5- Introduction to Statistical Inference

Alex Sanchez, Miriam Mota, Ricardo Gonzalo and Santiago Perez-Hoyos

Statistics and Bioinformatics Unit. Vall d'Hebron Institut de Recerca

Readme

- License: Creative Commons
 Attribution-NonCommercial-ShareAlike 4.0 International
 License http://creativecommons.org/licenses/by-nc-sa/4.0/
- You are free to:
 - Share : copy and redistribute the material
 - Adapt: rebuild and transform the material
- Under the following conditions:
 - **Attribution**: You must give appropriate credit, provide a link to the license, and indicate if changes were made.
 - NonCommercial: You may not use this work for commercial purposes.
 - Share Alike: If you remix, transform, or build upon this work, you must distribute your contributions under the same license to this one

Outline

- The objectives of statistical inference
- Examples
- Point estimation. On incidence and prevalence
- Confidence intervals
- Sample size calculations

The objectives of Statistical Inference (I)

Taking the observed (measured) values of a group of samples. . .

we aim at determining the properties of the entire population.

The objectives of Statistical Inference (II)

Example

- Consider the data in the "osteoporosis.csv" dataset.
- It can be useful to provide information such as:
 - The percentage of menopausic women with osteoporosis
 - The mean bone density in menopausic or non-menopausic women
 - The existence of significance differences:
 - Observed % of osteoporosis vs "theoretical" population values
 - BUA in menopasuic vs non menopausic
- Answering these questions (and questions like these) is the main goal of Statistical Inference

Two types of statistical inference problems

ESTIMATION

- When we wish to learn some characteristics of our population, such as
 - The percentage of non osteopenic or menopausic women
 - The mean bone density in each of these groups

HYPOTHESIS TESING

- When we wish to check about some statement on some characteristic of the population or we wish to make some comparisons
 - Is it true that the mean bone density is smaller than 75 in menopausic
 - Can we state that non menopausic women have a higher bone density than menopausic?

Estimators: Aproximating the value of population parameters

- Numerical values calculated on a sample that we believe to be a good approximation of a certain real value (parameter) in the population.
- Intuitively, we work with many estimators, such as the mean or a computed percentage of a given sample, that we assume that are somehow characterizing a population.
- It is not always obvious to decide which is the best estimator for each parameter
- In order to decide which estimator we use we can rely on the properties of the estimators such as the bias or the precision (the variance) of the estimator.

Exercise

- Read the diabetes dataset. Convert characters into factors before continuing.
- Provide an estimate of
 - The distribution of a numerical variable.
 - a proportion of at least one categorical variable and
 - the mean value of at least one numerical variable.
- Could you have used different estimators?
- How would you decide?

How precise is an estimator?

- We all are familar with "forks" associated with voting results.
 - They usually start "wide" and tend to disappear as more votes are counted.
- Imagine you are given an estimate of 18% for the incidence of a certain disease.
- Is it a good estimate?
- Hard to know without more information
 - ullet 18 \pm 2 is probably useful
 - ullet 18 \pm 12 is probably too wide to be considered useful
- So given an estimator and a n estimation (a value) how can we provide a measure of how precise this estimation is?

The **Standard Error** of an estimator

- An obvious question when we choose an estimator is how precise it is to approximate the value of the population parameter.
- This can be answered using the standard error of the estimator
- The standard error is a great quantity :
 - It informs about the precision of our estimates
 - Helps build another type of estimators: confidence intervals
 - Helps find formulae to compute sample size for estimation

Some standard errors

Standard error of the sample mean

$$SEM = \frac{\hat{s}}{\sqrt{n}}$$

• Standard error of the sample proportion

$$SEP = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Confidence intervals

- Confidence intervals are based on standard errors
- Confidence interval for the mean

$$\overline{X} - t_{\epsilon/2} \frac{\hat{s}}{\sqrt{n}} \le \mu \le \overline{X} + t_{\epsilon/2} \frac{\hat{s}}{\sqrt{n}} = \overline{\mathbf{X}} \pm \mathbf{t}_{\epsilon/2} \cdot \mathsf{SEM}$$

Confidence interval for the proportion

$$\hat{p} - z_{\epsilon/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \leq \mu \leq \hat{p} + z_{\epsilon/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \widehat{\mathbf{p}} \pm \mathbf{z}_{\epsilon/2} \cdot \mathsf{SEM}$$