

Name:

KIT-Fakultät für Informatik

Prof. Dr.-Ing. Uwe D. Hanebeck, Prof. Dr.-Ing. Jörg Henkel

Lösungsblätter zur Klausur

Digitaltechnik und Entwurfsverfahren (TI-1)

und

Rechnerorganisation (TI-2)

am 27. März 2021, 9:00 - 11:00 Uhr

ame:	Vorname:	Matrikelnummer:
Digitaltechnik	und Entwurfsverfa	hren (TI-1)
Aufgabe 1		von 11 Punkten
Aufgabe 2		von 10 Punkten
Aufgabe 3		von 6 Punkten
Aufgabe 4		von 10 Punkten
Aufgabe 5		von 8 Punkten
Rechnerorgan	isation (TI-2)	
Aufgabe 6		von 9 Punkten
Aufgabe 7		von 11 Punkten
Aufgabe 8		von 9 Punkten
Aufgabe 9		von 12 Punkten
Aufgabe 10		von 4 Punkten
Gesamtpunktzahl	l:	
	1	ote:

${\bf Aufgabe\ 1} \quad \textit{Schaltfunktionen}$

1.

c

Primimplikanten:

- 2. Disjunktive Minimalform von f(d, c, b, a):
- 3. Die Schaltfunktion ist

Begründung:

- 4. Kernprimimplikanten:
- 5. Überdeckungsfunktion:

Aufgabe 2 CMOS, Spezielle Bausteine

1.

2. Realisierte Schaltfunktion:

3. Unterschied zwischen Halbaddierer und Volladdierer:

4. Schaltbild eines 1-Bit-Volladdierers:

Aufgabe 3 Laufzeiteffekte

1.

c

Übergang $(0,0,0,0) \rightarrow (1,0,1,1)$:

Übergang $(1,1,0,0) \rightarrow (0,1,1,1)$:

2. Strukturhasardfreie Realisierung:

Aufgabe 4 Schaltwerke

1. Automatengraph:

Anzahl der erforderlichen Flipflops:

2. Kodierte Ablauftabelle:

Eingabe	Zustand		Folgezustand		Ausgang		FF-Ansteuersignal	
x^t	q_1^t	q_0^t	$ q_1^{t+1} \qquad q_0^{t+1} $		y_1^t	y_0^t	T_1^t	T_0^t

3. Ansteuerfunktionen der Flipflops:

4. Schaltung des Schaltwerks:

Aufgabe 5 Rechnerarithmetik & Codes

- 1. 2021_{10} als:
 - $\bullet~$ 32-Bit Zweierkomplement-Format:

• 32-Bit IEEE-754-Gleitkomma-Format:

2. Datenwörter:

3. BCD-Addition:

4. Vor- und Nachteile der BCD-Arithmetik:

Name: Vorname:

Matr.-Nr.:

Aufgabe 6 Die Programmiersprache C

1. (a) Ausgabe:

C-Teil - 1: Ausgabe lautet _____

(b) Ausgabe:

C-Teil - 2: Ausgabe lautet _____

(c) Ausgabe:

C-Teil - 3: Ausgabe lautet _____

(d) Ausgabe:

C-Teil - 4: Ausgabe lautet _____

2. Antwort:

Aufgabe 7 MIPS-Assembler

1. Inhalte der Zielregister:

Befeh	ıl		Zielregister =	(z. B. \$s6 = 0x0000 F00A)
addi	\$s1,	\$zero, 0x4		
sll	\$s2,	\$s1, 4		
slti	\$s3,	\$s2, 100		
lui	\$s4,	0x40		
xor	\$s5,	\$s1, \$s4		

2. Register- und Speicherinhalte nach der Ausführung:

Registersatz

Register	Inhalt
\$t0	
\$t1	
\$t2	
\$t3	
\$t4	

Hauptspeicher

1 1						
Adresse	Inhalt					
\$0x20						
\$0x24						
\$0x28						
\$0x2C						
\$0x30						

3. (a) Little-Endian:

Register	Wert =	(z. B. 0x0000 F00A)
\$t1		
\$t2		

(b) Big-Endian:

Register	Wert =	(z. B. 0x0000 F00A)
\$t1		
\$t2		

Aufgabe 8 Pipelining

1. Datenabhängigkeiten:

2. Beseitigung der Konflikte:

13

Aufgabe 9 Cache- & Speicherverwaltung

- 1. (a) Blockgröße in Bytes:
 - (b) Anzahl der Einträge:
 - (c) Cache-Organisation:

2.

Adresse	0x000	0xA29	0xA39	0xC26	0xA34	0x021	0x041	0xB11
read/write	r	r	r	W	r	r	r	W
Index								
Tag								
Hit/Miss								

3. Physikalische Adresse von 1444:

Physikalische Adresse von 789:

Aufgabe 10 Allgemeines

1. Anzahl Sichten und Entwurfsebenen:

2. Komponente:

3. (a)

(b)