ShcheniayevDA 28122024-101214

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Найти точку (см. рисунок 1), соответствующую коэффициенту отражения от нормированного импеданса $z=0.73\text{--}0.26\mathrm{i}$.

Рисунок 1 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Задан двухполюсник на рисунке 2, причём R1 = 150.72 Ом.

Рисунок 2 – Двухполюсник

Найти полуокружность (см. рисунок 3), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 3 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать undexc выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.1	0.608	130.0	2.651	46.3	0.094	52.3	0.241	-60.1
2.2	0.616	127.5	2.526	43.8	0.098	51.5	0.238	-62.4
2.3	0.622	124.8	2.418	41.6	0.101	50.6	0.236	-64.8
2.4	0.629	122.1	2.313	39.3	0.105	49.7	0.234	-67.3
2.5	0.637	119.8	2.216	37.1	0.109	48.7	0.231	-69.8
2.6	0.647	117.5	2.122	34.8	0.112	47.8	0.229	-72.4
2.7	0.653	115.2	2.038	32.5	0.116	46.7	0.227	-75.2
2.8	0.661	113.0	1.958	30.1	0.119	45.7	0.226	-78.0
2.9	0.667	110.9	1.887	28.2	0.122	44.8	0.223	-80.9
3.0	0.674	108.9	1.818	26.1	0.126	43.9	0.220	-83.8
3.1	0.679	106.9	1.757	24.4	0.129	42.9	0.219	-86.9

и частоты $f_{\text{H}}=2.3~\Gamma\Gamma$ ц, $f_{\text{B}}=2.9~\Gamma\Gamma$ ц. **Найти** модуль s_{11} в дБ на частоте f_{B} .

- 1) 5.5 дБ
- 2) -3.5 дБ
- 3) -18.3 дБ
- 4) -13 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.343	-157.7	12.929	92.5	0.039	67.3	0.326	-63.5
1.5	0.360	-174.0	8.599	81.4	0.054	66.4	0.236	-75.3
2.0	0.372	176.3	6.319	74.0	0.069	64.8	0.186	-88.5
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
5.5	0.415	137.5	2.272	37.5	0.174	44.9	0.120	-148.4
8.0	0.497	113.8	1.563	13.8	0.238	27.1	0.125	128.5

Найти точку (см. рисунок 4), соответствующую s_{11} на частоте 1.5 ГГц.

Рисунок 4 – Кривые s_{11} и $s_{22}\,$

- 1) A 2) B 3) C 4) D

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
6.1	0.512	151.6	4.500	39.7	0.087	44.5	0.195	-131.0
6.2	0.513	150.4	4.426	38.7	0.089	44.0	0.192	-132.8
6.3	0.515	149.1	4.354	37.7	0.090	43.5	0.190	-134.6
6.4	0.517	147.8	4.283	36.6	0.091	43.0	0.188	-136.5
6.5	0.519	146.6	4.214	35.5	0.092	42.5	0.186	-138.4
6.6	0.521	145.5	4.145	34.5	0.093	42.1	0.182	-139.9
6.8	0.526	143.2	4.011	32.5	0.096	41.3	0.173	-143.0
7.0	0.531	141.0	3.882	30.4	0.098	40.6	0.166	-146.5
7.2	0.536	139.1	3.761	28.6	0.101	39.9	0.155	-150.0
7.4	0.542	137.1	3.645	26.7	0.103	39.2	0.145	-153.9
7.6	0.550	135.4	3.539	24.8	0.106	38.3	0.137	-159.7

и частоты $f_{\scriptscriptstyle \rm H}=6.4$ ГГц, $f_{\scriptscriptstyle \rm B}=7$ ГГц.

Найти неравномерность усиления в полосе $f_{\text{\tiny H}}...f_{\text{\tiny B}}$, используя рисунок 5.

Рисунок 5 – Частотная характеристика усиления

- 1) 0.4 дБ
- 2) 0.9 дБ
- 3) 2.1 дБ
- 4) 0.8 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.3	0.569	153.9	4.300	66.0	0.062	57.7	0.259	-45.5
1.6	0.579	144.0	3.515	58.3	0.074	56.2	0.253	-50.0
1.9	0.598	135.5	2.940	50.9	0.086	53.9	0.245	-55.7
2.2	0.616	127.5	2.526	43.8	0.098	51.5	0.238	-62.4
2.5	0.637	119.8	2.216	37.1	0.109	48.7	0.231	-69.8
2.8	0.661	113.0	1.958	30.1	0.119	45.7	0.226	-78.0
3.1	0.679	106.9	1.757	24.4	0.129	42.9	0.219	-86.9
3.4	0.700	101.2	1.584	18.4	0.139	40.2	0.217	-96.2
3.7	0.719	96.1	1.441	12.7	0.148	37.3	0.217	-106.1

и частоты $f_{\scriptscriptstyle \rm H}=1.3$ ГГц, $f_{\scriptscriptstyle \rm B}=3.4$ ГГц.

Найти усиление на $f_{\scriptscriptstyle \mathrm{B}}.$

- 1) 8 дБ
- 2) 12.7 дБ
- 3) 6.3 дБ
- 4) 4 дБ