Week 11 Quiz [Fall 2019]

Due Nov 8 at 11:59pm

Points 15

Questions 15

Available Nov 2 at 12am - Nov 8 at 11:59pm 7 days

Time Limit None

Instructions

Submission Guidelines

This assignment has multiple-choice and numeric response questions. Only one submission is allowed, however as long as the quiz is not submitted, it is automatically saved and can be resumed.

Upon submission, make sure you have a record of the submission (with timestamp) on the assignment/quiz page on Canvas. If we do not have your submission in Canvas, you will **not** receive credit.

It is essential to follow these instructions to provide answers for this assignment. Students who do not follow these guidelines will lose points.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	31 minutes	14 out of 15

Score for this quiz: **14** out of 15 Submitted Nov 8 at 12:50am This attempt took 31 minutes.

	Question 1	1 / 1 pts
	Which is not an example of a real-world directed and/or weighted r	network?
	Twitter follow relationships	
Correct!	Facebook friendship network	
	Wikipedia links between pages	

Question 2	1 / 1 pt
If one were seeking to disrupt a network by rer an effort to disconnect it and/or increasing ave "obvious" strategy is to attack the hubs. Wheth hard to attack (airports?) or because the network which of the following is another valid criterion	rage path lengths, an ner it is because the hubs are ork lacks hubs (highways?),
Nodes with high clustering coefficient	
Nodes with low degree	
Nodes/edges with high betweenness centrali	ity
Nodes with high closeness centrality	
Question 3	1 / 1 pt
Which of the following best describes a scale-	free network?
A network whose degree distribution follows:	a Normal distribution
7 Thetwork whose degree distribution follows	
A network whose degree distribution follows: A network whose degree distribution follows:	a power law

A network whose degree distribution has no maximum

Traffic flow

Web graph conforms to what type of structure?	
Spiral Galaxy	
○ Grid	
Bow-tie	
Pyramid	
	Spiral Galaxy Grid Bow-tie

Question 5	1 / 1 pts
Taking the log of power-law distributed data does what to the shap distribution?	oe of the
Turns it into a monotonically decreasing quadratic	
Turns it into a upward sloping exponential.	
Turns it into a downward sloping exponential.	
Turns it into a line	

Question 6 1 / 1 pts

Correct!

True or False: The degree of a randomly chosen node from a network with a power-law distributed degree distribution is comparable to the average of that

	distribution.	
	O True	
Correct!	False	
	Question 7	1 / 1 pts
	The degree distribution of a network can be interpreted as the prorandomly — with equal probability for each node — selecting a nogiven degree.	
Correct!		
Correct!	• True	
	O False	
	Question 8	1 / 1 pts
	Scale-free graphs are ultra small-world.	
Correct!		
Correct!	• True	
	O False	

Question 9

1 / 1 pts

New nodes are connected to existing nodes proportional to their clustering coefficient.
New nodes are connected to existing nodes with probability proportional to their degree.
New nodes are connected with higher probability to nodes added earlier in the process
New nodes are connected with higher probability to more recent nodes.

True or false: All centralities have strong correlation with each other because important nodes tend to be important in various ways. True False

Correct!

Question 11 1 / 1 pts

True or false: In the context of web graph, all entries exist within either the in, out, or core components.

	O True	
ct!	False	
	Question 12	1 / 1 pts
	True or false: in web graph, to go from the in-component to the out-component requires going through the core	
	O True	
ct!	False	
	Question 13	0 / 1 pts
	In the context of the web, what would we expect to be true about averagh length?	erage
Answer	A large value	
wered	A low value	
	Question 14	1 / 1 pts
	Topical locality refers to the fact that pages about related topics tendesech other.	I to link to

One method of discerning whether or not two pages relate to a similar topic

	is:
	PageRank similarity
	Text index score
	Crawler alignment score
Correct!	Cosine similarity

	Question 15	1 / 1 pts
	On a very basic level, web crawlers follow:	
	Degree-proportional search	
Correct!	Breadth-first search	
	O Depth-first search	
	Random walk	

Quiz Score: 14 out of 15