ChumakovNV 11012025-105903

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

На рисунке 1 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_2$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 1 – Двойной балансный смеситель

Частота гетеродина 346 МГц, частота ПЧ 42 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 996 MΓ_{II}
- 2) 388 МГц
- 3) 42 MΓ_{II}
- 4) 2076 MΓ_{II}.

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 2. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ нельзя было бы объяснить наличие в спектре составляющей, отмеченной маркером 2?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 – Экран анализатора спектра

Варианты ОТВЕТА:

9) $\{8; -16\}$

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 4719 М Γ ц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 12 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 1285 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 2 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 15460 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 6005 МГц до 6091 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -91 дБм 2) -94 дБм 3) -97 дБм 4) -100 дБм 5) -103 дБм 6) -106 дБм 7) -109 дБм 8) -112 дБм 9) -115 дБм

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = -0.12087 + 0.27861i, \, s_{31} = -0.27905 - 0.12106i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -57 дБн 2) -59 дБн 3) -61 дБн 4) -63 дБн 5) -65 дБн 6) -67 дБн 7) -69 дБн 8) -71 дБн 9) 0 дБн

Для выделения только **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 32 градусов.

Чему равна ёмкость компонента фазовращателя, если частота ПЧ равна 65 МГц?

Варианты ОТВЕТА:

1) $27.1 \text{ } \pi\Phi$ 2) $89.8 \text{ } \pi\Phi$ 3) $57.7 \text{ } \pi\Phi$ 4) $41.5 \text{ } \pi\Phi$

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью минус 2 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 14 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность на выходе промежуточной частоты измерена с помощью широкополосного измерителя мощности с входным сопротивлением 50 Ом, и получено значение минус 9.4 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 3.)

Рисунок 3 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА: 1) 5.3 дБ 2) 5.9 дБ 3) 6.5 дБ 4) 7.1 дБ 5) 7.7 дБ 6) 8.3 дБ 7) 8.9 дБ 8) 9.5 дБ 9) 10.1 дБ