1. Find the **DC component** of the following periodical signal with the period 0.04.

hint: write the signal x(t) in a single period $[0, T_0]$, where $T_0 = 0.04$. Then use the Fourier series integral formula to find the Fourier-series coefficients.

2. The amplitude-modulation (AM) signal is a product the form,

$$x(t) = v(t)cos(2\pi f_c t).$$

Consider the case where $v(t) = 5 + 4cos(40\pi t)$, and the carrier frequency $f_c = 700Hz$. The time-domain of the signal x(t) is shown as

Question: Find and draw the spectrum of x(t) in terms of Continuous Fourier Transform

3. Does the following statement hold?

"Sum of sinusoids of equal frequencies is still a sinusoid of the same frequency." Show your reason.

(Here we assume that zero signal $x(t) = 0 \ \forall t$ can be explained as a sinusoid of any frequency).

4. Derive that the following is a continuous Fourier transform pair (a>0), where u(t) is the unit step function.

Time-Domain $e^{-at}u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{a+j\omega}$