Hierarchical Clustering

Agglomerative approach

Initialization:

Each object is a cluster

Iteration:

Merge two clusters which are most similar to each other;
Until all objects are merged into a single cluster

Step 0 Step 1 Step 2 Step 3 Step 4 **bottom-up**

Hierarchical Clustering

Divisive Approaches

Initialization:

All objects stay in one cluster

Iteration:

Select a cluster and split it into

two sub clusters

Until each leaf cluster contains

only one object

Dendrogram

- A binary tree that shows how clusters are merged/split hierarchically
- Each node on the tree is a cluster; each leaf node is a singleton cluster

Dendrogram

A clustering of the data objects is obtained by cutting the *dendrogram* at the desired level, then each connected component forms a cluster

Dendrogram

A clustering of the data objects is obtained by cutting the *dendrogram* at the desired level, then each connected component forms a cluster

How to Merge Clusters?

How to measure the distance between clusters?

- Single-link
- Complete-link
- Average-link
- Centroid distance

Hint: <u>Distance between clusters</u> is usually defined on the basis of <u>distance</u> <u>between objects.</u>

- Single-link
- Complete-link
- Average-link
- Centroid distance

$$d_{\min}(C_i, C_j) = \min_{p \in C_i, q \in C_j} d(p, q)$$

The distance between two clusters is represented by the distance of the <u>closest pair of</u> <u>data objects</u> belonging to different clusters.

- Single-link
- Complete-link
- Average-link
- Centroid distance

$$d_{\min}(C_i, C_j) = \max_{p \in C_i, q \in C_j} d(p, q)$$

The distance between two clusters is represented by the distance of the <u>farthest pair of</u> <u>data objects</u> belonging to different clusters.

- Single-link
- Complete-link
- Average-link
- Centroid distance

$$d_{\min}(C_i, C_j) = \underset{p \in C_i, q \in C_j}{avg} d(p, q)$$

The distance between two clusters is represented by the <u>average</u> distance of <u>all pairs of</u> <u>data objects</u> belonging to different clusters.

m_i,m_j are the means of C_i, C_i,

- Single-link
- Complete-link
- Average-link
- Centroid distance

$$d_{mean}(C_i, C_j) = d(m_i, m_j)$$

The distance between two clusters is represented by the distance between <u>the means of</u> the cluters.

An Example of the Agglomerative Hierarchical Clustering Algorithm

For the following data set, we will get different clustering results with the single-link and complete-link algorithms.

Result of the Single-Link algorithm

Result of the Complete-Link algorithm

Hierarchical Clustering: Comparison

Single-link

Average-link

Complete-link

Centroid distance

Compare Dendrograms

Average-link 1 2 5 3 6 4

6

Effect of Bias towards Spherical Clusters

Strength of Single-link

Original Points

Two Clusters

Can handle non-global shapes

Limitations of Single-Link

Original Points

Two Clusters

Sensitive to noise and outliers

Strength of Complete-link

Less susceptible to noise and outliers

Which Distance Measure is Better?

- Each method has both advantages and disadvantages; application-dependent, single-link and complete-link are the most common methods
- Single-link
 - Can find irregular-shaped clusters
 - Sensitive to outliers, suffers the so-called chaining effects
- Complete-link, Average-link, and Centroid distance
 - Robust to outliers
 - Tend to break large clusters
 - Prefer spherical clusters

Limitation of Complete-Link, Average-Link, and Centroid Distance

The complete-link, average-link, or centroid distance method tend to break the large cluster.

AGNES (Agglomerative Nesting)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages; e.g., S+
- Use single-link method
- Merge nodes that have the least dissimilarity
- Eventually all objects belong to the same cluster

UPGMA

- □ UPGMA: Unweighted Pair-Group Method Average.
- Merge Strategy:
 - Average-link approach;
 - The distance between two clusters is measured by the average distance between two objects belonging to different clusters.

$$d_{avg}(C_{i}, C_{j}) = \frac{1}{n_{i}n_{j}} \sum_{p \in C_{i}} \sum_{q \in C_{j}} d(p, q)$$

 n_i, n_j : the number of objects in cluster C_i, C_j .

DIANA (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., S+
- Inverse order of AGNES
- Eventually each node forms a cluster on its own

DIANA- Explored

- First, all of the objects form one cluster.
- The cluster is split according to some principle, such as the minimum Euclidean distance between the closest neighboring objects in the cluster.
- The cluster splitting process repeats until, eventually, each new cluster contains a single object or a termination condition is met.

Splitting Process of DIANA

Intialization:

- 1. Choose the object O_h which is most dissimilar to other objects in C.
- 2. Let C1= $\{O_h\}$, C2=C-C1.

Splitting Process of DIANA (Cont'd)

Iteration:

3. For each object Oi in C2, tell whether it is more close to C1 or to other objects in C2

$$D_i = \underset{j \in C_2}{avg} d(O_i, O_j) - \underset{j \in C_1}{avg} d(O_i, O_j)$$

- 4. Choose the object O_k with greatest D score.
- 5. If $D_k>0$, move Ok from C2 to C1, and repeat 3-5.
- 6. Otherwise, stop splitting process.

Discussion on Hierarchical Approaches

- Strengths
 - Do not need to input k, the number of clusters
- Weakness
 - Do not scale well; time complexity of at least $O(n^2)$, where n is total number of objects
 - Can never undo what was done previously
- Integration of hierarchical with distance-based clustering
 - BIRCH (1996): uses CF-tree and incrementally adjusts quality of sub-clusters
 - CURE (1998): selects well-scattered points from cluster and then shrinks them towards center of cluster by a specified fraction
 - CHAMELEON (1999): hierarchical clustering using dynamic modeling

How to Derive Clusters from Dendrogram

- Use global thresholds
 - Homogeneity within clusters
 - □ Diameter(C) \leq MaxD
 - Separation between clusters
 - □ Inter-cluster distance $\geq \sigma$
 - single-link
 - complete-link
 - · •

Minimum Similarity Threshold

Interactively Exploring Hierarchical Clustering Results, Seo, et al. 2002.

How to Derive Clusters from Dendrogram

Ask users to derive clusters

- e.g. TreeView
- Flexible when user have different requirement of cluster granularity for different parts of data.
- Inconvenient when data set is large

