Segunda avaliação de GBC063 - AARE Etapa I / 2020

Trabalho de implementação de algoritmos de busca

Este trabalho consiste em implementar na linguagem Python (v.3) os algoritmos descritos abaixo para simular o comportamento de um agente cruzando um labirinto.

Entregas

Os trabalhos podem ser feitos em grupos de, no máximo 3 alunos, e as entregas consistem de:

- os códigos comentados referentes a todos os algoritmos.
- um relatório do experimento (conforme especificado abaixo).

As entregas devem ser realizadas via plataforma MS Teams.

As entregas serão aceitas até às 24:00 do dia 01/09.

Sobre os programas suporte disponibilizados

Os programas bases disponibilizados permitem criar objetos em Python que representam labirintos aleatórios 2D a partir do algoritmo de Kruskal e apresentam uma interface simples para explorar esses labirintos. [referência https://github.com/138paulmiller/PyMaze]

Esses programas foram ligeiramente modificados, de modo a simplificar os labirintos e a interface para o teste de algoritmos de busca.

Três bases/diretórios são disponibilizados na pasta 'Materiais de classe' de 'Arquivos' de 'Geral':

- Visual onde os movimentos (passo-a-passo) do agente dentro do labirinto podem ser visualizados (indicado para fazer debug).
- OnlyTracking onde o labirinto n\u00e4o \u00e9 visto somente os passos do agente (indicado para fazer debug).
- NoVisual onde n\u00e4o h\u00e1 interface gr\u00e1fica (somente o resultado da busca \u00e9 apresentado em txt).

Os códigos podem ser modificados para, por exemplo, se obter somente os valores da solução ou dos passos. O importante é que os algoritmos desenvolvidos não recebam (do labirinto) mais informação do que sua posição atual e as possiveis posições subsequentes.

Algoritmos

Os códigos comentados referentes aos algoritmos listados abaixo devem ser implementados em Python (v.3) e, depois de testados, entregues em formato texto (com tabulação pronta para teste).

- Busca em profundidade
- Busca por aprofundamento iterativo
- Usando a distância de Manhattan do estado atual até o objetivo como função heurística,
 - o Busca por descida de encosta
 - Busca por Têmpera simulada (Simulated Annealing) para duas funções de variação de temperatura (ao longo do tempo) distintas - de preferência uma *T(t)* que funcione bem para o problema.

Relatório

Um documento contendo introdução, resultados e conclusão deve ser entregue em pdf.

Na seção Resultados devem ser apresentadas tabelas e gráficos do tipo boxplot para os seguintes experimentos:

Experimento 1 – Teste dos algoritmos de busca sem informação para 100 labirintos 10x10

Busca	Movimentos realizados na busca	Tamanho do caminho da solução	
Por profundidade	<média 100="" dos="" valores=""></média>	<média 100="" dos="" valores=""></média>	
Por Aprofundamento iterativo	<média 100="" dos="" valores=""></média>	<média 100="" dos="" valores=""></média>	

Experimento 2 – Teste dos algoritmos de busca que usam a distância de Manhattan como informação para 100 labirintos 10x10 *

Busca	Distância final até o objetivo	Movimentos realizados na busca	Tamanho do caminho da solução
Descida de Encosta	<média 100="" dos="" valores=""></média>	<média 100="" dos="" valores=""></média>	<média 100="" dos="" valores=""></média>
Têmpera Simulada T ₁ (t)	<média 100="" dos="" valores=""></média>	<média 100="" dos="" valores=""></média>	<média 100="" dos="" valores=""></média>
Têmpera Simulada T ₂ (t)	<média 100="" dos="" valores=""></média>	<média 100="" dos="" valores=""></média>	<média 100="" dos="" valores=""></média>

^{*} OBS: de modo a representar as paredes do labirinto na tela, cada movimento é representado por uma mudança de 2 linhas/caracteres.