

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Maryland 20084

ANALYSIS OF WAKE SURVEY FOR TURNEL-FIN AND ACCELERATING-FIN CONFIGURATIONS FOR THE NAVAL AUXILIARY OILER (AO 177) REPRESENTED BY MODEL 5326-1

by GARY A. HAMPTON

Distribution Unlimited
Approved for Public Release

SHIP PERFORMANCE DEPARTMENT REPORT

IC FILE COPY

APRIL 1981

DTNSRDC/SPD-0544-18

81 4 20

073

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

Control of the second of the s

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS
BETORE COMPLETING FORM REPORT DOCUMENTATION PAGE REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER DTNSRDC/SPD-Ø544-18 TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED ANALYSIS OF WAKE SURVEY FOR TUNNEL-FIN AND Final Heptis ACCELERATING-FIN CONFIGURATIONS FOR THE NAVAL AUXILIARY OILER AO-177 REPRESENTED BY MODEL 5326-1 AUTHOR(s) 6. CONTRACT OR GRANT NUMBER(e) Gary A./Hampton PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS DAVID TAYLOR NAVAL SHIP R&D CENTER 489694 POOR145 POOR162 SHIP PERFORMANCE DEPARTMENT 1-1532-115-40 1-1532-116-40 BETHESDA, MD. 20084 11 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Naval Sea Systems Command (3213) Washington, D.C. 20367 NUMBER OF PAGES 172 14 MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) SECURITY CLASS. (of this report) UNCLASSIFIED DECLASSIFICATION DOWNGRADING 16 DISTRIBUTION STATEMENT (of this Report) DISTRIBUTION UNLIMITED; APPROVED FOR PUBLIC RELEASE 17 DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different from Report) 18 SUPPLEMENTARY NOTES Tunnel-Fins Accelerating-Fins Wake Survey 19 KEY WORDS (Continue on reverse side if necessary and identify by block number) ABSTRACT (Continue on reverse eide if necessary and identity by block number) h Model 5326-1 to aid in the identification and resolution of the propeller cavitation and airborne noise problem experienced by the Auxiliary Oiler AQ-177 and to validate possible remedies. The experimental program involved the evaluation of three tunnel-fin configurations and one accelerating-fin configuration fitted to the stern of the model. The results of the wake survey experiment show that the flow into the propeller plane was improved by the addition of any of the four fins.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601

389694 xVV

SECUF	RITY CLASSIFICATION OF THIS PAGE (When Date			
1			•	
	•	*		
	• • •			,
				<u>,</u>
İ				
1				
				Ì
				ļ
	1.11			
ĺ				
				İ
	•			1

TABLE OF CONTENTS

r	age
LIST OF FIGURES	iv
LIST OF TABLES	ix
NOTATION	xii
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
MODEL DESCRIPTION	2
EXPERIMENTAL PROCEDURES	2
DATA ACCURACY	3
PRESENTATION OF DATA	3
DISCUSSION OF RESULTS	5
REFERENCES	6
APPENDIX A	51
APPENDIX B	65
APPENDIX C	79
APPENDIX D	91
APPENDIX E	105
APPENDIX F	119
APPENDIX G	133
APPENDIX H	147

LIST OF FIGURES

		Pa	ge
1	-	Body Plan with Tunnel-fin Configuration 1 (NAVY) and Experimental Radii	7
2	-	Body Plan with Tunnel-fin Configuration 2 (NAVY) and Experimental Radii	8
3			9
4	-	Body Plan with Accelerating-fin Configuration 4 (SSPA) and Experimental Radii	0
5	-	Fitting Room Photographs of Tunnel-fin Configuration 1 Attached to Model 1	1
6	-	Fitting Room Photographs of Tunnel-fin Configuration 2 Attached to Model 13	3
7	-	Fitting Room Photographs of Tunnel-fin Configuration 3 Attached to Model 1	5
8		Fitting Room Photographs of Accelerating-fin Configuration 4 Attached to Model	
9	-	Stern of Model 5326-1 with Rake Attached)
10	•••	Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios without Fins Experiment 1 (8/80) and Experiment 1 Repeat (10/30) at a Radius Ratio of 0.359. Displacement 26,390 tons (26 810 metric tons)	
11	-	Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios without Fins Experiment 1 (8/80) and Experiment 1 Repeat (10/80) at a Radius Ratio of 0.556. Displacement 26,390 tons (26 810 metric tons)	2
12	-	Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios without Fins Experiment 1 (8/80) and Experiment 1 Repeat (10/80) at a Radius Ratio of 0.775. Displacement 26,390 tons (26 810 metric tons)	
13	-	Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios without Fins Experiment 1 (8/80) and Experiment 1 Repeat (10/80) at a Radius Ratio of 1.017. Displacement 26,390 tons (26 810 metric tons)	
14	-	Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios without Fins Experiment 1 (8/80) and Experiment 1 Repeat (10/80) at a Radius Ratio of 1.178. Displacement 26,390 tons (26 810 metric tons)	
15	-	Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY), Configuration 4 (SSPA) and also without Fins at a Radius Ratio of 0.359. Displacement 26,390 tons (26 810 metric tons)	
16		Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY), Configuration 4 (SSPA) and also without Fins at a Radius Ratio of 0.556. Displacement 26,390 tons (26 810 metric tons)	

			Page
17		Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY), Configuration 4 (SSPA) and also without Fins at a Radius Ratio of 0.775. Displacement 26,390 tons (26 810 metric tons)	28
18	-	Composite Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY), Configuration 1 (NAVY), Configuration 4 (SSPA) and also without Fins at a Radius Ratio of 1.017. Displacement 26,390 tons (26 810 metric tons)	29
19	-	Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY), Configuration 4 (SSPA) and also without Fins at a Radius Ratio of 1.178. Displacement 26,390 tons (26 810 metric cons)	30
20		Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY), Configuration 2 (NAVY) and Configuration 3 (NAVY) at a Radius Ratio of 0.359. Displacement 26,390 tons (26 810 metric tons)	
21		Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY), Configuration 2 (NAVY) and Configuration 3 (NAVY) at a Radius Ratio of 0.556. Displacement 26,390 tons (26 810 metric tons)	
22	-	Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY), Configuration 2 (NAVY) and Configuration 3 (NAVY) at a Radius Ratio of 0.775. Displacement 26,390 tons (26 810 metric tons)	33
23	-	Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY), Configuration 2 (NAVY) and Configuration 3 (NAVY) at a Radius Ratio of 1.017. Displacement 26,390 tons (26 810 metric tons)	
24	•	Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY), Configuration 2 (NAVY) and Configuration 3 (NAVY) at a Radius Ratio of 1.178 Displacement 26,390 tons (26 810 metric tons)	35
25	-	Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY) and Configuration 4 (SSPA) at a Radius Ratio of 0.359. Displacement 17,270 tons (17 550 metric tons)	3 6
26	•	Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY) and Configuration 4 (SSPA) at a Radius Ratio of 0.556. Displacement 17,270 tons (17 550 metric tons)	37
27	•	Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY) and Configuration 4 (SSPA) at a Radius Ratio of 0.775. Displacement 17,270 tons (17 550 metric tons)	

			Page
		Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY) and Configuration 4 (SSPA) at a Radius Ratio of 1.017. Displacement 17,270 tons (17 550 metric tons)	39
29	-	Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 3 (NAVY) and Configuration 3 (NAVY) Leading Edge Raised 2.5 Degrees at a Radius Ratio of 0.359. Displacement 26,390 tons (26 810 metric tons)	40
30	-	Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 3 (NAVY) and Configuration 3 (NAVY) Leading Edge Raised 2.5 Degrees at a Radius Ratio of 0.556. Displacement 26,390 tons (26 810 metric tons)	, 41
31	-	Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 3 (NAVY) and Configuration 3 (NAVY) Leading Edge Raised 2.5 Degrees at a Radius Ratio of 0.775. Displacement 26,390 tons (26 810 metric tons)	. 42
32	-	Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 3 (NAVY) and Configuration 3 (NAVY) Leading Edge Raised 2.5 Degrees at a Radius Ratio of 1.017. Displacement 26,390 tons (26 810 metric tons)	. 43
33	-	Composite Circumferential Distribution of the Longitudinal Tangential and Radial Velocity Component Ratios for Fins Configuration 3 (NAVY) and Configuration 3 (NAVY) Leading Edge Raised 2.5 Degrees at a Radius Ratio of 1.178. Displacement 26,390 tons (26 810 metric tons)	. 44
34	-	Typical Improvement of the Longitudinal Velocity (VX/V) with the Addition	on . 45
Al	-	Circumfcrential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios Experiment 1 (10/80) Radius Ratio = 0.359	
A2	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 1 (10/80) Radius Ratio = 0.556	. 53
A3	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 1 (10.80) Radius Ratio = 0.775	. 54
A4	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 1 (10.80) Radius Ratio = 1.107	•
A.5	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 1 (10.80) Radius Ratio = 1.178	
A 6	•	Radial Distribution of the Mean Velocity Component Ratios for Experiment 1 (10/80)	. 57
A7	_	Radial Distribution of the Mean Advance Angle and the Maximum Variations of the Advance Angle for Experiment 1 (10/80)	
B1	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 2 Radius Ratio = 0.359	. 66
В2	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial	67

			Page
		Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 2 Radius Ratio = 0.775	68
B4	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 2 Radius Ratio = 1.107	6 9
B 5	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 2 Radius Ratio = 1.178	70
В6	-	Radial Distribution of the Mean Velocity Component Ratios for Experiment 2	71
В7	-	Radial Distribution of the Mean Advance Angle and the Maximum Variations of the Advance Angle for Experiment 2	7 2
C1	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 3 Radius Ratio = 0.359	80
C2	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment. 3 Radius Ratio = 0.556	81
СЗ	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 3 Radius Ratio = 0.775	82
C4	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 3 Radius Ratio = 1.107	83
C5	-	Radial Distribution of the Mean Velocity Component Ratios for Experiment 3	84
C6	-	Radial Distribution of the Mean Advance Angle and the Maximum Variations of the Advance Angle for Experiment 3	85
D1	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 4 Radius Ravio = 0.359	92
D2	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 4 Radius Ratio = 0.556	93
D3	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 4 Radius Ratio = 0.775	94
D4	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 4 Radius Ratio = 1.107	95
D5	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 4 Radius Ratio = 1.178	9 6
D6	-	Radial Distribution of the Mean Velocity Component Ratios for Experiment 4	97
D7	-	Radial Distribution of the Mean Advance Angle and the Maximum Variations of the Advance Angle for Experiment 4	98
E1	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 5 Radius Ratio = 0.359	10 6
E2	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 5 Radius Ratio = 0.556	107

			Page
Е3	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 5 Radius Ratio = 0.775	
E4	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 5 Radius Ratio = 1.107	
E5		Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 5 Radius Ratio = 1.178	
E6	-	Radial Distribution of the Mean Velocity Component Ratios for Experiment 5	111
E7	-	Radial Distribution of the Mean Advance Angle and the Maximum Variations of the Advance Angle for Experiment 5	
F1	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 6 Radius Ratio = 0.359	
F2	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 6 Radius Ratio = 0.556	
F3	47"	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 6 Radius Ratio = 0.775	122
F4	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 6 Radius Ratio = 1.107	123
F5	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 6 Radius Ratio = 1.178	
F6	-	Radial Distribution of the Mean Veloc. y Component Ratios for Experiment 6	125
F7	-	Radial Distribution of the Mean Advance Angle and the Maximum Variations of the Advance Angle for Experiment 6	126
G1	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 7 Radius Ratio = 0.359	134
G2	-	Circumferential Distribution of the Longitudinal, Tangential, and Polial Velocity Component Ratios. Experiment 7 Radius Ratio = 0.556	135
G3	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 7 Radius Ratio = 0.775	136
G4	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 7 Radius Ratio = 1.107	137
G5	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 7 Radius Ratio = 1 178	138

Pa	age
G6 Radial Distribution of the Mean Velocity Component Ratios for Experiment 7	L 3 9
G7 - Radial Distribution of the Mean Advance Angle and the Maximum Variations of the Advance Angle for Experiment 7	40
Hl - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 8 Radius Ratio = 0.359	148
H2 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 8 Radius Ratio = 0.556	L 49
H3 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 8 Radius Ratio = 0.775 1	150
H4 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 8 Radius Ratio = 1.107 1	151
H5 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 8 Radius Ratio = 1.178 1	152
H6 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 8	153
H7 - Radial Distribution of the Mean Advance Angle and the Maximum Variations of the Advance Angle for Experiment 8	.54
LIST OF TABLES	
1 - Comparison of the Circumferential Mean Velocity Component Ratios and other Derived Quantities for the without Fins Configuration and with Configuration 1 (NAVY), Configuration 2 (NAVY), Configuration 3 (NAVY), and Configuration 4 (SSPA), Trimmed 1.0 feet (0.305 m) by the Bow. Displacement 26,390 Tons (26 810 metric tons)	4 6
2 - Comparison of the Circumferential Mean Velocity Component Ratios and other Derived Quantities for Fins Configuration 3 (NAVY), and Configuration 4 (SSPA), Trimmed 3.75 feet (1.143 m) by the Stern. Displacement 17,270 Tons (17 550 metric tons)	48
3 - Comparison of the Circumferential Mean Velocity Component Ratios and other Derived Quantities for Fin Configuration 3 (NAVY) and Configuration 3 (NAVY) Leading Edge Raised 2.5 Degrees. Trimmed 1.0 feet (0.305 m) by the Bow. Displacement 26,390 Tons (26 810 metric tons)	
	49

			Page
4	-	Experimental Configurations and Corresponding Ship Values	50
A1	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities for Experiment 1 Repeat (10/80) without Fins	, 59
A2	-	Harmonic Analysis of the Longitudinal Velocity Component Ratios for Experiment 1 Repeat (10/80) without Fins	60
A3	-	Harmonic Analysis of the Tangential Velocity Component Ratios for Experiment 1 Repeat (10/80) without Fins	61
A4	-	Input Data for Wake Survey Analysis Experiment 1 Repeat (10/80) without Fins	62
B1	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantitites for Experiment 2 with Fin Configuration 1	73
В2	-	Harmonic Analysis of the Longitudinal Velocity Component Ratios for Experiment 2 with Fin Configuration 1	74
В3	-	Harmonic Analysis of the Tangential Velocity Component Ratios for Experiment 2 with Fin Configuration 1	75
B4	-	Input Data for Wake Survey Analysis for Experiment 2 with Fin Configuration 1	76
C1		Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities for Experiment 3 with Fin Configuration 1.	8 6
C2	-	Harmonic Analysis of the Longitudinal Velocity Component Ratios for Experiment 3 with Fin Configuration 1	87
C3	-	Harmonic Analysis for the Tangential Velocity Component Ratios for Experiment 3 with Fin Configuration 1	88
C4	-	Input Data for Wake Survey Analysis for Experiment 3 with Fin Configuration 1	89
D1	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities for Experiment 4 with Fin Configuration 3.	99
D2	-	Harmonic Analysis of the Longitudinal Velocity Component Ratios for Experiment 4 with Fin Configuration 3	100
D3	-	Harmonic Analysis of the Tangential Velocity Component Ratios for Experiment 4 with Fin Configuration 3	101

			Page
D4	-	Input Data for Wake Survey Analysis for Experiment 4 with Fin Configuration 3	102
El	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities for Experiment 5 with Fin Configuration 3 Leading Edge Up 2.5 Degrees	113
E2	-	Harmonic Analysis of the Longitudinal Velocity Component Ratios for Experiment 5 with Fin Configuration 3 Leading Edge Up 2.5 Degrees	114
ЕЗ	~	Harmonic Analysis of the Tangential Velocity Component Ratios for Experiment 5 with Fin Configuration 3 Leading Edge Up 2.5 Degrees	115
E4	-	Input Data for Wake Survey Analysis for Experiment 5 with Fin Configuration 3 Leading Edge Up 2.5 Degrees	116
Fl	_	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities for Experiment 6 with Fin Configuration 2 .	127
F2	-	Harmonic Analysis of the Longitudinal Velocity Component Ratios for Experiment 6 with Fin Configuration 2	128
F3	-	Harmonic Analysis of the Tangential Velocity Component Ratios for Experiment 6 with Fin Configuration 2	129
F4	-	Input Data for Wake Survey Analysis for Experiment 6 with Fin Configuration 2	130
G1	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities for Experiment 7 with $^{\rm p}$ in Configuration 4 .	141
G2	-	Harmonic Analysis of the Longitudinal Velocity Component Ratios for Experiment 7 with Fin Configuration 4	142
G3	-	Harmonic Analysis of the Tangential Velocity Component Ratios for Experiment 7 with Fin Configuration 4	143
G4	-	Input Data for Wake Survey Analysis for Experiment 7 with Fin Configuration 4	144
Н1	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities for Experiment 8 with Fin Configuration 4 .	155
н2	-	Harmonic Analysis of the Longitudinal Velocity Component Ratios for Experiment 8 with Fin Configuration 4	15 6
н3	-	Harmonic Analysis of the Tangential Velocity Component Ratios for Experiment 8 with Fin Configuration 4	157
Н4	-	Input Data for Wake Survey Analysis for Experiment 8 with Fin Configuration 4	158

in interpretation

1-4X

CONVENTIONAL STREEDL	1-v(x)

DEFINITION

SYMBOL APPEARING CN PLOTS

CONVENTIONAL SYMBOL

Propeller diameter
Apparent advance coefficient
$$J_V = \frac{V}{vD}$$
(dimensionless)

7

r/R of x

5

V (x,9)

1. (E)

VIBAR

 $\overline{\Psi}_{\mathbf{c}}(\mathbf{x})/q$

 $\tilde{(v}_{\rm c}(x)/v)_{\rm N}$

∆/1\

V_E(x,0)/V

۲

Φ_ε(x,θ)

5

Vx(x,0)

VX/V

V (x, 0)/V

AMPLITUDE

(V_x(x)/V)_N

V (x)/V

where
$$\overline{v}_{x} = (x)/V = \int_{0}^{2\pi} \left[\frac{x_{c}}{2 \pi V} \right] d\theta$$
and $\overline{v}_{x} = (x, \theta)/V = (v_{x}(x, \theta)/V)$

$$-(v_{c}(x, \theta)/V) \text{ ten } (3(x, \theta))$$

z/z	$2 \cdot \int (\widetilde{V}_{\underline{x}}(x)/v) \cdot x \cdot dx$	Ebub/R	(r/z) ² - (r _{hub} /z) ²
		1-v(r/k) -	

33.42

3

SPOS

448

BNEC

ş

V(x) V

V (x, 0)/V

ABSTRACT

Wake survey experiments were conducted with Model 5325-1 to aid in the identification and resolution of the propeller cavitation and airborne noise problem experienced by the Auxiliary Oiler AO-177 and to validate possible remedies. The experimental program involved the evaluation of three tunnel-fin configurations and one accelerating-fin configuration fitted to the stern of the model. The results of the wake survey experiments show that the flow into the propeller plane was improved by the addition of any of the four fins.

ADMINISTRATIVE INFORMATION

This work was funded by the Naval Sea Systems Command (NAVSEA 3213), and was carried out under NAVSEA Project Orders POOR145 and POOR162, and DTNSRDC Work Unit Numbers 1-1532-115-40 and 1-1532-116-40.

INTRODUCTION

At the request of the Naval Sea Systems Command (NAVSEA 3213), a model experimental program was carried out at the David W. Taylor Naval Ship Research and Development Center to help in the resolution of the propeller cavitation and airborne noise problem experienced by the Auxiliary Oiler AO-177.

The AO-177 has a very fine, thin stern, providing a highly reduced longitudinal velocity in the vicinty of the top of the propeller plane. Such a phenomenon is likely to cause unsteady cavitation on the propeller blades, which in turn may cause excessive noise and local vibration problems in the stern area of the ship. One proposed remedy was to improve the flow into the propeller by fins installed at the stern of the ship. It was considered that the fins will guide more flow into the propeller plane, reducing or diffusing the severe nonuniformity of the wake distribution.

Four different fin configurations were designed and an experimental program was carried out to validate their effectiveness. The experiments involved visual flow observations, resistance and propulsion experiments and wake survey experiments. The results of the flow observations were published in reference 1*. This report describes the results of the wake survey experiments. The results of the resistance and propulsion experiments will be published in a following report.

^{*} References are listed on page 6.

MODEL DESCRIPTION

Three tunnel-fin designs were constructed and fitted to an existing model (Model 5326-1) of the AO-177, according to plans furnished by NAVSEA, entitled, "Flow Improvement Fin", and designated Configuration 1 (SK 3213-0026), Configuration 2 (SK 3213-0027), and Configuration 3 (SK 3213-0028). An accelerating fin was constructed by the Swedish Center for Maritime Research (SSPA) according to plans entitled, "U.S. Navy Fleet Oiler Proposal to Stern Fins," File No. 2564. The accelerating-fin is designated as Configuration 4.

Model 5326-1 representing the Auxiliary Oiler AO-177 was previously constructed to a linear scale ratio of 25.682. The model was fitted with the same bilge keel which was on the model during the previous wake survey experiments. Illustrations of the fins and experimental radii are shown in Figure 1 (Configuration 1), Figure 2 (Configuration 2), Figure 3 (Configuration 3) and Figure 4 (Configuration 4). Fitting room photographs of the fins attached to the model are presented in Figures 5 through 8.

EXPERIMENTAL PROCEDURES

During the wake survey, the various velocity components were obtained with DTNSRDC pitot tube rake 8 connected to differential pressure transducers. This rake consists of five 5-hole spherically headed pitot tubes mounted in a foil shaped housing. A photograph of the model stern with the rake attached is shown in Figure 9. The pitot tubes were located in the propeller plane 4.62 feet (1.41 m) in ship scale aft of station 19½. The diameter of the ship propeller is 21 feet. The radial location of the pitot tubes expressed as fractions of the propeller diameter (r/R) are, respectively, 0.359, 0.556, 0.775, 1.017 and 1.178.

The shape of the pitot-tube rake is such that, while the model is being towed, the rake may cause variations in trim at different angular positions. In order to maintain the natural trim throughout each survey, the model was towed at a speed corresponding to 20 knots full scale, free to assume a correct trim with the rake in the zero degree position. The model was then locked in that trim for that particular experiment Trim values for the wake survey conditions will be included in the resistance and propulsion report.

An apparent advance coefficient (J_V) of 1.01 based on full-scale RPM at 20 knots was used in the calculation of the advance angles. The basin water temperature throughout the survey was 71° F $(21^\circ$ C).

DATA ACCURACY

The accuracy of the wake survey apparatus is estimated to be ± 2 percent in measuring the longitudinal velocity component ratio (VX/V), except in locations where steep velocity gradients occur. Data accuracy in these locations are expected to be less than in regions of a slowly changing velocity field.

The wake velocity components typically show some slight transverse asymmetry, evident in the circumferential distribution figures. Similar asymmetries can be seen in any full-disc presentations of single-screw model wake data. Such differences are considered to be insignificant.

PRESENTATION OF DATA

It was necessary to confirm the repeatability and also to establish a base on which to correlate the wake survey data for the series of experiments. Therefore, Experiment 1 Repeat (October 1980) was conducted having the same experimental conditions as the previously conducted Experiment 1 (August 1980)². The experimental conditions included a trim of 1 foot (0.305 m) by the bow full-scale, the equivalent full-scale displacement of 26,390 tons (26 810 metric tons) and without fins. These results are presented graphically for each radius in Figures 10 through 14 as composite plots of the velocity component ratios.

Experiment 1 (October 1980) without fins is also compared to tunnel-fin Configuration 1 (NAVY) and accelerating-fin Configuration 4 (SSPA) at a trim of 1 foot (0.305 m) by the bow full-scale and an equivalent full-scale displacement of 26,390 tons (26 810 metric tons). The velocity component ratios are presented in Figures 15 through 19 for each radii.

The wake survey results for the three Navy tunnel-fins, Configuration 1, Configuration 2, Configuration 3 are presented as composite plots in Figures 20 through 24 at the trim of 1 foot (0.305 m) by the bow full-scale and the equivalent full-scale displacement of 26,390 tons (26 810 metric tons) for each experimental radii. Tabulated results of the mean velocity component ratios and other derived quantities for the no fin configuration, Configuration 1 (NAVY, Configuration 2 (NAVY),

Configuration 3 (NAVY) and Configuration 4 (SSPA) are presented in Table 1 (page 46).

Velocity component ratios for tunnel-fin Configuration 1 (NAVY) and accelerating-fin Configuration 4 (SSPA) are compared in Figures 25 through 28 with the model trimmed 3.75 feet (1.143 m) by the stern ship scale and at the equivalent ship displacement of 17,270 tons (17 550 metric tons). The radius of 1.178 is not presented because pitot tube number 5 was out of the water when the model was towed at the equivalent ship speed of 20 knots. Tabulated results of the mean velocity component ratios and other derived quantitities are presented in Table 2 (page 48).

A variation in fin alignment was also investigated by conducting an experiment with tunnel-fin Configuration 3 (NAVY) rotated up 2.5 degrees, leading edge raised 0.75 inches (1.91 cm) in model scale. This experiment is compared to tunnel-fin Configuration 3 (NAVY) as normally attached to the model at a trim of 1.0 feet (0.305 m) by the bow full-scale and an equivalent full-scale displacement of 26,390 tons (26 810 metric tons). The velocity component ratios are presented as composite plots in Figures 29 through 33. Tabulated results of the mean velocity component ratios and other derived quantities are presented in Table 3 (page 49).

A listing of the experimental configurations and corresponding ship values is given in Table 4 (page 50).

The results for each of the wake survey experiments are given separately in Appendices A through II, including the following graphs and tables:

- (1) Velocity component ratios at each radius.
- (2) Radial distribution of the mean velocity component ratios.
- (3) Radial distribution of the mean advance angle and the maximum variations of the advance angle.
- (4) A listing of the mean velocity component ratios, the mean advance angle: and other derived quantities.
- (5) Harmonic analysis of the longitudinal velocity component ratios at the experimental and interpolated radii.
- (6) Harmonic analysis of the tangential velocity component ratios at the experimental and interpolated radii.

(7) A listing of the input data.

DISCUSSION OF RESULTS

14,

When comparing the results for Experiment 1 Repeat (October 1980, no-fins) with the results for Experiment 1 (August 1980, no-fins), the data is within the expected limits of repeatability, + 2 percent. In the propeller plane the area of greatest concern is the area where the longitudinal velocity (VX/V) becomes minimum causing the inflow to be non-uniform. This area is around the zero degree position, (i.e., 12 o'clock position). Based on the longitudinal flow (VX,V), the addition of any of the four fin configurations improved the flow into the propeller plane in this critical area. The differences in longitudinal velocities (VX/V) when comparing the results for the different fin configurations are minimal. Thus, instead of showing the results of individual fins, the results of four fins have been averaged and are presented in Figure 34 (page 41) to show a typical wake modification achievable by using any one of the four fins investigated. It is clear from this figure that a fin improves the wake by reducing the velocity defect in the region near the 12 o'clock position. Further analysis and evaluation of the impact of such wake improvement on the propeller cavitation and airborne noise will be reported in a later report.

REFERENCES

- Hampton, Gary A., "Investigations of Underwater Flow Patterns for Three Tunnel-Fin Configurations for the Naval Auxiliary Oiler (AO-177) Represented by Model 5326-1", DTNSRDC Report SPD-544-17, (February 1981).
- Wilson, M. B. and Hampton, G. A., "Measurements of the Effect on Trim on the Nominal Wake of the Naval Auxiliary Oiler AO-177", DTNSRDC Report SPD-544-19, (March 1981).

PROPERTY OF THE PROPERTY OF TH

Figure 1 - Body Plan with Tunnel-fin Configuration 1 (NAVY) and Experimental Radii

Figure 2 - Body Plan with Tunnel-fin Configuration 2 (NAVY) and Experimental Radii

Figure 3 - Body Plan with Tunnel-fin Configuration 3 (NAVY) and Experimental Radii

Figure 4 - Body Plan with Accelerating-fin Configuration 4 (SSPA) and Experimental Radii

Figure 5 - Fitting Room Photographs of Tunnel-fin Configuration 1 Attached to Model

The state of the s

Figure 6 - Fitting Room Photographs of Tunnel-fin Configuration 2
Attached to Model

Figure 7 ~ Fitting Room Photographs of Tunnel-fin Configuration 3 Attached to Model

Figure 8 - Fitting Room Photographs of Accelerating-fin Configuration 4 Attached to Model

Figure 9 - Stern of Model 5326-1 with Rake Attached

Experiment No. 1 without fins
 Experiment No. 1 Repeat without fins

Figure 10 - Composite Circumferential Distribution of the Longitudinal,
Tangential and Radial Velocity Component Ratios without Fins
Experiment 1 (8/80) and Experiment 1 Repeat (10/80) at
a Radius Ratio of 0.359. Displacement 26,390 tons
(26 810 metric tons)

Experiment No. 1 without fins
 ▲ Experiment no. 1 Repeat without fins

Figure 11 - Composite Circumferential Distribution of the Longitudinal,
Tangential and Radial Velocity Component Ratios without Fins
Experiment 1 (8/80) and Experiment 1 Repeat (10/80) at
a Radius Ratio of 0.556. Displacement 26,390 tons
(26 810 metric tons)

Experiment No. 1 without finsExperiment No. 1 Repeat without fins

Figure 12 - Composite Circumferential Distribution of the Longitudinal,
Tangential and Radial Velocity Component Ratios without Fins
Experiment 1 (8/80) and Experiment 1 Repeat (10/80) at
a Radius Ratio of 0.775. Displacement 26,390 tons
(26 810 metric tons)

Experiment No. 1 without finsExperiment No. 1 Repeat without fins

Figure 13 - Composite Circumferential Distribution of the Longitudinal,
Tangential and Radial Velocity Component Ratios without Fins
Experiment 1 (8/80) and Experiment 1 Repeat (10/80) at
a Radius Ratio of 1.017. Displacement 26,390 tons
(26 810 metric tons)

Figure 14 - Composite Circumferential Distribution of the Longitudinal,
Tangential and Radial Velocity Component Ratios without Fins
Experiment 1 (8/80) and Experiment 1 Repeat (10/80) at
a Radius Ratio of 1.178. Displacement 26,390 tons
(26 810 metric tons)

Experiment No. 1 without fins

- Experiment No. 2 Configuration 1 (NAVY)
- + Experiment No. 7 Configuration 4 (SSPA)

Figure 15 - Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY), Configuration 4 (SSPA) and also without Fins at a Radius Ratio of 0.359. Displacement 26,390 tons (26 810 metric tons)

- @ Experiment No. 1 without fins
- Experiment No. 2 Configuration 1 (NAVY)
- * Experiment No. 7 Configuration 4 (SSPA)

Figure 16 - Composite Circumferential Distribution of the Longitudinal,
Tangential and Radial Velocity Component Ratios for Fins
Configuration 1 (NAVY), Configuration 4 (SSPA) and also
without Fins at a Radius Ratio of 0.556. Displacement
26,390 tons (26 810 metric tons)

Experiment No. 1 without fins

- Experiment No. 2 Configuration 1 (NAVY)
- * Experiment No. 7 Configuration 4 (SSPA)

Figure 17 - Composite Circumferential Distribution of the Longitudinal,
Tangential and Radial Velocity Component Ratios for Fins
Configuration 1 (NAVY), Configuration 4 (SSPA) and also
without Fins at a Radius Ratio of 0.775. Displacement
26,390 tons (26 810 metric tons)

- Experiment No. 1 without fins
- Experiment No. 2 Configuration 1 (NAVY)
- * Experiment No. 7 Configuration 4 (SSPA)

Figure 18 - Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY), Configuration 4 (SSPA) and also without Fins at a Radius Ratio of 1.017. Displacement 26,390 tons (26 810 metric tons)

- Experiment No. 1 without fins
- Experiment No. 2 Configuration 1 (NAVY)
- Experiment No. 7 Configuration 4 (SSPA)

Figure 19 - Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY), Configuration 4 (SSPA) and also without Fins at a Radius Ratio of 1.178. Displacement 26,390 tons (26 810 metric tons)

- Experiment No. 2 Configuration 1 (NAVY)
- Experiment No. 4 Configuration 2 (NAVY)
- * Experiment No. 6 Configuration 3 (NAVY)

Figure 20 - Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY), Configuration 2 (NAVY) and Configuration 3 (NAVY) at a Radius Ratio of 0.359. Displacement 26,390 tons (26 810 metric tons)

- m Experiment No. 2 Configuration 1 (NAVY)
- A Experiment No. 4 Configuration 2 (NAVY)
- * Experiment No. 6 Configuration 3 (NAVY)

Figure 21 - Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY), Configuration 2 (NAVY) and Configuration 3 (NAVY) at a Radius Ratio of 0.556. Displacement 26,390 tons (26 810 metric tons)

- Experiment No. 2 Configuration 1 (NAVY)
- Experiment No. 4 Configuration 2 (NAVY)
- Experiment No. 6 Configuration 3 (NAVY)

Figure 22 - Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY), Configuration 2 (NAVY) and Configuration 3 (NAVY) at a Radius Ratio of 0.775.

Displacement 26,390 tons (26 810 metric tons)

- Experiment No. 2 Configuration 1 (NAVY)
 Experiment No. 4 Configuration 2 (NAVY)
- * Experiment No. 6 Configuration 3 (NAVY)

Figure 23 - Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY), Configuration 2 (NAVY) and Configuration 3 (NAVY) at a Radius Ratio of 1.017. Displacement 26,390 tons (26 810 metric tons)

- @ Experiment No. 2 Configuration 1 (NAVY)
- * Experiment No. 4 Configuration 2 (NAVY)
- * Experiment No. 6 Configuration 3 (NAVY)

Figure 24 - Composite Circumferential Distribution of the Longitudinal,
Tangential and Radial Velocity Component Ratios for Fins
Configuration 1 (NAVY), Configuration 2 (NAVY) and
Configuration 3 (NAVY) at a Radius Ratio of 1.178
Displacement 26,390 tons (26 810 metric tons)

© Experiment No. 3 Configuration 1 (NAVY)

Transfer the second second second second second second second second second second second second second second

* Experiment No. 8 Configuration 4 (SSPA)

Figure 25 - Composite Circumferential Distribution of the Longitudinal,
Tangential and Radial Velocity Component Ratios for Fins
Configuration 1 (NAVY) and Configuration 4 (SSPA) at a
Radius Ratio of 0.359. Displacement 17,270 tons
(17 550 metric tons)

- @ Experiment No. 3 Configuration 1 (NAVY)
- A Experiment No. 8 Configuration 4 (SSPA)

Figure 26 - Composite Circumferential Distribution of the Longitudinal,
Tangential and Radial Velocity Component Ratios for Fins
Configuration 1 (NAVY) and Configuration 4 (SSPA) at a
Radius Ratio of 0.556. Displacement 17,270 tons
(17 550 metric tons)

- a Experiment No. 3 Configuration 1 (NAVY)
- * Experiment No. 8 Configuration 4 (SSPA)

Figure 27 - Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 1 (NAVY) and Configuration 4 (3SPA) at a Radius Ratio of 0.775. Displacement 17,270 tons (17 550 metric tons)

ş

@ Experiment No. 3 Configuration 1 (NAVY)

* Experiment No. 8 Configuration 4 (SSPA)

Figure 28 - Composite Circumferential Distribution of the Longitudinal,
Tangential and Radial Velocity Component Ratios for Fins
Configuration 1 (NAVY) and Configuration 4 (SSPA) at a
Radius Ratio of 1.017. Displacement 17,270 tons
(17 550 metric tons)

Experiment No. 4 Configuration 3 (NAVY)

* Experiment No. 5 Configuration 3 (NAVY) leading edge raised

Figure 29 - Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 3 (NAVY) and Configuration 3 (NAVY) Leading Edge Raised 2.5 Degrees at a Radius Ratio of 0.359.

Displacement 26,390 tons (26 810 metric tons)

- □ Experiment No. 4 Configuration 3 (NAVY)
- * Experiment No. 5 Configuration 3 (NAVY) leading edge raised

Figure 30 - Composite Circumferential Distribution of the Longitudinal,
Tangential and Radial Velocity Component Ratios for Fins
Configuration 3 (NAVY) and Configuration 3 (NAVY) Leading
Edge Raised 2.5 Degrees at a Radius Ratio of 0.556.
Displacement 26,390 tons (26 810 metric tons)

□ Experiment No. 4 Configuration 3 (NAVY)

Figure 31 - Composite Circumferential Distribution of the Longitudinal,
Tangential and Radial Velocity Component Ratios for Fins
Configuration 3 (NAVY) and Configuration 3 (NAVY) Leading
Edge Raised 2.5 Degrees at a Radius Ratio of 0.775.
Displacement 26,390 tons (26 810 metric tons)

^{*} Experiment No. 5 Configuration 3 (NAVY) leading edge raised

- □ Experiment No. 4 Configuration 3 (NAVY)
- * Experiment No. 5 Configuration 3 (NAVY) leading edge raised

Figure 32 - Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 3 (NAVY) and Configuration 3 (NAVY) Leading Edge Raised 2.5 Degrees at a Radius Ratio of 1.017. Displacement 26,390 tons (26 810 metric tons)

@ Experiment No. 4 Configuration 3 (NAVY)

* Experiment No. 5 Configuration 3 (NAVY) leading edge raised

Figure 33 - Composite Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios for Fins Configuration 3 (NAVY) and Configuration 3 (NAVY) Leading Edge Raised 2.5 Degrees at a Radius Ratio of 1.178.

Displacement 26,390 tons (26 810 metric tons)

Figure 34 - Typical Improvement of the Longitudinal Velocity (VX/V) with the Addition of Fins

Configuration 1 (NAVY), Configuration 2 (NAVY), Configuration 3 (NAVY), and Configuration 4 (SSPA), Trimmed 1.0 feet (0.305 m) by the Bow. Displacement 26,390 Tons (26 810 metric tons). - Comparison of the Circumferential Mean Velocity Component Ratios and other Darived Quantities for the without Fins Configuration and with Table 1

The state of the s

BNEC	-38.71 -32.61 -32.05 -39.26 -28.80	-18.38 -11.97 -11.21 -20.69 -15.03	-16.94 -9.03 -7.53 -15.07 -12.38 -17.14	12.06 -12.09 -12.09 -16.97 -9.08 -9.19 -11.76	-16.58 -9.61 -9.43 -8.98 -11.20	-16.12 -9.61 -9.89 -9.46
BPOS	22.05 23.24 27.61 24.67 20.40	13.72 9.29 9.06 10.31 11.08	11.60 8.38 7.02 8.15 10.18	9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7.26 7.74 7.47 7.79 7.67	6.52 6.81 6.58 6.70 6.43
BBAR	30.26 23.88 21.34 24.92 30.68	28.27 25.12 23.86 24.70 28.59	27.05 24.93 24.04 24.20 27.40	24.03 24.03 24.03 22.336 22.56 24.58	22.79 22.48 22.13 ' 21.79 23.44	21.49 21.49 21.14 21.12 22.40
1-4X	86.6.6.6.6.	. 456 . 376 . 389 . 389	. 504 . 431 . 439 . 509	527 527 527 527 527 512 513 586	. 562 . 562 . 548 . 547 . 618	. 626 . 589 . 574 . 573
1-4VX	868888	.443 .375 .346 .375	. 503 . 503 . 503	55. 517. 517. 52. 52. 53. 53. 53. 53.	.599 .560 .539 .41	.619 .586 .566 .569
VEBAR	.143 .137 .118 .129	.099 .096 .095 .095	.081 .083 .083 .077	. 066 . 066 . 066 . 066 . 066	. 039 . 048 . 050 . 041	. 045 . 054 . 055 . 055
VIBAR	. 000 . 000 . 000 . 000				008	007 006 006
VXBAR	.360 .280 .246 .293	.498 .412 .411 .508	. 557 . 519 . 502 . 578 . 608	650 651 651 650 650 650 650 650 650	.723 .713 .699 .690	.732 .733 .719 .719 .768
RADTUS	.200	.300	.359	*005.	. 556	*009.
Fin	NONE 1 (NAVY) 2 (NAVY) 3 (NAVY) 4 (SSPA)	NONE 1 (MAVY) 2 (NAVY) 3 (NAVY) 4 (SSPA)	1 (MAVY) 2 (MAVY) 3 (MAVY) 4 (SSPA) 1 (MAVY)	0	NONE 1 (NAVY) 2 (NAVY) 3 (NAVY) 4 (SSPA)	NONE 1 (NAVY) 2 (NAVY) 3 (NAVY) 4 (SSPA)
Experi-	HW047	H4641	H4642 H	1642 HU642	H4647	H0047

Table 1 - Continued

other Derived Quantities for the without Fins Configuration and with Configuration 1 (NAVY), Configuration 2 (NAVY), Configuration 3 (NAVY), and Configuration 4 (SSEA), Trimsed 1.0 feet (0.305 m) by the Bow. Displacement 26,390 Tons (26 810 metric tons). Comparison of the Circumferential Mean Velocity Component Ratios and

-14.89 -9.22 -10.66 -9.92	-13.87 -8.68 -10.58 -9.69	-13.34 -8.25 -10.05 -9.33	-11.77 -7.13 -8.40 -8.09 -7.14	-6.28 -7.20 -7.01 -6.89	-10.13 -5.88 -6.54 -6.36 -8.01
5.12 5.12 5.02 4.82 4.33	4.27 4.19 4.10 3.81	4.00 3.82 3.76 3.52 3.09	3.12 2.67 2.73 2.70 2.41	1.85 2.01 2.11 1.90	1.68 1.59 2.35 1.83
19.12 19.55 19.26 19.61 20.30	17.73 18.29 18.08 18.49 18.89	17.46 17.95 17.81 18.10 18.40	16.25 16.58 16.64 16.58 16.65	14.93 15.09 14.87 14.96	12.27 12.61 12.75 12.58 13.06
.662 .638 .623 .625	.685 .669 .655 .656	.689 .676 .663 .688	.714 .708 .697 .702 .744	.737 .729 .731	.757 .762 .759 .757
.655 .635 .617 .621	.665 .665 .649 .653	.683 .673 .657 .664	.709 .705 .692 .699 .741	. 734 . 724 . 729 . 764	. 754 . 760 . 755 . 755 . 786
.052 .060 .070 .061	.053 .059 .070 .061	.048 .054 .067 .055	. 035 . 037 . 057 . 039	.030 .057 .035	.045 .041 .077 .054
006 007 008 008	- 004 - 007 - 006 - 009	002 006 006 008			.001 003 007 006
.753 .771 .759 .773	.769 .795 .785 .803	. 782 . 804 . 798 . 811	.832 .834 .834 .832 .837	.843 .853 .839 .845	.797 .819 .827 .816
.700*	.775	*800	*006.	770-7	1.178
NONE 1 (NAVY) 2 (NAVY) 3 (NAVY) 4 (SSPA)	MONE 1 (NAVY) 2 (NAVY) 3 (NAVY) 4 (SSPA)	NONE 1 (NAVY) 2 (NAVY) 3 (NAVY) 4 (SSPA)	NONE 1 (NAVY) 2 (NAVY) 3 (NAVY) 4 (SSPA)	1 (NAVY) 2 (NAVY) 3 (NAVY) 4 (SSPA)	NOTE 1 (NAVY) 2 (NAVY) 3 (NAVY) 4 (SSPA)
12947	H404F	14621	10947	12921	12947

Table 2 - Comparison of the Circumferential Mean Velocity Component Ratios and other Derived Quantities for Fins Configuration 3 (NAVY), and Configuration 4 (SSPA), Trimmed 3.75 feet (1.143 m) by the Stern. Displacement 17,270 Tons (17 550 metric tons).

BNEG	-21.95 -23.74	-6.33 -7.95	-3.75	-5.12 -6.35	-7.85 -8.24	-8.54 -8.56	-8.81 -8.72	-9.28 -8.29	-8.76 -7.20	-8.50 -6.39	-7.00 -5.39	-5.94	-7.13
POS	21.04 20.56	5.31	4.19	5.39	6.79 8.15	6.88	6.38 6.56	5.35 4.56	4.60 3.54	4.35	3.35	2.28	1.95
BBAR	25.05 23.40	24.75 24.82	24.18 24.69	23.69	22.29 23.21	21.41 22.36	20.51 21.42	18.75 19.52	17.62 18.26	17.28 17.85	16.01 16.34	14.71 14.79	12.91
1-WX	000.	.381	.431	.443	.508	.557	.564	.610	.640	.647	.679 .703	.711	E R .760
1-wx	000.	.374	.425	.440	.505	.537	.561	.606	.636	.643	.675 .701	.707	OF WAT
VRBAR	.109	.083	.070	.064	.054	.052	.058	.065	.053	.065	.055	.033	0 U T
VTBAR	.001	001	003	004	900	007	009	011	012	011	009	003	T. TUBE003
VXBAR	.291	.430	.500	.544	.635	.675 .711	.695	.735	.762	.800	.801	.830	P I T 0 .839
RADIUS	.200*	.300*	.359	.400 4	.500⁴	.556	* 009 *	.700*	277.	*008*	*006*	1.017	1.178
Fin	1 (NAVY) 4 (SSPA)	1 (NAVY) 4 (SSPA)	1 (NAVY) 4 (SSPA)	1 (NAVY) 4 (SSPA)	1 (NAVY) 4 (SSPA)	1 (NAVY) 4 (SSPA)	1 (NAVY) 4 (SSPA)	1 (NAVY) 4 (SSPA)	1 (NAVY) 4 (SSPA)	1 (NAVY) 4 (SSPA)	1 (NAVY) 4 (SSPA)	1 (NAVY) 4 (SSPA)	1 (NAVY) 4 (SSPA
Experi- ment No.	~∞	m w	m &	m &	mω	നയ	നയ	നയ	mω	m∞	m &	mω	mω

* INTERPOLATED

Table 3 - Comparison of the Circumferential Mean Velocity Component Ratios and other Derived Quantities for Fin Configuration 3 (NAVY) and Configuration 3 (NAVY) Leading Edge Raised 2.5 Degrees. Trimmed 1.0 feet (0.305 m) by the Bow. Displacement 26,390 Tons (26 810 metric tons).

Exper 1-	Fin	RADIUS	VXBAR	VTBAR	VRBAR	1-WX	1-WX	BBAR	BPOS	BNEG
Rent No.	Angle (Degrees)									
4 10	2.5	.200*	.293	.007	.129	000	000	24.92	24.67 32.20	-39.26 -39.88
		*006	723	5	200	375	86	07. 70	10 31	20.69
r v n	2.5		424	.003	.093	.370	.382	24.36	10.62	-10.99
4	0	.359	.502	100	620	.427	439	24.20	8.15	-15.07
S	2.5		767	002	.076	.420	.430	23.89	7.35	-7.30
4	0	*007	548	000	.070	.441	.447	23.78	8.22	-12.49
· v	2.5		.538	004	290.	.434	.440	23.46	8.03	-10.62
7	0	.500*	.644	004	.055	.509	.513	22.56	8.00	-9.19
S	2.5		.631	009	.050	.500	.504	22.19	8.76	-15.67
4	0	. 556	.690	005	.050	.543	.547	21.79	7.79	8.8
v	2.5		.674	010	.046	.533	.537	21.39	8.57	-16.11
4	0	*009*	.719	006	.055	.569	.573	21.12	6.70	97.6-
v	2.5		669.	008	.051	. 558	.562	20.62	7.27	-13.58
•4	0	*004	.773	008	.061	.621	.625	19.61	4.82	-9.92
S	2.5		.749	004	.058	909.	.610	19.01	5.05	-9.92
4	0	277.	.803	009	190.	.653	.656	18.49	3.81	-9.69
'n	2.5		.778	003	.058	.637	.641	17.90	3.93	-8.29
4	0	*008.	.811	008	.055	799.	899.	18.10	3.52	-9.33
'n	2.5		.785	002	.052	.647	.650	17.52	3.73	-7.89
4	0	*006*	.832	005	.039	669.	.702	16.58	2.70	-8.09
Ŋ	2.5		808	003	.036	. 680	.683	16.12	2.99	-7.21
4	0	1.011	.839	004	.035	.729	.731	14.87	2.11	-7.01
'n	2.5		.825	0.004	.032	.711	.714	14.64	2.27	-6.58
4	0	1.178	.816	006	.054	.755	757.	12.58	1.83	-6.36
S)	2.5		.830	010	.054	.742	.744	12.80	1.67	-5.81

*INTEPPOLATED

TABLE 4 - EXPERIMENTAL CONFIGURATIONS AND CORRESPONDING SHIP VALUES

meters	0.305	0.305	1.143	0.305	0.305	0.305	1.143	0.305
Trim feet	1' x bow	1 x bow	3.75' x stern	1' x bow	1 x bow	1' x bow	3.75' x stern	1' x bow
Displacement metric tons	26 810	26 810	17 550	26 810	26 810	26 810	17 550	26 810
tons	26,390	26,390	17,270	26,390	26,390	26,390	17,270	26,390
Fin Configuration	none	1 (NAVY)	1 (NAVY)	3 (NAVY)	3 (NAVY)*	2 (NAVY)	4 (SSPA)	4 (SSPA)
Experiment No.	1 Repeat	2	e	4	5	9	7	a.

* Leading edge up 2.5 degrees

Ship Speed = 20 knots Propeller Diameter = 21 feet (6.40 m)

APPENDIX A

EXPERIMENT 1 Repeat 10/80

FIN CONFIGURATION none

SHIP VALUES

·

Trim 1.0 ft by the bow (0.305 m)
Displacement 26,390 tons (26 810 metric tons)
Propeiler Diameter 21.0 ft (6.40 m)
Speed 20.0 knots
Jy 1.01

Figure Al Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 1 (10/80) Radius Ratio = 0.359

Figure A2 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 1 (10/80) Radius Ratio = 0.556

Figure A3 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 1 (10/80) Radius Ratio = 0.775

Figure A4 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 1 (10/80) Radius Ratic = 1.107

Figure A5 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 1 (10/80) Radius Ratio = 1.178

Figure A6 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 1 (10/80)

and the first of t

Figure A7 - Radial Distribution of the Mean Advance Angle and the Maximum Variations of the Advance Angle for Experiment 1 (10/80)

and other Derived Quantities for Experiment 1 Repeat (10/80) without Fins Table Al - Listing of the Mean Velocity Component Ratios, the Mean Advance Angles

006.	.817	.003	.035	.709	.714	16.25	3.12	-11.77
.800	.782	002	.048	.683	.689	17.46	4.00	-13.34 5.00
. 700	. 753	006	.052	. 655	.662	19.12	5.12	0.00
.600	.732	007	.045	.619	.626	21.49	6.52 87.50	-16.12
.500	.690	008	.045	.570	.577	24.03	8.13	-16.97
. 400	. 608	008	.066	.507	.516	26.19	10.40	-17.14
.300	. 498	006	960.	.443		29.27	13.72	-18.38 32.50
.200	.366	005	. 143	000.0	000.0	30.25	22.05 223.00	-38.71 42.50
1.178	.797	. 001	.043	.754	.757	12.27	1.68 170.00	-10.13
1.017	.830	.005	.031	.732	.736	14.67	2.37	-10.49
.775	.769	004	.053	.679	.685	17.73	4.27	-13.87
.556	.723	003	.039	565.	.606	22.79	7.26	-16.58
RADIUS = .359	567	=007	= .078	= .493	.504	= 27.05	= 11.60	=-16.94
RADIUS	VXBAR	VTBAR	VRBAR	1-WVX	1-WX	BBAR	820S THETA	BNEG Taeta

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

IS CIPCUAL, TENTIAL MEAN RADIAL VELOCITY.

IS VOLUMETRIC MEAN MAYE VELOCITY WITHOUT TANGENTIAL CORRECTION.

IS MAIN ARGE OF ADVAJOE.

IS MAIN ARGE OF ADVAJOE.

IS VARIATION BETWEEN 14E MAXIMUM AND MEAN ADVANCE ANCLES (DELTA BETA PLUS).

IS VAPIATION BETWEEN 14E MINIMUM AND MEAN ADVANCE ANCLES (DELTA BETA MINUS).

IS VAPIATION BETWEEN 14C MINIMUM AND MEAN ADVANCE ANCLES (DELTA BETA MINUS).

IS ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCURS. VABAR VTBAR VEBAR 1-%VA 1-22 BBAR BPOS BNEG THETA

SHIP VALUE.

Trim 1.0 ft by the bow (0.305 m) Displacement 26,390 tons (26 810 metric tons) Propeller Dismeter 21.0 ft (6.49 m) Speed 20.0 knots 1.01

Table A2 - Harmonic Analysis of the Longitudinal Velocity Component Ratios for Experiment 1 Repeat (10/80) without Fins

Experimental Radii

HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .359 AMPLITUDE =	2433	1424	.0576	9236	.0199	0144	.0053	0049
RADIUS = .556 = EDUTIJAMA	1999	2264	0170	0587	. 3316	0335	.0122	0212
RADIUS = .775 AMPLITUDE =	2191	1832	0675	0641	.0015	0257	.0076	0158
RADIUS = 1.017 AMPLITUDE =	1921	1404	0946	0514	0239	0165	0080	0074
RADIUS = 1.178 AMPLITUDE =	1830	1354	0924	0573	0303	0198	0128	0088

Interpolated Radii

HARMONIC	z	1	2	3	4	5	6	7	8
RADIUS - AMPLITUDE	.200	3203	.0104	.1380	.0256	0165	.0191	6079	.0230
RADIUS = AMPLITUDE	.300	2675	0945	.0853	0075	. 0092	0038	.0012	.0039
RADIUS = AMPLITUDE	.400	2295	1695	.0398	0332	. 0253	0204	.0076	0:00
RADIUS = AMPLITUDE	.500	2064	2144	.0014	0516	. 0320	0306	.0113	0187
RADIUS = AMPLITUDE	.600	2071	2174	0291	0611	.0250	0320	.0123	0203
PADIUS =	.700	2172	1975	0529	0641	.0110	0285	.0102	0179
RADIUS = AMPLITUDE	.800 =	2155	1768	0719	0616	0020	0240	.0056	0143
RADIUS = AMPLITUDE	.900	2031	1558	0960	0543	0140	0188	6017	0099

Table A3 - Harmonic Analysis of the Tangential Velocity Component Ratios for Experiment 1 Repeat (10/80) without Fins

Experimental Radii

HARMONIC		1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	. 359	0561	0122	.0483	0102	.0197	0087	.0076	0024
RADIUS = AMPLITUDE	.556 *	-,1233	0287	.0149	0021	,0199	0111	.0119	0112
RADIUS # AMPLITUDE		1364	0388	0143	0006	.0038	0011	.0032	0044
RADIUS * AMPLITUDE		1294	0464	0207	0045	0014	.0020	.0007	.0005
RADIUS *		1324	0545	0244	0079	0046	0008	0016	0011

Interpolated Radii

HARMONIC	*	1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	.200	.0364	.0062	.0803	0212	,0094	.0011	0043	.0150
RADIUS = AMPLITUDE	.300	0258	0059	.0597	0138	,0169	0059	.0041	.0030
RADIUS = AMPLITUDE	.400	0744	0162	.0408	0000	.0209	0101	.0094	0054
RADIUS = AMPLITUDE	.500	-,1096	0247	.0237	0038	.0212	0115	.0119	0102
RADIUS = AMPLITUDE	.600 =	1274	0309	.6072	0014	.0158	0035	.0097	0097
RADIUS = AMPLITUDE	.700	1340	0356	0068	0006	.0081	0037	.0035	0064
RADIUS = AMPLITUDE	.800	1350	0393	0150	0009	.0032	0004	.0030	0035
RADIUS = AMPLITUDE	.900	1311	0421	0177	0024	.0010	.0016	.0020	~.0008

Table A4 - Input Data for Wake Survey Analysis
Experiment 1 Repeat (10/80) without Fins

	RADIUS	* .359		64,0	.844	- 150	
ANGLE	VX/V	VT/V	VR/V	80.1	.916	159 141	034
1.3	,208	.00з	.092	96.6	.922		010
3.1	.227	.005		112.4	.935	125	.014
4.9	.244		.085	128.7		105	.045
8.5	.205	.015	.090	144.9	.939	081	.066
12.2	.238	.024	.098	160.9	.921	057	.085
15.8		.015	.087	164.5	.870	.008	.119
31.y	.259	.016	.086		.830	.033	.118
31.9	.291	.012	.055	168.1	.740	.066	.092
	•28 6	.003	.056	171.6	.627	.074	.035
46.1	, 65 8	040	.042	175.3	. 602	.071	.005
64.5	.497	079	. 0 .⁴ છે	177.0	.543	.060	~.012
80.7	.648	107	.074	178.9	.522	.045	026
97.1	.75 7	103	.097	179.5	.435	.031	026
113.2	.823	038	.117	180.6	.501	.027	031
129.6	.828	044	.129	181.3	.495	.014	036
145.8	.315	.010	.135	183,2	.511	010	030
161.9	.7!1	.064	.080	184.9	.514	033	
178.1	.556	.031	008	188.6	.537	055	024
170.8	.612	.063	.022	192.1	.658	063	.011
172.5	.592	. 660		195.8	.692	058	.064
174.5	.53 3	.052	.008	211.9	.846		.089
175.4	.535	.049	.009	228.1	.871	.044	.113
178.1	.565	.051	006	244.5	.871	.067	.086
190.0	,546		004	260.6	.896	.088	.063
161.8	,543	.040	014	277.1		.106	.03.3
133.7	.530	.025	021	277.1	.895	. 127	.005
185.5	_	009	019	293.3	.809	.128	.003
169.1	.522	017	020	309.6	.819	.136	009
	.532	054	007		.623	.117	010
192.7	. 5.13	073	.013	325.8	•50 6	.070	.015
193.3	.60 0	082	.030	341.9	. 331	.008	.055
212.2	.714	045	.125	345.5	.27 7	.021	.067
228.1	.802	.025	.131	3.9.2	.247	.017	.091
244.1	.76 5	.C41	.115	352.8	.242	.020	.114
260.2	.747	. 069	.098	356.5	· 252	.006	.114
276.4	•63 7	.074	.064	353.2	. 254	021	.116
292.5	•53 6	.069	.056	360.0	.174	.009	0.000
300.8	.419	.008	.044				0.000
324.8	.319	.004	.044		RADIUS =	.775	
340.9	.242	025	.065	ANGILE	VX/V	VΥ/V	VR/V
341.4	.2.8	036	.090	.8	85	014	•
48.1	.229	020	.085	2.5	.189	.008	.136
351.6	. 246	014	.086	4.4	135	0.000	.145
355,3	.233	.001		7.9	1.9	029	.149
357.0	. 231	012	.111	11.5	.221	029	.148
358.8	.227	009		15.1	.276	044	.126
360.7	. 227	.011	.101	30.9	.478		.083
362.5	.248		.102	47.1	.701	103	.001
	. 2 40	.014	.088	63.3	.848	146	042
	RADIUS =			79.5	.911	159	032
ANGLE	V^/V	.558		93.7		143	.017
1.8		V T / V	V R/V	112.1	.921	125	.051
3.8	.215	027	.114	130.5	.926	1:0	.073
	.235	027	.124	148.1	.932	087	ن90.
5.5	. 246	013	.105	166.1	.928	~.007	.103
12.9	. 275	028	.066		.936	044	.119
16.5	. 305	039	.063	169.6	.931	009	.124
32.2	.524	092	.002	173.2	.922	029	.127
48.0	.68 8	133	026	176.8	.910	.017	.136
				178.7	.876	.055	.135
				180.5	.77 7	.092	.118
				182.2	. 6o 1	.102	.075
				184.0	.589	.084	.025
				187.6	. 551	034	.010
						· · · · ·	

Table A4 - Continued

191.1	.650	099	.087	362.2	.231	.021	. 135
194.7	.810	072	.135		-		
200.0	.905	.030	.135		RADIUS :		VR/V
212.7	.911	.040	.116	ANGLE	VX/V	VT/V	.120
230.6	.916	.060	.106	1.3	.182	.001	
248.4	.901	.081	.086	3.1	.236	041	.120
266.4	.889	. 104	.058	4.9	.281	059	
284.5	.878	. 126	.028	8.5	.329	073	.061
302.7	.831	. 154	022	12.2	.371	079	.042
320.7	.729	.148	050	15.8	.407	081	.014
338.8	.479	.102	000	31.9	.612	150	060
344.1	.420	.032	.024	31.9	.628	158	066
347.7	.350	.066	.035	48.1	.785	-,153	045
351.4	.305	.047	.069	64.5	.843	154	.013
354.9	. 262	.030	.084	80.7	.876	124	.049
355.0	. 263	.039	.083	97.1	. 875	165	.067
356.9	. 265	.029	.086	113.2	.8C9	083	.088
358.7	.223	.029	.117	129.6	.880	059	.094
360.5	.235	.013	.128	145.8	.887	043	.100
362.3	,168	.007	.144	161.9	.697	026	.101
				178.1	. 386	.002	.092
	RADIUS =			170.8	. 509	008	.098
ANGLE	yx/V	VT/V	VR/V	172.6	.901	006	.095
2.2	. 231	.021	.135	174.5	.932	004	.095
4.0	. 250	.013	,141	173.4	.899	004	.094
7.6	. 314	029	.096	178.1	.aº9	.002	.094 .092
11.1	. 348	043	.070	180.0	, 89 2	.003	
14.7	.366	051	.051	181.8	.893	.004	.091
32.7	.637	127	065	193.7	.900	.007	.091
50.6	.828	-,143	073	185.5	89 7	.010	.093
63.4	.913	135	020	189.1	.901	.016	.094
83.4	.934	115	.018	192.7	.834	.022	.096 . 0 99
104.5	. 923	092	, 048	196.3	.907	.027	.093
122.7	. 95 2	071	.064	212.2	.915	.040	.037
140.7	. 930	048	.075	228.1	.921	.055	.037
151,1	. 946	024	.084	244.1	.915	.076	.062
167.7	.934	017	.081	260.2	.906	.094 .121	.039
171.4	.935	016	.081	276.4	,899	•	.017
174.9	.932	015	.079 .075	292.5	.904	.137 .153	029
176.9	.953	017	,075	. 308.8	.861 .75 9	.160	057
178.7	.940	011	.075	324.8	. 739	,115	014
175.2	.918	017	.120	340.9	.445	.102	.007
179.5	. 898	.024	.084	344.4	.402	.086	.029
160.5	.956	004 005	.086	348.1 351.6	.336	. 253	.058
150.8	. 949	.013	.095	351.6	.234	.055	.090
182.3	. 944	.019	.096	357.0	.269	.051	. 393
132.5	.97 7	011	.112	358.8	.215	.013	.119
137.9	.935	.024	.037	360.7	.176	020	.120
141.5	0د؟ . ددې	.024	.037		.253	049	.126
185.1	.938	.041	.064	362.5		, , , ,	*
210.9	.938	.064	.081				
22/.1	. 425	.004	.070				
243.3	.934 .925	.100	.054				
259.5	.931	,118	.033				
275.7	.925	,137	.600				
292.1	.873	.160	043				
310.5	.761	.152	065				
328.1	. 781	.020	.005				
346.1	.491	.074	.033				
349.6	.378	.058	.053				
353.2 356.8	.376	.044	.032				
	.321	.041	.086				
358.7		. •					

APPENDIX B

EXPERIMENT 2

FIN CONFIGURATION 1 (NAVY)

SHIP VALUES

Trim 1.0 ft by the bow (0.305 m) Displacement 26,390 tons (26 810 metric tons) Propeller Dismeter Speed 20.0 knots J_V 1.01

Figure B1 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 2
Radius Ratio = 0.359

Figure B2 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 2
Radius Ratio = 0.556

Figure B3 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 2
Radius Ratio = 0.775

Figure B4 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 2
Radius Ratio = 1.107

Figure B5 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 2
Radius Ratio = 1.178

Figure B6 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 2

Figure B7 - Radial Distribution of the Mean Advance Angle and the Maximum Variations of the Advance Angle for Experiment 2

and other Derived Quantities for Experiment 2 with Fin Configuration 1 - Listing of the Mean Velocity Component Ratios, the Mean Advance Angles Table B1

006.	.832	005	.037	.705	.708	16.58	2.67	-7.13 355.00
.800	.804	006	.054	.673	÷676	17.95	3.82	-8.25
. 700	.771	007	.060	. 635	. 638	19.55	5.12	0.00
.600	.733	006	.054	.586	.589	21.49	6.81	0.00
. 500	.670	004	.054	.524	.527	23.36	8.04	-9.08 5.00
. 400	.569	001	.071	.450	.452	24.60	8.32	-8.72 22.50
.300	.439	.003	660.	.375	.380	25.12	6.29 230.00	-11.97 56.00
.200	.280	€30.	.137	0.000	0.000	23.88	175.00	-32.61 82.50
1.178	.819	£00	.041	.760	.752	12.61	1.59 195.00	-5.88 2.50
1.017	.343	004	.030	.734	.737	14.93	1.85	-6.28 355.00
.775	.795	007	.059	.665	669.	18.29	90.00	-8.68 0.00
. 556	.713	006	.048	.560	.562	22.48	7.74	-3.51
- 359	= .519	100. =	= .081	434	. 438	= 24.93	= 8.38 =127.50	= -9.03
RADIUS =	VXBAR	VTBAR	VRBAR	1-W/X	1 – W X	8849	BPOS THE TA	BNCG THETA

IS CIRCUMFERENTIAL MEAN LOIG.TUDINAL VELOC.TY.

IS CIRCUMFERENTIAL MEAN TAISENTIAL VELOCITY.

IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS VOLUMETRIC MEAN WAKE YELOCITY WITH TANGENTIAL COPRECTION.

IS WARIATION BETWEEN THE NAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA PLUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BREG OCCURS. 1-%A 8888 8708 8760 17860 1-X/X

SHIP VALUES

Trim 1.0 ft by the bow (0.305 m)
Displacement 26,390 tons (26 810 metric tons)
Propeller Dismeter 21.0 ft (6.40 m)
Speed 20.0 knots 1.01

Table B2 - Harmonic Analysis of the Longitudinal Velocity Component Ratios for Experiment 2 with Fin Configuration 1

Experimental Radii

HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .359 AMPLITUDE =	1568	0539	.0871	0177	.0108	0027	.0044	0050
RADIUS = .556 AMPLITUDE =	1595	2017	.0659	0362	. 0507	0354	.0181	0180
RADIUS = .775 AMPLITUDE =	1544	1638	0097	0488	.0349	0351	.0241	0292
RADIUS = 1.017 AMPLITUDE =	1455	1161	0475	0311	.0039	0124	.0051	0134
RADIUS = 1.178 AMPLITUDE =	1567	1004	0556	0175	0032	0037	0093	0075

HARMONIC	=	1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	.200	1496	.1912	.0721	.0022	0587	.0463	0123	.0075
RADIUS = AMPLITUDE	.300	1547	.0240	.0849	0168	0111	.0131	0012	0006
RADIUS = AMPLITUDE	.400	1580	0986	.0864	0221	.0234	0121	.0079	0079
HADIUS = AMPLITUDE	.500	1595	1772	.0764	0316	.0446	0293	.0150	0146
RADIUS = AMPLITUDE	.600	1587	-,1945	.0475	0409	.0485	0369	.0210	0222
RADIUS = AMPLITUDE	.700	1565	1774	.0118	0476	.0416	0373	.0245	0281
RADIUS = AMPLITUDE	.800	1520	157C	0150	0471	. 0305	0322	.0223	0272
RADIUS = AMPLITUDE	.900	1459	1355	0330	0400	.0158	0219	.0147	0200

Table B3 - Harmonic Analysis of the Tangential Velocity Component Ratios for Experiment 2 with Fin Configuration 1

Experimental Radii

HARMONIC	*	1	2	3	4	5	6	7	8
	359 =	.0118	.0013	.0656	0101	.0154	0054	.0067	0019
RADIUS # .! AMPLITUDE	556	0982	0124	.0339	0002	.0198	0118	.0125	0060
	775 *	1255	0297	0043	.0015	.0095	0057	.0087	0092
RADIUS = 1.	017 =	1227	0426	0283	0175	0173	0090	0052	0021
RADIUS = 1.	178	1197	0478	0335	0294	-,0327	0199	0115	.0000

HARMONIC	=	1	2	3	4	5	6	7	8
RADIUS = AMPLITUD E	.200	. 1596	.0112	.0896	0238	.0025	.0080	0044	.0023
RADIUS = AMPLITUDE	.300	.0605	.0051	.0747	0146	.0116	0013	.0033	0004
RADIUS = AMPLITUDE	.400	0178	0014	.0592	0073	.0174	0076	.0087	~.0028
RADIUS = AMPLITUDE	.500	0752	0083	.0431	0022	.0198	0111	.0118	0050
RADRUS = AMPLITUDE	.600 ≈	1059	0163	.0249	.0016	.0183	0099	.0124	0074
RADIUS = AMPLITUDE	.700	1193	0344	.0070	.0029	.0145	0068	,0109	0091
RADIUS = AMPLITUDE	.800	~.1253	~.0313	0077	0005	.0065	0053	.0070	0082
RADIUS = AMPLITUDE	.900	1243	0372	0191	0085	0049	0055	.0009	0050

Table B4 - Input Date for Wake Survey Analysis for Experiment 2 with Fin Configuration 1

	0.07115						
ANGLE	RADIUS VX/V	= .359 VT/V	145 / 14	119.7	.942	084	.046
.7	.422	.024	VR/V	135.9	.918	063	.077
4.3	.391	.030	.197 .167	152.0	.85 8 .840	010 .003	.104
6.0	.380	.036	.183	153.3		.025	.090
9.7	.377	.051	.172	156.9 160.6	.759 .713	.037	.084
13.2	.382	.063	.154	164.1	.662	.057	.059
16.8	.358	.070	.139	167.8	.569	.062	.020
22.1	.342	.077	.097	168.2	.581	.069	.036
27.4	. 341	.072	.075	171.4	,510	.058	014
32.9	. 355	. 065	.067	173.2	.472	.049	047
49.2	. 348	.042	.027	175.1	.432	.041	059
65.5	.428	003	.034	176.8	. 427	.032	070
81.8	.463	037	.071	178.7	.425	.019	073
98.0	.610	052	.103	179.1	.431	.026	065
114.3	.69 8	021	. 121	180.5	.445	.001	073
130.6 146.8	.747	.023	.124	180.9	.440	.004	067
162.9	. 69 0	.061	.106	182.7	.441	015	061
166.6	.610 .572	.091	.035	184.4	.46 6	028	056
170.2	.542	.083	.011	188.0	.511	052	031
173.9	.530	.078 .063	005 014	191.5	. 59 3	063	. 005
177.5	.492	.037	014 032	195.1	.660	059	.042 .075
179.3	.482	.036	032	198.7 202.2	.721 .774	045 021	.090
181.1	.476	.008	036	205.8	.827	007	.105
183.0	.50 0	004	035	209.4	. 62 5	.010	.108
184.8	. 491	035	018	227.3	.894	.059	.079
186.6	.475	048	016 •	245.3	.909	.081	.050
188.5	.50 0	037	017	263.2	.901	.106	.025
192.1	.521	071	.009	281.3	.836	.122	.C19
195.6	.531	086	.009	259.4	.63 6	.092	.010
211.6 227.5	.63 2 .68 6	080	.088	317.5	.495	.049	.022
243.9	.790	028 .015	.119	322.7	. 493	.029	.039
260.0	.630	.015	.117 .096	328.0	. 487	.016	.054
276.2	.53 7	.033	.039	333.4 338.8	.448 .439	.005 005	.073 .099
292,2	.441	.011	.036	344.2	.437	012	. 125
308.5	.361	037	.044	349.6	.412	018	. 185
324.7	.363	059	.069	355.1	.413	010	.217
340.9	.386	058	.137	360.5	.396	003	.215
344.4	.374	050	.156				
348.0	.36 8	043	.165		RADIUS :		
351.6 355.2	.378	027	.178	ANG LE	VX/V	VT/V	VR/V
359.0	.374	011	.197	.8	.409	016	.216
360.8	.395 .401	.009 .024	.200	2.7	.426	016	.195
000.0	. 401	.024	.205	4.4	.443	015	.174
	RADIUS =	.556		6.2 9.3	.451 .44 4	024 026	.157 .129
ANGLE	"VX/V	VT/V	VR/V	13.3	.459	045	.129
. 5	.396	003	.215	16.9	.468	057	.089
5.9	.406	000	.175	32.8	.598	103	.026
11.2	.414	.004	.122	49.0	.762	139	017
22.5	.45 5	co4	.063	65.3	.872	142	013
38.7	.537	063	.011	81.5	.939	129	.012
54.8	.670	104	007	97.6	.946	114	.040
71.0 87.5	.804	137	002	113.9	.943	098	. 065
103.7	.906 .947	~.129 ~.104	.003	130.2	.938	081	.083
	. 94 /	104	.018	145.3	.936	066	.097
				162.4 163.1	.921 .905	041 017	.113
				169.6	.859	.027	.125
				173.3	.710	.079	.092
				175.2	.641	.088	.054

Table B4 - Continued

176.8	C04	000	060	005 6			
	. 60 1	.083	.022	227.3	.946	.057	.055
178.6	.52 7	.072	007	245.3	.942	.081	.048
180.4	.492	.039	027	263.2	. 941	.097	
182.3	.477						.026
		020	033	281.3	. 945	.114	000
184.0	.497	049	017	299.4	.912	.118	038
187.3	.€:4	080	.049	317.5	.781		.003
						.126	
191.2	.748	065	.097	322.7	.735	.136	.015
194.8	. 861	020	.127	328.0	.705	.140	.027
203.0	.915	.029	.130	333.4			
				333.4	.636	.133	.041
211.0	. 92 0	.047	.106	338.8	.598	.128	.058
226.0	.930	.062	. ນອຈ	344.2	.565	.102	
243.1			.073				.071
	.92 0	.076		349.6	.512	.077	.083
259.2	.911	.096	.048	355.1	.489	.047	.097
275.4	.907	.118	.025	360.5			
				\$00.5	.483	067	.086
292.3	.861	.137	010				
292.3	. 86 6	。137	011		' RADIUS	= 1 178	
308.2	.76 6	.134	010	ANGLE		•	
					7X/V	VT/V	VR/V
324.1	.643	.097	.034	. 7	.424	039	021
340.6	.575	.047	.083	2.5	.424	067	
356.7	.418	.004	.216		. –		019
- ,	_			4.3	.449	080	005
358.6	.424	.001	.214	6.0	. 450	119	.007
. 4	.411	~.013	.214	9.7	. 481		
						142	.024
351.6	. 444	.010	. 165	13.2	.540	144	.029
				16.8	.575	151	.036
	RADIUS :	1 017		22.1			
411015					.577	187	.043
ANGLE	7X/V	VT/V	VE/V	27.4	.5 9 8	181	.051
359.0	.422	003	.200	32.9	.643	162	.055
.5	.483	067	.086	49.2			
					.743	087	.005
5.9	.505	097	.073	65.5	.85 9	125	022
11.2	.545	113	.046	31.8	.883	119	.020
22.5	.631	154	.017				
		-		98.0	.88 2	101	.049
38.7	.750	140	005	114.3	.878	080	.062
54.8	. 843	115	051	130.6	.903	057	
71.0	.905	- 125	027				.070
				146.8	.837	045	.078
87.5	.920	111	.008	162.9	.905	~.033	.074
103.7	.926	091	.030	166.6	.913		
119.7	.921	C76	.047	470.0		029	.069
- ,				170.2	. 90 7	026	.067
135.9	.935	055	.054	173.9	.907	020	.063
152.0	.931	045	.058	177.5	.913		
149.6	.918	045	.062	450.0		010	.059
				179.3	.910	008	.053
153.3	.936	C44	.062	181.1	.849	.003	.057
153.9	.937	040	.060	183.0	.912		
160.6	.936	037	.063			.007	. ૭૬ ૭
				184.8	.918	.011	.059
164.1	.910	033	.061	186.6	. 925	.016	.061
167.8	.93 9	034	.062	188.5	. 930		
168.2	.933	C35	.060			.019	.063
				192.1	.93 2	.021	.006
171.4	. 942	026	.067	195.6	.933	.022	.C67
173.2	.944	.006	.081	211.6	.917	.035	.073
175.1	.862	.060	.083				
				227.5	.923	.048	.065
176.8	.75 5	.078	.062	243.9	.915	.071	.062
173.7	.674	.031	.041	260.0	.916		
179.1	.677	.029	.043			.087	. 049
				276.2	.921	.109	.029
130.5	.69 9	048	.021	292.2	.906	.119	003
180.9	.714	047	.032	३० छ. ५	.840		
182.7	.801					.077	016
		071	.046	324.7	.711	.158	.056
184.4	.870	059	.035	340.9	.604	.172	.045
188.0	.930	.018	.070	344.4			
					. 581	. 156	.043
191.5	.944	.033	.063	348.0	.556	152	.040
195.1	.936	.038	.063	351.6	.515	.113	.028
198.7	.944	.039	.062	355.2			
202.2					.465	.082	. 009
	.946	.042	.062	359.8	.444	.008	011
205.8	.94 2	.043	.063				
209.4	. 94 3	.045	.061				
,							

APPENDIX C

EXPERIMENT 3

FIN CONFIGURATION 1 (NAVY)

SHIP VALUES

Trim 3.75 ft by the stern (1.143 m) Displacement 17,270 tons (17 550 metric tons)
Propeller Diameter 21.0 ft (6.40 m)
Speed 20.0 knots
Jy 1.01

Figure C1 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 3
Radius Ratio = 0.359

Figure C2 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 3
Radius Ratio = 0.556

Figure C3 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 3
Radius Ratio = 0.775

Figure C4 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 3
Radius Ratio = 1.107

Figure C5 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 3

Figure C6 - Radial Distribution of the Mean Advance Angel and the Maximum Variations of the Advance Angle for Experiment 3

Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities for Experiment 3 with Fin Configuration 1 - Listing Table C1

	.801	009	. 055	.675	629.	16.01	3.35	180.00
. 800	.770	0:1	. 065	. 643	.647	17.28	4.35	-8.50 180.00
.700	.735	611	.065	909.	.610	18.75	5.35	-9.28 182.50
.633	.695	600	.053	.561	.564	20.51	9 .6.38 0 120.00 1	-9.81
			.054	ŵ	ຫຼ	Ξ:		
00+.	.544	004	.064	. 6.40	e 41.	23.59	50 2.28 21.04 5.31 5.39 6.7 50 95.00 167.50 212.50 117.50 120.0	-5.12 180 00
.300	430	031	. 683	.37.	.381	24.73	5.31	00°03
	.291	.001	.109	000.0	0.000	25.05	21.04	-21.35 82.50
1.017	.830	003	.033	.707	.711	14.71	2.28	-5.94
2.7.5	.755	012	.066	લ્ટું.	.64)	17.62	4.69	-8.78 186.00
, 556	.675	007	.052	.537	.5.40	21.41	6.88	-3.54
. 359	0000. =	=003	= .071	425	= .431	= 24 18	= 4.19	= -3.75
RADIUS =	VAEAR	VTEAR	VRBAR	1 - 4 V X	1 - KX	63AR	8POS THETA	BN EG THE 'A

BETA DOUS). BETA WINUS). IS CIRCULTERENTIAL FEAU LOUCITUDINAL VELDOTTY.

IS CIRCULTERATIAL FEAU TAUGENTIAL VELDOTTY.

IS CIRCULTERATIAL FEAU TAUGENTIAL VELDOTTY.

IS CIRCULTERATIAL FEAU TAUGENTIAL VELDOTTY.

IS VOLUMETATO MEAN MAKE VELDOTTY WITHOUT LANGENTIAL COFFECTION.

IS VOLUMETATO MEAN WAKE VELDOTTY WITH TANGENTIAL COFFECTION.

IS MENT ANDLE OF ADVINCE.

IS VARIATION BETWEEN THE FIXITUT AND WEAR ADVANCE MUNICES (DELTAIS VARIATION BETWEEN THE MINITURN AND WEAR ADVANCE ANDLES (DELTAIS VARIATION BETWEEN THE MINITURN AND WEAR ADVANCE ANDLES (DELTAIS ANGLE IN DEGREEO AT WHICH CORPRESPONDING BROS ON ENEG OCCURS. #1887 8877 8000 17863 17817

SHIP VALUES

Trim
Displacement 17,270 tons (17 550 metric tons)
Propeller Dismeter 21.0 ft (6.40 m)
Speed 20.0 knots
Jy

Table C2 - Harmonic Analysis of the Longitudinal Velocity Component Ratios for Experiment 3 with Fin Configuration 1

Experimential Radii

HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .359 AMPLITUDE =	0475	0162	.0486	0276	.0027	0007	.0100	0052
RADIUS = .556 AMPLITUDE =	0803	1551	.0873	0462	.0286	0238	.0031	0099
RADIUS = .775 AMPLITUDE =	1212	~.1553	.0548	0574	.0485	0486	.0257	0378
RADIUS = 1.017 AMPLITUDE =	1445	~.1009	~.0006	0128	.0179	0277	.0087	0253

HARMONIC	=	1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	.200	0239	.1917	0296	0067	0238	.0185	.0344	0157
RADIUS = AMPLITUDE	.300	0385	.0509	.0244	0205	0065	.0064	.0171	0076
RADIUS = AMPLITUDE	.400	0540	0559	.0619	0322	.0087	0056	.0064	0046
RADIUS = AMPLITUDE	.500	0706	1290	.0328	0418	.0220	0173	.0024	0066
RADIUS = AMPLITUDE	.600	0900	1589	.0821	0524	.0363	0321	.0105	0185
RADIUS = AMPLITUDE	.700	1093	1606	.0678	0591	.0468	0448	.0220	0324
RADIUS = AMPLITUDE	.800	1247	1524	.0501	0556	.0479	0488	.0260	-,0386
RADIUS = AMPLITUDE	.900	1361	1344	.0288	0418	. 0396	0442	.0224	0371

Table C3 - Harmonic Analysis for the Tangential Velocity Component Ratios for Experiment 3 with Fin Configuration 1

Experimental Radii

HARMONIC	*	1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	.359	.0624	.0018	.0522	0148	.0086	0073	.0052	0063
RADIUS = AMPLITUDE	.556 ≈	0686	0112	.0335	0124	.0154	0103	.0035	0063
RADIUS = AMPLITUDE	.775	1134	0254	.0021	0098	.0076	0181	.0091	0145
RADIUS = 1 AMPLITUDE	.017	1128	0367	0268	0150	0171	0139	0060	0074

HARMONIC	=	1	2	3	4	5	6	7	3
RADIUS = AMPLITUDE	.200	.2309	.6123	.0608	0168	0062	0077	.0114	0113
FADIUS =	.300	.1164	.0057	.0561	0155	.0041	0072	.6070	0076
RADIUS = /MPLITUDE	.400	.0281	0009	.0490	0143	,0111	0076	.0043	0057
AMPLITUDE	.500	0401	0075	.0307	0131	.0143	0090	.0033	0056
RADIUS = FYSLITUDE	.600 =	0811	0143	.0268	0113	.0149	0127	.0061	0091
RADIUS = AMPHITUDE	.700	1029	0210	.0123	0099	.0118	0166	.0092	0133
PADIUS = AMPLITUDE	.800	1158	0268	0012	0100	.0059	0183	.0036	0146
RADIUS = AMPLITUDE	.900	1197	0319	0136	0115	0030	0176	.0041	0130

Table C4 - Input Data for Wake Survey Analysis for Experiment 3 with Fin Configuration 1

	RADIUS =	.359		79.1	.788	026	.021
ANGLE	VX/V	VT/V	VR/V	95.2	.842	094	.032
.5	.487	.017	.163	111.5	.875	084	.054
2.4	.484	.015	.164	127.7	.896	054	.077
4.2	.485	.017	.163	143.9	.820	006	.090
5.9	.485	.024	.160	160.3	.577	.048	.026
9.6	.469	.030	. 155	163.7	.514	.055	015
13.0	. 474	.034	.161	167.4	.458	.058	056
16.6	.479	.046	.124	170.9	.432	.051	067
32.5	.482	.080	.082	174.6	.407	.031	080
48.8	.480	.069	.053	176.3	.396	.019	095
65.0	.476	.048	.032	178,1	.339	.012	090
81.3	.475	.016	.044	173.9	.40B	.007	093
97.4	.5 36	.015	.075	180.6	.415	.000	088
113.9	.615	.025	.092	182.4	.414	014	088
130.1	.614	.053	.091	184.3	.420	037	077
146.4	.595	.074	.063	186.0	.43 3	041	067
162.5	.529	.088	.009	186.1	.437	046	071
166.3	.509	.084	.009	189.7	. 47 7	057	045
169.8	.519	.083	.008	193.2	.532	053	025
175.5	.473	.068	008	196.8	.606	055	.009
177.1	.453	.044	014	212.9	.75 <i>3</i>	007	.092
178.9	.418	.029	012	229.1	.835	.046	.086
180.7	.429	.015	022	245.2	.844	.071	.063
182.5	.413	013	015	261.4	.813	.081	.047
184.3	.396	037	014	277.5	.70 3	. C : 4	.032
186.1	.423	052	004	293.8	.66 0	.005	.032
189.8	.438	065	003	310.1	.560	. 039	.038
193.3	. 451	093	.006	326.3	.536	- .000	.064
197.0	.474	101	.010	342.5	.509	.003	.129
212.9	.546	089	.059	346.0	.502	.007	.151
229.1	.559	067	.097	349.6	.491	.000	.153
245.3 261.7	.558	031	.098	353.1	. 460	015	.160
	.507	011	.081	356.8	.466	C19	. 171
277,7	.436	030	.046	358.7	. 460	035	.161
294.3 310.4	.43 3 .441	064	.044		0.0.00		
326.6	.435	.078 087	.056 .104	ANGLE	RADIUS =	• .775	NO /N
342.7	.440	052	.149		.414	VT,/V	VR/V
346.4	.449	032	.159	.5 2.4	.450	032 047	.146
349.9	.435	017	.165	4.2	.436	047	.149
353.6	.452	002	.171	5.9	.493	070	.139
355.5	.441	002	.169	9.6	. 535	070	.132 .115
357.2	.446	002	.165	13.0	.550	- 063	.105
357.2	.439	008	.186	16.6	.507	07ú	.099
358.9	.490	.007	.166	32.5	.612	094	.050
				48.9	.692	118	.031
	RADIUS =	.556		65.0	.308	129	.029
ANGLE	VX/V	VT/V	√R/V	81.3	.879	129	.027
. 4	.468	024	.167	97.4	. 921	116	.039
2.2	.473	- .€16	.161	113.9	. 9. 7	094	. 064
4.0	.486	033	.150	130.1	.93 2	065	.031
7.5	.506	028	.144	146.4	.932	C74	.096
11.0	,52 9	022	.120	155.0	.905	040	.110
14.6	.543	017	.105	162.5	.862	.009	.115
30.9	.562	021	.050	166.3	.758	.033	.104
46.9	.616	063	.029	169.8	.656	. 353	.079
63.0	.687	021	.018	173.5	.528	.060	.020
				177.1	.439	052	035
				178.9	.384	£10.	037
				180.7	.364	.023	051
				182.5	.330	027	049
				184.3	.389	049	052

Table C4 - Continued

326.3

342.5

346.0

349.6

353.1

356.8

358.7 360.4

186.1 189.8 193.3 197.0 212.9 229.1 245.3 261.7 277.7 294.3 310.4 326.7 346.4 349.9 353.6 355.5 357.2 358.9	.438 .535 .655 .756 .910 .923 .907 .887 .841 .769 .668 .585 .576 .556 .510 .491 .468 .464 .478	060 069 069 045 .043 .060 .072 .096 .108 .118 .091 .045 .045 .045 .045 .023 .009 .017	038 .024 .079 .108 .109 .085 .073 .055 .032 .027 .036 .064 .103 .114 .130 .134 .142 .148 .150
	RADIUS =	1.017	MB (1)
ANGLE 359.0	VX/V .452	VT/V . 007	VR/V .156
.4	.497	071	.050
2.2	. 544	099	.033
4.0	.570	103	.037
7.5 13.0	.60 3 .643	112 121	.032 .039
14.6	.652	128	.043
30.9	.688	131	.042
46.9	.712	117	.015
63.0 79.1	.837 .913	114 111	011 .004
95.2	.940	088	.019
111.5	.938	072	.034
127.7	. 946	058	.042
143.9 130.3	.938 .938	049 044	.047 .046
163.7	.937	043	.044
167.4	.945	034	.051
170.9	.929	.014	.073
174.6 176.3	.749 .635	.087 .072	.040 009
178.1	.585	.029	039
178.8	.669	.041	010
178.9	.567	.037	039
180.6 182.4	.586 .633	053 093	031 013
184.2	.835	072	.032
184.3	.784	088	.020
186.0	.895 .87 0	041 055	.065 .062
186.0 189.7	.934	.016	.062
193.2	.941	.039	.053
196.8	. 944	.043	. 051
212.9 229.1	.946 .926	.048 .065	.051 .048
245.2	.929	.005	.048
261.4	.942	.088	.028
277.5	.907	.108	.010
293.8 310.1	.844 .73 7	.106 .100	.001 .023
310.1		. 100	. 525

Tube 5 r/R = 1.178 out of water

.659

.615

.617

.578

.539

.502 .477 .497 .113

.112

.102

.091

.078

.026 -.029 -.071 .057

.058

.055

.055

.055

.050

APPENDIX D

A CONTRACTOR OF THE PROPERTY O

EXPERIMENT 4

FIN CONFIGURATION 3 (NAVY)

SHIP VALUES

Trim 1.0 ft by the bow (0.305 m)
Displacement 26,390 tons (26 810 metric tons)
Propeller Dismeter 21.0 ft (6.40 m)
Speed 20.0 knots
Jy 1.01

Figure Dl Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 4 Radius Ratio = 0.359

Figure D2 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 4
Radius Ratio = 0.556

Figure D3 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 4
Radius Ratio = 0.775

Figure D4 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 4
Radius Ratio = 1.107

95

Figure D5 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 4
Radius Ratio = 1.178

Figure D6 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 4

Figure D7 - Radial Distribution of the Mean Advance Angle and the Maximum Variations of the Advance Angle for Experiment 4

- Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities for Experiment 4 with Fin Configuration 3 Table Di

. 900	.832	005	.039	669.	.702	16.58	2.70	-8.09 357.50
.860	.81	008	.055	.664	.668	18.10	3.52	-9.33 357.50
. 700	.773	008	.061	.621	.625	19.61	4.82	-9.92 357.50
.600	.719	006	.055	.569	.573	21.12	6.70	-9.46 357.50
.500	.644	004	.055	. 509	.513	22.50	8.00	-9.19 357.50
. 400	. 548	-, 690	.070	.441	.447	23.78	8.22	-12.49 0.00
.300	.431	.003	.095	.375	.389	24.70	10.31	-20.69
.200	.293	.007	.129	000.0	0.000	24.92	24.67 165.00	-39.26
1.178	.816	900-	.054	.755	.757	12.58	1.83	9.00
1.017	.839	004	.035	.729	.731	14.87	2.11	-7.01 357.50
.775	.803	600	.061	.653	.656	18.49	3.81	-9 69 357.50
. 556	069.	005	.050	.543	.547	21.79	7.79	-8.98 12.50
.359	.502	.001	.079	.427	.439	= 24.20	= 8.15 =135.00	=-15.07
W	Ħ	Ħ		*	M	Ħ	H H	ü u
RADIUS *	VXBAR	VTBAR	VRBAR	1-WVX	1-WX	BBAR	BPOS THETA	BNEG

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS NOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS NOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS NATHATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA PLUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCURS. VXBAR VABAR VABAR 1-W'X 1-W'X 68BAR BBDOS BNEG

SHIP VALUES

Trim 1.0 ft by the bow (0.305 m)
Displacement 26,390 tons (26 810 metric tons)
Propeller Dismeter 21.0 ft (6.40 m)
Speed 20.0 knots
J_V 1.01

Table D2 - Harmonic Analysis of the Longitudinal Velocity Component Ratios for Experiment 4 with Fin Configuration 3

Experimental Radii

HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .359 AMPLITUDE =	1637	0606	.0500	0257	.0160	0213	~.0096	0059
RADIUS = .556 AMPLITUDE =	1528	1964	.0695	0319	.0445	0244	.0133	0118
RADIUS = .775 AMPLITUDE =	1290	1628	0078	0699	.0199	0470	.0340	0336
RADIUS = 1.017 AMPLITUDE =	1368	1216	0404	0426	.0010	0281	.0030	0211
RADIUS = 1.178 AMPLITUDE =	1912	1218	0529	0095	.0109	.0053	.0035	0007

HARMONIC	•	1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	.200	1653	. 1637	0271	0400	0420	0306	0312	0106
RADIUS = AMPLITUDE		1651	.0106	.0278	0290	0019	0235	0173	0067
RADIUS = AMPLITUDE	.400	1623	1018	.0610	0248	.0259	~.0206	0045	0061
RADIUS = AMPLITUDE	.500	1569	1738	.0725	0275	.0413	0219	.0072	0088
RADIUS = AMPLITUDE	.600	1457	1900	.0503	0443	.0390	0320	.0212	0187
RADIUS = AMPLITUDE	.700	1339	1747	.0135	0636	.0275	0435	.0322	0297
RADIUS = AMPLITUDE	.800	1257	1563	0120	0683	.0161	0468	.0291	0333
RADIUS = AMPLITUDE	.900	1219	1353	0267	0592	.0051	0420	.0132	0299

Table D3 - Harmonic Analysis of the Tangential Velocity Component Ratios for Experiment 4 with Fin Configuration 3

Experimental Radii

HARMONIC	*	1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	.359	.0370	.0111	.0723	0076	.0143	0046	.0082	0039
RADIUS = AMPLITUDE	.556	0788	0083	.0378	0029	.0200	0124	.0119	0070
RADIUS = AMPLITUDE		1139	0141	.0061	.0008	.0089	0139	.0079	0117
RADIUS = '		1107	0319	0253	0158	0187	0106	0067	0041
RADIUS = '	1.178	1093	0407	0364	0347	0393	0251	0136	.0007

HARMONIC		1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	.200	.1886	.0365	.1041	0122	0011	.0062	.0002	0023
RADIUS = AMPLITUDE	.300	.0872	.0195	.0836	0092	.0097	0011	.0057	0032
RADIUS = AMPLITUDE	.400	.0063	.0059	.0646	0065	.0168	0068	.0095	0044
RADIUS = AMPLITUDE	.500	0540	0042	.0470	0041	.0199	0109	.0115	0060
RADIUS = AMPLITUDE	.600	0888	0087	.0312	0008	.0188	0131	.0118	0088
RADIUS = AMPLITUDE	.700	1059	0111	.0166	.0015	.0142	-,0139	.0102	0114
RADIUS = AMPLITUDE	.800	1135	0162	.0020	0002	.0062	0121	.0061	0109
RADIUS = AMPLITUDE	.900	1121	0240	0123	0060	0048	0084	0003	0077

Table D4 - Input Data for Wake Survey Analysis for Experiment 4 with Fin Configuration 3

	RADIUS =	.359		112.9	.939	~.076	.024
ANGLE	VX/V	VT/V	VR/V	129.3	.926	058	.051
.6	. 204	.018	. 250	145.4	.889	027	.083
2.3	.215	.024	.250	161.6	.674	.053	.054
4.1	.194	.035	. 250	165.3	.579	.064	.024
5.8	. 196	.038	. 250	168.9	.544	.056	023
9.5	. 359	.066	. 232	172.5 176.1	.470 .461	.055 .034	060 088
12.9	.376	.074	. 190	177.8	.439	.019	090
16.5 32.3	.34 4 .331	.090 .101	.171 .077	178.7	.437	.015	098
48.4	.343	.067	.036	179.6	.433	.002	096
64.8	. 426	.024	.026	180.4	.437	.003	098
81.0	.550	022	.039	181.5	.458	013	084
97.4	.575	023	.077	182.3	.465	007	089
113.7	.632	013	.112	184.1	.468	033	071
130.0	.725	.031	.118	185.9	.474	043	064
146.1	.723	.068	. 091	189.5	.525	069	036
162.3	,619	.098	.031	193.2	.578	065	.001
166.1	.601	.103	.016	196.8	.643	066	.031
169.6	.574	.095	005	213.0	.795	.016	.098
173.2	.536	.081	018	228.7	.85 8	.054	.073
176.8	.513	.062	025	245.4	.885	.073	.043
178.7	.510	.050	029	261.6	.862	.096	.023
180.5	.482	.042	042	277.7	.798	.108	.024
182.4	. 48 9	.007	036	293.9	.69 3	.079	.014
184.1	.491	009	033	310.1	.521	.050	.022
186.0	.473	040	029	326.1	. 46 6	.004	.064
189.7	.475	051	027	342.2	.417	022	.166
193.3	.520	084	. 003	345.9	.399	022	.202
196.9	.529	092	.009	353.0	.426	006	. 238
212.6	.625	086	.078	354.9	.405	008	. 243
228.6	.653	047	.112	355.6	.405	-,004	.245
244.7	.624	008	.108	360.2	.419	006	.247
260.9	.582	.029	.086 .043		RADIUS	. .775	
277.2 293.4	.50 8 .42 5	.018 032	.043	ANGLE	AX\A	VT/V	VR/V
309.7	.388	065	.030	.3	.414	006	.250
326.0	.370	094	.076	2.2	.411	013	.250
342.4	.361	073	. 164	4.0	.400	017	.250
346.1	.36 6	056	. 170	5.8	.425	~.025	.239
353.4	.354	025	. 253	9.5	.416	040	.215
357.0	.253	001	. 250	13,1	.462	045	.166
358.9	.218	.013	. 250	16.7	.465	044	.143
360.7	.207	.019	. 250	32.6	.57 3	065	.070
				32.6	.590	073	.072
	RADIUS =	.55 6		49.0	.706	108	.009
ANGLE	VX/V	VT/V	VR/V	65.5	.775	144	036
. 2	.419	006	. 247	81.5	.916	115	016
3.7	.420	.001	. 238	81.7	.733	156	032
r	.413	.002	.218	97.9	.935	112	.019
7.5	.404	.004	. 177	114.2	.944	094	.045
12.7	.394	.006	. 148	130.4	.942	085	.068
16.3	.39 9	.010	.117	146.4	.937	071	.088
32.6	.484	021	.048	162.5	.939	035 008	.110
48.5	.59 5	068	.010	166.2 169.7	.935	008	.117
64.5 80.6	.742 .869	109 112	001	173.4	.91 6 .67 8	.034	.113
80.6 96.7	.912	099	.005	178.9	.515	.084 .084	.091 021
3Q.1	.312	433	. 505	180.7	.521	.045	043
				182.5	.493	.018	053
				184.3	.461	017	057
				186.2	.444	065	028
				189.7	.564	087	.035

Table D4 - Continued

		070	.101	2.3	.435	096	.053
193.3	.644	070			.441	118	.068
197.0	.83 3	031	.132	4.1		135	.079
213.0	.900	.054	.096	5.8	. 450		.093
229.1	. 913	.070	.076	9.5	.463	149	,095
245.5	.926	.084	.049	12.9	. 486	168	
_	.959	.097	.030	16.5	.49 9	176	.100
261.1			003	32.3	.53 3	185	.114
377.1	.964	.110		48.4	.747	062	.038
293.3	.95 9	.111	010		.850	-,110	026
309.6	.908	.086	.024	64.8		112	.017
325.8	.784	.057	.068	81.0	.890		.043
341.8	.620	.029	.129	97.4	.918	091	
345.5	.559	.022	. 158	113.7	.910	077	.061
		.023	.193	130.0	.919	-,057	.072
349.1	.509		.226	146.1	.920	-,045	.076
352.7	.492	.016		162.3	.923	032	.075
358.2	.376	.010	. 230			-,031	.076
358.7	. 38 6	.006	.230	166.1	.912	027	.072
				169.6	. 921		.068
	RADIUS =	1.017		173.2	.912	025	
ANCLE	VX/V	VT/V	VR/V	176.8	.918	015	.063
ANGLE		063	, 146	178.7	.927	010	.064
. 2	.4.14		.131	180.5	.918	.002	.064
2.0	.462	072			.916	.007	.062
3.7	.474	076	.119	182.4		.013	.060
5.6	.491	095	. 109	184.1	. 93 3		.062
9.2	.515	111	.093	186.0	.928	.019	
16.3	.553	138	.072	189.7	. 927	.022	.065
	.631	141	.043	193.3	. 93 5	.025	.069
32.6		098	026	196.9	. 93 3	,027	.071
48.5	.741		045	212.6	.942	.038	.073
04.5	.852	107			.939	.051	.070
40.6	.929	098	010	228.6		.066	.059
96.7	.929	090	.016	244.7	.927		.041
112.9	.944	071	.031	260.9	. 93 2	.084	
129.3	.942	058	.045	277.2	. 94 6	.096	.021
		045	.053	293.4	.915	. 101	014
145.4	.942		.055	309.7	.800	.038	.006
161.6	, 937	037		326.0	.648	. 151	.094
170.0	.910	037	. 055		.510	.169	.087
176.1	.874	.064	.022	342.4			.067
178.7	, 60 8	.033	005	353.4	.493	.109	.043
180.4	.617	057	004	357.0	.445	.044	
	.64 6	101	.026	358.9	.408	016	.040
182.3	_	079	. 065	358.9	.397	033	.039
184.1	.712		.080	360.6	,411	066	.035
185.9	.801	033		300.0	• • • •		
189.5	.86 8	.034	.068				
193.2	,918	.040	.060				
196.8	, 92 3	.042	.060				
213.0	, 931	.052	.060				
228.7	.922	.063	.058				
	,927	.080	.043				
245.4			,022				
261.6	,928	.095	002				
277.7	, 93 5	.106					
293.9	.93 5	.108	033				
310.1	.893	.092	005				
326.1	.838	.104	.050				
342.2	.626	.096	.091				
	.539	.090	.111				
345.9			.124				
349.4	,512	.073					
353.0	.491	.060	.145				
356.6	, 441	.000	, 160				
358.4	.432	032	.155				
360.2	.444	063	. 146				
300.2							
	PARTILE	= 1.178					
441-21-		VT/V	VR/V				
ANGLE	VX/V		.035				
٠6	.411	066	, 035				

APPENDIX E

EXPERIMENT 5

FIN CONFIGURATION 3 (NAVY) (leading edge up 2.50)

SHIP VALUES

Trim 1.0 ft by the bow (0.305 m)
Displacement 26,390 tons (26 810 metric tons)
Propeller Diameter 21.0 ft (6.40 m)
Speed 20.0 knots
Jy 1.01

Figure El Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 5
Radius Ratio = 0.359

Figure E2 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 5
Radius Ratio = 0.556

Figure E3 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 5
Radius Ratio = 0.775

Figure E4 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 5
Radius Ratio = 1.107

Figure E5 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 5
Radius Ratio = 1.178

Figure E6 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 5

Figure E7 - Radial Distribution of the Mean Advance Angle and the Maximum Variations of the Advance Angle for Experiment 5

- Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities for Experiment 5 with Fin Configuration 3 Leading Edge Up 2.5 Degrees Table El

906.	.308	£003	.036	.680	.683	16.12	2.99	0.00
.800	.785	002	.052	.647	.650	17.52	3.73	-7.89 2.50
. 700	.749	004	.058	909.	.610	19.01	5.05	-9.92 2.50
.600	669.	008	.051	.558	.562	20.62	107.50	-13.58 357.50
.500	.631	600	.050	.500	.504	22.19	8.76	-15.67 357.50
. 400	. 538	004	.067	.434	.440	23.46	8.03 125.00	-13.62
.300	.424	.003	. 093	.370	.382	24.36	10.62	96.07
.200	.289	.014	.129	000.0	0.000	24.41	32.20	-39.38 35.00
1.178	.830	010	.054	.742	.704	12.60	1.67	-5.81 0.00
1.017	.825	004	.032	.711	.714	14.64	2.27	-6.58 0.53
.775	.778	003	.058	.637	.641	17.90	3.93	48.29
.556	.674	010	.046	.533	.537	21.39	8.57	557.55
- 359	494.	002	= .076	= .420	₹ .430	= 23.89	= 7.35	и и т. т. т. т. т. т. т. т. т. т. т. т. т.
RADIUS =	V X BAR :	VTBAR .	VRBAR :	1-WVX :	1-WX	esar.	BPOS THETA	BNEG Trets

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMFERENTIAL YEAN RADIAL VELOCITY.

IS CIRCUMFERENTIAL VEAN RADIAL VELOCITY.

IS STRUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL CORRECTION.

IS VOLUMETRIC YEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS NOLUMETRIC YEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS NATIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA PLUS).

IS VARIATION BETWEEN THE MIN. MUM AND KEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS ANGLE IN DEGREES AT WHICH CORRESPONDING RADS OR ENES SCOURS. VXBAR VTBAR VRBAR 1-%VX BBAR BPOS BNEG THETA XX-L

SHIP VALUES

Trim 1.0 fc by the bow (0.305 m)
Displacement 26,390 tons (26 810 metric tons)
Probeller Diameter 21.0 ft (6.40 m)
Speed 20.0 knots
Jy

Table E2 - Harmonic Analysis of the Longitudinal Velocity Component Ratios for Experiment 5 with Fin Configuration 3 Leading Edge Up 2.5 Degrees

The second state of the second second second second second second second second second second second second se

Experimental Radii

HARMONIC	=	1	2	3	4	5	6	7	8
RADIUS = .3									
AMPLITURE	x	1348	0049	.0754	0319	.0086	.0006	.0057	0037
	556								
AMPLITUDE	=	1771	1956	.0640	0527	.0256	0472	.0065	0229
RADIUS7	775								
AMPLITUDE	•	1549	1756	.0004	0414	.0439	0297	.0277	0284
RADIUS = 1.0	117								
AMPLITUDE	*	1588	1282	0424	0263	.0120	- 0:00	24.00	
		500		.0724	0263	.0120	0120	.0103	0155
RADIUS * 1.1	78								
AMPLITUDE		1578	1074	0499	- 0035	0074	- 0000		
	-	21376	. 1074		0225	0071	0093	.0001	0046

Interpolated Radii

HARMONIC	=	1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	.200	0576	, 2931	. 0531	.0062	0054	.0829	.0177	.0217
RADIUS = AWPLITUDE	.300	1106	.0907	.0704	0200	.0034	.0265	.0088	.0047
RADIUS = AMPLITUDE	.400	1485	0609	.0766	- 0386	.0122	0143	.0044	0088
RADIUS = AMPLITUDE	.500	1711	1615	.0717	0497	.0208	0397	.0045	0188
RADIUS = AMPLITUDE	.600	1707	1933	. 0493	0506	.0328	0435	.0136	0253
RADIUS = AMPLITUDE	.700	1597	1849	.0135	0455	.0426	0355	.0244	0283
RADIUS = AMPLITUDE	.800	1556	1698	0058	0394	.0404	0271	. 0258	0272
RADIUS = AMPLITUDE	.900	1577	1487	0364	0323	.0270	0185	.0184	0223

Table E3 - Harmonic Analysis of the Tangential Velocity Component Ratios for Experiment 5 with Fin Configuration 3 Leading Edge Up 2.5 Degrees

Experimental Radii

HARMONIC		1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	.359	.0619	.0315	.0739	0132	.0121	0024	.0025	0052
RADIUS = AMPLITUDE	.556	0717	.0008	.0406	0034	.0189	0116	.0102	0053
RADIUS = AMPLITUDE	.775 =	1117	0127	0007	0007	.0057	0096	.0078	0100
RACIUS = 1	1.017 =	1120	0227	0234	0180	0197	0115	0051	0037
RADIUS = 1		1200	0320	0239	0256	0384	0260	0129	.0004

Interpolated Radii

HARMONIC	=	1	2	3	4	5	6	7	8
RADIUS = .	200	.2371	.0692	.0981	0262	0061	.0125	0105	0081
RADIUS = . AMPLITUDE	300	.1199	.0442	.0832	0175	.0067	.0023	0016	0060
RADIUS = . AMPLITUDE	400	.0265	.0237	.0673	0106	.0150	0052	.0049	0049
	.500 ≖	0431	.0078	.0505	0055	.0187	0100	.0089	0049
	. 600 =	0827	0023	.0307	0015	.0169	0109	.0104	0070
RADIUS = . AMPLITUDE	,700 ±	1023	0086	.0112	.0004	.0112	0098	.0096	0095
	. 800 =	1111	0135	0043	0028	.0032	0087	.0064	0093
RADIUS = .	. 900 =	1101	0172	0157	0105	0070	0076	.0010	0067

Table E4 - Input Data for Wake Survey Analysis for Experiment 5 with Fin Configuration 3
Leading Edge Up 2.5 Degrees

的人,我们就是我们的人,我们就没有一个多年的人,我们也不是有一个人,我们也不是一个人,我们也不是一个人,我们也不是一个人,我们也不是一个人,我们也不是一个人,我们

	RADIUS =	.359			205	000	.002
ANGLE	VX/V	VT/V	VR/V	63.0	.685	092	
	.482	.019	.220	79.3	.819	115	.002
.6	.453	.020	.220	95.5	.917	105	.005
2.4			.220	111.7	648	284	.018
4.2	.446	.031	.220	127.9	.940	064	.046
5.9	. 440	.043		144.0	.911	033	.081
9.5	.409	.061	.220	147.6	.896	016	.093
13.0	.381	.079	.209	151.2	.88 0	003	.102
16.6	.370	.096	.193	153 0	.846	.003	.099
32.4	.38 6	.127	.084	154.8	.815	.013	.101
48.6	.365	.109	.036	156.7	.785	.028	.085
64.8	.405	.042	.013	158.5	.754	.036	.081
81.0	. 428	.016	.029	160.4	.710	.042	.081
97.2		023	.062	160.4	.727	.044	.070
113.4	.635	005	.112	163.9	.668	.053	.053
129.8	.70 0	.042	.124	167.6	,604	.059	.012
145.9	.702	.069	.091	171.2	.518	,050	038
162.1	.619	.096	.027	174.8	.463	.041	064
165.9	.59/	.104	.009	176.5	.408	.038	089
169.4	.585	.082	.001	178.4	.435	.020	104
173.0	.535	.082	-,020	178.5	.423	.020	105
176.6	.533	.061	027	180.3	.428	.005	117
178.4	.507	.050	030				110
180.3	.483	.032	039	182.1	.436	001	000
182.2	.483	.023	041	193.0	. 126	002	
183.9	.486	.018	043	185.6	.467	035	093
		033	035	187.5	.430	038	080
185.8	.478 .477	054	021	189.3	.478	053	066
189.4	• • • •		010	192.8	.526	061	036
193.0	. 496	074	.008	192.9	.554	065	027
196.6	.512	084		196.5	.628	067	.007
212.7	.606	088	.075	200.1	.670	056	.045
228.9	.637	050	.106	203.6	.743	044	.06€
244.8	.620	.012	.097	207.3	.790	022	.069
260.9	.558	.012	.057	209.1	.780	010	.086
278.8	.402	036	,011	210.9	.797	003	.086
295.4	.372	081	.019	227.0	.846	.049	.068
311.8	.361	127	.048	243.2	.85 2	.070	.039
327.9	. 39 3	126	.095	259.4	.843	.086	.020
344.2	.400	082	.205	275.6	.780	.089	.018
347.9	.397	062	.220	291.7	.658	.073	.005
351.5	.395	047	.238	307.9	,528	.037	.021
357.0	.357	011	.250	324.0	.467	006	.067
358.8	.444	.001	. 250	340.2	.423	041	.166
				343.8	.420	037	. 191
	RADIUS :	.556		347.4	.408	032	. 226
ANGLE	VX/V	VT/V	VR/V	351.0	.399	021	. 249
, 1	.194	019	-,009	354.6	.204	028	. 140
1.9	.182	021	.042	358.3	.190	-,019	006
3.6	.196	011	.096	550.5	. , 50	.019	. 000
7.3	.393	007	.238		= ۱۷۶ ر. ۶	.775	
9.1	.403	004	.232	ANGLE	5103 = VX / V	VT/V	VR/V
12.7	.414	.008	.182				,263
16.3	.424	.005	.171	.6	.417	.004	
19.8	.422	.008	.130	2.4	.407	008	. 260
23.4	.428	.010	.107	4.2	.407	012	. 254
	.446	002	.089	6.0	.425	027	. 230
27.0	.463	010	.072	9.7	.437	034	. 201
30.6		042	.019	13.3	. 461	031	. 174
46.8	.583	042		16.9	.465	040	. 141
				16.9	.468	042	. 136
				33.1	.537	069	.060
				49.3	.704	100	. 011
				65.6	.841	121	028
				81.8	.902	114	022

Table E4 - Continued

97.9	.924	106	.014	193,1	.928	.040	.052
114.1	.923	094	.041	196.7	.926	.042	.050
130.3	.929	080	.062	212.6	.931	.053	.051
110.1	.010	063	.033	213 0	926	.053 054	. 051
162.4	.910	040	.108	229.0	.919	-	
166.3	.893	006	.115	245.5		.070	.044
169.7	.824	.042	.111		.931	.082	.026
173.3	.697	.083		261.5	.927	.098	.004
176.8	.598		. 072	277.9	.932	.105	026
178.6		.078	800	294.2	.904	.099	055
180.5	.525	.067	023	310.4	.823	.077	011
	.458	.055	053	326.4	.671	.106	.074
182.3 184.2	.442	.013	061	342.5	.541	.101	. 124
	.455	021	054	346.2	.510	.083	.138
185.9	.489	054	-,033	349.7	.487	.074	.156
189.6	.579	069	.036	353.4	. 481	.056	.167
193.0	.776	049	.087	357.1	. 471	.028	.177
196.7	.834	009	.113	358.9	.453	017	.186
212.7	. 901	.060	.086	360.7	.455	061	.173
228.8	.924	.070	.069				
244.8	.923	,084	.046		RADIUS	= 1.178	
260.9	.938	.098	.020	ANGLE	VX / V	VT/V	VR/V
277.0	.931	.112	010	. 6	.455	024	041
293.3	.875	.114	020	2.4	.453	081	.062
309.6	.766	,094	.017	4.2	. 441	109	,069
325.7	.539	.072	.074	5.9	.440	133	.113
341.8	.521	.043	.148	9.5	.492	138	. 126
345.5	.433	.029	.176	13.0	.485	166	. 143
349.0	.467	.023	.208	16.6	.493	162	.149
352.6	.450	.015	.246	32.4	.575	178	
356.1	.427	.008	.260	48.6	.725	082	.164
358.0	.431	.011	.263	64.8	.835		.026
358.8	.407	.004	.253	81.0	.886	126	081
359.8	.402	-,007	.264	97.2		135	010
			. 204	113.4	.900	108	.031
	RADIUS :	1 017			.904	088	.058
ANGLE	9x/v	VT/V	VR/V	129.8	.904	072	.074
.7	455	061	.173	145.9	.912	052	.080
2.5	.474	079	.161	152.1	.914	039	.079
4.3	.479	077	.155	165.9	.912	037	.079
6.2	.479	093	,147	169.4	.910	034	.075
9.7	.507			173.0	.918	030	.071
13.3	.527	105	.119	176.6	,922	020	.066
17.0		114	.104	178.4	.928	012	.064
33.0	.544 .616	123	.097	180.3	.699	002	.076
49.1		- 125	. 055	182.2	, 89 5	. UUD	.001
	.768	089	022	183.9	.9+0	.014	.063
65.1	.893	096	062	185.8	,938	.020	. 064
65.5	.838	097	059	189.4	.935	.023	.068
81.1	.925	104	031	193.0	.936	.026	.071
97.1	.930	101	.002	196.6	.938	.030	.072
113.3	.934	087	.023	212.7	.933	.045	.074
129.6	. 929	070	.041	228.9	.939	.059	.068
145.8	.932	059	.018	244.3	.939	.078	.049
161.8	.932	046	.050	260.9	.950	.092	.029
165.5	.932	047	.050	278.8	.940	.144	015
169.1	.93 3	037	.054	295.4	.907	.083	043
172.7	.9⊍0	.012	.072	311.8	.881	.037	.021
176.3	.80 2	.070	.026	327.9	.789	.112	.102
178.2	.617	.035	013	344.2	.613	.146	.120
180.3	.619	054	007	347.9	.566	.151	.118
182.2	.697	036	.020	351.5	.532	.131	.105
184.0	.815	079	.048	355.3	.492	.111	.105
185.8	.899	038	.069	357.0	.496	.081	.065
189.5	.908	.029	.057	358.9	.485	.016	
			- ·	224.5		, .	.043

APPENDIX F

EXPERIMENT 6

FIN CONFIGURATION 2 (NAVY)

SHIP VALUES

Trim
Displacement
Propeller Dismeter
Speed
Jy

1.0 ft by the bow (0.305 m) 26,390 tons (26 810 metric tons) 21.0 ft (6.40 m) 20.0 knots 1.01

Figure F1 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 6
Radius Ratio = 0.359

Figure F2 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 6
Radius Ratio = 0.556

Figure F3 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 6
Radius Ratio = 0.775

Figure F4 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 6
Radius Ratio = 1.107

Figure F5 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 6
Radius Ratio = 1.178

Figure F6 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 6

Figure F7 - Radial Distribution of the Mean Advance Angle and the Maximum Variations of the Advance Angle for Experiment 6

Table F1 - Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities for Experiment 6 with Pin Configuration 2

CATALOG BEST STATES OF THE STA

. 900	.834	- 000	.057	.692	.697	16.64	2.73 97.50	-8.40 0.00
.800	.758	006	.067	.657	.663	17.81	3.76 95.00	-10.05
. 700	.759	006	.070	.617	.623	19.26	5.02	-10.66
.600	.719	008	990.	.566	.574	21.14	6.53 102.50	-9.89 357.50
.500	.654	600	990.	.501	.512	22.91	7.20	-8.24 355.00
. 400	.548	006	.077	.424	.439	23.88	6.32	30.00
300	.412	001	.094	.346	.376	23.86	9.06	60.00
.200	.246	.007	.118	0.000	0.000	21.34	27.61 315.00	-32.05 85.00
1.178	.827	007	.077	.755	. 759	12.75	2.35	-6.55 00.25 00.25
1.017	.851	600	.057	.724	.729	15.09	2.01	-7.20 c.00
.775	.785	006	.070	.649	.655	18.08	4.10	10.58
.556	669.	010	.063	.539	.548	22.13	7.47	000.43
. 359	= .496	+004	€80. ■	407	= .431	= 24.04	= 7.02	1 22.53
RADIUS =	VXBAR	VTBAR	VRBAR	1-WVX	1-WX	BBAR	BPOS THETA	BNEG

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

IS VOLUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL CORRECTION.

IS WOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS MEAN ANGLE OF ADVANCE.

IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR GNEG OCCURS. VXBAR VRBAR VRBAR 1-WVX 1-WX BBBAR BBDCS BNEG

SHIP VALUES

Trim 1.0 ft by the bow (0.305 m)
Displacement 26,350 tons (26 810 metric tons)
Propeller Dismeter 21.0 ft (6.40 m)
Speed 20.0 knots
Jy

Table F2 - Harmonic Analysis of the Longitudinal Valocity Component Ratios for Experiment 6 with Fin Configuration 2

Experimental Radii

HARMONIC	*	1	2	3	4	5	6	7	8
RADIUS = .	359	1029	.0035	.0518	0205	.0206	.0007	.0116	.0009
RADIUS = .	556	1380	1812	.0645	0433	.0313	0315	.0144	0047
RADIUS = .	775	1428	1935	0042	0580	.0398	0423	.0222	0326
RADIUS = 1. AMPLITUDE	017	1432	1294	0458	0473	.0029	0247	.0100	0217
RADIUS = 1. AMPLITUDE	178	1925	1196	0582	0214	0074	0027	0043	0001

Interpolated Radii

HARMONIC	*	1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	.200	0533	. 2726	0100	.0045	.0099	.0<22	.0122	0079
RADIUS = AMPLITUDE	.300	0867	.0909	.0342	0119	.0168	.0145	.0115	0010
RADIUS = AMPLITUDE	.400	1126	0485	.0603	0260	.0230	0078	.0118	.0013
RADIUS = AMPLITUDE	.500	1310	1454	. 0681	0377	.0285	0245	.0132	0013
RADIUS = AMPLITUDE	.600	1393	1890	.0484	0481	.0362	0357	.0174	0132
RADIUS = AMPLITUDE	.700	1417	1900	.0160	0556	.0414	0415	.0215	0271
RADIUS = AMPLITUDE	.800	1388	1841	0098	0585	.0348	0413	.0214	0327
RADIUS = AMPLITUDE	.900	1320	1530	0291	0567	.0176	0355	.0173	0302

Table F3 - Harmonic Analysis of the Tangential Velocity Component Ratios for Experiment 6 with Fin Configuration 2

Experimental Radii

HARMONIC	=	1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	.359	.1049	.0406	.0746	0166	.0146	0069	.0022	0033
RADIUS = AMPLITUDE	.556	0643	0048	.0428	0062	.0170	0123	.0091	0051
RADIUS = AMPLITUDE	.775	1023	0201	.0003	0044	.0063	0148	.0064	0138
RADIUS = 1 AMPLITUDE	.017	1000	0254	0277	0216	0246	0170	0063	0062
RADIUS = 1 AMPLITUDE	.178	0940	0293	0343	0359	0460	0306	0203	0055

Interpolated Radii

HARMONIC		1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	.200	. 3349	.0990	.0958	0311	.0045	0003	0097	0059
RADIUS = AMPLITUDE	.300	.1805	.0600	.0829	0214	.0117	0047	0015	0038
RADIUS * AMPLITUDE	.400	.0592	.0286	. 0685	0138	.0160	0083	.0043	0032
RADIUS = AMPLITUDE	.500	0292	.0050	.0524	0083	.0175	0111	.0080	0040
RADIUS = AMPLITUDE	.600	0750	0087	.0329	0045	.0162	~.0129	.0092	0080
RADIUS = AMPLITUDE	.700	0936	0160	.0130	0032	.0118	0140	.0083	0125
RADIUS = AMPLITUDE	.800	1024	0206	0036	0060	.0032	0140	.0056	0126
RADIUS = AMPLITUDE	.900	1021	0228	0169	0127	0095	0132	.0011	0089

Table F4 - Input Data for Wake Survey Analysis for Experiment 6 with Fin Configuration 2

	RADIUS :	.359					
ANGLE	VX/V	VT/V	VR/V	64.9	.734	083	.008
.4	.472	003	.225	80.9	.864	108	.003
2.3	.493	.024	.254	97.1	.926	091	.009
4.0	.485	.020	.252	113.2	. 934	074	. 022
5.8	.470	.029	.250	129.5	.919	052	. 051
9.5	.438	.058	.244	145.9	.863	010	.086
13.0	.401	.100	.236	161.8	.654	.057	.028
16.7	.403	.106	.224	165.4	.605	.058	021
32.7	.379	.162	.138	169.1	.520	.056	069
49.0	.397	.149	.055	172.6 176.3	. 48 8 . 471	.041	099 121
65.2	.413	.097	.023	178.1	.467	.009 003	121 129
81.5	.438	.054	.008	178.8	.463	005	129 129
97.8	.514	.025	.034	179.8	.484	007	129 121
114.2	.588	.014	.094	180.6	.486	021	126
130.4	.643	.052	.120	181.7	.487	023	125
146.6 162.8	.652	.090	.085	182.4	.470	032	118
166.3	.603 . 5 95	.107	.022	184.3	.486	044	104
170.0	.554	.103	.001 uu/	186.0	.504	059	100
173.6	.507	.084	023	189.7	.545	067	067
177.3	.506	.055	035	193.3	.578	078	035
179.0	.497	.033	 035	196.9	.641	069	.003
180.9	.484	.031	039	212.9	.861	005	.079
182.7	.481	001	037	229.1	.861	.040	.057
184.5	.479	002	-,032	245.3	.86 0	.066	.043
196.3	.503	015	035	261.6	.861	.087	.023
190.0	.497	078	018	277.8	.772	.093	.027
193.5	.517	089	.008	294.2	.670	.068	.024
197.2	.540	105	.012	310.4	.589	.017	.044
212.9	.600	111	.074	326.7	.513	019	.106
228.9	.619	066	.087	342.6 346.3	. 456	028	. 236
245.1	.550	031	.090	349.8	.429 .418	039	.267
261.0	.509	033	.041	353.4	.388	028 036	. 292
277.3	.444	072	.020	356.9	.384	~.025	.307 .315
293.6	.431	120	.037	358.9	.380	039	. 333
309.8	.418	164	.068	330,5		.003	. 555
325.8 341.9	.407 .427	164	.150		RADIUS =	.775	
345.6	.456	108 077	.225 .237	ANGLE	VX/V	VT/V	VR/V
349.1	.441	074	.245	0.0	.314	029	. 255
352.8	.446	047	.250	2.3	.346	027	. 254
356.3	.447	031	.253	4.0	.359	052	. 252
358.2	.473	006	.254	5.8	.384	047	.248
358.6	.469	018	.254	9.4	. 443	040	. 236
359.9	.466	.001	. 255	16.5	.479	057	.211
				32.3	.589	075	.111
	RADIUS =	.556		48.4	.734	095	. 036
ANGLE	VX/V	VT/V	VR/V	64.6	.868	116	009
. 6	. 385	039	.333	80.9	924	113	004
2.6	.388	047	.329	97.1 113.4	.943 .927	097	.021
4.3	.431	039	.318	129.7	.926	086	.041
3.1	.431	023	. 299	145.8	.910	073 064	.058
9.7	.477	008	. 267	161.9	.880	018	.079 .105
13.2	.457	002	.234	165.7	.854	.015	.105
16.9 32.7	.447	.007	.219	169.3	.743	.051	.082
32.7 48.7	.519 .631	011 059	.092	172.9	.646	.078	.040
70.1	. 03 1	059	.026	176.5	.550	.071	037
				178.3	.485	.057	057
				180.0	.468	.042	066
				181.9	.458	007	072
				183.6	.471	014	070
				185.4	.487	041	051

Table F4 - Continued

189.0	.588	063	.008	358.9	.431	048	.249
192.5	.664	061	.072				
196.3	.791	032	.092			= 1.178	
212.2	.921	.015	.085	ANCLE	VX/V	VT/V	VR/V
228.5	.940	.056	.062	0.0	.402	048	.153
244.6	.929	.067	.045	2.3	,421	103	.164
260.7	. 95 5	.084	.029	4.0	.421	119	.173
276.9	.936	.100	.007	5.8	.435	145	.186
293.3	.903	.108	.005	9.4	.457	179	. 195
309.8	.761	.097	.045	12.9	.471	186	. 202
325.8	.635	.059	.108	16.5	.467 .496	196	.217
342.0	.509	.044	. 201	32.3	.496	148	. 223
345.8	.483	.047	.248	48.4	.0/2	026	.061
349.4	.490	.039	.238	64.6	.788	093	022
353.0	.418	.041	.248	80.9	.885	098	.020
356.6	.343	.040	. 253	97.1	.915	085	.042
35B.4	.358	.022	.254	113.4	.907	072	.059
358.8	.346	.009	.254	129.7 145.8	.924	055	.068
	RADIUS =	. 4 017		161.9	.920 .926	046 038	.072
41101 5		VT/V	VR/V	165.7	.926	035 035	.070 .068
ANGLE	VX/V .424	080	,247	169.3	.924	035 036	.064
.6	.437	088	. 225	176.5	.973	013	.067
2.6	.405	090	.200	178.3	.929	004	.074
4.3	.492	101	.196	183.6	.939	.011	.071
6.1 9.7	.505	133	.184	185.4	.954	.018	.055
16.9	.518	165	,183	189.0	.949	.026	.056
32.7	.612	138	.128	192.5	.948	. 627	.061
48.7	.780	071	.015	212.2	.954	.C37	.067
64.9	.887	092	033	228.5	.966	.047	.063
80.9	.923	096	005	244.6	.957	.057	.052
97.1	.947	087	.016	260.7	.953	.074	.038
113,2	.947	071	.032	276.9	.952	.086	.021
129.5	.947	062	.046	293.3	.955	.073	005
145.9	. 951	052	.052	309.8	.916	.020	. 037
161.8	.959	046	.053	325.8	.784	.115	. 144
165.4	.956	044	.056	342.0	.576	.170	.167
169.1	.961	032	.061	345.8	.467	. 194	.198
172.6	.960	.044	.068	349.4	.453	.175	.188
176.3	.911	.062	004	353.0	.450	. 140	.183
178.1	.726	.028	036	356.6	.397	.084	. 164
178.8	.548	.038	052	358.4	.428	.020	. 152
179.8	.617	040	041	360.0	.402	048	.153
180.6	.596	049	- .051				
181.7	.597	099	- .008				
182.4	.573	109	.003				
184.3	.693	103	.032 .076				
186.0	.715	~.074 .012	.064				
189.7	.932 .932	.012	.056				
193.3	.943	.044	.055				
196.9 212.9	.945	.051	.058				
212.9	.956	.055	.048				
245.3	.948	.071	.035				
261.6	.954	.082	.020				
277.8	.955	.089	.002				
294.2	.947	.083	020				
310.4	.923	.062	.026				
326.7	.821	.098	.115				
342.6	.673	.092	.150				
349.8	.486	.085	.222				
353.4	,483	.056	.240				
356.9	.455	008	.247				

APPENDIX G

EXPERIMENT 7

FIN CONFIGURATION 4 (SSPA)

SHIP VALUES

Trim
Displacement
Propeller Diameter
Speed
Jy

1.0 ft by the bow (0.305 m)
26,390 tons (26 810 metric tons)
21.0 ft (6.40 m)
20.0 knots
1.01

Figure Gl Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 7
Radius Ratio = 0.359

Figure G2 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 7
Radius Ratio = 0.556

Figure G3 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 7
Radius Ratio = 0.775

Figure G4 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 7
Radius Ratio = 1.107

Figure G5 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 7
Radius Ratio = 1.178

Figure G6 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 7

Figure G7 - Radial Distribution of the Mean Advance Angle and the Maximum Variations of the Advance Angle for Experiment 7

and other Derived Quantities for Experiment 7 with Fin Configuration 4 - Listing of the Mean Velocity Component Ratios, the Mean Advance Angles Table G1

006.	.837	001	.019	.741	.744	16.65	2.41	0.00
.800	.827	002	.042	.715	.718	18.40	3.09	10.00
. 700	.804	003	.051	. 680	. 685	20.30	4.33	10.00
.600	.768	004	.046	.637	.641	22.40	6.43	-10.39 5.00
.500	.710	004	.047	.582	.586	24.58	8.38	-11.76 342.50
. 400	.621	003	990.	.517	.521	26.58	9.58	-12.09 337.50
.300	.508	002	.095	.452	.458	28.59	11.08	-15.03 27.50
.200	.369	000.	.135	0.000	0.000	30.68	20.40	-2E.80 62.50
1.178	.850	002	.030	.786	.788	13.06	1.78	-8.01
1.017	.845	000	.010	.764	.767	14.96	1.90	-6.89
.775	.824	003	.050	.707	.711	18.89	3.31	-9.25
. 556	.748	004	.041	.613	.618	23.44	7.67 95.00	-11.20
. 359	= .578	=003	T.0. =	€ .503	€ .509	= 27.40	± 10.18 ±115.00	=-12.38 = 22.50
RADIUS =	VXBAR	VTBAR .	VRBAR	1-MVX	1-WX	BBAR	BPOS THETA	BNEG

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

IS VOLUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL CORRECTION.

IS WOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS MEAN ANGLE OF ADVANCE.

IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCURS. VXBAR VTBAR 1-WXX 1-WX BBBAR BBBAR BREG THETA

SHIP VALUES

Trim 1.0 ft by the bow (0.305 m)
Displacement 26,390 tons (26 810 metric tons)
Propeller Dismeter 21.0 ft (6.40 m)
Speed 20.0 knots
Jy

Table G2 - Harmonic Analysis of the Longitudinal Velocity Component Ratios for Experiment 7 with Fin Configuration 4

HARMONIC	= 1	2	3	4	5	6	7	8
RADIUS = .35	9 =1865	1242	.0668	0035	.0256	.0027	.0124	.0062
RADIUS = .55 AMPLITUDE		2135	.0159	0398	.0552	0227	.0299	0177
RADIUS = .77 AMPLITUDE	-	1555	0421	0488	.0207	0184	.0207	0167
RADIUS = 1.01 AMPLITUDE	7 =1454	1115	0611	0343	0084	0073	.0004	0053
RADIUS = 1.17 AMPLITUDE	8 • •.1828	1253	0842	0408	0218	0134	0085	0085

ļ	HARMONIC	=	1	2	3	4	5	6	7	8
	RADIUS = AMPLITUDE	.200	1980	.0457	.1072	.0452	0402	.0435	0171	.0424
	RADIUS = AMPLITUDE	.300	1907	0713	.0819	.0125	.0056	.0157	.0039	.0178
	RADIUS = AMPLITUDE	.400	1835	1538	.0563	~.0133	.0365	0049	.0187	0007
	RADIUS = AMPLITUDE	.500	1762	2017	.0305	0322	.0526	0183	.0276	0133
	RADIUS = AMPLITUDE	.600	1684	2005	.0011	0433	.0477	0223	.0287	0182
	RADIUS = AMPLITUDE	.700 =	1610	1734	0266	0481	.0317	0205	.0248	0180
	RADIUS = AMPLITUDE	.800	~.1513	1474	0432	0459	.0172	0162	.0182	0147
	RADIUS = AMPLITUDE	.900	1406	1231	0495	0377	.0044	0097	.0092	0084

Table G3 - Harmonic Analysis of the Tangential Velocity Component Ratios for Experiment 7 with Fin Configuration 4

HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .359								
AMPLITUDE =	0555	0135	.0529	0068	.0202	0034	.0090	.0011
RADIUS = .556								
AMPLITUDE =	1288	0298	.0192	.0012	.0237	0096	.0144	0083
RADIUS = .775								
AMPLITUDE =	1423	0464	0131	0013	.0091	0005	.0083	0045
RADIUS = 1.017								
AMPLITUDE *	1379	0591	0321	0137	~.0102	0060	0065	0047
RADIUS = 1.178								
AMPLITUDE =	1379	0706	0386	0190	0112	0060	0035	.0001

HARMONIC	8	1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	.200	.0461	.0004	.0833	0206	.0058	.0115	0033	.0174
RADIUS = AMPLITUDE	.300	0222	0084	.0600	0112	.0160	.0011	.0053	.0062
RADIUS = AMPLITUDE	.400	0755	0170	.0455	0044	.0222	0058	.0110	0018
RADIUS = AMPLITUDE	.500	1139	0253	.0283	0001	.0243	0092	.0139	0068
RADIUS = AMPLITUDE	.600	1329	0335	.0115	.0014	.0210	0067	.0138	0072
RADIUS = AMPLITUDE	=	1396	0413	0037	.0005	.0144	0021	.0112	0054
RADIUS = AMPLITUDE	.800	1416	0475	0156	0029	.0061	0013	.0057	0049
RADIUS = AMPLITUDE	.900	1393	0523	0243	0084	0036	0041	0022	0057

Table G4 - Input Data for Wake Survey Analysis for Experiment 7 with Fin Configuration 4

	RADIUS =	.359		357.7	. 367	006	.116
ANGLE	7X/V	VT/V	VR/V	359.5	.378	.006	.110
7	.379	.007	.116	361.4	.393	.015	.113
1.2	.387	.012	.120				
2.9	.418	.022	.093	****	RADIUS		
4.7	. 397	.019	.101	ANGLE	7X/V	VT/V	VR/V
6.6	.380	.021	.099	- .8	.390	~.006	.123
8.4	.393	.024	.093	1.1 2.7	.387 .392	.002 .004	.124 .116
10.1	.364	.029	.084	4.5	.384	.012	.098
13.7	.35 5	.038	.075	6.3	.399	.011	.078
17.3	.326	.044 .025	.067 .059	8.2	.398	.004	.055
20.9 37.1	.308 .35 8	015	.028	10.0	.410	006	.051
53.2	.469	041	,041	13.5	.391	012	.034
69.5	,562	089	.063	17.1	.379	030	.019
85.7	,687	101	,084	20.7	.414	051	.005
102.0	.769	094	.114	24.2	.455	050	~.0∂2
118.2	.809	065	.133	27.8	.481	080	013
134.3	,31 2	018	.140	31.3	.520	087	010
150.5	.752	.041	.121	47.4	.697	143	~.028
154.1	.726	.052	.108	63.8 80.0	.87 2 .936	166 147	020 001
157.7	.707	.057	.101	96.2	.968	126	.021
161.3	.680	.070	.081	112.4	.964	101	.046
164.9	.341	.071	.050 .033	128.8	.959	077	.073
168.5 172.2	.617 .597	.069 .068	.016	144,9	.948	053	.094
174.0	.574	.066	.008	161.1	.850	.022	.128
175.7	.554	.065	.005	164.8	.78 8	.050	.115
177.5	.548	.042	-,009	168.3	.702	.070	.096
179.4	.531	.046	015	172.0	,614	.079	.040
181.2	.552	.030	019	173.8	.584	.081	.029
182.9	.516	.003	013	175.5	.556	.069	.006
184.7	.52 2	012	014	177.3 179.2	.516	.070	.002
186.6	.504	021	007	179.4	.488 .466	.039 .045	~.018 ~.007
188.4	.503	038	001	181.0	.470	.019	016
190.2	.527	051	.009 .019	181.3	.459	.009	012
193.7 197.3	.534 .574	057 073	.019	183.0	. 481	011	011
200.8	.603	074	.051	184.8	.50 0	034	003
204.3	.629	060	.067	188.5	.556	053	.023
208.0	.643	057	.087	192.0	.631	061	.042
211.5	.660	048	.095	195.7	.695	054	.074
227.7	.746	.016	.127	199.3	.76 7	032	.113
244.1	.760	.053	.126	215.3	.865	.057	.116
260.3	.724	.079	.108	231.6 247.8	.890 .912	.081 .103	.091
276.6	.650	.087	.075	264.0	.909	.122	.067 .041
292.8	.530	.079	.052 .028	280.2	.886	.142	,010
309.1	.434 .333	.043 .001	.041	296.4	.788	. 151	004
325.3 330.7	.320	022	.039	312.5	.602	.110	010
334.2	.319	029	.043	328.7	.45 3	.056	001
337.9	.302	037	.058	332.3	.421	.044	.007
341.5	.315	047	.062	335.8	.411	.034	.009
345.1	.319	040	.070	339.5	.392	.019	.023
348.7	.336	034	.076	343.1	.376	.003	.061
352.4	.360	027	.086	346.6 350.2	.408	014 021	.059
354.1	.355	022	.103	350.2 352.1	.402 .404	021 012	.071 .097
355.9	.344	020	.112	353.9	.395	014	.112
				355.7	.400	009	.114
				357.5	.397	~.003	.135
				359.2	.390	006	.123
				361.1	.387	.002	.124

Table G4 - Continued

				8.2	. 490	099	058
4110. 0	RADIU	•		13.5	.517	110	076
ANGLE	VX/V	VT/V	VR/V	17.1	. 549	135	092
5	.454	.017	.106	20.7	.574	142	100
1.3	.463	.011	.108	24.2	.627	147	100
3.1	. 451	.008	.100	27.8	. 650	164	-,104
4.9	.440	006	.093	31.3	.710	161	103
6.8	.434	009	.079	47.4	.819	169	079
8.6	.431	015	.064	63.8	.890	155	029
10.3	.402	018	.045	80.0	.917	129	.014
14.0 17.5	.432	058	.032	96.2	.926	106	.038
21.1	.448	071	.008	112.4	.928	081	.053
	.46 6	091	006	128.8	.932	065	.067
37.3 53.4	.657 .818	156	052 052	144.9	.927	044	.073
69.7	.909	175 158	050	161.1	.936	028	.072
85.9	.928	134	000 .041	164.8	.934	027	.071
102.1	.935	111	.067	168.3	. 935	026	.069
118.3	.945	091	.092	172.0 173.8	.928	021	.071
134.4	.936	072	.101	175.5	.939	- .015	.071
150.6	.942	050	.108	177.3	.943	002	.079
157.8	.934	045	.114	179.2	.917 .85 8	.032	.102
161.4	.936	041	.115	179.4	.825	.037	.114
165.0	.937	033	.119	181.0	.832	.038 001	.117
168.6	.950	019	.126	181.3	.811	.002	.106 .107
172.1	.950	.020	.136	183.0	.831	029	.097
174.0	.915	.054	.137	184.8	.900	021	.103
175.8	.848	.087	.126	188.5	.920	.023	.078
177.5	.752	.097	.079	192.0	.927	.028	.074
179.3	. 685	.091	.043	195.7	.924	.032	.075
182.9	.554	.001	.002	199.3	.925	.035	.075
186.5	.597	082	.048	215.3	.931	.046	.075
188.4	.682	091	.073	231.6	.925	.066	.068
192.0	. 78 5	066	.137	247.8	.935	.082	.055
195. 5	.905	.004	.140	264.0	. 921	.104	.040
199.0	.942	.031	.127	280.2	.936	.124	.015
202.6	.943	.042	.123	296.4	.928	.147	015
206.1	.942	.047	.120	312.5	.844	.167	068
209.7	.940	.049	.117	328.7	.717	.159	084
225.8	.944	.065	.107	332.3	.680	.152	~. 085
242.1	.942	:087	.095	335.8	.642	. 147	072
258.3	.940	. 107	.073	339.5	.613	.132	074
274.6	. 95 1	. 127	.047	346. 6	.550	.116	046
290.8	.944	. 150	.015	350.2	.537	.110	040
307.0 323.3	.886	. 167	~.024	352.1	.532	.096	042
	.745	.139	027	353.9	.511	.093	041
339.5	.597	.084	.006	355.7	.500	.081	043
343.0 346.7	.521 .495	.065	.011	357.5 359.2	.465	.066	047
350.3	.477	.045 .030	.026		.437	.011	051
353.9	.458	.030	.048 .074	361.1	. 46 0	036	048
355.6	.468	.008			DADTUC.	- 4 400	
357.5	.465	.007	.087 .099	ANCIE	RADIUS		us /··
359.2	.472	.005	.101	ANGLE 7	VX/V .375	VT/V	VR/V
361.1	.475	.009	.105	1.2	.3/5	022	108
	. 4, 5	, , , ,		2.9	.420	.001	106
	RADIUS .	1.017		4.7	. 365	.005	086 - 086
ANGLE	VX/V	VT/V	VR/V	6.6	.336	010 050	086
8	. 437	.011	051	8.4	.365	050 100	103 113
1.1	.460	036	~,048	10.1	.303	100 138	113 132
2.7	.474	053	045	13.7	.475	145	108
4.5	. 469	079	047	17.3	.525	167	088
6.3	.493	069	047	20.9	.548	169	088
				-4.5		. 103	. 000

Table G4 - Continued

37.1	.709	187	060
53.2	.837	168	015
69.5	.911	150	.032
85.7	.923	118	.066
102.0	.936	091	.079
118.2	.928	071	.091
134.3	.938	~.051	.096
150.5	.932	034	.099
154.1	,939	028	.098
157.7	.957	022	.097
161.3	.965	017	.096
164.9	.959	015	.094
168.5	.961	014	.094
172.2	.963	013	.092
174.0	.955	013	
175.7	.947	009	.088
177.5	.950	005	.088
179.4	.950	.003	.086
181.2	.962	.003	.083
182.9	.971	.012	.083
184.7	.977		.083
186.6	.977 .96 6	.015 .017	.083
188.4	.970	_	.085
190.2	.966	.018	.087
193.7	.966	.019	.088
197.3		.020	.091
200.8	.966 .974	.023	.092
204.4		.025	.091
204.4	.97 3 .96 6	.028	.091
211.5		.033	.092
211.5	.97 3 .954	.036	.091
		.054	.088
244.1	.954	.071	.082
260.3	.955	.091	.071
276.6	.957	.114	. 051
292.8	.945	. 143	.027
309.1	.907	.168	009
325.3	. 778	. 189	053
330.7	.721	. 185	056
334.2	.670	.191	067
337.9	.652	.177	071
341.5	.583	. 171	093
345.1	.546	.138	110
348.7	. 459	.114	122
352.4	.405	.02.	097
354.1	.322	027	066
355.9	.33 2	045	064
357.7	.349	041	091
359.5	.392	023	098
361.4	.394	007	 099

APPENDIX H

EXPERIMENT 8

FIN CONFIGURATION 4 (SSPA)

SHIP VALUES

Trim	3.75 ft by the stern (1.143 m)
Displacement	17,270 tons (17 550 metric tons)
Propeller Dismeter	21.0 ft (6.40 m)
Speed	20.0 knots
Jy	1.01

Figure H1 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 8
Radius Ratio = 0.359

Fin Configuration 4 (SSPA)
Displacement 1/,270 tons (17 550 metric tons)

Figure H2 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 8
Radius Ratio = 0.556

Fin Configuration 4 (SSPA)
Displacement 17,270 tons (17 550 metric tons)

Figure H3 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 8 Radius Ratio = 0.775

Fin Configuration 4 (SSPA) 17,270 tons (17 550 metric tons) Displacement

Figure H4 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 8
Radius Ratio = 1.107

Fin Configuration 4 (SSPA)
Displacement 17,270 tons (17 550 metric tons)

Figure H5 Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios. Experiment 8
Radius Ratio = 1.178

Fin Configuration 4 (SSPA)
Displacement 17,270 tons (17 550 metric tons)

Figure H6 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 8

Figure H7 - Radial Distribution of the Mean Advance Angle and the Maximum Variations of the Advance Angle for Experiment 8

- Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities for Experiment 8 with Fin Configuration 4 Table H1

.900	.820	002	.020	.701	.703	16.34	2.70	-5.39
. 800	.800	004	.044	.670	.672	17.85	3.32	-6.39 182.50
. 700	177.	004	. 055	.632	.634	19.52	4.56	-8.29 182.50
.600	.731	002	.049	.582	.584	21.42	6 8.15 6.56 0 117.50 115.00	-8.72 182.50
.500	.667	000.	.048	.519	.520	23.21	8.15	-8.24
. 400	. 565	.001	.062	.444	.445	24.39	7.86	-6.35
.300	.432	.002	.085	.367	.371	24.82	5.48 7.86 217.50 120.00	-7.95 55.00
.200	.270	.001	.116	0.000	000.0	23.40	20.56 172.50	-23.74 77.50
1.178	.839	003	. 030	.759	.760	12.91	1.95	7.50
1.017	.835	001	.011	.730	.732	14.79	2.40	-5.39 357.50
.775	. 794	004	.053	.663	.665	18.26	3.54	-7.25 182.55
.556	.711	000	. 644	.555	.557	22.36	7.73	-8.56 180.00
€35. =	. 514	001	• .070	= .427	= .430	= 24.69	= 7.21	= -6.30
RADIUS =	VXBAR	VTBAR	VRBAR	1-WVX	1 - X	BBAR	BPOS THETA	BNEG

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

IS VOLUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL CORRECTION.

IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS MEAN ANGLE OF ADVANCE.

IS MEAN ANGLE OF ADVANCE.

IS VARIATION BETWEEN THE NAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCURS. 1-WX BBAR BPOS BNEG THETA VXBAR VTBAR VRBAR 1-WVX

SHIP VALUES

Trim 3.75 ft by the stern (1.143 m)
Displacement 17,270 tons (17 550 metric tons)
Propeller Dismeter 21.0 ft (6.40 m)
Speed 20.0 knots
Jy

Table H2 - Harmonic Analysis of the Longitudinal Velocity Component Ratios for Experiment 8 with Fin Configuration 4

HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = ,359 AMPLITUDE =	1032	0419	.0753	0136	.0079	0063	.0068	0029
RADIUS = .556 AMPLITUDE =	1397	1629	.0862	0367	.0517	0242	.0201	0153
RADIUS = .775 AMPLITUDE =	1344	1446	.0168	0443	.0419	0280	.0359	0199
RADIUS = 1.017 AMPLITUDE =	1629	0978	0199	0047	.0172	0047	.0105	0091
RADIUS = 1.178 AMPLITUDE =	1935	1133	0546	0231	0162	0161	0152	0077

HARMONIC	3	1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	.200	0452	.1507	.0160	.0162	0637	.0180	0034	.0129
RADIUS = AMPLITUDE	.300	0846	.0197	.0586	0037	0149	.0017	.0029	.0024
RADIUS = AMPLITUDE	.400	1140	0778	.0833	0197	.0211	0112	.0095	0061
RADIUS = AMPLITUDE	.500	1333	1418	.0901	0317	.0443	0205	.0162	0125
RADIUS = AMPLITUDE	.600	1362	1611	.0695	0415	.0507	0268	.0262	0173
RADIUS * AMPLITUDE	.700	1328	1535	.0367	0463	.0466	0293	.0346	0198
RADIUS = AMPLITUDE	.800	1363	1359	.0139	0364	.0407	0233	.0339	0183
RADIUS = AMPLITUDE	.900	1465	1099	.0002	0137	.0330	0099	.0247	0130

Table H3 - Harmonic Analysis of the Tangential Velocity Component Ratios for Experiment 8 with Fin Configuration 4

HARMONIC	=	1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	.359	.0061	0035	.0579	0077	.0092	0040	.0042	0017
RADIUS = AMPLITUDE	.556	1039	0131	.0303	0063	.0224	0112	.0102	0080
RADIUS = AMPLITUDE		1315	0315	0048	0031	.0091	0103	.0107	0106
RADIUS = AMPLITUDE		1311	0511	0297	0099	0093	0066	0059	0056
RADIUS = AMPLITUDE		1272	0641	0408	0163	0100	.0016	.0011	.0060

HARMONIC		1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	.200	. 1537	0005	.0775	0078	0187	.0074	0046	.0061
PADIUS = AMPLITUDE	.300	.0548	0019	.0655	0079	.0007	0003	.0013	.0009
RADIUS = AMPLITUDE	.400	0234	0049	.0525	0076	.0139	0061	.0059	0033
RADIUS = AMPLITUDE	.500	0808	-,0097	.0385	0069	.0211	0099	.0090	0065
RADIUS = AMPLITUDE	.600	1115	0169	.0223	0050	.0200	0112	.0115	0090
RADIUS = AMPLITUDE	.700	1250	0253	.0059	0032	.0140	0108	.0122	0105
RADIUS = AMPLITUDE	.800	1317	0335	0070	0037	.0062	0104	.0075	0108
RADIUS =	.900	1321	0416	0189	0062	0030	0097	0020	0099

Table H4 - Input Data for Wake Survey Analysis for Experiment 8 with Fin Configuration 4

	· · · •						
4410.00	RADIUS =	.359	VR/V	341.8	.435	049	.088
ANGLE	УХ/V .443	VT/V .003	.156	345.4	. 444	035	.103
3	.443	.015	.158	349.0	.431	031	.119
0.0	.427	.014	.164	350.8	.439	025	.123
1.8 3.5	.426	.026	.153	352.6 3 54.4	.439	019	.131
5.4	.423	.020	.155	354.4 356.1	.462	016	.138
7.2	.412	.031	.158	358.0	.436 .436	003 006	.152 .153
9.1	.413	.032	.150	358.0	.442	009	.161
10.8	.421	.033	.135	359.7	.443	.003	.156
14.4	.422	.041	.122	361.8	.427	.014	.164
18.0	.432	.049	.091	00,10	• •••		• • • •
21.6	.411	.056	.082		RADIUS =	.556	
37.9	.394	.046	.035	ANGLE	VX/V	VT/V	VR/V
54.0	.407	.018	.013	2	.474	.006	.139
70.2	.453	028	. 041	1.6	.484	.004	.134
86.4	.53 3	050	.077	3.3	.494	.009	.116
102.7	,628	042	.101	3.3	.50 0	.003	.117
118.8	.687	012	.121	5.1	.50 0	002	.110
135.0	. 69 3	.034	.120	5.1	.507	.000	.102
140.4	.681	.043	.108	7.0	.504	.005	.097
151.1	.657	.071	.090	8.7	. 486	.000	.089
154.8	.641	.078	.064 .055	10.6	.494	004	.081
158.3	.617	.081 .084	.038	14.1	, 482	.003	.062
161.9 165.5	.58 3 .569	.094	.028	17.7	.496	002	.033
169.1	.535	.092	.015	21.3	.495	004	.021
170.9	.539	.087	.004	24.8	.496	030	.014
172.7	.517	.078	,006	28.4 32.0	.508 .501	034	.011
174.5	.519	.080	009	48.2	.607	036 089	.001 006
176.2	.503	.074	-,008	64.5	.73 3	121	002
178.1	.455	.065	020	80.7	.847	127	.009
179.9	.435	.048	028	97.0	.909	114	.029
181.7	. 45 7	.036	026	113.1	.944	100	.046
183.4	.432	.018	024	129.5	.944	073	.074
195.2	.445	.002	015	145.7	.917	038	.109
187.1	.465	.009	011	149.3	.902	017	.111
188.9	.458	.008	012	152.9	.870	003	.114
190.6	.439	022	006	156.5	.809	.020	.110
194.2	. 46 8	050	.006	160.2	.75 0	.040	.094
197.8	. 482	069 074	.018 .030	103.7	.68 3	.058	.073
201.3	.507 .534	074	.042	167.4	.623	.066	.043
204.9 208.4	.543	069	.048	171.0	.533	.065	.001
212.0	.572	071	.070	172.7 174.6	.503	.063	008
226.4	.609	032	.107	174.8	.477	.063	020
237.6	.625	015		178.1	.460 .433	.055 .044	037 049
240.9	.625	.001	,107	179.8	.426	.023	058
246.6	.624	.015	.105	180.0	.435	.021	052
255.4	.635	.031	.105	181.6	.429	.012	055
269.7	.542	.040	.088	183.3	.437	007	047
284.1	.458	.026	.042	185,1	.465	028	045
331.0	.404	052	.063	186.9	.504	035	029
327.4	.404	051	.056	188.8	.499	044	018
312.9	.394	025	.038	190.5	.544	053	003
298.5	.437	.015	.030	194.1	.608	066	.035
334.5	.428	050	.079	197.7	.666	056	.066
338.2	.422	055	.083	201.3	.725	036	.090
				217.6	.864	.042	.116
				233.7	.897	.084	.082
				250.0 266.1	.879	. 105	.060
				266.1 282.3	.837	.115	.037
				202.3	.749	.117	.021

Table H4 - Continued

298.5	.659	.111	.009	228.2	.932	.071	.092
314.8	.536	.078	.012	244.5	.936	.086	.078
330.9	.491	.025	.021	290.7	.943	.107	.062
330.9	.490	.021	.020	2 76.9	.909	.126	.040
334.5	.502	.016	.025	293.1	.868	.137	.026
338.1	.489	.010	.038	309.4	.789	.131	.009
341.7	.487	000	.056	325.7	.68 0	.108	.009
345.3	.495	002	.075	329.2	.607	.104	.015
347.2	.495	002	.087	331.0	.597	.091	.017
348.9	.50 6	.001	.095	332.8	.577	.091	.012
350.7	.511	.003	.098	341.8	.56 6	.055	.030
352.5	.506	.004	.107	345.4	.558	.042	.036
354.4	.493	.005	.126	349. 0 350.7	.546	.032	. 057
356.1	.490 .482	000	.135	350.7 352.6	.561	.030	.059
358.0 359.8	.474	.002	.135 .139	354.5	.529	.031	.072
361.6	.484	.006 .004	.134	356.1	.561 .558	.029	.078
301.0	.707	.004	. 134	358.0	.528	.023 .020	.086
	RADIUS =	.775		359.8	.516	.020	.097
ANGLE	7x/V	VT/V	VR/V	361.6	.524	.005	.099
2	.516	.008	.099	•••••	.524	.007	.097
0.0	.515	001	.102		RADIUS	= 1.017	
1.8	.512	003	.098	ANGLE	7X/V	VT/V	VR/V
3.5	.513	009	.095	2	.542	011	069
5.3	.512	032	.088	1.6	.550	053	073
7.2	.522	033	.077	3.3	.580	074	070
9.0	.516	041	.066	3.3	.571	081	065
10.8	.514	043	.057	5.1	.568	094	060
12.6	.512	046	.049	5.1	.573	089	064
16.2	.51 5	061	.033	7.0	.582	098	058
19.9	.532	068	.018	8.7	.595	106	051
3 6. 0	.594	115	011	10.6	.596	108	051
52.3	.729	146	006	14.1	.588	116	052
68.4	.83 2	149	.009	17.7	.594	119	055
84.6	.878	135	.033	21.3	.605	124	063
100.9	.916	113	.058	24.8	.608	~.127	063
117.1	.926	095	.076	28.4	.612	143	C65
133.2 149.4	.927	084	.090 .101	32.0 48.2	.638	151	065
153.0	.92 8 .93 2	066 062	.103	64.5	.753 .850	157	- .042
156.5	.930	054	.105	80.7	.916	146	022
160.2	.939	044	.110	97.0	.929	121 096	.009
163.7	.925	028	.122	113.1	.936	077	.033 .046
167.3	.910	.009	. 134	129.5	.943	061	.054
170.9	.819	.054	.119	145.7	.942	047	.060
172.7	.759	.065	.107	149.3	948	044	.063
174.6	.692	.083	.094	152.9	.953	040	.064
176.3	.63 3	.087	.051	156.5	.955	037	.061
176.1	.58 5	.086	.028	160.2	.958	033	.062
179.9	.541	.069	.008	163.7	.962	032	.060
181.7	.476	.047	023	167.4	.970	030	.057
183.5	.488	.010	017	171.0	.958	025	.058
185.2	.469	038	018	172.7	.949	021	.065
185.2	.476	047	015	174.6	.954	.003	.078
187.1	.501	070	.008	176.3	.889	.061	. 085
188.9	.554	085	.028	178.1	.747	.081	.070
190.6	.596	078	.060	179.8	.693	.030	.039
194.2 197.8	.713	÷.062	.107	180.0 181.6	.679	.031	.030
201.4	.809 .899	025 .014	.133 .128	183.3	.718	055	.029
201.4	.931	.014	.128	185.1	.807	068	.043
204.9	.932	.036	.114	186.9	.901 .944	050	.072
212.0	,943	.059	.107	188.3	.944	007	.080
- · - · V	, 370			. 30.0	. 34 V	.023	.073

DTNSRDC ISSUES THREE TYPES OF REPORTS

- 1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.
- 2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.
- 3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.