Bayesian Learning

Lecture 4 - Regression, Prediction and Decisions

Department of Statistics Stockholm University

Lecture overview

- Normal model with conjugate prior
- The linear regression model
- Prediction
- Decision making

Linear regression

The linear regression model in matrix form

$$\mathbf{y}_{(n\times 1)} = \mathbf{X}\boldsymbol{\beta}_{(n\times k)(k\times 1)} + \boldsymbol{\varepsilon}_{(n\times 1)}$$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \ \beta = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_k \end{pmatrix}, \ \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$
$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1^\top \\ \vdots \\ \mathbf{x}_n^\top \end{pmatrix} = \begin{pmatrix} x_{11} & \cdots & x_{1k} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nk} \end{pmatrix}$$

- Usually $x_{i1} = 1$, for all i. β_1 is the intercept.
- Likelihood

$$\mathbf{y}|\beta, \sigma^2, \mathbf{X} \sim \mathcal{N}(\mathbf{X}\beta, \sigma^2 I_n)$$

Linear regression - uniform prior

Standard non-informative prior: uniform on $(\beta, \log \sigma^2)$

$$p(\beta, \sigma^2) \propto \sigma^{-2}$$

Joint posterior of β and σ^2 :

$$eta | \sigma^2, \mathbf{y} \sim N\left(\hat{eta}, \sigma^2(\mathbf{X}^{\top}\mathbf{X})^{-1}\right)$$

 $\sigma^2 | \mathbf{y} \sim \text{Inv-}\chi^2(\mathbf{n} - \mathbf{k}, \mathbf{s}^2)$

where
$$\hat{\beta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$
 and $s^2 = \frac{1}{n-k}(\mathbf{y} - \mathbf{X}\hat{\beta})^{\top}(\mathbf{y} - \mathbf{X}\hat{\beta})$.

- Simulate from the joint posterior by simulating from
 - $ightharpoonup p(\sigma^2|\mathbf{y})$
 - $ightharpoonup p(\beta|\sigma^2,\mathbf{y})$
- **Marginal posterior** of β :

$$\beta | \mathbf{y} \sim t_{n-k} \left(\hat{\beta}, s^2 (X^\top X)^{-1} \right)$$

Linear regression - conjugate prior

Joint prior for β and σ^2

$$eta | \sigma^2 \sim \textit{N}\left(\mu_0, \sigma^2 \Omega_0^{-1}\right)$$
 $\sigma^2 \sim \textit{Inv} - \chi^2\left(\nu_0, \sigma_0^2\right)$

Posterior

$$\beta | \sigma^2, \mathbf{y} \sim N\left(\mu_n, \sigma^2 \Omega_n^{-1}\right)$$

 $\sigma^2 | \mathbf{y} \sim \text{Inv} - \chi^2\left(\nu_n, \sigma_n^2\right)$

$$\mu_{n} = \left(\mathbf{X}^{\top}\mathbf{X} + \Omega_{0}\right)^{-1} \left(\mathbf{X}^{\top}\mathbf{X}\hat{\beta} + \Omega_{0}\mu_{0}\right)$$

$$\Omega_{n} = \mathbf{X}^{\top}\mathbf{X} + \Omega_{0}$$

$$\nu_{n} = \nu_{0} + n$$

$$\sigma_{n}^{2} = \left(\nu_{0}\sigma_{0}^{2} + \mathbf{y}^{\top}\mathbf{y} + \mu_{0}^{\top}\Omega_{0}\mu_{0} - \mu_{n}^{\top}\Omega_{n}\mu_{n}\right)/\nu_{n}$$

Bike share data

- Bike share data. Predict the number of bike rides.
- Response variable: number of rides on 731 days.

variable	description	type	values	comment
nrides	# of rides	counts	$\{0, 1,\}$	min=22, $max=8714$
feeltemp	perceived temp	cont.	[0, 1]	$min \!= 0.07, max \!\!= 0.85$
hum	humidity	cont.	[0, 1]	$\min = 0.00$, $\max = 0.98$
wind	wind speed	cont.	[0, 1]	$min \!= 0.02, max \!\!= 0.51$
year	year	binary	$\{0, 1\}$	year $2011 = 0$
season	season	cat.	$\{1, 2, 3, 4\}$	$winter \to fall$
weather	weather	ordinal	$\{1, 2, 3\}$	$clear \to rain/snow$
weekday	day of week	cat.	$\{0,, 6\}$	sunday $ ightarrow$ saturday
holiday	holiday	binary	$\{0, 1\}$	holiday = 1

Prior:

- $\mu_0 = (1000, 0, \dots, 0)^{\top}$
- $\boldsymbol{\Sigma}_0 = \frac{\kappa_0}{n} \boldsymbol{X}^{\top} \boldsymbol{X}$ with $\kappa_0 = 1$ (unit information prior)
- $\sigma_0^2 = 1000^2$ and $\nu_0 = 5$.

Bike share data

Bike share data - marginal posteriors of eta

Bike share data - joint posteriors of eta

Interactive - Bayesian regression

Polynomial regression

Polynomial regression

$$f(x_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_k x_i^k.$$

$$\mathbf{y} = \mathbf{X}_P \beta + \varepsilon,$$

where

$$\mathbf{X}_{P} = (1, x, x^{2}, ..., x^{k}).$$

Priors for regularization (ridge, lasso etc) in Lecture 6.

Prediction/Forecasting

Posterior predictive density for future \tilde{y} given observed $\mathbf{y} = (y_1, \dots, y_n)$

$$p(\tilde{y}|\mathbf{y}) = \int_{\theta} p(\tilde{y}|\theta, \mathbf{y}) p(\theta|\mathbf{y}) d\theta$$

IID data:

$$p(\tilde{y}|\mathbf{y}) = \int_{\theta} p(\tilde{y}|\theta) p(\theta|\mathbf{y}) d\theta$$

Parameter uncertainty in $p(\tilde{y}|\mathbf{y})$ by averaging over $p(\theta|\mathbf{y})$.

Prediction - Normal data, known variance

■ Under the uniform prior $p(\theta) \propto c$, then

$$p(\tilde{y}|\mathbf{y}) = \int_{\theta} p(\tilde{y}|\theta) p(\theta|\mathbf{y}) d\theta$$
$$\theta|\mathbf{y} \sim N(\bar{y}, \sigma^2/n)$$
$$\tilde{y}|\theta \sim N(\theta, \sigma^2)$$

Simulation algorithm:

- **1** Generate a **posterior draw** of θ ($\theta^{(1)}$) from $N(\bar{y}, \sigma^2/n)$
- **2** Generate a **predictive draw** of \tilde{y} ($\tilde{y}^{(1)}$) from $N(\theta^{(1)}, \sigma^2)$
- **3** Repeat Steps 1 and 2 *N* times to output:
 - ▶ Sequence of posterior draws: $\theta^{(1)},, \theta^{(N)}$
 - ▶ Sequence of predictive draws: $\tilde{y}^{(1)},...,\tilde{y}^{(N)}$.

Predictive distribution - Normal model

- lacksquare $\theta^{(1)} = \bar{y} + \varepsilon^{(1)}$, where $\varepsilon^{(1)} \sim N(0, \sigma^2/n)$. (Step 1).
- $\tilde{\mathbf{y}}^{(1)} = \theta^{(1)} + v^{(1)}$, where $v^{(1)} \sim N(0, \sigma^2)$. (Step 2).
- $\tilde{\mathbf{y}}^{(1)} = \bar{\mathbf{y}} + \varepsilon^{(1)} + v^{(1)}.$
- $\mathbf{\varepsilon}^{(1)}$ and $v^{(1)}$ are independent.
- The sum of two normal random variables is normal so

$$\begin{split} E(\tilde{y}|\boldsymbol{y}) &= \bar{y} \\ V(\tilde{y}|\boldsymbol{y}) &= \frac{\sigma^2}{n} + \sigma^2 = \sigma^2 \left(1 + \frac{1}{n} \right) \\ \tilde{y}|\boldsymbol{y} &\sim N \left[\bar{y}, \sigma^2 \left(1 + \frac{1}{n} \right) \right] \end{split}$$

Iteration laws

Expectation with respect to what? Explicit:

$$\mathbb{E}_{ heta|oldsymbol{y}}(heta) \equiv \int heta oldsymbol{p}(heta|oldsymbol{y}) d heta$$

Law of iterated expectation and Law of total variance.

Iteration laws

Law of iterated expectation:

$$\mathbb{E}_X(X) = \mathbb{E}_Y \big(\mathbb{E}_{X|Y}(X) \big)$$

Law of total variance:

$$V_X(X) = \mathbb{E}_Y (V_{X|Y}(X)) + V_Y (\mathbb{E}_{X|Y}(X))$$

Iteration laws for Bayes

Marginal posterior mean:

$$\mathbb{E}_{\boldsymbol{\theta}_1 | \mathbf{y}}(\boldsymbol{\theta}_1) = \mathbb{E}_{\boldsymbol{\theta}_2 | \mathbf{y}} \big(\mathbb{E}_{\boldsymbol{\theta}_1 | \boldsymbol{\theta}_2, \mathbf{y}}(\boldsymbol{\theta}_1) \big)$$

Marginal posterior variance:

$$\begin{split} \mathbb{V}_{\theta_1}(\theta_1) &= \mathbb{E}_{\theta_2|\mathbf{y}} \big(\mathbb{V}_{\theta_1|\theta_2,\mathbf{y}}(\theta_1) \big) \\ &+ \mathbb{V}_{\theta_2|\mathbf{y}} \big(\mathbb{E}_{\theta_1|\theta_2,\mathbf{y}}(\theta_1) \big) \end{split}$$

Predictive distribution - Normal model and prior

- Predictive distribution still normal (sum of normals is normal).
- Predictive mean conditional on θ is trivial:

$$\textit{E}_{\tilde{\textit{y}}|\theta}(\tilde{\textit{y}}) = \theta$$

 \blacksquare "Remove the conditioning" on θ by averaging over posterior:

$$E(\tilde{y}|\mathbf{y}) = E_{\theta|\mathbf{y}}(\theta) = \mu_n$$
 (Posterior mean of θ).

The predictive variance of \tilde{y} by law of total variance

$$V(\tilde{y}|\mathbf{y}) = E_{\theta|\mathbf{y}}[V_{\tilde{y}|\theta}(\tilde{y})] + V_{\theta|\mathbf{y}}[E_{\tilde{y}|\theta}(\tilde{y})]$$

$$= E_{\theta|\mathbf{y}}(\sigma^2) + V_{\theta|\mathbf{y}}(\theta)$$

$$= \sigma^2 + \tau_n^2$$

So, predictive distribution is

$$\tilde{\mathbf{y}}|\mathbf{y} \sim N(\mu_n, \sigma^2 + \tau_n^2).$$

Predictive distribution - Internet speed data

Bayesian prediction for time series

Autoregressive process

$$y_t = \mu + \phi_1(y_{t-1} - \mu) + \dots + \phi_p(y_{t-p} - \mu) + \varepsilon_t, \ \varepsilon_t \stackrel{iid}{\sim} N(0, \sigma^2)$$

```
Predictive distribution - AR process.
    Input: time series \mathbf{v}_{1:T} = (y_1, \dots, y_T)
                  number of predictive draws m.
                  forecast horizon h.
    for i in 1:m do
          \mu, \phi_1, \dots, \phi_v, \sigma \leftarrow \text{RPOSTERIORAR}(\mathbf{y}_{1:T}, \text{PriorSettings})
          \varepsilon_{T\perp 1} \leftarrow \text{RNorm}(0,\sigma)
          \tilde{y}_{T+1} \leftarrow \mu + \phi_1(y_T - \mu) + \ldots + \phi_n(y_{T+1-n} - \mu) + \varepsilon_{T+1}
          \varepsilon_{T\perp 2} \leftarrow \text{RNorm}(0,\sigma)
          \tilde{y}_{T+2} \leftarrow \mu + \phi_1(\tilde{y}_{T+1} - \mu) + \ldots + \phi_p(y_{T+2-p} - \mu) + \varepsilon_{T+2}
          \varepsilon_{T+h} \leftarrow \text{RNorm}(0,\sigma)
          \tilde{y}_{T+h} \leftarrow \mu + \phi_1(\tilde{y}_{T+h-1} - \mu) + \ldots + \phi_p(\tilde{y}_{T+h-p} - \mu) + \varepsilon_{T+h}
    end
    Output: m draws from the joint predictive density:
                    p(\tilde{y}_{T+1},\ldots,\tilde{y}_{T+h}|\mathbf{v}_{1:T}).
```

Bayesian prediction of Swedish inflation

Decision problems

- Let θ be an unknown quantity. State of nature.
 - ► Future inflation
 - Global temperature
 - Disease.
- Let $a \in \mathcal{A}$ be an action.
 - ▶ Interest rate
 - Energy tax
 - Surgery.
- Choosing action a when state of nature is θ gives utility

$$U(a, \theta)$$

Alternatively loss $L(a, \theta) = -U(a, \theta)$.

Decision tables - when both a and θ are discrete

Decision table

	θ_1	θ_2	 θ_{K}
a 1	$u(a_1, heta_1)$	$u(a_1, heta_2)$	 $u(a_1, \theta_K)$
a_2	$u(a_2, heta_1)$	$u(a_2, \theta_2)$	 $u(a_2, \theta_K)$
:	:	÷	:
ај	$u(a_{J}, heta_1)$	$u(a_J, heta_2)$	 $u(a_J, \theta_K)$

The eternal umbrella decision:

	Rain	Sun
No umbrella	-50	50
Umbrella	10	30

Decision Theory

- **Example loss functions** when both a and θ are continuous:
 - ▶ Linear: $L(a, \theta) = |a \theta|$
 - **Quadratic**: $L(a, \theta) = (a \theta)^2$
 - ► Lin-Lin:

$$L(a,\theta) = \begin{cases} c_1 \cdot |a - \theta| & \text{if } a \le \theta \\ c_2 \cdot |a - \theta| & \text{if } a > \theta \end{cases}$$

- Example:
 - \blacktriangleright θ is the number of items demanded of a product
 - a is the number of items in stock
 - Utility

$$U(a, \theta) = egin{cases} p \cdot \theta - c_1(a - \theta) & ext{if } a > \theta ext{ [too much stock]} \\ p \cdot a - c_2(\theta - a)^2 & ext{if } a \leq \theta ext{ [too little stock]} \end{cases}$$

Optimal decisions

- Ad hoc decision rules:
 - Minimax. Minimizes the maximum loss.
 - Minimax-regret
 - ► ... C²Z
- Bayesian theory: maximize posterior expected utility

$$a_{bayes} = \operatorname{argmax}_{a \in \mathcal{A}} E_{p(\theta|y)}[U(a, \theta)],$$

where $E_{p(\theta|y)}$ denotes the posterior expectation.

Using simulated draws $\theta^{(1)}, \theta^{(2)}, ..., \theta^{(N)}$ from $p(\theta|y)$:

$$E_{p(\theta|y)}[U(a,\theta)] \approx N^{-1} \sum_{i=1}^{N} U(a,\theta^{(i)})$$

- Separation principle:
- **1** First obtain $p(\theta|y)$
- 2 then form $U(a, \theta)$ and finally
- **3** choose *a* that maximizes $E_{p(\theta|y)}[U(a,\theta)]$.

The umbrella decision

	Rain	Sun
No umbrella	-50	50
Umbrella	10	30

Choosing a point estimate is a decision

- Choosing a **point estimator** is a decision problem.
- Which to choose: posterior median, mean or mode?
- It depends on your loss function:
 - **▶ Linear loss** → Posterior median
 - ► Quadratic loss → Posterior mean
 - **Zero-one loss** → Posterior mode
 - ▶ Lin-Lin loss $\rightarrow c_1/(c_1+c_2)$ quantile of the posterior

The umbrella decision

