

M.Tech Digital Manufacturing

BITS Pilani
Pilani Campus

Jayakrishnan J

DMZG521- Design for Additive Manufacturing Lecture 1-2

Design for Manufacturing

- Development of new materials
- Improved design methods
- Increased societal demand

Cost of design changes

DfM Rules

- Minimize the part count
- Use of standard parts
- Create modular design
- Design the part with multifunctionality
- Design for ease of fabrication
- Minimize the assembly directions
- Minimize handling

Digital Manufacturing

innovate achieve lead

- Digital manufacturing can be defined as an integrated approach to manufacturing that is centered around a computer system.
- A machine is able to read a CAD (computer aided design) file in order to deliver it in a few hours

Courtesy: materialize/future-industry-4.0

Additive Manufacturing

What You See Is What You Build (WYSIWYB)

Why DfAM?

What is holding back companies from using 3D printing over traditional methods?

Courtesy:™Jabil

Design for Additive Manufacturing

- Design for Manufacturing (DfM) to Design for Additive manufacturing (DfAM)
- Limitations in Traditional Manufacturing
- Capabilities of Additive Manufacturing

"Synthesis of shapes, sizes, geometric mesostructures, and material compositions and microstructures to best utilize manufacturing process capabilities to achieve desired performance and other lifecycle objectives"

-Chen Chu, Greg Graf and David W. Rosen

Drivers of AM

Mass customization

Function integration

Flow optimization

Tailoring porosities and properties

Courtesy: google images

Additive Manufacturing Ecosystem

Additive Manufacturing

- Refers to the group of processes that build parts layer upon layer.
- ASTM F2792-12a

STEP #1 CAD model creation

STEP #2
Tessellation &
Slicing

STEP #3
Part
fabrication

STEP #4 Part finishing

Additive manufacturing (LM) processes as classified by Pham

	1D Channel	2x1D Channels	Array of 1D Channels	2D Channel
Liquid	SLA (3D Sys)	Dual beam SLA (3D Sys)	Objet	Envisiontech MicroTEC
Discrete Partides	SLS (3D Sys), LST (EOS), LENS Phenix, SDM	LST (EOS)	3D Printing	DPS
Molten	FDM, Solidscape		ThermoJet	
Solid	Solido PLT (KIRA)			

ASTM Classification

Workpiece

Melt pool

Deposited

Dilution area

Used Material Spoo

Vat Polymerization

innovate achieve lead

- Uses UV-curable photopolymer resins
- Stereolithography (SLA)
- Digital Light Processing (DLP)
- Continuous Liquid Interface production (CLIP)
- Daylight Polymer Printing (DPP)

Powder Bed Fusion

- For both Metals and Polymers
- Selective Laser Sintering (SLS)
- Selective Laser Melting (SLM)
- Electron Beam Melting (EBM)
- Multi Jet Fusion (MJF) by HP

https://www.youtube.com/watch?v=V Xntl3ff5tc

Material Extrusion

2018 © Dassault Systèmes

Courtesy: Dassault systems

Material Jetting

- Drop On Demand
- PolyJet by Object
- NanoParticle Jetting (NPJ) by XJet

2018 © Dassault Systèmes

Binder Jetting

Sheet Lamination or Laminated Object Manufacturing (LOM)

Courtesy: lanGibson

Directed Energy Deposition (DED)

innovate achieve lead

- Laser Engineered Net Shaping (LENS) by Optomec
- Aerosol Jet Technology by Optomec
- Electron Beam Additive Manufacturing (EBAM)
- Laser Deposition
 Welding and Hybrid
 Manufacturing by DMG
 MORI

2018 © Dassault Systèmes

AM Workflow

Plan		Prepare		Print		Perfect		
3D scanning & Medical Imaging	CAD model creation	Part quoting and order management in service bureau	Repositories for ready to download designs for customers	Part build preparation	Part building and control	Material Handling	Part Post Processing	Inspection and Testing
 Point cloud Gathering Point cloud Processing Surface reconstruction Interface to File formats Repair volume generation 	Parametric, feature based and free form surface modelling software Haptic modeling tools Interface to standard file formats	Part cost estimation using part attributes and process attributes Quote management and support services	Web based platforms for ordering end use products by selecting designs Web based platforms for ordering just the designs	 Tessellation and slicing Error fixing Platform specific part placement Support generation Collision detection Part packaging Cost Estimation Build Time estimation 	Scan path generation and control Axes and beam Parameter control Gas generation Environment control Process monitoring	Part unloadingAssist gas handlingUsed Powder,	 Part cleaning and finishing Material recycling 	Inspection tools and software Test methods and Protocols

CAD image of a tea cup with further images showing the effects of building using different layer thicknesses

RP Process chain

- Creation of Geometric Model
- Tessellation
- Slicing
- Generation of Laser Scanning Path
- Part Fabrication
- Post Processing

Generic process of CAD to part, showing all eight stages

Features that represent problems using CNC machining

3D Printing Vs CNC Machining

3D Printing Vs CNC Machining

	Tolerance (mm)	Min. Layer Thickness (mm)	Max. build volume (mm)
CNC Milling	± 0.025 – 0.125 mm	cutting depth 0.01 mm	2000 x 800 x 1000 mm
SLS	± 0.3 mm	0.7 – 1.0 mm	300 x 300 x 300 mm
Industrial FDM	± 0.5 mm	0.8 – 1.0 mm	900 x 600 x 900 mm
DMLS	± 0.1 mm	0.4 mm	230 x 150 x 150 mm

AM Limitations

- Speed
- Accuracy
- Cost
- Volume- Quantity
- Size (Build Volume)
- Complexity
- Material Capability

Speed

Below is a head-to-head comparison* of producing a 51mm diameter complex object like the one on the left. It can't be fabricated by traditional manufacturing techniques.

^{*} Based on 3rd party tests commissioned by Carbon3D to compare CLIP against a leading commercial printer in each technology category.

Courtesy: Carbon 3D

Materials in AM

UMaine showcases world's largest 3D printed boat and polymer 3D printer

- 3D Systems
- DMG Mori
- EOS
- Renishaw
- SLM Solutions

AM Applications

Reference Books

- Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing by Brent Stucker, David W. Rosen, and IAN GIBSON
- Additive Manufacturing by Bandyopadhyay, Amit Bose, Susmita
- RAPID PROTOTYPING-Laser based and other technologies-Patri K. Venuvinod and Wei yin Ma(2004)
- Rapid Prototyping-Principles and applications Chua.C.K

Evaluation Scheme

Evaluation Component	Name (Quiz, Lab, Project, Mid- term exam, End semester exam, etc.)	Type (Open book, Closed book, Online, etc.)	Weight
EC - 1	Assignment	Online	10%
	Virtual Lab	Online	20%
EC - 2	Mid-Semester Test	Closed Book	30%
EC - 3	Comprehensive Exam	Open Book	40%

Softwares in Lab

innovate achieve lead

- Fusion 360
- ANSYS Additive Suite
- Materialize Mimics
- Ultimaker Cura

Contact Details

Jayakrishnan J

+91-9400200433

jkrishnan@wilp.bits-pilani.ac.in

End of Lecture 1-2