Analyse des préférences des consommateurs

Questions:

- Pourquoi les consommateurs aiment ou non un produit ?
- Quel nouveau produit fabriquer pour qu'il soit apprécié par les consommateurs (quel nouveau marché viser) ?

Objectifs:

- Relier les préférences aux caractéristiques physico-chimiques et/ou sensorielles d'un produit
- Visualiser ces relations sur une carte

Cartographie des préférences

Deux types de cartographie

- Cartographie interne : différences entre produits fondées sur les préférences des consommateurs puis mise en relation avec les caractéristiques sensorielles et/ou physico-chimiques des produits
- Cartographie externe : différences entre produits fondées sur leur caractéristique sensorielle et/ou physico-chimique puis mise en relation avec les préférences des consommateurs

2

Cartographie interne

C préférences des consommateurs

J descripteurs sensoriels et/ou physico-chimiques

	Conso 1	Conso 2	 Conso C	DS 1	DS 2	 DS J
Prod. 1						
Prod. 2						
Prod. 3						
Prod. I						

Construction d'une carte à partir des préférences des consommateurs : ACP avec les préférences en variables actives

Mise en relation avec les descripteurs sensoriels : projection des descripteurs sensoriels et/ou des variables physicochimiques en tant que variables supplémentaires

produits

Classification et segmentation des consommateurs

Possibilité de « segmenter » les consommateurs en classes de préférence

Classification de variables ou transposition du tableau (après centrage par conso) et classification des conso

5

Classification et segmentation des consommateurs

Préférences par classe et caractérisation des classes par les produits préférés par classe ou les caractéristiques des consommateurs

\$quanti\$`1`						
	v.test	Mean in	Overall	sd in	Overall sd	p.value
		category	mean	category		
obm*	5.102411	2.484012	1.351875	1.200782	1.917511	3.353543e-07
Во	5.019896	1.925872	0.671875	1.570720	2.158819	5.169933e-07
obmc*	2.505883	1.251453	0.801875	1.545664	1.550455	1.221461e-02
\$quanti\$`2`						
	v.test	Mean in	Overall	sd in	Overall sd	p.value
		category	mean	category		
MCb*	6.249734	1.682292	-0.478125	1.355438	1.932824	4.111529e-10
obmc1	2.191339	0.973958	0.381875	1.747014	1.510740	2.842729e-02
\$quanti\$`3`						
	v.test	Mean in	Overall	sd in	Overall sd	p.value
		category	mean	category		
MCo	5.620986	0.272727	-1.118125	1.515296	1.727849	1.898707e-08
OCm	4.640819	-0.272727	-1.428125	1.658514	1.738497	3.470308e-06
BCm	3.447190	-0.060606	-0.868125	1.627001	1.635779	5.664497e-04
BCo	3.230757	-0.393939	-1.188125	1.561665	1.716544	1.234630e-03

Représentation des moyennes de classe

las MCb* Mb BCm Bmc* MCo BCo Moc* obmc* obmc1 obmc2 obm* Bo OCm Om* OCb* Obc
1 -1.98 1.93 -1.59 1.34 -1.70 -1.75 0.65 1.25 0.18 0.60 2.48 1.93 -1.77 0.76 -2.33 0.00
2 1.68 1.77 -0.69 1.35 -1.98 -1.28 1.02 0.22 0.97 -0.15 0.93 0.72 -2.40 0.60 -1.94 -0.82
3 -0.09 0.85 -0.06 0.30 0.27 -0.39 0.58 0.64 0.21 0.21 0.18 -1.00 -0.27 0.39 -1.36 -0.45

Cartographie externe

J descripteurs sensoriels C préférences des consommateurs et/ou physico-chimiques

produits

1ère étape : Construction d'une carte à partir des descripteurs sensoriels et/ou physico-

chimiques : ACP ou AFM avec descripteurs en variables actives principales obtenues à l'étape⁸1

2ème étape : Mise en relation avec les préférences des consommateurs : régression des préférences sur les composantes principales obtenues à l'étape⁸I

Cartographie externe

Idée : construire, par consommateur, un modèle de régression de la préférence en fonction des composantes principales de l'ACP

	Conso j	F1	F2
Prod. 1			
Prod. 2			
Prod. 3			
Prod. I			

Modèle vectoriel : $Y = m + a F_1 + b F_2$

Préférences conso pas toujours linéaires

Plusieurs modèles possible:

- Modèle circulaire : $Y = m + a F_1 + b F_2 + c (F_1^2 + F_2^2)$

- Modèle elliptique : $Y = m + a F_1 + b F_2 + c F_1^2 + d F_2^2$

- Modèle complet : $Y = m + a F_1 + b F_2 + c F_1^2 + d F_2^2 + e F_1 F_2$

Cartographie externe

Comment synthétiser les préférences de tous les consommateurs ?

• Discrétiser le plan de la carte de l'ACP

Dim 1 (53.25%)

• Pour chaque consommateur, séparer le plan en zone(s) de préférence et zone(s) de rejet (i.e. pour chaque point de la carte, prédire à l'aide du modèle de régression, si la prédiction est supérieure à la moyenne : zone de préférence, sinon zone de rejet)

Cartographie externe

• Cumuler to<u>utes les</u> zones de préférences sur une seule carte

(i.e. pour chaque point de la carte, comptabiliser le nombre de consommateurs qui considèrent ce point comme un point de préférence)

- Carte cumulée

 Zone de préf pour les 2

 Zone de préf pour l des 2
- Pour chaque consommateur, on peut aussi matérialiser « son » produit idéal (i.e. le point de la carte pour lequel la prédiction est la plus

Cartographie avec segmentation de consommateurs

3 classes homogènes constituées de 44%, 38% et 18% de consommateurs

Les courbes de niveau correspondent à la population totale

Pour chaque classe, l'aire avec plus de 80% des consommateurs qui apprécient est coloriées

14

Cartographie externe

Avantages de la cartographie : rendu joli (plaît beaucoup!)

Inconvénients:

- Stabilité des jugements hédoniques individuels peu évidente
- Modèle de régression peu stable car peu de produits : pour modèle complet, 6 paramètres à estimer à partir de I produits (I = 8, 10 ?)
- faire une régression PLS et ne conserver que 2 composantes PLS (*i.e.* revient à n'estimer « que » 3 paramètres)
- Axes 1 et 2 de l'analyse factorielle peu liés aux préférences
- remplacer l'analyse factorielle par une régression PLS avec *X* l'ensemble des descripteurs et *Y* l'ensemble des préférences : la carte des produits aura des axes liés aux préférences

Les lignes de code avec SensoMineR

```
rownames(senso.cocktail)=rownames(hedo.cocktail)=c("MCb","Mb","BCm","Bmc"
       "MCo", "BCo", "Moc", "obmc", "obmc1", "obmc2", "obm*", "Bo", "OCm", "Om", "OCb", "Obc")
res.pca = PCA(cbind(hedo.cocktail, senso.cocktail), quanti.sup=101:113,graph=FALSE)
plot(res.pca.choix="var" ,invisible="guanti.sup",label="none")
plot(res.pca,choix="var" ,invisible="quanti.sup")
thedo = as.data.frame(t(scale(hedo.cocktail,scale=FALSE)))
res2=HCPC(thedo)
resådesc var
moy =by(res$data.clust[,-17],res$data.clust[,17],FUN=colMeans)
moy=matrix(unlist(by(res$data.clust[,-17],res$data.clust[,17],FUN=colMeans)),nrow=3,byrow=T)
colnames(mov)=rownames(hedo cocktail)
rownames(moy)=paste("classe",1:3)
bb=PCA(cbind.data.frame(t(moy),hedo.cocktail),quanti.sup=1:3)
plot(bb,label="quanti.sup",choix="var",col.var="grey50",col.quanti.sup="red")
res.pca = PCA(cbind(senso.cocktail,hedo.cocktail), quanti.sup=14:113,graph=FALSE)
plot(res.pca)
plot(res.pca,choix="var",invisible="var",label="none")
plot(res.pca,choix="var",invisible="quanti.sup"
res.carto <- carto(res.pca$ind$coord[,1:2], hedo.cocktail)
res2 <- cartoconsumer(res.pca, hedo.cocktail)
                                                                                          16
```

15