

Modelos ML para regresión y clasificación

Angie Caterine Sarmiento Gonzalez [1233507154] ESTADÍSTICA | MINERÍA DE DATOS

22 de octubre de 2020

ACTIVIDAD

Construir y validar el modelo de regresión más potente para predecir el precio de venta Price de un automóvil nuevo con base en las variables predictoras X1=KM (kilometraje), X2=Age (años de uso) y X3=Weight (peso)

PASOS A SEGUIR

1. Seleccione en un mismo data frame las variables de interés.

##	#	A tibb	ole: 6	x 4	
##		KM	Age	Weight	Price
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	46986	23	1165	13500
##	2	72937	23	1165	13750
##	3	41711	24	1165	13950
##	4	48000	26	1165	14950
##	5	38500	30	1170	13750
##	6	61000	32	1170	12950

Exploración de los datos

UNIVERSIDAD

EL BOSQUE

Se realiza una distribución de la distribución de la variable de respuesta para encontrar el modelo más optimo que prediga los datos. .

Distribución del precio de los datos explicado por cada una de las variables

2. Construya una conjunto de entrenamiento $(75\,\%)$ y otro de prueba $(25\,\%)$. Tome la semilla 12345

```
# Seleccionar siempre la misma partición
set.seed(12345)

# Muestra aleatoria del 75% de las filas del
#conjunto "datos" para el conjunto de entrenamiento

train.filas<-sample(x=row.names(datos),size = dim(datos)[1]*0.75)

# CONJUNTO DE ENTRENAMIENTO (selección de columnas)
train.set<-datos[train.filas,]</pre>
```

```
train1<-train.set %>% mutate_if(is.numeric,scale)
dim(train.set)

## [1] 1077    4

# CONJUNTO DE PRUEBA
test.filas<-setdiff(x = row.names(datos),train.filas)
test.set<-datos[test.filas,]
test.set1<- test.set %>% mutate_if(is.numeric,scale)
dim(test.set)

## [1] 359    4
```

3. Entrene los cinco modelos con base en el conjunto de entrenamiento y almacene los correspondientes precios predichos para los automóviles de dicho conjunto.

Modelo 1: un modelo de regresión lineal múltiple:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$$

modelo1<-lm(Price~KM+Age+Weight, data=train.set)

$$\widehat{Price} = -3189.31 - 0.02 \cdot KM - 117.76 \cdot Age + 20.71 \cdot Weight$$

Modelo 2:un modelo de regresión múltiple de grado 3:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2^2 + \beta_3 X_3^3 + \epsilon$$

modelo2<-lm(Price~KM+(Age^2)+(Weight^3),data=train.set)

$$\widehat{Price} = -3189.31 - 0.02 \cdot KM - 117.76 \cdot Aqe^2 + 20.71 \cdot Weight^3$$

Modelo 3:Un modelo ajustado por algoritmo kNN con k = 10 vecinos más próximos.

```
modelo3<-FNN::knn.reg(train = train.set,y =train.set$Price,k = 10)</pre>
```

Modelo 4:Un modelo ajustado por algoritmo kNN con k=10 vecinos más próximos sobre las variables normalizadas Z_1 , Z_2 y Z_3 .

```
modelo4<-FNN::knn.reg(train =train1 ,y =train1$Price,k = 10)</pre>
```

Modelo 5: Un modelo generalizado

```
## # A tibble: 1,077 x 8
##
                Age Weight Price Price_pred1 Price_pred2 Price_pred3 Price_pred4
                      <dbl> <dbl>
##
       <dbl> <dbl>
                                         <dbl>
                                                      <dbl>
                                                                    <dbl>
                                                                                 <dbl>
##
    1
       21684
                 19
                       1185 23950
                                        18581.
                                                     18581.
                                                                   20584
                                                                                 3.00
    2
       62636
                       1255 17950
                                                     18680.
                                                                                 2.28
##
                 22
                                        18680.
                                                                   15575
##
    3
       88807
                 68
                       1050
                            8500
                                         8382.
                                                      8382.
                                                                   8505
                                                                                -0.646
##
    4
       86714
                      1035
                                                                   8525
                                                                                -0.582
                 68
                             8950
                                         8122.
                                                      8122.
       81930
                       1070
                                                                                -0.825
##
    5
                 76
                             7750
                                         8021.
                                                      8021.
                                                                   7844.
                                                                                -0.330
##
    6 110287
                 68
                       1050
                             9500
                                         7859.
                                                      7859.
                                                                   9115
       69103
                       1035
                                                                                -0.236
##
    7
                 68
                             9750
                                         8551.
                                                      8551.
                                                                   9530
##
    8 204250
                 68
                       1115
                             7900
                                         6917.
                                                      6917.
                                                                   6305
                                                                                -1.14
##
    9
       29650
                 55
                       1025
                             9950
                                        10835.
                                                     10835.
                                                                   10170
                                                                                -0.170
## 10 57000
                 80
                       1000
                            7750
                                         6708.
                                                      6708.
                                                                    8255
                                                                                -0.793
## # ... with 1,067 more rows
```

4. Estime (y almacene) los correspondientes errores cuadráticos medios de entrenamiento MSEE de los cinco modelos ¿Cuál modelo ajustó mejor al conjunto de entrenamiento?

```
## MSE_m3 MSE_m1 MSE_m2 MSE_m4
## 1 1118598 1957205 1957205 129063302
```

El modelo que mejor se ajusto fue el modelo no párametrico KNN con k=10.

5. Evalúe los modelos entrenados en el paso 4 utilizando el conjunto de prueba y almacene los correspondientes precios predichos para los automóviles de dicho conjunto.

```
## # A tibble: 359 x 8
##
         KM
               Age Weight Price Price_pred1 Price_pred2 Price_pred3 Price_pred4
##
      <dbl> <dbl>
                    <dbl> <dbl>
                                        <dbl>
                                                     <dbl>
                                                                   <dbl>
                                                                                <dbl>
    1 72937
##
                23
                      1165 13750
                                       16448.
                                                    16448.
                                                                  12135
                                                                                0.825
    2 41711
##
                24
                      1165 13950
                                       17091.
                                                    17091.
                                                                  14147
                                                                                1.08
##
    3 75889
                30
                      1245 18600
                                       17209.
                                                    17209.
                                                                  14225
                                                                                2.15
##
    4 31461
                25
                     1185 20950
                                       17637.
                                                    17637.
                                                                                2.70
                                                                  19895
    5 18739
##
                28
                      1185 22000
                                       17593.
                                                    17593.
                                                                  20475
                                                                                2.82
                                                    16986.
    6 34000
                30
                     1185 22750
                                                                                2.92
##
                                       16986.
                                                                  20025
    7 64359
##
                30
                     1105 16950
                                       14591.
                                                    14591.
                                                                  15725
                                                                                1.43
##
    8 43905
                29
                      1170 16950
                                       16552.
                                                    16552.
                                                                                1.88
                                                                  15846.
##
    9 56349
                28
                      1120 15950
                                       15332.
                                                    15332.
                                                                  14010
                                                                                1.45
## 10 41000
                22
                      1100 15500
                                       15998.
                                                    15998.
                                                                  14774.
                                                                                1.42
## # ... with 349 more rows
```

6. Estime (y almacene) los correspondientes errores cuadráticos medios de prueba MSEP de los cinco modelos.

```
## MSEP_m3 MSEP_m1 MSEP_m2 MSEP_m4
## 1 867725.3 2130161 2130161 125969090
```

7. Compare visualmente los MSEE y MSEP de los cinco modelos. A su criterio ¿Cuál modelo escogería para predecir el precio de nuevos autos? Justifique


```
## dato Modelo Tipo

## 1 1957204.9 Modelo1 MSEE

## 2 1957204.9 Modelo2 MSEE

## 3 1118598.3 Modelo3 MSEE
```

```
## 4 129063302.1 Modelo4 MSEE

## 5 2130161.4 Modelo1 MSEP

## 6 2130161.4 Modelo2 MSEP

## 7 867725.3 Modelo3 MSEP

## 8 125969090.3 Modelo4 MSEP

## dato Modelo Tipo

## 1 867725.3 Modelo3 MSEP
```

8. Con base en el modelo que seleccionó en el punto 7, prediga el precio que tendrán los siguientes tres automóviles con perfiles:

Automovil	KM	Age	Weight
1	60.000	30	1.300
2	22.000	25	1.500
3	3.000	4	1.070

Tabla 1: Caracteristicas de los nuevos autos

Automovil	KM	Age	Weight	Precio Estimado
1	60.000	30	1.300	17738.5
2	22.000	25	1.500	17738.5
3	3.000	4	1.070	17738.5

Tabla 2: Predicción del precio de los nuevos autos

Referencias

[1] Ramos David, Evaluación de modelos para regresión: Ejemplo, (2020).