SECCIONES CÓNICAS

RELACIÓN ENTRE CÓNICAS – REPRESENTACIÓN EN GEOGEBRA

Inicio ¿Alguna duda de la sesión anterior?

Te acuerdas...

¿Determina el centro de la hipérbola

 $H: 2y^2 - 50 = 2x^2 - 12x?$

LOGRO DE SESIÓN

Al finalizar la sesión, el estudiante genera la ecuación de una cónica a partir de los elementos principales de otra cónica.

¿Qué sabes de las cónicas?

¿Cuáles son los elementos principales de una parábola?

¿Cuáles son los elementos principales de una elipse?

¿Cuáles son los elementos principales de una circunferencia?

¿Cuál es la utilidad del estudio de la Relación entre cónicas?

Sirve para poder construir figuras o estructuras más complejas que tienen relación en uno o varios elementos entre las cónicas y las rectas

A partir de los elementos de una circunferencia representada en Geogebra, se pueden generar circunferencias concéntricas, elipse u otros

Los centros de las circunferencias de la imagen pueden ser puntos equidistantes de una parábola

REPRESENTACIÓN EN GEOGEBRA

Desaprende lo que te limita

1 Transformación LA CIRCUNFERENCIA

Ecuación Ordinaria

C:
$$(x-h)^2 + (y-k)^2 = r^2$$

Centro:

C(h, k)

Ecuación General

$$C: x^2 + y^2 + Dx + Ey + F = 0$$

Representación en GeoGebra

LA PARÁBOLA

Ecuación Ordinaria:
$$P: (y-k)^2 = 4p(x-h)$$

Vértice:

C(h,k)

Ecuación General
$$P: y^2 + Dx + Ey + F = 0$$

Ecuación Ordinaria:

$$P: (x-h)^2 = 4p(y-k)$$

Vértice:

Ecuación General:

$$P: x^2 + Dx + Ey + F = 0$$

3 LA ELIPSE

Ecuación Ordinaria:
$$E: \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Centro: C(h, k)

Ecuación General: $P: Ax^2 + By^2 + Dx + Ey + F = 0$

Ecuación Ordinaria:
$$E: \frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

Centro: C(h, k)

Ecuación General: $P: Ax^2 + By^2 + Dx + Ey + F = 0$

4 LA HIPERBOLA

Ecuación Ordinaria:
$$E: \frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

Centro:
$$C(h, k)$$

Ecuación General:
$$P: Ax^2 + By^2 + Dx + Ey + F = 0$$

Ecuación Ordinaria:
$$E: \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Centro:
$$C(h, k)$$

Ecuación General:
$$P: Ax^2 + By^2 + Dx + Ey + F = 0$$

1. Una cuerda de la parábola $P: y^2 - 4x = 0$ es un segmento de la recta L: x - 2y + 3 = 0. Determine la ecuación de una circunferencia cuyo diámetro coincide con este segmento de recta. Complemente su análisis con el programa matemático GeoGebra

SOLUCIÓN:

$$P: y^2 - 4x = 0$$
$$(y - 0)^2 = 4(x - 0)$$

$$L : x = 2y - 3$$

Sustituimos L en P:

$$y^{2} - 4(2y - 3) = 0$$

$$y^{2} - 8y + 12 = 0$$

$$(y - 6)(y - 2) = 0$$

$$y = 6 ; y = 2$$

$$y = 0 : y - 1$$

Determinando la ecuación de la circunferencia

$$C(h,k) = PM(A(1,2); B(9,6))$$

$$C(h,k) = PM(\frac{1+9}{2}, \frac{2+6}{2})$$

$$C(h,k) = (5,4)$$

$$r = d(C, A) = \sqrt{(5-1)^2 + (4-2)^2}$$

$$r = d(C, A) = \sqrt{20}$$

$$C: (x-5)^2 + (y-4)^2 = 20$$

1. Una cuerda de la parábola $P: y^2 - 4x = 0$ es un segmento de la recta L: x - 2y + 3 = 0. Determine la ecuación de una circunferencia cuyo diámetro coincide con este segmento de recta. Complemente su análisis con el programa matemático GeoGebra

SOLUCIÓN:

Determinando la ecuación de la circunferencia

$$C(h,k) = PM(A(1,2); B(9,6))$$

$$C(h,k) = PM(\frac{1+9}{2}, \frac{2+6}{2})$$

$$C(h,k) = (5,4)$$

$$r = d(C,A) = \sqrt{(5-1)^2 + (4-2)^2}$$

$$r = d(C,A) = \sqrt{20}$$

C:
$$(x-5)^2+(y-4)^2=20$$

2. Los vértices de una elipse coinciden con los extremos del lado recto de la parábola $P: y^2 + 16x + 4y - 92 = 0$. si la excentricidad de la elipse es $e = \frac{1}{2}$, hallar la ecuación ordinaria de la elipse. Complemente su análisis con el programa matemático Geogebra

SOLUCIÓN:

$$P: y^{2} + 4y + 16x - 92 = 0$$

$$y^{2} + 4y + 2^{2} = -16x + 92 + 2^{2}$$

$$(y+2)^{2} = 4(-4)(x-6)$$

$$V(6,-2); p = -4; F(2,-2)$$

$$L(2,6); R(2,-10)$$

Determinando la ecuación elipse

$$C(h,k) = F_P(2,-2)$$

$$a = d(C,L) = 8$$

$$e = \frac{1}{2} \approx \frac{c}{a} = \frac{1 \cdot 4}{2 \cdot 4}$$

$$c = 4 \quad ; \quad b = \sqrt{48}$$

$$E: \frac{(x-2)^2}{48} + \frac{(y+2)^2}{64} = 1$$

2. Los vértices de una elipse coinciden con los extremos del lado recto de la parábola

P: $y^2 + 16x + 4y - 92 = 0$. si la excentricidad de la elipse es $e = \frac{1}{2}$, hallar la ecuación

ordinaria de la elipse.

SOLUCIÓN:

Determinando la ecuación elipse

$$C(h,k) = F_P(2,-2)$$

$$a = d(C, L) = 8$$

$$e = \frac{1}{2} \approx \frac{c}{a} = \frac{1 \cdot 4}{2 \cdot 4}$$

$$c = 4$$
 ; $b = \sqrt{48}$

$$E: \frac{(x-2)^2}{48} + \frac{(y+2)^2}{64} = 1$$

Práctica

¡Ahora es tu turno!

A desarrollar los ejercicios propuestos

INICIAMOS LOS EJERCICIOS RETO

EJERCICIOS RETO

- 1. Encuentre la ecuación de la parábola que se abre horizontalmente y que tiene vértice en el punto de intersección de la circunferencia de ecuación: C: $x^2 + y^2 + 2x 4y + 4 = 0$ con el eje y, se sabe que el foco de la parábola es el centro de la circunferencia. Complemente su análisis con el programa matemático GeoGebra
- 2. Considere la parábola de ecuación $P: y^2 24x 6y + 57 = 0$. Encuentre la ecuación de la elipse cuyo centro está en el vértice de la parábola, uno de sus focos está en el foco de la parábola y uno de sus vértices está en el punto (9,3). Complemente su análisis con el programa matemático GeoGebra.
- 3. Considere las parábolas $P1: y = (x-17)^2$; $P2: y^2 = x+3$. Halle la ecuación general de la hipérbola cuyos focos son los vértices de las parábolas P 1 y P 2 y que cumple que la distancia entre sus vértices es 16 y bosqueje la gráfica. Complemente su análisis con el programa matemático GeoGebra.
- 4. Hallar la ecuación de una hipérbola H, sabiendo que los vértices se ubican en el punto (-2; 2)y(4; 2); si además sus focos pertenecen a la parábola cuya ecuación es $P: (x-1)^2 = \frac{25}{4}(y+2)$. Complemente su análisis con el programa matemático GeoGebra.

Cierre

RESPUESTAS

1.
$$(y-2)^2 = 4(x+1)$$

2.
$$\frac{(x-2)^2}{13} + \frac{(y-3)^2}{49} = 1$$

3.
$$\frac{x^2}{16} - \frac{y^2}{48} = 1$$

4.
$$\frac{(x-1)^2}{9} - \frac{16(y-2)^2}{481} = 1$$

Espacio de Preguntas

No te quedes con tus dudas, si quieres preguntar o comentar algo respecto a lo que hemos trabajado, es momento de hacerlo y así poder ayudarte. Si no tienes preguntas el profesor realizará algunas

Tiempo: 5 min

¿Qué hemos aprendido hoy?

1. ¿Cómo diferencias la ecuación de una parábola con la de una circunferencia?

2. ¿Cuál es la relación entre "a", "b" y "c" de una hipérbola? ¿Qué es lo que miden?

Desaprende lo que te limita

FINALMENTE

Excelente tu participación

Triunfo porque no pongo excusas, pongo soluciones.

Ésta sesión quedará grabada para tus consultas.

PARA TI

- 1. Realiza los ejercicios propuestos de ésta sesión y sigue practicando.
- 2. Consulta en el FORO tus dudas.

Universidad Tecnológica del Perú