Generative Models

Generating novel data, adversarial training

Yordan Darakchiev

Technical Trainer iordan93@gmail.com

sli.do #DeepLearning

Table of Contents

- Generative models: basics
- Unsupervised data generation
 - Style transfer
 - Generating sequences
 - Variational autoencoders
- Advanced generative models
 - Reminder: transformers
 - Generative adversarial networks
 - Stable diffusion
 - NeRF

Generative Models

Laying out the basics

Generative Models Overview

- Supervised learning: $(x, y) \Rightarrow \tilde{y} = f(x)$: $y \approx \tilde{y}$
- Unsupervised learning: $x \Rightarrow f(x)$: f describes structure
- Generative models intuition
 - Learn the distribution of training data $p_{train}(x) = f(x)$
 - Make the model output new data $p_{model}(x)$ "similar" to p_{train}
 - In other words: after training, make a model: $\tilde{y} = f(\vec{0})$
- Examples
 - PixelRNN / PixelCNN image completion
 - DCGAN Image colorization
 - <u>SRGAN</u> "super resolution"

- Sequence generation: words, <u>music</u>, etc.; seq2seq models
- Time series ⇒ planning (reinforcement learning)

Style Transfer

- Gatys et al., 2016
- A tutorial
- Objective
 - Input
 - Content image *C*, style image *S*
 - Output: image G with the content of C and style of S
- Start with a trained model (e.g. VGG-19) and train it further
- Loss function
 - Content loss *L_c*
 - Style loss L_s
 - Total loss: $L_{total} = \alpha L_c + \beta L_s$
 - α , β numbers (relative contributions of the content and style)

Style Transfer (2)

- Content loss function
 - Extract activations from some middle layer l
 - Intuition
 - First layer: will force *G* to have very similar pixels to *C*
 - Last layer: "if there's a dog in C, draw a dog somewhere in G"
 - Therefore, it's better to choose a layer in between
 - Even better, treat l as a hyperparameter and try out a few architectures
- $L_{content}(C,G,l) = MSE(C^{[l]},G^{[l]})$
 - *C* original image, *G* generated image
 - Pass both *C* and *G* to the trained network
 - You may not propagate them fully to save time
 - Take the output activations from layer $l: C^{[l]}, G^{[l]}$
 - These are 3D volumes
 - Apply MSE

Style Transfer (3)

- Style loss function
- How do we define style?
 - Correlations between different filter responses
 - If we look at the activations at layer l, they will have the same style if they are correlated
 - Style matrix (Gram matrix): all dot products

- Diagonal G_{ii} : how powerful each filter is
- Other G_{ij} , $i \neq j$: how correlated filters i and j are
- Compute style matrices for G and S, minimize the distance
 - $L_S(S, G, l) = MSE\left(\text{Style}_G^{[l]}, \text{Style}_S^{[l]}\right)$
- Combine for many layers (with weights λ)
 - $L_{style}(S, G) = \sum_{l} \lambda_{l} MSE \left(Style_{G}^{[l]}, Style_{S}^{[l]} \right); \sum_{l} \lambda_{l} = 1$

Style Transfer (4)

- Training
 - Load the content and style images (*C*, *S*)
 - Generate G randomly
 - Load the trained model (e.g. VGG-19)
 - Pass *C*, *S*, *G* through the model, compute total loss
- Minimize total loss: standard optimization problem
 - Freeze all layers in VGG-19
 - This will change the pixel values of G to minimize the loss,
 NOT the weights of the trained model
- Obtaining a result
 - Take the updated image *G*
- Style transfer in tensorflow
 - An in-depth tutorial

Sequence Generators Sampling novel sequences

Sequence Generation

- We've already seen this
 - Language modelling
 - Music generation, more music generation (Magenta)
 - Image completion (PixelRNN)
- Training
 - As usual, train a one-to-many RNN model
 - Maximize the likelihood of input data (Bayes)
- Generation
 - Use a seed input (e.g. initial words, or a partial picture), predict next
 - Continue until the end (e.g. [.] / <EOS> character or until the picture is done)
- Drawback: generation can be slow
 - Especially if we augment it by using beam search or a similar algorithm

Variational Autoencoders

Autoencoders with a simple trick

Variational Autoencoders

- Train an AE; throw away *E*
- Try getting an output from *D*
 - Pass $l \equiv x = \vec{0}$ to the decoder
 - Won't generate different samples :(
 - Pass random values
 - Produces random noise at output :(
- How to create latent vectors so the AE works properly?
 - Constrain E to produce specific vectors, e.g. $l \sim N(0, 1)$
 - You have now created a variational autoencoder (VAE)
 - Throw away *E*
 - Sample $x \sim N(0, 1)$
 - *D* now "understands" the input even though it's completely random

Variational Autoencoders (2)

- Loss function
 - Generative loss: how well D reconstructs x from l: $MSE(x, \tilde{y})$
 - Constraint loss: how close l is to N(0, 1): KL divergence
 - $L = MSE(x, \tilde{y}) + KLD(\tilde{y}, N(0, 1))$
- Results
 - MNIST, one more MNIST
 - Music (Roberts et al., 2017)
 - <u>Time series (RL)</u> (Gregor and Besse, 2018)
- Problems regarding generation
 - Distribution matching (Rosca et al., 2018)
 - Adding more constraints to VAEs (Rezende and Viola, 2018)

Advanced Generative Models

Learning how to be the best

Adversarial Training

- Goodfellow et al., 2014a
- ML models misclassify examples that are only slightly different from correctly classified examples

57.7% confidence

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ $csign(\nabla_{\boldsymbol{x}}S(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode" "gi

 $x + \epsilon \operatorname{sign}(\nabla_x J(\theta, x, y))$ "gibbon"

99.3 % confidence

- "Overfitting"; many reasons
 - Look at the summary of the paper for a quick overview
- Regularization alone doesn't help much
 - Adversarial training can serve as an additional regularizer
- Generating adversarial examples
 - Similar to style transfer (but much easier)
 - \blacksquare Pass a valid image and a noise G to the (frozen) neural network
 - Using the model gradients, update G to maximize the desired output

Generative Adversarial Networks

- Goodfellow et al., 2014b
 - One of the "cornerstone" papers of modern deep learning
- Approach: learn to generate from the training distribution by a two-player game
 - Instead of modelling vector densities (like we showed so far)
- High-level intuition
 - Generator network G: noise \Rightarrow output
 - Discriminator network D: input \Rightarrow is input fake?
 - Objective
 - Train together
 - D tries to distinguish between real and fake images
 - *G* tries to fool *D*

Generative Adversarial Networks (2)

- After training, use *G* to generate outputs
 - Provide random input
 - Take generated output
- Another useful property
 - Learned features can be interpreted (similar to word2vec)
- GAN intuition
- Lots of examples
- Many more examples
- 17 hacks to make GANs work

Stable Diffusion

- Inspiration: diffusion in physics
- Time-based process
 - Given noisy image $I(t) = I_{clear} + s(t) n$
 - Gaussian noise: $n \sim \mathcal{N}(\mu, \sigma)$
 - Predict $\tilde{n}(t)$ and subtract: $I(t-1) = I(t) \tilde{n}(t)$
- SD clearly explained

Stable Diffusion (2)

- Conditioning
 - Pass text prompt at the beginning
 - Prefer $\tilde{n}(t \mid \text{prompt})$ to $\tilde{n}(t \mid \text{no prompt})$

Summary

- Generative models: basics
- Unsupervised data generation
 - Style transfer
 - Generating sequences
 - Variational autoencoders
- Advanced generative models
 - Reminder: transformers
 - Generative adversarial networks
 - Stable diffusion
 - NeRF

Questions?