Jogos e Simulação – Audio

Spatialized Audio and Sound Localization

3D Sound and Surround Sound

- Mono
- Stereo
- Surround sound
- Sound field synthesis
 - Ambisonics
 - Wave field synthesis

3D Sound vs Surround Sound

- Sound in the real world is 3D because sound sources' positions are
 3D
- Mono one channel
- Stereo two channels
- Surround sound several speakers (several audio channels),
 perception depends on speakers positioning and listener position
- Ambisonics speakers above and below (in a sphere), signal in B-format (instead of several channels)
- Wave field synthesis it creates wave fronts to simulate the sound coming from different locations

Sound reflection

Reverberation

From Yost

Sound propagation

From Yost,

Anechoic and reverberation rooms

https://www.youtube.com/watch?v=cvr-TRuOzqM

3D localization

- Azimuth (left right)
- Elevation (up down)
- Distance

Passive/active localization

- Active localization estimate position, size, and texture of silent bodies by means of reflected sound waves.
 - Eg. Blind people (use sounds with a wide range of frequencies to discriminate surfaces), and trained sighted people.
- Echolocation ability to use echoes to do localization.
 - Eg. Shrews, oil-birds, Himalayan cave swiflet, dolphins, bats.

Echolocation

https://www.youtube.com/watch?v=xATlyq3uZM4

Passive/active localization

• Passive localization – localizing sound sources by means of the sound waves they emit.

Lateralization

- Lateralization determining if the sound comes from the left or right of the frontal-medial plane of the head.
- What cues are used for lateralization?
 - Interaural differences

Interaural time difference (ITD)

Interaural time difference (ITD)

$$\Delta t = a/c (\theta + \sin \theta)$$

 $\Delta t_{max} = a/c (\pi/2 + 1)$

- a head radius
- c sound velocity

$$\Delta t_{\text{max}} = \frac{\alpha}{c} \left(\frac{\pi}{2} + 1 \right)$$

$$\Delta t_{\text{wax}} = \frac{909}{343.2} \times 2.51 = 0.674 \text{ ms}$$

ITDs

Computing ITDs

- Matching left and right signals:
 - Zero crossings (sample difference that can easily be converted to time difference)

Computing ITDs

- Matching left and right signals:
 - Zero crossings
 - Cross-correlation

ITDs limitations

• wavelength \leq distance between ears \Rightarrow azimuth ambiguity

- ITDs limitations
 - work only for low frequencies
 - (Cannot distinguish front from back.)

Interaural intensity (level) difference (IID/ILD)

- Sound is more intense at ear where it arrives first
 - Inverse square law:

 $I \propto P/(4 \pi r^2)$, P – power of sound at source r – distance from source

IIDs

- Head shadow (for short wavelengths)
 - IID can be as large as 20 dB for high frequencies.

Measured IIDs

Duplex theory

- ITDs limitations work only for low frequencies
- IIDs limitations work only for high frequencies
- Duplex theory (Lord Rayleigh, 1907) –
 ITD: and used for love (version and IIDs for late)

ITDs are used for low frequencies and IIDs for high frequencies.

Cone of confusion

So far we have seen front (or back) azimuth localization only!

- All points on the cone are at the same relative distance to the ears.
- All points on the cone produce the same interaural differences.

3D localization

- front/back,
- elevation,
- distance,
- monaural localization, and
- externalization (sounds come from outside the head)?

3D localization

Head movements

- Head movements allow:
 - front/back discrimination, and
 - monaural localization.

Pinna

- Pinna why do we have pinnae?
- Darwin (1800s) vestigial form of animal ear and no functional significance.
- Lord Rayleigh (1907) for front/back auditory discrimination.
- Batteau (1960s) give externalization and elevation cues.
- Freedman and Fisher (1960s) –
 monaural localization.

Pinna

- Still more functions:
 - Give distance cues.
 - Give cues used in determining the direction of motion of sound sources.

Spectral cues

- External parts of our head and body, especially the pinna cause sound shadows, delays (phase shift) and reflections that affect the received sound wave.
- The strange shape of the pinna generates a series of reflected waves. The result is a new waveform whose components have different intensities.
- Different frequencies (especially higher frequencies) suffer different delays and attenuation. In other words, the pinna acts as a filter that changes the intensity of the high frequency components.
- The direction from where the sound is coming also affects how sound is shaped. (The phase difference between direct and reflected waves depends on the source's position.)

Spectral cues

- Head-related transfer function (HRTF) –
 describes how the sound is affected by
 torso and head (especially by the pinna).
- HRTFs depend on subject.
- Notches and spatial maxima The spectrum acquires some sharp minima (notches). The frequencies at which the notches appear vary with the source's position.
- Eg. When first notch frequency increases (between 6 and 12 kHz) the apparent elevation increases.

From B

HRTF

HRTF

Measuring HRTFs

Measuring HRTFs

Games with 3D audio with HRTFs

Applications with 3D audio with HRTFs

Auditory Scene Analysis

 Cocktail party effect – ability to concentrate on what one person is saying in the presence of noise and voices from other people.

Cocktail party effect

Locating each speaker's virtual position in the audio space

Cocktail party effect

Cocktail party effect in application with HRTFs for the blind

Auditory Scene Analysis

- Cues:
 - Frequency
 - fundamental frequency,
 - autocorrelation,
 - amplitude modulation,
 - frequency modulation,
 - timbre...
 - Time
 - tempo,
 - rhythm,
 - onset...
 - Spatial cues
 - ITDs,
 - IIDs...

Sound panning vs binaural sound

 Sound panning – distributes the signal between left and right channels. (IIDs)

Sound panning vs binaural sound

Binaural 3D sound – left and right channels have different signals.

Cues for distance

- Cues for distance:
 - sound pressure and frequency spectrum (amplitude of high frequency components attenuates faster)
 - reverberation (room acoustics)
 - experience

Doppler effect

- https://www.youtube.com/watch?v=a3RfULw7aAY
- https://www.youtube.com/watch?v=FyU6-cg5EW0

Doppler effect

