

MTH223A

Yvette Fajardo-Liı

Fundamenta Concepts

Functions
Divisibility of Integers

Equivalence
Relations and
Modular Arithmet

MTH223A LECTURE NOTES CHAPTER 1

Yvette Fajardo-Lim

Mathematics and Statistics Department De La Salle University - Manila

Outline

MTH223A

Yvette Fajardo-Li

Fundament Concepts

Divisibility of Integers
Equivalence
Relations and
Modular Arithmeti

- Fundamental Concepts
 - Functions
 - Divisibility of Integers
 - Equivalence Relations and Modular Arithmetic

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Functions
Divisibility of Integers
Equivalence
Relations and
Modular Arithmeti

Definition

Let X and Y be two nonempty sets. A mapping or a function f from X to Y is a rule denoted by $f: X \to Y$ which assigns to each element x of X a unique element y of Y. In this case, we write y = f(x) to mean that the value of f at x is y. y is called the image of x and x is the pre-image of y under f. The set X is called the domain of f and Y the codomain of f. The range of f is the set $\{f(x)|x\in X\}$.

MTH223A

Yvette Faiardo-Lim

Fundamenta Concepts

Functions

Divisibility

Equivalence Relations and Modular Arithmet

Example

The following equations define functions from \mathbb{R} to \mathbb{R} .

- Given 2x + y = 3, then the function y = 3 2x defines the number y to be 3 2x.
- 2 The formula $y = x^2$ defines the number y to be the square of the number x.

MTH223A

Yvette Faiardo-Lim

Fundament Concepts

Functions

Divisibility

Equivalence Relations and Modular Arithmet

Example

The following equations define functions from \mathbb{R} to \mathbb{R} .

- Given 2x + y = 3, then the function y = 3 2x defines the number y to be 3 2x.
- 2 The formula $y = x^2$ defines the number y to be the square of the number x.

MTH223A

Yvette Fajardo-Lim

Fundament Concepts

Functions

Divisibility Integers

Equivalence Relations and Modular Arithmet

Example

The following equations define functions from \mathbb{R} to \mathbb{R} .

- Given 2x + y = 3, then the function y = 3 2x defines the number y to be 3 2x.
- 2 The formula $y = x^2$ defines the number y to be the square of the number x.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Functions

Integers
Equivalence
Relations and
Modular Arithmeti

Definition

A function f with domain D is said to be **one-to-one** or **injective** if whenever $f(x_1) = f(x_2)$ implies $x_1 = x_2$ for all $x_1, x_2 \in D$.

Example

The function f(x) = 3 - 2x where $f : \mathbb{R} \to \mathbb{R}$ is injective

MTH223A

Yvette Fajardo-Lim

Fundament Concepts

Functions
Divisibility of Integers
Equivalence

Definition

A function f with domain D is said to be **one-to-one** or **injective** if whenever $f(x_1) = f(x_2)$ implies $x_1 = x_2$ for all $x_1, x_2 \in D$.

Example

The function f(x) = 3 - 2x where $f : \mathbb{R} \to \mathbb{R}$ is injective.

MTH223A

Yvette Fajardo-Lim

Fundament Concepts

Functions

Divisibility

Equivalence Relations and

Definition

A function $f: X \to Y$ is said to be **onto** or **surjective** if f(X) = Y.

Example

The function f(x) = 3 - 2x where $f : \mathbb{R} \to \mathbb{R}$ is surjective.

MTH223A

Yvette Fajardo-Lim

Fundament Concepts

Functions

Divisibility Integers

Equivalence Relations and Modular Arithme

Definition

A function $f: X \to Y$ is said to be **onto** or **surjective** if f(X) = Y.

Example

The function f(x) = 3 - 2x where $f : \mathbb{R} \to \mathbb{R}$ is surjective.

MTH223A

Yvette Faiardo-Lim

Fundamenta Concepts

Functions

Divisibility Integers

Equivalence Relations and Modular Arithme

Definition

A function f is said to be **bijective** if it is both one-to-one and onto. A bijective function is also called a **one-to-one correspondence**.

Example

The function f(x) = 3 - 2x is a bijective function

MTH223A

Yvette Fajardo-Lim

Fundament Concepts

Functions
Divisibility
Integers

Integers
Equivalence
Relations and
Modular Arithmet

Definition

A function f is said to be bijective if it is both one-to-one and onto. A bijective function is also called a one-to-one correspondence.

Example

The function f(x) = 3 - 2x is a bijective function.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Functions
Divisibility

Equivalence Relations and Modular Arithmet

Definition

Let $f: X \to Y$ and $g: Y \to Z$ be functions. The composition $g \circ f$ of f and g is the function from X to Z defined by the equation $(f \circ g)(x) = f(g(x))$ for all $x \in X$.

Example

Let $f : \mathbb{R} \to \mathbb{R}$ and f(x) = 3 - 2x. Let $g : \mathbb{R} \to \mathbb{R}$ and $f(x) = x^2$.

$$(g \circ f)(x) = g(f(x))$$

= 9 - 12x + 4x²

and

$$(f \circ g)(x) = f(g(x))$$
$$= 3 - 2x^2$$

MTH223A

Yvette Faiardo-Lim

Fundamenta Concepts Functions

Divisibility of Integers Equivalence Relations and Modular Arithmet

Definition

Let $f: X \to Y$ and $g: Y \to Z$ be functions. The composition $g \circ f$ of f and g is the function from X to Z defined by the equation $(f \circ g)(x) = f(g(x))$ for all $x \in X$.

Example

Let $f : \mathbb{R} \to \mathbb{R}$ and f(x) = 3 - 2x. Let $g : \mathbb{R} \to \mathbb{R}$ and $f(x) = x^2$.

$$(g \circ f)(x) = g(f(x))$$

= 9 - 12x + 4x²

and

$$(f \circ g)(x) = f(g(x))$$
$$= 3 - 2x^2$$

MTH223A

Yvette Fajardo-Lim

Fundament Concepts

Functions

Divisibility

Equivalence Relations and Modular Arithme

Theorem

Properties of Functions

Given functions $f:A\to B,\,g:B\to C$, and $h:C\to D$. Then

- ② If f and g are one-to-one, then $(g \circ f)$ is one-to-one.
- If f and g are onto, then $(g \circ f)$ is onto.
- If f is one-to-one and onto, then there is a function f^{-1} from B onto A such that $f^{-1}(f(a)) = a$ for all a in A and $f(f^{-1}(b)) = b$ for all b in B.

MTH223A

Yvette Fajardo-Lim

Fundament Concepts

Functions

Divisibility of

Integers
Equivalence
Relations and
Modular Arithme

Theorem

Properties of Functions

Given functions $f:A\to B,\,g:B\to C$, and $h:C\to D$. Then

- $\bullet h \circ (g \circ f) = (h \circ g) \circ f \text{ (associativity)}$
- ② If f and g are one-to-one, then $(g \circ f)$ is one-to-one.
- **3** If f and g are onto, then $(g \circ f)$ is onto.
- If f is one-to-one and onto, then there is a function f^{-1} from B onto A such that $f^{-1}(f(a)) = a$ for all a in A and $f(f^{-1}(b)) = b$ for all b in B.

MTH223A

Yvette Fajardo-Lim

Fundament Concepts

Functions

Integers
Equivalence
Relations and
Modular Arithme

Theorem

Properties of Functions

Given functions $f: A \rightarrow B, g: B \rightarrow C$, and $h: C \rightarrow D$. Then

- $\bullet h \circ (g \circ f) = (h \circ g) \circ f \text{ (associativity)}$
- 2 If f and g are one-to-one, then $(g \circ f)$ is one-to-one.
- If f and g are onto, then $(g \circ f)$ is onto
- If f is one-to-one and onto, then there is a function f^{-1} from B onto A such that $f^{-1}(f(a)) = a$ for all a in A and $f(f^{-1}(b)) = b$ for all b in B.

MTH223A

Yvette Fajardo-Lim

Fundament Concepts

Functions
Divisibility of

Integers
Equivalence
Relations and
Modular Arithmet

Theorem

Properties of Functions

Given functions $f:A\to B,\,g:B\to C,$ and $h:C\to D.$ Then

- $\bullet h \circ (g \circ f) = (h \circ g) \circ f \text{ (associativity)}$
- 2 If f and g are one-to-one, then $(g \circ f)$ is one-to-one.
- **3** If f and g are onto, then $(g \circ f)$ is onto.
- If f is one-to-one and onto, then there is a function f^{-1} from B onto A such that $f^{-1}(f(a)) = a$ for all a in A and $f(f^{-1}(b)) = b$ for all b in B.

MTH223A

Yvette Faiardo-Lim

Fundamental

Functions

Theorem

Properties of Functions

Given functions $f: A \rightarrow B$, $g: B \rightarrow C$, and $h: C \rightarrow D$. Then

- 2 If f and g are one-to-one, then $(g \circ f)$ is one-to-one.
- 3 If f and g are onto, then $(g \circ f)$ is onto.
- If f is one-to-one and onto, then there is a function f^{-1} from B onto A such that $f^{-1}(f(a)) = a$ for all a in A and $f(f^{-1}(b)) = b \text{ for all } b \text{ in } B.$

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Equivalence Relations and Modular Arithme

Definition

An integer b is divisible by an integer $a \neq 0$ if there exists another integer c such that b = ac. In symbols, we write a|b if b is divisible by a, and $a \nmid b$ if b is not divisible by a.

- ① 3|12 because there exists c = 4 such that $12 = 3 \cdot 4$.
- **a** 3 $/\!\!/16$ because there is no $c \in \mathbb{Z}$ such that $16 = 3 \cdot c$.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Equivalence Relations and Modular Arithme

Definition

An integer b is divisible by an integer $a \neq 0$ if there exists another integer c such that b = ac. In symbols, we write a|b if b is divisible by a, and $a \nmid b$ if b is not divisible by a.

- 1 3 12 because there exists c = 4 such that $12 = 3 \cdot 4$.
- **2** 3 16 because there is no $c \in \mathbb{Z}$ such that $16 = 3 \cdot c$

MTH223A

Yvette Faiardo-Lim

Divisibility of Integers

Definition

An integer b is **divisible** by an integer $a \neq 0$ if there exists another integer c such that b = ac. In symbols, we write a b if b is divisible by a, and a \(\frac{1}{2} b \) if b is not divisible by a.

- **1** 3 12 because there exists c = 4 such that $12 = 3 \cdot 4$.

MTH223A

Yvette Faiardo-Lim

Fundamental

Divisibility of Integers

Definition

An integer b is divisible by an integer $a \neq 0$ if there exists another integer c such that b = ac. In symbols, we write a b if b is divisible by a, and a \(\frac{1}{2} b \) if b is not divisible by a.

- **1** 3 12 because there exists c = 4 such that $12 = 3 \cdot 4$.
- **2** 3 1/16 because there is no $c \in \mathbb{Z}$ such that $16 = 3 \cdot c$.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of

Integers Equivalence

Equivalence Relations and Modular Arithme

- If a|b then a|bc for any integer c
- 2 If a|b and b|c then a|c for any integer c.
- If a|b and a|c then a|(bx + cy) for all integers x and y
- If a|b and b|a then $a=\pm b$.
 - **1** If $a \mid b$ and a > 0, b > 0 then $a \le b$.
- o a|b if and only if ma|mb, $m \neq 0$

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Integers Equivalence

Equivalence Relations and Modular Arithme

- If a|b then a|bc for any integer c.
- If a|b and b|c then a|c for any integer c.
- If a|b and a|c then a|(bx + cy) for all integers x and y.
- If a|b and b|a then $a = \pm b$.
 - **1** If $a \mid b$ and a > 0, b > 0 then $a \le b$.
- **a** b if and only if malmb, $m \neq 0$

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Equivalence Relations and Modular Arithm

- If a|b then a|bc for any integer c.
- 2 If a|b and b|c then a|c for any integer c.
- If a|b and a|c then a|(bx + cy) for all integers x and y.
- If a|b and b|a then $a = \pm b$.
- **1** If $a \mid b$ and a > 0, b > 0 then $a \le b$
- a b if and only if ma mb, $m \neq 0$

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Equivalence Relations and Modular Arithme

- If a|b then a|bc for any integer c.
- 2 If a|b and b|c then a|c for any integer c.
- If a|b and a|c then a|(bx + cy) for all integers x and y.
- 4 If a|b and b|a then $a = \pm b$.
- **1** If a | b and a > 0, b > 0 then $a \le b$.
- a b if and only if ma mb, $m \neq 0$

MTH223A

Yvette Faiardo-Lim

Divisibility of

- If a|b then a|bc for any integer c.
- If a|b and b|c then a|c for any integer c.
- If a|b and a|c then a|(bx + cy) for all integers x and y.
- If a|b and b|a then $a = \pm b$.

MTH223A

Yvette Fajardo-Lim

Fundament Concepts

Divisibility of Integers

Equivalence Relations and Modular Arithme

- If a|b then a|bc for any integer c.
- 2 If a|b and b|c then a|c for any integer c.
- If a|b and a|c then a|(bx + cy) for all integers x and y.
- If a|b and b|a then $a = \pm b$.
- **3** If a|b and a > 0, b > 0 then $a \le b$.
- a b if and only if ma mb, $m \neq 0$

MTH223A

Yvette Fajardo-Lim

Fundament Concepts

Divisibility of Integers

Equivalence Relations and Modular Arithme

- If a|b then a|bc for any integer c.
- 2 If a|b and b|c then a|c for any integer c.
- If a|b and a|c then a|(bx + cy) for all integers x and y.
- If a|b and b|a then $a = \pm b$.
- **1** If a|b and a > 0, b > 0 then $a \le b$.
- **6** a|b if and only if ma|mb, $m \neq 0$

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Equivalence

Relations and Modular Arithme

- Since 11|66 then theorem 1.2 part 1 tells us that 11|330 because $330 = 66 \cdot 5$.
- Since 11|66 and 66|198 then theorem 1.2 part 2 tells us that 11|198.
- Since 3|21 and 3|33 then theorem 1.2 part 3 tells us that $3|(5 \cdot 21 3 \cdot 33) = 105 99 = 6$.
- Since 7|(-7) and (-7)|7 then theorem 1.2 part 4 tells us that 7 = -(-7).
- Since 25|75 then theorem 1.2 part 5 tells us that 25 < 75.
- Theorem 1.2 part 6 tells us that 8 64 if and only if 16 128.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Equivalence Relations and Modular Arithme

- Since 11|66 then theorem 1.2 part 1 tells us that 11|330 because $330 = 66 \cdot 5$.
- Since 11|66 and 66|198 then theorem 1.2 part 2 tells us that 11|198.
- 3 Since 3|21 and 3|33 then theorem 1.2 part 3 tells us that $3|(5 \cdot 21 3 \cdot 33) = 105 99 = 6$.
- Since 7|(-7) and (-7)|7 then theorem 1.2 part 4 tells us that 7 = -(-7).
- Since 25|75 then theorem 1.2 part 5 tells us that 25 < 75.</p>
- Theorem 1.2 part 6 tells us that 8 64 if and only if 16 128.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of

Equivalence Relations and Modular Arithme

- Since 11|66 then theorem 1.2 part 1 tells us that 11|330 because $330 = 66 \cdot 5$.
- 2 Since 11|66 and 66|198 then theorem 1.2 part 2 tells us that 11|198.
- 3 Since 3|21 and 3|33 then theorem 1.2 part 3 tells us that $3|(5 \cdot 21 3 \cdot 33) = 105 99 = 6$.
- ① Since 7|(-7) and (-7)|7 then theorem 1.2 part 4 tells us that 7 = -(-7).
- Since 25|75 then theorem 1.2 part 5 tells us that 25 < 75.</p>
- Theorem 1.2 part 6 tells us that 8 64 if and only if 16 128.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts Functions

Divisibility of Integers

Equivalence Relations and Modular Arithme

- Since 11|66 then theorem 1.2 part 1 tells us that 11|330 because $330 = 66 \cdot 5$.
- Since 11|66 and 66|198 then theorem 1.2 part 2 tells us that 11|198.
- Since 3|21 and 3|33 then theorem 1.2 part 3 tells us that $3|(5 \cdot 21 3 \cdot 33) = 105 99 = 6$.
- Since 7|(-7) and (-7)|7 then theorem 1.2 part 4 tells us that 7 = -(-7).
- **Since** 25|75 then theorem 1.2 part 5 tells us that 25 < 75.
- Theorem 1.2 part 6 tells us that 8 64 if and only if 16 128

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Equivalence

Equivalence Relations and Modular Arithme

- Since 11|66 then theorem 1.2 part 1 tells us that 11|330 because $330 = 66 \cdot 5$.
- Since 11|66 and 66|198 then theorem 1.2 part 2 tells us that 11|198.
- Since 3|21 and 3|33 then theorem 1.2 part 3 tells us that $3|(5 \cdot 21 3 \cdot 33) = 105 99 = 6$.
- Since 7|(-7) and (-7)|7 then theorem 1.2 part 4 tells us that 7 = -(-7).
- Since 25|75 then theorem 1.2 part 5 tells us that 25 < 75.
- Theorem 1.2 part 6 tells us that 8 64 if and only if 16 128.

MTH223A

Yvette Faiardo-Lim

Fundamental

Divisibility of

- **○** Since 11|66 then theorem 1.2 part 1 tells us that 11|330 *because* $330 = 66 \cdot 5$.
- 2 Since 11|66 and 66|198 then theorem 1.2 part 2 tells us that 11|198.
- 3 Since 3 21 and 3 33 then theorem 1.2 part 3 tells us that $3|(5 \cdot 21 - 3 \cdot 33) = 105 - 99 = 6$.
- Since 7|(-7) and (-7)|7 then theorem 1.2 part 4 tells us that 7 = -(-7).
- Since 25 75 then theorem 1.2 part 5 tells us that 25 < 75

MTH223A

Yvette Fajardo-Lim

Fundamental Concepts

Divisibility of Integers Equivalence Relations and Modular Arithmet

Illustration

- Since 11|66 then theorem 1.2 part 1 tells us that 11|330 because $330 = 66 \cdot 5$.
- 2 Since 11|66 and 66|198 then theorem 1.2 part 2 tells us that 11|198.
- Since 3|21 and 3|33 then theorem 1.2 part 3 tells us that $3|(5 \cdot 21 3 \cdot 33) = 105 99 = 6$.
- Since 7|(-7) and (-7)|7 then theorem 1.2 part 4 tells us that 7 = -(-7).
- Since 25|75 then theorem 1.2 part 5 tells us that 25 < 75.
- Theorem 1.2 part 6 tells us that 8 64 if and only if 16 128.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Equivalence Relations and

Remark

If $a|b_i$ for $i=1,2,\ldots,n$ then $a|\sum_{i=1}^n b_i x_i$ for any integers x_1,x_2,\ldots,x_n . This is a generalization of theorem 1.2 part 3.

Theorem

The Division Algorithm. If a and b are integers with a > 0, there exist unique integers q and r such that b = aq + r.

Illustration

If a = 133 and b = 21, then q = 6 and r = 7, since $133 = 21 \cdot 6 + 7$. Likewise, if a = -50 and b = 8, then q = -7 and r = 6 since -50 = 8(-7) + 6.

MTH223A

Yvette Faiardo-Lim

Divisibility of

Remark

If $a|b_i$ for $i=1,2,\ldots,n$ then $a|\sum_{i=1}^n b_i x_i$ for any integers x_1, x_2, \ldots, x_n . This is a generalization of theorem 1.2 part 3.

Theorem

The Division Algorithm. If a and b are integers with a > 0, there exist unique integers q and r such that b = aq + r.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers Equivalence Relations and Modular Arithme

Remark

If $a|b_i$ for $i=1,2,\ldots,n$ then $a|\sum_{i=1}^n b_i x_i$ for any integers x_1,x_2,\ldots,x_n . This is a generalization of theorem 1.2 part 3.

Theorem

The Division Algorithm. If a and b are integers with a > 0, there exist unique integers q and r such that b = aq + r.

Illustration

If a = 133 and b = 21, then q = 6 and r = 7, since $133 = 21 \cdot 6 + 7$. Likewise, if a = -50 and b = 8, then q = -7 and r = 6 since -50 = 8(-7) + 6.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Equivalence Relations and Modular Arithme

Definition

The integer a is called a **common divisor** of the integers b and c if a|b and a|c.

- If b and c are not both zero then they have only a finite number of common divisors since any nonzero integer has only a finite number of divisors.
- If b = 0 and c = 0, then every integer $a \neq 0$ is a common divisor of b and c.

MTH223A

Yvette Faiardo-Lim

Divisibility of

Definition

The integer a is called a common divisor of the integers b and c if a b and a c.

MTH223A

Yvette Faiardo-Lim

Divisibility of

Definition

The integer a is called a common divisor of the integers b and c if a|b and a|c.

- If b and c are not both zero then they have only a finite number of common divisors since any nonzero integer has only a finite number of divisors.

MTH223A

Yvette Fajardo-Lim

Fundamental Concepts

Divisibility of Integers

Equivalence Relations an

Definition

The integer a is called a **common divisor** of the integers b and c if a|b and a|c.

- If b and c are not both zero then they have only a finite number of common divisors since any nonzero integer has only a finite number of divisors.
- ② If b = 0 and c = 0, then every integer $a \neq 0$ is a common divisor of b and c.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Functions

Divisibility of

Integers

Equivalence Relations and Modular Arithme

Example

- ① If b = 4 and c = 6, the common divisors of b and c are $\pm 1, \pm 2$.
- If b = 0 and c = 0, there are infinite number of common divisors.

Definition

The positive integer a is said to be the **greatest common divisor** of b and c if

- ab and a c

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of

Integers

Equivalence Relations and Modular Arithme

Example

- If b = 4 and c = 6, the common divisors of b and c are $\pm 1, \pm 2$.
- If b = 0 and c = 0, there are infinite number of common divisors.

Definition

The positive integer a is said to be the **greatest common divisor** of b and c if

- ab and a c
- and $d|c \Rightarrow d|a$

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Functions

Divisibility of

Integers

Equivalence Relations and Modular Arithme

Example

- If b = 4 and c = 6, the common divisors of b and c are $\pm 1, \pm 2$.
- 2 If b = 0 and c = 0, there are infinite number of common divisors.

Definition

The positive integer a is said to be the **greatest common divisor** of b and c if

- ab and ac
- and $d|c \Rightarrow d|a$

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Equivalence Relations and Modular Arithme

Example

- If b = 4 and c = 6, the common divisors of b and c are $\pm 1, \pm 2$.
- 2 If b = 0 and c = 0, there are infinite number of common divisors.

Definition

The positive integer a is said to be the **greatest common divisor** of b and c if

- a b and a c
- 2 d|b and $d|c \Rightarrow d|a$

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Equivalence Relations and Modular Arithme

Example

- If b = 4 and c = 6, the common divisors of b and c are $\pm 1, \pm 2$.
- 2 If b = 0 and c = 0, there are infinite number of common divisors.

Definition

The positive integer a is said to be the **greatest common divisor** of b and c if

- a|b and a|c
- 2 d|b and d|c \Rightarrow d|a

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Equivalence Relations and Modular Arithme

Example

- If b = 4 and c = 6, the common divisors of b and c are $\pm 1, \pm 2$.
- 2 If b = 0 and c = 0, there are infinite number of common divisors.

Definition

The positive integer a is said to be the **greatest common divisor** of b and c if

- a|b and a|c
- 2 d|b and d|c \Rightarrow d|a

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Equivalence Relations and Modular Arithme

Example

- If b = 4 and c = 6, the common divisors of b and c are $\pm 1, \pm 2$.
- 2 If b = 0 and c = 0, there are infinite number of common divisors.

Definition

The positive integer a is said to be the **greatest common divisor** of b and c if

- a|b and a|c
- 2 d|b and $d|c \Rightarrow d|a$

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Equivalence Relations and Modular Arithme

Example

From example 1.7, if b=4 and c=6, the common divisors of b and c are $\pm 1, \pm 2$. Hence, (4,6)=2.

Remark

If (b, c) = g then there exists integers x and y such that g = bx + cy.

Example

Since (4,6) = 2 then $2 = 4 \cdot 2 + 6(-1)$ where x = 2 and y = -1.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Equivalence Relations and Modular Arithme

Example

From example 1.7, if b=4 and c=6, the common divisors of b and c are $\pm 1, \pm 2$. Hence, (4,6)=2.

Remark

If (b, c) = g then there exists integers x and y such that g = bx + cy.

Example

Since (4,6) = 2 then $2 = 4 \cdot 2 + 6(-1)$ where x = 2 and y = -1.

MTH223A

Yvette Faiardo-Lim

Divisibility of

Example

From example 1.7, if b = 4 and c = 6, the common divisors of b and c are $\pm 1, \pm 2$. Hence, (4, 6) = 2.

Remark

If (b, c) = g then there exists integers x and y such that g = bx + cy.

Example

Since
$$(4,6) = 2$$
 then $2 = 4 \cdot 2 + 6(-1)$ where $x = 2$ and $y = -1$.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Equivalence

Equivalence Relations and Modular Arithme

Theorem

The greatest common divisor of b and c can be characterized in the following ways:

- it is the least positive value of bx + cy where x and y ranges over all integers;
- 2 it is the positive common divisor of b and c that is divisible by every common divisor.

Definition

If (a, b) = 1 then a and b are relatively prime and if $(a_1, a_2, ..., a_n) = 1$ then $a_1, a_2, ..., a_n$ are relatively prime

MTH223A

Yvette Faiardo-Lim

Divisibility of

Theorem

The greatest common divisor of b and c can be characterized in the following ways:

- \bullet it is the least positive value of bx + cy where x and y ranges over all integers;

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of

Equivalence Relations an

Theorem

The greatest common divisor of b and c can be characterized in the following ways:

- it is the least positive value of bx + cy where x and y ranges over all integers;
- it is the positive common divisor of b and c that is divisible by every common divisor.

Definition

If (a,b)=1 then a and b are relatively prime and if $(a_1,a_2,\ldots,a_n)=1$ then a_1,a_2,\ldots,a_n are relatively prime

MTH223A

Yvette Fajardo-Lim

Fundament Concepts

Divisibility of Integers

Equivalence Relations and Modular Arithmet

Theorem

The greatest common divisor of b and c can be characterized in the following ways:

- it is the least positive value of bx + cy where x and y ranges over all integers;
- it is the positive common divisor of b and c that is divisible by every common divisor.

Definition

If (a, b) = 1 then a and b are relatively prime and if $(a_1, a_2, ..., a_n) = 1$ then $a_1, a_2, ..., a_n$ are relatively prime.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Integers Equivalend

Equivalence Relations and Modular Arithme Note that If (a, b) = 1 then we can also say that a and b are **coprime**, or a is prime to b.

Example

(2,5) = (3,5) = 1 then 2, 3 and 5 are relatively prime

Theorem

If c|ab and (c, a) = 1 then c|b.

Illustration

3|66 where (3, 11) = 1, then 3|6.

MTH223A

Yvette Faiardo-Lim

Divisibility of Integers

Note that If (a, b) = 1 then we can also say that a and b are coprime, or a is prime to b.

Example

$$(2,5) = (3,5) = 1$$
 then 2, 3 and 5 are relatively prime.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Equivalence Relations and Modular Arithr Note that If (a, b) = 1 then we can also say that a and b are **coprime**, or a is prime to b.

Example

(2,5) = (3,5) = 1 then 2, 3 and 5 are relatively prime.

Theorem

If c|ab and (c, a) = 1 then c|b.

Illustration

3|66 where (3, 11) = 1, then 3|6.

MTH223A

Yvette Faiardo-Lim

Divisibility of

Note that If (a, b) = 1 then we can also say that a and b are coprime, or a is prime to b.

Example

(2,5) = (3,5) = 1 then 2, 3 and 5 are relatively prime.

Theorem

If c|ab and (c, a) = 1 then c|b.

Illustration

3|66 where (3, 11) = 1, then 3|6.

MTH223A

Yvette Faiardo-Lim

Divisibility of

Theorem

The Euclidean Algorithm. Given integers b and c > 0, we make a repeated application of the division algorithm to obtain a series of equations,

$$b = cq_1 + r_1, \quad 0 < r_1 < c,$$

$$c = r_1q_2 + r_2, \quad 0 < r_2 < r_1,$$

$$r_1 = r_2q_3 + r_3, \quad 0 < r_3 < r_2,$$

$$\vdots$$

$$r_{j-2} = r_{j-1}q_j + r_j, \quad 0 < r_j < r_{j-1},$$

$$r_{i-1} = r_iq_{i+1} + 0.$$

Then $(b, c) = r_i$, the last nonzero remainder in the division process. Values of x and y in (b, c) = bx + cy can be obtained by writing each r_i as a linear combination of b and c.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of

Integers

Equivalence Relations and Modular Arithme

Example

Find (963,657).

$$963 = 657(1) + 306 \tag{1}$$

$$657 = 306(2) + 45 \tag{2}$$

$$306 = 45(6) + 36 \tag{3}$$

$$45 = 36(1) + 9 \tag{4}$$

$$36 = 9(4) + 0 (5)$$

Hence, (963,657)=9.

MTH223A

Yvette Faiardo-Lim

Fundamental

Divisibility of Integers

Example

Find x, y such that 9 = 963x + 657y.

$$9 = 45 - 36$$
 from equation 4
= $45 - (306 - 45(6))$ from equation 3

$$= 45(7) - 306$$

$$= [657 - 306(2)](7) - 306$$
 from equation 2

$$= 657(7) - 306(15)$$

$$= 657(7) - (963 - 657)(15)$$
 from equation 1

$$= 963(-15) + 657(22)$$

Hence,
$$x = -15$$
 and $y = 22$

MTH223A

Yvette Faiardo-Lim

Fundamenta Concepts

Divisibility of Integers

Integers Equivalenc

Equivalence Relations and Modular Arithme

Theorem

If p|ab where p is a prime, then p|a or p|b. Generally, if $p|a_1a_2...a_n$ then $p|a_i$ for some i.

Illustration

 $11|(2 \cdot 121)$ implies that 11|121 since (2, 11) = 1 and $5|(4 \cdot 9 \cdot 25)$ implies that 5|25.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility of Integers

Equivalence Relations and Modular Arithme

Theorem

If p|ab where p is a prime, then p|a or p|b. Generally, if $p|a_1 a_2 ... a_n$ then $p|a_i$ for some i.

Illustration

 $11|(2 \cdot 121)$ implies that 11|121 since (2, 11) = 1 and $5|(4 \cdot 9 \cdot 25)$ implies that 5|25.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility

Equivalence Relations and Modular Arithmetic Let S be a non-empty set. A relation on S is a statement about pairs of elements of S, which may be true for some pairs and false for others. For example, if $S = \mathbb{R}$, the statement $a \le b$ is true for some choices of a and b (e.g. a = 1, b = 3) and false for others (e.g. a = 5, b = 2). We usually use \sim to stand for a relation, and we write " $a \sim b$ " to mean "a is related to b under the relation \sim ", and " $a \not\sim b$ " to mean "a is not related to b under the relation \sim "; thus for the relation of "less than or equal to" on \mathbb{R} we have $a \approx b \approx 1$ 0.

MTH223A

Yvette Fajardo-Lim

Fundamenta

Functions
Divisibility
Integers

Equivalence Relations and Modular Arithmetic

Definition

An equivalence relation \sim on a set S is a relation that is:

- Reflexive.
 - $a \sim a$ for all $a \in S$.
- 2 Symmetric.

Whenever a \sim b, then b \sim a.

3 Transitive.

If a \sim b and b \sim c then a \sim c

If a and b are related this way we say that they are **equivalent** under \sim . If $a \in S$, then the set of all elements of S that are equivalent to a is called the **equivalence class** of a denoted by [a]. In set notation,

$$[a] = \{x \in S | x \sim a\}$$

MTH223A

Yvette Fajardo-Lim

Fundamenta

Functions
Divisibility of

Equivalence Relations and Modular Arithmetic

Definition

An equivalence relation \sim on a set S is a relation that is:

- Reflexive.
 - $a \sim a$ for all $a \in S$.
- 2 Symmetric.
- 3 Transitive.
- If a and b are related this way we say that they are equivalent under \sim . If $a \in S$, then the set of all elements of S that are equivalent to a is called the equivalence class of

$$[a] = \{x \in S | x \sim a\}$$

MTH223A

Yvette Fajardo-Lim

Fundamenta Concents

Functions Divisibility Integers

Equivalence Relations and Modular Arithmetic

Definition

An equivalence relation \sim on a set S is a relation that is:

- **1** Reflexive. $a \sim a$ for all $a \in S$.
 - Symmetric. Whenever $a \sim b$, then $b \sim a$.
- If $a \sim b$ and $b \sim c$ then $a \sim c$

If a and b are related this way we say that they are equivalent under \sim . If $a \in S$, then the set of all elements of S that are equivalent to a is called the equivalence class of a denoted by [a]. In set notation,

$$[a] = \{x \in S | x \sim a\}$$

MTH223A

Yvette Fajardo-Lim

Fundamenta

Functions
Divisibility of

Equivalence Relations and Modular Arithmetic

Definition

An equivalence relation \sim on a set S is a relation that is:

- Reflexive. $a \sim a$ for all $a \in S$.
- 2 Symmetric. Whenever $a \sim b$, then $b \sim a$.
- **3** Transitive. If $a \sim b$ and $b \sim c$ then $a \sim c$

If a and b are related this way we say that they are equivalent under \sim . If $a \in S$, then the set of all elements of S that are equivalent to a is called the equivalence class of a denoted by [a]. In set notation,

$$[a] = \{x \in S | x \sim a\}$$

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Functions Divisibility of Integers

Equivalence Relations and Modular Arithmetic

Definition

An equivalence relation \sim on a set S is a relation that is:

- Reflexive. $a \sim a$ for all $a \in S$.
- 2 Symmetric. Whenever $a \sim b$, then $b \sim a$.
- 3 Transitive.
 If $a \sim b$ and $b \sim c$ then $a \sim c$

$$[a] = \{x \in S | x \sim a\}$$

MTH223A

Yvette Fajardo-Lim

Fundamenta

Functions
Divisibility of

Equivalence Relations and Modular Arithmetic

Definition

An equivalence relation \sim on a set S is a relation that is:

- Reflexive. $a \sim a$ for all $a \in S$.
- 2 Symmetric. Whenever $a \sim b$, then $b \sim a$.
- Transitive.

If a \sim b and b \sim c then a \sim c.

$$[a] = \{x \in S | x \sim a\}$$

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Functions
Divisibility of

Equivalence Relations and Modular Arithmetic

Definition

An equivalence relation \sim on a set S is a relation that is:

- Reflexive. $a \sim a$ for all $a \in S$.
- 2 Symmetric. Whenever $a \sim b$, then $b \sim a$.
- **3** Transitive. If $a \sim b$ and $b \sim c$ then $a \sim c$.

$$[a] = \{x \in S | x \sim a\}$$

MTH223A

Yvette Fajardo-Lim

Fundamental Concepts

Functions Divisibility o Integers

Equivalence Relations and Modular Arithmetic

Definition

An equivalence relation \sim on a set S is a relation that is:

- Reflexive. $a \sim a$ for all $a \in S$.
- 2 Symmetric. Whenever $a \sim b$, then $b \sim a$.
- **3** Transitive. If $a \sim b$ and $b \sim c$ then $a \sim c$.

$$[a] = \{x \in S | x \sim a\}$$

MTH223A

Yvette Faiardo-Lim

Fundamental Concepts

Functions
Divisibility of

Equivalence Relations and Modular Arithmetic

Example

Let $S = \{$ Algebra students $\}$, and let $a \sim b$ if a is in the same college as b. Clearly \sim is reflexive since each Algebra student is in the same college as himself or herself. \sim is also symmetric since if a is in the same college as b then b is in the same college as a. Lastly, \sim is transitive since if a is in the same college as b, who is in the same college as c, then clearly a is in the same college as c. Therefore, \sim is an equivalence relation on S. The equivalence class of a is the set of all Algebra students in the same college as a.

MTH223A

Yvette Fajardo-Lim

Fundamenta

Functions
Divisibility

Equivalence Relations and Modular Arithmetic

Example

Let $S = \mathbb{R}$, and let $a \sim b$ if $a \leq b$.

- Reflexive.
 - $a \sim a$ for all $a \in S$ implies $a \leq a$. Hence, \sim is reflexive.
- 2 Symmetric. If $a \sim b$, then $a \leq b$ but $b \geq a$. Thus, \sim is not symmetric.

MTH223A

Yvette Fajardo-Lim

Fundamenta

Functions
Divisibility

Equivalence Relations and Modular Arithmetic

Example

Let $S = \mathbb{R}$, and let $a \sim b$ if $a \leq b$.

- Reflexive.
 - a \sim a for all a \in S implies a \leq a. Hence, \sim is reflexive.
- 2 Symmetric. If $a \sim b$, then $a \leq b$ but $b \geq a$. Thus, \sim is not symmetric

MTH223A

Yvette Fajardo-Lim

Fundamenta Concents

Functions
Divisibility of

Equivalence Relations and Modular Arithmetic

Example

Let $S = \mathbb{R}$, and let $a \sim b$ if $a \leq b$.

- Reflexive.
 - $a \sim a$ for all $a \in S$ implies $a \leq a$. Hence, \sim is reflexive.
- 2 Symmetric. If $a \sim b$, then $a \leq b$ but $b \geq a$. Thus, \sim is not symmetric.

MTH223A

Yvette Fajardo-Lim

Fundamenta

Functions
Divisibility of

Equivalence Relations and Modular Arithmetic

Example

Let $S = \mathbb{R}$, and let $a \sim b$ if $a \leq b$.

- Reflexive.
 - $a \sim a$ for all $a \in S$ implies $a \leq a$. Hence, \sim is reflexive.
- 2 Symmetric.

If $a \sim b$, then $a \leq b$ but $b \geq a$. Thus, \sim is not symmetric.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Functions
Divisibility

Equivalence Relations and Modular Arithmetic

Example

Let $S = \mathbb{R}$, and let $a \sim b$ if $a \leq b$.

- Reflexive.
 - $a \sim a$ for all $a \in S$ implies $a \leq a$. Hence, \sim is reflexive.
- 2 Symmetric. If $a \sim b$, then $a \leq b$ but $b \geq a$. Thus, \sim is not symmetric.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Functions
Divisibility of

Equivalence Relations and Modular Arithmetic

Example

Let $S = \mathbb{R}$, and let $a \sim b$ if $a \leq b$.

- Reflexive. $a \sim a$ for all $a \in S$ implies a < a. Hence, \sim is reflexive.
- 2 Symmetric. If $a \sim b$, then $a \leq b$ but $b \geq a$. Thus, \sim is not symmetric.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Functions
Divisibility of

Equivalence Relations and Modular Arithmetic

Example

Let $S = \{(a,b)|a,b \in \mathbb{Z}^+\}$, and let $(a,b) \sim (c,d)$ if a+d=b+c. Is \sim an equivalence relation on S?

MTH223A

Yvette Fajardo-Lim

Fundamenta

Functions Divisibility

Equivalence Relations and Modular Arithmetic

Example

Under the relation \sim in the set $S = \{(a, b) | a, b \in \mathbb{Z}^+\}$, where $(a, b) \sim (c, d)$ if a + d = b + c, the equivalence classes are as follows:

```
[(1,1)]
         = \{(a,b)|(a,b) \sim (1,1)\}
         = \{(a,b)|a+1=b+1\}
         = \{(a,b)|a=b\}
         = \{(a,a)|a \in \mathbb{Z}^+\}
[(1, 2)]
         = \{(a,b)|(a,b) \sim (1,2)\}
         = \{(a,b)|a+2=b+1\}
         = \{(a,b)|a+1=b\}
         = \{(a, a+1) | a \in \mathbb{Z}^+\}
[(1, n)]
         = \{(a,b)|(a,b) \sim (1,n)\}
         = \{(a,b)|a+n=b+1\}
         = \{(a,b)|a+(n-1)=b\}
         = \{(a, a + (n-1)) | a \in \mathbb{Z}^+\}
```

MTH223A

Yvette Fajardo-Lim

Fundamenta

Functions Divisibility

Equivalence Relations and Modular Arithmetic

$$[(2,1)] = \{(a,b)|(a,b) \sim (2,1)\}$$

$$= \{(a,b)|a+1=b+2\}$$

$$= \{(a,b)|a=b+1\}$$

$$= \{(b+1,b)|b \in \mathbb{Z}^+\}$$

$$[(3,1)] = \{(a,b)|(a,b) \sim (3,1)\}$$

$$= \{(a,b)|a+1=b+3\}$$

$$= \{(a,b)|a=b+2\}$$

$$= \{(b+2,b)|b \in \mathbb{Z}^+\}$$

$$\vdots$$

$$[(n,1)] = \{(a,b)|(a,b) \sim (n,1)\}$$

$$= \{(a,b)|a+1=b+n\}$$

$$= \{(a,b)|a=b+(n-1)\}$$

$$= \{(a,b)|a=b+(n-1)\}$$

$$= \{(b+(n-1)),b|b \in \mathbb{Z}^+\}$$

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Functions Divisibility o Integers

Equivalence Relations and Modular Arithmetic

Definition

- $oldsymbol{0} S_i
 eq \emptyset$ for all $i, i = 1, \dots n$
- $\bigcup_{i=1} S_i = S$

MTH223A

Yvette Fajardo-Lim

Fundament Concepts

Functions Divisibility o Integers

Equivalence Relations and Modular Arithmetic

Definition

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Functions
Divisibility o

Equivalence Relations and Modular Arithmetic

Definition

MTH223A

Yvette Fajardo-Lim

Fundament Concepts

Functions
Divisibility of
Integers

Equivalence Relations and Modular Arithmetic

Definition

$$\bullet$$
 $S_i \neq \emptyset$ for all $i, i = 1, \dots n$

MTH223A

Yvette Faiardo-Lim

Fundamenta Concepts

Functions
Divisibility of

Equivalence Relations and Modular Arithmetic

Example

The equivalence classes in the previous examples partition the set S.

Remark

Any equivalence relation on S gives a partition of S and any partition gives rise to an equivalence relation by defining $a \sim b$ if and only if a and b belong to the same subset.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Functions
Divisibility of

Equivalence Relations and Modular Arithmetic

Example

The equivalence classes in the previous examples partition the set S.

Remark

Any equivalence relation on S gives a partition of S and any partition gives rise to an equivalence relation by defining $a \sim b$ if and only if a and b belong to the same subset.

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Divisibility

Equivalence Relations and Modular Arithmetic

Definition

Let $n \in \mathbb{Z}^+$. Given $a, b \in Z$, a is congruent to b modulo n if a and b have the same remainder on division by n, or equivalently that n|(a-b). We write

$$a \equiv b \pmod{n}$$

to indicate that a is congruent to b modulo n.

- ① $21 \equiv 9 \pmod{4}$ because 21 = (5)(4) + 1 and 9 = (2)(4) + 1 or equivalently 21 9 = 12 = (3)(4).
- ① $15 \equiv 0 \pmod{5}$ because 15 0 = 15 = (3)(5).
- $1 \equiv 16 \pmod{3}$ because 1 16 = -15 = (-5)(3).

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Functions Divisibility of Integers

Equivalence Relations and Modular Arithmetic

Definition

Let $n \in \mathbb{Z}^+$. Given $a, b \in Z$, a is congruent to b modulo n if a and b have the same remainder on division by n, or equivalently that $n \mid (a - b)$. We write

$$a \equiv b \pmod{n}$$

to indicate that a is congruent to b modulo n.

- ① $21 \equiv 9 \pmod{4}$ because 21 = (5)(4) + 1 and 9 = (2)(4) + 1 or equivalently 21 9 = 12 = (3)(4).
- 2 $15 \equiv 0 \pmod{5}$ because 15 0 = 15 = (3)(5).
- $1 \equiv 16 \pmod{3}$ because 1 16 = -15 = (-5)(3)

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts Functions

Equivalence
Relations and
Modular Arithmetic

Definition

Let $n \in \mathbb{Z}^+$. Given $a, b \in Z$, a is congruent to b modulo n if a and b have the same remainder on division by n, or equivalently that $n \mid (a - b)$. We write

$$a \equiv b \pmod{n}$$

to indicate that a is congruent to b modulo n.

- ① $21 \equiv 9 \pmod{4}$ because 21 = (5)(4) + 1 and 9 = (2)(4) + 1 or equivalently 21 9 = 12 = (3)(4).
- 2 $15 \equiv 0 \pmod{5}$ because 15 0 = 15 = (3)(5)
- $1 \equiv 16 \pmod{3}$ because 1 16 = -15 = (-5)(3)

MTH223A

Yvette Faiardo-Lim

Equivalence **Belations** and Modular Arithmetic

Definition

Let $n \in \mathbb{Z}^+$. Given $a, b \in Z$, a is congruent to b modulo n if a and b have the same remainder on division by n, or equivalently that n|(a-b). We write

$$a \equiv b \pmod{n}$$

to indicate that a is congruent to b modulo n.

- **1** $21 \equiv 9 \pmod{4}$ because 21 = (5)(4) + 1 and 9 = (2)(4) + 1 or equivalently 21 - 9 = 12 = (3)(4).
- 2 $15 \equiv 0 \pmod{5}$ because 15 0 = 15 = (3)(5).

MTH223A

Yvette Fajardo-Lim

Concepts
Functions
Divisibility of
Integers

Equivalence Relations and Modular Arithmetic

Definition

Let $n \in \mathbb{Z}^+$. Given $a, b \in Z$, a is congruent to b modulo n if a and b have the same remainder on division by n, or equivalently that n|(a-b). We write

$$a \equiv b \pmod{n}$$

to indicate that a is congruent to b modulo n.

- **1** $21 \equiv 9 \pmod{4}$ because 21 = (5)(4) + 1 and 9 = (2)(4) + 1 or equivalently 21 9 = 12 = (3)(4).
- 2 $15 \equiv 0 \pmod{5}$ because 15 0 = 15 = (3)(5).
- 3 $1 \equiv 16 \pmod{3}$ because 1 16 = -15 = (-5)(3).

MTH223A

Yvette Fajardo-Lim

Fundamenta Concepts

Functions Divisibility o Integers

Equivalence Relations and Modular Arithmetic

Theorem

The relation congruence modulo n is an equivalence relation on \mathbb{Z} .

Example

If we take n=5, we obtain the following congruence classes:

$$[0] = \{\ldots, -10, -5, 0, 5, 10, \ldots\}$$

$$[1] = \{\ldots, -9, -4, 1, 6, 11, \ldots\}$$

$$[2] = \{....-8, -3, 2, 7, 12, ...\}$$

$$[3] - \{ -7 -2 \ 3 \ 8 \ 13 \}$$

$$[4] = \{\ldots, -6, -1, 4, 9, 14, \ldots\}$$

We have $[0] \cup [1] \cup [2] \cup [3] \cup [4] = \mathbb{Z}$, and the intersection of any two of these classes is empty.

MTH223A

Yvette Fajardo-Lim

Fundamen Concepts Functions

Equivalence Relations and Modular Arithmetic

Theorem

The relation congruence modulo n is an equivalence relation on \mathbb{Z} .

Example

If we take n=5, we obtain the following congruence classes:

```
[0] = \{\dots, -10, -5, 0, 5, 10, \dots\}
[1] = \{\dots, -9, -4, 1, 6, 11, \dots\}
[2] = \{\dots, -8, -3, 2, 7, 12, \dots\}
[3] = \{\dots, -7, -2, 3, 8, 13, \dots\}
[4] = \{\dots, -6, -1, 4, 9, 14, \dots\}
```

We have $[0]\cup[1]\cup[2]\cup[3]\cup[4]=\mathbb{Z}$, and the intersection of any two of these classes is empty.