

## **Valency and Oxidation state**

- **26.** (c) Li, Na, K, contains only one  $e^-$  in outer most orbit.
- **27.** (b) Valency is according to valence shall configuration which here is  $1s^2, 2s^2, 2p^3, ie. 5$
- **28.** (c) Fe belongs to first transition series.
- **29.** (d) Reactivity of alkaline earth metals increases down the group.

## 30. (b) Of inert pair effect

This is due to the **inert pair effect**, where the **ns² electrons are less likely to participate** in bonding as the atom gets heavier.

Not because it's a transition element, amphoteric, or highly reactive.

- **31.** (d) Tendency to gain  $e^-$  and oxidising power are related. Among halogens F is the directly most powerful oxidising agent.
- **32.** (d) Electronic configuration of outermost shell of group-17 or halogens are  $ns^2np^5$ .
- **33.** (b) On passing from left to right in a period acidic character of the normal oxides of the element goes on increasing with increase in electronegativity.

#### 34. (c) HI

Acid strength in water depends on bond strength (H–X bond) and electronegativity of X.

 $\mathbf{HF} \rightarrow \text{very strong bond} \rightarrow \text{weak acid in water.}$ 

**HI, HBr, HCI**  $\rightarrow$  bond strength decreases down the group  $\rightarrow$  acid strength increases.

Trend: HF < HCl < HBr < HI

35. (a)  $BeCl_2 < MgCl_2 < CaCl_2 < BaCl_2$ 





lonic character decreases with smaller cation size and higher charge density, due to polarizing power.

Trend of cations (size):  $Be^{2+} < Mg^{2+} < Ca^{2+} < Ba^{2+}$ 

Polarizing power decreases down the group, so ionic character increases down the group: BeCl₂ (most covalent) → BaCl₂ (most ionic)

- **36.** (b) Gold is found in native state.
- **37.** (d) The elements which having same number of electrons in the valence shell are placed in the same group of periodic table.
- **38.** (c) Alkali metals have the configuration  $(n-1)s^2p^6$ ,  $ns^1$
- 39. (d) Metallic property

Oxidising property → Decreases down the group (halogens).

**Electronegativity** → Decreases down the group.

**Acidic property** → Decreases down the group for oxides/hydrides.

**Metallic property** → Increases down the group (elements lose electrons more easily).

# 40. Both (a) K<sup>+</sup> and (b) Ca<sup>2</sup>

18 electrons → electronic configuration of noble gas Ar: 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup>

Check the ions:

$$K^+ \rightarrow K: 1s^22s^22p^63s^23p^6 \rightarrow 18 e^-$$

$$Ca^{2+} \rightarrow Ca: 20 \rightarrow loses 2 \rightarrow 18 e^{-}$$

$$Na^+ \rightarrow 11 \rightarrow loses 1 \rightarrow 10 e^-$$

$$Cu^+ \rightarrow Cu: 29 \rightarrow loses 1 \rightarrow 28 e^-$$

- **41.** (a) As going down the group size increases, an liberation of  $H^+$  ion becomes easy. So the order of acidity is : HI > HBr > HCl > HF
- 42. (d) Zn(OH)<sub>2</sub>



# **IIT-JEE CHEMISTRY**



NaOH, KOH, Ca(OH)₂ → strong bases, completely dissociate in water.

 $Zn(OH)_2 \rightarrow amphoteric$ , poorly soluble  $\rightarrow$  weak base.

43. (d) Am

Eu (Europium) → commonly +2 and +3

La (Lanthanum) → mostly +3

**Gd (Gadolinium)** → mostly +3

Am (Americium, actinide)  $\rightarrow$  shows multiple oxidation states (+2, +3, +4, +5, +6)

- **44.** (d) Valence shell configuration for IIA group elements is :  $ns^2$
- **45.** (b)  $A_2B_3$

$$A \xrightarrow{-3e^{-}} A^{+3}$$
:  $B \xrightarrow{+2e^{-}} B^{-2}$ 

46. (d) F

CI, Br, I  $\rightarrow$  Can show +1, +3, +5, +7 in oxides or oxyacids.

**F (Fluorine)** → Always has **-1** oxidation state because it is the **most electronegative element** and cannot have a positive oxidation state.

- **47.** (b) Lower the value of I.P. of an element, the greater will be the basic character of the element.
- **48.** (c) *N*, *O* and *F* have strong tendency to attract the shared pair of electrons i.e. by gaining electrons to form anions
- **49.** (c)  $B_2O_3$ ,  $Al_2O_3$  are amphoteric oxides.
- **50.** (d) He has the atomic number 2 so it does not have octet.
- **51.** (c) Beryllium has the valency of +2 while aluminum exhibits its valency as +3

