Danmarks Tekninske Universitet

FUNCTION SPACES AND MATHEMATICAL ANALYSIS Course number: 01325

Homework 1

Student: Mads Esben Hansen, s174434

Exercise 2.2

Let us first consider the left hand side of the inequality

$$A\sum_{k=1}^{N}|c_k|^2$$

Let us assume

$$A\sum_{k=1}^{N} |c_k|^2 = 0$$

We have that $|\cdot|: \mathbb{C} \to \mathbb{R}^+$ (including 0). Since A > 0 it follows

$$A\sum_{k=1}^{N} |c_k|^2 = 0 \quad \Rightarrow \quad c_k = 0, \quad \forall k$$

We further know that

$$0 \le A \sum_{k=1}^{N} |c_k|^2 \le \left\| \sum_{k=1}^{N} c_k v_k \right\|^2$$

It then follows logically

$$\left\| \sum_{k=1}^{N} c_k v_k \right\|^2 = 0 \quad \Rightarrow$$

$$A \sum_{k=1}^{N} |c_k|^2 = 0 \quad \Rightarrow$$

$$c_k = 0, \quad \forall k$$

Now via definition 1.2.4 we conclude $\{v_k\}_{k=1}^N$ are linearly independent.

Problem 1

i)

We assume it is known that $C[-\pi, \pi]$ is a vector space when equipped with regular addition and multiplication (shown in exercise 1.3).

V is clearly a non-empty subset of the vector space of continuous function. To show that V is in fact a subspace, we will use lemma 1.2.7.

Let $f, g \in V$ and let $\alpha, \beta \in C$, then

$$\alpha f + \beta g \in V$$
, $\forall f, g \in V$, $\alpha, \beta \in C$

This follows directly since f and g are both chosen from V and we know that V consists of *all* linear combination. We therefore conclude that V *is* a subspace of $C[-\pi, \pi]$.

ii)

We notice that the hint actually tells us that x^2 can be approximated by linear combinations of elements we know are in V, which mean that this will again be in V (simply by definition). However, since x^2 is not in V we can see that we can

approximate (with arbitrarily good precision) an element outside of V only using elements in V. Therefore V cannot be closed. Mathematically we write this as:

$$\left| x^2 - \left(\frac{\pi^2}{3} + 4 \sum_{n=1}^N \frac{(-1)^n}{n^2} \cos(nx) \right) \right| \le 4 \sum_{N+1}^\infty \frac{1}{n^2}$$

So if we choose $f(x) = \left(\frac{\pi^2}{3} + 4\sum_{n=1}^N \frac{(-1)^n}{n^2}\cos(nx)\right) \in V, x \in [-\pi, \pi]$, then

$$\lim_{N \to \infty} \left| x^2 - f(x) \right| = 0, \ x \in [-\pi, \pi] \quad \Rightarrow$$

$$\lim_{N \to \infty} f = x^2 \notin V, \ x \in [-\pi, \pi]$$

So V does not contain its entire boundary, and via definition 1.4.1 it is not closed.