Lenguaje matemático, conjuntos y números

Pregunta 1 (2,5 puntos)

Justifique si son ciertas o falsas las siguientes afirmaciones:

- a) $\exists x \in \mathbb{R} \ (x^2 1 = 0 \ \land \ x^2 2 = 0)$
- b) $(\exists x \in \mathbb{R} \ (x^2 1 = 0)) \land (\exists x \in \mathbb{R} \ (x^2 2 = 0))$
- c) $\forall x \in \mathbb{R} \ (x^2 1 \neq 0 \ \lor \ x^2 2 \neq 0)$
- d) $\exists a \in \mathbb{R} \ \forall \varepsilon > 0 \ (|a| < \varepsilon)$
- e) $\exists a > 0 \ \forall \varepsilon > 0 \ (a < \varepsilon)$

Solución:

a) La afirmación de a) sería verdadera si el sistema de ecuaciones $\begin{cases} x^2 - 1 = 0 \\ x^2 - 2 = 0 \end{cases}$ tiene al menos una solución. Restando a la segunda ecuación la primera se obtiene, $\begin{cases} x^2 - 1 = 0 \\ -2 + 1 = 0 \end{cases}$. Por tanto, la afirmación es falsa.

- b) La afirmación de b) es la conjunción de dos proposiciones que será verdadera si ambas lo son. La proposición $\exists x \in \mathbb{R} \ (x^2 - 1 = 0)$ es verdadera, basta tomar x = 1. Análogamente, $\exists x \in \mathbb{R} \ (x^2 - 2 = 0)$ es también verdadera, por ejemplo para $x = \sqrt{2}$. Por tanto, es verdadera.
- c) La afirmación de c) es verdadera. Basta observar que dicha proposición no es más que la negación de la proposición de a).
- d) La afirmación de d) es verdadera. Basta tomar a=0, pues en ese caso, $\forall \varepsilon > 0$ se cumple que $|a| = 0 < \varepsilon$.
- e) Para ver que la proposición " $\exists a > 0 \ \forall \varepsilon > 0 \ (a < \varepsilon)$ " es falsa vemos que su negación, $\forall a > 0 \ \exists \varepsilon > 0 \ (a \ge \varepsilon)$, es verdadera. En efecto, dado cualquier a > 0 tomamos, por ejemplo, $\varepsilon = \frac{a}{2}$ y claramente se cumple que $a \ge \frac{a}{2} = \varepsilon$).

Pregunta 2 (2,5 puntos)

Sean \mathcal{R} y \mathcal{S} dos relaciones de orden total en un conjunto E. Se definen en E las relaciones:

$$x \Im y$$
 si v sólo si $x \Re y \wedge x \Im y$

$$x \Omega y$$
 si v sólo si $x \mathcal{R} y \vee x \mathcal{S} y$

Determine si las relaciones T y Q son reflexivas, antisimétricas, transitivas y en su caso, si la relación de orden resultante es de orden total.

Solución: Veamos primero las propiedades de T.

Es reflexiva: para todo $x \in E$ se tiene que $x \Im x$ ya que $x \Re x \wedge x \Im x$ pues ambas relaciones $\Re y \Im x$ son reflexivas.

Es antisimétrica: para todo $x, y \in E$ si $x \Im y \in y \Im x$ entonces $x \Re y \wedge x \Im y \in y \Re x \wedge y \Im x$. En particular, $x \Re y \wedge y \Re x$ y teniendo en cuenta que \mathcal{R} es antisimétrica se obtiene que x=y.

Obsérvese que basta con que una de las dos relaciones sea antisimétrica para asegurarnos que lo es T.

Es transitiva: sean $x, y, z \in E$ tales que $x \Im y \in y \Im z$. Por tanto, entonces $x \Re y \wedge x \Im y \in y \Re z \wedge y \Im z$. En consecuencia, $x \mathcal{R} y \wedge y \mathcal{R} z$ y $x \mathcal{S} y \wedge y \mathcal{S} z$. Se obtiene que $x \mathcal{T} z$ pues ambas relaciones \mathcal{R} y \mathcal{S} son transitivas.

 \mathfrak{I} es una relación de orden pero no tiene por qué ser de orden total. Dados dos elementos $x,y\in E$, teniendo en cuenta que ambas relaciones \mathcal{R} y \mathcal{S} son de orden total se tiene que $(x\mathcal{R}y \circ y\mathcal{R}x)$ y $(x\mathcal{S}y \circ y\mathcal{S}x)$. Puede darse el caso que $x \mathcal{R} y \in y \mathcal{S} x$ en cuyo caso no se puede garantizar que $x \mathcal{S} y$ o $y \mathcal{S} x$. Por ejemplo, consideramos el conjunto $E = \{1, 2, 3, 4, 5\}$ con las dos relaciones de orden total \Re y \Im que determinan las siguientes cadenas:

Los elementos 1 y 2 no están relacionados mediante \mathcal{T} pues no es cierto que 1 \mathcal{T} 2 ya que no se cumple que 1 \mathcal{S} 2 y tampoco es cierto que 2 \mathcal{T} 1 pues no se cumple que 2 \mathcal{R} 1.

Estudiamos las propiedades de Q.

Es reflexiva: para todo $x \in E$ se tiene que $x \mathcal{Q} x$ pues $x \mathcal{R} x \vee x \mathcal{S} x$ pues las relaciones \mathcal{R} y \mathcal{S} son reflexivas.

Obsérvese que basta con que una de las dos relaciones sea reflexiva para asegurarnos que lo es Q.

La relación Ω no es en general antisimétrica. Obsérvese que si $x, y \in E$ son tales que $x \Omega y$ e $y \Omega x$ entonces $x \mathcal{R} y \vee x \mathcal{S} y$ e $y \mathcal{R} x \vee y \mathcal{S} x$. Puede darse el caso donde $x \mathcal{R} y$ e $y \mathcal{S} x$ en cuyo caso no se puede garantizar que x = y. Consideremos el ejemplo anterior $E = \{1, 2, 3, 4, 5\}$ con las relaciones allí definidas tenemos que $1 \Omega 2$ pues $1 \mathcal{R} 2$ y $2 \Omega 1$ pues $2 \mathcal{S} 1$. Sin embargo, $1 \neq 2$.

La relación Q no es en general transitiva. Obsérvese que si $x, y \in E$ son tales que x Q y e y Q z entonces $x \mathcal{R} y \vee x \mathcal{S} y$ e $y \mathcal{R} z \vee y \mathcal{S} z$. Puede darse el caso donde $x \mathcal{R} y$ e $y \mathcal{S} z$ en cuyo caso no se puede garantizar que $x \mathcal{Q} z$. Por ejemplo, sea ahora el conjunto $E = \{1, 2, 3\}$ con las dos relaciones de orden total \mathcal{R} y \mathcal{S} que determinan las siguientes cadenas:

Tenemos que $2\Omega 3$ pues $2\Omega 3$ y $3\Omega 1$ pues 3S1. Sin embargo no es cierto que $2\Omega 1$ pues no es cierto que $2\Omega 1$ y tampoco es cierto que 2S1.

Pregunta 3 (2,5 puntos)

Sean E y F dos conjuntos y $f: E \longrightarrow F$ una aplicación. Sean $A \subset E$ y $B \subset F$. Demuestre que

$$f^{-1}(B)\cap A\ \subset\ f^{-1}\big(B\cap f(A)\big)$$

siendo f^{-1} la relación inversa de f. Muestre que la inclusión

$$f^{-1}(B \cap f(A)) \subset f^{-1}(B) \cap A$$

no es siempre cierta.

Solución: Veamos que se cumple $f^{-1}(B) \cap A \subset f^{-1}(B \cap f(A))$. En efecto para todo $x \in E$ tenemos:

$$x \in f^{-1}(B) \cap A \Longrightarrow \quad x \in f^{-1}(B) \land x \in A \Longrightarrow f(x) \in B \land f(x) \in f(A)$$
$$\Longrightarrow \qquad f(x) \in B \cap f(A) \Longrightarrow x \in f^{-1}\big(B \cap f(A)\big)$$

La inclusión $f^{-1}\big(B\cap f(A)\big)\subset f^{-1}(B)\cap A$ no es siempre cierta. Veamos un ejemplo. Sea $f\colon\mathbb{Z}\longrightarrow\mathbb{Z}$ definida para todo $x\in\mathbb{Z}$ mediante $f(x)=x^2$. Sean $A=\{2\}$ y $B=\mathbb{Z}$. En consecuencia $f(A)=\{4\}$ y $B\cap f(A)=\{4\}$. Por tanto, $f^{-1}\big(B\cap f(A)\big)=f^{-1}\big(\{4\}\big)=\{-2,2\}$ mientras que $f^{-1}(B)\cap A=\{2\}$.

Pregunta 4 (2,5 puntos)

Resuelva en \mathbb{C} la ecuación: $z^n = \overline{z}$.

Solución: Observemos en primer lugar que z=0 es solución de la ecuación pues $0^n=0$ y $\overline{0}=0$. Además, si n=1 entonces se cumple $z=\overline{z}$ si y sólo si $z\in\mathbb{R}$.

Para $z \neq 0$ y n > 1, expresamos en forma exponencial $z = re^{i\alpha}$ con r > 0 y la ecuación se transforma en:

$$r^n e^{in\alpha} = re^{-i\alpha}$$

Por tanto se obtiene:

- i) $r^n = r$, es decir, $r(r^{n-1} 1) = 0$ cuya única solución para r > 0 y n > 1 es r = 1.
- ii) $n\alpha = -\alpha + 2k\pi, k \in \mathbb{Z}$ o equivalentemente, $(n+1)\alpha = 2k\pi$, esto es, $\alpha = \frac{2k\pi}{n+1}$ cuyas soluciones módulo 2π se obtienen dando a k los valores $0, 1, 2, \ldots, n$. Por tanto la ecuación tiene n+2 soluciones que son:

$$\left\{0, e^{0}, e^{i\frac{2\pi}{n+1}}, e^{i\frac{4\pi}{n+1}}, e^{i\frac{6\pi}{n+1}}, \dots, e^{i\frac{2n\pi}{n+1}}\right\}$$