Task

${\bf Miracle EEEE}$

December 11, 2017

Contents

1		点补全																					1
	1.1	_	0/7]																				
		1.1.1																					
		1.1.2	TODO																				
		1.1.3	TODO																				2
			TODO																				
			TODO																				
		1.1.6	TODO																				
		1.1.7	TODO	数据	结构	[0/4]	•			 ٠			 	•	 •	 •		•	•	 •	•	 	4
2	鑵斯	计划																					4
4	2.1	题目沒	S ALM																				
	2.1	,	NOIP																				
	2.2																						
	2.2	2.2.1	_																				
			2017年																				
		2.2.2	2017 4	<u> 1</u> 2 /	j [4/	۷	•	• •	• •	 •	• •	•	 	•	 •	 •	• •	•	•	 •	•	 	J
	Eare)H 6.3	* > 1	Dal																			
1	知	识点不	外全计	划																			
1.	1 省	选 [0,	/7]																				
			/7] 字符串	[4/6]																			
	1.1		字符串	[4/6]																			
	l.1 • ⊠	TODO	字符串	[4/6]																			
	1.1 • ⊠ • □	TODO 后缀数	字符串 组 动机	[4/6]																			
	• ⊠ • □	TODO 后缀数 后缀自	字符串 组 动机 衡树	[4/6]																			
	1.1 • ⊠ • □ • □	TODO 后缀数 后缀自 后缀平 AC 自	字符串 组 动机 衡树 动机																				
	1.1 • □ • □ • □	TODO 后缀数 后缀自 后缀平 AC 自	字符串组 动 树 树 树 机 展 工																				

1.1.2 TODO 图论 [3/17]

- ⋈ 双连通分量
- □ 最大流
- □ 费用流
- □ 最小割
- □ 带上下界的网络流
- ⋈ 树剖
- \Box LCT
- 図 点分治
- □ 边分治
- □ 动态树分治
- □ 树分块
- □ 虚树
- □ 仙人掌
- □ 朱刘算法
- □ 弦图
- □ 区间图
- □ 对偶图

1.1.3 TODO 数学 [4/25]

- 図 中国剩余定理
- □ 博弈论
- □ 拉格朗日乘子法
- □ 单纯型
- □ 辛普森积分
- 図 容斥原理
- □ 莫比乌斯反演
- □ BSGS
- □置换群
- □ FFT

• 🗆 NTT
• □ 多项式求逆
□ 二次剩余
• □ 多项式科技
• □ 积分
• □ 极限
• □ 微分
• □ 导数
• □ Ploya 定理
• □ 贝叶斯定理
• □ 杜教筛
• □ Pollard-Rho 圆锥曲线分解法
• ⊠ 线性基
• □ Miller-Rabin 素性探测
• 図 高斯消元
1.1.4 TODO 动态规划 [2/6]
• □ 斜率优化
• □ 插头 DP
• □ 四边形不等式
• □ 斯坦纳树
• 図 数位 DP
• ⊠ 区间 DP
1.1.5 TODO 计算几何 [2/9]
• ⋈ 基础内容
• □ 凸包
• □ 三角剖分
• □ 旋转卡壳
• □ 半平面交
• □ picks 定理

• ⊠ 扫描线
• □ 动态凸包
• □ 三维计算几何
1 1 6 TODO 坤安 [0/9]
1.1.6 TODO 搜索 [0/3] □ 模拟退火
* · · · · · · ·
□ 爬山算法
• □ 随机增量法
1.1.7 TODO 数据结构 [0/4]
1. TODO 离线 算法 [1/5]
• □ 莫队
• □ 树上莫队
• □ 单调莫队
• □ CDQ 分治
• 図 整体二分
2. TODO 平衡树 [1/3]
 □ rope
• \boxtimes Treap
• □ 替罪羊树
3. TODO 其他 [1/6]
• ⋈ 主席树
• □ 线段树
• □ 划分树
• KD-Tree
• □ 块状链表
• □ 二维线段树
4. TODO 可持久化数据结构 [0/5]
• □ 平衡树
• □ 数组
• □ Trie 树
□ 块状链表
• □ 动态仙人掌

2 鏼题计划

2.1 题目泛做

2.1.1 NOIP 题目泛做 [1/1]

1. **DONE** NOIP 2016 愤怒的小鸟 <2017-11-24 五 >

状态压缩: 动态规划

Description

给出 $n \le 18$ 个敌人坐标,每次可以可以消灭一条过 (0,0) 抛物线上的敌人,求最小次数。

Solution

n 很小考虑状压。最朴素的动态规划,用 f[s] 表示消灭 s 中的敌人的方案数。枚举下一次消灭哪两个敌人,计算抛物线转移,时间复杂度 $O(n^32^n)$,还可以继续优化。我们可以预处理抛物线能消灭哪些敌人,时间复杂度变为 $O(n^22^n)$ 。但还不够。考虑第一个敌人在这个状态转移的状态中一定被某一条抛物线消灭,这样我们只考虑过第一个敌人的抛物线,枚举其他敌人转移,一定不会丢失最优解。时间复杂度变为 $O(n2^n)$ 。

2.2 杂

2.2.1 2017 年 11 月 [2/2]

1. **DONE** POJ 3693 Maximum repetition substring <2017-11-24 \pm 1.

后缀数组:ST 表

Description

给出一个字符串,求最大重复子串(重复次数最多,如果存在多个,求字典序最小的那一个)。

Solution

后缀数组的应用。直接下手不好解决,不妨枚举一下循环节的长度 |L|。我们发现,任何一个循环节为 |L| 重复子串总会包含至少两个 $s[0], s[|L|], s[2|L|], \cdots$ 字符。那么考虑枚举两个相邻的上述字符,可以通过后缀数组 +ST 表 O(1) 求出 LCP 的长度,但是最长公共子串的开头并不一定是我们枚举的字符,所以还需要求出最长向前能匹配多少。这可以通过倒过来做一次后缀数组得到。那么我们现在有了一个极长区间,可以求得这个区间的循环节个数 k,也就可以求出一个区间 [l,r] 满足开头落在这个区间内部的最大重复子串的循环节个数都为 k。只需要找字典序最小的一个。那么用 ST表查一下这个区间内最小的 rank 的后缀就好了。时间复杂度 $O\left(\sum_{i=1}^n \frac{n}{i}\right) = O(nlogn)$ 。有一个优化,当求得一个极长重复子串之后,落在子串内的 s[i|L|] 都不用再枚举了。

2. **DONE** BZOJ 4310 跳蚤 <2017-11-29 三 >

后缀数组:ST 表: 二分查找

Description

给出一个字符串 S ,将它分成不超过 k 个子串,对于每个子串 T ,设 T' 为其最大子串,最小化选出的 k 个 T'_i 的最大值。

Solution

最大值最小可以二分。可以利用后缀数组求出本质不同的子串个数,对于一个第 k 大的子串,可以利用后缀数组求出它具体是谁。然后从后向前贪心扫描分块即可。注意一下比较两个串大小时的细节。设第 k 大的子串和要比较的串在后缀数组中第一次出现的位置分别为为 p_0, p_1 ,分 $p_1 < p_0, p_1 > p_0$ 三种情况讨论即可。

2.2.2 2017 年 12 月 [2/2]

1. **DONE** BZOJ 3514 Codechef MARCH14 GERALD07 加强版 <2017-12-06 三 > LCT: 主席树: 贪心

Description

给出一张无向图,每次询问边标号在 [l,r] 区间内的子图的联通块个数。 $N \leq 200000$,强制在线。

Solution

考虑从特殊入手,如果是一棵给出的是一颗树,显然每次询问的答案是 n-(r-l+1),图相比较树的区别是可能会出现环。构成环的边对答案是没有贡献的。如果我们能将每次询问对答案没有贡献的边都找出来,那么就解决了问题。按照编号从小到大依次加边,如果出现了一个环,不妨贪心的将编号最小的那一条边去掉(去掉最小的边不会影响答案 !),设最小的那条边的编号为 k, 如果 k 在 [l,r] 之间,那么现在加的这条边是没有用的,否则如果 k < l,那么这条边有用,对答案有 -1 的贡献。也就是说我们需要求出加入每一条边之后去掉的边是哪一条,可以用一颗 LCT 来维护。对于查询,也就是查区间内小于 l 的数字个数,直接上主席树就好了。

2. **DONE** Atcoder ARC086 D Non-decreasing <2017-12-11 ->

构造

Description

给出一个序列 a_n ,每次可以执行操作 $a_{i+}=a_{i}$,构造方案使得操作次数 $\leq 2n$ 且数列单调不降。

Solution

不妨从特殊开始考虑,如果这个序列都为正数,那么显然只需要做一次前缀和就满足要求了。现在问题是数列不一定都是正数,那么只需要对每个数加上最大值即可(负数的情况类似讨论)。

3. DONE Atcoder ARC086 E Smuggling Marbles <2017-12-11 → > 树形 DP: 队列: 计数

Description

有一棵树, 根为 0, 每个点可能会有一颗石子, 重复进行如下操作:

- (a) 如果 0 号节点有一颗石子, 那么把这颗石子放到盒子里
- (b) 把每个石子移项它的父亲节点
- (c) 如果有一个节点的石子数量超过 1 个, 那么删除这些石子。

问对于所有的 2ⁿ 种起始情况,最后盒子里面的石子总数是多少。

Solution

每一层都是独立的,考虑枚举深度,用 $f[i][j](0 \le j \le 1)$ 表示节点 i 有 j 个石子的方案数,进行树形 DP 枚举它的哪个孩子给它 1 的贡献转移。但是这样是 $O(n^2)$ 的。

但是其实每个动态规划的线程都是独立的,不妨一起进行,用双端队列维护状态 $f[i][j][k](0 \le k \le 2)$, k 的三维可以用一个三元组维护,表示相对结点 i 的深度为 j 的结点对 i 贡献 k 个石子的方案数 (k=2 时表示有大于等于 2 个石子,这个状态是有必要维护的,这是与算法一的区别,因为转移的时候我们没有办法利用补集转移)。合并的时候就把小的队列与大的合并。只有深度相同的点合并才会对复杂度在 LCA 处产生贡献,而这些深度相同的点,设有 x_i 个,LCA 总数是 x_i-1 。那么从的复杂度为 $O(\sum x_i) = O(n)$ 。