PSALTer results panel

Wave operator and propagator

0 ℛ 』	0	0	0	0	0	0	* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	m -	$\frac{a}{3}\mathcal{H}_{S}^{\parallel}$	$\frac{a}{2}$																		
o+94±h	$\frac{i a, k}{4 \sqrt{2}}$	$\frac{\hbar a.k}{0}$ $4 \sqrt{6}$	$\frac{(c_{-c_{-c_{+}}} + c_{+}) k^{2}}{2 \sqrt{3}}$	$\frac{a}{2\sqrt{2}}$	$-3a.+4(c.+c.+c.+c.+c.+c.+c.)k^{2}$ $6\sqrt{2}$	$+c_1 + c_2 + c_3 + c_4) k^2$	0	χ _{θν} + ττν ε 2. + h +	$2^{+}h\ _{\alpha\beta}$ $2^{+}h\ _{\alpha\beta}$ 0 $\frac{i a k}{4 \sqrt{2}}$			$\mathcal{R}_{a} \mathcal{A}_{\alpha\beta}$ $\begin{array}{c} i \ \underline{a} \ k \\ 4 \ \sqrt{2} \end{array}$		$\frac{2^{+}\mathcal{A}_{5}^{\parallel}_{\alpha\beta}}{\frac{i_{\alpha}^{k}}{4\sqrt{3}}}$		$ \begin{array}{c} 2^{+}\mathcal{A}_{S}^{\perp}_{\alpha\beta} \\ \frac{i \ a_{s} k}{4 \sqrt{6}} \end{array} $:	€ Яа [∥] αβχ	2 ⁻ Æ _s " _{αβχ}									
+0	1 4					(c, +c, +c, -		$^{2^{+}}\mathcal{R}_{a}{}^{\parallel}$ †		$\frac{1}{4} (a_0)$	(cc .	$\frac{12}{12} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{9} + \frac{1}{12} + \frac$	$\frac{\frac{(c_{10} \cdot c_{1} \cdot c_{1} + c_{9})^{3}}{2 \sqrt{6}}}{\frac{1}{6} (-3 a_{0} - (c_{10} + c_{11} + c_{12} + c_{13})^{3})}{11 + c_{12} + c_{13}}$) (c	$\frac{(-c_{.10} + c_{.7} + c_{.8} - c_{.9}) k^2}{4 \sqrt{3}}$ $\frac{.+c_{} + c_{} + c_{.8} + c_{.9}) k^2}{6 \sqrt{2}}$		0	0	$^2\mathcal{W}_{S}^{\parallel}_{\alphaeta\chi}$	0	0	0	0	0	$\frac{4}{a}$			
						$\frac{1}{6}(3a_0-2(c_{10}+$		$2^+\mathcal{A}_{s}^{\perp}$ †			(-c . +c	$\frac{2\sqrt{6}}{r_{7}^{2} + c_{8}^{2} - c_{9}^{2})k^{2}}$ $1\sqrt{3}$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(3+c.)k^2$	0	0	2 W _{a αβχ}	0	0	0	0	4 4 0 0	0	Multiplicities	
	i a. k 0 4				$+c_{8}+c_{9})k^{2}$	+c.) k ²		${}^{2}\mathcal{A}_{a}{}^{\parallel}+{}^{\alpha}$				0		0		0		0 0	0 	В	$\frac{+c_{12}-2c_{9})k^{2}}{1}$		+c.) k²)	;) k²)			Mu	-
$^{0^+}\mathcal{A}_{S}^{\parallel}$		i a. k 0 4 √3	$\frac{(-c_1 + c_2 + c_3 - c_1)k^2}{\sqrt{6}}$		+c. +c. +c.	-3a,+4(c,+c,+c,+c,+c,+c,+c,+c,+c,+c,+c,+c,+c,+c	0	_ #			, gx 9a g - 96 gx 9a g -	$a^{-2}C_1$ $\partial_{\beta}\mathcal{A}^{\delta}$ $\partial^{\beta}\mathcal{A}^{\alpha\beta}$ $\partial^{\beta}\mathcal{A}^{\alpha\beta}$ $\partial^{\beta}\mathcal{A}^{\beta}$	A 44	$^{-2}$ C. $^{\circ}$ $^{\circ$						2+W _{5 α}	$\frac{4i\sqrt{\frac{2}{3}}\binom{a}{3}\binom{a}{6}+(-2c_{10}+c_{11}+c_{12}-2c_{9})k^{2}}{a_{0}^{2}k}$	4 √3 a.	$-\frac{2\sqrt{2}(a.4(c.+c.)^2)}{3a_0^2}$	$\frac{8(a_0 + 2(c_0 + c_1)k^2)}{3a_0^2}$	0	0	Αθυ:	VAN
$^{0^+}\mathcal{A}_{\mathrm{S}}^{_{\perp}\mathrm{t}}$		0	k ² 0		$\frac{a}{2}$ $-\frac{2}{3}$ (c. +	-3a -2 √2		$\mathcal{W}_{\alpha\beta\chi}$)+4 $\mathcal{T}^{\alpha\beta}$ $h_{\alpha\beta}$	$\alpha - 2 a$, $h_{\alpha \chi} \partial_{\beta} \mathcal{A}^{\alpha \beta \chi}$. $\mathcal{A}_{\chi \alpha}^{\beta} \partial_{\beta} \mathcal{A}^{\chi} \delta_{\beta} +$	$\overset{\circ}{\underset{\chi}{\circ}} \overset{\circ}{\circ} \overset{\circ}{\underset{\beta}{\circ}} \overset{\circ}{\underset{\beta}{\circ}} +$	$\begin{array}{l} (c.\ \partial_{\beta}\mathcal{A}_{x}^{\ \delta}\ \partial^{\nu}\mathcal{A}_{\alpha}^{\ a}\ -2\ c.\ \partial_{\beta}\mathcal{A}^{\delta}\ \beta^{\nu}\mathcal{A}^{\alpha}\\ +2\ c.\ \partial_{\lambda}\mathcal{A}_{\beta}^{\ \delta}\ \partial^{\nu}\mathcal{A}_{\alpha}^{\ a}\ -2\ c.\ \partial_{\lambda}\mathcal{A}_{\beta}^{\delta}\ \partial^{\nu}\mathcal{A}_{\alpha}^{\delta}\ \partial^{\nu}\mathcal{A}_{\alpha}^{\delta}\ \partial^{\nu}\mathcal{A}_{\alpha}^{\delta}\ \partial^{\nu}\mathcal{A}_{\alpha}^{\delta}\ \partial^{\nu}\mathcal{A}_{\beta}^{\delta}\ \partial^{\nu}\mathcal{A}_{\alpha}^{\delta}\ \partial^{\nu}\mathcal{A}_{\alpha}^{\delta}\ \partial^{\nu}\mathcal{A}_{\beta}^{\delta}\ \partial^{\nu}\mathcal{A}_{\beta}^{\delta}\ \partial^{\nu}\mathcal{A}_{\beta}^{\delta}\ \partial^{\nu}\mathcal{A}_{\alpha}^{\delta}\ \partial^{\nu}\mathcal{A}_{\alpha}^{$	$\int_{C} \partial^{x} \mathcal{G}^{a\beta} = -2 \cdot C \cdot \partial^{\beta} \mathcal{G}^{\delta}$ $\int_{B} \partial^{x} \mathcal{G}^{a\beta} = +4 \cdot C \cdot \partial^{\alpha} \mathcal{G}_{x}$ $\int_{B} \partial^{x} \mathcal{G}^{a\beta} = \delta \cdot C \cdot \partial^{\alpha} \mathcal{G}_{x}$ $\int_{B} \partial^{x} \mathcal{G}^{a\beta} = \delta \cdot C \cdot \partial^{\alpha} \mathcal{G}_{x}$	дьЯ _{ав} ° . В дьЯ ^{аб} х	$\begin{array}{l} {}^{\beta}\partial_{\phi}\mathcal{A}_{\beta}^{\ \ \delta} - 2C_{1}\partial_{\beta}\mathcal{A}^{\alpha\beta\gamma}\partial_{\phi}\mathcal{A}_{\gamma\alpha} \\ {}^{\alpha}\partial_{\phi}\mathcal{A}_{\chi}^{\ \ \delta} - 2C_{3}\partial_{\beta}\mathcal{A}^{\alpha\beta\gamma}\partial_{\phi}\mathcal{A}_{\chi}^{\ \ \delta} \\ {}^{\beta}\partial_{\phi}\mathcal{A}_{\chi}^{\ \ \delta} + \\ {}^{\beta}\partial_{\phi}\mathcal{A}_{\chi}^{\alpha} + \\ {}^{\beta}\partial_{$						$2^+ \mathcal{W}_{S \alpha \beta}^{\parallel}$	$\frac{4i\left(a,+(-2c,+c,+c,-2c,)k^2\right)}{\sqrt{3}a^2k}$	$\frac{2\sqrt{\frac{2}{3}}}{a_0}$	$\frac{8(-a_0^{}+(c_0^{}+c_0^{})k^2)}{3a_0^{}}$	$ \frac{2\sqrt{2}\left(a_0.4\left(c_0.+c_0\right)k^2\right)}{3a_0^2} $	0	0	ntform	TO CAC C I OT
$^{0^{+}}\mathcal{A}_{\mathrm{a}}^{\parallel}$	0 0	i a. k 2 √2	$\frac{+c_1+c_2+c_3+c_4}{8}$	0 0	$\frac{(-c_1 + c_2 + c_3) k^2}{\sqrt{6}}$	$\frac{-c_1 + c_2}{7 \cdot 8 \cdot 9} = \frac{k^2}{2 \cdot \sqrt{3}}$	0 0	A _{βχα} +4	$\int_{0}^{h^{X}} \lambda^{2} \beta \mathcal{A}^{\alpha\beta}$	g g	2 c. 14	$-2 \frac{c}{15} \frac{\partial_{\beta} \mathcal{A}}{\partial_{\alpha}}$ $\alpha - 2 \frac{c}{c} \frac{\partial_{\alpha} \mathcal{A}}{\partial_{\alpha}}$	$\frac{1}{3}$ - $\frac{2}{2}$ $\frac{2}{9}$ $\frac{3}{3}$ $\frac{3}{4}$ $\frac{3}{12}$ $\frac{3}{12}$	$\begin{aligned} &2c_{1}\partial_{x}\mathcal{A}^{a\beta}{}^{b\beta}\partial_{\sigma}\mathcal{A}_{\beta\alpha}{}^{a}{}^{b}+4c_{5}\partial^{y}\mathcal{A}_{\alpha}{}^{a}{}^{b}\partial_{\sigma}\mathcal{A}_{\beta}{}^{b}{}^{z}-5\\ &2c_{1}\partial^{y}\mathcal{A}^{a\beta}{}^{b}\partial_{\sigma}\mathcal{A}_{x\alpha}{}^{a}+2c_{1}\partial^{y}\mathcal{A}^{a\beta}{}^{a}\partial_{\sigma}\mathcal{A}_{x\beta}{}^{b}{}^{c}-2\\ &2c_{1}\partial^{y}\mathcal{A}^{a\beta}{}^{b}\partial_{\sigma}\mathcal{A}_{x\alpha}{}^{a}+2c_{1}\partial^{y}\mathcal{A}_{\beta\alpha}{}^{b}\partial_{\sigma}\mathcal{A}_{x\beta}{}^{b}\\ &4c_{1}\partial^{y}\mathcal{A}^{a\beta}{}^{a}\partial_{\sigma}\mathcal{A}_{x\beta}{}^{a}+2c_{1}\partial^{y}\mathcal{A}_{\beta\alpha}{}^{b}\partial_{\sigma}\mathcal{A}_{x\beta}{}^{b}\\ &4c_{1}\partial_{\sigma}\mathcal{A}_{\alpha}{}^{a}\partial_{\sigma}\mathcal{A}_{x\beta}{}^{a}+2c_{2}\partial_{\sigma}\mathcal{A}_{\alpha\alpha}{}^{a}\partial_{\sigma}\mathcal{A}_{x\beta}{}^{a}+2c_{2}\partial_{\sigma}\mathcal{A}_{\alpha\alpha}{}^{a}\partial_{\sigma}\mathcal{A}_{x\beta}{}^{a}\\ &2c_{1}\partial_{\sigma}\mathcal{A}_{\alpha}{}^{a}\partial_{\sigma}\mathcal{A}_{x\beta}{}^{a}\partial_{\sigma}\mathcal{A}_{x\beta}{}^{a})[t,x,y,z]dzdyd\end{aligned}$						2+W a	$\frac{4i\sqrt{2}}{a.k} \frac{4i(a.+()^{2})}{4i(a.+()^{2})}$	0	$ \begin{array}{c c} 2\sqrt{\frac{2}{3}} & 8(\\ \hline a_0 \end{array} $	$\frac{4}{\sqrt{3}a_0}$ $\frac{2}{a_0}$			Covariantform	6
÷0		2	$-\frac{a_{.}}{2}$ -($c_{.}$ - $c_{.}$ - $c_{.}$		(-c. +c	(cc; 2		$_{\alpha}^{\beta} \mathcal{A}^{\chi} + \mathcal{A}^{\alpha\beta\chi}$	$a, h^{\chi}, \partial_{\beta} \mathcal{A}^{\alpha}{}^{\beta} + a$ $2c_{1}, \partial^{\alpha} \mathcal{A}^{\chi}{}^{\delta} \partial_{\beta} \mathcal{A}_{\chi}$	0	& B	$2c_{7}\partial_{x}\mathcal{A}^{\delta}{}_{\delta\beta}\partial^{x}\mathcal{A}^{a}{}_{z}$ $2c_{1}\partial_{x}\mathcal{A}^{\delta}{}_{\delta}^{\delta}\partial^{x}\mathcal{A}^{a}$	$4c$, $\partial_{\chi}\mathcal{A}_{\alpha\delta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$2c_{10} \partial_{x} \mathcal{A}^{abk} \partial_{b} \mathcal{A}_{pk}$ $2c_{15} \partial^{x} \mathcal{A}^{ab} \partial^{b} \partial^{x} \mathcal{A}_{xc}$ $2c_{15} \partial^{x} \mathcal{A}^{ab} \partial^{b} \partial^{x} \partial^{x} \partial^{x}$ $4c_{15} \partial^{x} \mathcal{A}^{ab} \partial^{x} \partial$						$2^+ \mathcal{T}^{\parallel}_{\alpha\beta}$	$8(c, c, c, +c, +c, +c, \frac{a_1}{r^2})$ $\frac{10}{10} \frac{11}{11} \frac{12}{12} \frac{a_2}{r^2}$	4 i √2 a. k	$\frac{4i\left(a,+(-2c,+c,+c,-2c,)k^2\right)}{\sqrt{3}a^2k}$	$4i \sqrt{\frac{2}{3}} (a_0 + (2c_0 + c_0 + c_0 - 2c_0)k^2)$	0 0	0 0	ر ن ن	U T.D.O. 'S
$_{\mu^{+}0}^{+}$ $_{\mu^{+}0}^{+}$	0 0	0 0	$0 \qquad \frac{i a k}{2 \sqrt{2}}$	0	$-\frac{1}{4}i a k \frac{i a k}{0}$	ia.k 0 4 \sqrt{2} 4 \sqrt{6}	-	$S == \iiint \left(\frac{1}{4} \left(2 a, \mathcal{A}^{\alpha}\right)\right)$												2,		4	•				Spin-parityform	1- 11 UN UN CI
	1,4,0	1 4 0	0+ Aalt	0. As tt	$^{0^+}\mathcal{A}_{\mathrm{s}}^{\mathrm{l}}$	0+ As th †	0 A _a 1 +	S == {													$2^+_{\cdot}\mathcal{T}^{\parallel}\dagger^{\alpha\beta}$	$2^+\mathcal{W}_a$ $+^{\alpha\beta}$	$2^+ \mathcal{W}_{\rm s} \dagger \uparrow^{a eta}$	$^{2^+}\mathcal{W}_{\mathrm{s}}^{\perp}\dagger^{lphaeta}$	$^2\mathcal{W}_{\mathrm{a}}$ $\dagger^{lphaeta\chi}$	$^2\mathcal{W}_{\mathrm{s}}^{\parallel}\dagger^{^{\alpha\beta\chi}}$	Spin-par	- M 04

 $\frac{k^{0^{+}}\mathcal{W}_{s}^{,\text{t}}+2\;i^{0^{+}}\mathcal{T}^{,\text{t}}=:0}{3\;k^{\;1}\mathcal{W}_{s}^{\,\,\text{t}}^{\,\,\text{t}}+k\;1\;\mathcal{W}_{s}^{\,\,\text{t}}^{\,\,\text{t}}^{\,\,\text{t}}+6\;i^{\;1}\mathcal{T}^{,\,\text{t}}^{\,\,\text{d}}=:\;k^{\;1}\mathcal{W}_{s}^{\,\,\text{t}}^{\,\,\text{t}}$

Total expected gauge generators:

Massive and massless spectra

Unitarity conditions

(Timeout after 10 seconds)