Analyse de données et Traitement de l'Information: Analyse en Composantes Principales

Stéphane Marchand-Maillet

Département d'Informatique Université de Genève stephane.marchand-maillet@unige.ch

Master en Sciences Informatiques - Semestre d'Automne

Introduction

Qu'est ce que l'Analyse de Données?

- Analyse statistique de données
 - données multivariées (variables aléatoires multidimensionnelles)
 - analyses de la distribution des données
- Visualisation
- Compréhension
- Prévision
- Reconnaissance

Une **population** d'**individus** ou d'**éléments** décrite par des variables, caractéristiques ou descripteurs

- variables qualitatives (symboliques) : diplôme, pays, occurrence
- variables quantitatives (numériques) : age, chiffre d'affaire, intensité lumineuse

Les données sont des mesures physiques, sociologiques, informatiques,...

- données statiques
- données temporelles

Cardinalité et dimension

L'analyse de données s'applique lorsque :

- population importante
- nombreuses variables

Cardinalité et dimension

L'analyse de données s'applique lorsque :

- population importante
- nombreuses variables

Cardinalité et dimension

L'analyse de données s'applique lorsque :

- population importante
- nombreuses variables

Cardinalité et dimension

L'analyse de données s'applique lorsque :

- population importante
- nombreuses variables

Cardinalité et dimension

L'analyse de données s'applique lorsque :

- population importante
- nombreuses variables

Imprécision de la mesure

$$z = x + \eta$$

Imprécision de la mesure

Imprécision de la mesure

Imprécision de la mesure

- x est la signal contenant l'information
- \triangleright η est appelé *bruit*, et ne contient pas d'information

Estimation et régression

Du fait du caractère aléatoire et imprécis des données, le problème consiste à identifier des paramètres statistiques sur population étudiée.

Estimation et régression

Du fait du caractère aléatoire et imprécis des données, le problème consiste à identifier des paramètres statistiques sur population étudiée.

Estimation et régression

Du fait du caractère aléatoire et imprécis des données, le problème consiste à identifier des paramètres statistiques sur population étudiée.

Les données sont elles séparables?

Estimation et régression

Du fait du caractère aléatoire et imprécis des données, le problème consiste à identifier des paramètres statistiques sur population étudiée.

Quelle est la distribution des données?

Estimation et régression

Du fait du caractère aléatoire et imprécis des données, le problème consiste à identifier des paramètres statistiques sur population étudiée.

Y a t'il des caractéristiques particulières aux mesures?

Estimation et régression

Du fait du caractère aléatoire et imprécis des données, le problème consiste à identifier des paramètres statistiques sur population étudiée.

Y a t'il des caractéristiques particulières aux mesures?

⇒L'analyse de donnée repose sur des techniques d'estimation et d'optimisation statistique

Analyse supervisée/non-supervisée

Selon les problèmes, il existe ou pas (ou partiellement) des données d'entraînement

- Problème supervisé: un label est associé à un sous-ensemble de données permettant l'apprentissage d'algorithmes de traitement des données (automates d'apprentissages).
- Problème non-supervisé : aucune information n'est disponible autre que les variables issues des données (clusterisation automatique, réduction de dimensions,...)

- ▶ Reconnaissance de Formes → recherche et reconnaissance de motifs (pattern)
 - Vision
 - Parole
 - Robotique
 - **...**

- ▶ Reconnaissance de Formes → recherche et reconnaissance de motifs (pattern)
 - Vision
 - Parole
 - ► Robotique
- Prévisions
 - Statistiques financières
 - Télécom
 - **.**..

- Recherche d'information
 - ▶ Web, Web 2.0
 - Multimedia

- Recherche d'information
 - ▶ Web, Web 2.0
 - Multimedia
- Datamining
 - ► Bio-informatique
 - Business intelligence
 - Sciences humaines, économiques

Quelques livres

- ▶ Pattern Classification, Richard O. Duda, Peter E. Hart, David G. Stork.
- Pattern Recognition and Machine Learning, Christopher M. Bishop
- ► The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Trevor Hastie, Robert Tibshirani, Jerome H. Friedman

Représentation des données, espaces de données

Définitions

- données : éléments, individus, objets
 - \rightarrow constituent une population Ω
- variables : mesures, descripteurs, caractères
 - \rightarrow projettent Ω dans un espace \mathcal{F}

$$p_i \in \Omega \rightarrow \mathbf{x}_i \in \mathcal{F}$$

 $ightharpoonup \mathcal{F}$ est un "espace de description/représentation" de Ω

La topologie de ${\mathcal F}$ dépend des caractères mesurés

- ▶ $\mathcal{F} \subset \mathbb{R}^N$, $\mathcal{F} \subset \mathcal{Z}^N$, : variables numériques quantitatif mesurable : revenu, poids, . . . quantitatif d'ordre : note, rang, . . . quantitatif de comptage : fréquence, contingence, . . . quantitatif binaire : succès-échec, présence-absence, . . .
- ▶ $\mathcal{F} \subset S = \{A, B, C, \cdots\}$: variables symboliques qualitatif nominal: lieu géographique, catégorie socioprofessionnelle, ... qualitatif ordinal: pas d'accord, sans opinion, ... qualitatif textuel: titre de film, nom d'auteur, ...

Mesures de similarités

L'espace ${\mathcal F}$ est muni d'une métrique

A tout couple $\{p_i, p_j\} \in \Omega^2$ est associée une mesure $d(\mathbf{x}_i, \mathbf{x}_j)$ qui indique la **proximité** des deux éléments correspondants dans \mathcal{F} .

Exemples de mesures

- **E**uclidienne (L_2), $d=\sqrt{\sum_k^N(x_i^k-x_j^k)^2}$: dissimilarité
- ▶ Dirac $\delta(\mathbf{x}_i, \mathbf{x}_j) = \begin{cases} 1 \text{ si } x_i = x_j \\ 0 \text{ sinon} \end{cases}$: similarité
- b divergence de Kullback, distance de Mahalanobis, test du $\chi^2 \dots$
- ⇒ Il est possible de définir une infinité de (dis)similarités

Tableau quantitatif

Tableaux explicitant les variables des éléments

ELEMENTS

Tableau quantitatif

Tableaux explicitant les variables des éléments

$$X = \begin{cases} ARIABLES \\ X \\ \vdots \\ X \end{cases}$$

	p_1	p_2		рм
x^1				
x^2	:	٠.		
:	:		٠.,	
x ^N	:			٠

Matrice N × M de variables x_i^k

Tableau quantitatif

Tableaux explicitant les variables des éléments

- Matrice N × M de variables x_i^k
- Chaque colonne contient le vecteur x_i décrivant p_i par ses N variables

Tableau quantitatif de variables indicatrices

Comment représenter les variables symboliques?

ELEMENTS

Tableau quantitatif de variables indicatrices

Comment représenter les variables symboliques?

ELEMENTS

$$X = \begin{bmatrix} & p_1 & p_2 & \cdots & p_M \\ X^1 & 0 & 1 & \dots & 1 \\ X^2 & 1 & \ddots & & & \\ \vdots & \vdots & & & 0 & & \\ X^N & 1 & & & \ddots & & \end{bmatrix}$$

- Occurrence d'un symbole s dans un élément p_i
- Matrice binaire
- Vector Space Model

Tableau de contingence - matrice de covariance

Relation entre les variables

La matrice $C = XX^T$ est appelée tableau de contingence (données symboliques). Elle est liée à la matrice de covariance (données numériques centrées)

S = VARIABLES

,	VARIADLES						
	x^1	x^2		×N			
x^1							
x^2	٠	÷					
:		$\sum_k x_k^i x_k^j$					
xN		:	٠				

Tableau de contingence - matrice de covariance

Relation entre les variables

La matrice $C = XX^T$ est appelée tableau de contingence (données symboliques). Elle est liée à la matrice de covariance (données numériques centrées)

SECULTIVES)

VARIABLES $C = \begin{array}{c|cccc}
 & x^1 & x^2 & \cdots & x^N \\
\hline
 & x^1 & & & \\
 & x^2 & \cdots & \vdots & & \\
 & \vdots & \cdots & \sum_k x_k^i x_k^i & \cdots & \\
 & x^N & & \vdots & \ddots & \\
\end{array}$

- ightharpoonup symbolique : $c_{ij}=$ nbre d'élts possédant à la fois les symboles i et j
- ▶ numérique : c_{ij} mesure la corrélation entre les variables i et j ...

Tableau des similarités

Proximité entre les éléments La matrice D est appelée matrice des distances

ELEMENTS

$$D = egin{array}{c|cccc} & p_1 & p_2 & \cdots & p_M \\ \hline P_1 & & & & & \\ P_2 & \ddots & & \vdots & & \\ \vdots & \cdots & d(\mathbf{x}_i, \mathbf{x}_j) & \cdots & \\ p_M & & \vdots & \ddots & \\ \hline \end{array}$$

Tableau des similarités

Proximité entre les éléments La matrice D est appelée matrice des distances

ELEMENTS

- ▶ Tableau $M \times M$, occupation mémoire très importante
- En général symétrique et défini-positif

Outils de description des données

• Une fois la population Ω et l'espace de représentation \mathcal{F} définis, nous allons nous intéresser aux outils fondamentaux pour décrire le couple $\{\Omega, \mathcal{F}\}$

Outils de description des données

- Une fois la population Ω et l'espace de représentation \mathcal{F} définis, nous allons nous intéresser aux outils fondamentaux pour décrire le couple $\{\Omega, \mathcal{F}\}$
- Description géométrique

Outils de description des données

- Une fois la population Ω et l'espace de représentation \mathcal{F} définis, nous allons nous intéresser aux outils fondamentaux pour décrire le couple $\{\Omega, \mathcal{F}\}$
- Description géométrique
- Description stochastique

Géométrie des données

L'espace \mathbb{R}^N

- Espace vectoriel de dimension N
- Sous-espace, affine, vectoriel
- Espace Euclidien
 - Produit scalaire : $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = \sum_k x^k y^k$
 - \rightarrow x \perp y \equiv < x, y >= 0
 - Norme $||\mathbf{x}||^2 = <\mathbf{x}, \mathbf{x}>$
- Généralisation de la distance euclidienne
 - produit scalaire $\langle \mathbf{x}, \mathbf{y} \rangle_{S} = \mathbf{x}^{\mathsf{T}} S \mathbf{y}$
 - ► *S* matrice symétrique définie positive $(\forall \mathbf{w} \in \mathbb{R}^N, ||\mathbf{w}|| > 0, \mathbf{w}^\mathsf{T} S \mathbf{w} > 0)$

Inertie d'un nuage de points

- ▶ Ensemble de points $\Omega = \{\mathbf{x}_i\}, i = 1..., M, \mathbf{x} \in \mathbb{R}^N$
- Centre de gravité :

$$\mathbf{g} = \frac{1}{M} \sum_{\mathbf{x} \in \Omega} \mathbf{x}$$

Inertie de Ω par rapport à un point a :

$$I_{\mathbf{a}} = \sum_{\mathbf{x} \in \Omega} d(\mathbf{x}, \mathbf{a})^2$$

• On note $I = I_{\mathbf{g}}$ l'inertie de Ω par rapport à son centre de gravité \mathbf{g}

Inertie d'un nuage de points (2)

▶ Inertie de Ω par rapport à un sous-espace \mathcal{F} :

$$I_{\mathcal{F}} = \sum_{\mathbf{x} \in \Omega} d^2(\mathbf{x}, \mathcal{F})$$

▶ soit l'opérateur $Proj_{\mathcal{F}}(\mathbf{x})$ la projection orthogonale de \mathbf{x} dans \mathcal{F} . alors :

$$I_{\mathcal{F}} = \sum_{\mathbf{x} \in \Omega} d^2(\mathbf{x}, \mathsf{Proj}_{\mathcal{F}}(\mathbf{x}))$$

Décomposition de l'inertie (th. de Huygens)

▶ Pour un point :

$$\forall \mathbf{a} \in \mathbb{R}^N, I_{\mathbf{a}} = I_{\mathbf{g}} + d^2(\mathbf{a}, \mathbf{g})$$

- → g point d'inertie minimum
- ▶ Pour un sous espace \mathcal{F} : soit $\mathcal{F}_{\mathbf{g}}$ s.e. parallèle à \mathcal{F} passant par \mathbf{g} , alors

$$I_{\mathcal{F}} = I_{\mathcal{F}_{\mathbf{g}}} + d^2(\mathcal{F}, \mathcal{F}_{\mathbf{g}})$$

 $ightarrow \mathcal{F}_{\mathbf{g}}$ sous espace d'inertie minimum // à \mathcal{F}

Décomposition de l'inertie : Inertie expliquée

- ▶ Nuage centré \Rightarrow **g** = O, (O origine de l'espace)
- ► Soit F un sous espace passant par l'origine (sous espace vectoriel, s.e.v), alors

$$I=I_{\mathcal{F}}+I_{\mathcal{F}^{\perp}}$$
, avec $I_{\mathcal{F}^{\perp}}$ inertie des points projetés dans \mathcal{F}^{\perp}

- $ightharpoonup I_{\mathcal{F}}$ est appelée l'Inertie Expliquée par \mathcal{F}
- ▶ $I_{\mathcal{F}^{\perp}}$ est appelée l'Inertie Résiduelle de \mathcal{F}

Expression matricielle

▶ Données centrées ⇒

$$I = \sum_{\mathbf{x} \in \Omega} \langle \mathbf{x}, \mathbf{x} \rangle \Rightarrow I = \sum_{i}^{M} \sum_{j}^{N} (x_{i}^{j})^{2} \Rightarrow I = \sum_{j}^{N} \sum_{i}^{M} (x_{i}^{j})^{2}$$

- ▶ Si X tableau *variables/éléments* de taille N × M
- alors

$$I = trace(XX^{\mathsf{T}})$$

► la matrice XX^T est la matrice d'inertie, ou N× la matrice de covariance

Conclusion

Comme nous le verrons par la suite, l'inertie est une grandeur fondamentale pour l'analyse de données. Selon les algorithmes (ACP, ADL,...), on va chercher les sous-espaces minimisant ou maximisant l'inertie des éléments considérés.

Interprétation statistique

- ▶ Jusqu'à présent, nous avons décrit les données par une formulation déterministe : à un point p est associé un vecteur de variables $\mathbf{x} \in \mathbb{R}^N$.
- ▶ Dans de nombreux problèmes, il est également intéressant de modéliser x comme une variable aléatoire décrite par une loi de probabilité
- L'analyse des données s'effectue alors par l'analyse statistique de la population

Rappel sur la théorie probabiliste

Variable Aléatoire Discrète

- ▶ x est une variable aléatoire discrète prenant une valeur dans l'ensemble $\mathcal{X} = \{v_1, \dots, v_m\}$.
- p_i est la probabilité que x prenne la valeur v_i

$$p_i = \Pr[x = v_i], \quad i = 1, \dots, m$$

L'ensemble $\{p_1, \ldots, p_m\}$ est exprimé par la fonction de probabilité P(x), tq.,

$$P(x) \ge 0$$
, et $\sum_{x \in \mathcal{X}} P(x) = 1$

Histogramme des occurrences de x normalisé

Espérances

Espérance ou moyenne

$$E[x] = \mu = \sum_{x \in \mathcal{X}} x P(x) = \sum_{i}^{m} v_i p_i$$

► Moment d'ordre 2

$$E[x^2] = \sum_{x \in \mathcal{X}} x^2 P(x)$$

Variance

$$Var[x] = \sigma^{2} = E[(x - \mu)^{2}] = \sum_{x \in \mathcal{X}} (x - \mu)^{2} P(x)$$

 σ : écart-type

Variables centrées normalisées

Inégalité de Chebichev

$$\Pr[|x - \mu| > n\sigma] \le \frac{1}{n^2}$$

- ► Relation entre l'écart-type et la dispersion des valeurs autour de la moyenne
- $ightharpoonup rac{x-\mu}{\sigma} \Rightarrow$ normalisation de la dispersion autour de la moyenne

Paires de v.a. discrètes

- ▶ x et y v.a. prenant valeurs dans $\mathcal{X} = \{v_1, \dots, v_m\}$ et $\mathcal{Y} = \{w_1, \dots, w_n\}$ respectivement.
- ▶ Pour tout couple (v_i, w_i), il existe une probabilité jointe

$$p_{ij} = \Pr[x = v_i, y = w_j]$$

▶ Fonction de probabilité jointe P(x, y) pour laquelle

$$P(x,y) \ge 0$$
, et $\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(x,y) = 1$

ightharpoonup Histogramme des co-occurrences de (x, y) normalisé

Probabilité marginale, indépendance

Distributions marginales

$$P_x(x) = \sum_{y \in \mathcal{Y}} P(x, y)$$

$$P_{y}(y) = \sum_{x \in \mathcal{X}} P(x, y)$$

x et y sont dites statistiquement indépendantes si

$$P(x, y) = P_x(x)P_y(y)$$

Espérance de deux variables aléatoires

▶ D'une manière générale

$$E[f(x,y)] = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} f(x,y) P(x,y)$$

Moyenne

$$\mu_{x} = E[x] = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} x P(x, y)$$

$$\mu_y = E[y] = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} y P(x, y)$$

Variance

$$\sigma_x^2 = Var[x] = E[(x - \mu_x)^2] = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} (x - \mu_x)^2 P(x, y)$$

$$\sigma_{v}^{2} = \text{Var}[y] = E[(y - \mu_{v})^{2}] = \sum_{v} \sum_{v} (y - \mu_{v})^{2} P(x, y)$$

Coefficient de corrélation

Covariance

$$\sigma_{xy} = \mathsf{Cov}(x, y) = E[(x - \mu_x)(y - \mu_y)]$$

Inégalité de Cauchy Schwartz

$$\sigma_{xy} \le \sigma_x \sigma_y$$

Coefficient de corrélation

$$\rho = \frac{\sigma_{xy}}{\sigma_x \sigma_y} \in [-1, 1]$$

- ho = 1, les variables sont corrélées positivement
- $\rho = 0$, les variables sont décorrélées
- $\rho = -1$, les variables sont corrélées négativement

Probabilité conditionnelle

v.a. statistiquement dépendante

 $P(x|y) = \Pr[x = v_i | y = w_i]$: probabilité de connaître x sachant y.

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Règles de Bayes

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

ou

$$P(x|y) = \frac{P(y|x)P(x)}{\sum_{x \in \mathcal{X}} P(x,y)}$$

Vraisemblance

Supposons que x est la cause d'un événement qui a pour effet mesurable y.

La règle de Bayes permet de déterminer la probabilité a posteriori P(x|y) de connaître x sachant y à partir de la vraisemblance P(y|x) que y est réellement induit par x, et de la probabilité a priori P(x) de l'occurrence de x.

$$\textit{a posteriori} = \frac{\textit{vraisemblance} \times \textit{a priori}}{\textit{evidence}}$$

Le dénominateur $P(y) = \sum_{x \in \mathcal{X}} P(x, y)$, appelé évidence, est un terme de normalisation (tq. $\sum_{x} P(x|y) = 1$).

Variables Aléatoires Continues

Lorsque x prend ses valeurs dans un continuum, on défini une fonction de *densité de probabilité* p(x)

$$p(x) = \Pr[x \in (a, b)] = \int_a^b p(x) dx$$

- $p(x) \ge 0$ et $\int_{-\infty}^{\infty} p(x) dx = 1$
- La plupart des définitions pour les v.a. discrètes se transforme dans le cas continu en remplaçant l'opérateur \sum par \int .

Variables aléatoire multivariées

Extension du problème à N variables aléatoires x^1, x^2, \dots, x^N

- ▶ Notation vectorielle $\mathbf{x} = [x^1, x^2, \dots, x^N]^\mathsf{T}, \in \mathbb{R}^N$
- ▶ Fonction de probabilité jointe $P(\mathbf{x})$, $P(\mathbf{x}) \geq 0$, $\sum P(\mathbf{x}) = 1$
- \triangleright $P(\mathbf{x})$ fonction multidimensionnelle qui peut être très complexe
- Les règles énoncées pour x sont valables pour x
- En particulier

v.a. indépendante
$$P(\mathbf{x}) = \prod_{i} P_{x^i}(x^i)$$

Proba. cond.
$$P(x^1, x^2 | x^3) = \frac{P(x^1, x^2, x^3)}{P(x^3)}$$

Espérance, matrice de covariance

- ▶ De manière générale $E[\mathbf{f}(\mathbf{x})] = \sum_{\mathbf{x}} \mathbf{f}(\mathbf{x}) P(\mathbf{x}), \ \mathbf{f} : [0, 1]^N \rightarrow [0, 1]^N$
- ▶ Vecteur moyen $\mu = \sum xP(x)$
- ► Matrice de covariance

$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}}] = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1N} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{N1} & \sigma_{N2} & \dots & \sigma_{NN} \end{pmatrix}$$

- Σ symétrique, diagonale = variances, hors-diagonale = co-variances
- ightharpoonup Variables indépendantes $\Rightarrow \Sigma$ diagonale (pas réciproque!)

Expression Matricielle

► X tableau variables/éléments

$$\Sigma = \frac{1}{N} X X^{\mathsf{T}}$$

Σ est dite semi défini positive

$$\forall \mathbf{w} \in \mathbb{R}^N, \ \mathbf{w}^T \mathbf{\Sigma} \mathbf{w} \geq 0$$

 μ et Σ décrivent à l'ordre 2 la distribution statistique multidimensionnelle d'une population Ω .

Distribution Gaussienne Multivariée

- ► Théorème Central-Limite : La distribution de la somme de *d* variables aléatoires tend vers la loi Normale (Gaussienne)
- ▶ Distribution Gaussienne est complètement décrite à l'ordre 2

$$p(\mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{N/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left[-0.5(\mathbf{x} - \boldsymbol{\mu}) \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}}\right]$$

► Hypothèse très fréquente : la distribution de Ω est de la forme $\mathcal{N}(\mu, Σ)$

Modélisation Gaussienne

Analyse en Composantes

- Analyse de données multivariées
 - ▶ Nuage Ω composé de M points définis par N variables x^i
 - $\mathbf{x} \in \mathbb{R}^N$
- Nécessité de comprendre la distribution "spatiale" de ces données
 - Possibilité de visualiser les données
 - Extraire les caractéristiques les plus importantes
- Compression de la représentation
 - Qualité de la reconstruction
 - Manipulations facilitées des données
- Séparation des données selon leurs propriétés principales

Analyse en Composantes Principales (ACP)

L'ACP a pour but de déterminer pour un nuage de points Ω un sous-espace dans lequel les données seront représentées de manière compacte par des variables décorélées. Ces nouvelles variables font apparaître des propriétés géométriques intrinsèques d'importance décroissante de Ω .

Rappel sur l'Inertie

- ▶ Soit $\mathbb{R}^N = \Delta_1 \oplus \Delta_2 \oplus \cdots \oplus \Delta_N$ la décomposition en s.e. orthogonaux de dimension 1 (axe Δ)
- Pour un nuage de points Ω, l'inertie totale se décompose

$$I = I_{\Delta_1} + I_{\Delta_2} + \cdots + I_{\Delta_N}$$

- ▶ L'ACP recherche tous les axes Δ_i tq. $I_{\Delta_i} \geq I_{\Delta_{i+1}}$
- ► Les projections sur les axes *expliquant* le maximum d'Inertie globale conservent le maximum d'information sur les données
- Ω contenu dans un s.e \iff $I_{\Delta_i} = 0, \ \forall i > d$

Interprétation géométrique

Recherche des axes maximisant l'inertie expliquée

recherche des axes de variance maximale

Analyse de la matrice de covariance

Recherche de l'axe u minimisant l'erreur quadratique

- $ightharpoonup ||\mathbf{x}_i \langle \mathbf{x}_i, \mathbf{u} > \mathbf{u}||^2 \simeq \sum_i \mathbf{u}^\mathsf{T} \mathbf{x}_i \mathbf{x}_i^\mathsf{T} \mathbf{u} = \mathit{Trace}(\mathbf{u}^\mathsf{T} \Sigma \mathbf{u})$
- lacktriangle avec la contrainte $f u^T f u = 1$ (pour eviter la solution ||f u|| = 0)

Minimisation

- ▶ Par Lagrange, pour une dimension, minimization de $J = \mathbf{u}^\mathsf{T} \Sigma \mathbf{u} \lambda (1 \mathbf{u}\mathbf{u}) \Leftrightarrow \frac{\partial J}{\partial u} = 0 \Leftrightarrow \Sigma \mathbf{u} \lambda \mathbf{u} = 0$
- ▶ $\Leftrightarrow \Sigma \mathbf{u} = \lambda \mathbf{u} \Leftrightarrow \mathbf{u}$ est un vecteur propre de Σ

Diagonalisation de la matrice de covariance

Décomposition spectrale

- On resoud toutes les dimensions en un seul systeme
- ightharpoonup \Leftrightarrow diagonalisation de Σ par recherche de vecteurs propres

$$\Sigma = U \Lambda U^{\mathsf{T}}, \quad U, \Lambda \in \mathbb{R}^{N \times N}$$

- Les colonnes de la matrice de rotation U contiennent les vecteurs propres \mathbf{u}_i unitaires et orthogonaux de Σ .
- ▶ $\Lambda = \text{diag}[\lambda_1, ..., \lambda_N]$ valeurs propres de Σ.

Composantes Principales

- ▶ Les valeurs propres ordonnées $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N$ sont égales aux Inerties $I_{\Delta_1} \geq I_{\Delta_2} \geq \cdots \geq I_{\Delta_N}$
- Les N vecteurs propres ordonnés \mathbf{u}_i définissent les axes Δ_i est sont appelés les composantes principales
- La nouvelle base de représentation est maintenant $\{\mathbf{u}_i\}_{i=1,...,N}$

Contribution des axes à l'inertie totale

$$I_{\Delta_i} = \lambda_i$$
, et $I = \sum_{i=1}^{N} I_{\Delta_i}$

Définition

- 1. Contribution Absolue de Δ_i à I : $ca(\Delta_i/I) = \lambda_i$
- 2. Contribution Relative : $cr(\Delta_i/I) = \frac{\lambda_i}{\lambda_1 + \dots + \lambda_N}$
 - \Rightarrow Pourcentage d'Inertie Expliquée par Δ_i
- 3. Pourcentage des d premiers axes :

$$\operatorname{cr}(\Delta_1 \oplus \Delta_2 \cdots \oplus \Delta_d) = \frac{\lambda_1 + \lambda_2 \cdots + \lambda_d}{\lambda_1 + \lambda_2 \cdots + \lambda_N}$$

Décroissance de la contribution des composantes

Données Digit

7291 images
$$16 \times 16$$
 (8 bits) $\Rightarrow \mathbf{x}_i \in \mathbb{R}^{256}, i = 1...7291$

Pourcentage d'Inertie Expliquée

Projection sur les composantes principales

La définition d'un nouvel espace implique de nouvelles coordonnées décrivant les données

$$y_i^j = \langle \mathbf{x}_i, \mathbf{u}_j \rangle$$

 \Rightarrow La jième composante des nouvelles coordonnées \mathbf{y}_i d'un point i s'obtient en projetant le vecteur \mathbf{x}_i sur la jième composante principale \mathbf{u}_i

$$\mathbf{y}_i = U^\mathsf{T} \mathbf{x}_i$$

Approximation des données

On peut ne retenir que les d premières composantes (par exemple si $cr(\Delta_d, I) \geq 90\%$). Dans ce cas, les données sont approximées dans le nouvel espace de dimension réduite

$$\tilde{\mathbf{y}}_i^2 = U_d^\mathsf{T} \mathbf{x}_i, \quad \tilde{\mathbf{y}} \in \mathbb{R}^d$$

- $\Rightarrow U_d \in \mathbb{R}^{N \times d}$ matrice des d premières composantes
 - ▶ Si d = 2 ou $3 \rightarrow$ possibilité de visualiser les données
 - ▶ Si $d \ll N \rightarrow$ compression des données
 - Expressivité des d premières composantes

Visualisation des données

$$\tilde{\mathbf{y}}_i^2 = [\mathbf{u}_1^\mathsf{T} \mathbf{x}_i, \mathbf{u}_2^\mathsf{T} \mathbf{x}_i]$$

Reconstruction

$$\tilde{\mathbf{x}}_i = \sum_{j=1}^d y_i^j \mathbf{u}_j = {}^t \tilde{\mathbf{y}}_i^d U_d$$

Qualité de la représentation des éléments

- ▶ Soit 2 points projetés sur un axe Δ_k
 - ▶ si ils sont éloignés sur $\Delta_k \Rightarrow$, éloignés dans l'espace original
 - \triangleright si ils sont proches sur Δ_k , pas de conclusion...
- La qualité de représentation de x_i par Δ_k se mesure par

$$Q_{\Delta_k}(\mathbf{x}_i) = \cos^2(\mathbf{x}_i, \mathbf{u}_k) = \frac{\langle \mathbf{x}_i, \mathbf{u}_k \rangle^2}{\|\mathbf{x}_i\|^2}$$

• Sur un sous-espace $E=\Delta_k\oplus\Delta_q\oplus\cdots\oplus\Delta_p$

$$Q_E(\mathbf{x}_i) = \cos^2(\mathbf{x}_i, \mathbf{u}_k) + \cos^2(\mathbf{x}_i, \mathbf{u}_q) + \cdots + \cos^2(\mathbf{x}_i, \mathbf{u}_p)$$

Exemple

Projection sur le plan principal $(\Delta_1 \oplus \Delta_2)$

	Label	0	1	2	3	4	5	6	7	8	9
Ì	Qualité	0.7	1.5	0.4	0.2	0.7	0.2	0.5	0.9	0.4	0.8

Contribution d'un élément à la définition des axes

▶ Contribution absolue d'un point i à Δ_k

$$\operatorname{\mathsf{ca}}(\mathbf{x}_i, \Delta_k) = \frac{1}{N} < \mathbf{x}_i, \mathbf{u}_k >^2$$

⇒ Plus la projection d'un point sur un axe est importante, plus cet élément contribue à l'existence de l'axe

ightharpoonup Contribution relative d'un élément à l'Inertie de Δ_k

$$\operatorname{cr}(\mathbf{x}_i, \Delta_k) = \frac{\operatorname{ca}(\mathbf{x}_i, \Delta_k)}{I_{\Delta_k}} = \frac{\langle \mathbf{x}_i, \mathbf{u}_k \rangle^2}{\lambda_k}$$

ACP sur des données réduites

- Variables initiales hétérogènes → homogénéité des combinaisons linéaires?
- Exemple : Notation de villes américaines

- ▶ Echelle de notes : selon les catégories $100 \rightarrow > 10000$
- Nécéssité de normaliser les données par leur variances

Réduction des données

- ▶ Définir la métrique $<.,.>_V$, avec $V=diag(\sigma_1^2,...,\sigma_N^2)$
- La matrice de covariance Σ_V des données réduites est égale à la matrice de corrélation R des données initiales
- ▶ Décomposition spectrale de R (à la place de Σ)

Optimalité de l'ACP

Distribution gaussienne

- L'ACP décompose la matrice de covariance selon ces valeurs propres/vecteur propres
- Meilleure base pour représenter $\mathcal{N}(\mu, \Sigma)$

Limitations de l'ACP

- L'ACP étudie les corrélations entre variables → relations linéaires
 - ⇒ pas de prise en compte des relations non-linéaires!
- 2. L'ACP optimise un critère quadratique (matrice de covariance)
 - ⇒ sensible aux valeurs extrêmes
- 3. L'ACP est optimale pour des données Gaussiennes
 - ⇒ mal adaptée aux données clusterisées