UNIT 1

Data Representations

Arithmetic

2

- Binary Addition
- Binary Subtraction
- Binary Multiplication
- Binary Division

Binary Addition

3)

• Rules:-

```
o + o = Sum of o with a carry of o
```

$$o +1 = Sum of 1$$
 with a carry of o

$$1 + 0 = Sum of 1 with a carry of 0$$

$$1 + 1 = Sum of o with a carry of 1$$

4

• Rules:-

$$\mathbf{0} - \mathbf{0} = \mathbf{0}$$

$$1-1=0$$

$$1 - 0 = 1$$

$$10 - 1 = 1$$

o - 1 with a borrow of 1

Binary Multiplication

5

• Rules:-

$$\mathbf{o} * \mathbf{o} = \mathbf{o}$$

$$0 * 1 = 0$$

$$1*0=0$$

SIGNED NUMBERS (Integer Representation)

- Signed numbers can be represented as both positive and negative numbers
- There are 3 representations for Signed Numbers
- Signed magnitude representation
- Signed 1's complement representation
- Signed 2's complement representation

- Example: Represent +9 and -9 in 8 bit-binary number
- Only one way to represent +9 ==> 0000 1001
- Three different ways to represent -9:
- In signed-magnitude: 1 0001001
- In signed-1's complement: 1 1110110
- In signed-2's complement: 1 1110111

- Represent the following numbers in signedmagnitude, signed-1's complement, and signed-2's complement
- 1. -13 and +13
- in signed 2s complement 8 bit,
- -13 = 2s complement(00001101) = 11110011
- 2. -17 and +17
- 3. -25 and +25

Complement

- Computors uses complements
- Computers uses complemented numbers to perform subtraction.
- In binary number system there are 2 types of complement – 1's and 2's complement
- Similarly, in decimal number system there are 2 types of complement – 10's and 9's complement

1's Complement

- To get 1's complement convert o's to 1 and 1's to o's.
- Eg: 1's complement of 10010 is 01101 1's complement of 1111 is 0000

Application Example

- The Simplest way to obtain the 1's complement of a binary number with digital circuits is:
- To use parallel inverters (NOT circuits)
 - O Eg: an 8 bit no:

Convert the following to 1's complement

- 1. 1001010
- 2. 10001100
- 3. 1110001
- 4. 11100110
- 5. 10101110
- 6. 111010
- 7. 1101100

2's complement

- To find 2's complement
 - Find 1's complement
 - Add 1 to the LSB of 1's complement
- Eg:- 1010 0101+

0110

Application Example

- The 2's complement can be realized using:
- Inverters
- Adder
 - An Eg: shows how an 8bit no can be converted to
 2's complement

Convert the following to 2's complement

16)

- 1. 1001010
- 2. 10001110
- 3. 11100011
- 4. 11100110
- 5. 1010111
- 6. 1110101
- 7. 11011001

9's Complement

- The 9's complement of a decimal number is obtained by subtracting each digit of the number from 9.
- Eg:- 9's complement of 2 is 7 and
- 9's complement of 123 is 876

999 -

123

876

Convert the following to 9's complement

(18)

- **1.** 25
- **2**. 456
- 3. 122
- 4. 101
- 5. 111
- 345
- 7. 342

10's Complement

- 10's complement of a decimal number is obtained by adding one to the 9's complement of that number.
- Eg: 10's complement of 2
- 9-
- 2
- 7+
- 1
- 8

Convert the following to 10's complement

- 1. 254
- **2.** 453
- **3.** 123
- 4. 102
- 5. 1110
- 6. 324
- **7.** 376

- Find 1's and 2's complement
- 1. 11010101
- 2.11011011
- 3. 10110010

Logic Operations

- Perform the following Logic operations
- 1. 10110101 V 1100110
- 2. 11001101 V 1000110
- 3. $10010101 \text{ } \Lambda 1100111$
- 4. $11101001 \Lambda 1101110$
- 5. $11010011 \oplus 1101110$
- **6.** 11101101 ⊕ 1101100

IEEE754 STANDARD

- Computers have various architectures designed by different vendors like Intel, AMD, ARM, etc.
- How do computers interpret various number formats?
- If there are various representations for these different architectures, then it will create chaos and ambiguity.
- So there should be a common agreement between all the processor vendors for handling the data.
- This common standard is the IEEE754 standard.

Data type representation

- Two types of Representation
 - Fixed Point A fixed-point number means that there are a fixed number of digits after the decimal point
 - Floating Point A floating point number does not reserve a specific number of bits for the integer part or the fractional part.

Fixed Point Number

• A fixed point number has a specific number of bits (or digits) reserved for the integer part and a specific number of bits reserved for the fractional part.

Fixed Point Numbers

- This representation has fixed number of bits for integer part and for fractional part.

Sign Field Signed fixed point
Integer Field
Fractional Field

Sign Integer Fraction

Examples of Fixed Point representations

- Compute 0.75 + (-0.625) using Fixed point numbers
- Step 1 Rep. 0.75 in Binary (4 bits for Integer and 4 bits for fraction)
 - **0.75 --- 0000.1100**
- Step 2 -Rep 0.625 in binary
 - 0.625 ---0000.1010
 - Since it is (-0.625) we have to find the2's complement
- $0.5 \times 2 = 1.0 1$ $0.0 \times 2 = 0 - 0$ $0.625 \times 2 = 1.250 - 1$ $0.250 \times 2 = 0.500 - 0$ $0.500 \times 2 = 1.000 - 1$
- $0.000 \times 2 = 0.000 0$
- Step 3 Since the second no is a negative number, find the 2's complement of it
 - o (-0.625) --- 1111.0110
- Step 4 Now Add both the numbers
- 0000.1100 + 1111.0110 1)0000.0010

- 0.5+0.250
- -0.75+0.375
- 1.125+-0.625
- **-2.5+1.75**
- 3.0-1.5

32 bit representation of Fixed point numbers

• Assume the number using 32 bit format which reserves 1 bit for the sign, 15 bits for integer part and 16 bits for fraction part. The number is (-43.625)

Sign(1 bit)

Integer (15 bits)

Fraction (16 bits)

1

000 0000 0010 1011

1010 0000 0000 0000

- 43 = 101011
- .625 =1010
- Since the given no is a negative no.the sign bit is 1.

Fixed-Point (Practice Questions)

- Decimal → Fixed-Point Representation
- Represent **25.75**
- Represent +25.75
- Represent **-12.5**
- Represent +**0.125**
- Represent +145.3125

Floating Point Numbers

- In the decimal number system, Very large and very small numbers are expressed in scientific notations, By starting number (Mantissa) and an exponent of 10
- \bullet Example of Floating point numbers are $6.53\,X\,10^{-27}\,\&\,1.58\,X\,10^{21}$
- Binary numbers are also expressed in the same notations by starting number and exponent of 2
- So in general we can say that the floating point representation has 3 parts

Floating Point Numbers

The scientific notation of floating point representation is

 $\pm M X B^E$

Number	Mantissa	Base	Exponent
9 X 10 ⁸	0		
110 X 2 ⁷			
4364.784			

NUMBER	MANTISSA	BASE	EXPONENT
9 X 10 ⁸	9	10	8
110 X 2 ⁷	110	2	7
4364.784	4364784	10	-3
110.101010	110101010	2	-6

IEEE 754 floating point representation

- IEEE Standard 754 floating point is the most common representation today for real numbers on computers, including Intel-based PC's, Macs, and most Unix platforms.
- Two types
 - Single precision
 - Double precision

IEEE 754 Floating Point Representation

Single Precision Format

32 Bit number is Considered

Single Precision
IEEE 754 Floating-Point Standard

Double Precision Format

64 Bit number is Considered

Double Precision

IEEE 754 Floating-Point Standard

How to find single and double precision of a number?

IEEE 754 Steps

1

Convert Decimal to Binary

2

Normalize the Number

3

 Apply single precision and double precision equations

Equations for Single and Double Precisions

Single Precision

 $(1.N)^{2^{E-127}}$

Double Precision

 $(1.N)2^{E-1023}$

Represent $(1259.125)_{10}$ in single and double precision Format

Represent $(1259.125)_{10}$ in single and double precision Format

- \bullet (1259.125)10 = 100 1110 1011.001
- Step 1 Convert to binary
- 100 1110 1011.001
- Step 2 Normalize the Number
- (1.N)2^{E-127} Single Precision (127 means 128 bits)
- (1.N)2^{E-1023} Double Precision(1023 means 1024 bits)
- 1 00 1110 1011.001
- 1. 00 1110 1011001 X 2¹⁰

(After the decimal point, there are 10 numbers, so E=10)

- Step 3 Apply Single precision format
- (1.N)2 E-127
- 1. 00 1110 1011001 X 2¹⁰

- $(137)10 = (1000\ 1001)2 \rightarrow E$
- Single Precision Format :

We need to find

Exponent

[E-127 = 10]

E = 127+10

= 137

3	ı Sign	30 Exponent	23	22	Mantissa	0
	0	10001001		001	1101011001000	
	1 bit (S)	8 bit (E)			23 bit (M)	

DOUBLE PRECISION

- \bullet (1259.125)10 = 100/1110 1011.001
- Step 1 Convert to binary
- 100 1110 1011.001
- Step 2 Normalize the Number
- (1.N)2^{E-1023} Double Precision(1023 means 1024 bits)
- 1 00 1110 1011.001
- 1. 00 1110 1011001 X 2¹⁰

(After the sign bit, there are 10 numbers, so E=10)

- Step 3 Apply Single precision format
- (1.N)2 E-1023
- 1. 00 1110 1011001 X 2¹⁰

- $(1033)2 = (100\ 0000\ 1001)2 \rightarrow E$
- Double Precision Format: 1024 bits

63	3 Sign	62 Exponent 52	51 Mantissa	0
	O	100 0000 1001	0011101011001000	
	1 bit (S)	11 bit (E)	52 bit (M)	

1358.13014.25

Booths Multiplication

For multiplying of negative numbers

- Method 1
 - Multiply the number as such
 - Negate the result if any one is negative.

- Method 2
 - Booths multiplication

• It reduces the number of arithmetic operations by encoding the multiplier in a way that minimizes the number of addition and subtraction steps.

• This algorithm is widely used in computer architecture for fast binary multiplication.

STEPS

- •STEP 1: Initialize the multiplier, multiplicand, and product registers.
- •STEP 2: Extend the multiplier with one extra bit (0) at the right.
- •STEP 3: Based on the current and previous bits of the multiplier:
 - 10: Subtract the multiplicand from the product.
 - 01: Add the multiplicand to the product.
 - 00 & 11: No arithmetic operation.
- •STEP 4: Shift the product right by one bit.
- •STEP 5: Repeat the process until all bits are processed.

BOOTH'S ALGORITHM

Booths Multiplication

Count	А	Q	Q_1	М	Operation
4	0000	0011	0	0111	Initialization
3	1001 1100	0011 1001	0 1	0111 0111	A← A- M Arith. Right shift
2	1110	0100	1	0111	Arith. Right shift
1	0101 0010	0100 1010	0	0111 0111	A← A+ M Arith. Right shift
0	0001	0101	0	0111	Arith. Right shift

A 0000	Q 0011	Q ₋₁ 0	M 0111	Initial values	s
1001	0011	0	0111	A←A – M	7 First
1100	1001	1	0111	Shift	∫ cycle
1110	0100	1	0111	Shift	} Second cycle
0101	0100	1	0111	A←A + M	7 Third
0010	1010	0	0111	Shift	∫ cycle
0001	0101	0	0111	Shift	Fourth cycle

Booth's Algorithm

Ref: "Computer Organization and Architecture Designing for Performance" By William Stallings

