Solutions for Chapter 1

Exercise 1.1

(a)
$$R = 5k + 10k = \boxed{15k\Omega}$$

(b)
$$R = \frac{R_1 R_2}{R_1 + R_2} = \frac{5k \cdot 10k}{5k + 10k} = \boxed{\mathbf{3.33k}\mathbf{\Omega}}$$

Exercise 1.2

$$P = IV = \left(\frac{V}{R}\right)V = \frac{(12\text{V})^2}{1\Omega} = \boxed{\mathbf{144}\text{W}}$$

Exercise 1.3

TODO: Solve this problem

Exercise 1.4

TODO: Solve this problem

Exercise 1.5

Given that $P = \frac{V^2}{R}$, we know that the maximum voltage we can achieve is 15V and the smallest resistance we can have across the resistor in question is $1k\Omega$. Therefore, the maximum amount of power dissipated can be given by

$$P = \frac{V^2}{R} = \frac{(15\text{V})^2}{1\text{k}\Omega} = \boxed{\mathbf{0.225\text{W}}}$$

This is less than the 1/4W power rating.

Exercise 1.10

(a) With two equal-value resistors, the output voltage is half the input voltage.

$$V_{out} = \frac{1}{2}V_{in} = \frac{30\text{V}}{2} = \boxed{15\text{V}}$$

(b) To treat R_2 and R_{load} as a single resistor, combine the two resistors which are in parallel to find that the combined (equivalent) resistance is $5k\Omega$. Now, we have a simple voltage divider with a $10k\Omega$ resistor in series with the $5k\Omega$ equivalent resistor. The output voltage is across this equivalent resistance. The output voltage is given by

1

$$V_{out} = V_{in} \frac{5k\Omega}{10k\Omega + 5k\Omega} = \frac{30V}{3} = \boxed{10V}$$

(c) We can redraw the voltage divider circuit to make the "port" clearer.

Figure 1: Voltage divider with port shown.

We can find V_{Th} by leaving the ports open (open circuit) and measuring V_{out} , the voltage across R_2 . This comes out to be half the input voltage when $R_1 = R_2$, so $V_{\text{out}} = 15\text{V}$. Thus $V_{\text{Th}} = 15\text{V}$.

To find the Thévinen resistance, we need to find the short circuit current, I_{SC} . We short circuit the port and measure the current flowing through it.

Figure 2: Voltage divider with short circuit on the output.

In this circuit, no current flows through R_2 , flowing through the short instead. Thus we have $I_{SC} = \frac{V_{\text{in}}}{R_1}$.

From this, we can find
$$R_{\rm Th}$$
 from $R_{\rm Th} = \frac{V_{\rm Th}}{I_{SC}}$. This gives us $R_{\rm Th} = \frac{15 {\rm V} \cdot R_1}{V_{\rm in}} = \boxed{\frac{150 {\rm k}}{{\rm V}_{\rm in}} \Omega}$

The Thévenin equivalent circuit takes the form shown below.

Figure 3: Thévenin equivalent circuit.

This circuit is equivalent to the circuit in Figure 1.