TP de méthodes variationnelles

Felipe Vicentin

January 28, 2025

1 Débruitage par régularisation quadratique

Question 1

Comment utiliser l'outil **resoud_quad_fourier** pour trouver le minimiseur de cette énergie (voir le programme **minimisa-tion_quadratique**)?

Answer The python function resoud_quad_fourier takes as arguments (K, V), where K is a vector of n kernels and V is a vector of n images. Then, it returns

$$U = \arg\min_{u} \sum_{i=1}^{n} ||K_i * u - V_i||^2$$

We can make use of resoud_quad_fourier to find the image that minimizes the energy by rewritting the quadratic energy function as the function above. Particularly,

$$\lambda \|\nabla u\|^{2} = \lambda \|\partial_{x}u\|^{2} + \lambda \|\partial_{y}u\|^{2}$$

$$= \|\sqrt{\lambda}D_{x} * u\|^{2} + \|\sqrt{\lambda}D_{y} * u\|^{2}$$

$$= \|\sqrt{\lambda}D_{x} * u - 0\|^{2} + \|\sqrt{\lambda}D_{y} * u - 0\|^{2}$$

where

$$D_x = \begin{pmatrix} 1 & -1 \end{pmatrix}, \qquad D_y = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Moreover, $||u - v||^2 = ||\delta * u - v||^2$, where $\delta = (1)$.

 D_x and D_y are precisely the kernels that differentiate the image. So, we can use the function resoud_quad_fourier with parameters $(\sqrt{\lambda}D_x, \sqrt{\lambda}D_y, \delta)$ and (0, 0, img) to find the minimizer.

Question 2

Décrire le résultat de ce débruitage lorsque λ est très grand ou très petit.

Answer If λ is very small, then the regularization has no effect, making the minimizer equal to the observed image:

$$\lim_{\lambda \to 0} \|u - v\|^2 + \lambda \|\nabla u\|^2 = \|u - v\|^2 \implies \arg\min_{u} E_1(u) = v.$$

If λ is too big, then the data attachment term loses importance, making the image too regular (the gradient tends to 0). The result is a single-colored image, since there is no variation $(\nabla u = 0)$.

Question 3

Après avoir ajouté un bruit d'écart type $\sigma=5$ à l'image de lena, trouver (par dichotimie) le paramètre λ pour lequel $\|\tilde{u}-v\|^2 \sim \|u-v\|^2$. C'est-à-dire le paramètre pour lequel l'image reconstruite \tilde{u} est à la même distance de l'image dégradée v que ne l'est l'image parfaite. (on respecte la norme du bruit: La norme du bruit est connue même quand on ne connait pas l'image parfaite)

Answer The parameter found was $\lambda \approx 0.33081$.

Question 4

Ecrire un algorithme pour trouver le paramètre λ tel que $\|\tilde{u} - u\|^2$ soit minimale. (dans le cadre de ce TP on connait l'image parfaite u, on général on ne la connait pas). Commentaires?

Answer The parameter found was $\lambda \approx 0.11677$. The obtained λ is about half of the result from question 3. This might be because the original image has a lot of contours, and so the minimization of the error difference may not reflect the actual best restoration.

2 Débruitage par variation totale

Question 5

Utiliser le programme minimise_TV_gradient pour différentes valeurs du pas de descente. Atteignez-vous toujours le même minimum d'énergie? (le programme renvoie l'évolution de l'énergie).

Answer Not all step sizes get to the same energy minimum. This happens because a step size too large may make the function diverge in the gradient descent algorithm.

Question 6

Le programme vartotale_Chambolle applique la méthodede Chambolle (expliquée dans le polycopié) au même problème posé par E_2 . Utilisez ce programme et que constatez-vous quant à la vitesse de cette algorithme et sa précision (minimisation effective de E_2) par rapport à la descente de gradient.

Answer The function vartotale_Chambolle returns the restored image almost instantly, while the gradient descent algorithm depends on the choice of the step size and the number of iterations.

3 Comparaison

Question 7

Après avoir fixé une image bruitée par un bruit de 25. Trouver pour chacune des deux méthodes (TV et quadratique) le meilleur paramètre λ et comparez qualitativement le résultat obtenu par les deux méthodes pour le débruitage.

Answer The best parameters for quadratic and TV regularization were $\lambda_{\rm quad} \approx 1.17457$ and $\lambda_{\rm TV} \approx 41.42943$. Using the norm of the difference between the result of the restoration and the perfect image u, we obtain the following values: $||u - \tilde{u}_{\rm quad}|| \approx 5318$ and $||u - \tilde{u}_{\rm TV}|| \approx 4428$. In conclusion, the TV regularization appears to yield better results.