Announcements for Thursday, 24OCT2024

- Week 8 Homework Assignments available on eLearning
 - Graded and Timed Quiz 8 "Bonding + review" due Monday, 28OCT2024, at
 6:00 PM (EDT)
- Exam 2 Conflict Exam Requests due by Friday, 25OCT2024, 11:59 PM (EDT)
 - for students having Rutgers sanctioned classes and activities during the Exam 2 period (Wednesday, 30OCT2024, 7:45 PM – 9:05 PM)

ANY GENERAL QUESTIONS? Feel free to see me after class!

Try This On Your Own

• Draw a molecular orbital diagram for He_2^+ and determine whether the molecule exists.

MO Diagrams for Heteronuclear Diatomic Molecules – Period 2

C: [He] 2s² 2p²

N: [He] 2s² 2p³

Bond Order = ½ (6 – 0) = 3

exactly what Lewis

and VB theories

predict

MO Theory – Polyatomic Molecules electron delocalization

- with the help of computers, MO theory can be applied to polyatomic molecules, giving greater insight into their structures and properties
- electron delocalization
 - an important contribution from MO theory
- benzene (C₆H₆)
 - highly symmetrical molecule
 - planar
 - six identical C-C bonds

2 resonance forms of benzene

© 2018 Pearson Education, Inc.

lowest energy π bonding MO of benzene

Practical skills related to MO theory

- you should be able to construct MO diagrams for homonuclear and heteronuclear diatomic species and use the diagrams to determine bond order, relative bond strengths/lengths and paramagnetism
 - for example, determine if the species NO⁺ is paramagnetic
 - for example, choose the species with the higher bond order between Li₂ and Be₂

Exam II only covers Chapter 3.6 – Chapter 6.5 The following material will NOT be on Exam II

Chapter 7: Chemical Reactions and Chemical Quantities Some questions we'll try to answer

- What are chemical changes and how do they differ from physical changes?
- How do we correctly represent chemical reactions?
- What numerical relationships are expressed within a balanced chemical equation?
- How can we use balanced reaction coefficients as conversion factors?
- What is a limiting reactant and what role does it play in a chemical reaction?
- How can we use a conversion factor approach to identify limiting reactant and do stoichiometry in general?
- What is reaction yield and what factors impact reaction yields?
- What are some common chemical reactions that you should be familiar with?

Chemical vs. Physical Changes

 chemical change = atoms rearrange to form new substances with different compositions and properties

- fermenting grape juice into wine
- rusting of iron
- tarnishing of silver
- physical change = the form of the substance changes but the composition and identity does not
 - phase changes like melting, freezing, boiling, etc.
- Both physical and chemical changes can be represented by chemical equations

Writing Chemical Equations

• chemical equation = a shorthand way of representing a chemical reaction

- states of reactants/products
 - (s), (e), (g), and (aq)
- changing names into chemical formulas (Chapter 4)
 - don't forget about diatomic elements such as hydrogen (H_2) , oxygen (O_2) , nitrogen (N_2) , etc.

necessary skill is writing chemical equations from words:

- copper solid reacts with aqueous nitric acid (HNO₃) to form aqueous copper(II) nitrate, nitrogen monoxide gas and water
 - $Cu(s) + HNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + NO(g) + H_2O(\ell)$
- nitrogen gas and hydrogen gas reacts to form ammonia gas
 - $N_2(g) + H_2(g) \rightarrow NH_3(g)$

Balancing Chemical Equations

$$N_2(g) + H_2(g) \rightarrow NH_3(g)$$

Does this give the full picture?

- Atoms are not created or destroyed during chemical reactions
 - number and types of atoms on both sides of the arrow must be the same
- Balance by changing coefficients only!
 - NEVER by changing subscripts (...that would change the compound)
- balance atoms that occur as free elements last
- when present on both sides of the reaction, balance a polyatomic ion as single unit
- express coefficients in lowest whole-numbers
 - the coefficients can be thought of on two levels: atomic vs. macroscopic
- the balanced coefficients will act as important conversion factors

Writing Balanced Chemical Equations – Examples

 Write the balanced equation when aqueous solutions of sodium phosphate and lead(II) nitrate are mixed together forming aqueous sodium nitrate and solid lead(II) phosphate

2 Na₃PO₄(aq) + 3 Pb(NO₃)₂(aq)
$$\rightarrow$$
 6 NaNO₃(aq) + Pb₃(PO₄)₂(s)

• Write the balanced equation for the complete combustion of hexane (C_6H_{14})

2
$$C_6H_{14}(\ell) + 19 O_2(g) \rightarrow 12 CO_2(g) + 14 H_2O(g)$$

Try These On Your Own

Write **balanced** chemical equations for the following reactions:

Liquid dichlorine heptoxide is added to water to form liquid perchloric acid (HClO₄).

When aqueous solutions of aluminum sulfate and sodium hydroxide are mixed, aqueous sodium sulfate and solid aluminum hydroxide are formed.

Solid aluminum carbide (Al_4C_3), when mixed with water, produces solid aluminum hydroxide and methane (CH_4) gas.

Rust (i.e., iron(III) oxide) forms when iron is exposed to oxygen in the air.

Complete combustion of liquid propanol (CH₃CH₂CH₂OH) yields carbon dioxide and water vapor.

Reaction Stoichiometry

- stoichiometry = the numerical relationships between chemical amounts in a balanced chemical equation
- compound stoichiometry introduced in Chapter 4
 - using chemical formulas, subscripts, and molar masses as conversion factors
 - example: how many total atoms in 25.0 g C₆H₁₂O₆?
- using balanced reaction coefficients as conversion factors

$$2 C_{6}H_{14}(\ell) + 19 O_{2}(g) \rightarrow 12 CO_{2}(g) + 14 H_{2}O(g)$$

- 2 molecules of C_6H_{14} reacts with 19 molecules of O_2 to yield 12 molecules of CO_2 and 14 molecules of H_2O
- 2 moles of C₆H₁₄ reacts with 19 moles of O₂ to yield 12 moles of CO₂ and 14 moles of H₂O
- 2 mol C_6H_{14} : 19 mol O_2 : 12 mole CO_2 : 14 mol H_2O (the source of many conversion factors!)

RECALL CH 4: Compound Stoichiometry Calculations

• How many hydrogen atoms are in 88.0 ng glucose ($C_6H_{12}O_6$)?

3.53×10¹⁵ H atoms

Reaction Stoichiometry Illustrated

$$N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$$

What mass of nitrogen gas is needed to completely react with 12.5 moles hydrogen gas?

What mass of ammonia will be produced?

Try This On Your Own

Ammonium nitrite (NH_4NO_2) is an unstable solid that readily decomposes into nitrogen gas and water vapor. How many molecules of gas will be produced by the decomposition of 100. g of ammonium nitrite?

Reaction Stoichiometry – Try These On Your Own

Electrolysis of water leads to the formation of hydrogen and oxygen gases according to the reaction $H_2O(\ell) \rightarrow H_2(g) + O_2(g)$. How many *moles* of water must be electrolyzed to generate 0.231 *moles* of oxygen gas?

What mass of oxygen is needed to completely combust 5.00 moles hexane (C_6H_{14}) ?

Consider the reaction 2 $N_2(g) + 5 O_2(g) \rightarrow 2 N_2O_5(g)$. What masses of nitrogen gas and oxygen gas are needed to produce 100.0 g N_2O_5 ? MM $N_2O_5 = 108.02$ g/mol

The complete decomposition of ClF_3 into Cl_2 and F_2 produced 142 g Cl_2 (g). How many molecules of fluorine gas was produced in the same reaction?