Table 1: Average and standard deviation of the fitness value for the TSP instances Part 1. (*) Denote experiments where optimal solution was found.

gr48	7024.6	318.0	7358.8	179.7	6812.1	307.7	8877.7	726.0	15835.9	124.7	15144.6	350.7	11771.4	868.4	(*) 5046.0	0.0	5065.6	3.6	7870.6	108.8	6120.7	342.4	15174.1	140.3	10901.9	552.5	13044.8	436.6	5046.0
gr24	1506.7	74.0	1494.2	84.0	1432.7	61.4	1662.5	106.9	2709.4	36.5	2512.9	2.69	1941.5	115.7	(*) 1272.0	0.0	1272.0(*)	0.0	1383.4	20.9	1369.3	42.9	2201.3	166.0	1968.9	68.5	2007.0	102.0	1272.0
gr17	(*) 2134.4	34.3	2184.2	28.4	(*) 2137.7	42.5	2290.8	72.2	3375.2	86.2	3042.0	105.8	2675.7	114.9	(*) 2085.0	0.0	(*) 2089.5	6.0	(*) 2085.0	0.0	(*) 2127.9	39.9	2662.2	224.4	2639.2	164.0	2523.9	131.3	2085.0
fri26	1085.2	49.8	1156.1	57.3	1094.9	57.3	1280.8	51.6	1076.5	6.0	1024.9	2.4	1130.7	84.2	(*) 937.0	0.0	(*) 937.0	0.0	1041.5	27.7	1048.3	47.2	1118.4	30.5	1023.6	50.2	1461.4	51.3	937.0
eil101	945.0	33.3	1112.3	35.5	961.5	28.7	1597.3	67.4	1891.8	9.4	1881.9	9.3	2008.2	177.9	648.0	4.4	756.7	10.4	1504.7	21.2	807.1	31.9	2141.9	93.9	1959.1	21.1	1918.7	33.0	629.0
eil76	756.9	25.3	854.5	19.2	756.5	18.9	1166.1	64.1	1806.0	15.4	1771.0	9.6	1643.5	75.9	542.8			0.0		16.3	662.6	25.0	2166.7	28.7	2157.4	17.3	1737.4	37.8	538.0
eil51	555.9	34.5	616.3	20.4	540.7	23.9	744.5	22.9	1185.8	6.7	1127.9	17.9	998.1	65.6	(*) 426.0	0.0	428.4	8.0	663.5	7.8	518.0	17.6	1234.7	13.3	893.4	39.6	1062.1	34.1	426.0
dantzig42	949.0	58.8	1034.9	32.1	935.1	46.3	1206.9	71.1	0.669 (*)	0.0	0.669 (*)	0.0	947.7	77.4	0.669 (*)	0.0	(*) 701.8	3.4	1052.9	19.9	854.0	31.6	1750.0	286.2	(*) 705.0	8.9	1393.6	53.1	0.669
ch130	11240.0	524.5	12841.4	320.8	11465.3	384.4	20806.9		35	256.4		265.2	32330.9	1373.2	6318.7	39.8	8654.9	45.5	20787.5	225.8	9221.4	324.1	37791.3	401.1	39310.6	310.0	42247.8	428.7	6110.0
burma14	(*) 3371.5	50.6	(*) 3450.0	94.2	(*) 3358.0	41.2	3598.8	61.2	4229.7	29.3	4048.7	210.2	3739.2	166.2	(*) 3323.0	0.0	(*) 3323.0	0.0	(*) 3323.0	0.0	(*) 3345.2	25.9	(*) 3521.1	102.1	4109.8	76.2	3753.9	194.1	3323.0
berlin52	10059.9	651.1	10921.3	588.6	9893.8	445.0	12846.8	530.4	20460.2	89.3	18728.1	263.2	15813.6	7.262	(*) 7542.0	0.0	(*) 7584.6	68.2	11729.7	217.9	9195.8	268.8	21875.9	504.2	15850.3	757.6	18624.0	671.4	7542.0
bays29	2324.5	61.3	2467.6	60.3	2467.5	77.2	2818.8	162.6	4305.1	121.9	4235.3	6.06	3269.1	283.7	(*) 2020.0	0.0	(*) 2022.5	3.5	2321.8	23.0	2177.8	87.9	4064.9	66.5	3316.1	122.9	3353.5	159.6	2020.0
	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	lutions
EDA	UMDA		CIPAIDA	INTINITO	A IA CIC	EDINABIC	10 T	INEE	ACIMIT	$_{\rm UMDA_c}$	V IV C	EGIVAce	401 A 401	iDea-iOe	PUDGA	LM \times C Γ	PHDGA	ENDSAWO	MITDGA	LM P C C M	MIIDGA	OMEGUNI	ערשם	nedaumda	ארושם	DEDAMIMIC	V Josef	Oillegra	Best Known Solutions

Table 2: Average and standard deviation of the fitness value for the TSP instances Part 2. (*) Denote experiments where optimal solution was found.

	l		l		l		ı		l				1				l		l		l		l		ı		L		11
ulysses22	7869.6	501.1	7773.3	287.3	7389.9	151.9	8271.2	407.4	10854.6	963.4	9801.0	156.2	8792.3	518.1	(*) 7013.0	0.0	(*) 7013.0	0.0	7184.7	0.69	7218.7	106.7	8981.7	828.9	8932.5	248.2	9487.7	615.0	7013.0
ulysses16	6943.7	35.4	(*) 7083.3	127.5	9.6669	61.7	7126.1	137.9	8187.0	353.8	7486.5	220.8	7.9077	246.0	(*) 6859.0	0.0	(*) 6859.0	0.0	(*) 6863.3	0.9	6947.3	25.0	7347.6	281.4	7529.9	197.7	7746.4	343.4	6859.0
swiss42	1682.7	125.9	1832.3	78.4	1677.3	117.3	2212.3	93.6	2479.7	20.4	2433.9	13.5	2495.5	263.2	(*) 1273.0	0.0	(*) 1273.0	0.0	1862.8	24.4	1527.9	2.99	3484.0	29.6	2278.0	68.4	2609.4	113.2	1273.0
st70	1042.5	45.9	1170.4	54.1	1046.7	42.0	1547.5	84.0	2790.4	14.6	2609.4	35.4	2295.7	160.5	(*) 675.0	0.0	784.8	11.0	1410.2	22.0	6.706	42.1	3071.9	51.7	3101.1	36.9	2684.9	37.7	675.0
rat99	1989.9	103.5	2464.8	83.1	2039.8	155.6	3494.0	350.7	2107.9	4.0	2084.5	15.6	2476.0	291.6	(*)1211.0	0.0	1489.5	16.9	3284.1	52.7	1673.3	87.4	6937.7	35.3	7022.6	95.0	2226.5	61.5	1211.0
pr136	187461.5	11888.7	228257.6	7057.4	188303.6	8749.6	346853.5	14869.7	287026.0	0.0	270439.3	1669.0	398619.3	38609.4	97253.2	230.4	134954.8	1128.8	344678.2	4103.2	180325.8	23529.4	335107.8	7311.0	323286.0	0.0	278249.2	5000.6	96772.0
pr124	151817.3	8952.6	171455.4	8931.1	152818.5	9301.5	269708.5	16058.0	9.7877.6	27.3	97107.8	318.1	149644.5	12606.8	(*) 59034.6	8.3	91149.8	902.6	264483.6	3941.6	116686.2	8858.6	237997.6	10500.5	155189.0	0.0	120027.3	3178.7	59030.0
pr107	119614.6	11209.6	130594.0	13834.8	122056.9	10515.9	201442.0	14143.4	58604.1	102.7	58929.3	118.2	120053.0	12290.0	(*)44303.0	0.0	59018.0	319.2	176273.5	2977.0	106897.2	7368.5	109403.0	14961.5	110761.0	0.0	69644.4	1601.0	44303.0
pr76	166831.2	8143.2	188665.3	6360.5	163651.5	12420.7	261110.5	15224.8	150780.0	0.0	150780.0	0.0	174855.8	6672.0	(*)108159.0	0.0	(*) 108159.0	0.0	229419.4	5900.1	143397.9	6982.9	496847.3	6258.6	493559.7	7331.1	180982.7	5223.1	108159.0
hk48	15486.9	622.7	17223.9	782.9	15201.6	674.8	21752.9	1153.5	37260.3	4942.1	34591.7	415.0	25698.7	1394.6	(*) 11461.0	0.0	11473.8	8.9	17843.2	344.2	14112.7	827.9	34691.6	464.5	25478.3	1437.4	36615.3	871.0	11461.0
gr137	144843.0	10116.2	168174.7	8943.1	139634.6	3086.7	264946.9	24392.1	94883.1	48.9	93498.6	_	135848.3	8563.1	70609.5	211.8	100524.4	1186.1	255827.9	3624.1	125890.0	9728.2	165303.4	18622.5	1	1	106789.7	2379.7	69853.0
gr96	93616.9	3223.3	110702.2	1198.2	95758.0	5077.0	159475.6	5578.3	79163.4	16.2	77749.0	119.2	90359.4	6511.7	(*) 55225.4	26.2	69335.9	827.5	147449.5	2428.8	74414.1	5532.3	320243.9	4078.5	316931.1	5098.7	97391.4	4067.9	55209.0
	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	avg.	dev.	utions
EDA	TIMEN	UMDA	CIPATRA	INITINITO	A IAGG	EDINABIC	10 T	IREE	ACTACT	$_{ m CMDA_c}$	AMOR	$EGNA_{ee}$	10 V 10 V	IDEA-IOE	DIDGA	$E\Pi DSAWT$	PHDGA	ELIDSAWO	MIDGA	MDSAWT	MIIDGA	NHBSAWO	עתישם	NEDAUMDA	ארושם	NEDAMIMIC	V 20 000	Omega	Best Known Solutions