

INGENIERÍA DEL SOFTWARE

TRABAJO PRÁCTICO Nº 3

ESTRATEGIAS PARA CASOS DE PRUEBA, AUTOMATIZACIÓN DE PRUEBAS
DE ACEPTACIÓN, PRUEBAS UNITARIAS Y PRUEBAS DE SISTEMA

2023

4k2

Grupo

10

Alicata Matías Jesús 42135 Diaz Daniela Rocio 48223

Negro Luqui Franco 53942

Herrera Macarena Del Valle

1. Pruebas de particiones

a) Determinar las particiones de equivalencia para un programa, cuya especificación establece, que acepta de 4 a 8 entradas que son 5 dígitos enteros mayores que 10000.

Invalido	Valido	Invalido
Numero de entradas < 4	Numero de entradas entre [4-8]	Numero de entradas > 8
Valores < 10000	Valores entre [10000 - 99999]	Valores > 99999

b)

```
private static int fibonacci(int n)
 2
    □ {
 3
          int actual = 0;
 4
          int antl, ant2;
 5
          antl = 1;
 6
          ant2 = 0;
 7
          if (n >= 0)
 8
9
               if ((n == 0) || (n == 1))
10
               {
11
                   actual = n;
12
               }
13
               else
14
15
                   for (int i = 2; i \le n; i++)
16
17
                       actual = ant1 + ant2;
                       ant2 = ant1;
18
19
                       ant1 = actual;
20
21
22
23
          return actual;
24
```

Numero de particion	Particion
1	n < 0
2	n > 1
3	n = [0-1]
4	n != int

2. Pruebas de caminos

Realizar el grafo de flujo para el código del apartado b) del punto 1 y para los siguientes métodos. Calcular la complejidad ciclomática asociada por los tres métodos.

Apartado b punto 1:

CÁLCULO DE LA COMPLEJIDAD CICLOMÁTICA

V(G) = cantidad de aristas - cantidad de nodos + 2

$$V(G) = 27 - 24 + 2 \rightarrow V(G) = 5$$

V(G) = cantidad de nodos predicados + 1

$$V(G) = 4 + 1 \rightarrow V(G) = 5$$

 $V(G) = cantidad de regiones \rightarrow V(G) = 5$

Regla de Descuento

```
public class ReglaDeDescuento
 3
          private static final double porcentajeMenor = 0.03d;
 4
         private static final double porcentajeIntermedio = 0.05d;
         private static final double porcentajeMayor = 0.10d;
 5
 6
 7
          public double Calcular (double total)
 8
9
              if(total <= 0)</pre>
                  throw new IllegalArgumentException("El total debe ser mayor a 0");
10
11
12
              if (total > 5000 && total <= 10000)
13
14
                  return total * porcentajeMenor;
15
              if (total > 10000 && total <= 25000)
16
17
              {
                  return total * porcentajeIntermedio;
18
19
20
              else if (total > 25000)
21
              {
22
                  return total * porcentajeMayor;
23
24
              return 0;
25
26
```


CÁLCULO DE LA COMPLEJIDAD CICLOMÁTICA

```
V(G) = cantidad\ de\ aristas - cantidad\ de\ nodos + 2

V(G) = 16 - 11 + 2 \rightarrow V(G) = 7

V(G) = cantidad\ de\ nodos\ predicados + 1

V(G) = 6 + 1 \rightarrow V(G) = 7

V(G) = cantidad\ de\ regiones \rightarrow V(G) = 7
```

```
C.
         public static int[] cocktailSort(int[] numbers)
    2
        □ {
    3
             boolean swapped = true;
    4
              int i = 0;
    5
              int j = numbers.length - 1;
    6
              while(i < j && swapped) {
    7
                  swapped = false;
    8
                  for(int k = i; k < j; k++){
    9
                      if(numbers[k] > numbers[k + 1]){
   10
                          int temp = numbers[k];
   11
                          numbers[k] = numbers[k + 1];
   12
                          numbers[k + 1] = temp;
  13
                          swapped = true;
   14
  15
  16
                  j--;
   17
                  if(swapped){
  18
                      swapped = false;
  19
                      for(int k = j; k > i; k--){
  20
                          if(numbers[k] < numbers[k - 1]){</pre>
   21
                               int temp = numbers[k];
   22
                              numbers[k] = numbers[k - 1];
   23
                               numbers[k - 1] = temp;
  24
                               swapped = true;
  25
   26
   27
   28
                  i++;
   29
   30
              return numbers;
  31
```


CÁLCULO DE LA COMPLEJIDAD CICLOMÁTICA

```
V(G) = cantidad\ de\ aristas - cantidad\ de\ nodos + 2

V(G) = 12 - 10 + 2 \rightarrow V(G) = 5

V(G) = cantidad\ de\ nodos\ predicados + 1

V(G) = 4 + 1 \rightarrow V(G) = 5

V(G) = cantidad\ de\ regiones \rightarrow V(G) = 5
```

3. Pruebas de Unidad (unitarias)

Plantear las pruebas unitarias para la clase ReglaDeDescuento.

```
@Test
public void calcularDescuentoConTotalMenora@yTiraExcepcion() {
    var desc = new ReglaDeDescuento()
    try {
        desc.Calcular(-5);
        fail();
    } catch (Exception error){
        assertEquals("El total debe ser mayor a 0", error.getMessage());
    }
}
```

```
@Test
public void calcularDescuentoConTotalIgualA0yTiraExcepcion() {
    var desc = new ReglaDeDescuento()
    try {
        desc.Calcular(0);
        fail();
    } catch (Exception error){
        assertEquals("El total no puede ser igual a 0", error.getMessage());
    }
}
```

```
@Test
public void entre5000y10000elPorcentajeDebeSerMenor(){
   var descMenor = new ReglaDeDescuento();
   valor = descMenor.Calcular(7000);
   assertEquals(valor, 210);
}
```

```
@Test
public void entre10000y25000elPorcentajeDebeSerIntermedio(){
    var descIntermedio = new ReglaDeDescuento();
    valor = descIntermedio.Calcular(15000);
    assertEquals(valor, 750);
}

@Test
public void totalMayorA25000ElPorcentajeDebeSerMayor(){
    var descMayor = new ReglaDeDescuento();
    valor = descMayor.Calcular(50000);
    assertEquals(valor, 5000);
}
```

4. Automatización de Pruebas de Aceptación y Pruebas Unitarias

- a) Automatizar, por lo menos, 3 (tres) escenarios en Gherkin realizados para el TP N° 2.
- b) Durante el proceso de automatización deberán realizarse, por lo menos, 3 (tres) pruebas unitarias.

https://github.com/ing-software-frt-utn/tp3-2023/tree/4k2-G10

5. Pruebas de Versión (sistema)

Para el caso de uso Realizar Venta diseñar 2 (dos) casos de prueba. Los casos se deben preparar en la plantilla que se adjunta.

Caso de Prueba				
ID: 01	Nombre: Eliminar Artículo de la venta			
Descripción: Elin	Descripción: Eliminar un artículo de la venta.			
Prioridad: Media/Alta CU / HU: Realizar Venta				
Módulo / Funcionalidad: Ventas				
Diseñado por: Grupo 10		Fecha: 12/12/23		
Ejecutado por: -		Fecha: 12/12/23		

Precondiciones: Venta en proceso

Uno o más artículos seleccionados

Paso	Acción	Resultado Esperado	Pasó / Falló	Comentarios
	Seleccionar el artículo deseado para eliminar.	Se selecciona el artículo en la tabla		
2	Confirmar la eliminación	Se elimina el artículo en la tabla		
3		Se actualiza el subtotal de la venta		
4				

ID: Identificador | CU: Caso de Uso | HU: Historia de Usuario

Caso De Prueba			
ID: 02 Nombre:Registrar nueva venta flujo básico			
Descripción: El vendedor desea registrar una venta con productos cargados			
Prioridad: Alta CU/HU: Realizar venta			
Módulo/Funcionalidad: Ventas			
Diseñado por: Grupo 10		Fecha: 17/11	
Ejecutado por: -		Fecha: 17/11	

Precondiciones:
Vendedor autenticado y verificado
Artículos cargados en la venta
Talles y colores disponibles

Pas	60	Acción	Resultado Esperado	Pasó /Falló	Comentarios
1		Pulsar el botón de iniciar una nueva venta	El cliente es consumidor final		

2	Se ingresa el código del producto	Se muestra el producto		
3	Se selecciona el talle, color y cantidad	Se visualiza la actualización del producto		
4	Se confirma el producto	Se agrega el producto a la venta y se actualiza el total		Nota: el
5	Se elige el tipo de factura	Se visualiza el tipo de factura		
6	Se confirma la venta	Mensaje de creación exitosa y almacenado automáticamente.		

trabajo será entregado a través de un repositorio Git a definir.