661 Cheat Sheet 1 Ty Darnell

Random Samples

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
 Computation formula of S^2 $(n-1)S^2 = \sum_{i=1}^n X_i^2 - (\sum_{i=1}^n X_i)^2 / n$ Unbiased Estimator If $ET(X_1, \dots, X_n) = \theta$ T is an unbiased estimator of θ ex: if $E(X_1) = \mu$ and $Var(X_1) = \sigma^2$ Then \bar{X} is unbiased estimator of μ and S^2 of σ^2 Samples From Normal Distribution

X_1, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$

Then $\bar{X} \sim N(\mu, \sigma^2/n)$

Order Statistics

Sample Max: $F_{X_{(n)}}(x) = P(X_{(n)} \le x) = P(X_1 \le x, \dots, X_n \le x) = \{F(x)\}^n$ If continuous: $f_{X_{(n)}}(x) = nf(x)\{F(x)\}^{n-1}$ Sample Min: $F_{X_{(1)}}(x) = 1 - P(X_{(1)} \le x) = P(X_1 > x, \dots, X_n > x) = 1 - \{1 - F(x)\}^n$ If continuous: $f_{X_{(1)}}(x) = nf(x)\{1 - F(x)\}^{n-1}$ Joint pdf of order statistics: $f_{X_{(1)}, \dots, X_{(n)}}(y_1, \dots, y_n) = n! \prod_{i=1}^n f_X(y_i) \text{ for } y_1 < \dots < y_n$ Distribution of $X_{(j)}$ $f_{X_{(j)}}(x) = \frac{n!}{(i-1)!(n-1)!} f(x)\{F(x)\}^{j-1}\{1 - F(x)\}^{n-j}$ Joint Distribution of $(X_{(i)}, X_{(j)})$ $f_{X_{(i)}, X_{(j)}}(u, v) = \frac{n!}{(j-1)!(j-i-1)!(n-j)!} f(u)f(v)\{F(u)\}^{i-1}\{F(v) - F(u)\}^{j-i-1}\{1 - F(v)\}^{n-j}$

Convergence

$$ar{X_n} = rac{1}{n} \sum_{i=1}^n X_i$$
Probability

WLLN

Let X_1, \ldots, X_n be iid rv with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2 < \infty$ Then for every $\epsilon > 0$
 $\lim_{n \to \infty} P(|\bar{X_n} - \mu| < \epsilon) = 1$ which is the same as: $\lim_{n \to \infty} P(|\bar{X_n} - \mu| \ge \epsilon) = 0$
 $\bar{X_n} \xrightarrow{P} \mu$ (consistency of $\bar{X_n}$)

Ty Darnell 661 Cheat Sheet 1

Convergence in probability to a constant is the same as convergence in distribution to a constant

Distribution

$$X_n \stackrel{d}{\to} X \text{ as } n \to \infty$$

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$$

Let X_1, \ldots, X_n be iid rv with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2 < \infty$

Let
$$Z_n = \sqrt{n}(\bar{X_n} - \mu)/\sigma$$

Then
$$Z_n \stackrel{d}{\to} N(0,1)$$
 as $n \to \infty$

Or
$$Z_n = \sqrt{n}(\vec{X} - \mu)$$

Then
$$Z_n \stackrel{d}{\to} N(0, \sigma^2)$$
 as $n \to \infty$

$$X_n \stackrel{p}{\to} X \implies X_n \stackrel{d}{\to} X$$

Slutsky's Theorem

If
$$X_n \stackrel{\bar{d}}{\to} X$$
 and $Y_n \stackrel{p}{\to} a$ Then:
 $Y_n X_n \stackrel{\bar{d}}{\to} a X$ $Y_n + X_n \stackrel{d}{\to} a + X$ $X_n / Y_n \stackrel{\bar{d}}{\to} X / a$

Slutsky's Thm allows substituting consistent estimators when proving $\stackrel{d}{\rightarrow}$ X_n doesn't have to be independent of Y_n

Convergence of Transformed Sequences

If
$$X_n \stackrel{p}{\to} X$$
 then $h(X_n) \stackrel{p}{\to} h(X)$

If
$$X_n \stackrel{d}{\to} X$$
 then $h(X_n) \stackrel{d}{\to} h(X)$

$$S_n^2 \stackrel{a.s.}{\to} \sigma^2 \text{ as } n \to \infty$$

Delta Method

 $\{T_n\}$ is a random sequence with $\sqrt{n}(T_n-\theta)\stackrel{d}{\to} N(0,\sigma^2)$

g is a function with $g'(\theta)$ exists and not 0. Then:

$$\sqrt{n}\{g(T_n) - g(\theta)\} \stackrel{d}{\rightarrow} N(0, \{g'(\theta)\}^2 \sigma^2)$$

 θ is the asymptotic mean of T_n

SSLN

Same as WLLN but with $\stackrel{a.s.}{\rightarrow}$

Data Reduction

Sufficient Statistics

T(X) is an SS for θ if P(X = x | T(X) = t) does not depend on θ

$$f(x|\theta) = h(x)c(\theta) \exp\left(\sum_{j=1}^{k} w_j(\theta)t_j(x)\right)$$
$$T(X) = \left(\sum_{i=1}^{n} t_1(X_i), \dots, \sum_{i=1}^{n} t_k(X_i)\right)$$

$$T(X) = (\sum_{i=1}^{n} t_1(X_i), \dots, \sum_{i=1}^{n} t_k(X_i))$$

Minimal SS

an SS is a minSS if it is a function of every other SS

Any one to one tranformation of a min SS is also a min SS.

Let $f(x|\theta)$ be joint pdf or pmf of X. Suppose T(X) exists such that for every two sample points x and y:

$$f(x|\theta)/f(y|\theta)$$
 does not depend on $\theta \iff T(x) = T(y)$

Then T(X) is a min SS for θ

661 Cheat Sheet 1 Ty Darnell

Ancillary Statistic for θ

A statistic whose distribution does not depend on the parameter θ

Complete Statistic

Completeness means that $E(g(T)) \neq 0$ (except for 0 function)

Complete if can be written as exponential family

For our purposes an SS is complete only if it is minimal.

Basu's Theorem

If T(X) is a complete and minimally sufficient statistic, then T(X) is independent of every ancillary statistic

Other Stuff

Exponential CDF
$$1-e^{-\lambda x}$$
 $E(X)=E(E(X|Y))$ $\Gamma(n)=(n-1)\Gamma(n-1)$ $\Gamma(n)=(n-1)!$ (n is an whole number) $Var(X)=E(X^2)-E(X)]^2$ $Var(X)=E[(X-\mu)^2]$ Law of total variance $(Var(Y)=E(Var(Y|X))+Var(E(Y|X)))$ $\lim_{n\to\infty}(1-x/n)^n=e^{-x}$ $P(a< X $\beta(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ Conditional Probability $P\{Y=y|X=x\}=\frac{P(X=x,Y=y)}{P(X=x)}$ $=\frac{f_{X,Y}(x,y)}{f_X(x)}$ Convolution $X\bot Y$ $Z=X+Y$ $f_Z(z)=\int_{-\infty}^{\infty}f_X(z-y)f_Y(y)\ dy$ $\Gamma(1/2)=\sqrt{\pi}$ $\Gamma(\alpha)=\int_0^{\infty}t^{\alpha-1}e^{-t}\ dt$$