5. Náhodná veličina

Poznámka: Pro vytvoření matematického modelu náhodného pokusu přejdeme od jeho fyzikální reality k číselnému ohodnocení výsledků. Tímto matematickým modelem je t.zv. *náhodná veličina*, zhruba řečeno "reálná funkce," která nabývá "náhodných hodnot." Její hodnoty odpovídají číselnému ohodnocení jednotlivých výsledků - náhodných jevů.

5.1. Příklad:

1. Házíme mincí a sledujeme horní stranu.

Náhodná veličina, která odpovídá pokusu má dvě hodnoty 0 a 1. Přiřadíme třeba rubu 0 a líci 1.

Je vidět, že stejné schema pro pravděpodobnost má každý dvouhodnotový náhodný pokus.

2. Házíme hrací kostkou dokud nepadne šestka.

Náhodná veličina nabývá hodnot z posloupnosti $\{1, 2, 3, \ldots\}$.

3. Opakujeme pokus a sledujeme výskyt daného jevu v serii určitého počtu pokusů.

Náhodná veličina nabývá hodnot $\{0,1,2,\ldots,n\}$ kde n je počet opakování. (Bernoulliho schema.)

4. Náhodně volíme bod v intervalu (0, 1).

Náhodná veličina je souřadnice vybraného bodu.

5.2. Definice: Náhodná veličina. Nechť $\mathscr S$ je jevové pole, $U\in\mathscr S$ je jev jistý a P je pravděpodobnost na jevovém poli $\mathscr S$. Reálnou funkci $X:U\to \pmb R$, pro kterou je množina

$${E; E \subset U, X(E) \leq x} \in \mathscr{S}$$

pro každou hodnotu $x \in \mathbf{R}$ nazýváme náhodnou veličinou.

Úmluva značení: V dalším textu budeme náhodnou veličinu označovat velkými písmeny např. X, Y, Z, S, T, R_i , ale nebudeme zatím používat písmena U a V, která jsou rezervována pro jistý a nemožný jev.

- **5.3. Definice: Distribuční funkce.** Je-li X náhodná veličina na pravděpodobnostním poli (U, \mathscr{S}, P) , pak její distribuční funkcí nazýváme reálnou funkci reálné proměnné
- $F: \mathbf{R} \to \langle 0, 1 \rangle$, která je definována předpisem

$$F(x) = P(X \le x), \ x \in \mathbf{R}.$$

Poznámka: Hodnoty distribuční funkce náhodné veličiny jsou pravděpodobnosti náhodných jevů, které jsou znázorněny na obrázku Obr. 5.1.

$$X \le x$$

$$x$$
Obr. 5.1.

Distribuční funkce náhodných veličin budeme obvykle značit velkými písmeny, např. $F,~G,~H,\Phi$ a pod.

- **5.4.** Věta: Vlastnosti distribuční funkce. Pro distribuční funkci F náhodné veličiny X platí;
- a) Pro všechny hodnoty $x \in \mathbf{R}$ je $0 \le F(x) \le 1$.
- b) Funkce F je neklesající, je spojitá zprava v \pmb{R} a $\lim_{x\to -\infty} F(x)=0, \quad \lim_{x\to \infty} F(x)=1.$
- c) Pro $x_1 < x_2$ je $P(x_1 < X \le x_2) = F(x_2) F(x_1)$.
- d) P(X = x) = F(x) F(x-).
- e) P(X > x) = 1 F(x), P(X < x) = F(x), $P(X \ge x) = 1 F(x)$.
- f) Pro $x_1 < x_2$ je

$$P(x_1 \le X \le x_2) = F(x_2) - F(x_1), \ P(x_1 < X < x_2) = F(x_2) - F(x_1),$$

$$P(x_1 \le X < x_2) = F(x_2 -) - F(x_1 -).$$

 $D\mathring{u}kaz$: a) Každá hodnota funkce F je pravděpodobnost nějakého náhodného jevu.

b) $x_1, x_2 \in \mathbf{R}, x_1 \leq x_2 \Rightarrow (X \leq x_1) \subset (X \leq x_2)$, tedy $F(x_1) = P(X \leq x_1) \leq P(X \leq x_2) = F(x_2)$. Funkce F je tudíž neklesající v \mathbf{R} .

Spojitost zprava: Je-li $\{x_n; n \in \mathbb{N}\}$ klesající posloupnost a $x_n \setminus x$ pak náhodné jevy $(X \le x_n)$ tvoří klesající posloupnost a

 $\bigcap_{n=1}^{\infty} (X \leq x_n) = (X \leq x)$. Ze spojitosti pravděpodobnosti (věta 2.29) plyne, že

$$\lim_{n \to \infty} P(X \le x_n) = \lim_{n \to \infty} F(x_n) = P(X \le x) = F(x).$$

Limity funkce F v bodech $\pm \infty$. Pro $n \in \mathbb{N}$ je:

$$\bigcap_{n=1}^{\infty} (X \leq -n) = V$$
a posloupnost jevů je klesající;

 $\bigcup_{n=1} (X \leq n) = U$ a posloupnost jevů je rostoucí. Viz obrázek Obr. 5.2.

$$X \le -n$$

$$-n$$

$$X \le n$$

$$n$$
Obr. 5.2.

Ze spojitosti pravděpodobnosti (věta 2.29) dostaneme:

$$\lim_{x \to -\infty} F(x) = \lim_{n \to \infty} F(-n) = \lim_{n \to \infty} P(X \le -n) = P(V) = 0;$$

$$\lim_{x\to\infty}F(x)=\lim_{n\to\infty}F(n)=\lim_{n\to\infty}P(X\leq n)=P(U)=1.$$

c) Je-li $x_1 < x_2$, pak pro náhodné jevy platí:

$$(X \le x_1) \subset (X \le x_2)$$
 a $(X \le x_2) - (X \le x_1) = (x_1 < X \le x_2)$, tedy

$$P(x_1 < X \le x_2) = P(X \le x_2) - P(X \le x_1) = F(x_2) - F(x_1).$$

Situace je znázorněna na obrázku Obr. 5.3.

$$x_1 < X \le x_2$$

$$x_1 \qquad x_2$$
Obr. 5.3.

d) Je-li $x \in \mathbf{R}$ a $\{x_n; n \in \mathbf{N}\}$ je rostoucí posloupnost taková, že $x_n \nearrow x$, pak je posloupnost náhodných jevů $(x_n < X \le x)$ klesající a její průnik $\bigcap_{n=1}^{\infty} (x_n < X \le x) = (X = x)$. Ze spojitosti pravděpodobnosti (věta 2.29) dostaneme

$$P(X = x) = \lim_{n \to \infty} P(x_n < X \le x) = \lim_{n \to \infty} (F(x) - F(x_n)) = F(x) - F(x - x).$$

e) Náhodné jevy (X > x) a $(X \le x)$ jsou opačné. Je tedy

$$P(X > x) = 1 - P(X \le x) = 1 - F(x).$$

Další vlastnosti dokážeme pomocí vlastností c) a d). Je totiž:

$$P(X < x) = P(X \le x) - P(X = x) = F(x) - (F(x) - F(x-1)) = F(x-1);$$

$$P(X \ge x) = P(X > x) + P(X = x) = 1 - F(x) + F(x) - F(x-1) = 1 - F(x-1).$$

f) Obdobně pomocí vlastností c), d) a e) dokážeme zbývající identity. Je pro $x_1 < x_2$:

$$P(x_1 \le X \le x_2) = P(x_1 < X \le x_2) + P(X = x_1) =$$

$$= F(x_2) - F(x_1) + F(x_1) - F(x_1 -) = F(x_2) - F(x_1 -);$$

$$P(x_1 < X < x_2) = P(x_1 < X \le x_2) - P(X = x_2) =$$

$$= F(x_2) - F(x_1) - (F(x_2) - F(x_2 -)) = F(x_2 -) - F(x_1);$$

$$P(x_1 \le X < x_2) = P(x_1 < X \le x_2) + P(X = x_1) - P(X = x_2) =$$

$$= F(x_2) - F(x_1) + F(x_1) - F(x_1 -) - (F(x_2) - F(x_2 -)) = F(x_2 -) - F(x_1 -).$$

5.5. Příklad: Alternativní rozdělení. Konáme náhodný pokus, ve kterém náhodný jev A nastává s pravděpodobností P(A) = p, 0 . Náhodná veličina <math>X nabývá hodnoty 0, jestliže náhodný jev A nenastane a nabývá hodnoty 1, jestliže náhodný jev A nastane. Určete její distribuční funkci.

Řešení: Definice distribuční funkce je $F(x) = P(X \le x), x \in \mathbf{R}$. Vzhledem k tomu, že náhodná veličina X nabývá pouze hodnot $\{0, 1\}$, bude se hodnota funkce F měnit pouze v bodech 0 a 1.

$$X \le x$$

$$x \quad 0 \quad x \quad 1 \quad x$$
Obr. 5.4.

Postupně dostaneme:

 $x<0:\ F(x)=P(X\leq x<0)=P(V)=0,$ neboť X nemůže nabývat záporných hodnot;

 $0 \le x < 1$: $F(x) = P(X \le x < 1) = P(X = 0) = 1 - p$, protože uvedenou podmínku splní pouze hodnota X = 0;

 $x \ge 1$: $F(x) = P(X \le x) = P(X \in \{0, 1\}) = P(X = 0 \cup X = 1) = P(X = 0) + P(X = 1) = 1 - p + p = 1$, podmínku splní obě hodnoty 0 a 1 a tyto hodnoty se navzájem vylučují.

Průběh funkce je znázorněn na obrázku Obr. 5.5.

5.6. Příklad: Binomické rozdělení. Konáme n- krát náhodný pokus, ve kterém nastává náhodný jev A s pravděpodobností

 $P(A) = p, \ 0 Náhodná veličina <math display="inline">X$ je počet výskytů náhodného jevu Av seriin pokusů.

Řešení: Náhodná veličina X nabývá hodnot z množiny $\{0, 1, 2, \ldots, n\}$. Její distribuční funkce bude mít podobný charakter jako v příkladě 5.5. Funkce bude po úsecích konstantní, skoky bude mít v bodech $0, 1, 2, \ldots, n$. Je tedy:

x < 0: $F(x) = P(X \le x < 0) = 0$; $0 \le x < 1$: $F(x) = P(X \le x) = P(X = 0) = (1 - p)^n$; $1 \le x < 2$: $F(x) = P(X \le x) = P(X = 0) + P(X = 1) = (1 - p)^n + np(1 - p)^{n-1}$;

v každém z dalších intervalů tvaru $k \le x < k+1$, k < n, přidáme k předchozí hodnotě další pravděpodobnost $P_n(k) = P(X = k)$ z Bernoulliho schematu z věty 4.2;

pro $x \ge n$ je F(x) = 1, neboť podmínce $(X \le x)$ vyhovují všechny možné hodnoty náhodné veličiny X.

- 5.7. Definice: Binomické rozdělení. Rozdělení pravděpodobnosti náhodné veličiny z příkladu 5.6 se nazývá binomické rozdělení a budeme jej značit symbolem Bi(n;p). Poznamenejme, že rozdělení Bi(1;p) je alternativní rozdělení z příkladu 5.5.
- **5.8. Příklad: Geometrické rozdělení.** Provádíme náhodný pokus, ve kterém nastává náhodný jev A s pravděpodobností P(A)=p, 0 , dokud nenastane náhodný jev <math>A. Náhodná veličina X je počet provedených pokusů.

 $\check{R}e\check{s}eni$: Náhodná veličina nabývá hodnot z množiny přirozených čísel $X \in \{1,\,2,\,3,\,\ldots\}$. Distribuční funkce bude obdobně jako v příkladech 5.5 a 6 po úsecích konstantní a bude mít skoky v bodech 1, 2, 3, Pro její hodnoty dostaneme:

x < 1: $F(x) = P(X \le x < 1) = 0$, neboť 1 je nejmenší hodnotou náhodné veličiny X;

 $1 \le x < 2$: $F(x) = P(X \le x) = P(X = 1) = p$, neboť náhodná veličina nabývá hodnoty 1, jestliže v prvním pokusu nastane jev A;

= P(X=1)+P(X=2)=p+p(1-p), neboť X=2 pokud jev A nastane až ve druhém pokusu, tedy poprvé nenastane a podruhé nastane; $n \le x < n+1$: $F(x)=P(X \le x)=P(X \le n)=$ = $P(X \in \{1,2,\ldots,n\})=P(X=1)+P(X=2)+\ldots+P(X=n)=$ = $p+p(1-p)+\ldots+p(1-p)^{n-1}=p\frac{1-(1-p)^n}{1-(1-p)}=1-(1-p)^n$, jestliže použijeme vzorec pro částečný součet geometrické řady s kvocientem (1-p).

5.9. Příklad: Rovnoměrné rozdělení (spojité). Volíme náhodně bod v intervalu $\langle a,b\rangle$ tak, že je každá volba stejně pravděpodobná. Náhodná veličina X se rovná souřadnici x zvoleného bodu. Určete distribuční funkci dané náhodné veličiny.

Řešení: Ze zadání vyplývá, že náhodná veličina X nabývá pouze hodnot z intervalu $\langle a,b\rangle$. Pro hodnoty její distribuční funkce dostaneme: $x < a: F(x) = P(X \le x < a) = 0$, neboť a je nejmenší hodnotou náhodné veličiny X;

 $x \ge b$: $F(x) = P(X \le x) = P(X \le b) = P(U) = 1$, neboť každá hodnota náhodné veličiny X je menší nebo rovna b.

Pro určení hodnot distribuční funkce v intervalu $\langle a, b \rangle$ použijeme geometrickou pravděpodobnost z odstavce 2.24. Znázorníme si situaci na obrázku Obr. 5.8.

Potom pro $x \in \langle a, b \rangle$ je $P(X \leq x)$ rovna poměru délek úseček $\langle a, x \rangle$ a $\langle a, b \rangle$. Je tedy

$$F(x) = P(X \le x) = \frac{x - a}{b - a}, \quad a \le x \le b.$$

Na obrázku Obr. 5.9a je znázorněn průběh distribuční funkce F spojitého rovnoměrného rozdělení v intervalu (0,1) a na obrázku Obr. 5.9b je průběh hustoty f tohoto rozdělení.

Poznámka: Všimneme si, že v tomto případě je distribuční funkce spojitá v \mathbf{R} a lineární v intervalu $\langle a,b\rangle$. Rozdělení uvedeného typu nazýváme rovnoměrné rozdělení v intervalu $\langle a,b\rangle$.

Podle vlastnosti d) z věty 5.4 je z důvodu spojitosti funkce F

$$P(X = x) = F(x) - F(x) = F(x) - F(x) = 0, \quad x \in \mathbf{R}.$$

Z toho důvodu je lhostejné, zda pro definici náhodné veličiny uvedeného typu zvolíme otevřený či polouzavřený interval.

5.10. Příklad: Smíšené rozdělení. Máme domluvenou schůzku mezi 12 a 13 hodinou. Jdeme náhodně na schůzku a čekáme nejdéle 15 minut. Náhodná veličina X je doba čekání. Určete její distribuční funkci.

Řešení: K řešení úlohy použijeme geometrickou pravděpodobnost. Náhodná veličina X nabývá hodnot z intervalu $\langle 0, \frac{1}{4} \rangle$. Znázorníme si t_1 , resp. t_2 , okamžik příchodu 1., resp., 2. účastníka schůzky po 12 hodině.

Bod $(t_1,t_2)\in\langle 0,1\rangle\times\langle 0,1\rangle$ odpovídá nastalé situaci. Náhodnému jevu $(X\leq x\leq \frac{1}{4})$, který znamená, že se účastníci sejdou za kratší dobu než je $0\leq x<\frac{1}{4}$, odpovídají body, pro které platí $|t_1-t_2|\leq x<\frac{1}{4}$. To jsou body pásu kolem diagonály čtverce. Pravděpodobnost $P(X\leq x)$ setkání za dobu menší než x je rovna poměru obsahu pásu a čtverce, tedy

$$F(x) = P(X \le x) = \frac{1 - (1 - x)^2}{1} = 2x - x^2, \quad 0 \le x < \frac{1}{4}.$$

Pro x < 0 je $F(x) = P(X \le x < 0) = 0$ a pro $x \ge \frac{1}{4}$ je $F(x) = P(X \le x) = P(X \le \frac{1}{4}) = 1$, neboť déle než čtvrt hodiny nečekáme.

Všimneme si, že distribuční funkce F je spojitá v intervalech $(-\infty, \frac{1}{4})$ a $(\frac{1}{4}, \infty)$. V bodě $\frac{1}{4}$ má skok velikosti

 $P\left(X = \frac{1}{4}\right) = F\left(\frac{1}{4}\right) - F\left(\frac{1}{4}-\right) = 1 - 2 \cdot \frac{1}{4} + \left(\frac{1}{4}\right)^2 = \frac{9}{16} = 0,5625$. Je to pravděpodobnost toho, že jsme se nesetkali. Pravděpodobnost setkání je pak rovna $1 - \frac{9}{16} = \frac{7}{16} = 0,4375$.