QTL mapping in MAGIC populations

Karl Broman

Biostatistics & Medical Informatics, UW-Madison

kbroman.org github.com/kbroman @kwbroman

Slides: kbroman.org/Talk_MAGIC2021

daviddeen.com

Intercross

QTL mapping

Congenic line/NIL

Improving precision

- more recombinations
- ▶ more individuals
- ▶ more precise phenotype
- lower-level phenotypes
 - transcripts, proteins, metabolites

Genome-scale phenotypes

Advanced intercross lines

Recombinant inbred lines

Recombinant inbred lines

Collaborative Cross

MAGIC

Heterogeneous stock

MAGIC is magic

- Genetic diversity
- ▶ High-precision mapping
- ► Predictable linkage disequilibrium
- No rare alleles
- Phenotype replicates to reduce individual variation
- ▶ Pool phenotypes from multiple labs, environments, treatments
- Genotype once

MAGIC is magic

- Genetic diversity
- High-precision mapping
- Predictable linkage disequilibrium
- No rare alleles
- Phenotype replicates to reduce individual variation
- ▶ Pool phenotypes from multiple labs, environments, treatments
- Genotype once
- Cool name

How many?

How many?

Which?

How many?

How long?

Which?

Valdar et al., Genetics 172:1783, 2006

Valdar et al., Genetics 172:1783, 2006

The goal

Identify QTL

- ▶ Power
- Mapping precision

The goal

Identify QTG

- ▶ Power
- Mapping precision

The goal

Identify QTG

- ▶ Power
- Mapping precision
- ► Estimate QTL allele frequencies

Principles

- Avoid population structure
- Tradeoff between power for de novo discovery and mapping precision
- ► More QTL to find ⇒ more QTL getting in the way?
- ► More QTL alleles ⇒ less information about each
- ► Are QTL alleles common or rare?

How many founders?

More

- ► More general use
- More QTL
- Greater precision
- Estimate allele frequencies
- Haplotype analysis in founders

Fewer

- ► Lower residual variance
- Greater power for a particular QTL?
- Better power for epistasis
- Rare alleles are less rare

Which founders?

- Diverse
- Interesting
- No breeding problems
- ► Balanced: star phylogeny

How much mixing?

- ► More mixing ⇒ Greater mapping precision
- ► ...but lower power for de novo mapping
- Potential for population structure, missing alleles
- Random mating or curated mating?
- ► Start with many random cross directions?

Selfing or DH?

- Inbreeding gives added recombination
- But not so much as at the mixing stage
- ► If doubled haploids are feasible, use them

Sharing is also key

- The greatest power of MAGIC comes from sharing Pooling data, exploring multiple environments/treatments
- Common software needs
 Analysis software, database infrastructure
- Many students need to learn the same stuff Joint training opportunities

Summary

- ► How many founders?
 - Tradeoff between diversity and information about particular alleles
- ▶ Which founders?
 - Diverse, interesting, no breeding problems, star phylogeny
- ► How long to mix?
 - Tradeoff between power and precision
- ► How to fix?
 - Doubled haploids are great if feasible
- ► Let's share!
 - Lines, data, software, training

21 years of R/qtl

R/qtl cross types

- ► backcross, doubled haploids, haploid
- intercross
- 2-way RIL by selfing or sibling mating
- ▶ phase-known 4-way cross

R/qtl2 cross types

- backcross, doubled haploids, haploid
- intercross
- ► 2-, 4-, 8-, 16-way RIL by selfing
- ▶ 2-, 4-, 8-way RIL by sibling mating
- ► 2-, 3-, 8-way advanced intercross
- ► 6- and 19-way MAGIC
- Diversity Outbred (DO) mice
- ightharpoonup F_1 of DO imes inbred
- ▶ general RIL or AIL

	Α	В	С	D	E	F	G
1	id	bolting_days	seed_weight	seed_area	ttl_seedspfruit	branches	height
2	MAGIC.1	15.33	17.15	0.64	45.11	10.5	NA
3	MAGIC.2	22	22.71	0.75	49.11	4.33	42.33
4	MAGIC.3	23	21.03	0.68	57	4.67	50
5	MAGIC.4	18.67	22.45	0.74	54.33	6.33	NA
6	MAGIC.5	18.67	25.36	0.82	38.33	5.67	42.25
7	MAGIC.6	25	21.53	0.71	52	4.33	NA
8	MAGIC.7	15.33	20.92	0.71	39	4	37.35
9	MAGIC.8	14.33	24.2	0.79	50.56	7.33	43.23
10	MAGIC.9	16.33	18.86	0.63	75.78	5.33	42.4
11	MAGIC.10	30	30.46	0.91	56.33	3	48.5
12	MAGIC.11	14	20.58	0.66	41.56	5.67	36.25
13	MAGIC.12	21.33	19.05	0.67	52.33	4.67	49.35
14	MAGIC.14	18.67	21.14	0.72	49.78	6	48.5
15	MAGIC.15	15	21.71	0.73	49	6.33	41.9
16	MAGIC.16	18.33	21.37	0.71	66.67	3.33	18.17

	А	В	С	D	E	F	G	
1	id	bolting_days :	seed_weight	seed_area	ttl_seedspfruit	branches	height	
2		A	В	С	D	E	F	G
3	1	marker	MAGIC.1	MAGIC.10	MAGIC.100	MAGIC.101	MAGIC.102	MAGIC.103
4	2	MN1_29291	Α	Α	Α	В	В	Α
5	3	MN1_29716	Α	Α	Α	В	В	Α
6	4	MN1_112907	Α	Α	Α	В	В	Α
7	5	MASC03771	Α	В	Α	Α	В	Α
8	6	MN1_197787	Α	В	Α	В	В	Α
9	7	MN1_340810	Α	В	Α	Α	Α	Α
10	8	MN1_395107	Α	Α	Α	Α	В	Α
11	9	MN1_444820	Α	Α	_	Α	Α	Α
12	10	MN1_494205	Α	Α	Α	Α	Α	Α
13	11	MN1_592863	Α	В	Α	Α	Α	Α
14	12	MN1_592760	Α	Α	Α	Α	Α	Α
15	13	BKN118	Α	Α	Α	Α	А	Α
16	14	MN1_1042427	Α	В	В	Α	В	В
	15	CRY2_1021	Α	Α	Α	Α	А	Α
	16	CRY2_429	Α	Α	Α	Α	В	Α

	Α	В	В		С		D		E				F			G							
1	id	bolting_da	olting_days se		ed_weight		seed_area		ttl_seedspfruit			bı	branches			height							
2		A		В			С			D			Е			F			G				
3	1	mark	er	MA	AGIC.1		MAGIC.10		MAGIC.100) [MAGIC.101			MAGIC.102			MAGIC.103					
4	2		А		В	С	D	Е	F	G	Н	-1	J	K	L	M	N	0	Р	Q	R	S	Т
5	3	1	mar		Bur	Can	Col	Ct	Edi	Hi	Kn	Ler	Mt	No	Oy	Po	Rsch	Sf	Tsu	Wil	Ws	Wu	Zu
6	4	2	MN1_2 MN1_2		B B	A	A	B B	A	A	В	A	A	A	B	B	A	В	A	A	A	A	A
7	5	4	MN1_1		В	A	A	A	В	В	В	В	A	A	В	В	A	В	В	A	A	A	A
8	6	5	MASC		Α	В	Α	Α	В	Α	В	Α	Α	Α	Α	Α	Α	A	Α	Α	Α	Α	Α
9	7	- 6	MN1_1		В	В	Α	Α	Α	В	В	Α	Α	Α	Α	Α	Α	В	Α	Α	Α	В	В
10	8	7	MN1_3		В	В	A	В	A	В	A	A	A	A	A	A	A	A	A	A	В	В	A
	_	8	MN1_3		A B	A	A	A B	A B	A	B A	A	A	A	A	A	A	A	A B	A	A B	A B	A
11	9	10	MN1_4										A		A		A		_	-	_		
12	10	11	MN1_4		B A	A B	A	A B	B	A	A	A B	A	A	A	A	A	A	A B	A	A B	B	A
13	11	12	MN1_5		В	A	A	A	В	A	A	A	A	A	A	A	A	A	A	A	A	A	A
14	12	13	BKN		В	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
15	13	14	MN1_10	042427	Α	В	Α	В	Α	В	В	Α	В	Α	Α	Α	В	Α	Α	В	Α	В	Α
16	14	15	CRY2		Α	Α	Α	Α	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
10		16	CRY2		Α	Α	Α	Α	Α	В	В	В	Α	В	Α	Α	Α	Α	Α	Α	В	Α	Α
	15	17	MASC		Α	Α	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	В	Α	Α	В	Α	Α	Α
	16	18	MASC		Α	Α	Α	Α	Α	Α	В	В	Α	В	В	В	Α	Α	Α	Α	В	Α	Α
		19	MN1_12		Α	Α	Α	Α	Α	Α	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	В	В	Α
		20	MN1_13		A	A	A	A	A	A	В	A	A	A	A	A	A	A	A	-	В	A	Α
		21	AXR1	_	A	В	A	A	A	В	A	A	A	В	A	A	A	A	Α	A	В	A	В
		22	MASC	07424	Α	В	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	В	-	Α	Α	Α	Α

	А	В		С			D			Е		F		G									
1	id	bolting_da	ys s	seed_weight			seed_area			ttl_seedspfruit		br	branches			heigh	nt						
2		A			В		С			D			E			F			G				
3	1	mark	er	М	AGIC.	1	MAGIC.10			MAGIC.100			MAGIC.101			1 MAGIC.102			AGIC.	103			
4	2		1		В	С	D	Е	F	G	Н	T	J	K	L	M	N	0	Р	Q	R	S	Т
5	3	1	MN1		Bur	Can	Col	Ct A	Edi	Hi Kn L		Ler	C Mt No		Ov	Po		Sf B	Tsu	Wil	Ws	Wu	Zu
6	4	2	MN1		1		marker			chr			pos			В	A	В	A	A	A	A	A
7	5	4	MN1_1	12	2			V1 29		1			0.029291			В	Α	В	В	Α	Α	Α	Α
8	6	5	MASC		3					1			0.029291			A	Α	Α	Α	Α	Α	Α	Α
9	7	6 7	MN1_1 MN1_3		4			MN1_29716 MN1_112907			1					A	A	B	A	A	A B	B	B A
10	8	8	MN1_3					MASC0377			1			0.112907 0.174605			A	A	A	A	A	A	A
11	9	9	MN1_4	44	44										-	Α	Α	Α	В	Α	В	В	Α
12	10	10	MN1_4	-	6		MN1_197 MN1_340						0.197787			A	Α	Α	Α	Α	Α	В	Α
13	11	11	MN1_5		7							0.34081			A	A	A	B	A	B	A	A	
14	12	13	BKN	-	8			11_39			1		0.395107			A	A	A	A	A	A	A	A
15	13	14	MN1_1	042	9		MN1_444						0.444764			Α	В	Α	Α	В	Α	В	Α
16	14	15	CRY2		10			11_49			1			9420		Α	Α	Α	Α	Α	Α	Α	Α
10	15	16	CRY2	_	11			11_59		1			0.5	9286	7	A	A B	A	A	A B	B A	A	A
		18	MASC		12		MN	11_59	2760		1		0.5	9298	4	B	A	A	A	A	В	A	A
	16	19	MN1_1:		13		E	3KN1	18		1		0.7	6158	4	A	A	A	A	A	В	В	A
		20	MN1_1		14		MN	1_104	2427		1		1.042428		8	A	Α	Α	Α	-	В	Α	Α
		21	AXR1	_	15		CF	RY2_1	021		1		1.1	1.187841		A	A	A	Α	A	В	A	В
		22	MASC	0/4	16		С	RY2_	429		1	1.18843		3	A	A	В	-	Α	Α	Α	Α	
					17		MA	SC07	7014		1	1.189374			4								

MVSCUSEUU

1 22655

10

```
"description": "Arabidopsis MAGIC data, Gnan et al (2014)",
"crosstype": "magic19",
"sep": ",",
"na.strings": ["-", "NA"],
"comment.char": "#",
"geno": "arabmagic_geno.csv",
"founder_geno": "arabmagic_foundergeno.csv",
"gmap": "arabmagic_pmap_tair9.csv",
"pmap": "arabmagic_pmap_tair9.csv",
"pheno": "arabmagic_pheno.csv",
"genotypes":
 "A": 1
 "H": 2
 "B": 3
},
"geno_transposed": true,
"founder_geno_transposed": true
```

```
"description": "Arabidopsis MAGIC data, Gnan et al (2014)",
"sep": ",",
"na.strings": ["-", "NA"],
"comment.char": "#",
"geno": "arabmagic_geno.csv",
"founder_geno": "arabmagic_foundergeno.csv",
"gmap": "arabmagic_pmap_tair9.csv",
"pmap": "arabmagic_pmap_tair9.csv",
"pheno": "arabmagic_pheno.csv",
"genotypes":
 "A": 1
 "H": 2
 "B": 3
},
"geno_transposed": true,
"founder_geno_transposed": true
```

```
"description": "Arabidopsis MAGIC data, Gnan et al (2014)",
"crosstype": "magic19",
"sep": ",",
"na.strings": ["-", "NA"],
"comment.char": "#",
"founder_geno": "arabmagic_foundergeno.csv",
"gmap": "arabmagic_pmap_tair9.csv",
"pmap": "arabmagic_pmap_tair9.csv",
"pheno": "arabmagic_pheno.csv",
"genotypes":
 "A": 1
 "H": 2
 "B": 3
},
"geno_transposed": true,
"founder_geno_transposed": true
```

```
"description": "Arabidopsis MAGIC data, Gnan et al (2014)",
"crosstype": "magic19",
"sep": ",",
"na.strings": ["-", "NA"],
"comment.char": "#",
"geno": "arabmagic_geno.csv",
"founder_geno": "arabmagic_foundergeno.csv",
"gmap": "arabmagic_pmap_tair9.csv",
"pmap": "arabmagic_pmap_tair9.csv",
"pheno": "arabmagic_pheno.csv",
"geno_transposed": true,
"founder_geno_transposed": true
```

```
"description": "Arabidopsis MAGIC data, Gnan et al (2014)",
"crosstype": "magic19",
"sep": ",",
"na.strings": ["-", "NA"],
"comment.char": "#",
"geno": "arabmagic_geno.csv",
"founder_geno": "arabmagic_foundergeno.csv",
"gmap": "arabmagic_pmap_tair9.csv",
"pmap": "arabmagic_pmap_tair9.csv",
"pheno": "arabmagic_pheno.csv",
"genotypes":
 "A": 1
 "H": 2
 "B": 3
},
"founder_geno_transposed": true
```

Reading data into R

```
library(qt12)
arab <- read_cross2("arab_magic.json")
```

Reading data into R

```
library(qt12)
arab <- read_cross2("arab_magic.json")</pre>
```

19-way Arabidopsis MAGIC Kover et al. (2009) PLoS Genet Gnan et al. (2014) Genetics github.com/rqt1/qt12data

Data diagnostics

See Broman et al. (2019) Cleaning genotype data from Diversity Outbred mice. G3 9:1571–1579

doi: 10.1534/g3.119.400165

Genotype reconstruction

2 3 4 5 6

Genotype reconstruction

Genotype reconstruction

```
gmap <- insert_pseudomarkers(arab$gmap, step=0.2, stepwidth="max")
pmap <- interp_map(gmap, arab$gmap, arab$pmap)
pr <- calc_genoprob(arab, gmap, error_prob=0.002, cores=24)</pre>
```



```
out_hk <- scan1(pr, arab$pheno, cores=24)

operm_hk <- scan1perm(pr, arab$pheno, n_perm=1000, cores=24)

k <- calc_kinship(pr, cores=24)
out_lmm <- scan1(pr, arab$pheno, k, cores=24)

k_loco <- calc_kinship(pr, "loco", cores=24)
out_loco <- scan1(pr, arab$pheno, k_loco, cores=24)</pre>
```



```
snp_pr <- genoprob_to_snpprob(pr, arab)
out_snps <- scan1(snp_pr, arab$pheno, cores=24)</pre>
```



```
fl_peak <- max(out_hk, pmap, lodcolumn="fruit_length")
fl_pr <- pull_genoprobpos(pr, pmap, fl_peak$chr, fl_peak$pos)

fl_fit1 <- fit1(fl_pr, arab$pheno[,"fruit_length"])
fl_blup <- fit1(fl_pr, arab$pheno[,"fruit_length"], blup=TRUE)</pre>
```

Goals

- Genotype reconstructions from external software
- Sequencing-based genotype data
- ▶ Multiple-QTL models
- ► QTL × environment interactions
- Interactive data visualization

Slides: kbroman.org/Talk_MAGIC2021

kbroman.org

kbroman.org/qt12

github.com/kbroman

@kwbroman