応用数学特論Ⅱ (集中講義)

Day 2 Hadamard matrices & BIB designs

盧 暁南 (山梨大学) Xiao-Nan LU (University of Yamanashi)

> Aug. 26, 2021 Kobe University

Outline

- 1 Pan balance weighing designs and Hadamard matrices
- 2 Spring balance weighing designs and BIB designs
- Cyclic designs and difference families
- 4 Steiner triple systems
- 5 Pairwise balanced design, group divisible design
- **6** Combinatorial t-designs, Hadamard designs

Pan balance weighing designs (model 1)

• 4 objects

 Estimate of the weight = weighing = true weight + error

$$\begin{cases} \hat{a} = y_1 = a + \varepsilon_1 \\ \hat{b} = y_2 = b + \varepsilon_2 \\ \hat{c} = y_3 = c + \varepsilon_3 \\ \hat{d} = y_4 = d + \varepsilon_4 \end{cases}$$

• 4 weighings

Pan balance weighing designs (model 2)

Model 2:

$$\begin{cases} y_1 = a + b + c + d + \varepsilon_1 \\ y_2 = a + b - c - d + \varepsilon_2 \\ y_3 = a - b + c - d + \varepsilon_3 \\ y_4 = a - b - c + d + \varepsilon_4 \end{cases}$$

• The estimates of the weights

$$\hat{a} = \frac{1}{4}(y_1 + y_2 + y_3 + y_4)$$

$$= a + \frac{1}{4}(\varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4).$$

$$\hat{b} = \frac{1}{4}(y_1 + y_2 - y_3 - y_4)$$

$$= b + \frac{1}{4}(\varepsilon_1 + \varepsilon_2 - \varepsilon_3 - \varepsilon_4).$$

$$\hat{c} = \dots$$

Which model is better?

- $\varepsilon_i \sim N(0, \sigma^2)$ i.i.d. for $1 \le i \le 4$.
- Model 1:

$$\operatorname{Var}(\hat{a}) = \operatorname{Var}(a + \varepsilon_1)$$

= $\operatorname{Var}(\varepsilon_i) = \sigma^2$.

• Model 2:

$$\operatorname{Var}(\hat{a}) = \operatorname{Var}\left(a + \frac{1}{4}(\varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4)\right)$$
$$= \left(\frac{1}{4}\right)^2 \sum_{i=1}^4 \operatorname{Var}(\varepsilon_i) = \left(\frac{1}{2}\sigma\right)^2.$$

Two models of matrix forms

• Model 1

$$\begin{cases} y_1 = a + \varepsilon_1 \\ y_2 = b + \varepsilon_2 \\ y_3 = c + \varepsilon_3 \\ y_4 = d + \varepsilon_4 \end{cases} \iff \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \end{bmatrix}$$

• Model 2

• The design matrix is essential.

Least-squares estimation for linear model

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \boldsymbol{arepsilon}$$

Multiply \mathbf{H}^{\top} on both sides, we have

$$\mathbf{H}^{\top}\mathbf{y} = \mathbf{H}^{\top}\mathbf{H}\mathbf{x} + \mathbf{H}^{\top}\boldsymbol{\varepsilon} \quad \Longleftrightarrow \quad (\mathbf{H}^{\top}\mathbf{H})^{-1}\mathbf{H}^{\top}\mathbf{y} = \mathbf{x} + (\mathbf{H}^{\top}\mathbf{H})^{-1}\mathbf{H}^{\top}\boldsymbol{\varepsilon} = \hat{\mathbf{x}}$$

(estimated). Here, we want to minimize $\det(\mathbf{H}^{\top}\mathbf{H})^{-1}$ (or maximize $(\mathbf{H}^{\top}\mathbf{H})$).

$$\mathbf{H}^{\top}\mathbf{H} = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} \quad \longleftarrow \det(\mathbf{H}^{\top}\mathbf{H}) = 4^{4} \text{ is max!}$$

Hadamard matrices

Definition

A square matrix $\mathbf{H} \in \{\pm 1\}^{n \times n}$ is an Hadamard matrix (アダマール行列) if

$$\mathbf{H}^{\mathsf{T}}\mathbf{H} = n\mathbf{I}_n.$$

In this case, $\det(\mathbf{H}^{\top}\mathbf{H}) = n^n$.

Example

natrices
$$I_n^{n-1}I_n$$

 $(H^T)^T \cdot H^T = H \cdot H^T = \Lambda I_n$

Proposition HM-1

If **H** is an Hadamard matrix then \mathbf{H}^{\top} and $-\mathbf{H}$ are also Hadamard matrices.

Proposition HM-2

- For an Hadamard matrix \mathbf{H} , $\det(\mathbf{H}) = n^{n/2}$.
- For any $n \times n \ \{\pm 1\}$ matrix **A**, $\det(\mathbf{A}) \leq n^{n/2}$.

Proof: Handwritten Notes

- A_n : the set of all $n \times n \{\pm 1\}$ matrices
- **H** is D-optimal over A_n , i.e., $\mathbf{H} = \max\{\det(\mathbf{A}) : \mathbf{A} \in A_n\}$.

Existence of Hadamard matrices

Proposition HM-3

For $n \geq 4$, if an Hadamard matrix of order n exists then $4 \mid n$.

Proof: Handwritten Notes

Kronecker Product Construction

Let \mathbf{H}_n and \mathbf{H}_k be Hadamard matrices of order n and k, respectively. Then $\mathbf{H}_n \otimes \mathbf{H}_k$ is an Hadamard matrix of order nk.

Proof: Handwritten Notes

Corollary

An Hadamard matrix of order 2^m exists.

Example: >> Jupyper Notebook

Hadamard conjecture

Hadamard conjecture

There exists an Hadamard matrix of order n for any $n \equiv 0 \pmod{4}$.

- (1867) $n = 2^m \checkmark$
- (1933) n = q + 1 \checkmark where $q \equiv 3 \pmod{4}$ is a prime power $(q = 7, 11, 19, 23, 27, 31, \ldots)$
- (1962) n = 92 \checkmark by computer search & combinatorial methods
- (2004) n=428 \checkmark by computer search & combinatorial methods
- The smallest unsolved case is n = 668. Have a try?

Quadratic residue

Quadratic residue

Let p be an odd prime. An integer a is called a quadratic residue (平方剰余) mod p if a is congruent (合同) to a square; otherwise, a is called a quadratic non-residue (平方非剰余).

• The following notation is called Legendre symbol (ルジャンドル記号).

$$\mathbf{\chi_p(a)} = \begin{pmatrix} a \\ p \end{pmatrix} = \begin{cases} 1, & \text{if } a \text{ is a quadratic residue mod } p, \\ -1, & \text{if } a \text{ is a quadratic non-residue mod } p, \\ 0, & \text{if } a \equiv 0 \pmod{p}. \end{cases}$$

• For any a, b,

$$\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right).$$

Example: * Jupyper Notebook

Paley's construction

Theorem (Paley's construction for Hadamard matrices)

For a prime $p \equiv 3 \pmod{4}$, define $\mathbf{M}_p = (m_{i,j})$ as follows:

$$m_{i,j} = \left(\frac{j-i}{p}\right), \quad i, j \in \mathbb{Z}_p.$$

Then, the following matrix \mathbf{H}_{p+1} is an Hadamard matrix of order p+1.

$$\mathbf{H}_{p+1} = egin{pmatrix} 1 & 1 & \cdots & 1 \ 1 & & & \ dots & \mathbf{M}_p - \mathbf{I}_p & \ 1 & & \end{pmatrix}.$$

Proof: Handwritten Notes

Example of H_8 via Paley's construction

$$\mathbf{M}_{7} = \begin{pmatrix} 0 & 1 & 1 & -1 & 1 & -1 & -1 \\ -1 & 0 & 1 & 1 & -1 & 1 & -1 \\ -1 & -1 & 0 & 1 & 1 & -1 & 1 \\ 1 & -1 & -1 & 0 & 1 & 1 & -1 \\ -1 & 1 & -1 & -1 & 0 & 1 & 1 \\ 1 & -1 & 1 & -1 & -1 & 0 & 1 \\ 1 & 1 & -1 & 1 & -1 & -1 & 0 \end{pmatrix}.$$

Then

Outline

- 1 Pan balance weighing designs and Hadamard matrices
- 2 Spring balance weighing designs and BIB designs
- Cyclic designs and difference families
- 4 Steiner triple systems
- **5** Pairwise balanced design, group divisible design
- **6** Combinatorial t-designs, Hadamard designs

Spring balance weighing designs (model 1)

• 7 objects

Estimator = weighing = true weight + error

$$\hat{a_i} = y_i = x_i + \varepsilon_i$$

for
$$0 \le i \le 6$$
.

• 7 weighings

Spring balance weighing designs (model 2)

• Three objects in each weighing

$$y_0 = x_0 + x_1 + x_3 + \varepsilon_0$$

$$y_1 = x_1 + x_2 + x_4 + \varepsilon_1$$

$$y_2 = x_2 + x_3 + x_5 + \varepsilon_2$$

$$y_3 = x_3 + x_4 + x_6 + \varepsilon_3$$

$$y_4 = x_4 + x_5 + x_0 + \varepsilon_4$$

$$y_5 = x_5 + x_6 + x_1 + \varepsilon_5$$

$$y_6 = x_6 + x_0 + x_2 + \varepsilon_6$$

7 weighings

Design matrices for spring balance weighing designs

•
$$\mathbf{y} = [y_0, y_1, \dots, y_6]^\top$$
, $\mathbf{x} = [x_0, x_1, \dots, x_6]^\top$, $\boldsymbol{\varepsilon} = [\varepsilon_0, \varepsilon_1, \dots, \varepsilon_6]^\top$.

• Model 1: $\mathbf{y} = \mathbf{D}_1 \mathbf{x} + \boldsymbol{\varepsilon}$

• Model 2: $\mathbf{y} = \mathbf{D}_2 \mathbf{x} + \boldsymbol{\varepsilon}$

$$\mathbf{D}_2 = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Least-squares estimation for spring balance weighing

 $\bullet \ \ \mathsf{Model} \ 2 \colon \ \mathbf{D}_2^{\top}\mathbf{y} = \mathbf{M}_2\mathbf{x} + \mathbf{D}_2^{\top}\boldsymbol{\varepsilon} \qquad \Longleftrightarrow \qquad \mathbf{M}_2^{-1}\mathbf{D}_2^{\top}\mathbf{y} = \mathbf{x} + \mathbf{M}_2^{-1}\mathbf{D}_2^{\top}\boldsymbol{\varepsilon}$

Information matrix

情報行列

Estimate and variance for spring balance weighing

Model 2:

$$\hat{\mathbf{x}} = \mathbf{M}_{2}^{-1} \mathbf{D}_{2}^{\mathsf{T}} \mathbf{y} = \frac{1}{6} \begin{bmatrix} 2 & -1 & -1 & -1 & 2 & -1 & 2 \\ 2 & 2 & -1 & -1 & -1 & 2 & -1 \\ -1 & 2 & 2 & -1 & -1 & -1 & 2 \\ 2 & -1 & 2 & 2 & -1 & -1 & -1 \\ -1 & 2 & -1 & 2 & 2 & -1 & -1 \\ -1 & -1 & 2 & -1 & 2 & 2 & -1 \\ -1 & -1 & -1 & 2 & -1 & 2 & 2 \end{bmatrix} \mathbf{y} + \mathbf{\xi}$$

Set system representation of design matrix

• Index the columns (for seven objects) of \mathbf{D}_2 by $0, 1, \dots, 6$

$$\mathbf{D}_2 = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

• Rows (for seven weighings) of D_2 can be represented by subsets of $\{0, 1, \dots, 6\}$

$$B_0 = \{0, 1, 3\}, B_1 = \{1, 2, 4\}, B_2 = \{2, 3, 5\},$$

 $B_3 = \{3, 4, 6\}, B_4 = \{4, 5, 0\}, B_5 = \{5, 6, 1\}, B_6 = \{6, 0, 2\}.$

BIB designs

Balanced Incomplete Block Design

Let V be a finite set and $\mathcal B$ be a family of subsets of V. The pair $(V,\mathcal B)$ is a (v,k,λ) balanced incomplete block design (釣合い型不完備ブロックデザイン; BIBD) if the all the following conditions hold.

- |V| = v,
- \oplus For any $B \in \mathcal{B}$, |B| = k.
- for any pair of points $\{x,y\}\subseteq V$, there are exactly λ blocks (プロック) $B\in\mathcal{B}$ containing $\{x,y\}$.
- v: number of elements (要素数) or number of points (点数)
- k: block size (ブロックサイズ)
- λ: index (会合数)

BIB designs and graph decomposition

- K_n : complete graph of order n, i.e., the graph with all $\binom{n}{2}$ possible edges on n vertices
- $(v, k, \lambda = 1)$ BIBD \iff decomposition of K_n into K_k 's.
- $(v, k = 3, \lambda = 1)$ BIBD \iff decomposition of K_n into triangles.

BIB designs and graph decomposition

- K_n : complete graph of order n, i.e., the graph with all $\binom{n}{2}$ possible edges on n vertices
- $(v, k, \lambda = 1)$ BIBD \iff decomposition of K_n into K_k 's.
- $(v, k = 3, \lambda = 1)$ BIBD \iff decomposition of K_n into triangles.

 $\{0, 1, 3\},\$

 $\{1, 2, 4\},\$

 ${2,3,5},$

 ${3,4,6},$

 ${4,5,0},$

 $\{5, 6, 1\},\$

 $\{6,0,2\}.$

Basic equalities between parameters of BIB designs

Proposition BIBD-1

$$b := |\mathcal{B}| = vr/k$$

Proposition BIBD-2

Let (V, \mathcal{B}) be a (v, k, λ) BIBD. For any $v \in V$, the number of blocks containing v is a constant, denoted by $r = \lambda(v-1)/(k-1)$.

- Any three parameters of (v, b, r, k, λ) implies the other two.
- (v, b, r, k, λ) is admissible if

$$vr = bk$$

 $r(k-1) = \lambda(v-1)$

Example:

Jupyper Notebook

Incidence matrix of BIB designs: revisit

- The incidence matrix is the transpose of "weighing design matrix".
- $\mathbf{1}_v$: all-one column vector of dimension v
- ullet $\mathbf{J}_v = \mathbf{1}_v \mathbf{1}_v^ op$: all-one matrix of dimension v

Theorem

Let N be a $v \times b$ $\{0,1\}$ -matrix. Then N is the incidence matrix of a (v,b,r,k,λ) BIBD iff

$$\mathbf{N}^{\top} \mathbf{1}_v = k \mathbf{1}_b$$

and

$$\mathbf{N}\mathbf{N}^{\mathsf{T}} \quad \mathbf{N}^{\mathsf{T}}\mathbf{N} = \lambda \mathbf{J}_{v} + (r - \lambda)\mathbf{I}_{v}.$$

Proof: Handwritten Notes

Fisher's inequality

Theorem (Fisher's inequality)

For a (v, k, λ) BIBD with v > k, the number of blocks is not less than the number of points, that is, $b \ge v$.

Proof: Handwritten Notes

Symmetric BIBD

A (v, b, r, k, λ) BIBD with b = v is called a symmetric design (対称デザイン).

Bruck-Ryser-Chowla theorem

Theorem (Bruck-Ryser-Chowla theorem, 1949-1950)

If a symmetric (v,k,λ) BIBD exists, then

- 1 for v even, $k-\lambda$ must be a square.
- **1** for v odd, there exists integers x, y, z such that $z^2 = (k \lambda)x^2 + (-1)^{(v-1)/2}\lambda y^2$.

• Bruck-Ryser-Chowla theorem is a generalization of Bruck-Ryser theorem for finite projective planes (in 3rd day).

Examples by Bruck-Ryser-Chowla theorem

(22,7,2) SBIBD does not exist

- $r = \lambda(v-1)/(k-1) = 2 \times 21/6 = 7 \in \mathbb{Z}$, $b = vr/k = 22 \times 7/7 = 22 \in \mathbb{Z}$.
- By BRC theorem, since $k \lambda = 7 2 = 5$ is not a square, nonexistence.

(43,7,1) SBIBD does not exist \longleftrightarrow $(6^2+6+1,6+1,1) \longleftrightarrow$ Mols(6)

- $r = \lambda(v-1)/(k-1) = 1 \times 42/6 = 7 \in \mathbb{Z}$, $b = vr/k = 43 \times 7/7 = 43 \in \mathbb{Z}$.
- By BRC theorem, consider the equation $z^2 = 6x^2 y^2$.
- By modulo 3, ×2 0 (4=1

$$z^2 \equiv -y^2 \equiv 2y^2 \pmod{3} \quad \Longleftrightarrow \quad 2 \equiv (y^{-1}z)^2 \pmod{3} \quad \Longleftrightarrow \quad \left(\frac{2}{3}\right) = 1,$$

where $(\frac{2}{3})$ is the Legendre symbol. However, 2 is not a square mod 3.

New designs from the old designs

$$(V, \mathcal{B},)$$

$$(V, \mathcal{B}_1 \cup \mathcal{B}_2)$$

Theorem (sum of BIBD)

If there exists a (v, k, λ_1) BIBD and a (v, k, λ_2) BIBD, then a $(v, k, \lambda_1 + \lambda_2)$ BIBD exists.

Theorem (complementation design)

A
$$(v,b,r,k,\lambda)$$
 BIBD $(n \ge k+2)$ exists iff a $(v,b,b-r,v-k,b-2r+\lambda)$ BIBD exists.

$$k \leq \frac{\sqrt{2}}{2}$$

Outline

- Pan balance weighing designs and Hadamard matrices
- Spring balance weighing designs and BIB designs
- 3 Cyclic designs and difference families
- 4 Steiner triple systems
- 6 Pairwise balanced design, group divisible design
- **6** Combinatorial t-designs, Hadamard designs

ic BIB designs
$$(\mathbb{Z}_{\sim}, +): \operatorname{Cyclic} \mathfrak{group}$$

$$\mathbb{Z}_{\sim} = \{0, 1, ..., v-1\} \pmod{v}$$

Cyclic BIBD

Let $V = \mathbb{Z}_v$. For a (v, k, λ) BIBD $(\mathbb{Z}_v, \mathcal{B})$, if $\mathcal{B} + 1 = \mathcal{B}$ holds, then $(\mathbb{Z}_v, \mathcal{B})$ is called a cyclic design (巡回デザイン), where

$$\mathcal{B}+1:=\{B+1:B\in\mathcal{B}\}.$$

and

$$B+1:=\{x+1,y+1,z+1\}$$
 for $B=\{x,y,z\}$.

Difference families

• For $D \subset \mathbb{Z}_v$, as a multiset, $\Delta(D) = \{x - y : x, y \in D_i, x \neq y\}$.

Difference families; DF

The family $\mathcal{D} = \{D_1, \dots, D_s\}$ of subsets of \mathbb{Z}_v is called a (v, k, λ) difference family (差集合族; DF) over \mathbb{Z}_v , or a cyclic difference family (巡回差集合族; CDF), if all the following condition holds.

- $|D_i| = k \ (1 \le i \le s);$
- The multiset

$$\bigcup_{i=1}^{s} \Delta(D_i)$$

contains every element in $\mathbb{Z}_n \setminus \{0\}$ for exactly λ times.

The subsets D_1, \ldots, D_s are called base block (基底ブロック).

Cyclic difference families ⇒ cyclic BIBD

Proposition DF-1

The number of base blocks of a (v, k, λ) CDF is $\frac{\lambda(v-1)}{k(k-1)}$.

Proof: >> Handwritten Notes

Theorem

If there exists a (v, k, λ) CDF, then there exists a cyclic (v, k, λ) BIBD.

Explicitly, for a (v, k, λ) CDF \mathcal{D} , by denoting

$$\mathcal{B} = \{ D_i + j : D_i \in \mathcal{D}, j \in \mathbb{Z}_v \},\$$

 $(\mathbb{Z}_v, \mathcal{B})$ is a cyclic (v, k, λ) BIBD.

Outline

- Pan balance weighing designs and Hadamard matrices
- 2 Spring balance weighing designs and BIB designs
- 3 Cyclic designs and difference families
- 4 Steiner triple systems
- 6 Pairwise balanced design, group divisible design
- 6 Combinatorial t-designs, Hadamard designs

Steiner triple systems

Steiner triple system; STS

A $(v, k=3, \lambda=1)$ BIBD is called a Steiner triple system (シュタイナー三重系; STS), denoted by STS(v).

- If there exits an STS(v), then $v \equiv 1, 3 \pmod{6}$.
- Bose construction (for $v \equiv 3 \pmod 6$) and Skolem construction (for $v \equiv 1 \pmod 6$) are well-known direct constructions for $\mathsf{STS}(v)$.

Theorem

An STS(v) exists iff $v \equiv 1, 3 \pmod{6}$.

Primitive root mod p

- Let p be a prime. For $a \in \mathbb{Z}_p \setminus \{0\}$, the smallest n $(1 \le n \le p-1)$ such that $a^n \equiv 1 \pmod{p}$ is the order (位数) of a.
- An element of order p-1 is called a primitive root (原始根) mod p.
- $\mathbb{Z}_p^* := \mathbb{Z}_p \setminus \{0\}$ is a multiplicative cyclic group of order p-1. A primitive root mod p is a generator of the group \mathbb{Z}_p^* . $\mathbb{Z}_p^* = \{9, 9^2, ..., 9^{p-2}, 9^{p-1} = 1\}$
- Let α be a generator of \mathbb{Z}_p^* . For any $f \mid p-1$, $\alpha^{\tilde{f}}$ generates a subgroup of \mathbb{Z}_p^* , which is of order (p-1)/f.

Example: > Jupyper Notebook

Cyclotomic construction for STS

Theorem

Let p = 6t + 1 be a prime and let α be a primitive root mod p. Let

Let
$$p=6t+1$$
 be a prime and let α be a primitive root mod p . Let
$$D_i=\{\alpha^i,\alpha^{2t+i},\alpha^{4t+i}\} \quad \text{and} \quad B_{i,j}=D_i+j, \quad \text{for } 0\leq i\leq t-1, j\in\mathbb{Z}_p$$
 and
$$A_i=\{\alpha^i,\alpha^{2t+i},\alpha^{4t+i}\} \quad \text{and} \quad B_{i,j}=D_i+j, \quad \text{for } 0\leq i\leq t-1, j\in\mathbb{Z}_p$$

$$\mathcal{B} = \{B_{i,j} : 0 \le i \le t - 1, j \in \mathbb{Z}_p\}.$$

Then $(\mathbb{Z}_p, \mathcal{B})$ is a cyclic STS(p).

Moreover,
$$\mathcal{D} = \{D_i : 0 \le i \le t-1\}$$
 is a $(v,3,1)$ CDF. (Cyclic BIBD or boxe block)

- α^{2t} is a generator of the subgroup of \mathbb{Z}_p^* , which is of order 3.
- In other words, $\omega := \alpha^{2t}$ is a cubic root of unity in \mathbb{Z}_p^* , i.e., $\omega^3 = 1$.

$$\omega^{3} = (\chi^{2t})^{3} = \chi^{6t} = \chi^{p-1} = 1$$

Example of STS(13) via cyclotomic construction

- p = 6t + 1 = 13, t = 2
- Take $\alpha=2$, then $\omega=\alpha^{2t}=16\equiv 3\pmod{13}$
- $D_0 = \{1, 3, 9\}, D_1 = \{2, 6, 5\}$

Example: > Jupyper Notebook

Heffter's Difference Problem

difference triple

Let v be an odd integer. The triple $\{x,y,z\}\subset\{1,2,\ldots,(v-1)/2\}$ is a difference triple if

- x + y = z (x < y < z), or
- $x + y + z \equiv 0 \pmod{v}$.

Moreover, $B(T) := \{0, x, x + y\}$ is called the associated base block of T.

Heffter's Difference Problem

(F)

For $v \equiv 1, 3 \pmod{6}$, let $t = \{T_1, T_2, \dots, T_t\}$ be a collection of difference triples. Then \mathcal{T} is said to be a solution of Heffter's Difference Problem (HDP), denoted by HDP(v), if

- if $v \equiv 1 \pmod{6}$, $\bigcup_{i=1}^{t} T_i = [1, \frac{v-1}{2}]$;
- if $v \equiv 3 \pmod{6}$, $\bigcup_{i=1}^{t} T_i = [1, \frac{v-1}{2}] \setminus \{\frac{v}{3}\}.$

Heffter's Difference Problem ← Cyclic STS

Theorem

For any $v \equiv 1, 3 \pmod{6}$, there exists a cyclic STS(v) iff there exists an HDP(v).

Theorem (Pelteson, 1939)

For any $v \equiv 1, 3 \pmod{6}$ with $v \geq 7$, $v \neq 9$, there exists an HDP(v).

Theorem

For any $v \equiv 1, 3 \pmod{6}$ with $v \geq 7$, $v \neq 9$, there exists a cyclic STS(v).

Outline

- 1 Pan balance weighing designs and Hadamard matrices
- Spring balance weighing designs and BIB designs
- 3 Cyclic designs and difference families
- 4 Steiner triple systems
- 5 Pairwise balanced design, group divisible design
- 6 Combinatorial t-designs, Hadamard designs

Pairwise balanced design

Pairwise balanced design

Let K be a finite set of positive integers. Let V be a finite set and $\mathcal B$ be a family of subsets of V. The pair $(V,\mathcal B)$ is a (v,K,λ) pairwise balanced design (PBD) if the all the following conditions hold.

- |V| = v,
- f For any $B \in \mathcal{B}$, $|B| \in K$, where $v \geq \max K$.
- ${}^{\textcircled{\tiny{\textbf{m}}}}$ For any pair of points $\{x,y\}\subseteq V$, there are exactly λ blocks $B\in\mathcal{B}$ containing $\{x,y\}$.
- When $K = \{k\}$, a (v, K, λ) PBD is just a (v, k, λ) BIBD.
- E.g. $(v, \{3, 5\}, 1)$ PBD \iff decomposition of K_v into K_3 and K_5 .

Group divisible design

Group divisible design

Let K and G be finite sets of positive integers. Let V be a finite set and \mathcal{B} be a family of subsets of V. The pair $(V, \mathcal{G}, \mathcal{B})$ is a (v, G, K, λ) group divisible design (GDD) if

- |V| = v,
- **(1)** $\mathcal{G} = \{V_1, V_2, \dots, V_m\}$ is a partition of V, i.e., $V_i \cap V_j = \emptyset$ and $\bigcup_{i=1}^m V_i = V$. The subsets V_i are called groups (グループ).
- \bigoplus For any $V_i \in \mathcal{G}$, $|V_i| \in G$ where $v > \max G$.
- \bigcirc For any $B \in \mathcal{B}$, $|B| \in K$, where $v \ge \max K$.
- \bigvee For any $V_i \in \mathcal{G}$ and $B \in \mathcal{B}$, $|V_i \cap B| \leq 1$.
- For any pair of points x,y from difference groups, there are exactly λ blocks $B \in \mathcal{B}$ containing $\{x,y\}$.
- Tor any pair of points x, y from the same group, no block contains $\{x, y\}$ $(\bowtie V)$

GDD and Transversal Designs

- When $G = \{1\}$, a (v, G, K, λ) GDD is just a (v, K, λ) PBD.
- When $G = \{g\}$, where $g \ge 2$, the GDD is said to be of type $g^{v/g}$.
- When $G=\{g\}$, $K=\{k\}$, a (v,G,K,λ) GDD is a transversal design (横断デザイン), denoted by $\mathsf{TD}(g,k,\lambda)$.

Theorem

The following are equivalent.

- **1** TD(g, k, 1),
- **(1)** $OA(N = g^2, k, g, 2)$ ($\lambda = 1$),
- $\oplus k-2 MOLS(q)$.

Latin square of order $n \iff \mathsf{TD}(3, n, 1)$

- n = 7
- $X = (x_{r,c}) =$

0	1	2	3	4	5	6
1	2	3	4	5	6	0
2	3	4	5	6	0	1
3	4	5	6	0	1	2
4	5	6	0	1	2	3
5	6	0	1	2	3	4
6	0	1	2	3	4	5

$$\begin{aligned} \bullet \ \ G_{\mathsf{row}} &= \{ r_1 := (r,1) \mid 0 \leq r \leq n-1 \}, \\ G_{\mathsf{col}} &= \{ c_2 := (c,2) \mid 0 \leq c \leq n-1 \}, \\ G_{\mathsf{ele}} &= \{ e_3 := (e,3) \mid 0 \leq e \leq n-1 \}, \end{aligned}$$

•
$$V = G_{\text{row}} \cup G_{\text{col}} \cup G_{\text{ele}} = \mathbb{Z}_{n} \times \{l, l, l\}$$

•
$$\mathcal{G} = \{G_{\mathsf{row}}, G_{\mathsf{col}}, G_{\mathsf{ele}}\}$$

•
$$\mathcal{B} = \{\{r_1, c_2, e_3\} \mid 0 \le r, c \le n - 1, x_{r,c} = e\}$$

•
$$(V, \mathcal{G}, \mathcal{B})$$
 is a $\mathsf{TD}(3, n, 1)$.

Construct new BIBD using GDD: recursive construction TO(3, n, 1) (=) (divide and cognar) 分割练活 Kninna decomp. 4 Complete graph K_7 STS(21) = TD(3,2,1) + STS(7)Complete 3-partite graph $K_{7,7,7}$

Outline

- 1 Pan balance weighing designs and Hadamard matrices
- Spring balance weighing designs and BIB designs
- Cyclic designs and difference families
- 4 Steiner triple systems
- 6 Pairwise balanced design, group divisible design
- 6 Combinatorial *t*-designs, Hadamard designs

Combinatorial *t*-designs

Combinatorial t-design

Let V be a finite set and $\mathcal B$ be a family of subsets of V. Then $(V,\mathcal B)$ is a t- (v,k,λ) design if

- |V| = v,
- \oplus For any $B \in \mathcal{B}$, |B| = k.
- for any t-subset $T = \{x_1, x_2, \dots, x_t\} \subseteq V$, there are exactly λ blocks containing T.
- When t=2, a 2- (v,k,λ) design is just a (v,k,λ) BIBD.
- To construct t- (v, k, λ) designs with large t is quite difficult.
 - A t- $(v, k, \lambda = 1)$ design is also called a Steiner system.
 - For $\lambda = 1$ and $t \ge 4$, only finitely many examples.
 - For $\lambda = 1$ and $t \ge 6$, no known example.
- The notion of PBD can be generalized to t-wise balanced designs.
- The t-design version of GDD can also be defined. But there are many variations for $t \geq 3$.

Hadamard designs

Theorem

Let $H = (h_{i,j})$ $(i, j \in [4k])$ be an Hadamard matrix of order 4k. Let

$$B_{i,i'} = \{j : h_{i,j} = h_{i',j}\}, \quad \overline{B_{i,i'}} = \{j : h_{i,j} \neq h_{i',j}\} \quad (i \neq i').$$

and

$$\mathcal{B} = \{B_{i,i'}, \overline{B_{i,i'}} : i, i' \in [4k], i \neq i'\}.$$

Then $(X = [4k], \mathcal{B})$ is a 3-(4k, 2k, k - 1) design.

Theorem

There exists a 3-(4k, 2k, k-1) design \iff there exists an Hadamard matrix of order 4k.

Homework assignments (レポート課題) for 2nd day

Exercise 1

Construct Hadamard matrix \mathbf{H}_n for n=12 using Paley's construction.

Exercise 2

Construct a cyclic STS(19) (equivalently, a (19, 3, 1)-DF) using cyclotomic construction.

- You are encouraged to use computer programs for the assignments.
- If possible, please submit your program source codes together with the results of designs.
- Dealine: 6th Sept., 23:59:59