CS 8750: Artificial Intelligence II

Spring 2015

Programming assignment #1 (10 points)

1. Problem description

For this assignment, you may form teams with up to 3 members. Only one submission is required for each team.

In this programming assignment, you are required to implement two Bayesian networks to answer questions of a person had a drink or not, given evidence of breathing rate, heart rate, skin temperature, and ambulation status. You may use any programming language.

There are 5 random variables:

- Pd: drink or not. Domain {+, -}
- Xb: breathing rate. Domain {H, M, L}
- Xh: heart rate. Domain {H, M, L}
- Xt: skin temperature. Domain {H, M, L}
- Xa: ambulation status. Domain { Fast, Slow, Stationary}

The structures and parameters of the two BNs and a list of 10 queries are as follows.

a) BN#1:

P(Pd)

+	0.13
_	0.87

P(Xb|Pd)

Drink	Н	M	L
+	0.64	0.22	0.14
_	0.09	0.42	0.49

P(Xh|Pd)

Drink	Н	M	L
+	0.54	0.31	0.15
_	0.12	0.42	0.46

P(Xt|Pd)

Drink	Н	M	L
+	0.73	0.18	0.09
_	0.03	0.76	0.21

b) <u>BN#2:</u>

P(Pd)

+	0.13
_	0.87

P(Xa)

Fast	0.21
S1ow	0.22
Stationary	0.57

P(Xb|Pd, Xa)

Drink	Ambulation	P(Xb=H D, A)	P(Xb=M D,A)	$P(Xb=L \mid D, A)$
+	Fast	0.95	0.03	0.02
+	Slow	0.77	0.19	0.04
+	Stationary	0.71	0.2	0.09
_	Fast	0.87	0.11	0.02
_	Slow	0.14	0.74	0.12
_	Stationary	0.03	0.16	0.81

P(Xh | Pd, Xa)

Drink	Ambulation	$P(Xh=H \mid D, A)$	P(Xh=M D,A)	$P(Xh=L \mid D, A)$
+	Fast	0.97	0.02	0.01
+	Slow	0.76	0.2	0.04
+	Stationary	0.63	0.23	0.14
_	Fast	0.92	0.07	0.01
_	Slow	0.11	0.82	0.07
_	Stationary	0. 07	0.08	0.85

P(Xt | Pd, Xa)

Drink	Ambulation	P(Xt=H D,A)	P(Xt=M D,A)	$P(Xt=L \mid D, A)$
+	Fast	0.91	0.06	0.03
+	Slow	0.54	0.36	0.1
+	Stationary	0.49	0.38	0.13
_	Fast	0.74	0.18	0.08
_	Slow	0.21	0.47	0.32
_	Stationary	0.11	0.62	0. 27

c) Queries:

ID	Xb	Xh	Xt	Xa	P(Pd=+)
1	Н	Н	Н	Stationary	?
2	Н	М	М	Fast	?
3	Н	Μ	L	Slow	?
4	М	М	М	1	?
5	М	L	М	-	?
6	М	1	L	Slow	?
7	L	1	L	Fast	?
8	L	М	-	-	?
9	L	Н	-	-	?
10	М	-	-	-	?

2. Submission requirement

Your submission is required to have the following 5 parts:

- 1) For each BN, the derivations of the formulas to answer the queries.
- 2) For each BN, the pseudocode of the algorithms to implement the formulas.
- 3) For each BN, your program code that implements the algorithm.
- 4) For each BN, execution results on all queries.
- 5) For each BN, a printout of Samlam's BN graph and solution for one query. You are recommended to use Samlam to check your program's answers, although it is not required.