Métodos Numéricos Avanzados PRÁCTICAS

Tema 1. RESOLUCIÓN NUMÉRICA DE SISTEMAS NO LINEALES

Cuarto Curso de Grado en Física (Primer cuatrimestre)

PROF.: JOSÉ ANTONIO SÁNCHEZ PELEGRÍN

Sistemas no lineales (II)

Curso 2023 – 2024

Universidad de Córdoba Dpto. Informática y Análisis Numérico

Objetivo y ejecución

- En esta práctica se programarán el método de Broyden y el método de continuación para la resolución de sistemas de ecuaciones no lineales.
- Cada uno de los ficheros creados durante la práctica se subirá a la página Moodle de la asignatura al enlace habilitado para ello.

Práctica 2.1. Escribe una función de MATLAB, llamada SNLBroyden, que resuelva un sistema no lineal algebraico por el método de Broyden. El encabezamiento será:

```
function [x,iter,norma,salida]=...
         SNLbroyden(fun, jacobiana, x0, itermax, tol, detalle)
  % Metodo de Broyden para sistemas de ecuaciones
6
  % Argumentos de entrada
8
  % fun = función vectorial que define el sistema (f(x)=0)
  % jacobiana = jacobiana de la función f
10
  % x0 = vector inicial
11
  % itermax = numero máximo de iteraciones admitidas
12
             = tolerancia de parada
  % tol
13
            = 0 No se muestran las iteraciones
  % detalle
14
               = 1 Se muestran las iteraciones
15
16
  % Se han de tener las funciones:
  % fun.m funcion y=fun(x) donde se define el sistema
18
  % jacobiana.m funcion J=jacobiana(x) donde se define la matriz
  % jacobiana del sistema, o una aproximación suya
21
22
  % Argumentos de salida:
23
24
  % x = solución aproximada
25
  % iter = iteraciones realizadas hasta alcanzar la tolerancia
  % norma = norma de la diferencia de las dos últimas iteraciones
  % salida = 1 si se alcanza la tolerancia
    = 0 si no se alcanza la tolerancia en las iteraciones dadas.
29
30
31
```

Práctica 2.2. Escribe un programa principal que use la función SNLBroyden para aproximar la solución del sistema no lineal:

$$\begin{cases} x^3 - 10x + y - z + 3 = 0, \\ y^3 + 10y - 2x - 2z - 5 = 0, \\ x + y - 10z + 2 \operatorname{sen} z + 5 = 0. \end{cases}$$

Toma como punto inicial $\mathbf{x}^0 = (1, 1, 1)$ y como tolerancia $\varepsilon = 10^{-2}$. Resuélvelo después de forma simbólica, en el mismo programa principal, comprobando el resultado obtenido.

Práctica 2.3. Escribe una función de MATLAB, llamada continuacion, que resuelva un sistema no lineal algebraico por el método de continuación. El encabezamiento será:

```
function [x,normres]=continuacion(fun,jacobiana,x0,M)
3
  % Metodo de continuación para sistemas de ecuaciones
  % Argumentos de entrada
  % fun = función que define el sistema (f(x)=0)
9
  % jacobiana = matriz jacobiana de fun
10
  % x0 = vector inicial
11
            = Número de pasos a usar en Runge-Kutta
  % Argumentos de salida:
14
15
  % x = solución aproximada
  % normres= norma infinito del residuo
18
19
```

Práctica 2.4. Escribe un programa principal que use la función continuacion para aproximar, de nuevo, la solución del sistema no lineal del ejercicio anterior.

- (a) Parte del mismo punto inicial $\mathbf{x}^0 = (1,1,1)$ y primero resuélvelo tomando 4 pasos en el método de Runge-Kutta y luego 40 pasos. Muestra las salidas con 10 cifras decimales.
- (b) Calcula el residuo en cada caso y muéstralos también con 10 cifras decimales.