

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

(Multinomial) Logistic Regression

Feature Engineering

Matt Gormley Lecture 9 Feb. 14, 2018

Reminders

- Homework 3: KNN, Perceptron, Lin.Reg.
 - Out: Wed, Feb 7
 - Due: Wed, Feb 14 at 11:59pm
- Homework 4: Logistic Regression
 - Out: Wed, Feb 14
 - Due: Fri, Feb 23 at 11:59pm

MULTINOMIAL LOGISTIC REGRESSION

Multinomial Logistic Regression

Chalkboard

- Background: Multinomial distribution
- Definition: Multi-class classification
- Geometric intuitions
- Multinomial logistic regression model
- Generative story
- Reduction to binary logistic regression
- Partial derivatives and gradients
- Applying Gradient Descent and SGD
- Implementation w/ sparse features

Debug that Program!

In-Class Exercise: Think-Pair-Share

Debug the following program which is (incorrectly) attempting to run SGD for multinomial logistic regression

Buggy Program:

```
while not converged:
for i in shuffle([1,...,N]):
  for k in [1,...,K]:
     theta[k] = theta[k] - lambda * grad(x[i], y[i], theta, k)
```

Assume: grad(x[i], y[i], theta, k) returns the gradient of the negative log-likelihood of the training example (x[i],y[i]) with respect to vector theta [k]. lambda is the learning rate. N = # of examples. K = # of output classes. M = # of features. theta is a K by M matrix.

Debug that Program!

In-Class Exercise: Think-Pair-Share

Debug the following program which is (incorrectly) attempting to run SGD for multinomial logistic regression

Buggy Program:

```
while not converged:
 for i in shuffle([1,...,N]):
     for k in [1,...,K]:
         for m in [1,..., M]:
             theta[k,m] = theta[k,m] + lambda * grad(x[i], y[i], theta, k,m)
```

Assume: grad(x[i], y[i], theta, k, m) returns the partial derivative of the negative log-likelihood of the training example (x[i],y[i]) with respect to theta[k,m].lambda is the learning rate. N = # of examples. K = # of output classes. M = # of features. theta is a K by M matrix.

FEATURE ENGINEERING

Handcrafted Features

Feature Engineering

Feature Engineering

Feature Learning

Feature Learning

Feature Learning

Feature Learning

Feature Learning

Suppose you build a logistic regression model to predict a part-of-speech (POS) tag for each word in a sentence.

What features should you use?

Per-word Features:

Context Features:

Context Features:

... $w_{i} == "I"$ $w_{i+1} == "I"$ $w_{i-1} == "I"$ $w_{i+2} == "I"$ $w_{i-2} == "I"$

Table 3. Tagging accuracies with different feature templates and other changes on the WSJ 19-21 development set.

Model	Feature Templates	#	Sent.	Token	Unk.
		Feats	Acc.	Acc.	Acc.
3GRAMMEMM	See text	248,798	52.07%	96.92%	88.99%
NAACL 2003	See text and [1]	$460,\!552$	55.31%	97.15%	88.61%
Replication	See text and [1]	$460,\!551$	55.62%	97.18%	88.92%
Replication'	+rareFeatureThresh = 5	$482,\!364$	55.67%	97.19%	88.96%
$5 \mathrm{W}$	$+\langle t_0, w_{-2}\rangle, \langle t_0, w_2\rangle$	730,178	56.23%	97.20%	89.03%
5wShapes	$+\langle t_0, s_{-1}\rangle, \langle t_0, s_0\rangle, \langle t_0, s_{+1}\rangle$	731,661	56.52%	97.25%	89.81%
5wShapesDS	+ distributional similarity	737,955	56.79%	97.28%	90.46%

Suppose you want to predict whether the word is the root (i.e. predicate) of the sentence.

What features should you use?

Per-word Features:

Per-word Features:

Per-word Features: (with conjunction)

```
on-path(w_i) && w_i== "depicted" is-between(w_i) && w_i== "depicted" head-of-M1(w_i) && w_i== "depicted" head-of-M2(w_i) && w_i== "depicted" before-M1(w_i) && w_i== "depicted" before-M1(w_i) && w_i== "depicted"
```


The $[movie]_{M_1}$ I watched depicted $[hope]_{M_2}$

Edge detection (Canny)

Corner Detection (Harris)

Scale Invariant Feature Transform (SIFT)

op row. Recognition results below show model outlines and mage keys used for matching.

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is down-sampled by a factor of 2, and the process repeated.