Department of Physics and Astronomy

Heidelberg University

Master thesis

in Computer Science

submitted by

Stefan Machmeier

born in Heidelberg

2022

Honeypot Implementation

in a

Cloud Environment

This Master thesis has been carried out by Stefan Machmeier

at the

EMCL

under the supervision of

Herrn Prof. Dr. Vincent Heuveline

Contents

1	Intr	oduction	5	
	1.1	Problem description	-	
	1.2	Justification, motivation and benefits	-	
	1.3	Research questions	-	
	1.4	Limitations		
2	Background 6			
	2.1		6	
	2.2	Honeypots	6	
		2.2.1 Definition of a Honeypot	6	
		2.2.2 Honeyd	6	
		2.2.3 Configuration Honeyd	6	
		2.2.4 Honeynets	6	
		2.2.5 Legal Issues	6	
	2.3	Intrusion Detection System	6	
	2.4	HoneyTrap	6	
	2.5	T-Pot	6	
3	Related Work			
	3.1	The Bait and Switch Honeypot		
	3.2	Intrusion Trap System		
	3.3	Honeycomb	7	
		v		
4		ctical Work	8	
	4.1	Attack vectors		
	4.2	Concept	8	
5	Experimental Work			
	5.1	SNORT	Ć	
6	Con	nclusion	10	
			10	

1 Introduction

- 1.1 Problem description
- 1.2 Justification, motivation and benefits
- 1.3 Research questions
- 1.4 Limitations

2 Background

- 2.1 Cloud Computing
- 2.2 Honeypots
- 2.2.1 Definition of a Honeypot
- 2.2.2 Honeyd
- 2.2.3 Configuration Honeyd
- 2.2.4 Honeynets
- 2.2.5 Legal Issues

Honeypots Tracking Hackers

- 2.3 Intrusion Detection System
- 2.4 HoneyTrap
- 2.5 T-Pot

- 3 Related Work
- 3.1 The Bait and Switch Honeypot
- 3.2 Intrusion Trap System
- 3.3 Honeycomb

- 4 Practical Work
- 4.1 Attack vectors
- 4.2 Concept

5 Experimental Work

Connect results of Honeypots with NIDS/IDS to update rules.

5.1 SNORT

6 Conclusion

6.1 Future work