

Brief Update on A&M Work

Jim Pivarski Aysen Tatarinov Vadim Khotilovich Alexei Safonov

Texas A&M University

16 August, 2010

Since last time

Jim Pivarski

- ► TrackerMuons with N_{segments} ≥ 2 yield the same purity as GlobalMuons
- it is essential that the segments in the count are arbitrated
- even with the cut, TrackerMuons have a higher and easier-tounderstand reconstruction efficiency for prompt muons
- new: by removing unnecessary additional cuts, TrackerMuons now have the same acceptance as GlobalMuons for highly displaced μ-groups (plot on the right)
- Starting to look at the new data

Single μ -group comparison

3/4

- ▶ Opposite-sign groups of TrackerMuons with $N_{\text{segments}} \ge 2$, HLT_Mu9, and $pT_1 > 11 \text{ GeV}/c$ compared to InclusiveMu5_Pt*
- ▶ Prompt J/ψ and $\psi(2S)$ are missing (understood)
- lacktriangledown $\omega
 ightarrow \mu \mu$ is not in the Monte Carlo? What about low-mass rise?

- Compare data and MC starting at the lowest levels of reconstruction (track-segment matching) and make sure everything is okay up to high level (kinematics)
 - for example, the low-mass rise needs to be understood, but if the discrepancy is due to something at a deeper level, the best way to find it is to methodically check everything from the bottom up
- Trigger efficiency studies
- Estimating backgrounds from data

Backup 1: close-ups of mass

Note: these two are from HLT_Mu5 with $pT_1 > 7$ GeV/c

Jim Pivarski 5/4

This is a p_T distribution of μ -groups in a mass window around the J/ψ

It's the low-momentum part that's missing, and I know that prompt J/ψ are not included in the InclusiveMu5_Pt*

Backup 2: low-mass event

Jim Pivarski 6/4

The $\mathcal{O}(100)~m_{\rm inv} < 0.4~{\rm GeV}/c^2$ events in data but not MC are good-looking di-muons (this one has $m_{\rm inv} < 0.25~{\rm GeV}/c^2$)

- ▶ Run/LS selection: good tracking, muons, and trigger, selected by runregparse.py and luminosity calculated by lumiCalc.py
- Event-level:
 - HLT_Mu9 (or HLT_Mu5, correcting for prescale)
 - leading track $p_T > 11 \text{ GeV}/c$ (or 7) and $|\eta| < 2.1$
 - ▶ at least one primary vertex with |z| < 24 cm (hn-cms-PO7TeV)
 - filter out scraping (Collisions2010Recipes)
- Muon tracks:
 - $p_T > 5 \text{ GeV}/c$, $|\eta| < 2.4$
 - ▶ TrackerMuons with $N_{\text{segments}} \ge 2$ (arbitrated)
 - all default cuts inherited
- Muon-group "closeness" definition:
 - $(m_{\text{pair}} < 5 \text{ GeV}/c^2 \text{ and } P_{\text{vertex}} > 1\%) \text{ or } \Delta R < 0.1$
 - pairs must be oppositely charged

From last time: N_{segments} cut

Jim Pivarski

8/4

 Requiring at least 2 fully arbitrated segments in TrackerMuons recovers purity of GlobalMuons

- ▶ We see that we usually get the *right* number of muons
- ▶ GlobalMuons and TrackerMuons + cut have the same backgrounds

From last time: efficiency of cut Jim Pivarski 10/4

- Efficiency versus $\Delta\phi=\phi_{\mu^+}-\phi_{\mu^-}$ in barrel (left) and endcap (right)
- ► Top: GlobalMuons (barrel dependency not fully understood)
- ▶ Bottom: TrackerMuons with arbitrated $N_{\text{segments}} \ge 2$

