Earth to Mars Problem

- Constant 0.1-newton magnitude
- 3.57e-06 kg/s Mass flow rate
- Fuel Mass 1000 kg
- Fuel Consumption 287.8 kg
- Fixed Started date: July 20, 2023
- End date: February 06, 2026
- Time of Flight: 933 days
- Total number of steps: 200
- Number of Major iterations: 265
 - o Total interactions: 7093
- Total run time: 13 hours
- Feasibility: 6.5E-09
- Optimality: 8.0E-07

Earth to Mars Trajectory (Red)

Earth to Mars SNOPT Optimization Setup

- Objective Function: Time of Flight
- Constraints: Spacecraft's relative position and velocity to Mars
- Load initial guess
 - alpha, beta thrust vector angles, and TOF
- Set design variable and function bounds
 - -pi to +pi thrust angle, ½ year to 10 year TOF
 - ObjFun: 0 to 10 years, constraints equal 0
- Run SNOPT optimization
- Calls Objective/Constraint Function
 - Converts design variable into thrust file and updates GMAT propagation time
 - Run GMAT and extract Spacecraft data with API commands
 - Calculated Spacecraft's relative position and velocity to Mars Ephemeris data
 - Compute objective function and constraints

```
nCon Feasible Optimal MeritFunction
Major Minors
                Step
                                                                 nS Penalty
          1 1.0E+00
                        267 (3.9E-09) 1.7E-06 1.6042772E+01
                                                                274 3.8E+03
          1 1.0E+00
                        268 (1.5E-09) 1.5E-06 1.6042771E+01
                                                                274 3.8E+03
          1 1.0E+00
                        269 (9.4E-10) 1.4E-06 1.6042771E+01
                                                                274 3.8E+03
          1 1.0E+00
                                                                274 3.8E+03
                        270 (2.2E-09) 1.3E-06 1.6042771E+01
 264
          1 1.0E+00
                        271 (5.2E-09) 1.1E-06 1.6042771E+01
                                                                274 3.8E+03
    7093: Elastic weight increased to
     7093: Elastic weight increased to
                                         2.000E+08
     7093: Elastic weight increased to 2.000E+10
 265
                        272 (6.5E-09)(8.0E-07) 1.6042770E+01
                                                                274 3.8E+03
             0 -- finished successfully
             1 -- optimality conditions satisfied
```

Problem name			
No. of iterations	7093	Objective 1.6042770094E+01	
No. of major iterations	265	Linear obj. term 0.0000000000E+00	
Penalty parameter	3.765E+03	Nonlinear obj. term 1.6042770094E+01	
User function calls (total)	122142	Calls with modes 1,2 (known g) 272	
Calls for forward differencing 110275		Calls for central differencing 11228	
No. of superbasics	274	No. of basic nonlinears 6	
No. of degenerate steps	4	Percentage 0.06	
Max x	1 1.6E+01	Max pi 2 5.9E+01	
Max Primal infeas	0 0.0E+00	Max Dual infeas 95 4.7E-05	
Nonlinear constraint violn	1.0E-07		

Solution printed on file 9

Time for MPS input 0.00 s	seconds
Time for solving problem 47294.58 s	seconds
Time for solution output 0.00 s	seconds
Time for constraint functions 47291.89	seconds
Time for objective function 0.00 s	seconds

SNOPT Output Summary

Future Work

- Search for more optimal solutions
 - Increase Step Size
 - Make start time a design variable
 - Modify start time through API commands
- Have MATLAB-SNOPT-GMAT code working on Linux HPC-cluster to be able to run longer simulations remotely
 - Get a compiled version of GMAT in Linux
- Apply this method to other problems

```
t1=juliandate(2023,07,20,00,00,00);
[Re i, Ve i] = planetEphemeris(t1, 'Sun', 'Earth');
load gmat();
gmat.gmat.LoadScript("C:/GMAT Repo/EarthToMars
sat = qmat.qmat.Construct("Spacecraft", "Sat");
sat.SetField("DateFormat", "AlModJulian")
sat.SetField("Epoch", num2str(t1-2430000.0))
sat.SetField("CoordinateSystem", "SunICRF")
sat.SetField("DisplayStateType", "Cartesian")
sat.SetField('X', Re i(1));
sat.SetField('Y', Re i(2));
sat.SetField('Z', Re i(3));
sat.SetField('VX', Ve i(1));
sat.SetField('VY', Ve i(2));
sat.SetField('VZ', Ve i(3));
```

API Commands to set start time, initial position and velocity of spacecraft in GMAT