COMPUTER SECURITY

Corso di Laurea Magistrale in Ingegneria Informatica Prof. Alessandro Armando

14 gennaio 2019

Attenzione: Si risponda alle domande utilizzando lo spazio apposito. Tempo per lo svolgimento: 2 ore.

Nome e Cognome:	*
Matricola:	
Matteora.	

1. Crittografia

Il seguente schema crittografico per block encription. Counter è una sequenza di bit arbitraria della stessa lunghezza b dei blocchi di dati e l'operazione di somma è da intendersi modulo 2^b .

(a) Si disegni il corrispondente schema crittografico da usarsi in fase di decifratura.

Soluzione.	
le schame gritte and fine si	

(b) Tale schema crittografico si presta a implementazioni più o meno efficienti rispetto allo schema CBC visto a lezione? Si giustifichi la risposta data.

Soluzione.	
,	
*	
152	
_	
	7

- 2. **Memorizzazione di Password** Un modo per supportare la verifica delle credenziali degli utenti nei sistemi operativi e' quello di memorizzare per ciascun utente le seguenti informazioni:
 - Nome dell'account, ad esempio armando
 - l'hash della password dell'utente.

A tale schema tuttavia se ne preferisce uno che richiede la memorizzazione per ciascun utente le seguenti informazioni:

- Nome dell'account, ad esempio armando
- un numero n, detto salt
- l'hash della concatenazione della password dell'utente con il salt n.

Perche'? Si discuta l'importanza della lunghezza del salt.

Soluzione.				
				•
	k.			
		9	A Maria	

3. Crittografia a Chiave Pubblica Alice deve inviare un file M di grosse dimensioni a Bob (ad esempio un filmato di qualche Gbyte) in modo tale che sia garantita la l'integrità ma non la confidenzialità della trasmissione. Quale tra le seguenti procedure è quella più adatta allo scopo?

Solu	izione.
	Alice calcola ed invia a Bob il ciphertext ottentuto cifrando M con la chiave pubblica di Bob.
	Alice genera un modo (pseudo)casuale una chiave simmetrica K ed invia a Bob il ciphertext ottenuto cifrando M con K.
[Alice genera un modo (pseudo)casuale una chiave simmetrica K ed invia a Bob (1) il ciphertext ottenuto cifrando M con K e (2) il ciphertext ottenuto cifrando K con la chiave pubblica di Bob.
. [Alice genera un modo (pseudo)casuale una chiave simmetrica K ed invia a Bob (1) il ciphertext ottenuto cifrando M con K, (2) K e il ciphertext ottenuto cifrando K con la propria chiave privata.

4. Domanda #2

Si consideri il seguente protocollo:

1. $C \rightarrow AS : C, S, N_C$

2. $AS \to C : AS, \{AS, C, N_C, K_S\}K_{AS}^{-1}$

in cui un client C vuole communicare con un server S avendo la garanzia di farlo effettivamente con S. Siccome C non possiede la chiave pubblica di S, C interpella un Autentication Server AS per ottenerla. Ovviamente si assume che C possegga la chiave pubblica di AS, ovvero K_{AS} .

1	•		
,			
		4	
×-			
4			

,	

(b) Modify the program so to prevent the buffer overflow. Soluzione.	1~	preferably in C) suf	fering from a buffer	overnow.	
	Soluzione.				
(b) Modify the program so to prevent the buffer overflow. Soluzione.					
	2				
	18				
		- 1 TO	<u></u>	9 1 9	
	b) Modify the progr	ram so to prevent the	buffer overflow.		3

6. Access Control

This is a simplified dump for the 1s -1 shell command in the current folder.

```
-r--r--- alice admin 1
-r--r--- bob bob 2
-rw-rw--- charlie charlie 3
-rw-r--- charlie admin 4
---x--x--x alice alice editor
---x--s-- bob admin editor-super
```

Unix users are alice, bob and charlie. root is the system administrator.

The id command for each user returns:

- id alice: uid=1000(alice) gid=1000(alice) groups=1000(alice),1003(admin)
- id bob: uid=1001(bob) gid=1001(bob) groups=1001(bob)
- id charlie: uid=1002(charlie) gid=1002(charlie) groups=1002(charlie),1003(admin)

There are 2 executable files:

- editor lets you open a file with Read and Write capabilities;
- editor-super does the same as editor.

Draw up an access control matrix with subjects {alice, bob, charlie} and objects {1, 2, 3, 4} that shows, for each combination of subject and object, whether the subject will be able to read (**R**), and/or write (**W**) the respective object.

NOTE: root should not appear in the matrix.

ı			