

T	Solve the following PDEs by the method of direct	t integration :
<u>.</u>	Solve the following I DES by the method of direct	
1	$\frac{\partial^2 u}{\partial x^2} = x + y$	$u = \frac{x^3}{6} + \frac{x^2y}{2} + xf(y) + g(y)$
2	$\frac{\partial^2 u}{\partial x \partial y} = x^2 + y^2$	$u = \frac{x^{3}y}{6} + \frac{xy^{3}}{3} + \int f(y) dy + g(x)$
3	$\frac{\partial^2 z}{\partial x \partial y} = \frac{x}{y} + c$	$z = \frac{x^2}{2}\log y + axy + \int f(y)dy + g(x)$
4	$\frac{\partial^3 u}{\partial x^2 \partial y} = \cos(2x + 3y)$	$u = \frac{-1}{12}\sin(2x+3y) + xf(y) + g(y) + h(x)$
5	$\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y \text{ for which } \frac{\partial z}{\partial y} = -2 \sin y \text{ when } x = 0 \text{ and}$ $z = 0 \text{ when } y \text{ is an odd multiple of } \frac{\pi}{2}.$	$z = \cos x \cos y + \cos y = \cos y (1 + \cos x)$
6	$\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x \text{ given that } u = 0 \text{ when } t = 0$ and $\frac{\partial u}{\partial t} = 0$ at $x = 0$. Also show that $u \to \sin x$ as $t \to \infty$.	$u = (1 - e^{-t})\sin x$
7	. $\frac{\partial^2 u}{\partial x^2} = xy$ Subject to the condition that $\frac{\partial u}{\partial x} = \log(1+y)$ when $x = 1$ and $u = 0$ when $x = 0$.	$u = \frac{x^3 y}{6} + x \left[\log(1+y) - \frac{y}{2} \right]$
8	$\frac{\partial^2 u}{\partial x \partial y} = \frac{x}{y} \text{ given that } \frac{\partial u}{\partial x} = \log x \text{ when } y = 1$ and $u = 0$ when $x = 1$.	$u = \frac{1}{2}x^2\log y + x\log x - x + 1 - \log\sqrt{y}$

П	Solve the following Linear PDEs:	
	g	
1	$(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$	$\varphi\left(\frac{x-y}{y-z}, \frac{y-z}{z-x}\right) = 0$
2	$(xy^3 - 2x^4)p + (2y^4 - x^3y)q = 9z(x^3 - y^3)$	$f(x^3y^3z, \frac{y}{x^2} + \frac{x}{y^2}) = 0$
3	$(x^2 - y^2 - z^2)p + 2xyq = 2xz$	$f\left(\frac{y}{z}, \frac{x^2 + y^2 + z^2}{z}\right) = 0$
4	$x^2p + y^2q + z^2 = 0$	$f(\frac{1}{y} - \frac{1}{x}, \frac{1}{y} + \frac{1}{z}) = 0$
5	$x^2p + y^2q = x + y$	$f(\frac{1}{y} - \frac{1}{x}, e^{-z}(x - y)) = 0$
6	$y^2 p - xyq = x(z - 2y)$	$f(x^2+y^2, yz-y^2)=0$
7	$p - qy \log y = z \log y$	$yz = f\left(e^{x}\log y\right)$
8	$\frac{y^2z}{x} p + xzq = y^2$	$x^2 - z^2 = f(x^3 - y^3)$
9	$(y^2+z^2)p-xyq+xz=0$	$x^2 + y^2 + z^2 = f(y/z)$
10	$(x^2 + 2y^2)p - xyq = xz$	$f(yz, x^2y^2 + y^4) = 0$
11	$(z^2 - y^2 - 2yz)p + (y+z)xq = xy - xz$	$x^2 + y^2 + z^2 = f(y^2 - 2yz - z^2)$

Ш	Solve the following PDEs by the method of separation of variables :	
1	$\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u \text{where } u(x,0) = 6e^{-3x}$	$u = 6e^{-(3x+2t)}$
2	$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 2(x+y)$	$u = ce^{x^2 + y^2 + k(x - y)}$
3	$x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} = 0$	$u = ce^{k\left(\frac{1}{y} - \frac{1}{x}\right)}$
4	$4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u \text{given } \mathbf{u} (0, \mathbf{y}) = 2e^{5y}$	$u = 2e^{\left(\frac{-x}{2}\right) + 5y}$
5	$u_{xy} = u$	$u = c e^{kx + y/k}$
6	$\frac{\partial^2 z}{\partial x^2} = \frac{\partial z}{\partial y} + 2z$	$z = (Ae^{kx} + Be^{-kx})e^{(k^2-2)y}$
7	$\frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = 0$	$u = c e^{kx} y^k$
8	$2x\frac{\partial u}{\partial x} - 3y\frac{\partial u}{\partial y} = 0$	$u = cx^{k/2} y^{k/3}$
9	$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3(x^2 + y^2)u$	$u = c e^{x^3 + y^3 + k(x - y)}$

VI	Solve the following homogeneous linear PDE with constant coefficients:	
1	$(D_x^2 - 2D_x D_y + 5D_y^2)z = 0$	$z = \phi_1(y + (1+2i)x) + \phi_2(y + (1-2i)x)$
2	$(D_x^2 - D_x D_y - 6D_y^2) z = 0$	z = f(y-2x) + g(y+3x)
3	$(2D_x^2 + 5D_xD_y + 2D_y^2) z = 0$	z = f(y-2x) + g(2y-x)
4	$(D_x^2 + 6D_xD_y + 9D_y^2) z = 0$	z = f(y-3x) + x g(y-3x)
5	$(9D_x^2 + 24D_xD_y + 16D_y^2) z = 0$	z = f(3y-4x) + x g(3y-4x)

VII	Solve the following non-homogeneous linear PDE with constant coefficients:	
1	$(4D_x^2 - 4D_xD_y + D_y^2)z = 16\log(x + 2y)$	$z = f_1(2y + x) + xf_2(2y + x) + 2x^2 \log(x + 2y)$
2	$(D_x^2 + 5D_xD_y + 6D_y^2)z = e^{x-y}$	$z = f_1(y - 2x) + f_2(y - 3x) + \frac{1}{2}e^{x-y}$
3	$(D_x^2 + 3D_xD_y + 2D_y^2)z = x + y$	$z = f_1(y-x) + f_2(y-2x) + \frac{1}{36}(x+y)^2$

Questions on Self Learning Component:

I	Form the PDE by eliminating the arbitrary constant(s):	
1.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$	px + qy = 2z
2.	$z = a\log(x^2 + y^2) + b$	py - qx = 0
3.	$ax^2 + by^2 + z^2 = k$	$z^2 - 1 = z(px + qy)$
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	$pz = x(rz + p^2)$
5	$z = xy + y\sqrt{x^2 - a^2} + b$	pq = px + qy
II	Form the PDE by eliminating the arbitrary fu	inction(s):
1	$z = y^2 + 2f\left(\frac{1}{x} + \log y\right)$	$x^2 p + yq = 2y^2$
2	z = yf(x) + xg(y)	sxy = px + qy - z
3	$f(x^2+y^2+z^2, z^2-2xy)=0$	(p-q)z = y-x
4	$z = e^{mx} f(x+y)$	p-q=mz
5	$z = (x-y) f(x^2 + y^2)$	(x-y)(py-qx)=z(x+y)
6	z = f(x-z) + g(x+y)	qr + (1 - p - q) s - (1 - p)t = 0.
7	$z = xy + f(x^2 + y^2)$	$py - qx = y^2 - x^2$
8	$z = f\left(\sqrt{x^2 + y^2}\right)$	py - qx = 0