

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

. .

•

STATE OF THE STATE

ARO 23306.91-MA

AD-A184 687

ANNOTATED COMPUTER OUTPUT

'87 - 1

ANNOTATED COMPUTER OUTPUT FOR ILLUSTRATIVE EXAMPLES OF CLUSTERING USING THE MIXTURE METHOD AND TWO COMPARABLE METHODS FROM SAS

K.E. BASFORD, N.J. MILES-MCDERMOTT, AND W.T. FEDERER

February 1987

DISTRIBUTION STATEMENT A

Approved for public releases Distribution Unlimited

294 Caldwell Hall

Ithaca, New York 14853-2602

(607) 255-8005

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE	MASTER COPY	-	FOR REPR	ODUC	TION PU	RPOSES
	REPORT DOCUM	MENTATION	PAGE			
1a. REPORT SECURITY CLASSIFICATION		1b. RESTRICTIVE	MARKING\$	-		
Unclassified						
28. SECURITY CLASSIFICATION AUTHORITY			AVAILABILITY OF			
2b. DECLASSIFICATION / DOWNGRADING SCHEDU			i for public ution unlimi		ease;	
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION RE	PORT	NUMBER(S))
		APD 2	3306.91-mA	9		
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL		ONITORING ORGAN		NC	
Mathematical Sciences Inst.	(If applicable)	II. S. A	rmy Research	h Off	fice	
6c. ADDRESS (City, State, and ZIP Code)			y, State, and ZIP C		. 100	
		§	ox 12211	,		
294 Caldwell Hall, Cornell Uni Ithaca, New York 14853	versity	Researc	h Triangle l	Park	, NC 27	7709-2211
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
U. S. Army Research Office	(II applicable)	DAAG29-85-C-0018				
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF FUNDING NUMBERS				
P. O. Box 12211		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.		WORK UNIT ACCESSION NO.
Research Triangle Park, NC 27	7709-2211	LEEMENT NO.	110.	110.		Accession No:
11. TITLE (Include Security Classification)						
ANNO USING THE MIXTURE METHOD AND T	TATED COMPUTER (WO COMPARABLE MI			EXAM.	PLES OF	CLUSTERING
12 PERSONAL AUTHOR(S) K.E. Basford,	N.J. Miles-McDe	rmott, and W	T. Federer			
13a. TYPE OF REPORT 13b. TIME CO	OVERED	14. DATE OF REPO	RT (Year, Month, L	Day)	15. PAGE (COUNT
Interim Technical FROM	то	June 26.	1987		45	
16. SUPPLEMENTARY NOTATION The view,	opinions and/or	findings co	ntained in t	his	report	are those
of the author(s) and should not policy or decision unless so	be construed a	s an officia	l Department	of	the Arn	my position,
17. COSATI CODES	18. SUBJECT TERMS (Continue on reversi	e if necessary and	identi	ify by block	k number)
FIELD GROUP SUB-GROUP	mixture model analysis, obs					
			JENGIH, TWID	111,		DEENGTH,
19. ABSTRACT (Continue on reverse if necessary	and identify by block r	number) -				
This is the annotated com	puter output fo	r the three o	clustering m	etho	ds cons	idered in
the associated technical repor	t 7BU-921-M and	'87-5, ∕Illus	strative Exa	mple	s of Cl	ustering
using the Mixture Method and T and N.J. Miles-McDermott. The	wo Comparable M	ethods from S	SAS, by K.E.	Bas	ford, y-W.	.T. rederer
generated from a fortran progr	am. KMM. writte	n by K.E. Bas	sford. Two	othe	r clust	ering
methods are considered and are	from SAS/CLUST	ER, Version S	. These ar	e Wa	rd's me	thod and the
EML method. Two real data set	s are processed	•				
		14				
		``				

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT	21. ABSTRACT SECURITY CLASSIFICATION
☐ UNCLASSIFIED/UNLIMITED ☐ SAME AS RPT. ☐ DTIC USERS	Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL	22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted. All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

ANNOTATED COMPUTER OUTPUT FOR ILLUSTRATIVE EXAMPLES OF CLUSTERING USING THE MIXTURE METHOD AND TWO COMPARABLE METHODS FROM SAS

K.E. BASFORD, N.J. MILES-MCDERMOTT, AND W.T. FEDERER

February 1987

* Partially supported by Mathematical Sciences Institute and by the Australian-American Education Foundation.

ABSTRACT

This is the annotated computer output for the three clustering methods considered in the associated technical report, BU-921-M and '87-5, Illustrative Examples of Clustering using the Mixture Method and Two Comparable Methods from SAS, by K.E. Basford, W.T. Federer, and N.J. Miles-McDermott. The computer output for the normal mixture model method is generated from a fortran program, KMM, written by K.E. Basford. Two other clustering methods are considered and are from SAS/CLUSTER, Version 5. These are Ward's method and the EML method. Two real data sets are processed.

COMMENTS

The annotated output should be read in sequence because explanations made on earlier pages are not necessarily repeated subsequently. Some pages may be composites of more than one output page, and some output pages are omitted because they are generally not useful for the purpose at hand. A general description of the mixture model approach to clustering is explained in detail and discussed in relation to other clustering methods in Basford (1986). SAS program documentation is in SAS User's Guide (1985a and b). Program documentation for KMM is available from K.E.

Basford and will appear in a forthcoming book by McLachlan and Basford (1987).

The data are presented below. Following on pages 9-10 the KMM and SAS control language for each example is presented. Control language is given in capital type with accompanying descriptions and notes given in boldface type. Program output follows on pages 12-44 with annotations in boldface and lower case type that describe output values in some detail.

DATA SETS

Two data sets are used for each of the three clustering methods presented. The first data set was taken from Habbema, Hermans, and van den Broek (1974). These examples are labeled CL-1-Habbema through CL-3-Habbema on the output pages. The second data set is the well known Iris data published by Fisher (1936). These examples are labeled CL-1-Fisher through CL-3-Fisher on the output pages. For each data set, the first example CL-1- illustrates the normal mixture model method of clustering using the KMM program. CL-2- illustrates Ward's method using SAS and CL-3-illustrates the EML method also using SAS.

The data taken from Habbema et al., consists of 45 observations on known haemophilia A carriers and 35

observations on known noncarriers. These data are shown in Table 1 and contain three variables. GROUP indicates whether the individual is a carrier (coded 2) or noncarrier (coded 1). The two other variables are used to discriminate between the normal individuals and the carriers in the clustering programs and are $\log_{10}(AHF)$ activity) and $\log_{10}(AHF)$ and $\log_{10}(AHF)$ are variables were named ACTIVITY and ANTIGEN, respectively.

TABLE 1: Habbema et al., Haemophilia Data

ACTIVITY	ANTIGEN
-0.00559	-0.16571
-0.16980	-0.15852
-0.34689	-0.18791
	0.00642
	0.07129
	0.01059
-0.19789	-0.00054
	0.03919
	-0.21229
	-0.11904
	-0.47734
-0.08419	0.02482
-0.02252	-0.05805
	0.07821
	-0.11384
0.12366	0.21397
-0.47022	-0.30989
-0.15191	-0.06864
0.00061	-0.11531
-0.20154	-0.04976
-0.19318	-0.22933
0.15069	0.09331
-0.12591	-0.06686
-0.15508	-0.12321
	-0.10067
0.02908	0.04419
	-0.00559 -0.16980 -0.34689 -0.08944 -0.16791 -0.08362 -0.19789 -0.07621 -0.19129 -0.10919 -0.52677 -0.08419 -0.02252 0.00841 -0.18266 0.12366 -0.47022 -0.15191 0.00061 -0.20154 -0.19318 0.15069 -0.12591 -0.15508 -0.19515

1	-0.22282	-0.17099
î		
	-0.09971	-0.07333
1	-0.19724	-0.06074
1	-0.08670	-0.05597
2	-0.49859	-0.08602
2		
2	-0.50145	-0.29844
2	-0.13259	0.00970
2	-0.34787	-0.17209
2	-0.37553	-0.18652
~		
2	-0.24466	-0.04067
2	-0.22047	0.00455
2	-0.21539	-0.02191
2	-0.25404	-0.05729
~		
4	-0.37780	-0.26816
2	-0.06391	0.15694
2	-0.33510	-0.13676
2	-0.01493	0.15392
2	-0.03124	
~		0.14001
2	-0.17402	-0.07764
222222222222222	-0.09636	0.05307
2	-0.02344	0.08038
2	-0.40546	-0.24184
2 2 2 2 2		
2	-0.34776	0.11506
2	-0.36180	-0.20082
2	-0.69112	-0.33899
2	-0.36083	0.12372
~		
2	-0.45348	-0.16817
2	-0.35388	0.07219
2	-0.47186	-0.10786
2	-0.36097	-0.03994
2		
2	-0.32261	0.16697
2	-0.43193	-0.06869
2	-0.27342	-0.00203
2	-0.55728	0.05480
2		
2 2 2 2 2	-0.49503	-0.01529
2	-0.51066	-0.24825
2	-0.16516	0.21321
2	-0.42318	-0.09981
2	-0.23746	0.28763
2	-0.34470	0.00969
2 2 2 2 2 2	-0.40465	-0.11618
2	-0.14158	0.16416
2	-0.15082	0.11372
~		
2	-0.26421	0.08669
2	-0.33525	0.08753
2	-0.18782	0.25096
2	-0.17443	0.18924
2		
4	-0.24443	0.16137
2	-0.47837	0.02821

The Fisher Iris data is shown in Table 2 and consists of four measurements on 50 plants from each of three species

of Iris: Iris setosa, Iris versicolor, and Iris virginica, These species were coded 1, 2, and 3, respectively, with a variable name of GROUP. The four measurement variables input into the clustering programs were sepal length (SLENGTH), sepal width (SWIDTH), petal length (PLENGTH), and petal width (PWIDTH).

TABLE 2: Fisher Iris Data

GROUP	SLENGTH	SWIDTH	PLENGTH	PWIDTH
1	5.1	3.5	1.4	0.3
1	4.4	3.2	1.3	0.2
1	4.4	3.0	1.3	0.2
1	5.0	3.5	1.6	0.6
1	5.1	3.8	1.6	0.2
1	4.9	3.1	1.5	0.2
1	5.0	3.2	1.2	0.2
1	4.6	3.2	1.4	0.2
1	5.0	3.3	1.4	0.2
1	4.8	3.4	1.9	0.2
1	4.8	3.0	1.4	0.1
1	5.0	3.5	1.3	0.3
1	5.1	3.3	1.7	0.5
1	5.0	3.4	1.5	0.2
1	5.1	3.8	1.9	0.4
1	4.9	3.0	1.4	0.2
1	5.3	3.7	1.5	0.2
1	4.3	3.0	1.1	0.1
1	5.5	3.5	1.3	0.2
1	4.8	3.4	1.6	0.2
1	5.2	3.4	1.4	0.2
i	4.8	3.1	1.6	0.2
1	4.9	3.6	1.4	0.1
1	4.6	3.1	1.5	0.2
ī	5.7	4.4	1.5	0.4
ĩ	5.7	3.8	1.7	0.3
ī	4.8	3.0	1.4	0.3
ī	5.2	4.1	1.5	0.1
ī	4.7	3.2	1.6	0.2
ī	4.5	2.3	1.3	0.3
ĩ	5.4	3.4	1.7	0.3
ī	5.0	3.0	1.6	0.2
ĩ	4.6	3.4	1.4	0.3
ĩ	5.4	3.9	1.3	0.4

_				
1	5.0	3.6	1.4	0.2
1	5.4	3.9	1.7	0.4
ī	4.6	3.6	1.0	0.2
_				0.2
1	5.1	3.8	1.5	0.3
1	5.8	4.0	1.2	0.2
1	5.4	3.7	1.5	0.2
•				0.2
T	5.0	3.4	1.6	0.4
1	5.4	3.4	1.5	0.4
1	5.1	3.7	1.5	0.4
1			1 4	0.2
<u> </u>	4.4	2.9	1.4	0.2
1	5.5	4.2	1.4	0.2
1	5.1	3.4	1.5	0.2
1	4.7	3.2	1.3	0.2
•	4.0	3.2	1.5	0.2
Ţ	4.9 5.2	3.1	1.5	0.1
1	5.2	3.5	1.5	0.2
1	5.1	3.5	1.4	0.2
2	6 1	3.2	4.5	1.5
4	6.4	3.2		1.5
2	5.5	2.4	3.8	1.1
2	5.7	2.9	4.2	1.3
2	5.7	3.0	4.2	1.2
2	5.7	2.0	2 6	1 2
4	5.6	2.9	3.6	1.3
2	7.0	3.2	4.7	1.4
2	6.8	2.8	4.8	1.4
2	6.1	2.8	4.7	1.2
2	4.9	2.4	3.3	1.0
2	4.7	2.4		1.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2	5.8	2.7	3.9	1.2
2	5.8	2.6	4.0	1.2
2	5.5	2.4	3.7	1.0 1.7 1.3
2	6.7	3.0	5.0	17
2	5.7			1.7
2	5.7	2.8	4.1	1.3
2	6.7	3.1	4.4	1.4
2	5.5	2.3	4.0	1.3
2	5.1	2.5	3.0	1.1
2				1.1
2	6.6	2.9	4.6	1.3
2	5.0	2.3	3.3	1.0
2	6.9	3.1	4.9	1.5
2	5.0	2.0	3.5	1.0
2				1.0
2	5.6	3.0	4.5	1.5
2	5.6	3.0	4.1	1.3
2	5.8	2.7	4.1	1.0
5	6.3	2.3	4.4	1 2
2	0.5	2.5	4.4	1.3
2	6.1	3.0	4.6	1.4
2	5.9	3.0	4.2	1.5
2	6.0	2.7	5.1 3.9	1.6
2	F 6	2.5	3 0	1 1
<u>د</u>	5.6	2.3	J.J	1.1
2	6.7	3.1	4.7	1.5
2	6.2	2.2	4.5	1.5
2	5.9	3.2	4.8	1.8
2	6.3	2.5	4.9	1.5
4	0.3	2.5	4. 5	1.5
2	6.0	2.9	4.5	1.5
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.6	2.7	4.2	1.3
2	6.2	2.9	4.3	1.3
_			- • -	

2	6.0	3.4	4.5	1.6
2	6.5	2.8	4.6	1.5
2	5.7	2.8	4.5	1.3
2		2.9	4.7	1.4
2	6.1	2.9		1 3
2	5.5	2.5	4.0	1.3 1.2 1.5
2	5.5	2.6	4.4	1.2
2	5.4	3.0	4.5	1.5
2	6.3	3.3	4.7	1.6
-	6.3 5.2	2.7	3.9	1.6 1.4
2	5.2	2.9	4.3	1.3
2	6.4	2.9		1.0
2	6.6	3.0	4.4	1.4
2	5.7	2.6	3.5	1.0
2	6.1	2.8	4.0	1.3
2	6.0	2.2	4.0	1.0
3	6.3	3.3	6.0	2.5
3	6.7	3.3	5.7	2.1
3	7.2	3.5	6.1	2.5
3	7.2	3.6	6.7	2.3
3	7.7	3.8	6.7	2.2
3	7.2	3.0	5.8	1.6
3	7.4	2.8	6.1	1.9
2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	7.4 7.6	3.0	6.6	1.0 2.5 2.1 2.5 2.2 1.6 1.9 2.1 2.0 2.3 2.1 1.9 2.0 2.3
3	7 7	2.8	6.7	2.0
2	7.7 6.2 7.7	3.4	5.4	2.3
3	0.2	3.4	6.1	2.3
3	/ • /	3.0	6.1	2.3
3	6.8	3.0	5.5	2.1
3	6.4	2.7	5.3	1.9
3	5.7	2.5	5.0	2.0
3	6.9	3.1	5.1	2.3
3	5.9	3.0	5.1	1.8
3	6.3	3.4	5.6	2.4
3	5.3	2.7	5.1	2.4 1.9
3	5.8	2.7		1.0
3	6.3	2.7	4.9	1.8
3	6.0	3.0	4.8	1.8
3	7.2	3.2	6.0	1.8
3	6.2	2.8	4.8	1.8
3	6.9	3.1	5.4	2.1
2	6.7	3.1	5.6	2.4
3	6.4	3.1	5.5	1.8
3	5.8	2.7	5.1	1.9
3	6.1	3.0	4.9	1.8
3	6.0	3.0 2.2	5.0	1.5
3	6.4 5.8	3.2	5.3	2.3
3	5.8	2.8	5.1	2.4
3	6.9	3.2	5.7	2.3
3	6.7	3.2	5.2	2.3
3	6.7	3.0		2.3
3	7.7	2.6	6.9	2.3
3	6.3	2.8	5.1	1.5
3	6.5	3.0	5.2	2.0
3	7.9	3.8	6.4	2.0
3	6.1	2.6	5.6	1.4
3	6.4	2.8	5.6	2.1
3 3 3 3 3 3 3 3 3 3	6.4			
3	6.3	2.5	5.0	1.9

3	4.9	2.5	4.5	1.7
3	6.8	3.2	5.9	2.3
3	7.1	3.0	5.9	2.1
3	6.7	3.3	5.7	2.5
3	6.3	2.9	5.6	1.8
3	6.5	3.0	5.5	1.8
3	6.5	3.0	5.8	2.2
3	7.3	2.9	6.3	1.8
3	6.7	2.5	5.8	1.8
3	5.6	2.8	4.9	2.0
3	6.4	2.8	5.6	2.2
3	6.5	3.2	5.1	2.0

Control Language

```
CL-1-Habbema (Mixture method from KMM)
75 2
                      ⇒ 75 is the number of observations and 2 is
                         the number of variables
-0.005595 -0.165712
-0.169805 -0.158521
                             INPUT DATA:
                                          ACTIVITY and ANTIGEN
-0.478366 0.028215
               ⇒ number of clusters to be formed
2
2
               ⇒ instructs KMM to assume unequal covariance matrices
               ⇒ signals KMM that initial grouping estimates follow
1
1 1 2 1 1 1 1 1 1 1
2 1 1 1 1 1 1 2 1 1
1 1 1 1 1 1 1 1 1
2 2 1 2 2 1 1 1 1 2
                             Initial groupings of observations
                             (results of Ward's method were used)
1 2 1 1 1 1 1 2 1 2
2 1 1 1 2 1 1 2 1 2
2 1 2 2 1 1 2 1 1 1
1 2 1 1 2
CL-2-Habbema (Ward's method from SAS)
DATA GJ;
INPUT ACTIVITY ANTIGEN;
                             ⇒ Input variables
IF N LE 30 THEN GROUP=1;
                               Defines the GROUP variable
ELSE GROUP=2;
CARDS;
                            ⇒ Signals SAS that the data follow
-0.005595 -0.165712
-0.169805 -0.158521
-0.478366 0.028215
PROC CLUSTER OUTTREE=TREE METHOD=WARD; ⇒ Requests CLUSTER analysis
                          using Ward's method on ACTIVITY and ANTIGEN
VAR ACTIVITY ANTIGEN:
COPY GROUP;
PROC TREE SORT HEIGHT=N;
                          ⇒ Requests the Cluster Tree from 1 to n
                             (75) clusters
ID GROUP;
PROC TREE NCL=2 OUT=OUT NOPRINT;
ID GROUP;
                                     Causes SAS to produce 2x2
                                     table showing misclassifications
PROC FREQ;
TABLE CLUSTER*GROUP;
```

```
CL-3-Habbema (EML method from SAS)
Same control language as for 2)
                                 above except substitute EML
for WARD on PROC CLUSTER line.
CL-1-Fisher (Mixture method from KMM)
150 4
                 ⇒ 150 is number of observations and 4 is the
                    number of variables
5.1 3.5 1.4 0.3
4.4 3.2 1.3 0.2
                              Input data
6.5 3.2 5.1 2.0
                >> Number of clusters to be formed
1
                ⇒ Instructs KMM to assume equal covariance matrices
                ⇒ Signals KMM that initial grouping estimates follow
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
                              Initial grouping of observations
                              (results of Ward's method were used)
3 3 3 3 3 3 3 3 3 3
CL-2-Fisher (Ward's method from SAS)
DATA ONE;
INPUT SLENGTH SWIDTH PLENGTH PWIDTH; >> Input variables
IF N LE 50 THEN GROUP=1;
ELSE IF N LE 100 THEN GROUP=2;
                                        Defines the GROUP variable
ELSE GROUP=3;
CARDS;
                               ⇒ Signals SAS that the data follow
5.1 3.5 1.4 0.3
4.4 3.2 1.3 0.2
6.5 3.2 5.1 2.0
PROC CLUSTER OUTTREE=TREE METHOD=WARD;
                                        Requests the Cluster anlysis
VAR SLENGTH SWIDTH PLENGTH PWIDTH;
                                        using Ward's method on the 4
COPY GROUP;
                                        variables SLENGTH, SWIDTH,
                                        PLENGTH, AND PWIDTH
PROC TREE DATA=TREE SORT HEIGHT=N;
                                         Requests cluster
ID GROUP;
                                               tree
PROC TREE DATA=TREE NCL=3 OUT=OUT NOPRINT;
ID GROUP:
COPY SLENGTH SWIDTH PLENGTH PWIDTH;
                                         Requests the 2×2 table
PROC FREO;
                                          showing misclassifications
TABLE CLUSTER*GROUP;
PROC CANDISC NOPRINT OUT=CAN;
                                         This series of commands is
                                         used to display cluster
CLASS CLUSTER;
                                         results. The CANDISC pro-
VAR SLENGTH SWIDTH PLENGTH PWIDTH;
                                         cedure is run to produce
PROC PLOT;
PLOT CAN2 * CAN1 = CLUSTER;
                                         canonical variables for the
PROC PLOT;
                                                          The first
                                         cluster groups.
PLOT CAN2 * CAN1 = GROUP;
                                         2 canonical variables are
                                         then plotted to show cluster
```

membership

CL-3-Fisher (EML method from SAS)

Same control language as for 2) above except substitute EML for WARD on PROC CLUSTER line.

CL-1-Habbema

Initial partition as specified by input

	l	1 1	T	1	1	1	1	2	1	1
coup allocation for	l Initi	1 1	2	1	1	1	1	1	1	2
vation. The entry	each	1 1	1	1	1	1	1	1	1	1
column 1 refers to	2 for r	1 2	1	1	1	2	2	1	2	2
n 1, row 1 column 2	2 obser	1 2	2	1	1	1	1	1	2	1
observation 2, and	2 refer	1 2	2	1	1	2	1	1	1	2
	l so on	1 1	1	2	1	1	2	2	1	2
						2	•	1	2	•

Estimated mean (as a row vector) for each group

ACTIVITY	ANTIGEN	_	Group means for each variable
-0.221538	-0.032402 = GR0	OUP 1	based on initial group
-0.282643	-0.040757 = GRC	OUP 2	allocation above

Covariance matrices for

allocation

each group based on initial group

Estimated covariance matrix for group 1 = S_{ij}(group 1)

$$0.031661 = S_1^2$$

$$0.010517 = S_{12} \quad 0.019972 = S_2^2$$

Estimated covariance matrix for group 2 = S_{ij}(group 2)

$$0.022859 = S_1^2$$

$$0.016834 = S_{12} \quad 0.030533 = S_2^2$$

Proportion from each group as specified by input = Number initially
0.720 0.280 assigned to group i/total number

In loop 55 log likelihood is 77.035 77.035 is the solution of the likelihood equation based on 55 iterations of the EM algorithm

of observations

Estimate of mixing proportion for each group

0.508 0.492

Estimate of the final proportion
for each group under the normal
mixture model

Entity: Final estimates of posterior probabilities of group membership

GROUP=1	GROUP=2	
		These estimates indicate the degree of
		certainty with which each observation
		belongs to one of the two groups
		For example, observation 1 has a
0.773	0.227	probability of .999 of belonging to
0.983	0.017	group 1 and .001 of belonging to group
0.958	0.042	2
0.992	0.008	
0.001	0.999	
0.983	0.017	
0.999	0.001	
0.997	0.003	
0.948	0.052	
	CL-1	-Habbema
0.000 0.002	1.000 0.998	
	0.983 0.958 0.992 0.001 0.983 0.999 0.997 0.948 0.948 0.966 0.999 0.855 0.957 1.000 0.982 0.995 0.992 0.999 0.899 0.992 0.999 0.899 0.993 0.993 0.0185 0.006 0.949	0.999

0.988 0.777

0.992 0.996

0.955

0.998

0.992 0.726 1.000

0.012 0.223

0.008 0.004

0.045

0.002

0.008

0.274

38 39

40 41 42

43

44 45 46

47	0.125	0.875
48	0.000	1.000
49	0.004	0.996
50	0.092	0.908
51	0.606	0.394
52	0.015	0.985
53	0.001	0.999
54	0.620	0.380
55	0.736	0.264
56	0.034	0.966
57	0.591	0.409
58	0.152	0.848
59	0.032	0.968
60	0.899	0.101
61	0.241	0.759
62	0.975	0.025
63	0.970	0.030
64	0.944	0.056
65	0.426	0.574
66	0.636	0.364
67	0.963	0.037
68	0.089	0.911
69	0.992	0.008
70	0.010	0.990
71	0.016	0.984
72	0.126	0.874
73	0.073	0.927
74	0.031	0.969
75	0.000	1.000

Result	ing	part	titio	on of	the	ent	titie	es i	nto No	G groups	Final group
1	1	2	1	1	1	1	1	1	1	-	allocations after
2	1	1	1	1	1	2	1	1	1		55 iterations of
1	1	1	1	1	1	1	1	1	1		clustering algorithm
2	2	2	2	1	2	2	2	2	2		
2	2	2	2	2	2	2	2	2	2		
1	2	2	1	1	2	1	2	2	1		
2	1	ı	1	2	1	1	2	1	2		
2	2	2	2	2							

Number assigned to each group 39 36

Estimates of correct allocation rates for each group
0.934 0.908 Overall estimate of degree of certainty
with which observations are allocated
to each group

Estimate of overall correct allocation rate

0.921 Weighted average of estimates of correct allocation rates for each group

Estimated mean (as a row vector) for each group

ACTIVITY ANTIGEN

-0.115406 -0.024497 = GROUP 1

-0.365950 -0.045323 = GROUP 2

Group means for each variable based on final estimates of posterior probability of group membership

Estimated covariance matrix for group 1 = S_{ij}(group 1)

0.011245

0.006548 0.012367

Based on final estimates of posterior probability of group membership

Estimated covariance matrix for group 2 = Sij(group 2)

0.015898

0.015029 0.032278

CL-1-FISHER

1	nitia	al pa	artit	tion	as	spec	ified	by	inp	ut	
	1	1	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1	1	1	Initial group allocation for
	1	1	1	1	1	1	1	1	1	1	each observation. The entry
	1	1	1	1	1	1	1	1	1	1	for row 1 column 1 refers to
	2	2	2	2	2	2	2	2	2	2	observation 1, row 1 column 3
	2	2	3	2	2	2	2	2	2	2	refers to observation 2, and
	2	2	2	2	2	2	2	2	2	2	so on
	2	2	2	2	2	2	2	2	2	2	
	2	2	2	2	2	2	2	2	2	2	
	3	3	3	3	3	3	3	3	3	3	
	3	3	2	3	2	3	2	2	2	3	
	2	3	3	3	2	2	2	3	2	3	
	3	3	2	3	3	2	3	2	2	3	
	3	3	3	3	3	3	3	2	3	3	

Estimated mea SLENGTH	n (as a row SWIDTH	vector) for PLENGTH	each group PWIDTH		Group means for each variable
5.005994	3.427995	1.461996	0.246000	GROUP 1	based on initial
5.920269	2.751557	4.420300	1.434370	GROUP 2	group allocation
6.869439	3.086106	5.769438	2.105549	GROUP 3	above

```
1 = S_{ij}(group 1)
Estimated covariance matrix for group
     0.124213
     0.099176
                  0.143674
                  0.011713
                                0.030165
     0.016347
                                                             Covariance
     0.010327
                  0.009296
                                0.006070
                                             0.011106
                                                             matrices for
                                          2 = S_{ij}(group 2)
                                                             each group
Estimated covariance matrix for group
     0.227175
                                                             based on
                                                             initial group
     0.066786
                  0.087267
                                                             allocation
     0.141501
                  0.053037
                                0.277231
     0.034401
                  0.028532
                                0.117393
                                             0.085792
                                          3 = S_{ij}(group 3)
Estimated covariance matrix for group
     0.241609
     0.016371
                  0.082387
     0.185024
                  0.011265
                                0.230741
    -0.008398
                  0.027246
                                0.009312
                                             0.059419
Estimated common covariance matrix
                                                         In this run we
     0.196290
                                                         specified that KMM
                                                         assume equal cov-
     0.065579
                  0.104907
     0.110146
                  0.029316
                                0.183807
                                                         ariance matrices
     0.016186
                  0.021814
                                0.054552
                                             0.054618
                                                         for each group
                                        This is the pooled estimate of that
                                        matrix based on the weighted
                                        average of the individual estimated
                                        covariance matrices
                               CL-1-FISHER
Proportion from each group as specified by input
     0.333 0.427 0.240
                                           .333 = 50/150 = Number initially
                                           assigned to group 1/total number
                                           of observations
In loop 30 log likelihood is
                                      -256.354 = Solution to the likelihood
                                                 equation based on 30 iter-
                                                 ations of the EM algorithm
  Estimate of mixing proportion for each group
  0.333 0.330 0.337
                                             Estimate of the final propor-
                                             tion for each group under the
                                             normal mixture model
```

Entity: Final estimates of posterior probabilities of group membership

OBSERVATION	GROUP 1	GROUP 2	GROUP 3
1	1.000	0.000	0.000
2	1.000	0.000	0.000
3	1.000	0.000	0.000
4	1.000	0.000	0.000
5	1.000	0.000	0.000
6	1.000	0.000	0.000
7	1.000	0.000	0.000
8	1.000	0.000	0.000
9	1.000	0.000	0.000
10	1.000	0.000	0.000
11	1.000	0.000	0.000
12	1.000	0.000	0.000
13	1.000	0.000	0.000
14	1.000	0.000	0.000
15	1.000	0.000	0.000
16	1.000	0.000	0.000
17	1.000	0.000	0.000
18	1.000	0.000	0.000
19	1.000	0.000	0.000
20	1.000	0.000	0.000
21	1.000	0.000	0.000
22	1.000	0.000	0.000
23	1.000	0.000	0.000
24	1.000	0.000	0.000
25	1.000	0.000	0.000
26	1.000	0.000	0.000
27	1.000	0.000	0.000
28	1.000	0.000	0.000
29	1.000	0.000	0.000
30	1.000	0.000	0.000
31	1.000	0.000	0.000
32	1.000	0.000	0.000
33	1.000	0.000	0.000
34	1.000	0.000	0.000
35	1.000	0.000	0.000
36	1.000	0.000	0.000
37	1.000	0.000	0.000
38	1.000	0.000	0.000
39	1.000	0.000	0.000
40	1.000	0.000	0.000
41	1.000	0.000	0.000
42	1.000	0.000	0.000
43	1.000	0.000	0.000
44	1.000	0.000	0.000
45	1.000	0.000	0.000
46	1.000	0.000	0.000
47	1.000	0.000	0.000
48	1.000	0.000	0.000

These estimates indicate the degree of certainty with which each observation belongs to one of the three groups. Observation 1 has a probability of 1.0 of belonging to group 1 and 0 of belonging to the other two groups

49	1.000	0.000	0.000
50	1.000	0.000	0.000
51	0.000	0.999	0.001
52	0.000	1.000	0.000
53	0.000	1.000	0.000
54	0.000	1.000	0.000
55	0.000	1.000	0.000
56	0.000	1.000	0.000
57	0.000	0.999	0.001
58	0.000	1.000	0.000
59	0.000	1.000	0.000
60	0.000	1.000	0.000
61	0.000	1.000	0.000
62	0.000	1.000	0.000
63	0.000	0.704	0.296
64	0.000	1.000	0.000
65	0.000	1.000	0.000
66	0.000	1.000	0.000
67	0.000	1.000	0.000
68	0.000	1.000	0.000
69	0.000	1.000	0.000
70	0.000	0.997	0.003
71	0.000	1.000	0.000
72	0.000	0.967	0.033
73	0.000	1.000	0.000
74	0.000	1.000	0.000
75	0.000	1.000	0.000
76	0.000	0.998	0.002
77	0.000	0.999	0.001
78	0.000	0.127	0.873
79	0.000	1.000	0.000
80	0.000	0.999	0.001
81	0.000	0.979	0.021
82	0.000	0.133	0.867
83	0.000	0.868	0.132
84	0.000	0.991	0.009
85	0.000	1.000	0.000
86	0.000	1.000	0.000
87	0.000	0.988	0.012
88	0.000	0.997	0.003
89	0.000	0.998	0.002
90	0.000	0.994	0.006
91	0.000	1.000	0.000
92	0.000	0.999	0.001
93	0.000	0.929	0.071
94	0.000	0.979	0.021
95	0.000	0.999	0.001
96	0.000	1.000	0.000
97	0.000	1.000	0.000
98	0.000	1.000	0.000
99	0.000	1.000	0.000

100	0.000	1.000	0.000
	0.000	0.000	1.000
101			
102	0.000	0.000	1.000
103	0.000	0.000	1.000
104	0.000	0.000	1.000
105	0.000	0.148	0.852
106	0.000	0.000	1.000
107	0.000	0.000	1.000
108	0.000	0.000	1.000
109	0.000	0.000	1.000
110	0.000	0.000	1.000
111	0.000	0.000	1.000
112	0.000	0.002	0.998
113	0.000	0.000	1.000
114	0.000	0.000	1.000
115	0.000	0.009	0.991
116	0.000	0.000	1.000
117	0.000	0.001	0.999
118	0.000	0.094	0.906
119	0.000	0.123	0.877
120	0.000	0.003	0.997
121	0.000	0.162	0.838
122	0.000	0.001	0.999
123	0.000	0.000	1.000
124	0.000	0.004	0.996
125	0.000	0.001	0.999
126	0.000	0.089	0.911
127	0.000	0.302	0.698
128			
	0.000	0.000	1.000
129	0.000	0.000	1.000
130	0.000	0.000	1.000
131	0.000	0.000	1.000
132	0.000	0.000	1.000
133	0.000	0.746	0.254
134	0.000	0.002	0.998
135	0.000	0.000	1.000
136	0.000	0.073	0.927
137	0.000	0.000	1.000
138	0.000	0.006	0.994
139	0.000	0.022	0.978
140	0.000	0.000	1.000
141	0.000	0.000	1.000
142	0.000	0.000	1.000
143	0.000	0.001	0.999
144	0.000	0.005	0.995
145	0.000	0.000	1.000
146	0.000	0.000	1.000
147	0.000	0.000	1.000
148	0.000	0.000	1.000
149	0.000	0.000	1.000
150	0.000	0.008	0.992

CL-1-FISHER

Re	sult	ing	part:	itior	of	the	enti	itie	s i	nto	NG	groups	
	1	1	1	1	1	1	1	1	1	1		-	
	1	1	1	1	1	1	1	1	1	1			
	1	1	1	1	1	1	1	1	1	1		Final group allocations after	
	1	1	1	1	1	1	1	1	1	1		30 iterations	
	1	1	1	1	1	1	1	1	1	1			
	2	2	2	2	2	2	2	2	2	2			
	2	2	2	2	2	2	2	2	2	2		•	
	2	2	2	2	2	2	2	3	2	2			
	2	3	2	2	2	2	2	2	2	2			
	2	2	2	2	2	2	2	2	2	2			
	3	3		3	3	3	3	3	3	3			
	3	3	3	3	3	3	3	3	3	3			
	3	3	3	3		3	3	3	3	3			
	3	3	2	3	3	3	3	3	3	3			
	3	3	3	3	3	3	3	3	3	3			
	3	3	3	3	3	3	3	3	3	3			
37	-h		- 4	.	1	h							
Nu	110er 50		signe		eaci	n gr	oup						
	50		49	51									
17-	.	-	-6 -				_ 4 4		.	£		O	
ES						TTOC	ation	n ra	τes	101	r ea	each group Overall estimate	
	1.00	U (0.973	0.5	983							of degree of certainty	
												with which observations	5
												are allocated to each	•
_			_		_			_	_			group	
Es	tima	te d	of ove	eral.	L co	rrec	t al	loca	tio	n ra	ate	e 0.985 = Weighted average of	
												estimates of correct	
												allocation rates for	
												each group	
Es	timat	ted	mean	(as	a r	ow vo	ecto	r) f	or	eacl	ı gı	group	
		SLE	NGTH	-	SW	IDTH		PL	ENG	TH	_	PWIDTH Group means for	
	5	.005	5994		3.42	7995		1.4	619	96		0.246000 each variable based	1
	5	. 942	2309	:	2.76	0773		4.2	588	01		1.319220 on estimates of	
			1652			0818		5.5				2.024963 posterior proba-	
	•			•	50	0020			J	-		bility of group membership	
												billed of droup memberonip	
												This pooled estimate of the	
E.	+ 1 1	-~4	comme	~~ ~	w							common covariance matrix is	
ES	CIMA				ovar.	Tance	e ma	CLIX					
			2639		_							based on the final estimates	
			.0898		_	.111						of posterior probability of	
		Λ	1506										
			1696		-	.051				8654		group membership	
			0393		-	.029				8654 4197		group membership 0.039709	

大きな ないまま

WARD'S MINIMUM VARIANCE CLUSTER ANALYSIS

EIGENVALUES OF THE COVARIANCE MATRIX

CUMULATIVE		0.74307	1.00000
PROPORT ION	الفلي آل	0.743072	0.256928
DIFFERENCE	$(\lambda_i - \lambda_{i+1})$	0.025371	•
EICENVALUE	۳,	0.038779	0.013409
		-	ผ

ROOT-MEAN-SQUARE TOTAL-SAMPLE STANDARD DEVIATION = 0.161536 ROOT-MEAN-SQUARE DISTANCE BETWEEN OBSERVATIONS = 0.323072 → squared Eucludean distances

FREQUENCY = number of observations in the newly formed cluster OF NEW SEMIPARTIAL CLUSTER R-SQUARED R-SQUARED	Semipartial R ² is the decrease in the	proportion of variance accounted for	resulting from joining two clusters.		.000007 is the decrease in the proportion	of variances accounted for resulting from	joining observations 4 and 6 into one	cluster.		R ² is the squared multiple correlation and	is the proportion of variances accounted	for by the clusters at a particular step.	i.e997537 = R ² for 49 clusters				
rvations in th R-SQUARED	0.99993	0.999975	0.99944	0.999911	0.999876	0.999838	0.999795	0.999748	0.999697	0.999638	0.999577	0.999507	0.999434	0.99358	0.999279	0.999194	0.999088
= number of observed SEMIPARTIAL R-SQUARED	0.000007	0.000018	0.000032	0.000033	0.000035	0.000038	0.000043	0.000047	0.000051	0.000059	0.000061	0.000069	0.000074	0.000075	0.000079	0.000085	0.000105
FREQUENCY OF NEW CLUSTER	N	7	2	8	8	7	7	8	7	8	8	2	8	2	2	7	က
NUMBER = number of clusters OF formed at each step LUSTERS CLUSTERS JOINED	980	0829	0B52	0B34	0B12	0821	0B25	0839	0B20	0844	0830	0B37	0845	0871	0B67	0873	0B38
number of clustormed at each	0B4	0820	OB45	083	088	68 0	0B15	0836	0835	0843	0828	087	0818	0854	0864 4	0B63	CL63
NUMBER = OF CLUSTERS	7.	52	72	11	2	8	8	29	99	88	2	ß	62	19	8	22	88
z d	Clusters joined identifies the	two clusters being joined at a	particular step. Clusters of	one observation being joined	is identified as OBn, where n	is the observation number.	Clusters of more than one	observation are identified as	C.n. where n is the number of	clusters existing after the	cluster is formed						

0 998967	0.998835	0.998691	0.998537	0.998371	0.998186	0.997997	0.997808	0.997537	0.997256	996966.0	0.996661	0.996338	0.996005	0.995652	0.995277	0.994851	0.994421	0.993977	0.993504	0.993023	0.992530	0.991998	0.991434	0.990844	0.990215	0.989569	0.988797	0.987747	0.986658	0.985541	0.984298	0.983035	0.981613	0.979741	0.977762	0.975170
0.000122	0.000132	0.000143	0.000154	0.000166	0.000185	0.000189	0.000190	0.000271	0.000281	0.000290	0.000305	0.000323	0.000334	0.000353	0.000375	0.000426	0.000429	0.000444	0.000474	0.000481	0.000493	0.000532	0.000564	0.000590	0.000628	0.000646	0.000773	0.001050	0.001088	0.001117	0.001243	0.001263	0.001421	0.001872	0.001980	0.002592
m	8	8	2	4.	ო	~	8	α	8	ß	ო	ო	7	8	က	4'	4'	ო	4'	m	8	9	4'	က	S	ო	7	က	2	9	ო	က	9	0 0	8	4,
0846	0B47	0B32	0855	G166	26.	0848	0824	0 B e3	0B75	CL57	G.65	GL60	0 B 19	0B66	0B68	a.73	CL61	0B26	GL68	0829	0B72	0833	G.52	0B27	0842	0862	0B74	0853	0857	G .37	0813	CL48	G.45	Q.4 1	0822	0
Q.70	0B14	0817	0831	5	0823	SE 50	082	085	0B61	CL74	0841	0B58	0 <u>8</u> 1	0B56	G 59	CL62	CL72	G.56	55	a.67	0865	0.47	0810	CL69	3	0.55	0870	250	ට ද	558	<u>2</u>	0860	8 0	G 38	0B16	Q.49
57	8	33	%	S	25	21	ය ව	1 9	84	47	4	₹	4.	4	4	4	8	90	8	37	8	Ж.	ጽ :	8	35	31	8	ୟ	8	27	x	ß	24	ន	ន	77

0.972369	0.969511	0.966190	0.962343	0.956879	0.950904	0.943210	0.934439	0.924741	0.914851	0.903998	0.890575	0.871660	0.845722	0.816180	0.775285	0.717698	0.622021	0.485324	0.00000	
0.002801	0.002858	0.003321	0.003847	0.005464	0.005975	0.007694	0.008771	0.009699	0.009889	0.010854	0.013422	0.018916	0.025938	0.029542	0.040895	0.057587	0.095677	0.136697	0.485324	
7	ល	9	12	8	7	6	S	15	80	6	6	13	24	16	ន	21	35	ፚ	75	
CL51	g 36	CL 46	G 34	G-43	0851	CL.19	a3i	ar33	d D	CL 255	G.35	G 28	Q .12	C. 10	3	Q.13	م =	દુ	Ω.	
G 32	Q.42	G 73	d 23	927	0811	Q.21	CL15	Q.17	A.18	Q 24	G 26	A.16	679	07 TO	C.14	are	ar,	ಕ್ಷ	7	
ଛ	19	18	17	16	15	7	13	12	=	2	6	00	~	9	ស	4,	က	ผ	_	

TABLE OF CLUSTER BY GROUP

CROUP	
CLUSTER	

TOTAL	54 = row total 72.00 = row percent = 54.75 = .72	28.00	75 100.00
	36.00 50.00 60.00	24.00 85.71 40.00	60.00
1	36.00 50.00 90.00	4.00 14.29 10.00	80.0 4
FREQUENCY PERCENT ROW PCT COL. PCT	-	N	TOTAL

Cell frequency = 27
Cell percent = 27/75 = .36
Row percent = 27/54 = .50
column percent = 27/30 = .90

column total = 30 column percent = 30/75 = .4

This 2×2 table shows misclassifications. GROUP contains the true group allocation of each observation and CLISTER contains the group allocation based on the Ward's clustering. 27 observations were correctly assigned to cluster I and 18 to cluster 2. 27 observations from group 2 were incorrectly assigned to cluster I while 3 from group 1 were incorrectly assigned to cluster 2.

WARD'S MINIMUM VARIANCE CLUSTER ANALYSIS

EIGENVALUES OF THE COVARIANCE MATRIX

CUMULATIVE	0.92462	0.97769	0.99479	1.00000
PROPORTION A1/22A1	0.924619	0.053066	0.017103	0.005212
DIFFERENCE $(\lambda_1 - \lambda_{1+1})$	3.98557	0.16446	0.05437	•
EIGENVALUE A ₁	4.22824	0.24267	0.07821	0.02384
	-	0	က	4,

ROOT-MEAN-SQUARE TOTAL-SAMPLE STANDARD DEVIATION = 1.06922 ROOT-MEAN-SQUARE DISTANCE BETWEEN OBSERVATIONS = 3.02422

1.000000	0.999985 0.999978	0.999971	0.999949	0.999334	0.999919	0.99905	0.99890	0.999875	0.999861	0.999846	0.999831	0.999817	0.999802
0.000000	0.000007	0.000007	0.000015	0.000015	0.000015	0.000015	0.000015	0.000015	0.000015	0.000015	0.000015	0.000015	0.000015
8 8	N N	8 6	1 81	8	8	7	87	8	8	8	8	7	~
08125 0846	0848 0850	08149 0840	0B62	0838	0B144	08126	0897	0854	0823	0835	0816	0680	6980
08117 0814	086 081	OB137	0852	0B5	0B124	08119	0865	0853	0822	OB23	9811	0876	0829
149 148	147 146	145 445	143	142	141	140	139	138	137	136	135	134	133
	08117 08125 2 0.00000 0814 0846 2 0.00007	0B117 0B125 2 0.00000 0B14 0B46 2 0.00007 0B6 0B8 2 0.00007 0B1 0B50 2 0.00007	0B117 0B125 2 0.00000 0B14 0B46 2 0.00007 0B6 0B48 2 0.00007 0B1 0B50 2 0.00007 0B137 0B149 2 0.00007 0B17 0B40 2 0.00007	08117 0814 086 081 08137 0817 0852	OB117 OB125 2 0.00000 OB14 OB46 2 0.00007 OB5 OB5 2 0.00007 OB1 OB50 2 0.00007 OB17 OB40 2 0.00007 OB5 OB6 2 0.00007 OB5 OB5 2 0.00001 OB5 OB38 2 0.000015	OB117 OB125 2 0.00000 OB14 OB46 2 0.00007 OB6 OB50 2 0.00007 OB137 OB149 2 0.00007 OB17 OB40 2 0.00007 OB52 OB62 2 0.00007 OB5 OB5 2 0.000015 OB124 OB144 2 0.000015	0B117 0B125 2 0.00000 0B14 0B46 2 0.00007 0B6 0B7 2 0.00007 0B1 0B50 2 0.00007 0B17 0B40 2 0.00007 0B5 0B62 2 0.00007 0B5 0B5 0.00015 0B17 0B144 2 0.00015 0B19 0B126 2 0.00015	OB117 OB125 2 0.000000 OB14 OB46 2 0.000007 OB5 OB5 2 0.000007 OB137 OB149 2 0.000007 OB17 OB40 2 0.000007 OB52 OB62 2 0.000015 OB5 OB38 2 0.000015 OB19 OB144 2 0.000015 OB19 OB126 2 0.000015 OB65 OB65 2 0.000015	0B117 0B125 2 0.000000 0B14 0B46 2 0.000007 0B6 0B48 2 0.000007 0B1 0B50 2 0.000007 0B17 0B40 2 0.000007 0B52 0B62 2 0.000015 0B5 0B38 2 0.000015 0B124 0B144 2 0.000015 0B19 0B19 0B19 0.000015 0B53 0B54 2 0.000015 0B55 0B57 2 0.000015 0B53 0B54 2 0.000015	0B117 0B125 2 0.00000 0B14 0B46 2 0.00007 0B6 0B48 2 0.00007 0B1 0B50 2 0.00007 0B137 0B40 2 0.00007 0B5 0B62 2 0.00007 0B5 0B38 2 0.00015 0B124 0B124 2 0.00015 0B19 0B126 2 0.00015 0B5 0B5 2 0.00015	0B117 0B125 2 0.00000 0B14 0B46 2 0.00007 0B5 0B48 2 0.00007 0B1 0B50 2 0.00007 0B17 0B40 2 0.00007 0B5 0B62 2 0.00007 0B5 0B38 2 0.00015 0B124 0B144 2 0.00015 0B19 0B126 2 0.00015 0B5 0B5 0B0015 0B5 0B5 0.00015 0B5 0B5 0.00015 0B5 0B5 0.00015 0B5 0B5 0.00015 0B5 0B5 0.00015	0B117 0B125 2 0.00000 0B14 0B46 2 0.00007 0B6 0B48 2 0.00007 0B1 0B50 2 0.00007 0B17 0B40 2 0.00007 0B5 0B62 2 0.000015 0B5 0B38 2 0.00015 0B124 0B126 2 0.00015 0B65 0B144 2 0.00015 0B65 0B67 2 0.00015 0B65 0B67 2 0.00015 0B53 0B54 2 0.00015 0B53 0B54 2 0.00015 0B53 0B54 2 0.00015 0B11 0B16 2 0.00015 0B11 0B16 2 0.00015	

.000007 is the decrease in the proportion of variance explained resulting from joining observations 137 and 149. The

associated R² is .999971

0.999787 0.999773 0.999773 0.999781 0.999699 0.999684 0.999684 0.999467 0.999467 0.999467 0.999467 0.999467 0.999467 0.999467 0.999467 0.999467 0.999268 0.999269 0.999269 0.999269 0.999269 0.999269 0.999269 0.999269	0.996877 0.996877 0.996775 0.996769 0.99666 0.996560 0.996501 0.996501
0.000015 0.000015 0.000015 0.000022 0.000022 0.000023 0.000024 0.000029 0.000029 0.000034 0.000034 0.000034 0.000034 0.000034 0.000034 0.000034 0.000034 0.000034 0.000034 0.000034 0.000044 0.000044	0.00051 0.00051 0.00051 0.00054 0.00054 0.00056 0.00056
ର ର ର ର ର ଳ ର ର ଳ ଳ ର ର ର ର ଳ ଳ ର ର ଳ ର ର ଳ ର ର କ ନ ର	พลลลลกกษอดกก
0861 0849 0847 08121 08122 08122 08122 08123 0827 0827 0831 0891 0832 0833 0834 08150 08150 08116 08116 0819	08146 081146 08133 08143 08143 0812 0874 0.140
0860 0821 083 083 08118 08118 08111 08113 08113 08113 08113 08113 08113 08113 08113 08113	0800 0875 0875 08107 04130 0431 0831
25	888888888888888888888888888888888888888

0.998310 0.998244 0.998176 0.998103 0.998030 0.997880 0.997638 0.997638 0.997638 0.997719 0.997203 0.997203 0.997203 0.997203 0.997203 0.997203 0.997203 0.997203	0.996402 0.996402 0.996281 0.996331 0.995965 0.995766 0.995766 0.995340 0.995339 0.994880 0.994580 0.994580
0.000064 0.000066 0.000073 0.000073 0.000073 0.000081 0.000081 0.000083 0.000088 0.000088 0.000088 0.000088 0.000099 0.000097 0.000097 0.000097	0.000117 0.000121 0.000125 0.000125 0.000126 0.000142 0.000142 0.000142 0.000143 0.000143 0.000143 0.000143
	บชอีนชกิดนสหชนนสสกับ
0.00	0895 04136 04833 04115 0467 0434 0487 04114 04114 041118
082 0810 0810 0889 0889 04117 04102 0826 0426 0428 04122 04122 04122 04122 04122 04122 04122 04123 04123	CL109 CL109 CL109 CL109 CL109 CL109 CL109 CL109
2.2.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	488883888488433

0.994009 0.993804 0.993804 0.993805 0.993802 0.992920 0.992920 0.992145 0.992145 0.992146 0.991590 0.991590 0.9916011 0.990407 0.9906711 0.986574 0.986574 0.986578 0.986578 0.986578 0.986578	0.984800 0.984252 0.983685 0.983052 0.982419 0.981677 0.990873 0.979001 0.976773
0.000194 0.000205 0.000203 0.000203 0.000247 0.000269 0.000269 0.000276 0.000286 0.000286 0.000286 0.000303 0.000303 0.000305 0.000305 0.000306 0.000306 0.000306 0.000306 0.000306 0.000306 0.000306 0.000306 0.000306	0.000540 0.000549 0.000533 0.000534 0.000534 0.000536 0.000905 0.000906 0.000976 0.000976
4 4 V W W 4 Q Q V 4 R V 4 Q V A Q W W A 4 Q Q Q W C Q V	12 8 12 7 7 4 6 6 10
CL111 CL121 CL133 OB132 CL33 CL34 CL104 OB126 CL104 OB127 CL73 CL73 CL73 CL73 CL73 CL73 CL73 CL7	2246 246 246 266 266 266 266 266 266 266
CC	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
& % % & & & & & & & & & & & & & & & & &	2828888888

0.975524	0.974172	0.972710	0.971069	0.969196	0.966925	0.964651	0.962151	0.959457	0.956397	0.953302	0.947491	0.941449	0.930917	0.913673	0.883621	0.772595	0.00000
0.001249	0.001351	0.001462	0.001641	0.001873	0.002271	0.002274	0.002500	0.002694	0.003060	0.003095	0.005811	0.006042	0.010532	0.017245	0.030051	0.111026	0.772595
10	16	15	15	7	15	24	12	ន	31	ន	82	፠	ß	8	2	901	150
225	G.45	5 5 7	870	CL53	CL-48	ಜ್ಞಾ	C.43	0750 0750	a.17	G.35	Q.47	CL13	CL19	G.11	Œ,	5	7
CL 39	CL 29	CL32	Q.24	C.21	Q.18	a.16	Q.14	G 26	Q 27	a. 15	Q.10	CL8	GD	Q.12	g 9 10	g G	35
18	17	16	15	14	13	12	11	9	o	00	2	9	S	Ŧ	ო	2	-

TABLE OF CLUSTER BY GROUP

GROUP	
CLUSTER	

TOTAL	64 42.67	33.33 33.33	24.00	150 100.00
<u>.</u>	20.00 30.00	0888	8.83.85 8.08.08	33.33
8	32.67 76.56 98.00	°888	0.67 2.78 2.00	33.33
11	0 0 0 0 0 0 0 0 0 0 0 0	33.33 100.00 100.00	0.0.0 0.888	33.33
FREQUENCY FERCENT ROW PCT COL. PCT	~	8	က	TOTAL

2×2 table displaying misclassifications. The true group allocation is labelled GROUP and is displayed as columns. The rows show the group allocation based on Ward's Clustering. One observation from GROUP 2 was misclassified and 15 from GROUP 3

: 13 ONS HIDDEN
This plot displays the results when three clusters are formed. The first two canonical variables (CANI and CANZ) for discriminating among the three clusters were computed and plotted to show cluster membership. The symbol plotted is the value of CANSIER.

0

7

က

7

NOTE: 13 ORS HIDDEN
This plot is exactly the same as the one on the previous page except the symbol plotted is the value of GROUP.

0.5

ņ

CAN1

EQUAL VARIANCE MAXINUM LIKELIHOOD METHOD

EIGENVALUES OF THE COVARIANCE MATRIX

CUMULATIVE	0.74307
PROPORTION	0.743072 0.256928
DIFFERENCE	0.025371
EICENVALUE	0.038779
	- 2

ROOT-MEAN-SQUARE TOTAL-SAMPLE STANDARD DEVIATION = 0.161536 ROOT-MEAN-SQUARE DISTANCE BETWEEN OBSERVATIONS = 0.323072

LIKELIHOOD	1692.3 1438.5 1376.9 1311.4 1227.1 1194.8 1166.5 11141.7 1117.5 1077.0 1077.0 1028.8 1028.8 1028.1 1014.1 999.5 989.5	954.9
LOG LIKELIHOOD RATIO	193.8 121.7 65.4659 46.9378 37.3953 32.2544 28.3152 24.8173 20.0569 18.1699 11.699 14.0356 14.0356 11.9649	14.4026
FREQUENCY OF NEW CLUSTER	ର ର ର ର ର ର ର ର ର ର ର ର ର ର ର 	4
JOINED	086 0852 0852 0813 0812 0825 0830 0830 0845 0871 0871 0873 0845 0845	997
CLUSTERS	084 0820 0833 083 083 0835 0835 0835 0835 0854 0854 0854 0854 0854	a. 71
NUMBER OF CLUSTERS	* 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	RS.

942.3	030	917.8	906.7	894.9	883.1	870.3	858.5	847.9	837.9	827.6	818.0	9.608	802.3	795.2	788.5	781.7	775.3	769.2	762.9	756.7	751.1	745.6	739.8	732.9	726.0	718.3	710.8	706.0	699.4	693.1	687.2	676.4	668.3	660.7	623.9	647.7	642.4
12.5620	19 1489	12.3538	12.0734	10.7887	11.8875	12.7666	11.8045	10.5419	10.0196	10.3168	9.6231	8.4188	7.3100	7.0361	6.6825	6.7983	6.4054	6.1010	6.3651	6.1221	5.6129	5.5075	5.7742	6.9427	6.9427	7.694	7.4183	5.8181	5.6233	6.3334	5.8405	10.8017	8.1111	7.5983	6.8347	6.1380	5.3666
N	٥	၂ က	8	8	2	8	8	က	က	7	က	₩	4	8	4	က	9	က	4	8	2	ო	٣	9	8	ស	w	9	œ	6	m	12	7	2	8	2	9
0832	ORSS	797	OB48	0824	Q.57	6980	OB75	G.65	GE60	6180	8980	a.73	CE 61	9980	CL68	0826 0826	0833	0829	CL52	0872	084 2	0827	08 62	CL36	0874	0867	Q.45	0853	42	0813	Q.47	Q.35	ası	G 28	228 0	1	Q.46
0817	0831	OB23	9840	082	Q.74	8	0B61	8	0828	8	G.59	G 62	Q.72	9856	<u>გ</u>	g 52 58	Q.49	G.67	0810	28 65	G.55	GL69	25	2 28 28	0870	₽	Q.53	a21	G 39	<u>2</u>	0 <u>9</u> 60	Q 28	3	82	08 19	C.F.S	G.38
5	8	23	51	ß	Q	\$	41	9	₹	‡	#	4	Ŧ	\$	8	æ	31	8	x	ጽ	ಜ	R	31	8	ଷ	88	23	æ	ß	24	ន	ន	21	ଷ	19	18	17

TABLE OF CLUSTER BY GROUP

	TOTAL	25 8.8 8.8	28.00 28.00	75 100.00
	53	27 36.00 50.00 60.00	24.00 85.71 40.00	80.09 54.00
CROUP	11	36.08 50.08 90.08	4.00 14.29 10.00	8.09
CLUSTER	FREQUENCY FERCENT ROW PCT COL. PCT	-	8	TOTAL

Commence of the Commence of th

EQUAL VARIANCE MAXIMUM LIKELIHOOD METHOD

EIGENVALUES OF THE COVARIANCE MATRIX

CUMULATIVE	0.92462 0.97769 0.99479 1.00000
PROPORTION	0.924619 0.053066 0.017103 0.005212
DIFFERENCE	3.98557 0.16446 0.05437
EIGENVALUE	4. 22824 0. 24267 0. 07821 0. 02384
	01 to 44

ROOT-MEAN-SQUARE TOTAL-SAMPLE STANDARD DEVIATION = 1.06922 ROOT-MEAN-SQUARE DISTANCE BETWEEN OBSERVATIONS = 3.02422

LOC LIKELIHOOD	. 4016	3603.2	3362.7	3192.9	3061.7	2862.6	2714.6	2597.0	2499.5	2416.4	2344.1	2280.1	2222.9	2171.1	2123.8	2080.4	2040.3
LOC LIKELIHOOD RATIO	٠	413.1	240.5	169.8	131.1	199.1	148.0	117.6	97.4599	83.0879	72.3253	63.9628	57.2775	51.8105	47.2564	43.4040	40.1028
FREQUENCY OF NEW CLUSTER	0.0	3 60	8	8	2	8	8	7	8	7	7	87	8	8	7	7	8
JOINED	08125 0846	0B48	0820	0B149	0B40	0B62	0B38	0B144	0B126	0897	0854 4	0835	0B29	0B 16	0880	69 8 0	0861
CLUSTERS	0B117 0B14	080	081	0B137	OB17	0B52	085	0B124	0B119	0B65	0853	0B23	0B22	0811	0B76	0829	0980
NUMBER OF CLUSTERS	149	147	146	145	1	143	142	141	140	139	138	137	136	135	134	133	132

emigratus rasabiles de la riente de remembrito e

2003.1 1968.3 1935.8 1890.3 1848.5 1772.1 1772.1 1772.1 1772.1 1772.1 1772.1 1772.1 1772.1 1670.3 1670.3 1640.2 1469.7 1469.2 1469.2 1380.0 1347.6 1259.7 1259.7 1259.7	1132.1 1108.2 1085.3 1063.5 1042.7 1022.8 1003.8 984.8 984.8
37.2422 34.1396 32.5317 45.5238 41.7725 36.8022 34.3527 34.3527 38.1524 35.5557 31.1987 31.1987 31.1987 31.0074 29.5268 32.436 32.436 32.436 32.436 32.436 32.436 32.528 33.6374 29.5066 27.9159 26.0675	25.2138 23.9664 22.8254 21.7779 20.8127 19.9336 19.0290 18.9414 20.0692 19.0634 18.9408
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~
0849 0847 0844 CL148 CL148 08122 08122 08122 08121 0885 0893 0893 0891 0891 0841 0832 0843 08140 08140 08142 08131 08142 08131 CL118	08146 08108 0894 0881 0870 08143 0833 0.128 0.128 0.123
0821 088 089 089 0411 08111 08113 04123 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04134 04	08106 08107 0851 0875 0856 0.1141 0.130 0.130 0.831 0.831
131 122 123 124 125 127 127 128 129 129 129 129 129 129 129 129 129 129	101 102 103 103 103 103 103 103 103 103 103 103

908.6 891.3 873.2 855.5	836.7 818.8 801.2 783.5 766.5	732.5 715.7 715.7 699.1 663.1	652.8 638.4 624.4 610.6 596.5	568.8 554.9 541.4 526.4 511.8 496.7	460.2 451.3 421.8 407.5 303.5 305.9 337.3
18.1089 17.3356 18.1585 17.6839	18.7901 17.9123 17.5339 17.7140 16.9813	16.5405 16.5405 15.9775	14. 9811 14. 4466 13. 9662 14. 1647 14. 0609	13.5435 13.9353 13.4751 15.0862 15.0893 15.1889	15. 2430 14. 9585 14. 6028 14. 3220 13. 9645 13. 7858 14. 5532 14. 1081
ଳ ଳ ଳ <b>ର</b> ।	D W M 4 W V	104640	4. 01 01 U U U U U	w ro o o u u o 4 .	ა <del>I</del>
0874 CL129 CL149 0820	0880 0892 0818 04113	0836 01112 08145 08115 01137	08148 08120 08138 0819 08128	CL110 CL115 CR39 OR83 OR34 OR34	0867 02119 0887 0815 0898 0298 08141 0299
CL132 OB2 OB113 OB10	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0826 0858 0.145 0.34	08105 08128 04125 04144	0.055 0.055 0.057 0.054 0.054 0.054	CC133 CC1111 CC1102 CC1116 OB55 CC17 CC17
88888	88888	3 3 8 8 8 8 8	87252	8688833	222222

323.6 309.8 285.5 281.6 288.5 255.1	242.1 228.1 214.2 200.1 186.6 173.2	147.6 135.4 123.7 111.8 99.6391 87.1362	15.5502 62.7945 62.7945 36.8369 24.4767 12.5727 -11.3182	-25.1411 -28.9500 -52.6795 -65.3000 -77.2855 -90.0838 -102.3 -113.1 -122.9 -138.3
13.6412 13.8841 14.2400 13.9381 13.1141	12.9165 14.0625 13.9022 14.0355 13.5881	12.5952 12.1714 11.7183 11.9019 12.5030	11.3800 13.2697 12.3690 11.3602 11.2545 12.5360	13.873 13.726 13.726 12.656 11.935 12.2185 10.8425 9.8004 15.3276
ი 4 მ ⊬ <u>წ</u> მ	. ഗ ഗ മ ഗ പ ക	+ O + A 8 6 - 5 E	1 - o - o o o o e i	28 9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
CL139 CL121 CL55 CL87 CL98 CL98	08132 0839 0.833 0.8129 0.1104	0871 0871 0855 0.55 0.45	0.8127 0.8147 0.8147 0.8100	08110 0837 08136 0236 0236 0245 0245
0.72 0.68 0.03 0.73 0.68	Q825 Q825 Q106 Q178 Q178	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C C C C C C C C C C C C C C C C C C C	C C C C C C C C C C C C C C C C C C C
8 22 23 22 28	<b>44444</b>	\$ <b>4 4 8 8 8 2 8</b>	********	828228288

-169.4	-185.1	-200.2	-212.4	-228.4	-245.9	-266.5	-286.0	-303.9	-324.3	-367.6	-407.5	-441.7	-520.1	-683.7	-881.8	-1579.5
15.8760	15.6063	15.1236	12.1927	15.9966	17.4915	20.6397	19.4921	17.9355	20.3710	43.3135	39.8843	34.1956	78.4355	163.6	198.1	697.7
18	17	ន	24	21	19	54	თ	33	12	ક્ષ	ሜ	8	8	72	91	150
0830	G 20	G 28	<b>Q</b> 22	08139	G 39	G 29	<b>CL4</b> 9	Q.43	<b>C</b> .10	<b>CL16</b>	<b>Q.17</b>	G.41	C.14	ಕ್ಷ	3	Q.2
Q.25	g 23	0 0 0	CL 18	<b>C</b> .15	Q 24	<b>Q.13</b>	ors,	g 21	<b>CL19</b>	<b>C</b> .12	<b>9</b>	<u>a.</u> 11	<b>G.</b> 7	5	g	g
17	16	15	14	13	12	11	01	6	œ	7	9	ß	4,	ო	8	-

TABLE OF CLUSTER BY GROUP

CROUP	
CLUSTER	

TOTAL	48.08 20.08	33.33 50	28 18.67	150 100.00
<u></u>	49 32.67 68.06 98.00	0888	0.67 3.57 2.00	3.8
<b>3</b> 1	15.33 31.94 46.00	0 8 8 8	18.00 96.43 54.00	33.33
11	0 88 8	33.33 100.00 100.00	0.000	33.33
FREQUENCY: FERCENT ROW PCT COL PCT	 	a	m	TOTAL

7 OBS HIDDEN

NOTE:

## REFERENCES

- Basford, K.E. (1986). An intoduction to the use of mixture models in clustering. Cornell University Biometrics Unit Technical Report BU-920-M and Mathematical Sciences Institute Technical Report '86-38, Cornell University.
- Basford, K.E., Federer, W.T. and Miles-McDermott, N.J. (1987). Illustrative examples of clustering using the mixture method and two comparable methods from SAS. Cornell University Biometrics Unit Technical Report BU-921-M and Mathematical Sciences Institute Technical Report '87-5, Cornell University.
- Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. <u>Annals of Eugenics</u> 7, 179-188.
- Habbema, J.D.J., Hermans, J. and van den Broek, K. (1974). A stepwise discriminant analysis program using density estimation. Compstat 1974: Proceedings in Computational Statistics. Vienna: Physica-Verlag, 101-110.
- McLachlan, G.J. and Basford, K.E. (1987). <u>Mixture Models: Inference and Applications to Clustering</u>. Marcel Dekker, New York (in the process of publication).

END

10-87

DTIC