Fahrzeugmechatronik I Aktoren

Prof. Dr.-Ing. Steffen Müller M. Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Gleichstrommaschine

Mathematisches Modell der GM - Zustandsraum

GM mit permanentmagnetisch erregtem Feld

Gleichstrommaschine Mathematisches Modell der GM - Laplaceraum

Prof. Dr.-Ing. S. Müller

Seite 4

Gleichstrommaschine

Nicht-ohmsche Verluste – Verlustmoment Mv

Ein teil des im Molov errengten Drehmomentes wind benotigt, um i innere Hemmisse " im Modor zu über winden

- > dagementung: My ≈ const.
- P Reibung Komundadon: Mr ≈ coust
- > Ventilation: Mr 2 n2
- De lumagnetisierung: My=const. (+usterescefferte)
- D Wirbelstrome: Mru

Praxis: My = Dev WR

Gleichstrommaschine

Strom- und Momentenkennlinie

Im stationoven beløvet (JA=0) giel

=b
$$y_A = \frac{1}{R} (y_e - y_{2H} \omega_R)$$
 Hought-
eles Gin-

unit WR=dhr (n in 4 60 min Fur ders am Rodon verfrigbare Moment gilt

M_K - Iturzschluss-brw. Arlant moment

Außerdem

Gleichstrommaschine

Strom- und Momentenkennlinie

Gleichstrommaschine

Einflussanalyse und experim. km-Ermittlung

Gleichstrommaschine

Leistungs- und Wirkungsgradkennlinie

Gleichstrommaschine Leistungs- und Wirkungsgradkennlinie

Prof. Dr.-Ing. S. Müller

Seite 10

Gleichstrommaschine Drehzahlregelung

Tes ergeben sich sount 3 Arten des Drehrahlregelung D Feld regelung -D Dety D Widerstandsregelung -D R D Spannungsregelung -S Ue Prof. Dr.-Ing. S. Müller

Seite 11

Vielen Dank für Ihre Aufmerksamkeit!