

Análisis de Señales

Muestreo de Señales de Tiempo Continuo

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP
Director Semillero TRIAC
Ingenieria Electronica
Universidad Popular del Cesar

Muestreo

Justificación

Como una señal de TC toma valores en todos los instantes de tiempo, es imposible almacenar y procesar todo esa cantidad de información.

Por tal motivo, el primer paso en el procesamiento digital de una señal de TC consiste en tomar un conjunto de muestras (**muestreo**).

 T_m : tiempo de muestreo (espacio entre muestras)

 $f_m = 1/T_m$: frecuencia de muestreo

Muestreo (Cont.)

Muestreo ideal

Suponga que se sedea tomar muestras de una señal x(t) cada T_m instantes de tiempo, entonces ser realiza

La señal muestreada es un conjunto de impulsos ubicados en los tiempo de muestreo

$$x_m(t) = \sum_{n=-\infty}^{\infty} x(t)\delta(t - nT_m) = \sum_{n=-\infty}^{\infty} x(nT_m)\delta(t - nT_m)$$

En los tiempos distintos a los de muestreo la señal vale cero! Ing. José Ramón Iglesias. M.Sc.

Muestreo (Cont.)

Efectos del muestreo

Sea x(t) una señal de TC con espectro dado por

Señal de ancho de banda limitado!

La señal es muestreada es obtenida utilizando un tren de impulsos

$$x_m(t) = x(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_m)$$

La transformada de Fourier de la señal muestreada es

$$X_{m}(\Omega) = \Im\left\{x(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_{m})\right\}$$

$$= \frac{1}{2\pi} X(\Omega) * \Im\left\{\sum_{n=-\infty}^{\infty} \delta(t - nT_{m})\right\}$$
Halosias M.S.c.

Ing. José Ramón Iglesias. M.Sc.

Muestreo (Cont.)

$$\begin{split} X_m(\Omega) &= \frac{1}{2\pi} \big[X(\Omega) \big] * \left[\sum_{n=-\infty}^{\infty} \frac{2\pi}{T_m} \, \delta(\Omega - n\Omega_m) \right] \qquad \Omega_m = \frac{2\pi}{T_m} \\ &= \frac{1}{T_m} \sum_{n=-\infty}^{\infty} \big[X(\Omega) * \, \delta(\Omega - n\Omega_m) \big] \\ &= \frac{1}{T_m} \sum_{n=-\infty}^{\infty} X(\Omega - n\Omega_m) \end{split}$$

La TF de la señal muestreada es un conjunto de copias del espectro original, distanciadas Ω_m .

Al muestrear una señal su espectro llega a ser periódico!

Entre más pequeño es el tiempo de muestreo más separadas se encuentran las copias de $X(\Omega)$.

Efectos del muestreo

Ejemplo. Muestreo de la señal $x(t) = \operatorname{sinc}(t)$.

$$T_m = 1 s \implies \Omega_m = 2 \pi$$

$$T_m = \pi s \implies \Omega_m = 2$$

Observe que $x_m(t) = \delta(t)$ por lo cual $X_m(\Omega) = 1$.

Teorema del Muestreo

Para reconstruir la señal de TC se deben eliminar las copias redundantes de $X(\Omega)$ en el espectro $X_m(\Omega)$.

La señal x(t) es perfectamente reconstruida si se tiene un filtro ideal con frecuencia de corte Ω_c ajustado para contener exactamente la copia central de $X(\Omega)$.

El filtro ideal es imposible de obtener en la practica!

Teorema del Muestreo (Cont.)

Si las copias de $X(\Omega)$ se traslapan entre ellas

la señal reconstruida es una versión distorsionada de la señal original.

Para evitar el traslape entre copias se debe garantizar que $\Omega_{\rm g} < \Omega_{\rm m} - \Omega_{\rm g}$, es decir,

$$2\Omega_{\alpha} < \Omega_{m} = \frac{2\pi}{T_{m}}$$

Si la frecuencia en Hz más alta de la señal es $f_a = \Omega_a/2\pi$, entonces se debe cumplir

$$f_m > 2f_a$$
 Tasa de Nyquist

Teorema del Muestreo (Cont.)

Si se cumple la tasa de Nyquist, la señal x(t) puede recostruirse exactamente si se utiliza un sistema con respuesta en frecuencia

$$H(\Omega) = \begin{cases} T_m & \frac{-\Omega_m}{2} < \Omega < \frac{\Omega_m}{2} \\ 0 & \text{otro caso} \end{cases}$$

Con la frecuencia de corte $\Omega_c = \Omega_m/2$ se contiene exactamente la copia central, pues debido a la tasa de Nyquist

$$\Omega_m > 2\Omega_a \implies \Omega_a < \Omega_m/2$$

El sistema que implementa este filtro ideal tiene respuesta impulso

$$h(t) = \Im^{-1} \{ H(\Omega) \} = \operatorname{sinc} \left(\frac{\pi}{T_m} t \right)$$

Sistema inestable y no causal!

Teorema del Muestreo (Cont.)

Ejemplo. La señal $x(t) = \cos(2\pi t)$ se muestrea con

$$T_m = 1/3 s \implies \Omega_m = 6\pi > 2\Omega_{\alpha}$$

Recostrucción correcta!

$$T_m = 1 s$$
 \Rightarrow $\Omega_m = 2\pi < 2\Omega_a$

Traslape entre copias!

La señal reconstruida es x(t) = 1!

Muestreo real

En la practica es imposible generar funciones impulsos, motivo por el cual el muestreo de señales continuas se realiza utilizando circuitos de muestreo y retención (sample and hold).

ZOH ($Zero\ Order\ Hold$): toma una muestra de la señal T_m segundos y la mantiene hasta la siguiente muestra.

Muestreo real (cont.)

Modelamiento de un ZOH

Un ZOH puede modelarse por medio de un sistema muestreo ideal seguido por un SLIT con respuesta impulso un pulso de ancho T_m .

Ing. José Ramón Iglesias. M.Sc.

Muestreo real (cont.)

Como puede recuperarse la señal original a partir de $x_r(t)$?

Idea: utilizar un sistema $h_1(t)$ que junto a $h_0(t)$ forme un filtro pasa bajas ideal.

La respuesta en frecuencia del filtro ideal debe cumplir

$$H(\Omega) = \begin{cases} T_m & -\frac{\Omega_m}{2} < \Omega < \frac{\Omega_m}{2} \\ 0 & \sim \end{cases}$$

$$H(\Omega) = H_0(\Omega)H_1(\Omega)$$

Muestreo real (cont.)

La respuesta en frecuencia del sistema $h_0(t)$ es

$$H_0(\Omega) = T_m \operatorname{sinc}\left(\frac{T_m \Omega}{2}\right) e^{-j\Omega \frac{T_m}{2}}$$

Por tal motivo, el sistema $h_{\rm i}(t)$ debe tener respuesta en frecuencia

$$H_{1}(\Omega) = \frac{e^{j\Omega \frac{T_{m}}{2}}H(\Omega)}{T_{m}\operatorname{sinc}\left(\frac{T_{m}\Omega}{2}\right)}$$

