CS577: Introduction to Blockchain and Cryptocurrency

Introduction to Cryptography

Dr. Raju Halder

Introduction

What is Cryptology

- **cryptography**: The act or art of writing in secret characters.
- cryptanalysis: The analysis and deciphering of secret writings.
- cryptology: (Webster's) the scientific study of cryptography and cryptanalysis.

In our context **cryptology** is the scientific study of protection of information.

Applications

- Secure Communications (war-time)
- File and data base security
- Electronic funds transfer
- Electronic commerce
- Digital cash
- Contract signing
- Electronic mail
- Electronic voting
- Authentication: Passwords, PINs
- Secure identification, Access control
- Secure protocols

Principles of Security

• Secrecy/Confidentiality

Only intended receiver understands the message

Authentication

- Sender and receiver need to confirm each others identity

Message Integrity

 Ensure that their communication has not been altered, either maliciously or by accident during transmission

Nonrepudiation

 Sender should not be able to falsely deny that a message was sent

Availability (System)

 Ensure that the information concerned is readily accessible to the authorized viewer at all times

Principles of Security

The CIA triad in Cryptography

• Three Fundamental Principles

Cryptography components: Cipher

• Cipher is a method for encrypting messages

- Encryption algorithms are standardized & published
- The key which is an input to the algorithm is secret
 - Key is a string of numbers or characters
 - If same key is used for encryption & decryption the algorithm is called symmetric
 - If different keys are used for encryption & decryption the algorithm is called asymmetric

Categories of cryptography

Keys used in cryptography

Symmetric-key cryptography

Asymmetric-key cryptography

Symmetric-key cryptography

Symmetric-key cryptography

a. Symmetric-key cryptography

Digital Signatures

Asymmetric Key Cryptography

Digital Signatures

Asymmetric Key Cryptography

Comparison between two categories of cryptography

a. Symmetric-key cryptography

b. Asymmetric-key cryptography

SYMMETRIC-KEY CRYPTOGRAPHY

Symmetric-key cryptography started thousands of years ago when people needed to exchange secrets (for example, in a war). We still mainly use symmetric-key cryptography in our network security.

Traditional Ciphers
Simple Modern Ciphers
Modern Round Ciphers
Mode of Operation

Traditional ciphers

A substitution cipher replaces one symbol with another.

Substitution Ciphers Caesar Cipher

• Caesar Cipher is a method in which each letter in the alphabet is rotated by three letters as shown

ABCDEFGHIJKLMNOPQRSTUVWXYZ

DEFGHIJKLMNOPQRSTUVWXYZABC

- Let us try to encrypt the message
 - "Attack at Dawn"

Substitution Ciphers Caesar Cipher

Encryption

How many different keys are possible?

ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ UVWXYZABCDEFGHIJKLMNOPQRST

— shift alphabet by n (6)

MY CAT HAS FLEAS

ABCDEFGHIJKLMNOPQRSTUVWXYZ UVWXYZABCDEFGHIJKLMNOPQRST

MY CAT HAS FLEAS

```
ABCDEFGHIJKLMNOPQRSTUVWXYZ
UVWXYZABCDEFGHIJKLMNOPQRST
```

MY CAT HAS FLEAS

```
ABCDEFGHIJKLMNOPQRSTUVWXYZ
UVWXYZABCDEFGHIJKLMNOPQR5T
```

GS

MY CAT HAS FLEAS ABCDEFGHIJKLMNOPQRSTUVWXYZ UVWXYZABCDEFGHIJKLMNOPQRST GSW

MY CAT HAS FLEAS A B C D E F G H I J K L M N O P Q R S T U V W X Y Z U V W X Y Z A B C D E F G H I J K L M N O P Q R S T GSWU

MY CAT HAS FLEAS

ABCDEFGHIJKLMNOPQRSTUVWXYZ UVWXYZABCDEFGHIJKLMNOPQRST

GSWUN

MY CAT HAS FLEAS ABCDEFGHIJKLMNOPQRSTUVWXYZ UVWXYZABCDEFGHIJKLMNOPQRST GSWUNB

MY CAT HAS FLEAS A B C D E F G H I J K L M N O P Q R S T U V W X Y Z U V W X Y Z A B C D E F G H I J K L M N O P Q R S T GSWUNBU

MY CAT HAS FLEAS

ABCDEFGHIJKLMNOPQR5TUVWXYZ UVWXYZABCDEFGHIJKLMNOPQRST

65WUNBUM

```
MY CAT HAS FLEAS

ABCDEFGHIJKLMNOPQRSTUVWXYZ

UVWXYZABCDEFGHIJKLMNOPQRST

GSWUNBUMZ
```

```
MY CAT HAS FLEAS

ABCDEFGHIJKLMNOPQRSTUVWXYZ

UVWXYZABCDEFGHIJKLMNOPQRST

GSWUNBUMZF
```

MY CAT HAS FLEAS ABCDEFGHIJKLMNOPQRSTUVWXYZ UVWXYZABCDEFGHIJKLMNOPQRST GSWUNBUMZFY

MY CAT HAS FLEAS A B C D E F G H I J K L M N O P Q R S T U V W X Y Z U V W X Y Z A B C D E F G H I J K L M N O P Q R S T GSWUNBUMZFYU

MY CAT HAS FLEAS

ABCDEFGHIJKLMNOPQRSTUVWXYZ UVWXYZABCDEFGHIJKLMNOPQRST

GSWUNBMUFZYUM

MY CAT HAS FLEAS

ABCDEFGHIJKLMNOPQR5TUVWXYZ UVWXYZABCDEFGHIJKLMNOPQR5T

GSWUNBMUFZYUM

- Convey one piece of information for decryption: shift value
- trivially easy to crack (26 possibilities for a 26 character alphabet)

Substitution Cipher

Monoalphabetic Cipher

- Any letter can be substituted for any other letter
 - Each letter has to have a unique substitute

ABCDEFGHIJKLMNOPQRSTUVWXYZ

U

MNBVCXZASDFGHJKLPOIUYTREWQ

- There are 26! pairing of letters ($\sim 10^{26}$)
- Brute Force approach would be too time consuming
 - Statistical Analysis would make it feasible to crack the key

Substitution Cipher

Monoalphabetic Cipher

Substitution Cipher

Monoalphabetic Cipher

Statistical Analysis Letter frequencies E: 12% A, H, I, N, O, R, S, T: 6 - 9% D, L: 4% B, C, F, G, M, P, U, W, Y: 1.5 - 2.8% J, K, Q, V, X, Z: < 1%Common digrams: TH, HE, IN, ER, AN, RE, ... Common trigrams THE, ING, AND, HER, ERE, ...

Substitution Cipher Polyalphabetic Caesar Cipher

- Developed by Blaise de Vigenere
 - Also called Vigenere cipher
- Use table and key word to encipher a message
 - repeat keyword over text: (e.g. key=FACE)

FA CEF ACE FACEF

MY CAT HAS FLEAS

- encrypt: find intersection:
 - row = keyword letter
 - column = plaintext letter
- decrypt: column = keyword letter, search for intersection = ciphertext letter
- message is encrypted with as many substitution ciphers as there are letters in the keyword

letter-

```
EFGHIJKLMNOPQRST
keytext E
```

plaintext letter

ciphertext letter

```
FA CEF ACE FACEF
MY CAT HAS FLEAS
R
```

```
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEGHIJKLMNOPQRSTUVWXYZABCDEGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFG
```

```
FA CEF ACE FACEF

MY CAT HAS FLEAS

RY
```



```
FA CEF ACE FACEF

MY CAT HAS FLEAS

RY E
```



```
FA CEF ACE FACEF

MY CAT HAS FLEAS

RY EE
```

```
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFG
```

```
FA CEF ACE FACEF

MY CAT HAS FLEAS

RY EEY
```



```
FA CEF ACE FACEF

MY CAT HAS FLEAS

RY EEY H
```



```
FA CEF ACE FACEF

MY CAT HAS FLEAS

RY EEY HC
```

```
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFG
```

```
FA CEF ACE FACEF

MY CAT HAS FLEAS

RY EEY HCW
```



```
FA CEF ACE FACEF

MY CAT HAS FLEAS

RY EEY HCW K
```



```
FA CEF ACE FACEF

MY CAT HAS FLEAS

RY EEY HCW KL
```



```
FA CEF ACE FACEF

MY CAT HAS FLEAS

RY EEY HCW KLG
```



```
FA CEF ACE FACEF

MY CAT HAS FLEAS

RY EEY HCW KLGE
```



```
FA CEF ACE FACEF

MY CAT HAS FLEAS

RY EEY HCW KLGEX
```


Substitution Cipher

Using a key to shift alphabet

- Obtain a key to for the algorithm and then shift the alphabets
 - For instance if the key is 'word' we will shift all the letters by four and remove the letters w, o, r, & d from the encryption
- We have to ensure that the mapping is one-to-one
 - no single letter in plain text can map to two different letters in cipher text
 - no single letter in cipher text can map to two different letters in plain text

Plain Text ABCDEFGHIJKLMNOPQRSTUVWXYZ C1(k=6) WORDABCEFGHIJKLMNPQSTUVXYZ

Traditional ciphers

Transposition Cipher

Columnar Transposition

- This involves rearrangement of characters on the plain text into columns
- The following example shows how letters are transformed
 - If the letters are not exact multiples of the transposition size there may be a few short letters in the last column which can be padded with an infrequent letter such as x or z

Plain Text	Cipher Text
THISI	T S S O H
SAMES	OANIW
SAGET	HAASO
OSHOW	LRSTO
HOWAC	IMGHW
OLUMN	UTPIR
ARTRA	SEEOA
NSPOS	M R O O K
ITION	ISTWC
WORKS	NASNS

Ciphers

Shannon's Characteristics of "Good" Ciphers

- The amount of secrecy needed should determine the amount of labor appropriate for the encryption and decryption.
- The set of keys and the enciphering algorithm should be free from complexity.
- The implementation of the process should be as simple as possible.
- Errors in ciphering should not propagate and cause corruption of further information in the message.
- The size of the enciphered text should be no larger than the text of the original message.

Encryption Systems

Properties of Trustworthy Systems

- It is based on sound mathematics.
 - Good cryptographic algorithms are are derived from solid principles.
- It has been analyzed by competent experts and found to be sound.
 - Since it is hard for the writer to envisage all possible attacks on the algorithm
- It has stood the "test of time."
 - Over time people continue to review both mathematical foundations of an algorithm and the way it builds upon those foundations.
 - The flaws in most algorithms are discovered soon after their release.

Cryptanalysis

Techniques

- Cryptanalysis is the process of breaking an encryption code
 - Tedious and difficult process
- Several techniques can be used to deduce the algorithm
 - Attempt to recognize patterns in encrypted messages, to be able to break subsequent ones by applying a straightforward decryption algorithm
 - Attempt to infer some meaning without even breaking the encryption, such as noticing an unusual frequency of communication or determining something by whether the communication was short or long
 - Attempt to deduce the key, in order to break subsequent messages easily
 - Attempt to find weaknesses in the implementation or environment of use of encryption
 - Attempt to find general weaknesses in an encryption algorithm,
 without necessarily having intercepted any messages

Basic Terminology

- **plaintext** the original message
- **ciphertext** the coded message
- cipher algorithm for transforming plaintext to ciphertext
- **key** info used in cipher known only to sender/receiver
- encipher (encrypt) converting plaintext to ciphertext
- decipher (decrypt) recovering ciphertext from plaintext
- cryptography study of encryption principles/methods
- **cryptanalysis** (**codebreaking**) the study of principles/ methods of deciphering ciphertext *without* knowing key
- cryptology the field of both cryptography and cryptanalysis