Dr. Robert Amelard (adapted from Dr. Igor Ivkovic)

ramelard@uwaterloo.ca

Objectives

- Graph Structure
- Graph Cycle
- Degree of Node
- Graph Representation
- Graph Traversal
- Path Finding in Graphs

Graph:

- A collection of nodes (vertices) connected by edges
- A node represents an entity that is being modeled within the graph
- An edge represents a pair-wise relationship between two nodes in a graph

Graph Use Example:

- Arranging communication among four team members
- Each team member represents a node
- Communication between any two members is an edge

- Edges can have inherent weights
 - Example: resistance/difficulty of getting from A to B

Graphs can be used to model complex real-world systems,

such as the systems used in

- Google Maps
- Robotic navigation
- Network design
- Social networks

- For example, graphs are used to model flight connections among the airports around the world
 - The nodes represent individual airports
 - The edges represent the valid flight connections between the airports (weight: duration, price, etc.)
 - The graph structures are used to plan optimal routes between destinations (e.g., Toronto to Sydney, Australia)

Flight Destinations, Source: http://www.airliners.net

- Another example of graph use is the Internet, and modeling of the underlying infrastructure
 - The nodes are different routers, servers, and other networked devices
 - The edges represent valid network connections between the devices (weight: latency)
 - The graph structures are used to discover optimal routes between destinations, and to maintain network performance

The Internet Backbone, Source: WikiMedia Commons

Formal Definition of a Graph G:

- A graph G can be defined as: G = (V, E), where $v \in V$ is the set of nodes (vertices), and $e \in E$ is the set of edges
- An edge $e(v_i, v_j)$ represents an edge from v_i to v_j

Undirected Graph:

No direction on edges

 $e(v_1, v_2) = e(v_2, v_1)$

Directed Graph:

Edges are directed

$$e(v_1, v_2) \neq e(v_2, v_1)$$

Labeled Graph:

- A graph where each node has a unique symbolic label associated with it
- A labeled graph can be directed or undirected

Weighted Graph:

- A graph where each edge has a numerical value associated with it
- Formally, $w(v_i, v_j)$ is the weight for an edge $e(v_i, v_j)$

Graph Connectivity:

- A path is a sequence of edges that connects a sequence of graph nodes
- The length of the path between two nodes is measured as the number of edges that constitute the path
- A subset of nodes of a graph is considered connected if there is a path between every two nodes of the subset

Connected Graph Example:

Another Connected Graph Example:

The length of the path from v_2 to v_7 via v_5 is 2

- Subgraph $G_1 = (\{v_2, v_3, v_4\}, \{e(v_2, v_3), e(v_2, v_4)\})$ is also connected
- Subgraph $G_2 = (\{v_5, v_6\}, \{\})$ is not connected

Strong vs. Weak Connectivity:

- A directed graph is strongly connected if each pair of nodes in the graph is connected (directly or indirectly) "reachable"
- A directed graph is weakly connected if there exists a pair of nodes in the graph that is not connected

Weakly Connected:

V_1 V_2 V_5 V_7 V_8 V_8 V_8 V_9 V_9

Strongly Connected:

Graph Cycle:

Acyclical Graph:

- A cycle is a path in a graph where one node is visited more than once
- In a simple cycle, only the starting node is visited more than once
- A graph with no cycles is referred to as acyclical

V_1 V_2 V_3 A path from v_2 to v_5 to v_7 and then he date v_1 is a simple grade.

then back to v_2 is a simple cycle

Cyclical Graph:

Degree of a Node:

- In an undirected graph, degree of a node is the number of distinct edges where the node is an end point
- In a directed graph, in-degree of a node is the number of distinct edges where the node is the end point
- In a directed graph, out-degree of a node is the number of distinct edges where the node is the starting point

Adjacency of Nodes:

- Two nodes are adjacent if there exists an edge that connects them
- The adjacency set of a node x, which is denoted as V_X , is the set of all nodes that are adjacent to x
- Formally, $V_X = \{y \mid e(x, y) \in E\}$

Directed Acyclic Graph (DAG)

- Directed Acyclic Graph (DAG):
 - A directed graph that includes no cycles

- How to represent a graph as a data structure?
 - Using sequential representation: as a matrix
 - Using linked representation:
 as a sequence of linked lists

Matrix representation of a graph:

For a graph with n nodes, create a matrix of n x n size

For undirected and unweighted graph:

If there exists an edge from i to j, store 1 as the value for M(i,j) and M(j,i); otherwise, store 0 for M(i,j) and M(j,i)

For directed and unweighted graph:

If there exists an edge from i to j, store 1 as the value for M(i,j); otherwise, store 0 for M(i,j)

For directed and weighted graph:

If there exists an edge from i to j, store w(i,j) as the value for M(i,j); otherwise, store ∞ for M(i,j)

Matrix representation example:

	1	2	3	4	5
1	0	1	1	1	0
2	1	0	1	0	1
3	1	1	0	0	1
4	1	0	0	0	1
5	0	1	1	1	0

	1	2	3
1	∞	3	10
2	∞	∞	2
3	∞	∞	∞

Linked representation of a graph:

- For a graph with n nodes, create a list L of size n, with one list element for each graph node
- Each element of the list is itself a list that specifies all edges that originate from the corresponding graph node
- The list element L(i) points to the i-th linked list, where each node j in that linked list represents an edge going from node i to node j

Linked representation example:

Graph Traversal:

 A common graph operation is graph search, where the goal is to traverse through a graph based on its edges, and visit all nodes in the graph in a particular order

Common Steps:

Step1. At a node v_x , access its adjacency set V_x and insert all unvisited nodes in V_x into some container C

Common Steps Continued:

Step2. Remove a node v_y from C, mark it as "visited", and insert all unvisited nodes in the adjacency set V_v into C

Common Steps Continued:

Step3. Repeat until the container is empty

Common Steps Continued:

Step3. Repeat until the container is empty

- Graph Traversal and Container Selection:
 - Breadth-First Search
 (BFS):
 use Queue ADT (FIFO
 principle) as the container
 - Depth-First Search
 (DFS):
 use a Stack ADT (LIFO principle) as the container

Breadth-First Search (BFS) Example:

Depth-First Search (DFS) Example:

Long exposure of Roomba trajectory

https://en.wikipedia.org/wiki/Roomba#/media/File:Roomba_time-lapse.jpg

- One of the more interesting and challenging problems involving the use of graphs is path finding
 - "Automatically find directions between physical locations"
 - This is crucial for a large number of robotic navigation and artificial intelligence applications
 - Many other applications (circuit optimization, telecommunication networks, etc.)
- Among the path-finding problems, the shortest path problem is one of the most fundamental
 - The goal is to identify a path between a starting node and a destination node, so that the sum of weights of the edges included in the path is minimized

- Example: path finding in unweighted directed graph
 - Find the shortest path from v₁ to v₄

- Answer: $v_1 v_2 v_4$ that has the path length of 2
- A well-known approach to finding the shortest path is the Dijkstra's Algorithm

Dijkstra's Algorithm for finding the shortest path in a graph:

- Construct the shortest paths from the starting node to its closest nodes
- Keep track of the visited nodes and update the shortest path information to each unvisited node
- Extend the paths until the destination node is reached

Dijkstra's Algorithm is a greedy algorithm

- It chooses a solution that appears to be the best solution at the time, then worry about possible new solutions later
- It has a runtime efficiency of O(n²), where n is the number of nodes in a graph

- Let us explain Dijkstra's Algorithm by applying it to the following graph
 - The goal is to find the shortest path from node 1 to every other node in the graph

Step1. Setup

- The first step is to construct and set up data structure representation of the graph
- If we make use of the matrix representation, for a weighted directed graph of 6 nodes where V = {1, 2, 3, 4, 5, 6}, the corresponding matrix M is as follows:

	1	2	3	4	5	6
1	0	3	∞	∞	∞	5
2	∞	0	7	∞	∞	10
3	∞	∞	0	5	1	∞
4	∞	∞	∞	0	6	∞
5	∞	∞	∞	∞	0	7
6	∞	∞	8	2	∞	0

Step2. Initialization

- The second step is to construct a framework for keeping track of the shortest paths at each iteration
- This includes the sum of weights for each shortest path, as well as the visited and unvisited nodes
- The following data will be kept:
 - V: visited nodes
 - □ U: unvisited nodes
 - □ C: current closest node
 - d_c: the sum of weights of path from the starting node to the closest node C
 - \Box d_i: the sum of weights of path from the starting node to node i

Iteration	V	U	C	d_c	d_1	d_2	d_3	d_4	d_5	d_6
1	1	2,3,4,5,6	_	-	0	3	∞	∞	∞	5

Step3. Update

- First, we need to identify the node C from the set of unvisited nodes U that has the minimum distance from the starting node
- From node 1, the closest node is node 2, which has the minimum distance of 3, so C = 2 and $d_c = 3$
- Next, the closest node C is removed from the unvisited nodes U and placed into the set of visited nodes V
- Hence, $V = \{1,2\}$ and $U = \{3,4,5,6\}$

Step3. Update Continued

- Finally, the shortest distances from the starting node to the nodes in U are updated relative to the closest code C
- To do so, for each node i, we compute the total distance from the starting node to C to node i, and then compare it with the current d_i
- For the path from the starting node to C, if there is no direct path, use the shortest path from the starting node to C
- If this newly computed distance is shorter than the current d_i, then this new path is the shortest path, so replace the current d_i

Step3. Update Continued

- It follows that:
 - Node 2: (1) (2) (d = 3) or (1) (2) (2) (d = 3), so shortest path: (1) (2) $(d_2 = 3)$
 - □ Node 3: (1) (3) (d = ∞) or (1) (2) (3) (d = 10), so shortest path: (1) (2) (3) (d₃ = 10)
 - □ Node 4: (1) (4) (d = ∞) or (1) (2) (4) (d = ∞), so shortest path: (1) (4) (d₄ = ∞)
 - □ Node 5: (1) (5) (d = ∞) or (1) (2) (5) (d = ∞), so shortest path: (1) (5) (d₅ = ∞)
 - Node 6: (1) (6) (d = 5) or (1) (2) (6) (d = 13), so shortest path: (1) (6) $(d_6 = 5)$
- Updated algorithm information at the end of the cycle is as follows:

Iteration	V	U	C	d_c	d_1	d_2	d_3	d_4	d_5	d_6
2	1,2	3,4,5,6	2	3	0	3	10	∞	∞	5

Step4. Repeat

- Repeat Step3 until all nodes have been visited
- Iteration3: C = 6 since it has the next shortest distance to starting node ($d_c = 5$)
- It follows that:
 - Node 3: (1) (2) (3) (d = 10) or (1) (6) (3) (d = 13), so shortest path: (1) (2) (3) $(d_3 = 10)$
 - □ Node 4: (1) (2) (4) (d = ∞) or (1) (6) (4) (d = 7), so shortest path: (1) (6) (4) (d₄ = 7)
 - □ Node 5: (1) (5) (d = ∞) or (1) (6) (5) (d = ∞), so shortest path: (1) (5) (d₅ = ∞)

Iteration	V	U	C	d_c	d_1	d_2	d_3	d_4	d_5	d_6
3	1,2,6	3,4,5	6	5	0	3	10	7	∞	5

Step4. Repeat Continued

- Iteration4: C = 4 since it has the next shortest distance to starting node ($d_c = 7$)
- It follows that:
 - Node 3: (1) − (2) − (3) (d = 10) or (1) − (6) − (4) − (3) (d = ∞), so shortest path: (1) − (2) − (3) ($d_3 = 10$) (use the shortest path from (1) to (4): (1) − (6) − (4))
 - Node 5: (1) − (5) (d = ∞) or (1) − (6) − (4) − (5) (d = 13), so shortest path: (1) − (6) − (4) − (5) (d₅ = 13) (use the shortest path from (1) to (4): (1) − (6) − (4))

Iteration	V	U	C	d_c	d_1	d_2	d_3	d_4	d_5	d_6
4	1,2,6,4	3,5	4	7	0	3	10	7	13	5

Step4. Repeat Continued

- Iteration5: C = 3 since it has the next shortest distance to starting node ($d_c = 10$)
- It follows that:
 - Node 5: (1) (6) (4) (5) (d = 13) or (1) (2) (3) (5) (d = 11), so shortest path: (1) (2) (3) (5) $(d_5 = 11)$ (use the shortest path from (1) to (3): (1) (2) (3))

Iteration	V	U	C	d_c	d_1	d_2	d_3	d_4	d_5	d_6
5	1,2,6,4,3	5	3	10	0	3	10	7	11	5

Step4. Repeat Continued

- Iteration6: C = 5 with d_c = 11
- It follows that:
 - Node 5: (1) (2) (3) (5) (d = 11) or (1) (2) (3) (5) (5) (d = 11) so shortest path: (1) (2) (3) (5) $(d_5 = 11)$
 - Hence, no change from Iteration5
- The final shortest paths are as follows:
 - \square Node 2: (1) (2) (d₂ = 3)
 - □ Node 3: $(1) (2) (3) (d_3 = 10)$
 - \square Node 4: (1) (6) (4) (d₄ = 7)
 - □ Node 5: (1) (2) (3) (5) $(d_5 = 11)$
 - \square Node 6: (1) (6) (d₆ = 5)

(Brief) History of Graph Traversal Algo's

Aside: Graphs in Practice

Route optimization

Traveling salesperson problem: ""Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?" "

Pokemon Go optimization

UK Pub Crawl optimization (warning: 24,727 pubs; don't try this at home)

Aside: Graphs in Practice

Social networks

Massive, massive research in this field Friend/job/event suggestion Clique formation Network analysis Ads (\$\$\$)

Aside: Graphs in Practice

- GraphCut image segmentation
 - GrabCut demo

52

Lecture Notes Summary

What do you need to know?

- Graph definition and basic applications
- Graph formal definition
- Graph properties
- Graph representation
- Graph traversals
- Path finding and Dijkstra's algorithm

Food for Thought

Read:

Chapter 8 (Graphs) from the course handbook

Additional Readings:

- Chapter 15 (Graphs) from "Data Structures and Other Objects Using C++" by Main and Savitch
- Amit Patel, Introduction to A*, From Amit's Thoughts on Pathfinding, 2017. [Online]. http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html