Introduction to Spark Streaming

Real time processing on Apache Spark

Agenda

- Real time analytics in Big data
- Unification
- Spark streaming
- DStream
- DStream and RDD
- Stream processing
- DStream transformation
- Hands on

3 V's of Big data

Volume

- TB's and PB's of files
- Driving need for batch processing systems

Velocity

- TB's of stream data
- Driving need for stream processing systems

Variety

- Structured, semi structured and unstructured
- Driving need for sql, graph processing systems

Velocity

- Speed at which
 - Collect the data
 - Process to get insights
- More and more big data analytics becoming real time
- Primary drivers
 - Social media
 - loT
 - Mobile applications

Use cases

- Twitter needs to crunch few billion tweets/s to publish trending topics
- Credit card companies needs to crunch millions of transactions/s for identifying fraud
- Mobile applications like whatsapp needs to constantly crunch logs for service availability and performance

Real Time analytics

- Ability to collect and process TB's of streaming data to get insights
- Data will be consumed from one or more streams
- Need for combining historical data with real time data
- Ability to stream data for downstream application

Stream processing using M/R

- Map/Reduce is inherently batch processing system which is not suitable for streaming
- Need for data source as disk put latencies in the processing
- Stream needs multiple transformation which cannot be expressed effectively on M/R
- Overhead in launch of a new M/R job is too high

Apache Storm

- Apache storm is a stream processing system build on top of HDFS
- Apache storm has it's on API's and do not use Map/Reduce
- It's a one message at time in core and micro batch is built on top of it(trident)
- Built by twitter

Limitations of Streaming on Hadoop

- M/R is not suitable for streaming
- Apache storm needs learning new API's and new paradigm
- No way to combine batch result from M/R with Apache storm streams
- Maintaining two runtimes are always hard

Unified Platform for Big Data Apps

Spark streaming

Spark Streaming is an extension of the core Spark API that enables scalable, high-throughput, fault-tolerant stream processing of live data streams

Micro batch

- Spark streaming is a fast batch processing system
- Spark streaming collects stream data into small batch and runs batch processing on it
- Batch can be as small as 1s to as big as multiple hours
- Spark job creation and execution overhead is so low it can do all that under a sec
- These batches are called as DStreams

Discretized streams (DStream)

Input stream is divided into multiple discrete batches. Batch is configurable.

DStream

- Discretized streams
- Each batch of data is converted to small discrete batches
- Batch size can be from 1s multiple mins
- DStream can be constructed from
 - Sockets
 - Kafka
 - HDFS
 - Custom receivers

DStream to RDD

Dstream to RDD

- Each batch of Dstream is represented as RDD underneath
- These RDD are replicated in cluster for fault tolerance
- Every DStream operation result in RDD transformation
- There are API's to access these RDD is directly
- Can combine stream and batch processing

DStream transformation

Socket

Stream

val ssc = new
StreamingContext(args(0),
"wordcount", Seconds(5))

val lines = ssc.
socketTextStream
("localhost",50050)

val words = lines.flatMap(_.
split(" "))

Socket stream

- Ability to listen to any socket on remote machines
- Need to configure host and port
- Both Raw and Text representation of socket available
- Built in retry mechanism

Wordcount example

File Stream

- File streams allows for track new files in a given directory on HDFS
- Whenever there is new file appears, spark streaming will pick it up
- Only works for new files, modification for existing files will not be considered
- Tracked using file creation time

FileStream example

Receiver architecture

Stateful operations

Ability to maintain random state across multiple batches

Fault tolerant

Exactly once semantics

WAL (Write Ahead Log) for receiver crashes

StatefulWordcount example

How stateful operations work?

- Generally state is a mutable operation
- But in functional programming, state is represented with state machine going from one state to another fn(oldState,newInfo) => newState
- In Spark, state is represented using RDD.
- Change in the state is represented using transformation of RDD's
- Fault tolerance of RDD helps in fault tolerance of state

Transform API

- In stream processing, ability to combine stream data with batch data is extremely important
- Both batch API and stream API share RDD as abstraction
- transform api of DStream allows us to access underneath RDD's directly

Ex: Combine customer sales data with customer information

CartCustomerJoin example

Window based operations

Window wordcount

References

- http://www.slideshare.net/pacoid/qcon-so-paulorealtime-analytics-with-spark-streaming
- http://www.slideshare.net/ptgoetz/apache-storm-vsspark-streaming
- https://spark.apache.org/docs/latest/streamingprogramming-guide.html