CENG 201 Veri Yapıları 4: Ağaçlar

Öğr.Gör. Şevket Umut ÇAKIR

Pamukkale Üniversitesi

Hafta 4

Anahat

- Ağaçlar
- 2 İkili Ağaçlar Dolaşma/Traversal
- 3 İkili Arama Ağaçları Arama, Ekleme ve Silme

Ağaçlar

Tanım

Ağaçlar, düğümlerden ve düğümleri birbirine bağlayan kenarlardan oluşan; herhangi iki düğümü birbirine bağlayan sadece bir yolun bulunduğu veri yapılarıdır.

Terimler

- Düğüm(node): Ağacın her bir elemanına düğüm adı verilir.
- Kök(root): En tepede bulunan düğümdür.
- Ebeveyn(parent): Altında başka düğümler bulunan, seviye olarak çocuk düğümlerden üstte olan düğümdür.
- Çocuk(child): Bir ebeveyn düğüme bağlı olan düğümlerdir.
- Derinlik(depth): Bir düğümün kök düğüme olan uzaklığıdır.
- Ağacın derinliği(depth of the tree): Derinliği en büyük olan yaprağın derinliğine eşittir.
- Yaprak(leaf): Çocuğu bulunmayan düğümlerdir.
- Kardeş(sibling): Aynı ebeveyne sahip düğümlerdir.
- Ata(ancestor): Bir düğümden köke kadar olan düğümlerin hepsi
- Soy(descendant): Bir düğümün tüm alt dallarındaki düğümler

Örnek ağaç

lkili Ağaçlar

Tanım

Her bir düğümünde en fazla iki çocuğu olan ağaçlara ikili ağaçlar denir. Bir düğümün sol ve sağ çocuğu olabilir.

Dolu İkili Ağaçlar/Full Binary Tree

Tanım

Tüm yaprakları aynı seviyede olan ikili ağaçlardır.

Bütün İkili Ağaçlar/Complete Binary Tree

Tanım

Dolu ikili ağaca yaprak değerleri soldan itibaren eklendiğinde oluşan ikili ağaç.

Ağaçlarda dolaşma/Traversal

İkili ağaçlarda üç farklı dolaşma şekli vardır:

- Önce değer(Preorder): Önce değer elde edilir, sonra sırasıyla sol ve sağ alt ağaç önce değer olarak dolaşılır.
- Ortada değer(Inorder): Önce sol alt ağaç ortada değer olarak dolaşılır, sonra değer elde edilir, son olarak sağ alt ağaç ortada değer olarak dolaşılır.
- Sonra değer(Postorder): Once sırasıyla sol ve sağ alt ağaçlar sonra değer şeklinde gezilir, sonra değer elde edilir.

Dolaşma: A

Dolașma: A, B

Dolașma: A, B, D

Dolașma: A, B, D, K

Dolaşma: A, B, D, K, C

Dolaşma: A, B, D, K, C, E

Dolașma: A, B, D, K, C, E, H

Dolașma: A, B, D, K, C, E, H, F

Dolașma: D

Dolașma: D, B

Dolașma: D, B, K

Dolașma: D, B, K, A

Dolaşma: D, B, K, A, H

Dolaşma: D, B, K, A, H, E

Dolașma: D, B, K, A, H, E, C

Dolaşma: D, B, K, A, H, E, C, F

Dolașma: D

Dolașma: D, K

Dolașma: D, K, B

Dolașma: D, K, B, H

Dolaşma: D, K, B, H, E

Dolaşma: D, K, B, H, E, F

Dolașma: D, K, B, H, E, F, C

Dolaşma: D, K, B, H, E, F, C, A

Soru

Aşağıdaki ikili ağacın preorder, inorder ve postorder dolaşımları nasıl olur?

İkili Arama Ağaçları

Tanım

Kökün solundaki tüm anahtar değerleri kökten küçük, kökün sağındaki her bir anahtar değeri kökten büyük ve bu iki özelliği tüm düğümlerde geçerli olan ikili ağaç yapısıdır.

Arama Işlemi

```
Düğüm Ara (Düğüm, Aranacak)
  Eğer Düğüm boş ise (null)
    return null
  Aksi halde
    Eğer Düğüm. değer=Aranacak
       return Düğüm
    Eğer Düğüm. değer < Aranacak
       return Ara (Düğüm. sağ, Aranacak)
    Aksi halde
      return Ara (Düğüm. sol, Aranacak)
```

Arama işlemi

35 ve 15 değerlerini aşağıdaki ağaçta arayalım:

Arama işlemi

35 ve 15 değerlerini aşağıdaki ağaçta arayalım:

- Arama işlemi bu ağaçta en iyi ve en kötü ihtimalle kaç adımda biter?
- Karşılaşabilecek en iyi ve en kötü ağaçlar nasıldır?

Arama en iyi durum

Arama en iyi durum

N elemanlı bir dengeli ağaçta en fazla kaç adımda aranılan değer bulunabilir?

Arama en kötü durum

Arama en kötü durum

N elemanlı bir ikili ağaçta en fazla kaç adımda aranılan değer bulunabilir?

Ekleme İşlemi

Ekle (Düğüm, Eklenecek) Eğer Düğüm. değer=Eklenecek HATA!!! veva ekleme vapma Eğer Düğüm. değer < Eklenecek Eğer Düğüm. sağ boş ise Düğüm. sağ=yeni düğüm Aksi Halde Ekle (Düğüm. sağ, Eklenecek) Eğer Düğüm. değer>Eklenecek Eğer Düğüm. sol boş ise Düğüm. sol=yeni düğüm Aksi Halde Ekle (Düğüm. sol, Eklenecek)

Ekleme işlemi

20, 14, 25, 29, 36, 12, 5, 16, 21, 27, 35, 56, 8 değerlerini sırasıyla ikili arama ağacına ekleyin.

Ekleme işlemi: 20

20, 14, 25, 29, 36, 12, 5, 16, 21, 27, 35, 56, 8

Ekleme işlemi: 14

Ekleme işlemi: 25

20, 14, 25, 29, 36, 12, 5, 16, 21, 27, 35, 56, 8

20, 14, 25, 29, 36, 12, 5, 16, 21, 27, 35, 56, 8

25, 17, 40, 22, 27, 62, 26, 32, 20, 56, 10, 24, 15 değerlerini sırasıyla ikili arama ağacına ekleyin.

25, 17, 40, 22, 27, 62, 26, 32, 20, 56, 10, 24, 15 değerlerini sırasıyla ikili arama ağacına ekleyin.

Silme işlemi

Silme için 3 farklı durum söz konusudur:

- Silinecek eleman yaprak ise
- Silinecek elemanın sadece bir çocuğu varsa
- Silinecek elemanın iki çocuğu da varsa

Silme işlemi

Silme için 3 farklı durum söz konusudur:

- Silinecek eleman yaprak ise
- Silinecek elemanın sadece bir çocuğu varsa
- Silinecek elemanın iki çocuğu da varsa

Ardıl/Successor

Ağaçta verilen değerden büyük değerlerin en küçüğüdür.

Öncel/Predecessor

Ağaçta verilen değerden küçük değerlerin en büyüğüdür.

Silinecek eleman yaprak ise

Silinecek eleman yaprak ise ebeveyni ile bağlantısını kopartmak yeterlidir. Delete 20

Silinecek eleman yaprak ise

Silinecek eleman yaprak ise ebeveyni ile bağlantısını kopartmak yeterlidir. Delete 20

Silinecek elemanın sadece bir çocuğu varsa

Silinecek elemanın sadece bir çocuğu varsa çocuk düğümü ilgili düğümün yerine kopyala ve düğümü sil.

Delete 30

Silinecek elemanın sadece bir çocuğu varsa

Silinecek elemanın sadece bir çocuğu varsa çocuk düğümü ilgili düğümün yerine kopyala ve düğümü sil.

Delete 30

Silinecek elemanın iki çocuğu da varsa

Silinecek elemanın iki çocuğu da varsa düğümün ardılı(successor) bulunur ve silinir, silinen düğüm ilgili düğümün yerine yerleştirilir.

Delete 50

Silinecek elemanın iki çocuğu da varsa

Silinecek elemanın iki çocuğu da varsa düğümün ardılı(successor) bulunur ve silinir, silinen düğüm ilgili düğümün yerine yerleştirilir. Delete 50

Silme işlemi

22, 25, 40 değerlerini sırasıyla aşağıdaki ikili arama ağacından silin.

Silme işlemi

22, 25, 40 değerleri silindikten sonra.

