

## Actividad 1. Unidad 1: Funciones analíticas

**Problem 1** Prove algebraically that for complex numbers,

$$|z_1| - |z_2| \le |z_1 + z_2| \le |z_1| + |z_2|.$$

## **Problem 2** Show that:

a) 
$$\cos n\theta = \cos^n \theta - \binom{n}{2} \cos^{n-2} \theta \sin^2 \theta + \binom{n}{4} \cos^{n-4} \theta \sin^4 \theta - \dots$$

b) 
$$\sin n\theta = \binom{n}{1}\cos^{n-1}\theta\sin\theta - \binom{n}{3}\cos^{n-3}\theta\sin^3\theta + \dots$$

Note. The quantities  $\binom{n}{m}$  are binomial coefficients:  $\binom{n}{m} = \frac{n!}{m!(n-m)!}$ .

## **Problem 3** Prove that:

a) 
$$\sum_{n=0}^{N-1} \cos nx = \frac{\sin (Nx/2)}{\sin x/2} \cos (N-1) \frac{x}{2},$$

b) 
$$\sum_{n=0}^{N-1} \sin nx = \frac{\sin (Nx/2)}{\sin x/2} \sin (N-1) \frac{x}{2}.$$

Note. Parts (a) and (b) may be combined to form a geometric series.

**Problem 4** Assume that the trigonometric functions  $(\sin z \text{ and } \cos z)$  and the hyperbolic functions  $(\sinh z \text{ and } \cosh z)$  are defined for complex argument by the appropriate power series. Show that:

- a)  $i \sin z = \sinh iz$
- b)  $\sin iz = i \sinh z$
- c)  $\cos z = \cosh iz$
- d)  $\cos iz = \cosh z$

Tomado de: Arfken & Weber, Mathematical methods for physicists (6th ed., 2005). Elsevier. Chapter 6: Functions of a Complex Variable I.

Fecha de Entrega: 13 de Septiembre de 2024.

Buil in LATEX