Admin Issues

Email me if you still have issues accessing canvas

Please complete **demographic survey** if you haven't

Canvas → Quizzes, not graded

Office hours **5-6pm Monday**, starting the **following week**

Can ask questions on canvas too

Refrain from emails for content related questions unless necessary

Related reference material on canvas

Remind me if I haven't responded to your email

Lecture 2: Nash Equilibrium

Lecture 2: 20 Aug 2025

CS6208 Fall 2025: Computational Game Theory

Recall: Need to be strategic

This lecture: the simultaneous move case

Normal Form Games

General-Sum Matrix Games

Matrix games AKA Normal-form, Strategic-form

- Players (>1) This class focuses on 2 players
- Actions (per player, finite)
- Payoffs (per strategy profile)

Some classic 2x2 games

2,2	0,0
0,0	2,2

Coordination game

8,8	0,7
7,0	5,5

Stag hunt

8,4	0,0
0,0	4,8

Battle of the Sexes

6,6	1,7
7,1	0,0

Chicken Game

10,10	-1,12
12,-1	0,0

Prisoner's Dilemma

Analyze them on the board

Important Classes of Bimatrix Games

Symmetric games

Game "looks" the same whether you are P1 or P2

Zero-sum Games

• Purely competitive, $u_1 = -u_2$

Cooperative Games

• Purely cooperative, $u_1 = u_2$

Which of the previous games are any of these?

A Gentle Introduction to Nash Equilibrium

Best responses (intuitive)

If other player fixes choice of action (possibly randomized), how

should I play?

$$BR_1(\mathcal{E}) = \mathcal{E}$$

$$BR_2(\mathbb{C}) = \mathbb{C}$$

$$BR_2(\frac{1}{2}) = 0$$

		23	
	0,0	-1,1	1, −1
W3	1, -1	0,0	-1,1
	-1,1	1, -1	0,0

Best responses are typically **set valued**

$$BR_1(\mathbb{S}) = \{\mathbb{S}\}$$

$$BR_2(\mathbb{S}) = \{\mathbb{S}\}$$

$$BR_2(^{1}/_{3}) = \left\{ \begin{array}{c} 3 & 1/_{3}$$

Contains all convex combinations!

Exercise: BR for Battle of the Sexes

	Soccer	Shopping	g
Soccer	8,4	0,0	
Shopping	0.0	4.8	

Battle of the Sexes

Find the following:

- \circ $BR_1(soccer)$
- \circ $BR_1(shopping)$
- \circ $BR_1(0.5 shopping, 0.5 soccer)$
- $BR_1\left(\frac{1}{3}\ soccer, \frac{2}{3}\ shopping\right)$

Unilateral Deviations

Pure Nash equilibrium (NE)

A pure strategy NE is a pair of actions (a_1, a_2) such that neither player is incentivized to unilaterally deviate.

deterministic

$$a_1 \in BR_1(a_2) \text{ AND } a_2 \in BR_2(a_1)$$

(Soccer, Soccer) is NE

- If P1 plays shopping instead, $8 \rightarrow 0$
- If P2 plays shopping instead, $4 \rightarrow 0$

Why is (Soccer, Shopping) not NE?

NE captures idea of **stability** Pure NE: "locally optimal"

Exercise: Finding Pure NE

Find all the pure NE in the Prisoner's Dilemma & Chicken Game

Cooperate Defect

Cooperate Defect

10,10	-1,12
12,-1	0,0

Prisoner's Dilemma

Chicken Dare

Chicken **6,6 1,7**Dare **7,1 0,0**

Chicken Game

Pure NE may not exist!

No matter where you start, cycles occur

Mixed Strategy NE

A mixed strategy NE is a pair of distributions over actions (x, y) such that $x \in \Delta_1, y \in \Delta_2$ and neither player is incentivized to unilaterally deviate.

Definition extends to >2 players

Probability Simplex

$$\Delta_i = \left\{ x \in \mathbb{R}_+^{|\mathcal{A}_i|} \middle| \sum_j^{|\mathcal{A}_i|} x_j = 1 \right\}$$

$$x \in BR_1(y) \text{ AND } y \in BR_2(x)$$

Includes pure strategy NE as a special case. Why?

Theorem: A mixed NE always exists!

Theorem by John Nash *Nash won the Nobel prize for this (amongst other) results

[Optional] Proof uses Brouwer's Fixed Point Theorem

compact: closed and bounded

If C is compact, convex and $f: C \to C$ is continuous then there exists c such that f(c) = c.

Sperner's Lemma + Brouwer's FP theorem are closely related to complexity of finding NE

Example of Mixed NE

Show that playing uniformly at random is a NE

- What is the payoff if both players play uniformly?
- After one player deviates (other frozen), what is the new payoff?

Show that playing uniformly at random is the only NE

	0,0	-1,1	1, -1
W3	1, -1	0,0	-1,1
	-1,1	1, -1	0,0

More Examples of NE

Two Pure NE. There is a 3rd mixed NE!

• #NE is almost always odd (Wilson's oddness theorem)

Can you find it?

Battle of the Sexes

Also applies to Chicken Game.

• Are there other NE for Prisoner's dilemma?

Idea: opponent is *indifferent* to their actions

Need to be careful, has caveats (later in this lecture)

Visualize NE on the board

Computational Complexity

Belongs to complexity class **PPAD**

- Polynomial Parity Arguments on Directed Graphs
- Daskalakis, Goldberg, Papadimitriou
- Chen and Deng

Not quite the same as NP-hard

- PPAD reductions are a bit different
- Deciding if *Nash exists* is doable in constant time (how?)
- Most decision variants are NP-hard (Conitzer & Sandholm, 2003)
 - Whether there exists Nash that contains a given action in support
 - Whether there exists Nash with or exceeding given social welfare

A common criticism of Nash, especially when used for modeling

- If people truly behave like NE, we could use it to compute "hard" problems
- "If your computer can't compute it, then humans shouldn't behave it"

[Optional] Elimination of Dominated Strategies

Sometimes, we get lucky and can trim the game by throwing away "obviously bad actions"

Cooperating is a dominated strategy!

	Soccer	Shopping
Soccer	8,4	0,0
Shopping	0,0	4,8
Attend class	-1,(.)	-1,(.)

10,10	-1,12
12,-1	0,0

Prisoner's Dilemma

Battle of the Nerdy Sexes

Will you ever attend classes?

- Playing soccer is always better for P1, regardless of what P2 chooses
- P2's payoff doesn't matter

Weak dominance: equality sometimes

Dominance by mixed strategies

Methods to find NE in general matrix games

Brute force

- Support enumeration
- Vertex enumeration

Homotopy type methods

Lemke Howson Algorithm

Linear Complementary Programs/Integer Programming

My preferred method for quick hacks, allows to select Nash based on social welfare

Can obtain all NE

Interesting but beyond scope of this class

Remarks about NE

NE in general-sum games always come in **pairs** (for 2p games)

Not exchangeable

• (x,y),(x',y') are NE does not imply (x,y'),(x',y) are NE

Multiple NE can occur. Payoffs can vary wildly.

• Choosing which NE is "preferred" is known as equilibrium selection

Price of Anarchy

 Compared to a dictator who could "force" players behavior, how badly does this "free market" perform in terms of welfare?

Many special cases: potential games, graphical games, routing games etc. which can be solved more easily, have nice properties

[Optional] Bounded Rationality

Quantal Response Equilibrium

- Recall for NE: $x \in BR_1(y)$ AND $y \in BR_2(x)$
 - Can be a bit brittle!
 - x, y is some kind of argmax over expected utilities (more on this later)
- Replace argmax by softmax for both players
- Equivalent to adding Gumbel noise to all utilities and playing according to the probability that an action is the best
- Always exists, converges to a NE as temperature $\rightarrow 0$

Level-k

- NE is some kind of "infinite" nesting of beliefs
- E.g.: population contains different types of people, some think many "steps" ahead, others few. Common belief over distribution over levels
- http://www.columbia.edu/~md3405/Behave_Bounded_6_15.pdf

Representing NE in Matrix form

Preliminaries and Definitions

$$n=|\mathcal{A}_1|, m=|\mathcal{A}_2|$$
 $A,B\in\mathbb{R}^{n imes m}$ A_{ij},B_{ij} : payoff given actions i,j B

P1's strategy
$$x \in \Delta_n$$
 $x \in \mathbb{R}^n, \ x \geq 0, \ \sum_i x_i = 1$

P2's strategy
$$y \in \Delta_m$$
 $y \in \mathbb{R}^m, \ y \geq 0, \ \sum_j y_j = 1$

Some Useful Terms

$$A, B \in \mathbb{R}^{n \times m}$$

*Slight abuse of notation: I am treating x, y as column vectors

Probability that outcome (i, j) occurs

$$x^T A y = \sum_{i} \sum_{j} x_i \cdot y_j \cdot A_{ij}$$

Row player's expected payoff under x, y

$$Ay = \begin{bmatrix} (Ay)_1 \\ (Ay)_2 \\ \dots \\ (Ay)_n \end{bmatrix} = \begin{bmatrix} \sum_j A_{1j} y_j \\ \sum_j A_{2j} y_j \\ \dots \\ \sum_j A_{nj} y_j \end{bmatrix}$$

i-th row: How much row player would have gotten if by playing the *i*-th action assuming other player plays *y*

^{*}transposing gives similar interpretation for the other player B^Tx

Best response condition

If x, y are mixed strategies, then $x \in BR_1(y)$ if and only if

$$x_i > 0 \Rightarrow (Ay)_i = L = \max\{Ay\}$$

Why?

$$x^{T}Ay = \sum_{i \in [m]} x_{i} \cdot (Ay)_{i} = \sum_{i \in [m]} x_{i} \cdot (L - (L - (Ay)_{i})) = L - \sum_{i \in [m]} x_{i} \cdot (L - (Ay)_{i})$$

- $x^T A y \le L$ if and only if $x_i \ge 0$ and $(L (Ay)_i \ge 0$ for all $i \in [m]$
- $x^T A y = L$ if and only if $x_i > 0 \Rightarrow L (Ay)_i$

*both terms are nonnegative

Back to Unilateral Deviations

Nash Equilibrium written explicitly

NE is a pair $x \in \Delta_n$, $y \in \Delta_m$ such that

*Expected payoffs given strategies x, y

*Infinitely many constraints!

$$x^{T}A y \ge x'^{T}A y \qquad \forall x' \in \Delta_{n}$$
$$x^{T}B y \ge x^{T}B y' \qquad \forall y' \in \Delta_{m}$$

$$\forall x' \in \Delta_n$$

$$\forall y' \in \Delta_m$$

P1 cannot do any better by changing strategies

P2 cannot do any better by changing strategies

Players cannot unilaterally deviate and perform better

* Best response condition

$$x^{T}A y \ge e_{i}A y \qquad \forall i \in [n]$$

$$x^{T}B y \ge x^{T}B e_{j} \qquad \forall j \in [m]$$

$$\forall i \in [n] \\ \forall j \in [m]$$

AND
$$x \in \Delta_n, y \in \Delta_m$$

elementary basis vector

Feasibility problem. Can we just plug this into some generic solver?

Solving NE via Integer Programming

How does a NE look like?

Suppose x^* , y^* is a NE. Recall best-response condition

There exists some *L* such that

Writing this in matrix form

Same holds for $B^T x^*$ and support of y^*

Rewriting as an LCP

$$x^{T}A y \ge e_{i}A y \qquad \forall i \in [n]$$
$$x^{T}B y \ge x^{T}B e_{j} \qquad \forall j \in [m]$$

$$\forall i \in [n] \\ \forall j \in [m]$$

AND
$$x \in \Delta_n, y \in \Delta_m$$

Find $L, K \in \mathbb{R}, x \in \Delta_n, y \in \Delta_m$ such that

$$L \ge e_i^T A y \quad \forall i \in [n]$$

$$K \ge x^T B e_j \quad \forall j \in [m]$$

$$x^T (L - A u) = 0$$

 $x^T(L-Ay)=0 \\ y^T(K-B^Tx)=0$ Complementary conditions: at most one term in product strictly positive

Not quite accessible yet

A simple integer program formulation

scalar payoffs to each player at equilibrium

binary variables indicating where support is

Find
$$L, K \in \mathbb{R}, x \in \Delta_n, y \in \Delta_m, w \in \{0, 1\}^n, z \in \{0, 1\}^m$$
 such that

$$L \geq e_i^T A y \quad \forall i \in [n]$$

$$K \geq x^T B e_j \quad \forall j \in [m]$$

$$L - A y \leq M \cdot (1 - w)$$

$$K - B^T x \leq M \cdot (1 - z)$$

$$w \geq x$$

$$z \geq y$$

$$w = 1$$

$$v_i \text{ positive only where } w_i = 1$$

for some big enough M.

Feasibility problem: can optimize for "good" equilibrium in objective!

Sandholm, Gilpin and Conitzer (https://www.cs.cmu.edu/~sandholm/MIPNash.aaai05.pdf)

Support Enumeration

"When in doubt, use brute force"

-Ken Thompson

Support Enumeration

Assume that game is non-degenerate

- Every mixture of k-strategies can only have at most k pure best-responses
- Reasonable for randomly generated games
 - Adding noise to payoffs makes games non-degenerate
 - Not reasonable for certain types of structured games!

If (x^*, y^*) is Nash, then x^*, y^* have equal sized supports

Follows from best-response condition

Algorithm Sketch:

- Iterate for all $k = 1, ... \min(n, m)$
 - Enumerate all k-sized subsets *I* of [n] and *J* of [m]
 - Find some mixture in *I* such that P2 is indifferent to their actions in *J*
 - Find some mixture in *J* such that P1 is indifferent to their actions in *I*
 - Both above are obtained by solving system of linear equations

Example: Chicken Game

Chicken

6,6	1,7
7,1	0,0

Dare

Chicken

For k = 1

Dare

- Trivial, joint supports correspond to pure strategy profiles
- Only Dare-Chicken and Chicken-Dare are equilibria here

For k = 2 (full support)

- Player 1 needs to be indifferent to both of player 2's actions
- If P1 chickens, get $6 \cdot y_{chicken} + 1 \cdot y_{dare}$, if P1 dares, get $7 \cdot y_{chicken} + 0 \cdot y_{dare}$
- These must be equal (why?). Also, y needs to be a probability distribution
- 6 · $y_{chicken}$ + 1 · y_{dare} = 7 · $y_{chicken}$ + 0 · y_{dare} AND $y_{chicken}$ + y_{dare} = 1
- Solve system of 2 equations and 2 unknowns, unique solution (non-degenerate)
 - y = [0.5, 0.5]
- Repeat the same for player 2 indifference to player 1's action to get *x*
- CHECK that candidate Nash's are both valid distributions and satisfy Nash
 - In the case of full support this has already been done "automatically" (why?)

Remarks

Common Mistakes

- Assuming that P1's mixture is indifferent to all actions of P2
 - Guessing the right support is important!
 - Remember how Ay^* and A^Tx^* look like: not necessarily all same values
 - Counterexample: dominated actions
- Not verifying if solutions to linear system are NE of original game
 - valid distributions alone does not imply NE
 - Counterexample: choose support size of k=1 for any reasonable game e.g., rock paper scissors

Support enumeration gets all Nash for nondegenerate games

 Common theme to "convert" linear inequalities to equalities, become system of linear equations

Downside: exponentially many supports to guess

Lemke-Howson Algorithm

Worst-case brute force can still be very insightful...

Outline

Algorithm to find **one** NE, not all, or not special ones

Key idea: try to exploit combinatorial/geometric structure of NE

Assumptions:

- *A*, *B* are strictly positive
- Use symmetric variant
 - Consider symmetric game with payoff matrix $\begin{bmatrix} 0 & A \\ B^T & 0 \end{bmatrix}$
 - Symmetric games have at least one symmetric equilibrium. Prove using fixed point theorem.
 - Let symmetric eqm of new game be of the form $[x, y^*]$. Then (x^*, y^*) is unnormalized NE to original game
 - Prove it! Be careful, need to prove x^* , y^* in new game are not 0
- Game is non-degenerate (in some sense)

All these assumptions can be relaxed in practice

Best response polytope

Let A be the symmetric matrix (from previous slide)

Let n be the size of the symmetric matrix (n+m from the original game)

Consider $P = \{z | Az \le 1, z \ge 0\}$ for some $z \in \mathbb{R}^n$

- 2n inequalities, n from $Az \le 1$ and n from $z \ge 0$
- An inequality is tight if it holds with equality
- For given z, we say that an action i is represented if either $(Az)_i = 1$ OR $z_i = 0$

If $z \neq 0$ is such that every action i is represented, then

- $x \in \mathbb{R}^n$ where $x_i = z_i / \sum_i z_i$ is a symmetric NE
- Why? Represented ⇒ best response condition

Common trick to normalize (remove value of the game)

• Unnormalized version $P = \{z, L | Az \le L, z \ge 0, |z|_1 = 1\}$

Now, problem is to find such z where all actions are represented

Vertices of *P*

Type equation here. Assume system of inequalities is nondegenerate

• Vertices in polytope are intersection of exactly n hyperplanes, i.e., n out of 2n inequalities hold with **equality**

n equalities $(\checkmark) \rightarrow$ single point!

	1	2	3	4	5	•••	n
$(Az)_i = 1$	✓				✓		✓
$z_i = 0$		√	✓	√			

NE since every action is represented

	1	2	3	4	5	•••	n
$(Az)_i = 1$	>			✓			
$z_i = 0$		✓	✓	✓			√

Not NE, not every action is represented

Finding NE by pivoting

Trick: incrementally "improve" support set by pivoting

- Maintain set of n tight inequalities (out of 2n)
- Stick to *almost-Nash set*, all actions except possibly one distinguished one (say the *n*-th one) are represented
- Non-Nash Almost-Nash sets have exactly one "doubly represented" action

	1	2	3	4	5	•••	n
$(Az)_i = 1$	√			✓	✓	✓	
$z_i = 0$		✓	✓	✓			

Start from almost-Nash set. Take doubly represented action, remove one equality \rightarrow system of equations is now a line

• Line is part of an edge in *P*, walk along that line to a new vertex, keep repeating until all actions are represented > Nash!

Need to start at an almost-Nash set that is a vertex in *P*. How?

Use the all 0's vector! (artificial equilibrium)

Illustration

	1	2	3	4	5	•••	n
$(Az)_i = 1$							
$z_i = 0$	√	✓	√	✓	✓	√	✓

Not NE, 0 is not a valid unnormalized strategy

	1	2	3	4	5	•••	n
$(Az)_i = 1$							
$z_i = 0$	✓	✓	✓	>	✓	√	

Remove equality involving action n

	1	2	3	4	5	•••	n
$(Az)_i = 1$				✓			
$z_i = 0$	✓	✓	✓	✓	✓	✓	

"walk" along edge to get new vertex

Repeat until all actions represented

Visualization

Figure 2.1. The Lemke-Howson algorithm can be thought of as following a directed path in a graph.

Remarks

Only one "option" of equality to add in

Walking determistically along a path!

- Cannot have loops, can never return to 0
- Paths cannot cross itself (why?)

Figure 2.2. The path cannot cross itself.

Always finds solution since finite (large) #vertices

But can take worst case exponential time

Gives a **constructive proof** of existence of equilibrium (recall Nash's theorem is existential)

Some additional structure

Almost-Nash vertices form forest of paths and cycles

- Source and sinks are Nash, including the all-0 artificial Nash (standard source)
- Implies Wilson's theorem for symmetric games! (assuming nondegeneracy)

Lemke Howson is the starting point for proving PPAD-hardness

 Closely linked to Brouwer's fixed point theorem and reminiscent of Sperner's Lemma (see me after class if you want to learn more)

Source: Algorithmic Game Theory

Tools to compute NE

Gambit: https://www.gambit-project.org/

• Mainly useful for academic reasons, implements most classical algorithms

Gamut: http://gamut.stanford.edu/

Suit of game generators for testing algorithms

Nashpy: https://nashpy.readthedocs.io/en/stable/

Some other academic libraries out there

• Free online solver by Rahul Savani:

https://cgi.csc.liv.ac.uk/~rahul/bimatrix_solver/

End of Lecture