Graph Algorithms 1

COMP 6651 – Algorithm Design Techniques

Denis Pankratov

Basic graph terminology

Vertices/nodes:

entities (people, countries, organizations, etc.)

Edges/links:

relationship between entities (friendship, classmates, same political party, membership in the same club, etc.)

Examples: communication networks, social networks, organization of roads in a country, electrical grid, etc.

Internet as of December 1970 as a graph (Heart et al 1978)

First social network analysis (Moreno 1934)

- Sociogram: each child chooses two children to sit next to
- Boys are depicted by triangles
- Girls are depicted by circles

2004 blogosphere

- Community structure of political blogs
- Red conservative, blue liberal, edge existence of a hyperlink

Protein-protein interaction networks

- Nodes proteins
- Edges physical interactions

Why study graphs?

- One of the most useful mathematical abstractions
- Many problems can be expressed precisely and clearly in language of graphs
- We use graphs as a **model** of real systems
- A model typically simplifies things, but makes precise analysis possible

Example

- Task of coloring a political map
- Neighboring countries should receive different colors
- What is the minimum number of colors needed?
- Rephrase as a graph problem:
 - countries = vertices
 - neighborhood relationship = edges

Graphs, formally

A graph G is a **pair** of sets

$$G = (V, E)$$

V – set of vertices

E – set of edges

Simple graphs: self-loops are not allowed, multiple edges between same pair

of vertices are not allowed

Undirected:

edges do not have orientation each edge is a *subset* of V of size 2

Example: $\{u, v\}$ - an undirected edge between u and $v, u, v \in V$

Maximum number of edges is $\binom{|V|}{2}$ in simple undirected graphs

Graphs, formally

A graph G is a **pair** of sets

$$G = (V, E)$$

V – set of vertices

E – set of edges

Directed (aka digraphs):

edges have orientation

each edge is a pair of elements of V

Example: (u, v) - a directed edge from u to $v, u, v \in V$

Maximum number of edges is $|V|^2$ allowing self-loops but no multiple edges

Nodes 1 and 2 are adjacent/neighbors/connected by an edge

••

Weighted graphs

Vertices and/or edges can have weights

Weights on edges help to encode strength or importance of connections

Formally given by a function $w: E \to \mathbb{R}$

Weights on vertices help to encode importance of entities Formally given by a function $w:V\to\mathbb{R}$

Representations of graphs (CLRS 22.1)

Two most common representations:

Adjacency matrix

Adjacency lists

Adjacency matrix

$$|V| \times |V| \text{ matrix } A = \begin{pmatrix} a_{ij} \end{pmatrix} \text{ such that}$$

$$a_{ij} = \begin{cases} 1, & (i,j) \in E \\ 0, & (i,j) \notin E \end{cases}$$

Examples:

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	0 1 1 0 1	0

	1	2	3	4
1	0	1	0	0
2	0	0	0	1
3	1	1	0	0
4	0	0	1	1

Adjacency lists

Array Adj of |V| lists, one per vertex Adj[u] is a list of all vertices v such that $(u,v) \in E$

Examples:

Comparison of representations

Adjacency matrix

Works for both directed and undirected graphs

For weighted graphs: can store weight of an edge in the matrix

Space: $\Theta(|V|^2)$

Time:

to list all neighbors of $u: \Theta(|V|)$

to determine $(u, v) \in E: \Theta(1)$

Adjacency lists

Works for both directed and undirected graphs

For weighted graphs: can store weight of an edge in a corr. list elt.

Space: $\Theta(|V| + |E|)$

Time:

to list all neighbors of u: $\Theta(\deg(u))$

to determine $(u, v) \in E:O(\deg(u))$

Breadth-First Search BFS (CLRS, 22.2)

Input: Graph G = (V, E), either directed or undirected

 $s \in V$ – the source vertex

Output: v.d = distance (smallest # of edges) from s to v, for all $v \in V$

Also known as unweighted shortest path.

Can be used to solve reachability problem.

Example:

Idea

Send a wave out of s

- First hits all vertices 1 edge from s
- Then hits all vertices 2 edges from s
- So on...

Use FIFO queue Q to maintain wavefront

• $v \in Q$ if and only if wave has hit v but hasn't come out of v yet

$$BFS(G = (V, E), s)$$

 $for u \in V - \{s\}$
 $u.d \leftarrow \infty$
 $s.d \leftarrow 0$
initialize queue Q
 $Q.enqueue(s)$
 $while Q.size() > 0$
 $u \leftarrow Q.dequeue()$
 $for v \in G.Adj[u]$
 $if v.d = \infty$
 $v.d \leftarrow u.d + 1$
 $Q.enqueue(v)$

BFS may not reach all vertices

$$Time = O(|V| + |E|)$$

O(|V|) because every vertex is enqueued at most once

O(|E|) because every vertex is dequeued at most once and we examine (u, v) only when u is dequeued.

Outstanding issues

What if we want to construct actual path from s to v realizing v. d?

Keep another attribute $v.\pi$ – predecessor of v, namely, $v.\pi$ is the vertex u responsible for enqueueing v

Set of edges $\{(v, \pi, v) : v \neq s\}$ forms a tree

See CLRS for more details and a formal proof of correctness

Depth-First Search DFS (CLRS, 22.3)

Input: G = (V, E), directed or undirected

Output: 2 timestamps on each vertex

• v.d = discovery time

• v.f = finishing time

Can be used to solve reachability, but **NOT** unweighted shortest paths

Goal is to methodically explore every edge

Start over from different vertices as necessary

As soon as we discover a vertex, explore from it

• Unlike BFS, which puts a vertex on a queue to explore from it later

Discovery and finishing times:

- Unique integers from 1 to 2|V|
- For all $v \in V$ we have $v \cdot d < v \cdot f$

As DFS progresses, every vertex has a color (for analysis and discussion purposes):

- WHITE = undiscovered
- GRAY = discovered, but not finished (not done exploring from it)
- BLACK = finished (have found everything reachable from it)

```
DFS(G)
for u \in V
u.color \leftarrow WHITE
time \leftarrow 0 // global variable
for u \in V
if u.color = WHITE
DFS - Visit(G, u)
```

```
DFS - Visit(G, u)
  time \leftarrow time + 1
  u.d \leftarrow time
  u.color \leftarrow GRAY // discover u
  for \ v \in Adj[u] // explore (u, v)
     if \ v.\ color = WHITE
        DFS - Visit(G, v)
  u.color \leftarrow BLACK
  time \leftarrow time + 1
  u. f \leftarrow time // finish u
```


Time = $\Theta(|V| + |E|)$

- Similar to BFS analysis
- $\Theta(|V| + |E|)$ instead of O(|V| + |E|), since we are guaranteed to examine each edge

DFS forms a depth-first forest consisting of at least one depth-first tree Each tree edge is (u, v) such that u.color = GRAY and v.color = WHITE when (u, v) is explored

Parenthesis theorem

For all u, v exactly one of the following holds:

- 1. Time intervals [u.d,u.f] and [v.d,v.f] are disjoint (u and v belong to different depth-first trees or different branches of same tree)
- 2. Time interval [v.d, v.f] is a subinterval of [u.d, u.f] (v is a descendant of u in depth-first tree)
- 3. Time interval [u, d, u, f] is a subinterval of [v, d, v, f] (u is a descendant of v in depth-first tree)

"Time intervals of vertices behave as parenthesis"

- ()[], ([]), [()] are OK
- ([)], [(]) are NOT OK

White-path theorem

v is a descendant of u if and only if at time u. d there is a path $u \rightarrow v$ consisting only of WHITE vertices (except for u which is colored GRAY)

Classification of edges

Tree edge (T): appears in the depth-first forest.

Back edge (B): (u, v), where u is a descendant of v

Forward edge (F): (u, v), where v is a descendant of u, but not a tree edge

Cross edge (C): any other edge

Extra properties:

- 1. A directed graph contains a cycle if and only if DFS reveals a back edge.
- 2. DFS on undirected graphs reveals only tree and back edges, no forward or cross edges

Topological sort (CLRS 22.4)

DAG = directed acyclic graph

A directed graph with no cycles (DFS reveals no back edges)

Good for modelling partial order:

- 1. a > b and b > c implies that a > c
- 2. But may have a and b that are incomparable

Can always complete it to a total order

This is what topological sort does

Topological sort formally

Input: G = (V, E) - a dag

Output: a linear ordering of V such that if $(u, v) \in E$ then u

appears before v in the ordering

Dag of dependencies for putting on goalie equipment

To perform topological sort:

- call DFS to compute finishing times v. f for all $v \in V$
- output vertices in order of decreasing finishing times

Do not explicitly sort vertices after DFS (this would blow up running time)

- As a vertex is finished being explored, place it in the front of the output list
- When done, the list contains vertices in topological order

Time complexity: $\Theta(|V| + |E|)$

Exercise: write down pseudocode from scratch

7|14 15 | 24 25 | 26 socks shorts T-shirt batting glove 1|6 chest pad 16|23 hose 8|13 17|22 9|12/ pants sweater 18|21 10 | 11 skates mask leg pads catch glove 19 | 20 | 2|5 3|4 blocker

Topological sort:

• •

Proof of correctness

Only need to show that $(u, v) \in E$ implies $v \cdot f < u \cdot f$ When we explore (u, v) what are colors of u and v?

- u is GRAY
- Case v is WHITE:
 - v becomes descendant of u (by white-path theorem)
 - [v.d,v.f] is a subinterval of [u.d,u.f] (by parenthesis theorem) therefore u.d < v.d < v.f < u.f, as desired
- Case v is BLACK:
 - ullet v is already finished, while we are still exploring u
 - Therefore v.f < u.f

Case v is GRAY:

- (u, v) becomes a back edge
- contradicts property of dags
- impossible

Strongly connected components (CLRS, 22.5)

A strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all $u, v \in C$ there is a path from u to v and there is a path from v to u

"vertices that are mutually reachable from each other"

Vertices of a dag are partitioned into disjoint SCCs

Component graph

"Shrink each SCC into a single vertex, remove duplicate edges"

- $G^{SCC} = (V^{SCC}, E^{SCC})$
- V^{scc} has one vertex for each SCC in G
- E^{scc} has an edge if there is an edge between the corresponding SCC's in G

Transpose of a graph

Algorithm for computing SCCs uses the notion of transpose of a graph

 G^T is the transpose of G = (V, E) defined as

- $G^T = (V, E^T)$
- $E^T = \{(v, u) : (u, v) \in E\}$
- G^T is G with all edges reversed

Can be created in $\Theta(|V| + |E|)$ running time using Adj[]

```
SCC(G)
```

call DFS(G) to compute finishing times u, f for all $u \in V$ compute G^T

call $DFS(G^T)$, but in the main loop consider vertices in order of decreasing u. f (from first DFS)

output vertices in each tree of the DFS-forest formed in second DFS as a separate SCC

Time $\Theta(|V| + |E|)$

First DFS

Order of vertices for 2nd DFS: A,B,F,G,H,C,D,I,J,E

Order of vertices for 2nd DFS: A,B,F,G,H,C,D,I,J,E

Compute transpose

Order of vertices for 2nd DFS: A,B,F,G,H,C,D,I,J,E

2nd DFS (on transpose)

Order of vertices for 2nd DFS: A,B,F,G,H,C,D,I,J,E

Tree edges

Order of vertices for 2nd DFS: A,B,F,G,H,C,D,I,J,E

DFS tree 3 = SCC 3

Why does this work?

- G and G^T have the same SCCs
- Component graph G^{scc} is a dag
- Considering vertices in second DFS in decreasing order of finishing times from first DFS, we are visiting vertices of component graph in topological sort order
- But in the second DFS the edges have been reversed!
- Therefore the second DFS explores vertices in a single component first, then it has to start a new DFS tree to process the next component, and so on
- See CLRS for a formal proof

According to the order of vertices in after the first DFS:

- Vertices in SCC 1 appear first in that ordering
- Vertices in SCC 2 appear after that
- Vertices in SCC 3 appear after that
- Vertices in SCC 4 appear after that

Second DFS starts by exploring SCC 1 vertices

Note that it cannot reach SCC 2 vertices from SCC 1

Therefore, DFS is forced to start a new tree

This is repeated for SCC 3 vertices and SCC 4 vertices

Minimum spanning trees MSTs (CLRS 23)

Input: G = (V, E) undirected graph

 $w: E \to \mathbb{R}$ - edge weights

Output: Find $T \subseteq E$ such that

• T connects all vertices (T is a spanning tree), and

• $w(T) = \sum_{\{u,v\} \in T} w(\{u,v\})$ is minimized

A spanning tree whose weight is minimum over all spanning trees is called a **minimum spanning tree** (**MST**)

Another MST

- MST has |V| 1 edges
- MST is a tree connected acyclic graph
- MST might not be unique

Building a solution:

- Build a set A of edges
- Initially, A is empty
- Add edges to A to maintain the **invariant**:

A is a subset of some MST

Add only safe edges to maintain the invariant:

 $\{u,v\}$ is safe if $A \cup \{\{u,v\}\}$ is a subset of some MST

Generic MST algorithm

```
Generic — MST(G = (V, E), w)

A \leftarrow \emptyset

while A is not a spanning tree

find an edge \{u, v\} that is safe for A

A \leftarrow A \cup \{\{u, v\}\}

return A
```

How to find safe edges?

Let $S \subseteq V$ and $A \subseteq E$

A **cut** (S, V - S) is a partition of vertices into disjoint sets S and V - S Edge $\{u, v\} \in E$ **crosses** cut (S, V - S) if one endpoint is in S and another endpoint is in V - S

A cut **respects** A if no edge in A crosses the cut

An edge is a **light edge** crossing a cut if and only if its weight is minimum over all edges crossing the cut

Main theorem

```
Suppose A is a subset of some MST (S, V - S) is a cut that respects A \{u, v\} is a light edge crossing (S, V - S) Then \{u, v\} is safe for A
```


In Generic — MST

- A is a forest containing connected components. Initially each component is a single vertex.
- Any safe edge merges two of these components into one. Each component is a tree.
- Since an MST has exactly |V|-1 edges, the for loop iterates |V|-1 times.

Kruskal's algorithm

- Start with each vertex being in its own component
- Repeatedly merge two components by choosing a light edge between them
- Scan the set of edges in monotonically non-decreasing order by weight
- Use disjoint-set data structure to determine whether an edge connects vertices in different components (see CLRS 21)

```
Kruskal(G = (V, E), w)
  A \leftarrow \emptyset
  for v \in V
     MakeSet(v)
  sort E in non-decreasing order by weight
  for \{u, v\} taken from the sorted list
     if FindSet(u) \neq FindSet(v)
       A \leftarrow A \cup \{\{u, v\}\}
       Union(u, v)
  return A
```

MakeSet(v) for each $v \in V$

 $FindSet(c) \neq FindSet(f)$

 $FindSet(g) \neq FindSet(i)$

Union(g,i)8 8 b d g 10 2 9 9 a e 3 11 12 h C 1 6

 $FindSet(d) \neq FindSet(h)$

 $FindSet(f) \neq FindSet(h)$

Union(f, h)

FindSet(e) = FindSet(d)

Union(d, g)

 $FindSet(b) \neq FindSet(d)$

Union(b,d)

FindSet(b) = FindSet(c)

FindSet(g) = FindSet(h)

$FindSet(a) \neq FindSet(b)$

Union(a, b)

FindSet(h) = FindSet(i)

FindSet(a) = FindSet(c)

$$Kruskal(G = (V, E), w)$$
 $A \leftarrow \emptyset$
 $for \ v \in V$
 $MakeSet(v)$
 $sort \ E$ in non-decreasing order by weight
 $for \ \{u, v\}$ taken from the sorted list
 $if \ FindSet(u) \neq FindSet(v)$
 $A \leftarrow A \cup \{\{u, v\}\}$
 $Union(u, v)$
 $return \ A$

Running time analysis

Initialize A: O(1)

First for loop: |V| MakeSets

Sort |E|: $O(|E| \log |E|)$

Second **for** loop: O(|E|) FindSets

and Unions

Using disjoint-sets datastructure:

$$O((|V| + |E|)\log|V|) + O(|E|\log|E|)$$

Since *G* is connected $|E| \ge |V| - 1$

Since
$$|E| \le |V|^2$$
 we have $\log |E| = O(\log |V|)$

Therefore, overall running time is $O(|E|\log|V|)$

Prim's algorithm

- Build one tree, so A is always a tree
- Starts from an arbitrary "root" r
- At each step, find a light edge crossing $(V_A, V V_A)$, where V_A = vertices that A is incident on. Add this edge to A.

To find a light edge quickly

- Use priority queue Q
- Each element of Q is a vertex in $V-V_A$ with key of v being minimum weight of an edge (u,v) where $u \in V_A$
- Key is ∞ if v is not adjacent to any vertex in V_A
- ExtractMin returns v such that there exists $u \in V_A$ and (u,v) is a light edge
- ullet Edges of A form a rooted tree with root r
- Each vertex knows its parent stored in attribute $v.\pi$

EXERCISE: run this algorithm on the previous example

```
Prim(G = (V, E), w, r)
  O \leftarrow \emptyset
  for u \in V
     u.key \leftarrow \infty
     u.\pi \leftarrow NIL
     Q.insert(u)
  Q.decreaseKey(r, 0) //r.key \leftarrow 0
  while Q.size() > 0
     u \leftarrow Q.extractMin()
     for v \in Adj[u]
        if v \in Q and w(u, v) < v. key
          v.\pi \leftarrow u
          Q.decreaseKey(v, w(u, v))
```

Depends on priority queue implementation Using binary heap: Initialize Q and first for loop $O(|V|\log|V|)$ Decrease key of *r* $O(\log|V|)$ while loop |V| extractMin calls $O(|V|\log|V|)$ $\leq |E|$ decreaseKey calls $O(|E|\log|V|)$ Overall $O(|E| \log |V|)$ Possible to improve to $O(|V|\log|V|+|E|)$

Shortest paths

- Edge-weighted graph $G = (V, E), w : E \to \mathbb{R}$
- Weight of path $p=\langle v_0,v_1,\dots,v_k\rangle$ is $w(p)=\sum_{i=1}^k w(v_{i-1},v_i)=\text{sum of edge weights on }p$
- Shortest-path weight u to v:

$$\delta(u,v) = \begin{cases} \min\left(w(p) : u \xrightarrow{p} v\right) & \text{if there is a path from } u \text{ to } v \\ \infty & \text{otherwise} \end{cases}$$

 Can think of weights as representing any measure that accumulates linearly along a path and we wish to minimize it

Variants of shortest paths problems

• Single-source

• Find shortest paths from a given source vertex $s \in V$ to every vertex $v \in V$

Single-destination

Find shortest paths to a given destination vertex

Single-pair

• Find shortest path from u to v. Not known how to do it faster than single-source.

All-pairs

• Find shortest path from u to v for all $u, v \in V$.

Negative-weight edges

Some algorithms will not work when negative-weight edges are present

Other algorithms will work with negative-weight edges so long as there are no negative-weight cycles reachable from the source

If we have a negative-weight cycle, we can just keep going around it, and get $\delta(s, v) = -\infty$ for all v on the cycle

Some algorithms allow one to detect presence of negative-weight cycles

Some properties of shortest paths

Optimal substructure property

Any subpath of a shortest path is a shortest path itself

No cycles property

Shortest paths do not contain cycles without loss of generality

Triangle inequality

For all
$$(u, v) \in E$$
 we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$

Single-source shortest paths (CLRS 24)

Input: $G = (V, E), w : E \to \mathbb{R}$

source vertex $s \in V$

Output: for each vertex v populate attribute v. $d = \delta(s, v)$

for each vertex v populate attribute v. π = predecessor of v on shortest path from s

Generic algorithm

- Initially set $v.d \leftarrow \infty$
- As an algorithm progresses, v.d reduces but satisfies $v.d \ge \delta(s,v)$
- Call v.d a shortest path estimate
- Initially set $v.\pi \leftarrow NIL$
- The predecessor graph $\{(v, \pi, v)\}$ forms a tree called **shortest-path tree**
- Shortest path estimate is improved by relaxing an edge

Generic algorithm

- All single-source shortest paths algorithms we consider
 - Start by calling *InitSingleSource*
 - Then relax edges
- Algorithms differ in the order and number of times edges are relaxed
- Upper bound property
 - Always have $v.d \ge \delta(s,v)$ for all $v \in V$
- Path relaxation property
 - If $p=\langle v_0,v_1,\ldots,v_k\rangle$ is a shortest path from $v_0=s$ to $v=v_k$. If we relax edges in order $(v_0,v_1),(v_1,v_2),\ldots,(v_{k-1},v_k)$ even intermixed with other relaxations then we get $v.d=\delta(s,v)$

Dijkstra's algorithm

- Solves single-source shortest-paths problem
- Assume input graph has no negative-weight edges
- Essentially a weighted version of BFS
 - Instead of regular queue, use a priority queue
 - Keys are shortest-path weights v.d
- Have two sets of vertices
 - S = vertices whose final shortest-path weights have been determined
 - Q = priority queue = V S

```
Dijkstra(G = (V, E), w, s)
  InitSingleSource(G, s)
  S \leftarrow \emptyset
  for u \in V
    Q.insert(u)
  while Q.size() > 0
    u \leftarrow Q.extractMin()
    S \leftarrow S \cup \{u\}
    for v \in Adj[u]
       Relax(u, v, w)
       if v.d changed
         Q.decreaseKey(v, v.d)
```

$$S = \emptyset$$
$$Q = \langle s, x, y, z \rangle$$

In it Single Source

$$S = \{s\}$$
$$Q = \langle x, y, z \rangle$$

Process s

$$S = \{s\}$$
$$Q = \langle x, y, z \rangle$$

Process s Relax(s, y, w)

$$x. \pi = NIL$$

$$x. d = \infty$$

$$10$$

$$x. \pi = NIL$$

$$s. d = 0$$

$$y. \pi = s$$

$$y. \pi = s$$

$$y. d = 5$$

$$S = \{s\}$$
$$Q = \langle y, x, z \rangle$$

Process s Relax(s, x, w)

$$S = \{s, y\}$$
$$Q = \langle x, z \rangle$$

Process *y*

$$S = \{s, y\}$$
$$Q = \langle z, x \rangle$$

Process y Relax(y, z, w)

$$S = \{s, y\}$$

$$Q = \langle z, x \rangle$$

Process y Relax(y, x, w)

$$S = \{s, y, z\}$$
$$Q = \langle x \rangle$$

Process z

$$S = \{s, y, z\}$$
$$Q = \langle x \rangle$$

Process z Relax(z, x, w)

$$x. \pi = z$$

$$x. d = 8$$

$$s. \pi = NIL$$

$$s. d = 0$$

$$y. \pi = s$$

$$y. d = 5$$

$$y. d = 5$$

$$S = \{s, y, z, x\}$$
$$Q = \emptyset$$

Process x

$$x. \pi = z$$

$$x. d = 8$$

$$s. \pi = NIL$$

$$s. d = 0$$

$$y. \pi = s$$

$$y. \pi = s$$

$$y. d = 5$$

$$S = \{s, y, z, x\}$$
$$Q = \emptyset$$

Process x Relax(x, y, w)

$$S = \{s, y, z, x\}$$
$$Q = \emptyset$$

Final result with shortest-path tree

Now you should be able to...

- Use the basic graph terminology effectively
- Represent graphs using adjacency matrix and adjacency lists
- Describe BFS/DFS in plain English, pseudocode, explain their properties and running time
- Use BFS/DFS as a subroutine to solve various graph problems
- Take transpose of a graph
- Compute topological sort of a dag
- Compute SCCs of a digraph
- Solve single-source shortest paths problem in weighted directed graphs without negative-weight edges

Review questions

- Write down pseudocode for BFS, DFS, topological sort, SCCs, and Dijkstra without using any external resources
- Analyze correctness and running time of each of the above algorithms
- For each of the above algorithms, decide what algorithmic paradigm it belongs to? Greedy? Divide and conquer? Dynamic programming? Why?