CÁLCULO

AULA 14

PROF. DANIEL VIAIS NETO

INTRODUÇÃO

- Hoje: Função Exponencial e Logarítmica.
- Próxima Aula: P1.

FUNÇÃO EXPONENCIAL

Chamamos de função exponencial de base a ($0 < a \ne 1$), a função $f: R \to R$ que associa a cada x o número real a^x .

LOGARÍTMO

Logaritmo de um número é o expoente a que outro valor (a base) deve ser elevado para produzir este número.

FUNÇÃO LOGARÍTMICA

Chamamos de função logarítmica de base a ($0 < a \ne 1$), a função $f: R_+^* \to R$ que associa a cada x o número real $log_a x$.

APLICAÇÃO DE ESCALA LOGARÍTICA

APLICAÇÃO DE ESCALA LOGARÍTICA

A	А	В
1	Frequência (Hz)	Ganho (dB)
2	100	-24,1
3	200	-18,3
4	300	-15,1
5	400	-13
6	500	-11,5
7	1000	-8,2
8	2000	-6,7
9	5000	-6,2
10	10000	-6
11	50000	-6,2
12	100000	-6,5
13	200000	-7,6
14	300000	-8,8
15	400000	-10,3
16	500000	-11,5
17	1000000	-16,4
18	2000000	-22,2

ESCALA LOGARÍTMICA

x	y	log y
1	200	2,3
2	10000	4
3	1000	3
4	100	2
5	100000	5
6	100	2

SEM ESCALA LOGARÍTMA

COM ESCALA LOGARÍTMA

Em uma xícara que já contém certa quantidade de açúcar, despeja-se café. A curva ao lado representa a função exponencial M(t), que fornece a quantidade de açúcar não dissolvido (em gramas), t segundos após o café ser despejado. Pelo gráfico, podemos concluir que:

(a)
$$M(t) = 2^{(4-t/75)}$$
. b) $M(t) = 2^{(4-t/50)}$.
c) $M(t) = 2^{(5-t/50)}$. d) $M(t) = 2^{(5-t/150)}$.

Um consumidor deseja adquirir um apartamento e recorre a um banco para financiar esse imóvel. Após a análise das formas de crédito e da realização dos cálculos, o comprador opta por um financiamento no qual, ao término do prazo, o valor total pago será igual ao dobro do valor inicial financiado. Sabendo-se que o banco aplicou uma taxa de juros de 8% ao ano, a juros compostos, o prazo em que esse comprador pagará seu apartamento é, em anos, igual a:

a) 10.

b) 15.

c) 20.

d) 25.

e) 30.

Adote:

 $\log 1.08 = 0.03$

 $\log 2 = 0.30$

 $M = C (1+i)^n$

Qualquer quantidade de massa do chumbo 210 diminuiu em função do tempo devido à desintegração radioativa. Essa variação pode ser descrita pela função exponencial dada por $M=M_02^{-ct}$. Nessa sentença, M é a massa (em gramas) no tempo t (em anos), M_0 é a massa inicial e c é uma constante real. Sabendo-se que, após 66 anos, tem-se apenas 1/8 da massa inicial, o valor c é:

a) -3. b) -1/3. c) -22. d) 1/22. e) 1/3.

GABARITO ATIVIDADE DE CÁLC. 3

Exercício 1: 0,37659

Exercício 2: 1,52789

Exercício 3: 0,06788

Exercício 4: 1,99753

Exercício 5: 3,78932

- 1. Uma das práticas mais prazerosas da relação humana, o beijo, pode ser, paradoxalmente, um dos maiores meios de transmissão de bactérias. Supondo que o número de bactérias (N) por beijo (b) é determinado pela expressão $N(b) = 500.2^b$, para que o número de bactérias seja 32.000, você terá de dar quantos beijos?
- 2. Numa calculadora científica, ao se digitar um número positivo qualquer e, em seguida, se apertar a tecla log, aparece, no visor, o logaritmo decimal do número inicialmente digitado. Digita-se o número 10.000 nessa calculadora e, logo após, aperta-se, N vezes, a tecla log, até aparecer um número negativo no visor. Então, é CORRETO afirmar que o número N é igual a:
- a) 1 b) 2 c) 3 d) 4 e) 5
- **3.** Uma população de bactérias começa com 100 e dobra a cada três horas. Assim, o número n de bactérias após t horas é dado pela função $n(t) = 100.2^{t/3}$. Nessas condições, pode-se afirmar que a população será de 51.200 bactérias depois de:
- a) 1 dia e 3 horas. b) 1 dia e 9 horas. c) 1 dia e 14 horas. d) 1 dia e 19 horas.

4. A lei que representa uma estimativa sobre o número de funcionários de uma empresa, em função do tempo t, em anos, de existência da empresa, é dada por $f(t) = 400 + 50log_2(t+2)$. Qual das alternativas apresentam o número de funcionários que a empresa possuía na sua fundação e a quantidade de funcionários foram incorporados à empresa do 2º ao 6º ano (Admita que nenhum funcionário tenha saído), respectivamente?

a) 450; 50

b) 400; 50 c) 400; 100 d) 450; 100 e) 400; 150

5. Leia o texto sobre terremotos: Magnitude é uma medida quantitativa do tamanho do terremoto. Ela está relacionada com a energia sísmica liberada no foco e também com a amplitude das ondas registradas pelos sismógrafos. Para cobrir todos os tamanhos de terremotos, desde os microtremores de magnitudes negativas até os grandes terremotos com magnitudes superiores a 8.0, foi idealizada uma escala logarítmica, sem limites. No entanto, a própria natureza impõe um limite superior a esta escala, já que ela está condicionada ao próprio limite de resistência das rochas da crosta terrestre. Magnitude e energia podem ser relacionadas pela fórmula descrita por Gutenberg e Richter em 1935: $\log(E) = 11.8 + 1.5M$ onde: $E = energia \, liberada \, (Erg); \, M = magnitude \, do \, terremoto$. Sabendo que o terremoto que atingiu o México em setembro de 2017 teve magnitude 8,2, assinale a alternativa que representa a melhor aproximação para a energia liberada por esse terremoto, em Erg.

a) 13,3

b) 20

c) 24

d) 10^{24}

e) 10^{28}

6. Uma ONG relacionada ao meio ambiente denunciou que a população de peixes em um lago está diminuindo devido à contaminação da água por resíduos industriais. A lei $N(t) = 8000 - 8.2^{t-1}$ fornece uma estimativa do número de espécies vivas N(t) em função do número de anos (t) transcorridos após a instalação do parque industrial na região. Estime a quantidade de peixes que viviam no lago no começo da instalação do parque industrial e a quantidade que haverá daqui a 10 anos.

a) 7992 e 3904. b) 7992 e -192. c) 7996 e 3904. d) 8000 e 7480. e) 7996 e 7480

7. A pedido do seu orientador, um bolsista de um laboratório de biologia construiu o gráfico a seguir a partir dos dados obtidos no monitoramento do crescimento de uma cultura de micro-organismos. Analisando o gráfico ao lado, o bolsista informou ao orientador que a cultura crescia segundo o modelo matemático, $N = k ext{.} ext{ } ext{com } ext{ } ext{ } ext{com } ext{ } ext{ } ext{m}$ horas e N em milhares de micro-organismos. Para constatar que o modelo matemático apresentado pelo bolsista estava correto, o orientador coletou novos dados com t=4 horas e t=8 horas. Para que o modelo construído pelo bolsista esteja correto, nesse período, o orientador deve ter obtido um aumento na quantidade de micro-organismos de:

a) 80.000. b) 160.000. c) 40.000. d) 120.000.

8. A altura média do tronco de certa espécie de árvore, que se destina a produção de madeira, evolui desde que é plantada segundo o modelo matemático $h(t) = 1.5 + log_3(t+1)$, com h(t) em metros e t em anos. Se uma dessas árvores foi cortada quando seu tronco atingiu 3,5 metros de altura, o tempo (em anos) transcorrido do momento da plantação até o do corte foi de:

- a) 9. b) 8. c) 5. d) 4. e) 2.

9. Numa análise experimental, a desintegração de certo material radioativo é dada por: $D(t) = D_0$. 10^{-kt} em que t é medido em dias e k é uma constante positiva. Após o início da análise, utilizando uma amostra de 500 gramas, em dois meses a massa do material radioativo reduziu-se a 31,25 gramas. Calcule a massa do material radioativo para t=15dias.

10. Um forno elétrico estava em pleno funcionamento quando ocorreu uma falha de energia elétrica que durou algumas horas. A partir do instante em que ocorreu a falha, a temperatura no interior do forno pôde ser expressa pela função $T(t) = 2^t + 400.2^{-t}$ com t em horas, $t \ge 0$, e a temperatura em graus Celsius.

- a) Determine as temperaturas do forno no instante em que ocorreu a falha de energia elétrica e uma hora depois.
- b) Quando a energia elétrica voltou, a temperatura no interior do forno era de 40 graus. Determine por quanto tempo houve falta de energia elétrica.

SABARITO

- **1.** 6
- **2.** c
- **3.** a
- **4.** a
- **5.** d
- **6.** c
- **7.** d
- **8.** b
- **9.** 250
- **10.** a) 401 °C; 202 °C
 - b) 4*h*20

