Physik	# 1	Mechanik	Physik	# 2	Mechanik	Physik	# 3	Mechanik	Physik	# 4	Mechanik
Beschleunigung – Kraft				Beschleunigung –	Weg		Haftreibung		Gleitreibung		
Physik	# 5	Mechanik	Physik	# 6	Mechanik	Physik	# 7	Mechanik	Physik	# 8	Mechanik
	reibung – Schief			Leistung			Wirkungsgrad			Radialbeschleuni	
Physik	# 9	Mechanik	Physik	# 10	Mechanik	Physik	# 11	Mechanik	Physik	# 12	Mechanik
	${ m Arbeit}$			potentielle Ener	rgie		kinteische Energi	ie		Kreisfrequen	z
Physik	# 13	Mechanik	Physik	# 14	Mechanik	Physik	# 15	Mechanik	Physik	# 16	Mechanik
Kreisfrequenz Hook'sche Feder				harmonische Schwi Beschleunigun			harmonische Schwing Geschwindigkeit			harmonische Schwi Auslenkung	

$F_{\rm Gl} = \mu_{\rm Gl} \cdot F_{\rm N}$ $F_{\rm Gl}: \text{Gleitreibung}$ $\mu_{\rm Gl}: \text{Gleitreibungskonstante}$ $F_{\rm N}: \text{Normalkraft}$	$F_{H} = \mu_{H} \cdot F_{N}$ $F_{H} : \text{Haftreibung}$ $\mu_{H} : \text{Haftreibungskonstante}$ $F_{N} : \text{Normalkraft}$	$x = \frac{1}{2} \cdot a \cdot t^2$ $[m = \frac{m}{s^2} \cdot s^2]$	$F = m \cdot a$ $[N = kg \cdot \frac{m}{s^2}]$
# 8 Antwort	# 7 Antwort	# 6 Antwort	# 5
$a = \frac{v^2}{r}$ $\left[\frac{m}{s^2} = \frac{\frac{m^2}{s^2}}{m}\right]$	$\eta = rac{P_{ m out}}{P_{ m in}}$	$P = F \cdot v$ $\left[W = N \cdot \frac{m}{s} \right]$ $= kg \frac{m}{s^2} \cdot \frac{m}{s}$ $= kg \frac{m^2}{s^3}$	$\mu_{ m H}= anlpha$
# 12 Antwort	# 11 Antwort	# 10 Antwort	# 9 Antwort
$\omega = \frac{2\pi}{T}$ $\left[s^{-1} = \frac{\mathrm{rad}}{s}\right]$ T: Kreisfrequenz (Umlaufzeit)	$E_{\text{kin}} = \frac{1}{2} \cdot m \cdot v^2$ $\left[J = \text{kg} \cdot \frac{\text{m}^2}{\text{s}^2} \right]$	$E_{\text{pot}} = m \cdot g \cdot h$ $\left[J = \text{kg} \cdot \frac{\text{m}}{\text{s}^2} \cdot \text{m} \right]$ $= \text{kg} \frac{\text{m}^2}{\text{s}^2}$	$W = F \cdot s$ $\begin{bmatrix} J = N \cdot m \\ = kg \frac{m}{s^2} \cdot m \\ = kg \frac{m^2}{s^2} \end{bmatrix}$
# 16 Antwort	# 15 Antwort	# 14 Antwort	# 13 Antwort
$y(t) = y_0 \cdot \sin \omega t$	$v(t) = \omega \cdot y_0 \cdot \cos \omega t$ $\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{s}^{-1} \cdot \mathbf{m}\right]$	$a(t) = -\omega^2 \cdot y_0 \cdot \sin \omega t = -\omega^2 \cdot y(t)$ $\left[\frac{\mathbf{m}}{\mathbf{s}^2} = \mathbf{s}^{-2} \cdot \mathbf{m}\right]$	$\omega = \sqrt{\frac{D}{m}}$ $\left[s^{-1} = \sqrt{\frac{\frac{N}{m}}{kg}}\right]$ D: Federkonstante

2

Antwort

1

Antwort

4

Antwort

3

Antwort

Physik	# 17	Mechanik	Physik	# 18	Mechanik	Physik	# 19	Mechanik	Physik	# 20	Mechanik
potentielle Energie Hook'sche Feder			Kraft Hook'sche Feder			Inelastischer Stoß			Elastischer Stoß		
Physik	# 21	Mechanik	Physik	# 22	Mechanik	Physik	# 23	Mechanik	Physik	# 24	Mechanik
	Drehimpuls			che Energie Dre			Impuls			reisfrequenz Fade	
Physik	# 25	Mechanik	Physik	# 26	Mechanik	Physik	# 27	Mechanik	Physik	# 28	Mechanik
Trägheitsmoment Stab um Stabende			Trä	gheitsmoment S Schwerpunk	Stab um t	Träg	heitsmoment Vol	lzylinder	Trägheitsmoment Hohlzylinder		
Physik	# 29	Mechanik	Physik	# 30	Mechanik	Physik	# 31	Mechanik	Physik	# 32	Mechanik
Transformation Geschwindigkeit – Winkelgeschwindigkeit			Tr	ägheitsmoment	Kugel	Trä	gheitsmoment St Stabende	ab um	Leistung Translation		

# 20	Antwort	<u># 19</u>	Antwort	# 18	Antwort	<u># 17</u>	Antwort	
	$v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$ $v_2' = \frac{(m_2 - m_1)v_2 + 1m_1v_1}{m_2 + m_1}$		$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$		$F = D \cdot x$ $\left[N = \frac{N}{m} \cdot m \right]$		$W = \frac{1}{2} \cdot D \cdot x^2 = E_{\text{pot}}$ $\left[J = \frac{N}{m} m^2 \right]$ $= \frac{kg \frac{m}{s^2}}{m} \cdot m^2$ $= kg \frac{m^2}{s^2}$	
# 24	Antwort	# 23	Antwort	<u># 22</u>	Antwort	# 21	Antwort	
Nur bei α	$\omega = \sqrt{\frac{g}{l}}$ $\left[s^{-1} = \sqrt{\frac{m}{s^2} \cdot \frac{1}{m}}\right]$ $= \sqrt{s^{-2}} = s^{-1}$ $< 5^{\circ}$		$p = m \cdot v$ $\left[\frac{\text{kg m}}{\text{s}} = \text{kg} \cdot \frac{\text{m}}{\text{s}} \right]$		$E_{kin} = \frac{1}{2} \cdot \vartheta \cdot \omega^{2}$ $\left[J = kg m^{2} \cdot s^{-2} \right]$ $= kg \frac{m^{2}}{s^{2}}$		$L = \vartheta \cdot \omega$ $\left[N \text{ m s} = \text{kg m}^2 \cdot \text{s}^{-1} \right]$ $\text{kg} \frac{\text{m}}{\text{s}^2} \text{m s} = \text{kg} \frac{\text{m}^2}{\text{s}}$ $\text{kg} \frac{\text{m}^2}{\text{s}} = \text{kg} \frac{\text{m}^2}{\text{s}} \right]$	
# 28	Antwort	<u># 27</u>	Antwort	<u># 26</u>	Antwort	<u># 25</u>	Antwort	
	$\vartheta = m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$	r: Durch	$artheta = rac{1}{2} \cdot m \cdot r^2$ $\left[\mathrm{kg} \ \mathrm{m}^2 = \mathrm{kg} \cdot \mathrm{m}^2 \right]$ messer des Zylinders	l: Länge	$\vartheta = \frac{1}{12} \cdot m \cdot l^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$ des homogenen Stabes	l: Länge	$\vartheta = \frac{1}{3} \cdot m \cdot l^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$ des homogenen Stabes	
# 32	Antwort	# 31	Antwort	<u># 30</u>	Antwort	# 29	Antwort	
	$P = F \cdot v = M \cdot \omega$ $\left[W = N \cdot \frac{m}{s} = Nm \cdot s^{-1} \right]$ $kg \frac{m^2}{s^3} = kg \frac{m}{s^2} \cdot \frac{m}{s}$		$\vartheta = \frac{1}{3} \cdot m \cdot L^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$		$\vartheta = \frac{2}{5} \cdot m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$		$v = r \cdot \omega$ $\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{m} \cdot \mathbf{s}^{-1}\right]$	

Physik	# 33	Mechanik	Physik	# 34	Mechanik	Physik	# 35	Mechanik	Physik	# 36	Mechanik	
	Drehmoment			Kreisfrequenz Drehschwingung			Rückstellmoment Drehschwingung			Präzessionsfrequenz		
Physik	# 37	Mechanik	Physik	# 38	Mechanik	Physik	# 39	Mechanik	Physik	# 40	Mechanik	
	Satz von Steine			Gravitationkonst			${ m ravitationspote}$			Energie Grav		
Physik	# 41	Mechanik	Physik	# 42	Mechanik	Physik	# 43	Mechanik	Physik	# 44	Mechanik	
	Gravitationfeldstärke			Gravitationskra	aft	Erhaltı	ıngssätze der k Physik	lassischen	Corioliskraft			
Physik	# 45	Mechanik	Physik	# 46	Mechanik	Physik	# 47	Mechanik	Nutzungshinweis	# 48	Lizenz	
	Keplersche Gesetze			Planet auf Kreisl	bahn	Gebun	dener und unge Zustand	bundener	Ka Die Ka Beteiligten Gewissen und Kla	e zur Nutzu arteilernkar rten wurden nach bestem erstellt, für F usurgelingen rantie gegebe	ten: von allen Wissen und ehlerfreiheit kann aber	

# 36	Antwort	# 35	Antwort	# 34	Antwort	# 33	Antwort
	$M = F \cdot r \cdot \sin \varphi$		$M = -D_{\varphi} \cdot \varphi$		\sqrt{D}		$M = F \cdot r$
	$\omega_{\rm p} = \frac{\cdot}{L} = \frac{\cdot}{\vartheta \cdot \omega_{\rm r}}$		$M = D\varphi \varphi$		$\omega = \sqrt{\frac{2}{g^2}}$		IVI — I /

[Nm = Nm?]

Torsionsfederkonstante Verdrillungswinkel

40 Antwort # 39 Antwort # 38 Antwort # 37 Antwort

$$E_{\text{pot}} = -\frac{\gamma \cdot m_1 \cdot m_2}{r}$$

$$\varphi = -\frac{\gamma \cdot m}{r}$$

$$\gamma = 6,6742 \cdot 10^{-11} \frac{\text{N m}^2}{\text{kg}^2}$$

$$\theta = m \cdot a^2 + \theta_{\text{SP}}$$

$$\begin{bmatrix} J = \frac{N m^2}{kg^2} \cdot kg \cdot kg & \\ \frac{m^2}{s^2} = \frac{N m^2}{kg^2} \cdot kg & \\ \end{bmatrix}$$

$$= Nm \end{bmatrix}$$

$$= N \frac{m}{kg} = kg \frac{m}{s^2} \frac{m}{kg}$$

$$= N \frac{m}{kg} = kg \frac{m}{kg} \frac{m}{kg}$$

$$= N \frac{m}{kg} \frac{m}{kg} \frac{m}{kg}$$

$$= N \frac{m}{kg} \frac{m}{kg} \frac{m}{kg} \frac{m}{kg}$$

$$= N \frac{m}{kg} \frac{m}{kg} \frac{m}{kg} \frac{m}{kg} \frac{m}{kg}$$

$$= N \frac{m}{kg} \frac{m}{kg}$$

 $s^{-1} = \sqrt{\frac{N}{m} \cdot \frac{1}{\text{kg m}^2}}$

 \parallel zur Achse von $\vartheta_{\rm SP}$ Abstand der beiden Achsen

43 AntwortAntwort# 42 Antwort# 41 Antwort • Energien

$$F_{\rm C} = m \cdot a_{\rm c} = 2 \cdot m \cdot v_{\perp} \cdot \omega$$

$$\left[N = \text{kg} \cdot \frac{\text{m}}{\text{s}^2} = \text{kg} \cdot \frac{\text{m}}{\text{s}} \cdot \text{s}^{-1} \right]$$

$$\bullet \text{ Drehimpulse}$$

$$\left[N = \frac{\text{N m}^2}{\text{kg}^2} \cdot \frac{\text{kg}^2}{\text{m}^2} \right]$$

$$\bullet \text{ elektrische Ladungen}$$

Coriolisbeschleunigung $=\frac{N}{kg}=\frac{kg\frac{m}{s^2}}{kg}$ Geschwindigkeit des Körpers, rel. zum rotierenden Bezugssystem

48 Antwort # 47 # 46 # 45 Antwort Antwort Antwort

"THE BEER-WARE LICENSE":

Winkelgeschwindigkeit Bezugssystem

Moritz Augsburger (and others, see https://github.com/maugsburger/exph) wrote this file. As long as you retain this notice you can do whatever you want with this stuff.

44

 v_{\perp} :

 $\left[s^{-1} = \frac{Nm}{N \text{ m s}} = \frac{N \cdot m}{k \text{ g m}^2 \cdot s^{-1}}\right]$

If we meet some day and you think this stuff is worth it, you can buy me a beer or a coffee in return.

ungebunder Zustand, m_2 kann sich beliebig weit von m_1 entfernen

 $E = E_{\text{kin}} + E_{\text{pot}} = \frac{1}{2}m_2v^2 - \gamma \frac{m_1m_2}{m_2}$

E < 0: gebunder Zustand $\frac{r_{\rm p}^{\circ}}{T_{\rm p}^{2}} = \gamma \frac{m_{\rm s}}{4\pi^{2}} = const.$

Radius Planetenbahn Umlaufzeit Planet Masse der Sonne

• Planeten auf Ellipsen mit Sonne im gemeinsamen Brennpunkt

: Planetenmasse

 $Nm = N \cdot m$

• Radiusvektor überstreicht in gleicher Zeit gleiche Fläche: $\frac{\Delta A}{\Delta t} = \text{const}$

• Umlaufzeit $T_{1,2}$, große Halbachse $a_{1,2}$ zweier Planeten: $\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}$