A PRESENTATION ON SPACE DIVISION MULTIPLEXING

A NEW MILESTONE IN THE EVOLUTION OF FIBER OPTIC COMMUNICATION

Md. Mahmudul Hasan Ahmed Saif Muntaseer Rekha Saha

Electronics & Communication Engineering Discipline Khulna University, Khulna, Bangladesh

Contents

- Fiber parameters
- Optical fiber evolution
- Space Division Multiplexing
- Why Space Division Multiplexing
- Space Division Multiplexing types
- Few Mode Fiber
- Multi Core Fiber
- Advantages
- Limitations

Fiber parameters

Acceptance angle

Defined by the conical half angle θa

Optical fiber communication

Numerical aperture

Equation of numerical aperture

$$NA = (n_1^2 - n_2^2)^{1/2}$$

Numerical aperture of step index fiber is given as

$$NA = n_1 \sqrt{2\Delta}$$

Where,
$$\Delta = \frac{n1^2 - n2^2}{n1}$$
, and is called fractional index change

Optical window

Most commonly three types of optical windows is used in optical fiber communication

Optical fiber evolution

First generation optical fiber

- Multimode optical fibers
- LED sources
- Operated in the 850 nm wavelength region.

Advantage of the multimode fiber

- Large core
- High numerical aperture

Disadvantage

Intermodal dispersion.

Second generation optical fiber

- Single mode fiber
- Single mode lasers
- Uses 1300 nm wavelength region.

<u>Advantage</u>

- Attenuation is less than that in 850 nm.
- Nearly zero dispersion

<u>Disadvantage</u>

Exhibit attenuation

Third generation optical fiber

- Uses 1550nm wavelength region
- For minimizing chromatic dispersion, Dispersion Shifted
 Optical fiber (DSF) was implemented.

<u>Advantage</u>

Attenuation is lowest in 1550nm window

Disadvantage

Very large Chromatic dispersion

Space division multiplexing

<u>Space</u>

- Several parallel spatial paths usually at the same time,
 - □ data buses
 - ribbon cables and twisted pair cables

A method by which optical transmission media are physically separated by waveguides or space in order to maintain channel separations.

Why space division multiplexing

There are several ways to increase optical transmission capacity over a fixed bandwidth, These are-

- Modulation using different amplitude levels
- Polarization
- Frequency is used in Wavelength Division Multiplexing

And most of them are already being used

Multiplexing techniques

Space division multiplexing types

In fact, the only remaining unused dimension is space, and there are two basic strategies for achieving spatial separation within a fiber

- Few mode fiber
- Multi core fiber

Few mode fiber

In few-mode fibers (FMFs) the size and the refractive index of a single fiber core is chosen such that several propagation modes are supported by the fiber.

- allows several modes
- its core needs to be quite larger micrometers
- large numerical aperture
- these modes act as individual communication channels

Few mode fiber significance

- Few-mode fibers (FMFs) can have the same performance as single-mode fibers in terms of dispersion and loss
- It is possible to use these fibers in the single-mode operation where all the data is carried in only one of the spatial modes throughout the fiber.

Multi core fiber (cont.)

- Have several cores
- Within same cladding

Two cross-sectional view is shown here

Multi core fiber (cont.)

Fiber parameters and cross sectional view of a 19 core fiber

^=core-to-core distance (core pitch)

D=cladding diameter

Δ=Refractive index difference between core

T=outer cladding thickness

Fiber design consideration

Fundamental consideration

- Crosstalk suppression,
- Core-density improvement
- Core-arrangement optimization

Different core arrangement

Different core arrangement

	Reference	Mar. 2011	Dec. 2011	Mar. 2012	Dec. 2012	July 2013	Sept. 2013
	Cross-sectional view of trench-assisted single-mode multicore fiber	Marker O 1 O 2 O 5 O 1 O 3	00000	0000 0000 0000	00000	0000	00000
	Core arrangement	HCPS	TPS	HCPS	ORS	DRS	Modified HCPS
, ,	Core count	7	10	19	12	12	19
	Core pitch [µm]	45	40.5(3)	35	36.8	44.6	38.0-39.0
	Cladding diameter [µm]	150	204.4	200	225	230	220
	Atteneuation(1) [dB/km]	<0.18	0.242(4)	0.227(2)	0.199(2)	0.186(2),(5)	0.285(2)

Crosstalk minimization concept

Different core arrangement is proposed for minimizing crosstalk of a MCF

Hole assisted MCF

Trench assisted fiber

Advantages

- Gives better utilize of individual optical channels.
- Provides Pb/s data rate

Limitations

- Inter-core crosstalk
- Compatibility problem
- Costly equipment
- Requires complex Digital signal processing, and MIMI techniques.

