CSE 575: Statistical Machine Learning

Jingrui He

CIDSE, ASU

MLE Linear Regression

Your first consulting job

- A billionaire from Tempe asks you a question:
 - He says: I have a thumbtack, if I flip it, what's the probability it will fall with the nail up?
 - You say: Please flip it a few times:

- You say: The probability is:
- He says: Why???
- You say: Because...

Thumbtack - Binomial Distribution

• P(Heads) = θ , P(Tails) = $1-\theta$

- Flips are i.i.d.:
 - Independent events
 - Identically distributed according to Binomial distribution
- Sequence D of $\alpha_{\rm H}$ Heads and $\alpha_{\rm T}$ Tails

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Maximum Likelihood Estimation

- Data: Observed set D of $\alpha_{\rm H}$ Heads and $\alpha_{\rm T}$ Tails
- Hypothesis: Binomial distribution
- Learning θ is an optimization problem
 - What's the objective function?
- **MLE**: Choose θ that maximizes the probability of observed data:

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

$$= \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

Your First Learning Algorithm

$$\hat{\theta} = \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

$$= \arg \max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

• Set derivative to zero:
$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = 0$$

How Many Flips Do I Need?

$$\widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

- Billionaire says: I flipped 3 heads and 2 tails.
- You say: $\theta = 3/5$, I can prove it!
- He says: What if I flipped 30 heads and 20 tails?
- You say: Same answer, I can prove it!
- He says: What's better?
- You say: Humm... The more the merrier???
- He says: Is this why I am paying you the big bucks???

Simple Bound (based on Hoeffding's inequality)

• For N =
$$\alpha_{\rm H}$$
+ $\alpha_{\rm T}$, and $\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$

• Let θ^* be the true parameter, for any ε >0:

$$P(||\widehat{\theta} - \theta^*| > \epsilon) < 2e^{-2N\epsilon^2}$$

PAC Learning

- PAC: Probably Approximately Correct
- Billionaire says: I want to know the thumbtack parameter θ , within ϵ = 0.1, with probability at least 1- δ = 0.95. How many flips?

$$P(||\widehat{\theta} - \theta^*| \ge \epsilon) \le 2e^{-2N\epsilon^2}$$

What about prior

- Billionaire says: Wait, I know that the thumbtack is "close" to 50-50. What can you do for me now?
- You say: I can learn it the Bayesian way...

• Rather than estimating a single θ , we obtain a distribution over possible values of θ

Bayesian Learning

Use Bayes rule:

$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

Or equivalently:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

Bayesian Learning for Thumbtack

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

Likelihood function is simply Binomial:

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

- What about prior?
 - Represent expert knowledge
 - Simple posterior form
- Conjugate priors:
 - Prior/posterior: same probability distribution family
 - For Binomial, conjugate prior is Beta distribution

Beta Prior Distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H - 1}(1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T) \qquad \text{Mean: } \frac{b_H}{b_H + b_T}$$

$$= \frac{Beta(1,1)}{Beta(2,2)} \sim Beta(\beta_H, \beta_T) \qquad Beta(2,3)$$

$$= \frac{Beta(2,3)}{Beta(2,3)} \qquad Beta(2,3)$$

$$= \frac{Beta(2,3)}{Beta(2,3)} \qquad Beta(2,3)$$

$$= \frac{Beta(2,3)}{Beta(2,3)} \qquad Beta(2,3)$$

- Likelihood function: $P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 \theta)^{\alpha_T}$
- Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$

Posterior Distribution

- Prior: $Beta(\beta_H, \beta_T)$
- Data: $\alpha_{\rm H}$ heads and $\alpha_{\rm T}$ tails
- Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

Using Bayesian posterior

Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

- Bayesian inference:
 - No longer single parameter:

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

Integral is often hard to compute

MAP: Maximum a Posteriori Approximation

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

As more data is observed, Beta is more certain

MAP: use most likely parameter:

$$\widehat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D}) \quad E[f(\theta)] \approx f(\widehat{\theta})$$

MAP for Beta Distribution

$$P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

MAP: use most likely parameter:

$$\widehat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D}) =$$

- Beta prior equivalent to extra thumbtack flips
- As $N \rightarrow \infty$, prior is "forgotten"
- But, for small sample size, prior is important!

What About Continuous Variables?

- Billionaire says: If I am measuring a continuous variable, what can you do for me?
- You say: Let me tell you about Gaussians...

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Some Properties of Gaussians

 Affine transformation (multiplying by scalar and adding a constant)

$$-X \sim N(\mu,\sigma^2)$$

$$- Y = aX + b \rightarrow Y \sim N(a\mu + b, a^2\sigma^2)$$

Sum of Gaussians

- $X \sim N(\mu_x, \sigma^2_x)$
- $-Y \sim N(\mu_{Y'}\sigma_{Y}^2)$
- $-Z = X+Y \rightarrow Z \sim N(\mu_X + \mu_Y, \sigma^2_X + \sigma^2_Y)$ Independence?

Learning a Gaussian

- Collect a bunch of data
 - Hopefully, i.i.d. samples
 - e.g., exam scores
- Learn parameters
 - Mean
 - Variance

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

MLE for Gaussian

• Prob. of i.i.d. samples $D=\{x_1,...,x_N\}$:

$$P(\mathcal{D} \mid \mu, \sigma) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$

Log-likelihood of data:

$$\ln P(\mathcal{D} \mid \mu, \sigma) = \ln \left[\left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}} \right]$$
$$= -N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^N \frac{(x_i - \mu)^2}{2\sigma^2}$$

Your Second Learning Algorithm: MLE for Mean of a Gaussian

What's MLE for mean?

$$\frac{d}{d\mu} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\mu} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

Properties of MLE for Mean

• Under certain conditions, MLE is consistent

$$\hat{m}_{MLE} \xrightarrow{P} m^*$$

• Asymptotic Normality: let $se = \sqrt{Var_m(\hat{m}_{MLE})}$. Under regularity conditions,

$$\frac{\widehat{\theta}_n - \theta}{se} \leadsto N(0,1)$$
 $se \approx \sqrt{1/I_n(\theta)}$ Fisher Information

MLE for Variance

Again, set derivative to zero:

$$\frac{d}{d\sigma} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$
$$= \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\sigma} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

Learning Gaussian Parameters

• MLE:
$$\widehat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\widehat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \widehat{\mu})^2$$

- BTW. MLE for the variance of a Gaussian is biased
 - Expected result of estimation is **not** true parameter!
 - Unbiased variance estimator:

$$\hat{\sigma}_{unbiased}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

Bayesian Learning of Gaussian Parameters

- Conjugate priors
 - Mean: Gaussian prior
 - Variance: Wishart Distribution

Prior for mean:

$$P(\mu \mid \eta, \lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{\frac{-(\mu - \eta)^2}{2\lambda^2}}$$

MAP for Mean of Gaussian

$$P(\mu \mid \eta, \lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{\frac{-(\mu - \eta)^2}{2\lambda^2}} \qquad P(\mathcal{D} \mid \mu, \sigma) = \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$

$$\frac{d}{d\mu} \left[\ln P(\mathcal{D} \mid \mu) P(\mu) \right] = \frac{d}{d\mu} \left[\ln P(\mathcal{D} \mid \mu) + \ln P(\mu) \right]$$

Frequentist Statistics

- Data are random
- Estimators are random because they are functions of data
- Parameters are fixed, unknown constants not subject to probabilistic statements
- Procedures are subject to probabilistic statements, for example 95% confidence intervals trap the true parameter value 95% of the time
- Classifiers, even learned with deterministic procedures, are random because the training set is random
- PAC bound is frequentist

Bayesian Statistics

- Probability refers to degree of belief
- Inference about a parameter θ is by producing a probability distributions on it
- Starts with prior distribution $p(\theta)$
- Likelihood function $p(x \mid \theta)$, a function of θ not x
- After observing data x, one applies the Bayes rule to obtain the posterior
- Prediction by integrating parameters out:

$$p(x \mid Data) = \int p(x \mid \theta)p(\theta \mid Data)d\theta$$

Prediction of Continuous Variables

- Billionaire says: Wait, that's not what I meant!
- You says: Chill out, dude.
- He says: I want to predict a continuous variable for continuous inputs: I want to predict salaries from GPA.
- You say: I can regress that...

The Regression Problem

- Instances: <x_i, t_i>
- Learn: Mapping from x to t(x)
- Hypothesis space:
 - Given, basis functions
 - Find coeffs $\mathbf{w} = \{\mathbf{w}_1, ..., \mathbf{w}_k\}$

$$H = \{h_1, \dots, h_K\}$$
$$\underbrace{t(\mathbf{x})}_{\text{data}} \approx \widehat{f}(\mathbf{x}) = \sum_i w_i h_i(\mathbf{x})$$

- Why is this called linear regression???
 - model is linear in the parameters
- Precisely, minimize the residual squared error:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$

Regression in Matrix Notation

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\mathbf{H}\mathbf{w} - \mathbf{t} \right)^T (\mathbf{H}\mathbf{w} - \mathbf{t})$$
residual error

Regression Solution: Matrix Operations

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \underbrace{(\mathbf{H}\mathbf{w} - \mathbf{t})^T (\mathbf{H}\mathbf{w} - \mathbf{t})}_{\text{residual error}}$$

solution:
$$\mathbf{w}^* = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{t} = \mathbf{A}^{-1} \mathbf{b}$$

where
$$\mathbf{A} = \mathbf{H}^{\mathrm{T}}\mathbf{H} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \end{bmatrix}$$
 $\mathbf{b} = \mathbf{H}^{\mathrm{T}}\mathbf{t} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \end{bmatrix}$ where $\mathbf{A} = \mathbf{H}^{\mathrm{T}}\mathbf{H} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \end{bmatrix}$ $\mathbf{b} = \mathbf{H}^{\mathrm{T}}\mathbf{t} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \end{bmatrix}$ where $\mathbf{A} = \mathbf{H}^{\mathrm{T}}\mathbf{H} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \end{bmatrix}$ $\mathbf{b} = \mathbf{H}^{\mathrm{T}}\mathbf{t} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \end{bmatrix}$ $\mathbf{b} = \mathbf{H}^{\mathrm{T}}\mathbf{t} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \end{bmatrix}$ $\mathbf{b} = \mathbf{H}^{\mathrm{T}}\mathbf{t} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \end{bmatrix}$ $\mathbf{b} = \mathbf{H}^{\mathrm{T}}\mathbf{t} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \end{bmatrix}$ $\mathbf{b} = \mathbf{H}^{\mathrm{T}}\mathbf{t} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \end{bmatrix}$

But, Why?

- Billionaire (again) says: Why sum squared error???
- You say: Gaussians, Dr. Gateson, Gaussians...
- Model: prediction is linear function plus Gaussian noise

$$-t = \sum_{i} w_{i} h_{i}(\mathbf{x}) + \varepsilon$$

Learn w using MLE

n **w** using MLE
$$P(t \mid \mathbf{x}, \mathbf{w}, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-[t - \sum_{i} w_{i} h_{i}(\mathbf{x})]^{2}}{2\sigma^{2}}}$$

Maximizing Log-likelihood

Maximize:

Maximize:
$$\ln P(\mathcal{D} \mid \mathbf{w}, \sigma) = \ln \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{\frac{-\left[t_j - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}{2\sigma^2}}$$

Least-squares Linear Regression is MLE for Gaussians!!!

Applications Corner 1

- Predict stock value over time from
 - past values
 - other relevant vars
 - e.g., weather, demands, etc.

Applications Corner 2

- Predict road traffic volume over time from
 - historical traffic volume
 - historical traffic volume of adjacent road segments

Applications Corner 3

- Predict when a sensor will fail
 - Based on several variables
 - age, chemical exposure, number of hours used,...

Other applications?

Basics of Linear Algebra

Eigenvector and Eigenvalue

A matrix $A \in \Re^{m \times n}$ is a two-dimensional array

Matrix operations: A + B, $A \bullet B$, A^{-1}

 $rank(A), A^{T}, det(A)$

 (λ, x) is an eigen-pair of A, if and only if $Ax = \lambda x$. λ is the eigenvalue x is the eigenvector

Orthogonal Matrix

 $U \in \Re^{m \times m}$ is orthogonal, if and only if $U U^T = I_m$. (I_m is the identity matrix)

$$\Rightarrow$$
 U⁻¹ = U^T

The columns of $V \in \mathfrak{R}^{m \times n} (m > n)$ are orthonormal, if and only if $V^T V = I$.

Matrix Norms and Trace

Matrix norm:

2 - norm : $||A||_2$ = the square root of the largest eigen value of AA^T .

F - norm :
$$||A||_{F} = \sqrt{\sum_{i,j} A_{ij}^{2}}$$
.

1 - norm :
$$||A||_1 = \sum_{i,j} |A_{ij}|$$
.

trace(A) = $\sum_{i=1}^{m} A_{ii}$, for a square matrix A of size m by m.

$$||A||_F^2 = \operatorname{trace}(AA^T) = \operatorname{trace}(A^TA), \operatorname{trace}(AB) = \operatorname{trace}(BA).$$

$$||QA||_F = ||A||_F$$
, if Q has orthonormal columns.

Symmetric and Positive Definite Matrix

A is symmetric, if $A = A^T$.

 $A \in \Re^{m \times m}$ is symmetric and positive semi-definite,

if $x^T A x \ge 0$, for any $x \in \Re^m$.

 $A \in \Re^{m \times m}$ is symmetric and positive definite,

if $x^T Ax > 0$, for any nonzero $x \in \Re^m$.

If A is symmetric, then all eigenvalues are real.

 $\Rightarrow A = U\Sigma U^T$, where U is orthogonal and Σ is diagonal.

Singular Value Decomposition

Singular Value Decomposition (SVD): $A = U\Sigma V^T$, where $A \in \Re^{m \times n}$, $U \in \Re^{m \times m}$ and $V \in \Re^{n \times n}$ are orthogonal, and $\Sigma = diag(\sigma_1, \dots, \sigma_r)$ is diagonal with $\sigma_1 \ge \dots \ge \sigma_r \ge 0$, and $r = \min(m, n)$.

 $AA^{T} = U\Sigma\Sigma^{T}U^{T}$: *U* forms the eigenvectors of AA^{T} .

 $A^{T}A = V\Sigma^{T}\Sigma V^{T}$: V forms the eigenvectors of $A^{T}A$.

Some Properties of SVD

Theorem 2.1. Let the SVD of A be given by Equation (1) and

$$\sigma_1 \geq \sigma_2 \cdots \geq \sigma_r > \sigma_{r+1} = \cdots = \sigma_n = 0$$

and let R(A) and N(A) denote the range and null space of A, respectively. Then,

- 1. rank property: rank(A) = r, $N(A) \equiv span\{v_{r+1}, \dots, v_n\}$, and $R(A) \equiv span\{u_1, \dots, u_r\}$, where $U = [u_1u_2 \dots u_m]$ and $V = [v_1v_2 \dots v_n]$.
- 2. dyadic decomposition: $A = \sum_{i=1}^{n} u_i \cdot \sigma_i \cdot v_i^T$.
- 3. norms: $||A||_F^2 = \sigma_1^2 + \cdots + \sigma_r^2$, and $||A||_2^2 = \sigma_1$.

Some Properties of SVD

THEOREM 2.2. [Eckart and Young] Let the SVD of A be given by Equation (1) with r = rank(A) $\leq p = \min(m, n)$ and define

(2)
$$A_k = \sum_{i=1}^k u_i \cdot \sigma_i \cdot v_i^T ,$$

then

$$\min_{rank(B)=k} ||A - B||_F^2 = ||A - A_k||_F^2 = \sigma_{k+1}^2 + \dots + \sigma_p^2.$$

- ☐ That is, Ak is the optimal approximation in terms of the approximation error measured by the Frobenius norm, among all matrices of rank k
- Forms the basics of LSI (Latent Semantic Indexing) in informational retrieval

Low Rank Approximation by SVD

