P2 de Álgebra Linear - B- Turma L1 - 2023/2 - Pror. Ana Iv..... --

ATENÇÃO:

JUSTIFIQUE TODAS AS SUAS RESPOSTAS. Você também será avaliado pela clareza e pela precisão da linguagem utilizada.

(1,0 pt) Determine "m" para que o conjunto de vetores: $\{(2,-1,2m), (1,0,m+4), (-1,1,m-2)\}$ seja L.D.

2 - (2,0pts)

Seja W o subespaço vetorial do \mathbb{R}^3 gerado pelos vetores (1,0,3) e (0,1,-1).

Obtenha a equação que descreve o subespaço W. Além disso:

Considerando o produto interno usual no \mathbb{R}^3 , determine o complemento ortogonal (W-do subespaço W.

puepo optima de [11], sera 2 pero qualquer votor de a

Onde $W^{\perp} = \{v \in V; v \perp W\} = \{v \in V; \langle v, w \rangle = 0 \forall w \in W\}$, aqui $V = IR^3$

Ou seja, W^{\perp} é o subconjunto de V formado pelos vetores que são ortogonais a W. (Se $v=(x,y,z)\in W^{\perp}$ então (x,y,z) é ortogonal a (1,0,3) e também é ortogonal a (0,1,-1), usando estas informações é possível determinar equações que caracterizam W^{\perp})

3-(2,0pts) Considere uma transformação linear T: V →W, em termos dos subespaços Im(T) e N(T) (Núcleo de T), temos o seguinte:

Sejam V e W espaços vetoriais de dimewnsão finita. Seja $T: V \to W$ uma transformação linear, então

$$\dim V = \dim N(T) + \dim Im(T) .$$

- T é sobrejetora quando Im(T) = W.
- T é injetora quando N(T) = {0_v}.

Com base nessas informações, responda: Seja T:IR²→IR² tal que

T(x,y) = (x,3x+3y)

a) Encontre uma base para N(T)? Qual a dimensão de N(T)? T é injetora?

b) Encontre uma base para Im(T)? Qual a dimensão de Im(T)? T é sobrejetora?

2,0

0,2

×

BOA PROVA!!!

1

√4- (2,0 pts) Considere a transformação linear T:IR² → IR² definida por

$$T(x, y) = (x + y, 2x - ay), a \in \mathbb{R}$$
.

- a) Encontre a matriz $[T]_s^4$ (matriz da transformação em relação as bases $A=\{(1,0),(0,1)\}$ e $B=\{(1,0),(0,1)\}$.
- b) Determine se as afirmações abaixo são verdadeiras ou falsas JUSTIFICANDO sua resposta e caso a afirmativa seja falsa REESCREVA a afirmação de forma a torná-la verdadeira.
- b.1) (()) Seja A= $[T]_s^A$, se a=1 a matriz A é uma matriz ortogonal.
- b.2) (\land) Seja A= $[T]_B^A$, se a = -2 as colunas de A são L.D.
- b.3) ($\dot{\gamma}$) A dimensão do espaço coluna de $[T]_B^A$ será 2 para qualquer valor de a.
- b.4) (\cap) Se a = -2, o núcleo de T é um subespaço de dimensão 1.

