Capa física – Introducción

¿Dónde estamos en el modelo?

APLICACIÓN			
TRANSPORTE			
RED			
ENLACE			
FÍSICA			

- Comenzamos de abajo hacia arriba.
- Iniciando en la capa física

Alcance de la capa física

 Cómo las señales (eléctricas, lumínicas, inalámbricas) son usadas para transmitir los bits de un mensaje a través de un medio

- Requerimos enviar bits (señal digital)
- Representación de bits en señales análogas

Modelo simple de un enlace físico

- Nos permite trabajar con una abstracción del enlace físico
 - Tasa o rate (o ancho de banda, capacidad) medida en bits/s.
 - Retardo o delay medido en segundos.
 - Tiempo que le lleva a una señal cruzar de un extremo a otro
 - Tipo de difusión y tasa de error, entre otras.
 - P. Ej.: Algunos enlaces inalámbricos son broadcast.
 - P. Ej.: Fibra óptica tiene baja tasa de error, WiFi altas tasas de error

Características deseables | reales

- Deseables
 - Mover entre dos extremos tantos datos como sea posible
 - Instantáneamente
 - Sin pérdida
 - Sin error
- Reales (algunas impuestas por los medios físicos de Tx)
 - Restricción al Throughput
 - Cantidad de datos que pueden ser transferidos por unidad de tiempo
 - Retardos
 - Pérdida

 Un paquete sufre retardo a lo largo de su viaje entre el nodo origen y el nodo destino

- Retardo por procesamiento
- Retardo por encolamiento
- Retardo de transmisión
- Retardo de propagación

Retardo total = Latencia

Retardo por procesamiento

- Examinar encabezados y determinar rutas de salida
- Chequeo de control de detección/corrección de errores
- Otros controles (p. ej.: seguridad) añaden más retardo
- Depende de la velocidad de procesamiento en los nodos
- Nodos de alta velocidad orden de microsegundos

Retardo por encolamiento

- Los paquetes siempre llegan a una cola de una interfaz física
- Si no hay cola, se transmiten inmediatamente
- Tráfico pesado → Colas largas → Tiempo de espera elevado
- Usualmente del orden de los microsegundos y milisegundos

• Retardo de transmisión

- L (bits): Longitud en bits del paquete
 - M (bits): En otros libros también así.
- R bits/s: Tasa de transmisión del enlace entre los extremos
 - Ancho de banda del canal
- Retardo de transmisión: L/R
 - En otros libros M/R
- La cantidad de tiempo requerido para poner todos los bits sobre el enlace de transmisión.

Retardo de propagación

- Cada bit se propaga a la velocidad del enlace
- Depende del medio físico de propagación
- Usualmente en el rango

$$2 \times 10^8 \ m/s$$
 hasta $3 \times 10^8 \ m/s$

- Un poco menos que la velocidad de la luz
- Es igual a la distancia entre dos nodos dividido la velocidad de propagación del medio
 - *d/s*

- Retardo de transmisión
 - Tiempo que le toma a un nodo poner en el enlace un paquete
 - Está en función de la longitud en bits del mensaje
 - Está en función de la tasa de transmisión
- Retardo de propagación
 - Está en función de la distancia entre los nodos
 - Tiempo que le toma a un bit propagarse de un extremo a otro
 - No tiene que ver con la longitud en bits del mensaje
 - No tiene que ver con la tasa de transmisión del enlace

Latencia
$$\frac{M}{R} + D$$
 Tiempo que toma transmitir un mensaje de un extremo a otro

M

Retardo de transmisión $\frac{M}{R}$

R

• Tiempo que toma poner un mensaje de **M-bits** en el cable

Retardo de propagación D

- Tiempo que le toma a los bits propagarse en el medio
- Depende del medio.
- Depende de la longitud del medio.

Latencia
$$\mathbf{L} = \frac{M}{R} + D$$

• Retardo de transmisión $\frac{M}{R}$

$$Retardo \ de \ transmisi\'on = \frac{M(bits)}{Rate\left(\frac{bits}{S}\right)} = \frac{M}{R}(s)$$

Latencia
$$\mathbf{L} = \frac{M}{R} + D$$

Retardo de propagación D

- Propagación de la velocidad de la luz.
 - En un cable de cobre: $2.3 \times 10^8 \ m/s$
 - En Fibra óptica: $2.0 \times 10^8 \ m/s$ (depende del material de la F.O)
 - En el vacío: $3 \times 10^8 \ m/s$

$$D = Longitud \times \frac{2}{3}C$$

Largo del medio en donde la señal tiene que ser propagada

Unidades de medida en redes de datos

 Usualmente hablamos de transmitir un mensaje de 32KB sobre un canal de 10 Mbps.

$$32 \times 2^{10} \times 8$$
 Bits a una tasa de 10×10^6 Bits/s

- En redes de datos usualmente hablamos de Kbps, Mbps, Gbps, etc., cuando se hace referencia a la capacidad de un canal de datos.
 - Kbps $\rightarrow 1 \times 10^3$ Bits/s. $\rightarrow 1000$ Bits/s.
 - Mbps $\rightarrow 1 \times 10^6$ Bits/s. $\rightarrow 1000000$ Bits/s.
 - Gbps $\rightarrow 1 \times 10^9$ Bits/s. $\rightarrow 1000000000$ Bits/s.
 - 10 Gbps \rightarrow 10 \times 10⁹ Bits/s. \rightarrow 1000000000 Bits/s.

Unidades de medida computadores

Sistema ISO/IEC 80000-13

```
• 1 Byte
```

- 1 Kibibyte (KiB)
- 1 Mebibyte (MiB)
- 1 Gibibyte (GiB)

→ 8 Bits

- \rightarrow 2¹⁰ \rightarrow 1.024 Bytes
- \rightarrow 2²⁰ \rightarrow 1.048.576 Bytes
- \rightarrow 2³⁰ \rightarrow 1073.741.824 Bytes

Sistema internacional

- 1 Byte
- 1 Kilobyte (KB)
- 1 Megabyte (MB)
- 1 Gigabyte (GB)

- \rightarrow 8 Bits.
- $\rightarrow 10^3$ Bytes.
- \rightarrow 10⁶ Bytes.
- $\rightarrow 10^9$ Bytes.

En la práctica

Mencionamos estos para referirnos a los valores de arriba

Unidades de medida de tiempo

- 1 Segundo \rightarrow 1000ms
- 1 Milisegundo $\rightarrow 1 \text{ms} = 1 \times 10^{-3} \text{s} = 0.001 \text{s}$
- 1 Microsegundo $\rightarrow 1 \mu s = 1 \times 10^{-6} s = 0,000001 s$
- 1 Nanosegundo $\rightarrow 1ns = 1 \times 10^{-9}s = 0.00000001s$

Unidades de medida en redes de datos

• Prefijos más comunes

Prefijo	Exponente	Prefijo	Exponente
K(ilo)	10^{3}	M(illi)	10^{-3}
M(ega)	10^{6}	μ(micro)	10^{-6}
G(iga)	10 ⁹	n(nano)	10^{-9}

IMPORTANTE

- Usar potencias de 10 para *rates*
- Usar potencias de 2 para tamaño de datos en almacenamiento
 - 1 Mbps = 1000000 bps
 - $1 \text{ KB} = 2^{10} \text{ Bytes} = 1024 \text{ Bytes}$

Ejemplos de latencia

- ¿De cuánto es la latencia de transmitir un mensaje de 1250 Bytes sobre un modem telefónico de 56 Kbps con un retardo de promedio de propagación de 5ms?
 - $M = 1250 \text{ Bytes} \times 8 = 10000 \text{ bits}$

•
$$D = 5 \text{ ms} = 5 \times \frac{1}{10^3} = 5 \times 10^{-3} = 0.005 \text{s}$$

•
$$R = 56 \text{ Kbps} \times 10^3 = 56000 \frac{\text{bits}}{\text{s}}$$

$$L = \frac{M}{R} + D = \frac{10000 \text{ bits}}{56000 \frac{\text{bits}}{\text{S}}} + \frac{0.005 \text{s}}{10000 \text{ bits}} = 0.184 \text{s} = 184 \text{ms}$$
De donde viene casi toda la latencia del mensaje

Retardo de propagación

Ejemplos de latencia

- ¿De cuánto es la latencia de transmitir el mismo mensaje (1250 Bytes) pero sobre un enlace de banda ancha de 10 Mbps con un retardo promedio de propagación de 50 ms?
 - $M = 1250 \text{ Bytes} \times 8 = 10000 \text{ bits}$
 - $D = 50 \text{ ms} = 50 \times \frac{1}{10^3} = 50 \times 10^{-3} = 0.05 \text{s}$
 - $R = 10 \text{ Mbps} \times 10^6 = 10000000 \frac{\text{bits}}{\text{s}}$

$$L = \frac{M}{R} + D = \frac{10000 \text{ bits}}{10000000 \frac{\text{bits}}{\text{s}}} + 0.05\text{s} = 0.051\text{s} = 51\text{ms}$$

De donde viene casi toda la latencia del mensaje

Sobre la latencia

- Enlaces con alto retardo de propagación de señal implican más latencia para la transmisión
 - El retardo de propagación depende de la longitud que tiene que recorrer la señal de un extremo al otro.
- Enlaces con poco rate (ancho de banda) implican más latencia para la transmisión
 - Poca capacidad de transporte de información.
- En la latencia alguno de los dos componentes domina la medida como en el ejemplo anterior.

Producto del retardo por el ancho de banda

- Pensar en que los mensajes ocupan espacio en el cable.
- Representa el número de bits que pueden estar en tránsito a través del canal en un momento dado.

Retardo de propagación

$$BD = \stackrel{\uparrow}{R} \times \stackrel{D}{\downarrow}$$

Pequeño en LANS

Tasa de transmisión

- Grande en canales de gran capacidad fat pipes
 - P. Ej.: canales submarinos
 - Más retardo, pero más ancho de banda

Producto del retardo por el ancho de banda

• ¿Cuánta información es capaz de transmitir un enlace de 56 Kbps con un retardo promedio de 87 µs a una distancia típica de 10km?

•
$$D = 87 \mu s \times \frac{1}{10^6} = 8.7 \times 10^{-5} s$$

•
$$R = 56 \text{ Kbps} \times 10^3 = 56000 \frac{\text{bits}}{\text{S}}$$

•
$$BD = R \times D = 56000 \frac{\text{bits}}{\text{s}} \times (8.7 \times 10^{-5} \text{s}) = 4.872 \approx 5 \text{ bits}$$

• Un módem de **56 Kbps** con un RTT promedio de **87 \mu s** a una distancia típica de **10 km** es capaz de transmitir en un momento dado solo 5 bits de información

Retardo de propagación

Throughput

• Medida de rendimiento efectivo (real) de un canal

$$Throughput = \frac{M}{L} \qquad \qquad \text{Mensaje en bits}$$
 Latencia

• Tiempo de transferencia o latencia

Retardo de propagación
$$L = D + \frac{M}{R}$$
 Retardo de transmisión

Throughput

Retardo de propagación

- Suponga que se desea descargar un archivo de 1 MB sobre un canal de 1 Gbps con un RTT de 100 ms. Calcular el throughput del canal.
 - $M = 1 \text{ MB} \times 2^{20} \times 8 = 8388608 \text{ bits}$
 - $R = 1 \text{ Gbps} \times 10^9 = 10000000000 \frac{\text{bits}}{\text{s}}$
 - $D = 100 \text{ms} \times \frac{1}{10^3} s = 0.1 \text{s}$
 - $\frac{M}{R} = \frac{8388608 \text{ bits}}{10000000000 \frac{\text{bits}}{\text{s}}} = 0.0084 = 8.4 \times 10^{-3} \text{s}$
 - $L = 0.1s + (8.4 \times 10^{-3}s) = 0.1084s$
 - $Throughput = \frac{8388608 \text{ bits}}{0.1084 \text{ s}} = 77385683 \frac{\text{bits}}{\text{s}} \approx 77 \text{ Mbps}$

¡Y no un 1Gbps como se piensa!

Medida throughput sin congestión de canal

```
C:\Users\jmunoz\Downloads\iperf-3.1.3-win32\iperf-3.1.3-win32>iperf3.exe -c 192.
168 . 111 . 1
Connecting to host 192.168.111.1, port 5201
     local 192.168.111.2 port 43892 connected to 192.168.111.1 port 5201
                       Transfer
                                   Bandwidth
     Interval
       0.00 - 1.00
                        112 MBytes 942 Mbits/sec
                  sec
       1.00-2.00
                        112 MBytes 939 Mbits/sec
                  sec
                                                   ¿De cuánto es el
                                   943 Mbits/sec
                       112 MBytes
       2.00-3.00
                  sec
                                   944 Mbits/sec
       3.00-4.00
                       113 MBytes
                  sec
                                                   ancho de banda?
                                   945 Mbits/sec
       4.00 - 5.00
                        113 MBytes
                  sec
       5.00-6.00
                                    942 Mbits/sec
                        112 MBytes
                  sec
                        112 MBytes
       6.00-7.00
                                    940 Mbits/sec
                  sec
                                   943 Mbits/sec
      7.00-8.00
                       112 MBytes
                  sec
                                                     ¿De cuánto el
       8.00-9.00
                       112 MBytes
                                   941 Mbits/sec
                  sec
                        112 MBytes
       9.00-10.00
                                    942 Mbits/sec
                  sec
                                                      throughput?
                                   Bandwidth
 ID] Interval
                       Transfer
       0.00-10.00 sec 1.10 GBytes
                                    942 Mbits/sec
                                                                 sender
       0.00 - 10.00
                  sec 1.10 GBytes
                                    942 Mbits/sec
                                                                 receiver
perf Done.
                                 ¿De cuánto es el PDU?
```

Medida throughput con congestión de canal

```
C:\Users\jmunoz\Downloads\iperf-3.1.3-win32\iperf-3.1.3-win32>iperf3.exe -c 192.
168.111.1
Connecting to host 192.168.111.1, port 5201
     local 192.168.111.2 port 43888 connected to 192.168.111.1 port 5201
                        Transfer
                                    Bandwidth
     Interval
                                     665 Mbits/sec
       0.00 - 1.00
                   sec 79.5 MBytes
       1.00-2.00 sec
                                     652 Mbits/sec
                                                     ¿De cuánto es el
                        77.5 MBytes
       2.00-3.00 sec 71.6 MBytes
                                    600 Mbits/sec
       3.00-4.00 sec
                                    599 Mbits/sec
                        71.4 MBytes
                                                     ancho de banda?
                                     606 Mbits/sec
       4.00-5.00
                       72.2 MBytes
                 sec
       5.00-6.00 sec
                                     607 Mbits/sec
                        72.4 MBytes
                sec
                                     597 Mbits/sec
       6.00-7.00
                       71.1 MBytes
                                     604 Mbits/sec
       7.00-8.00
                        72.0 MBytes
                                                       ¿De cuánto el
       8.00-9.00
                       72.8 MBytes
                                     611 Mbits/sec
                   sec
                                     609 Mbits/sec
       9.00-10.00
                   sec
                       72.6 MBytes
                                                        throughput?
 IDT
     Interval
                                    Bandwidth
                        Transfer
       0.00 - 10.00
                        733 MBytes
                                     615 Mbits/sec
                                                                   sender
                   sec
       0.00 - 10.00
                         733 MBytes
                                     615 Mbits/sec
                   sec
                                                                   receiver
```

Es el mismo PDU, sin embargo, note que sobre los mismos intervalos de tiempo hay menos capacidad

Medida throughput sin congestión de canal

- En el servidor, abrir dos conexiones.
 - iperf3 -s -p 5201
 - iperf3 -s -p 5202
- Medir ancho de banda sin saturación y deducir ancho de banda.
 - iperf3 -c <IP Servidor> -t 60 -p 5201
 - iperf3 -c <IP Servidor> -n 1G -p 5201
- En el cliente iniciar saturación de canal en puerto 5202
 - iperf3 -c <IP Servidor> -t 60 -p 5202 <-P 10>
- En el cliente mediar al mismo tiempo en puerto 5201
 - iperf3 -c <IP Servidor> -p 5201

En general...

- El ancho de banda NO es una medida de velocidad. ¡Qué NO!
- El ancho de banda es una medida teórica de capacidad de un canal de datos.
- La velocidad de un canal está determinada por.
 - Latencia: retardo de propagación + retardo de transferencia + retardo por encolamiento.
 - Congestión.
 - Reúso: canales sobrevendidos.
 - Ancho de banda como características físicas del medio.
- Ojo con las medidas de los ISP.
- El ancho de banda de un canal es **invariable**, lo que varía es la **velocidad** con la que se puede enviar y recibir datos.

Referencias

- Tanenbaum, Andrew S., and D. Wetherall. Redes De Computadoras.
 5th ed., Pearson Educación De México, 2012.
- Wetherall, David J. Computer Networks 2-1 Physical Layer Overview. https://www.youtube.com/watch?v=TlxBLseL4Ll