Internet Protocol version 6 (IPv6)

Slides baseados nas aulas da Profa. Ana Cristina Benso da Silva e material do CGI.br

Redes de Computadores

Resumo

- Formato do Header
 - ⇒ Tamanho fixo (40 bytes)
- Flow Label
- Endereços de 128 bits
- Eliminação do Checksum
- Fragmentação somente pelo Host fonte
- Headers de Extensão
- Segurança Built-in

Header IP

Novos Campos do IPv6

Priority

- ⇒ 4 bits
- ⇒ indica a prioridade de cada datagrama
- distingue entre tráfego com controle de congestionamento e sem controle
- ⇒ Prioridades
 - √ 0 sem prioridade específica
 - ✓ 1 tráfego em background
 - ✓ 2 transferência de dados unattended (exemplo: e-mail)
 - √ 3 reservado
 - √ 4 transferência em blocos attended (exemplo: ftp)
 - √ 5 tráfego interativo (exemplo: telnet)
 - √ 6 tráfego de controle (exemplo: protocolos de roteamento)
 - ✓ 8-15 tráfego sem controle de congestionamento (não se aplica)

Novos Campos do IPv6

- Flow Label
 - ⇒24 bits
 - ⇒identifica um fluxo de tráfego na rede em particular
 - ⇒ Todo tráfego de um determinado fluxo exige o mesmo tratamento da rede.
 - ⇒ Facilitar o roteamento
 - ⇒ Para ser usando com o RSVP

Parâmetros Clássicos

Payload length

⇒ Substitui o total length

```
Exemplo: IPv4 (TCP (20) + Data (400))
IPv4 (20 + 420) = 440 bytes
Total Length = 440 bytes

IPv6 ((TCP (20) + Data (400))
IPv6 (40 e 420) = 460 bytes
Payload Length = 420 bytes
```

⇒16 bits

✓ Limite de 64 Kbytes

Parâmetros Clássicos

- Next Header
 - ⇒ Campo Protocol do IPv4
 - ⇒ Transporte, protocolos de nível 3
- Extension Header
 - ⇒ Funciona com um next header
 - ⇒Funções do IPv6
- Hop Limit
 - ⇒ Campo Time-To-Live do IPv4

Novos Campos do IPv6

- Extensões do Header
 - Esta estrutura permite ao IP concatenar diversos headers
 - ⇒ Tipos
 - ✓ 0 hop-by-hop Option Header
 - √ 43 Routing Reader
 - √ 44 Fragementation Header
 - √ 51 Authentication Header
 - √ 59 No Next Header
 - ✓ 60 Destination Options Header

Extension Headers

Extesion Headers - Ordem

- Ordem recomendada
 - ⇒ HBH, routing, fragment, authentication, TCP....
- Facilidade de processamento para roteadores intermediários
 - Normalmente para o roteador são necessários o HBH e routing header
- Exceção: Destination Options
 - → Podem ser somente para o destino, mas às vezes podem ser para um roteador intermediário.

Hop-by-Hop (HBH)

- Contém opções para cada sistema de roteamento
- Consiste de uma tupla <tipo, tamanho, valor>
- Opções
 - ⇒Pad1
 - ⇒PadN
 - ⇒ Jumbo Payload Length

Option Type

- Os 2 bits mais significantes do campo tipo, informam ao roteador como tratar a opção
 - ✓ 00xxxxxx = Ignore a opção e continue o processamento
 - ✓ 01xxxxxx = Descarte o datagrama e não nada mais
 - ✓ 10xxxxxx = Descarte o datagrama e retorne uma mensagem ICMP de erro para o fonte
 - ✓ 11xxxxxx = Descarte o datagrama e retorne uma mensagem ICMP para o fonte se o destino não for um multicast
 - ✓ xx01xxxx = Valores não podem ser alterados em trânsito.
 - ✓ xx1xxxxx = Valore podem ser alterados em trânsito

Pad1

64 bits

- Um único byte de 0's
- Valor é implícito
- Serve para fazer um shift de outras posições no header
- Motivo
 - ⇒tamanho da palavra de novos processadores
 - informações alinhadas tornam mais rápido o processamento

PadN

- Mesmo propósito do Pad1
- Shift de um número arbitrário de bytes
- Menor shift possível é de 2 bytes

Jumbo Payload Length

- Sobrepor o limite de 64 kbytes do protocolo IP
- Payload length do IP = 16 bits = 64 Kbytes
- Jumbo = 32 bits = 4.294.967.295 bytes
 - para usar o jumbo option o campo payload length do datagrama IP original será setado em 0 (zero).
- Requer alinhamento de 4*n+2

Destination Options

- Informações para o host destino
- Pode preceder o routing header
 - ⇒ Neste caso será processado por todos os roteadores intermediários
- Opções
 - ⇒Pad1 e PadN
- Reservado para futuro uso

Routing Header

- Implementa a opção de Source Route do IPv4
 - ⇒ Strict Source Route
 - ⇒ Loose Souce Route

Nxt Hdr: 43	HDR Len	Type: 0	Addrs left: n		
Reserved	Strict/Loose Bit Mask				
Address [0]					
Address [1]					

Fragmentation Header

- O processo de fragmentação assemelha-se ao IPv4
- Restrição: somente os hosts origem podem fragmentar o pacote
 - ⇒ Se a fragmentação for necessária em hosts intermediários, eles devem a priori descartar os pacotes
 - ⇒ Método de probe
 - Alternativa: Encapsulamento do datagrama original

Fragmentation Header

Priority Version Flow Lable Payload Length **Hop Limit** Nxt Hdr Source Address IPv6 Básico **Destination Address** Fragment Offset Nxt Hdr: 43 MF Reserved Fragementação Fragment Identification

Exemplo

6 4 flow

Len: 1456 Nxt: 44 hops

Src address

Dst address

Nxt: 6 R 0 Id: 0x12345678

Payload (1448 bytes)

6 4 flow

Len: 2902 Nxt: 6 hops

Src address

Payload

Dst address

Payload (2902 bytes)

Authentication Header

Formato do header de segurança

Next Header Length	Reserved			
Security Parameter Index				
Authentication Data				
Encripted Payload				

IPSecurity

Autenticação

- ⇒ Message Digest 5
 - ✓ a origem inicia com uma chave secreta, no mínimo de 128 bits
 - ✓ após coloca o datagrama IP completo
 - ✓ o campo the autenticação deste datagrama fica zerado, bem como os campos que podem ser alterados em transito
 - ✓ após o datagrama, adiciona-se uma vez mais a chave
 - ✓ então submete este bloco todo ao MD5, que gera 128 bits que são utilizados para a autenticação

Confidencialidade

- ⇒ Cipher Block Chaining (CBC DES)
- ⇒ Security gateway (túnel)

Endereços Fonte e Destino

- 128 bits = 6.65 x 10²³ endereços de rede para cada m² da superfície da Terra.
- Formato = 8 parte de 16 bits
 - 1) formato normal

FEDC:BA98:7654:3210:FEDC:BA98:7654:3210

- 2) Valore < 0x1000, os zeros iniciais não são necessários 1080:0:0:8:800:200C:417A
- 3) 16 bits consecutivos em zero são abreviados com ::

1080::8:800:200C:417A

Obs: a abreviação :: pode aparecer somente uma vez no endereço

Endereços

- Explosão das tabelas de roteamento
 - ⇒ Roteamento hierárquico.
 - Os bits mais significativos representam o nível mais alto da hierarquia.
 - ✓ Exemplo: Informações dos primeiros 80 bits de um endereço
 - 3 bits = formato do prefixo
 - 5 bits = identificador de registro
 - 16 bits = identificador do provedor
 - 16 bits = tipo de assinante
 - 8 bits = identificador do assinante
 - 32 bits = identificador da subrede
 - bits restantes definem um sistema particular na subrede

Endereços

- Endereços Flexíveis
 - ⇒ Usa um prefixo
 - Um prefixo de endereço indica o endereço e o número de bits significantes no endereço
 - ⇒ Exemplo:

√ 4000::/3 provider-based unicast address

√ 5A00::/8 administered by InterNIC

✓ 5A01:0200::/24 provider 0x0102

✓ 5A01:0203:0400::/40 subscriber type 0x0340

✓ 5A01:0203:0405::/48 subscriber 0x05

✓ 5A01:0203:0405:0607:0809::/80 subnetwork 0x06070809

Endereços Especiais

0::/8	0000 0000	reserved
100::/8	0000 0001	unassigned
200::/7	0000 001	ISO network address
400::/7	0000 010	NOVEL
4000::/3	010	provider based unicast
8000::/3	100	geografic based unicast
FE80::/10	1111 1110 10	Local link address
FEC0::/10	1111 1110 11	Site local address
FF00::/8	1111 1111	Multicast address

Exemplo: Loopaback 0::1

IPv4 x IPv6

- Dois tipo especiais de endereço IPv6 para suporte a transição de IPv4 para IPv6
- IPv4 compatível
 - ⇒ pode ser convertido de e para a forma do IPv4
 - ⇒ formados adicionando-se 96 bits em zero ao endereço de 32 bits
 - \Rightarrow Exemplo: IPv4 = 1.2.3.4 IPv6= ::0102:0304

IPv4 x IPv6

IPv4 - mapeado

- ⇒indicam sistemas que não suportam IPv6
- ⇒usando para sistemas IPv6 comunicarem-se com sistemas que utilizam apenas IPv4.
- ⇒Adiciona-se 80 bits em zero, 16 bits em um aos 32 originais
- ⇒ Exemplo: IPv4 = 4.3.2.1

IPv6 = ::FFFF:04:03:02:01

ICMPv6

ICMPv6 - Tipos

- Destination Unreachable (1)
- Packet too Big (2)
- Time Exceeded (3)
- Parameter Problem (4)
- Echo Request/Reply (128/129)
- Group Membership Request/Report (130/131)
- Router Solicitatio/advertisement (133/134)
- Neighbor Solicitation/Advertisement (135/136)
- Redirect (137)

ICMPv6 - Checksum

- Utiliza um Pseudo-Header composto por
 - ⇒IP Source Address
 - ⇒IP Destination Address
 - ⇒ Payload Length
 - ⇒ Um campo de zeros
 - ⇒ Next Header
 - ⇒ Header ICMP
- Não é transmitido com a mensagem
 - Utilizado somente para cálculo do checksum

Novas Mensagens ICMP

- Neighbor Discovery
 - ⇒ Permite ao sistema descobrir outros hosts e roteadores no seu enlace
 - ⇒ Substitui o ARP
 - ✓ Executa a resolução de endereços

ICMP Coptions

ΙP

Neighbor...

- Hop Limit
 - ⇒Máximo 255
 - ⇒ Se menor que 255 não executa a resolução
- Endereços
 - ⇒ Multicast
 - ✓ FF02::1:C033:6382
 - ✓ Prefixo: FF02::1:0:0
 - ✓ Sufixo: últimos 32 bits do endereço IP do destino

Neighbor Reply

- R = 1
 - ⇒ "Sender" é um roteador
- S = 1
 - ⇒Resposta a uma Solicitação
- O = 1
 - ⇒Se a divulgação deve sobrescrever a cache imediatamente

