Advanced Manufacturing

Or the making of embodied energy

Jimmy Jia

jimmy@jimmyjia.com

Last Edit: April 14, 2019

This work is licensed under a <u>Creative Commons</u>
Attribution 4.0 International License

Agenda

AM

- Presentations
- Food and Agriculture

PM

- Advanced Manufacturing
- Course Summary
- General Q&A once done

Energy Consumed

Manufacturing and Economy

In 2012, U.S. manufacturing was responsible for:

- 12.5% of GDP;
- Direct employment for about 12 million people;
- Close to 75% of U.S. exports of goods;
- Production of 17% of the world's manufacturing output; and
- 25% of U.S. energy use.

Source: U.S. Department of Energy

What is Advanced Manufacturing?

- Conscious Raw Material Process (eg. carbon footprint)
- Design (eg. Computer Aided Design (CAD))
- Planning & Control (eg. Six Sigma, Lean)
- Technology (eg. automated equipment)
- Workforce (eg. highly skilled workers)
- Customer Satisfaction (eg. relationships, needs)
- Renew, Recycle, Reuse (eg. reduce waste)

How to build things

Additive

Subtractive

How to build things

Additive – 3D Printing

Subtractive – "CNC" Computer Numerical Control

How to build things

Molded

Extruded

Two inventions that changed the world

Watt's Steam Engine

Jaquard's Loom

Punch-card technology ...

...to automation!

Energy of Manufacturing

Table 3. Importance of location factors for location decisions from the perspective of all manufacturing companies.

Driver	Score, 1–10
Talent-driven innovation*	9.22
Cost of labor and materials	7.67
Energy costs	7.31
Economic, trade, financial, and tax systems*	7.26
Infrastructure quality*	7.15
Investment in manufacturing and innovation*	6.62
Legal and regulatory system*	6.48
Supplier network	5.91
Local business dynamics	4.01
Health care*	1.81

Source: Data from Deloitte Manufacturing Competitiveness Index (Deloitte Council on Competitiveness 2010).

^{*} Factor is relatively movable through public policy, as opposed to broader market factors.

Energy Use in the Manufacturing Sector

U.S. Manufacturing Sector (TBtu), 2010

Process Energy in Manufacturing Sector

Process Energy (TBtu), 2010

Process Energy in Manufacturing Sector

Bandwidth Studies: Energy Savings Potentials

Current opportunities represent energy savings that could be achieved by deploying the most energy-efficient commercial technologies available worldwide. R&D opportunities represent potential savings that could be attained through successful deployment of applied R&D technologies under development worldwide

AMO: September 2015

Lean = Eliminating Waste

Typically 95% of all lead time can be non-value-added.

What is Pollution Prevention (P2)?

Pollution prevention consists of any activity or strategy that

- eliminates or reduces the use of toxic substances;
- conserves water or energy; and/or,
- reduces (or better yet, eliminates) the generation of nonproductive output, hazardous waste, air emissions, wastewater, or other pollutants.

Buzzwords Relating to P2

Zero-Waste
Source Reduction
Sustainability

Material Use – Spray Efficiency

- Reassigned labor
- \$1400 in disposal
- 28,000 pounds overspray

- » Reduced variability from ±13 lbs/unit to ±4 lbs/unit (69%)
- » Reduced overspray
- » Stronger products (more resin on the product)

Efficient Material Use Saves \$35k/year in

- landfill costs
- purchase volume of core panels

Requested supplier to provide different size stock

Defects

Before After

- Better ergonomics
- In-Line (reduced travel)
- Improved lighting
- Changes reduced cost of rework by \$208,000/yr

Former Status Quo: Products Invented Here, And Made Elsewhere

Why Was That?

- Lower labor cost particularly important for labor intensive industries – and less labor hassle
- Sometimes lower energy costs
- Reduced environmental regulation and regulatory enforcement
- Outsourcing/off-shoring for business and product flexibility
- Other?

But Change is Happening

Re-shoring/on-shoring because of:

- Lower energy prices
- Dissatisfaction with remote supply chain experience

New businesses and industries starting here because of:

- Great research universities and public and private labs
- National and local investment in R&D
- Improved political/governmental support climate for business investments

So What is the Situation?

Manufacturing in the U.S. is changing

- Less labor dollar input per dollar value of output
 - Higher value materials
 - More work done by machines
- Increasingly requiring skilled technicians

But there are still a lot of old facilities, processes and equipment, with implications for:

- Labor
- Capital
- Energy

DOE QTR: Manufacturing Technology

What Does Success Look Like?

Break