I Représentations

1. Quel est le nombre de chemins de longueur 100 de 0 à 2 dans le graphe orienté suivant?

2. Soit $\vec{G}=(V,\vec{E})$ un graphe orienté représenté par une matrice d'adjacence m.

Écrire une fonction ${\tt trou_noir}\ {\tt m}$ renvoyant en ${\rm O}(|V|)$ un sommet t vérifiant :

- $\forall u \neq t : (u, t) \in \vec{E}$
- $\forall v \neq t : (t, v) \notin \vec{E}$

Si \vec{G} n'a pas de trou noir, on pourra renvoyer une valeur quel
conque.

3. Écrire une fonction

qui transforme en temps linéaire un arbre représenté par un tableau pere (où pere. (i) est le prédécesseur du sommet i) en un arbre persistant de type :

Si r est la racine, on supposera que pere.(r) = r.

Remarque: l'arbre peut avoir un nombre quelconque de fils, d'où l'utilisation d'une liste pour les fils.

II Distances

Soit G = (V, E) un graphe. On rappelle que la **distance** de u à v est la longueur minimum d'un chemin de u à v (c'est aussi une distance au sens mathématiques, pour un graphe non-orienté).

- 1. L'excentricité d'un sommet u est la distance maximum de ce sommet à un autre. Écrire une fonction exc : int graph -> int -> int renvoyant en O(|V| + |E|) l'excentricité d'un sommet.
- 2. Écrire une fonction diametre : int graph -> int renvoyant en $O(|V| \times (|V| + |E|))$ le diamètre d'un graphe, c'est à dire la distance maximum entre deux sommets.
- 3. Écrire une fonction centre : int graph -> int renvoyant en $O(|V| \times (|V| + |E|))$ le centre d'un graphe, c'est à dire le sommet d'excentricité minimum.
- 4. Peut-on améliorer les trois algorithmes précédents si G est un arbre?
- 5. Soient $S \subset V$ et $T \subset V$. Comment calculer efficacement la distance entre S et T, c'est à dire la distance minimum entre un sommet de S et un de T?
- 6. Soient $u, v, w \in V$. Comment trouver efficacement un plus court chemin de u à w passant par v?

7. Soit G = (V, E) et $k \in \mathbb{N}$ tel que $\deg(v) \leq k$, $\forall v \in V$. Soient $u, v \in V$. Expliquer comment trouver la distance d de u à v en $O(\sqrt{k^d})$. Comment procéder pour un graphe orienté?

III Composantes fortement connexes

Dans tout l'exercice, g : int list array est un graphe orienté représenté par liste d'adjacence.

III.1 Tri topologique

1. Écrire une fonction post_dfs g vu r renvoyant la liste des sommets atteignables depuis r dans l'ordre de fin de traitement croissant d'un DFS (c'est à dire dans l'ordre postfixe/suffixe de l'arbre de parcours en profondeur). vu est un tableau des sommets déjà visités. On pourra utiliser © pour simplifier l'écriture.

- Quelle est la liste renvoyée par post_dfs g vu 0 si g est le graphe ci-dessus?
- Soit [v0; v1; ...] la liste renvoyée par post_dfs g vu r. On suppose g sans cycle.
 Montrer que : (vi, vj) est un arc de g ⇒ i > j.
- 4. On suppose g sans cycle. En déduire une fonction tri_topo g effectuant un tri topologique de g, c'est à dire renvoyant une liste [v0; v1; ...] de tous ses sommets de façon à ce que : (vi, vj) est un arc de g ⇒ i < j.</p>

Remarque: on peut voir le tri topologique comme une généralisation d'un tri classique, où $a \leq b$ est remplacée par $a \to b$. On pourrait trier des entiers en appelant tri_topo sur le graphe correspondant, mais le nombre d'arcs serait quadratique, donc la complexité aussi.

 $\overline{\text{Application}}$: on veut savoir dans quel ordre effectuer des tâches (les sommets) dont certaines doivent être effectuées après d'autres (arcs = dépendances). Par exemple pour résoudre un problème par programmation dynamique, on peut construire le graphe dont les sommets sont les sousproblèmes, un arc (u,v) indiquant que la résolution de v nécessite celle de u. Il faut alors résoudre les sousproblèmes dans un ordre topologique.

III.2 Algorithme de Kosaraju

1. Écrire une fonction

tr : int list array -> int list array

renvoyant la **transposée** d'un graphe, obtenue en inversant le sens de tous les arcs.

L'algorithme de Kosaraju consiste à trouver les composantes fortement connexes de ${\bf g}$ de la façon suivante :

- (i) appliquer plusieurs DFS sur g jusqu'à avoir visité tous les sommets, en calculant la liste 1 des sommets de g dans l'ordre de fin de traitement décroissant.
- (ii) faire un DFS dans $\tt tr g$ depuis le premier sommet $\tt r$ de 1 : l'ensemble des sommets atteints est alors une composante fortement connexe de $\tt g$.
- (iii) répéter (ii) tant que possible en remplaçant ${\tt r}$ par le prochain sommet non visité de 1.
 - 2. Appliquer la méthode sur le graphe de la question III.1.1.
 - 3. Écrire une fonction kosaraju g renvoyant la liste des composantes fortement connexes de g (chaque composante fortement connexe étant une liste de sommets).
 - 4. Quelle serait la complexité en évitant l'utilisation de @?