



# MANAGING THE CLOUD OpenStack, CloudForms, Public Cloud

Karl Stevens Senior Solution Architect – Red Hat

# **TECHNOLOGY LANDSCAPE**







# **TECHNOLOGY LANDSCAPE**







### **TECHNOLOGY LANDSCAPE**

You need a continuous competitive advantage

You are a software company

Your competition is everywhere

























# **BUSINESSES MUST EVOLVE**



Streamlined and automated



Elastic and scalable



Agile and responsive



Utility-like

Velocity at Amazon AWS



10,000

max deployment per hour

11.6

mean time between deployments (seconds)

.001%

deployments causing an outage

Source: 2014 State of DevOps Report, Puppet Labs, IT Revolution Press, ThoughtWorks

#### **BARRIERS TO EVOLUTION..?**

Existing infrastructure is not designed to cope with the demand

- Data is too large
  - We're producing vast amounts of unstructured data
  - Scaling UP no longer works. Scaling OUT is a necessity
- Too many service requests
  - More client devices coming online Laptops, tablets, phones, watches, etc...
  - BYOD generation is here
- Applications and infrastructure were not designed for this level of demand
  - Traditional capabilities are being exhausted



# **RED HAT SOLUTIONS: CLOUDFORMS; OPENSTACK**





## **WHAT IS OPENSTACK?**







## **CLOUD INFRASTRUCTURE FOR CLOUD WORKLOADS**

- Modular architecture
- Designed to easily scale out
- Based on (continuously growing) set of core services
- Brings public cloud-like capabilities into your datacentre
- Provides massive on-demand (scale-out) capacity
- Removes vendor lock-in





# **OPENSTACK IDENTITY SERVICE (KEYSTONE)**



- •Keystone provides a common authentication and authorization store for OpenStack
- · Responsible for users, their roles, and to which project(s) they belong to
- Provides a catalog of all other OpenStack services API endpoints
- All OpenStack services typically rely on Keystone to verify a user's request





# **OPENSTACK COMPUTE (NOVA)**



- Nova is responsible of running instances within OpenStack
- Manages multiple different hypervisor types via drivers, e.g.
  - Red Hat Enterprise Linux (+KVM)
  - VMware vSphere





# **OpenStack Image Service (Glance)**



- Glance provides a mechanism for the storage and retrieval of disk images/templates
- Supports a wide variety of image formats, including qcow2, vmdk, ami, and ovf
- Many different back end storage options for images, including Swift...





# **OPENSTACK OBJECT STORE (SWIFT)**



- Swift provides a mechanism for storing and retrieving arbitrary unstructured data
- Provides an object based interface via a RESTful/HTTP-based API
- Highly fault-tolerant with replication, self-healing, and load-balancing
- Designed to be implemented using commodity compute and storage





# **OPENSTACK NETWORKING (NEUTRON)**



- Neutron is responsible for providing networking to running instances within OpenStack
- Provides an API for defining, configuring, and using networks
- Relies on a plugin architecture for implementation of networks, examples include:
  - Open vSwitch (default in Red Hat's distribution)
  - Cisco, PLUMgrid, Juniper, Arista, Mellanox, Brocade, etc.





# **OPENSTACK VOLUME SERVICE (CINDER)**



- Cinder provides block storage to instances running within OpenStack
- Used for providing persistent and/or additional storage
- Relies on a plugin/driver architecture for implementation, examples include Red Hat Ceph Storage, EMC, Netapp, IBM XIV, HP Leftland, 3PAR, etc.





# **OPENSTACK ORCHESTRATION (HEAT)**



- Heat facilitates the creation of 'application stacks' made from multiple resources
- Stacks are imported as a descriptive template language
- Heat manages the automated orchestration of resources and their dependencies
- Allows for dynamic scaling of applications based on confgurable metrics





# **OPENSTACK TELEMETRY (CEILOMETER)**



- · Ceilometer is a central collection of metering and monitoring data
- Primarily used for chargeback of resource usage, but could be used for other purposes as well (autoscaling, monitoring)
- Ceilometer consumes data from the other components e.g. via agents
- Architecture is completely extensible meter what you want to expose via API





# **OPENSTACK DASHBOARD (HORIZON)**



- Horizon is OpenStack's web-based self-service portal
- Sits on-top of all of the other OpenStack components via API interaction
- Provides a (growing) subset of underlying functionality
- Examples include: instance creation, network confguration, block storage attachment, users administration, etc.













# **Images**

| Images |                                 | A Proof K | Street will Water |        |           | •      | + Creating | S territory |
|--------|---------------------------------|-----------|-------------------|--------|-----------|--------|------------|-------------|
|        | Image Name                      | Type      | Steren            | Public | Presented | Fermen | Actions    |             |
|        | megasingensitive size           | Traige    | Ative             | Yes    | No        | QCOMO  | Janen 9    | met.        |
|        | National American States amager | Image     | Arrive            | Ve     | No        | gcova  | Asset 9    | mar.        |
|        | BHILL 62-20140020               | map       | Acces             | 700    | No        | 00000  | Select. N  | ent)        |
|        | 990000 (7 d2941200)             | Triple    | Attre             | m      | Ni        | фсома  | Saint I    | ma T        |
|        | \$640 ALC 20140000              | mage      | Atte              | Ven    | 160       | gcova  | Seen. a    | 100         |
|        | personal findings.              | trugs     | Acres             | Yes    | No        | 90048  | Seed 2     | ment)       |
|        | Second Street,                  | Trept.    | Acres             | THE    | No        | OCENE  | Greek W    | 947)        |

















# WHY REDHAT?

#### THE IMPORTANCE OF INTEGRATION WITH LINUX

#### Red Hat



A typical OpenStack cloud is made up of at least 10 core services + plugins to interact with 3rd party systems

- These services run on top of a Linux distribution with a complex set of user space integration dependencies
- OpenStack cannot be productized as a stand alone layer
- A supported, stable platform requires integration and testing of each of the components

"If your Windows virtual machine hosted by a KVM hypervisor running on an IBM blade, connecting to an EMC storage array through an Emulex HBA has issues with storage corruption, who do you call?"

## RED HAT OPENSTACK PLATFORM DIRECTOR

#### **OpenStack Orchestration**



#### **PLANNING**

Network topology Service parameters Resource capacity

#### **DEPLOYMENT**

Deployment orchestration Service configuration Sanity checks

#### **OPERATIONS**

Updates and upgrades Scaling up and down Change management

#### LARGEST CERTIFIED PARTNER ECOSYSTEM

- Over 400+ members since launch in April 2013
- Over 900 certified solutions in partner Marketplace
- Over 4,000 RHEL certified compute servers

OEMs, IHVs, ISVs

Channel Partners

**System Integrators** 







# RED HAT CLOUD SERVICES

#### Training

- Red Hat OpenStack Administration I (CL110)
- Red Hat OpenStack Administration II (CL210)
- Red Hat OpenStack Administration III (CL310)

#### Certification

- Red Hat Certified System Administrator (RHCSA) in Red Hat OpenStack
- Red Hat Certified Engineer (RHCE) in Red Hat OpenStack

#### Consulting

- Red Hat Consulting: Cloud Migration
- Red Hat Consulting: Optimize IT with Open Management for Virtualization









# CLOUDFORMS (Enterprise Cloud Management)

### AN EVOLUTIONARY PATH TO HYBRID CLOUD

# RED HAT® CLOUDFORMS









Service **Automation Compliance** 

Policy &

Operational Visibility

**Unified Hybrid** Management



#### **CONTAINERS**

Red Hat Atomic | OpenShift by Red Hat®





#### **VIRTUALIZATION**

**VMware**© Microsoft<sup>©</sup> Hyper-V Red Hat Virtualization



#### **PRIVATE CLOUD**

Red Hat® Openstack Platform



#### **PUBLIC CLOUD**

Amazon<sup>©</sup> Web Services Windows Azure Google® Cloud Platform

#### **SOFTWARE DEFINED NETWORKING**

# **CLOUDFORMS FEATURES**





NON-INVASIVE, EASY MAINTENANCE

WEB-BASED, SELF-SERVICE, ADMIN AND OPERATIONS



**ACCESS FROM ANY BROWSER** 

MULTI-TENANT AND MULTI-LOCATION



**SECURELY SHARE INFRASTRUCTURE** 

PLUGABLE API FRAMEWORK



EASY TO INTEGRATE AND EXTENSIBLE TO OTHER PLATFORMS

HORIZONTALLY SCALABLE, LOAD-BALANCED



HIGHLY SCALABLE, HIGHLY AVAILABLE
WITH FAILOVER AND FALLBACK

ROLE-BASED ACCESS CONTROL AND ENTITY TAGGING



SEGMENT USER ACCESS - DRIVE COMPLIANCE, CONTROL & REPORTING

### UNIFIED HYBRID MANAGEMENT WITH CLOUDFORMS



- Consistent automation and Policy
- Agentless management







#### VIRTUALIZATION MANAGEMENT

- Provision VMs
- View VM genealogy and history
- Track VM drift
- Manage VM lifecycle







#### **CLOUD MANAGEMENT**

- View & manage full inventory
- Provision instances, storage and networking.
- Monitor and respond to events.

Cloud Providers

Atone\_3 DD

Type: Anazoniti2

EVM Zone: Cloud

Instances:

Images: 1

Type: April

DVM Zone: Cloud-

Images: 11

Inntances: T1





#### **CONTAINER MANAGEMENT**

- View relationships in one place
- Apply automation and enforce policies
- Scan containers for vulnerabilities









# PUBLIC CLOUD

# **PUBLIC CLOUD**



# **PUBLIC CLOUD**



# MANY RED HAT CERTIFIED CLOUDS WITH CLOUD ACCESS























Source: https://access.redhat.com/ecosystem/search/#/category/Cloud%20Provider

#### MONTHLY TECHTALK SERIES

October 26th An introduction to 3Scale and API Management.

November 23rd EAP 7 and A-MQ 7. JEE and core

December 13th RHEL, RHEV, Atomic and OpenStack.

January 25th Software Defined Storage, Gluster, Ceph.

February 22nd Hybrid Cloud Architectures and Cloudforms

All @ Red Hat Monument Office - Morning and Evening sessions



# redhat