

JOINT CUMULATIVE DISTRIBUTION FUNCTIONS

Why

1

Definition

Let $X, Y: \Omega \to \mathbb{R}$ be random variables on probability space $(\Omega, \mathcal{F}, \mathsf{P})$. The joint cumulative distribution function denoted $F_{X,Y}: \mathbb{R}^2 \to [0,1]$ is defined by $F_{X,Y}(s,t) = \mathsf{P}[X \le s, Y \le t]$.

In general the *joint cdf* for a random vector $X : \Omega \to \mathbb{R}^n$ is $F_X : \mathbb{R}^d \to [0,1]$ defined by $F_X(t) = \mathbb{P}[X \le t]$ where $x \le t$ means $x_i \le t_i$ for all i.

¹Future editions will include.

