## NCEA Level 3 Physics (Modern Physics)

Heinrich Hertz was a German physicist who was the first to conclusively prove the existence of electro-magnetic waves (light). In 1887, he observed an interesting phenomenon: when light strikes a metal surface, electrons are emitted. This is known as the *photoelectric effect*.

## The photoelectric effect

When UV light falls on a sheet of metal, its energy is absorbed and some is transferred to electrons which are ejected as fast-moving particles (photoelectrons). A certain amount of energy must be transferred to an electron before it can be emitted; this amount is dependent on the type of metal and is known as the work function  $\phi$  of the metal. This energy is quite small in absolute terms, and can easily be provided by electro-magnetic waves. However, some observations surrounding the photoelectric effect cannot be explained by treating light as a wave, and seem to suggest that light in fact acts as a particle!

| Predicted by the wave theory               | Observed phenomena                                 |
|--------------------------------------------|----------------------------------------------------|
| A brighter light would cause electrons to  | Brighter light caused <b>more</b> electrons of the |
| have greater kinetic energy when released. | same kinetic energy to be released.                |
| If a dim light were used, electrons would  | When UV light was used, even the faintest          |
| need to accumulate energy to overcome the  | light caused instant electron emission.            |
| work function and so would not be emitted  |                                                    |
| instantaneously.                           |                                                    |
| The frequency of light would not cause any | A higher frequency of light caused electrons       |
| change in observations.                    | to have a higher kinetic energy. Below a           |
|                                            | certain frequency, no electrons were emitted.      |

On the other hand, from experiments like Young's double-slit experiment, we know that light can sometimes act as a wave!



Albert Einstein, a German physicist, discussed the photoelectric effect in 1905 using the idea of quantization that was put forward by Max Plank. In essence, it was proposed that electro-magnetic radiation comes in packets (quanta) of fixed size known as *photons*; the energy of an individual photon is directly proportional to the frequency of light, with a constant of proportionality  $h \approx 6.63 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}$  known as *Plank's constant*:

$$E = hf$$
.

If we apply this to the photoelectric effect, we find that the energy of emitted photoelectrons when light of frequency f is incident can be found (and recalling that  $\phi$  is the work function of the metal).

$$E = hf - \phi$$

This allows us to calculate the *critical frequency* of the metal — the frequency  $f_0$  which is at the threshold of electron emission. If the frequency of incident light is less than  $f_0$ , no light is emitted.

$$0 = hf_0 - \phi \implies f_0 = \frac{\phi}{h}$$

We can easily see the effects of the photoelectric effect by examining a photoelectric cell. Recall that voltage is simply  $V = \frac{E}{q}$ , and so E = qV. Hence, if an electron of charge  $e = 1.6 \times 10^{-19}$  C is emitted from the cell then the cell must lose an energy eV; since energy is conserved, this energy must have gone to the emitted electron.

## Questions

Useful data:  $c \approx 2.99 \times 10^8 \,\mathrm{m\,s^{-1}}$ ,  $h \approx 6.63 \times 10^{-34} \,\mathrm{J\,s}$ ,  $e \approx 1.6 \times 10^{-19} \,\mathrm{C}$ ,  $1 \,\mathrm{eV} \approx 1.6 \times 10^{-19} \,\mathrm{J}$ 

- 1. The frequency of a photon of red light is  $4.57 \times 10^{14}$  Hz. Calculate the energy of the photon.
- 2. Calculate the energy of a photon of blue light with a wavelength of  $4.0 \times 10^{-7} \,\mathrm{m\,s^{-1}}$ .
- 3. Consider the following properties of light; which are better explained by a wave theory of light, and which by a particle theory?
  - (a) Reflection
  - (b) Diffraction
  - (c) Interference
  - (d) The photoelectric effect
- 4. A metal plate has a work function of  $\phi = 5 \,\text{eV}$ . If EM radiation with a wavelength of  $\lambda = 2 \times 10^{-7} \,\text{m}$  falls on the plate, what is the energy of the emitted photons?
- 5. In an experiment, blue light of frequency  $7 \times 10^{14} \, \text{Hz}$  shines on a photoelectric cell and produces a cutoff voltage of 1.63 V.
  - (a) What is the energy of a photon of blue light?
  - (b) What is the maximum kinetic energy of the ejected electrons?
  - (c) What is the work function of the metal?
  - (d) What is the threshold frequency of the metal?
- 6. What does the maximum kinetic energy of photoelectrons emitted from a particular metal depend on?