# ECON2840 Spring 2024 Paper Presentation

Daron Acemoglu, The simple macroeconomics of AI, Economic Policy, Volume 40, Issue 121, January 2025, Pages 13–58

Adrien Foutelet

March 10, 2025

#### Context and Motivation



# A lot of hype, hindisght from robotization, first experimental results

- In the media:
  - Science fiction fantasies,
  - ChatGPT: fastest spreading tech mlatform in history,
- In the business world:
  - Goldman Sachs (2023): Over ten years, 7% increase in global GDP,
    1.5% annual increase in US productivity growth,
  - McKinsey Global Institute (2023): a USD 17-26 trillion increase to the global economy.
  - 12% of the labor force.
- Recall robotization (Acemoglu, Restrepo, 2020):
  - Positive outcomes on firm owners and managers,
  - Negative outcomes on workers.
- Experiments: nontrivial productivity gains driven by improvements for less productive/lower-performing workers.

## Research question and strategy

What insight can we get, from the Macro labor toolbox, on the outcomes of AI for a ten-year horizon?

- Fitting the Task.Skill.Capital framework from Acemoglu, Autor (2011); Restrepo (2018, 2019, 2022),
- Empirical calibration and prediction.

#### Model



#### Production

- A unique final good,
- All markets are competitive,
- A continuum of tasks: [0; N],
- Output of task z: y(z),
- Production function:  $Y = B(N) \left( \int_0^N y(z)^{\frac{\sigma-1}{\sigma}} dz \right)^{\frac{\sigma}{\sigma-1}}$ ,
- Constant elasticity of substitution (tasks are complements):  $\sigma$ ,
- System-wide effect of new tasks: B(N),
- Task production function:  $y(z) = A_L \gamma_L(z) I(z) + A_K \gamma_K k(z)$  (in fact  $y(z) = A_L \gamma_L(z) [I(z)^{1-\kappa} k_C(z)^{\kappa})] + A_K \gamma_K k(z)$ ),
- labor/capital-augmenting productivity terms:  $A_L$ ,  $A_K$ ,
- Labor/capital task-specific productivity schedules:  $\gamma_L(z)$ ,  $\gamma_K(z)$ .

Assume  $\frac{\gamma_L(z)}{\gamma_K(z)}$  increasing in z.

Hence labor has a comparative advantage in higher-indexed tasks.

Hence  $z \in [0; I]$  is produced via capital;  $z \in ]I; N]$  is produced via labor.  $s \in [0; I]$ 

#### Labor, capital, consumption

- Measure-one population,
- High and low skill labor for fractions  $\Phi^H$ ,  $\Phi^U$  of the population endowed with  $\lambda^H$ ,  $\lambda^U$  units of labor (tasks can be performed by either),
- $\lambda^U < \lambda^H$ ,
- Supply of labor:  $\Phi^H \lambda^H + \Phi^U \lambda^U = L$ ,
- Wage rate:  $\omega$ ,
- Aggregated capital:  $K = \int_0^N k(z)dz$
- Task-specialised capital k(z) produced linearily from final good Y with price  $R(z) = R(K)\rho(z)$ ,
- Households consume the final good net of capital expenditures.



#### Equilibrium

#### Characterization of an equilibrium:

• z is produced by labor iff:

$$\frac{\omega}{A_L \gamma_L(z)} < \frac{R(z)}{A_K \gamma_K(z)}$$

3

$$k(z) = argmax_{k(z)} \{ Y - R(z)k(z) \}$$

,

Labor market clearing:

$$L = \int_0^N I(z) dz$$

We skip the solution. The point is to compute comparative statics.

#### Towards comparative statics: how AI affects production

- Extensive margin automation i.e., increase in 1:
  - Al reduces the cost of capital  $\rho(z)$  for some marginal tasks above I,
  - Al increases the effectiveness of capital  $\gamma_K(z)$  for some marginal tasks above I,
- Greater task complementarities, for  $z \in [0; I]$ :
  - Al raises the task-specific productivity of labor  $\gamma_L(z)$ ,
  - Al reduces the cost of complementary capital  $k_C(z)$ ,
- Intensive margin automation, for  $z \in [0; I]$ :
  - Al reduces the cost of capital  $\rho(z)$ ,
  - Al increases the effectiveness of capital  $\gamma_K(z)$ ,
- New labor-intensive products or tasks i.e., increase in N:
  - "Good" or "bad" in terms of social value, possibly causing externalities.



#### Comparative statics

- Ambiguous sign of  $\frac{d \ln \omega}{d I}$ :
  - ullet Increase in productivity o Increase in wages,
  - ullet Displacement of workers across tasks o Decrease in wages.
- Ambiguous sign of  $\frac{dln\omega}{d\gamma_L(z)}$ :
  - $\bullet$  Increase in easiness to perform  $\to$  Decrease in task price not fully offset,
  - Unclear offset by increase in productivity.
- For  $z \in [0; I]$ ,  $\frac{d \ln \omega}{d \gamma_K(z)} > 0$ ,  $\frac{d \ln \omega}{d \rho(z)} > 0$ ,  $\frac{d N}{d \rho(z)} > 0$ .



#### Simplifying the job for aggregates: Hulten's theorem

How micro-level productivity improvements translate into macro changes.

$$GDP = Y = \int_0^N p(z)y(z)dz$$

At the equilibrium, any small change in an element of  $\{B; A_L; A_K; \gamma_L(z); \gamma_L(z); I; N\}$  (technology) has second-order impact on GDP via:

- Reallocation of factors across tasks.
- Prices.

This takes us to

$$dlnY = dlnTFP + S_K dlnK$$

(with  $s_K$  the capital share of GDP) and

dlnTFP = Costs savings from automation\*GDP share of Al-impacted tasks

#### Finalizing the theory

- Distinguishing between easy and hard to learn tasks
  - → Different productivity gain magnitudes,
- Welfare analysis including the negative exterality from "bad" tasks,
- Inclusion of multiple demographic groups
  - $\rightarrow$  Theoretical arguments in favour of rising inequality due to an increase in the productivity of low-skilled workers.

# **Empirics**



#### Logic, sources, first estimates

Estimates of which tasks can be automated with AI; Estimates of the cost savings; Estimates of new tasks.

 $\rightarrow$ 

TFP growth estimates; GDP growth estimates; Wage growth estimates; Inequality implications.

- GDP share of tasks impacted by AI within the next 10 years:
  - Eloundou et al. (2023)  $\rightarrow$  Ask GPT-4 to classify O\*NET 19,265 tasks and 2,087 Detailed Work Activity and infer an automation index.
  - U.S. Bureau of Labor Statistics National Occupational Employment and Wage Estimates.

4.6%.

- Cost savings from AI:
  - Peng et al. (2023),
  - Noy and Zhang (2023),
  - Brynjolfsson et al. (2023).

20.5%.



### TFP growth, GDP growth, bad tasks

- TFP growth over 10 years:
  - Ignoring hard and easy tasks:
    0.71%. Likely to reach 1% if the cost of AI decreases optimisticly over time.
  - Considering hard and easy tasks:
    0.55%. Likely to reach 1% if the cost of AI decreases optimisticly over time,
- GDP growth over 10 years:
  - Ignoring hard and easy tasks: 1.1%,
  - Considering hard and easy tasks: 0.92%.
- Bursztyn et al. (2023) (estimate the welfare effect of social media):
  Currently 0.072% of GDP, sizable effect on welfare.



### Wages and inequality

Acemoglu and Restrepo (2022): The chore of the reasoning is the ripple effects: the displacement of one demographic group impacts others.

- Least exposed: workers with less than high school,
- Medium: postgraduate workers,
- Most exposed: workers with college degrees and those with high school degrees or some college.

Within the next ten years:

- Predicted wage impacts do not appear to increase inequality between education groups.
- Predicted impact on GDP considering hard and easy tasks: 1.62%.
- Predicted impact on capital share considering hard and easy tasks: 0.38%.

Consequences on inequality of AI will not be as adverse as those from pre-AI automation.

No evidence of inequality reduction.

#### Conclusion

