آموزش یادگیری عمیق Deep Learning

« روشهای یادگیری عمیق »

سعید محققی / دانشگاه شاهد / ۹۹ – ۱۳۹۸

روشهای یادگیری عمیق

روشهای یادگیری عمیق

۱. یادگیری با نظارت (Supervised)

- شبکههای عصبی کانولوشنی (CNN)
 - شبکههای عصبی بازگشتی (RNN)

ر (Unsupervised) یادگیری بدون نظارت

- شبکههای عصبی خودرمزنگار (AE)
 - شبکههای عصبی مولد (GAN)

یادگیری با نظارت

Supervised Learning

یادگیری با نظارت

- فرآیند یادگیری ماشین با راهنمایی انسان
 - کاربردها
 - کلاسبندی / بخشبندی دادهها
- یادگیری ویژگیها از دادههای با برچسب
- روشهای متعارف: Logistic regression / SVM

شبکه عصبی کانولوشنی (CNN)

- ویژگیها
- استفاده از لایههای کانولوشن(conv) و کاهش اندازه (pooling)
 - استفاده از وزنهای پنجرهای (فیلترها)
 - استفاده از چند فیلتر در هر لایه (ایجاد چند خروجی متفاوت)
 - مناسب برای دادههای تصویری

ساختار کلی CNN

ساختار کلی CNN

CNN کاربردهای

(توضیح جزئیات شبکههای CNN در بخش بعدی آموزش)

شبکه عصبی بازگشتی (RNN)

- شبکه عصبی با حلقههای بازگشتی
- استفاده از اطلاعات قبلی برای داده جدید (حافظه کوتاه مدت)
 - مناسب برای دادههای دنباله دار و زمان دار
- http://colah.github.io/posts/2015-08-Understanding-LSTMs/ منبع:

شبکه عصبی بازگشتی (RNN)

شبکه عصبی بازگشتی (RNN)

■ شبکه RNN باز شده

RNN مدلهای

مدل LSTM

Long Short Term Memory ← LSTM ■

- نوع خاصی از شبکههای عصبی بازگشتی
- هدف LSTM: حل كردن مشكل وابستگى بلندمدت در دادهها
- در بیشتر موارد عملکرد بهتر از شبکههای عصبی بازگشتی استاندارد

مدل LSTM

■ شبکه RNN استاندارد

مدل LSTM

■ شبکه RNN با مدل

ترکیب CNN و RNN

■ ایجاد توضیح متنی برای تصویر

Slove Slove

- تشخیص صدا و گفتار
- تشخیص موضوع و مفهوم از متن
 - ترجمه زبان
- درج خودکار توضیح برای تصویر
 - پردازش ویدیو

یادگیری بدون نظارت

Unsupervised Learning

یادگیری بدون نظارت

- فرآیند یادگیری ماشین بدون راهنمایی انسان
 - کاربردها
- یادگیری شباهتهای ذاتی در دادهها و خوشهبندی آنها
 - یادگیری ویژگیها از دادههای بدون برچسب
 - کاهش بعد دادهها

■ روشهای متعارف: K-Means / ICA / LDA / PCA

مثالها

شبکههای عصبی خودرمزنگار (AE)

■ ساختار کلی

خودرمزنگار عمیق

- Deep Auto-Encoder (DAE)
- Stacked Auto-Encoder (SAE)

■ لايه اول

■ ویژگیهای سطح ۱

معماری خودرمزنگار عمیق

معماری خودرمزنگار عمیق

معماری خودرمزنگار عمیق

مثال خودرمزنگار عمیق

■ آموزش یک خودرمزنگار عمیق با ۴ لایه بر روی ۶۰٬۰۰۰ تصویر MNIST

مثال خودرمزنگار عمیق

کاربردهای خودرمزنگار (AE)

- حذف نویز (Denoising)
- فشردهسازی دادهها (Data compression)
- یادگیری بدون نظارت ویژگیها (Unsupervised learning)
 - یادگیری فضای داده (Manifold learning)

انواع خودرمزنگار

- Stacked Auto-Encoder (SAE)
- Denoising Auto-Encoder (DAE)
- Sparse Auto-Encoder (SAE)
- Contractive Auto-Encoder (CAE)
- Convolutional Auto-Encoder (CAE)
- Variational Auto-Encoder (VAE)

شبکههای تولید کننده

- Variational Auto-Encoder (VAE)
- Generative Adversarial Network (GAN)

■ Encoder: q(z|x)

■ Decoder: p(x|z)

■ آموزش فضای Latent

■ آموزش فضای Latent

■ تولید داده جدید

مثال VAE

■ آموزش شبکه VAE با دادههای MNIST

Generative Adversarial Network

Generative Adversarial Network

■ أموزش شبكه GAN

Generative Adversarial Network

San کاربردهای

- تولید دادههای جدید
 - اصلاح دادهها
 - تغییر شکل دادهها

San کاربردهای

Style transfer

A Neural Algorithm of Artistic Style [Gatys et al. 2015]

■ ایجاد محصولات هنری

- گرافیک

— مت*ن*

– موسیق_ی

