Билет 89

Автор1,, АвторN
22 июня 2020 г.

Содержани	\mathbf{e}
-----------	--------------

0.1	Билет 89:	Теорема об о	обратной	функции.	· · · · · · · · · · · · · · · · · · ·

Билет 89 COДЕРЖАНИЕ

0.1. Билет 89: Теорема об обратной функции.

Теорема 0.1 (Теорема об обратной функции).

 $f: D \to R^n, D \subset R^n$ открытое, $x_0 \in D, f$ непрерывно диффер $= f(x_0)$, матрица $A:=f'(x_0)$ обратима. Тогда существуют окр $(\cdot)y_0$, т.ч. $f: U \to V$ — обратима и $f^{-1}: V \to U$ — непрерывна.

F, Rn Rn, p, F p

Доказательство.

$$G_y(x) := x + A^{-1}(y - f(x))$$

Выберем $B_r(x_0)$, т.ч. $||A^{-1}||\ ||A-f'(x)||\leqslant \frac{1}{2}$ при $x\in B_r(x_0)$

Тогда f'(x) при $x \in B_r(x_0)$ - обратимое отображение

$$||G'_y(x)|| = ||E + A^{-1}(-f'(x))|| = ||E - A^{-1}f'(x)|| = ||A^{-1}(A - f'(x))|| \le$$
 $\le ||A^{-1}|| ||A - f'(x)|| \le \frac{1}{2} \text{ при } x \in B_r(x_0)$

$$||G_y(x)-G_y(\tilde{x})||\leqslant \frac{1}{2}||x-\tilde{x}||$$
при $x,\tilde{x}\in B_r(x_0)\implies G_y$ – сжатие

подберем $B_{\mathbf{R}}(y_0)$ так, чтобы $G_y(B_r(x_0))\subset B_r(x_0)$ - :

$$\begin{split} ||G_y(x) - x_0|| \leqslant ||G_y(x_0) - x_0|| + ||G_y(x_0) - G_y(x)|| &= ||A^{-1}(y - f(x_0))|| + ||G_y(x_0) - G_y(x)|| \leqslant \\ \leqslant ||A^{-1}||||y - y_0|| + \frac{1}{2}||x - x_0|| < ||A^{-1}|| \cdot R + \frac{r}{2} < r \qquad \text{\mathbb{R} <= r/2 / $||A^{-1}||$} \end{split}$$

по т. Банаха у G_y есть неподвижная точка т.е.

$$x \in B_r(x_0),$$
 т.ч. $x = G_y(x) = x + A^{-1}(y - f(x)) \implies A^{-1}(y - f(x)) = 0 \implies y = f(x)$ \implies если $y \in B_r(y_0),$ то найдется $x \in B_r(x_0)$ т.ч. $y = f(x)$ $y \in G_y$ х, $f(x) = y$

 $U:=f^{-1}(V), V:=B_{{\color{blue} {
m R}}}(y_0), f:U o V$ биекция, осталось доказать непрерывность f^{-1}

$$f(x) = y, f(\tilde{x}) = \tilde{y}, G_y(x) = x, G_{\tilde{y}}(\tilde{x}) = \tilde{x}$$

 $: 2 \cdot p(x,y) \le p(f(x), g(x))/(1-lambda)$

$$||f^{-1}(y) - f^{-1}(\tilde{y})|| = ||x - \tilde{x}|| \le 2||G_y(x) - G_{\tilde{y}}(x)|| =$$

$$= 2||x - A^{-1}(y - f(x)) - (x - A^{-1}(\tilde{y} - f(x)))|| = 2||A^{-1}(\tilde{y} - f(x) - (y - f(x)))|| = 2||x - A^{-1}(\tilde{y} - f(x)) - (x - A^{-1}(\tilde{y} - f(x)))|| = 2||A^{-1}(\tilde{y} - f(x)) - (y - f(x)))|| = 2||A^{-1}(\tilde{y} - f(x)) - (y - f(x))|| = 2||A^{-1}(\tilde{y} - f(x))||$$

$$=2||A^{-1}(\tilde{y}-y)|| \leqslant 2||A^{-1}|| \ ||\tilde{y}-y||$$
 f^(-1)

Отсюда видно, что если \tilde{y} близко к y, то $f^{-1}(\tilde{y})$ близко к $f^{-1}(y)$, и значит у нас есть непрерывность