FACULTY OF ENGINEERING AND TECHNOLOGY UNIVERSITY OF LUCKNOW LUCKNOW

Operating System AI-602

Dr. Zeeshan Ali Siddiqui Assistant Professor Deptt. of C.S.E.

PAGING CONCEPT

Paging Concept_{1/3}

• Segmentation permits the physical address space of a process to be *non-contiguous*.

• *Paging* is another memory-management scheme that offers this advantage.

 Paging avoids external fragmentation and the need for compaction, whereas segmentation does not.

Paging Concept_{2/3}

 Paging solves the problem of fitting memory chunks of varying sizes onto the backing store.

 Paging is implemented through cooperation between the operating system and the computer hardware.

• **Problem**: Internal fragmentation

Paging Concept_{3/3}

- Physical address space of a process can be non-contiguous.
- Divide physical memory into fixed-sized blocks called *frames* (size is power of 2, between 512 and 8,192 bytes).
- Divide logical memory into blocks of same size called pages.
- To run a program of size n pages, need to find n free frames and load program.
- Set up a page table to translate logical to physical addresses.

Paging Model Of Logical And Physical Memory

Paging Hardware

Address Translation Scheme

- Address generated by CPU is divided into:
 - ➤ Page number (p) used as an index into a page table which contains base address of each page in physical memory.
 - ➤ Page offset (d) combined with base address to define the physical memory address that is sent to the memory unit.

page number	page offset	
р	d	
m - n	n	

- Where p is an index into the page table and d is the *displacement* within the page.
 - \triangleright For given logical address space 2^m and page size 2^n .

Example_{1/2}

Let the logical address, n= 2 and m = 4.

- Using a
 - > page size of 4 bytes and
 - > a physical memory of 32 bytes (8 pages).

Logical address 0 is page 0, offset 0.

Example_{2/2}

0	а		
1	b		
2	C		
3	d		
4	е		
5	f		
6	g		
7	g h		
8	i		
9	j k		
10	k		
11	1		
12	m		
13	n		
14	O		
15	р		
- nical r	aiool moone		

logical memory

0	5		
1	6		
2	1		
3	2		
page table			

0	
4	i j k l
8	m n o p
12	
16	
20	a b c d
24	e f g h
28	

physical memory

Example: Analysis_{1/3}

- We find that page 0 is in frame 5.
- Thus, logical address 0 maps to
- physical address 20 [= $(5 \times 4) + 0$].

• Logical address 3 (page 0, offset 3) maps to physical address $23 = (5 \times 4) + 3$.

Example: Analysis_{2/3}

• Logical address 4 is page 1, offset 0; according to the page table, page 1 is mapped to frame 6. Thus, logical address 4 maps to physical address $24 = (6 \times 4) + 0$.

Example: Analysis_{3/3}

Logical address 13 maps to physical address?

References

- 1. Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley.
- 2. William Stallings, "Operating Systems: Internals and Design Principles", 6th Edition, Pearson Education.
- 3. D M Dhamdhere, "Operating Systems: A Concept based Approach", 2nd Edition, TMH.

