

# Pengantar Data Mining #5: Klasifikasi [1]

Isnan Mulia, S.Komp, M.Kom

# **Apa Itu Klasifikasi?**

- Tugas analisis data, dalam bentuk membangun model *classifier* untuk memprediksi label kelas:
  - > "aman" atau "beresiko", untuk data pengajuan kredit
  - > "perlakuan A", "perlakuan B", atau "perlakuan C", untuk data medis
  - "ya" atau "tidak", untuk bermain tenis
- Menggunakan data yang sudah memiliki label kelas
  - → Disebut *supervised learning*

| Relatio | Relation: weather.symbolic |                           |                        |                     |                    |  |  |  |  |
|---------|----------------------------|---------------------------|------------------------|---------------------|--------------------|--|--|--|--|
| No.     | 1: outlook<br>Nominal      | 2: temperature<br>Nominal | 3: humidity<br>Nominal | 4: windy<br>Nominal | 5: play<br>Nominal |  |  |  |  |
| 1       | sunny                      | hot                       | high                   | FALSE               | no                 |  |  |  |  |
| 2       | sunny                      | hot                       | high                   | TRUE                | no                 |  |  |  |  |
| 3       | overcast                   | hot                       | high                   | FALSE               | yes                |  |  |  |  |
| 4       | rainy                      | mild                      | high                   | FALSE               | yes                |  |  |  |  |
| 5       | rainy                      | cool                      | normal                 | FALSE               | yes                |  |  |  |  |
| 6       | rainy                      | cool                      | normal                 | TRUE                | no                 |  |  |  |  |
| 7       | overcast                   | cool                      | normal                 | TRUE                | yes                |  |  |  |  |

# Langkah Klasifikasi

- Fase pembelajaran (fase training)
  - Membangun model pengklasifikasi berdasarkan data training, yang terdiri dari n atribut & sudah memiliki label kelas

Tuple 
$$X = (x_1, x_2, ..., x_n) \rightarrow \text{label kelas} = y$$

• Mempelajari fungsi y = f(X) yang dapat memprediksi label kelas yang berasosiasi y dari tuple X yang diberikan

## Langkah Klasifikasi - *Training*



# Langkah Klasifikasi

- Fase klasifikasi (fase testing)
  - Menerapkan model klasifikasi untuk memprediksi label kelas untuk data yang diberikan
  - Menggunakan data khusus untuk testing
  - Usahakan untuk tidak menggunakan data yang digunakan untuk training, karena ada potensi untuk overfit
  - Akurasi = jumlah *testing tuple* yang terklasifikasi benar jumlah *testing tuple* × 100%

## Langkah Klasifikasi - *Testing*



# Variasi Metode Klasifikasi

- 1. Decision Tree
- 2. Neural Network
- 3. Support Vector Machine
- 4. *k Nearest Neighbours*
- 5. Fuzzy Inference System
- 6. Deep Learning

# **Decision Tree**

- Membangun sebuah pohon yang membaca beberapa nilai atribut dari data untuk menentukan kelas label untuk data tersebut
- Pembuatan decision tree tidak memerlukan pengetahuan domain atau setting parameter
- Representasi pengetahuan yang disajikan intuitif & mudah dicerna
- Mengadopsi pendekatan greedy → ambil bagian berikutnya yang menawarkan keuntungan langsung
- Varian:
  - ID3
  - C4.5
  - CART

### Decision Tree - Anatomi



- Root node: node paling atas
- Node internal/non-leaf node: pengujian pada suatu atribut
- Nilai atribut yang diperiksa
- Leaf node: kelas label

Algorithm: Generate\_decision\_tree. Generate a decision tree from the training tuples of data partition, D.

#### Input:

- Data partition, *D*, which is a set of training tuples and their associated class labels;
- attribute\_list, the set of candidate attributes;
- Attribute\_selection\_method, a procedure to determine the splitting criterion that "best" partitions the data tuples into individual classes. This criterion consists of a splitting\_attribute and, possibly, either a split-point or splitting subset.

#### Output: A decision tree.

#### Method:

- create a node N;
- if tuples in D are all of the same class, C, then
- return N as a leaf node labeled with the class C;
- (4) if attribute\_list is empty then
- (5) return N as a leaf node labeled with the majority class in D; // majority voting
- (6) apply Attribute\_selection\_method(D, attribute\_list) to find the "best" splitting\_criterion;
- label node N with splitting\_criterion;
- (8) if splitting\_attribute is discrete-valued and

multiway splits allowed then // not restricted to binary trees

- (9) attribute\_list ← attribute\_list − splitting\_attribute; // remove splitting\_attribute
- (10) for each outcome j of splitting\_criterion

// partition the tuples and grow subtrees for each partition

- (11) let D<sub>i</sub> be the set of data tuples in D satisfying outcome j; // a partition
- (12) if  $D_i$  is empty then
- (13) attach a leaf labeled with the majority class in D to node N;
- (14) else attach the node returned by Generate\_decision\_tree(D<sub>j</sub>, attribute\_list) to node N; endfor
- (15) return N;

### Decision Tree - Algoritma Umum



### Decision Tree – Ukuran Seleksi Atribut

- Heuristik untuk memilih kriteria pemisah (*splitting criteria*) terbaik yang dapat memisahkan partisi data yang diberikan menjadi kelas-kelas tunggal
- Hasil partisi diharapkan "semurni mungkin" → setiap *tuple* yang terdapat pada suatu partisi merupakan anggota dari kelas label yang sama
- Varian:
  - *Information gain* → digunakan pada ID3

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$
 $Info_A(D) = \sum_{i=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$ 

$$Gain(A) = Info(D) - Info_A(D)$$

→ Atribut A dengan Gain(A) tertinggi akan dipilih sebagai atribut pemisah

### Decision Tree – Ukuran Seleksi Atribut

- Varian:
  - Gain Ratio -> digunakan pada C4.5, untuk menghindari bias

$$SplitInfo_{A}(D) = -\sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times \log_{2} \left(\frac{|D_{j}|}{|D|}\right)$$

$$GainRatio(A) = \frac{Gain(A)}{SplitInfo_{A}(D)}$$

Gini Index → digunakan pada CART, untuk menghitung "ketidakmurnian"

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2$$
 $Gini_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} Gini(D_j)$ 

$$\Delta Gini(A) = Gini(D) - Gini_A(D)$$

## Decision Tree - Contoh Penerapan ID3

|     |             |        |         |               |               | _                                                                                                                     |
|-----|-------------|--------|---------|---------------|---------------|-----------------------------------------------------------------------------------------------------------------------|
| RID | Age         | Income | Student | Credit_Rating | Buys_Computer |                                                                                                                       |
| 1   | youth       | high   | no      | fair          | no            | Menentukan <i>root node</i> :                                                                                         |
| 2   | youth       | high   | no      | excellent     | no            | $I_{m}f_{n}(D) = \sum_{m=1}^{m} I_{n}g_{m}(m)$                                                                        |
| 3   | middle_aged | high   | no      | fair          | yes           | $Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$                                                                           |
| 4   | senior      | medium | no      | fair          | yes           | $\binom{i=1}{9}$ , $\binom{9}{5}$ , $\binom{5}{5}$                                                                    |
| 5   | senior      | low    | yes     | fair          | yes           | $= -\frac{9}{14}\log_2\left(\frac{9}{14}\right) - \frac{5}{14}\log_2\left(\frac{5}{14}\right)$                        |
| 6   | senior      | low    | yes     | excellent     | no            | = 0,940 bits                                                                                                          |
| 7   | middle_aged | low    | yes     | excellent     | yes           |                                                                                                                       |
| 8   | youth       | medium | no      | fair          | no            | $Info_{age}(D) = \frac{5}{14} \times \left( -\frac{2}{5} \log_2 \frac{2}{5} - \frac{3}{5} \log_2 \frac{3}{5} \right)$ |
| 9   | youth       | low    | yes     | fair          | yes           | ,                                                                                                                     |
| 10  | senior      | medium | yes     | fair          | yes           | $+\frac{4}{14} \times \left(-\frac{4}{4} \log_2 \frac{4}{4}\right)$                                                   |
| 11  | youth       | medium | yes     | excellent     | yes           | 14 ( 4 3 4)                                                                                                           |
| 12  | middle_aged | medium | no      | excellent     | yes           | $+\frac{5}{14} \times \left(-\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5}\right)$                      |
| 13  | middle_aged | high   | yes     | fair          | yes           | = 0.694  bits                                                                                                         |
| 14  | senior      | medium | no      | excellent     | no            |                                                                                                                       |

youth: yes = 2, no = 3; middle\_aged: yes = 4, no = 0; senior: yes = 3, no = 2

# Decision Tree – Contoh Penerapan ID3

|     |             |        |         |               |               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|-------------|--------|---------|---------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RID | Age         | Income | Student | Credit_Rating | Buys_Computer |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1   | youth       | high   | no      | fair          | no            | $Info(D) = 0,940 \ bits$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2   | youth       | high   | no      | excellent     | no            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3   | middle_aged | high   | no      | fair          | yes           | $Gain(age) = Info(D) - Info_{age}(D)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4   | senior      | medium | no      | fair          | yes           | = 0.940 - 0.694<br>= 0.246 bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5   | senior      | low    | yes     | fair          | yes           | = 0,240 <i>Dits</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6   | senior      | low    | yes     | excellent     | no            | $Gain(income) = 0.029 \ bits$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7   | middle_aged | low    | yes     | excellent     | yes           | Gain(student) = 0,151 bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8   | youth       | medium | no      | fair          | no            | $Gain(credit\_rating) = 0.048 \ bits$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9   | youth       | low    | yes     | fair          | yes           | Section 1991 In the Property of the Control of the |
| 10  | senior      | medium | yes     | fair          | yes           | → Atribut <i>age</i> terpilih sebagai <i>splitting</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11  | youth       | medium | yes     | excellent     | yes           | <i>criteria</i> & akan ditempatkan pada<br><i>root node</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 12  | middle_aged | medium | no      | excellent     | yes           | 100t Houe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13  | middle_aged | high   | yes     | fair          | yes           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14  | senior      | medium | no      | excellent     | no            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |             |        |         |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

### Decision Tree – Contoh Penerapan ID3





# Tree Pruning

- "Pemangkasan pohon"
- Menggunakan ukuran statistik untuk menghapus cabang yang kurang dapat diandalkan
- Dapat meningkatkan akurasi
- Varian:
  - *Prepruning*: cabang pohon baru dipangkas sejak awal proses pembentukannya
  - Postpruning: menghapus cabang pohon dari pohon yang sudah selesai dibentuk



# Kelebihan & Kekurangan

- Kelebihan:
  - Konsep yang jelas & mudah dipahami
  - Mudah diimplementasikan menggunakan algoritma rekursif
- Kekurangan:
  - Sulit diaplikasikan untuk himpunan data sangat besar dengan jumlah atribut & objek data yang banyak
  - Mudah mengalami *overfit*, karena proses pelatihan *greedy* tidak menjamin dihasilkannya *decision tree* yang optimal

# K Nearest Neighbours (kNN)

- Membandingkan data baru dengan *k* buah *training tuple* yang paling dekat
- Kedekatan antara data baru dengan *training tuple* ditentukan oleh ukuran jarak, seperti jarak Euclidean

$$d(i,j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

- Data baru akan diberikan label sesuai dengan label kelas yang paling banyak yang dimiliki oleh k tetangga terdekatnya
- Termasuk kategori lazy learner, karena tidak ada proses pembuatan model klasifikasi yang digeneralisasi

### K Nearest Neighbours



Kelas untuk data baru:

 $k = 3 \rightarrow \text{kelas} = B$ 

 $k = 7 \rightarrow \text{kelas} = A$ 

Sumber: https://res.cloudinary.com/dyd911kmh/image/upload/f\_auto, q\_auto:best/v1531424125/Knn\_k1\_z96jba.png

### K Nearest Neighbours - Contoh



Data: klik di sini

k = 1:

Titik A → Iris-setosa

Titik B → Iris-versicolor

Titik C → Iris-virginica

*k* = 3:

Titik A → Iris-setosa

Titik B → Iris-versicolor

Titik C → Iris-setosa

k = 7:

Titik A → Iris-setosa

Titik B → Iris-versicolor

Titik C → Iris-versicolor

# Kelebihan & Kekurangan

- Kelebihan:
  - Sangat sederhana
- Kekurangan:
  - Sangat sensitif dengan derau maupun data pencilan
  - "Mahal" secara komputasional, karena harus menyimpan semua data training
  - Harus berhati-hati dalam pemilihan parameter k, karena:
    - k merupakan satu-satunya parameter pada kNN
    - Nilai *k* tidak dapat ditentukan menggunakan rumus, tetapi ditemukan melalui percobaan

# Evaluasi Klasifikasi

Diturunkan dari confusion matrix.

#### Kelas prediksi

| g                 |        | ya | tidak | Jumlah |
|-------------------|--------|----|-------|--------|
| Kelas<br>venarnya | ya     | TP | FN    | Р      |
| $\mathcal{Q}$     | tidak  | FP | TN    | N      |
| se                | Jumlah | P' | N'    | P+ N   |

- True Positive: tuple positif yang diberikan label yang benar
- True Negative: tuple negatif yang diberikan label yang benar
- False Positive: tuple negatif yang diberikan label yang salah, sebagai positif
- False Negative: tuple positif yang diberikan label yang salah, sebagai negatif

### Evaluasi Klasifikasi

### Kelas prediksi

| ıya             |        | ya | tidak | Jumlah |
|-----------------|--------|----|-------|--------|
| Kelas<br>enarny | ya     | TP | FN    | Р      |
| Kel<br>seben    | tidak  | FP | TN    | N      |
|                 | Jumlah | P' | N'    | P+ N   |

• Akurasi = 
$$\frac{TP + TN}{P + N}$$

- Error rate =  $\frac{FP + FN}{P + N}$
- Sensitivity | recall | true positive rate  $= \frac{TP}{P}$
- Specificity I true negative rate =  $\frac{TN}{N}$

• Precision = 
$$\frac{TP}{TP + FP}$$

• F/ F-score = 
$$\frac{2 \times precision \times recall}{precision + recall}$$

# Recap

- Definisi klasifikasi
- Varian metode klasifikasi
- Decision Tree
- K Nearest Neighbours
- Evaluasi klasifikasi

Next: apa perbedaan antara klasifikasi dan clustering?

