

Machine Learning:

Predizione del fallimento aziendale

Team:

Cataldo Ferrara

Federico D'Ubaldi

Giuseppe Ponzo

Viviana Di Maio

18 Giugno, 2025

Obiettivo

Prevedere con accuratezza se un'azienda andrà in bancarotta utilizzando tecniche di classificazione avanzate

Focus → ridurre i Falsi Negativi

Pipeline del progetto

Dataset utilizzato

Il dataset, costituito da dati economico-finanziari, presenta un class imbalance nella variabile **target**

Conseguenze dello sbilanciamento

Elevato **rischio** per i modelli di classificare tutte le osservazioni nella Classe dominante (0)

Gestione dello sbilanciamento

Esistono varie tecniche per rimediare a questo problema, come:

- Oversampling
- Undersampling
- Tecniche ibride
- Class weight
- Thresholds

Analisi Esplorativa

Durante l'**EDA** è stato osservato:

- Nessun valore mancante
- Tutte le colonne sono numeriche
- Outlier estremi in alcune variabili
- Forti correlazioni tra alcune feature

Sono state identificate le **10 variabili** più rilevanti per la predizione del **target**, selezionate sulla base delle **correlazioni** più elevate con la variabile 'Bankrupt?'

Logistic Regression

Il primo modello testato è stato la **Logistic Regression** in varie configurazioni:

• La versione base del modello è stata pessima sul riconoscere i fallimenti

Quindi è stato fatto il tuning con:

- **SMOTE** → per gestire lo sbilanciamento
- **StandardScaler** → per normalizzare le feature
- GridSearchCV → per ottimizzare gli iperparametri tramite cross-validation

Metrica Classe 0 Classe 1

Precision 0.99 0.19

Recall 0.88 0.84

F1-Score 0.93 0.30

Support (n. esempi) 1320 44

Random Forest

Il secondo modello testato è stato **Random Forest**, noto per la sua robustezza e capacità di gestire dataset complessi.

Abbiamo effettuato una fase di ottimizzazione con:

- SMOTETomek → combina l'oversampling sintetico (SMOTE) con un'operazione di pulizia dei dati (Tomek Links) per rimuovere esempi ambigui
- StandardScaler → per garantire uniformità tra le feature
- GridSearchCV → per trovare la configurazione ottimale degli iperparametri

Metrica Classe 0 Classe 1

Precision 0.99 0.45

Recall 0.97 0.64

F1-Score 0.98 0.53

Support (n. esempi) 1320 44

Feature Importance -Random Forest

Il grafico mostra le 10 variabili più influenti nella classificazione delle aziende a rischio di bancarotta, secondo il modello Random Forest.

Ogni barra rappresenta il contributo medio della feature alle decisioni del modello: più la barra è lunga, maggiore è stato il suo peso nella classificazione.

Le variabili più rilevanti includono:

- **Borrowing dependency** → misura quanto l'azienda dipende dai finanziamenti esterni; un valore elevato può indicare vulnerabilità finanziaria.
- **Net Income to Total Assets** → indica la redditività rispetto agli asset; valori bassi segnalano scarsa efficienza operativa.
- **Continuous interest rate (after tax)** e **After-tax net Interest Rate** → legate ai costi del debito; valori alti suggeriscono un peso significativo degli oneri finanziari.
- **Liability to Equity** e **Debt ratio %** → misurano la leva finanziaria; più è alta, più l'azienda è esposta al rischio.
- **Persistent EPS in the Last Four Seasons** → utile per valutare la stabilità degli utili nel tempo.

Questa analisi è utile per identificare quali aspetti aziendali pesano maggiormente nella valutazione del rischio finanziario da parte del modello.

XGBoost

XGBoost → terzo modello testato, apprezzato per la sua capacità di gestire feature non lineari in modo molto efficace. È stata effettuata una fase di ottimizzazione con:

- **SMOTE** → gestisce lo sbilanciamento generando esempi sintetici della Classe minoritaria (1)
- StandardScaler \rightarrow standardizza tutte le feature (media = 0, σ = 1)
- GridSearchCV → ricerca della combinazione ottimale di iperparametri del modello

Metrica Classe 0 Classe 1

Precision 0.98 0.49

Recall 0.98 0.55

F1-Score 0.98 0.52

Support (n. esempi) 1320 44

Honorable mention

Modelli testati ma esclusi dall'ensemble finale

Support Vector Machine (SVM)

- Kernel lineare e Kernel RBF
- Tempi di training → elevati
- Performance su Classe 1 → deboli

Multi-Layer Perceptron (MLP)

- Buone prestazioni con SMOTE
- Poco interpretabile
- Performance instabili

Ensemble Model

Ensemble Voting Classifier → modello finale sviluppato.

Combina i risultati di **Logistic Regression**, **Random Forest** e **XGBoost**.

È stata effettuata una fase di **ottimizzazione** attraverso:

- Rimozione outlier solo dalla Classe dominante (0)
- **SMOTEENN** → bilanciamento sintetico combinato con pulizia dei dati ambigui
- StandardScaler \rightarrow standardizza tutte le feature (media = 0, σ = 1)
- GridSearchCV → ricerca dei migliori iperparametri per ciascun modello base (LR, RF, XGB)
- Class_Weight → Random Forest ha un peso maggiore

Metrica Classe 0 Classe 1

Precision 0.99 0.40

Recall 0.96 0.82

F1-Score 0.97 0.53

Support (n. esempi) 1229 44

Confronto metriche Classe 1

- Logistic Regression → baseline interpretabile,
 ma meno performante
- Random Forest e XGBoost → buon equilibrio tra
 Precision, Recall e F1-Score per la Classe
 minoritaria
- Voting Classifier → sintesi robusta

Metriche

Recall

F1-score

ROC AUC

Raccomandazione operativa

- Modelli consigliati → Random Forest e
 XGBoost, performance migliori per rilevare casi di bancarotta
- Voting Classifier → ideale per massimizzare
 Recall e stabilità
- Focus su riduzione FN → preferire modelli più sensibili alla Classe 1

Modello	Pro	Contro
Logistic Regression	Interpretabile, veloce, baseline chiara	Performance inferiori su classe minoritaria
Random Forest	Ottima capacità predittiva, gestisce bene outlier e feature complesse	Meno interpretabile, può causare overfitting se non ottimizzato
XGBoost	Alta accuratezza, gestisce bene non linearità e feature complesse	Più complesso da configurare, maggiore tempo di addestramento
Voting Classifier	Bilancia punti di forza dei singoli modelli, stabile	Richiede tuning accurato dei pesi e modelli base

Conclusioni

Risultati principali:

- Ensemble Voting Classifier (LR,
 RF, XGB) → ROC AUC > 0.90
- SMOTEENN e rimozione outlier
 (Classe 0) → miglior
 bilanciamento
- Random Forest e XGBoost →
 modelli più robusti ed efficaci

Criticità:

- Classe 1 molto piccola → rischio
 overfitting e falsi negativi
- Modelli complessi (MLP, SVM)
 con performance instabili

Sviluppi futuri:

- Tecniche cost-sensitive
 learning (penalizzare FN)
- Dati sequenziali o temporali se disponibili
- Validazione su nuovi dati reali fuori dal campione

Grazie per l'attenzione