

creases from 100 to 900, average speed decreases and corresponding density increase in flow value, the average speed is decreasing, some time it is remaining conspeed v/s flow plot is straight line and as flow is increasing desity is increasing and to (in speed-density relation); then we will get maximum density = 581.83 veh/km. It speed=0; we will get maximum flow = 25654 veh/hr(very high value, not looking)

of spee	ed v/s de	nsity;				
(It is Not	hing But Fr	ee flow Sp	eed)			
		_				
	ed v/s de					
(It is Not	hing But Ja	m Density)				

e relation, capacity=(free flow * jam density)/4 = (581.83 * 48.75)/4 = 7091 veh/

Speed v/s Flow — Linear(Speed v/s Flow) — 10000				
— Linear(Speed v/s Flow)				
— Linear(Speed v/s Flow)				
— Linear(Speed v/s Flow)				
— Linear(Speed v/s Flow)				
— Linear(Speed v/s Flow)	+			
— Linear(Speed v/s Flow)				
— Linear(Speed v/s Flow)				
— Linear(Speed v/s Flow)				
— Linear(Speed v/s Flow)				
— Linear(Speed v/s Flow)				
— Linear(Speed v/s Flow)				
— Linear(Speed v/s Flow)	-			
— Linear(Speed v/s Flow)				
— Linear(Speed v/s Flow)				
— Linear(Speed v/s Flow)				
— Linear(Speed v/s Flow)	- C-			
	→ Sp	eea v/s rio\	N . / - 5! `	
	— Lir	iear(Speed	v/s Flow)	
	-			
	7			
	000			