Motor dynamics support a competition model of number processing

Thomas J. Faulkenberry

Tarleton State University

Number Comparison Task

Task: Two numbers presented on screen, choose largest as quickly as you can.

Number Comparison Task

Typical result: RT decreases as distance between numbers increases

■ Numerical Distance Effect (NDE; Moyer & Landauer, 1967)

Hand tracking

Song and Nakayama (2008) – measured hand movements in a numerical comparison task (compare to 5)

Hand tracking

Song and Nakayama (2008) – trajectories curved more as number got closer to 5.

- interpreted as evidence for spatial coding of numbers
- "Direct Mapping Account"

Alternative model

Gevers et al. (2006) – trajectory curvatures may result from competition between partially active representations

Gevers, W., Verguts, T., Reynvoet, B, Caessens, B., & Fias, W. (2006). Numbers and space: A computational model of the SNARC effect. *Journal of Experimental Psychology: Human Perception and Performance*, 32, 32-44.

- 1 For congruent trials, both models predict that curvature decreases as distance from 5 increases.
- For incongruent trials,
 - competition account → curvature decreases as distance from 5 increases
 - direct mapping account → curvature increases as distance from 5 increases
- 3 Across all trials,
 - \blacksquare competition account \to congruent/incongruent trajectories are symmetric about the movement axis
 - direct mapping account → congruent/incongruent trajectories are asymmetric

- 64 participants
- MouseTracker (Freeman & Ambady, 2010)
- 320 trials
 - congruentSMALLER LARGER
 - incongruent LARGER - SMALLER
- Measures:
 - RT
 - streaming (x, y) coordinates of mouse
 - AUC (area under curve) of each trajectory

1 For congruent trials, both models predict that curvature decreases as distance from 5 increases.

■ For congruent trials, both models predict that curvature decreases as distance from 5 increases.

- For congruent trials, both models predict that curvature decreases as distance from 5 increases. √
- 2 For incongruent trials,
 - competition account → curvature decreases as distance from 5 increases
 - direct mapping account → curvature increases as distance from 5 increases

- For congruent trials, both models predict that curvature decreases as distance from 5 increases. √
- 2 For incongruent trials,
 - competition account → curvature decreases as distance from 5 increases √
 - direct mapping account → curvature increases as distance from 5 increases X

- I For congruent trials, both models predict that curvature decreases as distance from 5 increases. √
- 2 For incongruent trials,
 - competition account → curvature decreases as distance from 5 increases √
 - direct mapping account → curvature increases as distance from 5 increases
 X
- 3 Across all trials,
 - \blacksquare competition account \to congruent/incongruent trajectories are symmetric about the movement axis
 - direct mapping account → congruent/incongruent trajectories are asymmetric

Definition – asymmetry score

$$A = \frac{1}{101} \left[\sum_{i=1}^{101} x_{C}(i) + x_{I}(i) \right]$$

- $x_c(i)$ = mean x-coordinate at timestep i for congruent trajectories
- $x_i(i)$ = mean x-coordinate at timestep i for incongruent trajectories
- Note:
 - \blacksquare $A > 0 \rightarrow \text{rightward bias}$
 - lacksquare $\mathcal{A}<0
 ightarrow leftward bias$

Direct mapping account: small targets

 \blacksquare as distance from 5 increases, \mathcal{A} decreases from positive to negative

Direct mapping account: large targets

lacksquare as distance from 5 increases, $\mathcal A$ increases from negative to positive

$$A = \frac{1}{101} \left[\sum_{i=1}^{101} x_C(i) + x_I(i) \right]$$

- x_C(i) = mean x-coordinate at timestep i for congruent trajectories
- x_I(i) = mean x-coordinate at timestep i for incongruent trajectories
- Note:
 - lacksquare $\mathcal{A} > 0
 ightarrow \text{rightward bias}$
 - \blacksquare $A < 0 \rightarrow$ leftward bias

So far...

- Trajectory curvature decreases as numerical distance increases
- Decreasing curvature in spatially incongruent trials supports competition model
- Asymmetry of trajectories reveals pervasive direct mapping signature

Experiment 2 - is asymmetry due to direct mapping or biomechanical constraints

- 32 participants
- same stimuli and design as Exp 1
- mouse movement rightward across computer screen

Curvatures decrease as distance increases (again supports competition model

Asymmetry:

$$A = \frac{1}{101} \left[\sum_{i=1}^{101} \frac{y_C(i) + y_I(i)}{2} \right] - 0.75$$

- y_C(i) = mean y-coordinate at timestep i for congruent trajectories
- *y_i(i)* = mean *y*-coordinate at timestep *i* for incongruent trajectories
- Note:
 - lacksquare $\mathcal{A}>0
 ightarrow upward bias$
 - lacksquare $\mathcal{A}<0
 ightarrow\mathsf{downward}$ bias

Take home

- In both experiments, trajectory curvature decreases as numerical distance increases
- Decreasing curvature in spatially incongruent trials supports competition model
- Trajectory asymmetry may not reflect underlying direct mapping representation

Contact

Thomas J. Faulkenberry

faulkenberry@tarleton.edu