EE2026 Digital Design

NUMBER SYSTEMS

Massimo ALIOTO

Dept of Electrical and Computer Engineering

Email: massimo.alioto@nus.edu.sg

Get to know the latest silicon system breakthroughs from our labs in 1-minute video demos

Outline

- Positional number systems
- Radix conversion
- Binary arithmetic
- Binary signed representation
- Binary-coded decimal (BCD)

Positional Number Systems

Decimal number system: radix r=10

Terminology

- Radix (or base)
- Radix point
- Numerals made of digits $(0 \rightarrow r-1)$
- Place value (or weight) is in the power of the base (positive on the left and negative on the right side of the radix point)

$$N = 1 \times 10^{3} + 2 \times 10^{2} + 6 \times 10^{1} + 0 \times 10^{0} + 2 \times 10^{-1} + 5 \times 10^{-2} = 1260.25$$

weighted sum of each digit (each digit is weighted by its place value)

Binary Number System

Binary number system: radix r=2

Decimal equivalent

$$(N)_2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2}$$
$$= 16 + 0 + 4 + 2 + 0 + 0 + \frac{1}{4}$$
$$(N)_{10} = 22.25$$

Hexadecimal Number System

Hexadecimal number system: radix r=16

Decimal equivalent

$$(N)_{16} = 1 \times 16^{3} + 8 \times 16^{2} + F \times 16^{1} + 4 \times 16^{0} + 2 \times 16^{-1} + 10 \times 16^{-2}$$

= $4096 + 2048 + 240 + 4 + \frac{2}{16} + \frac{10}{256}$
 $(N)_{10} = 6388 + \frac{21}{128} \approx 6388.16$

hex	dec
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
Α	10
В	11
С	12
D	13
E	14
F	15

Octal Number System

Octal number system: radix r=8

Decimal equivalent

$$(N)_8 = 7 \times 8^2 + 5 \times 8^1 + 4 \times 8^0 + 2 \times 8^{-1}$$

$$(N)_{10} = 448 + 40 + 4 + \frac{2}{8} \approx 492.25$$

0

Generalization to Any Positional Number System

Generic number system with radix r

Decimal equivalent is weighted sum of all digits

$$(A)_{r} = (a_{n}a_{n-1}...a_{o}.a_{-1}...a_{-m})_{r}$$

$$(A)_{10} = a_{n} \times r^{n} + a_{n-1} \times r^{n-1} + ...a_{o} \times r^{0} + a_{-1} \times r^{-1} + ...a_{-m} \times r^{-m}$$

$$= \sum_{i=-m}^{n} a_{i}r^{i}$$

Radix Conversion

- Three types of conversions
 - Radix r (r \neq 10) \rightarrow decimal
 - Decimal \rightarrow radix r (r \neq 10)
 - Conversion among binary, octal and hex numbers
- Radix r (r \neq 10) \rightarrow decimal is trivial (decimal equivalent) $(A)_{10} = \sum_{i} a_{i}r^{i}$ i=-m
 - Binary \rightarrow decimal

$$(10110.01)_2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2}$$
$$= 16 + 0 + 4 + 2 + 0 + 0 + \frac{1}{4} = (22.25)_{10}$$

 $Hex \rightarrow decimal$

$$(18F4.2A)_{16} = 1 \times 16^{3} + 8 \times 16^{2} + F \times 16^{1} + 4 \times 16^{0} + 2 \times 16^{-1} + 10 \times 16^{-2}$$
$$= 6388 + \frac{21}{128} \approx (6388.16)_{10}$$

Decimal → Radix r (r≠10): Integer Part

- Must find a systematic way
 - \circ Decimal \rightarrow binary

$$(102)_{10} = (A)_2 = (a_n a_{n-1} \dots a_o, a_{-1} \dots a_{-m})_r = ?$$

Start simple: integer number

$$(102)_{10} = (A)_2 = a_n \times 2^n + a_{n-1} \times 2^{n-1} + \dots + a_1 \times 2^1 + a_0$$

$$= (a_n \times 2^n + a_{n-1} \times 2^{n-1} + \dots + a_1 \times 2^1) + a_0$$
integer multiple of 2

integer multiple of 2 if a_o =0, (integer multiple of 2)+1 if a_o =1 a_o is remainder of division by 2

quotient
$$a_n \times 2^{n-1} + a_{n-1} \times 2^{n-2} + \dots + a_1$$

$$2 \overline{)a_n \times 2^n + a_{n-1} \times 2^{n-1} + \dots + a_1 \times 2 + a_o}$$

$$\underline{a_n \times 2^n + a_{n-1} \times 2^{n-1} + \dots + a_1 \times 2}$$

remainder is a₀

continue dividing quotient by 2
$$a_{n} \times 2^{n-2} + a_{n-1} \times 2^{n-3} + \dots + a_{1}$$

$$a_{n} \times 2^{n-1} + a_{n-1} \times 2^{n-2} + \dots + a_{1}$$

$$a_{n} \times 2^{n-1} + a_{n-1} \times 2^{n-2} + \dots + a_{1}$$

remainder is a_1 \nearrow (a_1)

• Numerical example of repeated division by 2: $(102)_{10}=(A)_2=(?)_2$

division by 2	quotient	remainder
102/2	51	$0 \rightarrow a_0$
51/2	25	$1 \rightarrow a_1$
25/2	12	$1 \rightarrow a_2$
12/2	6	$0 \rightarrow a_3$
6/2	3	$0 \rightarrow a_4$
3/2	1	$1 \rightarrow a_5$
1/2	0	$1 \rightarrow a_6$

stop divisions when quotient=0 (subsequent divisions are all zero)

$$(A)_2 = \dots 00001100110$$

Check (inverse calculation)

$$(A)_{10} = a_6 \times 2^6 + a_5 \times 2^5 + a_4 \times 2^4 + a_3 \times 2^3 + a_2 \times 2^2 + a_1 \times 2^1 + a_0 \times 2^0 = 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 64 + 32 + 0 + 0 + 4 + 2 + 0 = 102 \checkmark$$

Decimal → Radix r (r≠10): Fractional Part

- Must find a systematic way for the fractional part too
 - Then, sum up with integer part for arbitrary numbers with integer and fractional part
 - Fractional number

$$(0.58)_{10} = (A)_2 = (0.a_{-1}a_{-2} \dots a_{-m+1}a_{-m})_2 =$$

$$= a_{-1} \times 2^{-1} + a_{-2} \times 2^{-2} + \dots + a_{-m+1} \times 2^{-m+1} + a_{-m} \times 2^{-m}$$

• Interesting interpretation of a_{-1} after multiplying the number by 2

$$2 \times (a_{-1} \times 2^{-1} + a_{-2} \times 2^{-2} + \dots + a_{-m+1} \times 2^{-m+1} + a_{-m} \times 2^{-m}) =$$

$$= a_{-1} + a_{-2} \times 2^{-1} + \dots + a_{-m+1} \times 2^{-m+2} + a_{-m} \times 2^{-m+1}$$

integer part of $2 \times (A)_{10}$

fractional part of $2 \times (A)_{10}$

 a_{-1} can be simply found as the integer part of $2 \times (A)_{10}$, then repeat for a_{-2} , a_{-3} ...

• Numerical example of repeated multiplications by 2: $(0.58)_{10}$ = $(A)_2$ = $(?)_2$

multiply by 2	product	integer part
0.58x2	1.16	$1 \rightarrow a_{-1}$
0.16x2	0.32	$0 \rightarrow a_{-2}$
0.32x2	0.64	$0 \rightarrow a_{-3}$
0.64x2	1.28	$1 \rightarrow a_{-4}$
0.28x2	0.56	$0 \rightarrow a_{-5}$
0.56x2	1.12	$1 \rightarrow a_{-6}$
0.12x2	0.24	$0 \rightarrow a_{-7}$
0.24x2	0.48	$0 \rightarrow a_{-8}$

Check (inverse calculation)

$$(A)_{10} = 1 \times 2^{-1} + 1 \times 2^{-4} + 1 \times 2^{-6}$$

$$= \frac{1}{2} + \frac{1}{16} + \frac{1}{64}$$

$$= 0.578125$$

$$\approx 0.58 \checkmark$$

$$(A)_2 = 10010100... \leftarrow$$

- conversion certainly stops when product=0
- may never end (non-terminating representation, even if (A)₁₀ may terminate)
- in this case, stop at the required precision (system specification, no. of bits)

Summary Table for Conversion of 4-bit Integers

Numbers with Different Radixes

Decimal (radix 10)	Binary (radix 2)	Octal (radix 8)	Hexadecimal (radix 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Conversion among Hex, Octal and Binary

- Hex ↔ binary
 - Each Hex digit → 4 bits
 - Or each group of 4 bits \rightarrow 1 Hex digit (starting from radix point and add zeroes if necessary to have all groups of 4 bits)
- Octal ↔ binary
 - Each octal digit $(0...7) \rightarrow 3$ bits (indeed 0...7)
 - \circ Or each group of 3 bits \rightarrow 1 octal digit (starting from radix point)
- Hex ↔ Octal
 - Use binary as an intermediate step
 - \circ Hex \rightarrow binary \rightarrow octal
 - \circ Octal \rightarrow binary \rightarrow Hex

Numbers with Different Radixes

Decimal (radix 10)	Binary (radix 2)	Octal (radix 8)	Hexadecimal (radix 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Examples (Hex, Octal, Binary Conversion)

Oct \rightarrow bin: (475)₈ (100 111 101)₂

Other Examples (Hex, Octal, Binary Conversion)

```
Hex \rightarrow oct:

(A45F)_{16}

(1010\ 0100\ 0101\ 1111)_2

00(1\ 010\ 010\ 001\ 011\ 111)_2

regroup in 3-bit groups, add zeroes

convert each 3-bit group

(122137)_8
```

```
Oct \rightarrow Hex:

(653)<sub>8</sub>

(110 101 011)<sub>2</sub>

000(1 1010 1011)<sub>2</sub>

(1AB)<sub>16</sub>
```

 For the fractional part: same, just group digits by starting from the position after the radix point (same number when adding zeroes on the right

```
Hex \rightarrow bin: add zeroes to the right (0 . A45F)<sub>16</sub> (same number, not needed in this example) (0 . 1010 0100 0101 1111)<sub>2</sub> 00...
```

Radix Conversion: Summary and Generalization

- Radix r (r \neq 10) \rightarrow decimal
 - Just use definition of positional number system (weighted sum of all digits)

- Decimal \rightarrow Radix r (r \neq 10)
 - Integer part \rightarrow repeated division by r and take the remainder
 - \circ Fractional part \rightarrow repeated multiplication by r and take the integer part
 - Add integer and fractional part

- Conversion among binary, octal and Hex numbers
 - Grouping: 1 Hex digit = 4 bits, 1 octal digit = 3 bits
 - Conversion with binary as intermediate step + regroup: Hex → oct carried out as Hex → Binary → Octal, and vice versa