Unsupervised Machine Learning and Data Mining (DS 5230) Spring 2022 – Project Posters – 100 points

Due: Wednesday, May 4, 2022 at 11:59 PM Eastern

(There are no late days for this assignment.)

For your project poster, **use the template at https://tinyurl.com/yxjyfx3v** to prepare a poster (in either Powerpoint or PDF) and upload it to Canvas by Wednesday, May 4, 2022 at 11:59 PM Eastern. Your file should be named

<Lastname><FirstName>ProjectPoster.pdf

or

<Lastname><FirstName>ProjectPoster.pptx.

To make the grading process easier, I would like you to upload your presentation -- even if you are part of a team.

Your poster should have the following in it:

- Title & Author(s)
- Problem Definition: be concrete as possible
- Related Work / Existing Methods
- Proposed Methods / Algorithms
 - o Give the overview of the approach.
- Data Description & Experimental Setup
- Key Results & Discussion
 - Present key results and contributions.
 - o Do not superficially cover all results; cover key result well.
 - o Do not just present numbers; interpret them to give insights (in terms of contributions).
- Takeaway Points & Future Work
 - o Give problems this research opens up (optional).

Again, use the template at https://tinyurl.com/yxjyfx3v. Below you will find a sample project poster. A PDF version of the sample project poster is available at http://eliassi.org/sample-poster.pdf.

HCDF: Hybrid Community Discovery Framework

Tina Eliassi-Rad* tina@eliassi.org

Problem Definition

- . Given a graph G=(V, E), detect communities of vertices
- Want a community discovery procedure with the following properties
 - Scalable, where time and space complexity are strictly sub-quadratic w.r.t. the number of nodes
 - o Nonparametric, where number of communities need not be specified a priori
 - o Consistent, where effectiveness is consistently high across a wide range of domains
 - Effective, where global connectivity patterns are successfully factored into communities that are highly predictive of individual links and robust to small
 perturbations in network structure

Existing Methods

- · Hard Clustering: each vertex belongs to a single community
 - o Fast Modularity (FM) [Clauset+, Phys. Rev. E. 2004]
 - Prefers communities with high intra-community connectivity
 - o Cross-Associations (XA) [Chakrabarti+, ACM KDD 2004]
 - Prefers communities where nodes in a given row-group or column-group have similar connectivity to each other
 - Minimizes total encoding cost of adjacency matrix
- · Soft Clustering: vertices allowed mixed membership
 - o Latent Dirichlet Allocation for Graphs (LDA-G) [Henderson & Eliassi-Rad, ACM SAC 2009]
 - Application of Latent Dirichlet Allocation topic model to graphs
 - Learned "topics" or communities maximize likelihood of observed edges

Proposed Method

- LDA-G used as core Bayesian model for community discovery
- · A hard clustering method is applied to the graph
- · Resulting communities are used as hints for the Bayesian model
 - o There exist multiple strategies for incorporating hints
 - o The most effective is to add hard cluster labels as attributes and extend the Bayesian model
- HCD (or HCD-X) = LDA-G with XA communities as attributes
- HCD-M = LDA-G with FM communities as attributes
- Algorithm:
 - Run XA (or FM) on input G=(V, E)
 - Produces groups, A, over nodes
 - Run LDA-G on graph G' = (V, E, A)
- Use Gibbs sampling to infer posterior estimates on group and source-node distributions

Dischlet potrometer Dischlet potrometer Dischlet Dischlet Per-source proportions Dischlet Per-source proportions Dischlet Per-source Per-destination proportions Dischlet Per-destination proportions Dischlet Per-source Per-destination proportions Dischlet Per-source Per-destination proportions Dischlet Per-destination proportio

See report for computational complexity discussion.

Data Description & Experimental Setup

Real-World Graphs	Acronym	V	$\mid E \mid$
Autonomous Systems Graph	AS	11,461	32,730
Day 1: IP × IP	IP1	34,449	303,175
Day 2: $IP \times IP$	IP2	33,732	320,754
Day 3: IP × IP	IP3	34,661	428,596
Day 4: $IP \times IP$	IP4	34,730	425,368
Day 5: $IP \times IP$	IP5	33,981	112,271
PubMed	AxK	37,436 (A)	119,443
Author × Knowledge		117 (K)	
PubMed Coauthorship	AxA	37,227	143,364
WWW Graph	WWW	325,729	1,497,135

Results & Discussion

- Consistency: Across a variety of domains
 - o Non-hybrid methods struggle with at least one graph
 - Hybrid methods always perform well
- Effectiveness: Hybrid methods never perform significantly worse than their constituents
- Better compression: Reordering by discovered communities shows that hybrid methods exhibit better compression (more whitespace) than non-hybrids.
- Good link prediction is a tradeoff between low entropy & flexibility
 - Low entropy
 - If the adjacency matrix can be compressed nicely or mixed-membership distributions are far from uniform, we can better predict behavior of nodes
 - o Flexibility
 - If a node exhibits multiple types of behavior, hard clustering may only model a plurality of the node's edges, which can explain all links

Takeaway Points & Future Work

- Use a hybrid approach to community discovery on graphs for consistent, effective, Nonparametric community factorization on graphs from various domains
- Incorporate hints as attributes for coalescing strategy
- Use link prediction and variation of information as a quantitative measure on the communities discovered
- Future work: Extension to time-evolving graphs

Link prediction experimental setup

- For i=1 to 5 do
 - Hold out 500 "present" edges and 500 "absent" edges
 - o Run model on remaining graph
 - Model scores held-out links
 - o Compute Area Under ROC curve (AUC)
- Report average & standard deviation of AUCs
- High AUC = good link prediction

For robustness experiments, see final report

The better the compression, the higher the AUC.