Android for .NET Developers Series Building Apps with Android Studio Activity Lifecycle

Jim Wilson

jimw@jwhh.com

@hedgehogjim

http://facebook.com/hedgehogjim

http://hedgehogjim.wordpress.com

Outline

Mobile resource challenge

Android resource management

Activity states

Activity lifecycle callbacks

Device orientation and Activity state

The mobile resource challenge

Resources are comparatively very limited

- Memory limits are absolute (no paging)
- Need to closely manage power

Resources remain held even when the user isn't interested

Traditional resource management

Moving beyond processes & threads

Android manages resources at the component level

An Activity's right to resources is tied to user interaction

- An Activity loses right to CPU when user moves to another Activity
- An Activity may lose memory resources when user moves to another Activity

- User must be able to move between Activities freely
- □ The fact that resources are lost should not impact user

Activity states

An Activity's access to resources depends on its current state

Running state (also known as Active or Resumed)

- Activity is in the foreground
- Full access to resources
- Will not be destroyed

Paused state

- Activity is visible but not in the foreground
- Retains memory resources
- Limited opportunity to perform processing
- Not likely to be destroyed

Stopped state

- Activity is not visible
- Should be prepared to lose memory resources
- Limited opportunity to perform processing
- Very likely to be destroyed

Some Other Activity

Activity state callback methods

Device orientation and state

Rotating the device affects Activity state

On a change of orientation, Android complete tears down an Activity

- Activity is destroyed
- You must save your Activity's state
- Completely recreates the Activity
 - You must restore your Activity's state

Summary

Android ties resource lifetime to components

More fine-grain management than processes & threads

An Activity's right to resources is tied to user interaction

Android aggressively reclaims resources when not accessed by user

Details of resource management hidden from users

- An Activity may be completely destroyed between user access
- Activities are responsible to save and restore state

Activities cooperate with resource mgmt through callback methods

Callback methods provide hooks for state management

Orientation change completely tears down and rebuilds an Activity

Use callback methods to manage state