Øving 2. Elektrisk felt, fluks, Gauss' lov.

Veiledning: Fredag 16. jan. ifølge nettsider. Innlevering: Mandag 19. jan. kl. 14:00

Lever øvinger i bokser utenfor R1.

Oppgave 1. Elektrisk dipol.

Finn det elektriske feltet fra en elektrisk dipol i punktet P (se figur), som ligger langs midtlinja på dipolen. Uttrykk svaret ved dipolmomentet $\vec{p}=q\vec{L}$ og avstanden r.

Oppgave 2. Ladet stav.

En tynn stav med lengde L har uniform ladning λ per lengdeenhet.

- a) Hvor mye ladning dq er det på en liten lengde dx av staven? Hva er stavens totale ladning Q?
- b) Vi legger staven på x-aksen, slik at punktet P har koordinater (x,y)=(0,R). Vis at det elektriske feltet i P, dvs i avstand R fra staven, er gitt ved $\vec{E}=E_x\hat{x}+E_y\hat{y}$, med

$$E_x = \frac{\lambda}{4\pi\varepsilon_0 R} (\cos\theta_1 - \cos\theta_2) \tag{1}$$

$$E_y = \frac{\lambda}{4\pi\varepsilon_0 R} (\sin\theta_1 - \sin\theta_2). \tag{2}$$

Her er θ_1 og θ_2 vinklene som dannes mellom linjene fra P til stavens endepunkter og normalen til staven gjennom P (dvs y-aksen), som vist i figuren. (Fortegnet til vinklene er som indikert i figuren, dvs θ er negativ når x < 0).

TIPS 1: Feltet $d\vec{E}$ fra en liten bit dx av staven (i posisjon x) er $d\vec{E} = (\lambda dx/4\pi\varepsilon_0 r^2)\hat{r}$, der \vec{r} er avstandsvektoren fra biten dx til punktet P. Prøv deretter å ende opp med θ som integrasjonsvariabel ved å finne en sammenheng mellom x og θ .

- c) Bestem feltet når P er like langt fra stavens to ender. Hva blir \vec{E} når P er langt unna staven (dvs $R \gg L$). NB: Her er vi ikke ute etter (det i og for seg korrekte) svaret $\vec{E} \simeq 0$ for $R \to \infty$, men derimot hvordan \vec{E} avhenger av R "til ledende orden" for $R \gg L$. Er svaret som forventet?
- d) Hva blir det elektriske feltet i avstand R fra en uendelig lang uniformt ladet stav? (Dvs: $L \to \infty$)

TIPS 2: I Ex. 21.11 i Young & Freedman beregnes feltet på midtaksen til staven, det samme er gjort i forelesning.

Oppgave 3. Feltlinjer.

I denne oppgaven vis skissene i hver av tilfellene både i "stor" og i "liten" målestokk, slik at de gir et kvalitativt bilde av feltet både nærme og svært langt unna.

a) Skisser elektriske feltlinjer for disse to systemene av punktladninger:

- b) For staven i oppgave 2:
- i) Skisser de elektriske feltlinjer i et plan normalt på staven gjennom dets midtpunkt.
- ii) Skisser de elektriske feltlinjer i et plan som inneholder staven.

Oppgave 4. Fluks.

I figuren er vist ei Gaussflate (lukka flate) S formet som en kube med sidekant a og ene hjørnet i origo. Flata er plassert i et område hvor det er en elektrisk feltstyrke $\vec{E}(x,y,z)$. Du skal i hvert tilfelle i) - iv) finne:

- a) Total (netto) fluks Φ_E for \vec{E} , ut fra flata S og
- b) total ladning Q innenfor S.
- i) $\vec{E} = E_x \hat{\mathbf{i}} = C \hat{\mathbf{i}} = C \cdot [1, 0, 0]$ (uniformt og parallelt med x-aksen).
- ii) $\vec{E} = E_x \hat{\mathbf{i}} = C \cdot x \hat{\mathbf{i}} = C \cdot [x, 0, 0]$ (parallelt med x-aksen og linært økende).
- iii) $\vec{E} = E_x \hat{\mathbf{i}} = C \cdot x^2 \hat{\mathbf{i}} = C \cdot [x^2, 0, 0]$ (parallelt med x-aksen og kvadratisk økende).
- iv) $\vec{E} = E_x \hat{\mathbf{i}} + E_y \hat{\mathbf{j}} = C \cdot y \hat{\mathbf{i}} + C \cdot x \hat{\mathbf{j}} = C \cdot [y, x, 0].$ (i xy-planet og økende).

C er en konstant (ulik i hvert tilfelle), $\hat{\mathbf{i}}$ og $\hat{\mathbf{j}}$ er enhetsvektorer i x- og y-retning.

2c)
$$E = \frac{Q}{4\pi\varepsilon_0 R^2}$$
. 2d) $E = \frac{\lambda}{2\pi\varepsilon_0 R}$

4a) iii) $C a^4$, iv) 0

 $Ut valgte\ fasits var:$