

FEDERAL UNIVERSITY OF GOIÁS Faculty of Pharmacy

LabMol – Laboratory for Molecular Modeling and Drug Design

BeeToxAl: An Artificial Intelligence-Based Web Portal to Assess Acute Toxicity of Chemicals in Honey Bees

José Teófilo Moreira Filho

http://beetoxai.labmol.com.br/ teofarma1@gmail.com José T. Moreira-Filho,^{1,a} Rodolpho C. Braga,^{2,a} Joyce V. V. B. Borba,¹ Vinicius M. Alves,³ Eugene N. Muratov,^{3,5} Carolina Horta Andrade¹ and Bruno J. Neves^{1*}

- ¹ LabMol, Faculty of Pharmacy, Universidade Federal de Goiás, Goiás, 74605-170, Brazil.
- ² InsilicAll Inc., São Paulo, 04363-090, Brazil.
- ³ Laboratory for Molecular Modeling, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina, 27599, USA.
- ⁴ Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, Paraíba, 58059-900, Brazil.

The Honey Bees

¹/₃ of food is pollination dependent

Pollinate \$ 15 billion in crops anually

Main goal of study

Development of predictive QSAR models to assess acute contact toxicity and acute oral toxicity of untested chemicals towards honey bee (*Apis mellifera*)

In silico methods are faster and cheaper alternatives to assess toxicity

Methods (Study Design)

Data collection Apis mellifera (LD₅₀ data)

Acute contact toxicity Acute oral toxicity

Model implementation and usage (BeeToxAI) (http://beetoxai.labmol.com.br/)

Dataset preparation and curation Analysis of duplicates

Toxic: LD₅₀ ≤11 µg/bee Non-toxic: $LD_{50} > 11 \mu g/bee$

Using G-mean as scorer

Model calibration using threshold-moving approach

Calculation of molecular fingerprints

5-fold cross-validation (5FCV) Bayesian optimization

Built classification models using Random Forest and Support Vector Machine

Chemical space analysis

Similarity maps (Rubberbanding Forcefield approach) - FragFP descriptors

Best practices for data curation and predictive modeling

Acute contact toxicity

The benchmarking with existing

computational tools demonstrated

predictive superiority of our models

Acute oral toxicity

ACC = 0.91SE = 0.93SP = 0.90PPV = 0.87NPV = 0.95 $\kappa = 0.82$ MCC = 0.82AUC = 0.91PT = 0.50

MACCS + RF

External validation

ACC = 0.88SE = 0.86SP = 0.90PPV = 0.86NPV = 0.90 $\kappa = 0.76$ MCC = 0.76AUC = 0.88

PT = 0.50

Calibrated external set

Freely available at http://beetoxai.labmol.com.br/

An artificial intelligence web app to assess acute toxicity of chemicals in honey bees

Enter SMILES

 $CC1=C(COC(=O)[C@@H]2[C@H](\C=C(/Cl)C(F)(F)F)C2(C)(CC)$

Draw molecule or load a file

Endpoint

Acute oral Toxicity

Assay type: Acute Oral Toxicity Test (OECD 213)

Animal: Honey bee (Apis mellifera)

ML Algorithm: SVM

Descriptors: MACCS

Prediction Applicability domain

Toxic (+)

75.0%

Contribution map

Acute Contact Toxicity

Assay type: Acute Contact Toxicity Test (OECD 214)

Animal: Honey bee (Apis mellifera)

ML Algorithm: Random Forest

Descriptors: Morgan EFCP2 with bit-vector size of 2048 bits

Toxic (+)

(100%)

Conclusion

BeeToxAl web app is fast, reliable, and user-friendly tool for the assessment of acute chemical toxicity to honey bees

Acknowledgments

