WHAT IS CLAIMED IS:

1. An aqueous ink composition for inkjet recording comprising:

a dye J-aggregate having an average particle size of 2 to 200 nm; and

water-dispersible polymer particles having an average particle size of 10 to 400 nm, wherein the amount of the water-dispersible polymer particles is from one to ten times as much as that of the J-aggregate.

2. An image forming method/comprising:

applying an ink composition for inkjet recording comprising a dye J-aggregate having an average particle size of 2 to 200 nm, and water-dispersible polymer particles having an average particle size of 10 to 400 nm, wherein the amount of the water-dispersible polymer particles is from one to ten times as much as that of the J-aggregate,

to an image-receiving material comprising an image-receiving layer and a substrate, wherein the image-receiving layer comprises an inorganic white pigment.

3. An image forming method comprising:

applying an ink composition to an image-receiving material, wherein the ink composition comprises a dye

J-aggregate, the image-receiving material comprises an image-receiving layer and a substrate, and the image-receiving layer comprises an inorganic white pigment; and

uniformly applying water-dispersible polymer particles to the image-receiving material simultaneously with or subsequently to the application of the ink composition.

4. An image forming method comprising:

uniformly applying water-dispersible polymer particles to an image-receiving material, the image-receiving material comprising an image-receiving layer and a substrate, wherein the image-receiving layer comprises an inorganic white pigment; and

applying an ink composition comprising a dye J-aggregate to the applied water-dispersible polymer particles during the state that the ink composition can pass through the polymer particles to reach the image-receiving material.

- 5. The aqueous ink composition according to claim 1, wherein the dye J-aggregate has an average particle size of 5 to 100 nm and the water-dispersible polymer particles have an average particle size of 20 to 200 nm.
- 6. The aqueous ink composition according to claim 1, which has a pH between 4.5 and 10.0.

- 7. The aqueous ink composition according to claim 1, which has a surface tension of 20 to 60 mb/m.
- 8. The aqueous ink composition according to claim 1, which has a viscosity not higher than 30 mPa·s.
- 9. The aqueous ink composition according to claim 1, wherein the water-dispersible polymer particles are a polymer latex.
- 10. The aqueous ink domposition according to claim 1, wherein the water-dispersible polymer particles are water-insoluble polymers each having at least one dissociable group.
- 11. The aqueous ink composition according to claim 1, wherein the dye for forming the J-aggregate is selected from the groups represented by the following formulae (1) to (11):

$$A^{1} = L^{1} + (L^{2} = L^{3})_{m} - Q^{1}$$
 (1)

$$A^{1} = L^{1} - (L^{2} = L^{3})_{n} - A^{2}$$
 (2)

$$A^{3} = N - Q^{1}$$

$$A^{4} = (L^{1} - L^{2})_{p} = B^{1}$$

$$B^{1} = L^{1} - (L^{2} = L^{3})_{q} - B^{2}$$

$$B^{2} - (L^{1} = L^{2})_{r} - Q^{1}$$

$$(6)$$

$$(Q^{1})_{3}C^{+} \cdot (X^{r})_{hy}$$

$$(7)$$

$$Q^{1} = N - Q^{2}$$

$$(9)$$

$$Q^{1} = Q^{3}$$

$$(10)$$

$$Q^{1} = Q^{3}$$

$$(11)$$

Wherein, A and A^2 each represents an acid nucleus, A^3 represents substituted or unsubstituted phenol, substituted or unsubstituted naphthol, or an acid nucleus, B^1 represents a base nucleus B^2 represents the onium form of a base nucleus,

 Q^1 and Q^2 each independently represents an aryl group or a heterocyclic group, Q^3 represents the onium form of an aryl group or a heterocyclic ring, L^1 , L^2 , L^3 , L^4 , L^5 and L^6 each represents a methine group, m, s and u represents an integer of 0, 1 or 2, n and p each represent an integer between 0 and 3, q represents an integer between 0 and 4, r, t_1 and t_2 each represents an integer of 1 or 2, X^{y-} represents an anion, y represents an integer of 1 or 2, and W^1 and W^2 each independently represents an atomic group needed to complete a five- or six-membered carbocyclic or heterocyclic group.

12. The image forming method according to claim 2, wherein the inorganic white pigment is a synthetic amorphous silica.