Implementation/Code

August 13, 2022

```
## Importing the data
customer_data=read.csv("C:/Users/mogal/OneDrive/Documents/edaproject/Project/Project/Code/Material Code/Material Code/Mater
customer_data
##
                       CustomerID Gender Age Annual.Income..k.. Spending.Score..1.100.
## 1
                                                     1
                                                                  Male
                                                                                    19
                                                                                                                                                      15
                                                                                                                                                                                                                                     39
## 2
                                                     2
                                                                  Male
                                                                                   21
                                                                                                                                                       15
                                                                                                                                                                                                                                     81
## 3
                                                     3 Female
                                                                                                                                                      16
                                                                                                                                                                                                                                       6
## 4
                                                     4 Female
                                                                                                                                                      16
                                                                                                                                                                                                                                     77
                                                     5 Female
                                                                                                                                                       17
## 5
                                                                                                                                                                                                                                     40
## 6
                                                     6 Female 22
                                                                                                                                                      17
                                                                                                                                                                                                                                     76
                                                     7 Female 35
## 7
                                                                                                                                                      18
                                                                                                                                                                                                                                       6
## 8
                                                    8 Female
                                                                                      23
                                                                                                                                                      18
                                                                                                                                                                                                                                     94
## 9
                                                    9
                                                                  Male 64
                                                                                                                                                      19
                                                                                                                                                                                                                                       3
## 10
                                                  10 Female 30
                                                                                                                                                      19
                                                                                                                                                                                                                                     72
## 11
                                                 11
                                                                  Male 67
                                                                                                                                                      19
                                                                                                                                                                                                                                     14
## 12
                                                  12 Female 35
                                                                                                                                                      19
                                                                                                                                                                                                                                     99
## 13
                                                  13 Female 58
                                                                                                                                                       20
                                                                                                                                                                                                                                     15
## 14
                                                  14 Female 24
                                                                                                                                                       20
                                                                                                                                                                                                                                     77
## 15
                                                 15
                                                                  Male 37
                                                                                                                                                       20
                                                                                                                                                                                                                                     13
                                                                  Male 22
                                                                                                                                                       20
## 16
                                                  16
                                                                                                                                                                                                                                     79
## 17
                                                  17 Female 35
                                                                                                                                                       21
                                                                                                                                                                                                                                     35
                                                                 Male 20
                                                                                                                                                       21
## 18
                                                  18
                                                                                                                                                                                                                                     66
## 19
                                                  19
                                                                 Male 52
                                                                                                                                                       23
                                                                                                                                                                                                                                     29
## 20
                                                  20 Female
                                                                                      35
                                                                                                                                                       23
                                                                                                                                                                                                                                     98
## 21
                                                  21
                                                                  Male 35
                                                                                                                                                       24
                                                                                                                                                                                                                                     35
## 22
                                                  22
                                                                  Male 25
                                                                                                                                                       24
                                                                                                                                                                                                                                     73
## 23
                                                  23 Female
                                                                                                                                                       25
                                                                                                                                                                                                                                       5
                                                                                     46
## 24
                                                  24
                                                                  Male 31
                                                                                                                                                       25
                                                                                                                                                                                                                                     73
## 25
                                                  25 Female 54
                                                                                                                                                       28
                                                                                                                                                                                                                                     14
## 26
                                                  26
                                                                  Male 29
                                                                                                                                                       28
                                                                                                                                                                                                                                     82
## 27
                                                  27 Female 45
                                                                                                                                                       28
                                                                                                                                                                                                                                     32
## 28
                                                  28
                                                                  Male
                                                                                                                                                       28
                                                                                                                                                                                                                                     61
                                                  29 Female 40
## 29
                                                                                                                                                                                                                                     31
```

	30		Female	23	29	87
##	31	31	Male	60	30	4
##	32		Female	21	30	73
##	33	33	Male	53	33	4
##	34	34	Male	18	33	92
##	35		Female	49	33	14
##	36	36	Female	21	33	81
##	37	37	Female	42	34	17
##	38	38	Female	30	34	73
##	39	39	Female	36	37	26
##	40	40	Female	20	37	75
##	41	41	Female	65	38	35
##	42	42	Male	24	38	92
##	43	43	Male	48	39	36
##	44	44	Female	31	39	61
##	45	45	Female	49	39	28
##	46	46	Female	24	39	65
##	47	47	Female	50	40	55
##	48	48	Female	27	40	47
##	49	49	Female	29	40	42
##	50	50	Female	31	40	42
##	51	51	Female	49	42	52
##	52	52	Male	33	42	60
##	53	53	Female	31	43	54
##	54	54	Male	59	43	60
##	55	55	Female	50	43	45
##	56	56	Male	47	43	41
##	57	57	Female	51	44	50
##	58	58	Male	69	44	46
##	59	59	Female	27	46	51
##	60	60	Male	53	46	46
##	61	61	Male	70	46	56
##	62	62	Male	19	46	55
##	63	63	Female	67	47	52
##	64	64	Female	54	47	59
##	65	65	Male	63	48	51
##	66	66	Male	18	48	59
	67		Female	43	48	50
##	68	68	Female	68	48	48
##	69	69	Male	19	48	59
	70		Female	32	48	47
	71	71	Male	70	49	55
	72		Female	47	49	42
	73		Female	60	50	49
	74		Female	60	50	56

##	75	75	Male	59	54	47
##	76	76	Male	26	54	54
##	77		Female	45	54	53
##	78	78	Male	40	54	48
##	79		Female	23	54	52
##	80		Female	49	54	42
##	81	81	Male	57	54	51
##	82	82	Male	38	54	55
##	83	83	Male	67	54	41
##	84		Female	46	54	44
##	85		Female	21	54	57
##	86	86	Male	48	54	46
##	87		Female	55	57	58
##	88		Female	22	57	55
##	89		Female	34	58	60
##	90		Female	50	58	46
##	91		Female	68	59	55
##	92	92	Male	18	59	41
##	93	93	Male	48	60	49
##	94		Female	40	60	40
##	95		Female	32	60	42
##	96	96	Male	24	60	52
##	97			47	60	47
##	98		Female	27	60	50
##	99	99	Male	48	61	42
##		100	Male	20	61	49
##			Female	23	62	41
##			Female	49	62	48
##		103	Male	67	62	59
##		104	Male	26	62	55
##		105	Male	49	62	56
##			Female	21	62	42
##			Female	66	63	50
##		108	Male	54	63	46
##		109	Male	68	63	43
##		110	Male	66	63	48
##		111	Male	65	63	52
			Female	19	63	54
			Female	38	64	42
		114	Male	19	64	46
			Female	18	65	48
			Female	19	65	50
			Female	63	65	43
			Female	49	65	59
##	119	119	Female	51	67	43

##	120	120	Female	50	67	57
##	121	121	Male	27	67	56
##	122	122	Female	38	67	40
##	123	123	Female	40	69	58
##	124	124	Male	39	69	91
##	125	125	Female	23	70	29
##	126	126	Female	31	70	77
##	127	127	Male	43	71	35
##	128	128	Male	40	71	95
##	129	129	Male	59	71	11
##	130	130	Male	38	71	75
##	131	131	Male	47	71	9
##	132	132	Male	39	71	75
##	133	133	Female	25	72	34
##	134	134	Female	31	72	71
##	135	135	Male	20	73	5
##	136	136	Female	29	73	88
##	137	137	Female	44	73	7
##	138	138	Male	32	73	73
##	139	139	Male	19	74	10
##	140	140	Female	35	74	72
##	141	141	Female	57	75	5
##	142	142	Male	32	75	93
##	143	143	Female	28	76	40
##	144	144	Female	32	76	87
##	145	145	Male	25	77	12
##	146	146	Male	28	77	97
##	147	147	Male	48	77	36
	148		Female	32	77	74
	149		Female	34	78	22
	150	150	Male	34	78	90
	151	151	Male	43	78	17
	152	152	Male	39	78	88
	153		Female	44	78	20
	154		Female	38	78	76
	155		Female	47	78	16
	156		Female	27	78	89
			Male		78	1
	158			30	78	78
	159		Male	34	78	1
	160		Female	30	78	73
	161		Female	56	79	35
	162		Female	29	79	83
	163		Male	19	81	5
##	164	164	Female	31	81	93

```
## 165
              165 Male 50
                                             85
                                                                    26
## 166
              166 Female
                         36
                                             85
                                                                    75
## 167
              167
                   Male
                                             86
                                                                    20
                         42
## 168
              168 Female 33
                                                                    95
                                             86
## 169
                                                                    27
              169 Female 36
                                             87
## 170
              170
                  Male
                                             87
                          32
                                                                    63
## 171
              171
                    Male 40
                                             87
                                                                    13
## 172
              172
                   Male
                          28
                                             87
                                                                    75
## 173
              173
                   Male 36
                                             87
                                                                    10
## 174
              174
                    Male
                          36
                                             87
                                                                    92
## 175
              175 Female 52
                                             88
                                                                    13
## 176
              176 Female 30
                                             88
                                                                    86
## 177
              177
                  Male 58
                                             88
                                                                    15
## 178
              178
                   Male
                         27
                                             88
                                                                    69
## 179
              179
                  Male 59
                                             93
                                                                    14
## 180
              180
                  Male 35
                                             93
                                                                    90
## 181
              181 Female 37
                                             97
                                                                    32
## 182
              182 Female 32
                                             97
                                                                    86
## 183
             183
                   Male 46
                                             98
                                                                    15
## 184
             184 Female 29
                                             98
                                                                    88
## 185
             185 Female 41
                                             99
                                                                    39
## 186
              186
                   Male 30
                                             99
                                                                    97
## 187
             187 Female 54
                                            101
                                                                    24
## 188
             188
                   Male 28
                                            101
                                                                    68
## 189
              189 Female 41
                                            103
                                                                    17
## 190
              190 Female 36
                                            103
                                                                    85
## 191
              191 Female 34
                                            103
                                                                    23
## 192
             192 Female 32
                                            103
                                                                    69
## 193
             193
                  Male 33
                                            113
                                                                     8
## 194
              194 Female 38
                                            113
                                                                    91
## 195
              195 Female 47
                                            120
                                                                    16
## 196
                                            120
                                                                    79
              196 Female 35
## 197
              197 Female 45
                                            126
                                                                    28
## 198
              198
                  Male 32
                                            126
                                                                    74
## 199
              199
                   Male 32
                                            137
                                                                    18
## 200
              200
                   Male 30
                                            137
                                                                    83
str(customer_data)
## 'data.frame': 200 obs. of 5 variables:
                          : int 1 2 3 4 5 6 7 8 9 10 ...
## $ CustomerID
##
   $ Gender
                            : chr "Male" "Male" "Female" "Female" ...
##
   $ Age
                           : int 19 21 20 23 31 22 35 23 64 30 ...
##
   $ Annual.Income..k.. : int 15 15 16 16 17 17 18 18 19 19 ...
   $ Spending.Score..1.100.: int 39 81 6 77 40 76 6 94 3 72 ...
names(customer_data)
```

```
## We will now display the first six rows of our dataset using the head() function and use
head(customer_data)
    CustomerID Gender Age Annual.Income..k.. Spending.Score..1.100.
## 1
            1 Male 19
                                         15
## 2
                Male 21
                                         15
                                                                81
            3 Female 20
## 3
                                         16
                                                                6
            4 Female 23
                                                                77
## 4
                                         16
            5 Female 31
## 5
                                         17
                                                                40
            6 Female 22
## 6
                                         17
                                                                76
summary(customer_data$Age)
     Min. 1st Qu. Median
                          Mean 3rd Qu.
## 18.00 28.75 36.00 38.85 49.00 70.00
sd(customer_data$Age)
## [1] 13.96901
summary(customer_data$Annual.Income..k..)
     Min. 1st Qu. Median
                            Mean 3rd Qu.
##
    15.00 41.50 61.50
                            60.56 78.00 137.00
sd(customer_data$Annual.Income..k..)
## [1] 26.26472
summary(customer_data$Age)
     Min. 1st Qu. Median
##
                            Mean 3rd Qu.
                                           Max.
##
    18.00 28.75
                   36.00
                          38.85 49.00 70.00
sd(customer_data$Spending.Score..1.100.)
## [1] 25.82352
## Customer Gender Visualization
## we will create a barplot and a piechart to show the gender distribution across our custom
a=table(customer_data$Gender)
barplot(a,main="Using BarPlot to display Gender Comparision",
```

"Gender"

"Spending.Score..1.100."

"Age"

[1] "CustomerID"

[4] "Annual.Income..k.."

```
ylab="Count",
xlab="Gender",
col=rainbow(2),
legend=rownames(a))
```

Using BarPlot to display Gender Comparision

From the above barplot, we observe that the number of females is higher than the males.

```
## let us visualize a pie chart to observe the ratio of male and female distribution.
pct=round(a/sum(a)*100)
lbs=paste(c("Female","Male")," ",pct,"%",sep=" ")
library(plotrix)
## Error in library(plotrix): there is no package called 'plotrix'
pie3D(a,labels=lbs,main="Pie Chart Depicting Ratio of Female and Male")
```

```
of Female and Male"): could not find function "pie3D"
## From the above graph, we conclude that the percentage of females is 56%, whereas the per
## Visualization of Age Distribution
## Let us plot a histogram to view the distribution to plot the frequency of customer ages.
summary(customer_data$Age)
##
     Min. 1st Qu. Median Mean 3rd Qu.
                                            Max.
     18.00 28.75 36.00 38.85 49.00 70.00
##
hist(customer_data$Age,
col="blue",
main="Histogram to Show Count of Age Class",
xlab="Age Class",
ylab="Frequency",
labels=TRUE)
```

Error in pie3D(a, labels = lbs, main = "Pie Chart Depicting Ratio")

Histogram to Show Count of Age Class


```
boxplot(customer_data$Age,
col="blue",
main="Boxplot for Descriptive Analysis of Age")
```

Boxplot for Descriptive Analysis of Age

From the above two visualizations, we conclude that the maximum customer ages are between

```
## Analysis of the Annual Income of the Customers
## we will create visualizations to analyze the annual income of the customers. We will plo
summary(customer_data$Annual.Income..k..)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 15.00 41.50 61.50 60.56 78.00 137.00

hist(customer_data$Annual.Income..k..,
col="#660033",
main="Histogram for Annual Income",
xlab="Annual Income Class",
ylab="Frequency",
```

labels=TRUE)

Histogram for Annual Income


```
plot(density(customer_data$Annual.Income..k..),
col="yellow",
main="Density Plot for Annual Income",
xlab="Annual Income Class",
ylab="Density")
polygon(density(customer_data$Annual.Income..k..),
col="#ccff66")
```

Density Plot for Annual Income

From the above descriptive analysis, we conclude that the minimum annual income of the c

```
## Analyzing Spending Score of the Customers
## we will create visualizations to analyze the spending score of the customers. We will pl
summary(customer_data$Spending.Score..1.100.)
      Min. 1st Qu. Median
                             Mean 3rd Qu.
                                              Max.
      1.00
            34.75
                     50.00
                             50.20
                                   73.00
##
                                             99.00
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 34.75 50.00 50.20 73.00 99.00
boxplot(customer_data$Spending.Score..1.100.,
horizontal=TRUE,
col="#990000",
```

main="BoxPlot for Descriptive Analysis of Spending Score")

BoxPlot for Descriptive Analysis of Spending Score


```
hist(customer_data$Spending.Score..1.100.,
main="HistoGram for Spending Score",
xlab="Spending Score Class",
ylab="Frequency",
col="#6600cc",
labels=TRUE)
```

HistoGram for Spending Score

The minimum spending score is 1, maximum is 99 and the average is 50.20. We can see Description

```
## K-means Algorithm
## Elbow Method
library(purrr)

## Warning: package 'purrr' was built under R version 4.1.3

set.seed(123)
# function to calculate total intra-cluster sum of square
iss <- function(k) {
    kmeans(customer_data[,3:5],k,iter.max=100,nstart=100,algorithm="Lloyd" )$tot.withinss
}
k.values <- 1:10
iss_values <- map_dbl(k.values, iss)</pre>
```

```
plot(k.values, iss_values,
    type="b", pch = 19, frame = FALSE,
    xlab="Number of clusters K",
    ylab="Total intra-clusters sum of squares")
```


From the above graph, we conclude that 4 is the appropriate number of clusters since it.

```
## Average Silhouette Method
library(cluster)
library(gridExtra)
library(grid)
k2<-kmeans(customer_data[,3:5],2,iter.max=100,nstart=50,algorithm="Lloyd")
s2<-plot(silhouette(k2$cluster,dist(customer_data[,3:5],"euclidean")))</pre>
```


0.2

0.0

k3<-kmeans(customer_data[,3:5],3,iter.max=100,nstart=50,algorithm="Lloyd")
s3<-plot(silhouette(k3\$cluster,dist(customer_data[,3:5],"euclidean")))</pre>

Silhouette width si

0.6

8.0

1.0

0.4

k4<-kmeans(customer_data[,3:5],4,iter.max=100,nstart=50,algorithm="Lloyd")
s4<-plot(silhouette(k4\$cluster,dist(customer_data[,3:5],"euclidean")))</pre>

k5<-kmeans(customer_data[,3:5],5,iter.max=100,nstart=50,algorithm="Lloyd")
s5<-plot(silhouette(k5\$cluster,dist(customer_data[,3:5],"euclidean")))</pre>

k6<-kmeans(customer_data[,3:5],6,iter.max=100,nstart=50,algorithm="Lloyd")
s6<-plot(silhouette(k6\$cluster,dist(customer_data[,3:5],"euclidean")))</pre>

0.2

0.0

k7<-kmeans(customer_data[,3:5],7,iter.max=100,nstart=50,algorithm="Lloyd")
s7<-plot(silhouette(k7\$cluster,dist(customer_data[,3:5],"euclidean")))</pre>

Silhouette width si

0.4

0.6

8.0

1.0

k8<-kmeans(customer_data[,3:5],8,iter.max=100,nstart=50,algorithm="Lloyd")
s8<-plot(silhouette(k8\$cluster,dist(customer_data[,3:5],"euclidean")))</pre>

k9<-kmeans(customer_data[,3:5],9,iter.max=100,nstart=50,algorithm="Lloyd")
s9<-plot(silhouette(k9\$cluster,dist(customer_data[,3:5],"euclidean")))</pre>

k10<-kmeans(customer_data[,3:5],10,iter.max=100,nstart=50,algorithm="Lloyd")
s10<-plot(silhouette(k10\$cluster,dist(customer_data[,3:5],"euclidean")))</pre>

Now, we make use of the fviz_nbclust() function to determine and visualize the optimal not library(NbClust)
Error in library(NbClust): there is no package called 'NbClust'
library(factoextra)

Error in library(factoextra): there is no package called 'factoextra'
fviz_nbclust(customer_data[,3:5], kmeans, method = "silhouette")

Error in fviz_nbclust(customer_data[, 3:5], kmeans, method = "silhouette"):
could not find function "fviz_nbclust"

```
## Gap Statistic Method
## For computing the gap statistics method we can utilize the clusGap function for providin
set.seed(125)
stat_gap <- clusGap(customer_data[,3:5], FUN = kmeans, nstart = 25,</pre>
          K.max = 10, B = 50)
fviz_gap_stat(stat_gap)
## Error in fviz_gap_stat(stat_gap): could not find function "fviz_gap_stat"
## Now, let us take k = 6 as our optimal cluster -
k6<-kmeans(customer_data[,3:5],6,iter.max=100,nstart=50,algorithm="Lloyd")
## K-means clustering with 6 clusters of sizes 35, 22, 38, 44, 22, 39
## Cluster means:
        Age Annual.Income..k.. Spending.Score..1.100.
##
## 1 41.68571
                    88.22857
                                        17.28571
## 2 44.31818
                    25.77273
                                        20.27273
## 3 27.00000
                   56.65789
                                        49.13158
## 4 56.34091
                    53.70455
                                        49.38636
## 5 25.27273
                    25.72727
                                        79.36364
## 6 32.69231
                    86.53846
                                        82.12821
##
## Clustering vector:
   ##
## [38] 5 2 5 4 5 2 3 2 5 4 3 3 3 4 4 3 4 4 4 4 4 3 4 4 4 3 4 4 3 4 4 3 3 4 4 4 4
## [75] 4 3 4 3 3 4 4 3 4 4 3 4 4 3 3 4 4 3 3 4 4 3 4 3 3 3 4 4 3 4 3 4 3 4 4 4 4 4
## [186] 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6
##
## Within cluster sum of squares by cluster:
## [1] 16690.857 8189.000 7742.895 7607.477 4099.818 13972.359
## (between_SS / total_SS = 81.1 %)
##
## Available components:
##
## [1] "cluster"
                   "centers"
                               "totss"
                                             "withinss"
                                                          "tot.withinss"
## [6] "betweenss"
                   "size"
                               "iter"
                                             "ifault"
## In the output of our kmeans operation, we observe a list with several key information. F
## cluster - This is a vector of several integers that denote the cluster which has an allo
```

##totss - This represents the total sum of squares.

```
##centers - Matrix comprising of several cluster centers
##withinss - This is a vector representing the intra-cluster sum of squares having one comp
##tot.withinss - This denotes the total intra-cluster sum of squares.
##betweenss - This is the sum of between-cluster squares.
##size - The total number of points that each cluster holds.
## Visualizing the Clustering Results using the First Two Principle Components
pcclust=prcomp(customer_data[,3:5],scale=FALSE) #principal component analysis
summary(pcclust)
## Importance of components:
##
                                                             PC1
                                                                             PC2
                                                                                              PC3
## Standard deviation
                                                     26.4625 26.1597 12.9317
## Proportion of Variance 0.4512 0.4410 0.1078
## Cumulative Proportion
                                                      0.4512 0.8922 1.0000
pcclust$rotation[,1:2]
                                                                   PC1
                                                                                          PC2
##
                                                      0.1889742 -0.1309652
## Age
## Annual.Income..k..
                                                     -0.5886410 -0.8083757
## Spending.Score..1.100. -0.7859965 0.5739136
## Visualizing the clusters
set.seed(1)
ggplot(customer_data, aes(x =Annual.Income..k.., y = Spending.Score..1.100.)) +
    geom_point(stat = "identity", aes(color = as.factor(k6$cluster))) +
    scale_color_discrete(name=" ",
                            breaks=c("1", "2", "3", "4", "5", "6"),
                            labels=c("Cluster 1", "Cluster 2", "Cluster 3", "Cluster 4", "Cluster 5", "Cluster 
    ggtitle("Segments of Mall Customers", subtitle = "Using K-means Clustering")
## Error in ggplot(customer_data, aes(x = Annual.Income..k.., y = Spending.Score..1.100.)):
could not find function "ggplot"
## From the above visualization, we observe that there is a distribution of 6 clusters as f
\#Cluster 6 and 4 - These clusters represent the customer_data with the medium income salar
\#Cluster 1 - This cluster represents the customer_data having a high annual income as well
##Cluster 3 - This cluster denotes the customer_data with low annual income as well as low :
##Cluster 2 - This cluster denotes a high annual income and low yearly spend.
##Cluster 5 - This cluster represents a low annual income but its high yearly expenditure.
```


##Cluster 4 and 1 - These two clusters consist of customers with medium PCA1 and medium PCA2
##Cluster 6 - This cluster represents customers having a high PCA2 and a low PCA1.

##Cluster 5 - In this cluster, there are customers with a medium PCA1 and a low PCA2 score.

##Cluster 3 - This cluster comprises of customers with a high PCA1 income and a high PCA2.

##Cluster 2 - This comprises of customers with a high PCA2 and a medium annual spend of income and a high PCA2.