En tots aquest exercicis, el símbol \odot representa la posició del centre de masses d'un cos o estructura.

Exercici 43

D'entrada, noteu que les dues components verticals de les tension es "trepitgenï queden una sobre l'altre al dibuix, les dues valen el mateix, $T\sin\alpha$ i només s'ha posat nom a una. Ara,

a) De l'esquema es veu que

$$l_2 = 2l_1 \cos \alpha = 2 \cdot 2 \cos 45^\circ = 2\sqrt{2} = 2,83$$

b) L'eix horitzontal proporciona l'equació trivial

$$T\cos\alpha = T\cos\alpha$$

mentre que al vertical podem escriure

$$T \sin \alpha + T \sin \alpha = mg \rightarrow T = \frac{mg}{2 \sin \alpha} = \frac{300 \cdot 9, 8}{2 \sin 45^o} = 2,08 \cdot 10^3 N$$

c) En quant a la tensió normal

$$\sigma = \frac{F}{A} = \frac{T}{\pi \frac{d^2}{4}} = \frac{2,08 \cdot 10^3}{\pi \frac{6^2}{4}} = 73,6 \, MPa$$

d) Per calcular la deformació

$$\sigma = E\epsilon \rightarrow \epsilon = \frac{\sigma}{E} = \frac{73,6 MPa}{20 \cdot 10^3 MPa} = 3,68 \cdot 10^{-3} = 0,368 \%$$

És a dir, s'han estirat $2 \cdot 0,368 = 0,736 \, m$

Exercici 44

a) Per l'equilibri de forces a l'eix vertical i moments (des de •), tenim

$$F_{rod} + F = mg$$
 $mgl_1 = Fl_2$

La força F que ha de fer l'operari val

$$F = \frac{mgl_1}{l_2} = \frac{60 \cdot 9, 8 \cdot 400}{1200} = 196 \, N$$

noteu que no cal canviar les longituds a metres perquè apareixen dividint. Llavors, la força que el terra sobre les rodes

$$F_{rod} = mq - F = 60 \cdot 9, 8 - 196 = 392 N$$

b) N'hi ha prou de demanar $l_1 = 0$, és a dir inclinar el carro de forma que el pes caigui sobre de l'eix de la roda. En aquestes condicions la força vertical F val zero. De tota manera, encara caldria aplicar una força horitzontal per poder traslladar el carro.

Exercici 46

a) Per l'equilibri de forces a l'eix vertical i moments (des de •), tenim

$$F = mq + F_O$$

$$FL_1 = F_O(L_1 + L_2) \to F_O = \frac{FL_1}{L_1 + L_2}$$

llavors, per les força que fa el terra sobre les rodes

$$F = mg + \frac{FL_1}{L_1 + L_2} \to F\left(1 - \frac{L_1}{L_1 + L_2}\right) = mg$$

$$F\frac{L_2}{L_1 + L_2} = mg \to F = \frac{mg(L_1 + L_2)}{L_2} = \frac{560 \cdot 9, 8(100 + 700)}{700} = 6272 \, N$$

en quant la força que ha de fer el vehicle al punt O, F_O

$$F_O = \frac{FL_1}{L_1 + L_2} = \frac{6272 \cdot 100}{100 + 700} = 896 \, N$$

Noteu que no cal passar les longituds a metres, ja que apareixen en forma de quocient.

- b) Està clar que voldrem situar el centre de masses de la càrrega sobre el punt de suport de la roda, ja que d'aquesta manera $L_1 = 0$ i llavors, també $F_O = 0$. Evidentment alguna força horitzontal caldrà encara aplicar en el punt O per fer avançar el remolc.
 - c) De $v = \omega R$ tenim,

$$\omega = \frac{v}{R} = \frac{65/3, 6}{0,175} = 103, 17 \frac{rad}{s} \times \frac{1 \, volta}{2\pi rad} \times \frac{60 \, s}{1 \, min} = 985, 24 \, min^{-1}$$

Exercici 47

a) La força F demanada és la tensió a la corda, les components de la qual s'han representat al diagrama de sòlid lliure de dalt. Les equacions d'equilibri als eixos horitzontal i vertical i la de moments (des de P), queden

$$T_x = R_x^o$$

$$T_y + mg = R_y^o$$

$$R_u^o L_1 = mg(L_1 + L_2)$$

de les condicions de l'exercici podem afegir l'equació

$$\tan 15^\circ = \frac{T_x}{T_y}$$

Trobem primer R_{y}^{o} ,

$$R_y^o = \frac{mg(L_1 + L_2)}{L_1} = \frac{0,380 \cdot 9,8(50 + 70)}{50} = 8,94 \, N$$

Ara, trobem T_y ,

$$T_y = R_y^o - mg = 8,94 - 0,380 \cdot 9,8 = 5,214 N$$

seguidament podem calcular T_x

$$T_x = T_y \tan 15^\circ = 5,214 \tan 15^\circ = 1,397 N$$

i finalment, trobem $R_x^o = T_x = 1,397 N$ Llavors, la força F es pot calcular com

$$F = T = \sqrt{T_x^2 + T_y^2} = \sqrt{1,397^2 + 5,214^2} = 5,398 \, N$$

- **b)** En quant a les forces a l'articulació O, $F_v = R_y^o = 8,94 N$ i $F_h = R_x^o = 1,397 N$. El sentit està indicat al diagrama de sòlid lliure.
- **c)** No serà possible perquè per construcció el punt P mai podrà quedar sota del punt O.

Exercici 48

A partir de la definició d'esforç i tenint en compte que la secció és quadrada

$$\sigma = \frac{F}{A} = \frac{9, 5 \cdot 10^3}{5^2} = 380 \, MPa$$

a) Sabent que la tapa mesura L, podem escriure

$$\sin\alpha = \frac{h}{L} \rightarrow \alpha = \arcsin\frac{h}{L} = \arcsin\frac{350}{600} = 35,7^{\circ}$$

b) Les equacions d'equilibri als eixos horitzontal i vertical i la de moments (des de O), queden

$$T = R_{Ox}$$
 R_{Oy} $mg\frac{L}{2} = Th$

Llavors la força (T) que fa el cable val

$$T = \frac{mgL}{2h} = \frac{25 \cdot 9, 8 \cdot 600}{2 \cdot 350} = 210 \, N$$

c) En quant a les forces a l'articulació O,

$$R_{Ox} = T = 210 N$$
 $R_{Oy} = mg = 25 \cdot 9.8 = 245 N$

d) La tensió normal (σ) al cable val

$$\sigma = \frac{F}{A} = \frac{T}{A} = \frac{210}{3} = 70 \, MPa$$

a) Per trobar la massa de la placa fem servir la definició de densitat

$$\rho = \frac{m}{V}$$

d'on

$$m = \rho V = \rho e^{\frac{bh}{2}} = 2700 \cdot 10 \cdot 10^{-3} \frac{600 \cdot 10^{-3} \cdot 1200 \cdot 10^{-3}}{2} = 9,72 \, kg$$

b) Les equacions d'equilibri als eixos horitzontal i vertical i la de moments (des de P), queden

$$F_{Ox} = F$$
 $F_{Oy} = mg$ $mg\frac{b}{3} = F_{Ox} \cdot h$

Llavors

$$F_{Ox} = \frac{mgb}{3h} = \frac{9,72 \cdot 9,8 \cdot 0,6}{3 \cdot 1,2} = 15,876 \, N$$

A partir de la definició d'esforç i tenint en compte que la secció és circular de diàmetre $3\,mm$

$$\sigma = \frac{F}{A} \to F = \sigma A = \sigma \frac{\pi D^2}{4} = 800 \frac{\pi \cdot 3^2}{4} = 5655 \, N$$

Exercici 51

a) Per trobar la massa de la placa fem servir la definició de densitat

$$\rho = \frac{m}{V}$$

d'on

$$m = \rho V = \rho(2b)he = 650(2 \cdot 1, 2)1, 2 \cdot 0, 025 = 46, 8 \, kg$$

b) Les equacions d'equilibri als eixos horitzontal i vertical i la de moments (des de O), queden

$$F_{OV} = mg$$
 $F_{OH} = F$ $mgb = Fh$

llavors,

$$F = \frac{mgb}{h} = \frac{46, 8 \cdot 9, 8 \cdot 1, 2}{1, 2} = 458, 64 \, N$$

c) Tenim

$$F_{OH} = 458,64 \, N$$
 $F_{OV} = 46,8 \cdot 9,8 = 458,64 \, N$

d) Si la força F aplicada en P és vertical el diagrama de sòlid lliure és ara

Les equacions d'equilibri queden ara (tornem a prendre moments des de O),

$$F_{OV} + F = mg$$
 $F_{OH} = 0$ $mgb = F2b$

d'on

$$F = \frac{mg\hbar}{2\hbar} = \frac{mg}{2} = 229,32 \, N$$

És més petita que l'horitzontal, ja que al estar més lluny del punt d'articulació, cal un valor més petit per fer el mateix moment.

Noteu que la presència de F_{cx} es dedueix de que ha d'haver una força horitzontal en O que permeti equilibrar la força horitzontal que sabem que està present en B, provinent del cilindre, que està inclinat.