

Mathematical Foundations of Computer Science

Lecture 22: Matchings

Recap: Characterization of Bipartite Graphs

Bipartite graph: 2-colorable graphs i.e., V can be partitioned into L and R, where every edges goes between L and R.

Theorem: A graph G(V, E) is bipartite iff there is G has no odd cycle.

Note: In a graph *G*, if the connected components are bipartite, then *G* is bipartite.

Graph Matching

Algorithmic subroutine

Residency matching

Matching couples

National Kidney Registry Non-Directed Donor Chain

Kidney exchanges

Eg: High School Dance Matching

A group of 100 boys and girls attend a formal dance. Every boy knows 5 girls, and every girl knows 5 boys. Can they be matched into dance partners so that each pair knows each other?

Matchings, Perfect Matchings

Matching: A set of edges, no two of which share a vertex.

Matching saturating L (or R):

A matching that touches every vertex of L (or R respectively).

Perfect Matching: A matching is perfect if it includes every vertex i.e., saturates both L and R (it is necessary that |L|=|R| for a perfect matching to exist).

Neighbors of S: N(S) = set of nodes that has an edge with at least one vertex in S = N(S): right hand g S in the entire graph of each of the entire graph of the

Theorem. Bipartite graph G = (V = (L, R), E) has a perfect matching iff (i) $\forall S \subseteq L, |N(S)| \ge |S|$, and (ii) |L| = |R|

Hall's Criterion: Every set of k vertices in L have at least k neighbors in R (for all k)

When no perfect matching?

- Either if for some S, |N(S)| < |S|
- Or if $|L| \neq |R|$ butleneck

If Hall's criterion holds (but $|L| \neq |R|$) there is a matching saturating L.

Is there a perfect matching?

Proof of Hall's Theorem

Theorem. Bipartite graph G(V = (L, R), E) has a matching saturating L iff for any subset $S \subseteq L$, $|N(S)| \ge |S|$, and |L| = |R|.

Easy direction. Matching saturating L implies: for any subset $S \subseteq L$, there are at least |S| nodes of R connected to at least one node in S.

IN(s) | > 15 |

Proof of Hall's Theorem

Theorem. Bipartite graph G(V = (L, R), E) has a perfect matching iff for every subset $S \subseteq L$, $|N(S)| \ge |S|$ and |L| = |R|

Proof: Strong induction on the size of L i.e., n. (Base case n=1 is easy)

I.H: Theorem is true for every bipartite graph G satisfying the conditions on < n vertices.

As with most inductive proofs, we'll try to reduce it to an instance of smaller size.

We'll try to remove some vertices in L, R so that the graph on remaining vertices satisfies Hall's condition.

45 N(S) >151

Case 1: Strictly larger neighborhoods

Suppose for every S s.t. $|S| \le n - 1$, we have $|N_G(S)| \ge |S| + 1$

Let $u \in L$ be any vertex on the left. Match it to one of its neighbors $v \in R$, remove both and continue.

Claim: Induced graph H on (L - u, R - v) satisfies Hall's condition.

(on siden
$$T \subseteq L(Su)$$

 $|N_G(T)| > |T|+1$
 $|N_G(T)| = |N_G(T)| |Sv3| > |N_G(T)|$
 $|N_G(T)| = |N_G(T)| |Sv3| > |N_G(T)|$
 $|N_G(T)| = |N_G(T)| |Sv3| > |N_G(T)|$

Case 2: Exists S where |N(S)| = |S|

Take any *S* with $|S| \le n - 1$ s.t. |N(S)| = |S|. Match vertices in *S* to N(S). Why?

Claim: Induced graph H on $(L \setminus S, R \setminus N(S))$ satisfies Hall's condition.

Take any $T \subseteq L \setminus S$. We will show that $|N_H(T)| \ge |N_G(S \cup T) \setminus N_G(S)| \ge |T|$.

Hall's Marriage Theorem

Neighbors of S: N(S) = set of nodes that has an edge with at least one vertex in S

Theorem. Bipartite graph G(V = (L, R), E) has a perfect matching iff |L| = |R| = n and for any subset $S \subseteq L$, $|N(S)| \ge |S|$.

• The condition of the theorem still holds if we swap roles of L, R

Theorem. Bipartite graph G(V = (L, R), E) has a matching saturating L iff for any subset $S \subseteq L$, $|N(S)| \ge |S|$. (similar statement for matching saturating R)

Thank you!