Sincronizzazione e modello di Kuramoto Analisi e applicazioni

Samuele Pio Lipani

Dipartimento di Fisica e Astronmia Università di Catania

Elaborato finale, Ottobre 2020

- Condizioni per la sincronizzazione
- 2 Descrizione di Kuramoto
- 3 Limite continuo
- 4 Simulazioni numeriche
- 5 Applicazione del modello di Kuramoto

- Condizioni per la sincronizzazione

Definizione

Sincronizzazione significa adattamento del ritmo di oscillatori periodici per mezzo della loro debole interazione

Definizione

Sincronizzazione significa adattamento del ritmo di oscillatori periodici per mezzo della loro debole interazione

Condizioni affinché un sistema si possa dire sincronizzato

Definizione

Sincronizzazione significa adattamento del ritmo di oscillatori periodici per mezzo della loro debole interazione

Condizioni affinché un sistema si possa dire sincronizzato

Autosostenuto

Definizione

Sincronizzazione significa adattamento del ritmo di oscillatori periodici per mezzo della loro debole interazione

Condizioni affinché un sistema si possa dire sincronizzato

- Autosostenuto
- Oscillatore non smorzato

Definizione

Sincronizzazione significa adattamento del ritmo di oscillatori periodici per mezzo della loro debole interazione

Condizioni affinché un sistema si possa dire sincronizzato

- Autosostenuto
- Oscillatore non smorzato
- Ampiezza e forma indipendenti dalle condizioni iniziali

Oscillatori autosostenuti

O è la potenza spesa dal sistema, S la potenza fornita

Fase delle oscillazioni

Nello spazio degli stati di un sistema dinamico possiamo parametrizzare il moto su una traiettoria tramite la fase ϕ .

Scegliamola in modo che cresca uniformemente nel tempo

$$\frac{\mathrm{d}\phi}{\mathrm{d}t} = \omega_0$$

La fase è detta neutra stabile Una forza perturbativa esterna causa deviazioni della fase e della frequenza.

Come cambia l'energia delle oscillazioni con tali sollecitazioni?

Traiettorie come ciclo limite

Un sistema auto-oscillante si dice robusto in quanto non varia l'ampiezza delle oscillazioni, quindi l'energia, al variare delle condizioni iniziali. La traiettoria nello spazio delle fasi è un ciclo limite.

Esempio

Un ciclo limite può essere un attrattore, una traiettoria a cui tendono le altre ottenute con condizioni iniziali differenti.

- Condizioni per la sincronizzazione
- 2 Descrizione di Kuramoto
- 3 Limite continuo
- 4 Simulazioni numeriche
- 5 Applicazione del modello di Kuramoto

Sincronizzazione

Kuramoto

Sia una popolazione di N oscillatori. Le loro frequenze sono distribuite secondo una funzione $g(\omega)$.

La loro interazione globale è descritta dal sistema di equazioni:

$$\dot{\theta}(t)_i = \omega_i + \frac{K}{N} \sum_{j=1}^N \sin(\theta_j(t) - \theta_i(t)), \quad i = 1, \dots, N$$

Parametro d'ordine

Definisco il parametro d'ordine r

$$re^{i\psi}=rac{1}{N}\sum_{i=1}^{N}e^{i heta_{j}} \qquad 0\leq r(t)\leq 1$$

Approssimazione di campo medio

Riscrivo la relazione del parametro d'ordine in modo da rendere esplicita la tipologia di interazione degli oscillatori nel sistema

$$re^{i(\psi- heta_i)}=rac{1}{N}\sum_{j=1}^N e^{i(heta_j- heta_i)}, \quad i=1,\ldots,N$$

Ottenendo

$$\dot{ heta_i} = \omega_i + extit{Kr}\sin{(\psi - heta_i)}, \quad i = 1, \dots, extit{N}$$

Un sistema di equazioni apparentemente indipendenti l'una dall'altra con fase media ψ .

Simulazione numerica della coerenza r

- Condizioni per la sincronizzazione
- Descrizione di Kuramoto
- 3 Limite continuo
- 4 Simulazioni numeriche
- 5 Applicazione del modello di Kuramoto

Limite continuo

Al limite per il numero di oscillatori $N \to \infty$ introduciamo il concetto di densità numerica di oscillatori:

$$ho(heta+2\pi,\omega,t)=
ho(heta,\omega,t)$$

$$\int_{-\pi}^{\pi}
ho(heta,\omega,t)\,\mathrm{d} heta=1$$

In modo che valga l'equazione di continuità:

$$\frac{\partial \rho}{\partial t} = -\frac{\partial (\rho v)}{\partial \theta}$$

Analisi di Kuramoto

I risultati di Kuramoto individuano due gruppi di oscillatori al variare della costante di accoppiamento K e del parametro d'ordine r:

- ullet oscillatori phase-locked in grado di sincronizzarsi per $|\omega_i| \leq Kr$
- oscillatori che non arriveranno mai a sincronizzarsi con il primo gruppo quando $|\omega_i|>Kr$

Cercando soluzioni stazionarie si ricava la relazione di autoconsistenza per il parametro d'ordine

$$r = Kr \int_{-\pi/2}^{\pi/2} \cos^2(\theta) g(Kr \sin(\theta)) d\theta$$

Oltre a r=0 si trova un limite inferiore per la costante di accoppiamento superato il quale la popolazione inizia a sincronizzarsi.

Analisi di Kuramoto

Considerando il numero minimo di oscilaltori sincronizzati quindi $r \to 0^+$ approssimo la relazione di autoconsistenza per r

$$1 = K_c \int_{-\pi/2}^{\pi/2} \cos^2(\theta) g(0) d\theta \implies 1 = g(0) K_c \int_{-\pi/2}^{\pi/2} \cos^2(\theta) d\theta \implies$$
$$\implies 1 = g(0) K_c \frac{\pi}{2},$$

da cui

$$K_c = \frac{2}{\pi g(0)}$$

Sostituendo g(0) nell'equazione di autoconsistenza, sviluppando in serie di Taylor la distribuzione $g(Kr\sin\theta)$ intorno a r=0 e trascurando i termini di terzo ordine rispetto a r $\mathcal{O}(r^3)$ ricavo

$$r \approx \sqrt{\frac{4(K - K_c)}{\pi K K_c^3 [-g''(0)]}}$$

- Condizioni per la sincronizzazione
- 2 Descrizione di Kuramoto
- 3 Limite continuo
- 4 Simulazioni numeriche
- 5 Applicazione del modello di Kuramoto

Distribuzione Lorentziana ed N grande

Parametro d'ordine in funzione della costante di accoppiamento

Evoluzione temporale della fase media e del parametro d'ordine

Scegliendo una costante di accoppiamento maggiore di quella critica si osserva

Fasi in funzione del tempo

Aumentando il numero degli oscillatori N=50 si trova

- Condizioni per la sincronizzazione
- 2 Descrizione di Kuramoto
- 3 Limite continuo
- 4 Simulazioni numeriche
- 5 Applicazione del modello di Kuramoto

Sincronizzazione dei neuroni nel cervello

Attenzioniamo i possibili collegamenti ad esempio tra quattro neuroni e simuliamo l'evoluzione del parametro d'ordine nel tempo

Riferimenti Bibliografici I

- Balanov, Alexander et al. *Synchronization From Simple to Complex*. Springer Series in Synergetics. Springer, 2009. ISBN: 978-3-540-72127-7.
- D.Cumin e C.P.Unsworth. «Generalising the Kuramoto model for the study of neuronal synchronisation in the brain». In: *American Journal of Physics* (2006). DOI:
 - https://doi.org/10.1016/j.physd.2006.12.004.
- Fontoura Costa, Luciano da. «What is a Complex Network?» In: (2018). DOI: 10.13140/RG.2.2.10450.04804/1.
- J.M.Gonzàlez-Miranda. Synchronization and Control of Chaos, an introduction for Scientists and Engineers. Imperial College Press, 2004. ISBN: 1-86094-488-4.
- Luçon, Eric. Oscillateurs couplés, désordre et synchronisation. Probabilités. 2012. URL:
 - https://tel.archives-ouvertes.fr/tel-00709998/document.

Riferimenti Bibliografici II

- P.S.Landa. *Nonlinear Oscillations and Waves in Dynamical Systems*. Springer, 1996. ISBN: N 978-90-481-4670-3.
- Peskin, C.S. *Mathematical Aspects of Heart Physiology*. 1973. URL: https:
 - //www.math.nyu.edu/faculty/peskin/heartnotes/index.html.
- S.H.Strogatz. «From Kuramoto to Crawford: exploring the onset of synchronization in population of coupled oscillators». In: *Physics D: Nonlinear Phenomena* 143 (2000). DOI: https://doi.org/10.1016/S0167-2789(00)00094-4.
- S.Strogatz. «Nonlinear Dynamics and Chaos». In: Advanced book program Perseus books Reading (1994). DOI: https://doi.org/10.1063/1.4823332.
- .«Synch». In: Penguin Books (2003). DOI: https://doi.org/10.1063/1.1784276.

Riferimenti Bibliografici III

Strogatz, S. H. e I. Stewart. Coupled oscillators and biological synchronization. 1993. URL: http://www.uvm.edu/pdodds/files/ papers/others/1993/strogatz1993a.pdf.