Candidate Seat No:	
--------------------	--

Charotar University of Science and Technology Devang Patel Institute of Advance Technology and Research Department of Computer Engineering

Subject: CE355 Design and Analysis of Algorithms
University Examination

Semester: 5th (B.tech) Maximum Marks: 70

Date: 25/11/2021, Thursday Time: 10:00 AM to 01:00 PM

Instructions:

- (i) Attempt all the questions
- (ii) Figures to the right indicates full marks
- (iii) Give appropriate example whenever if required

Section -1

1	2	R
2	3	U

Q -3	Backtracking algorithm is implemented by constructing a tree of choices called as a) State-space tree b) State-chart tree c) Node tree d) Backtracking tree	1	3	R
Q -4	Time complexity of Quick sort algorithm mainly depend upon: a) Type of item b) Arrangement of item c) Selection of the Pivot d) Selection of data structure	1	2	U
Q -5	Given a pattern of length- 5 window, find the spurious hit in the given text string.Pattern: 3 1 4 1 5Modulus: 13Text: 2 3 5 9 0 2 3 1 4 1 5 2 6 7 3 9 9 2 1 3 9 a) 1 b) 2 c) 3 d) 4	2	3	A
Q-6	The average time required to perform a successful sequential search for an element in an array A(1:n) is given by a) (n+1)/2 b) n2 c) n d) log n	2	2	R
Q-7	The number of operations in Matrix multiplications M1, M2, M3, M4 and M5 of sizes 5X10, 10X100, 100X2, 2X20 and 20X50 a) 5830 b) 4600 c) 6900 d) 12890	2	3	A
Q-8	The running time of quick sort depends on selection of, Select one: a) Selection of pivot elements b) Number of input	1	3	R

	c) Number of passes			
	d) Arrangements of the elements			
	Which case of Master's theorem is applicable in the			
Q-9	recurrence relation $T(n)=0.5*T(n/2)+1/n$?			
	a) Case 3	1	3	R
	b) Case 1	1		IX
	c) Master's theorem is not applicable			
	d) Case 2			
	Which of the following is not the algorithm design			
	approach?			
Q-10	a) Dynamic Programming	1	3	R
	b) Branch and Bound			
	c) Backtrack			
	d) Recursive			
	Suppose $t1(n) = O(f(n))$ and $t2(n) = O(f(n))$, then which			
	one is true			
Q-11	(1/n) + (2/n)	1	2	R
Q-11	a) t1(n)+t2(n)b) t1(n)=O(t2(n))	1	2	K
	c) $t1(n) = O(t2(n))$			
	d) All of the above			
	Assembly line scheduling and Longest Common			
	Subsequence problems are an example of			
	1 1			
	a) Dynamic Programming			
Q-12	b) Greedy Algorithm	1	3	R
	c) Greedy Algorithm and Dynamic Programming			
	respectively			
	d) Dynamic Programming and Greedy Algorithm			
	respectively			
	The problems 3-SAT and 2-SAT are			
0.12	a) NP only	1	6	D
Q-13	b) Class P	1	6	R
	c) NP Complete and in P respectivelyd) Undecidable and NP Compete respectively			
	Always Divide and Conquer based algorithm's			
	recurrence relation can be solved using master			
Q-14	theorem.	1	3	Е
Q 1.	a) True	•		2
	b) False			
	If $f(x)=O(g(x))$ and $g(x)=O(f(x))$ then			
0.15	f(x)=theta($g(x)$).Relational	2	2	Б
Q-15	a) True	2	2	E
	a) True			

Section -2

	Answer the question below	Marks [50]	CO	BL
	Derive time recurrence relation of Merge Sort in worst case and solve the recurrence by substitution method.			
Q -1	OR	5	3	A
	Solve the given recurrence using suitable method: $T(n)=T(n1/2)+1$			
Q -2	Explain Multiplication of large Integers using divide and conquer approach. Apply process on 26*13	5	3	U
Q -3	There are seven jobs to execute, each of which takes unit time. Job ai pay penalty wi>0, if it is executed later than time di. Find out optimal sequence of jobs and total penalty to pay. Consider the following values. ai 1 2 3 4 5 6 7 di 4 2 4 3 1 4 6 wi 70 60 50 40 30 20 10	5	3	R
Q -4	Apply activity selection process of greedy approach to get maximum activities to be conducted for given activities (i) with start time (Si) and finish time (Fi). i 1 2 3 4 5 6 7 8 9 10 11 Si 1 3 0 5 3 5 6 8 8 2 12 Fi 4 5 6 7 8 9 10 11 12 13 14	5	3	A
Q -5	Compare Prims and Kruskal algorithm to find MST for a given graph using an appropriate example.Or Write short note on NP- Completeness and NP- Hard.	5	4	A
Q -6	Explain role of asymptotic notation in recurrence relation. OR What is input size for any algorithm? How input size and its nature impact algorithm complexity?	5	2	U
Q -7	Find the longest common subsequence from following two strings using Dynamic programming. S1 = ABCBDAB, S2 = BDCABA	5	3	R
	Draw state space tree for 4-queen problem using Backtrack. How many solutions are possible for 4-queen problem?			
Q - 8	OR	5	3	A
	Solve 0/1 Knapsack problem using backtrack and draw state space tree. Knapsack capacity is 8			
Q –9	Find the binomial coefficient C(9,4) using dynamic programming.	5	3	R
Q-10	What do you know by recurrence relation? List out the methods to solve any recurrence relations.	5	3	R