

Topología

Tercer examen parcial

Instrucciones:

- 1. Esta es una evaluación individual con una duración de 1 hora y 30 minutos. Contará con 30 minutos adicionales para escanear y subir las respuesta en formato pdf en el aula virtual en la actividad destinada para tal fin
- 2. Debe seleccionar y responder solamente 4 preguntas
- 3. Cada pregunta tiene el mismo valor
- 4. Las respuestas deben estar totalmente justificadas
- 5. Puede consultar sus apuntes y notas de clase. NO PUEDEN CONSULTARSE ENTRE USTEDES NI CON NADIE MAS
- 1. Sean (X, τ) un espacio topológico $T_2, F_1, F_2, ..., F_k$ subconjuntos cerrados de X. Muestre que si $\bigcup_{i=1}^k F_i$ es compacto entonces F_i es compacto para todo $i \in \{1, ..., k\}$
- 2. Muestre que el producto de dos espacios secuencialmente compactos es secuencialmente compacto
- 3. Sean (X, τ) un espacio topológico y $\{A_i\}_{i \in J}$ una colección de supespacios conexos de X, tal que existe un conjunto A_h , $h \in J$, tal que $A_h \cap A_i \neq \emptyset$ para todo $i \in J$, muestre que $\bigcup_{i \in J} A_i$ es conexo
- 4. Sean τ_1 y τ_2 dos topologías sobre un mismo conjunto X tales que τ_1 es más fina que τ_2 . Muestre que si (X, τ_1) es compacto y (X, τ_2) es Hausdorff entonces $\tau_1 = \tau_2$
- 5. Demostrar que un espacio topológico X es conexo si y sólo si toda aplicación continua $f:X\to Y$, donde Y es un espacio con más de un punto dotado de la topología discreta es constante
- 6. Demuestre que todo espacio métrico compacto es completo
- 7. Sean X,Y espacios topológicos $F:X\to Y$ una función biyectiva y abierta. Muestre que si Y es conexo entonces X es conexo
- 8. Sea (X, τ) un espacio topológico T_2 , Y_1 y Y_2 dos subconjuntos compactos y disjuntos de X. Demuestre que existen abiertos disjuntos A y B en X tales que $Y_1 \subset A$ y $Y_2 \subset B$