12-0: Comparison Sorting

- Comparison sorts work by comparing elements
 - Can only compare 2 elements at a time
 - Check for <, >, =.
- All the sorts we have seen so far (Insertion, Quick, Merge, Heap, etc.) are comparison sorts
- If we know nothing about the list to be sorted, we need to use a comparison sort

12-1: **Decision Trees** Insertion Sort on list $\{a, b, c\}$

12-2: **Decision Trees**

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?

12-3: **Decision Trees**

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - (The depth of the shallowest leaf) + 1
- What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?

12-4: **Decision Trees**

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?

- (The depth of the shallowest leaf) + 1
- What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - The height of the tree (depth of the deepest leaf) + 1

12-5: **Decision Trees**

• What is the largest number of nodes for a tree of depth d?

12-6: **Decision Trees**

- What is the largest number of nodes for a tree of depth d?
 - 2^d
- What is the minimum height, for a tree that has n leaves?

12-7: **Decision Trees**

- What is the largest number of nodes for a tree of depth d?
 - 2^d
- What is the minimum height, for a tree that has n leaves?
 - $\bullet \lg n$
- \bullet How many leaves are there in a decision tree for sorting n elements?

12-8: **Decision Trees**

- What is the largest number of nodes for a tree of depth d?
 - 2^d
- What is the minimum height, for a tree that has n leaves?
 - $\lg n$
- How many leaves are there in a decision tree for sorting n elements?
 - *n*!
- ullet What is the minimum height, for a decision tree for sorting n elements?

12-9: **Decision Trees**

- What is the largest number of nodes for a tree of depth d?
 - \bullet 2^d
- What is the minimum height, for a tree that has n leaves?
 - $\lg n$
- How many leaves are there in a decision tree for sorting n elements?
 - n!

- What is the minimum height, for a decision tree for sorting n elements?
 - lg n!

12-10: $\lg(n!) \in \Omega(n \lg n)$

$$\begin{array}{lll} \lg(n!) & = & \lg(n*(n-1)*(n-2)*\ldots*2*1) \\ & = & (\lg n) + (\lg(n-1)) + (\lg(n-2)) + \ldots \\ & & + (\lg 2) + (\lg 1) \\ & \geq & \underbrace{(\lg n) + (\lg(n-1)) + \ldots + (\lg(n/2))}_{n/2 \text{ terms}} \\ & \geq & \underbrace{(\lg n/2) + (\lg(n/2)) + \ldots + \lg(n/2)}_{n/2 \text{ terms}} \\ & = & (n/2) \lg(n/2) \\ & \in & \Omega(n \lg n) \end{array}$$

12-11: Sorting Lower Bound

- All comparison sorting algorithms can be represented by a decision tree with n! leaves
- Worst-case number of comparisons required by a sorting algorithm represented by a decision tree is the height of the tree
- A decision tree with n! leaves must have a height of at least $n \lg n$
- All comparison sorting algorithms have worst-case running time $\Omega(n \lg n)$

12-12: Counting Sort

- Sorting a list of n integers
- ullet We know all integers are in the range $0\dots m$
- $\bullet\,$ We can potentially sort the integers faster than $n\lg n$
- Keep track of a "Counter Array" C:
 - C[i] = # of times value i appears in the list

12-13: Counting Sort Example

3135216781

12-14: Counting Sort Example

135216781

)	0	0	1	0	0	0	0	0	0
)	1	2	3	4	5	6	7	8	9

12-15: Counting Sort Example

35216781

0	1	0	1	0	0	0	0	0	0
0	1	2	3	4	5	6	7	8	9

12-16: Counting Sort Example

5216781

0	1	0	2	0	0	0	0	0	0
0	1	2	3	4	5	6	7	8	9

12-17: Counting Sort Example

216781

	1			0					0	- 1
0	1	2	3	4	5	6	7	8	9	_

12-18: Counting Sort Example

16781

0	1	1	2	0	1	0	0	0	0
0	1	2	3	4	5	6	7	8	9

12-19: Counting Sort Example

6781

0	2	1	2		0	1	0	0	0 0
0	1	2	3	4	5	6	7	8	9

12-20: Counting Sort Example

12-21: Counting Sort Example

12-22: Counting Sort Example

12-23: Counting Sort Example

12-24: Counting Sort Example

 $1\ 1\ 1\ 2\ 3\ 3\ 5\ 6\ 7\ 8\ 12-25:\ \Theta()$ of Counting Sort

- What its the running time of Counting Sort?
- If the list has n elements, all of which are in the range $0 \dots m$:

12-26: $\Theta()$ of Counting Sort

- What its the running time of Counting Sort?
- If the list has n elements, all of which are in the range $0 \dots m$:

- Running time is $\Theta(n+m)$
- What about the $\Omega(n \lg n)$ bound for all sorting algorithms?

12-27: $\Theta()$ of Counting Sort

- What its the running time of Counting Sort?
- If the list has n elements, all of which are in the range $0 \dots m$:
 - Running time is $\Theta(n+m)$
- What about the $\Omega(n \lg n)$ bound for all sorting algorithms?
 - For *Comparison Sorts*, which allow for sorting arbitrary data. What happens when m is very large?

12-28: **Binsort**

- Counting Sort will need some modification to allow us to sort *records* with integer keys, instead of just integers.
- Binsort is much like Counting Sort, except that in each index i of the counting array C:
 - Instead of storing the *number* of elements with the value i, we store a *list* of all elements with the value i.

12-29: Binsort Example

3	1	2	6	2	4	5	3	7	9 key	
mark	johr	mar	y sue	julie	rachel	pix	el sh	adow	dataex	james

12-30: Binsort Example

12-31: Binsort Example

12-32: Bucket Sort

- Expand the "bins" in Bin Sort to "buckets"
- Each bucket holds a range of key values, instead of a single key value
- Elements in each bucket are sorted.

12-33: Bucket Sort Example

114	26		50	180	144			4	91570	k a y9 6	
john	mary	jul	ie	mark	shadow	rach	el p	ixel	sue	d ata es	alex

12-35: Bucket Sort Example

	50	180	441	.11	4	95	1701	96key	
	julie	mark	shadow	v rachel	pixe	l s	ue	jan data	alex

12-37: Bucket Sort Example

12-38: Bucket Sort Example

12-39: Bucket Sort Example

12-41: Bucket Sort Example

12-43: Bucket Sort Example

12-45: Counting Sort Revisited

- We're going to look at counting sort again
- For the moment, we will assume that our array is indexed from $1 \dots n$ (where n is the number of elements in the list) instead of being indexed from $0 \dots n-1$, to make the algorithm easier to understand
- Later, we will go back and change the algorithm to allow for an index between $0 \dots n-1$

12-46: Counting Sort Revisited

- Create the array C[], such that C[i] = # of times key i appears in the array.
- Modify C[] such that C[i] = the *index* of key i in the sorted array. (assume no duplicate keys, for now)

• If $x \notin A$, we don't care about C[x]

12-47: Counting Sort Revisited

- Create the array C[], such that C[i] = # of times key i appears in the array.
- Modify C[] such that C[i] = the *index* of key i in the sorted array. (assume no duplicate keys, for now)
- If $x \notin A$, we don't care about C[x]

```
for(i=1; i<C.length; i++)
C[i] = C[i] + C[i-1];</pre>
```

• Example: 3 1 2 4 9 8 7

12-48: Counting Sort Revisited

• Once we have a modified C, such that C[i] = index of key i in the array, how can we use C to sort the array?

12-49: Counting Sort Revisited

• Once we have a modified C, such that C[i] = index of key i in the array, how can we use C to sort the array?

```
for (i=1; i <= n; i++)
   B[C[A[i].key()]] = A[i];
for (i=1; i <= n; i++)
   A[i] = B[i];</pre>
```

• Example: 3 1 2 4 9 8 7

12-50: Counting Sort & Duplicates

 \bullet If a list has duplicate elements, and we create C as before:

```
for(i=1; i <= n; i++)
   C[A[i].key()]++;
for(i=1; i < C.length; i++)
   C[i] = C[i] + C[i-1];</pre>
```

What will the value of C[i] represent?

12-51: Counting Sort & Duplicates

ullet If a list has duplicate elements, and we create C as before:

```
for(i=1; i <= n; i++)
    C[A[i].key()]++;
for(i=1; i < C.length; i++)
    C[i] = C[i] + C[i-1];</pre>
```

What will the value of C[i] represent?

• The *last* index in A where element i could appear.

12-52: (Almost) Final Counting Sort

```
for(i=1; i <= n; i++)
   C[A[i].key()]++;
for(i=1; i < C.length; i++)
   C[i] = C[i] + C[i-1];

for (i=1; i <= n; i++) {
   B[C[A[i].key()]] = A[i];
   C[A[i].key()]--;
}
for (i=1; i <= n; i++)
   A[i] = B[i];</pre>
```

• Example: 3 1 2 4 2 2 9 1 6

12-53: (Almost) Final Counting Sort

```
for(i=1; i <= n; i++)
    C[A[i].key()]++;
for(i=1; i<C.length; i++)
    C[i] = C[i] + C[i-1];

for (i=1; i <= n; i++) {
    B[C[A[i].key()]] = A[i];
    C[A[i].key()]--;
}
for (i=1; i <= n; i++)
    A[i] = B[i];</pre>
```

- Example: 3 1 2 4 2 2 9 1 6
- Is this a Stable sorting algorithm?

12-54: (Almost) Final Counting Sort

```
for(i=1; i <= n; i++)
    C[A[i].key()]++;
for(i=1; i < C.length; i++)
    C[i] = C[i] + C[i-1];

for (i = n; i>=1; i++) {
    B[C[A[i].key()]] = A[i];
    C[A[i].key()]--;
}

for (i=1; i < n; i++)
    A[i] = B[i];</pre>
```

• How would we change this algorithm if our arrays were indexed from $0 \dots n-1$ instead of $1 \dots n$?

12-55: Final (!) Counting Sort

```
for(i=0; i < A.length; i++)
   C[A[i].key()]++;
for(i=1; i < C.length; i++)
   C[i] = C[i] + C[i-1];

for (i=A.length - 1; i>=0; i++) {
   C[A[i].key()]--;
   B[C[A[i].key()]] = A[i];
}

for (i=0; i < A.length; i++)
   A[i] = B[i];</pre>
```

12-56: Radix Sort

- Sort a list of numbers one digit at a time
 - Sort by 1st digit, then 2nd digit, etc
- Each sort can be done in linear time, using counting sort
- First Try: Sort by most significant digit, then the next most significant digit, and so on
 - Need to keep track of a lot of sublists

12-57: Radix Sort Second Try:

- Sort by least significant digit first
- Then sort by next-least significant digit, using a Stable sort

. . .

• Sort by most significant digit, using a Stable sort

At the end, the list will be completely sorted. Why?

12-58: Radix Sort

If (most significant digit of x);
 (most significant digit of y),

then x will appear in A before y.

12-59: Radix Sort

If (most significant digit of x);
 (most significant digit of y),

then x will appear in A before y.

• Last sort was by the most significant digit

12-60: Radix Sort

```
    If (most significant digit of x);
    (most significant digit of y),
```

then x will appear in A before y.

- Last sort was by the most significant digit
- If (most significant digit of x) =
 (most significant digit of y) and

 (second most significant digit of x);

(second most significant digit of y),

then x will appear in A before y.

12-61: Radix Sort

If (most significant digit of x);
 (most significant digit of y),

then x will appear in A before y.

- Last sort was by the most significant digit
- If (most significant digit of x) =

(most significant digit of y) and

(second most significant digit of x); (second most significant digit of y),

then x will appear in A before y.

• After next-to-last sort, x is before y. Last sort does not change relative order of x and y

12-62: Radix Sort

Original List

982	414	357	495	500	904	645	777	716	637	149	913	817	493	730	331	201
1002	1111	00.	100	000	001	0 10			00.	110	010	01.	100	.00	001	-

Sorted by Least Significant Digit

500730331201982493913414904645495716357777637817149

Sorted by Second Least Significant Digit

500 201 904 913 414 716 817 730 331 637 645 149 357 777 982 493 495

Sorted by Most Significant Digit

149 201 331 357 414 493 495 500 637 645 716 730 777 817 904 913 982

12-63: Radix Sort

- We do not need to use a single digit of the key for each of our counting sorts
 - We could use 2-digit chunks of the key instead
 - \bullet Our C array for each counting sort would have 100 elements instead of 10

12-64: Radix Sort

Original List

9823	4376	2493	1055	8502	4333	1673	8442	8035	6061	7004	3312	4409	2338

Sorted by Least Significant Base-100 Digit (last 2 base-10 digits)

8502	7004	4409	3312	9823	4333	8035	2338	8442	1055	6061	1673	4376	2493
								_					

Sorted by Most Significant Base-100 Digit (first 2 base-10 digits)

1055	1679	9999	9409	2210	1999	1976	4400	COC1	7004	9095	0110	9509	9823
TOOO	1019	4000	4490	001Z	4000	4010	4409	OOOT	1004	10000	0444	0004	9040
											_		

12-65: Radix Sort

- "Digit" does not need to be base ten
- For any value r:
 - Sort the list based on (key % r)
 - Sort the list based on ((key / r) % r))
 - Sort the list based on ((key / r^2) % r))
 - Sort the list based on $((\text{key }/r^3) \% r))$

. . .

- Sort the list based on $((\text{key } / r^{\log_k(\text{largest value in array})}) \% r))$
- Code on other screen