

LWE加解密, 代理匹配加密相关介绍

高欣

2024年5月23日

01 基本介绍

■ LWE加密

- I. 公开矩阵A a matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$
- II. 生成公私钥 私钥 $s \in \mathbb{Z}_q^m$

公钥
$$(A,b)$$
 $b=As+e$ 《误差向量 $e\in\mathbb{Z}_q^n$

01 基本介绍

随机 $r \in \mathbb{Z}_q^m$

$$c_0 = r^{\,t}A$$
 , $c_1 = r^{\,t}b + \left|rac{q}{2}
ight|\mu$

密文:
$$(c_0,c_1)$$

解密

$$egin{aligned} c_1 - c_0 s &= r^{\,t} (As + e) + \left\lfloor rac{q}{2}
ight
floor \mu - r^{\,t} As \ &= r^{\,t} e + \left\lfloor rac{q}{2}
ight
floor \mu \end{aligned}$$

噪音向量的分布控制的很小

可以直接通过观察结果的值是否小于 $\frac{q}{m}$ 来判断 μ 是0还是1

位2 代理匹配加密

JSA: Identity-based proxy matchmaking encryption for cloud-based anonymous messaging systems 云的匿名消息传递系统

代理:为接收方找到他指定的发送方的密文C,并重加密成CT

- $Setup(\lambda) \rightarrow (pp, mk)$: On input the security parameter λ , this algorithm, run by the KGC, outputs the system parameters pp and the master key mk.
- $SKGen(pp, mk, \sigma) \rightarrow ek_{\sigma}$: On input the system parameters pp, the master key mk and a sender's identity σ , the encryption key generation algorithm run by the KGC, outputs the corresponding encryption key ek_{σ} .
- $RKGen(pp, mk, \rho) \rightarrow dk_{\rho}$: On input the system parameters pp, the master key mk and a receiver's identity ρ , the decryption key generation algorithm run by the KGC, outputs the corresponding decryption key dk_{ρ} .
- $PKGen(pp, dk_{\rho}, snd) \rightarrow pdk_{(\rho, snd)}$: On input the system parameters pp, the receiver's decryption key dk_{ρ} and a target sender's identity snd, the proxy key generation algorithm run by a receiver, outputs the corresponding proxy key $pdk_{(\rho, snd)}$.

- Enc(pp, ek_σ, rcv, m) → C: On input the system parameters pp, the sender's encryption key ek_σ, a target receiver's identity rcv and a message m ∈ M, the encryption algorithm run by a sender, outputs the corresponding ciphertext C, where M is the message space.
- $ProxyDec(pp, pdk_{(\rho,snd)}, C) \rightarrow CT/ \perp$: On input the system parameters pp, a proxy key $pdk_{(\rho,snd)}$ and a ciphertext C, the proxy decryption algorithm run by a proxy, outputs the corresponding proxy ciphertext CT or a symbol \perp to denote proxy decryption failure.
- $Dec_1(pp, dk_\rho, snd, C) \rightarrow m/ \perp$: On input the system parameters pp, the receiver's decryption key dk_ρ , a target sender's identity snd and a ciphertext C, the algorithm run by a receiver, outputs the corresponding message m or a symbol \perp to denote decryption failure.
- $Dec_2(pp, dk_\rho, snd, CT) \rightarrow m/\perp$: On input the system parameters pp, the receiver's decryption key dk_ρ , a target sender's identity snd and a proxy ciphertext CT, the decryption algorithm run by a receiver, outputs the corresponding message m or a symbol \perp to denote decryption failure.

Pub/Sub(发布/订阅)是一种消息传递模式,其中消息发送者(发布者)将消息发布到一个或多个主题(topics)或频道(channels),而消息接收者(订阅者)订阅特定的主题或频道以接收消息。

在Pub/Sub模式中,发布者和订阅者不直接通信,而是通过一个中介(通常称为消息代理或消息中间件)进行通信。发布者将消息发送到消息代理,消息代理将消息存储在某个地方,并根据订阅者的订阅列表将消息推送给相应的订阅者。

TIFS: Secure Cloud-Assisted Data Pub/Sub Service With Fine-Grained Bilateral Access Control

(k,n)秘密分割门限方案,k为门限值

秘密s 被分为n个部分,每个部分称为份额share或shadow,由一个参与者持有,使得:

- ▶ 由k个或多于k个参与者所持有的部分信息可重构s;
- ➤ 由少于k/ 参与者所持有的部分信息则无法重构s

$$(|S_A \cap P_A| \geq d) \cap (|S_B \cap P_B| \geq d)),$$

阈值访问控制

□ Shamir门限方案的构造思路

一般的,设 $\{(x_1,y_1),...,(x_k,y_k)\}$ 是平面上k个不同的点构成的点集,那么在平面上存在唯一的k-1次多项式 $f(x)=a_0+a_1x+\cdots+a_{k-1}x^{k-1}$ 通过这k个点.

若把秘密s取做f(0), n个份额取做 f(i) (i=1,...n), 那么利用其中任意k个份额可以重构f(x), 从而可以得到秘密s.

Fuzzy.Setup $(1^{\lambda}, 1^{\ell})$: On input a security parameter λ , and identity size ℓ , do:

- 1. Use algorithm $\mathsf{TrapGen}(1^{\lambda})$ (from Proposition 3) to select 2ℓ uniformly random $n \times m$ matrices $\mathbf{A}_{i,b} \in \mathbb{Z}_q^{n \times m}$ (for all $i \in [\ell], b \in \{0,1\}$) together with a full-rank set of vectors $\mathbf{T}_{i,b} \subseteq \Lambda_q^{\perp}(\mathbf{A}_{i,b})$ such that $\|\widetilde{\mathbf{T}_{i,b}}\| \leq m \cdot \omega(\sqrt{\log m})$.
- 2. Select a uniformly random vector $\mathbf{u} \in \mathbb{Z}_q^n$.
- 3. Output the public parameters and master key,

$$\mathsf{PP} \ = \ \Big(\ \{\mathbf{A}_{i,b}\}_{i \in [\ell], b \in \{0,1\}}, \mathbf{u} \ \Big) \qquad ; \qquad \mathsf{MK} \ = \ \Big(\ \{\mathbf{T}_{i,b}\}_{i \in [\ell], b \in \{0,1\}} \ \Big)$$

拉格朗日插值定理 $L_n(x) = \sum_{j=0}^{n-1} y_j p_j(x)$ 有n个互不相同的点 $(x_1, y_1), ..., (x_n, y_n)$,存在唯一的n-1次多项式经过这n个点

Fuzzy.Extract(PP, MK, id, k): On input public parameters PP, a master key MK, an identity id \in $\{0,1\}^{\ell}$ and threshold $k \leq \ell$, do:

1. Construct ℓ shares of $\mathbf{u} = (u_1, ..., u_n) \in \mathbb{Z}_q^n$ using a Shamir secret-sharing scheme applied to each co-ordinate of **u** independently. Namely, for each $j \in [n]$, choose a uniformly random polynomial $p_j \in \mathbb{Z}_q[x]$ of degree k-1 such that $p_j(0) = u_j$. Construct the j^{th} share vector

$$\hat{\mathbf{u}}_j = (\hat{u}_{j,1}, \dots, \hat{u}_{j,n}) \stackrel{ ext{def}}{=} (p_1(j), p_2(j), \dots, p_n(j)) \in \mathbb{Z}_q^n$$

Looking ahead (to decryption), note that for all $J \subset [\ell]$ such that $|J| \geq k$, we can compute fractional Lagrangian coefficients L_j such that $\mathbf{u} \equiv \sum_{j \in J} L_j \cdot \hat{\mathbf{u}}_j \pmod{q}$. That is, we interpret L_j as a fraction of integers, which we can also evaluate \pmod{q} .

- 2. Using trapdoor MK and the algorithm SamplePre from Section 3.3.1, find $\mathbf{e}_j \in \mathbb{Z}^m$ such that $\mathbf{A}_{j,\mathsf{id}_i} \cdot \mathbf{e}_j = \hat{\mathbf{u}}_j$, for $j \in [\ell]$.
- 3. Output the secret key for id as $(\mathbf{e}_1, \dots, \mathbf{e}_\ell)$.

加密矩阵大小恒定

Fuzzy.Setup $(1^{\lambda}, 1^{\ell})$: On input a security parameter λ , and identity size ℓ , do these steps:

- 1. Select a uniformly random *n*-vector $\mathbf{u} \stackrel{R}{\leftarrow} \mathbb{Z}_q^n$.
- 2. For $(i = 1, ..., \ell)$
 - (a) Use algorithm TrapGen(q, n) to select a uniformly random $n \times m$ -matrix $\mathbf{A}_{0,i} \in \mathbb{Z}_q^{n \times m}$ with a basis $\mathbf{T}_{\mathbf{A}_{0,i}}$ for $\Lambda_q^{\perp}(\mathbf{A}_{0,i})$ such that $\|\widetilde{T}_{\mathbf{A}_{0,i}}\| \leq O(\sqrt{n \log q})$
 - (b) Select two uniformly random $n \times m$ matrices $\mathbf{A}_{1,i}$ and \mathbf{B}_i in $\mathbb{Z}_q^{n \times m}$.
- 3. Output the public parameters and master key,

$$\mathsf{PP} = \left(\begin{array}{ccc} \{\mathbf{A}_{0,i}, \mathbf{A}_{1,i}, \mathbf{B}_i\}_{i \in [\ell]}, & \mathbf{u} \end{array} \right) \quad ; \quad \mathsf{MK} = \left(\begin{array}{ccc} \{T_{\mathbf{A}_{0,i}}\}_{i \in [\ell]} \end{array} \right)$$

Fuzzy.Enc(PP, id, b): On input public parameters PP, an identity id, and a message $b \in \{0, 1\}$, do:

- 1. Let $D \stackrel{\text{def}}{=} (\ell!)^2$.
- 2. Choose a uniformly random $\mathbf{s} \stackrel{R}{\leftarrow} \mathbb{Z}_q^n$.
- 3. Choose a noise term $x \leftarrow \chi_{\{\alpha,q\}}$ and $\mathbf{x}_i \leftarrow \chi_{\{\alpha,q\}}^m$,
- 4. Set $c_0 \leftarrow \mathbf{u}^\top \mathbf{s} + Dx + b \lfloor \frac{q}{2} \rfloor \in \mathbb{Z}_q$.
- 5. Set $\mathbf{c}_i \leftarrow \mathbf{A}_{i,\mathsf{id}_i}^{\mathsf{T}} \mathbf{s} + D\mathbf{x}_i \in \mathbb{Z}_q^m$ for all $i \in [\ell]$.
- 6. Output the ciphertext $\mathsf{CT}_{\mathsf{id}} := (c_0, \{\mathbf{c}_i\}_{i \in [\ell]}).$

$$\sum_{j\in J} L_j \mathbf{A}_j \mathbf{e}_j = \mathbf{u} \pmod{q}$$

$$r = c_0 - \sum_{j \in J} L_j \mathbf{e}_j^{\top} \mathbf{c}_j \pmod{q}$$

$$= \mathbf{u}^{\top} \mathbf{s} + Dx + b \left\lfloor \frac{q}{2} \right\rfloor - \sum_{j \in J} L_j \mathbf{e}_j^{\top} (\mathbf{A}_j^{\top} \mathbf{s} + D \cdot \mathbf{x}_j) \pmod{q}$$

$$= b \left\lfloor \frac{q}{2} \right\rfloor + \left(\mathbf{u}^{\top} \mathbf{s} - \sum_{j \in J} (L_j \mathbf{A}_j \mathbf{e}_j)^{\top} \mathbf{s} \right) + \left(Dx - \sum_{j \in J} DL_j \mathbf{e}_j^{\top} \mathbf{x}_j \right) \pmod{q} \qquad \approx b \left\lfloor \frac{q}{2} \right\rfloor$$

$$= 0 \pmod{q}$$

利用SIS单向函数的反函数构造

Fuzzy.Extract(PP, MK, id, k): On input public parameters PP, a master key MK, an attribute vector or identity id = $(id_1, id_2, ..., id_\ell)$ where $id_i \in \mathbb{Z}_q^n$ for each $i \in [\ell]$, and a threshold $k \leq \ell$, do:

- 1. Construct ℓ shares of $\mathbf{u} = (u_1, ..., u_n) \in \mathbb{Z}_q^n$ using a Shamir secret-sharing scheme applied to each co-ordinate of \mathbf{u} independently. Namely, for each $i \in [n]$, choose a uniformly random polynomial $p_i \in \mathbb{Z}_q[x]$ of degree k-1 such that $p_i(0) = u_j$.
- 2. Construct the j^{th} share vector

$$\hat{\mathbf{u}}_j = (\hat{u}_{j,1}, \dots, \hat{u}_{j,n}) \stackrel{\mathrm{def}}{=} (p_1(j), p_2(j), \dots, p_n(j)) \in \mathbb{Z}_q^n$$

Note that by the linearity of the Shamir secret-sharing scheme, there are co-efficients $L_j \in \mathbb{Z}_q$ such that $\mathbf{u} = \sum_{j=1}^{\ell} L_j \cdot \hat{\mathbf{u}}_j$. In fact, linear reconstruction is possible whenever there are k or more shares available.

- 3. For $i = 1, ..., \ell$, do:
 - (a) For id_i , construct the encryption matrix $\mathbf{F}_{id_i} = [\mathbf{A}_{0,i} | \mathbf{A}_{1,i} + \mathbf{H}(id_i)\mathbf{B}_i]$ as in [1]. Here, \mathbf{H} is some fixed Full-Rank Difference (FRD) map, s.t., for any $id_1 \neq id_2$ in some exponential-size domain, $\mathbf{H}(id_1) \mathbf{H}(id_2)$ is a full-rank matrix.
 - (b) Sample $\mathbf{e}_i \in \mathbb{Z}^{2m}$ as $\mathbf{e}_i \leftarrow \mathsf{SampleLeft}(\mathbf{A}_{0,i}, \ \mathbf{A}_{1,i} + \mathbf{H}(\mathsf{id}_i) \, \mathbf{B}_i, \ \mathbf{T}_{\mathbf{A}_{0,i}}, \ \hat{\mathbf{u}}, \ \sigma)$
- 4. Output the secret key $SK_{id} = (\mathbf{e}_1, \dots, \mathbf{e}_{\ell})$.

Fuzzy.Enc(PP, id, b): On input PP, identity id = $(id_1, id_2, ..., id_\ell) \in (\mathbb{Z}_q^n)^\ell$, and message $b \in \{0, 1\}$:

- 1. Let $D = (\ell!)^2$.
- 2. Choose a uniformly random $\mathbf{s} \stackrel{R}{\leftarrow} \mathbb{Z}_q^n$.
- 3. For $(i = 1, ..., \ell)$, do:
 - (a) Construct the encryption matrix $\mathbf{F}_{\mathsf{id}_i} = [\mathbf{A}_{0,i}|\mathbf{A}_{1,i} + \mathbf{H}(\mathsf{id}_i)\mathbf{B}_i] \in \mathbb{Z}_q^{n \times m}$ as above.
 - (b) Choose a uniformly random $m \times m$ matrix $R \stackrel{R}{\leftarrow} \{-1,1\}^{m \times m}$.
 - (c) Choose noise vector $y \stackrel{\bar{\Psi}^m_{\alpha}}{\longleftarrow} \mathbb{Z}_q^m$, and set $z \leftarrow R^{\top} y \in \mathbb{Z}_q^m$.
 - (d) Set $\mathbf{c}_i \leftarrow \mathbf{F}_{\mathsf{id}_i}^{\mathsf{T}} \mathbf{s} + D \begin{bmatrix} y \\ z \end{bmatrix} \in \mathbb{Z}_q^{2m} \text{ for all } i \in [\ell].$
- 4. Choose a noise term $x \stackrel{\chi_{\{\alpha,q\}}}{\longleftarrow} \mathbb{Z}_q$.
- 5. Set $\mathbf{c}_0 \leftarrow \mathbf{u}^\top \mathbf{s} + Dx + b \left| \frac{q}{2} \right| \in \mathbb{Z}_q$.
- 6. Output the ciphertext $\mathsf{CT}_{\mathsf{id}} := (c_0, \{\mathbf{c}_i\}_{i \in [\ell]}).$

Fuzzy.Dec(PP, SK_{id} , $CT_{id'}$): On input parameters PP, a private key SK_{id} , and a ciphertext $CT_{id'}$:

1. Let $J \subset [\ell]$ denote the set of matching elements in id and id'. If $|J| \geq k$ we can compute Lagrange coefficients L_j so that

$$\sum_{j \in J} L_j \hat{\mathbf{u}_j} = \sum_{j \in J} L_j \mathbf{F}_{\mathsf{id}_j}^{ op} \mathbf{e}_j = \mathbf{u}$$

- 2. Compute $r \leftarrow c_0 \sum_{j \in J} L_j \cdot \mathbf{e}_j^\top \mathbf{c}_j \pmod{q}$. View it as the integer $r \in [-\lfloor \frac{q}{2} \rfloor, \lfloor \frac{q}{2} \rfloor) \subset \mathbb{Z}$.
- 3. If $|r| < \frac{q}{4}$, output 0, else output 1.