# Атака на протокол трех состояний.

#### Коновалов Матвей

Ментор: Кодухов Алексей Дмитриевич

## Квантовая криптография



Рис. 1.1: Представление передачи информации между легитимными пользователями

### Состояния и их измерения



Рис. 1.2: Передаваемые кубиты, кодированные поляризацией

## Протокол трех состояний

- 1 Алиса отправляет с равной вероятностью одно из трех состояний.
- 2 Боб измеряет с равной вероятностью в одном из трех наборов проективных операторов  $|A\rangle\,\langle A|\,, |\overline{A}\rangle\,\langle \overline{A}|.$
- $\,\,$  В первом общении по открытому каналу оставляют те сигналы, в которых у Боба сработал оператор  $|\overline{A}\rangle\,\langle\overline{A}|\,.$
- 4 Во втором общении по открытому каналу Алиса вскрывает состояние, которое она не отправляла. Если Боб уже знает, что это состояние не отправлялось, то оно далее не рассматривается, в ином случае Боб знает состояние Алисы. [3]

## Протокол трех состояний





Рис. 1.3: Круг преобразования состояний в бит

# Протокол трех состояний

| Timeslot                       | 1                         | 2                         | 3                         | 4                         | 5                            | 6                            | 7                            | 8                         | 9                            | 10                        |
|--------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|------------------------------|------------------------------|------------------------------|---------------------------|------------------------------|---------------------------|
| Alice prepares<br>Bob measures | $\ket{A} \hat{P}_{ar{A}}$ | $\ket{B} \hat{P}_{ar{A}}$ | $\ket{C} \hat{P}_{ar{B}}$ | $\ket{C} \hat{P}_{ar{A}}$ | $\ket{C} \hat{P}_{	ilde{C}}$ | $\ket{B} \hat{P}_{	ilde{C}}$ | $\ket{A} \hat{P}_{	ilde{C}}$ | $\ket{A} \hat{P}_{ar{B}}$ | $\ket{B} \hat{P}_{	ilde{C}}$ | $\ket{A} \hat{P}_{ar{B}}$ |
| Result                         | 0                         | 1                         | 1                         | 0                         | 0                            | 1                            | 1                            | 0                         | 1                            | 1                         |
| Alice says not                 |                           | $ C\rangle$               | $ B\rangle$               |                           |                              | $ A\rangle$                  | B angle                      |                           | $ C\rangle$                  | $ C\rangle$               |
| Bob says                       |                           | ✓                         | ×                         |                           |                              | $\checkmark$                 | ✓                            |                           | ×                            | ✓                         |
| Sequence                       |                           | BC                        |                           |                           |                              | BA                           | $\mathbf{AB}$                |                           |                              | AC                        |
| Inferred bit                   |                           | 0                         |                           |                           |                              | 1                            | 0                            |                           |                              | 1                         |
|                                |                           |                           |                           |                           |                              |                              |                              |                           |                              |                           |

Рис. 1.4: Пример передачи бита от Алисы к Бобу

### Когерентные состояния

**Мотивация:** источник когерентных состояний - это самый доступный источник квантовых состояний. [2]

Можно ввести операторы аннигиляции  $\hat{a}^\dagger$  и создания  $\hat{a}$ , для которых верно  $[\hat{a},\hat{a}^\dagger]=\hat{a}\hat{a}^\dagger-\hat{a}^\dagger\hat{a}=1$ . При определении оператора числа фотонов  $\hat{n}=\hat{a}^\dagger\hat{a}$  можно заметить эрмитовости оператора и рассмотреть оператор на собственных векторах:

$$\hat{n}\left| n\right\rangle =n\left| n\right\rangle ,$$

где n назовем числом фотонов.

Тогда собственное значение энергии будет  $E_n=\hbar\omega(n+\frac{1}{2}).$ 

Можно показать, что  $\hat{a}\,|n\rangle=\sqrt{n}\,|n-1\rangle$  и  $\hat{a}^\dagger\,|n\rangle=\sqrt{n+1}\,|n+1\rangle$  , а также  $n\in\mathbb{N}$ , что объясняет названия  $\hat{a}^\dagger$ ,  $\hat{a}$  и n.

#### Когерентные состояния

Математическое описание когерентных состояний:

$$|\alpha\rangle = \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} \exp(-\frac{1}{2}|\alpha|^2) |n\rangle,$$

где  $|n\rangle$  — собственный вектор, соответствующий числу частиц n,  $\alpha$  — комплексная амплитуда, такая что  $|\alpha|^2=\mu$  — среднее число частиц в импульсе света.

### Теория информации

**Энтропия** (величина незнания информации) случайной величины  $X = \{x_1, x_2, ...\}$ :

$$H(X) = -\sum_{n=1}^{N} p(x_n) \log_2(p(x_n)).$$

Условная энтропия случайных величин X и Y:

$$H(Y|X) = \sum_{n=1}^{N} p(x_n) \cdot H(Y|x_n) = -\sum_{n=1}^{N} p(x_n) \sum_{m=1}^{M} p(y_m|x_n) \cdot \log_2(p(y_m|x_n)).$$

Взаимная информация (полученная информация об одной величине при наблюдении за другой):

$$I(X,Y) = H(Y) - H(Y|X).$$

#### Величина Холева

**Величина Холева** устанавливает верхнюю границу на количество информации, которую можно извлечь из ансамбля квантовых состояний.

$$I(X,Y) \le \chi = S\left(\sum_{n} p_n \rho_n\right) - \sum_{n} p_n S(\rho_n),$$

где ho — матрица плотности (описывает смешанное состояние),  $S(
ho) = -{\rm Tr}(\rho \cdot \log_2(
ho))$  — энтропия фон Неймана.

#### PNS атака

PNS-атака (Photon Number Splitting) — самая популярная атака на QKD. В протокол вторгается Ева: [1]

- 1 измеряет без обнаружения количество фотонов в импульсе, отправленном Алисой по каналу с затуханием  $\delta=10^{-\alpha d},$  где  $\alpha$  коэффициент затухания, а d расстояние между легитимными пользователями.
- 2 (1-q) часть однофотонных импульсов блокирует, а у многофотонных забирает фотон в квантовую память и отправляет импульс дальше без затухания.

Преимущество данной стратегии в том, что Ева может без заметного вмешательства производить измерения после того, как Алиса раскроет, какое состояние она не отправляла. Тогда задачей Евы будет различие двух неортогональных состояниях.

## Информация Евы

При отличии двух неортогональных состояний информация Евы такая:

- ullet пропускная способность (максимальная информация при измерении одного фотона)  $C_1=1-h_2\left(rac{1-\sqrt{1-\cos^2arphi}}{2}
  ight)$  .
- ullet граница Холево  $\chi=h_2\left(rac{1-\cosarphi}{2}
  ight).$

Где  $\varphi$  — угол между неортогональными состояниями Алисы, а  $h_2(x) = -x \log_2(x) - (1-x) \log_2(1-x)$  — бинарная энтропия.

Так как Ева проводит измерение состояния не у всех импульсов, то информация Евы будет умножена на долю тех импульсов, у которых Ева забрала фотон и которые перешли в сырой ключ у Алисы и Боба:

$$I_{Eve} = \frac{\sum_{n=2} p_n}{qp_1 + \sum_{n=2} p_n} C_1$$

## Информация Евы

Ева производит атаку, в которой вероятность того, что отправленное состояние долетит до Боба, не меняется:

$$qp_1 + \sum_{n=2}^{\infty} p_n = \mu \cdot 10^{-\alpha d},$$

где  $p_n=\mathrm{e}^{-\mu} \frac{\mu^n}{n!}.$ 

Можно показать:

$$I_{Eve}(d) = \frac{1 - \exp(-\mu) \cdot (1 + \mu)}{\mu \cdot 10^{-\alpha d}} C_1$$

### Скорость генерации ключа

Информацию легитимных пользователей можно определить  $I_{AB}=1-h_2(Q_{
m err}),$  где  $Q_{
m err}$  — ошибка битов у Алисы и Боба в сыром ключе. По протоколу ошибок нет, то есть  $Q_{
m err}=0.$  Можно показать:

$$R_{key}(d) = \frac{1}{4} \cdot 10^{-\alpha d} (1 - I_{Eve}(d))$$

# График скорости генерации ключа



#### Выводы

В данной работе была учтена многофотонность источника квантовых состояний и продемонстрирована PNS-атака на протокол трех состояний.

Кроме того, проведены сравнительные исследования скоростей генерации ключа с протоколом BB84 в условиях аналогичных атак. Результаты показали, что протокол трех состояний обладает большей устойчивостью к PNS-атаке.

# Список литературы

- [1] Antonio Acin, Nicolas Gisin и Valerio Scarani. "Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks". B: *Physical Review A* 69.1 (2004), c. 012309.
- [2] Osamu Hirota. Squeezed light. Elsevier, 1992.
- [3] Simon JD Phoenix, Stephen M Barnett μ Anthony Chefles. "Three-state quantum cryptography". B: Journal of modern optics 47.2-3 (2000), c. 507—516.