# Лабораторная работа 2.2.3

Старостин Александр, Б<br/>01-401 $26\ {\rm Mapta},\ 2025\ {\rm rog}$ 

#### Определение теплопроводимости газов при атмосферном давлении

### 1 Аннотация

**Цель работы:** определение коэффициента теплопроводности воздуха при атмосферном давлении и разных температурах по теплоотдаче нагреваемой током нити в цилиндрическом сосуде.

**В работе используются:** прибор для опредления теплопроводности газов; форвакуумный насос; газгольдер с газом; манометр; магазин сопротивлений; эталонное сопротивление 10 Ом; цифровой вольтметр B7-78/1; источник питания.

### 2 Теоретические сведения

Основной характеристикой теплопроводности служит коэффициент  $\varkappa$ , являющийся коэффициентом пропорциональности между плотностью потока тепла q и градиентом температуры dT/dr в направлении распространения этого потока

$$q = -\varkappa \frac{dT}{dr}. (1)$$

В цилиндрически симметричной установке, в которой тепловой поток направлен к стенкам цилиндра от нити, полынй поток тепла Q=qS через каждую цилиндрическую поверхность радиуса r должен в стационарном состоянии быть неизменен (как в пространстве, так и во времени). Тогда

$$Q = -2\pi r L \varkappa \frac{dT}{dr} = const, \tag{2}$$

откуда получаем формулу

$$T_1 - T_2 = \frac{Q}{2\pi L \varkappa} \ln \frac{r_2}{r_1}.$$
 (3)

Здесь  $r_1$  и  $T_1$  – радиус и температура нити,  $r_2$  и  $T_2$  – радиус и температура цилиндра.

## 3 Ход работы

#### 3.1 Предварительные расчёты параметров установки

L = 0.4 M,

$$\frac{r_2}{r_1} = \frac{7 \cdot 10^{-3}}{50 \cdot 10^{-6}}.$$

Из (3) получаем  $(k = \varkappa)$ :

$$Q = \frac{2\pi Lk(T_1 - T_2)}{ln(\frac{r_2}{r_*})}$$

Взяв значения из методички, оценим  $Q_{max}$ :

$$Q_{max}=rac{2\cdot 3,14\cdot 0,4~\mathrm{m}\cdot 0,025rac{\mathrm{B_T}}{\mathrm{m}\cdot K}\cdot 30K}{ln(rac{7\cdot 10^{-3}}{50\cdot 10^{-6}})}=0.38$$
 Дж

Известно, что:

$$I^2R = Q$$

$$I_{max} = \sqrt{rac{Q_{max}}{R}} = \sqrt{rac{0.38Дж}{20~\mathrm{O_M}}} = 138~\mathrm{mA}$$

Тк на каждой температуре мы будем производить по 10 измерений сил тока и напряжения на проволке, то сила тока будет изменяться в пределах от 0 до 138 мA с шагом 10-13.8 мA.

#### 3.2 Подготовка установки

Необходимо установить сопротивление на мосту сопротивлений >10 кОм, чтобы сила тока через проволку была равна 0, проверить цепь, настроить вольметр и амперметр, включить источник питания и термостат. Температура в термостате в начальный момент равны комнатной. Во время всех измерений температура на термостате должна быть неизменной.

#### 3.3 Проведение измерений

Для 5 температур в диапозоне от 20 до 80  $C^{\circ}$  проведём 10 измерений сил тока и напряжения на проволке и с помощью этих данных вычислим значения сопротивления проволки и количетсва теплоты, выделяемого проволкой при проходе через неё тока.

$$R = \frac{U}{I}$$

$$Q = UI$$

Таблицы с измерениями:

При  $t = 23C^{\circ}$ :

| N  | t C  | I, MA   | U, B     | R, Ом       | Q, BT * 10^(-3) |
|----|------|---------|----------|-------------|-----------------|
| 1  | T=23 | 0.1655  | 0.003377 | 20.40483384 | 0.000558894     |
| 2  |      | 13.981  | 0.2845   | 20.34904513 | 3.9775945       |
| 3  |      | 27.777  | 0.5668   | 20.40537135 | 15.7440036      |
| 4  |      | 41.555  | 0.8524   | 20.5125737  | 35.421482       |
| 5  |      | 55.382  | 1.1444   | 20.66375357 | 63.3791608      |
| 6  |      | 69.38   | 1.4476   | 20.86480254 | 100.434488      |
| 7  |      | 82.83   | 1.7475   | 21.09742847 | 144.745425      |
| 8  |      | 96.712  | 2.0662   | 21.36446356 | 199.8263344     |
| 9  |      | 110.325 | 2.396    | 21.71765239 | 264.3387        |
| 10 |      | 71.615  | 1.496    | 20.88947846 | 107.13604       |

Рисунок 1: Таблица с данными при  $t=23C^{\circ}$ 

При  $t = 30C^{\circ}$ :

| N | t C    | I, MA  | U, B     | R, Ом       | Q, BT * 10^(-3) |
|---|--------|--------|----------|-------------|-----------------|
|   | 1 T=30 | 0.33   | 0.006908 | 20.93333333 | 0.00227964      |
|   | 2      | 10.296 | 0.2144   | 20.82362082 | 2.2074624       |
|   | 3      | 20.334 | 0.4243   | 20.86652897 | 8.6277162       |
|   | 4      | 30.374 | 0.6353   | 20.91591493 | 19.2966022      |
|   | 5      | 40.357 | 0.8473   | 20.99511857 | 34.1944861      |
|   | 6      | 50.321 | 1.0625   | 21.11444526 | 53.4660625      |
|   | 7      | 60.381 | 1.2817   | 21.226876   | 77.3903277      |
|   | 8      | 70.287 | 1.5026   | 21.37806422 | 105.6132462     |
|   | 9      | 80.379 | 1.7321   | 21.54916085 | 139.2244659     |
| 1 | 0      | 90.222 | 1.9619   | 21.7452506  | 177.0065418     |

Рисунок 2: Таблица с данными при  $t=30C^{\circ}$ 

При  $t = 50C^{\circ}$ :

| N  | t C  | I, MA  | U, B     | R, Ом       | Q, BT * 10^(-3) |
|----|------|--------|----------|-------------|-----------------|
| 1  | T=50 | 0.33   | 0.007391 | 22.3969697  | 0.00243903      |
| 2  |      | 10.383 | 0.2309   | 22.2382741  | 2.3974347       |
| 3  |      | 20.395 | 0.4543   | 22.27506742 | 9.2654485       |
| 4  |      | 30.226 | 0.675    | 22.33176735 | 20.40255        |
| 5  |      | 40.351 | 0.9043   | 22.41084484 | 36.4894093      |
| 6  |      | 50.251 | 1.1314   | 22.51497483 | 56.8539814      |
| 7  |      | 60.481 | 1.3696   | 22.64512822 | 82.8347776      |
| 8  |      | 70.547 | 1.6085   | 22.80040257 | 113.4748495     |
| 9  |      | 82.277 | 1.8927   | 23.00399869 | 155.7256779     |
| 10 |      | 90.871 | 2.1065   | 23.18121293 | 191.4197615     |

Рисунок 3: Таблица с данными при  $t=50C^{\circ}$ 

При  $t = 60C^{\circ}$ :

| N  | t C  | I, MA  | U, B    | R, Ом       | Q, BT * 10^(-3) |
|----|------|--------|---------|-------------|-----------------|
| 1  | T=60 | 0.33   | 0.00764 | 23.15151515 | 0.0025212       |
| 2  |      | 10.709 | 0.2458  | 22.95265664 | 2.6322722       |
| 3  |      | 20.309 | 0.4669  | 22.98980747 | 9.4822721       |
| 4  |      | 30.318 | 0.6986  | 23.04241705 | 21.1801548      |
| 5  |      | 40.208 | 0.9298  | 23.12475129 | 37.3853984      |
| 6  |      | 50.103 | 1.1637  | 23.22615412 | 58.3048611      |
| 7  |      | 60.707 | 1.4181  | 23.35974435 | 86.0885967      |
| 8  |      | 70.873 | 1.6664  | 23.51248007 | 118.1027672     |
| 9  |      | 80.533 | 1.9075  | 23.68594241 | 153.6166975     |
| 10 |      | 90.642 | 2.1651  | 23.88627788 | 196.2489942     |

Рисунок 4: Таблица с данными при  $t=60C^{\circ}$ 

При  $t = 70C^{\circ}$ :

| N  | t C  | I, MA  | U, B     | R, Ом       | Q, BT * 10^(-3) |
|----|------|--------|----------|-------------|-----------------|
| 1  | T=70 | 0.331  | 0.007887 | 23.82779456 | 0.002610597     |
| 2  |      | 10.022 | 0.2372   | 23.66793055 | 2.3772184       |
| 3  |      | 20.599 | 0.4881   | 23.69532502 | 10.0543719      |
| 4  |      | 30.398 | 0.722    | 23.7515626  | 21.947356       |
| 5  |      | 40.405 | 0.963    | 23.83368395 | 38.910015       |
| 6  |      | 50.863 | 1.2178   | 23.94274817 | 61.9409614      |
| 7  |      | 60.477 | 1.4552   | 24.06204011 | 88.0061304      |
| 8  |      | 70.563 | 1.7089   | 24.21807463 | 120.5851107     |
| 9  |      | 80.16  | 1.9546   | 24.38373253 | 156.680736      |
| 10 |      | 90.629 | 2.2292   | 24.59698331 | 202.0301668     |

Рисунок 5: Таблица с данными при  $t=70C^{\circ}$ 

Погрешности:

 $\sigma_U=0.003$  B,

 $\sigma_I = 0.003$  мА,

 $\frac{\sigma_Q}{Q} = \frac{\sigma_R}{R} = \sqrt{(\frac{\sigma_U}{U})^2 + (\frac{\sigma_I}{I})^2} \approx 0.01 = 1\%.$ 

# 3.4 Построение графиков R(Q)

Для каждой температуры термостата построим график зависимости сопротивления нити от мощности R(Q) и убедимся в линейности полученных зависимостей. Проведём наилучшие прямые y=kx+b и определим точки их пересечения с осью ординат  $R_0$  (при  $Q\to 0$  температура нити совпадает с температурой термостата) и угловые коэффициенты наклона  $\frac{dR}{dQ}$ .

Погрешности:

$$\sigma_k = \frac{1}{\sqrt{N}} \sqrt{\frac{<\!y^2\!> - <\!x\!> <\!y\!>}{<\!x^2\!> - <\!x\!>^2} - b^2},$$

$$\sigma_b = \sigma_k \sqrt{\langle x^2 \rangle - \langle x \rangle^2},$$

$$\frac{\sigma_{R_0}}{R_0} = \sqrt{(\frac{\sigma_R}{R})^2 + \sigma_b^2},$$

$$\frac{\frac{\sigma_{\frac{dR}{dQ}}}{\frac{dQ}{dQ}}}{\frac{dR}{dQ}} = \sqrt{(\frac{\sigma_R}{R})^2 + (\frac{\sigma_Q}{Q})^2 + \sigma_k^2}.$$

При  $t = 23C^{\circ}$ :



Рисунок 6: График зависимости сопротивления нити R от количества теплоты, выделяемой на ней при  $t=23C^{\circ}$ 

Получаем:  $R_0 = 20.33 \pm 0.02$  Ом,

$$\frac{dR}{dQ} = (0.00524 \pm 0.00001) \cdot 10^3 \frac{O_{\rm M}}{B_{\rm T}}.$$

При  $t = 30C^{\circ}$ :



Рисунок 7: График зависимости сопротивления нити R от количества теплоты, выделяемой на ней при  $t=30C^\circ$ 

Получаем:  $R_0 = 20.82 \pm 0.02$  Ом,

$$\frac{dR}{dQ} = (0.00526 \pm 0.00001) \cdot 10^3 \frac{O_{\rm M}}{B_{\rm T}}.$$

При  $t = 50C^{\circ}$ :



Рисунок 8: График зависимости сопротивления нити R от количества теплоты, выделяемой на ней при  $t=50C^{\circ}$ 

Получаем:  $R_0 = 22.23 \pm 0.02$  Ом,

$$\tfrac{dR}{dQ} = (0.00499 \pm 0.00001) \cdot 10^3 \tfrac{\rm O_M}{\rm Bt}.$$

При  $t = 60C^{\circ}$ :



Рисунок 9: График зависимости сопротивления нити R от количества теплоты, выделяемой на ней при  $t=60C^\circ$ 

Получаем:  $R_0 = 22.94 \pm 0.02$  Ом,

$$\tfrac{dR}{dQ} = (0.00482 \pm 0.00001) \cdot 10^3 \tfrac{\rm O_M}{\rm B_T}.$$

При  $t = 70C^{\circ}$ :



Рисунок 10: График зависимости сопротивления нити R от количества теплоты, выделяемой на ней при  $t=70C^{\circ}$ 

Получаем:  $R_0 = 23.65 \pm 0.02$  Ом,

$$\frac{dR}{dQ} = (0.00468 \pm 0.00001) \cdot 10^3 \frac{O_{\rm M}}{B_{\rm T}}.$$

## **3.5** Построение графика $R_0(T)$

По данным из предыдущего пункта построим график зависимости сопротивления проволки  $R_0$  при его температуре T, совпадающей с температурой термостата, убедимся в линейности графика, проведём наилучшую прямую y = kx + b и определим его угол наклона.

Погрешности:

$$\sigma_T = 0.03 \text{ K},$$

$$\sigma_k = \frac{1}{\sqrt{N}} \sqrt{\frac{\langle y^2 \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} - b^2},$$

$$\frac{\frac{\sigma_{\frac{dR}{dT}}}{\frac{dR}{dT}}}{\frac{dR}{dT}} = \sqrt{(\frac{\sigma_{R_0}}{R_0})^2 + (\frac{\sigma_T}{T})^2 + \sigma_k^2}.$$

Таблица с данными для графика:

| t, C | T, K |     | R_0, Ом |
|------|------|-----|---------|
|      | 26   | 299 | 20.3457 |
|      | 30   | 303 | 20.8431 |
|      | 50   | 323 | 22.2647 |
|      | 60   | 333 | 22.9868 |
|      | 70   | 343 | 23.689  |

Рисунок 11: Таблица с температурой термостата T и сопрои<br/>влением проволки при ней  $R_0$ 

График зависимости  $R_0$  от T:



Рисунок 12: График зависимости сопротивления нити  $R_0$  от температуры термостата T6 совпадающей с температурой нити

Получаем: 
$$\frac{dR}{dT} = 0.074 \pm 0.002 \ \frac{\rm O_M}{K}.$$

# 3.6 Определение коэффициентов теплопроводности газа k для каждой температуры термостата $T_0$

$$\frac{dQ}{dT} = \frac{dR}{dT}/\frac{dR}{dQ}$$

$$k = \frac{dQ}{dT} \frac{1}{2\pi L} ln(\frac{r_2}{r_1})$$

Таблица со значениями k при каждой T:

| t, C | T, K  | dR/dT, Ом/K | dR/dQ, Ом/Вт | dQ/dT, Βτ/K | L, м г | _2/r_1 | k, BT/(M K) |
|------|-------|-------------|--------------|-------------|--------|--------|-------------|
| 2    | 6 299 | 0.074       | 5.24         | 0.014122137 | 0.4    | 140    | 0.027781271 |
| 3    | 0 303 | 0.074       | 5.26         | 0.014068441 | 0.4    | 140    | 0.027675639 |
| 5    | 0 323 | 0.074       | 4.99         | 0.014829659 | 0.4    | 140    | 0.029173118 |
| 6    | 0 333 | 0.074       | 4.82         | 0.015352697 | 0.4    | 140    | 0.030202046 |
| 7    | 0 343 | 0.074       | 4.68         | 0.015811966 | 0.4    | 140    | 0.031105526 |

Рисунок 13: Таблица со значениями коэффициентов теплопроводности газа k при каждой температуры термостата T

Данные коэффициентов теплопроводности газа k сходятся с табличными ( $\approx 0.025 \frac{\mathrm{Br}}{\mathrm{M} \cdot K}$ ).

Погрешности:

$$\sigma_k = \sqrt{\left(\frac{\frac{\sigma_{dR}}{dT}}{\frac{dR}{dT}}\right)^2 + \left(\frac{\frac{\sigma_{dR}}{dQ}}{\frac{dR}{dQ}}\right)^2}.$$

Из оценки графика зависимости k от T, можно утверждать что эта зависмость приблизительно линейна:



Рисунок 14: График зависимоти коэффициентов теплопроводности газа k при каждой температуры термостата T

## 4 Вывод

Мы измерили коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры. Измерения совпали с табличными.