Machine learning

Decision trees

July 12th, 2021

What is Machine Learning?

The short version:

• Machine learning (ML) is a subset of statistical learning that focuses on prediction

The longer version:

- ML focuses on constructing data-driven algorithms that *learn* the mapping between predictor variables and response variable(s).
 - We do not assume a parametric form for the mapping *a priori*, even if technically one can write one down *a posteriori* (e.g., by translating a tree model to a indicator-variable mathematical expression)
 - e.g., linear regression is NOT considered a ML algorithm since we can write down the linear equation ahead of time
 - e.g., random forests are considered an ML algorithm since we have what the trees will look like in advance

Which algorithm is best?

That's not the right question to ask.

(And the answer is *not* deep learning. Because if the underlying relationship between your predictors and your response is truly linear, *you do not need to apply deep learning*! Just do linear regression. Really. It's OK.)

The right question is ask is: why should I try different algorithms?

The answer to that is that without superhuman powers, you cannot visualize the distribution of predictor variables in their native space.

- Of course, you can visualize these data *in projection*, for instance when we perform EDA
- And the performance of different algorithms will depend on how predictor data are distributed...

Data geometry

- Two predictor variables with binary response variable: x's and o's
- LHS: Linear boundaries that form rectangles will peform well in predicting response
- RHS: Circular boundaries will perform better

Decision trees

Decision trees partition training data into **homogenous nodes** / **subgroups** with similar response values
The subgroups are found **recursively using binary partitions**

• i.e. asking a series of yes-no questions about the predictor variables

We stop splitting the tree once a **stopping criteria** has been reached (e.g. maximum depth allowed)

For each subgroup / node predictions are made with:

- Regression tree: **the average of the response values** in the node
- Classification tree: **the most popular class** in the node

Most popular approach is Leo Breiman's Classification And Regression Tree (CART) algorithm

Decision tree structure

Decision tree structure

We make a prediction for an observation by **following its path along the tree**

- Decision trees are **very easy to explain** to non-statisticians.
- Easy to visualize and thus easy to interpret without assuming a parametric form

Recursive splits: each *split / rule* depends on previous split / rule *above* it

Objective at each split: find the **best** variable to partition the data into one of two regions, $R_1 \& R_2$, to **minimize the error** between the actual response, y_i , and the node's predicted constant, c_i

• For regression we minimize the sum of squared errors (SSE):

$$SSE = \sum_{i \in R_1} \left(y_i - c_1
ight)^2 + \sum_{i \in R_2} \left(y_i - c_2
ight)^2$$

- For classification trees we minimize the node's *impurity* the **Gini index**
 - \circ where p_k is the proportion of observations in the node belonging to class k out of K total classes
 - \circ want to minimize Gini: small values indicate a node has primarily one class (is more pure)

$$Gini = 1 - \sum_{k}^{K} p_k^2$$

Splits yield **locally optimal** results, so we are NOT guaranteed to train a model that is globally optimal *How do we control the complexity of the tree?*

Tune the maximum tree depth or minimum node size

Prune the tree by tuning cost complexity

Can grow a very large complicated tree, and then **prune** back to an optimal **subtree** using a **cost complexity** parameter α (like λ for elastic net)

- α penalizes objective as a function of the number of **terminal nodes**
- e.g., we want to minimize $SSE + \alpha \cdot (\# \text{ of terminal nodes})$

Example data: MLB 2021 batting statistics

Downloaded MLB 2021 batting statistics leaderboard from Fangraphs

```
library(tidvverse)
mlb_data <- read_csv("http://www.stat.cmu.edu/cmsac/sure/2021/materials/data/fg_batting_2021.csv")</pre>
  janitor::clean_names() %>%
  mutate at(vars(bb percent:k percent), parse number)
head(mlb data)
## # A tibble: 6 × 23
                                 hr r rbi
                                                   sb bb pe...¹ k per...² iso babip
##
    name
             team
                       g
                            ра
    <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <</pre>
##
                                                        <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Vladimi... TOR
                           354
                                  27
                                       66
                                             69
                                                    2 14.4 17.2 0.336 0.346
## 2 Fernand... SDP
                           288
                                  27
                                       66
                                             58
                                                   18
                                                        12.5
                                                                 28.1 0.395 0.333
## 3 Carlos ... HOU
                      79 347
                                                        13.5 17
                                 16
                                       61
                                             52
                                                                     0.231 0.324
## 4 Marcus ... TOR
                           372
                                                   10 8.9 23.9 0.256 0.329
                      82
                                  21
                                       63
                                             54
## 5 Ronald ... ATL
                      78 342
                                  23
                                       67
                                             51
                                                   16
                                                         13.2
                                                                 24.3 0.313 0.306
## 6 Shohei ... LAA
                      82
                           322
                                  31
                                        60
                                             67
                                                   12
                                                         11.2
                                                                     0.418 0.29
                                                                 28
## # ... with 11 more variables: avg <dbl>, obp <dbl>, slg <dbl>, w_oba <dbl>,
      xw_oba <dbl>, w_rc <dbl>, bs_r <dbl>, off <dbl>, def <dbl>, war <dbl>,
## #
      playerid <dbl>, and abbreviated variable names ¹bb_percent, ²k_percent
## #
```

Regression tree example with the rpart package

Revisit the modeling of w_oba from the KNN slides

```
library(rpart)
init_mlb_tree <- rpart(formula = w_oba ~ bb_percent + k_percent + iso,</pre>
                        data = mlb data, method = "anova")
init mlb tree
## n= 135
##
## node), split, n, deviance, yval
         * denotes terminal node
##
##
##
    1) root 135 0.203847700 0.3383259
##
      2) iso< 0.2 82 0.069028260 0.3188171
        4) iso< 0.1315 27 0.021396070 0.2981852
##
          8) bb percent< 10.15 19 0.013706740 0.2894737 *
##
##
          9) bb percent>=10.15 8 0.002822875 0.3188750 *
        5) iso>=0.1315 55 0.030496840 0.3289455
##
         10) k_percent>=15.15 47 0.020832550 0.3243404
##
##
           20) bb percent< 11.45 37 0.012078700 0.3186216
             40) iso< 0.1585 13 0.002205692 0.3071538 *
##
##
             41) iso>=0.1585 24 0.007237333 0.3248333 *
```

Display the tree with rpart.plot

```
library(rpart.plot)
rpart.plot(init_mlb_tree)
```


- rpart() runs 10-fold CV to tune lpha for pruning
- Selects # terminal nodes via 1 SE rule

plotcp(init_mlb_tree)

What about the full tree? (check out rpart.control)

Train with caret

Display the final model

rpart.plot(caret_mlb_tree\$finalModel)

Summarizing variables in tree-based models

Variable importance - based on reduction in SSE (notice anything odd?)

```
library(vip)
vip(caret_mlb_tree, geom = "point") + theme_b
```


• Summarize single variable's relationship with **partial dependence plot**

```
library(pdp)
partial(caret_mlb_tree, pred.var = "obp") %>%
```

