

Modification of a spectrophotometric method to screen hydroxycitric acid producing bacteria

Disha Patel, Aditi Buch*

Department of Biochemistry, P D Patel Institute of Applied Sciences Charotar University of Science and Technology (CHARUSAT), Changa, Dist. Anand, Gujarat.

*Corresponding Author e-mail: aditibuch.biochem@charusat.ac.in

HCA: NATURAL OCCURRENCE, CHEMISTRY AND **APPLICATION**

Hibiscus subdariffa

Anti-Diabetic

• Inhibits α - amylase

and α-glucosidase

Jena et al., 2002; Yamda et al., 2007

(VASU research center)

 $656 \pm 67 \,\mu g/ml \,(n=4)$

LIMITATIONS OF PLANT HCA

- Geo-climatically restricted to South Asia.
- Tissue culture and Plant breeding based efforts had limited impact on improving the cultivation of elite HCA producing plant varieties.
- Stereoselective organic synthesis of HCA bioactive isomer is difficult through chemical interventions.

(Hida et al., 2007; Govinder-Soulange et al., 2009; Tembe and Doedhar, 2011)

- Bacillus megaterium G45C and Steptomyces spp. U121
- Hibiscus type (2S,3R)- HCA; $(\sim 2-8 \text{mg/L HCA})$

Fermentation technologies and genome shuffling did not prove greatly successful in enhancing bacterial HCA production.

(Hida et al., 2007; Yamda et al., 2007)

IMPORTANCE OF ISOLATING BACTERIAL ISOLATES CAPABLE TO PRODUCE HIGHER HCA

- Help to understand the prevalence of HCA producing ability within bacterial species.
- Useful to understand metabolic mechanisms.
- Use to identify the genetic engineering targets
- Could be successfully developed into industrially relevant microorganism to optimize large scale bioprocess yielding natural pure biologically active isomers.

METHODS FOR QUALITATIVE AND QUANTITATIVE ESTIMATION OF HCA

No	Method #		Reference
1	FTIR and HPTLC		1 1 2000
2	IR and ¹ H NMR	Time consuming for large	Jayaprakasha et al., 2002; Ravikumar et al., 2017; Soni et
3	Paper chromatography and TLC	number of samples	al., 2004; Bainto et al., 2018
4	Acid- Base microtitration	Gives total acidity but non specific	Vijay et al., 2009
5	HPLC	Most explored but time consuming	Gogoi et al., 2014; Hida et al., 2005
6	Spectrophotometric based estimation	Convenient but not widely adopted due to instability of coloured complex	Antony et al., 1999

IMPROVISATION OF SPECTROPHOTOMETRIC METHOD TO QUANTIFY HCA

OPTIMIZATION OF HCA

Garcinia combogia

Anti-Obesity, Anti-Tumor

• A potent inhibitor of

(EC4.1.3.8)

- More economic source of Hydroxycitric acid standard
- Garcinia extract

MODIFICATIONS IN ASSAY SYSTEM

Assay system	HCA sample (Prepared in 0.05 N H ₂ SO ₄)	Added component	2.5% sodium metavanadate
AS-1	HCA (1 ml)		+0.4 ml
AS-2	HCA (1 ml) +	1 N NaHCO ₃ (1 ml)	+ 0.4 ml
AS-3	HCA (1 ml) +	1 N NaOH (1 ml)	+ 0.4 ml

AS-1: Preparation of metavanadate in 3 N H₂SO₄ **Could not** (Sinha, 2017) maintain stability of the complex

AS- 2: Add 1 ml NaHCO₃ to overcome excess acidity

AS-3: Substitute NaHCO₃ by **NaOH** to stabilize HCAmetavanadate complex

Time (min)

increasing

VALIDATION OF THE PROPOSED **METHOD**

Scaled down assay system (0.24ml total system volume) set up in 96-well plate

88.28

 ± 36.90

329.98

±36.88 (ns)

459.61

 ± 89.39

SPECIFICITY OF MODIFIED ASSAY SYSTEM WITH RESPECT TO INTERFERENCE FROM GROWTH MEDIA COMPONENTS

Growth medium interference →Nutrient broth —Luria broth —M9 minimal salts

M9 minimal medium (MM) individual

component interference

Volume in ml

─1X M9 MM- K2HPO4

─1X M9 MM- NaCl

→1X M9 MM

→1X M9 MM- KH2PO4

─1X M9 MM- NH4Cl

--- Succuinic acid

——Citric acid

Sodium acetate

→ HCA std

---- Linear (Tarteric acid) — Linear (HCA std)

0.60 y = 0.001x - 0.17170.50 Concentration of HCA (µg/ml)

(Sales et al., 2001)

derive unbiased estimate of HCA.

Resultant linear curve observed over tested concentration range of 203 – 677 μ g/ ml, with equation of y= 0.001x – 0.1717 can be used to determine the proportion of HCA relative to tartrate when measured at 530nm.

Application of proposed method to quantitate HCA from bacterial culture supernatant **HCA** measurements **Bacterial Tartrate measurements** $(\mu g/ ml/ OD 600nm)$ $(\mu g/ ml/ OD 600nm)$ isolate Spectrophotometric HPLC Spectrophotometric **HPLC** method method (with corrections) (with corrections)

Results are expressed as Mean \pm SD of three independent observations; ns represents non significant when compared between spectrophotometric and HPLC measurements.

100.13

 \pm **35.18** (ns)

IT-6

SUMMARY											
Original Assay System				Modified Assay System							
Std volume	0.1 N H ₂ SO ₄	5% NaVO ₃	20min	λmax	Std volum	e	0.05N H ₂ SO ₄	2.5% NaVO ₃	1N NaOH	30min	λmax
100 ml		0.2ml	incubation in dark	467nm		1 ml		0.4ml	1ml	incubatio n in dark	485nm

ACKNOWLEDGEMENT

The authors are extremely thankful to

IT-6 isolate

Government of India DST, for supporting the study.

24 h (3)

Charotar University of science and technology (CHARUSAT) for infrastructural support.