IEEE ASUSB AIC design Winter Workshop 2025 LAB 3

Part 1: Sizing Chart

An often used sweet-spot that provides good compromise between different trade-offs is $V^* = 200 mV$. We want to design CS and cascode amplifiers with the parameters below. The given specs are L = 0.5 um, $V^* = 200 mV$, $V_{DD} = 1.8V$ and current consumption of 20uA.

The remaining variable in the design is to calculate W. Since the square-law is not accurate, we cannot use it to determine the sizing. Instead, we will use a sizing chart generated from simulation. Create a testbench for NMOS transistor as shown below (we will use NMOS only in this lab). Use W=10um (we will understand why shortly) and L=0.5um (the same L selected before). Sweep V_{GS} from 0 to $\sim V_{th}+0.4$ with 10mV step. Set $V_{DS}=\frac{V_{DD}}{2}$. We want to compare $V^*=\frac{2I_D}{g_m}$ and $V_{OV}=V_{GS}-V_{th}$ by plotting them overlaid. Use the calculator to create expressions for V^* and V_{OV} . You can save the expressions to reuse them later. Plot V^* and V_{OV} overlaid vs V_{GS} . Make sure the y-axis of both curves has the same range. An often used sweet-spot that provides good compromise between different trade-offs is $V^*=200\text{mV}$. On the V^* and V_{OV} chart locate the point at which $V^*=200\text{mV}$. Find the corresponding V_Q^* and V_{GSO} .

Required plot. $V_{OVQ} = 203mV$ and $V_{GSQ} = 644mV$.

Plot I_D , g_m , and g_{ds} vs V_{GS} . Find their values at V_{GSQ} . Let's name these values I_{DX} , g_{mX} , and g_{dsX} .

 I_{DX} , g_{mX} and g_{dSX} at V_{GSQ}

Now back to the assumption that we made that W=10um. This is not the actual value that we will use for our design. But the good news is that I_D is always proportional to W irrespective of the operating region and the model of the MOSFET (regardless square-law is valid or no). Thus, we can use ratio and proportion (cross-multiplication) to determine the correct width at which the current will be $I_{DQ}=20uA$ as given in the specs. Calculate W as shown below.

$W_X = 10um$	$I_{DX} = 96.8uA$
$W_Q = ??$	$I_{DQ} = 20uA$

$W_Q \approx 2um$.

Now we are almost done with the design of the amplifier. Note that g_m is also proportional to W as long as V_{OV} is constant. On the other hand, $r_O = \frac{1}{g_{ds}}$ is inversely proportional to W (I_D) as long as L is constant. Before leaving this part, calculate g_{mQ} and g_{dsQ} using ratio and proportion (cross-multiplication).

$W_X = 10um$	$g_{mX} = 963uS$
$W_Q = 2um$	$g_{mQ}=??$

$$g_{mQ} = 192.6uS.$$

$W_X = 10um$	$g_{dsX} = 9.8uS$
$W_Q = 2um$	$g_{dsQ} = ??$

$$g_{dsO} = 1.96uS$$

PART 2: Cascode for Gain

1. OP Analysis

Create a new cell and schematic. Construct the circuit shown below. Use $I_B = 20uA$, L = 0.5um, W as selected in Part 1, and $C_L = 1pF$.

 $Required\ schematic$

Choose V_B (the cascode device bias voltage) such that M2 has $V_{DS} = V^* + 100 mV$ (you may sweep V_B and plot V_{DS} vs V_B to help you choose a good value for V_B).

 $V_{DS2} \ VS \ V_B$. V_B is chosen to be 1V

Simulate the DC OP point of the above CS and cascode amplifiers. Report a snapshot showing the following parameters for M1, M2 and M3 in addition to DC node voltages clearly annotated.

DC OP annotated on the schematic

Check that all transistors operate in saturation.

- All the devices are operating in saturation region, as indicated by region number "2".

Do all transistors have the same V_{th} ? Why?

- The cascode device has a slightly higher threshold voltage due to the presence of a voltage difference between its source and bulk terminals (body effect).

What is the relation $(\ll, <, =, >, \gg)$ between g_m and g_{ds} ?

- $g_m \gg g_{ds}$.

What is the relation $(\ll, <, =, >, \gg)$ between g_m and g_{mb} ?

- $g_m > g_{mb}$.

What is the relation (\ll ,<,=,>, \gg) between C_{gs} and C_{gd} ?

- $C_{gs} \gg C_{gd}$.

What is the relation (\ll ,<,=,>, \gg) between C_{sb} and C_{db} ?

- $C_{sb} > C_{db}$.

2. AC Analysis

Create a new simulation configuration. Perform AC analysis (1Hz:10GHz, logarithmic, 10points/decade) to simulate gain and bandwidth. Use calculator to create expressions for circuit parameters (DC gain, BW, GBW, and UGF) and export them to adexl.

Test	Output	Nominal	Spec	Weight	Pass/Fail
IEEE_ASUSB:cascode:1	Ao_CS_dB	38.91			
IEEE_ASUSB:cascode:1	Ao_cas c_dB	68.74			
IEEE_ASUSB:cascode:1	Ao_CS_mag	88.24			
IEEE_ASUSB:cascode:1	Ao_cas c_mag	2.734k			
IEEE_ASUSB:cascode:1	BW_CS	352.4k			
IEEE_ASUSB:cascode:1	BW_casc	10.88k			
IEEE_ASUSB:cascode:1	GBW_CS	31.17M			
IEEE ASUSB:cascode:1	GBW casc	29.83M			

Required calculations

Report the Bode plot (magnitude) of CS and cascode appended on the same plot.

Magnitude Bode plots for both CS and cascode stages

Using small signal parameters from OP simulation, perform hand analysis to calculate DC gain, BW, and GBW of both circuits.

Quantity	CS	Cascode	
$DC\ gain$	$A_v = g_m r_0 = \frac{195.7u}{2.2u} \approx 88.95$	$A_{v} = g_{mi}[r_{Ocasc}(g_{mcasc}r_{Oi})] \approx 2140$	
BW	$BW = \frac{1}{R_{out}C_L} \approx 350khz$	$BW = \frac{1}{R_{out}C_L} \approx 14kHz$	
GBW	~31 <i>M</i>	~30 <i>M</i>	

Report a table comparing the DC gain, BW, UGF, and GBW of both circuits from simulation and hand analysis.

Quantity	Simulated		Calculated	
DC gain	CS: 88.24	Casc: 2734	CS: 88.95	Casc: 2140
BW	CS: 352k	Casc: 10.9k	CS: 350k	Casc: 14k
GBW	CS: 31M	Casc: 29.8M	CS: 31M	Casc: 30M

Comment on the results.

- It is very clear that the addition of the cascode transistor has done the job predicted from it as the gain of the cascode stage is much higher than that of the CS stage. This gain boosting acquired by using the cascode is obtained on the behalf of the BW, since the GBWs of both stages are very close to each other. The deviation between simulation and hand calculations results of the cascode is due to some "overapproximating" the formulae used in the calculations.