Упражнения: Прости пресмятания

Задачи за упражнение в клас и за домашно към курса "Основи на програмирането" @ СофтУни.

0. Празно Visual Studio решение (Blank Solution)

Създайте празно решение (**Blank Solution**) във Visual Studio. Решенията (solutions) във Visual Studio обединяват **група проекти**. Тази възможност е изключително удобна, когато искаме да работим по няколко проекта и бързо да превключваме между тях или искаме да обединим логически няколко взаимосвързани проекта.

В настоящото практическо занимание ще използваме **Blank Solution с няколко проекта** за да организираме решенията на задачите от упражненията – всяка задача в отделен проект и всички проекти в общ solution.

- 1. Стартирайте Visual Studio.
- 2. Създайте нов **Blank Solution**: [File] → [New] → [Project].

3. Изберете от диалоговия прозорец [Templates] → [Other Project Types] → [Visual Studio Solutions] → [Blank Solution] и дайте подходящо име на проекта, например "Simple-Calculations":

Сега имате създаден празен Visual Studio Solution (с 0 проекта в него):

Целта на този blank solution е да добавяте в него по един проект за всяка задача от упражненията.

1. Пресмятане на лице на квадрат

Първата задача от тази тема е следната: да се напише **конзолна програма**, която **въвежда цяло число "а"** и **пресмята лицето на квадрат със страна "а"**. Задачата е тривиално лесна: въвеждате число от конзолата, умножавате го само по себе си и печатате получения резултат на конзолата.

1. Създайте нов проект в съществуващото Visual Studio решение. В Solution Explorer кликнете с десен бутон на мишката върху Solution 'Simple-Calculations'. Изберете [Add] → [New Project...]:

2. Ще се отвори диалогов прозорец за избор на тип проект за създаване. Изберете C# конзолно приложение с име "Square-Area":

Вече имате solution с едно конзолно приложение в него. Остава да напишете кода за решаване на задачата.

3. Отидете в тялото на метода Main(string[] args) и напишете кода от картинката по-долу:

```
namespace Square_Area
{
    0 references
    class Program
    ſ
        0 references
        static void Main(string[] args)
        {
             Console.Write("a = ");
             var a = int.Parse(Console.ReadLine());
             var area = a * a;
             Console.Write("Square = ");
             Console.WriteLine(area);
        }
    }
}
```

Кодът въвежда цяло число с a = int.Parse(Console.ReadLine()), след това изчислява area = a * a и накрая печата стойността на променливата area.

4. Стартирайте програмата с [Ctrl+F5] и я тествайте с различни входни стойности:

© <u>Software University Foundation</u>. This work is licensed under the <u>CC-BY-NC-SA</u> license.

5. Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#0. Трябва да получите 100 точки (напълно коректно решение):

Submissions			
(1) H			Ŏ
Points	Time and memory used	Submission date	
//// 100 / 100	Memory: 7.77 MB Time: 0.013 s	20:06:36 21.01.2016	Details

2. От инчове към сантиметри

Да се напише програма, която чете от конзолата число (не непременно цяло) и преобразува числото от инчове в сантиметри. За целта умножава инчовете по 2.54 (защото 1 инч = 2.54 сантиметра).

1. Първо създайте нов С# конзолен проект в решението "Simple-Calculations". Кликнете с мишката върху решението в Solution Explorer и изберете [Add] → [New Project...]:

Изберете [Visual C#] → [Windows] → [Console Application] и задайте име "Inches-to-Centimeters":

2. Напишете кода на програмата. Може да си помогнете с примерния код от картинката:

```
static void Main(string[] args)
{
    Console.Write("inches = ");
    var inches = double.Parse(Console.ReadLine());
    var centimeters = inches * 2.54;
    Console.Write("Centimeters = ");
    Console.WriteLine(centimeters);
}
```

3. **Стартирайте програмата**, както обикновено с [Ctrl+F5]:

Изненада! Како става? Програмата не работи правилно... Всъщност това не е ли предходната програма?

Във Visual Studio текущият активен проект в един solution е маркиран в получерно и може да се сменя:

4. За да включите режим на автоматично преминаване към текущия проект, кликнете върху главния solution с десния бутон на мишката и изберете [Set StartUp Projects...]:

Ще се появи диалогов прозорец, от който трябва да се избере [Startup Project] → [Current selection]:

5. Сега отново **стартирайте програмата**, както обикновено с [Ctrl+F5]. Този път ще се стартира текущата отворена програма, която преобразува инчове в сантиметри. Изглежда работи коректно:

6. Сега превключете към преходната програма (лице на квадрат). Това става с двоен клик на мишката върху файла Program.cs от предходния проект "Square-Area" в панела [Solution Explorer] на Visual Studio:

7. Натиснете пак [Ctrl+F5]. Този път трябва да се стартира другият проект:

8. Превключете обратно към проекта "Inches-to-Centimeters" и го стартирайте с [Ctrl+F5]:

Превключването между проектите е много лесно, нали? Просто избираме файла със сорс кода на програмата, кликваме го два пъти с мишката и при стартиране тръгва програмата от този файл.

9. Тествайте с дробни числа, например с 2.5:

```
inches = 2.5
centimeters = 6.35
Press any key to continue . . .
```

Внимание: в зависимост от регионалните настройки на операционната система, е възможно вместо **десетична точка** (US настройки) да се използва **десетична запетая** (BG настройки). Ако програмата очаква десетична точка и бъде въведено число с десетична запетая или на обратно (бъде въведена десетична точка когато се очаква десетична запетая), ще се получи следната грешка:

```
inches = 2,5

Unhandled Exception: System.FormatException: Input string was not in a correct format.
   at System.Number.ParseDouble(String value, NumberStyles options, NumberFormatInfo numfmt)
   at System.Double.Parse(String s)
   at Inches_to_Centimeters.Program.Main(String[] args) in C:\Projects\Simple-Calculations\Inches-to-Centimeters\Program.cs:line 14
```

Препоръчително е да промените настройките на компютъра си, така че да се използва десетична точка:

10. Вече е време за тестване в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#1. Решението би трябвало да бъде прието като напълно коректно:

3. Поздрав по име

Да се напише програма, която чете от конзолата име на човек и отпечатва "Hello, <name>!", където <name> е въведеното преди това име.

1. Първо създайте нов С# конзолен проект с име "Greeting" в решението "Simple-Calculations":

2. Напишете кода на програмата. Ако се затруднявате, може да ползвате примерния код по-долу:

3. **Стартирайте** програмата с **[Ctrl+F5]** и я тествайте:

4. Тествайте в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#2. Преди да пратите решението сложете коментар на първия ред, който печата "Enter your name".

4. Съединяване на текст и числа

Напишете С# програма, която прочита от конзолата име, фамилия, възраст и град и печата съобщение от следния вид: "You are <firstName> <lastName>, a <age>-years old person from <town>".

- 1. Добавете към текущото Visual Studio решение още един конзолен С# проект с име "Concatenate-Data".
- 2. Напишете кода, който чете входните данни от конзолата:

```
var firstName = Console.ReadLine();
var lastName = Console.ReadLine();
var age = int.Parse(Console.ReadLine());
var town = Console.ReadLine();
```

3. Допишете код, който отпечатва описаното в условието на задачата съобщение.

На горната картинка кодът е нарочно даден размазан, за да помислите как да си го напишете сами.

- 4. Тествайте решението локално с [Ctrl+F5] и въвеждане на примерни данни.
- 5. Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#3.

5. Лице на трапец

Напишете програма, която чете от конзолата три числа **b1**, **b2** и **h** и **пресмята лицето на трапец** с основи **b1** и **b2** и височина **h**. Формулата за лице на трапец е (b1 + b2) * h / 2.

На фигурата по-долу е показан трапец със страни 8 и 13 и височина 7. Той има лице (8 + 13) * 7 / 2 = 73.5.

- 1. Добавете към текущото Visual Studio решение още един конзолен С# проект с име "Trapezoid-Area".
- 2. Напишете кода, който чете входните данни от конзолата, пресмята лицето на трапеца и го отпечатва:

```
static void Main(string[] args)
{
    var b1 = double.Parse(Console.ReadLine());
    var b2 = double.Fersell
                                #.Read(.ine());
   ver h = double.Perse(Console.Read(ine());
   w area = (85 + 82) * h / 2.4;
    Console.WriteLine("Trapezoid area = " + area);
}
```


Кодът на картинката е нарочно размазан, за да си го доизмислите и допишете сами.

- 3. **Тествайте** решението локално с [Ctrl+F5] и въвеждане на примерни данни.
- 4. Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#4.

6. Периметър и лице на кръг

Напишете програма, която чете от конзолата **число r** и пресмята и отпечатва **лицето** и **периметъра на кръг** / окръжност с радиус \mathbf{r} .

вход	изход	
3	Area = 28.2743338823081 Perimeter = 18.8495559215388	
4.5	Area = 63.6172512351933 Perimeter = 28.2743338823081	

За изчисленията можете да използвате следните формули:

- area = Math.PI * r * r
- perimeter = 2 * Math.PI * r

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#5.

7. Лице на правоъгълник в равнината

Правоъгълник е зададен с координатите на два от своите срещуположни ъгъла (x1, y1) - (x2, y2). Да се пресметнат площта и периметъра му. Входът се чете от конзолата. Числата х1, у1, х2 и у2 са дадени по едно наред. Изходът се извежда на конзолата и трябва да съдържа два реда с по една число на всеки от тях – лицето и периметъра.

вход	изход
60	1500
20	160
10	
50	
30	2000
40	180
70	
-10	
600.25	350449.6875
500.75	2402
100.50	
-200.5	

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#6.

8. Лице на триъгълник

Напишете програма, която чете от конзолата **страна** и **височина** на **триъгълник** и пресмята неговото лице. Използвайте формулата за лице на триъгълник: **area** = **a** * **h** / **2**. Закръглете резултата до **2 знака след десетичната точка** използвайки Math.Round(area, 2).

вход	изход		
20 30	Triangle area = 300		
15 35	Triangle area = 262.5		
7.75 8.45	Triangle area = 32.74		
1.23456 4.56789	Triangle area = 2.82		

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#7.

9. Конзолен конвертор: от градуси °С към градуси °F

Напишете програма, която чете **градуси по скалата на Целзий** (°C) и ги преобразува до **градуси по скалата на Фаренхайт** (°F). Потърсете в Интернет подходяща формула, с която да извършите изчисленията. Закръглете резултата до **2 знака след десетичната точка**. Примери:

вход	изход
25	77

вход	изход
0	32

вход	изход
-5.5	22.1

вход	изход
32.3	90.14

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#8.

10. Конзолен конвертор: от радиани в градуси

Напишете програма, която чете **ъгъл в радиани** (rad) и го преобразува в <u>градуси</u> (deg). Потърсете в Интернет подходяща формула. Числото π в C# програми е достъпно чрез **Math.PI**. Закръглете резултата до найблизкото цяло число използвайки **Math.Round()**. Примери:

вход	изход
3.1416	180

вход	изход
6.2832	360

вход	изход
0.7854	45

вход	изход
0.5236	30

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#9.

11. Конзолен конвертор: USD към BGN

Напишете програма за конвертиране на щатски долари (USD) в български лева (BGN). Закръглете резултата до 2 цифри след десетичната запетая. Използвайте фиксиран курс между долар и лев: 1 USD = 1.79549 BGN.

вход	изход	
20	35.91 BGN	

вход	изход	
100	179.55 BGN	

вход	изход	
12.5	22.44 BGN	

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#10.

12. * Конзолен междувалутен конвертор

Напишете програма за **конвертиране на парична сума от една валута в друга**. Трябва да се поддържат следните валути: **BGN**, **USD**, **EUR**, **GBP**. Използвайте следните фиксирани валутни курсове:

Курс	USD	EUR	GBP
1 BGN	1.79549	1.95583	2.53405

Входът е **сума за конвертиране** + **входна валута** + **изходна валута**. **Изходът** е едно число – преобразуваната сума по посочените по-горе курсове, закръглен до **2 цифри** след десетичната точка. Примери:

вход	изход	
20 USD BGN	35.91 BGN	

вход	изход	
100	51.13 EUR	
BGN		
EUR		

вход	изход
12.35 EUR GBP	9.53 GBP

вход	изход
150.35 USD EUR	138.02 EUR

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#11.

13. ** Пресмятане с дати: **1000** дни на **3**емята

Напишете програма, която въвежда **рождена дата** във формат "**dd-MM-уууу**" и пресмята датата, на която се навършват **1000 дни** от тази рождена дата и я отпечатва в същия формат.

вход	изход
25-02-1995	20-11-1997
07-11-2003	02-08-2006
30-12-2002	24-09-2005
01-01-2012	26-09-2014
14-06-1980	10-03-1983

^{*} Подсказки: потърсете информация за типа DateTime в С# и по-конкретно разгледайте методите ParseExact(str, format), AddDays(count) и ToString(format). С тяхна помощ може да решите задачата, без да е необходимо да изчислявате дни, месеци и високосни години.

Тествайте решението си в **judge системата**: https://judge.softuni.bg/Contests/Practice/Index/151#12. Не печатайте нищо допълнително на конзолата освен изискваната дата!

Упражнения: Графични и Web приложения

14. Графично приложение: конвертор от BGN към EUR

Създайте **графично приложение** (GUI application), което пресмята стойността в **евро** (EUR) на парична сума, зададена в **лева** (BGN). При промяна на стойността в лева, равностойността в евро трябва да се преизчислява автоматично. Използвайте курс лева / евро: **1.95583**.

1. Добавете към текущото Visual Studio решение още един проект. Този път създайте Windows Forms приложение със С# с име "BGN-to-EUR-Converter":

- 2. Подредете следните UI контролите във формата:
 - NumericUpDown с име numericUpDownAmount ще въвежда сумата за конвертиране
 - Label с име labelResult ще показва резултата след конвертиране
 - Още два Label компонента, служещи единствено за статично изобразяване на текст

Графичният редактор за потребителски интерфейс може да изглежда по подобен начин:

3. Задайте настройки на формата и на отделните контроли:

FormConverter

- Text = "BGN to EUR"
- Font.Size = 12
- MaximizeBox = False
- MinimizeBox = False
- FormBorderStyle = FixedSingle

numericUpDownAmount

- Value = 1
- Minimum = 0
- Maximum = 10000000
- TextAlign = Right
- DecimalPlaces = 2

labelResult

AutoSize = False

- BackColor = PaleGreen
- TextAlign = MiddleCenter
- Font.Size = 14
- Font.Bold = True
- 4. Дефинирайте обработчици на събития по контролите:

Хванете следните събития:

- FormConverter.Load (кликнете върху формата с мишката 2 пъти)
- numericUpDownAmount.ValueChanged (кликнете върху NumericUpDown контролата 2 пъти)
- numericUpDownAmount.KeyUp (изберете Events от таблото Properties и кликнете 2 пъти върху KeyUp)

Събитието Form. Load се изпълнява при стартиране на програмата, преди да се появи прозореца на приложението. Събитието NumericUpDown. ValueChanged се изпълнява при промяна на стойността в полето за въвеждане на число. Събитието NumericUpDown. КеуUp се изпълнява след натискане на клавиш в полето за въвеждане на число. При всяко от тези събития ще преизчисляваме резултата.

За хващане на събитие ползвайте иконката със събитията в Properties прозореца във Visual Studio:

Сложете следния С# код за обработка на събитията:

private void FormConverter_Load(object sender, EventArgs e)


```
{
  ConvertCurrency();
private void numericUpDownAmount_ValueChanged(object sender, EventArgs e)
  ConvertCurrency();
}
private void numericUpDownAmount_KeyUp(object sender, KeyEventArgs e)
  ConvertCurrency();
}
```

Всички прихванати събития извикват метода ConvertCurrency(), който конвертира зададената сума от лева в евро и показва резултата в зелената кутийка.

Напишете кода (програмната логика) за конвертиране от лева към евро:

```
private void ConvertCurrency()
  var amountBGN = this.numericUpDownAmount.Value;
  var amountEUR = amountBGN * 1.95583m;
  this.labelResult.Text =
    amountBGN + "BGN = " +
    Math.Round(amountEUR, 2) + " EUR";
}
```

Стартирайте проекта с [Ctrl+F5] и тествайте дали работи правилно.

Графично приложение: хвани бутона! **15.**

Създайте забавно графично приложение "**хвани бутона**": една форма съдържа един бутон. При преместване на курсора на мишката върху бутона той се премества на случайна позиция. Така се създава усещане, че "бутонът бяга от мишката и е трудно да се хване". При "хващане" на бутона се извежда съобщениепоздрав.

* Подсказка: напишете обработчик за събитието Button. Mouse Enter и премествайте бутона на случайна позиция. Използвайте генератор за случайни числа

Random. Позицията на бутона се задава от свойството Location. За да бъде новата позиция на бутона в рамките на формата, можете да направите изчисления спрямо размера на формата, достъпен от свойството ClientSize. Можете да ползвате следния код за ориентир:

```
private void buttonCatchMe_MouseEnter(object sender, EventArgs e)
{
    Random rand = new Random();
```


© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.


```
var maxWidth = this.ClientSize.Width - buttonCatchMe.ClientSize.Width;
var maxHeight = this.ClientSize.Height - buttonCatchMe.ClientSize.Height;
this.buttonCatchMe.Location = new Point(
    rand.Next(maxWidth), rand.Next(maxHeight));
}
```

Изпитни задачи от минали издания на курса

16. * Рожден ден

Първа задача от изпита на 17 септември 2017. Тествайте решението си тук.

За рождения си ден Любомир получил аквариум с формата на паралелепипед. **Първоначално прочитаме от конзолата на отделни редове размерите му – дължина, широчина и височина в сантиметри.** Трябва да се пресметне колко литра вода ще събира аквариума, ако се знае, че определен процент от вместимостта му е заета от пясък, растения, нагревател и помпа.

Един литър вода се равнява на един кубичен дециметър/ 1л=1 дм 3 /.

Да се напише програма, която изчислява литрите вода, която са необходими за напълването на аквариума.

Вход

От конзолата се четат 4 реда:

- Дължина в см цяло число в интервала [10 ... 500];
- 2. Широчина в см цяло число в интервала [10 ... 300];
- 3. Височина в см цяло число в интервала [10... 200];
- 4. Процент реално число в интервала [0.000 ... 100.000];

Изход

Да се отпечата на конзолата едно число:

• литрите вода, които ще събира аквариума, форматирани до третия знак след десетичната запетая.

Примерен вход и изход

Вход	Изход	Обяснения
85 75 47 17	248.689	Изчисляваме обем на аквариум: обем на аквариум= 85*75*47=299625 см³ общо литри, които ще събере: 299625 * 0.001=299.625 литра процент: 17*0.01=0.17 литрите, които реално ще трябват : 299.625*(1-0.17) = 248.68875 литра
Вход	Изход	
105 77 89	586.445	

17. * Шивашки цех

Първа задача от изпита на 03 септември 2017. Тествайте решението си тук.

Шивашки цех приема **поръчки за ушиване на покривки и карета за маси** за заведения. Покривките са правоъгълни, каретата са квадратни, броят им винаги е еднакъв. Покривката трябва да виси с **30 см от всеки ръб на масата**. Страната на каретата е **половината от дължината на масите**. Във всяка поръчка се включва информация за броя и размерите на масите.

Напишете програма, която пресмята цената на поръчка в долари и в левове, като квадратен метър плат за правоъгълна покривка струва **7 долара**, а за каре – **9 долара**. Курсът на долара е **1.85 лева**.

Вход

Потребителят въвежда 3 числа, по едно на ред:

- Брой правоъгълни маси цяло число в интервала [0..500];
- Дължина на правоъгълните маси в метри реално число в интервала [0.00...3.00];
- Широчина на правоъгълните маси в метри реално число в интервала [0.00...3.00];

Изход

Да се отпечатат на конзолата две числа: цената на изделията в долари и в левове.

- ∘ "{цена в долари} USD"
- ∘ "{цена в левове} BGN"

Резултатите да се закръглят до два знака след десетичната запетая.

Примерен вход и изход

Вход	Изход	Обяснения
5 1.00 0.50	72.85 USD 134.77 BGN	Общата площ на покривките е: 5 броя * (1.00 + 2 * 0.30) * (0.5 + 2 * 0.30) = 8.80 кв. метра Общата площ на каретата е: 5 броя * (1.00 / 2) * (1.00 / 2) = 1.25 кв. метра Цена в долари: 8.80 * 7 долара + 1.25 * 9 долара = 72.85 долара Цена в левове: 72.85 * 1.85 = 134.77 лева
10 1.20	189.90 USD 351.32 BGN	Общата площ на покривките е:

0.65	10 броя * (1.2 + 2 * 0.30) * (0.65 + 2 * 0.30) = 22.50 кв. метра
	Общата площ на каретата е:
	10 броя * (1.20 / 2) * (1.20 / 2) = 3.60 кв. метра
	Цена в долари: 22.50 * 7 долара + 3.60 * 9 долара = 189.9 долара
	Цена в левове: 189.9 * 1.85 = 351.32 лева

18. * Зала за танци

Първа задача от изпита на 23 юли 2017. Тествайте решението си тук.

Група танцьори си търсят нова зала. Залата, която са харесали, е правоъгълна и има размери:

L - дължина и W - ширина (в метри). В залата има **квадратен** гардероб със страна - **A** и **правоъгълна** скамейка с площ **10 пъти по-малка** от площта на залата.

Мястото, което заема един танцьор е 40 cm^2 и допълнително за свободно движение му трябват още 7000cm^2 .

Напишете програма, която да изчислява колко танцьори могат да се поберат в залата и да се движат свободно.

Полученият резултат трябва да се закръгли до най-близкото цяло число надолу.

Вход

От конзолата се четат 3 реда:

- 1. L дължина на залата в метри реално число в интервала [10.00 ... 100.00];
- 2. W ширина на залата в метри реално число в интервала [10.00 ... 100.00];
- 3. А страна на гардероба в метри реално число в интервала [2.00... 20.00];

Изход

Да се отпечата на конзолата едно цяло число – броя танцьори, които могат да се поберат в свободното пространство на залата, **закръглени до най-близкото цяло число надолу**.

Вход	Изход	Чертеж		Обяснения
50 25	1592		Пейка	Големина на залата в квадратни сантиметри: (50 * 100) * (25 * 100) = 12 500 000;
2				Големина на гардероба: (<mark>200 * 200</mark>) = 40000 ;
		Гарде -роб		Големина на пейката: 12 500 000 / 10 = 1 250 000; Свободно пространство = 12 500 000 - 40000 - 1 250 000 =

	11210000;
	Брой танцьори = 11210000 / (40 + 7000) = 1592 ;

19. * Благотворителна кампания

Първа задача от изпита на 25 юни 2017. Тествайте решението си тук.

В сладкарница се провежда благотворителна кампания за събиране на средства, в която могат да се включат сладкари от цялата страна. Първоначално прочитаме от конзолата броя на дните, в които тече кампанията и броя на сладкарите, които ще се включат. След това на отделни редове получаваме количеството на тортите, гофретите и палачинките, които ще бъдат приготвени от един сладкар за един ден. Трябва да се има предвид следния ценоразпис:

- Торта 45 лв.
- Гофрета 5.80 лв.
- Палачинка 3.20 лв.

1/8 от крайната сума ще бъде използвана за покриване на разходите за продуктите по време на кампанията. Да се напише програма, която изчислява сумата, която е събрана в края на кампанията.

Вход

От конзолата се четат 5 реда:

- 5. Броят на дните, в които тече кампанията цяло число в интервала [0 ... 365];
- 6. Броят на сладкарите цяло число в интервала [0 ... 1000];
- 7. Броят на тортите цяло число в интервала [0... 2000];
- 8. Броят на гофретите цяло число в интервала [0 ... 2000];
- 9. Броят на палачинките цяло число в интервала [0 ... 2000].

Изход

Да се отпечата на конзолата едно число:

• парите, които са събрани, форматирани до втория знак след десетичната запетая.

Примерен вход и изход

Вход	Изход	Обяснения
20 8 14	119728.00	Изчисляваме сумата , която се изкарва на ден за всеки един от продуктите , направени от 1 сладкар :

30 16		Торти: 14 * 45 = 630 лв.; Гофрети: 30 * 5.80 = 174 лв.; Палачинки: 16 * 3.20 = 51.20 лв. Обща сума за един ден: (630 + 174 + 51.20) * 8 = 6841.60 лв. Сума събрана от цялата кампания: 6841.60 * 20 = 136832лв. Сума след покриване на разходите: 136832 - 1/8 от 136832 = 119728 лв.
Вход	Изход	
131 5 9 33 46	426175.75	

20. * Алкохолна борса

Първа задача от изпита на 25 юни 2017. Тествайте решението си тук.

Пешо решава да направи купон и отива до алкохолната борса за да купи бира, вино, ракия и уиски. На конзолата се въвежда цената на уискито в лв./л. и количеството на бирата, виното, ракията и уискито, които трябва да закупи. Да се напише програма, която пресмята колко пари са му необходими за да плати сметката, като знаете, че:

- цената на ракията е на половина по-ниска от тази на уискито;
- цената на виното е с 40% по-ниска от цената на ракията;
- цената на бирата е с 80% по-ниска от цената на ракията.

Вход

От конзолата се четат 5 реда:

- 10. Цена на уискито в лева реално число в интервала [0.00 ... 10000.00];
- 11. Количество на бирата в литри реално число в интервала [0.00 ... 10000.00];
- 12. Количество на виното в литри реално число в интервала [0.00 ... 10000.00];
- 13. Количество на ракията в литри реално число в интервала [0.00 ... 10000.00];
- 14. Количество на уискито в литри реално число в интервала [0.00 ... 10000.00].

Изход

Да се отпечата на конзолата едно число:

• парите, които са необходими на Пешо, форматирани до втория знак след десетичната запетая.

Примерен вход и изход

Вход	Изход	Обяснения
50	315.00	Цена на ракията за литър: 25 лв.
10		Цена на виното за литър: 25 – (0.4 * 25) = 15 лв.
3.5		Цена на бирата за литър: 25 – (0.8 * 25) = 5 лв.
6.5		Сума за ракията : 6.5 * 25 = 162.50 лв.

1		Сума за виното: $3.5 * 15 = 52.50$ лв. Сума за бирата: $5 * 10 = 50$ лв. Сума за уискито: $1 * 50 = 50$ лв. Обща сума: $162.50 + 52.50 + 50 + 50 = 315$ лв.
Вход	Изход	
63.44 3.57 6.35 8.15 2.5	560.62	

