4/14/2019 Calc Team

note 2 views

Daily Challenge 4.7

Let's go back to including problems tomorrow as we begin week 5 (so the first problem will be posted tomorrow morning and due Tuesday at noon). For today, I'll post another worked example.

Example (source: AoPS Calculus, problem 1.6.3). Find a formula for $\tan(\alpha + \beta)$ in terms of $\tan(\alpha)$ and $\tan(\beta)$.

Solution. We already have angle-addition formulas for sine and cosine, namely

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta),$$
$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta).$$

Since the tangent is defined by $\tan(\theta)=\frac{\sin(\theta)}{\cos(\theta)}$, we can divide the two equations above to find

$$\tan(\alpha+\beta) = \frac{\sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)}{\cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)}$$

Now we need only massage the right side of this equation to express it in terms of $\tan(\alpha)$ and $\tan(\beta)$. Let's divide the numerator and denominator by $\cos(\alpha)\cos(\beta)$. Whenever you divide while doing algebra, you should check that the quantity you're dividing by is nonzero. In this case, $\cos(\alpha)\cos(\beta)$ will be zero whenever α or β is an odd multiple of $\frac{\pi}{2}$. At such points, tangent is undefined, so our formula will only be valid wherever $\tan(\alpha)$ and $\tan(\beta)$ are defined.

Keeping this in mind, the division gives

$$an(lpha+eta) = rac{\sin(lpha)\cos(eta)}{\cos(lpha)\cos(eta)} + rac{\cos(lpha)\sin(eta)}{\cos(lpha)\cos(lpha)\cos(eta)} \ = rac{\sin(lpha)\cos(eta)}{\cos(lpha)\cos(eta)} - rac{\sin(lpha)\sin(eta)}{\cos(lpha)\cos(eta)} \ = rac{ an(lpha) + an(eta)}{1 - an(lpha)\tan(eta)}.$$

Et voilà, we've found a formula for $\tan(\alpha+\beta)$ in terms of $\tan(\alpha)$ and $\tan(\beta)$, valid for $\alpha,\beta\in\mathbb{R}\setminus\Big\{\frac{k\pi}{2}\mid k \text{ is an odd integer }\Big\}$.

daily_challenge

Updated 10 months ago by Christian Ferko

followup discussions for lingering questions and comments