Week 6

Lecture subscribing*

Theorem 6.1. If G is a simple graph then $diam(G) \ge 3 \implies diam(G^c) \le 3$

Proof.

 $diam(G) \ge 3$

- $\Rightarrow \exists u, v \in V(G) \text{ s.t.}$
- (i) u and v have not adjacent
- (ii) u and v have no common neighbours
- \Rightarrow uv does not exist in G.

 $\forall x \in V(G) - \{u,v\}$, ux or vx does not exist in G.

uv exist in G^c and ux or vx will also exist in G^c .

$$\Rightarrow \operatorname{diam}(G^c) \leq 3$$

Theorem 6.2. If G is a simple graph then $diam(G) \ge 4 \implies diam(G^c) \le 2$

Proof.

we have to prove that

$$P \Rightarrow Q$$

where $P \equiv diam(G) \ge 4$

$$Q \equiv diam(G^c) \le 2$$

we will have equivalent to above

$$\sim Q \Rightarrow \sim P$$

$$\Rightarrow \sim Q \equiv diam(G^c) \ge 3$$

$$\sim P \equiv diam(G^c) \le 3$$

$$\therefore \operatorname{diam}(G) \ge 3 \implies \operatorname{diam}(G^c) \le 3$$

^{*}Lecturer: Anupam O'Donnell. Scribe: Harry Bovik.

 $\therefore \operatorname{diam}(G^c) \geq 3$

 $\Rightarrow \operatorname{diam}((G^c)^c) \leq 3$

 $\Rightarrow \operatorname{diam}(G^c) \le 3$

Spaning Tree

Spaning tree for a connected graph G is a subgraph of G that is a tree.

Spaning Tree:

spaning tree cost = 1+3+4=8

Krushkal Algorithm

Steps:

- Sort the graph edges with respect to their weights.
- Start adding edges to the MST from the edge with the smallest weight until the edge of the largest weight.
- Only add edges which doesn't form a cycle , edges which connect only disconnected components.

Let us consider a graph G.

Spaning tree of Graph G using Krushkal Algorithm.

total cost = 1+2+3+5 = 11

Prims Algorithm

Steps:

- Maintain two disjoint sets of vertices. One containing that are in growing spaning tree and other are not in the growing spanning tree.
- Select the cheapest vertex that is connected to the growing spanning tree.
- \bullet Check for cycles.

Let us consider a graph G.

Spaning tree of Graph G using Prims Algorithm.

total cost = 1+2+4=7

Matching

It is a set of non-loop edges with non-shared end points.

$$\bigcirc$$
 B \bigcirc D

 $Matching = \{AB, CD\} = \{BC\}$

Maximal Matching

A matching M of a graph G is said to be maximal if no other edges of G can be added to M.

Maximal Matching = $\{AB, CD\}$ Maximal Matching = $\{BC\}$

Maximum Matching

Maximum matching is defined as the maximal matching with maximum number of edges.

Maximal Matching = $\{AB, CD\}$ Maximal Matching = $\{BC\}$

So, Maximum matching = $\{AB, CD\}$

Perfect Matching

A matching M of graph G is said to be a perfect match, if every vertex of graph G is incident to exactly one edge of the mathcing M.

Note: perfect matching of graph is also a maximum matching of graph.

Theorem 6.3. Prove that every tree have atleast one perfect matching

Proof.

we are going to prove this using induction technique.

for n = 1, tree having one node, PM = 0

for n = 2, tree having two nodes, PM = 1

suppose that theorem is true for $n \le k$ nodes.

PM in $T1 \leq 1$

PM in $T2 \le 1$

PM in T = PM in T1 * PM in T2

PM in $T \leq 1$

Figure 6.1

Hall's Marriage Theorem

An X-Y bigraph G has a matching that saturates X iff $|N(S)| \geqslant |S| \, \forall S \subseteq X$ Here $N(S) \subseteq Y$ is set of neighbours of elements in S.