

Soit $Z|\mu,\sigma^2 \sim \mathcal{N}(\mu,\sigma^2)$. μ et σ^2 ont des densités

a priori indépendantes f_{μ} et f_{σ^2} .

Gibbs sampling

On souhaite simuler $\mathbf{X} = (X_1, X_2) \in \mathbb{R}^2$ d'une distribution jointe $\mathbb{P}_{(X_1, X_2)}$. Soit $x_2 \in \mathbb{R}$

1. On sait générer $x_1 \sim X_1$ avec X_2 fixée selon la loi conditionnelle $X_1 | X_2 = x_2$

2. On sait générer X_2 avec X_1 fixée selon la loi conditionnelle $X_2|X_1=x_1$

Alors en partant d'un quelconque $x_2 \in \mathbb{R}$, la suite \mathbf{X}_n définie par ces itérés est une chaîne de

Markov avec $\mathbb{P}_{(X_1,X_2)}$ comme distribution stationnaire.

$$Z|\mu,\sigma^2 \sim \mathcal{N}(\mu,\sigma^2)$$

$$Z|\mu,\sigma^2 \sim \mathcal{N}(\mu,\sigma^2)$$

 $\sigma^2 \sim f_{\sigma^2}$

- Déterminez la loi a posteriori jointe (μ, σ²)|Z.
 Déterminez les lois conditionnelles μ|σ², Z et σ²|μ, Z.
- 4. Quelles lois a priori f_{μ} et f_{σ^2} devrait-on prendre pour avoir des lois conditionnelles usuelles ?

1. Dessiner le graphe probabiliste du modèle.

En deux dimensions

Algorithme de Gibbs (2D)

On souhaite simuler $\mathbf{X} = (X_1, X_2) \in \mathbb{R}^2$ d'une distribution jointe $\mathbb{P}_{(X_1, X_2)}$. Soit $x_2 \in \mathbb{R}$

- 1. On sait générer $x_1 \sim X_1$ avec X_2 fixée selon la loi conditionnelle $X_1 | X_2 = x_2$
- 2. On sait générer X_2 avec X_1 fixée selon la loi conditionnelle $X_2|X_1=x_1$

Alors en partant d'un quelconque $x_2 \in \mathbb{R}$, la suite \mathbf{X}_n définie par ces itérés est une chaîne de Markov avec $\mathbb{P}_{(X_1,X_2)}$ comme distribution stationnaire.

Application (Ex 3. TD 1)

Soit $Z|\mu, \sigma^2 \sim \mathcal{N}(\mu, \sigma^2)$. μ et σ^2 ont des densités a priori indépendantes f_{μ} et f_{σ^2} .

- 1. Dessiner le graphe probabiliste du modèle.
- 2. Déterminez la loi a posteriori jointe $(\mu, \sigma^2)|Z$.
- 3. Déterminez les lois conditionnelles $\mu | \sigma^2, Z$ et $\sigma^2 | \mu, Z$.
- 4. Quelles lois a priori f_{μ} et f_{σ^2} devrait-on prendre pour avoir des lois conditionnelles usuelles ?

$$Z|\mu,\sigma^2 \sim \mathcal{N}(\mu,\sigma^2)$$

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

Algorithme de Gibbs (général)

On souhaite simuler $\mathbf{X} = (X_1, \dots, X_d) \in \mathbb{R}^d$ d'une distribution jointe $\mathbb{P}_{(X_1, \dots, X_d)}$. Soit $x_2, \dots, x_d \in \mathbb{R}$.

- 1. Générer $x_1 \sim X_1$ avec X_2, \ldots, X_d fixés selon la loi conditionnelle $X_1 | X_2 = x_2, \ldots X_d = x_d$
- 2. Générer (et mettre à jour) $x_2 \sim X_2$ avec X_1, X_3, \ldots, X_d fixés selon la loi conditionnelle $X_2 | X_1 = x_1, X_3 = x_3, \ldots, X_d = x_d$
- 3. Générer (et mettre à jour) $x_3 \sim X_3$ avec X_1, X_2, \ldots, X_d fixés selon la loi conditionnelle $X_3 | X_1 = x_1, X_2 = x_2, \ldots, X_d = x_d$
- 4. ...

La suite X_n définie par ces itérés est une chaîne de Markov avec $\mathbb{P}_{(X_1,...,X_n)}$ comme distribution stationnaire.

