

Water Quality Monitoring System

21ECE1024: Paras Kore

21ECE1013: Kalyan Sharma

21ECE1005: Ayush Raj

Under the supervision of:

Dr. T. Veerakumar

INDEX

SR. No.	Slide	Slide Number
1	Why we chose this project	2
2	What we aim to achieve	3
3	Previous Work in the project	4
4	Phases of Project	5
5	Phase 1	6
6	Phase 2	7
7	Phase 3	8
8	Phase 4	9
9	Progress	10
10	Conclusion	14
11	References	15
12	Q&A	16

Why we chose this project?

01

Public Health:

Real-time monitoring detects contaminants early, reducing risk

Water quality monitoring is vital for public health and environmental sustainability. The recent cholera outbreak at **Cutbona jetty, Goa**, shows the severe effects of poor water sanitation. By using IoT and machine learning, we can build advanced systems to prevent such crises in the future

Tehnology

loT and data analytics offer modern, efficient water management

Water Scarcity

Optimised monitoring minimises waste

Cost Saving

Automation cuts long-term manual testing costs

Climate Change

Growing need for smart tech makes this project timely and valuable

What we aim to achieve?

Real-Time Monitoring: Continuously track water quality using IoT sensors for up-to-date information.

Predictive Insights: Use machine learning to forecast contamination risks and enable early action.

Remote Access: Utilise cloud computing for real-time data availability from any location.

- Early Warning Systems: Implement timely alerts to prevent waterborne diseases and safeguard public health.

Data Analytics: Analyse trends to predict issues and support better decision-making.

Cost Efficiency: Automate monitoring to reduce long-term operational costs.

Previous work in water quality monitoring

- **Cost:** Existing systems rely on expensive proprietary cloud services. Our solution reduces costs by using open-source technologies without sacrificing functionality.
- **Parameter Detection:** Traditional systems monitor a few parameters. Our system tracks a broader range, providing a more comprehensive water quality analysis.
- Delayed Data Reporting: Traditional systems often provide data with delays.
 Our approach enables instant monitoring, improving system efficiency and decision-making.

Four phases of our project

Phase 1 – Machine Learning Model Development

Dataset

A readily available water quality dataset will be used for initial model training.

Model A machine learning model will be built to predict water quality from different parameters.

Goal

To have a reliable predictive model before starting hardware and realtime integration.

Phase 2 – Hardware Preparation

Phase 3 – Testing and Validation

Finetuning

Refine the system based on test outcomes.

Step 1 Step 4 Step 3 Step 2

Test Hardware

Ensure sensor are working and giving proper output.

Model Accuracy Testing

Confirm model predictions match expected results.

Manual Data Entry Testing

Verify model accuracy with manual data input.

Phase 4 - Cloud Computing Integration

GOAL

"Seamless data collection and real-time monitoring via cloud integration."

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0


```
F1 Score for Random Forest: 0.975320718252286
Confusion Matrix for Random Forest:
0 49593 407
  1434 23566
F1 Score for SVC: 0.6893066942622503
Confusion Matrix for SVC:
0 47738 2262
1 17844 7156
F1 Score for ADA: 0.7163498303084852
Confusion Matrix for ADA:
         1
0 47073 2927
1 16065 8935
F1 Score for Tress: 0.9643093416593381
```

```
Confusion Matrix for Tress:
0 48654 1346
1 1331 23669
F1 Score for XG: 0.7711777154303139
Confusion Matrix for XG:
0 47305 2695
1 13128 11872
{'Random Forest': 0.975320718252286,
 'SVC': 0.6893066942622503,
 'ADA': 0.7163498303084852,
 'Tress': 0.9643093416593381,
 'XG': 0.7711777154303139}
```


What is Random Forest??

Random Forest is an ensemble learning algorithm that builds multiple decision trees from randomly selected subsets of data and features. It improves prediction accuracy and reduces overfitting.

- Bootstrap Sampling: Create random subsets of data with replacement.
- Random Features: Train each tree on a random set of features.
- Tree Construction: Independently grow multiple decision trees.
- Voting/Averaging: Trees vote for the final prediction (classification)

Conclusion

This project aims to deliver a **scalable**, **real-time** water quality monitoring solution by leveraging **IoT sensors** and **machine learning**.

The phased approach ensures systematic development:

- Create and train a machine learning model using a readily available dataset.
- Integrate real-time sensor data, validate the machine learning model with live inputs, and implement cloud-based monitoring for remote data access and prediction.

This structured method guarantees efficient progress from initial data training to full-scale real-time monitoring.

This project lays the foundation for future scalable and real-time environmental monitoring solutions

Reference

- N. Zidan, M. Mohammed and S. Subhi, "An IoT based monitoring and controlling system for water chlorination treatment", Proc. Int. Conf. Future Networks and Distributed Systems, pp. 31, Jun. 2018.
- J. Ramprabu and C. Paramesh, "Automated sensor network for monitoring and detection of impurity in drinking water system", International Journal for Research in Applied Science Engineering Technology, vol. 3, pp. 275-280, Jan. 2015.
- S. Pasika, S.T. Gandla, "Smart water quality monitoring system with cost-effective using IoT" Heliyon, 6 (7) (2020)
- Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001).
- MITANSHU, Water Quality Prediction, Kaggle.

