring Security, Sprint Boot, Spring Integration, Spring Data, Spring Session oder Spring MVC.⁷ Im folgenden werden die *Spring*-Mudule naäher erläutert, die für das weitere Verständnis der Arbeit notwendig sind.

Spring Boot

Mit Spring Boot können Anwendungen, welche das *Spring*-Framework nutzen, einfacher eintwickelt und ausgeführt werden, da dadurch eigenständig lauffähige Programme erzeugt werden können, welche nicht von externen Services abhängig sind. Hierfür bringt Spring Boot einen Integrierten Server mit, auf welchem die Anwendung bereitgestellt wird.⁸

Spring MVC

Spring MVC ist sehr gut geeignet um Webanwendungen zu implementieren.⁹ Hierfür können die diese in mehrere Abstraktionsschichten gegliedert werden. Beispielsweise in das User Interface (UI), die Geschäftslogik und die Persistenzschicht.¹⁰

Spring Data

Spring Data vereinfacht Datenbankzugriffe ungemein. Das Modul stelt APIs für fast alle gängigen Datenbankzugriffsschichten, wie JDBC (Java Database Connec-

⁶ Vgl. Wolff (2011), S. 2

⁷ Vgl. Cosmina (2016), S. 2

⁸ Vgl. Gutierrez (2016), S. 1

⁹ Vgl. Wolff (2011), S. 3

¹⁰ Vgl. Yates u. a. (2006), S. 21

tivity), Hibernate, JDO (Java Data Objects) zur Verfügung. Aber nicht nur relationale Datenbanken werden unterstützt, sondern beispielsweise auch NoSQL-Datenbanken und Key/Value-Stores können Problemlos eingesetzt werden.¹¹

In Verbindung mit Spring Data wurde eine *MongoDB* zur Speicherung der Ergebnisse eingesetzt. *MongoDB* ist eine Dokument orientierte anpassungsfähige und skalierbare Datenbank. Sie vereint viele nützliche Eigenschaften von Relationalen Datenbanken, wie Sekundärindizes, Auswahlabfragen und Sortierung mit Skalierbarkeit, MapReduce-Aggregationen und raumbezogenen Indizes. Außerdem gibt es bei MongoDB keine festen Schemata, weshalb großen Datenmigrationen normal nicht notwendig sind.¹²

Gewonnene und gespeicherte Daten müssen danach auch noch aufbereitet und visualisiert werden. Webifier setzt dafür auf die Programmiersprache R. R ist eine freie Programmiersprache, entwickelt für statistische Auswertungen und Visualisierungen. Sie zählt zu den prozeduralen Programmiersprachen. Die quelltextoffene Programmiersprache wird ständig weiterentwickelt. Zusätzlich gibt es eine Vielzahl an Packages, welche weitere Funktionalität bereitstellen. Diese sind über ein zentrales Repository abrufbar und so leicht einbindbar in den Quelltext.¹³

Ein wichtiger Bestandteil jedes großen Software-Projektes ist ein gutes Build-Management-Tool. Für webifier wurde *Gradle* als solches gewählt. Ein Build-Prozess besteht grundsätzlich aus zwei Teilschritten. Zum Einen aus dem kompilieren des Codes und zum anderen aus dem verlinkten der benutzen Bibliotheken. ¹⁴ Da das manuelle Einbinden von Bibliotheken und compilieren des Codes bei großen Projekten sehr aufwändig und mühsam sein kann wird hier auf Build-Management-Tools wie *Gradle* zurückgegriffen. Um den Build für den Nutzer möglichst einfach zu gestalten verfolgt Gradle zwei Prinzipien. Das erste Prinzip ist *Convention over Configuration*, was bedeutet, dass soweit es geht ein Standardbuildprozess definiert ist und der Anwender nur die Parameter ändern muss die Projektspezifisch abweichen. Das zweite Prinzip nennt sich Don't Repeat Yourself (DRY). Hierbei geht es darum Redundanzen in der Konfiguration des Buildes zu vermeiden. Diese beiden Prinzipien helfen Gradle, dass meist kurze Build-Skripte ausreichen um komplexe Prozesse abzubilden. ¹⁵

¹¹ Vgl. Pollack u. a. (2012), S. 3f

¹² Vgl. Chodorow/ Dirolf (2010), S. 1f

¹³ Vgl. Wollschläger (2014), S. 1ff

¹⁴ Vgl. Wikipedia (2017)

¹⁵ Vgl. Baumann (2013), S. 6f

Die Kommunikation zwischen Server und Client erfolgt über Representational State Transfer (REST). Hierbei wird jedes Objekt in REST als Ressource definiert, welche über einen eindeutigen Uniform Ressource Identifier (URI) adressiert werden können. Über die HTTP-Methoden GET, PUT, POST und DELETE können diese Ressourcen geladen, erstellt, geändert oder auch gelöscht werden.¹⁶

Das Testen von potenziell gefährlichen Webseiten soll natürlich nicht direkt auf dem Server geschehen, da es sonst diesen potenziell gefährden könnte. Deshalb wird hierfür eine Virtualisierung benötigt um die Tests abgekapselt vom Gesamtsystem auszuführen. Dafür wurde Docker als Tool eingesetzt. Docker ist eine Open-Source-Software zur Virtualisierung von Anwendungen. Hierbei wird auf die Container-Technologie gesetzt. Container sind vom Betriebssystem bereitgestellte virtuelle Umgebung zur isolierten Ausführung von Prozessen. Ein Vorteil der Container gegenüber der herkömmlicher virtuelle Maschinen ist der vielfach geringere Ressourcenbedarf.¹⁷

2.3 Technologien und Frameworks der Tests

In diesem Kapitel werden diejenigen Technologien und Frameworks erläutert, die zur Umsetzung der Sicherheitstests verwendet werden.

Python ist eine Programmiersprache, die einen schnellen Projektstart ermöglicht und ist auf Integration von verschiedenen Systemen spezialisiert. Die Sprache wird von der Python Software Foundation nach Open Source Standards entwickelt. Die aktuellste Version ist Python 3.6.1, wobei bei der Implementierung der Tests keine einheitliche Version verwendet wird. Python zählt zu den dynamisch typisierten Programmiersprachen, was bedeutet, das es wie bei JavaScript2.1 erst zur Laufzeit zu einer Typenprüfung kommt. Weiterhin werden Codeblöcke nicht durch Sonderzeichen (wie z.B. geschweifte Klammern in Java) gekennzeichnet, sondern definieren sich an der Einrückungstiefe.¹⁸

Daniel schreiben: Python

diesen
Nebensatz in
Retrospektive, als
Punkt
zur Verbesserung?

Daniel schreiben: Phantom IS

Vgl. itwissen.info (2017)

¹⁷ Vgl. Roden (2017)

¹⁸ Python Software Foundation (2017)

Um Webseiten mit allen ihren Ressourcen herunterzuladen wurde die freie Software *HTTrack* verwendet. Mit *HTTrack* können Webseiten in einem lokalen Verzeichnis gespeichert werden. Hierfür erzeugt das Programm rekursiv alle notwendigen Verzeichnisse und läd anschließend alle Ressourcen, wie HTML-, CSS- und JavaScript-Dateien, als auch Bilder und andere Dateien herunter. Außerdem ist es möglich automatisiert alle HTML-Links entsprechend zu modifizieren. Abschließend bietet HTTrack umfassende Konfigurationsoptionen um es für den optimalen Gebrauch anpassen zu können.¹⁹

Für die Analyse und den Vergleich von Bildern wurde auf die freie JavaScript-Bibliothek Resemble.js zurückgegriffen. Mit Resemble können jegliche Arten von Bildanalyse und Bildvergleich genutzt werden. Urspünglich wurde es für eine Bibliothek von Phanton JS entwickelt, kann aber inzwischen vielseitig eingesetzt werden. Resemble bietet einige Einstellungsmöglichkeiten um Bilder analysieren und miteinander vergleichen zu können. Als Resultat liefert es bei der Bildanalyse Helligkeits- und Farbwerte des Bildes. Beim Bildvergleich bekommt man den prozentualen Unterschied der beiden Bilder, sowie einige zusatzinformationen. Außerdem ist es möglich mit Resemble.js ein Differenzbild mit der Hervorhebung der Unterschiede zweier Bilder zu erzeugen.²⁰

Zu einer umfassenden Analyse gehört selbstverständlich auch die Analyse des Netzwerktraffics. Dazu wird ein entsprechendes Tool genutzt. Webifier nutzt für diesen Zweck den *Bro Network Security Monitor*. Bro ist ein Unix-basiertes Network Intrusion Detection System (NIDS).²¹ Zudem ermöglicht Bro dem Nutzer den Netzwerktraffic zu loggen und mittels eigener Skriptsprache zu filtern.²² Die Logging-Möglichkeiten werden für die Analyse des Traffics genutzt um mögliche verdächtige Abfragen zu erkennen.

2.4 Angriffstypen

In diesem Abschnitt werden nun einige übliche Angriffstypen von Webseiten auf den Nutzer vorgestellt und eine mögliche Überprüfung in webifier dargestellt.

¹⁹ Vgl. Roche/ Kauler (2017)

²⁰ Vgl. Cryer (2017)

²¹ Vgl. Ali A. Ghorbani (2009), S. 199

²² Bro Network Monitor (2017)

2.4.1 Malware

Spyware, Root Kits, Trojaner und viele mehr - alles das ist Malware, welche den Nutzern in unterschiedlichen Weisen kleineren, oder größeren Schaden zuführen. Kurz: Malware ist Software mit bösartiger Wirkung. In diesem Abschnitt werden nun einige Formen von Schadsoftware beschrieben und wie diese in ein System gelangen kann.²³

Malware ist so vielfältig wie gutartige Anwendungen. Dennoch lässt sie sich auf verschiedene Weisen klassifizieren. Allerdings sind die Wübergänge der einzelnen Klassen fließend. Zum Einen kann Malware im Hinblick auf ihre Verbreitungsmethode und zum Anderen in der Art des Schadens für den ungewollten Anwender unterschieden werden. Alle Klassen vereint jedoch dass Malware im allgemeinen Code enthält, welcher dem Nutzer oder dessen System Schaden zufügt.²⁴

Bei der Verbreitungsmethode kann zwischen Viren, Trojanern und Würmern unterschieden werden. Viren sind Programme, welche sich bei der Ausführung selbst kopieren, beispielsweise indem sie ihren Code in andere Programme oder Dokumente des Nutzers einschleusen.²⁵ Die ersten Viren wurden Anfang der 1980er Jahre in Umlauf gebracht, allerdings spielten Viren sogar schon 1970 in dem Science Fiction Film *The Scarred Man* eine Rolle.²⁶ Trojaner sind Anwendungen, welche vortäuschen gutartig zu sein, aber Code beinhalten, welcher dem System oder dem User schadet. Trojaner sind seit 1972 bekannt und verbreiten sich üblicher Weise nicht eigenständig.²⁷ Würmer verbreiten sich üblicherweise von alleine über Netzwerke und infizieren so andere Systeme. Hierfür nutzen sie Schwachstellen in Netzwerkdiensten und schädigt so der Maschine oder dem Anwender.²⁸ Die ersten Würmer sind wie die ersten Viren in der Science Fiction zu finden. Würmer kommen in dem Roman *The Shockwave Rider* von John Brunner aus dem Jahr 1975 vor. Die ersten realen Würmer waren bereits 1970 im damalign Arpanet zu finden.²⁹

Samuel:
Noch
allgemeiner
auf das
Thema
eingehen...

²³ Vgl. Kappes (2013), S. 95

²⁴ Vgl. ebenda, S. 95 f.

²⁵ Vgl. ebenda, S. 95

²⁶ Vgl. Aycock (2006), S. 14

²⁷ Vgl. ebenda, S. 12 f.

²⁸ Vgl. Kappes (2013), S. 95

²⁹ Vgl. Aycock (2006), S. 15

Anhand des angerichteten Schadens kann Malware in Spyware, Adware, Malware-Dialer, Zombie-Malware, Backdoors und Root Kits unterteilt werden. Spyware ist Software, welche ohne Wissen des Nutzers Informationen sammelt und weiterleitet. Dadurch könne vertrauliche Daten gestohlen und missbraucht werden.³⁰ Solche Daten können beispielsweise Benutzernamen und Passworter, E-Mailadressen, Bankaccounts und Kreditkartennummern oder Softwarelizenzschlüssel sein. Mitte der 1990er Jahre war erste Spyware zu finden.³¹ Als Adware werden Programme bezeichnet, welche dem Benutzer Werbeanzeigen einblenden.³² Adware ist ähnlich zu Spyware, da beide Informationen über den Nutzer sammeln. Allerdings ist Adware mehr auf Marketing fokussiert und nutzt die Informationen um dem Nutzer Webung zu präsentieren.³³ Dialer sind Programme, welche Computern über Modems oder Telefonnetze Zugang zum Internet anbieten. Malware-Dialer nutzen das aus und wählen die Rechner ohne Kentniss des Nutzers in teure Service-Rufnummern oder Anwahlpunkte im Ausland ein. Allerdings findet man diese Art von Malware nur noch selten, da es inzwischen telefonbasierten Internetzugänge an Bedeutung verlieren. Software, welche Rechner komprommitiert, wird als Zombie-Malware bezeichnet, da dieser so von Angreifern ferngesteuert werden kann.³⁴ Am häufigsten werden Zombie-Rechner eingesetzt um Spam zu versenden oder mit vielen anderen Denial of Service Angriffe auszuführen.³⁵ Backdoors sind modifizierte Programme des Systems, über welche Hacker Sicherheitsmechanismen umgehen und sich so unbefugten Zugriff auf den Rechner verschaffen kann. Modifizierte Softwaregruppen, welche zum Ziel haben deren Aktivität oder die eines Angreifers vor Systembenutzern, inklusive Administratoren zu verstecken werden als Root Kits bezeichnet.36

Die Verbreitung von Malware beginnt größtenteils über Webseiten und E-Mails.³⁷ Deshalb ist es notwendig mit webifier Webseiten auf Malware zu prüfen.

Statistik einfügen

³⁰ Vgl. Kappes (2013), S. 95 f.

³¹ Vgl. Aycock (2006), S. 16

Vgl. Kappes (2013), S. 96

³³ Vgl. Aycock (2006), S. 17

³⁴

Vgl. Kappes (2013), S. 96

³⁵ Vgl. Aycock (2006), S. 18

³⁶ Vgl. Kappes (2013), S. 96

Vgl. ebenda, S. 97

Abbildung 3: Malware Statistik

2.4.2 Request Header Investigation

2.4.5 Clickjacking

Jani

2.4.6 Phishing

Beim Phishing versucht ein Angreifer, in diesem Fall auch Phisher genannt, auf betrügerische Weise vertrauliche oder sensible Anmeldedaten zu bekommen. Um dies zu erreichen gibt fälscht er die elektronische Kommunikation zwischen Opfer und einer vertrauenswürdigen oder öffentlichen Organisation, indem er sich selbst als diese ausgibt. Dies geschieht meist durch E-Mails, welche das Opfer auf eine Webseite locken, welche vermeindlich zur vertrauenswürdigen Organisation gehört, in Wahrheit aber vom Angreifer kontrolliert wird und deshalb Informationen, vorzugsweise Passwörter oder Krefitkartennummern abfängt.³⁸

Phishing gibt es seit Anfang der 1990er Jahre, allerdings sind die Zahlen von Phishing-Angriffen in den letzten Jahren drastisch gestiegen. Phishing ist zu einer gefährlichen Kombination aus Social Engeneering und technischen Angriffen geworden, welche zum Ziel hat vertrauliche Informationen zu erlangen. Die gewonnenen Daten werden für Betrug, Identitätsdiebstahl und Spionage missbraucht.³⁹

Im Folgenden wird ein beispielhafter Phishingangriff auf PayPal geschildert. PayPal ist ein Online-Bezahldienst mit über 18 Millionen Nutzern alleine in Deutschland.⁴⁰ Am häufigsten wird PayPal genutzt um Internetkäufe zu bezahlen. Listing 2 zeigt eine E-Mail, mit der ein PayPal-Nutzer auf eine Phishing-Seite gelockt werden soll.⁴¹

```
Sehr geehrter PayPal-Kunde, sehr geehrte PayPal-Kundin,

wir haben gerade einen oder mehrere Loginversuche von einer fremden IP-Adresse auf Ihr
PayPal-Konto festgestellt.

Wenn Sie in der letzten Zeit unterwegs auf Ihren Account zugegriffen haben, könnten die
ungewöhlichen Loginversuche von Ihnen stammen. Auch wenn die Loginversuche nicht von Ihnen
stammen, besuchen Sie PayPal bitte sobald wie möglich um Ihre Identität zu verifizieren:

https://www.paypal.com/signin?country.x=DE&locale.x=de_DE

Die Bestätigung Ihrer Identität ist eine Sicherheitsmaßnahme, mit der sichergestellt wird,
dass Sie die enzige Person sind, die Zugriff auf Ihr Konto hat.

Vielen Dank für Ihre Unterstützung um gemeinsam Ihr Konto zu schützen.

Mit freundlichen Grüßen,
PayPal
```

³⁸ Vgl. Jakobsson/ Myers (2006), S. 1

³⁹ Vgl. ebenda, S. 1 f.

⁴⁰ Vgl. PayPal (2017)

⁴¹ Vgl. Jakobsson/ Myers (2006), S. 10

SCHÜTZEN SIE IHR PASSWORT

PayPal-Konto an und klicken Sie auf den \enquote{Hilfe}-Link im Menü.

Geben Sie ihr Passwort niemals an Dritte weiter und nutzen Sie es ausschließlich um sich auf https://www.paypal.com/ anzumelden. Schützen Sie sich vor Betrug, indem Sie einen neuen Browser öffnen und jedes mal die PayPal Url eintippen um sich anzumelden.

Bitte antworten Sie nicht auf diese E-Mail. Nachrichten, die an diese Adresse gesendet werden können nicht beantwortet werden. Wenn Sie Hilfe benötigen melden Sie sich in Ihrem

PayPal E-Mail ID PP321

Listing 2: Phishing Lockmail⁴²

Die in Listing 2 dargestellte E-Mail täuscht dem Kontoinhaber vor, dass eine Fremde Person auf das Konto zugegriffen hat und animiert ihn so dazu dem vermeindlich sichern Link zu folgen um seine Identität zu verifizieren um seinen Account zu schützen. Nebenbei sei noch erwähnt, dass der Link in der E-Mail natürlich nicht auf die orginale PayPal-Webseite verweist, sondern auf die Phishing-Seite des Angreifers. Der Hinweiß "Schützen Sie Ihr Passwort" verleiht der E-Mail noch ein authentischeres Aussehen und würde der Nutzer dem Rat folgen wäre dieser Phishing-Angriff wirkungslos. Viele Nutzer nehmen diesen Rat auch wahr, nutzen aber trotzdem den bereitgestellten Link aus der E-Mail, da diese ja offensichtlich von PayPal stammt und deshalb vertrauenswürdig ist.⁴³

Üblicher Weise wird auch die Absenderadresse der E-Mail gefälscht und eine orginaladresse von PayPal, beispielsweise *service@paypal.com* verwendet. Wenn der Empfänger der E-Mail nun den Link aus selbiger öffnet wird er auf die in Abbildung 4 dargestellte Webseite geleitet, welche Ihn zur eingabe seiner Anmeldedaten auffordert.⁴⁴

⁴² Jakobsson/ Myers (2006), S. 11 Abbildung 1.4, Übersetzung Samuel Philipp

⁴³ Vgl. ebenda, S. 10

⁴⁴ Vgl. ebenda, S. 10

Abbildung 4: PayPal Phishing Webseite

Das aussehen der Phishing-Webseite ist dem des Originals (Abbildung 5) sehr ähnlich. Wenn das Opfer nun seine Benutzernamen und sein Passwort eingegeben hat ist das erste Ziel des Angreifers bereits erreicht, denn er hat gültige Zugangsdaten zu einem PayPal-Account erhalten. Um aber noch mehr Daten zu bekommen und dem Opfer den Angriff weiterhin zu verschleiern wird der Nutzer in vielen Fällen auf einer nachfolgenden Seite gebeten auch noch seine Anschrift und Kreditkartendaten zu bestätigen, indem er diese auch noch eingeben muss. Danach wird der Nutzer wieder "abgemeldet" und anschließend auf die orginale PayPal-Webseite (Abbildung 5) weitergeleitet. Damit ist der Phishing-Angriff abgeschlossen und der Angreifer wird keine Zeit verlieren die Daten zu missbrauchen.⁴⁵

⁴⁵ Vgl. Jakobsson/ Myers (2006), S. 10 ff.

Abbildung 5: PayPal Original Webseite

Das Vorgehen im vorausgegangen Beispiel ist sehr typisch für Phishing-Angriffe und kann deshalb auf sehr viele andere Seiten übertragen werden.

Samuel

3 Konzept

3.1 Gesamtkonzept

3.1.1 webifier Tests

Webifier Tests ist der Oberbegriff für sämtliche von webifier durchgeführten Tests bei der Analyse einer Webseite. Die Tests sollen alle gleichermaßen aufgebaut werden. Es soll ein einheitliches Format entwickelt werden, sodass das Hinzufügen weiterer Tests keine Probleme darstellt.

3.1.2 webifier Tester

Samuel

3.1.3 webifier Platform

Daniel

3.1.4 webifier Mail

Daniel

3.1.5 webifier Data

Samuel

3.1.6 webifier Statistics

Webifier Statistics ist für die Datenauswertung zuständig. Das Ziel hierbei ist es die Jani

Daten zu visualisieren. Es sollen Diagramme erstellt und in einem Dashboard zusammen dargestellt werden. Die Datengrundlage wird von webifier Data geliefert. Alle Testergebnisse und Metadaten müssen analysiert werden. Durch diese Analyse werden Ideen gesammelt, welche Diagramme erstellt werden sollen.

Diese Diagramme werden folgend erstellt und getestet ob sinnvolle Erkenntnisse daraus gezogen werden können. Die fertigen Diagramme werden anschließend in das Dashboard eingebunden. Webifier Statistics soll für den Nutzer ein interaktives Dashboard bieten, auf dem er Einblicke über die von webifier gewonnen Daten erhalten kann.

3.2 Testarten

3.2.1 Virenscan

Samuel

- Httrack (Umsetzung)
- Download aller Dateien der Webseite
- Scannen der Heruntergeladenen Dateien
 - Clamav (Umsetzung)
 - AVG (Umsetzung)
 - CAV (Umsetzung)

3.2.2 Vergleich in verschiedenen Browsern

Daniel

3.2.3 Test auf Port Scanning

Jani

3.2.4 Test auf IP Scanning

Jani

3.2.5 Link Checker

Daniel

• herausfiltern aller Links und nachgeladenen Ressourcen

3.2.6 Google Safe Browsing

Daniel

3.2.7 Überprüfung des Zertifikats

Samuel

- Auslesen der relevanten Informationen des Zertifikates der WEbseite
- Validierung des Zertifikates

3.2.8 Erkennung von Phishing

Samuel

- Herausfiltern der Schlagwörter
- Finden möglicher Duplikate der Webseite
 - Erstes Schlagwort zu Top Level Domains
 - * com
 - * ru
 - * net
 - * org
 - * de
 - Websuche nach den Schlagwörtern mittels Suchmaschinen
 - * DuckDuckGo
 - * Ixquick
 - * Bing

3.2.9 Screenshot

Jani

4 Umsetzung Seite 21

4 Umsetzung

4.1 Gesamtanwendung

4.1.1 webifier Tests	
	Jani
4.1.2 webifier Tester	
	Samuel
4.1.3 webifier Platform	
	Daniel
4.1.4 webifier Mail	
	Daniel
4.1.5 webifier Data	
	Samuel
4.1.6 webifier Statistics	

Jani

4 Umsetzung Seite 22

4 Oniscizung	SCILC 22	
4.2 Tests		
4.2.1 Virenscan		
		Samuel
4.2.2 Vergleich in verschiedenen Browsern		
		Daniel
4.2.3 Test auf Port Scanning		
		_ Jani
4.2.4 Test auf IP Scanning		
		Jani
4.2.5 Linkchecker		
		Daniel
4.2.6 Google Safe Browsing		
		Daniel
4.2.7 Überprüfung des Zertifikats		

Samuel

4 Umsetzung Seite 23

4.2.8 Erkennung von Phishing

Samuel

4.2.9 Screenshot

Jani

5 Analyse Seite 24

5 Analyse

6 Ausblick Seite 25

6 Ausblick

- **6.1 Weitere Tests**
- 6.2 Weitere Module

7 Fazit Seite 26

7 Fazit

- 7.1 Zusammenfassung
- 7.2 Bewertung der Ergebnisse

Literaturverzeichnis Seite X

Literaturverzeichnis

Ali A. Ghorbani Wei Lu, Mahbod Tavallaee (2009):

Network Intrusion Detection and Prevention: Concepts and Techniques, 1. Auflage, Springer Verlag

Aycock, John (2006):

Computer Viruses and Malware, 1. Auflage, Springer US

Baumann, Joachim (2013):

Gradle - ein kompakter Einstieg in das Build-Management-System, 1. Auflage, dpunkt.verlag

Bro Network Monitor (2017):

Introduction, Englisch, Python Software Foundation, https://www.bro.org/sphinx/intro/index.html, Einsichtnahme: 28.04.2017

Chodorow, Kristina/ Michael Dirolf (2010):

MongoDB: The Definitive Guide, 1. Auflage, O'Reilly Media

Cosmina, Iuliana (2016):

Pivotal Certified Professional Spring Developer Exam: A Study Guide, 3. Auflage, Apress

Cryer, James (2017):

Resemble.js: Image analysis and comparison, http://huddle.github.io/Resemble.js/, Einsichtnahme: 23.04.2017

Gosling, James u. a. (2014):

The Java Language Specification - Java SE 8 Edition, 5. Auflage, Addison-Wesley

Gutierrez, Felipe (2016):

Pro Spring Boot, 1. Auflage, Apress

Literaturverzeichnis Seite XI

itwissen.info (2017):

REST (representational state transfer), http://www.itwissen.info/REST-representational-state-transfer.html, Einsichtnahme: 22.04.2017

Jackson, J. C. (2007):

Web Technologies: A Computer Science Perspective, Englisch, Pearson/Prentice Hall, ISBN: 9780131856035, http://pdfpoint.com/admin/supercategory_content / 1469306509 - aab008e7cald715326928dade3196b2d - Web % 20Technologies % 20 - %20A % 20Computer % 20Science % 20Perspective % 20-%20J. %20Jackson%20 (Pearson, %202007) %20BBS.pdf, Einsichtnahme: 03.05.2017

Jakobsson, Markus/ Steven Myers (2006):

Phishing and Countermeasures: Understanding the Increasing Problem of Electronic Identity Theft, 1. Auflage, Wiley

Johns, Martin (2017):

Martin Johns, www.martinjohns.com, Einsichtnahme: 24.04.2017

Kappes, Martin (2013):

Netzwerk- und Datensicherheit: Eine praktische Einführung, 2. Auflage, Springer Vieweg

PayPal (2017):

PayPal - Über uns - PayPal, https://www.paypal.com/de/webapps/mpp/about, Einsichtnahme: 10.05.2017

Pollack, Mark u. a. (2012):

Spring Data: Modern Data Access for Enterprise Java, 1. Auflage, O'Reilly Media

Python Software Foundation (2017):

PhantomJS - Wikipedia, Englisch, Python Software Foundation, https://www.python.org/, Einsichtnahme: 21.04.2017

Roche, Xavier/ Leto Kauler (2017):

HTTrack Website Copier - Free software offline browser, http://www.httrack.com, Einsichtnahme: 23.04.2017

Literaturverzeichnis Seite XII

Roden, Golo (2017):

Anwendungen mit Docker transportabel machen, https://www.heise.de/developer/artikel/Anwendungen-mit-Docker-transportabel-machen-2127220.html, Einsichtnahme: 22.04.2017

Wikipedia (2017):

Erstellungsprozess, https://de.wikipedia.org/wiki/Erstellungsprozess, Einsichtnahme: 22.04.2017

Wolff, Eberhard (2011):

Spring 3 – Framework für die Java Entwicklung, 3. Auflage, dpunkt.verlag

Wollschläger, Daniel (2014):

Grundlagen der Datenanalyse mit R: Eine anwendungsorientierte Einführung, 3. Auflage, Springer Verlag

World Wide Web Consortium (W3C) (2014):

PhantomJS - Wikipedia, Englisch, World Wide Web Consortium (W3C), https://www.w3.org/TR/2014/REC-html5-20141028/single-page.html, Einsichtnahme: 24.04.2017

Yates, Colin u. a. (2006):

Expert Spring MVC and Web Flow, 1. Auflage, Apress

Literaturverzeichnis Seite XIII

Liste der noch zu erledigenden Punkte

Daniel	2
Samuel	1
Daniel schreiben: CSS	5
Daniel schreiben: JavaScript	5
Daniel schreiben: jQuery	5
Daniel schreiben: Bootstrap	5
Daniel schreiben: Python	8
diesen Nebensatz in Retrospektive, als Punkt zur Verbesserung?	8
Daniel schreiben: Phantom JS	8
Samuel: Noch allgemeiner auf das Thema eingehen	9
Statistik einfügen	11
Daniel schreiben: Request Header Investigation	12
Jani	12
Jani	12
Jani	12
Samuel	16
Jani	17
Samuel	17
Daniel	17

Literaturverzeichnis	Seite XIV
----------------------	-----------

Daniel	 	17
Samuel	 	17
Jani	 	18
Samuel	 	18
Daniel	 	18
Jani	 	19
Jani	 	19
Daniel	 	19
Daniel	 	19
Samuel	 	19
Samuel	 	20
Jani	 	20
Jani	 	21
Samuel	 	21
Daniel	 	21
Daniel	 	21
Samuel	 	21
Jani	 	21
Samuel	 	22
Daniel	 	22
Jani	 	22
Jani	 	22
Daniel	 	22
Daniel	 	22

Literaturverzeichnis		
Samuel	22	
Samuel	23	
Jani	23	