НИУ ИТМО Факультет программной инженерии и компьютерных технологий

Отчет по лабораторной работе №4
по дисциплине Вычислительная математика

Студент группы № Р32151 Преподаватель Шипулин Павел Андреевич Машина Екатерина Алексеевна

Санкт-Петербург

Цель работы

Найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

Вычислительная часть лабораторной работы

$$y(x) = \frac{31x}{x^4 + 13}, x \in [0; 4], h = 0.4$$

Рисунок 1. График исходной функции

n	x	x^2	<i>x</i> ³	x^4	у	xy	x^2y
1	0,000	0,000	0,000	0,000	0,000	0,000	0,000
2	0,400	0,160	0,064	0,026	0,952	0,381	0,152
3	0,800	0,640	0,512	0,410	1,849	1,480	1,184
4	1,200	1,440	1,728	2,074	2,468	2,961	3,554
5	1,600	2,560	4,096	6,554	2,537	4,059	6,494
6	2,000	4,000	8,000	16,000	2,138	4,276	8,552
7	2,400	5,760	13,824	33,178	1,611	3,867	9,280
8	2,800	7,840	21,952	61,466	1,166	3,264	9,139
9	3,200	10,240	32,768	104,858	0,842	2,693	8,619
10	3,600	12,960	46,656	167,962	0,617	2,220	7,993
11	4,000	16,000	64,000	256,000	0,461	1,844	7,375
Σ	22,000	61,600	193,600	648,525	14,640	27,044	62,341

Линейная аппроксимация

$$y(x) = a + bx$$

$$\begin{cases} an + b\sum x_i &= \sum y_i \\ a\sum x_i + b\sum x_i^2 &= \sum x_i y_i \end{cases}$$

$$\Delta = n \cdot \sum x_i^2 - (\sum x_i)^2 = 193,6$$

$$\Delta_a = \sum y_i \cdot \sum x_i^2 - \sum x_i \cdot \sum x_i y_i = 306,856$$

$$a = \frac{\Delta_a}{\Delta} 1,585$$

$$\Delta_b = n \cdot \sum x_i y_i - \sum y_i \cdot \sum x_i = -24,596$$

$$b = \frac{\Delta_b}{\Delta} - 0,127$$

$$\varphi(x) = 1,585 - 0,127x$$

x_i	y_i	$\varphi(x_i)$	$(\varphi(x_i) - y_i)^2$
0,000	0,000	1,585	2,512
0,400	0,952	1,534	0,339
0,800	1,849	1,483	0,134
1,200	2,468	1,433	1,072
1,600	2,537	1,382	1,334
2,000	2,138	1,331	0,651
2,400	1,611	1,280	0,110
2,800	1,166	1,229	0,004
3,200	0,842	1,179	0,114
3,600	0,617	1,128	0,261
4,000	0,461	1,077	0,379
		Σ	6,910

$$\sigma = \sqrt{\frac{\sum (\varphi(x_i) - y_i)^2}{n}} = 0,793$$

Рисунок 2. Аппроксимация прямой.

Квадратичная аппроксимация

$$y(x) = a + bx + cx^{2}$$

$$\begin{cases}
an + b\sum x_{i} + c\sum x_{i}^{2} = \sum y_{i} \\
a\sum x_{i} + b\sum x_{i}^{2} + c\sum x_{i}^{3} = \sum x_{i}y_{i} \\
a\sum x_{i}^{2} + b\sum x_{i}^{3} + c\sum x_{i}^{4} = \sum x_{i}^{2}y_{i}
\end{cases}$$

$$\Delta = \begin{vmatrix} n & \sum x_{i} & \sum x_{i}^{2} \\ \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} \\ \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} \end{vmatrix} = 4252,385$$

$$\Delta_{a} = \begin{vmatrix} \sum y_{i} & \sum x_{i} & \sum x_{i}^{2} \\ \sum x_{i}y_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} \\ \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} \end{vmatrix} = 1768,253 \Rightarrow a = \frac{\Delta_{a}}{\Delta} = 0,416$$

$$\Delta_{b} = \begin{vmatrix} n & \sum y_{i} & \sum x_{i}^{2} \\ \sum x_{i}^{2} & \sum x_{i}^{2}y_{i} & \sum x_{i}^{4} \\ \sum x_{i}^{2} & \sum x_{i}^{2}y_{i} & \sum x_{i}^{4} \end{vmatrix} = 7745,912 \Rightarrow b = \frac{\Delta_{b}}{\Delta} = 1,822$$

$$\Delta_{c} = \begin{vmatrix} n & \sum x_{i} & \sum y_{i} \\ \sum x_{i}^{2} & \sum x_{i}^{2}y_{i} & \sum x_{i}^{4} \end{vmatrix} = -2071,524 \Rightarrow c = \frac{\Delta_{c}}{\Delta} = -0,487$$

$$\Delta_{c} = \begin{vmatrix} n & \sum x_{i} & \sum y_{i} \\ \sum x_{i} & \sum x_{i}^{2} & \sum x_{i} y_{i} \\ \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{2} y_{i} \end{vmatrix} = -2071,524 \Rightarrow c = \frac{\Delta_{c}}{\Delta} = -0,487$$

$$\varphi(x) = 0.416 + 1.822x - 0.487x^2$$

x_i	y_i	$\varphi(x_i)$	$(\varphi(x_i) - y_i)^2$
0,000	0,000	0,416	0,173
0,400	0,952	1,066	0,013
0,800	1,849	1,561	0,083
1,200	2,468	1,900	0,323
1,600	2,537	2,083	0,206
2,000	2,138	2,110	0,001
2,400	1,611	1,981	0,137
2,800	1,166	1,697	0,282
3,200	0,842	1,256	0,172
3,600	0,617	0,660	0,002
4,000	0,461	-0,092	0,306
		Σ	1,697

$$\sigma = \sqrt{\frac{\sum (\varphi(x_i) - y_i)^2}{n}} = 0.393$$

Рисунок 3. Аппроксимация параболой.

Код численных методов

```
from Labs.Lab4.data.matrix import Matrix
   def set x(self, x=[]):
   def approximation(self):
```

```
def approximation(self):
def approximation(self):
def approximation(self):
```

Результаты выполнения программы

Пример 1

```
F:\Programming\python\CalcMath\venv\Scripts\python.exe
F:/Programming/python/CalcMath/Labs/Lab4/main.py
[Info]: Введите комманду:
lab4
[Input]: lab4
[Info]: Введите путь файла или пустую строку
input.txt
[Input]: input.txt
[Info]: Ввод из файла
[Info]: Введите количество точек
[Input]: 8
[Info]: Введите координату х точки 1
[Input]: 1
[Info]: Введите координату у точки 1
[Input]: 3
[Info]: Введите координату х точки 2
[Input]: 1.1
[Info]: Введите координату у точки 2
[Input]: 3.5
[Info]: Введите координату х точки 3
[Input]: 2.3
```

[Info]: Введите координату у точки 3

[Input]: 4.1

[Info]: Введите координату х точки 4

[Input]: 3.7

[Info]: Введите координату у точки 4

[Input]: 5.2

[Info]: Введите координату х точки 5

[Input]: 4.5

[Info]: Введите координату у точки 5

[Input]: 6.9

[Info]: Введите координату х точки 6

[Input]: 5.4

[Info]: Введите координату у точки 6

[Input]: 8.3

[Info]: Введите координату х точки 7

[Input]: 6.8

[Info]: Введите координату у точки 7

[Input]: 14.8

[Info]: Введите координату х точки 8

[Input]: 7.5

[Info]: Введите координату у точки 8

[Input]: 21.2

```
[Info]: Лучшая функция: y(x) = a 0 + a 1 * x ** 1 + a 2
* x ** 2 + a 3 * x ** 3
[Info]: Коэффициенты аппроксимирующей функции:
a 0 = 0.5278637158989511
a 1 = 3.509125033479098
a 2 = -1.0809148017215509
a 3 = 0.13002074642508074
[Info]:
+----+
| x_i | y_i | phi_i | epsilon_i |
+----+
| 1.000 | 3.000 | 3.086 | 0.086 |
+----+
| 1.100 | 3.500 | 3.253 | -0.247 |
+----+
| 2.300 | 4.100 | 4.463 | 0.363 |
+----+
| 3.700 | 5.200 | 5.300 | 0.100 |
+----+
| 4.500 | 6.900 | 6.279 | -0.621 |
+----+
```

| 5.400 | 8.300 | 8.431 | 0.131 |

+----+
| 6.800 | 14.800 | 15.291 | 0.491 |
+----+
| 7.500 | 21.200 | 20.897 | -0.303 |

[Info]: Среднеквадратическое отклонение: 0.3439079624248588

[Info]: R ** 2 = 0.9999720303378542

[Info]: Лабораторная работа 4 (апроксимация) завершилась

Пример 2

[Info]: Введите комманду:

lab4

[Input]: lab4

[Info]: Введите путь файла или пустую строку

input.txt

[Input]: input.txt

[Info]: Ввод из файла

[Info]: Введите количество точек

[Input]: 11

[Info]: Введите координату х точки 1

[Input]: 0,000

[Info]: Введите координату у точки 1

[Input]: 0,000

[Info]: Введите координату х точки 2

[Input]: 0,400

[Info]: Введите координату у точки 2

[Input]: 0,952

[Info]: Введите координату х точки 3

[Input]: 0,800

[Info]: Введите координату у точки 3

[Input]: 1,849

[Info]: Введите координату х точки 4

[Input]: 1,200

[Info]: Введите координату у точки 4

[Input]: 2,468

[Info]: Введите координату х точки 5

[Input]: 1,600

[Info]: Введите координату у точки 5

[Input]: 2,537

[Info]: Введите координату х точки 6

[Input]: 2,000

[Info]: Введите координату у точки 6

[Input]: 2,138

[Info]: Введите координату х точки 7

[Input]: 2,400

[Info]: Введите координату у точки 7

[Input]: 1,611

[Info]: Введите координату х точки 8

[Input]: 2,800

[Info]: Введите координату у точки 8

[Input]: 1,166

[Info]: Введите координату х точки 9

[Input]: 3,200

[Info]: Введите координату у точки 9

[Input]: 0,842

[Info]: Введите координату х точки 10 [Input]: 3,600 [Info]: Введите координату у точки 10 [Input]: 0,617 [Info]: Введите координату х точки 11 [Input]: 4,000 [Info]: Введите координату у точки 11 [Input]: 0,461 [Error]: Метод (Степенная функция) не удалось выполнить: Логарифм отрицательного числа, брух [Error]: Метод (Экспонента) не удалось выполнить: Логарифм отрицательного числа, брух [Error]: Метод (Натуральный логарифм) не удалось выполнить: Логарифм отрицательного числа, брух [Info]: Лучшая функция: y(x) = a 0 + a 1 * x ** 1 + a 2* x ** 2 + a 3 * x ** 3 [Info]: Коэффициенты аппроксимирующей функции: a 0 = -0.15004895104890803a 1 = 4.06903846153831a 2 = -1.960504079253987a 3 = 0.24555652680651224[Info]:

+----+

```
x i | y i | phi i | epsilon i |
+----+
| 0.000 | 0.000 | -0.150 | -0.150 |
+----+
| 0.400 | 0.952 | 1.180 | 0.228 |
+----+
| 0.800 | 1.849 | 1.976 | 0.127 |
+----+
| 1.200 | 2.468 | 2.334 | -0.134 |
+----+
| 1.600 | 2.537 | 2.347 | -0.190 |
+----+
| 2.000 | 2.138 | 2.110 | -0.028 |
+----+
| 2.400 | 1.611 | 1.718 | 0.107 |
+----+
| 2.800 | 1.166 | 1.263 | 0.097 |
+----+
| 3.200 | 0.842 | 0.842 | -0.000 |
+----+
| 3.600 | 0.617 | 0.547 | -0.070 |
+----+
| 4.000 | 0.461 | 0.474 | 0.013 |
```

+----+

[Info]: Среднеквадратическое отклонение:

0.12472103221287481

[Info]: R ** 2 = 0.9998707601732936

[Info]: Лабораторная работа 4 (апроксимация) завершилась

Пример 3

[Info]: Введите комманду:

lab4

[Input]: lab4

[Info]: Введите путь файла или пустую строку

```
input.txt
[Input]: input.txt
[Info]: Ввод из файла
[Info]: Введите количество точек
[Input]: 9
[Info]: Введите координату х точки 1
[Input]: 1
[Info]: Введите координату у точки 1
[Input]: 1.54
[Info]: Введите координату х точки 2
[Input]: 2
[Info]: Введите координату у точки 2
[Input]: 1.17
[Info]: Введите координату х точки 3
[Input]: 3
[Info]: Введите координату у точки 3
[Input]: 0.03
[Info]: Введите координату х точки 4
[Input]: 4
[Info]: Введите координату у точки 4
[Input]: 1.39
[Info]: Введите координату х точки 5
[Input]: 5
```

```
[Info]: Введите координату у точки 5
[Input]: 6.42
[Info]: Введите координату х точки 6
[Input]: 6
[Info]: Введите координату у точки 6
[Input]: 11.76
[Info]: Введите координату х точки 7
[Input]: 7
[Info]: Введите координату у точки 7
[Input]: 12.28
[Info]: Введите координату х точки 8
[Input]: 8
[Info]: Введите координату у точки 8
[Input]: 6.84
[Info]: Введите координату х точки 9
[Input]: 9
[Info]: Введите координату у точки 9
[Input]: 0.8
[Info]: Лучшая функция: y(x) = a 0 + a 1 * x ** 1 + a 2
* x ** 2 + a 3 * x ** 3
[Info]: Коэффициенты аппроксимирующей функции:
a 0 = 10.903730158726656
a 1 = -11.725300625297052
```

```
a_2 = 3.4651984126975464

a_3 = -0.25473905723899903
```

[Info]: +----+ x i | y i | phi i | epsilon i | +----+ | 1.000 | 1.540 | 2.389 | 0.849 | +----+ | 2.000 | 1.170 | -0.724 | -1.894 | +----+ | 3.000 | 0.030 | 0.037 | 0.007 | +----+ | 4.000 | 1.390 | 3.142 | 1.752 | +----+ | 5.000 | 6.420 | 7.065 | 0.645 | +----+ | 6.000 | 11.760 | 10.275 | -1.485 | +----+ 7.000 | 12.280 | 11.246 | -1.034 | +----+ | 8.000 | 6.840 | 8.448 | 1.608 | +----+

```
| 9.000 | 0.800 | 0.352 | -0.448 |
```

[Info]: Среднеквадратическое отклонение: 1.240646004797171

[Info]: R ** 2 = 1.0000062221853137

[Info]: Лабораторная работа 4 (апроксимация) завершилась

Выводы

Научился аппроксимировать функции полиномами (до 3-й степени) и экспонентами по методу наименьших квадратов.