

文件更改履历表						
编号	日期	版本	说明	备注		
1.	2015-01-15	V1.0	初始讨论稿			
2.	2015-01-23	V1.1	添加 PATH 设置及 tmpfs 说明			
3.	2015-02-04	V1.2	增加文件系统解压危险警告	X		
4.	2015-03-04	V1.3	添加绑定多 IP 说明	X		
5.	2015-05-04	V1.4	添加 SSH, BOA, 数据库, 加			
			密芯片等说明			
6.	2015-05-25	V1.5	添加时间设置,自动获取IP设			
			置说明			
7.	2016-07-21	V1.6	修改系统 reset 功能说明			
8.	2016-12-15	V1.7	修改时间设置说明及 USB 电			
			源控制说明			
9.						
10.	7. /					
11.	$\langle \rangle$					
12.						
13.						
14.						
15.						
16.						

目 录

– ,	工作环境的建立 - 5 -			
1.	VMware 虚拟机的安装 5 -			
2.	Ubuntu 系统的安装 5 -			
Ξ,	更新文件系统 - 5 -			
1.	解压文件系统压缩包5-			
2.	将修改后的文件系统打包6-			
3.	更新嵌入式计算机上的文件系统6-			
三、	更改 root 账户密码6-			
1.	安装 Debug UART 口驱动程序6-			
2.	设置超级终端6-			
3.	更改 root 账户密码7-			
四、	添加开机自动运行用户程序7-			
五、	修改 PATH 环境变量			
六、	设置并保存系统实时时钟8-			
七、	固定 lp 地址及 MAC 地址的设置8 -			
八、	设置系统自动获取 IP 地址			
九、	单网卡绑定多 IP 实现多网段访问8 -			
十、	系统 reset 功能(预置恢复默认 IP 功能)9-			
十一、	Telnet 服务 10 -			
十二、	FTP 服务 10 -			
十三、	SSH 加密登陆服务 11 -			
1.	更换嵌入式计算机的密钥文件 11 -			
2.	使用密码方式登陆 12 -			
3.	使用密钥认证方式进行无密码登陆12-			
4.	更多的 openssh 配置 12 -			
十四、	BOA 网页服务器 12 -			
十五、	通过 Debug UART 口进行文件的传输13 -			
1.	向嵌入式计算机传送文件13-			
2.	从嵌入式计算机接收文件13 -			
十六、	U 盘机 TF 卡的挂载13 -			
	硬件设备与系统资源对照表 14 -			
十八、	程序编译及示例程序 15 -			
1.	编译环境的建立15 -			
2.	示例程序及编译15 -			
3.	编程注意事项 16 -			
十九、	数据库的使用 - 17 -			
二十、	加密芯片的使用 17 -			
附录 1.	网络转串口功能 - 18 -			

版权声明:

本文件(包含附件)的知识产权归文件提供方(深圳市 恒天智信科技有限公司) 所有。未经授权,请勿传播或复制。

一、 工作环境的建立

如果用户已经有自己的 linux 工作环境,可直接跳过本节内容。

为了方便用户建立 Linux 的工作环境,我们已经为用户制作好 Ubuntu 的 VMware 虚拟机镜像文件。

1. VMware 虚拟机的安装

我们制作镜像文件所用 VMware 软件版本为 9.0.1,由于涉及到版权问题,我们不提供此软件,需要此软件的请用户请自行从网上下载并安装。可下载此版本或更高版本的 VMware 软件。

2. Ubuntu 系统的安装

将光盘目录\编译环境建立\系统镜像\Ubuntu 12.04.rar 文件解压到硬盘。 点击 VMware 软件菜单 File->Open,选中解压出来的 Ubuntu 12.04.vmx,单击打开按 钮。点击 VMware 的运行按钮,如弹出如图所示对话框,点击"I copied it"按钮

系统启动后,进入登陆界面,可以用 htnice 用户名或 root 用户名登录,密码均为 htnice。此系统已经装好 VMware tool 软件,可以直接与电脑之间相互拷贝文件。

二、更新文件系统

- 1. 解压文件系统压缩包
- 1.1 将光盘里的文件系统压缩包 \文件系统\root_htnice.tar.gz 拷贝到工作目录,假设此处为/opt/htnice,创建文件系统解压目录 rootfs。
 mkdir rootfs
- 1.2 将文件系统压缩包解压到 rootfs 目录。 tar zxvf root_htnice.tar.gz -C rootfs。

警告:以上命令中红色部分为设置解压缩的目标目录,如不设置目录,系统默认解压缩到根目录下,将覆盖系统原有文件,造成系统损坏!

2. 将修改后的文件系统打包

- 2.1 进入 rootfs 目录,cd rootfs。
- 2.2 将 rootfs 目录里的所有文件打包成 root_htnice.tar.gz 文件 tar zcvf ../root_htnice.tar.gz * 完成后,在/opt/htnice 目录下生成 root_htnice.tar.gz 文件
- 3. 更新嵌入式计算机上的文件系统
- 3.1 将新生成的 root htnice.tar.gz 文件拷贝至 TF 卡或者 U 盘中。
- 3.2 将 TF 卡或者 U 盘插入到嵌入式计算机相应的接口中,按住 FUN 按钮,接通电源,等 SYS 指示灯点亮,松开 FUN 按钮,更新文件系统过程中,SYS 指示灯会先熄灭,再亮起,如果整个过程顺利完成,蜂鸣器会响一声,SYS 指示灯熄灭,嵌入式计算机会自动启动进入系统。如果更新不成功,蜂鸣器会持续发出间断性报警声,SYS 指示灯会不停的闪烁。(注:如用 U 盘更新文件系统,更新所需时间会比用 TF 卡时间稍长)

注:本机采用的文件系统类型为 YAFFS2

三、 更改 root 账户密码

1. 安装 Debug UART 口驱动程序

嵌入式计算机的 Debug UART 口用来当作控制台,此接口是通过 USB 转串口芯片,将串口转换成 mini usb 口,因此使用该口时,需要在计算机上安装相应的驱动程序,驱动程序在光盘的 \驱动程序\USB 转串口驱动 目录下。

2. 设置超级终端

这里通过超级终端连接嵌入式计算机的控制台,在超级终端中选择 USB 转串口芯片生成的串口号,按照下图进行设置

设置完成后,即可通过超级终端连接嵌入式计算机的控制台。

3. 更改 root 账户密码

出厂默认系统 root 账户密码为 htnice,如需更改 root 账户密码,在控制台中用 passwd root 命令来设置 root 账户密码。

四、 添加开机自动运行用户程序

打开嵌入式计算机文件系统目录中的/etc/init.d/rcS 文件,在最后一行添加需要运行的用户程序,如 HelloWorld 程序,假设存放目录为/home/htnice/app,则在 rcS 文件的末尾新添加一行如下指令

/home/htnice/app/HelloWorld &

其中"&"号表示不等当前程序退出即运行下一行命令。

五、 修改 PATH 环境变量

如需在 PATH 环境变量里添加自定义目录,可通过修改/etc/profile 文件实现。假设需要添加/mywork1 和/mywork2 这两个目录,打开/etc/profile 文件,在 PATH=\$PATH 之后添加自定义目录,此处修改为

PATH=\$PATH:/mywork1:/mywork2

六、 设置并保存系统实时时钟

Linux中更改时间的方法一般使用date 命令,为了把时钟芯片的时钟与linux系统时钟同步,一般使用hwclock命令,在控制台中输入:

date -s "2015-05-25 18:28:08" 设置系统时间为 2015-05-25 18:28:08

如需在线同步系统时间,把嵌入式计算机连接至网络,用以下命令进行同步 ntpdate pool.ntp.org

设置完成后,需要把系统时间保存至时钟芯片 hwclock -u -w 把系统时间存入时钟芯片

开机时使用hwclock -u -s 命令可以恢复linux系统时间为时钟芯片内部保存的时间,一般把该语句放入/etc/init.d/rcS 文件中自动执行。

注意: 我们提供的文件系统已经把 hwclock -u -s 命令写入 rcS 文件中。

七、 固定 Ip 地址及 MAC 地址的设置

嵌入式计算机的 IP 地址及 MAC 地址等信息都是保存在 Flash 存储器中,配置信息在/mnt/yaffs2/net.conf 文件中,用户可自行修改。其中 MAC 地址为我们购买的全球合法唯一的 MAC 地址,请勿擅自修改,否则可能造成网络通讯故障。

更新文件系统不会造成该配置文件的改变和丢失。

八、 设置系统自动获取 IP 地址

如需设置系统为自动获取 IP 地址,只需要在控制台中输入"udhcpc"即可。

可以将此命令写入/etc/init.d/rcS 文件以实现开机自动获取 IP 地址的功能。

九、 单网卡绑定多 IP 实现多网段访问

如果需要实现不同网段的相互访问,可为嵌入式计算机的网卡绑定不通网段的 IP 来实现多网段的访问。

假设需要访问 192.168.0.1-255 的网段,此处给嵌入式计算机的网卡绑定一个192.168.0.233 的 IP 地址,在嵌入式计算机的控制台中输入

ifconfig eth0:1 192.168.0.233 broadcast 192.168.0.255 netmask 255.255.255.0

如图所示,嵌入式计算机的网卡上已经绑定了 192.168.0.233 和 192.168.1.233 两个 IP, 此时可同时与上述两个网段相互通讯。以此方法可继续增加绑定其他 IP。

如需开机自动绑定多 IP,可将上述命令添加到/etc/init.d/rcS 文件中。

十、 系统 reset 功能(预置恢复默认 IP 功能)

出厂默认的文件系统里已内置我们的一个系统服务程序,此程序的作用是通过 FUN 按钮运行用户设定的程序。

我们已经预先设置好恢复 IP 地址的功能,当用户不知道当前嵌入式计算机的 IP,且不方便通过串口控制台进行查看,可通过 FUN 按钮来临时恢复默认 Ip。

操作方法,当嵌入式计算机进入系统后,长按 FUN 按钮不放,3 秒后,SYS 指示灯会闪烁三下,同时板载蜂鸣器会响三声,此时系统的 IP 会临时改成 192.168.1.233。当系统重启后,又会恢复成原先设置的 IP 地址。

该系统服务程序实现的具体功能定义在/etc/reset.conf 文件中,用户可通过修改该文件内容来自定义本服务程序的功能。

另外,用户也可通过删除/etc/init.d/rcS 文件里的"sysrst &"语句来屏蔽此系统服务程序。

十一、 Telnet 服务

出厂默认的文件系统已经开启 Telnet 服务,在 windows 的命令窗口运行"telnet 192.168.1.233"(注: 192.168.1.233 为出厂系统默认 IP 地址),出现登陆界面,输入用户名"root"按回车,如果 root 用户未设密码,则直接进入系统的控制台,否则需要输入 root 用户的密码。

Telnet服务是通过inetd进程启动的,如需屏蔽telnet服务,可打开/etc/inetd.conf文件,将其中

"telnet stream tcp nowait root /usr/sbin/telnetd /usr/sbin/telnetd -i" 这行屏蔽或删除掉。

十二、 FTP 服务

出厂默认的文件系统已经开启 FTP 服务,在 windows 文件夹的地址框中输入 ftp://192.168.1.233/,按回车出现登陆界面

用户名输入 root,如果 root 用户未设置密码,则直接登录即可,否则需要输入 root 用户的密码。登陆后即可与嵌入式计算机进行文件传输。

FTP服务是通过inetd进程启动的,如需屏蔽FTP服务,可打开/etc/inetd.conf文件,将其中

"ftp stream tcp nowait root /usr/sbin/bftpd bftpd" 这行屏蔽或删除掉。

十三、 SSH 加密登陆服务

出厂默认的文件系统已经集成 OPENSSH 服务,默认不开启,如需开启该服务,打开 /etc/init.d/rcS 文件,将 "#/usr/local/bin/sshd" 该行里的 "#"号删除掉,即可开启此服务。开启此服务可以完全取代 telnet 和 ftp 功能,建议关闭以上两项服务。

如不需要 ssh 服务,可删除"/usr/local"和"/usr/libexec"两个文件夹,以此增加 flash 存储的可用空间。

1. 更换嵌入式计算机的密钥文件

出厂系统的默认密钥文件都是一样的,如需更换,将/usr/local/etc 文件夹下的 ssh_host_dsa_key、ssh_host_dsa_key.pub、ssh_host_ecdsa_key、ssh_host_ecdsa_key.pub、 ssh_host_ed25519_key 、 ssh_host_ed25519_key.pub 、 ssh_host_rsa_key 、 ssh_host_rsa_key.pub 这八个文件删除,在 PC 机的 Linux 系统里执行如下命名:

ssh-keygen -t rsa -f ssh_host_rsa_key –N "" ssh-keygen -t dsa -f ssh_host_dsa_key -N ""

ssh-keygen -t ecdsa -f ssh_host_ecdsa_key -N "" ssh-keygen -t dsa -f ssh_host_ed25519_key -N "" chmod 600 ./ssh_host_*_key

将生成的文件拷贝到嵌入式计算机的/usr/local/etc 目录下即可。

2. 使用密码方式登陆

在 PC 机的 Linux 系统下执行如下命名:

ssh root@192.168.1.233 或

sftp root@192.168.1.233

进行控制操作或 ftp 传输, root 默认密码为 htnice

3. 使用密钥认证方式进行无密码登陆

在 PC 机的 Linux 系统下执行如下命令:

ssh-keygen -t rsa

在输入密码界面下直接按回车,将生成/root/.ssh/id_rsa.pub 文件拷贝到嵌入式计算机的 /.ssh/目录下,并改名为 authorized_keys 文件,如需加入多个文件,可用以下命令将 id rsa.pub 文件的内容追加到 authorized keys 文件中:

cat id_ras.pub >> /.ssh/authorized_keys

完成后,可通过以下命令进行无密码登陆 ssh 192.168.1.233 或 sftp 192.168.1.233

4. 更多的 openssh 配置

Openssh 的配置文件 ssh_config 和 sshd_config 文件存放在/usr/local/etc 目录下,更多的设置请自行参考 openssh 的说明文档。

十四、 BOA 网页服务器

出厂默认的文件系统已经集成 BOA 网页服务器,默认不开启,如需开启该服务,打开/etc/init.d/rcS 文件,将 "#/usr/boa/bin/boa" 该行里的 "#"号删除掉,即可开启此服务。

BOA 的配置文件为/etc/boa/boa.conf。

默认的网页存放路径为/usr/boa/www 目录。

十五、 通过 Debug UART 口进行文件的传输

出厂默认的文件系统已经内置 rz 和 sz 两个命令,通过超级终端连接控制台后,可以用超级终端与嵌入式计算机进行文件传输。

1. 向嵌入式计算机传送文件

在超级终端中输入 rz 并回车,如下图所示。

点击超级终端菜单"传送-〉发送文件",点击"浏览"按钮,选择要发送的文件,点击发送,完成后,文件保存在嵌入式计算机的当前目录下。可用"ls"命令查看。

2. 从嵌入式计算机接收文件

在超级终端中输入"sz 文件名"并回车,文件将自动传送到超级终端默认的目录下,默认目录可通过点击超级终端菜单"传送-〉接收文件",在弹出的窗口中进行设置。

十六、 U 盘机 TF 卡的挂载

出厂系统默认的文件系统已经打开 U 盘和 TF 卡的自动挂载功能,挂载目录为

U 盘挂载目录: /mnt/udisk TF 卡挂载目录: /mnt/sd

十七、 硬件设备与系统资源对照表

以下列出嵌入式计算机的外围资源以及Linux系统下对应的设备名称

外围资源	设备名称
COM1	/dev/ttyS1
COM2	/dev/ttyS2
USB电源控制	/dev/usbpwr
FUN按钮	/dev/key
SYS LED指示灯	/dev/led
蜂鸣器	/dev/buzzer
看门狗	/dev/watchdog

十八、 程序编译及示例程序

1. 编译环境的建立

编译ARM平台的应用程序,需要用到交叉编译器,交叉编译器文件为光盘目录下\编译环境建立\交叉编译工具\arm-linux-gcc-4.8.3.tar.gz,将此文件拷贝到Linux某个目录下如/tmp,然后进入到该目录,执行解压命令:

tar xvzf arm-linux-gcc-4.8.3.tar.gz -C /

执行该命令,将把交叉编译器安装到/usr/local/arm/4.8.3 目录下

以下以root用户登录为例,将交叉编译器添加到系统的环境变量中编辑/root/.bashrc 文件,在最后一行添加 export PATH=\$PATH:/usr/local/arm/4.8.3/bin

重新登陆系统, 即完成编译环境的建立。

注:光盘所带的Ubutnu虚拟机镜像文件,已经安装好此交叉编译器。

2. 示例程序及编译

光盘里已经提供了外围资源调用方法的源代码,供用户参考。以下列出各源代码的所在目录。

外围资源	示例代码
串口	\编程示例\串口测试\htcomhex
USB电源控制	\编程示例\USB电源测试\usbpwrtest
FUN按钮	\编程示例\按钮测试\keytest
SYS LED指示灯	\编程示例\LED测试\ledtest
蜂鸣器	\编程示例\蜂鸣器测试\buztest
看门狗	\编程示例\看门狗\watchdog

源代码编译方法:进入相应目录,执行 make 即可。

说明: htcomhex 程序运行命令需带串口号和波特率参数,如 COM1,115200 波特率命令如下: ./htcomhex /dev/ttyS1 115200

3. 编程注意事项

在长时间无人值守的运行环境里,设备的稳定性及故障自动恢复功能显得尤为重要。因此建议在客户的应用程序中增加如下功能。

- 1) 在程序中开启看门狗,并定时喂狗。
- 2) 如需要用到网络,在多次尝试网络不通的情况下,可以通过关闭并重启网卡的方法尝试复位及初始化网卡,方法如下:

在应用程序里调用系统 ifconfig 命令 system("ifconfig eth0 down"); sleep(1); system("ifconfig eth0 up");

3) 由于 nandflash 的擦写次数有限,对于某些程序运行时需要频繁修改文件或频繁生成临时文件的,建议将系统内存 mount 到文件所在目录。此处假设文件存放目录为/mytmp 目录,打开/etc/init.d/rcS 文件,在文件末尾添加一行

mount -t tmpfs tmpfs /mytmp -o size=10m

注意: size 后面是空间大小,大小不能超过系统可用内存大小,同时要预留出一部分内存供系统和应用程序使用,否则会造成系统的死机。

此目录里的文件在系统断电后即丢失,请及时保存到其他可保存的目录中,或通过 网络传输到目标主机中。

十九、 数据库的使用

默认的文件系统已经集成对 SQLite 数据库的支持,用户可在终端中输入"sqlite3"进行测试。

另外,我们在光盘中为用户提供了 SQLite 的编程示例,源代码路径为"\光盘\编程示例\数据库测试\sqlite test.tar.gz"。

二十、 加密芯片的使用

警告:

- 1、加密芯片与用户相关的出厂熔丝都为芯片原厂出厂初始状态,开放给用户的密码保护权限为最高权限,我公司不保留控制权,机器出厂后因不当操作引起的用户熔丝或密码认证锁死问题,我公司也将无法解除,所以一旦出厂后出现锁死问题概不在保修范围内。加密芯片锁死后,只能通过更换加密芯片来解决锁死问题(锁死问题更换加密芯片为有偿服务)。
- 2、所有的加密手段都有被破解风险,用户在进行应用程序加密绑定时,需要综合 考虑被破解的可能性。加密的安全性取决于芯片自身与用户应用程序的加密机制。本 公司只提供给用户一个加密手段,不承担任何因用户应用程序被反向工程破解引起的 损失;

用户使用了加密芯片功能,视同已经仔细阅读上述条款并接受可能存在的风险!

嵌入式计算机在硬件上已经集成加密芯片,确保用户程序不被随意复制使用,保护 用户的知识产权及劳动成果。

为了用户能简单快速的使用加密芯片,我司已经将加密芯片的操作进行了封装,以库文件的方式提供给用户使用,并附上详细的说明手册及示例程序,详情请参考光盘里的《HTNICE 加密芯片使用手册》。

附录 1、网络转串口功能

本功能是通过网上开源项目 ser2net 实现的,在此提供实现方法说明,仅供用户参考,请用户自行研究,本公司不提供对此项目的技术支持。

Ser2net 是网上的一个开源项目,其目的是通过网络去连接和控制串口设备,项目的主页地址为 http://sourceforge.net/projects/ser2net/

1) 下载 ser2net 源码并编译

下载 http://sourceforge.net/projects/ser2net/files/ser2net/ser2net-2.9.1.tar.gz 并解压, 进入解压文件夹,运行

./configure --host=arm-linux

make

将生成的 ser2net 文件拷贝到嵌入式计算机的/usr/sbin 目录下,并添加可执行属性。将 ser2net.conf 文件拷贝到嵌入式计算机的/etc 目录下。

2) 安装设置 ser2net

ser2net 支持以 raw,rawlp 以及 telnet 模式运行,只有 telnet 模式支持通过客户端修 改串口参数,以此方式实现的网络转串口,使用起来跟本机的硬件串口几乎一样,所以就以 telnet 方式为例进行说明,其他两种方式请用户自行研究。

此处以 COM1 为例来说明设置方法,用户可以以同样的方法开启 COM2。

打开/etc/ser2net.conf 文件,将 113 行之后的所有配置内容删除掉,然后添加 3001:telnet:0:/dev/ttyS1:9600 remctl

此处将嵌入式计算机上的 COM1 配置为网络转串口使用。

设置完成后,在控制台输入 ser2net 并回车,启动程序。

3) windows 下连接串口

windows 下,我们通过 com0com 和 hub4com 连接 ser2net,此项目为开源软件,项目网址为 http://sourceforge.net/projects/com0com/

此处我们仅以 windows xp 进行说明,其他版本的 windows 请用户自行测试。

首先下载 com0com, 下载地址为

http://sourceforge.net/projects/com0com/files/com0com/3.0.0.0/com0com-3.0.0.0-i3 86-and-x64-unsigned.zip

安装完成后,点击开始菜单->所有程序->com0com->Setup,出现如图界面

点击 "Add Pair" 按钮,系统会提示找到新硬件,选择自动安装软件,即可完成驱动程序的安装。完成后,系统便生成了 CNCAO 和 CNCBO 两个虚拟串口。如图

钩选左边的"use Ports class"选框,如下图:

点击"Apply"按钮,此时会重新安装驱动程序,完成后原先的 CNCAO 变为 COM4 (注:根据不同电脑的实际情况,生成不同的串口号),如图

下载 hub4com,下载地址为

http://sourceforge.net/projects/com0com/files/hub4com/2.1.0.0/hub4com-2.1.0.0-386 .zip

解压后, 打开命令行窗口, 进入解压目录, 执行运行命令

com2tcp-rfc2217 \\.\CNCB0 192.168.1.233 3001

如下图所示,即正确连接到 ser2net

```
_ 🗆 ×

■ 命令提示符 - com2tcp-rfc2217 \\.\CMCBO 192.168.1.233 3001

TCP(1) SEND: DO 1
TCP(1) RECU: DONT 1
TCP(1) RECU: DO Ø
TCP(1) SEND: WILL 0
TCP(1) RECU: SB 44
 107 0 SE
TCP(1) RECV: DO 44
TCP(1) RECV: SB 44
 101 0 0 4 176 SE
CP(1) RECU: SB 44
102 7 SE
TCP<1> RECU: SB 44
103 1 SE
TCP(1) RECU: SB 44
 104 1 SE
CP(1) RECU: SB 44
105 9 SE
TCP(1) RECU: SB 44
 105 12 SE
 CP(1) RECU: SB 44
 105 6 SE
TCP(1) RECU: WILL 3
TCP(1) RECU: WILL 1
TCP(1) RECU: DO Ø
```

此时,我们就可以通过正常操作本机的虚拟串口 COM4 来操作嵌入式计算机上的串口 COM1,所有操作及编程方法跟操作本机的硬件串口方法一致。

以下为 windows xp 通过嵌入式计算机上的 COM1 与 windows 7 上的 COM3 进行通讯测试图。

深圳市恒天智信科技有限公司

地址:深圳市龙华新区油松路106号天汇大厦D栋616

电话: (086) 755-82792766 传真: (086) 755-82550036

http://www.htnice.com