

Image Generation with Diffusion Models

Antonio Rueda-Toicen

Learning goals

- Gain an overview of the denoising diffusion process
- Recognize the use of CLIP models to guide image generation with text prompts

Image generation with diffusion models

Figure 1: Generated samples on CelebA-HQ 256 × 256 (left) and unconditional CIFAR10 (right)

Corrupting an image with Gaussian noise

Iterative denoising process

Forward diffusion

Beta controls how much noise is added on each time step, it is increased gradually. This increase is called the "noise schedule"

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\mathbf{x}_t; \sqrt{1-\beta_t} \cdot \mathbf{x}_{t-1}, \beta_t \cdot \mathbf{I})$$

import numpy as np

```
Noise: 0.20
```

```
def step_forward(x_prev, beta_t):
    # Scale down the previous position
    mean = np.sqrt(1 - beta_t) * x_prev

# Add random noise
    std = np.sqrt(beta_t)
    noise = np.random.normal(0, std, size=x_prev.shape)

x_t = mean + noise
    return x t
```


Reverse diffusion with U-net

CLIP to guide text to image generation

vibrant portrait painting of Salvador Dalí with a robotic half face

CLIP as input to decoders

Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process, through which we learn a joint representation space for text and images. Below the dotted line, we depict our text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior to produce an image embedding, and then this embedding is used to condition a diffusion decoder which produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.

Summary

Diffusion models generate high quality images by reversing a noise addition process.

They iteratively denoise from pure noise to generate images.

The forward diffusion process corrupts images

Gradually adds Gaussian noise to images following a schedule (beta parameter)

The reverse diffusion process is about learning to predict the noise

- Uses a U-net architecture to estimate what noise was added at each step
- We predict the noise component to subtract it from the corrupted image
- The network is trained to minimize the difference between predicted and actual noise

CLIP enables text-guided image generation

CLIP text embeddings help us control the reverse diffusion process.

Further reading and references

Denoising Diffusion Probabilistic Models

https://arxiv.org/abs/2006.11239

Hierarchical Text-Conditional Image Generation with CLIP Latents

https://arxiv.org/abs/2204.06125

The Annotated Diffusion Model

https://huggingface.co/blog/annotated-diffusion

The Physics Principle That Inspired Modern Al Art

• https://www.quantamagazine.org/the-physics-principle-that-inspired-modern-ai-art-20230
https://www.quantamagazine.org/the-physics-principle-that-inspired-modern-ai-art-20230
https://www.quantamagazine.org/the-physics-principle-that-inspired-modern-ai-art-20230

