Chapitre 1: Notions de base en électronique analogique

Justine Philippe

Sommaire

- Quelques définitions
- Loi d'Ohm, loi des nœuds, loi des mailles
- Sources de courant, sources de tension
- Equivalent Thévenin-Norton
- □ Théorème de superposition
- □ Théorème de Millman

Sommaire

- Quelques définitions
- Loi d'Ohm, loi des nœuds, loi des mailles
- Sources de courant, sources de tension
- Equivalent Thévenin-Norton
- □ Théorème de superposition
- □ Théorème de Millman

Le courant électrique

Définition:

Le courant électrique est un déplacement de charges électriques.

Par convention, le sens du courant correspond à l'inverse du sens de déplacement des électrons.

Le courant électrique

Le courant électrique caractérise donc un déplacement d'une quantité de charge qui traverse une section S par unité de temps Δt .

L'intensité du courant électrique se mesure en Ampère (A).

$$I = \frac{\Delta Q}{\Delta t} (C/s) ou (A)$$

Le courant électrique

Quelques ordres de grandeurs :

□ Fusibles pour les prises électriques : 16 A

- □ Fusibles pour un four, un chauffage : 32 A
- □ T.G.V.: 500 A à 300 km/h, 1000 A au démarrage

□ Foudre: 1 kA à 100 kA

□ Electronique : mA, µA, nA, pA

La tension électrique

- □ La tension est égale à la différence de potentiel entre deux pôles d'un dipôle. Elle est à l'origine de la circulation du courant électrique dans un dipôle. Elle se note U et son unité est le volt (V).
- On note plus précisément U_{AB} la tension aux bornes du dipôle AB et on dirige la flèche de B vers A.

Le dipôle idéal

Propriétés:

- 2 terminaux
- □ Décrit une relation entre le courant i et la tension v
- Ne peut être subdivisé en autres éléments

Conventions récepteur et générateur

Convention générateur

Permet de formaliser le sens positif du courant

Eléments d'un circuit

5 dipôles de base:

- Source de courant
- Source de tension

Eléments actifs
Convention générateur

- Résistance
- Inductance
- Condensateur

Eléments passifs Convention récepteur

La plupart des systèmes peuvent être modélisés par des sources et des éléments passifs

Eléments d'un circuit

La masse d'un circuit est un point de référence de potentiel nul.

Symboles:

Ex. Si
$$V_B = 2$$
 Volts $U_{BC} = ?$

$$U_{BC} = V_B - V_C = V_B = 2 V$$

Sommaire

- Quelques définitions
- □ Loi d'Ohm, loi des nœuds, loi des mailles
- Sources de courant, sources de tension
- Equivalent Thévenin-Norton
- □ Théorème de superposition
- □ Théorème de Millman

La loi d'Ohm

$$v = R \cdot i$$

Convention récepteur!

Attention au sens du courant ou de la tension

- □ La résistance définit le rapport entre la différence de potentiel aux bornes du dipôle et le courant le traversant
- La résistance est donc exprimée en
 - Volts par Ampère ≡ Ohms (Ω)

Puissance absorbée par une résistance

$$P = v \cdot i = R \cdot i^2$$

$$P = v \cdot i = \sqrt[p^2]{R}$$

- □ La résistance <u>dissipe</u> la puissance
- La puissance s'exprime en Watts (W)
 - Volts Ampères ≡ Watts

Source de tension et de courant idéales (1/2)

Une <u>source de tension</u>
 idéale maintient une tension
 constante, quel que soit le
 courant la traversant

I = |I'|I peut être positif,négatif ou nul

Une <u>source de courant</u>
 idéale maintient un courant
 constant, quelle que soit la tension la traversant

I = |I'|
V peut être positif,
négatif ou nul

Source de tension et de courant idéales (2/2)

□ Représentations schématiques d'une source de tension idéale :

ou encore:

□ Représentations schématiques d'une source de courant idéale :

Circuit ouvert et circuit fermé

Circuit ouvert, ou « coupe-circuit »

Circuit fermé, ou « court-circuit »

Quelle est la tension aux bornes du circuit ouvert?

$$2 - v = \infty$$

$$3 - v = 1 V$$

4 - v peut prendre n'importe quelle valeur

Quelle est la valeur de résistance d'un court-circuit ?

$$2 - R = \infty$$

$$3 - R = 1 \Omega$$

4 - R peut prendre n'importe quelle valeur

Circuit ouvert et circuit fermé

Circuit ouvert

- □ R =
- □ i =
- Une tension peut exister aux bornes

Circuit fermé

- □ R =
- □ V =
- Un courant peut circuler dans le « fil »

Nœuds d'un circuit

 Un nœud est un point qui connecte deux ou plusieurs éléments dans un circuit

Mailles dans un circuit

□ Combien de mailles dans ce circuit?

- 1 1
- 2 2
- 3 3
- 4 4

Mailles dans un circuit

□ Combien de mailles dans ce circuit?

Association série - parallèle

Lois de Kirchhoff

- □ Loi des nœuds (KCL)
 - Sur un nœud, la somme des courants est nulle
- Loi des mailles (KVL)
 - Dans une maille, la somme des tensions est nulle

Loi des nœuds

Relation:

$$i_1 - i_2 + i_3 + i_4 = 0$$

 $i_1 + i_3 + i_4 = i_2$

Loi des mailles

Relations dans les trois mailles:

$$E_1 = V_1 + V_2$$
 $E_2 = V_2 + V_3$
 $E_1 = V_1 + E_2 - V_3$

Exemple: le diviseur de tension

$$1 - V = 10 V$$

$$2 - V = 3,33 V$$

$$3 - V = 7 V$$

$$4 - V = 3 V$$

$$5 - V = 1,428 V$$

6 – Autre réponse

Exercice

$$1 - I = 3 A$$

$$2 - I = 9 A$$

$$3 - I = 4 A$$

$$4 - I = 2,4 A$$

$$5 - I = 0 A$$

6 – Autre réponse

Sommaire

- Quelques définitions
- Loi d'Ohm, loi des nœuds, loi des mailles
- Sources de courant, sources de tension
- Equivalent Thévenin-Norton
- □ Théorème de superposition
- □ Théorème de Millman

5

Source de tension réelle

Modèle du générateur de <u>Thévenin</u>

v1 idéal réel : pente -R

I = |I'|I peut être positif, négatif ou nul

V1: tension à vide

Icc : courant de court-circuit

R : résistance interne (linéarisation)

Source de courant réelle

Modèle du générateur de Norton

I = |I'|V peut être positif, négatif ou nul

V1: tension à vide

Icc: courant de court-circuit

R : résistance interne (linéarisation)

Influence de la charge

■ Notion de point de fonctionnement :

Point de fonctionnement correspondant au couple source/charge

$$Rc \rightarrow 0$$
: court-circuit $V = 0$ $I = Icc$

$$Rc \rightarrow \infty$$
: coupe-circuit $V = V1$ $I = 0$

Sommaire

- Quelques définitions
- Loi d'Ohm, loi des nœuds, loi des mailles
- Sources de courant, sources de tension
- Equivalent Thévenin-Norton
- □ Théorème de superposition
- □ Théorème de Millman

Modèle équivalent de Thévenin et Norton

 Tout circuit (ou partie de circuit) peut être mis sous la forme d'un générateur équivalent de Thévenin ou Norton

Exemple:

Méthode pour déterminer un équivalent Thévenin

- Trouver Eth et Rth
 - Eth → tension à vide
 - Rth → Résistance équivalente

$$egin{aligned} \mathbf{V}_{\mathsf{AB}} = \mathbf{E}_{\mathsf{th}} & E_{th} = E_1 \cdot rac{R_1}{R_1 + R_2} \end{aligned}$$

Méthode pour déterminer un équivalent Thévenin

□ Rth?

- On « éteint » toutes les sources (non commandées)
 - Source de tension → circuit fermé

Source de courant → circuit ouvert

On déduit la résistance équivalente vue des nœuds A et B

Méthode pour déterminer un équivalent Norton

- Trouver In et Rn
 - In → courant de court-circuit
 - Rn → Résistance équivalente

$$I_n = \frac{E_1}{R_2}$$

- □ Rn?
 - Même méthode que précédemment

$$R_n = R_1 // R_2$$

Sommaire

- Quelques définitions
- Loi d'Ohm, loi des nœuds, loi des mailles
- Sources de courant, sources de tension
- Equivalent Thévenin-Norton
- □ Théorème de superposition
- □ Théorème de Millman

Théorème de superposition

- Les sources doivent être indépendantes
- Les tension et les courants dans le circuit sont la somme de chaque contribution calculée en annulant toutes les sources sauf une

Théorème de superposition

V1 = E1.R2 / (R1+R2)

$$V3 = -11.(R1//R2)$$

R1

$$V2 = E2.R1 / (R1+R2)$$

$$V = V1 + V2 + V3$$

$$V = E1 \frac{R2}{R1 + R2} + E2 \frac{R1}{R1 + R2} - I1(R1//R2)$$

Sommaire

- Quelques définitions
- Loi d'Ohm, loi des nœuds, loi des mailles
- Sources de courant, sources de tension
- Equivalent Thévenin-Norton
- □ Théorème de superposition
- □ Théorème de Millman

Théorème de Millman

Synthèse de la loi d'Ohm et de l'équivalence Thévenin-Norton

Généralisation

$$V = R_{eq} \cdot \sum \pm I = \frac{\sum \pm I}{\sum G}$$

G est la conductance, exprimée en Ohm⁻¹ ≡ Siemens (S)

Récapitulatif (A savoir)

- Outils pour analyser les circuits
 - Loi d'Ohm
 - Loi des mailles, loi des nœuds
 - Théorème de superposition
 - Théorème de Millman
- Equivalences Thévenin Norton
 - Savoir déterminer l'équivalent de tout circuit

Fin du chapitre 1

