GROUP THEORY

- 1. GROUPS AND SUBGROUPS
- 2. CYCLIC GROUPS
- 3. COSETS, NORMAL SUBGROUPS & QUOTIENT GROUPS
- 4. HOMOMORPHISM AND AUTOMORPHISMS
- 5. PERMUTATION GROUPS

1. GROUPS AND SUBGROUPS

1. 1a 2020 IFoS

Let p be a prime number. Then show that

 $(p-1)!+1\equiv 0 \bmod (p)$

Also, find the remainder when 644 (22)!+3 is divided by 23.

10

8

2. 3a 2019 IFoS

If in the group G, $a^5 = e$, $aba^{-1} = b^2$ for some a, $b \in G$, find the order of b.

3. 1a 2017 IFoS

1.(a) Prove that every group of order four is Abelian.

4. 2a 2017 IFoS

2.(a) Let G be the set of all real numbers except -1 and define $a*b = a + b + ab \forall a, b \in G$. Examine if G is an Abelian group under *.

5. 1a 2016 IFoS

1.(a) Prove that the set of all bijective functions from a non-empty set X onto itself is a group with respect to usual composition of functions.

6. 1a 2014 IFoS

(a) If G is a group in which $(a \cdot b)^4 = a^4 \cdot b^4$, $(a \cdot b)^5 = a^5 \cdot b^5$ and $(a \cdot b)^6 = a^6 \cdot b^6$, for all $a, b \in G$, then prove that G is Abelian.

7. 1b 2013

Give an example of an infinite group in which every element has finite order.

8. 1b 2013 IFoS

(b) Prove that if every element of a group (G, 0) be its own inverse, then it is an abelian group.

9. 1a 2012

1. (a) How many elements of order 2 are there in the group of order 16 generated by a and b such that the order of a is 8, the order of b is 2 and $bab^{-1} = a^{-1}$.

10. 1a 2011

1. (a) Show that the set

$$G = \{f_1, f_2, f_3, f_4, f_5, f_6\}$$

of six transformations on the set of Complex numbers defined by

$$f_1(z) = z, f_2(z) = 1 - z$$

$$f_3(z) = \frac{z}{(z-1)}, f_4(z) = \frac{1}{z}$$

$$f_5(z) = \frac{1}{(1-z)}$$
 and $f_6(z) = \frac{(z-1)}{z}$

is a non-abelian group of order 6 w.r.t. composition of mappings.

11. 4a 2011

4. (a) Let a and b be elements of a group, with $a^2 = e$, $b^6 = e$ and $ab = b^4a$.

Find the order of ab, and express its inverse in each of the forms a^mb^n and b^ma^n . 20

12. 1a 2011 IFoS

(a) Let G be a group, and x and y be any two elements of G. If $y^5 = e$ and $yxy^{-1} = x^2$, then show that O(x) = 31, where e is the identity element of G and $x \ne e$.

10

13. 1a 2010

(a) Let $G = \mathbb{R} - \{-1\}$ be the set of all real numbers omitting -1. Define the binary relation * on G by a*b=a+b+ab. Show (G,*) is a group and it is abelian

14. 1a 2010 IFoS

(a) Let

$$G = \left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \middle| a \in \mathbb{R}, \ a \neq 0 \right\}$$

Show that G is a group under matrix multiplication.

15. 3a 2010 IFoS

(a) Show that zero and unity are only idempotents of Z_n if $n = p^r$, where p is a prime.

13

2. CYCLIC GROUPS

1, 2a 2020

Let G be a finite cyclic group of order n. Then prove that G has $\phi(n)$ generators (where ϕ is Euler's ϕ -function).

2. 3b 2020 IFoS

Let G be a finite group and let p be a prime. If p^m divides order of G, then show that G has a subgroup of order p^m , where m is a positive integer.

3. 2b 2016

Let p be a prime number and \mathbf{Z}_{p} denote the additive group of integers modulo p. Show that every non-zero element of \mathbf{Z}_{p} generates \mathbf{Z}_{p} .

4. 2b 2016 IFoS

2.(b) Let G be a group of order pq, where p and q are prime numbers such that p > q and $q \nmid (p-1)$. Then prove that G is cyclic.

5. 1a 2015

How many generators are there of the cyclic group G of order 8? Explain.

Taking a group $\{e, a, b, c\}$ of order 4, where e is the identity, construct composition tables showing that one is cyclic while the other is not.

5+5=10

6. 1a 2015 IFoS

Q1. (a) If in a group G there is an element a of order 360, what is the order of a^{220} ? Show that if G is a cyclic group of order n and m divides n, then G has a subgroup of order m.

7. 1e 2011

(e) (i) Prove that a group of Prime order is abelian.

6

(ii) How many generators are there of the cyclic group (G, ·) of order 8?

8. 2a 2011

2. (a) Give an example of a group G in which every proper subgroup is cyclic but the group itself is not cyclic.

15

9. 3b 2011 IFoS

(b) Let G be a group of order 2p, p prime. Show that either G is cyclic or G is generated by $\{a, b\}$ with relations $a^p = e = b^2$ and $bab = a^{-1}$.

13

10. 1b 2010

(b) Show that a cyclic group of order 6 is isomorphic to the product of a cyclic group of order 2 and a cyclic group of order 3. Can you generalize this? Justify.

11. 1b 2009

(b) Determine the number of homomorphisms from the additive group Z₁₅ to the additive group Z₁₀.
 (Z_n is the cyclic group of order n).

3. COSETS, NORMAL SUBGROUPS & QUOTIENT GROUPS

1. 1a 2019

Let G be a finite group, H and K subgroups of G such that $K \subset H$. Show that (G:K) = (G:H)(H:K).

2. 2b 2019

Write down all quotient groups of the group Z_{12} .

10

3. 1a 2018 IFoS

1. (a) Prove that a non-commutative group of order 2n, where n is an odd prime, must have a subgroup of order n.

8

4. 4c 2018 IFoS

(c) Let H be a cyclic subgroup of a group G. If H be a normal subgroup of G, prove that every subgroup of H is a normal subgroup of G.

10

5. 2b 2017 IFoS

2. (b) Let H and K are two finite normal subgroups of co-prime order of a group G. Prove that hk = kh ∀h∈H and k∈K.
10

6. 1a 2014

Let G be the set of all real 2×2 matrices $\begin{bmatrix} x & y \\ 0 & z \end{bmatrix}$, where $xz \neq 0$. Show that G is a group under matrix multiplication. Let N denote the subset $\left\{ \begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix} : \alpha \in \mathbb{R} \right\}$. Is N a normal subgroup of G? Justify your answer.

7. 1a 2009 IFoS

(a) Prove that a non-empty subset H of a group G is normal subgroup of $G \Leftrightarrow$ for all $x, y \in H$, $g \in G$, $(gx)(gy)^{-1} \in H$.

10 6

8. 1d 2009 IFoS

(d) If G is a finite Abelian group, then show that O(a, b) is a divisor of l.c.m. of O(a), O(b).

10

4. HOMOMORPHISM AND AUTOMORPHISMS

1, 2a 2019

If G and H are finite groups whose orders are relatively prime, then prove that there is only one homomorphism from G to H, the trivial one.

2. 2a 2018

Show that the quotient group of $(\mathbb{R}, +)$ modulo \mathbb{Z} is isomorphic to the multiplicative group of complex numbers on the unit circle in the complex plane. Here \mathbb{R} is the set of real numbers and \mathbb{Z} is the set of integers.

3. 2a 2018 IFoS

2. (a) Find all the homomorphisms from the group $(\mathbb{Z}, +)$ to $(\mathbb{Z}_4, +)$.

4, 3a 2017

Show that the groups $\mathbf{Z}_5\times\mathbf{Z}_7$ and \mathbf{Z}_{35} are isomorphic.

5. 2a 2011 IFoS

(a) Let G be the group of non-zero complex numbers under multiplication, and let N be the set of complex numbers of absolute value 1. Show that G/N is isomorphic to the group of all positive real numbers under multiplication.

13

15

6. 2a 2010

2. (a) Let (\mathbb{R}^*, \cdot) be the multiplicative group of nonzero reals and $(GL(n, \mathbb{R}), X)$ be the multiplicative group of $n \times n$ non-singular real matrices. Show that the quotient group $GL(n, \mathbb{R})/SL(n, \mathbb{R})$ and (\mathbb{R}^*, \cdot) are isomorphic where

 $SL(n, IR) = \{A \in GL(n, IR) / \det A = 1\}$ What is the centre of GL(n, IR)?

7. 2b 2010 IFoS

(b) Prove or disprove that $(\mathbb{R}, +)$ and $(\mathbb{R}^+, +)$ are isomorphic groups where \mathbb{R}^+ denotes the set of all positive real numbers.

8. 1a 2009

(a) If \mathbb{R} is the set of real numbers and \mathbb{R}_+ is the set of positive real numbers, show that \mathbb{R} under addition $(\mathbb{R}, +)$ and \mathbb{R}_+ under multiplication (\mathbb{R}_+, \cdot) are isomorphic. Similarly if \mathbb{Q} is the set of rational numbers and \mathbb{Q}_+ the set of positive rational numbers, are $(\mathbb{Q}, +)$ and (\mathbb{Q}_+, \cdot) isomorphic? Justify your answer.

5. PERMUTATION GROUPS

1. 1a 2020

Let S_3 and Z_3 be permutation group on 3 symbols and group of residue classes module 3 respectively. Show that there is no homomorphism of S_3 in Z_3 except the trivial homomorphism.

2. 4a 2019 IFoS

Show that the smallest subgroup V of A_4 containing (1, 2)(3, 4), (1, 3)(2, 4) and (1, 4)(2, 3) is isomorphic to the Klein 4-group.

3. 1b 2017

Let G be a group of order n. Show that G is isomorphic to a subgroup of the permutation group $\mathbf{S}_{\mathbf{n}}$.

4. 2a 2016 IFoS

2.(a) Show that any non-abelian group of order 6 is isomorphic to the symmetric group S_3 .

5. 3a 2015 IFoS

(a) What is the maximum possible order of a permutation in S₈, the group of permutations on the eight numbers {1, 2, 3, ..., 8}? Justify your answer. (Majority of marks will be given for the justification).
13

6. 2a 2013

What are the orders of the following permutations in S_{10} ?

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 8 & 7 & 3 & 10 & 5 & 4 & 2 & 6 & 9 \end{pmatrix} \text{ and } (1 2 3 4 5) (6 7).$$
 10

7. 2b 2013

What is the maximal possible order of an element in S_{10} ? Why? Give an example of such an element. How many elements will there be in S_{10} of that order?

13

8. 2a 2012

(a) How many conjugacy classes does the permutation group S₅ of permutations 5 numbers have? Write down one element in each class (preferably in terms of cycles).

9. 2a 2012 IFoS

(a) Show that in a symmetric group S_3 , there are four elements σ satisfying $\sigma^2 = Identity$ and three elements satisfying $\sigma^3 = Identity$.

10, 2h

(b) Show that the alternating group on four letters A₄ has no subgroup of order 6.