# ESTUDOS HIDROGEOLÓGICOS E REDES DE MONITORIZAÇÃO EM PERÍMETROS DE REGA

# Um Caso de Estudo na Região de Canhestros

## Eduardo A. PARALTA

Geólogo, Departamento de Hidrogeologia, IGM, Estrada da Portela, Apartado 7586, 2720 Alfragide, 351.1.4718922, eduardo.paralta@igm.pt

#### Carla P. MIDÕES

Geólogo, Departamento de Hidrogeologia, IGM, Estrada da Portela, Apartado 7586, 2720 Alfragide, 351.1.4718922, carla midoes@igm.pt

# Cristina G. da COSTA

Eng<sup>a</sup> Geóloga, Departamento de Hidrogeologia, IGM, Estrada da Portela, Apartado 7586, 2720 Alfragide, 351.1.4718922, cristina.antunes@igm.pt

## Augusto M. COSTA

Geólogo, Departamento de Hidrogeologia, IGM, Estrada da Portela, Apartado 7586, 2720 Alfragide, 351.1.4718922, augusto.costa@igm.pt

#### Resumo

O bloco de rega de Canhestros, numa extensão de 100 km², integra-se no perímetro de rega da barragem de Odivelas e, será porventura, das primeiras estruturas do vasto sistema hidráulico, baseado na Barragem do Algueva, a entrar em funcionamento.

Desta forma, por solicitação da EDIA, o Instituto Geológico e Mineiro, através do seu Departamento de Hidrogeologia realizou uma avaliação prévia das condições hidrogeológicas numa perspectiva de minimização de impactes negativos sobre o solo e os recursos hídricos subterrâneos e de instalação futura de redes de monitorização.

Em termos climáticos apresenta-se como uma região quente e seca com um déficit hídrico de Maio a Outubro.

Do ponto de vista hidrogeológico, a Formação de Esbarrondadoiro, constituida por conglomerados, margas, calcários gresosos com seixos, argilas e areias suporta 2 unidades aquíferas distintas; um aquífero superficial livre captado por poços de pequena profundidade e um aquífero confinado/semiconfinado mais profundo com interesse regional aproveitado para abastecimento público.

Foram avaliados alguns parâmetros hidráulicos a partir de relatórios históricos e identificada a fácies hidroquímica que é predominantemente cloretada sódica e bicarbonatada calcomagnesiana. As águas captadas por furos apresentam-se por vezes salobras, com teores elevados de cloretos.

São apresentados os mapas de isovalores de nitratos e resíduo seco obtidos por krigagem sobre o modelo esférico e o mapa de fluxo hídrico obtido por krigagem do modelo de potência.

São desenvolvidos alguns aspectos metodológicos relativos à definição e construção das redes de monitorização bem como dos parâmetros e frequência da amostragem a implementar na fase de avaliação prévia dos locais estatisticamente mais representativos.

Palavras – Chave: Hidrogeologia , Perímetros de rega , Impactes ambientais , Geoestatística , Redes de Monitorização

# 1 - INTRODUÇÃO

A área a que se refere este estudo de implantação e manutenção de uma rede de monitorização piezométrica e de qualidade, corresponde ao perímetro de rega da infra-estrutura n.º 12 da 2ª fase de regadio de Odivelas, com uma extensão aproximada de 100 km² (10 000 ha), situada 5 Km para oeste de Ferreira do Alentejo, próximo da localidade de Canhestros.

A água é um bem escasso e potencialmente indutor de riqueza numa região deprimida como o Alentejo, cuja base económica está fortemente ligada à agricultura.

Desta forma os recursos hídricos, na sua globalidade (águas subterrâneas e águas de superfície), devem ser objecto de uma exploração racional, numa perspectiva de desenvolvimento sustentado.

O perímetro de Rega de Odivelas será, porventura, o primeiro da mega-estrutura hidráulica de regadio baseada na Barragem de Alqueva a entrar em funcionamento. O plano de regadio do alqueva propõe-se distribuir água por 110 000 hectares através de uma rede de canais de 4 400 km. A Empresa de Desenvolvimento e Infra-estruturas do Alqueva (EDIA) prevê o fecho das comportas e o início do enchimento da barragem para Fevereiro de 2001.

Os impactes microclimáticos e os impactes sobre os recursos hídricos subterrâneos serão consideráveis e não será demais prevenir através de estudos ambientais rigorosos e redes de monitorização apropriadas situações de desastre ambiental irreversíveis, idênticas a outras que ocorreram nas civilizações da antiguidade e também no último século, em virtude de obras hidráulicas de grande envergadura.

Para a definição da metodologia de selecção dos locais a monitorizar e dos aspectos técnicos inerentes à construção dos piezómetros avaliaram-se previamente as características geológicas e hidrogeológicas da área, que se apresentam seguidamente de forma resumida.

## 2 - CLIMATOLOGIA

A análise climática da área de estudo indica um clima mediterrânico de características oceânicas. A partir dos dados mensais de precipitação e temperatura da estação climatológica de Canhestros (1965-1971), define-se uma temperatura média anual de 15.8°C e uma precipitação de 582 mm/ano.

Aplicando o método de Thornthwaite-Mather e admitindo uma capacidade de campo de 100 mm obtém-se um índice hídrico de –9.4 (subhúmido seco) e um índice de aridez de 44.8 (déficit de água grande no Verão e Inverno). O escoamento superficial é da ordem dos 140 mm/ano.

Nesta região podem identificar-se 4 meses secos, Junho, Julho, Agosto e Setembro (P < 2T) e um déficit hídrico anual de 359 mm/ano (3590 m³/ha) correspondente ao período de Maio a Outubro.

Se admitirmos perdas de 10%, usuais em canais de rega, teremos necessidade de aproximadamente 4000 m³/ha para consumo agrícola no período considerado.

# 3 - GEOLOGIA

A região caracteriza-se por um modelado suave com cotas que oscilam entre os 104 m e os 65 metros. A área de estudo insere-se na bacia hidrográfica do Rio Sado, sendo formada por uma rede de drenagem do tipo dendrítico com escoamento para oeste, definindo duas sub-bacias hidrográficas: bacia da Rib<sup>a</sup> de Vale de Ouro e a bacia da Rib<sup>a</sup> de Canhestros.

A maioria da área definida pelo perímetro de rega corresponde às formações detríticas do Vale do Sado, com excepção de um pequeno sector a norte onde predominam terrenos argilosos resultantes da alteração de rochas gabro-dioríticas do complexo dos "Gabros de Beja".

A geologia dominante pertence á formação do Esbarrondadoiro de idade Miocénica e às formações Plio-Quaternárias. As litologias presentes são constituidas por conglomerados, margas, calcários gresosos com seixos, calcários margosos, argilas, arenitos e areias, em níveis alternantes (Figura 1). O substrato da bacia é constituido por xistos paleozóicos do complexo vulcano-silicioso, detectados a 200 metros de profundidade numa sondagem realizada em Figueira de Cavaleiros (AC1/1959).



Figura 1- Carta geológica do bloco de rega de Canhestros.

# 4 - HIDROGEOLOGIA

Em termos hidrogeológicos as formações acima descritas definem um sistema aquífero poroso complexo, multiaquífero ou multicamada, em que os níveis aquíferos podem ser livres, confinados ou semiconfinados.

Dado o ambiente de sedimentação em que se depositaram as formações aquíferas, o sistema é muito heterogénio, tanto no que se refere à espessura como no que se refere às propriedades hidraúlicas, pelo que o insucesso da captação de água é frequente.

Em certas regiões definem-se aquíferos multicamada, enquanto que em outros locais existem pequenos aquíferos descontínuos, livres ou confinados.

Conhecem-se casos de artesianismo repuxante por ocasião da construção de algumas captações.

Na formação do Esbarrondadoiro as maiores produtividades ocorrem na dependência dos níveis de grés grosseiro e cascalheiras limitadas na base e/ou no topo por níveis impermeáveis argilosos e/ou margosos. Os caudais médios situam-se nos 5 l/s, com caudais de ponta que atingem os 10 l/s. O rendimento das captações definido pelo caudal especifico é na ordem dos 0.7 l/s/m. Os parâmetros hidráulicos obtidos em ensaios de bombagem em 2 captações em Figueira de Cavaleiros (P1 e P2, 1969) indicam transmissividades entre 26 e 120 m²/dia e condutividade hidraúlica entre 1 e 5 m/dia para uma espessura aquífera de 20 metros.

Em conclusão, podemos afirmar que estamos em presença de um aquífero livre a confinado com uma porosidade média admissível, na ordem dos 20 %, com elevada permeabilidade horizontal, directamente relacionada com a continuídade espacial dos níveis aquíferos e uma permeabilidade vertical variável dependendo da sucessão de leitos menos permeáveis de natureza argilosa. Assim podemos definir duas situações com características hidrogeológicas distintas:

- a) um aquífero freático, superficial captado maioritariamente por poços de pequena profundidade, limitado na base por camadas impermeáveis. Tem apenas interesse local e é extremamente vulnerável à contaminação quimica e bacteriológica, pela reduzida profundidade do nível freático (1 a 10 metros);
- b) aquíferos confinados e/ou semiconfinados captados a diferentes profundidades por meio de furos, constituindo os aquíferos com interesse regional para abastecimento público. Estes sistemas são menos vulneráveis à contaminação agrícola com origem na superfície.

Em termos hidroquímicos as águas subterrâneas provenientes da formação do Esbarrondadoiro apresentam fácies bicarbonatadas calcomagnesianas e bicarbonatadas cloretadas sódicas (Figura 2), por vezes salobras, com teores elevados de cloretos.



Figura 2 - Diagrama de Piper das águas provenientes da Formação de Esbarrondadoiro.

A caracterização hidroquímica completa das águas desta formação na área do perímetro de rega e zonas envolventes baseou-se na consulta de 10 análises às águas dos furos de abastecimento público de Figueira de Cavaleiros e Canhestros entre 1959 e 1987.

Em termos de equilíbrios químicos a água apresenta-se em equilíbrio a subsaturada relativamente à calcite e subsaturada em relação aos restantes minerais do sistema carbonatado e silicioso, com excepção da variedade de dolomite ordenada.

# **5 - TRABALHOS DESENVOLVIDOS**

Com o objectivo de definir claramente a situação de referência actual em termos hidroquímicos e de contaminação realizou-se em Maio de 1999 uma campanha de inventário e medição de parâmetros físico-químicos de campo (pH, condutividade eléctrica, temperatura, resíduo seco e nitratos).

Nessa campanha foram identificados na área 37 furos de captação e 26 poços que constituem desde já uma base de trabalho para a definição de futuras redes de monitorização específica (Figura 3).



Figura 3- Inventário hidrogeológico no sector do bloco de rega de Canhestros e áreas envolventes.

Com base em 37 medições de campo da Condutividade Eléctrica efectuadas entre 5 e 7 de Maio de 1999 e em análises históricas é possível definir no diagrama da qualidade da água para uso agrícola da USSLS (Condutividade Eléctrica *versus* Taxa de Adsorção de Sódio) que as águas provenientes da formação em estudo se distribuem pelas classes C<sub>3</sub> e C<sub>4</sub> e S<sub>1</sub> a S<sub>4</sub> (Figura 4).

Desta forma o uso intensivo das águas subterrâneas representa um perigo muito elevado de salinização dos terrenos, sendo desaconselhável o seu uso em culturas sensíveis e solos de reduzida drenagem.

Apesar da irregularidade da distribuição dos 42 locais monitorizados é possível distinguir nitidamente diferentes índices de contaminação entre as águas provenientes dos poços que captam o aquífero superficial e as águas provenientes de furos, que captam os aquíferos confinados e semiconfinados mais profundos (Quadro 1).



Figura 4 - Classificação da água subterrânea da Formação de Esbarrondadoiro para uso agrícola (USSLS, 1953).

O Quadro 1 indica os valores estatísticos básicos, obtidos durante a campanha de amostragem.

Quadro 1
Teores em nitratos (mg/l) medidos em furos e poços

| PONTO DE ÁGUA | AMOSTRAS | MIN | MEDIANA | MÉDIA | MÁX   | PONTOS ACIMA<br>DO V M A | PONTOS ABAIXO<br>DO V M A |
|---------------|----------|-----|---------|-------|-------|--------------------------|---------------------------|
| FUROS         | 17       | 18  | 32      | 55    | 188   | 2                        | 15                        |
| POÇOS         | 25       | 11  | 37      | 58    | 225 * | 12                       | 13                        |

Nota: Medições efectuadas com aparelho portátil RQFlex Merck. Precisão + 5%. \* limite máximo de detecção.

A distribuição dos teores em nitratos (em 25 poços) e resíduo seco (em 12 furos e 25 poços), segundo medições efectuadas no mês de Maio de 1999 está representada na figura 5.

Relativamente ao resíduo seco (RS) constata-se que os valores variam aproximadamente entre 200 e 1400 mg/l ou seja por cada litro de água evaporada pode depositar-se em certos locais mais de 1 grama de sais, o que constitui um risco efectivo de salinização dos terrenos agrícolas. Os valores mais reduzidos de RS correspondem a colheitas em poços eventualmente com mistura de água da chuva. Os valores mais elevados distribuem-se indistintamente por poços e furos.

A avaliação da vulnerabilidade dos aquíferos mais profundos relativamente à interferência com águas de superfícíe, depende em parte do grau de confinamento e da relação entre o potencial hidráulico dos dois sistemas.

O mapa de isovalores de piezometria medida em 26 poços (Figura 6) indica um gradiente hidráulico entre 0.1% a 0.4% sucessivamente decrescente para oeste, acompanhando a drenagem superficial.





Figura 5 – Cartas de isovalores de nitratos (A) e resíduo seco (B) obtidas por krigagem do variograma esférico com efeito de pepita.



Figura 6 - Mapas de isopiezas para o aquífero superficial obtido por krigagem do variograma de potência com "slope".

Para avaliar o potencial hidráulico do sistema confinado foram medidos os níveis hidroestáticos em 11 furos em repouso. Conclui-se que o fluxo subterrâneo do sistema confinado segue o mesmo padrão do aquífero superficial. Verifica-se ainda, que de uma forma geral, o potencial dos níveis mais profundos é alguns metros inferior ao do aquífero superficial, tornando-o algo vulnerável a contaminação com origem na superfície, especialmente em situações em que furos ou poços intersectem os dois sistemas e os coloquem em contacto sem a preocupação de isolar as águas superficiais, normalmente com maior teor de fertilizantes e fitofármacos dissolvidos.

# 6 - ANÁLISE ESTRUTURAL – Variografia e Modelização

Na caracterização da estrutura espacial das variáveis nitratos, resíduo seco e piezometria aplicaram-se um conjunto de técnicas geoestatísticas que permitem conhecer melhor o padrão de intercorrelação espacial e desenhar os respectivos mapas de isovalores.

Foram analisados os respectivos variogramas experimentais (omnidireccionais) ajustados a modelos teóricos do tipo esférico com efeito de pepita (Figura 7A e 7B) e a modelos de potência com "slope" no caso da variável piezometria (Figura 7C).



Figura 7 – Semivariogramas experimentais das variáveis nitratos (7A), resíduo seco (7B) e piezometria (7C).

Definidos os modelos estruturais das três variáveis realizou-se a estimação por krigagem sobre uma malha de 100 metros sobreposta à área em estudo através do software Surfer<sup>®</sup>, considerando os parâmetros que constam dos Quadros 2 e 3 e obtiveram-se os mapas de isovalores apresentados anteriormente nas figuras 5 e 6.

**Quadro 2**Parâmetros estruturais dos modelos esféricos

| Variograma   | Efeito de pepita (c0) | Patamar (c) | Amplitude (metros) |
|--------------|-----------------------|-------------|--------------------|
| Nitratos     | 1000                  | 2656        | 1600               |
| Resíduo Seco | 14300                 | 109435      | 2160               |

**Quadro 3**Parâmetros estruturais do modelo de potência

| Variograma  | Potência | Covariância | Slope (metros) |
|-------------|----------|-------------|----------------|
| Piezometria | 1.32     | 45.2        | 0.0006         |

# 7 - REDES DE MONITORIZAÇÃO

As redes de monitorização de água subterrânea - redes piezométricas e de caudais de nascentes e redes de qualidade - são fundamentais para o acompanhamento da evolução quantitativa e qualitativa dos aquíferos, permitindo o planeamento e gestão destes recursos. Possiblitam ainda, em tempo útil, a implementação de medidas minimizadoras da sua degradação sempre que situações de sobreexploração e de poluição o justifiquem (INAG, 1999).

As redes podem ser de dois tipos (Figura 8): *redes de referência* para caracterizar quantitativa e qualitativamente os diferentes sistemas aquíferos e *redes específicas* para controlar situações pontuais de maior risco para os recursos hídricos subterrâneos como perímetros de rega, zonas industriais, aterros sanitários e congéneres.

# 7.1 Implementação das redes de monitorização

Face à necessidade de se dar cumprimento às exigências da legistação nacional (Decreto-Lei n.º236/98 de 1 de Agosto) e aos normativos comunitários (Directiva 80/68/CEE sobre qualidade das águas subterrâneas, Directiva 98/61/CEE sobre qualidade das águas para consumo humano, Directiva 91/676/CEE sobre protecção das águas face à contaminação com origem em nitratos, Directiva Quadro, etc.) torna-se necessário implementar redes específicas de monitorização de qualidade dos recursos hídricos (INAG, 1999).

As densidades estimadas das redes de monitorização geral para meios hidrogeológicos do tipo poroso, segundo o INAG, deverão ser de 1 piezómetro por cada 20 km². No caso das redes específicas de gualidade a densidade de cobertura depende do problema em estudo.

A definição do número mais adequado de pontos que devem constituir as redes de observação de qualidade no bloco de rega de Canhestros baseia-se num conjunto de variáveis dificilmente previsíveis, pelo que só um projecto de monitorização preliminar especificamente orientado para este objectivo poderá dar resposta.

A periodicidade das medições piezométricas deverá ser trimestral e as nascentes mais representativas devem ter um registo contínuo de caudais.

No âmbito da qualidade considera-se que a periodicidade deve ser no início semestral, com uma campanha na estação de águas altas e outra na estação de águas baixas. Para um conjunto de parâmetros críticos, predefinidos, a frequência deverá ser trimestral.

Para além disso, os pontos de água que constituem origens para consumo humano devem cumprir o disposto no normativo nacional (Dec. L. 236/98)



Figura 8 - Esquema conceptual das redes de monitorização de águas subterrâneas (adaptado de INAG (1999)).

Segundo RIBEIRO *et al.* (1999), a implementação das redes de monitorização deve desenvolverse segundo as seguintes etapas:

- a) Inventário hidrogeológico;
- b) Definição da rede de monitorização de referência (rede geral);
- c) Avaliação das principais acções antropogénicas que influenciam os sistemas aquíferos;
- d) Avaliação da representatividade no domínio espaço temporal das redes piezómetricas;
- e) Análise da representatividade no domínio espaço temporal das redes de qualidade da água subterrânea;
- Optimização das redes de referência com selecção de novos pontos de amostragem ou omissão de outros, bem como, selecção do conjunto de parâmetros a monitorizar assim como da frequência de amostragem;
- g) Mapeamento temático das tendências sazonais detectadas nas séries disponíveis;
- h) Classificação preliminar dos piezómetros e das estações de qualidade com base em padrões temporais semelhantes.

A análise das variáveis piezometria e qualidade da água no domínio espaço-temporal, correspondente à área de 100 km², será efectuada através de um tratamento geomatemático dos dados analíticos medidos em horizontes temporais determinados, com base nos métodos de Análise em Componentes Principais (ACP) e Análise Factorial de Correspondências (AFC), Classificação Ascendente Hierárquica (CAH) e teste de Mann-Kendall para determinação de tendências sazonais.

Desta forma serão implementadas 2 redes de monitorização distintas:

- Rede de controle piezómetrico e de qualidade do aquífero freático de pequena profundidade (complementando as observações em poços com a construção de alguns piezómetros de pequena profundidade) REDE DENSA
- Rede de controle piezómetrico e de qualidade dos aquíferos mais profundos (complementando as observações em furos com a construção de alguns piezómetros de profundidade variável) – REDE ALARGADA

Segundo RIBEIRO (1997), as redes de monitorização de águas subterrâneas, nas suas vertentes de quantidade e qualidade, constituem instrumentos primordiais para o conhecimento da evolução espaço-temporal dos níveis piezométricos e caudais de nascentes, bem como da qualidade da água subterrânea.

Importa também referir que as redes de monitorização são dinâmicas, pelo que, os pontos a monitorizar, periodicidades e parâmetros a analisar devem ser ajustados de acordo com os resultados obtidos. De acordo com o conhecimento hidrogeológico e/ou a ocupação do solo pode revelar-se a necessidade de aumentar ou diminuir a densidade da rede.

### 7.2 Parâmetros e frequência da amostragem

- (1) Os parâmetros a analisar com uma frequência semestral por ocasião de águas altas (Março/Abril) e águas baixas (Agosto/Setembro) são: Condutividade eléctrica, Resíduo Seco, temperatura, pH, bicarbonato, cloretos, sulfatos, nitratos, nitritos, fluoretos, fosfatos, cálcio, sódio+potássio, magnésio, sílica, ferro e eventualmente algumas substâncias do grupo dos fitofármacos (pesticidas e herbicidas).
- (2)- Os parâmetros a analisar com uma frequência trimestral, são um conjunto de elementos que normalmente constituem bons indicadores de poluição de origem antrópica: Condutividade eléctrica, pH, cloretos, sulfatos e nitratos. Porém no caso dos cloretos deve fazer-se a distinção entre os teores naturais característicos desta região, anormalmente elevados e os casos pontuais de contaminação.

Paralelamente serão desenvolvidos alguns trabalhos complementares com vista à avaliação rigorosa das características hidrogeológicas do sector em estudo e que incluem levantamentos geofísicos (VLF/EM, SEV e diagrafias), ensaios de bombagem, caracterização dos usos do solo e práticas agrícolas e definição dos perímetros de protecção das captações de abastecimento público

das povoações da área do regadio, de acordo com a legislação em vigor (Dec. L. 382/99, de 22 de Setembro).

# 7.3 Definição e construção das redes de monitorização

A densidade das redes de monitorização específica é variável e depende, entre outros factores, das heterogeneidades hidrogeológicas e das características intrínsecas do sistema como sejam a capacidade de dispersão e adsorpção dos poluentes em presença e a sua variabilidade temporal e espacial de acordo com as condições climáticas e os tipos de cultura.

A finalizar este estudo serão construídos os piezómetros necessários a uma monitorização estatísticamente representativa das condições hidroquímicas e piezométricas do sistema, cuja rede de controle incluirá necessariamente pontos já existentes (furos e poços com características apropriadas).

A densidade final da rede de monitorização e o padrão de cobertura da área de estudo só poderá ser determinada no final do projecto, embora se admita, para o aquífero freático superficial, mais vulnerável, uma densidade média de 1 piezómetro/estação de qualidade por cada 4 km², num



PIEZ. A - monitorização do aquífero superficial (10 a 15 m de prof.)

PIEZ. B - monitorização dos aquiferos confinados l (30 m de prof.)

total de cerca de 25 pontos (profundidades médias entre 10 e 15 m), como indicado na figura 9.

Figura 9 – Sequência litológica na área do bloco de rega de Canhestros e dimensão provável dos piezómetros a construir para monitorização do aquífero superficial livre (Piez. A) e do aquífero semi-confinado mais profundo (Piez. B).

Para os aquíferos subjacentes será conveniente adoptar uma malha de monitorização mais alargada, mas que permita em todo o caso detectar alterações de qualidade relacionadas com drenância a partir de águas mais superficiais. Prevê-se uma densidade média de 1 piezómetro/estação de qualidade por cada 10 km², num total de cerca de 10 pontos (profundidades médias na ordem dos 30 m).

A componente técnica e económica de construção dos piezómetros é igualmente um factor importante uma vez que deverão ser robustos e não ser excessivamente dispendiosos. Os diâmetros dos entubamentos e as dimensões das caixas de segurança devem permitir a introdução de instrumentos de medida manuais e automáticos bem como possibilitar a colheita de amostras através de pequenos amostradores e bombas submersíveis, como indicado na figura 10.



PIEZÓMETRO

Figura 10 – Aspecto final dos piezómetros.

## 8 - CONCLUSÕES

A caraterização hidrogeológica rigorosa dos sistemas aquiferos em áreas de futuros regadios reveste-se da maior importância para a definição da situação de referência dos aspectos hidrodinâmicos e de qualidade da água, numa fase anterior aos previsíveis impactes que as alterações do uso do solo e o incremento do regadio inevitavelmente irão provocar.

A avaliação prévia das condições hidrogeoquímicas e das relações entre as diferentes unidades aquíferas do sistema constituem a base para a definição do programa e frequência da amostragem que será objecto de tratamento geomatemático para selecção da rede de monitorização estatisticamente mais representativa, a implementar em colaboração com a EDIA.

Em face dos resultados obtidos, no âmbito desta avaliação preliminar, é desaconselhável o uso dos recursos subterrâneos próprios na área do bloco de rega de Canhestros pelo elevado risco de salinização e alcalinização dos solos, potenciado pelo clima quente e seco da região.

A utilização de águas menos mineralizadas provenientes de outras estruturas hidráulicas, como é o caso da Barragem de Alqueva constitui por isso um impacte positivo, embora outros equilíbrios químicos (precipitação, modificações do pH, etc) e o incremento de fertilizantes e fitofármacos devam ser considerados e objecto de monitorização a longo prazo.

#### **BIBLIOGRAFIA**

- ALMEIDA, C., FERNANDES, J. & JESUS, M. R., Definição, Caracterização e Cartografia dos Sistemas Aquíferos de Portugal Continental. FCUL/INAG, 1997.
- COSTA, A.M., DILL, A.C., MULLER, I., OLIVEIRA, V. "Monitorização dos aquíferos da região de Moura-Ficalho sondagens, construção e equipamento de piezómetros", in 4 ° Congresso da Água, Lisboa, 23 a 27 de Março, 1994.
- COSTA, A.M. "O IGM no Projecto ERHSA" in V Congresso Nacional de Geologia, vol. 2. Lisboa. 1998. CUSTÓDIO, E. & LLAMAS, M. R. *Hidrologia Subterrânea*. 2ª Edicion. Ediciones Omega, Barcelona, 1996.
- IGM (1998) 7º Relatório de Progresso (Projecto ERHSA). Documento interno.
- INAG (1999) Ante-Projecto de Decreto-Lei que estabelece perímetros de proteccção para captações de águas subterrâneas destinadas ao abastecimento público. Documento interno.
- INAG (1999) Plano Nacional de Monitorização de Águas Subterrâneas. Documento interno.
- J.ROY, A. MARQUES DA COSTA, M. LUBCZYNSKI & C. OWUOR,— "Tests of the SGW-NMR technique within two aquifer characterization projects in the Iberian Peninsula". EEGS (European Section) Meeting, Barcelona, Sept 14-17, 1998.
- OLIVEIRA, J. T. et al. *Notícia explicativa das folhas 7 da Carta Geológica de Portugal* na escala 1/200.000. *IGM*, Lisboa, 1984.
- PARALTA, E. & RIBEIRO, L. "Estudo geoestatístico da contaminação por nitratos na área da Riba da Chaminé resultados preliminares" in V Congresso Nacional de Geologia, Lisboa 1998 vol. 2, pp. 57-60.
- PARALTA, E. & A. M. COSTA "Hidrogeologia das Rochas Gabróicas da região de Serpa (sector oriental do aquífero dos "Gabros de Beja")" in IV Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Oficial Portuguesa (SILUSBA). 24 a 26 de Maio 1999. Coimbra, 15 pp.
- PARALTA, E., RIBEIRO, L. & LOURENÇO DA SILVA "Hidrogeologia da bacia de Ourém Aplicação de estatística multivariada na caracterização hidrogeoquímica do aquífero cretácico" in IV Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Oficial Portuguesa (SILUSBA). 24 a 26 de Maio 1999, Coimbra, 15 pp.
- RAMALHO, E., PARALTA, E. & TORRES, L. "Electrical, nuclear and fluid column logging as preliminary contribution to the hidrogeological characterisation of Serpa and Beja areas. Actualidad de las técnicas geofísicas aplicadas en hidrogeología". 10 a 12 de Mayo 1999, Granada, pp. 279 285.
- RIBEIRO, L. A Importância da Variabilidade Espaço-Temporal dos Aquíferos nas Metodologias de Optimização de Redes de Monitorização das Águas Subterrâneas in 3º Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Oficial Portuguesa, proc. vol. II,5p., Abril, 1997. Maputo, Mocambique.
- RIBEIRO, L., ALMEIDA C. & LOBO-FERREIRA J.P Design of a Freshwater Monitoring Network for the EEA Groundwater Quantity. European Topic Centre on Inland Waters, internal report, 5p. European Environment Agency. 1995.
- RIBEIRO, L., LOPES, A. R., RODRIGUES, F. & CUPETO, C. "Critérios e metodologias para Optimização das Redes de Monitorização Piezométrica dos Sistemas Aquíferos de Portugal" in IV Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Oficial Portuguesa (SILUSBA). 24 a 26 de Maio, 1999, Coimbra.