Московский государственный технический университет им. Н.Э. Баумана

Факультет «Радиоэлектроника и лазерная техника (РЛ)» Кафедра «Технология приборостроения (РЛ6)»

Лабораторная работа №2

по дисциплине «Радиоавтоматика. Системы автоматического управления»

Выполнил ст. группы РЛ6-81 Филимонов С.В.

Преподаватель Селезнёва М.С.

Идеальное интегрирующее звено

Описывается следующей передаточной функций:

$$W(s) = \frac{K}{s}$$

Экспериментально полученные характеристики при вариации параметра К звена представлены на рисунке 1:

Рисунок 1 – ЛЧХ интегрирующего звена

ЛАЧХ представляет прямую с отрицательным наклоном, имеющую спад 20 дБ/дек. При $\omega=0$ имеет значение 20lgK, при $\omega=\infty$ стремится к $-\infty$. Точка пересечения с осью частот (при 20lgK > 0) зависит от начального значения K и удаляется при увеличении K.

 $\Pi\Phi \Psi X$ идеального интегрирующего звена показывает отсутствие фазового сдвига в любой и частотной области и равно $-\frac{\pi}{2}$.

Вывод: при увеличении/уменьшении параметра К наблюдается увеличение/уменьшение усиления на 0 частоте, с увеличением частоты усиление спадает со скоростью 20 дБ/дек.

Апериодическое звено 1-го порядка (инерционное)

Описывается следующей передаточной функций:

$$W(s) = \frac{K}{Ts + 1}$$

Экспериментально полученные характеристики при вариации параметров К и Т звена представлены на рисунке 2:

Рисунок 2 – ЛЧХ апериодического звена 1-го порядка

ЛАЧХ представляет прямую с перегибом в точке $\frac{1}{T}$, после которого имеется спад 20 дБ/дек. При $\omega=0$ имеет значение 20lgK, при $\omega=\infty$ стремится к $-\infty$. Точка пересечения с осью частот (при условии, что 20lgK > 0) удаляется при увеличении K и уменьшении постоянной времени.

ЛФЧХ апериодического звена 1-го порядка изменяется от 0 до $-\frac{\pi}{2}$ с перегибом в точке $\frac{1}{T}$.

Вывод: при увеличении/уменьшении параметра K наблюдается увеличение/уменьшение усиления на промежутке от 0 до $\frac{1}{T}$, то есть чем

меньше постоянная времени, тем шире полоса с коэффициентом усиления $20 \log K$; ЛФЧХ непостоянна и имеет перегиб в точке $\frac{1}{T}$; апериодическое звено 1-го порядка — ФНЧ.

Апериодическое звено 2-го порядка

Описывается следующей передаточной функций:

$$W(s) = \frac{K}{T_2^2 s^2 + T_1 s + 1}, T_1 > 2T_2$$

Экспериментально полученные характеристики при вариации параметров K, T_2 , T_1 звена представлены на рисунке 3:

Рисунок 3 – ЛЧХ апериодического звена 2-го порядка

ЛАЧХ представляет прямую с перегибом в точке $\frac{1}{T_1}$, после которого имеется спад 20 дБ/дек, затем 40 дБ/дек. При $\omega=0$ имеет значение 20lgK, при $\omega=\infty$ стремится к $-\infty$. Точка пересечения с осью частот (при 20lgK > 0) удаляется при увеличении К и уменьшении постоянных времени.

ЛФЧХ апериодического звена 2-го порядка изменяется от 0 до $-\pi$.

Вывод: при увеличении/уменьшении параметра K наблюдается увеличение/уменьшение усиления на промежутке от 0 до $\frac{1}{T_1}$, то есть чем меньше постоянная времени T_1 , тем шире полоса с коэффициентом усиления $20 \log K$; ЛФЧХ непостоянна и изменяется от 0 до $-\pi$ тем медленнее, чем больше постоянные времени.

Колебательное

Описывается следующей передаточной функций:

$$W(s) = \frac{K}{T_2^2 s^2 + T_1 s + 1}, T_1 < 2T_2$$

Экспериментально полученные характеристики при вариации параметров K, T_2, T_1 звена представлены на рисунке 4:

Рисунок 4 – ЛЧХ колебательного звена

ЛАЧХ представляет прямую имеющую перегиб, после которого имеется спад 40 дБ/дек. При $\omega=0$ имеет значение 20lgK, при $\omega=\infty$

стремится к $-\infty$. Точка пересечения с осью частот (при 20 lgK > 0) удаляется при увеличении K и уменьшении постоянных времени.

ЛФЧХ колебательного порядка изменяется от 0 до $-\pi$.

Вывод: при увеличении/уменьшении параметра К наблюдается увеличение/уменьшение усиления в некотором промежутке при этом чем меньше постоянные времени, тем шире полоса с коэффициентом усиления $20 \log K$; ЛФЧХ непостоянна и изменяется от 0 до $-\pi$ тем медленнее, чем больше постоянные времени. Кроме того, колебательное звено имеет резонанс на некоторой частоте и пик тем выраженнее, чем меньше T_2 .

Консервативное

Описывается следующей передаточной функций:

$$W(s) = \frac{K}{T_2^2 s^2 + 1}$$

Экспериментально полученные характеристики при вариации параметров K, T_2 звена представлены на рисунке 5:

Рисунок 5 – ЛЧХ консервативного звена

ЛАЧХ представляет прямую имеющую резонанс в точке $\frac{1}{\sqrt{T_2}}$, после которого имеется спад 40 дБ/дек. При $\omega=0$ имеет значение 20lgK, при $\omega=\infty$ стремится к $-\infty$. Точка пересечения с осью частот (при 20lgK > 0) удаляется при увеличении К и уменьшении постоянной времени.

ЛФЧХ колебательного порядка изменяется от 0 до $-\pi$ резким скачком в точке $\frac{1}{\sqrt{T_2}}$.

Вывод: при увеличении/уменьшении параметра К наблюдается увеличение/уменьшение усиления в некотором промежутке при этом чем меньше постоянная времени, тем шире полоса с коэффициентом усиления $20 \log K$; ЛФЧХ непостоянна и изменяется от 0 до $-\pi$ резким скачком в точке резонанса. Кроме того, консервативное звено имеет резонанс на частоте $\frac{1}{\sqrt{T_2}}$.

Интегрирующее с запаздыванием (реальное интегрирующее)

Описывается следующей передаточной функций:

$$W(s) = \frac{K}{s(Ts+1)}$$

Экспериментально полученные характеристики при вариации параметров K, T звена представлены на рисунке 6:

Рисунок 6 – ЛЧХ звена интегрирующего с запаздыванием

ЛАЧХ представляет спадающую со скоростью 20 дБ/дек прямую, имеющую перегиб в точке $\frac{1}{T}$ после которого имеется спад 40 дБ/дек. При $\omega=0$ имеет значение $80+20\lg K$, при $\omega=\infty$ стремится к $-\infty$. Точка пересечения с осью частот удаляется при увеличении К и уменьшении постоянной времени.

ЛФЧХ колебательного порядка изменяется от $-\frac{\pi}{2}$ до $-\pi$ с перегибом в точке $\frac{1}{\tau}$.

Вывод: при увеличении/уменьшении параметра К наблюдается увеличение/уменьшение усиления на 0 частоте, с увеличением частоты усиление спадает сначала со скоростью 20 дБ/дек, после точки $\frac{1}{T}$ со скоростью 40 дБ/дек; ЛФЧХ непостоянна и изменяется от $-\frac{\pi}{2}$ до $-\pi$ с перегибом в точке $\frac{1}{T}$ тем медленнее, чем больше постоянная времени.

Дифференцирующее с запаздыванием (реальное дифференцирующее)

Описывается следующей передаточной функций:

$$W(s) = \frac{Ks}{Ts + 1}$$

Экспериментально полученные характеристики при вариации параметров K, T звена представлены на рисунке 7:

Рисунок 7 – ЛЧХ звена дифференцирующего с запаздыванием

ЛАЧХ представляет нарастающую со скоростью 20 дБ/дек прямую имеющую перегиб в точке $\frac{1}{T}$, после которого коэффициент усиления остаётся неизменным и имеет значения, до которого возросла прямая до момента $\frac{1}{T}$. Усиление при $\omega=0$ составляет -80+20lgK, усиление при $\omega\to\infty$ равно константе.

ЛФЧХ колебательного порядка изменяется от $\frac{\pi}{2}$ до 0 с перегибом в точке $\frac{1}{T}$.

Вывод: усиление низких часто хуже, чем высоких частот, при увеличении/уменьшении параметра К наблюдается увеличение/уменьшение усиления на 0 частоте, с увеличением частоты усиление стремится к константе; ЛФЧХ непостоянна и изменяется от $\frac{\pi}{2}$ до 0 с перегибом в точке $\frac{1}{T}$.

Изодромное звено

Описывается следующей передаточной функций:

$$W(s) = \frac{K(Ts+1)}{s}$$

Экспериментально полученные характеристики при вариации параметров K, T звена представлены на рисунке 8:

Рисунок 8 – ЛЧХ изодромного звена

ЛАЧХ представляет прямую имеющую перегиб в точке $\frac{1}{T}$, после которого имеется подъём 20 дБ/дек. При $\omega=0$ имеет значение 20lgK, при $\omega=\infty$ стремится к $+\infty$. Точка пересечения с осью частот (при 20lgK < 0) удаляется при уменьшении K и уменьшении постоянной времени.

ЛФЧХ колебательного порядка изменяется от 0 до $\frac{\pi}{2}$ с перегибом в точке $\frac{1}{T}$.

Вывод: усиление низких частот равно константе и полоса данного усиления тем шире, чем меньше постоянная времени, усиление высоких частот $\to \infty$ при $\omega \to \infty$, при увеличении/уменьшении параметра К наблюдается увеличение/уменьшение усиления в промежутке от 0 до $\frac{1}{T}$; ЛФЧХ непостоянна и изменяется от 0 до $\frac{\pi}{2}$ с перегибом в точке $\frac{1}{T}$.