This command is used to construct an IMKPeakOriented material. This material simulates the modified Ibarra-Medina-Krawinkler deterioration model with peak-oriented hysteretic response (Ibarra et al. 2005; Lignos and Krawinkler 2011).

Command Syntax:

uniaxialMaterial IMKPeakOriented \$Mat_Tag \$Ke \$Up_pos \$Upc_pos \$Uu_pos \$Fy_pos \$FmaxFy_pos \$FresFy_pos \$Upc_neg \$Upc_neg \$Fy_neg \$FmaxFy_neg \$FresFy_neg \$Lamda_S \$Lamda_C \$Lamda_K \$c_S \$c_C \$c_A \$c_K \$D_pos \$D_neg

Model Parameters Definitions:

\$Mat_Tag Integer identifying the material

\$Ke Elastic stiffness

\$Up_pos Pre-capping deformation in positive loading direction

\$Upc_pos Post-capping deformation in positive loading direction

\$Uu_pos Ultimate deformation in positive loading direction

\$Fy_pos Yield strength in positive loading direction

\$FmaxFy_pos Maximum-to-yield strength ratio in positive loading direction

\$FresFy_pos Residual-to-yield strength ratio in positive loading direction

\$Up_neg Pre-capping deformation in negative loading direction

\$Upc_neg Post-capping deformation in negative loading direction

\$Uu_neg Ultimate deformation in negative loading direction

\$Fy_neg Yield strength in negative loading direction

\$FmaxFy_neg Maximum-to-yield strength ratio in negative loading direction

\$FresFy_neg Residual-to-yield strength ratio in negative loading direction

\$Lamda_S Cyclic deterioration parameter for yield strength deterioration

\$Lamda_C Cyclic deterioration parameter for post-capping stiffness deterioration

\$Lamda_A Cyclic deterioration parameter for accelerated reloading stiffness deterioration

\$Lamda_K Cyclic deterioration parameter for unloading stiffness deterioration

\$c_S Rate of yield strength deterioration

\$c_C Rate of post-capping stiffness deterioration

\$c_A Rate of accelerated reloading stiffness deterioration

\$c_K Rate of unloading stiffness deterioration

\$D_pos rate of cyclic deterioration in the positive loading direction (this parameter is used to create asymmetric hysteretic behavior for the case of a composite beam). For

symmetric hysteretic response use 1.0.

\$D_neg rate of cyclic deterioration in the negative loading direction (this parameter is used

to create asymmetric hysteretic behavior for the case of a composite beam). For

symmetric hysteretic response use 1.0.

NOTE: All material model parameters in the negative direction should be specified in positive values.

Validation with II-DAP:

References:

- Ibarra, L. F., Medina, R. A., and Krawinkler, H. (2005). "Hysteretic models that incorporate strength and stiffness deterioration." *Earthquake Engineering & Structural Dynamics*, 34(12), 1489-1511, Doi: 10.1002/eqe.495.
- Lignos, D. G., and Krawinkler, H. (2011). "Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading." *Journal of Structural Engineering*, 137(11), 1291-1302, Doi: 10.1061/(ASCE)ST.1943-541X.0000376.