Билет № 11. Определение предела функции в точке по Коши и по Гейне, их эквивалентность.

(В этом билете: R с чертой нужно заменить на R с крышкой)

Определение. X - абстрактное множество. Отображение $f:X\to\mathbb{R}$ будем называть функцией.

Определение по Коши.

$$\exists \delta_0 > 0, \ f : \dot{U}_{\delta_0}(x_0) \to \mathbb{R}, \ x_0 \in \overline{\mathbb{R}}, \ A \in \overline{\mathbb{R}}.$$
 Будем говорить, что A - предел функции f в точке x_0 и записывать $\lim_{x \to x_0} f(x) = A$, если: $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) \in (0, \delta_0)$: $\forall x \in \dot{U}_{\delta(\varepsilon)}(x_0) \Rightarrow f(x) \in U_{\varepsilon}(A)$.

Определение последовательности Гейне

 $x_0 \in \overline{\mathbb{R}}, \{x_n\}$ - последовательность Гейне в точке x_0 , если:

- 1. $x_n \to x_0, n \to \infty$
- 2. $x_n \neq x_0, \forall n \in \mathbb{N}$

Определение предела по Гейне

 $x_0 \in \overline{\mathbb{R}}, A \in \overline{\mathbb{R}}, \delta_0 > 0, f : \dot{U}_{\delta_0}(x_0) \to \mathbb{R}.$

Будем говорить, что A - предел функции f в точке x_0 , если для любой последовательности Гейне $\{x_n\}\subset \dot{U}_{\delta_0}(x_0)\Rightarrow f(x_n)\to A,\, n\to\infty.$

Лемма. $E_1,E_2\subset\mathbb{R},\,E_1,E_2\neq\varnothing,\,x_0\in\overline{\mathbb{R}}$ - предельная точка $E_1,\,E_2.$

$$\exists \lim_{\substack{x \to x_0 \\ x \in E_1 \cup E_2}} f(x) \iff \exists \lim_{\substack{x \to x_0 \\ x \in E_1}} f(x), \exists \lim_{\substack{x \to x_0 \\ x \in E_2}} f(x)$$

Доказательство.

$$(\Rightarrow)$$
 $\exists \lim_{\substack{x \to x_0 \\ x \in E_1 \cup E_2}} f(x) = A$. По Коши:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \colon \forall x \in \dot{U}_{\delta(\varepsilon)}(x_0) \cap (E_1 \cup E_2) \Rightarrow f(x) \in U_{\varepsilon}(A).$$

Заметим:
$$\dot{U}_{\delta}(x_0) \cap (E_1 \cup E_2) = (\dot{U}_{\delta}(x_0) \cap E_1) \cup (\dot{U}_{\delta}(x_0) \cap E_2)$$
 (*)

Тогда
$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in \dot{U}_{\delta(\varepsilon)}(x_0) \cap E_1 \Rightarrow f(x) \in U_{\varepsilon}(A),$$
 и $\forall x \in \dot{U}_{\delta(\varepsilon)}(x_0) \cap E_2 \Rightarrow f(x) \in U_{\varepsilon}(A).$

Отсюда
$$\exists \lim_{\substack{x \to x_0 \\ x \in E_1}} f(x) = A, \ \exists \lim_{\substack{x \to x_0 \\ x \in E_2}} f(x) = A.$$

(
$$\Leftarrow$$
) Пусть $\exists \lim_{\substack{x \to x_0 \\ x \in E_1}} f(x) = A, \ \exists \lim_{\substack{x \to x_0 \\ x \in E_2}} f(x) = A.$

$$\forall \varepsilon > 0 \ \exists \delta_1(\varepsilon) > 0 : \forall x \in \dot{U}_{\delta_1(\varepsilon)}(x_0) \cap E_1 \Rightarrow f(x) \in U_{\varepsilon}(A)$$

$$\forall \varepsilon > 0 \ \exists \delta_2(\varepsilon) > 0 : \forall x \in \dot{U}_{\delta_2(\varepsilon)}(x_0) \cap E_2 \Rightarrow f(x) \in U_{\varepsilon}(A)$$

Положим $\delta(\varepsilon) = \min\{\delta_1(\varepsilon), \delta_2(\varepsilon)\} > 0.$

Используя (*) получаем: $\forall x \in \dot{U}_{\delta(\varepsilon)}(x_0) \cap (E_1 \cup E_2) \Rightarrow f(x) \in U_{\varepsilon}(A)$.

Следовательно, $\exists \lim_{\substack{x \to x_0 \\ x \in E_1 \cup E_2}} f(x) = A$.

Эквивалентность определений по Коши и по Гейне

1) Коши \Rightarrow Гейне

Пусть $\{x_n\}\subset \dot{U}_{\delta_0}(x_0)$ - произвольная последовательность Гейне в точке $x_0.$

По Коши: $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0$: $\forall x \in \dot{U}_{\delta(\varepsilon)}(x_0) \Rightarrow f(x) \in U_{\varepsilon}(A)$.

T.K. $x_n \to x_0$, to $\forall \delta > 0 \ \exists N(\delta) \in \mathbb{N} : \forall n \geq N(\delta) \Rightarrow x_n \in \dot{U}_{\delta}(x_0)$.

Применим к $\delta(\varepsilon)$: $\forall \varepsilon > 0 \ \exists N = N(\delta(\varepsilon))$: $\forall n \geq N \Rightarrow x_n \in \dot{U}_{\delta(\varepsilon)}(x_0) \Rightarrow f(x_n) \in U_{\varepsilon}(A)$.

Следовательно, $f(x_n) \to A$.

2) Гейне \Rightarrow Коши

Предположим, что предел существует по Гейне, но не по Коши.

Отрицание условия Коши: $\exists \varepsilon > 0$: $\forall \delta > 0 \ \exists x \in \dot{U}_{\delta}(x_0)$: $f(x) \notin U_{\varepsilon}(A)$.

Возьмем $\delta_n = \frac{\delta_0}{n}$. $\exists \varepsilon > 0$: $\forall n \in \mathbb{N} \ \exists x_n \in \dot{U}_{\delta_n}(x_0)$: $f(x_n) \notin U_{\varepsilon}(A)$.

Получили последовательность Гейне $\{x_n\} \subset \dot{U}_{\delta_0}(x_0)$ в точке x_0 , при этом $f(x_n) \not\to A$ - противоречие с определением по Гейне.