Lecture 39

Cluster Analysis

STAT 8020 Statistical Methods II December 4, 2019

> Whitney Huang Clemson University

Notes

Agenda

- **1** An Overview of Cluster Analysis
- 2 The K-Means Algorithm
- 3 Hierarchical Clustering
- Model-based clustering

Notes			

What is Cluster Analysis?

- Cluster: a collection of data objects
 - "Similar" to one another within the same cluster
 - "Dissimilar" to the objects in other clusters
- Cluster analysis: Grouping a set of data objects into clusters
- Clustering is unsupervised classification, unlike classification, there is no predefined classes, and the number of clusters is usually unknown

E R S I T Y	Notes		
erview of r Analysis			

39.3

Some Examples of Clustering Applications

- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Land use: Identification of areas of similar land use in an earth observation database
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults

Notes			

What Is Good Clustering?

- A good clustering method will produce clusters with
 - high within-class similarity
 - low between-class similarity
- The quality of a clustering result depends on both the similarity measure used and its implementation
- The performance of a clustering method is measured by its ability to discover the hidden patterns

Notes

	-
	Ī

Major Clustering Approaches

- Partitioning algorithm: partition the observations into a pre-specified number of clusters, for example, k-means clustering
- Hierarchy algorithm: Construct a hierarchical decomposition of the observations to build a hierarchy of clusters, for example, hierarchical agglomerative clustering
- Model-based Clustering: A model is hypothesized for each of the clusters, for example, Gaussian mixture models

Cluster Analysis	
An Overview of Cluster Analysis	

Notes				

Partitioning Algorithm

Let C_1,\cdots,C_K denote sets containing the indices of the observations $\{\pmb{x}_i\}_{i=1}^n$ in each cluster. These sets satisfy two properties:

- $C_1 \cup C_2 \cup \cdots \cup C_K = \{1,\cdots,n\} \Rightarrow$ each observation belongs to at least one of the K clusters
- $C_k \cap C_{k'} = \varnothing \ \forall \ k \neq k' \Rightarrow$ no observation belongs to more than one cluster

For instance, if the i_{th} observation (i.e. \mathbf{x}_i) is in the k_{th} cluster, then $i \in C_k$

Notes			

The k-Means Algorithm

- ullet Step 0: Choose the number of clusters K
- Step 1: Randomly assign a cluster (from 1 to K), to each of the observations. These serve as the initial cluster assignments
- Step 2: Iterate until the cluster assignment stop changing
 - For each of the K cluster, compute the cluster centroid. The k_{th} cluster centroid is the mean vector of the observations in the k_{th} cluster
 - Assign each observations to the cluster whose centroid is closest in terms of Euclidean distance

Notes			

k-Means Clustering Illustration

Note	es			

K-Means Clustering in R

Cluster Analysis
The K-Means Algorithm
39.10

Notes			

Hierarchical Clustering

- k-means clustering requires us to pre-specify the number of clusters K
- Hierarchical clustering is an alternative approach which does not require that we commit to a particular choice of K
- Agglomerative clustering: This is a "bottom-up" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy

Notes				

Hierarchical Agglomerative Clustering Illustration

Cluster Analysis
CLEMS N
Hierarchical Clustering
Model-based clustering

Notes			

Hierarchical Agglomerative Clustering Illustration

Notes		

Hierarchical Agglomerative Clustering Illustration

Notes				

Hierarchical Agglomerative Clustering Illustration

Notes			

Hierarchical Agglomerative Clustering Illustration

Notes			

Hierarchical Agglomerative Clustering Algorithm

- Start with each observation in its own cluster
- Identify the closest two clusters and merge them
- Repeat
- Ends when all observations are in a single cluster

Cluster Analysis
CLEMS N
Hierarchical Clustering

Notes			

Hierarchical Agglomerative Clustering in R

hc.faithful <- hclust(dist(faithful_sample))
plot(hc.faithful)</pre>

Cluster Analysis
CLEMS N
Hierarchical Clustering

Notes			

Model-based clustering

- One disadvantage of hierarchical clustering and k-means is that they are largely heuristic and not based on formal statistical models. Formal inference is not possible
- Model-based clustering is an alternative:
 - Sample observations arise from a mixture distribution of two or more components
 - Each component (cluster) is described by a probability distribution and has an associated probability in the mixture.
 - In Gaussian mixture models, we assume each cluster follows a multivariate normal distribution
 - Therefore, in Gaussian mixture models, the model for clustering is a mixture of multivariate normal distributions

Notes			

Fitting a Gaussian Mixture Model in R

Notes			

Fitting a Gaussian Mixture Model in R Cond't

Cluster Analysis
CLEMS ® N
Model-based clustering
39.21

Notes				

Model-Based Clustering Analysis for Iris Data

Notes	
Notes	
Notes	