

PF1

Princi	es de	Fonctionnem	ent des	Machines	Binaires
1 111101	,00 00	1 011001011110111	Citt acs		Dillanco

2020-2021

Semaine 02 - Numération et arithmétique

Exercice 1 Poser et effectuer les opérations suivantes :

- $-(100101101101)_2 + (10101011101)_2$. Convertir le résultat en base 8.
- $-(10101111)_2 \times (11011)_2$.
- $-(AF8FE)_{16} + (56A8)_{16}.$

Exercice 3 Donner les tables d'addition et de multiplication de la base 7. Poser et effectuer $(356)_7 \times (122)_7$.

Exercice 4 Résoudre le puzzle dans la base ix. Exercice 5 Résoudre le puzzle dans la base sept.

Exercice 6 On s'intéresse aux critères de divisibilité...

- 1. En cours, un critère de divisibilité par 7 a été présenté pour les entiers écrits en base $10: (a_n \cdots a_1 a_0)_{10}$ est divisible par 7 si et seulement si $(a_n \cdots a_1)_{10} + 5 a_0$ l'est. Utiliser ce critère pour décider si $(223765675767)_{10}$ est divisible par 7? Et $(170275)_{10}$?
- 2. En reprenant ce même principe, proposer un critère de divisibilité par 111 pour les entiers écrits en base 10 ? L'appliquer à 5316123.
- 3. Changement de base... Proposer un critère de divisibilité par 3 pour les entiers écrits en binaire, puis des critères de divisibilité par 5 et par 7. Les tester.
- 4. Changements de base encore. L'entier (32)₄ est-il pair? Et (32)₇? Trouver un critère de divisibilité par 2 pour un entier écrit en une base paire et un critère pour une base impaire.

Exercice 7 Effectuer les opérations suivantes. Utiliser les "preuves" par b-1, b+1, b^2-1 .

Exercice 8 Effectuer les opérations suivantes. Utiliser les "preuves" par $b-1,\ b+1,\ b^2-1.$

$$(8 \quad 3 \quad C \quad F \quad 3)_{16} + (D \quad B \quad F \quad 8 \quad 9)_{16}$$

$$(8 \ 3 \ C \ 4 \ 3)_{16}$$
 $\times (D \ A \ D \ 8 \ 9)_{16}$

+	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
1	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	10
2	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	10	11
3	3	4	5	6	7	8	9	Α	В	С	D	Ε	F	10	11	12
4	4	5	6	7	8	9	Α	В	С	D	Ε	F	10	11	12	13
5	5	6	7	8	9	Α	В	С	D	Е	F	10	11	12	13	14
6	6	7	8	9	Α	В	С	D	Ε	F	10	11	12	13	14	15
7	7	8	9	Α	В	С	D	Е	F	10	11	12	13	14	15	16
8	8	9	Α	В	С	D	Ε	F	10	11	12	13	14	15	16	17
9	9	Α	В	С	D	Е	F	10	11	12	13	14	15	16	17	18
Α	Α	В	С	D	Е	F	10	11	12	13	14	15	16	17	18	19
В	В	С	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A
С	С	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B
D	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C
Е	Ε	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D
F	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E

x	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
2	0	2	4	6	8	Α	С	Е	10	12	14	16	18	1A	1C	1E
3	0	3	6	9	С	F	12	15	18	1B	1E	21	24	27	2A	2D
4	0	4	8	С	10	14	18	1C	20	24	28	2C	30	34	38	зС
5	0	5	Α	F	14	19	1E	23	28	2D	32	37	зС	41	46	4B
6	0	6	С	12	18	1E	24	2A	30	36	зС	42	48	4E	54	5A
7	0	7	Е	15	1C	23	2A	31	38	3F	46	4D	54	5B	62	69
8	0	8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	0	9	12	1B	24	2D	36	3F	48	51	5A	63	6C	75	7E	87
Α	0	Α	14	1E	28	32	зС	46	50	5A	64	6E	78	82	8C	96
В	0	В	16	21	2C	37	42	4D	58	63	6E	79	84	8F	9A	A 5
С	0	С	18	24	30	зС	48	54	60	6C	78	84	90	9C	A8	B4
D	0	D	1A	27	34	41	4E	5B	68	75	82	8F	9C	А9	B6	СЗ
Ε	0	Е	1C	2A	38	46	54	62	70	7E	8C	9A	A8	B6	C4	D2
F	0	F	1E	2D	зС	4B	5A	69	78	87	96	A 5	B4	СЗ	D2	E1

Exercice 9

- 1. Écrire les nombres $(5,5)_{10}$, $(3,75)_{10}$, $(7,875)_{10}$, $(0,1875)_{10}$, $(0,3)_{10}$, et $(123,45)_{10}$ en base 2.
- 2. Écrire les nombres $(11, 1010101)_2$, $(1, 111001)_2$, et $(11, 01)_2$ en base 10.
- 3. Donner un nombre qui dispose d'une représentation finie en base 3 mais pas en base 10.

Exercice 10 Le complément d'un nombre b-adique x est un nombre b-adique y vérifiant x + y = 0 (on s'interdit ici d'utiliser le signe -).

- Quel est le complément de $(1101)_2$?
- Celui de $(1101)_3$? Et celui de $(1101)_5$?

Exercice 11 On note S le système d'Avižienis en base 4 avec les chiffres $\{\overline{3}, \overline{2}, \overline{1}, 0, 1, 2, 3\}$.

- Examiner comment adapter les méthodes de conversion (divisions, Horner) à ce type de système.
- Convertir les entiers $(3210)_4$ et $-(123)_{10}$ vers le système S.
- Poser et effectuer l'addition de ces deux entiers dans le système S. Convertir le résultat en décimal.