NOIP2020 模拟赛

$cz_xuyixuan$

September 21, 2020

题目名称	计数	怪物	奇偶
目录	counting	monsters	parity
可执行文件名	counting	monsters	parity
输入文件名	counting.in	monsters.in	parity.in
输出文件名	counting.out	monsters.out	parity.out
每个测试点时限	2.0s	2.0s	2.0s
内存限制	1024MB	1024MB	1024MB
试题总分	100	100	100
测试点数目	7	5	20
每个测试点分值	N/A	N/A	5
是否有部分分	否	否	否
题目类型	传统型	传统型	传统型

提交的源程序文件名

对于 C++ 语言	counting.cpp	monsters.cpp	parity.cpp
对于 C 语言	counting.c	monsters.c	parity.c
对于 Pascal 语言	counting.pas	monsters.pas	parity.pas

编译开关

对于 C++ 语言	-O2 -std=c++11	-O2 -std=c++11	-O2 -std=c++11
对于 C 语言	-O2 -std=c11	-O2 -std=c11	-O2 -std=c11
对于 Pascal 语言	-O2	-O2	-O2

1 计数

1.1 题目描述

给定一个仅由 a 和 b 组成的字符串 S , 你可以对它进行如下操作:

- (1). 从任意位置删除或插入子串 aa
- (2). 从任意位置删除或插入子串 bbb
- (3). 从任意位置删除或插入子串 ababab

给定整数 L , 求出可以得到多少长度为 L 的,本质不同的字符串。由于答案可能很大,你只需要求出其对 998244353 取模的结果即可。

1.2 输入格式

从文件 counting.in 中读取数据。

输入的第一行包含一个字符串 S。

输入的第二行包含一个整数 L 。

1.3 输出格式

输出到文件 counting.out 中。

输出一行一个整数 Ans,表示答案对 998244353 取模的结果。

1.4 样例 1

1.4.1 样例 1 输入

aa

3

1.4.2 样例 1 输出

1

1.4.3 样例 1 解释

删去子串 aa, 并插入子串 bbb, 将会得到字符串 bbb。可以证明, bbb 是唯一一个可以被得到的, 长度为 3 的字符串。

1.5 样例 2

1.5.1 样例 2 输入

aa 5

1.5.2 样例 2 输出

5

- 1.6 样例 3
- 1.6.1 样例 3 输入

aab 8

1.6.2 样例 3 输出

26

- 1.7 样例 4
- 1.7.1 样例 4 输入

ababaaaababbb 15

1.7.2 样例 4 输出

2724

- 1.8 样例 5
- 1.8.1 样例 5 输入

aa 998244352

1.8.2 样例 5 输出

14686362

1.9 数据范围与约定

对于所有测试数据,保证 $1 \leq |S| \leq 10^5, 0 \leq L \leq 10^9$ 。详细的数据范围见下表。

子任务编号	分值	L	特殊性质
1	5	=0	$ S \le 2$
2	17	< 5	$ S \le 5$
3	23		无
4	15	= 15	
5	20	$\leq 10^{5}$	S = aa
6	13		无
7	7	$\leq 10^9$	

2 怪物

2.1 题目描述

今有 N 只怪物, 第 i 只怪物的生命值为 a_i 。

你和另外一位玩家正在合力击杀这些怪物,你的攻击力为x,对方的攻击力为y。

你们需要轮流对活着的怪物进行攻击,第一个回合是你的回合。被攻击的怪物将会 损失攻击它的玩家攻击力的生命值,若此后它的生命值非正,怪物将会死亡,击杀它的 玩家得到1分。当不存在活着的怪物时,游戏结束。

在你的回合,你可以选择攻击任意一只怪物,也可以选择不进行攻击。

在对方的回合,对方会选择当前存活的,编号最小的怪物进行攻击。

你需要合理地安排你的策略,使得你的得分最大,并求出这个得分。

2.2 输入格式

从文件 monsters.in 中读取数据。

输入的第一行包含三个整数 N, x, y 。

接下来一行 N 个整数, 第 i 个整数为 a_i 。

2.3 输出格式

输出到文件 monsters.out 中。

输出一行一个整数 Ans, 表示你最大化的得分。

2.4 样例 1

2.4.1 样例 1 输入

3 1 1

1 1 1

2.4.2 样例 1 输出

2

2.4.3 样例 1 解释

一种可能的过程是:

你的回合,你击杀了怪物2,得到1分。

对方回合,对方击杀了怪物 1。 你的回合,你击杀了怪物 3,得到 1分。

2.5 样例 2

2.5.1 样例 2 输入

3 1 1 2 2 2

2.5.2 样例 2 输出

3

2.6 样例 3

2.6.1 样例 3 输入

10 34 100 17 27 73 17 60 12 25 53 31 46

2.6.2 样例 3 输出

5

2.7 样例 4

见下发文件 ex_monsters4.in, ex_monsters4.out

2.8 数据范围与约定

对于所有测试数据, $1 \le N \le 5 \times 10^5, 1 \le x, y, a_i \le 10^9$ 。详细的数据范围见下表。

子任务编号	分值	N	特殊性质
1	15	≤ 5	$a_i \le 5$
2	35	≤ 100	无
3	3		$a_i = 1$
4	22	$\leq 5 \times 10^5$	x = y
5	25		无

3 奇偶

3.1 题目描述

给定一个长度为 N 的非负整数序列 a_i ,以及两个正整数 M,S 。 你需要计算满足如下限制的,长度为 M 的整数序列 b_i 的个数:

- (1). $1 < b_i < N$
- (2). $a_{b_1} + a_{b_2} + \cdots + a_{b_M} = S$

由于答案可能很大, 你只需要求出其对 2 取模的结果即可。

3.2 输入格式

从文件 parity.in 中读取数据。

第一行包含一个整数 T ,表示测试数据的组数。

对于每一组测试数据,第一行包含三个整数 M,S,N 。

接下来一行 N 个整数 a_i 。

3.3 输出格式

输出到文件 parity.out 中。

对于每一组测试数据,输出一行一个整数 Ans,表示答案对 2 取模的结果。

3.4 样例 1

3.4.1 样例 1 输入

1

5 10 3

1 2 3

3.4.2 样例 1 输出

1

3.4.3 样例 1 解释

共有 51 组合法的序列 b_i , 对 2 取模的结果为 1 。

3.5 样例 2

3.5.1 样例 2 输入

3.5.2 样例 2 输出

3.6 样例 3

见下发文件 ex_parity3.in, ex_parity3.out

3.7 数据范围与约定

对于所有测试数据,保证 $1 \le T \le 10, 0 \le S \le 10^{18}, 1 \le M \le 10^{18}$ 。 保证 $1 \le N \le 200, 0 \le a_1 < a_2 < \dots < a_N \le 10^5$ 。 详细的数据范围见下表。

测试点编号	N	M	S	a_i
1	= 1			
2	≤ 5	≤ 5		
3			≤ 500	≤ 500
4				
5	≤ 50	≤ 200		
6				

测试点编号	N	M	S	a_i
7				
8	≤ 200	$\leq 2 \times 10^3$	$\leq 5 \times 10^3$	$\leq 5 \times 10^3$
9				
10				
11	≤ 16			$=2^k \ (k \le 16)$
12				
13		$\leq 10^9$	$\leq 10^9$	
14	≤ 50			$\leq 2 \times 10^4$
15	<u> </u>			
16				
17				
18	≤ 200	$\leq 10^{18}$	$\leq 10^{18}$	$\leq 10^{5}$
19				
20				