

Earth Observations from Space: Active Remote Sensing Systems Part 1

Learning Objectives

- Understand active remote sensing and how it differs from passive systems
- Understand how LiDAR, RADAR and SONAR work
- Applications of each active remote sensing technology

Passive Remote Sensing

- Passive remote sensing measures energy that is naturally emitted
 - Typically from the sun
 - And reflected off of targets/surfaces

Active Remote Sensing

- Active sensors provide their own energy source for illumination
- A sensor emits a form of radiation that is directed towards a target in a particular area
- The radiation that is reflected back from the target is then detected and measured by the sensor

Passive

Active

Passive vs. Active Remote Sensing

Passive

- Energy is naturally emitted from the sun
- This energy is reflected off the surface of the Earth
- Reflection of this energy is measured by a sensor

Active

- Instruments produce their own energy (radiation)
- Energy travels towards a target and is reflected
- Sensor detects and measures this reflected radiation

Active Remote Sensing

Advantages

- Weather independent (for RADAR)
- Sunlight independent
 - Survey at anytime of day
 - Control energy emitted
- Can penetrate vegetation, soil, ice and snow
 - Information on surface layers and structure

Disadvantages

- Limited spectral information
- Complicated analysis
- Costly

Why would active remote sensing have limited spectral information?

Passive Sensors

Active Sensors

Three Types of Active Remote Sensing

- 1. RADAR uses high frequency radio / microwaves
- 2. LiDAR uses a laser light beam (often VIS or NIR)
- 3. SONAR uses sound waves

10

RADAR (RAdio Detection And Ranging)

Radar works with different wavelengths in the microwave part of the spectrum, by:

- 1. Transmitting a microwave (or radio) signal towards a scene
- 2. Receiving the portion of transmitted energy backscattered from the scene
- 3. Observing the strength (**detection**), orientation and time delay (ranging) of the return signals
 - We mostly discuss detection in this class

Why Use RADAR?

- Active microwave energy penetrates clouds and serves as an allweather remote sensing system
- Coverage can be obtained at user-specified times, even at night

RADAR

- Three factors govern the response of the backscatter:
 - o surface roughness
 - dielectric properties
 - o moisture content

Corner Reflector

Frequency of Wavelengths of Commonly Used Radar Remote Sensing Bands							
Band	Frequency	Wavelength	Key Characteristics				
Х	12.5 – 8 GHz	2.4 – 3.75 cm	Used for military reconnaissance, mapping and surveillance				
С	8 – 4 GHz	3.75 – 7.5 cm	Penetration capability of vegetation or solids is limited and restricted to the top layers. Useful for sea-ice surveillance				
L	2 – 1 GHz	15 – 30 cm	Penetrates vegetation to support observation applications over vegetated surfaces and for monitoring ice sheet an glacier dynamics				
Р	1 – 0.3 GHz	30 – 100 cm	Used for research and experimental applications. Significant penetration capabilities regarding vegetation canopy (estimation of vegetation biomass), sea ice, soil, glaciers				

RADAR Bands

Scattering

General Rule: choose the wavelength that approximates the objects of

interest

Smaller target: X-band

Example: rain droplets

Medium target: C-band

Example: leaves

Larger target: L & P-band

Example: branches and tree trunks

RADARSAT 1 and 2

- First operational civilian RADAR satellite launched in November 1995
- RADARSAT 2 Launched In Dec 2007
- C-band
- Spatial resolution from 8 100m
- Can see through clouds and very good at detecting sea ice and snow
- Covers polar regions daily
- Temperate zones every 3 days; Tropical zones every 5 days

Earth Observing Systems: Canada's role

3rd RADARSAT is theRADARSAT Constellation

- 3 Identical smaller satellites
- 3-8m pixel

- Why is RADAR particularly suitable for a country like Canada?
- Hint:
 - Think about Canada's geographic location

RADAR Applications

- Ice mapping
- Oil spills
- Ground penetrating RADAR for archaeology

RADAR Applications

First seamless mosaic of Antarctica which was compiled by RADARSAT-1 between September and October 1997

First complete map of the speed and direction of ice flow on Antarctica derived from RADARSAT-2 (and two other Japanese and European satellites)

RADAR Applications

- Camarthen Bay, Wales, a super tanker, ran aground on rocks on February 15, 1996, releasing crude oil
- Oil floats on water, suppressing oceanic capillary waves, and creating a surface that is smoother than the surrounding water
 - Easily detectable day or night by RADAR

Camarthen Bay, Wales (Source: Canada Centre for Remote Sensing, Natural Resources Canada)

Ground Penetrating RADAR

 Geophysical archaeological study at several Viking Age and medieval sites in West Jutland, Denmark

Ground Penetrating RADAR

Ground Penetrating RADAR

Important Topics

- How does an active remote sensing instrument differ from a passive one?
- What are two advantages of using RADAR?
- What are the common RADAR bands used in practice that we discussed in class?
 - Which has the largest wavelength size?
- What types of waves do RADAR, LiDAR, and SONAR use?
- Name what you think is the most interesting application of RADAR from what we discussed in class

