Formal Methods (形式化方法) Lecture 11. Bag (包)

智能与计算学部 章衡

2021年上学期

Definition and Representation

2 Bag Operators

Outline

Definition and Representation

Bag Operators

Why need to use bags?

• The multiple occurrences of elements are unable to be expressed in a set.

$${Alice, Bob, Jone} = {Alice, Bob, Jone, Bob}$$

 The multiple occurrences of elements can be expressed in a sequence, but accompanied with an order among the elements

• In many applications, however, we need a structure to record the multiple occurrences without an order among the elements; such a structure is called a bag(包), a.k.a. multiset

$[\;\cdot\;]\!]$ -representation of a bag

Definition ($[\cdot]$ -representation)

Given a set X, a bag on X can be represented by an expression of the following form:

$$[\![\alpha_1,\alpha_2,\ldots,\alpha_n]\!]$$

where $a_1, a_2, \ldots, a_n \in X$. In particular, we call it an empty bag (denoted [[]]) if n = 0.

- Elements in a bag must be of the same type
- The order among elements plays no role in the representation

Example

$$[\![Alice, Bob, Jone, Bob] \!] = [\![Alice, Bob, Bob, Jone]\!]$$

$$\neq [\![Alice, Bob, Jone]\!]$$

Limitation of $[\![\cdot]\!]$ -representation

A bag might have an infinite number of elements (noting that a set is also a bag), however, the
 || • || -representation is not able to express an infinite bag.

Function-representation of a bag

Example

In order to evaluate the quality of online courses, we not only care about which students participate in the learning activities, but also how often a student participates in the learning activities:

Such information can be expressed by the function

$${Alice \mapsto 1, Bob \mapsto 2, Mike \mapsto 3}$$

Definition

Given a set X, let

$$\mathbf{bag}\,\mathbf{X} == \mathbf{X} \nrightarrow \mathbb{N}_1,$$

and call each function in bag X a bag on X.

Moreover, we use b: bag X to declare that b is a bag on X.

Example

studyRecord: bag Student

Outline

Definition and Representation

2 Bag Operators

Operators: Bag count (包计数)

Definition

Suppose B : bag X. For all $a \in X$, let

$$count B a == \begin{cases} n & \text{if } a \mapsto n \in B \\ 0 & \text{otherwise} \end{cases}$$

Example

$$L = [Alice, Alice, Jone, Bob, Bob, Bob]].$$

{ $Alice \mapsto 2, Jone \mapsto 1, Bob \mapsto 3$ }.
 $count L Alice = 2, count L Bob = 3,$
 $count L Jone = 1, count L Mike = 0.$

Operators: Bag scaling (包扩大)

Definition

Suppose B : bag X. For all $k \in \mathbb{N}$, let

$$\mathbf{k} \otimes \mathbf{B} == \{ \mathbf{a} : \mathbf{X}; \mathbf{n} : \mathbb{N}_1 \mid \mathbf{a} \mapsto \mathbf{n} \in \mathbf{B} \land \mathbf{k} > 0 \bullet \mathbf{a} \mapsto \mathbf{k} * \mathbf{n} \},$$

and call it the bag scaled from B by k.

Example

$$\begin{split} L &= [\![Alice, Alice, Jone, Bob, Bob, Bob]\!]. \\ & \{Alice \mapsto 2, Jone \mapsto 1, Bob \mapsto 3\}. \\ &2 \otimes L = \{Alice \mapsto 4, Jone \mapsto 2, Bob \mapsto 6\}. \end{split}$$

count and ⊗: Generic definitions

count: Bag count ⊗: Bag scaling

Definition

= [X]

 $count : bag X \rightarrowtail (X \to \mathbb{N})$ $_ \otimes _ : \mathbb{N} \times bag X \to bag X$

 $\forall B: bag X \bullet$

 $count B = (\lambda x : X \bullet 0) \oplus B$

 $\forall\, n:\mathbb{N}; B: \mathrm{bag}\, X; x:X \, \bullet$

 $count (n \otimes B) x = n * count B x$

Recall that $f \oplus g == ((\text{dom } g) \lessdot f) \cup g$.

Properties of bags and ⊗

Let B : bag X and a_1, \ldots, a_n : X. Then we have

$$\bullet \ \operatorname{dom} \ [\![\alpha_1,\ldots,\alpha_n]\!] = \{\alpha_1,\ldots,\alpha_n\}$$

Operators: Bag membership and sub-bag relation

Definition

Suppose B: bag X. For all $c \in X$, we say that c is a member of B, denoted c in B, if $c \in \text{dom } B$.

Definition

Suppose A, B: bag X. We say that B is a sub-bag of A, denoted $B \sqsubseteq A$, if for all $c \in X$, we have count $B c \leq \text{count } A c$.

Example

$$\begin{split} L &= [\![\text{Alice}, \text{Alice}, \text{Jone}, \text{Bob}, \text{Bob}, \text{Bob}]\!]. \\ T &= [\![\text{Alice}, \text{Alice}, \text{Alice}, \text{Jone}, \text{Bob}, \text{Bob}, \text{Bob}, \text{Mike}]\!]. \\ \text{Alice in L, Bob in L, } \neg (\text{Mike in L}), \text{Mike in T.} \\ L &\sqsubset T, T \not\sqsubset L. \end{split}$$

in and □: Generic definitions

in: Bag member ☐: Sub-bag relation

Definition

Properties of in and ⊑

Suppose B, C, D: bag X. Then we have

- **⑤** [] □ B
- B
 B

Operators: Bag union and bag difference

Example

Suppose B, C: bag X, and

$$B = \{a \mapsto 2, b \mapsto 3\}$$
 count $Ba = 2$, count $Bb = 3$, count $Bc = 0$

$$\mathsf{C} = \{ \mathsf{a} \mapsto \mathsf{1}, \mathsf{c} \mapsto \mathsf{2} \} \qquad \qquad \mathsf{count} \, \mathsf{C} \, \mathsf{a} = \mathsf{1}, \qquad \mathsf{count} \, \mathsf{C} \, \mathsf{b} = \mathsf{0}, \qquad \mathsf{count} \, \mathsf{C} \, \mathsf{c} = \mathsf{2}$$

How to define the bag union of B and C?

$$B \uplus C = \{\alpha \mapsto 3, b \mapsto 3, c \mapsto 2\}$$

How to define the bag difference of B and C?

$$B \cup C = \{a \mapsto 1, b \mapsto 3\}$$

- Bag union: count $B \uplus C a = count B a + count C a$
- Bag difference: count $B \cup C \alpha = \max\{\text{count } B \alpha \text{count } C \alpha, 0\}$

⊎ and ⊍: Generic definitions

⊎: Bag union

Definition

Properties of bag union and difference

Suppose B, C, D : $bag X; m, n : \mathbb{N}$. Then we have

Operators: function items

Example

$$\langle a, a, b, b, b, c \rangle$$

$$items\langle a, a, b, b, b, c \rangle = \{a \mapsto 2, b \mapsto 3, c \mapsto 1\}.$$

items: Generic definition

Definition

```
 items : seq X \rightarrow bag X
```

$$\forall\,s:\operatorname{seq}X;x:X\,\bullet$$

$$count \, (items \, s) \, x = \#(s \rhd \{x\})$$

Properties of items

Suppose s, t : seq X. Then we have

- \bigcirc dom(items s) = ran s
- 2 items $\langle a_1, \dots, a_n \rangle = [a_1, \dots, a_n]$
- items(s t) = items s <math> items t
- items $s = items t \Leftrightarrow (\exists f : dom s) \rightarrow dom t \bullet s = f_{\frac{0}{2}}t)$

Exercies

Ex. 1

Let balls == [[blue, green, white, green, blue, red, blue]] $balls_1 == \{ white \mapsto 2, red \mapsto 1, blue \mapsto 2, green \mapsto 2 \}$ $balls_2 == \{ green \mapsto 2, blue \mapsto 2, white \mapsto 1 \}$

What are the bags represented by the following expressions?

- balls
 balls₁;
- 2 balls \uplus balls₂;
- balls

 balls₁;
- \bullet balls \cup balls₂.

Ex. 2

Let $S == \langle red, white, red, green, green, red, blue \rangle$. What is the bag represented by items S?

Ex. 3

Let s, t : seq X. Prove items($s \cap t$) = items s \uplus items t.