

TOPIC OUTLINE

RC Circuit

Charging a Capacitor

Discharging a Capacitor

Transient Response

CHARGING A CAPACITOR

RC CIRCUIT

KVL @ *L*₁:

$$-v_o + v_R + v_C = 0$$

$$v_R + v_C = v_o$$

$$i_C R + v_C = v_o$$
 ; $i_C = C \frac{d}{dt} v_C$

$$RC\frac{d}{dt}v_C + v_C = v_o$$

$$\frac{d}{dt}v_C + \frac{1}{RC}v_C = \frac{v_o}{RC}$$

... first-order ODE

$$v_{\mathcal{C}}(t) = v_o \left(1 - e^{-\frac{t}{RC}}\right)$$

CAPACITOR VOLTAGE

Charging equation:

$$v_c(t) = v_o \left(1 - e^{-\frac{t}{\tau}}\right)$$

where: $\tau = RC$

The <u>voltage</u> across the capacitor <u>starts at zero</u> and exponentially increases to v_o volts (source voltage).

CAPACITOR CURRENT

Charging equation:

$$i_c(t) = \frac{v_o}{R}e^{-\frac{t}{\tau}}$$

where: $\tau = RC$

The <u>current</u> through the capacitor instantly jumps to its <u>maximum value</u> of $\frac{v_o}{R}$ amperes then decays exponentially to zero.

TIME CONSTANT

The <u>time constant</u> τ is a measure of how quickly a capacitor charges or discharges in an RC circuit.

Formula:

$$\tau = RC$$

unit: second

EXERCISE

A **100** μ *F* capacitor is connected to a **12** *V* DC power supply through a resistor of **1** $K\Omega$. Determine the **time** it takes for the capacitor to charge to **86**. **5**% of its maximum voltage.

Solution:

EXERCISE

A **100** μ *F* capacitor is connected to a **12** V DC power supply through a resistor of **1** $K\Omega$. Determine the **voltage** across the capacitor after **200** m*s* of charging.

Solution:

DISCHARGING A CAPACITOR

RC CIRCUIT

$\underline{\text{KVL} @ L_1}$:

$$v_R + v_C = 0$$

$$i_C R + v_C = 0$$
 ; $i_C = C \frac{d}{dt} v_C$

$$RC\frac{d}{dt}v_C + v_C = 0$$

$$\frac{d}{dt}v_C + \frac{1}{RC}v_C = 0$$

... first-order ODE

$$v_{\mathcal{C}}(t) = v_{o}e^{-\frac{t}{RC}}$$

CAPACITOR VOLTAGE

Discharging equation:

$$v_c(t) = v_o e^{-\frac{t}{\tau}}$$

where: $\tau = RC$

The <u>voltage</u> across the capacitor starts at its maximum voltage v_o then decays exponentially to <u>zero</u>.

CAPACITOR CURRENT

Discharging equation:

$$i_c(t) = -\frac{v_o}{R} \left(e^{-\frac{t}{\tau}} \right)$$

where: $\tau = RC$

The <u>current</u> through the capacitor instantly jumps to its maximum value, but in opposite direction of $-\frac{v_0}{R}$ then decays exponentially to <u>zero</u>.

EXERCISE

A **200** μ *F* capacitor is initially charged to **12** *V*. It is then disconnected from the power supply and discharged a resistor of **1**. **5** $K\Omega$. Determine the **voltage** across the capacitor after **0**. **1** s of discharging.

TRANSIENT RESPONSE

The <u>transient response</u> of a capacitor describes the time-dependent changes in voltage across the capacitor and the current through it. The transient phase is typically considered to last for approximately <u>five time constants</u> 5τ after which the system is assumed to have reached steady-state conditions.

TRANSIENT RESPONSE

The <u>transient response</u> of a capacitor describes the time-dependent changes in voltage across the capacitor and the current through it. The transient phase is typically considered to last for approximately <u>five time constants</u> 5τ after which the system is assumed to have reached steady-state conditions.

LABORATORY

