1. Majority vote approach: P(Class 13 Red (X) = 0.1 0.15 0.2 0.2 0.55 0.6 0.6 0.65 0.7 0.75 Red* Average probability ZP(Class is Red IX) = 145 Green *

2. In order to show that the regularized LDA can be calculated based on kernels, it suffices to prove that LD function $S_{E}(x) = \phi(x)^{T} \sum_{i=1}^{T} M_{E} - \frac{1}{2} M_{E}^{T} \sum_{i=1}^{T} M_{E} + \log \pi_{E}, \quad k=1,2,\dots D$ can be compaided only through kernels. $\hat{\Sigma} = W_{\phi} + \gamma I = \frac{1}{N-2} \sum_{k=1}^{2} \sum_{y_{i}=k} (\phi(x_{i}) - \hat{M}_{E})(\phi(x_{i}) - \hat{M}_{E})^{T} + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \gamma^{T} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D^{-1} \Phi) + \gamma I = \frac{1}{N-2} (\Phi - \gamma D$

where $D = d:ag(N_1, N_2)$ and $R = (I - YD^{-1}Y^{T})^{T}(I - YD^{-1}Y^{T})$. $\hat{M_k} = \frac{1}{N_k} \sum_{j \neq k} \phi(x_i) = \frac{\overline{p}^{T} y_k}{N_k} \dots (2)$

where yx = is the 1th column vector of Y.

Subtitute @ into 10,

 $S_k(\lambda) = \phi(\lambda)^T \Sigma^{-1} \underbrace{\overline{\mathcal{F}}_{y_k}^{y_k}}_{\mathcal{N}_k} - \frac{1}{2} \underbrace{\left(\underline{\overline{\mathcal{F}}_{y_k}^{y_k}}\right)}_{\mathcal{N}_k} \Sigma^{-1} \underbrace{\overline{\mathcal{F}}_{y_k}^{y_k}}_{\mathcal{N}_k} + \mathcal{L}_{v,q,T_k}$

and then subtitute it into 3, we get

Sr(x) = Nr k (Rk + 11) ye) - - 1 yx K (RK + 11) 4x + log Tr, which depends on kernels.

(e) This question is quite difficult to solve manually (needs computer program to solve). So, full points (8%) will award to everyone.

$$C_{1} = \begin{array}{c} x & x \\ 3 & x \\ 2 & x \\ 1 & 2 & 3 \end{array}$$

Conducted of
$$(3^{\circ})$$
, $(\frac{1+1+0}{3}, \frac{4+2+4}{3}) = (\frac{2}{3}, \frac{10}{3})$
= $(0.67, 3.33)$

Continued of
$$C_2^* = \left(\frac{5+6+4}{3}, \frac{3+2}{3}\right) = \left(\frac{5}{5}, \frac{1.67}{1.67}\right)$$

Identim 1, etep (66)

Observation	distance to centriod	
O 17 SET WAS A	C_1	C2
(1,4)	0.25	4.62
(1,2)	1.3703	4.013
(0,4)	0.94	5:5162
(5,3)	4.3426	1.35
(6,2)	5.49	1.053
(4,0)	4.2093	1.9468

from above table, we can see the auclidean distance between cludes do its Centuoid docent charge .. The peruous clustering remains some Q.6 The likelihood function is given by 1: TS KN (7: , MK, S), loglikelihood function is Int: & In & K N (7, 1, 8) i Q-function is given by Q = E [ln p(a, z | 0)] = & & In[p(zklo)p(xi)zk,o)p(zklxi,0) = & & ln[xk N (2i, Mx, &)] Tk(xi) Where T(21) = P(ZK | 71; 0 old) = P(7, 1ZK; 0 old) P(ZK | Old) ξρ(z) z, 01d) p(z, 01d) = & & [ln x - 1 ln | 2x & | - 1 (NK-71)]

$$\frac{\partial Q}{\partial \mu_{K}} = 0 \Rightarrow \begin{cases} \begin{cases} \begin{cases} \langle H_{K} - \eta_{i} \rangle \rangle \\ \langle Y_{K} - \eta_{i} \rangle \end{cases} \end{cases} \begin{cases} \langle H_{K} - \eta_{i} \rangle \rangle \\ \langle Y_{K} - \eta_{i} \rangle \end{cases} \end{cases} \begin{cases} \begin{cases} \langle H_{K} - \eta_{i} \rangle \\ \langle Y_{K} - \eta_{i} \rangle \end{cases} \end{cases} \begin{cases} \langle H_{K} - \eta_{i} \rangle \\ \langle Y_{K} - \eta_{i} \rangle \end{cases} \end{cases} \begin{cases} \langle H_{K} - \eta_{i} \rangle \\ \langle Y_{K} - \eta_{i} \rangle \end{cases} \end{cases} \begin{cases} \langle H_{K} - \eta_{i} \rangle \\ \langle Y_{K} - \eta_{i} \rangle \end{cases} \end{cases} \begin{cases} \langle H_{K} - \eta_{i} \rangle \\ \langle Y_{K} - \eta_{i} \rangle \end{cases} \end{cases} \begin{cases} \langle H_{K} - \eta_{i} \rangle \\ \langle Y_{K} - \eta_{i} \rangle \end{cases} \end{cases} \begin{cases} \langle H_{K} - \eta_{i} \rangle \\ \langle Y_{K} - \eta_{i} \rangle \end{cases} \end{cases} \begin{cases} \langle H_{K} - \eta_{i} \rangle \\ \langle Y_{K} - \eta_{i} \rangle \end{cases} \end{cases} \begin{cases} \langle H_{K} - \eta_{i} \rangle \\ \langle Y_{K} - \eta_{i} \rangle \end{cases} \end{cases} \begin{cases} \langle H_{K} - \eta_{i} \rangle \\ \langle Y_{K} - \eta_{i} \rangle \end{cases} \end{cases} \end{cases} \begin{cases} \langle H_{K} - \eta_{i} \rangle \\ \langle Y_{K} - \eta_{i} \rangle \\ \langle Y_{K} - \eta_{i} \rangle \end{cases} \end{cases} \end{cases} \begin{cases} \langle H_{K} - \eta_{i} \rangle \\ \langle Y_{K} - \eta_{i} \rangle \\ \langle Y_{K} - \eta_{i} \rangle \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \begin{cases} \langle H_{K} - \eta_{i} \rangle \\ \langle Y_{K} - \eta_{i} \rangle \\ \langle$$