## Geometric Nontermination Arguments

Timo Bergerbusch

September 6, 2017

- Introduction
- Example
- Preliminaries
  - Integer Term Rewrite Systems (int-TRS)
  - Geometric Nontermination Argument (GNA)
  - Definitions
  - Reverse Polish Notation Tree (RPNTree)
  - Sat. Modulo Theorie (SMT)
- Geometric Nontermination
  - Derivation: STEM
  - Derivation: Guard Matrix/Constants
  - Derivation: Update Matrix/Constants
  - Derivation: Iteration Matrix/Constants
  - Derivation: SMT-Problem
- Verification of a GNA



- Introduction
- 2 Example
- Preliminaries
  - Integer Term Rewrite Systems (int-TRS)
  - Geometric Nontermination Argument (GNA)
  - Definitions
  - Reverse Polish Notation Tree (RPNTree)
  - Sat. Modulo Theorie (SMT)
- Geometric Nontermination
  - Derivation: STEM
  - Derivation: Guard Matrix/Constants
  - Derivation: Update Matrix/Constants
  - Derivation: Iteration Matrix/Constants
  - Derivation: SMT-Problem
- Verification of a GNA



### Introduction and Motivation

- software increase
- automatic assisted engineering ⇒halting problem
- AProVE



### Introduction and Motivation

- software increase
- automatic assisted engineering ⇒halting problem
- AProVE



- Introduction
- 2 Example
- Preliminaries
  - Integer Term Rewrite Systems (int-TRS)
  - Geometric Nontermination Argument (GNA)
  - Definitions
  - Reverse Polish Notation Tree (RPNTree)
  - Sat. Modulo Theorie (SMT)
- Geometric Nontermination
  - Derivation: STEM
  - Derivation: Guard Matrix/Constants
  - Derivation: Update Matrix/Constants
  - Derivation: Iteration Matrix/Constants
  - Derivation: SMT-Problem
- Verification of a GNA



## Example C-program

One example used throughout the presentation:

```
int main(){
    int a;
    int b=1:
    while (a+b>=4)
       a = 3 * a + b;
       b=2*b-5;
    }
10
```

- very basic C-program
- does it terminate?

## Example C-program

One example used throughout the presentation:

```
int main(){
2
     int a;
     int b=1:
     while (a+b>=4) {
       a = 3 * a + b;
       b=2*b-5;
    }
10
```

- very basic C-program
- does it terminate?

```
\Rightarrow No!
```

how can we prove this?

- Introduction
- 2 Example
- Preliminaries
  - Integer Term Rewrite Systems (int-TRS)
  - Geometric Nontermination Argument (GNA)
  - Definitions
  - Reverse Polish Notation Tree (RPNTree)
  - Sat. Modulo Theorie (SMT)
- 4 Geometric Nontermination
  - Derivation: STEM
  - Derivation: Guard Matrix/Constants
  - Derivation: Update Matrix/Constants
  - Derivation: Iteration Matrix/Constants
  - Derivation: SMT-Problem
- Verification of a GNA



# Integer Term Rewrite Systems (int-TRS)

#### int-TRS considered:

$$\begin{array}{ccc}
(1) & \overbrace{f_{\chi}} & \xrightarrow{f_{\chi}} & \overbrace{f_{y}} & (v_{1}, \dots v_{n}) : | : cond_{1} \\
f_{y}(\underbrace{v_{1}, \dots v_{n}}) & \xrightarrow{f_{y}} & \underbrace{(v'_{1}, \dots v'_{n})}_{(3)} : | : \underbrace{cond_{2}}_{(4)}
\end{array}$$

- (1) function symbol (no variables  $\Rightarrow$  start)
- (3) variables  $v'_i$  as linear updates of the variables  $v_j$
- (2) function symbol
- (4) a set of (in)-equations mentioning  $v_j$  and  $v'_i$

Reading: "rewrite  $f_y(v_1, ..., v_n)$  as  $f_y(v_1', ..., v_n')$  if cond holds"



# Geometric Nontermination Argument (GNA)

- Idea: Split program into two parts:
  - STEM: variable initialization and declaration

```
int a;
int b=1;
```

LOOP: linear updates and while-guard

```
while (a+b>=4) {
    a = 3*a+b;
    b = 2*b-5;
}
```

 apply the definition of a geometric nontermination argument by J. Leike and M. Heizmann

#### Example

The int-TRS of the example program would be:

$$\begin{array}{llll} & f_1 & \rightarrow f_2(1+3*v_1,-3): |: v_1>2 \&\& 8<3*v_1\\ & f_2(v_1,v_2) \rightarrow f_2(3*v_1+v_2,v_3): |: v_1+v_2>3 \&\&\\ & v_1>6 \&\& 3*v_1>20 \&\& 5+v_3=2*v_2 \&\& v_3<-10 \end{array}$$

The first rule represents the *STEM* Second rule represents the *LOOP* 

### Definition (Geometric Non Termination Argument)

A tuple of the form:

$$(x, y_1, \ldots, y_k, \lambda_1, \ldots, \lambda_k, \mu_1, \ldots, \mu_{k-1})$$

is called a *geometric nontermination argument* of size k for a program = (STEM, LOOP) with n variables iff all of the following statements hold:

(domain) 
$$x, y_1, \ldots, y_k \in \mathbb{R}^n$$
,  $\lambda_1, \ldots, \lambda_k, \mu_1, \ldots, \mu_{k-1} \geq 0$ 

(init) x represents the start term (STEM)

$$(point) A \begin{pmatrix} x \\ x + \sum_{i} y_{i} \end{pmatrix} \le b$$

(ray) 
$$A \begin{pmatrix} y_i \\ \lambda_i y_i + \mu_{i-1} y_{i-1} \end{pmatrix} \le 0$$
 for all  $1 \le i \le k$ 

Note:  $y_0 = \mu_0 = 0$  instead of case distinction

### Definitons: Matrices

### Definition (Guard Matrix, Guard Constants)

For  $1 \leq i, j \leq n$  and m the number of guards not containing "=": The Guard Matrix  $G \in \mathbb{Z}^{m \times n}$  is the matrix of coefficients  $a_{i,j}$  of a variable  $v_i$  within the j-th guard. The Guard Constants  $g \in \mathbb{Z}^m$  are the constant terms  $c_j$  within the j-th guard.

### Definitons: Matrices

### Definition (Guard Matrix, Guard Constants)

For  $1 \leq i,j \leq n$  and m the number of guards not containing "=": The Guard Matrix  $G \in \mathbb{Z}^{m \times n}$  is the matrix of coefficients  $a_{i,j}$  of a variable  $v_i$  within the j-th guard. The Guard Constants  $g \in \mathbb{Z}^m$  are the constant terms  $c_j$  within the j-th guard.

#### Definition (Update Matrix, Update Constants)

The *Update Matrix*  $U \in \mathbb{Z}^{n \times n}$  and *Update Constants*  $u \in \mathbb{Z}^n$  are analogously to the *Guard Matrix* and *Guard Constants*, considering the updates (right hand side) instead of the guards.

#### Reminder: int-TRS

3

$$f_1 o f_2(1+3*v_1,-3): |: v_1 > 2 \&\& 8 < 3*v_1$$
  
 $f_2(v_1,v_2) o f_2(3*v_1+v_2,v_3): |: v_1+v_2 > 3 \&\&$   
 $v_1 > 6 \&\& 3*v_1 > 20 \&\& 5+v_3 = 2*v_2 \&\& v_3 < -10$ 

#### Example (Guard Matrix, Guard Constants)

for the stated int-TRS the *Guard Constants G* and *Guard Constants g* for the loop are:

$$G = \begin{pmatrix} -1 & -1 \\ -1 & 0 \\ -3 & 0 \\ 0 & 2 \end{pmatrix} \text{ and } g = \begin{pmatrix} -4 \\ -7 \\ -21 \\ -6 \end{pmatrix}$$

#### Reminder: int-TRS

2

3

$$\begin{array}{lll} f_1 & \rightarrow f_2(1+3*v_1,-3): |: v_1>2 \&\& 8<3*v_1 \\ f_2(v_1,v_2) & \rightarrow f_2(3*v_1+v_2,v_3): |: v_1+v_2>3 \&\& \\ v_1>6 \&\& 3*v_1>20 \&\& 5+v_3=2*v_2 \&\& v_3<-10 \end{array}$$

### Example (Update Matrix, Update Constants)

for the stated int-TRS the *Update Matrix U* and *Update Constants u* are:

$$U = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$
 and  $u = \begin{pmatrix} 0 \\ -5 \end{pmatrix}$ 

### Definition (Iteration Matrix, Iteration Constants)

Let  $\mathbf{0}$  be a matrix of the size of G with only entry's 0 and I denote the identity matrix having the same dimension as U. Then are the *Iteration Matrix* A and *Iteration Constants* b defined as:

$$A = \begin{pmatrix} G & \mathbf{0} \\ U & -I \\ -U & I \end{pmatrix} \text{ and } b = \begin{pmatrix} g \\ -u \\ u \end{pmatrix}$$

#### Definition (Iteration Matrix, Iteration Constants)

Let  $\mathbf{0}$  be a matrix of the size of G with only entry's 0 and I denote the identity matrix having the same dimension as U. Then are the *Iteration Matrix* A and *Iteration Constants* b defined as:

$$A = \begin{pmatrix} G & \mathbf{0} \\ U & -I \\ -U & I \end{pmatrix} \text{ and } b = \begin{pmatrix} g \\ -u \\ u \end{pmatrix}$$

#### Sentence

If a geometric nontermination argument a for a program p exists, then p does not terminate.

# Reverse Polish Notation Tree (RPNTree)

- simple tree structure to handle only considered terms
- classes for variables, constants and arith. operations



## Sat. Modulo Theorie (SMT)

• Basic idea:

```
set of assertions: (in)-equations with variables \xrightarrow{SMT-solver} a sat. model or unsat. core
```

- sat. model: a value for every variable s.t. all assertions hold
- unsat. core: a (minimal) set of assertions that can't hold simultaneously

#### Example

Considering the following assertions:

$$x \le y$$
  $x > 5$   $x + y \le 20$   $y \ne 10$ 

A possible model would be  $m_1 = \{x = 6, y = 6\}.$ 

changing the third assertion to  $x+y \leq 10$ : no possible solution with unsat. core  $\{x \leq y, \ x>5, \ x+y \leq 10\}$ 

- - Integer Term Rewrite Systems (int-TRS)
  - Geometric Nontermination Argument (GNA)
  - Definitions
  - Reverse Polish Notation Tree (RPNTree)
  - Sat. Modulo Theorie (SMT)
- Geometric Nontermination
  - Derivation: STFM
  - Derivation: Guard Matrix/Constants
  - Derivation: Update Matrix/Constants
  - Derivation: Iteration Matrix/Constants
  - Derivation: SMT-Problem



Derivation: STEM Derivation: Guard Matriz Derivation: Update Matr Derivation: Iteration Ma

### Geometric Nontermination

Necessary steps for the derivation of a GNA:

- derive the STEM
- derive the Guard Matrix/Constants
- **1** derive the *Update Matrix/Constants*
- compute the Iteration Matrix/Constants
- add the criteria of a GNA as assertions to an SMT-solver
- o read of GNA (if exists)

Derivation: STEM
Derivation: Guard
Derivation: Update

: Guard Matrix/Constants : Update Matrix/Constants : Iteration Matrix/Constant : SMT-Problem

#### Derivation: STEM

Consider two different possibilities:

constant stem: 
$$f_x \to f_y(c_1, \dots, c_n)$$
: |: TRUE  $\Rightarrow$  read of values

#### Example

$$f_1 \to f_2(10, -3) \Rightarrow STEM = (10, -3)^T$$

variable stem: 
$$f_x \to f_y(c_1 + \sum_{i=1}^n a_{1,i}v_i, \dots, c_n + \sum_{i=1}^n a_{n,i}v_i) : | :$$

$$\bigwedge_{\text{guard } g} \sum_{i=1}^n g_{n,i}v_i \le c_m$$

$$\Rightarrow \text{create assertions and derive a model}$$

#### Example

$$f_1 \to f_2(1+3v_1,-3): |: v_1 > 2 \&\& 8 < 3v_1 \Rightarrow model  $m_1 = \{v = 3\} \Rightarrow STEM = (10,-3)^T$$$



## Derivation: Guard Matrix/Constants

```
conditional term given by the Symbolic Execution Graph r = \&\&(g_1, (\&\&(\dots, (\&\&(g_{n-1}, g_n))\dots)))
```

#### **Algorithm 1** derive set of guards

```
1: function COMPUTEGUARDSET(Rule r)
2:
       Stack stack \leftarrow r
       Set guards
3:
       while !stack.isEmpty() do
4:
5:
           item \leftarrow stack.pop
           if item is of the form \&\&(x_1,x_2) then
6:
               add x_1 and x_2 to stack
7:
           else
8:
               add item to guards
9.
       return guards
10:
```

- now we have  $G = \{g \mid g \text{ is a guard}\}$
- Problem: g could not be in the desired  $\varphi \leq c$  form.
- Even worse: g could declare new variables using "="
- Solution: bring every g in the desired form, by:
  - 1. filter equalities by substituting "new" variables
  - 2. normalizing ( $\leq$ ) rewrite <, >,  $\geq$  to  $\leq$
  - 3. normalizing (c) transfer only constant term to r.h.s.

```
1: function FILTEREQUALITIES(G)
         V_{left} = \{v \mid \text{the left hand side of the rule contains } v\}
 2:
         V_{right} = \{v \mid \text{the right hand side of the rule contains } v\}
 3:
         V_{sub} = V_{right} - V_{left}
 4:
         define substitution \theta = \{\}
 5:
 6:
         while V_{sub} \neq \emptyset do
              select s \in V_{sub}
 7:
              select g_s \in \{g \in G \mid g \text{ contains } " = "\}
 8:
 9:
              remove g_s from G
              rewrite g_s to the form s = \psi
10:
              \theta = \theta \{ s/\psi \}
11:
              for all g \in G do
12:
                  g = \theta g
13:
              remove s from V_{sub}
14:
         return G
15:
```

Derivation: STEM
Derivation: Guard Matrix/Constants
Derivation: Update Matrix/Constant
Derivation: Iteration Matrix/Constant

#### Example

From the example int-TRS we get using the decat. algorithm:

$$\{v_1 + v_2 > 3, \ v_1 > 6, \ 3 * v_1 > 20, \ 5 + v_3 = 2 * v_2, \ v_3 < -10\}$$

- ① We compute  $V_{left}=\{v_1,v_2\}$ ,  $V_{right}=\{v_1,v_2,v_3\}$  so  $V_{sub}=\{v_3\}$
- **2** Begin with  $\theta = \{\}$
- **3** Since obviously  $V_{sub}$  ≠ ∅ we select  $s = v_3$  and select  $g_s \Leftrightarrow 5 + v_3 = 2 * v_2$
- $g_s$  rewritten to the form  $s=\psi$  then follows with  $v_3=2*v_2-5$
- **6**  $G = \{v_1 + v_2 > 3, v_1 > 6, 3 * v_1 > 20, 2 * v_2 5 < -10\}$
- **O** Since  $V_{sub} = \emptyset$  return G



Derivation: STEM
Derivation: Guard Matrix/Constants
Derivation: Update Matrix/Constants
Derivation: Iteration Matrix/Constants

# normalization $(\leq)$

rewrite a guard  $g_i$  of the form  $g_i \Leftrightarrow \psi + c_{\psi} \circ c$ , where  $\circ \in \{<,>,\leq,\geq\}$  to the form  $\eta * \psi + \eta * c_{\psi} \leq \eta * c - \tau$  depending on  $\circ$ .

| 0      | $\eta$ | $\tau$ | $\eta * \psi + \eta * c_{\psi} \le \eta * c - \tau$ |
|--------|--------|--------|-----------------------------------------------------|
| <      | 1      | 1      | $\psi + c_{\psi} \leq c - 1$                        |
| >      | -1     | 1      | $-\psi-c_{\psi}\leq -c-1$                           |
| $\leq$ | 1      | 0      | $\psi + c_{\psi} \leq c$                            |
| $\geq$ | -1     | 0      | $-\psi-c_{\psi}\leq -c$                             |

 $\eta$  is the indicator of inverting the guard to convert  $\geq$  (>) to  $\leq$  (<)  $\tau$  is the possible subtraction of 1 to receive the  $\leq$  instead of a <.

Derivation: STEM
Derivation: Guard Matrix/Constants
Derivation: Update Matrix/Constants
Derivation: Iteration Matrix/Constants
Derivation: SMT-Problem

## normalization (c)

Subtract the term  $\eta * c_{\psi}$  on both sides: final form:  $\eta * \psi \leq \underbrace{\eta * c - \tau - 1 * \eta * c_{\psi}}_{\text{constant term}}$ 



Derivation: Guard Matrix/Constants

#### Example

Normalizing the guard 
$$g \Leftrightarrow 3 * v_1 > 20 \Leftrightarrow \underbrace{3 * v_1}_{v_0} + \underbrace{0}_{c_{\psi}} > \underbrace{20}_{c}$$

Looking up the row for  $\circ \Leftrightarrow >$ :

Result with 
$$\eta = -1$$
,  $\tau = 1$  in:  $-(3 * v_1) - (0) \le -20 - 1 \Leftrightarrow -3 * v_1 \le -21$ 

- ullet now every guard has the form  $arphi \leq c$
- deriving Guard Constants is very simple
- deriving Guard Matrix is read off the coefficients.
   (more detailed within the Update Matrix)
- ⇒ Update Matrix/Constants derived √

## Derivation: Update Matrix/Constants

- do not contain any (in-)equalities
- follow the form:  $c + \sum_{i=1}^{n} a_i v_i (\underline{\text{not }} v_i a_i)$
- Problem: can still contain new variables from the guards
   Solution: apply substitutions to the updates
- Problem: constant term can occur anywhere
   Solution: perform recursive search under certainty of two aspects:
  - 1 at most one constant term exists
  - 2 the constant term is not multiplied

Derivation: STEM
Derivation: Guard Matrix/Constants
Derivation: Update Matrix/Constants
Derivation: Iteration Matrix/Constants
Derivation: SMT-Problem

### Algorithm 2 Derivation of a coefficient

```
1: function GETCOEFFICIENT(query)
 2:
       if this == query then
           return 1
 3:
       else if this does not contain query then
 4.
 5:
           return 0
 6:
 7:
       if this represents PLUS then
           if left side contains query then
 8:
               return getCoefficient(query)
9:
10:
           else
               return getCoefficient(query)
11:
12:
       if this represents TIMES then
           if this.right == query then
13:
               return this.left.value
14:
```

Derivation: STEM
Derivation: Guard Matrix/Constants
Derivation: Update Matrix/Constants
Derivation: Iteration Matrix/Constants
Derivation: SMT-Problem



## Update Matrix/Constants & Iteration Matrix/Constants

- derived a coefficient for every variable and constant per update
- ⇒ Update Matrix/Constants √
  - Iteration Matrix/Constants given by:

$$A = \begin{pmatrix} G & \mathbf{0} \\ M & -I \\ -M & I \end{pmatrix} \text{ and } b = \begin{pmatrix} g \\ -u \\ u \end{pmatrix}$$

can be computed

⇒ Iteration Matrix/Constants √

Derivation: STEM
Derivation: Guard Matrix/Constants
Derivation: Update Matrix/Constants
Derivation: Iteration Matrix/Constants
Derivation: SMT-Problem

# SMT-Problem

- given A and b use a SMT-solver to dis-/prove existence of a GNA
- regarding the proof of the GNA:

#### Definition

 $\lambda_i$  is the *i*-th eigenvalue of U.

- Problem:  $\mu_i * y_i$  is non-linear can approach this problem in 2 ways:
  - use quantifier free non-linear integer arithmetic
  - 2 iterate over all  $\mu$ 's



Jerivation: STEM Derivation: Guard Matrix/Constants Derivation: Update Matrix/Constant: Derivation: Iteration Matrix/Constan

Derivation: SMT-Problem

### Reminder: Domain Criteria

(domain) 
$$x, y_1, \ldots, y_k \in \mathbb{R}^n$$
,  $\lambda_1, \ldots, \lambda_k, \mu_1, \ldots, \mu_{k-1} \geq 0$ 

⇒ adds no assertion

Reminder: Domain Criteria

(domain) 
$$x, y_1, \ldots, y_k \in \mathbb{R}^n$$
,  $\lambda_1, \ldots, \lambda_k, \mu_1, \ldots, \mu_{k-1} \geq 0$ 

⇒ adds no assertion

#### Reminder: Initiation Criteria

(init) x represents the start term (STEM)

⇒ adds no assertion

### Reminder: Point Criteria

(point) 
$$A\left(\begin{matrix} x \\ x + \sum_{i} y_{i} \end{matrix}\right) \leq b$$

- $y_i$  unknown  $\Rightarrow$  create  $s_i = x_i + \sum_{i=1}^n y_{j,i}$

$$\Leftrightarrow \begin{pmatrix} G & 0 & \dots & 0 \\ a_{1,1} & \dots & a_{1,n} & -1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,n} & 0 & \dots & -1 \\ -a_{1,1} & \dots & -a_{1,n} & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ -a_{n,1} & \dots & -a_{n,n} & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ s_1 \\ \vdots \\ s_n \end{pmatrix} \leq \begin{pmatrix} g \\ -u_1 \\ \vdots \\ -u_n \\ u_1 \\ \vdots \\ u_n \end{pmatrix}$$

$$\begin{pmatrix} a_{1,1} * x_1 & \dots & a_{1,n} * x_n & -1 * s_1 & \dots & 0 * s_n \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} * x_1 & \dots & a_{n,n} * x_n & 0 * s_1 & \dots & -1 * s_n \\ -a_{1,1} * x_1 & \dots & -a_{1,n} * x_n & 1 * s_1 & \dots & 0 * s_n \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ -a_{n,1} * x_1 & \dots & -a_{n,n} * x_n & 0 * s_1 & \dots & 1 * s_n \end{pmatrix} \leq \begin{pmatrix} -u_1 \\ \vdots \\ -u_n \\ u_1 \\ \vdots \\ u_n \end{pmatrix}$$

 $\Rightarrow$  add guard assertion, *n* assertions of equality and addition assertion for every  $s_i$ 

### Reminder: Ray Criteria

(ray) 
$$A \begin{pmatrix} y_i \\ \lambda_i y_i + \mu_{i-1} y_{i-1} \end{pmatrix} \le 0$$
 for all  $1 \le i \le k$ 

$$i = 1$$
:  $\Rightarrow \mu_{i-1}y_{i-1} = 0 \Rightarrow A\begin{pmatrix} y_1 \\ \lambda_1 y_1 \end{pmatrix} \leq 0$ 

add assertion with  $y_{1,j}$   $1 \le j \le n$  as new variables

i > 1: with  $\lambda_i$  as the i-th eigenvalue add assertion with  $y_{i,i}$   $1 \le i \le n$  and  $\mu_i$  as new variables

> $\Rightarrow$  all necessary assertions stated  $\checkmark$ let SMT-solver derive a GNA (if exists)

### Reminder: Derived matrices and values

$$A = \begin{pmatrix} -1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ -3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 3 & 1 & -1 & 0 \\ 0 & 2 & 0 & -1 \\ -3 & -1 & 1 & 0 \\ 0 & -2 & 0 & 1 \end{pmatrix} \quad b = \begin{pmatrix} -4 \\ -7 \\ -21 \\ -6 \\ 0 \\ 5 \\ 0 \\ -5 \end{pmatrix} \quad \begin{array}{l} \lambda_1 = 3, \\ \lambda_2 = 2 \\ x = (10, -3)^T \end{array}$$

### Example (Assertions I: Point Crit.)

- add guards. I.e.:  $-10 (-3) \le -4$
- add sum rules. I.e.:  $30 3 s_1 = 0$
- add  $s_1 = y_{1,1} + y_{2,1}$  and  $s_2 = y_{1,2} + y_{2,2}$

### Reminder: Derived matrices and values

$$A = \begin{pmatrix} -1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ -3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 3 & 1 & -1 & 0 \\ 0 & 2 & 0 & -1 \\ -3 & -1 & 1 & 0 \\ 0 & -2 & 0 & 1 \end{pmatrix} \quad b = \begin{pmatrix} -4 \\ -7 \\ -21 \\ -6 \\ 0 \\ 5 \\ 0 \\ -5 \end{pmatrix} \quad \begin{array}{c} \lambda_1 = 3, \\ \lambda_2 = 2 \\ x = (10, -3)^T \\ \end{array}$$

### Example (Assertions II: Ray Crit.)

i=1: add for instance 
$$-y_{1,1}-y_{1,2} \le 4$$
,  $3*y_{1,1}+y_{1,2}-3*y_{1,1} \le 0$ 

i>1: add for instance 
$$-y_{2,1} - y_{2,2} \le 4$$
,

$$3 * y_{2,1} + y_{2,2} - 1 * (2 * y_{2,1} + \mu * y_{1,1}) \le 0$$

- Introduction
- Example
- Preliminaries
  - Integer Term Rewrite Systems (int-TRS)
  - Geometric Nontermination Argument (GNA)
  - Definitions
  - Reverse Polish Notation Tree (RPNTree)
  - Sat. Modulo Theorie (SMT)
- Geometric Nontermination
  - Derivation: STEM
  - Derivation: Guard Matrix/Constants
  - Derivation: Update Matrix/Constants
  - Derivation: Iteration Matrix/Constants
  - Derivation: SMT-Problem
- Verification of a GNA



# Verification of a GNA

- received a GNA form the SMT-solver
- want to verify the correctness of the SMT-solver's model
- ⇒ recalculating of a GNA with the matrices and given values

### Example (Validating a GNA I)

The *SMT-solver* gave us: 
$$y_1 = \begin{pmatrix} 9 \\ 0 \end{pmatrix}$$
,  $y_2 = \begin{pmatrix} 8 \\ -8 \end{pmatrix}$ ,  $\mu_1 = 0$ 

(domain) obviously true ✓

# Verification of a GNA

- received a GNA form the SMT-solver
- want to verify the correctness of the SMT-solver's model
- $\Rightarrow$  recalculating of a GNA with the matrices and given values

# Example (Validating a GNA I)

The *SMT-solver* gave us: 
$$y_1 = \begin{pmatrix} 9 \\ 0 \end{pmatrix}$$
,  $y_2 = \begin{pmatrix} 8 \\ -8 \end{pmatrix}$ ,  $\mu_1 = 0$ 

(domain) obviously true ✓

(init) checked against the STEM ✓

# Verification of a GNA

- received a GNA form the SMT-solver
- want to verify the correctness of the SMT-solver's model
- ⇒ recalculating of a GNA with the matrices and given values

# Example (Validating a GNA I)

The *SMT-solver* gave us: 
$$y_1 = \begin{pmatrix} 9 \\ 0 \end{pmatrix}$$
,  $y_2 = \begin{pmatrix} 8 \\ -8 \end{pmatrix}$ ,  $\mu_1 = 0$ 

(domain) obviously true ✓

(init) checked against the STEM ✓

(point) 
$$A \begin{pmatrix} 10 \\ -3 \\ 10+9+8 \\ -3+0+(-8) \end{pmatrix} \le b \Leftrightarrow A \begin{pmatrix} 10 \\ -3 \\ 27 \\ -11 \end{pmatrix} \le b \checkmark$$

200

### Example (Validating a GNA II)

The *SMT-solver* gave us: 
$$y_1 = \begin{pmatrix} 9 \\ 0 \end{pmatrix}$$
,  $y_2 = \begin{pmatrix} 8 \\ -8 \end{pmatrix}$ ,  $\mu_1 = 0$ 

$$i = 1: A \begin{pmatrix} 9 \\ 0 \\ 3 * 9 \\ 3 * 0 \end{pmatrix} \le 0 \Leftrightarrow A \begin{pmatrix} 9 \\ 0 \\ 27 \\ 0 \end{pmatrix} \le 0 \checkmark$$

 $\Rightarrow$  the derived GNA is applicable  $\Rightarrow$  nontermination is proven

### Example (Validating a GNA II)

The *SMT-solver* gave us: 
$$y_1 = \begin{pmatrix} 9 \\ 0 \end{pmatrix}$$
,  $y_2 = \begin{pmatrix} 8 \\ -8 \end{pmatrix}$ ,  $\mu_1 = 0$ 

$$i = 1: A \begin{pmatrix} 9 \\ 0 \\ 3*9 \\ 3*0 \end{pmatrix} \le 0 \Leftrightarrow A \begin{pmatrix} 9 \\ 0 \\ 27 \\ 0 \end{pmatrix} \le 0 \checkmark$$

$$i > 1$$
:  $A \begin{pmatrix} 8 \\ -8 \\ 2*8+0*9 \\ 2*(-8)+0*0 \end{pmatrix} \le 0 \Leftrightarrow A \begin{pmatrix} 8 \\ -8 \\ 16 \\ -16 \end{pmatrix} \le 0 \checkmark$ 

 $\Rightarrow$  the derived GNA is applicable  $\Rightarrow$  nontermination is proven