Test 1 Solutions

$\begin{array}{c} \text{MICHAEL MIDDLEZONG} \\ \text{6 July 2024} \end{array}$

We claim only n = 7 works. We can verify manually up to n = 11:

$$4? = 6 \neq 2(4) + 16,$$

$$5? = 6 \neq 2(5) + 16,$$

$$6? = 30 \neq 2(6) + 16,$$

$$8? = 210 \neq 2(8) + 16,$$

$$\vdots$$

$$11? = 210 \neq 2(11) + 16.$$

Then, assume $n \ge 12$. By Bertrand's postulate, there exists p satisfying $5 < \frac{n}{2} < p < n$. Thus, since 2, 3, 5, and p are distinct primes less than n, we have

$$n? \ge 2 \cdot 3 \cdot 5 \cdot p > 30 \cdot \frac{n}{2} > 2n + 16,$$

and hence it is impossible for any $n \ge 12$ to satisfy the condition.

The answer is no. Rewrite the equation as $\frac{x!}{y+1} = (y!)^2$. As x gets large enough, Bertrand's postulate tells us that there is a prime p satisfying $\frac{x}{2} . Note that <math>p$ can only divide x! once. Thus, in order for the LHS to be a perfect square, p must divide y+1 exactly once. If $y+1 \geq 2p > x$, the original equation obviously cannot be satisfied because the RHS is larger. Thus, we must have y+1=p.

This holds for any p satisfying $\frac{x}{2} . Thus, there must only be one prime between <math>\frac{x}{2}$ and x. Nagura's result tells us that if x > 25, there will always be a prime between $\frac{x}{2}$ and $\frac{6}{5} \cdot \frac{x}{2}$ and a prime between $\frac{5}{6} \cdot x$ and x. Thus, the original equation cannot hold after x exceeds a finite value, and since there is obviously at most one solution for y for each x, there must be finitely many solutions to the original equation.

Note: I was unfortunately unable to solve the problem without resorting to this somewhat obscure result. :(

I got that $\varphi(n)$ is a power of 2 iff $n=2^ap_1p_2\dots p_k$, where $a\geq 0$ and each p_i is a distinct prime that is one more than a power of 2. Not sure how to continue...