소속:	Computer System	2019-2 Assignment 3 [모범답안]
학번:	Architecture	제출기한: 2019년 12월 13일(금)
이름:	담당교수 : 고영은	Chapter 7, 8

1. 하드와이어된 제어(Hardwired control)와 마이크로 프로그램된 제어(microprogrammed control) 사이의 차이점을 설명하여라. 제어 메모리와 함께 하드와이어된 제어를 가질 수 있는가?

하드와이어된 제어(Hardwired control): 제어 장치가 일상적인 논리 회로 설계방식대로 설계

마이크로 프로그램된 제어(microprogrammed control): 명령을 수행할 수 있도록된 일련의 제어워드를 기억 장치 속데 저장하여 제어신호를 구현

제어 메모리와 함께 하드와이어된 제어를 가질 수 없다.

- 2. 다음 용어를 설명하라.
- 1) 마이크로 연산 : 디지털 컴퓨터 연산 요소
- 2) 마이크로 명령어: 제어 메모리에 적재된 명령어
- 3) 마이크로 프로그램: 마이크로명령어의 열,
- 4) 마이크로 코드: 마이크로프로그램에 해당하는 기계어
- 3. 교재의 그림 7-2의 시스템은 32bits의 1024words로 구성된 제어 메모리를 사용한다. 마이크로 명령어는 세 개의 필드로 구성되어 있고, 마이크로 연산 필드는 16bits이다.
- (a) 분기 필드와 선택 필드는 각각 몇 비트인가?

6	10	16	=	32 bits
Select	Address	Micro operations		

- (b) 시스템에 16개의 상태 비트가 있다면, 분기 논리 중에서 몇 비트가 상태 비트를 선택하는데 사용되는가? 4bits
- (c) 멀티플렉서를 위한 입력을 선택하기 위해서는 몇 비트가 필요한가? 2bits
- 4. 교재의 표 7-1을 이용하여 다음 마이크로 연산들에 대한 9bits 마이크로 연산 필드의 내용을 구하라.
- (a) $AC \leftarrow AC + 1$, $DR \leftarrow DR + 1$
- (b) $PC \leftarrow PC + 1$, $DR \leftarrow M[AR]$
- (c) $DR \leftarrow AC$, $AC \leftarrow DR$

	F1	F2	F3				
(a)	011	110	000	INCAC INC	CDR	NOP	
(b)	000	100	101	NOP	READ)	INCPC
(c)	100	101	000	DRTAC	ACTD	R	NOP

- 5. 교재의 표 7-1을 이용하여 다음에서 기호로 나타낸 각 마이크로 연산들을 레지스터 전송문과 이진 기호로 바꾸어나타내시오.
- (a) READ, INCPC => 000100101
- (b) ACTDR. DRTAC => 100101000
- (c) ARTPC, DRTAC, WRITE => F1 중복으로 동시 수행 못하므로 표기 불가능
- 6. 다음은 교재 7-3절에서 정의한 컴퓨터의 명령에 대한 기호 마이크로 프로그램이다.

ORG 40			
NOP	S	JMP	FETCH
NOP	Z	JMP	FETCH
NOP	I	CALL	INDRCT
ARTPC	U	JMP	FETCH

- (a) 이 명령이 실행되었을 때 수행되는 동작은 무엇인가?
- (b) 네 개의 마이크로 명령어를 이와 동등한 이진 형태로 바꾸어라.
- (a) Branch if S = 0 and Z = 0 (positive and non-zero AC) See last instruction in problem 7-16.
- 40 000 000 000 10 00 1000000 (b) 41 000 000 000 11 00 1000000 42 000 000 000 01 01 1000011 43 000 000 110 00 00 1000000
- 7. 교재 7-3절의 컴퓨터는 다음과 같은 이진 마이크로 프로그램을 가지고 있다.

Address						I	3ir	naı	ĵу	M	icı	^O]	pr	og	ra	m				
60	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	1
61	1	1	1	1	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0
62	0	0	1	0	0	1	0	0	0	1	0	1	0	0	1	1	1	1	1	1
63	1	0	1	1	1	0	0	0	0	1	1	1	1	0	1	1	1	1	0	0

- (a) 이것을 교재의 표7-2와 같이 기호 마이크로 프로그램으로 바꾸어라.(FETCH는 주소 64에, INDRCT는 주소 67에 있다.)
- (b) 이 마이크로 프로그램이 컴퓨터에서 실행될 경우 발생하는 문제점을 모두 나열하라.

(a) 60 : CLRAC, COM U JMP INDR CTS 61 : WRITE, READ I CALL FETCH 62 : ADD, SUB S RET 63(NEXT) 63 : DRTAC, INCDR Z MAP 60

(b) 60번지에서 AC를 clear하고 AC의 complement를 하므로 AC의 정상동작을 할 수 없음

8. 다음의 명령어들을 교재 7-3절의 컴퓨터에 추가하여라. 여기서 EA는 유효주소를 나타낸다. 각 명령어에 해당하는 루틴을 표 7-2와 같이 기호 마이크로 프로그램으로 작성하여라. 단, AC의 값은 특별히 지정하지 않는 한 변하지 않는 다.

symbol	Opcode	Symbol Function	description
AND	0100	$A C \leftarrow A C \land M[EA]$	AND
SUB	0101	$A C \leftarrow A C - M[EA]$	subtract
ADM	0110	$M[EA] \leftarrow M[EA] + AC$	Add to memory
BTCL	0111	$A C \leftarrow A C \land \overline{M[EA]}$	bit clear
BZ	1000	$if(AC=0)$ then $(PC\leftarrow EA)$	branch if AC zero
SEQ	1001	If $(AC = M[EA])$ then $(PC \leftarrow PC + 1)$	skip if equal
BPNZ	1010	If $(AC>0)$ then $(PC\leftarrow EA)$	branch if positive and nonzero

ADM :	ORG 24 NOP	1	CALL	INDRCT
SUB:	ORG 20 NOP READ SUB	U	CALL JMP JMP	INDRCT NEXT FETCH
AND:	NOP READ AND	U	CALL JMP JMP	NEXT FETCH

000 46

	READ DRTAC, ACTOR	U	JMP JMP	NEXT NEXT
	ADD	U	JMP	EXCHANGE +2
	ORG 28			(name 2.2)
BICL:	NOP	1.	CALL	INDRCT
45/10/2017	READ	U	JMP	NEXT
	DRTAC, ACTOR	U	JMP	NEXT
	COM	Ü	JMP	ANDOP
	ORG 32			
BZ	NOP	Z	JMP	ZERO
	NOP	ũ	JMP	FETCH
ZERO:	NOP	Ē.	CALL	INDRCT
	ARTPC	U	JMP	FETCH
	ORG 36			
SEQ:	NOP	1	CALL	INDRCT
	READ	U	JMP	NEXT
	DRTAC, ACTOR	U	JMP	NEXT
	XOR (or SUB)	U	JMP	BEQ1
	ORG 69			
BEQ 1:	DRTAC, ACTOR	Z	JMP	EQUAL
DEG T	NOP	ũ	JMP	FETCH
EQUAL:	INC PC	ŭ	JPM	FETCH
	ORG 40			
BPNZ:	NOP	S	JMP	FETCH
	NOP	S Z	JMP	FETCH
	NOP	16	CALL	INDRCT
	ARTPC	Ü	JMP	FETCH

- 9. 교재 그림 8-2와 같이 32bits 짜리 16레지스터와 ALU, 그리고 목적지 디코더를 가진 버스구조 CPU가 있다.
- (a) A 버스에는 몇 개의 멀티플렉서가 필요하며, 각 멀티플렉서의 크기는 얼마인가?
- (b) MUX A와 MUX B에 필요한 선택 입력은 몇 개인가?
- (c) 디코더에는 몇 개의 입력과 출력이 있는가?
- (d) 입출력 캐리를 포함하여, ALU에서 데이터를 위한 입력과 출력은 몇 개인가?
- (e) ALU가 35가지 연산을 수행한다고 할 때, 제어 워드를 작성하라.
- (a) 32 multiplexers, each of size 16 × 1.
- (b) 4 inputs each, to select one of 16 registers.
- (c) 4-to-16 line decoder
- (d) 32 + 32 + 1 = 65 data input lines 32 + 1 = 33 data output lines.
- (e) 4 4 4 6 = 18 bits
- 10. 다음의 마이크로 연산을 구현하기 위하여 교재의 그림 8-2의 프로세서에 적용될 제어 워드를 표시하여라.
- (a) $R1 \leftarrow R2 + R3$
- **(b)** *R*4←*R*4
- (c) $R5 \leftarrow R5 1$
- (d) R6←shlR1
- **(e)** *R*7←*input*

		SELA	SELB	SELD	OPR	Control word
(a)	R1 ← R2 + R3	R2	R3	R1	ADD	010 011 001 00010
(b)	R4 ← R4	R4		R4	TSFA	100 xxx 100 00000
(c)	R5 ← R5 –1	R5		R5	DECA	101 xxx 101 00110
(d)	R6 ← SH1 R1	R1	200	R6	SHLA	001 xxx 110 11000
(e)	R7 ← Input	Input	0000	R7	TSFA	000 xxx 111 00000

- 11. 교재의 8-2의 프로세서에 다음과 같은 14비트 제어워드가 적용되었을 때 수행되는 마이크로 연산은 무엇인가?
- (a) 00101000100101
- (b) 00000000000000
- (c) 01001001001100
- (d) 00000100000010
- (e) 11110001110000

	Control word	SELA	SELB	SELD	OPR	Microoperation
(a)	001 010 011 00101	R1	R2	R1	SUB	$R1 \leftarrow R1 - R2$
(b)	000 000 000 00000	Input	Input	None	TSFA	Output ← Input
(c)	010 010 010 01100	R2	R2	R2	XOR	R2←R2⊕R2
(d)	000 001 000 00010	Input	R1	None	ADD	Output ← Input + R1
(e)	111 100 011 10000	R7	R4	R3	SHRA	R3 ← shrR7

12. 교재의 그림 8-4에서 SP는 항상 스택의 다음 번에 비어 잇는 위치를 가리킨다. 즉, SP는 초기에 4000이고, 스택의 첫 항목은 4000번지에 저장된다. 이러한 구조의 스택에 대항 push와 pop 동작을 수행하기 위한 마이크로 연산을 나열하라.

PUSH : M[SP] ← DR

 $SP \leftarrow SP - 1$

POP: $SP \leftarrow SP + 1$

DR ← M[SP]

13. infix 표시로 나타낸 다음 산술식을 역 polish표기로 변환하여라.

A+B*[C*D+E*(F+G)]

sol) FG + E * CD * + B * A +

14. 어떤 명령어와 그것의 주소 필드가 메모리의 300과 301번지에 저장되고 있고, 주소 필드의 값은 400이다. 그리고 프로세서 레지스터 R1에는 200이 들어 있다. 어드레싱모드가 다음과 같을 때, 유효주소를 계산하라.

- 직접/ 즉석/ 상대/ 레지스터 간접/ R1을 인덱스 레지스터로 가지는 인덱스

Effective address

- (a) Direct: 400
- (b) Immediate: 301
- (c) Relative: 302 + 400 = 702
- (d) Reg. Indirect: 200
- (e) Indexed: 200 + 400 = 600

- 15. 16비트수 100110101101101101 주어졌을 때, 다음에 나열한 일을 수행하기 위해서는 어떤 동작들이 필요한가?
- (a) 처음 8비트를 0으로 클리어
- (b) 마지막 8 | 트를 1로 세트
- (c) 가운데 8비트를 보수화
- (a) AND with: 000000011111111 (b) OR with: 000000011111111 (c) XOR with: 0000111111110000
- 16. 메모리 스택의 꼭대기에 5320이 들어있고, 스택 포인터의 값은 3560이다. 서브루틴을 호출하는 두 워드 명령이 메모리의 1120번지에 있고, 1121번지에 있는 주소 필드의 내용은 6720이다. 다음 각 경우에 대하여 PC, SP 그리고 스택의 꼭대기에 들어있는 값은 각각 무엇인가?
- (a) 호출 명령어가 메모리로부터 fetch되기 전
- (b) 호출 명령어가 실행된 후
- (c) 서브루틴으로부터 복귀된 후

	PC	SP	Top of Stack
Initial	1120	3560	5320
After CALL	6720	3559	1122
After RETURN	1122	3560	5320

17.

- (a) 2048바이트의 메모리 용량을 공급하기 위해 128×8 RAM 칩이 몇 개 필요한가?
- (b) 메모리의 2048 바이트를 접근하기 위해 주소 버스는 몇 개 라인을 사용해야 하는가? 이들 라인 중에 몇 개가 모든 칩에 공통되는가?
- (c) 칩 선택을 위해 몇 개의 라인이 디코드되어야 하는가? 디코더의 크기를 구하여라.
- (a) $\frac{2048}{128} = 16 \text{ chips}$
- (b) $2048 = 2^{11}$ 11 lines to address 2078 bytes. $128 = 2^{7}$ 12 lines to address each chip 4 lines to decoder for selecting 16 chips
- (c) 4 x 16 decoder
- 18. 교재 그림 12-4에서의 메모리 시스템을 4096바이트의 RAM과 4096바이트의 ROM으로 확장시킬 경우 메모리 주소 맵을 기재하고, 필요한 디코더의 크기를 말하여라.

4096/128 = 32 RAM chips; 4096/512 = 8 ROM chips. 4096 = 2¹² – There 12 common address lines +1 line to select between RAM and ROM.

※ 주의사항

- 1. 과제는 반드시 본인이 직접 손으로 푼다(풀이과정이 반드시 있어야 함)
- 2. 타인의 과제를 카피하면 두 과제 모두 미제출 처리한다. (타인의 과제를 참고할 경우 참조자를 기록하되 전체의 20%가 넘지 않는 범위로 한다.)
- 3. 과제 제출은 공지된 날짜를 따른다.
- 4. 수업시간에 교수에게 직접 제출하거나 기한 내에 해당 TA에게 제출한다.
- 5. 제출 기간을 넘기면 감점을 하며 지연 제출 기한이 마감되면 과제를 받지 않는다.