二次型

Didnelpsun

目录

1	二次型		
	1.1	定义	1
	1.2	矩阵表示	1
2	标准型与规范型		
	2.1	配方法	2
	2.2	正交变换法	2
	2.3	合同变换	2
		2.3.1 线性变换	2
		2.3.2 定义	2
	2.4	惯性定理	3
3	正定	二次型	3
	3.1	定义	3
	3.2	性质	3
	3.3	判完	3

1 二次型

1.1 定义

n 元变量 x_1, x_2, \cdots, x_n 的二次齐次多项式: $f(x_1, x_2, \cdots, x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + \cdots + 2a_{1n}x_1x_n + a_{22}x_2^x + \cdots + 2a_{2n}x_2x_n \dots + a_{nn}x_n^2$

这就是 n 元二次型, 简称二次型。

1.2 矩阵表示

二次型可以用矩阵来表示,即 $f(x) = x^T A x$ 。其中 x 是列向量。

矩阵表示的重点就是找到中间的A, A 是 f 的二次型矩阵。

方法是: A 的主对角线元素 a_{ii} 是 x_i^2 的对应系数, a_{ij} 与 a_{ji} 是混合项 x_ix_j 的系数的一半。

如一个二次型
$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

 $= (x_1, x_2, x_3) \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix} (x_1, x_2, x_3)^T$ 。

所以可以发现二次型矩阵就是一个对称矩阵,所以只要能写出二次型的就 一定存在一个对称矩阵,就一定可以相似对角化。

2 标准型与规范型

- 2.1 配方法
- 2.2 正交变换法
- 2.3 合同变换
- 2.3.1 线性变换

对于
$$n$$
 元二次型 $f(x_1, x_2, \cdots, x_n)$,若令
$$\begin{cases} x_1 = c_{11}y_1 + c_{12}y_2 + \cdots + c_{1n}y_n \\ x_2 = c_{21}y_1 + c_{22}y_2 + \cdots + c_{2n}y_n \\ \cdots \\ x_n = c_{n1}y_1 + c_{n2}y_2 + \cdots + c_{nn}y_n \end{cases}$$
 记 $x = (x_1, x_2, \cdots, x_n)$, $C = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix}$, $y = (y_1, y_2, \cdots, y_n)$,

则上式写为 x = Cy 称为 y_1, y_2, \dots, y_n 到 x_1, x_2, \dots, x_n 的**线性变换**。

若线性变换的系数矩阵 C 可逆, 即 $|C| \neq 0$, 则称为**可逆线性变换**。

若 $f(x) = x^T A x$, 令 x = C y, 则 $f(x) = (C y)^T A(C y) = y^T (C^T A C) y$, 记 $B = C^T A C$, 则 $f(x) = y^T B y = g(y)$, 此时二次型 $f(x) = x^T A x$ 通过线性变换 x = C y 得到一个新二次型 $g(y) = y^T B y$ 。即将二次型用 x 表示换成用 y 表示。 $x^T A x = y^T B y$ 这种改变表示方法的变换就是合同变换。

2.3.2 定义

二次型 f(x) 与 g(y) 的系数矩阵 A 与 B 满足 $B=C^TAC$,这种关系就是 **合同变换**。

设 AB 为 n 阶实对称矩阵,若存在可逆矩阵 C,使得 $C^TAC = B$,则称 AB **合同**,记为 $A \simeq B$,此时 f(x) 与 g(x) 为**合同二次型**。

2.4 惯性定理

3 正定二次型

- 3.1 定义
- 3.2 性质
- 3.3 判定