Hướng dẫn tra bảng phân phối chuẩn tắc

• Giả sử $X \sim N(0; 1)$. Hàm phân phối chuẩn tắc của X là $\Phi(x) = P(X < x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{t^2}{2}} dt$.

Cách bấm máy tính tính $\Phi(t)$: Với $t \ge 0$, ta có $\Phi(t) = 0, 5 + \frac{1}{\sqrt{2\pi}} \int_{0}^{t} e^{-\frac{x^2}{2}} dx$. Bắm tích phân và cộng thêm 0.5.

Với
$$t < 0$$
, ta có $\Phi(t) = 0, 5 - \frac{1}{\sqrt{2\pi}} \int_{0}^{-t} e^{-\frac{x^2}{2}} dx$. Bấm $0, 5$ – tích phân.

- Chú ý: Nếu $\Phi(t) = P(X < t) = \beta = 1 \alpha$ thì t được gọi là phân vị chuẩn tắc với mức xác suất $\beta = 1 \alpha$. Ta có $t = U_{\alpha}$ với U_{α} là giá trị chuẩn tới hạn mức α
- Bài toán:
- +) Cho t, hãy tra $\Phi(t) = ???$
- +) Cho $\Phi(t)$, hãy tra t = ???
- Tra bảng phân vị chuẩn t.

Cấu trúc của bảng như sau:

t	0	1	•••	9
0,0	0,5000	0,5040	•••	0,5359
0,1	0,5398	0,5438	•••	0,5753
:	:	:	:	:
2,9	0,9981	0,9982	•••	0,9986
t	3,0	3,1	•••	3,9
$\Phi(t)$	0,9987	0,9990	•••	0,9999

Trong bảng trên: Ta có t:=a,bc=a,b+0,0c, với phần a,b thuộc đầu các hàng và phần c thuộc đầu các cột. Nghĩa là giá trị của t trong bảng được tính bằng cách là lấy giá trị đầu các cột c đặt sau giá trị đầu các dòng. Ví dụ t=0,11 lấy giá trị đầu cột hai là 1 đặt sau giá trị đầu hàng 0,1 hay t=0,11 nằm ở hàng 0,1 và cột 1

Cách tra như sau:

1) Cho t, tra bảng tìm $\Phi(t) = ??$

Xét các trường hợp sau:

a) $0 \le t \le 3,9$ và t có trong bảng, nghĩa là t = a, bc: Ta có $\Phi(t)$ là giá trị ở phần giao giữa hàng chứa a, b và cột chứa c.

Ví dụ: +) Tính $\Phi(0, 11)$ =??. Ta có z = 0, 11 = 0, 1 + 0, 01. Do đó, $\Phi(0, 11)$ nằm ở phần giao của hàng chứa 0, 1 và cột chứa 1. Khi đó, tra bảng, ta có $\Phi(0, 11) = 0,5438$.

- +) Tính $\Phi(3)$ =??. Ta có t=3=3,0+0,00. Do đó, $\Phi(3)$ nằm ở phần giao của hàng chứa 3,0 và côt chứa 0. Khi đó, tra bảng, ta có $\Phi(3)=0,9987$.
- b) Trường hợp 1: Khi $0 \le t \le 2,99$ và t không có trong bảng, nghĩa là t=a,bcde...: Tính $\Phi(t)$ như sau:
- Ta có t nằm giữa hai số a, bc và a, b(c+1) (ở đây a, b(c+1) là số mà số thập phân thứ 2 tăng 1 đơn vi).

- Tra bảng cho $\Phi(a,bc)$ và $\Phi(a,b(c+1))$ - Do đó, ta có thể tính $\Phi(t)$ theo một trong các phương án sau: +) Phương án 1: $\Phi(t) \simeq \frac{\Phi(a,bc) + \Phi(a,b(c+1))}{\Phi(a,b(c+1))}$ +) Phương án 2: $\Phi(t) \simeq \Phi(a,bc)$. +) Phương án 3: $\Phi(t) \simeq \Phi(a, b(c+1))$. Trường hợp 2: Khi 3, $0 \le t \le 3$, 9 và t không có trong bảng, tức là t = 3, abcd. Ta có 3, a < t < 33, (a + 1) và ta có thể chọn một trong ba phương án: +) Phương án 1: $\Phi(t) \simeq \frac{\Phi(3, a) + \Phi(3, (a + 1))}{\Phi(3, a) + \Phi(3, (a + 1))}$ +) Phương án 2: $\Phi(t) \simeq \Phi(3, a)$. +) Phương án 3: $\Phi(t) \simeq \Phi(3, (a+1))$. Ví du: Tính $\Phi(0, 1025)$. Ta có t = 0, 1025Ta thấy 0, 10 < t < 0, 11. Lấy $\Phi(0, 1025) \simeq \frac{\Phi(0, 1) + \Phi(0, 11)}{2} = \frac{0,5398 + 0,5438}{2}.$ c) Nếu t > 3,9 thì $\Phi(t) \simeq \Phi(3,9) = 0,9999$. Ở đây 3,9 là phân vi chuẩn lớn nhất trong bảng. Ví du: $\Phi(3,999) \simeq \Phi(3,9) = 0,9999$. d): Nếu t < 0 thì $\Phi(t) = 1 - \Phi(-t)$ và tra bảng cho $\Phi(-t)$, sau đó tính được $\Phi(t)$. Ví du: Tính $\Phi(-0,11)$. Ta có $\Phi(-0,11) = 1 - \Phi(0,11)$. Tra bảng cho $\Phi(0,11) = 0,5438$, suy ra $\Phi(-0,11) = 1 - 0,5438.$ 2) Cho $\Phi(t)$, tra bảng tìm t = ???Xét các trường hợp sau: a) Trường hợp 1: Khi $0.5 \le \Phi(t) \le 0.9986$ và $\Phi(t)$ có trong bảng: Ta xem giá trị $\Phi(t)$ nằm trên hàng nào và côt nào, chẳng han hàng chứa a, b và côt chứa c. Khi đó: t = a, bc. Ví du: +) Tìm t biết $\Phi(t) = 0.5438$. Ta thấy 0.5438 nằm trên hàng chứa 0.1 và côt 1. Do đó t = 0.11. Trường hợp 2: Khi $0,9987 \le \Phi(t) \le 0,9999$ và $\Phi(t)$ có trong bảng. Khi đó t=3,a+) Tìm t biết $\Phi(t) = 0,999$. Ta thấy 0,999 ứng với t = 3,1. b) Trường hợp 1: $0.5 \le \Phi(t) \le 0.9986$ và $\Phi(t)$ không có trong bảng: Tìm t như sau: - Ta xem giá trị $\Phi(t)$ nằm giữa hai giá trị liên tiếp nào có trong bảng, chẳng hạn là α_1 và α_2 . - Tra bảng, tìm t_1 sao cho $\Phi(t_1) = \alpha_1$; tìm t_2 sao cho $\Phi(t_2) = \alpha_2$. - Ta tìm t theo một trong các phương án sau: +) Phướng án 1: $t \simeq \frac{t_1 + t_2}{2}$. +) Phương án 2: $t \simeq t_1$. +) Phương án 3: $t \simeq t_2$. Ví du: +) Tìm t biết $\Phi(t) = 0.54$. Ta có $0,5398 < 0,54 = \Phi(t) < 0,5438$. Mà $\Phi(0,1) = 0,5398$ và $\Phi(0,11) = 0,5438$, nên $t \simeq$ 0, 1 + 0, 11+) Tîm t biết $\Phi(t) = 0,50388$.
- Trường hợp 2: $0,9987 \le \Phi(t) \le 0,9999$ và $\Phi(t)$ không có trong bảng: Tìm t như sau: Ta xem giá tri $\Phi(t)$ nằm giữa hai giá tri liên tiếp nào có trong bảng, chẳng han là α_1 và α_2 .

Ta có $0, 5 < 0, 50388 = \Phi(t) < 0, 504$. Mà $\Phi(0) = 0, 5$ và $\Phi(0, 01) = 0, 504$, nên $t \simeq \frac{0, 0 + 0, 01}{2}$.

- Tra bằng, tìm $t_1 = 3$, a sao cho $\Phi(3, a) = \alpha_1$; tìm $t_2 = 3$, b sao cho $\Phi(3, b) = \alpha_2$.
- Ta tìm *t* theo một trong các phương án sau:
- +) Phướng án 1: $t \simeq \frac{t_1 + t_2}{2}$.
- +) Phương án 2: $t \simeq t_1$.
- +) Phương án 3: $t \simeq t_2$.
- c) Nếu $\Phi(t) < 0,5$ thì tìm t như sau:
- Tính $\Phi(-t) = 1 \Phi(z) = \alpha_0$. Tìm -t
- Tra bảng, tìm t_0 sao cho $\Phi(t_0) = \alpha_0$.
- Suy ra $-t = t_0$, hay $t = -t_0$.

Ví du: +) Tìm t biết $\Phi(t) = 0,4562$.

Ta có $\Phi(-t) = 1 - \Phi(t) = 1 - 0,4562 = 0,5438$.

Tra bảng, $\Phi(0, 11) = 0,5438$. Suy ra -t = 0,11, hay t = -0,11.

+) Tìm t biết $\Phi(t) = 0,46$.

Ta có $\Phi(-t) = 1 - \Phi(t) = 1 - 0,46 = 0,54$.

Ta thấy 0,5398 < 0,54 = Φ(t) < 0,5438. Mà Φ(0,1) = 0,5398 và Φ(0,11) = 0,5438, nên $-t \simeq \frac{0,1+0,11}{2}$, hay $t \simeq -\frac{0,1+0,11}{2}$.

d) Nếu $\Phi(t) > 0,9999$ thì $t \simeq 3,9$.

Ví dụ: Tìm t sao cho $\Phi(t) = 0,99998$. Ta có $\Phi(t) = 0,99998 > 0,9999$, nên $t \simeq 3,9$.

Cách tra $\chi^2_{\alpha}(n)$ là giá trị nằm ở giao hàng n và cột χ^2_{α} Cách tra $t_{\alpha}(n)$

là giá trị nằm ở giao hàng n và cột α