CORPORACIÓN UNIVERSITARIA MINUTO DE DIOS - UNIMINUTO

investigaciones

Julian stiven Orjuela Fonseca

Fundamentos de la programación

NRC 10-73963

Hector Ladino

10/04/2025

1. Cuantas Cadenas de Caracteres Existen en los motores de Base Datos?

1. Tipos de Datos para Cadenas de Caracteres:

La mayoría de los motores de bases de datos ofrecen varios tipos de datos para almacenar cadenas de caracteres, cada uno con sus propias características y limitaciones:

CHAR(n): Almacena cadenas de caracteres de longitud fija. Si la cadena ingresada es más corta que n, se rellena con espacios en blanco. Si es más larga, generalmente se trunca o genera un error, dependiendo del motor de base de datos y su configuración.

VARCHAR(n) o VARCHAR2(n): Almacena cadenas de caracteres de longitud variable, con una longitud máxima de n. Solo se utiliza el espacio necesario para la cadena real.

TEXT, CLOB (Character Large Object), o tipos similares: Almacenan cadenas de caracteres de longitud variable sin una limitación superior práctica (o con límites muy grandes). Son adecuados para almacenar documentos extensos, código, etc.

NCHAR(n), NVARCHAR(n), NCLOB: Similares a CHAR, VARCHAR y CLOB, pero diseñados para almacenar caracteres Unicode, lo que permite representar una gama mucho más amplia de caracteres de diferentes idiomas.

BINARY(n), VARBINARY(n): Aunque técnicamente almacenan datos binarios, a menudo se utilizan para almacenar secuencias de bytes que pueden representar cadenas de caracteres en codificaciones específicas.

2.cuantos gestores de Base datos existen y haga un cuadro comparativo entre ellas?

Cuadro Comparativo de Gestores de Bases de Datos

Gestor de BD	Tipo	Lenguaje de Consulta	Ventajas	Desventajas	Uso Común
MySQL	Relacional	SQL	Rápido, gratuito, gran comunidad	Menos funciones avanzadas que PostgreSQL	Web, e- commerce
PostgreSQL	Relacional	SQL	Muy robusto, soporte a JSON, extensible	Más complejo de configurar	Apps empresariales, análisis de datos
Oracle DB	Relacional	SQL (PL/SQL)	Muy seguro, soporte a grandes volúmenes	Costoso, complejo	Grandes corporaciones
SQL Server	Relacional	T-SQL	Integración con Microsoft, buenas herramientas	Licencia paga, Windows centrado	Sistemas de gestión empresarial
MongoDB	No Relacional	BSON (JSON- like)	Flexible, escalable, ideal para big data	No es ideal para transacciones complejas	Apps modernas, IoT, big data
Redis	No Relacional (clave- valor)	Comandos propios	Extremadamente rápido, ideal para caché	No persistente por defecto, limitado en estructura	Caching, sesiones, colas
Firebase Realtime DB	No Relacional	NoSQL (JSON tree)	Tiempo real, integración con apps móviles	No relacional, puede volverse complejo	Apps móviles y web en tiempo real
Cassandra	No Relacional (columnar)	CQL (similar a SQL)	Escala horizontalmente, muy disponible	Curva de aprendizaje alta	Big data, redes sociales