

# EVALUATING MODELLEIN

Gus Ostow

Machine Learning Consultant, Papert Labs

# **EVALUATING MODEL FIT**

# **LEARNING OBJECTIVES**

- ▶ Evaluate regression fit with error metrics
- Understand the tradeoff between under-fitting and over-fitting, and how that is impacted by decisions about training data and hyper-parameter choice.
- ▶ Justify when regularization is a smart choice for a linear model

## **PRE-WORK REVIEW**

- ▶ Understand goodness of fit (r-squared)
- ▶ Measure statistical significance of features
- ▶ Recall what a residual is
- ▶ Implement a sklearn estimator to predict a target variable

## **OPENING**

# R-SQUARES AND RESIDUALS

# WHAT IS R-SQUARED? WHAT IS A RESIDUAL?

- R-squared, the central metric introduced for linear regression
- ▶ Which model performed better, one with an r-squared of 0.79 or 0.81?
- R-squared measures explain variance.
- ▶ But does it tell the magnitude or scale of error? It isn't super informative from a business perspective
- ▶ We'll review the unscaled loss functions from yesterday.

## INTRODUCTION

# LINEAR MODELS AND ERROR

# **RECALL: WHAT'S RESIDUAL ERROR?**



# **MEAN SQUARED ERROR (MSE)**

- To calculate MSE:
  - ▶ Calculate the difference between each target y and the model's predicted value y-hat (i.e. the residual)
  - Square each residual.
  - ▶ Take the mean of the squared residual errors.

MSE = 
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

# OVERFITTING vs UNDERFITTING

# WHAT IS OVERFITTING?



- Is not picking up any pattern in the data
- ▶ The second model explains the general curve of the data.
- ▶ The third model drastically overfits the model, bending to every point.

# WHAT IS OVERFITTING?



- Is not picking up any pattern in the data
- ▶ The second model explains the general curve of the data.
- ▶ The third model drastically overfits the model, bending to every point.

# WHAT IS OVERFITTING?



#### **Underfit model**

- •Low score on training set
- •Low-ish score on test set

#### Overfit model

- Great score on training set
- Horrible score on test set

# **KNN Fit Case-Study**



# **KNN Fit Case-Study**



# **KNN Fit Case-Study**

$$k = 2$$



$$k = 3$$



# "Complex models overfit"



# "Complex models overfit"



# **TYPES OF FIT**

**Underfit Optimal Fit** Overfit

# **UNDERFIT**





#### Underfit

- Model too simple
- It cannot represent the desired behavior very well; both its training and generalization error are poor
- High bias; low variance

# **OPTIMAL FIT**

- Optimal Fit
  - Model has the right level of complexity
  - It performs well on the training set (low training error) and generalize well to unknown data points (low generalization error)





# **OVERFIT**





#### Overfit

- Model too complex
- It performs very well on the training set (low training error) but does not generalize well to unseen data points (high generalization error)
- Low bias; high variance

# **ACTIVITY: KNOWLEDGE CHECK**

#### **ANSWER THE FOLLOWING QUESTIONS (5 minutes)**



- 1. Which of the following scenarios would be better for a weatherman?
  - a. Knowing that I can very accurately "predict" the temperature outside from previous days perfectly, but be 20-30 degrees off for future days
  - b. Knowing that I can accurately predict the general trend of the temperate outside from previous days, and therefore am at most only 10 degrees off on future days

#### **DELIVERABLE**

Answers to the above questions

#### INTRODUCTION

# REGULARIZATION

# "Complex models overfit"



## WHAT IS REGULARIZATION? AND WHY DO WE USE IT?

- Regularization is an additive approach to protect models against overfitting (being potentially biased and overconfident, not generalizing well).
- ▶ Regularization becomes an additional weight to coefficients, shrinking them closer to zero.
- L1 (Lasso Regression) adds the extra weight to coefficients.
- L2 (Ridge Regression) adds the square of the extra weight to coefficients.
- Use Lasso when we have more features than observations (k > n) and Ridge otherwise.

## WHERE REGULARIZATION MAKES SENSE

- ▶ It doesn't seem to help. Why is that?
- ▶ We need to optimize the regularization weight parameter (called alpha) through cross validation.

## **LESSON REVIEW**

- ▶ What's the (typical) range of r-squared?
- ▶ What's the range of mean squared error?
- ► How would changing the scale or interpretation of y (your target variable) effect mean squared error?
- ▶ What are the two main contributors to your model's poor performance?
- ▶ How do you diagnose if you are overfitting, underfitting, or killing the game?