Theory and Practice of Deep Learning

Practice Session 1- Introduction to PyTorch

Instructor: Prof. Berrak Sisman

TA: Zongyang DU

zongyang_du@mymail.sutd.edu.sg

Practice Session 1- Introduction to PyTorch

Date & Time

- Cl01: Week 2 Friday (Feb 4) 11:30 am
- Cl02: Week 3 Wednesday (Feb 9) 8:30 am

Location is Zoom!

- Recording will be provided for your future practice as well.
- The Zoom link will be announced on Edimension.

• **Duration:** ~90 minutes

Outline

- Introduction
- Installation / How to start?
- Practice session
 - Tensors
 - Computation graph
 - Autograd
 - How to take the derivative of a function
 - Gradient descent
 - Backpropagation (BP)
 - Dataset and Dataloader
 - Dataset Transforms

Introduction

- What is Pytorch
 - An open source machine learning library
 - Used for applications such as computer vision (CV) and natural language processing (NLP)
 - Developed by Facebook's AI Research lab (FAIR).

A number of pieces of deep learning software are built on top of PyTorch, including Tesla Autopilot, Uber's Pyro, Hugging Face's Transformers, PyTorch Lightning, and Catalyst.

- PyTorch provides two high-level features:
 - Tensor computing (like NumPy) with strong acceleration via graphics processing units (GPU)
 - Deep neural networks built on a type-based automatic differentiation system

How to start?

- In the cloud
 - In the cloud
 - Google Colab

How to start?

- Google Colab
 - GPU is needed

Practice Session 1- Introduction to PyTorch

The topics we will cover are listed here:

- Tensor Basics
- Auto grad
- Gradient descent
- Back propagation
- Dataset and Dataloader
- Dataset Transforms

Let's start the practice part

Session 2 (Week 4)

The topics we will cover in next session are listed here:

- Build Model
- Deep learning
- Logistic Regression example
- CNN example

It will be announced on Edimension.

Thank you!

Acknowledgment

• University of Washington CSE446

PyTorch Official Tutorials

• PyTorch Beginner Tutorials