Оглавление

1	Сортировки 1.1 Сортировка слиянием (Фон Неймана)	3 3
Лекция 8: Энтропия. Сортировки.		
	Теорема 1. Если функция $G(p_1,\dots,p_m)$ обладает свойствами (1)-(6), то $G(p_1,\dots,p_m)=H(P_m)$	
	Лемма 1. Пусть $g(m) = G(\frac{1}{m}, \dots, \frac{1}{m})$ и $g(m)$ обладает свойствами (1)-(6), тогда: $g(m) = \log_2 m$	
	Доказательство. Возьмем 2 схемы: Q_k и Q_l равновероятных исходов:	
	$g(kl) = g(k) + g(l)$ – из $(6) \Rightarrow g(m^k) = k \cdot g(m)$	
	$g(2)=1$ – из $(3)\Rightarrow g(2^s)=s$	
	Возьмем $s:2^s \leq m^k \leq 2^{s+1},$ тогда, в силу монотонности g :	
	$g(2^s) \le g(m^k) \le g(2^{s+1}) \Rightarrow s \le kg(m) \le s+1$	
	$\frac{s}{k} \le g(m) \le \frac{s}{k} \frac{1}{k}$	
	$\frac{\lfloor \log_2 m^k \rfloor}{k} \leq g(m) \leq \frac{\lfloor \log_2 m^k \rfloor + 1}{k}$	
	$0 \leq g(m) - \log_2 m + \frac{\{k \log_2 m\}}{k} \leq \frac{1}{k}$	
	$\lim_{k \to \infty} \frac{\{k \log_2 m\}}{k} = 0 \Rightarrow g(m) = \log_2 m$	

1.11.2023

Лемма 2. Если $\forall p_i \in \mathbb{Q} : p_i \in P_m$, то:

$$G(P_m)=H(P_m),$$
 где $G(P_m)$ удовлетворяет (1)-(6)

Доказательство. Пусть $p_i = \frac{r_1}{n}$. Пусть есть равновероятные схемы Q_{r_1}, \ldots, Q_{r_n} , тогда, комбинируя их с P_m , получим равновероятную схему Q_n С n равновероятными исходами.

$$G(Q_n) = G(P_m) + \sum_{i=1}^{n} p_i G(Q_{r_i})$$

По лемме 1

$$\log_2 n = G(P_m) + \sum_{i=1}^m p_i \log_2 r_i$$

$$G(P_m) = \log_2 n - \sum_{i=1}^m p_i \log_2 r_i = \log_2 n - \sum_{i=1}^m p_i (\log_2 p_i + \log_2 n) =$$

$$= \log_2 n - \sum_{i=1}^m p_i \log_2 p_i - \sum_{i=1}^m p_i \log_2 n =$$

$$= \sum_{i=1}^m p_i \log_2 \frac{1}{p_i}$$

Доказательство. (теоремы 1) Для любого набора вероятностей $\{p_1,...,p_m\}$ рассмотрим сходящуюся к нему последовательность рациональных наборов $\{p_1^{(k)},...,p_m^{(k)}\}$. По лемме 2 для каждого из этих наборов G=H. Так как обе функции непрерывны, то это равенство выполняется и в предельной точке.

Глава 1

Сортировки

1.1 Сортировка слиянием (Фон Неймана)

Первоначально сортируемый массив представляется в виде n "отсортированных массивов" длины 1. Далее массивы сливаются попарно и сортируются. Затем еще раз и т. д.

```
Пример. для массива a = [38, 27, 43, 3, 9, 82, 10]:
                                      |82|
     |38|
           |27|
                   |43|
                                |9|
                                             |10|
                         |3|
     |27|
                                             |10|
            38
                   |3,
                          43
                                |9|
                                      82
      |3,
            27,
                   38,
                          43
                                |9|
                                      10,
                                             82
      |3,
                          27,
                                             82
            9,
                   10,
                                38,
                                      43,
```

1.2 Сортировка вставками и сортировка Шелла

Идея для сортировки вставками: наращивать отсортированную часть последовательности. Сначала берем уже "отсортированную" последовательность из одного элемента. Далее берем очередной элемент, сравниваем его с предыдущим и переставляем до тех пор, пока он не займет свое место.

```
Пример. для массива a = [38, 27, 43, 3, 9, 82, 10]:
    38
         27
                    3
                             82
                                  10
    27
              43
                    3
                                  10
    27
              43
                   3
                             82
                                  10
         27
              38
                   43
                        9
                             82
                                  10
     3
              27
                   38
                        43
                             82
                                  10
     3
              27
                   38
                        43
                             82
                                  10
     3
              10
                   27
                        38
                             43
                                  82
     3
              10
                   27
                        38
                             43
                                  82
```

Идея для сортировки Шелла: давайте попробуем сократить количество перемещений элементов за счет того, что будем сдвигать их не на одну

позицию, а сразу на несколько.

Пример. Наш массив: 13 44 7 21 78 3 25 9 28 35 10 66 33 16 Выберем шаг d=6, отдельно сортируем (13 25 33), (44 9 16), (7 28), (21 35), (78 10) и (3 66). Затем уменьшим шаг d вдвое и повторим процедуру. На последнем шаге d=1, что соответствует «обычной» сортировке вставками.