Genotype likelhoods

Anders Albrechtsen
The bioinformatic Centre, Copenhagen University

February 13, 2018

Mapped reads

My definitions (The literature is not consistent)

Depth The number of reads that maps to a position

Counts The number of different alleles mapped to a position

Coverage The fraction of the genome (region) with data

This is not like Sanger sequencing

- Sanger Both alleles are amplified and sequenced at the same time.
 - NGS Each allele is sequenced separately and the allele are sampled with replacement

Question?

Assuming an error rate of 1%

Is the individual heterozygous C/T?

What do we expect

What do we expect

Question?

Assuming an error rate of 1%

- Is the individual heterozygous C/T?
- P(2 or more errors | homozygous) = 0.00015
- P(2 or less minor bases | heterozygous) = 0.065

Question?

Assuming an error rate of 1%

- Is the individual heterozygous C/T?
- P(2 or more errors | homozygous) = 0.00015
- P(2 or less minor bases | heterozygous) = 0.065
- on average there is about 1 heterozygous site per 1000 bases

AGACCAGAGATGAAAACCCATTTGCCAGTCTGACAGCCACATCACAGCCAATTGCTGCAGCAGCA

Genotype likelihoods

Summarise the data in 10 genotype likelihoods

			Α	C	G	Т
bases (b): TCCTTTTTTT quality scores (Q): GHSSBBTTTTG	\rightarrowtail	Α	1	2	3	4
		C		5	6	7
		G			8	9
		Т				10

The likelihood

$$P(Data|G = \{A_1, A_2\}) \propto P(X|G = \{A_1, A_2\}) = P(X|G)$$
 where $A \in \{A, C, G, T\}$

Estimating genotype likelihoods

GATK (McKenna et al. 2010)

$$P(X|G) \propto \prod_{i=0}^{n} P(b_i|A_1, A_2) = \prod_{i=0}^{n} \left(\frac{1}{2} P(b_i|A_1) + \frac{1}{2} P(b_i|A_2)\right)$$

where
$$P(b|A) = \begin{cases} \frac{\epsilon}{3} & b \neq A \\ 1 - \epsilon & b = A \end{cases}$$
,

where $G = \{A_1, A_2\}$, b is the observed base and ϵ is the probability of error from the quality score.

Example of genotype likelihood calculations

b	Qasci	Qscore	ϵ	$p(b_i T)$	$p(b_i C)$	$p(b_i G/A)$
Т	G	38	0.00016	1 - 0.00016	5.3e-05	5.3e-05
C	Н	39	0.00013	4.2e-05	1 - 0.00013	4.2e-05
C	S	50	1e-05	3.3e-06	1 - 1e-05	3.3e-06
Т	S	50	1e-05	1 - 1e-05	3.3e-06	3.3e-06
Т	В	33	5e-04	1 - 5e-04	0.00017	0.00017
Т	В	33	5e-04	1 - 5e-04	0.00017	0.00017
Т	Т	51	7.9e-06	1 - 7.9e-06	2.6e-06	2.6e-06
Т	Т	51	7.9e-06	1 - 7.9e-06	2.6e-06	2.6e-06
Т	Т	51	7.9e-06	1 - 7.9e-06	2.6e-06	2.6e-06
Т	Т	51	7.9e-06	1 - 7.9e-06	2.6e-06	2.6e-06
T	G	38	0.00016	1 - 0.00016	5.3e-05	5.3e-05

$$P(Data|G = TC) \propto \prod_{i=0}^{n} P(b_i|T,C) = \prod_{i=0}^{n} \left(\frac{1}{2}P(b_i|T) + \frac{1}{2}P(b_i|C)\right)$$

Genotype likelihoods

Other methods

samtools/H. Li et al. 2008 quality scores, quality dependency soapSNP/R. Li et al. 2009 quality scores, quality dependency GATK/McKenna et al. 2010 quality scores
Kim et al. 2010? type specific errors

Genotype calling

10 genotype likelihoods

	A	С	G	Т
Α	0.0	0.001	0.0	0.01
C		0.02	0.001	0.12
A C G			0.0	0.003
Т				0.001

simple genotype callers - Maximum likelihood

- ML I Choose the genotype with the largest likelihood $\arg \max_G P(X|G)$
- ML II only call a genotype if the likelihood with much better than the second best e.g. a likelihood ratio > 2