

Άσκηση 3 - ΕΠΛ 442

Όνομα : Έλια Νικολάου 1012334 Ημερομηνία παράδοσης: 18/11/20

Επεξήγηση – Σκοπός Προγράμματος

Το ποιο πάνω πρόγραμμα υλοποιεί ένα Νευρωνικό Δίκτυο τύπου Kohonen–SOM το οποίο χρησιμοποιεί unsupervised learning. Συγκεκριμένα, Ακολούθως χρησιμοποιεί τα δεδομένα των γραμμάτων-δεδομένων που μας δόθηκαν στην προηγούμενη άσκηση τα οποία και ομαδοποιεί.

Run

Κανονικό τρέξιμο -> χρειάζεται τα αρχεία Letters.txt , parameters.txt

Επεξήγηση Κλάσεων

1. Drive

Η κλάση αυτή λειτουργεί ως driver. Αποτελεί το σημείο εισόδου του προγράμματος. Εδώ διαβάζονται από τα δοθέντα αρχεία όλοι οι παράμετροι που χρειάζονται για την λειτουργία του προγράμματος. Τα δοθέντα αρχεία στην συγκεκριμένη άσκηση είναι μόνο το : parameters.txt. Κανονικά θα έπρεπε να υπάρχει και training.txt & testing.txt αλλά έχω υλοποιήσει το πρόγραμμα ώστε να μην χρειάζεται να τα παίρνει από τα αρχεία και να τα παίρνει αμέσως μέσω της κλάσης Utilities.txt .

To parameters.txt έχει τι εξής μορφή:

Η Drive κλάση είναι υπεύθυνη να δημιουργήσει το νευρωνικό μας δίκτυο (τύπου) **Kohonen_N_network**, και να καλέσει τις συναρτήσεις οι οποίες θα τρέξουν το training και το testing του νευρωνικού δικτύου καθώς επίσης είναι υπεύθυνη για να περάσει τα αποτελέσματα στα αρχεία υπολογίζοντας το error(**results.txt**) (training & testing) και την δημιουργία του **clustering.txt**

Η Drive παράγει δύο αρχεία

- 1. results.txt => περιλαμβάνει το λάθος εκμάθησης (training error) στο τέλος κάθε επανάληψης και το λάθος ελέγχου (testing error) στο τέλος κάθε επανάληψης/κάθε εποχή
- 2. clustering.txt => Αναπαράσταση (visualization) κάθε συγκεκριμένης εκπαίδευσης.

2. Utilities

Η κλάση αυτή δημιουργήθηκε για σκοπούς δημιουργίας του training – testing file. Για πρακτικούς λόγους ωστόσο παρόλο που δημιουργούνται τα αρχεία αυτά, το πρόγραμμα τα διανέμει στις υπόλοιπες κλάσεις χωρίς να τα ξαναπαίρνει από τα αρχεία. Τα αρχεία γίνονται normalize & random => Δεν έχουμε κάθε φορά το ίδιο test file & training file.

3. Kohonen N Network

Η κλάση αυτή αποτελεί την σημαντικότερη κλάση του προγράμματος μας. Είναι ουσιαστικά ένα πρότυπο ενός νευρωνικού δικτύου τύπου Kohonen. Για την αρχιτεκτονική του Kohonen σκέφτηκα να υπάρχει ένας τρισδιάστατος πίνακας που θα έχει ως (x,y) – το μέγεθος/συντεταγμένες του πίνακα και ως z/ το βάρος – weight για κάθε είσοδο z.

Δηλαδή εάν θέλουμε να δούμε το βάρος του νευρώνα στις συντεταγμένες (3,4) για την είσοδο 2 ο πίνακας θα δείχνει το εξής "

weights[3][4][2] = 0.5 $(\pi.\chi)$

Όλα τα βάρη αρχικοποιούνται τυχαία με την χρήση της Math.random() σε τιμές από (-1,1)

Η κλάση υλοποίει όλες τις μεθόδους που διδαχθήκαμε που χρειάζεται ο αλγόριθμος του Kohonen για την ομαδοποίηση των γραμμάτων & το Labeling & το Lvq algorithm. Επιπλέον υπολογίζει το training & testing error.

-> σημείωση: δεν έχω το error υπολογιζόμενο στην δύναμη του 2 και δεν φαίνεται τόσο δραματικά η αλλαγή όταν το σύστημα μαθαίνει.

* update : Ακολουθεί παράδειγμα που είναι στην δευτέρα και όντως η μείωση φαίνεται καλύτερα

	ERROR	FILE 1012334
Iterations_c	ounter Training	Error Testing Error
1	1074.581727511284	473.22700348115535
2	1059.6589927976515	464.4077882639513
3	1038.1206050004353	463.21811382708364
4	1029.2359062194294	455.0618688336218
5	1009.3736897264442	446.87819025667335
6	991.7905887139543	440.5733298218107
7	985.3756309026514	434.1554357645667
8	969.3439301119207	427.92406742288966
9	964.3444650679437	421.3859722681784
10	949.1036576682923	417.5573687906756
11	944.821808297515	413.3036342612613
12	931.8633449317565	405.86881033496445
13	915.5761711036226	400.71204147580056
14	901.2962890428752	400.7500059973983
15	896.8846178191892	393.4751326218583

Παραδείγματα Λειτουργίας (simulations)

Δημιούργησα πολλά παραδείγματα αλλάζοντας το learning_rate,το board_size, το deviation & τα και τα iterations. Το μόνο που έμενε σταθερό ήταν το inputs = 16 (λόγω του προβλήματος που έχουμε να επιλύσουμε).

Σημείωση: Θα παρατηρήσετε ότι τα error ξεκινάνε από το 0.30 καταλήγοντας στο 0.26-27 είναι αντίστοιχα επειδή δεν ήταν υπολιζόμενο το sum στην δύναμη του 2.

Όταν οι εκπαιδεύσεις ξεκινάνε δηλαδή κατά τις πρώτες εποχές το clustering μοιάζει κάπως έτσι

J D P P L A D L M L N L F D X A L F S J N F L A G J L L L P EABLAUAYPQDLQOMQLBILLPJAVJL LDLOIYQFZLPBSLLMLUAHLJAYULDLQH QLTLNWMYRDALFF OUALIDLILTWILJM Y H R L L A A A D Q L Y J L F P Z G L J R L J L G J Y C O M LPLPLQMLTIYLLSAQAALSRAIFLGGLAO P Q F P O M S P F L D M J I A M L W F B D L L L S L J W O I LJGPCKLLLYAISQLJLQFYFYSLAEJLLZ TOADAWFYLINRLIDITALSIHFISLIOAL I A L M S M O A L M U R V J L D X K M M W R S L M L L O G L J G G A F P C M A D L I L H L O Z L A L Y D L L L H J L G IAHWQMYLLAFJMMLLMGLYLLSLZMFDLL L R L R Q L J A H S A M L A L P A V L A S Q A L Q M L L G M F D X D M B F L F S L L T P T L L S L G L R D A U L R P F S IRTAJSBAEJLLWJMLLALMLLLLPSLLL W L J E A F J L R A O D F L A H D L F L F M A F F Q P LLDPIQDLPWLLLALOLAQPENLLK FAAFWKGLTSMPLDLMDLFLSFLSMJLPLM G B P L R L D L B J S E L Q A L F L A L N A E L L F D L Q Y G S G L A W P X C L F R F L J R L L S L A P M S A D A L L M M X U M G P M L P Q L L L L L W W L P J W L P D A Z L U L D LKIPAFMDSILMLAMUMPWPLFLLILLFLL L R L O D L Q F Z D L M S Y D J L R L A O L L L B L Q A F G L S G A D G A A Q L L W J J P R Q X R J H P A F F Y Q I L WALLPFYYFULFPLZNLNCASLPBWSZLYL EJZPMAAIGMFLYYCSFCRPLYPLAJPLJB LTMPWQMQLWUGEAJPRLAFFLSJALTSFR TGGAPLJTSLALFJYLLALLQSWQPAJNYU LALMLLYLLBELLGRYSLGYEAFFLZWMLP J L L O L F L T L D U P L L D W J A A N O R E L K S R S G

1) Πρώτο Παράδειγμα Εκπαίδευσης

Δεδομένα

```
parameters.txt \( \text{1 board_size 80} \)
2 inputs 16
3 deviation 40
4 learning_rate 0.6
5 iterations 400
```

• Γραφική Παράσταση

• Επεξήγηση Γραφικής Παράστασης

- Αρχικά να αναφέρω ότι ο λόγος που υπάρχουν δύο τύπων γραμμών είναι διότι οι τελείες παρουσιάζουν τις πραγματικές τιμές που παίρνονται από το πρόγραμμα και η ενιαία γραμμή παρουσιάζει λογαριθμικά αυτές τις τιμές ώστε να μπορούν να γίνονται πιο εύκολα οι συγκρίσεις.

Παρατηρούμε στην πιο πάνω γραφική με learning rate = 0.6, board_size = 80 για 400 εποχές ότι η εκπαίδευση γίνεται θεωρητικά σωστά με το error να μειώνεται σταδιακά (δεν φαίνεται η έντονη αλλαγή λόγω του ότι το error δεν είναι στην δύναμη του 2)

Παρατηρούμε ακόμη ότι το Testing Error μειώνεται περισσότερο από το training error, δηλαδή κατά την φάση της πιστοποίησης έχουμε καλύτερα αποτελέσματα από ότι την φάση της εκπαίδευσης.

Clustering (Είναι πολύ μεγάλο)

Δεύτερο Παράδειγμα Εκπαίδευσης

Δεδομένα

🗎 parameters.txt 🛭 1board_size 40 2 inputs 16 3 deviation 20 4 learning_rate 0.4 5 iterations 100

Γραφική Παράσταση

Error (100 epochs)

Επεξήγηση Γραφικής Παράστασης

Και σε αυτή την γραφική μπορούμε να παρατηρήσουμε ότι το error όσο παίρνουν οι εποχές μειώνεται, και μειώνεται λίγο λιγότερο από τες 400 εποχές που το learning rate ήταν ψηλότερο. Τα αποτελέσματα του λάθους εκμάθησης για την πιστοποίηση είναι καλύτερα παρά της εκπαίδευσης.

Clustering

3) Τρίτο Παράδειγμα Εκπαίδευσης

```
parameters.txt ⋈ ☑ Kohc
1 board_size 50
2 inputs 16
3 deviation 25
4 learning_rate 0.4
5 iterations 150
```

Γραφική Παράσταση

• Επεξήγηση Γραφικής Παράστασης

Πάλι μειώνεται το error , όσο περνάνε οι εποχές αλλά όχι τόσο όπως στα δύο προηγούμενα παραδείγματα.

Clustering

Παράδειγμα υλοποίησης με LVQ => δεν αναφέρεται στα πιο πάνω παραδείγματα.

Error before & Error after

Στα πιο κάτω παραδείγματα μπορούμε να δούμε ότι μετά το LVQ καθώς ξανατρέχουμε την πιστοποίηση (test_data) παρατηρούμε ότι έχουμε λίγο καλύτερα αποτελέσματα, με μεμονωμένες περιπτώσεις που το after lvq error να είναι χειρότερο από το πριν

				LVQ	FILE 1012334
	LVQ FILE	1012334	Numbon Of	data BEFORE	AFTER
		'	Number_Of_ 1	494.19332595483706	2361.272995781284
Number_Of_d	lata BEFORE AFTE	R	2	487.1515412063346	487.5314219651235
1		6.647462463068668E10	3	483.74713592203204	483.58868775570653
2		5.5957800744624	4	478.04649183261677	476.8567307419622
3		4.46561282564477	5	474.3954661875454	474.99506228079593
4		.4885726029869	6	470.14842583812543	465.8993036640638
5		1.20202543504905	7	465.9852717063378	466.5913386510412
6 7		0.0202603166996	8	459.55282865624054	461.81061532398763
8		38.026904685688 0.4490971994461	9	458.64096462337073	461.43520428917054
9		0.6420509669844	10	454.4691590277874	455.3685984951966
10		26.196623216091	11	451.543860432651	451.951981222878
11		23.6731423955205	12	446.86381218509496	447.60606985213093
12		17.19075109481605	13	441.60771629013743	443.26978202764764
13		11.0429305829331	14	440.3500370132808	440.5766687350213
14		106.27156449104956	15	437.26223714273095	439.28516682376573
15		01.9805432880551	16	434.8627838532642	432.67052936509475
		'	17 18	431.7975116354146 431.25726125305454	434.2240822754124 429.12704634895437
			19	425.5833359572194	425.15581900857967
			20	427.8972351287473	427.60412922701835
			21	421.9591963549193	422.9100600149406
	LVQ	FILE 1012334	22	416.9063616848872	417.38923360366147
			23	414.63743986633165	414.66599533317174
Number_Of_o	data BEFORE	AFTER	24	414.91388781484295	415.00026583942014
			25	411.96298312111793	412.3675729595331
1	541.7494804168889	2.8818116682857340			
2	533.6750051899645	534.8720304031026			
3	527.7008586280759	527.1862336823791			
4	517.3667470901759	517.2511141504789			
5	506.7188022101687	507.6696176533627			
6	499,946289473526	497.7353980193758			
7	495.0596376874262	492,2096281342101			
_			_		
8	489.24646878941905	485.79767480919537			
9	479.72038540415787	479.10216735111817	7		
10	474.8959060214957	473.4645111143593			
11	471.7138576726889	469.68973813805974	4		
12	463.70071352978096	464.5187183100454	1		
13	456.50507110792756	458,7126977881224			
14	453.51000526696794	451.4825914103759	9		
15	447.8626897817434	446.8794761296941			
16	443.8363317406993	442.58329810814786	6		
17	443.183618077687	438.4882146638973			
18	437.41112797051215	435.560629951287			
19	429.9632533027816	430.3440482466248			
20	430.3824563215663	429.5760791855349			