Engine Failure Prewarning Algorithm

Group 20-Zhaoyuan Qiu, Wenxuan Tang, Yiping Lu 2022/02/01-2022/4/20

Key Words: Engine States Space, Classification Model, Prewarning Threshold

I Data Overview

Data collected on the real-time operation of 4 freight vehicles belonging to Valin Xingma Automobile (Group) Co., LTD during the 12-month period in 2020 by Robert Bosch GmbH.

0.0 Normal|Normal

Algorithm/Model

Predicative Mode

Data Glance	T4	T15Status	wnstreamTemperature	mp SCRDo	UpstreamTe	Switch SCRI	Speed PTO	Engines	ECUMile	DPFCarbonLoad	TM
	184.75000	1.0	218.93750	750	197.43	2.0	331.5	1	153821.250	0.0	2019-12-18 23:58:58.000
Valid variables: 50	129.06250	1.0	181.43750	375	151.46	0.0	649.5		84657.875	0.0	2019-12-18 23:58:59.000
Label: 'SPN FMI'	ricPressure	Atmosphe	FuelInjectionQuantity	eratingTime	e EngineO	ferentialTorque	Brake Ref	Request	Regenerative	InternalTorque	ActiveRegenerativeState
	1017.0		1.680000	28589924.0)	1833.0	0.0	2.0		13.900000	1048577.0
Time granularity:	1011.0		17.879999	37094352.0)	1833.0	0.0	3.0		195.000000	1048577.0
second-level	SPN FMI	nMode	LimitedTorsionalActivati	AirTemp L	AirIntake	ol Speed	eFlowContro	eringValv	ressure Met	AbsoluteBoostF	TotalCH_InjectionQuantity
	ormal Normal	0.0 No		18.799999	514.00	0 58.347656	840.0		114.0		0.0

1130.0 0.000000 228.00 38.599998

II Classic Expert System VS Machine Learning

Advantages

- System is highly stable.
- Rules are highly interpretable.

hard to update.

- Development demands expertise & experience.
- Hard-coded rules are

Advantages

- More independent on expertise & experience

- Easy to update and interpretability. make generalization.

Drawbacks

Training

Data

 Greater demand for data quantity & quality

Tuning

Prediction

Grid Search within Small Range Model sometimes lose Random Forest

Train-Test Split by 9:1

• 10-Folds Cross Validation

Methods for Tuning Hyperparameters

VI Engine State Identification Model Training

Weights (0.4,0.4,0.2)+Soft Voting

Random Forest-XGB-KNN Ensemble Model

References

[1] Strobl C, Boulesteix A L, Zeileis A, et al. Bias in random forest variable importance measures: Illustrations, sources and a solution[J]. Bmc Bioinformatics, 2007, 8

[2] Friedman J H. Greedy Function Approximation: A Gradient Boosting Machine[J]. Annals of Statistics, 2001, 29(5):1189-1232.

[3] Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System[J]. the 22nd ACM SIGKDD International Conference, 2016.

[4] Aurelien Geron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow [A]. O'Reilly Media, Inc., 2019: 162-192

IV Project Work Flow

Data Munging

Normal

Timepoint Dat

Timepoints

close to Fault

Timepoints

Sampling

Evaluation Metrics

Confusion Matrix

Precision

• F1 Score

Accuracy

Recall

Training Data

Evaluation

Model **Train Clas**sification Model

Cleaned Data

Evaluation

Engine Fau Prewarning Model

Build Fault Prewarning Model

XGBoost

Γimepoint Da

Drop Rare

Step Goals & Reasons

1 Make normal data and fault

② Limit the number of normal

data while drop close records.

data more distinguishable.

3 Samples are too few to

make model convincing.

P(Label = A|Prediction = A)

P(Prediction = A|Label = A)

P(Label = Prediction)

 $2 \times (Precision^{-1} + Recall^{-1})^{-1}$

Part1 Data Munging

- Drop missing value and duplicates.
- Deal with time discontinuity.
- Select variable with RandomForest.

Part2 Train Classification Model

- RandomForest, KNN, XGBoost
- **Cross Validation**
- Ensemble method

Part3 Build Fault Prewarning Model

Find optimal prewarning threshold for each fault type.

VII Fault Pre-warning Model

VIII Pre-warning Model Evaluation-Part1

0.139540 0.000019 0.523882 0.000018 0.000009

IX Pre-warning Model Evaluation-Part2

Prewarning Timegap Difference between timepoint when fault happens and timepoint when a warning is raised. Prewarning Timegap measures the ability of fault prewarning.

Decreases as thresholds improve

Misreport Rate

thresholds improve

Prewarning Precision

The percentage of a false warning. Misreport Rate is important to enhance user comfort level. Decreases as thresholds improve.

0.266%

X Select the Optimal Thresholds and Final Performance

Principles for Threshold Selection

- Precision and Recall come first.
- Increase the timegap as much as possible.
- Lower the misreport rate as much as possible.
- Recall Timegap Performance Misreport Rate 4399|11 0.881% 488min 5243|1 0.009% 5266|4 0.129% 5268 | 4 0.099% 0.006% 5557 2 0.024% 0.72 0.95 0.983% <0.001% 206min

0.93

440min

III Abstract Model of Engine States Space

Drawbacks

Engine Attribute α

- The set of all possible states construct an Ndimensional space determined by n attributes of the engine. Normal state and each fault state owns a
- distribution field.
- When engine operates, its state is a point of continuous motion in this space.
- When the engine state is in the fault field, a fault occurs.

How to locate engine state in the space? Classification model, which uses probability to measure the distance from each area.

When to make warnings?

The time when engine state approaches to fault area borders. Warning borders are to be built.