Lecture Summary: Limits for Scalar-Valued Multivariable Functions

Source: Limits for Scalar-Valued Multivariable Functions.pdf

Key Points

- Limit of a Sequence in \mathbb{R}^n :
 - A sequence $\{\vec{a}_n\}$ in \mathbb{R}^n converges to $\vec{a}=(a_1,a_2,\ldots,a_n)$ if and only if each coordinate sequence converges:

$$\lim_{n \to \infty} a_{n,i} = a_i, \quad \text{for all } i = 1, 2, \dots, n.$$

- Example:

$$\left\{ \left(\frac{1}{n}, n \sin\left(\frac{1}{n}\right)\right) \right\}$$

converges to (0,1) because $\frac{1}{n} \to 0$ and $n \sin\left(\frac{1}{n}\right) \to 1$.

- Definition of Limit for a Multivariable Function:
 - Let $f:D\subset\mathbb{R}^n\to\mathbb{R}$ be a scalar-valued multivariable function, and $\vec{a}\in\mathbb{R}^n$. Then:

$$\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = L$$

if for every sequence $\{\vec{a}_n\} \subset D$ with $\vec{a}_n \to \vec{a}$, we have $f(\vec{a}_n) \to L$.

- This definition generalizes the notion of a limit from single-variable calculus.
- Examples of Limits:
 - Example 1: For $f(x,y) = x^2 + y^2$, as $(x,y) \to (0,0)$:

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0.$$

– Example 2: For $f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$, as $(x,y) \to (0,0)$:

$$\lim_{(x,y)\to(0,0)} f(x,y) \text{ does not exist,}$$

because the limit depends on the path taken (e.g., along x = y versus x = -y).

- Properties of Limits:
 - Linearity: For $c \in \mathbb{R}$:

$$\lim_{\vec{x} \rightarrow \vec{a}} [cf(\vec{x}) + g(\vec{x})] = c \lim_{\vec{x} \rightarrow \vec{a}} f(\vec{x}) + \lim_{\vec{x} \rightarrow \vec{a}} g(\vec{x}).$$

- Product Rule:

$$\lim_{\vec{x} \to \vec{a}} [f(\vec{x}) \cdot g(\vec{x})] = \lim_{\vec{x} \to \vec{a}} f(\vec{x}) \cdot \lim_{\vec{x} \to \vec{a}} g(\vec{x}).$$

- Quotient Rule: If $\lim_{\vec{x}\to\vec{a}} g(\vec{x}) \neq 0$:

$$\lim_{\vec{x} \to \vec{a}} \frac{f(\vec{x})}{g(\vec{x})} = \frac{\lim_{\vec{x} \to \vec{a}} f(\vec{x})}{\lim_{\vec{x} \to \vec{a}} g(\vec{x})}.$$

- Special Techniques:
 - Substitution: For well-behaved functions, limits can often be computed by direct substitution.
 - Sandwich (Squeeze) Theorem: If $f(\vec{x}) \leq h(\vec{x}) \leq g(\vec{x})$ for all \vec{x} near \vec{a} , and $\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = \lim_{\vec{x} \to \vec{a}} g(\vec{x}) = L$, then $\lim_{\vec{x} \to \vec{a}} h(\vec{x}) = L$.
 - Path Dependence: To check if a limit exists, evaluate along different paths. If the results differ, the limit does not exist.

Simplified Explanation

What Are Limits for Multivariable Functions? Limits describe the behavior of a function $f(\vec{x})$ as \vec{x} approaches a point \vec{a} in \mathbb{R}^n .

How to Compute Limits? Check if the function approaches the same value along all paths leading to \vec{a} . If not, the limit does not exist.

Example: For $f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$, paths x = y and x = -y yield different limits at (0,0), so the limit does not exist.

Conclusion

In this lecture, we:

- Defined limits for scalar-valued multivariable functions.
- Explored techniques for computing and analyzing limits.
- Highlighted examples and the importance of path dependence.

Understanding limits in multivariable calculus is crucial for studying continuity, derivatives, and integrals in higher dimensions.