Sterowanie adaptacyjne i estymacja

Maciej Cebula Kajetan Piertusa Daniel Rubak

Kraków, 2017

Spis treści

1	Wst	tęp	2
	1.1	Cel zajęć	2
2	Idor	ntyfikacja	1
4			4
	2.1	Model obiektu	4
	2.2	Optymalizacja nastaw regulatora	4
		2.2.1 Zestawy parametrów	4
		2.2.2 Optymalizacja nastaw regulatorów	4

${f Wstep}$

1.1 Cel zajęć

Celem niniejszej pracy była analiza oraz dobór parametrów systemu adaptacyjnego w zależności od występujących w systemie zakłóceń oraz transmitancji obiektu, którym sterowano. Przyjęty model przedstawiono na rysunku 1.1.

Rys. 1.1: Model układu sterowania

Poszczególne regulatory znajdujące się na schemacie opisano następującymi wzorami:

$$PD_1 = \alpha_1 + \beta_1 \cdot s \tag{1.1}$$

$$PD_2 = \alpha_2 + \beta_2 \cdot s \tag{1.2}$$

$$PI = \gamma + \frac{\delta}{s} \tag{1.3}$$

Element wykonawczy jest opisany za pomocą zależności:

$$\frac{K_{w2}}{T_w s + T} \tag{1.4}$$

Wartości parametrów K_{w1} , K_{w2} , T_w , K_0 potraktowano jako zadane. Przyjęto, iż testy zostaną przeprowadzone dla wartości zadanej r dla pięciu różnych poziomów zmieniających się w zakresie $5-70^{\circ}C$. Zakłóceniem z_1 był niemierzalny skok 1(t), natomiast z_2 było mierzalnym skokiem 1(t).

W ramach projektu należało przeprowadzić optymalizację poszczególnych parametrów podanych powyżej regulatorów, tj. α_1 , β_1 , α_2 , β_2 , γ , δ . Wskaźnikiem jakości, na mocy którego optymalizowano działanie całego układu, była całka z modułu uchybu:

$$J = \int |r - y| dt \tag{1.5}$$

. Ponadto przyjęto, iż oczekiwanym efektem optymalizacji będzie takie zachowanie układu, by bez względu na wartości zakłóceń z_1 i z_2 , efekt nadążania i stabilizacji będzie najlepszy.

Identyfikacja

2.1 Model obiektu

Obiektem sterowania był model Strejca opisany transmitancją:

$$G(s) = \frac{K_0}{(T_0 \cdot s + 1)^n} \cdot e^{-\tau \cdot s}$$
 (2.1)

Na potrzeby niniejszej pracy ograniczono się do obserwacji zachowania modeli rzędu pierwszego, drugiego oraz trzeciego.

2.2 Optymalizacja nastaw regulatora

Do optymalizacji nastaw regulatorów wykorzystana została funkcja *fmincon* z pakietu MATALB. Badania przeprowadzone zostały dla jednego zestawu parametrów z jednoczesną zmianą rzędu obiektu, którym sterowano.

2.2.1 Zestawy parametrów

W tabeli 2.1 zamieszczono przyjęte wartości parametrów.

2.2.2 Optymalizacja nastaw regulatorów

Dla kolejnych zestawów parametrów opisujących system przeprowadzano procedurę optymalizacji nastaw regulatorów minimalizując wskaźnik jakości opisany zależnością 1.5. Proces

Tabela 2.1: Zestawy parametrów dla których przeprowadzano optymalizację nastaw regulatorów.

Parametr	Wartość
K_{w1}	10
K_{w2}	5
T_{w2}	0.1
T_0	1
K_0	10
au	1

optymalizacji przeprowadzany był dla różnych wartości zadanych w obecności znanego zakłócenia z_2 (zakłócenie skokowo zmieniające swoją wartość) oraz nieznanego zakłócenia z_1 . Przebiegi owych zakłóceń przedstawiono na rysunku 2.1.

Rys. 2.1: Zakłócenia.

Dla przedstawionych powyżej przebiegów zakłóceń przeprowadzono optymalizację a otrzymane nastawy dla poszczególnych obiektów zamieszczono w tabelach 2.2 - 2.4.

Tabela 2.2: Parametry regulatorów dla obiektu pierwszego rzędu.

Parametr regulatora\	P1	<i>D</i> 1	P2	D2	P3	I3	Kr
Wart. zadana		D_1	1 2	D_{-}^{2}	1.5	13	IXI
5	0,0210	0,0375	0,2631	3051,8095	0,0690	0,0495	0,5446
10	0,0136	0,0025	0,8315	0,5000	0,0011	0,0139	0,8967
20	0,1184	65,7395	0,1422	119,0489	0,0503	0,0000	0,1098
50	0,0800	2,3514	0,3671	537,5907	0,0402	0,0194	0,5373
70	0,0571	8,2291	0,2161	99999,4370	0,0489	0,0347	0,5372

Tabela 2.3: Parametry regulatorów dla obiektu drugiego rzędu.

Parametr regulatora\	<i>P</i> 1	D1	P2	D2	P3	I3	Kr
Wart. zadana	F1	D1	<i>P </i>	D_{2}	Рэ	15	ΛT
5	0,747	0,000	1,317	0,917	0,017	0,010	1,203
10	0,091	0,038	1,046	352,383	0,086	0,000	1,098
20	0,103	0,986	0,515	5,071	0,036	0,000	0,539
50	0,000	123,529	0,002	112,641	0,496	0,175	0,005
70	0,057	20,823	0,289	0,000	0,054	0,018	0,648

Tabela 2.4: Parametry regulatorów dla obiektu trzeciego rzędu.

Table 2010 1 aramietty 100 aramiette ara esterio a tribello 100 in fata.							
Parametr regulatora\	<i>P</i> 1	<i>D</i> 1	P2	D2	P3	I3	Kr
Wart. zadana	1 1	<i>D</i> 1	1 2	22	1 0	10	117
5	0,101	1,082	0,445	0,329	0,044	0,000	0,541
10	0,103	0,085	0,607	0,450	0,093	0,009	1,222
20	0,103	3,252	0,460	123,929	0,028	0,000	0,544
50	0,016	3,921	0,007	6447,659	0,427	0,132	0,004
70	0,057	0,757	0,164	7,857	0,053	0,014	0,547

W tabeli 2.5 przedstawiono wartości wskaźnika jakości dla wszystkich przeprowadzonych symulacji.

Tabela 2.5: Wartości wskaźnika jakości dla różnych wartości zadanych i różnych zestawów parametrów opisujących system.

Nr zestawu\ Wart. zadana	1	2	3
5	68,7359	47,761466	57,1911
10	120,7282	54,657476	75,8104
20	106,0193	73,950359	100,7350
50	190,4820	203,0570	297,3518
70	262,3173	414,4438	525,3915

Na rysunkach 2.2 - 2.5 przedstawiono przykładowe przebiegi zawierające odpowiedzi obiektów dla różnych wartości zadanych.

Rys. 2.2: Odpowiedź obiektu drugiego rzędu, r=20

Rys. 2.3: Odpowiedź obiektu drugiego rzędu, r=70

Rys. 2.4: Odpowiedź obiektu trzeciego rzędu, r=20

Rys. 2.5: Odpowiedź obiektu trzeciego rzędu, r=70

Bibliografia

[1] Witold Byrski, Obserwacja i sterowanie w systemach dynamicznych. Wydawnictwa AGH, Kraków, 2007.