1 semana PU.	10001000	-D Drai	1116	101	X	+	1.7	4	U	>	011	da
1 semuna r U.	Tapasa cas.	- 77101	W CC	-101	X	+	X					
X U 0 (05to.	10				X &	Ŧ	¥					
C x semanu -	> blos abreste				V		X					
DIQj - vende	Dij V:							1	101	177	110	119
9 - " garan (1 a"	Por cada vi	ndad	W.	g				V		K		g
Diaj - Ij W.	se regular.	2	0							5		-
7		9)					1		Y		
MOX. Z Dj (9-	N	7		
0719E	E1 C0510	4							N.		N.	
a	< Presupuesto	THAT	17	98		3	- 2	1118			101	V
N Dia 2	OC .		FG	10		7	37	ηV			4-	19
+	ξP.						-					
0=1 D; 710	10 1.		1							1		
			ĺ.	,								
			1									

		TENE	411	70		177	111	
MIN -X, + X2	6 11 44	7		- N	13	1	1	
S.a. X, + X2 < 4.		146	V V	A.V				
X ₁ + 3X ₂ 7, 6.			-					
X, X, 7, 0.								
a. F.S. MIN - X, + X2								
J.a. X, + X2 + X3 = 4								
X, +3X2 - X4 = 6				-				
X; 7014 54.								
Hay que anady v. art.								
ease 1.								
MIh X, + X2 /								
S.a. X, + X2 + X3 = 4								
X, +3x2 - X4 + X5 = 6						13		
X, 70 16 is 5.								
A = [1								
MIN. Xs	.,	-	10	a	01			
(=10000N] CB=10	1]	CN.	(O	0	9			
Iteración 1: 8 = {3,5} N = {1,2,4}) - [11	0		
8 = [1 0] B = [1 0] 6 1 6 1	[0]				1 3	0		
	X=0							
$G_{B} = B^{-1}b = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$	X = 0 4 0 6							
	16							
o = (B · XB = [0 1] [4] = 6.								
[6]						-		
1= (B=1 = [0 1] [1 0] = [0 1]	WN = [8		-	13	0	=[3

(j = Cn - WN) G = [0 0 0] - [1 3 - 1] = [-1 -3 1] la sol no es MIN(C;) = -3 optima X, entra a la base Ahora veremos quien suley2 = 13 d2 = 10 0 1 x5 sale de la base Iteralion 2: 18:{3,2} N:{1,5,4} (8=[00] (N=[010] $B = \begin{bmatrix} 1 & 1 \\ 0 & 3 \end{bmatrix} \qquad B^{-1} = \begin{bmatrix} 3/3 & -1/3 \\ 0 & 3/3 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} 1 & -1/3 \\ 0 & 1 \end{bmatrix} \qquad A(A - A) = \begin{bmatrix} 1 & 1/3 \\ 0 & 1 \end{bmatrix} \quad A(A - A) = \begin{bmatrix} 1/3 \\ 0 & 1 \end{bmatrix} \quad A(A - A) = \begin{bmatrix} 1/3 \\ 0 & 1 \end{bmatrix}$ to = C8 X8 = [60][8/5] = $W = \binom{8}{8}^{-1} = \binom{6}{9} \binom{1}{1} - \binom{1}{3} = \binom{9}{9}$ WN=[60] [100] = [000] (i = Cu - WN = [@ 1 @] - [@ 0 0 0] = [@ 1 @] - Solución or tima vea que la variable artificial x + 0 entonces el Problema criginal no tiene Solution Factible

a No. Le enmentra dellero de la region Factible, la solvinon factible Puede estar sobre el borde de este poriedro sin necesidad de ser un puntos extremos del polledro son las SULU MONES basicas factilles. 6. Wando uno refuelle un problema sin solución Factible, es decir en la fase 1, la variable artifical va a ser \$0, entonces de anise sable que no es Factille 4 si se procede a hacer la Fase 2 entences puede que se ilegue a una solución optima rero no va a ser valida da do que el problema tiene que tener una sowción optima y un optimo Finito. C. No se comple con el problema de pualdad Debil Dado que si las solvigones factibles del programa dual son una cota superior de las soluciones fautibles del problema P, estaria dando a entender que Wob 7, CXo por 10 que 6 es no regativo pero el reciema de ovalidad debil dice que Para que se compia cx. 71 W.L.

HOLA DE FORMULAS PARLIAL OPTIMILACIÓN	ESTUDIANTE: SOFIA POBAYO BONILLA.
→ Yallables de deusión: X., X2	METODO SIMPLEX.
→ AX≤b.	- POSCIT ICL F.O. a FURMATO ESTANDAY.
→ Maximum=minimum	- SA(ar A, b, C, tomar 18 4 In Lo IDENTIDAD.
→ la designaldad Zin aij X; 7/6; de nota la restricción i.	- ESCRIBO B 45Q CO BT.
→ Generalización:	PRESULTION XB = B b = b PASO A. 20 = Co XB COSTOS NO BASICOS
F.O. MIN. $\sum_{j=1}^{n} C_j X_j$ S.A. $\sum_{j=1}^{n} A_{ij} X_j = b_i$	PRSULIVO C) = CNB - WN - Matrit De W = CBB-L los no basicos Ck = MIN {Cj} - candidata a entrar a la base
* X = [XB]. S. L(FACTIBLE SI XB 700)	SI Y & O STOP - NO TUNE OPTIN SI NO MIN SXRI: YILD OZ FINITU - NO ACUTP
TIBLE TAMBLER SI LOS VALOROS OU X NO CUMPLER SI LOS VALOROS OU X NO CUMPLER LOS PESTICADOS ON PESTICADOS OU ES FACTIBLE, DE 10 CONTIGUIS	El house del min sale de la base
es Factible NXP - P= M S.b. P <m degenerada<="" matrit="" th=""><td>→ Si Cj7, O STOP S.L.F. ES UPTIMOS → SI MIN(Cj) = O La sol. tlene optimos alternosi</td></m>	→ Si Cj7, O STOP S.L.F. ES UPTIMOS → SI MIN(Cj) = O La sol. tlene optimos alternosi
→ L.D. Y, M, t + Yp ap = 0	- SI MINCGIZO SIGO W PASO 3.
Xn= Xn - Eyn	METODO DE LAS DOS FASES
→ mairiz 2x2 inversa:	- 11 10 var de Holgura son regativas Le agrega var artificial.
A - (a b)	si osi que sair, cuando hall el volor optimo en

	DUALIDAD - PRIMAL .
original no there solution	· Formato Estandar de DValldad
Factible. SI Val. art = 0 4 Fulla de la buse, comentar fuse II.	Primul: MIN (X S.a. AX=5 W.N.O. WA! \le C X.Y.O. WA! \le C X.
	primate canonico del dial
→ FOUR II SE EMPLETA CON 18 DE SOI OPTIMA, SACANDO COS VAR. AYT.	Primu: 1000. Wb. Max. Wb. S.a WA' & C X700 W7, 6
12 12 12 12 12 12 12 12 12 12 12 12 12 1	• EI DUAI del Diat es et primal
	relaciones entre variables 4 restricciones min 1 max
1 11 10 10 10 10 10 10 10 10 10 10 10 10	V 7 0 2 E Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
	A 10 10 =
1/2 10 113 173 11 17 17 17 10	PC 7 VA 7, Ø
A METADA DELLACINA DALCE	$\begin{array}{c c} R1 & \leq & \\ CC & \leq & \\ R & \leq & \\ \hline 101 & = & \\ E & COST \\ \end{array}$
	puandaa pebil Cx. 7, W. B
	Cx0 = W16 -> 501. OP+.
	DValidad Fuerte W= CBB-1 W6 = CBB-16 = CBX = (x-0 W: S. OPF. du dwal.
	Holquia complem, son optimus SI (C-WA'))X = O y W(AX-6)=0

U3 4