Notes on the book: Apostol, Modular Functions and Dirichlet Series in Number Theory, 2nd edition

Meng-Gen Tsai plover@gmail.com

July 31, 2021

Contents

Chapter 1: Elliptic functions	3
Exercise 1.1	3
Supplement 1.1.1	4
Exercise 1.2	4
Exercise 1.3	5
Exercise 1.4	6
Supplement 1.4.1. (Divisor class group)	7
Exercise 1.5	8
Exercise 1.6	9
Exercise 1.7	10
Exercise 1.8	11
Exercise 1.9	12
Exercise 1.10	14
Exercise 1.11	15
Exercise 1.12	16
Exercise 1.13	17
Exercise 1.14. (Lambert series)	18
Exercise 1.15	21
Chapter 2: The modular group and modular functions	25
Exercise 2.2	25
Congruence subgroups	25
Exercise 2.11	26
Exercise 2.12	26
Exercise 2.13	27
Evercise 2.14	27

Exercise	2.16.															28
Exercise	2.17.															29
Exercise	2.18.															29
Exercise	2.19.															29
Exercise	2.20.															30

Chapter 1: Elliptic functions

Exercise 1.1.

Given two pairs of complex numbers (ω_1, ω_2) and (ω_1', ω_2') with nonreal ratios ω_1/ω_2 and ω_1'/ω_2' . Prove that they generate the same set of periods if, and only if, there is a 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with integer entries and determinant ± 1 such that

$$\begin{pmatrix} \omega_2' \\ \omega_1' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix}.$$

Proof.

(1) (\Longrightarrow) Suppose (ω_1, ω_2) and (ω_1', ω_2') generate the same set of periods. In particular, there is a 2×2 matrix $A := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{M}_{2 \times 2}(\mathbb{Z})$ (resp. $A' := \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \in \mathsf{M}_{2 \times 2}(\mathbb{Z})$) such that

$$\begin{pmatrix} \omega_2' \\ \omega_1' \end{pmatrix} = A \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix}, \qquad \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix} = A' \begin{pmatrix} \omega_2' \\ \omega_1' \end{pmatrix}.$$

Hence it suffices to show $det(A) = \pm 1$.

(2) Note that

$$\begin{pmatrix} \omega_2' \\ \omega_1' \end{pmatrix} = AA' \begin{pmatrix} \omega_2' \\ \omega_1' \end{pmatrix}.$$

Hence

$$AA' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Take the determinant on the both sides to get

$$\det(A)\det(A')=1.$$

Since $\det(\mathsf{M}_{2\times 2}(\mathbb{Z}))\subseteq \mathbb{Z}, \, \det(A)=\pm 1.$

(3) (\Leftarrow) $\Omega(\omega_1', \omega_2') \subseteq \Omega(\omega_1, \omega_2)$ is obvious. Note that

$$\begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix} = \underbrace{\frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}}_{\in \mathsf{M}_{2\times 2}(\mathbb{Z})} \begin{pmatrix} \omega_2' \\ \omega_1' \end{pmatrix}.$$

Thus $\Omega(\omega_1, \omega_2) \subseteq \Omega(\omega_1', \omega_2')$. Therefore $\Omega(\omega_1, \omega_2) = \Omega(\omega_1', \omega_2')$.

Supplement 1.1.1.

(Exercise I.1.1 in the textbook: Jörgen Neukirch, Algebraic Number Theory.) $\alpha \in \mathbb{Z}[i]$ is a unit if and only if $N(\alpha) = 1$.

Proof.

- (1) (\Longrightarrow) Since α is a unit, there is $\beta \in \mathbb{Z}[i]$ such that $\alpha\beta = 1$. So $N(\alpha\beta) = N(1)$, or $N(\alpha)N(\beta) = 1$. Since the image of N is nonnegative integers, $N(\alpha) = 1$.
- (2) (\Leftarrow) $N(\alpha) = \alpha \overline{\alpha}$, or $1 = \alpha \overline{\alpha}$ since $N(\alpha) = 1$. That is, $\overline{\alpha} \in \mathbb{Z}[i]$ is the inverse of $\alpha \in \mathbb{Z}[i]$. (Or we solve the equation $N(\alpha) = a^2 + b^2 = 1$, and show that all four solutions $(\pm 1 \text{ and } \pm i)$ are units.)
- (3) Conclusion: a unit $\alpha = a + bi$ of $\mathbb{Z}[i]$ is satisfying the equation $N(\alpha) = a^2 + b^2 = 1$ by (1)(2). That is, the only unit of $\mathbb{Z}[i]$ are ± 1 and $\pm i$.

Exercise 1.2.

Let S(0) denote the sum of the zeros of an elliptic function f in a period parallelogram, and let $S(\infty)$ denote the sum of the poles in the same parallelogram. Prove that $S(0) - S(\infty)$ is a period of f. (Hint: Integrate $z\frac{f'(z)}{f(z)}$.)

Proof.

(1) Similar to Theorem 1.8, the integral

$$\frac{1}{2\pi i} \int_C z \frac{f'(z)}{f(z)}$$

taken around the boundary C of a cell (no zeros or poles on its boundary) counts the difference between the sum of the zeros and the sum of the poles inside the cell, that is,

$$S(0) - S(\infty) = \frac{1}{2\pi i} \int_C z \frac{f'(z)}{f(z)}.$$

(The proof is similar to the proof of the argument principle.)

(2) Let C_1 be the path from 0 to ω_1 , C_2 be the path from ω_1 to $\omega_1 + \omega_2$, C_3

be the path from $\omega_1 + \omega_2$ to ω_2 , and C_4 be the path from ω_2 to 0. Hence

$$\begin{split} &\frac{1}{2\pi i} \int_{C_1} z \frac{f'(z)}{f(z)} + \frac{1}{2\pi i} \int_{C_3} z \frac{f'(z)}{f(z)} \\ &= \frac{1}{2\pi i} \int_{C_1} z \frac{f'(z)}{f(z)} + \frac{1}{2\pi i} \int_{-C_1} (z + \omega_2) \frac{f'(z + \omega_2)}{f(z + \omega_2)} \\ &= \frac{1}{2\pi i} \int_{C_1} z \frac{f'(z)}{f(z)} - \frac{1}{2\pi i} \int_{C_1} (z + \omega_2) \frac{f'(z)}{f(z)} \\ &= -\omega_2 \frac{1}{2\pi i} \int_{C_1} \frac{f'(z)}{f(z)} \end{split}$$

and

$$\begin{split} &\frac{1}{2\pi i} \int_{C_2} z \frac{f'(z)}{f(z)} + \frac{1}{2\pi i} \int_{C_4} z \frac{f'(z)}{f(z)} \\ &= \frac{1}{2\pi i} \int_{-C_4} (z + \omega_1) \frac{f'(z + \omega_1)}{f(z + \omega_1)} + \frac{1}{2\pi i} \int_{C_4} z \frac{f'(z)}{f(z)} \\ &= -\frac{1}{2\pi i} \int_{C_4} (z + \omega_1) \frac{f'(z)}{f(z)} + \frac{1}{2\pi i} \int_{C_4} z \frac{f'(z)}{f(z)} \\ &= -\omega_1 \frac{1}{2\pi i} \int_{C_4} \frac{f'(z)}{f(z)} \end{split}$$

Therefore

$$S(0) - S(\infty) = -\omega_1 \frac{1}{2\pi i} \int_{C_t} \frac{f'(z)}{f(z)} - \omega_2 \frac{1}{2\pi i} \int_{C_t} \frac{f'(z)}{f(z)}.$$

So it suffices to show that $\frac{1}{2\pi i} \int_{C_1} \frac{f'(z)}{f(z)} \in \mathbb{Z}$. (Other cases are similar.)

(3) By choosing one branch of log, we have

$$\frac{1}{2\pi i} \int_{C_1} \frac{f'(z)}{f(z)} = \frac{1}{2\pi i} \log \frac{f(\omega_1)}{f(0)}$$

$$= \frac{1}{2\pi i} \log(1) \qquad (f(\omega_1) = f(0))$$

$$= \frac{1}{2\pi i} (2\pi i m) \text{ for some } m \in \mathbb{Z}$$

$$= m \in \mathbb{Z}.$$

Exercise 1.3.

(a) Prove that $\wp(u) = \wp(v)$ if, and only if, u - v or u + v is a period of \wp .

(b) Let a_1, \ldots, a_n and b_1, \ldots, b_m be complex numbers such that none of the numbers $\wp(a_i) - \wp(b_j)$ is zero. Let

$$f(z) = \frac{\prod_{k=1}^{n} [\wp(z) - \wp(a_k)]}{\prod_{r=1}^{m} [\wp(z) - \wp(b_r)]}.$$

Prove that f is an even elliptic function with zeros at a_1, \ldots, a_n and poles at b_1, \ldots, b_m .

Proof of (a).

- (1) Let Ω be the lattice generated by periods of \wp .
- (2) (\Longrightarrow) It is equivalent to show that the equation $\wp(u) = \wp(v)$ in terms of u has exactly two roots in some period parallelogram. $u \equiv v \pmod{\Omega}$ is a root clearly and $u \equiv -v \pmod{\Omega}$ is also a root since \wp is even. Since \wp is an elliptic function of order 2 (Theorem 1.8), $u \equiv \pm v \pmod{\Omega}$ is the only two roots of $\wp(u) = \wp(v)$.
- $(3) \iff$ Obvious.

Proof of (b).

- (1) Since \wp is an even elliptic function, f is an even elliptic function too.
- (2) f has zeros at a_1, \ldots, a_n and poles at b_1, \ldots, b_m (by construction and (a)).

Exercise 1.4.

Prove that every even elliptic function f is a rational function of \wp , where periods of \wp are a subset of the periods of f.

Proof.

- (1) Nothing to do if f is constant. Let C be one period parallelogram of f and \wp . Let $\Omega(\omega_1, \omega_2)$ be the lattice generated by periods of \wp . Suppose f has zeros at a_1, \ldots, a_n and poles at b_1, \ldots, b_m .
- (2) Might assume that $\wp(z) \wp(a_k)$ (resp. $\wp(z) \wp(b_r)$) has a simple zero in a_k (resp. b_r) for all k, r. So the function

$$g(z) := f(z) \cdot \frac{\prod_{r=1}^{m} [\wp(z) - \wp(b_r)]^{\beta_r}}{\prod_{k=1}^{n} [\wp(z) - \wp(a_k)]^{\alpha_k}}$$

is an elliptic function with no zeros or poles in C where α_k (resp. β_r) is the order of the zero a_k (resp. the pole b_r). By Theorems 1.4 and 1.5, g(z) is a constant. Hence

$$f(z) = C \cdot \frac{\prod_{k=1}^{n} [\wp(z) - \wp(a_k)]^{\alpha_k}}{\prod_{r=1}^{m} [\wp(z) - \wp(b_r)]^{\beta_r}}$$

for some constant $C \in \mathbb{C}$.

(3) Now we consider the case a_k (resp. b_r) is a zero of $\wp'(z)$. Since f is an even elliptic function, the order of a_k (resp. b_r) of f is even. Note that the order of a_k (resp. b_r) of $\wp(z) - \wp(a_k)$ (resp. $\wp(z) - \wp(b_r)$) is 2. Hence the function

$$g(z) := f(z) \cdot \frac{\prod_{\wp'(b_r) \neq 0} [\wp(z) - \wp(b_r)]^{\beta_r}}{\prod_{\wp'(a_k) \neq 0} [\wp(z) - \wp(a_k)]^{\alpha_k}} \cdot \frac{\prod_{\wp'(b_r) = 0} [\wp(z) - \wp(b_r)]^{\frac{\beta_r}{2}}}{\prod_{\wp'(a_k) = 0} [\wp(z) - \wp(a_k)]^{\frac{\alpha_k}{2}}}$$

is a constant too.

Supplement 1.4.1. (Divisor class group)

(Problem 8.6 in the textbook: William Fulton, Algebraic Curves.) Let D(X) be the group of divisors on X, $D_0(X)$ the subgroup consisting of divisors of degree zero, and P(X) the subgroup of $D_0(X)$ consisting of divisors of rational functions. Let $C_0(X) = D_0(X)/P(X)$ be the quotient group. It is the **divisor class group** on X.

- (a) If $X = \mathbf{P}^1$, then $C_0(X) = 0$.
- (b) Let X = C be a nonsingular cubic. Pick $P_0 \in C$, defining \oplus on C. Show that the map from C to $C_0(X)$ that sends P to the residue class of the divisor $P P_0$ is an isomorphism from (C, \oplus) onto $C_0(X)$.

Proof of (a).

(1) Given a divisor

$$D = \sum_{P \in X} n_P P \in D_0(X)$$

where $n_P \in \mathbb{Z}$ and $\sum_P n_P = 0$.

(2) Note that $\sum_{P} n_{P} = 0$. We can define a rational function $z \in k(X)$ by

$$z = \prod_{P=[a_P:b_P]\in X} (b_P x - a_P y)^{n_P}.$$

Hence $\operatorname{div}(z) = D \in P(X)$. Therefore $C_0(X) = D_0(X)/P(X) = 0$.

Proof of (b).

- (1) Define $\alpha:(C,\oplus)\to C_0(X)$ by $P\mapsto [P-P_0]$.
- (2) Show that α is a group homomorphism. If $P \oplus Q = R$, then

$$P \oplus Q = R$$

 $\iff [P+Q] = [R+P_0]$ (Problem 8.3(c))
 $\iff [P-P_0] + [Q-P_0] = [R-P_0]$ (Proposition 2)
 $\iff \alpha(P) + \alpha(Q) = \alpha(R) = \alpha(P \oplus Q).$

(3) Show that α is injective.

$$\alpha(P) = 0 \iff [P - P_0] = 0$$
 $\iff [P] = [P_0]$ (Proposition 2)
 $\iff P = P_0.$ (Problem 8.3(a))

(4) Show that α is surjective. Given $[D] \in C_0(X)$ and we want to find a point $P \in C$ such that $\alpha(P) = [D]$. Write

$$D = (P_1 + \cdots + P_r) - (Q_1 + \cdots + Q_r)$$

for some $P_i, Q_i \in C$. So

$$[D] = [P_1 - P_0] + \dots + [P_r - P_0] - [Q_1 - P_0] - \dots - [Q_r - P_0]$$

$$= \alpha(P_1) + \dots + \alpha(P_r) - \alpha(Q_1) - \dots - \alpha(Q_r)$$

$$= \alpha(P_1) + \dots + \alpha(P_r) + \alpha(Q'_1) + \dots + \alpha(Q'_r)$$

$$= \alpha(P_1 \oplus \dots \oplus P_r \oplus Q'_1 \oplus \dots \oplus Q'_r).$$

where Q_i' is the inverse of Q_i in (C, \oplus) . Hence there is a point $P := P_1 \oplus \cdots \oplus P_r \oplus Q_1' \oplus \cdots \oplus Q_r' \in C$ such that $\alpha(P) = [D]$.

Exercise 1.5.

Prove that every elliptic function f can be expressed in the form

$$f(z) = R_1[\wp(z)] + \wp'(z)R_2[\wp(z)]$$

where R_1 and R_2 are rational functions and \wp has the same set of periods as f.

Proof.

$$f(z) = \underbrace{\frac{f(z) + f(-z)}{2}}_{\text{even}} + \wp'(z) \underbrace{\frac{f(z) - f(-z)}{2\wp'(z)}}_{\text{even}}$$

 $=R_1[\wp(z)]+\wp'(z)R_2[\wp(z)]$ for some rational functions R_1,R_2

(by Exercise 1.4). \square

Exercise 1.6.

Let f and g be two elliptic functions with the same set of periods. Prove that there exists a polynomial P(x,y), not identically zero, such that

$$P[f(z), g(z)] = C$$

where C is a constant (depending on f and g but not on z).

Proof.

(1) By Exercise 1.5, we have

$$f(z) = R_1[\wp(z)] + \wp'(z)R_2[\wp(z)]$$

for some rational functions R_1, R_2 and \wp has the same set of periods as f. By cleaning the denominators of R_1 and R_2 , we might assume

$$S[\wp(z)]f(z) = R_1[\wp(z)] + \wp'(z)R_2[\wp(z)]$$

for some polynomials R_1, R_2, S .

(2) So

$$\wp'(z)R_2[\wp(z)] = S[\wp(z)]f(z) - R_1[\wp(z)]$$

$$\Longrightarrow \wp'(z)^2 R_2[\wp(z)]^2 = (S[\wp(z)]f(z) - R_1[\wp(z)])^2$$

$$\Longrightarrow (4\wp(z)^3 - 60G_4\wp(z) - 140G_6)R_2[\wp(z)]^2$$

$$= (S[\wp(z)]f(z) - R_1[\wp(z)])^2.$$
 (Theorem 1.12)
$$\Longrightarrow F(\wp(z), f(z)) = 0$$

for some polynomials $F(x,y) \in \mathbb{C}[x,y]$. Note that F(x,y) is of degree 2 if we view $F \in (\mathbb{C}[x])[y]$.

(3) Similarly,

$$G(\wp(z), g(z)) = 0$$

for some polynomials $G(x, y) \in \mathbb{C}[x, y]$.

(4) Let $P = \text{Res}_x(F, G)$ be the resultant of two polynomials F and G with respect t x to eliminate $\wp(z)$. Note that P is a nonzero polynomial (since F and G are nonzero) and P[f(z), g(z)] = 0. So P is our desired polynomial.

Exercise 1.7.

The discriminant of the polynomial $f(x) = 4(x - x_1)(x - x_2)(x - x_3)$ is the product $16\{(x_2 - x_1)(x_3 - x_2)(x_3 - x_1)\}^2$. Prove that the discriminant of $f(x) = 4x^3 - ax - b$ is $a^3 - 27b^2$.

Proof.

(1) Since

$$f'(x) = 4(x - x_2)(x - x_3) + 4(x - x_1)(x - x_3) + 4(x - x_1)(x - x_2),$$

we have

$$f'(x_1) = 4(x_1 - x_2)(x_1 - x_3),$$

$$f'(x_2) = 4(x_2 - x_1)(x_2 - x_3),$$

$$f'(x_3) = 4(x_3 - x_1)(x_3 - x_2).$$

Hence

$$f'(x_1)f'(x_2)f'(x_3) = -4\operatorname{disc}(f)$$

where $\operatorname{disc}(f)$ is the discriminant of f(x).

(2) As $f(x) = 4x^3 - ax - b$, we have $f'(x) = 12x^2 - a$. So

$$f'(x_1)f'(x_2)f'(x_3) = (12x_1^2 - a)(12x_2^2 - a)(12x_3^2 - a).$$

Note that

$$x_1 x_2 x_3 = \frac{b}{4},$$

$$x_1 x_2 + x_2 x_3 + x_3 x_1 = -\frac{a}{4},$$

$$x_1 + x_2 + x_3 = 0,$$

we have

$$x_1^2 x_2^2 x_3^2 = \frac{b^2}{4^2},$$

$$x_1^2 x_2^2 + x_2^2 x_3^2 + x_3^2 x_1^2 = (x_1 x_2 + x_2 x_3 + x_3 x_1)^2 - 2x_1 x_2 x_3 (x_1 + x_2 + x_3)$$

$$= \frac{a^2}{4^2},$$

$$x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1 x_2 + x_2 x_3 + x_3 x_1)$$

$$= \frac{a}{2}.$$

(3) Hence

$$f'(x_1)f'(x_2)f'(x_3) = (12x_1^2 - a)(12x_2^2 - a)(12x_3^2 - a)$$

$$= 12^3(x_1^2x_2^2x_3^2) - 12^2a(x_1^2x_2^2 + x_2^2x_3^2 + x_3^2x_1^2)$$

$$+ 12a^2(x_1^2 + x_2^2 + x_3^2) - a^3$$

$$= 12^3 \cdot \frac{b^2}{4^2} - 12^2a \cdot \frac{a^2}{4^2} + 12a^2 \cdot \frac{a}{2} - a^3$$

$$= -4(a^3 - 27b^2).$$

Therefore

$$disc(4x^3 - ax - b) = a^3 - 27b^2.$$

Exercise 1.8.

The differential equation for \wp shows that $\wp'(z)=0$ if $z=\frac{\omega_1}{2},\frac{\omega_2}{2}$ or $\frac{\omega_1+\omega_2}{2}$. Show that

 $\wp''\left(\frac{\omega_1}{2}\right) = 2(e_1 - e_2)(e_1 - e_3)$

and obtain corresponding formulas for $\wp''\left(\frac{\omega_2}{2}\right)$ and $\wp''\left(\frac{\omega_1+\omega_2}{2}\right)$.

Proof.

(1) Differentiation of the equation

$$4\wp(z)^3 - g_2\wp(z) - g_3 = 4(\wp(z) - e_1)(\wp(z) - e_2)(\wp(z) - e_3)$$

in Theorem 1.14 to get

$$12\wp(z)^{2}\wp'(z) - g_{2}\wp'(z) = 4\wp'(z)(\wp(z) - e_{2})(\wp(z) - e_{3})$$

$$+ 4\wp'(z)(\wp(z) - e_{1})(\wp(z) - e_{3})$$

$$+ 4\wp'(z)(\wp(z) - e_{1})(\wp(z) - e_{2}).$$

Since $\wp''(z) = 6\wp(z)^2 - \frac{g_2}{2}$, we have

$$\wp''(z) = 2(\wp(z) - e_2)(\wp(z) - e_3) + 2(\wp(z) - e_1)(\wp(z) - e_3) + 2(\wp(z) - e_1)(\wp(z) - e_2).$$

(2) Hence

$$\wp''\left(\frac{\omega_1}{2}\right) = 2(e_1 - e_2)(e_1 - e_3),$$

$$\wp''\left(\frac{\omega_2}{2}\right) = 2(e_2 - e_1)(e_2 - e_3),$$

$$\wp''\left(\frac{\omega_1 + \omega_2}{2}\right) = 2(e_3 - e_1)(e_3 - e_2).$$

Exercise 1.9.

According to Exercise 1.4, the function $\wp(2z)$ is a rational function of $\wp(z)$. Prove that, in fact,

$$\wp(2z) = \frac{\{\wp(z)^2 + \frac{1}{4}g_2\}^2 + 2g_3\wp(z)}{4\wp(z)^3 - g_2\wp(z) - g_3} = -2\wp(z) + \frac{1}{4} \left(\frac{\wp''(z)}{\wp'(z)}\right)^2.$$

Proof.

(1) By $\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$ and $\wp''(z) = 6\wp(z)^2 - \frac{1}{2}g_2$, we have $-2\wp(z) + \frac{1}{4} \left(\frac{\wp''(z)}{\wp'(z)}\right)^2$ $= -2\wp(z) + \frac{1}{4} \cdot \frac{(6\wp(z)^2 - \frac{1}{2}g_2)^2}{4\wp(z)^3 - g_2\wp(z) - g_3}$ $= \frac{-2\wp(z)[4\wp(z)^3 - g_2\wp(z) - g_3] + \frac{1}{4}(6\wp(z)^2 - \frac{1}{2}g_2)^2}{4\wp(z)^3 - g_2\wp(z) - g_3}$ $= \frac{\wp(z)^4 + \frac{1}{2}g_2\wp(z)^2 + \frac{1}{16}g_2^2 + 2g_3\wp(z)}{4\wp(z)^3 - g_2\wp(z) - g_3}$ $= \frac{\{\wp(z)^2 + \frac{1}{4}g_2\}^2 + 2g_3\wp(z)}{4\wp(z)^3 - g_2\wp(z) - g_3}.$

So it suffices to show that $\wp(2z) = -2\wp(z) + \frac{1}{4} \left(\frac{\wp''(z)}{\wp'(z)}\right)^2$.

(2) Let Ω be the lattice generated by periods of \wp . Suppose the addition theorem of \wp holds, that is,

$$\wp(u) + \wp(v) + \wp(u+v) = \frac{1}{4} \left(\frac{\wp'(u) - \wp'(v)}{\wp(u) - \wp(v)} \right)^2$$

with $u, v, u + v \not\equiv 0 \pmod{\Omega}$. Then letting v to u, we have

$$\begin{split} \wp(2u) &= \lim_{v \to u} \wp(u+v) \\ &= \lim_{v \to u} \left\{ -\wp(u) - \wp(v) + \frac{1}{4} \left(\frac{\wp'(u) - \wp'(v)}{\wp(u) - \wp(v)} \right)^2 \right\} \\ &= -2\wp(u) + \frac{1}{4} \lim_{v \to u} \frac{\wp'(v) - \wp'(u)}{\wp(v) - \wp(u)} \\ &= -2\wp(u) + \frac{1}{4} \left(\frac{\wp''(u)}{\wp'(u)} \right)^2. \end{split}$$

The last equality is followed by L'Hospital's rule. So it suffices to show the addition theorem of \wp is true.

(3) Let u + v + w = 0, with $u, v, w \not\equiv 0 \pmod{\Omega}$. Show that

$$\begin{vmatrix} \wp(u) & \wp'(u) & 1 \\ \wp(v) & \wp'(v) & 1 \\ \wp(w) & \wp'(w) & 1 \end{vmatrix} = 0.$$

Consider the elliptic function

$$f(z) := \wp'(z) - \underbrace{\frac{\wp'(u) - \wp'(v)}{\wp(u) - \wp(v)}}_{:=A} \wp(z) - \underbrace{\frac{\wp(u)\wp'(v) - \wp(v)\wp'(u)}{\wp(u) - \wp(v)}}_{:=B}.$$

f has exactly 3 zeros in a period parallelogram as f has order 3. Note that f has a pole at 0 of order 3. By Exercise 1.2, the sum of the zeros is equal to the sum of poles in a period parallelogram. Since u and v are zeros of f (by verifying f(u) = f(v) = 0 directly), the third zero must be -u - v = w. Hence there is a line

$$y = Ax + B$$

passing through 3 points $(\wp(u), \wp'(u)), (\wp(v), \wp'(v))$ and $(\wp(w), \wp'(w))$. So the determinant is zero.

(4) Now we are going to remove the term $\wp'(w)$ to prove the addition theorem of \wp . By Theorem 1.12, we have the system of equations

$$\begin{cases} y = Ax + B, \\ y^2 = 4x^3 - g_2x - g_3, \end{cases}$$

where $(x,y) = (\wp(z), \wp'(z))$. Hence

$$(Ax + B)^{2} = 4x^{3} - g_{2}x - g_{3}$$

$$\iff 4x^{3} - A^{2}x^{2} - (2AB + g_{2})x - (B^{2} + g_{3}) = 0$$

$$\implies \text{sum of three roots of } x \text{ is } \frac{A^{2}}{4}$$

$$\implies \wp(u) + \wp(v) + \wp(w) = \frac{1}{4} \left(\frac{\wp'(u) - \wp'(v)}{\wp(u) - \wp(v)} \right)^{2}$$

$$\implies \wp(-u - v) = -\wp(u) - \wp(v) + \frac{1}{4} \left(\frac{\wp'(u) - \wp'(v)}{\wp(u) - \wp(v)} \right)^{2}$$

$$\implies \wp(u + v) = -\wp(u) - \wp(v) + \frac{1}{4} \left(\frac{\wp'(u) - \wp'(v)}{\wp(u) - \wp(v)} \right)^{2}. \quad (\wp: \text{ even})$$

So the addition theorem of \wp is established.

Note.

- (1) In the proof, part (4) is similar to defining an addition \oplus on a nonsingular cubic E in $\mathbf{P}^2(k)$. It is equivalent to defining the divisor class group on E. See Problem 8.6 in the textbook: William Fulton, Algebraic Curves.
- (2) If $E \in \mathbf{P}^2(\mathbb{C})$ is the elliptic curve corresponding to the lattice Ω , then there is an isomorphism

$$\alpha: \mathbb{C}/\Omega \longrightarrow E: y^2z = 4x^3 - g_2xz^2 - g_3z^3$$

defined by

$$\alpha(z) = \begin{cases} [\wp(z) : \wp'(z) : 1] & \text{if } z \neq 0 \in \Omega, \\ [0 : 1 : 0] & \text{if } z = 0 \in \Omega, \end{cases}$$

such that α is both analytic (as a mapping of complex manifolds) and algebraic (as a homomorphism of groups).

Exercise 1.10.

Let ω_1 and ω_2 be complex numbers with nonreal ratio. Let f(z) be an entire function and assume there are constants a and b such that

$$f(z + \omega_1) = a f(z),$$
 $f(z + \omega_2) = b f(z),$

for all z. Prove that $f(z) = Ae^{Bz}$, where A and B are constant.

Proof.

- (1) Might assume that $a \neq 0$ and $b \neq 0$ (otherwise f = 0 on \mathbb{C}).
- (2) Define

$$g(z) := \frac{f(z)}{e^{Bz}}.$$

It suffices to show g is a constant. Note that g(z) is entire (since f and $e^{Bz} \neq 0$ are entire). By Theorem 1.4, it suffices to show g is doubly periodic, that is, to show

$$q(z + \omega_1) = q(z)$$
 and $q(z + \omega_2) = q(z)$

for suitable B.

(3) Note that

$$\begin{split} g(z+\omega_1) &= g(z) \text{ and } g(z+\omega_2) = g(z) \\ \Longleftrightarrow \frac{a}{e^{B\omega_1}} \cdot g(z) &= g(z) \text{ and } \frac{b}{e^{B\omega_2}} \cdot g(z) = g(z) \\ \Longleftrightarrow e^{B\omega_1} &= a \text{ and } e^{B\omega_2} = b \\ \Longleftrightarrow \exists \, B \text{ such that } e^{B\omega_1} = a \text{ and } e^{B\omega_2} = b. \end{split}$$

Take B such that $e^{B(\omega_1-\omega_2)}=\frac{a}{b}$ (since $\frac{a}{b}$ is well-defined, $\omega_1-\omega_2\neq 0$, and $z\mapsto \exp(z)$ is a onto map from $\mathbb C$ to $\mathbb C\smallsetminus\{0\}$). Hence g is doubly periodic.

Exercise 1.11.

If $k \geq 2$ and $\tau \in H$ prove that the Eisenstein series

$$G_{2k}(\tau) = \sum_{(m,n)\neq(0,0)} (m+n\tau)^{-2k}$$

has the Fourier expansion

$$G_{2k}(\tau) = 2\zeta(2k) + \frac{2(2\pi i)^{2k}}{(2k-1)!} \sum_{n=1}^{\infty} \sigma_{2k-1}(n)e^{2\pi i n \tau}.$$

Proof.

(1) Let $q = e^{2\pi i \tau}$. Similar to Lemma 1.3 on page 19, we have

$$(2k-1)! \sum_{m=-\infty}^{+\infty} \frac{1}{(\tau+m)^{2k}} = (2\pi i)^{2k} \sum_{r=1}^{\infty} r^{2k-1} q^r.$$

(2) Similar to Theorem 1.18, we have

$$G_{2k}(\tau) = \sum_{\substack{(m,n) \neq (0,0) \\ m \neq 0(n=0)}} (m+n\tau)^{-2k}$$

$$= \sum_{\substack{m=-\infty \\ m \neq 0(n=0)}}^{+\infty} m^{-2k} + \sum_{n=1}^{\infty} \sum_{m=-\infty}^{+\infty} ((m+n\tau)^{-2k} + (m-n\tau)^{-2k})$$

$$= 2\zeta(2k) + 2\sum_{n=1}^{\infty} \sum_{m=-\infty}^{+\infty} (m+n\tau)^{-2k}$$

$$= 2\zeta(2k) + 2\sum_{n=1}^{\infty} \frac{(2\pi i)^{2k}}{(2k-1)!} \sum_{r=1}^{\infty} r^{2k-1} q^{nr}$$

$$= 2\zeta(2k) + \frac{2(2\pi i)^{2k}}{(2k-1)!} \sum_{n=1}^{\infty} \sum_{\substack{d \mid n \\ =\sigma_{2k-1}(n)}} d^{2k-1} q^{n}.$$

In the last double sum we collect together those terms for which nr is constant.

Exercise 1.12.

Refer to Exercise 1.11. If $\tau \in H$ prove that

$$G_{2k}\left(-\frac{1}{\tau}\right) = \tau^{2k}G_{2k}(\tau)$$

and deduce that

$$G_{2k}\left(\frac{i}{2}\right) = (-4)^k G_{2k}(2i) \qquad \text{for all } k \ge 2,$$

$$G_{2k}(i) = 0 \qquad \text{if } k \text{ is odd},$$

$$G_{2k}\left(e^{\frac{2\pi i}{3}}\right) = 0 \qquad \text{if } k \not\equiv 0 \pmod{3}.$$

Proof.

(1)

$$G_{2k}\left(-\frac{1}{\tau}\right) = \sum_{(m,n)\neq(0,0)} \left(m - \frac{n}{\tau}\right)^{-2k}$$
$$= \tau^{2k} \sum_{(m,n)\neq(0,0)} (\tau m - n)^{-2k}$$
$$= \tau^{2k} G_{2k}(\tau).$$

- (2) Let $\tau = 2i$. We have $G_{2k}\left(\frac{i}{2}\right) = (-4)^k G_{2k}(2i)$.
- (3) Let $\tau = i$. We have $G_{2k}(i) = (-1)^k G_{2k}(i)$. Hence $G_{2k}(i) = 0$ if k is odd.
- (4) Let $\tau = e^{\frac{\pi i}{3}}$. We have $G_{2k}(e^{\frac{2\pi i}{3}}) = e^{\frac{2k\pi i}{3}}G_{2k}(e^{\frac{\pi i}{3}})$. Since

$$e^{\frac{2\pi i}{3}} = -1 + e^{\frac{\pi i}{3}}$$

and each Eisenstein series is a periodic function of τ of period 1, we have $G_{2k}(e^{\frac{2\pi i}{3}})=G_{2k}(e^{\frac{\pi i}{3}})$. So $G_{2k}(e^{\frac{2\pi i}{3}})=e^{\frac{2k\pi i}{3}}G_{2k}(e^{\frac{2\pi i}{3}})$. Therefore $G_{2k}(e^{\frac{2\pi i}{3}})=0$ if $k\not\equiv 0\pmod 3$.

Exercise 1.13.

Ramanujan's tau function $\tau(n)$ is defined by the Fourier expansion

$$\Delta(\tau) = (2\pi)^{12} \sum_{n=1}^{\infty} \tau(n) e^{2\pi i n \tau},$$

derived in Theorem 1.19. Prove that

$$\tau(n) = 8000\{(\sigma_3 \circ \sigma_3) \circ \sigma_3\}(n) - 147(\sigma_5 \circ \sigma_5)(n),$$

where $f \circ g$ denotes the Cauchy product of two sequences,

$$(f \circ g)(n) = \sum_{k=0}^{n} f(k)g(n-k),$$

and $\sigma_{\alpha}(n) = \sum_{d|n} d^{\alpha}$ for $n \geq 1$, with $\sigma_3(0) = \frac{1}{240}$, $\sigma_5(0) = -\frac{1}{504}$. (Hint: Theorem 1.18.)

Proof.

(1) Let $q = e^{2\pi i \tau}$. Write

$$g_2(\tau) = \frac{4\pi^4}{3} \left\{ 1 + 240 \sum_{k=1}^{\infty} \sigma_3(k) q^k \right\} = \frac{4\pi^4}{3} \left\{ 240 \sum_{k=0}^{\infty} \sigma_3(k) q^k \right\},$$

$$g_3(\tau) = \frac{8\pi^6}{27} \left\{ 1 - 504 \sum_{k=1}^{\infty} \sigma_5(k) q^k \right\} = \frac{8\pi^6}{27} \left\{ -504 \sum_{k=0}^{\infty} \sigma_5(k) q^k \right\}$$

(Theorem 1.18).

(2) Similar to the proof of Theorem 1.19,

$$\begin{split} &\Delta(\tau) = g_2(\tau)^3 - 27g_3(\tau)^2 \\ &= \frac{64\pi^{12}}{27} \left\{ \left(240 \sum_{k=0}^\infty \sigma_3(k) q^k \right)^3 - \left(-504 \sum_{k=0}^\infty \sigma_5(k) q^k \right)^2 \right\} \\ &= (2\pi)^{12} \left\{ 8000 \left(\sum_{k=0}^\infty \sigma_3(k) q^k \right)^3 - 147 \left(\sum_{k=0}^\infty \sigma_5(k) q^k \right)^2 \right\} \\ &= (2\pi)^{12} \sum_{n=0}^\infty \left\{ 8000 \{ (\sigma_3 \circ \sigma_3) \circ \sigma_3 \}(n) - 147(\sigma_5 \circ \sigma_5)(n) \} \, q^n \\ &= (2\pi)^{12} \sum_{n=1}^\infty \left\{ 8000 \{ (\sigma_3 \circ \sigma_3) \circ \sigma_3 \}(n) - 147(\sigma_5 \circ \sigma_5)(n) \} \, q^n . \end{split}$$

(Here $8000\{(\sigma_3 \circ \sigma_3) \circ \sigma_3\}(0) - 147(\sigma_5 \circ \sigma_5)(0) = 0.$)

(3) Therefore

$$\tau(n) = 8000\{(\sigma_3 \circ \sigma_3) \circ \sigma_3\}(n) - 147(\sigma_5 \circ \sigma_5)(n)$$

for n > 1.

Exercise 1.14. (Lambert series)

A series of the form $\sum_{n=1}^{\infty} f(n) \frac{x^n}{1-x^n}$ is called a **Lambert series**. Assuming absolute convergence, prove that

$$\sum_{n=1}^{\infty} f(n) \frac{x^n}{1 - x^n} = \sum_{n=1}^{\infty} F(n) x^n,$$

where

$$F(n) = \sum_{d \mid n} f(d).$$

Apply this result to obtain the following formulas, valid for |x| < 1.

(a)
$$\sum_{n=1}^{\infty} \frac{\mu(n)x^n}{1-x^n} = x.$$

(b)
$$\sum_{n=1}^{\infty} \frac{\varphi(n)x^n}{1-x^n} = \frac{x}{(1-x)^2}.$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^{\alpha} x^n}{1 - x^n} = \sum_{n=1}^{\infty} \sigma_{\alpha}(n) x^n.$$

(d)
$$\sum_{n=1}^{\infty} \frac{\lambda(n)x^n}{1-x^n} = \sum_{n=1}^{\infty} x^{n^2}.$$

(e) Use the result in (c) to express $g_2(\tau)$ and $g_3(\tau)$ in terms of Lambert series in $x = e^{2\pi i \tau}$.

Note. In (a), $\mu(n)$ is the Möbius function; In (b), $\varphi(n)$ is Euler's totient; and in (d), $\lambda(n)$ is Liouville's function.

Proof. Similar to the proof of Exercise 1.11.

$$\sum_{n=1}^{\infty} f(n) \frac{x^n}{1 - x^n} = \sum_{n=1}^{\infty} f(n) \sum_{r=1}^{\infty} x^{rn}$$

$$= \sum_{n=1}^{\infty} \sum_{r=1}^{\infty} f(n) x^{rn}$$

$$= \sum_{n=1}^{\infty} \left(\sum_{d|n} f(d) \right) x^n.$$

$$= F(n)$$

Proof of (a). Theorem 2.1 in the textbook: T. M. Apostol, Introduction to Analytic Number Theory shows that

$$F(n) := \sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{if } n > 1. \end{cases}$$

Hence

$$\sum_{n=1}^{\infty}\mu(n)\frac{x^n}{1-x^n}=\sum_{n=1}^{\infty}F(n)x^n=x.$$

Proof of (b). Theorem 2.2 in the textbook: T. M. Apostol, Introduction to Analytic Number Theory shows that $F(n) := \sum_{d|n} \varphi(d) = n$. Hence

$$\sum_{n=1}^{\infty} \varphi(n) \frac{x^n}{1 - x^n} = \sum_{n=1}^{\infty} F(n) x^n = \sum_{n=1}^{\infty} n x^n = \frac{x}{(1 - x)^2}.$$

Proof of (c). Since

$$F(n) := \sum_{d|n} d^{\alpha} = \sigma_{\alpha}(n),$$

we have

$$\sum_{n=1}^{\infty} n^{\alpha} \frac{x^n}{1-x^n} = \sum_{n=1}^{\infty} F(n) x^n = \sum_{n=1}^{\infty} \sigma_{\alpha}(n) x^n.$$

Proof of (d). Theorem 2.19 in the textbook: T. M. Apostol, Introduction to Analytic Number Theory shows that

$$F(n) := \sum_{d|n} \lambda(d) = \begin{cases} 1 & \text{if } n \text{ is a square,} \\ 0 & \text{otherwise.} \end{cases}$$

Hence

$$\sum_{n=1}^{\infty} \lambda(n) \frac{x^n}{1 - x^n} = \sum_{n=1}^{\infty} F(n) x^n = \sum_{n=1}^{\infty} x^{n^2}.$$

Proof of (e).

(1) Let $q = x = e^{2\pi i \tau}$

$$g_2(\tau) = \frac{4\pi^4}{3} \left\{ 1 + 240 \sum_{k=1}^{\infty} \sigma_3(k) q^k \right\}$$
 (Theorem 1.18)
$$= \frac{4\pi^4}{3} \left\{ 1 + 240 \sum_{k=1}^{\infty} \frac{k^3 q^k}{1 - q^k} \right\}$$
 ((c)).

(2) Similarly,

$$g_3(\tau) = \frac{8\pi^6}{27} \left\{ 1 - 504 \sum_{k=1}^{\infty} \sigma_5(k) q^k \right\}$$
 (Theorem 1.18)
$$= \frac{8\pi^6}{27} \left\{ 1 - 504 \sum_{k=1}^{\infty} \frac{k^5 q^k}{1 - q^k} \right\}$$
 ((c)).

Note.

(1)

$$\sum_{n=1}^{\infty} \frac{\Lambda(n)x^n}{1 - x^n} = \sum_{n=1}^{\infty} \log(n)x^n,$$

where $\Lambda(n)$ is von Mangoldt function.

(2) Similar to Exercise 1.15, we have a similar formula for (a)

$$\sum_{n=1}^{\infty} \frac{\mu(n)x^n}{1+x^n} = x - 2x^2$$

by noting that

$$\sum_{n=1}^{\infty} \frac{f(n)x^n}{1+x^n} = \sum_{n=1}^{\infty} \frac{f(n)x^n}{1-x^n} - 2\sum_{n=1}^{\infty} \frac{f(n)x^{2n}}{1-x^{2n}}.$$

Exercise 1.15.

Let

$$G(x) = \sum_{n=1}^{\infty} \frac{n^5 x^n}{1 - x^n},$$

and let

$$F(x) = \sum_{\substack{n=1\\(n \text{ odd})}}^{\infty} \frac{n^5 x^n}{1 + x^n}.$$

- (a) Prove that $F(x) = G(x) 34G(x^2) + 64(x^4)$.
- (b) Prove that

$$\sum_{\substack{n=1\\(n \ odd)}}^{\infty} \frac{n^5}{1 + e^{n\pi}} = \frac{31}{504}.$$

(c) Use Theorem 12.17 in the textbook: T. M. Apostol, Introduction to Analytic Number Theory to prove the more general result

$$\sum_{\substack{n=1\\ (n \text{ odd})}}^{\infty} \frac{n^{4k+1}}{1 + e^{n\pi}} = \frac{2^{4k+1} - 1}{8k+4} B_{4k+2}.$$

Proof of (a).

(1) Consider the general case. Let

$$G(x) = \sum_{n=1}^{\infty} \frac{n^{4k+1}x^n}{1 - x^n},$$

and let

$$F(x) = \sum_{\substack{n=1\\ (n \ odd)}}^{\infty} \frac{n^{4k+1}x^n}{1+x^n}.$$

Show that $F(x) = G(x) - (2^{4k+1} + 2)G(x^2) + 2^{4k+2}G(x^4)$.

(2) The identity

$$\sum_{n=1}^{\infty} \frac{x^n}{1+x^n} = \sum_{n=1}^{\infty} \frac{x^n}{1-x^n} - 2\sum_{n=1}^{\infty} \frac{x^{2n}}{1-x^{2n}}$$

is always true. Hence $H(x):=\sum_{n=1}^{\infty}\frac{n^{4k+1}x^n}{1+x^n}=G(x)-2G(x^2)$.

(3) Note that

$$H(x) = \sum_{\substack{n=1\\(n \text{ odd})}}^{\infty} \frac{n^{4k+1}x^n}{1+x^n} + \sum_{\substack{n=1\\(n \text{ even})}}^{\infty} \frac{n^{4k+1}x^n}{1+x^n}$$
$$= F(x) + \sum_{n=1}^{\infty} \frac{(2n)^{4k+1}x^{2n}}{1+x^{2n}}$$
$$= F(x) + 2^{4k+1} \sum_{n=1}^{\infty} \frac{n^{4k+1}x^{2n}}{1+x^{2n}}$$
$$= F(x) + 2^{4k+1}H(x^2).$$

Hence

$$F(x) = H(x) - 2^{4k+1}H(x^2)$$

$$= [G(x) - 2G(x^2)] - 2^{4k+1}[G(x^2) - 2G(x^4)]$$

$$= G(x) - (2^{4k+1} + 2)G(x^2) + 2^{4k+2}G(x^4).$$

Proof of (b). Take k = 1 in part (c), we have

$$\sum_{\substack{n=1\\ (n \text{ odd})}}^{\infty} \frac{n^5}{1 + e^{n\pi}} = \frac{31}{12} \cdot \frac{1}{42} = \frac{31}{504}.$$

Proof of (c).

(1) Let $q = e^{2\pi i \tau}$. So

$$G_{4k+2}(\tau) = 2\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!} \sum_{n=1}^{\infty} \sigma_{4k+1}(n) q^n \qquad \text{(Exercise 1.11)}$$
$$= 2\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!} G(q) \qquad \text{(Exercise 1.14(c))}$$

Hence

$$\begin{split} G_{4k+2}(\tau) &- (2^{4k+1} + 2)G_{4k+2}(2\tau) + 2^{4k+2}G_{4k+2}(4\tau) \\ &= \left[2\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!}G(q) \right] \\ &- (2^{4k+1} + 2) \left[2\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!}G(q^2) \right] \\ &+ 2^{4k+2} \left[2\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!}G(q^4) \right] \\ &= (1 - (2^{4k+1} + 2) + 2^{4k+2}) \cdot 2\zeta(4k+2) \\ &+ \frac{2(2\pi i)^{4k+2}}{(4k+1)!}[G(q) - (2^{4k+1} + 2)G(q^2) + 2^{4k+2}G(q^4)] \\ &= (2^{4k+2} - 2)\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!}F(q). \end{split}$$

(2) By taking $\tau = \frac{i}{2}$, we have

$$F(q) = F(e^{-\pi}) = \sum_{\substack{n=1\\(n \text{ odd})}}^{\infty} \frac{n^{4k+1}}{1 + e^{n\pi}}$$

and

$$\begin{split} G_{4k+2}(\tau) &- (2^{4k+1}+2)G_{4k+2}(2\tau) + 2^{4k+2}G_{4k+2}(4\tau) \\ &= G_{4k+2}\left(\frac{i}{2}\right) - (2^{4k+1}+2)G_{4k+2}(i) + 2^{4k+2}G_{4k+2}(2i) \\ &= (-4)^{2k+1}G_{4k+2}(2i) - (2^{4k+1}+2)\cdot 0 + 2^{4k+2}G_{4k+2}(2i) \\ &= 0. \end{split}$$

(Exercise 1.12). Hence

$$0 = (2^{4k+2} - 2)\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!} \sum_{\substack{n=1\\(n \text{ odd})}}^{\infty} \frac{n^{4k+1}}{1 + e^{n\pi}}.$$

(3) Theorem 12.17 in the textbook: T. M. Apostol, Introduction to Analytic Number Theory shows that

$$\zeta(4k+2) = (-1)^{2k+1+1} \frac{(2\pi)^{4k+2} B_{4k+2}}{2(4k+2)!} = \frac{(2\pi)^{4k+2} B_{4k+2}}{2(4k+2)!}.$$

Hence

$$\sum_{\substack{n=1\\ (n \text{ odd})}}^{\infty} \frac{n^{4k+1}}{1 + e^{n\pi}} = \frac{2^{4k+1} - 1}{8k+4} B_{4k+2}.$$

Chapter 2: The modular group and modular functions

In these exercise, Γ denotes the modular group, S and T denote its generators $S(\tau) = -\frac{1}{\tau}$, $T(\tau) = \tau + 1$, and I denotes the identity element.

Exercise 2.2.

Find the smallest integer n > 0 such that $(ST)^n = I$.

Proof.

(1) n = 3.

(2) Write

$$ST = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}.$$

So

$$(ST)^2 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix},$$

$$(ST)^3 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = I \in \Gamma.$$

Here we identify each matrix with its negative, since both of them represent the same transformation.

Congruence subgroups

The modular group Γ has many subgroups of special interest in number theory. The following exercises deal with a class of subgroups call **congruence** subgroups. Let

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ and } B = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

be two unimodular matrices. (In this discussion we do not identify a matrix with its negative.) If n is a positive integer write

$$A \equiv B \pmod{n}$$
 whenever $a \equiv \alpha$, $b \equiv \beta$, $c \equiv \gamma$ and $d \equiv \delta \pmod{n}$.

This defines an equivalence relation with the property that

$$A_1 \equiv A_2 \pmod{n}$$
 and $B_1 \equiv B_2 \pmod{n}$

implies

$$A_1B_1 \equiv A_2B_2 \pmod{n} \ and \ A_1^{-1} \equiv A_2^{-1} \pmod{n}.$$

Hence

$$A \equiv B \pmod{n}$$
 if, and only if, $AB^{-1} \equiv I \pmod{n}$,

where I is the identity matrix. We denote by $\Gamma^{(n)}$ the set of all matrices in Γ congruent modulo n to the identity. This is called the **congruence subgroup** of level n.

Prove each of the following statements:

Exercise 2.11.

 $\Gamma^{(n)}$ is a subgroup of Γ . Moreover, if $B \in \Gamma^{(n)}$ then $A^{-1}BA \in \Gamma^{(n)}$ for every A in Γ . That is, $\Gamma^{(n)}$ is a normal subgroup of Γ .

Proof.

- (1) Show that $\Gamma^{(n)}$ is a subgroup of Γ . $\Gamma^{(n)} \neq \emptyset$ since $I \in \Gamma^{(n)}$. Suppose $A, B \in \Gamma^{(n)}$, that is, $A \equiv I \pmod{n}$ and $B \equiv I \pmod{n}$. Hence $AB^{-1} \equiv II^{-1} \equiv I \pmod{n}$ or $AB^{-1} \in \Gamma^{(n)}$.
- (2) Show that $\Gamma^{(n)}$ is normal in Γ . Note that

$$A^{-1}BA \equiv A^{-1}IA \equiv A^{-1}A \equiv I \pmod{n}$$

for every $B \in \Gamma^{(n)}$ and A in Γ . Hence $A^{-1}BA \in \Gamma^{(n)}$.

Exercise 2.12.

The quotient group $\Gamma/\Gamma^{(n)}$ is finite. That is, there exist a finite number of elements of Γ , say A_1, \ldots, A_k , such that every B in Γ is representable in the form

$$B = A_i B^{(n)}$$
 where $1 \le i \le k$ and $B^{(n)} \in \Gamma^{(n)}$.

The smallest such k is called the index of $\Gamma^{(n)}$ in Γ .

Proof.

(1) Consider the exact sequence

$$1 \to \Gamma^{(n)} \to SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}/n\mathbb{Z}) \to 1.$$

The surjectivity of the residue class map is proved in Exercise 2.14.

(2) Hence $\Gamma/\Gamma^{(n)} \cong SL_2(\mathbb{Z}/n\mathbb{Z})$ is a finite group.

Exercise 2.13.

The index of $\Gamma^{(n)}$ in Γ is the number of equivalence classes of matrices modulo n.

Proof. The index is the number of all cosets of $\Gamma/\Gamma^{(n)} = |SL_2(\mathbb{Z}/n\mathbb{Z})|$ (by Exercise 2.12). \square

The following exercises determine an explicit formula for the index.

Exercise 2.14.

Given integers a, b, c, d with $ad - bc \equiv 1 \pmod{n}$, there exist integers $\alpha, \beta, \gamma, \delta$ such that $\alpha \equiv a, \beta \equiv b, \gamma \equiv c$ and $\delta \equiv d \pmod{n}$ with $\alpha\delta - \beta\gamma = 1$.

It is equivalent to show that the residue class map

$$SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}/n\mathbb{Z})$$

is surjective.

Proof.

(1) Might assume $a \neq 0$. Suppose a = 0, we can lift

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} b & -a \\ d & -c \end{pmatrix}$$

from $SL_2(\mathbb{Z}/n\mathbb{Z})$ to $SL_2(\mathbb{Z})$ (where $b \neq 0$) by the following proof, say

$$\begin{pmatrix} \beta & -\alpha \\ \delta & -\gamma \end{pmatrix} \in SL_2(\mathbb{Z}).$$

Thus

$$\begin{pmatrix} \beta & -\alpha \\ \delta & -\gamma \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

is our desired.

(2) Since $ad - bc \equiv 1 \pmod{n}$, there is an integer $s \in \mathbb{Z}$ such that

$$ad - bc + sn = 1.$$

Note that $a \neq 0$ and gcd(a, b, n) = 1. Take

$$t = \prod_{\substack{p \mid a \\ p \nmid b}} p$$

where p is a prime factor of a. (We take t = 1 if $a = \pm 1$.)

(3) Hence (a, b + tn) = 1 by the construction of t and $\gcd(a, b, n) = 1$. So 1 is a linear combination of a and b + tn. In particular, there exist $u, v \in \mathbb{Z}$ such that

$$ua - v(b + tn) = s + tc.$$

Define

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} a & b+tn \\ c+vn & d+un \end{pmatrix}.$$

(4) Therefore $\alpha \equiv a, \, \beta \equiv b, \, \gamma \equiv c$ and $\delta \equiv d \pmod n$ and

$$\det \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \det \begin{pmatrix} a & b+tn \\ c+vn & d+un \end{pmatrix}$$

$$= a(d+un) - (b+tn)(c+vn)$$

$$= \underbrace{(ad-bc+sn)}_{=1} + \underbrace{(au-(b+tn)v-s-ct)}_{=0} n$$

Exercise 2.16.

Let f(n) denote the number of equivalence classes of matrices modulo n. The f is a multiplicative function.

Proof.

- (1) Exercise 2.20.
- (2) Exercise 2.15.

Exercise 2.17.

If a, b, n are integers with $n \ge 1$ and gcd(a, b, n) = 1 the congruence

$$ax - by \equiv 1 \pmod{n}$$

has exactly n solutions, distinct congruent modulo n. (A solution is an ordered pair (x, y) of integers.)

Proof.

(1) No idea.

Exercise 2.18.

For each prime p the number of solutions, distinct modulo p^r , of all possible congruences of the form

$$ax - by \equiv 1 \pmod{p^r}$$
, where $gcd(a, b, p) = 1$

is equal to $f(p^r)$.

Proof. Note that $gcd(a, b, p^r) = gcd(a, b, p) = 1$. So the number of is exactly the same as $|SL_2(\mathbb{Z}/p^r\mathbb{Z})| = f(p^r)$. \square

Exercise 2.19.

If p is the number of pairs of integers (a,b), incongruent modulo p^r , which satisfy the condition gcd(a,b,p) = 1 is $p^{2r-2}(p^2-1)$.

Proof. The number is

$$\sum_{d|p^r} \mu(d) \left(\frac{p^r}{d}\right)^2 = p^{2r} \sum_{d|p^r} \frac{\mu(d)}{d^2} = p^{2r} \left(1 - \frac{1}{p^2}\right) = p^{2r-2} (p^2 - 1)$$

by the definition of the Möbius function μ . \square

Exercise 2.20.

 $f(n) = n^3 \sum_{d|n} \frac{\mu(d)}{d^2}$, where μ is the Möbius function.

Proof.

(1)

$$f(n) = |SL_2(\mathbb{Z}/n\mathbb{Z})|$$

$$= n|\{(a,b) \pmod{n} : \gcd(a,b,n) = 1\}|$$
(Exercise 2.17)
$$= n \sum_{d|n} \mu(d) \left(\frac{n}{d}\right)^2$$
(Inclusion-exclusion principle)
$$= n^3 \sum_{d|n} \frac{\mu(d)}{d^2}.$$

(2) Since $n\mapsto \frac{1}{n^2}$ is multiplicative, Theorem 2.18 in the textbook: *T. M. Apostol, Introduction to Analytic Number Theory* shows that

$$\sum_{d|n} \frac{\mu(d)}{d^2} = \prod_{p|n} \left(1 - \frac{1}{p^2}\right).$$

Hence we can also write

$$f(n) = n^3 \sum_{d|n} \frac{\mu(d)}{d^2} = n^3 \prod_{p|n} \left(1 - \frac{1}{p^2}\right).$$

(3) In particular, f is a multiplicative function (Exercise 2.16).

 $\it Note.$ See "Project Euler 193: Squarefree Numbers" for the same trick. The answer should be

$$\sum_{d=1}^{\sqrt{n}} \mu(d) \left\lfloor \frac{n}{d^2} \right\rfloor.$$