Data Visualization Cohen Chapter 2

EDUC/PSY 6600

Always plot your data first!

"Always." - Severus Snape

Always plot your data first!

"Always." - Severus Snape

Why?

- Outliers and impossible values
- Determine correct statistical approach
- Assumptions and diagnostics
- Discover new relationships

The Visualization Paradox

- Often the most informative aspect of analysis
- Communicates the "data story" the best
- Most abused area of quantitative science
- Figures can be *very* misleading

Much better

RESULTS BY PARTY: CNN/USA Today/Gallup Poll Margin of error: +/- 7%

Question 2: Based on what you have heard or read about the case, do you agree with the court's decision to have the feeding tube removed?

Keys to Good Viz's

- Graphical method should match level of measurement
- Label all axes and include figure caption
- Simplicity and clarity
- Avoid of 'chartjunk'

Keys to Good Viz's

- Graphical method should match level of measurement
- Label all axes and include figure caption
- Simplicity and clarity
- Avoid of 'chartjunk'

- Unless there are 3 or more variables, avoid 3D figures (and even then, avoid it)
- Black & white, grayscale/pattern fine for most simple figures

Data Visualizations

Takes practice -- try a bunch of stuff

Data Visualizations

Takes practice -- try a bunch of stuff

Resources

- Edward Tufte's books
- "R for Data Science" by Grolemund and Wickham
- "Data Visualization for Social Science" by Healy

Frequency Distributions

Counting the number of occurrences of unique events

- Categorical or continuous
- just like with tableF() and table1()

Can see central tendency (continuous data) or most common value (categorical data)

Can see range and extremes

X	Freq	CumFreq	Percent	CumPerc	Valid	CumValid
1	260	260	26.00%	26.00%	26.48%	26.48%
2	251	511	25.10%	51.10%	25.56%	52.04%
3	249	760	24.90%	76.00%	25.36%	77.39%
4	222	982	22.20%	98.20%	22.61%	100.00%
Missing	18	1000	1.80%	100.00%		

Frequencies and Viz's Together 💗

Bar Graph

Frequencies and Viz's Together 💗

Bar Graph

Histogram

What does DISTRIBUTION mean?

The way that the data points are scattered

What does DISTRIBUTION mean?

The way that the data points are scattered

For Continuous

- General shape
- Exceptions (outliers)
- Modes (peaks)
- Center & spread (chap 3)
- Histogram

For Categorical

- Counts of each
- Percent or Rate (adjusts for an 'out of' to compare)
- Bar chart
- Pie chart avoid!

Let's Apply This To the Inho Dataset

Reminder

Key

```
Sub_num: arbitrary ID number for each participant.
```

Gender: 1 = Female; 2 = Male.

Major: 1 = Psychology; 2 = Premed; 3 = Biology; 4 = Sociology; 5 = Economics.

Reason: 1 = Program requirement; 2 = Personal interest; 3 = Advisor recommendation.

Exp. cond: 1 = Easy: 2 = Moderate: 3 = Difficult: 4 = Impossible.

Coffee: 0 = not a regular coffee drinker; 1 = regularly drinks coffee.

Num cups = number of cups of coffee drunk prior to the experiment on the same day.

Phobia: 0 = No phobia to 10 = Extreme phobia.

Prevmath = Number of math courses taken prior to statistics course.

Mathquiz = Score on Math Background Quiz (a blank for this value indicates that a student did not take the quiz).

Statquiz = Score on 10-question stats quiz given one week before the experiment.

Exp_sqz = Score on stats quiz given as part of the experiment (number correct, including the 11th question).

HR_base = Baseline heart rate (in beats per minute).

HR_pre = Prequiz heart rate.

 $HR_{post} = Postquiz heart rate.$

Anx_base = Baseline anxiety score.

Anx_pre = Prequiz anxiety score.

 $Anx_post = Postquiz anxiety score.$

Read in the Data

```
library(tidyverse) # the easy button
library(readxl) # read in Excel files
library(furniture) # nice tables

data_raw <- readxl::read_excel("Ihno_dataset.xls") %>%
    dplyr::rename_all(tolower) # converts all variable names to lower case
```

FALSE Warning: package 'readxl' was built under R version 3.4.4

Read in the Data

```
library(tidyverse) # the easy button
library(readxl) # read in Excel files
library(furniture) # nice tables

data_raw <- readxl::read_excel("Ihno_dataset.xls") %>%
    dplyr::rename_all(tolower) # converts all variable names to lower case
```

FALSE Warning: package 'readxl' was built under R version 3.4.4

And Clean It

Frequency Distrubutions

```
data_clean %>%
  furniture::tableF(major)
```

```
##
##
    major Freq CumFreq Percent CumPerc
##
           29
                         29.00%
                                 29.00%
                                 54.00%
##
          25
                54
                         25.00%
##
          21
                75
                         21.00%
                                 75.00%
##
                90
                        15.00%
                                 90.00%
          15
##
          10
                         10.00%
                                 100.00%
                100
##
```

```
data_clean %>%
  furniture::tableF(phobia)
```

```
##
    phobia Freq CumFreq Percent CumPerc
##
##
                 12
                          12.00%
                                   12.00%
##
            15
                 27
                          15.00%
                                   27.00%
##
            12
                 39
                          12.00%
                                   39.00%
##
                 55
                          16.00%
                                   55.00%
            16
##
                 76
                          21.00%
                                   76.00%
            21
                                   87,00%
##
    5
            11
                 87
                          11.00%
##
                 88
                          1.00%
                                   88.00%
##
                 92
                          4.00%
                                   92.00%
                 96
                                   96.00%
##
                          4.00%
##
    9
                 97
                          1.00%
                                   97.00%
                                   100.00%
    10
                 100
                          3.00%
##
```

Frequency Viz's

For viz's, we will use ggplot2

This provides the most powerful, beautiful framework for data visualizations

Frequency Viz's

For viz's, we will use ggplot2

This provides the most powerful, beautiful framework for data visualizations

- It is built on making layers
- Each plot has a "geom" function
 - e.g. geom_bar() for bar charts, geom_histogram() for histograms, etc.

Bar Charts

```
data_clean %>%
  ggplot(aes(major)) +
  geom_bar()
```


Bar Charts

```
data_clean %>%
  ggplot(aes(coffee)) +
  geom_bar()
```


Histograms

```
data_clean %>%
  ggplot(aes(phobia)) +
  geom_histogram()
```


Histograms (change number of bins)

```
data_clean %>%
  ggplot(aes(phobia)) +
  geom_histogram(bins = 8)
```


Histograms (change bins to size 5)

```
data_clean %>%
  ggplot(aes(phobia)) +
  geom_histogram(binwidth = 5)
```


Histograms

```
data_clean %>%
  ggplot(aes(mathquiz)) +
  geom_histogram(binwidth = 4)
```


Histograms -by- a Factor (columns)

```
data_clean %>%
  ggplot(aes(mathquiz)) +
  geom_histogram(binwidth = 4) +
  facet_grid(. ~ coffeeF)
```


Histograms -by- a Factor (rows)

```
data_clean %>%
  ggplot(aes(mathquiz)) +
  geom_histogram(binwidth = 4) +
  facet_grid(coffeeF ~ .)
```


Deciles (break into 10% chunks)

```
data_clean %>%
    dplyr::pull(statquiz) %>%
    quantile(probs = c(.10, .20, .30, .40, .50, .60, .70, .80, .90))

## 10% 20% 30% 40% 50% 60% 70% 80% 90%
## 4.0 6.0 6.0 7.0 7.0 8.0 8.0 8.0 8.1
```

Deciles - with missing values

```
data_clean %>%
    dplyr::pull(mathquiz) %>%
    quantile(probs = c(.10, .20, .30, .40, .50, .60, .70, .80, .90))

Error in quantile.default(., probs = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, : missing values and NaN's not allowed if 'na.rm' is FALSE
```

Deciles - na.rm = TRUE

Quartiles (break into 4 chunks)

```
data_clean %>%
   dplyr::pull(statquiz) %>%
   quantile(probs = c(0, .25, .50, .75, 1))

##   0%   25%   50%   75%   100%
##   1   6   7   8   10
```

Percentiles

```
data_clean %>%
   dplyr::pull(statquiz) %>%
   quantile(probs = c(.01, .05, .173, .90))

##   1%   5% 17.3%  90%
##   2.98   3.00  5.00  8.10
```

Questions?

Next Topic

Center and Spread