VERSUCH NUMMER

TITEL

AUTOR A authorA@udo.edu

AUTOR B authorB@udo.edu

Durchführung: DATUM

Abgabe: DATUM

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1 Theorie					
2	Durchführung	3			
3	Auswertung3.1Bestimmung der Konstanten durch Beobachtung des Entladevorgangs3.2Bestimmung der Konstanten durch die Frequenz3.3Bestimmung der Konstanten durch die Phasenverschiebung	4 6			
-	3.4 RC-Kreis als Integrator	10			
LII	ır 10				

1 Theorie

[1]

2 Durchführung

3 Auswertung

Im folgenden wird auf drei verschiedene Arten die Zeitkonstante RC bestimmt. Außerdem wird die Integration von drei Spannungen dargestellt.

3.1 Bestimmung der Konstanten durch Beobachtung des Entladevorgangs

Es werden bei einer angelegten Rechteckspannung die Spannung U_c und die zugehörige Zeit t gemessen. Für eine lineare Ausgleichsrechnung wird der Logarithmus der Spannung berechnet, und dieser wird gegen t aufgetragen. Alle Werte sind in Tabelle (1) aufgelistet. Der Wert für U_0 beträgt 18 V.

Der Ansatz der linearen Regression lautet

$$y = ax + b. (1)$$

Die Werte für a und b bestimmen sich folgendermaßen:

$$a = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} - \overline{x}^2},\tag{2}$$

$$b = \frac{\overline{x^2}\overline{y} - \overline{x}\overline{y} \cdot \overline{x}}{\overline{x^2} - \overline{x}^2}.$$
 (3)

Der Plot, die Parameter und die Fehler werden mit Python berechnet.

Um die Ausgleichsgerade zu bestimmen, wird Gleichung () entsprechend umgeformt:

$$\frac{U_c}{U_0} = e^{-\frac{t}{RC}}$$

$$\leftrightarrow ln(\frac{U_c}{U_0}) = -\frac{1}{RC}t.$$

Somit hat die Gerade folgende Gestalt:

$$ln(\frac{U_c}{U_0}) = \underbrace{-\frac{1}{RC}}_{Steigung a} t + b. \tag{4}$$

Daraus ergeben sich $a=(-824.913\pm 20.909)s$ und $b=(3.123\pm 0.616)\cdot 10^{-2}$. Daraus folgt für RC:

$$RC = -\frac{1}{a} = (0.121 \pm 0.004) \cdot 10^{-2} s.$$

Abbildung 1: lineare Ausgleichsrechnung zur Bestimmung von RC.

Tabelle 1: Daten für die Ausgleichsrechnung.

$t \cdot 10^{-3}/\mathrm{s}$	$U_c/{\rm V}$	$\ln(U_c/U_0)$
0.04	17.8	-0.011
0.08	17.6	-0.022
0.12	16.6	-0.081
0.16	16.4	-0.093
0.20	16.0	-0.118
0.24	15.2	-0.169
0.28	14.6	-0.209
0.32	14.2	-0.237
0.36	13.8	-0.266
0.40	13.4	-0.295
0.44	12.8	-0.341
0.48	12.6	-0.357

3.2 Bestimmung der Konstanten durch die Frequenz

Die für diese Methode gemessenen Daten finden sich in Tabelle (2). In einem halblogarithmischen Diagramm wird die Amplitude gegen die Frequenz aufgetragen.

Abbildung 2: Logarithmus der Spannung zum Zeitpunkt t.

Diesmal hat die Geradengleichung folgende Gestalt

$$\frac{A(\omega)}{U_0} = \frac{1}{\sqrt{1+\omega^2R^2C^2}},$$

was sich aus Gleichung () ergibt. U_0 beträgt hierbei 7.8 Volt. Da die Ampliude aus der Gleichung von der Kreisfrequenz abhängt, muss für die Ausgleichsrechnung noch ein Faktor 2π beachtet werden, auf Grund des Zusammenhangs

$$\omega = 2\pi f. \tag{5}$$

Somit wird der Graph durch

$$y = \frac{1}{\sqrt{1 + d^2(2\pi f)^2}}\tag{6}$$

beschrieben. Der Parameter lautet:

$$d = RC = (-9.256 \pm 0.785) \cdot 10^{-4} s.$$

Tabelle 2: Gemessene Amplituden und Phasenverschiebung bei unterschiedlicher Frequenz.

f/Hz	U/V	a/s	T/s^{-1}	ϕ/rad	f/Hz	U/V	a/s	T/s^{-1}	ϕ/rad
10	7.8	0.00156	0.1	0.098	600	1.8	0.00036	0.0017	1.35
20	9	0.00144	0.05	0.181	700	1.56	0.00031	0.0014	1.138
30	9.2	0.0014	0.033	0.264	800	1.38	0.00028	0.0013	1.39
40	9	0.00134	0.025	0.337	900	1.24	0.00025	0.0011	1.4
50	8.8	0.00132	0.02	0.415	950	1.2	0.00024	0.0011	1.43
60	8.4	0.0013	0.017	0.49	1000	1.12	0.00022	0.001	1.41
70	8.2	0.00126	0.014	0.554	2000	0.54	0.00012	0.0005	1.47
80	7.8	0.00122	0.013	0.613	3000	0.36	0.00008	0.0003	1.52
90	7.6	0.00119	0.011	0.67	4000	0.28	0.00006	0.0003	1.52
95	7.4	0.00117	0.011	0.698	5000	0.22	0.000048	0.002	1.52
100	7.12	0.00115	0.01	0.723	6000	0.18	0.00004	0.0002	1.54
200	4.72	0.00083	0.005	1.046	7000	0.16	0.000035	0.0001	1.52
300	3.4	0.00064	0.003	1.199	8000	0.14	0.00003	0.0001	1.5
400	2.64	0.0005	0.003	1.277	9000	0.12	0.000027	0.0001	1.55
500	2.16	0.00042	0.002	1.332	9500	0.12	0.000026	0.0001	1.53
10000	0.112	0.00002	0.0001	1.533					

Die Werte für ϕ wurden dabei mit Gleichung () berechnet.

3.3 Bestimmung der Konstanten durch die Phasenverschiebung

In diesem Auswertungsteil wird wie in 3.2 verfahren, nur dass die Phasenverschiebung gegen die Frequenz aufgetragen wird. Die dafür benötigten Werte sind in Tabelle (2) aufgelistet.

Aus Gleichung() ergibt sich der Ansatz für diesen Graphen:

$$y = \arctan(2\pi f d). \tag{7}$$

Abbildung 3: Phasenverschiebung in Abhängigkeit von f.

Die Zeitkonstante beträgt:

$$d = RC = (1.346 \pm 0.498) \cdot 10^{-3} s.$$

Die Relativamplitude U_c/U_0 wird gegen die Phasenverschiebung in einem Polarplot aufgetragen. Mit der Gleichung

$$\frac{A(f)}{U_0} = -\frac{sin\phi}{2\pi fRC}$$

kann eine Kosinus-Abhängigkeit hergeleitet werden, da

$$\frac{sin\phi}{cos\phi} = -\omega RC$$

gilt. Dies führt auf

$$\frac{A(f)}{U_0} = \cos\phi. \tag{8}$$

Die Kurve dazu wird mit Python berechnet.

Abbildung 4: Polarplot.

3.4 RC-Kreis als Integrator

Zuletzt wird geprüft, ob der RC-Kreis als Integrator arbeiten kann.

Abbildung 5: Integrierte Rechteckspannung.

Wie zu erkennen ist, ist die Integrierte einer Rechteckspannung eine Dreieckspannung.

Folgende konstane Funktion

$$f(x) = \begin{cases} U & 0 < x < a \\ U & a < x < 2a \end{cases}$$

liefert diese Stammfunktion:

$$F(x) = \begin{cases} Ux & 0 < x < a \\ -Ux & a < x < 2a. \end{cases}$$

Abbildung 6: Integrierte Dreieckspannung.

Bei einer Dreieckspannung ist eine quadratische Funktion die Integrierte. Die Funktion

$$f(x) = \begin{cases} Ux & 0 < x < a \\ -Ux & a < x < 2a \end{cases}$$

ergibt integriert:

$$F(x) = \begin{cases} \frac{1}{2} \cdot Ux^2 & 0 < x < a \\ -\frac{1}{2} \cdot Ux^2 & a < x < 2a. \end{cases}$$

Abbildung 7: Integrierte Sinusspannung.

Eine Kosinusspannung ist die Integrierte der Sinusspannung. Die Stammfunktion einer Sinusfunktion lautet

$$F(x) = -U \cdot \cos(x).$$

4 Diskussion

Literatur

[1] TU Dortmund. Versuch zum Literaturverzeichnis. 2014.