

Исследование операций Векторные операции

Доцент каф. АСУ: Суханов А.Я.

Теория

$$\frac{dz}{dV} = 0$$

Для прямой RQ

$$z = 26V^2 - 296V + 848$$

$$V = 5\frac{9}{13}$$

$$U = 11\frac{7}{13}$$

Очевидно что ближайшая точка для обоих прямых лежит за пределами области допустимых значений

Для прямой RS

$$3U+V=36$$

$$V = 36 - 3U$$

$$z = (U - 12)^2 - (28 - 3U)^2$$

$$z = 10U^2 - 192U + 928$$

$$U=9\frac{3}{5}$$

$$V = 7\frac{1}{5}$$

Теория

Строим окружность в точке утопии, очевидно ближайшая точка в R на пересечении RS и RQ

Расстояние от М до R

$$2\sqrt{2}$$

$$U = 5x - y + 2$$
$$V = -x + 3y + 2$$

Решаем систему для точки R(10,6)

$$\begin{cases} 5x - y + 2 = 10 \\ -x + 3y + 2 = 6 \end{cases}$$

Находим

$$x*=2$$
 и $y*=2$.

Нормализация критериев

$$\overrightarrow{W}^{W} = (W_1^S, W_2^H, \dots, W_n^H)$$
$$W_i^h > 0, i = \overline{1, n}$$

$$\vec{W}^H = (\frac{W_1}{W_1^H}, \frac{W_2}{W_2^H}, \dots, \frac{W_n}{W_n^H})$$

$$\overrightarrow{W}^W = \overrightarrow{W}^3 = (W_1^3, W_2^3, ..., W_n^3)$$

Нормализация на основе введения вектора идеального качества операции

Случай когда идеальный вектор качества задается заранее

В качестве идеального вектора может приниматься такой, компонентами которого являются максимумы локальных критериев

$$\overrightarrow{W}^{u} = (\max W_{1}, \max W_{2}, ..., \max W_{n})$$

$$W_{1} \in \Omega_{W}^{K} \quad W_{2} \in \Omega_{W}^{K} \quad W_{n} \in \Omega_{W}^{K}$$

Задание приоритетов критериев два способа

1) Вектор приоритета I=(i1, i2, ..., in), оптимизация по порядку начиная с наиболее важного критерия

2) Вектор весовых коэффициентов

$$\vec{A} = (\alpha_1, \alpha_2, ..., \alpha_n)$$

Обычно

$$0 \le \alpha_i \le 1, \ i = \overline{1, \ n},$$

$$\sum_{i=1}^{n} \alpha_i = 1$$

оптимизируется

$$\vec{W}' = (\alpha_1 W_1, \alpha_2 W_2, ..., \alpha_n W_n)$$

Свертка критериев векторной операции (тоже один из способов поиска компромиссов)

Поиск обобщения критериев векторной операции в один обобщенный называется сверткой, обобщенный критерий выражается в виде функции от частных критериев

$$W_{\Sigma} = F(W_1, W_2, ..., W_n)$$

Частные критерии могут быть как количественными, так и качественными, обычно качественные критерии выражаются как 0 или 1, например, 0 — цель не достигнута, 1 — достигнута.

Пример: Победа в соревновании

1 – победил

0 – проиграл

Количественные выражают оценку критерия выраженную числом: Примеры: Доход фирмы в рублях, Скорость ракеты в км в секунду, Время работы механизма в часах

Теорема. Пусть каждый из критериев $g^1, ..., g^m$ принимает лишь два значения 0 и 1, а $F:\{0,1\}^m \to \{0,1\}$ — произвольная функция. Тогда критерий g, определенный условием $g(u)=F(g^1(u),...,g^m(u))$, может быть выражен через следующие элементарные операции:

- 1. конъюнкция: $g^1,...,g^m \to \prod_{i=1}^m g^i$;
- 2. дизьюнкция: $g^1, ..., g^m \to 1 \prod_{i=1}^m (1 g^i)$;
- 3. отрицание: $g^i \rightarrow 1-g^i$.

Пример. На референдуме о сохранении Союза советских социалистических республик гражданам предлагалось ответить на четыре вопроса. Власти предлагали своим сторонникам ответить «да,да,нет,да». Таким образом, есть, четыре вспомогательных качественных критерия g^i (ответ на i-ый вопрос). Если общая цель g состоит в лояльности власти, то она выражается через частные с помощью свертки $g = g^1 g^2 (1 - g^3) g^4$.

Теорема. Пусть каждый из критериев $g^1,...,g^m$ принимает лишь конечное число значений, а $F: \mathbb{R}^m \to \mathbb{R}$ — произвольная функция. Тогда критерий g, определенный условием $g(u) = F(g^1(u),...,g^m(u))$, может быть выражен через следующие элементарные операции:

- 1. экономическая свертка: $g^1, ..., g^m \to \sum_{i=1}^m \lambda_i g^i$;
- 2. разбиение на удовлетворительные и неудовлетворительные:

$$g^i o \begin{cases} 1, \text{ если } g^i \ge \gamma^i, \\ 0 \text{ в противном случае;} \end{cases}$$

- 3. конъюнкция: $g^1,...,g^m \to \prod_{i=1}^m g^i$;
- 4. дизъюнкция: $g^1, ..., g^m \to 1 \prod_{i=1}^m (1 g^i)$;
- 5. отрицание: $g^i \rightarrow 1-g^i$.

Экономический способ свертки. Свертка частных критериев $g^1,...,g^m$ представляет собой взвешенную сумму $\sum_{i=1}^m \lambda_i g^i$.

В экономических моделях данный способ свертки часто используется при агрегировании абсолютно взаимозаменяемых продуктов.

• «Слон больше серый, чем ушастый, потому, что ушастый он только местами, а серый – везде»

Пример. Предприятие выпускает m видов продукции. Критерии $g^1, ..., g^m$ выражают количества продукции каждого из видов, выпущенных предприятием. Доходы предприятия от реализации продукции выражаются сверткой $\sum_{i=1}^m \lambda_i g^i$. Коэффициенты свертки в этом случае имеют смысл цен.

 λ_i могут иметь различный смысл: определяют относительную важность каждого из частных критериев; могут быть нормирующими множителями, если частные критерии имеют различный масштаб измерения. Обычно применяется, если все частные критерии количественные. Если же некоторые критерии являются качественными и необходимо, чтобы соответствующие им цели обязательно достигались, то достаточно положить соответствующий критерий минус бесконечности в случае неуспеха и 1 в случае успеха. При данном способе свертки критериев могут возникать трудности, связанные с обоснованным выбором параметров λi . Необходимо отметить, что данному способу свертки соответствует принцип компромисса, который называется принципом справедливой абсолютной уступки.

Пример. Рассмотрим деятельность фирмы за m лет. Критерии $g^1, ..., g^m$ выражают прибыль фирмы в соответствующие годы. Свертка $\sum_{i=1}^m \lambda_i g^i$ оценивает суммарную прибыль

за весь период. Числа $\lambda_1, \dots \lambda_m$ в этом случае имеют смысл коэффициентов дисконтирования.

Пример. В классической биатлонной гонке имеется два критерия: количество промахов g^1 и время прохождения дистанции g^2 . Результат спортсмена оценивается по линейной свертке $60\frac{\text{секунд}}{\text{промах}}g^1+1\cdot g^2$ (если время измерять в секундах).

Производственное объединение состоит из n однотипных предприятии. Деятельность каждого предприятия характеризуется величиной прибыли g_i Деятельность объединения характеризуется величиной суммарной прибыли

здесь обобщенный критерий получен при $\;\lambda_{i}$ =1

Разбиение на удовлетворительные и неудовлетворительные. Пусть имеется количественный критерий g и число γ Свертка задает качественный критерий

$$h = \begin{cases} 1, \ \text{если } g \geq \gamma, \\ 0 \ \text{в противном случае}. \end{cases}$$

Пример. Знания студента на экзамене оценивается количественным критерием g, принимающим значения от двух до пяти. Качественная цель сдать экзамен описывается критерием

$$h = \begin{cases} 1, & \text{если } g \geq 3, \\ 0 & \text{в противном случае.} \end{cases}$$

Пример. При выборе работы люди часто ориентируются на два критерия: размер заработной платы и удовлетворение от работы. Во многих случаях нет стремления к максимизации заработной платы, гораздо важнее, чтобы она обеспечивала приемлемый уровень жизни. Например, не секрет, что в пред перестроечные годы уровень реальных доходов работников торговли заметно превышал аналогичный показатель у врачей, учителей и инженеров, однако заметного перетока кадров в торговлю не наблюдалось. Когда в годы реформ уровень жизни бюджетников заметно упал, многие из них занялись розничной торговлей, чтобы обеспечить себе приемлемый уровень жизни. Пример. В одной из телевизионных программ 28.11.07 был сформулирован следующий тезис: «Женщина должна стремиться к тому, чтобы объем талии не превышал объем бедер». Здесь налицо подмена двух количественных критериев (объем талии и объем бедер) одним качественным.

Деятельность промышленного предприятия оценивается

векторным критерием эффективности, компоненты которого определяют следующее:

W1 - количество выпускаемой продукции;

W2 - уровень реализации продукции;

W3 - уровень производительности труда.

$$g = egin{cases} 1, g_1 > W^{1*} \ g_2 > W^{2*} \ g_3 > W^{3*} \ 0,$$
иначе

Лексикографическая свертка. Пусть даны критерии $g^1,...,g^m$, ранжированные в порядке возрастания номеров. Сначала находятся все точки максимума критерия g^1 , из них выбираются те, которые доставляют максимум критерию g^2 и так далее. Наконец, из уже отобранных выбираются те, которые обеспечивают максимум критерия g^m . Выбранные на последнем этапе стратегии называются точками лексикографического максимума. — С. Г. Слободяник. Дискретные положительные гармонические функции. Математическое просвещение, сер. 3. Вып. 11. С. 145-148. Пример. При формировании структуры государственных расходов наиболее важными являются расходы на государственных служащих, затем идут затраты на оборону, содержание силовых структур и так далее. В конце списка обычно оказываются сельское хозяйство и культура. Примерно так на практике формируется расходная часть государственного бюджета.

Обычно применяется когда частный критерий при максимизации(минимизации) дает при нескольких стратегиях одно и то же значение максимума или минимума

Дизъюнкция. Пусть есть m качественных критериев $g^1, ..., g^m$. Цель, состоящая в достижении, по крайней мере, одной из частных целей описывается критерием

$$g = 1 - \prod_{i=1}^{m} (1 - g^{i}).$$

Пример. Каждый правоверный мусульманин должен хотя бы раз в жизни совершить хадж. Если годы его жизни пронумерованы числами от 1 до m и критерии

описывает выполнения этого обязательства перед Богом.

Коньюнкция. Пусть есть m качественных критериев $g^1, ..., g^m$. Цель, состоящая в достижении, сразу всех частных целей описывается критерием $g = \prod_{i=1}^m g^i$.

Пример. Если за сессию студенту предстоит сдать m экзаменов и каждый из критериев $g^1, ..., g^m$ описывает сдачу одного из них, то цель, состоящая в успешной сдаче сессии, описывается критерием $g = \prod^m g^i$.

Отрицание. Пусть имеется качественный критерий g. Критерий 1-g описывает цель, состоящую в не достижении исходной.

Пример. Если исходная цель g состоит в том, чтобы избежать скандала, то цель, состоящая в попадании в скандальную хронику, описывается критерием 1-g.

Обобщенная дизъюнкция. Часто используется следующий способ свертки. Пусть есть m количественных критериев g^1, \dots, g^m . Результирующий критерий образуется по правилу $g(u) = \max \lambda_i g^i(u)$.

Пример. Пусть в шоссейной велогонке принимают участие m спортсменов из одной команды и критерии g^1, \dots, g^m задают места, занятые ее членами. Очень часто все члены команды работают на одного лидера, то есть критерий команды есть $g(u) = \max_{1 \le i \le m} g^i(u)$.

Обобщенная конъюнкция. Это свертка, при которой количественные критерии $g^1, ..., g^m$ заменяются общим критерием $g(u) = \min_{1 \le i \le m} \lambda_i g^i(u)$.

В экономических моделях такой способ свертки применяется при агрегировании абсолютно не взаимозаменяемых продуктов.

Пример. Пусть для производства изделия требуются комплектующие m видов и количества произведенных деталей описываются числами $g^1,...,g^m$. Критерий $g(u) = \min_{1 \le i \le m} \lambda_i g^i(u)$ описывает количество готовых изделий, которое из них можно собрать.

одного готового изделия.

Пример. По понятным физическим причинам, скорость каравана судов определяется скоростью самого тихоходного судна. Это обстоятельство нашло свое отражение даже в морском уставе.

Способ свертки, основанный на последовательном достижении частных целей

При этом способе свертки каждая последующая операция учитывается лишь тогда, когда достигнуты абсолютные максимумы критериев предыдущих операций. Если все $W_i>0$ то обобщенный критерий эффективности может быть записан следующим образом

$$W_{\Sigma} = \sum_{i=1}^{j} \max W_i$$

Деятельность промышленного предприятия в промежутке времени [О, Т] может характеризоваться объемом выпускаемой продукции в некоторые дискретные моменты времени t1<t2<t3<<tn (эти моменты могут обозначать декаду, месяц и т. д.). Объем выпускаемой продукции к моменту tj обозначим через W(tj)=Wj Тогда деятельность предприятия за период времени [О, Т] характеризуется вектором (W1,W2..WN) Планирование деятельности предприятия на каждый последующий период, как правило, проводится с учетом достигнутого значения уровня производства, а также с учетом изменений в обстановке функционирования предприятия (изменение номенклатуры выпускаемой продукции, технического оснащения, сырьевой базы и т. д.)
А это значит, что сначала оптимизируется W1 затем W2 с учетом достигнутого значения W1 и т. д.

Способ свертки, основанный на последовательном достижении частных целей

Случайная свертка. В литературе встречается и такой способ свертки критериев. На множестве критериев задается вероятностная мера, и критерий операции выбирается случайным образом в соответствии с этой мерой. Понятно, что если при этом оперирующая сторона ориентируется на математическое ожидание, то получается способ свертки, формально совпадающий с экономическим.

Приведенные выше примеры являются наиболее простыми, и потому наиболее часто встречающимися. Но, разумеется, бывают и более экзотические способы.

Принцип наименьшего сожаления. Это свертка, при которой количественные критерии $g^1, ..., g^m$ заменяются общим критерием $g(u) = \max_{1 \le i \le m} \left[\max_{v \in U} g^i(v) - g^i(u) \right]$, который нужно минимизировать.

Принцип принятия решений в ЕЭС. По новым законам решение принимается по правилу двойного большинства: решение считается принятым, если за него проголосовало 55% стран население которых составляет 65%. В этом случае можно считать, что имеется

Способ свертки, основанный на последовательном достижении частных целей

Старый способ судейства в фигурном катании. Каждый из девяти судей выставлял две оценки от 0 до 6.0 (с шагом 0.1). Затем все участники ранжировались в соответствии с суммой этих оценок (в случае равенства сумм выше ставился участник, у которого выше оценка за артистизм). Затем вычислялась сумма мест за выполнение данной программы (короткой или произвольной). Потом участники ранжировались в соответствии с взвешенной суммой показателей за короткую и произвольную программу, что и давало результирующее место участника.

Способ судейства в прыжках в длину. Сравнение результатов двух участников производится по самому дальнему прыжку каждого из них. Если эти прыжки одинаковы, то во внимание принимается следующий по дальности и так далее.

Лексимин. Во многих социальных моделях и в теоретической математике полезен следующий способ свертки. При сравнении двух решений многокритериальной задачи прежде всего сравниваются самые маленькие значения критериев (возможно, свои у каждого варианта). Если они одинаковы, то во внимание принимаются следующие по величине и так далее.

СПАСИБО ЗА ВНИМАНИЕ!

г. Томск, ул. Вершинина, 47, офис 434

e-mail: aleksandr.i.sukhanov@tusur.ru

тел.: (3822) 70-15-36