Reduction of hybrid Hamiltonian systems with non-equivariant momentum maps

Leonardo Colombo, María Emma Eyrea Irazú, María Eugenia García, Asier López-Gordón, and Marcela Zuccalli

7th International Conference on Geometric Science of Information

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

Hybrid systems

- A hybrid dynamical system is one which combines continuous and discrete transitions.
- The dynamics of such systems are continuous "most of the time", except at some instants at which abrupt changes occur.
- This framework may be used to model mechanical systems with impacts.

Hybrid systems

Definition

A **hybrid system** is a 4-tuple $\mathcal{H} = (D, X, S, \Delta)$, formed by

- 1 a manifold D,
- 2 a vector field $X \in \mathfrak{X}(D)$,
- 3 a submanifold $S \subset D$ of codimension 1 or greater,
- **4** an embedding $\Delta: S \to D$.

The dynamics generated by \mathscr{H} are the curves $c: I \subseteq \mathbb{R} \to D$ such that

$$c(t) = X(c(t)),$$
 if $c(t) \notin S$,
 $c^+(t) = \Delta(c^-(t)),$ if $c(t) \in S$,

where

$$c^{\pm}(t) = \lim_{\tau \to t^{\pm}} c(\tau).$$

Definition

A simple hybrid system $\mathcal{H} = (D, X, S, \Delta)$ is said to be a **simple hybrid Hamiltonian system** if $X = X_H$ is the Hamiltonian vector field associated with a Hamiltonian system (D, ω, H) .

Lie group actions

- Consider a finite-dimensional Lie group G.
- Let \mathfrak{g} be the Lie algebra of G, with dual \mathfrak{g}^* .
- Given a (left) Lie group action $\Phi: G \times D \to D$, for each $\xi \in \mathfrak{g}$, its associated **infinitesimal generator** on D is the vector field $\xi_D \in \mathfrak{X}(D)$ given by

$$\xi_D(x) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \Phi(\exp(t\xi), x), \forall x \in D.$$

Lie group actions

• The adjoint action of G on \mathfrak{g} is given by

$$\operatorname{Ad}_{g} \xi = \frac{d}{dt} \bigg|_{t=0} g \exp(t\xi) g^{-1}, \quad \forall g \in G, \quad \forall \xi \in \mathfrak{g}.$$

• The co-adjoint action $\operatorname{Ad}_{g^{-1}}^*\mu$ of $g\in G$ on $\mu\in\mathfrak{g}^*$ is determined by

$$\langle \operatorname{Ad}_{g^{-1}}^* \mu, \xi \rangle = \langle \mu, \operatorname{Ad}_{g^{-1}} \xi \rangle \,, \quad \forall \, \xi \in \mathfrak{g} \,.$$

• A (left) Lie group action $\Phi: G \times D \to D$ on a symplectic manifold (D, ω) is called symplectic if

$$\Phi_g^*\omega = \omega, \quad \forall g \in G.$$

• If ϕ is a symplectic action on (D, ω) , a **momentum map** is a map $J: D \to \mathfrak{g}^*$ satisfying

$$\omega(\xi_D,\cdot)=\mathrm{d}\big(\langle J,\xi\rangle\big)$$
 , $\forall\,\xi\in\mathfrak{g}$.

Definition

Let $\mathcal{H} = (D, X, S, \Delta)$ be a simple hybrid system. A Lie group action $\Phi : G \times D \to D$ of G on D, is called a **hybrid action** if

- $\bullet \hspace{-0.05cm} \bullet \hspace{-0.05cm} \mid_{G \times S}$ is a Lie group action of G on S,
- 2 the impact map is equivariant with respect to this action, namely,

$$\Delta \circ \Phi_g|_{\varsigma} = \Phi_g \circ \Delta, \quad \forall g \in G.$$

Definition

Suppose that $\mathcal{H}=(D,X_H,S,\Delta)$ is a hybrid Hamiltonian system with associated Hamiltonian system (D,ω,H) , and assume that the action Φ is hybrid and symplectic. A momentum map J is called a **generalized hybrid momentum map** for \mathcal{H} if, for each regular value μ_- of J, and each connected component C of S,

$$\Delta\left(f|_{C}^{-1}(\mu_{-})\right)\subset f^{-1}(\mu_{+}),$$

for some regular value μ_+ .

The tuple $(D, X_H, S, \Delta, \omega, \Phi, J)$ will be called a **hybrid Hamiltonian** G-space. We will call $\mu \in \mathfrak{g}^*$ a **hybrid regular value** if it is a regular value of both J and $J|_S$.

- Let $(D, X_H, S, \Delta, \omega, \varphi, J)$ be a hybrid Hamiltonian *G*-space.
- The **co-adjoint cocycle** associated with J is the map $\sigma: G \to \mathfrak{g}^*$ determined by

$$\left\langle \sigma(g),\xi\right\rangle =J_{\xi}(\Phi_g(x))-\mathsf{Ad}_{g^{-1}}^*(J_{\xi}(x))\,,\quad\forall\,\xi\in\mathfrak{g}\,,\quad\forall\,x\in D\,.$$

• The **affine action** of G on \mathfrak{g}^* is given by

$$\Psi: (G, \mathfrak{g}^*) \ni (g, \mu) \mapsto \operatorname{Ad}_{g^{-1}}^* \mu + \sigma(g) \in \mathfrak{g}^*.$$

 By construction, the momentum map is equivalent w.r.t. this action, i.e.,

$$\Psi_g \circ J = J \circ \Phi_g$$
, $\forall g \in G$.

• Let \tilde{G}_{μ} denote the **isotropy subgroup** of $\mu \in \mathfrak{g}^*$ under the action Ψ , given by

$$\tilde{G}_{\mu} = \{g \in G : \Psi(g, \mu) = \operatorname{Ad}_{g^{-1}}^* \mu + \sigma(g) = \mu\}.$$

Proposition

Let $(D, X_H, S, \Delta, \omega, \Phi, J)$ be a hybrid Hamiltonian G-space. Assume that G is connected. If Δ is equivariant with respect to Φ , and μ_- , μ_+ are regular values of J such that

$$\Delta\left(J|_{S}^{-1}(\mu_{-})\right)\subset J^{-1}(\mu_{+}),$$

then the isotropy subgroups at μ_- and at μ_+ under the action Ψ coincide, i.e., $\tilde{G}_{\mu_-} = \tilde{G}_{\mu_+}$.

Theorem

Let $(D, X_H, S, \Delta, \omega, \Phi, J)$ be a hybrid Hamiltonian G-space. Assume that G is connected, and consider a discrete sequence $\Lambda = \{\mu_i\}$ of regular values of J such that $\Delta \left(J|_S^{-1}(\mu_i)\right) \subset J^{-1}(\mu_{i+1})$. Let $\tilde{G}_{\mu_i} = \tilde{G}_{\mu_0}$ be the isotropy subgroup in μ_i (for any μ_i in the sequence) under the affine action. Assume that Φ and $\Phi|_{\tilde{G}_{\mu} \times J^{-1}(\mu)}$ are free and proper actions. Then, for any $\mu_i \in \Lambda$, we have the reduced hybrid system

$$(D_{\mu_i},X_{H_{\mu_i}},S_{\mu_i},\Delta_{\mu_i})\,,\quad D_{\mu_i}:=J^{-1}(\mu_i)/\tilde{G}_{\mu_i}\,.$$

The reduction scheme is summarized in the following commutative diagram:

$$\cdots \longrightarrow \int^{-1}(\mu_{i}) \longleftarrow \int|_{S}^{-1}(\mu_{i}) \xrightarrow{\Delta|_{J^{-1}(\mu_{i})}} \int^{-1}(\mu_{i+1}) \longleftarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow \frac{J^{-1}(\mu_{i})}{\tilde{G}_{\mu_{0}}} \longleftarrow S_{\mu_{i}} \xrightarrow{\Delta_{\mu_{i}}} \frac{J^{-1}(\mu_{i+1})}{\tilde{G}_{\mu_{0}}} \longleftarrow \cdots$$

- Let $Q = \mathbb{R}^2$, and consider $T^*Q \simeq \mathbb{R}^4$ endowed with the canonical symplectic form $\omega_Q = \mathrm{d}q^i \wedge \mathrm{d}p_i$, where (q^i, p_i) are bundle coordinates induced by the canonical coordinates (q^i) of Q.
- Consider the Lie group action Φ : $\mathbb{R}^2 \times T^*Q \to T^*Q$ of $G = \mathbb{R}^2$ on T^*Q given by

$$\Phi_{(a,b)}\left(q^{1},q^{2},p_{1},p_{2}\right)=\left(q^{1}+a,q^{2}+a,p_{1}+b,p_{2}+b\right)\;.$$

• The associated infinitesimal generators are

$$\xi_1^{\mathsf{T}^*Q} = \partial_{q^1} + \partial_{q^2}, \quad \xi_2^{\mathsf{T}^*Q} = \partial_{p_1} + \partial_{p_2}.$$

• Note that ϕ is a symplectic action.

• A momentum map $J: T^*Q \to \mathfrak{g}^*$ for the action Φ is given by

$$J\left(q^{1},q^{2},p_{1},p_{2}\right)=\left(p_{1}+p_{2},-q^{1}-q^{2}\right)\;.$$

- Its co-adjoint cocycle is given by $\sigma(a, b) = (2b, -2a)$.
- The Hamiltonian function

$$H(q^1, q^2, p_1, p_2) = \frac{(p_1 - p_2)^2}{2} + V(q^1 - q^2),$$

where V is a potential function depending only on q^1 – q^2 , is Φ -invariant.

• Consider the hybrid Hamiltonian system $\mathcal{H} = (D, X_H, S, \Delta)$, with X_H the Hamiltonian vector field of H, and

$$S = \left\{ \left(q^{1}, q^{2}, p_{1}, p_{2} \right) \mid q^{1} - q^{2} = c, \quad p_{1} - p_{2} < 0 \right\},$$

$$\Delta \left(q^{1}, q^{2}, p_{1}, p_{2} \right) = \left(q^{1}, q^{2}, p_{1} - \frac{1 + e}{2} (p_{1} - p_{2}), p_{2} + \frac{1 + e}{2} (p_{1} - p_{2}) \right),$$

where $c \in \mathbb{R}$ and $e \in [0, 1]$.

- The action ϕ is a hybrid action for \mathcal{H} , and J is a hybrid momentum map, i.e., $J \circ \Delta = J|_{S}$.
- The isotropy subgroup with respect to the affine action is trivial: $\tilde{G}_{\mu} = \{0\}.$

• Let $\mu = (\mu_1, \mu_2) \in \mathfrak{g}^*$ be a regular value of J, and consider the quotient manifold $D_{\mu} = J^{-1}(\mu)/\tilde{G}_{\mu} = J^{-1}(\mu)$, where

$$\begin{split} J^{-1}(\mu) &= \left\{ (q^1, q^2, p_1, p_2) : J(q^1, q^2, p_1, p_2) = \mu \right\}, \\ &= \left\{ (q^1, q^2, p_1, p_2) : (p_1 + p_2, -(q^1 + q^2)) = (\mu_1, \mu_2) \right\}. \end{split}$$

• We can use $(q^2|_{D_{\mu}}, p_2|_{D_{\mu}})$ as coordinates in D_{μ} . With a slight abuse of notation, we will denote them simply by (q^2, p_2) .

• The reduced hybrid system is $\mathcal{H}_{\mu} = (D_{\mu} = J^{-1}(\mu), X_{H_{\mu}}, S_{\mu}, \Delta_{\mu})$, where $X_{H_{\mu}}$ is the Hamiltonian vector field of

$$H_{\mu}(q^2, p_2) = \frac{(\mu_1 - 2p_2)^2}{2} + V(-\mu_2 - 2q^2),$$

and

$$S_{\mu} = \left\{ \left(q^{2}, p_{2}, \mu_{1}, \mu_{2} \right) \mid -\mu_{2} - 2q^{2} = c, \quad \mu_{1} - 2p_{2} < 0 \right\},$$

$$\Delta_{\mu} \left(q^{2}, p_{2}, \mu_{1}, \mu_{2} \right) = \left(-\mu_{2} - q^{2}, q^{2}, (\mu_{1} - p_{2}) - \frac{1 + e}{2} (\mu_{1} - 2p_{2}), p_{2} + \frac{1 + e}{2} (\mu_{1} - 2p_{2}) \right).$$

Conclusions and outlook

- We have obtained a reduction \grave{a} la Marsden–Weinstein–Meyer for hybrid Hamiltonian systems.
- Our method does not require the momentum map to be equivariant, nor to be preserved by the impact map.
- We have illustrated the applicability of our theory with an academic example.
- Our result could be useful for developing a reduction by stages for hybrid Hamiltonian systems.

Main references

- [1] L. Colombo, M. de León, M. E. Eyrea Irazú, and A. López-Gordón. "Generalized Hybrid Momentum Maps and Reduction by Symmetries of Simple Hybrid Forced Mechanical Systems". *Journal of Mathematical Physics*, **66**(6) (2025).
- [2] J. E. Marsden, G. Misiolek, J.-P. Ortega, M. Perlmutter, and T. Ratiu. *Hamiltonian Reduction by Stages*. Lecture Notes in Mathematics. Springer-Verlag: Berlin; Heidelberg, 2007.
- [3] A. van der Schaft and Schumacher, Hans. *An Introduction to Hybrid Dynamical Systems*. Vol. 251. Springer: London, 2000.
- [4] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and B. Morris. Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press: Boca Raton, 2018.

Merci pour votre attention!

- ☑ Feel free to contact me at alopez-gordon@impan.pl
- These slides are available at www.alopezgordon.xyz