THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

SSIFIED

d Servicess Technical Information Agency

ARLINGTON HALL STATION ARLLINGTON 12 VIRGINIA

1RD

ONI

WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA
FOR ANY PURPOSE E OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED ENT PROCUREMENTATION THE U.S. GOVERNMENT THEREBY INCURS INSIBILITY, NOR ANYNY OBLIGATION WHATSOEVER; AND THE FACT THAT THE ENT MAY HAVE FORDRULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE WINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY ION OR OTHERWISE E AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER RECORPORATION. OF COMPUTATION AND DICETS OR DERMISSION TO MANUFACTURISM. R CORPORATION, OF OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE LL ANY PATENTED D INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

ASSIFICATION CHANGED TO UNCLASSIFIED

AUTHORITY OF ASTIA RECLASS. BULLETIN 12

1 Sept. 58

Signed

. RDR

INFORMATION

THE MUNICIPAL UNIVERSITY OF WICHITA

PRELIMINARY REPORT ON WIND-TUNNEL TESTS OF THE ONE SWEPT-WING RESEARCH MODEL

by Richard E. Wallace

Aerodynamic Report No. 062

for the Office of Naval Research Contract N-onr 201(01)

> October 1952 University of Wichita School of Engineering Wichita, Kansas

INFORMATION 4-01928 1 54AA 56260

NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

INFULLIE

PRELIMINARY REPORT ON WIND-TUNNEL TESTS OF THE ONR SWEPT-WING RESEARCH MODEL

by Richard E. Wallace

Aerodynamic Report No. 062

for the Office of Naval Research Contract No. Nonr-201(01)

October 1952

University of Wichita School of Engineering Wichita, Kansas

54A

54AA 56260

C4-01926

INFORMATION

PRELIMINARY REPORT ON WIND-TUNNEL TESTS OF THE ONR SWEPT-WING RESEARCH MODEL

SUMMARY

Test results for a semispan, reflection-plane, quarter-scale model of the Douglas F3D-3 swept wing (CNR RM-4) are presented as tuft studies, three component curves and pressure distributions. A complete angle of attack range from -4 degrees to +30 degrees was used on the 36-degree swept wing for the plain configuration and also with the 25 percent chord, slotted flap deflected at angles to 45 degrees.

The information given herein is routine in nature for a swept wing and is the primary step in a detailed analysis of the wing pressure distribution, boundary layer and circulation as affected by outboard blowing slots. A maximum lift coefficient of 1.00 was measured for zero flap deflection at an attack angle of 20 degrees and 1.28 for 45—degree flap deflection at 11—degree angle of attack. Integration of the pressure profiles over the wing surface checked very closely the lift and drag curves as measured directly by the tunnel balance system. Also, close correlation was found between the tuft pictures, the force data and the pressure distributions, which indicated that separated areas were directly related to the force and pressure deviations. The static longitudinal instability associated with the tip stall caused by spanwise boundary—layer growth was pronounced and

NEOLINE CA-01006

INFORMATION

proved to be the main area for concern regarding high lift techniques from boundary-layer and circulation control.

LIST OF FIGURES

- Model planform sketch with pressure tap stations and a typical wing section.
- 2a) Front view of the model mounted in the tunnel.
- 2b) Completed model mounted on the end-plate rigging.
- 26) External balance rigging, angle-of-attack mechanism, and pressure tubes.
- 2d) Close-up view showing flap juncture and brackets and the pressure tap buttons.
- 3) Tuft pictures of the plain wing configuration, $\delta_{\rm F}=0^{\circ}$.
- 4) Tuft pictures of the flapped wing configuration, $\delta_p = 45^{\circ}$.
- 5) Three-component force ourses for the various flap angles.
- 6) Lift-drag polar curves for the various flap angles.
- 7) Lift increment as a function of flap angle.
- 8) Comparison of measured force-coefficient curves with the integrated pressure distribution force coefficients.
- 9) Center of lift as a function of test angle of attack.
- 10a) Spanwise lift distribution.

3

ă,

- 10b) Spanwise drag distribution.
- 11) Variation of the integrated local-normal-force coefficient with angle of attack and spanwise position.
- 12) Variation of Local-normal-force coefficient profiles along the semispan at an angle of attack with zero flap de-

INFO

CONFIDENTIAL INFORMATION

- 13) Variation of local-normal-force coefficient profiles along the semispan at an angle of attack with forty-five degrees flap deflection.
- 14) Isobars on the wing upper surface with $\delta_{\mathbf{F}} = 0^{\circ}$.

1

- 15) Isobars on the wing upper surface with $\delta_{\rm F}=15^{\circ}$.
- 16) Isobars on the wing upper surface with $6_F = 30^\circ$.
- 17) Isobars on the wing upper surface with $\delta_{\rm F}=45^{\rm o}$.
- 18) Pressure-coefficient values for 0° flap deflection.
- 19) Pressure-coefficient values for 150 flap deflection.
- 20) Pressure-coefficient values for 300 flap deflection.
- 21) Pressure-coefficient values for 45° flap deflection.
- 22) Centers of pressure for the local normal force profiles.

CONFIDENCIAL

4

CONFIDENTIAL INFORMATION

LIST OF APPENDICES

Appendix A. Coordinates of the airfoils and flap nose and location of the flap hinge points.

Appendix B. Discussion of the location of the aerodynamic center.

COMAL

CONFIDENTIAL INFORMATION

INTRODUCTION

As a basis for comparison with a similar wing having a system of boundary-layer and circulation control (hereinafter called EL-5 control) the described test program was conducted to gain information about the 36-degree swept wing with 6-series sections. The tests gave an insight to the importance of controlling the spanwise boundary-layer growth for the dual purpose of improving the longitudinal-stability and the tip-flow or stall characteristics. It is well to note here that swept-wing boundary layer theory is well established and proved experimentally for swept wings (Refs. 1 and 2).

Since good success has been achieved both experimentally and practically with boundary-layer and circulation control of thick-straight wings, the proposal was made for similar application to thin-swept wings (Refs. 3 and 4).

This required adequate knowledge of swept wing boundary-layer characteristics or more importantly the pressure distributions. The art of theoretically predicting pressure distributions, lift distributions, etc., is not adequate to date for analyzing in detail the effects of flow discontinuities due to suction or pressure slots on a finite span swept wing. Therefore, these results were desired for direct comparison with exactly the same wing equipped with an outboard hinged-leading edge and an aileron-blowing slot on the trailing edge,

CONFIDENTIAL INFORMATION

Also, they shall serve to check the theoretical work conducted in an effort to understand the measured aerodynamic characteristics with the aim of predicting idealized limits of BL-C control for a swept wing.

These tests are concerned only with the two forces lift and drag and the pitching moment.

NOMENCLATURE

S = wing area, square feet

b = wing span measured perpendicularly to the plane of symmetry, feet

c = wing chord measured parallel to the plane of symmetry, feet

c = wing root chord, feet

c+ = wing tip chord, feet

= wing mean aerodynamic chord, feet

 λ = taper ratio, tip chord divided by root chord, c_t/c_0

σ = sweep angle of quarter-chord line, positive for sweepback, degrees.

 $C_{\gamma_{ij}}$ = wing lift coefficient, total lift/qS

c₁ = section lift coefficient, section lift/qS

CD = wing drag coefficient, total drag/qS

c_d = section profile drag coefficient, section profile
drag/qS

 C_{M} = wing pitching moment about $\overline{c}/4$, total moment/qsc

c = section pitching moment, section moment/qSc

 $c_{
m K}$ = section normal force coefficient, normal force/qS

 c_c = section chordwise force coefficient, chordwise

force/qs COMMAN

CONTINUE

 $q = free-stream dynamic pressure (<math>\frac{1}{2}\rho V^2$), pounds per square foot

ρ = air density, slugs per cubic foot

4

Y = free air stream velocity, feet per second

p = static pressure, pounds per square foot

po = free-stream static pressure, pounds per square foot

P = pressure coefficient, $(p-p_0)/q$

x = longitudinal coordinate in the wing plane positive
forward, feet

y = lateral coordinate in the wing plane positive to the right, feet

 $\delta_{\rm p}$ = angle of flap deflection measured from the chord line

 α_{t} = test angle of attack based on the root section

 Δ = incremental change in the indicated symbol value

max = subscript denoting maximum value for the configuration

CORRECTIONS

In this data no corrections have been applied for angle of flow, image, downwash, etc. This was not done for two reasons. First, for the balance data to be checked by the pressure distributions, the uncorrected data must be used. Also, since the tests ultimately are to be compared to additional wind-tunnel tests, the corrections would be superfluous in the immediate problem. Second, the time was not available to go through the usual lifting-line theory correction computations using an infinite array of images.

It is contemplated that the force data will be corrected for the tunnel walls in the final report, although as mentioned before the corrections were not important here.

APPARATUS

The one-fourth scale model of the Douglas F3D-3 wing was tested in the University of Wichita ?- by 10-foot wind tunnel which is described in reference 5. The model was constructed of laminated mahogany and finished with sanding sealer to produce an aerodynamically smooth surface. The pressure taps were in plastic buttons imbedded in the model surface with plastic tubing connected as lead-outs to the manometer board. Details of the model and its rigging are shown in the photographs of figure 2.

A straight taper was used from the root airfoil section NACA 63-011.64 to the theoretical tip section NACA 63-008. The root section thickness came as the result of the fuselage-wing juncture at that point. Thus, the tested wing was the wing outside of the fuselage, i.e., the true aerodynamic lifting surface. Neither twist nor dihedral was used in building or mounting the model. The sweep angle was 36 degrees measured through the root and tip sections quarter-chord points.

The slotted flap was 46 percent of the model span in length and was rotated about a point 8 percent of the local chord below the chord line and 80.6 percent of the local

-

chord aft of the leading edge. Coordinates of the basic airfoil sections, flap nose and the wing tip are given in Appendix A. The flap was moved in 15-degree increments to 45 degrees maximum deflection by changing the steel brackets. The model had no aileron.

The model was mounted on two fittings, with the center of rotation located 24.37 inches aft of the root-section leading edge. On the end plate a ring mount was used and in the wind stream a single strut was attached in a submerged trunnion fitting.

A summary of the model physical dimensions is given in figure 1 and the pertinent data as follows:

Wing semispan = 65.75* (Root 9.25* from centerline fuselage)

Root chord = 36.70*

Tip chord = 13.25*

Wing area = 11.36 ft.²

Aspect ratio = 5.28

Sweep angle of root-to-tip quarter-chord line = 360

Root section NACA 63-011.64

Tip section NACA 63-008

Centerline fuselage section NACA 63-012

Flap span = 46 o/o model span

Model scale = one-quarter full scale

COMINECTION

The wind-tunnel tests of the swept wing model were all run at a dynamic pressure of 26.3 pounds per square foot which corresponded to an airspeed of 90.6 knots or 104 mph. and an effective Reynolds number of 2.70x106 based on the wing-mean-aerodynamic chord. The wind-tunnel turbulence factor is 1.33.

Y

Tests for lift, drag and pitching moment and all the pressure distribution data were run through an attack angle range of -4 to +30 degrees with flap settings in 15-degree increments to 45 degrees. Tuft studies of the stall development were conducted at the same dynamic pressure, but the angles of attack were limited to a range of 6 to 18 degrees for the two flap settings of 0 and 45 degrees.

DISCUSSION OF TEST RESULTS

To obtain a pictorial exposition of the surface flow conditions on the wing near and at the stall point a series of photographs were taken for zero and forty-five degree flap deflections. As outlined previously, the photographs were taken at one degree intervals between 6 and 16 degree angles of attack and also at 18 degrees. The results are presented as figures 3 and 4.

The clean configuration, i.e., no flap deflection, started a noticeable spanwise flow at an attack angle of

CONFIDENTIAL

9 degrees which developed into a tip separation at 10 degrees. Further increases in angle of attack extended the separated area inboard in a gradual manner so that the flow on one—third of the wing separated at 11 degrees, half at 14 degrees and three-quarters at 16 degrees. Later in the discussion the correlation of the force curves to the pressure distributions is noted.

With a full flap deflection of 45 degrees the flap remained unstalled throughout the depicted range of attack angles. Stall or separation of the wing surface flow in this configuration started at 7 degrees angle of attack and progressed to one-third of the area at 8 degrees, half at 10 degrees and three-quarters at 15 degrees. (Note the delay in the stall progression in the area ahead of the slotted flap from 9 to 13 degrees angle of attack.) The flapped wing started its stall at a lower angle of attack than the unflapped wing so that the area ahead of the flap was slightly more stable. It would appear that 'dams' might prove beneficial in increasing the effectiveness of an aileron on such a wing. This is because the spanwise thickening of the boundary layer induces separation of the flow at a low angle-of-attack.

.

Force curves for the wing are presented in figures 5 and 6. These data were not corrected for wind-tunnel wall effects, strut interference, or the tunnel wall boundary-layer as previously noted. The pitching moments were

CONFIDENCE

transferred from the model pivot point to the calculated aerodynamic center quarter-chord point. Location of the aerodynamic center is discussed in appendix B. It was assumed that the remaining pitching-moment curve slope could be erased by appropriate corrections due to the tunnel walls.

The force curves show the typical types of aerodynamic characteristics for a tapered swept wing. A gradual
stall was started at a low angle of attack with the drag
rise quickly assuming a linear relation to the angle of attack.
In every case with the flaps deflected the drag rise was coincident with the break in the lift curve. Similar correlation
was evident in the tuft studies and the pressure distribution
profiles along the semispan.

The curves show that the drag increment caused by flap deflection was not proportional to the deflection angle at the lower angles of attack, but became linearly related to the flap deflection after the stall started and had caused the force curves to break. The lift curve increments show exactly the opposite effects, being linearly related to the flap deflection below the force curve breaks. Increments in the pitching-moment curves due to the flap were independent of the force curve breaks. This was surprising because of the difference in the pressure distributions for the various flap settings and the manner in which the center of lift moved along the wing span, especially after the stall. Longitudinal instability at the stall was not too severe, but

amounted to about $\Delta C_M = +0.10$ over a ten degree angle of attack range beyond the stall. Such a shift in the moment curve appeared for all flap angles.

1

Slopes of the lift curves decreased slightly with increased flap deflections from 0.0678 with zero flap deflection to 0.0623 per degree with a full flap deflection of 45 degrees. The slope of the pitching moment curves was nearly constant for all flap angles at a value of 0.0053 per degree.

A comparison of the flap effectiveness at a low angle of attack with that at maximum lift coefficient is presented as figure 7. The increments of lift at $C_{l_{max}}$ are about 0.4 of those at the low angles of attack, i.e., up to eight degrees. Also, the curve for the maximum lift coefficient increment is slightly curved with decreasing slope for the higher flap deflections while the other is a straight line.

The next figure, 8, demonstrated a comparison of the measured results from the wind-tunnel balances (uncorrected) to the integrated values from the pressure distributions. At the low angles of attack the behavior of the two curves is much as would be expected with the lift curves identical and the drag curves differing by the amount of viscous drag. Beyond the stall angle-of-attack the lift curve from the integrated data is somewhat higher than the measured-value curve. Some of the difference could have been caused by accumulated experimental error, but this would seem unlikely since the trend is consistent for the last three points.

The drag curves differ by an amount due to the viscous drag which plays a less important part of the total drag as the angle of attack is increased. In general, it was felt that the correlation between the two methods was satisfactory.

Variations of the center of lift on the semispan model are presented in figure 9. As an average value over the useable flight range of attack angles, it appears reasonable to use the value of 0.525 for 2y/b as compared to the mean aerodynamic center location of 0.416.

Figures 10a to 10d show the integrated results of the normal force coefficient profile plots for the case of zero flap deflection. They demonstrate both the section and weighted values of lift and drag coefficients as distributed across the semispan. The drag curves show the high drag near the tip and also the lower drag area inboard. These extremes may be directly traced back to the tuft studies as being related to the separated areas.

A more graphic picture of the lift distribution is presented in figures lla to lld. These three-dimensional composite graphs show the spanwise normal-force coefficient as a function of the angle of attack. Here again is shown the strong tendency of the wing tip to lift more than the inboard section and then stall so that the center of lift shifts toward the wing root. Such a procedure may be seen in all four of the figures with the different flap deflections. For increasing flap deflections another trend

COMPIDE AL INFORMATION

may be noted in the seea shift caused by the flap, which in turn was accompanie by a higher lift value on the tip.

0

These curves were plotted on a spanwise axis corresponding to the entire semispan including the fuselage area. While the spanwise station lines are the same as in the remainder of the figures, their values on the scale have different values. Also, the indicated uncorrected values determined from the balances are for the outboard 87.8 percent of the semispan, i.s. the area outside of the fuselage.

The next series of figures, 12 and 13, show the spanwise variation of the normal force coefficient profiles. These are the profiles which were integrated to give the section normal force coefficients of figure 11. Due to the physical limitation on the number of pressure taps on the nose of the model, the maximum pressure coefficient as indicated does not in all cases actually represent the true peak pressure coefficient value.

Here also may be noted the essential characteristics of a tapered swept wing. At the root of the wing the profile is weaker and grows stronger as the tip is approached. To the point of stall all the profiles are similar, but at the stall the shift of the peak pressure coefficients is towards the root of the wing. The highest pressure coefficient measured was near the root of the wing at an angle of attack of 16 degrees, its value being -7.0. No noticeable differences occurred between the clean and flapped configurations

CONFIDERAL ON

in these two figures that was not basically evident from the other presentations. However the stall progression, flap not stalling through the useable angle of attack range, and shift of the center of lift inboard are again all clearly shown.

Figures 14 through 17 present the isobars on the wing upper surface for the range of flap deflections at the indicated attack angles. These few plots show essentially the same information as the normal-force profiles of figures 12 and 13. The most noticeable characteristic in these figures is the distinct loss of linearity of the lines toward the tip as separation occurs. This is especially well defined in the series of sketches for zero flap deflection and the angles of attack 8, 12 and 16 degrees.

CONCLUSIONS

A reflection-plane quarter-scale model of the Douglas F3D-3 swept wing was tested to obtain its basic traits. These test results, presented as force and pressure-distribution data, showed the tip stall from spanwise boundary-layer flow to be the primary area for concern. The tuft study, force data and pressure distributions all agreed very closely on the separation or stall phenomenon of this wing. While a certain degree of control could be exerted on the boundary growth by fences, the desire for such control only at high lift coefficients lends itself more appropriately to BL-C control which is the second phase of the test program.

LIST OF REFERENCES

- 1) Altman, John M. and Hayter, Nora-Lee F.: A Comparison of the Turbulent Boundary-layer Growth on an Unswept and a Swept Wing. NACA TN 2500, September 1951.
- 2) Kuethe, A. M.; McKee, P. B.; and Curry, W. H.:
 Measurements in the Boundary Layer of a Yawed Wing.
 TN 1946, September 1949.
- 3) Waring, H. F. and Razak, K.: Flight Test Performance Report, Cessna Model 309. Cessna Aircraft Co. Report No. 1309-3, July 2, 1952.
- 4) Razak, Kenneth; Razak, Virgil and Bondie, R. J., Jr.:
 Wind-Tunnel Investigation of a method of Boundary-Layer
 Control as Applied to a Reflection-Plane Model at FullScale Reynolds Number. University of Wichita Engineering
 Report No. 032, June 1951.
- 5) Razak, Kenneth: The University of Wichita 7- by 10-foot Wind Tunnel. Engineering Report No. 022, April 1950.
- 6) Abbott, Ira H. and VonDoenhoff, Albert E.: Theory of Wing Sections. McGraw-Hibl Book Company, 1949.
- 7) DeYoung, John: Theoretical Additional Span Loading
 Characteristics of Wings with Arbitrary Sweep, Aspect
 Ratio, and Taper Ratio. NACA TN 1491, December 1947.

L. E. radius: 1,087

E. radius: 0.631

CONFIDENCE AL INFORMAL ON

APPENDIX A

	in percent	surface	Ordinate	0	•			-2,102	•	•	•		-5,342												•	-1.274	707	•	
NACA 631~012	tes given chord)	Lower s	Station	0	ហ	. 75	•	ය ව	•	•	10	75	80	25	30	35	40	45	20	55	09	65	70	75	80	82	90	00 00 1	207
	and ordina of airfoil	surface	Ordinate	0	. 985	7	ហ្វ	٦.	တ္	ល	Ç	£.	.	-	တ္	o.	က္	~	.	ರ್	4	യ	ಭ	ທຸ	1,902	1.274	.02.	.250	5
	(Stations	Upper	Stat1on	0	ທີ	• 75		ខ្ម		•		12	8	SS SS	30	35	4 0	45	20	മാ	00	රිට	2	75	0	යි	O		0
	n percent of	surface	Ordinate	0	•	906			•	•	•	•	-3,997	•	•	•	•	•	•	•		•			-,1.471	068	- . 580	-,196	0
NACA 63-009	es given in Lohord)	Lower	Station	0	ູ່ເດ					. •	O	15	02	22	30	35	40	45	20	55	90	65	5	75	80	85	0 0	92	007
	and ordinater	surface	Ordinate	Ç	74	90	15	58	13	655	20	50	3,997	27	44	500	44	83	လ	3	35	92	45	96	47	065	. 550	٠ <u>.</u>	5
	w																												

CONFIDENCE

FLAP NOSE COORDINATES

Note: These coordinates are referenced to the 80 percent points of the local chords as the origin.

1

PERCENT CHORD	ABSCISSA (X in.)	CRDINATE (Z in.)
	Wing Sta. 0.75	
75.00 75.50 76.00 77.50 80.00 82.50 83.58 85.00 Tangency Point 90.00 95.00 100.00	+1.822 +1.164 +1.457 +0.911 0.000 -0.911 -1.304 -1.822 -2.120 -3.643 -5.465 -7.287 +1.521	-0.595 and -0.899 -0.220 -0.065 +0.215 +0.432 and -0.673 +0.492 +0.484 ±0.455 +0.421 ±0.259 ±0.101 0.000 -0.595
	Wing Sta. 33.50	,
75.00 75.50 76.00 77.50 80.00 82.50 83.58 85.00 Tangeney Point 90.00 95.00 100.00 L.E. Radius Center	+1.238 +1.114 +0.990 +0.619 0.000 -0.619 -0.886 -1.238 -1.658 -1.238 -3.713 -4.951 +1.080	-0.376 and -0.566 -0.140 -0.038 +0.139 +0.267 and -0.425 +0.300 +0.296 +0.290 +0.248 +0.167 +0.069 0.000 -0.375

The flap was hinged about a point 8 percent of the local chord below the chord line and 80.6 percent of the local chord aft of the section leading edge.

CONFIDENCE L INFORMALION

WING-TIP COORDINATES

Note: These coordinates are referred to the trailing edge of the tip chord at station 63.10.

X - distance from the tip chord trailing- edge, inches	Y - distance normal to the tip-chord plane, inches
0.000	1.325
0.313	1.750
0.625	1.950
1.250	2.175
2,500	4.450
5.000	2.650
7.500	2.570
10.000	2,250
12.500	1.400

This curve was faired to the leading and trailing edges of the wing.

APPENDIX B

The equation in reference 6 on page 19 was used in calculating the aerodynamic center of this swept wing as follows:

 $\frac{X_{a.c.}}{S/b}$ = HA tan β

where

Xa.c. = longitudinal distance between the aerodynamic center of the root section and aerodynamic center of the wing, positive to the rear.

S = wing area

b = wing span

H = factor presented in graphical form in the reference test = 0.208

. A = wing aspect ratio

 β = angle of sweepback

From the model constants this gives:

 $X_{a.c.} = Hb tan \beta$

 $= 0.208 \times 2 \times 65.75 \times \tan 35.80$

X_{a.c.} = 19.72 in. behind the root section aerodynamic chord

Thus the wing aerodynamic center becomes

9.62 + 19.72 = 29.34 inches behind the root chord leading
edge, corresponding to a span station of 27.33 inches with
a section chord of 26.94 inches.

In these calculations the aerodynamic center data on the sections, 63-006, 63-009 and 631-012, were used with

CONFIDENCE

linear interpolation. It was on this basis that the sweep-back angle of 35.80 was calculated for the line between the root and tip chord aerodynamic centers.

In more recent calculations it appeared that this value is slightly small, i.e., the wing aerodynamic center distance $X_{a.c.}$. Reference 7 uses the ϵ_1

a.c. =
$$\frac{1}{4} + \frac{3(1+\lambda)^2}{8(1+\lambda+\lambda^2)} \left[\tilde{\eta}_{c.p.} - \frac{1+2\lambda}{3(1+\lambda)} \right]$$
 AR $\tan \Delta c/4$

= distance of the wing aerodynamic center behind the leading edge of the centroid-of-area chord.

This equation results in $X_{a.c.} = 20.70$ inches which is essentially an inch behind the previous value. Such a correction would reduce the slope of the transferred pitching moments to about half its presented value. Therefore, the tunnel data would still not quite check the aerodynamic center calculations. As assumed in the text, the remainder can possibly be attributed to tunnel wall interference.

AERODYNAMICS LABORATORY

TEST: ONR RM-4

FOR: Office of Naval Research

BY: Richard E. Wallace

TEST NG:

REYNOLDS NO: 2.70 x 106

DATE: October 1952

Figure 2a. - Front view of the model mounted in the tunnel.

Figure 2b. - Completed model mounted on the end-plate rigging.

AERODYNAMICS LABORATORY

TEST: ONR RM-4 Office of Naval Research FOR . Richard E. Wallace

TEST NO: REYNOLDS NO: 2 70 x 106
DATE: October 1952

Figure 2c. - External balance rigging, angle-of-attack mechanism, and pressure tubes.

Figure 2d. - Close-up view showing flap juncture and brackets and the pressure tap buttons.

UNIVERSITY OF WICHITA SCHOOL OF ENGINEERING

AERODYNAMICS LABORATORY

ONR RM-4 Office of Naval Research TEST: FOR

TEST NO: REYNOLDS NO: 2.70 x 106 DATE: October 1952

Fig. 3 .- Tuft pictures of the plain wing configuration, $8_{\rm F} = 0^{\circ}, \alpha_{\rm t} = 6^{\circ}.$

Fig. 3 (contid.).-

26

Figure 3.- Continued; $\alpha_t = 8^{\circ}$.

Figure 3. ~ Continued; $a_t = 9^\circ$,

Figure 3.- Continued; $\alpha_t = 10^{\circ}$.

Figure 3.- Continued; $\alpha_t = 11^\circ$.

Figure 3.- Continued; $\alpha_t = 12^{\circ}$.

Figure 3. - Continued; $\alpha_{t} = 13^{\circ}$.

CONTRACTOR

Figure 3.- Continued; $\alpha_t = 14^{\circ}$.

Figure 3.- Continued; $a_t = 15^\circ$.

Figure 3.- Continued; $\alpha_t = 16^{\circ}$.

Figure 3.- Concluded; $\alpha_{t} = 18^{\circ}$.

Figure 4.- Tuft pictures of the flapped wing configuration, $\delta_F = 45^{\circ}$, $\alpha_t = 6^{\circ}$.

Figure 4.- Continued; $\alpha_t = 7^{\circ}$.

C1341110114111

CONFIDENTIAL

Figure 4.- Continued; $a_t = 8^{\circ}$.

Figure 4.- Continued; $\alpha_t = 9^{\circ}$.

Figure 4.- Continued; $\alpha_t = 10^{\circ}$.

Pigure 4. - Continued; $\alpha_t = 11^{\circ}$.

Figure 4.- Continued; $\alpha_t = 12^{\circ}$.

Figure 4.- Continued; $\alpha_t = 13^{\circ}$.

Figure 4.- Continued; $\alpha_t = 14^{\circ}$.

Figure 4.- Continued; $\alpha_t = 15^{\circ}$.

Figure 4.- Continued; $\alpha_t = 16^{\circ}$.

Figure h_{\star} - Concluded; $a_{t} = 18^{\circ}$.

IN FORMATATION

C

			 					C	Ū	1	1	7		17	1 10	15	7	A				117				115	42
				1			1		7	Z 74.		N P		N		3 (g).	<i>k</i> , .	1	4								7
15-5		1			L. ::				7	14	٦		TA-	I.	A		1	DR	T		4.5						
				E							:			:111										114	: ::		
	Tr.		111	111			. 1.										1						: 1 : :	4			
							11.						117		UN	УE	RS	IT	7	Œ.	Wi	CH	I Z		11		
	HT	<u>- 1</u>		T					H						1	0	N	2	Ţ	5 V	1 -	4					
1,11															F3	D-,	2	51	YΕ	PT		11.7	uG.				
				7	717	4	1:11	11			: -			11.5			Re	- 22	65	×	ŦC	٠,					
:1.E::		Hu.L.				1			1				11.5						1.2	1.13	i::T			†			
															H					: 1					-		
				14	il.						i de la										iii.						
	11.1														1::::								H	F			
	ΙÏ						11.5	14.1						111		1:51				1:12							
		7	d		71								-		1			Fij				1					
		्री	-	 c c	10							11.61					11.1				1.53	133	肺				
		2										-			11	411							1111			1	
		0	-		1	H::::		1								17											
		- "	} -		11	1							1		+					Ī						1	
		Į.											1	 													
		V	}			1		5						-	-		-	-									
		LII C				1		## # *	• - 1	7	-	1.1.		t =		1-		 		1111	1171	i r			11		1:41
t±.		C	1	-														1.	1 1				Ţ1;	111	-		
	and i	Č		رخا:	 					112				1			17.1		FX			1 1	1111	141	1::-	-	
1 To 2			1.33	21.7	1	1					1	in								1			1714		TE		
1.1.1 -+ =		-	1			10000	1		1.1	1	-		1		1	1.	1	1					++	1.11 1-11		-	1
1111	-	4 D	<u> </u>	-		-			-			7.1		-			1	ļ <u></u>			17:::	1212	1 11				ļ <u>-</u>
		ij			1	11	ļ	2			1111	ļ.,	1			-					X		1 12				1
				11.	<u>į</u>		-		: : : :	-		-										 					1
		3			1		-				111			1		1								FH.	1,11		12.1
			Lan			1	<u>.</u>	<u> </u>	Α.	-				<u> </u>	-			-				1	1: 1			-	
				140	30			7		1	1		1:		1				1								1: 1
		1 1				Φ		i		4				ф. :				2_			1	6	4				
iiit.								Ţ	E	P.T	A	MG	LE		ЭF ——	ΑТ	TA	CH	2	4,	Di	. G	RE	E		L	lisi
	1						i			1			L:-		1												
								1 1		<u> </u>														11.5			
		1	1					1		1								1	ا	1 1							
		5	18	r	9	_	Qe.	nte	r	bī	11	12		8		not	d.	30.		tes	1	Ame	71 6	N.		**	11
			1.7	1.											11.			1						1	- 3		A SEC
		117				i	1		1	1		1			T			1	1.	i	13		i	1:	1	1	+

NEORNATION

ુ.

The second of th

	CONFIDE	NTIAL	Υ.,
	INFORM	A PIN N SI LA LISA	
		UNINERSITY	T 127.67.14 CTX
		ONR	RM-4
			VEPT WING
		Re = 2.65	x toe
		α=12°	
1 911 a a a a a a a a a a a a a a a a a		5 4 4	5
			960
	79	615	ATTENDED
		CC	RMARION
			IFORMA
1 /	721/0		
		SURE ISC SPENIWIS	The state of the decided Additional Action and the state of the state
		MAL FORCE COEFT	ICIENT PROFILE'S
	, XZ-		
		E P.	EASTRIAM
			⊤ 16,1932
9,		588	

Figure 14.- Isobars on the wing upper surface with $\delta p=0^{\circ}$, $\alpha_t=0^{\circ}$.

Figure 14. - Continued; at = 8°.

Figure 14.- Continued; $a_t = 12^\circ$.

Figure 14. - Continued; at = 16°.

Figure 15.- Isobars on the wing upper surface with $3p=15^{\circ}$, $\alpha_{t}=8^{\circ}$.

CONFIDENTIAL

Figure 15.- Isobars on the wing upper surface with $\delta_P=15^{\circ}$, $\alpha_t=15^{\circ}$.

Figure 16.- Isobars on the wing upper surface with $\delta_{\rm F}=30^{\circ}$, $\alpha_{\rm t}=8^{\circ}$.

CU. LUNETAL.

Figure 16. - Continued; at = 12°.

Con ... Tolk

Figure 17.- Continued; $\alpha_t = 8^{\circ}$.

CONFIDENCIAL

COMPIN.

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960
00.00 1.25 2.50 5.05 10.00 20.	-0.19 -0.35 -0.22 -0.08 -0.04 0.02 0.08 0.13 0.17 0.19 0.21 0.18 0.14 0.08 0.04 -0.15 0.02	0.07 0.38 0.25 0.12 0.03 0.00 -0.12 -0.13 -0.18 -0.13 -0.08 -0.04 -0.12 0.03 0.06	0.18 0.35 0.25 0.11 0.05 0.00 -0.06 -0.12 -0.17 -0.17 -0.17 -0.17 -0.17 -0.17 -0.13 -0.08 -0.04 -0.00 0.00	-0.54 0.42 0.31 0.14 0.08 0.06 -0.03 -0.13 -0.15 -0.19 -0.16 -0.13 -0.05	-0.62 0.45 0.33 0.16 0.10 0.05 -0.03 -0.07 -0.12 -0.16 -0.16 -0.18 -0.17 -0.13 -0.08 -0.05	0.17 0.25 0.12 0.04 -0.03 -0.13 -0.15 -0.14 -0.16 -0.17 -0.14 -0.10 -0.05
		Lowe	R SURFACE			
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	-0.19 -0.60 -0.58 -0.52 -0.48 -0.49 -0.48 -0.48 -0.48 -0.19 -0.08 -0.02	0.07 -0.89 -0.78 -0.67 -0.58 -0.57 -0.53 -0.57 -0.37 -0.37 -0.28 -0.18 -0.00	0.18 -0.96 -0.64 -0.63 -0.63 -0.60 -0.57 -0.54 -0.35 -0.28 -0.28 -0.17 -0.08	-0.54 -1.13 -0.98 -0.70 -0.67 -0.65 -0.61 -0.57 -0.55 -0.51 -0.44 -0.36 -0.25 -0.16 -0.05 0.04	-0.62 -1.23 -1.09 -0.69 -0.62 -0.62 -0.55 -0.51 -0.50 -0.42 -0.35 -0.26 -0.17 -0.06	0.17 -1.00 -0.69 -0.59 -0.48 -0.48 -0.40 -0.38 -0.31 -0.24 -0.18 -0.12 -0.06 -0.03

Figure 18.- Pressure Coefficient values with Angle of Attack = -4°
Flap Deflection = 0°
and R = 2.70 x 10°

COME

UNTERDINTIAL NFORMATION

UPPER SURFACE

percent	Sta.	Sto.	Sta.	Sta.	Sta.	Sta.
chord	O.098	0.270	0.442	0.615	0.787	0.960
00 00	es 50	D 4C	0.48	0 17	0.49	0.42
00.00	○.50	0.46 -0.08	-0.15	0.47 -0.22	-0.22	OFIN
1.25	-0.01	-0.17	-0.20	-0.25	-0.29	-0.29
2.5	-0.12		-0.29	-0.23 -0.33	-0.25 -0.34	-0.29
5.0	-0.21	-0.24	-0.29	-0.33	-0.32	-0.29
7.5	-0.22 -0.26	-0.25 -0.20	-0.20 -0.30	-0.30	-0.30	-0.32
10.0 15.0	-0.26	-0.31	-0.31	-0. 3 2	-0.33	-0.31
	-0.20	-0.31 -0.34	-0.34	-0.34	-0.33	- 0.30
20.0 25.0	-0.32	-0.30	-0.35	-0.36	-0.35	-0.29
	-0.34	-0.35 -0.35	-0.35	-0. 3 6	-0. 3 7	-0.24.
30 .0 40.0	-0.33	-0.34	-0.05 ∂.35	-0.30	-0.34	-0.26
50.0	-0.30	-0.29	-0.29	-0 .2 9	-0.29	-0.21
50. 0	-0.23	-0.22	-0.21	-0.21	-0.23	-0.15
70.0	-0.15	-0.13	-0.13	-0.16	-0.15	-0.08
30 ∙ 0	-0.09	-0.09	-0.08	-0.10	-0.08	-0.04
ೆ0•0f	-0.11	-0.03	-0.07	- 3 • 10	-0.00	-000
85.0	-0.11 -0.03	0.00	-0.03		-	
90.0	0.02	0.03	0.00	-0.0€	-0.03	-0.03
90•0	0.02	J.05	.7.00	-0.00	-0.00	-0.00
		LOW	ER STRFAC	E		
00.00	0.50	0.45	0.48	0.47	0.49	0.42
1.25	-0.05	-0.10	-0.11	- ○•05	-0.03	
2.5	-0.13	-0.16	-0.17	-0.11	-0.08	-0.10
5.0	-0.19	-0.21	-0.21	-0.16	-0.14	-0.19
7.5	-0.20	-0.24	-0.25	-9.21	-0.23	-0.82
10.0	-0.24	=0.29	-0.29	-0.24	-0.25	-0.24
15.0	-0.29	-0.33	-0.33	-0.29	-0.28	-0.25
20.0	~ - 3.29	-0.35	-0.34	-0.30	-0.28	-0.26
25.0	-0.31	-0.35	-0.34	-0.33	-0.28	-0.27
30.0	-0.32	-0.34	-0.33	~().31	-0.29	-0.27
40.0	-0.32	-0.34	-0.32	-0.29	~0.2 8 ·	
50.0	-0.29	-0.29	-0.26	-0.25	-0.26	-0.21
60.0	-0.22	-0.21	-0.19	- 0.17	-0.19	-0.17
70.0	-).14	-0.13	-0.12	-0.10	÷0.12	-0.08
30.0	-0∙05	-0.03	-0.03	-0.02	-0.03	-0.03
90.0	0.00	0.02	0.03	9.08	0.05	0.00

Figure 18 (Cont'd).- Pressure coefficient values with Angle of Attack = 0, Flap Deflection = 0 and Re = 2.70 x 10

CONTRIBUTION

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960
00.00	0.34	-0.08	-0,11	-0.85	-0. 33	-0.77
1.25	-0.56	-0.85	-0.99	-1.22	-1.40	
2.5	-0.56	- 0.78	-0.86	-1.00	-1.11	-1.17
5.0	-0.56	-0.72	-0.76	-0.86	-0.96	-0.79
7.5	- 0.52	-0.64	-0.63	-0.75	-0.79	-0.68
10.0	-0.52	-0.63	-0.64	-0.65	-0.71	-0.64
15,0	~0.51	-0.58	-0.58	-0.58	-0.64	-0.54
20.0	-0.51	-0.58	-0.57	-0.58	-0.59	-0.48
25.0	-0.52	-0.56	-0.55	~0.56	-0.59	-0.45
30,0	-0.52	-0.53	-0.52	-0.53	-0.57	-0.36
40.0	-C.47	-0.47	-0.48	-0.49	-0.49	-0.36
50,0	-0.41	-0.40	-0.39	-0.37	-0.40	-0.27
60-0	- 0.32	-0.30	-0.29	-0.30	0.3C	-0.22
70.0	-0.22	-0.20	-0,19	-0.20	-0.21	-0.15
B0.0	-0.14	-0.13	-0.12	-0,14	-0.13	-0.11
80.01	-0.06	-0.03	-0.03			
35 0 35 0	-0.07	-0.05	-0.07 -0.03	-0.08	-0.06	-0.59
90,0	-0.02	0.00	-0:00	-0.08	-0.06	
A CONTRACTOR	. •				4	e year
Selfet France		TAW	ER SURFAC	TC.		
		LIC 11	Bit boil no	-	1	of the department
୕ ପପ୍ଟ ପ୍ରତି	0.34	-0.08	-0.11	-0.85	-0.33	-0.77
1 0=	0.29	-0.36	0.35	0.41	0.46	
2.5	0.20	-0.25	0.23	0.31	0.38	0.58
. ē . 0	C.10	-0.14	0.11	0.19	0.23	0.15
7.5	0.04	0.05	0.03	0.10	0.12	ີປະ07
10.0	-0.02	0.09	-0,03	0.03	0.07	0.01
15.0	-0.09	~0.09	-0.10	-0.05	0.01	-0.07
20.0	-0.14	-0.14	-0.14	-0.09	- 0 .0 5 ∱	-0.12
25.0	-0.17	-0.15	-0.17	-0.14	- 0,09	-0,15
70.0	-0.19	-0.17	-0.17	- 0.15	-0.12	-0.19
40.0	-0.20	-0.25	-0.19	- 0.16	-0.14	-0.20
50.0	-0.20	-0.17	-0.16	-0.14	-0.03	-0,19
60.0	-0.14	-0.14	-0.13	-0.10	-0.12	-0.16
70.0	- 0.09	-0.08	-0.07	-0.05	-0.07	-0.12
80 .0	-0.01	0.00	0.00	0.02	0.00	-0.04
90 . 0	0.03	0.03	0,05	0.10	0.05	-0,02

Figure 18 (cont'd.).- Pressure Coefficient values with Angle of Attack = 40 Flap Deflection = 00 and R_e = 2.70 x 10⁶

TPP P SURFACE

percent chord	Sta. 0.093	Sta. 0.270	Sta. 0.4 42	Sta. 0.615	Sta. 0.76 7	Sta. 0.960
00.00 1.25 2.5 5.0 7.5 10.0 15.0 20.0 20.0 20.0 20.0 50.0 60.0 60.0 80.0 80.0	-0.58 -1.25 -1.05 -0.90 -0.84 -0.77 -0.73 -0.60 -0.59 -0.59 -0.38 -0.26 -0.17 -0.02 -0.10	-1.62 -2.04 -1.63 -1.25 -1.03 -0.99 -0.76 -0.78 -0.73 -0.60 -0.49 -0.24 -0.15 -0.00 -0.03	-2.32 -2.59 -1.33 -1.49 -1.25 -1.12 -0.95 -0.89 -0.89 -0.64 -0.50 -0.37 -0.25 -0.16 0.02 -0.10	-2.50 -3.36 -2.05 -1.67 -1.57 -1.17 -0.99 -0.91 -0.85 -0.78 -0.66 -0.51 -0.38 -0.27 -0.17	-3.30 -4.02 -2.45 -1.31 -1.45 -1.24 -1.05 -0.91 -0.65 -0.79 -0.65 -0.38 -0.27 -0.17	-3.32 -2.29 -1.61 -1.04 -1.07 -0.86 -0.73 -0.65 -0.50 -0.50 -0.35 -0.28 -0.25
85.0 90.0	-0.04	- 0.03	-0.06	-0.10	70.10	-0.21
		LOWE	R SURFACE	:		
00.00 1.25 2.5 5.0 7.5 10.0 15.0 20.0 25.0 50.0 60.0 70.0	-0.59 0.50 0.45. 0.36 0.29 0.12 0.05 0.07 -0.03 -0.07 -0.08 -0.05 0.05	-1.62 0.45 0.45 0.35 0.27 0.21 0.11 0.05 0.01 -0.03 -0.07 -0.07 -0.06 -0.05 0.05	-2.32 0.47 0.47 0.39 0.30 0.25 0.14 0.08 0.03 0.01 -0.04 -0.04 -0.04 0.00 0.07	-2.50 0.44 0.50 0.44 0.37 0.30 0.20 0.13 0.07 0.03 -0.02 -0.03 -0.02 0.00 0.04 0.10	-3,50 0.37 0.50 0.46 0.37 0.31 0.22 0.15 0.10 0.04 -0.01 -0.01 -0.04 -0.03 0.03 0.05	-3.32 0.45 0.36 0.26 0.19 0.08 0.01 -0.05 -0.16 -0.16 -0.16 -0.16 -0.03 -0.03 -0.03

Figure 18 (Cont'd).- Pressure coefficient values with Angle of Attack = 8. Plap Teflection = 00 and Re = 2.70 x 100 (

UPPER SURFACE

00.00	Percent chord	St a. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960
2.5							-0.95
7.5	2.5	-1.69	-2.32	-2.20	-3.43	-1.86	-
15.0	7.5	-1.10	-1.38	-1.56	-1.71	-1.79	-0.76
30.0		-0.92	-1.06	-1.15	-1.24		-0.84
50.0	30.0	0.82	-0.87	-0,92	-0 .9 9	-1.18	
60.0		-0.59	-0.58	-0.58			
80.0							-0.57
## LOWER SURFACE Column	80.0	-	-		-0.27		
LOWER SURFACE CO.OO -1.48 -3.81 -5.51 -5.86 -2.14 -0.95 1.25 .0.50 0.32 0.15 0.02 0.33 2.6 0.52 0.48 0.42 0.36 0.50 0.44 5.0 0.45 0.48 0.45 0.51 0.53 0.35 7.5 0.40 0.44 0.45 0.49 0.46 0.28 10.0 0.34 0.39 0.40 0.45 0.41 0.21 15.0 0.24 0.29 0.31 0.36 0.32 6.12 20.0 0.18 0.20 0.24 0.28 0.25 0.24 20.0 0.18 0.20 0.24 0.28 0.25 0.24 25.0 0.13 0.15 0.19 0.22 0.19 -6.03 20.0 0.08 0.12 0.14 0.17 0.13 0.00 40.0 0.03 0.04 0.07 0.08 0.05 0.12 50.0 0.03 0.04 0.07 0.08 0.05 0.12 50.0 0.02 0.02 0.03 0.04 0.04 0.00 0.17 60.0 0.03 0.04 0.07 0.08 0.05 0.17 60.0 0.03 0.04 0.04 0.04 0.00 0.03 70.0 0.03 0.04 0.04 0.03 -0.04 0.18 50.0 0.08 0.07 0.07 0.05 -0.03 -0.15	85.0	-0.13	-0.13	-0.18	-0.22	-0.38	_0
60.00 -1.48 -3.81 -5.51 -5.86 -2.14 -0.95 1.25 .0.50 0.32 0.15 0.02 0.33 0.52 0.48 0.42 0.36 0.50 0.41 5.0 0.45 0.48 0.42 0.51 0.53 0.35 5.0 0.45 0.44 0.45 0.49 0.46 0.28 10.0 0.34 0.39 0.40 0.45 0.41 0.21 15.0 0.24 0.29 0.31 0.36 0.32 0.12 20.0 0.18 0.20 0.24 0.28 0.25 0.04 25.0 0.13 0.15 0.19 0.22 0.19 -0.03 25.0 0.03 0.04 0.07 0.08 0.05 -0.03 40.0 0.03 0.04 0.07 0.08 0.05 -0.1 50.0 0.00 0.03 0.04 0.04 0.00 -0.03 -0.03 70.0 0.03 0.00 0.03 0.04 0.03 -0.04		•			• • • • • • • • • • • • • • • • • • • •		
1.25			LOWE	R SURFACE			
2.5 0.52 0.48 0.42 0.36 0.50 0.41 5.0 0.45 0.48 0.49 0.51 0.53 0.35 7.5 0.40 0.44 0.45 0.49 0.46 0.28 10.0 0.34 0.39 0.40 0.45 0.41 0.21 15.0 0.24 0.29 0.31 0.36 0.32 0.12 20.0 0.18 0.20 0.24 0.28 0.25 0.04 25.0 0.13 0.15 0.19 0.22 0.19 -0.3 30.0 0.08 0.12 0.14 0.17 0.13 0.03 40.0 0.03 0.04 0.07 0.08 0.05 -0.11 50.0 0.02 0.02 0.03 0.04 0.04 0.00 -0.17 60.0 0.03 0.04 0.03 -0.04 -0.03 -0.04 -0.18 80.0 0.08 0.07 0.07 0.05 -0.03 -0.01					-		-0.95
7 5 0.40 0.44 0.45 0.49 0.46 0.28 10 0 0.34 0.39 0.40 0.45 0.41 0.21 15 0 0.24 0.29 0.31 0.36 0.32 6.12 20 0 0.18 0.20 0.24 0.28 0.25 0.2 25 0 0.13 0.15 0.19 0.22 0.19 -6.3 30 0 0.08 0.12 0.14 0.17 0.13 -6.0 40 0 0.03 0.04 0.07 0.08 0.05 -0.1 50 0 0.00 0.03 0.04 0.04 0.00 -0.1 60 0 0.02 0.02 0.03 0.03 -0.03 -0.03 -0.03 70 0 0.03 0.03 0.04 0.03 -0.04 -0.18 80 0 0.08 0.07 0.07 0.05 -0.03 -0.15	2,5	0.52	0.48	0.42	0.36	0.50	
15.0 0.24 0.29 0.31 0.36 0.32 6.12 20.0 0.18 0.20 0.24 0.28 0.25 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25 0.00 0.00	7,5	0.40	0.44	0.45	0.49	0.46	0.38
25.0 0.13 0.15 0.19 0.22 0.19 -6.03 30.0 0.08 0.12 0.14 0.17 0.13 -6.50 40.0 0.03 0.04 0.07 0.08 0.05 -0.12 50.0 0.00 0.03 0.04 0.04 0.00 -6.17 60.0 0.02 0.02 0.03 0.03 -0.03 -0.03 70.0 0.03 0.03 0.04 0.03 -0.04 -0.18 80.0 0.08 0.07 0.07 0.05 -0.03 -0.15	15.0	0.24	0.29	0.31	0.36	0.32	0.12
30.0 0.08 0.12 0.14 0.17 0.13 0.50 40.0 0.03 0.04 0.07 0.08 0.05 -0.71 50.0 0.00 0.03 0.04 0.04 0.00 -0.17 60.0 0.02 0.02 0.03 0.03 -0.03 -0.03 70.0 0.03 0.03 0.04 0.03 -0.04 -0.18 80.0 0.08 0.07 0.07 0.05 -0.03 -0.15						0.19	
50.0							-0100
70.0 0.03 0.03 0.04 0.03 -0.04 -0.18 80.0 0.08 0.07 0.07 0.05 -0.03 -0.15	50.0	-			0.04	0.00	-0.17
# O O O O O O O O O O O O O O O O O O O	70.0	0.03	0.03	0.04	0.03	-0.04	-0.18
	And the second second					and the second second	

Figure 18 (cont'd).- Pressure Coefficient values with Angle of Attack = 120 Flap Deflection = 0 and R_e = 2.70 x 10

COMPEDENTIAL.

INFORMATION

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960		
00.00 1.25 2.5 5.0 7.5 10.0 15.0 20.0 25.0 30.0 40.0 50.0 60.0 70.0 80.0 80.0	-3.13 -3.92 -2.51 -1.95 -1.61 -1.25 -1.15 -1.07 -1.02 -0.87 -0.73 -0.57 -0.42 -0.28 0.08 -0.19 -0.12	-6.60 -4.35 -3.37 -2.64 -2.17 -1.99 -1.62 -1.42 -1.29 -1.14 -0.94 -0.75 -0.58 -0.44 -0.32 -0.22	-3.13 -2.67 -2.66 -2.38 -2.22 -2.07 -1.83 -1.64 -1.36 -1.16 -0.99 -0.83 -0.68 -0.754 -0.03 -0.49 -0.45	-1.56 -1.27 -1.29 -1.31 -1.28 -1.26 -1.22 -1.18 -1.10 -1.02 -0.95 -0.88 -0.79 -0.72	-0.90 -0.77 -0.78 -0.79 -0.78 -0.77 -0.75 -0.74 -0.73 -0.72 -0.70 -0.68 -0.67 -0.65 -0.62	-0.57 -0.53 -0.53 -0.53 -0.53 -0.52 -0.51 -0.51 -0.51		
्रवेदिक्वेत्रिक्षात्र । इंक्रानीत्रीक्षा प्रतिकार		LOWER SURFACE						
00 00 00 00 00 00 00 00 00 00 00 00 00	-3.13 0.36 0.53 0.57 0.54 0.40 0.33 0.27 0.22 0.16 0.10 0.10 0.10	-6.60 -0.07 0.38 0.55 0.54 0.53 0.43 0.35 0.29 0.24 0.15 0.08 0.07 0.10	-3.13 0.14 0.45 0.56 0.53 0.49 0.41 0.33 0.26 0.21 0.12 0.08 0.03 0.03 0.03 0.03	-1.56 0.33 0.49 0.54 0.51 0.47 0.37 0.30 0.22 0.18 0.08 0.03 -0.01 -0.04 -0.05 -0.07	-0.90 0.39 0.50 0.49 0.44 0.39 0.30 0.24 0.17 0.11 0.03 0.00 -0.09 -0.13 -0.16	₩0. 08		

Figure 18 (cont'd.).- Pressure Coefficient values with Angle of Attack = 16° Flap Deflection = 0° and R_e = 2.70 x 10°

CONFIDENTIAL INFOLMATION

BEST COPY AVAILABLE

3

UPPER SURFACE

Percent chord	Sta. 0. 0 98	Sta. 0.270	Sta. 0.442	Sta. 0,615	Sta. 0.787	Sta. 0.9 6 0
00.00 1.25 2.5 5.0 7.5 10.0 15.0 20.0 25.0 30.0 40.0 50.0 60.0 80.0 80.0	-4.88 -3.69 -3.33 -2.38 -1.96 -1.77 -1.52 -1.39 -1.30 -1.25 -1.11 -0.99 -0.84 -0.66 -0.49 0.10 -0.38	-2.36 -2.10 -2.10 -2.05 -2.00 -1.94 -1.86 -1.77 -1.67 -1.57 -1.40 -1.25 -1.09 -0.94 -0.78 0.04 -0.69	-1.69 -1.33 -1.34 -1.32 -1.29 -1.25 -1.23 -1.20 -1.19 -1.33 -1.12 -1.05 -0.99 -0.91 -0.03 -0.87	-1.10 -0.65 -0.85 -0.84 -0.84 -0.80 -0.80 -0.80 -0.80 -0.80 -0.80 -0.79 -0.75	-0.75 -0.60 -0.61 -0.61 -0.61 -0.61 -0.60 -0.60 -0.60 -0.61	-0.56 -0.56 -0.55 -0.55 -0.55 -0.55 -0.56 -0.56 -0.57 -0.57
90, 0	-0.28	-0.62	-0.82 ER SURFAC	-0.71 E	-0.58	-0.56
25 25 25 25 25 25 25 25 26 25 26 25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	-4.68 0.16 0.51 0.64 0.61 0.53 0.45 0.33 0.23 0.17 0.14 0.13 0.13	-2.36 0.16 0.48 0.62 0.61 0.58 0.50 0.43 0.36 0.30 0.20 0.13 0.08 0.06 0.05 -0.03	-1.69 0.27 0.50 0.57 0.55 0.52 0.43 0.37 0.29 0.24 0.13 0.08 0.01 -0.03 -0.07 -0.15	-L.10 0.37 0.50 0.55 0.53 0.48 0.40 0.32 0.25 0.19 0.09 0.02 -0.25 -0.07 -0.10 -0.12	-0.75 0.39 0.50 0.52 0.47 0.43 0.34 0.27 0.14 0.05 0.05 0.08 -0.13 -0.18	-0.55 0.40 0.35 0.30 0.24 0.15 0.07 0.06 -0.15 -0.23 -0.23 -0.23

Figure 18 (cont'd).- Pressure Coefficient values with Angle of Attack = 20° Flap Deflection = 0° and R_e = 2.70 x 10°

CONFIDENTIAL

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960
00.00 1.25 2.5 5.0 7.5 10.0 15.0 20.0 25.0 30.0 40.0 50.0 60.0 70.0 80.0	-4.42 -3.41 -3.05 -2.64 -2.37 -2.15 -1.83 -1.66 -1.51 -1.45 -1.29 -1.19 -1.08 -0.94 -0.79 0.08	-1.71 -1.64 -1.60 -1.55 -1.55 -1.50 -1.47 -1.45 -1.36 -1.39 -1.21 -1.03 -0.02	-1.29 -1.19 -1.19 -1.16 -1.14 -1.11 -1.09 -1.07 -1.06 -1.07 -1.05 -1.03 -0.98 -0.93	-0.99 -0.79 -0.79 -0.79 -0.78 -0.77 -0.75 -0.76 -0.77 -0.78 -0.77	-0.74 -0.65 -0.65 -0.65 -0.65 -0.65 -0.65 -0.65 -0.65 -0.65 -0.65 -0.65	-0.58 -0.59 -0.59 -0.59 -0.59 -0.59 -0.61 -0.61 -0.61
85,0 90,0	-9.6 9 -0.59	-0.97 -0.91	-0.89 -0.85	-0.74	-0.63	-0.59
		LOW	er surfac	E	A	
00.00 1.25 5.5 5.0 7.5 11.5 0.0 25.0 25.0 25.0 25.0 25.0 25.0 25.	-4.42 0.13 0.52 0.70 0.71 0.68 0.61 0.53 0.45 0.40 0.29 0.17 0.13 0.12 0.03	-1.71 0.12 0.45 0.61 0.62 0.54 0.47 0.41 0.35 0.24 0.17 0.08 0.03 0.00	-1.29 0.19 0.46 0.58 0.56 0.48 0.41 0.35 0.29 0.18 0.11 0.03 -0.03 -0.03	-0.99 0.28 0.47 0.57 0.56 0.53 0.46 0.39 0.32 0.27 0.15 0.07 0.02 -0.04 -0.08 -0.11	-0.74 0.28 0.44 0.53 0.50 0.48 0.41 0.35 0.29 0.22 0.12 0.00 -0.04 -0.09 -0.12 -0.17	-0.58 0.36 0.36 0.38 0.34 0.29 0.20 0.12 0.05 -0.02 -0.17 -0.07 -0.24 -0.25

Figure 18 (cont'd.).- Pressure Coefficient values with Angle of Attack = 24°
Flap Deflection = 6°
and R_e = 2.70 x 10⁶

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	St a. 0. 61 5	Sta. 0.787	Sta. 0, 960
00.00 1.25 2.5 5.0 7.5 10.0 20.0 25.0 20.0 25.0 20.0 25.0 20.0 25.0 20.0 25.0 20.0 25.0 20.0 20	-2.42 -1.84 -1.79 -1.70 -1.66 -1.55 -1.50 -1.44 -1.39 -1.31 -1.25 -1.20 -1.13 -1.05 0.07 -0.99 -0.94	-1.37 -1.36 -1.35 -1.32 -1.31 -1.29 -1.27 -1.25 -1.24 -1.22 -1.20 -1.17 -1.12 -1.07 0.00 -1.03 -0.99	-1.09 -1.09 -1.09 -1.07 -1.05 -1.04 -1.02 -1.00 -0.99 -0.99 -0.99 -0.99 -0.99 -0.98 -0.98	-0.89 -0.82 -0.82 -0.82 -0.82 -0.81 -0.80 -0.80 -0.79 -0.79 -0.79 -0.79	-0.74 -0.71 -0.71 -0.71 -0.71 -0.70 -0.70 -0.70 -0.70 -0.69 -0.69 -0.68 -0.67	-0.58 -0.60 -0.58 -0.60 -0.60 -0.60 -0.60 -0.62 -0.61 -0.61
A STATE OF THE STA		T ANGL	ממוזם ממו	៤		
A CANADA		LOW	ER SURFAC	<u>ن</u>		- 1 - 1
00 25 25 05 0000000000000000000000000000	-2.42 0.24 0.58 0.74 0.76 0.67 0.60 0.53 0.47 0.26 0.13 0.08 -0.06	-1.37 0.09 0.43 0.63 0.66 0.65 0.60 0.53 0.47 0.42 0.29 0.20 0.11 0.03 -0.03	-1.09 0.13 0.43 0.58 0.61 0.50 0.54 0.48 0.41 0.35 0.23 0.14 0.05 -0.01 -0.07 -0.18	-0.89 0.18 0.42 0.58 0.59 0.58 0.53 0.46 0.39 0.33 0.22 0.13 0.06 0.00 -0.05	-0.74 0.18 0.40 0.54 0.55 0.53 0.48 0.42 0.35 0.28 0.18 0.00 -0.06 -0.09 -0.16	-0.58 0.38 0.38 0.38 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Figure 18 (cont'd.).- Pressure Coefficient values with Angle of Attack = 28

Flap Deflection = 00

Re = 2.70 x 106

COLUMNIAL

UPPER SURFACE

percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.6 1 5	Sta. 0.737	Sta. 0.960
00.0 1.25 2.5 5.0 7.5 10.0 20.0 25.0 20.0 25.0 20.0 20.0 50.0 5	-1.86 -1.58 -1.54 -1.50 -1.47 -1.44 -1.39 -1.35 -1.31 -1.30 -1.24 -1.19 -1.19 -1.14 -1.07 -1.04	-1.27 -1.27 -1.27 -1.24 -1.25 -1.20 -1.20 -1.10 -1.10 -1.10 -1.10 -1.10 -1.07 -1.07	-1.07 -1.07 -1.03 -1.03 -1.03 -1.00 -1.00 -1.00 -0.33 -0.33 -0.37 -0.35 -0.91 -0.02 -0.02	-0.87 -0.85 -0.65 -0.34 -0.33 -0.32 -0.82 -0.62 -0.31 -0.31 -0.79 -0.79	-0.74 -0.73 -0.73 -0.73 -0.72 -0.72 -0.72 -0.72 -0.72 -0.71 -0.71 -0.70 -0.63 -0.63	-0.60 -0.61 -0.60 -0.59 -0.60 -0.61 -0.63 -0.62 -0.63 -0.63
90.0	-1.01	-0.02	-0.87	-0.77	-0.36	-0.61
		TO:	er surfaci	2		
00.00 1.25 2.5 5.0 7.5	-1.50 0.25 0.59 0.70 0.79	-1.27 C.05 O.41 O.63 O.67	-1.07 0.07 0.40 0.50 0.63	-0.37 0.14 0.40 0.59 0.63	-0.74 0.14 0.39 0.56 0.58	-0.60 0.27 0.39 0.35
10.0 15.0 20.0 25.0 50.0 40.0	0.70 0.71 0.64 0.57 0.50 0.39	0.68 0.63 0.57 0.51 0.45 0.35	0.63 0.53 0.52 0.46 0.40 0.28	0.61 0.56 0.50 0.44 0.37 0.25	0.57 0.52 0.40 0.40 0.34 0.22	0.33 0.26 0.18 0.11 0.04 -0.07
50.0 60.0 70.0 80.0 90.0	0.29 0.21 0.14 0.07	0.23 0.13 0.05 0.02 -0.15	0.19 0.00 0.02 -0.04 -0.13	.17 0,08 0.05 -0.03 -0.03	0.01 0.04 -0.03 -0.07 -0.14	-0.13 -0.03 -0.21 -0.22 -0.24

Figure 18 (Cont'd).- Pressure coefficient values with Angle of Attack = 30° Flap Reflection = 0° and Re = 2.70 x 10°

CONTIDIENTAL INFORMATION UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	S t a. 0.615	Sta. 0.787	Sta. 0.960
00.00 1.25 2.5 5.5 7.5 10.0 15.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 2	0.30 0.30 0.17 0.03 -0.03 -0.08 -0.15 -0.20 -0.24 -0.28 -0.30 -0.27 -0.24 -0.30 -0.63 -0.63 -0.19	0.32 0.28 0.14 0.00 -0.05 -0.12 -0.19 -0.24 -0.29 -0.33 -0.32 -0.30 -0.27 -0.35 -0.77 -0.29 -0.14	0.30 0.23 0.12 -0.02 -0.17 -0.17 -0.23 -0.23 -0.28 -0.33 -0.31 -0.28 -0.30 -0.52 -0.52 -0.17	0.07 0.26 0.14 -0.02 -0.07 -0.09 -0.15 -0.20 -0.24 -0.27 -0.29 -0.25 -0.21 -0.15 -0.10	0.03 0.30 0.17 0.01 -0.03 -0.07 -0.13 -0.16 -0.20 -0.23 -0.23 -0.22 -0.11 -0.02	0.35 0.11 0.00 -0.06 -0.12 -0.15 -0.19 -0.20 -0.19 -0.15 -0.08 -0.04
A STATE OF THE STA		LOW	ER SURFAC	E		
25 2.5 2.5 2.5 2.5 25.0 25.0 25.0 25.0 2	0.30 -0.49 -0.47 -0.44 -0.40 -0.40 -0.39 -0.35 -0.28 -0.17 -0.07 0.30 0.14	0.32 -0.59 -0.54 -0.49 -0.47 -0.45 -0.46 -0.45 -0.39 -0.33 -0.22 -0.12 0.00 0.34 0.14	0.30 -0.60 -0.55 -0.47 -0.45 -0.45 -0.45 -0.39 -0.34 -0.29 -0.19 -0.10 0.02 0.27 0.13	0.07 -0.64 -0.57 -0.46 -0.45 -0.45 -0.42 -0.40 -0.38 -0.32 -0.25 -0.17 -0.10 -0.03 0.07	0.03 -0.74 -0.62 -0.48 -0.53 -0.50 -0.47 -0.40 -0.34 0.00 -0.22 -0.13 -0.04 0.03	0.85 -0.64 -0.51 -0.46 -0.40 -0.37 -0.35 -0.28 -0.28 -0.03 -0.03 -0.03

Figure 19. - Pressure Coefficient values with Angle of Attack = -4° Flap Deflection = 15° R_e = 2.70 x 10°

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960
00.00 1.25 2.5 5.0 7.5 10.0 15.0 20.0 25.0 30.0 40.0 50.0 50.0 80.0 85.0	0.48 -0.23 -0.30 -0.36 -0.35 -0.40 -0.40 -0.42 -0.42 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.40 -0.42 -0.42 -0.42 -0.35 -0.35 -0.35 -0.35 -0.35 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.35 -0.36 -0.	0.37 -0.34 -0.39 -0.44 -0.42 -0.45 -0.49 -0.49 -0.45 -0.39 -0.34 -0.34 -0.92	0.33 -0.50 -0.49 -0.51 -0.48 -0.50 -0.50 -0.50 -0.50 -0.38 -0.38 -0.38 -0.35 -0.35 -0.23 -0.23	0.38 -0.64 -0.56 -0.58 -0.47 -0.49 -0.47 -0.38 -0.30 -0.23 -0.15	0.40 -0.61 -0.57 -0.56 -0.50 -0.45 -0.45 -0.45 -0.45 -0.45 -0.26 -0.18 -0.04	0.33 -0.44 -0.40 -0.33 -0.40 -0.37 -0.35 -0.34 -0.28 -0.29 -0.22 -0.17 -0.10 -0.05
de la		LOWI	er surfac	E		
00.00 1.25 2.5 5.0 7.5 10.0 15.0 20.0 25.0 25.0 40.0 50.0 50.0	0.48 0.10 0.03 -0.05 -0.08 -0.13 -0.19 -0.19 -0.21 -0.22 -0.21 -0.09 -0.09 -0.02 0.30 0.17	0.37 0.12 0.03 -0.05 -0.10 -0.13 -0.19 -0.22 -0.21 -0.19 -0.13 -0.04 0.05 0.34 0.17	0.33 0.15 0.04 -0.03 -0.08 -0.13 -0.18 -0.20 -0.21 -0.19 -0.17 -0.11 -0.03 0.07 0.30 0.14	0.38 0.21 0.12 0.03 -0.05 -0.09 -0.15 -0.17 -0.20 -0.20 -0.19 -0.17 -0.11 -0.05 0.02 0.10	0.40 0.21 0.13 0.02 -0.08 -0.12 -0.17 -0.18 -0.20 -0.21 -0.21 0.00 -0.16 -0.09 -0.01 0.05	0.33 0.03 -0.16 -0.13 -0.21 -0.22 -0.24 -0.25 -0.24 -0.20 -0.09 -0.08 -0.00

Figure 19.- Pressure Coefficient values with Angle of Attack = 0° Flap Deflection = 15° and R_e = 2.70 x 10°

CONFIDENCE

			•			
percent chord	Sta. 0.03.	ita. 0.270	Sta. 0.442	Sta. 0.815	Sts. 0.737	9ta. 0.960
00.00	0,20	-0.43	-0. 80	0. 1 7	-1.15 -2.12	-1.59
1.25 2.5	-0.74 -0.71	-1.13 -1.04	-1.55 -1.32	-0.74	-1.69	-1.54
5.9 7.5	-0.63 -0.32	-0.91 -0.73	-1.37 -0.38	-0.09 -0.74	-1.21 -0.94	-0.99 -0.84
10.0 15.0	-0.32 -0.31	-0.78 -0.72	-).37 -).7∂	-0.3 2 -0.79	-0.35 -0.75	-0.79 -0.65
20.0	-0.62	-0.71 -0.70	-0.77 -0.74	-3.77 -3.74	-0.72 -0.69	-0.53 -0.53
25.0 30.0	-0.62 -0.62	-0.67	-0.70	-0.69	-0.65 -0.57	-0.42 -0.42
40.0 50.0	-0.53 -0.53	-0.33 -0.56	-0.03 -0.5 <u>:</u>	-0.34 -0.50	-0.44	-0.33
60.0 70.0	-0.45 -0.83	0.48 0.42	-0.47 -0.59	-0.40 -0.30	- 0.38 -0.28	-0.28 -0.28
8 0.0 30 . 0f	-0,40 -0,77	-0.45 -0.92	-0.43 -0.83	-0.20	- 0 .1 1	=0.17
35.0 90.0	-0.35 -0.42	-0.35 -0.17	-0.32 -0.15	-0.13	-0.0∃	-0.15
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			60 mm - 100 mm			
		L	OMER SURF	ACE		
00.00	2 22	0.47	0 00	0.35	7 15	-1 50

00.00	0.30	-^.AT	-0.20	0.17	-1,15	-1.50
1.25	0.36	C 43	0.45	0.37	0.48	0.00
2.5	0.26	0.37	0.37	0.03	0.46	1.42
5.0	0.17	0.34	0.25	0.13	0.33	∴.23
7,5	2.10	0.14	0.17	0.12	0.21	0.13
10.0	.7.04	0.00	0.11	0.05	0,16	0.07
15.0	-A.OB	0.00	0.03	-0.02	0.07	-0.03
50.0	-0.07	-0.04	-0.02	0.03	0,93	-0.08
28.0	-0.10	=0.0°	-0.04	-0.03	-0.02	-0.13
50.0	-0.13	-0.00	-0.05	-0.05	-0.04	-0.16
40.0	-0.13	-0.02	-0.07	-0.07	-0.09	-0.19
50.0	-0.10	-0.05	0.03	-0.07	0.00	-0.18
60.0	-0.03	6.01	0.02	-0.04	-0.08	-0.II
70.0	0.03	0.0E	്റ.∩ദ	-0.02	-7.06	-0.15
80.0	0.34	∩.56	0.34	0.03	0.00	-0.0B
90.0	0.18	0.10	0.17	0.00	2.04	-0.03

Figure 19 (Consid).- Pressure coefficient values with angle of Attack = 4° (Flap Reflection = 15° and Re = 2.70 x 10°

INFORMATION

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960
00.00 1.25	-0.62 -1.63	-2.25 -2.56	-3.22 -3.01	-0.53 -1.42	-4.54 -4.48	-2.66
2.5 5.0	-1.34 -1.13	-1.75 -1.49	-2.20 -1.75	-1.19 -1.04	-2.94 -2.10	-1.77 -1.53
7.5 10.0	-0.99 -0.94	-1.25 -1.19	-1.48 -1.32	-0.90 -0.88	-1.69 -1.45	-1.27 -1.27
15.0	-0.85	-1.04	-1.13	-1.17	-1.21	-1.06
20.0 25.0	-0.83 -0.80	-0 .9 8 -0 . 93	-1.05 -0.98	-1.07 -1.00	-1.07 -0.98	-0.90 -0.79
30.0 40.0	-0.79 -0.72	-0.86 -0.77	-0.90 -0.80	-0.92 -0.79	-0.90	-0.60
50.0	-0.63	-0.67	-0.67	-0.62	-0.75 -0.58	-0.58 -0.48
60.0 70.0	-0.53 -0.43	-0.56 -0.47	-0.55 -0.44	-0.48 -0.36	-0.37 -0.32	-0.43 -0.37
80.0	-0.43	-0.47	-0.47	-0.24	-0.17	-0.33
80.01 85.0	-0.79 -0.35	-0,91 -0,35	-0.91 -0.35			-4 4 4
90.0	-0.20	-0.17	-0.17	-0.16	-0.14	-0.30
Address to the second			T10			4.44
		MOT	ER SURFAC	E		4
00.00	-0.62 0.50	-2.25 0.45	-3.22 0.40	-0.53 0.48	-4.54	-2.66
2.5	0.46	0.48	0.47	0.41	0.20	0.42
5.0 7.5	0.37 0.30	0.42 0.35	0. 43 0.35	0.32 0.25	0.48	0.34 0.26
10.0	0.23	0.29 0.19	0.30	0.18	0.41 0.36	0,19
15.0 20.0	0.14 0.09	0.13	0.15	0.10 0.18	0.27 0.20	0.03 0.08
25,0 30,0	0,05 0,02	0.09 0.07	0.10 0.08	0.13 0.08	0.13	-0.05 -0.10
40.0	-0.01	0.03	0.04	0.03	0 .08 0.03	-0.16
50,0 60.0	0.00 0.03	0,05 0,08	0.05 0.0 7	0.02 0.02	0.00 -0.03	-0.17 0.00
70.0 80.0	0.08 0.38	0.13 0.38	0.13 0.38	0.03 0.05	-0.03	-0.15
90.0	0.22	0.20	0.20	0.09	0.02 0.03	-0.11 -0.07
25.2					-	

Figure 19.- Pressure Coefficient values with Angle of Attack = 8°
Flap Deflection = 15°
and R_e = 2.70 x 10°

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	S t a. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960
00.00 1.25 2.5 5.0 7.5 10.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 2	-1.87 -2.86 -1.97 -1.60 -1.36 -1.35 -1.11 -1.04 -0.99 -0.96 -0.84 -0.72 -0.61 -0.50 -0.45 -0.82 -0.37	-4.95 -3.40 -2.76 -2.17 -1.78 -1.63 -1.38 -1.24 -1.15 -1.06 -0.91 -0.76 -0.63 -0.52 -0.49 -0.90 -0.35	-6.70 -4.37 -3.37 -2.54 -2.10 -1.85 -1.53 -1.38 -1.24 -1.13 -0.97 -0.81 -0.66 -0.54 -0.54 -0.32	-3.71 -3.13 -2.88 -2.60 -2.35 -2.13 -1.85 -1.61 -1.43 -1.29 -1.06 -0.87 -0.71 -0.57 -0.45	-1.49 -1.29 -1.32 -1.34 -1.32 -1.26 -1.21 -1.16 -1.09 -0.99 -0.90 -0.81 -0.72 -0.64	-0.82 -0.72 -0.71 -0.73 -0.73 -0.71 -0.59 -0.66 -0.69 -0.57
90.0	-0.21	-0.19	-0.25	-0.45	-0.55	-0.55
Same Same		1 Auf	₽D 011D₽A/	t c		
eu e E		TOM	er surfac) E.		
00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5	-1.87 0.49 0.55 0.50 0.45 0.29 0.23 0.19 0.14 0.10 0.08 0.11 0.40 0.24	-4.95 0.19 0.45 0.51 0.48 0.44 0.35 0.29 0.24 0.20 0.13 0.13 0.14 0.18 0.40 0.22	-6.70 0.00 0.37 0.48 0.45 0.37 0.25 0.25 0.15 0.13 0.13 0.17	-3.71 0.11 0.42 0.54 0.52 0.47 0.38 0.30 0.24 0.19 0.12 0.07 0.05 0.03 0.03 0.04	-1.49 0.36 0.49 0.50 0.44 0.40 0.30 0.24 0.17 0.12 0.03 0.00 -0.07 -0.09 -0.08 -0.10	22 00000000000000000000000000000000000
F.	lgure 19.	- Pressu	re Coeffi	cient va	lues with	4.

Figure 19.- Pressure Coefficient values with Ange of Attack = 12°
Flap Deflection =15°
and R_e = 2.70 x 10°

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960
00.00 1.25	-2.98 -3.38	-6.24 -4.26	-2.30 -1.83	-1.40 -1.13	-0.90 -0.77	-0.65
2,5	-2.55	-3.48	-1.85	-1.14	-0.77	-0.62
5.0	-1.98	-2.8 8	~1.84 ~	-1.15	=0.79	-0.62
7.5	-1.68	-2.4 <u>1</u>	-1.79	-1.14	-0.7S	-0.36
10.0	-1.49	-2.26 -1.82	-1.73 -1.64	-1.13 -1.09	-0.78 -0.77	-0.62
15.0	-1.36 -1.25	-1.61	-1.55	-1.07	-0.75	-0.63
20.0	-1.18	-1.46	-1.47	-1.04	-0.75	-0.62 -0.62
25,0 30,0	-1.13	-1.32	-1.39	-1.03	-0.74	-0.53
40.0	-0.99	-1-14	-1.27	-0.99	-0.74	-0.62
50.0	-0.36	-0.98	-1.15	-0.95	-0.73	-0.62
60.0	-0.74	-0.83	-1.04	-0.90	-0.7 2	-0.62
70.0	-0.61	-0.72	-0.94	-0.84	-0.70	-0.62
80.0	-0.56	-0.58	-0.83	-0.79	-0.67	-0.62
80.0f	-0.99	-1.01	-0.77			3 ×
85 ₀ 0	-0.46 -0.27	-0.46 -0.33	-0.72 -0.66	-0.72	-0,63	0.00
90.0	-0.2:		-0:00	-0,12	-0.00	-0.39
4.0 P.						1
4		LOW	IER SURFAC	E	***	4 4
00,00	-2.98	-6.24	-2.30	-1.40	-0.90	-0 _e cs
1,25	0.32	-0.04	0.22	0.32	0.38	A -A
2.5	0.53	0.39	0.46	0.47	0.48	0.79
5.0	0.58	0.56	0.54	0.52	0.45	0.33
7.5	0.55	0.56	0.53	0.49	0.42	0.25
10.0	0.50	0.56 0.45	0.49 0.41	0.45 0.37	0.38 ° 0.2 9	0.19
15.0	0.43 0.36	0.43	0.34	0.30	0.23	0.02
20.0	0.30	0.33	0.28	0.23	0.17	-0.05
25.0 30.0	0.26	0.27	0.25	0.18	0.10	-0.11
40,0	0.20	0.21	0.17	0,09	0.01	-o.a
50.0	0.15	0.17	0.13	0.03	0.00	-0.23
60.0	0.16	0.17	0.12	-0.02	-0.12	0.00
76.0	0.17	0.18	0.13	-0,06	-0.15	-0.25
80.0	0.43	0.36	0.29	-0.09	-0.15	-0.24
90.0	0.26	0.17	0.07	-0.13	-0.19	-0.03

Figure 19.- Pressure Coefficient values with Angle of Attack = 16°
Flap Deflection = 15°
and R_e=2.70 x 10⁵

CONTRIBUTIAL.

INFORMATION

UPPER SURFACE

	*					
percent chord	Sta. 0.098	Sta. 0.270	5ta. 0.4.2	Sta. 0.615	S ta. 0. 7 87	Sta. 0.960
00.00	-4.92	-2.15	-1.62	-1.14	-0.84	-0.61
1.25	-3.88	-1.06	-1.27 -1.23	-0.90 -0.90	-0.69 -0.69	-0.61
2.5 5.0	-5.19 -2.44	-1.95 -1.89	-1.23	-0.89	-0.70	-0.61
7.5	-2.04	-1.95	-1.23 -1.23	-0.89	-0.69	-0.36
10.0	-1.35	-1.30	-1.26	-0.87	-0.69	-0.61
15.0	-1.50	-1.72	-1.22	-0.36	-0.69	-0.61
20.0	-l.45	-1.66	-1.13	-0.35	-0,69	-0.61
25.0	-1.34	-1.59	-1.17	-0.84	-0.69	-0.61
30.0	-1.23	-1.51	-1.15	-0.84	-0.63	-0.52
40.0	-1.18	-1.39	-1.14	=0.34	-0.59	-0.61
50.0	-1.08	-1.28	-1.12	-0.83	-0.69	-0.61
60.0	-0.96	-1.16	-1.00	- 0.3 3	-0.69	-0.61
70.0	-0.34	-1.06	-1.03	-0.31	-0.67	-0.61
80.0	-0.79	-0.94	-0∙93	- 0.79	-0.67	-0.61
30.0f	-129	-1.41	-0.92	-		
85,0	-0.67	- 0.34	-0.90		2 0 0	5.80
90.0	-0.45	-0.72	-0.34	-0.77	-0.64	-0.39
		LO.	TER SURFA	CE		
00.00	-4.92	-2.18	-1.62	-1.14	-0.34	-0.61
1.25	0.13	3.13	0.25	0.32	0.34	
2.5	J.50	0.47	0.48	0.48	0.47	0,37
5.0	0.64	0.61	0.58	0.55	0.50	0.34
7.5	0.64	0.61	0.53	0.53	0.46	0.29
10.0	0.31	0.59	0.53	0.49	0.42	0.24
15,0	0.55	0.50	0.46	0.42	0.34	0.13
20.0	0.45	0.44	O•50	0.33	0.27	୦.୯୫ ା
25.0	0.40	0.50	0.33	0.27	0.20	-0.02
20.0	.0.34	0.34	0∙2੪	0.22	0.14	-0.07
40.0	0.26	0.24	0.19	0.12	0.04	-0.17
50.0	0.480	0.20	0.14	0.03	0.00	-0.21
60,0	0.19	0.17	0.10	-0.02	-0.10	-0.00
70.0	0.18	0.17	0.11	-0.03	-).15	-0.25
30.0	0.43	0.37	0.23	-0.12	-0.18	- 0.25
90.0	0.04	0.11	0.00	-0.17	-0-20	-0.03

Figure 19 (Cont'd).- Pressure coefficient values with Angle of Attack - 200 Flap leflection = 150 and Re = 2.70 x 10

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	Sta. 0.737	Sta. 0.950
00,00	-4.00	-1.62	-1.25	-1.07	-0.79	-0.61
1.25	-2.97	-1,58	-1.20 -1.21	-0.88 -0.88	-0.71 -0.72	0 03
2.5 5.0	-2.73 -2.45	-1.58 -1.55	-1.20	-0.60	-0.72	-0.61 0.61
7.5	-2.23	-1.51	-1.17	-0.87	-0.71	-0.56
10.0	-2.07	-1.49	-1.17	-0.8 6	-0.71	-0.61
15.0	-1.84	-1.46	-1.13	-0.85	-0.71	-0.61
20.0	-1.68 -1.55	-1.44 -1.41	-1.12 -1.08	-0.85 -0.84	-0.71 -0.71	-0.61
25.0 30.0	-1.48	-1.39	-1.07	-0.84	-0.71	-0.62 -0.53
40.0	-1.34	-1.34	-1.06	-0.93	-0.70	-0.62
50.0	-1.25	-1.30	-1.05	-0.82	-0.70	-0.6Z
60.0	-1.16	-1.24	-1.02	-0.81	-0.69	-0.62
70.0	-1.08	-1.18 -1.12	-1.00 -0.99	-0.3 <u>1</u> -0.80	-0.68	-0.61
80,0 00.05	-1.00 -1.56	-1.67	-0.33	-0.00	-0.67	-0.61
85,01 85,0	-0.91	-1.08	-0.93			angi S
90.0	-0.73	-0.97	-0.88	-0. 80	-0.65	-0.20
		· TOM	R SURFAC	E.		
vá rich v		· LCW	SUNPAC	E.		
00.0C	-4.00	-1.62	-1.25	-1.07	-0.79	-0,61
1,25	0.15	0.12	0.15	0.23	0.24	
2,5	0,55	0.45	0.45	0.44	0.44	0.24
19. 0	0.72 0.74	0.63 0.65	0.58 0.59	. 0.56 0.56	0.53 0.5 1	
77.5×	0.71	0.64	0.58	0.54	0.48	6 30
1520	0.65	0.57	0.52	0.47	0.42	0.36
20.0	0.57	0.51	0.46	0.41	0.36	0.11
25,0	0.50	0.45	0.39	0.34	0.29	2.03
30,0	0.44	0.40	0.35	0.30	0.22	-0.05
40.0 = 70.0	0.35	0.30 0.24	0.25 0.19	0.18 0.09	0.11	-0.13
50.0 60.0	0.27 0.24	0.29	0.13	-0. 03	0.00 -0.05	-0.19 0.00
70.0	0.20	0.18	0.13	-0.04	-0.11	-0, 25
80.0	0,45	0.37	0.29	-0.10	-0.14	-0.24
90.0	0.20	0.07	0.00	-0.15	~0 . 19	-0.01

Figure 19.- Pressure Coefficient values with Angle of Attack = 24° Flap Deflection = 15° and R_e = 2.70 x 10°

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960
00.00	-2.13	-1,33	-1.14	-0.87	-0.77	-0.61
1.25	-1.71	-1.33	-1.15	-0.89	-0.74	
2.5	-1.68	-1.33	-1.15	-0.89	-0.74	-0.62
5-0	-1.61	-1.32	-1.14	-0. 8 9	-0.74	-0.62
7.5	-1.59	-1.30 -1.31	-1.12 -1.12	-0.89 -0.87	-0.74	-0.57
10 .0 15.0	-1.55 -1.47	-1.27	-1.09	-0.87	-0.74 -0.74	-0.62
20.0	-1.43	-1.24	-1.09	-0.87	-0.74	-0.62 -0.62
25.0	-1.37	-1.24	-1.07	-0.87	-0.74	-0.62
30.0	-1.34	-1.23	-1.05	-0.87	-0.74	-0.54
40.0	-1.28	-1,21	-1.04	-0.86	-0.73	-0.62
5C.0	-1.24	-1.19	-1.02	-0.84	-0.72	-0.62
60.0	-1.21	-1.18	-1.00	-0.84	-0.72	-0.62
70.0	-1.17	-1.14	-0.99	-0.83	-0.71	-0,62
80.0	-1.13	-1.11	-0.97	-0.82	-0.03	-0.61
PA At	-1.75	-1.70	-0.92		-	v. h
65.0	-1.09	-1.11	-0.94			1.15 1. 1.36
90.0	-0,96	-1.03	-0.84	-0.81	-0.69	-0.21

		* ***				
3 4 th		LOW	er surfac	E		
00,00	-2.13	-1.33	=1.14	-0.87	-0,77	0 43
1,25	0.20	0.08	0.08	0.12	0.13	-0.61
2,5	0.61	0.45	0.42	0,38	0.38	0.29
5.0	0.76	0.64	0.59	0.56	0.54	0.39
7.5	0.77	0.67	0.64	0.58	0.55	0.36
10.0	0.75	0.67	0,63	0.58	0.53	0.32
15.0	0.68	0.63	0.58	0.53	0.48	0.25
50.0	0.62	0.56	0.52	0.48	0.42	0, 17
25.0	0.55	0.51	0.46	0.42	0.36	0,10
30.0	0.49	0.45	0.42	0.36	0.29	0.03
40.0	0.39	0,36	0.31	0.24	0.18	-0.08
50.0	0.31	0.29	0.23	0.15	0.00	-0.15
60.0	0.25	0.24	0.18	0.10	0.00	0.00
70.0	0.21	0.20	0.15	-0.01	-0.08	-0.23
80.0	0.45	0.39	0.32	-0.08	-0.11	-0.23
90.0	0.17	0.07	0.00	-0.13	-0.18	-0.01

Figure 19.- Pressure Coefficient values with Angle of Attack = 28° Flap Deflection = 15° and R_e = 2.70 x 10°

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	St a. 0.78 7	Sta. 0.960
00.00 1.25 2.5 5.0 7.5 10.0 15.0 25.0 30.0 40.0 50.0 60.0 80.0 80.0 80.0	-1.57 -1.47 -1.44 -1.39 -1.34 -1.30 -1.27 -1.27 -1.22 -1.20 -1.19 -1.16 -1.14 -1.78 -1.14	-1.23 -1.22 -1.24 -1.19 -1.24 -1.18 -1.16 -1.15 -1.15 -1.16 -1.5 -1.65 -1.02	-1.09 -1.10 -1.09 -1.07 -1.07 -1.04 -1.03 -1.02 -1.00 -0.99 -0.97 -0.97 -0.89 -0.90	-0.89 -0.89 -0.87 -0.87 -0.86 -0.85 -0.85 -0.84 -0.83 -0.82 -0.81 -0.80 -0.79	-0.74 -0.72 -0.73 -0.73 -0.73 -0.73 -0.73 -0.72 -0.72 -0.72 -0.72 -0.70 -0.03	-0.64 -0.65 -0.61 -0.57 -0.60 -0.62 -0.63 -0.64 -0.62 -0.63 -0.63 -0.58
90.0	-1.04	-0.99	~C.88 ER SURFAC	-0.79	-0.69	-0.59
25 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20	-1.57 0.28 0.61 0.78 0.80 0.79 0.74 0.67 0.60 0.53 0.43 0.29 0.23 0.46 0.18	-1.23 0.05 0.42 0.63 0.67 0.70 0.64 0.60 0.54 0.38 0.32 0.25 0.22 0.38 0.07	-1.09 0.03 0.58 0.54 0.64 0.61 0.55 0.50 0.45 0.35 0.28 0.21 0.18 0.33	-0.89 0.07 0.35 0.57 0.61 0.58 0.52 0.46 0.28 0.19 0.11 0.03 -0.04 -0.11	-0.74 0.08 0.35 0.53 0.55 0.55 0.46 0.40 0.33 0.22 0.00 0.03 -0.04 -0.08 -0.17	-0.64 0.25 0.38 0.34 0.31 0.23 0.18 0.11 0.04 -0.08 -0.13 -0.13 -0.23 -0.23

Figure 19.- Pressure Coefficient values with Angle of Attack = 30° Flap Deflection = 15° and R_e = 2.70 x 10⁵

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0,442	Sta. 0.615	Sta. 0.787	Sta. 0.960
00.00 1.25 2.5 5.0 7.5 10.0 15.0 20.0 25.0 30.0 40.0 50.0 60.0 70.0 80.0 80.0 80.0 80.0	0.38 0.15 0.03 -0.10 -0.13 -0.19 -0.25 -0.30 -0.35 -0.38 -0.41 -0.41 -0.41 -0.61 -1.16 -0.66 -0.40	0.41 0.08 -0.03 -0.16 -0.20 -0.25 -0.31 -0.37 -0.41 -0.43 -0.49 -0.50 -0.51 -0.77 -1.28 -0.63 -0.25	0.48 -0.07 -0.14 -0.25 -0.31 -0.34 -0.41 -0.44 -0.46 -0.51 -0.49 -1.48 -0.66 -1.02 -0.34	0.44 -0.10 -0.16 -0.28 -0.30 -0.32 -0.36 -0.39 -0.41 -0.43 -0.38 -0.30 -0.23 -0.16	0.41 0.03 -0.08 -0.20 -0.21 -0.22 -0.26 -0.28 -0.31 -0.34 -0.34 -0.30 -0.24 -0.16 -0.03	0.43 -0.05 -0.12 -0.16 -0.21 -0.22 -0.23 -0.25 -0.21 -0.26 -0.21 -0.05
		LOWE	R SURFACI	E		
00.00 1.25 2.5 5.0 7.5 10.0 15.0 20.0 25.0 30.0 40.0 50.0 60.0 70.0	0.38 -0.25 -0.31 -0.30 -0.28 -0.30 -0.32 -0.30 -0.28 -0.23 -0.17 -0.05 -0.58 -0.32	0.41 -0.29 -0.30 -0.30 -0.31 -0.31 -0.31 -0.28 -0.25 -0.18 -0.07 -0.04 0.15 0.56 0.31	0.48 -0.20 -0.23 -0.23 -0.25 -0.26 -0.26 -0.25 -0.15 -0.05 0.13 0.48 0.22	0.44 -0.15 -0.18 -0.20 -0.23 -0.27 -0.27 -0.27 -0.26 -0.23 -0.18 -0.12 -0.08 -0.02	0.41 -0.29 -0.27 -0.27 -0.33 -0.34 -0.33 -0.31 -0.33 -0.30 -0.19 -0.12 -0.03 0.03	0.43 -0.40 -0.37 -0.36 -0.35 -0.31 -0.31 -0.30 -0.21 -0.15 -0.09 -0.03

Figure 20 (Cont'd).- Pressure coefficient values with Angle of Attack = -4° Flap Deflection = 30° and R_e = 2.70 x 10°

UPPER SURFACE

Percent	Sta.	Sta.	Sta.	Sta.	Sta.	Sta.
chord	0.098	0.270	0.452	0.615	0.787	0.960
01.0-						
00.00	0.43	0.17	0.03	0.05	0.08	0.02
1.25	-0.33	-0.63	-0.92	-1.14	-1.10	
2.5	-0.38	-0.63	-0.82	~ 0.94 ~	-0.94	-0.74
5.0	-0.44	-0.63	-0.78	-0.85	-0.82	-0.55
7,5	-0.43	-0.58	-0.72	-0.78	-0. 70	-0.47
10.0	-0.46	-0.61	-0.69	-0.5 9	-0.64	-0.48
15.0	-0.47	-0 .60	-0,86	-0.64	-0.59	-0.42
20.0	-0.50	-0.63	−0.69	-0.64	-0.55	-0.40
25.0	-0.52	-0.64	-0.69	-0,65	- 0.56	-0.38
30.0	-0.55	-0.64	-0.68	-0.64	-0.56	-0.32
40.0	-0.56	-0.65	-0.69	-0.60	-0.50	-0.32
50.0	-0.55	-0.63	 0∡63	-0.50	-0.42	-0.25
60.0	-0.52	-0,60	-0.58	-0.42	-0.33	-0.19
70.0	-0.49	-0.60	-0.57	-0.33	-0.23	-0.09
80.0	- 0.68	-0.84	-0.74	-0.2 3	-0.C3	-0,08
BO. Of	-£.20	-1.33	-1.04			
80.0f 85.0	-0 , 69	-0.65	-0.47			
90.0	-0.42	-0.0 9	-0.3 6	-0.15	-0.08	-0.08
4.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1					10	3 10 3.37
到 的 是 2010年 1010年	7					
THE WALL STREET	•		ER SURFAC			- 12 Sec. 1988.
到 的 是 2010年 1010年						
THE WALL STREET	0.43	LO W 0.17			0.08	0.02
THE WALL STREET	0.43 0.15	LOW	ER SURFAC	E	. A	0.02
THE WALL STREET		LO W 0.17	ER SURFAC	E 0.05	0.08	0.00
THE WALL STREET	0.15	10% 0.17 0.27	ER SURFAC	E 0.05 0.38	0.08 0.38	0.00
THE WALL STREET	0.15 0.08	10% 0.17 0.27 0.17	©ER SURFAC 0.03 0.33 0.22	E 0.05 0.38 0.28	0.08 0.38 0.30	o. oz
000	0.15 0.08 0.00	0.17 0.27 0.17 0.17	O.03 O.33 O.22 O.12	0.05 0.38 0.28 0.17	0.08 0.38 0.30 0.14	0.02
000	0.15 0.08 0.00 -0.03	0.17 0.27 0.17 0.08 0.02	0.03 0.33 0.22 0.12 0.05	0.05 0.38 0.28 0.17 0.08	0.06 0.38 0.30 0.14 0.03	0.02
000	0.15 0.08 0.00 -0.03 -0.08	0.17 0.27 0.17 0.03 0.03 0.02	0.03 0.33 0.22 0.12 0.05 0.00	0.05 0.38 0.28 0.17 0.08 0.03	0.08 0.38 0.30 0.14 0.03 =0.02	0.02
000	0.15 0.08 0.00 -0.03 -0.08 -0.13	0.17 0.27 0.17 0.06 0.02 -0.02 -0.08	0.03 0.33 0.22 0.32 0.32 0.05 0.00	0.05 0.38 0.28 0.17 0.08 0.03 -0.04	0.08 0.38 0.30 0.14 0.03 =0.02 -0.08	
000	0.15 0.08 0.00 -0.03 -0.08 -0.13 -0.13	0.17 0.27 0.17 0.08 0.62 -0.02 -0.08 -0.10	0.03 0.33 0.22 0.32 0.32 0.05 0.00 -0.06	0.05 0.38 0.28 0.17 0.08 0.03 -0.04 -0.08	0.08 0.38 0.30 0.14 0.03 =0.02 -0.08 -C.11	
000	0.15 0.08 0.00 -0.03 -0.08 -0.13 -0.13	0.17 0.27 0.17 0.03 0.02 -0.02 -0.08 -0.10	0.03 0.33 0.22 0.32 0.32 0.05 0.00 -0.06 -0.08	0.05 0.38 0.28 0.17 0.08 0.03 -0.04 -0.08	0.08 0.38 0.30 0.14 0.03 -0.02 -0.08 -0.11	
000	0.15 0.08 0.00 -0.03 -0.08 -0.13 -0.15 -0.15	0.17 0.27 0.17 0.06 0.02 -0.02 -0.08 -0.10 -0.10	0.03 0.33 0.22 0.32 0.32 0.05 0.00 -0.06 -0.08 -0.08	0.05 0.38 0.28 0.17 0.08 0.03 -0.04 -0.08 -0.10	0.08 0.38 0.30 0.14 0.03 -0.02 -0.08 -0.11 -0.13 -0.17	
000	0.15 0.08 0.00 -0.03 -0.08 -0.13 -0.15 -0.15	0.17 0.27 0.17 0.06 0.02 -0.02 -0.08 -0.10 -0.10 -0.10	0.03 0.33 0.22 0.12 0.05 0.00 -0.06 -0.08 -0.08	0.05 0.38 0.28 0.17 0.08 0.03 -0.04 -0.08 -0.10 -0.12	0.06 0.38 0.30 0.14 0.03 -0.02 -0.08 -0.11 -0.13 -0.17 -0.18	
000	0.15 0.08 0.00 -0.03 -0.08 -0.13 -0.15 -0.15 -0.15	0.17 0.27 0.17 0.06 0.02 -0.02 -0.08 -0.10 -0.10 -0.10	0.03 0.33 0.22 0.12 0.05 0.06 -0.06 -0.08 -0.08 -0.08	0.05 0.38 0.28 0.17 0.08 0.03 -0.04 -0.08 -0.10 -0.12 -0.12	0.06 0.38 0.30 0.14 0.03 -0.02 -0.08 -0.11 -0.13 -0.17 -0.18 0.00	
	0.15 0.08 0.00 -0.03 -0.08 -0.13 -0.15 -0.15 -0.15 -0.08 0.02	0.17 0.27 0.17 0.06 0.02 -0.02 -0.08 -0.10 -0.10 -0.10 -0.07 0.02 0.10	0.03 0.33 0.22 0.12 0.05 0.06 -0.06 -0.08 -0.08 -0.08 -0.08	0.05 0.38 0.28 0.17 0.08 0.03 -0.04 -0.08 -0.10 -0.12 -0.12	0.06 0.38 0.30 0.14 0.03 -0.02 -0.08 -0.11 -0.13 -0.17 -0.18 0.00 -0.13	
	0.15 0.08 0.00 -0.03 -0.08 -0.13 -0.15 -0.15 -0.15 -0.08 0.02 0.10	0.17 0.27 0.17 0.06 0.02 -0.02 -0.08 -0.10 -0.10 -0.10 -0.07 0.02 0.10 0.20	0.03 0.33 0.22 0.32 0.32 0.05 0.06 -0.06 -0.08 -0.08 -0.08 0.02 0.08 0.18	0.05 0.38 0.28 0.17 0.08 0.03 -0.04 -0.08 -0.12 -0.12 -0.12 -0.10 -0.07	0.08 0.38 0.30 0.14 0.03 =0.02 -0.08 -C.11 -0.13 -0.17 -0.18 0.00 -0.13 -0.08	

Figure 20.- Pressure Coefficient values with Angle of Attack = 0°
Flap Deflection = 30°
and R_e = 2.70 x 1.0°

UPPER SURFACE

Percent chord	St a. 0. 0 98	Sta. 0.270	3ta. 0,442	Sta. 0.615	Sta. 0.787	Sta. 0.960
00.00 1.25	-0.05 -1.07	-1,04 -1,69	-1.59 -2.13	-1.88 -2.84	-2.18 -3.09	-2.32
2.5	-0.97	-1.36 -1.15	-1.65 -1.34	-1.90 -1.55	-2.00 -1.58	-1.77
5.0 7. 5	-0.87 -0.79	-1.15 -1.00	-1.17	-1.31	-1.26	-1.19 -0.99
10.0	-0.7 7	-0.98	-1.09	-1.14	-1.12	-0.92
15.0	-0.74	-0. 90	-0.98 -0.94	-1.00 -0.94	-0.97 -0.88	-0.75
20.0 25.0	-0.74 -0.74	-0.89 -0.88	-0.92	-0.90	-0.84	-0.67 -0.61
30.0	-0.75	-0.84	-0.88	-0.85	-0.79	-0,48
40.0	-0.72 -0.67	-0.81 -0.75	-0.84 -0.?5	-0.77 -0.64	-0.68 -0.54	-0.43
50.0 60.0	-0.61	-0.70	~ 0.69	-0.51	-0.42	-0.38 -0.33
70.0	-0.5 8	-0.69	-0.64	-0.39	-0.30	-0.27
80.0	-0.74 -1.20	-0,89 -1,30	-0.76 -0.99	-0.28	-0.20	-0.38
80.01	-0.67	-0.64	-0.45			
3010	-0,43	-0.26	-0.34	-0.18	-0.12	-0.23

emeric All of		LOW	ER SURFAC	E		
86,00	-0.05	-1.04	-1.59	-1.88	-2.18	~2.3E
1.25	0.43	0.47	0.45	0.43 0.46	9.43	
2,5	0.35 0.25	0.41 0.31	0.42 0.33	0.38	0.48 0 0.38	0.44
. 7.5	0.19	0.23	0.25	0.30	0.28	0.17
10.0	0.13	0.18	0.20	0.25 0.16	0.23	0.10
25.0 20.0	0.06 0.02	0.10 0.07	0.12 0.08	0.10	0.13 0.08	-0.07
25.0	-0.02	0.04	0.05	0.05	- 0.03	-0.18
30.0	-0.03	0.03	0.05 0.04	0.03 -0.01	-0.02	-0,15
40.0 50.0	-0.03 0.00	0.03 0.08	0.08	-0.02	0.06 0.0≘	-0.30 -0.20
60.0	0.07	0.15	0.12	-0.02	-0.08	0.00
70.0	0.13	0.23 0.57	0.19 0.47	0.00 0.25	-0.06	-0.15
80.0 90.0	0,60 0,3 7	0.33	0.22	0.67	0,00 0,∪3	-0.10 -0.03
- N. E	-				-	

Figure 20 (cont'd.).- Pressure Coefficient values with Angle of Attack = 4° Flap Deflection = 30° and R₀ = 2.70 x 10⁸

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960
00.00	-0.97	-3.18	-4,90	-5.57	-5.39	-1.68
1,25 2,5	-1.93 -1.50	-2.86 -2.16	- 3.65 -2.82	-4,82 -3,34	-4.45 -3.50	-1.29
5.0 7.5	-1.29 -1.13	-1.78 -1.50	-2.17 -1.82	-2.45	-2.65	-1.33
10.0	-1.08	-1.40	-1.61	-2.01 -1.72	-2.16 -1.87	-1.31 -1.28
15.0 20.0	-0.97 -0.95	-1.24 -1.16	-1.39 -1.28	-1.44 -1.30	-1.51	-1.17 -1.05
25.0	-0.92	-1.11	-1.20	-1.20	-1.30 -1.17	-0.94
30.0 40.0	-0.92 -0.84	-1.94 -0.96	-1.11 -1.01	-1.12 -0.96	-1.06 -0.86	-0.71 -0.69
50.0	-0.76	-0.86	-0. 88	-0.78	-0.69	-0.59
60.0 70.0	-0.69 -0.63	-0.77 -0.73	-0.76 -0.69	-0.61 -0.47	-0.54 -0.41	-0.53 -0.45
80.0	-0.76	-0.89	-0.77	0.34	-0.30	-0.45
80_0f 85_0	-1.18 -0.64	-1.23 -0.61	-0.91 -0.42			3.4.4
ବହୁଁ ତ	-0.40	-0.24	-0.32	-0.22	-0.21	-0.43
in dien in der		LOW	ER SURFAC	E		
90,00	-0.97	-3.18	-4.90	-5.57	-5.39	-1.619
1.25 2.5	0.50 0.49	0.38 0.49	0.20 0.42	0.07 0.36	0.07	
5.0	0.41	0.46	0.47	0.48	C.39 O.5 0	0.32
7.5 10.0	0.34	0.40	0.42	0.46	0.46	0.25
1510	0.20 0.2 9	0.36 0.2 7	0.38 0.30	0.41 0.32	0.41	0.19
2010	0.16	0.22	0.25	0.26	0,30 0,24	0.03
25.0 30.0	0.12 0.10	0.19 p.16	0.21	0.20	0.18	-0.05
40. 0	0.08	0.13	0.19 0.15	0.17 0.10	0.12 0.05	-0.10 -0.17
50.0 50.0	0.08	0.16	0.16	0.07	0.00	-0.19
7000	0.13 0.19	0.20 0.27	$0.19 \\ 0.24$	0.05 0.04	-0,03 -0,03	-0.19 -0.16
.go.o	0.62	.0.40	0.47	0.05	0.00	-0.14
90.0	0.39	0 .3 5	0.24	0.08	0.00	-0.13

Figure 20 (cont'd.).- Pressure Coefficient values with Angle of Attack = 8
Flap Deflection = 30° and R_e = 2.70 x 10⁶

UPPER S RFACE

porcent chord	Sta. 0.035	Sta. 0.027	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960
00.00	-2.32	-5.87	-6.16	-2.07	-1.20	-0.32
1.25	-3.18	-3.34	-4.09	-1.73	-1.09	
25	-2.13	-3 .13	-3.44	-1.77	-1.10	-0.74
5 .9	-1.77	-2.43	-2.61	-1. 78	-1.11	-0.75
7.5	-1.50	-2.01	-2.44	-1.74	-1.10	-0.75
10.0	-1.40	-1.34	-2.19	-1.68	-1.09	-0.76
15.0	-1.23	-1.56	-1.86	-1.57	-1.05	-0.76
20.0	-1.17	-1.43	-1.66	-1.47	-1.02	-0.76
25.0	-1.12	-1.34	-1.50	-1.437	-0.99	-0.76
30.0	-1.08	-1.24	-1.39	-1.29	-0.96	-0.64
40.0 50.0	-0.98 -0.37	-1.12	-1.21	-1.17	-0. 30	-0.74
60.0		-0. 99	-1.05	-1.05	-0.85	-0.73
70.0	-0.70	-0.68 -0.8 2	-0.93	-0.95	-0.82	-0.71
80.0	-0.81	-0.95	-0.83 -0.78	-0.85 -0.75	-0.77	-0.69
00.0f	-1.23	-1.22	=0 • 78 =0 • 3 4	-1).10	-0.72	-0.68
85.0	-0.68	-0.63	-0.57			
90.0	-0.41	-0.29	-0.43	-0.67	-0.65	-0.6 8
	*		0.010		-0.50	-0.00
		LOVE	R SURFACE			
00.00	-2.52	-5.37	-6.16	-3.07	-1.80	-0.82
1.25	0.44	0.07	=0.04	0.23	0.36	
2.5	0.54	0.41	0.33	0.43	0.47	0.39
5.0	0.53	္ .52	0.53	0.51	0.47	0.50
7.5	0.48	0.51	0.53	0.48	0.40	0.22
10.0	0.42	0.48	0.50	0.45	0.36	0.16
15.0	0.35	0.41	0.43	0.37	0.28	0.06
20.0	0.29	0.34	0.36	0.30	0.50	-0.02
25.0 30.0	0.24	0.30	0.30	0.23	0.14	-0.08
40.0	0.21 0.17	0.26	0.28	○ .1 9	O.08	-0.14
50.0	0.16	0.22 0.22	0.22 0.20	0.11	0.00	-0.22
60.0	0.19	0.25	0.20	0.08	20.02	-0.25
70.0	0.13	0.30	0.20	0.02 -0.17	-0.11	-0.27
80.0	0.54	0.58	0.47	-0.17 -0.05	-0.14 -0.14	-0.26 () 05
90.0	0.42	0.36	0.22	-0.03 -0.03	-0.14 -0.18	-0.25
	O # 1 PO	J. 00	JOEE	-0.00	-A-TO	-0.25

Figure 20 (Cont'd).-Pressure coefficient values with Angle of Attack = 120 Flap Deflection = 30 and R_e = 2.70 x 10

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	St a. 0.615	Sta. 0.787	Sta. 0.960
00.00 1.25 2.5 5.0 7.5 10.0 15.0 20.0 25.0 30.0 40.0 50.0 60.0 70.0 80.0 80.0 80.0	-3.97 -3.64 -2.86 -2.19 -1.82 -1.66 -1.35 -1.26 -1.18 -1.98 -0.98 -0.87 -0.92 -1.37 -0.78	-4.23 -3.18 -2.96 -2.70 -2.48 -2.33 -1.66 -1.52 -1.33 -1.18 -1.07 -0.97 -0.92 -1.08 -0.77	-2.06 -1.59 -1.61 -1.60 -1.57 -1.55 -1.47 -1.43 -1.39 -1.34 -1.28 -1.28 -1.23 -1.14 -1.06 -0.98 -1.00 -0.66	-1.34 -1.04 -1.05 -1.05 -1.05 -1.04 -1.02 -1.00 -0.99 -0.99 -0.97 -0.95 -0.93 -0.89 -0.84	-0.92 -0.79 -0.79 -0.80 -0.79 -0.79 -0.79 -0.77 -0.76 -0.75 -0.74 -0.72	-0.67 -0.65 -0.61 -0.63 -0.63 -0.63 -0.63 -0.62 -0.64 -0.64
90.0	-0.47	-0.57	-0.75	-0.82	-0.68	-0.61
taning and a second of the North and a second of which and a second of		Lon	ER SURFAC	E		i de de la companya d
00.00 1.25 5.0 7.5 10.0 15.0 25.0 30.0 40.0 50.0 80.0 80.0 90.0	-3.97 0.25 0.52 0.61 0.60 0.55 0.40 0.35 0.25 0.22 0.24 0.26 0.44	-4.23 0.07 0.45 0.61 0.57 0.49 0.42 0.37 0.34 0.25 0.27 0.37 0.37	-2.06 0.22 0.46 0.54 0.53 0.50 0.43 0.37 0.31 0.28 0.18 0.18 0.18 0.18	-1.34 0.29 0.45 0.52 0.49 0.45 0.38 0.25 0.20 0.10 0.03 -0.02 -0.07 -0.12 -0.18	-0.93 0.33 0.45 0.47 0.42 0.38 0.29 0.23 0.17 0.10 0.01 -0.03 -0.13 -0.17 -0.18 -0.22	-0.67 0.37 0.30 0.23 0.17 0.08 0.09 -0.07 -0.12 -0.24 0.00 -0.27 -0.26 -0.08

Figure 20 (conl'd.).- Pressure Coefficient values with Angle of Attack = 16° Flap Deflection = 30° and $R_e = 2.70 \times 10^{6}$

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0 .27 0	Sta. 0.442	Sta. 0.615	Sta. 0.78 7	Sta. 0.960
00.00	-5.14	-1.93	-1.56	-1.24	-0.92	-0.64
1.25 2.5	-3.97 -3.27	-1.79 -1.79	-J.29 -1.29	-0.95 -0.95	-0.77 -0.77	-0.65
5.0 7.5	-2.58 -2.19	-1.75 -1.72	-1.30 -1.29	-0.95 0.95	-0.77	-0.65
10.0	-1.97	-1.70	-1.28	-0.94	-0.77 -0.77	-0.64 -0.65
15.0 20.0	-1.66 -1.52	-1.63 -1.59	-1.25 -1.23	-0.92 -0.92	-0.77 -0.77	-0.65 -0.65
25.0	-1.42	-1.55	-1.20	-0.92	-0.76	-0.65
30.0 40.0	-1.37 -1.25	-1.49 -1.40	-1.19 -1.17	-0.92 -0.91	-0,76 -0.75	-0.56 -0.65
50.0 60.0	-1.17 -1.09	-1.33 -1.25	-1.15 -1.12	-0.90 -0.89	-0.75	-0.67
70.0	-1.02	-1.17	-1.09	-0.89	-0.75 -0.74	-0.57 -0.67
60.0 30.0 1	-1.07 -1.51	-1.10 -1.19	-1.09 -1.10	-0.88	-0.72	-0.66
85.0	-0.99	-1.00	-0.94			
90,0	-0.67	-0.88	-0,84	-0.89	-0,70	-0,64
		IOW	ER SURFAC	T		
				E.		
00.00 1.25	0.10	-1.93 0.32	-1.56 0.18	-1.24 0.25	-0.92 0 0.28	-0.64
2:5	0.49	0.47	0.45	O.43	0.43	0.35
5.0 7.5	0.67 0.69	0.62 0.63	0.57 0.57	0.53 0.53	0.49 0. 4 5	0.33 0.28
10.0 15.0	0.65 0.58	0.61	0.54	0,50	0.42	0. 53
20.0	0.53	0.54 0.48	0.48 0.42	0.43 0.36	0.34 0.27	0.13
35.0 30.0	0.45 0.40	0 .43 0 . 38	0.37 0.33	0.29	0.21	-0.03
40,0	0.33	0.31	0.25	0.23 0.13	0.13 0.03	-0.09 -0.19
50.0 60.0	0.28 0.28	0.23 0.23	0.21 0.19	0.06 0.00	0.00 -0.12	-0.23
70.0	0.28	0.30	0.21	-0.08	-0.17	0.00 -0.29
30.0 9 0.0	0.69 0.43	0.57 0.2 7	0.45 0.12	-0.13 -0.20	-0.18 -0.23	-0.18

Figure 20 (cont'd.).- Pressure Coefficient values with Angle of Attack = 20°
Flap Deflection = 30°
and R_e = 2.70 x 10°

CONFIDENTIAL

CONFIDENTIAL INFORMATION UPPER SURFACE

percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	Sta.	Sta.
00.00 1.25 2.5 5.0 7.3 10.0 15.0 25.0 25.0 25.0 30.0 50.0 80.0 80.0 80.0	-5.50 -2.52 -2.23 -2.23 -1.75 -1.03 -1.40 -1.26 -1.26 -1.27 -1.16 -1.17 -1.56 -1.17	-1.52 -1.45 -1.50 -1.46 -1.45 -1.45 -1.45 -1.59 -1.86 -1.86 -1.86 -1.86 -1.86 -1.86 -1.86 -1.86	-1.24 -1.00 -1.20 -1.20 -1.17 -1.15 -1.14 -1.15 -1.11 -1.09 -1.09 -1.09 -1.09	-1,09 -0.04 -0.04 -0.05 -0.08 -0.08 -0.08 -0.09 -0.09 -0.09	-0.82 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76	-0.63 -0.64 -0.63 -0.63 -0.64 -0.63 -0.64 -0.65 -0.56 -0.58 -0.58
# 10 Bo		Lon	ER STRFA	ACE		
00.00 1.35 2.5 3.0 10.0 10.0 25.0 25.0 20.0 20.0 70.0 80.0	-3.30 0.24 0.53 0.73 0.74 0.70 0.57 0.57 0.51 0.45 0.37 0.30 0.30 0.69 0.69	-1.52 0.13 0.47 0.03 0.55 0.55 0.55 0.44 0.56 0.52 0.53 0.53 0.53 0.53	-1.24 0.10 0.35 0.57 0.57 0.37 0.25 0.24 0.46 0.12	-1.09 0.15 0.39 0.54 0.55 0.54 0.48 0.48 0.48 0.48 0.99 0.19 0.05 -0.05 -0.12	-0.82 0.19 0.39 0.50 0.49 0.47 0.41 0.34 0.29 0.10 0.00 -0.07 -0.13 -0.22	-0.83 0.32 0.37 0.32 0.28 0.19 0.11 0.03 -0.03 -0.04 -0.20 -0.05 -0.27 -0.26 -0.27

Digure 20 (Cont'd).- Pressure coefficient values with Angla of Attack = 240 Flap Deflection - 200 end R = 2.70 x 10

CONFIDENCIAL. INFORMATION

CONFIDENCE AL INFORMATION

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960
00.00	-1.95	-1.28	-1.13	-0.80	-0.75	-0.64
1.25 2.5	-1.58	-1.28 -1.29	-1.13 -1.14	-0.94 -0.92	-0.74 -0.74	-0.64
5.0	-1.52	-1,28	-1.14	-0.92	0.74	-0.65
7.5	-1.49	-1.27	-1.12 -1.13	-0.88	··0.74	-0.65
ຼາດ. 0 15. 0	-1.45 -1.39	-1.27 -1.24	=1.13 =1.10	-0.85 -0.90	-0.74 -0.74	-0.6 5 -0.65
20.0 25.0	-1.35	-1.23	-1.10	-0.90	-0.74	-0.65
25.0	-1.31	-1.22 -1.21	-1.09 -1.07	-0.69	-0.74 -0.74	-0.66
30.0 40.0	-1.29 -1.24	-1.20	-1.07	-0.89 -0.89	-0.74	-0.57 -0.66
50.0	-1.21	-1.20	-1.05	-0.87	-0.72	-0,67
60.0	-1.19 -1.17	-1.19 -1.17	-1.03 -1.00	-0.86 -0.85	~0.72 -0.71	-0.67 -0.65
70.0 80.0	-1.17	-1.14	-1.00	-0. 85	-0.71	~0.65 ~ 0.65
80.01	-1.49	-1.29	-1,07			7. No. 9
85 .0	-1.24 -1.10	-1.15 -1.05	-0.99 -0.85	-0.87	-0.71	-0.65
90.0	-T. T.	1,00	3,30	-0.01		
		1 00	PD CITTERAG	-		
100		TOM	ER SURFAC	£		
00.00	-1.95	-1.28	-1.13	-0,80	-0.75	-0.64
1,25	0.29	0.07	0.02	0.03	0.08	0. 0.27
50	0.45 0.78	0.43 0.64	0.3 ? 0.58	0.32 0.52	0.34 0.52	0.37
	0.79	0.69	0.62	0.58	0,53	0.34
IO.O	0.78	0.70	0.63	0.55	0.58	0.30
	0.70 0.65	0.66 0.61	0.60 0.55	0.55 0.50	0.48 0.42	0.23
28.0	0.60	0.56	0.50	0.43	0.36	0.07
39.0	0,54	0.52 0.43	0.45	0.38	0.30	0.00
50. 0	0.45	0.38	0.36 0.31	0.28 0.18	0.18° 0.05	-0.11 -0.18
6C.0	0.35	0.35	0.27	0.09	-0.Cl	-0.05
70.0	0.33	0 .3 5 0 .6 2	0.28	0.00	-0.0B	-0.27
80,0 50,0	0.72 0.41	0.02	0.50 0.14	-0.08 -0.15	-0.13 -0.20	-0.27 -0.28
4.5	•				- 1	1944

Figure 20 (cont'd.).- Pressure Coefficient values with Angle of Attack = 28° Flap Deflection = 30° and $R_e = 2.70 \times 10^{6}$

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960
00.00 1.25 2.5 5.0 7.5 10.0 15.0 20.0 25.0 30.0 40.0 50.0	-1.51 -1.39 -1.37 -1.33 -1.31 -1.29 -1.26 -1.24 -1.21 -1.19 -1.18 -1.17	-1.21 -1.22 -1.21 -1.20 -1.20 -1.19 -1.18 -1.16 -1.16	-1.13 -1.14 -1.13 -1.11 -1.11 -1.09 -1.09 -1.09 -1.06 -1.06	-0.95 -0.94 -0.93 -0.92 -0.92 -0.91 -0.90 -0.89 -0.89 -0.88	-0.75 -0.74 -0.74 -0.74 -0.74 -0.74 -0.74 -0.74 -0.74 -0.74 -0.74	-0.66 -0.63 -0.61 -0.64 -0.65 -0.65 -0.65 -0.66
60.0 60.0 80.0 80.0 85.0 90.0	-1.16 -1.15 -1.14 -1.45 -1.24 -1.11	-1.15 -1.14 -1.13 -1.27 -1.14 -1.04	-1.02 -1.01 -0.99 -1.05 -0.99 -0.93	-0.86 -0.85 -0.85	-0.74 -0.73 -0.72	-0.56 -0.46 -0.62
		LOW	ER SURFAC	E		
	-1.51 0.29 0.61 0.79 0.62 0.81 0.76 0.71 0.64 0.59 0.50 0.37 0.37 0.44	-1.21 0.02 0.42 0.64 0.71 0.72 0.69 0.64 0.55 0.47 0.42 0.39 0.38 0.63 0.29	-1,13 -0.03 0.34 0.56 0.62 0.64 0.61 0.56 0.52 0.47 0.39 0.33 0.29 0.29 0.50 0.14	-0.95 0.00 0.31 0.55 0.60 0.61 0.57 0.53 0.46 0.41 0.30 0.21 0.13 0.02 -0.07 -0.14	-0.75 0.04 0.32 0.52 0.55 0.55 0.51 0.45 0.39 0.33 0.21 0.07 0.03 -0.06 -0.10 -0.20	を 17数 17数 173 173 173 173 173 173 173 173

Figure 20 (cont'd.).- Pressure Coefficient values with Angle of Attack = 30° Flap Deflection = 30° and R_e = 2.70 x 10°

CONFIDENTIAL

INFORMATION

percent	Sta.	Sta.	Ste.	Sca.	Sta.	Sta.
chord	0.098	0.270	0.442	0.015	0.787	0.960
01101 4	0.000		5 5 m 5 m			
00.00	0.44	0.46	O • ĕO	0.45	0.48	0.46
1.25	0.13	-0.09	-0.36	-0.42	-0.25	
2.5	-0.02	-0.19	-0.39	-0.42	-0.31	-0.25
5.0	-0.14	: - 0.30	-0.46	-0.48	-0.38	-0.25
7.5	-0.19	-0.32	-0.46	-Q.48	-0.36	-0.26
10.0	-0.25	-0.58	-0.48	-0.45	-0.35	-0.30
15.0	-0.20 -0.31	-0.44	-0.50	-0.46	-0.38	-0.30
20.0	-0.51	-0.49	-0.56	-0.50	-0.38	-0.30
25.0	-0.42	-0.54	-0.60	-0.53	-0.40	-0.30
	-0.46	-0.56	-0.61	-0.53	-0.43	-0,26
30. 0		-0.63	-0.67	-0.54	-0.41	-0.23
40.0	-0.52	-0.66	-0.65	-0.46	-0.36	-0.24
50.0	-0.54 -0.55	-0.69	-0.64	-0.40	-0.28	-0.19
೮ ೦ ∙ ೦		-0.76	-0.68	-0.32	-0.20	-0.11
70.0	-0.59	-1.17	-0.96	-0.23	-0.13	-0.07
80.0	-0.91			-0.20	-0.10	-0.07
SO.Of	-1.93	-2.03	-1.29			
85.0	-1.16	-0.76	-0.49	0.10	o ori	-0.04
90.0	-0.73	- J.59	-0.47	-0.17	-0.07	-0.04
		TANG	n aribuada			
		LOV. E.	R SURFACE			
20, 20	0.44	0.40	0.60	0.45	0.40	0.46
00,00	0.44	0.46	0.60	0.45	0.48	0.46
1.25	-0.22	-0.09	0.08	0.11	-0.05	A 00
2.5	-0.25	-0 .13	-0.03	o. 03	-0.07	-0.20
5.0	-0.25	.0.15	-0.07	-0.04	-0.13	-0.25
7.5	-0.23	-0.17	-0.10	-0.10	-0.22	-0.27
10.0	-0.25	-0.19	-0.12	-0.13	-0.23	-0.27
15.0	-0.26	-0.20	-0.15	-0.17	-0.25	-0.36
20.0	-0.25	-0.19	-0.14	-0.18	-0.26	-0.29
25.0	-0.24	-0.17	- 0.13	-0.18	-0.27	-0.29
30.0	-0.22	-0.13	-0.10	-0.18	-0.28	-0.29
40.0	- 16	~ 0.06	-0.04	-0.17	-0.25	-0.25
50.0	-0.03	0.05	0.06	-0.15	0.00	-0 22
60.0	0.04	0.17	0.13	-0.10	-0.18	-0.17
70.0	0.15	0.29	0.21	-0.08	-0.12	-0.09
∂0•0	0.78	ଠ•6୬	0.53	-0.03	-0.03	-0.03
9 0. 0	0.52	0.46	0.28	0.04	0.03	0.00

Figure 21.-Pressure Coefficient values with Angle of Attack = -4° Flap Deflection = 45° and R_e = 2.70 x 10

CONFIDENTION

UPPER SURFACE

Percent chord.	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960
00.00 1.25 2.5 5.0 7.5 10.0 15.0 20.0 25.0 30.0 40.0 50.0 60.0 70.0 80.0 80.0 80.0 80.0	0.39 -0.42 -0.47 -0.52 -0.53 -0.57 -0.65 -0.65 -0.66 -0.66 -0.66 -1.97 -1.13 -0.71	-0.08 -0.90 -0.84 -0.79 -0.74 -0.74 -0.75 -0.78 -0.78 -0.78 -0.78 -0.78 -0.78 -0.78 -0.78 -0.78 -0.78 -0.78 -0.78 -0.78	-0.50 -1.50 -1.16 -1.00 -0.86 -0.81 -0.82 -0.82 -0.82 -0.77 -0.75 -1.00 -1.23 -0.47 -0.45	-0.55 -1.66 -1.35 -1.12 -0.98 -0.96 -0.80 -0.79 -0.79 -0.72 -0.61 -0.50 -0.40 -0.29	-0.48 -1.61 -1.36 -1.06 -0.89 -0.30 -0.73 -0.68 -0.67 -0.66 -0.59 -0.49 -0.39 -0.28 -0.19	-0.40 -0.99 -0.74 -0.64 -0.62 -0.54 -0.49 -0.46 -0.37 -0.38 -0.30 -0.24 -0.17 -0.13
00,00 1,25 2,5 5,0 7,5 10,0 25,0 25,0 30,0 40,0 50,0 60,0 90,0	0.39 0.22 0.12 0.05 0.02 -0.03 -0.08 -0.09 -0.09 -0.09 0.19 0.77 0.53	-0.08 0.35 0.16 0.10 0.07 0.01 -0.02 -0.02 -0.03 0.12 0.21 0.30 0.51 0.46	-0.50 0.40 0.31 0.22 0.15 0.05 0.05 0.03 0.05 0.10 0.16 0.23 0.51 0.27	-0.55 0.44 0.39 0.26 0.18 0.06 0.01 -0.03 -0.04 -0.07 -0.07 -0.06 -0.05 -0.02 0.03	0.48 0.44 0.38 0.23 0.12 0.07 0.00 -0.05 -0.08 -0.11 -0.13 0.00 -0.12 -0.08 -0.03 0.02	-0.40 0.27 0.07 0.00 -0.05 -0.12 -0.15 -0.19 -0.23 -0.20 -0.18 -0.14 -0.07 -0.04

Figure 21 (cont'd.).- Pressure Coefficient values with Angle of Attack = 0°
Flap Deflection = 45°
and R_e = 2.70 x 10⁶

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.2 70	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960
00.00	-0.10	-1.45	-2.69	-3.08	-3,36	-3.13
1.25 2.5	-1.13 -1.02	-2.05 -1.53	-2.81 -2.07	=3.72 - 2.47	-4.02 -2.51	-2,02
5.0	-0.93	-1.32	-1.70	-1.93	-1.88	-1.37
7.5 1.0.0	-0.84 -0.83	-1.15 -1.12	-1.46 -1.34	-1.62 -1.40	-1.50 -1.32	-1.16 -1.06
15.0	-0.79	-1.04	-1.19	-1.22	-1.13	-0.85
20.0 25.0	-0,80 -0,81	-1.01 -1.01	-1.15 -1.10	-1.13 -1.08	-1.01 -0.96	-0.75 -0.68
30.0	-0.83 -0.80	-0.97 -0.95	-1.06 -1.01	-1.02 -0.92	-0.90 -0.76	-0.53
40.0 50.0	-0.79	-0.91	-0.92	-0.76	-0.76 -0.61	-0.53 -0.44
50.0 70.0	-0.74 -0.74	-0.88 0.90	-0.86 -1.00	-0.63 -0.49	-0.48 -0.36	-0.41
80.0	-1.01	-1.25	-1.05	-0.36	-0.25	-0.31 -0.27
80,01 85,0	-1.89 -1.08	-1.89 -0.71	-1.21 -0.37			
90.0	-0.67	-0.36	-0.43	-0.25	-0.16	-0.25
A Section of the second						
		LOW	er surfac	E		
00,00	-0.10	-1.45	-2.69	-3.08	-3.36	-3.13
1.25	0.44	0.47	0.39	0.31	0.30	,
2.5 5.0	0.36 0.26	0. 44 0.36	0.45 0.41	0.43 0.42	0.44 0.41	C. 3,6 O. 30
7.5 10.0	0.20	0.30	0.34	0.36	0.34	0,21
15.0	0.14 0.08	0.25 0.17	0.29 0.22	0.31 0.23	0.27 0.19	0.14
20.0	0.05	0.13	0.18	0.17	0.12	-0.04
25,0 30,0	0.03 0.02	0.11 0.11	0.14 0.14	0.12 0.03	0.07 0.03	-0.10 -0.14
40.0	0.03	0.12	0.14	0.03	-0.03	-0.19
50.0 60.0	0.06 0.14	0 .17 0 . 25	0.17 0.20	0.01 0.00	0,00 -0,07	-0,20 -0,20
70.0	0,22	0.32	0.25	-0.02	-0.06	-0.17
80.0 90.0	0,74 0.54	0.67 0.47	0.51 0.2 7	0.00 0.03	-0,02 0,00	-0.30 -0.28

Figure 21 (cont'd.).- Pressure Coefficient values with Angle of Attack = 40 Flap Deflection = 450 and R_e = 2.70 x 10⁶

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960
00.00	-1.20	-3.91	-6.32	-6.77	-2.99	-1.37
1.25 2.5	-2.16 -1.62	-3.07 -2.48	-4.32 -3.33	 5,35	-2-65	
5.0	-1.39	-2.00	-2.5 3	-3.84 -2.86	~2.50 -2.29	-1.09
7. 5	-1.22	-1,58	-2.11	-2.37	-2.12	=1.12 -1.12
10.0	-1.16	-1.58	-1.87	-2.04	-1.98	-1.11
15.0 20.0	-1.08 -1.04	-1.39 -1.29	-1.60 =1.48	-1.69 -1.51	-1.71	-1.07
25.0	-1.02	-1.24	-1.39	-1.39	-1.51 -1.34	-1.01 -0.94
30.0	-1.01	-1,18	-1.29	-1.28	-1.21	-0.74
47.0	-0.95	-1.10	-1.19	-1.11	-0,99	-0.76
50.0	-0.89 -0.82	-1.03 -0.96	-1.05 -0.95	-0.91 -0.74	-0.82	-0.68
70.C	-0.79	-0.96	-0.89	-0.58	-0.68 -0.57	-0.62
80.0	-1.03	-1.26	-1.04	-0.45	-0.46	-0,56 -0,55
80,0r 85,0	-1.83	-1.78	~1.11		4	1.44
90-0	-1.03 -9.63	-0.67 -0.31	-0.41 -0.39	-0.72	0.70	
A SAN CONTRACTOR	••••	3.02	-0,03	-0.32	-0. 38	-0.55
						Grand Contract
Arron Un C		LOW	er surfac	E		85
00.00	-1,20	-3,91	-6,32	-6.77	-2.99	
25	0.50	0.29	0.03	-0.14	0.21	
2.5	0.50	0.46	0.37	0.27	0.43	0.39
BALL .	0.44 0.37	0.49 *0.45	0,48	0.48	0.49	0,29
18.6	0.32	0.40	0.46 0.43	0.47 0.45	0.43	0,22
	0.24	0.33	0, 36	0.37	0.38 0.29	0.14 0.05
20,0	0.19	0.28	0.32	0.30	0.22	-0.02
30.0	0.17 0.14	0.24 0.23	0.27	0.24	0.15	-0.08
40°0	0.13	0.21	0.26 0.22	0.20 0.13	0.10	-0.13
50.0	0.14	0.24	0.23	0.13	0.03 0.00	-0.20
60.0	0.20	0.29	0.26	0.05	-0.06	-0.22 -0.23
70.0 80.0	0.2 7 0.77	0.36 0.66	0.29	0.02	-0.08	-0.22
90,0	0.56	0.48	0.50 0.29	0.01 0.03	-0.06	-0.19
i in de se de la	<u> </u>		- a 130	0.03	-0.07	-0.19

Figure 21 (cont'd.).- Pressure Coefficient values with Angle of Attack = 80 Flap Deflection = 450 and R_e = 2.70 x 10⁵

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	Sta. 0,787	Sta. 0.960
00.00	-2.63 -3.42	-6.43 -4.28	-3.46 -2.66	-1.71 -1.40	-1.07 -0.96	-0.87
2.5 5.0	-2,33 -1.88	-3.39 -2.64	-2.65 -2.49	-1.42 -1.45	-0.98 -1.00	-0.80 -0.82
7.5 10.0	-1.59 -1.48	-2,20 -2,00	-2.33 -2.20	-1.44 -1.42	-1.00 -1.00	-0,82 -0,83
15.0 20.0	-1.31 -1.23	-1.71 -1.56	-1.97 -1.81	-1.39 -1.34	-0.98 -0.96	-0.84
25.0	-1.18	-1.45	-1.66	-1.20	-0.94	-0.84 -0.83
30.0 40.0	-1.16 -1.07	~1.56 -1. 23	-1.54 -1.36	-1.24 -1.15	-0.92 -0. 9 0	-0.70 -0.80
50.0	-0.98	-1.13	-1.22	-1.10	-0.88	-0.79
60.0 70.0	-0.89 -0.86	-1.05 -1.03	-1.10 -1.00	-1.03 -0.96	-0,86 -0.83	-0.78 -0.75
80,0 80,01	-1.08 -1.86	-1.27 -1.71	-0,90 -0 ,9 6	-0.88	-0.79	-0,74
85~0	-1.04	-0.75	-0.74	0.70	0 83	
90 Q	-0.63	 0 _• 36	-0.61	- 0.79	-0.71	-0.72
4.2		I.OM	er surfac	Ŧ:		
125	-2.63 0.41	-6, 13 -0. 0 3	-3.46 0.11	-1.71 0.25	-1.07 0.38	-0,87
2.5	0.54 0.55	0.38 0.53	0.42 0.54	0.44 0.51	0.45	0.35
7.5	0.51	0.53	0.53	0.48	0,45 0,39	0,27
10.0 15.0	0.46 0.39	0.51 0.45	0.51 0.44	0.45 0.37	0.34 0.25	0.14 0.04
20.0	0.33 0.29	0.39 0.35	0.38 0.34	0.30	0.19	-0.03
25,0 30,0	0.26	0.33	0.30	0.24 0.19	0,12 0.07	-0.10 -0.15
40.0 50.0	0.22 0.22	0.28 0.29	0.25 0.25	0.11 0.05	-0.25 0.00	-0.24 -0.27
60.0	0.26	0.33	0.25	0.00	-0.14	-C.30
70.0 80.0	0.31 0.80	0.39 0.67	0.29 0.49	-0.06 -0.11	-0.13 -0.19	-0.29 -0.27
90.0	0.60	0.46	0.25	-0.15	-0.23	-0,27

Figure 21 (cont'd.).- Pressure Coefficient values with Angle of Attack = 12°
Flap Deflection = 45°
and Re = 2.70 x 106

UPPER SURFACE

Percent chord	Sta. 0 .09 3	Sta. 0.270	Sta. 0,442	Sta. 0.615	Sta. 0. 78 7	Sta. 0.960
00.00 1.5 5.0 10.0 15.0 10.0 15.0 15.0 1	-4.04 -3.36 -2.86 -2.21 -1.83 -1.65 -1.35 -1.28 -1.25 -1.93 -0.99 -0.95 -1.93	-3.21 -2.56 -2.50 -2.41 -2.27 -2.22 -1.96 -1.84 -1.71 -1.58 -1.40 -1.28 -1.17 -1.10 -1.28 -1.95 -1.95	-1.68 -1.44 -1.45 -1.45 -1.45 -1.39 -1.36 -1.30 -1.26 -1.21 -1.16 -1.09 -1.03 -1.29 -0.82 -0.72	-1.33 -1.03 -1.03 -1.04 -1.03 -1.01 -1.01 -1.01 -0.99 -0.98 -0.96 -0.91 -0.88	-0.97 -0.83 -0.83 -0.82 -0.82 -0.82 -0.82 -0.82 -0.82 -0.82 -0.82 -0.82 -0.82	-0.73 -0.71 -0.73 -0.73 -0.73 -0.73 -0.73 -0.76 -0.76
	-0.71		ER SURFAC	-0.89 E	-0.72	
00.25 5.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	-4.04 0.26 0.53 0.62 0.56 0.43 0.34 0.29 0.27 0.29 0.33 0.61	-3.21 0.11 0.47 0.62 0.61 0.59 0.51 0.45 0.40 0.37 0.32 0.32 0.32 0.34 0.39 0.67 0.43	-1.88 0.21 0.45 0.55 0.54 0.51 0.45 0.32 0.26 0.24 0.24 0.28 0.28 0.22	-1.33 0.26 0.43 0.50 0.49 0.45 0.39 0.32 0.25 0.20 0.12 0.05 -0.02 -0.08 -0.14 -0.21	-0.97 0.30 0.43 0.45 0.40 0.37 0.29 0.22 0.15 0.09 -0.01 0.00 -0.14 -0.19 -0.20 -0.25	- 000000000000000000000000000000000000

Figure 21 (contid.).- Pressure Coefficient values with Angle of Attack = 16° Flap Deflection = 45° and R_e = 2.70 x 10°

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0,615	Sta. 0.787	Sta. 0.960
00.00	-4.86	-1.83	-1.45	-1.22	-0.95	-0.68
1.25	-3.85	-1.73	-1. 30	-1.00	-0.81	
2.5	-3.28	-1.73	-1.31	-1.00	~0,81	-0.69
5.0	-2.65	-1.70	-1.31	-1.00	-0.81	-0,69
7.5	-2.29	-1.66	-1.30	-1.00	-0.81	-0.69
10.0	-2.05	-1.64	-1.28	-0.99	-0.81	-0.69
15.0	-1.70	-1.58	-1.27	-0.98	-0.81	-0.69
\$0.0	-1.55	~ 1₃55	-1.24	-0. 98	-0.81	-0.69
25.0	-1.43	-1.5 <u>1</u>	-1.23 -1.21	-0.92 -0.98	-0.81 -0.81	-0.70
36,0	-1.39 -1.28	-1.48 -1.42	-1.19	-0.97	-0.81	-0.61
40.0 50.0	-1.21	-1.36	-1.18	-0.96	-0.80	-0.71
60.0	-1.14	-1.29	-1.15	-0.96	-0.80	-0.71 -0.72
70.0	-1.09	-1.24	-1.12	-0.95	-0.79	-0.72
80.0	-1.19	-1.18	-1.12	-0.95	-0.76	-0.71
80.01	-1.88	-1.35	-1.23			
85,0	-1.16	-1.09	-0.90			7.7
90,0	-U.91	-0.92	~0.79	-0.98	-0.73	-0.71
Mark San		7.019	TO CHOOLS	T		9 - 27 - 17 - 1
40.		TYDA	ER SURFAC	E		
00.00	-4.86	-1.83	-1.45	-1.22	-0.95	-C.68
1.25	0.13	0.13	0.15	0.17	0.24	
2.5	0,52	0.47	0.42	0.39	0.41	0.34
5.0	0.68	0.61	0.55	0.52	0.47	0.33
7.5	0.69	0.63	0.56	0.52	0,45	0.28
10.0	0.66	0.61	0.55	0.50	0.42	0.22
15.0	0.59	0.55	0.50	0.44	0.35	0.13
80.0	0.52	0.50 0.45	0.45 0.39	0.3 7 0.31	0.28 0.22	0.04
25.0 70.0	0.46 0.42	0.42	0.36	0.25	0.15	-0.03
30.0 40.0	0.35	0.36	0.30	0.17	0.04	-0.10
50.0	0.32	0.34	0.27	0.08	0.00	-0,20 0,25
60,0	0.34	0.36	0.27	0.01	-0.12	0.17
70.0	0.36	0.40	0.29	-0.08	-0.17	~0.31
80.0	0.82	0.67	0.51	-0.14	-0.19	-0.30
90,0	0.60	0.40	0.22	-0.22	-0.25	-0.32
A Park						

Figure 21 (cont'd.).- Pressure Coefficient values with Angle of Attack = 20° Flap Deflection = 45° and Re = 2.70 x 10°

CONFIDENTIAL

UPPER SURFACE

Percent chord	Sta. 0.098	Sta. 0.270	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960		
00.00	-3.01	-1.51	-1.24	-1.09	-0,82 -0,75	-0.65		
1.25	- 2.32	-1.49 -1.50	-1.22 -1.22	-0.98 -0.98	-0.76	-0.66		
2.5 5.0	-2.24 -2.13	-1.47	-1.21	-0.98	-0.77	-0.66		
7. 5	-2.01	-1.45	-1.20	-0.97	-0.76	-0.64		
10.0	-1.90	-1.44	-1.20	-0.97	-0.76	-0.66		
<u> </u>	-1.72	-1.40	-1.18	-0.95	-0.76	-0.66		
20.0	-1.61	-1.39	-1.17	-0.95	-0.76	-0.66		
25.0	-1.30	-1.38	-1.16	-0.94	-0.77	-C.66		
30.0	-1.45	-1.35	-1.14	-0.94	-0.77	-0.57		
40.0	-1.35	-1.34	-1.14	-0.94	-0.76	-0.67		
50.0	-1.30	-1.31	-1.14	-0.92	-0.75	-0.68		
60.0	-1.25	-1.28	-1.12	~0.93	-0.75	-0.68		
70.0	-1.21 -1.22	-1.25 -1.22	-1.11 -1.13	-0.94 -0.95	-0.74 -0.74	-0.58 0.67		
30,0	-1.83	-1.44	-1.24	-0.95	-0.13	0.07		
80.0f 85.0	-1.30	-1.16	-0.97					
90.0	-1.11	-1.01	-0.87	-0.98	-0.74	-0.66		
LOWER SURFACE								
00.00	-3,01	-1.51	-1.24	-1.09	-0.82	-0.65		
1.25	0.24	0.08	0.08	0.11	0.17	, **r		
2,5	0.59	0.44	0.40	0.36	0.38	0.30		
5.0	0.74	0.63	0.5.7	0.53	0.50	0.35		
7.5	0.75	0.66	0.59	0.55	0,49	0.30		
10.0	0.73	0.67	0.59	0.54	0.47	0.26		
	0.67	0.62	0.55	0.49	0.42	0.17		
80 . 0	0.60	0.57 0.52	0.50 0.45	0.43	0.35	0.09		
42.7	0.55 0.50	0.48	0.45 0.41	9.38 9.32	0 .28 0 . 22	0.02		
30.0 40.0	0,42	0.42	0.34	0.22	0.17	-0.05 -0.15		
50.0	0.38	0.40	0.31	0.13	0.00	-0.22		
60.0	0.38	0.40	0.30	0.04	-0.07	-0.10		
70.0	0.40	0.43	0.32	-0.05	-0.13	-0.29		
80.0	0.86	0.70	0.53	-0.13	-0.17	-0.28		
90,0	0,61	0.43	0.24	-0.22	-0.24	-0.29		

Figure 21 (cont'd.).- Pressure Coefficient values with Angle of Attack = 24°
Flap Deflection = 45°
and R_e = 2.70 x 10°

UPPER SURFACE

			04.	C+0	Sta.	Sta.
Percent	Sta.	Sta.	Sta.	Sta.	0.787	0.960
chord	0.098	0.270	0.442	0.615	0. 101	54500
20.00	-1 00	-1.27	-1.15	-0.96	-0 . 7 5	-0.68
00.00	-1.88	-1.27	-1.16	-0.96	-0,76	-,00
1.25	-1.57 -1.52	-1.28	-1.16	-0.96	-0.76	-0.58
2.5		-1.27	-1.16	-0.96	-0.76	-0.68
5.0	-1.46	-1.27	-1.15	-0.96	-0.76	-0.68
7.5	-1.43 -1.40	-1.26	-1.14	-0.95	-0.76	-0.69
10.0	-1.35	-1.25	-1.13	-0.93	-0.77	-0.69
15.0	-1.32	-1.23	-1.13	-0.84	-0.77	-0.70
2000	~1.28	-1.23	-1.12	-0.84	-0.77	-0.70
25 <u>°</u> 0	-1.27	-1.22	-1.10	-0.84	-0.77	-0.80
30-0 30-0	-1.24	-1.21	-1.09	-0.92	-0.76	-0.70
40.0	-1.21	-1.21	-1.08	-0.91	-0.76	-0.70
50,0 60,0	-1.21	-1.21	-1.08	-0.91	-0.76	-0.71
70.0	-1.19	-1.21	-1.05	-0.91	-0.76	-0.71
80.0	-1.20	-1.20	-1.04	-0.92	-0.76	-0.70
80.01	-1.74	-1.44	-1,23			
85.0	-1.36	-1.20	-1.03			
90.0	-1.23	-1.06	-0.90	-0.9 3	-0.76	-0.70
		LOW	TER SURFAC	. E.		
00.00	-1.88	-1.27	-1.15	-0.96	-0.78	0,68
00,00	0.30	0.05	-0.02	0.00	0.07	
1, 25	0.62	0.04	0.35	0.30	0.32	0.24
2,5	0.79	0.65	0.56	0.52	0.50	0.34
5.0	0.80	0.70	0.62	0.57	0.52	0.33
7.5 10.0	0.79	0.71	0.63	0.58	0.50	0.29
1800	0.74	0.68	0.61	0.54	0.46	0.21
2000	0.68	0.63	0.57	0.50	0.40	0.13
25.0	0.62	0.60	0.51	0.44	0.34	0,05
3020	0.57	0.56	0.47	0.38	0.28	-0.02
40.0	0.50	0.49	0.40	0.27	0.17	-0.14
SO TO	0.44	0.45	.0.36	0.17	0.00	-0.21
60 C	0.43	0.45	0.34	0.08	-0.03	-0.11
30. 0	0.45	0.47	0.35	-0.02	-0.11	-0.29
BO 0	0.89	0.74	0.55	-0.12	-0.15	-0.89
90.0	0.63	0.45	0.25	-0.19	-0.24	-0.31

Figure 21 (cont'd.).- Pressure Coefficient values with Angle of Attack = 28°
Flap Deflection = 45°
and R_e = 0.70 x 10⁶

CONFIDENTIAL

INFORMATION

Percent chord	Sta. 0.098	Sta. 0,270	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.960
00,00	-1.54	-1.22	-1.13	-0.96	-0.77	-0.69
1.25	-1.44	-1.22	-1.14	-0.95	-0.75	_
2,5	-1.40	-1.23	-1.14	-0.95	-0.76	-0.69
5.0	-1.36	-1,24	-1.14	-0 .95	-0.78	-0.69
7.5 30.0	-1.34 -1.32	-1.21 -1.23	-1.13 -1.13	-0.94 -0.93	-0.76 -0.76	-0.69 -0.70
10.0 15.0	-1.28	-1.20	-1.12	-0.91	-0.76	-0.71
20.0	-1.26	-1.20	-1.11	-0.91	-0.77	-0.71
25.0	-1.23	-1.19	-1.10	-0.90	-0.77	-0.71
30.0	-1.23	-1.18	-1.09	-0.90	-0.73	-0.61
40.0	-1.19	-1.18	-1.08	-0.90	-0.77	-0.71
50.0	-1.18	-1.19	-1.07	-0.90	- 0.76	-0.71
60.0 70.6	-1.18 -1.16	-1.18 -1.18	-1.06 -1.04	-0.69 0.88	-0.76 -0.76	-0.72 -0.67
70.0 80.0	-1.16	-1.16	-1.01	0.69	-0.77	-0.72
80 <u>.</u> 0f	-1.71	-1.43	-1.18			
85,0	-1.36	-1.16	-1.04			
90.0	-0.68	-1.05	0.95	-0.90	-0.78	-0.71
		LOW	VER SURFAC	E		
00-00	-1.54	-1.22	-1.13	-0.96	-0.77	-0.89
00,00	0.28	0.00	-0.08	-0.67	0.00	
2,5	0.61	0.40	0.32	0.86	0.29	0.19
5.0	o. 79	0.65	0,58	0.52	0.50	0.34
·7.5	0.82	0.71	0.63	0.58	0 _• 53	0.34
10:0	0.82	0.73 0.71	0.66	0.60	0.53	0.30
15.0	0.76 0.71	0.67	0.64 0.60	0.58 0.54	0,50 0,45	0.24
2000 2530	0,66	0.63	0.56	0.48	0,39	0.08
30.0	0.61	0.59	0,52	0.43	0.32	0.02
40.0	0.53	0.52	0.44	0.32	0.21	-0.11
50.0	0.47	0.48	0.40	0.22	0.01	-0.19
60.0	0.45	0.47	0.37	0.12	0.00	-C-25
70:0	0.45	0.49	0.38	0.01	-0.08	-0.29
80.0	0.90	0.73	0.56	-0.08	-0.14	-0.29
90.0	0.64	0.46	0.27	-0.17	-0.24	-0.31

Figure 21 (cont'd.).- Pressure Coefficient values with Angle of Attack = 30 Flap Deflection = 450 and R_e = 2.70 x 10⁶

		TOP	PAR	ION		
Angle of Attack	Sta. 0.098	st a. 0.270	Sta. 0.442	Sta. 0.615	Sta. 0.787	Sta. 0.980
-4 0 4 8 12 16 20 24 28 30 a) Flap der	0.39 0.26 0.30 0.29 0.31 0.30 0.33 0.32 0.41 0.41 lection =	0.28 0.52 0.28 0.27 0.28 0.29 0.37 0.40 0.42 0.42	0.25 0.51 0.32 0.27 0.28 0.32 0.39 0.41 0.40 0.43	0.28 0.54 0.31 0.28 0.27 0.39 0.42 0.41 0.43 0.44	0.24 0.42 0.27 0.26 0.32 0.40 0.40 0.41 0.42	0.22 0.37 0.21 0.24 0.38 0.39 0.38 0.39
0 4 8 12 16 20 24 28 30 b) Flap def	0.30 0.48 0.45 0.39 0.36 0.40 0.49 0.46 lection =	0.56 0.44 0.41 0.38 0.37 0.42 0.44 0.45 0.46	0.48 0.43 0.39 0.34 0.40 0.45 0.46 0.45	0.39 0.35 0.35 0.40 0.42 0.42 0.43 0.42	0.39 0.26 0.26 0.37 0.40 0.40 0.42 0.41	0,26 0,25 0,29 0,38 0,42 0,38 0,40 0,40
-4 0 4 8 12 16 20 24 28 30 c) Flap def	0.79 0.61 0.36 0.44 0.41 0.41 0.42 0.45 0.49 lection =	0.72 0.57 0.48 0.44 0.40 0.45 0.47 0.47 0.48	0.68 0.51 0.44 0.39 0.37 0.44 0.42 0.47 0.46 0.48	0.60 0.38 0.39 0.30 0.39 0.42 0.44 0.43	0.28 0.28 0.27 0.39 0.41 0.42 0.42 0.42	0.24 0.20 0.25 0.31 0.40 0.45 0.43 0.41 0.41
-4 0 4 8 12 16 20 24 28 30 d) Flap def	0.71 0.60 0.51 0.46 0.44 0.45 0.42 0.47 0.49 0.47 lection =	0.63 0.44 0.49 0.41 0.40 0.42 0.46 0.48 0.50	0.57 0.49 0.46 0.40 0.45 0.45 0.48 0.48	0.44 0.35 0.32 0.30 0.41 0.45 0.43 0.43 0.45	0.42 0.30 0.29 0.30 0.40 0.43 0.41 0.42 0.42	0.61 0.24 0.20 0.36 0.40 0.43 0.40 0.41 0.41

Figure 22.- Centers of Pressure for the Local Normal Force Profiles.

SSIFIED

d Servicess Technical Information Agency

ARLINGTON HALL STATION ARLLINGTON 12 VIRGINIA

1RD

ONI

WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA
FOR ANY PURPOSE E OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED ENT PROCUREMENTATION THE U.S. GOVERNMENT THEREBY INCURS INSIBILITY, NOR ANYNY OBLIGATION WHATSOEVER; AND THE FACT THAT THE ENT MAY HAVE FORDRULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE WINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY ION OR OTHERWISE E AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER RECORPORATION. OF COMPUTATION AND DICHTS OR DERMISSION TO MANUFACTURISM. R CORPORATION, OF OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE LL ANY PATENTED D INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

ASSIFICATION CHANGED TO UNCLASSIFIED

AUTHORITY OF ASTIA RECLASS. BULLETIN 12

1 Sept. 58

Signed