A COURSE ON PROBABILISTIC DATABASES

Probabilistic Databases

- Data: standard relational data, plus probabilities that measure the degree of uncertainty
- Queries: standard SQL queries, whose answers are annotated with output probabilities

A Little History of Probabilistic DBs

Early days

- Wong'82
- Shoshani'82
- Cavallo&Pittarelli'87
- Barbara'92
- Lakshmanan'97,'01
- Fuhr&Roellke'97
- Zimanyi'97

Main challenge: Query Evaluation (=Probabilistic Inference)

Recent work

- Stanford (Trio)
- UW (MystiQ)
- Cornell (MayBMS)
- Oxford (MayBMS)
- U.of Maryland
- IBM Almaden (MCDB)
- Rice (MCDB)
- U. of Waterloo
- UBC
- U. of Florida
- Purdue University
- U. of Wisconsin

Why?

Many applications need to manage uncertain data

- Information extraction
- Knowledge representation
- Fuzzy matching
- Business intelligence
- Data integration
- Scientific data management
- Data anonymization

What?

Probabilistic Databases extend Relational Databases with probabilities

Combine Formal Logic with Probabilistic Inference

 Requires a new thinking for both databases and probabilistic inference

This Course: Query Evaluation

Based on the book:

Probabilistic Databases - Dan Suciu

Outline of the Tutorial

Probabilistic Databases

Part

1. Motivating Applications

The Probabilistic Data Model

Chapter 2

3. Extensional Query Plans

Chapter 4.2

Part

The Complexity of Query Evaluation

Chapter 3

Extensional Evaluation

Chapter 4.1

Intensional Evaluation 6.

Chapter 5

Conclusions

Probabilistic Databases - Dan Suciu

What You Will Learn

Background:

- Relational data model: tables, queries, relational algebra
- PTIME, NP, #P
- Model counting: DPLL, OBDD, FBDD, d-DNNF

In detail:

- Extensional plans, extensional evaluation, running them in postgres
- The landscape of query complexity: from PTIME to #P-complete,
- Query compilation: Read-Once Formulas, OBDD, FBDD, d-DNNF

Less detail:

The #P-hardness proof, complexity of BDDs

Omitted:

- Richer data models: BID, GM, XML, continuous random values)
- Approximate query evaluation,
- Ranking query answers

Related Work. See book, plus:

These references are not in the book

- Wegener: Branching programs and binary decision diagrams: theory and applications, 2000
- Dalvi, S.: The dichotomy of probabilistic inference for unions of conjunctive queries, JACM'2012
- Huang, Darwiche: DPLL with a Trace: From SAT to Knowledge Compilation, IJCAI 2005
- Beame, Li, Roy, S.: Lower Bounds for Exact Model Counting and Applications in Probabilistic Databases, UAI'13
- Gatterbauer, S.: Oblivious Bounds on the Probability of Boolean Functions, under review

The applications are from:

- Ré, Letchner, Balazinska, S: Event queries on correlated probabilistic streams. SIGMOD Conference 2008
- Gupta, Sarawagi: Creating Probabilistic Databases from Information Extraction Models, VLDB 2006
- Stoyanovich, Davidson, Milo, Tannen: Deriving probabilistic databases with inference ensembles. ICDE 2011
- Beskales, Soliman, Ilyas, Ben-David: Modeling and Querying Possible Repairs in Duplicate Detection. PVLDB 2009
- Kumar, Ré: Probabilistic Management of OCR Data using an RDBMS. PVLDB 2011

A COURSE ON PROBABILISTIC DATABASES

Lecture 1: Motivating Applications

Outline

Dan Suciu Dan Olteanu Christopher Ré Christoph Koch

Probabilistic Databases

Motivating Applications

2 Tr

2. The Probabilistic Data Model

Chapter 2

 $^{\circ}$

3. Extensional Query Plans

Chapter 4.2

Part

4. The Complexity of Query Evaluation

Chapter 3

) art

5. Extensional Evaluation

Chapter 4.1

4

6. Intensional Evaluation

Chapter 5

Part

7. Conclusions

[Gupta'2006]

Example 1: Information Extraction

52-A Goregaon West Mumbai 400 076

Standard DB: keep the most likely extraction

Id	House_no	Area	City	Pincode	Prob
1	52	Goregaon West	Mumbai	400 062	0.1
X	52-A	Goregaon	West Mumbai	400 062	0.2
1	52-A	Goregaon West	Mumbai	400 062	0.5
	52	Goregaon	West Mumbai	400 062	0.2

Probabilistic DB: keep most/all extractions to increase recall

Key finding: the probabilities given by CRFs correlate well with the precision of the extraction.

[Stoyanovich'2011]

Example 2: Modeling Missing Data

id	age	edu	inc	nw
t1	20	HS	?	?
t2	20	BS	50K	100K
tз	20	?	50K	?
t4	20	HS	100K	500K
t 5	20	?	?	?
t 6	20	HS	50K	100K
t7	20	HS	50K	500K
t ₈	?	HS	?	?
t9	30	BS	100K	100K
t 10	30	?	100K	?
t11	30	HS	?	?
t12	30	MS	?	?
t13	40	BS	100K	100K
t14	40	HS	?	?
t15	40	BS	50K	500K
t16	40	HS	?	500K
t17	40	HS	100K	500K

Standard DB: NULL

Probabilistic DB: distribution on possible values

-					
ia	age	edu	inc	nw	prob
t ₁₂ .1	30	MS	50K	100K	0.30
t ₁₂ .2	30	MS	50K	500K	0.45
t ₁₂ .3	30	MS	100K	100K	0.10
142.4	30	MS	100K	500K	0.15

Key technique: Meta Rule Semi-Lattice for inferring missing attributes. [Beskales'2009]

Example 3: Data Cleaning

ID	Name	ZIP	Birth Date
1	Green	51359	781310
2	Green	51358	781210
3	Peter	30128	870932
4	Peter	30128	870932
5	Gree	51359	19771210
6	Chuck	51359	19460924

Standard DB cleaning data means choosing one possible repair

Challenge: Representing multiple repairs. [Beskaes'2009] restrict to hierarchical repairs.

Probabilistic DB

keep many/all

possible repairs

[Kumar'2011]

Example 4: OCR

They use OCRopus from Google Books: output is a stohastic automaton
Traditionally: retain only the Maximum Apriori Estimate (MAP)
With a probabilistic database: may retain several alternative recognitions: increase recal

SELECT Docld, Loss FROM Claims WHERE Year = 2010 AND DocData LIKE '%Ford%';

Summary of Applications

- Structured, but uncertain data
- Modeled as probabilistic data
- Answers to SQL queries annotated with probabilities

Probabilistic database:

Combine data management with probabilistic inference