МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Н.П. Семерикова А.А. Дубков А.А. Харчева

ВЫЧЕТЫ И ИХ ПРИМЕНЕНИЕ К ВЫЧИСЛЕНИЮ ИНТЕГРАЛОВ

Учебно-методическое пособие

Рекомендовано методической комиссией радиофизического факультета для студентов ННГУ, обучающихся по направлениям подготовки 03.03.03 "Радиофизика", 02.03.02 "Фундаментальная информатика и информационные технологии" и специальности 10.05.02 "Информационная безопасность телекоммуникационных систем"

Нижний Новгород 2019 УДК 517.537 ББК 22.161 С30

Вычеты и их применение к вычислению интегралов: учебно-метод. пособие/ Н.П. Семерикова, А.А. Дубков, А.А. Харчева. – Нижний Новгород: Изд-во ННГУ, 2019. - 47 с.

Рецензент: к.ф.-м.н., доцент А.В. Клюев

Решение многих задач физики и математики связано с вычислением интегралов. В учебно-методическом пособии рассмотрены основные положения теории вычетов и ее применение к вычислению определенных классов интегралов. Выведена основная теорема теории вычетов и показано ее применение при вычислении контурных интегралов от функций комплексного переменного, в том числе и для случая особой точки на контуре интегрирования. Получены формулы и рассмотрено их применение к вычислению определенных интегралов от тригонометрических функций и несобственных интегралов первого рода. Уделено большое внимание вычислению главных значений несобственных интегралов при наличии особых точек на действительной оси. Разобраны примеры вычисления вычетов и интегралов. В конце каждого раздела приведены задания для самостоятельной работы и ответы к ним.

Электронное учебно-методическое пособие предназначено для студентов радиофизического факультета, обучающихся по направлениям подготовки 03.03.03 "Радиофизика", 02.03.02 "Фундаментальная информатика и информационные технологии" и специальности 10.05.02. "Информационная безопасность телекоммуникационных систем" и изучающих курс "Теория функций комплексного переменного".

Ответственный за выпуск: зам. председателя методической комиссии радиофизического факультета ННГУ, д.ф.-м.н., профессор **Е.З. Грибова**

УДК 517.537 ББК 22.161 С30

© Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, 2019

СОДЕРЖАНИЕ

1.ВВЕДЕНИЕ4
2. ВЫЧЕТЫ АНАЛИТИЧЕСКОЙ ФУНКЦИИ7
2.1. Определение и вычисление вычета в конечной изолированной особой точке
2.2. Определение и вычисление вычета в бесконечно удаленной точке
2.3. Теорема о сумме вычетов
Задачи для самостоятельного решения16
3. ПРИЛОЖЕНИЯ ТЕОРИИ ВЫЧЕТОВ К ВЫЧИСЛЕНИЮ ИНТЕГРАЛОВ
3.1. Основная теорема теории вычетов
3.2. Вычисление контурных интегралов с помощью основной теоремы о вычетах
Задачи для самостоятельного решения
3.3. Вычисление интегралов от тригонометрических функций
Задачи для самостоятельного решения
3.4. Вычисление несобственных интегралов с помощью вычетов33
3.4.1. Несобственные интегралы первого рода вида $\int_{-\infty}^{\infty} f(x)dx$
3.4.2. Несобственные интегралы первого рода вида $\int_{-\infty}^{\infty} \Phi(x)e^{imx}dx$ 41
Задачи для самостоятельного решения45
СПИСОК ЛИТЕРАТУРЫ46

1. ВВЕДЕНИЕ

В данном учебно-методическом пособии рассмотрены основные положения теории вычетов и ее применение к вычислению интегралов от функций комплексного и действительного переменного, в том числе и некоторых видов несобственных интегралов.

В учебно-методическом пособии «Ряды аналитических функций» подробно рассмотрены разложения аналитических функций в ряды Тейлора и Лорана, а также приведена классификация изолированных особых точек. Напомним основные понятия из него, необходимые в теории вычетов.

Определение 1: Нулем аналитической функции f(z) называется точка z_0 , в которой $f(z_0)=0$. Если же функция f(z) удовлетворяет условиям $f(z_0)=0$, $f'(z_0)=0$,..., $f^{(m-1)}(z_0)=0$, $f^{(m)}(z_0)\neq 0$, то z_0 называется нулем порядка m (или кратности m). При m=1 точка z_0 называется простым нулем или нулем первого порядка.

Если точка z_0 является нулем m-го порядка, то в некоторой окрестности точки z_0 функцию f(z) можно представить в виде:

$$f(z) = (z - z_0)^m \varphi(z), \tag{1}$$

где функция $\varphi(z)$ – аналитическая в точке z_0 и $\varphi(z_0) \neq 0$.

Определение 2: Точки, в которых функция f(z) не является аналитической, называются особыми точками. В особых точках функция f(z) либо не определена, либо определена, но не является дифференцируемой.

Определение 3: Точка z_0 называется изолированной особой точкой функции f(z), если функция f(z) аналитическая в некоторой окрестности $0 < |z - z_0| < r$ (т.е. в круге с выколотым центром в точке z_0), где нет других особых точек.

В основу классификации изолированных особых точек положено разложение f(z) в ряд Лорана в окрестности этих точек.

Определение 4: Ряд вида

$$f(z) = \sum_{n=-\infty}^{\infty} C_n (z - z_0)^n = \sum_{n=0}^{\infty} C_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{C_{-n}}{(z - z_0)^n},$$
 (2)

коэффициенты C_n которого находятся по формулам:

$$C_n = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)dz}{(z - z_0)^{n+1}}, \quad (n = 0, \pm 1, \pm 2, ...)$$
 (3)

называется рядом Лорана. В ряд Лорана можно разложить функцию f(z), однозначную и аналитическую в круговом кольце $r < |z - z_0| < R$. В формуле (3) Γ – произвольный замкнутый контур, лежащий внутри этого кольца.

Ряд $\sum_{n=0}^{\infty} C_n (z-z_0)^n$ сходится внутри круга $|z-z_0| < R$, его называют правильной частью ряда Лорана (он же является рядом Тейлора). Ряд $\sum_{n=1}^{\infty} \frac{C_{-n}}{(z-z_0)^n}$ сходится во внешности круга $|z-z_0| > r$, его называют главной часть ряда Лорана. Ряд (2) сходится, если сходится одновременно его правильная и главная части. Следовательно, ряд Лорана сходится в кольце $r < |z-z_0| < R$, при этом не исключаются случаи, когда r = 0 и $R = +\infty$.

Определение 5: Точка z_0 называется устранимой особой точкой, если разложение f(z) в ряд Лорана (2) в окрестности точки z_0 не содержит отрицательных степеней разности $(z-z_0)$, т.е. имеет вид обычного степенного ряда:

$$f(z) = \sum_{n=0}^{\infty} C_n (z - z_0)^n .$$
(4)

В устранимой особой точке z_0 существует конечный предел функции f(z) $\lim_{z\to z_0} f(z) = C_0, |C_0| < +\infty$.

Определение 6: Точка z_0 называется *полюсом*, если разложение в ряд Лорана (2) в окрестности этой точки содержит конечное число отрицательных степеней $(z-z_0)$, т.е. имеет вид:

$$f(z) = \sum_{n=0}^{\infty} C_n (z - z_0)^n + \frac{c_{-1}}{z - z_0} + \frac{c_{-2}}{(z - z_0)^2} + \dots + \frac{c_{-m}}{(z - z_0)^m}, \quad c_{-m} \neq 0.$$
 (5)

Если m=1, полюс называется простым, а если m>1- то полюсом m- го порядка.

В полюсе $\lim_{z \to z_0} f(z) = \infty$. Порядок полюса можно определить либо по разложению (5), либо воспользоваться связью между нулем и полюсом:

Связь между нулем и полюсом: Если z_0 - нуль порядка m для функции f(z), т.е. f(z) представима в виде (1) $f(z) = (z - z_0)^m \varphi(z)$, (где функция $\varphi(z)$ - аналитическая в точке z_0 и $\varphi(z_0) \neq 0$), то z_0 - полюс порядка m для функции

$$\frac{1}{f(z)} = \frac{1}{\left(z - z_0\right)^m \varphi(z)} \tag{6}$$

В частности, если f(z) представима в виде дроби $f(z) = \frac{\varphi(z)}{(z-z_0)^m}$, где $\varphi(z)$ – аналитическая функция в точке z_0 и $\varphi(z_0) \neq 0$, тогда z_0 – полюс порядка m для функции f(z).

Определение 7: Точка z_0 называется существенно особой точкой, если ряд Лорана содержит бесконечно число отрицательных степеней $(z-z_0)$, т.е. имеет вид (2)

$$f(z) = \sum_{n=0}^{\infty} C_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{C_{-n}}{(z - z_0)^n}$$

Если z_0 существенно особая точка, то в ее окрестности при $z \to z_0$ функция f(z) не стремится ни к какому конечному или бесконечному пределу, т.е. не существует $\lim_{z \to z_0} f(z)$.

Определение 8: Окрестностью бесконечно удаленной точки называется внешность круга достаточно большого радиуса с центром в начале координат $R < |z| < +\infty$. Если f(z) аналитическая и однозначная функция в окрестности бесконечно удаленной, то точка $z=\infty$ называется изолированной особой точкой.

В окрестности бесконечно удаленной точки $R < |z| < +\infty$ аналитическую функцию f(z) раскладывают в ряд Лорана вида:

$$f(z) = \sum_{n=0}^{\infty} C_n z^n + \sum_{n=1}^{\infty} \frac{C_{-n}}{z^n},$$
 (7)

коэффициенты C_n которого вычисляются по формулам

$$C_n = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)dz}{z^{n+1}}, \quad (n = 0, \pm 1, \pm 2, ...)$$
 (8)

Здесь Γ — произвольный замкнутый контур, лежащий во внешности круга $R < |z| < +\infty$.

Определение 9: Точка z=∞ называется устранимой особой точкой, если ряд Лорана (7) не содержит положительных степеней z, т.е. имеет вид

$$f(z) = C_0 + \sum_{n=1}^{\infty} \frac{C_{-n}}{z^n}$$
 (9)

В устранимой особой точке $z=\infty$ существует конечный предел $\lim_{z\to\infty} f(z) = C_0, \ |C_0| < +\infty$.

Определение 10: Точка $z=\infty$ называется полюсом порядка m, если ряд Лорана содержит конечное число положительных степеней, при этом порядок полюса определяется старшей положительной степенью z:

$$f(z) = C_m z^m + C_{m-1} z^{m-1} + \dots + C_1 z + C_0 + \sum_{n=1}^{\infty} \frac{C_{-n}}{z^n}, \quad C_m \neq 0$$
 (10)

В полюсе $\lim_{z \to \infty} f(z) = \infty$. При m=1 полюс называется простым.

Определение 11: Точка $z=\infty$ называется *существенно особой точкой*, если ряд Лорана содержит бесконечное число положительных степеней, т.е. имеет вид

(7) $f(z) = \sum_{n=0}^{\infty} C_n z^n + \sum_{n=1}^{\infty} \frac{C_{-n}}{z^n}$. В существенно особой точке $z = \infty$ не существует $\lim_{z \to \infty} f(z)$.

Замечание: Замена $z = \frac{1}{t}$ переводит изолированную особую точку $z = \infty$ функции f(z) в конечную изолированную особую точку t = 0 функции $g(t) = f\left(\frac{1}{t}\right)$. При этом характер особой точки $z = \infty$ и t = 0 будет одинаковым.

2. ВЫЧЕТЫ АНАЛИТИЧЕСКОЙ ФУНКЦИИ

2.1. Определение и вычисление вычета в конечной изолированной особой точке

Определение: Пусть z_0 - изолированная особая точка функции f(z). Вычетом функции f(z) в точке $z_0 \neq \infty$ называется комплексное число [1], обозначаемое символом $\operatorname{res} f(z_0)$, равное значению интеграла $\frac{1}{2\pi i} \oint_{\Gamma} f(z) dz$, взятому в положительном направлении по любому замкнутому контуру Γ , лежащему в области аналитичности функции f(z) и содержащему единственную особую точку z_0 :

$$\operatorname{res} f(z_0) = \frac{1}{2\pi i} \oint_{\Gamma} f(z) dz \tag{11}$$

Для обозначения вычета также применяют выражения $\operatorname{res} [f(z); z_0]$ или Выч $[f(z); z_0]$. В качестве контура Γ можно взять окружность $|z-z_0|=\rho$ с положительным направлением обхода с центром в точке z_0 достаточно малого радиуса ρ , чтобы окружность не выходила за пределы области $0<|z-z_0|<\rho< R$, где f(z) является аналитической функцией.

Ряд Лорана в окрестности особой точки z_0 (т.е. в кольце $0<|z-z_0|< R$) имеет вид (2): $f(z)=\sum_{n=0}^{\infty}C_n(z-z_0)^n+\sum_{n=1}^{\infty}\frac{C_{-n}}{(z-z_0)^n}$, коэффициенты которого вычисляются по формулам (3): $C_n=\frac{1}{2\pi i}\oint_{\Gamma}\frac{f(z)dz}{(z-z_0)^{n+1}}$, $(n=0,\pm 1,\pm 2,...)$. В частности, при n=-1 из (3) получаем $C_{-1}=\frac{1}{2\pi i}\oint_{\Gamma}f(z)dz$. Сравнивая это выражение с формулой (11), приходим к выводу, что $\operatorname{res} f(z_0)=C_{-1}$.

Таким образом, вычет в изолированной особой точке $z_0 \neq \infty$ равен коэффициенту при первой отрицательной степени $(z-z_0)^{-1}$ ряда Лорана (2), представляющего функцию f(z) в окрестности особой точки z_0 .

Рассмотрим формулы вычисления вычетов относительно изолированных особых точек.

- 1. Если z_0 *устранимая особая точка*, то вычет в ней равен нулю, т.е. $\operatorname{res} f(z_0) = C_{-1} = 0$, поскольку разложение в ряд Лорана в окрестности устранимой особой точки имеет вид (4), т.е. не содержит отрицательных степеней $(z-z_0)$.
- 2. Если z_0 существенно особая точка, то res $f(z_0) = C_{-1}$, т.е. вычет находится из разложения функции в ряд Лорана (2). В некоторых случаях для вычисления вычета в существенно особой точке пользуются теоремой о сумме вычетов, которая рассмотрена в разделе 2.3.
- 3. Если z_0 *полюс порядка m* для функции f(z), то ряд Лорана для этой функции имеет вид (5):

$$f(z) = C_{-m}(z - z_0)^{-m} + C_{-m+1}(z - z_0)^{-m+1} + \dots + C_{-1}(z - z_0)^{-1} + C_0 + C_1(z - z_0) + \dots, (C_{-m} \neq 0).$$

Умножая ряд (5) на $(z-z_0)^m$, получаем:

$$(z - z_0)^m f(z) = C_{-m} + C_{-m+1}(z - z_0) + \dots + C_{-1}(z - z_0)^{m-1} + C_0(z - z_0)^m + C_1(z - z_0)^{m+1} + \dots$$

Продифференцируем степенной ряд почленно (m-1) раз

$$\frac{d^{m-1}}{dz^{m-1}} ((z-z_0)^m f(z)) = (m-1)! C_{-1} + m! C_0 (z-z_0) + (m+1)m \cdot ... \cdot 3(z-z_0)^2 + ...$$

Переходя в к пределу при
$$z \to z_0$$
, получаем $\frac{d^{m-1}}{dz^{m-1}} ((z-z_0)^m f(z)) = (m-1)! C_{-1}$

Отсюда следует формула для вычисления вычета в полюсе порядка т:

$$\operatorname{res} f(z_0) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \left((z - z_0)^m f(z) \right)$$
 (12)

В частности, для полюса первого порядка формула (12) принимает вид:

res
$$f(z_0) = \lim_{z \to z_0} ((z - z_0) f(z)).$$
 (13)

Если функция f(z) представима в виде дроби $f(z) = \frac{\varphi(z)}{\psi(z)}$, где $\varphi(z)$, $\psi(z)$ – аналитические функции в точке z_0 , причем $\varphi(z_0) \neq 0$, $\psi(z_0) = 0$, $\psi'(z_0) \neq 0$, $(z_0$ - простой полюс), то пользуясь формулой (13), находим

$$\operatorname{res} f(z_0) = \lim_{z \to z_0} ((z - z_0) f(z)) = \lim_{z \to z_0} \left((z - z_0) \frac{\varphi(z)}{\psi(z)} \right) = \lim_{z \to z_0} \frac{\varphi(z)}{\underline{\psi(z) - \psi(z_0)}} = \lim_{z \to z_0} \frac{\varphi(z_0)}{\psi'(z_0)}.$$

Получаем еще одну формулу для вычисления вычета в полюсе первого порядка:

$$\operatorname{res} f(z_0) = \frac{\varphi(z_0)}{\psi'(z_0)} \,. \tag{14}$$

Примеры

Пример 1: Найти вычет функции $f(z) = z^3 coz \frac{1}{z-2}$

Решение: Особой точкой для f(z) будет точка z=2, которая является существенно особой точкой, т.к. не существует $\lim_{z\to 2} z^3 coz \frac{1}{z-2}$.

Представим z^3 по степеням (z-2): $z^3 = (2+(z-2))^3 = 8+12(z-2)+6(z-2)^2+(z-2)^3$ и запишем ряд

$$\cos\frac{1}{z-2}=1-\frac{1}{2!(z-2)^2}+\frac{1}{4!(z-2)^4}-\frac{1}{6!(z-2)^6}+\dots, \qquad \text{который} \qquad \text{сходится} \qquad \text{при} \\ 0<\left|z-2\right|<+\infty.$$

Тогда

$$f(z) = \left(8 + 12(z - 2) + 6(z - 2)^{2} + (z - 2)^{3}\right) \left(1 - \frac{1}{2!(z - 2)^{2}} + \frac{1}{4!(z - 2)^{4}} - \dots\right) =$$

$$= 8\left(1 - \frac{1}{2!(z - 2)^{2}} + \frac{1}{4!(z - 2)^{4}} - \dots\right) + 12\left((z - 2) - \frac{1}{2!(z - 2)} + \frac{1}{4!(z - 2)^{3}} - \dots\right) +$$

$$+ 6\left((z - 2)^{2} - \frac{1}{2!(z - 2)} + \frac{1}{4!(z - 2)^{2}} - \dots\right) + \left((z - 2)^{3} - \frac{z - 2}{2!} + \frac{1}{4!(z - 2)} - \dots\right)$$

Вычислим коэффициент C_{-1} при степени $(z-2)^{-1}$:

$$C_{-1}=12igg(-rac{1}{2!}igg)+rac{1}{4!}=-6+rac{1}{24}=-rac{143}{24}$$
 . Тогда $\operatorname{res} f(2)=-rac{143}{24}$.

Пример 2: Найти вычеты функции $f(z) = \frac{e^z}{1 - e^z}$.

Решение: Особые точки находим из условия: $1-e^z=0$ или $e^z=1$, откуда получаем $z=\mathrm{Ln}1=2\pi ki$, $k=0,\pm 1,\pm 2,...$ Обозначим $\varphi(z)=e^z$, $\psi(z)=1-e^z$. Тогда $\varphi(2\pi ki)=e^{2\pi ki}=1\neq 0$, $\psi(2\pi ki)=0$, $\psi'(z)=-e^z$, $\psi'(2\pi ki)=-e^{2\pi ki}=-1\neq 0$. Следовательно, точки $z_k=2\pi ki$ являются простыми полюса. Тогда по формуле (14) получаем: res $f(2\pi ki)=\frac{\varphi(2\pi ki)}{\psi'(2\pi ki)}=\frac{1}{-1}=-1$, $(k=0,\pm 1,\pm 2,....)$

Пример 3: Найти вычет функции $f(z) = \frac{\cos 2z}{(z-1)^3}$.

Решение: Особая точка z=1 является полюсом третьего порядка, поэтому по формуле (12) получаем:

$$\operatorname{res} f(z_0) = \frac{1}{2!} \lim_{z \to 1} \frac{d^2}{dz^2} \left(\frac{\cos 2z}{(z-1)^3} (z-1)^3 \right) = \frac{1}{2} \lim_{z \to 1} (\cos 2z)'' = \frac{1}{2} \lim_{z \to 1} (-2\sin 2z)' = \frac{1}{2} \lim_{z \to 1} (-4\cos 2z) = -2\cos 2$$

2.2. Определение и вычисление вычета в бесконечно удаленной точке

Определение: Пусть $z = \infty$ является изолированной особой точкой аналитической функции f(z). Вычетом функции f(z) в изолированной особой точке $z = \infty$ называется число, равное

$$\operatorname{res} f(\infty) = \frac{1}{2\pi i} \oint_{C_{\rho}^{-}} f(z) dz , \qquad (15)$$

где C_{ρ}^- - окружность $|z|=\rho$, $R<\rho<+\infty$ с отрицательным направлением обхода относительно начала координат (относительно точки $z=\infty$ направление будет положительным).

Разложение в ряд Лорана в окрестности бесконечно удаленной точки, т.е. во внешности круга $R < |z| < +\infty$, где f(z) является аналитической, имеет вид (7): $f(z) = \sum_{n=0}^{\infty} C_n z^n + \sum_{n=1}^{\infty} \frac{C_{-n}}{z^n}$. Коэффициенты разложения находятся по формулам (8): $C_n = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)dz}{z^{n+1}}$, $(n = 0, \pm 1, \pm 2, ...)$,здесь Γ — произвольный замкнутый контур, лежащий во внешности круга $R < |z| < +\infty$. В качестве контура Γ можно взять окружность $|z| = \rho$, где $R < \rho < +\infty$ с положительным направлением обхода. В частном случае при n = -1 из формулы (8) получаем $C_{-1} = \frac{1}{2\pi i} \oint_{C_{\rho}} f(z) dz$ и сравним коэффициент C_{-1} с формулой (15):

$$C_{-1} = \frac{1}{2\pi i} \oint_{C_{\rho}} f(z) dz = -\frac{1}{2\pi i} \oint_{C_{\rho}^{-}} f(z) dz = -\text{res } f(\infty) .$$

Следовательно, res $f(\infty) = -C_{-1}$, m.e. вычет в бесконечно удаленной точке равен взятому с противоположным знаком коэффициенту при первой отрицательной степени z^{-1} ряда Лорана (7), представляющего функцию f(z) в окрестности бесконечно удаленной точки.

<u>Замечание</u>: Замена $z = \frac{1}{t}$ переводит изолированную особую точку $z = \infty$ функции f(z) в конечную изолированную особую точку t = 0 функции $g(t) = f\left(\frac{1}{t}\right)$ и характер особых точек при этом не меняется. Поэтому вычет в бесконечно удаленной точке функции f(z) будет равен коэффициенту с противоположным знаком при степени t в разложении функции g(t) в ряд Лорана в окрестности точки t = 0. В частности, если t = 0 является полюсом порядка m функции g(t), то

$$\operatorname{res} f(\infty) = -\frac{1}{(m+1)!} \lim_{t \to 0} \frac{d^{m+1}}{dt^{m+1}} \left(t^m f\left(\frac{1}{t}\right) \right)$$
(16)

Если t=0 — устранимая особая точка функции g(t), то m=0 и

$$\operatorname{res} f(\infty) = -\lim_{t \to 0} \frac{d}{dt} \left(f\left(\frac{1}{t}\right) \right) \tag{17}$$

Пример.4: Найти вычет функции $f(z) = \frac{z^2}{1+z}$ в бесконечно удаленной точке $z = \infty$.

Решение: Разложим f(z) в ряд Лорана в окрестности $z = \infty$, для этого вспомним, что разложение нужно вести по степеням $\frac{1}{z}$. Представим функцию в виде:

$$f(z) = \frac{z^2}{1+z} = \frac{z^2}{z\left(\frac{1}{z}+1\right)} = z \cdot \frac{1}{1+\frac{1}{z}} = z \cdot \left(1 - \frac{1}{z} + \frac{1}{z^2} - \frac{1}{z^3} + \dots\right) = z - 1 + \frac{1}{z} - \frac{1}{z^2} + \dots$$

Поскольку разложение в ряд Лорана содержит z в первой степени, то точка $z=\infty$ является простым полюсом или полюсом первого порядка. Вычет в ней равен коэффициенту при степени $\frac{1}{z}$, взятый с противоположным знаком, т.е. $\operatorname{res} f(\infty) = -C_{-1} = -1$.

2.3. Теорема о сумме вычетов

При вычислении вычетов относительно изолированных особых точек, включая бесконечно удаленную точку, бывает полезной следующая теорема:

<u>Теорема</u>: Если функция f(z) является аналитической на комплексной плоскости всюду, за исключением конечного числа изолированных особых точек $z_1, z_2, ..., z_n$, то сумма вычетов относительно всех особых точек, включая бесконечно удаленную точку, равна нулю:

$$\sum_{k=1}^{n} \operatorname{res} f(z_k) + \operatorname{res} f(\infty) = 0.$$
 (18)

Пример 5: Найти вычеты функции $f(z) = \frac{4z^2 - 2z + 3}{(z - 2)(z^2 + 1)}$ в особых точках, включая $z = \infty$.

Решение: Особые точки функции z = 2, z = i, z = -i - полюса первого порядка, т.к. они являются нулями первого порядка для знаменателя дроби. Вычислим вычеты в этих точках по формуле (13):

$$\operatorname{res} f(2) = \lim_{z \to 2} \frac{(4z^2 - 2z + 3)(z - 2)}{(z - 2)(z^2 + 1)} = \lim_{z \to 2} \frac{4z^2 - 2z + 3}{z^2 + 1} = \frac{4 \cdot 2^2 - 2 \cdot 2 + 3}{2^2 + 1} = 3$$

$$\operatorname{res} f(i) = \lim_{z \to i} \frac{(4z^2 - 2z + 3)(z - i)}{(z - 2)(z + i)(z - i)} = \lim_{z \to i} \frac{4z^2 - 2z + 3}{(z - 2)(z + i)} = \frac{4 \cdot i^2 - 2 \cdot i + 3}{(i - 2) \cdot 2i} = \frac{-1 - 2i}{2 \cdot (-1 - 2i)} = \frac{1}{2}$$

$$\operatorname{res} f(-i) = \lim_{z \to -i} \frac{(4z^2 - 2z + 3)(z + i)}{(z - 2)(z + i)(z - i)} = \lim_{z \to -i} \frac{4z^2 - 2z + 3}{(z - 2)(z - i)} = \frac{4 \cdot (-i)^2 - 2 \cdot (-)i + 3}{(-i - 2) \cdot (-2i)} = \frac{-1 + 2i}{2 \cdot (-1 + 2i)} = \frac{1}{2}$$

Точка $z = \infty$ является устранимой особой точкой, т.к. $\lim_{z \to \infty} \frac{4z^2 - 2z + 3}{(z - 2)(z^2 + 1)} = 0$. По

теореме о сумме вычетов $\operatorname{res} f(2) + \operatorname{res} f(i) + \operatorname{res} f(-i) + \operatorname{res} f(\infty) = 0$, откуда находим, что $\operatorname{res} f(\infty) = -(\operatorname{res} f(2) + \operatorname{res} f(i) + \operatorname{res} f(-i)) = -4$.

Пример 6: Найти вычеты функции $f(z) = \frac{1}{1+z^4}$ в особых точках, включая $z = \infty$.

Решение: Особые точки f(z) — нули знаменателя, т.е. корни уравнения $z^4+1=0$. Решая уравнение, получаем $z_k=\sqrt[4]{-1}=e^{i\frac{\pi+2\pi k}{4}}, \ k=0,1,2,3$. Корни: $z_1=e^{i\frac{\pi}{4}}, \ z_2=e^{i\frac{3\pi}{4}}, \ z_3=e^{i\frac{5\pi}{4}}=e^{-i\frac{3\pi}{4}}, \ z_4=e^{i\frac{7\pi}{4}}=e^{-i\frac{\pi}{4}}$ — полюса первого порядка. Точка $z=\infty$ является устранимой особой точкой, т.к. $\lim_{t\to\infty}\frac{1}{1+z^4}=0$.

Пользуясь формулой (14) для полюсов первого порядка, получаем:

$$\operatorname{res} f(z_{1}) = \frac{1}{4z^{3}} \Big|_{z=e^{i\frac{\pi}{4}}} = \frac{1}{4} e^{-i\frac{3\pi}{4}}, \qquad \operatorname{res} f(z_{2}) = \frac{1}{4z^{3}} \Big|_{z=e^{i\frac{3\pi}{4}}} = \frac{1}{4} e^{-i\frac{9\pi}{4}},$$

$$\operatorname{res} f(z_{3}) = \frac{1}{4z^{3}} \Big|_{z=e^{-i\frac{3\pi}{4}}} = \frac{1}{4} e^{i\frac{9\pi}{4}}, \qquad \operatorname{res} f(z_{4}) = \frac{1}{4z^{3}} \Big|_{z=e^{-i\frac{\pi}{4}}} = \frac{1}{4} e^{i\frac{3\pi}{4}}$$

По теореме о сумме вычетов, находим вычет в бесконечно удаленной точке:

$$\operatorname{res} f(\infty) = -\frac{1}{4} \left(e^{-i\frac{3\pi}{4}} + e^{-i\frac{9\pi}{4}} + e^{i\frac{9\pi}{4}} + e^{i\frac{9\pi}{4}} + e^{i\frac{3\pi}{4}} \right) = \frac{1}{2} \left(e^{i\frac{3\pi}{4}} + e^{-i\frac{3\pi}{4}} + e^{-i\frac{9\pi}{4}} + e^{-i\frac{9\pi}{4}} \right) = \frac{1}{2} \left(\cos \frac{3\pi}{4} + \cos \frac{9\pi}{4} \right) = \frac{1}{2} \left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) = 0.$$

Пример 7: Найти вычеты $f(z) = \frac{e^z}{z^3}$ в особых точках, включая $z = \infty$.

Решение: Функция f(z) имеет две особые точки z=0 и $z=\infty$. В кольце $0<|z|<+\infty$ f(z) является аналитической функцией и представляется рядом Лорана:

$$f(z) = \frac{e^z}{z^3} = \frac{1}{z^3} \sum_{n=0}^{\infty} \frac{z^n}{n!} = \frac{1}{z^3} \left(1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \frac{z^4}{4!} + \frac{z^5}{5!} + \dots \right) = \frac{1}{z^3} + \frac{1}{z^2} + \frac{1}{2!z} + \frac{1}{3!} + \frac{z}{4!} + \frac{z^2}{5!} \dots$$

Из разложения видно, что z=0 является полюсом третьего порядка на основании (5), а точка $z=\infty$ - существенно особая точка, т.к. ряд содержит бесконечное число положительных степеней z. Вычеты в этих точках равны соответственно $\operatorname{res} f(0) = C_{-1} = \frac{1}{2}$, $\operatorname{res} f(\infty) = -C_{-1} = -\frac{1}{2}$. Очевидно, что $\operatorname{res} f(0) + \operatorname{res} f(\infty) = 0$.

Пример 8: Найти вычеты функции $f(z) = \frac{(1 - e^z)\sin z - z^2}{z^2\sin z}$.

Решение: Находим особые точки из условия $z^2 \sin z = 0$, откуда получаем z = 0 и $z = \pi k$, $(k = \pm 1, \pm 2,...)$. Определим тип этих особых точек:

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{(1 - e^{-z})\sin z - z^2}{z^2 \sin z} = \lim_{z \to 0} \frac{\left(1 - \left(1 - z + \frac{z^2}{2} - \frac{z^3}{6} + \dots\right)\right) \sin z - z^2}{z^2 \sin z} = \lim_{z \to 0} \frac{\left(z - \frac{z^2}{2} + \frac{z^3}{6} + \dots\right) \sin z - z^2}{z^2 \sin z} = \lim_{z \to 0} \frac{\left(z - \frac{z^2}{2} + \frac{z^3}{6} + \dots\right) z - z^2}{z^3} = \lim_{z \to 0} \frac{z^2 - \frac{z^3}{2} + \frac{z^4}{6} + \dots - z^2}{z^3} = \lim_{z \to 0} \frac{z^3 - \frac{z^3}{2} + \frac{z^4}{6} + \dots}{z^3} = \lim_{z \to 0} \frac{z^3 - \frac{z^3}{2} + \frac{z^4}{6} + \dots}{z^3} = \lim_{z \to 0} \frac{z^3 - \frac{z^3}{2} + \frac{z^4}{6} + \dots}{z^3} = -\frac{1}{2}.$$

Значит, что z=0 является устранимой особой точкой, и, следовательно, вычет в ней равен нулю.

Точки $z = \pi k$, $k = \pm 1, \pm 2, \ldots$ являются полюсами 1-го порядка для функции $f(z) = \frac{\varphi(z)}{\sin z}$, где функция $\varphi(z)$, стоящая в числителе дроби в точках $z = \pi k$ в

нуль не обращается
$$\varphi(\pi k) = \frac{(1 - e^{-z})\sin z - z^2}{z^2} \bigg|_{z=\pi k} = \frac{(1 - e^{-\pi k})\sin \pi k - (\pi k)^2}{(\pi k)^2} = -1$$
. Тогда

по формуле (14) имеем
$$resf(\pi k) = \frac{\varphi(\pi k)}{(\sin z)'}\Big|_{z=\pi k} = \frac{-1}{\cos \pi k} = -\frac{1}{(-1)^k} = (-1)^{k+1}$$
.

Поскольку $\lim_{k\to\infty} \pi k = \infty$, точка $z = \infty$ является предельной для полюсов первого порядка, т.е. не является изолированной особой точкой.

Замечание:

Обращаем внимание, что классификация особых точек и вычисление вычетов в них проводится только для изолированных особых точек, включая изолированную бесконечно удаленную точку.

Пример 9: Найти вычеты функции $f(z) = \operatorname{ctg}^3 z$.

Решение: Так как $f(z) = \operatorname{ctg}^3 z = \frac{\cos^3 z}{\sin^3 z}$, то особые точки находим из условия $\sin^3 z = 0$. Получаем точки $z = \pi k$, $k = 0, \pm 1, \pm 2, \ldots$ нули третьего порядка для знаменателя, поскольку $\left(\sin^3 z\right)' = 3\sin^2 z \cos z \Big|_{z=\pi k} = 0$,

$$\left(\sin^3 z \right)'' = 6 \sin z \cos^2 z - 3 \sin^3 z \Big|_{z=\pi k} = 0 ,$$

$$\left(\sin^3 z \right)''' = 6 \cos^3 z - 12 \sin^2 z \cos z - 9 \sin^2 z \cos z \Big|_{z=\pi k} = 6 \neq 0 .$$

Следовательно, $z = \pi k$, $k = 0, \pm 1, \pm 2, ...$ полюса третьего порядка для функции f(z). Точка $z = \infty$ является предельной для полюсов, поэтому ее не исследуем. Вычеты в полюсах третьего порядка вычисляем по формуле (12):

$$\begin{aligned} &\operatorname{res} f(\pi k) = \frac{1}{2!} \underset{z \to \pi k}{\lim} \frac{d^2}{dz^2} \left(\operatorname{ctg}^3 z \cdot (z - \pi k)^3 \right) \begin{vmatrix} \operatorname{3aмeHa} \\ z - \pi k = t \\ t \to 0 \end{vmatrix} = \frac{1}{2} \underset{t \to 0}{\lim} \left(t^3 \operatorname{ctg}^3 (t + \pi k) \right) = \\ &= \frac{1}{2} \underset{t \to 0}{\lim} \left(t^3 \operatorname{ctg}^3 t \right)'' = \frac{1}{2} \underset{t \to 0}{\lim} \left(t^3 \frac{\cos^3 t}{\sin^3 t} \right)'' \end{aligned} (*)$$

Покажем прием, как можно избежать вычисления производных в громоздких выражениях. Для этого рассмотрим вспомогательную функцию $\varphi(t) = \frac{t^3 \cos^3 t}{\sin^3 t}$, которую разложим в ряд по степеням t: $\varphi(t) = \frac{t^3 \cos^3 t}{\sin^3 t} = A + Bt + Ct^2 + Dt^3 + Et^4 + \dots$.

При вычислении вычета в точках $z = \pi k$ нужно найти $\varphi''(t)$, поэтому в разложении по степеням t нужно учесть только слагаемое Ct^2 , так как слагаемые A + Bt исчезнут при дифференцировании, а слагаемые степени выше второй $(Dt^3 + Et^4 + ...)$ исчезнут при вычислении предела при $t \rightarrow 0$. Выражение (*)

$$\operatorname{res} f(\pi k) = \frac{1}{2} \lim_{t \to 0} \varphi''(t) = \frac{1}{2} \lim_{t \to 0} \left(A + Bt + Ct^2 + Dt^3 + Et^4 + \dots \right)'' = \frac{1}{2} \lim_{t \to 0} \left(B + 2Ct + 3Dt^2 + 4Et^3 + \dots \right)' = \frac{1}{2} \lim_{t \to 0} \left(2C + 6Dt + 12Et^2 + \dots \right) = C.$$

Теперь займемся непосредственно разложением функции $\varphi(t)$ в ряд, учитывая слагаемые до степени t^2 :

$$\varphi(t) = \frac{t^{3} \cos^{3} t}{\sin^{3} t} = \frac{t^{3} \left(1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \ldots\right)^{3}}{\left(t - \frac{t^{3}}{3!} + \frac{t^{5}}{5!} + \ldots\right)^{3}} = \frac{t^{3} \left(1 - \left(\frac{t^{2}}{2!} - \frac{t^{4}}{4!} + \ldots\right)\right)^{3}}{\left(t \left(1 - \left(\frac{t^{2}}{3!} - \frac{t^{4}}{5!} + \ldots\right)\right)\right)^{3}} = \frac{t^{3} \left(1 - \left(\frac{t^{2}}{2!} - \frac{t^{4}}{4!} + \ldots\right)\right)^{3}}{t^{3} \left(1 - \left(\frac{t^{2}}{3!} - \frac{t^{4}}{5!} + \ldots\right)\right)^{3}} = \frac{t^{3} \left(1 - \left(\frac{t^{2}}{2!} - \frac{t^{4}}{4!} + \ldots\right)\right)^{3}}{t^{3} \left(1 - \left(\frac{t^{2}}{3!} - \frac{t^{4}}{5!} + \ldots\right)\right)^{3}} = \frac{t^{3} \left(1 - \left(\frac{t^{2}}{2!} - \frac{t^{4}}{4!} + \ldots\right)\right)^{3}}{t^{3} \left(1 - \left(\frac{t^{2}}{3!} - \frac{t^{4}}{5!} + \ldots\right)\right)^{3}} = \frac{t^{3} \left(1 - \left(\frac{t^{2}}{2!} - \frac{t^{4}}{4!} + \ldots\right)\right)^{3}}{t^{3} \left(1 - \left(\frac{t^{2}}{3!} - \frac{t^{4}}{5!} + \ldots\right)\right)^{3}} = \frac{t^{3} \left(1 - \left(\frac{t^{2}}{2!} - \frac{t^{4}}{4!} + \ldots\right)\right)^{3}}{t^{3} \left(1 - \left(\frac{t^{2}}{3!} - \frac{t^{4}}{5!} + \ldots\right)\right)^{3}} = \frac{t^{3} \left(1 - \left(\frac{t^{2}}{2!} - \frac{t^{4}}{4!} + \ldots\right)\right)^{3}}{t^{3} \left(1 - \left(\frac{t^{2}}{3!} - \frac{t^{4}}{5!} + \ldots\right)\right)^{3}} = \frac{t^{3} \left(1 - \left(\frac{t^{2}}{2!} - \frac{t^{4}}{4!} + \ldots\right)\right)^{3}}{t^{3} \left(1 - \left(\frac{t^{2}}{3!} - \frac{t^{4}}{5!} + \ldots\right)\right)^{3}} = \frac{t^{3} \left(1 - \left(\frac{t^{2}}{2!} - \frac{t^{4}}{4!} + \ldots\right)\right)^{3}}{t^{3} \left(1 - \left(\frac{t^{2}}{3!} - \frac{t^{4}}{5!} + \ldots\right)\right)^{3}} = \frac{t^{3} \left(1 - \left(\frac{t^{2}}{2!} - \frac{t^{4}}{4!} + \ldots\right)\right)^{3}}{t^{3} \left(1 - \left(\frac{t^{2}}{3!} - \frac{t^{4}}{5!} + \ldots\right)\right)^{3}} = \frac{t^{3} \left(1 - \left(\frac{t^{2}}{2!} - \frac{t^{4}}{4!} + \ldots\right)\right)^{3}}{t^{3} \left(1 - \left(\frac{t^{2}}{3!} - \frac{t^{4}}{5!} + \ldots\right)\right)^{3}} = \frac{t^{3} \left(1 - \left(\frac{t^{2}}{2!} - \frac{t^{4}}{4!} + \ldots\right)\right)^{3}}{t^{3} \left(1 - \left(\frac{t^{2}}{3!} - \frac{t^{4}}{5!} + \ldots\right)\right)^{3}} = \frac{t^{3} \left(1 - \left(\frac{t^{2}}{2!} - \frac{t^{4}}{4!} + \ldots\right)\right)^{3}}{t^{3} \left(1 - \left(\frac{t^{2}}{3!} - \frac{t^{4}}{5!} + \ldots\right)\right)^{3}} = \frac{t^{3} \left(1 - \left(\frac{t^{2}}{2!} - \frac{t^{4}}{4!} + \ldots\right)\right)^{3}}{t^{3} \left(1 - \left(\frac{t^{2}}{3!} - \frac{t^{4}}{5!} + \ldots\right)\right)^{3}} = \frac{t^{3} \left(1 - \left(\frac{t^{2}}{3!} - \frac{t^{4}}{5!} + \ldots\right)\right)^{3}}{t^{3} \left(1 - \left(\frac{t^{2}}{3!} - \frac{t^{4}}{5!} + \ldots\right)\right)^{3}} = \frac{t^{3} \left(1 - \left(\frac{t^{2}}{3!} - \frac{t^{4}}{5!} + \ldots\right)\right)^{3}}{t^{3} \left(1 - \left(\frac{t^{2}}{3!} - \frac{t^{4}}{5!} + \ldots\right)\right)^{3}}$$

Для разложения в ряд первого сомножителя выражения (**) можно воспользоваться формулой куба разности:

$$\left(1 - \left(\frac{t^2}{2!} - \frac{t^4}{4!} + \dots\right)\right)^3 = 1 - 3\left(\frac{t^2}{2!} - \frac{t^4}{4!} + \dots\right) + 3\left(\frac{t^2}{2!} - \frac{t^4}{4!} + \dots\right)^2 - \left(\frac{t^2}{2!} - \frac{t^4}{4!} + \dots\right)^3 = 1 - \frac{3}{2}t^2 + \dots$$
 Второй сомножитель разложим в ряд по формуле:
$$(1 - q)^{-3} = (1 + (-q))^{-3} = 1 + (-3)(-q) + \frac{(-3)(-4)}{2!}(-q)^2 + \dots = 1 + 3q + 6q^2 + \dots,$$
 где
$$q = \frac{t^2}{3!} - \frac{t^4}{5!} + \dots$$

Получаем:
$$\left(1-\left(\frac{t^2}{3!}-\frac{t^4}{5!}+\ldots\right)\right)^{-3}=1+3\left(\frac{t^2}{3!}-\frac{t^4}{5!}+\ldots\right)+6\left(\frac{t^2}{3!}-\frac{t^4}{5!}+\ldots\right)^2+\ldots=1+\frac{t^2}{2}+\ldots$$

Подставим полученные разложения в выражение (**) и перемножим:

$$\varphi(t) = \left(1 - \frac{3}{2}t^2 + \dots\right)\left(1 + \frac{1}{2}t^2 + \dots\right) = 1 + \left(\frac{1}{2} - \frac{3}{2}\right)t^2 + \dots = 1 - t^2 + \dots$$

Значит при t^2 коэффициент C=-1, поэтому $\operatorname{res} f(\pi k) = C=-1$, $(k=0,\pm 1,\pm 2,...)$.

Задачи для самостоятельного решения

Найти вычеты в особых точках, включая $z = \infty$:

1)
$$\frac{tgz}{z^2 - \frac{\pi}{4}z}$$
, 2) $\frac{chz}{(z^2 + 1)(z - 3)}$, 3) $\frac{e^z}{\frac{1}{4} - \sin^2 z}$, 4) $\frac{e^z - 1}{z^3(z - 1)}$, 5) $\frac{\cos z}{z^3 - \frac{\pi}{2}z^2}$, 6) $\frac{1 - \cos z}{z^3(z - 3)}$,

7)
$$\sin \frac{1}{z} + z^3$$
, 8) $\frac{z^{2n}}{(z-1)^n}$, n -натуральное число, 9) $\frac{z^{10}+1}{z^5(z+1)}$, 10) $\frac{z}{(z+1)^3(z-2)^2}$,

11)
$$\frac{e^{iz}}{(z^2-1)(z+3)}$$
, **12**) $\operatorname{ctg}^2 z$.

Ответы:

1) res
$$f(0) = 0$$
, res $f\left(\frac{\pi}{4}\right) = \frac{4}{\pi}$, res $f\left(\frac{\pi}{2} + \pi k\right) = -\frac{8}{\pi^2 (2k+1)(4k+1)}$, $k = 0, \pm 1, \pm 2, ...$;

2)
$$\operatorname{res} f(3) = \frac{\cosh 3}{10}$$
, $\operatorname{res} f(i) = -\frac{\cos 1}{2(1+3i)}$, $\operatorname{res} f(-i) = -\frac{\cos 1}{2(1-3i)}$, $\operatorname{res} f(\infty) = \frac{\cos 1 - \cosh 3}{10}$;

3)
$$\operatorname{res} f\left(\pm \frac{\pi}{6} + \pi k\right) = \mp 2e^{\pm \frac{\pi}{6} + \pi k}, \ k = 0, \pm 1, \pm 2, ...;$$
 4) $\operatorname{res} f(0) = -\frac{3}{2}, \quad \operatorname{res} f(1) = e - 1,$

$$\operatorname{res} f(\infty) = \frac{5}{2} - e$$
; **5**) $\operatorname{res} f(0) = -\frac{4}{\pi^2}$, $\operatorname{res} f\left(\frac{\pi}{2}\right) = 0$, $\operatorname{res} f(\infty) = \frac{4}{\pi^2}$; **6**) $\operatorname{res} f(0) = -\frac{1}{18}$,

res
$$f(3) = \frac{1-\cos 3}{27}$$
, res $f(\infty) = \frac{1+2\cos 3}{54}$; 7) res $f(0) = 1$, res $f(\infty) = -1$;

8)
$$\operatorname{res} f(0) = \frac{(2n)!}{(n-1)!(n+1)!}$$
, $\operatorname{res} f(\infty) = -\frac{(2n)!}{(n-1)!(n+1)!}$; 9) $\operatorname{res} f(0) = \frac{3}{2}$, $\operatorname{res} f(-1) = -2$,

$$\operatorname{res} f(\infty) = \frac{1}{2}$$
; **10**) $\operatorname{res} f(2) = \frac{1}{81}$, $\operatorname{res} f(-1) = \frac{1}{27}$, $\operatorname{res} f(\infty) = -\frac{4}{81}$;

11)
$$\operatorname{res} f(-3) = \frac{\cos 3 - i \sin 3}{8}, \qquad \operatorname{res} f(i) = -\frac{e^{-1}}{2(1 - 3i)}, \qquad \operatorname{res} f(-i) = -\frac{e}{2(1 + 3i)},$$

$$\operatorname{res} f(\infty) = \frac{\cosh 1 - 3i \sinh 1}{10} - \frac{\cos 3 - i \sin 3}{8}$$
; **12**). $\operatorname{res} f(\pi k) = 0$, $k = 0, \pm 1, \pm 2, ...$

3. ПРИЛОЖЕНИЯ ТЕОРИИ ВЫЧЕТОВ К ВЫЧИСЛЕНИЮ ИНТЕГРАЛОВ

3.1. Основная теорема теории вычетов

<u>Теорема</u>: Пусть D - односвязная область, ограниченная кусочно-гладкой кривой C, а функция f(z) является аналитической в D и непрерывной в $\overline{D} = D \cup C$, за исключением конечного числа изолированных особых точек $z_1, z_2, ..., z_n$, лежащих внутри области D.

Тогда:

$$\int_{C} f(z)dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{res} f(z_{k}).$$
 (19)

Доказательство: Выделим каждую из особых точек функции f(z) замкнутым контуром γ_k , не содержащим внутри себя других особых точек, кроме z_k . Рассмотрим многосвязную область, ограниченную контуром C и всеми контурами γ_k (k=1, 2,..., n) (puc.1).

Внутри этой области функция f(z) является всюду аналитической. Поэтому по теореме Коши для многосвязной области получаем $\int\limits_{C^+} f(z)dz + \sum_{k=1}^n \int\limits_{\gamma_k^-} f(z)dz = 0 \,. \qquad \text{Перенесем} \qquad \text{второе} \qquad \text{слагаемое} \qquad \text{вправо}$ $\int\limits_{C^+} f(z)dz = -\sum_{k=1}^n \int\limits_{\gamma_k^-} f(z)dz = \sum_{k=1}^n \int\limits_{\gamma_k^+} f(z)dz \quad \text{и воспользуемся определением вычета (11),}$

откуда получаем $\int_{y_k^+}^{y_k} f(z)dz = 2\pi i \cdot \operatorname{res} f(z_k)$. В результате получаем утверждение

теоремы: $\int_{C^+} f(z)dz = 2\pi i \cdot \sum_{k=1}^n \operatorname{res} f(z_k).$

Прикладное значение формулы (19) заключается в том, что во многих случаях для вычисления контурного интеграла гораздо проще вычислить вычеты функции f(z) относительно особых точках, лежащих внутри контура интегрирования, чем вычислять интеграл по контуру C непосредственно.

Основная теорема теории вычетов имеет также ряд важных применений при вычислении определенных интегралов, в том числе и несобственных.

Замечание:

Если внутри контура C содержится много особых точек $z_1, z_2, ..., z_n$ функции f(z), то применение основной теоремы о вычетах может быть сопряжено с громоздкими вычислениями. Если при этом вне контура Cнаходится лишь несколько особых точек $z_1^*, z_2^*, ..., z_N^*$ (N < n) и вычеты относительно этих точек и бесконечно удаленной точки $z = \infty$ вычисляются достаточно просто, то применяя теорему о сумме вычетов (18), получаем, что $\sum_{k=1}^{n} \operatorname{res} f(z_{k}) = -\left(\sum_{m=1}^{N} \operatorname{res} f(z_{m}^{*}) + \operatorname{res} f(\infty)\right)$. Подставляя данный результат в (19), получаем еще одну формулу для вычисления контурного интеграла с

помощью вычетов относительно особых точек, лежащих вне контура C:

$$\int_{C} f(z)dz = -2\pi i \cdot \left(\sum_{m=1}^{N} \operatorname{res} f(z_{m}^{*}) + \operatorname{res} f(\infty) \right)$$
(20)

3.2. Вычисление контурных интегралов с помощью основной теоремы о вычетах

По основной теореме теории вычетов интеграл по границе области D от функции f(z) равен сумме вычетов относительно всех особых точек этой ϕ ункции, лежащих внутри области D, умноженной на $2\pi i$.

Рассмотрим на примерах применение формул (19) и (20).

Пример 1: Вычислить интеграл $\int\limits_{|z|=4} \frac{e^z-1}{z^2+z}dz$.

Решение: Функция $f(z) = \frac{e^z - 1}{z^2 + z}$ является аналитической всюду в области |z| < 4, кроме точек z=0 и z=-1. Тогда по теореме о вычетах можно записать:

$$\int_{|z|=4}^{\infty} \frac{e^{z}-1}{z^{2}+z} dz = 2\pi i \cdot (\text{res } f(0) + \text{res } f(-1)).$$

Точка z=0является устранимой особой точкой, T.K.

$$\lim_{z \to 0} \frac{e^z - 1}{z(z+1)} = \lim_{z \to 0} \frac{1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots - 1}{z(z+1)} = \lim_{z \to 0} \frac{\cancel{t} \left(1 + \frac{z}{2!} + \frac{z^2}{3!} + \dots\right)}{\cancel{t}(z+1)} = 1.$$
Поэтому res $f(0) = 0$.

Точка z=-1 является полюсом первого порядка, вычет в которой вычислим по формуле (14): res $f(-1) = \frac{e^z - 1}{(z^2 + z)'}$ $= \frac{e^z - 1}{2z + 1}$ $= 1 - e^{-1}$

Таким образом, $\int_{|z|=4} \frac{e^z-1}{z^2+z} dz = 2\pi i \cdot (1-e^{-1}).$

Пример 2: Вычислить интеграл $\int\limits_{|z|=2}^{}$ $\operatorname{tg} z dz$.

Решение: Особыми точками $f(z) = \operatorname{tg} z = \frac{\sin z}{\cos z}$ являются точки $z_k = \frac{\pi}{2} + \pi k, \, k = 0, \pm 1, \pm 2, \ldots$ Эти точки являются полюсами первого порядка, поскольку $\cos \left(\frac{\pi}{2} + \pi k \right) = 0, \, \left(\cos z \right)' \Big|_{\frac{\pi}{2} + \pi k} = -\sin \left(\frac{\pi}{2} + \pi k \right) = -(-1)^k = (-1)^{k+1} \neq 0$.

В область |z| < 2 попадают всего две особые точки $z = \frac{\pi}{2}$ и $z = -\frac{\pi}{2}$. Найдем вычеты в них по формуле (14):

$$\operatorname{res} f\left(\frac{\pi}{2}\right) = \frac{\sin z}{(\cos z)'}\Big|_{z=\frac{\pi}{2}} = \frac{\sin z}{-\sin z}\Big|_{z=\frac{\pi}{2}} = -1, \quad \operatorname{res} f\left(-\frac{\pi}{2}\right) = \frac{\sin z}{(\cos z)'}\Big|_{z=-\frac{\pi}{2}} = \frac{\sin z}{-\sin z}\Big|_{z=-\frac{\pi}{2}} = -1$$

Поэтому $\int_{|z|=2} \operatorname{tg} z dz = 2\pi i \cdot \left(\operatorname{res} f\left(\frac{\pi}{2}\right) + \operatorname{res} f\left(-\frac{\pi}{2}\right)\right) = -4\pi i$.

Пример 3: Вычислить интеграл $\int_{|z|=2} \frac{dz}{(z-3)(z^5-1)}$.

Решение: Функция $f(z) = \frac{1}{(z-3)(z^5-1)}$ - аналитическая, за исключением точек

z=3 и еще пяти точек $z_k = \sqrt[5]{1} = e^{i\frac{2\pi k}{5}}$, (k=0,1,2,3,4), являющихся корнями уравнения $z^5-1=0$. Точки z_k (k=0,1,2,3,4) являются простыми полюсами и находятся внутри области |z|<2, а точка z=3 лежит вне данной области. В этом случае для вычисления интеграла удобнее применить формулу (20):

$$\int_{|z|=2} \frac{dz}{(z-3)(z^5-1)} = -2\pi i \left(\operatorname{res} f(3) + \operatorname{res} f(\infty) \right).$$
 Вычет в точке $z=3$ найдем по формуле

(13):
$$\operatorname{res} f(3) = \lim_{z \to 3} \frac{(z-3)}{(z-3)(z^5-1)} = \lim_{z \to 3} \frac{1}{z^5-1} = \frac{1}{3^5-1} = \frac{1}{242}$$
. Точка $z = \infty$ является

устранимой особой точкой, поскольку $\lim_{z\to\infty}\frac{1}{(z-3)(z^5-1)}=0$. Для нахождения вычета в бесконечно удаленной точке разложим f(z) в ряд Лорана по

степеням $\frac{1}{z}$:

$$f(z) = \frac{1}{(z-3)(z^5 - 1)} = \frac{1}{z\left(1 - \frac{3}{z}\right) \cdot z^5 \left(1 - \frac{1}{z^5}\right)} = \frac{1}{z^6} \left(1 - \frac{3}{z}\right)^{-1} \cdot \left(1 - \frac{1}{z^5}\right)^{-1} =$$

$$= \frac{1}{z^6} \left(1 + \frac{3}{z} + \frac{9}{z^2} \dots\right) \left(1 + \frac{1}{z^5} + \frac{1}{z^{10}} \dots\right) = \frac{1}{z^6} + \frac{3}{z^7} + \frac{9}{z^8} + \dots$$

Поскольку в данном разложении $C_{-1}=0$, то $\operatorname{res} f(\infty)=-C_{-1}=0$ и окончательно получаем, что $\int_{|z|=2}^{\infty} \frac{dz}{(z-3)(z^5-1)} = -2\pi i \cdot \frac{1}{242} = -\frac{\pi i}{121}.$

Пример 4: Вычислить интеграл $\int_{|z|=2}^{\infty} \frac{\cos^{\frac{1}{z}} dz}{1-z}.$

Решение: Особые точки функции z=1 - простой полюс, z=0 - существенно особая точка. Вычет в простом полюсе находим по формуле (13) $\operatorname{res} f(1) = \lim_{z \to 1} \frac{(z-1)}{(1-z)} \cos \frac{1}{z} = -\cos 1$. Для нахождения вычета в существенно особой точке z=0 разложим подынтегральную функцию в ряд Лорана в окрестности этой точки:

$$f(z) = \frac{1}{1-z}\cos\frac{1}{z} = \left(1+z+z^2+z^3+z^4+\ldots\right)\cdot\left(1-\frac{1}{2!z^2}+\frac{1}{4!z^4}-\frac{1}{6!z^6}+\ldots\right).$$

Перемножая ряды, легко увидеть, что коэффициент при степени $\frac{1}{z}$ представляется в виде бесконечного числового ряда $\operatorname{res} f(0) = C_{-1} = -\frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \dots$ Сумму данного числового ряда можно найти, если вспомнить стандартное разложение для функции $\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots$ и положить в нем z=1, т.е. $\cos 1 = 1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \dots$ Тогда $\operatorname{res} f(0) = -\frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \dots = \cos 1 - 1$.

В итоге получаем $\int_{|z|=2}^{\infty} \frac{\cos \frac{1}{z}}{1-z} = 2\pi i \cdot (\operatorname{res} f(1) + \operatorname{res} f(0)) = 2\pi i (-\cos 1 + \cos 1 - 1) = -2\pi i.$

Пример 5: Вычислить интеграл
$$\int\limits_{|z+1|=2}\frac{1}{z+2}\cdot\sin\biggl(\frac{1}{z+1}\biggr)dz\,.$$

Решение: Интеграл вычисляется по окружности радиуса 2 с центром в точке z=-1. Особые точки функции z=-2 - простой полюс и z=-1- существенно особая точка, обе лежат внутри данного круга. В простом полюсе вычет вычисляем по формуле (13) $\operatorname{res} f(-2) = \lim_{z \to -2} \frac{(z+2)}{(z+2)} \sin \frac{1}{z+1} = \sin(-1) = -\sin 1$. Вычет в существенно особой точке z=-1 находим из разложения в ряд Лорана по степеням (z+1). Для этого функцию представим в виде:

$$f(z) = \frac{1}{z+2}\sin\left(\frac{1}{z+1}\right) = \frac{1}{1+(z+1)}\sin\left(\frac{1}{z+1}\right) = \left(1+(z+1)\right)^{-1}\sin\left(\frac{1}{z+1}\right) =$$

$$= \left(1-(z+1)+(z+1)^2-(z+1)^3+(z+1)^4-\ldots\right)\cdot\left(\frac{1}{z+1}-\frac{1}{3!(z+1)^3}+\frac{1}{5!(z+1)^5}-\frac{1}{7!(z+1)^7}+\ldots\right)$$

Для нахождения вычета нам необходимо вычислить коэффициент C_{-1} при степени $\frac{1}{z+1}$. Легко увидеть, что данная степень получается при перемножении четных степеней $(z+1)^{2n}$ первого ряда на нечетные степени $\frac{1}{(z+1)^{2n+1}}$ второго ряда. Поэтому коэффициент C_{-1} представляется в виде бесконечного числового ряда $C_{-1}=1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\dots$ Данный числовой ряд можно получить из стандартного разложения $\sin z=z-\frac{z^3}{3!}+\frac{z^5}{5!}-\frac{z^7}{7!}+\dots$ в точке z=1, тогда $\operatorname{res} f(-1)=C_{-1}=1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\dots=\sin 1$.

Окончательно получаем

$$\int_{|z+1|=2} \frac{1}{z+2} \cdot \sin\left(\frac{1}{z+1}\right) dz = 2\pi i \cdot \left(\text{res} f(-1) + \text{res} f(-2)\right) = 2\pi i \cdot \left(\sin 1 - \sin 1\right) = 0.$$

 Π ример 6: Вычислить интеграл $\int\limits_{|z|=3} (1+z+z^2) \left(e^{rac{1}{z}}+e^{rac{1}{z-1}}+e^{rac{1}{z-2}}
ight) dz$.

Решение: Точки z=0, z=1, z=2 являются существенно особыми для f(z), поскольку не существуют $\lim_{z\to 0}e^{\frac{1}{z}}$, $\lim_{z\to 1}e^{\frac{1}{z-1}}$, $\lim_{z\to 2}e^{\frac{1}{z-2}}$. Вычеты в них находятся из разложения в ряд Лорана в окрестности каждой из точек. Для простоты вычислений представим интеграл в виде суммы интегралов, чтобы в каждом из них у подынтегральной функции была всего одна особая точка:

$$\int_{|z|=3} \left(1+z+z^2\right) \left(e^{\frac{1}{z}}+e^{\frac{1}{z-1}}+e^{\frac{1}{z-2}}\right) dz = \int_{|z|=3} \left(1+z+z^2\right) e^{\frac{1}{z}} dz + \int_{|z|=3} \left(1+z+z^2\right) e^{\frac{1}{z-1}} dz + \int_{|z|=3} \left(1+z+z^2\right) e^{\frac{1}{z-2}} dz$$

а) Интеграл $I_1 = \int\limits_{|z|=3}^{1} (1+z+z^2) e^{\frac{1}{z}} dz = 2\pi i \cdot \mathrm{res} f(0)$. Разложим в ряд Лорана по степеням z функцию $f_1(z) = (1+z+z^2) e^{\frac{1}{z}} = (1+z+z^2) \left(1+\frac{1}{z}+\frac{1}{2!z^2}+\frac{1}{3!z^3}+\frac{1}{4!z^4}+\ldots\right)$. Очевидно, что степень $\frac{1}{z}$ получается при умножении следующих сомножителей $1 \cdot \frac{1}{z} + z \cdot \frac{1}{2!z^2} + z^2 \cdot \frac{1}{3!z^3}$, коэффициент при ней $C_{-1} = 1 + \frac{1}{2!} + \frac{1}{3!} = \frac{5}{3}$. Получаем, что $I_1 = 2\pi i \cdot \frac{5}{3}$.

б) Интеграл $I_2 = \int\limits_{|z|=3}^{} \left(1+z+z^2\right) e^{\frac{1}{z-1}} dz = 2\pi i \cdot \mathrm{res}\, f$ (1). Разложим в ряд Лорана по степеням (z-1) функцию

$$\begin{split} &f_2(z) = \left(1+z+z^2\right)e^{\frac{1}{z-1}} = \left(1+(z-1)+1+((z-1)+1)^2\right)\times\\ &\times \left(1+\frac{1}{z-1}+\frac{1}{2!(z-1)^2}+\frac{1}{3!(z-1)^3}+\frac{1}{4!(z-1)^4}+\ldots\right) =\\ &= \left(3+3(z-1)+(z-1)^2\right)\left(1+\frac{1}{z-1}+\frac{1}{2!(z-1)^2}+\frac{1}{3!(z-1)^3}+\frac{1}{4!(z-1)^4}+\ldots\right) \quad \text{и} \quad \text{аналогично}\\ &\text{вычислим} \quad \text{коэффициент} \quad \text{при} \quad \text{степени} \quad \frac{1}{z-1}: \quad C_{-1} = 3+\frac{3}{2!}+\frac{1}{3!}=\frac{14}{3} \,. \quad \text{Тогда}\\ &I_2 = 2\pi i \cdot \frac{14}{3} \,. \end{split}$$

в) Интеграл $I_3 = \int\limits_{|z|=3}^{} (1+z+z^2)e^{\frac{1}{z-2}}dz = 2\pi i \cdot \mathrm{res} f(2)$. Разложим в ряд Лорана по степеням (z-2) функцию

$$f_3(z) = \left(1 + z + z^2\right)e^{\frac{1}{z-2}} = \left(1 + (z-2) + 2 + ((z-2) + 2)^2\right) \times \left(1 + \frac{1}{z-2} + \frac{1}{2!(z-2)^2} + \frac{1}{3!(z-2)^3} + \frac{1}{4!(z-2)^4} + \ldots\right) =$$

$$= \left(7 + 5(z-2) + (z-2)^2\right)\left(1 + \frac{1}{z-2} + \frac{1}{2!(z-2)^2} + \frac{1}{3!(z-2)^3} + \frac{1}{4!(z-2)^4} + \ldots\right). \quad \text{При степени}$$

$$\frac{1}{z-2} \quad \text{коэффициент } C_{-1} = 7 + \frac{5}{2!} + \frac{1}{3!} = \frac{29}{3} \cdot \text{Тогда } I_3 = 2\pi i \cdot \frac{29}{3}.$$

Окончательно получаем ответ

$$\int_{|z|=3} \left(1+z+z^2\right) \left(e^{\frac{1}{z}}+e^{\frac{1}{z-1}}+e^{\frac{1}{z-2}}\right) dz = 2\pi i \cdot \frac{5+14+29}{3} = 32\pi i.$$

Пример 7: Вычислить интеграл $\frac{1}{2\pi i} \int_C \frac{e^z dz}{\cos z}$, где контур интегрирования C указан на рис.2.

Решение: Подынтегральная функция $f(z) = \frac{e^z}{\cos z}$ аналитическая всюду, за исключением точек, в которых $\cos z = 0$: $z_k = \frac{\pi}{2} + \pi k, (k \in \mathbb{Z})$ -полюса первого порядка, $z = \infty$ - предельная для полюсов. Из множества простых полюсов выберем точки $z_k = -\frac{\pi}{2} - \pi k, (k = 0,1,2,...)$, лежащие слева от мнимой оси. Вычеты в них находятся по формуле (14).

$$\operatorname{res} f(z_{k}) = \frac{e^{z}}{(\cos z)'}\bigg|_{z = -\frac{\pi}{2} - \pi k} = \frac{e^{z}}{-\sin z}\bigg|_{z = -\frac{\pi}{2} - \pi k} = \frac{e^{-\frac{\pi}{2} - \pi k}}{-\sin \left(-\frac{\pi}{2} - \pi k\right)} = \frac{e^{-\frac{\pi}{2} - \pi k}}{\sin \left(\frac{\pi}{2} + \pi k\right)} = \frac{e^{-\frac{\pi}{2} - \pi k}}{(-1)^{k}} = (-1)^{k} e^{-\frac{\pi}{2} - \pi k}$$

Поскольку контур интегрирования не замкнут, для вычисления интеграла нельзя применить основную теорему о вычетах. Для устранения данной проблемы замкнем контур, проведя прямую $z=A+iy, (-ia \le y \le ia)$, параллельную мнимой оси так, чтобы полюса $z_0=-\frac{\pi}{2}, \quad z_1=-\frac{\pi}{2}-\pi=-\frac{3\pi}{2},$ $z_2=-\frac{\pi}{2}-2\pi=-\frac{5\pi}{2}, \quad \ldots, \quad z_n=-\frac{\pi}{2}-\pi n=-\frac{(2n+1)\pi}{2}$ лежали внутри области, ограниченной контурами C_1 и C_2 (рис.3). Здесь C_1 - часть контура C, отсеченная контуром C_2 : $z=A+iy, (-ia \le y \le ia)$.

Тогда по теореме о сумме вычетов получаем:

$$\int_{C_1} \frac{e^z dz}{\cos z} + \int_{C_2} \frac{e^z dz}{\cos z} = 2\pi i \cdot \sum_{k=0}^n \text{res} f\left(-\frac{\pi}{2} - \pi k\right) = 2\pi i \cdot \sum_{k=0}^n (-1)^k e^{-\frac{\pi}{2} - \pi k} ,$$
 откуда выражаем:

$$\int_{C_1} \frac{e^z dz}{\cos z} = 2\pi i \cdot \sum_{k=0}^n (-1)^k e^{-\frac{\pi}{2} - \pi k} - \int_{C_2} \frac{e^z dz}{\cos z} = 2\pi i \cdot e^{-\frac{\pi}{2}} \sum_{k=0}^n (-1)^k e^{-\pi k} - \int_{C_2} \frac{e^z dz}{\cos z}$$
 (*)

В выражении (*) перейдем к пределу при $A \to -\infty$ (или при $n \to +\infty$). Очевидно, что $\lim_{A \to -\infty} \int_C \frac{e^z dz}{\cos z} = \int_C \frac{e^z dz}{\cos z}$. Тогда

$$\int_{C} \frac{e^{z} dz}{\cos z} = 2\pi i e^{-\frac{\pi}{2}} \cdot \lim_{n \to +\infty} \sum_{k=0}^{n} (-1)^{k} e^{-\pi k} - \lim_{A \to -\infty} \int_{C_{2}} \frac{e^{z} dz}{\cos z} = 2\pi i e^{-\frac{\pi}{2}} \cdot \sum_{k=0}^{\infty} (-1)^{k} e^{-\pi k} - \lim_{A \to -\infty} \int_{C_{2}} \frac{e^{z} dz}{\cos z}$$
 (**).

Первое слагаемое в выражении (**) преобразуем по формуле суммы бесконечно убывающей прогрессии со знаменателем $q=-e^{-\pi}$:

$$\sum_{k=0}^{\infty} (-1)^k e^{-\pi k} = \sum_{k=0}^{\infty} (-1)^k \left(e^{-\pi} \right)^k = \sum_{k=0}^{\infty} \left(-e^{-\pi} \right)^k = \frac{1}{1 - \left(-e^{-\pi} \right)} = \frac{1}{1 + e^{-\pi}} = \frac{1}{e^{-\pi} \left(1 + e^{\pi} \right)}.$$

Вычислим интеграл по контуру C_2 , введя параметризацию этой прямой $z=A+iy,\ dz=d(iy),\ ia\leq iy\leq -ia$:

$$\lim_{A \to -\infty} \int_{C_2} \frac{e^z dz}{\cos z} = \lim_{A \to -\infty} \int_{ia}^{-ia} \frac{e^{A+iy} d(iy)}{\cos(A+iy)} = \begin{vmatrix} 3a \text{MBHA} \\ iy = t \end{vmatrix} = \lim_{A \to -\infty} e^A \cdot \int_a^{-a} \frac{e^t dt}{\cos(A+t)} = -\lim_{A \to -\infty} e^A \cdot \int_{-a}^{a} \frac{e^t dt}{\cos(A+t)} = 0$$

Здесь $\int_{-a}^{a} \frac{e^{t} dt}{\cos(A+t)}$ - интеграл Римана, принимающий конечное значение, независящее от A, а $\lim_{A \to a} e^{A} = 0$.

Тогда из (**) получаем:
$$\int_C \frac{e^z dz}{\cos z} == 2\pi i \, e^{-\frac{\pi}{2}} \cdot \frac{1}{e^{-\pi} \left(1 + e^{\pi}\right)} = \frac{2\pi i \cdot e^{\frac{\pi}{2}}}{1 + e^{\pi}}, \quad \text{и окончательный}$$
 ответ
$$\frac{1}{2\pi i} \int_C \frac{e^z dz}{\cos z} = \frac{e^{\frac{\pi}{2}}}{1 + e^{\pi}}.$$

Замечание:

Применение основной теоремы о вычетах при вычислении контурных интегралов невозможно, если функция f(z) имеет особые точки на контуре интегрирования. Рассмотрим специальный случай контурного интеграла $\int_C f(z)dz$, у которого особая точка z=a функции f(z), являющаяся полюсом первого порядка, лежит на контуре C. В этой ситуации $\lim_{z\to a} |f(z)| = \infty$, и интеграл должен рассматриваться как несобственный. Его обычно понимают в смысле главного значения:

$$v.p \oint_C f(z)dz = \lim_{\substack{\varepsilon \to 0 \\ \left| a_1 - a \right| = \varepsilon \\ \left| a_2 - a \right| = \varepsilon}} \int_{C'} f(z)dz , \qquad (21)$$

где интеграл справа вычисляется по разомкнутому контуру C' (рис. 4) от точки a_1 до точки a_2 . Точки a_1 , a_2 лежат на контуре C на расстоянии ε от особой точки z=a. В силу малости ε дугу контура около точки z=a между точками a_1 и a_2 можно заменить отрезком прямой.

Рис.4

Покажем далее, как этот интеграл может быть вычислен по теореме о вычетах. Замкнем разомкнутый контур C' дугой окружности C'_{ε} радиуса ε с центром в точке z=a, проходящей через точки a_1 и a_2 , сохранив направление обхода. Тогда в соответствии с теоремой о вычетах (19)

$$\int_{C' \cup C'_{+}} f(z)dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{res} f(z_{k}), \qquad (22)$$

где z_k ($k=\overline{1,n}$) - особые точки f(z), лежащие внутри контура C. В силу свойства контурных интегралов из (22) находим

$$\int_{C'} f(z)dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{res} f(z_k) - \int_{C'_{\varepsilon}} f(z)dz.$$
(23)

Вычислим интеграл по дуге окружности C'_{ε} , разложив функцию f(z) в ряд Лорана в окрестности простого полюса z=a: $f(z) = \sum_{m=0}^{\infty} C_m (z-a)^m + \frac{c_{-1}}{z-a}, \quad c_{-1} \neq 0$ Тогда интеграл по дуге окружности C'_{ε} можно записать в виде:

$$\begin{split} &\int\limits_{C_{\varepsilon}'} f(z)dz = \int\limits_{C_{\varepsilon}'} \left(\sum_{m=0}^{\infty} C_m (z-a)^m + \frac{c_{-1}}{z-a} \right) dz \begin{vmatrix} \operatorname{3ameha} \\ z-a = \varepsilon e^{i\varphi} \\ dz = i\varepsilon e^{i\varphi} d\varphi \end{vmatrix} = \int\limits_{\varphi_0 + \pi}^{\varphi_0} \left(\sum_{m=0}^{\infty} C_m \varepsilon^m e^{im\varphi} + \frac{c_{-1}}{\varepsilon e^{i\varphi}} \right) i\varepsilon e^{i\varphi} d\varphi = \\ &= \sum_{m=0}^{\infty} i C_m \varepsilon^{m+1} \int\limits_{\varphi_0 + \pi}^{\varphi_0} e^{i(m+1)\varphi} d\varphi + c_{-1} \int\limits_{\varphi_0 + \pi}^{\varphi_0} d\varphi = \sum_{m=0}^{\infty} i C_m \varepsilon^{m+1} \int\limits_{\varphi_0 + \pi}^{\varphi_0} e^{i(m+1)\varphi} d\varphi - c_{-1} \pi i \end{aligned}$$

Подставляя этот результат в формулу (23) и переходя к пределу при $\varepsilon \to 0$, получаем в соответствии с определением (21):

$$\begin{aligned} & \text{v.p.} \oint_{C} f(z) dz = \lim_{\varepsilon \to 0} \int_{C'} f(z) dz = \lim_{\varepsilon \to 0} \left(2\pi i \cdot \sum_{k=1}^{n} \text{res} f(z_{k}) - \int_{C'_{\varepsilon}} f(z) dz \right) = 2\pi i \cdot \sum_{k=1}^{n} \text{res} f(z_{k}) - \lim_{\varepsilon \to 0} \left(\sum_{m=0}^{\infty} i C_{m} \varepsilon^{m+1} \int_{\varphi_{0} + \pi}^{\varphi_{0}} e^{i(m+1)\varphi} d\varphi - c_{-1} \pi i \right) = 2\pi i \cdot \sum_{k=1}^{n} \text{res} f(z_{k}) + c_{-1} \pi i \end{aligned}$$

Т.к. $c_{-1} = \text{res } f(a)$, то окончательно получаем формулу для вычисления главного значения несобственного интеграла, когда особая точка находится на контуре интегрирования:

$$v.p \oint_C f(z)dz = 2\pi i \cdot \sum_{k=1}^n \operatorname{res} f(z_k) + \pi i \cdot \operatorname{res} f(a).$$
 (24)

Таким образом, при расположении особой точки подынтегральной функции на контуре интегрирования, вычет относительно нее берется с коэффициентом $\frac{1}{2}$.

Формулу (24) можно обобщить на случай, когда несколько особых точек (полюсов первого порядка) находятся на контуре интегрирования:

$$v.p \oint_C f(z)dz = 2\pi i \cdot \sum_{k=1}^n \operatorname{res} f(z_k) + \pi i \cdot \sum_{j=1}^m \operatorname{res} f(a_j).$$
 (25)

Здесь $z_1, z_2, ..., z_n$ - особые точки функции f(z), лежащие внутри контура C, $a_1, a_2, ..., a_m$ - полюса первого порядка, расположенные на контуре C.

Пример 8: Вычислить интеграл $I = \int_{|z|=1}^{\infty} \frac{\text{ctg}(z-1)}{z^2(z+1)} dz$.

Решение: Особыми точками функции $f(z) = \frac{\operatorname{ctg}(z-1)}{z^2(z+1)} = \frac{\cos(z-1)}{z^2(z+1)\sin(z-1)}$ являются z=0 — полюс 2-го порядка, лежащий внутри круга |z|<1, z=1 и z=-1 — полюса первого порядка, лежащие на границе этого круга. Полюса первого порядка $z_k = 1 + \pi k$, $(k \in \mathbb{Z}, k \neq 0)$ находятся вне данного круга, поэтому их не рассматриваем. Интеграл I является несобственным и вычисляется в смысле главного значения по формуле (25):

$$v.pI = v.p. \int_{|z|=1}^{z} \frac{ctg(z-1)}{z^2(z+1)} dz = 2\pi i \cdot res f(0) + \pi i (res f(1) + res f(-1)) \cdot$$

Найдем вычеты относительно этих особых точек. Вычет в полюсе 2-го порядка считаем по формуле (12):

$$\operatorname{res} f(0) = \lim_{z \to 0} \left(\frac{\operatorname{ctg}(z-1)}{(z+1)} \right)' = \lim_{z \to 0} \frac{-\frac{z+1}{\sin^2(z-1)} - \operatorname{ctg}(z-1)}{(z+1)^2} = \frac{-\frac{1}{\sin^2 1} + \operatorname{ctg} 1}{1} = \operatorname{ctg} 1 - \operatorname{ctg}^2 1 - 1.$$

Вычет в простом полюсе z=-1 вычисляем по формуле (13):

$$\operatorname{res} f(-1) = \lim_{z \to -1} \left(\frac{\operatorname{ctg}(z-1)}{z^2} \right) = \frac{-\operatorname{ctg} 2}{1} = -\operatorname{ctg} 2.$$

Вычет в простом полюсе z=1 вычисляем по формуле (14):

$$\operatorname{res} f(1) = \frac{\cos(z-1)}{\left(z^2(z+1)\sin(z-1)\right)'}\bigg|_{z=1} = \frac{\cos(z-1)}{2z(z+1)\sin(z-1) + z^2\sin(z-1) + z^2(z+1)\cos(z-1)}\bigg|_{z=1} = \frac{1}{2},$$

v.p.
$$\int_{|z|=1}^{\infty} \frac{\text{ctg}(z-1)}{z^2(z+1)} dz = 2\pi i \cdot (\text{ctg } 1 - \text{ctg}^2 1 - 1) + \pi i \left(\frac{1}{2} + \text{ctg } 2\right) \cdot$$

Задачи для самостоятельного решения

Вычислить интегралы с помощью вычетов (обход контура всюду против часовой стрелки):

1.
$$\int_{|z|=2} \frac{dz}{z(z-1)^2(z-3)}$$
, 2. $\int_{|z|=1} \frac{dz}{z^2(z-2i)^2}$, 3. $\int_{|z-\frac{1}{2}|=1} \frac{e^{z^2}dz}{z^2-1}$, 4. $\int_{|z|=4} \frac{e^zdz}{(z-\pi i)^n}$, $n > 0$ —целое,

5.
$$\int_{|z|=1}^{\infty} \frac{\cos z dz}{z^n}, n > 0 - \text{ целое}, \quad 6. \int_{|z|=3}^{\infty} \frac{z dz}{(2-z)^2 (z^2+16)}, \quad 7. \int_{|z-1|=\frac{3}{2}}^{\infty} \frac{z^4 e^{\pi z} dz}{z^2+1}, \quad 8. \int_{|z-2|=2}^{\infty} \frac{\sin^2 z dz}{\left(z-\frac{\pi}{3}\right)^3},$$

9.
$$\int_{|z-2\pi i|=1} \frac{z^2 dz}{e^z - 1}, \quad \textbf{10.} \int_{|z|=1} e^z \cos \frac{1}{z} dz, \quad \textbf{11.} \int_{|z|=2} \frac{z e^{\frac{1}{z}} dz}{1 - z}, \quad \textbf{12.} \int_{|z|=8} \frac{dz}{\sin z}.$$

Ответы

$$\mathbf{1} - \frac{\pi i}{6}, \quad \mathbf{2}. - \frac{\pi}{2}, \quad \mathbf{3}. \quad \pi e i, \quad \mathbf{4}. - \frac{2\pi i}{(n-1)!}, \quad \mathbf{5}. \begin{cases} 0, n = 2k \\ 2\pi i \cdot \frac{(-1)^k}{(2k)!}, n = 2k+1 \end{cases}, \quad \mathbf{6}. \quad \frac{3\pi i}{50}, \quad \mathbf{7}. \quad 0,$$

8.
$$-2\pi i$$
, **9**. $-8\pi^3 i$, **10**. $2\pi i \sum_{n=1}^{\infty} \frac{(-1)^n}{n!(n+1)!}$, **11**. $-2\pi i$, **12**. $2\pi i$.

3.3. Вычисление интегралов от тригонометрических функций

Интегралы вида $I = \int\limits_0^{2\pi} R(\sin\varphi,\cos\varphi)d\varphi$, где R- рациональная функция относительно $\sin\varphi$ и $\cos\varphi$, непрерывная на отрезке $[0,2\pi]$, сводятся к интегралам по единичной окружности от функции комплексного переменного.

Пусть
$$z = e^{i\varphi}$$
, тогда $\sin \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2i} = \frac{z - \frac{1}{z}}{2i} = \frac{z^2 - 1}{2iz}$, $\cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2} = \frac{z + \frac{1}{z}}{2} = \frac{z^2 + 1}{2z}$, $dz = e^{i\varphi} i d\varphi$ или $d\varphi = \frac{dz}{ie^{i\varphi}} = \frac{dz}{iz}$.

Поскольку при $0 \le \varphi \le 2\pi$ $|z| = \left| e^{i\varphi} \right| = 1$, это означает, что переменная z изменяется по окружности |z| = 1. Поэтому определенный интеграл на отрезке

 $[0,2\pi]$ с помощью замены $z=e^{i\phi}$ приводится к интегралу, вычисляемому в комплексной плоскости по единичной окружности с центром в начале координат:

$$I = \int_{0}^{2\pi} R(\sin\varphi, \cos\varphi) d\varphi = \int_{|z|=1}^{2\pi} R\left(\frac{z^{2}+1}{2z}, \frac{z^{2}-1}{2iz}\right) \frac{dz}{iz} = \int_{|z|=1}^{2\pi} \widetilde{R}(z) dz,$$

здесь \tilde{R} - рациональная функция от z. Вычисляем полученный интеграл, применяя основную теорему теории вычетов: $I=\int\limits_{|z|=1}^{\infty} \tilde{R}(z)dz=2\pi i\cdot\sum_{k=1}^{n}\mathrm{res}\tilde{R}(z_{k})$, где $z_{1},z_{2},...,z_{n}$ -полюса функции $\tilde{R}(z)$, лежащие в круге |z|<1.

Пример 1: Вычислить интеграл $I = \int_0^{2\pi} \frac{d\varphi}{a + \cos\varphi} \ (a > 1)$.

Решение: Введем замену $z = e^{i\varphi}$ и подставляем в интеграл $\cos\varphi = \frac{z^2 + 1}{2z}$, $d\varphi = \frac{dz}{iz}$:

$$I = \int_{0}^{2\pi} \frac{d\varphi}{a + \cos\varphi} = \int_{|z|=1}^{2\pi} \frac{dz}{iz\left(a + \frac{z^{2} + 1}{2z}\right)} = \frac{2}{i} \int_{|z|=1}^{2\pi} \frac{dz}{z^{2} + 2az + 1}$$
 (*)

Особые точки подынтегральной функции $\widetilde{R}(z) = \frac{1}{z^2 + 2az + 1}$ являются корнями уравнения $z^2 + 2az + 1 = 0$. Находим $z_1 = -\left(a - \sqrt{a^2 - 1}\right)$, $z_2 = -\left(a + \sqrt{a^2 - 1}\right)$ - полюса первого порядка. Можно показать, что $|z_1| = a - \sqrt{a^2 - 1} \neq 1$ и $|z_2| = a + \sqrt{a^2 - 1} \neq 1$ при a > 1, при этом их произведение $|z_1| \cdot |z_2| = \left(a - \sqrt{a^2 - 1}\right) \cdot \left(a + \sqrt{a^2 - 1}\right) = a^2 - \left(a^2 - 1\right) = 1$. Это возможно при $|z_1| < 1$, а $|z_2| > 1$, т.е. внутрь круга |z| < 1 попадает только точка z_1 . Вычет в ней найдем по

формуле (14)
$$\operatorname{res} \widetilde{R}(z_1) = \frac{1}{\left(z^2 + 2az + 1\right)'}\bigg|_{z=z_1} = \frac{1}{2(z+a)}\bigg|_{z=-a+\sqrt{a^2-1}} = \frac{1}{2\sqrt{a^2-1}}$$
 и вычислим

интеграл (*):
$$I = \int\limits_0^{2\pi} \frac{d\varphi}{a + \cos\varphi} = \frac{2}{i} \int\limits_{|z|=1} \frac{dz}{z^2 + 2az + 1} = \frac{2}{i} \cdot 2\pi i \cdot \operatorname{res} \widetilde{R}(z_1) = 4\pi \cdot \frac{1}{2\sqrt{a^2 - 1}} = \frac{2\pi}{\sqrt{a^2 - 1}}$$
.

<u>Замечание</u>:

Нужно помнить, что при вычислении интегралов от функции действительного переменного значением интеграла всегда будет действительное число, что является проверкой правильности вычислений по основной теореме теории вычетов.

Пример 2: Вычислить интеграл
$$I = \int_{0}^{2\pi} \frac{d\varphi}{(5 + 4\cos\varphi)^2}$$
.

Peшeнue: Сделав замену $z = e^{i\varphi}$, получаем

$$I = \int_{0}^{2\pi} \frac{d\varphi}{(5 + 4\cos\varphi)^{2}} = \begin{vmatrix} \cos\varphi = \frac{z^{2} + 1}{2z} \\ d\varphi = \frac{dz}{iz} \end{vmatrix} = \frac{1}{i} \int_{|z| = 1} \frac{dz}{z \left(5 + 4\frac{z^{2} + 1}{2z}\right)^{2}} = \frac{1}{i} \int_{|z| = 1} \frac{zdz}{\left(2z^{2} + 5z + 2\right)^{2}}.$$
 (*)

Особые точки подынтегральной функции $\widetilde{R}(z) = \frac{z}{\left(2z^2 + 5z + 2\right)^2}$ z = -2 и $z = -\frac{1}{2}$ -

полюса второго порядка. Внутрь круга |z| < 1 попадает только точка $z = -\frac{1}{2}$, вычет в которой находим по формуле (12):

$$\operatorname{res}\widetilde{R}\left(-\frac{1}{2}\right) = \lim_{z \to -\frac{1}{2}} \left(\frac{z\left(z + \frac{1}{2}\right)^{2}}{4(z+2)^{2}\left(z + \frac{1}{2}\right)^{2}} \right) = \frac{1}{4} \lim_{z \to -\frac{1}{2}} \left(\frac{z}{(z+2)^{2}} \right)' = \frac{1}{4} \lim_{z \to -\frac{1}{2}} \frac{2-z}{(z+2)^{3}} = \frac{1}{4} \cdot \frac{20}{27} = \frac{5}{27}.$$

Интеграл (*) вычисляем с помощью вычетов:

$$I = \frac{1}{i} \int_{|z|=1} \frac{zdz}{\left(2z^2 + 5z + 2\right)^2} = \frac{1}{i} \cdot 2\pi i \cdot \operatorname{res} \widetilde{R}\left(-\frac{1}{2}\right) = \frac{10\pi}{27}.$$

Пример 3: Вычислить интеграл $I = \int_{0}^{\pi} \frac{\cos^4 \varphi \, d\varphi}{1 + \sin^2 \varphi}$.

Pешение: Применяя формулы понижения степени $\cos^2 \varphi = \frac{1 + \cos 2\varphi}{2}$, $\sin^2 \varphi = \frac{1 - \cos 2\varphi}{2}$, перепишем исходный интеграл в виде:

$$I = \int_{0}^{\pi} \frac{\cos^{4} \varphi \, d\varphi}{1 + \sin^{2} \varphi} = \int_{0}^{\pi} \frac{\left(\frac{1 + \cos 2\varphi}{2}\right)^{2} \, d\varphi}{1 + \frac{1 - \cos 2\varphi}{2}} = \frac{1}{2} \int_{0}^{\pi} \frac{(1 + \cos 2\varphi)^{2} \, d\varphi}{3 - \cos 2\varphi} = \begin{vmatrix} 3 \operatorname{ameha} \\ 2\varphi = t \end{vmatrix} = \frac{1}{4} \int_{0}^{2\pi} \frac{(1 + \cos t)^{2} \, dt}{3 - \cos t} \begin{vmatrix} 3 \operatorname{ameha} \\ e^{it} = z \end{vmatrix} = .$$

$$= \frac{1}{4} \int_{|z|=1}^{1} \frac{\left(1 + \frac{z^2 + 1}{2z}\right)^2}{\left(3 - \frac{z^2 + 1}{2z}\right)^2} \frac{dz}{iz} = -\frac{1}{8i} \int_{|z|=1}^{1} \frac{(z+1)^4 dz}{z^2 (z^2 - 6z + 1)} = -\frac{2\pi i}{8i} \left(\operatorname{res} \widetilde{R}(0) + \operatorname{res} \widetilde{R}(3 - 2\sqrt{2})\right). \quad (*)$$

Подынтегральная функция $\tilde{R}(z) = \frac{(z+1)^4}{z^2(z^2-6z+1)}$ имеет особые точки $z=0,\ z=3-2\sqrt{2},\ z=3+2\sqrt{2}$, и только две из них: полюс второго порядка z=0 и полюс первого порядка $z=3-2\sqrt{2}$ лежат внутри единичной окружности. Найдем вычеты в них по формуле (12):

$$\operatorname{res}\widetilde{R}(0) = \lim_{z \to 0} \left(\frac{(z+1)^4}{(z^2 - 6z + 1)} \right)' = \lim_{z \to 0} \frac{4(z+1)^3 (z^2 - 6z + 1) - (z+1)^4 (2z - 6)}{(z^2 - 6z + 1)^2} = 10.$$
По формуле (13):

$$\operatorname{res}\widetilde{R}(3-2\sqrt{2}) = \lim_{z \to 3-2\sqrt{2}} \frac{(z+1)^4 \cdot (z-(3-2\sqrt{2}))}{z^2 (z-(3+2\sqrt{2}))(z-(3-2\sqrt{2}))} = \frac{(4-2\sqrt{2})^4}{(3-2\sqrt{2})^2 (-4\sqrt{2})} = \frac{(16-8\sqrt{2}+8)^2}{(3-2\sqrt{2})^2 (-4\sqrt{2})} = \frac{(24-8\sqrt{2})^2}{(3-2\sqrt{2})^2 (-4\sqrt{2})} = \frac{8^2 (3-\sqrt{2})^2}{(3-2\sqrt{2})^2 (-4\sqrt{2})} = \frac{64}{-4\sqrt{2}} = -\frac{16}{\sqrt{2}} = -8\sqrt{2}$$

Подставляем найденные значения в выражение (*) и получаем ответ

$$I = -\frac{2\pi i}{8i} \left(\text{res } f(0) + \text{res } f(3 - 2\sqrt{2}) \right) = -\frac{2\pi i}{8i} \left(10 - 8\sqrt{2} \right) = 2\pi \left(\sqrt{2} - \frac{5}{4} \right).$$

Пример 4: Вычислить интеграл $I = \int_{-\pi}^{\pi} \frac{\cos n\varphi \, d\varphi}{1 - 2a\cos\varphi + a^2} \, \left(-1 < a < 1, n > 0, n \in \mathbb{R}\right).$

Решение: Рассмотрим вспомогательный интеграл $I_1 = \int_{-\pi}^{\pi} \frac{\sin n\varphi \ d\varphi}{1 - 2a\cos\varphi + a^2} = 0$.

Интеграл равен нулю, т.к. подынтегральная функция нечетная, а промежуток интегрирования симметричный. Тогда исходный интеграл можно представить в виде:

$$\begin{split} I &= I + iI_1 = \int_{-\pi}^{\pi} \frac{\cos n\varphi \, d\varphi}{1 - 2a \cos \varphi + a^2} + i \int_{-\pi}^{\pi} \frac{\sin n\varphi \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{(\cos n\varphi + i \sin n\varphi) \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int_{-\pi}^{\pi} \frac{e^{in\varphi} \, d\varphi}{1 - 2a \cos \varphi + a^2} = \int$$

Очевидно, что при изменении φ от $-\pi$ до π переменная z пробегает окружность |z|=1 в положительном направлении.

Подынтегральная функция $\widetilde{R}(z) = \frac{z^n}{a(z-a)\left(z-\frac{1}{a}\right)}$ имеет две особые точки

z = a, $z = \frac{1}{a}$ полюса первого порядка, причем внутри единичной окружности находится точка z=a. Вычет в ней найдем по формуле (13):

$$\operatorname{res} \widetilde{R}(a) = \lim_{z \to a} \frac{z^n(z-a)}{a(z-a) \left(z - \frac{1}{a}\right)} = \frac{a^n}{a \left(a - \frac{1}{a}\right)} = \frac{a^n}{a^2 - 1} \quad \text{и} \quad \text{подставляем} \quad \text{в} \quad \text{интеграл}$$

$$I = -\frac{1}{i} \int_{|z|=1} \frac{z^n dz}{a(z-a) \left(z - \frac{1}{a}\right)} = -\frac{2\pi i}{i} \operatorname{res} \widetilde{R}(a) = \frac{2\pi a^n}{1 - a^2} \,.$$

Пример 5: Вычислить интеграл $I = \int_{0}^{\pi} \operatorname{tg}(x+ia)dx$, где $a \neq 0$ - действительное число.

Решение: Стандартная замена $z = e^{ix}$ при изменении x от 0 до π приведет к контурному интегралу по половине дуги окружности |z| = 1. Рассмотрим интеграл на отрезке $[0,2\pi]$:

$$\int_{0}^{2\pi} \operatorname{tg}(x+ia)dx = \int_{0}^{\pi} \operatorname{tg}(x+ia)dx + \int_{\pi}^{2\pi} \operatorname{tg}(x+ia)dx \Big|_{x=t+\pi}^{3\operatorname{ameha}} = \int_{0}^{\pi} \operatorname{tg}(x+ia)dx + \int_{0}^{\pi} \operatorname{tg}(t+\pi+ia)dt =$$

$$= \int_{0}^{\pi} \operatorname{tg}(x+ia)dx + \int_{0}^{\pi} \operatorname{tg}(t+ia)dt = 2 \int_{0}^{\pi} \operatorname{tg}(x+ia)dx$$
Следовательно $I = \int_{0}^{\pi} \operatorname{tg}(x+ia)dx = \frac{1}{2} \int_{0}^{2\pi} \operatorname{tg}(x+ia)dx = \frac{1}{2} \int_{0}^{2\pi} \frac{\sin(x+ia)}{\cos(x+ia)}dx$ (*)

Тригонометрические функции представим в виде:

$$\sin(x+ia) = \frac{e^{i(x+ia)} - e^{-i(x+ia)}}{2i} = \frac{e^{ix}e^{-a} - e^{-ix}e^{a}}{2i} = \frac{e^{2ix} - e^{2a}}{2ie^{ix}e^{a}},$$

$$\cos(x+ia) = \frac{e^{i(x+ia)} + e^{-i(x+ia)}}{2} = \frac{e^{ix}e^{-a} + e^{-ix}e^{a}}{2} = \frac{e^{2ix} + e^{2a}}{2e^{ix}e^{a}}.$$

Подставляя выражения для тригонометрических функций в (*) и делая замену $z = e^{ix}$, сведем интеграл на отрезке $[0,2\pi]$ к контурному интегралу по окружности |z|=1:

$$I = \frac{1}{2} \int_{0}^{2\pi} \frac{\sin(x+ia)}{\cos(x+ia)} dx = \frac{1}{2i} \int_{|z|=1}^{2\pi} \frac{e^{2ix} - e^{2a}}{e^{2ix} + e^{2a}} |z| = e^{ix} = \frac{1}{2i} \int_{|z|=1}^{2\pi} \frac{z^2 - e^{2a}}{z^2 + e^{2a}} \frac{dz}{iz} = -\frac{1}{2i} \int_{|z|=1}^{2\pi} \frac{(z^2 - e^{2a})dz}{z(z - ie^a)(z + ie^a)}$$

Особыми точками подынтегральной функции являются точки $z_1=0$, $z_2=ie^a$, $z_3=-ie^a$ - полюса первого порядка. Точки $z_{2,3}=\pm ie^a$ лежат внутри единичного круга, если $|z_{2,3}|=|\pm ie^a|=e^a<1$, т.е. при a<0. Если же a>0, то $|z_{2,3}|>1$ и внутри круга лежит одна точка $z_1=0$. Вычеты в полюсах первого порядка находим по формуле (13):

$$\operatorname{res} \widetilde{R}(0) = \lim_{z \to 0} \frac{\left(z^{2} - e^{2a}\right)t}{\left(z^{2} + e^{2a}\right)t} = \frac{-e^{2a}}{e^{2a}} = -1,$$

$$\operatorname{res} \widetilde{R}(ie^{a}) = \lim_{z \to ie^{a}} \frac{\left(z^{2} - e^{2a}\right)\left(z - ie^{a}\right)}{z\left(z - ie^{a}\right)\left(z + ie^{a}\right)} = \lim_{z \to ie^{a}} \frac{z^{2} - e^{2a}}{z\left(z + ie^{a}\right)} = \frac{-e^{2a} - e^{2a}}{ie^{a} \cdot 2ie^{a}} = \frac{-2e^{2a}}{-2e^{2a}} = 1,$$

$$\operatorname{res} \widetilde{R}(-ie^{a}) = \lim_{z \to -ie^{a}} \frac{\left(z^{2} - e^{2a}\right)\left(z + ie^{a}\right)}{z\left(z - ie^{a}\right)\left(z + ie^{a}\right)} = \lim_{z \to -ie^{a}} \frac{z^{2} - e^{2a}}{z\left(z - ie^{a}\right)} = \frac{-e^{2a} - e^{2a}}{-ie^{a} \cdot (-2ie^{a})} = \frac{-2e^{2a}}{-2e^{2a}} = 1.$$

В зависимости от знака а найдем значение интеграла:

1. При
$$a < 0$$
 $I = -\frac{1}{2} 2\pi i \left(\operatorname{res} \widetilde{R}(0) + \operatorname{res} \widetilde{R}(ie^a) + \operatorname{res} \widetilde{R}(ie^a) \right) = -\pi i (-1 + 1 + 1) = -\pi i$.

2. При a>0 $I=-\frac{1}{2}2\pi i\cdot \mathrm{res}\ \widetilde{R}(0)=-\pi i(-1)=\pi i$.

Окончательный ответ $I = \pi i \cdot \operatorname{sgn} a \quad (a \neq 0)$.

Пример 6: Вычислить интеграл $I = \int_{0}^{2\pi} \frac{d\varphi}{1 - 2a\cos\varphi + a^2}$ $(a - \text{к.ч.}, \ a \neq \pm 1).$

Решение:

$$I = \int_{0}^{2\pi} \frac{d\varphi}{1 - 2a\cos\varphi + a^2} \left| \frac{3}{z} \right|^{2} = e^{i\varphi} = \int_{|z|=1}^{2\pi} \frac{1}{1 - 2a\frac{z^2 + 1}{2z} + a^2} \frac{dz}{iz} = \frac{1}{i} \int_{|z|=1}^{2\pi} \frac{dz}{(1 + a^2)z - a(z^2 + 1)} = -\frac{1}{i} \int_{|z|=1}^{2\pi} \frac{dz}{az^2 - (1 + a^2)z + a}$$

Особыми точками функции $\widetilde{R}(z) = \frac{1}{az^2 - (1+a^2)z + a}$ являются z = a, $z = \frac{1}{a}$ - полюса первого порядка.

1. Если |a| < 1, то точка z = a лежит внутри единичного круга, вычет в ней вычисляем по формуле (14):

res
$$\widetilde{R}(a) = \frac{1}{\left(az^2 - (1+a^2)z + 1\right)'}\bigg|_{z=a} = \frac{1}{2az - (1+a^2)}\bigg|_{z=a} = \frac{1}{a^2 - 1}.$$

Тогда $I = 2\pi i \cdot \operatorname{res} \widetilde{R}(a) = \frac{2\pi i}{a^2 - 1}, |a| < 1.$

2. Если |a| > 1, то точка $z = \frac{1}{a}$ лежит внутри единичного круга и вычет в ней

равен: res
$$\widetilde{R}\left(\frac{1}{a}\right) = \frac{1}{\left(az^2 - (1+a^2)z + 1\right)'}\bigg|_{z=\frac{1}{a}} = \frac{1}{2az - (1+a^2)}\bigg|_{z=\frac{1}{a}} = \frac{1}{1-a^2}$$
. Находим значение

интеграла в этом случае $I=2\pi i\cdot \mathrm{res}\ \widetilde{R}\left(\frac{1}{a}\right)=\frac{2\pi i}{1-a^2},\ |a|>1$.

3. Если |a|=1, $(a \ne \pm 1)$, то точки z=a и $z=\frac{1}{a}$ лежат на контуре интегрирования |z|=1. В этом случае получаем несобственный интеграл, который вычисляется в смысле главного значения по формуле (25):

v.p.
$$I = \pi i \cdot \left(\operatorname{res} \widetilde{R}(a) + \operatorname{res} \widetilde{R}\left(\frac{1}{a}\right) \right) = \frac{\pi i}{a^2 - 1} + \frac{\pi i}{1 - a^2} = 0$$
.

Ответ: $I = \frac{2\pi i}{a^2 - 1}$, если|a| < 1, $\frac{2\pi i}{1 - a^2}$, если|a| > 1, 0, если|a| = 1 (главное значение).

Задачи для самостоятельного решения

1.
$$\int_{0}^{2\pi} \frac{dx}{1 + \frac{3}{5}\cos x}$$
 2.
$$\int_{0}^{2\pi} \frac{dx}{\left(1 + \frac{3}{5}\cos x\right)^{2}}$$
 3.
$$\int_{0}^{2\pi} \frac{dx}{\frac{1}{2} + \sin x}$$
 4.
$$\int_{0}^{2\pi} \frac{2 + \cos x}{2 - \sin x} dx$$
 5.
$$\int_{0}^{2\pi} \frac{\sin x + \cos x}{3 + 2\cos x} dx$$

6.
$$\int_{0}^{\pi} \frac{dx}{a^{2} + \sin^{2} x} (a \neq \pm i) \quad \textbf{7.} \int_{0}^{2\pi} \frac{dx}{1 - 2p \cos x + p^{2}} (0$$

8.
$$\int_{0}^{2\pi} \frac{\cos^{2} 3\varphi d\varphi}{1 - 2a \cos\varphi + a^{2}} (a - \kappa. \forall ..., a \neq \pm 1), 9. I = \int_{0}^{2\pi} \operatorname{ctg}(x + a) dx, a - \kappa. \forall ..., \operatorname{Im} a \neq 0.$$

Ответы

1.
$$\frac{5\pi}{2}$$
, 2. $\frac{125\pi}{32}$, 3. $\frac{4\pi}{\sqrt{3}}$, 4. $\frac{4\pi}{\sqrt{3}}$, 5. $2\frac{3\sqrt{5}-7}{3\sqrt{5}-5}$, 6. $\frac{\pi}{\sqrt{1+a^2}}$, 7. $\frac{2\pi}{1-p^2}$,

8.
$$\frac{\pi(a^6+1)}{1-a^2}$$
, если $|a|<1$, $\frac{\pi(a^6+1)}{a^6(a^2-1)}$, если $|a|<1$, $\frac{\pi(1-a^{12})}{2a^6(a^2-1)}$, если $|a|=1$, $a\neq\pm 1$ (главное значение), $a=1$, $a\neq\pm 1$ (главное значение), $a=1$, $a=1$,

3.4. Вычисление несобственных интегралов с помощью вычетов

3.4.1. Несобственные интегралы первого рода вида $\int\limits_{-\infty}^{\infty} f(x)dx$

Указанный интеграл понимается как предел интеграла Римана $\int\limits_{-\infty}^{\infty} f(x) dx = \lim_{\substack{R_2 \to +\infty \\ R_1 \to -\infty}} \int\limits_{R_1}^{R_2} f(x) dx$ и вычисляется в смысле главного значения.

Определение:

<u>Опревенение.</u>

Плавным значением несобственного интеграла первого рода вида $\int_{-\infty}^{\infty} f(x) dx \text{ называется значение предела } \lim_{R \to \infty} \int_{-R}^{R} f(x) dx, \text{ если он существует, т.е.}$ $\text{v.p.} \int_{-\infty}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) dx.$

При вычислении несобственных интегралов с помощью вычетов будем пользоваться следующей леммой и теоремой:

Лемма 1:

Пусть функция f(z) является аналитической в верхней полуплоскости Imz > 0 всюду за исключением конечного числа изолированных особых точек, и

существуют $R_0>0$, M>0 и $\delta>0$ такие, что для всех точек верхней полуплоскости, удовлетворяющих условию $|z|>R_0$, имеет место оценка $|f(z)|<\frac{M}{|z|^{1+\delta}}$. Тогда $\lim_{R\to\infty}\int\limits_{C_R'}f(\xi)d\xi=0$, где контур интегрирования C_R' представляет собой полуокружность |z|=R, $\mathrm{Im}\,z>0$ в верхней полуплоскости.

<u>Теорема</u> 1.

Пусть функция действительного переменного f(x), заданная на всей оси $-\infty < x < +\infty$, может быть аналитически продолжена на верхнюю полуплоскость $\mathrm{Im}z \ge 0$, причем ее аналитическое продолжение, функция f(z) удовлетворяет условиям леммы 1 и не имеет особых точек на действительной оси. Тогда главное значение несобственного интеграла первого рода $\int_0^\infty f(x) dx$ существует и может быть вычислено по формуле:

$$v.p. \int_{-\infty}^{\infty} f(x)dx = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{res}_{(\operatorname{Im} z_{k} > 0)} f(z_{k}),$$
(26)

где $z_1, z_2, ..., z_n$ - изолированные особые точки функции f(z), лежащие в верхней полуплоскости.

Доказательство:

По условиям леммы и теоремы функция f(z) в верхней полуплоскости имеет конечное число особых точек $z_1, z_2, ..., z_n$, причем все они удовлетворяют условию $|z| < R_0$ (R_0 - достаточно большое число).

Рассмотрим замкнутый контур, состоящей из отрезка действительной оси $-R \le x \le R$ ($R > R_0$) и полуокружности C_R' |z| = R в верхней полуплоскости (рис.5).

В силу основной теоремы теории вычетов:

$$\int_{-R}^{R} f(x)dx + \int_{C_R'} f(z)dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{res} f(z_k).$$

B последнем равенстве перейдем к пределу при $R \to \infty$. $\lim_{R \to \infty} \int_{-R}^{R} f(x) dx + \lim_{R \to \infty} \int_{C_R'} f(z) dz = \lim_{R \to \infty} \left(2\pi i \cdot \sum_{k=1}^{n} \operatorname{res}_{(\operatorname{Im} z_k > 0)} f(z_k) \right).$

В силу леммы 1 $\lim_{R\to\infty}\int_{C_R'}f(z)dz=0$, а правая часть при $R>R_0$ не зависит от R. Следовательно, существует предел первого слагаемого в левой части, т.е. главное значение интеграла: $\lim_{R\to\infty}\int_{-R}^R f(x)dx=\mathrm{v.p.}\int_{-\infty}^\infty f(x)dx=2\pi i\cdot\sum_{k=1}^n\mathrm{res}f(z_k)$, что и требовалось доказать.

Замечания:

- 1. Теорема 1 позволяет вычислять несобственный интеграл по половине действительной оси $\int\limits_0^\infty f(x)dx = \frac{1}{2}\int\limits_{-\infty}^\infty f(x)dx$ для четной функции f(x).
- 2. При наличии особых точек у функции f(x) на действительной оси рассматриваемый интеграл $\int_{-\infty}^{\infty} f(x)dx$ является несобственным интегралом первого и второго рода одновременно. При этом под главным значением по Коши несобственного интеграла второго рода $\int_{a}^{b} f(x)dx$ с особой точкой x=c (a < c < b), в которой $f(x) = \infty$, понимается значение предела $v.p.\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \left(\int_{a}^{c-\varepsilon} f(x)dx + \int_{c+\varepsilon}^{b} f(x)dx\right)$.

Продемонстрируем способ вычисления несобственного интеграла первого и второго рода ${\rm v.p.}\int\limits_{-\infty}^{\infty}f(x)dx$, имеющего особые точки на действительной оси $x_1,\,x_2,...,\,x_m$.

Аналитически продолжим подынтегральную функцию f(x) на верхнюю полуплоскость $Im_Z > 0$ и выберем контур интегрирования, замкнув разрывы около точек $x_1, x_2, ..., x_m$ полуокружностями радиуса ε (рис.6). Будем полагать, что особые точки функции f(z), лежащие на действительной оси являются простыми полюсами.

Интеграл по данному контуру будет определяться вычетами относительно особых точек f(z) в верхней полуплоскости в пределе при $R \to \infty$. Однако для получения точного значения несобственного интеграла $\operatorname{v.p.} \int_{-\infty}^{\infty} f(x) dx$ надо отнять значения интеграла по маленьким полуокружностям.

Найдем предельной значение интеграла по полуокружности радиуса ε с центром в простом полюсе x_j ($j=\overline{1,m}$), проходимой против хода часовой стрелки (рис.7).

$$\int_{C_{\varepsilon}'} f(z)dz = \begin{vmatrix} z - x_{j} = \varepsilon e^{i\varphi} \\ dz = i\varepsilon e^{i\varphi} d\varphi \\ 0 \le \varphi \le \pi \end{vmatrix} = i\varepsilon \int_{0}^{\pi} f(x_{j} + \varepsilon e^{i\varphi})d\varphi =$$
 (*)

Разложим f(z) в ряд Лорана в окрестности простого полюса $z=x_j$ $f(z)=\frac{C_{-1}}{z-x_j}+\sum_{n=0}^{\infty}C_n\left(z-x_j\right)^n$ и подставим в интеграл (*) $=i\varepsilon\int\limits_0^\pi\!\!\left(\frac{C_{-1}}{\varepsilon e^{i\varphi}}+\sum_{n=0}^\infty\!C_n\varepsilon^ne^{in\varphi}\right)\!\!e^{i\varphi}d\varphi=i\int\limits_0^\pi\!\!\left(C_{-1}+\sum_{n=0}^\infty\!C_n\varepsilon^{n+1}e^{i(n+1)\varphi}\right)\!\!d\varphi=\pi iC_{-1}+\sum_{n=0}^\infty\!C_n\varepsilon^{n+1}\int\limits_0^\pi e^{i(n+1)\varphi}d\varphi=$ $=\pi iC_{-1}+\sum_{n=0}^\infty\frac{C_n\varepsilon^{n+1}}{n+1}\left(e^{i(n+1)\pi}-1\right)$

В пределе при $\varepsilon \to 0$ получаем:

$$\lim_{\varepsilon \to 0} \int_{C'} f(z) dz = \pi i C_{-1} + \lim_{\varepsilon \to 0} \sum_{n=0}^{\infty} \frac{C_n \varepsilon^{n+1}}{n+1} \left(e^{i(n+1)\pi} - 1 \right) = \pi i C_{-1} = \pi i \cdot \operatorname{res} f(x_j).$$

Учитывая, что на действительной оси находятся m простых полюсов $x_1, x_2, ..., x_m$, получаем формулу вычисления главного значения несобственного интеграла первого и второго рода:

$$v.p. \int_{-\infty}^{\infty} f(x)dx = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{res} f(z_{k}) + \pi i \cdot \sum_{j=1}^{m} \operatorname{res} f(x_{j}).$$
(27)

Пример 1: Вычислить интеграл $\int_{-\infty}^{\infty} \frac{x dx}{(x^2 + 4x + 13)^2}$.

Решение: Рассмотрим аналитическое продолжение подынтегральной функции на верхнюю полуплоскость $f(z) = \frac{z}{\left(z^2 + 4z + 13\right)^2}$. Очевидно, что

 $|f(z)| = \frac{|z|}{|z^2 + 4z + 13|^2} \sim \frac{1}{|z|^3}$, поэтому для f(z) выполнены условия леммы 1 и

несобственный интеграл можно вычислять по формуле (26). Особые точки $z_{1,2} = -2 \pm 3i$ являются полюсами второго порядка, причем в верхней полуплоскости лежит точка $z_1 = -2 \pm 3i$. Найдем вычет в полюсе второго порядка по формуле (12):

$$\operatorname{res} f(-2+3i) = \lim_{z \to -2+3i} \left(\frac{z \cdot (z+2-3i)^2}{(z+2-3i)^2 (z+2+3i)^2} \right)' = \lim_{z \to -2+3i} \left(\frac{z}{(z+2+3i)^2} \right)' = \lim_{z \to -2+3i} \left(\frac{z}{(z+2+3i)^2} \right)' = \lim_{z \to -2+3i} \frac{(z+2+3i)^2 - 2z(z+2+3i)}{(z+2+3i)^4} = \lim_{z \to -2+3i} \frac{(z+2+3i) - 2z}{(z+2+3i)^3} = \frac{4}{(6i)^3} = -\frac{1}{54i}$$

Тогда по формуле (26) получаем:

v.p.
$$\int_{-\infty}^{\infty} \frac{x dx}{\left(x^2 + 4x + 13\right)^2} = 2\pi i \cdot \text{res} f(-2 + 3i) = -\frac{2\pi i}{54i} = -\frac{\pi}{27}$$
.

Пример 2: Вычислить интеграл $I = \int_{0}^{\infty} \frac{x^2 + 1}{x^4 + 1} dx$.

Решение: Так как подынтегральная функция $f(x) = \frac{x^2+1}{x^4+1}$ является четной, то $I = \frac{1}{2} \int_{-\infty}^{\infty} \frac{x^2+1}{x^4+1} dx$. Рассмотрим функцию $f(z) = \frac{z^2+1}{z^4+1}$. Она аналитическая всюду, за исключением точек $z_k = \sqrt[4]{-1} = e^{i\frac{\pi+2\pi k}{4}}$, k = 0,1,2,3 и удовлетворяет условиям леммы 1. В верхней полуплоскости находятся точки $z_1 = e^{i\frac{\pi}{4}} = \frac{1+i}{\sqrt{2}}$ и $z_2 = e^{i\frac{3\pi}{4}} = \frac{-1+i}{\sqrt{2}}$ - полюса первого порядка, вычеты в которых находим по формуле (14):

$$\operatorname{res} f\left(e^{i\frac{\pi}{4}}\right) = \frac{z^2 + 1}{\left(z^4 + 1\right)'}\Big|_{e^{i\frac{\pi}{4}}} = \frac{z^2 + 1}{4z^3}\Big|_{e^{i\frac{\pi}{4}}} = \frac{e^{i\frac{\pi}{2}} + 1}{4e^{i\frac{3\pi}{4}}} = \frac{(1+i)e^{-i\frac{3\pi}{4}}}{4} = \frac{(1+i)(-1-i)}{4\sqrt{2}} = \frac{-(1+i)^2}{4\sqrt{2}} = -\frac{i}{2\sqrt{2}},$$

$$\operatorname{res} f\left(e^{i\frac{3\pi}{4}}\right) = \frac{z^2 + 1}{4z^3}\Big|_{e^{i\frac{3\pi}{4}}} = \frac{e^{i\frac{3\pi}{2}} + 1}{4e^{i\frac{9\pi}{4}}} = \frac{1-i}{4e^{i\left(2\pi + \frac{\pi}{4}\right)}} = \frac{(1-i)e^{-i\frac{\pi}{4}}}{4} = \frac{(1-i)e^{-i\frac{\pi}{4}}}{4\sqrt{2}} = \frac{(1-i)^2}{4\sqrt{2}} = -\frac{i}{2\sqrt{2}}.$$

По формуле (26) находим значение интеграла:

$$I = \text{v.p.} \frac{1}{2} \int_{-\infty}^{\infty} \frac{x^2 + 1}{x^4 + 1} dx = \frac{1}{2} 2\pi i \left(\text{res } f\left(e^{i\frac{\pi}{4}}\right) + \text{res } f\left(e^{i\frac{3\pi}{4}}\right) \right) = \pi i \left(-\frac{2i}{2\sqrt{2}}\right) = \frac{\pi}{\sqrt{2}}.$$

Пример 3: Вычислить интеграл $I_n = \int_0^\infty \frac{dx}{(x^2 + a^2)^n}$, a > 0, n = 1, 2, ...

Peшение: Функция $f(x) = \frac{1}{\left(x^2 + a^2\right)^n}$ является четной, тогда $I_n = \frac{1}{2} \int_{-\infty}^{\infty} \frac{dx}{\left(x^2 + a^2\right)^n}$. Ее

аналитическое продолжение $f(z) = \frac{1}{(z^2 + a^2)^n}$ удовлетворяет условиям леммы 1

и имеет полюс n-го порядка z = ai в верхней полуплоскости.

При n=1 вычет в простом полюсе находим по формуле (14):

$$\operatorname{res} f(ai) = \frac{1}{(z^2 + a^2)'} \bigg|_{z=ai} = \frac{1}{2z} \bigg|_{z=ai} = \frac{1}{2ai}$$
 и интеграл равен

$$I_1 = \text{v.p.} \frac{1}{2} \int_{-\infty}^{\infty} \frac{dx}{x^2 + a^2} = \frac{1}{2} 2\pi i \cdot \text{res} f(ai) = \frac{\pi i}{2ai} = \frac{\pi}{2a}.$$

Пусть n>1. Для нахождения вычета в полюсе n-го порядка воспользуемся формулой (14):

$$\operatorname{res} f(ai) = \frac{1}{(n-1)!} \lim_{z \to ai} \left(\frac{(z-ai)^n}{(z-ai)^n (z+ai)^n} \right)^{(n-1)} = \frac{1}{(n-1)!} \lim_{z \to ai} \left(\frac{1}{(z+ai)^n} \right)^{(n-1)}$$
(*)

Выведем общую формулу для нахождения производной (n-1)-го порядка:

$$\left(\frac{1}{(z+ai)^n}\right)^{(n-1)} = \left((z+ai)^{-n}\right)' = -n(z+ai)^{-n-1},$$

$$\left((z+ai)^{-n}\right)'' = (-n)(-n-1)(z+ai)^{-n-2} = n(n+1)(z+ai)^{-n-2},$$

$$\left((z+ai)^{-n}\right)^{(3)} = n(n+1)(-n-2)(z+ai)^{-n-3} = (-1)^3 n(n+1)(n+2)(z+ai)^{-n-3}, \text{ M T.Д.}$$

$$\left((z+ai)^{-n}\right)^{(k)} = (-1)^k n(n+1)(n+2) \cdot \dots \cdot (n+k-1)(z+ai)^{-n-k}.$$

Подставляя в общее выражение для производной k=n-1, получаем: $((z+ai)^{-n})^{(n-1)} = (-1)^{n-1}n(n+1)(n+2) \cdot ... \cdot (2n-2)(z+ai)^{-2n+1}$ и подставляем в (*).

$$\operatorname{res} f(ai) = \frac{1}{(n-1)!} \lim_{z \to ai} \left(\frac{1}{(z+ai)^n} \right)^{(n-1)} = \frac{(-1)^{n-1} n(n+1)(n+2) \cdot \dots \cdot (2n-2)}{(n-1)!} \lim_{z \to ai} (z+ai)^{-2n+1} = \frac{(-1)^{n-1} (n-1)! n(n+1)(n+2) \cdot \dots \cdot (2n-2)}{((n-1)!)^2 (2ai)^{2n-1}} = \frac{(-1)^{n-1} (2n-2)!}{((n-1)!)^2 (2a)^{2n-1} i^{2n-1}} = \frac{-i \cdot (2n-2)!}{((n-1)!)^2 (2a)^{2n-1}}$$

Тогда
$$I_n = \text{v.p.} \frac{1}{2} \int_{-\infty}^{\infty} \frac{dx}{\left(x^2 + a^2\right)^n} = \frac{1}{2} 2\pi i \cdot \text{res} f\left(ai\right) = \frac{\pi \cdot (2n-2)!}{\left(\left(n-1\right)!\right)^2 (2a)^{2n-1}}, n > 1.$$

Пример 4: Вычислить интеграл $I = \int_{0}^{\infty} \frac{dx}{1+x^{n}}, \ n \ge 2$ — натуральное число.

Решение: При нечетных n $f(x) = \frac{1}{1+x^n}$ является функцией общего вида, поэтому рассматривать интеграл на всей числовой оси при $-\infty < x < \infty$ нельзя. Рассмотрим ее аналитическое продолжение на комплексную плоскость $f(z) = \frac{1}{1+z^n}$ и найдем ее особые точки $z_k = \sqrt[n]{-1} = e^{i\frac{\pi+2\pi k}{n}} = e^{i\frac{\pi(2k+1)}{n}}$, k = 0,1,2,...,(n-1) полюса первого порядка. Для упрощения вычислений вычислим вычет только в одной точке $z_1 = e^{i\frac{\pi}{n}}$

$$\operatorname{res} f\left(e^{i\frac{\pi}{n}}\right) = \frac{1}{\left(1 + z^{n}\right)'}\Big|_{e^{i\frac{\pi}{n}}} = \frac{1}{nz^{n-1}}\Big|_{e^{i\frac{\pi}{n}}} = \frac{1}{ne^{i\frac{(n-1)\pi}{n}}} = \frac{1}{ne^{i\frac{\pi}{n}}} = -\frac{1}{ne^{-i\frac{\pi}{n}}}$$
 и рассмотрим

вспомогательную область, ограниченную отрезком действительной оси $0 \le x \le R$, лучом $\varphi = \frac{2\pi}{n}$ и частью дуги окружности |z| = R, $0 \le \arg z \le \frac{2\pi}{n}$ (рис.8).

Очевидно, что точка $z_1 = e^{i\frac{\pi}{n}}$ находится внутри выбранной области, тогда по основной теореме теории вычетов получаем:

$$\oint_C \frac{dz}{1+z^n} = \int_0^R \frac{dx}{1+x^n} + \int_{C_R} \frac{dz}{1+z^n} + \int_{\varphi = \frac{2\pi}{n}} \frac{dz}{1+z^n} = 2\pi i \operatorname{res} f\left(e^{i\frac{\pi}{n}}\right) = -\frac{2\pi i}{ne^{-i\frac{\pi}{n}}}. \quad (*)$$

Вычислим интеграл по лучу $\varphi = \frac{2\pi}{n}$:

$$\int_{\varphi = \frac{2\pi}{n}} \frac{dz}{1+z^n} = \begin{vmatrix} z = \rho e^{i\frac{2\pi}{n}} \\ dz = e^{i\frac{2\pi}{n}} d\rho \end{vmatrix} = \int_{R}^{0} \frac{e^{i\frac{2\pi}{n}} d\rho}{1+\rho^n e^{i2\pi}} = -e^{i\frac{2\pi}{n}} \int_{0}^{R} \frac{d\rho}{1+\rho^n} = -e^{i\frac{2\pi}{n}} \int_{0}^{R} \frac{dx}{1+x^n}.$$

Так как интеграл Римана не зависит от обозначения переменной интегрирования. Тогда формулу (*) можно переписать в виде

$$\left(1 - -e^{i\frac{2\pi}{n}}\right) \cdot \int_{0}^{R} \frac{dx}{1 + x^{n}} + \int_{C_{R}} \frac{dz}{1 + z^{n}} = -\frac{2\pi i}{ne^{-i\frac{\pi}{n}}}.$$

Перейдем в ней к пределу при $R \to \infty$:

$$\left(1 - e^{i\frac{2\pi}{n}}\right) \cdot \lim_{R \to \infty} \int_{0}^{R} \frac{dx}{1 + x^{n}} + \lim_{R \to \infty} \int_{C_{R}} \frac{dz}{1 + z^{n}} = -\frac{2\pi i}{ne^{-i\frac{\pi}{n}}}.(**).$$

Слагаемое справа в (**) не зависит от R. Очевидно, что $\lim_{R\to\infty}\int\limits_0^R \frac{dx}{1+x^n} = \int\limits_0^\infty \frac{dx}{1+x^n}$. Оценим интеграл по дуге окружности:

$$\left| \int_{C_R} \frac{dz}{1+z^n} \right| = \left| z = Re^{i\varphi} \right|_{dz = i \operatorname{Re}^{i\varphi} d\varphi} = \left| \int_0^{2\pi} \frac{i \operatorname{Re}^{i\varphi} d\varphi}{1+R^n e^{in\varphi}} \right| \le \int_0^{2\pi} \left| \frac{i \operatorname{Re}^{i\varphi}}{1+R^n e^{in\varphi}} \right| d\varphi < \int_0^{2\pi} \frac{R \left| e^{i\varphi} \right|}{R^n \left| e^{in\varphi} \right|} d\varphi = \frac{1}{R^{n-1}} \int_0^{2\pi} d\varphi = \frac{2\pi}{nR^{n-1}}.$$

Так как $\lim_{R \to \infty} \frac{2\pi}{nR^{n-1}} = 0$ при $n \ge 2$, то $\left| \int_{C_p} \frac{dz}{1+z^n} \right| \to 0$ при $R \to \infty$, а значит $\lim_{R \to \infty} \int_{C_p} \frac{dz}{1+z^n} = 0$.

Поэтому переходя к пределу при $R \to \infty$ в выражении (**), получаем:

$$\left(1 - e^{i\frac{2\pi}{n}}\right) \cdot \int_{0}^{\infty} \frac{dx}{1 + x^{n}} = -\frac{2\pi i}{ne^{-i\frac{\pi}{n}}} \text{ или}$$

$$I = \int_{0}^{\infty} \frac{dx}{1 + x^{n}} = -\frac{2\pi i}{ne^{-i\frac{\pi}{n}}\left(1 - e^{i\frac{2\pi}{n}}\right)} = -\frac{\pi}{n} \cdot \frac{1}{e^{-i\frac{\pi}{n}} - e^{i\frac{\pi}{n}}} = \frac{\pi}{n} \cdot \frac{1}{e^{i\frac{\pi}{n}} - e^{-i\frac{\pi}{n}}} = \frac{\pi}{n\sin\frac{\pi}{n}}.$$

Пример 5: Вычислить интеграл $I = \int_{-\infty}^{\infty} \frac{x dx}{(x+1)(x^2+4)}$.

Решение: Функция $f(z) = \frac{z}{(z+1)(z^2+4)}$ аналитическая всюду, за исключением точек $z=\pm 2i$ и z=-1, она удовлетворяет условиям леммы 1. В верхней полуплоскости функция имеет простой полюс z=2i и полюс первого порядка z=-1 на действительной оси. Поэтому для вычисления интеграла применяем формулу (27). Вычеты в простых полюсах считаем по формуле (13):

$$\begin{split} \operatorname{res} f \left(2i \right) &= \lim_{z \to 2i} \frac{z(z-2i)}{(z+1)(z-2i)(z+2i)} = \lim_{z \to 2i} \frac{z}{(z+1)(z+2i)} = \frac{2i}{4i(1+2i)} = \frac{1-2i}{10} \,, \\ \operatorname{res} f \left(-1 \right) &= \lim_{z \to -1} \frac{z(z+1)}{(z+1)(z^2+4)} = \lim_{z \to -1} \frac{z}{z^2+4} = \frac{-1}{5} \,, \\ \operatorname{Tогдa} \ \operatorname{v.p.} I &= 2\pi i \cdot \operatorname{res} f \left(2i \right) + \pi i \cdot \operatorname{res} f \left(-1 \right) = \frac{2\pi i (1-2i)}{2 \cdot 5} - \frac{\pi i}{5} = \frac{2\pi}{5} \,. \end{split}$$

3.4.2. Несобственные интегралы первого рода вида $\int_{-\infty}^{\infty} \Phi(x)e^{imx}dx$

Для вычисления таких несобственных интегралов применяется лемма Жордана.

Лемма Жордана:

Пусть функция $\Phi(z)$ является аналитической в верхней полуплоскости Imz>0, за исключением конечного числа изолированных особых точек, и равномерно относительно $\arg z\ (0 \le \arg z \le \pi)$ стремится к нулю при $|z| \to \infty$. Тогда при m>0 $\lim_{R\to\infty}\int_{C_R'}e^{imz}\Phi(z)dz=0$, где C_R' - дуга полуокружности |z|=R в верхней полуплоскости.

Замечание:

Условие равномерного относительно arg z стремления $\Phi(z)$ к нулю при $|z| \to \infty$ означает справедливость следующей оценки $|\Phi(z)| < \varepsilon(R)$ при |z| = R, причем $\varepsilon(R) \to 0$ при $R \to \infty$. Лемма Жордана справедлива при значительно более слабых ограничениях на функцию $\Phi(z)$, чем лемма 1. Это связано с наличием у подынтегральной функции множителя e^{imz} , который при m>0 обеспечивает достаточно быстрое ее убывание при $|z| \to \infty$.

<u>Теорема</u> 2:

Пусть функция $\Phi(x)$, заданная на всей действительной оси $-\infty < x < +\infty$, может быть аналитически продолжена на верхнюю полуплоскость $\mathrm{Im}z \ge 0$, а ее аналитическое продолжение $\Phi(z)$ в верхней полуплоскости удовлетворяет условиям леммы Жордана и не имеет особых точек на действительной оси. Тогда существует главное значение несобственного интеграла $\int_{-\infty}^{\infty} \Phi(x)e^{imx}dx$ (m>0), равное:

$$v.p. \int_{-\infty}^{\infty} \Phi(x)e^{imx}dx = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{res}\Phi(z_{k})e^{imz_{k}}, \qquad (28)$$

где $z_1, z_2, ..., z_n$ - изолированные особые точки функции $\Phi(z)$, лежащие в верхней полуплоскости.

Доказательство: полностью аналогично ранее доказанной теореме 1.

Замечания:

1. Рассмотренный интеграл позволяет найти значения сразу двух интегралов функций действительного переменного

v.p.
$$\int_{-\infty}^{\infty} \Phi(x) \cos mx \, dx = \text{Re } I$$
,

v.p.
$$\int_{-\infty}^{\infty} \Phi(x) \sin mx \, dx = \text{Im} I$$
,
где $I = \text{v.p.} \int_{-\infty}^{\infty} \Phi(x) e^{imx} \, dx$.

2. Теорема 2 позволяет вычислять несобственный интеграл по половине действительной оси

$$\int\limits_{0}^{\infty}\Phi(x)\cos mx\,dx=\frac{1}{2}\int\limits_{-\infty}^{\infty}\Phi(x)\cos mx\,dx\,-$$
 для четной $\Phi(x)$,
$$\int\limits_{0}^{\infty}\Phi(x)\sin mx\,dx=\frac{1}{2}\int\limits_{-\infty}^{\infty}\Phi(x)\sin mx\,dx\,-$$
 для нечетной $\Phi(x)$.

3. При наличии особых точек $x_1, x_2, ..., x_m$ у функции $\Phi(x)$ на действительной оси рассматриваемый интеграл $\int_{-\infty}^{\infty} \Phi(x)e^{imx}dx$ является несобственным интегралом первого и второго рода одновременно. Его главное значение вычисляется по формуле, аналогичной (27):

$$v.p. \int_{-\infty}^{\infty} \Phi(x)e^{imx} dx = 2\pi i \cdot \sum_{k=1}^{n} \text{res}\Phi(z_{k})e^{imz_{k}} + +\pi i \cdot \sum_{j=1}^{m} \text{res}\Phi(x_{j})e^{imx_{j}}.$$
 (29)

Пример 6: Вычислить интеграл $I = \int_{-\infty}^{\infty} \frac{(x+1)\sin 2x}{x^2 + 2x + 2} dx$.

Решение: Используя замечание 1, интеграл *I* представим в виде: $I = \int_{-\infty}^{\infty} \frac{(x+1)\sin 2x}{x^2+2x+2} dx = \mathrm{Im} \int_{-\infty}^{\infty} \frac{x+1}{x^2+2x+2} e^{i2x} dx$, где $\Phi(x) = \frac{x+1}{x^2+2x+2}$. Ее аналитическое продолжение $\Phi(z) = \frac{z+1}{z^2+2z+2}$ равномерно относительно $\arg z$ стремится к нулю при $|z| \to \infty$. Действительно, на дуге окружности |z| = R $z = Re^{i\varphi}$ $(0 \le \varphi \le \pi)$

$$\left| \Phi(Re^{i\varphi}) \right| = \left| \frac{Re^{i\varphi} + 1}{R^2 e^{i2\varphi} + 2Re^{i\varphi} + 2} \right| = \frac{R \left| e^{i\varphi} + \frac{1}{R} \right|}{R^2 \left| e^{i2\varphi} + \frac{e^{i\varphi}}{R} + \frac{1}{R^2} \right|} < \frac{\left| e^{i\varphi} + \frac{1}{R} \right|}{R \left| e^{i2\varphi} \right|} < \frac{2}{R} \to 0 \quad \text{при} \quad R \to \infty, \quad \text{т.e.}$$

выполнены условия леммы Жордана.

Особыми точками $\Phi(z)$ являются простые полюса $z_{1,2} = -1 \pm i$, в верхней полуплоскости находится $z_1 = -1 + i$. Считаем вычет в этой точке по формуле (14):

$$\operatorname{res}(\Phi(z)e^{i2z}, -1+i) = \frac{(z+1)e^{i2z}}{\left(z^2+2z+2\right)'}\bigg|_{z=-1+i} = \frac{(z+1)e^{i2z}}{2(z+1)}\bigg|_{z=-1+i} = \frac{1}{2}e^{2i(-1+i)} = \frac{e^{-2}}{2}(\cos 2 - i\sin 2)$$

и находим главное значение интеграла, подставляя в (28):

v.p.
$$I = \text{Im} \int_{-\infty}^{\infty} \frac{x+1}{x^2+2x+2} e^{i2x} dx = \text{Im} \left(2\pi i \cdot \frac{e^{-2}}{2} (\cos 2 - i \sin 2) \right) = \pi e^{-2} \cos 2$$
.

Пример 7: Вычислить интеграл $I = \int_0^\infty \frac{\cos x \, dx}{x^2 + a^2}$, a > 0.

Решение: Так как под знаком интеграла стоит четная функция $\Phi(x) = \frac{1}{x^2 + a^2}$,

$$I = \int_{0}^{\infty} \frac{\cos x \, dx}{x^2 + a^2} = \text{v.p.} \frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos x \, dx}{x^2 + a^2} = \frac{1}{2} \operatorname{Re} \left(\text{v.p.} \int_{-\infty}^{\infty} \frac{e^{ix} \, dx}{x^2 + a^2} \right).$$
 Аналитическое продолжение
$$\Phi(z) = \frac{1}{z^2 + a^2}$$
 удовлетворяет условиям леммы Жордана, (т.к.
$$\left| \Phi(Re^{i\varphi}) \right| = \frac{1}{\left| R^2 e^{i2\varphi} + a^2 \right|} = \frac{1}{R^2 \left| e^{i2\varphi} + \frac{a^2}{R^2} \right|} < \frac{1}{R^2} \to 0$$
) и имеет полюс первого порядка $z = ia$

в верхней полуплоскости. Согласно (14) вычет в простом полюсе равен:

$$\operatorname{res}(\Phi(z)e^{iz}, ia) = \frac{e^{iz}}{(z^2 + a^2)'}\bigg|_{z=ia} = \frac{e^{iz}}{2z}\bigg|_{z=ia} = \frac{1}{2ia}e^{i(ia)} = \frac{e^{-a}}{2ia}.$$

Тогда по формуле (28) находим

$$I = \frac{1}{2} \operatorname{Re} \left(v.p. \int_{-\infty}^{\infty} \frac{e^{ix} dx}{x^2 + a^2} \right) = \frac{1}{2} \operatorname{Re} \left(2\pi i \frac{e^{-a}}{2ia} \right) = \frac{\pi e^{-a}}{2a}.$$

Пример 8: Вычислить интеграл $I = \int_{-\infty}^{\infty} \frac{\cos tx \, dx}{1 - x^4}$, t- действительное число.

Решение: Запишем интеграл в виде: $I = \int_{-\infty}^{\infty} \frac{\cos tx \, dx}{1 - x^4} = \operatorname{Re} \int_{-\infty}^{\infty} \frac{e^{itx}}{1 - x^4} \, dx$.

Аналитическое продолжение подынтегральной функции $\Phi(z) = \frac{1}{1-z^4}$ на верхнюю полуплоскость удовлетворяет условиям леммы Жордана. Однако лемма Жордана выполняется только при t>0, а по условию задачи t-действительное число.

Особыми точками $\Phi(z)$ являются полюса первого порядка $z=\pm i$ и $z=\pm 1$, их можно найти, разложив знаменатель дроби на множители и приравняв нулю: $z^4-1=\left(z^2+1\right)\left(z^2-1\right)=(z-i)(z+i)(z-1)(z+1)=0$. В верхней полуплоскости лежит точка z=i и две точки $z=\pm 1$ — на действительной оси. Найдем вычеты в них по формуле (14):

$$\operatorname{res}(\Phi(z)e^{itz},i) = \frac{e^{itz}}{(1-z^4)'}\Big|_{z=i} = -\frac{e^{itz}}{4z^3}\Big|_{z=i} = -\frac{e^{it(i)}}{4i^3} = \frac{e^{-t}}{4i}$$

$$\operatorname{res}(\Phi(z)e^{itz},1) = -\frac{e^{itz}}{4z^3}\Big|_{z=1} = -\frac{e^{it}}{4}$$

$$\operatorname{res}(\Phi(z)e^{itz},-1) = -\frac{e^{itz}}{4z^3}\Big|_{z=-1} = \frac{e^{-it}}{4}$$
(*)

1. При t>0 главное значение несобственного интеграла первого и второго рода одновременно находим по формуле (29):

$$v.p.I = \text{Re}\left(v.p. \int_{-\infty}^{\infty} \frac{e^{itx}}{1 - x^{4}} dx\right) = \text{Re}\left(2\pi i \cdot \text{res}\left(\Phi(z)e^{itz}, i\right) + \pi i \cdot \left(\text{res}\left(\Phi(z)e^{itz}, 1\right) + \text{res}\left(\Phi(z)e^{itz}, -1\right)\right)\right) = \left(**\right)$$

$$= \text{Re}\left(2\pi i \frac{e^{-t}}{4i} + \pi i \cdot \left(-\frac{e^{it}}{4} + \frac{e^{-it}}{4}\right)\right) = \text{Re}\left(\frac{\pi}{2}e^{-t} - \frac{\pi i^{2}}{2} \cdot \frac{e^{it} - e^{-it}}{2i}\right) = \frac{\pi}{2}e^{-t} + \frac{\pi}{2}\sin t = \frac{\pi}{2}\left(e^{-t} + \sin t\right)$$

2. При t<0 в интеграле сделаем замену переменных, чтобы можно было воспользоваться леммой Жордана.

$$\int_{-\infty}^{\infty} \frac{e^{itx}}{1-x^4} dx = \begin{vmatrix} x = -u \\ dx = -du \end{vmatrix} = \int_{-\infty}^{\infty} \frac{e^{it(-u)}}{1-u^4} (-du) = -\int_{-\infty}^{\infty} \frac{e^{i(-t)u}}{1-u^4} du = \int_{-\infty}^{\infty} \frac{e^{i(-t)u}}{1-u^4} du = \int_{-\infty}^{\infty} \frac{e^{i(-t)x}}{1-u^4} dx.$$

При (-*t*)>0 для интеграла выполняется лемма Жордана и его главное значение совпадает со значением (**) для случая *t*>0, если вместо *t* взять (-*t*). Тогда v.p. $I = \text{Re}\left(\text{v.p.}\int_{-\infty}^{\infty}\frac{e^{itx}}{1-x^4}dx\right) = \frac{\pi}{2}\left(e^{-(-t)} + \sin(-t)\right)$.

3. При t=0 рассматриваемый интеграл становится несобственным интегралом первого вида $I = \int_{-\infty}^{\infty} \frac{dx}{1-x^4}$, главное значение которого считаем по формуле (27). При этом вычеты в особых точках легко найти из (*) при t=0.

$$\operatorname{res}(f(z),i) = \frac{1}{4i}, \quad \operatorname{res}(f(z),1) = -\frac{1}{4}, \quad \operatorname{res}(f(z),-1) = \frac{1}{4},$$

$$\text{v.p.} I = \text{v.p.} \int_{-\infty}^{\infty} \frac{dx}{1-x^4} = 2\pi i \cdot \frac{1}{4i} + \pi i \left(-\frac{1}{4} + \frac{1}{4}\right) = \frac{\pi}{2}.$$

Обобщая все три случая, записываем общий ответ:

v.p.
$$I = \frac{\pi}{2} (e^{-|t|} + \sin|t|)$$
, *t*- действительное число.

Задачи для самостоятельного решения

1.
$$\int_{0}^{\infty} \frac{x^2 dx}{x^4 + 10x^2 + 9}$$
, **2.** $\int_{-\infty}^{\infty} \frac{(x+1)dx}{(x^2+1)(x^2+4)}$, **3.** $\int_{-\infty}^{\infty} \frac{x dx}{(x^2+2x+10)^3}$, **4.** $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+a^2)^3}$, $(a > 0)$,

5.
$$\int_{0}^{\infty} \frac{x^{4} dx}{(x^{2}+1)^{2}(x^{2}+4)}, \quad \textbf{6.} \int_{0}^{\infty} \frac{x \sin x dx}{x^{2}+4}, \quad \textbf{7.} \int_{0}^{\infty} \frac{x \sin mx dx}{(x^{2}+a^{2})^{2}}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad \textbf{8.} \int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2}+1)(x^{2}+9)}, \quad (a > 0, m > 0), \quad (a > 0, m > 0), \quad (a > 0, m > 0), \quad (a > 0, m$$

9.
$$\int_{-\infty}^{\infty} \frac{x \cos x dx}{x^2 + 2x + 10}$$
, **10.** $\int_{-\infty}^{\infty} \frac{dx}{(x - 1)(x^2 + 1)}$, **11.** $\int_{-\infty}^{\infty} \frac{(2x + 1) dx}{x(x^2 + x - 2)}$, **12.** $\int_{0}^{\infty} \frac{\sin x \, dx}{x(x^2 + 1)}$,

13.
$$\int_{0}^{\infty} \frac{\sin x \, dx}{x(x^2+1)^2} \, .$$

Ответы

1.
$$\frac{\pi}{8}$$
, **2.** $\frac{\pi}{6}$, **3.** $-\frac{\pi}{648}$, **4.** $\frac{\pi}{8a^3}$, **5.** $\frac{5\pi}{36}$, **6.** πe^{-2} , **7.** $\frac{\pi m}{4a} e^{-ma}$, **8.** $\frac{\pi}{24e^3} (3e^2 - 1)$,

9.
$$\frac{\pi e^{-3}}{3} (\cos 1 - 3 \sin 1)$$
, **10.** $-\frac{\pi}{2}$, **11.** 0, **12.** $\frac{\pi}{2} (1 - e^{-1})$, **13.** $\frac{\pi}{8} (4 - 3e^{-1})$

СПИСОК ЛИТЕРАТУРЫ

- 1. Свешников А.Г., Тихонов А.Н. Теория функций комплексной переменной.-М.: Физматлит, 2004.
- 2. Лаврентьев М.А., Шабат Б.В. Методы теории функции комплексного переменного.- М.: Наука, 1987.
- 3. Волковыский Л.И., Лунц Г.Л., Араманович И.Г. Сборник задач по теории функций комплексного переменного.- М.: Физматлит, 2002.
- 4. Семерикова Н.П., Дубков А.А., Харчева А.А. Ряды аналитических функций. Учебно-методическое пособие (электр.). Нижний Новгород, ННГУ,2016 (35c), http://www.unn.ru/books/met_files/raf-2016.pdf

Надежда Петровна **Семерикова** Александр Александрович **Дубков** Анна Александровна **Харчева**

ВЫЧЕТЫ И ИХ ПРИМЕНЕНИЕ К ВЫЧИСЛЕНИЮ ИНТЕГРАЛОВ

Учебно-методическое пособие

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского". 603950, Нижний Новгород, пр. Гагарина, 23.