Поволжский государственный университет телекоммуникаций и информатики

Алашеева Е.А.

Конспект лекций

Содержание

Лекция 1	7
Комплексные числа. Основные понятия	7
Основные действия над комплексными числами	11
Лекция 2	14
Определение матрицы	14
Определитель второго порядка	14
Определитель третьего порядка	14
Определитель квадратной матрицы n-го порядка	15
Свойства определителей	17
Вычисление определителя Вандермонда	19
Правило Крамера	20
Лекция 3	22
Основные операции над матрицами	22
Ранг матрицы	26
Лекция 4	31
Решение систем m линейных уравнений с n неизвестными	31
Матричный метод решения систем линейных уравнений	34
Метод Гаусса решения систем линейных уравнений	36
Собственные значения и собственные вектора линейного оператора	38
Лекция 5	41
Элементы векторной алгебры	41
Линейные операции над векторами	41
Проекция вектора	
Разложение вектора по базису	44
Декартовы прямоугольные координаты	45
Координатное представление векторов	
Скалярное произведение векторов	48
Лекция 6	51
Векторное произведение двух векторов	51
Свойства векторного произведения	
Координатная форма записи векторного произведения	

Смешанное произведение векторов	55
Свойства смешанного произведения	55
Координатная форма записи смешанного произведения	56
Двойное векторное произведение трех векторов	58
Лекция 7	59
Общее уравнение прямой	59
Уравнение прямой с угловым коэффициентом	60
Уравнение прямой в отрезках	61
Каноническое уравнение прямой	62
Уравнение прямой, проходящей через две точки	63
Параметрическое уравнение прямой	63
Взаимное расположение двух прямых	65
Нахождение угла между прямыми	66
Нормальное уравнение прямой	66
Приведение общего уравнения прямой к нормальному виду	67
Нахождение расстояния от точки до прямой на плоскости	68
Лекция 8	70
Два способа задания плоскости в пространстве	70
Второй способ задания плоскости	71
Исследование общего уравнения плоскости	72
Взаимное расположение плоскостей в пространстве	74
Нормальное уравнение плоскости	75
Расстояние от точки до плоскости	76
Лекция 9	78
Общее уравнение прямой в пространстве	78
Каноническое уравнение прямой в пространстве	78
Параметрическое уравнение прямой	79
Уравнение прямой проходящей через две точки	79
Переход от канонического уравнения к общему	80
Переход от общего уравнения к каноническому	80
Основные задачи на прямую и плоскость в пространстве	82
Лекция 10	86

Эллипс	86
Гипербола	88
Парабола	90
Канонические уравнения поверхностей второго порядка	92
Лекция 11	98
Числовые последовательности	98
Бесконечно большие и бесконечно малые последовательности	99
Предел последовательности	100
Монотонные последовательности	102
Предел функции	103
Определение бесконечных пределов	104
Теоремы о пределах. Неопределенные выражения	105
Лекция 12	108
Первый замечательный предел	108
Второй замечательный предел	109
Сравнение бесконечно малых	110
Односторонние пределы	111
Непрерывность функции. Точки разрыва	112
Лекция 13	115
Определение производной	115
Геометрический смысл производной	116
Производная суммы, произведения, частного	118
Производная сложной функции	119
Производная обратной функции	120
Производная функции, заданной параметрически	122
Таблица производных	123
Производная показательно степенной функции	124
Лекция 14	126
Определение дифференциала	126
Геометрическое значение дифференциала	126
Дифференциал суммы, произведения, частного	127
Дифференциалы высоких порядков	128

Свойства дифференцируемых функций	129
Правило Лопиталя раскрытия неопределенностей	131
Лекция 15	134
Условия возрастания и убывания функций	134
Необходимые условия экстремума	136
Первое достаточное условие экстремума	137
Второе достаточное условие экстремума	138
Наибольшее и наименьшее значения функции на отрезке	140
Лекция 16	142
Выпуклость и вогнутость кривой	142
Достаточные условия выпуклости	143
Точки перегиба. Условия наличия точек перегиба	145
Асимптоты графика функции	147
Общая схема исследования функции и построения графиков	149

Лекция 1

Комплексные числа. Основные понятия

Определение 1.1

Комплексным числом z называется упорядоченная пара действительных чисел (x, y).

Определение 1.2

z = x + iy - алгебраическая форма записи комплексного числа. i -мнимая единица; $i^2 = -1$.

Определение 1.3

Число x называется действительной частью комплексного числа. Обозначается: $x = Re\ z$.

Определение 1.4

Число y называется мнимой частью комплексного числа. Обозначается: y = Im z.

Определение 1.5

Два комплексных числа $z_1 = x_1 + y_1$ и $z_2 = x_2 + y_2$ называются *равными*, если у них равны действительные и мнимые части соответственно:

$$z_1 = z_2$$
, если $x_1 = x_2$ и $y_1 = y_2$.

Представление комплексного числа на комплексной плоскости

Всякое комплексное число z = x+iy можно изобразить точкой M(x;y) на плоскости. На оси абсцисс откладываем действительную часть числа x = Rez, на оси ординат — мнимую y = Imz.

Определение 1.6

Плоскость OXY, на которой изображают комплексные числа называется комплексной плоскостью. (C)

Определение 1.7

Ось абсцисс называется действительной осью, а ось ординат – мнимой.

Комплексное число на плоскости част $\pi\pi$ о изображают с помощью радиуса – вектора: $\vec{r} = O\vec{M} = (x; y)$.

Определение 1.8

Длина радиуса — вектора, изображающего комплексное число, называется modynem комплексного числа и обозначается |z|.

Справедлива формула для вычисление модуля комплексного числа:

$$z = \sqrt{x^2 + y^2} .$$

Определение 1.9

Величина угла между положительным направлением действительной оси и радиус —вектором, изображающем комплексное число, называется аргументом комплексного числа и обозначается $Arg\ z$.

Справедлива формула для вычисления аргумента комплексного числа:

$$Arg z = arg z + 2k\pi, k=0,\pm 1,\pm 2,...$$

Определение 1.10

 $arg\ z = \varphi - г$ лавное значение аргумента, φ принадлежит интералу $[-\pi,\pi]$.

Справедлива формула для вычисления главного значения аргумента:

$$\varphi = \arg z = \begin{cases} arctg \frac{y}{x}, & x > 0 \\ arctg \frac{y}{x} + \pi, & x < 0, y > 0 \\ arctg \frac{y}{x} - \pi, & x < 0, y < 0 \end{cases}$$

Определение 1.11

Запись числа z в виде: $z = r (cos \varphi + i sin \varphi)$ называется тригонометрической формой комплексного числа.

Определение 1.12

Запись числа z в виде: $z = re^{i\varphi}$ называется *показательной формой* комплексного числа.

Определение 1.13

Число z=x-iy называется *сопряженным* к числу z=x+iy.

Пример 1.1

Изобразить на комплексной плоскости выражения:

1)
$$-1 < \text{Rez} < 2$$

2)
$$|z+i| \le 2$$

3)
$$-\frac{\pi}{4} \le \arg z < \frac{\pi}{4}$$

Решение:

9

Пример 1.2

Представить в тригонометрической и показательной форме комплексные числа:

1)
$$z=1+i$$

2)
$$z = -1 + i$$

Решение:

1) Изобразим комплексное число на комплексной плоскости:

Из рисунка видно, что аргумент $\phi = \pi/4$.

Найдём теперь модуль:

$$|z| = \sqrt{1^2 + 1^2} = \sqrt{2}.$$

Теперь запишем тригонометрическую форму комплексного числа:

$$z = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$

и показательную форму: $z = \sqrt{2}e^{i\frac{\pi}{4}}$.

2) Изобразим комплексное число на комплексной плоскости:

Из рисунка видно, что аргумент $\phi = 3\pi/4$.

Найдём теперь модуль:

$$|z| = \sqrt{1^2 + 1^2} = \sqrt{2}.$$

Теперь запишем тригонометрическую форму комплексного числа:

$$z = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$$

и показательную форму: $z = \sqrt{2}e^{i3\frac{\pi}{4}}$.

$$z=\sqrt{2}e^{i3\frac{\pi}{4}}.$$

Стоит отметить, что показательную и тригонометрическую формы комплексного числа связывают формулы Эйлера:

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$

$$e^{-i\varphi} = \cos\varphi - i\sin\varphi$$

Основные действия над комплексными числами Сложение и вычитание комплексных чисел

Пусть $z_1 = x_1 + iy_1$ и $z_2 = x_2 + iy_2$. Тогда их сумма и разность определяются по формуле: $z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2)$.

Умножение комплексных чисел

Пусть $z_1 = x_1 + iy_1$ и $z_2 = x_2 + iy_2$. Тогда их произведение определяется по формуле: $z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$.

Деление комплексных чисел

Пусть $z_1 = x_1 + iy_1$ и $z_2 = x_2 + iy_2$. Чтобы найти частное двух комплексных чисел умножим числитель и знаменатель полученной дроби на число сопряженное к знаменателю:

$$\frac{z_1}{z_2} = \frac{x_1 + iy_1}{x_2 + iy_2} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{(x_2 + iy_2)(x_2 - iy_2)}.$$

Преобразовав полученное выражение получим формулу для вычисления частного двух комплексных чисел:

11

$$\frac{z_1}{z_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}.$$

Пример 1.3

Найти сумму, разность, произведение и частное чисел z=5+i и z=1-i.

Решение

Cymma:
$$(5+i)+(1-i)=6$$
.

Разность:
$$(5+i)-(1-i)=4+2i$$
.

Произведение:
$$(5+i)(1-i)=5+i-5i-i^2=6-4i$$
.

Частное:
$$\frac{5+i}{1-i} = \frac{(5+i)(1+i)}{(1-i)(1+i)} = \frac{5+i^2}{2} + i\frac{5+1}{2} = 2+3i$$
.

Извлечение корня из комплексного числа и возведение комплексного числа в степень

Чтобы возвести в степень комплексное число или извлечь корень из комплексного числа нужно данное число представить в тригонометрической форме. Далее возведение в степень и извлечение корня осуществляется по формулам Муавра:

$$z^{n} = r^{n} \left(\cos n\varphi + i \sin n\varphi \right).$$

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \quad k = 0, 1, ..., n - 1$$

Пример 1.4

Возвести в четвертую степень и извлечь корень четвёртой степени из числа z=1+i.

Решение

Из примера 1.2:
$$z = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$

$$z^{4} = (1+i)^{4} = (\sqrt{2})^{4} \left(\cos 4\frac{\pi}{4} + i\sin 4\frac{\pi}{4}\right) = 4(\cos \pi + i\sin \pi) = -4$$

$$\sqrt[4]{z} = \sqrt[4]{1+i} = \sqrt[4]{\sqrt{2}} \left(\cos \frac{\frac{\pi}{4} + 2\pi k}{4} + i \sin \frac{\frac{\pi}{4} + 2\pi k}{4} \right) = \sqrt[8]{2} \left(\cos \frac{\frac{\pi}{4} + 2\pi k}{4} + i \sin \frac{\frac{\pi}{4} + 2\pi k}{4} \right)$$

k=0,1,2,3.

$$z_0 = \sqrt[8]{2} \left(\cos \frac{\pi}{16} + i \sin \frac{\pi}{16} \right)$$

$$z_{1} = \sqrt[8]{2} \left(\cos \frac{9\pi}{16} + i \sin \frac{9\pi}{16} \right)$$

$$z_{1} = \sqrt[8]{2} \left(\cos \frac{17\pi}{16} + i \sin \frac{17\pi}{16} \right)$$

$$z_1 = \sqrt[8]{2} \left(\cos \frac{25\pi}{16} + i \sin \frac{25\pi}{16} \right)$$

Лекция 2

Определение матрицы

Определение 2.1

Прямоугольную таблицу из чисел, содержащую произвольное число m строк и n столбцов называют матрицей.

Обозначение:
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
 или $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$. Кроме того матицы обозначают

заглавными латинскими буквами (А, В, М и т.д.)

Определение 2.2

Если m=n, то матрицу называют квадратной.

Определитель второго порядка

Рассмотрим квадратную матрицу второго порядка: $\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} = A$.

Определение 2.3

Определителем (детерминантом) второго порядка называется число равное $a_1b_2-a_2b_1$.

Обозначение:
$$\det A = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$
.

Для вычисления определителя второго порядка верно правило: из произведения элементов матрицы, стоящих на главной диагонали (левый верхний угол и правый нижний угол) вычитаем произведение элементов, стоящие на побочной диагонали (правый верхний угол и левый нижний угол).

Пример 2.1

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 3 = -2$$

Определитель третьего порядка

Рассмотрим квадратную матрицу третьего порядка: $\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} = B \, .$

14

Определение 2.4

Определителем третьего порядка называется число равное: $a_1b_2c_3+a_3b_1c_2+a_2b_3c_1-a_3b_2c_1-a_2b_1c_3-a_1b_3c_2$

Рисунок 2.1

На рис. 2.1 проиллюстрирован закон, по которому составляется определитель матрицы третьего порядка: слева дано правило вычисления положительных членов определителя, справа - отрицательных. Данный закон часто называют «правило треугольника».

Пример 2.2

$$\begin{vmatrix} 1 & 2 & 3 \\ -5 & 1 & 1 \\ 2 & -1 & 4 \end{vmatrix} = 1 \cdot 1 \cdot 4 + 3 \cdot (-5)(-1) + 2 \cdot 1 \cdot 2 - 3 \cdot 1 \cdot 2 - 2 \cdot (-5) \cdot 4 - 1 \cdot 1 \cdot (-1) = 4 + 15 + 4 - 6 + 40 + 1 = 58.$$

Определитель квадратной матрицы n-го порядка

Определение 2.5

Определитель (детерминант) квадратной матрицы $A = (a_{ij})$ - число (обозначение $\Delta = \det(a_{ij}) = \det A = |a_{ij}|$)

$$\Delta = \sum_{(k_1, k_2, \dots, k_n)} (-1)^{I(k_1, k_2, \dots, k_n)} a_{1k_1} a_{2k_2} \dots a_{nk_n},$$

где $\sum_{(k_1,k_2,...,k_n)}$ означает, что суммирование производится по всем перестановкам $k_1,k_2,...,k_n$ чисел 1,2,...,n.

Пример 2.3

при n = 3:

$$\begin{split} & \Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = (-1)^{I(1,2,3)} a_{11} a_{22} a_{33} + \\ & + (-1)^{I(2,3,1)} a_{12} a_{23} a_{31} + (-1)^{I(3,1,2)} a_{13} a_{21} a_{32} + \\ & + (-1)^{I(1,3,2)} a_{11} a_{23} a_{32} + (-1)^{I(3,2,1)} a_{13} a_{22} a_{31} + \\ & + (-1)^{I(1,2,3)} a_{11} a_{22} a_{33} = a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + \\ & + a_{13} a_{21} a_{32} - a_{12} a_{21} a_{33} - a_{11} a_{23} a_{32} - a_{13} a_{22} a_{31}. \end{split}$$

Определение 2.6

Квадратная матрица имеющая определитель, отличный от нуля ($\Delta \neq 0$) называется невырожденной, в противном случае - матрица называется вырожденной или особой.

Замечание 2.1

Квадратная матрица 1- го порядка — одно число, а определитель такой матрицы равен единственному элементу этой матрицы.

Замечание 2.2

Определитель бывает только у квадратных матриц.

Определение 2.7

Определитель вида:

$$W_n = \begin{vmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{vmatrix}$$

называется определителем Вандермонда п-го порядка (или степенным определителем).

Свойства определителей

№ 1 Величина определителя квадратной матрицы не изменится, если строки матрицы переписать в столбцы.

№ 2 Перестановка двух строк (столбцов) матрицы равносильна умножению определителя данной матрицы на -1.

№ 3 Если матрица имеет две одинаковых строки (столбца), то определитель данной матрицы равен нулю.

№ 4 Умножение всех элементов стоки (столбца) матрицы на некоторое число равносильно умножению определителя данной матрицы на это число.

№ 5 Если матрица имеет нулевую строку (столбец), то определитель такой матрицы равен нулю.

№ 6 Если к элементам некоторой строки (столбца) матрицы прибавить соответствующие элементы другой строки (столбца), умноженные на некоторое число, то величина определителя такой матрицы не изменится.

№ 7 Если каждый элемент столбца или строки представляет собой сумму двух слагаемых, то такой определитель может быть представлен в виде суммы двух определителей, у одного из которых соответствующий столбец составлен из первых слагаемых, а у второго — из вторых.

$$\begin{vmatrix} a_1' + a_1'' & b_1 \\ a_2' + a_2'' & b_2 \end{vmatrix} = \begin{vmatrix} a_1' & b_1 \\ a_2' & b_2 \end{vmatrix} + \begin{vmatrix} a_1'' & b_1 \\ a_2'' & b_2 \end{vmatrix}$$

Определение 2.8

Минором порядка k матрицы A называется определитель, составленный из элементов, стоящих на пересечении любых k строк и k столбцов данной матрицы.

Определение 2.9

Mинором элемента i строчки и k столбца матрицы A n-го порядка называется определитель матрицы (n-1)- го порядка полученной путем вычеркивания из матрицы A i-ой строчки и k-го столбца. Обозначение: M_{ik} .

Определение 2.10

Минор M_{ik} взятый со знаком $(-1)^{i+k}$ называется алгебраическим дополнением этого элемента. Обозначение A_{ik} . $A_{ik} = (-1)^{i+k} M_{ik}$

Замечание 2.3

Чередование знаков у алгебраических дополнений начинается с левого верхнего угла с плюса. Например для матрицы 3×3 знаки перед алгебраическим дополнением будут чередоваться следующим образом:

Пример 2.4

Дан определитель: $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$. Найти M_{23} и A_{23} .

Решение:

Вычёркиваем в определителе вторую строчку и третий столбец, получим:

$$M_{23} = \begin{vmatrix} 1 & 2 \\ 7 & 8 \end{vmatrix} = -6; A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 2 \\ 7 & 8 \end{vmatrix} = 6.$$

№ 9 Разложение определителя по строке (столбцу).

Определитель матрицы равен сумме произведений элементов какой-либо строки (столбца) на соответствующие алгебраические дополнения элементов этой строки (столбца).

18

Пример 2.5

Вычислить определитель $\begin{vmatrix} 1 & 2 & -1 \\ 3 & 2 & 1 \\ -1 & 2 & 2 \end{vmatrix}$ путём разложения третей строки:

Решение:

$$\begin{vmatrix} 1 & 2 & -1 \\ 3 & 2 & 1 \\ -1 & 2 & 2 \end{vmatrix} = -1 \cdot \begin{vmatrix} 2 & -1 \\ 2 & 1 \end{vmatrix} - 2 \cdot \begin{vmatrix} 1 & -1 \\ 3 & 1 \end{vmatrix} + 2 \cdot \begin{vmatrix} 1 & 2 \\ 3 & 2 \end{vmatrix} = -4 - 8 - 8 = -20.$$

Вычисление определителя Вандермонда

Запишем определитель Вандермонда:

$$W_{n} = \begin{bmatrix} 1 & x_{1} & x_{1}^{2} & \dots & x_{1}^{n-1} \\ 1 & x_{2} & x_{2}^{2} & \dots & x_{2}^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n} & x_{n}^{2} & \dots & x_{n}^{n-1} \end{bmatrix}$$

вычтем из каждого столбца, начиная с последнего, предыдущий столбец, умноженный на x_n . Последняя строчка будет иметь вид: 1,0,0,...,0 а произвольная строчка будет:

1,
$$x_i - x_n$$
, $x_i(x_i - x_n)$, $x_i^2(x_i - x_n)$, ..., $x_i^{n-2}(x_i - x_n)$.

Разлагая полученный определитель по элементам последней строчки, получим:

$$W_{n} = (-1)^{n+1} \begin{vmatrix} x_{1} - x_{n} & x_{1}(x_{1} - x_{n}) & \dots & x_{1}^{n-2}(x_{1} - x_{n}) \\ x_{2} - x_{n} & x_{2}(x_{2} - x_{n}) & \dots & x_{2}^{n-2}(x_{1} - x_{n}) \\ \dots & \dots & \dots & \dots \\ x_{n-1} - x_{n} & x_{n-1}(x_{n-1} - x_{n}) & \dots & x_{n-1}^{n-2}(x_{n-1} - x_{n}) \end{vmatrix}$$

Вынесем из строчек общий множитель $x_1 - x_n, x_2 - x_n, ..., x_{n-1} - x_n$

$$W_{n} = (-1)^{n-1} (x_{1} - x_{n})(x_{2} - x_{n}) \dots (x_{n-1} - x_{n}) \begin{vmatrix} 1 & x_{1} & \dots & x_{1}^{n-2} \\ 1 & x_{2} & \dots & x_{2}^{n-2} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n-1} & \dots & x_{n-1}^{n-2} \end{vmatrix}$$

или

$$W_n = (x_n - x_1) \cdot (x_n - x_2) \dots (x_n - x_{n-1}) \cdot W_{n-1}$$

C определителем $W_{\scriptscriptstyle n-1}$ можно поступить также, и тогда:

$$W_{n} = (x_{n} - x_{1}) \cdot (x_{n} - x_{2}) \dots (x_{n} - x_{n-1}) \cdot (x_{n-1} - x_{1}) \cdot (x_{n-1} - x_{2}) \dots (x_{n-1} - x_{n-1}) \dots (x_{2} - x_{1}) = \prod_{n \ge ij \ge 1} (x_{i} - x_{j})$$

Пример 2.6

Вычислить определитель:
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{vmatrix} .$$

Решение: $x_1 = 1$; $x_2 = 2$; $x_3 = 3$; $x_4 = 4$.

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{vmatrix} = (4-1) \cdot (4-2) \cdot (4-3) \cdot (3-1) \cdot (3-2) \cdot (2-1) = 12$$

Правило Крамера

Определение 2.11

Система линейных алгебраических уравнений (СЛАУ) называется совместной, если имеет одно единственное решение. В другом случае система называется несовместной.

Пусть
$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \end{cases}$$
 система из трёх уравнений с тремя неизвестными.
$$a_3x + b_3y + c_3z = d_3$$

Выпишем главный определитель системы: $\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$.

И выпишем определители:

$$\Delta_{x} = \begin{vmatrix} d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3} \end{vmatrix}; \quad \Delta_{y} = \begin{vmatrix} a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3} \end{vmatrix}; \quad \Delta_{z} = \begin{vmatrix} a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3} \end{vmatrix}.$$

Справедливо следующее правило:

Если определитель системы $\Delta \neq 0$, то система имеет единственное решение, находящееся по формулам Крамера: $x = \frac{\Delta_x}{\Delta}$; $y = \frac{\Delta_y}{\Delta}$; $z = \frac{\Delta_z}{\Delta}$, или совместна, или определена.

Если определитель системы $\Delta=0$, а один из определителей $\Delta_x \neq 0$, $\Delta_y \neq 0$ или $\Delta_z \neq 0$, то система решений не имеет, она противоречива или несовместна.

Если $\Delta = 0$, и все определители равны нулю, а хотя бы один из коэффициентов при неизвестных не равен нулю, то система имеет бесконечное множество решений или неопределена.

Замечание 2.4

Правило Крамера остается справедливым и для линейных систем n уравнений с n неизвестными при любом n.

Пример 2.7

Решить систему уравнений:
$$\begin{cases} 2x + 3y = 5 \\ x + 4y = 2 \end{cases}$$
.

Решение:

$$\Delta = \begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix} = 5; \quad \Delta_x = \begin{vmatrix} 5 & 3 \\ 2 & 4 \end{vmatrix} = 14; \quad \Delta_y = \begin{vmatrix} 2 & 5 \\ 1 & 2 \end{vmatrix} = -1.$$

$$x = \frac{14}{5}, \quad y = -\frac{1}{5}.$$

Лекция 3

Основные операции над матрицами

Сложение матриц

Определение 3.1

Суммой двух матриц $A=(a_{ik})$ и $B=(b_{ik})$ одинаковой размерности называется матрица $C=(c_{ik})$ той же размерности, каждый элемент которой определяется равенством $c_{ik}=a_{ik}+b_{ik}$, где $i=\overline{1,m}$, $k=\overline{1,n}$

$$C = A + B$$

Пример 3.1

Даны матрицы
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 0 & 2 \\ 1 & 0 & -2 \end{pmatrix}$.

Определить сумму матрицA + B.

Решение:

$$C = A + B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} + \begin{pmatrix} -1 & 0 & 2 \\ 1 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 1 - 1 & 2 + 0 & 3 + 2 \\ 4 + 1 & 5 + 0 & 6 - 2 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 5 \\ 5 & 5 & 4 \end{pmatrix}.$$

Свойства

$$A + B = B + A$$
 (коммутативный закон)

$$(A+B)+C=A+(B+C)$$
 (ассоциативный закон)
 $A+0=A$

Умножение матриц на число.

Определение 3.2

Чтобы умножить матрицу на число, нужно все элементы матрицы умножить на это число, т.е. $A = (a_{ik}), \quad \alpha \in R \quad \alpha \cdot A = (\alpha \cdot a_{ik}), \quad i = \overline{1,m}, \quad k = \overline{1,n}$

Пример 3.1

Дана матрица
$$A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \\ 4 & 0 \end{pmatrix}$$
. Вычислить $3 \cdot A$

Решение:

$$3 \cdot A = \begin{pmatrix} 3 \cdot 2 & 3 \cdot 1 \\ 3 \cdot 3 & 3 \cdot 2 \\ 3 \cdot 4 & 3 \cdot 0 \end{pmatrix} = \begin{pmatrix} 6 & 3 \\ 9 & 6 \\ 12 & 0 \end{pmatrix},$$

Свойства

$$k \cdot A = A \cdot k$$

$$(k+m)\cdot A = k\cdot A + m\cdot A$$

$$(k \cdot m) \cdot A = k \cdot (m \cdot A)$$

$$k \cdot (A+B) = k \cdot A + k \cdot B$$

Умножение матриц

Определение 3.3

Произведением матрицы $A_{_{mn}}$ на матрицу $B_{_{nk}}$ называется матрица $C_{_{mk}}$, каждый элемент которой $c_{_{mk}}$, равен сумме произведений элементов i -ой строки матрицы $A_{_{mn}}$ на j -ый столбец матрицы $B_{_{nk}}$:

$$A_{\scriptscriptstyle mn}\cdot B_{\scriptscriptstyle nk}=C_{\scriptscriptstyle mk}$$
 , т.е. $C_{\scriptscriptstyle mk}=(c_{\scriptscriptstyle mk})$, где $c_{\scriptscriptstyle mk}=\sum\limits_{\scriptscriptstyle j=1}^{\scriptscriptstyle n}a_{\scriptscriptstyle mj}\cdot b_{\scriptscriptstyle jk}$

Замечание 3.1

Произведение матриц определено только для матриц, у которых число столбцов матрицы A равно числу строк матрицы B. При этом в произведении получается матрица, число строк которой равно числу строк матрицы A, а число столбцов равно числу столбцов матрицы B.

Пример 3.3

Выполнить действия:
$$\begin{pmatrix} 2 & 0 & 1 & 2 \\ 1 & 3 & 2 & 1 \end{pmatrix}$$
. $\begin{pmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \\ 4 & 1 \end{pmatrix}$

Решение:

Матрица A имеет размер 2×4 , матрица B - размер 4×2 .

$$\begin{pmatrix} 2 & 0 & 1 & 2 \\ 1 & 3 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 2 \cdot 1 + 0 \cdot 2 + 1 \cdot 3 + 2 \cdot 4 & 2 \cdot 2 + 0 \cdot 3 + 1 \cdot 4 + 2 \cdot 1 \\ 1 \cdot 1 + 3 \cdot 2 + 2 \cdot 3 + 1 \cdot 4 & 1 \cdot 2 + 3 \cdot 3 + 2 \cdot 4 + 1 \cdot 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 13 & 10 \\ 17 & 20 \end{pmatrix}$$

Результат умножения матрица $\begin{pmatrix} 13 & 10 \\ 17 & 20 \end{pmatrix}$ размер 2×2 .

Свойства

$$A \cdot B \neq B \cdot A$$

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

$$(A+B)\cdot C = A\cdot C + B\cdot C$$

$$k \cdot (A \cdot B) = A \cdot (k \cdot B)$$

Нахождение обратной матрицы.

Определение 3.4

Матрица E называется $e\partial$ иничной матрицей, если для любой матрицы A имеет место равенство $A \cdot E = E \cdot A = A$

$$E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 \\ \dots & \dots & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Определение 3.5

Матрица A^{-1} называется *обратной* по отношению к квадратной матрице A, если выполняется $A \cdot A^{-1} = A^{-1} \cdot A = E$, где E -единичная матрица.

Определение 3.6

Матрица A' называется транспонированной по отношению к матрице A, если соответствующие элементы в её строках равны соответствующим элементам в столбцах A

Правило нахождения обратной матрицы

- 1. Найти определитель матрицы. Если определитель равен нулю, то матрица вырожденная и не имеет обратной.
- 2. Если определитель не равен нулю, то найти матрицу из алгебраических дополнений \widetilde{A} .
- 3. Найти транспонированную матрицу \widetilde{A}^t
- 4. Разделить каждый элемент полученной матрицы на опрделитель, полученный в первом пункте.
- 5. Выполнить проверку $A \cdot A^{-1} = A^{-1} \cdot A = E$.

Пример 3.4

Дана матрица
$$A = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 1 & 2 \\ 4 & 3 & 1 \end{pmatrix}$$
 Найти обратную матрицу A^{-1}

Решение:

1) Найдём определитель матрицы:

$$\det A = \begin{vmatrix} 2 & 1 & 3 \\ 0 & 1 & 2 \\ 4 & 3 & 1 \end{vmatrix} = 2 + 8 + 0 - 12 - 0 - 12 = -14.$$

Определитель не равен нулю.

2) Находим матрицу из алгебраических дополнений:

$$\widetilde{A} = \begin{pmatrix} \begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} & -\begin{vmatrix} 0 & 2 \\ 4 & 1 \end{vmatrix} & \begin{vmatrix} 0 & 1 \\ 4 & 3 \end{vmatrix} \\ -\begin{vmatrix} 1 & 3 \\ 3 & 1 \end{vmatrix} & \begin{vmatrix} 2 & 3 \\ 4 & 1 \end{vmatrix} & -\begin{vmatrix} 2 & 1 \\ 4 & 3 \end{vmatrix} \\ \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} & -\begin{vmatrix} 2 & 3 \\ 0 & 2 \end{vmatrix} & \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} \end{pmatrix} = \begin{pmatrix} -5 & 8 & -4 \\ 8 & -10 & -2 \\ -1 & -4 & 2 \end{pmatrix}.$$

3) Транспонируем данную матрицу:

$$\widetilde{A}^{t} = \begin{pmatrix} -5 & 8 & -1 \\ 8 & -10 & -4 \\ -4 & -2 & 2 \end{pmatrix}.$$

4) Найдём обратную матрицу:

$$A^{-1} = \begin{pmatrix} \frac{5}{14} & -\frac{8}{14} & \frac{1}{14} \\ -\frac{8}{14} & \frac{10}{14} & \frac{4}{14} \\ \frac{4}{14} & \frac{2}{14} & -\frac{2}{14} \end{pmatrix}$$

5) Делаем проверку:

$$A \cdot A^{-1} = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 1 & 2 \\ 4 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{5}{14} & -\frac{8}{14} & \frac{1}{14} \\ -\frac{8}{14} & \frac{10}{14} & \frac{4}{14} \\ \frac{4}{14} & \frac{2}{14} & -\frac{2}{14} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Ранг матрицы Определение 3.7

Pанг матрицы A - наибольший порядок минора этой матрицы, отличного от нуля. Обозначения: r(A), R(A), Rang A.

Замечание 3.2

Если все элементы матрицы равны нулю, то ранг такой матрицы принимают равным нулю.

Пример 3.5

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Вычислить ранг матрицы:

Решение:

Матрица В содержит единственный ненулевой элемент, являющийся минором 1-го порядка. Все определители более высоких порядков, составленные из элементов этой матрицы, будут содержать 0-ю строку и поэтому равны 0. Следовательно, r(B)=1.

Пример 3.6

Вычислить ранг матрицы:

$$\begin{pmatrix}
 7 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 \\
 5 & 0 & 0 & 2 & 0
 \end{pmatrix}.$$

Решение:

Вычеркнув из этой матрицы вторую строку и выбрав первый и четвертый столбцы, получим минор

27

$$\begin{vmatrix} 7 & 0 \\ 5 & 2 \end{vmatrix} = 14 \neq 0.$$

Ранг матрицы равен 2.

Пример 3.7

Вычислить ранг матрицы

$$C = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -4 & 5 \\ 3 & -4 & 5 \end{pmatrix}$$

Решение:

Единственным минором 3-го порядка является определитель матрицы C, но он равен 0, поскольку содержит пропорциональные столбцы. Следовательно, r(C)<3.

Для того, чтобы доказать, что r(C)=2, достаточно указать хотя бы один

минор 2-го порядка, не равный 0, например,
$$\begin{vmatrix} 1 & 0 \\ 2 & -4 \end{vmatrix} = -4 \neq 0$$
. Значит, $r(C)=2$.

Определение 3.8

Всякий отличный от нуля минор матрицы, порядок которого равен рангу этой матрицы называется *базисным минором* матрицы.

Определение 3.9

Преобразования матрицы, от которых ранг её не изменится называют элементарными.

К элементарным относятся следующие преобразования:

- замены строк столбцами, а столбцов соответствующими строками;
- перестановки строк матрицы;
- вычеркивания строки, все элементы которой равны нулю;
- умножения строки на число, отличное от нуля;
- прибавления к элементам строки соответствующих элементов другой строки, умноженной на одно и то же число.

Замечание 3.3

Сама матрица при элементарных преобразованиях меняется, но ранг матрицы не изменится.

Определение 3.10

Две матрицы A и B называются эквивалентными, если одна из них получается из другой с помощью элементарных преобразований. Записывается $A \sim B$.

Определение 3.11

Матрицу, у которой в начале по главной диагонали стоят подряд несколько единиц, а все остальные элементы равны нулю называют *канонической*.

Например:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Определение 3.12

Пусть $A = (a_{ij})$ - некоторая матрица. Если все элементы, стоящие ниже a_{ii} равны нулю, то матрица называется матрицей *треугольного вида*.

Замечание 3.4

Для матриц большой размерности непосредственное вычисление всех миноров затруднительно. Поэтому в этом случае можно преобразовать матрицу к треугольному виду, воспользовавшись эквивалентными преобразованиями.

Вычислить ранг матрицы

$$A = \begin{pmatrix} 1 & -1 & 2 & 1 & -2 \\ -1 & 2 & 3 & -1 & 1 \\ 0 & 1 & 5 & 0 & -1 \\ 2 & -3 & -1 & 2 & -3 \end{pmatrix}.$$

Решение:

Вначале добьемся того, чтобы в первом столбце все элементы, кроме первого, равнялись 0. Для этого запишем вместо второй строки ее сумму с первой, а вместо третьей – разность третьей и удвоенной первой:

$$\widetilde{A} = \begin{pmatrix} 1 & -1 & 2 & 1 & -2 \\ 0 & 1 & 5 & 0 & -1 \\ 0 & 1 & 5 & 0 & -1 \\ 0 & -1 & -5 & 0 & 1 \end{pmatrix}$$

Затем из третьей строки вычтем вторую, а к четвертой прибавим вторую:

После вычеркивания нулевых строк получим матрицу размерности два на пять для которой максимальный порядок миноров, а, следовательно, и максимально возможное значение ранга равно 2:

$$\widetilde{\widetilde{A}} = \begin{pmatrix} 1 & -1 & 2 & 1 & -2 \\ 0 & 1 & 5 & 0 & -1 \end{pmatrix}.$$

$$\begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = 1 \neq 0, \qquad \qquad r(\widetilde{\widetilde{A}}) = r(A) = 2.$$

Лекция 4

Решение систем т линейных уравнений с п неизвестными

Определение 4.1

Системой т линейных уравнений с п неизвестными называется система вида:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m, \end{cases}$$

где a_{ij} и b_i (i=1,...,m; b=1,...,n) — некоторые известные числа, а $x_1,...,x_n$ — неизвестные.

Определение 4.2

Матрицей системы называется матрица, составленная из коэффициентов при неизвестных:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & & \ddots & & \ddots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Определение 4.3

Свободными членами называются числа, стоящие в правых частях уравнений, $b_1,...,b_m$.

Определение 4.4

Совокупность n чисел $c_1,...,c_n$ называется peшением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел $c_1,...,c_n$ вместо соответствующих неизвестных $x_1,...,x_n$.

При решении систем такого вида возможны три следующих случая:

- 1. Система имеет единственное решение.
- 2. Система имеет бесконечное множество решений.
- 3. Система не имеет решения.

Определение 4.5

Совместная линейная система называется *определенной*, если она имеет единственное решение, и *неопределенной*, если она имеет более одного решения.

Определение 4.6

Расширенной матрицей системы называется матрицу вида:

$$A_{1} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_{1} \\ a_{21} & a_{22} & \dots & a_{2n} & b_{2} \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_{m} \end{pmatrix}$$

Теорема 4.1 Теорема Кронекера-Капелли. (условие совместности системы) Система линейных уравнений совместна тогда и только тогда, если ранг матрицы системы равен рангу расширенной матрицы A^* .

$$RangA = RangA^*$$
.

Доказательство.

1) Необходимость:

 Π усть система совместна и $c_1, c_2, ..., c_n$ ее решение. Тогда при подстановке решения в уравнения получим:

$$\begin{cases} a_{11}c_1 + a_{12}c_2 + \dots + a_{1n}c_n = b_1 \\ a_{21}c_1 + a_{22}c_2 + \dots + a_{2n}c_n = b_2 \\ \dots \\ a_{m1}c_1 + a_{m2}c_2 + \dots + a_{mn}c_n = b_m \end{cases}$$

то есть столбец свободных членов является линейной комбинацией столбцов матрицы системы и, следовательно, столбцов любого ее базисного минора. Поэтому добавление элементов этого столбца и любой строки расширенной матрицы к базисному минору даст нулевой определитель, поэтому ранг матрицы системы равен рангу расширенной матрицы системы.

2) Достаточность:

Если $r(A) = r(A_1)$, то любой базисный минор матрицы A является и базисным минором расширенной матрицы.

Поэтому столбец свободных членов представляет собой линейную комбинацию столбцов этого базисного минора, и, следовательно, линейную комбинацию всех столбцов матрицы А.

Если обозначить коэффициенты этой линейной комбинации $c_1, c_2, ..., c_n$, то эти числа будут решением системы, т.е. эта система совместна. Теорема доказана.

Пример 4.1

Определить совместность системы линейных уравнений:

$$\begin{cases} x_1 + 3x_2 + 5x_3 + 7x_4 + 9x_5 = 1 \\ x_1 - 2x_2 + 3x_3 - 4x_4 + 5x_5 = 2 \\ 2x_1 + 11x_2 + 12x_3 + 25x_4 + 22x_5 = 4 \end{cases}$$

Решение:

Выпишем матрицу системы и найдём её ранг методом элементарных преобразований:

$$A = \begin{pmatrix} 1 & 3 & 5 & 7 & 9 \\ 1 & -2 & 3 & -4 & 5 \\ 2 & 11 & 12 & 25 & 22 \end{pmatrix}.$$

Оставим первую и третью строчки без изменений, а вместо второй строчки запишем её сумму с третьей строкой, получим:

$$\begin{pmatrix}
1 & 3 & 5 & 7 & 9 \\
3 & 9 & 15 & 21 & 27 \\
2 & 11 & 12 & 25 & 22
\end{pmatrix}$$

Разделим вторую строку на три и получим матрицу, у которой первая строчка будет равна первой:

$$\begin{pmatrix}
1 & 3 & 5 & 7 & 9 \\
1 & 3 & 5 & 7 & 9 \\
2 & 11 & 12 & 25 & 22
\end{pmatrix}$$

Вычеркнем вторую строчку:

$$\begin{pmatrix} 1 & 3 & 5 & 7 & 9 \\ 2 & 11 & 12 & 25 & 22 \end{pmatrix}$$

Вычислим определитель минора данной матрицы:

$$\begin{vmatrix} 1 & 3 \\ 2 & 11 \end{vmatrix} = 1 - 6 = 5 \neq 0$$

Получим, что RangA = 2.

Теперь выпишем расширенную матрицу A* и выполним над ней элементарные преобразования, чтобы создать нулевую строку:

$$\begin{pmatrix} 1 & 3 & 5 & 7 & 9 & 1 \\ 1 & -2 & 3 & -4 & 5 & 2 \\ 2 & 11 & 12 & 25 & 22 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 5 & 7 & 9 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 2 & 11 & 12 & 25 & 22 & 4 \end{pmatrix}$$

RangA* = 3.

Следовательно, система несовместна.

Матричный метод решения систем линейных уравнений

Замечание 4.1

Матричным методом могут быть решены только те системы, у которых число уравнений совпадает с числом неизвестных и определитель матрицы коэффициентов отличен от нуля (матрица *A* невырожденная).

Решение системы матричным способом осуществляется по следующей формуле:

$$A^{-1} \cdot (AX) = A^{-1}L$$
.

Используя свойства произведения матриц и свойство обратной матрицы

$$(A^{-1}A)\cdot X = A^{-1}L, \implies E\cdot X = A^{-1}L, \implies X = A^{-1}L.$$

Т.е., для получения столбца неизвестных нужно обратную матрицы коэффициентов системы умножить на столбец свободных членов.

Пример 4.2

Решить систему матричным методом:

$$\begin{cases} x_1 - x_2 + x_3 = 2\\ 2x_1 - x_2 + x_3 = 3\\ x_1 + x_2 - 2x_3 = -3 \end{cases}$$

Решение:

Найдем обратную матрицу для матрицы коэффициентов системы

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 1 \\ 1 & 1 & -2 \end{pmatrix}.$$

Вычислим определитель, раскладывая по первой строке:

$$\Delta A = \begin{vmatrix} 1 & -1 & 1 \\ 2 & -1 & 1 \\ 1 & 1 & -2 \end{vmatrix} = 1(2-1) + 1(-4-1) + 1(2+1) = -1.$$

Поскольку $\Delta \neq 0$, то A^{-1} существует.

$$B = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} = \begin{pmatrix} 1 & 5 & 3 \\ -1 & -3 & -2 \\ 0 & 1 & 1 \end{pmatrix}; \quad B^{T} = \begin{pmatrix} 1 & -1 & 0 \\ 5 & -3 & 1 \\ 3 & -2 & 1 \end{pmatrix}.$$

$$A^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ -5 & 3 & -1 \\ -3 & 2 & -1 \end{pmatrix}.$$

$$A^{-1}A = \begin{pmatrix} -1 & 1 & 0 \\ -5 & 3 & -1 \\ -3 & 2 & -1 \end{pmatrix} \times \begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 1 \\ 1 & 1 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E.$$

Обратная матрица найдена верно.

Найдем решение системы:

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = A^{-1}L = \begin{pmatrix} -1 & 1 & 0 \\ -5 & 3 & -1 \\ -3 & 2 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

Следовательно, $x_1 = 1$, $x_2 = 2$, $x_3 = 3$.

Проверка:

$$\begin{cases} 1-2+3=2\\ 2\cdot 1-2+3=3\\ 1+2-2\cdot 3=-3 \end{cases}$$

Система решена верно.

Метод Гаусса решения систем линейных уравнений

Замечание 4.2

Данный метод решения систем линейных уравнений подходит для решения систем с любым числом уравнений и неизвестных.

Суть метода Гаусса заключается в преобразовании заданной системы уравнений с помощью элементарных преобразований в эквивалентную систему ступенчатого треугольного вида. Метод Гаусса является более универсальным. Он заключается в последовательном исключении неизвестных из уравнений системы. Полученная система содержит все неизвестные в первом уравнении. Во втором уравнении отсутствует первое неизвестные и т. д.

Если система совместна и определена (единственное решение), то последнее уравнение содержит одно неизвестное. Найдя последнее неизвестное, из предыдущего уравнения находим еще одно - предпоследнее.

Подставляя полученные величины неизвестных, мы последовательно найдем решение системы.

Определение 4.7

Элементарными преобразованиями системы линейных уравнений, используемыми для приведения системы к треугольному виду, являются следующие преобразования:

- перестановка местами двух уравнений;
- умножение обеих частей одного из уравнений на любое число, отличное от нуля;
- прибавление к обеим частям одного уравнения соответствующих частей другого уравнения, умноженных на любое число.

Определение 4.8

Две системы называются эквивалентными, если всякое решение первой системы является решением другой системы и наоборот.

Элементарные преобразования переводят данную систему линейных алгебраических уравнений в эквивалентную систему.

Пример 4.3

Решить систему методом Гаусса:

$$\begin{cases} x_1 - x_2 + x_3 = 2 \\ 2x_1 - x_2 + x_3 = 3 \\ x_1 + x_2 - 2x_3 = -3 \end{cases}$$

Решение:

Определитель системы не равен нулю. Поэтому система совместна и определена (решение единственно). Выполним преобразования.

Первое уравнение оставим без изменения. Для того, чтобы избавиться от первого неизвестного во втором и третьем уравнениях, к ним прибавим первое, умноженное на -2 в первом случае и на -1 - во втором

$$\begin{cases} x_1 - x_2 + x_3 = 2 \\ x_2 - x_3 = -1 \\ 2x_2 - 3x_3 = -5 \end{cases}$$

Теперь избавимся от второго неизвестного в третьем уравнении. Для этого второе уравнение умножим на -2 и прибавим к третьему.

Получим эквивалентную заданной систему треугольного вида

$$\begin{cases} x_1 - x_2 + x_3 = 2 \\ x_2 - x_3 = -1 \\ -x_3 = -3 \end{cases}$$

Решаем систему снизу вверх. Из третьего уравнения имеем x_3 = 3 и, подставляя его во второе уравнение, находим x_2 = 2. Поставив найденные неизвестные в первое уравнение, получим x_1 = 1. Таким образом, получим решение системы: x_1 = 1, x_2 = 2, x_3 = 3.

Проверка:

$$\begin{cases} 1-2+3=2\\ 2-2+3=3\\ 1+2-2\cdot 3=-3 \end{cases}$$

Получили три тождества. Система решена верно.

Собственные значения и собственные вектора линейного оператора

Определение 4.9

Ненулевой вектор X, удовлетворяющий соотношению $f(X) = \lambda \cdot X$ называется собственным вектором, а соответствующее число λ - собственным значением линейного оператора f.

В матричном виде это соотношение можно записать в виде:

$$A \cdot X = \lambda \cdot X$$
 или $(A - \lambda \cdot E) \cdot X = 0$

Однородная система линейных уравнений имеет нетривиальное решение при условии:

$$|A - \lambda \cdot E| = 0$$

Определение 4.10

Уравнение $|A - \lambda \cdot E| = 0$ называется характеристическим уравнением матрицы A .

Определение 4.11

Выражение:

$$|A - \lambda E| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix}$$

представляет собой полином (многочлен) n-ой степени от λ и называется xарактеристическим полиномом матрицы A.

Пример 4.3

Найти собственные значения и собственные векторы линейного оператора, заданного в некотором базисе матрицей $A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$.

Решение:

По определению
$$\begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \lambda \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

т.е.
$$\begin{cases} x_1 + 2x_2 = \lambda x_1 \\ -x_1 + 4x_2 = \lambda x_2 \end{cases}$$
 или
$$\begin{cases} (1 - \lambda) \cdot x_1 + 2x_2 = 0 \\ -x_1 + (4 - \lambda) \cdot x_2 = 0 \end{cases}$$

 \overline{x} - собственный вектор, а это значит, что однородная система уравнений имеет ненулевой решение. Это эквивалентно, определитель системы равен нулю.

$$\begin{vmatrix} 1 - \lambda & 2 \\ -1 & 4 - \lambda \end{vmatrix} = 0$$

т.е. $\lambda_1=2$, $\lambda_2=3$ - собственные значения матрицы A

Подставляя $\lambda_1=2$, получим систему $\begin{cases} x_1+2x_2=0\\ -x_1+2x_2=0 \end{cases}, \ \overline{x}=t(2,1),$

аналогично
$$\lambda_2 = 3$$
, получаем систему $\begin{cases} -2x_1 + 2x_2 = 0 \\ -x_1 + x_2 = 0 \end{cases}$, $x = t(1,1)$.

Лекция 5

Элементы векторной алгебры

Определение 5.1

Вектором называется направленный отрезок, т.е. отрезок прямой, для которого указано какая точка, является *началом* и какая *концом*.

Рисунок 5.1

Обозначение: вектор записывается в виде \overline{AB} или \overline{a} .

Длина или модуль вектора обозначается как $|\overline{AB}|$, $|\overline{a}|$.

Определение 5.2

Вектор, у которого начало совпадает с концом, называется нулевым.

Определение 5.3

Векторы, расположенные на прямой или параллельных прямых, называются κ оллинеарными и обозначаются $\overline{a} \parallel \overline{b}$.

Определение 5.4

Векторы, лежащие на параллельных плоскостях или на одной и той же плоскости, называются компланарными.

Линейные операции над векторами

Определение 5.5 (правило треугольника)

Суммой двух векторов \bar{a} и \bar{b} называется вектор \bar{c} , направленный из начала вектора \bar{a} в конец вектора \bar{b} при условии, что начало \bar{b} совпадет с концом вектора. \bar{a}

Рисунок 5.2

Сложение векторов по правилу параллелограмма:

Рисунок 5.3

Определение 5.6

Произведением вектора \overline{a} на число λ называется вектор $\overline{b}=\lambda\cdot\overline{a}$, определяемый следующими условиями:

- 1). $|\overline{b}| = \lambda \cdot |\overline{a}|$
- 2). $\overline{a} \parallel \overline{b}$
- 3). Векторы \overline{a} и \overline{b} одинаково направлены, если $\lambda > 0$, и противоположно если $\lambda < 0$.

Свойства линейных операций над векторами

- 1). $\overline{a} + \overline{b} = \overline{b} + \overline{a}$.
- 2). $\overline{a} + (\overline{b} + \overline{c}) = (\overline{a} + \overline{b}) + \overline{c} = \overline{a} + \overline{b} + \overline{c}$.
- 3). $\overline{a} + \overline{0} = \overline{a}$, где **0** нулевой вектор.
- 4). \overline{a} + $(-\overline{a})$ = $\overline{0}$, где $(-\overline{a})$ противоположный вектор, $\mathbf{0}$ нулевой.
- 5). $(\lambda \cdot \mu) \cdot \overline{a} =$, где λ , μ числа. $\lambda \cdot (\mu \cdot \overline{a})$
- 6). $(\lambda + \mu) \cdot \overline{a} = \lambda \cdot \overline{a} + \mu \cdot \overline{a}$.
- 7). $\lambda \cdot (\overline{a} + \overline{b}) = \lambda \cdot \overline{a} + \lambda \cdot \overline{b}$.

8). $1 \cdot \overline{a} = \overline{a}$.

Проекция вектора

Определение 5.7

Проекцией вектора $\overline{M_1M_2}$ на заданную ось l называется число равное длине вектора N_1N_2 , начало и конец которого являются основаниями перпендикуляров, опущенных из начала и конца вектора $\overline{M_1M_2}$ на ось l. (Рисунок 5.4).

Вычисляют данное число по следующей формуле:

$$\prod p \ \overline{M_{1}M_{2}} = \left| \overline{M_{1}M_{2}} \right| \cdot \cos \alpha ,$$

где lpha - угол между вектором $\overline{M_1M_2}$ и осью l.

Определение 5.8

Проекцией вектора \overline{a} на вектор \overline{b} называется проекция вектора \overline{a} на ось, проходящую через вектор \overline{b} и имеющую с ним одинаковое направление . (Рисунок 5.5).

Рисунок 5.4

Рисунок 5.5

Свойство проекций:

- 1) Проекция суммы векторов на ось равна сумме проекций этих векторов, т.е. $\Pi p_l \; (\overline{a} + \overline{b}) = \Pi p_l \; \overline{a} + \Pi p_l \; \overline{b} \; ;$
- 2) проекция произведения вектора \overline{a} на число λ равна произведению числа на проекцию вектора \overline{a} , т.е. $\Pi p_1 \ \lambda \cdot \overline{a} = \lambda \cdot \Pi p_1 \ \overline{a}$.

Разложение вектора по базису

Определение 5.9

Система векторов $\{\vec{c}_1,\vec{c}_2,...,\vec{c}_n\}$ называется линейно независимой, если равенство $\lambda_1\vec{c}_1 + \lambda_2\vec{c}_2 + ... + \lambda_n\vec{c}_n = 0$ возможно лишь в случае, когда $\lambda_1 = \lambda_2 = ... = \lambda_n = 0$. В противном случае система называется линейно независимой.

Определение 5.10

Базисом на плоскости называется система из двух линейно независимых векторов.

Определение 5.11

Базисом в пространстве называется система из трёх линейно независимых векторов.

Любой вектор, заданный на плоскости или в пространстве можно представить в виде *разложения по базису*.

Пример 5.1

Разложит вектор $\vec{c} = \{1,2\}$ по базису из векторов $\vec{a} = \{3,4\}, \quad \vec{b} = \{5,6\}.$

Решение:

Будем искать $\vec{c} = x \cdot \vec{a} + y \cdot \vec{b}$.

Составим систему уравнений:

$$\begin{pmatrix} 3 \\ 4 \end{pmatrix} x + \begin{pmatrix} 5 \\ 6 \end{pmatrix} y = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\begin{cases} 3x + 5y = 1 \\ 4x + 6y = 2 \end{cases}$$

Решим данную систему:

$$x = \frac{\begin{vmatrix} 1 & 5 \\ 2 & 6 \end{vmatrix}}{\begin{vmatrix} 3 & 5 \\ 4 & 6 \end{vmatrix}} = \frac{-4}{-2} = 2, \quad y = \frac{\begin{vmatrix} 3 & 1 \\ 4 & 2 \end{vmatrix}}{\begin{vmatrix} 3 & 5 \\ 4 & 6 \end{vmatrix}} = \frac{2}{-2} = -1.$$

Итак: $\vec{c} = 2\vec{a} - \vec{b}$.

Декартовы прямоугольные координаты

Положение точки в пространстве будем определять относительно пространственной декартовой прямоугольной системы координат, состоящей из трех взаимно перпендикулярных осей координат, пересекающихся в одной и той же точке \mathbf{O} , называемой началом координат.

Ось \mathbf{Ox} называют осью *абсцисс*, ось \mathbf{Oy} - осью *ординат* и ось \mathbf{Oz} - осью *аппликат*.

Координатные оси **Ох, Оу, Оz**, взятые попарно, определяют три взаимно перпендикулярные плоскости **хОу, уОz, хОz**, называемые *координатными* плоскостями.

Декартова система координат позволяет связать с каждой точкой \mathbf{P} пространства, в котором выбраны три не лежащие в одной плоскости направленные прямые \mathbf{Ox} , \mathbf{Oy} , \mathbf{Oz} (оси координат), пересекающиеся в начале \mathbf{O} , три вполне определенных действительных числа (декартовы координаты) \mathbf{x} , \mathbf{y} , \mathbf{z} ; при этом пишут $\mathbf{P}(\mathbf{x}, \mathbf{y}, \mathbf{z})$.

Оси **Ох**, **Оу**, **Оz** могут образовывать правую (рисунок 5.6) или левую систему (рисунок 5.7). Для правой системы поворот от оси **Ох** к оси **Оу** на угол, меньший π , совершается в направлении против часовой стрелки, если смотреть на плоскость **хОу** из какой-либо точки положительной полуоси **Оz** (положительная сторона плоскости **хОу**).

Замечание 5.1

Наряду с декартовой системой координат рассматривается полярная система координат на плоскости, которая задается точкой **О** (полюсом) и полярной осью - лучом, выходящим из полюса. Связь прямоугольных и полярных координат задается формулами:

$$x = \rho \cdot \cos \varphi$$

 $y = \rho \cdot \sin \varphi$, где $\rho = \sqrt{x^2 + y^2}, \varphi = arctg \frac{y}{x}$

Координатное представление векторов

Определение 5.12

Ортом называется вектор единичной длины.

Обычно орт обозначают \vec{e} .

Определение 5.13

Единичные векторы (орты) осей **Ох, Оу, Оz** обозначаются соответственно через $\bar{i}, \bar{j}, \bar{k}$ причем $|\bar{i}| = |\bar{j}| = |\bar{k}| = 1$.

 $\overline{i},\overline{j},\overline{k}$ - линейно независимы и образуют базис в пространстве.

Разложим произвольный вектор \overline{a} трехмерного пространства по ортам. Для этого построим вектор \overline{oM} , равный вектору \overline{a} . Из точки M опустим перпендикуляр на плоскость \mathbf{xOy} . Из основания этого перпендикуляра (точка \mathbf{A}) опустим перпендикуляры на оси координат \mathbf{Ox} и \mathbf{Oy} и соединим точку \mathbf{A} с началом \mathbf{O} . На векторах \overline{oM} и \overline{oA} построим прямоугольник $\mathbf{OAMM3}$, диагональю которого будет вектор \overline{oM} . Из рисунка 5.8 видно, что $\overline{oM} = \overline{oA} + \overline{AM}$ или $\overline{oM} = \overline{oM_1} + \overline{oM_2} + \overline{oM_3}$.

Рисунок 5.8

Векторы \overline{OM}_1 , \overline{OM}_2 , \overline{OM}_3 называются составляющими или компонентами вектора \overline{OM} .

Определение 5.14

Проекции вектора на соответствующие координатные оси называются его координатами.

Обозначения: $\overline{OM} = \{X,Y,Z\}$ или в виде разложения по координатным ортам: $\overline{OM} = X\vec{i} + Y\vec{j} + Z\vec{k}$.

Замечание 5.2

Равные векторы имеют одинаковые координаты.

Замечание 5.3

Разложение вектора \overline{a} по координатным ортам возможно только единственным способом.

Вектор \overline{OM} , идущий от начала точки \mathbf{O} к точке M(x,y,z) называется радиус - вектором этой точки.

Операции над векторами, заданными в координатной форме

1. Сложение векторов

$$\overline{a} = X_1 \overline{i} + Y_1 \overline{j} + Z_1 \overline{k} , \overline{b} = X_2 \overline{i} + Y_2 \overline{j} + Z_2 \overline{k} ,$$

$$\overline{c} = \overline{a} + \overline{b} = (X_2 + X_1) \cdot \overline{i} + (Y_2 + Y_1) \cdot \overline{j} + (Z_2 + Z_1) \cdot \overline{k}$$

$$\overline{c} = (X_2 + X_1, Y_2 + Y_1, Z_2 + Z_1)$$

2. Умножение вектора на число

$$\overline{a} = X_{\scriptscriptstyle \bar{i}} + Y_{\scriptscriptstyle \bar{j}} + Z_{\scriptscriptstyle \bar{k}}$$

$$\lambda \cdot \overline{a} = \lambda \cdot X_{\bar{i}} + \lambda \cdot Y_{\bar{j}} + \lambda \cdot Z_{\bar{k}}.$$

Скалярное произведение векторов

Определение 5.15

Скалярным произведением двух векторов \overline{a} и \overline{b} называется число, (обозначаемое $(\overline{a}\overline{b})$) равное произведению длин векторов на косинус угла между ними:

$$(\overline{a}b) = |\overline{a}||\overline{b}|\cos\varphi,$$

где φ - угол между векторами \overline{a} и \overline{b} .

Рисунок 5.9

Свойства скалярного произведения:

1).
$$(\overline{a}\overline{b}) = (\overline{b}\overline{a})$$

2).
$$(\overline{a}\overline{b})=0 \Leftrightarrow \overline{a}$$
 и \overline{b} перпендикулярны; (или $\overline{a}=0$, или $\overline{b}=0$)

3).
$$(\overline{a}\overline{b}) = |\overline{a}| \Pi p_{\overline{a}}\overline{b} = |\overline{b}| \Pi p_{\overline{b}}\overline{a}$$

4).
$$(\lambda \overline{a} \overline{b}) = \lambda (\overline{a} \overline{b})$$
, где λ - число

5).
$$(\overline{a}\overline{a}) = |\overline{a}||\overline{a}| = |\overline{a}|^2 > 0$$
, если $\overline{a} \neq 0$

6).
$$\overline{a}(\overline{b} + \overline{c}) = (\overline{a}\overline{b}) + (\overline{a}\overline{c})$$

Теорема 5.1 Скалярное произведение векторов, заданных координатами

Скалярное произведение двух векторов $\vec{a} = \{X_1, Y_1, Z_1\}$ и $\vec{b} = \{X_2, Y_2, Z_2\}$ равно сумме произведений одноименных координат этих векторов:

$$(\vec{a}, \vec{b}) = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2$$

Доказательство

Так как единичные векторы (орты) $\bar{i}, \bar{j}, \bar{k}$ осей **Ох, Оу, Оz** прямоугольной системы координат взаимно перпендикулярны, то получим :

$$(\bar{i}\bar{j}) = (\bar{j}\bar{i}) = 0$$
, $(\bar{j}\bar{k}) = (\bar{k}\bar{j}) = 0$, $(\bar{i}\bar{k}) = (\bar{k}\bar{i}) = 0$.

Далее, используя свойство скалярного произведения $(\overline{a}\overline{a}) = a^2$ имеем:

$$(\bar{i}\bar{i}) = (\bar{j}\bar{j}) = (\bar{k}\bar{k}) = 1$$
.

Пусть, $\bar{a}(X_{_1},Y_{_1},Z_{_1})$, $\bar{b}(X_{_2},Y_{_2},Z_{_2})$. Найдем произведение этих векторов:

$$(\overline{a}\overline{b}) = (X_1\overline{i} + Y_1\overline{j} + Z_1\overline{k}) (X_2\overline{i} + Y_2\overline{j} + Z_2\overline{k}) =$$

$$= X_1X_2 + Y_1Y_2 + Z_1Z_2$$

Следствие 1

Квадрат длины вектора равен сумме его координат.

$$a^2 = X^2 + Y^2 + Z^2$$

Следствие 2

Длина вектора равна квадратному корню из суммы квадратов его координат.

$$|\overline{a}| = \sqrt{X^2 + Y^2 + Z^2}$$

Следствие 3 Угол между векторами

$$\cos \varphi = \frac{(\overline{a}\overline{b})}{|\overline{a}||\overline{b}|}$$

Если векторы \overline{a} и \overline{b} заданы координатами $\overline{a}(X_1,Y_1,Z_1)$ и $\overline{b}(X_2,Y_2,Z_2)$, то формула запишется в виде:

$$\cos \varphi = \frac{X_{1}X_{2} + Y_{1}Y_{2} + Z_{1}Z_{2}}{\sqrt{X_{1} + Y_{1} + Z_{1}} \cdot \sqrt{X_{2} + Y_{2} + Z_{2}}}$$

Условия коллинеарности и перпендикулярности векторов

Как известно, необходимым и достаточным условием коллинеарности двух ненулевых векторов \overline{a} и \overline{b} является равенство: $\overline{a}=\lambda\cdot\overline{b}$

где скалярный множитель $\lambda > 0$, если векторы \overline{a} и \overline{b} имеют одинаковые направления и $\lambda < 0$ в противном случае.

Пусть: $\bar{a}(X_{1},Y_{1},Z_{1})$ и $\bar{b}(X_{2},Y_{2},Z_{2})$.

Следовательно: $\overline{a} = \overline{b}$; $X_1 = \lambda X_2$; $Y_1 = \lambda Y_2$; $Z_1 = \lambda Z_2$,

откуда
$$\frac{X_{_{1}}}{X_{_{2}}} = \frac{Y_{_{1}}}{Y_{_{2}}} = \frac{Z_{_{1}}}{Z_{_{2}}} = \lambda$$

Если ненулевые векторы \overline{a} и \overline{b} коллинеарны, то и их одноименные координаты пропорциональны.l

Необходимым и достаточным условием перпендикулярности векторов $\overline{a}(X_1,Y_1,Z_1)$ и $\overline{b}(X_2,Y_2,Z_2)$ является равенство: $(\overline{a}\overline{b})=0$,

или в координатной форме данное условие имеет вид:

$$X_1X_2 + Y_1Y_2 + Z_1Z_2 = 0$$
.

Лекция 6

Векторное произведение двух векторов

Определение 6.1

Векторным произведением вектора \overline{a} на вектор \overline{b} называется новый вектор \overline{c} , обозначаемый символом $\overline{c}=\overline{a}\cdot\overline{b}$ или $\overline{c}=\left[\overline{a}\overline{b}\right]$

и определяемый следующими тремя условиями:

1) Модуль вектора \overline{c} равен площади параллелограмма, построенного на векторах \overline{a} и \overline{b} (после совмещения их начал), т.е.

$$|\overline{c}| = |\overline{a}\overline{b}| = |\overline{a}||\overline{b}| \sin \varphi,$$
 (6.1)

где ϕ - угол между векторами \overline{a} и \overline{b} (рисунок 1).

Рисунок 1

- 2). Вектор \overline{c} перпендикулярен к плоскости этого параллелограмма (т.е. перпендикулярен обоим векторам \overline{a} и \overline{b}).
- 3). Вектор \overline{c} направлен в ту сторону от этой плоскости, что кратчайший поворот от вектора \overline{a} к вектору \overline{b} вокруг вектора \overline{c} (после смещения начал всех трех векторов) кажется происходящим против часовой стрелки, если смотреть из конца вектора \overline{c} . Векторы \overline{a} , \overline{b} , \overline{c} образуют правую тройку векторов.

Замечание 6.1

Правую тройку образуют, например, большой, указательный, и средний пальцы правой руки; при пользовании левой системой координат в

определении векторного произведения вместо правой берут левую тройку \overline{a} , \overline{b} , \overline{c} .

Замечание 6.2

Если в некоторой точке A приложена сила \overline{F} , то момент \overline{M} этой силы относительно определенной точки O есть вектор, который должен быть записан в виде $\overline{M}=\left[\overline{r}\cdot\overline{F}\right]$, где \overline{r} - вектор, идущий из точки O в точку A.

Замечание 6.3

Площадь треугольника, построенного на двух векторах \overline{a} и \overline{b} вычисляется по формуле:

$$S = \frac{1}{2} \left[\overline{a}, \overline{b} \right]$$

Рисунок 6.2

Свойства векторного произведения

- 1). $\left[\overline{a}\overline{a}\right] = 0$
- 2). $\left[\overline{a}\overline{b} \right] = -\left[\overline{b}\overline{a} \right]$, т.е. векторное произведение антикоммутативно.
- 3). $\left[\overline{c}(\overline{a}+\overline{b})\right]=\left[\overline{c}\overline{a}\right]+\left[\overline{c}\overline{b}\right]$, т.е. векторное произведение обладает распределительным свойством.
- 4). $\left[(\lambda \overline{a}) \overline{b} \right] = \lambda \left[\overline{a} \overline{b} \right]$

Координатная форма записи векторного произведения

Векторное произведение записывается в виде определителя 3-го порядка:

где a_x, a_y, a_z - координаты вектора \overline{a} в прямоугольной системе координат **Охух** (т.е. проекции вектора \overline{a} на координатные оси **Ох, Оу, Ох**); b_x, b_y, b_z - координаты вектора \overline{b} .

Координаты векторного произведения в прямоугольной системе координат можно найти разложив определитель (6.2) по элементам первой строки с учетом векторного произведения ортов $\bar{i}, \bar{j}, \bar{k}$:

$$\begin{bmatrix} \bar{i}\,\bar{i} \end{bmatrix} = \begin{bmatrix} \bar{j}\bar{j} \end{bmatrix} = \begin{bmatrix} \bar{k}\bar{k} \end{bmatrix} = 0, \begin{bmatrix} \bar{i}\bar{j} \end{bmatrix} = -\begin{bmatrix} \bar{j}\bar{i} \end{bmatrix} = \bar{k},$$
$$\begin{bmatrix} \bar{i}\,\bar{k} \end{bmatrix} = -\begin{bmatrix} \bar{k}\bar{i} \end{bmatrix} = -\bar{j}, \begin{bmatrix} \bar{j}\bar{k} \end{bmatrix} = -\begin{bmatrix} \bar{k}\bar{j} \end{bmatrix} = \bar{i}$$

$$\begin{bmatrix} \overline{a}\overline{b} \end{bmatrix} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ a_x a_y a_z \\ b_x b_y b_z \end{vmatrix} = (a_y b_z - a_z b_y)\overline{i} + (a_z b_x - a_x b_z)\overline{j} + (a_x b_y - a_y b_x)\overline{k}
\begin{bmatrix} \overline{a}\overline{b} \end{bmatrix} = (a_y b_z - a_z b_y; a_z b_x - a_x b_z; a_x b_y - a_y b_x)$$
(6.3)

Пример 6.1

Найти векторное произведение векторов $\mathbf{a} = \{3, 3, 2\}, \mathbf{b} = \{5, -2, 9\}.$

Решение:

$$\vec{c} = \begin{bmatrix} \vec{a}\vec{b} \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & 3 & 2 \\ 5 & -2 & 9 \end{vmatrix} = i \begin{vmatrix} 3 & 2 \\ -2 & 9 \end{vmatrix} - \vec{j} \begin{vmatrix} 3 & 2 \\ 5 & 9 \end{vmatrix} + \vec{k} \begin{vmatrix} 3 & 3 \\ 5 & -2 \end{vmatrix} =$$

$$= \vec{i} (27 + 4) - \vec{j} (27 - 10) + \vec{k} (-6 - 15) = 31\vec{i} - 17\vec{j} - 21\vec{k} = (31, -17, -21).$$

Ответ: $\mathbf{c} = \{31, -17, -21\}$

Пример 6.2

Даны вершины треугольника A(1,2,0), B(3,0,-3), C(5,2,6). Вычислить его площадь.

Решение:

Треугольник ABC можно рассматривать построенным на векторах $\overline{\mathbb{AB}}$ и $\overline{\mathbb{AC}}$

$$S_{\underline{A}} = \frac{1}{2} [\overline{AB}, \overline{AC}].$$

Найдем координаты векторов \overline{AB} и. \overline{AC}

$$\overline{AB} = \{3-1, 0-2, -3-0\} = \{2, -2, -3\};$$

$$\overline{AC} = \{5-1, 2-2, 6-0\} = \{4, 0, 6\}.$$

Вычислим векторное произведение этих векторов:

$$\begin{bmatrix} \overline{AB}, \overline{AC} \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -2 & -3 \\ 4 & 0 & 6 \end{vmatrix} = i \begin{vmatrix} -2 & -3 \\ 0 & 6 \end{vmatrix} - \vec{j} \begin{vmatrix} 2 & -3 \\ 4 & 6 \end{vmatrix} + \vec{k} \begin{vmatrix} 2 & -2 \\ 4 & 0 \end{vmatrix} =$$

$$=\vec{i}(-12-0) - \vec{j}(12+12) + \vec{k}(0+8) = -12\vec{i} - -24\vec{j} + 8\vec{k} = \{-12, -17, 8\}.$$

Находим длину вектора $\left[\overline{\mathtt{AB}},\overline{\mathtt{AC}}\right]$:

$$\|\overline{AB}, \overline{AC}\| = \sqrt{(-12)^2 + (-24)^2 + 8^2} = \sqrt{144 + 576 + 64} = \sqrt{784} = 28.$$

$$S_{\Delta} = \frac{1}{2} \cdot 28 = 14.$$

Ответ: $S_{\Delta} = 14 \text{ ед.}^3$.

Пример 6.3

Сила $\mathbf{F} = \{2, -4, 5\}$ приложена к точке A(4,-2,3). Найти момент этой силы относительно точки O(3,2,-1).

Решение:

По определению момент силы есть $\mathbf{M_0} = \mathbf{F} \times \mathbf{AO}$.

$$\mathbf{AO} = \{3-4, 2-(-2), -1-3\} = \{-1, 4, -4\}.$$

$$\mathbf{M_0} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -4 & 5 \\ -1 & 4 & -4 \end{vmatrix} = \vec{i} \begin{vmatrix} -4 & 5 \\ 4 & -4 \end{vmatrix} - \vec{j} \begin{vmatrix} 2 & 5 \\ -1 & -4 \end{vmatrix} + \vec{k} \begin{vmatrix} 2 & -4 \\ -1 & 4 \end{vmatrix} =$$

$$= \vec{i} (16 - 20) - \vec{j} (-8 + 5) + \vec{k} (8 - 4) = -4\vec{i} + 3\vec{j} + 4\vec{k} = \{-4, 3, 4\}.$$

Ответ. $M_0 = \{-4, 3, 4\}.$

Смешанное произведение векторов

Определение 6.2

Смешанным произведением трех векторов \overline{a} , \overline{b} и \overline{c} . называется произведение вида:

$$(\left[\bar{a}\bar{b}\right]\bar{c}), \tag{6.4}$$

где первых два вектора перемножаются векторно, а их произведение умножается скалярно на третий вектор.

Замечание 6.4

Смешанное произведение трех векторов - величина скалярная.

Замечание 6.5

Абсолютная величина смешанного произведения некомпланарных векторов \overline{a} , \overline{b} и \overline{c} равна объему \mathbf{V} параллелепипеда, построенного на этих векторах, а знак его зависит от ориентации этих векторов: если векторы \overline{a} , \overline{b} и \overline{c} образуют правую тройку, то их смешанное произведение будет положительно; для левой же тройки произведение - отрицательно.

Свойства смешанного произведения

- 1. Смешанное произведение не изменяется:
- а). Если перемножаемые вектора переставлять в круговом порядке:

$$(\left[\overline{a}\overline{b}\right]\overline{c}) = (\left[\overline{b}\overline{c}\right]\overline{a}) = (\left[\overline{c}\overline{a}\right]\overline{b})$$

б). Если поменять местами знаки векторного и скалярного умножения:

$$([\overline{a}\overline{b}]\overline{c}) = (\overline{a}[\overline{b}\overline{c}])$$

Это позволяет записывать смешанное произведение трех векторов в виде \bar{a} \bar{b} \bar{c} без знаков векторного и скалярного умножения.

2. Перестановка в смешанном произведении любых двух векторов изменяет лишь его знак:

$$\overline{a}\overline{c}\overline{b} = -\overline{a}\overline{b}\overline{c}$$
, $\overline{b}\overline{a}\overline{c} = -\overline{a}\overline{b}\overline{c}$, $\overline{c}\overline{b}\overline{a} = -\overline{a}\overline{b}\overline{c}$.

Действительно, используя равенства

$$(\left[\overline{a}\overline{b}\right]\overline{c}) = (\left[\overline{b}\overline{c}\right]\overline{a}) = (\left[\overline{c}\overline{a}\right]\overline{b}); (\left[\overline{a}\overline{b}\right]\overline{c}) = (\overline{a}\left[\overline{b}\overline{c}\right])$$

имеем:

$$\overline{a}\overline{c}\overline{b} = (\overline{a}[\overline{c}\overline{b}]) = -(\overline{a}[\overline{b}\overline{c}]) = -([\overline{b}\overline{c}]\overline{a}) = -\overline{a}\overline{b}\overline{c}$$

$$\overline{b}\overline{a}\overline{c} = (\overline{b}[\overline{a}\overline{c}]) = -(\overline{b}[\overline{c}\overline{a}]) = -([\overline{c}\overline{a}]\overline{b}) = -\overline{a}\overline{b}\overline{c}$$

$$\overline{c}\overline{b}\overline{a} = (\overline{c}[\overline{b}\overline{a}]) = -(\overline{c}[\overline{a}\overline{b}]) = -([\overline{a}\overline{b}]\overline{c}) = -\overline{a}\overline{b}\overline{c}$$

- 3. Смешанное произведение обращается в нуль, если:
 - а). Хотя бы один из перемножаемых векторов ест нуль вектор,
 - б). Два из перемножаемых векторов коллинеарны,
 - в). Три перемножаемых вектора компланарны.

Координатная форма записи смешанного произведения

Коротко смешанное произведение записывается в виде определителя третьего порядка:

$$\overline{a}\overline{b}\overline{c} = \begin{vmatrix} a_x a_y a_z \\ b_x b_y b_z \\ c_x c_y c_z \end{vmatrix}$$
(6.5)

Замечание 6.6

При помощи смешанного произведения можно вычислить объем четырехгранной пирамиды, заданной координатами ее вершин:

$$V = \frac{1}{6} \left| \overline{a} \, \overline{b} \, \overline{c} \right|$$

Замечание 6.7

Три вектора \overline{a} , \overline{b} , \overline{c} компланарны тогда и только тогда, когда их смешанное произведение равно 0.

$$egin{aligned} \overline{a}\overline{b}\,\overline{c} &= 0 & _{ ext{ИЛИ}} & egin{aligned} a_{x}a_{y}a_{z} \ b_{x}b_{y}b_{z} \ c_{x}c_{y}c_{z} \end{aligned} = 0 \end{aligned}$$

Пример 6.4

Доказать, что точки A(5; 7; 2), B(3; 1; -1), C(9; 4; -4), D(1; 5; 0) лежат в одной плоскости.

Решение: Найдем координаты векторов:

$$\overrightarrow{AB} = (-2,-6,1)$$

 $\overrightarrow{AC} = (4,-3,-2)$
 $\overrightarrow{AD} = (-4,-2,2)$

Найдем смешанное произведение полученных векторов:

$$\overrightarrow{AB} \cdot \overrightarrow{AC} \cdot \overrightarrow{AD} = \begin{vmatrix} -2 & -6 & 1 \\ 4 & -3 & -2 \\ -4 & -2 & 2 \end{vmatrix} = \begin{vmatrix} -2 & -6 & 1 \\ 0 & -15 & 0 \\ 0 & 10 & 0 \end{vmatrix} = \begin{vmatrix} 0 & -6 & 1 \\ 0 & -15 & 0 \\ 0 & 10 & 0 \end{vmatrix} = 0$$

Таким образом, полученные выше векторы компланарны, следовательно точки A, B, C и D лежат в одной плоскости.

Пример 6.5

Найти объем пирамиды и длину высоты, опущенной на грань BCD, если вершины имеют координаты A(0; 0; 1), B(2; 3; 5), C(6; 2; 3), D(3; 7; 2).

Решение: Найдем координаты векторов:

$$\overrightarrow{BA} = (-2, -3, -4)$$

 $\overrightarrow{BD} = (1, 4, -3)$
 $\overrightarrow{BC} = (4, -1, -2)$

Объем пирамиды:

$$V = \frac{1}{6} = \begin{vmatrix} -2 & -3 & -4 \\ 1 & 4 & -3 \\ 4 & -1 & -2 \end{vmatrix} = \frac{1}{6}(-2(-8-3)+3(-2+12)-4(-1-16)) =$$
$$= \frac{1}{6}(22+30+68) = 20(e\partial^3)$$

Для нахождения длины высоты пирамиды найдем сначала площадь основания BCD.

$$|BD \times BC| = \sqrt{11^2 + 10^2 + 17^2} = \sqrt{121 + 100 + 289} = \sqrt{510}$$

$$S_{\text{осн}} = \sqrt{510} / 2 (e \pi^2) \text{ Т.к. } V = \frac{S_{\text{осн}} \cdot h}{3}; h = \frac{3V}{S_{\text{осн}}} = \frac{120}{\sqrt{510}} = \frac{4\sqrt{510}}{17}.$$
 (ед)

Двойное векторное произведение трех векторов

Определение 6.3

Двойным векторным произведением трех векторов называется произведение вида:

$$\left[\left[\bar{a}\bar{b}\right]\bar{c}\right] \tag{6.6}$$

Так как оно часто используется в приложениях, покажем, что его вычисление можно свести к вычислению более простого выражения, т.е. справедливы следующие равенства:

$$\left[\left[\overline{a}\overline{b} \right] \overline{c} \right] = \left(\left(\overline{a}\overline{c} \right) \overline{b} \right) - \left(\left(\overline{b}\overline{c} \right) \overline{a} \right)$$

Прежде всего отметим, что двойное векторное произведение трех векторов $\left[\left[\bar{a}\bar{b}\right]\bar{c}\ \right]$ есть вектор, компланарный с векторами \overline{a} и \overline{b} .

Лекция 7

Общее уравнение прямой

На прямой известна точка M_0 (x_0, y_0) и вектор n = (A, B) перпендикулярный прямой.

Определение 7.1

Вектор n называется нормальным вектором прямой.

Рисунок 7.1

Отметим на прямой произвольную точку M(x,y). Данную точку называют говорят текущей точкой, или точкой с произвольными координатами. Тогда вектор $\overrightarrow{M_0M} = (x-x_0;y-y_0)$ будет \bot вектору \overrightarrow{n} , из условия \bot векторов следует:

$$(\vec{n}, \overline{M_0 M}) = 0. \tag{7.1}$$

Определение 7.2

Уравнение вида (7.1) называется векторным уравнением прямой на плоскости.

Посчитаем по формуле, представленной в пятом параграфе, скалярное произведение в формуле (7.1), получим:

$$A(x-x_0) + B(y-y_0) = 0 (7.2)$$

Раскроем скобки в (7.1), получим:

$$Ax-Ax_0 + By-By_0 = 0$$
 (7.3)

Обозначим константы одной буквой, получим:

$$Ax + By + C = 0 \tag{7.4}$$

Определение 7.3

Уравнение вида (7.4) называется общим уравнением прямой на плоскости.

Уравнение прямой с угловым коэффициентом

Запишем общее уравнение прямой:

$$A(x-x_0) + B(y-y_0)=0$$

Перепишем данное уравнение в виде:

$$y-y_0 = -\frac{A}{B} (x-x_0).$$

Уравнение можно переписать в виде:

$$y-y_0=k(x-x_0)$$
 (7.5)

Определение 7.4

Уравнение вида (7.5) называется уравнением прямой с угловым коэффициентом, проходящей через данную точку.

Раскроем скобки в уравнении (7.5), получим

$$y = kx + y_0 - kx_0$$
.

Данное уравнение можно переписать в виде:

$$y = kx + b \tag{7.6}$$

Определение 7.5

Уравнение вида (7.6) называется уравнением прямой с угловым коэффициентом.

Сопоставим вид уравнений (7.4) и (7.6), получим:

$$k=-\frac{A}{B}. \ b=-\frac{C}{B} \tag{7.7}$$

Рисунок 7.2

Определение 7.6

 $k = tg \ \alpha \ - y$ гловой коэффициент прямой равен тангенсу угла между прямой и положительным направлением оси ОХ.

Уравнение прямой в отрезках

Получим уравнение прямой в отрезках из общего уравнения прямой в форме (7.4). Для этого запишем данное уравнение в виде:

$$Ax + By = -C$$
.

Разделив полученное уравнение на -C, получим:

$$\frac{A}{-C}x + \frac{B}{-C}y = 1.$$

Представим уравнение в виде:

$$\frac{x}{\frac{-C}{A}} + \frac{y}{\frac{-C}{B}} = 1.$$

Обозначим по-другому константы и получим:

$$\frac{x}{a} + \frac{y}{b} = 1\tag{7.8}$$

Определение 7.6

Уравнение вида (7.8) называется уравнением прямой в отрезках.

Рисунок 7.3

Каноническое уравнение прямой

Известна точка $M_0(x_0; y_0)$ и вектор $\vec{L} = (m, n)$.

Рисунок 7.4

Определение 7.7

Вектор коллинеарный вектору, лежащему на прямой называется направляющим вектором данной прямой.

 \overrightarrow{L} - направляющий вектор прямой.

Возьмем точку M (x,y) на прямой, тогда вектор $\overline{M_{_0}M} \parallel \overrightarrow{L}$ из условия параллельности векторов при $\overrightarrow{L} = (m,n); \ u \ \overline{M_{_0}M} = (x-x_0;y-y_0)$ следует:

$$\frac{x - x_0}{m} = \frac{y - y_0}{n} \tag{7.9}$$

Определение 7.9

Уравнение вида (7.9) называется каноническим уравнением прямой на плоскости.

Уравнение прямой, проходящей через две точки

Выберем на прямой две фиксированные точки и текущую точку.

Рисунок 7.5

$$\overrightarrow{M_1} \overrightarrow{M}_2 = (x_2 - x_1; y_2 - y_1)$$

$$\overrightarrow{M_1M} = (x-x_1;y-y_1)$$

$$\overrightarrow{M_1 M_2} \uparrow \uparrow \overrightarrow{M_1 M} \Rightarrow \frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

$$(7.10)$$

Определение 7.10

Уравнение вида (7.10) называется уравнением прямой проходящей через две точки.

Параметрическое уравнение прямой

Введём в каноническом уравнении прямой (7.9) параметр t:

$$\frac{x - x_0}{m} = \frac{y - y_0}{n} = t$$

$$\begin{cases} \frac{x - x_0}{m} = t \\ \frac{y - y_0}{n} = t \end{cases}$$

$$\begin{cases} x - x_0 = mt \\ y - y_0 = nt \end{cases}$$

$$(7.11)$$

Определение 7.11

Уравнение вида (7.11) называется уравнением прямой в параметрической форме.

Пример 7.1

Даны вершины треугольника A(1;-2) B(3;4) C(5;2)

- 1)Составить уравнение стороны ВС;
- 2)Высоты из т. А
- 3) Медианы через т. В

Решение:

Воспользуемся уравнением прямой, проходящей через две точки (уравнение 7.10)

BC:
$$\frac{x-3}{5-3} = \frac{y-4}{2-4}$$
 $\Rightarrow \frac{x-3}{2} = \frac{y-4}{-2}$ получили каноническое уравнение.

Для пункта 3) используем формулу деления отрезка в данном отношении.

$$x_{M} = \frac{x_{A} + \lambda x_{C}}{1 + \lambda}; \quad y_{M} = \frac{y_{A} + \lambda y_{C}}{1 + \lambda}; \quad \text{T.K.} \quad \frac{AM}{MC} = 1 = \lambda$$

$$x_{\scriptscriptstyle M} = \frac{1+5}{2}; \quad y_{\scriptscriptstyle M} = \frac{-2+2}{2}; \$$
Тогда $M(3;0) \$ Пусть $B(x_1;y_1) \ M(x_0;y_0)$

Запишем уравнение прямой ВМ используя уравнение (7.10), получим

BM:
$$\frac{x-3}{3-3} = \frac{y-4}{4-0}$$
 \Rightarrow $\frac{x-3}{0} = \frac{y-4}{4}$ \Rightarrow $4(x-3) = 0$ или $x = 3$ - Найдем

уравнение высоты из т. А так как $\overrightarrow{AD} \perp \overrightarrow{BC}$ то \overrightarrow{BC} играет роль вектора нормали \overrightarrow{n} к прямой AD. Тогда $\overrightarrow{BC} = (2;-2) = \overrightarrow{n}_{AD}$ и AD: 2(x-1)-2(y+2)=0.

Взаимное расположение двух прямых

$$\begin{cases} L_1: A_1 x + B_1 y + C_2 = 0 & \overrightarrow{n_2} = (A_1; B_1) \\ L_2: A_2 x + B_2 y + C_2 = 0 & \overrightarrow{n_2} = (A_2; B_2) \end{cases}$$

Возможны четыре случая:

а) Если прямые L_1 и L_2 пересекаются в одной точке, то система имеет единственное решение, это возможно когда главный определитель системы

$$\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} \neq 0$$
 т.е. $\frac{A_1}{A_2} \neq \frac{B_1}{B_2}$ т.е. \vec{n}_1 и \vec{n}_2 - не коллинеарные

б) если прямые L_1 и L_2 параллельные то n_1 и n_2 коллинеарные

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} \tag{7.12}$$

условие $L_1 | | L_2$

- в) если прямые L_1 и L_2 сливаются $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$ то система в этом случае имеет множество решений.
- г) если прямые перпендикулярны

$$L_1 \perp L_2 \iff \overrightarrow{n_1} \perp \overrightarrow{n_2} \iff (\overrightarrow{n_1}, \overrightarrow{n_2}) = 0 \iff A_1 A_2 + B_1 B_2 = 0$$
 используя выражения для $k_1 = -\frac{A_1}{B_1}, \ k_2 = -\frac{A_2}{B_2}$ получим $k_1 k_2 = -1$, итак

$$A_1 A_2 + B_1 B_2 = 0$$
 и $k_1 k_2 = -1$ (7.13)

условие $L_1 \perp L_2$

Нахождение угла между прямыми

Угол между прямыми — это угол между нормалями \vec{n}_1 и \vec{n}_2 . Он вычисляется по формуле:

$$\cos(\vec{n}_1 \wedge \vec{n}_2) = \frac{\left(\vec{n}_1, \vec{n}_2\right)}{\left|\vec{n}_1\right| \left|\vec{n}_2\right|}$$
(7.14)

Найдём угол между прямыми заданными уравнениями с угловыми коэффициентами.

Рисунок 7.6

$$\alpha_{2} = \alpha_{1} + \varphi, \qquad \varphi = \alpha_{2} - \alpha_{1}, \qquad tg\varphi = tg(\alpha_{2} - \alpha_{1}) = \frac{tg\alpha_{2} - tg\alpha_{1}}{1 + tg\alpha_{2}tg\alpha_{1}}$$

$$tg\varphi = \frac{k_{2} - k_{1}}{1 + k_{2}k_{1}}$$

$$(7.15)$$

Нормальное уравнение прямой

Рассмотрим прямоугольную систему координат Oxy. Введем полярную систему, взяв О за полюс и Ox за полярную ось. Уравнение прямой можно записать в виде:

$$r\cos(\varphi-\alpha)-p=0$$
,

 $r\cos\varphi\cos\alpha + r\sin\varphi\sin\alpha - p = 0.$

$$\begin{cases} r\cos\varphi = x \\ r\sin\varphi = y \end{cases}$$

Подставим данную замену в уравнение, получим:

Рисунок 7.7

Определение 7.12

Уравнение (7.16) называется нормальным уравнением прямой.

Приведение общего уравнения прямой к нормальному виду

Умножим все члены уравнения (7.4) на некоторый множитель $\lambda \neq 0$, получим:

$$\lambda Ax + \lambda By + \lambda C = 0$$

Чтобы данное уравнение обратилось в уравнение вида (7.16), надо, чтобы

выполнялись равенства:
$$\begin{cases} \lambda A = \cos \alpha \\ \lambda B = \sin \alpha \\ \lambda C = -p \end{cases}$$

Из первых двух равенств найдём: $\lambda^2 A^2 + \lambda^2 B^2 = \cos^2 \alpha + \sin^2 \alpha$, $\lambda = \pm \frac{1}{\sqrt{A^2 + B^2}}$

Множитель p называется *нормирующим множителем*. Согласно третьему равенству: знак нормирующего множителя противоположен знаку свободного члена C общего уравнения прямой.

Пример 7.2

Привести уравнение - 3x + 4y + 15 = 0 к нормальному виду.

Решение:

Находим нормирующий множитель

$$\lambda = \frac{1}{-\sqrt{(-3)^2 + 4^2}} = -\frac{1}{5}.$$

Умножая данное уравнение на λ , получим искомое нормальное уравнение прямой:

$$\frac{3}{5}x - \frac{4}{5}y - 3 = 0.$$

Нахождение расстояния от точки до прямой на плоскости

Рисунок 7.8

Рассмотрим скалярное произведение векторов. $\overline{M_{_0}M_{_1}}$ и \overrightarrow{n} поскольку они параллельны тогда

 $(\overrightarrow{M_{_0}M_{_1}}, \overrightarrow{n}) = \left| \overrightarrow{M_{_0}M_{_1}} \right| \left| \overrightarrow{n} \right| \cos 0^{\circ}$, это мы записали уравнение прямой.

$$(\overrightarrow{M_0M_1}, \overrightarrow{n}) = |d| \cdot |\overrightarrow{n}|, \overrightarrow{M_0M_1} = (x_I - x_0; y_I - y_0);$$

$$d = \left| \frac{\overrightarrow{(M_0 M_1, n)}}{|\overrightarrow{n}|} \right| = \left| \frac{A(x_1 - x_0) + B(y_1 - y_0)}{|\overrightarrow{n}|} \right| = \left| \frac{Ax_1 + By_1 + C}{|\overrightarrow{n}|} \right|;$$
 но в числителе стоит

уравнение $M_1 M_0$; т. $M_0 \in M_1 M_0$

$$d = \left| \frac{Ax_0 + By_0 + C}{|\vec{n}|} \right| \tag{7.17}$$

Пример 7.3

Две стороны квадрата лежат на прямых L_1 :5x-12y-65=0 и L_2 :5x-12y+26=0. Вычислить его площадь.

Решение:

Прямые параллельны, следовательно: $L_1 \mid L_2 : \frac{5}{5} = \frac{-12}{-12} = 1$

Обозначим сторону квадрата за d, тогда $S=d^2$

Выберем на прямой L_1 любую точку, для этого одну координату зададим сами. Пусть y=0: тогда 5x=65; x=13; $M_0(13;0)$

Теперь найдём расстояние от т. M_0 до L_2 ; оно и будет равно стороне квадрата.

$$d = \left| \frac{Ax_0 + By_0 + C}{\sqrt{A^2 + B^2}} \right| = \left| \frac{5 \cdot 13 - 12 \cdot 0 + 26}{\sqrt{25 + 144}} \right| = \left| \frac{65 + 26}{\sqrt{169}} \right| = \left| \frac{91}{13} \right| = 7; \quad S=49$$

Лекция 8

Два способа задания плоскости в пространстве.

Пусть в некоторой системе координат задана точка $M_0(x_0;y_0;z_0)$ и вектор $\stackrel{\rightarrow}{N}(A,B,C)$.Составим уравнение плоскости проходящей через точку M_0

перпендикулярно $\stackrel{\rightarrow}{N}$.

Рисунок 8.1

Возьмем точку M(x;y;z). Если точка M принадлежит плоскости, то $\overrightarrow{M_0M} \perp \overrightarrow{N}$. Запишем вектор:

$$\overrightarrow{M_0M} = \overrightarrow{r} - \overrightarrow{r_0} = (x - x_0; y - y_0; z - z_0)$$

И запишем скалярное произведение:

$$(\overrightarrow{M_0M}, \overrightarrow{N}) = 0$$
 (8.1)

Определение 8.1

Уравнение 8.1 называется векторным уравнением плоскости.

Подставим координаты векторов, получим:

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$
(8.2)

Определение 8.2

Уравнение 8.2 называется общим уравнением плоскости, проходящей через точку $M_0(x_0; y_0; z_0)$

Раскроем скобки и введем обозначения, получим:

$$Ax + By + Cz + D = 0$$

(8.3)

Определение 8.3

Уравнение 8.3 называется общим уравнением плоскости.

Уравнение плоскости – линейное относительно x,y,z. A, B, C (коэффициенты при x,y,z) – есть координаты вектора нормали.

Перенесём свободный коэффициент в другую сторону, поделим на него правую и левую части уравнения, получим:

$$\frac{x}{-\frac{D}{A}} + \frac{y}{-\frac{D}{B}} + \frac{z}{-\frac{D}{C}} = 1$$

Перепишем данное уравнение следующим образом:

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
 (8.4)

Определение 8.4

Уравнение (8.4) называется уравнением плоскости в отрезках.

Второй способ задания плоскости

Пусть в некоторой системе координат, задана точка $M_0(x_0;y_0;z_0)$ и два коллинеарных плоскости вектора $S_1(m_1,n_1,p_1)$ и $S_2(m_2,n_2,p_2)$. Составить уравнение плоскости, проходящий через точку M_0 параллельно заданным векторам (по отношению к плоскости они будут направляющими).

Условие компланарности векторов: $(\vec{r} - \vec{r_0}, \vec{S_1} \vec{S_2}) = 0$ или $(\overline{M_0 M}, \vec{S_1} \vec{S_2}) = 0$.

Перепишем данное смешанное произведение в координатной форме:

$$\begin{bmatrix} x - x_0 & y - y_0 & z - z_0 \\ m_1 & n_1 & p_1 \\ m_2 & n_2 & p_2 \end{bmatrix} = 0$$
 (8.5)

Пример 8.1

Составить уравнение плоскости проходящей через точку $M_0(1;-2;3)$ параллельно плоскости p: 3x+2z-5=0,где $\overrightarrow{Np}=(3;0;2)$ - вектор нормали.

Решение:

Общее уравнение плоскости 3(x-1)+0(y+2)+2(z-3)=0 или 3x+2z-9=0.

Пример 8.2

Составить уравнение плоскости проходящей через три точки $M_1(1;0;-1)$, $M_2(2;1;1)$, $M_3(3;1;0)$

Решение:

Т.к. $\overline{M_1M_2}(1;1;2)$ и $\overline{M_1M_3}(2;1;1)$ лежат на плоскости и не коллинеарные, то их можно взять в качестве направляющих векторов. Тогда смешанное произведение $(\overline{M_1M_2},\overline{M_1M_3},\overline{M_1M})=0$ так как векторы коллинеарные. В

координатной форме:
$$\begin{bmatrix} x-x_1 & y-y_1 & z-z_1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} = 0; \Rightarrow -x+3y-z=0, \quad \text{или}$$

$$3y - x - z = 0.$$

Исследование общего уравнения плоскости

Запишем общее уравнение плоскости:

$$Ax + By + Cz + D = 0$$
, $\vec{n} = (A; B; C)$.

Выясним, как расположена плоскость в зависимости коэффициентов уравнения.

1. Пусть D=0, тогда Ax+By+Cz=0.

Плоскость проходит через начало координат.

Рисунок 8.2

- 2. Пусть A=0, тогда By+Cz+D=0. Плоскость параллельна оси OX.
- 3. Пусть B=0, тогда Ax+Cz+D=0 параллельна оси OY.
- 4. Пусть C=0, Ax+By+D=0 параллельна оси OZ.

Рисунок 8.3

- 5. Пусть A=0, и D=0, тогда By+Cz=0 Плоскость проходит через ось OX
- 6. Пусть B=0, и D=0, тогда Ax+Cz=0 проходит через ось OY.
- 7. Пусть C=0, и D=0, тогда Ax+By=0 проходит через ось OZ.

Рисунок 8.4

- 8. Пусть A=0, и B=0, тогда Cz+D=0, или Z=-D/C. Плоскость \bot оси OZ.
- 9. Пусть A=0, и C=0, тогда By+D=0, плоскость \bot оси OY.
- 10. Пусть B=0, и C=0, тогда Ax+D=0, плоскость \bot оси OX.

Рисунок 8.5

- 11.X=0 уравнение плоскости *OYZ*,
- 12.Y=0 уравнение плоскости OXZ,
- 13.Z=0 уравнение плоскости *OXY*.

Взаимное расположение плоскостей в пространстве

Пусть заданы две плоскости

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 & \overrightarrow{n_1} = (A_1; B_1; C_1) \\ A_2 x + B_2 y + C_2 z + D_2 = 0 & \overrightarrow{n_2} = (A_2; B_2; C_2) \end{cases}$$

а) Если $\overrightarrow{n_1}$ и $\overrightarrow{n_2}$ не коллинеарные, то плоскости пересекаются по прямой, причем угол между плоскостями:

$$\cos(\overrightarrow{n_1}, \overrightarrow{n_2}) = \frac{(\overrightarrow{n_1}, \overrightarrow{n_2})}{|\overrightarrow{n_1}| |\overrightarrow{n_2}|}$$

в частном случае плоскости \bot если

$$(\overrightarrow{n_1}, \overrightarrow{n_2}) = 0 \Longrightarrow A_1 A_2 + B_1 B_2 + C_1 C_2 = 0.$$

б) Если $\overrightarrow{n_1}$ и $\overrightarrow{n_2}$ коллинеарные, то плоскости параллельные, т.е.

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}.$$

Нормальное уравнение плоскости

Пусть дана плоскость, проведем через начало координат прямую, перпендикулярно к плоскости — эта прямая нормаль, точка P — точка в которой прямая пересекает плоскости, на нормали введем положительное направление от точки O к точке P α , β , γ - углы, которые составляют направленная нормаль с осями координат, p - длина отрезка OP.

$$\cos \alpha \cdot x + \cos \beta \cdot y + \cos \gamma \cdot z - p = 0, \tag{8.6}$$

Определение 8.5

Уравнение (8.6) называется нормальным уравнением плоскости.

Справедливы формулы:

$$\cos \alpha = \pm \frac{A}{\sqrt{A^2 + B^2 + C^2}}, \quad \cos \beta = \pm \frac{B}{\sqrt{A^2 + B^2 + C^2}},$$

$$\cos \gamma = \pm \frac{C}{\sqrt{A^2 + B^2 + C^2}}, \quad p = \mp \frac{D}{\sqrt{A^2 + B^2 + C^2}}.$$

Знак "плюс" или знак "минус" выбирается так, чтобы p > 0. Углы α , β , γ - это углы между вектором нормали **n** и осями координат O_x , O_y , O_z соответственно.

Умножим общее уравнение на множитель μ

$$\mu Ax + \mu By + \mu Cz + \mu D = 0$$

$$\mu A = \cos \alpha , \ \mu B = \cos \beta , \ \mu C = \cos \gamma , \ \mu D = -p$$

Возведем первые три уравнения в квадрат и сложим

Из уравнения $\mu D = -p$, следует, что знак нормирующего множителя противоположен знаку свободного члена нормируемого уравнения.

Для приведения общего уравнения плоскости к нормальному виду обе части его умножают на нормирующий множитель, знак выбирают противоположный знаку свободного члена в общем уравнении плоскости.

Если D = 0 знак выбирается произвольно.

Расстояние от точки до плоскости Определение 8.6

Omклонением точки M от данной плоскости называется число +d, если M лежит по ту сторону от плоскости, куда идет положительное направление нормали, и -d, если M лежит с другой стороны от данной плоскости.

Обозначается: $\delta = \pm d$

Чтобы найти отклонение какой-либо точки M^* от некоторой прямой, нужно в левую часть нормального уравнения этой прямой вместо текущих координат подставить координаты точки M^* .

$$\delta = x^* \cos \alpha + y^* \cos \beta + z^* \cos \gamma - p$$

Расстояние d от точки (x_0, y_0, z_0) до плоскости Ax + By + Cz + D = 0 определяется по формуле

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C_2}}$$

Пример 8.3

Дана плоскость 3x - 4y + 1z + 14 = 0 и точка M(4,3,1). Найти отклонение точки от плоскости.

$$\mu = -\frac{1}{13}$$
, $\delta = -\frac{1}{13}(3 \cdot 4 - 4 \cdot 3 + 12 \cdot 1 + 14) = -2$

точка удалена от плоскости на расстояние 2.

Расстояние от точки до плоскости.

Вычислительная формула получается аналогично как при нахождении расстояния от точки до прямой на плоскости. Пусть задана точка $M_1(x_1,y_1,z_1)$, и плоскость Ax+By+Cz+D=0 тогда расстояние от точки до плоскости есть:

$$d = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

Лекция 9

Общее уравнение прямой в пространстве

Прямая в пространстве задается как линия пересечения двух плоскостей.

Рисунок 9.1

Здесь $\overrightarrow{n_1} = (A_1; B_1; C_1)$ соответственно нормальные векторы первой и второй $\overrightarrow{n_2} = (A_2; B_2; C_2)$

плоскости, не коллинеарные между собой; L - прямая, по которой пересекаются плоскости.

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$

(9.1)

Определение 9.1

Уравнение вида (9.1) называется общим уравнением прямой в пространстве.

Каноническое уравнение прямой в пространстве

Пусть в некоторой системе координат задан вектор $\vec{S} = \{m, n, p\}$ и точка $M_o(x_o; y_o; z_o)$.

Рисунок 9.2

Получим уравнение прямой, проходящей через точку M_0 параллельно вектору $\vec{S} = \{m,n,p\}$. Вектор $\vec{S} = \{m,n,p\}$ - направляющий вектор прямой.

$$\frac{x - x_o}{m} = \frac{y - y_o}{n} = \frac{z - z_o}{p}$$
 (9.2)

Определение 9.2

Уравнение вида (9.2) называется *каноническом уравнением прямой в пространстве*.

Параметрическое уравнение прямой

Введем параметр t:

$$\frac{x-x_o}{m} = \frac{y-y_o}{n} = \frac{z-z_o}{p} = t,$$

получим:

$$\begin{cases} x = mt + x_o \\ y = nt + y_o \\ z = pt + z_o \end{cases}$$
(9.3)

Определение 9.3

Уравнение вида (9.3) называется *параметрическим уравнением прямой линии* в пространстве.

Уравнение прямой проходящей через две точки

Так как векторы $\overrightarrow{M_{\scriptscriptstyle 1}M}$ $||\overrightarrow{M_{\scriptscriptstyle 1}M_{\scriptscriptstyle 2}}|$ - коллинеарны, то можно записать:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$
(9.4)

Определение 9.4

Уравнение вида (9.4) называется *уравнением прямой, проходящей через две точки*.

Переход от канонического уравнения к общему

Пусть задана прямая каноническим уравнением.

$$\frac{x - x_o}{m} = \frac{y - y_o}{n} = \frac{z - z_o}{p}$$

Перейдем от этих уравнений к системе.

$$\begin{cases} \frac{x - x_o}{m} = \frac{y - y_o}{n} \\ \frac{x - x_o}{m} = \frac{z - z_o}{p} \end{cases}$$

Здесь каждое уравнение определяет плоскость в пространстве, т.е. мы получили общее уравнение прямой линии в пространстве.

Переход от общего уравнения к каноническому

Пусть прямая линия задана общим уравнением.

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$

$$\overrightarrow{n_1} = (A_1; B_1; C_1)$$
 $\overrightarrow{n_2} = (A_2; B_2; C_2)$ - нормальные векторы

Для того, чтобы получить каноническое уравнение надо знать точку $M_0(x_0,y_0,z_0)$ и направляющий вектор $\vec{S}=(\vec{m},\vec{n},\vec{p})$. Точку M_0 можно найти из решения системы задав одну из координат. Вектор $\vec{S}\perp\vec{n_1}$ и $\vec{S}\perp\vec{n_2}$, но таким

свойством обладает вектор равный векторному произведению векторов $\overrightarrow{n_1} \times \overrightarrow{n_2}$ Следовательно:

$$\vec{S} = \begin{bmatrix} \overrightarrow{n_1}, \overrightarrow{n_2} \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix}.$$

Пример 9.1

Найти каноническое уравнение, если прямая задана в виде:

$$\begin{cases} 2x - y + 3z - 1 = 0 \\ 5x + 4y - z - 7 = 0 \end{cases}$$

Решение:

Для нахождения произвольной точки прямой, примем ее координату x = 0, а затем подставим это значение в заданную систему уравнений.

$$\begin{cases} y = 3z - 1 \\ 4y - z - 7 = 0 \end{cases} \begin{cases} y = 3z - 1 \\ 12z - 4 - z - 7 = 0 \end{cases} \begin{cases} y = 3z - 1 \\ z = 1 \end{cases} \begin{cases} y = 2 \\ z = 1 \end{cases}, \text{ r.e. A}(0, 2, 1).$$

Находим компоненты направляющего вектора прямой.

$$m = \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix} = \begin{vmatrix} -1 & 3 \\ 4 & -1 \end{vmatrix} = -11; \quad n = -\begin{vmatrix} A_1 & C_1 \\ A_2 & C_2 \end{vmatrix} = -\begin{vmatrix} 2 & 3 \\ 5 & -1 \end{vmatrix} = 17;$$

$$p = \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} = \begin{vmatrix} 2 & -1 \\ 5 & 4 \end{vmatrix} = 13.$$

Тогда канонические уравнения прямой:

$$-\frac{x}{11} = \frac{y-2}{17} = \frac{z-1}{13}.$$

Пример 9.2

Привести к каноническому виду уравнение прямой, заданное в виде:

$$\begin{cases} 2x + 3y - 16z - 7 = 0 \\ 3x + y - 17z = 0 \end{cases}$$

Решение:

Для нахождения произвольной точки прямой, являющейся линией пересечения указанных выше плоскостей, примем z = 0. Тогда:

$$\begin{cases} 2x+3y-16z-7=0\\ 3x+y-17z=0 \end{cases}; \quad y=-3x;$$
$$2x-9x-7=0;$$
$$x=-1; y=3;$$

Получаем: А(-1; 3; 0).

Направляющий вектор прямой: $\vec{S} = \vec{n_1} \times \vec{n_2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 3 & -16 \\ 3 & 1 & -17 \end{vmatrix} = -35\vec{i} - 14\vec{j} - 7\vec{k}$.

Итого:
$$\frac{x+1}{-35} = \frac{y-3}{-14} = \frac{z}{-7};$$
 $\frac{x+1}{5} = \frac{y-3}{2} = \frac{z}{1};$

Основные задачи на прямую и плоскость в пространстве

Взаимное расположение прямых в пространстве

Пусть заданы прямые:

$$L_{\!_1}: \frac{x-x_{\!_1}}{m_{\!_1}} = \frac{y-y_{\!_1}}{n_{\!_1}} = \frac{z-z_{\!_1}}{p_{\!_1}},$$
 проходящая через точку $M_{\!_1}(x_{\!_1},y_{\!_1},\!z_{\!_1})$ с

направляющим вектором $\overrightarrow{S_{_{1}}} = (m_{_{\! 1}}, n_{_{\! 1}}, p_{_{\! 1}})$ и

$$L_2$$
: $\frac{x-x_2}{m_2} = \frac{y-y_2}{n_2} = \frac{z-z_2}{p_2}$, проходящая через точку $M_2(x_2,y_2,z_2)$

$$M_1(x_1, y_1, z_1)$$
 с направляющим вектором $\overrightarrow{S_2} = (m_2, n_2, p_2)$.

Возможны следующие случаи:

- 1) $L_{\!\scriptscriptstyle 1}$ параллельна $L_{\!\scriptscriptstyle 2}$, если $\overrightarrow{S_{\scriptscriptstyle 1}} \Big\| \overrightarrow{S_{\scriptscriptstyle 2}}$.
- 2) прямые пересекаются в одной плоскости. Прямые лежат в одной плоскости если $(\overrightarrow{M_1M_2}, \overrightarrow{S_1}, \overrightarrow{S_2}) = 0$. Это условие компланарности трех векторов. Тогда угол между ними $\cos \gamma = \frac{(\overrightarrow{S_1}, \overrightarrow{S_2})}{|\overrightarrow{S_1}||\overrightarrow{S_2}|}$;
- б) прямые являются скрещивающимися, тогда $(\overline{M_1M_2}, \overline{S_1}, \overline{S_2}) \neq 0$. Скрещивающиеся прямые лежат в разных плоскостях.

Рисунок 9.4

Нахождение расстояния от точки до прямой в пространстве

Рисунок 9.5

Расстояние от точки до прямой можно найти до следующей плоскости:

$$d = \frac{S_{napann}}{|\overrightarrow{S}|}; = \frac{\left| \left[\overrightarrow{M}_{0} \overrightarrow{M}_{1}, \overrightarrow{S} \right] \right|}{\left| \overrightarrow{S} \right|}$$

Нахождение угла между прямой и плоскостью

Это угол γ . Найти его можно последующей формуле:

$$\cos \alpha = \cos(\vec{S}, \vec{n}) = \cos(90^{\circ} - \gamma) = \sin \gamma = \frac{(\vec{S}, \vec{n})}{|\vec{S}||\vec{n}|}$$

Рисунок 9.6

Условия параллельности и перпендикулярности прямой и плоскости в пространстве.

Пусть заданы прямая: $\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}$ с направляющим вектором $\vec{S}=\{m,n,p\}$ и плоскость Ax+By+Cz+D=0 с нормальным вектором $\vec{N}=\{A,B,C,\}$.

Для того, чтобы прямая и плоскость были параллельны, необходимо и достаточно, чтобы вектор нормали к плоскости и направляющий вектор прямой были перпендикулярны. Для этого необходимо, чтобы их скалярное произведение было равно нулю.

$$\vec{N} \perp \vec{S}$$
, $\vec{N} \cdot \vec{S} = 0$, $\sin \varphi = 0$, $Am + Bn + Cp = 0$.

Для того, чтобы прямая и плоскость были перпендикулярны, необходимо и достаточно, чтобы вектор нормали к плоскости и направляющий вектор прямой были коллинеарны. Это условие выполняется, если векторное произведение этих векторов было равно нулю.

$$\vec{N} \times \vec{S} = 0;$$
 $\frac{A}{m} = \frac{B}{n} = \frac{C}{p}$

Пример 9.3

Выяснить как расположены в пространстве относительно друг друга прямые.

Решение:

$$L_{1}: \begin{cases} x+y-2z+3=0 & \overrightarrow{n_{1}} = (1;1;-2) \\ 2y-z+1=0 & \overrightarrow{n_{2}} = (0;2;-1) \end{cases}$$

$$u \quad L_{2}: \frac{x+2}{3} = y = \frac{z-1}{2} \qquad \overrightarrow{S}_{L_{2}} = (3;1;2)$$

$$\overrightarrow{S}_{L_{1}} = \begin{bmatrix} \overrightarrow{n_{1}}, \overrightarrow{n_{2}} \end{bmatrix} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & -2 \\ 0 & 2 & -1 \end{vmatrix} = \overrightarrow{i}(-1+4) - \overrightarrow{j}(-1) + \overrightarrow{k}(2) = 3\overrightarrow{i} + 1\overrightarrow{j} + 2\overrightarrow{k}$$

так как $\overrightarrow{S_{_{L_{\!_{1}}}}} \parallel \overrightarrow{S_{_{L_{\!_{2}}}}}$, то прямые линии $\ L_{\!_{1}}$ и $\ L_{\!_{2}}$ параллельны.

Лекция 10

Эллипс

Определение 10.1

Эллипсом называется геометрическое место точек плоскости сумма расстояний которых до двух точек называемых фокусами есть величина постоянная, равная 2а.

Рисунок 10.1

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$
- каноническое уравнение эллипса.

Получим его:

 $\left| \overrightarrow{F_1 M} \right| + \left| \overrightarrow{F_1 M} \right| = 2a$

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a$$

$$(\sqrt{(x+c)^2 + y^2})^2 = (2a - \sqrt{(x-c)^2 + y^2})^2$$

$$(x+c)^2 + y^2 = 4a^2 - 4a\sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2$$

$$4xc - 4a^2 = -4a\sqrt{(x-c)^2 + y^2}$$

$$(xc - a^{2})^{2} = a^{2}((x - c)^{2} + y^{2})$$
$$x^{2}c^{2} - 2xca^{2} + a^{4} = a^{2}x^{2} - 2xca^{2} + a^{2}c^{2} + y^{2}a^{2}$$

$$x^{2}(a^{2}-c^{2}) + y^{2}a^{2} + a^{2}(c^{2}-a^{2}) = 0 a^{2}-c^{2} = b^{2}$$

$$x^{2}b^{2} + y^{2}a^{2} - a^{2}b^{2} = 0$$

 $x^{2}b^{2} + y^{2}a^{2} = a^{2}b^{2}$ поделим на правую часть, получим

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \tag{10.1}$$

Определение 10.2

Уравнение вида (10.2) называется каноническим видом эллипс

Свойства эллипса

1. Эллипс симметричен относительно осей координат и начала координат т.к. уравнение эллипса содержит переменные х и у в квадратах.

2.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow \frac{x^2}{a^2} \le 1, \frac{y^2}{b^2} \le 1$$

$$x^2 \le a^2, y^2 \le b^2 \Longrightarrow |x| \le a; |x| \le b.$$

Т.е. эллипс заключен внутри квадрата $x = \pm a$ $y = \pm b$.

- 3. Точки пересечения с осями координат называются вершинами эллипса (a;0); (-a;0); (b;0); (-b;0).
- 4. Форма эллипса, его мера сжатия характеризуются эксцентриситетом $\varepsilon = \frac{c}{a} < 1 \, .$

Замечание: Если $\varepsilon = 1$ то будем иметь окружность.

5. Расстояние $|\overrightarrow{F_1M}| = r_1 u |\overrightarrow{F_2M}| = r_2$; r_1 и r_2 называется фокальными радиус векторами $r_1 + r_2 = 2a$, $r_1 = a - \varepsilon x$, $r_2 = a + \varepsilon x$.

Гипербола

Определение 10.3

Гиперболой называется геометрическое место точек разность расстояний, от которых до двух точек называемых фокусами, есть величина постоянная.

$$\left| \overrightarrow{F_1 M} \right| - \left| \overrightarrow{F_1 M} \right| = 2a$$

Рисунок 10.2

$$\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = 2a.$$

Полагая $b^2 = c^2 - a^2$, получим уравнение.

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \tag{10.2}$$

Определение 10.4

Уравнение (10.2) называется каноническим уравнением гиперболы

Свойства гиперболы

- 1. Гипербола симметрична относительно начала координат и осей координат (т.к. х и у в квадрате).
- 2. $\frac{x^2}{a^2} \ge 1 \Rightarrow |x| \ge a$; точки гиперболы левее прямой x=-а и правее прямой x=a.

- 3. Точки пересечения с осями координат x=0; $\frac{y^2}{a^2} \neq -1$ (ось ОУ не пересекает). При Y=0, получаем $x = \pm a$ то есть точки (-a;0) и (a;0).
- 4. Найдем точку пересечения гиперболы $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ с прямыми y = kx. Для этого решим систему.

$$\begin{cases} y = kx \\ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \end{cases}, \quad \text{получим,} \quad \frac{x^2}{a^2} - \frac{k^2 x^2}{b^2} = 1 \quad \text{преобразуем,} \quad \text{получим:}$$

$$x^2(b^2-k^2a^2)=a^2b^2$$
 или $x=\mp \frac{ab}{\sqrt{b^2-k^2a^2}}$.

Если $b^2 - k^2 a^2 > 0$ то есть $k^2 < \frac{b^2}{a^2}$ то гипербола будет пересекаться с прямыми линиями y = kx .

Определение 10.5

Прямые $y = \pm \frac{b}{a} x$ называются асимтотами гиперболы.

Из условия $k^2 < \frac{b^2}{a^2}$ следует, что гиперболы со своими асимтотами не пересекаются.

5. Эксцентриситет $\varepsilon = \frac{c}{a} > 1$ т.к. с>а, фокальные радиус векторы $r_1 = \varepsilon x$ -а; $r_2 = \varepsilon x$ +а, для правой ветки и $r_2 = \varepsilon x$ +а; $r_1 = -\varepsilon x$ -а, для левой ветки.

Замечание 10.1

 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ - каноническое уравнение гиперболы с действительной осью ОХ и мнимой осью ОҮ. Центр в точке C(0;0), полуоси а и b.

Парабола

Определение 10.6

Параболой называется геометрическое место точек плоскости равноудаленных от некоторой фиксированной точки называемой фокусом и некоторой прямой называемой директрисой.

Рисунок 10.3

Проведем ось ОХ через фокус перпендикулярно директрисе, а начало координат поместим в середину отрезка между фокусами и директрисой. Уравнение директрисы x = -p/2.

Согласно определению $|\overrightarrow{FM}| = |\overrightarrow{NM}|$

$$N(-p/2; y)$$
 ; $\overrightarrow{FM} = (x + p/2; y)$

 $\overrightarrow{NM} = (x + p/2; 0)$, получим:

$$\sqrt{(x+p/2)^2} = \sqrt{(x-p/2)^2 + y^2}$$
;

Возводя обе части в квадрат, и сводя подобные, получим

$$y^2 = 2px$$
 (10.3)

Определение 107

Уравнение (10.3) называется уравнением параболы.

Пример 10.1

Написать уравнение геометрического места точек M(x,y) расстояние от которых до точки F(4;0) равно расстоянию до прямой x=10.

Решение:

построим эту параболу

 $|\overrightarrow{FM}|=d$; или $\sqrt{(x-4)^2+y^2}=|x-10|$ возводя в квадрат, получим: $(x-4)^2+y^2=(x-10)^2$ или сводя подобные, получим $x^2-8x+16+y^2=x^2-20x+100$ или $-8x=16+y^2=-20x+100$ или $y^2=-12x+116$ это уравнение параболы $x=-\frac{1}{12}y^2+\frac{116}{12}$. Найдем точки пересечения с осями координат: при x=0 $y=\pm\sqrt{116}$; при y=0 $x=\frac{116}{12}=\frac{29}{3}$,

Рисунок 10.4

Пример 10.2

Определить тип кривой $3x^2 - 6x + 2y^2 + 4y - 12 = 0$.

Решение:

Запишем общее уравнение кривой второго порядка $Ax^2 + By^2 + Cxy + Dx + Ey + F = 0$

здесь C=0; A \neq B, следовательно, будет эллипс или гипербола. Выделим полный квадрат: $(a + b)^2 = a^2 + 2ab + b^2$.

$$3(x^2-2x)+2(y^2+2y)-12=0$$

$$3(x^2-2x 1+1^2-1^2)+2(y^2+2y 1+1^2-1^2)-12=0,$$

Рисунок 10.4

$$3(x-1)^2+2(y+1)^2-1-1-12=0$$
,

$$3(x-1)^2 + 2(y+1)^2 = 14$$

$$\frac{3(x-1)^2}{14} + \frac{2(y+1)^2}{14} = 1$$

$$\frac{(x-1)^2}{\frac{14}{3}} + \frac{(y+1)^2}{\frac{14}{2}} = 1$$
 или
$$\frac{(x-1)^2}{\frac{14}{3}} + \frac{(y+1)^2}{7} = 1$$
 эллипс с центром в точке C(1;-

1) и полуосями
$$a = \sqrt{\frac{14}{3}}$$
 и $b = \sqrt{7}$.

Канонические уравнения поверхностей второго порядка

1.Сфера.

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{a^2} = 1$$

Рисунок 10.5

2.Эллипсоид.

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{c^2} = 1$$

Рисунок 10.6

Сечение плоскостью

Z=0; эллипс
$$\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1$$

Z=h. эллипс
$$\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{h^2}{c^2} = 1$$
 или $\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1 - \frac{h^2}{c_2}$

3.Однополостный гиперболоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Рисунок 10.7

при z=0
$$\frac{x^2}{a^2} + \frac{y^2}{b} = 1$$
- эллипс.

при z=h - эллипс.

при y=0;
$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1$$
 - гипербола. ось OZ – мнимая.

при x=0
$$\frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
 - гипербола.

4. Двуполостный гиперболоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1.$$

Рисунок 10.8

При
$$z = 0$$
; $\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$ - мнимый эллипс

При
$$z = c$$
; $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$ – точки $(0,0,c)$ и $(0,0,-c)$.

При
$$z \ge \pm h$$
; $|h| > c$; $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{h^2}{c^2} - 1$ — эллипс.

При y=0
$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = -1 \Rightarrow \frac{z^2}{c^2} - \frac{x^2}{a^2} = 1$$
 – гипербола.

При x=0,
$$\frac{z^2}{c^2} - \frac{y^2}{b^2} = 1$$
 – гипербола.

5.Конус

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

Рисунок 10.9

При Z=0;
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$
; точка (0;0)

При z=
$$\pm c \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, эллипс.

При y=0,
$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = 0$$
, пара прямых $x = \pm \frac{a}{c}z$.

При x=0,
$$\frac{y^2}{a^2} - \frac{z^2}{c^2} = 0$$
, пара прямы $y = \pm \frac{a}{c}z$

6.Эллптический параболоид

Рисунок 10.10

сечения y=0,
$$z = \frac{x^2}{2p}$$
 - парабола

$$x=0$$
, $x=0$; $z=\frac{y^2}{2p}$ – парабола

$$z = 0;$$
 $\frac{x^2}{2p} + \frac{y^2}{2p} = 0$, точка.

$$z > 0$$
; $z = c$; $\frac{x^2}{2p} + \frac{y^2}{2q} = c -$ ЭЛЛИПС.

7. Гиперболический параболоид

Рисунок 10.11

y=0,
$$z = \frac{x^2}{a^2} -$$
парабола вверх.

X=0,
$$z = \frac{-y^2}{a^2}$$
 — парабола вниз.

$$z = 0;$$
 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ прямые $x = \pm \frac{a}{b}y$.

z=c,
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = c$$
 гипербола.

8. Цилиндрические поверхности.

Гиперболический цилиндр. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Отсутствует в уравнении переменная z, поэтому, образующая вдоль OZ.

Рисунок 10.12

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 - гипербола в плоскости X0У.

Параболический цилиндр. $z = \frac{x^2}{2p}$ - образующая вдоль ОҮ (отсутствует переменная у в уравнении)

$$z = \frac{x^2}{2p}$$
 - парабола в плоскости Z0X

Рисунок 10.13

Лекция 11

Числовые последовательности

Определение 11.1

Если каждому числу n из натуральных чисел 1,2,3,...,n поставить в соответствие вещественное число X_n , то полученное множество вещественных чисел $X_1, X_2, ..., X_n$ называют числовой последовательностью.

Обозначение: $\{x_n\}$.

Арифметические действия над последовательностями

- 1. Произведение на число: $m \cdot \{x_n\} = \{mx_1, mx_2, ..., mx_n\} = \{mx_n\}$
- 2. Сумма двух последовательностей:

$$\{x_n\} + \{y_n\} = \{x_1 + y_1, x_2 + y_2, \dots, x_n + y_n\} = \{x_n + y_n\}$$

3. Произведение двух последовательностей:

$$\{x_n\} \cdot \{y_n\} = \{x_1y_1, x_2y_2, ..., x_ny_n\} = \{x_ny_n\}$$

4. Частное двух последовательностей: $\frac{\{x_n\}}{\{y_n\}} = \left\{\frac{x_1}{y_1}, \frac{x_2}{y_2}, ..., \frac{x_n}{y_n}\right\} = \left\{\frac{x_n}{y_n}\right\}$

Определение 11.2

Последовательность $\{x_n\}$ называется *ограниченной сверху*, если существует число M такое . что любой элемент x_n удовлетворяет неравенству: $x_n \leq M$.

Определение 11.3

Последовательность $\{x_{_n}\}$ называется *ограниченной снизу*, если существует число m такое . что любой элемент $x_{_n}$ удовлетворяет неравенству: $x_{_n} \ge m$.

Определение 11.4

Последовательность $\{x_n\}$ называется *ограниченной*, если она ограничена и сверху, и снизу, т.е. существуют числа M и m такие . что для любого элемента

98

 x_n выполняются неравенства: $x_n \le M$ и $x_n \ge m$, и существует число $A = \max\{m,M\}$ такое , что для любого x_n выполняется неравенство $|x_n| \le A$.

Определение 11.5

Последовательность $\{x_n\}$ называется *неограниченной*, если для любого числа A>0 найдётся x_n , для которого будет выполняться неравенство: $|x_n| \le A$.

Пример 11.1

Последовательность $\left\{\frac{1}{n}\right\}$ ограничена, т.к. $0 < \frac{1}{n} \le 1$.

Бесконечно большие и бесконечно малые последовательности

Определение 11.6

Последовательность $\{x_n\}$ называется *бесконечно большой*, если для любого числа A>0 существует число N такое, что для любого номера n>N выполняется неравенство $|x_n|>A$.

Определение 11.7

Последовательность $\{\alpha_n\}$ называется *бесконечно малой*, если для любого числа $\varepsilon>0$ существует число N такое, что для любого номера n>N выполняется неравенство $|\alpha_n| \le \varepsilon$.

Теорема 11.1

Если $\{x_n\}$ - бесконечно большая и все $x_n \neq 0$, то $\left\{\frac{1}{x_n}\right\}$ - бесконечно малая.

Если $\{\alpha_{_n}\}$ - бесконечно малая и все $\alpha_{_n} \neq 0$, то $\left\{\frac{1}{\alpha_{_n}}\right\}$ - бесконечно большая.

Предел последовательности

Определение 11.8

Число a называется пределом последовательности $\{x_n\}$, если для любого $\varepsilon > 0$ существует число N такое, что для любого номера n > N выполняется неравенство.

Запишем данное определение на языке « ε δ »: $\forall \varepsilon > 0 \ \exists N : \forall n > N : |x_n - a| < \varepsilon$.

Обозначение: $\lim_{n\to\infty} x_n = a$; $x_n \to a$, $n \to \infty$.

Замечание 11.1

Если a предел последовательности $\{x_n\}$, то последовательность $\{x_n - a\}$ является б есконечно малой.

Замечание 11.2

Если $\lim_{n\to\infty} x_n = \infty$, то говорят, что последовательность имеет бесконечный предел.

Пример 11.1

Покажем с помощью определения предела, что последовательность $\left\{\frac{1}{n}\right\}$ имеет предел, равный 0. Зададим $\varepsilon=1/100$. Найдем, при каких n выполняется неравенство $|x_n-0|<\varepsilon$, в нашем случае

$$\left| \frac{1}{n} - 0 \right| < \frac{1}{100}, \quad \left| \frac{1}{n} \right| < \frac{1}{100},$$

т.к. n>0 можно записать n>100. При всех n>100 будет выполняться условие $|x_n-0|<\frac{1}{100}$. Таким образом, при $\varepsilon=\frac{1}{100}$ мы нашли N=100, поэтому $\lim_{n\to\infty}\frac{1}{n}=0$

Геометрическая интерпретация предела последовательности

Будем изображать точками на числовой оси члены последовательности $\{x_n\}$. Покажем на той же оси число $a=\lim_{n\to\infty} x_n$.

Поскольку a - предел последовательности, то, начиная с некоторого номера $n \ge N$, для членов последовательности выполняется неравенство

$$|x_{n}-a|<\varepsilon$$
 или
$$-\varepsilon < x_{n}-a<\varepsilon$$
 или
$$a-\varepsilon < x_{n} < a+\varepsilon,$$

то есть все члены последовательности, начиная с N-ого, заключены в интервале $(a-\varepsilon,a+\varepsilon)$.

Определение 11.10

Интервал $(a-\varepsilon,a+\varepsilon)$ называют ε - окрестностью точки a.

Пример 11.2

рассмотрим последовательность $\binom{1}{n}$. Изобразим несколько ее первых членов на числовой оси

Если взять $\varepsilon = 1$, то в интервале (-1,1) лежат все члены последовательности. Если взять $\varepsilon = \frac{1}{4}$, то вне интервала $\left(-\frac{1}{4},\frac{1}{4}\right)$ лежат лишь четыре первых члена последовательности.

Теорема 11.2 (Теорема единственности)

Сходящаяся последовательность имеет только один предел.

Доказательство

Пусть у сходящейся последовательности $\{x_n\}$ существуют два предела a и b, тогда по замечанию 11.1 данную последовательность можно представить в виде суммы предела и бесконечно малой двумя способами: $x_n = a + \alpha_n$ и $x_n = b + \beta_n$. Найдём разность данных выражений, при $n \to \infty$ получим, что $a - b = 0 \implies a = b$.

Монотонные последовательности

Определение 11.11

Последовательность $\{x_n\}$ называется возрастающей (неубывающей), если $\forall n \!\in\! \! N \ \ \, x_{_{n+1}} \! \geq \! x_{_n} \, .$

Последовательность $\{x_n\}$ называется убывающей (невозрастающей), если $\forall n \in N \ x_{n+1} \leq x_n$.

Возрастающую или убывающую последовательность называют *монотонной*. Если последовательность $\{x_n\}$ является возрастающей и ограниченной сверху, то существует $\lim_{n\to\infty}x_n=\sup\{x_n\}$.

Если последовательность является убывающей и ограниченной снизу, то существует $\lim_{n\to\infty} x_n = \inf\{x_n\}$.

Теорема 11.3

Монотонная ограниченная последовательность сходится.

Теорема 11.4 (теорема Вейерштрасса)

Всякая монотонная и ограниченная последовательность имеет предел.

Предел функции

Определение 11.12 (Определение предела по Коши)

Число A называют пределом функции y=f(x) в точке a, если эта функция определена в некоторой окрестности точки a, за исключением, быть может, самой точки a, и для каждого $\varepsilon>0$ найдется такое $\delta>0$, что для всех x, удовлетворяющих условию $0<|x-a|<\delta$, выполняется неравенство $|f(x)-A|<\varepsilon$.

На языке « $\varepsilon \delta$ »:

$$\lim_{x \to a} f(x) = A, \ ecnu \ \forall \varepsilon > 0 \quad \exists \delta > 0 : \forall x : 0 < |x - a| < \delta \Longrightarrow |f(x) - A| < \varepsilon.$$

Определение 11.13 (определение предела по Гейне)

Число A называется пределом функции y=f(x) в точке a, если для любой последовательности $\{x_n\}$, сходящейся к точке a, последовательность соответствующих значений функции $\{f(x_n)\}$ сходится к A.

Пример 11.3

1) Функция $y = x \sin \frac{1}{x}$ не определена при x=0 , но имеет предел при $x \rightarrow 0$.

$$\lim_{x\to 0} x \sin\frac{1}{x} = 0 ,$$

так как $\left|x\sin\frac{1}{x}\right| \le |x|$.

2) Функция $y = \sin \frac{1}{x}$ не определена при x = 0 и не имеет предела в этой точке, так как при $x \to 0$ функция попеременно принимает все свои значения от -1 до +1.

3) Функция $y=\sin x$ определена при x=0 и имеет предел в этой точке $\lim_{x\to 0}\sin x=0$.

Определение бесконечных пределов

1.
$$\lim_{x \to a} f(x) = +\infty$$
, $ecnu \quad \forall E > 0 \quad \exists \delta > 0 : \forall x : 0 < |x - a| < \delta \Longrightarrow |f(x)| > E$

2.
$$\lim_{x \to a} f(x) = -\infty$$
, $ec\pi u \quad \forall E > 0 \quad \exists \delta > 0 : \forall x : 0 < |x - a| < \delta \Rightarrow |f(x)| < -E$

3.
$$\lim_{x \to +\infty} f(x) = A$$
, $ecnu \ \forall \varepsilon > 0 \ \exists M(\varepsilon) > 0 : \forall x : x > M(\varepsilon) \Rightarrow |f(x) - A| < \varepsilon$.

4.
$$\lim_{x \to -\infty} f(x) = A$$
, $ec\pi u \ \forall \varepsilon > 0 \ \exists M(\varepsilon) > 0 : \forall x : x < -M(\varepsilon) \Rightarrow |f(x) - A| < \varepsilon$.

Теоремы о пределах. Неопределенные выражения

Теорема 11.5

Предел алгебраической суммы конечного числа функций равен сумме их пределов:

$$\lim_{x \to a} [f_1(x) + f_2(x) + \dots + f_n(x)] = \lim_{x \to a} f_1(x) + \lim_{x \to a} f_2(x) + \dots + \lim_{x \to a} f_n(x).$$

Теорема 11.6

Предел произведения конечного числа функций равен произведению их пределов:

$$\lim_{x \to a} \left[f_1(x) \cdot f_2(x) \cdot \dots \cdot f_n(x) \right] = \lim_{x \to a} f_1(x) \cdot \lim_{x \to a} f_2(x) \cdot \dots \cdot \lim_{x \to a} f_n(x)$$

Следствие

Постоянный множитель можно выносить за знак предела:

$$\lim_{x \to a} (C \cdot f(x)) = C \cdot \lim_{x \to a} f(x).$$

Пример 11.4

$$\lim_{x \to 2} 5x^3 = 5 \lim_{x \to 2} x^3 = 5 \cdot 8 = 40$$

Теорема 11.7

Предел частного двух функций равен частному их пределов, если предел знаменателя отличен от нуля:

$$\lim_{x \to a} \frac{f_1(x)}{f_2(x)} = \frac{\lim_{x \to a} f_1(x)}{\lim_{x \to a} f_2(x)}, \quad ecnu \quad \lim_{x \to a} f_2(x) \neq 0.$$

Пример 11.5

$$\lim_{x \to 1} \frac{3x+5}{4x-2} = \frac{3\lim_{x \to 1} x + \lim_{x \to a} 5}{4\lim_{x \to 1} x - \lim_{x \to 1} 2} = \frac{8}{2} = 4.$$

Теорема 11.8

Если $\lim_{x\to a} f(x) = A$, где A - конечное число, то в некоторой окрестности точки a функция y = f(x) ограничена, то есть существует M > 0 такое, что |f(x)| < M $\forall x$ из окрестности точки a.

Доказательство

Пусть $\varepsilon=1$, тогда существует такое δ , что $\forall x \in (a-\delta,a+\delta)$ выполняются неравенства

$$|f(x)| - |A| \le |f(x) - A| < \varepsilon = 1,$$

$$|f(x) - A| \le 1 + |A|,$$

$$M = 1 + |A|.$$

Теорема 11.9

Пусть в окрестности точки a функции u(x), z(x), v(x) связаны неравенством $u(x) \le z(x) \le v(x)$, причем $\lim_{x \to a} u(x) = \lim_{x \to a} v(x) = A$, тогда $\lim_{x \to a} z(x) = A$.

Теорема 11.10

Если в окрестности точки a функции u(x) и v(x) связаны неравенством $u(x) \ge v(x)$, то $\lim_{x \to a} u(x) \ge \lim_{x \to a} v(x)$.

При вычислении пределов арифметических выражений $f_1(x)/f_2(x)$, $f_1(x)\cdot f_2(x)$, $f_1(x)-f_2(x)$ по пределам функций $f_1(x)$ u $f_2(x)$, из которых они

составлены, не всегда возможно. В этих случаях говорят, что возникают неопределенности следующих видов: $\frac{0}{0}$, $\frac{\infty}{\infty}$, $o \cdot \infty$, $\infty - \infty$.

Лекция 12

Первый замечательный предел

Определение 12.1

Первым замечательным пределом называют предел функции $y = \frac{\sin x}{x}$ при $x \to 0$.

Докажем, что
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
.

Для этого воспользуемся теореме о пределе трех функций:

Покажем, что если
$$x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 и $x \neq 0$, то $\cos x < \frac{\sin x}{x} < 1$.

Рассмотрим в координатной плоскости круг единичного радиуса с центром в точке ${\it O}$.

Рисунок 12.1

Пусть $\angle AOB = x$ и $o < x < \frac{\pi}{2}$. Построим точку C, как проекцию точки B на ось Ox и точку D как пересечение луча OB и перпендикуляра к Ox, проведенного через A.

Тогда
$$BC = \sin x$$
, $DA = \frac{\sin x}{\cos x} = tgx$, так как

$$\frac{DA}{BC} = \frac{OA}{OC} = \frac{1}{\cos x}$$
 из подобия $\triangle AOD$ и $\triangle COB$.

Пусть S_I - площадь $\triangle AOB$, S_2 - площадь сектора AOB , S_3 - площадь $\triangle AOD$. Тогда

$$S_1 = \frac{|OA|^2}{2}\sin x = \frac{\sin x}{2}, \ S_2 = \frac{1}{2}|OA|^2x = \frac{x}{2}, \ S_3 = \frac{1}{2}|OA| \cdot |AD| = \frac{1}{2}tgx.$$

Так как $S_1 < S_2 < S_3$, то

$$\frac{1}{2}\sin x < \frac{x}{2} < \frac{1}{2}tgx; \quad npu \quad x \in \left(0, \frac{\pi}{2}\right)\sin x > 0,$$

$$moz\partial a \quad 1 < \frac{x}{\sin x} < \frac{1}{\cos x} \quad unu \quad \cos x < \frac{\sin x}{x} < 1.$$
(12.1)

Полученное неравенство справедливо и при $x \in \left(-\frac{\pi}{2}, 0\right)$, так как $\frac{\sin x}{x}$ и $\cos x$ - четные функции.

Таким образом, неравенство (12.1) справедливо при $x \to 0$ как слева, так и справа. Кроме того, $\lim_{x\to 0} \cos x = 1$, $\lim_{x\to 0} 1 = 1$, тогда в соответствии со свойствами пределов

$$\lim_{x\to 0}\frac{\sin x}{x}=1.$$

Второй замечательный предел

Определение 12.2

Функция вида $y(x) = u(x)^{v(x)}$, $u(x) \ge 0$ называется *показательно-степенной* функцией.

Пусть существуют конечные пределы $\lim_{x\to a} u(x)$ и $\lim_{x\to a} v(x)$. Следовательно можно записать:

$$\lim_{x \to a} u(x)^{v(x)} = \lim_{x \to a} e^{\ln u(x)^{v(x)}} = \lim_{x \to a} e^{v(x)\ln u(x)} = e^{\lim_{x \to a} v(x)\ln u(x)}$$

При вычислении показательно-степенной функции возникают следующие неопределённости:

- 1. При $\lim_{x\to a} u(x) = \infty$; $\lim_{x\to a} v(x) = 0$ возникает неопределённость $\left[\infty^{0}\right]$ или $\lim_{x\to a} v(x) \ln u(x) = \left[0\cdot\infty\right]$.
- 2. При $\lim_{x\to a} u(x) = 1$; $\lim_{x\to a} v(x) = \infty$ возникает неопределённость $[1^{\infty}]$ или $\lim_{x\to a} v(x) \ln u(x) = [\infty \cdot 0]$.
- 3. При $\lim_{x\to a} u(x) = 0$; $\lim_{x\to a} v(x) = 0$ возникает неопределённость $\begin{bmatrix} 0^0 \end{bmatrix}$ или $\lim_{x\to a} v(x) \ln u(x) = \begin{bmatrix} 0 \cdot (-\infty) \end{bmatrix}$

Определение 12.3

Предел показательно-степенной функции $\lim_{x\to 0} (1+x)^{1/x}$ называется вторым замечательным пределом

Второй замечательный предел вычисляется по формуле: $\lim_{x\to\infty} (1+\frac{1}{x})^x = e^{-\frac{1}{x}}$

Следствие:

$$\lim_{x \to 0} (1+x)^{1/x} = e.; \quad \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1; \quad \lim_{x \to 0} \frac{a^x - 1}{x} = \ln a;$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1 \; ; \; \lim_{x \to 0} \frac{(1 + x)^{\alpha} - 1}{x} = \alpha \, .$$

Сравнение бесконечно малых

Определение 12.4

Бесконечно малые $\alpha(x)$ и $\beta(x)$ называются бесконечно малыми одного порядка, если $\lim_{x\to a} \frac{\alpha(x)}{\beta(x)} = const$.

Определение 12.5

Бесконечно малые $\alpha(x)$ и $\beta(x)$ называются эквивалентными, если $\lim_{x\to a}\frac{\alpha(x)}{\beta(x)}=1\,.$

Определение 12.6

Бесконечно малая $\alpha(x)$ является бесконечно малой более высокого порядка, чем $\beta(x)$, если $\lim_{x\to a} \frac{\alpha(x)}{\beta(x)} = \infty$

Определение 12.7

Бесконечно малая $\alpha(x)$ является бесконечно малой более низкого порядка, чем $\beta(x)$, если $\lim_{x\to a} \frac{\alpha(x)}{\beta(x)} = 0$

Можно утверждать, что при $x \to 0 \sin x \sim x$, $\ln(1+x) \sim x$, $a^x - 1 \sim x \ln a$, $e^x - 1 \sim x$, $(1+x)^\alpha \sim \alpha x$, где знак \sim означает эквивалентность соответствующих бесконечно малых величин. При вычислении пределов можно использовать эти соотношения эквивалентности, заменяя, например, отношения бесконечно малых на отношения эквивалентных им бесконечно малых величин.

Односторонние пределы

Определение 12.8

Число A_I называют пределом слева функции f(x) в точке a, если $\forall \varepsilon > 0 \ \exists \delta > 0 \colon \ \forall x \in (a-b,a) \Rightarrow |f(x)-A_{\scriptscriptstyle I}| < \varepsilon$ и записывают $\lim_{x \to a-0} f(x) = A_{\scriptscriptstyle I}$.

Определение 12.9

Число A_2 называют пределом справа функции f(x) в точке a, если $\forall \varepsilon > 0 \ \exists \delta > 0 \colon \forall x \in (a,a+b) \ \Rightarrow \ |f(x) - A_2| < \varepsilon$, и пишут $\lim_{x \to 0} f(x) = A_2$.

Пример 12.1

Рассмотрим функцию $y = arctg \frac{1}{x}$.

При x=0 эта функция не определена. Найдем односторонние пределы функции в точке x=0 .

$$\lim_{x \to 0-0} arctg \, \frac{1}{x} = -\frac{\pi}{2}, \quad \lim_{x \to 0+0} arctg \, \frac{1}{x} = \frac{\pi}{2} \, .$$

Теорема 12.1

Для существования обыкновенного (двустороннего) предела функции в точке a необходимо и достаточно существование порознь и равенство двух односторонних пределов функции в этой точке:

$$\lim_{x\to a} f(x) = A$$
, если $\lim_{x\to a-0} f(x) = \lim_{x\to a+0} f(x) = A$.

Непрерывность функции. Точки разрыва

Определение 12.10

Функции f(x), непрерывна в точке \mathcal{X}_0 , если

$$f(x_0) = \lim_{x \to x_0} f(x).$$

Теорема 12.2

Функция f(x), непрерывна в точке X_0 тогда и только тогда, когда

$$f(x_0) = f(x_0 - 0) = f(x_0 + 0)$$

где
$$f(x_0 - 0) = \lim_{\substack{x \to x_0 \\ x \le x_0 \\ x > x_0 \\ x > x_0}} f(x)$$
 - односторонние пределы в точке x_0 .

Классификация точек разрыва

Пусть x_0 - точка разрыва функции f(x), тогда имеют место следующие типы разрывов:

1. Устранимый разрыв первого рода: если $f(x_0 - x) = f(x_0 + x) \neq f(x_0)$ либо $f(x_0 - 0) = f(x_0 + 0)$, а $f(x_0)$ не существует.

2. *Неустранимый* разрыв *первого* рода: если $f(x_0 - 0) \neq f(x_0 + 0)$.

3. Разрыв *второго* рода: если хотя бы один из пределов $f(x_0 - 0)$ или $f(x_0 + 0)$ не существует или бесконечен.

Лекция 13

Определение производной

Рисунок 13.1

Пусть задана функция y = f(x), определенная в некотором интервале. При каждом значении аргумента x в этом интервале функция y = f(x) имеет определенное значение. Если аргумент x получил приращение Δx , то и функция y = f(x) получила некоторое определенное приращение

$$\Delta y = f(x + \Delta x) - f(x)$$

Определение 13.1

Если существует предел отношения $\frac{f(x+\Delta x)-f(x)}{\Delta x}$ при $\Delta x \to 0$, то он

называется npouзводной функции f(x) в точке x и обозначается:

$$y'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$
 (13.1)

Операция вычисления производной функции называется дифференцированием функции.

Пример 13.1

Найти производную функции $y=x^n$, где $n \in N$, x>0 .

Зададим в точке x приращение аргумента Δx и вычислим соответствующее приращение функции:

$$\Delta y = (x + \Delta x)^n - x^n = x^n + C_n^1 x^{n-1} \Delta x + C_n^2 x^{n-2} \Delta x^2 + \dots + (\Delta x)^n - x^n = nx^{n-1} \Delta x + 0(\Delta x).$$

Найдем

$$y'(x) = \lim_{\Delta x \to 0} \frac{nx^{n-1}\Delta x + O(\Delta x)}{\Delta x} = nx^{n-1}.$$

Таким образом, $(x^n)' = nx^{n-1}$.

Пример 13.2

Пусть y=C . Тогда $\Delta y=0$ и y'=C'=0 .

Геометрический смысл производной

Рассмотрим в декартовой системе координат кривую, заданную уравнением y=f(x). Причем функция y=f(x) определена и непрерывна на рассматриваемом интервале. Возьмем на этой кривой точку M_0 с координатами $M(x_0$, $f(x_0)$). Зададим произвольное приращение аргумента Δx . Значению аргумента $x_0+\Delta x$ соответствует точка на кривой M_1 ($x_0+\Delta x$, $f(x_0+\Delta x)$).

Рисунок 13.2

Построим прямую линию M_0M_1 . Эта прямая называется секущей. Ее уравнение имеет вид y- $f(x_0)$ = $tg\,\phi(x$ - $x_0)$. Заметим, что $tg\,\phi=\frac{\Delta y}{\Delta x}$ - тангенс угла наклона прямой - угловой коэффициент секущей.

Пусть $\Delta x \to 0$, тогда и $\Delta y \to 0$, так как функция непрерывна в точке x_0 , поэтому $M_0 M_1 = \sqrt{(\Delta x)^2 + (\Delta y)^2}$ также стремится к нулю. Предельное положение секущей, когда точка M_1 совпадает с точкой M_0 (при $\Delta x \to 0$), называется касательной к кривой y = f(x) в точке M_0 . На рис.13.2 это прямая $M_0 T$.

При $\Delta x \to 0$ секущая $M_0 M_1$, поворачивается вокруг точки M_0 , при этом изменяется угол φ , достигая предельного значения α , соответствующего касательной $M_0 T$.

Уравнение касательной к кривой M_0T имеет вид

$$y - y_0 = tg \alpha (x - x_0)$$
, $\partial e \qquad tg \alpha = \lim_{\Delta x \to 0} tg \alpha = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = y'(x_0)$.

Таким образом, угловой коэффициент касательной к кривой в точке M_0 равен значению производной рассматриваемой функции в данной точке. В этом состоит геометрический смысл производной.

Уравнение касательной к кривой y = f(x) в точке $M_0(x_0, f(x_0))$ имеет вид:

$$y = f(x_0) + f'(x_0)(x - x_0)$$
 (13.2)

Уравнение прямой M_0N , перпендикулярной к касательной в точке M_0 и называемой нормалью к кривой, можно записать в виде:

$$y = f(x_0) - \frac{1}{f'(x_0)}(x - x_0), \tag{13.3}$$

если только $f'(x_0) \neq 0$.

Производная суммы, произведения, частного

Теорема 13.1

Если функции f(x) и g(x) имеют производные в точке x, то в этой точке существуют производные функций f+g, $f\cdot g$, $\frac{f}{g}$ (если $g(x)\neq 0$) и при этом

$$[f(x) + g(x)]' = f'(x) + g'(x)$$

$$[f(x) \cdot g(x)]' = f'(x)g(x) + f(x) \cdot g'(x),$$

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x) \cdot g'(x)}{[g(x)]^{2}}, \ g(x) \neq 0.$$

(13.4)

Доказательство

Обозначим $\Delta f = f(x + \Delta x) - f(x)$ u $\Delta g = g(x + \Delta x) - g(x)$.

Тогда
$$\frac{\Delta f}{\Delta x} \to f'(x)$$
, $\frac{\Delta g}{\Delta x} \to g'(x)$ при $\Delta x \to 0$.

Если
$$y = f(x) + g(x)$$
, то

$$\Delta y = f(x + \Delta x) + g(x + \Delta x) - f(x) - g(x) = \Delta f + \Delta g$$

откуда

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left(\frac{\Delta f}{\Delta x} + \frac{\Delta g}{\Delta x} \right) \quad \text{if} \quad y'(x) = f'(x) + g'(x) .$$

Если $y = f(x) \cdot g(x)$, то

$$\Delta y = f(x + \Delta x) \cdot g(x + \Delta x) - f(x) \cdot g(x) =$$

$$= (f + \Delta f)(g + \Delta g) - f \cdot g = \Delta f g + f \cdot \Delta g + \Delta f \cdot \Delta g$$

Тогда
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left(\frac{\Delta f}{\Delta x} \cdot g + f \frac{\Delta g}{\Delta f} + \frac{\Delta f}{\Delta x} \cdot \Delta g \right)$$
, откуда $y' = f'(x)g(x) + f(x)g'(x)$,

так как $\Delta g \rightarrow 0$ при $\Delta x \rightarrow 0$.

Если
$$y = \frac{f(x)}{g(x)}$$
, то $\Delta y = \frac{f(x + \Delta x)}{g(x + \Delta x)} - \frac{f(x)}{g(x)} = \frac{f(x + \Delta x) \cdot g(x) - f(x) \cdot g(x + \Delta x)}{g(x) \cdot g(x + \Delta x)}$.

Тогда
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{\Delta f}{\Delta x} g(x) - f(x) \frac{\Delta g}{\Delta x}}{g(x) \cdot g(x + \Delta x)}$$
, откуда $y' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$.

Таким образом, все три соотношения (13.4) доказаны.

Следствие 13.1

Если функция f(x) дифференцируема в точке x и C - постоянная, то

$$(C \cdot f(x))' = C \cdot f'(x). \tag{13.5}$$

то есть постоянный множитель можно выносить из-под знака дифференцирования.

Производная сложной функции

Теорема 13.2

Если функции $y = \varphi(x)$ и z = z(y) дифференцируемы соответственно в точках x_0 и y_0 , где $y_0 = \varphi(x_0)$, то сложная функция $z = f[\varphi(x)]$ диффенцируема в точке x_0 причем

$$z'_{x}(x_{0}) = f'_{y}(y_{0}) \cdot \varphi'_{x}(x_{0}) = f'_{y}[\varphi(x_{0})] \cdot \varphi'_{x}(x_{0}). \tag{13.6}$$

Доказательство

Пусть Δx - произвольное приращение независимого аргумента.

Тогда при значении аргумента $x + \Delta x$ имеем

$$y + \Delta y = \varphi(x + \Delta x)$$
, $z + \Delta z = f(y + \Delta y)$.

Таким образом, приращению Δx соответствует приращение Δy , которому соответствует Δz , причем при $\Delta x \to 0$ будет $\Delta y \to 0$ и $\Delta z \to 0$ (в силу непрерывности функций $y = \varphi(x)$ и z = f(x)).

По условию $f_y' = \lim_{\Delta y \to 0} \frac{\Delta z}{\Delta y}$, откуда, пользуясь определением предела, имеем

$$\frac{\Delta z}{\Delta y} = f'_y + O(\Delta y)$$
. Тогда $\Delta z = f'_y \Delta y + O(\Delta y) \cdot \Delta y$.

Разделим все члены последнего равенства на Δx :

$$\frac{\Delta z}{\Delta x} = f_y' \frac{\Delta y}{\Delta x} + O(\Delta y) \frac{\Delta y}{\Delta x} .$$

Переходя к пределу при $\Delta x \rightarrow 0$, получим

$$\lim_{\Delta x \to 0} \frac{\Delta z}{\Delta x} = \lim_{\Delta x \to 0} \left[f_y' \frac{\Delta y}{\Delta x} + 0(\Delta y) \frac{\Delta y}{\Delta x} \right] = f_y' \cdot \varphi_x' \quad .$$

таким образом, $z_x' = f_y' \cdot \varphi_x'$, то есть производная сложной функции равна произведению производной данной функции по промежуточному аргументу y на производную промежуточного аргумента по x.

Пример 13.3

Дана функция $z = \sin(x^2)$. Найти z'_x .

Данную функцию представим как функцию от функции следующим образом: $z = \sin y \;,\; y = x^2 \;.\; \text{Находим} \quad z'_y = \cos y \;, \quad y'_x = 2x \;.\; \text{Тогда} \quad z'_x = \cos x^2 \cdot 2x \;.$

Производная обратной функции

Теорема 13.3

Если для функции y = f(x) существует обратная функция $x = \varphi(y)$, которая в рассматриваемой точке имеет производную $\varphi'(x)$, отличную от нуля, то в соответствующей точке x функция y = f(x) имеет производную $f'(x) = \frac{1}{\varphi'(y)}$.

Доказательство

Возьмем приращение Δy , тогда $\Delta x = \varphi(y + \Delta y) - \varphi(y)$. Так как $\varphi(y)$ - монотонная функция, то $\Delta x \neq 0$.

Напишем тождество

$$\frac{\Delta y}{\Delta x} = \frac{1}{\frac{\Delta x}{\Delta y}} .$$

Переходя к пределу в обеих частях равенства и учитывая, что в силу непрерывности при $\Delta y \to 0$ и $\Delta x \to 0$, имеем

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta y} = \frac{1}{\lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y}} \quad \text{или} \quad y'_x = \frac{1}{x'_y} \quad \text{или} \qquad f'(x) = \frac{1}{\varphi'(y)} , \qquad (13.7)$$

что и требовалось доказать.

Пример 13.4

Пусть необходимо найти производную функции $y = \arcsin x$.

На интервале $-1 \le x \le 1$ функция имеет обратную $x = \sin y$, причем $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$. Тогда в соответствии с (13.7) $y_x' = \frac{1}{x_y'}$.

Зададим Δy , тогда соответствующее приращение

$$\Delta x = \sin(y + \Delta y) - \sin y = 2\sin\frac{\Delta y}{2}\cos\frac{2y + \Delta y}{2} \qquad u$$

$$x'_{y} = \lim_{\Delta y \to 0} \frac{2}{\Delta y}\sin\frac{\Delta y}{2}\cos\frac{2y + \Delta y}{2} = \lim_{\Delta y \to 0} \frac{\sin\frac{\Delta y}{2}}{\frac{\Delta y}{2}} \cdot \lim_{\Delta y \to 0} \cos\frac{2y + \Delta y}{2} = \cos y$$

Следовательно,
$$y'_x = \frac{1}{\cos y} = \frac{1}{\sqrt{1-\sin^2 y}} = \frac{1}{\sqrt{1-x^2}}$$
.

Производная функции, заданной параметрически

Рассмотрим функцию, заданную параметрически: $x = \varphi(t)$, $y = \psi(t)$. Покажем, что для нахождения производной y'_x , совсем необязательно находить выражение явной зависимости y от x.

Теорема 13.4

Пусть функция $x = \varphi(t)$ имеет обратную функцию $t = \Phi(x)$. Если функции $x = \varphi(t)$, $y = \psi(t)$ дифференцируемы и $\varphi'(t) \neq 0$, тогда,

$$y'_{x} = \frac{\psi'(t)}{\varphi'(t)}.$$

Доказательство

Так как функция $x = \varphi(t)$ имеет обратную функцию, то формально y можно выразить через x: $y = \psi(\Phi(x))$. Так как функция $x = \varphi(t)$ дифференцируема, то функция $t = \Phi(x)$ также дифференцируема.

Используя правила дифференцирования, получаем

$$y'_x = \psi'(t) \cdot \Phi'(x) = \frac{\psi'(t)}{\varphi'(t)}.$$

Теорема доказана.

Аналогичную формулу можно получить и для второй производной у $^{\prime\prime}x$:

$$y''_x = \left(\frac{\psi'(t)}{\varphi'(t)}\right)_x^{'} = \left(\frac{\psi'(t)}{\varphi'(t)}\right)_t^{'} \cdot \Phi'(x) = \frac{\psi''(t)\varphi'(t) - \psi'(t)\varphi''(t)}{\left(\varphi'(t)\right)^2} \cdot \frac{1}{\varphi'(t)}.$$

Окончательно получаем

$$y''_x = \frac{\psi''(t)\varphi'(t) - \psi'(t)\varphi''(t)}{(\varphi'(t))^3}.$$

Аналогично можно получить формулы производных любого порядка от функций, заданных параметрически, без нахождения формулы явной зависимости y от x:

Таблица производных

Приведем таблицу производных элементарных функций:

1)
$$(C)'=0$$
, $C=Const$

2)
$$\left(x^n\right)' = nx^{n-1}$$
, $n \in \mathbb{R}$, $x > 0$

3)
$$(a^x)' = a^x \ln a$$
, $a > 0$, $a \ne 1$, $x > 0$; $(e^x)' = e^x$, $x > 0$

4)
$$(\log_a x)' = \frac{1}{x \cdot \ln a}, \ a > 0, \ a \neq 1, \ x > 0$$

$$(\ln x)' = \frac{1}{x}, x > 0$$

5)
$$(\sin x)' = \cos x$$
, $x \in R$

6)
$$(\cos x)' = -\sin x$$
, $x \in R$

7)
$$(tgx)' = \frac{1}{\cos^2 x}$$
, $x \neq \frac{\pi}{2} + \pi n$, $n \in \mathbb{Z}$

8)
$$(ctgx)' = -\frac{1}{\sin^2 x}, x \neq \pi n, n \in \mathbb{Z}$$

9)
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, |x| < 1$$

10)
$$\left(\arccos x\right)' = -\frac{1}{\sqrt{1-x^2}}, |x| < 1$$

11)
$$\left(arctgx\right)' = \frac{1}{1+x^2}$$
, $x \in R$

12)
$$\left(arcctgx\right)' = -\frac{1}{1+x^2}$$
, $x \in \mathbb{R}$.

Производная показательно степенной функции

Рассмотрим показательно степенную функцию

$$y = u(x)^{v(x)}$$

Теорема 13.5

Пусть функции u = u(x), v = v(x) дифференцируемы, тогда функция

$$y = u(x)^{v(x)}$$
 дифференцируема и

$$\left(u(x)^{\nu(x)}\right) = u'(x)\nu(x)u(x)^{\nu(x)-1} + \nu'(x)u(x)^{\nu(x)}\ln u(x).$$

Доказательство

Так как $\ln y = v(x) \ln u(x)$, то, продифференцировав это равенство, получаем

$$\frac{y'}{y} = v'(x) \ln u(x) + v(x) \frac{u'(x)}{u(x)}, \Rightarrow y' = u(x)^{v(x)} \left(v'(x) \ln u(x) + v(x) \frac{u'(x)}{u(x)} \right), \Rightarrow$$

Теорема доказана.

Производные высших порядков

Определение 13.2

Пусть функция y = f(x) имеет производную во всех точках интервала (a, b). Если функция y' = f'(x) дифференцируема в точке $x_0 \in (a,b)$, то ее производную называют второй производной или производной второго порядка от функции y = f(x) в точке x_0 и обозначают

$$f''(x_0), f^{(2)}(x_0), \frac{d^2f(x_0)}{dx^2}, f''_{xx}(x_0).$$

Таким образом, по определению

$$f''(x_0) = \lim_{\Delta x \to 0} \frac{f'(x_0 \Delta x) - f'(x_0)}{\Delta x}.$$
 (13.8)

Пример 13.5

Найти вторую производную от функции $y = A\sin(wt + \varphi)$.

Первая производная $y' = Aw\cos(wt + \varphi)$,

Вторая производная $y'' = (Aw\cos(wt + \varphi))' = -Aw^2\sin(wt + \varphi).$

Производную от второй производной функции y = f(x) называют третьей производной или производной третьего порядка и обозначают $f'''(x_0)$ или $f^{(3)}(x_0)$. Аналогично определяется производная любого порядка.

Определение 13.3

Пусть функция y = f(x) имеет на интервале (a,b) производные $f'(x), f''(x), \dots, f^{(n-1)}(x)$. Если в точке $x \in (a,b)$ существует производная функции $f^{(n-1)}(x)$, то ее называют производной n-ого порядка или n-ой производной функции f(x) и обозначают $f^{(n)}(x)$:

$$f^{(n)}(x) = (f^{(n-1)}(x))',$$

$$f^{(n)}(x) = \lim_{\Delta x \to 0} \frac{f^{(n-1)}(x + \Delta x) - f^{(n-1)}(x)}{\Delta x}.$$
(13.9)

Функцию, имеющую в каждой точке множества E производные до n-го порядка включительно, называют n раз дифференцируемой на множестве E .

Лекция 14

Определение дифференциала

Рассмотрим дифференцируемую функцию y=f(x).

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x},$$

$$\frac{\Delta y}{\Delta x} = f'(x) + \alpha$$
, где $\alpha \to 0$ при $\Delta x \to 0$

$$\Delta y = f'(x)\Delta x + \alpha \Delta x$$

В общем случае $f'(x) \neq 0$, и при постоянном x произведение $f'(x) \Delta x$ является малой величиной первого порядка, а произведение $\alpha \Delta x$ - малой величиной выше первого порядка относительно Δx . Таким образом, на приращение функции Δy в первую очередь оказывает влияние $f'(x) \Delta x$.

Определение 14.1

Произведение f'(x) Δx называют дифференциалом функции y=f(x) и обозначают dy или df(x), т.е.

$$dy = f'(x)\Delta x. (14.1)$$

Так как производная функции y = x равна единице, то дифференциал этой функции равен приращению аргумента, т.е. $dx = \Delta x$. Таким образом, формулу можно записать следующим образом:

$$dy = f'(x)dx. (14.2)$$

Геометрическое значение дифференциала

Рассмотрим график дифференцируемой функции y=f(x) (рисунок 14.1). На кривой возьмем точку (x_0, y_0) и проведем в этой точке касательную к кривой. Абсциссе точки P_0 дадим приращение Δx , которое вызовет приращение функции Δy .

Отметим на кривой точку $P(x + \Delta x, y + \Delta y)$, а на касательной - точку P_1 с абсциссой, равной $x + \Delta x$. Из уравнения касательной определяем ординату точки P_1 , она равна

$$y_0 + f'(x_0)\Delta x$$

ИЛИ

$$y_0 + dy$$

Рисунок 14.1

Таким образом, приращение абсциссы касательной к кривой y=f(x) от точки касания вызовет приращение ординаты касательной, равной дифференциалу функции dy.

Дифференциал суммы, произведения, частного

Теорема 14.1

Пусть функции u = u(x), v = v(x) дифференцируемы.

Тогда

- 1) d(u+v)=du+dv;
- 2) d(uv) = vdu + udv;

3) (если
$$v \neq 0$$
) $d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}$.

Доказательство:

1)
$$d(u+v) = (u+v)'dx = (u'+v')dx = u'dx + v'dx = du + dv;$$

2)
$$d(uv) = (uv)'dx = (u'v + uv')dx = vu'dx + uv'dx = vdu + udv;$$

3)
$$d\left(\frac{u}{v}\right) = \left(\frac{u}{v}\right)^{1} dx = \frac{u'v - uv'}{v^{2}} dx = \frac{vu'dx - uv'dx}{v^{2}} = \frac{vdu - udv}{v^{2}}.$$

Теорема доказана.

Теорема 14.2 Инвариантность формы дифференциала

Рассмотрим сложную функцию:

$$y = f(u(x))$$

Пусть функции y = f(u) u = u(x) дифференцируемы, тогда dy = d(f(u(x))) = (f(u(x)))'dx = f'(u)u'(x)dx = f'(u)du.

Таким образом, если аргументом функции является функция другого аргумента, то форма дифференциала не изменяется.

Дифференциалы высоких порядков

Введем понятие дифференциала второго порядка. Известно, что первый дифференциал функции dy = f'(x)dx при фиксированном dx является функцией только x. Тогда можно найти дифференциал этой функции, который называют вторым дифференциалом:

$$d^2y = d(dy) = d(f'(x)dx) = f''(x)dxdx = f''(x)dx^2$$
, где $dx^2 = (dx)^2$. (14.3)

Аналогично определяется и дифференциал n-ого порядка:

$$d^{n} y = f^{(n)}(x)dx^{n} . {14.4}$$

Предполагая, что приращение независимой переменной при вычислении первого и всех последующих дифференциалов выбирается одним и тем же, легко доказать методом индукции, что

$$d^{n}y = (d^{n-1}y)'dx = (f^{(n-1)}(x)dx^{n-1})'dx = f^{n}(x)dx^{n}$$
.

Из формулы (14.3) следует, что производная n-ого порядка функции y = f(x) равна отношению дифференциала n-ого порядка этой функции к n-ой степени дифференциала независимой переменной, то есть $y^{(n)}(x) = \frac{d^n y}{dx^n}$.

Замечание 14.1

Второй дифференциал сложной функции не обладает свойством инвариантности.

Пусть задана сложная функция z = z(y), y = y(x).

Первый дифференциал этой функции

$$dz = z'_x dx = z'_y \cdot y'_x dx = z'_y dy .$$

Найдем второй дифференциал функции

$$d^{2}z = d(dz) = d(z'_{y}dy) = dz'_{y}dy + z'_{y}d^{2}y = z''_{y}dy^{2} + z'_{y}d^{2}y.$$

что отличается от формы (14.3).

Свойства дифференцируемых функций

Теорема 14.3 Теорема Ролля

Пусть функция y = f(x) непрерывна на отрезке [a,b], дифференцируема на интервале (a,b) и f(a) = f(b). Тогда существует число $c \in (a,b)$ такое, что f'(c) = 0.

Доказательство:

Так как функция y = f(x) непрерывна на отрезке [a,b], то она на этом отрезке достигает своего наибольшего и своего наименьшего значения.

Обозначим

$$m = \min_{x \in [a,b]} f(x), \quad M = \max_{x \in [a,b]} f(x).$$

Если M=m, то f(x)=const . Следовательно, f'(x)=0 для любого $x\in (a,b)$ и теорема для данного случая верна.

Пусть теперь $M \neq m$. Пусть M > f(a) = f(b). Тогда найдется число $c \in (a,b)$ такое, что f(c) = M. При этом имеют место неравенства:

$$\frac{f(c + \Delta x) - f(c)}{\Delta x} \begin{cases} \geq 0, & \text{если } \Delta x < 0; \\ \leq 0, & \text{если } \Delta x > 0. \end{cases}$$

Переходя к пределу, получаем:

$$\lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x} \begin{cases} \geq 0, & \text{если } \Delta x < 0; \\ \leq 0, & \text{если } \Delta x > 0. \end{cases} \Rightarrow f'(c) = 0.$$

Если при $M \neq m$ выполнены равенства M = f(a) = f(b), тогда m < f(a) = f(b). Рассмотрим функцию y = g(x) = -f(x).

Для этой функции
$$-m=\max_{x\in[a,b]}g(x)$$
 и $-m>g(a)=g(b)$.

Из доказанного выше следует, что существует число $c \in (a,b)$ такое, что g'(c) = 0. Так как g'(c) = -f(c), то f(c) = 0.

Теорема доказана.

Теорема 14.4 Теорема Коши об отношении приращения двух функций Пусть функции y = f(x), y = g(x) непрерывны на отрезке и [a,b] дифференцируемы на интервале (a,b), причем $g'(x) \neq 0$ на (a,b).

Тогда существует число
$$c \in (a,b)$$
 такое, что $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

Доказательство:

Заметим, что $g(b) \neq g(a)$. (Если g(b) = g(a), то, по теореме Ролля, существует число $c \in (a,b)$ такое, что g'(c) = 0.)

Введем обозначение: .
$$Q = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Рассмотрим функцию F(x) = f(x) - f(a) - Q(g(x) - g(a)), которая непрерывна на [a,b], дифференцируема на (a,b) и F(a) = F(b) = 0, т.е. функция F удовлетворяет условиям теоремы Ролля.

Следовательно, существует число $c \in (a,b)$ такое, что F'(c) = 0.

Так как
$$F'(x) = f'(x) - Qg'(x)$$
, то $f'(c) - Qg'(c) = 0$.

Теорема доказана.

Теорема 14.5 Теорема Лагранжа о конечных приращениях

Пусть функция y = f(x) непрерывна на отрезке и [a,b] дифференцируема на интервале (a,b).

Тогда существует число
$$c \in (a,b)$$
 , такое, что $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Доказательство:

Необходимо положить g(x) = x и применить теорему Коши.

Теорема доказана.

Правило Лопиталя раскрытия неопределенностей

Теорема 14.6 (Правило Лопиталя раскрытия неопределенностей вида $\frac{0}{0}$)

Пусть функции y = f(x), y = g(x) непрерывны и дифференцируемы в некоторой окрестности числа a (a может равняться ∞), за исключением, быть может, числа a; при этом g, g' не равны нулю в этой окрестности.

Кроме этого, пусть
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
.

Тогда, если
$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = A$$
, то $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = A$.

Доказательство:

Пусть a - конечное число. Если функции f, g непрерывны при x=a, то по условию теоремы f(a)=g(a)=0.

Если функции f, g не определены при x = a, то, в силу $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$

данные функции можно доопределить нулями.

Возьмем число x > a так, чтобы функции f, g были непрерывны на [a,b] дифференцируемы (a,x] на , и $g'(x) \neq 0$ на (a,x] .

По теореме Коши
$$\frac{f(x)-f(a)}{g(x)-g(a)} = \frac{f'(c)}{g'(c)}$$
, где $c \in (a,x)$.

Так как
$$f(a) = g(a) = 0$$
, то имеем $\frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)}$.

Устремим x к a, тогда c также устремится к a, и

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(c)}{g'(c)} = \lim_{c \to a} \frac{f'(c)}{g'(c)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = A.$$

Для случая, когда a - конечное число, теорема доказана. Пусть теперь $a = \infty$. Заменим x на t: x = 1/t. В результате получим функции F(t) = f(1/t), G(t) = g(1/t) аргумента t. В окрестности t = 0 функции F, G удовлетворяют условиям теоремы, а из доказанного выше следует, что

$$\lim_{t \to 0} \frac{F(t)}{G(t)} = \lim_{t \to 0} \frac{F'(t)}{G'(t)}$$

Так как

$$\lim_{t\to 0} \frac{F'(t)}{G'(t)} = \lim_{t\to 0} \frac{f'(1/t)\cdot(-1/t^2)}{g'(1/t)\cdot(-1/t^2)} = \lim_{x\to \infty} \frac{f'(x)}{g'(x)},$$

то получаем

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{t\to0}\frac{F(t)}{G(t)}=\lim_{t\to0}\frac{F'(t)}{G'(t)}=\lim_{x\to\infty}\frac{f'(x)}{g'(x)}.$$

Теорема доказана.

Теорема 14.7(Правило Лопиталя раскрытия неопределенностей вида $\frac{\infty}{\infty}$).

Пусть функции y = f(x), y = g(x) непрерывны и дифференцируемы в некоторой окрестности числа a (a может равняться ∞), за исключением a.

Кроме этого, пусть
$$\lim_{x \to a} f(x) = \infty$$
, $\lim_{x \to a} g(x) = \infty$

Тогда, если
$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = A$$
, то $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = A$.

Если правило Лопиталя, примененное к функциям f, g, не приводит к раскрытию неопределенности, то можно попробовать применить правило Лопиталя к производным f', g', а если необходимо, то и к f'', g'' и т.д.

Пример 14.1

a)
$$\lim_{x \to 0} \frac{1 - \cos 3x}{4x^2} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{(1 - \cos 3x)^4}{(4x^2)^4} = \lim_{x \to 0} \frac{3\sin 3x}{8x} =$$

$$= \lim_{x \to 0} \frac{9\cos 3x}{8} = \frac{9}{8};$$
b) $\lim_{x \to +\infty} \frac{\ln x}{\ln \sqrt{x^2 + 1}} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to +\infty} \frac{(\ln x)^4}{(\ln \sqrt{x^2 + 1})^4} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{\frac{x}{x^2 + 1}} =$

$$= \lim_{x \to 0+0} \frac{x^2 + 1}{x^2} = 1$$
c) $\lim_{x \to 0+0} x^{\sin x} = \left[0^0\right] = \lim_{x \to 0+0} e^{\sin x \ln x} = e^{\lim_{x \to 0+0} (\sin x \ln x)},$

$$\lim_{x \to 0+0} (\sin x \ln x) = \lim_{x \to 0+0} \frac{\ln x}{\frac{1}{\sin x}} = \lim_{x \to 0+0} \frac{\frac{1}{x}}{\frac{1}{\sin^2 x}} =$$

$$= -\lim_{x \to 0+0} \frac{\sin^2 x}{x \cos x} = -\lim_{x \to 0+0} \frac{2\sin x \cos x}{\cos x - x \sin x} = 0, \Rightarrow$$

$$\Rightarrow \lim_{x \to 0+0} x^{\sin x} = 1.$$

Лекция 15

Условия возрастания и убывания функций

Определение 15.1

Функцию f(x) называют возрастающей (неубывающей) на интервале (a, b), если для любых точек $x_1 \in (a,b)$, $x_2 \in (a,b)$ таких, что $x_1 < x_2$, выполняется неравенство $f(x_1) \le f(x_2)$.

Определение 15.2

Функцию f(x) называют убывающей (невозрастающей) на интервале (a, b), если для любых точек $x_1 \in (a,b)$, $x_2 \in (a,b)$ таких, что $x_1 < x_2$, выполняется неравенство $f(x_1) \ge f(x_2)$.

8)

Определение 15.3

Функции, только убывающие или только возрастающие на некотором интервале называют монотонными.

Рисунок 15.1

Теорема 15.1

Для того чтобы дифференцируемая на интервале (*a*, *b*) функция была возрастающей на этом интервале, необходимо и достаточно, чтобы выполнялось условие

$$f'(x) \ge 0 \quad \forall x \in (a,b). \tag{15.1}$$

$$f'(x) \le 0 \qquad \forall x \in (a,b)$$
 (15.2)

необходимо и достаточно для того, чтобы дифференцируемая на (a, b) функция была убывающей на (a, b).

Доказательство.

Доказательство проведем для случая возрастающей функции.

<u>Необходимость</u> : Пусть x_0 - произвольная точка интервала Из определения возрастающей функции следует, что

$$\forall x \in (a,b); x > x_0 \to f(x) \ge f(x_0),$$

$$\forall x \in (a,b); x < x_0 \to f(x) \le f(x_0).$$

Следовательно, если $x \in (a,b)$ и $x \neq x_0$, то справедливо неравенство

$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0. {15.3}$$

Перейдем к пределу в неравенстве (3) при $x \to x_0$:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \ge 0.$$

Таким образом, мы доказали, что если f(x) возрастает на (a,b) то $f'(x_0) \ge 0$ для любого $x_0 \in (a,b)$.

<u>Достаточность</u>: Пусть выполняется условие (15.1) и пусть x_1 и x_2 - произвольные точки интервала (a, b), причем $x_1 < x_2$. Применяя к функции f(x) на отрезке $[x_1, x_2]$ теорему Лагранжа, получаем:

$$f(x_2)-f(x_1)=f'(\xi)(x_2-x_1)$$
,

где $f'(\xi) \ge 0$, т.к. $\xi \in (a,b)$. Тогда

$$\forall x_1, x_2 \in (a,b): x_2 > x_1 \to f(x_2) \ge f(x_1),$$

то есть функция f(x) на интервале (a, b) является возрастающей.

Необходимые условия экстремума

Определение 15.4

Точки, в которых производная данной функции обращается в нуль, называют стационарными точками этой функции, а точки, в которых функция непрерывна, а ее производная либо равна нулю, либо не существует, - ее критическими точками.

Замечание 15.1

Все точки экстремума функции содержатся среди ее критических точек.

Замечание 15.2

Не всякая критическая точка является точкой экстремума.

Пример 15.1

Для функций $y=x^2$, $y=x^3$, y=|x| , $y=\sqrt[3]{x}$ точка x=0 является критической. Экстремум же в точке x=0 имеют только две из них $y=x^2$ и y=|x| .

Рисунок 15.2

Первое достаточное условие экстремума

Теорема 15.2

Пусть f(x) дифференцируема в некоторой окрестности точки x_0 кроме, быть может, самой точки x_0 , и непрерывна в точке x_0 . Тогда

а) если f'(x) при переходе через точку x_0 меняет знак с минуса на плюс, то есть существует такое $\delta>0$, что

$$\forall x \in (x_0 - \delta, x_0) \to f'(x) < 0,$$

$$\forall x \in (x_0, x_0 + \delta) \to f'(x) > 0,$$
(15.4)

то x_0 - точка минимума функции f(x);

б) если f'(x) при переходе через точку x_0 меняет знак с плюса на минус, то есть

$$\forall x \in (x_0 - \delta, x_0) \to f'(x) < 0,$$

$$\forall x \in (x_0, x_0 + \delta) \to f'(x) > 0,$$
(15.5)

то x_0 - точка максимума функции f(x).

Рисунок 15.3

Доказательство:

Докажем первую часть теоремы:

пусть f'(x) меняет знак с минуса на плюс, тогда выполняется условие (15.4). Если x- произвольная точка интервала $(x_0 - \delta, x_0)$, то функция f(x) непрерывна на отрезке $[x, x_0]$ и дифференцируема на интервале (x, x_0) . Тогда по теореме Лагранжа

$$f(x)-f(x_0)=f'(\xi)(x-x_0),$$

где $f'(\xi) < 0$, $x - x_0 < 0$, следовательно,

$$\forall x \in (x_0 - \delta, x_0) \to f(x) > f(x_0) \tag{15.6}$$

Применяя теорему Лагранжа для отрезка $[x_0, x]$,

где $x \in (x_0, x_0 + \delta) \to f(x) > f(x_0)$, получим

$$f(x)-f(x_0)=f'(\xi)(x-x_0)$$
,

причем $f'(\xi) > 0$, $x - x_0 > 0$ следовательно,

$$\forall x \in (x_0, x_0 + \delta) \to f(x) > f(x_0). \tag{15.7}$$

Из условий (15.6) и (15.7) следует, что точка x_0 действительно является точкой локального минимума.

Аналогично рассматривается случай локального максимума.

Замечание 15.3

Если производная функции при переходе через точку x_0 меняет знак с минуса на плюс, то слева от точки x_0 функция убывает, а справа от точки x_0 - возрастает; сама точка x_0 является точкой минимума функции.

Если же слева от точки x_0 функция возрастает, а справа - убывает, то точка x_0 является точкой максимума.

Второе достаточное условие экстремума

Теорема 15.3

Пусть x_0 - стационарная точка функции f(x) , то есть $f'(x_0) = 0$, и пусть существует $f''(x_0)$.

Тогда:

- а) если $f''(x_0) > 0$, то x_0 точка локального минимума функции f(x);
- б) если $f''(x_0) < 0$, то x_0 точка локального максимума функции f(x).

Доказательство:

Если $f''(x_0) > 0$, то функция f'(x) является возрастающей в точке x_0 , то есть существует такое $\delta > 0$, что

$$\forall x \in (x_0 - \delta, x_0) \rightarrow f'(x) < f'(x_0) = 0,$$

$$\forall x \in (x_0, x_0 + \delta) \rightarrow f'(x) > f'(x_0) = 0.$$

следовательно, в точке x_0 производная f'(x) меняет знак с минуса на плюс. Согласно предыдущей теореме точка x_0 в этом случае является точкой минимума функции . Аналогично рассматривается и случай, когда $f''(x_0) \le 0$.

Замечание 15.4

Первое достаточное условие экстремума можно использовать как в случае, когда в исследуемой точке производная обращается в нуль, так и в случае, когда производная в этой точке не существует. Второе достаточное условие можно использовать только в тех точках, где функция дифференцируема, причем $f'(x_0)=0$.

Пример 15.2

Рассмотрим функцию $y=x^2$. В точке $x_0=0$, y'=0, y''=2, следовательно, в этой точке функция имеет минимум.

Если оказывается, что $f''(x_0) = 0$ в стационарной точке, то функция f(x) может в этой точке иметь экстремум $(y = x^4, x_0 = 0)$, а может и не иметь. В этом случае требуются дополнительные исследования поведения функции.

Наибольшее и наименьшее значения функции на отрезке

Введем понятия наибольшего и наименьшего значений функции.

Пусть существует точка $x_0 \in (a,b)$, такая, что для всех $x \in (a,b)$ выполняется неравенство $f(x) \le f(x_0)$, тогда говорят, что функция f(x) принимает в точке x_0 наибольшее (максимальное) значение на отрезке (a,b) и пишут

$$f(x_0) = \max_{x \in [a,b]} f(x).$$

Аналогично определяется понятие наименьшего значения функции на отрезке: если $\forall x \in [a,b]$ выполняется неравенство $f(x) \ge f(x_0)$, $x_0 \in [a,b]$, то

$$f(x_0) = \min_{x_0 \in [a,b]} f(x).$$

В случае, когда непрерывная на отрезке [a, b] функция f(x) имеет локальные максимумы в точках x_1 , x_2 ,..., x_k и локальные минимумы в точках \widetilde{x}_1 , \widetilde{x}_2 ,..., \widetilde{x}_k , наибольшее значение функции f(x) на отрезке [a, b] следует искать среди чисел f(a), $f(x_1)$, $f(x_2)$,..., $f(x_n)$, f(b), а наименьшее значение - среди чисел f(a), $f(\widetilde{x}_1)$, $f(\widetilde{x}_2)$,..., $f(\widetilde{x}_k)$, f(b).

На рис.15.4 наибольшие значения функции f(x) на отрезке [a, b] обозначены через M , а наименьшие - через m .

Рисунок 15.4

В прикладных задачах для нахождения наибольшего (наименьшего) значения функции на отрезке [a,b] необходимо найти критические точки функции f(x), вычислить значения функции в этих точках, а также на концах отрезка [a,b] и выбрать из полученных значений наибольшее и наименьшее.

Лекция 16

Выпуклость и вогнутость кривой

Определение 16.1

Рассмотрим непрерывную на отрезке [a,b] функцию y=f(x) . Если для каждой пары точек $x_1,x_2\in [a,b]$, таких, что $x_1{<}x_2$, выполняется условие

$$f\left(\frac{x_1 + x_2}{2}\right) \le \frac{f(x_1) + f(x_2)}{2},$$
 (16.1)

то функция y = f(x) называется выпуклой вниз (вогнутой). Если же для точек $x_1 < x_2$, принадлежащих отрезку [a, b], выполняется условие

$$f\left(\frac{x_1 + x_2}{2}\right) \ge \frac{f(x_1) + f(x_2)}{2},$$
 (16.2)

то функция y = f(x) называется выпуклой вверх или просто выпуклой.

Геометрическая интерпретация понятия выпуклости функции:

Пусть M_I , M_2 , M_0 - точки графика функции y=f(x) с абсциссами $x_1 < x_2$, $x_0 = \frac{x_1 + x_2}{2}$. Точка k - середина хорды $M_I M_2$, поэтому ордината точки k равна $\frac{\left(f\left(x_1\right) + f\left(x_2\right)\right)}{2}$, а абсцисса x_0 .

В соответствии с условием (16.2) точка M_0 с абсциссой x_0 и ординатой $f(x_0) = f\left(\frac{x_1 + x_2}{2}\right)$ лежит выше точки k или совпадает с ней.Для функции выпуклой вверх на отрезке [a, b] график функции лежит ниже касательной к

графику, проведенной в любой точке отрезка [a, b] (см.рис.16.2). Если точки графика функции лежат выше касательной к графику в любой точке отрезка [a, b], то кривая оказывается выпуклой вниз.

Можно сказать, что введенные таким образом понятия выпуклости и вогнутости графика функции удовлетворяют условиям (16.1) и (16.2), так как по теореме Лагранжа между двумя любыми точками x_1 и x_2 найдется такая точка ξ , в которой касательная к графику функции параллельна хорде M_1M_2 , а точки графика на отрезке $[x_1, x_2]$ заключены между касательной и хордой. Поэтому если они лежат ниже касательной, то удовлетворяют условию (16.2), если же они лежат выше касательной к графику функции, то они удовлетворяют условию (16.1).

Достаточные условия выпуклости

Теорема 16.1

Если во всех точках интервала (a, b) вторая производная функции y = f(x) отрицательна, то кривая y = f(x) обращена выпуклостью вверх на этом интервале;

если во всех точках интервала (a, b) вторая производная функции f(x) положительна, то кривая y = f(x) обращена выпуклостью вниз на этом интервале.

Доказательство

Докажем первую часть теоремы:

Функцию y = f(x) считаем на отрезке [a, b] непрерывной и дважды дифференцируемой в интервале (a, b).

Возьмем внутри (a, b) точки $x_1 < x_2$. Обозначим $x_0 = \frac{x_1 + x_2}{2}$, $x_2 + x_1 = h$,

тогда $x_2 - x_0 = h$, $x_0 - x_1 = h$.

Запишем формулу Лагранжа для функции y = f(x) на отрезках $[x_1, x_0]$ и $[x_0, x_2]$:

$$f(x_0) - f(x_1) = f'(\xi_1)(x_0 - x_1) = hf'(x_1), \ \xi_1 \in (x_1, x_0)$$
 (a)

$$f(x_2) - f(x_0) = f'(\xi_2)(x_2 - x_0) = hf'(\xi_2), \ \xi_2 \in (x_0, x_2)$$
 (6)

Вычитая из соотношения (б) соотношение (а), получим

$$f(x_2) + f(x_1) - 2f(x_0) = h[f'(\xi_2) - f'(\xi_2)].$$
(B)

Рассмотрим отрезок $\left[\xi_1,\xi_2\right]$, вложенный в отрезок $\left[a,\ b\right]$ и запишем на этом отрезке теорему Лагранжа для функции f'(x) :

$$f'(\xi_2) - f'(\xi_1) = f''(\xi)(\xi_2 - \xi_1) < 2h \cdot f''(\xi)$$
(16.3)

так как $\xi_2 - \xi_1 < x_2 - x_1 = 2h$.

С учетом (16.3) можно соотношение (в) представить в виде

$$f(x_2) + f(x_1) = 2f(x_0) + hf''(\xi)(\xi_2 - \xi_1) < 2f(x_0) + 2h^2f''(\xi).$$

Поскольку $\xi \in (\xi_1, \xi_2)$, $x_1 < \xi_1 < \xi_2 < x_2$, то $f''(\xi) \le 0$ по условию теоремы. Поэтому $\frac{f(x_2) + f(x_1)}{2} \le f\left(\frac{x_1 + x_2}{2}\right)$, то есть выполняется условие (16.2) и функция обращена выпуклостью вверх.

Вторая часть теоремы доказывается аналогично.

Точки перегиба. Условия наличия точек перегиба

Определение 16.2

Точка, отделяющая выпуклую часть кривой от вогнутой, называется точкой перегиба графика функции.

На рис. 16.2 точкой перегиба является точка C.

Пусть точка x_0 - точка перегиба графика функции. Тогда существует такая \mathcal{S} -окрестность точки x_0 , что в интервале $(x_0 - \mathcal{S}, x_0)$ функция выпукла (вогнута), а в интервале $(x_0, x_0 + \mathcal{S})$ функция вогнута (выпукла). Тогда слева от точки x_0 график функции лежит ниже (выше) касательной, а справа от точки x_0 график функции лежит выше (ниже) касательной к графику функции, проведенной в точке x_0 . Поэтому касательная к графику функции в точке перегиба, если она существует, пересекает график (см.рис.16.4).

Рисунок 16.4

Если точка x_0 является точкой перегиба графика функции, то в этой точке вторая производная либо равна нулю, либо не существует. Однако, не всякая точка, в которой $f''(x_0) = 0$ или $f''(x_0)$ не существует, является точкой перегиба. Например, функция $y = x^4$ в точке $x_0 = 0$ имеет нулевую вторую, однако на всей области определения выпукла вниз.

Для того чтобы точка x_0 была точкой перегиба, необходимо выполнение *достаточного условия*: если функция y = f(x) непрерывна в точке x_0 , имеет в этой точке конечную или бесконечную первую производную и если функция f''(x) меняет знак при переходе через точку x_0 то x_0 - точка перегиба данной функции.

Пример 16.1

Рассмотрим функции $y = x^3$ и $y = \sqrt[3]{x}$

Для обеих функций вторая производная меняет знак при переходе через точку $x_0 = 0$. Эта точка является для них точкой перегиба.

Асимптоты графика функции

Пусть переменная точка M(x, y) движется по графику функции y = f(x). Исследуем поведение графика функции в том случае, когда точка M движется в бесконечность, то есть расстояние от этой точки до начала координат неограниченно возрастает. При этом наиболее важным является случай, когда кривая y = f(x) неограниченно приближается к некоторой прямой.

Определение 16.3

Прямая называется асимптотой графика функции y = f(x), если расстояние от переменной точки M графика до этой прямой стремится к нулю при удалении точки M в бесконечность (рис.16.5) от начала координат.

Рисунок 16.5

Различают вертикальные и наклонные асимптоты.

Определение 16.4

Вертикальной асимптотой графика функции y = f(x) является прямая x = a, если выполняется одно из следующих равенств:

$$\lim_{x \to a-\varepsilon} f(x) = \infty , \quad \lim_{x \to a+\varepsilon} f(x) = \infty , \quad \lim_{x \to a} f(x) = \infty . \tag{16.4}$$

Следовательно, вертикальные асимптоты характеризуют поведение функций вблизи точек разрыва II рода. Вертикальные асимптоты имеют функции

$$y = \frac{1}{x} (x = 0)$$
, $y = tgx \left(x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \ldots \right)$, $y = \frac{1}{ax + b} \left(x = -\frac{a}{b} \right)$ и др.

Пусть график функции y=f(x) имеет наклонную асимптоту, уравнение которой имеет вид y=kx+b

Рисунок 16.6

Определим числа k и b. В соответствии с определением асимптоты расстояние от произвольной точки M(x, y) на кривой до асимптоты $\delta \to 0$, то есть

$$\lim_{x\to +\infty} \delta = 0 , \delta = MP , :: \lim_{x\to +\infty} MP = 0,$$

но из ΔMPN $MP = MN \cdot \cos \varphi$, и поскольку $\cos \varphi \neq 0$ (асимптота наклонная не параллельна оси ординат), то и $\lim_{x\to 0} MN = 0$, но MN = |MQ - NQ| = |f(x) - (kx + b)|, поэтому выполняется следующее равенство $\lim_{x\to 0} [f(x) - (kx + b)] = 0$ (16.5)

Итак, прямая y = kx + b является наклонной асимптотой графика функции y = f(x), если выполняется равенство (16.5).

В равенстве (16.5) вынесем x за скобки, тогда

$$\lim_{x \to +\infty} x \left[\frac{f(x)}{x} - k - \frac{b}{x} \right] = 0$$

и поскольку
$$x \to +\infty$$
 $\lim_{x \to +\infty} \left[\frac{f(x)}{x} - k - \frac{b}{x} \right] = 0$.

Предполагая, что k и b - константы, из последнего соотношения можно найти

$$k = \lim_{x \to +\infty} \frac{f(x)}{x} \tag{16.6}$$

тогда

$$b = \lim_{x \to +\infty} [f(x) - kx]. \tag{16.7}$$

Определение 16.5

Если существуют конечные пределы (16.6) и (16.7), то прямая y = kx + b является асимптотой графика функции y = f(x).

Пример 16.2

Докажем, что прямые x=0 и y=x+2 являются асимптотами графика функции

$$y = \frac{x^2 + 2x + 1}{x} .$$

Решение:

$$1) \lim_{x \to 0 \pm \varepsilon} f(x) = \lim_{x \to 0 \pm \varepsilon} \frac{x^2 + 2x - 1}{x} = \lim_{x \to 0 \pm \varepsilon} \left(x + 2 - \frac{1}{x} \right) = \infty \quad , \text{ прямая } x = 0 \text{ - вертикальная}$$

асимптота графика функции.

2)
$$\lim_{x \to \infty} [f(x) - (kx + b)] = \lim_{x \to \infty} \left(\frac{x^2 + 2x - 1}{x} - x - 2 \right) =$$

$$= \lim_{x \to \infty} \left(x + 2 - \frac{1}{x} - x - 2 \right) = \lim_{x \to \infty} \left(-\frac{1}{x} \right) = 0.$$

Общая схема исследования функции и построения графиков

Общая схема исследования функций с помощью производных состоит из следующих разделов:

- І. Общая характеристика функции.
 - 1.1. Область определения функции.

- 1.2. Поведение функции в окрестностях точек разрыва.
- 1.3. Точки пересечения графика с осями координат.
- 1.4. Симметрия графика.
- 1.5. Периодичность графика.

II. Интервалы монотонности и экстремумы функции.

- 2.1. Нахождение первой производной функции.
- 2.2. Определение критических точек.
- 2.3. Нахождение интервалов монотонности.
- 2.4. Определение экстремумов функции.

III. Интервалы выпуклости и вогнутости.

- 3.1. Вычисление второй производной функции.
- 3.2. Определение точек перегиба.
- 3.3. Нахождение интервалов выпуклости и вогнутости.

IV. Наклонные асимптоты графика функции.

- V. Таблица результатов исследования
- VI. График функции.

Пример 16.3

Исследуем функцию $y = \frac{x^2}{1-x}$ и построим ее график.

1. Общая характеристика функции:

область определения $x \in (-\infty, 1) \cup (1, +\infty)$;

точка x=1- точка разрыва функции;

$$\lim_{x \to 1-\varepsilon} \frac{x^2}{1-x} = +\infty , \quad \lim_{x \to 1+\varepsilon} \frac{x^2}{1-x} = -\infty$$

Следовательно, прямая x=1 - вертикальная асимптота графика функции.

2. Интервалы монотонности и экстремумы функции:

$$y' = \frac{2x(1-x)-(-1)x^2}{(1-x)^2} = \frac{-2x^2+2x+x^2}{(1-x)^2} = \frac{-x^2+2x}{(1-x)^2}.$$

критические точки: y'=0 при x=0 , x=2 , y' не существует при x=1

при
$$-\infty < x < 0$$
 $y' < 0$ - функция убывает,

при
$$0 < x < 1$$
 $y' > 0$ - функция возрастает,

при
$$1 < x < 2$$
 $y' > 0$ - функция возрастает,

при
$$2 < x < +\infty$$
 $y' < 0$ - функция убывает.

$$y(0) = 0$$
 - локальный минимум функции;

$$y(2) = -4$$
 - локальный максимум функции;

3. Интервалы выпуклости и вогнутости:

$$y'' = \frac{2}{(1-x)^3}$$
 .
$$y'' < 0 \text{ при } 1 < x < +\infty \text{ - кривая выпукла}$$

$$y'' > 0 \text{ при } -\infty < x < 1 \text{ - кривая вогнута.}$$

4. Наклонные асимптоты кривой.

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2}{x(x-1)} = -1 ;$$

$$b = \lim_{x \to \infty} [f(x) - kx] = \lim_{x \to \infty} \left[\frac{x^2}{1-x} + x \right] = \lim_{x \to \infty} \frac{x^2 + x - x^2}{1-x} = -1 .$$

Прямая y = -x - 1 - наклонная асимптота графика функции.

5. Результаты исследования:

X		f'(x)	f(x)
	$\int f''(x)$		
$x \rightarrow -\infty$			y= - x - 1
$(-\infty,0)$	<0	<0	, /
0	<0	0	$\min , y=0$
(0, 1)	<0	>0	1, /
1			→± ∞
(1, 2)	>0	>0	1,
2	>0	0	$\max , y = -4$
$(2,+\infty)$	>0	<0	, /
$x \to +\infty$			y= - x - 1

6. График функции:

