

LSM6DS3

iNEMO inertial module: always-on 3D accelerometer and 3D gyroscope

Datasheet - preliminary data

Features

- Power consumption: 0.9 mA in combo normal mode and 1.25 mA in combo high-performance mode up to 1.6 kHz
- "Always on" experience with low power consumption for both accelerometer and gyroscope
- Smart FIFO up to 8 kbyte based on features set
- Compliant with Android K and L
- Hard, soft ironing for external magnetic sensor corrections
- ±2/±4/±8/±16 g full scale
- ±125/±245/±500/±1000/±2000 dps full scale
- Analog supply voltage: 1.71 V to 3.6 V
- Independent IOs supply (1.62 V)
- Compact footprint, 2.5 mm x 3 mm x 0.8 mm
- SPI/I²C serial interface with main processor data synchronization feature
- Embedded temperature sensor
- ECOPACK[®], RoHS and "Green" compliant

Applications

- · Pedometer, step detector and step counter
- · Significant motion and tilt functions
- · Indoor navigation
- Tap and double-tap detection
- IoT and connected devices
- Intelligent power saving for handheld devices
- Vibration monitoring and compensation
- · Free-fall detection
- 6D orientation detection

Description

The LSM6DS3 is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope performing at 1.25 mA (up to 1.6 kHz ODR) in high-performance mode and enabling always-on low-power features for an optimal motion experience for the consumer.

The LSM6DS3 supports main OS requirements, offering real, virtual and batch sensors with 8 kbyte for dynamic data batching. Memory space can be allocated to batching of sensors or additional run-time calibration.

ST's family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes.

The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The LSM6DS3 has a full-scale acceleration range of $\pm 2/\pm 4/\pm 8/\pm 16$ g and an angular rate range of $\pm 125/\pm 245/\pm 500/\pm 1000/\pm 2000$ dps.

High robustness to mechanical shock makes the LSM6DS3 the preferred choice of system designers for the creation and manufacturing of reliable products.

The LSM6DS3 is available in a plastic land grid array (LGA) package.

Table 1. Device summary

Part number	Temperature range [°C]	Package	Packing
LSM6DS3	-40 to +85	LGA-14L	Tray
LSM6DS3TR	-40 to +85	(2.5 x 3 x 0.86 mm)	Tape & Reel

Contents LSM6DS3

Contents

2/90

1	Ove	rview .		13
2	Emb	edded I	low-power features	14
	2.1	Tilt det	ection	14
3	Pin	descript	cifications	15
4	Mod	ule spec	cifications	17
	4.1	Mecha	nical characteristics	17
		4.1.1	Recommended power-up sequence	
	4.2	Electric	cal characteristics	20
	4.3	Comm	unication interface characteristics	21
		4.3.1	SPI - serial peripheral interface	21
		4.3.2	I ² C - inter-IC control interface	22
	4.4	Absolu	ite maximum ratings	23
	4.5	Termin	ology	24
		4.5.1	Sensitivity	24
		4.5.2	Zero-g and zero-rate level	24
5	Fund	ctionalit	y)	25
	5.1	Operat	ting modes	25
	5.2	Gyroso	cope power modes	25
	5.3	Accele	rometer power modes	25
	5.4	FIFO .		25
	C	5.4.1	Bypass mode	26
		5.4.2	FIFO mode	26
		5.4.3	Continuous mode	27
		5.4.4	Continuous-to-FIFO mode	27
		5.4.5	Bypass-to-Continuous mode	27
		5.4.6	FIFO reading procedure	27
6	Digit	tal interf	faces	29
	6.1	I ² C ser	rial interface	29
		6.1.1	I ² C operation	30

DocID026899 Rev 1

ST CONFIDENTIAL – SUBJECT TO NON-DISCLOSURE AGREEMENT – DO NOT COPY

LSM6DS3				Contents
	6.2	SPI bu	s interface	31
		6.2.1	SPI read	32
		6.2.2	SPI write	33
		6.2.3	SPI read in 3-wire mode	33
7	Appl	ication	hints	35
	7.1	LSM6	OS3 electrical connections in Mode 1	35
	7.2	LSM6	OS3 electrical connections in Mode 2	36
	7.3	LSM6	OS3 electrical connections in Mode 3	37
8	Regi	ster ma	pping	38
9	Regi	ster des	scription	42
	9.1		_CFG_ACCESS (01h)	
	9.2		DR_SYNC_TIME_FRAME (04h)	
	9.3		OR_SYNC_ENABLE (05h)	
	9.4		CTRL1 (06h)	
	9.5		CTRL2 (07h)	
	9.6		CTRL3 (08h)	
	9.7		CTRL4 (09h)	
	9.8	_	CTRL5 (0Ah)	
	9.9	_	IT_CFG_G (0Bh)	
	9.10		CTRL (0Dh)	
	9.11		CTRL (0Eh)	
	9.12		AM_I (0Fh)	
	9.13		, I_XL (10h)	
	9.14			
	9.15	CTRL3	· · 3_C (12h)	51
	9.16		 I_C (13h)	
	9.17		· · 5_C (14h)	
	9.18		· · 5_G (15h)	
	9.19		· · ′_G (16h)	
	9.20		· · 9_XL (18h)	
	9.21			

Contents LSM6DS3

9.22	MASTER_CONFIG (1Ah)	5
9.23	WAKE_UP_SRC (1Bh)	6
9.24	TAP_SRC (1Ch)	7
9.25	D6D_SRC (1Dh)	7
9.26	STATUS_REG (1Eh) 5	8
9.27	OUTX_L_G (22h)	8
9.28	OUTX_H_G (23h)	
9.29	OUTY_L_G (24h)	9
9.30	OUTY_H_G (25h)	9
9.31	OUTZ_L_G (26h)	9
9.32	OUTZ_H_G (27h)	
9.33	OUTX_L_XL(28h)	0
9.34	OUTX_H_XL (29h)	
9.35	OUTY_L_XL (2Ah)	0
9.36	OUTY_H_XL (2Bh)	1
9.37	OUTZ_L_XL (2Ch) 6	
9.38	OUTZ_H_XL (2Dh)	1
9.39	SENSORHUB1_REG (2Eh) 6	1
9.40	SENSORHUB2_REG (2Fh) 6	2
9.41	SENSORHUB3_REG (30h)	2
9.42	SENSORHUB4_REG (31h)	2
9.43	SENSORHUB5_REG (32h)	2
9.44	SENSORHUB6_REG (33h)	3
9.45	SENSORHUB7_REG (34h)	3
9.46	SENSORHUB8_REG(35h) 6	3
9.47	SENSORHUB9_REG (36h)	3
9.48	SENSORHUB10_REG (37h)	4
9.49	SENSORHUB11_REG (38h)	4
9.50	SENSORHUB12_REG(39h) 6	4
9.51	FIFO_STATUS1 (3Ah) 6	4
9.52	FIFO_STATUS2 (3Bh)	5
9.53	FIFO_STATUS3 (3Ch) 6	5
9.54	FIFO_STATUS4 (3Dh)	5

LSM6DS3		Co	ntents
	9.55	FIFO_DATA_OUT_L (3Eh)	66
	9.56	FIFO_DATA_OUT_H (3Fh)	66
	9.57	TIMESTAMP0_REG (40h)	66
	9.58	TIMESTAMP1_REG (41h)	67
	9.59	TIMESTAMP2_REG (42h)	67
	9.60	STEP_COUNTER_L (4Bh)	67
	9.61	STEP_COUNTER_H (4Ch)	67
	9.62	SENSORHUB13_REG (4Dh)	68
	9.63	SENSORHUB13_REG (4Dh)	68
	9.64	SENSORHUB15_REG (4Fh)	68
	9.65	SENSORHUB16_REG (50h)	68
	9.66	SENSORHUB17_REG (51h)	
	9.67	SENSORHUB18_REG (52h)	69
	9.68	FUNC_SRC (53h)	69
	9.69	TAP_CFG (58h)	
	9.70	TAP_THS_6D (59h)	
	9.71	INT_DUR2 (5Ah)	71
	9.72	WAKE_UP_THS (5Bh)	71
	9.73	WAKE_UP_DUR (5Ch)	72
	9.74	FREE_FALL (5Dh)	72
	9.75	MD1_CFG (5Eh)	73
	9.76	MD2_CFG (5Fh)	73
10	Emb	edded functions register mapping	75
11	Emb	edded functions registers description	77
	11.1	SLV0_ADD (02h)	77
	11.2	SLV0_SUBADD (03h)	77
	11.3	SLAVE0_CONFIG (04h)	77
	11.4	SLV1_ADD (05h)	78
	11.5	SLV1_SUBADD (06h)	78
	11.6	SLAVE1_CONFIG (07h)	79
	11.7	SLV2_ADD (08h)	79
	11.8	SLV2_SUBADD (09h)	79
		DocID026899 Rev 1	5/90

Contents LSM6DS3

14	Revis	sion history 8	39
13	Packa	age information	38
12	Solde	ering information	37
	11.33	MAG_OFFZ_H (32h) 8	36
		MAG_OFFZ_L (31h)	
		MAG_OFFY_H (30h)	
	11.30	MAG_OFFY_L (2Fh) 8	36
	11.29	MAG_OFFX_H (2Eh)	35
	11.28		
	11.27	MAG_SI_ZZ (2Ch)	35
	11.26	MAG_SI_ZY (2Bh)	35
		MAG_SI_ZX (2Ah)	
	11.24	MAG_SI_YZ (29h)	34
		MAG_SI_YY (28h)	
	11.22	MAG_SI_YX (27h)	84
		MAG_SI_XZ (26h)	
		MAG_SI_XY (25h)	
		SM_STEP_THS (13h)	
		CONFIG_TILT_ACOS (11h)	
		CONFIG_PEDO_THS_MIN (0Fh)	
		DATAWRITE_SRC_MODE_SUB_SLV0 (0Eh)	
		SLAVE3_CONFIG (0Dh)	
		SLV3_SUBADD (0Ch)	
		SLV3_ADD (0Bh)	
	11.9	SLAVE2_CONFIG (0Ah)	
	44.0	OLAN/EQ	

LSM6DS3 List of tables

List of tables

Table 1.	Device summary	1
Table 2.	Pin description	
Table 3.	Mechanical characteristics	17
Table 4.	Electrical characteristics	20
Table 5.	SPI slave timing values	21
Table 6.	I ² C slave timing values	
Table 7.	Absolute maximum ratings	
Table 8.	Serial interface pin description	
Table 9.	I ² C terminology	29
Table 10.	SAD+Read/Write patterns	30
Table 11.	Transfer when master is writing one byte to slave	
Table 12.	Transfer when master is writing multiple bytes to slave	30
Table 13.	Transfer when master is receiving (reading) one byte of data from slave	
Table 14.	Transfer when master is receiving (reading) multiple bytes of data from slave	
Table 15.		
Table 16.	Registers address map	42
Table 17.	FUNC_CFG_ACCESS register description	42
Table 18.	SENSOR SYNC TIME FRAME register	
Table 19.	ISENSOR_SYNC_TIME_FRAME register description	
Table 20.	SENSOR_SYNC_ENABLE register	
Table 21.	SENSOR_SYNC_ENABLE register description	
Table 22.	FIFO_CTRL1 register	
Table 23.	FIFO CTRL1 register description	
Table 24.	FIFO_CTRL2 register	
Table 25.	FIFO_CTRL2 register description	
Table 26.	FIFO_CTRL3 register	
Table 27.	FIFO_CTRL3 register description	
Table 28.	Gyro FIFO decimation setting	
Table 29.	Accelerometer FIFO decimation setting	
Table 30.	FIFO_CTRL4 register	
Table 31.	FIFO_CTRL4 register description	
Table 32.	Second external sensor FIFO decimation setting	
Table 33.	First external sensor in FIFO decimation setting	
Table 34.	FIFO_CTRL5 register	
Table 35.	FIFO_CTRL5 register description	
Table 36.	FIFO ODR selection	
Table 37.	FIFO mode selection.	
Table 38.	ORIENT_CFG_G register	
Table 39.	ORIENT_CFG_G register description.	
Table 40.	Settings for orientation of axes	
Table 41.	INT1_CTRL register	
Table 42.	INT1 CTRL register description	
Table 43.	INT2_CTRL register	
Table 44.	INT2_CTRL register description	
Table 45.	WHO_AM_I register	
Table 46.	CTRL1 XL register	
Table 47.	CTRL1_XL register description.	
Table 48.	Accelerometer ODR register setting	

List of tables LSM6DS3

Table 49.	BW and ODR (high-performance mode)	
Table 50.	CTRL2_G register	
Table 51.	CTRL2_G register description	50
Table 52.	Gyroscope ODR configuration setting	
Table 53.	CTRL3_C register	
Table 54.	CTRL3_C register description	
Table 55.	CTRL4_C register	
Table 56.	CTRL4_C register description	52
Table 57.	CTRL5_C register	52
Table 58.	CTRL5_C register description	
Table 59.	Angular rate sensor self-test mode selection	
Table 60.	Linear acceleration sensor self-test mode selection	53
Table 61.	CTRL6_G register	53
Table 62.	CTRL6_G register description	53
Table 63.	CTRL7_G register	54
Table 64.	CTRL7_G register description	
Table 65.	Gyroscope high-pass filter mode configuration	54
Table 66.	CTRL9_XL register	
Table 67.	CTRL9 XL register description	
Table 68.	CTRL10_C register	
Table 69.	CTRL10_C register description	
Table 70.	MASTER_CONFIG register	
Table 71.	MASTER_CONFIG register description	
Table 72.	WAKE_UP_SRC register	
Table 73.	WAKE_UP_SRC register description	
Table 74.	TAP_SRC register	
Table 75.	TAP_SRC register description	
Table 76.	D6D_SRC register	
Table 77.	D6D_SRC register description	
Table 78.	STATUS_REG register	
Table 79.	STATUS REG register description	
Table 80.	OUTX_L_G register	
Table 81.	OUTX_L_G register description	
Table 82.	OUTX_H_G register	
Table 83.	OUTX H G register description	
Table 84.	OUTY L G register	
Table 85.	OUTY L G register description	
Table 86.	OUTY_H_G register	
Table 87.	OUTY H G register description	
Table 88.	OUTZ L G register	
Table 89.	OUTZ_L_G register description	
Table 90.	OUTZ_H_G register	
Table 91.	OUTZ_H_G register description	
Table 91.	OUTX L XL register	
Table 92.	OUTX_L_XL register description	
Table 93.	OUTX_H_XL register	
Table 94.	OUTX_H_XL register description	
Table 95.	OUTY_L_XL register	
Table 90.	OUTY_L_XL register description	
Table 97.	OUTY_H_G register	
Table 96.	OUTY_H_G register description	
Table 99.	OUTZ L XL register	
Table 100.	UUIL L ∧LIGUISIGI	U

ST CONFIDENTIAL – SUBJECT TO NON-DISCLOSURE AGREEMENT – DO NOT COPY

LSM6DS3 List of tables

Table 101.	OUTZ_L_XL register description	61
Table 102.	OUTZ_H_XL register	61
Table 103.	OUTZ_H_XL register description	61
Table 104.	SENSORHUB1_REG register	
Table 105.	SENSORHUB1_REG register description	
Table 106.	SENSORHUB2_REG register	
Table 107.	SENSORHUB2_REG register description	
Table 108.	SENSORHUB3_REG register	
Table 109.	SENSORHUB3_REG register description	
Table 110.	SENSORHUB4 REG register	62
Table 111.	SENSORHUB4 REG register description	62
Table 112.	SENSORHUB5 REG register	62
Table 113.	SENSORHUB5 REG register description	62
Table 114.	SENSORHUB6 REG register	63
Table 115.	SENSORHUB6_REG register	63
Table 116.	SENSORHUB7 REG register	63
Table 117.	SENSORHUB7_REG register description	63
Table 118.	SENSORHUB8 REG register	63
Table 119.	SENSORHUB8 REG register description	63
Table 120.	SENSORHUB9_REG register	63
Table 121.	SENSORHUB9_REG register description	63
Table 122.	SENSORHUB10_REG register	64
Table 123.	SENSORHUB10_REG register description	64
Table 124.	SENSORHUB11_REG register	64
Table 125.	SENSORHUB11_REG register description	
Table 126.	SENSORHUB12_REG register	64
Table 127.	SENSORHUB12_REG register description	64
Table 128.	FIFO_STATUS1 register	64
Table 129.	FIFO_STATUS1 register description	64
Table 130.	FIFO_STATUS2 register	65
Table 131.	FIFO_STATUS2 register description	65
Table 132.	FIFO_STATUS3 register	
Table 133.	FIFO_STATUS3 register description	65
Table 134.	FIFO_STATUS4 register	65
Table 135.	FIFO_STATUS4 register description	
Table 136.	FIFO_DATA_OUT_L register	
Table 137.	FIFO_DATA_OUT_L register description	
Table 138.	FIFO_DATA_OUT_H register	
Table 139.	FIFO_DATA_OUT_H register description	
Table 140.	TIMESTAMP0_REG register	
Table 141.	TIMESTAMP0_REG register description	
Table 142.	TIMESTAMP1_REG register	
Table 143.	TIMESTAMP1_REG register description	
Table 144.	TIMESTAMP2_REG register	
Table 145.	TIMESTAMP2_REG register description	
Table 146.	STEP_COUNTER_L register	
Table 147.	STEP_COUNTER_L register description	
Table 148.	STEP_COUNTER_H register	
Table 149.	STEP_COUNTER_H register description	
Table 150.	SENSORHUB13_REG register	
Table 151.	SENSORHUB13_REG register description	
Table 152.	SENSORHUB14_REG register	68

List of tables LSM6DS3

Table 153.	SENSORHUB14_REG register description
Table 154.	SENSORHUB15_REG register
Table 155.	SENSORHUB15_REG register description
Table 156.	SENSORHUB16_REG register
Table 157.	SENSORHUB16_REG register description
Table 158.	SENSORHUB17_REG register
Table 159.	SENSORHUB17_REG register description
Table 160.	SENSORHUB18_REG register
Table 161.	SENSORHUB18_REG register description
Table 162.	FUNC_SRC register
Table 163.	FUNC_SRC register description
Table 164.	TAP_CFG register
Table 165.	TAP_CFG register description
Table 166.	TAP_THS_6D register
Table 167.	TAP_THS_6D register description
Table 168. Table 169.	Threshold for D4D/D6D function71 INT_DUR2 register
Table 109.	INT_DUR2 register description
Table 170.	WAKE_UP_THS register
Table 171.	WAKE_UP_THS register description
Table 172.	WAKE_UP_DUR register
Table 173.	WAKE_UP_DUR register description
Table 175.	FREE_FALL register
Table 176.	FREE_FALL register description
Table 177.	Threshold for free fall function
Table 178.	MD1_CFG register
Table 179.	MD1_CFG register description
Table 180.	MD2_CFG register
Table 181.	MD2_CFG register description
Table 182.	Registers address map - embedded functions
Table 183.	SLV0_ADD register
Table 184.	SLV0_ADD register description
Table 185.	SLV0_SUBADD register
Table 186.	SLV0_SUBADD register description
Table 187.	SLAVEO_CONFIG register
Table 188.	SLAVEO_CONFIG register description
Table 189.	SLV1_ADD register
Table 190.	SLV1_ADD register description
Table 191.	SLV1_SUBADD register
Table 192.	SLV1_SUBADD register description78
Table 193.	SLAVE1_CONFIG register
Table 194.	SLAVE1_CONFIG register description79
Table 195.	SLV2_ADD register
Table 196.	SLV2_ADD register description
Table 197.	SLV2_SUBADD register79
Table 198.	SLV2_SUBADD register description
Table 199.	SLAVE2_CONFIG register
Table 200.	SLAVE2_CONFIG register description
Table 201.	SLV3_ADD register80
Table 202.	SLV3_ADD register description
Table 203.	SLV3_SUBADD register
Table 204	SLV3_SUBADD register description

ST CONFIDENTIAL – SUBJECT TO NON-DISCLOSURE AGREEMENT – DO NOT COPY

LSM6DS3 List of tables

Table 205.	SLAVE3_CONFIG register	
Table 206.	SLAVE3_CONFIG register description	
Table 207.	DATAWRITE_SRC_MODE_SUB_SLV0 register	
Table 208.	DATAWRITE_SRC_MODE_SUB_SLV0 register description	
Table 209.	CONFIG_PEDO_THS_MIN register	
Table 210.	CONFIG_PEDO_THS_MIN register description	. 81
Table 211.	CONFIG_TILT_IIR register	. 82
Table 212.	CONFIG_TILT_IIR register description	. 82
Table 213.	CONFIG_TILT_ACOS register	. 82
Table 214.	CONFIG_TILT_ACOS register description	. 82
Table 215.	CONFIG_TILT_WTIME register	. 82
Table 216.	CONFIG TILT WTIME register description	. 82
Table 217.	SM_STEP_THS register	. 83
Table 218.	SM_STEP_THS register description	. 83
Table 219.	SM_STEP_THS register description	. 83
Table 220.	MAG SI XX register description	. 83
Table 221.	MAG_SI_XY register	. 83
Table 222.	MAG SI XY register description	. 83
Table 223.	MAG SI XZ register	. 83
Table 224.	MAG_SI_XZ register description	. 83
Table 225.	MAG SI YX register	. 84
Table 226.	MAG_SI_YX register description	. 84
Table 227.	MAG_SI_YY register	. 84
Table 228.	MAG_SI_YY register description	. 84
Table 229.	MAG_SI_YZ register	
Table 230.	MAG_SI_YZ register description	
Table 231.	MAG_SI_ZX register	. 84
Table 232.	MAG_SI_ZX register description	. 84
Table 233.	MAG_SI_ZY register	
Table 234.	MAG_SI_ZY register description	
Table 235.	MAG_SI_ZZ register	
Table 236.	MAG_SI_ZZ register description	
Table 237.	MAG_OFFX_L register	
Table 238.	MAG_OFFX_L register description	
Table 239.	MAG_OFFX_H register	. 85
Table 240.	MAG OFFX L register description	
Table 241.	MAG_OFFY_L register	
Table 242.	MAG_OFFY_L register description	
Table 243.	MAG_OFFY_H register	
Table 244.	MAG_OFFY_L register description	
Table 245.	MAG_OFFZ_L register	
Table 246.	MAG_OFFZ_L register description	
Table 247.	MAG_OFFZ_H register	
Table 248.	MAG OFFX L register description.	
Table 249.	Document revision history	

List of figures LSM6DS3

List of figures

Figure 1.	Pin connections	. 15
Figure 2.	Recommended power-up sequence	. 19
Figure 3.	SPI slave timing diagram	21
Figure 4.	I ² C slave timing diagram	22
Figure 5.	Read and write protocol	
Figure 6.	SPI read protocol	
Figure 7.	Multiple bytes SPI read protocol (2-byte example)	33
Figure 8.	SPI write protocol	
Figure 9.	Multiple bytes SPI write protocol (2-byte example)	33
Figure 10.	SPI read protocol in 3-wire mode	34
Figure 11.	LSM6DS3 electrical connections in Mode 1	35
Figure 12.	LSM6DS3 electrical connections in Mode 2	36
Figure 13.	LSM6DS3 electrical connections in Mode 3	37
Figure 14.	LGA 2.5x3x0.86 14L package outline	. 88

LSM6DS3 Overview

1 Overview

The LSM6DS3 is a system-in-package featuring a high-performance 3-axis digital accelerometer and 3-axis digital gyroscope.

The integrated power-efficient modes are able to reduce the power consumption down to 1.25 mA in high-performance mode, combining always-on low power features with superior sensing precision for an optimal motion experience for the consumer thanks to ultra-low noise performance for both the gyroscope and accelerometer.

The LSM6DS3 delivers best-in-class motion sensing that can detect orientation and gestures in order to empower application developers and consumers with features and capabilities that are more sophisticated than simply orienting their devices to portrait and landscape mode.

The event-detection interrupts enable efficient and reliable motion tracking and contextual awareness implementing hardware recognition of free-fall events, 6D orientation, tap and double-tap sensing, activity or inactivity, and wakeup events.

The LSM6DS3 supports main OS requirements, offering real, virtual and batch mode sensors. In addition, the LSM6DS3 can efficiently run the sensors-related features specified in Android, saving power and enabling faster reaction time. In particular, the LSM6DS3 has been designed to implement hardware features such as significant motion, tilt, pedometer functions, time stamping and to support the data acquisition of an external magnetometer with ironing correction (hard, soft).

The LSM6DS3 offers hardware flexibility to connect the pins with different mode connections to external sensors to expand functionalities such as adding a sensor hub, auxiliary SPI, etc.

Up to 8 kbyte of FIFO with dynamic allocation of significant data (i.e. external sensors, time stamp, etc.) allows overall power saving of the system.

Like the entire portfolio of MEMS sensor modules, the LSM6DS3 leverages on the robust and mature in-house manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The LSM6DS3 is available in a small plastic land grid array (LGA) package of 2.5 x 3.0 x 0.86 mm to address ultra-compact solutions.

2 Embedded low-power features

The LSM6DS3 has been designed to be fully compliant with Android, featuring the following on-chip functions:

- · 8 kbyte data buffering
 - 100% efficiency with flexible configurations and partitioning
 - possibility to store time stamp
- Event-detection interrupts (fully configurable):
 - free-fall
 - wakeup
 - 6D orientation
 - tap and double-tap sensing
 - activity / inactivity recognition
- Specific IP blocks with negligible power consumption and high-performance:
 - pedometer functions: step detector and step counters
 - tilt (Android compliant, refer to Section 2.1: Tilt detection for additional info
 - significant motion (Android compliant)
- Sensor hub
 - up to 6 total sensors (2 external sensors in FIFO and 2 external sensors in volatile registers)
- Data rate synchronization with external trigger for reduced sensor access and enhanced fusion

2.1 Tilt detection

The tilt function helps detecting activity change and has been implemented in hardware using only the accelerometer to achieve both the targets of ultra-low power consumption and robustness during short duration of dynamic accelerations.

It is based on a trigger of an event each time the device's tilt changes. For a more customized user experience, in the LSM6DS3 the tilt function is configurable through:

- programmable average window
- programmable angle threshold

Tilt function can be used with different scenarios, for example:

- a) Trigger when phone is in a front pants pocket and someone goes from sitting to standing or standing to sitting;
- b) Doesn't trigger when phone is in a front pants pocket and someone is walking, running or going upstairs.

577

LSM6DS3 Pin description

3 Pin description

Figure 1. Pin connections

LSM6DS3 offers the flexibility to connect the pins in order to have three different mode connections and functionalities. In detail:

- Mode 1: I²C slave interface or SPI (3- and 4-wire) serial interface is available;
- **Mode 2**: I²C slave interface or SPI (3- and 4-wire) serial interface and I²C interface master for external sensors connections are available;
- **Mode 3**: I²C slave interface and auxiliary SPI (3-wire) serial interface for external sensor connection (i.e. EIS application) are available.

In the following table each mode is described for the pin connection and function.

Pin description LSM6DS3

Table 2. Pin description

Pin#	Name	Mode 1 function	Mode 2 function	Mode 3 function
1	SDO/SA0	SPI 4-wire interface serial data output (SDO) I ² C least significant bit of the device address (SA0)	SPI 4-wire interface serial data output (SDO) I ² C least significant bit of the device address (SA0)	I ² C least significant bit of the device address (SA0)
2	SDx	Connect to VDDIO or GND	I ² C serial data master (MSDA)	Auxiliary SPI 3-wire interface serial data input (SDI) and serial data output (SDO)
3	SCx	Connect to VDDIO or GND	I ² C serial clock master (MSCL)	Auxiliary SPI 3-wire interface serial port clock (SPC)
4	INT1		Programmable interrupt 1	
5	VDDIO ⁽¹⁾		Power supply for I/O pins	
6	GND		0 V supply	
7	GND		0 V supply	
8	VDD ⁽²⁾		Power supply	
9	INT2	Programmable interrupt 2 (INT2)/ Data enable (DEN)	Programmable interrupt 2 (INT2)/ Data enable (DEN)/ 1 ² C master external synchronization signal (MDRDY)	Programmable interrupt 2 (INT2)/ Data enable (DEN)
10	ocs	Leave unconnected	Leave unconnected	Auxiliary SPI 3-wire interface enable
11	NC		Leave unconnected	
12	CS	I ² C/SPI mode selection (1: SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	I ² C/SPI mode selection (1: SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	Leave unconnected
13	SCL	I ² C serial clock (SCL) SPI serial port clock (SPC)	I ² C serial clock (SCL) SPI serial port clock (SPC)	I ² C serial clock (SCL)
14	SDA	1 ² C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)	I ² C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)	I ² C serial data (SDA)

^{1.} Recommended 100 nF filter capacitor.

^{2.} Recommended 100 nF capacitor.

4 Module specifications

4.1 Mechanical characteristics

@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 3. Mechanical characteristics

Symbol	Parameter	Test conditions	min	Typ. ⁽¹⁾	max	Unit	
				±2			
LA_FS	Linear acceleration measurement			±4		Ī	
LA_FS	range			±8		- g	
				±16			
				±125			
G_FS	Angularista			±245			
	Angular rate measurement range	(/)		±500		dps	
	The doctrone range			±1000			
				±2000			
		FS = ±2		0.061			
LA_So	Linear acceleration sensitivity	FS = ±4		0.122		mg/LSB	
LA_50	Linear acceleration sensitivity	FS = ±8		0.244		- IIIg/LSB	
		FS = ±16		0.488			
	Angular rate sensitivity	FS = ±125		4.375		mdps/LSB	
		FS = ±245		8.75			
G_So		FS = ±500		17.50			
		FS = ±1000		35			
		FS = ±2000		70			
LA_SoDr	Linear acceleration sensitivity change vs. temperature	from -40° to +85° delta from T=25°		±1		%	
G_SoDr	Angular rate sensitivity change vs. temperature	from -40° to +85° delta from T=25°		±1.5		%	
LA_TyOff	Linear acceleration typical zero-g level offset accuracy ⁽²⁾			±40		m <i>g</i>	
G_TyOff	Angular rate typical zero-rate level ⁽³⁾			±10		dps	
LA_OffDr	Linear acceleration zero-g level change vs. temperature			±0.5		mg/°C	
G_OffDr	Angular rate typical zero-rate level change vs. temperature			±0.05		dps/°C	
Rn	Rate noise density			7		mdps/√Hz	
An	Acceleration noise density	FS= ±2 <i>g</i> ODR = 100 Hz		90		μ <i>g</i> /√Hz	

Table 3. Mechanical characteristics (continued)

Symbol	Parameter	Test conditions	min	Typ. ⁽¹⁾	max	Unit
				13		
				26		
				52		
				104		
LA_ODR	Linear acceleration output data			208		
	rate			416		
				833		
				1666		
				3332		Hz
				6664		ΠZ
			X	13		
				26		
				52		
G_ODR	Angular rate output data rate			104		
G_ODK	Angular rate output data rate	71		208		
				416		
				833		
				1666		
Тор	Operating temperature range	4	-40		+85	°C
Trise	Time for power supply rising ⁽⁴⁾		0.01		100	ms
Twait	Time delay between Vdd_IO and Vdd ⁽⁴⁾		0		1	s

^{1.} Typical specifications are not guaranteed.

^{2.} Values after soldering.

^{3.} Values after soldering.

^{4.} Please refer to Section 4.1.1: Recommended power-up sequence for more details.

4.1.1 Recommended power-up sequence

For the power-up sequence please refer to the following figure, where:

- Trise is the time for the power supply to rise from 10% to 90% of its final value
- Twait is the time delay between the end of the Vdd_IO ramp (90% of its final value) and the start of the Vdd ramp

Vdd_IO

Vdd ov

Trise

Trise

Trise

Figure 2. Recommended power-up sequence

4.2 Electrical characteristics

@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 4. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.71	1.8	3.6	V
Vdd_IO	Power supply for I/O		1.62		3.6	V
IddHP	Gyroscope and accelerometer in high-performance mode	up to ODR = 1.6 kHz		1.25		mA
IddNM	Gyroscope and accelerometer in normal mode	ODR = 208 Hz		0.9		mA
IddLP	Gyroscope and accelerometer in low-power mode	ODR = 13 Hz		0.6		mA
LA_lddHP	Accelerometer current consumption in high-performance mode	up to ODR = 1.6 kHz		240		μА
LA_IddNM	Accelerometer current consumption in normal mode	ODR = 104 Hz	,	70		μА
LA_lddLM	Accelerometer current consumption in low-power mode	ODR < 52 Hz		24		μА
IddPD	Gyroscope and accelerometer in power down			6		μА
Тор	Operating temperature range		-40		+85	°C

^{1.} Typical specifications are not guaranteed.

For details related to the LSM6DS3 operating modes, refer to *5.2: Gyroscope power modes* and *5.3: Accelerometer power modes*.

4.3 Communication interface characteristics

4.3.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and Top.

Table 5. SPI slave timing values

Symbol	Parameter	Valu	Unit	
Symbol	Parameter	Min	Max	Unit
t _{c(SPC)}	SPI clock cycle	100		ns
f _{c(SPC)}	SPI clock frequency		10	MHz
t _{su(CS)}	CS setup time	5		
t _{h(CS)}	CS hold time	20		
t _{su(SI)}	SDI input setup time	5		
t _{h(SI)}	SDI input hold time	15		ns
t _{v(SO)}	SDO valid output time		50	
t _{h(SO)}	SDO output hold time	5		
t _{dis(SO)}	SDO output disable time		50	

Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production

 CS
 t_{su(CS)}
 t_{h(CS)}

 SPC
 t_{su(SI)}
 t_{h(SI)}

 SDI
 MSB IN
 LSB IN

 SDO
 MSB OUT
 LSB OUT

Figure 3. SPI slave timing diagram

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports.

4.3.2 I²C - inter-IC control interface

Subject to general operating conditions for Vdd and Top.

Table 6. I²C slave timing values

Symbol	Parameter	I ² C Standa	ırd mode ⁽¹⁾	I ² C Fast	Unit	
Symbol	Farameter	Min	Max	Min	Max	Oilit
f _(SCL)	SCL clock frequency	0	100	0	400	kHz
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0	*	0.6		— μs
t _{su(SDA)}	SDA setup time	250	X	100		ns
t _{h(SDA)}	SDA data hold time	0	3.45	0	0.9	μs
t _{h(ST)}	START condition hold time	4		0.6		
t _{su(SR)}	Repeated START condition setup time	4.7	7	0.6		II.E
t _{su(SP)}	STOP condition setup time	4		0.6		— μs
t _{w(SP:SR)}	Bus free time between STOP and START condition	4.7		1.3		

^{1.} Data based on standard I²C protocol requirement, not tested in production.

Figure 4. I²C slave timing diagram

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.

477

Absolute maximum ratings 4.4

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 7. Absolute maximum ratings

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 4.8	V
T _{STG}	Storage temperature range	-40 to +125	°C
Sg	Acceleration g for 0.1 ms	10,000	g
ESD	Electrostatic discharge protection (HBM)	2	kV
Vin	Input voltage on any control pin (including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)	0.3 to Vdd_IO +0.3	V

Note: Supply Voltage on any pin should never exceed 4.8 V.

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part

4.5 Terminology

4.5.1 Sensitivity

Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, ± 1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors.

An angular rate gyroscope is device that produces a positive-going digital output for counterclockwise rotation around the axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time.

4.5.2 Zero-g and zero-rate level

Linear acceleration zero-*g* level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 *g* on both the X-axis and Y-axis, whereas the Z-axis will measure 1 *g*. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2's complement number). A deviation from the ideal value in this case is called zero-*g* offset.

Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Linear acceleration zero-g level change vs. temperature" in *Table 3*. The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.

Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time.

LSM6DS3 Functionality

5 Functionality

5.1 Operating modes

The LSM6DS3 has three operating modes available:

- only accelerometer active and gyroscope in power-down
- · only gyroscope active and accelerometer in power-down
- both accelerometer and gyroscope sensors active with independent ODR

The accelerometer is activated from power down by writing ODR_XL[3:0] in CTRL1_XL (10h) while the gyroscope is activated from power-down by writing ODR_G[3:0] in CTRL2_G (11h). For combo mode the ODRs are totally independent.

5.2 Gyroscope power modes

In the LSM6DS3, the gyroscope can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the G_HM_MODE bit in *CTRL7_G* (16h). If G_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 13 Hz up to 1.6 kHz).

To enable the low-power and normal mode, the G_HM_MODE bit has to be set to '1'. Low-power mode is available for lower ODR (13, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

5.3 Accelerometer power modes

In the LSM6DS3, the accelerometer can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the XL_HM_MODE bit in *CTRL6_G (15h)*. If XL_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 13 Hz up to 6.66 kHz).

To enable the low-power and normal mode, the XL_HM_MODE bit has to be set to '1'. Low-power mode is available for lower ODRs (13, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

5.4 FIFO

The presence of a FIFO allows consistent power saving for the system since the host processor does not need continuously poll data from the sensor, but it can wake up only when needed and burst the significant data out from the FIFO.

LSM6DS3 embeds 8 kbytes data FIFO to store data up to four sensors:

- accelerometer
- gyroscope
- first external sensor
- second external sensor

Functionality LSM6DS3

If the FIFO is used to store accelerometer and/or gyroscope data, it is possible to specify an ODR set by the user (see *FIFO CTRL5 (0Ah)*).

The ODR must be lower than both accelerometer and gyroscope ODRs.

Each sensor data can be stored at a decimated data rate compared to FIFO ODR and it is configurable by the user, setting the registers *FIFO_CTRL3* (08h) and *FIFO_CTRL4* (09h). The available decimation factors are 2, 3, 4, 8, 16, 32.

Programmable FIFO threshold can be set in *FIFO_CTRL1 (06h)* and *FIFO_CTRL2 (07h)* using the FTH [11:0] bits.

To monitor the FIFO status, dedicated registers (*FIFO_STATUS1 (3Ah)*, *FIFO_STATUS2 (3Bh)*, *FIFO_STATUS3 (3Ch)*, *FIFO_STATUS4 (3Dh)*) can be read to detect FIFO overrun events, FIFO full status, FIFO empty status, FIFO threshold status and number of unread samples stores in the FIFO. To generate dedicated interrupts on the INT1 and INT2 pads of these status events, the configuration can be set in *INT1_CTRL (0Dh)* and *INT2_CTRL (0Eh)*.

FIFO buffer can be configured according to five different modes:

- Bypass mode
- FIFO mode
- Continuous mode
- Continuous-to-FIFO mode
- Bypass-to-continuous mode

Each mode is selected by the FIFO_MODE_[2:0] in FIFO_CTRL5 (0Ah) register. To guarantee the correct acquisition of data during the switching into and out of FIFO mode, the first sample acquired must be discarded.

5.4.1 Bypass mode

In Bypass mode (*FIFO_CTRL5 (0Ah)* (FIFO_MODE_[2:0] = 000), the FIFO is not operational and it remains empty.

Bypass mode is also used to reset the FIFO when in FIFO mode.

5.4.2 FIFO mode

In FIFO mode (*FIFO_CTRL5* (*OAh*) (FIFO_MODE_[2:0] = 001) data from the output channels are stored in the FIFO until it is overwritten.

To reset FIFO content, Bypass mode should be selected by writing FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0]) to '000' After this reset command, it is possible to restart FIFO mode by writing FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0]) to '001'.

FIFO buffer memorizes 4096 samples of 16 bits each but the depth of the FIFO can be resized by setting the FTH [11:0] bits in *FIFO_CTRL1 (06h)* and *FIFO_CTRL2 (07h)*. If the STOP_ON_FTH bit in *CTRL4_C (13h)* is set to '1', FIFO depth is limited to FTH [11:0] bits in *FIFO_CTRL1 (06h)* and *FIFO_CTRL2 (07h)* +1 sample.

A FIFO threshold interrupt can be enabled (INT1_OVR bit in INT1_CTRL (0Dh)) in order to be raised when the FIFO stops collecting data. When the FIFO overrun interrupt occurs, the first data has been overwritten and the FIFO stops collecting data from the input channels.

LSM6DS3 Functionality

5.4.3 Continuous mode

Continuous mode (*FIFO_CTRL5 (0Ah)* (FIFO_MODE_[2:0] = 110) provides a continuous FIFO update: as new data arrives, the older data is discarded.

A FIFO threshold flag *FIFO_STATUS2* (3Bh)(FTH) is asserted when the number of unread samples in FIFO is greater than or equal to *FIFO_CTRL1* (06h) and *FIFO_CTRL2* (07h)(FTH [11:0]).

It is possible to route *FIFO_STATUS2 (3Bh)* (FTH) to the INT1 pin by writing in register *INT1_CTRL (0Dh)* (INT1_FTH) = '1' or to the INT2 pin by writing in register *INT2_CTRL (0Eh)* (INT2_FTH) = '1'.

A full-flag interrupt can be enabled, *INT1_CTRL* (*0Dh*) (INT_FULL_FLAG) = '1', in order to indicate FIFO saturation and eventually read its content all at once.

If an overrun occurs, the oldest sample in FIFO is overwritten and the OVER_RUN flag in FIFO STATUS2 (3Bh) is asserted.

In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of unread samples available in *FIFO_STATUS1* (3Ah) and *FIFO_STATUS2* (3Bh) (DIFF_FIFO[11:0]).

5.4.4 Continuous-to-FIFO mode

In Continuous-to-FIFO mode (*FIFO_CTRL5 (0Ah)* (FIFO_MODE_[2:0] = 011), FIFO behavior changes according to the trigger event detected in one of the following interrupt registers *SENSORHUB13_REG (4Dh)*, *TAP_SRC (1Ch)* and *WAKE_UP_SRC (1Bh)*.

When the selected trigger bit is equal to '1', FIFO operates in FIFO mode.

When the selected trigger bit is equal to '0', FIFO operates in Continuous mode.

5.4.5 Bypass-to-Continuous mode

In Bypass-to-Continuous mode (*FIFO_CTRL5 (0Ah)* (FIFO_MODE_[2:0] = '100'), data measurement storage inside FIFO operates in Continuous mode when selected triggers in one of the following interrupt registers *SENSORHUB13_REG (4Dh)*, *TAP_SRC (1Ch)* and *WAKE_UP_SRC (1Bh)* are equal to '1', otherwise FIFO content is reset (Bypass mode).

5.4.6 FIFO reading procedure

The data stored in FIFO are accessible from dedicated registers (FIFO_DATA_OUT_L (3Eh) and FIFO_DATA_OUT_H (3Fh)) and each FIFO sample is composed of 16 bits.

All FIFO status registers (*FIFO_STATUS1* (*3Ah*), *FIFO_STATUS2* (*3Bh*), *FIFO_STATUS3* (*3Ch*), *FIFO_STATUS4* (*3Dh*)) can be read at the start of a reading operation, minimizing the intervention of the application processor.

In FIFO can store up to four sensors:

- accelerometer
- gyroscope
- first external sensor
- second external sensor

The external sensors are read by an integrated auxiliary I^2C master (sensor hub) and only the first 12 bytes are saved in the FIFO.

Functionality LSM6DS3

Data stored from each sensor is composed of six bytes (3 FIFO samples); the data can be stored synchronically according to ODR_FIFO_[3:0] in FIFO_CTRL5 (0Ah) and the decimation for each sensor.

LSM6DS3 Digital interfaces

6 Digital interfaces

The registers embedded inside the LSM6DS3 may be accessed through both the I²C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode.

The serial interfaces are mapped onto the same pins. To select/exploit the I²C interface, the CS line must be tied high (i.e connected to Vdd_IO).

Pin name	Pin description						
CS	SPI enable I ² C/SPI mode selection (1: SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)						
SCL/SPC	I ² C Serial Clock (SCL) SPI Serial Port Clock (SPC)						
SDA/SDI/SDO	I ² C Serial Data (SDA) SPI Serial Data Input (SDI) 3-wire Interface Serial Data Output (SDO)						
SDO/SA0	SPI Serial Data Output (SDO) I ² C less significant bit of the device address						

Table 8. Serial interface pin description

6.1 I²C serial interface

The LSM6DS3 I²C is a bus slave. The I²C is employed to write the data to the registers, whose content can also be read back.

The relevant I²C terminology is provided in the table below.

Term
Description

Transmitter
The device which sends data to the bus
Receiver
The device which receives data from the bus

Master
The device which initiates a transfer, generates clock signals and terminates a transfer

Slave
The device addressed by the master

Table 9. I²C terminology

There are two signals associated with the I^2C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up resistors. When the bus is free, both the lines are high.

The I²C interface is implemeted with fast mode (400 kHz) I²C standards as well as with the standard mode.

In order to disable the I^2C block, ($I2C_disable$) = 1 must be written in $CTRL4_C$ (13h).

Digital interfaces LSM6DS3

6.1.1 I²C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The Slave ADdress (SAD) associated to the LSM6DS3 is 110101xb. The SDO/SA0 pin can be used to modify the less significant bit of the device address. If the SDO/SA0 pin is connected to the supply voltage, LSb is '1' (address 1101011b); else if the SDO/SA0 pin is connected to ground, the LSb value is '0' (address 1101010b). This solution permits to connect and address two different inertial modules to the same I²C bus.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I²C embedded inside the LSM6DS3 behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted. The increment of the address is configured by the *CTRL3 C (12h)* (IF INC).

The slave address is completed with a Read/Write bit. If the bit is '1' (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is '0' (Write) the master will transmit to the slave with direction unchanged. *Table 10* explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.

Table 10. SAD+Read/Write patterns

Command	SAD[6:1]	SAD[0] = SA0	R/W	SAD+R/W
Read	110101	0	1	11010101 (D5h)
Write	110101	0	0	11010100 (D4h)
Read	110101	1	1	11010111 (D7h)
Write	110101	1	0	11010110 (D6h)

Table 11. Transfer when master is writing one byte to slave

Master	ST	SAD + W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

Table 12. Transfer when master is writing multiple bytes to slave

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

LSM6DS3 Digital interfaces

Table 13. Transfer when master is receiving (reading) one byte of data from slave

Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 14. Transfer when master is receiving (reading) multiple bytes of data from slave

Maste	ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DAT A		DATA		

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can't receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn't acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.

In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge.

6.2 SPI bus interface

The LSM6DS3 SPI is a bus slave. The SPI allows writing and reading the registers of the device.

The serial interface communicates to the application using 4 wires: CS, SPC, SDI and SDO.

Figure 5. Read and write protocol

CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. **SPC** is the serial port clock and it is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are, respectively, the serial port data input and output. Those lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

Digital interfaces LSM6DS3

Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of **CS** while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of **CS**.

bit 0: $R\overline{W}$ bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip will drive **SDO** at the start of bit 8.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

In multiple read/write commands further blocks of 8 clock periods will be added. When the CTRL3_C (12h) (IF_INC) bit is '0', the address used to read/write data remains the same for every block. When the CTRL3_C (12h) (IF_INC) bit is '1', the address used to read/write data is increased at every block.

The function and the behavior of SDI and SDO remain unchanged.

6.2.1 SPI read

Figure 6. SPI read protocol

The SPI Read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).

bit 16-...: data DO(...-8). Further data in multiple byte reads.

LSM6DS3 Digital interfaces

Figure 7. Multiple bytes SPI read protocol (2-byte example)

6.2.2 SPI write

Figure 8. SPI write protocol

The SPI Write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: WRITE bit. The value is 0.

bit 1 -7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first).

bit 16-...: data DI(...-8). Further data in multiple byte writes.

Figure 9. Multiple bytes SPI write protocol (2-byte example)

6.2.3 SPI read in 3-wire mode

A 3-wire mode is entered by setting the *CTRL3_C* (12h) (SIM) bit equal to '1' (SPI serial interface mode selection).

Digital interfaces LSM6DS3

Figure 10. SPI read protocol in 3-wire mode

The SPI read command is performed with 16 clock pulses:

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). A multiple read command is also available in 3-wire mode.

LSM6DS3 Application hints

7 Application hints

7.1 LSM6DS3 electrical connections in Mode 1

SDO/SA0 1 NC 11 TOP SDx **VIEW** SCx INT2 GND or VDDIO INT1 4 8 VDD 5 100 nF **GND** Vdd IO Vdd_IO 100 nF I2C configuration Rpu= 10kOhm GND SCL SDA Pull-up to be added

Figure 11. LSM6DS3 electrical connections in Mode 1

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = $100 \, nF$ ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C interface.

Application hints LSM6DS3

7.2 LSM6DS3 electrical connections in Mode 2

SDO/SA0 1 11 NC TOP NC SDx VIEW SCx INT2 GND or VDDIO 4 8 INT1 VDD 7 GND **VDDIO** 100 nF GND Vdd_IO Vdd_IO 100 nF I2C configuration GND SCI SDA Pull-up to be added

Figure 12. LSM6DS3 electrical connections in Mode 2

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, $C2 = 100 \, nF$ ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C interface.

LSM6DS3 Application hints

7.3 LSM6DS3 electrical connections in Mode 3

1 NC SA0 TOP SDI/SDC ocs **VIEW** SPC INT2 4 8 INT1 VDD 7 GND 100 nF GND Vdd IO Vdd_IO 100 nF Rpu= 10kOhm GND SCL SDA Pull-up to be added

Figure 13. LSM6DS3 electrical connections in Mode 3

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, $C2 = 100 \, nF$ ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C interface.

Register mapping LSM6DS3

8 Register mapping

The table given below provides a list of the 8/16 bit registers embedded in the device and the corresponding addresses.

Table 15. Registers address map

Name	Туре	Registe	r address	Default	Comment
Name	туре	Hex	Binary	Delault	Comment
RESERVED	r/w	00	00000000	00000000	Reserved
FUNC_CFG_ACCESS	r/w	01	00000001	00000000	Embedded functions configuration register
RESERVED	r/w	02	00000010	-	Reserved
RESERVED	r/w	03	00000011	-	Reserved
SENSOR_SYNC_TIME_ FRAME	r/w	04	00000100	00000000	Sensor sync configuration register
SENSOR_SYNC_ENABLE	r/w	05	00000101	00000000	Sensor sync configuration register
FIFO_CTRL1	r/w	06	00000110	00000000	
FIFO_CTRL2	r/w	07	00000111	00000000	FIFO
FIFO_CTRL3	r/w	08	00001000	00000000	configuration
FIFO_CTRL4	r/w	09	00001001	00000000	registers
FIFO_CTRL5	r/w	0A	00001010	00000000	
ORIENT_CFG_G	r/w	0B	00001011	00000000	
RESERVED	r/w	0C	00001100	-	Reserved
INT1_CTRL	r/w	0D	00001101	00000000	INT1 pin control
INT2_CTRL	r/w	0E	00001110	00000000	INT2 pin control
WHO_AM_I	r	0F	00001111	01101001	Who I am ID

Table 15. Registers address map (continued)

Nome	Toma	Registe	r address	Default	Comment	
Name	Type	Hex	Binary	Default	Comment	
CTRL1_XL	r/w	10	00010000	00000000		
CTRL2_G	r/w	11	00010001	00000000		
CTRL3_C	r/w	12	00010010	00000100		
CTRL4_C	r/w	13	00010011	00000000	Accelerometer	
CTRL5_C	r/w	14	00010100	00000000	and gyroscope control	
CTRL6_G	r/w	15	00010101	00000000	registers	
CTRL7_G	r/w	16	00010110	00000000		
CTRL9_XL	r/w	18	00011000	00111000		
CTRL10_C	r/w	19	00011001	00111000		
MASTER_CONFIG	r/w	1A 7	00011010	00000000	I ² C master configuration register	
WAKE_UP_SRC	r	1B	00011011	output		
TAP_SRC	r	1C	00011100	output	Interrupts registers	
D6D_SRC	r	1D	00011101	output	- Toguesa	
STATUS_REG	٢	1E	00011110	output	Status data register	
RESERVED	r	1F	00011111	-	Reserved	
RESERVED	r	20	00100000	-	Reserved	
RESERVED	r	21	00100001	-	Reserved	
OUTX_L_G	r	22	00100010	output		
OUTX_H_G	r	23	00100011	output		
OUTY_L_G	ľ	24	00100100	output	Gyroscope	
OUTY_H_G	r	25	00100101	output	output register	
OUTZ_L_G	r	26	00100110	output		
OUTZ_H_G	r	27	00100111	output	1	
OUTX_L_XL	r	28	00101000	output		
OUTX_H_XL	r	29	00101001	output	Accelerometer	
OUTY_L_XL	r	2A	00101010	output		
OUTY_H_XL	r	2B	00101011	output	output register	
OUTZ_L_XL	r	2C	00101100	output		
OUTZ_H_XL	r	2D	00101101	output		

Register mapping LSM6DS3

Table 15. Registers address map (continued)

N	_	Registe	r address	D. C. 11		
Name	Type	Hex	Binary	Default	Comment	
SENSORHUB1_REG	r	2E	00101110	output		
SENSORHUB2_REG	r	2F	00101111	output]	
SENSORHUB3_REG	r	30	00110000	output]	
SENSORHUB4_REG	r	31	00110001	output		
SENSORHUB5_REG	r	32	00110010	output]	
SENSORHUB6_REG	r	33	00110011	output	Sensor hub	
SENSORHUB7_REG	r	34	00110100	output	output registers	
SENSORHUB8_REG	r	35	00110101	output]	
SENSORHUB9_REG	r	36	00110110	output]	
SENSORHUB10_REG	r	37	00110111	output]	
SENSORHUB11_REG	r	38	00111000	output]	
SENSORHUB12_REG	r	39	00111001	output		
FIFO_STATUS1	r	3A	00111010	output		
FIFO_STATUS2	ſ	3B	00111011	output	FIFO status	
FIFO_STATUS3	T	3C	00111100	output	registers	
FIFO_STATUS4	r	3D	00111101	output		
FIFO_DATA_OUT_L	r	3E	00111110	output	FIFO data	
FIFO_DATA_OUT_H	r	3F	00111111	output	output registers	
TIMESTAMP0_REG	r	40	01000000	output		
TIMESTAMP1_REG	r	41	01000001	output	Time stamp output registers	
TIMESTAMP2_REG	r	42	01000010	output	3	
RESERVED		43-4A			Reserved	
STEP_COUNTER_L	r	4B	01001011	output	Step counter	
STEP_COUNTER_H	r	4C	01001100	output	output registers	
SENSORHUB13_REG	r	4D	01001101	output		
SENSORHUB14_REG	r	4E	01001110	output		
SENSORHUB15_REG	r	4F	01001111	output	Sensor hub output registers	
SENSORHUB16_REG	r	50	01010000	output		
SENSORHUB17_REG	r	51	01010001	output		
SENSORHUB18_REG	r	52	01010010	output		
FUNC_SRC	r	53	01010011	output	Interrupt register	
RESERVED		54-57			Reserved	

Table 15. Registers address map (continued)

Name	Time	Registe	r address	address Default		
Name	Type	Hex	Binary	Delault	Comment	
TAP_CFG	r/w	58	01011000	00000000		
TAP_THS_6D	r/w	59	01011001	00000000		
INT_DUR2	r/w	5A	01011010	00000000		
WAKE_UP_THS	r/w	5B	01011011	00000000	Interrupt	
WAKE_UP_DUR	r/w	5C	01011100	00000000	registers	
FREE_FALL	r/w	5D	01011101	00000000		
MD1_CFG	r/w	5E	01011110	00000000		
MD2_CFG	r/w	5F	01011111	00000000		
RESERVED		60-61		-	Reserved	

Registers marked as *Reserved* must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

9 Register description

The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration, angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to write the data through the serial interface.

9.1 FUNC_CFG_ACCESS (01h)

Enable embedded functions register (r/w).

Table 16. FUNC_CFG_ACCESS register

FUNC_CFGEN0 ⁽¹⁾	0 ⁽¹⁾					
----------------------------	------------------	------------------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 17. FUNC_CFG_ACCESS register description

FUNC_CFG_EN	Enable access to the embedded functions configuration registers ⁽¹⁾ from address 02h to 32h. Default value: 0.
	(0: disable access to embedded functions configuration registers; 1: enable access to embedded functions configuration registers)

The embedded functions configuration registers details are available in 10: Embedded functions register mapping and 11: Embedded functions registers description.

9.2 SENSOR_SYNC_TIME_FRAME (04h)

Sensor synchronization time frame register (r/w).

Table 18. SENSOR_SYNC_TIME_FRAME register

TPH_7	TPH_6	TPH_5	TPH_4	TPH_3	TPH_2	TPH_1	TPH_0
-------	-------	-------	-------	-------	-------	-------	-------

Table 19. ISENSOR_SYNC_TIME_FRAME register description

TPH_[7:0]	Sensor synchronization time frame with the step of 500 ms and full range of 5 s. Unsigned 8-bit.
	Default value: 0000 0000

9.3 SENSOR_SYNC_ENABLE (05h)

Sensor synchronization enable register (r/w).

Table 20. SENSOR_SYNC_ENABLE register

0 ⁽¹⁾	HP_RST	SENSOR_ SYNC_EN					
------------------	------------------	------------------	------------------	------------------	------------------	--------	--------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

57/

Table 21. SENSOR_SYNC_ENABLE register description

HP_RST	Gyro digital HP filter reset. Default: 0 (0:Gyro digital HP filter reset OFF; 1: Gyro digital HP filter reset ON*) *Needs to be set to '1' for at least the time of 1 ODR cycle to be effective.
SENSOR SYNC	Enable sensor synchronization feature. Default value: 0
_EN	(0: sensor sync feature disabled; 1: sensor sync feature enabled with external imposed ODR timing)

9.4 FIFO_CTRL1 (06h)

FIFO control register (r/w).

Table 22. FIFO_CTRL1 register

FTH 7	FTH 6	FTH 5	FTH 4	FTH 3	FTH 2	FTH 1	FTH 0
_	_	_	_		_	_	_

Table 23. FIFO_CTRL1 register description

	FIFO threshold level setting ⁽¹⁾ . Default value: 0000 0000.
FTH [7:0]	Watermark flag rises when the number of bytes written to FIFO is greater than
[]	or equal to threshold level.
	Minimum resolution for the FIFO is 1 LSB = 2 bytes (1 word) in FIFO

^{1.} For a complete watermark threshold configuration, consider FTH_[11:8] in FIFO_CTRL2 (07h).

9.5 FIFO_CTRL2 (07h)

FIFO control register (r/w)

Table 24. FIFO_CTRL2 register

TIMER_PEDO	TIMER_	0(1)	n(1)	CTU 11	FTH10	FTH 0	FTH 8	
_FIFO_EN	_FIFO_I	0, 7	0, ,	F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FINIO	FIN_9	FIH_0	İ

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 25. FIFO_CTRL2 register description

TIMER_PEDO _FIFO_EN	Enable pedometer step counter and time stamp as 4 th sensor FIFO data. Default: 0 (0: disable step counter and time stamp data as 4 th sensor FIFO; 1: enable step counter and time stamp data as 4 th sensor FIFO)
TIMER_PEDO _FIFO_DRDY	Pedometer FIFO write mode. Default: 0 (0: disable write in FIFO at every step detected; 1: enable write in FIFO at every step detected by step counter.)
FTH_[11:8]	FIFO threshold level setting ⁽¹⁾ . Default value: 0000 Watermark flag rises when the number of bytes written to FIFO is greater than or equal to threshold level. Minimum resolution for the FIFO is 1LSB = 2 bytes (1 word) in FIFO

^{1.} For a complete watermark threshold configuration, consider FTH_[11:8] in FIFO_CTRL1 (06h)

LSM6DS3

9.6 FIFO_CTRL3 (08h)

FIFO control register (r/w).

Table 26. FIFO_CTRL3 register

0(1)	O ⁽¹⁾	DEC_FIFO	DEC_FIFO	DEC_FIFO	DEC_FIFO	DEC_FIFO	DEC_FIFO
0, ,	0.7	_GYRO2	_GYRO1	_GYRO0	_XL2	_XL1	_XL0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 27. FIFO_CTRL3 register description

DEC_FIFO_GYRO [2:0]	Gyro FIFO decimation setting. Default: 000 For the configuration setting, refer to Table 28
DEC_FIFO_XL [2:0]	Accelerometer FIFO decimation setting. Default: 000 For the configuration setting, refer to

Table 28. Gyro FIFO decimation setting

DEC_FIFO_GYRO [2:0]	Configuration
000	Gyro sensor not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

Table 29. Accelerometer FIFO decimation setting

DEC_FIFO_XL [2:0]	Configuration
000	Accelerometer sensor not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

9.7 FIFO_CTRL4 (09h)

FIFO control register (r/w).

Table 30. FIFO_CTRL4 register

o(1)	ONLY_HIGH	DEC_SLV1	DEC_SLV1	DEC_SLV1	DEC_SLV0	DEC_SLV0	DEC_SLV0
0(1)	_DATA	_FIFO2	_FIFO1	_FIFO0	_FIFO2	_FIFO1	_FIFO0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 31. FIFO_CTRL4 register description

ONLY_HIGH_DATA	8-bit data storage in FIFO. Default: 0 (0: disable MSByte only memorization in FIFO for XL and Gyro; 1: enable MSByte only memorization in FIFO for XL and Gyro in FIFO)				
DEC_SLV1_FIFO[2:0]	Second external sensor FIFO decimation setting. Default: 000 For the configuration setting, refer to <i>Table 32</i> .				
DEC_SLV0_FIFO[2:0]	First external sensor FIFO decimation setting. Default: 000 For the configuration setting, refer to <i>Table 33</i> .				

Table 32. Second external sensor FIFO decimation setting

DEC_SLV1_FIFO [2:0]	Configuration
000	Second external sensor not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

Table 33. First external sensor in FIFO decimation setting

DEC_SLV0_FIFO [2:0]	Configuration
000	First external sensor not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

9.8 FIFO_CTRL5 (0Ah)

FIFO control register (r/w).

Table 34. FIFO_CTRL5 register

n(1)	ODR_	ODR_	ODR_	ODR_	FIFO_	FIFO_	FIFO_
0(1)	FIFO_3	FIFO_2	FIFO_1	FIFO_0	MODE_2	MODE_1	MODE_0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 35. FIFO_CTRL5 register description

ODR_FIFO_[3:0]	FIFO ODR selection. Default: 0000
	For the configuration setting, refer to <i>Table 36</i>
FIFO MODE [2:0]	FIFO mode selection bits. Default value: 000
oo =[=.o]	For the configuration setting, refer to Table 37

Table 36. FIFO ODR selection

ODR_FIFO_[3:0]	Configuration ⁽¹⁾
0001	FIFO ODR is set to 13 Hz
0010	FIFO ODR is set to 26 Hz
0011	FIFO ODR is set to 52 Hz
0100	FIFO ODR is set to 104 Hz
0101	FIFO ODR is set to 208 Hz
0110	FIFO ODR is set to 416 Hz
0111	FIFO ODR is set to 833 Hz
1000	FIFO ODR is set to 1.66 kHz
1001	FIFO ODR is set to 3.33 kHz
1010	FIFO ODR is set to 6.66 kHz

^{1.} If the device is working at an ODR slower than the one selected, FIFO ODR is limited to that ODR value.

Table 37. FIFO mode selection

FIFO_MODE_[2:0]	Configuration mode			
000	Bypass mode. FIFO turned off			
001	IFO mode. Stops collecting data when FIFO is full.			
010	Reserved			
011	Continuous mode until trigger is deasserted, then FIFO mode.			
100	Bypass mode until trigger is deasserted, then Continuous mode.			
101	Continuous mode. If the FIFO is full, the new sample overwrites the older one.			
110	Continuous mode. If the FIFO is full, the new sample overwrites the older one.			
111	Reserved			

46/90 DocID026899 Rev 1

9.9 ORIENT_CFG_G (0Bh)

Angular rate sensor sign and orientation register (r/w).

Table 38. ORIENT CFG G register

0 ⁽¹⁾	0 ⁽¹⁾	SignX_G	SignY_G	SignZ_G	Orient_2	Orient_1	Orient_0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 39. ORIENT_CFG_G register description

SignX_G	Pitch axis (X) angular rate sign. Default value: 0 (0: positive sign; 1: negative sign)
SignY_G	Roll axis (Y) angular rate sign. Default value: 0 (0: positive sign; 1: negative sign)
SignZ_G	Yaw axis (Z) angular rate sign. Default value: 0 (0: positive sign; 1: negative sign)
Orient [2:0]	Directional user-orientation selection. Default value: 000 For the configuration setting, refer to <i>Table 40</i> .

Table 40. Settings for orientation of axes

Orient [2:0]	000	001	010	011	100	101
Pitch	Х	X	Υ	Υ	Z	Z
Roll	Υ	Z	X	Z	Х	Υ
Yaw	Z	Y	Z	Х	Υ	Х

9.10 INT1_CTRL (0Dh)

INT1 pad control register (r/w).

Each bit in this register enables a signal to be carried through INT1. The pad's output will supply the OR combination of the selected signals.

Table 41. INT1_CTRL register

INT1_	INT1_	INT1_	INT1_	INT1_	INT1_	INT1_	INT1_
PEDO	SIGN_MOT	FULL_FLAG	FIFO_OVR	FTH	BOOT	DRDY_G	DRDY_XL

Table 42. INT1_CTRL register description

INT1_PEDO	Pedometer step recognition interrupt enable on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_SIGN_MOT	Significant motion interrupt enable on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_FULL_FLAG	FIFO full flag interrupt enable on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_FIFO_OVR	FIFO overrun interrupt on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_FTH	FIFO threshold interrupt on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_BOOT	Boot status available on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_DRDY_G	Gyroscope Data Ready on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_DRDY_XL	Accelerometer Data Ready on INT1 pad. Default value: 0 (0: disabled; 1: enabled)

9.11 INT2_CTRL (0Eh)

INT2 pad control register (r/w).

Each bit in this register enables a signal to be carried through INT2. The pad's output will supply the OR combination of the selected signals.

Table 43. INT2_CTRL register

INT2_	INT2_	INT2_	INT2_	INT2_	n(1)	INT2_	INT2_
PEDO	SIGN_MOT	FULL_FLAG	FIFO_OVR	FTH	0()	DRDY_G	DRDY_XL

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 44. INT2_CTRL register description

INT2_PEDO	Pedometer step recognition interrupt enable on INT2 pad. Default value: 0 (0: enabled; 1: disabled)
INT2_SIGN_MOT	Significant motion interrupt enable on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_ FULL_FLAG	FIFO full flag interrupt enable on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_FIFO_OVR	FIFO overrun interrupt on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_FTH	FIFO threshold interrupt on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_DRDY_G	Gyroscope Data Ready on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_DRDY_XL	Accelerometer Data Ready on INT2 pad. Default value: 0 (0: disabled; 1: enabled)

577

9.12 WHO_AM_I (0Fh)

Who_AM_I register (r). This register is a read-only register. Its value is fixed at 69h.

Table 45. WHO_AM_I register

0	1	1	0	1	0	0	1

9.13 CTRL1_XL (10h)

Linear acceleration sensor control register 1 (r/w).

Table 46. CTRL1_XL register

ODR XL3	ODR XL2	ODR XL1	ODR XL0	FS XL1	FS XL0	BW XL1	BW XL0
_	_	_	_		_	_	_

Table 47. CTRL1_XL register description

ODR_XL [3:0]	Output data rate and power mode selection. Default value: 0000 (see <i>Table 48</i>).
FS_XL [1:0]	Accelerometer full-scale selection. Default value: 00. (00: ± 2 g ; 01: ± 16 g ; 10: ± 4 g ; 11: ± 8 g)
BW_XL [1:0]	Anti-aliasing filter bandwidth selection. Default value: 00 (00: 400 Hz; 01: 200 Hz; 10: 100 Hz; 11: 50 Hz)

Table 48. Accelerometer ODR register setting

ODR_ XL3	ODR_ XL2	ODR_ XL1	ODR_ XL0	ODR selection [Hz] when XL_HM_MODE = 1	ODR selection [Hz] when XL_HM_MODE = 0
0	0	0	0	Power-down	Power-down
0	0	0	1	13 Hz (low power)	13 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)
1	0	0	1	3.33 kHz (high performance)	3.33 kHz (high performance)
1	0	1	0	6.66 kHz (high performance)	6.66 kHz (high performance)

Table 43. DW and ODK (mun-benomiance mode)	Table 49	. BW and ODR	(high-performance mode)
--	----------	--------------	-------------------------

ODR ⁽¹⁾	Analog filter BW (XL_HM_MODE = 0)				
ODK.	BW_SCAL_ODR = 0	BW_SCAL_ODR = 1			
6.66 - 3.33 kHz	N/A				
1.66 kHz	400 Hz				
833 Hz	400 Hz	Bandwidth is determined by			
416 Hz	200 Hz	setting BW_XL[1:0] in CTRL1_XL (10h)			
208 Hz	100 Hz	_ ,			
104 - 13 Hz	50 Hz				

^{1.} Filter not used when accelerometer is in low-power mode or ODR less than 3.33 kHz.

9.14 CTRL2_G (11h)

Angular rate sensor control register 2 (r/w).

Table 50. CTRL2_G register

ODR_G3	ODR_G2	ODR_G1	ODR_G0	FS_G1	FS_G0	FS_125	0 ⁽¹⁾
--------	--------	--------	--------	-------	-------	--------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 51. CTRL2_G register description

ODR_G [3:0]	Gyroscope output data rate selection. Default value: 0000 (Refer to <i>Table 50</i>)
FS_G [1:0]	Gyroscope full-scale selection. Default value: 00 (00: 245 dps; 01: 500 dps; 10: 1000 dps; 11: 2000 dps)
FS_125	Gyroscope full-scale at 125 dps. Default value: 0 (0: disabled; 1: enabled)

Table 52. Gyroscope ODR configuration setting

ODR_G3	ODR_G2	ODR_G1	ODR_G0	ODR [Hz] when G_HM_MODE = 1	ODR [Hz] when G_HM_MODE = 0
0	0	0	0	Power down	Power down
0	0	0	1	13 Hz (low power)	13 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)

9.15 CTRL3_C (12h)

Control register 3 (r/w).

Table 53. CTRL3_C register

BOOT	BDU	H_LACTIVE	PP_OD	SIM	IF_INC	BLE	SW_RESET
		-	_		_		_

Table 54. CTRL3_C register description

ВООТ	Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content ⁽¹⁾)
BDU	Block Data Update. Default value: 0 (0: continuous update; 1: output registers not updated until MSB and LSB have been read)
H_LACTIVE	Interrupt activation level. Default value: 0 (0: interrupt output pads active high; 1: interrupt output pads active low)
PP_OD	Push-pull/Open-Drain selection on INT1 and INT2 pads. Default value: 0 (0: push-pull mode; 1: open-drain mode)
SIM	SPI Serial Interface Mode selection. Default value: 0 (0: 4-wire interface; 1: 3-wire interface).
IF_INC	Register address automatically incremented during a multiple byte access with a serial interface (I ² C or SPI). Default value: 1 (0: disabled; 1: enabled)
BLE	Big/Little Endian Data selection. Default value 0 (0: data LSB @ lower address; 1: data MSB @ lower address)
SW_RESET	Software reset. Default value: 0 (0: normal mode; 1: reset device) This bit is cleared by hardware after next flash boot.

Boot request is executed as soon as internal oscillator is turned on. It is possible to set bit while in powerdown mode, in this case it will be served at the next normal mode or sleep mode.

9.16 CTRL4_C (13h)

Control register 4 (r/w).

Table 55. CTRL4_C register

BW_SCAL _ODR	SLEEP_G	INT2_on_ INT1	0 ⁽¹⁾	DRDY_ MASK	I2C_disable	MODE3_ EN	STOP_ON _FTH
-----------------	---------	------------------	------------------	---------------	-------------	--------------	-----------------

1. This bit must be set to '0' for the correct operation of the device.

Table 56. CTRL4_C register description

BW_SCAL_ODR	Accelerometer bandwidth selection. Default value: 0 $(0^{(1)}$: bandwidth determined by ODR selection, refer to <i>Table 49</i> ; $1^{(2)}$: bandwidth determined by setting BW_XL[1:0] in <i>CTRL1_XL</i> (10h) register.)
SLEEP_G	Gyroscope sleep mode enable. Default value: 0 (0: disabled; 1: enabled)
INT2_on_INT1	All interrupt signals available on INT1 pad enable. Default value: 0 (0: interrupt signals divided between INT1 and INT2 pads; 1: all interrupt signals in logic or on INT1 pad)
DRDY_MASK	Configuration 1 ⁽³⁾ data available enable bit. Default value: 0 (0: DA timer disabled; 1: DA timer enabled)
I2C_disable	Disable I ² C interface. Default value: 0 (0: both I ² C and SPI enabled; 1: I ² C disabled, SPI only)
MODE3_EN	Enable auxiliary SPI interface (Mode 3, refer to <i>Table 2</i>). Default value: 0 (0: auxiliary SPI disabled; 1: auxiliary SPI enabled ⁽⁴⁾)
STOP_ON_FTH	Enable FIFO threshold level use. Default value: 0. (0: FIFO depth is not limited; 1: FIFO depth is limited to threshold level)

- 1. Filter used in high-performance mode only with ODR less than 3.33 kHz.
- 2. Filter used in high-performance mode only.
- 3. In configuration 1, switching to combo mode, data are collected in FIFO only when both accelerometer and gyroscope are set. Switching to accelerometer only, data are collected in FIFO after filter setting.
- 4. Conditioned pads are: SDx, SCx, OCS

9.17 CTRL5_C (14h)

Control register 5 (r/w).

Table 57. CTRL5_C register

0 ⁽¹⁾	0 ⁽²⁾	0(3)	0 ⁽⁴⁾	ST1_G	ST0_G	ST1_XL	ST0_XL
------------------	------------------	------	------------------	-------	-------	--------	--------

- 1. This bit must be set to '0' for the correct operation of the device
- 2. This bit must be set to '0' for the correct operation of the device
- 3. This bit must be set to '0' for the correct operation of the device
- 4. This bit must be set to '0' for the correct operation of the device

Table 58. CTRL5_C register description

ST_G [1:0]	Angular rate sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to <i>Table 59</i>)
ST_XL [1:0]	Linear acceleration sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to <i>Table 60</i>)

ST1_G	ST0_G	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Not allowed
1	1	Negative sign self-test

Table 60. Linear acceleration sensor self-test mode selection

ST1_XL	ST0_XL	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Negative sign self-test
1	1	Not allowed

9.18 CTRL6_G (15h)

Angular rate sensor control register 6 (r/w).

Table 61. CTRL6_G register

TRIG_EN LVI	en LVL2_EN	XL_HM_MODE	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾
-------------	------------	------------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 62. CTRL6_G register description

TRIG_EN	Gyroscope data edge-sensitive trigger enable. Default value: 0 (0: external trigger disabled; 1: external trigger enabled)
LVLen	Gyroscope data level-sensitive trigger enable. Default value: 0 (0: level-sensitive trigger disabled; 1: level sensitive trigger enabled)
LVL2_EN	Gyroscope level-sensitive latched enable. Default value: 0 (0: level-sensitive latched disabled; 1: level sensitive latched enabled)
XL_HM_MODE	High-performance operating mode disable for accelerometer ⁽¹⁾ . Default value: 0 (0: high-performance operating mode enabled; 1: high-performance operating mode disabled)

1. Normal and low-power mode depends on the ODR setting, for details refer to *Table 52*.

LSM6DS3

9.19 CTRL7_G (16h)

Angular rate sensor control register 7 (r/w).

Table 63. CTRL7_G register

G_HM_MODE	HP_EN	HPCF_G1	HPCF_G0	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾
-----------	-------	---------	---------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 64. CTRL7_G register description

G_HM_MODE	High-performance operating mode disable for gyroscope ⁽¹⁾ . Default: 0 (0: high-performance operating mode enabled; 1: high-performance operating mode disabled)
HP_EN	High-pass filter enable. Default value: 0 (0: HPF disabled; 1: HPF enabled)
HPCF_G[1:0]	Gyroscope high-pass filter cutoff frequency selection. Default value: 00. Refer to <i>Table 65</i> .

^{1.} Normal and low-power mode depends on the ODR setting, for details refer to *Table 52*.

Table 65. Gyroscope high-pass filter mode configuration

HPCF_G1	HPCF_G0	High-pass filter cutoff frequency
0	0	0.0081 Hz
0	1	0.0032 Hz
1	0	2.07 Hz
1	1	16.32 Hz

9.20 CTRL9_XL (18h)

Linear acceleration sensor control register 9 (r/w).

Table 66. CTRL9_XL register

	\sim				_				
0 ⁽¹⁾		0 ⁽¹	Zen_XL	Yen_XL	Xen_XL	0 ⁽¹	0 ⁽¹⁾	0 ⁽¹⁾	

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 67. CTRL9_XL register description

Zen_XL	Accelerometer Z-axis output enable. Default value: 1 (0: Z-axis output disabled; 1: Z-axis output enabled)
Yen_XL	Accelerometer Y-axis output enable. Default value: 1 (0: Y-axis output disabled; 1: Y-axis output enabled)
Xen_XL	Accelerometer X-axis output enable. Default value: 1 (0: X-axis output disabled; 1: X-axis output enabled)

54/90 DocID026899 Rev 1

9.21 CTRL10_C (19h)

Control register 10 (r/w).

Table 68. CTRL10_C register

0 ⁽¹⁾	0 ⁽¹⁾ Zen_G	Yen_G	Xen_G	FUNC_EN	PEDO_RST _STEP	SIGN_ MOTION_EN
------------------	------------------------	-------	-------	---------	-------------------	--------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 69. CTRL10_C register description

Zen_G	Gyroscope yaw axis (Z) output enable. Default value: 1 (0: Z-axis output disabled; 1: Z-axis output enabled)
Yen_G	Gyroscope roll axis (Y) output enable. Default value: 1 (0: Y-axis output disabled; 1: Y axis output enabled)
Xen_G	Gyroscope pitch axis (X) output enable. Default value: 1 (0: X-axis output disabled; 1: X-axis output enabled)
FUNC_EN	Enable embedded functionalities (pedometer, tilt, significant motion, sensor hub and ironing). Default value: 0 (0: disable functionalities of embedded functions; 1: enable functionalities of embedded functions)
PEDO_RST_ STEP	Reset pedometer step counter. Default value: 0 (0: disabled; 1: enabled)
SIGN_MOTION _EN	Enable significant motion function ⁽¹⁾ . Default value: 0 (0: disabled; 1: enabled)

For correct functionality of significant motion function, the TILT_EN bit and PEDO_EN bit in TAP_CFG (58h) register must be set to 1. Significant motion function available with full scale at ±2 g only.

9.22 MASTER_CONFIG (1Ah)

Master configuration register (r/w).

Table 70. MASTER_CONFIG register

DRDY_ON DATA_V _INT1 _SEL_I	ALID 0 ⁽¹⁾	START_ CONFIG	PULL_UP _EN	PASS_ THROUGH _MODE	IRON_EN	MASTER_ ON ⁽²⁾
--------------------------------	-----------------------	------------------	----------------	---------------------------	---------	------------------------------

- 1. This bit must be set to '0' for the correct operation of the device.
- 2. For correct functionality, the accelerometer has to be on.

Table 71. MASTER_CONFIG register description

DRDY_ON_ INT1	Manage the Master DRDY signal on INT1 pad. Default: 0 (0: disable Master DRDY on INT1; 1: enable Master DRDY on INT1)
DATA_VALID_SE L_FIFO	Selection of FIFO data-valid signal. Default value: 0 (0: data-valid signal used to write data in FIFO is the XL/Gyro data-ready; 1: data-valid signal used to write data in FIFO is the sensor hub data-ready)
START_ CONFIG	Sensor Hub trigger signal selection. Default value: 0 (0: Sensor hub signal is the XL/Gyro data-ready; 1: Sensor hub signal external from INT2 pad.)
PULL_UP_EN	Auxiliary I ² C pull-up. Default value: 0 (0: internal pull-up on auxiliary I ² C line disabled; 1: internal pull-up on auxiliary I ² C line enabled)
PASS_THROUGH _MODE	I ² C interface pass-through. Default value: 0 (0: through disabled; 1: through enabled)
IRON_EN	Enable soft iron correction algorithm for magnetometer. Default value: 0 (0:soft-iron correction algorithm disabled; 1: soft-iron correction algorithm enabled)
MASTER_ON	Sensor hub I ² C master enable. Default: 0 (0: master I ² C of sensor hub disabled; 1: master I ² C of sensor hub enabled)

9.23 WAKE_UP_SRC (1Bh)

Wake up interrupt source register (r).

Table 72. WAKE_UP_SRC register

	0 ⁽¹⁾	0 ⁽¹⁾	FF_IA	SLEEP_ STATE_IA	WU_IA	X_WU	Y_WU	Z_WU	
--	------------------	------------------	-------	--------------------	-------	------	------	------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 73. WAKE_UP_SRC register description

FF_IA	Free-fall event detection status. Default: 0 (0: free-fall event not detected; 1: free-fall event detected)
SLEEP_ STATE_IA	Sleep event status. Default value: 0 (0: sleep event not detected; 1: sleep event detected)
WU_IA	Wakeup event detection status. Default value: 0 (0: wakeup event not detected; 1: wakeup event detected.)
X_WU	Wakeup event detection status on X-axis. Default value: 0 (0: wakeup event on X-axis not detected; 1: wakeup event on X-axis detected)
Y_WU	Wakeup event detection status on Y-axis. Default value: 0 (0: wakeup event on Y-axis not detected; 1: wakeup event on Y-axis detected)
Z_WU	Wakeup event detection status on Z-axis. Default value: 0 (0: wakeup event on Z-axis not detected; 1: wakeup event on Z-axis detected)

56/90 DocID026899 Rev 1

9.24 TAP_SRC (1Ch)

Tap source register (r).

Table 74. TAP_SRC register

0 ⁽¹⁾	TAP_IA	SINGLE_ TAP	DOUBLE_ TAP	TAP_SIGN	X_TAP	Y_TAP	Z_TAP
------------------	--------	----------------	----------------	----------	-------	-------	-------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 75. TAP_SRC register description

TAP_IA	Tap event detection status. Default: 0 (0: tap event not detected; 1: tap event detected)			
SINGLE_TAP	Single-tap event status. Default value: 0 (0: single tap event not detected; 1: single tap event detected)			
DOUBLE_TAP	Double-tap event detection status. Default value: 0 (0: double-tap event not detected; 1: double-tap event detected.)			
Sign of acceleration detected by tap event. Default: 0 (0: positive sign of acceleration detected by tap event; 1: negative sign of acceleration detected by tap event)				
X_TAP	Tap event detection status on X-axis. Default value: 0 (0: tap event on X-axis not detected; 1: tap event on X-axis detected)			
Y_TAP	Tap event detection status on Y-axis. Default value: 0 (0: tap event on Y-axis not detected; 1: tap event on Y-axis detected)			
Z_TAP Tap event detection status on Z-axis. Default value: 0 (0: tap event on Z-axis not detected; 1: tap event on Z-axis detected)				

9.25 D6D_SRC (1Dh)

Portrait, landscape, face-up and face-down source register (r)

Table 76. D6D_SRC register

0 ⁽¹⁾	0 ⁽¹⁾	1 000_1/1	ZH	ZL	YH	YL	XH	XL
------------------	------------------	-----------	----	----	----	----	----	----

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 77. D6D_SRC register description

D6D_ IA	Interrupt active for change position portrait, landscape, face-up, face-down. Default value: 0 (0: change position not detected; 1: change position detected)
ZH	Z-axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over threshold) detected)
ZL	Z-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)
YH	Y-axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over-threshold) detected)
YL	Y-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)
X_H	X-axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over threshold) detected)
X_L	X-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)

9.26 **STATUS_REG** (1Eh)

Table 78. STATUS_REG register

-

Table 79. STATUS_REG register description

EV_BOOT	Boot running flag signal. Default value: 0 (0: no boot running; 1: boot running)
GDA	Gyroscope new data available. Default value: 0 (0: no set of data available at gyroscope output; 1: a new set of data is available at gyroscope output)
XLDA	Accelerometer new data available. Default value: 0 (0: no set of data available at accelerometer output; 1: a new set of data is available at accelerometer output)

9.27 OUTX_L_G (22h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement. (r)

Table 80. OUTX_L_G register

	D7	D6	D5	D4	D3	D2	D1	D0
--	----	----	----	----	----	----	----	----

Table 81. OUTX_L_G register description

D[7:0]	Pitch axis (X) angular rate value (LSbyte)
5[, .0]	Filch axis (X) angular rate value (Lobyte)

9.28 OUTX_H_G (23h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement. (r)

Table 82. OUTX_H_G register

D15	D14	D13	D12	D11	D10	D9	D8	

Table 83. OUTX_H_G register description

9.29 OUTY_L_G (24h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement. (r).

Table 84. OUTY_L_G register

- 1					Т				
	D7	D6	D5	D4		D3	D2	D1	D0

Table 85. OUTY_L_G register description

D[7:0]	Roll axis (Y) angular rate value (LSbyte)

9.30 OUTY_H_G (25h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement. (r).

Table 86. OUTY_H_G register

D15	D15	D14	D13	D12	D11	D10	D9	D8
-----	-----	-----	-----	-----	-----	-----	----	----

Table 87. OUTY_H_G register description

D[15:8] Roll axis (Y) angular rate value (MSbyte)

9.31 OUTZ_L_G (26h)

Angular rate sensor yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement. (r).

Table 88. OUTZ_L_G register

D7	D6	D5	D4	D3	D2	D1	D0

Table 89. OUTZ_L_G register description

D[7:0]	Yaw axis (Z) angular rate value (LSbyte)
--------	--

LSM6DS3

9.32 OUTZ H G (27h)

Angular rate sensor Yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Table 90. OUTZ_H_G register

D15 D14 D13 D12 D11 D10	D9 D8	3
-------------------------	-------	---

Table 91. OUTZ_H_G register description

|--|

9.33 OUTX_L_XL(28h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 92. OUTX_L_XL register

D7	D6	D5	D4	7	D3	D2	D1	D0
	· -	_			~			· ·

Table 93. OUTX L XL register description

D[7:0]	X-axis linear acceleration value (LSbyte)

9.34 OUTX_H_XL (29h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 94. OUTX_H_XL register

D15	D15	D14	D13	D12	D11	D10	D9	D8
-----	-----	-----	-----	-----	-----	-----	----	----

Table 95. OUTX_H_XL register description

D[15:8] X-axis linear acceleration value (MSbyte)

9.35 **OUTY_L_XL** (2Ah)

Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 96. OUTY_L_XL register

D7	D6	D5	D4	D3	D2	D1	D0

Table 97. OUTY_L_XL register description

D[7:0]	Y-axis linear acceleration value (LSbyte)
--------	---

9.36 OUTY_H_XL (2Bh)

Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 98. OUTY_H_G register

D15	D14	D13	D12	D11	D10	D9	D8	

Table 99. OUTY_H_G register description

|--|

9.37 OUTZ_L_XL (2Ch)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 100. OUTZ_L_XL register

- 1					Т				
	D7	D6	D5	D4		D3	D2	D1	D0

Table 101. OUTZ L XL register description

D[7:0]	Z-axis linear acceleration value (LSbyte)

9.38 OUTZ_H_XL (2Dh)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 102. OUTZ_H_XL register

D15 D14 D13 D12 D11 D10 D9 D8

Table 103. OUTZ_H_XL register description

D[15:8] Z-axis linear acceleration value (MSbyte)

9.39 SENSORHUB1_REG (2Eh)

First byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 104. SENSORHUB1_REG register

Table 105. SENSORHUB1_REG register description

SHub1_[7:0]	First byte associated to external sensors
-------------	---

Register description LSM6DS3

9.40 SENSORHUB2_REG (2Fh)

Second byte associated to external sensors. The content of the register is consistent with the SLAVEx CONFIG number of read operations configurations (for external sensors from x = 0 to x = 3).

Table 106. SENSORHUB2_REG register

Sł	-lub2_7	SHub2_6	SHub2_5	SHub2_4	SHub2_3	SHub2_2	SHub2_1	SHub2_0	l
----	---------	---------	---------	---------	---------	---------	---------	---------	---

Table 107. SENSORHUB2_REG register description

SHub2_[7:0] Second byte associated to external sensors

9.41 SENSORHUB3_REG (30h)

Third byte associated to external sensors. The content of the register is consistent with the SLAVEx CONFIG number of read operations configurations (for external sensors from x = 0 to x = 3).

Table 108. SENSORHUB3_REG register

SHub3_7 SHub3_6 SHub3_5 SHub3_4 SHub3_3 SHub3_2 SHub3_1 SHub3_0

Table 109. SENSORHUB3_REG register description

SHub3_[7:0] Third byte associated to external sensors

9.42 SENSORHUB4_REG (31h)

Fourth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 110. SENSORHUB4_REG register

SHub4_7	SHub4_6	SHub4_5	SHub4_4	SHub4_3	SHub4_2	SHub4_1	SHub4_0
---------	---------	---------	---------	---------	---------	---------	---------

Table 111. SENSORHUB4_REG register description

SHub4_[7:0] Fourth byte associated to external sensors

9.43 **SENSORHUB5_REG** (32h)

Fifth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 112. SENSORHUB5_REG register

Table 113. SENSORHUB5_REG register description

SHub5 [7:0] Fifth byte associated to external sensors

T

9.44 SENSORHUB6_REG (33h)

Sixth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 114. SENSORHUB6_REG register

SHub6	7 SHub6_6	SHub6_5	SHub6_4	SHub6_3	SHub6_2	SHub6_1	SHub6_0
-------	-----------	---------	---------	---------	---------	---------	---------

Table 115. SENSORHUB6_REG register description

SHub6_[7:0] Sixth byte associated to external sensors

9.45 SENSORHUB7_REG (34h)

Seventh byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 116. SENSORHUB7_REG register

SHub7_7 SHub7_6 SHub7_5 SHub7_4 SHub7_3 SHub7_2	SHub7_1	SHub7_0
---	---------	---------

Table 117. SENSORHUB7_REG register description

SHub7_[7:0] Seventh byte associated to external sensors

9.46 SENSORHUB8_REG(35h)

Eighth byte associated to external sensors. The content of the register is consistent with the SLAVEx CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 118. SENSORHUB8_REG register

SHub8_7 SHub8_6 SHub8_5 SHub8	4 SHub8_3 SHub	b8_2 SHub8_1 SHub8_0
-------------------------------	----------------	--------------------------

Table 119. SENSORHUB8_REG register description

SHub8_[7:0] | Eighth byte associated to external sensors

9.47 SENSORHUB9_REG (36h)

Ninth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 120. SENSORHUB9_REG register

	SHub9_7	SHub9_6	SHub9_5	SHub9_4	SHub9_3	SHub9_2	SHub9_1	SHub9_0
--	---------	---------	---------	---------	---------	---------	---------	---------

Table 121. SENSORHUB9 REG register description

SHub9_[7:0] Ninth byte associated to external sensors

Register description LSM6DS3

9.48 **SENSORHUB10_REG** (37h)

Tenth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 122. SENSORHUB10_REG register

Г	SHub10 7	SHub10 6	SHub10 5	SHub10 4	SHub10 3	SHub10 2	SHub10 1	SHub10 0
	_	_	_	_	_	_	_	. —

Table 123. SENSORHUB10_REG register description

SHub10_[7:0] Tenth byte associated to external sensors

9.49 **SENSORHUB11_REG** (38h)

Eleventh byte associated to external sensors. The content of the register is consistent with the SLAVEx CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 124. SENSORHUB11_REG register

SHub11_7	SHub11 6	SHub11 5	SHub11 4	SHub11 3	SHub11 2	SHub11 1	SHub11 0
_	_	_		_	_	_	

Table 125. SENSORHUB11_REG register description

SHub11_[7:0] Eleventh byte associated to external sensors

9.50 SENSORHUB12_REG(39h)

Twelfth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 126. SENSORHUB12_REG register

SHub12 7	SHub	12 6	SHub12 5	SHub12 4	SHub12 3	SHub12 2	SHub12 1	SHub12 0
_				_		_	_	

Table 127. SENSORHUB12_REG register description

SHub12[7:0] Twelfth byte associated to external sensors

9.51 FIFO_STATUS1 (3Ah)

FIFO status control register (r). For a proper reading of the register it is suggested to set BDU bit in *CTRL3 C (12h)* to 0.

Table 128. FIFO_STATUS1 register

DIFF_	DIFF_	DIFF_	DIFF_	DIFF_	DIFF_	DIFF_	DIFF_
FIFO_7	FIFO_6	FIFO_5	FIFO_4	FIFO_3	FIFO_2	FIFO_1	FIFO_0

Table 129. FIFO_STATUS1 register description

DIFF_FIFO_[7:0]	Number of unread words (16-bit axes) stored in FIFO ⁽¹⁾ .
-----------------	--

^{1.} For a complete number of unread samples, consider DIFF_FIFO [11:8] in FIFO_STATUS2 (3Bh)

9.52 FIFO_STATUS2 (3Bh)

FIFO status control register (r). For a proper reading of the register it is recommended to set the BDU bit in CTRL3_C (12h) to 0.

Table 130. FIFO_STATUS2 register

ГТЦ	OVER_	FIFO_	FIFO_	DIFF_	DIFF_	DIFF_	DIFF_
FTH	RUN	FULL	EMPTY	FIFO_11	FIFO_10	FIFO_9	FIFO_8

Table 131. FIFO STATUS2 register description

	<u> </u>
FTH	FIFO watermark status. Default value: 0 (0: FIFO filling is lower than watermark level ⁽¹⁾ ; 1: FIFO filling is equal to or higher than the watermark level)
OVER_RUN	FIFO overrun status. Default value. 0 (0: FIFO is not completely filled; 1: FIFO is completely filled)
FIFO_FULL	FIFO full status. Default value: 0 (0: FIFO is not full; 1: FIFO will be full at the next ODR)
FIFO_EMPTY	FIFO empty bit. Default value: 0 (0: FIFO contains data; 1: FIFO is empty)
DIFF_FIFO_[7:0]	Number of unread words (16-bit axes) stored in FIFO ⁽²⁾ .

^{1.} FIFO watermark level is set in FTH_[11:0] in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h)

9.53 FIFO_STATUS3 (3Ch)

FIFO status control register (r). For a proper reading of the register it is recommended to set the BDU bit in CTRL3_C (12h) to 0.

Table 132. FIFO_STATUS3 register

FIFO_	FIFO_	FIFO_	FIFO_	FIFO_	FIFO_	FIFO_	FIFO_
PATTERN	PATTERN	PATTERN	PATTERN	PATTERN	PATTERN	PATTERN	PATTERN
_7	_6	_5	_4	_3	_2	_1	_0

Table 133. FIFO_STATUS3 register description

FIFO_ PATTERN_[7:0]	Word of recursive pattern read at the next reading.

9.54 FIFO_STATUS4 (3Dh)

FIFO status control register (r). For a proper reading of the register it is recommended to set the BDU bit in CTRL3_C (12h) to 0.

Table 134. FIFO_STATUS4 register

				_				
0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	FIFO_ PATTERN_9	FIFO_ PATTERN_8	

^{1.} This bit must be set to '0' for the correct operation of the device.

^{2.} For a complete number of unread samples, consider DIFF_FIFO [11:8] in FIFO_STATUS1 (3Ah)

Table 135. FIFO_STATUS4 register description

FIFO_ PATTERN_[9:8]	Word of recursive pattern read at the next reading.
------------------------	---

9.55 FIFO_DATA_OUT_L (3Eh)

FIFO data output register (r). For a proper reading of the register it is recommended to set the BDU bit in CTRL3 C (12h) to 0.

Table 136. FIFO_DATA_OUT_L register

DATA_	DATA_	DATA_	DATA_	DATA_	DATA_	DATA_	DATA_	ĺ
OUT_	OUT_	OUT_	OUT_	OUT	OUT_	OUT_	OUT_	ĺ
FIFO_L_7	FIFO_L_6	FIFO_L_5	FIFO_L_4	FIFO_L_3	FIFO_L_2	FIFO_L_1	FIFO_L_0	

Table 137. FIFO_DATA_OUT_L register description

DATA_OUT_FIFO_L_[7:0] FIFO data output	(first byte)
--	--------------

9.56 FIFO_DATA_OUT_H (3Fh)

FIFO data output register (r). For a proper reading of the register it is suggested to set BDU bit in CTRL3_C (12h) to 0.

Table 138. FIFO_DATA_OUT_H register

DATA_	DATA_	DATA_	DATA_	DATA_	DATA_	DATA_	DATA_
OUT_	OUT_	OUT_	OUT_	OUT_	OUT_	OUT_	OUT_
FIFO_H_7	FIFO_H_6	FIFO_H_5	FIFO_H_4	FIFO_H_3	FIFO_H_2	FIFO_H_1	FIFO_H_0

Table 139. FIFO_DATA_OUT_H register description

FIFO data output (second byte)

9.57 TIMESTAMP0_REG (40h)

66/90

Time stamp first byte data output register (r). The value is expressed as a 24-bit word and the bit resolution is defined by setting the value in *WAKE_UP_DUR* (5Ch).

Table 140. TIMESTAMP0_REG register

TIMESTA	TIMESTA	TIMESTA	TIMESTA	TIMESTA	TIMESTA	TIMESTA	TIMESTA
MP0_7	MP0_6	MP0_5	MP0_4	MP0_3	MP0_2	MP0_1	MP0_0

Table 141. TIMESTAMPO REG register description

TIMESTAMP0_[7:0]	TIMESTAMP first byte data output
------------------	----------------------------------

9.58 TIMESTAMP1_REG (41h)

Time stamp second byte data output register (r). The value is expressed as a 24-bit word and the bit resolution is defined by setting value in *WAKE_UP_DUR* (5Ch).

Table 142. TIMESTAMP1_REG register

TII	MESTA	TIMESTA						
N	ИР1_7	MP1_6	MP1_5	MP1_4	MP1_3	MP1_2	MP1_1	MP1_0

Table 143. TIMESTAMP1_REG register description

TIMESTAMP1_[7:0]	TIMESTAMP second byte data output
------------------	-----------------------------------

9.59 TIMESTAMP2_REG (42h)

Time stamp third byte data output register (r). The value is expressed as a 24-bit word and the bit resolution is defined by setting the value in *WAKE_UP_DUR* (5Ch).

Table 144. TIMESTAMP2_REG register

TIMESTA	TIMESTA	TIMESTA	TIMESTA	TIMESTA	TIMESTA	TIMESTA	TIMESTA	
MP2_7	MP2_6	MP2_5	MP2_4	MP2_3	MP2_2	MP2_1	MP2_0	ĺ

Table 145. TIMESTAMP2 REG register description

TIMESTAMP2_[7:0] TIMESTAMP third byte data output

9.60 STEP_COUNTER_L (4Bh)

Step counter output register (r).

Table 146. STEP_COUNTER_L register

UNTER_L UNTER_	STEP_CO							
7 6 5 4 3 2 1 0	UNTER L							
	_7	_6	_5	_4	_3 _	_2 _	_1 _	_0 _

Table 147. STEP_COUNTER_L register description

STEP_COUNTER_L_[7:0] Step counter output (LSbyte)

9.61 STEP_COUNTER_H (4Ch)

Step counter output register (r).

Table 148. STEP_COUNTER_H register

STEP_CO	STEP_CO	STEP_CO	STEP_CO	STEP_CO	STEP_CO	STEP_CO	STEP_CO
UNTER_H	UNTER_H	UNTER_H	UNTER_H	UNTER_H	UNTER_H	UNTER_H	UNTER_H
_7	_6	_5	_4	_3	_2	_1	_0

Table 149. STEP_COUNTER_H register description

STEP_COUNTER_H_[7:0]	Step counter output (MSbyte)
----------------------	------------------------------

Register description LSM6DS3

9.62 SENSORHUB13_REG (4Dh)

Thirteenth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 150. SENSORHUB13_REG register

		SHub13_7	SHub13_6	SHub13_5	SHub13_4	SHub13_3	SHub13_2	SHub13_1	SHub13_0
--	--	----------	----------	----------	----------	----------	----------	----------	----------

Table 151. SENSORHUB13_REG register description

SHub13_[7:0] Thirteenth byte associated to external sensors

9.63 SENSORHUB14_REG (4Eh)

Fourteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 152. SENSORHUB14_REG register

ĺ	SHub14 7	SHub14 6	SHub14 5	SHub14 4	SHub14_3	SHub14 2	SHub14 1	SHub14 0
- 1				0.1.0.0		- · · · · · · · · · · · · · · · · · · ·		

Table 153. SENSORHUB14_REG register description

SHub14_[7:0] Fourteenth byte associated to external sensors

9.64 SENSORHUB15_REG (4Fh)

Fifteenth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 154. SENSORHUB15_REG register

SHu	lub15_7 SHul	b15_6 SHub15_5	SHub15_4	SHub15_3	SHub15_2	SHub15_1	SHub15_0
-----	--------------	----------------	----------	----------	----------	----------	----------

Table 155. SENSORHUB15_REG register description

SHub15_[7:0] Fifteenth byte associated to external sensors

9.65 SENSORHUB16_REG (50h)

Sixteenth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 156. SENSORHUB16_REG register

|--|

Table 157. SENSORHUB16_REG register description

SHub16_[7:0] Sixteenth byte associated to external sensors

68/90 DocID026899 Rev 1

9.66 **SENSORHUB17_REG** (51h)

Seventeenth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 158. SENSORHUB17_REG register

SHub17_7 S	SHub17_6	SHub17_5	SHub17_4	SHub17_3	SHub17_2	SHub17_1	SHub17_0
------------	----------	----------	----------	----------	----------	----------	----------

Table 159. SENSORHUB17_REG register description

SHub17_[7:0] Seventeenth byte associated to external sensors
--

9.67 **SENSORHUB18_REG** (52h)

Eighteenth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 160. SENSORHUB18_REG register

SHub18 7	SHub18 6	SHub18 5	SHub18 4	SHub18 3	SHub18 2	SHub18 1	SHub18_0
0110010_7	0.100.10_0	0110010_0	Or lab lo_	0110010_0	0110D10_2	0110010_1	0110010_0

Table 161. SENSORHUB18_REG register description

SHub18_[7:0]	Eighteenth byte associated to external sensors
--------------	--

9.68 FUNC_SRC (53h)

Significant motion, tilt, step detector, soft iron and sensor hub interrupt source register (r).

Table 162. FUNC_SRC register

0	(1)	SIGN MOTION	N_IA	TILT_IA	STEP_ DETECTED	0 ⁽¹⁾	0 ⁽¹⁾	SI_END_ OP	SENSOR HUB_ END_OP	
---	-----	----------------	------	---------	-------------------	------------------	------------------	---------------	--------------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 163. FUNC_SRC register description

SIGN_ MOTION_IA	Significant motion event detection status. Default value: 0 (0: significant motion event not detected; 1: significant motion event detected)
TILT_IA	Tilt event detection status. Default value: 0 (0: tilt event not detected; 1: tilt event detected)
STEP_ DETECTED	Step detector event detection status. Default value: 0 (0: step detector event not detected; 1: step detector event detected)
SI_END_OP	Soft iron calculation status. Default value: 0 (0: Soft iron calculation not concluded; 1: Soft iron calculation concluded)
SENSORHUB _END_OP	Sensor hub communication status. Default value: 0 (0: sensor hub communication not concluded; 1: sensor hub communication concluded)

9.69 TAP_CFG (58h)

Time stamp, pedometer, tilt, filtering, and tap recognition functions configuration register (r/w).

Table 164. TAP_CFG register

TIMER_ PEDO_EN TILT_E	I 0 ⁽¹⁾	TAP_X_EN	TAP_Y_EN	TAP_Z_EN	LIR
-----------------------	--------------------	----------	----------	----------	-----

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 165. TAP_CFG register description

TIMER_EN	Time stamp count enable, output data are collected in TIMESTAMP0_REG (40h), TIMESTAMP1_REG (41h), TIMESTAMP2_REG (42h) register. Default: 0 (0: time stamp count disabled; 1: time stamp count enabled)
PEDO_EN	Pedometer algorithm enable ⁽¹⁾ . Default value: 0 (0: pedometer algorithm disabled; 1: pedometer algorithm enabled)
TILT_EN	Tilt calculation enable. ⁽²⁾ Default value: 0 (0: tilt calculation disabled; 1: tilt calculation enabled.)
TAP_X_EN	Enable X direction in tap recognition. Default value: 0 (0: X direction disabled; 1:X direction enabled)
TAP_Y_EN	Enable Y direction in tap recognition. Default value: 0 (0: Y direction disabled; 1:Y direction enabled)
TAP_Z_EN	Enable Z direction in tap recognition. Default value: 0 (0: Z direction disabled; 1:Z direction enabled)
LIR	Relatch of the time stamp, pedometer, tilt, filtering, and tap recognition functions routed to PINs.

For correct functionality of the pedometer function, the TILT_EN bit in this register must be set to 1. Pedometer function available with full scale at ±2 g only.

9.70 TAP_THS_6D (59h)

Portrait/landscape position and tap function threshold register (r/w).

Table 166. TAP_THS_6D register

n(1)	SIXD_THS	SIXD_THS	TAP_THS	TAP_THS	TAP_THS	TAP_THS	TAP_THS
0, ,	1	0	4	3	2	1	0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 167. TAP THS 6D register description

	SIXD THS[1:0]	Threshold for D6D function. Default value: 00
	01710[1.0]	For details, refer to <i>Table 168</i> .
	TAP_THS[4:0]	Threshold for tap recognition. Default value: 00000

70/90 DocID026899 Rev 1

^{2.} For correct functionality of the tilt function, the PEDO_EN bit in this register must be set to 0. Tilt function available with full scale at $\pm 2 g$ only.

Table	168	Threshold:	for D4D/D6	D function
Iabic	IUU.	IIIIESIIUIU	101 DTD/DU	D IUIIGUUI

SIXD_THS[1:0]	Threshold value ⁽¹⁾
00	6 (80 degrees)
01	11 (70 degrees)
10	16 (60 degrees)
11	21 (50 degrees)

^{1.} Threshold value is related to $FS = \pm 2 g$.

9.71 INT_DUR2 (5Ah)

Tap recognition function setting register (r/w).

Table 169. INT_DUR2 register

DUR3	DUR2	DUR1	DUR0	QUIET1	QUIET0	SHOCK1	SHOCK0

Table 170. INT_DUR2 register description

DUR[3:0]	Duration of maximum time gap for double tap recognition. Default: 0000 When double tap recognition is enabled, this register expresses the maximum time between two consecutive detected taps to determine a double tap event. 1LSB = 32 ODR_time.			
QUIET[1:0]	Expected quiet time after a tap detection. Default value: 00 Quiet time is the time after the first detected tap in which there must not be any overthreshold event. 1LSB = 8 ODR_time.			
SHOCK[1:0]	Maximum duration of overthreshold event. Default value: 00 Maximum duration is the maximum time of an overthreshold signal detection to be recognized as a tap event. 1LSB = 8 ODR_time.			

9.72 WAKE_UP_THS (5Bh)

Single and double-tap function threshold register (r/w).

Table 171. WAKE_UP_THS register

SINGLE_								ı
DOUBLE	INACTIVITY	WK_THS5	WK_THS4	WK_THS3	WK_THS2	WK_THS1	WK_THS0	ı
_TAP								ı

Table 172. WAKE_UP_THS register description

SINGLE_DOUBLE_TAP	Single/double tap event detection. Default: 0 (0: single-tap event detection; 1: double-tap event detection)
INACTIVITY	Inactivity event enable. Default value: 0 (0: sleep disabled; 1: sleep enabled)
WK_THS[5:0]	Threshold for wakeup. Default value: 000000

9.73 **WAKE_UP_DUR** (5Ch)

Free-fall, wakeup, time stamp and sleep mode functions duration setting register (r/w).

Table 173. WAKE_UP_DUR register

FF DUR5	WAKE_	WAKE_	TIMER_	SLEEP_	SLEEP_	SLEEP_	SLEEP_
FF_DOR5	DUR1	DUR0	HR _	DUR3	DUR2	DUR1	DUR0

Table 174. WAKE_UP_DUR register description

	Free fall duration event. Default: 0
FF_DUR5	For the complete configuration of the free-fall duration, refer to FF_DUR[4:0] in FREE_FALL (5Dh) configuration.
WAKE DUR[1:0]	Wake up duration event. Default: 00
WARL_DOR[1.0]	1LSB = 1 ODR_time
TIMER HR	Time stamp register resolution setting ⁽¹⁾ . Default value: 0
TIWEK_TIK	(0: 1LSB = 6.4 ms; 1: 1LSB = 25 μs)
SLEEP DUR[3:0]	Duration to go in sleep mode. Default value: 0000
SLEEF_DON(3.0)	1 LSB = 512 ODR

^{1.} Configuration of this bit affects TIMESTAMPO_REG (40h), TIMESTAMP1_REG (41h) and TIMESTAMP2_REG (42h) register.

9.74 FREE_FALL (5Dh)

Free-fall function duration setting register (r/w).

Table 175. FREE_FALL register

Table 176. FREE_FALL register description

	Free-fall duration event. Default: 0
FF_DUR[4:0]	For the complete configuration of the free fall duration, refer to FF_DUR5 in
	WAKE_UP_DUR (5Ch) configuration
FF_THS[2:0]	Free fall threshold setting. Default: 000
FF_1H3[2.0]	For details refer to <i>Table 177</i> .

Table 177. Threshold for free fall function

FF_THS[2:0]	Threshold value ⁽¹⁾
000	5
001	7
010	8
011	10
100	11
101	13
110	15
111	16

DocID026899 Rev 1

^{1.} Threshold value is related to $FS = \pm 2 g$.

9.75 MD1_CFG (5Eh)

Functions routing on INT1 register (r/w).

Table 178. MD1_CFG register

INT1_ INACT_ STATE	INT1_ SINGLE_ TAP	INT1_WU	INT1_FF	INT1_ DOUBLE_ TAP	INT1_6D	INT1_TILT	INT1_ TIMER	
--------------------------	-------------------------	---------	---------	-------------------------	---------	-----------	----------------	--

Table 179. MD1_CFG register description

	idale in a mail_or a regional decomposition					
INT1_INACT_ STATE	Routing on INT1 of inactivity mode. Default: 0 (0: routing on INT1 of inactivity disabled; 1: routing on INT1 of inactivity enabled)					
INT1_SINGLE_ TAP	Single-tap recognition routing on INT1. Default: 0 (0: routing of single-tap event on INT1 disabled; 1: routing of single-tap event on INT1 enabled)					
INT1_WU	Routing of wakeup event on INT1. Default value: 0 (0: routing of wakeup event on INT1 disabled; 1: routing of wakeup event on INT1 enabled)					
INT1_FF	Routing of free-fall event on INT1. Default value: 0 (0: routing of free-fall event on INT1 disabled; 1: routing of free-fall event on INT1 enabled)					
INT1_DOUBLE _TAP	Routing of tap event on INT1. Default value: 0 (0: routing of double-tap event on INT1 disabled; 1: routing of double-tap event on INT1 enabled)					
INT1_6D	Routing of 6D event on INT1. Default value: 0 (0: routing of 6D event on INT1 disabled; 1: routing of 6D event on INT1 enabled)					
INT1_TILT	Routing of tilt event on INT1. Default value: 0 (0: routing of tilt event on INT1 disabled; 1: routing of tilt event on INT1 enabled)					
INT1_TIMER	Routing of end counter event of timer on INT1. Default value: 0 (0: routing of end counter event of timer on INT1 disabled; 1: routing of end counter event of timer event on INT1 enabled)					

9.76 MD2_CFG (5Fh)

Functions routing on INT2 register (r/w).

Table 180. MD2_CFG register

	INT2_ INACT_ STATE	INT2_ SINGLE_ TAP	INT2_WU	INT2_FF	INT2_ DOUBLE_ TAP	INT2_6D	INT2_TILT	INT2_ TIMER
--	--------------------------	-------------------------	---------	---------	-------------------------	---------	-----------	----------------

Register description LSM6DS3

Table 181. MD2_CFG register description

INT2_INACT_S TATE	Routing on INT2 of inactivity mode. Default: 0 (0: routing on INT2 of inactivity disabled; 1: routing on INT2 of inactivity enabled)
INT2_SINGLE_ TAP	Single-tap recognition routing on INT2. Default: 0 (0: routing of single-tap event on INT2 disabled; 1: routing of single-tap event on INT2 enabled)
INT2_WU	Routing of wakeup event on INT2. Default value: 0 (0: routing of wakeup event on INT2 disabled; 1: routing of wake-up event on INT2 enabled)
INT2_FF	Routing of free-fall event on INT2. Default value: 0 (0: routing of free-fall event on INT2 disabled; 1: routing of free-fall event on INT2 enabled)
INT2_DOUBLE _TAP	Routing of tap event on INT2. Default value: 0 (0: routing of double-tap event on INT2 disabled; 1: routing of double-tap event on INT2 enabled)
INT2_6D	Routing of 6D event on INT2. Default value: 0 (0: routing of 6D event on INT2 disabled; 1: routing of 6D event on INT2 enabled)
INT2_TILT	Routing of tilt event on INT2. Default value: 0 (0: routing of tilt event on INT2 disabled; 1: routing of tilt event on INT2 enabled)
INT2_TIMER	Routing of end counter event of timer on INT2. Default value: 0 (0: routing of end counter event of timer on INT2 disabled; 1: routing of end counter event of timer event on INT2 enabled)

10 Embedded functions register mapping

The table given below provides a list of the registers for the embedded functions available in the device and the corresponding addresses. Embedded functions registers are accessible when FUNC CFG EN is set to '1' in FUNC CFG ACCESS (01h).

Table 182. Registers address map - embedded functions

Name	Type Registe		address	Default	Comment	
Name	туре	Hex	Binary	Delauit		
SLV0_ADD	r/w	02	00000010	00000000		
SLV0_SUBADD	r/w	03	00000011	00000000		
SLAVE0_CONFIG	r/w	04	00000100	00000000		
SLV1_ADD	r/w	05	00000101	00000000		
SLV1_SUBADD	r/w	06	00000110	00000000		
SLAVE1_CONFIG	r/w	07	00000111	00000000	-	
SLV2_ADD	r/w	08	00001000	00000000		
SLV2_SUBADD	r/w	09	00001001	00000000	1	
SLAVE2_CONFIG	r/w	0A	00001010	00000000		
SLV3_ADD	r/w	0B	00001011	00000000		
SLV3_SUBADD	r/w	0C	00001100	00000000		
SLAVE3_CONFIG	r/w	0D	00001101	00000000		
DATAWRITE_SRC_ MODE_SUB_SLV0	r/w	0E	00001110	00000000		
CONFIG_PEDO_THS_MIN	r/w	0F	00001111	00000111		
CONFIG_TILT_IIR	r/w	10	00010000	01111010		
CONFIG_TILT_ACOS	r/w	11	00010001	0 1101001		
CONFIG_TILT_WTIME	r/w	12	00010010	01100010		
SM_STEP_THS	r/w	13	00010011	00000110		
RESERVED	r/w	14-23		-	Reserved	
MAG_SI_XX	r/w	24	00100100	00000000		
MAG_SI_XY	r/w	25	00100101	00000000		
MAG_SI_XZ	r/w	26	00100110	00000000		
MAG_SI_YX	r/w	27	00100111	00000000		

Table 182. Registers address map - embedded functions

Name	T	Register	address	Default	0
Name	Type	Hex	Binary	Default	Comment
MAG_SI_YY	r/w	28	00101000	00000000	
MAG_SI_YZ	r/w	29	00101001	00000000	
MAG_SI_ZX	r/w	2A	00101010	00000000	
MAG_SI_ZY	r/w	2B	00101011	00000000	
MAG_SI_ZZ	r/w	2C	00101100	00000000	
MAG_OFFX_L	r/w	2D	00101101	00000000	
MAG_OFFX_H	r/w	2E	00101110	00000000	
MAG_OFFY_L	r/w	2F	00101111	00000000	
MAG_OFFY_H	r/w	30	00110000	00000000	
MAG_OFFZ_L	r/w	31	00110001	00000000	
MAG_OFFZ_H	r/w	32	00110010	00000000	

Registers marked as *Reserved* must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

11 Embedded functions registers description

11.1 SLV0_ADD (02h)

I²C slave address of the first external sensor (Sensor1) register (r/w).

Table 183. SLV0_ADD register

Slave0_	Slave0_	Slave0_	Slave0_	Slave0_	Slave0_	Slave0_	m., 0
add6	add5	add4	add3	add2	add1	add0	rw_0

Table 184. SLV0_ADD register description

Slave0_add[6:0]	I ² C slave address of Sensor1 that can be read by sensor hub. Default value: 0000000
rw_0	Read/write operation on Sensor1. Default value: 0 (0: write operation; 1: read operation)

11.2 SLV0_SUBADD (03h)

Address of register on the first external sensor (Sensor1) register (r/w).

Table 185. SLV0_SUBADD register

Slave0_	Slave0_	Slave0_	Slave0_	Slave0_	Slave0_	Slave0_	Slave0_
reg7	reg6	reg5	reg4	reg3	reg2	reg1	reg0

Table 186. SLV0_SUBADD register description

Slave0_reg[7:0]	Address of register on Sensor1 that has to be read/write according to the rw_0 bit
Slaveo_reg[7.0]	value in SLV0_ADD (02h). Default value: 00000000

11.3 SLAVEO_CONFIG (04h)

First external sensor (Sensor1) configuration and sensor hub settings register (r/w).

Table 187. SLAVE0_CONFIG register

				_	-		
Slave0_	Slave0_	Aux_sens	Aux_sens	Src mode	Slave0_	Slave0_	Slave0_
rate1	rate0	_on1	_on0	Sic_illoue	numop2	numop1	numop0

Table 188. SLAVEO CONFIG register description

	Decimation of read operation on Sensor1 starting from the sensor hub trigger. Default value: 00	
Slave0_rate[1:0]	(00: no decimation	
olaroo_lato[1.0]	01: update every 2 samples	
	10: update every 4 samples	
	11: update every 8 samples)	
Aux_sens_on[1:0]	Number of external sensors to be read by sensor hub. Default value: 00 (00: one sensor 01: two sensors 10: three sensors 11: four sensors)	
Src_mode	Source mode conditioned read ⁽¹⁾ , Default value: 0 (0: source mode read disabled; 1: source mode read enabled)	
Slave0_numop[2:0] Number of read operations on Sensor1.		

Read conditioned by the content of the register at address specified in DATAWRITE_SRC_MODE_SUB_SLV0 (0Eh) register. If the content is non-zero the operation continues with the reading of the address specified in teh SLV0_SUBADD (03h) register, else the operation is interrupted.

11.4 SLV1_ADD (05h)

I²C slave address of the second external sensor (Sensor2) register (r/w).

Table 189. SLV1_ADD register

Slave1_	Slave1_	Slave1_	Slave1_	Slave1_	Slave1_	Slave1_	r 1	
add6	add5	add4	add3	add2	add1	add0	'-'	

Table 190. SLV1_ADD register description

I Claval addicini		I ² C slave address of Sensor2 that can be read by sensor hub. Default value: 0000000
r_1		Read operation on Sensor2 enable. Default value: 0 (0: read operation disabled; 1: read operation enabled)

11.5 SLV1_SUBADD (06h)

Address of register on the second external sensor (Sensor2) register (r/w).

Table 191. SLV1_SUBADD register

Slave1_	Slave1_	Slave1_	Slave1_	Slave1_	Slave1_	Slave1_	Slave1_
reg7	reg6	reg5	reg4	reg3	reg2	reg1	reg0

Table 192. SLV1_SUBADD register description

Slave1_reg[7:0]	Address of register on Sensor2 that has to be read according to the r_1 bit value in <i>SLV1_ADD</i> (05h). Default value: 00000000
-----------------	---

78/90 DocID026899 Rev 1

11.6 **SLAVE1_CONFIG (07h)**

Second external sensor (Sensor2) configuration register (r/w).

Table 193. SLAVE1_CONFIG register

Slave1_	Slave1_	0(1)	O ⁽¹⁾	O ⁽¹⁾	Slave1_	Slave1_	Slave1_
rate1	rate0	0, ,	0, ,	0, ,	numop2	numop1	numop0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 194. SLAVE1_CONFIG register description

Slave1_rate[1:0]	Decimation of read operation on Sensor2 starting from the sensor hub trigger. Default value: 00 (00: no decimation 01: update every 2 samples 10: update every 4 samples 11: update every 8 samples)
Slave1_numop[2:0]	Number of read operations on Sensor2.

11.7 SLV2_ADD (08h)

I²C slave address of the third external sensor (Sensor3) register (r/w).

Table 195. SLV2_ADD register

Sla	ve2_	Slave2_	Slave	e2_	Slave2_	Slave2_	Slave2_	Slave2_	- 2	1
a	dd6	add5	ado	14	add3	add2	add1	add0	'_2	

Table 196. SLV2_ADD register description

Slave2_add[6:0]	I ² C slave address of Sensor3 that can be read by sensor hub. Default value: 0000000
Ir 🤈 🗼	Read operation on Sensor3 enable. Default value: 0 (0: read operation disabled; 1: read operation enabled)

11.8 SLV2_SUBADD (09h)

Address of register on the third external sensor (Sensor3) register (r/w).

Table 197. SLV2_SUBADD register

| Slave | 2_ Slave2_ | |-------|------------|---------|---------|---------|---------|---------|---------|
| reg7 | reg6 | reg5 | reg4 | reg3 | reg2 | reg1 | reg0 |

Table 198. SLV2_SUBADD register description

Clave2 ===[7:0]	Address of register on Sensor3 that has to be read according to the r_2 bit value
Slavez_reg[7.0]	in <i>SLV2_ADD (08h)</i> . Default value: 00000000

11.9 SLAVE2_CONFIG (0Ah)

Third external sensor (Sensor3) configuration register (r/w).

Table 199. SLAVE2_CONFIG register

-	0 ⁽¹⁾	Slave2 rate0	0 ⁽¹⁾	0 ⁽¹⁾	Slave2_ numop2	Slave2_ numop1	Slave2_ numop0
---	------------------	-----------------	------------------	------------------	-------------------	-------------------	-------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 200. SLAVE2_CONFIG register description

Slave2_rate[1:0]	Decimation of read operation on Sensor3 starting from the sensor hub trigger. Default value: 00 (00: no decimation 01: update every 2 samples 10: update every 4 samples 11: update every 8 samples)
Slave2_numop[2:0]	Number of read operations on Sensor3.

11.10 SLV3_ADD (0Bh)

I²C slave address of the fourth external sensor (Sensor4) register (r/w).

Table 201. SLV3_ADD register

Slave3_	Slave3_	Slave3_	Slave3_	Slave3_	Slave3_	Slave3_	r 2
add6	add5	add4	add3	add2	add1	add0	I_3

Table 202. SLV3_ADD register description

Slave3_add[6:0]	I ² C slave address of Sensor4 that can be read by the sensor hub. Default value: 0000000
r_3	Read operation on Sensor4 enable. Default value: 0 (0: read operation disabled; 1: read operation enabled)

11.11 SLV3_SUBADD (0Ch)

Address of register on the fourth external sensor (Sensor4) register (r/w).

Table 203. SLV3_SUBADD register

Slave3_	Slave3_	Slave3_	Slave3_	Slave3_	Slave3_	Slave3_	Slave3_
reg7	reg6	reg5	reg4	reg3	reg2	reg1	reg0

Table 204. SLV3_SUBADD register description

Slave3 reg[7:0]	Address of register on Sensor4 that has to be read according to the r_3 bit value
Slaves_reg[7.0]	in SLV3_ADD (0Bh). Default value: 00000000

80/90 DocID026899 Rev 1

11.12 SLAVE3_CONFIG (0Dh)

Fourth external sensor (Sensor4) configuration register (r/w).

Table 205. SLAVE3_CONFIG register

Slave3_	Slave3_	0(1)	o ⁽¹⁾	O ⁽¹⁾	Slave3_	Slave3_	Slave3_
rate1	rate0	0. /	0. /	0. /	numop2	numop1	numop0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 206. SLAVE3_CONFIG register description

Slave3_rate[1:0]	Decimation of read operation on Sensor4 starting from the sensor hub trigger. Default value: 00 (00: no decimation 01: update every 2 samples 10: update every 4 samples 11: update every 8 samples)
Slave3_numop[2:0]	Number of read operations on Sensor4.

11.13 DATAWRITE_SRC_MODE_SUB_SLV0 (0Eh)

Data to be written into the slave device register (r/w).

Table 207. DATAWRITE_SRC_MODE_SUB_SLV0 register

Slave_	Slave_	Slave_	Slave_	Slave_	Slave_	Slave_	Slave_
dataw7	dataw6	dataw5	dataw4	dataw3	dataw2	dataw1	dataw0

Table 208_DATAWRITE_SRC_MODE_SUB_SLV0 register description

	ata to be written into th	ne slave device according to the rw_0 bit in SLV0_ADD
Slave_dataw[7:0]	2h) register or address	s to be read in source mode.
	efault value: 00000000	

11.14 CONFIG_PEDO_THS_MIN (0Fh)

Data to be written into slave device register (r/w).

Table 209. CONFIG_PEDO_THS_MIN register

FS4G	0(1)	0(1)	THS_MIN	THS_MIN	THS_MIN	THS_MIN	THS_MIN
1340	0.7	0, ,	_4	_3	_2	_1	_0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 210. CONFIG_PEDO_THS_MIN register description

FS4G	Pedometer data elaboration at different full scales. Default value: 0		
	(0: elaboration of 2 g data; 1: n.a.)		
THS_MIN_[4:0]	Minimum threshold to detect a peak. Default value: 00111		

11.15 CONFIG_TILT_IIR (10h)

IIR low-pass filter for tilt function register (r/w).

Table 211. CONFIG_TILT_IIR register

n(1)	TILT_IIR_	l						
0、/	COEFF_6	COEFF_5	COEFF_4	COEFF_3	COEFF_	COEFF_1	COEFF_0	ĺ

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 212. CONFIG_TILT_IIR register description

	Coefficent of the first order IIR low-pass filter unsigned for the tilt function.				
	Default value: 1111010 (corresponding to a coefficient of 0.95)				

11.16 CONFIG_TILT_ACOS (11h)

Threshold tilt angle register (r/w).

Table 213. CONFIG_TILT_ACOS register

n(1)	TILT_	TILT_	TILT	TILT_	TILT_	TILT_	TILT_
0(1)	ACOS_6	ACOS_5	ACOS_4	ACOS_3	ACOS_	ACOS_1	ACOS_0

^{1.} This bit must be set to '0' for the correct operation of the device

Table 214. CONFIG_TILT_ACOS register description

TILT_ACOS_[6:0]	Cosine of threshold tilt angle ⁽¹⁾ . Default value: 1101001 (corresponding to an angle of 35 deg).
-----------------	---

^{1.} This value is expressed as unsigned value: TILT_COS = cos (TILT_ANGLE_TH)*128.

11.17 CONFIG_TILT_WTIME (12h)

WIndow time for tilt register (r/w).

Table 215. CONFIG_TILT_WTIME register

TILT_	TILT_	TILT_	TILT_	TILT_	TILT_	TILT_	TILT_
WTIME_7	WTIME_6	WTIME_5	WTIME_4	WTIME_3	WTIME_2	WTIME_1	WTIME_0

Table 216. CONFIG_TILT_WTIME register description

TILT WTIME [7:0]	Window time in which the delta angle must be greater than angle threshold ⁽¹⁾ .
	Default value: 1100010 (corresponding to a time of 2 seconds).

1. This value is expressed as an unsigned value at step of 40 ms.

4

11.18 SM_STEP_THS (13h)

Significant motion step configuration register (r/w).

Table 217. SM_STEP_THS register

SM_STEF	SM_STEP						
_THS_7	_THS_6	_THS_5	_THS_4	_THS_3	_THS_2	_THS_1	_THS_0

Table 218. SM_STEP_THS register description

SM_STEP_THS_[7:0] Significant motion step threshold. Default value: 00000110

11.19 MAG_SI_XX (24h)

Soft iron matrix correction register (r/w).

Table 219. MAG SI XX register

MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_
XX_7	XX_6	XX_5	XX_4	XX_3	XX_2	XX_1	XX_0

Table 220. MAG_SI_XX register description

MAG_SI_XX_[7:0]	Soft iron correction row1 col1 coefficient ⁽¹⁾ . Default value: 00000000
-----------------	---

^{1.} Value is expressed in sign-module format.

11.20 MAG_SI_XY (25h)

Soft iron matrix correction register (r/w).

Table 221. MAG_SI_XY register

MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_
XY_7	XY_6	XY_5	XY_4	XY_3	XY_2	XY_1	XY_0

Table 222. MAG_SI_XY register description

MAG_SI_XY_[7:0] Soft iron correction row1 col2 coefficient⁽¹⁾. Default value: 00000000

11.21 MAG_SI_XZ (26h)

Soft iron matrix correction register (r/w).

Table 223. MAG_SI_XZ register

MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_
XZ_7	XZ_6	XZ_5	XZ_4	XZ_3	XZ_2	XZ_1	XZ_0

Table 224. MAG_SI_XZ register description

^{1.} Value is expressed in sign-module format.

^{1.} Value is expressed in sign-module format.

11.22 MAG SI YX (27h)

Soft iron matrix correction register (r/w).

Table 225. MAG_SI_YX register

MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_
YX_7	YX_6	YX_5	YX_4	YX_3	YX_2	YX_1	YX_0

Table 226. MAG_SI_YX register description

MAG_SI_YX_[7:0] Soft iron correction row2 col1 coefficient⁽¹⁾ Default value: 00000000

11.23 MAG_SI_YY (28h)

Soft iron matrix correction register (r/w).

Table 227. MAG SI YY register

MAG_SI	MAG_SI_						
YY_7	YY_6	YY_5	YY_4	YY_3	YY_2	YY_1	YY_0

Table 228. MAG_SI_YY register description

MAG_SI_YY_[7:0] Soft iron correction row2 col2 coefficient⁽¹⁾. Default value: 00000000

11.24 MAG_SI_YZ (29h)

Soft iron matrix correction register (r/w).

Table 229. MAG_SI_YZ register

M	AG_SI_	MAG_SI_						
	YZ_7	YZ_6	YZ_5	YZ_4	YZ_3	YZ_2	YZ_1	YZ_0

Table 230. MAG_SI_YZ register description

MAG_SI_YZ_[7:0] Soft iron correction row2 col3 coefficient⁽¹⁾. Default value: 00000000

11.25 MAG_SI_ZX (2Ah)

Soft iron matrix correction register (r/w).

Table 231. MAG_SI_ZX register

MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_
ZX_7	ZX_6	ZX_5	ZX_4	ZX_3	ZX_2	ZX_1	ZX_0

Table 232. MAG_SI_ZX register description

MAG_SI_ZX_[7:0] Soft iron correction row3 col1 coefficient⁽¹⁾. Default value: 00000000

577

^{1.} Value is expressed in sign-module format.

11.26 MAG_SI_ZY (2Bh)

Soft iron matrix correction register (r/w).

Table 233. MAG_SI_ZY register

MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_
ZY_7	ZY_6	ZY_5	ZY_4	ZY_3	ZY_2	ZY_1	ZY_0

Table 234. MAG_SI_ZY register description

MAG_SI_ZY_[7:0] Soft iron correction row3 col2 coefficient ⁽¹⁾ . Default value: 0000	00000
---	-------

^{1.} Value is expressed in sign-module format.

11.27 MAG_SI_ZZ (2Ch)

Soft iron matrix correction register (r/w).

Table 235. MAG_SI_ZZ register

MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_
ZZ_7	ZZ_6	ZZ_5	ZZ_4	ZZ_3	ZZ_2	<i>ZZ</i> _1	ZZ_0

Table 236, MAG_SI_ZZ register description

MAG_SI_ZZ_[7:0]	Soft iron correction row3 col3 coefficient ⁽¹⁾ . Default value: 00000000
-----------------	---

^{1.} Value is expressed in sign-module format.

11.28 MAG_OFFX_L (2Dh)

Offset for X-axis hard iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

Table 237. MAG_OFFX_L register

MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF
X_L_7	X_L_6	X_L_5	X_L_4	X_L_3	X_L_2	X_L_1	X_L_0

Table 238. MAG OFFX L register description

MAG_OFFX_L_[7:0] Offset for X-axis hard iron compensation. Default value: 00000000
--

11.29 MAG_OFFX_H (2Eh)

Offset for X-axis hard iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

Table 239. MAG_OFFX_H register

MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF
X_H_7	X_H_6	X_H_5	X_H_4	X_H_3	X_H_2	X_H_1	X_H_0

Table 240. MAG_OFFX_L register description

MAG_OFFX_H_[7:0]	Offset for X-axis hard iron compensation. Default value: 00000000
------------------	---

11.30 MAG OFFY L (2Fh)

Offset for Y-axis hard iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

Table 241. MAG_OFFY_L register

MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	
Y_L_7	Y_L_6	Y_L_5	Y_L_4	Y_L_3	Y_L_2	Y_L_1	Y_L_0	

Table 242. MAG_OFFY_L register description

MAG_OFFY_L_[7:0] Offset for Y-axis hard iron compensation. Default value: 00000000

11.31 MAG_OFFY_H (30h)

Offset for Y-axis hard iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

Table 243. MAG_OFFY_H register

MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF
Y_H_7	Y_H_6	Y_H_5	Y_H_4	Y_H_3	Y_H_2	Y_H_1	Y_H_0

Table 244. MAG_OFFY_L register description

MAG_OFFY_H_[7:0] Offset for Y-axis hard iron compensation. Default value: 00000000

11.32 MAG_OFFZ_L (31h)

Offset for Z-axis hard iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

Table 245. MAG_OFFZ_L register

MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF
Z_L_7	Z_L_6	Z_L_5	Z_L_4	Z_L_3	Z_L_2	Z_L_1	Z_L_0

Table 246. MAG_OFFZ_L register description

MAG_OFFZ_L_[7:0] Offset for Z-axis hard iron compensation. Default value: 00000000

11.33 MAG_OFFZ_H (32h)

Offset for Z-axis hard iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

Table 247. MAG_OFFZ_H register

MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF	MAG_OFF
Z_H_7	Z_H_6	Z_H_5	Z_H_4	Z_H_3	Z_H_2	Z_H_1	Z_H_0

Table 248. MAG_OFFX_L register description

MAG_OFFZ_H_[7:0]	Offset for Z-axis hard iron compensation. Default value: 00000000
------------------	---

86/90 DocID026899 Rev 1

12 Soldering information

The LGA package is compliant with the ECOPACK®, RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020.

Leave "Pin 1 Indicator" unconnected during soldering.

Land pattern and soldering recommendations are available at www.st.com/mems.

13 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Dimensions are in millimeter unless otherwise specified
General Tolerance is +/-0.1mm unless otherwise specified

OUTER DIMENSIONS

ITEM DIMENSION [mm] TOLERANCE [mm]
Length [L] 2.50 4.0.1
Width [N] 3.00 4.0.1
Height [H] 0.86 MAX

Figure 14. LGA 2.5x3x0.86 14L package outline

LSM6DS3 Revision history

14 Revision history

Table 249. Document revision history

Date	Revision	Changes
19-Sep-2014	1	Initial release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics – All rights reserved

