

抢佛 预 ② 上节课重要内容回顾

两直线位置关系

一般式 Ax + By + C = 0 (A, B不同时为零) 斜截式 y = kx + b

关系	交点个数	联立方程	斜率关系	系数关系
相交	1个	有唯一解,即交 点坐标(x_0, y_0).	$k_1 \neq k_2$ 垂直时 $k_1 \times k_2 = -1$	$A_1B_2 \neq A_2B_1$ 垂直时 $A_1A_2 + B_1B_2 = 0$
平行	无	无解	$k_1 = k_2$	$A_1B_2 = A_2B_1$ $B_1C_2 \neq B_2C_1$
重合	2个以上	有无数解	$k_1 = k_2$	$A_1 B_2 = A_2 B_1$ $B_1 C_2 = B_2 C_1$

後傷胸類 上节课重要内容回顾

【标志词汇】 两条直线垂直 直线斜率关系 $k_1 \times k_2 = -1$

系数关系 $A_1A_2 + B_1B_2 = 0$

【标志词汇】 两条直线平行 直线斜率关系 $k_1 = k_2$, $b_1 \neq b_2$

或系数关系 $\frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2}$

【说明】一般而言,若题目给出点斜式或斜截式方程,则用斜率关系求解; 若给出一般方程,则用系数关系求解.

抱佛 预 ② 上节课重要内容回顾

• • • • •	
公式	描述
线段中点坐标	已知 $P_1(x_1,y_1)$ 与 $P_2(x_2,y_2)$,线段 P_1P_2 的中点坐标为 $\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$
两点间距离	$P_1(x_1, y_1)$ 与 $P_2(x_2, y_2)$ 两点间距离为 $P_1P_2 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
两点斜率公式	当 $x_1 \neq x_2$ 时,过 $P_1(x_1,y_1)$ 和 $P_2(x_2,y_2)$ 两点的直线的斜率 $k = \frac{y_2 - y_1}{x_2 - x_1}$
	当 $x_1 = x_2$ 时,过 $P_1(x_1, y_1)$ 和 $P_2(x_2, y_2)$ 两点的直线的斜率不存在
点到直线距离	点 $P(x_0, y_0)$ 到直线 $Ax + By + C = 0$ 的距离为 $d = \frac{ Ax_0 + By_0 + C }{\sqrt{A^2 + B^2}}$
平行直线间距离	$Ax + By + C_1 = 0$ 与 $Ax + By + C_2 = 0$ 间距离为 $d = \frac{ C_1 - C_2 }{\sqrt{A^2 + B^2}}$

抢(橡) 预 ② 上节课重要内容回顾

二次多项式配平方 将一个二次多项式化为一个一次多项式的平方与一个常数的和.

【标志词汇】 $<u>—</u>元二次方程有实根 <math>\Leftrightarrow \Delta \geq 0$.

- 一元二次方程有两个**相等**的实根 \leftrightarrow Δ = 0.
- 一元二次方程有两个**不相等**的实根⇔ $\Delta > 0$.
- 一元二次方程无实根⇔ Δ < 0.
- 一元二次方程要么没有实数根,要么就有两个实数根.

【标志词汇】给定一个数是方程的一个根⇒给定一个此数满足的等式.

抢傷脚 预习 上节课重要内容回顾

 $x_1 + x_2 = -\frac{b}{a} \qquad x_1 \cdot x_2 = \frac{c}{a}$ 根与系数关系 (韦达定理)

【标志词汇】给定两个数是二次方程的两根⇒①韦达定理②两根式设出方程.

【标志词汇】x关于一元二次方程两根的算式 \Rightarrow 凑配为由 $x_1 + x_2$ 和 x_1x_2 表达的算式,再代入韦达定理

【标志词汇】 —元二次方程①已知系数求两根:②已知两根求系数 ⇒ 韦达定理.

抢佛的预见 上节课重要内容回顾

 $\Delta > 0$

 $\Delta < 0$

二次多项式 可因式分解为 $ax^{2} + bx + c \qquad a(x - x_{1})(x - x_{2}) \qquad a\left(x + \frac{b}{2a}\right)^{2}$

 $\Delta = 0$ 可因式分解为

不可因式分解

二次方程

 $ax^2 + bx + c = 0 \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

两相异实根

两相同实根

二次函数(a > 0) $y = ax^2 + bx + c$

二次函数交点式 $y = a(x - x_1)(x - x_2)$

抢佛狗 ② 上节课重要内容回顾

常用数学表达

两数异号 (一正一负) $m \cdot n < 0$

两数异号,且负数绝对值大于正数 $\begin{cases} m \cdot n < 0 \\ m + n < 0 \end{cases}$

两数异号,且负数绝对值小于正数 $\begin{cases} m \cdot n < 0 \\ m + n > 0 \end{cases}$

两数互为相反数 m+n=0 两数异号,且负数绝对值等于正数

两数同号 $m \cdot n > 0$

两数同为正 $\begin{cases} m \cdot n > 0 \\ m + n > 0 \end{cases}$ 两数同为负 $\begin{cases} m \cdot n > 0 \\ m + n < 0 \end{cases}$

两数均不为零 $m \cdot n \neq 0$

两数至少有一个为零 $m \cdot n = 0$

抢(橡) 预 ② 上节课重要内容回顾

【标志词汇】 $<u>一元二次方程有一正一负两个根⇔<math>\alpha$ 与c异号</u> 两根在<u>不同区间</u>内,无需验证 Δ

【标志词汇】两正根 $\Leftrightarrow \Delta \geq 0$, a与c同号, a与b异号

两根在<u>同一区间</u>内,首先验证4.

【标志词汇】两负根 $\Leftrightarrow \Delta \geq 0$,且a,b,c同号

抢(橡) 预 ② 本节课重要内容

一个不等式 不等式两边同增同减,不等号方向不变 若a > b,则 $a \pm c > b \pm c$

不等式a > b两边同时乘以同一个数c时:

$$c=0$$
 不可以乘

$$c > 0$$
 $ac > bc$ $\frac{a}{c} > \frac{b}{c}$ 不等号方向不变

$$c < 0$$
 $ac < bc$ $\frac{a}{c} < \frac{b}{c}$ 不等号方向改变

後傷胸後② 本节课重要内容

【两不等式间】可加不可减,相加要同向

即两不等式间有且仅有: a > b, c > d, 那么a + c > b + d

後佛教 本节课重要内容							
二次方程的根⇔抛物线与x轴的交点⇔不等式解集的区间端点 大于取两边,小于取中间							
一元二次方程 的根	一元二次函数图像与x轴交点	不等式 $ax^2 + bx + c > 0$ 解集	< 0 解集				
Δ > 0 方程有两不同 实根	y↑	$x < x_1 \preceq x > x_2$	$x_1 < x < x_2$				
$\Delta = 0$ 方程有两相同 实根 $x_1 = x_2 - \frac{b}{2a}$	か が が が が が が が が が が が が が	$x \neq -\frac{b}{2a}$	无解				
△<0 方程无实根	y↑	$(-\infty, +\infty)$	无解				

抢停脚预2 本节课重要内容

• 0 0 0 0

步骤

- ①a变正、标准化
- ②求根:求对应二次方程的根.
- ③写解集:

不等号为">"的,解集取两根之外不等号为"<"的,解集取两根之间 (针对变形后的不等式)