Ausgabe: 18. April 2023 _____ Kleingruppenübungen: vom 25.04 bis zum 28.04

Einführung in die angewandte Stochastik

Kleingruppenübung 2

Aufgabe 4

Eine unverfälschte Münze wird dreimal hintereinander geworfen.

- (a) Geben Sie für dieses Experiment eine geeignete Ergebnismenge Ω und ein Wahrscheinlichkeitsmaß P an.
- (b) Beschreiben Sie die folgenden Ereignisse als Teilmengen von Ω und berechnen Sie die zugehörigen Wahrscheinlichkeiten:

A: "Im ersten Wurf fällt Kopf und im letzten Wurf fällt Zahl"

B: "In den drei Würfen erscheint Kopf häufiger als Zahl"

Aufgabe 5

Zeigen Sie, dass das folgende Mengensystem eine σ -Algebra über $\Omega \neq \emptyset$ ist:

 $\mathcal{A} = \{ A \subset \Omega \mid A \text{ höchstens abzählbar oder } A^c \text{ höchstens abzählbar} \}$

Hinweis: Sie können ohne eigenen Nachweis folgende Eigenschaften von abzählbaren Mengen ver-

wenden:

- (1) Jede Teilmenge einer höchstens abzählbaren Menge ist höchstens abzählbar.
- (2) Abzählbare Vereinigungen von höchstens abzählbaren Mengen sind höchstens abzählbar.

Aufgabe 6

Gegeben seien eine Ergebnismenge Ω und eine σ - Algebra \mathcal{F} sowie zwei Wahrscheinlichkeitsmaße P_1, P_2 auf (Ω, \mathcal{F}) . Weiter sei für $\lambda \in (0, 1)$ die Abbildung $P_{\lambda} : \mathcal{F} \mapsto \mathbb{R}$ definiert durch

$$P_{\lambda}(A) := \lambda P_1(A) + (1 - \lambda)P_2(A), \quad A \in \mathcal{F}.$$

Zeigen Sie, dass P_{λ} für $\lambda \in (0,1)$ ebenfalls ein Wahrscheinlichkeitsmaß auf (Ω, \mathcal{F}) ist.

Aufgabe 7

Eine Softwarefirma beschäftigt drei Programmierer P_1, P_2 und P_3 . Von P_1 wurden 230, von P_2 690 und von P_3 460 Programmierungen im vergangenen Jahr vorgenommen. Hierbei haben bei

 P_1 : 12% aller Programme mindestens zwei Programmierfehler, 40% aller Programme genau einen Programmierfehler,

 P_2 : 15% aller Programme genau einen Programmierfehler, 70% aller Programme keinen Programmierfehler,

P3: 75% aller Programme keinen Programmierfehler,
10% aller Programme mindestens zwei Programmierfehler.

Die Softwarefirma wählt aus allen geschriebenen Programmen zufällig eines aus.

- (a) Mit welcher Wahrscheinlichkeit hat das ausgewählte Programm keine Programmierfehler?
- (b) Die Softwarefirma stellt fest, dass das Programm genau einen Programmierfehler aufweist. Mit welcher Wahrscheinlichkeit stammt es vom Programmierer P_2 ?