

	专业	_学号_
学	2012~2013 学年第一学期期末考试试卷	4. 某?
	《物理化学 2B—化工》(A卷 共4页)	(
	(考试时间: 2013年1月17日)	5.
题	号一二三四五六七八成绩核分人签字	2
得	分	1
1	一、填空选择题(共25分)	
1:	判断正误, 正确的划"+", 错误的划"-"。	6
	① 任何可溶性的强电解质溶液都可以作为盐桥使用。	
	② 反应级数为分数的反应一定不是基元反应。	7
	③ 一定 T 、 p 下,气体在固体表面的物理吸附过程的 ΔG 、 ΔS 均小于 0 。()	-
183	④ 能发生正吸附的溶液, 其表面张力随着浓度的增加而增大。	
	⑤ 在光化学反应的初级过程中,其量子效率可以大于 1。	
	⑥能加速正反应的催化剂必定是能加速逆反应的催化剂。	,
	⑦链反应过程一般都有自由基或自由原子产生。	,
	⑧ 碰撞理论中,临界能 E。大于阿伦尼乌斯活化能 Ea。	` .
	⑨ 高分子溶液的丁铎尔效应比憎液溶胶更强。	,
2.	每千克水中含有 0.1 mol NaCl 和 0.1 mol Na ₂ SO ₄ ,此溶液的离子强度	
).	
3	1= (电池 Cu Cu²+ Cu²+,Cu+ Pt 和 Cu Cu+ Cu²+,Cu+ Pt 的电池反应均可写	F
	Cu + Cu²+ = 2Cu ⁺ , 试问 25 °C 时上述两电池的 ()。	
	① A, G, 和 E 均不同: ② A, G, 和 E 均相同:	
	③ A,G, 相同而 E不同: ④ A,G, 不同而 E相同。	

_学号			
4. 渠液体在玻璃为(喜表面的润湿角 θ=70°,其表面张力	フγ ¹ 与γ ⁵ 和γ ⁵¹ 之间的关系式, 且γ ⁵ 和γ ⁵¹ 间的相对	大小为
5. 有一级平行	反应: A \longrightarrow B, $E_{a,1}$ 其中 E \longrightarrow C, $E_{a,2}$ 指前因子相等, $E_{a,1} = 100 \text{kJ} \cdot \text{mol}^{-1}$	3为目的产物,C为副产物。 E, 2=80kJ·mol ⁻¹ 。今欲加付	央产物 B
	则反应温度应()。反应	物 A 的半衰期 t _{1/2} 与 k ₁ 、 k ₂	的关系式
为(6. 热力学上); 当 T=800 K 时, c _B /cc=(不稳定的憎液溶胶分散系统能	相对稳定存在的三个重)。	要原因是
7. 若算符 Â作	用于函数 u 时有 $\hat{A}u = \lambda u$,则常数	Lλ称为算符Â的(), 业称为
算符Â的 8. 量子力学中			
① 系统的	能量 E 不随时间变化; (不随时间变化;		
9. 通过求]某点附近发现粒子的概率不随时 (wg () 方程	问变化。 可得到一维谐振子的自 公式需要给出量子数的取值	
	以力学能 U与配分函数 q 的关系表).
05°C lbt	、(15分) ,电池 Zn ZnCl ₂ (0.555 mol·kg ⁻¹))=-0.7620 V,E ^Q {Cl ⁻ AgCl(s)	AgCl(s) Ag 的电动势 E= Ag	=1.015V。已知]势的温度系数

 $\left(\frac{\partial E}{\partial T}\right)_{p} = -4.02 \times 10^{-1} \text{ V-K}^{-1}$ 。若有 2 mol 的电子电量输出时,

- (1) 写出电极反应及电池反应;
- (2) 计算反应的标准平衡常数 K^e 及电池反应可逆热 Q_m:
- (3) 计算同样温度下该反应在电池外(W'=0)恒压进行时,系统与环境交换的热 Qm;
- (4) 求溶液中 ZnCl₂ 的平均离子活度因子准。

班

七、(8分)

以等体积的 0.09 mol-dm⁻³ AgNO₃ 溶液和 0.11 mol-dm⁻³ KCl 溶液制备 AgCl 溶胶。

- (1) 写出胶团结构式, 并标明胶团结构的各部分名称及滑动面的位置:
- (2) 指出电场中胶体粒子的移动方向及 5 电势的正负;
- (3) 加入电解质 MgSO₄,AlCl₃ 和 Na₃PO₄ 使上述溶胶发生聚沉,则电解质聚沉能力的 大小顺序是什么?

八、综合题 (15分)

- 1. 简要解释以下现象:
 - (1) 若溶剂对反应组分无明显作用,则活化控制的溶液反应速率与气相反应相似;
 - (2) 制备稳定的乳状液一般要加表面活性剂;
 - (3) 微小液滴自动成球形;
 - (4) 加入晶种到溶液中可降低过饱和度。

学院

(1) 谣

(2) 0:

五、(8分)

实验表明气相反应2N2O5-4NO2+O2的反应机理如下:

- $1 N₂O₅ = \frac{k_1, F_{e,1}}{k_1, F_{e,-1}} NO₂ + NO₃$
- $2NO_2 + NO_3 \xrightarrow{k_2, E_{42}} NO + O_2 + NO_2$
- . 3 NO + NO 3 k3, E.3 > 2NO 2
- (1) 试应用稳态近似法推导以·v[O₂]表示的速率方程,其中NO、NO₃为活泼中间物。
- (2) 若速率常数满足关系 k_1 >> k2,则反应的表观活化能与各基元反应的活化能问存 在什么关系?

六、(8分)

- (1) 试写出朗缪尔单分子层吸附理论的4个基本假设。
- (2) 0℃、3.085 kPa下, 1g 活性碳能吸附标准状况下的氮气 5.082 cm³; 而在 0℃、10.327 kPa 时能吸附标准状况下的氮气 13.053 cm³。若氮气在活性碳上为单分子层吸附, 计算朗缪尔吸附等温式中的吸附系数 b 和饱和吸附量 Va*。

三、(8分)

并注明式中各物理量分别是什么?

(2) 对高域子系统有 $S = Nk \ln \frac{9}{N} + \frac{U}{T} + Nk$ 。 请推导 $S = Nk \ln \frac{9^{\circ}}{N} + \frac{U^{\circ}}{T} + Nk$ 。 该结果说明什么?.

四、(13分)

某气相反应 2A+B-C 的速率方程 $-\frac{dp_B}{dt}=k_p P_A P_B$,

- (1) 300 K 时将 A、B 的摩尔比为 2:1 的混合气通入抽空密闭容器中, 初始总压力为 30.0 kPa, 50 秒后系统总压为 20.0 kPa, 计算速率常数 kp。
- (2) 若反应的活化能 $E_a=50$ kJ·mol⁻¹,计算 400 K 时以浓度表示的連率常数 k_a

学号

的

2. 复合反应速率方程近似处理有三种方法: (1)选取控制步骤法; (2)平衡态近似法; (3)稳态近似法。请问什么情况下采用上述处理方法,并简要介绍是如何近似处理的。

3. 请简要讨论量热熵、统计熵、残余熵、光谱熵、规定熵的含义及其相互关系。

