Introduction to Data Science

Hugo Cunha - 1610565 Pedro Felipe - 1611074 Renan Moreira - 1611061 Yan Cunha - 1610886

Tema escolhido (T1-1)

PROMOTE GENDER EQUALITY AND EMPOWER WOMEN

Dataset escolhido

Datasets de Gender Inequality Index e Gender Development Index foram escolhidos pois, combinados, apresentavam os principais parâmetros necessários para medir a desigualdade presente entre os gêneros em todo o mundo. Os dados neles contidos pertencem a diversos campos do desenvolvimento humano.

http://hdr.undp.org/en/composite/GII

http://hdr.undp.org/en/composite/GDI

Perguntas realizadas

- Qual a relação entre o HDI e GII?
- Qual a razão da renda per capita média feminina para a renda per capita média masculina?
- Qual a relação entre IDH de um país e participação feminina na força de trabalho?
- Qual a relação entre renda per capta por gênero e anos de educação por gênero?
- Existe relação entre representação política feminina e igualdade de renda entre os gêneros?
- Existe relação entre participação feminina na força de trabalho e IDH?
- Qual a razão média entre IDH feminino e masculino?
- Qual a relação entre a razão da participação na força de trabalho feminina e masculina e igualdade de renda entre os gêneros?
- Como as diferentes regiões do mundo se comportam em relação ao GII?
- Existe relação entre a participação política feminina e a expectativa de vida feminina?

Arrumando o Dataset

Dataset utilizado possuía, originalmente, diversas colunas em branco e eram dois arquivos excel separados.

Juntamos em um único arquivo .csv eliminando as colunas em branco

Um dos atributos estavam com uma notação utilizando '.'

Ex:

1.000 (mil)

100.000 (cem mil)

Isso era lido como não mil e cem mil e sim como um (1.0) e cem (100.0)

Detecção:

Detecção:

Detecção:

Detecção:

RperC_f = 807 RperC_m = 594 dolares por ano

Tratamento em código

Primeiro problema

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 189 entries, 0 to 188
Data columns (total 23 columns):
HDI rank
                                                189 non-null int64
Country
                                                189 non-null object
GDI Value
                                               189 non-null object
GDI Group
                                                189 non-null object
HDI f
                                                189 non-null object
HDI m
                                                189 non-null object
life expectancy f
                                                189 non-null object
life expectancy m
                                                189 non-null object
Expected years of schooling f
                                               189 non-null object
Expected years of schooling m
                                               189 non-null object
Mean_years_of_schooling_f
                                                189 non-null object
Mean years of schooling m
                                                189 non-null object
Estimated gross national income per capita f
                                                189 non-null object
Estimated gross national income per capita m
                                               189 non-null object
                                                189 non-null object
GII value
GII rank
                                                189 non-null object
maternal mortality ratio
                                               189 non-null object
adolescent birth rate
                                                189 non-null object
share of seats parliament
                                                189 non-null object
population above secondary education f
                                                189 non-null object
population above secondary education m
                                                189 non-null object
labour force participation rate f
                                                189 non-null object
labour force participation rate m
                                               189 non-null object
dtypes: int64(1), object(22)
memory usage: 34.0+ KB
```

Tratamento em código

Solução:

```
def str to float(c):
    if isinstance(c, float):
        return c
    else:
        try:
            return float(c)
        except:
            return None
# aplicamos a função a todas as colunas numéricas
df.HDI rank = df.HDI rank.apply(str to int)
df.GDI Value = df.GDI Value.apply(str to float)
df.GDI Group = df.GDI Group.apply(str to int)
df.HDI f = df.HDI f.apply(str to float)
df.HDI m = df.HDI m.apply(str to float)
df.life expectancy f = df.life expectancy f.apply(str to float)
df.life expectancy m = df.life expectancy m.apply(str to float)
df.Expected years of schooling f = df.Expected years of schooling f.apply(str to float)
df.Expected years of schooling m = df.Expected years of schooling m.apply(str to float)
df.Mean years of schooling f = df.Mean years of schooling f.apply(str to float)
df.Mean years of schooling m = df.Mean years of schooling m.apply(str to float)
df.Estimated gross national income per capita f = df.Estimated gross national income per capita f.apply(str to float)
df.Estimated gross national income per capita m = df.Estimated gross national income per capita m.apply(str to float)
df.GII value = df.GII value.apply(str to float)
df.GII rank = df.GII rank.apply(str to int)
df.maternal mortality ratio = df.maternal mortality ratio.apply(str to float)
df.adolescent birth rate = df.adolescent birth rate.apply(str to float)
df.share of seats parliament = df.share of seats parliament.apply(str to float)
df.population above secondary education f = df.population above secondary education f.apply(str to float)
df.population above secondary education m = df.population above secondary education m.apply(str to float)
df.labour force participation rate f = df.labour force participation rate f.apply(str to float)
df.labour force participation rate m = df.labour force participation rate m.apply(str to float)
```

Tratamento em código

Solução:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 189 entries, 0 to 188
Data columns (total 23 columns):
HDI rank
                                                189 non-null int64
Country
                                                189 non-null object
                                                164 non-null float64
GDI Value
                                                164 non-null float64
GDI Group
                                                164 non-null float64
HDI f
HDI m
                                                164 non-null float64
life expectancy f
                                                183 non-null float64
life expectancy m
                                                183 non-null float64
                                                179 non-null float64
Expected years of schooling f
Expected years of schooling m
                                                179 non-null float64
Mean years of schooling f
                                                171 non-null float64
Mean years of schooling m
                                                171 non-null float64
Estimated gross national income per capita f
                                                178 non-null float64
Estimated gross national income per capita m
                                                178 non-null float64
GII value
                                                160 non-null float64
GII rank
                                                160 non-null float64
maternal mortality ratio
                                                180 non-null float64
adolescent birth rate
                                                183 non-null float64
share of seats parliament
                                                187 non-null float64
population above secondary education f
                                                165 non-null float64
population above secondary education m
                                                165 non-null float64
labour force participation rate f
                                                178 non-null float64
labour force participation rate m
                                                178 non-null float64
dtypes: float64(21), int64(1), object(1)
memory usage: 34.0+ KB
```

Perguntas interessantes respondidas

Existe relação entre representação política feminina e igualdade de renda entre os

gêneros? F/M \$ ratio x Share seats parlament

Perguntas interessantes respondidas

Existe relação entre participação feminina na força de trabalho e IDH?

T1-2 Aprendizado supervisionado

Nesta parte do trabalho, utilizamos algoritmos de aprendizado de máquina aprendidos em sala de aula, como o Support Vector Machine (SVM) e o K-Nearest Neighbors (KNN). Escolhemos instâncias encontradas no DataSet "Car Evaluation" do repositório da UCI. Esse DataSet possui 6 atributos para classificação de carros : Preço de compra, preço de manutenção, número de portas, número de pessoas, tamanho da mala e segurança. Todos os atributos têm valores discretos. Existem 4 classificações para os carros: Não aceitável, aceitável, bom e muito bom. No arquivo de DataSet existem 1728 instâncias e esse grupo de instâncias cobre todo o espaço de possibilidades de combinações de atributos.

https://pedro-magalhaes.github.io/Teste/t1 2/machine learning.html

Atributos escolhidos para o treinamento

Inicialmente fizemos a avaliação de quanto de informação cada atributo provê para a classificação. Utilizamos o Weka para ver mais facilmente esse ranking de atributos.

Verificamos que o atributo número de portas contribuía muito pouco, no entanto, ao retirarmos esse atributos, os resultados foram piores. Assim, optamos por manter todos os atributos no nosso treinamento.

KNN

No algoritmo de KNN, alteramos o nosso K para ver qual opção dava o melhor resultado. Ao final, chegamos a conclusão de que o K = 7 dava o melhor resultado. Abaixo, os testes com cada K testado:

k 3 = 0.9050925925925926

k 5 = 0.9444444444444444

k7 = 0.9606481481481481

k 9 = 0.9467592592592593

k 11 = 0.9259259259259

SVM

No SVM, tínhamos varias opções de kernel e o que deu os melhores resultados foi o kernel gaussiano (rbf), combinado com o "C" e o "gamma". O kernel é a função que projeta o espaço de entrada no espaço de características. Nos nossos testes variando os parâmetros, usamos o Kernel linear primeiro, depois o polinomial e por último o gaussiano. Os melhores resultados foram obtidos com o gaussiano. Dentre todos os algoritmos testados, o SVM com o kernel rbf foi o que trouxe os melhores resultados. Um passo que melhorou nossos resultados foi a estandardização dos valores dos atributos em um número de 0 a 1

Resultados

T1-3 dataset utilizado:

Dados:

- Ano (2015-2018)
- Estado dos EUA (50 estados)
- Percentual de pessoas que se graduaram no ensino médio
- Desigualdade econômica medida com o Gini index
- Número de crimes violentos por 100,000 pessoas

	Year	State_Name	High_School_Graduation	Income_Inequality_Gini_Index	Violent_Crime
0	2015	Alabama	80.0	0.476	430.8
1	2015	Alaska	71.8	0.418	640.4
2	2015	Arizona	75.1	0.468	416.5
3	2015	Arkansas	84.9	0.471	460.3
4	2015	California	80.4	0.489	402.1
5	2015	Colorado	76.9	0.458	308.0
6	2015	Connecticut	85.5	0.501	262.5
7	2015	Delaware	80.4	0.449	491.4
8	2015	Florida	75.6	0.483	470.4
9	2015	Georgia	71.7	0.480	365.7

Predictors: variáveis usadas para a previsão.

Coefficients: o 'peso' que cada variável têm na equação da previsão.

Intercept: valor esperado de Y quando todas as variáveis são iguais a 0

Mean squared error: diferença média quadrática entre as variáveis e o que é estimado

Caso 1: Previsão baseada somente no ano

Predictors: ['Year']

Coefficients: [8.23804237]

Intercept: -16243.189012251141

Mean squared error: 15528.31

Caso 2: Previsão baseada no ano e educação

Predictors: ['Year', 'High_School_Graduation']

Coefficients: [15.77325404 - 2.48217076]

Intercept: -31246.9428323701

Mean squared error: 17793.42

Caso 3: Previsão baseada no ano e pobreza

Predictors: ['Year', 'Income_Inequality_Gini_Index']

Coefficients: [1.57617042 1560.10282786]

Intercept: -3537.5920359750817

Mean squared error: 21890.04

<u>Caso 4:</u> Previsão baseada no ano, pobreza e educação

Predictors: ['High_School_Graduation', 'Income_Inequality_Gini_Index', 'Year']

Coefficients: [-2.484413 1395.62526004 12.84994129]

Intercept: -25982.52163079244

Mean squared error: 13259.21

Caso 5: Previsão baseada no ano, pobreza e educação usando regressão de Lasso

Predictors: ['High_School_Graduation', 'Income_Inequality_Gini_Index', 'Year']

Coefficients: [0. 847.73302618 0.]

Intercept: -22.743162697750563

Mean squared error: 13227.44

Conclusão

Comparando o Mean Squared Error:

Caso 1: 15528.31

Caso 2: 17793.42

Caso 3: 21890.04

Caso 4: 13259.21

Caso 5: 13227.44

Conclusão

Comparando o Mean Squared Error:

Caso 1: 15528.31

Caso 2: 17793.42

Caso 3: 21890.04

Caso 4: 13259.21

Caso 5: 13227.44