Relational Algebra and SQL

Slides by:

Joe Hellerstein

hellerstein@berkeley.edu

A bit of computing history

- Pre-1969: databases were more like data structures
 - > i.e. hackery
- > 1969: E.F. Codd's relational model and languages
 - > A mathematical abstraction, independent of data structures
 - 1. Mathematical relations with typed attributes
 - 2. A Relational Algebra of simple operations on relations
 - > In the spirit of abstract algebra (groups, rings, fields, etc)
 - > Inspired functional libraries like **Pandas**
 - 3. A Relational Calculus of truth expressions over relations
 - Inspired declarative languages like SQL, Datalog

Historical Perspective

1969: Cc	odd's T	heorem

- > 1974: IBM System R and Berkeley Ingres research projects begin
- 1979: Oracle released first commercial SQL system > for DEC Vax minicomputer
- > 1981: Ted Codd receives Turing Award
- > 1983: IBM DB2 released for MVS mainframe
- 1984-87: Teradata, Informix SQL and Sybase released
- > 1988: Berkeley Postgres project begins

- 1989: Microsoft SQL Server released (derived from Sybase)
- 1992: First meaningful SQL standard
 - 1995: PostgreSQL released ("Postgres 95"), MySQL released
- 2000: Sqlite released
- 2004: Google MapReduce paper
- 2010: Apache Hive (SQL on Hadoop) released
- 2012: Pandas library popularized

Consider two domains D_1 , D_2

Can define a finite $\mathbf{set} \ \mathbb{S} \subseteq D_1$

E.g.

$$D_1 = \mathbb{R}, D_2 = \mathbb{Z}$$

$$S = \{4.2, 3.6\}$$

Consider two domains D_1 , D_2

Can define a finite **set** $S \subset D_1$

Consider the domain $D_1 \times D_2$

Can define a finite **relation** $R \subset D_1 \times D_2$

Each element of R is a *tuple*

E.g.

$$D_1 = \mathbb{R}, D_2 = \mathbb{Z}$$

$$S = \{4.2, 3.6\}$$

$$\mathbb{R} \times \mathbb{Z}$$

$$R = \{(4.2, 6), (3.6, 6), (4.2, 1)\}$$

Consider two domains D_1 , D_2

Can define a finite **set** $S \subset D_1$

Consider the domain $D_1 \times D_2$

Can define a finite **relation** $R \subset D_1 \times D_2$

Each element of R is a tuple

A **function** $F \subset D_1 \times D_2$ is a relation such that $((x, y) \in F \land (x, z) \in F) \Rightarrow y = z$

We can say that the value in the second position is functionally dependent on the value in the first.

E.g.

$$D_1 = \mathbb{R}, D_2 = \mathbb{Z}$$

$$S = \{4.2, 3.6\}$$

$$\mathbb{R} \times \mathbb{Z}$$

$$R = \{(4.2, 6), (3.6, 6), (4.2, 1)\}$$

$$F = \{(4.2, 6), (3.6, 6)\}$$

Consider two domains D_1 , D_2

Can define a finite **set** $S \subset D_1$

Consider the domain $D_1 \times D_2$

Can define a finite **relation** $R \subset D_1 \times D_2$

Each element of R is a tuple

A **function** $F \subset D_1 \times D_2$ is a relation such that $((x, y) \in F \land (x, z) \in F) \Rightarrow y = z$

We can say that the value in the second position is functionally dependent on the value in the first.

Consider a relation R2 \subset $D_1 \times D_2 \times D_3 \times D_4$

E.g.

$$D_1 = \mathbb{R}, D_2 = \mathbb{Z}$$

$$S = \{4.2, 3.6\}$$

 $\mathbb{R} \times \mathbb{Z}$

 $R = \{(4.2, 6), (3.6, 6), (4.2, 1)\}$

 $F = \{(4.2, 6), (3.6, 6)\}$

R2 = {(4.2, 6, red,
$$\stackrel{•}{•}$$
), (3.6, 6, blue, $\stackrel{•}{•}$)

Isn't this just Vectors and Matrices?

A finite set could be encoded as an (infinite, sparse) boolean vector over the domain values

Consider the domain $D_1 \times D_2$

A finite relation could be encoded as an (infinite, sparse) boolean matrix over the values of $D_1 \times D_2$

```
E.g.
```

Concerns?

Possible concerns

- \blacktriangleright Matrix/vector notation won't work nicely with continuous domains like $\mathbb R$
- Linear algebra may not provide the operations we want in a natural way.
 - E.g. union, intersection, predicates...
- Notation could become unwieldy
 - Finite Sets/Relations are typically sparse
 - > End up representing non-zero entries as tuples anyhow!

By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, increases the mental power of the race.

-Alfred North Whitehead

Keep a lot of tools in your toolbox

Relational Terminology

- Database: Set of Relations
- Relation (Table):
 - Schema (metadata)
 - > A unique name for the relation
 - \succ A list of k distinct Attribute names, each associated with a type.
 - > Optional constraints (key constraints)
 - Instance (data)
 - Set of k-tuples satisfying the schema
- Attribute (Column, Field)
- Tuple (Row, Record)

The schema of a database is the set of schemas of its relations.

Boat Club Schema

```
sailors(sid integer, sname text, rating integer, age float)
```

boats(bid integer, bname text, color text)

reserves(<u>sid</u> integer, <u>bid</u> integer, <u>day</u> date)

Boat Club Example Instances

Boats

<u>bid</u>	bname	color
101	Interlake	blue
102	Interlake	red
104	Marine	red
103	Clipper	green

Note: primary keys <u>underlined</u>

R1

<u>sid</u>	<u>bid</u>	<u>day</u>
22	101	10/10/16
58	103	11/12/96

S1

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S2

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Why learn Relational Algebra

- Intuitive for programmers
 - Imperative: apply this, then apply that
 - Set-oriented: no need for for-loops, low-level reasoning
- Basis of functional libraries like Pandas
 - Pandas (over-?) complicates things
 - Nice to have a clean foundation
- Common currency
 - Most data folk know the relational algebra operators

Relational Algebra Preliminaries

Algebra of operators on relational instances

$$\pi_{\text{S.name}}(\sigma_{\text{R.bid}=100 \, \land \, \text{S.rating}>5}(\text{R} \bowtie_{\text{R.sid}=\text{S.sid}} \text{S}))$$

- Closed: result is also a relational instance
 - > Enables rich composition!
- > Typed: input schema and operator determines output
 - Why is this important?
- Pure relational algebra has set semantics
 - > No duplicate tuples in a relation instance
 - vs. SQL, which has multiset (bag) semantics

Relational Algebra Operators

<u>Unary Operators:</u> operate on **single** relation instance

- \triangleright **Projection (\pi):** Retains only desired columns (vertical)
- \triangleright **Selection** (σ): Selects a subset of rows (horizontal)
- \triangleright **Renaming (** ρ **):** Rename attributes and relations.

Binary Operators: operate on **pairs** of relation instances

- \triangleright Union (\cup): Tuples in r1 or in r2.
- \triangleright Intersection (\cap): Tuples in r1 and in r2.
- > **Set-difference** (): Tuples in r1, but not in r2.
- Cross-product (x): Allows us to combine two relations.
- **▶ Joins (** \bowtie_{θ} , \bowtie **):** Combine relations that satisfy predicates

Projection (π)

Selects a subset of columns (vertical)

Relational Instance \$2

<u>sid</u>	sname	rating	age	sname	
28	yuppy	9	35.0	yuppy	
31	lubber	8	55.5	lubber	
44	guppy	5	35.0	guppy	
58	rusty	10	35.0	rusty	

- Schema determined by schema of attribute list
 - Names and types correspond to input attributes

Projection (π)

Selects a subset of columns (vertical)

$$\pi_{age}(S2)$$

Relo	ational <i>Inst</i>	ance \$2	٨	Multise	t		
<u>sid</u>	sname	rating	age		age		Set
28	yuppy	9	35.0		35.0		age
31	lubber	8	55.5		55.5		35.0
44	guppy	5	35.0		35.0		55.5
58	rusty	10	35.0		35.0		00.0

- > Set semantics > results in fewer rows
 - > SQL systems don't automatically remove duplicates
 - > Mhàs

Selection(σ)

Selects a subset of rows (horizontal)

Selection Condition (Boolean Expression)

Relational Instance **\$2**

<u>sid</u>	sname	rating	age
28	уирру	9	35.0
 31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

- Output schema same as input
- Duplicate Elimination?

Composing Select and Project

Names of sailors with rating > 8

$$\pi_{\text{name}}(\sigma_{\text{rating}>8}(S2))$$

<u>sid</u>	sname	rating	age							
28	yuppy	9	35.0		<u>sid</u>	sname	rating	age		snan
31	lubber	8	55.5		28	уирру	9	35.0		yupp
44	guppy	5	35.0		58	rusty	10	35.0		rusty
58	rusty	10	35.0	$\sigma_{\scriptscriptstyle{ratii}}$	na>8				π_{name}	€

What about:

$$\sigma_{\text{rating}>8}(\pi_{\text{name}}(S2))$$

Invalid types. Input to $\sigma_{\text{rating}>8}$ does not contain rating.

Union (∪)

S1 ∪ **S2**

Two input relations, must be compatible:

- Same number of fields.
- Fields in the same position have same type

Union (∪)

Relational Instance \$1

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Relational Instance **\$2**

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S1 ∪ **S2**

<u>sid</u>	sname	rating	age
22	dustin	7	45
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Duplicate elimination?

Set Difference (-)

S1 - S2

Same as with union, both input relations must be compatible.

Set Difference (-)

Relational Instance \$1

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Relational Instance \$2

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S1 - S2

<u>sid</u>	sname	rating	age
22	dustin	7	45

Symmetric?

$$S2 - S1$$

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
44	guppy	5	35.0

Duplicate elimination?

Not required

S1 ∩ **S2**

Same as with union, both input relations must be compatible.

Relational Instance \$1

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Relational Instance \$2

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S1 ∩ **S2**

<u>sid</u>	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

Is intersection essential?

• Implement it with earlier ops. ?

$$S1 \cap S2 = S1 - ?$$

$$S1 \cap S2 = S1 - ?$$

$$S1 \cap S2 = S1 - (S1 - S2)$$

$$= \begin{bmatrix} S1 \\ - \end{bmatrix} \begin{bmatrix} S1 \\ - \end{bmatrix} \begin{bmatrix} S2 \\ \end{bmatrix}$$

Cross-Product (x)

R1 × S1: Each row of R1 paired with each row of S1

R1:

 sid
 bid
 day

 22
 101
 10/10/96

 58
 103
 11/12/96

X

S1:

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Sometimes also called

Cartesian Product:

 $R1 \times S1$

sid	bid	day	sid	sname	rating	age
22	101	10/10/96	22	dustin	7	45.0
22	101	10/10/96	31	lubber	8	55.5
22	101	10/10/96	58	rusty	10	35.0
58	103	11/12/96	22	dustin	7	45.0
58	103	11/12/96	31	lubber	8	55.5
58	103	11/12/96	58	rusty	10	35.0

How many rows in the result?

|R1|*|R2<u>|</u>

Schema compatibility?

No requirements.

One field per field in original schemas.

What about duplicate names?

Renaming operator

Renaming ($\rho = "rho"$)

Renames relations and their attributes:

R1 × S1 Temp1

sid	bid	day	sid	sname	rating	age	sid1	bid	day	sid2	sname	rating	age
22	101	10/10/96	22	dustin	7	45.0	22	101	10/10/96	22	dustin	7	45.0
22	101	10/10/96	31	lubber	8	55.5	22	101	10/10/96	31	lubber	8	55.5
22	101	10/10/96	58	rusty	10	35.0	22	101	10/10/96	58	rusty	10	35.0
58	103	11/12/96	22	dustin	7	45.0	58	103	11/12/96	22	dustin	7	45.0
58	103	11/12/96	31	lubber	8	55.5	58	103	11/12/96	31	lubber	8	55.5
58	103	11/12/96	58	rusty	10	35.0	58	103	11/12/96	58	rusty	10	35.0

- Relational algebra can also be defined positionally, without names. $\pi_{\rm f5}(\sigma_{\rm f6>f8}(\rm S2))$
- Difficult to read ...

Compound Operator: Join

- Joins are compound operators (like intersection):
 - Cross product followed by selection and possibly projection (for natural join)
- Hierarchy of common kinds:
 - Theta Join (\bowtie_{θ}): join on logical expression θ
 - > Equi-Join: theta join with conjunction equalities
 - ➤ Natural Join (⋈): equi-join on all matching column names
- Note: we should use a join, not a cross-product, if we can! Easier to read, clarifies opportunities for using efficient join algorithms.

Theta Join (\bowtie_{θ}) $R \bowtie_{\theta} S = \sigma_{\theta} (R \times S)$

Example: Pair each sailor with older sailors.

S1:

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Theta Join (\bowtie_{θ}) $R\bowtie_{\theta} S = \sigma_{\theta}(R \times S)$

$$R \bowtie_{\theta} S = \sigma_{\theta} (R \times S)$$

Example: Pair each sailor with older sailors.

S1 × **S1**

S1:

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

	\$1			\$1			
sic	sname	rating	age	sid	sname	rating	age
- 22	dustin	7	45.0	22	dustin	7	45.0
22	dustin	7	45.0	31	lubber	8	55.5
22	dustin	7	45.0	58	rusty	10	35.0
- 31	lubber	8	55.5	22	dustin	7	45.0
31	lubbor	8	55.5	31	lubbor	8	55.5
31	lubber	8	55.5	58	rusty	10	35.0
- 5 8	iusty	10	35.0	22	dustin	7	45.0
- 58	rusty	10	35.0	31	lubber	8	55.5
- 5 8	rusty	10	35.0	58	rusty	10	35.0

Theta Join (\bowtie_{θ}) $R \bowtie_{\theta} S = \sigma_{\theta} (R \times S)$

Example: Pair each sailor with older sailors.

S1:

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

\$1				\$1			
sid	sname	rating	age	sid	sname	rating	age
22	dustin	7	45.0	31	lubber	8	55.5
22	dustin	7	45.0	58	rusty	10	35.0
31	lubber	8	55.5	58	rusty	10	35.0

- Result schema same as that of cross-product.
- Special Case:
 - Equi-Join: theta join with conjunction equalities
 - Special special case Natural Join ...

Natural Join (⋈)

Special case of **equi-join** in which equalities are specified for all matching attributes, and duplicate attributes are projected away

$$R \bowtie S = \pi_{\text{unique attr.}} \sigma_{\text{eq. matching attr.}} (R \times S)$$

- Compute R x S
- Select rows where attributes appearing in both relations have equal values
- Project onto the set of all unique attributes.

Natural Join (\bowtie) $\mathbf{R} \bowtie \mathbf{S} = \pi_{\text{unique attr.}} \sigma_{\text{eq. matching attr.}} (\mathbf{R} \times \mathbf{S})$

Example:

R1:

<u>sid</u>	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

S1:

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

R1 ⋈ S1

sid	bid	day	sid	sname	rating	age
22	101	10/10/96	22	dustin	7	45.0
22	101	10/10/96	31	lubbor	0	55.5
22	101	10/10/0/	EO	ri iotiv	10	25.0
58	103	11/12/94	22	ductio	7	45 O
E0	102	11/12/0/	21	li ilala ar	0	
00	100	11/12//0	υı	100001	U	00.0
58	103	11/12/96	58	rusty	10	35.0

Natural Join (\bowtie) $\mathbf{R} \bowtie \mathbf{S} = \pi_{\text{unique attr.}} \ \sigma_{\text{eq. matching attr.}} (\mathbf{R} \times \mathbf{S})$

Example:

R1:

<u>sid</u>	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

S1:

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

R1 ⋈ S1

sid	bid	day	sname	rating	age
22	101	10/10/96	dustin	7	45.0
58	103	11/12/96	rusty	10	35.0

Commonly used for foreign key joins (as above).

Exercise:

Find names of sailors who've reserved boat #103

> Solution 1:

Boats(bid,bname,color)
Sailors(sid, sname, rating, age)
Reserves(sid, bid, day)

$$\pi_{\text{sname}}(\sigma_{\text{bid=103}}(\text{Sailors} \bowtie \text{Reserves}))$$

> Solution 2:

$$\pi_{\text{sname}}$$
(Sailors $\bowtie \sigma_{\text{bid}=103}$ (Reserves))

Exercise:

Find names of sailors who've reserved a red boat

> Solution 1:

Boats(bid,bname,color)
Sailors(sid, sname, rating, age)
Reserves(sid, bid, day)

$$\pi_{\mathsf{sname}}(\sigma_{\mathsf{color='red'}}(\mathsf{Boats}) \bowtie \mathsf{Res} \bowtie \mathsf{Sailors})$$

> More "efficient" Solution 2:

$$\pi_{\text{sname}}(\pi_{\text{sid}}(\pi_{\text{bid}}(\sigma_{\text{color='red'}}(\text{Boats})) \bowtie \text{Res}) \bowtie \text{Sailors})$$

In general many possible equivalent expressions: algebra...

Relational Algebra Rules

> Selections:

- $\sigma_{c1,...,cn}(R) \equiv \sigma_{c1}(...(\sigma_{cn}(R))...)$ (cascade)
- $\sigma_{c1}(\sigma_{c2}(R)) \equiv \sigma_{c2}(\sigma_{c1}(R))$ (commute)

> Projections:

• $\pi_{a1}(R) \equiv \pi_{a1}(...(\pi_{a1,...,an-1}(R))...)$ (cascade)

Cartesian Product

- $ightharpoonup R \times (S \times T) \equiv (R \times S) \times T$ (associative)
- $ightharpoonup R \times S \equiv S \times R$ (commutative)
- Applies for joins as well but be careful with join predicates ...

Boats(bid, bname, color)
Sailors(sid, sname, rating, age)
Reserves(sid, bid, day)

Caution with Join Ordering

Consider the following:

Commute and Associate:

Incompatible join predicate:

Boats(bid, bname, color)
Sailors(sid, sname, rating, age)
Reserves(sid, bid, day)

Caution with Join Ordering

Consider the following:

Commute and Associate:

Incompatible join predicate:

More Relational Algebra Rules

Commuting of selection operators

- $\triangleright \sigma_{c}(R \times S) \equiv \sigma_{c}(R) \times S$ (c only has fields in R)
- $\succ \sigma_{c}(R \bowtie S) \equiv \sigma_{c}(R) \bowtie S$ (c only has fields in R)

Commuting of projection operators

- $\succ \pi_{\alpha}(R \times S) \equiv \pi_{\alpha 1}(R) \times \pi_{\alpha 2}(S)$
 - a₁ is subset of a that mentions R and a₂ is subset of a that mentions S
 - Similar result holds for joins

A Standard Extension

 \triangleright Group By / Aggregation Operator (γ):

Yage, AVG(rating) (Sailors)

➤ With selection (HAVING clause):

 $\gamma_{\text{age, AVG(rating), COUNT(*)>2}}(Sailors)$

Recall Codd also had a Relational Calculus

- > A declarative logic language
 - Find all tuples such that the following properties hold ...
 - Says "what" the output should be, not "how" to get it.
- > SQL is based on the relational calculus
 - Even though, under the hood, database engines translate to algebra expressions!

SQL Language

- > Two sublanguages:
 - DDL Data Definition Language
 - > Define and modify schema
 - DML Data Manipulation Language
 - Queries can be written intuitively.
- Relational Database Management System (RDBMS) responsible for efficient evaluation.
 - Choose and run algorithms for declarative queries

We will learn SQL interactively

- > Frontend: psql command line, Jupyter Notebook
- Backend: PostgreSQL