IN THE CLAIMS:

1 (Original) A manufacturing method for a plasma display panel by which 2 electrodes are formed on a surface of a substrate in a first process and a dielectric glass layer is 3 formed on the electrodes in a second process, the second process comprising: 4 a grinding step for grinding a dielectric glass material; 5 a spheroidizing step for converting each particle of the ground dielectric glass 6 material into a spheroidal form; 7 an applying step for applying a mixture of the spheroidal dielectric glass particles 8 and a binder, as a layer, to the surface of the substrate on which the electrodes are formed; and 9 a firing step for firing the layer to remove the binder from the layer, thereby 10 forming a dielectric glass layer. 1 2. (Original) The manufacturing method of Claim 1, 2 wherein the spheroidizing step is performed by melting the surface of particles of 3 the ground dielectric glass material. 1 3. (Original) The manufacturing method of Claim 2, 2 wherein the melting is performed by putting the particles of the ground dielectric 3 glass material into a plasma jet. 1 4. (Original) The manufacturing method of Claim 2, 2 wherein the melting is performed by exposing the particles of the ground 3 dielectric glass material to an atmosphere at a temperature no higher than the softening point of

the particles.

4

1	5.	(Original) The manufacturing method of Claim 1,
2		wherein the spheroidizing step is performed by having the particles of the glass
3	material collid	de with one another in high-speed gas flows.
1	6.	(Original) The manufacturing method of Claim 1,
2		wherein the second process further comprises a step of classifying the glass
3	particles, whi	ch is performed between the spheroidizing step and the applying step, so that a
4	maximum dia	meter of the spheroidal particles of the dielectric glass material does not exceed a
5	half thickness	of the dielectric glass layer after the firing step.
1	7.	(Original) The manufacturing method of Claim 1,
2		wherein the applying step is performed by placing a dielectric glass sheet on the
3	surface of the	substrate, the dielectric glass sheet being obtained by mixing the spheroidal glass
4	particles with	a thermoplastic resin.
1	8-14.	(Cancelled)
1	15.	(New) The manufacturing method of Claim 1, wherein
2		in the firing step, the firing is performed at a temperature in a range of 550°C to
3	590°C.	
1	16.	(New) The manufacturing method of Claim 2, wherein
2		in the spheroidizing step, the spheroidizing is performed until a surface of more
3	than 90 weigh	t percent of the ground dielectric glass material is melted.

1 17. (New) A manufacturing method for a plasma display panel by which electrodes 2 are formed on a surface of a substrate in a first process and a dielectric glass layer of a predetermined thickness is formed on the electrodes in a second process, the second process 3 4 comprising: a grinding step for grinding a dielectric glass material selected from a group 5 6 consisting of PbO-B₂O₃-SiO₂-CaO; PbO-B₂O₃-SiO₂-MgO; PbO-B₂O₃-SiO₂-BaO; 7 PbO-B₂O₃-SiO₂-MgO-Al₂O₃; PbO-B₂O₃-SiO₂-BaO-Al₂O₃; PbO-B₂O₃-SiO₂-CaO-Al₂O₃; 8 Nb₂O₅-ZnO-B₂O₃-SiO₂-CaO; $ZnO-B_2O_3-SiO_2-Al_2O_3-CaO$; P_2O_5 -ZnO-Al₂O₃-CaO; and 9 a spheroidizing step for converting the ground dielectric glass material into 10 spheroidal particles; 11 a selecting step for selecting a maximum diameter of the spheroidal particles to 12 not exceed one half the thickness of the predetermined dielectric glass layer; 13 an applying step for applying a mixture of the selected spheroidal particles and a 14 binder, as a layer, to the surface of the substrate on which the electrodes are formed; and 15 a firing step for firing the layer to uniformly remove the binder from the layer, 16 thereby forming a dielectric glass layer of the predetermined thickness. 1 18. (New) The manufacturing method of Claim 17, 2 wherein the spheroidizing step is performed by melting the surface of more than 3 90 weight percent of the glass particles of the ground dielectric glass material.

- 1 19. (New) The manufacturing method of Claim 18,
- wherein the melting is performed by putting the particles of the ground dielectric
- 3 glass material into a plasma jet having a discharge gas of 10 L/minute and a plasma current of
- 4 300A.
- 1 20. (New) The manufacturing method of Claim 19, wherein a firing step temperature
- 2 is set to enable the binder to burn out before the glass particles reach the softening point to
- 3 suppress the number of bubbles in the dielectric glass layer.