

Netrokona University

Department of Computer Science and Engineering

Laboratory Report - 03

Newton-Raphson Method Implementation

Course: CSE-3212 (Numerical Methods Lab)

Submitted By:

Name: Eyasir Ahamed

Class Roll: 15 Exam Roll: 413

Reg. No: 202004017

Submitted To:

Dr. A F M Shahab Uddin

Assistant Professor
Dept. of CSE
Jashore University of Science &
Technology

Contents

1	Introduction	2
2	Theory 2.1 Formula and Derivation	2 2 2
3	Algorithm Design	2
4	Worked Example 4.1 Problem Definition	2 2
5	C++ Implementation	3
6	Results and Analysis 6.1 Execution Output	3 3
7	Discussion	3
8	Conclusion	4

1 Introduction

The Newton–Raphson method is a root-finding technique that uses tangent-line approximations to rapidly converge on a solution. It typically exhibits quadratic convergence when conditions are met.

2 Theory

2.1 Formula and Derivation

Starting with the Taylor series approximation at x_n :

$$0 \approx f(x_n) + (x_{n+1} - x_n)f'(x_n) \Rightarrow x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

2.2 Convergence Requirements

- Derivative non-zero: Requires $f'(x_n) \neq 0$ at each iteration to avoid division by zero and ensure a valid update step.
- Quadratic convergence: Exhibits quadratic convergence—meaning the error roughly squares each step—when the initial guess x_0 is sufficiently close to a simple root.

3 Algorithm Design

Algorithm 1 Newton-Raphson Method

Require: Initial guess x_0 , function f, derivative f', tolerance ϵ , maximum iterations N Ensure: Approximate root x or failure message

- 1: for $n \leftarrow 0$ to N 1 do
- 2: Compute $f_n \leftarrow f(x_n)$ and $f'_n \leftarrow f'(x_n)$
- 3: Update $x_{n+1} \leftarrow x_n \frac{f_n}{f'_n}$
- 4: Calculate error: $err \leftarrow \left| \frac{x_{n+1} x_n}{x_{n+1}} \right|$
- 5: **if** $err < \epsilon$ or $|f(x_{n+1})| < \epsilon$ **then**
- 6: return x_{n+1}
- 7: end if
- 8: end for
- 9: return "Method did not converge within the maximum iterations"

4 Worked Example

4.1 Problem Definition

$$f(x) = x^3 - 2x^2 + x - 3$$
, $f'(x) = 3x^2 - 4x + 1$

Use initial guess $x_0 = 2$, tolerance $\epsilon = 10^{-6}$, and maximum 20 iterations.

5 C++ Implementation

```
#include <iostream>
2 #include <iomanip>
3 #include <cmath>
4 using namespace std;
6 double f(double x) { return x * x * x - 2 * x * x + x - 3; }
7 double df(double x) { return 3 * x * x - 4 * x + 1; }
  int main() {
      double x = 2.0, tol = 1e-6, err;
      int maxIter = 20;
      cout << fixed << setprecision(7);</pre>
      cout << "Iteruux_nuuuuuuf(x_n)uuuuuux_{n+1}uuuuError\n";
13
      for (int i = 1; i <= maxIter; ++i) {</pre>
14
           double fx = f(x), dfx = df(x);
           if (fabs(dfx) < 1e-12) {
                cout << "Zero derivative. Stop. \n";
                return 1;
           }
19
           double x1 = x - fx / dfx;
           err = fabs((x1 - x) / x1);
           cout << i << " _{\Box\Box\Box\Box} " << x << " _{\Box\Box\Box} " << fx << " _{\Box\Box\Box} " << x1
               << "uuu" << err << "\n";
           if (err < tol) {</pre>
23
                cout << "\nConverged_{\sqcup}to_{\sqcup}" << x1 << "_{\sqcup}in_{\sqcup}" << i << "_{\sqcup}
24
                   iterations.\n";
                return 0;
           }
           x = x1;
      cout << "Did_not_converge_within_" << maxIter << "_iterations
          .\n";
      return 1;
30
31 }
```

Listing 1: Newton–Raphson for $x^3 - 2x^2 + x - 3$

6 Results and Analysis

6.1 Execution Output

7 Discussion

The method converged in just 4 iterations—showing the expected **quadratic convergence**. The derivative stayed well-behaved throughout, avoiding numerical pitfalls.

```
f(x n)
                               x {n+1}
Iter
                                            Error
      x n
                                 2.2000000
                   -1.0000000
1
      2.0000000
                                              0.0909091
2
      2.2000000
                   0.1680000
                                2.1750000
                                             0.0114943
3
      2.1750000
                   0.0028594
                                2.1745595
                                             0.0002025
4
      2.1745595
                   0.000009
                                2.1745594
                                             0.000001
Converged to 2.1745594 in 4 iterations.
```

Figure: Program Output

8 Conclusion

Newton–Raphson effectively solved the equation $x^3 - 2x^2 + x - 3 = 0$, finding the root $x \approx 2.1745595$ in four iterations. Its speed makes it ideal for smooth functions with accessible derivatives, though care is needed with initial guesses and potential flat derivatives.