Multi-User Security of the Elephant v2 Authenticated Encryption Mode

Tim Beyne¹, Yu Long Chen¹, Christoph Dobraunig², <u>Bart Mennink</u>³

¹ KU Leuven (Belgium)

² Lamarr Security (Austria)

³ Radboud University (The Netherlands)

Selected Areas in Cryptography September – October 2021

Authenticated Encryption

Authenticated Encryption

- ullet Ciphertext C encryption of message M
- \bullet Tag T authenticates associated data A and message M
- ullet Nonce N randomizes the scheme

Authenticated Decryption

• Authenticated decryption needs to satisfy that

Authenticated Decryption

- Authenticated decryption needs to satisfy that
 - Message disclosed if tag is correct
 - Message is not leaked if tag is incorrect

Authenticated Decryption

- Authenticated decryption needs to satisfy that
 - Message disclosed if tag is correct
 - Message is not leaked if tag is incorrect
- Correctness: $AD_K(N, A, AE_K(N, A, M)) = M$

Goal and Current Status

- Authenticated encryption (and optional hashing)
- Minimal security strength: 2^{112} if data complexity $\leq 2^{50}$ bytes

Goal and Current Status

- Authenticated encryption (and optional hashing)
- Minimal security strength: 2^{112} if data complexity $\leq 2^{50}$ bytes
- February 2019: 56 first round candidates
- August 2019: 32 second round candidates
- March 2021: 10 third round (final) candidates

Goal and Current Status

- Authenticated encryption (and optional hashing)
- Minimal security strength: 2^{112} if data complexity $\leq 2^{50}$ bytes
- February 2019: 56 first round candidates
- August 2019: 32 second round candidates
- March 2021: 10 third round (final) candidates

Elephant

- Third round candidate by Beyne, Chen, Dobraunig, Mennink [BCDM19]
- Permutation-based parallelizable authenticated encryption mode

Goal and Current Status

- Authenticated encryption (and optional hashing)
- Minimal security strength: 2^{112} if data complexity $\leq 2^{50}$ bytes
- February 2019: 56 first round candidates
- August 2019: 32 second round candidates
- March 2021: 10 third round (final) candidates

Elephant

- Third round candidate by Beyne, Chen, Dobraunig, Mennink [BCDM19]
- Permutation-based parallelizable authenticated encryption mode
- Design goal: simple scheme with smallest possible permutation

 $\mathsf{mask}_{\,
u}^{a,b} =$

Encryption

- Nonce N input to all P calls
- ullet K and counter in mask
- Padding $M_1 \dots M_{\ell_M} \stackrel{n}{\leftarrow} M$
- Ciphertext $C \leftarrow \lfloor C_1 \dots C_{\ell_M} \rfloor_{|M|}$

Authentication

- Padding $A_1 \dots A_{\ell_A} \stackrel{n}{\leftarrow} N \|A\| 1$
- Padding $C_1 \dots C_{\ell_C} \stackrel{n}{\leftarrow} C \| 1$
- K and counter in mask
- ullet Tag T truncated to t bits

Mode Properties

- Encrypt-then-MAC
 - CTR encryption
 - Wegman-Carter-Shoup
- Fully parallelizable
- Uses single primitive P
- P in forward direction only

Mode Properties

- Encrypt-then-MAC
 - CTR encryption
 - Wegman-Carter-Shoup
- Fully parallelizable
- Uses single primitive P
- P in forward direction only

Mask Properties

Mask can be easily updated

Mode Properties

- Encrypt-then-MAC
 - CTR encryption
 - Wegman-Carter-Shoup
- Fully parallelizable
- Uses single primitive P
- P in forward direction only

Mask Properties

- Mask can be easily updated
- $\mathsf{mask}_K^{i,0} = \varphi_1 \circ \mathsf{mask}_K^{i-1,0}$

Mode Properties

- Encrypt-then-MAC
 - CTR encryption
 - Wegman-Carter-Shoup
- Fully parallelizable
- Uses single primitive P
- P in forward direction only

Mask Properties

- Mask can be easily updated
- $\bullet \ \operatorname{mask}_K^{i,0} = \varphi_1 \circ \operatorname{mask}_K^{i-1,0}$
- $\bullet \; \operatorname{mask}_K^{i-1,0} \oplus \operatorname{mask}_K^{i-1,1} = \operatorname{mask}_K^{i,0}$

Security of Elephant v1 Mode [BCDM20]

$$\mathbf{Adv}^{\mathrm{ae}}_{\mathsf{Elephant-v1}}(\mathcal{A}) \lesssim rac{4\sigma p}{2^n}$$

- σ is online complexity, p is offline complexity
- Assumptions:
 - P is random permutation
 - φ_1 has maximal length and $\varphi_2^b \circ \varphi_1^a \neq \varphi_2^{b'} \circ \varphi_1^{a'}$ for $(a,b) \neq (a',b')$
 - ullet ${\cal A}$ is nonce-based adversary

Security of Elephant v1 Mode [BCDM20]

$$\mathbf{Adv}^{\mathrm{ae}}_{\mathsf{Elephant-v1}}(\mathcal{A}) \lesssim rac{4\sigma p}{2^n}$$

- σ is online complexity, p is offline complexity
- Assumptions:
 - P is random permutation
 - φ_1 has maximal length and $\varphi_2^b \circ \varphi_1^a \neq \varphi_2^{b'} \circ \varphi_1^{a'}$ for $(a,b) \neq (a',b')$
 - ullet ${\cal A}$ is nonce-based adversary

Parameters of NIST lightweight call can be met with a 160-bit permutation!

Changes to v1

- Authentication via protected counter sum
- Slight change in roles of mask parameters

Changes to v1

- Authentication via protected counter sum
- Slight change in roles of mask parameters

Claimed Security and Efficiency

- v2 retains all good properties of v1
- Bonus: authenticity under nonce-misuse

• Security guarantees of Elephant v1 are preserved (confidentiality and authenticity against nonce-based adversaries \mathcal{A})

- Security guarantees of Elephant v1 are preserved (confidentiality and authenticity against nonce-based adversaries A)
- Elephant v2 additionally achieves authenticity under nonce-misuse

- Security guarantees of Elephant v1 are preserved (confidentiality and authenticity against nonce-based adversaries A)
- 2 Elephant v2 additionally achieves authenticity under nonce-misuse
- 3 These results even hold in multi-user setting

- Security guarantees of Elephant v1 are preserved (confidentiality and authenticity against nonce-based adversaries A)
- 2 Elephant v2 additionally achieves authenticity under nonce-misuse
- 3 These results even hold in multi-user setting

$$\mathbf{Adv}^{\mu\text{-ae}}_{\mathsf{Elephant-v2}}(\mathcal{A}) \lesssim \frac{4\sigma p}{2^n} \qquad \mathbf{Adv}^{\mu\text{-auth}}_{\mathsf{Elephant-v2}}(\mathcal{B}) \lesssim \frac{4\sigma p}{2^n}$$

- ullet σ is online complexity, p is offline complexity, μ is number of users
- Assumptions:
 - P is random permutation
 - φ_1 has maximal length and $\varphi_2^b \circ \varphi_1^a \neq \varphi_2^{b'} \circ \varphi_1^{a'}$ for $(a,b) \neq (a',b')$
 - \bullet $\ensuremath{\mathcal{A}}$ is nonce-based adversary, $\ensuremath{\mathcal{B}}$ is boversary that may reuse nonces

Step 1

• Isolate Simplified Masked Even-Mansour (SiMEM)

- Isolate Simplified Masked Even-Mansour (SiMEM)
- Multi-user security analysis of SiMEM

- Isolate Simplified Masked Even-Mansour (SiMEM)
- Multi-user security analysis of SiMEM
- Replace SiMEM instances by independent random permutations

- ullet We obtained μ independent instances of Elephant v2
- Multi-user security: sum over μ independent single-user adversaries

- We obtained μ independent instances of Elephant v2
- Multi-user security: sum over μ independent single-user adversaries
- Focus on single-user case

- Nonce-based encryption part
- Nonce-independent authentication part

 Elephant v1 achieved confidentiality and authenticity in nonce-respecting setting [BCDM20]

- Elephant v1 achieved confidentiality and authenticity in nonce-respecting setting [BCDM20]
- We proved that Elephant v2:
 - preserves all security properties of v1 (up to comparable bound)
 - additionally achieves authenticity in nonce-misuse setting

	Elephant v	1 [BCDM20]	Elephant v2 (proven now)		
security	confidentiality	authenticity	confidentiality	authenticity	
nonce-respecting	✓	√	✓	√	
nonce-misuse	×	×	×	\checkmark	

- Elephant v1 achieved confidentiality and authenticity in nonce-respecting setting [BCDM20]
- We proved that Elephant v2:
 - preserves all security properties of v1 (up to comparable bound)
 - additionally achieves authenticity in nonce-misuse setting

	Elephant v	1 [BCDM20]	Elephant v2 (proven now)		
security	confidentiality	authenticity	confidentiality	authenticity	
nonce-respecting	✓	✓	✓	<u> </u>	
nonce-misuse	×	×	×	\checkmark	

- Our results even hold in the multi-user setting
 - Number of users only affects minor terms in the security bound

- Elephant v1 achieved confidentiality and authenticity in nonce-respecting setting [BCDM20]
- We proved that Elephant v2:
 - preserves all security properties of v1 (up to comparable bound)
 - additionally achieves authenticity in nonce-misuse setting

	Elephant v	1 [BCDM20]	Elephant v2 (proven now)		
security	confidentiality	authenticity	confidentiality	authenticity	
nonce-respecting	✓	✓	✓	<u> </u>	
nonce-misuse	×	×	×	\checkmark	

- Our results even hold in the multi-user setting
 - Number of users only affects minor terms in the security bound

Thank you for your attention!

Supporting Slides

SUPPORTING SLIDES

Instantiation

Dumbo

- Spongent- $\pi[160]$
- Minimalist design
 - ullet Time complexity 2^{112}
 - ullet Data complexity 2^{46}

Instantiation

Dumbo

- Spongent- $\pi[160]$
- Minimalist design
 - Time complexity 2¹¹²
 - ullet Data complexity 2^{46}

Jumbo

- Spongent- $\pi[176]$
- Conservative design
 - Time complexity 2^{127}
 - Data complexity 2⁴⁶
- ISO/IEC standardized

Instantiation

Dumbo

- Spongent- $\pi[160]$
- Minimalist design
 - Time complexity 2^{112}
 - ullet Data complexity 2^{46}

Jumbo

- Spongent- $\pi[176]$
- Conservative design
 - Time complexity 2^{127}
 - Data complexity 2⁴⁶
- ISO/IEC standardized

Delirium

- Keccak-f[200]
- High security
 - Time complexity 2¹²⁷
 - ullet Data complexity 2^{70}
- Specified in NIST standard

Technical Specification of Instances

instance	k	m	n	t	P	$arphi_1$	expected security strength	limit on online complexity
Dumbo Jumbo Delirium	128 128 128	96 96 96	160 176 200	64 64 128	$\begin{array}{c} 80\text{-round Spongent-}\pi[160] \\ 90\text{-round Spongent-}\pi[176] \\ 18\text{-round Keccak-}f[200] \end{array}$	arphiDumbo $arphi$ Jumbo $arphi$ Delirium	$2^{112} \\ 2^{127} \\ 2^{127}$	$\frac{2^{50}/(n/8)}{2^{50}/(n/8)}$ $\frac{2^{74}/(n/8)}{2^{74}}$

• All LFSRs operate on 8-bit words:

$$\varphi_{\mathsf{Dumbo}} \colon (x_0, \dots, x_{19}) \mapsto (x_1, \dots, x_{19}, x_0 \lll 3 \oplus x_3 \ll 7 \oplus x_{13} \gg 7)$$

$$\varphi_{\mathsf{Jumbo}} \colon (x_0, \dots, x_{21}) \mapsto (x_1, \dots, x_{21}, x_0 \lll 1 \oplus x_3 \ll 7 \oplus x_{19} \gg 7)$$

$$\varphi_{\mathsf{Delirium}} \colon (x_0, \dots, x_{24}) \mapsto (x_1, \dots, x_{24}, x_0 \lll 1 \oplus x_2 \lll 1 \oplus x_{13} \ll 1)$$

• All have maximal length and $\varphi_2^b \circ \varphi_1^a \neq \varphi_2^{b'} \circ \varphi_1^{a'}$ for $(a,b) \neq (a',b')$