UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 2. stopnja

Tom Gornik Izrek Šarkovskega

Magistrsko delo

Mentor: izr. prof. dr. Aleš Vavpetič

Kazalo

Izrek Šarkovskega

Povzetek

Sharkovsky theorem

Abstract

Math. Subj. Class. (2010):

Ključne besede:

Keywords: V tem poglavju si bomo zaradi lažjega razumevanja pogledali nekaj

posebnih primerov. Najprej si bomo pogledali najbolj znan poseben primer izreka Šarkovskega. V naslednjih dveh primerih bomo postopek iz prvega primera razširili na daljše cikle. V zadnjem primeru bomo nakazali, kako lahko iz periodičnih točk funkcije f^2 ugotovimo, katere periode ima funkcija f, kar igra pomembno vlogo pri dokazu izreka ??.

Primer 0.1 (3-cikel). Prepričajmo se, da perioda 3 implicira obstoj vseh ostalih period. Točka lahko tvori 3-cikel na dva različna načina, ki sta v resnici zrcalna podoba drug drugega. Slika 1 prikazuje oba primera. Črtkane puščice nakazujejo,

SLIKA 1. Zrcalna podoba ciklov.

kam se s funkcijo f slikajo točke. Velja:

$$x_1 = f(x_0), x_2 = f(x_1)$$
 in $x_0 = f(x_2)$.

V obeh primerih smo z I_1 označili \mathcal{O} -interval s krajišči x_0 in x_1 , z I_0 pa \mathcal{O} -interval s krajišči x_0 in x_2 . Krajišči intervala I_1 se slikata v skrajno levo in skrajno desno točko cikla, zato imamo \mathcal{O} -vsiljeni pokritji $I_1 \to I_1$ in $I_1 \to I_0$. Krajišči intervala I_0 se slikata v krajišči intervala I_1 , zato je tudi pokritje $I_0 \to I_1$ \mathcal{O} -vsiljeno. Ugotovljena pokritja lahko strnemo v diagram \mathcal{C} $I_1 \leftrightarrows I_0$. Iz relacije pokritosti $I_1 \to I_1$ in leme ?? sklepamo, da interval I_1 vsebuje negibno točko. Krajišči intervala I_0 ne morejo slediti zanki $I_0 \to I_1 \to I_0$, saj sta periodični točki s periodo 3. Točke, ki sledijo zanki, pa imajo periodo 1 ali 2. Ker je notranjost intervala I_0 disjunktna z intervalom I_1 , lahko s pomočjo leme ?? sklepamo, da je zanka elementarna. Torej lahko v intervalu I_0 poiščemo točko s periodo 2. Za dokaz obstoja točke s periodo $l \ge 4$ si poglejmo zanko

(1)
$$I_0 \to \overbrace{I_1 \to I_1 \to \cdots \to I_1}^{l-1 \text{ ponovitev intervala } I_0} \to I_0.$$

V tej zanki nastopajo vsaj 3 kopije intervala I_1 , v katerem ležita samo dve točki \mathcal{O} -intervala. Ker imajo točke iz cikla \mathcal{O} periodo 3, v intervalu I_1 ne morejo ležati trije zaporedni členi iz cikla \mathcal{O} , torej tudi tri zaporedne iteracije funkcije f na krajiščih intervala I_0 ne morejo ležati v intervalu I_1 . To pomeni, da krajišči intervala I_0 ne moreta slediti zanki. Že prej smo ugotovili, da je notranjost intervala I_0 disjunktna z intervalom I_1 , zato je zanka (1) elementarna zanka dolžine l. Elementarna l-zanka vsebuje točko periode l, torej ima funkcija f periodo l za vsak $l \geq 4$. Pokazali smo, da je vsako naravno število perioda funkcije f.

Primer 0.2 (7-cikel). Sedaj bomo obravnavali 7-cikel \mathcal{O} in \mathcal{O} -intervale prikazane na sliki 2. Podobno kot pri prejšnjem primeru označimo točke $x_i = f^i(x_0)$ ter intervale $I_1 = [x_0, x_1], I_2 = [x_1, x_2]$ in tako naprej kot prikazuje slika 2. Za to izbiro intervalov dobimo naslednje \mathcal{O} -vsiljene relacije pokritosti:

- $(1) I_1 \to I_1$
- (2) $I_1 \rightarrow I_2 \rightarrow I_3 \rightarrow I_4 \rightarrow I_5 \rightarrow I_0$
- (3) $I_0 \to I_1, I_0 \to I_3 \text{ in } I_0 \to I_5$

Zgornje relacije pokritosti lahko prikažemo z grafom, ki ga prikazuje slika 3. Iz grafa preberemo naslednje zanke.

SLIKA 2. Primer 7-cikla.

Slika 3. diagram

- (1) $I_1 \rightarrow I_1$
- $(2) I_0 \to I_5 \to I_1$
- (3) $I_0 \to I_3 \to I_4 \to I_5 \to I_0$
- (4) $I_0 \rightarrow I_1 \rightarrow I_2 \rightarrow I_3 \rightarrow I_4 \rightarrow I_5 \rightarrow I_0$ (5) $I_0 \rightarrow \underbrace{I_1 \rightarrow I_1 \rightarrow \cdots \rightarrow I_1}_{r \text{ ponovitev intervala } I_1} \rightarrow I_2 \rightarrow I_3 \rightarrow I_4 \rightarrow I_5 \rightarrow I_0, \text{ kjer je } r \geq 3.$

Zanka $I_1 \to I_1$ je elementarna, saj je elementarna vsaka zanka dolžine 1. Pri ostalih zankah lahko najprej ugotovimo, da za vsak $j \in \{1, 2, ..., 5\}$ velja int $(I_0) \cap I_j = \emptyset$. Pri zankah (2), (3) in (4) nobena robna točka intervala I_0 ne more slediti zanki, saj je perioda robnih točk 7, perioda točk, ki sledijo zankam (2), (3) in (4) pa je manjša ali enaka 6. S tem so izpolnjeni pogoji leme ?? in so zanke elementarne. V teh zankah lahko poiščemo točke s periodami 2, 4, ali 6. Podobno kot v primeru 0.1 ugotovimo, da nobene tri zaporedne iteracije funkcije f na točkah cikla \mathcal{O} ne ležijo v intervalu I_1 , zato v tem intervalu tudi ne morejo ležati tri zaporedne iteracije funkcije f na robnih točkah intervala I_0 . To pomeni, da krajišči intervala I_0 ne sledita zanki (5). S tem razmislekom so izpolnjeni pogoji leme ??, zato je zanka (5) elementarna. Za dolžino zanke (5) lahko izberemo katerokoli naravno število večje od 7. Torej lahko na podlagi prisotnosti 7-cikla na sliki 2 sklepamo, da so prisotne vse periode l, za katere je $l \triangleleft 7$ \Diamond

Primer 0.3 (9-cikel). Predpostavimo, da ima funkcija f 9-cikel \mathcal{O} , ki je prikazan na sliki 4. Določili smo šest \mathcal{O} -intervalov I_0, I_1, \ldots, I_5 , za katere velja, da je notranjost intervala I_0 disjunktna z ostalimi intervali. Torej za $j = 1, 2, \dots, 5$ velja enakost: int $(I_0) \cap I_j = \emptyset$. Za tako izbrane intervale dobimo enake relacije pokritja kot v

SLIKA 4. Primer 9-cikla.

primeru 0.1 in lahko s pomočjo enakih sklepov ugotovimo prisotnost enakih elementarnih zank in posledično periodičnih točk s periodami 1, 2, 4, 6 in vse periode večje od 7.

Zaporedje števil x_0, x_1, \ldots, x_6 smo določili tako, da se spiralno oddaljujejo od centra $c := \frac{x_0 + x_1}{2}$, kar je prikazano na sliki 5. S tako izbiro točk pa v zaporedju ne nastopajo vse točke cikla \mathcal{O} in tudi ne velja enakost $f(x_i) = x_{i+1}$ za vsak $i = 1, 2, \ldots, 5$ kot je to veljalo v primeru 0.2.

SLIKA 5. Primer 9-cikla.

V poglavju ?? je predstavljen algoritem za izbiro zaporedja točk x_0, x_1, \ldots, x_6 . Glavna ideja algoritma je, da za naslednji člen zaporedja ne izberemo vedno sliko prejšnjega člena na način: $x_{i+1} = f(x_i)$, vendar včasih izberemo točko, ki je bližje centru c. Točko x_{i+1} , ki je bližje centra c kot točka $f(x_i)$ izberemo, če je slika $f(x_{i+1})$ bolj oddaljena od centra kot točka $f(f(x_i))$. Postopka izbire naslednje točke na sliki ?? in na sliki 5 sta podobna. V obeh primerih se pomikamo navpično do grafa funkcije in nato vodoravno do simetrale lihih kvadrantov. Sprememba se zgodi na sliki 5, ko lahko izberemo še neizbrano točko tako, da se v vodoravni smeri pomaknemo proti centru c, v navpični smeri pa stran od centra c. To se na sliki 5

zgodi dvakrat in je prikazano s krivimi puščicami. Postopek se ustavi, ko pridemo do točke x_j , katere slika $f(x_j)$ je na isti strani centra c kot točka sama. V primeru na sliki 5 je to točka x_6 .

V poglavju ?? si bomo natančno pogledali kakšne lastnosti mora imeti zaporedje točk $x_0, x_1, \ldots, x_{n-1}$, ki predstavlja krajišča intervalov $I_0, I_1, \ldots, I_{n-1}$. Izvedeli bomo tudi, kako taka izbira točk in intervalov zagotavlja obstoj elementarnih zank. V poglavju ?? se bomo naučili, kako iz točk cikla izberemo zaporedje, ki ima željene lastnosti.

Primer 0.4 (6-cikel). Obravnavali bomo 6-cikel, ki je na sliki 6. Bistveno pri tem

SLIKA 6. Primer 6-cikla.

primeru je, da se tri točke na levi strani slikajo v tri točke na desni in obratno. Torej, tri točke na desni tvorijo 3-cikel \sim za funkcijo f^2 . Podobno kot v primeru 0.1 lahko določimo intervala I_0 in I_1 ter opazujemo relacije pokritja $I_1 \xrightarrow{f^2} I_1$, $I_1 \xrightarrow{f^2} I_0$ in $I_0 \xrightarrow{f^2} I_1$ za intervala I_0 in I_1 , ki sta prikazana na sliki 6. Enako kot prej lahko zaključimo, da ima funkcija f^2 elementarne zanke vseh dolžin in zato je vsako naravno število $l \in \mathbb{N}$ perioda funkcije f^2 . Za funkcijo f določimo še dva intervala. Interval I_0' naj bo najkrajši \mathcal{O} -interval, ki vsebuje točke iz množice $f(I_0 \cup \mathcal{O})$, interval I_1' pa naj bo najkrajši \mathcal{O} -interval, ki vsebuje točke iz množice $f(I_1 \cup \mathcal{O})$. Sedaj bomo prikazali rekurzivno metodo, ki jo bomo uporabili kasneje v dokazu izreka Šarkovskega. Pokazali bomo, kako lahko s pomočjo elementarne kzanke za funkcijo f^2 poiščemo elementarno 2k-zanko za funkcijo f. V primeru, ki ga obravnavamo, bo to pomenilo, da je vsako sodo naravno število perioda funkcije f. Poglejmo si elementarno k-zanko za funkcijo f^2 , v kateri nastopajo relacije pokritja $I_1 \xrightarrow{f^2} I_1$, $I_1 \xrightarrow{f^2} I_0$ in $I_0 \xrightarrow{f^2} I_1$. Vsak zapis $I_1 \xrightarrow{f^2}$ v zanki lahko zamenjamo z $I_1 \xrightarrow{f} I_1' \xrightarrow{f}$, vsak zapis $I_0 \xrightarrow{f^2}$ pa z $I_0 \xrightarrow{f} I_0' \xrightarrow{f}$. S to spremembo dobimo 2k-zanko za funkcijo f, ki ni samo dvakrat ponovljena k-zanka. Prepričajmo se, da je 2k-zanka elementarna. Denimo, da točka p sledi 2k-zanki za funkcijo f. Pokazati moramo, da ima periodo 2k za funkcijo f. Opazimo, da točka p sledi prvotni k-zanki za funkcijo f^2 in ima zato periodo k za funkcijo f^2 . Po drugi strani pa iteracije točke p s funkcijo f ležijo alternirajoče enkrat na levi in enkrat na desni strani srednjega intervala, saj 2k-zanka za f alternira med intervali s črtico in intervali brez črtice. Zato je orbita točke p sestavljena iz 2k različnih točk. Na desni strani srednjega intervala leži ksodih iteracij, na levi strani pa leži k lihih iteracij. To pomeni, da je perioda točke pza f enaka 2k. Ker smo dolžino začetne elementarne k-zanke izbrali poljubno, smo pokazali, da je vsako sodo število perioda za f. Ker interval $[x_0, x_1]$ s funkcijo fpokrije samega sebe, pa obstaja negibna točka. Torej ima f tudi periodo 1.