Fast Characterization of Inducible Regions of Atrial Fibrillation Models with Multi-Fidelity Gaussian Process Classification

Center for Computational Medicine in Cardiology CCMC Euler Institute

Gander L.⁽¹⁾, Pezzuto S.⁽¹⁾, Gharaviri A.⁽¹⁾, Krause R.⁽¹⁾, Perdikaris P.⁽²⁾, Sahli Costabal F.⁽³⁾

- (1) Center for Computational Medicine in Cardiology, Euler Institute, Università della Svizzera italiana, Lugano.
- (2) Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia.
- (3) Department of Mechanical and Metallurgical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago de Chile.

Goal

Given: atrial model on the geometry $\Omega \subset \mathbb{R}^3$ and atrial surface $\mathcal{S} \subset \Omega$. For any $\boldsymbol{x} \in \mathcal{S}$, determine if a pacing protocol applied at \boldsymbol{x} induces an Atrial Fibrillation event (y=1) or not (y=0). The mapping $F \colon \mathcal{S} \to \{0,1\}$, $\boldsymbol{x} \mapsto y$ is called **inducibility map** [2].

Method

- High fidelity model and **low fidelity model based on a coarser discretization** of the monodomain equation in space and time. The low fidelity model is **16 times faster than the high fidelity one**
- Multi-fidelity Gaussian Process classification [3]
- Train set $\{(\boldsymbol{x}_{Hi}, y_{Hi})_{i=1}^{N_H}, (\boldsymbol{x}_{Li}, y_{Li})_{i=1}^{N_L}\}$
- Latent functions $f_H(\boldsymbol{x}) = \rho f_L(\boldsymbol{x}) + \delta(\boldsymbol{x})$
- -Gaussian Process (GP) priors on f_L and δ , and prior distributions over ρ , θ_L and θ_H

$$f_L \sim \mathcal{GP}(0, k(\boldsymbol{x}, \boldsymbol{x'}; \boldsymbol{\theta}_L))$$
$$\delta \sim \mathcal{GP}(0, k(\boldsymbol{x}, \boldsymbol{x'}; \boldsymbol{\theta}_H))$$

- Matérn kernel k on the manifold based on the eigenpairs of the Laplacian [1]
- Bayesian inference of the posterior distributions of ho, $m{ heta}_L$, $m{ heta}_H$ and $m{f} = \begin{bmatrix} f_L \\ f_H \end{bmatrix}$
- -Posterior distribution of the predictive latent function $f^*(x^*)$ at a new location x^* obtained by conditioning on the train data
- Prediction $y^* = \sigma(\mathbf{f}^*(\mathbf{x}^*))$, where $\sigma \colon \mathbb{R} \to [0, 1]$ is the sigmoid function

Numerical Results

- 9 atrial models
- \bullet Comparison of 4 classifiers for N_H ranging from 20 to 100
- nearest neighbor
- single-fidelity GP
- multi-fidelity GP with $N_L=100\,$
- low fidelity GP with $N_H=0$ and $N_L=100$
- Balanced accuracy computed on a test set

For small train sets the multi-fidelity GP classifier performs better than the single-fidelity GP and the nearest neighbor classifiers.

- In clinical studies a typical choice is $N_H=40$ high fidelity simulations
- \bullet The multi-fidelity classifier with $N_H=33$ has equivalent cost

On average, with the multi-fidelity GP classifier we gain 5.4% accuracy compared to the single-fidelity GP classifier and 5.7% accuracy compared to the nearest neighbor classifier.

Conclusion

- It is worth taking advantage of the cheap low fidelity model in a multi-fidelity framework
- higher accuracy can be achieved with fixed computational cost
- a target accuracy can be achieved with lower computational cost
- The multi-fidelity strategy is interesting for clinical applications, where patient-specific results need to be delivered within practical time constraints
- The multi-fidelity GP classifier is efficient in evaluating the effect of personalized ablation therapies

References

- [1] V. Borovitskiy, A. Terenin, P. Mostowsky, and M. Deisenroth. Matérn Gaussian Processes on Riemannian Manifolds. In *Advances in Neural Information Processing Systems*, volume 33, pages 12426–12437, 2020.
- [2] L. Gander, S. Pezzuto, A. Gharaviri, R. Krause, P. Perdikaris, and F. Sahli Costabal. Fast Characterization of Inducible Regions of Atrial Fibrillation Models with Multi-Fidelity Gaussian Process Classification. *Frontiers in Physiology*, 13:757159, 2022.
- [3] F. Sahli Costabal, P. Perdikaris, E. Kuhl, and D. E. Hurtado. Multi-Fidelity Classification using Gaussian Processes: Accelerating the Prediction of Large-Scale Computational Models. *Computer Methods in Applied Mechanics and Engineering*, 357:112602, 2019.