Année 2017-2018

### Série TD N°4

Énergies et échanges du rayonnement thermique

## Exercice 1:

Soit un cylindre compris entre x=0 et x=L, de masse volumique  $\rho$ , de capacité thermique massique c et de conductivité K. Le problème est unidimensionnel selon (ox), la température étant considérée uniforme dans la section S du cylindre. La surface latérale du cylindre est thermiquement isolée. On notera  $D=\frac{K}{\rho c}$ .

Il n'y a pas de sources thermiques.

- 1. En appliquant le premier principe, établir l'équation de diffusion thermique pour la fonction T(x,t).
- 2. On cherche des solutions de la forme T(x,t) = f(x)g(t). Expliciter f(x) et g(t).
- 3. Les extrémités du cylindre ont une température uniforme  $T_0$ . A  $t=0, T(x,0)=T_1sin(\frac{\pi x}{L})+T_0$ . Déterminer T(x,t).

#### Exercice 2:

On ne considère deux corps noirs dont l'un est à la température  $T_1 = 2500~K$ . Déterminer la température de l'autre corps noir sachant que la différence entre les deux longueurs d'onde correspondant aux maximums de leurs densités spectrales d'énergie vaut:  $\lambda_{m2} - \lambda_{m1} = \Delta \lambda_m = 0.5~\mu m$ .

## Exercice 3:

Le soleil eut être considéré comme une sphere de rayon  $R_S = 700~000~Km$ , à la température  $T_S = 5800~K$ . On assimile le soleil à un corps noir.

- 1. Quel est le domaine de longueur d'onde dans lequel le soleil émet majoritairement?
- 2. Calculer la puissance  $\phi_e$  totale émise par le soleil. On donne:  $\sigma = 5.67.10^{-8} W.m^{-2}.K^{-4}$ .
- 3. En déduire le flux surfacique  $\varphi_i$  incident au niveau de l'orbite terrestre. La distance Terre-Soleil vaut  $D=150\ millions\ de\ Km$ .
- 4. Quel est le flux  $\phi_i$  total incident arrivant sur la Terre? Le rayon terrestre est  $R_T = 6$  400.
- 5. On suppose que la Terre est également un corps noir. Quel le flux  $\phi_a$  absorbée par la Terre?
- 6. Quel est le flux  $\phi'_e$  émis par la Terre? On appellera  $T_t$  la température de la Terre, supposée uniforme.
- 7. Exprimer et calculer la température de la Terre en supposant le régime stationnaire.

### Exercice 4:

Un corps sphérique (A) de rayon R, de capacité thermique  $C_0$ , et de température  $T_1$ , et placé dans une enceinte vide dont les parois intérieure absorbante est maintenue à la température  $T_0$ . On suppose que le corps (A) rayonne comme un corps noir et qu'il n'y a pas d'autres types de transferts thermiques.

Les températures  $T_1$  et  $T_2$  sont voisines et l'on pose  $T_1 = \theta + T_0$  avec  $\theta \ll T_0$ .

- 1. Quel est le flux  $\phi_a$  reçu par le corps (A) de la part de l'enceinte.
- 2. Déterminer la loi d'évolution de la température T de la sphère en fonction du temps.
- 3. On considère une sphère métallique de rayon R=1cm, de capacité thermique massique  $c=0.5kJ.K^{-1}.Kg^{-1}$ . Données:  $T_0=273K,\,T_1=280K$  et la constante de Stefan:  $\sigma=5.67.10^{-8}W.m^{-2}.K^{-4}$ .



Au bout de combien de temps, l'écart de température  $(T - T_0)$  est-il inférieur à 0.1 K?

#### Exercice 5:

La Terre est assimilée à un corps noir de température  $T_t$ , émettant un rayonnement thermique de flux surfacique  $\varphi_t$ . La Terre est supposée entourée d'une couche contenant du dioxyde de carbone gazeux en concentration  $C_0$  fixée. La température de cette couche est notée  $T_c$  et le rayonnement qu'elle émet est associée au flux surfacique  $\varphi_c$  des deux côtés de la couche.

On désigne par  $\varphi_s$  le lux solaire surfacique reçu. Les rayons solaires arrivent sous incidence normale sur la couche gazeuse.

- 1. a. Rappeler la forme de la loi du déplacement de Wien.
  - b. On sait que le Soleil, de température  $T_S = 6000K$ , émet un rayonnement situe dans le domaine visible  $\lambda_m = 0.5 \mu m$ . En utilisant un ordre de grandeur raisonnable pour les températures, déterminer approximativement la longueur d'onde d'émission radiative maximale de la Terre et de la couche de  $CO_2$ .
- 2. On admettra par la suite que l'absorption de  $\varphi_t$  par la couche de  $CO_2$  est totale et que cette couche peut donc être assimilée à un corps noir dans le domaine spectral du flux radiatif terrestre, mais elle est transparente au rayonnement solaire ( $\varphi_S$  le flux solaire surfacique).
- a. Traduire l'équilibre radiatif de l'ensemble couche gazeuse + Terre; on supposera que la Terre et la couche gazeuse ont sensiblement le même rayon, et donc la même surface émissive d'un coté. Traduire l'équilibre de la Terre seule.
- b. Exprimer la température  $T_t$  en fonction de  $\varphi_S$  et de la constante de Stefan. Comparer le résultat à celui que l'on obtiendrait si la couche n'existait pas. Application numérique:

$$\varphi_S = 342 \ W.m^{-2}$$
 
$$\sigma = 5.67.10^{-8} W.m^{-2}.K^{-4}$$

- 3. On suppose que la quantité  $CO_2$  augmente. On modélise cette augmentation en considérant la superposition de N couches contenant du  $CO_2$ , toutes identiques à la précédente. Ainsi, chaque couche admet la même concentration en  $CO_2$ . On note  $\varphi_{cp}$  le rayonnement émis vers le haut et vers le bas par la  $P^{ieme}$  couche de température  $T_{cp}$ . Le rayonnement émis par une couche est totalement absorbe par les autres couches.
- a. Traduire l'équilibre radiatif en terme de flux surfacique:
  - L'ensemble toutes les couches + Terre;
  - La couche p;
  - La première couche;
  - La Terre.
- b. En déduire  $\varphi_{cp}$  et  $\varphi_t$  en fonction de  $\varphi_S$ , de N et de  $\sigma$ .
- c. Donner finalement l'expression de  $T_t$  en fonction de  $\varphi_S$ , de N et de  $\sigma$ . Conclure sur l'influence de N sur  $T_t$ .

## Exercice 6:

Soit  $S_1$  une surface convexe complètement entourée par une surface  $S_2$ . On suppose que les températures  $T_1$  et  $T_2$  ainsi que les émissivités  $\varepsilon_1$  et  $\varepsilon_2$  des deux surfaces sont connues.

- 1. Déterminer le flux net perdu par chacune de ces surfaces en utilisant le schéma électrique équivalent.
- 2. On suppose que la surface  $S_1$  et petite devant la surface  $S_2$ . Simplifier l'expression du flux perdu par chacune des surfaces. Conclure.

## Exercice 7:

Un radiateur infrarouge, constitue d'une plaque chauffante carrée de côté  $a=20\ cm$ , est placée horizontalement à une hauteur  $h=4\ m$  du sol.

1. La température du radiateur est égale à T=900K. Calculer la puissance P dissipée par le radiateur.  $(\sigma=5.67.10^{-8}W.m^{-2}.K^{-4})$ .

2. On admet qu'une surface dS d'un écran situé dans la direction i, normalement au rayonnement émis par le radiateur et à une distance r du radiateur, reçoit une puissance:

$$dP = La^2 \cos i \frac{dS}{r^2}$$

Où L est la luminance énergétique.

Déterminer L en fonction de  $\sigma$  et T.



a. en A, à la verticale du radiateur;

b. en B, à une distance d=3cm de A.



radiateur

# Exercice 8:

Une petite bille sphérique de cuivre, assimilée à un corps noir, de diamètre D=30mm, de chaleur massique  $c=390J.K^{-1}.Kg^{-1}$  et de masse volumique  $\rho=8.9\ 10^3\ Kg.m^{-3}$ , est à la température  $T_0=288K$  à l'instant t=0. On place cette bille dans un enceinte vide dont la paroi intérieure est maintenue à température constante  $T_1=300K$ ; On donne  $\sigma=5.67.10^{-8}W.m^{-2}.K^{-4}$ .

- 1. Établir l'équation différentielle qui régit l'évolution de la température T()t de la sphère au cours du temps.
- 2. En tenant compte des faibles écarts de température  $(T(t)-T_1\ll T_1)$ , établir la loi de (t); calculer la constante de temps  $\tau$  de cette évolution.
- 3. Calculer, à l'instant  $t = \tau$ , le flux radiatif à la surface de la bille et la vitesse d'échauffement  $\frac{dT}{dt}$ .
- 4. Déterminer à quel instant la bille atteint la température moyenne  $T_m = \frac{T_0 + T_1}{2}$ .