

JPEG: Still Image Coding Standard

Chao-Tsung Huang

National Tsing Hua University

Department of Electrical Engineering

JPEG Everywhere

- The most common image format for digital photography
 - Almost everywhere: WWW, digital camera, mobile phone, PC, ...
- Typical compression ratio (CR) is 2:1~10:1
 - CR = raw YCbCr data size / compressed data size

DCT

Level shift

- Encode: for each unsigned P-bit pixel value,
 subtract 2^{P-1} before DCT (ex. 128 for 8-bit inputs)
- Decode: Add 2^{P-1} after DCT, and clamp to the range 0 to 2^P-1

8x8 DCT/IDCT

FDCT:
$$S_{vu} = \frac{1}{4} C_u C_v \sum_{x=0}^{7} \sum_{v=0}^{7} s_{yx} \cos \frac{(2x+1)u\pi}{16} \cos \frac{(2y+1)v\pi}{16}$$

IDCT:
$$s_{yx} = \frac{1}{4} \sum_{u=0}^{7} \sum_{v=0}^{7} C_u C_v S_{vu} \cos \frac{(2x+1)u\pi}{16} \cos \frac{(2y+1)v\pi}{16}$$

 $C_u, C_v = 1/\sqrt{2} \text{ for } u, v = 0$ The order for row and column is not defined. $C_u, C_v = 1 \text{ otherwise}$

In practice, floating-point computation inevitably results in distortion.

Quantization

- Each one coefficient in DCT block has its own Qp. One quantization table for each color component.
- Quantization (informative)
 - Note: f can be adjusted
- Dequantization (normative)

Sq_{vu}	=	round	$\left(\frac{S_{vu}}{Q_{vu}}\right)$
-----------	---	-------	--------------------------------------

$$R_{vu} = Sq_{vu} \times Q_{vu}$$

Default Luma Q-table

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Default Chroma Q-table

17	18	24	47	99	99	99	99
18	21	26	66	99	99	99	99
24	26	56	99	99	99	99	99
47	66	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99

(range: 1~255)

Preparation of Quantized Coefficients for Entropy Coding

DC: use DPCM

AC: use zig-zag scan to transform 2-D data into 1-D sequence

Differential DC encoding

(separate predictors for different components, and initialized as zero)

Level Coding of DC Coefficients

- DIFF encoded by one of 12 size categories (SSSS) based on magnitudes
- 'SSSS' encoded by Huffman coding and followed by additional bits for amplitude (bit number is 'SSSS')

(size) (amplitude)

SSSS	Difference (DIFF) Values	Additional Bits
0	0	<u> </u>
1	-1,1	0, 1
2	-3, -2, 2, 3	00, 01, 10, 11
3	$-7, \ldots, -4, 4, \ldots, 7$	000,, 011, 100,, 111
4	$-15, \ldots, -8, 8, \ldots, 15$	0000,, 0111, 1000,, 1111
5	$-31,\ldots,-16,16,\ldots,31$	00000,,01111,10000,,11111
6	$-63, \ldots, -32, 32, \ldots, 63$,
7	$-127, \ldots, -64, 64, \ldots, 127$	······ (CCCC bit trum cotod)
8	$-255, \ldots, -128, 128, \ldots, 255$	(SSSS-bit truncated)
9	$-511, \ldots, -256, 256, \ldots, 511$, DIFF if positive;
10	$-1023, \ldots, -512, 512, \ldots, 1023$	DIFF-1 if negative
11	$-2047, \ldots, -1024, 1024, \ldots, 2047$,

Ref: Image and Video Compression for Multimedia Engineering

Huffman Coding of 'SSSS' for DC

 Canonical Huffman table formulated from code number and length

Default Table for Luma

Category	Code length	Code word
0	2	00
1	3	010
2	3	011
3	3	100
4	3	101
5	3	110
6	4	1110
7	5	11110
8	6	111110
9	7	1111110
10	8	11111110
11	9	111111110

Default Table for Chroma

Category	Code length	Code word
0	2	00
1	2	01
2	2	10
3	3	110
4	4	1110
5	5	11110
6	6	111110
7	7	1111110
8	8	11111110
9	9	111111110
10	10	1111111110
11	11	11111111110

Run-Length Coding of AC Coefficients

- AC symbol = (Run-length, Size)(Amplitude)
 - Basically encode non-zero coefficients only
 - Run-length: number of zeros before this coefficient
 - Size/Amplitude: same as DC
 - e.g.

For the four non-zero coefficients, the symbols are: (0,3)(5); (0,3)(-4); (1,2)(2); (3,1)(-1).

Huffman Coding of Run/Size for AC

Canonical Huffman table

Two special symbols:

EOB: End of block

ZRL: 16 zeros

Run/Size	Code length	Code word
0/0 (EOB)	4	1010
0/1	2	00
0/2	2	01
0/3	3	100
0/4	4	1011
0/5	5	11010
0/6	7	1111000
0/7	8	11111000
0/8	10	1111110110
0/9	16	1111111110000010
0/A	16	1111111110000011
1/1	4	1100
1/2	5	11011

. . .

F/0 (ZRL)	11	11111111001
F/1	16	1111111111110101
F/2	16	1111111111110110
F/3	16	1111111111110111
F/4	16	1111111111111000
F/5	16	1111111111111001
F/6	16	1111111111111010
F/7	16	1111111111111011
F/8	16	111111111111100
F/9	16	111111111111101
F/A	16	111111111111110

Default Table for Luma

Techniques behind JPEG

- Entropy coding
- DCT

Entropy

- A coin with 0.5/0.5 probability for head(H)/tail(T)
 - P(H)=p=0.5, P(T)=q=0.5
 - Entropy = $(-0.5 \log_2 0.5) + (-0.5 \log_2 0.5) = 1$ (bit/flip)
 - Entropy coding
 - 0: head (H)
 - 1: tail (T)
- Mathematical fact
 - Optimal bit-length for $H = -\log_2 p$
 - Entropy = average optimal bit per symbol = $-\sum_i p_i \log p_i$

Cross Entropy

- A coin with 0.75/0.25 probability for head(H)/tail(T)
 - P(H)=p=0.75, P(T)=q=0.25
 - Entropy = $(-0.75 \log_2 0.75) + (-0.25 \log_2 0.25) = 0.81$ (bit/flip)
 - Huffman coding for two-flip symbol (1.68 bit/symbol = 0.84 bit/flip)
 - HH: 0
 - HT: 10
 - TH: 110
 - TT: 111
- Mathematical fact
 - Designed bit-length = $-\log_2 q$
 - Average bit per symbol = $-\sum_i p_i \log q_i \ge -\sum_i p_i \log p_i$ (entropy)

Entropy of Joint Events

$$H(X,Y) = -\sum_{x,y} p(x,y) \cdot \log p(x,y)$$

while

$$H(X) = -\sum_{x,y} p(x,y) \cdot \log p(x)$$

$$H(Y) = -\sum_{x,y} p(x,y) \cdot \log p(y)$$

$$H(X) + H(Y) = -\sum_{x,y} p(x,y) \cdot \log[p(x) \cdot p(y)]$$

SO

$$H(X,Y) \le H(X) + H(Y),$$
"=" if $p(x,y) = p(x) \cdot p(y)$

Entropy of joint events is less than or equal to separate individual entropy. Equality if events are independent.

Ref: The Mathematical Theory of Communication

Decorrelation

- Independent => Zero covariance (no correlation)
- Decorrelation: diagonalize covariance matrix

Signal modeled as 1-D vector of random variable

$$\vec{z}=(z_1,z_2,\ldots,z_N)^T$$

Covariance matrix

$$C_{\vec{z}} = E[(\vec{z} - m_{\vec{z}})(\vec{z} - m_{\vec{z}})^T]$$

$$c_{i,j} = E[(z_i - m_i)(z_j - m_j)] = \text{Cov}(z_i, z_j)$$

 $m_{\vec{z}} = E[\vec{z}] = (m_1, m_2, \dots, m_N)^T$

Transform basis (orthonormal)

$$\Phi = (\vec{e}_1, \vec{e}_2, \dots, \vec{e}_N)^T$$

Transformed signal

$$\vec{y} = \Phi \vec{z}$$

Covariance matrix after transform

$$C_{\vec{y}} = \Phi C_{\vec{z}} \Phi^T = \begin{bmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_N \end{bmatrix}$$

(if diagonalized)

Ref: Image and Video Compression for Multimedia Engineering

Karhunen-Loeve Transform (KLT)

Discrete version of KLT: **Diagonalization of covariance matrix**

Covariance matrix is symmetric and real

ex.
$$C_z = \begin{bmatrix} 4 & 3 & 2 & 1 \\ 3 & 4 & 2 & 1 \\ 2 & 2 & 4 & 1 \\ 1 & 1 & 1 & 4 \end{bmatrix}$$

$$\Phi = \begin{bmatrix} -0.5736 & -0.5736 & -0.4947 & -0.3117 \\ 0.2265 & 0.2265 & 0.0699 & -0.9447 \\ -0.3459 & -0.3459 & 0.8662 & -0.1018 \\ -0.7071 & -0.7071 & 0.0000 & 0.0000 \end{bmatrix} \qquad C_y = \Phi C_z \Phi^T = \begin{bmatrix} 9.2682 & 0 & 0 & 0 \\ 0 & 3.4465 & 0 & 0 \\ 0 & 0 & 2.2854 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Transform matrix

$$C_y = \Phi C_z \Phi^T = \begin{bmatrix} 9.2682 & 0 & 0 & 0 \\ 0 & 3.4465 & 0 & 0 \\ 0 & 0 & 2.2854 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

De-correlated covariance matrix

Note: KLT is statistics-dependent

Gauss-Markov Model

A reasonable approximation of images

$$z_i = \rho \cdot z_{i-1} + n_i$$

Pixel value z only depends on its closest neighbor. n is zero-mean white-noise and independent of z.

$$z_i = \rho^i \cdot z_0 + (\rho^{i-1}n_1 + \rho^{i-2}n_2 + \dots + n_i)$$

$$Cov(z_{i}, z_{0}) = \rho^{i} \cdot \sigma_{z}^{2}$$

$$Cov(z_{i}, z_{j}) = \rho^{|i-j|} \cdot \sigma_{z}^{2}$$

$$C_{z,M} = \begin{bmatrix} 1 & \rho^{1} & \rho^{2} & \rho^{3} \\ \rho^{1} & 1 & \rho^{1} & \rho^{2} \\ \rho^{2} & \rho^{1} & 1 & \rho^{1} \\ \rho^{3} & \rho^{2} & \rho^{1} & 1 \end{bmatrix}$$

KLT for Gauss-Markov Model

Solution:

- Given parameters: N, ρ
- 1. Find the N solutions of w_k (k for basis index)

$$\tan(Nw_k) = \frac{-(1 - \rho^2)\sin w_k}{(1 + \rho^2)\cos w_k - 2\rho}$$

2. N corresponding eigenvalues

$$\lambda_k = \frac{(1 - \rho^2)}{1 + \rho^2 - 2\rho \cos w_k}$$

3. Corresponding eigenvectors (basis vectors)

$$t_{kn} = (\frac{2}{N+\lambda_k})^{\frac{1}{2}} \cdot \sin[w_k \left(n - \frac{N+1}{2}\right) + \frac{k}{2}\pi]$$

$$\Lambda = TC_{z,M}T^{-1}$$
, $T_{kn} = t_{kn}$, $\Lambda_{kk} = \lambda_k$, $\Lambda_{ij,i\neq j} = 0$

Ref: W. Ray, et. al., "Further decomposition of the K-L series representation of a stationary random process," IEEE Trans. Inf. Theory, 1970.

8-point KLT v.s. DCT

almost the same

DCT

De-correlation Efficiency

•
$$\eta_E = 1 - \frac{Y}{X}$$

$$C_{z,M}$$

```
0.8281
                        0.7536
                                0.6857
                                                0.5679
1.0000
        0.9100
                                        0.6240
                                                         0.5168
0.9100
        1.0000
               0.9100
                        0.8281
                                0.7536
                                        0.6857
                                                0.6240
                                                         0.5679
0.8281
        0.9100
                1.0000
                        0.9100
                                0.8281
                                        0.7536
                                                0.6857
                                                         0.6240
                                                0.7536
0.7536
       0.8281
               0.9100
                        1.0000
                                0.9100
                                        0.8281
                                                        0.6857
0.6857 0.7536
               0.8281
                        0.9100
                                1.0000
                                        0.9100
                                                0.8281
                                                        0.7536
0.6240
        0.6857
               0.7536
                        0.8281
                                0.9100
                                        1.0000
                                                0.9100
                                                         0.8281
0.5679
       0.6240
               0.6857
                        0.7536
                                0.8281
                                                1.0000
                                        0.9100
                                                        0.9100
0.5168 0.5679 0.6240
                       0.6857
                                0.7536
                                        0.8281 0.9100
                                                        1.0000
```

$$X = \sum_{i \neq j} |C_{ij}|$$

$$\frac{1}{1}$$

$$\eta_E = 100\%$$

$$Y = \sum_{i \neq j} |\Lambda_{ij}|$$

8-point DCT De-correlation

• For Gaussian-Markov model with $N=8, \rho=0.91$

$$C_{z,M}$$

$$X = \sum_{i \neq j} |C_{ij}|$$

$$\eta_E = 98.05\%$$

$$\boldsymbol{D} = \boldsymbol{T_{dct}} \boldsymbol{C_{z,M}} \boldsymbol{T_{dct}}^{-}$$

```
0.0000 -0.2910
                        0.0000 -0.0659
                                        0.0000
6.3435
                                               -0.0209
                                                       -0.0000
0.0000
        0.9299
                0.0000 -0.0266
                                0.0000 -0.0080
                                                     0 -0.0020
-0.2910
        0.0000
                0.3120 -0.0000 -0.0013 -0.0000 -0.0004 -0.0000
0.0000 -0.0266 -0.0000 0.1490
                                0.0000 -0.0009
                                               -0.0000 -0.0002
-0.0659
       -0.0000 -0.0013 -0.0000
                                0.0937 -0.0000 -0.0001
                                                        -0.0000
       -0.0080 -0.0000 -0.0009
                                0.0000 0.0678
                                                0.0000 -0.0001
       -0.0000 -0.0004 0.0000 -0.0001
                                        0.0000
-0.0209
                                                0.0552
                                                        0.0000
-0.0000 -0.0020 -0.0000 -0.0002 -0.0000 -0.0001
                                                -0.0000
```

$$Y = \sum_{i \neq j} |D_{ij}|$$