

Microbes and the Process of Infection

Diagnostics, Infection Control and Sterilization

Lesson Objectives:

- 1. Explain different classifications of organisms
- 2. Discuss methods of identifying microbes
- 3. Relate the study of microbiology and the process of infection to surgical practice
- 4. Describe blood-borne pathogens
- 5. Describe the phases of types of infections
- 6. List and describe types of bacteria and the diseases they cause
- 7. Explain the significance of multidrug-resistant organisms
- 8. List and describe types of viruses, fungi, and protozoa and the diseases they cause
- 9. Describe the body's defense mechanisms against infection
- 10. List the ways a person acquires immunity to pathogenic organisms
- 11. Relate a good surgical outcome to the patient's immune response

Microbiology

- Study of microscopic organisms (microbes/microorganisms).
- Focus on preventing infections transmitted by bacteria and viruses in the operating room.

Scope of Microbiology:

- Highly complex field with subspecialties.
- Medical microbiology: Study of infectious diseases caused by microorganisms (e.g., virology, bacteriology, parasitology).

Nonmedical Microbiology:

- Study of microbes in the environment and commercial products.
- Plant microbiology: Understanding habitats and preserving species, focusing on food crop development and protection.

Epidemiology:

- Study of disease/event patterns.
- Focus on incidence, affected populations, and disease burden.

Classification of Organisms

Classification of Organisms:

- Organism: Living thing capable of reproduction, reaction to stimuli, growth, and metabolism.
- Includes diverse types: mammals, bacteria, etc.

Methods of Classification:

- Linnaean system: Developed by Carolus Linnaeus 300 years ago.
- Initially divided organisms into plants and animals based on evolutionary descent.
- Modern taxonomy: More sophisticated and complex.

Binomial Naming System

- Latin or Greek words.
- Example: Genus Homo, species sapiens.
- e.g. Human: Homo sapiens.
- Typhoid bacterium: Salmonella typhi.

Categories of Living Organisms

• Eight Categories in Modern Biology:

- Species
- Genus
- Family
- Order
- Class
- Phylum
- Kingdom
- Domain

The Cell and Its Components

Cell theory

- The cell is the fundamental unit of all living things
- All living things are composed of cells
- All cells are derived from other cells

Types of cells

- Eukaryotes
 - Has Nucleus
- Prokaryotes
 - No Nucleus or organelles

Eukaryote and Prokaryote

Cell Transport and Absorption

- Absorption of molecules and substances
 - Passive transport
 - Diffusion Dispersal of particles in a solution
 - Osmosis Movement of particles through a permeable membrane
 - Cells move to "homeostasis", equalizing elements
 - Active transport
 - Pumped
 - Endocytosis
 - Exocytosis

Watch the "Cell Transport" Video for an overview of these concepts

Cell Transport Video

Cell Transport Video

Summary of Video:

- Passive Transport: Diffusion and Osmosis
- Active Transport: Pump, endocytosis, exocytosis

Microbe Identification

Microbe Identification:

- Crucial for medical diagnosis and treatment.
- Requires specialized laboratory procedures and tools.

Culture:

- Sample allowed to grow outside the body.
- Inoculated into culture medium and placed in warm oven.
- Common culture media types available.

Culture and Sensitivity Testing:

- Determines bacteria's sensitivity to antibiotics.
- Small discs with antibiotic agents placed on culture plate.
- Effective agents inhibit bacterial growth.

Microbe Identification

• Staining:

- Prepares microbial specimen for microscope examination.
- Gram staining differentiates bacteria into gram-positive and gram-negative.
- Acid-fast staining used for Mycobacterium identification, especially M. tuberculosis.

Microbe Identification

Microscopy

Microscopy Overview:

- Essential tool for identifying and studying microbes.
- Magnifies specimens to analyze shape, size, staining properties, etc.

Types of Microscopes:

- · Optical microscope: Uses lenses to focus light.
- Electron microscope: Uses electrons for contrast.
- Scanning probe microscope: Tracks object surfaces at molecular level.

Using the Microscope:

- Proper handling and care guidelines.
- · Preparation of specimens for viewing.
- Step-by-step instructions for specimen preparation and viewing.

Microscope Parts

- Ocular
- Tube
- Arm
- Objective lens
- Focus adjustment knobs
- Rack stop
- Nosepiece
- Stage
- Illuminator
- Condenser

Parts of a Microscope Worksheet

Microbes in the Environment

Microbes in the Environment:

- Abundant in various habitats.
- Constant interaction with humans and other species.

Microbe-Body Relationship:

- Commensalism: Microbe benefits without harming host.
- Mutualism: Both organisms benefit from the relationship.
- Parasitism: Microbe benefits at the expense of the host.

• Examples:

- Commensalism: E. coli in intestinal tract.
- Mutualism: S. aureus on healthy skin.
- Parasitism: Infectious disease caused by pathogenic organisms.

Disease Transmission and the Chain of Infection

- Understood by looking at
 - Chain of events
 - Conditions necessary for infection to be carried

Disease Transmission (1 of 2)

Presence of an infectious agent

- Bacteria
- Virus
- Fungus
- Prion
- Protozoa

• Reservoir:

- Habitat where microbe proliferates.
- Examples: human body, food, water, soil.

Exit Portal

Way the organism leave the body

Disease Transmission

Methods of transmissions

- Direct contact source can be fomite or vector
- Droplet transmission spread of microbes by water droplets in the air
- Airborne transmission via droplet nuclei, dried remnants of moist particles containing microbes
- Oral transmission when the pathogen is ingested

Portal of entry

• Entry sites include skin, respiratory tract, mucous membranes, and gastrointestinal tract

Susceptible host

 Include individuals who are unvaccinated or weakened by poor nutrition, injury, advanced age, or another disease

Phases of Infection (Slide 1 of 2)

Incubation:

- Pathogens replicate, host symptom-free
- Duration varies, influenced by host factors

Prodromal phase:

- Symptoms emerge, may be mild
- May include important signs

Acute phase:

- Pathogen potent, symptoms pronounced
- Cellular damage common

Phases of Infection (Slide 2 of 2)

• Convalescence:

- Pathogen proliferation slows
- Symptoms diminish, tissue healing begins
- Body regains strength

Watch the "Stages of Infection" Video for a summary of the phases

Stages of Infection Video

Stages of Infection Video

Summary of Video:

- Incubation: Pathogen has entered body, before first symptom
- Prodromal phase: Symptom Onset Contagious
- Acute phase: Illness Stage, feeling unwell, immune response
- Convalescence: Symptoms decrease

Hospital-Acquired and Surgical Site Infection (Slide 1 of 2)

Hospital-Acquired Infection (HAI):

- Infection acquired during healthcare stays.
- Most common: urinary tract infections.
- About 2 million infections/year in the US, with 70% bacterial resistance.

Surgical Site Infection (SSI):

- Begins when microorganism colonizes sterile wound.
- Causes: pre-surgery contamination, poor sterile technique, post-surgery contamination.

Severity and Treatment:

- Severity influenced by bacteria type, virulence, sensitivity to antibiotics.
- Treatment: immediate antibiotic therapy, observation for further signs.

Hospital-Acquired and Surgical Site Infection (Slide 1 of 2)

Complications:

- Abscess formation, tissue death, breakdown of sutured layers, peritonitis.
- Superficial vs. deep infections have different treatment approaches.

Treatment Approaches:

- Culture specimen, observation, antibiotic therapy.
- Deep infections may require incision and drainage, IV antibiotics, continuous drainage.

Wound Closure:

Infected wounds cannot be sutured; packed with gauze for bottom-up healing.

Isolation:

- Highly resistant infections require isolation.
- Certain infections, primarily transmitted through droplets, restrict access to the operating room.

Disease Prevention

Method of disease prevention

- Handwashing
- Practicing Standard Precautions
- Practicing aseptic technique
- Practicing personal hygiene
- Strict sanitation
- Proper use of antiseptics and disinfectants
- Isolation of infected patients

Asepsis • NO pathogenic organisms Aseptic principle Prevent contamination Bacteriocidal Kill bacteria Bacteriostatic • Inhibits bacteria growth Bioburden Number bacteria and organic debris Contamination Presence of pathogenic organisms **Cross-Contamination** Contamination by person or object Decontamination Reduce pathogenic material

Disinfectant • Kills most microbes **Event-related sterility** • Sterile unless open/damaged Fomite Object that has microbes Fungicide Kills fungus Infection Pathogen cause disease Nosocomial • HAI Pathogen Microbe can cause disease Resident Flora Normal microbes below skin/ in body Sepsis Severe infection with fever

Spore Resistance state Sporicide • Kills spore Sterile NO living microbes Sterile field Area that is free of microbes Sterile technique Technique to keep sterility Strike-through • Fluid or puncture through sterile barrier Surgically clean Highly Clean/disinfected

 High-level disinfection Terminal disinfection Safe to handle from sterilization Terminal sterilization Transient flora Microbes skin-temporary • Carrier that transmits disease Vector Virucide Kills virus

Types of Microorganisms

Bacteria - Structure, Shape and Motility

- Prokaryotic Organisms
- Bacteria that cause infection are called pathogenic.
- Structure
 - Individual
 - Colonies

Shape

- Bacilli Rod-shaped
- Spirochetes Curved or spiral-shaped
- Cocci Spherical
- Vibrio comma shaped

Motility

- Flagella rotate and propel the cell
- Pili anchoring to the surface than retracting to move cell

Bacteria - Environmental and Nutrient Requirements

Aerobes

Organisms that require oxygen

Anaerobes

Organisms can live without oxygen

Facultative

Organisms can live with or without oxygen

Nutrients:

- Carbon
- Oxygen
- Nitrogen
- Hydrogen
- Phosphorus
- Sulfur
- Potassium

Bacteria - Reproduction

- Asexual fission leads to the formation of two new cells.
- Genetic material replication: DNA is duplicated and distributed to separate areas of the cell.
- Septal membrane formation: Mother cell divides into two halves, each becoming a daughter cell.
- Endospore production: Some bacteria form dormant endospores for survival in harsh conditions.
- Endospore characteristics: Thick protein wall protects genetic material from extreme environments.
- Environmental resistance: Endospores withstand boiling, drying, chemicals, and high pressure.
- Activation and reproduction: Favorable conditions trigger endospores to become active and initiate reproduction.
- Examples: Clostridium tetani (tetanus) and Bacillus anthracis (anthrax) are notable spore-forming bacteria.

Bacteria - Pathogenicity

Endotoxins

- Chemical contained within the cells
- Released into the bloodstream when bacterial cell ruptures

Exotoxins

- Resulting proteins of bacterial metabolism
- Destroys surrounding tissue so the organism can grow

Bacterial Pathogens

Important Bacterial Pathogens

- Gram-negative rods and cocci (aerobic)
- Gram-positive cocci
- Enteric bacteria
- Spore-forming bacteria
- Other bacteria

Common Bacteria to Know

Staphylococcus aureus • Post-op SSI, Osteomyelitis Streptococcus • Pneumonia, Strep throat, Tonsillitis, Otitis media Listeria Meningitis Helicobacter pylori Ulcers Enterococcus • UTI, blood Escherichia coli • UTI, sepsis Clostridium difficile Antibiotic associated GI symptoms/diseases

Multidrug-Resistant Organisms

- Multi-Drug Resistant Organisms (MDROs) have developed resistance to the drugs that commonly treat them. This can be caused by overuse of Antibiotics, when not necessary. Some MDROs include:
- Methicillin-resistant Staphylococcus aureus (MRSA)
- Vancomycin-resistant Staphylococcus aureus (VRSA)
- Vancomycin-intermediate-resistant Staphylococcus aureus (VISA)
- Vancomycin-resistant enterococci (VRE)
- Multidrug-resistant tuberculosis (MDR TB)

Viruses (Slide 1 of 3)

Viruses:

- Nonliving infectious agents ranging from 10 to 300 nm in size.
- Not cells, referred to as virus particles; complete virus particle is a virion.
- Can cause lethal infections but unable to metabolize outside host cells.
- Transmitted via inhalation, food/water, direct contact, and possibly insects.

Classification:

- Classified by morphology, chemical composition, and replication method.
- Morphology: Consists of DNA or RNA surrounded by a protein capsid, sometimes enclosed in an envelope.

Viruses (Slide 2 of 3)

Replication and Transmission:

- Replicate by injecting genetic material into host cells and using host's mechanisms.
- Replication cycle includes lysogeny; some viruses remain latent inside host cells.
- Bacteriophages infect bacterial cells, can display various relationships with hosts.
- Viruses can transform normal cells into cancerous ones.

Pathogenicity:

 Mechanisms include cell entry, redirection of host cell's genetic material, resistance to host defenses, and cell transformation.

Viruses (Slide 3 of 3)

Pathogenic Viruses:

- HIV/AIDS: Pandemic infection transmitted via blood and body fluids.
- Viral Hepatitis: Five significant viruses causing liver disease transmitted through various routes.
- Human Papillomavirus (HPV): Sexually transmitted virus associated with cervical cancer and genital warts.
- Miscellaneous Pathogenic Viruses: Rubella, chicken pox, measles, polio, rabies, etc.

Prions:

- Unique proteinaceous, infectious particles containing no nucleic acid.
- Transmitted by ingestion or direct contact, resistant to disinfection and sterilization.
- Associated with diseases like Creutzfeldt-Jakob disease (CJD), fatal and progressive neurological disorder.

How a Virus Kills a Cell

Protozoa

- Characteristics
 - A group of single-celled eukaryotic organisms
- Mobility
 - Through water
- Pathogenicity
 - A wide variety of diseases in humans and animals

Fungi (Slide 1 of 3)

- Found worldwide in living organic substances, water, and soil; over 70,000 species exist, but only 300 are pathogenic.
- Composed of eukaryotes classified into molds and yeasts.

Characteristics:

- Yeasts are unicellular, molds are multicellular; spores are resistant to heat, cold, and drying.
- Obtain nutrients through absorption, occur as single cells or hyphae forming mycelium.
- Mycelium divided into compartments, each containing a nucleus; visible without microscope, grown in lab for identification.

Identification:

- Observed after culture growth; shape, pattern, and color of fungal colony noted.
- Further testing with staining and microscopic observation.

Fungi (Slide 2 of 3)

Reproduction:

- Sexual or asexual reproduction depending on species; sexual reproduction in mycelium containing sex cells for meiosis.
- Spores released through sexual reproduction or by fragmentation of mycelium.

Transmission to Humans:

- Superficial mycoses affect skin, hair, nails, mouth, and vagina; transmitted by direct contact.
- Deep mycoses enter body through respiratory tract or breaks in skin/mucous membranes; medical devices can also transmit.

Pathogenicity:

- Deep mycoses can be fatal, especially in immunosuppressed or weakened patients.
- Pathogenic fungi include Aspergillus fumigatus, Candida albicans, Pneumocystis jiroveci, and others.

Fungi (Slide 3 of 3)

Pathogenic Fungi:

- Aspergillus fumigatus: Opportunistic infection in immunosuppressed patients, often fatal if invasive.
- Candida albicans: Opportunistic infection, normal resident but proliferates in immunosuppressed individuals; can lead to systemic infection.
- Pneumocystis jiroveci: Causes pneumonia, especially in immunosuppressed individuals.
- Cutaneous Mycoses: Superficial fungal infections affecting skin, hair, and nails, causing irritation and potential bacterial infection.

Prions

- Prion disease causes abnormal folding of proteins, mostly in the brain. Also called Transmissible Spongiform Encephalopathies (TSEs)
 - Are not treatable and are always fatal
 - Long incubation period
 - Transmitted by coming in contact with the brain tissue of an infected person or animal
- Some types of Prion Disease:
 - Creutzfeldt-Jakob Disease (CJD) Humans
 - Kuru Humans
 - "Mad Cow Disease" Cattle
 - Chronic Wasting Disease Deer/Moose/Elk

Types of Immunity

Innate

- Also called *nonspecific* immunity
- Chemical and mechanical body defenses against infection

Adaptive

- Acquired immunity
- Active immunity
- Passive immunity
- Vaccines

Watch the "Innate and Adaptive Immunity" Video for an explanation of these concepts

Innate and Adaptive Immunity Video

Innate and Adaptive Immunity Video

Summary of Video:

- Innate: Non-specific Immunity Mechanical and Chemical barriers
 - Inflammation starts immune response
 - Leukocytes (White Blood Cells)
 - Neutrophils
 - Natural Killer Cells
 - Macrophages
 - Dendritic Cells: Carry Information to Adaptive Immune System
- Adaptive
 - T Lymphocytes
 - B Lymphocytes
 - Antibodies

Hypersensitivity

- Allergy: Different types and severities of allergies:
 - **Type I:** Histamine release triggers inflammation, leading to tissue swelling and bronchiole constriction, potentially causing anaphylactic shock.
 - **Type II:** Immune response results in cell injury or death, seen in mismatched blood transfusions and hemolytic disease in newborns.
 - **Type III:** Tissue damage from antigen-antibody complexes causes allergy symptoms like itching and fever, resolving within days.
 - **Type IV:** Delayed hypersensitivity mediated by cells occurs 24-72 hours post-exposure, as seen in the tuberculin skin test response.

Autoimmunity

The body attacks it's own healthy cells

Read Chapter 8 from the E-Book

Read Chapter 8 from your E-Book to pass the upcoming quiz from Surgical Technology - Elsevier eBook on VitalSource, 8th Edition.

Click Here read chapter 8!

Thank you!

Get ready for your quiz and rest of the activities now. Best of luck!

Congratulations!

Lesson 8 is complete.