Euclid's Algorithm Analysis

This notebook aims to implement and analyze Euclid's Algorithm. The algorithm at its highest level finds the greatest common divisors between two integers.

Author

Robert Greenslade

Creating Eucild's Algorithm

In this section, we will implement the function to replicate Euclid's Algorithm in python.

```
In [25]: def greatest_common_divisor(a: int, b: int, depth: int = 1) -> (int, int):
    """
    Compute the greatest common divisor of integers a and b.

Args:
    a (int): The first integer, a
    b (int): The second integer, b
    depth (int): The depth or amount of operations

Returns:
    tuple[int, int]: The tuple of god and number of operations.

"""

# Same case (When b = 0)
    if b == 0:
        return (a, depth)

# Recursive step
    a, b = abs(a), abs(b)
    depth | 4 |
        return greatest_common_divisor(b, a % b, depth)
```

Examples

In [27]: # We expect a gcd of 0 and 1 operation here

We will now use the above function to show what the result would be in some concrete examples.

```
gcd, operations = greatest_common_divisor(0, 0)
         print(f'GCD: {gcd}')
         print(f'Operations: {operations}')
        GCD: 0
        Operations: 1
In [28]: # We expect a gcd of 5 and 1 operation here
         gcd, operations = greatest_common_divisor(10, 5)
         print(f'GCD: {gcd}')
         print(f'Operations: {operations}')
        GCD: 5
        Operations: 2
In [29]: # We expect a gcd of 5 and 2 operations here
         gcd, operations = greatest_common_divisor(5, 10)
         print(f'GCD: {gcd}')
         print(f'Operations: {operations}')
        Operations: 3
In [30]: # We expect a gcd of 10 and 2 operations here
         gcd, operations = greatest_common_divisor(10, 100000000)
         print(f'GCD: {gcd}')
```

Algorithm Analysis

GCD: 10

Operations: 3

print(f'Operations: {operations}')

```
We will now use a python library, matplotlib, to display some results to better reflect the effectiveness of this algorithm.
In [31]: import random
         import matplotlib.pyplot as plt
         import statistics
         # The input size, defined as the average of the a and b
         N: list[tuple[int, int]] = []
         # The list of T(a, b) where T(a, b) denotes the number of operations
         T: list[int] = []
         # The maximum value a or b can be, setting a limit for the loop
         CUTOFF = 9999
         a, b = 0, 0
         while a < CUTOFF and b < CUTOFF:</pre>
             _, operations = greatest_common_divisor(a, b)
            N.append((a + b) / 2)
            T.append(operations)
             a = a + random.randint(1, 50)
            b = b + random.randint(1, 50)
         # Create the plot
         plt.figure(figsize=(8, 6))
         plt.plot(N, T, marker='o', linestyle='-')
         # Set labels
         plt.xlabel("Input Mean")
         plt.ylabel("Number of Operations")
         plt.title("Input Mean Vs. Operations")
         # Show the plot
         plt.show()
         # Print some statistics from the operations
         print("Operation Statistics:")
         print(f"\tMean operations: {statistics.mean(T)}")
         print(f"\tMedian operations: {statistics.median(T)}")
```


Observations

The data from above helps us realize how good this algorithm is even with larger values of a and b. While it works well, there are some downsides of this algorithm that the analytics can hide sometimes. Through some additional research, I found that the worst case for a and b are large consecutive Fibonacci numbers. This is because the nth Fibonacci number Fn mod Fn-1 is Fn-2. That means it would take n operations to get to the base case. Observe this below.

```
In [32]: def fib_numbers(n: int) -> list[int, ...]:
            if n <= 0:
                 return []
            elif n == 1:
                 return [1]
             elif n == 2:
                 return [1,1]
            fib_list = [1, 1]
            for i in range(2, n):
                fib_list.append(fib_list[-1] + fib_list[-2])
            return fib_list
         # Examples
         print("Examples:")
         print(f'\tFirst 0 Fibonacci numbers: {fib_numbers(0)}')
         print(f'\tFirst 1 Fibonacci numbers: {fib_numbers(1)}')
         print(f'\tFirst 2 Fibonacci numbers: {fib_numbers(2)}')
         print(f'\tFirst 10 Fibonacci numbers: {fib_numbers(10)}')
         # Observe the linear complexity of Euclid's Algorithm on a = Fn and b = Fn-1
         fib_numbers_list = fib_numbers(30)
         N = []
         operations = []
         for i in range(1,len(fib_numbers_list)):
            _, operation = greatest_common_divisor(fib_numbers_list[i-1], fib_numbers_list[i])
            operations.append(operation)
            N.append(i)
         # Create the plot
         plt.figure(figsize=(8, 6))
         plt.plot(N, operations, marker='o', linestyle='-')
         # Set labels
         plt.xlabel("Size of N")
         plt.ylabel("Number of Operations")
         plt.title("Input Size Vs. Number of Operations")
         # Show the plot
         plt.show()
        Examples:
               First O Fibonacci numbers: []
               First 1 Fibonacci numbers: [1]
```


Conclusion

