

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 1: Variation of Equilibrium Conditional Solubility versus pH for Struvite
(from Ohlinger et al., 1998)

Figure 2: Free Energy versus Number of Particles in a Precipitating Crystal

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 3: Concentration (-1/3 log of Ionic Product, Mol/L) versus Induction Time (Sec) for Struvite Precipitation

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT

Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 4: Dissolved OP and TP (ppm) in Untreated and Treated Effluent
from Rocky Mount Lagoon

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 5: Dissolved OP and TP (ppm) in Untreated and Treated Effluent from Clayton Digester

**Figure 6: Breakdown of Phosphorus Content (ppm) by Form in
Rocky Mount and Clayton Effluent**

**Figure 7: Breakdown of Mg Content (ppm) by Form in
Rocky Mount and Clayton Effluents**

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

**Figure 8: Breakdown of TAN (ppm) by Form
in Rocky Mount and Clayton Effluent**

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 9: pH versus Amount of Ammonia Added (ppm) for Five Ratios of Effluent to Mg-Supplementing Solution

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 10: Excess Molar Product (mol/L)³ versus Time (h) Elapsed from pH, OP, and Mg Augmentation

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 11 : Sketch of Laboratory-Scale Continuous Crystallizer

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 11A

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure | 2: First Series of FCRs: Bed Weight (g), Broken Down by Particle Size (Standard Sieve), vs. Time Operated (h)
(Numbered Vertical Strips Correspond with Runs)

Figure | 3: First Series of FCRs: Bed Height (cm) at End of Run vs. Operating Time (h)
(Run Numbers Indicated)

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

**Figure 14: First Series of FCRs: Production (g/h), Averaged Over Each Run,
Broken Down by Particle Size (Standard Sieve)
(Numbered Vertical Strips Correspond with Runs)**

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT

Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 15: First Series of FCRs: Phosphorus Reduction (fraction) vs.
Operating Time (h)
(Run Numbers Indicated)

Figure 16: First Series of FCRs: OP (ppm) at Various Sampling Points
vs. Operating Time (h)
(Run Numbers Indicated)

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 17: Second Series of FCRs: Bed Weight (g), Broken Down by Particle Size (Standard Sieve), vs. Time Operated (h)
(Numbered Vertical Strips Correspond with Runs)

Figure 18: Second Series of FCRs: Bed Height (cm) at End of Run vs.
Operating Time (h)
(Run Numbers Indicated)

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 19: Second Series of FCRs: Production (g/h), Averaged Over Each Run, Broken Down by Particle Size (Standard Sieve)
(Numbered Vertical Strips Correspond with Runs)

Figure 20: Second Series of FCRs: Phosphorus Reduction (fraction) vs. Operating Time (h)
(Run Numbers Indicated)

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 21: Second Series of FCRs: OP (ppm) at Various Sampling Points
vs. Operating Time (h)
(Run Numbers Indicated)

Figure 22: Third Series of FCRs: Bed Weight (g), Broken Down by Particle Size
(Standard Sieve), vs. Time Operated (h)
(Numbered Vertical Strips Correspond with Runs)

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 23: Third Series of FCRs: Bed Height (cm) at End of Run vs.
Operating Time (h)
(Run Numbers Indicated)

Figure 24: Third Series of FCRs: Production (g/h), Averaged Over Each
Run, Broken Down by Particle Size (Standard Sieve)
(Numbered Vertical Strip Correspond with Runs)

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 25: Third Series of FCRs: Phosphorus Reduction (fraction) vs.
Operating Time (h)
(Run Numbers Indicated)

Figure 26: Third Series of FCRs: OP (ppm) at Various Sampling Points
vs. Operating Time (h)
(Run Numbers Indicated)

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 27: MVRs: OP Removal (%) vs. Mg Addition (ppm) with Zero Ammonia and 41.2 L/h Flow

Figure 28: MVRs: OP Removal (%) vs. Mg Addition (ppm) with 100 ppm (as TAN) Ammonia Addition and 41.2 L/h Flow

Figure 29: MVRs: OP Removal (%) vs. Mg Addition (ppm) with 200 ppm (as TAN) Ammonia and 41.2 L/h Flow

Figure 30: MVRs: TP Removal (%) vs. Mg Addition (ppm) with Zero Ammonia and 41.2 L/h Flow

Figure 31: MVRs: TP Removal (%) vs. Mg Addition (ppm) with 100 ppm (as TAN) Ammonia and 41.2 L/h Flow

Figure 32: MVRs: TP Removal (%) vs. Mg Addition (ppm) with 200 ppm (as TAN) Ammonia and 41.2 L/h Flow

Figure 33: MVRs: OP Removal (%) vs. Mg Addition (ppm) with Zero Ammonia and 56.8 L/h Flow

Figure 34: MVRs: OP Removal (%) vs. Mg Addition (ppm) with 100 ppm (as TAN) Ammonia and 56.8 L/h Flow

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 35: MVRs: OP Removal (%) vs. Mg Addition (ppm) with 200 ppm (as TAN) Ammonia and 56.8 L/h Flow

Figure 36: MVRs: TP Removal (%) vs. Mg Addition (ppm) with Zero Ammonia and 56.8 L/h Flow

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 37: MVRs: TP Removal (%) vs. Mg Addition (ppm) with 100 ppm (as N) Ammonia and 56.8 L/h Flow

Figure 38: MVRs: TP Removal (%) vs. Mg Addition (ppm) with 200 ppm (as N) Ammonia and 56.8 L/h Flow

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT

Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 39: Schematic Representation of Field-Scale Crystallizer, Showing Principal Components

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 40: TP Reduction (%) vs. Magnesium added (ppm)
at Lower Flow Rate (341 L/h)

Figure 41: OP Reduction (%) vs. Magnesium added (ppm)
at Lower Flow Rate (341 L/h)

Title: APPARATUS AND METHOD FOR
REMOVING PHOSPHORUS FROM
WASTE LAGOON EFFLUENT
Applicant(s): Bowers et al.
Atty. Docket No.: 297/181

Figure 42: TP Reduction (%) vs. Magnesium added (ppm)
at Higher Flow Rate (568 L/h)

Figure 43: OP Reduction (%) vs. Magnesium added (ppm)
at Higher Flow Rate (568 L/h)