0.1 Alapkörrendszer, alap vágás renszer

Adott egy G gráf és G-nek egy F rögzített feszítőfája. Ekkor G minden éléhez F meghatározza G éleinek egy fontos részhalmazát. Attól függően, hogy az adott él F-hez tartozik-e vagy sem, különböző fajta részhalmazról van szó.

Def: A G gráf F feszítőfájának f éléhez tartozó alap vágást G azon élei alkotják, amik az F - f két komponense között futnak. Az $e \in E(G) \setminus E(F)$ éléhez tarozó alapkör pedig az F + e köre.

Megf: Tfh $f \in F$ és $e \in E(G) \setminus E(F)$. Ekkor $(F - f + e \text{ ffa}) \iff (f \text{ benne van } e \text{ alapkörében}) \iff (e \text{ benne van } f \text{ alap vágásában}).$

Köv: Az $e \in E(G) \setminus E(F)$ alapkörét e mellett azon F-beli élek alkotják, amelyek alapvágása e-t tartalmazza. Az $f \in F$ alapvágást f mellett a G azon élei alkotják, amelyek alapköre f-t tartalmazza.

0.2 Minimális költségű feszítőfa

Def: Adott a G = (V, E) irányítatlan gráf élein a $k : E \to \mathbb{R}_+$ költségfüggvény. Az $F \subseteq E$ élhalmaz költsége az F-beli élek összköltsége: $k(F) = \sum_{f \in F} k(F)$.

Az $F \subseteq E$ élhalmaz G-ben minimális költségű feszítőfa (mkffa), ha

- (1) (V, F) a G feszítőfája, és
- (2) $k(F) \le k(F')$ teljesül a G bármely (V, F') feszítőfájára.

Az $F \subseteq E$ élhalmaz G-ben minimális költségű feszítő erdeje, ha

- (1) (V, F) a G feszítő erdeje, és
- (2) k(F) < k(F') teljesül a G bármely (V, F') feszítő erdejére.

Cél: Hatékony eljárás mkffa keresésére.

Ötlet: Keressük a feszítőfát a tanult módon, az élk egyenkénti behúzásával, az ÉHL szerint zöldre színezett élek halmazaként.

Zöld él: olyan él, ami nem alkot kört a korábban felépített élekkel.

Mohó stratégia: A feszítőfa építésekor költség szerint növekvő sorrendben döntsünk az élekről, hátha mkffát kapunk a végén.

Kruskal-algoritmus: Input: G = (V, E) és $k : E \to \mathbb{R}_+$ költségfüggvény. Output: $F \subseteq E$ Működés: Tfh $k(e_1) \le k(e_2) \le \cdots \le k(e_m)$, ahol $E = \{e_1, e_2, \ldots, e_m\}$. Legyen $F_0 = 0$, és $i = 1, 2, \ldots, m$ -re

$$F_i := \begin{cases} F_{i-1} \cup \{e_i\} & \text{ha } F_{i-1} \cup \{e_i\} \text{ k\"ormentes.} \\ F_{i-1} & \text{ha } F_{i-1} \cup \{e_i\} \text{ tartalmaz k\"ort.} \end{cases}$$

0.3 Minimális költségű feszítőfák struktúrája

G = (V, E) gráf és $k : E \to \mathbb{R}_+$ költségfüggvény esetén legyen G_c a legfeljebb c költségű élek alkotta feszítő részgráfja G-nak: $G_c = (V, E_c)$, ahol $E_c := \{e \in E : k(e) \le c\}$.

Megf: A G gráfon futtotott Kruskal-algoritmus outputja tartalmazza G_c egy feszítő erdejét minden c > 0 esetén.

Biz: A Kruskal-algoritmus a legfeljebb c költségű (E_c -beli) éleket hamarabb dolgozza fel, mint a c-nél drágábbakat. Ezért E_c összes élének feldolgozása után pontosan azt az állapotot érjük el, mintha a Kruskal-algoritmust a G_c frágon futtattunk volna. Korábban (az ÉHL előtt) láttuk, hogy az utóbbi algoritmus outputja G_c egye feszítő erdeje. \square

Lemma: Tfh $F = \{f_1, f_2, \dots, f_l\}, k(f_1) \leq k(f_2) \leq \dots \leq k(f_l)$ és $F \cap E_c$ a G_c egy feszítő erdeje $\forall c \geq 0$ -ra. Tfh $F' = \{f'_1, f'_2, \dots, f'_l\}$ a G egy feszítő erdejének élei, és $k(f'_1) \leq k(f'_2) \leq \dots \leq k(f'_l)$. Ekkor $k(f_i) \leq k(f'_i)$ teljesül $\forall 1 \leq i \leq l$ esetén, így $k(F) \leq k(F')$.

Biz: Indirekt: tfh $k(f_i) > k(f'_i) = c$. Ekkor $|E_c \cap F| < i$, így a feltevés miatt $E_c \cap F$ a G_c egy i-nél kevesebb élű feszítő erdeje. Az f'_1, f'_2, \ldots, f'_i élek is mind E_c -beliek, és többen vannak az $E_c \cap F$ feszítő erdő élszámánál. Tehát f'_1, f'_2, \ldots, f'_i nem lehet körmentes, így f'_1, f'_2, \ldots, f'_l sem. Ez ellentmondás. Tehát $k(f_i) \le k(f'_i) \ \forall i$. Ezért $k(F) = \sum_{i=1}^l k(f_i) \le \sum_{i=1}^l k(f'_i) = k(F')$. \square

 $\ddot{\text{K\"ov}}$: (1) A Kruskal-algoritmus outputja a G gráf egy minimális költségű feszítő erdeje.

Biz: Legyen F a Kruskal-algoritmus outputja. A megfigyelés miatt $F \cap E_c$ a G_c feszítő erdeje $\forall c \geq 0$ -ra, ezért a Lemma szerint $k(F) \leq k(F')$ teljesül G tetszőleges F' feszítő erdejére.

Köv: (2) Az F' élhalmaz pontosan akkor minimális költségű feszítő erdeje G-nek, ha $F' \cap E_c$ a G_c egy feszítő erdeje minden $c \leq 0$ -ra.

Biz: A Lemma bizonyítja az elégfégességet.

Biz: A szükségességhez tfh $F' \cap E_c$ nem feszítő erdeje G_c -nek, és legyen F a Kruskal-algoritmus outputja. Mivel $F \cap E_c$ a G_c feszítő erdeje, ezért $|F \cap E_c| > |F' \cap E_c|$, így $k(f_i) < k(f'_i)$ teljesül legalább egy i-re, és minden j-re $k(k_j) \leq k(f'_i)$. Innen k(F) < k(F'). \square

Köv: (3) Ha a G gárf összefüggő, akkor G feszítő erdeje a G feszítő fája, így a Kruskalalgoritmus mkffát talál. A (2) következmény pedig G mkffáit karakterizálja.

0.4 Az ötödik elem

Algoritmusok megadásakor öt dologra figyelünk:

Input \checkmark , Output \checkmark , Működés \checkmark , Helyesség \checkmark , Lépésszám.

Utóbbiról nem volt szó a Kruskal-algoritmus esetében.

Tfh n ill. m a G csúcsai ill. élei száma.

A Kruskal-algoritmus két részből áll:

- 1. Élek költség szerinti sorbarendezése
- 2. Döntés az egyes élekről a fenti sorrendben.
- 1. m szám sorbarendezéséhez a buborékrendezés legfeljebb $\binom{m}{2}$ összehasonlítást használ.
- 1. n csúcsú G gráf esetén egy élről döntés megoldható $konst \cdot \log_2 n$ lépésben az adatstruktúra karbantartásával együtt is. Az összes döntéshez tehát elegendő $konst \cdot n \cdot \log_2 n$ lépés. A Kruskalalgoritmus lépésszáma ezért felülről becsülhető $konst \cdot (n+m) \cdot \log_2 (n+m)$ -mel.