Podstawy sieci neuronowych

Aleksander Byrski

Katedra Informatyki AGH Kraków

Historia sieci neuronowych

- Lata 40-te XX w. początek, pierwszy model neuronu (McCulloch, Pitts), reguła uaktualniania wag połączeń (Hebb).
- Lata 50-te/60-te XX w. Perceptron (Rosenblatt, Wightman), ADALINE (Widrow Hoff).
- Lata 60-te/70-te okres zastouju wykrycie ograniczeń perceptronów jednowarstwowych (Minsky, Papert).
- Lata 80-te ponowny rozkwit, prace Hopfielda, odkrycie metody uczenia perceptronów wielowarstwowych (McCleeland, Rumelhard, ale: Werbos opublikował podobną metodę w 1974).

Przykłady zastosowań

- Rozpoznawanie obrazów.
- Rozpoznawanie i synteza mowy.
- Kompresja obrazów.
- Prognozowanie sprzedaży, giełdy, wyścigów konnych.
- Interpretacja badań biologicznych i medycznych.
- Diagnostyka układów elektronicznych.
- Dobór pracowników.
- Selekcja celów śledztwa w kryminalistyce.

Ludzki mózg

- Objętość 1400*cm*³, średnia masa 1,5*kg* (w większości woda).
- Kora mózgowa grubości 3mm zawiera 10¹⁰ komórek nerwowych i 10¹² komórek glejowych.
- Liczba połączeń 10¹⁵, dystans 0,01 *mm* do 1 *m*.
- Przekazywanie informacji impulsy elektryczne 1 100Hz, czas trwania 1 2ms, napięcie 100mV, szybkość propagacji 1 100m/s.
- Szacowana szybkość pracy mózgu 10¹⁸ operacji na sekundę, najszybsze komputery – 10¹⁴ operacji na sekundę.
- Typowa operacja wymaga co najwyżej 100 kroków, czas reakcji co najmniej 300ms.
- Pojemności informacyjne kanałów zmysłów: wzrok 100Mb/s, dotyk 1Mb/s, słuch 15kb/s, węch 1kb/s, smak 100b/s.

Biologiczny neuron

- Neuron przekazuje informacje zakodowane w postaci impulsów nerwowych.
- Impuls nerwowy to przesuwanie sie fali depolaryzacji od miejsca pobudzenia do zakończeń neuronu, przekazywane są pomiędzy neuronami za pomocą dendrytów (w kierunku ciała neuronu) i aksonu (od ciała neuronu).
- Synapsa miejsce styku błony komórkowej zakończenia aksonu z błoną komórkową neuronu.

Neuron McCullocha-Pittsa

Prosty sumator z następującą regułą pobudzenia:

$$y = \begin{cases} 1 & \text{gdy } \sum_{i=1}^{n} w_i x_i \ge T \\ 0 & \text{gdy } \sum_{i=1}^{n} w_i x_i < T \end{cases}$$

gdzie:

$$w_i = \pm 1$$

$$i = 1, 2, ..., n$$

Brak procesu uczenia, wagi synaptyczne dobierane arbitralnie.

Neurony McCullocha Pittsa jako proste sumatory logiczne

Perceptron (Rosenblatt)

Uczenie neuronu/sieci neuronowej

- Jest to proces dobrania wag synaptycznych, najczęściej wykonywany iteracyjnie.
- Uczenie z nauczycielem istnieje nadzorca, który porównuje otrzymaną odpowiedź, z odpowiedzią pożądaną (np. metody największego spadku, wsteczna propagacja błędów).
- Cykl pracy neuronu/sieci uczonej z nauczycielem: prezentacja danych na wejściu, obliczenie odpowiedzi neuronu/sieci, porównanie z odpowiedzia pożądaną, modyfikacja wag synaptycznych na podstawie błędu.
- Uczenie bez nauczyciela neuron/sieć ma za zadanie wykryć istniejące związki w prezentowanych danych i samoistnie dostroić wagi synaptyczne (np. reguła Instar, reguła Hebba).
- Cykl pracy neuronu/sieci uczonej bez nauczyciela: prezentacja danych na wejściu, obliczenie odpowiedzi neuronu/sieci, modyfikacja wag synaptycznych na podstawie pewnej funkcji danych wejściowych i wyjściowych.

Uczenie perceptronu

W kolejnym (k-tym) kroku uczenia oblicza się tzw. błąd średniokwadratowy

$$E^{k}(\mathbf{w}) = \frac{1}{2} \sum_{j} (d_{j} - y_{j}^{k})^{2} = \frac{1}{2} \sum_{j} (d_{j} - f(\sum_{i} w_{ij} x_{ij}))^{2}$$

czyli różnicę między pożądanymi a otrzymanymi wartościami na wyjściu. Błąd ten może być liczony dla wielu kroków (aktualizacja wag synaptycznych może przebiegać po każdym kroku lub po serii):

$$E(\mathbf{w}) = \sum_{k} E^{k}(\mathbf{w})$$

Przesunięcie w przestrzeni wag realizowane jest w kierunku maksymalnego spadku funkcji błędu, określonym przez ujemny gradient:

$$-\frac{\delta E^k}{\delta w_{ij}} = -2\frac{1}{2}(d_j - y_j^k)x_{ij}^k \frac{\delta f}{\delta w_{ij}}$$

Przytoczona formuła zależy od wartości wejściowych, wyjściowych oraz pochodnej funkcji aktywacji.

Funkcja aktywacji

Początkowo stosowano progowe funkcje aktywacji. Ze względu na niemożność policzenia pochodnych, zaczęto stosować aproksymacje nieliniowe tych funkcji:

Pochodne tych funkcji są bardzo łatwe do policzenia.

Modyfikacja wag synaptycznych

W procesie uczenia, zmiana wag neuronów obliczana jest wg następujących wzorów. Dla sigmoidy unipolarnej:

$$\Delta w_{ij} = -\eta (y_i - d_i)(1 - y_i)y_ix_j$$

Dla sigmoidy bipolarnej:

$$\Delta w_{ij} = -\eta (y_i - d_i)(1 - y_i^2)y_i x_j$$

 η jest współczynnikiem szybkości uczenia, jego wartość steruje wielkością kroku wykonywanego w jednej iteracji uczenia (zwykle $\eta \in (0,05;2)$).

Wizualizacja procesu uczenia

- Płaszczyzna obrazuje kształt funkcji błędu opisanej w przestrzeni wag.
- Współrzędne startowe to (w₁, w₂), wartość funkcji błędu wynosi ξ_{start}
- Po wykonaniu odpowiedniej liczby kroków osiąga się ekstremum funkcji błędu (w₁*, w₂*), dla którego wartość funkcji błędu wynosi ξ_{min}.

Współczynnik bezwładności (momentum)

Wielkość aktualnej zmiany wagi synaptycznej zależy od jej ostatniej wartości:

$$\Delta w_{ij}(t+1) = -\eta (y_i - d_i)(1 - y_i)y_ix_j + \alpha \Delta w_{ij}(t)$$

w przypadku, gdy obserwuje się niewielkie zmiany błędu sieci:

$$e_i(t+1) < 1,05e_i(t) \Rightarrow \alpha \neq 0$$

w przeciwnym przypadku:

$$e_i(t+1) \geq 1,05e_i(t) \Rightarrow \alpha = 0$$

Zwykle $\alpha \in (0,1)$.

Bias

Pojedynczy neuron dzieli płaszczyznę danych wejściowych za pomocą prostej decyzyjnej (hiperpodpłaszczyzny o 1 wymiar mniejszej).

W przypadku braku biasu (zwanego też poziomem odniesienia) wszystkie proste decyzyjne muszą przechodzić przez początek układu współrzędnych:

$$a: 0 = w_1x_1 + w_2x_2$$

dzięki dodatkowej synapsie możliwe jest przesunięcie prostej, i odseparowanie danych współliniowych względem początku układu współrzędnych:

$$b: 0 = w_1 x_1 + w_2 x_2 + w_0$$

Aleksander Byrski (KI AGH)

Instar (Grossberg)

Funkcja przejścia:

$$y = f(\sum_{i=1}^{n} w_i x_i)$$
 gdzie:

f – funkcja aktywacji (zwykle liniowa)

$$i = 0, 1, 2, \dots, n$$

Neurony instar uczone są zwykle bez nauczyciela.

Uczenie neuronu instar

Dane wejściowe powinny być znormalizowane, czyli: $\forall \mathbf{x}, ||\mathbf{x}|| = 1$, można to uzyskać następująco:

$$\mathbf{x} = [x_1, \dots, x_n], x_j = \frac{x_j}{\sqrt{x_1^2 + \dots + x_n^2}}, j \in <1, n>$$

Neuron uczony jest za pomocą następującej reguły (Grossberga):

$$\Delta w_{ij} = \eta y_i (x_j - w_{ij})$$

wielkość modyfikacji wagi maleje do 0, gdy ${\bf w}$ dąży do ${\bf x}$.

Interpretacja geometryczna działania instar

W przypadku, gdy neuron został wytrenowany do rozpoznania wzorca x_1 , zachodzi:

$$\mathbf{w} = [w_{i1}, \dots, w_{in}]^T = x_1$$

Po prezentacji innego wektora na wejściu (x_2) zachodzi:

$$y = \mathbf{w}^T x_2 = x_1^T x_2 = ||x_1|| ||x_2|| \cos \varphi_{12}$$

ponieważ wektory wejściowe są znormalizowane:

$$y = \cos \varphi_{12}$$

odpowiedź neuronu jest proporcjonalna do cosinusa kąta między x_1 a x_2 . Neuron nie jest trenowany jest w celu zapamiętania jednego wzorca, lecz w celu uśrednienia wielu (klastrowanie).

W trybie odtwarzania, odpowiedź neuronu oznacza jak daleko prezentowany wektor jest odległy od środka klastra prezentowanego przez neuron.

Wizualizacja uczenia neuronów instar

- Neurony N1, N2, N3, N4 rozpoczynają naukę z losowych miejsc w przestrzeni wag.
- Po odpowiedniej liczbie iteracji wagi N1 oraz N2 zostają ustawione w centrach dwóch klastrów danych.
- Efektem inicjacji wag jest ustawienie się wag N3 oraz N4 w centrum trzeciego klastra danych.
- Po prezentacji danych zbliżonych do dowolnego z klastrów, najbardziej pobudzone zostaną neurony, których wagi są ustawione w jego centrum.

Problem XOR

<i>X</i> ₁	0	0	1	1
<i>X</i> ₂	0	1	0	1
d	0	1	1	0

Symulacja działania prostego funktora logicznego XOR przerasta możliwości pojedynczego neuronu, oraz pojedynczej warstwy neuronów (nie jest to problem liniowo separowalny).

Rozwiązanie problemu XOR

Rozwiązanie polega na wprowadzeniu dodatkowego neuronu, oraz dodatkowej warstwy z neuronem pełniącym rolę sumatora logicznego dla zbiorów odseparowanych przez dwa neurony z warstwy pierwszej.

Perceptron wielowarstwowy

Zwyczajowo złożony z neuronów sigmoidalnych. Pierwsza warstwa: buforująca, kolejne warstwy: ukryte, ostatnia: wyjściowa.

Algorytm wstecznej propagacji błędów

$$e_i = \sum_{k \in WY} w_k i e_k$$

Błąd z wyjścia sieci przekazywany jest proporcjonalnie do neuronów poprzedniej warstwy tak, aby również tam była możliwość policzenia błędu, gradientu i modyfikacji wag synaptycznych.

Uniwersalna aproksymacja

Structure	Type of Decision Regions	Exclusive-OR Problem	Classes with Mesned Regions	Most General Region Shapes
Single-layer	Half plane bounded by hyperplane	B A	B	
Two-layers	Convex open or closed regions	A B B	B	
Three-layers	Arbitrary (Complexity limited by number of nodes)	(B) (B)	B	

Udowodniono, że trójwarstwowy perceptron jest uniwersalnym aproksymatorem, co oznacza że może nauczyć się dowolnego odwzorowania z dowolną dokładnością o ile posiada odpowiednią liczbę neuronów.

Generalizacja

- R zbiór wszystkich możliwych danych wejściowych.
- L zbiór danych uczących.
- V zbiór danych weryfikujących.
- T zbiór danych testujących.

Sieć posiada zdolność generalizacji, jeśli po procesie uczenia za pomocą danych ze zbioru L jest w stanie prawidłowo zaklasyfikować dane należące do zbioru T (które nie zostały wcześniej zaprezentowane). Zwykle $\frac{\#T}{\#L} \approx \frac{1}{5}$.

Niedouczenie i przeuczenie sieci

Prezentowane przypadki:

- Przeuczenie (za duża liczba neuronów).
- Niedouczenie (za mała liczba neuronów).
- Prawidłowo nauczona sieć (generalizująca).

Bibliografia

- S. Osowski "Sieci neuronowe do przetwarzania informacji".
- S. Osowski "Sieci neuronowe w ujęciu algorytmicznym".
- R. Tadeusiewicz "Sieci neuronowe".
- S. Haykin "Neural Networks A Comprehensive Foundation".

