Глубинное обучение О курсе

Лектор: Антон Осокин

ФКН ВШЭ, 2020

Что такое и зачем изучать глубинное обучение?

- Про что курс?
 - Про **глубокие (многослойные) нейросети**
 - Архитектуры, обучение, регуляризация
 - Примеры использования
 - Компьютерное зрение
 - Обработка текстов
- Зачем это изучать?
 - Практические результаты
 - Развитая технология

Нейросети в компьютерном зрении

Классификация изображений

Обнаружение объектов

[Redmon&Farhadi, 2017]

IM GENET

- 1,000 object classes (categories).
- Images:
 - o 1.2 M train
 - 100k test.

[Krizhevsky et al., 2012]

Сегментация объектов

[He et al., 2017]

Нейросети для текстов

Автоматический перевод

Диалоговые системы

Привет, я Алиса

Ваш голосовой помощник, придуманный в компании Яндекс. Многие вещи проще делать, говоря со мной.

Нейросети для аудио

- Распознавание речи
- text2speech WaveNet [van den Oord et al., 2016]

• Синтез музыки

Performance RNN was trained in TensorFlow on MIDI from piano performances. It was then ported to run in the browser using only Javascript in the <u>deeplearn.js</u> environment.

Игры

Atari [DeepMind, Mnih et al., 2013] Fo [DeepMind, Silver et al., 2016]

Dota2 5v5 [OpenAl Five, 2018]

План курса

- Введение
- Основные концепции
 - Механика нейросетей и backprop
 - Виды архитектур
 - Обучение и регуляризация
- Продвинутые темы
 - Применения в компьютерном зрении
 - Применения для обработки языка
 - Вероятностные модели
 - Adversarial X
 - Дифференцируемое программирование
 - Недифференцируемые модели и Deep RL

Важная информация

- Коммуникация
 - Задания: http://anytask.org/
 - E-mail курса: <u>dl.cshse@gmail.com</u>
 - Напишите письмо с указанием почты, ФИО, группы

- Домашние задания максимум практики!
 - Практические задания (с GPU)

Формула оценки

- Домашние задания максимум практики!
 - Д31, Д32, Д33
 - У каждого промежуточная и окончательные сдачи
- Многослойная формула оценки
 - $O_{\text{накоп}} := \text{round} (O_{J31} W_{J31} + O_{J32} W_{J32} + O_{J33} W_{J33})$
 - веса $w_{д31}$, $w_{д32}$, $w_{\Pi P}$ вычисляются при помощи softmin:
 - $s_{J31} := exp(-O_{J31} / T); s_{J32} := exp(-O_{J32} / T); s_{J33} := exp(-O_{J33} / T)$
 - $w_{J31} := s_{J31} / (s_{J31} + s_{J32} + s_{J33}); w_{J32} := s_{J32} / (s_{J31} + s_{J32} + s_{J33}); w_{J33} := s_{J33} / (s_{J31} + s_{J32} + s_{J33}); w_{J33} := s_{$
 - Значения параметров: Т := 20
- O_э: экзамен, автоматы, если оценка ≥6
- Итоговая оценка
 - O_{μτοΓ} := round (0.7 O_{μακοΠ} + 0.3 O_θ)

Ресурсы курса

https://github.com/aosokin/dl cshse ami/tree/master/2020-fall

https://anytask.org/course/728