Math 217 Worksheet 9: Subspaces and Linear Independence (§3.2)

Definition: A subspace of a vector space V is a subset W satisfying:

- The zero element $\mathbf{0}_V$ of V is in W;
- If $w_1, w_2 \in W$, then $w_1 + w_2 \in W$ ("W is closed under addition");
- If $w \in W$, then $\lambda w \in W$ for all scalars $\lambda \in \mathbb{R}$ ("W is closed under scalar multiplication").

Problem 1. Using the definition, decide whether each of the given subsets is a subspace of \mathbb{R}^3 .

- (a) The solution set of the system of linear equations $\{x + y + z = 0, 3x z = 0\}$.
- (b) The kernel of the matrix* $A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 0 & -1 \end{bmatrix}$. (Why is this even a *subset* of \mathbb{R}^3 ?)
- (c) The set of all columns of the matrix $\begin{bmatrix} 1 & 1 & 1 & 0 & -1 \\ 2 & 0 & -1 & 0 & -1 \\ 3 & 1 & 0 & 0 & -2 \end{bmatrix}.$
- (d) The span of the columns of the matrix $\begin{bmatrix} 1 & 1 & 1 & 0 & -1 \\ 2 & 0 & -1 & 0 & -1 \\ 3 & 1 & 0 & 0 & -2 \end{bmatrix}.$
- (e) The set $\{c_1\vec{e}_1 + c_2\vec{e}_2 + c_3\vec{e}_3 \mid c_1, c_2, c_3 \ge 0\}$.
- (f) The plane in \mathbb{R}^3 with equation x + y + z = 1.
- (g) A line through the origin in \mathbb{R}^3 .

Solution:

- (a) Yes, subspace. We check
 - $\vec{0} \in W$, because $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ satisfies both equations.
 - For arbitrary $\vec{v}_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$ in W, we need to check that $\vec{v}_1 + \vec{v}_2 \in W$. Note that \vec{v}_i in W means that $x_i + y_i + z_i = 0$ and $3x_i z_i = 0$ for i = 1, 2. Adding these equations we get

$$(x_1 + x_2) + (y_1 + y_2) + (z_1 + z_2) = 0$$
 and $3(x_1 + x_2) - (z_1 + z_2) = 0$, so also $\vec{v}_1 + \vec{v}_2 \in W$.

^{*}This is an abuse of terminology meaning "The kernel of the linear transformation T_A with matrix A."

- For arbitrary $\vec{v} \in W$, we need to check that $\lambda \vec{v} \in W$ for all scalars λ . If $\vec{v} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$, then $x_1 + y_1 + z_1 = 0$ and $3x_1 z_1 = 0$, so multiplying by λ we have $\lambda x_1 + \lambda y_1 + \lambda z_1 = 0$ and $3\lambda x_1 \lambda z_1 = 0$, so also $\lambda \vec{v} \in W$.
- (b) This is just (a) rephrased, if you write out what it means to be in the kernel of A. That is, $\ker A = \{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0 \} = \{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid x+y+z=0 \text{ and } 3x-z=0 \}, \text{ which is the set we had in (a). So, yes, subspace. More generally, the kernel of any matrix is subspace.}$
- (c) NO! Not a subspace. Not closed under addition. The sum of the first two columns is not one of the five columns.
- (d) YES, subspace! More generally, the SPAN of any vectors $\{\vec{v}_1, \dots, \vec{v}_n\}$ is always a subspace. Proof:
 - $\vec{0}$ is in the span (since we can take all the coefficients in the linear combination to be 0).
 - Closed under addition: Take two arbitrary elements in the span. Each is a linear combination of the vectors $\{\vec{v}_1,\ldots,\vec{v}_n\}$. Adding them together and grouping "like terms," we see that the sum is also a linear combination of $\{\vec{v}_1,\ldots,\vec{v}_n\}$.
 - Closed under scalar multiplication: Take an arbitrary element in Span $\{\vec{v}_1, \ldots, \vec{v}_n\}$. This is a linear combination of the $\{\vec{v}_1, \ldots, \vec{v}_n\}$. Multiplying by any scalar, we still have a linear combination of $\{\vec{v}_1, \ldots, \vec{v}_n\}$.
- (e) Not a subspace. Not closed under multiplication by negative scalars.
- (f) Not a subspace. Does not contain $\vec{0}$.
- (g) Subspace. We can write it $\{t\vec{m} \mid t \in \mathbb{R}\}$ for some "slope vector" $\vec{m} \in \mathbb{R}^3$. This is closed under addition (since $t_1\vec{m} + t_2\vec{m} = (t_1 + t_2)\vec{m}$) and scalar multiplication (since $\lambda(t\vec{m}) = (\lambda t)\vec{m}$), and contains zero (since $0 = 0\vec{m}$).

Problem 2. Proof practice with Subspaces. Let A be an $d \times p$ matrix.

- (a) Prove that the solution set of the system of linear equations $A\vec{x} = \vec{0}$ is a subspace of \mathbb{R}^p .
- (b) Prove that the kernel of $T_A: \mathbb{R}^p \to \mathbb{R}^d$ is a subspace of \mathbb{R}^p . [Hint: Use (a) to do it quickly!]
- (c) Let $T: V \to W$ be any linear transformation. Prove that the kernel of T is a subspace of V. [HINT: This is more abstract than (b). You'll need to use the *definitions* of linear transformation and kernel.]
- (d) Let $T: V \to W$ be any linear transformation. Prove that the image of T is a subspace of W. [Hint: An arbitrary element of im T can be written T(v) for some $v \in V$]
- (e) Prove that the image of the linear transformation $T_A : \mathbb{R}^p \to \mathbb{R}^d$ is a subspace of \mathbb{R}^d . [Hint: Use something you've already proved to do it quickly!]

Solution:

(a) We show the solution set satisfies the three properties of a subspace:

- $\vec{0}$ is in the solution set, since $A\vec{0} = \vec{0}$.
- The solution set is closed under addition: If \vec{x} and \vec{y} are solutions, then $A\vec{x} = A\vec{y} = 0$. So also $A\vec{x} + A\vec{y} = 0$, and using the distributive property of matrix multiplication, also $A(\vec{x} + \vec{y}) = \vec{0}$, which says that $\vec{x} + \vec{y}$ is a solution.
- The solution set is closed under scalar multiplication: If \vec{x} is solution, then $A\vec{x} = 0$. Take any scalar c. So also $A(c\vec{x}) = cA(\vec{x}) = c\vec{0} = \vec{0}$, which says that $c\vec{x}$ is a solution.
- (b) The kernel of T_A is, by definition, the set of all vectors \vec{x} such that $T_A(\vec{x}) = 0$. Then by definition of T_A , this is the set of all vectors \vec{x} such that $A\vec{x} = 0$ —that is, the solution set we proved in (a) is a subspace!
- (c) We show ker T satisfies the three defining properties of a subspace.
 - Check is $0_V \in \ker T$? Yes, since $T(0_V) = 0_W$ for any linear transformation.
 - Check if $x, y \in \ker T$, is $x + y \in \ker T$? Yes, since T(x + y) = T(x) + T(y) = 0 + 0 = 0 (using the definition of linearity).
 - Check if $x \in \ker T$, is $\lambda x \in \ker T$ for any scalar λ ? Yes: $T(\lambda x) = \lambda T(x) = \lambda 0 = 0$ (using definition of linearity).
- (d) We show im T satisfies the three defining properties of a subspace.
 - Check is $0_W \in \text{im } T$? Yes, since $T(0_V) = 0_W$ for any linear transformation.
 - Check if $x, y \in \text{im } T$, is $x + y \in \text{im } T$? Take arbitrary $x, y \in \text{im } T$. This means we can write x = T(v) and y = T(w) for some v, w in the source. So x + y = T(v) + T(w) = T(v + w). So x + y is in the image since the vector v + w goes to x + y under T.
 - Take arbitrary T(v) in the image. Then for any scalar c, cT(v) = T(cv) is also in the image.
- (e) Here, we can just apply (d) as this is just one special kind of linear transformation and (d) proves it in general. The power of abstract theory!

DEFINITION. A set of vectors $\{v_1, v_2, \dots v_d\}$ in a vector space V is **linearly independent** if whenever

$$c_1v_1 + c_2v_2 + \cdots + c_dv_d = 0$$

for some scalars c_i , it follows that $c_1 = c_2 = \cdots = c_d = 0$.

DEFINITION. A **relation** on a set of vectors $\{v_1, v_2, \dots v_d\}$ is a linear combination

$$c_1v_1 + c_2v_2 + \dots + c_dv_d$$

that equals zero. We say the relation is **trivial** if all coefficients $c_i = 0$.

OBSERVE: the set of vectors $\{v_1, v_2, \dots, v_d\}$ is **linearly dependent** if there is a non-trivial relation on them, and **linearly independent** if the *only* relation on them is the trivial relation.

Problem 3: Relations and linear independence.

(a) Using the definition above, explain why the vectors $\vec{e}_1, \vec{e}_2, \vec{e}_3 \in \mathbb{R}^3$ are linearly independent.

- (b) Using the book's method ("redundant vectors"), check whether $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ linearly independent or not.
- (c) Find a relation on $\{\vec{v}_1, \vec{v}_2\}$ from (b). Is there a non-trivial relation on $\{\vec{v}_1, \vec{v}_2\}$?
- (d) Now, consider the vectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix}$, and $\vec{v}_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Which is the first "redundant" vector? Write it as a linear combination of the preceding vectors.
- (e) Write a nontrivial linear relation on $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$, with \vec{v}_i as in (d). [Hint: Use (d)!]
- (f) Discuss with your group why our definition of linear independence above (which is the one you must memorize and use in proofs!) is equivalent to the book's.
- (g) Using the definition, show that $\left\{\begin{bmatrix}1\\1\\1\end{bmatrix},\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\end{bmatrix}\right\}$ is **linearly dependent**.
- (h) Using the definition, prove that $\left\{\begin{bmatrix}1\\1\\0\end{bmatrix},\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}1\\1\\1\end{bmatrix}\right\}$ is linearly independent.

[PROOF TECHNIQUE: To show vectors are linear independent, use first sentence "Let $a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3 = 0$ be a relation." Now do some math to show the relation is trivial.]

Solution:

- (a) Suppose that $c_1\vec{e}_1+c_2\vec{e}_2+c_3\vec{e}_3=\begin{bmatrix}0\\0\\0\end{bmatrix}$. In other words, $\begin{bmatrix}c_1\\c_2\\c_3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}$. This forces all the c_i to be zero, so our arbitrary relation is trivial—that is, the only relation is the trivial relation. By defintion, $\{\vec{e}_1,\vec{e}_2,\vec{e}_3\}$ are linearly independent.
- (b) Most definitely linearly independent! Note, $\vec{v}_2 \neq k\vec{v}_1$ for any k. Thus it is not a linear combination of the vector(s) preceding it, and is not redundant. Therefore the vectors are linearly independent.
- (c) We have only the trivial relation $0\vec{v}_1 + 0\vec{v}_2 = 0$, because these vectors are linearly independent (as we checked using the book's definition in (b)). We can also check directly that there is no non-trivial relation: If there were a non-trivial relation, say $c_1\vec{v}_1 + c_2\vec{v}_2 = 0$ with not both c_i zero, note then that neither c_i is zero in this case (since $\vec{v}_i \neq 0$ for i = 1, 2). So we could write

$$\vec{v}_2 = \frac{c_1}{c_2}\vec{v}_1$$
. But inspecting the vectors $\vec{v}_1 = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$, we see that this is not so (as we checked in (b)).

To prove $\{\vec{v}_1, \vec{v}_2\}$ is linearly independent using our definition above, suppose there were a non-trivial relation, say $c_1\vec{v}_1 + c_2\vec{v}_2 = 0$ with not both c_i zero. This can be written as the matrix

equation
$$\begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
, or

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

This is a system of equation in three variables of rank 2, which we can check using the method of row reduction from Chapter 1 has exactly one solution, namely $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

- (d) From (b) we know that \vec{v}_1 and \vec{v}_2 are linearly independent, so the first vector that could be redundant is \vec{v}_3 . We note that $\vec{v}_3 = \vec{v}_1 2\vec{v}_2$; thus it is redundant and we have found our linear combination all at once!
- (e) Given (d), we can take $1\vec{v}_1 2\vec{v}_2 \vec{v}_3 + 0\vec{v}_4 = \vec{0}$.
- (g) The vectors are not linearly independent because $1\begin{bmatrix}1\\1\\1\end{bmatrix}+(-1)\begin{bmatrix}1\\0\\0\end{bmatrix}+(-1)\begin{bmatrix}0\\1\\0\end{bmatrix}+(-1)\begin{bmatrix}0\\0\\1\end{bmatrix}=0$ is a non-trivial relation on them.
- (h) Suppose $c_1\begin{bmatrix}1\\1\\0\end{bmatrix}+c_2\begin{bmatrix}1\\0\\0\end{bmatrix}+c_3\begin{bmatrix}1\\1\\1\end{bmatrix}=0$ is a linear relation on the vectors. This gives us a system of linear equations

$$\begin{bmatrix} c_1 + c_2 + c_3 & = & 0 \\ c_1 & + c_3 & = & 0 \\ & c_3 & = & 0 \end{bmatrix},$$

and to show that the relation is trivial we must prove that the only solution to this system is

$$c_1 = c_2 = c_3 = 0$$
. The augmented matrix is $\begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 1 & 0 & 1 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix}$ and we can row reduce it to see

that the rank is 3, so that there is a *unique* solution, namely $\vec{0}$.

Problem 4. Subspaces of Coordinate spaces. Describe all subspaces of the vector space \mathbb{R}^3 . What do they look like geometrically? How many are there? Can you classify them into different "types?" What are their dimensions? Repeat for \mathbb{R} and \mathbb{R}^2 . What about \mathbb{R}^4 ?

Solution: There are infinitely many but they come in three types: subspaces of \mathbb{R}^3 are the whole \mathbb{R}^3 , planes through the origin, lines through the origin, and the origin. These have dimensions 3, 2, 1, 0, respectively. The subspaces of \mathbb{R}^2 are the whole \mathbb{R}^2 , lines through the origin, and the origin. These have dimensions 2, 1, 0, respectively. There are only two subspaces of \mathbb{R} , namely $\{0\}$ and \mathbb{R} . For \mathbb{R}^4 , we have the whole \mathbb{R}^4 , "3-planes" through the origin, planes through the origin, lines through the origin, and the origin. These have dimensions 4, 3, 2, 1, 0, respectively.

Problem 5. Prove that the set $\{\vec{v}_1, \vec{v}_2\}$ is linearly independent if and only if \vec{v}_1 is not a scalar multiple of \vec{v}_2 and \vec{v}_2 is not a scalar multiple of \vec{v}_1 . What if we assume *only* that \vec{v}_1 is not a scalar multiple of \vec{v}_2 ?

Solution: Assume $\{\vec{v}_1, \vec{v}_2\}$ is linearly independent. Now if $\vec{v}_1 = a\vec{v}_2$ for some scalar a, then there is a non-trivial relation $\vec{v}_1 - a\vec{v}_2 = 0$, contrary to the linear independence of $\{\vec{v}_1, \vec{v}_2\}$. Similarly, if $\vec{v}_2 = a\vec{v}_1$, we also conclude that $\{\vec{v}_1, \vec{v}_2\}$ is linearly dependent.

Conversely, assume that the vector \vec{v}_1 is not a scalar multiple of \vec{v}_2 and \vec{v}_2 is not a scalar multiple of \vec{v}_1 . To show $\{\vec{v}_1, \vec{v}_2\}$ is linearly independent, assume we have a relation $a\vec{v}_1 + b\vec{v}_2 = 0$. If $a \neq 0$, then $\vec{v}_1 = \frac{-b}{a}\vec{v}_2$ and if $b \neq 0$, then $\vec{v}_2 = \frac{-a}{b}\vec{v}_1$, contradicting the hypothesis. Thus $\{\vec{v}_1, \vec{v}_2\}$ is linearly independent. QED.

The proof does not work if we assume only that \vec{v}_1 is not a scalar multiple of \vec{v}_2 . For example, $\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is not a scalar multiple of $\vec{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, but $\vec{0}$ is a scalar multiple of \vec{v}_1 . In this case, even though \vec{v}_1 is not a scalar multiple of \vec{v}_2 , the vectors $\{\vec{v}_1, \vec{v}_2\}$ are linearly dependent.

Problem 6. Prove that any set $\left\{\begin{bmatrix} a_1 \\ b_1 \end{bmatrix}, \begin{bmatrix} a_2 \\ b_2 \end{bmatrix}, \begin{bmatrix} a_3 \\ b_3 \end{bmatrix}\right\}$ of three vectors in \mathbb{R}^2 is linearly dependent.

[Hint: You need to show that there is a non-trival relation on the vectors. Write out what this means and then do some math to show that a non-trivial relation must exist. Note: you only need to show it exists....this is a case where that's easier than actually writing one out.]

Solution: Consider a potential relation $c_1 \begin{bmatrix} a_1 \\ v_1 \end{bmatrix} + c_2 \begin{bmatrix} a_2 \\ b_2 \end{bmatrix} + c_3 \begin{bmatrix} a_3 \\ b_3 \end{bmatrix} = 0$. We can rewrite this as a matrix equation

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

A non-trivial relation exists if and only if this system has a non-trivial solution. Since this is a homogeneous system with at least one free variable (at most two pivots but three total variables), we know that there must be solutions. So there must be a non-trivial relation on the vectors.