SSN College of Engineering Department of Computer Science and Engineering UCS1512 – Microprocessors Lab Matrix Operations

Name: Prasanna Kumaran D Registration Number: 185001110

22 September 2020

Semester: V

1 **AIM**:

To write and execute 8086 programs for performing matrix addition and subtraction.

2 PROCEDURE:

- Write the program in a text editor and save it as a .asm file under the MASM directory.
- Launch DOSBOX application and mount the MASM folder using the command prompt.
- Use the following syntax for mounting: 'mount [LOCAL DRIVE] FILEPATH'. Enter into the local drive('LOCAL DRIVE:').
- The code file can be edited using the command edit FILENAME.asm. Save the changes and exit.
- Assemble the code using the command 'masm FILENAME.asm' to generate the object file. The object file is in the format 'FILENAME.obj'
- Add dynamic libraries using the syntax 'link FILENAME.obj' to generate the executeable(.exe) file.
- Enter the debug mode using debug FILENAME.exe to execute and analuse the memory contents. The various commands used in debug mode are as follows:-
 - U :- Displays unassembled code.
 - D:- Refers to the offset from which contents in the memory are displayed.
 - E :- Change the value in memory.
 - G :- execute the code.
 - Q :- Quit debug mode.

3 Algorithm & Program

INITIALIZATION:

• Declare and initialize the operands and the code and data segments.

3.1 Matrix addition:

To add corresponding elements of 2 matrices.

- 1. Initialize data and code segment and variables
- 2. Move the starting address of data segment to DS
- 3. Move the values of the number of rows in the two matrices to CL and DL registers
- 4. Compare if DL and CL are equal
 - if not equal terminate the program else continue
- 5. Perform step(3) with the number of columns
- 6. Calculate the number of addition operations to perform by multiplying number of rows and columns of a matrix
- 7. Move the starting addresses of matrices and result to SI, DI and BX registers
- 8. Loop while there are operations to be performed
 - (a) Move the content which the SI register points to AL register
 - (b) ADD AL and [DI] where DI points to the current address in the second matrix
 - (c) Move the result of AL to the current address pointed by the BX register
 - (d) Increment SI, DI and BX (Move the pointer to the next memory address)
- 9. Terminate the program

3.1.1 Matrix addition: Program

Program	Comments
assume cs:code, ds:data	
data segment	
row1 db 02h	Initialize data segment and variables
row2 db 02h	initializa dava seginoni and variasios
col1 db 04h	
col2 db 04h	
org 0010h	
matrix1 db 00h,11h,22h,33h,	
44h,55h,66h,77h	
org 0020h	
matrix2 db 77h,66h,55h,44h,	
33h,22h,11h,00h	
org 0030h	
1 9	End data gammant
result db 8 DUP(0)	End data segment
data ends	Initializa ando sosmont
code segment org 0100h	Initialize code segment
start: mov ax,data	
mov ds,ax	Transfer address of data segment to DS
mov cl,row1	Transfer contents of row1 and row2 to CL and DL registers
mov dl,row2	Compare CL and DL, if not equal terminate
cmp cl,dl	
jne last	Transfer contents of column1 and column2 to CL and DL registers
mov cl,col1	Compare CL and DL, if not equal terminate
mov dl,col2	
cmp cl,dl	
jne last	Multiply CL with AL and store result in AX
mov al,row2	
mul cl	
mov cx,ax	Move the starting addresses of matrix1, matrix2
mov si, offset matrix1	and result to SI, DI, and BX registers
mov di, offset matrix2	
mov bx, offset result	
here:	
mov al, [si]	Move the content of the address currently pointed by the SI register
add al, [di]	ADD AL with the content of the address currently pointed by DI register
mov [bx], al	Move the result to the address currently pointed by the BX register
inc si	Increment SI, DI, and BL register to the next memory location
inc di	
inc bl	
loop here	
last:	
mov ah,4ch	Termination of execution
int 21h	
code ends	End of the code segment
end start	Terminate program

```
076E:0100 B86A07
                         MOU
                                  AX,076A
076E:0103 8ED8
                         MOU
                                  DS,AX
076E:0105 8A0E0000
                         MOV
                                  CL,[0000]
076E:0109 8A160100
                                  DL,[0001]
                         MOV
                                  CL, DL
076E:010D
          38D1
                          CMP
076E:010F
          7528
                          JNZ
                                  0139
076E:0111 8A0E0200
                          MOV
                                  CL,[0002]
076E:0115 8A160300
                          MOV
                                  DL,[0003]
076E:0119
          38D1
                          CMP
                                  CL,DL
076E:011B 751C
                          JNZ
                                  0139
076E:011D A00100
                          MOV
                                  AL,[0001]
```

Figure 1: Matrix addition - unassembled

```
BB DOSBox 0.74-3, Cpu speed:
                3000 cycles, Frameskip 0, Progra...
<u>There was 1 error detected.</u>
:\>debug matadd.exe
-d 076a:0000
076A:0000
      02 02 04 04 00 00 00 00-00 00 00 00 00 00 00 00
        11 22 33 44 55 66 77-00 00 00 00 00 00 00 00
076A:0010
      00
076A:0020
      77 66 55 44 33 22
                 11 00-00 00 00 00 00 00 00 00
      076A:0030
076A:0040
      076A:0050
      076A:0060
      976A:0070
Program terminated normally
-d 076a:0000
076A:0000
      92 92 94 94 99 99 99 99-99 99 99 99 99 99 99
076A:0010
      00 11 22 33 44 55 66 77-00 00 00 00 00 00 00 00
076A:0020
        66 55 44 33 22
                 11 00-00 00 00
                           00 00 00 00 00
      77
            77 77
                 77 77-00 00 00 00 00 00 00 00
076A:0030
               77
        77 77
076A:0040
      076A:0050
076A:0060
      976A:0070
```

Figure 2: Matrix addition - Output

3.2 Matrix subtraction:

To subtract corresponding elements of 2 matrices.

- 1. Initialize data and code segment and variables
- 2. Move the starting address of data segment to DS
- 3. Move the values of the number of rows in the two matrices to CL and DL registers
- 4. Compare if DL and CL are equal
 - if not equal terminate the program else continue
- 5. Perform step(3) with the number of columns
- 6. Calculate the number of addition operations to perform by multiplying number of rows and columns of a matrix

- 7. Move the starting addresses of matrices and result to SI, DI and BX registers
- 8. Loop while there are operations to be performed
 - (a) Move the content which the SI register points to AL register
 - (b) Subtract AL and [DI] where DI points to the current address in the second matrix
 - (c) Move the result of AL to the current address pointed by the BX register
 - (d) Increment SI, DI and BX (Move the pointer to the next memory address)
- 9. Terminate the program

3.2.1 Matrix subtraction: Program

Program	Comments
assume cs:code, ds:data	
data segment	
row1 db 02h	Initialize data segment and variables
row2 db 02h	
col1 db 04h	
col2 db 04h	
org 0010h	
matrix1 db 77h,66h,55h, 44h,	
33h,22h,11h,00h	
org 0020h	
matrix2 db 00h,11h,22h,33h,	
44h,55h,66h,77h	
org 0030h	
result db 8 DUP(0)	End data segment
data ends	
code segment	Initialize code segment
org 0100h	
start: mov ax,data	
mov ds,ax	Transfer address of data segment to DS
mov cl,row1	Transfer contents of row1 and row2 to CL and DL registers
mov dl,row2	Compare CL and DL, if not equal terminate
cmp cl,dl	
jne last	Transfer contents of column1 and column2 to CL and DL registers
mov cl,col1	Compare CL and DL, if not equal terminate
mov dl,col2	
cmp cl,dl	
jne last	Multiply CL with AL and store result in AX
mov al,row2	
mul cl	
mov cx,ax	Move the starting addresses of matrix1, matrix2
mov si, offset matrix1	and result to SI, DI, and BX registers
mov di, offset matrix2	
mov bx, offset result	
here:	
mov al, [si]	Move the content of the address currently pointed by the SI register
sub al, [di]	Sub AL with the content of the address currently pointed by DI register
mov [bx], al	Move the result to the address currently pointed by the BX register
inc si	Increment SI, DI, and BL register to the next memory location
inc di	
inc bl	
loop here	
last:	Townsingtion of quanties
mov ah,4ch	Termination of execution
int 21h	End of the code comment
code ends	End of the code segment
end start	Terminate program

-u			
076E:0100	B86A07	MOV	AX,076A
076E:0103	8ED8	MOV	DS,AX
076E:0105	8A0E0000	MOV	CL,[0000]
076E:0109	8A160100	MOV	DL,[0001]
076E:010D	38D1	CMP	CL, DL
076E:010F	7528	JNZ	0139
076E:0111	8A0E0200	MOV	CL,[0002]
076E:0115	8A160300	MOV	DL,[0003]
076E:0119	38D1	CMP	CL, DL
076E:011B	751C	JNZ	0139
076E:011D	A00100	MOV	AL,[0001]
_			

Figure 3: Matrix subtraction - unassembled

```
: N>debug matsub.exe
-d 076a:0000
076a:0000 00
      02 02 04 04 00 00 00 00-00 00 00 00 00 00 00 00
076A:0010
      77 66 55 44 33 22 11 00-00 00 00 00 00 00 00 00
076A:0020
      00 11 22 33 44 55 66 77-00 00 00 00 00 00 00 00
      976A:0030
076A:0040
      076A:0050
      976A:0060
      976A:0070
Program terminated normally
-d 076a:0000
076A:0000
      02 02 04 04 00 00 00 00-00 00 00 00 00 00 00 00
076A:0010
        66 55 44 33 22 11 00-00 00 00 00 00 00 00 00
      77
      00 11 22 33 44 55 66 77-00 00 00 00 00 00 00 00
076A:0020
076A:0030
      77
        55 33 11 EF CD AB 89-00 00 00 00 00 00 00 00
      076A:0040
976A:0050
      076A:0060
      976A:0070
```

Figure 4: Matrix subtraction - Output

4 RESULT:

Thus, 8086 programs for performing matrix addition and subtraction have been executed successfully using MS - DOSBox.