

	ERROR			
TRAIN	1%	15%	5%	0.5%
TEST	1] */•	16%	30%	1%
	H16H VARIANŒ	RIAS	HIGH BIASE VARIANCE	LOW BIASE VARIANCE
		MING)	ERROR	

REGULARIZATION PREVENTING OVERFITTING

WE COULD HARD. CODE FILTERS. JUST LIKE WE CAN HARD. CODE HEURISTIC RULES ... BUT.... A MUCH BETTER WAY IS TO TREAT THE FILTER # AS PARAMS
TO BE LEARNED

W. W. W. W.
W. W. W.
W. W. W.

TYPICAL CONV.NET LAYERS CONVOLUTION POOLING FULLY CONNECTED

IMPLEMENTATIONS

SOME OF THE PAPERS ARE
HARD TO IMPLEMENT FROM
SCRATCH-LISING OS YOU
CAN REUSE OTHER PPLS WORK
DON'T FORGET TO CONTRIBUTE

TIPS FOR DOING WELL ON .
BENCHMARKS/COMPETITIONS

- *ENSEMBLING.
 AVE OUTPUTS FROM MULT AN
- ANG OUTPUTS FROM MULTIPLE CROPS OF THE IMAGE

IN PRACTICE THEY ARE NOT USED IN PRODUCTION BECHUSE THEY ARE COMPUTE & MEM EXPENSIVE

-TRANSFER LEARNING -

TIBER

FOR YOUR CHTS BUT DON'T HAVE ENDUGH PICTURES

ELSES PRETRAINED NET & WEIGHTS MAX (3)

FREEZE

FREEZE THE PARAMS, AND DUST REPLACE THE SOFTMAX LAYER WITH YOUR OWN & TRAIN

MORE OF THE LATER LAYERS (MAYBE INITIALIZING WITH THE PRETRAINED WEIGHTS)