Heterogeneity and Accumulation Processes

Wesley Wang

Department of Sociology Purdue University

Late-Life heterogeneity

Tremendous heterogeneity exists within the older adult population

- ► Trajectories of functional impairment [Maddox and Clark, 1992]
- ► Reaction time [Hultsch et al., 2002]
- ► Perceptual-motor performance [Salthouse, 2013]
- etc.

Variability that is of importance, not just means!

Heterogeneity

- 1. Genetic Variability & Differential Expression
 - ► Genetic variation and admixture

1. Genetic Variability & Differential Expression

- ► Genetic variation and admixture
- ► Epigenetic modifications (DNA methylation that affects gene expression)

Heterogeneity

റഹാറ്റ

1. Genetic Variability & Differential Expression

- ► Genetic variation and admixture
- ► Epigenetic modifications (DNA methylation that affects gene expression)
- ► Gene-Environment Interplay (GxE)
 - ▶ Diathesis-stress: Dormant genes until turbulent environment
 - ► Social control: Environments *suppress* genetic effects
 - ► Social compensation: Environments *maximise* genetic effects

- 1. Multifacedness of ageing
- 2. Environmental influences and adaptation
 - ► Agency in shaping/responding to environments
 - ► Selection into environments (deviation from the mean) (e.g., migration, military, social class)

- 1. Multifacedness of ageing
- 2. Environmental influences and adaptation
- 3. Cohort effects
 - Population shocks (armed conflicts, recessions, pandemics)
 - ► Easterlin hypothesis [Easterlin, 1978]
 - Inverse relationships between cohort sizes and health/mortality/socioeconomic outcomes
 - ► Large cohort size → Reduction in educational resources → Diminished educational attainments
 - Large cohort size → Increased worker supply → Diminished wage/job mobility & employment

Bigger cohorts \rightarrow Increased adversity \rightarrow Poorer outcomes

Heterogeneity 0000•0

Heterogeneity

- 1. Multifacedness of ageing
- 2. Environmental influences and adaptation
- 3. Cohort effects
- 4. Stochasticity and within-person change
 - ► Randomness in life events
 - ▶ Unit of analysis or error term (ϵ) ?

Constraints of heterogeneity

1. Survivorship bias

► Selective mortality in early life 'levels out' factors that affect survival into older ages

Constraints of heterogeneity

1. Survivorship bias

 Selective mortality in early life 'levels out' factors that affect survival into older ages

2. Selection in/out of studies

- Informed consent required in studies implies some degree of self-selectivity
- ► Non-random attrition in longitudinal studies
- ► Genetically influenced too! See Benonisdottir and Kong [2023]

How do researchers examine accumulation?

1. Accumulation as outcome

- Risk factors of comorbidity (multiple diseases)
- e.g., Educational attainment and allostatic load in later life [Ding et al., 2019]

2. Accumulation as predictor

Cumulative exposures on later life outcomes

3. Accumulation as moderator

- ▶ Differentiated outcomes according to extent of accumulation
- ► Cumulative adverse childhood experiences × Age predicted hair cortisol in later life [lob et al., 2020]

4. Reciprocal effects

ightharpoonup Cumulative risk ightharpoonup Health outcomes ightharpoonup Cumulative disadvantage

Material vs nonmaterial accumulation

- ► Material accumulation
 - Observable and measurable
 - ▶ e.g., Lead, air pollution
- Nonmaterial accumulation
 - Cannot be observed directly
 - e.g., Discrimination, stress, adversity
 - ► Subjectivity in interpretation
 - ▶ Difficulty in measurement

Are exposures to varied types of stressors 'additive'?

Do they 'sum up' linearly to affect health outcomes?

Desirable vs Undesirable exposures

- Subjective nature of desirability
 - ► "The strongest steel emerges from the fiercest of flames"
 - ► "Dough rises when you let it rest"
- ► Non-linear effects of stress exposure on mental health [Seery et al., 2010]

Onset I

- ► Critical/sensitive periods
 - Developmental phase where exposures have the most impact
 - ► The Long Arm of Childhood early life adversity linked to outcomes as late as mortality [Hayward and Gorman, 2004]

Onset I

- ► Critical/sensitive periods
 - Developmental phase where exposures have the most impact
 - ► The Long Arm of Childhood early life adversity linked to outcomes as late as mortality [Hayward and Gorman, 2004]
- Duration
 - ► Prolonged 'spells' of risk of exposure

Onset I

► Critical/sensitive periods

- Developmental phase where exposures have the most impact
- ► The Long Arm of Childhood early life adversity linked to outcomes as late as mortality [Hayward and Gorman, 2004]

Duration

Prolonged 'spells' of risk of exposure

Quantity of exposures

- ► Number of exposures over time
- Thresholds at what point does accumulation become detrimental?

Onset II

Rate of exposure

- : lost-to-follow-up : showing symptoms of disease Z
- Number of cases per unit time
- Weighted metric to account for unequal or inconsistent exposures across the sampled population

Onset III

Pace/tempo of exposure

- ► Intermittent vs continuous exposures
- ► Accelerating vs decelerating accumulations
- ► Halting or reversing accumulation

Overall useful to identify the *temporal patterns* of accumulation rather than just the *quantity* of accumulation

References I

- Benonisdottir, S. and Kong, A. (2023). Studying the genetics of participation using footprints left on the ascertained genotypes. *Nature Genetics*, 55(8):1413–1420.
- Ding, X., Barban, N., and Mills, M. C. (2019). Educational attainment and allostatic load in later life: Evidence using genetic markers. *Preventive Medicine*, 129:105866.
- Easterlin, R. A. (1978). What Will 1984 Be Like? Socioeconomic Implications of Recent Twists in Age Structure. *Demography*, 15(4):397–432.
- Hayward, M. D. and Gorman, B. K. (2004). The Long Arm of Childhood: The Influence of Early-Life Social Conditions on Men's Mortality. *Demography*, 41(1):87–107.
- Hultsch, D. F., MacDonald, S. W. S., and Dixon, R. A. (2002). Variability in Reaction Time Performance of Younger and Older Adults. *The Journals of Gerontology: Series B*, 57(2):P101–P115.

References II

- Iob, E., Lacey, R., and Steptoe, A. (2020). The long-term association of adverse childhood experiences with C-reactive protein and hair cortisol: Cumulative risk versus dimensions of adversity. *Brain, Behavior, and Immunity*, 87:318–328.
- Maddox, G. L. and Clark, D. O. (1992). Trajectories of Functional Impairment in Later Life. *Journal of Health and Social Behavior*, 33(2):114–125.
- Salthouse, T. A. (2013). Effects of age and ability on components of cognitive change. *Intelligence*, 41(5):501–511.
- Seery, M. D., Holman, E. A., and Silver, R. C. (2010). Whatever does not kill us: Cumulative lifetime adversity, vulnerability, and resilience. *Journal of Personality and Social Psychology*, 99(6):1025–1041.

Discussion Questions

- 1. How might survivorship bias affect our result interpretations empirically? Any examples of how it might affect your research, and/or how did you 'adjust' for it?
- 2. We discussed how heterogeneity might arise simply due to stochastic processes. Do you think we should treat such stochasticity as a unit of analysis? Might there be an underlying structure behind such stochasticity?
- 3. In measuring cumulative risks, what are your thoughts about summing up different kinds of of non-material exposures (e.g., depression, poverty) linearly to create a single 'cumulative risk score'?
- 4. Apart from critical periods, duration, and the pace of exposure, can you think of how the temporal dimension of exposures might affect later life outcomes? And/or: what do you think about the recency/proximity of exposures? Is it worth investigating?
- 5. Feel very free to raise your personal thoughts, comments, or questions about these chapters!

Thank you!

Email: wang6429@purdue.edu