Homework 10

6210422036: Tanat lempreedee

```
Hide
```

```
'data.frame': 27 obs. of 2 variables:

$ Mustard: num 50137 76030 68590 80681 55228 ...

$ Event : Factor w/ 3 levels "1","2","3": 3 3 2 1 1 1 1 2 1 ...
```

```
Hide
```

```
dts <- ts(data=d, frequency=12, start=c(2015,4))
autoplot(dts[,'Mustard']) +
  ylab('Sales')</pre>
```


Prepare data to forecast

Hide

	season <fctr></fctr>	fevent <fctr></fctr>
28	7	1
29	8	1
30	9	1
31	10	1
32	11	1
33	12	1

Model 1: Mustard ~ trend

```
Hide
```

```
# Model 1
reg1 <- tslm(Mustard ~ trend, data=dts)
summary(reg1)

Call:
tslm(formula = Mustard ~ trend, data = dts)</pre>
```

```
Residuals:
          1Q Median
  Min
                        30
                              Max
-15662 -8347 -4418
                      5591
                            23466
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                        4622.5 12.811 1.74e-12 ***
(Intercept) 59219.8
                         288.5 -1.737 0.0947 .
trend
             -501.1
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 11680 on 25 degrees of freedom
Multiple R-squared: 0.1077,
                               Adjusted R-squared: 0.07197
F-statistic: 3.016 on 1 and 25 DF, \, p-value: 0.09474 \,
```

```
fc <- forecast(reg1, newdata=newdata)
autoplot(dts[,'Mustard'], series='Data') +
autolayer(fitted(reg1), series='Fitted') +
autolayer(fc, series='Forecast') +
ylab('Sales') +
ggtitle('Mustard ~ trend')
```


Model 2: Mustard ~ trend + season + Event

Hide

```
# Model 2
fevent <- factor(dts[,'Event'], levels=1:3)</pre>
reg2 <- tslm(Mustard ~ trend + season + fevent, data=dts)</pre>
summary(reg2)
Call:
tslm(formula = Mustard ~ trend + season + fevent, data = dts)
Residuals:
          1Q Median
  Min
                         30
                               Max
-4476 -1603
                0
                      1603
                              4476
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 47731.7
                         2609.7 18.290 3.95e-10 ***
             -184.0
                          92.5 -1.989 0.069991 .
trend
season2
            -5819.6
                         3041.2 -1.914 0.079822 .
                         3045.4 -1.024 0.325980
season3
            -3118.9
            -15340.0
                         5272.4 -2.910 0.013093 *
season4
            10736.6
                         3062.2 3.506 0.004332 **
season5
season6
             3560.1
                         5952.3 0.598 0.560884
            31083.2
                         3090.0 10.059 3.36e-07 ***
season7
                         3074.8 2.196 0.048443 *
             6753.6
season8
                                2.049 0.062966 .
             6275.0
                         3062.2
season9
season10
             -516.3
                         3052.4 -0.169 0.868491
season11
             -2882.4
                         3045.4 -0.946 0.362580
season12
            -19130.1
                         6080.3 -3.146 0.008434 **
                                 3.589 0.003718 **
fevent2
            18898.4
                         5265.1
                                4.396 0.000871 ***
            17929.5
                         4078.3
fevent3
```

```
fc <- forecast(reg2, newdata=newdata)
autoplot(dts[,'Mustard'], series='Data') +
autolayer(fitted(reg2), series='Fitted') +
autolayer(fc, series='Forecast') +
ylab('Sales') +
ggtitle('Mustard ~ trend + season + fevent')
```

Mustard ~ trend + season + fevent

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3040 on 12 degrees of freedom Multiple R-squared: 0.971, Adjusted R-squared: 0.9371 F-statistic: 28.67 on 14 and 12 DF, p-value: 4.75e-07


```
Hide
```

```
reg3 <- tslm(Mustard ~ trend + season, data=dts)
summary(reg3)

Call:
tslm(formula = Mustard ~ trend + season, data = dts)</pre>
```

```
Residuals:
   Min
            1Q Median
                            3Q
                                   Max
-6130.2 -2054.7 -866.3 1466.9 10337.7
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 49885.4 3777.2 13.207 2.71e-09 ***
trend
             -318.6
                        118.7 -2.683 0.017834 *
            -5685.0
                        4618.5 -1.231 0.238628
season2
            -2849.7
                        4623.0 -0.616 0.547520
season3
             2831.6
                        4229.7
                                0.669 0.514100
season4
season5
            16443.9
                        4221.3
                                3.895 0.001616 **
season6
            22323.9
                        4216.3
                                 5.295 0.000113 ***
season7
            30275.5
                        4671.6
                                 6.481 1.45e-05 ***
                        4654.9
                                 1.306 0.212518
season8
             6080.6
             5736.5
                        4641.3
                                1.236 0.236804
season9
             -920.2
                        4630.7 -0.199 0.845345
season10
season11
            -3151.6
                        4623.0 -0.682 0.506540
                        4618.5 -0.079 0.937906
season12
             -366.3
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4617 on 14 degrees of freedom
Multiple R-squared: 0.9219,
                             Adjusted R-squared: 0.8549
F-statistic: 13.77 on 12 and 14 DF, p-value: 9.874e-06
```

```
fc <- forecast(reg3, newdata=newdata)
autoplot(dts[,'Mustard'], series='Data') +
autolayer(fitted(reg3), series='Fitted') +
autolayer(fc, series='Forecast') +
ylab('Sales') +
ggtitle('Mustard ~ trend + season')
```

Mustard ~ trend + season

Model 4: Mustard ~ trend + Event

Hide

Hide

```
reg4 <- tslm(Mustard ~ trend + fevent, data=dts)
summary(reg4)</pre>
```

```
Call:
tslm(formula = Mustard ~ trend + fevent, data = dts)
Residuals:
          1Q Median
  Min
                       3Q
                             Max
-13310 -8766 -2542
                    7319 26219
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 56237.2 5494.6 10.235 4.92e-10 ***
trend
             -443.8
                       326.4 -1.360
                                        0.187
             6264.5
                       5242.8 1.195
                                        0.244
fevent2
fevent3
             7512.1
                       9714.4 0.773
                                        0.447
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 11710 on 23 degrees of freedom
Multiple R-squared: 0.1741, Adjusted R-squared: 0.06637
F-statistic: 1.616 on 3 and 23 DF, p-value: 0.213
```

```
fc <- forecast(reg4, newdata=newdata)
autoplot(dts[,'Mustard'], series='Data') +
  autolayer(fitted(reg4), series='Fitted') +
  autolayer(fc, series='Forecast') +
  ylab('Sales') +
  ggtitle('Mustard ~ trend + fevent')</pre>
```


Compare AIC

Based on the AIC, Model 2 is selected.

Hide

```
data.frame(MD1=AIC(reg1),MD2=AIC(reg2),MD3=AIC(reg3),MD4=AIC(reg4))
```

MD1 <dbl></dbl>	MD2 <dbl></dbl>	MD3 <dbl></dbl>	MD4 <dbl></dbl>
586.2768	519.7829	542.5138	588.1878
1 row			

Forecast

Hide

fc <- forecast(reg2, newdata=newdata)
fc</pre>

	Point Forecast <dbl></dbl>	Lo 80 <dbl></dbl>	Hi 80 <dbl></dbl>	Lo 95 <dbl></dbl>	Hi 95 <dbl></dbl>
Jul 2017	73663.48	68132.42	79194.55	64777.626	82549.34
Aug 2017	49149.93	43618.86	54681.00	40264.071	58035.79
Sep 2017	48487.30	42956.24	54018.37	39601.446	57373.16
Oct 2017	41512.02	35980.95	47043.09	32626.161	50397.88
Nov 2017	38962.00	33430.93	44493.07	30076.141	47847.86
Dec 2017	22530.34	13498.15	31562.54	8019.798	37040.89
6 rows					

Question

If we want to optimize the campaign spending, what are other possible independent variables? Indicate whether they are numerical or categorical.

- Campaign Spending (numerical) plan for each month
- A flag indicate Campaign sensitivity (categorical)?
- If Profit = Sales Qty(UnitCost) CampaignSpending-..., Unit cost could affect finding an optimum campaign spending as well, we may want to use costs as well, e.g., estimated raw material cost (numerical) for each month?