NAIL062 V&P Logika: 7. cvičení

Témata: (Zápočtový test z výrokové logiky.) Syntaxe a sémantika predikátové logiky.

Příklad 1. Určete volné a vázané výskyty proměnných v následujících formulích. Poté je převeďte na varianty, ve kterých nebudou proměnné s volným i vázaným výskytem zároveň.

- (a) $(\exists x)(\forall y)P(y,z) \lor (y=0)$
- (b) $(\exists x)(P(x) \land (\forall x)Q(x)) \lor (x=0)$
- (c) $(\exists x)(x > y) \land (\exists y)(y > x)$

Příklad 2. Označme φ formuli $(\forall x)((x=z) \lor (\exists y)(f(x)=y) \lor (\forall z)(y=f(z)))$. Které z následujících termů jsou substituovatelné do φ ?

- (a) term z za proměnnou x, term y za proměnnou x,
- (b) term z za proměnnou y, term 2 * y za proměnnou y,
- (c) term x za proměnnou z, term y za proměnnou z,

Příklad 3. Jsou následující formule variantami formule $(\forall x)(x < y \lor (\exists z)(z = y \land z \neq x))$?

- (a) $(\forall z)(z < y \lor (\exists z)(z = y \land z \neq z))$
- (b) $(\forall y)(y < y \lor (\exists z)(z = y \land z \neq y))$
- (c) $(\forall u)(u < y \lor (\exists z)(z = y \land z \neq u))$

Příklad 4. Mějme strukturu $\mathcal{A} = (\{a, b, c, d\}, \triangleright^A)$ v jazyce s jediným binárním relačním symbolem \triangleright , kde $\triangleright^A = \{(a, c), (b, c), (c, c), (c, d)\}.$

- Které z následujících formulí jsou pravdivé v \mathcal{A} ?
- Pro každou formuli najděte strukturu \mathcal{B} (existuje-li) takovou, že $\mathcal{B} \models \varphi$ právě když $\mathcal{A} \not\models \varphi$.
- (a) $x \triangleright y$
- (b) $(\exists x)(\forall y)(y \rhd x)$
- (c) $(\exists x)(\forall y)((y \rhd x) \to (x \rhd x))$
- (d) $(\forall x)(\forall y)(\exists z)((x \rhd z) \land (z \rhd y))$
- (e) $(\forall x)(\exists y)((x \rhd z) \lor (z \rhd y))$

Příklad 5. Jsou následující sentence pravdivé / lživé / nezávislé (v logice)?

- (a) $(\exists x)(\forall y)(P(x) \vee \neg P(y))$
- (b) $(\forall x)(P(x) \to Q(f(x))) \land (\forall x)P(x) \land (\exists x) \neg Q(x)$
- (c) $(\forall x)(P(x) \lor Q(x)) \to ((\forall x)P(x) \lor (\forall x)Q(x))$
- (d) $(\forall x)(P(x) \to Q(x)) \to ((\exists x)P(x) \to (\exists x)Q(x))$
- (e) $(\exists x)(\forall y)P(x,y) \rightarrow (\forall y)(\exists x)P(x,y)$

Příklad 6. Dokažte (sémanticky) nebo najděte protipříklad: Pro každou strukturu \mathcal{A} , formuli φ , a sentenci ψ ,

(a)
$$\mathcal{A} \models (\psi \to (\exists x)\varphi) \Leftrightarrow \mathcal{A} \models (\exists x)(\psi \to \varphi)$$

(b)
$$\mathcal{A} \models (\psi \to (\forall x)\varphi) \Leftrightarrow \mathcal{A} \models (\forall x)(\psi \to \varphi)$$

(c)
$$\mathcal{A} \models ((\exists x)\varphi \rightarrow \psi) \Leftrightarrow \mathcal{A} \models (\forall x)(\varphi \rightarrow \psi)$$

(d)
$$\mathcal{A} \models ((\forall x)\varphi \rightarrow \psi) \Leftrightarrow \mathcal{A} \models (\exists x)(\varphi \rightarrow \psi)$$

Platí to i pro každou formuli ψ s volnou proměnnou x? A pro každou formuli ψ ve které x není volná?

Příklad 7. Rozhodněte, zda následující platí pro každou formuli φ . Dokažte (sémanticky, z definic) nebo najděte protipříklad.

(a)
$$\varphi \models (\forall x)\varphi$$

(b)
$$\models \varphi \to (\forall x)\varphi$$

(c)
$$\varphi \models (\exists x)\varphi$$

(d)
$$\models \varphi \to (\exists x)\varphi$$

Příklad 8. Buď $L=\langle +,-,0\rangle$ jazyk teorie grup (s rovností). Teorie grup T sestává z těchto axiomů:

$$x + (y + z) = (x + y) + z$$
$$0 + x = x = x + 0$$
$$x + (-x) = 0 = (-x) + x$$

Rozhodněte, zda jsou následující formule pravdivé / lživé / nezávislé v T. Zdůvodněte.

(a)
$$x + y = y + x$$

(b)
$$x + y = x \rightarrow y = 0$$

(c)
$$x + y = 0 \rightarrow y = -x$$

(d)
$$-(x+y) = (-y) + (-x)$$

Domácí úkol. Tentokrát žádný není. Místo toho řešte příklady zbývající ze cvičení.