End-to-End Multi-Task Learning with Attention

∷ 태그

1. Introduction

Multi-Task Learning(MTL)

• 지금까지의 CNN들은 보통 하나의 task 달성을 목표로 함: real-world에서는 여러개의 task들을 동시에 처리할 수 있어야 함

Key Challenges

- 1. 네트워크 아키텍처
 - 네트워크 간 각 task가 공유되어야 하고 task별로 특정한 feature 역시 분류할 수 있어야 함
 - over-fitting 방지를 위해 포괄적이어야 함
 - 그와 동시에 under-fitting 방지를 위해 각 task마다 feaature를 학습할 수 있어야
 함

2. loss function

- 각 task들을 동일한 정확도로 학습해야 함
- 쉬운 일부 task가 나머지를 우세해서는 안됨
- 지금까지의 MTL 접근법은 이 두 가지 중 하나에만 초점을 뒀음

3. Multi-Task Attention Network

3.1. Architecture Design

- ullet single shared network와 K task-specific attention network로 구성
- encoder-decoder network인 SegNet을 기반으로 구성
- VGG-16에 기반한 SetNet의 encoder와 이에 대칭인 decoder로 구성
- shared network를 통해 여러 task에 대한 공유된 feature의 일반화를 극대화하는 동시에 soft attention mask를 통해 task별 성능 역시 향상시킬 수 있음

4. Experiments

4.1. Image-to-Image Prediction (One-to-Many)

4.1.1. Datasets

- CityScapes
 - 。 높은 해상도의 거리 이미지 데이터셋
 - task
 - 1. semantic segmentation
 - 2. depth estimation
- NYUv2
 - 。 RGB-D의 실내 장면 데이터셋
 - task
 - 1. semantic segmentation
 - 2. depth estimation
 - 3. surface normal

4.1.2. Baselines

- Single-Task, One Task: vanilla SegNet
- Single-Task, STAN: Single-Task Attention Network
- Multi-Task, Split: standard multi-task learning. 마지막 layer에서 각 task에 대한 최 종 예측값을 분류
 - 。 Wide: convolution feature의 개수 변화
 - Deep: convolution layer의 개수 변화
- Multi-Task, Dense: attention module 없이 각 task-specific network들이 서로 하나
 의 shared network를 구성
- Multi-Task, Cross-Stitch: Cross-Stich Network

4.1.3. Dynamic Weight Average

• 시간에 따른 각 task 별 loss 값의 변화율에 따라 task weighting

$$\lambda_k(t) := \frac{K \exp(w_k(t-1)/T)}{\sum_i \exp(w_i(t-1)/T)}, w_k(t-1) = \frac{\mathcal{L}_k(t-1)}{\mathcal{L}_k(t-2)},$$
(7)

4.1.4. Results on Image-to-Image Predictions

		Architecture		Segmentation (Higher Better) mIoU Pix Acc		Depth (Lower Better) Abs Err Rel Err		Surface Normal				
Туре	#P.		Weighting					Angle Distance (Lower Better) Mean Median		Within t° (Higher Better) 11.25 22.5 30		
Single Task	3 4.56	One Task STAN	n.a. n.a.	15.10 15.73	51.54 52.89	0.7508 0.6935	0.3266 0.2891	31.76 32.09	25.51 26.32	22.12 21.49	45.33 44.38	57.13 56.51
Multi Task	1.75	Split, Wide	Equal Weights Uncert. Weights [14] DWA, $T = 2$	15.89 15.86 16.92	51.19 51.12 53.72	0.6494 0.6040 0.6125	0.2804 0.2570 0.2546	33.69 32.33 32.34	28.91 26.62 27.10	18.54 21.68 20.69	39.91 43.59 42.73	52.02 55.36 54.74
	2	Split, Deep	Equal Weights Uncert. Weights [14] DWA, $T = 2$	13.03 14.53 13.63	41.47 43.69 44.41	0.7836 0.7705 0.7581	0.3326 0.3340 0.3227	38.28 35.14 36.41	36.55 32.13 34.12	9.50 14.69 12.82	27.11 34.52 31.12	39.63 46.94 43.48
	4.95	Dense	Equal Weights Uncert. Weights [14] DWA, $T = 2$	16.06 16.48 16.15	52.73 54.40 54.35	0.6488 0.6282 0.6059	0.2871 0.2761 0.2593	33.58 31.68 32.44	28.01 25.68 27.40	20.07 21.73 20.53	41.50 44.58 42.76	53.35 56.65 54.27
	≈3	Cross-Stitch [20]	Equal Weights Uncert. Weights [14] DWA, $T = 2$	14.71 15.69 16.11	50.23 52.60 53.19	0.6481 0.6277 0.5922	0.2871 0.2702 0.2611	33.56 32.69 32.34	28.58 27.26 26.91	20.08 21.63 21.81	40.54 42.84 43.14	51.97 54.45 54.92
	1.77	MTAN (Ours)	Equal Weights Uncert. Weights [14] $DWA, T = 2$	17.72 17.67 17.15	55.32 55.61 54.97	0.5906 0.5927 0.5956	0.2577 0.2592 0.2569	31.44 31.25 31.60	25.37 25.57 25.46	23.17 22.99 22.48	45.65 45.83 44.86	57.48 57.67 57.24

- 1. 파라미터의 추가 없이 또는 적은 개수의 파라미터 만으로도 우수한 성능 유지
- 2. 다양한 loss function weighting schmem들에 대해서도 높은 성능을 유지

• Cross-Stich Network보다 MTAN에서 다양한 weighting scheme에 대해서 일정한 학습 추세를 보임

4.1.5. Effect of Task Complexity

- 2-class에서는 Single-Task, STAN이 다른 모든 multi-task network들을 능가
 - 간단한 방식으로 네트워크의 파라미터를 완전히 활용 가능하기 때문
- task가 더 복잡해짐에 따라 모든 network에서 성능이 향상됨

• MTAN에서는 더 높은 속도로 성능이 향상됨

4.1.6. Attention Masks as Feature Selectors

- attention mask 적용 후 두 task 간 분명한 차이점 확인 가능
- 공유된 feature에서 uninformative한 부분을 가리고 각 task에서 유용한 부분에 초점을 잡는 데 도움을 줌

4.2. Visual Decathlon Challenge (ManytoMany)

Method	#P.	ImNet.	Airc.	C100	DPed	DTD	GTSR	Flwr	Oglt	SVHN	UCF	Mean	Score
Scratch [23]	10	59.87	57.10	75.73	91.20	37.77	96.55	56.3	88.74	96.63	43.27	70.32	1625
Finetune [23]	10	59.87	60.34	82.12	92.82	55.53	97.53	81.41	87.69	96.55	51.20	76.51	2500
Feature [23]	1	59.67	23.31	63.11	80.33	45.37	68.16	73.69	58.79	43.54	26.8	54.28	544
Res. Adapt.[23]	2	59.67	56.68	81.20	93.88	50.85	97.05	66.24	89.62	96.13	47.45	73.88	2118
DAN [25]	2.17	57.74	64.12	80.07	91.30	56.54	98.46	86.05	89.67	96.77	49.38	77.01	2851
Piggyback [19]	1.28	57.69	65.29	79.87	96.99	57.45	97.27	79.09	87.63	97.24	47.48	76.60	2838
Parallel SVD [24]	1.5	60.32	66.04	81.86	94.23	57.82	99.24	85.74	89.25	96.62	52.50	78.36	3398
MTAN (Ours)	1.74	63.90	61.81	81.59	91.63	56.44	98.80	81.04	89.83	96.88	50.63	77.25	2941

- MTAN은 대부분의 baseline을 능가함
- DropOut의 적용이나 dataset의 재그룹화, 적응형 가중치 감소 등 또한 복잡한 정규화 전략 없이 최신 모델들과 경쟁력 있는 성능을 보임

5. Conclusions

- E2E 방식으로 task-shared feature들과 task-specific feature들을 자동적으로 학습할 수 있음
- MTAN은 다른 모델과 경쟁력 있는 모습을 보였으며 다양한 손실 함수에 대해 견고한 성능을 보임
- attention mask를 통해 가중치를 공유하는 동시에 높은 파라미터 효율성을 유지함