EE360C: Algorithms

Priority Queues

Summer 2019

Department of Electrical and Computer Engineering University of Texas at Austin

Recap

Efficient Algorithms

- Seek algorithms that are quantitatively better than brute force search.
- Seek algorithms that are polynomial time.

Once we find this efficient algorithm, we can further improve runtime by taking care of the implementation details, sometimes through complex data structures.

Motivation

Motivation: Stable Marriage

The stable marriage algorithm needs a data structure that maintains the dynamically changing set of all free men. The algorithm needs to be able to:

- add elements to the set
- · delete elements from the set
- select an element from the set, based on some assigned priority

Priority Queues

A priority queue is a data structure that maintains a set of elements S, where each element $v \in S$ has an associated value $\ker(v)$ that denotes the priority of the element v. Smaller keys represent higher priority.

Operations on a priority queue

- Adding an element.
- Deleting an element.
- Selection of an element with the smallest key.

Example: Schedule Processes on a Computer

- Each process has a priority
- Processes do not arrive in order of priority
- When ready, we want to extract the process with the highest priority or key with lowest value.

Motivation: Sort a List of Numbers

Sort

Sort a set of *n* elements.

Possible Algorithm

- Set up a priority queue H, and insert each value into H with it's value as the key.
- Repeatedly find the smallest number in H, and output it ("find minimum" operation).

- Sort array in O(n) "find minimum" operations.
- Comparison sorting algorithms have O(n log n) running time. If we want to achieve this bound each "find minimum" step must take O(log n) time.

Candidate Data Structures for Priority Queues

The data structure we select must support inserting a new element, finding the minimum element, and deleting the minimum element.

- List: Insertion and deletion take O(1) time, but finding the minimum requires scanning the list and takes Ω(n) time
- Sorted array: Finding the minimum takes O(1) time, but locating where to insert or delete element from would take $O(\log n)$, and then inserting/deleting would take O(n) (move all elements).

None of these data structures give us "priority queue" operations of order $O(\log n)$

Properties of Priority Queue

- Store a set S of elements, where each element v has a priority value key(v)
- Smaller key values denote higher priorities
- Operations supported:
 - · find the element with the smallest key
 - · remove the element with the smallest key
 - insert a new element
 - delete an element
- We would like to do these operations in $O(\log n)$.

Heaps

Heaps

- · Combine the benefits of both lists and sorted arrays
- Conceptually, a heap is a balanced binary tree
- The tree has a root, and each node can have up to two children.
- Heap order: For every element v at node i, the element w at i's parent satisfies $key(w) \le key(v)$

A Heap Example

Heaps (contd.)

- We can implement a heap in a pointer-based data structure
- Alternatively, assume a maximum number N of elements is known in advance
- Store nodes of the heap in an array
 - Node at index i has children at indices 2i and 2i + 1 and parent at index [i/2]
 - Index 1 is the root
 - How do you know that a node at index i is a leaf? If 2i > N, the number of elements in the heap.

Inserting an Element: Heapify-up

1. Heap H has n < N elements

Algorithmelenest apage 165 setting H[i] = v.

- 3. This may break the heap-order.
- 4. Fix the heap order using Heapify-up(H, n + 1).

```
Heapify-up(H,i):
   If i > 1 then
    let j = \operatorname{parent}(i) = \lfloor i/2 \rfloor
        If key[H[i]] < key[H[j]] then
        swap the array entries H[i] and H[j]
        Heapify-up(H,j)
        Endif
Endif</pre>
```

Heapify-Up **Example**

Correctness of Heapify-Up

- H is almost a heap with key of H[i] too small if there is a value $\alpha \ge \ker(H[i])$ such that increasing $\ker(H[i])$ to α makes H a heap
- Claim: The procedure $\operatorname{Heapify-Up}(H,i)$ fixes the heap property in $O(\log i)$ time, assuming that the array H is almost a heap with the key of H[i] too small.
- Corollary: Using Heapify-Up we can insert a new element in a heap of n elements in O(log n) time. (Why?)

Correctness of Heapify-Up

Claim: The procedure Heapify-Up(H, i) fixes the heap property in $O(\log i)$ time, assuming that the array H is almost a heap with the key of H[i] too small.

Proof: Prove by induction on *i*.

- Base case: i = 1. H[1] is the root, so if it's too small, then H is already a heap.
- Inductive Hypothesis: Heapify-Up(H,j), where $j=\lfloor\frac{i}{2}\rfloor$ fixes the heap property in $O(\log j)$ time, assuming that the array H is almost a heap with the key of H[j] too small.
- Inductive step: H is almost a heap with key of H[i] too small. Let $j = parent(i) = \lfloor \frac{i}{2} \rfloor$ and β be its key. Swapping the elements at H[i] and H[j] takes O(1) time, and now $H[i] = \beta$. After the swap, H is a heap or almost a heap with the key of H[j] too small, since setting its key to β would make H a heap. Finally, by the inductive hypothesis, the recursive call to Heapify-Up(H,j) fixes the heap property.

Correctness of Heapify-Up (contd.)

Cost of Heapify-Up
$$(H, i)$$

$$= \log j + 1$$

$$= \log(\lfloor \frac{i}{2} \rfloor) + \log 2$$

$$= \log(2\lfloor \frac{i}{2} \rfloor)$$

$$= \log j$$

Deleting an Element: Heapify-down

Suppose H has n+1 elements

- 1. Delete element at H[i] by moving element at H[n+1] to H[i]
- 2. If element at H[i] is too small, fix heap order using Heapify-up(H, i)
- 3. If element at H[i] is too large, fix heap order using Heapify-down(H, i)

```
Heapify-down(H,i):
 Let n = length(H)
 If 2i > n then
    Terminate with H unchanged
 Else if 2i < n then
    Let left = 2i, and right = 2i + 1
    Let j be the index that minimizes key [H[left]] and key [H[right]]
 Else if 2i = n then
   Let j = 2i
 Endif
 If key[H[i]] < key[H[i]] then
     swap the array entries H[i] and H[j]
                                                                         17/27
     Heapify-down(H, j)
```

Heapify-down Example

Heapify-down Correctness

- H is almost a heap with key of H[i] too big if there is a value $\alpha \le \ker(H[i])$ s.t. decreasing $\ker(H[i])$ to α makes H a heap
- Claim: The procedure Heapify-Down(H, i) fixes the heap property in O(log i) time, assuming that the array H is almost a heap with the key of H[i] too big.
- Corollary: Using Heapify-Down we can delete an element from a heap of n elements in $O(\log n)$ time.

Heapify-down Correctness

The procedure Heapify-Down(H, i) fixes the heap property in $O(\log n)$ time, assuming that the array H is almost a heap with the key of H[i] too big. **Proof:** Proof by reverse induction on i. Suppose H has n elements.

- Base case: 2i > n. Then i is a leaf, hence H is a heap.
- Inductive step: Let j be the child of i with smaller key value and denote its key value β. Swapping the elements at H[i] and H[j] takes O(1) time. The resulting array is a heap or almost a heap with H[j] too big, since setting its key to β makes it a heap. Since j ≥ 2i, by the inductive hypothesis, the recursive call to Heapify-Down fixes the heap property.

In Class Exercise 1

Problem

Naively, we can build a heap out of an arbitrary array using successive calls to HEAPIFY-DOWN, starting at element [length[H]/2] and going down to 1. If each call to HEAPIFY-DOWN takes $O(\log n)$ time and we have O(n/2) such calls, we can build a heap in $O(n \log n)$ time. Prove that this process is actually faster than $O(n \log n)$ (i.e., provide a *tighter* bound on the process's running time). Starters:

- What is the height of an n-element heap?
- How many nodes are there at height h of an n-element heap?

In Class Exercise 1: continued

What is the height of an *n*-element heap?

 $O(\log n)$ (it's a (nearly) complete binary tree).

In Class Exercise 1: continued

How many nodes are there at height *h* of an *n*-element heap?

Key Observation

The number of leaves in a complete binary tree is $\lceil n/2 \rceil$.

Proposition

In an *n*-element heap, there are $\lceil n/2^{h+1} \rceil$ nodes at height *h*.

Proof (by induction on *h***)**

Base case: h = 0 (the leaves). This is trivially true from the observation above.

Inductive step: Suppose that the claim is true for h-1. Let N_h be the number of nodes at height h in an n-node tree T. Consider T' formed by removing the leaves of T. T' has $n' = n - \lceil n/2 \rceil = \lfloor n/2 \rfloor$ nodes. Nodes at height h in T are at height h-1 in T' (because T' is missing the bottom level of T). Let N'_{h-1} denote the number of nodes at height h-1 in T'. $N_h = N'_{h-1} = \lceil n'/2^h \rceil = \lceil |n/2|/2^h \rceil < \lceil (n/2)/2^h \rceil = \lceil n/2^{h+1} \rceil$.

In Class Exercise 1: continued

Problem

Naively, we can build a heap out of an arbitrary array using successive calls to HEAPIFY-DOWN, starting at element $\lfloor \operatorname{length}[H]/2 \rfloor$ and going down to 1. If each call to HEAPIFY-DOWN takes $O(\log n)$ time and we have O(n/2) such calls, we can build a heap in $O(n \log n)$ time. Prove that this process is actually faster than $O(n \log n)$ (i.e., provide a *tighter* bound on the process's running time). Starters:

- What is the height of an n-element heap? $O(\log n)$
- How many nodes are there at height h of an n-element heap? \[n/2^{h+1} \]

In Class Exercise 1: Solution

Problem

Naively, we can build a heap out of an arbitrary array using successive calls to HEAPIFY-DOWN, starting at element $\lfloor \operatorname{length}[H]/2 \rfloor$ and going down to 1. If each call to HEAPIFY-DOWN takes $O(\log n)$ time and we have O(n/2) such calls, we can build a heap in $O(n \log n)$ time. Prove that this process is actually faster than $O(n \log n)$ (i.e., provide a *tighter* bound on the process's running time).

Solution

The time required by HEAPIFY-DOWN, when called on a node at height h is O(h). The total cost of building a heap is bounded above by:

$$\sum_{h=0}^{\lfloor \log n \rfloor} \lceil \frac{n}{2^{h+1}} \rceil O(h) = O(n \sum_{h=1}^{\lfloor \log n \rfloor} \frac{h}{2^h}) = O(n)$$

The last step is because (looking up the summation):

$$\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2$$

HeapSort

Sorting with a Priority Queue

Sort

Instance: Nonempty list $x_1, x_2, ..., x_n$ of integers

Solution: A permutation y_1, y_2, \dots, y_n of x_1, x_2, \dots, x_n such

that $y_i \leq y_{i+1}$ for all $1 \leq i < n$

Final Algorithm

- Insert each number in a priority queue H
- Repeatedly find the smallest number in H, output it, and delete it from H

Each insertion and deletion takes $O(\log n)$ time for a total running time of $O(n \log n)$

In Class Exercise 2

Problem

One of your classmates claims that he built an alternative data structure (other than a heap) for representing a priority queue. He claims that, using his new data structure, INSERT, MAX, and EXTRACTMAX all take constant (O(1)) time in the worst case. Give a very simple proof that he is mistaken.

Solution

If this were true, we could comparison sort in O(n) time. But we've already proven that this is not possible.

Questions