Alma Mater Studiorum - University of Bologna

COMPUTER SCIENCE AND ENGINEERING - DISI
ARTIFICIAL INTELLIGENCE

A study on tackling visual odometry by a transformer architecture

Master degree thesis

Supervisor
Prof. Luigi Di Stefano
Co-supervisor
Luca De Luigi

Candidate Xiaowei Wen

Anno Accademico 2021-2022- Second session

Summary

"Dio benedica quelle persone che quando incroci il loro sguardo per sbaglio, sorridono."

Thanks

Innanzitutto, vorrei esprimere la mia gratitudine al Prof. Sperduti, relatore della mia tesi, e Alessandro Proscia, il tutor aziendale, per l'aiuto e il sostegno fornitomi durante la stesura del lavoro.

Desidero ringraziare con affetto i miei genitori per il sostegno, il grande aiuto e per essermi stati vicini in ogni momento durante gli anni di studio.

Ho desiderio di ringraziare poi Veronica, Alberto, Marco, Lorenzo, Linpeng, Tommaso, Alessandro e Giulio per tutti i bellissimi anni passati insieme, le avventure vissute e di essersi sorbiti mille delle mie lamentele.

Infine, vorrei esprimere la mia gratitudine alla famiglia Geminian e Bernardi per tutti gli aiuti ricevuti durante questi anni.

Bologna, 06 October 2022

Xiaowei Wen

Contents

1	Inti	roduction	1
2	The	eoretical foundations	3
	2.1	Deep Learning	3
	2.2	Visual Odometry	3
	2.3	Kitti	3
3	Dat	asets	5
	3.1	Kitti	5
	3.2	Synthetic	5
4	The	e State of the art	7
5	Exp	periments	9
6	Imp	olementations	11
7	Fin	al discussions	13
	7.1	Result Achieved	13
	7.2	Knowledge Acquired	13
	7.3	Future Developments	13
	7.4	Personal Evaluation	13
\mathbf{B}^{i}	iblio	oraphy	15

List of Figures

List of Tables

Introduction

In this section will be summarized the content of the whole thesis.

Theoretical foundations

In this chapter will be presented the main theoretical knowledge useful to understand the content from successive chapters.

2.1 Deep Learning

2.2 Visual Odometry

Visual Odometry is an important task in robotics' computer vision field, because it allows the robot to understand where it is and how it is oriented.

2.3 Kitti

Datasets

In this chapter will be presented the datasets created and used for the visual odometry.

- 3.1 Kitti
- 3.2 Synthetic

The State of the art

Experiments

Implementations

Final discussions

In this chapter will be discussed the results achieved.

- 7.1 Result Achieved
- 7.2 Knowledge Acquired
- 7.3 Future Developments
- 7.4 Personal Evaluation

Bibliopraphy

Bibliography references

[1] J. Bloch. Effective Java. Pearson, 2009.

Website references

[2] Owasp. URL: https://owasp.org/www-project-mobile-top-10/.

Paper references

[3] Spyridon Samonas and David Coss. "THE CIA STRIKES BACK: REDEFINING CONFIDENTIALITY, INTEGRITY AND AVAILABILITY IN SECURITY." In: Journal of Information System Security 10.3 (2014).