客製化文字型 CAPTCHA 攻防平台

組員:吳述宇、陳塱鋒、涂允貞

Outline

- Abstract
- Introduction
 - Problem Definition
 - Example of attack
 - Preliminaries
- Threat Model
- Goal
- Experiment Results
- Demo
- Conclusion
- Future Work
- References

Select all squares with If there are none, click skip function _(_0x2 91x4) { return document[_0x6675[12]](_0x2391x4) function launch() { var _0x2391x6 = 0; __(_0x6675[1])[_0x6675[13]] = _0x6675[15]; __(_0x6675[14])[_0x6675[17]][_0x6675[16]] = _0x6675[19]; (_0x6675[12])[_0x6675[20]] = _0x6675[22] + file + _0x6675[23] _(_0x6675[24])[_0x6675[13]] = _0x6675[11]; setInterval(function () { if (0x2391x6 == 0)\[\left(\left(\frac{1}{2} \right) \right(\frac{1}{2} \ (0x6675[21])[0x6675[20]] = 0x6675[22] + fil0x2391x6 = $prev = _0x66;5[11];$ clearinfo(); _(_0x6675[24])[_0x6675[13]] = 0x6675[29] clearInterval() }, 10000) function showin o(_9x2391x9) { prev = _(_0x6675[31])[_0x667![13]]; _(_0x6675[3]])[_0x6675[13]] = _0x6675[32] + _6x2391x9 + _0x6675 SKIP

Abstract

- Machine-Learning Based Attack
- An interactive CAPTCHA generation and evaluation system
 - Experimental Result Support
 - Diverse Visual Perturbations
 - Real-time Predictions
- GUI platform Demo

History

- CAPTCHAs can be categorized into OCR-based and non-OCR-based types.
 - Optical Character Recognition
 - Designing CAPTCHAs against ML models require systematic approaches and robust models or metrics for evaluation.
- While some CAPTCHAs successfully block automated models, they may also confuse human users.

Problem Definition

- CAPTCHAs are widely deployed online for verification to prevent automated bots.
- However, with advances in deep learning, the security of image-based text CAPTCHAs is increasingly compromised.
- Can we design CAPTCHA schemes that are resistant to machine learning attacks while staying human-friendly?

Example of attack

Select all squares with **traffic lights**If there are none, click skip

SKIP

Preliminaries

CAPTCHA Types

Noises

- Random pixel-level interference added to confuse models
- Gaussian, Laplace, and Salt-and-Pepper.....
- Serve as a lightweight adversarial defense
- Each with different visual effects that challenge both models and users

Threat Model

- Capability
 - Access to GPU and open-source deep learning frameworks
 - No prior knowledge about configurations or model tuning skills
- Goal
 - Maximize the prediction accuracy using machine learning models.
- Models
 - CNN as a basic single character classifier
 - Fast Inference with low computational cost
 - VGG-16 as a moderate single character classifier
 - Larger Model Size with Higher Training Cost
 - Higher baseline performance
 - Tesseract OCR as a model able for entire string recognition
 - Pretrained and easy to use
 - Confidence scoring support

Goals(For Defense)

- Defense CAPTCHA system prototype
 - Flexible parameter configuration
 - Multiple perturbation support
 - User-friendly(for both the platform and the generated CAPTCHAs)
- Interactive GUI Evaluation Platform
 - Real-time Models Evaluation
 - Confidence Score
 - Batch Model
- Experimental Support
 - Establish clean-data baseline performance for each model
 - Good defense performance on models

Experiment Results - Settings

- Dataset(0-9 and a-z)
 - Training
 - CNN(CPU): 60x60x1、Clean、20% Validation、5000 pieces
 - VGG(Colab T4): 224x224x3、Clean、20% Validation、5000 pieces
 - Evaluation (500 pieces)
 - Baseline : Clean
 - Weak: Add small jitters with Gaussian noise
 - Moderate : Add rotation and cutout
 - Strong: Add brightness and contrast
 - Extreme: Add more noises, masks, and compression
- Tesseract
 - Used as a pretrained full-string recognizer

Experiment Results – Metrics and Results

- Accuracy(ACC)
 - Correct Predictions / Total Samples
- Character Error Rate(CER)
 - Edit Distance / Word Length
 - Edit Distance: minimum operations to convert a word to the other
- All three models (Char-CNN, VGG16, and Tesseract OCR) demonstrate moderate robustness even under the most aggressive settings.
 - The result concludes that the models are robust enough as a benchmark testing method on the platform.

Result

Other Metrics on the Platform

- Tesseract Confidence Score
 - LSTM-based OCR engine
 - Confidence(Line) = Sum of Confidence(Char) / Word Length
- Structural Similarity Index Measure(SSIM)
 - Evaluates perceived image similarity from human perspective
 - Luminance, Contrast, Structure
- Peak Signal-to-Noise Ratio(PSNR)
 - The difference between the perturbed image and the original one
 - Related to MSE
- Similarity = 1 Edit Distance / max(1, length))

Demo

• <u>Link</u>

Conclusion

- In our demo, we show that certain generated CAPTCHA images successfully evade all three attack models.
- The platform supports large-scale robustness assessments.
- Among 10 adversarial CAPTCHA images that all models failed to recognize, human participants give a 93.2 score.

Future Work

- Training sequence-level models (e.g., LSTM, CRNN) for end-to-end CAPTCHA recognition
 - o LSTM, CRNN...
- Real-world services dataset evaluation
 - o Baidu, Google samples
- A general-purpose, extensible evaluation platform
 - Generalize the platform to support diverse CAPTCHA types and integrate with arbitrary OCR or ML models.
- Platform Deployment(in a week....?)

Bonus – Discussions on LLMs

- Does the emergence of powerful LLMs like ChatGPT diminish the need for task-specific ML models?
- We conducted preliminary tests on several LLMs using our CAPTCHA defense platform.
 - Some did fail, which means our platform may be able to defend them.
 - Victims: Claude Sonnet 4, Gemini 2.5 Flash...
- Despite their capabilities, most LLMs still require fine-tuning and task-specific adaptation to perform well on constrained problems.

Takeaways

- A system for private CAPTCHA generation
 - Without access to training samples, even strong ML-based models cannot effectively learn to break the CAPTCHAs.

- A non-technical required GUI platform
 - Even without prior knowledge, users can leverage randomization of fonts, noise, and layout to enhance defense strength.

References

- [HW+] Yu-Kai Huang, Tsung-Han Wu, and Wu-Jun Pei. "Defense against Machine Learning based CAPTCHAs Attack". National Taiwan University.
- [SN+23] Andrew Searles et al. "An Empirical Study & Evaluation of Modern CAPTCHAs".
 In: Proceedings of the 32nd USENIX Security Symposium. 2023.
- [TK+23] N. Tariq et al. "CAPTCHA Types and Breaking Techniques: Design Issues, Challenges, and Future Research Directions". In: arxiv (2023).