Methodology of Creating SVM Kernels from Scratch Using Python and NumPy

Austin Lackey¹ and Tomy Sabalo Farias²

¹DSCI 320, Colorado State University ²DSCI 320, Colorado State University

December 6, 2023

Abstract

This paper presents a methodology for creating Support Vector Machine (SVM) kernels from scratch using Python and NumPy. We discuss the implementation of linear, sigmoid, polynomial, and radial basis function (RBF) kernels in a binary SVM and a multiclass SVM.

1 Introduction

In this section, provide an introduction to SVMs, their applications, and the importance of kernels in SVMs.

2 Methodology

In this section, describe the methodology used to create the SVM kernels from scratch.

2.1 Binary SVM

Discuss the implementation of the Binary SVM class, including the implementation of the different kernels.

2.2 Multiclass SVM

Discuss the implementation of the Multiclass SVM class, which uses the Binary SVM class.

3 Results and Discussion

In this section, present and discuss the results obtained using the implemented SVM kernels.

4 Conclusion

In this section, provide a conclusion summarizing the work done and its implications.

References

- [1] Travis E, Oliphant. A guide to NumPy, USA: Trelgol Publishing, (2006).
- [2] Van Rossum, G., Drake, F.L. Python 3 Reference Manual, Scotts Valley, CA: CreateSpace, (2009).
- [3] Cortes, C., Vapnik, V. Support-vector networks. Machine Learning, 20(3):273-297, (1995).