* 867. Transpose matrix :-

2 4 3-1	2	4	-1
-10 S 11	-(0	5	tı
18 -7 6	18	-7	6

- This is for square matrix where the elements are swapped over the diagonal.
- → Tov a rectagular matrix, we will have to create a new maximix, traverse over the orig matrix ? add to the new matrix.

* For equare matrix:

$$0^{th}$$
 row 1^{st} col \Leftrightarrow 1^{st} row 0^{th} col 0^{th} row 2^{nd} col 0^{th} row 0^{th} 0^{th} row

The home to do it only for the upper half otherwise we would be seeswapping.

* Rectargular matrix:-

-> We will have to create a new matrix for Mis.

	0	1	2	3		
O	Ţ	2	3	4		
1	4	O	7	8		
۵	9	(D	11	12		
mxn						

	б	t	2
D	١	5	٩
ſ	2	6	10
a	3	7	II
3	4	8	12

n×m

```
Pread now wise & event column wire

public static int[][] transpose (int[][] arr) &

int total Rows = arr. length;

int total Cole = arr [0]. length;

int [][] result = new int [total Cole] [total Rows];

for (int row = 0; now < total Rows; now++) &
```

```
for (int row = 0; now < total Rows; now++) {

for (int col = 0; col < total Cols; col++) {

    remut [col] [row] = arr [row] [col];
}
```

return result;