Modelo de Regressão Logística Ordinal com chances proporcionais

Wesley Furriel

Universidade Estadual de Maringá, Departamento de Estatística, PR, Brasil

12 de Junho de 2018

Organização

- 1 Introdução
- 2 Materiais
- Metodologia
- 4 Análise descritiva
- 6 Resultados do modelo
- Qualidade do ajuste e predição
- Referências

Introdução

O presente trabalho teve por objetivo investigar se os eleitores tendem a concordam ou discordam da questão "Se um governante administra bem o país, não importa se ele é corrupto ou não", presente no survey do Datafolha em 2017. Como o interesse foi investigar essa questão sob a ótica dos modelos regressão ordinal, três variáveis sobre a opinião dos eleitores acerca do cenário político e escolaridade dos mesmos foram empregadas, com o intuito de avaliar o impacto destas, sobre a frase exposta.

Pacotes utilizados e descrição do banco

- ► Rstudio 1.1.447
 - ► VGAM, dplyr, generalhoslem, ordinal, ggplot2.
- ► SAS 9.4
 - ► proc logistic
- ► Bancos de dados
 - ▶ DataFolha
 - * Ano:2017
 - * Número de observações: 2774
 - * Número de variáveis: 124
 - * Fonte: http://datafolha.folha.uol.com.br/

Modelo de Regressão Logística Ordinal

Nos casos em que a variável de interesse apresenta mais de duas categorias, isto é r categorias (r>2) e possui ordenação, foram propostos modelos que utilizam os denominados logitos cumulativos (GIOLO, 2017). Para apresentá-lo considere j=1,2,...,r os índices das categorias ordenadas de Y, que segue uma distribuição multinomial,

$$\theta_1(\mathbf{x}) = p_1(x) = P(Y \le 1|\mathbf{x}),$$
 $\theta_2(\mathbf{x}) = p_1(\mathbf{x}) + p_2(x) = P(Y \le 2|\mathbf{x}),$
...,
 $\theta_r(\mathbf{x}) = p_1(\mathbf{x}) + p_2(\mathbf{x}) + p_{r-1}(\mathbf{x}) + p_r(x) = P(Y \le r|\mathbf{x}),$

em que $p_j(x) = P(Y=j|x)$ referente à probabilidade de ocorrência da j-ésima categoria de resposta para dado vetor x de p covariáveis, de forma que $\sum_{j=1}^r p_j(x) = \theta_r(x) = 1$.

Considerando as quantidades $\theta_j(x)$ correspondente as probabilidades acumuladas, tal que $\theta_1(x) \leq \theta_2(x) \leq ...\theta_r(x) = 1$ definem os logitos cumulativos

$$ln\left[\frac{\theta_j(\boldsymbol{x})}{1-\theta_j(\boldsymbol{x})}\right] = ln\left[\frac{P(Y \le j|x)}{1-P(Y \le j|x)}\right] = ln\left[\frac{P(Y \le j|x)}{P(Y > j|x)}\right]$$

para j=1,...,r-1 e ${\boldsymbol x}$ um de valores de p covariáveis. Partindo destas formulações podemos considerar os modelos, com chances proporcionais e não proporcionais e com chances proporcionais parciais.

Considerando a não existência de ordenação em uma variável resposta Y, toma-se o modelo logístico com categoria de referência, no qual $p_j(\boldsymbol{x})$, é a probabilidade de ocorrência da categoria j(j=1,2,...,r) para um dados vetor \boldsymbol{x} de p covariáveis,

$$ln\left[\frac{p_1(\boldsymbol{x})}{p_r(\boldsymbol{x})}\right], ln\left[\frac{p_2(\boldsymbol{x})}{p_r(\boldsymbol{x})}\right], ..., ln\left[\frac{p_{r-1}(\boldsymbol{x})}{p_r(\boldsymbol{x})}\right]$$

em que cada nível da resposta é comparado com o nível de referência fixado. Sendo a resposta categórica ordinal a função de ligação mais popular é o de logitos cumulativos. Seja, $\theta_j(x) = P(Y \leq j)$, temos:

$$ln\left[\frac{p_{1}(x)}{p_{2}(x)+...+p_{r}(x)}\right], ln\left[\frac{p_{1}(x)+p_{2}(x)}{p_{3}(x)+...+p_{r}(x)}\right], ..., ln\left[\frac{p_{1}(x)+...+p_{r-1}(x)}{p_{r}(x)}\right]$$

neste caso à medida que a função logit muda ordinalmente de categoria, o numerador aumenta e o denominador diminui (DERR, 2013).

Modelos com chances proporcionais

Em alguns casos a suposição de chances proporcionais equivale a supor que $\beta_j=\beta$ para todo j. Este modelo popularizado por McCullagh (1980), é dado por

$$ln\left[\frac{\theta_j(\boldsymbol{x})}{1-\theta_j(\boldsymbol{x})}\right] = ln\left[\frac{P(Y \le j|x)}{P(Y > j|x)}\right] = \boldsymbol{\beta}_{0j} + \boldsymbol{\beta}'\boldsymbol{x}$$

para j=1,...,r-1 com $\beta=(\beta_1,...,\beta_p)$ o modelo exposto assume que o efeito das covariáveis não diferem entre os r-1 logitos.

Em termos de probabilidade cumulativas temos

$$\theta_j(\mathbf{x}) = \frac{exp(\boldsymbol{\beta}_{0j} + \boldsymbol{\beta}'\mathbf{x})}{1 + exp(\boldsymbol{\beta}_{0j} + \boldsymbol{\beta}'\mathbf{x})}, \quad j = 1, 2, ..., r - 1$$

As probabilidades $p_j(x), j=1,...,r$, são obtidas para o modelo por meio das subtrações $p_j(x)=\theta_j(x)-\theta_{j-1}(x)$ em que $\theta_0(x)=0$ e $\theta_r(x)=\sum p_j(x)=1$.

Considerado o modelo de chances proporcionais, a função de máxima verossimilhança é expressa por

$$L = \prod_{i=1}^{n} \left\{ \prod_{j=1}^{r} [p_j(\boldsymbol{x_i})]^{y_{ij}} \right\} = \prod_{i=1}^{n} \left\{ \prod_{j=1}^{r} [\theta_j(\boldsymbol{x_i}) - \theta_{j-1}(\boldsymbol{x_i})]^{y_{ij}} \right\}, \quad (1)$$

no qual $y_{ij}=1$ se a resposta do indivíduo i,i=1,...,n, está na categoria $j,\,j=1,...,r$ e $y_{ij}=0$, caso contrário, com $\sum_{j=1}^r y_{ij}=1$. Para verificar a proporcionalidade das chances do modelo, pode-se utilizar o teste da razão de verossimilhança, em que entre o modelo sob a hipótese nula é o de proporcionalidade e o sob a alternativa é o de não proporcionalidade.

Em modelos nos quais não existem problemas de dados esparsos é possível verificar a qualidade do ajuste pelas estatísticas Q_p e Q_l dadas respectivamente por

$$Q_P = \sum_{i=1}^{s} \sum_{j=1}^{r} \frac{(n_{ij} - e_{ij})^2}{e_{ij}} \quad e \quad Q_L = 2 \sum_{i=1}^{s} \sum_{j=1}^{r} n_{ij} ln\left(\frac{n_{ij}}{e_{ij}}\right), \quad (2)$$

em que $e_{ij}=(n_{i+})p_j(x_i), j=1,...,r$, a frequência esperada sob a hipótese nula de que o modelo é adequado. Essas estatísticas seguem distribuição assintótica qui-quadrado com gl=(r-1)(s-1)-q em que r é o número de categorias da resposta, s o número de subpopulações e q o número de parâmetros do modelo, sem considerar β_{0j} .

A estatística Q_{HL} , de Hosmer-Lemeshow dada pela expressão

$$Q_{HL} = \sum_{i=1}^{g} \frac{[o_i - n_i \bar{p}(x_i)]^2}{n_i \bar{p}(x_i) [1 - n_i \bar{p}(x_i)]}$$
(3)

em que n_i é a frequência de observações no i-ésimo grupo, o_i é a frequência de resposta Y=1 no i-ésimo grupo e $\bar{p}(x_i)$ é a probabilidade média da resposta Y=1 estimada. Tal estatística segue aproximadamente uma X^2 com gl=(g-2).

Para o teste de Lipsitz et al.(1996) preciso atribuir uma pontuação ordinal a cada observação, utilizando pesos igualmente espaçados

$$s_i = \hat{p}_{i1} + 2\hat{p}_{i2} + \dots + r\hat{p}_{ir}, \quad i = 1, \dots, n.$$

as observações devem ser organizadas em g grupos baseados em um $\it score$ ordinal.

$$I_{ik} = \begin{cases} 1, & \text{se a observação } i \text{ está no grupo } k \\ 0, & \text{caso conrário} \end{cases}$$

para i=1,2,...,n e k=1,...,g-1. Desse modo, é preciso ajustar um modelo incluindo o indicador I_{ik}

$$ln\left[\frac{\theta_j(\mathbf{x})}{1-\theta_j(\mathbf{x})}\right] = \beta_{0j} + \beta_1 x_1 + \dots + \beta_2 x_2 + \gamma_1 I_1 + \dots + \gamma_{g-1} I_{g-1}, j = 1, \dots, r-1$$

para conferir se o modelo foi corretamente ajustado, $\gamma_1+...+\gamma_{g-1}=0$. Partindo disso, realiza-se o TRV $-2(L_1-L_0)\sim X_{g-1}^2$, em que L_1 é o modelo padrão e L_0 o modelo com indicador binário(FAGERLAND & HOSMER, 2013).

Análise descritiva

Variáveis utilizadas na investigação

p20a	Se um governante administra bem o país, não importa se ele é corrupto ou não	Condorda totalmente Não concorda, nem discorda Discorda totalmente
p15	Na sua opinião, depois da Operação Lava-Jato a corrupção no Brasil irá diminuir, aumentar ou continuará na mesma proporção	Irá diminuir Irá aumentar Continuará na mesma proporção de sempre
p16	Considerando o que foi revelado pela Operação Lava-Jato e seus desdobramentos até o momento, na sua opinião, Lula deveria estar preso?	Sim, deveria Não deveria
p21a	Gostaria que você me dissesse com qual dessas três afirmações você concorda mais	A democracia é melhor que qualquer outra forma de governo; Em certas circunstâncias, é melhor uma ditadura do que democracia; Tanto faz se o governo é uma democracia ou uma ditadura?
escola	Até que ano da escola você estudou?	

Modelo de chances proporcionais

Como observado a variável resposta é composta por 3 níveis, isto é, r=3, dessa forma, os logitos cumulativos são definidos por

$$\begin{split} & \ln \left[\frac{\theta_1(x)}{1 - \theta_1(x)} \right] = \ln \left[\frac{P(Y \le 1|x)}{P(Y > 1|x)} \right] = \ln \left[\frac{p_1}{p_2 + p_3} \right], \\ & \ln \left[\frac{\theta_2(x)}{1 - \theta_2(x)} \right] = \ln \left[\frac{P(Y \le 2|x)}{P(Y > 2|x)} \right] = \ln \left[\frac{p_1 + p_2}{p_3} \right] \end{split}$$

Para avaliar a suposição de chances proporcionais para as covariáveis, foram realizados testes da razão de verossimilhança entre os modelos de chances proporcionais e não proporcionais

$$\ln\left[\frac{\theta_{j}(x)}{1-\theta_{j}(x)}\right] = \beta_{0j} + \beta_{1j}x_{1} + \beta_{2j}x_{2} + \beta_{3j}x_{3} + \beta_{4j}x_{4} + \beta_{5j}x_{5} + \beta_{6j}x_{6},$$

$$\ln\left[\frac{\theta_{j}(x)}{1-\theta_{j}(x)}\right] = \beta_{0j} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3} + \beta_{4}x_{4} + \beta_{5}x_{5} + \beta_{6}x_{6}$$

Sendo a hipótese nula do teste baseada na proporcionalidade das chances, isto é, $H_0: \beta = \beta_j, j = 1, 2,.$

Teste da Razão de Verossimilhança

Modelos	TRV	gl	valor-p
Completo	3.5497	6	0.7374
p15	0.5792	2	0.7486
p16	0.0013	1	0.9711
p21a	1.0235	2	0.5994
escola	2.8775	1	0.0898

Existem evidência a favor do modelo de chances proporcionais, dado por

$$ln\left[\frac{\hat{\theta}_{j}(x)}{1-\hat{\theta}_{j}(x)}\right] = \hat{\beta}_{0j} + \hat{\beta}_{1}p152 + \hat{\beta}_{2}p1532 + \hat{\beta}_{3}p162 + \hat{\beta}_{4}p21a2 + \hat{\beta}_{5}p21a3 + \hat{\beta}_{6}escola$$

Resultados do modelo

Estimativas do modelo ordinal

Parâmetros	Estimativas	E.P.	Z	Valor-p
β_{01}	-1.9969	0.1478	-13.5141	< 0.0001
eta_{02}	-0.7144	0.1414	-5.0533	< 0.0001
β_1 p15(aumentar)	0.4201	0.1471	2.8562	0.0043
β_2 p15(na mesma)	0.2674	0.0927	2.8845	0.0039
β_3 p16(não deveria)	0.7623	0.0896	8.5079	< 0.0001
β_4 p21a(ditadura)	0.3319	0.1150	2.8861	0.0039
β_5 p21a(tanto faz)	0.6880	0.1044	6.5913	< 0.0001
eta_6 escola	-0.1685	0.0242	-6.9721	< 0.0001

A Tabela 3 apresenta as estimativas dos parâmetros do modelo de chances proporcionais, primeiramente é preciso ressaltar a existência de dois parâmetros de intercepto.

- No que diz respeito a variável p15 referente a opinião sobre a Lavajato temos que os eleitores que acreditam que a operação irá aumentar a corrupção quando comparados a quem acha que ela irá diminuir, possuem 1.54 mais chances de discordar com a frase "Se um governante administra bem o país, não importa se ele é corrupto ou não". No caso em que o eleitor acredita que a após a Lava-jato a corrupção continuará mesma coisa, quando comparado a quem acha que irá diminuir, as chances de discordar da frase são 1.31 maiores
- Quanto a p21a nota-se que os eleitores que apresentam menor afinidade com a democracia, tem mais chances de discordar da frase investigada. Neste caso, eleitores que não veem diferença entre democracia e ditadura, tem 2 vezes mais chances de discordar da frase exposta como resposta, do que os eleitores que acreditam que a democracia é a melhor forma de governo.

Pelo teste de Lipsitz, $Q_{Lip}=13.54(gl=9,valor-p=0.1396)$, indicando evidências a favor do modelo ajustado.

Probabilidades não cumulativas do modelo ordinal

id	escola	p15	p16	p21a	â (m)	â (m)	- (m)
	escola	pio	bio	ρzτα	$p_1(x)$	$\hat{p}_2(x)$	$\hat{p}_3(x)$
1	1	1	1	1	0.1029	0.1897	0.7074
2	2	1	1	1	0.0884	0.1706	0.7410
3	3	1	1	1	0.0757	0.1523	0.7720
4	4	1	1	1	0.0647	0.1350	0.8003
5	5	1	1	1	0.0552	0.1189	0.8259
6	6	1	1	1	0.0471	0.1041	0.8488
7	7	1	1	1	0.0401	0.0907	0.8692
8	8	1	1	1	0.0341	0.0788	0.8872
137	1	3	2	3	0.3899	0.3075	0.3026
138	2	3	2	3	0.3506	0.3100	0.3393
139	3	3	2	3	0.3133	0.3086	0.3780
140	4	3	2	3	0.2782	0.3034	0.4184
141	5	3	2	3	0.2457	0.2944	0.4599
142	6	3	2	3	0.2158	0.2823	0.5019
143	7	3	2	3	0.1887	0.2674	0.5439
144	8	3	2	3	0.1642	0.2505	0.5853

Para obter as probabilidades cumulativas, deve-se considerar $\hat{p}_1(x) = \hat{\theta}_1(x)$ e para $P(Y \le 2|x) = \hat{\theta}_2(x) = \hat{p}_1(x) + \hat{p}_2(x)$.

Referências

- Giolo SR. Introdução a análise de dados categóricos. Curitiba, Universidade Federal do Paraná-Departamenmto de Estatística. 2006.
- Agresti A. Categorical data analysis. John Wiley & Sons; 2003 Mar 31.
- Christensen RH, Christensen MR. Package 'ordinal'. Stand. 2015 Jun 28;19:2016.
- Derr, B., 2013. Ordinal response modeling with the LOGISTIC procedure. In SAS Global Forum pp. 1-20.
- ► Fagerland, M.W. and Hosmer, D.W., 2013. A goodness-of-fit test for the proportional odds regression model. Statistics in medicine, 32(13), pp.2235-2249.

Muito obrigado!