Title

D. Zack Garza

Sunday 26th July, 2020

Contents

1	Gro	p Theory
	1.1	Big List of Notation
	1.2	The Symmetric Group
	1.3	Counting Theorems
		1.3.1 Group Actions
		1.3.2 Examples of Orbit-Stabilizer
		1.3.3 The Class Equation

1 Group Theory

- 2^X denotes the powerset of X.
 For any p dividing the order of G, Syl_p(G) denotes the set of Sylow-p subgroups of G.

1.1 Big List of Notation

$$C_G(x) = \left\{g \in G \mid [g,x] = 1\right\} \qquad \subseteq G \qquad \begin{array}{l} \text{Centralizer (Element)} \\ C_G(H) = \left\{g \in G \mid [g,h] = 1 \ \forall h \in H\right\} = \bigcap_{h \in H} C_G(h) \qquad \leq G \qquad \begin{array}{l} \text{Centralizer (Element)} \\ C_G(H) = \left\{g \in G \mid [g,h] = 1 \ \forall h \in H\right\} = \bigcap_{h \in H} C_G(h) \qquad \leq G \qquad \begin{array}{l} \text{Centralizer (Subgroup)} \\ C(h) = \left\{ghg^{-1} \mid g \in G\right\} \qquad \subseteq G \qquad \text{Conjugacy Class} \\ Z(G) = \left\{x \in G \mid \forall g \in G, \ gxg^{-1} = x\right\} \qquad \subseteq G \qquad \text{Center} \\ N_G(H) = \left\{g \in G \mid gHg^{-1} = H\right\} \qquad \subseteq G \qquad \text{Normalizer} \\ Inn(G) = \left\{gg(x) = gxg^{-1}\right\} \qquad \subseteq \text{Aut}(G) \qquad \text{Inner Aut.} \\ Out(G) = \left\{gg(x) = gxg^{-1}\right\} \qquad \subseteq \text{Aut}(G) \qquad \text{Outer Aut.} \\ [g,h] = \left\{ghgh^{-1} = G \qquad \text{Commutator (Element)} \\ [G,H] = \left\{\left[g,h\right] \mid g \in G, h \in H\right\}\right\} \qquad \leq G \qquad \text{Commutator (Subgroup)} \\ \hline \mathcal{O}_x \text{ or } G \cdot x = \left\{gx \mid x \in X\right\} \qquad \subseteq X \qquad \text{Orbit} \\ \text{Stab}_G(x) \text{ or } G_x = \left\{g \in G \mid g.x = x\right\} \qquad \subseteq G \qquad \text{Stabilizer} \\ X/G = \left\{gx \mid x \in X\right\} \qquad \subseteq 2^X \qquad \text{Set of Orbits} \\ X'g = \left\{x \in X \mid \forall g \in G, \ g.x = x\right\} \qquad \subseteq X \qquad \text{Fixed Points} \\ \end{array}$$

Definition 1.0.1 (Normal Closure of a Subgroup).

The smallest normal subgroup of G containing H:

$$H^G \coloneqq \{gHg^{-1} : g \in G\} = \bigcap \{N : H \le N \le G\}.$$

Definition 1.0.2 (Normal Core of a subgroup).

The largest normal subgroup of G containing H:

$$H_G = \bigcap_{g \in G} gHg^{-1} = \langle N : N \le G \& N \le H \rangle = \ker \psi.$$

where

$$\psi: G \longrightarrow \operatorname{Aut}(G/H)$$

 $g \mapsto (xH \mapsto gxH)$

Definition 1.0.3 (Characteristic subgroup).

 $H \leq G$ is *characteristic* iff H is fixed by every element of $\operatorname{Aut}(G)$.

Definition 1.0.4 (Subgroup Generated by a Subset).

If $H \subset G$, then $\langle H \rangle$ is the smallest subgroup containing H:

$$\langle H \rangle = \bigcap \left\{ H \mid H \subseteq M \le G \right\} M = \left\{ h_1^{\pm 1} \cdots h_n^{\pm 1} \mid n \ge 0, h_i \in H \right\}$$

Definition 1.0.5 (Centralizer).

$$C_G(H) = \left\{ g \in G \mid ghg^{-1} = h \ \forall h \in H \right\}$$

Definition 1.0.6 (Normalizer).

$$N_G(H) = \left\{ g \in G \mid gHg^{-1} = H \right\} = \bigcup \left\{ H \mid H \le M \le G \right\} M$$

Theorem $1.1 (The\ Fundamental\ Theorem\ of\ Cosets).$

$$aH = bH \iff a^{-1}b \in H \text{ or } aH \cap bH = \emptyset$$

Definition 1.1.1 (The Quaternion Group).

The Quaternion group of order 8 is given by

$$Q = \langle x, y, z \mid x^2 = y^2 = z^2 = xyz = -1 \rangle$$
$$= \langle x, y \mid x^4 = y^4, x^2 = y^2, yxy^{-1} = x^{-1} \rangle$$

Definition 1.1.2 (The Dihedral Group).

A dihedral group of order 2n is given by

$$D_n = \left\langle r, s \mid r^n, s^2, rsr^{-1} = s^{-1} \right\rangle$$

1.2 The Symmetric Group

Definition 1.1.3 (Parity of a Cycle). • A cycle is **even** ⇔ product of an *even* number of transpositions.

- A cycle of even *length* is **odd**
- A cycle of odd *length* is **even**

Mnemonic: the parity of a k-cycle is the parity of k-1.

Definition 1.1.4 (Alternating Group).

The alternating group is the subgroup of even permutations, i.e.

$$A_n := \left\{ \sigma \in S_n \mid \operatorname{sign}(\sigma) = 1 \right\}$$

where $sign(\sigma) = (-1)^m$ and m is the number of cycles of even length.

Corollary 1.2(Alternating Group).

Every $\sigma \in A_n$ has an even number of odd cycles (i.e. an even number of even-length cycles).

Example 1.1.

$$A_4 = \{ id, \\ (1,3)(2,4), (1,2)(3,4), (1,4)(2,3), \\ (1,2,3), (1,3,2), \\ (1,2,4), (1,4,2), \\ (1,3,4), (1,4,3), \\ (2,3,4), (2,4,3) \}$$

Definition 1.2.1 (Transitive Subgroup).

A subgroup of S_n is **transitive** iff its action on $\{1, 2, \dots, n\}$ is transitive.

Useful Facts:

- $\sigma \circ (a_1 \cdots a_k) \circ \sigma^{-1} = (\sigma(a_1), \cdots \sigma(a_k))$
- Conjugacy classes are determined by cycle type
- The order of a cycle is its length.
- The order of an element is the least common multiple of the sizes of its cycles.
- $A_{n\geq 5}$ is simple.

1.3 Counting Theorems

Theorem 1.3 (Lagrange's Theorem).

$$H \le G \implies |H| \mid |G|.$$

Corollary 1.4.

The order of every element divides the size of G, i.e.

$$g \in G \implies o(g) \mid o(G) \implies g^{|G|} = e.$$

⚠ Warning: There does not necessarily exist $H \leq G$ with |H| = n for every $n \mid |G|$. Counterexample: $|A_4| = 12$ but has no subgroup of order 6.

Theorem 1.5 (Cauchy's Theorem).

For every prime p dividing |G|, there is an element (and thus a subgroup) of order p.

This is a partial converse to Lagrange's theorem, and strengthened by Sylow's theorem.

1.3.1 Group Actions

Definition 1.5.1 (Group Action).

An action of G on X is a group morphism

$$\varphi: G \times X \to X$$
$$(g, x) \mapsto g \cdot x$$

or equivalently

$$\varphi: G \longrightarrow \operatorname{Aut}(X)$$
$$g \mapsto (x \mapsto \varphi_g(x) \coloneqq g \cdot x)$$

satisfying

1. $e \cdot x = x$

2.
$$g \cdot (h \cdot x) = (gh) \cdot x$$

Useful fact: $\ker \psi = \bigcap_{x \in X} G_x$ is the intersection of all stabilizers.

Definition 1.5.2 (Transitive Group Action).

A group action $G \cap X$ is *transitive* iff for all $x, y \in X$ there exists a $g \in G$ such that $g \cdot x = x$. Equivalently, the action has a single orbit.

Reminder of notation: for a group G acting on a set X,

- $G \cdot x = \{g \cdot x \mid g \in G\} \subseteq X$ is the orbit
- $G_x = \{g \in G \mid g \cdot x = x\} \subseteq G \text{ is the stabilizer}$
- $X/G \subset 2^X$ is the set of orbits
- $X^g = \left\{ x \in X \;\middle|\; g \cdot x = x \right\} \subseteq X$ are the fixed points

Note that being in the same orbit is an equivalence relation which partitions X, and G acts transitively if restricted to any single orbit.

Theorem 1.6 (Orbit-Stabilizer).

$$|G \cdot x| = [G : G_x] = |G|/|G_x|$$
 if G is finite

Mnemonic: $G/G_x \cong G \cdot x$.

1.3.2 Examples of Orbit-Stabilizer

- 1. Let G act on itself by left translation, where $g \mapsto (h \mapsto gh)$.
- The orbit $G \cdot x = G$ is the entire group
- The stabilizer G_x is only the identity.

- The fixed points X^g are only the identity.
- 2. Let G act on *itself* by conjugation.
- $G \cdot x$ is the **conjugacy class** of x (so not generally transitive)
- $G_x = Z(x) := C_G(x) = \{g \mid [g, x] = e\}, \text{ the centralizer of } x.$
- G^g (the fixed points) is the **center** Z(G).

Corollary 1.7.

The number of conjugates of an element (i.e. the size of its conjugacy class) is the index of its centralizer, $[G:C_G(x)]$.

1.3.3 The Class Equation

$$|G| = |Z(G)| + \sum_{\substack{\text{One } x_i \text{ from each conjugacy} \\ \text{close}}} [G : C_G(x_i)]$$

Note that $[G:C_G(x_i)]$ is the number of elements in the conjugacy class of x_i , and each $x_i \in Z(G)$ has a singleton conjugacy class.

Examples

- 1. Let G act on X, its set of subgroups, by conjugation.
- $G \cdot H = \left\{gHg^{-1}\right\}$ is the set of conjugate subgroups of H
- $G_H = N_G(H)$ is the **normalizer** of in G of H
- X^g is the set of **normal subgroups** of G

Corollary 1.8.

Given $H \leq G$, the number of conjugate subgroups is $[G:N_G(H)]$.

- 2. For a fixed proper subgroup H < G, let G act on its cosets $G/H = \{gH \mid g \in G\}$ by left translation.
- $G \cdot gH = G/H$, i.e. this is a transitive action.
- $G_{qH} = gHg^{-1}$ is a conjugate subgroup of H
- $(G/H)^G = \emptyset$

Proposition 1.9 (Application of the Class Equation).

If G is simple, H < G proper, and [G : H] = n, then there exists an injective map $\varphi : G \hookrightarrow S_n$.

Proof.

This action induces φ ; it is nontrivial since gH = H for all g implies H = G; $\ker \varphi \leq G$ and G simple implies $\ker \varphi = 1$.

Theorem 1.10 (Burnside's Formula).

Slogan: the number of orbits is equal to the average number of fixed points, i.e.

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

1 GROUP THEORY

7