Convergence of Random Variables

The following definition of converging random variables may remind you of a converging sequence of numbers. Recall that a sequence x_1, x_2, x_3, \ldots of numbers converges to x if $\forall \epsilon > 0 \ \exists n_0 \ \forall (n \geq n_0) : |x_n - x| < \epsilon$. We denote this by writing $x_n \xrightarrow{n \to \infty} x$.

Definition: Converging random variables

A sequence X_1, X_2, X_3, \ldots of real random variables converges to a random variable X, if it satisfies one of the following definitions:

in probability	(notation $X_n \stackrel{p}{ o} X$)	if $orall \epsilon > 0$, $P[X_n - X > \epsilon] \xrightarrow{n o \infty} 0$
		"As n increases, the distribution of X_n gets closer and closer to that of X ."
in mean square	$(\text{notation} \atop m.s.} X_n \xrightarrow{m.s.} X)$	if $\mathbb{E}[(X_n-X)^2] \xrightarrow{n o \infty} 0$
		"As n increases, the expected (square of the) difference between X_n and X diminishes."
almost surely	(notation $X_n \xrightarrow{a.s.} X$)	if $P[\lim_{n o\infty}X_n=X]=1$
		"Any event ω for which X_n does not approach the distribution X has zero probability."

The definition of
$$X_n \xrightarrow[n \to \infty]{a.s.} X$$
 can be interpreted as $P[\{\omega \in \Omega \mid X_n(\omega) \xrightarrow[n \to \infty]{} X(\omega)\}] = 1.$

In general, the following implications hold (although their converses do not):

$$X_n \xrightarrow{m.s.} X \quad \Rightarrow \quad X_n \xrightarrow{p} X$$
 $X_n \xrightarrow{a.s.} X \quad \Rightarrow \quad X_n \xrightarrow{p} X$

created: 2018-12-12

Information Theory | Convergence of Random Variables

created: 2018-12-12