Departamento de Física Universidade de Aveiro

Modelação de Sistemas Físicos

2ª Aula Teórica

Sumário:

- Cap. 1 Regressão Linear
- Cap. 2 Movimento a uma dimensão.
 - Observação de movimento linear
 - Definição de velocidade e aceleração instantânea.
 - Movimentos uniforme e uniformemente acelerado.
 - Queda de uma bola de ténis.
 - Queda de um volante de badmington.

Bibliografia:

Garcia, cap.5.

John V. Guttag, Introduction to Computation and Programming Using Python, 2013, 2ª edição, MIT Press, cap. 15.

Serway, cap. 2

Sørenssen, cap. 4

Villate, cap. 1

Análise de Dados experimentais (resultado de medições)

Apresentam-se numa tabela, ou em registo papel, ou ficheiro digital (que são tabelas)

Ex: Numa experiência de difração por uma fenda única de um feixe de luz, em que L é a distância da dupla fenda ao alvo e X a distância entre máximos luminosos consecutivos da figura de difração, registaram-se estas valores:

<i>L</i> (cm)	<i>X</i> (cm)
222.0	2.3
207.5	2.2
194.0	2.0
171.5	1.8
153.0	1.6
133.0	1.4
113.0	1.2
92.0	1.0

Que relação existe entre L e X?

Difícil de vislumbrar, se só olharmos para a tabela!

-2

Análise de Dados experimentais (resultado de medições)

Ex: Numa experiência de difração por uma fenda única de um feixe de luz, em que L é a distância da fenda ao alvo e X a distância entre máximos luminosos consecutivos da figura de difração, registaram-se estas valores:

Que relação existe entre L e X?

<i>L</i> (cm)	<i>X</i> (cm)
222.0	2.3
207.5	2.2
194.0	2.0
171.5	1.8
153.0	1.6
133.0	1.4
113.0	1.2
92.0	1.0

E se os dados forem apresentados num gráfico:

Análise de Dados experimentais (resultado de medições)

Matematicamente como se extrai as caraterísticas de uma reta deste

gráfico?

Regressão linear pelo método dos mínimos quadráticos

Dados experimentais: (x_i, y_i)

Pontos da reta: (x_i, p_i) dados pela reta $p_i = mx_i + b$

não se conhece m e b

Mínimo de

$$S(m,b) = \sum_{i=1}^{N} (y_i - p_i)^2$$

soma das diferenças (ao quadrado, para ser sempre positivas) entre o valor expeimental e o valor da reta do modelo teórico)

Condições:

$$\frac{\partial S(m,b)}{\partial m} = 0$$

$$\frac{\partial S(m,b)}{\partial h} = 0$$

Cap. 1 Física: Medição e Modelação

$$\begin{cases} \frac{\partial S(m,b)}{\partial m} = 0 \\ \frac{\partial S(m,b)}{\partial b} = 0 \end{cases} \implies \begin{cases} m = \frac{N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i}{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2} \\ b = \frac{\sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i y_i}{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2} \end{cases}$$

O coeficiente de determinação r^2 é tal que quando ~1 indica um ótimo ajuste, enquanto que ~ 0 indica que não o modelo não é linear

$$r^{2} = \frac{\left(N \sum_{i=1}^{N} x_{i} y_{i} - \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} y_{i}\right)^{2}}{\left[N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}\right)^{2}\right] \left[N \sum_{i=1}^{N} y_{i}^{2} - \left(\sum_{i=1}^{N} y_{i}\right)^{2}\right]}$$

Os erros associados são:

$$\begin{cases} \Delta m = |m| \sqrt{\frac{1}{r^2} - 1} \\ \Delta b = \Delta m \sqrt{\frac{\sum_{i=1}^{N} x_i^2}{N}} \end{cases}$$

Cap. 1 Física: Medição e Modelação

m=0.010155051683894637+-0.00016296903598678832 b=0.05507544181393875 +- 0.02713076554383449 r^2 =0.9984571397353084

$$m = 0.0102 \pm 0.0002 \frac{\text{cm}}{\text{cm}} = 0.0102 \pm 0.0002$$

 $b = 0.06 \pm 0.03 \text{ cm}$

Cap. 1 Física: Medição e Modelação

$$r^2 = 0.993$$

 $\begin{cases} m = 0.0102 \pm 0.0002 \\ b = 0.06 \pm 0.03 \text{ cm} \end{cases}$

$$r^2 = 0.889$$
 Pior ajuste $\begin{cases} m = 0.0101 \pm 0.0004 \\ b = 0.08 \pm 0.06 \text{ cm} \end{cases}$ Os erros são maiores

Cap. 1 Física: Medição e Modelação

$$\log_b x^y = y \cdot \log_b x$$

$$\log_b(x \cdot y) = \log_b x + \log_b y$$

$$\log_b \frac{x}{y} = \log_b x - \log_b y$$

$$\log_b x = \frac{\log_c x}{\log_c b}$$

Leis de potência $y = cx^n$

 $\log_b y = \log_b c + n \cdot \log_b x \quad : \mathsf{RETA}$

$$\log_b x^y = y \cdot \log_b x$$

$$\log_b(x \cdot y) = \log_b x + \log_b y$$

$$\log_b \frac{x}{y} = \log_b x - \log_b y$$

$$\log_b x = \frac{\log_c x}{\log_c b}$$

Lei exponencial $y = y_0 e^{\lambda t}$

 $\log_b y = \log_b y_0 + \lambda t \qquad : \mathsf{RETA}$ $\mathsf{declive}$

 $y e y_0$ expressos nas mesmas unidades

Cap. 1 Física: Medição e Modelação

Linearização de uma expressão: $y^m = cx^n + b$

Se se fizer:
$$\begin{cases} y^m = Y \\ x^n = X \end{cases} \qquad Y = c \ X + b \quad : \mathsf{RETA}$$

m e n podem ser negativos

Cap. 1 Física: Medição e Modelação

Modelo Linear

O modelo linear entre as quantidades L e x permite realizar previsões:

Interpolação: para $L_{minimo} < L < L_{maximo}$, por exemplo para L=165.0 cm, obtêm-se o valor $x_{previsto}=1.7$ cm.

Extrapolação: para $L < L_{minimo}$ ou $L > L_{maximo}$, por exemplo L=25.0 cm, obtêm-se o valor de $x_{previsto}=0.3$ cm.

O valor interpolado deverá estar correto. O modelo linear é fiável para os valores entre os extremos das quantidades. Contudo não temos confiança no resultado extrapolado, pois não temos medições perto do valor considerado. Na realidade o modelo linear não está validado para valores de $\it L$ pequenos.

Cap. 1 Física: Medição e Modelação

A amarelo:
$$y = m x + b$$
 $r^2 = 0.990$
A verde: $y = c_7 x^7 + c_6 x^6 + c_5 x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + m x + b$

Qual a curva que reproduz melhor os dados experimentais?

E se fizermos com um polinómio do 7º grau?

A função polyfit(x,y,n) do pacote numpy de python faz a regressão linear como também o ajuste a um polinómio de grau n.

Qual se aceita como modelo? A reta ou o polinómio de 7º grau?

Um polinómio de grau n ajusta-se perfeitamente ao mesmos número n de dados experimentais.

É por isso que é um bom modelo?

Se a relação for mesmo linear, o afastamento dos dados experimentais da reta é devido a erros associados à medição.

- Interpolação 'parece' pior do que se usar o modelo linear. No gráfico pode ver a diferença de valores que para L=100 cm os dois modelos preveem,
- Extrapolação os resultados são muito diferentes do modelo linear e dos pontos experimentais mais próximos,

Cap. 1 Física: Medição e Modelação

Com um conjunto de medições é aconselhável fazer os 3 tipos de gráficos

Devido à digitalização dos dados , e ao software atual, é muito fácil e rápido obter sem demora os três gráficos

MSF 2022 - T 2

Cap. 1 Física: Medição e Modelação

Existem casos de dados experimentais que não se podem modelar por uma reta, lei de potência ou exponencial

Ex: dados a modelar por funções periódicas (a fazer mais tarde)

Dados a modelar por funções 'estranhas' Radiação do corpo negro

Expressão de Planck

$$\rho(f) = \frac{8\pi f^2}{c^3} \frac{hf}{e^{hf/kT} - 1}$$

$$h = 6.62607015 \times 10^{-34} \text{ J} \cdot \text{s}$$

Vídeo de Usain Bolt https://www.youtube.com/watch?v=3nbjh

MSF 2022 - T 2 15

Cap. 2 Movimento a 1 dimensão

O estudo começa por construir um esquema:

- Escolha do eixo onde se desenvolve o movimento.
- Escolha do sentido positivo do eixo (costuma ser o do movimento)
- Escolha da origem desse eixo (costuma ser a posição inicial)
- Nesse eixo, colocar a aceleração e o seu sentido.
- Nesse eixo colocar a velocidade e a posição inicial.
- Escolha do instante zero, origem dos tempos (costuma ser o instante inicial).

MSF 2022 - T 2

A posição de Usain Bolt evolui no tempo.

Em cada instante a posição do atleta é diferente. A posição é uma quantidade instantânea.

Indica-se a posição por x e é referenciada no eixo OX. E sendo instantânea indica-se por x(t).

Neste caso é conveniente colocar a origem do eixo no ponto da partida dos atletas.

Pelas mesmas razões a velocidade também é uma quantidade instantânea.

Indica-se por $v_x(t)$. O índice x é para indicar que é referenciado no eixo OX.

MSF 2022 - T2 A posição x(t) e a velocidade $v_x(t)$ podemos ser positivos e negativos!

X

O desempenho de Bolt nos 100m foram medidos.

```
# Tempos de Usain Bolt a correr os 100 m
```

ficheiro dataUsainBolt.txt

1º conjunto: final olimpica em Pequim, 2008

2º conjunto: record mundial, Berlim 2009

Medalha de ouro e record mundial

		• • • • • • • • • • • • • • • • • • • •
# x (m)	t1 (s)	t2 (s)
0	0	0
10	1.83	1.89
20	2.87	2.88
30	3.78	3.78
40	4.65	4.64
50	5.50	5.47
60	6.32	6.29
70	7.14	7.10
80	7.96	7.92
90	8.79	8.75
100	9.69	9.58

Pode-se analisar como foi o seu movimento. A lei do movimento x=x(t)

A velocidade de Usain Bolt evolui no tempo.

Começou com velocidade nula, mas rapidamente aumentou a sua velocidade.

Em cada instante está com uma velocidade diferente.

Que mais se pode afirmar sobre a velocidade de Usain Bolt?

Velocidade média:
$$\overline{v_x} = \frac{\text{distância percorrida}}{\text{tempo}} = \frac{100 \text{ m}}{9.58 \text{ s}} = 10.4 \text{ m/s} = 37.6 \text{ Km/h}$$

Qual a velocidade média nos primeiros e nos segundos 50 m? 9.14 m/s e 12.2 m/s, resp.

E em cada percurso de 10 m? $\overline{v_x} = \frac{x_{i+1} - x_i}{t_{i+1} - t_i}$

x_i	x_{i+1}	$\overline{v_{x}}$
0.0	10.0	5.3
10.0	20.0	10.1
20.0	30.0	11.1
30.0	40.0	11.6
40.0	50.0	12.0
50.0	60.0	12.2
60.0	70.0	12.3
70.0	80.0	12.2
80.0	90.0	12.0
90.0	100.0	12.0

2DF | WM09

Cap. 2 Movimento a 1 dimensão

Que mais se pode afirmar sobre a velocidade de Usain Bolt?

- Velocidade média: $\overline{v_x} = \frac{\text{distância percorrida}}{\text{tempo}} = \frac{100 \text{ m}}{9.58 \text{ s}} = 10.4 \text{ m/s} = 37.6 \text{ Km/h}$
- Qual a velocidade média nos primeiros e nos segundos 50 m? 9.14 m/s e 12.2 m/s, resp.
- E em cada percurso de 10 m? $\overline{v_x} = \frac{\text{distância percorrida}}{\text{tempo}} = \frac{x_{i+1} x_i}{t_{i+1} t_i}$

$$x_i$$
 x_{i+1} $\overline{v_x}$ 0.0 10.0 5.3 10.0 20.0 10.1 20.0 30.0 11.1 30.0 40.0 11.6 40.0 50.0 12.0 50.0 60.0 12.2 60.0 70.0 12.3 70.0 80.0 12.2 80.0 90.0 12.0 90.0 100.0 12.0 Unidades SI

Para calcularmos a velocidade instantânea a partir da velocidade média, diminuímos o percurso em comprimentos muito pequenos (separados por um intervalo de tempo muito pequeno δt)

$$\overline{v_x} = \frac{\text{distância percorrida}}{\text{tempo}} = \frac{x(t + \delta t) - x(t)}{(t + \delta t) - t}$$

E no limite quando
$$\delta t
ightarrow 0$$

$$\lim_{\delta t \to 0} \overline{v_{x}} = v_{x}(t)$$

$$\lim_{\delta t \to 0} \frac{x(t+\delta t)-x(t)}{(t+\delta t)-t} = v_{\chi}(t) \quad \text{ou} \quad \frac{dx(t)}{dt} = v_{\chi}(t)$$

x_i	x_{i+1}	$\overline{v_{x}}$
0.0	10.0	5.3
10.0	20.0	10.1
20.0	30.0	11.1
30.0	40.0	11.6
40.0	50.0	12.0
50.0	60.0	12.2
60.0	70.0	12.3
70.0	80.0	12.2
80.0	90.0	12.0
90 O	100.0	12 0

Aceleração também varia com os percursos:

Nos instantes iniciais a velocidade altera-se muito (de zero até ~11 m/s).

Nos instantes médios até ao final a velocidade é ~12 m/s.

Para calcularmos a aceleração instantânea a partir da aceleração média, diminuímos o percurso em comprimentos muito pequenos (separados por um intervalo de tempo muito pequeno δt)

$$\overline{a_x} = \frac{\text{variação de velocidade}}{\text{tempo}} = \frac{v_x(t + \delta t) - v_x(t)}{(t + \delta t) - t}$$

E no limite quando
$$\delta t \to 0$$

$$\lim_{\delta t \to 0} \overline{a_x} = a_x(t)$$

$$\lim_{\delta t \to 0} \frac{v_x(t+\delta t)-v_x(t)}{(t+\delta t)-t} = a_x(t) \quad \text{ou} \quad \frac{dv_x(t)}{dt} = a_x(t)$$

$$a_x(t) = \frac{dv_x}{dt} = \frac{d}{dt}\frac{dx}{dt} = \frac{d^2x}{dt^2}$$

Relação entre as quantidade de interesse do movimento

x(t)Posição (instantânea):

Velocidade instantânea:

$$\nu_{\chi}(t) = \frac{dx}{dt}$$

Aceleração instantânea:

$$v_{x}(t) = \frac{dx}{dt}$$

$$a_{x}(t) = \frac{dv_{x}}{dt} = \frac{d^{2}x}{dt^{2}}$$

Se souber como a posição varia no tempo, x(t), saberei a velocidade e a aceleração.

Exemplo: Se

$$x(t) = \frac{1}{2}gt^2$$

$$\Rightarrow v_{x}(t) = gt \Rightarrow \begin{cases} v_{x}(t) = gt \\ a_{x}(t) = g \end{cases}$$

Posição (instantânea): x(t)

Velocidade instantânea:

 $v_x(t) = \frac{dx}{dt}$ $a_x(t) = \frac{dv_x}{dt} = \frac{d^2x}{dt^2}$ Aceleração instantânea:

Cálculo integral: $a_x(t)$

$$v_{x}(t) - v_{x}(t_0) = \int_{t_0}^{t} a_{x}(t) dt$$

$$x(t) - x(t_0) = \int_{t_0}^{t} v_x(t) dt$$

Já aprenderam? Em Cálculo I? Já!

E se souber a aceleração instantânea?

Exemplo: $a_x(t) = 0$ (e conhece-se $v_x(t_0)$ e $x(t_0)$) e usando por cálculo integral:

$$v_x(t) - v_x(t_0) = \int_{t_0}^t 0 dt = 0$$

$$x(t) - x(t_0) = \int_{t_0}^t v_x(t) dt = \int_{t_0}^t v_x(t_0) dt = v_x(t_0) t|_{t_0}^t = v_x(t_0)(t - t_0)$$

Se
$$t_0=0$$

$$v_x(t)-v_x(0)=0 \quad \Leftrightarrow \quad v_x(t)=v_x(0) \\ x(t)-x(0)=v_x(0) \ t \Leftrightarrow \quad x(t)=x(0)+v_x(0) \ t \qquad \text{Movimento uniforme}$$

E se souber a aceleração instantânea?

Exemplo: $a_x(t) = g$ (e conhece-se $v_x(t_0)$ e $x(t_0)$) e usando por cálculo integral:

$$v_x(t) - v_x(t_0) = \int_{t_0}^t g \, dt = g \, t |_{t_0}^t = g \, (t - t_0)$$

$$x(t) - x(t_0) = \int_{t_0}^t v_x(t) dt = \int_{t_0}^t [v_x(t_0) + g(t - t_0)] dt = v_x(t_0) t|_{t_0}^t + \frac{1}{2}gt^2|_{t_0}^t - gt_0t|_{t_0}^t = v_x(t_0)(t - t_0) + \frac{1}{2}g(t^2 - t_0^2) - gt_0(t - t_0)$$

Se
$$t_0 = 0$$

 $v_x(t) - v_x(0) = g t$ $\Rightarrow v_x(t) = v_x(0) + g t$

$$x(t) - x(0) = v_x(0) t + \frac{1}{2}gt^2 \implies x(t) = x(0) + v_x(0) t + \frac{1}{2}gt^2$$
Movimento uniformemente acelerado

Queda de uma bola de ténis, quando é largada, $v_{\chi}(t_0)=0$. Efeito da resistência do ar é muito pequeno e estamos a considerar velocidade pequenas. Os valores registados de uma experiência estão no gráfico:

A dependência da velocidade no tempo parece linear.

 χ deductions qualities e language, $\nu_{\chi}(v_0)$

Efeito da resistência do ar é multoppe que nome esto amb simo en siderar velocidade pequenas.

$$m = 9.84 \pm 0.06 \text{ m/s}^2$$

 $b = -0.01 \pm 0.03 \text{ m/s}$ $v_x(t) = b + m t$
 $r^2 = 0.9999$

Se compararmos com as leis do movimento uniformemente acelerado

$$\begin{cases} v_{x}(t) = v_{x}(0) + g t \\ x(t) = x(0) + v_{x}(0) t + \frac{1}{2}gt^{2} \end{cases}$$

tem-se

$$g=m=9.84\pm0.06~{\rm m/s^2}$$
 $v_x(0)=b=-0.01\pm0.03~{\rm m/s}$ O que é correto!

Caso oposto:

Queda de um volante de badmington, em que a resistência do ar é muito elevada e o movimento pode apresentar velocidade elevadas. Caso em que o volante é largado.

Por análise visual do gráfico da posição em função do tempo:

Para instantes t> 1.25 s o movimento parece ser uniforme.

Para instantes 0<t<1.00 s o movimento não parece uniforme .

Estamos na presença de um movimento com pelo menos 2 tipos de movimento.

De algum modo, temos de modelar a resistência do ar.

Para velocidades pequenas, a variação da velocidade com o tempo deve ser muito pequena.

Para velocidades maiores, deve depender da velocidade e retardar o movimento.

Ou seja deve originar uma aceleração negativa e vamos supor que é proporcional ao quadrado da velocidade

Nesta forma $a_y^{(res)} = -D |v_y|v_y|$ é sempre oposta ao sentido do movimento.

Ε,

$$a_{y}(t) = g - D v_{y} |v_{y}|$$

em que o parâmetro D é positivo e a determinar numa experiência.

Esta expressão leva a que como o termo da aceleração da resistência do ar se opõe ao movimento, a partir de algum instante esse termo anula a parte gravítica.

Se a aceleração for nula, temos movimento uniforme e a velocidade é constante $|v_y| = v_T$ e chamada de velocidade terminal

(também chamada de velocidade limite v_{lim})

$$0 = g - Dv_T|v_T|$$

$$D = \frac{g}{v_T |v_T|} = \frac{g}{v_T^2}$$

Nestes casos a velocidade limite é medida.

O volante de badmington (usada na experiência) possui $v_T=6.80~\mathrm{m/s}$

Cap. 2 Movimento a 1 dimensão

$$v_y(0)=0$$

$$a_y(t)=g-rac{g}{v_T^2}v_yig|v_yig| \quad ext{Por integração analítica:} \quad ext{(Python também tem um pacote para cálculo simbólico)}.$$

$$\Rightarrow y(t) = \frac{v_T^2}{g} \ln(\cosh(\frac{gt}{v_T}))$$

Acordo muito bom entre a lei do movimento com a aceleração $a_y(t) = g - Dv_y \big| v_y \big|$ BOM MODELO !

(se fizer a aceleração devida à resistência do ar proporcional à velocidade não se obtêm acordo)

Cap. 2 Movimento a 1 dimensão **Trabalho** Sobreponha no mesmo gráfico a posição do volante pelos medições efetuadas e

pela expressão teórica
$$y(t) = \frac{v_T^2}{g} \ln(\cosh(\frac{gt}{v_T}))$$
, em que $v_T = 6.80$ m/s.

- # Tempos de queda livre de um volante de badmington no ar.
- # altura inicial 9.50 m
- # Peastrel et al, American Journal of Physics, 48, 511-513 (1980)
- # y(m) t (s)
- 0 0
- 0.61 0.347
- 1.00 0.470
- 1.22 0.519
- 1.52 0.582
- 1.83 0.650
- 2.00 0.674
- 2.13 0.717
- 0.766 2.44
- 2.74 0.823
- 3.00 0.870
- 4.00 1.031
- 5.00 1.193
- 6.00 1.354
- 7.00 1.501
- 1.726 8.50

MSF 2022 - T 2

1.873 9.50