CS555: Numerical Methods for PDEs Instructor: L. Olson Due Thursday February 7, 2013

Instructions:

- 1. Your submitted work must be your own work. You may discuss the homework.
- 2. It is your responsibility to answer the question in detail, to convince the grader that you answered the problem, and to explain your solution.
- 3. Your submission should be as short as possible.
- 4. Items #1 and #2 are required; item #3 should be a guide.

To Submit:

- create a directory sp13-cs555/yournetid/hwN
- add your write-up hw1.pdf and supporting files hw1*.py
- commit your directory and files (svn details are on the web)
- 1. [basic implementation] For $x \in [-1,3]$ and $t \in [0,2.4]$, solve

$$u_t + u_x = 0$$

with initial data

$$u(0,x) = \begin{cases} \cos^2 \pi x & |x| \le 1/2, \\ 0 & \text{otherwise,} \end{cases}$$

and boundary data u(t, -1) = 0. Use the following four schemes with h = 1/10, 1/20, and 1/40:

- (a) FTBS with $\lambda = 0.8$;
- (b) FTCS with $\lambda = 0.8$;
- (c) Lax-Friedrichs with $\lambda = 0.8$ and $\lambda = 1.6$;
- (d) Leapfrog with $\lambda = 0.8$.

Use right boundary condition of $u_M^{n+1} = u_{M-1}^{n+1}$ when needed and use FTCS to start Leapfrog.

For each scheme, argue (numerically) that approximation is either convergent or non-convergent. For the convergent schemes, investigate the effect of the different h values (e.g., is the error reduced?).

- 2. [consistency] Show that the leapfrog scheme is consistent with $u_t + au_x = 0$.
- 3. [well-posedness] Show that the initial value problem $u_t = u_{xxx}$ is well-posed.
- 4. [stability] Consider the box scheme

$$\frac{1}{2k} \left[(u_m^{n+1} + u_{m+1}^{n+1}) - (u_m^n + u_{m+1}^n) \right] + \frac{a}{2h} \left[(u_{m+1}^{n+1} - u_m^{n+1}) + (u_{m+1}^n - u_m^n) \right] = f_m^n.$$

This scheme is consistent with $u_t + au_x = f$. Is it convergent? It is stable?

- 5. [accuracy] Consider solving $u_t + u_x = 0$ for $(t, x) \in [0, 1.2] \times [-1, 1]$ with $u(0, x) = \sin(2\pi x)$ and periodic boundary conditions. Using the methods
 - (a) FTBS with $\lambda = 0.8$, and
 - (b) Lax-Wendroff with $\lambda = 0.8$,

demonstrate numerically the first-order and second-order accuracy of these schemes, respectively. Use h = 1/10, 1/20, 1/40, and 1/80. measure the L^2 -norm and L^{∞} -norm (max-norm) of the error (note: do not sum both periodic points in the error calculation).