

Assignment 2-Probability and Statistics

Probability and statitics (National University of Computer and Emerging Sciences)

Q No 1: With reference to the Q No 1 of the Assignment no 1.

i. Find its mean, median, mode and Geometric Mean.

ANS:

Data: 33,31,28,15,17,17,16,18,16,18,25,31,27,30,29,33,28,20,22,23,30,36,37,27,33,28,31,29,32 31,22,25,35,19,21,24,30,26,37,27,31,29,34,21,23,25,35,26,38,27.

Class	Frequenc	Mid(x	C.B	Cumulative	F.x	F.log(x)
	У)		Frequency		
15-18	7	16.5	14.5-18.5	7	115.5	8.52
19-22	6	20.5	18.5-22.5	13	123	7.87
23-26	8	24.5	22.5-26.5	21	196	11.11
27-30	13	28.5	26.5-30.5	34	370.5	18.91
31-34	10	32.5	30.5-34.5	44	325	15.12
35-38	6	36.5	34.5-38.5	50	219	9.37
	$\sum f = 50$				$\sum f(x) = 1349$	$\sum flog(x) = 70.9$

> Mean =
$$\frac{\sum f(x)}{\sum f}$$
 = 1349/50 = 26.98
> Median = $l + \frac{h}{f} \left(\frac{n}{2} - c \right)$ = 26.5 + $\frac{4}{13} \left(\frac{50}{2} - 21 \right)$ = 27.73
 f
> Mode = $\frac{\left(f_m - f_{m-1} \right) + \left(\frac{1}{6} m - f_{m+1} \right) \times h = 26.5 + \frac{13 - 8}{(13 - 8) + (13 - 10)} \times 4}{l + \frac{f_m - f_{m-1}}{6}}$
> Log G.M = $\frac{\sum flog(x)}{\sum f}$ = $\frac{70.9}{50}$ = 10 x 1.418 = 14.18

ii. Show the relation among median, fifth decile, 50th percentile and second quartile.

ANS:

> 5th decile =
$$l + \frac{h}{f} \left(\frac{5 \times n}{10} - c \right) = 26.5 + \frac{4}{13} \left(\frac{5 \times 50}{10} - 21 \right) = 27.73$$

> 50th percentile=
$$l + \frac{h}{f} \left(\frac{50 \times n}{100} - c \right) = 26.5 + \frac{4}{13} \left(\frac{50 \times 50}{100} - 21 \right) = 27.73$$

> Second quartile =
$$l + \frac{h}{f} \left(\frac{2 \times n}{4} - c \right) = 26.5 + \frac{4}{13} \left(\frac{2 \times 50}{4} - 21 \right) = 27.73$$

➤ Median = 5th decile = 50th percentile = 2nd quartile.

iii. Represent part(ii) graphically and compare with part(ii).

iv. Calculate the absolute and relative measure of dispersion using semi interquartile range.

ANS:

> 3rd Quartile =
$$l + \frac{h}{f} \left(\frac{3 \times n}{4} - c \right) = 22.5 + 0.5 \left(\frac{3 \times 50}{4} - 34 \right) = 24.25$$

> 1st Quartile =
$$l + \frac{h}{f} \left(\frac{1 \times n}{4} - c \right) = 14.5 + 0.5 \left(\frac{1 \times 50}{4} - 7 \right) = 17.63$$

> Semi-interquartile range =
$$\frac{24.25-17.63}{2}$$
 = 3.31

v. What is the Co-efficient of Skewness? Also interpret your result.

ANS:

Frequency	MidPoint(x)	F(x-mean) ²	
7	16.5	768.81	
6	20.25	251.94	
8	24.5	49.2	
13	28.5	30.04	
10	32.5	304.704	

6	36.5	543.78
∑f=50		∑f(x-mean)²

$$Std = \sqrt{\frac{\sum f(x - mean)2}{\sum f}} = 6.24$$

Formula 1:

$$\mathbf{S}_{k} = \frac{3(mean - median)}{Std} = \frac{3(26.98 - 27.73)}{6.24} = -0.36$$

■ Formula 2:

$$\mathbf{S}_{k} = \frac{mean - mode}{Std} = \frac{26.98 - 27.83}{6.24} = -0.136$$

■ Formula 3:

$$\mathbf{S}_{k=}$$
 $\frac{Q3+Q1-2(Q2)}{Q3-Q1}$ = $\frac{24.25+17.63-2(27.72)}{24.25-17.63}$ = -2.04

- vi. What can you conclude about the shape of this data? Explain your reasoning.
- vii. Repeat part(i) in R.
 - a. Mean: 26.92

data <-

c(33,31,28,15,17,17,16,18,16,18,25,31,27,30,29,33,28,20,22,23,30,36,37,27,33,28,31,29,32,31,22,25,35,19,21,24,30,26,37,27,31,29,34,21,23,25,35,26,38,27)
mean(data)

b. Median: 27.5

data <-

c(33,31,28,15,17,17,16,18,16,18,25,31,27,30,29,33,28,20,22,23,30,36,37, 27,33,28,31,29,32,31,22,25,35,19,21,24,30,26,37,27,31,29,34,21,23,25,3 5,26,38,27)

median(data)

c. Mode: 31

data <-

c(33,31,28,15,17,17,16,18,16,18,25,31,27,30,29,33,28,20,22,23,30,36,37,27,33,28,31,29,32,31,22,25,35,19,21,24,30,26,37,27,31,29,34,21,23,25,35,26,38,27)

getmode <- function(v) {

+ uniqv <- unique(v)

+ uniqv[which.max(tabulate(match(v, uniqv)))]

+ }

> getmode(data)

d. GM:

data <c(33,31,28,15,17,17,16,18,16,18,25,31,27,30,29,33,28,20,22,23,30,36,37, 27,33,28,31,29,32,31,22,25,35,19,21,24,30,26,37,27,31,29,34,21,23,25,3 5,26,38,27)

geometric.mean(data)

Q No 2: The following scores represent the final examination grade for an elementary statistics course:

23 60 79 32 57 74 52 70 82 36 80 77 81 95 41 65 92 85 55 76 52 10 64 75 78 25 80 98 81 67 41 71 83 54 64 72 88 62 74 43 60 78 89 76 84 48 84 90 15 79 34 67 17 82 69 74 63 80 85 61

i. Find the median, mode, Quartile and Std Deviation.

• Mean =
$$\frac{\sum f(x)}{\sum f}$$
 = 3929/60 = 65.48

• Median =
$$\frac{71+72}{2}$$
 = 71.5

• Mode = 74.80
• 1st Quartile =
$$\frac{54+55.5}{2}$$
 = 54.75

•
$$2^{nd}$$
 Quartile = $\frac{71+72}{2}$ = 71.5

•
$$3^{rd}$$
 Quartile = $\frac{80+80.5}{2}$ = 80.25

• Std=
$$\sqrt{\frac{\sum f(x-mean)2}{\sum f}}$$

 $\sum (x-mean)^2 = 3078.03 + 2548.23 + 2350.31 + 1804.55 + 1638.63 + 1120.91 +$ 990.09 + 869.07+599.27+599.27+505.35+305.55+181.71+181.71+131.79+ 109.83+71.91+30.03+30.03+20.07+12.11+6.15+2.19+2.19+0.23+2.31+2.31 +12.39+20.43+30.47+42.51+72.59+72.59+72.59+90.63+110.67+110.67 +132.71+156.76+156.76+182.79+182.79+210.83+210.83+210.83+240.87+ 240.87+272.91+272.91+306.95+342.99+342.99+381.03+381.03+507.15+553.19 601.23+703.31+871.43+1057.55 = 26350.96

$$\sqrt{\frac{26350.96}{60}} = 20.96$$

ii. Make a grouped frequency distribution of this data and again calculate mean, median, mode, Quartiles and Std Dev.

ANS:

Number of Class =
$$k=1+3.3\log(60) = 7$$

Range =
$$h = 98-10 / 7 = 13$$

Class	Frequenc	MidPoints(x)	C.B	F(x)	Cumulative	F(x-mean) ²
	у				Frequency	
10-22	3	16	9.5-22.5	48	3	7449.09
23-35	4	29	22.5-35.5	116	7	5425.796
36-48	5	42	35.5-48.5	210	12	2839.34
49-61	8	55	48.5-61.5	440	20	938.31
62-74	14	68	61.5-74.5	952	34	65.92
75-87	20	81	74.5-87.5	1620	54	4602.58
88-100	6	94	87.5-100.5	564	60	4761.29
	∑f=60			∑f(x)=395 0		∑=26082.33

> Mean =
$$\frac{\sum f(x)}{\sum f}$$
 = 3950/60 = 65.83
> Median = $l + \frac{h}{f} \left(\frac{n}{2} - c \right)$ = 70.76

$$ightharpoonup$$
 Median = $l + \frac{h}{f} \left(\frac{n}{2} - c \right)$ = 70.76

> 1st Quartile =
$$l + \frac{h}{f} \left(\frac{1 \times n}{4} - c \right) = 53.375$$

$$ightharpoonup 2^{\text{nd}} \text{ Quartile} = l + \frac{h}{f} \left(\frac{2 \times n}{4} - c \right) = 70.76$$

> 3rd Quartile =
$$l + \frac{h}{f} \left(\frac{3 \times n}{4} - c \right) = 81.65$$

> Std=20.84

iii. Compare your results of part (i) and part(ii), also comment on your results.

Mean(i)=65.58,(ii)= 65.83 difference of 0.52

$$Mode(i)=74.80,(ii)=78.4$$
.

Median(i)=71.5,(ii)= 70.76 difference of 0.74

Std(i)=20.96,(ii)= 20.84 difference of 0.12

Q1,Q2,Q3 have very little difference.

Overall results are very close to each other.

- iv. Find the mean, median, mode and std deviation through R.
 - a. Mean: 65.4833

data <-c(23 60 79 32 57 74 52 70 82 36 80 77 81 95 41 65 92 85 55 76 52 10 64 75 78 25 80 98 81 67 41 71 83 54 64 72 88 62 74 43 60 78 89 76 84 48 84 90 15 79 34 67 17 82 69 74 63 80 85 61)

mean(data)

b. Median: 71.5

data <-c(23 60 79 32 57 74 52 70 82 36 80 77 81 95 41 65 92 85 55 76 52 10 64 75 78 25 80 98 81 67 41 71 83 54 64 72 88 62 74 43 60 78 89 76 84 48 84 90 15 79 34 67 17 82 69 74 63 80 85 61)

median(data)

c. Mode: 74

data <-c(23 60 79 32 57 74 52 70 82 36 80 77 81 95 41 65 92 85 55 76 52 10 64 75 78 25 80 98 81 67 41 71 83 54 64 72 88 62 74 43 60 78 89 76 84 48 84 90 15 79 34 67 17 82 69 74 63 80 85 61)

```
getmode <- function(v) {
+ uniqv <- unique(v)
+ uniqv[which.max(tabulate(match(v, uniqv)))]
+ }
> getmode(data)
```

d. Std: 21.133

data <-c(23 60 79 32 57 74 52 70 82 36 80 77 81 95 41 65 92 85 55 76 52 10 64 75 78 25 80 98 81 67 41 71 83 54 64 72 88 62 74 43 60 78 89 76 84 48 84 90 15 79 34 67 17 82 69 74 63 80 85 61)

sd(data);

v. Define Skewness of the data set:

Skewness = mean - mode = 65.83 - 78.4 = -12.57

Q NO 3: A study of the effect of smoking on sleep patterns is conducted. The measure observed is the time, in minutes, that it takes to fall sleep. These data are obtained:

Smokers = 69.3 56.0 22.1 47.6 53.2 5.2.7 34.4 60.2 43.8 23.2 13.8

Non-Smokers = 28.6 25.1 26.4 34.9 28.8 28.4 38.5 30.2 30.6 31.8 41.6 21.1 36.0 37.9 13.9

i. By calculating mean for each data, which group do you think have better asleep time taken and why?

Smokers: Mean=43.7

Non-Smokers: Mean=30.25

As mean of non-smokers is less than the smokers so they have better asleep time

taken.

ii. Calculate std dev, variance and co-efficient of variations for each group and compare them.

Std Dev(Smokers)= 16.21

Variance(Smokers) = 262.67

Co-efficient of variance(Smokers) = 37.1

Std Dev(Non-Smokers)= 6.89

Variance(Non-Smokers)= 47.54

Co-efficient of variance(Non-Smokers)= 22.78

Smokers have greater std dev, variance and co-efficient than non smokers.

iii. Which of them have greater relative dispersion and why?

Smokers have greater value of dispersion as smokers have greater mean and std dev.

iv. Do part(iii) in R.

Smokers

a. Std: 16.93

data <-c(69.3 56.0 22.1 47.6 53.2 5.2.7 34.4 60.2 43.8 23.2 13.8)

sd(data)

b. Variance: 286.55

data <-c(69.3 56.0 22.1 47.6 53.2 5.2.7 34.4 60.2 43.8 23.2 13.8)

var(data)

c. Co-efficient: 38.7

data <-c(69.3 56.0 22.1 47.6 53.2 5.2.7 34.4 60.2 43.8 23.2 13.8) sd(data)/ var(data) * 100

Non-Smokers

d. Std: 7.14

data <-c(28.6 25.1 26.4 34.9 28.8 28.4 38.5 30.2 30.6 31.8 41.6 21.1 36.0 37.9 13.9)

sd(data)

e. Variance: 50.95

data <-c(28.6 25.1 26.4 34.9 28.8 28.4 38.5 30.2 30.6 31.8 41.6 21.1 36.0 37.9 13.9)

var(data)

f. Co-efficient: 23.6

data <-c(28.6 25.1 26.4 34.9 28.8 28.4 38.5 30.2 30.6 31.8 41.6 21.1 36.0 37.9 13.9) sd(data)/ var(data) * 100

Q.NO.4 Source(a)

Frequency	MidPoints(x)	C.B	F(x)	Cumulative	F(x-mean) ²
				Frequency	
40	1010	1000-1020	40400	40	99600.4
96	1030	1020-1040	98880	136	85824.96
364	1050	1040-1060	382200	500	37675.64
372	1070	1060-1080	398040	872	37947.72
85	1090	1080-1100	92650	957	77010.85
43	1110	1100-1120	47730	1000	107930.43
∑f=1000			∑f(x)=105990 0		Σ=44390

Mean =
$$\frac{\sum f(x)}{\sum f}$$
 = 1060
1st Quartile = $l + \frac{h}{f} \left(\frac{1 \times n}{4} - c \right)$ = 1046.26
3rd Quartile = $l + \frac{h}{f} \left(\frac{3 \times n}{4} - c \right)$ = 1073.44

Source(b)

Frequency	MidPoints(x)	C.B	F(x)	Cumulative	F(x-mean) ²
				Frequency	
339	1035	1030-1040	350865	339	21595.68
136	1045	1040-1050	142120	475	31256.28
25	1055	1050-1060	26375	500	665.64
20	1065	1060-1070	21300	520	468.51
130	1075	1070-1080	139750	650	28629.33
350	1085	1080-1090	379750	1000	215958.90
∑f=1000			∑f(x)=106016		∑=491574

	•	
	()	1
	U	

$$ightharpoonup$$
 Mean = $\frac{\sum f(x)}{\sum f}$ = 1060

> 1st Quartile =
$$l + \frac{h}{f} \left(\frac{1 \times n}{4} - c \right) = 1037.37$$

> 3rd Quartile =
$$l + \frac{h}{f} \left(\frac{3 \times n}{4} - c \right)$$
 = 1082.86