Optimisation Combinatoire

Claire Hanen - M1 MIAGE par apprentissage

Examen du 17/05/2023, Durée 2h

 ${\bf Exercice} \ {\bf 1} \qquad {\bf Questions} \ {\bf de} \ {\bf cours} \ {\bf sur} \ {\bf les} \ {\bf algorithmes} \ {\bf approch\'es} :$

Question 1 Considérons un problème de minimisation d'un problème combinatoire, et un algorithme \mathcal{A} qui calcule une solution particulière $X^{\mathcal{A}}$. On note f(X) la valeur d'une solution X. Que signifie la phrase " \mathcal{A} est un algorithme 1,5-approché "?

Question 2 Donner un exemple d'un algorithme α -approché que vous connaissez (vous préciserez α).

Exercice 2 On condidère une méthode arborescente en cours d'exécution pour un problème de minimisation. On vous donne les noeuds de l'arbre numérotés dans l'ordre de leur création, et leurs relations ainsi que les valeurs de l'évaluation par défaut et de celle par excès de chaque noeud, obtenues, l'une par relaxation l'autre par solution particulière.

- 1. Tracer l'arbre correspondant.
- 2. Quelle est la valeur de la meilleure solution rencontrée à chaque création d'un noeud.
- 3. Quelles décisions de troncature peuvent être prises et pourquoi à chaque étape?
- 4. La valeur de la solution optimale est-elle identifiable?

noeud	S_0	S_1	S_2	S_3	S_4	S_5	S_6
père	-	S_0	S_0	S_0	S_2	S_2	S_1
eval excès h	48	43	37	45	40	37	40
eval défaut g	32	34	32	37	38	37	40

Exercice 3 Suite à un héritage, une personne dispose d'une maison encombrée d'un ensemble H de n objets de volumes respectifs entiers v_1, \ldots, v_n qu'elle cherche à revendre. Deux clients sont intéressés par ces objets. Le premier client indique qu'il peut emporter au plus un volume de V_1 , et le second un volume de V_2 . Chaque client définit les prix auxquels il accepte d'acheter les objets. Ainsi pour chaque objet i le client 1 en offre un prix a_i et le client 2 un prix b_i . Ces

valeurs sont connues de l'héritier et les volumes V_1, V_2 également. Quel est la vente qui maximise le profit de l'héritier?

Question 1 Modéliser le problème avec un programme linéaire à variables binaires

Question 2 Proposer une relaxation du problème permettant d'obtenir facilement un majorant de la solution optimale.

Question 3 Proposer un algorithme permettant d'obtenir un minorant de la solution optimale.

Question 4 Proposer des éléments d'une méthode arborescente pour ce problème, en vous appuyant sur les bornes proposées dans les questions précédentes.

Exercice 4 On se donne une suite de n tâches à effectuer sur une machine. Une tâche i peut être effectuée au choix selon deux modes : Dans le mode 1, sa durée est a_i et son coût énergétique c_i . Dans le mode 2, sa durée est b_i et son coût énergétique est e_i .

Il s'agit d'effectuer toutes les tâches sur une machine en choisissant pour chacune son mode de sorte que le tout ait un coût en énergie borné par une valeur donnée K, tout en minimisant la durée d'exécution des tâches. S'il n'existe aucune solution réalisable, on dira par convention que la durée minimale vaut $+\infty$.

Question 1 Modéliser ce problème à l'aide d'un programme mathématique. On souhaite décrire un schéma de programmation dynamique pour résoudre ce problème, en prenant pour phases les tâches et pour état la quantité d'énergie restant pour les tâches suivantes.

Ainsi, $F_k(E)$ désignera la durée minimale d'un ordonnancement ayant un coût en énergie au plus E pour les tâches $\{k, \ldots, n\}$.

Question 2 Tracer le schéma correspondant de programmation dynamique, en précisant les éléments indispensables (décisions, transitions, coûts immédiats).

Question 3 Comment calculer $F_n(E)$?

Question 4 Etablir l'équation de récurrence satisfaite par les F_k .

Question 5 En déduire un algorithme de programmation dynamique qui construit une solution optimale dont on précisera la complexité.

Question 6 Appliquez cet algorithme aux données suivantes :

3 4 5 2 3 1 2 4 a_i 2 1 3 Tâches: 1 1 K = 238 5 4 2 10 12 8 2