Harmonische Pendel

Während einer harmonischen Schwingung ändert sich die Rückstellkraft ständig; sie ist proportional zur Auslenkung:

$$F(t) \propto y(t)$$

Ges: Proportionalitätsfaktor □

$$F(t) = \Box \cdot y(t)$$

Geg: $y(t) = \hat{y} \cdot \sin(\omega \cdot t)$ (Die Auslenkung ändert sich während einer Schwingung

ständig)

 $v(t) = \omega \cdot \hat{y} \cdot \cos(\omega \cdot t)$ (Auch die Geschwindigkeit ändert sich während einer

Schwingung ständig)

 $a(t) = -\omega^2 \cdot \hat{y} \cdot \sin(\omega \cdot t)$ (Auch die Beschleunigung ändert sich während einer

Schwingung ständig)

 $F(t) = m \cdot a(t)$ (Newtons Beschleunigungsgesetz)

 \square =

1. Das Federpendel

Die Rückstellkraft ist durch das Federgesetz gegeben:

 $F = -D \cdot y$ (Auslenkung und Rückstellkraft haben entgegengesetzte Richtungen, darum das Minus)

Vergleichen Sie mit dem Proportionalitätsfaktor \square (siehe oben) und finden Sie eine Formel für die Kreisfrequenz heraus!

2. Das Fadenpendel

Harmonische Pendel sgamper