Stack-based Multi-layer Attention for Transition-based Dependency Parsing

Zhirui Zhang, Shujie Liu, Mu Li, Ming Zhou, Enhong Chen

USTC & Microsoft -- EMNLP17

AntNLP -- Tao Ji

taoji.cs@gmail.com

Outline

- Transition-based Dependency Parsing
- Seq2Seq Parsing Model
- Motivation
- Architecture of seq2seq parsing model
- Multi-layer Attention
- Experiments

Dependency Parsing

- Input: Sentence $x=w_0,w_1,\cdots,w_n$ with $w_0=root$
- ullet Output: Dependency Tree T=(V,A) for x where:
 - $V = 0, 1, \cdots, n$ is the vertex set,
 - $\circ \ A$ is the arc set, i.e., $(i,j,k) \in A$ represents a dependency from w_i to w_j with label $l_k \in L$
- Approaches:
 - Transition-based models
 - Graph-based models

Arc-standard Example

Transition-based Models

Transition system: Arc-standard, Arc-eager, Arc-hybrid, ...
 Transitions

LEFT-ARC_l
$$(\sigma|i,j|\beta,A) \Rightarrow (\sigma,j|\beta,A \cup \{(j,l,i)\})$$

RIGHT-ARC_l^s $(\sigma|i,j|\beta,A) \Rightarrow (\sigma,i|\beta,A \cup \{(i,l,j)\})$
SHIFT $(\sigma,i|\beta,A) \Rightarrow (\sigma|i,\beta,A)$

- Input: Sentence $x=w_0,w_1,\cdots,w_n$ with $w_0=root$
- Output: Transition sequence $y=t_1,t_2,\cdots,t_m$ for x where:
 - $\circ \ t_i \in T$, T is the transition set.
 - $\sim m=2n$ (Arc-standard)

Motivation

- Seq2seq transition-based dependency parsing is not good.
- Two binary vectors are used to track the decoding stack.
- Multi-layer attention is introduced to capture multiple word dependencies.
- Outperform the basic seq2seq model with 1.87 UAS (en) and 1.61 UAS (zh).

Architecture

Encoder:

- Input x_i : $x_i = [W_e * e(w_i); W_t * e(t_i)]$
- $ullet \ X=(x_1,x_2,\cdots,x_T)
 ightarrow h=(h_1,h_2,\cdots,h_T)$
- Deep-BiGRU or Deep-BiLSTM

Vanilla Attention Mechanism:

- $ullet e_{i,t} = v_a^ op anh(W_a z_{i-1} + U_a h_t)$
- $ullet \ lpha_{i,t} = rac{\exp(e_{i,t})}{\sum_k \exp(e_{i,k})}$
- $\{v_a,W_a,U_a\}\in heta$

Attention Mechanism:

- ullet Two binary vectors $s=(s_1,\cdots,s_T)$ and $r=(r_1,\cdots,r_T)$
- $ullet e_{i,t} = v_a^ op anh(W_a z_{i-1} + U_a h_t + S_a s_t)$
- $ullet \ lpha_{i,t} = rac{\exp(e_{i,t})*(1-r_t)}{\sum_k \exp(e_{i,k})*(1-r_t)}$
- ullet $c_i = \sum_t lpha_{i,t} h_t$

Multi-layer (m>1)

- $ullet e_{i,t}^m = v_a^ op anh(W_a^m[z_{i-1};c_i^{m-1}] + U_a h_t + S_a s_t)$
- $ullet c_i' = [c_i^1; \cdots; c_i^M]$

Decoder:

$$oldsymbol{\cdot} I(y_i) = egin{cases} 0 & y_i = \mathrm{SH}, W_c \leq 0 \ 0 & y_i = \mathrm{LR}(d) \ or \ \mathrm{RR}(d), S_c < 2 \ 1 & \mathrm{otherwise} \end{cases}$$

$$egin{aligned} oldsymbol{\phi} p(y_i|y_{< i},h) &= rac{\exp(g_i)*I(y_i)}{\sum_k \exp(g_k)*I(y_k)} \ & ext{where } g_i ext{ is the } i ext{th element of } \mathrm{MLP}(z_i) \ &z_i &= \mathrm{LSTM}(y_{i-1},z_{i-1},c_i'). \end{aligned}$$

Architecture

$$egin{aligned} x_i &= [E(w_i); E(t_i)] \ a^m_{i,t} &= f(z_{i-1}, c^{m-1}_i, h_t, s_t, r_t) \ c_i &= \sum_t lpha_{i,t} h_t \ z_i &= ext{LSTM}(y_{i-1}, z_{i-1}, c'_i) \end{aligned}$$

Analysis

[EMNLP14, Chen and Manning] A Fast and Accurate Dependency Parser using Neural Networks

Single-word features (9)

 $s_1.w; s_1.t; s_1.wt; s_2.w; s_2.t;$

 $s_2.wt; b_1.w; b_1.t; b_1.wt$

Word-pair features (8)

 $s_1.wt \circ s_2.wt; s_1.wt \circ s_2.w; s_1.wts_2.t;$

 $s_1.w \circ s_2.wt; s_1.t \circ s_2.wt; s_1.w \circ s_2.w$

 $s_1.t \circ s_2.t; s_1.t \circ b_1.t$

Three-word feaures (8)

 $s_2.t \circ s_1.t \circ b_1.t; s_2.t \circ s_1.t \circ lc_1(s_1).t;$

 $s_2.t \circ s_1.t \circ rc_1(s_1).t; s_2.t \circ s_1.t \circ lc_1(s_2).t;$

 $s_2.t \circ s_1.t \circ rc_1(s_2).t; s_2.t \circ s_1.w \circ rc_1(s_2).t;$

 $s_2.t \circ s_1.w \circ lc_1(s_1).t; s_2.t \circ s_1.w \circ b_1.t$

Analysis

Softmax layer: $p = \operatorname{softmax}(W_2h)$ Hidden layer: $h = (W_1^w x^w + W_1^t x^t + W_1^l x^l + b_1)^3$ Input layer: $[x^w, x^t, x^l]$ words POS tags arc labels Stack Buffer Configuration ROOT has_VBZ good_JJ control_NN ... nsubj He_PRP

$$g(w_1x_1+\cdots+w_mx_m+b)=\sum_{i,j,k}(w_iw_jw_k)x_ix_jx_k+\sum_{i,j}b(w_iw_j)x_ix_j\cdots$$

Analysis

1-layer

$$c_i^1 = f(z_{i-1}, h_{1,T}) = f(z_{i-1}, [w; t]_{1,T})$$

2-layer

$$egin{aligned} e_{i,t}^2 &= v_a^ op anh(W_a^2[z_{i-1};c_i^1] + U_a h_t + S_a s_t) \ & c_i^2 &= g(z_{i-1},([w;t]_{1:T},[w;t]_{1:T})) \end{aligned}$$

Experiments

Datasets

English: Penn Treebank (PTB) with Stanford Dependencies

Chinese: Chinese Treebank 5.1 (CTB)

Setup

- 3-layers GRU (encoder and decoder)
- 500-d hidden units
- 300-d word, 32-d POS-tag/action embedding
- 3-layers attention structure
- 0.2 dropout rate
- 8 beam size

Main Results

	PTB-SD				СТВ			
Parser	Dev		Test		Dev		Test	
	UAS	LAS	UAS	LAS	UAS	LAS	UAS	LAS
Z&N11	-	-	93.00	90.95	-	-	86.00	84.40
C&M14	92.20	89.70	91.80	89.60	84.00	82.40	83.90	82.40
ConBSO	-	-	91.57	87.26	-	-	-	-
Dyer15	93.20	90.90	93.10	90.90	87.20	85.90	87.20	85.70
Weiss15	-	-	93.99	92.05	-	-	-	-
K&G16	-	-	93.99	91.90	-	-	87.60	86.10
DENSE	94.30	91.95	94.10	91.90	87.35	85.85	87.84	86.15
seq2seq	92.02	89.10	91.84	88.84	86.21	83.80	85.80	83.53
Our model	93.65	91.52	93.71	91.60	87.28	85.30	87.41	85.40
Ensemble	94.24	92.01	94.16	92.13	88.06	86.30	87.97	86.18

Additional Results

	De	ev	Test		
	UAS	LAS	UAS	LAS	
Our model	93.65	91.52	93.71	91.60	
-pretraining	93.19	90.92	93.22	91.11	
-POS	92.73	89.86	92.57	90.05	
-s vector	93.18	90.68	93.02	90.89	
-r vector	93.16	90.90	93.27	91.02	

Additional Results

	De	ev	Test		
	UAS	LAS	UAS	LAS	
seq2seq	92.02	89.10	91.84	88.84	
l=1	92.85	90.44	92.70	90.40	
l=2	93.30	91.13	93.21	90.98	
l=3	93.65	91.52	93.71	91.60	
l=4	93.49	91.29	93.42	91.24	

Conclusion

- Vanilla seq2seq parsing model lack structural information.
- Multi-layer Attention is effective.
- Encoder-Decoder parsing model is not good enough.

Thank you!

Q&A