Approximate data deletion and replication with the Bayesian influence function

Ryan Giordano (rgiordano@berkeley.edu, UC Berkeley), Tamara Broderick (MIT) April 2024

Theory and Foundations of Statistics in the Era of Big Data

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X = x_1, ..., x_N = Polling data (N = 361).$
- $\bullet \ \ \theta = {\sf Lots} \ {\sf of} \ {\sf random} \ {\sf effects} \ {\sf (day, \ pollster, \ etc.)}$
- $f(\theta) = Democratic \%$ of vote on election day

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X = x_1, ..., x_N = Polling data (N = 361).$
- $\bullet \ \ \theta = {\sf Lots} \ {\sf of} \ {\sf random} \ {\sf effects} \ {\sf (day, \ pollster, \ etc.)}$
- $f(\theta) = Democratic \%$ of vote on election day

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know
$$\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$$

Some typical model checking tasks:

How well are polls fit under cross-validation (CV)? [Vehtari and Ojanen, 2012]
 Re-fit with data points removed one at a time

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X = x_1, ..., x_N = Polling data (N = 361).$
- $\bullet \ \ \theta = {\sf Lots} \ {\sf of} \ {\sf random} \ {\sf effects} \ {\sf (day, \ pollster, \ etc.)}$
- $f(\theta) = Democratic \%$ of vote on election day

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know
$$\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$$

Some typical model checking tasks:

- How well are polls fit under cross-validation (CV)? [Vehtari and Ojanen, 2012]
 Re-fit with data points removed one at a time
- Is there high variability under re-sampling? [Huggins and Miller, 2023]
 Re-fit with bootstrap samples of data

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X = x_1, ..., x_N = Polling data (N = 361).$
- $\bullet \ \ \theta = {\sf Lots} \ {\sf of} \ {\sf random} \ {\sf effects} \ {\sf (day, \ pollster, \ etc.)}$
- $f(\theta) = Democratic \%$ of vote on election day

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

Some typical model checking tasks:

- How well are polls fit under cross-validation (CV)? [Vehtari and Ojanen, 2012]
 Re-fit with data points removed one at a time
- Is there high variability under re-sampling? [Huggins and Miller, 2023]
 Re-fit with bootstrap samples of data
- Are a small proportion (1%) of polls highly influential? [Broderick et al., 2020]
 Re-fit with sets of all 1% of datapoints removed

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X = x_1, ..., x_N = Polling data (N = 361).$
- $\bullet \ \ \theta = {\sf Lots} \ {\sf of} \ {\sf random} \ {\sf effects} \ {\sf (day, \ pollster, \ etc.)}$
- $f(\theta) = Democratic \%$ of vote on election day

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

Some typical model checking tasks:

- How well are polls fit under cross-validation (CV)? [Vehtari and Ojanen, 2012]
 Re-fit with data points removed one at a time
- Is there high variability under re-sampling? [Huggins and Miller, 2023]
 Re-fit with bootstrap samples of data
- Are a small proportion (1%) of polls highly influential? [Broderick et al., 2020]
 Re-fit with sets of all 1% of datapoints removed

Problem: Each MCMC run takes about 10 hours (Stan, six cores).

Results

We propose: Use posterior draws based on the full data, to form a linear approximation to *data reweightings*.

Results

We propose: Use posterior draws based on the full data, to form a linear approximation to *data reweightings*.

Results

We propose: Use posterior draws based on the full data, to form a linear approximation to *data reweightings*.

Compute time for 100 bootstraps: 51 days

Compute time for the linear approximation: (But note the approximation has some error)

Seconds

- Data reweighting
 - ullet Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC

- Data reweighting
 - Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- Finite-dimensional problems with posteriors which concentrate asymptotically
 - $\bullet~$ As N $\to \infty$, the linear component provides an arbitrarily good approximation

- Data reweighting
 - Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- Finite-dimensional problems with posteriors which concentrate asymptotically
 - $\bullet~$ As N $\to \infty$, the linear component provides an arbitrarily good approximation
- High-dimensional problems
 - The linear component is the same order as the error
 - ullet Even for parameters which concentrate, even as $N o \infty$

- Data reweighting
 - Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- Finite-dimensional problems with posteriors which concentrate asymptotically
 - $\bullet~$ As N $\to \infty$, the linear component provides an arbitrarily good approximation
- · High-dimensional problems
 - The linear component is the same order as the error
 - ullet Even for parameters which concentrate, even as $N o \infty$
- A trick question, and some implications of different weightings.

Augment the problem with data weights w_1, \ldots, w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$
 $\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$

Original weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$
 $\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$

Original weights:

Leave-one-out weights:

Augment the problem with data weights w_1,\ldots,w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$
 $\log p(X|\theta, w) = \sum_{n=1}^N w_n \ell_n(\theta)$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta,w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta,w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1,\ldots,w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

The re-scaled slope $N\psi_n$ is known as the "influence function" at data point x_n .

$$\underset{\rho(\theta|X,w)}{\mathbb{E}}[f(\theta)] - \underset{\rho(\theta|X)}{\mathbb{E}}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w)$$

How can we use the approximation?

Assume the slope is computable and error is small.

$$\mathop{\mathbb{E}}_{
ho(heta|X,w)}[f(heta)] - \mathop{\mathbb{E}}_{
ho(heta|X)}[f(heta)] = \sum_{n=1}^N \psi_n(w_n-1) + \mathcal{E}(w)$$

How can we use the approximation?

Assume the slope is computable and error is small.

$$\mathop{\mathbb{E}}_{\rho(\theta|X,w)}[f(\theta)] - \mathop{\mathbb{E}}_{\rho(\theta|X)}[f(\theta)] = \sum_{n=1}^N \psi_n(w_n - 1) + \mathcal{E}(w)$$

Cross validation. Let $w_{(-n)}$ leave out point n, and loss $f(\theta) = -\ell(x_n|\theta)$.

$$\text{LOO CV loss at point } n = \underset{p(\theta|x,w_{(-n)})}{\mathbb{E}} [f(\theta)] \approx \underset{p(\theta|x)}{\mathbb{E}} [f(\theta)] - \psi_n$$

How can we use the approximation?

Assume the slope is computable and error is small.

$$\mathop{\mathbb{E}}_{\rho(\theta|X,w)}[f(\theta)] - \mathop{\mathbb{E}}_{\rho(\theta|X)}[f(\theta)] = \sum_{n=1}^N \psi_n(w_n - 1) + \frac{\mathcal{E}(w)}{}$$

Cross validation. Let $w_{(-n)}$ leave out point n, and loss $f(\theta) = -\ell(x_n|\theta)$.

$$\text{LOO CV loss at point } n = \underset{p(\theta|x,w_{(-n)})}{\mathbb{E}} [f(\theta)] \approx \underset{p(\theta|x)}{\mathbb{E}} [f(\theta)] - \psi_n$$

Bootstrap. Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$.

Bootstrap variance =
$$\underset{\rho(w)}{\text{Var}} \left(\underset{\rho(\theta|\times,w)}{\mathbb{E}} [f(\theta)] \right) \approx \frac{1}{N^2} \sum_{n=1}^{N} \left(\psi_n - \overline{\psi} \right)^2$$

How can we use the approximation?

Assume the slope is computable and error is small.

$$\mathop{\mathbb{E}}_{
ho(heta|X,w)}[f(heta)] - \mathop{\mathbb{E}}_{
ho(heta|X)}[f(heta)] = \sum_{n=1}^N \psi_n(w_n-1) + \mathcal{E}(w)$$

Cross validation. Let $w_{(-n)}$ leave out point n, and loss $f(\theta) = -\ell(x_n|\theta)$.

$$\text{LOO CV loss at point } n = \underset{p(\theta|x, w_{(-n)})}{\mathbb{E}} [f(\theta)] \underset{p(\theta|x)}{\approx} \underset{p(\theta|x)}{\mathbb{E}} [f(\theta)] - \psi_n$$

Bootstrap. Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$.

Bootstrap variance =
$$\underset{\rho(w)}{\text{Var}} \left(\underset{\rho(\theta|x,w)}{\mathbb{E}} [f(\theta)] \right) \approx \frac{1}{N^2} \sum_{n=1}^{N} \left(\psi_n - \overline{\psi} \right)^2$$

Influential subsets: Approximate maximum influence perturbation (AMIP).

Let $W_{(-K)}$ denote weights leaving out K points.

$$\max_{w \in W_{(-K)}} \left(\underset{p(\theta|x,w)}{\mathbb{E}} [f(\theta)] - \underset{p(\theta|x)}{\mathbb{E}} [f(\theta)] \right) \approx - \sum_{n=1}^{K} \psi_{(n)}.$$

Expressions for the slope and error

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

For simplicity, for the remainder of the presentation, we will consider a single weight.

$$\mathop{\mathbb{E}}_{p(\theta|X,w_n)}[f(\theta)] - \mathop{\mathbb{E}}_{p(\theta|X)}[f(\theta)] = \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Let an overbar mean posterior–mean zero (e.g., $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)]$).

By dominated convergence and the mean value theorem, for some $\tilde{w}_n \in [0, w_n]$:

$$\psi_n = \underset{p(\theta|X)}{\mathbb{E}} \left[\overline{f}(\theta) \overline{\ell}_n(\theta) \right] \qquad \mathcal{E}(w_n) = \frac{1}{2} \underset{p(\theta|X, \tilde{w}_n)}{\mathbb{E}} \left[\overline{f}(\theta) \overline{\ell}_n(\theta) \overline{\ell}_n(\theta) \right] (w_n - 1)^2$$

$$= O_p(N^{-1}) \text{ under a BCLT} \qquad \qquad = O_p(N^{-2}) \text{ under a BCLT}$$

$$\Rightarrow \text{ The map } w_n \mapsto N\left(\underset{\rho(\theta|X,w_n)}{\mathbb{E}}[f(\theta)] - \underset{\rho(\theta|X)}{\mathbb{E}}[f(\theta)]\right) \text{ becomes linear as } N \to \infty.$$

(See [Kass et al., 1990] for a *particular weight*, [?] for a kind of uniform convergence over datapoints.)

Low dimensional problems

Example: Negative binomial models with an unkown parameter $\gamma.$

Negative Binomial model leaving out single datapoints with N = 800

The map
$$w_n\mapsto N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}}[\gamma]-\underset{p(\gamma|X)}{\mathbb{E}}[\gamma]\right)$$
 becomes linear as $N\to\infty$.

What about when the posterior doesn't obey a BCLT?

Suppose that $p(\lambda|X)$ does not concentrate.

(E.g., N is small, λ grows in dimension or X is uninformative.)

What about when the posterior doesn't obey a BCLT?

Suppose that $p(\lambda|X)$ does not concentrate.

(E.g., N is small, λ grows in dimension or X is uninformative.)

$$\mathbb{E}_{\rho(\lambda|X,w_n)}[f(\lambda)] - \mathbb{E}_{\rho(\lambda|X)}[f(\lambda)]$$

$$= \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

$$= \mathbb{E}_{\rho(\lambda|X)}[\bar{f}(\lambda)\bar{\ell}_n(\lambda)](w_n - 1) + \frac{1}{2} \mathbb{E}_{\rho(\lambda|X,\bar{w}_n)}[\bar{f}(\lambda)\bar{\ell}_n(\lambda)\bar{\ell}_n(\lambda)](w_n - 1)^2.$$

The error is of the same order as the slope.

The map $w_n \mapsto \underset{p(\lambda|X,w_n)}{\mathbb{E}} [f(\lambda)]$ is nonlinear in general.

What about when the posterior doesn't obey a BCLT?

Suppose that $p(\lambda|X)$ does not concentrate.

(E.g., N is small, λ grows in dimension or X is uninformative.)

$$\mathbb{E}_{\rho(\lambda|X,w_n)}[f(\lambda)] - \mathbb{E}_{\rho(\lambda|X)}[f(\lambda)]$$

$$= \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

$$= \underbrace{\mathbb{E}_{\rho(\lambda|X)}[\bar{f}(\lambda)\bar{\ell}_n(\lambda)]}_{O_p(1)}(w_n - 1) + \frac{1}{2}\underbrace{\mathbb{E}_{\rho(\lambda|X,\tilde{w}_n)}[\bar{f}(\lambda)\bar{\ell}_n(\lambda)\bar{\ell}_n(\lambda)]}_{O_p(1)}(w_n - 1)^2.$$

The error is of the same order as the slope.

The map $w_n \mapsto \underset{p(\lambda|X,w_n)}{\mathbb{E}} [f(\lambda)]$ is nonlinear in general.

Can we save the approximation when *some* parameters concentrate?

Example: Poisson model with random effects (REs) λ and fixed effects $\gamma.$

g

Example: Poisson model with random effects (REs) λ and fixed effects γ .

If the observations per random effect remains bounded as $N \to \infty$, then

- Parameter λ ("local") grows in dimension with N.
- Parameter γ ("global") is finite-dimensional.
- Marginally $p(\lambda|X)$ does not concentrate.
- Marginally, $p(\gamma|X)$ concentrates.

Example: Poisson model with random effects (REs) λ and fixed effects γ .

If the observations per random effect remains bounded as $N \to \infty$, then

- Parameter λ ("local") grows in dimension with N.
- Parameter γ ("global") is finite-dimensional.
- Marginally $p(\lambda|X)$ does not concentrate.
- Marginally, $p(\gamma|X)$ concentrates.

Can we save the approximation when *some* parameters concentrate? \Rightarrow Does the residual vanish asymptotically for $w_n \mapsto \underset{p(\gamma|X,w_n)}{\mathbb{E}} [\gamma]$?

g

$$\begin{split} & \underset{\rho(\gamma,\lambda|X,w_n)}{\mathbb{E}}[\gamma] - \underset{\rho(\gamma,\lambda|X)}{\mathbb{E}}[\gamma] = \\ & \psi_n(w_n - 1) \\ & = \underset{\rho(\gamma,\lambda|X)}{\mathbb{E}}[\bar{\gamma}\bar{\ell}_n(\gamma,\lambda)](w_n - 1) \\ & + \frac{1}{2}\underset{\rho(\gamma,\lambda|X,\tilde{w}_n)}{\mathbb{E}}[\bar{\gamma}\bar{\ell}_n(\gamma,\lambda)^2](w_n - 1)^2 \end{split}$$

$$\psi_n = O_p(N^{-1}) \qquad \qquad \mathcal{E}(w_n) = O_p(N^{-1})$$

$$\begin{split} &\underset{\rho(\gamma,\lambda|X,w_n)}{\mathbb{E}}[\gamma] - \underset{\rho(\gamma,\lambda|X)}{\mathbb{E}}[\gamma] = \\ & \psi_n(w_n - 1) \\ &= \underset{\rho(\gamma,\lambda|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma,\lambda) \right] (w_n - 1) \\ &= \underset{\rho(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underbrace{\tilde{\ell}_n(\gamma,\lambda)}_{\rho(\lambda|\gamma,X)} \left[\bar{\ell}_n(\gamma,\lambda) \right] \right] (w_n - 1) \\ &+ \frac{1}{2} \underset{\rho(\gamma,\lambda|X,\tilde{w}_n)}{\mathbb{E}} \left[\bar{\gamma} \underbrace{\tilde{\ell}_n(\gamma,\lambda)^2}_{\rho(\lambda|X,\gamma,\tilde{w}_n)} \left[\bar{\ell}_n(\gamma,\lambda)^2 \right] \right] (w_n - 1)^2 \\ &= \underset{\rho(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underbrace{\tilde{\ell}_n(\gamma,\lambda)}_{\rho(\lambda|\gamma,X)} \left[\bar{\ell}_n(\gamma,\lambda) \right] \right] (w_n - 1) \\ &+ \frac{1}{2} \underset{\rho(\gamma|X)}{\mathbb{E}} \underbrace{\tilde{k}_n(\gamma,\lambda)}_{\rho(\lambda|X,\gamma,\tilde{w}_n)} \left[\bar{\ell}_n(\gamma,\lambda)^2 \right] \right] (w_n - 1)^2 \end{split}$$

$$\psi_n = O_p(N^{-1}) \qquad \qquad \mathcal{E}(w_n) = O_p(N^{-1})$$

$$\begin{split} & \underset{\rho(\gamma,\lambda|X,w_n)}{\mathbb{E}}[\gamma] - \underset{\rho(\gamma,\lambda|X)}{\mathbb{E}}[\gamma] = \\ & \psi_n(w_n-1) & + \mathcal{E}(w_n) \\ & = \underset{\rho(\gamma,\lambda|X)}{\mathbb{E}}\left[\bar{\gamma}\bar{\ell}_n(\gamma,\lambda)\right](w_n-1) & + \frac{1}{2}\underset{\rho(\gamma|X,\bar{w}_n)}{\mathbb{E}}\left[\bar{\gamma}\bar{\ell}_n(\gamma,\lambda)^2\right](w_n-1)^2 \\ & = \underset{\rho(\gamma|X)}{\mathbb{E}}\left[\bar{\gamma}\underset{\rho(\lambda|\gamma,X)}{\mathbb{E}}\left[\bar{\ell}_n(\gamma,\lambda)\right]\right](w_n-1) & + \frac{1}{2}\underset{\rho(\gamma|X,\bar{w}_n)}{\mathbb{E}}\left[\bar{\gamma}\underset{\rho(\lambda|X,\gamma,\bar{w}_n)}{\mathbb{E}}\left[\bar{\ell}_n(\gamma,\lambda)^2\right]\right](w_n-1)^2 \\ & = \underset{\rho(\gamma|X)}{\mathbb{E}}\left[\bar{\gamma}F_1(\gamma)\right](w_n-1) & + \frac{1}{2}\underset{\rho(\gamma|X,\bar{w}_n)}{\mathbb{E}}\left[\bar{\gamma}F_2(\gamma)\right](w_n-1)^2 \\ & + \frac{1}{2}\underset{\rho(\gamma|X)}{\mathbb{E}}\underset{\rho(\gamma|X)}{\mathbb{E}}\left[\bar{\gamma}F_2(\gamma)\right](w_n-1)^2 \\ & + \frac{1}{2}\underset{\rho(\gamma|X)}{\mathbb{E}}\underset{\rho(\gamma|X)}{\mathbb{E}}(\gamma) & + \frac{1}{2}\underset{\rho(\gamma|X)}{\mathbb{E}}(\gamma) &$$

$$\begin{split} &\underset{\rho(\gamma,\lambda|X,w_n)}{\mathbb{E}} \left[\gamma \right] - \underset{\rho(\gamma,\lambda|X)}{\mathbb{E}} \left[\gamma \right] = \\ & \psi_n(w_n-1) \\ &= \underset{\rho(\gamma,\lambda|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma,\lambda) \right] (w_n-1) \\ &= \underset{\rho(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underbrace{\bar{\ell}_n(\gamma,\lambda)}_{\rho(\lambda|\gamma,X)} \left[\bar{\ell}_n(\gamma,\lambda) \right] \right] (w_n-1) \\ &+ \frac{1}{2} \underset{\rho(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underset{\rho(\lambda|X,\gamma,\tilde{w}_n)}{\mathbb{E}} \left[\bar{\ell}_n(\gamma,\lambda)^2 \right] (w_n-1)^2 \\ &= \underset{\rho(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underbrace{\bar{\ell}_n(\gamma,\lambda)}_{\rho(\lambda|\gamma,X)} \left[\bar{\ell}_n(\gamma,\lambda) \right] \right] (w_n-1) \\ &+ \frac{1}{2} \underset{\rho(\gamma|X,\tilde{w}_n)}{\mathbb{E}} \left[\bar{\gamma} \underbrace{\bar{\ell}_n(\gamma,\lambda)^2}_{\rho(\lambda|X,\gamma,\tilde{w}_n)} \left[\bar{\ell}_n(\gamma,\lambda)^2 \right] \right] (w_n-1)^2 \\ &= \underset{\rho(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} F_1(\gamma) \right] (w_n-1) \\ &+ \frac{1}{2} \underset{\rho(\gamma|X),\tilde{w}_n}{\mathbb{E}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n-1)^2 \\ &\underset{\rho(\gamma|X)}{\mathbb{E}} \underset{\rho(\gamma|X)}{\mathbb{E}} (w_n) = O_p(N^{-1}) \\ &\Rightarrow \psi_n = O_p(N^{-1}) \\ \end{split}$$

The map
$$w_n \mapsto N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}}[\gamma] - \underset{p(\gamma|X)}{\mathbb{E}}[\gamma]\right)$$
 remains non-linear as $N \to \infty$.

Experiments

A contradiction?

Negative binomial observations.

Asymptotically linear in w.

Poisson observations with random effects.

Asymptotically non-linear in w.

A contradiction?

Negative binomial observations.

Poisson observations with random effects.

Asymptotically linear in w.

Asymptotically non-linear in w.

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{\rho(\gamma|X,w)}{\mathbb{E}}[\gamma]$ linear in the data weights or not?

Negative binomial observations.

Poisson observations with random effects.

Asymptotically linear in w.

Asymptotically non-linear in w.

$$\log p(X|\gamma, w^m) = \sum_{n=1}^{N} w_n^m \log p(x_n|\gamma) \quad \log p(X|\gamma, \lambda, w^c) = \sum_{n=1}^{N} w_n^c \log p(x_n|\lambda, \gamma)$$

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}[\gamma]$ linear in the data weights or not?

Trick question! We weight a log likelihood contribution, not a datapoint.

The two weightings are not equivalent in general.

Experimental results

Our results were actually computed on identical datasets with G = N and $g_n = n$.

Approximation based on $\log p(x_n|\gamma)$.

Approximation based on $\log p(x_n|\gamma, \lambda)$.

Experimental results

Our results were actually computed on identical datasets with G = N and $g_n = n$.

Approximation based on $\log p(x_n|\gamma)$.

Not computable from $\gamma, \lambda \sim p(\gamma, \lambda|X)$ in general.

Approximation based on $\log p(x_n|\gamma, \lambda)$.

Computable from $\gamma, \lambda \sim p(\gamma, \lambda | X)$.

Experimental results

Our results were actually computed on identical datasets with G=N and $g_n=n$.

Approximation based on $\log p(x_n|\gamma)$.

Not computable from $\gamma, \lambda \sim p(\gamma, \lambda|X)$ in general.

Negative Binomial model leaving out single datapoints with N = 800

Approximation based on $\log p(x_n|\gamma, \lambda)$.

Computable from $\gamma, \lambda \sim p(\gamma, \lambda | X)$.

May still be useful when $p(\lambda|X)$ is somewhat concentrated.

- When $\log p(x_n|\gamma,\lambda)$ is the exchangeable unit, our results are problematic for
 - Linear approximations (IJ, AMIP, approx. CV)
 - The nonparametric bootstrap
 - All of the above for Bayes-like optimization procedures (VB, the EM algorithm)

- When $\log p(x_n|\gamma,\lambda)$ is the exchangeable unit, our results are problematic for
 - Linear approximations (IJ, AMIP, approx. CV)
 - The nonparametric bootstrap
 - All of the above for Bayes-like optimization procedures (VB, the EM algorithm)
- Even if the error $\mathcal{E}(w)$ does not vanish, it can still be small enough in practice to be useful.

- When $\log p(x_n|\gamma,\lambda)$ is the exchangeable unit, our results are problematic for
 - Linear approximations (IJ, AMIP, approx. CV)
 - The nonparametric bootstrap
 - All of the above for Bayes-like optimization procedures (VB, the EM algorithm)
- Even if the error $\mathcal{E}(w)$ does not vanish, it can still be small enough in practice to be useful.
- There may be multiple ways to define "exchangable unit" in a given problem.

- When $\log p(x_n|\gamma,\lambda)$ is the exchangeable unit, our results are problematic for
 - Linear approximations (IJ, AMIP, approx. CV)
 - The nonparametric bootstrap
 - All of the above for Bayes-like optimization procedures (VB, the EM algorithm)
- Even if the error $\mathcal{E}(w)$ does not vanish, it can still be small enough in practice to be useful.
- There may be multiple ways to define "exchangable unit" in a given problem.
- But without nesting, $\log p(x_n|\gamma,\lambda)$ may be the natural model-free exchangeable unit.

- T. Broderick, R. Giordano, and R. Meager. An automatic finite-sample robustness metric: When can dropping a little data make a big difference? arXiv preprint arXiv:2011.14999, 2020.
- A. Gelman and M. Heidemanns. The Economist: Forecasting the US elections., 2020. URL https://projects.economist.com/us-2020-forecast/president. Data and model accessed Oct., 2020.
- J. Huggins and J. Miller. Reproducible model selection using bagged posteriors. Bayesian Analysis, 18(1):79–104, 2023.
- R. Kass, L. Tierney, and J. Kadane. The validity of posterior expansions based on Laplace's method. *Bayesian and Likelihood Methods in Statistics and Econometrics*. 1990.
- A. Vehtari and J. Ojanen. A survey of bayesian predictive methods for model assessment, selection and comparison. Statistics Surveys, 6:142–228, 2012.

Supplemental slides

Non-equivalence of weighting (nonlinearity of marginalization)

Consider a single datapoint.

$$\log p(x_n|\gamma, w_c) =$$

$$\log \left(\int p(x_n|\gamma, \lambda, w_c) p(\lambda|\gamma) d\lambda \right) =$$

$$\log \left(\int p(x_n|\gamma, \lambda)^{w_c} p(\lambda|\gamma) d\lambda \right) \neq$$

$$\log \left(\int p(x_n|\gamma, \lambda) p(\lambda|\gamma) d\lambda \right)^{w_c} =$$

$$w_c \log p(\lambda|\gamma)$$

Extended experimental results

Extended experimental results

