Candidate's Name:	• • • • •	•••••	• • • • •	• • • • • • •	•••••	•••••	•••••	• • • • •
Cianatura	Random No. Personal N						l No.	
Signature:								

(Do not write your school/ Centre Name or Number anywhere on this booklet.)

P525/1

CHEMISTRY

Paper 1

Nov./Dec. 2020

2 ³/₄ hours

THE CHEMISTRY SYNDICATE-UGANDA

Uganda Advanced Certificate of Education MOCK EXAMS

CHEMISTRY

Paper 1

2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES:

Answer all questions in this Section A and six questions in Section B.

All *questions must be written in the spaces provided.*

The Periodic Table, with relative atomic masses, is attached at the end of the paper.

Mathematical tables (3-figure tables) are adequate or non-programmable scientific electronic calculators may be used.

Illustrate your answers, with equations where applicable.

Where necessary, use the following;

Molar gas constant, $R=8.31 \text{ JK}^{-1}\text{mol}^{-1}$.

Molar volume of a gas at s.t.p is 22.4 litres.

 $Standard\ temperature = 273K.$

Standard pressure = $101325Nm^{-2}$

						F	or	Exa	min	ers'	Use (Only					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

SECTION A: (46 MARKS)

Answer **all** questions in this section

1. (a) What is meant by the	term bond energy ?	(01 mark)
(b) The bond energies of <i>C</i> respectively are 743, 4 enthalpy change for the r	12, 360, 348, 887 and eaction below.	$-C$, $C \equiv N$ and $O - H$ bonds d $463 \ kJmol^{-1}$. Calculate the $(1 \frac{1}{2} \ mark)$
$(CH_3)_2C =$	• O + HCN	$ \longrightarrow (CH_3)_2 CCN $ OH
(c) For each of the following adopted.	ng compounds state the	type of bonding and structure (03 marks)
Compound	Bonding type	Structure
Iodine	3 4 2	
Calcium fluoride		
Silicon(IV) oxide		
in a $1 dm^3$ capacity ves	sel. If the equilibrium conis temperature and in t	to reach equilibrium at 200°C onstant of the above reaction is he conditions stated. Calculate
		oride at equilibrium. (04 marks)
		(04 marks)
		(04 marks)

3. (a) State three properties in which carbon diffe elements.	ers from the rest of group IV (1½ marks)
(b) Write equations for the reaction between conc	entrated sulphuric acid and:
(i) carbon	(1 ½ marks)
(ii) Tin	(1 ½ marks)
(ii) Tin	a gas which has a sweet smell trophenylhydrazine in acidic le green solution. The green
4. A green solid <i>J</i> decomposes when heated to form and forms a yellow precipitate with 2,4-dinimedium and dissolves in water to form a passolution forms a green precipitate, <i>K</i> which is so	a gas which has a sweet smell trophenylhydrazine in acidic le green solution. The green
4. A green solid <i>J</i> decomposes when heated to form and forms a yellow precipitate with 2,4-dini medium and dissolves in water to form a par solution forms a green precipitate, <i>K</i> which is a form a purplish-blue solution, <i>L</i> .	(1 ½ marks) a gas which has a sweet smell trophenylhydrazine in acidic le green solution. The green soluble in excess ammonia to (01 mark)
 (ii) Tin 4. A green solid <i>J</i> decomposes when heated to form and forms a yellow precipitate with 2,4-dinimedium and dissolves in water to form a parsolution forms a green precipitate, <i>K</i> which is form a purplish-blue solution, <i>L</i>. (a) Identify <i>J</i> (b) Write equation for the reaction that would to concentrated sulphuric acid. 	a gas which has a sweet smell trophenylhydrazine in acidic le green solution. The green soluble in excess ammonia to (01 mark)
 4. A green solid <i>J</i> decomposes when heated to form and forms a yellow precipitate with 2,4-dinimedium and dissolves in water to form a parsolution forms a green precipitate, <i>K</i> which is a form a purplish-blue solution, <i>L</i>. (a) Identify <i>J</i> (b) Write equation for the reaction that would to concentrated sulphuric acid. 	a gas which has a sweet smell trophenylhydrazine in acidic le green solution. The green soluble in excess ammonia to (01 mark) ake place if J is heated with (1 ½ marks)
 (ii) Tin 4. A green solid <i>J</i> decomposes when heated to form and forms a yellow precipitate with 2,4-dinimedium and dissolves in water to form a parsolution forms a green precipitate, <i>K</i> which is form a purplish-blue solution, <i>L</i>. (a) Identify <i>J</i> (b) Write equation for the reaction that would to concentrated sulphuric acid. 	a gas which has a sweet smell trophenylhydrazine in acidic le green solution. The green soluble in excess ammonia to (01 mark) ake place if J is heated with (1 ½ marks)

` '	<i>L</i>	(1 ½ marks)
(d) Na qua	me a reagent that can be used to confirm presence of litative analysis	of the cation in J in (1 mark)
5. (a) Wh	at is meant by the term steam distillation ?	(1 ½ marks)
(b) A con 92°C. If to pressure of composition	inpound <i>T</i> is immiscible with water and forms a mixthe total vapour pressure of the mixture is 101.3k of water at the same temperature is 88.2 kPa, determined by mass of the mixture. (<i>The formula mass of T is</i>	ture which boils at Pa and the vapour nine the percentage 125) (3 ½ marks)
6. To an	aqueous solution of cobalt(II) chloride hexahy strated hydrochloric acid dropwise until in excess. ne: the cobalt species present in the solution before hydroded.	ydrate was added
(ii)	the cobalt species present in the solution hydrochloric acid.	containing excess (01 mark)
(b) The (i)	solution containing excess hydrochloric acid was dilu State the colour change that took place.	(01 mark)
(ii)	Write an equation for the reaction that took place.	

	•••••				
7. Complete the follow					•••••
(a) CH_3COCH_3 Mechanism:	NH ₂ COCH ₂	$\xrightarrow{NH_2/H^+} \dots$		(0	3 marks)
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			• • • • • • • •
	• • • • • • • • • • • •	• • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •
(b) CHClo	CH₂Cl	CH ₃ CH ₂ OH/	ŌН →	(03	marks)
		Heat			
Mechanism:					
				• • • • • • • • • • • • • • • • • • • •	• • • • • • • •
8. (a) Write an expres water.	sion for t	he acid diss	sociation consta	**	
(b) The table below particular tempe		acid dissoc	iation constants	K_a for some a	acids at a
Acid	Ī	COOU	CICH COOH	CL CUCOOU	Cl ₃ CCOOH
$K_a \ (moldm^{-3})$		$\frac{COOH}{\times 10^{-5}}$	1.4×10^{-3}	$ \begin{array}{c c} Cl_2CHCOOH \\ 5.1 \times 10^{-3} \end{array} $	2.2×10^{-1}
State and explain th					3 marks)
			6: 	(0	······)
	•••••	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •

•••			• • • • • • • • • • • • • • • • • • • •
•••			
• • •			
•••		•••••••••••••••••••••••••••••••••••••••	
•••		•••••••••••••••••••••••••••••••••••••••	
• • •		•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •
9.	(a) N	eoprene rubber is a polymer with the structure;	
		$\frac{Cl}{-CH_2C = CHCH_2)_n}$	
	(*)		(1/ 1)
	(i)	Name the monomer used in making the polymer	(½ mark)
•••	(ii)	State the type of polymerization involved during the form polymer.	ation of the
		F 7	(, =
•••	(iii)	Write the equation leading to formation of neoprene rubber.	(01 mark)
•••			
• • •			
•••	(iv)	State one use of the polymer.	(½ mark)
•••		A solution containing $28.76gdm^{-3}$ of neoprene rubber had ure of 0.23 atmospheres at 27 °C.	an osmotic
	Dete	rmine;	
	(i)	the molecular mass of the polymer.	(02 marks)
•••			
•••			
•••	(ii)	the number of monomers in the formula of the polymer.	(02 marks)
•••			
• • •			

SECTION B: (54 MARKS)

Answer any **six** questions from this section.

	compound Q contains carbon, hydrogen and oxygen. 0 ustion gave 0.0581g of carbon dioxide and 0.0239g of water Calculate the empirical formula of Q .	• •
	Calculate the empirical formula of Q.	
(ii)	When 0.14g of Q was vapourised at 20°C and 740mm occupied a volume of $39.5cm^3$. Determine the molecular	nHg pressure, it ar formula of Q . (03 marks)
(b)	When Q was treated with sodium bicarbonate, effection colourless gas occurred. Identify Q .	rvescence of a (01 mark)
(c)	Q was heated with iron(III) chloride solution. State what and write equation for the reaction that takes place.	at was observed (2 ½ marks)
Observa		
Equation	n	

11.Benzoic acid is a weak acid.(a) Write equation for the ionisation of benzoic acid in water.	
(b) The pH of an aqueous solution of 0.2M benzoic acid is 5.25. acid dissociation constant, K_a for benzoic acid.	
acid dissociation constant, κ_a for benzoic acid.	,
(c) Using your results from (b) above, calculate the hydrolysis c sodium benzoate. (Ionic product , K_w for water is $1.0 \times 10^{-14} \ mol^2 dm^{-6}$)	onstant, K _h for (02 marks)
	•••••
(d) Determine the pH of an aqueous solution of sodium benzoate in $500cm^3$ of water.	zoate made by
12.Write equations to show how the following compounds can be sy (a) 1-phenylpropanone from chlorobenzene	nthesized. (03 marks)

(b) 2-methylpropan-2-ol from propan-2-ol	(2 ½ marks)
(c) $\sim C - NH - C - CH_3$ from benzene and iodom	nethane
	(3 ½ marks)
	•••••
13. (a) Beryllium, Magnesium, Calcium and Barium are elements Periodic Table. Briefly describe how the hydroxides of the eler with;	• •
(i) sodium hydroxide solution	(02 marks)
(ii) hydrochloric acid	(02 marks)

(b) The table below shows the solubility of group II hydroxides in water at 20°C .

Hy	droxide	$Be(OH)_2$	$Mg(OH)_2$	$Ca(OH)_2$	$Sr(OH)_2$	$Ba(OH)_2$
Sol	ubility(g/100g at 20 ^o C)	Insoluble	0.002	0.15	0.9	4.0
(i)	State and explain the trend in	solubility o	of the hydro	xides. (.	3 ½ marks,)
(ii)	Different masses of solid containing the same numbe same volume of water at 25° Give a reason for your answer.	r of moles C. Identify	were separa	ately shake with higher	n with the	
then	In the extraction of zinc from one roasted in air. The roasted material materials are the stream of the ore from treatment.	aterial is more producing	ixed with cozinc.	oke and lim	estone and	l e
 (ii)	Describe how the ore you h	ave named	in (a) above		ncentrated (02 marks)	

(ii) that leads to formation of zinc in the blast furnace. (01 maximum (02 maximum) (03 state what would be observed and write equation for the reaction when z metal is added to: (i) copper(II) sulphate solution (2 ½ maximum) (13 maximum) (14 maximum) (15 maximum) (16 maximum) (17 maximum) (17 maximum) (18 maximum) (19 maximum)		te equations to show how the named bi-product in ined from ethanol.	n (a) (ii) can
(ii) that leads to formation of zinc in the blast furnace. (01 maximum (02 maximum) (03 state what would be observed and write equation for the reaction when zimetal is added to: (i) copper(II) sulphate solution (2 ½ maximum) (2 ½ maximum) (2 ½ maximum) (15. Benzene is used on a large scale to manufacture phenol via by the cump process. (a) Name: (i) one other reagent used as a starting material in the cumene process.	(ii)	the bi-product of the reaction leading to the formation	on of phenol fr
(ii) that leads to formation of zinc in the blast furnace. (01 maximum (02 maximum (03 maximum (04 max	, ,	one other reagent used as a starting material in the cu	(½ ma
(c) State what would be observed and write equation for the reaction when z metal is added to: (i) copper(II) sulphate solution (2 ½ mar.) (ii) aqueous sodium hydroxide solution. (02 mar.)	process		ia by the cume
(c) State what would be observed and write equation for the reaction when z metal is added to: (i) copper(II) sulphate solution (2 ½ mar			• • • • • • • • • • • • • • • • • • • •
 (ii) that leads to formation of zinc in the blast furnace. (01 ma (c) State what would be observed and write equation for the reaction when z metal is added to: (i) copper(II) sulphate solution (2 ½ mar 			
(ii) that leads to formation of zinc in the blast furnace. (01 ma	(i) c	opper(II) sulphate solution	,
(ii) that leads to formation of zinc in the blast furnace. (01 ma			
		hat leads to formation of zinc in the blast furnace.	(01 ma

16.Half-cell equations for so	ne reactions	s are give	n below	and the	corresponding
electrode potentials.					

$$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e$$
 $E^{\theta} = -0.74V$
 $Mn_2O_3(s) + 2\bar{O}H \longrightarrow 2MnO_2(s) + H_2O(l) + 2e$ $E^{\theta} = +0.76V$

(a) Write cell notation of the cell made by combining the two half cells.

(01 mark)

(b) V	Vrite the eq	uation for t	he overall	cell reac	tion.	(1 ½ mar	ks)

.....

	• • • • • • • • • • • • • • • • • • • •
(c) (i) Calculate the work done by the cell.	(2 ½ marks)

.....

(ii) State whether the reaction in (b) above is feasible or not. Give a reason for your answer. (01 mark)

(d) The conductimetric curve for titration of ethanoic acid and ammonia

Explain the shape of the graph.

(03 marks)

•••••••••••••••••••••••••••••••
17.Explain the following observations. Your answer should include relevan equations if any.
(a) An aqueous solution of sodium sulphite is alkaline whereas that of sodium
hydrogen sulphite is acidic. (03 marks)
(b) Lead(II) chloride is insoluble in ethanol whereas lead(IV) chloride readily
dissolves in ethanol. (03 marks)
(c) When hydrogen iodide is treated with concentrated sulphuric acid, iodine is
liberated. However, when hydrogen chloride is similarly treated, chlorine is no
evolved. (03 marks)
· · · · · · · · · · · · · · · · · · ·

THE PERIODIC TABLE

1	2					-						3	4	5	6	7	8
1.0 H 1				-	2			H								1.0 H 1	4.0 He 2
6.9 Li 3	9.0 Be 4								٠		1	10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
Na	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20	45.0 Sc 21	47.9 Ti 22	50.9 V 23	52.0 Cr 24	54.9 Mn 25	55.8 Fe 26			63.5 Cu 29	65.7 Zn 30	69.7 Ga 31	72.6 Ge 32	200000	79.0 Se 34	-	83.8 Kr 36
85.5 Rb 37		88.9 Y 39	91.2 Zr 40	92.9 Nb 41	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	98.9 Tc 43	101 Ru 44			108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72		184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	Po	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89															
			139 La 57	140 Ce 58	-	144 Nd 60		150 Sm 62		157 Gd 64			7.00		169 Tm 69		175 Lu 71
			227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93	244 Pu 94	243 Am 95	247 Cm 96	247 Bk 97	251 Cf 98	254 Es 99	257 Fm 100	256 Md 101	254 No 102	260 Lw 103