EAIiIB	Michał	Kilian	Rok II	Grupa 5a	
Temat:			Numer ćwiczenia:		
W	ahadło proste		0		
Data wykonania 10.10.2018r.	Data oddania 12.10.2018r.	Zwrot do poprawki	Data oddania	Data zaliczenia	Ocena

1 Cel ćwiczenia

Pomiar współczynnika indukcji wzajemnej dwóch cewek sprzężonych ze sobą magnetycznie, dla różnych położeń tych cewek.

2 Wprowadzenie

Dołączone w na osobnych kartkach

3 Wykonanie ćwiczenia

- 1. Zestawić obwód pomiarowy
- 2. Dokonać pomiaru indukcyjności wypadkowej dla dodatniego i ujemnego sprzężenia cewek powietrznych przy różnych odległościach cewek (odległości te zmieniać co 0,5 cm).
- 3. Zmierzyć indukcyjność własną obu cewek.
- 4. Wyniki notować w osobiście zaprojektowanej tabeli, zawierającej również rezultaty obliczeń M oraz k.

Wyniki pomiarów 4

Indeks	L_p [H]	L_z [H]	odległość[cm]	Indukcyjność wzajemna $M[{ m H}]$	Współczynnik sprzężenia k
1	2,69	3,67	0	0,25	0,43
2	2,69	3,65	0,5	0,24	0,42
3	2,7	3,63	1	0,23	0,40
4	2,71	3,61	1,5	0,23	0,39
5	2,72	3,59	2	0,22	0,38
6	2,74	3,58	2,5	0,21	0,37
7	2,76	3,55	3	0,20	0,34
8	2,78	3,53	3,5	0,19	0,33
9	2,81	3,5	4	0,17	0,30
10	2,83	3,46	4,5	0,16	0,27
11	2,86	3,43	5	0,14	0,25
12	2,88	3,41	5,5	0,13	0,23
13	2,91	3,37	6	0,12	0,20
14	2,94	3,35	6,5	0,10	0,18
15	2,96	3,32	7	0,09	0,16
16	2,99	3,29	7,5	0,08	0,13
17	3,01	3,27	8	0,07	0,11
18	3,03	3,25	8,5	0,06	0,10
19	3,05	3,23	9	0,05	0,08
20	3,06	3,22	9,5	0,04	0,07
21	3,08	3,21	10	0,03	0,06
22	3,09	3,19	10,5	0,03	0,04
23	3,11	3,18	11	0,02	0,03
24	3,11	3,17	11,5	0,02	0,03
25	3,11	3,17	12	0,02	0,03
26	3,12	3,16	12,5	0,01	0,02
27	3,12	3,16	13	0,01	0,02
28	3,12	3,16	13,5	0,01	0,02
29	3,12	3,16	14	0,01	0,02
30	3,12	3,16	14,5	0,01	0,02

 L_p - Indukcyjność wypadkowa przy przeciwnym nawinięciu L_z - Indukcyjność wypadkowa przy zgodnym nawinięciu Indukcyjność własna $L_1=3,00$ Indukcyjność własna $L_2=0,11$

5 Opracowanie wyników pomiarów

1. Obliczyć współczynniki indukcji wzajemnej M oraz współczynnika sprzężenia k dla każdego położenia cewek.

Współczynnik M indukcyjności wzajemnej liczony był ze wzoru

$$M = \frac{L_z - L_p}{4}$$

natomiast współczynnik k ze wzoru

$$k = \frac{M}{\sqrt{L_1 L_2}}$$

Wyniki zostały zawarte w tabeli.

2. Dla cewki powietrznej wykonać wykres zależności wypadkowej indukcyjności układu (sprzężenie dodatnie i ujemne) oraz współczynnika sprzężenia k od odległości cewek

Wykresy zostały zamieszczone poniżej

3. Skomentować wyniki

6 Wnioski