Peaches, Snakes, and Double Meanings: Applying Embeddings to Emojipastas

Aidan Casey and Simon Mason

Intro: The Problem

- Online communication often includes emojis, which are not part of most word embeddings such as word2vec
- Emojis often have double-meanings or shifting meaning
- Enter Emojipastas as seen on r/Emojipasta
 - Long form posts with a phrase-emoji pattern
 - Built mostly for humorous effect, and often includes the double-meanings emojis might contain
- The Goals:
 - Can we capture some of these aspects by training embeddings on this dataset?
 - Can this improve performance of a down stream task?

Method: Training Embeddings

CBOW

- As seen in word2vec
- Also as seen with emoji2vec, a work that created embeddings based on the official Unicode description of the emoji
- Split data into sets of 5: target word in the middle, 4 context words on each side
- Train a classifier based on the mean of the 4 context words
- Use GloVe for normal English words (frozen), then start with randomized or emoji2vec embeddings for emoji and train

Method: Testing

- Visualization and Cosine Distance
 - Universal Manifold Approximation (UMAP)
- N-gram
 - Dataset seems related (phrase-emoji pattern)
 - Drawbacks: not an easy task
 - Benefits: no annotation required!

Experiments and Results: UMAP

- Cluster of Movie Related Emojis in CBOW trained emoji2vec
 - :film_frames:, :popcorn:,:camera_with_flash: arereasonably close
- Also, a keycap cluster in CBOW from randomized

Experiments and Results: N-gram

- CBOW (from randomized) almost always did best
- Random usually did poorly
- Low accuracy and high loss, but N-gram is a very tricky task and we trained on very limited data

Model	Logistic	NN-12	NN-12D	NN-20	NN-20D
Best Max Acc.	CBOW-0.91%	CBOW-0.99%	CBOW/E2V-0.96%	CBOW-0.98%	CBOW-1.05%
Worst Max Acc.	E2V-0.70%	Rand-0.89%	Rand-0.91%	E2V-0.84%	Rand-0.81%
Best Loss at 100	E2V-13.34	CBOW-10.56	E2V-10.43	CBOW-11.06	CBOW-10.90
Worst Loss at 100	CBOW-18.02	Tuned-10.64	Rand-10.58	Rand-11.14	Rand-11.04

Discussion

- Limited data (only so much data in one subreddit)
- Emojis can have a lot of uses and most datasets are inconsistent at best (no Wikipedia filled with emoji usage)
- Emoji's can have many meanings based on context, perhaps in the future work with adapting technologies like ELMo to emojis will perform better
- Thoughts on the future:
 - New Data sources
 - New types of models for embedding and testing
 - Generative model in far future