Grade 11 Chemistry

Matter, Trends, and Chemical Bonding
Class 3

Periodic Table

- First organized based on atomic masses
- 1864, Newlands noticed the Law of Octaves
- 1869, Mendeleev and Meyer grouped elements based on physical and chemical properties
- Modern periodic table organizes elements based on atomic number
- Patterns in the periodic table repeat → called the periodic (repeating) table

 Periodic Law: the chemical and physical properties of the elements repeat in a regular, periodic pattern when they are arranged according to their atomic number (Z)

Mendeleev's first published periodic table

- Groups are numbered according to two different systems
 - 1-18: current number system
 - I to VIII: older system and separates them into two categories, A and B
- Elements in the A groups are the main group elements (representative elements)
- Elements in the B groups are the transition elements
- The rare earth metals (inner transition metals) fit between Group IIIB and IVB

Trends in the Periodic Table

- Why do elements in the same group have similar properties?
 - Due to the number and arrangement of electrons in the atoms of each element
- Electron movement is restricted to fixed regions called energy shells or energy levels

- An element's period number is the same as the number of energy levels that the electrons of its atoms occupy
 - Period 5 elements have electrons that occupy 5 energy levels
- Elements in the group have the same number of valence electrons for representative elements
 - Look at the Roman numeral

- Identify the element that is described by the following information:
 - It is a Group 14 (IVA) metalloid in the third period
 - It is a Group 15 (VA) metalloid in the fifth period
 - It is the other metalloid in Group 15 (VA)
 - It is a halogen that exists in the liquid state at room temperature

Atomic Radius

- Atomic radius is one-half the distance between the nuclei of two atoms
- Not all atoms are bound together in the same way
 - Ionic Bonds
 - Covalent Bonds
 - Metals

Atomic radius of metals

Atomic radius of diatomic molecules

- The attraction that an electron feels for the nucleus depends on:
 - Number of protons in the nucleus (Z)
 - The distance from the nucleus; the number of energy shells between the nucleus and the electron
 - The amount of screening by core (inner) electrons

Effective Nuclear Charge (Z_{eff})

$$Z_{eff} = Z - \sigma$$
Effective Nuclear Charge Actual Nuclear Charge Shielding Constant

- Z_{eff} is the nuclear charge felt by an electron when both the actual nuclear charge (Z) and the repulsive effects (shielding) of the other electrons are taken into account
- Core electrons shield valence electrons more than valence electrons shield one another

Atomic Radius

- Down a group: Increases
 - More energy levels; valence electrons are farther from the nucleus
- Across a period: Decreases
 - The number of protons increases and electrons are restricted to its outer energy level
 - Actual nuclear charge increases (protons increase)
 while the shielding constant remains the same;
 Effective Nuclear Charge increases
 - Valence electrons are pulled closer to the nucleus due to increased effective nuclear charge

- Rank the atoms in each set by decreasing atomic size:
 - a) Mg, Be, Ba
 - b) Ca, Se, Ga
 - c) Br, Rb, Sr

 Ionic Radius – radius of a cation or an anion

 If an atom forms an anion, its size increases because the nuclear charge remains the same but repulsion enlarges the electron cloud

CI - 362 pm →

 If an atom forms a cation, its size decreases because the nuclear charge remains the same and there is less repulsion

- Down a group: Ionic Radius increases
- Cations are smaller than anions if the ions are isoelectronic

$$+3 < +2 < +1 < -1 < -2$$
, etc.

Isoelectronic – having the same number of electrons

Rank the following in order from smallest to largest ionic radius:

a)
$$K^+$$
, P^{3-} , S^{2-} , Cl^- , Mg^{2+}

b)
$$K^+$$
, AI^{3+} , Na^+ , O^{2-} , Mg^{2+}

Ionization Energy

- Minimum energy required to remove an electron from a gaseous atom in its ground state:
 M(g) + heat → M⁺(g) + e⁻
- First ionization energy (IE₁) the energy needed to remove the first valence electron
- Measured in kJ/mol
- Low ionization energy easy to remove
- High ionization energy hard to remove

- Down a group: **Decreases**
 - Electrons in the valence shell are farther from the nucleus, more electron shielding
- Across a period: Increases
 - $-\ Z_{\rm eff}$ increases and the valence electrons are held more tightly
- Noble Gases have the highest ionization energy in each period

- Rank the elements in each set by increasing ionization energy:
 - a) Xe, He, Ar
 - b) Sn, In, Sb
 - c) Sr, Ca, Ba

Electron Affinity

- Ability of an atom to accept one or more electrons
- Measure of the change in energy that occurs when an electron is added to the valence shell to form a negative ion

$$X(g) + e^{-} \rightarrow X^{-}(g)$$

- If energy is released when an atom gains an electron, electron affinity is high (expressed as a negative integer)
- If energy is absorbed when an atom gains an electron, electron affinity is low (expressed as a positive integer)
- Down a Group: Decreases
- Across a Period: Increases
- Halogens have high (negative) electron affinities
- Metals have low (becomes more positive) electron affinities
- Units: kJ/mol

1 (IA)	
H -72.8	2 (IIA)
Li - 59.6	Be (+241)
Na - 52.9	Mg (+230)
K - 48.4	Ca (+156)
Rb – 46.9	Sr (+167)
Cs - 45.5	Ba (+52)

13 (IIIA)	14 (IVA)	15 (VA)	16 (VIA)	17 (VIIA)	He (+21)
B – 26.7	C – 122	N 0	O – 141	F - 328	Ne (+29)
AI - 42.5	Si - 134	P -72.0	S -200	CI - 349	Ar (+34)
Ga - 28.9	Ge - 119	As – 78.2	Se - 195	Br - 325	Kr (+39)

18 (VIIIA)

- Which element in the following pairs will have the lower electron affinity?
 - a) K or Ca
 - b) Cs or F
 - c) O or Li

Electronegativity

- The ability of an atom to attract electrons to itself; the pull of the negative charge
 - Down a Group: Decreases
 - Across a Period: Increases

F>O>Cl>N>Br>I>S>C>H

Electron Configurations and the Periodic Table

Orbital Filling Diagrams

- 1. Draw the order of subshells.
- 2. How many electrons are in the atom?
- 3. Write out the electronic configuration in the order of the subshells.
 - s \rightarrow 2 electrons
 - p \rightarrow 6 electrons
 - d \rightarrow 10 electrons
 - f \rightarrow 14 electrons

- 4. Draw boxes or lines to represent each subshell
 - s \rightarrow 1 box/line
 - p \rightarrow 3 boxes/lines
 - d \rightarrow 5 boxes/lines
 - $f \rightarrow 7$ boxes/lines
- 5. Fill in the electrons using up and down arrows, filling one subshell at a time. Single arrows point up by convention.

Exceptions to Trends

• Reasons:

 Electron configurations due to half-filled stability (ex: oxygen and nitrogen)

Electron configurations due to half-filled stability (ex: carbon and nitrogen)