Lógica de Programação: notas de aula

Prof. Jonatha Costa

2025

Organização

- 1 Blocos de programação C
 - Funções Programação em blocos
 - Conceitos distintos de programação
- 2 Exercícios
- 3 Questões propostas

Objetivo da aula

• Estudar a construção de funções para utilização dentro do código principal e utilização de bibliotecas criadas pelo usuário.

Script

Quais elementos de programação estão presentes no script?

Exemplo

```
#include<stdio.h> // biblioteca
int main() // Função principal
{ printf("Oi!"); // comando da biblioteca
}
```

- É possível criar bibliotecas e comandos(rotinas) próprias?
- Como criar uma função?
- Como criar uma biblioteca?

Organização

1 Blocos de programação - C

$Funç\tilde{o}es$

Programação em blocos Conceitos distintos de programação

- 2 Exercícios
- 3 Questões propostas

Sintaxe

```
tipo_saída nome_da_funcao (tipo_entrada var_entrada)
{
<comandos>;
```

Exemplo

```
int soma(int var1, int var2)
{
int res;
res = var1 + var2;
return res;
}
```

No arquivo principal, essa função pode ser definida e declarada em bloco único, ao início de código seguindo a estrutura:

- Declaração e definição da função;
- 2 Código main.

Ou ainda, essa função pode ser definida ao início de código, antes do main(), seguido-se da definição da função:

- Declaração da função;
- 2 Código main;
- 3 Definição da função.

Funções: declaração e definição juntos

Exemplo de função no próprio código

```
#include<stdio.h>
int soma(int v1,int v2) // Declarando e definindo a função
\{ int res=v1+v2; 
return res:
                            // Programa principal
int main()
      int res, a, b;
printf("Digite um numero a:");
scanf("%d", &a);
printf("Digite um numero b:");
\operatorname{scanf}(\text{"%d"}, \&b);
res=soma(a, b); // Chamando a função
printf("Soma = \%d", res);
```

Funções em modo declaração e definição geminados

Perceba que, neste modo, o *script* contém uma função declarada e já definida no topo de código, e que a função é evocada depois pelo código principal.

Estrutura:

- 1 Declaração e definição da função;
- 2 Código main.

Funções: declaração e definição separados

```
Exemplo de função no próprio código
#include<stdio.h>
int soma(int v1,int v2) // Declarando a função
int main()
                           // Programa principal
     int res, a, b;
printf("Digite um numero a:");
scanf("%d", &a);
printf("Digite um numero b:");
\operatorname{scanf}(\text{"}%d", \&b);
res=soma(a, b); // Chamando a função
printf("Soma = \%d", res);
int soma(int v1,int v2) // Definindo a função
\{ \text{ int res}=v1+v2; 
return res:
```

Funções em modo declaração e definição separados

Perceba que, neste outro modo, o script contém uma função declarada no topo de código, antes do main(), seguindose, então a definição da função correspondente à declaração.

Estrutura:

- Declaração da função;
- Código main;
- Definição da função.

Estruturas antes ou depois

Note que:

- Fluxo do compilador: Em linguagens como C, o compilador lê o código de cima para baixo. Se o programador utilizar uma função antes de defini-la, o compilador retornará um erro por não saber o que fazer com essa função.
- Pré-declaração: A declaração antes do "main" diz ao compilador o que ele precisa saber sobre a função, para que ela possa ser utilizada antes da definição completa.
- Código mais organizado: Colocar a declaração da função no início permite que o programador mantenha a função main na parte superior do código, tornando-a mais fácil de encontrar e ler. A declaração também torna o código mais modular, visto que o programador pode definir funções em qualquer lugar, desde que o compilador saiba de sua existência.

Organização

1 Blocos de programação - C

Funções

Programação em blocos

Conceitos distintos de programação

- 2 Exercícios
- 3 Questões propostas

Blocos

- As funções podem ser definidas num arquivo biblioteca. Desse modo, o programador pode evocar, no programa **main**, as funções por ele definidas;
- Faz-se necessário, entretanto:

Configurar os arquivos de blocos

- 1 Criar o arquivo ".c" (ScriptDesejado.c) contendo o script desejado;
- 2 Criar um arquivo de biblioteca com a extensão 'h' (biblioteca.h) contendo o nome do arquivo ".c";
- 3 Incluir no cabeçalho do programa *main* o arquivo **biblioteca.h** e evocar, no *main.c*, o programa (ou função) declarado(a) na biblioteca.

Esse método é usado para particionar um programa grande em blocos menores a fim de melhorar o controle das partes e interações.

Programa em blocos

```
"Biblioteca.h"
    Aula6Ex1();
                        Script desejado.c
                        void Aula6Ex1()
"main.c"
#include<stdio.h>
                        printf("\n*************);
#include
                        printf("Programando em blocos!");
"Biblioteca.h"
                        printf("\n*************");
main()
     Aula6Ex1();
```

Programa em blocos - Exemplo 2

```
"calc.h"
                                                  calc.c
int soma(int v1, int v2);
                                                  int soma(int v1,int v2)
                                                  \{ \text{ return } v1+v2; 
int subtracao (int v1, int v2);
int divisao (int v1, int v2);
int multiplicacao (int v1, int v2);
                                                  int subtracao(int v1,int v2)
"main.c"
                                                  { return v1-v2;
#include<stdio.h>
#include "calc.h"
int main()
                                                  int multiplicacao(int v1,int v2)
    int res:
                                                  { return v1*v2;
int v1 = 2, v2 = 3;
res = soma(v1, v2);
printf("A soma (v1 + v2) vale \%d.",res);
                                                  int divisao(int v1,int v2)
                                                  \{ \text{ return } v1/v2;
```

Programa em blocos

Figura: Exemplo de programação em blocos utilizando o Code Blocks® IDE

Programa em blocos

Figura: Exemplo de programação em blocos utilizando o onlinegdb[®] IDE

```
▶ Run O Debug
                                                                          Language C
main.c
  1 - /*
  2 Lógica de programação
  3 Prof. Jonatha Costa
    Exercício resolvido: sobre blocos de programação em arquivos diferentes.
     */
    #include <stdio.h>
    #include "calc.h"
    int main()
 10 - {
    int res, v1 = 2, v2 = 3;
 12 \text{ res} = \text{soma}(v1, v2);
 13 printf("A soma (v1 + v2) vale %d.", res);
 14 }
```

Organização

1 Blocos de programação - C

Funções

Programação em blocos

Conceitos distintos de programação

- 2 Exercícios
- 3 Questões propostas

Script com conceitos distintos

Um mesmo código pode ser produzido com conceitos diferentes.

- **1** Rotina dentro do programa principal e no mesmo arquivo (main.c);
- 2 Rotina fora do programa principal, mas contida no mesmo arquivo (main.c);
- Rotina fora do programa principal (main.c), mantendo apenas o cabeçalho no arquivo (main.c);
- **1** Rotina fora do programa principal (main.c); cabeçalho e rotina em arquivos distintos, respectivamente (rotina.h) e (rotina.c);

Observe com atenção os conceitos e estrutras de cada script e apresente as vantagens e desvantagens de cada um.

Figura: Rotina contida no arquivo principal e na função main()

```
Lógica de programação
       Prof. Jonatha Costa
       Exercício resolvido: Ler 10 numeros
       #include<stdio.h>
       int main()
          int tam_vet=10;
 9
          int num[tam_vet];
10
          for (int i=0;i<tam_vet;i++)</pre>
11
12
          printf("Informe um número (%d / %d): ",i,tam_vet);
13
          scanf("%d",&num[i]);
14
15
16
17
```

Script 02

Figura: Rotina contida no arquivo principal, porém fora da função main()

```
Lógica de programação
       Prof. Jonatha Costa
       Exercício resolvido: Ler 10 numeros
       #include<stdio.h>
 8
       void CarregarVetor(int num[],int tam_vet)
       for (int i=0;i<tam_vet;i++)</pre>
10
          {printf("Informe um número (%d / %d): ",i,tam_vet);
11
12
           scanf("%d",&num[i]);}
13
14
15
       int main()
          int tam_vet=10;
16
17
          int num[tam_vet];
18
          CarregarVetor(num,tam_vet);
19
20
```

(b) Arquivo RotCarVetor. C

13

14 15

(a) Arquivo main.c

CarregarVetor(num,tam vet);

main.c CarregarVetorO.c main.c CarregarVetor0.c // Rotina de carregar vetor #include<stdio.h> 2 Lógica de programação void CarregarVetor(int num[],int tam_vet) Prof. Jonatha Costa 4 Exercício resolvido: Ler 10 numeros 5 for (int i=0;i<tam vet;i++)</pre> 5 {printf("Informe um número (%d / %d): ",i,tam_vet) 6 #include<stdio.h> scanf("%d",&num[i]); // Declaração de cabeçalho 8 void CarregarVetor(int num[],int tam_vet); 9 8 10 9 // Programa principal 11 10 int main() 11 int tam vet=10; 12 int num[tam_vet];

Figura: Rotina fora do arquivo principal e da função main()

(a) Arquivo main.c

(b) Arquivo RotCarVetor. C

(c) Arquivo RotCarVetor.h

```
main.c ® RotCarVetor.c ® RotCarVetor.h ®

1  // Declaração de cabeçalho
2  void CarregarVetor(int num[],int tam_vet);
3
```

Figura: Rotina fora do arquivo principal e da função main(). Cabeçalhos no arquivo RotVet.h

Considerações finais

Apresente as vantagens e desvantagens de cada conceito de programação contida nos *scripts* acima.

Organização

- Blocos de programação C
- 2 Exercícios
- 3 Questões propostas

Exercícios de Estruturas de controle de fluxo

Faça uso de duas ou três estruturas de controle de fluxo para cada item proposto.

Bloco 01 - Escreva um programa na linguagem C para:

- 1 Ler um número e informar se o número é maior, menor ou igual a 7,0;
- 2 Ler um número e informar se o número par ou ímpar;
- 3 Ler um número e informar se o número é primo ou não;
- 4 Ler um número e informar se o número pertence aos N;

Bloco 02 - Escreva um programa na linguagem C para:

- 1 Ler 5 valores, encontrar o maior, o menor e a média utilizando números reais (float).
- 2 Ler uma letra e verificar se é uma vogal ou não.
- 3 Leia um número entre 0 e 10, e escreva este número por extenso.
- 1 Elabore um código que receba dois números, a e b tal que $0 \le a \le 10$ e $25 \le b \le 100$, identifique e informe os valores ímpares de primos contidos nesse intervalo.

Exercícios de Estruturas de controle de fluxo

Faça uso de duas ou três estruturas de controle de fluxo para cada item proposto.

Bloco 03 - Escreva um programa na linguagem C para calcular e informar:

$$\mathbf{1} \quad z = \sum_{i=1}^{10} x_i$$

$$z = \sum_{i=1}^{i-1} x_i y_i$$

3
$$z = \sum_{i=1}^{10} (\sqrt[i]{x_i^2 + y_i^2})$$

Onde $x = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ e $y = \{10, 9, 8, 7, 6, 5, 4, 3, 2, 1\}$.

Exercícios de Estruturas de controle de fluxo

Faça uso de duas ou três estruturas de controle de fluxo para cada item proposto.

Bloco 04 - Escreva um programa na linguagem C para:

- 1 Ler uma matriz de 3 por 3, exibí-la e verificar se esta é triangular inferior e informar ao usuário.
- 2 Ler e preencher uma matriz de 3 por 3, exibí-la e verificar se esta é triangular inferior, superior ou matriz diagonal e informar ao usuário.
- ${\bf 3}$ Escrever um programa que retorne ao usuário o k-ésimo dígito da parte não inteira de π e o valor de π até o dígito k-ésimo dígito. Assuma que π tem apenas 13 dígitos em sua parte não-inteira que o usuário desconhece isto.

Organização

- Blocos de programação C
- 2 Exercícios
- 3 Questões propostas

Questões propostas aplicadas à engenharia

• Controle de Temperatura de um Forno

Um forno industrial precisa manter a temperatura dentro de uma faixa de 5°C em relação à temperatura desejada. Escreva um programa em C que receba a temperatura desejada e a temperatura atual do forno. O programa deve acionar um alarme se a temperatura atual estiver fora da faixa permitida.

• Monitoramento de Nível de Líquido

Um tanque de líquidos possui sensores que medem o nível atual de um líquido em mililitros. Escreva um programa em C que monitore o nível do tanque e ative uma bomba de escoamento quando o nível do líquido exceder um determinado limite, e desative a bomba quando o nível estiver abaixo do limite.

Aquisição de Dados de um Sensor de Pressão

Você está implementando um sistema de aquisição de dados para monitorar a pressão em um tubo. Escreva um programa em C que leia os valores de um sensor de pressão a cada segundo e calcule a média desses valores a cada minuto.

Questões propostas aplicadas à engenharia

• Sistema de Alarme de Incêndio

Um sistema de alarme de incêndio em um prédio monitora a temperatura e a concentração de fumaça. Escreva um programa em C que ative o alarme se a temperatura ultrapassar 70°C ou se a concentração de fumaça ultrapassar um limite seguro.

• Controle de Nível de Água em uma Caldeira

Um sistema de controle precisa manter o nível de água em uma caldeira entre dois valores limites. Escreva um programa em C que monitore o nível de água e ative a entrada de água se o nível estiver abaixo do mínimo e a desligue se o nível estiver acima do máximo.

• Controle de Iluminação Automática

Em um sistema de iluminação inteligente, a intensidade das luzes deve ser ajustada automaticamente com base na luz ambiente medida por um sensor LDR (Light Dependent Resistor). Escreva um programa em C que ajuste a intensidade da iluminação interna com base na leitura do sensor LDR.

Questões propostas aplicadas à engenharia

• Detecção de Obstáculos em um Veículo Autônomo Um veículo autônomo utiliza sensores de proximidade para evitar colisões. Escreva um programa em C que analise os dados de múltiplos sensores de proximidade e acione uma mudança de direção ou freio se algum obstáculo for detectado a menos de 1 metro do veículo.

Exercícios

• Veja material auxiliar e lista de códigos em: https://github.com/jonathacosta/PL