Package 'ActuarialM'

May 15, 2023

Type Package
Title Computation of Actuarial Measures Using Bell G Family
Version 0.1.0
Author Muhammad Imran [aut, cre], M.H. Tahir [aut], Saima Shakoor [aut]
Maintainer Muhammad Imran <imranshakoor84@yahoo.com></imranshakoor84@yahoo.com>
Depends R (>= 2.0)
Imports stats
Description It computes two frequently applied actuarial measures, the expected shortfall and the value at risk. Seven well-known classical distributions in connection to the Bell generalized family are used as follows: Bell-exponential distribution, Bell-extended exponential distribution, Bell-Weibull distribution, Bell-extended Weibull distribution, Bell-Lomax distribution, Bell-Burr-12 distribution, and Bell-Burr-X distribution. Related works include: a) Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). ``A new useful exponential model with applications to quality control and actuarial data". Computational Intelligence and Neuroscience, 2022. <doi:10.1155 2022="" 2489998="">. b) Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). ``Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data". Open Physics, 21(1), 20220242. <doi:10.1515 phys-2022-0242="">.</doi:10.1515></doi:10.1155>
License GPL (>= 2)
Encoding UTF-8
RoxygenNote 7.2.3
NeedsCompilation no
Repository CRAN
Date/Publication 2023-05-15 19:06:06 UTC
R topics documented:
ActuarialM-nackage

2 ActuarialM-package

Actu	arialM-package	C	or	пр	ut	at	io	n o	of	A	ctu	ıaı	ria	<i>l</i> 1	Мe	ea.	su	re	S	Us	sir	ıg	В	ell	G	F	aı	ni	ly						
Index																									15										
	BellW distribution	•	•		•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	13
	BellL distribution .																																		
	BellEW distribution																																		
	BellEE distribution																																		
	BellE distribution .																																		6
	BellBX distribution																																		4
	BellB12 distribution	١.																																	3

Description

Evaluates the value at risk (VaR) and expected shortfall (ES) of seven well-known probability distributions in connection with the Bell G family of distributions.

Details

Package: ActuarialM Type: Package Version: 0.1.0 Date: 2023-05-15 License: GPL-2

Maintainers

Muhammad Imran <imranshakoor84@yahoo.com>

Author(s)

Muhammad Imran <imranshakoor84@yahoo.com>, M.H. Tahir <mht@iub.edu.pk> and Saima Shakoor <saimashakoor500@gmail.com>.

References

Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). A new useful exponential model with applications to quality control and actuarial data. Computational Intelligence and Neuroscience, 2022. doi:10.1155/2022/2489998>.

Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data. Open Physics, 21(1), 20220242. <doi:10.1155/2022/2489998>.

BellB12 distribution 3

BellB12 distribution Bell Burr-12 distribution

Description

Computes the value at risk and expected shortfall based on the Bell Burr-12 (BellB12) distribution. The CDF of the Bell G family is as follows:

$$H(x) = \frac{1 - \exp\left[-e^{\lambda} \left(1 - e^{-\lambda K(x)}\right)\right]}{1 - \exp\left(1 - e^{\lambda}\right)}; \qquad \lambda > 0,$$

where K(x) represents the baseline Burr-12 CDF, it is given by

$$K(x) = 1 - \left[1 + \left(\frac{x}{a}\right)^{b}\right]^{-k}; \quad a, b, k > 0.$$

By setting K(x) in the above Equation, yields the CDF of the BellB12 distribution. The following expression can be used to calculate the VaR:

$$VaR_p(X) = a\left(\left[\left(\frac{1}{\lambda}\left[\ln\left(\left[\ln\left(1 - p\left[1 - \exp\left(1 - e^{\lambda}\right)\right]\right)\right] + e^{\lambda}\right)\right]\right)\right]^{-1/k} - 1\right)^{1/b},$$

where $p \in (0,1)$. The ES can be computed from the following expression:

$$ES_p(X) = \frac{a}{p} \int_0^p \left(\left[\left(\frac{1}{\lambda} \left[\ln \left(\left[\ln \left(1 - z \left[1 - \exp \left(1 - e^{\lambda} \right) \right] \right) \right] + e^{\lambda} \right) \right] \right) \right]^{-1/k} - 1 \right)^{1/b} dz.$$

Usage

```
vBellB12(p, a, b, k, lambda, log.p = FALSE, lower.tail = TRUE) eBellB12(p, a, b, k, lambda)
```

Arguments

p	A vector of probablities $p \in (0,1)$.
lambda	The strictly positive parameter of the Bell G family ($\lambda > 0$).
а	The strictly positive scale parameter of the baseline Burr-12 distribution ($a > 0$).
b	The strictly positive shape parameter of the baseline Burr-12 distribution ($b > 0$).
k	The strictly positive shape parameter of the baseline Burr-12 distribution ($k > 0$).
lower.tail	if FALSE then 1-H(x) are returned and quantiles are computed for 1-p.
log.p	if TRUE then $log(H(x))$ are returned and quantiles are computed for $exp(p)$.

4 BellBX distribution

Details

The functions allow to compute the value at risk and the expected shortfall of the BellB12 distribution.

Value

vBellB12 gives the value at risk. eBellB12 gives the expected shortfall.

Author(s)

Muhammad Imran and M.H. Tahir.

R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com> and M.H. Tahir <mht@iub.edu.pk>.

References

Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). A new useful exponential model with applications to quality control and actuarial data. Computational Intelligence and Neuroscience, 2022.

Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data. Open Physics, 21(1), 20220242.

Zimmer, W. J., Keats, J. B., & Wang, F. K. (1998). The Burr XII distribution in reliability analysis. Journal of quality technology, 30(4), 386-394.

See Also

```
eBellBX, eBellL
```

Examples

```
p=runif(10,min=0,max=1)
vBellB12(p,1,1,2,1.2)
eBellB12(p,1,1,2,1.2)
```

BellBX distribution

Bell Burr-X distribution

Description

Computes the value at risk and expected shortfall based on the Bell Burr-X (BellBX) distribution. The CDF of the Bell G family is as follows:

$$H(x) = \frac{1 - \exp\left[-e^{\lambda} \left(1 - e^{-\lambda K(x)}\right)\right]}{1 - \exp\left(1 - e^{\lambda}\right)}; \qquad \lambda > 0,$$

BellBX distribution 5

where K(x) represents the baseline Burr-X CDF, it is given by

$$K(x) = [1 - \exp(-x^2)]^a; \quad a > 0.$$

By setting K(x) in the above Equation, yields the CDF of the BellBX distribution. The following expression can be used to calculate the VaR:

$$VaR_p(X) = \left(-\ln\left[1 - \left\{1 - \left(\frac{1}{\lambda}\left[\ln\left(\left[\ln\left(1 - p\left[1 - \exp\left(1 - e^{\lambda}\right)\right]\right)\right] + e^{\lambda}\right)\right]\right)\right\}^{1/a}\right]\right)^{0.5},$$

where $p \in (0,1)$. The ES can be computed from the following expression:

$$ES_p(X) = \frac{1}{p} \int_0^p \left(-\ln\left[1 - \left\{1 - \left(\frac{1}{\lambda} \left[\ln\left(\left[\ln\left(1 - z\left[1 - \exp\left(1 - e^{\lambda}\right)\right]\right)\right] + e^{\lambda}\right)\right]\right)\right)^{1/a}\right] \right)^{0.5} dz.$$

Usage

```
vBellBX(p, a, lambda, log.p = FALSE, lower.tail = TRUE)
eBellBX(p, a, lambda)
```

Arguments

p A vector of probabilities $p \in (0, 1)$.

lambda The strictly positive parameter of the Bell G family ($\lambda > 0$).

The strictly positive scale parameter of the baseline Burr-X distribution (a > 0).

lower.tail if FALSE then 1-H(x) are returned and quantiles are computed for 1-p.

 $\log p$ if TRUE then $\log(H(x))$ are returned and quantiles are computed for $\exp(p)$.

Details

The functions allow to compute the value at risk and the expected shortfall of the BellBX distribution.

Value

vBellBX gives the value at risk. eBellBX gives the expected shortfall.

Author(s)

Muhammad Imran and M.H. Tahir.

R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com> and M.H. Tahir <mht@iub.edu.pk>.

6 BellE distribution

References

Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). A new useful exponential model with applications to quality control and actuarial data. Computational Intelligence and Neuroscience, 2022.

Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data. Open Physics, 21(1), 20220242.

Kleiber, C., & Kotz, S. (2003). Statistical size distributions in economics and actuarial sciences. John Wiley & Sons.

See Also

```
eBellB12, eBellL
```

Examples

```
p=runif(10,min=0,max=1)
vBellBX(p,1.2,2)
eBellBX(p,1.2,2)
```

BellE distribution

Bell exponential distribution

Description

Computes the value at risk and expected shortfall based on the Bell exponential (BellE) distribution. The CDF of the Bell G family is as follows:

$$H(x) = \frac{1 - \exp\left[-e^{\lambda} \left(1 - e^{-\lambda K(x)}\right)\right]}{1 - \exp\left(1 - e^{\lambda}\right)}; \qquad \lambda > 0,$$

where K(x) represents the baseline exponential CDF, it is given by

$$K(x) = 1 - \exp(-\alpha x);$$
 $\alpha > 0.$

By setting K(x) in the above Equation, yields the CDF of the BellE distribution. The following expression can be used to calculate the VaR:

$$VaR_p(X) = \frac{-1}{\alpha} \ln \left(\frac{1}{\lambda} \left\{ \ln \left[\ln \left(1 - p \left\{ 1 - \exp(1 - e^{\lambda}) \right\} \right) + e^{\lambda} \right] \right\} \right); \qquad p \in (0, 1).$$

The ES can be computed from the following expression:

$$ES_p(X) = \frac{1}{p} \int_0^p \left[\frac{-1}{\alpha} \ln \left(\frac{1}{\lambda} \left\{ \ln \left[\ln \left(1 - z \left\{ 1 - \exp(1 - e^{\lambda}) \right\} \right) + e^{\lambda} \right] \right\} \right) \right] dz.$$

BellE distribution 7

Usage

```
vBellE(p, alpha, lambda, log.p = FALSE, lower.tail = TRUE)
eBellE(p, alpha, lambda)
```

Arguments

A vector of probabilities $p \in (0, 1)$.

lambda The strictly positive parameter of the Bell G family of distributions $\lambda > 0$. alpha

The strictly positive scale parameter of the baseline exponential distribution

lower.tail if FALSE then 1-H(x) are returned and quantiles are computed for 1-p. if TRUE then log(H(x)) are returned and quantiles are computed for exp(p). log.p

Details

The functions allow to compute the value at risk and the expected shortfall of the BellE distribution.

Value

vBellE gives the values at risk. eBellE gives the expected shortfall.

Author(s)

Muhammad Imran and M.H. Tahir.

R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com> and M.H. Tahir <mht@iub.edu.pk>.

References

Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). A new useful exponential model with applications to quality control and actuarial data. Computational Intelligence and Neuroscience, 2022.

Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data. Open Physics, 21(1), 20220242.

Nadarajah, S. (2011). The exponentiated exponential distribution: a survey. AStA Advances in Statistical Analysis, 95, 219-251.

See Also

```
eBellW, eBellEE
```

Examples

```
p=runif(10,min=0,max=1)
vBellE(p,1,1.2)
eBellE(p,1,1.2)
```

8 BelIEE distribution

BellEE distribution Bell exponentiated exponential distribution

Description

Computes the value at risk and expected shortfall based on the Bell exponentiated exponential (BellEE) distribution. The CDF of the Bell G family is as follows:

$$H(x) = \frac{1 - \exp\left[-e^{\lambda}\left(1 - e^{-\lambda K(x)}\right)\right]}{1 - \exp\left(1 - e^{\lambda}\right)}; \qquad \lambda > 0,$$

where K(x) represents the baseline exponentiated exponential CDF, it is given by

$$K(x) = [1 - \exp(-\alpha x)]^{\beta}; \qquad \alpha, \beta > 0.$$

By setting K(x) in the above Equation, yields the CDF of the BellEE distribution. The following expression can be used to calculate the VaR:

$$VaR_p(X) = \frac{-1}{\alpha} \ln \left[1 - \left(1 - \left(\frac{1}{\lambda} \left[\ln \left(\left[\ln \left(1 - p \left[1 - \exp \left(1 - e^{\lambda} \right) \right] \right) \right] + e^{\lambda} \right) \right] \right) \right)^{1/\beta} \right],$$

where $p \in (0, 1)$. The ES can be computed from the following expression:

$$ES_p(X) = \frac{1}{p} \int_0^p \left[\frac{-1}{\alpha} \ln \left[1 - \left(1 - \left(\frac{1}{\lambda} \left[\ln \left(\left[\ln \left(1 - z \left[1 - \exp \left(1 - e^{\lambda} \right) \right] \right) \right] + e^{\lambda} \right) \right] \right) \right]^{1/\beta} \right] dz.$$

Usage

```
vBellEE(p, alpha, beta, lambda, log.p = FALSE, lower.tail = TRUE)
eBellEE(p, alpha, beta, lambda)
```

Arguments

р	A vector of probablities $p \in (0, 1)$.
lambda	The strictly positive parameter of the Bell G family of distributions $\lambda > 0$.
alpha	The strictly positive scale parameter of the baseline exponentialed exponential distribution ($\alpha>0$).
beta	The strictly positive shape parameter of the baseline exponentialed exponential distribution ($\beta>0$).
lower.tail	if FALSE then 1-H(x) are returned and quantiles are computed for 1-p.
log.p	if TRUE then $log(H(x))$ are returned and quantiles are computed for $exp(p)$.

Details

The functions allow to compute the value at risk and the expected shortfall of the BellEE distribution.

BellEW distribution 9

Value

vBellEE gives the value at risk. eBellEE gives the expected shortfall.

Author(s)

Muhammad Imran and M.H. Tahir.

R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com> and M.H. Tahir <mht@iub.edu.pk>.

References

Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). A new useful exponential model with applications to quality control and actuarial data. Computational Intelligence and Neuroscience, 2022.

Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data. Open Physics, 21(1), 20220242.

Nadarajah, S. (2011). The exponentiated exponential distribution: a survey. AStA Advances in Statistical Analysis, 95, 219-251.

See Also

```
eBellEW, eBellE
```

Examples

```
p=runif(10,min=0,max=1)
vBellEE(p,1,1.2,2)
eBellEE(p,1,1.2,2)
```

BellEW distribution

Bell exponentiated Weibull distribution

Description

Computes the value at risk and expected shortfall based on the Bell exponentiated Weibull (BellEW) distribution. The CDF of the Bell G family is as follows:

$$H(x) = \frac{1 - \exp\left[-e^{\lambda} \left(1 - e^{-\lambda K(x)}\right)\right]}{1 - \exp\left(1 - e^{\lambda}\right)}; \qquad \lambda > 0,$$

where K(x) represents the baseline exponentiated Weibull CDF, it is given by

$$K(x) = [1 - \exp(-\alpha x^{\beta})]^{\theta}; \quad \alpha, \beta, \theta > 0.$$

10 BellEW distribution

By setting K(x) in the above Equation, yields the CDF of the BellEW distribution. The following expression can be used to calculate the VaR:

$$VaR_p(X) = \left[\frac{-1}{\alpha}\ln\left(1 - \left[1 - \left(\frac{1}{\lambda}\left[\ln\left(\left[\ln\left(1 - p\left[1 - \exp\left(1 - e^{\lambda}\right)\right]\right)\right] + e^{\lambda}\right)\right]\right)\right]^{1/\theta}\right)\right]^{1/\theta},$$

where $p \in (0, 1)$. The ES can be computed from the following expression:

$$ES_p(X) = \frac{1}{p} \int_0^p \left[\frac{-1}{\alpha} \ln \left(1 - \left[1 - \left(\frac{1}{\lambda} \left[\ln \left(\left[\ln \left(1 - z \left[1 - \exp \left(1 - e^{\lambda} \right) \right] \right) \right] + e^{\lambda} \right) \right] \right) \right]^{1/\beta} dz.$$

Usage

```
vBellEW(p, alpha, beta, theta,lambda, log.p = FALSE, lower.tail = TRUE) eBellEW(p, alpha, beta, theta,lambda)
```

Arguments

р	A vector of probablities $p \in (0, 1)$.
lambda	The strictly positive parameter of the Bell G family of distributions $\lambda>0$.
alpha	The strictly positive scale parameter of the baseline exponentiated Weibull distribution $(\alpha>0).$
beta	The strictly positive shape parameter of the baseline exponentiated Weibull distribution $(\beta>0).$
theta	The strictly positive shape parameter of the baseline exponentiated Weibull distribution ($\theta>0$).
lower.tail	if FALSE then 1 -H(x) are returned and quantiles are computed for 1 -p.
log.p	if TRUE then $log(H(x))$ are returned and quantiles are computed for $exp(p)$.

Details

The functions allow to compute the value at risk and the expected shortfall of the BellEW distribution.

Value

vBellEW gives the value at risk. eBellEW gives the expected shortfall.

Author(s)

Muhammad Imran and M.H. Tahir.

R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com> and M.H. Tahir <mht@iub.edu.pk>.

BellL distribution 11

References

Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). A new useful exponential model with applications to quality control and actuarial data. Computational Intelligence and Neuroscience, 2022.

Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data. Open Physics, 21(1), 20220242.

Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2013). The exponentiated Weibull distribution: a survey. Statistical Papers, 54, 839-877.

See Also

eBellW, eBellEE

Examples

```
p=runif(10,min=0,max=1)
vBellEW(p,1,1,2,1)
eBellEW(p,1,1,2,1)
```

BellL distribution

Bell Lomax distribution

Description

Computes the value at risk and expected shortfall based on the Bell Lomax (BellL) distribution. The CDF of the Bell G family is as follows:

$$H(x) = \frac{1 - \exp\left[-e^{\lambda} \left(1 - e^{-\lambda K(x)}\right)\right]}{1 - \exp\left(1 - e^{\lambda}\right)}; \qquad \lambda > 0,$$

where K(x) represents the baseline Lomax CDF, it is given by

$$K(x) = 1 - \left[1 + \left(\frac{x}{b}\right)\right]^{-q}; \quad b, q > 0.$$

By setting K(x) in the above Equation, yields the CDF of the BellL distribution. The following expression can be used to calculate the VaR:

$$VaR_p(X) = b \left[\left(\frac{1}{\lambda} \left[\ln \left(\left[\ln \left(1 - p \left[1 - \exp \left(1 - e^{\lambda} \right) \right] \right) \right] + e^{\lambda} \right) \right] \right)^{-1/q} - 1 \right],$$

where $p \in (0, 1)$. The ES can be computed from the following expression:

$$ES_p(X) = \frac{b}{p} \int_0^p \left[\left(\frac{1}{\lambda} \left[\ln \left(\left[\ln \left(1 - z \left[1 - \exp \left(1 - e^{\lambda} \right) \right] \right) \right] + e^{\lambda} \right) \right] \right)^{-1/q} - 1 \right] dz.$$

12 BellL distribution

Usage

```
vBellL(p, b, q, lambda, log.p = FALSE, lower.tail = TRUE)
eBellL(p, b, q, lambda)
```

Arguments

p	A vector of probablities $p \in (0,1)$.
lambda	The strictly positive parameter of the Bell G family ($\lambda > 0$).
b	The strictly positive scale parameter of the baseline Lomax distribution $(b>0)$.
q	The strictly positive shape parameter of the baseline Lomax distribution $(q > 0)$.
lower.tail	if FALSE then $1-H(x)$ are returned and quantiles are computed for $1-p$.
log.p	if TRUE then $log(H(x))$ are returned and quantiles are computed for $exp(p)$.

Details

The functions allow to compute the value at risk and the expected shortfall of the BellL distribution.

Value

vBellL gives the values at risk. eBellL gives the expected shortfall.

Author(s)

Muhammad Imran and M.H. Tahir.

R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com> and M.H. Tahir <mht@iub.edu.pk>.

References

Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). A new useful exponential model with applications to quality control and actuarial data. Computational Intelligence and Neuroscience, 2022.

Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data. Open Physics, 21(1), 20220242.

Kleiber, C., & Kotz, S. (2003). Statistical size distributions in economics and actuarial sciences. John Wiley & Sons.

See Also

```
eBellBX, eBellB12
```

Examples

```
p=runif(10,min=0,max=1)
vBellL(p,1,1,2)
eBellL(p,1,1,2)
```

BellW distribution 13

BellW distribution

Bell Weibull distribution

Description

Computes the value at risk and expected shortfall based on the Bell Weibull (BellW) distribution. The CDF of the Bell G family is as follows:

$$H(x) = \frac{1 - \exp\left[-e^{\lambda} \left(1 - e^{-\lambda K(x)}\right)\right]}{1 - \exp\left(1 - e^{\lambda}\right)}; \qquad \lambda > 0,$$

where K(x) represents the baseline Weibull CDF, it is given by

$$K(x) = 1 - \exp(-\alpha x^{\beta}); \quad \alpha, \beta > 0.$$

By setting K(x) in the above Equation, yields the CDF of the BellW distribution. The following expression can be used to calculate the VaR:

$$VaR_p(X) = \left[\frac{-1}{\alpha}\ln\left(\frac{1}{\lambda}\left\{\ln\left[\ln\left(1 - p\left\{1 - \exp(1 - e^{\lambda})\right\}\right) + e^{\lambda}\right]\right\}\right)\right]^{1/\beta}; \qquad p \in (0, 1).$$

The ES can be computed from the following expression:

$$ES_p(X) = \frac{1}{p} \int_0^p \left[\frac{-1}{\alpha} \ln \left(\frac{1}{\lambda} \left\{ \ln \left[\ln \left(1 - z \left\{ 1 - \exp(1 - e^{\lambda}) \right\} \right) + e^{\lambda} \right] \right\} \right) \right]^{1/\beta} dz.$$

Usage

```
vBellW(p, alpha, beta, lambda, log.p = FALSE, lower.tail = TRUE)
eBellW(p, alpha, beta, lambda)
```

Arguments

p	A vector of probablities $p \in (0,1)$.
lambda	The strictly positive parameter of the Bell G family of distributions $\lambda > 0$.
alpha	The strictly positive scale parameter of the baseline Weibull distribution ($\alpha>0$).
beta	The strictly positive shape parameter of the baseline Weibull distribution ($\beta > 0$).
lower.tail	if FALSE then 1-H(x) are returned and quantiles are computed for 1-p.
log.p	if TRUE then $log(H(x))$ are returned and quantiles are computed for $exp(p)$.

Details

The functions allow to compute the value at risk and the expected shortfall of the BellW distribution.

14 BellW distribution

Value

vBellW gives the values at risk. eBellW gives the expected shortfall.

Author(s)

Muhammad Imran and M.H. Tahir.

R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com> and M.H. Tahir <mht@iub.edu.pk>.

References

Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). A new useful exponential model with applications to quality control and actuarial data. Computational Intelligence and Neuroscience, 2022.

Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data. Open Physics, 21(1), 20220242.

Hallinan Jr, A. J. (1993). A review of the Weibull distribution. Journal of Quality Technology, 25(2), 85-93.

Rinne, H. (2008). The Weibull distribution: a handbook. CRC press.

See Also

```
eBellEW, eBellE
```

Examples

```
p=runif(10,min=0,max=1)
vBellW(p,1,2,1)
eBellW(p,1,2,1)
```

Index

```
* Compounding
    ActuarialM-package, 2
* Distribution theory
    ActuarialM-package, 2
* Generalization of distribution
    ActuarialM-package, 2
* Parameter induction
    ActuarialM-package, 2
ActuarialM-package, 2
BellB12 distribution, 3
BellBX distribution, 4
BellE distribution, 6
BellEE distribution, 8
BellEW distribution, 9
BellL distribution, 11
BellW distribution, 13
eBellB12, 6, 12
eBellB12 (BellB12 distribution), 3
eBellBX, 4, 12
eBellBX (BellBX distribution), 4
eBellE, 9, 14
eBellE (BellE distribution), 6
eBellEE, 7, 11
eBellEE (BellEE distribution), 8
eBellEW, 9, 14
eBellEW (BellEW distribution), 9
eBellL, 4, 6
eBellL (BellL distribution), 11
eBellW, 7, 11
eBellW (BellW distribution), 13
vBellB12 (BellB12 distribution), 3
vBellBX (BellBX distribution), 4
vBellE (BellE distribution), 6
vBellEE (BellEE distribution), 8
vBellEW (BellEW distribution), 9
vBellL (BellL distribution), 11
vBellW (BellW distribution), 13
```