ÜBUNGSBLATT 1

Zahlensysteme

Beispiel 1.1

Wandeln Sie 1238 ins Binär und Hexadezimalsystem um. Geben Sie alle Zwischenschritte der Berechnung an. Begründen Sie die von Ihnen gewählte Reihenfolge der Berechnung.

Beispiel 1.2

Berechnen Sie die 2er Komplement-Darstellung von -47 mit 8 Bit als Kodierung. Welcher Wertebereich ist mit 8 Bit kodierbar?

Beispiel 1.3

Berechnen Sie die normalisierte Gleitpunktdarstellung von 12,75. Verwenden Sie ein Bit für das Vorzeichen, 3 für den Exponenten und 12 für die Mantisse. Der Bias beträgt 2.

Logik

Beispiel 1.4

Zeigen Sie die Gültigkeit der Assoziativgesetze mittels Wahrheitstabellen.

Informationstheorie

Beispiel 1.5

Erzeugen Sie eine Huffman Kodierung für folgendes Alphabet. Skizzieren Sie auch den Kodierungsbaum.

Symbol	а	b	С	d	е
Probability	0.20	0.15	0.25	0.10	0.30

Formale Sprachen

Beispiel 1.6

Berechnen bzw. beschreiben Sie die folgenden Sprachen:

- { \(\epsilon\) } \(\epsilon\)
- { \(\epsilon\) } \(\epsilon\) { \(\epsilon\) }
- {}*
- ({ε} U {ab}²) ο {ε, c}

Beispiel 1.7

Berechnen bzw. beschreiben Sie die folgenden Sprachen:

- { E }*
- { ε , \underline{b} \underline{c} } \circ { \underline{a} , \underline{b} , ε }
- { } +
- { $\underline{a} \underline{b}$, \underline{c} , $\underline{\epsilon}$ }+ (wobei $\Sigma = \{ a, b, \epsilon \}$)

Beispiel 1.8

Überlegen Sie ob folgende Behauptungen stimmen (mit Begründung):

- Für jede Sprache $\[\] \]$ gilt: $\[\] \] \] + \[\] \cup \[\] \{ \[\] \]$
- Für jede Sprache L gilt: L+ = L* \ { ε }
- $\bullet \quad \text{Wenn eine Sprache \mathbb{L} unendlich ist, dann ist \mathbb{L}^{\complement} endlich.}$
- $\bullet~$ Es ist möglich dass sowohl eine Sprache ${\tt L}$ als auch ${\tt L}^{\tt C}$ endlich ist.

Beispiel 1.9

Erklären Sie den Unterschied zwischen folgenden Sprachen:

- { $\underline{\mathbf{0}} \ \underline{\mathbf{1}}$ } über Alphabet $\Sigma = \{ \underline{\mathbf{0}}, \underline{\mathbf{1}} \}$
- { 01 } über Alphabet $\Sigma = \{ 01 \}$
- $\Sigma \star \overline{\mathsf{uber}} \mathsf{Alphabet} \Sigma = \{ \mathsf{01} \}$
- Σ * über Alphabet $\Sigma = \{ \overline{\mathbf{0}}, \underline{\mathbf{1}} \}$
- $(\{ \underline{0}, \underline{1} \} \circ \{ \underline{0}, \underline{1} \}) * \text{"uber Alphabet } \Sigma = \{ \underline{0}, \underline{1} \}$

Beispiel 1.10

Gegeben sei das Alphabet $\Sigma = \{\underline{a}, \underline{b}, ..., \underline{z}, \underline{/}, \underline{.}\}$.

Beschreiben Sie informell was die folgenden Sprachen beschreiben:

- $E = \{a, b, ..., z\} \circ \{\underline{a}, \underline{b}, ..., \underline{z}\} \circ \{\underline{a}, \underline{b}, ..., \underline{z}\}$
- D = $\{\overline{a}, \overline{b}, ..., \overline{z}\}$ +
- $F = D \circ \{\underline{\cdot}\} \circ E$
- $P = / \circ (D \circ \{//)) * \circ F$