

Meta-Learning MCMC Proposals

Wang, Wu, Moore, & Russell (2019)

Presented by Alexandra Proca, Daniel May, and Anthony Chiu

Motivation

- Probabilistic inference is a useful tool in machine learning, but can often be difficult to perform
- Single-site Gibbs sampling: slow convergence with several variables coupled in the posterior
- Block proposals update multiple variables simultaneously, but can become intractable → manually-designed proposals → not generalizable to new tasks/models

Ultimate Aim

Learn to automatically build tractable MCMC proposals that are

- 1. Effective for fast mixing
- 2. Ready to be reused across different models
 - ➤ Meta learning

$$q(B_i; c_i, \Psi_i) \approx p_{\Psi_i}(B_i | C_i = c_i)$$

Gibbs Sampling

- Single site Gibbs full conditional: $p(X_d|X_1,\ldots,X_{d-1},X_{d+1},\ldots,X_D)$
- Block Gibbs conditional: $p(X_d, \ldots, X_{d+k} | X_1, \ldots, X_{d-1}, X_{d+k+1}, \ldots, X_D)$
- Gibbs samples from full conditionals → generic way to derive proposal distribution:

```
X_{i+1,1} \sim p(.|X_{i,2},...,X_{i,D})
\vdots
X_{i+1,d} \sim p(.|X_{i+1,1},...,X_{i+1,d-1},X_{i,d+1},...,X_{i,D})
\vdots
X_{i+1,D} \sim p(.|X_{i+1,1},...,X_{i+1,D-1})
```

Idea

- Train a neural network to approximate Gibbs proposals for recurring structural motifs in probabilistic graphical models and to speed up inference on new models without extra tuning
- Take the model parameters as input to the network (model parameters are not fixed)

Factor Graphs

 The work focuses on directed models where factors specify conditional probabilities of each variable given its parents

Motifs

- Graph with nodes partitioned into sets B (block proposed set to be resampled) and C (conditioning set) with a parameterized joint distribution p(B,C) consistent with graph structure. This specifies the conditional p(B|C)
- Given a set of evidence variables C, inference attempts to sample from the conditional distribution on the remaining variables B

Proposal Networks for Motifs

- Identify commonly recurring structures in graphical model as motifs
- An instantiation (B_i, C_i, ψ_i) of a motif includes
 - O A subset of the model variables (B_i, C_i) such that the subgraph is isomorphic to the motif (B, C)
 - O A subset of model parameters $\ \psi_i \in \psi$ required to specify the conditional distribution $p_{\psi_i}(B|C)$
- Learn a proposal network associated with each motif, which determine the shape of the network input and output
- Choosing a motif represents a trade-off between generality of the proposal and easiness to approximate
 - Recommend simple structures such as chains of a certain length

Parameterizing the Proposal Networks

- Parameterize proposal networks with mixture density networks (MDNs)
 - O Given conditioning set values and local model parameters organized as an input vector, these output parameters for a mixture distribution over the block variables

• Aim: optimize the network weights θ so the function it represents is close to the true conditional

MCMC Proposals on Motifs in Graphical Models

Meta-training Proposal Networks

 Minimise the distance of proposal and true conditional in the sense of KL divergence:

$$D(p_{\Psi_i}(B_i|C_i)||q_{\theta}(B_i;c_i,\Psi_i))$$

• In practice we want to minimise the expected divergence over all possible values of the conditioning set:

$$\mathbb{E}_{C_i}[D(p_{\Psi_i}(B_i|C_i)||q_{\theta}(B_i;c_i,\Psi_i))] = -\mathbb{E}_{B_i,C_i}[\log q_{\theta}(B_i;C_i,\Psi_i)] + \text{constant}$$

Meta-training Proposal Networks

Second term is constant, so can define loss function as:

$$\tilde{L}(\theta; B_i, C_i, \Psi_i) = -\mathbb{E}_{B_i, C_i}[\log q_{\theta}(B_i; C_i, \Psi_i)]$$

ullet Goal: minimize loss over many random instantiations of motifs in ${\cal P}$:

$$L(\theta) = \mathbb{E}_{(B_i, C_i, \Psi_i) \sim \mathcal{P}} [\tilde{L}(\theta; B_i, C_i, \Psi_i)] = -\mathbb{E}_{(B_i, C_i, \Psi_i) \sim \mathcal{P}} [\mathbb{E}_{B_i, C_i} [\log q_{\theta}(B_i; C_i, \Psi_i)]]$$

This is minimized using mini-batch stochastic gradient descent

Algorithm

Algorithm 1 Neural Block Sampling

```
Input: Graphical model (G, \Psi), observations y,
         motifs \{(B^{(m)}, C^{(m)})\}_m, and their instantiations \{(B_i^{(m)}, C_i^{(m)}, \Psi_i^{(m)})\}_{i,m} detected in (G, \Psi).
 1: for each motif B^{(m)}, C^{(m)} do
         if proposal trained for this motif exists then
             q^{(m)} \leftarrow trained neural block proposal
 4:
         else
             Train neural block proposal q_{\theta}^{(m)} using SGD by Eq. 3 on its instantiations \{(B_i^{(m)}, C_i^{(m)}, \Psi_i^{(m)})\}_i
         end if
 7: end for
 8: x \leftarrow initialize state
 9: for timestep in 1 \dots T do
      Propose x' \leftarrow \text{proposal } q_{\theta}^{(m)} on some instantiation (B_i^{(m)}, C_i^{(m)}, \Psi_i^{(m)})
      Accept or reject according to MH rule
11:
12: end for
13: return MCMC samples
```

How good the proposal approximations are

- Quantify as KL divergence
- KL divergences between neural block proposals and true conditionals are plotted on histogram
- ullet Only trained on one set $p_{\it determ}$ and lpha
- Results:
 - 1. KL divergences values mostly concentrated at zero
 - 2. Generalise well to other p_{determ} and α

Neural block proposal convergence speed

 MCMC inference using neural block proposal always outperforms single site gibbs and true block gibbs proposal given fixed computation time

Neural block proposal convergence speed

- Compare with the single-site Gibbs proposal and Gibbs with SDDS [3].
- Neural block proposal mixes quickly and outperforms the Gibbs SDDS method at large m and n

Mixing quality

- Gibbs with SDDS fails to explore efficiently
- Neural block MCMC mixes quickly among possible explanations of M

Neural block proposal convergence speed

 In general, neural block proposal achieves better performance than single site Gibbs in terms of F1 score and log likelihood

Impact and Follow-up Work

- Neural Relational Inference with Fast Modular Meta-Learning [4]
 - Relational inference can be framed as a modular meta-learning problem, and meta-learning of proposal functions could speed up the simulated annealing search within the modular meta-learning algorithm.
- Using Probabilistic Programs as Proposals [5]
 - Meta learning of proposal is not flexible enough to allow user to specify knowledge into the proposal. They instead use a probabilistic program.
- Deep Involutive Generative Models for Neural MCMC [6]
 - Establishes an alternative approach to learn neural network MCMC proposals, which are both fast and accurate

References

- [1] Tongzhou Wang, Yi Wu, David A. Moore, Stuart J. Russell. *Meta-Learning MCMC Proposals*. In *NeurIPS*, 2018.
- [2] Christopher M. Bishop. *Mixture Density Networks*, 1994.
- [3] Wei Wang and Stuart J Russell. *A smart-dumb/dumb-smart algorithm for efficient split-merge MCMC*. In *UAI*, pages 902–911, 2015.
- [4] Ferran Alet, Erica Weng, Tomas Lozano-Perez, and L. Kaelbling. *Neural relational inference with fast modular meta-learning*. In *NeurIPS*, 2019.
- [5] Marco F. Cusumano-Towner and Vikash K. Mansinghka. *Using probabilistic programs as proposals. arXiv*, 2018.
- [6] Span Spanbauer, Cameron Freer, and Vikash Mansinghka. *Deep involutive generative models for neural MCMC*. arXiv preprint *arXiv*:2006.15167, 2020.
- [7] David Barber. *Bayesian reasoning and machine learning*. Cambridge University Press, 2012.
- [8] Andrew Gelman et al. Bayesian data analysis. CRC press, 2013.