Gradient Descent: The Foundation of Machine Learning Optimization

From Taylor Series to Modern Deep Learning

Nipun Batra and the teaching staff

IIT Gandhinagar

August 29, 2025

Table of Contents

- 1. Mathematical Foundations
- 2. Taylor Series: The Mathematical Foundation
- 2.1 Univariate Taylor Series
- 2.2 Multivariate Taylor Series
- 3. From Taylor Series to Gradient Descent
- 4. The Gradient Descent Algorithm
- 5. Gradient Descent for Linear Regression
- 6. Variants of Gradient Descent
- 7. Mathematical Properties
- 8. Computational Complexity
- 9. Advanced Topics and Extensions
- 10. Practical Considerations
- 11. Summary and Key Takeaways

Mathematical Foundations

Key Points:

Core ML Problem: Find best parameters θ^* for our model

Key Points:

Core ML Problem: Find best parameters θ^* for our model

Examples everywhere:

• Linear regression: Minimize $(y - X\theta)^2$

Key Points:

Core ML Problem: Find best parameters θ^* for our model

Examples everywhere:

- Linear regression: Minimize $(y X\theta)^2$
- Neural networks: Minimize classification/regression loss

Key Points:

Core ML Problem: Find best parameters θ^* for our model

Examples everywhere:

- Linear regression: Minimize $(y X\theta)^2$
- Neural networks: Minimize classification/regression loss
- Logistic regression: Minimize cross-entropy loss

Key Points:

Core ML Problem: Find best parameters θ^* for our model

Examples everywhere:

- Linear regression: Minimize $(y X\theta)^2$
- Neural networks: Minimize classification/regression loss
- Logistic regression: Minimize cross-entropy loss

Key Points:

Core ML Problem: Find best parameters θ^* for our model

Examples everywhere:

- Linear regression: Minimize $(y X\theta)^2$
- Neural networks: Minimize classification/regression loss
- Logistic regression: Minimize cross-entropy loss

Important: The Challenge

Most ML problems have **no closed-form solution!**

Imagine you're hiking in dense fog and want to reach the valley:

You can only feel the slope beneath your feet

- You can only feel the slope beneath your feet
- Strategy: Always step in the steepest downhill direction

- You can only feel the slope beneath your feet
- Strategy: Always step in the steepest downhill direction
- Gradient = Direction of steepest uphill (ascent)

- You can only feel the slope beneath your feet
- Strategy: Always step in the steepest downhill direction
- Gradient = Direction of steepest uphill (ascent)
- Negative gradient = Direction of steepest downhill (descent)

- You can only feel the slope beneath your feet
- Strategy: Always step in the steepest downhill direction
- Gradient = Direction of steepest uphill (ascent)
- Negative gradient = Direction of steepest downhill (descent)

Imagine you're hiking in dense fog and want to reach the valley:

- You can only feel the slope beneath your feet
- Strategy: Always step in the steepest downhill direction
- Gradient = Direction of steepest uphill (ascent)
- Negative gradient = Direction of steepest downhill (descent)

Key Points:

Key insight: Gradient points in direction of steepest ascent So $-\nabla f$ points in direction of steepest descent!

Geometric Intuition with Level Sets

Geometric Intuition with Level Sets

Mathematical definition:
$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Taylor Series: The Mathematical Foundation

Example: The Core Idea

If we can't solve $\min f(\mathbf{x})$ exactly, let's approximate $f(\mathbf{x})$ locally!

Example: The Core Idea

If we can't solve $\min f(\mathbf{x})$ exactly, let's approximate $f(\mathbf{x})$ locally!

Strategy:

Replace complicated function with simpler approximation

Example: The Core Idea

If we can't solve $\min f(\mathbf{x})$ exactly, let's approximate $f(\mathbf{x})$ locally!

Strategy:

- Replace complicated function with simpler approximation
- Optimize the approximation instead

Example: The Core Idea

If we can't solve $\min f(\mathbf{x})$ exactly, let's approximate $f(\mathbf{x})$ locally!

Strategy:

- Replace complicated function with simpler approximation
- Optimize the approximation instead
- Move to new point and repeat

Example: The Core Idea

If we can't solve $\min f(\mathbf{x})$ exactly, let's approximate $f(\mathbf{x})$ locally!

Strategy:

- Replace complicated function with simpler approximation
- Optimize the approximation instead
- Move to new point and repeat

Example: The Core Idea

If we can't solve $\min f(\mathbf{x})$ exactly, let's approximate $f(\mathbf{x})$ locally!

Strategy:

- Replace complicated function with simpler approximation
- Optimize the approximation instead
- Move to new point and repeat

Important: Taylor Series Power

Any smooth function can be approximated by polynomials!

Taylor series expansion around point x_0 :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \frac{1}{6}f'''(x_0)(x - x_0)^3 + \dots$$
(1)

Taylor series expansion around point x_0 :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \frac{1}{6}f'''(x_0)(x - x_0)^3 + \dots$$
(1)

Different orders of approximation:

• **Zero-order:** $f(x) \approx f(x_0)$ (constant)

Taylor series expansion around point x_0 :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \frac{1}{6}f'''(x_0)(x - x_0)^3 + \dots$$
(1)

Different orders of approximation:

- **Zero-order:** $f(x) \approx f(x_0)$ (constant)
- First-order: $f(x) \approx f(x_0) + f'(x_0)(x x_0)$ (linear)

Taylor series expansion around point x_0 :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \frac{1}{6}f'''(x_0)(x - x_0)^3 + \dots$$
(1)

Different orders of approximation:

- **Zero-order:** $f(x) \approx f(x_0)$ (constant)
- First-order: $f(x) \approx f(x_0) + f'(x_0)(x x_0)$ (linear)
- **Second-order:** adds $\frac{1}{2}f''(x_0)(x-x_0)^2$ (quadratic)

Visual: Tangent Line Approximation

Linear approximation: Use tangent line to approximate function locally

Key insight: Tangent gives best local linear approximation!

Adding Quadratic Term

Key Points:

Higher-order = better approximation, but 1st-order is often sufficient!

•
$$f(0) = \cos(0) = 1$$

- $f(0) = \cos(0) = 1$
- $f(0) = -\sin(0) = 0$

- $f(0) = \cos(0) = 1$
- $f(0) = -\sin(0) = 0$
- $f'(0) = -\cos(0) = -1$

- $f(0) = \cos(0) = 1$
- $f(0) = -\sin(0) = 0$
- $f'(0) = -\cos(0) = -1$
- $f''(0) = \sin(0) = 0$

- $f(0) = \cos(0) = 1$
- $f(0) = -\sin(0) = 0$
- $f'(0) = -\cos(0) = -1$
- $f''(0) = \sin(0) = 0$
- $f^{(4)}(0) = \cos(0) = 1$

- $f(0) = \cos(0) = 1$
- $f(0) = -\sin(0) = 0$
- $f'(0) = -\cos(0) = -1$
- $f''(0) = \sin(0) = 0$
- $f^{(4)}(0) = \cos(0) = 1$

Concrete Example: $f(x) = \cos(x)$ at $x_0 = 0$

Let's compute the derivatives:

•
$$f(0) = \cos(0) = 1$$

•
$$f(0) = -\sin(0) = 0$$

•
$$f''(0) = -\cos(0) = -1$$

•
$$f''(0) = \sin(0) = 0$$

•
$$f^{(4)}(0) = \cos(0) = 1$$

Taylor approximations:

0th order:
$$f(x) \approx 1$$
 (2)

2nd order:
$$f(x) \approx 1 - \frac{x^2}{2}$$
 (3)

4th order:
$$f(x) \approx 1 - \frac{x^2}{2} + \frac{x^4}{24}$$
 (4)

For function f(x) around point x_0 :

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + \dots$$
(5)

For function $f(\mathbf{x})$ around point \mathbf{x}_0 :

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + \dots$$
(5)

Where:

• $\nabla f(\mathbf{x}_0)$ is the **gradient** (vector of partial derivatives)

For function f(x) around point x_0 :

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + \dots$$
(5)

Where:

- $\nabla f(\mathbf{x}_0)$ is the **gradient** (vector of partial derivatives)
- $abla^2 f(\mathbf{x}_0)$ is the **Hessian** (matrix of second derivatives)

For function $f(\mathbf{x})$ around point \mathbf{x}_0 :

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + \dots$$
(5)

Where:

- $\nabla f(\mathbf{x}_0)$ is the **gradient** (vector of partial derivatives)
- $\nabla^2 f(\mathbf{x}_0)$ is the **Hessian** (matrix of second derivatives)
- $(\mathbf{x} \mathbf{x}_0) = \Delta \mathbf{x}$ is the step vector

Understanding the Linear Term

The first-order term: $\nabla f(x_0)^T \Delta x$ where $\Delta x = x - x_0$

Understanding the Linear Term

The first-order term: $\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}$ where $\Delta \mathbf{x} = \mathbf{x} - \mathbf{x}_0$ For 2D case: $\Delta \mathbf{x} = \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \end{bmatrix} = \begin{bmatrix} x_1 - x_{0,1} \\ x_2 - x_{0,2} \end{bmatrix}$

Geometric interpretation: $\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x} = |\nabla f| |\Delta \mathbf{x}| \cos \theta$

Visual: Multivariate Case with Level Sets

Key Points:

Gradient \perp level sets, tangent plane \perp gradient

Mathematical insight: Level set $= \{x : f(x) = c\}$ for constant c

Mathematical insight: Level set $= \{x : f(x) = c\}$ for constant c

On level sets: Moving along the level curve keeps f(x) constant

- If $\mathbf{x}(t)$ parameterizes level curve: $f(\mathbf{x}(t)) = c$ (constant)
- Taking derivative: $\frac{d}{dt}f(\mathbf{x}(t)) = \nabla f(\mathbf{x}) \cdot \mathbf{x}'(t) = 0$

Mathematical insight: Level set $= \{x : f(x) = c\}$ for constant c

On level sets: Moving along the level curve keeps f(x) constant

- If $\mathbf{x}(t)$ parameterizes level curve: $f(\mathbf{x}(t)) = c$ (constant)
- Taking derivative: $\frac{d}{dt}f(\mathbf{x}(t)) = \nabla f(\mathbf{x}) \cdot \mathbf{x}'(t) = 0$

Conclusion: $\nabla f(\mathbf{x}) \perp \mathbf{x}'(t)$ for any tangent direction $\mathbf{x}'(t)$

Mathematical insight: Level set $= \{x : f(x) = c\}$ for constant c

On level sets: Moving along the level curve keeps f(x) constant

- If $\mathbf{x}(t)$ parameterizes level curve: $f(\mathbf{x}(t)) = c$ (constant)
- Taking derivative: $\frac{d}{dt} f(\mathbf{x}(t)) = \nabla f(\mathbf{x}) \cdot \mathbf{x}'(t) = 0$

Conclusion: $\nabla f(\mathbf{x}) \perp \mathbf{x}'(t)$ for any tangent direction $\mathbf{x}'(t)$

From Taylor Series to Gradient Descent

Goal: Find Δx such that $\mathit{f}(x_0 + \Delta x) < \mathit{f}(x_0)$

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$ Using first-order Taylor approximation:

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}$$
 (6)

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$ Using first-order Taylor approximation:

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}$$
 (6)

For the function to decrease:

$$\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x} < 0$$

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$ Using first-order Taylor approximation:

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}$$
 (6)

For the function to decrease:

$$\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x} < 0$$

Important: Vector Geometry Reminder

For vectors $\mathbf{a}, \mathbf{b} \colon \mathbf{a}^T \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$

Most negative when: $cos(\theta) = -1$ (opposite directions!)

Visual Derivation: Finding the Best Direction

Visual Derivation: Finding the Best Direction

Dot products tell us the direction:

- $\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}_1 > 0$ (increases function)
- $\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}_2 < 0$ (decreases function good!)
- $\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}_3 < 0$ (decreases function)

Definition: Optimal Choice

$$\Delta \mathbf{x} = -\alpha \nabla \mathbf{f}(\mathbf{x}_0), \quad \alpha > 0$$

Definition: Optimal Choice

$$\Delta \mathbf{x} = -\alpha \nabla f(\mathbf{x}_0), \quad \alpha > 0$$

Why this choice?

• $-\nabla f(\mathbf{x}_0)$ points in direction of steepest descent

Definition: Optimal Choice

$$\Delta \mathbf{x} = -\alpha \nabla f(\mathbf{x}_0), \quad \alpha > 0$$

Why this choice?

- $-\nabla f(\mathbf{x}_0)$ points in direction of steepest descent
- $\alpha > 0$ controls the step size

Definition: Optimal Choice

$$\Delta \mathbf{x} = -\alpha \nabla f(\mathbf{x}_0), \quad \alpha > 0$$

Why this choice?

- $-\nabla f(\mathbf{x}_0)$ points in direction of steepest descent
- $\alpha > 0$ controls the step size
- Guarantees $\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x} < 0$ (function decrease)

Definition: Optimal Choice

$$\Delta \mathbf{x} = -\alpha \nabla f(\mathbf{x}_0), \quad \alpha > 0$$

Why this choice?

- $-\nabla f(\mathbf{x}_0)$ points in direction of steepest descent
- $\alpha > 0$ controls the step size
- Guarantees $\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x} < 0$ (function decrease)

Definition: Optimal Choice

$$\Delta \mathbf{x} = -\alpha \nabla f(\mathbf{x}_0), \quad \alpha > 0$$

Why this choice?

- $-\nabla f(\mathbf{x}_0)$ points in direction of steepest descent
- $\alpha > 0$ controls the step size
- Guarantees $\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x} < 0$ (function decrease)

Key Points:

This gives us the fundamental gradient descent step!

This gives us the gradient descent update:

$$\mathbf{x}_{\mathsf{new}} = \mathbf{x}_{\mathsf{old}} - \alpha \nabla \mathit{f}(\mathbf{x}_{\mathsf{old}})$$

This gives us the gradient descent update:

$$\mathbf{x}_{\mathsf{new}} = \mathbf{x}_{\mathsf{old}} - \alpha \nabla f(\mathbf{x}_{\mathsf{old}})$$

Definition: Gradient Descent Algorithm

An iterative first-order optimization method for finding local minima

This gives us the gradient descent update:

$$\mathbf{x}_{\mathsf{new}} = \mathbf{x}_{\mathsf{old}} - \alpha \nabla f(\mathbf{x}_{\mathsf{old}})$$

Definition: Gradient Descent Algorithm

An iterative first-order optimization method for finding local minima

Key properties:

Uses only first derivatives (gradients)

This gives us the gradient descent update:

$$\mathbf{x}_{\mathsf{new}} = \mathbf{x}_{\mathsf{old}} - \alpha \nabla f(\mathbf{x}_{\mathsf{old}})$$

Definition: Gradient Descent Algorithm

An iterative first-order optimization method for finding local minima

Key properties:

- Uses only first derivatives (gradients)
- Greedy local search

This gives us the gradient descent update:

$$\mathbf{x}_{\mathsf{new}} = \mathbf{x}_{\mathsf{old}} - \alpha \nabla f(\mathbf{x}_{\mathsf{old}})$$

Definition: Gradient Descent Algorithm

An iterative first-order optimization method for finding local minima

Key properties:

- Uses only first derivatives (gradients)
- Greedy local search
- Guaranteed convergence for convex functions

This gives us the gradient descent update:

$$\mathbf{x}_{\mathsf{new}} = \mathbf{x}_{\mathsf{old}} - \alpha \nabla f(\mathbf{x}_{\mathsf{old}})$$

Definition: Gradient Descent Algorithm

An iterative first-order optimization method for finding local minima

Key properties:

- Uses only first derivatives (gradients)
- Greedy local search
- Guaranteed convergence for convex functions
- Foundation of modern machine learning

Pop Quiz #1: Understanding the Derivation

Answer this!

Consider $f(x) = x^2 + 2$ at point $x_0 = 2$.

Questions:

- 1. What is $f(x_0)$ and $f'(x_0)$?
- 2. Write the 1st-order Taylor approximation
- 3. If we take step $\Delta x = -0.1 \cdot f(x_0)$, what is our new x?
- 4. Will the function value decrease?

The Gradient Descent Algorithm

The Complete Algorithm

Algorithm Steps:

1. Initialize: Choose starting point $oldsymbol{ heta}_0$

The Complete Algorithm

Algorithm Steps:

- 1. Initialize: Choose starting point $heta_0$
- 2. Repeat until convergence:

The Complete Algorithm

Algorithm Steps:

- 1. **Initialize:** Choose starting point θ_0
- 2. Repeat until convergence:
 - $oldsymbol{\mathbf{c}}$ Compute gradient: $\mathbf{g}_t =
 abla \mathit{f}(oldsymbol{ heta}_t)$

Algorithm Steps:

- 1. **Initialize:** Choose starting point θ_0
- 2. Repeat until convergence:
 - $_{\circ}$ Compute gradient: $\mathbf{g}_{t} =
 abla \mathit{f}(oldsymbol{ heta}_{t})$
 - $_{\circ}$ Update parameters: $oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_{t} lpha \mathbf{g}_{t}$

Algorithm Steps:

- 1. **Initialize:** Choose starting point θ_0
- 2. Repeat until convergence:
 - $_{\circ}$ Compute gradient: $\mathbf{g}_{t} =
 abla \mathit{f}(oldsymbol{ heta}_{t})$
 - $_{\circ}$ Update parameters: $oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_{t} lpha \mathbf{g}_{t}$
 - Check stopping criterion

Algorithm Steps:

- 1. **Initialize:** Choose starting point θ_0
- 2. Repeat until convergence:
 - $_{\circ}$ Compute gradient: $\mathbf{g}_{t} =
 abla \mathit{f}(oldsymbol{ heta}_{t})$
 - $_{\circ}$ Update parameters: $oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_{t} lpha \mathbf{g}_{t}$
 - Check stopping criterion

Algorithm Steps:

- 1. **Initialize:** Choose starting point θ_0
- 2. Repeat until convergence:
 - $_{\circ}$ Compute gradient: $\mathbf{g}_{t} =
 abla \mathit{f}(oldsymbol{ heta}_{t})$
 - $m{\theta}$ Update parameters: $m{ heta}_{t+1} = m{ heta}_t lpha \mathbf{g}_t$
 - Check stopping criterion

Key hyperparameter: Learning rate α

Algorithm Steps:

- 1. **Initialize:** Choose starting point θ_0
- 2. Repeat until convergence:
 - $_{\circ}$ Compute gradient: $\mathbf{g}_{t} =
 abla \mathit{f}(oldsymbol{ heta}_{t})$
 - Update parameters: $oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t lpha \mathbf{g}_t$
 - Check stopping criterion

Key hyperparameter: Learning rate α

Key Points:

Learning rate selection is crucial for success!

Watch how gradient descent finds the minimum:

Watch how gradient descent finds the minimum:

Loss surface $f(\theta)$

Theorem: Key Insight

Steps get **smaller** as we approach the minimum because $|\nabla f| \to 0!$

The learning rate α controls how big steps we take:

• Too small α : Slow convergence

- Too small α : Slow convergence
- **Good** α : Fast, stable convergence

- Too small α : Slow convergence
- Good α : Fast, stable convergence
- **Too large** α **:** Overshooting, instability

- **Too small** α **:** Slow convergence
- Good α : Fast, stable convergence
- **Too large** α **:** Overshooting, instability
- Way too large α : Divergence!

- **Too small** α **:** Slow convergence
- Good α : Fast, stable convergence
- **Too large** α **:** Overshooting, instability
- Way too large α : Divergence!

- **Too small** α **:** Slow convergence
- Good α : Fast, stable convergence
- **Too large** α : Overshooting, instability
- Way too large α : Divergence!

Learning Rate Visualization: Too Small

 $\alpha = 0.01$: Convergence is slow but stable

Important: Problem

Takes many iterations to reach the minimum. Computationally expensive!

Learning Rate: Just Right

$\alpha=0.1$: Good balance: Fast and stable convergence

Key Points:

Perfect balance: Fast convergence + Stability

Learning Rate: Too Large

 $\alpha = 0.8$: Fast but may overshoot

Important: Warning

Quick convergence but risk of instability. Watch out for oscillations!

Learning Rate: Disaster

$\alpha = 1.01$: Divergence! Function values explode

Important: Disaster Zone

The algorithm diverges. Always monitor your loss curves!

Learning Rate Showdown: All Together

Compare different learning rates side by side:

Theorem: Goldilocks Principle

Not too small, not too large - learning rate must be just right!

Key Points:

Gradient Descent for Linear Regression

Linear Regression: Our First Application

Problem: Learn $y = \theta_0 + \theta_1 x$ from data

X	у
1	1
2	2
3	3

Linear Regression: Our First Application

Problem: Learn $y = \theta_0 + \theta_1 x$ from data

X	у
1	1
2	2
3	3

Cost Function (Mean Squared Error):

$$MSE(\theta_0, \theta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)^2$$

Linear Regression: Our First Application

Problem: Learn $y = \theta_0 + \theta_1 x$ from data

X	у
1	1
2	2
3	3

Cost Function (Mean Squared Error):

$$MSE(\theta_0, \theta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)^2$$

Goal:
$$(\theta_0^*, \theta_1^*) = \arg\min_{\theta_0, \theta_1} \mathrm{MSE}(\theta_0, \theta_1)$$

Computing Gradients for Linear Regression

We need:
$$\nabla MSE = \begin{bmatrix} \frac{\partial MSE}{\partial \theta_0} \\ \frac{\partial MSE}{\partial \theta_1} \end{bmatrix}$$

Computing Gradients for Linear Regression

We need:
$$\nabla MSE = \begin{bmatrix} \frac{\partial MSE}{\partial \theta_0} \\ \frac{\partial MSE}{\partial \theta_1} \end{bmatrix}$$

Let's compute each partial derivative:

$$\frac{\partial \text{MSE}}{\partial \theta_0} = \frac{2}{n} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)(-1)$$
 (7)

$$= -\frac{2}{n} \sum_{i=1}^{n} \epsilon_i \tag{8}$$

Computing Gradients for Linear Regression

We need:
$$\nabla MSE = \begin{bmatrix} \frac{\partial MSE}{\partial \theta_0} \\ \frac{\partial MSE}{\partial \theta_1} \end{bmatrix}$$

Let's compute each partial derivative:

$$\frac{\partial \text{MSE}}{\partial \theta_0} = \frac{2}{n} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)(-1)$$
 (7)

$$= -\frac{2}{n} \sum_{i=1}^{n} \epsilon_i \tag{8}$$

$$\frac{\partial \text{MSE}}{\partial \theta_1} = \frac{2}{n} \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)(-x_i)$$
 (9)

$$= -\frac{2}{n} \sum_{i=1}^{n} \epsilon_i x_i \tag{10}$$

where $\epsilon_i = y_i - \hat{y}_i$ is the residual.

Initial values: $\theta_0=4, \theta_1=0$, Learning rate: $\alpha=0.1$

•
$$\hat{y}_1 = \theta_0 + \theta_1 \cdot 1 = 4 + 0 \cdot 1 = 4$$

•
$$\hat{y}_1 = \theta_0 + \theta_1 \cdot 1 = 4 + 0 \cdot 1 = 4$$

•
$$\hat{y}_2 = \theta_0 + \theta_1 \cdot 2 = 4 + 0 \cdot 2 = 4$$

•
$$\hat{y}_1 = \theta_0 + \theta_1 \cdot 1 = 4 + 0 \cdot 1 = 4$$

•
$$\hat{y}_2 = \theta_0 + \theta_1 \cdot 2 = 4 + 0 \cdot 2 = 4$$

•
$$\hat{y}_3 = \theta_0 + \theta_1 \cdot 3 = 4 + 0 \cdot 3 = 4$$

•
$$\hat{y}_1 = \theta_0 + \theta_1 \cdot 1 = 4 + 0 \cdot 1 = 4$$

•
$$\hat{y}_2 = \theta_0 + \theta_1 \cdot 2 = 4 + 0 \cdot 2 = 4$$

•
$$\hat{y}_3 = \theta_0 + \theta_1 \cdot 3 = 4 + 0 \cdot 3 = 4$$

Initial values: $\theta_0 = 4, \theta_1 = 0$, Learning rate: $\alpha = 0.1$ Iteration 1 - Predictions:

•
$$\hat{y}_1 = \theta_0 + \theta_1 \cdot 1 = 4 + 0 \cdot 1 = 4$$

•
$$\hat{y}_2 = \theta_0 + \theta_1 \cdot 2 = 4 + 0 \cdot 2 = 4$$

•
$$\hat{y}_3 = \theta_0 + \theta_1 \cdot 3 = 4 + 0 \cdot 3 = 4$$

Errors (residuals):

•
$$\epsilon_1 = y_1 - \hat{y}_1 = 1 - 4 = -3$$

Step-by-Step Example: Setup

Initial values: $\theta_0 = 4, \theta_1 = 0$, Learning rate: $\alpha = 0.1$ Iteration 1 - Predictions:

•
$$\hat{\mathbf{y}}_1 = \theta_0 + \theta_1 \cdot 1 = 4 + 0 \cdot 1 = 4$$

•
$$\hat{y}_2 = \theta_0 + \theta_1 \cdot 2 = 4 + 0 \cdot 2 = 4$$

•
$$\hat{y}_3 = \theta_0 + \theta_1 \cdot 3 = 4 + 0 \cdot 3 = 4$$

Errors (residuals):

•
$$\epsilon_1 = y_1 - \hat{y}_1 = 1 - 4 = -3$$

•
$$\epsilon_2 = y_2 - \hat{y}_2 = 2 - 4 = -2$$

Step-by-Step Example: Setup

Initial values: $\theta_0 = 4, \theta_1 = 0$, Learning rate: $\alpha = 0.1$ Iteration 1 - Predictions:

•
$$\hat{y}_1 = \theta_0 + \theta_1 \cdot 1 = 4 + 0 \cdot 1 = 4$$

•
$$\hat{y}_2 = \theta_0 + \theta_1 \cdot 2 = 4 + 0 \cdot 2 = 4$$

•
$$\hat{y}_3 = \theta_0 + \theta_1 \cdot 3 = 4 + 0 \cdot 3 = 4$$

Errors (residuals):

•
$$\epsilon_1 = y_1 - \hat{y}_1 = 1 - 4 = -3$$

•
$$\epsilon_2 = y_2 - \hat{y}_2 = 2 - 4 = -2$$

•
$$\epsilon_3 = y_3 - \hat{y}_3 = 3 - 4 = -1$$

Compute gradients:

•
$$\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 - 2 - 1) = -\frac{2}{3}(-6) = 4$$

Compute gradients:

•
$$\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 - 2 - 1) = -\frac{2}{3}(-6) = 4$$

•
$$\frac{\partial MSE}{\partial \theta_1} = -\frac{2}{3}(-3 \cdot 1 - 2 \cdot 2 - 1 \cdot 3) = -\frac{2}{3}(-10) = 6.67$$

Compute gradients:

•
$$\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 - 2 - 1) = -\frac{2}{3}(-6) = 4$$

•
$$\frac{\partial MSE}{\partial \theta_1} = -\frac{2}{3}(-3 \cdot 1 - 2 \cdot 2 - 1 \cdot 3) = -\frac{2}{3}(-10) = 6.67$$

Compute gradients:

•
$$\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 - 2 - 1) = -\frac{2}{3}(-6) = 4$$

•
$$\frac{\partial \text{MSE}}{\partial \theta_1} = -\frac{2}{3}(-3 \cdot 1 - 2 \cdot 2 - 1 \cdot 3) = -\frac{2}{3}(-10) = 6.67$$

Parameter updates:

•
$$\theta_0 = 4 - 0.1 \times 4 = 3.6$$

Compute gradients:

•
$$\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 - 2 - 1) = -\frac{2}{3}(-6) = 4$$

•
$$\frac{\partial \text{MSE}}{\partial \theta_1} = -\frac{2}{3}(-3 \cdot 1 - 2 \cdot 2 - 1 \cdot 3) = -\frac{2}{3}(-10) = 6.67$$

Parameter updates:

•
$$\theta_0 = 4 - 0.1 \times 4 = 3.6$$

•
$$\theta_1 = 0 - 0.1 \times 6.67 = -0.67$$

Compute gradients:

•
$$\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 - 2 - 1) = -\frac{2}{3}(-6) = 4$$

•
$$\frac{\partial \text{MSE}}{\partial \theta_1} = -\frac{2}{3}(-3 \cdot 1 - 2 \cdot 2 - 1 \cdot 3) = -\frac{2}{3}(-10) = 6.67$$

Parameter updates:

•
$$\theta_0 = 4 - 0.1 \times 4 = 3.6$$

•
$$\theta_1 = 0 - 0.1 \times 6.67 = -0.67$$

Compute gradients:

- $\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 2 1) = -\frac{2}{3}(-6) = 4$
- $\frac{\partial \text{MSE}}{\partial \theta_1} = -\frac{2}{3}(-3 \cdot 1 2 \cdot 2 1 \cdot 3) = -\frac{2}{3}(-10) = 6.67$

Parameter updates:

- $\theta_0 = 4 0.1 \times 4 = 3.6$
- $\theta_1 = 0 0.1 \times 6.67 = -0.67$

Key Points:

New parameters: $(\theta_0, \theta_1) = (3.6, -0.67)$

We moved closer to the true solution (0,1)!

Key Points:

Key Points:

Key Points:

Key Points:

Key Points:

Key Points:

Variants of Gradient Descent

The Gradient Descent Family

Three main variants based on data usage:

Definition: Batch Gradient Descent

Use all training data to compute each gradient

Definition: Stochastic Gradient Descent (SGD)

Use one sample to compute each gradient

Definition: Mini-batch Gradient Descent

Use a small batch of samples to compute each gradient

Comparison: Batch vs SGD vs Mini-batch

Method	Data/update	Updates/epoch	Convergence
Batch GD	n (all)	1	Smooth
SGD	1	n	Noisy
Mini-batch	b	n/b	Balanced

Comparison: Batch vs SGD vs Mini-batch

Method	Data/update	Updates/epoch	Convergence
Batch GD	n (all)	1	Smooth
SGD	1	n	Noisy
Mini-batch	b	n/b	Balanced

Key Points:

Modern ML Standard: Mini-batch GD with batch sizes 32-256

- · Good balance of stability and efficiency
- Enables parallel computation (GPUs!)
- Better gradient estimates than pure SGD

SGD uses one sample at a time for updates

SGD uses one sample at a time for updates

Trade-offs:

• Pro: Fast updates, can escape local minima

SGD uses one sample at a time for updates

Trade-offs:

- Pro: Fast updates, can escape local minima
- Con: Noisy convergence, may not reach exact minimum

SGD uses one sample at a time for updates

Trade-offs:

- Pro: Fast updates, can escape local minima
- Con: Noisy convergence, may not reach exact minimum
- Key insight: Noise can be beneficial for non-convex problems!

Mathematical Properties

The fundamental question: How do we compute gradients efficiently?

The fundamental question: How do we compute gradients efficiently?

True gradient (what we want):

$$\nabla L(\boldsymbol{\theta}) = \nabla \left(\frac{1}{n} \sum_{i=1}^{n} \ell(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i) \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i)$$
 (linearity of gradient) (12)

The fundamental question: How do we compute gradients efficiently?

True gradient (what we want):

$$\nabla L(\boldsymbol{\theta}) = \nabla \left(\frac{1}{n} \sum_{i=1}^{n} \ell(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i) \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i)$$
 (linearity of gradient) (12)

The challenge:

• Computing all n gradients is expensive for large datasets

The fundamental question: How do we compute gradients efficiently?

True gradient (what we want):

$$\nabla L(\boldsymbol{\theta}) = \nabla \left(\frac{1}{n} \sum_{i=1}^{n} \ell(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i) \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i)$$
 (linearity of gradient) (12)

The challenge:

- Computing all n gradients is expensive for large datasets
- Need faster approximation that still gives good direction

The fundamental question: How do we compute gradients efficiently?

True gradient (what we want):

$$\nabla L(\boldsymbol{\theta}) = \nabla \left(\frac{1}{n} \sum_{i=1}^{n} \ell(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i) \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i)$$
 (linearity of gradient) (12)

The challenge:

- Computing all n gradients is expensive for large datasets
- Need faster approximation that still gives good direction
- Enter: Stochastic Gradient Descent (SGD)

Step 2a: Computing $\nabla L = \nabla \frac{1}{n} \sum_{i=1}^{n} \ell(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i)$

Important: The Challenge

How do we compute ∇L efficiently?

Step 2b: Using Linearity = $\frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i)$

Theorem: Linearity of Gradient

$$\nabla L = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell_i$$

Step 2c: The Equivalence - Linearity of Gradient

Mathematical equivalence:

$$\nabla L(\boldsymbol{\theta}) = \nabla \left(\frac{1}{n} \sum_{i=1}^{n} \ell(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i) \right)$$
 (13)

$$= \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i)$$
 (14)

Key Points:

This linearity property is the foundation for all gradient-based optimization!

Step 3: SGD as Unbiased Estimator Implementation

SGD solution: Instead of computing all n gradients, sample one!

Step 3: SGD as Unbiased Estimator Implementation

SGD solution: Instead of computing all *n* gradients, sample one!

SGD gradient estimate:

$$\nabla \tilde{L}(\boldsymbol{\theta}) = \nabla \ell(f(\mathbf{x}_j; \boldsymbol{\theta}), y_j)$$

where (\mathbf{x}_j, y_j) is sampled uniformly from $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$

Step 3: SGD as Unbiased Estimator Implementation

SGD solution: Instead of computing all *n* gradients, sample one!

SGD gradient estimate:

$$\nabla \tilde{L}(\boldsymbol{\theta}) = \nabla \ell(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i)$$

where (\mathbf{x}_j, y_j) is sampled uniformly from $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$

Important: Unbiased Property: The Foundation

 $\mathbb{E}[\nabla \tilde{L}(\pmb{\theta})] = \nabla L(\pmb{\theta})$ - SGD points in the right direction on average!

The Unbiased Property: Mathematical Proof

Theorem: SGD Unbiased Estimator Property

$$\mathbb{E}[\nabla \tilde{L}(\boldsymbol{\theta})] = \nabla L(\boldsymbol{\theta})$$

The Unbiased Property: Mathematical Proof

Theorem: SGD Unbiased Estimator Property

$$\mathbb{E}[\nabla \tilde{L}(\boldsymbol{\theta})] = \nabla L(\boldsymbol{\theta})$$

Detailed Proof:

$$\mathbb{E}[\nabla \tilde{L}(\boldsymbol{\theta})] = \mathbb{E}\left[\nabla \ell(f(\mathbf{x}_j; \boldsymbol{\theta}), y_j)\right]$$
(15)

$$= \sum_{i=1}^{n} P(\text{sample } i) \cdot \nabla \ell(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i)$$
 (16)

$$=\sum_{i=1}^{n}\frac{1}{n}\cdot\nabla\ell(f(\mathbf{x}_{i};\boldsymbol{\theta}),y_{i})$$
(17)

$$= \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i) \qquad \text{(linearity of expectation)}$$

8) _{41 /}

The Unbiased Property: Mathematical Proof

Theorem: SGD Unbiased Estimator Property

$$\mathbb{E}[\nabla \tilde{L}(\boldsymbol{\theta})] = \nabla L(\boldsymbol{\theta})$$

Detailed Proof:

$$\mathbb{E}[\nabla \tilde{L}(\boldsymbol{\theta})] = \mathbb{E}\left[\nabla \ell(f(\mathbf{x}_j; \boldsymbol{\theta}), y_j)\right]$$
(15)

$$= \sum_{i=1}^{n} P(\text{sample } i) \cdot \nabla \ell(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i)$$
 (16)

$$=\sum_{i=1}^{n}\frac{1}{n}\cdot\nabla\ell(f(\mathbf{x}_{i};\boldsymbol{\theta}),y_{i})$$
(17)

$$= \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i) \qquad \text{(linearity of expectation)}$$

8) _{41 /}

SGD Computational Graph: Batch Gradient Descent

How Batch GD computes the true gradient:

Key Points:

Batch GD uses **all** samples to compute the exact gradient: $\nabla L = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell_i$

SGD Computational Graph: Stochastic Sampling

How SGD randomly picks one gradient:

SGD estimate

Important: Unbiased Property

 $\mathbb{E}[\nabla \ell_i] = \nabla L \Rightarrow \mathsf{SGD}$ points toward true gradient **on average**

Key Points:

Individual SGD steps may be "wrong", but they're unbiased estimates of the true direction!

Key Points:

Key insight: On average, SGD points in the correct direction!

Key Points:

Key insight: On average, SGD points in the correct direction!

Practical implications:

Individual SGD steps may be "wrong"

Key Points:

Key insight: On average, SGD points in the correct direction!

Practical implications:

- Individual SGD steps may be "wrong"
- But they average to the correct direction over time

Key Points:

Key insight: On average, SGD points in the correct direction!

Practical implications:

- Individual SGD steps may be "wrong"
- But they average to the correct direction over time
- Theoretical guarantee that justifies SGD's effectiveness

Key Points:

Key insight: On average, SGD points in the correct direction!

Practical implications:

- Individual SGD steps may be "wrong"
- But they average to the correct direction over time
- Theoretical guarantee that justifies SGD's effectiveness
- The "noise" helps escape local minima in non-convex problems

Visual Intuition 1: Overall Loss Surface

True loss function using all data points:

45 / 62

Visual Intuition 2: Individual Sample Loss Surfaces

Loss for individual data points (different shapes):

Visual Intuition 2: Individual Sample Loss Surfaces

Loss for individual data points (different shapes):

Important: Key Observation

Each individual gradient points in a **different direction** - some variation!

Visual Intuition 3: Averaging Individual Gradients

The magic: Average of individual gradients = True gradient

 $\frac{1}{n}\sum_{i=1}^{n}\nabla\ell_{i}=\nabla L(\boldsymbol{\theta})$

Theorem: Visual Proof of Unbiasedness

Even though individual gradients vary, their average equals the true gradient!

Visual Intuition 4: SGD Sampling Process

SGD randomly picks one gradient at a time:

All possible individual gradients

True average $\nabla L(\theta)$

SGD picks one randomly: $\nabla \ell_j$

Key Points:

Key insight: Sometimes SGD goes "wrong" direction, but on average it's correct!

Why Unbiasedness Matters in Practice

Why Unbiasedness Matters in Practice

Example: Intuitive Analogy

Like asking random people for directions:

- Each person's answer might be slightly off
- But if there's no systematic bias, the average is correct
- SGD does the same with gradient estimates!

Computational Complexity

GD vs Normal Equation: Complexity

For linear regression:

Important: Normal Equation

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Time: $\mathcal{O}(d^2n + d^3)$

 $\textbf{Space: } \mathcal{O}(\textit{d}^{2})$

GD vs Normal Equation: Complexity

For linear regression:

Important: Normal Equation

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Time: $\mathcal{O}(d^2n + d^3)$

Space: $\mathcal{O}(d^2)$

Key Points: Gradient Descent

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \alpha \mathbf{X}^T (\mathbf{X} \boldsymbol{\theta}_t - \mathbf{y})$$

Time: $\mathcal{O}(T \cdot nd)$ for T iterations

Space: O(nd)

Key Points:

Modern ML: Gradient descent dominates due to:

- High-dimensional data (d very large)
- Non-linear models (no normal equation exists)
- Large datasets (n very large)

Key Points:

Modern ML: Gradient descent dominates due to:

- High-dimensional data (d very large)
- Non-linear models (no normal equation exists)
- Large datasets (n very large)

Decision criteria:

• Few features (d < 1000): Consider normal equation

Key Points:

Modern ML: Gradient descent dominates due to:

- High-dimensional data (d very large)
- Non-linear models (no normal equation exists)
- Large datasets (n very large)

Decision criteria:

- Few features (d < 1000): Consider normal equation
- Many features (d > 10000): Gradient descent

Key Points:

Modern ML: Gradient descent dominates due to:

- High-dimensional data (d very large)
- Non-linear models (no normal equation exists)
- Large datasets (n very large)

Decision criteria:

- Few features (d < 1000): Consider normal equation
- Many features (d > 10000): Gradient descent
- Non-linear models: Only gradient descent works

Key Points:

Modern ML: Gradient descent dominates due to:

- High-dimensional data (d very large)
- Non-linear models (no normal equation exists)
- Large datasets (n very large)

Decision criteria:

- Few features (d < 1000): Consider normal equation
- Many features (d > 10000): Gradient descent
- Non-linear models: Only gradient descent works
- Online learning: Only gradient descent works

Advanced Topics and Extensions

Modern optimizers improve upon vanilla GD:

• Momentum: $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 - \beta)\mathbf{g}_t$

- Momentum: $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 \beta)\mathbf{g}_t$
- AdaGrad: Adaptive per-parameter learning rates

- Momentum: $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 \beta)\mathbf{g}_t$
- AdaGrad: Adaptive per-parameter learning rates
- Adam: Combines momentum + adaptive rates

- Momentum: $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 \beta)\mathbf{g}_t$
- · AdaGrad: Adaptive per-parameter learning rates
- Adam: Combines momentum + adaptive rates
- RMSprop: Exponential moving average of squared gradients

- Momentum: $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 \beta)\mathbf{g}_t$
- · AdaGrad: Adaptive per-parameter learning rates
- Adam: Combines momentum + adaptive rates
- RMSprop: Exponential moving average of squared gradients

Modern optimizers improve upon vanilla GD:

- Momentum: $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 \beta)\mathbf{g}_t$
- AdaGrad: Adaptive per-parameter learning rates
- Adam: Combines momentum + adaptive rates
- RMSprop: Exponential moving average of squared gradients

Why these improvements?

· Handle different parameter scales automatically

Modern optimizers improve upon vanilla GD:

- Momentum: $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 \beta)\mathbf{g}_t$
- AdaGrad: Adaptive per-parameter learning rates
- Adam: Combines momentum + adaptive rates
- RMSprop: Exponential moving average of squared gradients

Why these improvements?

- · Handle different parameter scales automatically
- Accelerate convergence in relevant directions

Modern optimizers improve upon vanilla GD:

- Momentum: $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 \beta)\mathbf{g}_t$
- AdaGrad: Adaptive per-parameter learning rates
- Adam: Combines momentum + adaptive rates
- RMSprop: Exponential moving average of squared gradients

Why these improvements?

- · Handle different parameter scales automatically
- Accelerate convergence in relevant directions
- Reduce oscillations in narrow valleys

Gradient Descent in Deep Learning

Key Points:

Every deep learning framework uses gradient descent variants!

Gradient Descent in Deep Learning

Key Points:

Every deep learning framework uses gradient descent variants!

Key modern extensions:

• Backpropagation: Efficient gradient computation

Gradient Descent in Deep Learning

Key Points:

Every deep learning framework uses gradient descent variants!

Key modern extensions:

- Backpropagation: Efficient gradient computation
- Automatic differentiation: PyTorch/TensorFlow magic

Gradient Descent in Deep Learning

Key Points:

Every deep learning framework uses gradient descent variants!

Key modern extensions:

- Backpropagation: Efficient gradient computation
- Automatic differentiation: PyTorch/TensorFlow magic
- GPU acceleration: Parallel mini-batch processing

Gradient Descent in Deep Learning

Key Points:

Every deep learning framework uses gradient descent variants!

Key modern extensions:

- Backpropagation: Efficient gradient computation
- Automatic differentiation: PyTorch/TensorFlow magic
- GPU acceleration: Parallel mini-batch processing
- **Mixed precision:** 16-bit + 32-bit arithmetic

Practical Considerations

Common approaches:

• Grid search: Try $\{0.001, 0.01, 0.1, 1.0\}$

- **Grid search:** Try $\{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time

- **Grid search:** Try $\{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time
- Adaptive methods: Let algorithm adjust automatically

- **Grid search:** Try $\{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time
- Adaptive methods: Let algorithm adjust automatically
- Learning rate finder: Gradually increase and monitor

- **Grid search:** Try $\{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time
- Adaptive methods: Let algorithm adjust automatically
- Learning rate finder: Gradually increase and monitor

Common approaches:

- Grid search: Try $\{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time
- · Adaptive methods: Let algorithm adjust automatically
- Learning rate finder: Gradually increase and monitor

Warning signs:

• Loss exploding $\to \alpha$ too high

Common approaches:

- Grid search: Try $\{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time
- · Adaptive methods: Let algorithm adjust automatically
- Learning rate finder: Gradually increase and monitor

Warning signs:

- Loss exploding ightarrow lpha too high
- Very slow progress ightarrow lpha too low

Common approaches:

- Grid search: Try $\{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time
- Adaptive methods: Let algorithm adjust automatically
- Learning rate finder: Gradually increase and monitor

Warning signs:

- Loss exploding $\rightarrow \alpha$ too high
- Very slow progress ightarrow lpha too low
- Oscillating loss o Try momentum or smaller lpha

When to stop training?

- Gradient magnitude: $||\nabla \mathit{f}(\boldsymbol{\theta})|| < \epsilon$

- Gradient magnitude: $||\nabla \mathbf{f}(\boldsymbol{\theta})|| < \epsilon$
- Function change: $|\mathit{f}(\theta_{t+1}) \mathit{f}(\theta_t)| < \epsilon$

- Gradient magnitude: $||\nabla \mathbf{f}(\boldsymbol{\theta})|| < \epsilon$
- Function change: $|\mathit{f}(\theta_{t+1}) \mathit{f}(\theta_t)| < \epsilon$
- Parameter change: $||\boldsymbol{\theta}_{t+1} \boldsymbol{\theta}_t|| < \epsilon$

- Gradient magnitude: $||\nabla f(\theta)|| < \epsilon$
- Function change: $|f(\theta_{t+1}) f(\theta_t)| < \epsilon$
- Parameter change: $||\boldsymbol{\theta}_{t+1} \boldsymbol{\theta}_t|| < \epsilon$
- Maximum iterations: Always set an upper bound

- Gradient magnitude: $||\nabla f(\theta)|| < \epsilon$
- Function change: $|f(\theta_{t+1}) f(\theta_t)| < \epsilon$
- Parameter change: $||\boldsymbol{\theta}_{t+1} \boldsymbol{\theta}_t|| < \epsilon$
- Maximum iterations: Always set an upper bound

When to stop training?

- Gradient magnitude: $||\nabla f(\theta)|| < \epsilon$
- Function change: $|f(\theta_{t+1}) f(\theta_t)| < \epsilon$
- Parameter change: $||\boldsymbol{\theta}_{t+1} \boldsymbol{\theta}_t|| < \epsilon$
- Maximum iterations: Always set an upper bound

Key Points:

Best practice: Use multiple criteria + validation performance

Common Pitfalls

Important: Pitfall 1: Poor Initialization

Problem: Bad starting points **Solution:** Xavier/He initialization

Common Pitfalls

Important: Pitfall 1: Poor Initialization

Problem: Bad starting points **Solution:** Xavier/He initialization

Important: Pitfall 2: Wrong Learning Rate

Problem: Divergence or slow convergence

Solution: Learning rate schedules, adaptive optimizers

Common Pitfalls

Important: Pitfall 1: Poor Initialization

Problem: Bad starting points **Solution:** Xavier/He initialization

Important: Pitfall 2: Wrong Learning Rate

Problem: Divergence or slow convergence

Solution: Learning rate schedules, adaptive optimizers

Important: Pitfall 3: Poor Feature Scaling

Problem: Different scales cause poor convergence

Solution: Standardize features: $(x - \mu)/\sigma$

Summary and Key Takeaways

Key Points:

Gradient descent is the backbone of modern machine learning!

Key Points:

Gradient descent is the backbone of modern machine learning!

Journey recap:

Mathematical foundation: Taylor series derivation

Key Points:

Gradient descent is the backbone of modern machine learning!

- Mathematical foundation: Taylor series derivation
- Geometric intuition: Steepest descent direction

Key Points:

Gradient descent is the backbone of modern machine learning!

- Mathematical foundation: Taylor series derivation
- · Geometric intuition: Steepest descent direction
- Algorithm variants: Batch, SGD, mini-batch

Key Points:

Gradient descent is the backbone of modern machine learning!

- Mathematical foundation: Taylor series derivation
- Geometric intuition: Steepest descent direction
- Algorithm variants: Batch, SGD, mini-batch
- Theoretical properties: Unbiased estimator guarantees

Key Points:

Gradient descent is the backbone of modern machine learning!

- Mathematical foundation: Taylor series derivation
- Geometric intuition: Steepest descent direction
- Algorithm variants: Batch, SGD, mini-batch
- Theoretical properties: Unbiased estimator guarantees
- Practical wisdom: Learning rates, scaling, diagnostics

Next steps for mastery:

• Implement gradient descent from scratch

- Implement gradient descent from scratch
- Experiment with different learning rates

- Implement gradient descent from scratch
- Experiment with different learning rates
- Compare batch vs SGD vs mini-batch

- Implement gradient descent from scratch
- Experiment with different learning rates
- Compare batch vs SGD vs mini-batch
- Try advanced optimizers (Adam, momentum)

- Implement gradient descent from scratch
- Experiment with different learning rates
- Compare batch vs SGD vs mini-batch
- Try advanced optimizers (Adam, momentum)
- Apply to real datasets

- Implement gradient descent from scratch
- Experiment with different learning rates
- Compare batch vs SGD vs mini-batch
- Try advanced optimizers (Adam, momentum)
- Apply to real datasets

Next steps for mastery:

- Implement gradient descent from scratch
- Experiment with different learning rates
- Compare batch vs SGD vs mini-batch
- Try advanced optimizers (Adam, momentum)
- Apply to real datasets

Key Points:

Master gradient descent first - it's the foundation for everything else!

Final Pop Quiz #2

Answer this!

True or False?

- 1. SGD always converges faster than batch GD
- 2. Learning rates should decrease during training
- 3. SGD gradient estimates are unbiased
- 4. Normal equation always beats gradient descent
- 5. GD guarantees global minimum for any function

Deep Dive: Advanced Theory

For comprehensive mathematical analysis:

Important: Reference Materials

- SGD.pdf: Detailed convergence proofs
- Florian's estimators: https://florian.github.io/estimators/
- Interactive notebooks for hands-on practice

Pop Quiz Solutions

Quiz #1 Solutions:

- 1. f(2) = 6, f'(2) = 4
- 2. $f(x) \approx 6 + 4(x-2)$
- 3. New $x = 2 0.1 \times 4 = 1.6$
- 4. Yes, function decreases!

Pop Quiz Solutions

Quiz #1 Solutions:

- 1. f(2) = 6, f'(2) = 4
- 2. $f(x) \approx 6 + 4(x-2)$
- 3. New $x = 2 0.1 \times 4 = 1.6$
- 4. Yes, function decreases!

Quiz #2 Solutions:

- 1. False SGD faster per epoch, may need more epochs
- 2. True schedules often improve convergence
- 3. True key theoretical property
- 4. False only for linear problems, small d
- 5. False only local minima; global for convex only

Thank You!

Questions?

Next: Advanced Optimization Techniques

Practice: Implement GD for your favorite ML model!