

DIGITAL DESIGN

ASSIGNMENT REPORT

ASSIGNMENT ID: 1

Student Name: 杨钰城

Student ID: 12112323

PART 1: DIGITAL DESIGN THEORY

Provide your answers here:

12112323	杨锰城	第一次	作业	
QI				
	- 234+0.5			
		/	%	0.5 x 3 = 1. S
obase 3:	234/3	74	2	0.5x 3= 1.5
	7413	24	2	
	2413	8 2	0	: (234.5) = (22022.11)3
	8/3	2	2	(2)/3//6 - (2) - (1)/3
	上/3	O	2	
Obase S:	23415	4 6	4	0.5xs = 2.8
	46/5	9	1	$0.5 \times 5 = \underline{1}.3$
	915	1	4	: (234.5) %= (1414.22)
	112	0	1	
		2.0		
9 base 6:		39	0	0.5x6=3
	3916	6	3	(234.5)b= (1030.3)2
	6/6		0	
	116	0	1	
@base12	234/12	19	6	0.5X12= 6
	19 112		7	(234.5)/0 = (176.6/12
	1 112	Ö	l i	
6 1000 11		, tot	10	0.SX16=8
5) base 16	234116	14		
	14116	0	14	(234.5)6= (EA.8)16
Q2:				
- (791)11 =	= (7×112 + 1	3x11 + 1x	110)60	
	=(947)6		/o	'S Complement = 1000 - 947
				=53
	53 11	4	9	
	9 111	0	9	(63)/0 = (49),,

```
Q3:
o (athte) (a'b'te)
                                         3 cate xa'tbte)ca'tbte)
 = aa'b' + ac + a'b'b + bc + a'b'c' +cc'
                                          = [aa' ta(btc) ta'ctc(btc)](a'tb'n)
  = ac tbc+a'bc'
                                          = (abtac + a'c +bc+c)(a'tb'tc)
                                          = cab + bc + c xa'+b+c)
@ a'b'c tabc tabc tabc
                                          = abc +a'bctbc+a'c +bc+c
 = bc (a'ta) + bc (a'ta)
                                          = bc + ac+ bc +c
                                          = Q'C + C = (Q'+c)C
 =(b'+b)C = C
                                           = C
Q4:
 F. (AB, C) = I(1,2,6,7)
          = A'B'C + A'BC + ABC + ABC
          = A'B'C + BC' +AB
 F2 (A,B,C) = 2 (0,1,2,3,5)
           = A'B'C' +A'BC + A'BC + ABC
           =A'B' + A'B + B'C
           = A'+B'C
For CA, B, C) = 2(3,5,6,7)
           = A'BC + ABC + ABC' +ABC
           = BC +AB+ AC
Q5, CD, OO OI 11 10 OF, (A, B, C, D) = E(0,2,3,6,7,10,11,12,13,15)
                                = A'B'D' + A'C + ABC' + CD + AB'
   00 1 0 1 1
   010011
   11 1 1 0
   100011
```

```
F2(A,B,C,D) = ZU,9,10,12,13,14) +d (4,5,8)
                = C'D + AD + AC
   00 01 11 10
   000100
   OCXXIO
   111101
   10 1 X 01
信(W.x,Y,2)= T(0,2,6,11,13,14,15)+d(1,3,9,10,12) g=可(atbtd)(b'tc'+d)(b'tc'+d)
                 = ( w +x ) ( + 2')
   MX5 00 01 11 10
   00 0 X X O
   01 1 1 10
   11 X 0 0 0
   12 1 X 0 X
Q6: .
f = abd' + c'd + a'cd' + b'cd'
                                     g=cathtaxb+c'tdxa'tc+d')
   acd 00 01 11 10 = (c'ta')(a+c+a)(b+c+d)
                                             acd 00 01 11 10
   000101
                                              00 1 0 0 1
   010101
                                             011110
   11 1 1 0 1
                                              11 1 0 1 0
   1 0 1 0 cl
fg=Cc+d'Xatc+d Xb+c+d )(a+b+d'Xb'+c+d Xa'+c+d')
  = b'cd' + abc'd + abc'd'
200 00 01 11 10
 000001
010100
 11 1000
 00001
```

```
Q7: F(A,B,C,D) = $(1,2,4,7,8,9,11)+d(0,3,5)
  ACOO 01 11 19 = A'B' + A'C' + A'D + B'C' + B'D
   00 X 1 X 1
01 1 X 1 0
11 0 0 0 0
   10 1 1 1 0
Ouse NAND gates only
                                         Quse NOR gates only
Q8
OF = (A,B,C,D) = Z(1,3,5,7) = T(0,2,4,6,8,9,10,11,12,13,14,15)
 F=(A,B,C,D)= としいろ,6,7)=Tしの,1,4,5,8,9,10,11,12,13,14,15)
 F.F.=(A,B,(,0)=T(0,1,2,4,5,6,8,9,10,11,12,13,14,15)=Z(3,7)
               = A'CD
  0000 ol 11 10
   000010
   010010
   1100000
   100000
```

e ,	A 0			0	<i>.</i> .	2 -	. ,	0 1			2.1		- / -					_					
FIL	A, E	o, C, i)):	2	CI,	رر درو	, b,	ار لا ج	3,115	12,	13]	= 1	10,	2,4	ניני	' , ſ	۲,	らり					
f2 (J, H	ارکار ک	<i>(</i> ע	د2ء	. Lo,	5,	2/8	, 1,	ניו <i>ן</i> וז	-//)	= 7	Ir	, 2	, 4,	, 6,	1,	10,	12	,14)_		
P.F.	= 7	L	0,1,	L	4,	ь,	1,	1,1	0, 1	2,	14	, 15)	- 2	٦ (3,	7	8,	11	, 13)		
AB CC	, CO	^ 1	- 11	1.7	l	_	Λ:	2` ^ '	د اه	. Ω	C'E	. +	Ω	ا د د	`								
00						-	4	5(ך ע	D	Cy	7		CL									
100	2		1	0																			
01	`	1	0	פ																			
10	1	0	,	0																			
1,0	1	_	ı	_																			
e e		σ,	92	720	_	,	_ ,						-	a .									
Fifz	. =	ין נ	۰0,	۱,	3,	ь,	1)	2	ک (ر2,	4,	5 ,	ر لا	7,1	וו,י	١١,	, 13,	14	, 15)			
AB (3)	നം	61	11	1,2		Ξ,	4	P	ای	+	Δ	Ci) [']										
00						· '	, ,			,	,,	_,											
. 1	1	,	4	_	1																		
10	1		0	1																			
[0 []	1	1	1	1																			
+	•		84	•																			

PART 2: DIGITAL DESIGN LAB (TASK1)

DESIGN

Describe the design of your system by providing the following information:

- Verilog design (provide the Verilog code)
- Truth-table


```
module UnsignedMultiplier(
input [1: 0] in1,
input [1: 0] in2,
output [3: 0] product_led
);
assign product_led[0]=in1[0]&in2[0];
assign product_led[1]=(in1[0]&in2[1]&~in2[0])|(in1[0]&~in1[1]&in2[1])|(in1[1]&~in2[1]&in2[0])|(in1[1]&~in1[0]&in2[0]);
assign product_led[2]=(in1[1]&~in1[0]&in2[1])|(in1[1]&in2[1]);
assign product_led[3]=in1[1]&in1[0]&in2[1]&in2[0];
endmodule
```

SIMULATION

Describe how you build the test bench and do the simulation.

- Using Verilog(provide the Verilog code)
- Wave form of simulation result (provide screen shots)
- The description on whether the simulation result is same as the truth-table, is the function of the design meet the expectation.

```
module UnsignedMultiplier_sim();
reg [1:0] in1=2'b00;
reg [1:0] in2=2'b00;
//connect to output
wire [3:0] product_led;
UnsignedMultiplier fk(
   .in1(in1), .in2(in2), .product_led(product_led)
);
vinitial begin
   in1=2'b00; in2 = 2'b00;
   repeat(15) #10 {in1,in2} = {in1,in2} + 1;
   #10 $finish();
end
endmodule
```


• Through the simulation result, we can see the result is obviously right as the truth-table, and we use truth-table to design this logic gate, so we can think that the function of the design meet the expectation.

THE DESCRIPTION OF OPERATION

Describe the problem occurred while in the lab and your solution. Any suggestions are welcomed.

Problems and solutions

PART 2: DIGITAL DESIGN LAB (TASK2)

DESIGN

Describe the design of your system by providing the following information:

- Verilog design while using data flow (provide the Verilog code)
- Verilog design while using structured design (provide the Verilog code)
- Truth-table


```
module DeMorgan2bit_df(
23
24
     input [1: 0]in1,[1: 0]in2,
25
     output
             [1: 0]out11,[1: 0]out22,[1: 0]out33,[1: 0]out44
26
         assign out11[0]=~(in1[0]||in2[0]);
27
28
         assign out11[1]=~(in1[1]||in2[1]);
29
         assign out22[0]=~in1[0]&&~in2[0];
         assign out22[1]=~in1[1]&&~in2[1];
30
         assign out33[0]=~(in1[0]&&in2[0]);
31
         assign out33[1]=~(in1[1]&&in2[1]);
32
         assign out44[0]=~in1[0]||~in2[0];
33
         assign out44[1]=~in1[1]||~in2[1];
34
     endmodule
35
36
```

```
module DeMorgan2bit df2(
input [1: 0]in1,[1: 0]in2,
output [1: 0]out1,[1: 0]out2,[1: 0]out3,[1: 0]out4
   wire ou1,ou2,ou3,ou4,ou5,ou6,ou7,ou8,ou9,ou10,ou11,ou12,ou13;
   or u1(ou1,in1[0],in2[0]);
   not u2(out1[0],ou1);
   or u3(ou2,in1[1],in2[1]);
   not u4(out1[1],ou2);
   not u5(ou3,in1[0]);
   not u6(ou4,in2[0]);
   and u7(out2[0],ou3,ou4);
   not u8(ou5,in1[1]);
   not u9(ou6,in2[1]);
   and u10(out2[1],ou5,ou6);
   and l1(ou7,in1[0],in2[0]);
   not 12(out3[0],ou7);
   not 13(ou8,in1[0]);
   not 14(ou9,in2[0]);
   or 15(out4[0],ou8,ou9);
   and 16(ou10,in1[1],in2[1]);
   not 17(out3[1],ou10);
   not 18(ou11,in1[1]);
   not 19(ou12,in2[1]);
   or 110(out4[1],ou11,ou12);
endmodule
```

SIMULATION

Describe how you build the test bench and do the simulation.

- Using Verilog (provide the Verilog code)
- Wave form of simulation result (provide screen shots)
- The description on whether the simulation result is same as the truth-table, is the function of the design meet the expectation

• Through the simulation result, we can see the result out1equals to out2 and out3 equals to out4, which proves DeMorgan of 2 bits is right and the result is right as the truth-table. we use truth-table to design this logic gate, so we can think that the function of the design meet the expectation.

THE DESCRIPTION OF OPERATION

Describe the problem occurred while in the lab and your solution. Any suggestions are welcomed.

Problems and solutions

PART 2: DIGITAL DESIGN LAB (TASK3)

DESIGN

Describe the design of your system by providing the following information:

- Verilog design while using data flow (provide the Verilog code)
- Truth-table


```
module TASK(
input A,B,C,D,
output out1,out2,out3,out4
);

assign out1=(~A&~B&~D)|(~B&C)|(~A&C)|(C&D)|(A&B&~C);
assign out2=(~A&~B&~C&~D)|(~A&~B&C&~D)|(~A&~B&C&D)|(~A&B&C&~D)|(~A&B&C&~D)|(A&~B&C&~D)|(A&~B&C&~D)|(A&B&~C&~D)|(A&B&~C&~D)|(A&B&~C&~D)|(A&B&~C&~D)|(A&B&~C&~D)|(A&B&~C&~D)|(A&B&~C&~D)|(A&B&~C&~D)|(A&B&C&~D)|(A&B&~C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C&~D)|(A&B&C
```

SIMULATION

Describe how you build the test bench and do the simulation.

- Using Verilog (provide the Verilog code)
- Wave form of simulation result (provide screen shots)
- The description on whether the simulation result is same as the truth-table, is the function of the design meet the expectation


```
module TASK_sim();
reg A,B,C,D;
wire out1,out2,out3;
TASK ok(
   .A(A),.B(B),.C(C),.D(D),.out1(out1),.out2(out2),.out3(out3)
);
initial begin
{A,B,C,D} = 2'b0;
repeat(15) #10 {A,B,C,D} = {A,B,C,D} + 1;
#10 $finish();
end
endmodule
```


• Through the simulation result, we can see the result is obviously right as the truth-table, and out1 equals to out2 and out3, which proves that three expressions are logical same. we use truth-table to design this logic gate, so we can think that the function of the design meet the expectation.

THE DESCRIPTION OF OPERATION

Describe the problem occurred while in the lab and your solution. Any suggestions are welcomed.

Problems and solutions

