

Food Hub New York City Branch

Carlos Ceron

Contents

About the FoodHub Business

Data Set and Data Dictionary

Exploratory Data Analysis

Business Insights and Recommendations

FoodHub: food aggregator company that offers access to multiple restaurants through a single smartphone app.

How the service works?

- Restaurants receive orders directly from customers
- App assigns a delivery person for every accepted order
- Delivery person picks up food from restaurant
- Delivery person brings food to the customer
- FoodHub collects a fixed margin of the delivery on each order

Data from FoodHub's operations in New York City is available

The data set contains information on 1898 orders placed using the app, 9 variables are available in the data set, they are described in the dictionary.

Variable	Description
order_ID	Unique ID of the order
customer_ID	ID of the customer who ordered the food
restaurant_name	Name of the restaurant
cuisine_type	Cuisine ordered by the customer
cost	Cost of the order
day_of_the_week	Was the order placed on Weekday or Weekend
rating	Rating out of 5
food_preparation_time	Time taken to prepare the order.
delivery_time	Time taken to deliver.

Revenue

Total revenue generated on all orders is: \$6166.3

5 point summary for relevant variables:

Cost of the order (4.4, 12.0, 14.1, 22.2, 35.4) \$USD Food prep. Time (20.0, 23.0, 27.0, 31.0, 33.0) min Delivery Time (15.0, 20.0, 25.0, 28.0, 33.0) min

Correlation

There is no significant correlation between the variables of the data set

Cuisine Type

Data shows our customers are placing most of the orders on Weekends (Saturday and Sunday)

Cuisine Type

Cuisine Type

Observations:

- American cuisine is the most popular
- Japanese cuisine is the second most popular
- They account for 55.6% of all orders!
- Vietnamese, Southern, Korean and French are the least ordered cuisine types with less than 5%

Ratings

Observations:

38% of orders are not rated!

Delivery times

Data shows that there is an increased delivery time during Weekdays

Cuisine vs cost of the order

Cuisine vs cost of the order

Data is not conclusive on the fact that cuisine type is affecting the cost of the order

Median cost of the order is in a range across all cuisine types

Chinese has the maximum order cost in the data set

Rating vs Delivery Time

Rating vs Delivery Time

Observations:

There is no clear tendency that suggest a relationship between delivery time and rating

Rating vs Cost of the order

Rating vs Cost of the order

Observations:

The chart suggest more expensive orders get better ratings, but the long wicks means this is not a valid assumption

Business Insights and Recommendations

- Desing a strategy that encourages customers to rate their orders
- Focus on the cuisine types that are more popular
- Work on maintaining low delivery times
- Target Weekdays with special offers to increase the number of orders
- Explore possibilities to increase revenue on weekends
- Reduce delivery times on weekdays