2026

Units and Measurements

Physics

Lecture - 2

By- Manish Raj (MR Sir)

6 year IYR of JEE

Vector Eunghen Assign-B

- (1) No self toubotes
- No demotivation
- No Over-thinks

Topics to be covered

- (1) # Conversion of unit
- 2) PhD on dimension
- 3
- 4

.

®

Which of the following is a characteristic of unit?

- The unit must be universally accepted
- 2 It must be invariable and well defined
- It must be of suitable size and easily available
- All the above

Characteristic of unit

Likho

universuly accepted invariable size suitable size avilable serity avilable exity

l=1m = 100 cm)
numerial = 100 cm;
Value SI Unit

Any measured P.Q. reprenst in it numericul value sits unit in which numericul value is represent.

UN= (ota

I mu= (c+n

n= numerical value of P.Q.

W= Unit in Phich P.Q. is incomed

かりん,= かりつ

mytu

かくし

If area of object is 5m² then find its value in CGS unit?

Area is given is S-I unit = 5 m²

$$5 \times m^2 = n_2 \, cm^2$$

$$5 \times m^2 = n_2 \, cm^2$$
 $5 \times m^2 = 50000 \, cm^2$

$$5 \times (100 \text{cm}) = 72 \text{ (m}^2$$

 $5 \times 10^{9} \text{ Tm}^2 = 72 \text{ (m}^2$
 $3 \times 10^{9} \text{ Tm}^2 = 50000$

Convert 25 m/sec in CGS unit?

$$lelocity = \frac{25m}{sec}$$

$$= 25 (100 cm)$$

$$sec$$

Convert 1 Newton into Dyne.

Force =
$$1 \text{ N}$$

$$= 1 \left(\frac{\text{Ky m}}{\text{S2}} \right)$$

$$= 1 \times 10^{3} \text{gsm} \times 10^{2} \text{ cm}$$

$$= 10^{5} \text{ gsm} \text{ cm/s}$$

$$= 10^{5} \text{ dyne}$$

$$1 \times 9 = 1000 \text{ grm} = 10^{3} \text{ yrm}$$

$$2^{n \times m \text{ extrad}}$$

$$1 \times 9 = 1000 \text{ grm} = 10^{3} \text{ yrm}$$

$$1 \times 9 = 10^{3} \text{ yrm}$$

$$1 \times 9 = 10^{3} \text{ yrm}$$

$$1 \times 10^{3} \text{ yr} \times 10^{3} \text{ grm}$$

$$1 \times 10^{3} \text{ yr} \times 10^{3} \text{ grm}$$

$$1 \times 10^{3} \text{ yr} \times 10^{3} \text{ grm}$$

$$1 \times 10^{3} \text{ yr} \times 10^{3} \text{ grm}$$

$$1 \times 10^{3} \text{ yr} \times 10^{3} \text{ grm}$$

$$1 \times 10^{3} \text{ yr} \times 10^{3} \text{ grm}$$

Convert values of 10 Joule in CGS unit?

$$E = 10(J)$$

$$= 10 \left[\frac{\text{Kg m}^{2}}{\text{S2}} \right]$$

$$= 10 \left[\frac{10^{3} \text{ gm x}}{\text{S2}} \right]$$

$$= 10 \left[\frac{10^{3} \text{ gm x}}{\text{S2}} \right]$$

$$= 10 \times 10^{7} \text{ gm cm}^{2}$$

$$= 10 \times 10^{7} \text{ gm cm}^{2}$$

Level up

9f unit of length becomes double than S-I unit of length,
then area 5m² in new unit will be?

Solve New Unit of lengt
$$1m = 2m$$

$$1m = 1m^{2}$$

$$Area = 5m^{2} = 5 \left(\frac{1m^{2}}{2}\right)^{2} = \frac{5}{4}m^{2}$$

Ċ.

If unit of length 10m and unit of mass is 5 kg and unit of time is 2 sec then, find value of 10 Joule energy is new system of unit.

Energy = 105
$$= 10 \left(\frac{kg}{5^2} \right)$$

$$= 10 \left(\frac{kg}{5^2} \right) \times \left(\frac{2m}{16} \right)^2 \frac{1}{\left(\frac{211}{25} \right)^2}$$

$$= 10 \frac{kg}{5} \times \left(\frac{2m}{16} \right)^2 \frac{1}{\left(\frac{211}{25} \right)^2}$$

$$= 10 \frac{5 \times 1000}{5 \times 1000} \times \frac{1}{4} = \frac{10}{125} \frac{kg}{52}$$

If unit of length 10m and unit of mass is 5 kg and unit of time is 2 sec then, find unit of energy in new system.

If Unit of length in new system is 2m and unit of many is long & unit of time 4 sec then find value of

151V force in new system.

1m = 2m1kg = lokg 1s' = 4sec

Force =
$$15 \text{ N}$$

= 15 Ky m/s^2
= $15 \times \frac{1}{10} \times \frac{1}{2} = \frac{15 \times 16}{10 \times 2} = \frac{15 \times 16}{10 \times 2} = \frac{15 \times 16}{10 \times 2} = \frac{12 \times 16}{10 \times 2} = \frac{12 \times 16}{10 \times 2} = \frac{12 \times 16}{10 \times 2} = \frac{15 \times 16}{10 \times 2} = \frac$

(2) gf Unit of length in new system is 2m and unit of Mary is long & unit of time 4 sec then find unit of free in new system.

$$1m' = 2m$$

$$1kg = lokg$$

$$1s' = 4sec$$

Force =
$$\frac{kg'm'}{s'^2}$$
 = $\frac{20}{16}$ $\frac{kgm}{s^2}$ = $\frac{20}{16}$ $\frac{N}{s}$ = $\frac{5}{4}$ $\frac{5}{4}$

(a) In new system of unit, length is xm and man is y kg.

then Value of density 5 kg/m³ in new system will be.

$$\frac{300}{300} = \frac{1}{1} =$$

density =
$$5 \frac{79}{m^3}$$

= $5 \frac{180}{12m^3} = \frac{5}{7} \frac{80}{m^3}$
 $= 5 \frac{180}{2m^3} = \frac{5}{7} \frac{80}{m^3}$

(b) In new system of unit length is xm and man is y Ky
then unit out density in new system.

Unit of density =
$$\frac{Kg'}{m^{13}} = \frac{YKg}{(2em)^3} = \frac{Y}{78} \left(\frac{Kg}{m^3}\right)$$

man of object is M = loky Inovity with velocity 4mls find its momentum in SI 3 <u>C-G-</u>s Unit.

man of object is M = 10 Ky Inovity with velocity 4 m/s findits K.E in S.I +8 C.G.s Unit. $K.E = 80 \text{ KJ } \frac{2m^2}{5L}$

Som

K-E= 1/2 mv 2 = 1/2 mv 2 = 1/2 mv 10 (4) 2 = 1/2 mv 10 (4) 2

K.E = 80 Kg m/s²

= 80 × 10 gm × (100 cm)

= 80 × 107 gm cm²

. .

Met Box)

SI Value 1941 = 7 (-9.5 ya new System of unit

Value Puchhe.

SI Value ## Value Todiya

hai likho then si unit

Risi P.Q Ka new System me (unit Puhhe)

- Wh P.Q. Kg new system) of Unit like and (must know).

KO NEW 106

(mrsto

1) imension (

o Area =
$$L^2$$

o Acceleration =
$$L \tau^{-2}$$

o Force =
$$m L \tau^{-2}$$

o Power =
$$ml^2 T^3$$

displacement, dist, length, Radius, focul longth, Position. # Height, Radius of curollature mo LI To Velocity, speed, orbital velcity, Scape velocity, Terminal velocity Drift relocity, critical relocity, Angul relocity (relative relative) * Anguloz veloult due to gravity, au Tangentiu au l'entripetue au * Anywhaci"= =

*2

K.E., Potential energy, Heat energy,
Mechanical energy, gravitational P.E.,
magnetic energy, elastic Potential, spring Potential energy

 $\mathcal{A}(ml^2 \bar{l}^2)$

1

##