

Predicting house value using machine learning regression analysis

author: bhavesh patel

credit: GraphLab

some definitions.

rmse = root mean squared error. This is used to identify errors and compare different models. rss = residual sum of squares is an error metric for regression.

These are two common measures of error regression, and RMSE is simply the square root of the mean RSS:

rmse = square root of (rss/n) where n=number of data points.

Predicting house value with regression analysis.

```
In [2]: import graphlab
In [3]: # Limit number of worker processes. This preserves system memory, which prevents hosted notebooks from crashing.
    graphlab.set_runtime_config('GRAPHLAB_DEFAULT_NUM_PYLAMBDA_WORKERS', 4)
    [INFO] graphlab.cython.cy_server: GraphLab Create v2.1 started. Logging: /tmp/graphlab_server_1479486745.log
    This non-commercial license of GraphLab Create for academic use is assigned to bhaveshhk8@gmail.com and will expire o
    n October 17, 2017.
In [4]: # load data.
    homesales = graphlab.SFrame('home_data.gl')
```

In [5]: homesales

Out[5]:

			-					_
6414100192	2014-12-09 00:00:00+00:00	538000	3	2.25	2570	7242	2	0
5631500400	2015-02-25 00:00:00+00:00	180000	2	1	770	10000	1	0
2487200875	2014-12-09 00:00:00+00:00	604000	4	3	1960	5000	1	0
1954400510	2015-02-18 00:00:00+00:00	510000	3	2	1680	8080	1	0
7237550310	2014-05-12 00:00:00+00:00	1225000	4	4.5	5420	101930	1	0
1321400060	2014-06-27 00:00:00+00:00	257500	3	2.25	1715	6819	2	0
2008000270	2015-01-15 00:00:00+00:00	291850	3	1.5	1060	9711	1	0
2414600126	2015-04-15 00:00:00+00:00	229500	3	1	1780	7470	1	0
3793500160	2015-03-12 00:00:00+00:00	323000	3	2.5	1890	6560	2	0

view	condition	grade	sqft_above	sqft_basement	yr_built	yr_renovated	zipcode	lat
0	3	7	1180	0	1955	0	98178	47.51123398
0	3	7	2170	400	1951	1991	98125	47.72102274
0	3	6	770	0	1933	0	98028	47.73792661
0	5	7	1050	910	1965	0	98136	47.52082
0	3	8	1680	0	1987	0	98074	47.61681228
0	3	11	3890	1530	2001	0	98053	47.65611835
0	3	7	1715	0	1995	0	98003	47.30972002
0	3	7	1060	0	1963	0	98198	47.40949984
0	3	7	1050	730	1960	0	98146	47.51229381
0	3	7	1890	0	2003	0	98038	47.36840673

long	sqft_living15	sqft_lot15		
-122.25677536	1340.0	5650.0		
-122.3188624	1690.0	7639.0		
-122.23319601	2720.0	8062.0		

-122.39318505	1360.0	5000.0
-122.04490059	1800.0	7503.0
-122.00528655	4760.0	101930.0
-122.32704857	2238.0	6819.0
-122.31457273	1650.0	9711.0
-122.33659507	1780.0	8113.0
-122.0308176	2390.0	7570.0

[21613 rows x 21 columns]

Note: Only the head of the SFrame is printed.

You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.

```
In [6]: # show graphis here, not a pop up window.
graphlab.canvas.set_target('ipynb')
```

```
In [7]: # there are total 21K+ rows. Let's view the data.
homesales.show(view="Scatter Plot", x="sqft_living", y="price")
```


Let's create regression model for prediction.

```
In [8]: # first get training data set and test data set. 80% training data, 20% test data.
         train data, test data = homesales.random split(0.8, seed=0)
In [9]: # build regression model with one variable for sq ft and store the results.
         sqft model = graphlab.linear regression.create(train data, target='price', features=['sqft living'], validation set=None
         Linear regression:
         Number of examples
                                    : 17384
         Number of features
                                    : 1
         Number of unpacked features: 1
         Number of coefficients
         Starting Newton Method
         | Iteration | Passes | Elapsed Time | Training-max_error | Training-rmse |
         | 1
                                1.014617
                                              4349521.926170
                                                                 262943.613754
In [10]: # let's perform some functions.
         print test_data['price'].mean()
         SUCCESS: Optimal solution found.
```

```
543054.042563
In [11]: print sqft_model.evaluate(test_data)
         {'max_error': 4143550.8825285938, 'rmse': 255191.02870527358}
In [12]: print train_data['price'].mean()
         539366.628221
In [13]: print sqft_model.evaluate(train_data)
         {'max_error': 4349521.9261700595, 'rmse': 262943.6137536495}
In [14]: sqft_model.get('coefficients')
Out[14]:
            name
                      index
                                  value
                                                  stderr
                              -47114.0206702
           (intercept)
                                              4923.34437753
                      None
                              281.957850166
                                              2.16405465323
           sqft_living
                      None
         [2 rows x 4 columns]
```

In [15]: sqft_model.show()

Number of coefficients	2
Number of examples	17384
Number of feature columns	1
Number of unpacked features	1
Hyperparameters	
Hyperparameters L1 penalty	(

Training Summary	_
Solver	newton
Solver iterations	1
Solver status	SUCCESS: Optimal solution found.
Training time (sec)	1.0201
	•
Settings	
Residual sum of squares	1201918356336392
Training RMSE	262943.6138

Highest Positive Coefficients

sqft_living 281.958

Lowest Negative Coefficients

(intercept) -47,114.021

Explore more attributes in linear regression.

zip code 98039 has most expensive houses.

```
In [17]: my_features = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'zipcode']
In [18]: homesales[my_features].show()
```

bedrooms bathro		bathrooms		sqft_living		S	sqft_lot		floors	
dtype:	str	dtype:	str	dtype:	int	6	dtype:	int	dtype:	S
num_unique (est.):	13	num_unique (est.):	30	num_unique	1,036	n	num_unique	9,747	num_unique (est.):	6
num_undefined:	0	num_undefined:	0	(est.):		(est.):	o,	num_undefined:	0	
				num_undefined:	0	n	num_undefined:	0		
frequent items:		frequent items:		min:	290	n	min:	520	frequent items:	
3		2.5		max:	13,540	n	max:	1,651,359	1	
4		1		median:	1,910	n	median:	7,617	2	
2		1.75		mean:	2,079.9	n	mean:	15,106.968	1.5	
5		2.25		std:	918.42	s	std:	41,419.553	3	
6 2						listelle etises of early		2.5		
1		1.5	15		distribution of values:		listribution of valu	ies:	3.5	

-	1		1.0		J.J
	7		2.75		
	0		3		
	8		3.5		
	9		3.25		
	10		3.75	•	
	11		4		
		Ι,			

now let's build another regression model with more attributes.

```
In [19]: more_attribute_model=graphlab.linear_regression.create(train_data, target='price', features=my_features,validation_set=No
        Linear regression:
        Number of examples
                            : 17384
        Number of features
                            : 6
        Number of unpacked features : 6
        Number of coefficients
        Starting Newton Method
        | Iteration | Passes | Elapsed Time | Training-max_error | Training-rmse |
                            0.041900 | 3763208.270523 | 181908.848367 |
        SUCCESS: Optimal solution found.
```

```
In [20]: # now let's compare the two model.
         print sqft_model.evaluate(test_data)
         print more attribute model.evaluate(test data)
         {'max_error': 4143550.8825285938, 'rmse': 255191.02870527358}
         {'max_error': 3486584.509381705, 'rmse': 179542.4333126903}
In [21]: # with more attributes, we can see that error have reduced and RMSE has reduced too.
         # That's good and bad. We will see some overfitting in predicting house value.
In [22]: # let's get matplotlib to plot the regression analysis.
         import matplotlib.pyplot as plt
         %matplotlib inline
         plt.plot(test_data['sqft_living'],test_data['price'],'.',
                 test data['sqft living'], sqft model.predict(test data), '-')
Out[22]: [<matplotlib.lines.Line2D at 0x11c822750>,
          <matplotlib.lines.Line2D at 0x11c822810>]
          7000000
          6000000
          5000000
          4000000
          3000000
          2000000
          1000000
                           2000
                                       4000
                                                  6000
                                                            8000
                                                                       10000
In [23]: #Ok now let's build the model with second regression we built with more attributes.
         plt.plot(test_data['sqft_living'],test_data['price'],'.',
```

```
test_data['sqft_living'],more_attribute_model.predict(test_data),'-')
Out[23]: [<matplotlib.lines.Line2D at 0x11cb522d0>,
          <matplotlib.lines.Line2D at 0x11cb52390>]
          7000000
          6000000
          5000000
          4000000
          3000000
          2000000
          1000000
                           2000
                                      4000
                                                6000
                                                           8000
                                                                      10000
```

In [30]: # now let's get one of the house id and try to predict the value of that house using both the regression models.
we needt to get the object for one of the house. Let's pick the first house in the data, which has id
of 7129300520.

housel=homesales[homesales['id']=='7129300520']

In [31]: housel

Out[31]:

id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront
7129300520	2014-10-13 00:00:00+00:00	221900	3	1	1180	5650	1	0

view	condition	grade	sqft_above	sqft_basement	yr_built	yr_renovated	zipcode	lat
0	3	7	1180	0	1955	0	98178	47.51123398

long	sqft_living15	sqft_lot15
100 0000000	10100	5050.0

-122.25677536 1340.0 5650.0

[? rows x 21 columns]

Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.

You can use sf.materialize() to force materialization.

```
In [32]: # now let's use this object and call our regression analysis model to predict house price.
```

print sqft_model.predict(housel)
print more_attribute_model.predict(housel)

[285596.24252564885] [211196.3344448047]

In []: # ok. So actual house value is \$221,900. Our SQFT model predicted house value of \$285,596 while our more attribute # model predicted house value of \$211,196. So we can say that more attribute value is showing us correct results. # Well, its art with science. It is not always true. See below example for other way round.

In [33]: # now let's pick another house: 5309101200

house2 = homesales[homesales['id']=='5309101200']
house2

Out[33]:

id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront
5309101200	2014-06-05 00:00:00+00:00	620000	4	2.25	2400	5350	1.5	0

view	condition	grade	sqft_above	sqft_basement	yr_built	yr_renovated	zipcode	lat
0	4	7	1460	940	1929	0	98117	47.67632376

long	sqft_living15	sqft_lot15
-122.37010126	1250.0	4880.0

[? rows x 21 columns]

Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.

You can use sf.materialize() to force materialization.

In [34]: # now let's predict values for this house.

print sqft_model.predict(house2)
print more_attribute_model.predict(house2)

In [35]: # In this case, actual house value is: \$620,000. SQFT model predicted \$629,584 while additional attribute model # predicted \$721,918. Really bad!

In [38]: # now let's select the house with zip code

housesHighValueZip=homesales[homesales['zipcode']=='98039'] housesHighValueZip

Out[38]:

Ī								_	-
	2540700110	2015-02-12 00:00:00+00:00	1905000	4	3.5	4210	18564	2	0
	3262300940	2014-11-07 00:00:00+00:00	875000	3	1	1220	8119	1	0
	3262300940	2015-02-10 00:00:00+00:00	940000	3	1	1220	8119	1	0
	6447300265	2014-10-14 00:00:00+00:00	4000000	4	5.5	7080	16573	2	0
	2470100110	2014-08-04 00:00:00+00:00	5570000	5	5.75	9200	35069	2	0
	2210500019	2015-03-24 00:00:00+00:00	937500	3	1	1320	8500	1	0
	6447300345	2015-04-06 00:00:00+00:00	1160000	4	3	2680	15438	2	0
	6447300225	2014-11-06 00:00:00+00:00	1880000	3	2.75	2620	17919	1	0
	2525049148	2014-10-07 00:00:00+00:00	3418800	5	5	5450	20412	2	0

view	condition	grade	sqft_above	sqft_basement	yr_built	yr_renovated	zipcode	lat
0	3	12	4860	0	1996	0	98039	47.61717049
0	3	11	4210	0	2001	0	98039	47.62060082
0	4	7	1220	0	1955	0	98039	47.63281908
0	4	7	1220	0	1955	0	98039	47.63281908
0	3	12	5760	1320	2008	0	98039	47.61512031
0	3	13	6200	3000	2001	0	98039	47.62888314
0	4	7	1320	0	1954	0	98039	47.61872888
2	3	8	2680	0	1902	1956	98039	47.61089438
1	4	9	2620	0	1949	0	98039	47.61435052
0	3	11	5450	0	2014	0	98039	47.62087993

0 | 0 | 11 | 0.000 | 0.0000 | 11.00001000

long	sqft_living15	sqft_lot15
-122.23040939	3580.0	16054.0
-122.2245047	3520.0	18564.0
-122.23554392	1910.0	8119.0
-122.23554392	1910.0	8119.0
-122.22420058	3140.0	15996.0
-122.23346379	3560.0	24345.0
-122.22643371	2790.0	10800.0
-122.22582388	4480.0	14406.0
-122.22772057	3400.0	14400.0
-122.23726918	3160.0	17825.0

[? rows x 21 columns]

Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.

You can use sf.materialize() to force materialization.

```
In [43]: # what's average price for the zip?
print housesHighValueZip['price'].mean()
```

2160606.6

```
In [47]: # SFrame filtering.
#select the houses that have 'sqft_living' higher than 2000 sqft but no larger than 4000 sqft.
houseFilter1 = homesales[(homesales['sqft_living'] > 2000) & (homesales['sqft_living'] <= 4000)]
houseFilter1</pre>
```

Out[47]:

- · · · · · · - · · · -			_				_	-
1736800520	2015-04-03 00:00:00+00:00	662500	3	2.5	3560	9796	1	0
9297300055	2015-01-24 00:00:00+00:00	650000	4	3	2950	5000	2	0
2524049179	2014-08-26 00:00:00+00:00	2000000	3	2.75	3050	44867	1	0
7137970340	2014-07-03 00:00:00+00:00	285000	5	2.5	2270	6300	2	0

3814700200	2014-11-20 00:00:00+00:00	329000	3	2.25	2450	6500	2	0
1794500383	2014-06-26 00:00:00+00:00	937000	3	1.75	2450	2691	2	0
1873100390	2015-03-02 00:00:00+00:00	719000	4	2.5	2570	7173	2	0
8562750320	2014-11-10 00:00:00+00:00	580500	3	2.5	2320	3980	2	0
0461000390	2014-06-24 00:00:00+00:00	687500	4	1.75	2330	5000	1.5	0

view	condition	grade	sqft_above	sqft_basement	yr_built	yr_renovated	zipcode	lat
0	3	7	2170	400	1951	1991	98125	47.72102274
0	3	8	1860	1700	1965	0	98007	47.60065993
3	3	9	1980	970	1979	0	98126	47.57136955
4	3	9	2330	720	1968	0	98040	47.53164379
0	3	8	2270	0	1995	0	98092	47.32658071
0	4	8	2450	0	1985	0	98030	47.37386303
0	3	8	1750	700	1915	0	98119	47.63855772
0	3	8	2570	0	2005	0	98052	47.70732168
0	3	8	2320	0	2003	0	98027	47.5391103
0	4	7	1510	820	1929	0	98117	47.68228235

long	sqft_living15	sqft_lot15
-122.3188624	1690.0	7639.0
-122.14529566	2210.0	8925.0
-122.37541218	2140.0	4000.0
-122.23345881	4110.0	20336.0
-122.16892624	2240.0	7005.0
-122.17228981	2200.0	6865.0
-122.35985573	1760.0	3573.0
-122.11029785	2630.0	6026.0
-122.06971484	2580.0	3980.0

122.36760203	1460.0	5000.0
--------------	--------	--------

[? rows x 21 columns]

Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.

You can use sf.materialize() to force materialization.

In [48]: houseFilter1.show()

id		date		price	price			bedrooms		
dtype:	str	dtype:	datetime	dtype:	int		dtype:	str	dtype:	
num_unique (est.):	9,071	num_unique	353	num_unique	2,415		num_unique (est.):	12	num_unique (est.):	
num_undefined:	0	(est.):		(est.):	_,		num_undefined:	0	num_undefined:	
requent items:		num_undefined:	0	num_undefined:	0		frequent items:		frequent items:	
		frequent items:		min:	194,250					
5332200530		2014-06-26 00:0	00.00+	max:	3,100,000		4		2.5	
9250900104				median:	598,500		3		2.25	
1254200015		2014-07-08 00:00:00+		mean:	653,299.737		5		2.75	
1522059120		2014-07-29 00:00:00+		std:	312,808.223		6		1.75	
1561930020		2014-06-20 00:00:00+					2		3	
1568100300		2015-04-21 00:00:00+		distribution of values:			7		2	
1630700361		2015-03-25 00:0	2015-03-25 00:00:00+		•		8		3.5	
1823059205		2014-07-01 00:0	0:00+				1		3.25	
1825069031		2014-08-27 00:0	0:00+				9		1.5	
1954420170		2014-06-23 00:0	0:00+				0		1	
1974300020		2015-04-23 00:0	0:00+				10		3.75	
2143700830		2015-04-27 00:00:00+					11	4		
		2014-08-26 00:0	0:00+							

```
In [52]: # alright, now to regression model 3, where we use lot more features.
even_more_features = [
```

```
'condition', # condition of house
     'grade', # measure of quality of construction
     'lat', 'long', # the lat-long of the parcel
     'sqft lot15', # average lot size of 15 nearest neighbors
In [53]: # build regression model using these features.
     # more attribute model=graphlab.linear regression.create(train data, target='price', features=my features,validation se
     even more att model=graphlab.linear regression.create(train data, target='price', features=even more features, validation
     Linear regression:
     Number of examples : 17384
     Number of features
                     : 18
     Number of unpacked features: 18
     Number of coefficients : 127
     Starting Newton Method
     +-----+----+-----+
     | Iteration | Passes | Elapsed Time | Training-max error | Training-rmse |
     +----+
     1
          | 2
                  0.071567 | 3469012.450686 | 154580.940736 |
     +----+
     SUCCESS: Optimal solution found.
```

'bedrooms', 'bathrooms', 'sqft living', 'sqft lot', 'floors', 'zipcode',

```
In [60]: # now let's get RMSE value for all three models we built.

print sqft_model.evaluate(test_data)
print more_attribute_model.evaluate(test_data)
print even_more_att_model.evaluate(test_data)

{'max_error': 4143550.8825285938, 'rmse': 255191.02870527358}
{'max_error': 3486584.509381705, 'rmse': 179542.4333126903}
{'max_error': 3556849.413858208, 'rmse': 156831.1168021901}
```