Машинное обучение

Лекция 6. Знакомство с линейными моделями

Виктор Кантор

План

- I. Линейная классификация
- II. Линейная регрессия

I. Линейная классификация

Линейная классификация

- Линейный классификатор на простых примерах
- Формализация линейного классификатора
- Функции потерь
- Метод стохастического градиентного спуска (SGD)
- Регуляризация
- Стандартные классификаторы

- 1. Вы свободны в данный момент
- 2. Вам хочется где-то поесть
- 3. Вам хочется спать
- 4. Вам хочется увидеться с друзьями

- 1. Вы свободны в данный момент +1
- 2. Вам хочется где-то поесть
- 3. Вам хочется спать
- 4. Вам хочется увидеться с друзьями

- 1. Вы свободны в данный момент +1
- 2. Вам хочется где-то поесть +2
- 3. Вам хочется спать
- 4. Вам хочется увидеться с друзьями

- 1. Вы свободны в данный момент +1
- 2. Вам хочется где-то поесть +2
- 3. Вам хочется спать **-3**
- 4. Вам хочется увидеться с друзьями

- 1. Вы свободны в данный момент +1
- 2. Вам хочется где-то поесть +2
- 3. Вам хочется спать **-3**
- 4. Вам хочется увидеться с друзьями +4

Признаки (1/0):

- 1. Вы свободны в данный момент +1
- 2. Вам хочется где-то поесть +2
- 3. Вам хочется спать **-3**
- 4. Вам хочется увидеться с друзьями +4

Порог для решающего правила: +1 Если сумма больше – выходим :)

Более серьезный пример: дать кредит или нет

- Работоспособный возраст
- Имеет счет в вашем банке
- Много просрочек по платежам за другие кредиты
- Нет просрочек по платежам за другие кредиты, причем другие кредиты есть

Скоринговые карты

ПОКАЗА- ТЕЛЬ	ДИАПАЗОН ЗНАЧЕНИЙ
Возраст заемщика	До 35 лет
	От 35 до 45 лет
	От 45 и старше
Образова- ние	Высшее
	Среднее специальное
	Среднее
Состоит ли в браке	Да
	Нет
Наличие кредита в прошлом	Да
	Нет
Стаж работы	До 1 года
	От 1 до 3 лет
	От 3 до 6 лет
	Свыше 6 лет
Наличие автомобиля	Да
	Нет

Скоринговые карты

ПОКАЗА- ТЕЛЬ	ДИАПАЗОН ЗНАЧЕНИЙ	СКОРИНГ- БАЛЛ
Возраст заемщика	До 35 лет	7,60
	От 35 до 45 лет	29,68
	От 45 и старше	35,87
Образова- ние	Высшее	29,82
	Среднее специальное	20,85
	Среднее	22,71
Состоит ли в браке	Да	29,46
	Нет	9,38
Наличие кредита в прошлом	Да	40,55
	Нет	13,91
Стаж работы	До 1 года	15,00
	От 1 до 3 лет	18,14
	От 3 до 6 лет	19.85
	Свыше 6 лет	23,74
Наличие автомобиля	Да	51,69
	Нет	15,93

Подбор весов признаков и порога

Почему нельзя продолжать также:

- Сложно настраивать вручную
- Требуется эксперт в области
- Требуется проверка на данных и уточнение весов (эксперт может что-то не учесть)

Подбор весов признаков и порога

Почему нельзя продолжать также:

- Сложно настраивать вручную
- Требуется эксперт в области
- Требуется проверка на данных и уточнение весов (эксперт может что-то не учесть)

Решение — автоматизируем подбор параметров: придумаем функцию от параметров, которую надо минимизировать, и используем методы численной оптимизации

Формализуем линейный классификатор

$$a(x) = \begin{cases} 1, \text{если } f(x) > 0 \\ -1, \text{если } f(x) > 0 \end{cases}$$

$$f(x) = w_0 + w_1 x_1 + \dots + w_n x_n$$

Формализуем линейный классификатор

$$a(x) = \begin{cases} 1, \text{если } f(x) > 0 \\ -1, \text{если } f(x) > 0 \end{cases}$$

$$f(x) = w_0 + w_1 x_1 + \dots + w_n x_n = w_0 + \langle w, x \rangle$$

Геометрическая интерпретация: разделяем классы плоскостью

Формализуем линейный классификатор

$$a(x) = \begin{cases} 1, \text{если } f(x) > 0 \\ -1, \text{если } f(x) > 0 \end{cases}$$

$$f(x) = \langle w, x \rangle$$

Геометрическая интерпретация: разделяем классы плоскостью

Как выглядит код: применение модели

```
import numpy as np

def f(x):
    return np.dot(w, x) + w0

def a(x):
    return 1 if f(x) > 0 else 0
```

Отступ (margin)

Отступом алгоритма $a(x) = sign\{f(x)\}$ на объекте x_i называется величина $M_i = y_i f(x_i)$

 $(y_i$ - класс, к которому относится $x_i)$

$$M_i \le 0 \Leftrightarrow y_i \ne a(x_i)$$

 $M_i > 0 \Leftrightarrow y_i = a(x_i)$

Функция потерь

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) < 0 \right]$$

Функция потерь

Функция потерь

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) < 0 \right] \leqslant \widetilde{Q}(w) = \sum_{i=1}^{\ell} \mathscr{L}(M_i(w)) \to \min_{w};$$

$$Q(M) = (1 - M)^2$$
 $V(M) = (1 - M)_+$
 $S(M) = 2(1 + e^M)^{-1}$
 $L(M) = \log_2(1 + e^{-M})$
 $E(M) = e^{-M}$

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma_n \nabla F(\mathbf{x}_n), \ n \ge 0.$$

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma_n \nabla F(\mathbf{x}_n), \ n \ge 0.$$

$$\nabla_w \tilde{Q} = \sum_{i=1}^l \nabla L(M_i)$$

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma_n \nabla F(\mathbf{x}_n), \ n \ge 0.$$

$$\nabla_{w}\tilde{Q} = \sum_{i=1}^{l} \nabla L(M_{i})$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} L'(M_{i}) \frac{\partial M_{i}}{\partial w}$$

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma_n \nabla F(\mathbf{x}_n), \ n \ge 0.$$

$$\nabla_{w}\tilde{Q} = \sum_{i=1}^{l} \nabla L(M_{i})$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} L'(M_{i}) \frac{\partial M_{i}}{\partial w}$$

$$\frac{\partial M_{i}}{\partial w} = y_{i}x_{i}$$

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma_n \nabla F(\mathbf{x}_n), \ n \ge 0.$$

$$\nabla_{w}\tilde{Q} = \sum_{i=1}^{l} \nabla L(M_{i})$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} L'(M_{i}) \frac{\partial M_{i}}{\partial w}$$

$$\frac{\partial M_{i}}{\partial w} = y_{i}x_{i}$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} y_{i}x_{i}L'(M_{i})$$

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma_n \nabla F(\mathbf{x}_n), \ n \ge 0.$$

$$\nabla_{w}\tilde{Q} = \sum_{i=1}^{l} \nabla L(M_{i})$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} L'(M_{i}) \frac{\partial M_{i}}{\partial w}$$

$$\frac{\partial M_{i}}{\partial w} = y_{i}x_{i}$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} y_{i}x_{i}L'(M_{i})$$

$$w_{n+1} = w_n - \gamma_n \sum_{i=1}^{l} y_i x_i L'(M_i)$$

Стохастический градиент

$$w_{n+1} = w_n - \gamma_n \sum_{i=1}^{l} y_i x_i L'(M_i)$$

$$w_{n+1} = w_n \, - \gamma_n y_i x_i L'(M_i)$$
 $x_i \, -$ случайный элемент обучающей выборки

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand_index = randint(0, len(X_train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
L(M) = \max\{0, 1-M\} = (1-M)_{+}
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand index = randint(0, len(X train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand_index = randint(0, len(X_train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand_index = randint(0, len(X_train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand index = randint(0, len(X train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand index = randint(0, len(X train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand index = randint(0, len(X train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand index = randint(0, len(X train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand_index = randint(0, len(X_train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand_index = randint(0, len(X_train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
       w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand_index = randint(0, len(X_train))
        x = X train[rand index]
        y = y train[rand index]
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
                                                            \gamma_n = \frac{1}{\sqrt{\alpha + n}}
\gamma_n = (\alpha + n)^{-\beta}
    for k in range(10000):
         rand_index = randint(0, len(X_train))
         x = X train[rand index]
         y = y train[rand index]
         step = 0.01
         w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand_index = randint(0, len(X_train))
                                                       \gamma_n = (\alpha + n)^{-\beta}
        x = X train[rand index]
        y = y train[rand index]
                                                        \gamma_n = \tau \beta_n
        step = 0.01
        w = x * step * y * der loss(x, y)
```

```
from random import randint
def loss(x, answer):
    return max([0, 1 - answer * f(x)])
def der loss(x, answer):
    return -1.0 if 1 - answer * f(x) > 0 else 0.0
def fit(X train, y train):
    for k in range(10000):
        rand index = randint(0, len(X train))
        x = X train[rand index]
        y = y train[rand index]
                                       w_{n+1} = w_n - \gamma_n y_i x_i L'(M_i)
        step = 0.01
        w = x * step * y * der loss(x, y)
```

• Переобучение в задаче обучения с учителем как правило означает большие коэффициенты:

• Идея: добавить ограничение на коэффициенты

$$\begin{cases} \tilde{Q} = \sum_{i=1}^{l} L(M_i) \to min \\ \sum_{k=1}^{m} |w_k| \le \tau \end{cases}$$

$$l1$$
 — регуляризация

$$\begin{cases} \tilde{Q} = \sum_{i=1}^{l} L(M_i) \to min \\ \sum_{k=1}^{m} w_k^2 \le \tau \end{cases}$$

l2 – регуляризация

$$\sum_{i=1}^{l} L(M_i) + \gamma \sum_{k=1}^{m} |w_k| \to min \qquad \sum_{i=1}^{l} L(M_i) + \gamma \sum_{k=1}^{m} w_k^2 \to min$$

$$\sum_{i=1}^{l} L(M_i) + \gamma \sum_{k=1}^{m} w_k^2 \to min$$

l1 — регуляризация

l2 – регуляризация

$$\sum_{i=1}^{l} L(M_i) + \gamma \sum_{k=1}^{m} |w_k| \to min$$

$$\sum_{i=1}^{l} L(M_i) + \gamma \sum_{k=1}^{m} |w_k| \to min \qquad \sum_{i=1}^{l} L(M_i) + \gamma \sum_{k=1}^{m} w_k^2 \to min$$

l1 — регуляризация

l2 – регуляризация

Вопрос:

вы заметили, что в регуляризатор не включается вес w_o ?

Различия между *11* и *12*

- Разреженность I1-регуляризация делает вектор весов более разреженным (содержащим больше нулей)
- В случае линейной классификации это означает отбор признаков: признаки с нулевыми весами не используются в классификации

Упражнение

Выпишете, как поменяется правило обновления весов признаков в линейном классификаторе с помощью SGD при добавлении регуляризатора

Стандартные линейные классификаторы

Классификатор	Функция потерь	Регуляризатор
SVM (Support vector machine, метод опорных векторов)	$L(M) = \max\{0, 1 - M\} = $ $= (1 - M)_{+}$	$\sum_{k=1}^{m} w_k^2$
Логистическая регрессия	$L(M) = \log(1 + e^{-M})$	Обычно $\sum_{k=1}^m w_k^{\ 2} \text{или}$ $\sum_{k=1}^m w_k $

Обязательно ли функция потерь — функция от отступа?

Пример:

$$y_i \in \{0, 1\} \qquad Q = -\sum_{i=1}^{\ell} y_i \ln p_i + (1 - y_i) \ln(1 - p_i) \to \min_{w}$$

$$p_i = \sigma(\langle w, x_i \rangle) = \frac{1}{1 + e^{-\langle w, x_i \rangle}}$$

Обязательно ли функция потерь — функция от отступа?

Пример:

$$y_i \in \{0, 1\} \qquad Q = -\sum_{i=1}^{\ell} y_i \ln p_i + (1 - y_i) \ln(1 - p_i) \to \min_{w}$$

$$p_i = \sigma(\langle w, x_i \rangle) = \frac{1}{1 + e^{-\langle w, x_i \rangle}}$$

Упражнение:

Показать, что это та же оптимизационная задача, что и в логистической регрессии

Общий случай

Общий случай

Упражнение:

Как будет меняться качество на обучающей и на тестовой выборке с ростом коэффициента регуляризации в SVM и в логистической регрессии в sklearn? Выясните, почему результат такой.

II. Линейная регрессия

- Модель и матричная запись
- Аналитический вывод
- Геометрическая интерпретация
- Регуляризация: LASSO и гребневая регрессия

$$a(x) = \langle w, x \rangle + w_0$$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{N} L(y_i, a(x_i))$$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{N} L(y_i, a(x_i))$$

$$L(y_i, a(x_i)) = (y_i - a(x_i))^2$$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{N} L(y_i, a(x_i))$$

$$L(y_i, a(x_i)) = (y_i - a(x_i))^2$$

 $L(y_i, a(x_i)) = |y_i - a(x_i)|$

Модель и матричная запись

Модель:
$$y_i \approx \hat{y}_i = \langle w, x_i \rangle + w_0$$

Если добавить
$$x_{i0} = 1$$
: $y_i \approx \hat{y}_i = < w, x_i >$ $y_1 \approx \hat{y}_1 = x_1^T w$... $y_i \approx \hat{y}_i = x_i^T w$... $y_i \approx \hat{y}_i = x_i^T w$... $y_i \approx \hat{y}_i = x_i^T w$

Модель и матричная запись

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_l \end{pmatrix} \approx \begin{pmatrix} \widehat{y_1} \\ \widehat{y_2} \\ \vdots \\ \widehat{y_l} \end{pmatrix} = \begin{pmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_l^T \end{pmatrix} w$$

$$y \approx \widehat{y} = Fw$$

$$w = \underset{w}{\operatorname{argmin}} \|y - \widehat{y}\|^2$$

Аналитический вывод

$$\frac{\partial (y - Fw)^2}{\partial w} = 2F^T(y - Fw) = 0$$
$$F^T Fw = F^T y$$
$$w = (F^T F)^{-1} F^T y$$

Геометрическая интерпретация

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_l \end{pmatrix} \approx \begin{pmatrix} \widehat{y_1} \\ \widehat{y_2} \\ \dots \\ \widehat{y_l} \end{pmatrix} = (F_{(1)} \quad \dots \quad F_{(m)}) w$$

$$y \approx \hat{y} = Fw = w_1 F_{(1)} + \dots + w_m F_{(m)}$$

I еометрическая интерпретация

$$(Fw - y) \perp F_{(k)} \forall k = 1, ..., m$$

$$F_{(k)}^{T}(Fw - y) = 0 \quad \forall k$$

$$F^{T}(Fw - y) = 0$$

$$F^{T}Fw = F^{T}y$$

$$w = (F^{T}F)^{-1}F^{T}y$$

$$w = (F^T F)^{-1} F^T y$$

LASSO и гребневая регрессия

l1 — регуляризация

LASSO Ridge

*l*2 – регуляризация

Гребневая регрессия ($\ell 2$ -регуляризация)

$$\sum_{i=1}^{l} (a(x_i) - y_i)^2 + \gamma \sum_{k=1}^{m} w_k^2 \to min$$

Гребневая регрессия ($\ell 2$ -регуляризация)

$$\sum_{i=1}^{l} (a(x_i) - y_i)^2 + \gamma \sum_{k=1}^{m} w_k^2 \to min$$

$$\frac{\partial \left((y - Fw)^2 + \gamma w^2 \right)}{\partial w} = 2F^T (y - Fw) + 2\gamma w = 0$$
$$(F^T F + \gamma I)w = F^T y$$

$$w = (F^T F + \gamma I)^{-1} F^T y$$

Библиотеки

- libSVM
- liblinear
- sklearn.linear_models
- Vowpal Wabbit

Резюме

- I. Линейная классификация
- II. Линейная регрессия

Преимущества:

- легко реализовывать уже обученную модель
- не многим сложнее реализовывать и ее обучение
- быстро работают
- хорошо работают, когда много признаков
- нормально работают, когда мало данных

Резюме

- I. Линейная классификация
- II. Линейная регрессия

Недостатки:

• может быть слишком простым для вашей зависимости у(х)