

POLITECHNIKA WARSZAWSKA

WYDZIAŁ FIZYKI

PRACA DYPLOMOWA MAGISTERSKA

WŁASNOŚCI TRANSPORTOWE POJEDYNCZYCH I WIELOKROTNYCH WARSTW GRAFENOWYCH

Autor: Krzysztof GIBASIEWICZ

Promotor: dr inż. Jarosław JUDEK

WARSZAWA, 2 sierpnia 2013

DEDYKACJA

This book is dedicated to one of the greatest mathematicians of all time: Carl Friedrich Gauss. Without him, this book wouldn't have been possible.

_SPIS TREŚCI

De	edyka	ncja	i
Sp	ois tre	eści	ii
W	stęp		iv
1	Gra	fen	1
	1.1	Struktura atomowa i własności mechaniczne	2
	1.2	Własności elektronowe	2
		1.2.1 Struktura pasmowa	3
		1.2.2 Ruchliwość	4
		1.2.3 Minimalna przewodność i gęstość stanów	5
		1.2.4 Przerwa energetyczna	6
	1.3	Grafen otrzymywany metodą CVD	7
		1.3.1 Opis metody	7
		1.3.2 Badania strukturalne grafenu	7
	1.4	Zastosowania	7
2	Trar	nzystor FET z kanałem grafenowym	8
	2.1	Tradycyjny tranzystor FET z izolowaną bramką	8
	2.2	Tranzystor FET z kanałem grafenowym	8
	2.3	Proces produkcji tranzystorów z kanałem grafenowym	8
		2.3.1 Struktury tranzystorów	8
		2.3.2 Metoda produkcji tranzystorów	8
3	Pon	niary elektryczne tranzystorów	9
	3.1	Charakterystyki przejściowe i wyjściowe	9
	3.2	Proces wygrzewania prądowego tranzystorów grafenowych	9
	3.3	Ewolucja charakterystyk elektrycznych tranzystorów grafenowych wystawionych	
		na działanie atmosfory	۵

SPIS TREŚCI	iii
4 Podsumowanie	10
Spis tablic	11
Spis rysunków	12
Bibliografia	13

WSTEP

Tutaj mają być jakieś słodkie ładne rzeczy o tym jaki to ten grafen jest super i jak ładnie zrewolucjonizuje elektronikę i ją zmniejszy żeby spełnione było prawo Moora.

ROZDZIAŁ 1			
1			
		00455	. !
		GRAFE	Ν

Zgodnie z najnowszą definicją grafen to: "Cienka monowarstwa zbudowana z atomów węgla, ułożonych w dwywymiarowej sieci o stukturze plastra miodu. Grafen jest podstawowym budulcem dla materiałów grafitowych o innych wymiarach. Może być zwinięty tworząc zerowymiarowe fullereny, zrolowany w jednowymiarowe nanorurki lub spiętrzony w stos tworząc trójwymiarowy grafit" ¹

Ta definicja pokazuje, że grafen stanowił ważny materiał, jeszcze zanim udało się znaleźć metodę jego otrzymywania, ² ponieważ odgrywał ważną rolę w modelowaniu właściwości innych materiałów zbudowanych z węgla (fullereny, nanorurki).

Poniższy rozdział ma na celu przybliżenie własności grafenu, dzięki którym możliwe zastosowania stanowią o dzisiejszym, niesamowitym zainteresowaniu ze strony naukowców z całego świata. Dodatkowo zostanie zaprezentowana i omówiona metoda jego otrzymywania, w której upatruje się największe nadzieje na otrzymywanie przemysłowych ilości tego niezwykłego materiału. Na sam koniec przedstawione zostaną niektóre z wielu zastosowań grafenu z naciskiem na tranzystory polowe z kanałem grafenowym, które stanowią główną oś niniejszej pracy.

¹(odnośnik do Geim, A. K. and Novoselov, K. S. (2007). "The rise of graphene". Nature Materials 6 (3): 183–191. Bibcode:2007NatMa...6..183G. doi:10.1038/nmat1849. PMID 17330084.)

²tutaj o początkach grafenu

1.1 Struktura atomowa i własności mechaniczne

Jeżeli skupimy się na pojedynczym atomie węgla tworzącym grafen, wtedy okaże się, że mamy do czynienia z hybrydyzacją typu ${\rm sp^2}$. Takie oddziaływanie między orbitalami s i p prowadzi do powstania bardzo silnych wiązań typu σ pomiędzy sąsiednimi atomami węgla. Te wiązania mają, zgodnie z zasadą Puliego, zapełnione powłoki elektronowe i tworzą głębokie pasmo walencyjne. Długość tego wiązania wynosi 1,42 Å i leżą one w jednej płaszczyźnie. To te wiązania decydują o tak dużej stabilności tego układu i o jego niezwykłych właściwościach mechanicznych. Wygląd tak powstałej sieci widoczny jest na rysunku 1.1.

Rysunek 1.1: Sieć atomowa grafenu

Na rysunku możemy zobaczyć, że sieć grafenu zbudowana jest z dwóch dwuwymiarowych sieci Bravais'ego (kolory niebieski i żółty), oznaczone literami A i B. Dodatkowo widoczne są wspomniane wcześniej trzy wiązania σ . Warto też wspomnieć o dwóch wektorach a_1 i a_2 , two-rzących pojedynczą sieć Bravais'ego. O ile nie mają one, większego znaczenia dla samego opisu grafenu, o tyle warto o nich wspomnieć w kontekście nanorurek węglowych. Dzięki wielokrotnościom tych wektorów określa się tak zwany wektor chiralności nanorurki. Dzięki temu można poznać charakter nanorurki (metaliczna czy półprzewodnikowa).

Jako wynik takiej budowy sieci grafenu, jest on bardzo wytrzymały. Teoretycznie 100 razy bardziej wytrzymały niż stal o takiej samej grubości. Mimo wszystko jest on też bardzo lekki. Istnieje bardzo obrazowe porównanie obu tych właściwości. Gdyby wytworzyć grafenowy hamak o powierzchnii 1 m², to taki hamak byłby w stanie wytrzymać 4-kilogramowego kota. Jednocześnie sam hamak ważyłby mniej niż jego pojedynczy wąs. Dokładniej ważyłby 0.77 mg, jest to 10^5 raza mniej niż waga arkusza papieru o tej samej powierzchni.

1.2 Własności elektronowe

Po utworzeniu 3 par typu sp 2 pozostaje jeden orbital typu p, będący prostopadły do powierzchni tworzonej przez wiązania typu σ . Wraz z niesparowanymi orbitalami typu p pocho-

dzącymi od sąsiednich atomów, tworzy on zdelokalizowane wiązanie typu π Wiązania typu σ są znacznie słabsze niż wiązania typu σ . Dodatkowo są one wypełnione tylko w połowie elektronami. Dlatego właśnie to wiązanie decyduje o niezwykłych właściwościach elektronicznych grafenu.

1.2.1 Struktura pasmowa

Na początku omówienia właściwości elektronicznych grafenu warto przedstawić sieć odwrotną dla tego materiału. Schemat pierwszej strefy Brillouina znajduje się na rysunku 1.2.

Rysunek 1.2: Sieć odwrotna grafenu

Zaznaczone są na nim punkty wysokiej symetrii (Γ , K i M). Dodatkowo pokazane zostały wektory b_1 i b_2 , opisujące sieć odwrotną. Warto zauważyć, że sieć odwrotna bardzo przypomina sieć atomową. Z geometrycznego punktu widzenia sieć odwrotna jest to obraz sieci atomowej obrócony o 30° . Operując w sieci odwrotnej można wyprowadzić zależność energii od położenia na płaszczyźnie wektora k. Najprostszą metodą otrzymania takiej zależności jest metoda ciasnego wiązania (k0). Prowadzi ona do następującej zależności energii:

$$E(\vec{k})_{\pm} = \pm t\sqrt{3 + f(\vec{k})} - t'f(\vec{k})$$
(1.1)

$$f(\vec{k}) = 2\cos(\sqrt{3}k_y a) + 4\cos\left(\frac{\sqrt{3}}{2}k_y a\right)\cos\left(\frac{3}{2}k_x a\right)$$
(1.2)

Oznaczenie t występujące w zależności 1.1 jest to energia przeskoku pomiędzy danym atomem a jego najbliższym sąsiadem (zmiana podsieci). Natomiast t' jest to energia przeskoku pomiędzy następnym najbliższym sąsiadem. Wartość t≈2,8 eV, natomiast t'≈0,2 eV. Na podstawie oby tych zależności 1.1, został narysowany wykres zależności energii w pierwszej strefie Brillouina, który zostął przedstawiony na rysunku 1.3. Ze wzoru 1.1 wynika też, że jeżeli energia t' jest różna od zera, wtedy pasmo przewodnictwa i walencyjne są asymetryczne. Dodatkowo zaznaczony został obszar w pobliżu punktu K.

Rysunek 1.3: Struktura pasmowa grafenu

Wyróżniony obszar to tak zwany stożek Diraca. Jest to w zasadzie najciekawsze miejsce na krajobrazie pasmowym z co najmniej dwóch powodów. Po pierwsze jest to miejsce, gdzie stykają się pasma przewodnictwa i walencyjne. Po drugie w pobliżu punktu K mamy do czynienia z liniową zależnością energii od wektora falowego. Najczęściej tą relację w przybliża się w poprzez rozwinięcie w szereg i ograniczenie się do pierwszego wyrazu liniowego:

$$E(\vec{k}) = \pm v_F |\vec{k}| \tag{1.3}$$

Gdzie $\vec{k}=\vec{K}+\vec{q}$ i jednocześnie $|\vec{q}|<<|\vec{K}|$. v_F Jest to tak zwana prędkość Fermiego i wynosi $v_F=\frac{3ta}{2}$, a co do wartości $v_F\approx 10^6\frac{m}{s}$. Taki wynik jest bardzo różny od typowej zależności dla materiałów stosowanych w elektronice, ponieważ zazwyczaj zależność energii jest funkcją kwadratową wektora falowego. Liniowa zależność świadczy o występowaniu cząstek bez masowych, zwanych bez masowymi fermionami Diraca. Taka zależność została potwierdzona eksperymentalnie. Takie kwazicząstki są bardziej podobne do fotonów niż do elektronów. To właśnie ta właściwość nośników występujących w grafenie stanowi o jego niespotykanych pośród innych materiałów właściwościach.

1.2.2 Ruchliwość

Dodatkowo bezmasowość nośników stanowi o bardzo wysokich ruchliwościach zarówno dla przewodnictwa dziurowego jak i elektronowego, co ważne nawet w temperaturach pokojowych. Jest to powszechnie uważane za największą zaletę tego materiału.

Ruchliwości z zakresu 10 000 - 15 000 $\frac{cm^2}{V \cdot s}$ są typowe dla grafenu eksfoliowanego na podłożu z SiO₂.¹ Jednak teoretyczne ograniczenia dla tego typu układów zostały przewidziane na 40 000 - 70 000 $\frac{cm^2}{V \cdot s}$ ²

¹Chen, J-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotech.3, 206–209 (2008).

²to co wyżej i Chen, F., Xia, J., Ferry, D. K. & Tao, N. Dielectric screening enhanced performance in graphene FET. Nano Lett. 9, 2571–2574 (2009).

Co więcej przy założeniu braku defektów struktury i rozpraszaniu tylko na fononach akustycznych, przewidywana ruchliwość wynosi 200 000 $\frac{\text{cm}^2}{\text{V·s}}$ 3. Co ciekawe donosi się o zmierzonej ruchliwości dla grafenu zawieszonego swobodnie wynoszącej 10⁶ $\frac{\text{cm}^2}{\text{V·s}}$ 4. Dla grafenu otrzymanego metodą CVD na folii niklowej i przetransferowanego na podłoże, zmierzona ruchliwość przekraczała 3 700 $\frac{\text{cm}^2}{\text{V·s}}$. 5 Donosi się też o uzyskaniu grafenu wytwarzanego metodą CVD dającego średnią ruchliwość wynoszącą 7 000 $\frac{\text{cm}^2}{\text{V·s}}$. 6 Z punktu widzenia niniejszej pracy największe znaczenia mają wyniki otrzymywane dla grafenu CVD, ponieważ próbki tego typu były mierzone podczas pomiarów.

Te liczby robią wrażenie. Jednak należy na nie patrzeć trochę z dystansem porównując je z typowymi materiałami półprzewodnikowymi. Głównym powodem tego jest brak przerwy energetycznej. Ten problem zostanie omówiony szerzej w późniejszym podrozdziale, jednak problem został zaznaczony już tutaj.

1.2.3 Minimalna przewodność i gęstość stanów

Inną ważną właściwością jest minimalna przewodność grafenu występująca również blisko punktów Diraca. Według rozważań teoretycznych przewodność ta powinna wynosić $4\frac{e^2}{h}$ (4 wynika z czterokrotnego zdegenerowania). Ta wartość jest poparta wynikami teoretycznymi ⁹. Należy jednak pamiętać, że grafen na podłożu SiO₂, wykazuje pewne pofalowanie co znajduje swoje odzwierciedlenie jako pojawienie się lokalnych nośników i co z tym związane: zwiększenie tej wartości. Istnienie takiej minimalnej przewodności związane jest z funkcją gęstości stanów w grafenie. Dla uproszczenia załóżmy, że pasma przewodnictwa i walencyjne są symetryczne. Wykres dla takiego założenia przedstawia obrazek 1.4.

Rysunek 1.4: Gęstość stanów

Założenie o symetrii pasm jest w pełni akceptowalne pod warunkiem ograniczenia się do punktów z bliskiego sąsiedztwa punktów Diraca w przestrzeni wektora falowego. W takim re-

³Morozov, V. S. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).

⁴Geim, A. Graphene update. Bull. Am. Phys. Soc. 55, abstr. J21.0004, http://meetings.aps.org/link/BAPS.2010.MAR.J21.4 (2010).

⁵Kim, K-S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

⁶http://meetings.aps.org/Meeting/MAR13/Session/B6.6

⁹Geim, A. K. and Novoselov, K. S. (2007). "The rise of graphene". Nature Materials 6 (3): 183–191. Bib-code:2007NatMa...6..183G. doi:10.1038/nmat1849. PMID 17330084.

żimie zależność energii od wektora falowego jest liniowa, zgodnie ze wzorem 1.3. Dodatkowo funkcję gęstości stanów można przedstawić przy pomocy następującego wzoru:

$$\rho(E) = \frac{2A_c}{\pi} \frac{|E|}{v_E^2} \tag{1.4}$$

Co zostało przedstawione w prawej części wykresu 1.4. Co świadczy o dobrym przybliżeniu gęstości stanów równaniem 1.4 dla dostatecznie małych energii. Wzór ten odpowiada gęstości stanów w komórce elementarnej. Uwzględniono w nim już poczwórną degenerację.

1.2.4 Przerwa energetyczna

Ze struktury pasmowej i funkcji gęstości stanów wynika, że grafen jest materiałem mającym charakter półmetalu. Jest to o tyle ważne, że nie posiada on przerwy energetycznej. Przez wielu jest to uważane za główną wadę grafenu, co dyskwalifikuje go w ewentualnym zastąpieniu krzemu w dzisiejszej masowej produkcji elektroniki, która oparta jest na technologii CMOS (ang. Complementary Metal-Oxide-Semiconductor). Taki brak przerwy powoduje, że urządzenia zbudowanego z użyciem grafenu jako głównego komponentu, nie dało by się po prostu wyłączyć, a jedynie sprowadzić do stanu minimalnego przewodnictwa. Wiąże się to z dużymi stratami mocy co oczywiście z punku widzenia ewentualnych urządzeń elektronicznych jest niedopuszczalne. Jednak trwają usilne próby mające na celu otwarcie przerwy energetycznej grafenu. Jak na razie przedstawione zostały trzy główne metody. Są nimi: wytworzenie nanowstążki⁷, zastosowanie dwuwarstw, wytworzenie silnego odkształcenia jednoosiowego.⁸

Oczywiście każda z tych metod ma swoje wady. Nanowstążki muszą być bardzo wąski (rzędu kilkudziesięciu nanometrów), dodatkowo, co bardzo ważne, muszę mieć bardzo dobrze zdefiniowane brzegi (nie ma znaczyenia czy zig-zag, czy armchair). Jest to niezwykle trudne zadanie, co ogranicza je w przemysłowym zastosowaniu. Dodatkowym minusem jest znaczne zmniejszenie ruchliwości (głównej zalety grafenu) do poziomu poniżej 200 $\frac{cm^2}{V \cdot s}$ dla nanowstążek o szerokości 1-10 nm, $\frac{9}{V}$ oraz 1 500 $\frac{cm^2}{V \cdot s}$ dla nanowstążki o szerokości 14 nm $\frac{10}{V}$. Dlatego pozwalając na upodobnienie grafenu do typowych materiałów półprzewodnikowych skutkuje zniszczeniem jego największej zalety, ogromnej ruchliwości.

Jeżeli chodzi o dwuwarstwę to dużym problemem staje się to, że pasma zaczynają stawać się paraboliczne. Przypominają te z typowych półprzewodników. Dodatkowo przerwa otwarta w ten sposób jest dość wąska i wynosi ok 200-250 meV. Znowu widoczne jest pogorszenie się ruchliwości.

Ostania metoda jest chyba najciekawsza. Zakłada ona silne, globalne odkształcenie jednoosiowe materiału. Przewiduje się, że odkształcenie powinno wynosić powyżej 20%. Na pierwszy rzut oka takie rozwiązanie wydaje się być najprostsze ze wszystkich. Jednak trudno jest je wykonać w praktyce. Dodatkowo nie wiadomo jaki wpływ mają odkształcenia nieosiowe lub lokalne na przerwę w grafenie. Na razie są to rozważania teoretyczne.

⁷nanoribbon

⁸Tutaj nawstawiać odnośników z grafenowego tranzystora

^{926,62} grefenowy tranzystor

^{1045,} grafenowy tranzystor

Podsumowując choć jest znanych co najmniej trzy metody otwarcia przerwy energetycznej w grafenie to jednak należy założyć, że póki co nie mają one znaczenia z punktu widzenia zastosowania ich do ewentualnej technologii produkcji przyrządów elektronicznych.

1.3 Grafen otrzymywany metodą CVD

Istnieje już dość duża liczba metod otrzymywania grafenu. Należy w tym miejscu wspomnieć chociażby o eksfoliacji (tak zwana metoda noblowska) i o metodzie opartej na węgliku krzemu (SiC). Jednak najbardziej obiecującą metodą wytwarzania grafenu na potrzeby przemysłu wydaje się być aktualnie metoda CVD (ang. Chemical Vapour Deposition), czyli metoda osadzania z gazów. Poniżej zostanie opisana w sposób ogólny ta technologia, dodatkowo zostaną przedstawione wyniki charakteryzacji grafenu otrzymanego tą metodą.

- 1.3.1 Opis metody
- 1.3.2 Badania strukturalne grafenu
- 1.4 Zastosowania

ROZDZIAŁ 2	
	_TRANZYSTOR FET Z KANAŁEM GRAFENOWYM

- 2.1 Tradycyjny tranzystor FET z izolowaną bramką
- 2.2 Tranzystor FET z kanałem grafenowym
- 2.3 Proces produkcji tranzystorów z kanałem grafenowym
- 2.3.1 Struktury tranzystorów
- 2.3.2 Metoda produkcji tranzystorów

Opis metodologii

Zdjęcia optyczne

- 3.1 Charakterystyki przejściowe i wyjściowe
- 3.2 Proces wygrzewania prądowego tranzystorów grafenowych
- 3.3 Ewolucja charakterystyk elektrycznych tranzystorów grafenowych wystawionych na działanie atmosfery

ROZDZIAŁ 4	
	PODSUMOWANIE

						I
SPIS TARI IC				SDIS	TARI	

SPIS RYSUNKÓW

1.1	Sieć atomowa grafenu	2
1.2	Sieć odwrotna grafenu	3
1.3	Struktura pasmowa grafenu	4
1.4	Gestość stanów	5

·
BIBLIOGRAFIA

D.E. Knuth. Typesetting concrete mathematics. *TUGboat*, 10(1):31–36, April 1989.