Infrastructure of Neural Network

Ehtisham Ur Rehman

ehtishamrehman@uetpeshawar.edu.pk

Contents

- Linear Regression with one Variable
- Hypothesis
- Cost Function
- Mathematical equation of Linear Regression

Linear Regression

- Linear Regression with one variable
- Cost Function
- Parameter Learning

Linear Regression with One Variable (1)

- Probably the most common problem type in machine learning
- Example : Predicting House Price

Linear Regression with One Variable (2)

• What is the price of a house whose size is 750 sq. feet?

Linear Regression with One Variable (1)

Training Set of Housing Prices

Size in feet² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178

Notations

- \circ m = Number of Training Examples
- \circ x's = input variables (also called features)
- o y's = output variables (also called target variable)

Linear Regression with One Variable (2)

Notations

- \circ m = Number of Training Examples
- \circ x's = input variables (also called features)
- o y's = output variables (also called target variable)

More Notations

- \circ (x,y) A single training example
- $(x^{(i)}, y^{(i)})$ i-th row in the training set
- $x^2 = 1416$
- $y^2 = 232$

Linear Regression with One Variable (3)

h maps x (size of the house) to y (price of the house)

Linear Regression with One Variable (4)

• How do we represent h?

- $\circ h_{\theta}(x) = \theta_0 + \theta_1 x$
- o y as linear function of x (straight line function)
- Linear Regression with one variable
- Univariate Linear Regression

Training Set of Housing Prices

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178

$$\bullet \ h_{\theta}(x) = \theta_0 + \theta_1 x$$

- θ_i : Parameters
- How to choose θ_i ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Consider the plot below of $h_{ heta}(x)= heta_0+ heta_1x.$ What are $heta_0$ and $heta_1$?

$$\bigcirc$$
 $\theta_0 = 0, \theta_1 = 1$

$$\bigcirc$$
 $\theta_0 = 0.5, \theta_1 = 1$

$$\bigcirc$$
 $\theta_0 = 1, \theta_1 = 0.5$

$$\bigcirc$$
 $\theta_0 = 1, \theta_1 = 1$

Idea

• Choose θ_1 and θ_2 so that $h_{\theta}(x)$ is close to y for our training example (x,y)

Cost Function (5)

$$\min_{\theta_0 \theta_1} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i)^2$$

- Find the values of θ_0 and θ_1 so that the average, the 1 over the 2m, times the sum of square errors between our predictions on the training set minus the actual values of the houses on the training set is minimized.
- So this is going to be my overall objective function for linear regression.

Cost Function Intuition (1)

Hypothesis

$$\circ h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters

$$\theta_0, \theta_1$$

Cost Function

$$0 \quad J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i)^2$$

Goal

$$\circ \min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$