Milestone 3

Group D

2024-10-15

Load all the necessary libraries

```
library(tidyverse) # For data manipulation
## — Attaching core tidyverse packages -
                                                                   - tidyverse
2.0.0 -
                           ✓ readr
## √ dplyr 1.1.4
                                        2.1.5
## √ forcats 1.0.0

√ stringr

                                        1.5.1
## v ggplot2 3.5.1 v tibble 3.2.1 ## v lubridate 1.9.3 v tidyr 1.3.1
## √ purrr
               1.0.2
## -- Conflicts ----
tidyverse conflicts() —
## * dplyr::filter() masks stats::filter()
## × dplyr::lag()
                     masks stats::lag()
## Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force
all conflicts to become errors
library(cluster) # For clustering algorithms
library(factoextra) # For visualization
## Welcome! Want to learn more? See two factoextra-related books at
https://goo.gl/ve3WBa
library(ggplot2)
```

Loading the dataset

```
# Load the dataset
CustData <- read.csv("Prepared_Data.csv")

# Define affordability based on the threshold
CustData$Affordability <- ifelse(CustData$Annual.Salary >= 50000, "Can
Afford", "Cannot Afford")

# Select relevant features for clustering
data_for_clustering <- CustData %>%
    select(Annual.Salary, yrs_residence, Age) %>%
    na.omit() # Remove rows with missing values

# Standardize the data to ensure all features are on the same scale
data_standardized <- scale(data_for_clustering)</pre>
```

Perform PCA

```
pca_result <- prcomp(data_standardized, center = TRUE, scale. = TRUE)

# Extract the first two principal components
pca_data <- as.data.frame(pca_result$x[, 1:2])
pca_data$Affordability <- CustData$Affordability # Add affordability
information for visualization</pre>
```

K-Means clustering

```
set.seed(123)
wss <- function(k) {
   kmeans(pca_data[, 1:2], centers = k, nstart = 25)$tot.withinss
}

# Compute within-cluster sum of squares for k = 1 to k = 10
k.values <- 1:10
wss_values <- map_dbl(k.values, wss)

# Plot the Elbow Method
plot(k.values, wss_values,
   type = "b", pch = 19, frame = FALSE,
   xlab = "Number of clusters K",
   ylab = "Total within-clusters sum of squares")</pre>
```


#The Elbow Method is a commonly used technique for determining the optimal number of clusters (k) in k-means clustering. The optimal k is identified at the point where the WSS curve begins to flatten, forming an "elbow" shape.

Model evaluation

```
# Set a seed for reproducibility
set.seed(123)

# Perform k-means clustering with an appropriate number of clusters
kmeans_result <- kmeans(pca_data[, 1:2], centers = 6, nstart = 25)

## Warning: Quick-TRANSfer stage steps exceeded maximum (= 9252800)
## Warning: Quick-TRANSfer stage steps exceeded maximum (= 9252800)

# Add cluster assignments to PCA data
pca_data$Cluster <- as.factor(kmeans_result$cluster)

print(kmeans_result)

## K-means clustering with 6 clusters of sizes 40227, 25757, 31537, 26292,
31158, 30085
##
## Cluster means:</pre>
```

##		PC			C2								
## 1		373974											
## 2		338868											
## 3		2800873		0.92733915									
## 4				-1.49064868									
## 5		3272717		1.10537858									
	-1.38	3822267	77 -0.6	3329457	74								
	##												
		ing ve											
##	1	2	3	4	5	6	7	8	9	10	11	12	
13													
##	1	1	3	1	2	1	2	5	2	1	5	1	
2													
##	14	15	16	17	18	19	20	21	22	23	24	25	
26													
##	6	5	1	4	3	1	1	1	1	3	2	1	
1													
##	27	28	29	30	31	32	33	34	35	36	37	38	
39													
##	5	4	1	2	1	5	2	6	6	1	1	3	
3													
##	40	41	42	43	44	45	46	47	48	49	50	51	
52	_		_		_	_	_	_					
##	3	2	5	1	5	1	1	6	1	1	1	1	
1	5 2	5 4		F.6		50	F.0	60	C 1	63	63	<i>c</i>	
##	53	54	55	56	57	58	59	60	61	62	63	64	
65	2	4	2	_	1	_	1	_	1	2	2	4	
##	2	1	2	6	1	5	1	5	1	2	2	1	
1		c7	60	C O	70	71	72	72	74	75	76	77	
## 78	66	67	68	69	70	71	72	73	74	75	76	77	
/ O ##	1	1	6	1	5	3	1	1	3	3	1	1	
3	1	1	O	1	5	5	1	1	5	5	1	1	
3 ##	79	80	81	82	83	84	85	86	87	88	89	90	
## 91	75	80	01	02	65	04	ره	80	67	00	03	30	
##	1	2	2	5	1	5	3	3	3	1	3	1	
3		2	2	,		,	,	ر	,		,		
##	92	93	94	95	96	97	98	99	100	101	102	103	
104	72	75	74	23	50	٥,	20))	100	101	102	103	
##	3	3	4	3	1	3	2	1	5	2	3	5	
1	,	,	-	,	_	3	_	_	,	_	,	,	
##	105	106	107	108	109	110	111	112	113	114	115	116	
117	103	100	107	100	103	110			113		113	110	
##	1	5	1	4	2	2	3	3	2	3	4	2	
3	-		-	•	_	_			_		•	_	
##	118	119	120	121	122	123	124	125	126	127	128	129	
130							'			,			
##	1	2	4	1	2	2	3	3	2	3	2	3	
5	_	_	·	_	_	_	_	_	_	_	_	_	
##	131	132	133	134	135	136	137	138	139	140	141	142	

143 ## 3	1	1	1	3	3	1	1	3	3	1	4	3	
## 156	144	145	146	147	148	149	150	151	152	153	154	155	
##	1	2	5	3	3	1	1	2	2	3	1	4	
## 169	157	158	159	160	161	162	163	164	165	166	167	168	
## 5	2	1	3	3	3	3	3	4	2	3	3	4	
## 182	170	171	172	173	174	175	176	177	178	179	180	181	
## 6	1	1	4	3	3	3	3	3	3	1	1	1	
## 195	183	184	185	186	187	188	189	190	191	192	193	194	
## 3	2	1	3	4	2	3	2	4	1	2	3	1	
## 208	196	197	198	199	200	201	202	203	204	205	206	207	
## 1	3	3	2	3	3	2	5	4	2	1	4	1	
## 221	209	210	211	212	213	214	215	216	217	218	219	220	
## 3	5	3	3	3	1	2	3	3	1	4	1	2	
## 234	222	223	224	225	226	227	228	229	230	231	232	233	
## 1	2	3	1	4	2	6	5	3	3	6	3	3	
## 247	235	236	237	238	239	240	241	242	243	244	245	246	
## 3	1	1	3	1	1	1	1	5	4	3	2	5	
## 260	248	249	250		252		254	255	256	257	258	259	
## 2	5	3	4	5	2	3	1	6	4	5	1	3	
## 273	261	262	263	264	265	266	267	268	269	270	271	272	
		_	_				6 99899			4 99902	_		
	5 6	5	6	2	1	5	2	1	4	1	2	1	
		99907	99908	99909	99910	99911	99912	99913	99914	99915	99916	99917	
9991	.8	1	1	2	1	1	4	1	1	6	1	4	
1													

```
## 99919 99920 99921 99922 99923 99924 99925 99926 99927 99928 99929 99930
99931
##
      1
             1
                   4
                         5
                               6
                                     4
                                           4
                                                  1
                                                        4
                                                              6
                                                                    6
1
## 99932 99933 99934 99935 99936 99937 99938 99939 99940 99941 99942 99943
99944
##
                                     5
                                           1
                                                  5
                                                        5
      5
             4
                   1
                         6
                               5
## 99945 99946 99947 99948 99949 99950 99951 99952 99953 99954 99955 99956
99957
##
      6
             5
                   6
                         6
                               5
                                     1
                                           2
                                                  5
                                                        2
                                                              5
4
## 99958 99959 99960 99961 99962 99963 99964 99965 99966 99967 99968 99969
99970
##
      5
             2
                   5
                         3
                               1
                                     1
                                           5
                                                        5
                                                              2
## 99971 99972 99973 99974 99975 99976 99977 99978 99979 99980 99981 99982
99983
      4
             3
                         2
                               1
                                     1
                                                  5
                                                              5
##
                   6
                                           4
                                                        1
4
## 99984 99985 99986 99987 99988 99989 99990 99991 99992 99993 99994 99995
99996
##
      4
             1
                 1
                         1
                               5
                                     6
                                           6
                                                  1
                                                              3
                                                                          1
## 99997 99998 99999
       3
             5
## [ reached getOption("max.print") -- omitted 85057 entries ]
##
## Within cluster sum of squares by cluster:
## [1] 11402.60 15898.70 15870.08 16254.74 12996.60 13884.38
## (between SS / total SS = 76.8 %)
## Available components:
##
## [1] "cluster"
                     "centers"
                                      "totss"
                                                     "withinss"
"tot.withinss"
## [6] "betweenss"
                      "size"
                                      "iter"
                                                     "ifault"
cluster_plot <- fviz_cluster(</pre>
  kmeans result,
  data = pca data[, 1:2],
  geom = "point",
  ellipse.type = "convex", # Draw ellipses around clusters
 #repel = TRUE,
#palette = "jco",
                           # Avoid overlapping text labels
                           # Choose a color palette
  ggtheme = theme minimal()
# Add a custom ggplot layer for affordability coloring
cluster plot +
```

```
geom_point(data = pca_data, aes(x = PC1, y = PC2, color = Affordability),
size = 0.1) +
labs(
   title = "K-means Clustering with PCA",
   subtitle = "Colored by Affordability",
   x = "Principal Component 1",
   y = "Principal Component 2"
) +
theme_minimal() +
theme(legend.position = "right")
```



```
"red")) +
theme_minimal()
```

Gross Year To Date vs Annual Salary by Affordability

Affordability Based on Gross year to date and Years of R

Each household size had a minimum of 2 and a maximum 3 people in a house