Examenul național de bacalaureat 2022 Proba E. c) Matematică *M st-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{2}(\sqrt{2}-1)(2+\sqrt{2}) = (2-\sqrt{2})(2+\sqrt{2}) =$	3p
	=4-2=2	2p
2.	$f(x) = 0 \Leftrightarrow 2x^2 - 4x = 0$	3p
	x = 0 sau $x = 2$	2p
3.	$2^{x-3} = 2^{-2x} \Leftrightarrow x-3 = -2x$	3 p
	x=1	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt 9 numere care sunt multipli de 11, deci sunt 9 cazuri favorabile, de unde obținem $p = \frac{9}{90} = \frac{1}{10}$	3р
5.	AC = 5	2p
	$BC = \sqrt{4^2 + 3^2} = 5$, deci $AC = BC$, de unde obținem că triunghiul ABC este isoscel	3 p
6.	$ \operatorname{tg}\frac{\pi}{3} = \sqrt{3}, \sin\frac{\pi}{2} = 1, \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2} $	3р
	$E\left(\frac{\pi}{3}\right) = \sqrt{3} + 1 - 2 \cdot \frac{\sqrt{3}}{2} = 1$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$M(1) = \begin{pmatrix} 2 & -1 \\ -2 & 3 \end{pmatrix} \Rightarrow \det(M(1)) = \begin{vmatrix} 2 & -1 \\ -2 & 3 \end{vmatrix} = 2 \cdot 3 - (-1) \cdot (-2) =$	3p
	=6-2=4	2p
b)	$M(x) \cdot M(1) = \begin{pmatrix} 4x+2 & -4x-1 \\ -8x-2 & 8x+3 \end{pmatrix} =$	3 p
	$= \begin{pmatrix} (4x+1)+1 & -(4x+1) \\ -2(4x+1) & 2(4x+1)+1 \end{pmatrix} = M(4x+1), \text{ pentru orice număr real } x$	2p
c)	$M(x) \cdot M(1) \cdot M(1) = (M(x) \cdot M(1)) \cdot M(1) = M(4x+1) \cdot M(1) = M(16x+5)$, pentru orice	3р
	număr real x	Sp
	$M(16x+5) = M(x+2)$, de unde obținem $16x+5 = x+2$, deci $x = -\frac{1}{5}$	2p
2.a)	$(-1) \circ 0 = 5 \cdot (-1) \cdot 0 + 10 \cdot (-1) + 10 \cdot 0 + 18 =$	3 p
	=-10+18=8	2p
b)	$x \circ y = 5xy + 10x + 10y + 20 - 2 = 5x(y+2) + 10(y+2) - 2 =$	3 p
	=(5x+10)(y+2)-2=5(x+2)(y+2)-2, pentru orice numere reale x şi y	2p

Ī	c)	$m \circ m = 5(m+2)^2 - 2$, pentru orice număr întreg m	2p	Ī
		$5(m+2)^2 - 2 = m \Rightarrow (m+2)(5m+9) = 0$ şi, cum m este număr întreg, obținem $m = -2$	3 p	

SUBIECTUL al III-lea (30 de puncte)

		/
1.a)	$f'(x) = \frac{2x(x-1) - (x^2+1)}{(x-1)^2} + \frac{1}{x-1} =$	3p
	$=\frac{x^2-2x-1+x-1}{(x-1)^2} = \frac{x^2-x-2}{(x-1)^2}, \ x \in (1,+\infty)$	2 p
b)	f(2)=5, f'(2)=0	2p
	Ecuația tangentei este $y - f(2) = f'(2)(x-2)$, adică $y = 5$	3 p
c)	$f'(x)=0 \Rightarrow x=2$; pentru $x \in (1,2] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $(1,2]$ și pentru $x \in [2,+\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[2,+\infty)$	3p
	$f(x) \ge f(2)$, pentru orice $x \in (1, +\infty)$, de unde obținem $\frac{x^2 + 1}{x - 1} + \ln(x - 1) \ge 5$, pentru orice $x \in (1, +\infty)$	2p
2.a)	$\int_{0}^{2} f(x)(6x^{2}+1)dx = \int_{0}^{2} (x+4)dx = \left(\frac{x^{2}}{2}+4x\right)\Big _{0}^{2} =$	3p
	=2+8=10	2 p
b)	$\int_{0}^{2} \left(f(x) - \frac{4}{6x^{2} + 1} \right) dx = \int_{0}^{2} \frac{x}{6x^{2} + 1} dx = \frac{1}{12} \int_{0}^{2} \frac{\left(6x^{2} + 1\right)'}{6x^{2} + 1} dx = \frac{1}{12} \ln\left(6x^{2} + 1\right) \Big _{0}^{2} =$	3р
	$= \frac{1}{12} \ln 25 = \frac{\ln 5}{6}$	2p
c)	$\int_{0}^{1} \frac{x+4}{f(x)} \cdot e^{2x} dx = \int_{0}^{1} (6x^{2}+1) \cdot e^{2x} dx = \int_{0}^{1} (6x^{2}+1) \cdot \left(\frac{e^{2x}}{2}\right)' dx = \left(6x^{2}+1\right) \cdot \left(\frac{e^{2x}}{2}\right) \left \frac{1}{0} - \int_{0}^{1} 6x e^{2x} dx = \frac{7e^{2}-1}{2} - 3xe^{2x} \left \frac{1}{0} + \frac{3e^{2x}}{2} \right \frac{1}{0} = 2e^{2} - 2$	3p
	$2e^2 - 2 = m(e^2 - 1)$, de unde obținem $m = 2$	2p