SYMPLECTIC GEOMETRY

辛几何笔记

Misuzu/Yuxuan Liu

February 25, 2025

${\rm CONTENTS}$

Contents

	线性辛几何			
	1.1	辛空间	2	
	1.2	复结构	4	
	1.3	相容复结构	4	

${\rm CONTENTS}$

这是我 2025 春季学期的辛几何课程笔记, 课程大纲如下:

- 线性辛几何
- 辛流形基础
- 局部理论
- 近复结构
- 辛群作用与 Toric 几何
- 经典/量子力学
- Morse 理论/Flow 理论

1 线性辛几何

1.1 辛空间

Definition 1.1. 设 $V \in \mathbb{R}$ 上的 m 维线性空间, $\omega : V \times V \to \mathbb{R}$ 是非退化, 反对 称的双线性映射, 则称 $\omega \in V$ 上的一个辛结构, (V, ω) 构成一个辛空间.

定义中的非退化指的是: 对任意 $0 \neq v \in V$,存在 $0 \neq w \in V$ 使得 $\omega(v,w) \neq 0$. 由定义可知:

- 非退化: $\widetilde{\omega}: V \to \widetilde{V}, v \mapsto \omega(v, \cdot)$ 是同构.
- 反对称: 选取 V 的一组基 $\{e_1, \dots, e_m\}$, 则 (ω_{ij}) 是反对称矩阵, 其中 $\omega_{ij} = \omega(e_i, e_j)$. 同时也有推论: m = 2n, 为偶数.

Example 1.1. 令 $\{e_1 \cdots, e_{2n}\}$ 为 \mathbb{R}^{2n} 的一组基, $e_i = (0, \cdots, 0, \frac{1}{i-\text{th}}, 0 \cdots, 0)$. 令 \mathbb{R}^{2n} 上的一个非退化反对称双线性映射 ω_0 由以下矩阵给出:

$$(\omega_{ij}) = \left(\begin{array}{c|c} 0 & id_{n \times n} \\ \hline -id_{n \times n} & 0 \end{array}\right)$$

则 $(\mathbb{R}^{2n}, \omega_0)$ 是辛空间. 为了方便, 记 $f_i = e_{n+i}, 1 \leq i \leq n$, 则有

$$\begin{cases} \omega_0(e_i, f_j) = \delta_{ij} \\ \omega_0(e_i, e_j) = \omega_0(f_i, f_j) = 0 \end{cases}$$

Definition 1.2. 设 $\varphi: V \to V'$ 是辛空间 (V, ω) 到 (V', ω') 的线性同构, 且满足 $\varphi^*\omega' = \omega$, 则称 φ 是辛同构.

Proposition 1.1. 任意 2n 维辛空间 (V,ω) 都与 $(\mathbb{R}^{2n},\omega_0)$ 辛同构.

Proof. 我们运用归纳法证明. 目的: 证明存在 V 的一组基 $\{e_1', \cdots, e_n', f_1' \cdots, f_n'\}$ 使得

$$\begin{cases} \omega(e'_i, f'_j) = \delta_{ij} \\ \omega(e'_i, e'_j) = \omega(f'_i, f'_j) = 0 \end{cases}$$

先任取一非零向量 e'_n ,由非退化性质和双线性性, $\exists f'_n$ 使得 $\omega(e'_n, f'_n) = 1$,由此也可知 e'_n, f'_n 线性无关. 考虑 $V' = \{v \in V \mid \omega(e'_n, v) = 0, \omega(f'_n, v) = 0\}$,则有:

- (1) V' 是 2n-2 维线性空间.
- (2) $\omega \mid_{V'}$ 非退化. (若对 $u \in V'$, $\forall u' \in V'$ 都有 $\omega(u, u') = 0$, 则 $\omega(u, v) = 0$ 对 $\forall v \in V$ 成立,与 ω 非退化矛盾)

故 $\omega|_{V'}$ 是 V' 上的辛结构, 通过对维数归纳得证.

若 (V,ω) 的一组基 $\{e_1,\cdots,e_n,f_1\cdots,f_n\}$ 满足:

$$\begin{cases} \omega(e_i, f_j) = \delta_{ij} \\ \omega(e_i, e_j) = \omega(f_i, f_j) = 0 \end{cases}$$

则称该组基为辛基,注意辛基不唯一.

Definition 1.3. 设 Y 是 (V,ω) 的一个线性子空间, 定义 Y 的辛补空间为 $Y^{\omega} = \{v \in V \mid \omega(v,u) = 0, \forall u \in Y\}.$

由线性代数可知:

- $\dim Y + \dim Y^{\omega} = \dim V$.
- $(Y^{\omega})^{\omega} = Y$.
- $Y \subseteq Z \iff Y^{\omega} \supseteq Z^{\omega}$.

Definition 1.4. 当 (V, ω) 的子空间 Y 分别满足以下条件时, 称其为:

 $Y \cap Y^{\omega} = 0$ 辛子空间

 $Y \subseteq Y^{\omega}$ 迷向子空间

 $Y \supset Y^{\omega}$ 余迷向子空间

 $Y = Y^{\omega}$ Lagrange 子空间

且分别有维数: $\dim Y$ 为偶数, $\dim Y \leq n$, $\dim Y \geq n$, $\dim Y = n$.

当 Y 是辛子空间时, $\omega|_{Y}$ 是其上的辛结构 (这也是为什么 Y 被称为辛子空间).

Remark 1.1. Lagrange 子空间是很重要的子空间, 它兼具极大各向同性 (maximal isotropic) 与结构对称性. 在后续的学习中我们也能看到 Lagrange 子流形的重要性.

Example 1.2. 在 (\mathbb{R}^6 , ω_0) 中, { e_1 , e_2 , e_3 , f_1 , f_2 , f_3 } 为标准基,则有:

 $L(e_1, f_1)$ 辛子空间

 $L(e_1)$ 迷向子空间

 $L(e_1, e_2, e_3, f_1)$ 余迷向子空间

 $L(e_1, e_2, e_3)$ Lagrange 子空间

Example 1.3. 设 Y 是 (V,ω) 的迷向子空间, 在 Y^{ω}/Y 上定义 $\overline{\omega}$ 为 $\overline{\omega}(\overline{u},\overline{v}) = \omega(u,v)$.

Exercise 1.1. 证明: $(Y^{\omega}/Y, \overline{\omega})$ 是辛空间.

Exercise 1.2. 证明: (V, ω) 的任意迷向子空间可扩充为一个 Lagrange 子空间.

1.2 复结构

Definition 1.5. 设 V 是 \mathbb{R} 上的线性空间, 若线性变换 $J:V\to V$ 满足 $J^2=-id$, 则称 J 为 V 上的一个复结构.

- 若 V 上有复结构, 则 $(-1)^{\dim V} = \det(J^2) = (\det J)^2 \ge 0$, 故 $\dim V$ 为偶数且 J 可 逆.
- 给定复结构 J, V 可以看成复线性空间:

$$\mathbb{C} \times V \to V, \ (s+it,v) \mapsto sv + tJ(v)$$

Example 1.4. 令
$$\{e_1 \cdots, e_{2n}\}$$
 为 \mathbb{R}^{2n} 的标准基,考虑 J_0 :
$$\begin{cases} J_0(e_i) = e_{n+i} \\ J_0(e_{n+i}) = -e_i \end{cases}$$
 其中 $1 \le i \le n$,则 J_0 是 \mathbb{R}^{2n} 上的复结构,有矩阵表示: $J_0 = \begin{pmatrix} 0 & -id_{n \times n} \\ id_{n \times n} & 0 \end{pmatrix}$

Proposition 1.2. 若 2n 维实线性空间 V 上有复结构 J, 则有线性同构 $\psi: \mathbb{R}^{2n} \to V$ 使得 $J\psi = \psi J_0$.

Proof. 我们只需找出 V 的一组形如 $\{v_1, \cdots, v_n, Jv_1, \cdots, Jv_n\}$ 即可. 同样地, 我们使用归纳法证明.

任取 V 上的一个内积 h, 再令 $g: V \times V \to \mathbb{R}$, $(u,v) \mapsto \frac{1}{2}(h(u,v) + h(Ju,Jv))$, 易证 g 对称且正定,故 g 是 V 上内积,注意到 g(Ju,Jv) = g(u,v),故 g 是 J-不变内积. 设 v_n 是 (V,g) 中的单位向量,则 Jv_n 也是单位向量. 计算 $g(v_n,Jv_n) = g(Jv_n,J^2v_n) = g(Jv_n,-v_n) = -g(v_n,Jv_n)$,故 $v_n \perp Jv_n$. 现在考虑 $L(v_n,Jv_n)$ 在 g 下的正交补 V',容易得出 $J|_{V'}$ 是 V' 上的复结构,故由归纳法可以找出 V 的一组基形如 $\{v_1,\cdots,v_n,Jv_1,\cdots,Jv_n\}$.

1.3 相容复结构

Definition 1.6. 设 (V,ω) 是辛空间, $J \in V$ 上的复结构. 若有

- $\omega(Ju, Jv) = \omega(u, v), \forall u, v \in V$
- $\omega(v, Jv) > 0 \ \forall 0 \neq v \in V$

则称 J 与 ω 相容. $J(V,\omega)$ 表示 V 上所有与 ω 相容的复结构的集合.

Remark 1.2. 研究相容复结构对后续进行辛流形的局部分析有重要作用.

若给定相容复结构 J, 则可定义: $g_J: V \times V \to \mathbb{R}, (u,v) \mapsto \omega(u,Jv)$, 容易看出这是一个双线性映射. 进一步还有:

- g_J 是对称的: $g_J(u,v) = \omega(u,Jv) = \omega(Ju,-v) = \omega(v,Ju) = g_J(v,u)$.
- g_J 是正定的: $\forall 0 \neq v \in V, g_J(v, v) = \omega(v, Jv) > 0.$ 因此 g_J 是 V 上的一个内积. 我们将看到这个内积有很好的性质.
- g_J 是 J-不变内积: $g_J(Ju,Jv) = \omega(Ju,-v) = \omega(v,Ju) = g_J(v,u) = g_J(u,v)$.
- J 相对于 g_J 是反自伴的: $g_J(Ju, v) = g_J(Ju, J(-Jv)) = -g_J(u, Jv)$.
- ω, J, g_J 任意两个可以决定第三个. 我们称 (ω, J, g_J) 为相容三元组.

Theorem 1.1. 设 (V,ω) 是辛空间,J 是 V 上的复结构. 则以下叙述等价:

- J 与 ω 相容.
- (V,ω) 有如下形式的辛基: $\{v_1,\cdots,v_n,Jv_1,\cdots,Jv_n\}$.
- 存在线性同构 $\Phi: \mathbb{R}^{2n} \to V$ 使得: $\Phi^*\omega = \omega_0$, $\Phi J_0 = J\Phi$.
- $\forall v \neq 0$, 有 $\omega(v, Jv) > 0$ 且 J 将 Lagrange 子空间映为 Lagrange 子空间.