## EE 308: Communication Systems (Section 1 – Autumn 2018) Tutorial Problem Set 4

- 1. Specify the Nyquist rate and the Nyquist interval for each of the following signals.
  - (a) sinc(100t)
  - (b)  $sinc^2(100t)$  nyquist interval = 1/nyquist rate
  - (c)  $sinc(100t) + sinc^2(100t)$
- 2. A signal can be modeled as low pass stationary random process X(t) whose probability density function is as shown inbelow figure. Let the signal be bandlimited to 5 kHz. If the signal is sampled at Nyquist rate and then quantized using 32 levels, what is the resulting SQNR?



3. Consider the quantizer characteristics shown in figure below. Let X be a random signal input to the quantizer with probability density function,  $f_X(x)$  given by:

$$f_X(x) = \begin{cases} Aexp(-|x|), & |x| \le 4\\ 0, & \text{otherwise} \end{cases}$$

- (a) Determine the value of A?
- (b) Determine the total quantization noise  $\sigma_Q^2$
- (c) Is it same as  $\frac{\Delta^2}{12}$ ? where  $\Delta$  is the step size



- 4. Consider a uniform quantizer with range from -4 to +4 Volts. Assume that zero mean Gaussian distributed random variable is applied to the quantizer input.
  - (a) What is the probability that the amplitude of the input lies outside the range of -4 to +4 Volts?
  - (b) Calculate the SQNR.
- 5. Consider a system in which a signal is quantized with step sizes  $\Delta_i$  where  $\Delta_1$  is the size of the first step,  $\Delta_2$  is the size of the second step and so on.  $p_i$  is the probability that the input signal amplitude lies within the  $i^{th}$  interval. Show that the mean square value of the quantization error is approximately equal to  $\frac{1}{12} \sum_i \Delta_i^2 p_i$ . Assume that the step size is small compared to the range of the input signal.
- 6. Derive the frequency domain expression of a PAM wave produced by the modulating signal

$$m(t) = A_m cos(2\pi f_m t)$$

assuming a modulation frequency  $f_m = 0.25Hz$ , sampling period  $T_s = 1$  s, and pulse duration T = 0.45 s.

- 7. In natural sampling, an analog signal g(t) is multiplied by a periodic train of rectangular pulses C(t). Given that the pulse repetition frequency of this periodic train is  $f_s$  and the duration of each rectangular pulse is T (with  $f_sT << 1$ )

  Find the spectrum of the signal s(t) that results from the use of natural sampling (You may assume
  - Find the spectrum of the signal s(t) that results from the use of natural sampling (You may assume that time t = 0 corresponds to the midpoint of a rectangular pulse in C(t)).
- 8. An analog signal is sampled, quantized and transmitted using PCM. If each sample at the receiver must be known to within 0.5% of the peak-to-peak value, then how many binary digits per sample are required?
- 9. The SQNR of a PCM system should be minimum 22 dB. The signal amplitude varies from -10 to +10 Volts and  $f_m = 2KHz$ . If signal is sinusoidal and sampling rate is twice the Nyquist rate then determine:
  - (a) Bits per sample required
  - (b) Step size
  - (c) Signal power
  - (d) Noise power
  - (e) Bit rate of the system
- 10. The pulse rate of DM system is 56000 samples/s. The input signal is  $5\cos(2\pi x 1000t) + 2\cos(2\pi x 2000t)$ . Find minimum step size that will avoid slope overload distortion.