Calcular evaluando las siguientes expresiones:

$$a$$
) $\sum_{r=0}^{4} r$

$$b) \qquad \prod_{i=1}^{5} i$$

c)
$$\sum_{k=-3}^{-1} \frac{1}{k(k+4)}$$
 d) $\prod_{n=2}^{7} \frac{n}{n-1}$

$$\prod_{n=2}^{7} \frac{n}{n-1}$$

(b) Decir cuáles de los siguientes conjuntos X son inductivos. Justificar.

a)
$$X = \mathbb{N} \cup \{\frac{1}{2}\}.$$

d)
$$X = \{1\} \cup \{2\} \cup \{x \in \mathbb{R} : x \ge 3\}.$$

b)
$$X \subset \mathbb{N}, X \neq \mathbb{N}, X$$
 infinito tal que $1 \in X$.

e)
$$\{x \in \mathbb{R} \mid x+4 \text{ es múltiplo de 5 } \}$$
.

c)
$$X \subset \mathbb{N}, X \neq \mathbb{N} \vee X$$
 infinito.

$$f) \ \{x \in \mathbb{R} \mid x = \sqrt{n}, n \in \mathbb{N}\}.$$

(c) Demostrar las siguientes afirmaciones usando inducción en n:

$$a) \ 2n-1 \le n^2 \ , \ \forall n \in \mathbb{N}$$

c)
$$3^n \ge 1 + 2^n, \forall n \in \mathbb{N}$$
.

$$e) \ \forall n \in \mathbb{N}, \ 3^n \ge 1 + 2^n.$$

b)
$$n^2 < 2^n, \forall n \in \mathbb{N}, n > 3.$$

a)
$$2n-1 \le n^2$$
, $\forall n \in \mathbb{N}$ c) $3^n \ge 1+2^n$, $\forall n \in \mathbb{N}$. e) $\forall n \in \mathbb{N}, 3^n \ge 1+2^n$.
b) $n^2 \le 2^n$, $\forall n \in \mathbb{N}, n > 3$. d) $n^4 \le 4^n$; $\forall n \in \mathbb{N}, n \ge 5$.

(d) Demostrar por inducción las siguientes igualdades:

a)
$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2}, n \in \mathbb{N}.$$

b)
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, n \in \mathbb{N}.$$

c)
$$\sum_{k=0}^{n} (2k+1) = (n+1)^2, n \in \mathbb{N}_0.$$

$$d) \ \sum_{i=1}^n i^3 = \left(\frac{n(n+1)}{2}\right)^2, \, n \in \mathbb{N}.$$

e)
$$\sum_{k=0}^{n} a^k = \frac{a^{n+1} - 1}{a - 1}$$
, donde $a \in \mathbb{R}, a \neq 0, 1, n \in \mathbb{N}_0$.

$$f) \prod_{i=1}^{n} \frac{i+1}{i} = n+1, n \in \mathbb{N}.$$

g)
$$\sum_{i=1}^{n} \frac{1}{4i^2 - 1} = \frac{n}{2n+1}, n \in \mathbb{N}.$$

h)
$$\sum_{i=1}^{n} i^2 / \sum_{j=1}^{n} j = \frac{2n+1}{3}, n \in \mathbb{N}.$$

$$i) \sum_{i=0}^{n} (i+1)(i+2) = \frac{1}{3}(n+1)(n+2)(n+3).$$

$$j) \prod_{i=2}^{n} \left(1 - \frac{1}{i^2}\right) = \frac{n+1}{2n}, n \in \mathbb{N} \text{ y } n \ge 2.$$

Práctico 1

- (e) Demostrar que $n! \geq 2^n + n$, para todo $n \in \mathbb{N}$ tal que $n \geq 4$.
- (f) Dado un natural m, probar que $\forall n \in \mathbb{N}; x, y \in \mathbb{R}$, se cumple:

a)
$$x^n \cdot x^m = x^{n+m}$$

b)
$$(x \cdot y)^n = x^n \cdot y^n$$
 c) $(x^n)^m = x^{n \cdot m}$

c)
$$(x^n)^m = x^{n \cdot m}$$

(g) Analizar la validez de las siguientes afirmaciones, para $n, k \in \mathbb{N}$:

a)
$$(2^{2^n})^{2^k} = 2^{2^{n+k}}$$

b)
$$(2^n)^2 = 4^n$$

(h) Calcular/transformar en una expresión equivalente con menos términos:

a)
$$2^5 - 2^4$$
,

b)
$$2^{n+1}-2^n$$

c)
$$(2^2)^n + (2^n)^2$$

b)
$$2^{n+1} - 2^n$$
 c) $(2^2)^n + (2^n)^2$ d) $(2^{2^n} + 1)(2^{2^n} - 1)$

- (i) Probar las siguientes afirmaciones usando inducción en n:
 - a) Si $a \in \mathbb{R}$ y $a \ge -1$, entonces $(1+a)^n \ge 1 + n \cdot a$,

b) Si
$$a_0, \ldots, a_n \in \mathbb{R}$$
, entonces $\sum_{k=0}^n a_k^2 \le \left(\sum_{k=0}^n |a_k|\right)^2$.

(j) Para cada una de las siguientes sucesiones definidas por recurrencia, escribir explícitamente sus primeros 10 términos.

a)
$$a_n = 3 + a_{n-1}$$
 y $a_1 = \pi$.

b)
$$b_n = 4b_{n-1} + 1$$
 y $b_0 = 0$.

- (k) Hallar $n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$ se cumpla que $n^2 \geq 11 \cdot n + 3$.
- (l) Sea $\{u_n\}_{n\in\mathbb{N}}$ la sucesión definida por recurrencia como sigue:

$$u_1 = 3$$
, $u_2 = 5$, $u_n = 3u_{n-1} - 2u_{n-2}$, $n \in \mathbb{N}$, $n \ge 3$.

Probar que $u_n = 2^n + 1$.

(m) Sea $\{u_n\}_{n\in\mathbb{N}}$ la sucesión definita recursivamente como sigue:

$$u_1 = u_2 = u_3 = 1$$
 y $u_n = u_{n-1} + u_{n-2} + u_{n-3}$ para $n \ge 4$.

Demostrar que $u_n < 2^n$ para todo $n \in \mathbb{N}$.

- a) Probar que los ángulos interiores de todo polígono convexo de n lados suman $(n-2)\pi$. (n)
 - b) Probar que todo polígono convexo de n lados tiene $\frac{n(n-3)}{2}$ diagonales.

(ñ) Hallar una fórmula para el término general de las sucesiones $\{a_n\}_{n\in\mathbb{N}}$ definidas a continuación y probar su validez.

i)
$$a_1 = 1$$
, $a_{n+1} = 1 + \sum_{i=1}^{n} i a_i$, $\forall n \in \mathbb{N}$.

ii)
$$a - 1 = \frac{1}{2}$$
, $a_{n+1} = \frac{1}{2}(1 - \sum_{i=1}^{n} a_i)$, $\forall n \in \mathbb{N}$.

iii)
$$a_1 = 1$$
, $a_{n+1} = \sum_{i=1}^{n} a_i + (n+1) \quad \forall n \in \mathbb{N}$.

(o) Sea $\{a_n\}_{n\in\mathbb{N}}$ la sucesión definida por

$$a_1 = 1,$$
 $a_{n+1} = \frac{2n+1}{n+1}a_n,$ $\forall n \in \mathbb{N}.$

- i) Probar que $a_n \leq \frac{1}{2n} \binom{2n}{n}$ para todo $n \in \mathbb{N}$.
- ii) Probar que $a_n > \frac{1}{3^{n-1}} \binom{2n}{n}$ para todo $n \ge 3$.

(p) Sea $\{u_n\}_{n\in\mathbb{N}}$ la sucesión definida por recurrencia como sigue:

$$u_1 = 9$$
, $u_2 = 33$, $u_k = 7u_{k-1} - 10u_{k-2}$, $\forall k \ge 3$.

Probar que $u_n = 2^{n+1} + 5^n$, para todo $n \in \mathbb{N}$.

- (q) En un salón hay n personas y todas se saludan entre sí con un apretón de manos. Llamemmos a_n a la cantidad de apretones de mano.
 - a) ¿Cuántos apretones de mano adicionales se efectúan si entra al salón una persona más?
 - b) Obtener una fórmula recursiva para a_{n+1} en términos de a_n .
 - c) Deducir una fórmula para a_n y demostrarla por inducción.
- (r) La sucesión de Fibonacci se define recursivamente de la siguiente manera:

$$u_1 = 1$$
, $u_2 = 1$, $u_{n+1} = u_n + u_{n-1}$, $n \ge 2$.

Los primeros términos de esta sucesión son: $1, 1, 2, 3, 5, 8, 13, \ldots$

Demostrar por inducción que el término general de esta sucesión se puede calcular como:

$$u_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right].$$

(Ayuda:usar que $\frac{1+\sqrt{5}}{2}$ y $\frac{1-\sqrt{5}}{2}$ son las raíces de la ecuación cuadrática $x^2-x-1=0)$