Homework 1

Problem 1. Show the Venn-diagram representation for the following sets:

- (a) $(A B) \cap C$
- (b) $\overline{A \oplus (B \cup C)}$

Problem 2. For any sets A, B and C, prove that

$$A \cup B = A \cup C, A \cap B = A \cap C$$
 implies $B = C$.

Solution. (Proof by contradiction)

Suppose $B \neq C$. As B and C are symmetric, then without loss of generality, take $x \in B - C$:

- 1. if $x \in A$: then $x \in A \cap B$ and $x \notin A \cap C$;
- 2. if $x \notin A$: then $x \in A \cup B$ and $x \notin A \cup C$.

neither of the above case could be true. Thus the assumption $B \neq C$ is not correct, which leads to B = C.

Problem 3. Show that a nonempty set has the same number of odd subsets (i.e., subsets with an odd number of elements) as even subsets.

Solution. As the set S is non-empty, there is some $a \in S$. Now consider all the subsets of $S' = S - \{a\}$. Let X_0 be the set of even subsets of S', X_1 be the set of odd subsets of S'.

We use the symbol X_i^a to stand for the set getting by adding a into every element of X_i , where i = 0, 1. Obviously $|X_i^a| = |X_i|$.

To the original set S, $X_0 \cup X_1^a$ is the set of even subsets of S. Similarly $X_1 \cup X_0^a$ is the set of odd subsets of S. It is easy to prove that x_i and x_{1-i}^a are disjoint (i.e., their intersection is empty). $|X_0 \cup X_1^a| \models |X_1 \cup X_0^a|$ by the previous problem. \square

Problem 4. A, B, C are three sets. and two functions $g: A \to B$, $f: B \to C$

- a) If $f \circ g$ is an injective function and g is surjective, show that f is injective.
- b) If $f \circ g$ is an surjective function and f is injective, show that g is surjective.

(Note that $f \circ g(x) = f(g(x))$.)

- *Proof.* a) for any f(x) = f(y) with $x, y \in B$, as g is surjective, there exit $u, v \in A$ such that g(u) = x, g(v) = y. Now $f(x) = f(y) \Rightarrow f(g(u)) = f(g(v))$. Since $f \circ g$ is injective, we have u = v. It follows that x = g(u) = g(v) = y. Thus f is injective.
- b) suppose g is not surjective and take $b \in B Ran(g)$. As f is injective we know that $f(x) \neq f(b) \in C$ for any $x \in B \land x \neq b$. Then we will have that $f(b) \notin Ran(f \circ g)$ which betrays that $f \circ g$ is surjective.

Problem 5. \mathcal{R} is a binary relation,

- 1. Show that \mathcal{R} is symmetric iff $\mathcal{R}^{-1} \subseteq \mathcal{R}$.
- 2. Show that \mathcal{R} is transitive iff $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{R}$.

Proof. We prove the first statement and omit the second one.

$$\mathcal{R} \text{ is symmetric} \\ \iff \forall x \forall y (x \mathcal{R} y \longrightarrow y \mathcal{R} x) \\ \iff \forall x \forall y (y \mathcal{R}^{-1} x \longrightarrow y \mathcal{R} x) \\ \iff \mathcal{R}^{-1} \subseteq \mathcal{R}$$

Problem 6. A and B are countable sets. Prove that

- 1. $A \cup B$ is countable
- 2. $A \times B$ is countable

Solution.(Hint) As $A \leq \omega$ and $B \leq \omega$, suppose $f: A \to \omega$, and $g: B \to \omega$ are both injective functions.

Then

1.

$$h(x) = \begin{cases} 2 \cdot f(x) & x \in A \\ 2 \cdot g(x) + 1 & x \in B - A \end{cases}$$

and then prove that h(x) is injective.

2. $h(\langle x, y \rangle) = \langle f(x), g(y) \rangle$.

Then prove that h(x) is injective.

Function *h* shows $A \times B \leq \omega \times \omega$.

As we know $\omega \times \omega \approx \omega$, we finally get $A \times B \leq \omega$.

Problem 7. Draw the Hasse diagram of the set of all subsets of $\{1, 2, 3\}$ ordered by inclusion.

Solution.

