RAP: RNA-Seq Analysis Pipeline

A cloud-based NGS web application

RNASeq2015

Mattia D'Antonio

ELIXIR-ITA

Rome, 22th October, 2015

CINECA Roma

m.dantonio@cineca.it

What is RAP?

RNA-Seq Analysis Pipeline

- A fully automated RNA-Seq pipeline
 - To study gene expression in a wide variety of conditions
 - Easy access to computational clusters
 - Comprehensive and complex analysis pipeline
 - Integrated analysis tools

- A user friendly WEB service
 - Easy access to bioinformatics tools
 - No technical requirements
 - A better and powerful results visualization

Why use RAP?

A simple web interface allows the user to:

- Create, customize and monitor an analysis
- Browse, filter and download the results
- Avoid any software installation and configuration
- Updated bioinformatics software
- Access to computational resources in cloud

RNA-Seq data size

NGS applications are resource-hungry

RNA-Seq in particular

- HiSeq 2000 Output:
 - 300 Gb (fastq)
 - 375 Million/lane PE reads
- Increased size due to replicates and PE

Support of Computational Centers (e.g. CINECA)

Workflow modules

- Preliminary modules
 - Quality checks (FastQC)
 - Reads filtering (NGS QC Toolkit)
- Main branch
 - Alignment (*Tophat/STAR*)
 - Transcripts reconstruction and quantification (Cufflinks / HTSeq)
 - Differential expression (Cuffdiff / DESeq)
- Splicing Junctions and PolyA
 - Junctions mapping (Bowtie / Tophat)
 - PolyA tags (Bowtie)
- Cassette Exons (SpliceTrap)
- Fusion Transcripts (ChimeraScan)
- Result
 - Results visualization
 - Pathway analysis, Plots

The RAP Workflow

Chapter 1

Quality assessment

Quality

Alignmen

Expression

Junctions

PolvA

Cassette

Chimeras

DE analyses

Interface

Results

FastQC gives quality statistics

- base sequence quality
- base sequence content,
- sequence GC content

Quality scores across all bases (Skmina hvil. 3 encoding

NGS QC Toolkit gives the possibility to trim and discard low quality bases and sequences

Reads alignment - Tophat

Quality

Alignment

Expressioi

Junctions

Poly?

Cassette

Chimera

DE analyse

Interface

Results

 High quality Reads are aligned to the genome by TopHat

- Tophat identifies exon-exon splice junctions
 - uses the mapping program Bowtie
- RNA-Seq reads can contiguously align to the genome

unspliced reads

TopHat is a spliced aligner

 input reads are split into smaller segments mapped independently

Mapping to genome

Reads alignment - STAR

Quality

Alignment

Expression

Junctions

PolyA

Cassette

Chimeras

DE analyse

Interface

Results

 As alternative, reads can be aligned to the genome by using STAR

- Ultrafast universal RNA-seq aligner
 - Outperforms other aligners by a factor of > 50
 - 550 million 2 x 76bp PE reads per hours on 12-core
 - Very good scalability
 - Huge RAM requirements
 - Good accuracy (maybe better than Tophat? However not so worst)
- Splicing detection requires a bit of work (to be done)
 - Indexes building should consider read length

Transcript assembly and quantification

Quality

Alignment

Expression

Junctions

PolyA

Cassette

Chimera

DE analyses

Interface

Kesuit

Results of alignment are given to **Cufflinks** to:

- Reconstruction of a parsimonious set of transcripts
- Estimation of the relative abundances of transcripts
 - Expression levels are measured in FPKM
 - Fragments Per Kilobase of exon per Million mapped fragments

FPKM = fragments count with the application of length-based normalization

Gene raw counts

Quality

Alignmen[.]

Expression

Junctions

PolyA

Cassette

Chimeras

DE analyse

Interface

Kesults

Results of alignment are also analyzed by **HTSeq**

- Raw reads count at gene level
- Useful for differential expression modules like DESeq
- Raw counts are in difficult with
 - multi-mapping reads
 - ambigous alignment

Splicing junctions

Quality

Alignment

Expression

Junctions

PolyA

Cassette

Chimera

DE analyse

Intertace

Kesuit

To determine expressed junctions:

- 1. Alignment to the reference genome with **Bowtie**
 - unspliced reads (intra-exonic reads) are discarded
 - unmapped reads are potentially spliced
- 2. Alignment to a custom built splice junctions library
 - obtained from RefSeq

RefSeq = database of annotated and curated nucleotide sequences

Splice Junctions library

Quality

Alignment

Expression

Junctions

PolyA

Cassette

Chimeras

DE analyses

Interface

Results

This library contains:

- known splice junctions
 - Each pair of consecutive exon boundaries
 - 200.000 junctions from RefSeq

- potential splice junctions
 - Through a combinatorial exon skipping procedure
 - □ ~ 2 million junctions

Polyadenylation sites

Quality

Alignment

Expression

Junctions

PolyA

zassette

Chimeras

DE analyses

Interface

Kesuits

A polyA tag cannot be mapped to the genome and polyA tail should be removed before mapping

TGACTGACTGATACTGACACACTGATCGATCG

ACTGACTGTCTATGACTGAAAAAAAAAAAAAAAA

PolyA tags mark transcription termination sites (TTS)

PolyA detection

Quality

Alignmen[.]

Expression

Junctions

PolyA

Cassette

Chimeras

DE analyses

Interface

Results

- 1. Extraction of unmapped reads
 - From Tophat and/or junctions
- 2. Extraction of polyA according to the read strand
 - Consider directional
- 3. PolyAs tails are trimmed
 - Trimming position is annotated
- 4. Mapping to the genome with **TopHat**
- 5. PolyA sites annotation
- 6. Detection of Polyadenylation Signals (PAS)

AAUAAA

AAAAAAAAAAAAAA

TTS

Cassette Exons

Quality

Alignment

Expression

Junctions

Poly£

Cassette

Chimeras

DE analyses

Interface

Results

An exon may be spliced out of the primary transcript or retained (CE or exon skipping)

SpliceTrap is a statistic tool for

- cassette exons identification
- quantifying exon inclusion ratios

SpliceTrap

Quality

Alignment

Expression

Junctions

PolyA

Cassette

Chimera

DE analyse

Interface

Results

✓ Utilizes a comprehensive exon trio db

- ✓ Aligns reads using bowtie (or RMAP)
- Exploits the abundances and positions of the read
- ✓ Tests the hypothesis whether the middle exon is alternatively spliced or not
- Calculates inclusion ratios for cassette exons

Inclusion ratios

Quality

Alignment

Expression

Junctions

Poly*!*

Cassette

Chimeras

DE analyse

Interface

Results

The exon **inclusion ratio** is

the expression level of the **inclusion isoform**

divided by

total expression level of both isoforms (inclusion and skipped)

Chimeric Transcripts

Quality

Alignment

Expressior

Junctions

PolyA

Cassett

Chimeras

DE analyse

Interface

Kesuits

Chimeric RNA is encoded by

- ✓ a fusion gene
- ✓ trans-splicing

- Often produced by cancer cells
- Chimeras can be functional!

ChimeraScan detects gene fusions in <u>paired-end</u> datasets by mapping to both genome and transcriptome to find **fusion breakpoints** candidates

ChimeraScan

Quality

Alignment

Expressior

Junctions

Poly₽

Cassett

Chimeras

DE analyse

Intertac

Kesults

Reads that map to different isoforms of the same gene are discarded

The others are fusion breakpoints candidates

Potential chimeras are filtered to remove artefacts

- ✓ Low coverage
- ✓ Low expressed chimeric transcripts

DE transcripts

Quality

Alignmen⁻

Expression

Junctions

Poly*E*

Cassett

Chimera

DE analyses

Intertace

Result

Cuffdiff finds significant changes in

- transcripts expression
- Splicing events
- promoters

• Variance is modelled as a function of the mean fragment count across replicates

- It is known to use an overly conservative model
 - With few replicates or high variability may not get any significant calls

DE genes

Quality

Alignment

Expression

Junctions

Poly#

Cassette

Chimeras

DE analyses

Intertace

Results

Another option is **DESeq**

- DE at gene level
- Gene raw counts in input
 - e.g from HTSeq
- More robust with few biological replicates
- It divides variability in
 - Raw variance (from biological variability)
 - Shot noise (from counts uncertainty)

DE polyA, junctions, exons

Quality

Alignmen

Expression

Junctions

PolyA

Cassette

Chimeras

DE analyses

Interface

Results

Other differential analyses are performed to compare results obtained at several steps

- Alternative polyadenylation sites
 - Mapping counts on poly(A) sites
 - DESeq
- Alternative splicing junctions
 - Mapping counts on junctions
 - DESeq
- Alternative Exon inclusion ratios
 - Inclusion ratios
 - $\chi^2 test$

Available organisms

Several organisms are available in RAP:

Homo Sapiens

hg18, hg19

Mus Musculus

mm9, mm10

• Rattus Norvegicus

rn4

Drosophila Melanogaster

dm3

Saccharomyces cerevisiae

sacCer3

Zea mays

maize2, maize3, mo17

The RAP Web Interface

Chapter 2

Test user accounts

• username: **rnaseq2015-n@cineca.it**

```
· rnaseq2015-1@cineca.it
```

- · rnaseq2015-2@cineca.it
- •
- · rnaseq2015-25@cineca.it
- password: <u>elixir-ita</u>

The web interface

A web 2.0 interface based on

HTML5, CSS3, jQuery, Foundation 4

RAP: RNA-Seq Analysis Pipeline

RNA-Seq technology is becoming widely used in various transcriptomics studies; however, analyzing and interpreting the RNA-Seq data face serious challenges due to transcriptome complexity.

A complete RNA-seq analysis involves several steps and the data can be investigated under many points of view (gene and transcript expression, differential expression, alternative splicing, polyA signals, fusion transcripts, etc.)

Initiation Elongation Termination

Welcome, m.dantonio81@gmail.com.
You can start using RAP by creating a new study:

Submit analysis

Data submission

Projects list

INSTITUTE: BARIWORKSHOP2013

Study archive

This web page lists all your studies.

You can also Create a new one.

Study	Email	Creation Date	Access	Num.of Analysis	Num.of Files	View	Edit	Delete
Bari2013 Test cases for RNA-Seq Epigen Workshop Bari 2013	m.dantonio@cineca.it	27/11/2013 10:25:31	group	22	44	2	8	×
Mouse cerebral cortex adult VS embryonic http://www.ncbi.nlm.nih.gov/pubmed /23416452	m.dantonio@cineca.it	21/10/2013 08:37:57	public	1	7	@		×
HOXA1_knockdown http://www.ncbi.nlm.nih.gov/geo/query /acc.cgi?acc=GSE37704	bioteam@caspur.it	17/9/2013 11:33:28	public	1	6	9		×

Create a study (or Project)

To create a new study you should give it:

- ✓ a unique name
- ✓ a short description
- √ an access level

Study archive

Create a new study

In order to create a new study you should give it an unique name and write a short description about its subject.

Create new study

My first study

A new study is ust an empty container...

... you need input files

INSTITUTE: BARIWORKSHOP2013 / STUDY: MY FIRST PROJECT

Study: My First Project

Study created: Wed, 27 Nov 2013 14:46:37

Access level: private

Owner: You

Description:

This is my relly first project!

Input data (0 files found)

You currently have **no file** uploaded. Upload your files to start a new analysis.

Upload Files

You can upload new files and include them in the current study.

Upload files

Upload input

Several upload options

Web Upload

No limitation to file size, ansynchronous

Preprocessing - temporary files

INSTITUTE: BARIWORKSHOP2013 / STUDY: MY FIRST PROJECT

Study: My First Project

Study created: Wed, 27 Nov 2013 14:46:37

Access level: private

Owner: You

Description:

This is my really first project!

Input data (0 files found)

You have 2 temporary files uploaded.

You already have a decompression queued or running.

Preprocessing - decompression

INSTITUTE: BARIWORKSHOP2013 / STUDY: MY FIRST PROJECT

Study: My First Project

Study created: Wed, 27 Nov 2013 14:46:37

Access level: private

Owner: You

Description:

This is my really first project!

Please wait until the process is concluded. You will notified with an email when decompression will be completed.

Preprocessing - decompression

You will be notified by email once completed

INSTITUTE: BARIWORKSHOP2013 / STUDY: MY FIRST PROJECT

Study: My First Project

Study created: Wed, 27 Nov 2013 14:46:37

Access level: private

Owner: You

Description:

This is my really first project!

Input data (0 files found)

You have 3 temporary files uploaded.

You already have a decompression queued or running.

Temporary Files You have one or more temporary files. Process these files to start an simulation. You already have a decompression queued Upload Files You already uploaded one or more compressed files. You have to process them before uploading new files. Upload files

Preprocessing - lane pairing

INSTITUTE: BARIWORKSHOP2013 / STUDY: MY FIRST PROJECT

Study: My First Project

Study created: Wed, 27 Nov 2013 14:46:37

Access level: private

Owner: You

Description:

This is my really first project!

Reorder files and assign paired ends (if any)

Continue

If your files are produced by a Paired-end sequencing protocol, you need to indicate each pair of files that comes from the same lane. Drag and drop files into same box.

Preprocessing - lane pairing

Preprocessing - metadata

INSTITUTE: BARIWORKSHOP2013 / STUDY: MY FIRST PROJECT

Study: My First Project

Study created: Wed, 27 Nov 2013 14:46:37

Access level: private

Owner: You

Description:

This is my really first project!

Metadata Assignment

You can associate your files with samples about the sequenced material.

Name

TreatedSample

Add sample

Preprocessing - metadata

Preprocessing - files uploaded

INSTITUTE: BARIWORKSHOP2013 / STUDY: MY FIRST PROJECT

Study: My First Project

Study created: Wed, 27 Nov 2013 14:46:37

Access level: private

Owner: You

Description:

This is my really first project!

You have not created any analysis yet.

Please select below one or more files to create a new analysis.

Input data (2 files found)

Select all Deselect all Invert selection

Design a new analysis with selected file(s)

Upload Files

You can upload new files and include them in the current study.

Upload files

Analysis Parameters

Pipeline parameters (You can safely use defaults)

Quality check and filtering

Length

70

The cut-off value for percentage of read length that should be of given quality (default: 70)

Analysis Parameters

Determination of polyA reads

PolyA_length

6

Quality check and filtering	na	
Length	70	The cut-off value for percentage of read length that should be of given quality (default: 70)
	70	
Quality	20	The cut-off value for PHRED quality score for high-quality filtering (default: 20)
PrimerAdaptorFilter	Browse No file selected.	File for user defined primer/adaptor sequences, one per line
PrimerAdaptorLibrary	- ;	Selection of primer/adaptor library (incompatible with PrimerAdaptorFilter)
Transcript assembly and	aboundancy estimation	
Novel-Transcripts		If selected, output will include all reference transcripts as well as any novel genes and isoforms that are assembled. If unselected, it will not assemble novel transcripts, and the program will ignore alignments not structurally compatible with any reference transcript. (default: 0)
Genome alignment		
read-edit-dist	2	Final read alignments having more than these many edit distance are discarded. (default: 2)
read-gap-length	2	Final read alignments having more than these many total length of gaps are discarded. (default: 2)
read-mismatches	2	Final read alignments having more than these many mismatches are discarded. (default: 2)

Length of polyA stretches (default: 6)

Analysis Started

Your analysis has been queued and each step will be automatically executed

Input data (2 files found)

Design a new analysis with selected file(s)

Monitoring an analysis

Step(s) list Module: FastQC (0.10.1) Queued Description: Quality stats and checks Average execution time: about an hour Results not yet available Module: ngsqctoolkit (2.3) Todo Description: Quality check and filtering Average execution time: a few hours Results not yet available Module: tophat (2.0.9) **Description:** Alignment

Completed steps: 0/10 **Analysis Parameters** Pipeline: RNA-Seq v6 --library-type: fr-unstranded --mate-inner-dist: 200 -- read-edit-dist: 2 -- read-gap-length: 2 --read-mismatches: 2 Database: hg18 Fusion-search: 0 Length: 70 Novel-Transcripts: 0 PolyA length: 6 PrimerAdap rFilter: PrimerAdaptorLibrary: -Quality: 20 Reference-GTF: hg18 gtf Search-cassette-exons: 0 Search-novel-junctions: on Search-polya: on

Monitoring an analysis

COMPLETED steps:

List of files generated

they can be previewed and downloaded

Analysis Completed - Access results

Analyses

Name And Description

Pipeline

Status

Mon.

Results

Edit

Delete

My First Analysis

test

Created: 27/11/2013

The RAP Analysis Results

Chapter 3

Results visualization

The user can browse among results through

Results visualization

File	Label		Expressed FPKM>0	Expressed FPKM>10	Expressed FPKM>20	Expressed FPKM>100	#HIDATA Loci	ary	pag	e
1	Embryonic1	transcripts	22852	7374	4265	640				
		genes	16963	7180	4355	680	0			
2	Embryonic2	transcripts	23096	7436	4257	651				
		genes	17160	7196	4363	690	0			
3	Embryonic3	transcripts	23104	7332	4290	682				
		genes	17160	7126	4364	728	0			
4	Embryonic4	transcripts	23182	7408	4280	645				
		genes	17223	7203	4376	688	0			
5	Adult1	transcripts	23989	7198	4148	713				
		genes	17866	6987	4214	754	0			
6	Adult2	transcripts	23874	7262	4215	725				
		genes	17782	7045	4264	760	0			
7	Adult3	transcripts	24044	7094	4063	698				
		genes	17891	6884	4128	741	0			

Results visualization

• From summary, the user can accε

to a page of detal

			Click on a
UID	Gene	Transcript	Genomic Position
50	RPS27	NM_001030	chr1:152229863-15223125
142	RPL41	NM_021104	chr12:54796641-54797883
32	CUFF.180	CUFF.180.1	chr1:91625370-91625735
45	S100A6	NM_014624	chr1:151773700-15177534
63	PIGR	NM_002644	chr1:205168490-20518643
96	FTH1	NM_002032	chr11:61488333-61491708
90	RPS13	NM_001017	chr11:17052515-17055796
114	RPS25	NM_001028	chr11:118391633-1183942
143	CUFF.842	NM_079423	chr12:54838312-54841633

	Filte	r criteria		
Gene ID lm. FPSS				
Transcript ID: (mi. NM 000524)				
Chr	chr12			f.Transci
Start	>	(A) 4	(h)	1 001030
End	>	(A) <		1 021104
Strand	+		2	1_021104
ranscript Length	*	300 (*) «	(4)	1_001017
Num Exons	3	3 (a) <		1_014624
FPKM	*	100 (n) «	(2)	1_002644
Coverage	>	(A) 4	(a) (a)	1_002032
Class			4	1 001017
Ref. Transcript				
uh				1_001028
	_			1_079423
705 6		1419.41 41.15	=	NM_001012

Each page can b

• filtered by mean of a section of the sholds

- sorted and
- exported in CSV format via the download engine

Analysis results - Quality checks

Comprehensive set of quality checks and

Analysis results - Quality checks

- Details for ea
- quality check
- Graphs
- Stats
- Information

Analysis results - Summary

- Input and high quality reads
- Mapped reads (to the genome)
- Mapped reads (to junctions library)

Summary of RNA-Seq metrics

Organism: Human (Homo Sapiens)

Genome: hg18

File	Label	Input Reads	Tophat	Junctions
1	inf_2h	Raw: 12511139 Filtered: 12218844	Overall Mapping: 11049476 (90.4%)	Reads: 48 Mapped reads: 48 (100.00%)
2	inf_6h	Raw: 10804133 Filtered: 10137081	Overall Mapping: 8933160 (88.1%)	Reads: 62 Mapped reads: 62 (100.00%)

Import data into IGV

Gene and transcript expression summary

Click on the colored-box numbers to open the expression overview

File	Label		Expressed FPKM>0	Expressed FPKM>10	Expressed FPKM>20	Expressed FPKM>100	#HIDATA Loci
1	Embryonic1	transcripts	22852	7374	4265	640	
		genes	16963	7180	4355	680	0
2	Embryonic2	transcripts	23096	7436	4257	651	
		genes	17160	7196	4363	690	0
3	Embryonic3	transcripts	23104	7332	4290	682	
		genes	17160	7126	4364	728	0
4	Embryonic4	transcripts	23182	7408	4280	645	
		genes	17223	7203	4376	688	0
5	Adult1	transcripts	23989	7198	4148	713	
		genes	17866	6987	4214	754	0
6	Adult2	transcripts	23874	7262	4215	725	
		genes	17782	7045	4264	760	0

Expressed transcripts found for 'inf_2h'

Filter, browse and download results Sample: TreatedSample

e Info		List of selecte	d Filters
1681	elements	FPKM	> '20'
169	pages		
10	rows-per-page	Reset Filters C	hoose Filters
ownload			
ownload	d		

LUID	Cons	Transmit	Canamia Basifian	Obrand	T1	WE	EDIZIA	Company
UID	Gene	Transcript	Genomic Position	Strand	TLen	#Exons	FPKMI	Coverage
1268	MIR4461	NR_039666	chr5:134291628-134291701	+	74	1	237307.93	9918.79
637	MIR548AC	NR_039621	chr17:28547066-28547096	*	31	1	64029.67	2676.26
987	MIR3687	NR_037458	chr21:1678868-1678928	4	61	1	42134.91	1761.12
1206	MIR1267	NR_031671	chr4:177196342-177331125	*	57	3	39547.53	1652.97
672	MIR54802	NR_039605	chr17:60821546-60847231	4	52	3	34715.01	1450.99
941	MIR663A	NR_030386	chr20:26136822-26136914	(<u>2</u>)	93	1	16631.98	695.17
1282	MR548D2	NR_030385	chr5:159002885-159095000	+	81	4	14808.62	618.96
1214	MIR4454	NR_039659	chr5:7322416-7322467	874	52	1	12569.28	525.36
1603	MIR548D1	NR_030382	chr9:123415763-123798763	3 .	59	4	11998.16	501.49
1207	MIR548AB	NR 039611	chr4:183713766-183720064	_	56	2	11737.12	490.58

Analysis results - Search by Gene

Expression levels for gene: TP53

File	Label	Gene	Trans	Position	Gene FPKM	Transcript FPKM	Coverage
1	inf_2h	TP53	NM_001126115	chr17:7512445-7519536	13	10,21	0.43
1	inf_2h	TP53	NM_001126117	chr17:7512445-7519536	13	0	0
1	inf_2h	TP53	NM_001126116	chr17:7512445-7519536	13	0	0
1	inf_2h	TP53	NM_001126112	chr17:7512445-7531593	13	0.01	0
1	inf_2h	TP53	NM_000546	chr17:7512445-7531593	13	2.77	0.12
1	inf_2h	TP53	NM_001126113	chr17:7512445-7531593	13	0	0
1	inf_2h	TP53	NM_001126114	chr17:7512445-7531593	13	0	0
2	inf_6h	TP53	NM_001126115	chr17:7512445-7519536	14.96	0	0
2	inf_6h	TP53	NM_001126117	chr17:7512445-7519536	14.96	0	0
2	inf_6h	TP53	NM_001126116	chr17:7512445-7519536	14.96	12.76	0.39
2	inf_6h	TP53	NM_001126118	chr17:7512445-7531593	14.96	0	0
2	inf_6h	TP53	NM_001126112	chr17:7512445-7531593	14.96	0	0
2	inf_6h	TP53	NM_000546	chr17;7512445-7531593	14.96	0	0
2	inf_6h	TP53	NM_001126113	chr17:7512445-7531593	14.96	0	0
2	inf_6h	TP53	NM_001126114	chr17:7512445-7531593	14.96	2.19	0.07

TD53	
1,00	

Analysis results - Gene View

2	Int_6h	1P53	NM_000545	CNF1///512445-/531593	14.96	0	U
2	inf_6h	TP53	NM_001126113	chr17:7512445-7531593	14.96	0	0
2	inf_6h	TP53	NM_001126114	chr17:7512445-7531593	14.96	2.19	0.07

Gene structure view

Analysis results - Junctions

- Novel junctions
- •Sele
- skip

File	Label	RefSeq Junctions	Novel Junctions
1	lymph_duod_inf	97095	2588
2	blood_duod_nt	68884	1245
3	lymph_ileum_inf	85910	2106
4	blood_ileum_nt	75358	1564
5	blood_duod_inf	65635	1217
6	lymph_duod_nt	54808	1109
7	blood_ileum_inf	58934	882
8	lymph_ileum_nt	52903	858

Analysis results - Junctions

Junctions found for dataset 'lymph_duod_inf'

11549619 11546300 11551143

Analysis results - Cassette Exons

Quality & Cassette exons and other elementary Cassette Exons

File	Lape	Casseill Expns	Constitution Exant	ini or Retantion	Alternative 5'	Alternative 3'	Total
1	Embryopic1	Fo n	re te	Ptic	on	280	83300
2	Embryonic2	2910	85059	142	424	295	88830
3	Embryonic 3	ern.	ative	132	404 3	266	83865
4	Embryonic4	2552	84790	144	421	292	88199
5	Adult1	2523	87148	150	442	304	90567
6	Adult2	2867	86680	143	437	310	90437
7	Adult3	2825	84741	133	431	277	88407

Analysis results - Cassette Exons

Click on a column title to order this table									
NIDÎ	Gene	Cassette Position	Upstream Exon Position	Downstream Exon Position	Upstream Exon Coverage	Downstream Exon Coverage	Cassette Coverage	AS Type	Inclusion Frequency
16881		chrX_:32429-32584	chrX_:30587-30645	chrX_39024-39148	168.97	25	101.29	CA	0
16880		chrX_:28975-29113	chrX_:24871-24962	chrX_:30587-30645	167.03	89.66	142.03	CA	0
16879		chrX21627-21695	chrX14074-14167	chrX_24871-24962	177.42	27.47	261.76	CA	0
16878	EG621083	chrX:99063364-99063446	chrX:99060727-99060799	chrX:99064393-99064457	52.78	85.94	101.22	CA	0
16877	Cxcr3	chrX:98940786-98940829	chrX:98940121-98940200	chrX:98942777-98942906	155.7	128.68	325.58	CA	0
16876	Cxcr3	chrX:98940121-98940200	chrX:98939772-98939901	chrX:98940786-98940829	105.43	265.12	244.3	CA	0
16875	Taf1	chrX:98763704-98763776	chrX:98732364-98732466	chrX:98780955-98781017	29.41	19.35	50	CA	0
16874	Srpx	chrX:9657040-9657164	chrX:9656379-9656457	chrX:9660979-9661021	326.92	95.24	205.65	CA	0
16873	Yipf6	chrX:96163749-96163910	chrX:96163366-96163497	chrX:96165374-96165467	694.66	1046.24	988.82	CA	0
16872	Yipf6	chrX:96160087-96160251	chrX:96157846-96157943	chrX:96163366-96163497	580.41	901.53	850	CA	0

PolyA sites and fusion transcripts

File	Label	Num.sites
1	24h_Met_rep1	2204
2	24h_Met_rep2	2359
3	24h_Met_rep3	1907
4	24h_rep1	2441
5	24h_rep2	2583
6	24h rep3	2543

Differential Analyses

e.g. expressed genes (per lane)

e.g. differentially expressed genes

List of submitted differential expression operations

Create a new differential expression operation

If you have replicates, assign them to the same group

Result of a DE operation is a matrix

pair of samples

Each pair can be expanded for details

Differentially expressed genes

Filter, browse and download results

Click on a column title to order this table													
UID	Geneţ	Transcript	Genomic Position	Sample1	Sample2	Status	FPKM Sample1	FPKM Sample2	Log2	Test Stat	Pvalue	Qvalue	Significant?
50	1700011H14Rik	NM_025956	chr14:49226358-49245428	blood_duod_nt	blood_duod_inf	ок	0	12.64	0	0	≤0.01	≤0.01	yes
85	2010002M12Rik	NM_053217	chr19:34617050-34640743	blood_duod_nt	blood_duod_inf	OK	0	11.72	0	0	≤0.01	≤0.01	yes
13	2310007B03Rik	NM_001159940	chr1:93151354-93160948	blood_duod_nt	blood_duod_inf	ОК	8.11	0	0	0	≤0.01	≤0.01	yes
34	2310007L24Rik	NM_029345	chr11:106374825-106377114	blood_duod_nt	blood_duod_inf	OK	85.25	0	0	0	≤0.01	≤0.01	yes
64	2310042E22Rik	NM_025634	chr16:21152658-21153944	blood_duod_nt	blood_duod_inf	ОК	0	8.71	0	0	≤0.01	≤0.01	yes
20	2310057J18Rik	NM_026336	chr10:28972287-28986306	blood_duod_nt	blood_duod_inf	oĸ	0	7.54	0	0	≤0.01	≤0.01	yes
181	4930432K21Rik	NM_029045	chr8:84148037-84172597	blood_duod_nt	blood_duod_inf	ОК	3.87	0	0	0	≤0.01	0.05	yes
30	Abhd15	NM_026185	chr11:77515116-77520628	blood_duod_nt	blood_duod_inf	OK	4.31	0	0	0	≤0.01	0.02	yes
119	Acap3	NM_207223	chr4:155891874-155907251	blood_duod_nt	blood_duod_inf	OK	2.88	0	0	0	≤0.01	≤0.01	yes
89	Adamts12	NM_029981	chr2:27079380-27108613	blood_duod_nt	blood_duod_inf	ок	0	3.66	0	0	≤0.01	≤0.01	yes

List of submitted differential expression operations

Create a new differential expression operation

If you have replicates, assign them to the same group

DE operations can be requested as a further analysis

Available differential analyses

- Differential transcript expression
 - Cuffdiff
- Differential gene expression
 - DESeq
- Differential exon inclusion ratio
 - Custom, chi-square
- Differential splicing junction usage
 - DESeq
- Differential Polyadenilation sites usage
 - DESeq

Results integration

Integration with IGV

Alignment results and assembled transcripts

can be imported into the

Integrative Genome Viewer (IGV)

Import data into IGV

The Integrative Genomics Viewer (IGV) is a high-performance visualization tool for interactive exploration of large, integrated genomic datasets. It supports a wide variety of data types, including array-based and next-generation sequence data, and genomic annotations.

Click here to load checked tracks

After checking the desired tracks, the IGV Java applet will be launched. If you have any problems, try with the direct red link. You need IGV installed on your computer.

You can install IGV automatically:

- 1. Use one of the Load links in the following table
- 2. A file igv, inlp(*) will be prompted for download
- Execute the downloaded igv. inlp(*) file (or select Open with JavaTM Web Start to open it)
- If the system displays messages about trusting the application, confirm that you trust the application
- Automatically Java Web Start will detect IGV on your computer and, if needed, will automatically download and install it

If the automatic procedure fails, you have to install IGV manually following the official guide.

Once IGV has been installed on your computer, simply use the Load links to download igw.jnlp(*) and execute that file to load data into IGV

IGV - Integrative Genome Viewer

IGV - Integrative Genome Viewer

Integration with GraphiteWEB

Pathway analyses of gene expression data

Pathway analyses are performed by Graphite Web, a public web server for the analysis and visualization of biological pathways. It supports five different gene set analyses, three species and two pathway databases. Graphite Web has a powerful visualization that makes results interpretation easily accessible to the user.

A tutorial for Graphite Web and its analyses is available here.

Nucleic Acids Res. 2013 Jul;41(Web Server issue):W89-97. doi: 10.1093/nar/gkt386. Epub 2013 May 10.

Graphite Web: Web tool for gene set analysis exploiting pathway topology.

Sales G, Calura E, Martini P, Romualdi C.

PMID 23666626

Your dataset has been succefully imported. Now customize your GraphiteWeb analysis

GraphiteWEB configuration Please choose one of the following analysis methods: Hypergeometric test Choose a pathway database: KEGG ▼

Hypergeometric test estimates the probability of observing a given number of genes from a pathway among the selected differentially expressed genes.

GSEA compares the distribution of pathway genes adjusted for their correlation structure to that of all the genes provided by the user. This method only works from Expression Analysis results.

SDIA cantures several aspects of the data combining the fold change of

Pathway Analysis with GraphiteWEB

GraphiteWeb

http://graphiteweb.bio.unipd.it

A fruitful collaboration with Chiara Romualdi

University of Padova

Pathway Analysis with GraphiteWEB

GraphiteWeb

http://graphiteweb.bio.unipd.it

A fruitful collaboration with Chiara Romualdi

University of Padova

Integration with CummbeRbund

Thanks for your attention

RAP http://bioinformatics.cineca.it/rap

Mattia D'Antonio m.dantonio@cineca.it

Technical support hpc-service-bio@cineca.it