I) leja f(x, y) = 3x + 2y. Calcule:

a)
$$f(1,-1)$$
 b) $f(x,x)$ c) $f(x+h,y) - f(x,y)$

2) heja
$$f(x,y) = \frac{x-y}{x+2y}$$

a) Determine o dománio.

3) Represente graficamente o domínio da dunção z=f(x,y) dada por

b)
$$f(x,y) = \frac{x-y}{\sqrt{1-x^2-y^2}}$$

c)
$$z = \sqrt{y-x^2 + \sqrt{2x-y}}$$

d)
$$z = ln (2x^2 + y^2 - 1)$$

e)
$$z^2+4=x^2+y^2$$
, $z \ge 0$.

g)
$$4x^2+y^2+z^2=1$$
, $z \le 0$.

h)
$$z = \frac{x - y}{x - x - y}$$

4) Desenhe as curvas de nível e estoce o gráfico.

a)
$$f(x_1y) = 1 - x^2 - y^2$$

b)
$$f(x,y) = x + 3y$$

c)
$$Z = 4x^2 + y^2$$

c)
$$z = 4x^2 + y^2$$
 d) $f(x,y) = 1 + x^2 + y^2$ e) $z = x + y + 1$

$$f) g(x,y) = \sqrt{1-x^2-y^2}$$

f)
$$g(x,y) = \sqrt{1-x^2-y^2}$$
 g) $f(x,y) = x^2$, $-1 \le x \le 0$ e $y \ge 0$

h)
$$f(x,y) = 1-x^2$$
, $x \ge 0$, $y \ge 0$ e $x+y \le 1$. i) $z = \sqrt{x^2 + y^2}$

i)
$$z = \sqrt{x^2 + y^2}$$

j)
$$z = (x-y)^2$$
, $x \ge 0$ e $y \ge 0$. l) $z = f(x, y)$ dada per $x^2 + 4y^2 + 2^2 = 1$, $z \ge 0$.

m)
$$f(x,y) = \frac{1}{\sqrt{1-x^2-y^2}}$$
 $x^2+y^2 < 1$ n) $z = ancty(x^2+y^2)$

$$x^2 + y^2 < 1$$

n)
$$z = \operatorname{anctg}(x^2 + y^2)$$

o)
$$f(x,y) = x, x \ge 0$$

o)
$$f(x,y) = x$$
, $x \ge 0$ p) $z = 1 - \sqrt{x^2 + y^2}$, $x^2 + y^2 \le 1$

r)
$$f(x,y) = xy$$
, $0 \le x \le 1$, $0 \le y \le 1$

5) Desenhe as curvas de nível e determine a imagem:

a)
$$f(x,y) = x - 2y$$

b)
$$z = \frac{y}{x-2}$$

a)
$$f(x,y) = x - 2y$$
 b) $z = \frac{y}{x-2}$ c) $f(x,y) = \frac{x-y}{x+y}$

d)
$$z = \frac{x}{y-1}$$

$$e)$$
 $z=x^{-1}$

d)
$$z = \frac{x}{y-1}$$
 e) $z = xy$ f) $f(x_1y_1) = x^2-y^2$.

g)
$$z = 4x^2 + y^2$$

g)
$$z = 4x^2 + y^2$$
 h) $z = 3x^2 - 4xy + y^2$

i)
$$z = \frac{x^2}{x^2 + y^2}$$
 j) $z = \frac{xy}{x^2 + y^2}$

$$j) \quad z = \frac{xy}{x^2 + y^2}$$

6) Desenhe as auwas de nível e esboce o gráfico da função

$$f(x,y) = \sqrt{(x+1)^2 + y^2} + \sqrt{(x-1)^2 + y^2}$$

7) Represente geometricamente o domínio da função dada.

a)
$$f(x,y,z) = \sqrt{1-x^2-y^2-z^2}$$

b)
$$f(x,y,z) = \sqrt{1-z}$$

c)
$$f(x,y,z) = \sqrt{1-x-y-z}$$
, $x \ge 0$, $y \ge 0$ e $z \ge 0$

d)
$$w = \sqrt{|-|x|-|y|-|z|}$$

d)
$$w = \sqrt{1-|x|-|y|-|z|}$$
 c) $f(x,y,z) = ln(x^2+y^2+z^2)$

8) Derenhe a superfície de nível converpondente $\alpha c=1$.

a)
$$f(x,y,z)=x$$

b)
$$f(x,y,z) = z$$

c)
$$f(x,y,z) = x^2 + y^2$$

c)
$$f(x,y,z) = x^2 + y^2$$
 d) $f(x,y,z) = x^2 + 4y^2 + z^2$

- 9) Duas superficies de nível de uma função f podem interreptar-se? Justifique.
- 10) Calcule, caro exista:

a)
$$\lim_{(x,y)\to(0,0)} x \text{ in } \frac{1}{x^2+y^2}$$
 b) $\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}}$

b)
$$\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}}$$

c)
$$\lim_{(x,y)\to(0,0)} \frac{x^2}{\sqrt{x^2+y^2}}$$

d)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$

e)
$$\lim_{(x,y)\to(0,0)} \frac{xy(x-y)}{x^4+y^4}$$

f)
$$\lim_{(x,y)\to(0,0)} \frac{x+y}{x-y}$$

g)
$$\lim_{(x,y)\to(0,0)} \frac{\chi y}{y-\chi^3}$$

h)
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2-y^2}$$

(1) leja
$$f(x,y) = \frac{2xy^2}{x^2 + y^4}$$

a) Considere a neta $\gamma(t)=(at,bt)$, com $a^2+b^2>0$; mostre que, quaisquer que rejum a e b,

$$\lim_{t\to 0} f(\gamma(t)) = 0.$$

Tente visualizar este resultado através das curvas de nível de f.

b) Calcule $\lim_{t\to 0} f(\delta(t))$, onde $\delta(t) = (t^2, t)$.

(Antes de calcular o limite, tente prover o neultado olhando para as curvas de nível de f.)

c)
$$\lim_{(x,y)\to(0,0)} \frac{2xy^2}{x^2+y^4}$$
 existe? Porquê?

12) Determine o conjunto dos pontos de continuidade. Jutifique a resporta.

a)
$$f(x,y) = 3x^2y^2 - 5xy + 6$$

b)
$$f(x,y) = \sqrt{6-2x^2-3y^2}$$

c)
$$f(x,y) = lm\left(\frac{x-y}{x^2+y^2}\right)$$

d)
$$f(x_1y) = \frac{x - y}{1 - x^2 - y^2}$$

e)
$$f(x,y) = \begin{cases} \frac{x-3y}{x^2+y^2} & \text{ for } (x,y) \neq (0,0) \\ 0 & \text{ for } (x,y) = (0,0) \end{cases}$$

$$f) f(x,y) = \begin{cases} \frac{\text{Nen}(x^2 + y^2)}{x^2 + y^2} & \text{Ne}(x,y) \neq (0,0) \\ 1 & \text{Ne}(x,y) = (0,0) \end{cases}$$

g)
$$f(x,y) = \begin{cases} e^{\left(\frac{1}{r^2-1}\right)} & \text{se } r < 1 \text{ onde } r = \|(x,y)\| \\ 0 & \text{se } r \ge 1 \end{cases}$$

(3)
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$
 \(\text{\text{\$\text{full figure}}}\)