Relatório do Projeto Semestral: Cara ou Coroa

Instituto Mauá de Tecnologia- Grupo: 2, Turma 3 e Laboratório 6 Disciplina de Circuitos Analógicos

1. INTRODUÇÃO

A ideia por trás do projeto foi de montar algo que fosse interessante, de certa forma inovador e que integralizasse os conceitos aprendidos nas disciplinas de fundamentos de circuitos analógicos e digitais, e após certo tempo de pesquisa e estudos foi possível chegar na ideia de um projeto ideal.

O Cara ou Coroa é um dos jogos mais conhecidos e simples que existem, basta ter uma moeda e pronto. Este circuito é o mais simples e eficiente cara e coroa moderno, ele utiliza apenas dois circuitos integrados, um NE555 usado como um temporizador de precisão e um CD4027 ou um 74LS76, que são TTL's com um flip-flop duplo J-K com Preset e Clear.

*Caso o CD4027 não esteja disponível, o 74LS76 poderá ser usado em seu lugar e vice-versa.

2. CONSIDERAÇÕES, CORREÇÕES E DESCRIÇÃO TECNICA

Durante a montagem e estudos iniciais foi observado que muitos projetos semelhantes utilizavam o 74LS76. No entanto esse CI era um tanto quanto difícil de ser encontrado em lojas oficiais no Brasil, e por isso, optamos por trabalhar com o CD4027, que pode ser encontrado facilmente nas lojas e possui um custo bem baixo. Além disso já havíamos trabalhado com esse componente anteriormente.

Porém, devido a pandemia, optamos por realizar o projeto apenas virtualmente, por meio do simulador, e dadas as limitações do mesmo, tivemos que usar o CI 74LS76.

Portanto, voltamos a situação inicial e o projeto acabou sendo montado levando em conta essa possível variação de componentes, algo que não altera o circuito, pois ambos componentes são do mesmo tipo e possuem a mesma função.

Como abordado anteriormente, o projeto utiliza dois circuitos integrados, um NE555 usado como um temporizador de precisão e um CD4027 ou 74LS76 que são TTL's com um flip-flop duplo J-K com Preset e Clear.

> PASSO A PASSO DA MONTAGEM COM CD4027

O NE555 é ligado como um almentador multiástavel em uma frequência de 10Hz (10 pulsos por segundo) e os pulsos de são invertidos utilizando o coletor do transistor Q1 que é um BC548.

O Transistor é ligado ao pino 13 do CD4027, através do botão.

Já o CD4027 é ligado no modo de alternância e quando o botão é pressionado, os pinos de saída 14 e 15 do CI começam a alternar no estado "alto e baixo".

Os LEDs ligados a estes pinos também alternam suas piscadas na frequência de alternância de 10Hz, essa rapidez causa impressão de que os LEDs estão acesos e não piscando.

Quando botão é solto qualquer um dos dois LED vai permanecer aceso, nunca ambos, um LED aceso vai indicar o cara e coroa do jogo (previamente definido pelos jogadores).

O botão é um interruptor do tipo campainha, a alimentação do circuito é uma fonte de 5 Volts.

> PASSO A PASSO DA MONTAGEM COM 74LS76

O NE555 é ligado como um almentador multiástavel em uma frequência de 10Hz (10 pulsos por segundo) e os pulsos de são invertidos utilizando o coletor do transistor Q1 que é um BC548.

O Transistor é ligado ao pino 1 do 74LS76, através do botão.

Já o 74LS76 é ligado no modo de alternância e quando o botão é pressionado, os pinos de saída 14 e 15 do CI começam a alternar no estado "alto e baixo".

Os LEDs ligados a estes pinos também alternam suas piscadas na frequência de alternância de 10Hz, essa rapidez causa impressão de que os LEDs estão acesos e não piscando.

Quando botão é solto qualquer um dos dois LED vai permanecer aceso, nunca ambos, um LED aceso vai indicar o cara e coroa do jogo (previamente definido pelos jogadores).

O botão é um interruptor do tipo campainha, a alimentação do circuito é uma fonte de 5 Volts.

• ESQUEMA ELÉTRICO COM O CD4027

• ESQUEMA ELETRICO COM O 74LS76

R1	47K		OHMS
R2		470	OHMS
R3		100	OHMS
R4	47K		OHMS
R5		470	OHMS
R6	1M		OHMS

C1	1 uF
C2	0,16 uF

LEGENDA:

L1 e L2: LED's

C1 e C2: Capacitor Polarizado

Q1: Transistor R: Resistores

BOTAO: Um interruptor de botão tipo campainha

3. MATERIAIS E CUSTOS

Qtd.	Material (especificar completamente)	Preço (R\$)
2	Resistores de 47k ohms	0,08
2	Resistores de 470 ohms	0,08
1	Resistor de 100 ohms	0,04
1	Resistor de 1M ohm	0,04
1	Capacitor polarizado de 1µF 16V-Capacitor Tântalo	0,57
1	Capacitor polarizado de 0,16µF 50V-Capacitor Eletrolítico	0,65
1	NE555	1,91
1	CD4027 ou 74LS76 (Checar disponibilidade na hora da compra)	3,21
1	Fonte ajustável para Protoboard	10,05
1	Transistor BC548	0,16
1	Interruptor / Botão Simples (estilo campainha)	0,11
2	LED difuso vermelho 5mm	0,44
2	LED difuso amarelo 5mm	0,44
40	Jumpers macho-macho	9,89
20	Jumpers macho-fêmea	4,99
1	Capacitor polarizado de 0,16µF 63V-Capacitor Poliéster Film	0,65

PREÇO TOTAL DOS MATERIAIS:

33,31 R\$

*A TABELA DE MATERIAIS E CUSTOS TAMBÉM ESTÁ DISPONÍVEL EM EXCEL

4. SIMULAÇÃO

A simulação foi feita utilizando o Software Isis Proteus, e o CI utilizado foi o 74LS76.

*A simulação está disponível em vídeo enviado juntamente com o relatório.

5. CONCLUSÃO

A montagem do circuito foi bem-sucedida, obtendo o êxito esperado no início do processo.

-Guilherme Samuel de Souza Barbosa

19.00012-0

-Guilherme Cury Galli

19.00374-9

-Gustavo Consoleti Ramirez de Souza

<u>19.00715-9</u>

-Igor Eiki Ferreira Kubota

19.02466-5