ЖЕЛЕЗО, XPOM И ИХ СОЕДИНЕНИЯ ТИПЫ РЕАКЦИЙ

ЖЕЛЕЗО ОБЩИЕ СВЕДЕНИЯ

Нахождение: VIIIB-группа ПС Электронная формула: (

3s²3p⁶3d⁶4s²

Степени окисления: 0, +2, +3, +6

НАХОЖДЕНИЕ В ПРИРОДЕ:

в основном в составе соединений!

 Fe₃O₄ - магнитный железняк, железная окалина

 Fe₂O₃ - красный железняк

 Fe₂O₃*3H₂O - бурый железняк

 FeS₂ - железный колчедан, пирит

 FeCO₃ - сидерит

либо в виде метеоритного железа (простое вещество)

ФИЗИЧЕСКИЕ СВОЙСТВА:

серебристо-серый металл

мягкий, ковкий

электропроводный

теплопроводный

намагничивается

быстро окисляется

на воздухе (ржавеет)

химические свойства

1) электролиз p-poв солей: $FeCl_2 + H_2O$ (эл.ток) = $Fe + H_2 + Cl_2 + Fe(OH)_2$ 2) $Fe_3O_4 + Al$ (t) = $Fe + Al_2O_3$; $Fe_2O_3 + H_2$ (t) = $Fe + H_2O$; в промышленности: B-e Fe_2O_3 до Fe (CO); 3) $FeCl_2 + Zn = ZnCl_2 + Fe$

ОКСИД И ГИДРОКСИД ЖЕЛЕЗА (II) FeO и Fe(OH) $_{2}$

твёрдые вещества	FeO + H ₂ O =
	FeO + HCl =
основный оксид и основание	FeO + SO, =
нерастворимы в воде	FeO + SO ₂ /CO ₂ =
OVCHI FOR OF TAXABLE COURT	FeO + C/CO =
ОКСИД FeO обладает <u>основ</u> - ными свойствами: реагирует с	FeO + H,SO,(pa36) =
кислотами, с кислотными окси-	FeO + HNO, (конц) =
дами (нелетучими), вытесняет-	
ся восстановителями из оксида;	Fe(OH), (t) =
обладает восстановительными свойствами - легко окиляется;	Fe(OH), + HNO, =
ГИДРОКСИД Fe(OH), обладает	Fe(OH), + HCl =
основными свойствами:	Fe(OH), + NaOH =
реагирует с кислотами и	Fe(OH), + NaNO, =
некоторыми кислотными оксидами (нелетучими);	Fe(OH), + H,O + O,=
обладает восстановительными	
свойствами за счёт Fe+2 -	Fe(OH) ₂ + H ₂ O ₂ =
легко окисляется до Fe ⁺³	FeCl ₂ + Cl ₂ =
разлагается!	FeCl ₂ + HNO ₃ (K) =
	FeSO ₄ + KMnO ₄ + H ₂ SO ₄ =
	FeSO ₄ + K ₂ Cr ₂ O ₇ + H ₂ SO ₄ =
	FeSO ₂ + KNO ₃ + H ₂ SO ₂ =
	FeSO, + KClO, + H,SO, =
	FeSO + NaClO + NaOH =
	FeS + HCl =

ОКСИД И ГИДРОКСИД ЖЕЛЕЗА (III)

Fe₂O₃ и Fe(OH)₃

твёрдые вещества

амфотерные соединения

нерастворимы в воде

Обладают амфотерными свойствами: реагируют с кислотами, с кислотными оксидами (нелетучими), со щелочами; проявляют окислительные свойства за счёт Fe^{3} : восстанавливаются в ОВР до +2;

в жёстких условиях ("сильный окислитель + щелочная среда") окисляются до +6 (до ферратов). $Fe(OH)_3 + HNO_3 =$ $Fe(OH)_4 + NaOH(KOHU)_5$

Fe₂O₃: вытесняет летучие оксиды из солей; Fe(OH)₃: разлагается при t.

```
Fe,O, + HCl =
Fe<sub>2</sub>O<sub>2</sub> + H<sub>2</sub>SO<sub>2</sub> =
Fe,O, + SO, =
Fe,O, + SO,/CO, =
Fe,O, + C/CO =
Fe_{,}O_{,} + NaOH(t) =
Fe,O, + HI =
Fe_0 + Fe(t) =
Fe_{,}O_{,} + Na_{,}O + O_{,}(t) =
Fe<sub>2</sub>O<sub>3</sub> + KClO<sub>3</sub> + KOH =
Fe(OH), + HNO, =
Fe(OH), + NaOH(конц) =
Fe(OH)_{,} + NaOH(t) =
Fe(OH)_{,}(t) =
Fe(OH), + Br, + KOH =
FeCl, + KI =
FeCl, + Na,S =
FeCl, + Cu =
Fe(NO,), + Fe =
FeCl, + SO, + H,O =
Fe_{2}(SO_{2})_{3} + Na_{2}SO_{3} + H_{2}O =
NaFeO, + HCl (изб) =
NaFeO, + Na,O, =
NaFeO, + Br, + NaOH =
```

ОКСИД ЖЕЛЕЗА (II, III) Fe₃O₄

твёрдое вещество

двойной оксид

не растворяется в воде

представляет собой смесь оксидов FeO*Fe₂O₃;

проявляет
амфотерные свойства (основные за счёт FeO, амфотерные
за счёт Fe₂O₃): реагирует с
кислотами; способен восстанавливаться из оксида сильными восстановителями;

проявляет как восстановительные свойства (за счёт FeO), так и окислительные (за счёт Fe₂O₃): реагирует и с восстановителями, и с окислителями.

Fe ₃ O ₄ + H ₂ O =
Fe ₃ O ₄ + HCl =
Fe ₃ O ₄ + H ₂ =
Fe ₃ O ₂ + Al =
Fe ₃ O ₄ + C =
Fe ₃ O ₄ + CO =
Fe ₃ O ₄ + O ₂ =
Fe ₃ O ₂ + Fe =
Fe ₃ O ₄ + HNO ₃ (конц) =
Fe ₃ O ₄ + H ₂ SO ₄ (pa ₃ 6) =
Fe ₃ O ₄ + H ₂ SO ₄ (конц) =
Fe ₃ O ₄ + HI =
Fe ₃ O ₄ + KI =

ХРОМ ОБЩИЕ СВЕДЕНИЯ

Нахождение: VIB-группа ПС Электронная формула: 3s²3p⁶3d⁵4s¹ (провал е) Степени окисления: O, +2, +3, +6

(провал е) серебристо-белый металл

тугоплавкий, но хрупкий

ФИЗИЧЕСКИЕ СВОЙСТВА:

электропроводный

теплопроводный

САМЫЙ ТВЁРДЫЙ МЕ!

покрыт оксидной

плёнкой на воздухе

НАХОЖДЕНИЕ В ПРИРОДЕ:

только в составе соединений!

FeO*Cr₂O₃ - хромистый железняк (Fe(CrO₂)₂)

PbCrO, - свинцовая руда

ХИМИЧЕСКИЕ СВОЙСТВА И ПОЛУЧЕНИЕ

1) электролиз p-ров солей: Cr₂(SO₄)₃ + H₂O (эл.ток) = Cr + O₂ + H₂SO₄
2) FeO*Cr₂O₃ + Al (t) = Cr + Fe + Al₂O₃;
FeO*Cr₂O₃ + C (t) = Fe + Cr + CO

Сг + неметалл = бинарное соединение

$$Cr + O_2 = Cr_2O_3$$

 $Cr + H_2O (t) = Cr_2O_3 + H_2$

Сг + кислота

Сг + соль менее активного металла

также встречаются:

ОКСИД И ГИДРОКСИД ХРОМА (II)

CrO и Cr(OH)₂

твёрдые вещества

основный оксид и основание

нерастворимы в воде

ОКСИД СГО обладает основными свойствами: реагирует с кислотами, с кислотными оксидами (нелетучими), вытесняется восстановителями из оксида; обладает восстановительными свойствами - легко окиляется; ГИДРОКСИД Сг(ОН), обладает основными свойствами: реагирует с кислотами и некоторыми кислотными оксидами (нелетучими); обладает восстановительными свойствами за счёт Сг⁺2 легко окисляется до Cr+3 разлагается!

CrO + H,O =
CrO + HCl =
CrO + SO ₃ =
CrO + SO,/CO, =
CrO + C/CO =
CrO + H,SO,(pa36) =
CrO + HNO ₃ (конц) =
CrO + O ₂ =
Cr(OH) ₂ (t) =
Cr(OH) ₂ + HNO ₃ =
Cr(OH) ₂ + HCl =
Cr(OH), + NaOH =
Cr(OH) ₂ + NaNO ₃ =
Cr(OH) ₂ + H ₂ O + O ₂ =
Cr(OH) ₂ + H ₂ O ₂ =
CrCl ₂ + Cl ₂ =
CrCl ₂ + HNO ₃ (K) =
CrSO ₄ + KMnO ₄ + H ₂ SO ₄ =
CrSO ₄ + K ₂ Cr ₂ O ₇ + H ₂ SO ₄ =
CrSO ₄ + KNO ₃ + H ₂ SO ₄ =
CrSO ₄ + KClO ₃ + H ₂ SO ₄ =
CrSO, + NaClO, + NaOH =
CrS + HCl =

ОКСИД И ГИДРОКСИД ХРОМА (III)

Cr₂O₃ и Cr(OH)₃

твёрдые вещества

амфотерные соединения

нерастворимы в воде

Обладают амфотерными свойствами: реагируют с кислотами, с кислотными оксидами (нелетучими), со щелочами; проявляют окислительные свойства за счёт Сг³: восстанавливаются в ОВР до +2;

в жёстких условиях (сильный окислитель + H⁺/OH⁺-среда) окисляются до +6: до хроматов (OH⁺) или дихроматов (H⁺).

 Cr_2O_3 : вытесняет летучие оксиды из солей; $Cr(OH)_1$: разлагается при t.

2 3
Cr,O, + HCl =
$Cr_2O_3 + H_2SO_4 =$
Cr ₂ O ₃ + SO ₃ =
$Cr_2O_3 + SO_2/CO_2 =$
Cr ₂ O ₃ + C/CO =
Cr_2O_3 + NaOH (t) =
Cr ₂ O ₃ + Na ₂ CO ₃ =
Cr ₂ O ₃ + HI =
$\operatorname{Cr}_{2}O_{3} + \operatorname{Cr}(t) =$
$Cr_2O_3 + Na_2O + O_2(t) =$
Cr ₂ O ₃ + KClO ₃ + K ₂ CO ₃ =
Cr ₂ O ₃ + KNO ₃ + KOH =
Cr ₂ O ₃ + NaBrO ₃ + H ₂ SO ₄ + H ₂ O =
Cr(OH) ₃ + HNO ₃ =
Cr(OH) ₃ + NaOH(конц) =
Cr(OH) ₃ + NaOH (t) =
Cr(OH) ₃ (t) =

ОБРАТИТЕ ВНИМАНИЕ!

И в хроматах, и в дихроматах степень окисления хрома +6, поэтому переход хроматов в дихроматы НЕ ЯВЛЯЕТСЯ ОВР!

$$K_2Cr_2O_7 + 2KOH = 2K_2CrO_4 + H_2O$$

 $2K_2CrO_4 + H_2SO_4 = K_2Cr_2O_7 + K_2SO_4 + H_2O$

Ho! Несмотря на это, так как HCl, HBr, HI могут играть роль ВОССТАНОВИТЕЛЕЙ, то между ними протекает ОВР:

