3. A Basic Projection

One of the remarkable facts that follow from $\vec{x} \cdot \vec{y} = ||\vec{x}|| ||\vec{y}|| \cos \theta$ is that it is easy to check if two vectors are **perpendicular**. In that case $\cos \theta = 0$, i.e. $\vec{x} \cdot \vec{y} = 0$.

Recall that the zero vector $\vec{0}$ doesn't really have a direction. We adopt the convention that the zero vector is be perpendicular to any vector.

Theorem 3.1: Two vectors \vec{x} and \vec{y} are perpendicular if and only if $\vec{x} \cdot \vec{y} = 0$.

Note 1: This theorem works in 2D and 3D; and in fact in any higher dimensions as well.

Example 1: Since $\begin{bmatrix} 3 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 3 \end{bmatrix} = 0$ we know that $\begin{bmatrix} 3 \\ 2 \end{bmatrix} \perp \begin{bmatrix} -2 \\ 3 \end{bmatrix}$.

Example 2: (a) Find a vector that is perpendicular to $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$. There are many answers possible. For example $\begin{bmatrix} 5\\-1\\-1 \end{bmatrix}$ would work since $\begin{bmatrix} 1\\2\\3 \end{bmatrix} \begin{bmatrix} 5\\-1\\-1 \end{bmatrix} = 0$. Alternatively we can take a vector with zero first component $\begin{bmatrix} 0\\2\\2 \end{bmatrix}$ and choose the others such that $\begin{bmatrix} 1\\2\\3 \end{bmatrix} \begin{bmatrix} 0\\2\\3 \end{bmatrix} = 0$, e.g.

 $\begin{bmatrix} 0 \\ 3 \\ -2 \end{bmatrix}. \text{ Or take for example the third component to be zero: } \begin{bmatrix} 1 \\ 2 \\ -1 \\ 3 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} = 0. \text{ Etc.}$

Chapter 3

A basic Projection

(b) A special case: Any vector in the xy-plane, i.e. $\begin{bmatrix} a \\ b \\ 0 \end{bmatrix}$, is perpendicular to $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ since

Next we'll develop a formula to compute the **orthogonal projection** of one vector onto another, non-zero vector.

Let $\vec{a} \neq \vec{0}$. With $\operatorname{proj}_{\vec{a}}(\vec{b})$ we will denote the (orthogonal) projection of \vec{b} onto \vec{a} (or rather the projection of \vec{b} onto the line of which \vec{a} is a segment.)

Theorem 3.2:
$$\operatorname{proj}_{\vec{a}}(\vec{b}) = \frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}} \vec{a}$$

[Of course we assume here that $\|\vec{a}\| \neq 0$]

Proof: Clearly $\operatorname{proj}_{\vec{a}}(\vec{b})$ is a multiple of \vec{a} (since it is the projection of \vec{b} onto \vec{a}). Hence $\operatorname{proj}_{\vec{a}}(\vec{b}) = t\vec{a}$ for some real number t.

A basic Projection

Chapter 3

Note that the vector $t\vec{a} - \vec{b}$ is perpendicular to \vec{a} : $t\vec{a} - \vec{b} \perp \vec{a}$

Hence
$$(t\vec{a} - \vec{b}) \cdot \vec{a} = 0$$
 \Rightarrow $t\vec{a} \cdot \vec{a} - \vec{b} \cdot \vec{a} = 0$ \Rightarrow $t\vec{a} \cdot \vec{a} = \vec{b} \cdot \vec{a}$ \Rightarrow $t = \frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}}$ $(\vec{a} \cdot \vec{a} \neq 0 \text{ so we can divide by it })$

So that
$$\operatorname{proj}_{\vec{a}}(\vec{b}) = \frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}} \vec{a}$$

Example 3: Let
$$\vec{a} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$
then $\operatorname{proj}_{\vec{a}}(\vec{b}) = \frac{26}{52} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

Example 4: Let A = (2,5), B = (8,8) and C = (3,8) be the vertices of triangle ABC. Find the base Q of the altitude from B using a projection vector.

Note that if

$$\vec{v} = \overrightarrow{AB} = B - A = (8,8) - (2,5) = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$
 and $\vec{w} = \overrightarrow{AC} = C - A = (3,8) - (2,5) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ then $\operatorname{proj}_{\vec{v}}(\vec{w}) = \frac{15}{45} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

So that

$$Q = A + \text{proj}_{\vec{v}}(\vec{w}) = (2,5) + \begin{bmatrix} 2 \\ 1 \end{bmatrix} = (4,6).$$

Note that the **length** of the projection vector is

$$\|\operatorname{proj}_{\vec{a}}(\vec{b})\| = \|\frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}}\vec{a}\| = \frac{|\vec{b} \cdot \vec{a}|}{\|\vec{a}\|^2} \|\vec{a}\| = \frac{|\vec{b} \cdot \vec{a}|}{\|\vec{a}\|}$$

Alternatively this becomes also immediately clear by using some trigonometry:

$$\|\operatorname{proj}_{\vec{a}}(\vec{b})\| = \|\vec{b}\| \cdot |\cos(\theta)| = \frac{\|\vec{a}\| \cdot \|\vec{b}\| \cdot |\cos(\theta)|}{\|\vec{a}\|} = \frac{|\vec{b} \cdot \vec{a}|}{\|\vec{a}\|}$$

In particular we have that when \vec{a} is a unit vector (i.e. $||\vec{a}|| = 1$) then

$$\|\operatorname{proj}_{\vec{a}}(\vec{b})\| = |\vec{a}\cdot\vec{b}|$$

The orthogonal complement

Sometimes it is useful to decompose a vector into the sum of two orthogonal vectors.

Clearly this can be done in many ways. Usually one particular direction is given (or needed).

The component of the vector \vec{b} in a given direction \vec{a} is simply: $\operatorname{proj}_{\vec{a}}(\vec{b})$.

The other component, called the *orthogonal complement* is denoted by \vec{b}^{\perp} (maybe a better notation would be $\vec{b}^{\perp \vec{a}}$, to indicate the other—given—direction as well). It can be found by

$$\vec{b}^{\perp} = \vec{b} - \operatorname{proj}_{\vec{d}}(\vec{b})$$

which is obvious because only then we would have $\ \vec{b}^{\scriptscriptstyle \perp} + \operatorname{proj}_{\vec{a}}(\vec{b}) = \vec{b}$.

Example 5: Let
$$\vec{a} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$ then

$$\operatorname{proj}_{\vec{a}}(\vec{b}) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

and

$$\vec{b}^{\perp} = \vec{b} - \operatorname{proj}_{\vec{a}}(\vec{b}) = \begin{bmatrix} 1 \\ 5 \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$

It is easy to check:
$$\begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} + \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
 and $\begin{bmatrix} 3 \\ 2 \end{bmatrix} \perp \begin{bmatrix} -2 \\ 3 \end{bmatrix}$