Exploratory Data Analysis in Power Bl

Table of Content

- 1. Initial Exploratory Data Analysis in Power BI: 3
- 2. Distributions and Outliers: 15
- 3. EDA with Categorical Variables: 30
- 4. Relationships between Continuous Variables: 44

1. Initial Exploratory Data Analysis in Power BI

What is exploratory data analysis?

"An approach of analyzing data sets to summarize their main characteristics, often using statistical graphics and other data visualization methods."

¹ https://en.wikipedia.org/wiki/Exploratory_data_analysis

Six steps to EDA

- 1. Understanding the data structure
- 2. Identifying missing data
- 3. Describing the data with descriptive statistics & distributions
- 4. Identifying outliers
- 5. Examining and quantifying relationships between variables
- 6. Forming hypothesis

Six steps to EDA

- 1. Understanding the data structure
- 2. Identifying missing data
- 3. Describing the data with descriptive statistics & distributions
- 4. Identifying outliers
- 5. Examining and quantifying relationships between variables
- 6. Forming hypothesis

1. Understanding the data structure

Continuous Categorical

Numerical variables often able to take an infinite set of values

- Number of stars in space
 Click-through rates Distance
- between two cities

Non-numerical variables, usually text, with two or more groups

- House types Country
 - Company

2. Identifying missing data

Missing at random

CITY	Rainfall (inches)			
3	2.03	1.13	0.52	4.59
SEATTLE	4.67		2.09	4.53
3	0.42	2.60	1.90	
8	1.35	3.40	3.75	1.75
NYC		3.93	0.07	3.14
	3.96	3.95		3.60
ľ	4.72		2.27	2.68
PARIS	2.33	2.07	1.06	1.38
		4.29	4.29	1.47

Missing not at random

CITY	Rainfall (inches)			
SEATTLE	4.67	1.75	2.09	4.53
3	0.42	2.60	1.90	3.14
	1.35	3.40	3.75	1.75
NYC	2.68	3.93	0.07	3.14
	3.96	3.95	0.52	3.60
PARIS	4.72	4.72	2.27	2.68
	2.33	2.07	1.06	1.38
	2.07	4.29	4.29	1.47

2. Addressing missing data

CITY	Rainfall (inches)			
SEATTLE	4.67	1.75	2.09	4.53
	0.42	2.60	1.90	3.14
	1.35	3.40	3.75	1.75
NYC	2.68	3.93	0.07	3.14
	3.96	3.95	0.52	3.60
	4.72	4.72	2.27	2.68
PARIS	2.33	2.07	1.06	1.38
8	2.07	4.29	4.29	1.47

CITY	Rainfall (inches)			
SEATTLE	4.67	1.75	2.09	4.53
	0.42	2.60	1.90	3.14
*	1.35	3.40	3.75	1.75
NYC	2.68	3.93	0.07	3.14
*	3.96	3.95	0.52	3.60
	4.72	4.72	2.27	2.68
PARIS	2.33	2.07	1.06	1.38
3	2.07	4.29	4.29	1.47

CITY	Rainfall (inches)			
.20	2.54	2.54	2.54	2.54
SEATTLE	4.67	1.75	2.09	4.53
3	0.42	2.60	1.90	3.14
NYC	1.35	3.40	3.75	1.75
	2.68	3.93	0.07	3.14
	3.96	3.95	0.52	3.60
PARIS	4.72	4.72	2.27	2.68
	2.33	2.07	1.06	1.38
	2.07	4.29	4.29	1.47

3. Describing the data

- Minimum
- Maximum
- Mean: sum of all values divided by the number of observations
- Median: the value in the center of a range of values
- Standard Deviation: average amount of difference from the mean of a variable observed across all data points

3. Describe the data with distributions.

- Median and the mean are the same value
- A symmetrical curve

3. Describing the data with distributions

Household Income

Histogram of Time Spent Online

- Median < Mean
- "Right-skewed": the tail is to the right

- Median > Mean
- "Left-skewed": the tail is to the left

The dataset: AirBnB listings

listing_id	host_id	host_since	city	price
41633222	328263918	1/16/2020	New York	27
45841679	367658324	9/15/2020	New York	98
32805414	244370442	2/20/2019	New York	162
35265786	265506523	5/31/2019	New York	65
46055424	334163301	2/6/2020	New York	22
31654063	237336458	1/17/2019	New York	99
43293920	344737629	4/26/2020	New York	65
35233962	264950723	5/29/2019	New York	340
35512830	262257479	5/16/2019	New York	169
43022394	342139982	3/20/2020	New York	79
47826745	383332265	1/6/2021	New York	99
42986899	358273459	7/25/2020	New York	119

Demo

2. Distributions and outliers

What are distributions?

Definition: set of all possible values of the variable and the associated frequencies.

What are distributions?

Continuous

Age	Frequency
18	7
19	11
20	13
21	19
22	12

What are distributions?

Continuous

Age	Frequency
18	7
19	11
20	13
21	19
22	12

Categorical

Hair Color	Frequency
Blonde	30
Brown	50
Black	40
Red	20
Grey	20

What are histograms?

What are histogram? - bins

Histogram with 100 bins

Histogram with 20 bins

Reading histograms - centrality and skewness

Height (cm)

Normal distribution

Right-skewed distribution

Reading histograms - spread

Larger standard deviation Smaller standard deviation

Reading histograms - percentiles

Reading histograms - 25th & 75th percentiles

Reading histograms - interquartile range

What is an outlier?

Finding outliers

Using standard deviation

$$lower = -3 * SD$$

$$upper = 3 * SD$$

Outlier when

Interquartile Range (IQR)

$$lower = 25percentile - (1.5 *$$

$$IQR$$
) $upper = 75percentile + (1.5)$

Outlier when

value < lower OR upper < value

Addressing outliers

- 1. Remove observations
- 2. Imputation

Winsorizing

IF value < 5th percentile **THEN** value = 5th percentile

IF 95th percentile > value **THEN** value = 95th percentile

Demo

3. EDA with categorical variables

Categorical variables and frequency

Number of Participants by Age Group

Categorical variables and percentages

Percentage of Participants by Age Group

Proportions across multiple categorical variables

Percentage of Participants by Age Group

Categorical variables with descriptive statistics

Age Group	Median Hours per Day on Social Media
18-29	6
30-39	3
40-49	3

What are boxplots?

Comparing distributions with categorical variables

Creating new variables

Data mutation: creating new variables to refine an analysis or visualization

Creating new variables

Data mutation: creating new variables to refine an analysis or visualization

Age	Age Group
18	Teen
19	Teen
20	Early Adult
21	Early Adult
30	Adult
31	Adult
40	Middle Age
41	Middle Age

Course Title	Course Type
Introduction to Power BI	Power BI
Unsupervised Learning in R	R
DAX in Power BI	Power BI
Introduction to Python	Python

Demo

4. Relationships between continuous variables

What are scater plots?

What are scater plots?

What are scater plots?

Strong-positive

Strong-negative

Correlation coefficient

- Used to quantify the relationship
- Represented by the letter, r

<i>r</i> =	Relationship description
-1	Strong-negative
0	No relationship
1	Strong-positive

Calculating the correlation coefficient is beyond the scope of this course

Correlation coefficient and scater plots

Strong-positive r=0.9Strong-negative r=-0.9

Adding context to a scater plot

Demo

Congratulations!

Your first steps with EDA

- Identifying and imputation of missing data
- Address outliers
 EDA with categorical variables
- EDA with continuous variables

- HistogramsBox plots
- Scatter plots