

Übung 9: Auslegung Spritzgießen

Dr.-Ing. Anke Müller, 17.04.2018
Institut für Werkzeugmaschinen und Fertigungstechnik

Spritzgießen in der Kunststoff verarbeitenden Industrie

Spritzgießen im hybriden Leichtbau

Aufbau einer Spritzgussmaschine

Konstruktionsbüro Jakob

Weltgrößte Spritzgussmaschine

Spritzgusswerkzeug für einen Regenwassertank

Prozesszyklus beim Spritzgießen

Spritzgiessen.com

Relevante Prozesseinstellgrößen im Spritzgießprozess

- Schneckendrehzahl
- Schließkraft

Zuhaltekraft = Schließkraft + Werkzeuginnendruck

- Zuhaltekraft
- Nachdruck
- Schmelzetemperatur
- Werkzeugtemperatur
- Einspritzgeschwindigkeit

Die Zuhaltekraft ist die wesentliche Größe bei der Auslegung von Prozessen für Spritzteile. → Klausuraufgabe

Durch Sie wird die erforderliche "Maschinengröße" bestimmt.

Formale Zusammenhänge

$$F_{Z,nom}$$

Die nominale Zuhaltekraft (F_{Z, nom}) wird durch die Maschine vorgegeben und ist die wesentliche Kennzahl zur Klassifizierung von Spritzgussmaschinen (wird üblicherweise in metrischen Tonnen angegeben).

$$F_{Wirk} = A_p \cdot p_{Wkz}$$

Die resultierende Wirkkraft (F_{Wirk}) resultiert aus der projizierten Wirkfläche (A_p) und dem spezifischen Werkzeuginnendruck (p_{Wkz}). Dieser kann näherungsweise aus Tabellen entnommen werden.

$$F_{Z,nom} > F_{Wirk}$$

Die Zuhaltekraft muss im Prozess stets größer als die resultierende Wirkkraft sein. Andernfalls würde Kunststoff austreten.

In der Literatur und von Herstellern werden **Schließkraft** und **Zuhaltekraft** oftmals gleichbedeutend verwendet. Zumeist ist aber die Zuhaltekraft gemeint, die für den Spritzgussprozess eine entscheidende Bedeutung hat.

Verarbeitungshinweise

Produktgruppe		Artikel	Werkstoff	Einspritz- zeit s	Nachdruck- zeit s	Einspritz- druck bar	Nach- druck bar	Werkzeug- innendruck bar
Allgemeine Spritzgussteile		Lagerkasten	PS	3,0	6,0	1000	450	280-320
Qualitätsanforderungen		Transportbehälter	PP	2,5	5,5	1250	550	350-400
Maß- und Formabw.:	gering	Staubsaugergehäuse	ABS	2,5	7,0	980	550	350-400
Gefügeaufbau:	gering	Maschinengehäuse	PA	2,5	7,0	1000	550	350-400
Oberflächengüte:	mittel	Kaffeemaschinengeh.	PP	2,0	6,0	1100	550	350-400
		Fernsehergehäuse	PS	3,5	6,0	1200	600	350-400
		Computergehäuse	ABS	3,5	6,0	1300	600	350-400
Einweg-/Mehrwegfunktionsteile		3,5"-Diskette	ABS	0,22	0,9	1700	600	380-420
Qualitätsanforderungen		CD-Verpackung	PS	0,4	1,0	1550	650	400-450
Maß- und Formabw.:	hoch	Videokassette	PS	0,9	3,5	1300	500	280-320
Gefügeaufbau:	mittel	Diarahmen	PS	0,25	0,7	1600	600	400-450
Oberflächengüte:	hoch	Rasierergriff	PS	0,5	1,5	1450	600	400-450
		Musikkassette	PS	0,45	2,2	1300	600	350-400
Technische Funktionsteile		Blende für CD-Player	ABS	1,5	5,0	800	650	450-500
Qualitätsanforderungen		Handygehäuse	PC/ABS	0,2	1,5	1600	850	650-700
Maß- und Formabw.:	mittel	Camcordergehäuse	PC	1,2	2,5	1400	850	550-600
Gefügeaufbau:	mittel	Videorecorderchassis	PS	2,3	5,0	1100	650	400-450
Oberflächengüte:	hoch	Radkappe	PA 6-GF	2,0	5,0	1000	650	400-450

Fachkunde Kunststofftechnik

Übungsbeispiel Gehäusedeckel

Gefertigt werden soll ein Bauteil mit folgenden Spezifikationen:

Abmessungen:

 $I = 200 \, \text{mm}$

 $b = 120 \, mm$

 $h = 20 \, \text{mm}$

Wandstärke t = 3 mm

Werkstoff: Polyamid 6 (PA6) Dichte = 1,14 g/cm³

Es steht eine Spritzgießmaschine mit einer nominellen Zuhaltekraft von maximal **120 Tonnen** zur Verfügung. Kann das Teil auf der Maschine gefertigt werden? Legen Sie den Prozess überschlägig aus.

Übungsbeispiel Gehäusedeckel

Werkzeugaufbau

Methodisches Vorgehen zum Lösen der Aufgaben

1. $F_{Z,nom} > F_{Wirk}$

- 2. Zuhaltekraft der Maschine bestimmen (Datenblatt)
- 3. Wirkfläche bestimmen
- 4. Wirkkraft berechnen = projizierte Fläche x Werkzeuginnendruck (Tabellenwert)
- 5. Gültigkeit von 1. prüfen

Vorauslegung der benötigten Zuhaltekraft

Vorauslegung der benötigten Zuhaltekraft

Verarbeitungshinweise

Produktgruppe		Artikel	Werkstoff	Einspritz- zeit s	Nachdruck- zeit s	Einspritz- druck bar	Nach- druck bar	Werkzeug- innendruck bar
Allgemeine Spritzgussteile		Lagerkasten	PS	3,0	6,0	1000	450	280-320
Qualitätsanforderungen		Transportbehälter	PP	2,5	5,5	1250	550	350-400
Maß- und Formabw.:	gering	Staubsaugergehäuse	ABS	2,5	7,0	980	550	350-400
Gefügeaufbau:	gering	Maschinengehäuse	PA	2,5	7,0	1000	550	350-400
Oberflächengüte:	mittel	Kaffeemaschinengeh.	PP	2,0	6,0	1100	550	350-400
		Fernsehergehäuse	PS	3,5	6,0	1200	600	350-400
		Computergehäuse	ABS	3,5	6,0	1300	600	350-400
Einweg-/Mehrwegfunktionsteile		3,5"-Diskette	ABS	0,22	0,9	1700	600	380-420
Qualitätsanforderungen		CD-Verpackung	PS	0,4	1,0	1550	650	400-450
Maß- und Formabw.:	hoch	Videokassette	PS	0,9	3,5	1300	500	280-320
Gefügeaufbau:	mittel	Diarahmen	PS	0,25	0,7	1600	600	400-450
Oberflächengüte:	hoch	Rasierergriff	PS	0,5	1,5	1450	600	400-450
		Musikkassette	PS	0,45	2,2	1300	600	350-400
Technische Funktionsteile		Blende für CD-Player	ABS	1,5	5,0	800	650	450-500
Qualitätsanforderungen		Handygehäuse	PC/ABS	0,2	1,5	1600	850	650-700
Maß- und Formabw.:	mittel	Camcordergehäuse	PC	1,2	2,5	1400	850	550-600
Gefügeaufbau:	mittel	Videorecorderchassis	PS	2,3	5,0	1100	650	400-450
Oberflächengüte:	hoch	Radkappe	PA 6-GF	2,0	5,0	1000	650	400-450

Bichler 2012

Vorauslegung der benötigten Zuhaltekraft

Überprüfung des Spritzvolumen

Zusammenfassung

- Zur Bestimmung der resultierenden Wirkkräfte existieren weitaus komplexere Formelwerke, die auch die Werkzeugtemperatur, Schmelzetemperatur sowie spezifische rheologische Eigenschaften des Polymers berücksichtigen.
- In der Praxis zeigt sich jedoch, dass diese Berechnungen oftmals einen zu hohen Wert generieren.
- Die überschlägige Berechnung der Wirkkräfte stellt in der Regel eine hinreichend genaue Ausgangsbasis für die Auslegung des Prozesses dar.
- (Vor-)Auslegungen für komplexere Bauteile und deren Formwerkzeuge,
 Werkstoffe und Prozesse können mittels Simulation, z. B. MoldFlow erfolgen.

Übung 9: Auslegung Spritzgussprozess

Dr.-Ing. Anke Müller, 17.04.2018
Institut für Werkzeugmaschinen und Fertigungstechnik

Technische