Projekt 2: Nichtlineare System Identifikation

MND2

Andreas Bachmann bachman0@students.zhaw.ch

5. November 2018

Aufgabe 1

Berechnen Sie mit Hilfe der Methode nach Runge numerisch eine Lösung der DGL.

$$d = 1, \ l = 1, \ k = \frac{g}{l} = \frac{9.81}{1}$$

 $\alpha = \varphi_0, \ t \in [0, \ 4]$

wobei $\phi_0=3.14$ der erste Messwert der Daten ohne Rauschen sei. Stellen Sie die Lösung jeweilen in einem eigenen Phasendiagramm dar.

Lösung

$$\varphi = \varphi_0 = phi (1)$$

$$\dot{\varphi} = \varphi_1 = \dot{\varphi}_0 = phi (2)$$

$$\varphi_d = \varphi_2 = phi (3)$$

$$\dot{\varphi}_d = \varphi_3 = \dot{\varphi}_2 = phi (4)$$

$$\varphi_k = \varphi_4 = phi (5)$$

$$\dot{\varphi}_k = \varphi_5 = \dot{\varphi}_4 = phi (6)$$

Abbildung 1: Zeitdiagramm

Seite 2

Aufgabe 3

Implementieren Sie das Levenberg-Marquardt Verfahren für das nichtlineare Ausgleichsproblem Welche Werte für die Parameter $d,\,k$ sind dür die ideale Messung optimal?

Lösung

$$d_{Harmonic} = 1.7835$$

$$k_{Harmonic} = 68.4893$$

$$d_{Noisy} = 1.9172$$
$$k_{Noisy} = 69.1499$$

Abbildung 3: Zeitdiagramm

Abbildung 4: Phasenkurve φ

Abbildung 5: Phasenkurve φ_d

Abbildung 6: Phasenkurve φ_k