ECEN 649 Pattern Recognition Perceptrons

Ulisses Braga-Neto

ECE Department

Texas A&M University

Adjustable Discriminant Rules

- Both parametric and nonparametric classification rules are plug-in rules, that is, they involve some form of distribution estimation using training data.
- We will consider now a different idea:
 - Assume a set of discriminants (decision boundaries)
 - Search for the discriminant that best fits the data by optimizing some objective criterion ("learning")
- This is the basic idea behind many popular "machine learning" classification rules:
 - Perceptrons
 - Support Vector Machines
 - Neural Networks
 - Decision Trees

Rosenblatt's Perceptron

- This was the first adjustable discriminant rule, proposed in the late 50's by F. Rosenblatt.
- Assume a linear discriminant function

$$g_n(x) = a_0 + \sum_{i=1}^d a_i x_i$$

so that the designed classifier is given by

$$\psi_n(x) = \begin{cases} 1, & \text{if } a_0 + \sum a_i x_i \ge 0\\ 0, & \text{otherwise} \end{cases}$$

• Adjust ("learn") the parameters a_0, a_1, \ldots, a_d based on the training data.

Rosenblatt's Perceptron - II

This corresponds to the (single-layer) perceptron, depicted as follows.

Augmented Feature Vector

• Given the feature vector $x \in \mathbb{R}^d$, consider the augmented vector:

$$x' = \begin{bmatrix} 1 \\ x \end{bmatrix} \in R^{d+1}$$

so that the perceptron classifier is given by

$$\psi_n(x') = \begin{cases} 1, & \text{if } a^T x' \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

where $a = [a_0, a_1, \dots, a_d]^T \in \mathbb{R}^{d+1}$ is the parameter vector.

Augmented Feature Vector - II

- Given training data point (x_i, y_i) , define likewise the augmented vector x_i' , for i = 1, ..., n.
- ullet Correct classification of x_i happens when

$$a^T x_i' \ge 0$$
 if $y_i = 1$
 $a^T x_i' < 0$ if $y_i = 0$

• Trick: flip the sign of x_i' if $y_i = 0$ so that

correct classification of
$$x_i \Leftrightarrow a^T x_i' \geq 0$$

For convenience, the prime will be omitted from the augmented vector in what follows.

Linearly Separable Case

The data is said to be *linearly separable* is there is a perceptron with zero apparent error, that is, one can find a (not unique) such that

$$a^T x_i \ge 0, \quad i = 1, \dots, n$$

• Example: n = 4, left: raw data, right: "flipped" data.

Perceptron with Margin

Another possibility is to look for a vector a satisfying

$$a^T x_i \ge b$$
, $i = 1, \dots, n$

where b > 0 is the *margin*.

Example: left: no margin, right: positive margin.

Perceptron with Margin - II

• The distance of point x_i to the decision hyperplane is $|g(x_i)|/||a|| = |a^Tx_i|/||a||$. The perceptron with margin thus guarantees that all data points are at a distance at least b/||a|| from the hyperplane (this is also the main idea behind support vector machines, as will be seen).

Gradient Descent

- Classical iterative optimization technique.
- Find a criterion function $J(a) \ge 0$ such that J(a) is minimal (J(a) = 0) whenever a in the solution region.
- Gradient descent algorithm ("follow the gradient"):
 - Let $a(0) = a_0$ (initial guess).
 - At step $k \geq 1$,

$$abla J(a(k)) \leftarrow \text{ gradient of } J \text{ at } a(k)$$
 $\ell(k) \leftarrow \text{ step length}$

$$a(k+1) \leftarrow a(k) - \ell(k) \nabla J(a(k))$$

• Stop when J(a(k)) = 0 or $|\ell(k)\nabla J(a(K))| < \tau$

Gradient Descent - II

Graphical example: gradient descent is depicted in red below. In black is a different kind of descent algorithm, called Newton's algorithm, which converges faster but requires matrix inversion and so may be unstable.

Learning Rate

- The step lengths $\ell(k)$ have to be selected carefully to ensure convergence: one wants $l(k) \to 0$ as $k \to \infty$, but not too fast ("overrelaxation") nor too slow ("underrelaxation"). In both cases, the algorithm may fail to converge in a reasonable number of steps.
- Example: left: overrrelexation. right: underrelaxation.

Perceptron Criterion Function

- The choice of criterion function J(a) is fundamental.
- A naive criterion function such as the number of errors

$$J(a) = \sum_{i=1}^{n} I_{\{a^T x_i < 0\}}$$

cannot work, because it is piecewise constant $(J(a) \in \{0, 1, ..., n\})$, and therefore unsuitable for gradient descent.

Consider instead the criterion function

$$J_p(a) = \sum_{i=1}^n -(a^T x_i) I_{\{a^T x_i < 0\}}$$

Perceptron Criterion Function - II

- This is called the perceptron criterion function.
- It is piecewise linear and suitable for gradient descent.
- Note that

$$\nabla J_p(a) = \sum_{i=1}^n -x_i I_{\{a^T x_i < 0\}}$$

Therefore, the basic iterative step in the gradient descent algorithm becomes

$$a(k+1) \leftarrow a(k) + \ell(k) \sum_{i=1}^{n} x_i I_{\{a^T x_i < 0\}}$$

that is, at each step, the current vector a is "corrected" in the direction of the misclassified data points.

Perceptron Criterion Function - III

Example: naive (left) and perceptron (right) criterion functions.

Perceptron Criterion Function - IV

Example of gradient descent algorithm with perceptron criterion function.

Alternative Criterion Functions

Quadratic criterion function:

$$J_q(a) = \sum_{i=1}^n (a^T x_i)^2 I_{\{a^T x_i < 0\}}$$

This is too smooth near the boundary of the solution region (so one can get the trivial solution a=0). It is also dominated by large data vectors.

Normalized quadratic criterion function with margin:

$$J_r(a) = \frac{1}{2} \sum_{i=1}^n \frac{(a^T x_i - b)^2}{||x_i||^2} I_{\{a^T x_i < b\}}$$

This avoids boundary points with the margin and also normalizes against large data vectors.

Alternative Criterion Functions - II

Example: quadratic (left) and normalized with margin (right) criterion functions.

Nonseparable Case

- If the data is nonseparable, then the solution region is empty and there is no linear classifier that can achieve zero apparent error.
- ullet This means that J(a) is never zero and the gradient descent algorithm may run indefinitely.
- A sensible stopping rule then becomes essential.

Overfitting

- All adjustable-discriminant classification rules, as we will see, are based on *iterative* search. With increasing number of iterations, the apparent error on the training data decreases, but the true classification error may increase after a certain point.
- This leads to overfitting, which greatly affects adjustable discriminant rules.
- One recalls that LDA can also be seen as fitting a linear discriminant to the data based on an optimality criterion (e.g. Fisher's criterion), but in the case there is a closed formula solution and no iterative adjustment.

Overfitting - II

Graphical interpretation of overfitting.

