

Cours de Génie Logiciel

Sciences-U Lyon

Gestion de Projet Informatique

http://www.rzo.free.fr

Sommaire

- Gestion de projet informatique
 - Cycle de vie du logiciel
 - Modèles de développement
 - Méthodes de conception

Cycle de Vie

- Cycle de Vie du logiciel
 - Objectif: Satisfaction du client
 - Importance de l'interface
 - Fonctionnalités réduites tolérables
 - plutôt que erreurs
 - Prise en compte des besoins du client
 - Les spécifications doivent y correspondre

Cycle de Vie

- Etapes de création
 - Etude marketing/ appels d'offre
 - Besoin des clients
 - Recherche et développement
 - Avances technologiques
 - Développement
 - Interne à l'entreprise
 - Externalisation à d'autres entreprises spécialisées
 - Déploiement

Sommaire

- Gestion de projet informatique
 - Cycle de vie du logiciel
 - Modèles de développement
 - Cascade
 - Itératif
 - En V
 - Spirale
 - Développement Agile
 - RAD
 - ISO 12207
- Méthodes de conception
 Pierre PARREND 5

Modèle en cascade

- Modèle en cascade
 - SDLC model
 - Software Development Life Cycle
 - Modèle sequentiel linéaire
 - Pas de modification possible des besoins
 - Après le démarrage du projet
 - Fort coût de correction des erreurs
 - En particulier si elles sont découvertes tardivement
 - Etapes différentes = personnes différentes
 - Risques d'incohérences

- Modèle en cascade
 - Documents associés
 - Récapitulatif de l'architecture conceptuelle
 - Récapitulatif des besoins
 - Récapitulatif de l'architecture préliminaire
 - Récapitulatif critique de l'architecture
 - A réaliser avant le codage

Modèle en cascade

- Limites
 - Problèmes non découverts avant les tests
 - Pas de prise en compte de l'évolution
 - Apparition de besoins fonctionnels lors du codage
 - Pas de tests des performances avant la réalisation
 - Difficulté d'amélioration des performances
- Cause de l'échec de nombreux projets

Modèle itératif

- Modèle itératif
 - Portions toujours croissantes du logiciel
 - Permet la correction
 - Erreurs de codage
 - Erreurs de conception
 - Erreurs de spécifications

Modèle en V

- Modèle en V
 - Validation systématique de chaque étape
 - Décomposition du projet en parties

Modèle en Spirale

Modèle en Spirale

- Orienté risques
 - Évènements qui causent l'échec du projet
 - Maitrise du processus de développement
 - Bilans réguliers : faisabilité, satisfaction du client

Approche incrémentale

- Prototypes validés par le client
- Logiciel
- Evolutions du logiciel

Modèle en Spirale

- 4 étapes
 - Spécification des Contraintes et Objectifs
 - Conception, et résolution des problèmes
 - Développement, vérification
 - Prévision de la phase suivante

- Modèle en Spirale : élements essentiels
 - 1 Détermination parrallèle des artefacts
 - Concepts opérationnels (technologies employées)
 - Architecture,
 - Besoins système et logiciels,
 - Réutilisation de code, algorithmes

- Modèle en Spirale : élements essentiels
 - 2 Cycles complets
 - Objectifs
 - Contraintes
 - Alternatives
 - Risques
 - Validation
 - Evolution

- Modèle en Spirale : élements essentiels
 - 3 Effort en fonction des risques
 - Équilibre entre
 - le risque d'erreur (peu d'effort)
 - Le risque de retard (trop d'effort)
 - 4 Degré de détail en fonction des risques
 - Testabilité complète pas toujours souhaitable
 - Ex : spécification précise d'IHM inutile (car facile à créer)
 - Précision pour : aspects de sécurité, de compatibilité

- Modèle en Spirale : élements essentiels
 - 5 Repères dans le développement
 - LCO Life Cycle Objectives
 - Ce que doit réaliser le système
 - LCA Life Cycle Architecture
 - La structure du système
 - IOC Initial Operating Capability
 - Fonctionnalités de la première version

- Modèle en Spirale : élements essentiels
 - 6 Activités et artifacts
 - Prise en compte de
 - L'ensemble du système
 - Le cycle de vie complet
 - Garder à l'esprit les objectifs de
 - Coût
 - Performance

- Modèle en Spirale
 - Systèmes embarqués
 - Logiciel
 - Spirale
 - Matériel
 - Séquentiel
 - Spirale pour la synchronisation

Développement Agile

- Développement Agile
 - Création des tests selon les spécifications
 - Codage en conformité aux tests
 - Emergence de l'archtecture
 - À partir du code

Développement Rapide d'Application

Modélisation Métier Modélisation des données Modélisation des processus Génération d'application **Tests** Réutilisation

- Développement Rapide d'Application
 - RAD Rapid Application Model
 - Cycle de développement accéléré
 - Validations fréquentes
 - Approche par composants
 - Réutilisation

- Modèle ISO 12207
 - Framework méthodologique
 - Pas d'application directe
 - Création, déploiement, opération, maintenance de logiciel
 - Logiciel indépendant ou partie d'un système

Modèle ISO 12207

Modèle ISO 12207

- Rôles
 - Acquereur : définition des besoins, acceptation du produit
 - Fournisseur : de la signature du contrat à la livraison
 - **Développeur** : développement et installation du système
 - **Opérateur** : réalisation et support de l'utilisation
 - Maintenance : de la modification à la migration

Sommaire

- Gestion de projet informatique
 - Cycle de vie du logiciel
 - Modèles de développement
 - Méthodes de conception

Méthodes de conception

- Méthodes de conception
 - Méthodes formelles
 - Validation mathématique de la conception
 - Réseaux de Pétri
 - Automates à états finis
 - RUP Rational Unified Process (UML)
 - Model Driven Software Development

Génie Logiciel Introduction

- Bilan
 - Modèles
 - Conception

