

Gradiance Online Accelerated Learning

Spring-20 HW3

Amit Praful

• Home Page

• Assignments Due

Progress Report

- Handouts
- Tutorials
- Homeworks
- · Lab Projects
- Log Out

Help

Copyright © 2007-2015 Gradiance Corporation.

7

Positive points per question: 15.0 **Negative points per question:** 0.0

- 1. Let the relation A(MNOPQRST) satisfy the following functional dependencies: $N \rightarrow P$, $MO \rightarrow Q$, $RS \rightarrow T$, $Q \rightarrow S$, $OP \rightarrow M$, $PT \rightarrow R$. Which of the following FD's is also guaranteed to be satisfied by A? Recall that an FD of the form $X \rightarrow BC$, where X is a set of attributes and where each of B and C is an attribute, is actually two FDs $X \rightarrow B$ and $X \rightarrow C$. We say that an FD $X \rightarrow BC$ is guaranteed to be satisfied by a relation schema if and only if each of $X \rightarrow B$ and $X \rightarrow C$ is guaranteed to be satisfied by this relation schema.
 - \bigcirc a) OST \rightarrow PQ

Number of questions:

- \bigcirc b) NQS \rightarrow PT
- o c) MNO → PS
- \bigcirc d) MRT \rightarrow NO
- 2. Determine the keys and superkeys of the relation R(MNOPST) with FD's: NS \rightarrow T, MNO \rightarrow P, NO \rightarrow T, MPST \rightarrow N Then, demonstrate your knowledge by selecting the true statement from the list below. Each statement must include all the possible values.
 - a) Superkeys: MOPS, MNPST
 - b) Superkeys: MNOP, NST, MOPT
 - c) Superkeys that are not keys: MNOPST, MNOPS, MNOST
 - (d) Keys: MNOPT, ST
- 3. Which of the following relations is in BoyceCodd Normal Form (BCNF)?
 - a) R(LMNO) FD's: $LMN \rightarrow O$; $LNO \rightarrow M$; $MNO \rightarrow L$; $L \rightarrow O$
 - o b) $R(LMNOP) FD's: M \rightarrow NO; NO \rightarrow L; L \rightarrow MP$
 - \bigcirc c) R(LMNOP) FD's: LM \rightarrow P; N \rightarrow O; MP \rightarrow N
 - d) R(LMNO) FD's: $MNO \rightarrow L$; $LNO \rightarrow M$; $M \rightarrow L$
- **4.** Which of the following relations is correctly decomposed into the minimal number of relations that are collectively in BCNF (BoyceCodd Normal Form)?
 - a) R(ABCDE) FD's: B \rightarrow CD; A \rightarrow E into R1(ABCDE), R2(AE)
 - \bigcirc b) R(ABCD) FD's: C \rightarrow B; C \rightarrow D; B \rightarrow A into R1(CD), R2(AB)
 - c) R(ABCDE) FD's: BDE \rightarrow A; A \rightarrow C into R1(ABDE), R2(AC)
 - d) R(ABCDE) FD's: $A \rightarrow B$; $B \rightarrow D$; $D \rightarrow E$; $C \rightarrow A$ into R1(ABE), R2(CD)
- 5. A basis for a set of FD's F is any set G of FD's whose closure is the

same as the closure of F. That is, exactly the same FD's follow from F as from G. In addition, a basis must consist of a minimal set of nontrivial FD's. Suppose we have a relation R(W, M, X, Y, Z) with FD's $W \rightarrow M$, $M \to X, X \to Y, Y \to Z, Z \to W$. Suppose we project R onto attributes WMXY. Describe all the bases for the set of FD's that hold in WMXY. Given a set of FD's, select statements that correctly explain if the set is a basis or not.

- \bigcirc a) W \rightarrow M, M \rightarrow Y, Y \rightarrow X, X \rightarrow W: NOT a basis
- \bigcirc b) W \rightarrow M, M \rightarrow X ,X \rightarrow W, X \rightarrow Y, Y \rightarrow X: NOT a basis
- \bigcirc c) $W \rightarrow X, W \rightarrow Y, X \rightarrow Y, Y \rightarrow X, M \rightarrow X, M \rightarrow Y$: a basis
- \bullet d) W \rightarrow M, M \rightarrow Y, X \rightarrow Y, Y \rightarrow W, Y \rightarrow X: a basis
- **6.** Suppose relation R(A,B,C,D) has the tuples:

A	В	C	D
a	1	4	e
b	2	10	e
c	7	6	f
a	3	19	e

And the relation S(F, G, H) has tuples:

F	G	Н
	15	
b	4	5
c	7	2
b	5	4
a	20	11
d	6	3
b	17	12

Which of the following tuples is in the theta-join of R and S with the condition A = F AND C < G AND (D = 'e' OR D = 'f') AND (A = 'a' OR A = 'b') AND G > H?

- \bigcirc a) (b, 2, 10, e, b, 5, 4)
- \bigcirc b) (b, 2, 10, e, b, 4, 5)
- \bigcirc c) (c, 7, 6, f, b, 15, 21)
- o d) (a, 1, 4, e, a, 20, 11)
- 7. Which of the following relations is in Third Normal Form (3NF)?
 - \bigcirc a) R(VWXY) FD's: V \rightarrow W; V \rightarrow X; WX \rightarrow Y
 - b) R(VWXY) FD's: $WXY \rightarrow V$; $VW \rightarrow X$; $Y \rightarrow V$; $W \rightarrow X$
 - \circ c) R(VWXYZ) FD's: V \rightarrow WX; Z \rightarrow VY; W \rightarrow Z
 - \bigcirc d) R(VWXYZ) FD's: V \rightarrow WZ; X \rightarrow V; W \rightarrow XY; Z \rightarrow Y

Submit Homework