

WT01P4C5-S1 Datasheet

Version 1.0

Disclaimer and Copyright Notice

Information in this document, including the URL addresses for reference, is subject to change without notice.

This document is provided "as is" without warranty of any kind, including any warranty of merchantability, fitness for a particular purpose, or non-infringement, and any warranty that any proposal, specification, or sample is referred to elsewhere. this document disclaims all liability, including liability for infringement of any patent, arising out of the use of the information in this document. This document does not grant any license, express or implied, by estoppel or otherwise, to use any intellectual property.

The Wi-Fi Alliance member logo is owned by the Wi-Fi Alliance.

All trade names, trademarks and registered trademarks mentioned herein are the property of their respective owners and are hereby acknowledged.

Notice

The content of this manual is subject to change due to product version upgrade or other reasons. WIRELESS-TAG Technology Co., limited reserves the right to modify the contents of this manual without any notice or prompting. Ltd. makes every effort to provide accurate information in this manual, but WIRELESS-TAG Technology Co., limited does not ensure that the contents of the manual are completely free of errors, and all statements, information and recommendations in this manual do not constitute any express or implied warranty.

Revision History

Version	Date	Developed/ Changed Content	Modifier By	Auditor
V0.1	2025-5-27	First Creation(Preview)	Pail	Louie
V1.0	2025-9-2	Official Release	Pail	Louie

Contents

1. Overview
1.1. Products Introduction
1.2. Product Features 6
1.3. Product Pictures 6
1.4. Application Scenarios
2. Product Specification
2.1. Block Diagram
2.2. Hardware Parameters
3. Pin Definitions
3.1. Pin Layout
3.2. Pin Description
3.3. Startup Item Configuration
3.3.1. ESP32-P4 Strapping Pins
3.3.2. ESP32-P4 Chip Boot Mode Control
3.3.3. ESP32-P4 ROM Messages Printing Control
3.3.4. ESP32-C5 Strapping Pins
3.3.5. ESP32-C5 Chip Boot Mode Control 17
3.3.6. ESP32-C5 ROM Messages Printing Control
4. Electrical Characteristics
4.1. Absolute Maximum Limit Value
4.2. Power Consumption Characteristics
4.3. Recommended Working Conditions
5. WT01P4C5-S1 Schematic
6. WT01P4C5-S1 Dimensions
7 . Storage Condition
8. Reflow Soldering Curve
9. Contact Us

1. Overview

1.1.Products Introduction

WT01P4C5-S1,a core board with integrated 2.4GHz & 5GHz Wi-Fi6 and NOR FLASH based on Espressif's ESP32-P4 and ESP32-C5 series chips designed by Wireless-Tag Technology Co.,Limited.The core processor chip, ESP32-P4, is stackable with either 16MB or 32MB PSRAM in a package that includes a high-performance (HP) system and a low-power (LP) system.The HP system is a RISC-V dual-core processor running at 360MHz and includes a JPEG codec, Pixel-Processing Accelerator, H.264 video encoder, and MIPI interfaces, providing powerful image and voice processing capabilities.The ESP32-C5 high-performance SOC on the core board supports 2.4 & 5G dual-band Wi-Fi6 (802.11ax), Bluetooth®5 (LE), Zigbee, and Thread (802.15.4). The ESP32-P4 and ESP32-C5 on the core board are connected via their SDIO interface, and the rest of the pins are already pinned out.

Figure 1: Main Chip Architecture Diagram

The WT01P4C5-S1 series is available in two sizes, see the table below for more information.

WT01P4C5-S1 Series Model Number Comparison

Part Number	Flash	Psram	Module Size (mm)
WT01P4C5-S1-N16R16	16MB	16MB	35.00*35.00
WT01P4C5-S1-N16R32	16MB	32MB	35.00*35.00

1.2.Product Features

- Dual-core 360 MHz high-frequency CPU
- 16 MB Flash and 16/32 MB Psram
- supports 2.4GHz & 5GHz dual-band Wi-Fi6, BLE5.3, Zigbee, Thread
- ESP32-P4 adn ESP32-C5 chip with full pinout
- Supports multiple multimedia interfaces
- Core board size is small, easy to hardware design
- · Development materials are complete

1.3. Product Pictures

Figure 2:WT01P4C5-S1(front)

Figure 4:WT01P4C5-S1(front)

Figure 3:WT01P4C5-S1 (back)

Figure 5:WT01P4C5-S1(back)

1.4. Application Scenarios

- Smart Home
- Industrial Automation
- Consumer Electronics

- HMI Human Machine Interaction
- Electronic Robotics
- Camera Video Streaming
- USB Devices
- Healthcare

2. Product Specification

2.1.Block Diagram

Figure 6: Block diagram of WT01P4C5-S1

2.2. Hardware Parameters

Core	32-bit RISC-V dual-core	
Main Fraguency	360 MHz (HP Core)	
Main Frequency	40 MHz (LP Core)	
Core	32-bit RISC-V dual-core	
Main Frequency	240 MHz	
ECD22 D4 DOM	128 KB HP ROM	
ESP32-P4 ROIVI	16 KB LP ROM	
ESP32-P4 SRAM	768 KB HP L2MEM	
	32 KB LP SRAM	
ESP32-P4 PSRAM	16/32 MB	
	Main Frequency Core Main Frequency ESP32-P4 ROM ESP32-P4 SRAM	

	ESP32-C5 ROM	320 KB
	ESP32-C5 SRAM	384 KB
	Flash	16MB
	GPIO	46
	SPI	2
	LP SPI	1
	UART	5
	LP UART	1
	I3C	1
	I2C	2
	LP I2C	×179
	I2S	3
	LP I2S	S 1
	USB JTAG	1
ECD22 D4	LED PWM	1
ESP32-P4	MCPWM	2
Peripheral Interface	TWAI [®] Controller	3
interrace	(compatible with ISO 11898-1)	3
	Hight-Speed USB 2.0 OTG	1
	Full-Speed USB 2.0 OTG	1
	100 Mbit Ethernet	1
	MIPI CSI-2	1
	MIPI DSI	1
	Parallel IO interface	1
	12-bit multi-channel ADC	2
	Temperature sensor	1
	Touch sensor	1
	Analog voltage comparator	1
	Brown-out detector	1

	GPIO	12
	SPI	1
E0000 05	UART	2
ESP32-C5	I2C	1
Peripheral	I2S	1
Interface	LED PWM	1
	12-bit multi-channel ADC	1
	Temperature sensor	1
Image and	JPEG Codec	1
Voice	PPA	1
Processing	ISP	743
Functionality	H264 encoder	1

3. Pin Definitions

3.1.Pin Layout

www.wireless-tag.com

3.2.Pin Description

Pin Definitions

No.	Name	Function		
1	C5_EN	Enable ESP32-C5 chip (internal 10K pull-up)		
2	C5_IO1	GPIO1, XTAL_32K_N, LP_GPIO1, LP_UART_DSRN, ADC1_CHO		
3	C5_IO2	GPIO2, MTMS, LP_GPIO2, LP_UART_RTSN, ADC1_CH1, FSPIQ		
4	C5_IO3	GPIO3, MTDI, LP_GPIO3, LP_UART_CTSN, ADC1_CH2		
5	C5_IO4	LP_UART_RXD, LP_GPIO4, GPIO4, MTCK, ADC1_CH3, FSPIHD		
6	C5_IO5	LP_UART_TXD, LP_GPIO5, GPIO5, MTDO, ADC1_CH4, FSPIWP		
7	C5_IO6	LP_I2C_SDA, LP_GPIO6, GPIO6, ADC1_CH5, FSPICLK		
8	C5_U0TXD	GPIO11, UOTXD(ESP32-C5 Download Pin)		
9	C5_U0RXD	GPIO12, UORXD(ESP32-C5 Download Pin)		
10	GND	GROUND		
11	P4_EN	Enable ESP32-P4 chip (internal 10K pull-up)		
12	GPIO0	GPIO0, LP_GPIO0, XTAL_32K_N		
13	GPIO1	GPIO1,LP_GPIO1,XTAL_32K_P		
14	GPIO2	GPIO2, MTCK, LP_GPIO2, TOUCH_CHANNEL0		
15	GPIO3	GPIO3, MTDI, LP_GPIO3, TOUCH_CHANNEL1		
16	GPIO4	GPIO4, MTMS, LP_GPIO4, TOUCH_CHANNEL2		
17	NC1	No internal connections, physical presence only		
18	GPIO6	GPIO6, SPI2_HOLD_PAD, LP_GPIO6, TOUCH_CHANNEL4		
19	GPIO7	GPIO7, SPI2_CS_PAD, LP_GPIO7, TOUCH_CHANNEL5		
00	ODIOS	GPIO8, UARTO_RTS_PAD, SPI2_D_PAD, LP_GPIO8,		
20	GPIO8	TOUCH_CHANNEL6		
24	GPIO9	GPIO9, UART0_CTS_PAD, SPI2_CK_PAD, LP_GPIO9,		
21		TOUCH_CHANNEL7		
22	GPIO10	GPIO10, UART1_TXD_PAD, SPI2_Q_PAD, LP_GPIO10,		
22	GPIOTO	TOUCH_CHANNEL8		

VIV	WINCLESS-TAG	
23	NC2	No internal connections, physical presence only
24	GPIO11	GPIO11, UART1_RXD_PAD, SPI2_WP_PAD, LP_GPIO11,
	GFIOTI	TOUCH_CHANNEL9
25	GPIO20	GPIO20, ADC1_CHANNEL4
26	GPIO21	GPIO21, ADC1_CHANNEL5
27	GPIO22	GPIO22, ADC1_CHANNEL6
28	GPIO23	GPIO23, ADC1_CHANNEL7, REF_50M_CLK_PAD
29	GND	GROUND
30	DSI_DATAP1	MIPI DSI PHY DATAP1
31	DSI_DATAN1	MIPI DSI PHY DATAN1
32	DSI_CLKN	MIPI DSI PHY CLKN
33	DSI_CLKP	MIPI DSI PHY CLKP
34	DSI_DATAP0	MIPI DSI PHY DATAPO
35	DSI_DATAN0	MIPI DSI PHY DATANO
36	GND	GROUND
37	CSI_DATAN0	MIPI CSI PHY DATANO
38	CSI_DATAP0	MIPI CSI PHY DATAP0
39	CSI_CLKP	MIPI CSI PHY CLKP
40	CSI_CLKN	MIPI CSI PHY CLKN
41	CSI_DATAN1	MIPI CSI PHY DATAN1
42	CSI_DATAP1	MIPI CSI PHY DATAP1
43	GND	GROUND
44	USB_DM	USB2 OTG PHY DM
45	USB_DP	USB2 OTG PHY DP
46	GND	GROUND
47	GND	GROUND
48	GPIO24	GPIO24, USB1P1_N0
49	GPIO25	GPIO25, USB1P1_P0
	-	

VIV	WINLELSS-TAG			
50	GPIO26	GPIO26, USB1P1_N1		
51	GPIO27	GPIO27, USB1P1_P1		
52	GPIO28	GPIO28, SPI2_CS_PAD, GMAC_PHY_RXDV_PAD		
53	GPIO29	GPIO29, SPI2_D_PAD, GMAC_PHY_RXD0_PAD		
54	GPIO30	GPIO30, SPI2_CK_PAD, GMAC_PHY_RXD1_PAD		
55	GPIO31	GPIO31, SPI2_Q_PAD, GMAC_PHY_RXER_PAD		
56	GPIO32	GPIO32, SPI2_HOLD_PAD, GMAC_RMII_CLK_PAD		
57	GPIO33	GPIO33, SPI2_WP_PAD, GMAC_PHY_TXEN_PAD		
58	GPIO34	GPIO34, SPI2_IO4_PAD, GMAC_PHY_TXD0_PAD		
59	GPIO35	GPIO35, SPI2_IO5_PAD, GMAC_PHY_TXD1_PAD(internal 10K pull-up)		
60	GPIO36	GPIO36, SPI2_IO6_PAD, GMAC_PHY_TXER_PAD(internal 10K pull-up)		
61	GPIO37	GPIO37,UART0_TXD_PAD,SPI2_IO7_PAD(ESP32-P4 Download Pin)		
62	GPIO38	GPIO38, UART0_RXD_PAD, SPI2_DQS_PAD(ESP32-P4 Download Pin)		
63 ESP_LDO_VO4		Output POWER		
		Output voltage range 0.5~2.7V or 3.3V, maximum output		
		current 0.2A)		
64	GPIO39	GPIO39, SD1_CDATA0_PAD, REF_50M_CLK_PAD		
65	GPIO40	GPIO40, SD1_CDATA1_PAD, GMAC_PHY_TXEN_PAD		
66	GPIO41	GPIO41, SD1_CDATA2_PAD, GMAC_PHY_TXD0_PAD		
67	PWR_CTRL	Core board power control pin(default high, pull low to power off)		
68	VCC_5V0	POWER (5V input for core board power supply)		
69	VCC_5V0	POWER (5V input for core board power supply)		
70	GND	GROUND		
71	GND	GROUND		
72	VBAT	battery power supply pin (reserved)		
12	VDAT	No internal connections, physical presence only		
73	GPIO42	GPIO42, SD1_CDATA3_PAD, GMAC_PHY_TXD1_PAD		
74	GPIO43	GPIO43, SD1_CCLK_PAD, GMAC_PHY_TXER_PAD		

75	GPIO44	GPIO44, SD1_CCMD_PAD, GMAC_RMII_CLK_PAD	
76	GPIO45	GPIO45, SD1_CDATA4_PAD, GMAC_PHY_RXDV_PAD	
77	GPIO46	GPIO46, SD1_CDATA5_PAD, GMAC_PHY_RXD0_PAD	
78	GPIO47	GPIO47, SD1_CDATA6_PAD, GMAC_PHY_RXD1_PAD	
79	GPIO48	GPIO48, SD1_CDATA7_PAD, GMAC_PHY_RXER_PAD	
80	GPIO49	GPIO49, GMAC_PHY_TXEN_PAD, ADC2_CHANNEL0	
81	GPIO50	GPIO50, GMAC_RMII_CLK_PAD, ADC2_CHANNEL1	
82	GPIO51	GPIO51, GMAC_PHY_RXDV_PAD, ADC2_CHANNEL2, ANA_COMP0	
83	GPIO52	GPIO52, GMAC_PHY_RXD0_PAD, ADC2_CHANNEL3, ANA_COMP0	
84	GPIO53	GPIO53, GMAC_PHY_RXD1_PAD, ADC2_CHANNEL4, ANA_COMP1	
85	GPIO54	GPIO54, GMAC_PHY_RXER_PAD, ADC2_CHANNEL5, ANA_COMP1	
86	C5_IO23	GPIO23	
87	C5_IO24	GPIO24	
88	C5_IO25	GPIO25	
89	C5_IO26	GPIO26	
90	C5_IO27	GPIO27	
91	C5_IO28	GPIO28(ESP32-C5 BOOT Pin)	
92	GND	GROUND	

3.3. Startup Item Configuration

3.3.1. ESP32-P4 Strapping Pins

The chip allows for configuring the following boot parameters through strapping pins and eFuse bits at power-up or a hardware reset, without microcontroller interaction.

Chip Boot Mode

- Strapping pin: GPIO35, GPIO36, GPIO37 and GPIO38

• ROM Message Printing

- Strapping pin: GPIO36

- eFuse bit: EFUSE_UART_PRINT_CONTROL

• JTAG Signal Source

- Strapping pin: GPIO34

– eFuse bit: EFUSE_DIS_PAD_JTAG, EFUSE_DIS_USB_JTAG and EFUSE_JTAG_SEL_ENABLE

The default values of all the above eFuse bits are 0, which means that they are not burnt. Given that eFuse is one-time programmable, once an eFuse bit is programmed to 1, it can never be reverted to 0.

The default values of the strapping pins, namely the logic levels, are determined by pins'internal weak pull-up/pull-down resistors at reset if the pins are not connected to any circuit, or connected to an external high-impedance circuit.

Default Configuration of Strapping Pin

Strapping Pin	Default Configuration	Value
GPIO34	Floating	-
GPIO35	Weak pull-up	1
GPIO36	Floating	-
GPIO37	Floating	-
GPIO38	Floating	-

To change the bit values, the strapping pins should be connected to external pull-down/pull-up resistors. If the ESP32-P4 is used as a device by a host MCU, the strapping pin voltage levels can also be controlled by the host MCU.

All strapping pins have latches. At system reset, the latches sample the bit values of their respective strapping pins and store them until the chip is powered down or shut down. The states of latches cannot be changed in any other way. It makes the strapping pin values available during the entire chip operation, and the pins are freed up to be used as regular IO pins after reset.

3.3.2. ESP32-P4 Chip Boot Mode Control

GPIO35 ~ GPIO38 control the boot mode after the reset is released.

Boot Mode	GPIO35	GPIO36	GPIO37	GPIO38
SPI Boot*	1*	Any value	Any value	Any value
Joint Download Boot	0	1	Any value	Any value

^{*}marks the default value and configuration.

Joint Download Boot mode supports the following download methods:

- USB Download Boot:
 - USB-Serial-JTAG Download Boot
 - USB 2.0 OTG Download Boot
- UART Download Boot
- SPI Slave Download Boot

3.3.3. ESP32-P4 ROM Messages Printing Control

During the boot process, the messages by the ROM code can be printed to:

- (Default) UART0 and USB Serial/JTAG controller
- USB Serial/JTAG controller
- UART0

EFUSE_UART_PRINT_CONTROL and GPIO36 control ROM messages printing to UART0 as shown in Table.

UART0 Code Printing	EFUSE_UART_PRINT_CONTROL	GPIO36
	0*	Ignored
Enabled*	1	0
	2	1
	1	1
Disabled	2	0
	3	Ignored

^{*}marks the default value and configuration.

EFUSE_DIS_USB_SERIAL_JTAG_ROM_PRINT controls the printing to USB Serial/JTAG controller as shown in Table.

USB Serial/JTAG ROM Code Printing	EFUSE_DIS_USB_SERIAL_JTAG_ROM_PRINT
Enabled*	0*

Disabled	1
----------	---

^{*}marks the default value and configuration.

3.3.4. ESP32-C5 Strapping Pins

The chip allows for configuring the following boot parameters through strapping pins and eFuse bits at power-up or a hardware reset, without microcontroller interaction.

• Chip Boot Mode

- Strapping pin: GPIO26, GPIO27 and GPIO28

ROM Message Printing

- Strapping pin: GPIO27

- eFuse bit:

EFUSE UART PRINT CONTROL and EFUSE DIS USB SERIAL JTAG ROM PRINT

The default values of the strapping pins, namely the logic levels, are determined by pins'internal weak pull-up/pull-down resistors at reset if the pins are not connected to any circuit, or connected to an external high-impedance circuit.

Default Configuration of Strapping Pin

Strapping Pin	Default Configuration	Value
GPIO26	Floating	-
GPIO27	Weak pull-up	1
GPIO28	Weak pull-up	1

To change the bit values, the strapping pins should be connected to external pull-down/pull-up resistors.

All strapping pins have latches. At system reset, the latches sample the bit values of their respective strapping pins and store them until the chip is powered down or shut down. The states of latches cannot be changed in any other way. It makes the strapping pin values available during the entire chip operation, and the pins are freed up to be used as regular IO pins after reset.

3.3.5. ESP32-C5 Chip Boot Mode Control

GPIO27 and GPIO28 control the boot mode after the reset is released.

Boot Mode	GPIO26	GPIO27	GPIO28
SPI Boot*	Any value	Any value	1*
Joint Download Boot 0	Any value	1	0
Joint Download Boot 1	0	0	0

^{*}marks the default value and configuration.

Joint Download Boot mode 0 supports the following download methods:

- USB-Serial-JTAG Download Boot
- UART Download Boot

Joint Download Boot mode 1 supports the following download methods:

- UART Download Boot
- SDIO Download Boot

In SPI Boot mode, the ROM bootloader loads and executes the program from SPI flash to boot thesystem.

In Joint Download Boot 0 mode, users can download binary files into flash using UART0 or USB interfaces. It is also possible to download binary files into SRAM and execute it from SRAM.

In Joint Download Boot 1 mode, users can download binary files into flash using UART0 or SDIO interfaces. It is also possible to download binary files into SRAM and execute it from SRAM.

3.3.6. ESP32-C5 ROM Messages Printing Control

During the boot process, the messages by the ROM code can be printed to:

- (Default) UART0 and USB Serial/JTAG controller
- USB Serial/JTAG controller
- UART0

EFUSE_UART_PRINT_CONTROL and GPIO27 control ROM messages printing to **UART0** as shown in Table.

UART0 Code Printing	Register ²	eFuse ³	GPIO27
ROM messages are always printed to UART0 during boot*		0 (0b00) *	X ⁴
Print is enabled during boot	0*	1 (0b01)	0
Print is disabled during boot	U	1 (0b01)	1
Print is disabled during boot		2 (0b10)	0
Print is enabled during boot		2 (0010)	1
Print is disabled during boot		3 (0b11)	х
Print is disabled during boot	1	Х	х

^{*}marks the default value and configuration.

⁴x: x indicates that the value has no effect on the result and can be ignored EFUSE_DIS_USB_SERIAL_JTAG_ROM_PRINT controls the printing to USB Serial/JTAG controller as shown in Table.

USB Serial/JTAG ROM Code Printing	EFUSE_DIS_USB_SERIAL_JTAG_ROM_PRINT
Enabled*	0*
Disabled	1
Disabled	Ignored

^{*}marks the default value and configuration

3.4. Other Pin Descriptions

The GPIO12 and GPIO13 pins of the ESP32-P4 chip on the core board are connected to the GPIO0 and CHIP_PU pins of the ESP32-C5 chip on the core board (see table below). The ESP32-P4 can wake up the ESP32-C5 via GPIO12. and the ESP32-P4 can reset the ESP32-C5 via GPIO13.

ESP32-P4	ESP32-C5
GPIO12	GPIO0

² Register: LP AON STORE4 REG[0]

³ eFuse: EFUSE_UART_PRINT_CONTROL

GPIO13 CHIP PU

The GPIO14, GPIO15, GPIO16, GPIO17, GPIO18, and GPIO19 pins of the ESP32-P4 chip on the core board are connected to the GPIO7, GPIO8, GPIO9, GPIO10, GPIO13, and GPIO14 pins on the ESP32-C5 chip within the core board (see table below). Communication between the two chips occurs via the SDIO interface.

ESP32-P4	ESP32-C5	
GPIO14	GPIO8	
GPIO15	GPIO7	
GPIO16	GPIO14	
GPIO17	GPIO13	
GPIO18	GPIO9	
GPIO19	GPIO10	

4. Electrical Characteristics

4.1. Absolute Maximum Limit Value

Exceeding the absolute maximum ratings may result in permanent damage to the device. This is an emphasized rating only and does not address the functional operation of the device under these or other conditions beyond those indicated in these specifications. Prolonged exposure to absolute maximum rating conditions may affect module reliability.

4.2.Power Consumption Characteristics

update soon

4.3. Recommended Working Conditions

Parameter	Description	Min	Тур	Max	Unit
VCC	Power pin voltage	4.8	5	5.5	V
1	Supply current from		1.5		۸
lvcc	external power supply	-	1.5	-	Α
T _A	Operating Temperature	-40	-	85	$^{\circ}$

5. WT01P4C5-S1 Schematic

update soon

Figure 8: WT01P4C5-S1 Schematic

6. WT01P4C5-S1 Dimensions

The following figure shows the top view and front view of WT01P4C5-S1 with a tolerance of ±0.2 mm.

Figure 9: Dimension figure of WT01P4C5-S1

7. Storage Condition

Prerequisite	Parameters
Storage condition	Non-condensing atmosphere < 40 ℃ /90 %RH in sealed MBBs
Conditions of use	168 hours at 25 ± 5℃ , 60 % RH.
Moisture sensitivity	3 levels

8. Reflow Soldering Curve

Figure 10: Reflow Soldering Temperature Curve

9. Contact Us

Official website: www.wireless-tag.com

Contact Email: gtm@wireless-tag.com

Technical support e-mail: technical@wireless-tag.com