Microbiële ecologie

Biodiversiteit ----

Identificeren en kwantificeren van m.o.'s

Microbiële activiteit — Metabole processen meten

Microbiële ecologie – 'klassieke methode'

Enrichment cultures (ophopingscultures):

- 'ophoping' van een bepaald micro-organisme m.b.v. electief ophopingsmedium
- Succes afhankelijk van: inoculum (habitat), nutriënten, condities

Limitaties ophopingscultures:

- 'Enrichment cultures can yield a firm positive conclusion, but never a firm negative conclusion'
- Dus: dat je een bacterie kunt ophopen zegt weinig over de ecologische relevantie of hoeveelheid bacteriën in de habitat

Culture independent genetic analyses of microbial communities

PCR Methods of Microbial Community Analysis

Voorbeelden van veel gebruikte genen

- SSU rRNA genen
- Genen die coderen voor metabole enzymen, b.v.:

Metabolic process ^a	Target gene	Encoded enzyme	
Denitrification	narG	Nitrate reductase	
	nirK, nirS	Nitrite reductase	
	norB	Nitric oxide reductase	
	nosZ	Nitrous oxide reductase	
Nitrogen fixation	nifH	Nitrogenase	
Nitrification	amoA	Ammonia monooxygenase	
Methane oxidation	pmoA	Methane monooxygenase	
Sulfate reduction	apsA	Adenosine phosphosulfate reductase	
	dsrAB	Sulfite reductase	
Methane production	mcrA	Methyl coenzyme M reductase	
Degradation of petro- leum compounds	nahA	Naphthalene dioxygenase	
	alkB	Alkane hydroxylase	
Anoxygenic photosynthesis	pufM	M subunit of photosynthetic reaction center	

^aAll of these metabolic processes are discussed in Chapter 14.

Phylotypes

Phylotype: een of meer organismen die hetzelfde of zeer nauw verwante sequenties van een marker gen delen

Beschrijving van de microbiële diversiteit van een habitat, <u>uitsluitend</u> op basis van nucleïnezuursequenties

Genus/ soort → pas mogelijk wanneer er meer fysiologische en genetische informatie bekend is (zie vorige les + hoofdstuk 13)

Denaturing Gradient Gel Electroforesis (DGGE)

Gel bevat een gradiënt van een DNA-denaturerende stof

→ onderscheid PCR fragmenten met zelfde grootte, maar verschillende sequenties

T-RFLP

Terminal restriction fragment length polymorphism

PCR met fluorescente primers — restrictie — scheiding op grootte — (evt. sequencing)

Geeft (i.t.t. DGGE) ook fylogenetische informatie (waarom?)

ARISA

Automated ribosomal intergenic spacer analysis

Next generation sequencing

PCR producten kunnen direct gesequenced worden

Deep sequence analysis (\rightarrow ook detectie van phylotypes die niet veel voorkomen \rightarrow rare biosphere)

Unique phylotypes, ordered by decreasing abundance

Microbiële gemeenschappen

Bevatten veel phylotypes die nog niet eerder gekweekt zijn

qPCR: vaak zijn juist de meest voorkomende phylotypes niet goed te kweken

~0,1% van de ontdekte phylotypes is maar gekweekt!

Samengevat

Figuur 19.16

Microarrays for Analysis of Microbial Phylogenetic and Functional Diversity

Microarrays

Niet alleen voor genexpressie, ook voor microbiële gemeenschappen:

- biodiverisiteit → phylochips (niet veel meer gebruikt)
- genen van biogeochemisch belang → functional gene microarray
 (b.v. genen betrokken bij sulfaat respiratie, stikstoffixatie, etc)

Nadelen:

- aspecifieke hybridisatie
- risico vals positieven
- kosten ontwikkeling

GeoChip

- microarray functionele genen
- informatie over metabolisme in een habitat

Functional category	Gene families	Total probes	Database gene coverage (%)
Carbon cycling	149	26922	49
Nitrogen cycling	32	6493	52
Sulfur cycling	27	4739	64
Phosphorus	7	3260	52
Metal homeostasis	121	43432	47
Viruses	115	2857	55
Other	81	10380	42
Organic remediation	104	11591	41
Virulence	639	21152	45
Secondary metabolism	68	4032	56
Electron transfer	15	797	65
Stress response	89	26306	33
TOTAL	1447	161,961	44

(b)

Environmental Multi-Omics

Multi-omics: overzicht

Environmental genomics (metagenomics)

Analyse van **alle** genen van een microbiële gemeenschap (metagenoom)

Steeds vaker: assembly (deels) complete genomen

Informatie over de fylogenetische en metabole diversiteit van een gemeenschap

- 1. Phylogenetic snapshot of most members of the community
- 2. Phylogenetic diversity of a microbial guild such as the ammonia-oxidizing Archaea
- 1. Identification of all gene categories
- 2. Discovery of new genes
- 3. Linking of genes to phylotypes

Environmental genomics (metagenomics)

Probleem: genomen niet altijd compleet of clonaal

Bestaan in plaats daarvan uit fragmenten van nauw verwante stammen of soorten.

B.v. grondmonster:

10¹² bacteriële en virale genen

10⁹ genomen

nog te complex

Metatranscriptomics en metaproteomics

Metatranscriptomics:

- analyse van het RNA van een microbiële gemeenschap
- laat zien of genen tot expressie komen (en relatieve niveau)
- geeft inzicht in metabole processen

Metaproteomics

- diversiteit en hoeveelheden van eiwitten in een gemeenschap
- technisch nog erg lastig
- vaak m.b.v. massa spectometrie

Alle figuren in deze PowerPoint zijn afkomstig uit Brock Biology of Microorganisms (16th global edition, Pearson) tenzij anders aangegeven.