1.5 \mathbb{R}^n 中的开集, 闭集, G_δ 集, F_σ 集

开集闭集

定义 1.5.1 令 $x \in \mathbb{R}^n$, $\delta > 0$, 称

$$B(x,\delta) = \{y : |y - x| < \delta\}$$

以x 为中心 δ 为半径的开球.

定义 1.5.2 令 $E \subset \mathbb{R}^n$. $x \in E$ 称为内点, 如果存在开球 $B(x, \delta)$ 包含于 E. 集合 E 的内点全体称为 E 的内部, 记为 int(E). 集合 E 称为开集, 如果 E = int(E), 即每个点均为内点.

约定: ∅ 为开集.

定义 1.5.3 集合 E 称为闭集, 如果 E^c 是开集.

- **例 1.5.1** 任何开球 $B(x, \delta)$ 是开集.
- 例 1.5.2 空集 \varnothing 与全集 \mathbb{R}^n 既开也闭.

定义 1.5.4 集合 E 及其极限点全体称为 E 的闭包, 记为 \overline{E} . 称 $\overline{E} - int(E)$ 为 E 的边界.

注意: 集合 E 的极限点是指 E 的**互异**点列的极限.

例 1.5.3 $\overline{B(x,\delta)} = \{y : |y-x| \leq \delta\}$.

定理 1.5.1 设 $E \subset \mathbb{R}^n$. 那么

- (1) $(\overline{E})^c = int(E^c)$,
- (2) $(int(E))^c = \overline{E^c}$.
- (1) 若 $x \in (\overline{E})^c$, 则 x 不能是 E 的极限点, 因此存在开球 $B(x,\delta)$ 与 E 不相交, 即 $B(x,\delta) \subset E^c$, 从而 $x \in int(E^c)$. 反过来

若 $x \in int(E^c)$, 那么存在开球 $B(x, \delta) \subset E^c$, 这表明 x 不能是 E 的极限点, 因此 $x \in (\overline{E})^c$.

(2) 对 E^c 运用 (1) 的结论便有

$$\left(\overline{E^{c}}\right)^{c}=int\left(\left(E^{c}\right)^{c}\right)=int\left(E\right),$$

两边取余集合就得到所要的等式.

lh

- **定理 1.5.2** (1) E 为闭集当且仅当 $\overline{E} = E$, 即自身包含所有极限点.
- (2) \overline{E} 为闭集, 即 \overline{E} 是包含 E 的最小闭集.
- (1) 设 E 为闭集, 为证 $\overline{E} = E$, 只需证 $\overline{E} \subset E$. 若不成立, 则存在 E 的极限点 $\overline{x} \in \overline{E}$, 但 $\overline{x} \notin E$. 因 E 是闭集, 故存在 $\delta > 0$,

使 $B(\overline{x}, \delta) \cap E = \emptyset$, 这与 \overline{x} 是 E 的极限点矛盾. 另一方面, 设 $\overline{E} = E$. 由定理 1.5.1,

$$E^{c} = \left(\overline{E}\right)^{c} = int\left(E^{c}\right),\,$$

又 $int(E^c)$ 是开集 (为什么), 便知 E^c 是开集, 即 E 为闭集.

(2) 运用定理 1.5.1(1) 可知 \overline{E} 是闭集. 任给一包含 E 的闭集 F. 根据 (1) 的结论 F 包含自身所有极限点, 因此 E 的极限点也包含在 F, 从而 $\overline{E} \subset F$, 即 \overline{E} 是包含 E 的最小闭集.

定理 1.5.3 (1) 任意开集族的并集是开集, 有限个开集的交集是开集.

(2) 任意闭集族的交集是闭集, 有限个闭集的并集是闭集.

几类特殊集合

定义 1.5.5 集合 E 称为 G_{δ} 集, 如果它能写成

$$E = \bigcap_{k\geqslant 1} G_k, G_k$$
开,

称为 F_a 集,如果它能写成

$$E=\bigcup_{k\geqslant 1}F_k,F_k$$
闭.

 $(G_{\delta}$ 来自德语, G 表示开集, δ 表示交. F_{σ} 来自法语, F 表示闭集, σ 表示并)

定义 1.5.6 若闭集 E 的每一个点都是极限点,则称之为完全集.

开集的结构

\mathbb{R}^n 的闭区间记为

$$I = [a, b] = \{x = (x_1, ..., x_n) \in \mathbb{R}^n : a_k \le x_k \le b_k, k = 1, ..., n\},$$

其中 $a, b \in \mathbb{R}^n$. 开区间 (a, b), 半开区间 (a, b), [a, b) 类似定义. 这样的区间也称为矩体, 各边长相等的矩体称为方体.

定义 1.5.7 两个区间称为不重叠的, 如果它们没有公共内点.

定理 1.5.4 \mathbb{R} 中的开集可以表示为可数个互不相交开区间的并集.

■ $\Diamond G$ 为 \mathbb{R} 开集. 对 $x \in G$, 记 I_x 为包含 x 且含于 G 内的最

大开区间. 具体地定义

$$a_x = \inf \{ a : a < x, \ (a, x) \subset G \},$$

 $b_x = \sup \{ b : x < b, \ (x, b) \subset G \}.$

由于 G 开, 存在以 x 为中心的非空开区间包含于 G, 因此

$$-\infty \leqslant a_x < x < b_x \leqslant \infty.$$

那么

$$I_{x}=(a_{x},b_{x})$$
.

若 $x \neq x', x, x' \in G$, I_x 与 $I_{x'}$ 或相等, 或不相交. 这是由于, 若 I_x 与 $I_{x'}$ 相交, 那么 $(I_x \cup I_{x'}) \subset G$ 将成为包含 x, x' 且含于 G 内的更大的大开区间, 与 I_x , $I_{x'}$ 的定义矛盾. 于是 $G = \bigcup_{x \in G} I_x$, 而每个 I_x 中都含有一个有理数, 因此这样的不相交的并集有至多可数个.

这一结论不能简单推广到 \mathbb{R}^n (n > 1),因为这时区间的并集不一定是区间.

定理 $1.5.5 \mathbb{R}^n$ 中的开集可以表示为可数个互不重叠闭方体的并集, 也可表示为可数个不相交的半开方体的并集.

■ 考虑 \mathbb{R}^n 平行间距为 1 的网格, 网格形成的互不重叠闭方体全体方体记为 K_0 . 将现有网格加细, 成为为平行间距为 1/2 的网格, 这时形成的互不重叠闭方体全体方体记为 K_1 , 如此继续便得到一列闭方体族 K_0 , K_1 , K_2 ,, K_j 中的每个方体边长均为 2^{-j} , 且都由 2^n 个 K_{i+1} 中的互不重叠闭方体组成.

令 G 为 \mathbb{R}^n 开集. 将 K_0 中含于 G 内的所有方体记为 S_0 , K_1 中含于 $G \setminus S_0$ 内的所有方体记为 S_1 , K_2 中含于 $G \setminus (S_0 \cup S_1)$ 内的所有方体记为 S_2 , 这样 $S = \bigcup_{k=0}^n S_k$ 便是所有按上述

方法取出的方体全体, 这些闭方体至多有可数多个, 且互不重叠. 由于 G 开, 其中的任何点都终将被 S_j 中的某方体盖住 (只要 j 足够大), 从而

$$G=\bigcup_{Q\in S}Q.$$

h

定理 1.5.6 存在 \mathbb{R}^n 中的可数个开集做成的集族 $\Gamma = \{B_k\}_{k=1}^{\infty}$ 使得任意 \mathbb{R}^n 中的开集可以表示为 Γ 中的集合的并集.

■ 只要取 Γ 为如下开球的全体

$$\left\{B\left(q,\frac{1}{k}\right):q\in\mathbb{Q}^n,k\in\mathbb{N}
ight\}.$$

事实上, 若 $G \subset \mathbb{R}^n$ 开, 那么 $\forall x \in G$, 存在开球 $B(x, \varepsilon) \subset G$. 取 $q_x \in \mathbb{Q}^n$, $k_x \in \mathbb{N}$ 使得 $d(x, q_x) < 1/k_x < \varepsilon/2$, 那么

$$x \in B\left(q_x, \frac{1}{k_x}\right) \subset B\left(x, \varepsilon\right) \subset G.$$

因此当x 跑遍G 的时候就得到

$$G = \bigcup_{x \in G} B\left(q_x, \frac{1}{k_x}\right).$$

lh

紧集, Heine-Borel 定理, Bolzano-Weierstrass 定理

定义 1.5.8 $\{E_{\alpha}\}_{\alpha\in A}$ 为集合族. 若 $E\subset\bigcup_{\alpha\in A}E_{\alpha}$,则称 $\{E_{\alpha}\}_{\alpha\in A}$ 为 E 的覆盖. 若 $A'\subset A$, $E\subset\bigcup_{\alpha\in A'}E_{\alpha}$,则称 $\{E_{\alpha}\}_{\alpha\in A'}$ 为 $\{E_{\alpha}\}_{\alpha\in A}$ 的子覆盖. 若 E_{α} 均为开集,则称 $\{E_{\alpha}\}_{\alpha\in A}$ 为 E 的开覆盖.

定义 1.5.9 称集合 E 为紧集, 如果任何 E 的开覆盖存在有限子覆盖.

定理 1.5.7 设 $E \subset \mathbb{R}^n$. 以下各条等价.

- (1) E 是有界闭集;
- (2) (Bolzano-Weierstrass)E 的任何点列都有收敛子序列收敛于 E;
- (3) (Heine-Borel) E 为紧集.

■ $(1) \Rightarrow (2)$ 设 $\{x_k\}$ 是无穷点列. 对 1/2, E 能被有限多个半径为 1/2 的小球盖住, 则必有 $\{x_k\}$ 的无穷子列 $\{x_k^{(1)}\}$ 被某小球 $B(y_1, 1/2)$ 盖住;

对 $1/2^2$, E 能被有限多个半径为 $1/2^2$ 的小球盖住, 则必有

 $\left\{x_k^{(1)}\right\}$ 的无穷子列 $\left\{x_k^{(2)}\right\}$ 被某小球 $B\left(y_2,1/2^2\right)$ 盖住;

对 $1/2^j$, E 能被有限多个半径为 $1/2^j$ 的小球盖住, 则必有 $\left\{x_k^{(j-1)}\right\}$ 的无穷子列 $\left\{x_k^{(j)}\right\}$ 被某小球 $B\left(y_j,1/2^j\right)$ 盖住;

现抽取对角线子列 $\left\{x_{j}^{(j)}\right\}$,它是Cauchy列,事实上, $\forall s>1$,

$$\left| x_{j+s}^{(j+s)} - x_j^{(j)} \right| \le \left| x_{j+s}^{(j+s)} - y_j \right| + \left| y_j - x_j^{(j)} \right|$$

$$\le \frac{1}{2^j} + \frac{1}{2^j} \to 0.$$

利用 \mathbb{R}^n 的完备性以及 E 是闭集即得证.

■ $(2) \Rightarrow (1)$ 显然 E 包含自身所有极限点, 因此是闭集. 只要证有界性. 若不然, 则存在 $r_0 > 0$ 使得 E 不能被有限多个半径

lh

为 r_0 的小球盖住.

任取
$$x_1 \in E$$
, $\exists x_2 \in E \setminus B(x_1, r_0)$; 对 $\{x_1, x_2\} \in E$, $\exists x_3 \in E \setminus \bigcup_{j=1}^2 B(x_j, r_0)$; 对 $\{x_1, x_2, ..., x_k\} \in E$, $\exists x_{k+1} \in E \setminus \bigcup_{j=1}^k B(x_j, r_0)$; 这样得到的序列 $\{x_k\}$ 显然满足, $\forall k \neq j$,

$$|x_k-x_j|\geqslant r_0.$$

它不能有收敛子列,与(2)的假设矛盾.

//

■ $(1)(2) \Rightarrow (3)$ 设 $\{E_{\alpha}\}_{\alpha \in A}$ 为 E 的开覆盖. 只要证明 $(3') \exists r_0 > 0$ 满足: 对任何半径为 r_0 的小球, 若它与 E 相交, 则必然包含于某 E_{α} .

这是因为 E 有界, 因此能被有限个小球覆盖, 从而能得出 (3). 为证 (3'), 我们用反证法. 假设对任意 k, 存在半径为 $1/2^k$ 的小球 $B_k \cap E \neq \emptyset$, 但 B_k 不能包含于任何 E_{α} . $\forall k$, 取 $x_k \in B_k \cap E$. 根据 (2), $\{x_k\}$ 有收敛子列, (通过变换到子列指标) 不妨设 $x_k \to x \in E$ (因 E 闭). 由于 $\{E_{\alpha}\}_{\alpha \in A}$ 为 E 的开覆盖, x 必定包含于某 E_{α_1} . 因 E_{α_1} 是开集, 存在 $B(x, r_1) \subset E_{\alpha_1}$. 那么 $\forall y \in B_k$,

$$|y-x| \leq |y-x_k| + |x_k-x| \leq 2 \cdot \frac{1}{2^k} + |x_k-x| \to 0.$$

可见当 k 充分大时, $B_k \subset B(x, r_1) \subset E_{\alpha_1}$, 矛盾.

lh

■ $(3) \Rightarrow (2)$ 设无穷序列 $\{x_k\}$ 没有收敛子列. 那么对 $\forall x \in E$, $\exists r_x > 0$ 满足: 开球 $B(x, r_x)$ 仅能盖住 $\{x_k\}$ 中的有限多个点 (否则就能找到收敛子列). 这样 $\bigcup_{x \in E} B(x, r_x)$ 便是 E 的开覆盖, 但它不能有有限子覆盖.

在讨论完全集的不可数性之前, 我们需要

定理 1.5.8 (**闭集套定理**) 设 $\{F_k\}_{k\geqslant 1}$ 为递减非空闭集列. F_1 有 F_1 那么

$$\bigcap_{k=1}^{\infty} F_k \neq \varnothing.$$

■ 若

$$\bigcap_{k=1}^{\infty} F_k = \varnothing.$$

那么

$$\bigcup_{k=1}^{\infty} F_k^c = \mathbb{R}^n.$$

又 F_k^c 开, 因此 $\{F_k^c\}_{k\geqslant 1}$ 是 F_1 的开覆盖. 由于 F_1 有界闭, 根据 Heine-Borel 性质, F_1 紧, 于是存在有限子覆盖 $F_{k_1}^c$, ..., $F_{k_s}^c$, $F_1 \subset \bigcup_{j=1}^s F_{k_j}^c$. 由于 $F_{k_1}^c \subset ... \subset F_{k_s}^c$, 因此 $\bigcup_{j=1}^s F_{k_j}^c = F_{k_s}^c$, 从而 $F_1 \subset F_{k_s}^c$, 这将导致 $F_{k_s} \subset F_1 \subset F_{k_s}^c$, 矛盾.

定理 1.5.9 完全集不可数.

■ 假设 C 为完全集, $C = \{c_1, c_2, ...\}$. 令 $C_k = C \setminus \{c_k\}$. 对 C_1 , 任取 $x_1 \in C_1$, 那么 $x_1 \neq c_1$, 故存在开球 $B(x_1, r_1)$ 满足: $c_1 \notin \overline{B(x_1, r_1)}$;

对 $B(x_1, r_1) \cap C_2$, 它不空 (因为 x_1 是 C_2 的极限点), 任取 $x_2 \in B(x_1, r_1) \cap C_2$, 那么 $x_2 \neq c_2$, 故存在开球 $B(x_2, r_2) \subset B(x_1, r_1)$ 满足: $c_2 \notin \overline{B(x_2, r_2)}$;

对 $B(x_2, r_2) \cap C_3$, 它不空 (因为 x_2 是 C_3 的极限点), 任取

 $x_3 \in B(x_2, r_2) \cap C_3$, 那么 $x_3 \neq c_3$, 故存在开球 $B(x_3, r_3) \subset B(x_2, r_2)$ 满足: $c_3 \notin \overline{B(x_3, r_3)}$;

.....

对 $B(x_{k-1}, r_{k-1}) \cap C_k$, 它不空 (因为 x_{k-1} 是 C_k 的极限点), 任 取 $x_k \in B(x_{k-1}, r_{k-1}) \cap C_k$, 那么 $x_k \neq c_k$, 故存在开球 $B(x_k, r_k) \subset B(x_{k-1}, r_{k-1})$ 满足: $c_k \notin \overline{B(x_k, r_k)}$;

.

这样产生的序列 $\left\{\overline{B(x_k,r_k)}\cap C\right\}$ 是单调下降的紧集列 (有界闭集). 根据闭集套定理, $\bigcap_{k=1}\left(\overline{B(x_k,r_k)}\cap C\right)$ 非空. 但这是矛盾的, 因为 $\bigcap_{k=1}\left(\overline{B(x_k,r_k)}\cap C\right)$ 是 C 的非空子集, 却不能含有任何 C 的点.

例 1.5.4 \mathbb{R}^n $(n \ge 1)$, [0,1] 是不可数集.