

POLITÉCNICA

2021.02.08

Data handling in space missions

Juan Antonio de la Puente <juan.de.la.puente@upm.es> Alejandro Alonso <<u>alejandro.alonso@upm.es</u>>

Outline

- Data handling in space missions
 - on-board and ground segments
- Computer architecture
 - generic system architecture
 - hardware and software architecture
- Requirements, limitations and design process

Data handling in space missions

- Data handling is crucial in space missions
- Most aspects of the mission are controlled by computers & software
 - ▶ launch trajectory & orbit acquisition
 - attitude control
 - platform control
 - telecommunications
- Missions may fail because of hardware/software faults
 - data handling is a *mission critical* component

Some notorious software failures

Ariane 5 launcher (1996)

- self-destroyed because of a failure in flight control software
- ▶ incorrect reuse of previous (Ariane 4) software
- correct data misinterpreted as erroneous

Mars Pathfinder (1997)

- repeated timing failures led to frequent resets
- bad design of real-time parameters
- fixed by uploading a software patch

Mars Climate Orbiter (1999)

- persistent navigation errors resulted in entering Mars atmosphere at an improperly low altitude and probably burning up
- mixing SI and imperial units went undetected

... and a few more ones in

- ▶ http://www.itworld.com/article/2823083/88716-8-famous-software-bugs-in-space
- https://en.wikipedia.org/wiki/List_of_software_bugs#Space

Space system segments

- The launch and space segments have the most demanding requirements for
 - ▶ reliability,
 - ▶ safety
 - ▶ integrity
- On-board computers are subject to harsh environmental conditions
- On-board hardware/software cannot be replaced if defective

Source: ECSS-E-00A

NOTE GSE = Ground Support Equipment AIV = Assembly, Integration, Verification

On-board Data Handling (OBDH)

- The OBDH subsystem is in charge of exchanging data between the spacecraft functional units and the ground segment
 - data storage and distribution within the spacecraft as well
- It is highly integrated with the TT&C subsystem
 - ▶ telemetry, tracking and telecommand
- It is based on one or more on-board computers (OBC)

6

OBDH architecture

On-board computers

- Computation support to spacecraft functions
- Specific requirements
 - embedded in spacecraft
 - specific I/O devices, limited power, size and weight
 - real-time operation
 - functions have to be performed on time
 - high reliability requirements
 - repair is not possible in space
 - harsh environment
 - radiation, temperature, vibration, acceleration
- Applicable technology may be restricted
 - often resulting in less powerful technology being used

8

OBC hardware

 LEON processors are common in ESA systems

 open-source μP core from which chips can be built

- The current version is LEON4
 - ► SPARC v8 compliant RISC architecture
 - radiation-hard implementations
 - ▶ speed ≈ 100 MHz
 - ▶ power ≈ 0,5 W

https://en.wikipedia.org/wiki/LEON

Example: UPMSat2 on-board computer

EBOX hosting the computer board

Computer board based on LEON3

http://www.esa.int/Our Activities/Space Engineering Technology/Onboard Computer and Data Handling/Onboard Computer and Data Handling2

EBOX.

Computador de Von Neumann

- Modelo de computador propuesto en 1947
 - ▶ El más empleado.
 - Hay otras alternativas (procesadores de gráficos, FPU)
- Características
 - Datos e instrucciones almacenados en memoria
 - Contenido de la memoria accesible por direcciones
 - Ejecución implícitamente en secuencia

UPMSat2 OBC hardware

OBC software

- Many critical functions depend on software
 - high-integrity requirements
- Most software functions have real-time requirements
 - do things in time
- Verification & validation process is crucial
 - safety management
- Technology choice driven by high-integrity requirements
 - ▶ e.g. Ada, RTOS, static analysis, temporal analysis

UPMSat2 software

Software development cycle

ECSS standard disciplines

ECSS handbooks

Source: ECSS-S-ST-00C

ECSS software processes

ECSS software criticality categories

Category	Definition
A	Software that if not executed, or if not correctly executed, or whose anomalous behaviour can cause or contribute to a system failure resulting in: Catastrophic consequences.
В	Software that if not executed, or if not correctly executed, or whose anomalous behaviour can cause or contribute to a system failure resulting in: Critical consequences.
C	Software that if not executed, or if not correctly executed, or whose anomalous behaviour can cause or contribute to a system failure resulting in: Major consequences .
D	Software that if not executed, or if not correctly executed, or whose anomalous behaviour can cause or contribute to a system failure resulting in: Minor or Negligible consequences .

Data handling in space missions © 2020 Grupo STRAST - UPM 20

Summary

- Data handling is a critical component of space systems
- On-board computer systems are most critical
- OBC hardware design is driven by reliability requirements in a harsh environment
- OBC software design is driven by high-integrity requirements
- ECSS standards for software define processes for developing high-integrity software
 - ▶ ECSS-E-40C
 - ▶ ECSS-Q-80C

