# Semana 7. Variables Instrumentales (IV) Interpretación LATE

Equipo Econometría Avanzada

Universidad de los Andes

23 de septiembre de 2022



#### Contenido

1 Contexto y Pregunta de investigación

Variables instrumentales

#### Contexto

Nores, Bernal y Barnett (2019) utilizan datos de niños y niñas de comunidades vulnerables de la intervención aeioTU.

- Intervención en **centros de cuidado** basada en un currículo estructurado alineado con la filosofía Reggio Emilia.
- La filosofía Reggio Emilia enfatiza en la co-construcción del aprendizaje de los niños involucrando tanto a los niños, los maestros y a la familia.
- Se capacitó a las maestras antes y durante la intervención.
- Dado que había sobre-inscripción a los centros de cuidado, los cupos fueron asignados aleatoriamente en un sorteo público.

### Pregunta de investigación

¿Cuál es el efecto de **asistir** al centro de cuidado  $(D_i)$  sobre el desarrollo cognitivo  $(Y_i)$ ?

$$Y_i = \beta_0 + \beta_1 D_i + \varepsilon_i$$

- Problema: MCO no permite recuperar un efecto consistente.
  - ¿Por qué  $\hat{\beta}_{MCO}$  no es consistente?
- Solución: Variables Instrumentales.

#### Solución usando variables instrumentales (IV)

Considere:

 $Z_i = \mathbb{1}[i \text{ fue asignado un cupo}]$  $D_i = \mathbb{1}[i \text{ asiste } \text{efectivamente al CC}]$ 

- Usaremos  $Z_i$  como instrumento para  $D_i$ .
- Dependiendo del mundo en el que estemos, el instrumento deberá cumplir ciertos supuestos para que sea válido.

|            | Mundo              |                            |
|------------|--------------------|----------------------------|
|            | Efectos homogéneos | Efectos heterogéneos       |
| Supuestos  | Relevancia y       | Independencia, Relevancia, |
|            | Exogeneidad        | Exclusión, Monotonicidad   |
| Identifica | ATE                | LATE                       |
| Usado      | No                 | Sí                         |

 Dado que el primer mundo es demasiado restrictivo, en esta clase estudiaremos el segundo.

#### Supuestos de identificación-LATE

Bajo los siguientes supuestos, IV identifica un efecto causal:

- **1 Independencia:** Los resultados potenciales de  $Y_i$  y de  $D_i$  son independientes de  $Z_i$  (i.e., el instrumento es as good as random).
- **Q** Restricción de Exclusión: Los resultados potenciales de  $Y_i$  son únicamente función de  $D_i$  (i.e.,  $Z_i$  solo afecta a  $Y_i$  a través de  $D_i$ ).
- **3 Relevancia:**  $Z_i$  tiene influencia sobre  $D_i$ .
- Monotonicidad: Si el instrumento afecta la decisión de asistir, entonces la afecta en la misma dirección para todos los individuos (i.e.,No hay defiers).

**Nota:** Si bien 1-4 garantiza consistencia, es buena idea también que la incidencia que tiene  $Z_i$  en  $D_i$  sea **fuerte**. ¿Por qué?

- ¿Es *Z<sub>i</sub>* un instrumento válido?
- ¿Qué supuestos son verificables empíricamente?

Estimación

La metodología de estimación es **Mínimos Cuadrados en Dos Etapas (MC2E)**:

$$D_i = \alpha_0 + \alpha_1 Z_i + \epsilon_i$$
 (Primera etapa)  
 $y_i = \beta_0 + \beta_1 \widehat{D}_i + u_i$  (Segunda etapa)

• ¿Cómo cambian las ecuaciones si decidimos incluir controles?

#### Resultados potenciales-Tipos de población.

Cuando el instrumento y la variable endógena son dicótomas, podemos imaginarnos fácilmente los contrafactuales. Notemos los resultados potenciales de  $D_i$  de la siguiente forma:

- Sea  $D_{i0}$  la decisión de asistir al centro en el mundo en el cual i no obtiene cupo en el sorteo.
- Sea D<sub>i1</sub> la decisión de asistir al centro en el mundo en el cual i obtiene cupo en el sorteo.
- Solo observamos:  $D_i = Z_i D_{1i} + (1 Z_i) D_{0i}$
- Dependiendo de la decisión de D<sub>i</sub> como respuesta a Z<sub>i</sub>, tenemos cuatro tipos de poblaciones:

|              | $D_{1i} = 0$ | $D_{1i}=1$    |
|--------------|--------------|---------------|
| $D_{0i} = 0$ | Never Takers | Compliers     |
| $D_{0i} = 1$ | Defiers      | Always Takers |

• En la práctica **no es posible** identificar si los individuos son *compliers, defiers, always-takers* o *naver-takers*.

#### Identificación

Bajo los supuestos LATE

$$\hat{\beta}_{1}^{MC2E} \xrightarrow{P} \frac{\mathbb{E}[Y_{i}|Z_{i}=1] - \mathbb{E}[Y_{i}|Z_{i}=0]}{\mathbb{E}[D_{i}|Z_{i}=1] - \mathbb{E}[D_{i}|Z_{i}=0]} = \mathbb{E}[Y_{i1} - Y_{i0}|D_{i1} > D_{i0}]$$

Además, el estimador toma la forma conocida de un estimador de Wald:

$$\hat{\beta}_{1}^{MC2E} = \frac{\sum\limits_{i:D_{i}=1}^{} Y_{i} - \sum\limits_{i:D_{i}=1}^{} Y_{i}}{\sum\limits_{i:Z_{i}=1}^{} D_{i} - \sum\limits_{i:Z_{i}=0}^{} D_{i}}$$

- ¿Qué tipo de efecto recupera  $\hat{\beta}_1^{MC2E}$ ? ¿Es un efecto causal?
- ¿Cuál es su interpretación?



Pilas: Algunas salvedades

- Muchos trabajos empíricos suelen emplear variables históricas o predeterminadas como instrumentos. Sin embargo, ¡esto no garantiza que el instrumento sea válido! → una variable predeterminada puede igual estar correlacionada con otras cosas de hoy en día que afectan a la variable dependiente (viola la restricción de exclusión) (Acemoglu (2005))
- La literatura ha mostrado que surgen problemas con la interpretación LATE bajo los supuestos usuales cuando se incluyen controles (Blandhol et al. (2021)).
- Incluso si un choque es exógeno, la exposición al choque puede no ser exógena, lo que plantea nuevos problemas si se desea emplear dicho choque como instrumento (Borusyak Hull (2020)).

#### Conclusión

- IV explota la variación exógena de una variable endógena para recuperar un efecto causal LATE.
- El efecto LATE es generalmente estimado por MC2E.
- En la práctica, es difícil encontrar un instrumento apropiado, especialmente que cumpla la exclusión de restricción y monotonicidad.
- Si estimamos de forma manual MC2E, los errores estándar deben ser corregidos.
- Bajo monotonicidad no pueden existir simultáneamente compliers y defiers (por lo general, se asume que no existen defiers).
- En este contexto el ATT es el promedio ponderado del efecto entre los always-takers y los compliers.

# ¡Gracias!