Intro to High Throughput Sequencing and applications

Day 1 of the INF-BIO5151/9121 course "High Throughput Sequencing technologies and bioinformatics analysis"

Sequencing technologies

What sequencing platforms do you know

Exercise using Mentimeter wordcloud

- Illumina HiSeq 1000 1500 2000 2500 3000 4000
- Illumina HiSeq X (Five and Ten)
- Illumina NextSeg 500
- Illumina MiSeq
- Pacific Biosciences RSII
- Ion Torrent PGM
- Ion Torrent Proton
- Ion Torrent S5 and S5XL
- Oxford Nanopore MinION (MkI), PromethION, GridION
- Roche 454 GS FLX, Junior
- SOLiD 1 2 3 4 5500 5500XL
- · BGI revolocity
- HeliScope
- ABI Sanger 3730xl

Special types

- 10X genomics
- Moleculo/TruSeq synthetic reads
- BioNano Genomics

Read lengths versus throughput for sequencing instruments

Exercise using Google sheets:

- · for each sequencing instrument still being sold, find the specifications on the company website
- make a plot in a google spreadsheet with the read length on the x-axis and the per-run throughput in

Gigabp on the Y axis

- · make both axis log scale
- my example is here

Discuss my version on figshare: http://figshare.com/articles/developments in NGS/100940. See also my blog post on the most recent edition.

Slide with figure 1 from Reuter et al 2015.

Similarities between all sequencing platforms

Exercise using mentimeter wordcloud

Details on the technology behind the different sequencing platforms

In detail: Illumina library preparation and sequencing https://www.youtube.com/watch?v=womKfikWlxM

In detail: PacBio library preparation and sequencing

https://www.youtube.com/watch?v=v8p4ph2MAvl Slide: SMRTBell

In detail: Oxford Nanopore MinION library preparation and sequencing

https://nanoporetech.com/science-technology/movies#movie-24-nanopore-dna-sequencing

In detail: 10X genomics https://vimeo.com/120429438

In detail: BioNano Genomics https://vimeo.com/116090215

What read types do you know?

Slides/whiteboard: Paired end versus single end versus mate pair, subreads, 2D reads

What applications do you know of for HTS?

Exercise using mentimeter wordcloud

Illumina has a poster with all library preparation methods.

Lior Pachter has "an up-to-date annotated bibliography of *Seq assays (functional genomics assays based on high-throughput sequencing)" on <u>this page</u>.

Slide with figure 4 from Reuter et al 2015.

Selected applications

RNA-seq

- Assembly and metagenomics
- · ChIP-seq
- Amplicon sequencing
- SNP typing and discovery
- Single-cell sequencing

Principles and problems of HTS data analysis

What skills do you think you need for analysing HTS data?

Exercise using mentimeter wordcloud.

'Tube map' from http://nirvacana.com/thoughts/becoming-a-data-scientist/.

Slides:

Subject	Items	HTS data analysis example
Data	Amount of data	multi-GB fastq files
	Finding data	ENA, SRA, ensembl, UCSC
	Getting data in the right shape	fastq versions
	Scrubbing	read errors, denoising of amplicons
	Understanding the data (file formats)	vcf file format
	Data management (storing, copying, moving data)	store bam files?
	Sharing data	ENA, SRA
Software	Understanding the algorithms	mapping reads
	Installing software	don't get me started
	Choosing program from all possible	mapping programs
	Can not always use the same tool	availability of a reference genome
	Not always the same tool that is best	iMetAmos
	Software parameter space	kmer size for assembly
	Validation of computational results	assembly comparison

Compute resources	Local versus HPC versus cloud	Abel versus Amazon
	Computational time	mapping versus assembly
	Getting access	Abel
	Optimal use of HPC resources	disk I/O for life science applications
User interfaces	unix shell	bwa
	web-based	Galaxy, Hyperbrowser
	GUI-based	Microsoft office, CLCBio
Skills	Unix skills	ssh , rsync
	Programming skills	R, python
	Statistics	GWAS
Ethics	Ethical approval	human subjects
	Sensitive data	human sequencing data
	Reproducibility	pipelines

Ranking skills important for analysing HTS data

Mentimeter exercise

Anscombe's quartet: https://en.m.wikipedia.org/wiki/Anscombe's_quartet

Some aspects of errors in reads

What can go wrong during Illumina sequencing (i.e. errors)

Mentimeter exercise

What can go wrong during PacBio sequencing (i.e. errors)

Mentimeter exercise Slide: PacBio sequencing explained from the Metzker paper

Slide: GC bias plot from this Laehnemann et al paper

Batch effects: see http://bitesizebio.com/20998/beware-the-bane-of-batch-effects/

What are the basic skills we want you to learn?

- Quality control (both reads and analysis results)
- Study design (e.g. replicates)
- · Principles of mapping
- Principles of assembly
- Statistics, hypothesis testing
- Summary statistics and visualisation
- Sanity checking/validation of results
- Model system versus non-model system organisms
- Reproducibility
- Finding data, and munging it