NPDE Project 3: Solving the Biharmonic Equation by Deep Neural Network

Jia-Wei Liao, Yu-Hsi Chen, Woan-Rong Huang Advisor: Ming-Chih Lai

> Department of Applied Mathematics National Yang Ming Chiao Tung University

> > June 8, 2021

Outline

- Prerequisite knowledge
 - Learning theory
 - Neural network
 - Optimization
 - Backward propagation and forward propagation
- Poisson equation
 - Deep Galerkin Method
 - Numerical result
 - Deep Ritz Method
 - Numerical result
- Biharmonic equation
 - Deep Galerkin Method
 - Numerical result

Problem

Poisson equation:

$$\begin{cases} \Delta u = f, & \text{in } \Omega, \\ u = g, & \text{on } \partial \Omega \end{cases}$$

Problem

Poisson equation:

$$\begin{cases} \Delta u = f, & \text{in } \Omega, \\ u = g, & \text{on } \partial \Omega \end{cases}$$

Biharmonic equation:

$$\begin{cases} \Delta^2 u = f, & \text{in } \Omega, \\ u = g_0, & \text{on } \partial\Omega, \\ \frac{\partial u}{\partial n} = g_1, & \text{on } \partial\Omega \end{cases} \implies \begin{cases} \Delta u = p, & \text{in } \Omega, \\ \Delta p = f, & \text{in } \Omega, \\ u = g_0, & \text{on } \partial\Omega, \\ \frac{\partial u}{\partial n} = g_1, & \text{on } \partial\Omega \end{cases}$$

Training process

Testing process

Neural network (NN)

Question: Why functions can be approximated by neural network? ¹

Theorem (Universal Approximation Theorem With ReLU Network)

For any Lebesgue-integrable function $f: \mathbb{R}^n \to \mathbb{R}$ and any $\varepsilon > 0$, there exists a fully-connected ReLU network $\mathcal Q$ with width $\leq n+4$ and depth $\leq 4n+1$ such that the function $F_{\mathcal Q}$ represented by this network satisfies

$$\int_{\mathbb{R}^n} |f(x) - F_{\mathcal{Q}}| dx < \varepsilon$$

JW, YH, WR (NYCU) NPDE final report June 8, 2021 6 / 70

¹Lu et al., The Expressive power of Neural Networks: A View from the Width, NIPS 2017

Fully connected layer

Version 1:

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \\ w_{3,1} & w_{3,2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

JW, YH, WR (NYCU)

Fully connected layer

Version 2:

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} w_{1,1} & w_{1,2} & b_1 \\ w_{2,1} & w_{2,2} & b_2 \\ w_{3,1} & w_{3,2} & b_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$$

Activation function

$$\mathsf{Sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

$$ReLU(x) = max(x, 0)$$

9 / 70

Activation function

$$\mathsf{Swish}(x) = \frac{x}{1 + e^{-x}}$$

$$ReCU(x) = max(x^3, 0)$$

Residual Network

$$y^{(i)} = \sigma_2 \left(W^{(i,2)} \cdot \sigma_1 (W^{(i,1)} x + b^{(i,1)}) + b^{(i,2)} \right) + x^{(i)}$$

11 / 70

JW, YH, WR (NYCU) NPDE final report June 8, 2021

Optimization

Gradient decent:

$$\theta_t = \theta_{t-1} - \gamma \nabla_{\theta} \mathcal{L}(u; \theta)$$

where

- \mathcal{L} : loss function.
- ullet θ : parameters in the Neural Network.
- γ : learning rate.

Optimization

Adam algorithm (ICLR 2015)

Let $\mathcal{L}(\theta)$ be the objective function with parameters θ , β_1 , β_2 be the exponential decay rates for the moment estimates, γ be the learning rate and $\varepsilon=10^{-8}$.

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) (\nabla_{\theta} \mathcal{L}(\theta_{t-1}))^2$$

$$\hat{m}_t = \frac{m_{t-1}}{1 - \beta_1^t}$$

$$\hat{v_t} = \frac{v_{t-1}}{1 - \beta_2^t}$$

$$\begin{aligned}
\mathbf{1} - \rho_2 \\
\mathbf{0} \quad \theta_t = \theta_{t-1} - \gamma \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \varepsilon}
\end{aligned}$$

Forward propagation and backward propagation

Motivation:

• Minimize the loss function by using gradient descent.

Forward propagation and backward propagation

Motivation:

• Minimize the loss function by using gradient descent.

Approach:

- Build a small neural network as defined in the architecture below.
- Use forward propagation to get predicted value and calculate the loss.
- Use backward propagation and adjust weights and bias accordingly.
- Repeat forward and backward steps until the stop criterion is satisfied.

Architecture:

Build a Feed Forward neural network with 2 hidden layers.
 All layers have 2 Neurons.

Matrix operation $W^{(1)}$ and $b^{(1)}$:

$$y^{(1)} = W^{(1)}x + b^{(1)}$$

$$\begin{bmatrix} y_1^{(1)} \\ y_2^{(1)} \end{bmatrix} = \begin{bmatrix} w_{1,1}^{(1)} & w_{1,2}^{(1)} \\ w_{2,1}^{(1)} & w_{2,2}^{(1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} b_1^{(2)} \\ b_2^{(2)} \end{bmatrix}$$

Activation function σ_1 :

Hidden layer 1

$$y^{(1)} \Rightarrow \sigma_1 \Rightarrow x^{(2)}$$

$$x^{(2)} = \sigma_1(y^{(1)})$$

$$\begin{bmatrix} x_1^{(2)} \\ x_2^{(2)} \end{bmatrix} = \begin{bmatrix} \sigma_1(y_1^{(1)}) \\ \sigma_1(y_2^{(1)}) \end{bmatrix}$$

Matrix operation $W^{(2)}$ and $b^{(2)}$:

$$\begin{aligned} y^{(2)} &= W^{(2)} x^{(2)} + b^{(2)} \\ \begin{bmatrix} y_1^{(2)} \\ y_2^{(2)} \end{bmatrix} &= \begin{bmatrix} w_{1,1}^{(2)} & w_{1,2}^{(2)} \\ w_{2,1}^{(2)} & w_{2,2}^{(2)} \end{bmatrix} \begin{bmatrix} x_1^{(2)} \\ x_2^{(2)} \end{bmatrix} + \begin{bmatrix} b_1^{(1)} \\ b_2^{(1)} \end{bmatrix} \end{aligned}$$

Activation function σ_2 :

Hidden layer 2

$$y^{(2)} \Rightarrow \sigma_2 \Rightarrow x^{(3)}$$

$$x^{(3)} = \sigma_2(y^{(2)})$$

$$\begin{bmatrix} x_1^{(3)} \\ x_2^{(3)} \end{bmatrix} = \begin{bmatrix} \sigma_2(y_1^{(2)}) \\ \sigma_2(y_2^{(2)}) \end{bmatrix}$$

Matrix operation $W^{(3)}$ and $b^{(3)}$:

$$z = W^{(3)}x^{(3)} + b^{(3)}$$

$$z = \begin{bmatrix} w_1^{(3)} & w_2^{(3)} \end{bmatrix} \begin{bmatrix} x_1^{(3)} \\ x_2^{(3)} \end{bmatrix} + b^{(3)}$$

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial w_{i}^{(3)}} = \frac{\partial \mathcal{L}}{\partial z} \cdot \frac{\partial z}{\partial w_{i}^{(3)}} = \frac{\partial \mathcal{L}}{\partial z} \cdot x_{i}^{(3)} \\ \frac{\partial \dot{\mathcal{L}}}{\partial b^{(3)}} = \frac{\partial \mathcal{L}}{\partial z} \cdot \frac{\partial z}{\partial b^{(3)}} = \frac{\partial \mathcal{L}}{\partial z} \cdot 1 \end{cases}$$

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q (^)

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial w_{i,j}^{(2)}} = \frac{\partial \mathcal{L}}{\partial z} \cdot \frac{\partial z}{\partial x_{j}^{(3)}} \cdot \frac{\partial x_{j}^{(3)}}{\partial y_{j}^{(2)}} \cdot \frac{\partial y_{j}^{(2)}}{\partial w_{i,j}^{(2)}} = \frac{\partial \mathcal{L}}{\partial z} \cdot w_{j}^{(3)} \cdot \sigma_{2}'(y_{j}^{(2)}) \cdot x_{i}^{(2)} \\ \frac{\partial \mathcal{L}}{\partial b_{i}^{(2)}} = \frac{\partial \mathcal{L}}{\partial z} \cdot \frac{\partial z}{\partial x_{i}^{(3)}} \cdot \frac{\partial x_{i}^{(3)}}{\partial y_{i}^{(2)}} \cdot \frac{\partial y_{i}^{(2)}}{\partial b_{i}^{(2)}} = \frac{\partial \mathcal{L}}{\partial z} \cdot w_{i}^{(3)} \cdot \sigma_{2}'(y_{i}^{(2)}) \cdot 1 \end{cases}$$

4 D > 4 B > 4 E > E + 9 Q (>

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial w_{i,j}^{(1)}} = \frac{\partial \mathcal{L}}{\partial z} \cdot \frac{\partial z}{\partial x_*^{(3)}} \cdot \frac{\partial x_*^{(3)}}{\partial y^{(2)}} \cdot \frac{\partial y^{(2)}}{\partial x^{(2)}} \cdot \frac{\partial x^{(2)}}{\partial y^{(1)}} \cdot \frac{\partial y^{(1)}}{\partial w_{i,j}^{(1)}} \\ \frac{\partial \mathcal{L}}{\partial b_i^{(1)}} = \frac{\partial \mathcal{L}}{\partial z} \cdot \frac{\partial z}{\partial x_*^{(3)}} \cdot \frac{\partial x_*^{(3)}}{\partial y^{(2)}} \cdot \frac{\partial y^{(2)}}{\partial x^{(2)}} \cdot \frac{\partial x^{(2)}}{\partial y^{(1)}} \cdot \frac{\partial y^{(1)}}{\partial y^{(1)}} \cdot \frac{\partial y^{(1)}}{\partial b_i^{(1)}} \end{cases}$$

4 D F 4 B F 4 B F

June 8, 2021

From the results in previous pages, we can have

$$\begin{split} \frac{\partial \mathcal{L}}{\partial w_{i,j}^{(1)}} &= \frac{\partial \mathcal{L}}{\partial z} \cdot \frac{\partial z}{\partial x_*^{(3)}} \cdot \frac{\partial x_*^{(3)}}{\partial y^{(2)}} \cdot \frac{\partial y^{(2)}}{\partial x^{(2)}} \cdot \frac{\partial x^{(2)}}{\partial y^{(1)}} \cdot \frac{\partial y^{(1)}}{\partial w_{i,j}^{(1)}} \\ &= \frac{\partial \mathcal{L}}{\partial z} \cdot \left[\left(w_1^{(3)} \cdot \sigma_2'(y_1^{(2)}) \cdot w_{1,1}^{(2)} + w_2^{(3)} \cdot \sigma_2'(y_2^{(2)}) \cdot w_{1,2}^{(2)} \right) \cdot \sigma_1'(y_1^{(1)}) \cdot x_1 \right] \\ \frac{\partial \mathcal{L}}{\partial b_i^{(1)}} &= \frac{\partial \mathcal{L}}{\partial z} \cdot \frac{\partial z}{\partial x_*^{(3)}} \cdot \frac{\partial x_*^{(3)}}{\partial y^{(2)}} \cdot \frac{\partial y^{(2)}}{\partial x^{(2)}} \cdot \frac{\partial x^{(2)}}{\partial y^{(1)}} \cdot \frac{\partial y^{(1)}}{\partial b_i^{(1)}} \\ &= \frac{\partial \mathcal{L}}{\partial z} \cdot \left[\left(w_1^{(3)} \cdot \sigma_2'(y_1^{(2)}) \cdot w_{1,1}^{(2)} + w_2^{(3)} \cdot \sigma_2'(y_2^{(2)}) \cdot w_{1,2}^{(2)} \right) \cdot \sigma_1'(y_1^{(1)}) \cdot 1 \right] \end{split}$$

Finally, we can update the weights and biases by previous optimization method.

→ □ → → □ → → □ → → ○ へ○

Sigmoid

26 / 70

NPDE final report June 8, 2021

27 / 70

Poisson equation

Consider the Poisson equation with Dirichlet boundary conditions

$$\begin{cases} \Delta u = f, & \text{in } \Omega, \\ u = g, & \text{on } \partial \Omega \end{cases}$$

We implement following methods to solve the Poisson equation

- Deep Galerkin Method (DGM)
- Deep Ritz Method (DRM)

Deep Galerkin Method (DGM)

Loss function:

$$\mathcal{L}[u] = \|\Delta u - f\|_{2,\Omega}^2 + \lambda \|u - g\|_{2,\partial\Omega}^2$$
$$= \int_{\Omega} (\Delta u - f)^2 dx + \lambda \int_{\partial\Omega} (u - g)^2 dx$$

Goal:

$$\min_{u \in \mathcal{F}} \mathcal{L}[u]$$

where \mathcal{F} is the class of neural networks.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Monte Carlo approach

Monte Carlo approach

$$I := \int_{a}^{b} f(x)dx = (b - a) \int_{a}^{b} f(x) \cdot \frac{1}{b - a} dx = (b - a) \mathbb{E}[f(X)]$$

where $X \sim U(a, b)$.

- Generate $X_1, ..., X_N \stackrel{iid}{\sim} U(a, b)$
- $\text{ Compute } \hat{I}_N = \frac{b-a}{N} \sum_{i=1}^N f(X_i)$

4□ > 4□ > 4 = > 4 = > = 90

Monte Carlo approach

• Unbiased estimation:

$$\mathbb{E}[\hat{I}_N] = \mathbb{E}\left[\frac{b-a}{N}\sum_{i=1}^N f(X_i)\right] = \frac{1}{N}\sum_{i=1}^N (b-a)\mathbb{E}\left[f(X_i)\right] = I$$

Probability convergence:

By Law of Large Number, for any $\varepsilon>0$, there exists $N\in\mathbb{N}$ such that

$$\mathbb{P}(|\hat{I}_N - I| > \varepsilon) = 0$$

• Convergent rate: By Center Limit Theorem,

$$\frac{\hat{I}_N - I}{\frac{\sigma}{\sqrt{N}}} \stackrel{\mathcal{D}}{\to} \mathcal{N}(0, 1)$$

where σ is population standard deviation. The error convergence rate is $\mathcal{O}(\frac{1}{\sqrt{N}})$.

Deep Galerkin Method (DGM)

$$\mathcal{L}[u] = |\Omega| \mathbb{E}_{x \sim p(x)} [(\Delta u(x) - f(x))^2] + \lambda |\partial \Omega| \mathbb{E}_{x \sim q(x)} [(u(x) - g(x))^2]$$

where p(x) is a uniform distribution on Ω and q(x) is a uniform distribution on $\partial\Omega$.

$$\mathcal{L}[u] = \frac{|\Omega|}{N} \sum_{i=1}^{N} [\Delta u(x_i) - f(x_i)]^2 + \lambda \frac{|\partial \Omega|}{M} \sum_{j=1}^{M} [u(t_j) - g(t_j)]^2$$

where $x_i \in \Omega$ and $t_j \in \partial \Omega$, for all i = 1, 2, ...N, j = 1, 2, ..., M.

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

Information:

Network: ResNet

Activation function: Swish

Residual block structure

Model structure

4 D > 4 D > 4 E > 4 E > E 990

Information (continue):

Residual block (RB1)

Layer	Input shape	Output shape	parameters
FC1	(batch size, 2)	(batch size, 20)	60
FC2	(batch size, 20)	(batch size, 20)	420

ResNet model

Layer	Input shape	Output shape	parameters
RB1	(batch size, 2)	(batch size, 20)	480
RB2	(batch size, 20)	(batch size, 20)	840
RB3	(batch size, 20)	(batch size, 20)	840
Output layer	(batch size, 20)	(batch size, 1)	21

Total parameters: 2181

Information (continue):

- Exact solution: $u = e^x \sin(\pi y)$
- Epochs: 20000
- Learning rate: 5e 4
- Penalty term: $\lambda = 1$
- Number of training points: 110 (interior: 100 / boundary: 10)
- ullet Number of testing points: 10000 (uniform mesh by 100 imes 100)
- Device: Google Colab (GPU accelerated)
- Total time: 1200s (0.06 s/ep)

JW, YH, WR (NYCU)

• Number of testing points: 100×100

error \ epoch	5000	10000	20000
$ U-u _{\infty}$	0.3253	0.3461	0.3668
$ U - u _2$	0.1633	0.1657	0.1725
$\frac{\ U - u\ _2}{\ u\ _2}$	0.1296	0.1315	0.1369

Deep Ritz Method (DRM)

Loss function:

$$\mathcal{L}[u] = \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 + fu \right) dx + \lambda \int_{\partial \Omega} (u - g)^2 dx$$

Goal:

$$\min_{u \in \mathcal{F}} \mathcal{L}[u]$$

where \mathcal{F} is the class of neural networks.

JW, YH, WR (NYCU)

Energy functional

Consider the functional

$$\mathcal{J}[v] = \int_{\Omega} \left(\frac{1}{2} |\nabla v|^2 + fv \right) dx =: \int_{\Omega} F[v] dx.$$

Suppose $\mathcal{J}[v]$ has local minimum at u. Then for any $w \in \mathcal{C}_0^\infty(\Omega)$, we have

$$\mathcal{J}[u] \le \mathcal{J}[u + \varepsilon w]$$

as ε closed to 0. Define $\Phi(\varepsilon)=\mathcal{J}[u+\varepsilon w].$ Then

$$\Phi'(0) = \frac{d\Phi(\varepsilon)}{d\varepsilon}\bigg|_{\varepsilon=0} = \int_{\Omega} \frac{dF[u + \varepsilon w]}{d\varepsilon}\bigg|_{\varepsilon=0} dx = 0$$

JW, YH, WR (NYCU)

Energy functional

Note that

$$F[u + \varepsilon w] = F[u] + \frac{1}{2}\varepsilon^2 |\nabla w|^2 + \varepsilon \nabla u \cdot \nabla w + \varepsilon f w$$

Then

$$\Phi'(0) = \int_{\Omega} \left(\varepsilon |\nabla w|^2 + \nabla u \cdot \nabla w + f w \right) \Big|_{\varepsilon=0} dx = 0$$

that is,

$$\int_{\Omega} (\nabla u \cdot \nabla w + f w) \, dx = 0$$

Energy functional

Green's first identity

$$\int_{\Omega} \Delta u w dx = \int_{\partial \Omega} \frac{\partial u}{\partial n} \cdot w ds - \int_{\Omega} \nabla u \cdot \nabla w dx$$

Since $w \in \mathcal{C}_0^\infty(\Omega)$,

$$\int_{\Omega} \left(-\Delta u + f \right) w dx = 0$$

Hence we can get

$$\Delta u = f$$
.

Deep Ritz Method (DRM)

$$\mathcal{L}[u] = |\Omega| \mathbb{E}_{x \sim p} \left[\frac{1}{2} |\nabla u(x)|^2 + f(x)u(x) \right] + \lambda |\partial \Omega| \mathbb{E}_{x \sim q} [(u(x) - g(x))^2]$$

where p(x) is a uniform distribution on Ω and q(x) is a uniform distribution on $\partial\Omega$.

$$\mathcal{L}[u] = \frac{|\Omega|}{N} \sum_{i=1}^{N} \left[\frac{1}{2} |\nabla u(x_i)|^2 + f(x_i) u(x_i) \right] + \lambda \frac{|\partial \Omega|}{M} \sum_{j=1}^{M} [u(t_j) - g(t_j)]^2$$

where $x_i \in \Omega$ and $t_j \in \partial \Omega$, for all i = 1, 2, ...N, j = 1, 2, ..., M.

47 / 70

JW, YH, WR (NYCU) NPDE final report June 8, 2021

Information:

Network: ResNet

Activation function: ReCU

Residual block structure

Model structure

Information (continue):

Residual block (RB1)

Layer	Input shape	Output shape	parameters
FC1	(batch size, 2)	(batch size, 10)	30
FC2	(batch size, 10)	(batch size, 10)	110

ResNet model

Layer	Input shape	Output shape	parameters
RB1	(batch size, 2)	(batch size, 10)	140
RB2	(batch size, 10)	(batch size, 10)	220
RB3	(batch size, 10)	(batch size, 10)	220
Output layer	(batch size, 10)	(batch size, 1)	11

• Total parameters : 591

Information (continue):

- Exact solution: $u = e^x \sin(\pi y)$
- Epochs: 20000
- Learning rate: 5e 4
- Penalty term: $\lambda = 5000$
- Number of training points: 600 (interior: 500 / boundary: 100)
- Number of testing points: 10000 (uniform mesh by 100×100)
- Device: Google Colab (GPU accelerated)
- Total time: 400s (0.02 s/ep)

53 / 70

Numerical result

 \bullet Number of testing points: 100×100

error \ epoch	5000	10000	20000
$ U-u _{\infty}$	0.3329	0.2908	0.2911
$ U - u _2$	0.1128	0.1112	0.1233
$\frac{\ U - u\ _2}{\ u\ _2}$	0.0896	0.0883	0.0979

Biharmonic equation

Consider the Biharmonic equation with boundary conditions

$$\begin{cases} \Delta^2 u = f, & \text{in } \Omega, \\ u = g_0, & \text{on } \partial \Omega, \\ \frac{\partial u}{\partial n} = g_1, & \text{on } \partial \Omega \end{cases}$$

To make the calculation easier, we rewrite the equation as following,

$$\begin{cases} \Delta u = p, & \text{in } \Omega, \\ \Delta p = f, & \text{in } \Omega, \\ u = g_0, & \text{on } \partial \Omega, \\ \frac{\partial u}{\partial n} = g_1, & \text{on } \partial \Omega \end{cases}$$

DGM for biharmonic equation

Loss function:

$$\mathcal{L}[u] = \|\Delta u - p\|_{2,\Omega}^2 + \|\Delta p - f\|_{2,\Omega}^2 + \alpha \|u - g_0\|_{2,\partial\Omega}^2 + \beta \|(\nabla u \cdot n) - g_1\|_{2,\partial\Omega}^2$$

By Monte Carlo approach,

$$\mathcal{L}[u] = \frac{|\Omega|}{N} \sum_{i=1}^{N} [\Delta u(x_i) - p(x_i)]^2 + \frac{|\Omega|}{N} \sum_{i=1}^{N} [\Delta p(x_i) - f(x_i)]^2 + \alpha \frac{|\partial \Omega|}{M} \sum_{j=1}^{M} [u(t_j) - g_0(t_j)]^2 + \beta \frac{|\partial \Omega|}{M} \sum_{j=1}^{N} [\nabla u(t_j) \cdot n(t_j) - g_1(t_j)]^2$$

where $x_i \in \Omega$ and $t_j \in \partial \Omega$, for all i = 1, 2, ...N, j = 1, 2, ..., M.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - かり(で

58 / 70

Information:

Network: ResNet

Activation function: Swish

Residual block structure

Model structure

Information (continue):

Residual block (RB1)

Layer	Input shape	Output shape	parameters
FC1	(batch size, 2)	(batch size, 100)	300
FC2	(batch size, 100)	(batch size, 100)	10100

ResNet model

Layer	Input shape	Output shape	parameters
RB1	(batch size, 2)	(batch size, 100)	10400
RB2	RB2 (batch size, 100)		20200
Output layer1	(batch size, 100)	(batch size, 1)	101
Output layer2	(batch size, 100)	(batch size, 1)	101

• Total parameters: 30802

◆ロト ◆団ト ◆豆ト ◆豆 ・ りへで

Information (continue):

- Exact solution: $u = e^x \sin(\pi y)$
- Epochs: 10000
- Learning rate: 5e 4
- Penalty term: $\lambda = 1$
- Number of training points: 130 (interior: 100 / boundary: 30)
- Number of testing points: 10000 (uniform mesh by 100×100)
- Device: Google Colab (GPU accelerated)
- Total time: 1040s (0.1 s/ep)

uniform mesh by 100×100

• Number of training points: 100 + 30 / ep

• Number of testing points: 100×100

error \ epoch	2000	4000	6000	8000	10000
$ U-u _{\infty}$	0.4190	0.1517	0.1456	0.1085	0.0993
$ U - u _2$	0.1419	0.0701	0.0542	0.0519	0.0452
$\frac{\ U - u\ _2}{\ u\ _2}$	0.1126	0.0556	0.0430	0.0412	0.0359

• Number of testing points: 100×100

• Error: relative error of two norm

Tp ∖ epoch	2000	4000	6000	8000	10000
100/10	0.0619	0.0426	0.0408	0.0421	0.0391
400/20	0.0417	0.0316	0.0357	0.0331	0.0270
900/30	0.0363	0.0257	0.0347	0.0278	0.0264

• Epochs: 10000

• Number of training points: 100 + 30 / ep

• Number of testing points: 100×100

error	Swish	Sigmoid	ReLU
$ U-u _{\infty}$	0.0993	0.2292	0.0723
$ U - u _2$	0.0452	0.0897	0.0220
$\frac{\ U-u\ _2}{\ u\ _2}$	0.0359	0.0712	0.0175

Code on Github

Poisson DGM:

```
https://github.com/Jia-wei-liao/NPDE_final_project/blob/main/DGM_Poisson2D.ipynb
```

Possion DRM:

```
https://github.com/Jia-wei-liao/NPDE_final_project/blob/main/DRM_Poisson2D.ipynb
```

Biharmonic DGM:

```
https://github.com/Jia-wei-liao/NPDE_final_project/blob/main/DGM_Biharmonic2D.ipynb
```

References

- Jingrun Chen, Rui Du and Keke Wu, A Comparison Study of Deep Galerkin Method and Deep Ritz Method for Elliptic Problems with Different Boundary Conditions (2020).
- Liyao Lyu, Zhen Zhangc, Minxin Chen, Jingrun Chen, MIM: A deep mixed residual method for solving high-order partial differential equations (2020).
- Weinan E and Bing Yu, The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems (2017).

Thanks for listening!