

Instituto Politécnico Nacional Escuela Superior de Cómputo

Teoría Computacional

Conceptos fundamentales
Alfabetos, cadenas

Alfabetos

¥Κ	9	1	Δ	4	3	Y	٦	I	7	Ħ	⊕ છ
aleph	beth	gimel	dal	eth	he	he wa		aw zayin		ḥeth	teth
'	b	g (d h		W		z		ķ	t
72	9	K	4	L	4	4	4	45	3	7	≢ Ή
yod	kaph			lamed		mem			nun	samekh	
У	k			I			n	1		n	s
0 0	7	7	٣	θ-	P	4	>	V	५	+	χ
ayin	pe	sade		qoph		resh	shin		taw		
	р	S		q		r	sh/s		t		

ESCOM Bould Sparks on Compute

Contenido

- Alfabetos, símbolos, cadenas (palabras)
- Operaciones en cadenas
 - Prefijo, sufijo,
 - Concatenación
 - Subcadena y subsecuencia
 - Inversión de una cadena
 - Potencia de una cadena
 - Ejercicios

Alfabetos

- Se llama **alfabeto** a un conjunto finito, no vacío, cuyos elementos se denominan "letras" o "símbolos". Se definen los alfabetos por la enumeración de los símbolos que contiene.
- \triangleright Se utiliza el símbolo Σ para designar un alfabeto.
 - $\Sigma_1 = \{0, 1\}$, el alfabeto binario.
 - Σ_2 = {0, ..., 9}, el alfabeto para representar números naturales base 10
 - Σ_3 = {a, b, ..., z}, el conjunto de todas las letras minúsculas.
 - $\Sigma_4 = \{ (,) \}$, el conjunto de los dos símbolos "(" y ")"
 - El conjunto de los caracteres ASCII imprimibles.

Palabra o cadena

 \triangleright Secuencia finita de símbolos o letras seleccionados de algún alfabeto. Se utilizarán las letras minúsculas x o y o z para representar las cadenas de un alfabeto.

Ejemplos:

- Palabras sobre el alfabeto Σ_1 : x=0 y=101010 z=1111
- Palabras sobre el alfabeto Σ_2 : x=2016 y=112233 z=1984
- Palabras sobre el alfabeto Σ_3 : x=pacodelucia y=chopin z=milesdavis
- Palabras sobre el alfabeto Σ_4 : x=() y=((())) z=)()(
- Palabras sobre el alfabeto Σ_5 : x=A0 y=Jazz107 z=&*+?

Longitud de una cadena

- Se llama longitud de una cadena al número de símbolos que la componen.
- \triangleright La longitud de la cadena x se representa con la notación |x|.
- > La cadena cuya longitud es cero se llama cadena vacía y se representa con la letra griega lambda (λ). Evidentemente, cualquiera que sea el alfabeto considerado, siempre puede formarse la cadena vacía.

Ejemplos

$$\Sigma_1 = \{a, b, ..., z\}$$
 $x = afrodita$ $|x| = 8 (en Σ_1)$

$$\Sigma_2$$
 = {af, ta, ro, mi, di} x = afrodita |x| = 4 (en Σ_2)

Si = es un símbolo cualquiera de un alfabeto 2, representamos por wal el número de ocurrencias del símbolo en la palabra W.

Ejemplo: Si consideramos el alfabeto Σ_1 = {a, b, c}

$$|bcba|_a = 1$$

$$|bcba|_b = 2$$

$$|bcba|_b = 2$$
 $|bcbb|_a = 0$

Lenguaje universal

El conjunto de todas las cadenas que se pueden formar con las letras de un alfabeto se llama *lenguaje universal o universo del discurso* de Σ , y se denota como $W(\Sigma)$ (*) Es evidente que $W(\Sigma)$ es un *conjunto infinito*. Incluso en el peor caso, si el alfabeto sólo tiene una letra.

Ejemplo: un alfabeto con el menor número posible de letras (1).

$$\Sigma_1 = \{ a \}$$
 $W(\Sigma_1) = \{ \lambda, a, aa, aaa, aaaa, ... \}$ (número infinito de elementos)

- \triangleright La palabra vacía λ pertenece a todos los lenguajes universales de todos los alfabetos posibles.
- (*) La notación Σ^* es equivalente a $W(\Sigma)$

Concatenación de Cadenas

Sean dos palabras x, y tales que $x \in W(\Sigma)$, $y \in W(\Sigma)$

Supongamos que
$$x = A_1 A_2 \dots A_i$$
, $|x| = i$; $y = B_1 B_2 \dots B_j$, $|y| = j$

Se llama concatenación de las palabras x e y (se representa por xy) a otra palabra, z, obtenida con las letras de x y a continuación las de y:

$$z = A_1 A_2 \dots A_i B_1 B_2 \dots B_j$$

Se cumple que: |z|=|x|+|y|

Ejemplo:

$$\Sigma = \{0, ..., 9\}$$

x = 01234

$$y = 56789$$

$$z = xy = 0123456789$$

Concatenación de Cadenas - Propiedades

- Poperación cerrada. La concatenación de dos palabras de $W(\Sigma)$ es otra palabra de $W(\Sigma)$. Si \mathbf{x} ε $W(\Sigma)$ e \mathbf{y} ε $W(\Sigma)$, entonces $\mathbf{x}\mathbf{y}$ ε $W(\Sigma)$.
- Propiedad asociativa: x(yz)=(xy)z (o también xyz)
 Al cumplir las dos propiedades anteriores, tenemos que la operación de concatenación es un semigrupo
- Existencia de elemento neutro: El elemento neutro de esta operación es la palabra vacía λ , tanto por la derecha como por la izquierda. Siendo x una palabra cualquiera, se cumple :

$$x \lambda = \lambda x = x$$

Al cumplir las tres propiedades anteriores, tenemos que la **operación de concatenación es un semigrupo con elemento neutro** o un **monoide**.

Propiedad conmutativa: No se cumple

Prefijos y sufijos de una Cadena

- Sea ω una cadena sobre cierto alfabeto Σ . Sean u y v dos cadenas sobre Σ tales que $\omega = uv$. Decimos que u es un v = uv y que v es un v = uv de v.
- ightharpoonup Un prefijo de la cadena ω es cualquier cadena que se obtiene al eliminar cero o más símbolos del final de ω. v.g. ferro, ferroca, ferrocarril y λ son prefijos de ω =ferrocarril.
- ightharpoonup Un sufijo de la cadena ω es cualquier cadena que se obtiene al eliminar cero o más símbolos del principio de ω. v.g. rrocarril, carril, ferrocarril y λ son sufijos de ω =ferrocarril

Subcadena y subsecuencia de una Cadena

- Una subcadena (o subpalabra o factor) de ω se obtiene al eliminar cualquier prefijo y cualquier sufijo de ω (*). v.g. ferrocarril, roca y λ son subcadenas de ferrocarril.
- \triangleright Los prefijos, sufijos y subcadenas propios de una cadena ω son esos prefijos, sufijos y subcadenas, de la propia ω que no son λ ni son iguales a la misma ω .

v.g ferro es prefijo propio de ferrocarril

v.g. carril es sufijo propio de ferrocarril

v.g. roca es una subcadena propia de ferrocarril

(*) *Prefijos* y *sufijos* son casos particulares de subcadenas. El término *infijo* es sinónimo de subcadena o subpalabra.

Subcadena y subsecuencia de una Cadena

- Ejemplo: la palabra aba tiene el conjunto de factores siguiente: {λ, a, b, ab, ba, aba} prefijos : {λ, a, ab, aba} prefijos propios: {a, ab} sufijos: {λ, a, ba, aba} subcadenas: {λ, a, b, ab, ba, aba} subcadenas propias: {a, b, ab, ba}
- \blacktriangleright Una *subsecuencia* de ω es cualquier cadena que se forma mediante la eliminación de cero o más posiciones no necesariamente consecutivas de s ω .
 - v.g. rorri es una subsecuencia de ferrocarril.

Inversión o Reflexión de una Cadena

Sea ω una cadena sobre cierto alfabeto Σ . Llamamos inverso (o reflectualo) de la cadena ω , y la representamos por ω^{-1} , a la cadena obtenida al escribir los símbolos que constituyen la cadena ω en orden inverso.

Si
$$\omega=a_1,\ a_2,\ ...,a_n$$
, su cadena reflejada sería $\omega^{-1}=a_{n_1}$..., $a_2,\ a_{1_1}$.

Ejemplo:

$$x = omar$$
 $x^{-1} = ramo$

 \triangleright Puede ocurrir que una cadena coincida con su inversa como es el caso de ω =anitalavalatina; tales cadenas reciben el nombre de *palíndromos*.

Propiedades de la Inversión o Reflexión de una Cadena

- concatenación de dos cadenas es la concatenación de las cadenas inversas (o reflejadas).
- $|\omega^{-1}| = |\omega|$, es decir, la longitud de una cadena y su inversa coinciden siempre.

Potencia de una Cadena

Sea ω una cadena y k un número entero, definimos:

$$\omega^{k} = \begin{cases} \omega \dots^{k} \dots \omega & \text{si } k > 0 \\ \lambda & \text{si } k = 0 \end{cases}$$

$$\omega^{-1} \dots^{-k} \dots \omega^{-1} & \text{si } k < 0$$

Ejemplos de uso:

Sea ω = 91 sobre el alfabeto $Σ_1 = {0...9}$, entonces: $ω^3 = 919191$, $ω^{-1} = 19$, $ω^{-2} = 1919$, $ω^0 = λ$

Sea $\omega = amor$ sobre el alfabeto $\Sigma_2 = \{a,...,z\}$, entonces: $\omega^{-3} = (\omega^{-1})^3 = (roma)^3 = romaroma$

Potencia de una Cadena

Se denomina potencia i-ésima de una palabra a la concatenación consigo misma i veces.

se cumplen las siguientes relaciones

$$x^{i+1} = x^i x = x x^i (i > 0)$$

$$x^{i}x^{j} = x^{i+j} (i, j > 0)$$

Potencia de una Cadena

Para que ambas relaciones se cumplan también para i, j = 0, basta con definir $\mathbf{x}^0 = \lambda$, cualquiera que sea x.

Ejemplo: x = ABCD, entonces

$$x^2 = xx = ABCDABCD$$

 $x^3 = xxx = ABCDABCDABCD$

La longitud de la potencia es $|x^i| = i * |x|$

Potencias de un alfabeto

- $ightharpoonup Si \Sigma$ es un alfabeto, podemos expresar el conjunto de todas las cadenas de una determinada longitud de dicho alfabeto utilizando una notación exponencial.
- \triangleright Definimos Σ^{κ} para que sea el conjunto de las cadenas de longitud k, tales que cada uno de los símbolos de las mismas pertenece a Σ .
- Σ^0 = { λ }, independientemente de cuál sea el alfabeto Σ ; λ es la única cadena cuya longitud es 0.

Ejemplo: Si $\Sigma = \{0, 1\}$, entonces

$$\Sigma^0 = \{\lambda\}, \quad \Sigma^1 = \{0, 1\}, \quad \Sigma^2 = \{00, 01, 10, 11\},$$

 $\Sigma^3 = \{000, 001, 010, 011, 100, 101, 110, 111\},$ etc.

Potencias de un alfabeto

En ocasiones, desearemos excluir la cadena vacía del conjunto de cadenas. El conjunto de cadenas no vacías del alfabeto Σ se designa como Σ^+

$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \dots$$

 $\Sigma^* = \Sigma^+ \cup \{\lambda\}.$

Ejercicios

• Sea $\Sigma = \{a,b,c\}$, x = aa, y = b, z = cba. Definir las siguientes palabras xx, xy, xz, yx, yz, yy, zx, zy, zz, xyz, x^3 , x^2 z^2 , $(xz)^2$, $(zxx)^{-3}$. ¿Cuáles son sus longitudes, prefijos y sufijos?