Titre: Trigonalisation simultanée d'une famille finie d'endomorphismes

Recasages: 154,157,159

Thème : Algèbre linéaire, dualité, réduction des endomorphismes.

Références : Gourdon - Algèbre (p.166)

<u>Théorème</u> 1. Soient E un k-espace vectoriel de dimension finie, et $u_1, \dots, u_m \in \mathcal{L}(E)$ une famille d'endomorphismes trigonalisables. On suppose de plus que les u_i commutent entre eux deux à deux. Alors il existe une base de E dans laquelle les matrices des u_i sont toutes triangulaires supérieures (i.e les u_i sont **co-trigonalisables**).

On utilise une double récurrence sur m et $n = \dim E$: en posant $\mathcal{P}_{m,n}$ le résultat pour toute famille de m endomorphismes sur un espace de dimension n, on montre

$$\forall m \in \mathbb{N}^* (\forall n \in N, \mathcal{P}_{m,n}) \Rightarrow (\forall n \in N, \mathcal{P}_{m+1,n}) \text{ et } \forall n \in N, \mathcal{P}_{1,n}$$

L'hypothèse de trigonalisabilité individuelle rend le cas $\mathcal{P}_{1,n}$ trivial quel que soit $n \in \mathbb{N}$. Pour $m \geq 2$ fixé, on montre $\forall n \in \mathbb{N}, \mathcal{P}_{m,n}$ par récurrence sur n.

Le cas n=1 est immédiat : tout endomorphisme admet dans toute base une 'matrice' triangulaire supérieure.

Supposons n > 1, pour $i \in [1, n]$, comme u_i est trigonalisable, il existe un polynôme $P_i \in k[X]$ scindé sur k et tel que $P_i(u_i) = 0$. Considérant l'endomorphisme ${}^tu_i \in \mathcal{L}(E^*)$, on a $P_i({}^tu_i) = (P_i(u_i))^t = 0$, donc P_i est aussi annulateur de tu_i , qui est donc trigonalisable de même que u_i . En tant qu'endomorphisme trigonalisable, tu_i admet alors une valeur propre λ_i , d'espace propre $F_i \subset E^*$ non trivial.

On remarque ensuite que les endomorphismes ${}^{t}u_{i}$ commutent entre eux deux à deux, en effet on a

$$\forall i, j \in [1, n], t u_i \circ t u_j = t (u_j \circ u_i) = t (u_i \circ u_j) = t u_j \circ t u_i$$

Soit $\varphi \in F_1 = \text{Ker } (^tu_1 - \lambda_1 Id_{E^*})$, on a, pour $i \in \llbracket 1, n \rrbracket$

$${}^tu_1({}^tu_i(\varphi)) = {}^tu_i({}^tu_1(\varphi)) = {}^tu_i(\lambda_1\varphi) = \lambda_1{}^tu_i(\varphi)$$

donc ${}^tu_i(\varphi) \in F_1$, qui est donc stable par tu_i . On peut alors poser $v_i := {}^tu_{i|F_1} \in \mathcal{L}(F_1)$, les polynômes P_i étant annulateurs des v_i , ceux-ci sont trigonalisables sur F_1 et ils commutent entre eux deux à deux.

- Si $F_1 = E^*$, alors tu_1 est une homothétie, de matrice diagonale dans toute base, de même que u_1 . Le problème est donc ramené à l'étude des endomorphismes u_2, \dots, u_m , le résultat est alors donné par $P_{m-1,n}$.
- Si F_1 est de dimension r < n, alors par $P_{m,r}$, il existe $\{g_1, \dots, g_r\}$ une base de F_1 dans laquelle les matrices de v_1, \dots, v_m sont triangulaires supérieures.

Dans tous les cas, on peut trigonaliser v_1, \dots, v_r dans une même base de F_1 , donc v_1, \dots, v_r partagent un vecteur propre : le premier vecteur de la base $g_1 \in E^*$. Comme $\mathrm{Vect}(g_1)$ est stable par tous les tu_i , son orthogonal $H = \mathrm{Ker}\ g_1$ est stable par tous les u_i . On peut donc considérer $w_i := (u_i)_{|H}$, et appliquer $P_{m,n-1}$ aux w_i : Il existe une base e_1, \dots, e_{n-1} de H dans laquelle les matrices des w_i sont toutes triangulaires supérieures, on obtient alors le résultat en prenant pour e_n un vecteur quelconque de H^{\perp} .