#### Poisson regression

Mark Andrews Psychology Department, Nottingham Trent University

mark.andrews@ntu.ac.uk

► The Poisson distribution is a discrete probability distribution over the non-negative integers 0, 1, 2....



Shown here is a Poisson distribution with  $\lambda = 3.5$ .

- ▶ The Poisson distribution is used to model the probability of a given number of events occurring in a fixed interval of time, e.g. the number of emails you get per hour, the number of shark attacks on Bondi beach every summer, etc.
- It has a single parameter λ, known as the *rate*.
- If x is a Poisson random variable whose, its probability mass function is

$$P(x = k|\lambda) = \frac{e^{-\lambda}\lambda^k}{k!}.$$

- ightharpoonup The mean of a Poisson distribution is equal to its rate parameter  $\lambda$ .
- lts variance is also equal to  $\lambda$ .



As  $\lambda$  increases, so too does the variance.

- ► The Poisson distribution can be seen as the limit of a Binomial distribution as  $N \to \infty$ , and  $\lambda = pN$ .
- Shown are (left) Binomial(N,  $p = \lambda/N$ ) where N  $\approx 10^3$  and  $\lambda = 7.5$ , and (right) Poisson( $\lambda$ ).



## Poisson Regression

- ▶ In any regression problem, our data are  $(y_1, x_1), (y_2, x_2) \dots (y_n, x_n)$ , where each  $y_i$  is modelled as a stochastic function of  $x_i$ .
- In Poisson regression, we assume that each  $y_i$  is a Poisson random variable rate  $\lambda_i$  and

$$\log(\lambda_i) = \beta_0 + \sum_{k=1}^K \beta_k x_{ki},$$

or equivalently

$$\lambda_i = e^{\beta_0 + \sum_{k=1}^K \beta_k x_{ki}}.$$

### Poisson Regression

- As an example of Poisson regression, we can look at the number visits to a doctor in a fixed period as a function of predictors such as gender.
- ▶ Using a data-set of over 5000 people, we estimate (using mle) that

$$log(\lambda_{i}) = 1.65 + 0.43 \times x_{i}$$

where  $x_i = 1$  for a female, and  $x_i = 0$  for a male.

## Poisson Regression

Using this example, we see that for a female

$$\lambda_{Female} = e^{1.65 + 0.43} = 8.004$$

and for males

$$\lambda_{Male}=e^{1.65}=5.2$$

▶ In other words, the expected value for females is 8.2 and for males it is 5.2.

#### Coefficients

- ► In Poisson regression, coefficients can be understood as follows.
- ► In the previous example,

$$\begin{split} \lambda_{Female} &= e^{1.65 + 0.43}, \\ &= e^{1.65} e^{0.43}, \\ \lambda_{Male} &= e^{1.65}. \end{split}$$

- ▶ This means that the exponent of the gender coefficient, i.e.  $e^{0.43}$ , signifies the multiplicative increase to the average rate of doctor visits for women relative men.
- ▶ In other words, women visit doctors on average  $e^{0.43} = 1.53$  times more than men.

### Coefficients

In an arbitrary example with a single continuous predictor variable,

$$\lambda = e^{\alpha + \beta x_i},$$
$$= e^{\alpha} e^{\beta x_i},$$

If we increase  $x_i$  by 1, we have

$$\begin{split} \lambda^+ &= e^{\alpha + \beta (x_i + 1)}, \\ &= e^{\alpha + \beta x_i + \beta}, \\ &= e^{\alpha} e^{\beta x_i} e^{\beta}, \end{split}$$

As  $\lambda^+ = \lambda e^{\beta}$ , we see that  $e^{\beta}$  is the multiplicative effect of an increase in one unit to the predictor variable.

- ► In some problems, the length of time during which events are measured varies across individuals.
- ▶ In the doctor visits example, we might have recordings of number of visits per year for some people and number of visits per 9 months, etc, for others.
- These situations are dealt with using an exposure term for each individual.

When using an exposure term, we use the original count data as before, but treat

$$y_i \sim Poisson(\lambda_i/u_i)$$
,

where  $\mathfrak{u}_i$  is a term signifying the relative exposure time for person i.

► According to this,

$$log(\lambda_i/u_i) = \alpha + \beta x_i,$$
  
$$log(\lambda_i) = \alpha + \beta x_i + log(u_i)$$

In other words,  $y_i \sim Poisson(\lambda_i/u_i)$  is equivalent to  $y_i \sim Poisson(\lambda_i)$ , where  $log(\lambda_i) = \alpha + \beta x_i + log(u_i)$ .

- ► For example, suppose we monitor people's drinking at social occasions. We find that three people drink 12, 7 and 3 drinks over the course of 7, 5 and 2 hours, respectively.
- ▶ If we are trying to predict drinking as a function of predictor variables, we ought to calibrate by the different time frames.
- ► Treating e.g. 12 as a draw from Poisson( $\lambda_i/7$ ) where  $\log(\lambda_i/7) = \alpha + \beta x_i$  is identical to treating 12 as a draw from Poisson( $\lambda_i$ ) where  $\log(\lambda_i) = \alpha + \beta x_i + \log(7)$ .

- ▶ In general, exposure terms are treated as fixed offsets.
- If our data is  $(y_1, x_1), (y_2, x_2) \dots (y_n, x_n)$  with exposures  $u_1, u_2 \dots u_n$ , then we treat

$$y_i \sim Poisson(\lambda_i)$$
,

where

$$\log(\lambda_i) = \log(u_i) + \beta_0 + \sum_{k=1}^{K} \beta_k x_{ki}.$$

#### Model Fit with Deviance

- As in the case of logistic regression, we estimate the parameters, e.g.  $\alpha$  and  $\beta$ , using maximum likelihood estimation.
- ▶ Once we have the maximum likelihood estimate for the parameters, we can calculate *goodness of fit* using deviance.
- ▶ As before, the *deviance* of a model is defined

$$-2 \log L(\hat{\alpha}, \hat{\beta}|\mathcal{D}),$$

where  $\hat{\alpha}$ ,  $\hat{\beta}$  are the mle estimates.

# Model Fit with Deviance: Model testing

- ▶ In a model with one predictor, a null model would be that  $P(y_i)$  is not a function of  $x_i$ .
- ► The difference in the deviance of the null model minus the deviance of the full model is

$$\Delta_D = D_0 - D_1.$$

▶ Under the null hypothesis,  $\Delta_D$  is distributed as  $\chi^2$  with 1df.

## Deviance based model testing

- ▶ In general, we can compare any two *nested* models using  $\chi^2$  test applied to differences in deviance.
- ► The deviance of the subset model minus that of the full model will always be (approximately) distributed a  $\chi^2$  with df equalling the difference in the number of parameters between the two models.
- ▶ In other words, under the null hypothesis that subset and full models are identical, the difference in the deviances will be distributed as a  $\chi^2$  with df equal to the difference in the number of parameters between the two models.
- ▶ This is identical to the case of logistic regression.