LAST TIME:

PID CONTRUL: Proportional - Integral - Derivative

- most common Controller form
 - standard to which other control cans one compand
 - Developed neuristically-prior to control theory

Proportional: u(t) = Kpe(t) > O(s) = Kp Effect & error (sprana) Integral: U(x) = K, Se (1) dt > O(s) = K Exect & Sever for can make to worse of a much

Desimilie: u(1) = Kd de (4) > D(5) = KoS Effect of de error (OHMPER)

TYPE	TRANSFER FUNCTION	commonly used in systems
P	Кр	1st & 2nd order
PI	Kpt K1 = KpS+ K1	1st 4 some 2nd order
PD	Kp + Kds	2nd order
PID	Kp + 5 + KdS = Kd52 + KpS + K1	2nd order
	, ,	

1 order system: Plocantrol:

The surger (mpt)
$$\overline{t} : \overline{t} + \overline{t} = \overline{t} + \overline{t} = \overline{t}$$

netorence (desired) velocity

$$D(s) = Kp$$

$$\frac{D(s)}{D_{r}(s)} = \frac{Kp \left(\frac{1}{5s+c}\right)}{1 + \frac{Kp}{15s+c}} = \frac{Kp}{15s+c+kp}$$

$$\frac{D(s)}{D_{r}(s)} = \frac{D(s)}{D_{r}(s)}$$

$$\frac{D(s)}{D_{r}(s)} = \frac{Lp}{D_{r}(s)}$$

$$\frac{D(s)}{D_{r$$

eys up a proportional control speeds up

LOOK at Error:

$$\frac{E(5)}{Rr(5)} = \frac{1}{1 + \frac{\kappa \rho}{I + s + c}} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$E(5) = I + \frac{\kappa \rho}{I + s + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$E(5) = I + \frac{\kappa \rho}{I + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{\kappa \rho}{I + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{\kappa \rho}{I + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{\kappa \rho}{I + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{\kappa \rho}{I + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{\kappa \rho}{I + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{\kappa \rho}{I + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{\kappa \rho}{I + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{\kappa \rho}{I + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{\kappa \rho}{I + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{\kappa \rho}{I + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{\kappa \rho}{I + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{\kappa \rho}{I + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{\kappa \rho}{I + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{\kappa \rho}{I + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{\kappa \rho}{I + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{\kappa \rho}{I + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{I + c}{I + c} = \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{I + c}{I + c} = \frac{I + c}{I + c}$$

$$= I + \frac{I + c}{I + c} = \frac{I$$

FIND DISTURBANCE RETECTION!

$$\frac{E(6)}{\Gamma_{\delta}(6)} = \frac{\frac{1}{\Gamma_{\delta}+C}}{\frac{1}{\Gamma_{\delta}+C}} = \frac{1}{\Gamma_{\delta}+C+Kp}$$

e.g.
$$T_d = I(I)$$
 $E(\infty) = \lim_{S \to 0} \left[\frac{1}{S}, \frac{1}{IS+C+Fp}, \frac{1}{S} \right]$
 $E(\infty) = \lim_{F \to C} \frac{1}{F} = \lim_{S \to C} \frac{1}{IS+C+Fp} = \lim_{S \to C} \frac{1}{IS$

(vibrations from sors or noise,