ДИС

Въпроси от изпити

Довършете дефиницията: Числото a се нарича граница на редицата $\{a_n\}_1^{\infty}$, ако за всяко число $\varepsilon > 0$ съществува $N \in \mathbb{N}$, такова че за всяко $n \in \mathbb{N}, n > N$ е изпълнено $|a_n - a| < \varepsilon$

Довършете дефиницията: Числото l се нарича точка на сгъстяване на редицата $\{a_n\}_1^{\infty}$, ако в околност на l има безкрайно много членове на редицата.

Довършете дефиницията: Казваме, че редицата $\{a_n\}_1^\infty$ клони към $+\infty$ ако за всяко C съществува $N \in \mathbb{N}$, такова че за всяко $n \in \mathbb{N}, n > N$ е изпълнено $a_n > C$.

Нека
$$\lim_{n\to\infty}a_n=a<0$$
 и $\lim_{n\to\infty}b_n=-\infty$. Докажете, че $\lim_{n\to\infty}a_nb_n=+\infty$

 $\lim_{n\to\infty}a_n=a<0 \Leftrightarrow \forall \varepsilon>0$ съществува N_{ε} , такова че за всяко $n>N_{\varepsilon}$ е изпълнено $|a_n-a|<\varepsilon\Leftrightarrow a-\varepsilon< a_n< a+\varepsilon$

 $\lim_{n \to \infty} b_n = -\infty \Leftrightarrow \forall C$ съществува N_C , такова че за всяко $n > N_C$ е изпълнено $b_n < C \Leftrightarrow$

При $\varepsilon < -a \Leftrightarrow a_n < 0$ и $n > \max(N_{\varepsilon}, N_C)$ получаваме $a_n b_n > C a_n$

$$a_n > a - \varepsilon \Rightarrow a_n b_n > C(a - \varepsilon)$$
. Нека $D = C(a - \varepsilon) \Rightarrow \varepsilon = a - \frac{D}{C}$

 \Rightarrow За произволно D можем да изберем ε, C такива че $\varepsilon < -a$. Тогава ако $n > \max{(N_\varepsilon, N_C)} \Rightarrow a_n b_n > D$

 \Rightarrow За произволно D съществува $N=\max{(N_{\varepsilon},N_C)},$ такова че $a_nb_n>D$ $\Rightarrow \{a_nb_n\}_1^\infty\to+\infty$

Докажете, че числото 0 НЕ Е граница на редицата

$$\left\{ \left(\left(\frac{n+2}{n} \right) \sin \frac{(n-1)\pi}{4} \right)^n \right\}_{n=1}^{\infty}$$

Намерете всички точки на сгъстяване на тази редица

$$\left(\frac{n+2}{n}\right)^n \to e^2, \quad \left(\sin\frac{(n-1)\pi}{4}\right)^n = \begin{cases} -1 & n=8k+7\\ 0 & n=8k+1; 8k+5\\ 1 & n=8k+3\\ \left(\frac{\sqrt{2}}{2}\right)^n & n=8k; 8k+2; 8k+4; 8k+6 \end{cases}$$

 $\left(\frac{\sqrt{2}}{2}\right)^n \to 0 \Rightarrow$ Очевидно редицата има точки на сгъстяване $\pm e^2, 0 \Rightarrow$ няма граница

Формулирайте и докажете теоремата за граница на произведение на две сходящи редици.

Нека $\lim_{n\to\infty}a_n=a, \lim_{n\to\infty}b_n=b\Rightarrow \ \$ За $\varepsilon_1>0$ съществува $N: \forall n>N$ е изпълнено

 $|a_n - a| \le \varepsilon_1, |b_n - b| \le \varepsilon_1.$ Да разгледаме $|a_n b_n - ab| = |a_n b_n + a_n b - a_n b - ab| = |a_n (b_n - b) + b(a_n - a)|$

Тогава $|a_n b_n - ab| \le |a_n| \cdot |b_n - b| + |b| \cdot |a_n - a| \le |a_n| \varepsilon_1 + |b| \varepsilon_1$

 $\{a_n\}_1^n$ има граница, следователно е сходяща и ограничена $\Rightarrow \exists A: |a_n| < |A|$

 $\Rightarrow |a_nb_n-ab| \le (|A|+|b|)\,\varepsilon_1$. Нека $\varepsilon = (|A|+|b|)\,\varepsilon_1$. Тогава за всяка положителна стойност на ε

съществува ε_1 и съответния индекс N, за който е изпълнено $|a_nb_n-ab|\leq \varepsilon \Rightarrow$ доказано

Формулирайте и докажете теоремата за граница на частно на две сходящи редици.

Аналогично с добавяне и изваждане на $\frac{a_n}{h}$

Формулирайте теоремата на Вайерщрас за непрекъсната функция.

Нека f е непрекъсната във всяка точка на крайния и затворен интервал [a;b]. Тогава f е ограничена и съществуват $x_{min}, x_{max} \in [a;b]$, такива че за всяко $x \in [a;b]$ е изпълнено $f(x_{min}) \leq f(x) \leq f(x_{max})$.

Довършете дефиницията: Казваме, че функцията f(x) клони към $+\infty$ когато x клони към $+\infty$, ако:

(Коши) За всяко $A \in \mathbb{R}$ съществува $B \in \mathbb{R}$, такова че за всяко x > B е изпълнено f(x) > A (Хайне) За всяка редица $\{x_n\}_1^\infty \to +\infty$ е изпълнено $\{f(x_n)\}_1^\infty \to +\infty$

Докажете, че двете са еквивалентни

Kowu o Xaйнe

Нека $f(x) \to \infty$ при $x \to +\infty$ и $\{x_n\}_1^\infty \to +\infty$. От условието на Коши следва, че за всяко $A \in \mathbb{R}$ съществува $B \in \mathbb{R}$, такова че за всяко x > B е изпълнено f(x) > A. Понеже $\{x_n\}_1^\infty \to +\infty \Rightarrow \exists N : \forall n > N \quad x_n > B$. Да разгледаме редицата $\{f(x_n)\}_1^\infty$. При n > N ще имаме $x_n > B \Rightarrow$ от условието на Коши $\Rightarrow f(x_n) > A \Rightarrow$ доказахме, че за произволна редица $\{x_n\}_1^\infty \to +\infty$ редицата от функционални стойности $\{f(x_n)\}_1^\infty$ също клони към безкрайност, т.е. условието на Хайне.

 $Xайне \rightarrow Kowu$

Нека $f(x) \to \infty$ при $x \to +\infty$, т.е. за всяка редица $\{x_n\}_1^\infty \to +\infty$ е вярно $\{f(x_n)\}_1^\infty \to +\infty \Rightarrow$ за всяко $A \exists N_f : \forall n_1 > N_f \ f(x_{n_1}) > A$. Нека $B = x_{n_1}$. Тогава $\{x_n\}_1^\infty \to +\infty \Rightarrow \exists N_x : \forall n_2 > N_x \ x_{n_2} > B \Rightarrow$ за всяко A съществува B такова че $x > B \Rightarrow f(x) > A$, т.е. условието на Коши.

ИЛИ (по-кратко и май по-вярно)

Да допуснем, че условието на Коши не е изпълнено, т.е. същестувува $A: \forall B(x>B\Rightarrow f(x)< A)$. Тогава за всяка редица $\{x_n\}_1^\infty\to\infty$ съществува $N_0(n>N_0\Rightarrow x_n>B)$. Но тогава в редицата $\{f(x_n)\}_1^\infty$ ще е вярно $n>N_0\Rightarrow f(x_n)< A\Rightarrow$ редицата $\{f(x_n)\}_1^\infty$ не клони към $\infty\Rightarrow$ противоречие с условието.

Нека f(x) е непрекъсната в $\mathbb{R}, \ \lim_{x \to -\infty} f(x) = L_1$ и $\lim_{x \to +\infty} = L_2$, като $L_1 < L_2$. Докажете, че

а) f(x) е ограничена в \mathbb{R}

От теоремата на Вайерщрас за непрекъсната функция \Rightarrow функцията е ограничена във всеки краен и затворен интервал. Понеже границите в $\pm \infty$ са числа \Rightarrow функцията е ограничена в $\mathbb R$

б) За всяко $L_1 < u < L_2$ съществува $x \in \mathbb{R}$, за което f(x) = u

Нека $\varepsilon: L_1 + \varepsilon < u < L_2 - \varepsilon \Rightarrow \exists A_1, A_2$ такива че

- 1) при $x \leq A_1$ $L_1 \varepsilon \leq f(x) \leq L_1 + \varepsilon$
- 2) при $x \ge A_2$ $L_2 \varepsilon \le f(x) \le L_2 + \varepsilon$
- $\Rightarrow f(A_1) \le L_1 + \varepsilon < u, \quad f(A_2) \ge L_2 \varepsilon > u \Rightarrow f(A_1) < u < f(A_2)$
- $\Rightarrow \exists x \in [A_1; A_2] : f(x) = u$ по теоремата за междинните стойности

Нека f(x) е непрекъсната в $[0,+\infty], \ \lim_{x\to +\infty} f(x) = L$ и f(0) > L. Докажете, че

а) f(x) е ограничена в $[0, +\infty]$

От теоремата на Вайерщрас следва, че функцията е ограничена във всеки краен и затворен интервал [0;a],a>0. Понеже границата в $+\infty$ е число, функцията е ограничена в $[0,+\infty]$.

б) f(x) има най-голяма стойност в $[0, +\infty]$

Пак от Вайерщрас + граница.

Нека f(x) е непрекъсната в $\mathbb R$ и $\lim_{x\to +\infty} f(x) = \lim_{x\to -\infty} f(x) = +\infty$. Докажете, че f(x) има

най-малка стойност в \mathbb{R} .

Вайерщрас + граница.

Довършете дефиницията: Функцията f(x) се нарича диференцируема в точката a, ако е дефинирана в *околност на а* и *съществува*

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Намерете всички точки, в които функцията $g(x) = \sqrt[3]{x} |\sin x|$ НЯМА производна.

Очевидно функцията е дефинирана навсякъде. Възможни точки, където няма производна, са $0, k\pi$.

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{\sqrt[3]{x} \sin x}{x} = 0.1 = 0$$

$$f(x) - f(0) = -\sqrt[3]{x} \sin x$$

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{-\sqrt[3]{x} \sin x}{x} = -0.1 = 0$$

$$\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 0 \Rightarrow f'(0) = 0 \Rightarrow \,$$
има производна в 0

$$\lim_{x \to k\pi^+} \frac{f(x) - f(k\pi)}{x - k\pi} = \lim_{x \to k\pi^+} \frac{\sqrt[3]{x} |\sin(x)|}{x - k\pi} = \lim_{x \to k\pi^+} \frac{\sqrt[3]{x} |\sin(x - k\pi)|}{x - k\pi} = \pm \sqrt[3]{k\pi}$$

$$\lim_{x \to k\pi^{-}} \frac{f(x) - f(k\pi)}{x - k\pi} = \lim_{x \to k\pi^{-}} \frac{\sqrt[3]{x} |\sin(x)|}{x - k\pi} = \lim_{x \to k\pi^{-}} \frac{\sqrt[3]{x} |\sin(x - k\pi)|}{x - k\pi} = \mp \sqrt[3]{k\pi}$$

Знаците на $\sin(x - k\pi)$ се различават защото при дясната граница $x > k\pi \Rightarrow x - k\pi > 0$, а при лявата $x < k\pi \Rightarrow x - k\pi < 0$. Щом лявата и дясната граница не съвпадат при $k\pi$, там няма производна.

Намерете всички точки, в които функцията $g(x) = |\sin x^2|$ НЯМА производна.

Намерете всички точки, в които функцията $g(x) = \sqrt[4]{|x|} |\sin x|$ НЯМА производна.

Намерете всички точки, в които функцията $g(x) = |\sin x^3|$ НЯМА производна.

Аналогично.

Докажете, че функцията

$$f(x) = \begin{cases} \frac{\sqrt[4]{1+x}-1}{x} & x>0\\ \frac{\ln{(1+\sin{x^2})}-3x+8}{32} & x\leq 0 \end{cases}$$
 има производна в точката $a=0$ и пресметнете $f'(0)$

Докажете, че f'(x) е непрекъсната в $(-1, +\infty)$

Формулирайте теоремата на Лагранж (за крайните нараствания).

Нека f е дефинирана в [a,b] и f има производна в (a,b). Тогава има точка $c \in (a,b)$: $f'(c) = \frac{f(b)-f(a)}{b-a}$

Формулирайте теоремата на Рол.

Нека f е дефинирана в [a,b], f има производна в (a,b) и f(a)=f(b). Тогава има точка a < c < b : f'(c) = 0.

Нека функцията $f(x):\mathbb{R}\to\mathbb{R}$ има производна във всяка точка. Докажете, че функцията е намаляваща в \mathbb{R} тогава и само тогава, когато $f'(x)\leq 0$ за всяко $x\in\mathbb{R}$

Излиза от
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Формулирайте теоремата на Лайбниц-Нютон.

Нека
$$f(x)$$
 е непрекъсната в $[a,b]$ и $x\in [a,b]$. Нека $F(x)=\int\limits_a^x f(t)dt$. Тогава $F(x)$ е непрекъсната в $[a,b]$ и $F'(x)=f(x)$ за всяко $x\in (a,b)$.

Формулирайте и докажете теоремата за смяна на променливите при определените интеграли.

Нека f(x) е непрекъсната в Δ , $\varphi(t)$ има непрекъсната производна в $[\alpha, \beta]$, като е изпълнено $\alpha \le t \le \beta \Rightarrow \varphi(t) \in \Delta$. Нека положим $a = \varphi(\alpha), b = \varphi(\beta)$ и $[a, b] \subseteq \Delta$. Тогава е изпълнено

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt$$

Доказателство: Нека F(x) е произволна примитивна на f(x) в Δ и нека $G(t) = F(\varphi(t))$. Тогава

$$G'(t) = f(\varphi(t))\varphi'(t) \Rightarrow \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = G(\beta) - G(\alpha) = F(b) - F(a)$$

Формулирайте и докажете теоремата интегриране по части при определените интеграли. Нека f, g имат непрекъсната производна в [a, b]. Тогава е изпълнено:

$$\int_{a}^{b} f(x)g'(x)dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} g(x)f'(x)dx$$

Доказателство: $(f(x)g(x))' = f'(x)g(x) + g'(x)f(x) \Leftrightarrow f(x)g'(x) = (f(x)g(x))' - f'(x)g(x)$

$$\int_{a}^{b} f(x)g'(x) = f(b)g(b) - f(a)g(a) - \int_{a}^{b} g(x)f'(x)dx$$