Quantum Computing

Algorithms and Complexity

Classical

Classical

Position $q_i \in \mathbb{R}^f$

 $\mathsf{Momentum}\, p_i \in \mathbb{R}^f$

Complexity of Quantum

Classical

Position $q_i \in \mathbb{R}^f$

 $\mathsf{Momentum}\, p_i \in \mathbb{R}^f$

Phase space Γ consists of $(q_1, p_1, \dots, q_N, p_N)$

$$\dim \Gamma = 2fN$$

Complexity of Quantum

Classical

Position $q_i \in \mathbb{R}^f$

 $\mathsf{Momentum}\, p_i \in \mathbb{R}^f$

Phase space Γ consists of $(q_1, p_1, \dots, q_N, p_N)$

$$\dim \Gamma = 2fN$$

Quantum

Ising chain

Complexity of Quantum

Classical

Position $q_i \in \mathbb{R}^f$

Momentum $p_i \in \mathbb{R}^f$

Phase space Γ consists of $(q_1, p_1, \dots, q_N, p_N)$

$$\dim \Gamma = 2fN$$

Quantum

Ising chain

$$|\psi_i\rangle = \alpha |\uparrow\rangle + \beta |\downarrow\rangle \in \mathcal{H}_i$$

$$|\psi\rangle = |\psi_1\rangle \otimes \dots \otimes |\psi_N\rangle \in \mathcal{H}$$

Complexity of Quantum

Classical

Position $q_i \in \mathbb{R}^f$

Momentum $p_i \in \mathbb{R}^f$

Phase space Γ consists of $(q_1, p_1, \dots, q_N, p_N)$

$$\dim \Gamma = 2fN$$

Quantum

Ising chain

$$|\psi_i\rangle = \alpha |\uparrow\rangle + \beta |\downarrow\rangle \in \mathcal{H}_i$$

$$|\psi\rangle = |\psi_1\rangle \otimes \dots \otimes |\psi_N\rangle \in \mathcal{H}$$

$$\dim(\mathcal{H}_1 \otimes \mathcal{H}_2) = (\dim \mathcal{H}_1) \cdot (\dim \mathcal{H}_2)$$

$$\dim \mathcal{H} = 2^N$$

Classical

$$\dim \Gamma = 2fN$$

Computational effort scales polynomially

Classical

$$\dim \Gamma = 2fN$$

Computational effort scales polynomially

Quantum

$$\dim \mathcal{H} = 2^N$$

for
$$N=272$$

$$2^N> \text{ $\#$ Atoms in the visible universe}$$

Computational effort scales exponentially

Classical

$$\dim \Gamma = 2fN$$

Computational effort scales polynomially

Feasible

Quantum

$$\dim \mathcal{H} = 2^N$$

for
$$N=272$$

$$2^N> \text{ $\#$ Atoms in the visible universe}$$

Computational effort scales exponentially

Infeasible

Motivation Simulating quantum systems

Can we exploit quantum systems to simulate quantum systems?

— Feynmann (1982)

Motivation Simulating quantum systems

Can we exploit quantum systems to simulate quantum systems?

— Feynmann (1982)

→ Universal Quantum Simulators (Quantum Computers)

What is complex and what is efficient?

Multiplication

$$113 \cdot 73 = 8249$$

Number of steps <u>linear</u> in the number of digits

What is complex and what is efficient?

Multiplication

$$113 \cdot 73 = 8249$$

Number of steps <u>linear</u> in the number of digits

Prime factoring

$$8249 = ?$$

Computational steps required grow exponentially in the number digits

What is complex and what is efficient?

Multiplication

$$113 \cdot 73 = 8249$$

Number of steps <u>linear</u> in the number of digits

Efficiently solvable

Prime factoring

$$8249 = ?$$

Computational steps required grow exponentially in the number digits

Hard to compute

What is complex and what is efficient?

Multiplication

$$113 \cdot 73 = 8249$$

Number of steps <u>linear</u> in the number of digits

Efficiently solvable

Prime factoring

$$8249 = ?$$

Computational steps required grow exponentially in the number digits

Hard to compute

Can we use the complexity of quantum systems to speedup algorithms?

Guiding questions

Outline of the talk

Which quantum algorithms exist?

Deutsch-Jozsa, Grover's Algorithm

and

How do they work?

Guiding questions

Outline of the talk

Which quantum algorithms exist?

and

How do they work?

Deutsch-Jozsa, Grover's Algorithm

How much faster are they compared to classical counterpart?

Complexity Theory

Fundamentals of Quantum Computing

Classical Bit

$$X \in \{0,1\}$$

Classical Bit

$$X \in \{0,1\}$$

Quantum Bit (Qubit)

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \in \mathcal{H}$$

Classical Bit

$$X \in \{0,1\}$$

Quantum Bit (Qubit)

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \in \mathcal{H}$$

Classical Bit

$$X \in \{0,1\}$$

Quantum Bit (Qubit)

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \in \mathcal{H}$$

In principle Qubit stores *infinite* amount of information

Classical Bit

$$X \in \{0,1\}$$

Quantum Bit (Qubit)

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \in \mathcal{H}$$

In principle Qubit stores *infinite* amount of information

→ measurement yields a classical Bit

Upon measurement only a *finite* amount is attainable

Classical Bit

$$X \in \{0,1\}$$

Quantum Bit (Qubit)

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \in \mathcal{H}$$

Classical Register

$$S \in \{0,1\}^n$$

e.g.
$$S = 1001$$

Classical Bit

$$X \in \{0,1\}$$

e.g. S = 1001

Quantum Bit (Qubit)

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \in \mathcal{H}$$

Classical Register

$$S \in \{0,1\}^n$$

Quantum Register

$$|\psi\rangle = |\psi_1\rangle \otimes \ldots \otimes |\psi_n\rangle \in \mathcal{H}^{\otimes n}$$

Classical Bit

$$X \in \{0,1\}$$

e.g. S = 1001

Quantum Bit (Qubit)

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \in \mathcal{H}$$

Classical Register

$$S \in \{0,1\}^n$$

Quantum Register

$$|\psi\rangle = |\psi_1\rangle \otimes \ldots \otimes |\psi_n\rangle \in \mathcal{H}^{\otimes n}$$

We will use the short hand notation

$$|0\rangle \otimes |1\rangle \otimes |0\rangle = |010\rangle$$

Processing of classical bits can be described in the language of gates

Processing of classical bits can be described in the language of gates

AND Gate

a	b	$ a \wedge b $
0	0	0
0	1	0
1	0	0
1	1	1

Processing of classical bits can be described in the language of gates

AND Gate

a	b	$a \wedge b$
0	0	0
0	1	0
1	0	0
1	1	1
\boldsymbol{a}	b	$ a \lor b $
<i>a</i> 0	<i>b</i> 0	$a \lor b$
0	0	

OR Gate

Processing of classical bits can be described in the language of gates

NOT Gate

a	!a
0	1
1	0

Processing of classical bits can be described in the language of gates

NOT Gate

a	!a
0	1
1	0

XOR Gate

а	b	$a \operatorname{xor} b$
0	0	0
0	1	1
1	0	1
1	1	0

In non-relativistic QM we can either

In non-relativistic QM we can either

evolve in time

$$i\frac{\partial}{\partial t}|\psi\rangle = \hat{H}|\psi\rangle$$

Unitary operations

In non-relativistic QM we can either

evolve in time

 $i\frac{\partial}{\partial t}|\psi\rangle = \hat{H}|\psi\rangle$

measure

$$\hat{O}|\psi\rangle = o|\psi\rangle$$

Unitary operations

Hermitian operations

In non-relativistic QM we can either

evolve in time

$$i\frac{\partial}{\partial t}|\psi\rangle = \hat{H}|\psi\rangle$$

$$\hat{O}|\psi\rangle = o|\psi\rangle$$

Unitary operations

Hermitian operations

Since the theory is linear all quantum gates need to be linear

Hadamard Gate

$$\alpha |0\rangle + \beta |1\rangle \qquad \boxed{H} \qquad \frac{\alpha}{\sqrt{2}} (|0\rangle + |1\rangle) + \frac{\beta}{\sqrt{2}} (|0\rangle - |1\rangle)$$

$$\hat{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Hadamard Gate

$$\alpha |0\rangle + \beta |1\rangle \qquad \boxed{H} \qquad \frac{\alpha}{\sqrt{2}} (|0\rangle + |1\rangle) + \frac{\beta}{\sqrt{2}} (|0\rangle - |1\rangle)$$

$$\hat{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

X, Y, Z Gates

$$\alpha |0\rangle + \beta |1\rangle$$
 X $\alpha |1\rangle + \beta |0\rangle$

Hadamard Gate

$$\alpha |0\rangle + \beta |1\rangle \qquad \boxed{H} \qquad \frac{\alpha}{\sqrt{2}} (|0\rangle + |1\rangle) + \frac{\beta}{\sqrt{2}} (|0\rangle - |1\rangle)$$

$$\hat{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

X, Y, Z Gates

$$\alpha |0\rangle + \beta |1\rangle$$
 X $\alpha |1\rangle + \beta |0\rangle$

$$\alpha |0\rangle + \beta |1\rangle$$
 $- Y$ $- \alpha i |1\rangle - \beta i |0\rangle$

Hadamard Gate

$$\alpha |0\rangle + \beta |1\rangle \qquad \boxed{H} \qquad \frac{\alpha}{\sqrt{2}} (|0\rangle + |1\rangle) + \frac{\beta}{\sqrt{2}} (|0\rangle - |1\rangle)$$

$$\hat{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

X, Y, Z Gates

$$\alpha |0\rangle + \beta |1\rangle$$
 X $\alpha |1\rangle + \beta |0\rangle$

$$\alpha |0\rangle + \beta |1\rangle$$
 $- Y$ $- \alpha i |1\rangle - \beta i |0\rangle$

$$\alpha |0\rangle + \beta |1\rangle$$
 Z $\alpha |0\rangle - \beta |1\rangle$

Measurement Gate

$$x \in \{-1,1\}$$

$$\hat{Z}|\psi\rangle = x|\psi\rangle$$

Measurement Gate

$$x \in \{-1,1\}$$

$$\hat{Z}|\psi\rangle = x|\psi\rangle$$

Control Gates

flip the second qubit if the first is $|1\rangle$

$$0 \oplus 0 = 0$$

$$1 \oplus 0 = 1$$

$$0 \oplus 1 = 1$$

$$1 \oplus 1 = 0$$

Similar to classical circuits, we can connect Quantum gates

Similar to classical circuits, we can connect Quantum gates

Similar to classical circuits, we can connect Quantum gates

$$\frac{|0\rangle}{\frac{1}{\sqrt{2}}}(|0\rangle + |1\rangle)$$

Similar to classical circuits, we can connect Quantum gates

$$|0\rangle$$

$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$x = 1 \quad |0\rangle$$

$$|0\rangle$$

$$|1\rangle$$

Similar to classical circuits, we can connect Quantum gates

Example: Random number generator

$$|0\rangle$$

$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$x = 1 \quad |0\rangle$$

$$|1\rangle$$

Result of measurement is intrinsically random → sampling necessary

Suppose $\hat{U}:\mathcal{H} o \mathcal{H}$ clones the first qubit into second

$$\hat{U}(|\phi\rangle \otimes |\psi\rangle) = |\phi\rangle \otimes |\phi\rangle$$

Suppose $\hat{U}:\mathcal{H} o \mathcal{H}$ clones the first qubit into second

$$\hat{U}(|\phi\rangle \otimes |\psi\rangle) = |\phi\rangle \otimes |\phi\rangle$$

but due to linearity of \hat{U}

$$\hat{U}(a|0\rangle + b|1\rangle) \otimes |0\rangle = a\hat{U}|00\rangle + b\hat{U}|10\rangle =$$

Suppose $\hat{U}:\mathcal{H} o \mathcal{H}$ clones the first qubit into second

$$\hat{U}(|\phi\rangle \otimes |\psi\rangle) = |\phi\rangle \otimes |\phi\rangle$$

but due to linearity of \hat{U}

$$\hat{U}(a|0\rangle + b|1\rangle) \otimes |0\rangle = a\hat{U}|00\rangle + b\hat{U}|10\rangle = a|00\rangle + b|11\rangle$$

Suppose $\hat{U}:\mathcal{H} \to \mathcal{H}$ clones the first qubit into second

$$\hat{U}(|\phi\rangle \otimes |\psi\rangle) = |\phi\rangle \otimes |\phi\rangle$$

but due to linearity of \hat{U}

$$\hat{U}(a|0\rangle + b|1\rangle) \otimes |0\rangle = a\hat{U}|00\rangle + b\hat{U}|10\rangle = a|00\rangle + b|11\rangle$$

in contradiction to

$$\hat{U}(a|0\rangle + b|1\rangle) \otimes |0\rangle = (a|0\rangle + b|1\rangle) \otimes (a|0\rangle + b|1\rangle)$$

Suppose $\hat{U}:\mathcal{H} o \mathcal{H}$ clones the first qubit into second

$$\hat{U}(|\phi\rangle \otimes |\psi\rangle) = |\phi\rangle \otimes |\phi\rangle$$

but due to linearity of \hat{U}

$$\hat{U}(a|0\rangle + b|1\rangle) \otimes |0\rangle = a\hat{U}|00\rangle + b\hat{U}|10\rangle = a|00\rangle + b|11\rangle$$

in contradiction to

$$\hat{U}(a|0\rangle + b|1\rangle) \otimes |0\rangle = (a|0\rangle + b|1\rangle) \otimes (a|0\rangle + b|1\rangle)$$

Therefore: Quantum circuits cannot split a qubit into two

A coin is considered *real* if it has distinct sides ...

A coin is considered *real* if it has distinct sides ...

... and otherwise fake

real

fake

Classical: we need check both sides \rightarrow two measurements

fake

real

Classical: we need check both sides \rightarrow two measurements

Quantum: one measurement sufficient (Deutsch-Jozsa Algorithm)

Let $f: \{0,1\} \rightarrow \{0,1\}$ be a binary function. We want to know whether

real coin

f is balanced $f(0) \neq f(1)$

fake coin

f is constant f(0) = f(1)

Let $f: \{0,1\} \rightarrow \{0,1\}$ be a binary function. We want to know whether

real coin

f is balanced $(f(0) \neq f(1))$

fake coin

f is constant f(0) = f(1)

Let $f: \{0,1\} \rightarrow \{0,1\}$ be a binary function. We want to know whether

real coin

f is balanced $(f(0) \neq f(1))$

fake coin

f is constant f(0) = f(1)

 $\underline{x = -1}$: f is balanced real coin

 $\underline{x = 1}$: f is constant fake coin

$$|0\rangle$$
 —

$$|1\rangle$$
 —

$$|\psi\rangle = |0\rangle \otimes |1\rangle$$

$$|0\rangle - H$$

$$|1\rangle$$
 — H —

$$|\psi\rangle = |0\rangle \otimes |1\rangle \xrightarrow{\hat{H} \otimes \hat{H}} \hat{H} |0\rangle \otimes \hat{H} |1\rangle = \frac{1}{2} (|0\rangle + |1\rangle) (|0\rangle - |1\rangle)$$

$$|0\rangle$$
 — H —

$$|1\rangle$$
 — H —

$$|\psi\rangle = |0\rangle \otimes |1\rangle \xrightarrow{\hat{H} \otimes \hat{H}} \hat{H} |0\rangle \otimes \hat{H} |1\rangle = \frac{1}{2} (|0\rangle + |1\rangle) (|0\rangle - |1\rangle)$$
$$= \frac{1}{2} (|00\rangle + |10\rangle - |11\rangle - |01\rangle)$$

$$|0\rangle$$
 H x x U_f $|1\rangle$ H y $y \oplus f(x)$

$$\frac{1}{2}(|00\rangle + |10\rangle - |11\rangle - |01\rangle) \xrightarrow{U_f} \frac{1}{2}U_f(|00\rangle + |10\rangle - |11\rangle - |01\rangle)$$

$$U_f|xy\rangle = |x(y \oplus f(x))\rangle$$

$$\frac{1}{2}(|00\rangle + |10\rangle - |11\rangle - |01\rangle) \xrightarrow{U_f} \frac{1}{2}U_f(|00\rangle + |10\rangle - |11\rangle - |01\rangle)$$

$$U_f|xy\rangle = |x(y \oplus f(x))\rangle$$

$$\frac{1}{2}(|00\rangle + |10\rangle - |11\rangle - |01\rangle) \xrightarrow{U_f} \frac{1}{2}U_f(|00\rangle + |10\rangle - |11\rangle - |01\rangle)$$

$$= \frac{1}{2} \left(|0(0 \oplus f(0))\rangle + |1(0 \oplus f(1))\rangle - |1(1 \oplus f(1))\rangle - |0(1 \oplus f(0))\rangle \right)$$

$$U_f|xy\rangle = |x(y \oplus f(x))\rangle$$

$$\frac{1}{2} \left(|0(0 \oplus f(0))\rangle + |1(0 \oplus f(1))\rangle - |1(1 \oplus f(1))\rangle - |0(1 \oplus f(0))\rangle \right)$$

$$= \frac{1}{2} \left((-1)^{f(0)} |0\rangle \otimes (|0\rangle - |1\rangle) + (-1)^{f(1)} |1\rangle \otimes (|0\rangle - |1\rangle) \right)$$

$$|0\rangle$$
 H x x U_f $|1\rangle$ H y $y \oplus f(x)$

$$U_f|xy\rangle = |x(y \oplus f(x))\rangle$$

$$\frac{1}{2} \left((-1)^{f(0)} | 0 \rangle \otimes (| 0 \rangle - | 1 \rangle) + (-1)^{f(1)} | 1 \rangle \otimes (| 0 \rangle - | 1 \rangle) \right)$$

$$= \frac{1}{2} \left(((-1)^{f(0)} | 0 \rangle + (-1)^{f(1)} | 1 \rangle) \otimes (| 0 \rangle - | 1 \rangle) \right)$$

Hadamard operator
$$\hat{H}(|0\rangle + |1\rangle) = \sqrt{2} |0\rangle$$

$$\hat{H}(|0\rangle - |1\rangle) = \sqrt{2} |1\rangle$$

$$\frac{1}{2} \left(\left((-1)^{f(0)} | 0 \right) + (-1)^{f(1)} | 1 \right) \otimes \left(| 0 \right) - | 1 \right) \right)$$

$$\hat{H} \otimes \hat{H}$$

Hadamard operator
$$\hat{H}(|0\rangle + |1\rangle) = \sqrt{2} |0\rangle$$

$$\hat{H}(|0\rangle - |1\rangle) = \sqrt{2} |1\rangle$$

$$\frac{1}{2} \left(\left((-1)^{f(0)} | 0 \right) + (-1)^{f(1)} | 1 \right) \otimes \left(| 0 \right) - | 1 \right) \right)$$

$$\xrightarrow{\hat{H} \otimes \hat{H}} \frac{1}{\sqrt{2}} \left(\hat{H}((-1)^{f(0)} | 0 \rangle + (-1)^{f(1)} | 1 \rangle) \otimes | 1 \rangle \right)$$

Hadamard operator
$$\hat{H}(|0\rangle + |1\rangle) = \sqrt{2} |0\rangle$$

$$\hat{H}(|0\rangle - |1\rangle) = \sqrt{2} |1\rangle$$

$$\frac{1}{\sqrt{2}} \left(\hat{H}((-1)^{f(0)} | 0 \rangle + (-1)^{f(1)} | 1 \rangle) \otimes | 1 \rangle \right)$$

$$= \begin{cases}
\frac{1}{\sqrt{2}} \left(\pm \hat{H}(|0 \rangle + |1 \rangle) \otimes | 1 \rangle \right) & \text{if} \quad f(0) = f(1) \\
\frac{1}{\sqrt{2}} \left(\pm \hat{H}(|0 \rangle - |1 \rangle) \otimes | 1 \rangle \right) & \text{if} \quad f(0) \neq f(1)
\end{cases}$$

Hadamard operator

$$\hat{H}(|0\rangle + |1\rangle) = \sqrt{2} |0\rangle$$

$$\hat{H}(|0\rangle - |1\rangle) = \sqrt{2} |1\rangle$$

$$\hat{H}(|0\rangle - |1\rangle) = \sqrt{2}|1\rangle$$

$$\frac{1}{\sqrt{2}} \left(\hat{H}((-1)^{f(0)} | 0) + (-1)^{f(1)} | 1) \right) \otimes | 1 \rangle$$

$$\frac{1}{\sqrt{2}} \left(\hat{H}((-1)^{f(0)} | 0 \rangle + (-1)^{f(1)} | 1 \rangle) \otimes | 1 \rangle \right)$$

$$= \begin{cases}
\frac{1}{\sqrt{2}} \left(\pm \sqrt{2} | 0 \rangle \otimes | 1 \rangle \right) & \text{if } f(0) = f(1) \\
\frac{1}{\sqrt{2}} \left(\pm \hat{H}(| 0 \rangle - | 1 \rangle) \otimes | 1 \rangle \right) & \text{if } f(0) \neq f(1)
\end{cases}$$

Hadamard operator

$$\hat{H}(|0\rangle + |1\rangle) = \sqrt{2} |0\rangle$$

$$\hat{H}(|0\rangle - |1\rangle) = \sqrt{2} |1\rangle$$

$$\hat{H}(|0\rangle - |1\rangle) = \sqrt{2}|1\rangle$$

$$\frac{1}{\sqrt{2}} \left(\hat{H}((-1)^{f(0)} | 0 \rangle + (-1)^{f(1)} | 1 \rangle) \otimes | 1 \rangle \right)$$

$$= \int \frac{1}{\sqrt{2}} \left(\pm \sqrt{2} | 0 \rangle \otimes | 1 \rangle \right)$$

$$= \begin{cases} \frac{1}{\sqrt{2}} \left(\pm \sqrt{2} |0\rangle \otimes |1\rangle \right) \\ \frac{1}{\sqrt{2}} \left(\pm \sqrt{2} |1\rangle \otimes |1\rangle \right) \end{cases}$$

if
$$f(0) = f(1)$$

if
$$f(0) \neq f(1)$$

$\frac{1}{\sqrt{2}} \left(\hat{H}((-1)^{f(0)} | 0) + (-1)^{f(1)} | 1 \rangle) \otimes | 1 \rangle \right)$

$$= \left\{ \begin{array}{c} \pm |0\rangle \otimes |1\rangle \\ \\ \pm |1\rangle \otimes |1\rangle \end{array} \right.$$

Hadamard operator
$$\hat{H}(|0\rangle + |1\rangle) = \sqrt{2} |0\rangle$$

$$\hat{H}(|0\rangle - |1\rangle) = \sqrt{2} |1\rangle$$

$$\hat{H}(|0\rangle - |1\rangle) = \sqrt{2}|1\rangle$$

if
$$f(0) = f(1)$$

if
$$f(0) \neq f(1)$$

$$\frac{1}{\sqrt{2}} \left(\hat{H}((-1)^{f(0)} | 0) + (-1)^{f(1)} | 1 \rangle) \otimes | 1 \rangle \right)$$

$$= \begin{cases} \pm \boxed{0} \otimes \ket{1} & (x = 1) & \text{if} \quad f(0) = f(1) \\ \pm \boxed{1} \otimes \ket{1} & (x = -1) & \text{if} \quad f(0) \neq f(1) \end{cases}$$

the Hadamard gates are the key ingredient

the Hadamard gates are the key ingredient \longrightarrow apply f on a superposition of 0, 1

Algorithm extends to

$$f: \{0,1\}^n \to \{0,1\}$$

f is balanced if and only if

$$(x_1, x_2, \dots, x_n) = (-1, -1, \dots, -1)$$

What is the computational cost of an algorithm?

in space (memory) and time (runtime)

What is the computational cost of an algorithm?

in space (memory) and time (runtime)

Landau notation
$$\mathcal{O}(f(n)) = \left\{ g: \mathbb{R} \to \mathbb{R} \left| \limsup_{n \to \infty} \left| \frac{g(n)}{f(n)} \right| < \infty \right\} \right\}$$
 set of upper bounds

What is the computational cost of an algorithm?

in space (memory) and time (runtime)

Landau notation

$$\mathcal{O}(f(n)) = \left\{ g : \mathbb{R} \to \mathbb{R} \left| \limsup_{n \to \infty} \left| \frac{g(n)}{f(n)} \right| < \infty \right\} \quad \text{set of upper bounds}$$

 $\mathcal{O}(\log n)$ space and time complexity

What is the computational cost of an algorithm?

in space (memory) and time (runtime)

Landau notation

$$\mathcal{O}(f(n)) = \left\{ g : \mathbb{R} \to \mathbb{R} \left| \limsup_{n \to \infty} \left| \frac{g(n)}{f(n)} \right| < \infty \right\} \quad \text{set of upper bounds}$$

 $\mathcal{O}(\log n)$ space and time complexity

P

 $\mathcal{O}(p(n))$ space and time complexity

What is the computational cost of an algorithm?

in space (memory) and time (runtime)

Landau notation

$$\mathcal{O}(f(n)) = \left\{ g : \mathbb{R} \to \mathbb{R} \left| \limsup_{n \to \infty} \left| \frac{g(n)}{f(n)} \right| < \infty \right\} \quad \text{set of upper bounds}$$

P

PSPACE

 $\mathcal{O}(\log n)$ space and time complexity

 $\mathcal{O}(p(n))$ space and time complexity

 $\mathcal{O}(p(n))$ space complexity

What is the computational cost of an algorithm?

in space (memory) and time (runtime)

Landau notation

$$\mathcal{O}(f(n)) = \left\{ g : \mathbb{R} \to \mathbb{R} \left| \limsup_{n \to \infty} \left| \frac{g(n)}{f(n)} \right| < \infty \right\} \quad \text{set of upper bounds}$$

P

PSPACE

EXP

 $\mathcal{O}(\log n)$ space and time complexity

 $\mathcal{O}(p(n))$ space and time complexity

 $\mathcal{O}(p(n))$ space complexity

 $\mathcal{O}(2^{p(n)})$ space and time complexity

What is the computational cost of an algorithm?

in space (memory) and time (runtime)

Landau notation

$$\mathcal{O}(f(n)) = \left\{ g : \mathbb{R} \to \mathbb{R} \left| \limsup_{n \to \infty} \left| \frac{g(n)}{f(n)} \right| < \infty \right\} \quad \text{set of upper bounds}$$

P

PSPACE

EXP

 $\mathcal{O}(\log n)$ space and time complexity

 $\mathcal{O}(p(n))$ space and time complexity

 $\mathcal{O}(p(n))$ space complexity

 $\mathcal{O}(2^{p(n)})$ space and time complexity

NP

Solution verifiable in $\mathcal{O}(2^{p(n)})$ space and time

What is the computational cost of an algorithm?

in space (memory) and time (runtime)

Landau notation

P

EXP

NP

PSPACE

$$\mathcal{O}(f(n)) = \left\{ g : \mathbb{R} \to \mathbb{R} \left| \limsup_{n \to \infty} \left| \frac{g(n)}{f(n)} \right| < \infty \right\} \quad \text{set of upper bounds}$$

 $\mathcal{O}(\log n)$ space and time complexity

 $\mathcal{O}(p(n))$ space and time complexity

 $\mathcal{O}(p(n))$ space complexity

 $\mathcal{O}(2^{p(n)})$ space and time complexity

Solution verifiable in $\mathcal{O}(p(n))$ space and time

BPP P with an bounded error probability of at least 2/3

Complexity Class NP

NP Solution verifiable in $\mathcal{O}(p(n))$ space and time

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

4	8	3	9	2	1	6	5	7
9	6	7	3	4	5	8	2	1
2	5	1	8	7	6	4	9	3
5	4	8	1	3	2	9	7	6
7	2	9	5	6	4	1	3	8
1	3	6	7	9	8	2	4	5
3	7	2	6	8	9	5	1	4
8	1	4	2	5	3	7	6	9
6	9	5	4	1	7	3	8	2

Complexity Class NP

NP Solution verifiable in $\mathcal{O}(p(n))$ space and time

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

4	8	3	9	2	1	6	5	7
9	6	7	3	4	5	8	2	1
2	5	1	8	7	6	4	9	3
5	4	8	1	3	2	9	7	6
7	2	9	5	6	4	1	3	8
1	3	6	7	9	8	2	4	5
3	7	2	6	8	9	5	1	4
8	1	4	2	5	3	7	6	9
6	9	5	4	1	7	3	8	9

where n is the number of empty squares

We know that

L \(\subseteq \text{PSPACE} \)

 $P \subseteq EXP$

thus

 $L \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP$

We know that L \(\subseteq \text{PSPACE} \) **PSPACE EXP** NP $P \subseteq EXP$ thus $L \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP$

At least one of the inclusions needs to be strict \rightarrow Open problem

EXP

We know that $L \subsetneq \mathbf{PSPACE}$ $\mathbf{P} \subsetneq \mathbf{EXP}$

thus

At least one of the inclusions needs to be strict → Open problem

$$\mathbf{NP} \stackrel{?}{=} \mathbf{P}$$

PSPACE

NP

Millenium Problem

BQP

 $\mathcal{O}(p(n))$ space and time complexity on quantum computer

Bounded error Quantum Probability

Quantum equivalent to BPP

BQP

 $\mathcal{O}(p(n))$ space and time complexity on quantum computer

Bounded error Quantum Probability

Quantum equivalent to BPP

QMA

Quantum Merlin Arthur

Quantum proof verification with bounded error

Quantum equivalent to NP

BQP

 $\mathcal{O}(p(n))$ space and time complexity on quantum computer ability Quantum equivalent to BPP

Bounded error Quantum Probability

QMA

Quantum Merlin Arthur

Quantum proof verification with bounded error

Quantum equivalent to NP

BQP

 $\mathcal{O}(p(n))$ space and time complexity on quantum computer ability Quantum equivalent to BPP

Bounded error Quantum Probability

QMA

Quantum Merlin Arthur

Quantum proof verification with bounded error

Quantum equivalent to NP

Summary

Classical and Quantum Circuits

Quantum Algorithms

Complexity theory

 $P \subseteq \mathbf{BQP}$

Grover's Algorithm

Classical Search

Searching an item in an unordered list of size N

takes on average
$$\frac{N}{2}$$
 steps $\to \mathcal{O}(N)$ in time, thus the problem is in **P**

Quantum Grover's Algorithm is $\mathcal{O}(\sqrt{N})$ in time \to in **BQP**

Grover's Algorithm

We consider N=2

Solution direction

Initial state

$$|s\rangle = \frac{1}{\sqrt{2}}(|\omega\rangle + |s'\rangle)$$

1. step:

$$|s\rangle \to U_{\omega}|s\rangle$$

$$|s\rangle o U_{\omega}|s\rangle$$
 $U_{\omega} = \operatorname{Id} - 2|\omega\rangle\langle\omega|$

Reflect the $|\omega\rangle$ - component

2. step:

$$U_{\omega}|s\rangle \rightarrow U_{s}U_{\omega}|s\rangle$$
 $U_{s}=2|s\rangle\langle s|-1d$

$$U_s = 2 |s\rangle\langle s| - Id$$

Reflect around $|s\rangle$ - component

