

Date	6 th & 7th oct 2025
Team ID	LTVIP2025TMIDS67798
Project Name	RAINFALL PREDICTION USING MACHINE LEARNING
Maximum Marks	5 Marks

Model Optimization and Tuning Phase

Project Name: Rainfall Prediction **Team:** Lakshmi Sravya Savaram

Mohammad Shougat Azeez

N Gokul Chowdary

Nallabotula Vijaya Karthik

Date: 13/10/2025

Objective

The objective of this phase is to improve the predictive performance of the selected model by optimizing hyperparameters, performing feature selection, and applying model-specific tuning strategies. This ensures better accuracy, generalization, and robustness for rainfall prediction.

Selected Model for Tuning

Model Reason for Selection

[e.g., XGBoost	Achieved highest R ² and lowest error metrics during the Model Selection
Regressor]	Phase; handles non-linear relationships effectively

Hyperparameter Tuning

a. Grid Search

Systematically explores combinations of hyperparameters to find the best configuration.

Example (XGBoost):

b. Randomized Search

Randomly samples hyperparameters, useful for large search spaces.

Feature Selection and Engineering

```
import matplotlib.pyplot as plt
import pandas as pd

importance = grid_search.best_estimator_.feature_importances_
features = X_train.columns
plt.barh(features, importance)
plt.title("Feature Importance")
plt.show()
```

- Remove low-importance features to reduce overfitting and improve generalization.
- Create new features (lag variables, rolling averages) if needed for temporal data.

Regularization and Model-Specific Tuning

- XGBoost / Gradient Boosting: Tune gamma, min_child_weight, colsample_bytree for regularization.
- Random Forest: Adjust max_depth, min_samples_split, and max_features to avoid overfitting.
- SVR / Linear Models: Tune regularization parameter C and kernel parameters.

Validation

- Use k-fold cross-validation to evaluate model performance with tuned hyperparameters.
- Compare MAE, MSE, RMSE, R² before and after tuning to assess improvement.

Results Summary

Metric Before Tuning After Tuning

MAE [value] [value]

MSE [value] [value]

RMSE [value] [value]

R² [value] [value]

Note: Fill [value] with actual results from your experiments.

Conclusion

- Optimized hyperparameters and refined features improved model performance.
- Selected model is now ready for **final evaluation and deployment**.
- Future steps: monitor model on new data, periodically retrain, and update features if necessary.