```
Quicksort - Algorithmus (Pseudocode)
funktion quicksort(daten, links, rechts)
    falls links < rechts dann
         teiler := teile(daten, links, rechts)
          quicksort(daten, links, teiler-1)
          quicksort(daten, teiler+1, rechts)
    ende falls
ende function
funktion teile (daten, links, rechts)
    i := links
    j := rechts - 1
                          // Starte mit j links vom PivotElement
    pivot := daten[rechts]
    wiederhole solange wahr begin
         wiederhole solange daten[i] < pivot</pre>
                  i := i + 1
          ende wiederhole
          wiederhole solange (links <= j) und (daten[j] > pivot)
                 j := j - 1
          ende wiederhole
          falls i < j dann
                 tausche daten[i] mit daten[j]
          sonst begin
                 tausche daten[i] mit daten[rechts]
                 return i
                ende
    ende wiederhole
ende function
______
```

Dijkstra-Verfahren (Pseudocode)

Knotenmenge K disjunkt in erkundete Knoten E, Grenzknoten G und unerkundete Knoten U unterteilen, d.h. $K=U\cup G\cup U$, $E\cap G=\emptyset$, $E\cap U=\emptyset$, $G\cap U=\emptyset$. seK ist Startnoten.

Wegefolge w(k) ist geordnete Knotenfolge von durch gewichtete Kanten verbundene Knoten (Nachbarknoten) von s nach $k \in K$ minimaler Länge.

Distanz d(k):=Länge des minimalen Weges w(k), d.h. Summe der Kantengewichte von w(k).

Anfang: w(s)=s, d(s)=0, $G=\{s\}$, $U=K\setminus\{s\}$, $E=\emptyset$, $d(k)=\infty$ für $k\in U$

Algorithmenschritt, solange G $\neq \emptyset$:

Suche Knoten $\mathbf{k} \in \mathbf{G}$ mit $\mathrm{d}(\mathbf{k}) = \mathrm{Minimum}(\mathrm{d}(\mathrm{i}), \mathrm{i} \in \mathbf{G})$, \mathbf{E} um \mathbf{k} erweitern, \mathbf{G} um Nachbarknoten $\mathbf{j} \in \mathbf{U}$ von \mathbf{k} erweitern, Knoten \mathbf{j} aus \mathbf{U} und Knoten \mathbf{k} aus \mathbf{G} entfernen.

Für aus \mathbf{U} in \mathbf{G} aufgenommene Nachbarknoten $\mathbf{j} \colon \mathbf{w}(\mathbf{j})$ und $\mathbf{d}(\mathbf{j})$ auf Basis von $\mathbf{w}(\mathbf{k})$ und $\mathbf{d}(\mathbf{k})$ bestimmen. Für Nachbarknoten $\mathbf{i} \in \mathbf{E}$ von $\mathbf{k} \colon \mathbf{d}^{\star}(\mathbf{i}) = \mathsf{d}(\mathbf{k}) + \mathsf{gewicht}(\mathbf{k}, \mathbf{i})$ mit $\mathsf{d}(\mathbf{i})$ vergleichen und falls $\mathsf{d}^{\star}(\mathbf{i}) < \mathsf{d}(\mathbf{i})$, dann $\mathsf{d}(\mathbf{i}) := \mathsf{d}^{\star}(\mathbf{i})$ und $\mathsf{w}(\mathbf{i}) := \mathsf{w}(\mathbf{k}) \mid \mid (\mathbf{k}, \mathbf{i})$, $\mathsf{d}.h.$ $\mathsf{w}(\mathbf{k})$ mit Kante (\mathbf{k}, \mathbf{i}) verketten.