In the claims:

1. (original) An optical recording medium comprising a substrate, a recording layer and optionally one or more reflecting layers, wherein the recording layer comprises a compound of formula

$$\begin{array}{c}
R_1 \\
G_1 \\
G_2
\\
R_2
\\
R_4
\end{array}$$
(1) or a t

(I) or a tautomeric or mesomeric form thereof,

wherein

 G_1 and G_2 are each independently of the other $C(R_5)$ or N;

 M_1 is a lanthanide or transition metal of groups 4 to 10;

P is a phthalocyanino diradical;

Q₁ and Q₂ are each independently of the other O or S,

 R_1 and R_2 are each independently of the other C_1 - C_{12} alkyl, C_3 - C_{12} cycloalkyl, C_2 - C_{12} alkenyl or C_3 - C_{12} cycloalkenyl each unsubstituted or substituted by one or more, where applicable identical or different, radicals R_6 , or C_6 - C_{10} aryl, C_1 - C_9 heteroaryl, C_7 - C_{12} aralkyl or C_2 - C_{12} heteroaralkyl each unsubstituted or substituted by one or more, where applicable identical or different, radicals R_7 ;

 R_3 and R_4 are each independently of the other hydrogen, hydroxy, S-R₈, O-R₈, O-CO-R₈, OCOOR₈, NH₂, NH-R₈, NR₈R₉, NHCOR₈, NR₈COR₁₀, NHCOOR₈, NR₈COOR₁₀, ureido, NR₈-CO-NHR₁₀, or C₁-C₁₂alkyl, C₃-C₁₂cycloalkyl, C₂-C₁₂alkenyl or C₃-C₁₂cycloalkenyl each unsubstituted or substituted by one or more, where applicable identical or different, radicals R₆, or C₆-C₁₀aryl, C₁-C₉heteroaryl, C₇-C₁₂aralkyl or C₂-C₁₂heteroaralkyl each unsubstituted or substituted by one or more, where applicable identical or different, radicals R₇;

each R_5 , independently of any other R_5 , is hydrogen, or C_1 - C_{12} alkyl, C_3 - C_{12} cycloalkyl, C_2 - C_{12} alkenyl or C_3 - C_{12} cycloalkenyl each unsubstituted or substituted by one or more, where applicable identical or different, radicals R_6 , or C_6 - C_{10} aryl, C_1 - C_9 heteroaryl, C_7 - C_{12} aralkyl or C_2 - C_{12} heteroaralkyl each unsubstituted or substituted by one or more, where applicable identical or different, radicals R_7 ;

wherein R_1 and R_2 , R_2 and R_3 , R_3 and R_4 or R_1 and R_4 can be linked by a bonding member, or two of R_1 , R_2 , R_3 and R_4 can each be linked by a bonding member to one of the two other R_1 , R_2 , R_3 and R_4 to form pairs, and each bonding member is a direct bond or a bridge O, S or $N(R_8)$; or R_1 forms with R_5 of G_1 and/or R_3 forms with R_5 of G_2 a saturated, mono- or poly-unsaturated or aromatic 5- or 6-membered ring which may optionally contain 1, 2 or 3 identical or different hetero atoms -O-, -S-, -N= or -N(R_8)-, which ring is unsubstituted or substituted by one or more, where applicable identical or different, radicals R_7 ; and/or

 R_2 forms with R_5 of G_1 and/or R_4 forms with R_5 of G_2 a saturated or mono- or poly-unsaturated 5- or 6-membered ring which may optionally contain 1, 2 or 3 identical or different hetero atoms -O-, -S-, -N= or -N(R_8)-, which ring is unsubstituted or substituted by one or more, where applicable identical or different, radicals R_6 :

 R_6 is halogen, hydroxy, O-R₁₁, O-CO-R₁₁, oxo, S-R₁₁, thioxo, NH₂, NH-R₁₁, NR₁₁R₁₂, NH₃⁺, NH₂R₁₁⁺, NHR₁₁R₁₂⁺, NR₁₁R₁₂R₁₃⁺, NR₁₁-CO-R₁₃, NR₁₁COOR₁₃, cyano, formyl, COO-R₁₁, carboxy, carbamoyl, CONH-R₁₁, CONR₁₁R₁₂, ureido, NH-CO-NHR₁₃, NR₁₁-CO-NHR₁₃, phosphato, P(=O)R₁₁R₁₃, POR₁₁OR₁₃, OPR₁₁OR₁₃, OPR₁₁OR₁₃, P(=O)R₁₁OR₁₃, P(=O)OR₁₁OR₁₃, OP(=O)R₁₁OR₁₃, OP(=O)R₁₁OR₁₃, OP(=O)OR₁₁OR₁₃, OPO₃R₁₁, SO₂R₁₁, sulfato, sulfo, R₁₄, N=N-R₁₄, or C₁-C₈alkoxy or C₃-C₈cycloalkoxy each unsubstituted or mono- or poly-substituted by halogen;

 R_7 , independently of any other R_7 , is R_{15} , halogen, nitro, cyano, thiocyano, hydroxy, S-R₈, O-R₈, O-CO-R₈, OCOOR₈, NH₂, NH-R₈, NR₈R₉, NHCOR₈, NR₈COR₁₀, NHCOOR₈, NR₈COOR₁₀, ureido, NR₈-CO-NHR₁₀, NH₃⁺, NH₂R₈⁺, NHR₈R₉⁺, NR₈R₉R₁₀⁺, N=N-R₁₅, N=CR₈R₉, N=CR₁₆R₁₇, C(R₁₈)=NR₈, C(R₁₈)=NR₁₆, C(R₁₈)=CR₁₆R₁₇, CHO, CHOR₈OR₁₀, COR₉, CR₉OR₈OR₁₀, CONH₂, CONHR₈, CONR₈R₉, SO₂R₈, SO₃R₈, SO₂NH₂, SO₂NHR₈, SO₂NR₈R₉, COOH, COOR₈, B(OH)₂, B(OH)(OR₈), B(OR₈)OR₁₀, phosphato, P(=O)R₈OR₁₀, P(=O)R₈OR₁₀, P(=O)OR₈OR₁₀, OPR₈OR₁₀, OPR₈OR₁₀, OPR₈OR₁₀, OPC₈OR₁₀, OPC₈OR₁₀

 R_8 , R_9 and R_{10} are each independently of the others R_{15} , R_{19} -[O-C₁-C₄alkylene]_m, R_{19} -[NH-C₁-C₄alkylene]_m, or C₁-C₈alkyl, C₃-C₈cycloalkyl, C₂-C₈alkenyl or C₃-C₈cycloalkenyl each unsubstituted or substituted by one or more, where applicable identical or different, halogen, hydroxy, C₁-C₅alkoxy or C₃-C₆cycloalkoxy radicals; or

 R_8 and R_9 together with the common nitrogen are pyrrolidine, piperidine, piperazine or morpholine, each of which is unsubstituted or mono- to tetra-substituted by C_1 - C_4 alkyl; or R_8 and R_{10} together are C_2 - C_8 alkylene, C_3 - C_8 cycloalkylene, C_2 - C_8 alkenylene or C_3 - C_8 cycloalkenylene, each of which is unsubstituted or substituted by one or more, where applicable identical or different, halogen, hydroxy, C_1 - C_5 alkoxy or C_3 - C_6 cycloalkoxy radicals;

 R_{11} , R_{12} and R_{13} are each independently of the others C_1 - C_8 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_8 alkenyl, C_3 - C_8 cycloalkenyl, R_{19} - $[O-C_1-C_4$ alkylene]_m, R_{19} - $[NH-C_1-C_4$ alkylene]_m, C_6 - C_{10} aryl, C_4 - C_9 heteroaryl, C_7 - C_{10} aralkyl or C_5 - C_9 heteroaralkyl; or

R₁₁ and R₁₂ together with the common nitrogen are pyrrolidine, piperidine, piperazine or morpholine, each of which is unsubstituted or mono- to tetra-substituted by C₁-C₄alkyl;

 R_{14} is C_6 - C_{12} aryl, C_4 - C_{12} heteroaryl, C_7 - C_{12} aralkyl or C_5 - C_{12} heteroaralkyl, each of which is unsubstituted or substituted by one or more, where applicable identical or different, radicals R_7 ;

 R_{15} is phenyl, C_4 - C_5 heteroaryl, C_7 - C_8 aralkyl or C_5 - C_7 heteroaralkyl, each of which is unsubstituted or substituted by one or more, where applicable identical or different, radicals R_{20} ;

 R_{16} and R_{17} are each independently of the other $NR_{11}R_{12}$, CN, $CONH_2$, $CONH_8$, $CONR_8R_9$ or $COOR_9$;

 R_{18} is R_{15} , hydrogen, cyano, hydroxy, C_1 - C_{12} alkoxy, C_3 - C_{12} cycloalkoxy, C_1 - C_{12} alkylthio, C_3 - C_{12} cycloalkylthio, amino, NHR₁₃, NR₁₁R₁₂, halogen, nitro, formyl, COO- R_{11} , carboxy, carbamoyl, CONH- R_{11} , CONR₁₁R₁₂, or C_1 - C_8 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_8 alkenyl or C_3 - C_8 cycloalkenyl each unsubstituted or substituted by one or more, where applicable identical or different, halogen, hydroxy, C_1 - C_5 alkoxy or C_3 - C_6 cycloalkoxy radicals; or

 R_8 and R_{18} together are C_2 - C_8 alkylene, C_3 - C_8 cycloalkylene, C_2 - C_8 alkenylene or C_3 - C_8 cycloalkenylene, each of which is unsubstituted or substituted by one or more, where applicable identical or different, halogen, hydroxy, C_1 - C_5 alkoxy or C_3 - C_6 cycloalkoxy radicals;

R₁9 is hydrogen, C₁-C₄alkyl or C₁-C₃alkylcarbonyl;

 R_{20} is nitro, SO_2NHR_{11} , $SO_2NR_{11}R_{12}$, or C_1 - C_8 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_8 alkylthio, C_3 - C_8 cycloalkoxy each unsubstituted or substituted by one or more, where applicable identical or different, halogen, hydroxy, C_1 - C_5 alkoxy or C_3 - C_6 cycloalkoxy radicals; and

m is a number from 1 to 4.

2. (currently amended) An optical recording medium according to claim 1, wherein G_1 and G_2 are each independently of the other $C(R_5)$;

M₁ is a lanthanide or transition metal of groups 4 to 7; especially Ti, Zr or Hf, more especially Zr;

$$Z_{4} = Z_{1}$$

$$Z_{4} = Z_{1}$$

$$X_{1} = X_{1}$$

$$X_{1} = X_{1}$$

$$X_{2} = X_{1}$$

$$X_{3} = X_{1}$$

$$X_{4} = X_{1}$$

$$X_{5} = X_{6}$$

$$X_{5} = X_{7}$$

$$X_{6} = X_{7}$$

P is a phthalocyanino diradical of formula

, wherein A_1 to A_8 and Z_1 to

 Z_8 are all independently of one another N or CR_{24} , and each R_{24} independently of the other R_{24} is H or

 R_7 ; or two adjacent R_{24} together are 1,4-buta-1,3-dienylene,

unsubstituted or substituted by one or more, where applicable identical or different, radicals R_7 and

wherein 1 or 2 carbon(s) may have been replaced by nitrogen; and

Q₁ and Q₂ are O;

 R_3 and R_4 are each independently of the other hydrogen, hydroxy, S-R₈, O-R₈, NH₂, NH-R₈, NR₈R₉; C₁-C₈alkyl, C₂-C₈alkenyl or C₃-C₈cycloalkenyl each unsubstituted or substituted by one or more, where applicable identical or different, radicals R₆; or C₆-C₁₀aryl or C₁-C₉heteroaryl each unsubstituted or substituted by one or more, where applicable identical or different, radicals R₇;

 R_5 is hydrogen or forms a 5- or 6-membered ring with R_1 or R_2 ;

R₆ is halogen, hydroxy, O-R₁₁, O-CO-R₁₁, oxo, NH₂, NH-R₁₁, NR₁₁R₁₂, or C₁-C₄alkoxy unsubstituted or mono- or poly-substituted by halogen;

and

 R_7 is halogen, nitro, cyano, thiocyano, $S-R_8$, $O-R_8$, NH_2 , $NH-R_8$, NR_8R_9 , $NHCOR_8$, $N=CR_8R_9$, $N=CR_{16}R_{17}$, CHO, $CHOR_8OR_{10}$, COR_9 , $CONR_8R_9$, SO_2R_8 , $COOR_8$, or C_1-C_5 alkyl or C_1-C_5 alkoxy each unsubstituted or substituted by one or more, where applicable identical or different, radicals R_6 .

3. (currently amended) An optical recording medium according to claim 1, or 2, wherein G_1 and G_2 are each independently of the other $C(R_5)$;

M₁ is Ti, Zr or Hf; , more especially Zr;

P is a phthalocyanino diradical of formula

$$R_{26}$$
 R_{27} R_{28} R_{39} R_{30} R_{38} R_{37} R_{36} R_{39} R_{39} R_{31} R_{36} R_{32} R_{33} R_{35} R_{34} or

wherein R_{25} to R_{40} are all independently of one another H, halogen, O-R₈, S-R₈, O-CO-R₈, NH-R₈, NR₈R₉, CH₂OR₁₁, CH₂NR₁₁R₁₂, C(R₁₈)=CR₁₆R₁₇, CHO, CHOR₈OR₁₀, C(R₁₈)=NR₈, COR₉, CR₉OR₈OR₁₀, CN, COOH, COOR₈, CONH₂, CONHR₈, CONR₈R₉, SO₂R₈, SO₂NH₂, SO₂NHR₈, SO₂NR₈R₉, SO₃R₈, SiR₈R₉R₁₀, POR₈OR₁₀, P(=O)R₈OR₁₀, P(=O)OR₈OR₁₀, P(=O)(NH₂)₂, P(=O)(NHR₈)₂, P(=O)(NR₈R₉)₂, OPR₈R₁₀, OPR₈OR₁₀, OP(=O)R₈OR₁₀, OP(=O)OR₈OR₁₀ or OPO₃R₈, more especially H, halogen, O-R₈, O-CO-R₈, NH-R₈, NR₈R₉, CH₂OR₁₁ or CH₂NR₁₁R₁₂; and also Q₁ and Q₂ are O;

 R_1 and R_2 are each independently of the other C_1 - C_5 alkyl or C_2 - C_5 alkenyl, each of which is unsubstituted or substituted by one or more, where applicable identical or different, radicals R_6 , or phenyl or C_2 - C_5 heteroaryl, each of which is unsubstituted or substituted by one or more, where applicable identical or different, radicals R_7 ;

 R_3 and R_4 are each independently of the other hydrogen, hydroxy, S- R_8 , O- R_8 , NH₂, NH- R_8 , NR₈R₉, or C₁-C₅alkyl or C₂-C₅alkenyl each unsubstituted or substituted by one or more, where applicable identical or different, radicals R_6 , or phenyl unsubstituted or substituted by one or more, where applicable identical or different, radicals R_7 ;

 R_5 is hydrogen or forms a 5- or 6-membered ring with R_1 or R_2 ;

 R_6 is halogen, hydroxy, O-R₁₁, oxo, NH₂, NH-R₁₁ or NR₁₁R₁₂; and

 R_7 is halogen, nitro, cyano, O-R₈, NH-R₈, NR₈R₉, CHO, CHOR₈OR₁₀, COR₉, CONR₈R₉, SO₂R₈, COOR₈, or C₁-C₅alkyl or C₁-C₅alkoxy each unsubstituted or substituted by one or more, where applicable identical or different, radicals R₆.

- 4. (currently amended) An optical recording medium according to claim 1, $\frac{2 or 3}{2}$, wherein the compound of formula (I) contains branched C_3 - C_{12} alkyl or branched C_3 - C_{12} alkenyl.
- 5. (currently amended) An optical recording medium according to claim 1, 2, 3 or 4, wherein the recording layer is substantially amorphous.
- 6. **(currently amended)** An optical recording medium according to claim 1, 2, 3, 4 or 5, additionally comprising a covering layer, wherein substrate, reflector layer, recording layer and covering layer are arranged in that order.
- 7. **(currently amended)** An optical recording medium according to claim 1, 2, 3, 4, 5 or 6, which in addition to comprising a compound of formula (I) comprises a metal-free chromophore.
- 8. **(currently amended)** An optical recording medium according to claim 1, 2, 3, 4, 5, 6 or 7, wherein the compound of formula (I) according to claim 1-is substantially amorphous.
- 9. (currently amended) A method of producing an optical recording medium according to claim 1, 2, 3, 4, 5, 6, 7 or 8, wherein a solution of a compound of formula (I) according to claim 1 is applied by spin-coating to a grooved substrate.

- 10. **(currently amended)** A method of recording or playing back data, wherein the data on an optical recording medium according to claim 1, 2, 3, 4, 5, 6, 7 or 8 are recorded or played back at a wavelength of from 350 to 500 nm.
- 11. (new) An optical recording medium according to claim 2, wherein M₁ is Ti, Zr or Hf.
- 12. (new) An optical recording medium according to claim 11, wherein M₁ is Zr.
- 13. (new) An optical recording medium according to claim 3, wherein M₁ is Ti, Zr or Hf.
- 14. (new) An optical recording medium according to claim 13, wherein M₁ is Zr.