Displaying large data

Hadley Wickham

Assistant Professor / Dobelman Family Junior Chair Department of Statistics / Rice University

- 1. Introduction to the diamonds data
- 2. Histograms and bar charts
- 3. More boxplots
- 4. Scatterplots for large data
- 5. Some theory

Diamonds data

~54,000 round diamonds from http://www.diamondse.info/

Carat, colour, clarity, cut

Total depth, table, depth, width, height

Price

depth = z / diameter table = table width / x * 100

Histogram & bar charts

Histograms and barcharts

Used to display the **distribution** of a variable

Categorical variable → bar chart

Continuous variable → histogram

Always experiment with the bin width!

Examples

```
# With only one variable, qplot guesses that
# you want a bar chart or histogram
qplot(cut, data = diamonds)
qplot(carat, data = diamonds)
qplot(carat, data = diamonds, binwidth = 1)
qplot(carat, data = diamonds, binwidth = 0.1)
qplot(carat, data = diamonds, binwidth = 0.01)
resolution(diamonds$carat)
last_plot() + xlim(0, 3)
```

Examples

```
# With only one variable, qplot guesses that
# you want a bar chart or histogram
qplot(cut, data = diamonds)
qplot(carat, data = diamonds)
qplot/carat data = diamonds, binwidth = 1)
qplot Common ggplot2
                     liamonds, binwidth = 0.1)
qplot technique: adding
                      iamonds, binwidth = 0.01)
      together plot
resolu
                      arat)
        components
last_plot() + xlim(0, 3)
```

```
qplot(table, data = diamonds, binwidth = 1)
# To zoom in on a plot region use xlim() and ylim()
qplot(table, data = diamonds, binwidth = 1) +
   xlim(50, 70)
qplot(table, data = diamonds, binwidth = 0.1) +
  xlim(50, 70)
qplot(table, data = diamonds, binwidth = 0.1) +
  x \lim(50, 70) + y \lim(0, 50)
# Note that this type of zooming discards data
outside of the plot regions
# See coord_cartesian() for an alternative
```

Additional variables

As with scatterplots can use **aesthetics** or **faceting**. Using aesthetics creates pretty, but ineffective, plots.

The following examples show the difference, when investigation the relationship between cut and depth.

Your turn

Explore the distribution of price.

How does it vary with colour, or cut, and clarity?

Weighting

```
qplot(cut, data = diamonds, weight = carat)
qplot(cut, data = diamonds, weight = price)

# Also useful for pretabulated data
cuts <- as.data.frame(table(
   cut = diamonds$cut))
qplot(cut, weight = Freq, data = cuts)</pre>
```

Scatterplots

Revision: Interpreting a scatterplot

- Big patterns
- Small patterns
- Deviations from the pattern
- Strange patterns

Ideas

If x discrete, use boxplots.

Use semi-transparent points.

Divide into bins and count number of points in each bin (2d histogram).

Display statistical summary.

Box and whisker plots

Boxplots

Less information than a histogram, but take up much less space.

Already seen them used with discrete x values. Can also use with continuous x values, by specifying how we want the data **group**ed.

qplot(table, price, data = diamonds, geom = "boxplot",
 group = round(table))

Alpha blending

Friday, 12 February 2010

```
qplot(carat, price, data = diamonds,
  colour = I(alpha("black", 1/255))
qplot(carat, price, data = diamonds, geom = "bin2d")
qplot(carat, price, data = diamonds, geom = "bin2d",
bins = 100)
qplot(carat, price, data = diamonds, geom = "hex")
qplot(carat, price, data = diamonds) + geom_smooth()
```

Statistical summary

Friday, 12 February 2010

qplot(log10(carat), log10(price), data = diamonds) +
 geom_smooth(method = "lm")^{g10(carat)}

2d bins

```
# Very basic cleaning
diamonds$x[diamonds$x == 0] <- NA
diamonds$y[diamonds$y == 0] <- NA
diamonds$y[diamonds$y > 12] <- NA
qplot(x, y, data = diamonds)
qplot(x, y, data = diamonds, geom = "bin2d")
qplot(x, y, data = diamonds, geom = "hex")
qplot(x, y, data = diamonds, geom = "bin2d", bins = 100)
qplot(x, y, data = diamonds, geom = "hex", bins = 100)
# Zoom in
qplot(x, y, data = diamonds, geom = "bin2d", bins = 100) +
  x \lim(4,7) + y \lim(4,7)
qplot(x, y, data = diamonds, geom = "bin2d", bins = 100) +
  xlim(4,5) + ylim(4,5)
```

```
qplot(x, x / y, data = diamonds,
  geom = "bin2d")
qplot(x, log(x / y), data = diamonds,
  geom = "bin2d")
clean <- subset(diamonds, abs(log(x / y)) < 0.1)
qplot(x, log(x / y), data = clean, geom = "bin2d")
qplot(x, log(x / y), data = clean, geom = "bin2d",
  bins = 80)
```

```
qplot(x, x / y, data = diamonds,
  geom = "bin2d")
qplot(x, log(x / y), data = diamonds,
  geom = "bin2d")
clean <- subset(diamonds, abs(log(x / y)) < 0.1)
qplot(x, log(x / y), data = clean, geom = "bin2d")
qplot(x, log(x / y), data = clean, geom = "bin2d",
  bins = 80)
```

What would be a good name for log(x / y)? What other variable might you create to go with it?

Your turn

Continue to explore the relationship between x, y, z and carat. Create new variables as necessary.

You might also want to do more cleaning.

Some good ideas here: http://www.diamondhelpers.com/fivesteps/4-certified-diamonds.shtml

This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.