1. Βρείτε την ακριβή λύση του προβλήματος δύο σημείων

(1)
$$u_{xx} = e^{4x}, \quad u(-1) = u(1) = 0,$$

ολοκληρώνοντας δύο φορές τη διαφορική εξίσωση.

Απάντηση. Πράγματι, ολοκληρώνοντας δύο φορές τη διαφορική εξίσωση του προβλήματος (1) έχουμε

$$u(x) = \frac{1}{16}e^{4x} + c_1x + c_2,$$

όπου $c_1, c_2 \in \mathbb{R}$. Από τις συνορικές συνθήκες $u(\pm 1) = 0$ παίρνουμε τις σχέσεις

$$\frac{1}{16}e^{-4} - c_1 + c_2 = 0, \qquad \frac{1}{16}e^4 + c_1 + c_2 = 0,$$

οπότε $c_1=-\frac{1}{16}\frac{1}{2}(e^4-e^{-4})=-\frac{1}{16}\sinh(4)$ και $c_2=-\frac{1}{16}\frac{1}{2}(e^4+e^{-4})=-\frac{1}{16}\cosh(4)$. Τελικά,

$$u(x) = \frac{1}{16}(e^{4x} - \sinh(4)x - \cosh(4)).$$

2. Γράψτε τη μεταβολική μορφή του προβλήματος (1) πάνω στο χώρο των συνεχών και κατά τμήματα παραγωγίσιμων συναρτήσεων στο διάστημα [-1,1].

Απάντηση. Έστω V ο χώρος των κατά τμήματα συνεχώς παραγωγίσιμων συναρτήσεων στο διάστημα [-1,1] οι οποίες μηδενίζονται στα σημεία $x=\pm 1$. Πολλαπλασιάζουμε τη διαφορική εξίσωση του προβλήματος (1) με μια συνάρτηση $v\in V$ και ολοκληρώνουμε κατά μέρη. Λαμβάνοντας υπ' όψιν τις συνοριακές συνθήκες καταλήγουμε στη μεταβολική μορφή

$$-(u, v) = (f, v), \quad \forall v \in V.$$

3. Χρησιμοποιήστε το πρόγραμμα fem. py για να λύσετε το πρόβλημα δύο σημείων (1) με τη μέθοδο των πεπερασμένων στοιχείων.

Απάντηση. Στο πρόγραμμα fem. py ορίζουμε τη συνάρτηση q να είναι ταυτοτικά μηδέν ενώ θέτουμε το δεξί μέλος ίσο με $-e^{4x}$ (προσέξτε το πρόσημο).

(α΄) Χρησιμοποιήστε h=1/16 και τυπώστε την ακριβή και την υπολογιστική λύση στο σημείο x=0.5. Τι παρατηρείτε;

Σύμμφωνα με την ονομασία των μεταβλητών του προγράμματος fem.py, πρέπει $\frac{1-(-1)}{N+1}=\frac{1}{16}$, δηλαδή N=31. Οι εσωτερικοί κόμβοι τις διαμέρισης που χρησιμοποιεί το πρόγραμμα είναι οι $x_j=-1+jh,\,j=1,\ldots,N$. Έχουμε $x_j=0.5$ αν και μόνο αν j=24. Τόσο η ακριβής λύση όσο και η υπολογιστική εκτυπώνονται από το πρόγραμμα ως -2.09775845974, με άλλα λόγια $u(0.5)=u_h(0.5)$. Για την ερμηνεία αυτού του γεγονότος, δείτε τις σημειώσεις του μαθήματος.

(β΄) Κάντε το ίδιο όταν h=1/25. Ποιό είναι το σφάλμα $\epsilon_h(0.5)=|u(0.5)-u_h(0.5)|$; Εδώ, με u_h συμβολίζουμε τη λύση πεπερασμένων στοιχείων του προβλήματος (1). Στρογγυλοποήστε τις απαντήσεις σας στο τέταρτο δεκαδικό ψηφίο.

Όπως και πριν, πρέπει τώρα $\frac{1-(-1)}{N+1}=\frac{1}{25}$, δηλαδή N=49. Αυτή τη φορά όμως το σημείο 0.5 δεν είναι κόμβος της διαμέρισης. Όμως, $x_{37}=-1+\frac{37}{25}=0.48<0.5< x_{38}=-1+\frac{38}{25}=0.52$, άρα $u_h(0.5)=\frac{1}{2}(U_{37}+U_{38})$, όπου U είναι το διάνυσμα των συνιστωσών της λύσης πεπερασμένων στοιχείων. Από το πρόγραμμα fem. py έχουμε

$$u(0.5) = -2.0978$$
 $u_h(0.5) = -2.0963$ $\epsilon_h(0.5) = 0.0015$