office: Delta 856 ext: 62340 email:ychuang@ee.nthu.edu.tw

EE214000 Electromagnetics, Fall 2020		
Your name:	ID:	Dec. 14 th , 2020
Quiz #14-1, Open b	EE214000 Electromagnetics, looks, notes (25 points), due 11 p (submission through iLM	om, Wednesday, Dec. 16th, 2020
	Late submission won't be ac	ccepted!
1. Explain why you	ı can't use the Ampere's law	$\oint_C \vec{B} \cdot d\vec{l} = \mu_0 I \text{to calculate the}$
	at $P(r,\phi,0)$? Of course, you couping (why?). (5 points)	ald try it to get a different answer
2. Step by step, write magnetic dipole. (6 p	down the derivation of the far-z oints)	one magnetic flux density for a
ferromagnetic material field intensity E is us	al subject to an external current	eatly increased nearby or inside a t (6 points); whereas the electric material given an external charge. nations are encouraged
along the surface nor		lines entering a perfect conductor he magnetic field lines in vacuum ∞? (5 points)