AN6550

Dual Operational Amplifier

Overview

The AN6550 is a dual operational amplifier with a phase compensation circuit built-in, allowing low voltage operation.

It is suitable for application to various electronic circuits such as active filters and audio preamplifiers.

■ Features

- Phase compensation circuit
- High voltage gain, low noise
- Output short protection circuit
- Low voltage operation(±2.5V to±10V)

■ Pin Descriptions

Pin No.	Pin name		
1	Ch.1 output		
2	External bias		
3	Ch.1 inverting input		
4	Ch.1 non inverting input		
5	V _{EE} (GND)		
6	Ch.2 non inverting input		
7	Ch.2 inveting input		
8	Ch.2 output		
9	V_{CC}		

■ Block Diagram

■ Absolute Maximum Ratings (Ta=25°C)

Parameter		Symbol	Rating	Unit	
Voltage	Supply voltage	V_{CC}, V_{EE}	±12	V	
	External bias supply voltage	V_{EXT}	V _{EE} to V _{CC}	V	
	Differential input voltage	V_{ID}	±24	V	
	Common-mode input voltage	V_{ICM}	±12	V	
Power dissipation		P_{D}	500	mW	
Temperature	Operating ambient temperature	$T_{ m opr}$	-20 to +75	°C	
	Storage temperature	T_{stg}	-55 to +150	°C	

\blacksquare Electrical Characteristics (V_{CC}=2.5V, V_{EE}=-2.5V, V_{EXT}=2.0V, Ta=25 °C)

Parameter	Symbol	Condition	min	typ	max	Unit
Input offset voltage	V _{I (offset)}	$R_S \leq 10k\Omega$		1.5	6	mV
Input offset current	I _{IO}			5	200	nA
Input bias current	I_{Bias}			150	500	nA
Voltage gain	Gv	$R_L \ge 2k\Omega$	65	100		dB
Maximum output voltage	V _{O (max.)}	$R_L \ge 10 k\Omega$	±1.2	±1.7	_	V
Maximum output voltage		$R_L \ge 2k\Omega$	±1	±1.5		V
Common-mode input voltage width	V _{CM}		±1	±1.5		V
Common-mode rejection ratio	CMR		70	80	_	dB
Supply voltage rejection ratio	SVR			100	300	μV/V
Power consumption	P _C	R _L =∞		8	15	mW
Slew rate	SR	$R_L \ge 2k\Omega$		0.8	_	V/µs
Equivalent input noise voltage	V _{ni}	$R_S=1k\Omega$, $B=10Hz$ to $30kHz$		2.5		μVrms

■ Pin Assignments

■ Characteristics Curve

■ Application Circuit

RIAA Preamplifier (single power supply operation)

Note) R₁ and R₂ are resistances for setting operational amplifier bias.

Set R_1 and R_2 so that $V_{\text{EXT}}\!\!=\!\!2.0V$ to 6.0V.

(Recommended Voltage V_{EXT} =4.5V)

■ How to Apply External to the AN6550

- The AN6550 is an operational amplifier with a phase compensation circuit built-in, allowing low voltage operation, and its current consumption and bandwidth can be changed by applying external bias to it.
- As shown below, applys bias voltage to 2 V_{EXT} pin of the AN6550 allows the AN6550 to be handled in the very same way as the AN6551, except for pin connection.

Set
$$V_{EXT} \ge V_{EE} + 1V$$
.

2) By connecting V_{EXT} pin to GND

4) By Zener diode $(V_{CC}\!\!-\!\!V_{EE}\!\geq\!6V)$

1) By diode

3) By dividing with resistors

