Equilíbrio estático e dinâmico em bailarinos: revisão da literatura

Static and dynamic balance in ballet dancers: a literature review

Equilibrio estático y dinámico en bailarines: revisión de la literatura Michelle Silva da Silveira Costa¹. Arthur de Sá Ferreira¹. Lilian Ramiro Felicio¹

RESUMO | A dança envolve integração de movimento, equilíbrio postural e aspectos relacionados ao controle postural. Informações sobre o equilíbrio em bailarinos são de grande importância, pois eles são considerados modelos de controle postural. O objetivo foi revisar estudos sobre equilíbrio postural estático e dinâmico em bailarinos, caracterizando o controle e a dependência visual desses atletas para a manutenção do equilíbrio. Para isso, foi realizada uma revisão nas bases de dados PubMed. SciELO. Lilacs e Science Direct, considerando o período entre 1997 a 2013, utilizando os descritores equilíbrio, controle postural, plataforma de forças, ballet, bailarinos clássicos e aferência visual. Foram selecionados 18 artigos capazes de fornecer dados quantitativos para avaliação do equilíbrio nesses atletas classificados pelo nível de evidência científica Oxford. A literatura revisada mostra completa concordância quanto ao efeito da retirada da informação visual sobre a estabilidade postural de bailarinos considerados como executantes altamente treinados. Estudos mostrando a comparação do equilíbrio de bailarinos com outras técnicas desportivas confirmaram um padrão específico de equilíbrio nesses indivíduos. Entretanto, associando-se à restricão visual, bailarinos apresentaram maior deslocamento do centro de pressão comparado a outras modalidades desportivas, sugerindo maior dependência visual para a manutenção do equilíbrio. Bailarinos apresentam menor oscilação postural em relação a indivíduos não treinados e indivíduos treinados em outras práticas desportivas, com maior dependência visual para manutenção do equilíbrio.

Descritores | equilíbrio postural; dança; terapia pela dança.

ABSTRACT | Dance involves integration between movement, postural balance and the multiple aspects involved with postural control. Information regarding the balance of ballet dancers is of great importance, as they are considered models of great postural control. The aim was to review studies about static and dynamic postural balance of ballet dancers, characterizing visual dependency in the postural control of these athletes to maintain balance. A review of literature was performed on PubMed, SciELO, Lilacs, and Science Direct databases considering the period between 1997 and 2013, and using the descriptors balance, postural control, force plates ballet dancers, classical ballet dancers and visual afferences. Eighteen articles were considered able to provide the quantitative and qualitative data to assess the balance among those athletes, and were thus, selected. These papers were classified by Oxford level of evidence. The reviewed literature shows full consensus regarding the effect of removing visual information over postural stability according to the experience of subjects considered highly trained dancers. Studies comparing the balance of ballet dancers to other sporting techniques confirmed that they have a specific postural balance pattern. Nevertheless, in association with visual restriction, ballet dancers show a greater center of pressure dislocation and instability compared to other sports, which suggests that they have higher visual dependence to maintain balance. Ballet dancers have better static balance compared to non-trained subjects and other types of athletes, but greater visual dependence to maintain balance.

Keywords | postural balance; dance; dance therapy.

Estudo desenvolvido no Programa de Pós Graduação em Ciências da Reabilitação do Centro Universitário Augusto Motta (UNISUAM) - Rio de Janeiro (RJ), Brasil.

Endereço para correspondência: Lilian Ramiro Felicio - Avenida Paris, 34 - CEP: 21041-021 - Rio de Janeiro (RJ), Brasil - E-mail: lilianrf@uol.combr Apresentação: out. 2012 - Aceito para publicação: ago. 2013 - Fonte de financiamento: nenhuma - Conflito de interesses: nada a declarar - Parecer de aprovação no Comitê de Ética nº 032/11.

¹Programa de Pós Graduação em Ciências da Reabilitação da UNISUAM - Rio de Janeiro (RJ), Brasil.

RESUMEN I La danza envuelve integración de movimiento, equilibrio postural y aspectos relacionados al control postural. Informaciones sobre el equilibrio en bailarines son de gran importancia, pues ellos son considerados modelos de control postural. El objetivo fue revisar estudios sobre equilibrio postural estático y dinámico en bailarines, caracterizando el control y la dependencia visual de esos atletas para la manutención del equilibrio. Para eso, fue realizada una revisión en las bases de datos PubMed, SciELO, Lilacs y Science Direct, considerando el período entre 1997 y 2013, utilizando los descriptores equilibrio, control postural, plataforma de fuerzas, ballet, bailarines clásicos y aferencia visual. Fueron seleccionados 18 artículos capaces de proveer datos cuantitativos para evaluación del equilibrio en esos atletas clasificados por el nivel de evidencia científica Oxford. La literatura revisada muestra completa concordancia en cuanto al

efecto de la retirada de la información visual sobre la estabilidad postural de bailarines considerados como ejecutantes altamente entrenados. Estudios mostrando la comparación del equilibrio de bailarines con otras técnicas deportivas confirmaron un estándar específico de equilibrio en esos individuos. Entre tanto, asociándose a la restricción visual, bailarines presentaron mayor desplazamiento del centro de presión comparado a otras modalidades deportivas, sugiriendo mayor dependencia visual para la manutención del equilibrio. Bailarines presentan menor oscilación postural en relación a individuos no entrenados e individuos entrenados en otras prácticas deportivas, con mayor dependencia visual para manutención del equilibrio.

Palabras clave | equilibrio postural; danza; terapia por la danza.

INTRODUÇÃO

O *ballet* é uma atividade física que requer condicionamento musculoesquelético pela utilização de movimentos complexos de alto impacto e grandes amplitudes articulares, atua sobre o desenvolvimento da coordenação, equilíbrio e lateralidade associados à força e flexibilidade eficientes na execução técnica¹.

O controle postural é importante para a compreensão da capacidade que o ser humano tem de exercer suas atividades e manter o corpo em equilíbrio, proporcionando estabilidade e orientação durante tarefas motoras². Tal controle depende de informações sensoriais dos sistemas vestibular, visual e somatossensorial para que ações motoras sejam desencadeadas baseadas em experiências e habilidades³-5. Um fator determinante para o controle do equilíbrio é o tamanho da base de apoio, sendo que os movimentos executados pelo bailarino frequentemente acontecem em base pequena, como o equilíbrio *en pointe*⁶ (Figura1A). Esse movimento envolve uma grande descarga de peso na ponta dos pés, além de ser mais instável e depender dos ligamentos e músculos para a estabilidade e suporte⁶.

O treino do equilíbrio inicia-se precocemente nos bailarinos em torno de cinco anos de idade e se torna mais complexo quando os bailarinos atuam *en pointe*⁶, no entanto, o equilíbrio raramente é analisado dentro do contexto da dança⁷. O treinamento é feito na posição vertical, com bases de apoio reduzidas e com o uso de espelhos, sendo a direção do olhar importante para o controle durante os giros, o que implica em uma dependência visual para a manutenção do equilíbrio mais acentuada quando comparado a atletas de diferentes modalidades⁸.

Alguns estudos utilizando a estabilometria para quantificar o deslocamento do centro de pressão (CoP) durante a postura ortostática⁹ demonstraram que a restrição visual limita os padrões de controle postural, aumentando as oscilações posturais^{10,11}. A interpretação

Figura 1. (A.) Posição en pointe. (B). Posição en demi-point

usual da estabilometria sugere que tarefas posturais com valores maiores de parâmetros derivados dos sinais estabilométricos estão relacionadas a instabilidades posturais¹². Outro ponto importante nos testes estabilométricos é a possibilidade de identificar a dependência visual do indivíduo, caracterizada por maiores valores desses parâmetros quando a visão é restringida durante uma tarefa motora, como maiores valores de velocidades de oscilação e distância percorrida pelo CoP¹².

O equilíbrio dinâmico de bailarinos foi avaliado por poucos autores, sendo a execução de giros (*pirouette*) considerada uma tarefa complexa a qual envolve uma estratégia de movimento da cabeça, o "marcar a cabeça", que dissocia a rotação de tronco e cabeça — enquanto o corpo gira, o olhar permanece fixo num mesmo ponto, e quando a amplitude máxima de rotação de cervical for atingida, a cabeça realiza uma rápida rotação para o mesmo sentido do movimento, fixando o olhar novamente no mesmo ponto; dessa maneira, pode-se observar a importância da informação visual para o equilíbrio e qualidade da *performance* motora durante o giro correlacionada à menor oscilação postural^{8,13-17}.

Considerando que a análise do equilíbrio estático e dinâmico de bailarinos em seus principais movimentos é de grande importância para o desempenho, além de colaborar na elaboração dos programas de treinamento e de reabilitação desses atletas, o objetivo do presente estudo foi revisar a literatura científica sobre o equilíbrio em bailarinos, observando se o treinamento específico desses atletas levaria à menor oscilação postural e à maior dependência visual para o controle do equilíbrio.

METODOLOGIA

Foi realizada uma revisão da literatura por meio das bases de dados Lilacs, Medline, PubMed, Scielo e *Science Direct*, sob os descritores: bailarinos, controle postural, equilíbrio, plataforma de força, *ballet* clássico e aferência visual, combinados três a três. Os critérios de inclusão da pré-seleção dos artigos foram: a data de publicação (1997–2013), o idioma (inglês ou português) e a relação do título e resumo dos trabalhos com o assunto de interesse (*ballet* e equilíbrio). Os artigos identificados pela pré-seleção de busca foram avaliados conforme os seguintes critérios de inclusão: (1) população (bailarinos) e (2) intervenção (avaliação do equilíbrio estático ou dinâmico).

A revisão foi realizada em três etapas. Na primeira, realizou-se uma seleção geral de publicações sobre

o tema, resultando em 57 estudos. Na segunda etapa, foram excluídos os duplicados e os que não pertenciam ao tema — os 18 artigos restantes foram incluídos na revisão e agrupados de acordo com ano de publicação e selecionados de acordo com o resumo. Na terceira etapa, esses artigos foram classificados de acordo com os critérios de recomendação e evidência de classificação de Oxford Centre for Evidence-Based Medicine (OCEBM)^{18,19}. Devido à baixa classificação dos artigos selecionados, o nível de classificação não foi utilizado como critério de seleção. Os níveis OCEBM consideram a força de evidência para efeitos terapêuticos e danos, evidências de prevalência, a acurácia dos testes de diagnóstico, prognóstico, efeitos terapêuticos, danos raros, danos comuns, e são utilizados como triagem nas pesquisas de revisão¹⁸.

RESULTADOS

Os 18 artigos selecionados para este trabalho encontramse apresentados na Tabela 1, descrevendo a amostra, o objetivo, as ferramentas utilizadas para avaliar equilíbrio, síntese dos resultados e a classificação de Oxford^{18,19}.

DISCUSSÃO

Os estudos incluídos nesta revisão apresentaram em sua maioria (83%) tamanho amostral entre 8 e 45 bailarinos, sendo 11% dos artigos variando entre 4 e 8 bailarinos. Observa-se com isso a dificuldade de realizar estudos com amostras maiores, provavelmente pelo grau de especialização e treinamento desses atletas. Devido ao número de artigos que discutem movimentos específicos de bailarinos profissionais, especialmente relacionados ao equilíbrio dinâmico, esses artigos, apesar do baixo número amostral, nível de evidência 3–4 e recomendação B (classificação pouco satisfatória), foram incluídos nesta revisão.

A estabilometria foi o método de avaliação do equilíbrio estático mais utilizado (55,5%). Entretanto, foi observado grande variação das posições e tempo de permanência na plataforma de força, variando entre 4 e 30 segundos. Metade dos artigos avaliados utilizaram a plataforma de força para avaliação estática do equilíbrio de acordo com as variáveis do CoP e áreas de deslocamento anteroposterior e mediolateral, caracterizando por meio dessas variáveis o equilíbrio de bailarinos.

Tabela 1. Artigos distribuídos considerando tamanho e característica amostral, objetivo, ferramentas utilizadas, resultados e classificação de Oxford¹⁷

Estudo	Amostra	Objetivo	Ferramentas	Resultados	Oxford
Golomer, Dupui e Monod ³¹	148 adolescentes (meninos e meninas) bailarinos, acrobatas e não treinados	Avaliar a influência do sexo nas táticas de equilíbrio dinâmico	Plataforma oscilatória e acelerômetro	Meninas apresentaram melhor equilíbrio que meninos, e acrobatas melhor equilíbrio que bailarinos	B2
Golomer et al. ³⁵	45 bailarinos homens	Avaliar o equilíbrio dinâmico em relação a diferentes condições visuais e posicionais em relação à idade	Plataforma oscilatória, acelerômetro	Meninos maiores de 18 anos apresentaram maior dependência visual e melhor equilíbrio	B2
Golomer et al. ¹⁵	13 bailarinos masc. e 10 não treinados	Verificar o grau de dependência visual e o equilíbrio	Plataforma oscilatória, acelerômetro	Bailarinos profissionais apresentaram melhor equilíbrio e menor dependência da visão	В3
Perrin et al. ¹¹	31 atletas: 14 fem <i>ballet,</i> 17 mascjudô e 42 indivíduos não atletas: 21 fem. e 21 masc.	Determinar se treinamento sensório- motor do judô e do <i>ballet</i> melhoram o controle postural	Plataforma de força	Sem restrição visual, judocas e bailarinas mostraram bom controle postural. Com restrição visual, judocas apresentaram melhor controle postural	B2
Barcellos e mbiriba ²³	4 bailarinas	Comparar controle postural e equilíbrio entre diferentes posições dos pés usados no ballet clássico	Plataforma de força e sistema de câmeras infravermelhas	Melhor equilíbrio na posição de menor base (ponta)	C4
Schmitt, Kuni e Sabo ²⁶	20 atletas: 10 bailarinos (5 masc. e 5 fem.) e 10 atletas de atletismo (5 masc. e 5 fem.)	Determinar a influência dos sistemas visual e sensorial no controle postural	Plataforma de força	Bailarinos apresentam melhor controle postural comparado aos atletas de atletismo	В3
Cheng-Feng e Fong-Chin ²⁴	13 bailarinas	Verificar a cinemetria do tornozelo em <i>relevé en pointe</i> de bailarinos	Sistema de câmeras infravermelhas e duas plataformas de força	O tornozelo não dominante oscilou mais quando comparado ao tornozelo dominante	В3
Simmons ²⁵	15 bailarinas e 16 controles	Analisar equilíbrio estático de bailarinos	Plataforma de força e eletromiógrafo	Resultados indicam um mecanismo de controle postural superior em bailarinos treinados	B3
Denardi, Ferracioli e Rodrigues ¹³	8 bailarinas	Verificar a associação entre maior duração da fixação do olhar antes do giro e melhor equilíbrio	Duas câmeras bidimensionais	A indisponibilidade de informação visual reduziu a estabilidade postural	C4
Guillou, Dupu e Golomer ²¹	10 jogadores de futebol, 7 bailarinos, 9 acrobatas e 10 controles	Avaliar o equilíbrio entre diferentes modalidades esportivas	Plataforma móvel, acelerômetro	Melhor equilíbrio para os profissionais que para os não profissionais e para bailarinos e acrobatas	C4
Gerbino, Griffin e Zurakowski ²⁷	32 jogadoras de futebol e 32 bailarinas	Avaliar o equilíbrio entre diferentes modalidades esportivas	Plataforma de força	Os bailarinos apresentaram menor oscilação em relação a jogadores de futebol	B2
Bruyneel et al. ¹⁰	40 bailarinos 20 (8-16 anos) 20 (17-30 anos)	Caracterizar as estratégias de equilíbrio de bailarinos em diferentes posicionamentos	Plataforma de força	Jovens bailarinos apresentaram maior oscilação que bailarinos adultos; já com restrição visual, não houve diferença	B2
Γhiesen e Gumiya¹	15 bailarinas fem. (9 iniciantes e 6 intermediárias)	Verificar o equilíbrio e o tipo de arco plantar em bailarinas clássicas	Plataforma de força e Plantigrama	Não houve diferença na velocidade de oscilação e na correlação entre tipo de arco plantar e equilíbrio corporal	C4
Kiefer et al. ³⁴	28 bailarinos profissionais (10 H e 18 M); 28 sem experiência em <i>ballet</i> (10 masc. e 18 fem. sadios)	Identificar diferenças na coordenação postural e equilíbrio entre bailarinos e controles não treinados	Eletrogoniômetro	Bailarinos apresentam maior estabilidade e coordenação, o que permite executar tarefas complexas de equilíbrio	В3
Rein et al. ³²	30 bailarinos	Comparar o controle postural entre bailarinos profissionais amadores e controles	Plataforma de força oscilatória	Bailarinos profissionais apresentam melhor controle postural	B2

Continua...

Tabela 1. Continuação

Cheng et al. ³⁶	26 estudantes de <i>ballet</i> e 25 estudantes ativos e saudáveis	Investigar os efeitos do exercício de dança na estabilidade postural de adolescentes femininas	Plataforma de força oscilatória	Estudantes de <i>ballet</i> apresentam melhor estabilidade postural em relação aos não bailarinos	B2
Cheng-Feng Lin et al. ⁶	22 estudantes de <i>ballet</i> (11 com lesões de tornozelo pósreabilitação e 11 sem lesões no tornozelo) e 11 indivíduos saudáveis	Avaliar a estabilidade postural de bailarinos em diferentes posições utilizadas na prática do <i>ballet</i>	Plataforma de força	Durante todas as posições, os bailarinos lesionados apresentaram maior oscilação postural em relação aos bailarinos não lesionados e indivíduos não treinados	В3
Lobo da Costa et al. ²⁹	14 bailarinas não profissionais	Descrever os níveis de estabilidade em diferentes posições em meia ponta com e sem o uso de sapatilhas	Plataforma de força	Maior estabilidade sem o uso de sapatilha em todas as posições e a perna elevada em atitude <i>a la second</i> apresentou maior equilíbrio, enquanto a posição <i>derriére</i> o menor equilíbrio	В3

Classificação de Oxford: Recomendação A - Estudo consistente, controlado e com homogeneidade; B - Estudo controlado de menor qualidade; C - menor qualidade; padrão de referência pobre e D - Inconsistentes ou inconclusivos. Nível: 1 - ensaios clínicos controlados e randomizados; revisões sistemáticas com homogeneidade; 2 - revisão sistemática de estudos coorte (incluindo ensaio clínico randomizado de menor qualidade); 3 - revisão sistemática de estudos caso-controle; 4 - relato de caso; e 5 - opinião de especialistas, avaliação crítica exolícita e pesquisa de bancada¹⁷

A dificuldade da tarefa de equilíbrio aumenta nas bases unipodais, sendo esse posicionamento frequente na prática do ballet²⁰ e consideradas condições de fácil execução e com boa confiabilidade^{21,22}. Dessa maneira, levando em consideração posições específicas da técnica clássica de ballet, 27% dos artigos avaliaram o equilíbrio estático em posturas unipodais específicas^{6,10,11,20,23-28}. Lobo da Costa et al.²⁹ avaliaram bailarinas em diferentes posições de demi-point (Figura 1B) com sapatilhas e com os pés descalços, sendo o uso das sapatilhas a causa de maiores deslocamentos do CoP em todas as posições. Bruyneel et al. 10 também encontraram em condições similares uma área de deslocamento menor quando o membro livre encontrava-se para trás (derriere atitude), em condições com visão^{29,30}. Barcellos e Imbiriba²³ verificaram por meio da cinemática as variações angulares das articulações da pelve, quadril, joelho e tornozelo e, juntamente com a velocidade média de oscilação do CoP, observaram menor área de deslocamento na posição en pointe do que em uma posição com apoio plantar total.

A plataforma oscilatória e o acelerômetro (33% dos artigos) foram utilizados para comparar o equilíbrio dinâmico em relação a diferentes condições visuais e diferentes posições, em indivíduos agrupados quanto à idade e sexo^{8,15,17,21,31}. Verificou-se que bailarinos profissionais homens (>18 anos) com maior tempo de treino apresentaram maior dependência visual em apoio bipodal sobre uma plataforma móvel comparados aos bailarinos homens jovens (<18 anos)¹⁵, assim como as mulheres (>18 anos) nas mesmas condições apresentaram menor área do CoP que os homens³¹; segundo os autores, a relação do equilíbrio com o sexo estaria relacionada às diferenças dos movimentos realizados pelos

bailarinos na execução da técnica, em que homens realizam movimentos mais bruscos e explosivos e mulheres movimentos mais contidos e suaves.

Adicionalmente, os bailarinos parecem ser mais dependentes da visão do que as bailarinas^{6,15,21,31,32}, pelas diferenças na maturidade e no desenvolvimento do sistema vestibular que ocorre entre 9 e 10 anos nas mulheres e entre 13 e 14 anos nos homens³³

Kiefer et al.³⁴ também avaliaram bailarinas durante tarefa estática, com o objetivo de identificar diferenças na coordenação postural entre bailarinos profissionais e controles não treinados durante uma tarefa de acompanhamento visual dinâmico por meio de um eletrogoniômetro, verificando as oscilações angulares de tornozelo e quadril enquanto o atleta rastreia o alvo³⁴, visto que bailarinos são treinados a buscarem pontos de referências durante o gestual, estes apresentaram maior controle e tornozelo e quadril mais estáveis quando comparados aos controles³⁴.

O equilíbrio de bailarinos em comparação com o de praticantes de outras técnicas desportivas como judocas, corredores, acrobatas e jogadores de futebol foi discutido em 28% dos artigos selecionados, sendo um consenso o alto padrão de equilíbrio sem restrição visual dos bailarinos, provavelmente relacionado à especificidade do treinamento desses atletas 10,11,20,21,26,27,31. Entretanto, 61% dos artigos não controlaram o posicionamento dos membros superiores dos atletas 6,7,10,11,15,17,24,27,29,32,34; dessa maneira, os bailarinos poderiam ter assumido a primeira posição para membro superior, melhorando o equilíbrio nas diferentes posições avaliadas.

Porém, ao realizar a avaliação de equilíbrio associado à restrição visual, os bailarinos apresentaram maior área de deslocamento do CoP em comparação aos judocas e acrobatas e não atletas^{11,31}, apontando a maior dependência visual dos bailarinos para a manutenção do equilíbrio. Por outro lado, Schmitt, Kuni e Sabo ²⁶ apontaram que bailarinos apresentaram menor oscilação postural em relação a atletas de atletismo. Entretanto, avaliaram grupos não homogêneos quanto a idade, tempo de profissão, sexo, gestual e posição analisada.

Segundo Kiefer et al.³⁴, a dificuldade em comparar bailarinos com diferentes grupos de atletas se dá por possuírem diferenças não só em relação aos diferentes tipos de corpos, mas também em seu treinamento.

Apesar do aumento da oscilação postural, outros parâmetros devem ser considerados para determinar a eficiência do controle postural, como variáveis de cinemetria e cinética. Em relação ao equilíbrio dinâmico, não foram encontrados estudos que comparassem as atividades específicas do *ballet* com outras modalidades esportivas ou ainda em diferentes tipos de bailarinos. Além disso, avaliar a dependência visual no equilíbrio durante gestuais desportivos de outras modalidades é importante para entendermos a especificidade do treinamento no equilíbrio.

De acordo com os artigos encontrados, pode-se observar um nível de recomendação moderado ou insatisfatório, dessa maneira, trabalhos que utilizem diferentes grupos controles, que monitorem posições de membro superior, diferentes bases de apoio e diferentes gestuais poderão contribuir para a avaliação tanto do equilíbrio estático quanto dinâmico desses atletas.

Baseado nos artigos utilizados, entende-se que o ballet proporciona um melhor equilíbrio em relação a grupos não treinados e em relação a outras modalidades esportivas, o que resulta na melhor estabilidade corporal³⁴, porém a dependência visual para a manutenção do equilíbrio parece ser maior em bailarinos. Além disso, observa-se uma relação entre treinamento esportivo e oscilação postural, dessa maneira, inserir no treinamento de bailarinos exercícios de equilíbrio sem ênfase na fixação visual poderia aumentar o controle postural desses atletas.

Dados do presente trabalho apontam que, tendo em vista o aumento das oscilações em bailarinos com a privação visual em relação a outras populações de atletas, visto a importância do equilíbrio para a realização dos movimentos do *ballet* clássico, é de grande valia explorar situações diversas no gestual da dança, explorando suas especificidades. Ao melhorar o controle postural, o equilíbrio e produzir padrões de movimentos mais coordenados e

coerentes, as probabilidades de lesão poderiam ser reduzidas pela presença de estratégias de movimentos pré-programados.

Portanto, para um melhor entendimento do equilíbrio, enfatizar aspectos do gestual do bailarino deve ser abordado, assim como melhor homogeneização da amostra.

CONCLUSÃO

Observou-se como consenso na literatura que bailarinos apresentaram melhor equilíbrio estático em relação a indivíduos não treinados e atletas de diferentes modalidades esportivas, entretanto, bailarinos apresentaram maior dependência visual para manutenção do equilíbrio estático pela especificidade do treinamento proposto a estes.

REFERÊNCIAS

- Thiesen T, Sumiya A. Equilíbrio e arco plantar no balé clássico. Conscientiae Saúde. 2011;10(1):138-42
- Soares AV. A contribuição visual para o controle postural. Rev Neurocienc. 2010;18(3):370-79.
- Carvalho RL, Almeida GL. Aspectos sensoriais e cognitivos do controle postural. Rev Neurocienc. 2009;17(2):156-60.
- Mann L, Kleinpaul JF, Mota CB, Santos SG. Equilíbrio corporal e exercícios físicos: uma revisão sistemática. Motriz Rev Educ Fís. 2009;15(3):713-22.
- Teixeira CS, Lemos LFC, Lopes LFD, Mota CB. A influência dos sistemas sensoriais na plataforma de força: estudo do equilíbrio corporal em idosas com e sem queixa de tontura. Rev CEFAC. 2010;12(6):1025-32.
- Cheng-Feng L, I-Jung L, Jung-Hsien L, Hong-Wen W, Fong-Chin S. Comparison of Postural Stability Between Injured and Uninjured Ballet Dancers. Am J Sports Med. 2011;39:1324-31.
- Picon AP, Lobo da Costa PH, Sousa F, Sacco ICN, Amadio AC. Biomecânica e Ballet Clássico: Uma avaliação de Grandezas dinâmicas do "sauté" em primeira posição e da posição "en pointe" em sapatilhas de ponta. Rev Paul Educ Fís. 2002;16(1):53-60.
- Golomer E, Bouillette A, Mertz C, Keller J. Effects of mental imagery styles on shoulder and hip rotations during preparation of pirouettes. J Mot Behav. 2008;40:281-90.
- Vieira TMM, Oliveira LF. Equilíbrio postural de atletas remadores. Rev Bras Med Esporte. 2006;12(3):135-38.
- Bruyneel AV, Mesure S, Paré JC, Bertrand M. Organization of postural equilibrium in several planes in ballet dancers. Neurosci Lett. 2010;485(3):228-32.
- Perrin P, Deviterne D, Hugel F, Perrot C. Judo, better than dance, develops sensorimotor adaptabilities involved in balance control. Gait Posture. 2002;15(2):187-94.

- Raymakers JA, Samson MM, Verhaar HJJ. The assessment of body sway and the choice of the stability parameter(s). Gait Posture. 2005;21:48-58.
- Denardi RA, Ferracioli MC, Rodrigues ST. Informação visual e controle postural durante a execução da pirouette no ballet. Rev Port Cien Desp. 2006;8(2):241-50.
- Di Fabio RP, Emasithi A. Aging and the Mechanisms underly head and postural control during voluntary motion. Phys Ther. 1997;77(5):458-75.
- Golomer E, Crémiex J, Dupui P, Isableu B, Ohlmann T. Visual contribution to self-induced body sway frequencies and visual perception of male professional dancers. Neurosci Lett. 1999;267(3):189-92.
- Imura A, Yeadon MR. Mechanics of the Fouetté turn. Hum Mov Sci. 2010;29(6):947-55.
- Golomer EME, Gravenhorst RM, Toussaint Y. Influence of vision and motor imagery styles on equilibrium control during whole-body rotations. Somatosens Mot Res. 2009;26(4):105-10.
- Phillips B, Ball C, Sackett DL, Badenoch D, Straus S, Haynes B, et al. Oxford Centre for Evidence-based Medicine Levels Evidence. 2001. [cited 2012 Sep 12]. Available from: http://www.cebm.net/index.aspx?o=1025
- Pereira AL, Bachion MM. Atualidades em revisão sistemática de literatura, critérios de força e grau de recomendação de evidência. Rev Gaúcha Enferm. 2006;27(4):491-98.
- Emery CA. Is there a clinical standing balance measurement appropriate for use in sports medicine? A review of the literature. J Sci Med Sport. 2003;6(4):492-504.
- Guillou E, Dupu P, Golomer E. Dynamic balance sensory motor control and symmetrical or asymmetrical equilibrium training. Clin Neurophysiol. 2007;118(2):317-24.
- Bläsing B, Calvo-Merino B, Cross ES, Jola C, Honisch J, Stevens CJ. Neurocognitive control in dance perception and performance. Acta Psychol (Amst). 2012;139(2):300-8.
- Barcellos C, Imbiriba LA. Alterações posturais e do equilíbrio corporal na primeira posição em ponta do ballet clássico. Rev Paul Educ Fís. 2002;16(1):43-52.
- 24. Cheng Feng L, Fong-Chin S. Ankle biomechanics of ballet dancers in relevé en pointé dance. Res Sports Med. 2005;13(1):23-35.

- 25. Simmons WR. Neuromuscular responses of trained ballet dancers to postural pertubations. Int J Neurosci. 2005;115(8):1193-203.
- Schmitt H, Kuni B, Sabo D. Influence of Professional Dance Training on Peak Torque and Proprioception at the Ankle. Clin J Sport Med. 2005;15(5):331-9.
- Gerbino PG, Griffin ED, Zurakowski D. Comparison of standing balance between female collegiate dancers and soccer players. Gait Posture. 2007;26(4):501-7.
- 28. Chockley C. Ground Reaction Force Comparison Between Jumps Landing on the Full Foot and Jumps Landing en Pointe in Ballet Dancers. J Dance Med Sci. 2008;12(1):5-8.
- Lobo da Costa PH, Nora FGSA, Vieira MF, Bosch K, Rosenbaum D. Single leg balancing in ballet: Effects of shoe conditions and poses. Gait Posture. 2012;15 [Epub ahead of print].
- 30. Aberg AC, Thorstensson A, Tarassova O, Halvorsen K. Calculations of mechanisms for balance control during narrow and single-leg standing in fit olders adults: A Reliability study. Gait Posture. 2011;34(3):352-57.
- Golomer E, Dupui P, Monod H. Sex-linked differences in equilibrium reactions among adolescents performing complex sensorimotor tasks. J Physiol Paris. 1997;91(2):49-55.
- Rein S, Fabian T, Zwipp H, Rammelt S, Weindel S. Postural control and functional ankle stability in professional and amateur dancers. Clin Neurophysiol. 2011;122(8):1602-10
- Steindl R, Kunz K, Schrott-Fischer A, Scholtz AW. Effect of age and sex on maturation of sensory systems and balance control. Dev Med Child Neurol. 2006;48:477-82.
- 34. Kiefer AW, Riley MA, Shockley K, Sitton CA, Hewett TE, Cummins-Sebree S, et al. Multi-segmental postural coordination in professional ballet dancers. Gait Posture. 2011;34:76-80.
- 35. Golomer E, Philippe D, Sereni P, Monod H. The contribution of vision in dynamic spontaneous sways male classical dancers according to student or professional level. J.Physiol. 1999, 93:233-237.
- 36. Cheng HS, Law CL, Pan HF, Hsiao YP, HU JH, Chung FK, et al. Preliminary results of dancing exercise on postural stability in adolescent females. Kaohsiung Journal of Medical Sciences. 2011, 27:566-572.