MA211 **Lecture 12: Class Test**

Wed 16 October 2008

MA211 — Lecture 12: Class Test

1/6

Solutions

Q2 (i)

Write down the general solution to the following differential equation: 25y''-20y'+4y=0.

Q1. Using that $\cosh(x)=\frac{1}{2}\big(e^{-x}+e^x\big)$ and $\sin(x)=\frac{1}{2}\big(e^{-x}-e^x\big)$ to show that

$$\cosh^2 x - \sinh^2 x = 1.$$

 $\ensuremath{\mathbf{Q2.}}$ Write down the general solution to the following differential equations:

(i)
$$25y'' - 20y' + 4y = 0$$
.

solution to the differential equation:

(ii)
$$y'' + y' - 12y = 0$$

Q3. Find values of b and c such that $y(x) = \cosh(2x)$ is a

$$y'' + by' + cy = 0.$$

MA211 — Lecture 12: Class Test

ss Test

Solutions

Q2 (ii)

Write down the general solution to the following differential equation: y''+y'-12y=0

Solutions

Q1

Using that $\cosh(x)=\frac{1}{2}\big(e^{-x}+e^x\big)$ and $\sin(x)=\frac{1}{2}\big(e^{-x}-e^x\big)$ to show that

$$\cosh^2 x - \sinh^2 x = 1.$$

MA211 — Lecture 12: Class Test 3/

Solutions

Q3

2/6

Find values of b and c such that $y(x) = \cosh(2x)$ is a solution to the differential equation:

$$y'' + by' + cy = 0.$$

MA211 — Lecture 12: Class Test 4/6

MA211 — Lecture 12: Class Test

5/6 MA211 — Lect

MA211 — Lecture 12: Class Test

6/6