Advice for Applying Machine Learning

전 재 욱

Embedded System 연구실 성균관대학교

Outline

- Deciding what to try next I
- Evaluating a hypothesis
- Model selection and training/validation/test sets
- Understanding of bias and variance
- Diagnosing bias vs. variance
- Regularization and bias/variance
- Learning curves
- Deciding what to try next II

Outline

- Deciding what to try next I
- Evaluating a hypothesis
- Model selection and training/validation/test sets
- Understanding of bias and variance
- Diagnosing bias vs. variance
- Regularization and bias/variance
- Learning curves
- Deciding what to try next II

Regularized linear regression to predict housing prices

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

- When we test our hypothesis on a new set of houses,
 - we may find that it makes unacceptably large errors in its predictions.
 - What should we try next?
 - Get more training examples
 - Try smaller sets of features
 - > Try getting additional features
 - > Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \cdots)$
 - Try decreasing λ
 - Try increasing λ

- Get more training examples
 - Sometimes more data do not help
 - Often they does though,
 - although we should always do some preliminary testing to make sure more data will actually make a difference
- Try smaller sets of features
 - Carefully select small subset
 - We can do this by hand, or use some dimensionality reduction technique (e.g. PCA)
- Try getting additional features
 - Sometimes this is not helpful
 - We need to look at the data
 - This can be very time consuming

- Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \cdots)$
- Building our own, new, better features based on our knowledge of the problem
 - Can be risky if we accidentally over fit our data by creating new features which are inherently specific/relevant to our training data
- Try decreasing λ or increasing λ
 - Change how important the regularization term is in our calculations

- These changes can become major projects
 - 6 months more
 - Most common method for choosing one of these examples is to go by gut feeling (randomly)
 - Many times, we may spend huge amounts of time only to discover that the avenue is fruitless
- Simple techniques to rule out half the things on the list
 - We can save our time a lot.

- Machine learning diagnostic
 - Diagnostic:
 - A test that we can run to gain insight what is/(is NOT) working with a learning algorithm, and gain guidance as to how best to improve its performance.
- Diagnostics can take time to implement (maybe week),
 - but doing so can be a very good use of our time.

Outline

- Deciding what to try next I
- Evaluating a hypothesis
- Model selection and training/validation/test sets
- Understanding of bias and variance
- Diagnosing bias vs. variance
- Regularization and bias/variance
- Learning curves
- Deciding what to try next II

size

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

- Fails to generalize to new examples not in training set
 - Low errors, but overfit (left Fig.)

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

- Fails to generalize to new examples not in training set
 - Low errors, but overfit (left Fig.)
- Is a hypothesis overfitting?
 - Could plot $h_{\theta}(x)$
 - But with lots of features,it may be impossible to plot

 x_1 : size of house

 x_2 : # of bedrooms

 x_3 : # of floors

 x_4 : age of house

 x_5 : average income in nbd

 x_6 : kitchen size

:

 x_{100}

Dataset

Size	Price
2104	400
1600	330
2400	369
1416	232
3000	540
1985	300
1534	315
1427	199
1380	212
1494	243

- Standard way to evaluate a hypothesis
 - Split data into two portions
 - 1st: training set
 - 2nd: test set
 - Typical split
 - 70:30 (training : test)
- If data are ordered, send a random percentage
 - (Or randomly order, then send data)
 - Data are typically ordered in some way anyway

Dataset

Size	Price	
2104	400	
1600	330	
2400	369	
1416	232	
3000	540	
1985	300	
1534	315	
1427	199	
1380	212	
1494	243	

Training/Testing Procedure

- Training/testing procedure for linear regression
 - Learn parameter θ from training data (Min training error $J(\theta)$)
 - 70% of total data
 - Compute test set error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} \left(h_{\theta} \left(x_{test}^{(i)} \right) - y_{test}^{(i)} \right)^{2}$$

Training/Testing Procedure

- Training/testing procedure for logistic regression
 - Learn parameter θ from training data (Min training error $J(\theta)$)
 - 70% of total data
 - Compute test set error:

$$J_{test}(\theta) = -\frac{1}{m_{test}} \left[\sum_{i=1}^{m_{test}} y_{test}^{(i)} \log h_{\theta} \left(x_{test}^{(i)} \right) + \left(1 - y_{test}^{(i)} \right) \log(1 - h_{\theta} \left(x_{test}^{(i)} \right)) \right]$$

Or compute test error

Test error =
$$\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} err\left(h_{\theta}\left(x_{test}^{(i)}\right), y_{test}^{(i)}\right)$$

where misclassification error (0/1 misclassification error)

Outline

- Deciding what to try next I
- Evaluating a hypothesis
- Model selection and training/validation/test sets
- Understanding of bias and variance
- Diagnosing bias vs. variance
- Regularization and bias/variance
- Learning curves
- Deciding what to try next II

Overfitting Example

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

- Once parameters $\Theta_0, \Theta_1, \dots, \Theta_4$ were fit to some set of data (training set),
 - the error of the parameters as measured on that data (the training error $J(\Theta)$) is likely to be lower than the actual generalization error.

- How to chose regularization parameter or degree of polynomial (model selection problems)?
- Model selection problem
 - Try to choose the degree for a polynomial to fit data

$$\begin{array}{ll} \bullet d = 1 & h_{\theta}(x) = \theta_{0} + \theta_{1}x \\ \bullet d = 2 & h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} \\ \bullet d = 3 & h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{3}x^{3} \\ \bullet \vdots & & \\ \bullet d = 10 & h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10} \end{array}$$

- How to chose regularization parameter or degree of polynomial (model selection problems)?
- Model selection problem
 - Try to choose the degree for a polynomial to fit data

$$d = 1 h_{\theta}(x) = \theta_0 + \theta_1 x \frac{\text{Min a training error}}{\min J(\Theta)} \bullet \Theta^{(1)}$$

$$d = 2 h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

$$d = 3 h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$

$$\vdots$$

$$d = 10 h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$$

- How to chose regularization parameter or degree of polynomial (model selection problems)?
- Model selection problem
 - Try to choose the degree for a polynomial to fit data

How to chose regularization parameter or degree of polynomial (model selection problems)?

Model selection problem

Test set error

Try to choose the degree for a polynomial to fit data

How to chose regularization parameter or degree of polynomial (model selection problems)?

Model selection problem

Test set error

Try to choose the degree for a polynomial to fit data

- Suppose $J_{test}(\Theta^{(5)})$ is the lowest among test errors
 - i.e. choose $\theta_0 + \theta_1 x + \cdots + \theta_5 x^5$

- Suppose $J_{test}(\Theta^{(5)})$ is the smallest among test errors
 - i.e. choose $\theta_0 + \theta_1 x + \dots + \theta_5 x^5$
 - How well does the model generalize?
 - Problem
 - $J_{test}(\Theta^{(5)})$ is likely to be an optimistic estimate of generalization error.
 - \triangleright i.e. our extra parameter (d = degree of polynomial) is fit to test set.
 - Chose it because the corresponding test set error is the smallest

- Given a training set instead split into three pieces
 - Training set (60%): *m*
 - Cross validation (CV) set (20%) : m_{cv}
 - Test set (20%) : m_{test}
- Calculate
 - Training error

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross validation error

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} \left(h_{\theta} \left(x_{cv}^{(i)} \right) - y_{cv}^{(i)} \right)^{2}$$

Test error

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} \left(h_{\theta} \left(x_{test}^{(i)} \right) - y_{test}^{(i)} \right)^{2}$$


```
d = 1 	 h_{\theta}(x) = \theta_{0} + \theta_{1}x
d = 2 	 h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2}
d = 3 	 h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{3}x^{3}
\vdots
d = 10 	 h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10}
```

Minimizing training error $J_{train}(\theta)$ for training set and then calculate each cross validation error

$$\min_{\Theta} J_{train}(\Theta) \text{ by } (\theta_0 + \theta_1 x)$$

$$\rightarrow \theta^{(1)} \rightarrow J_{cv}(\theta^{(1)})$$

$$\min_{\Theta} J_{train}(\Theta) \text{ by } (\theta_0 + \theta_1 x + \theta_2 x^2)$$

$$\rightarrow \theta^{(2)} \rightarrow J_{cv}(\theta^{(2)})$$

• • •

$$\min_{\Theta} J_{train}(\Theta) \text{ by } (\theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}) \rightarrow \theta^{(10)} \rightarrow J_{cv}(\theta^{(10)})$$

- Pick the hypothesis with the lowest cross validation error.
- Estimate generalization error of model using the test set.

- Some people will still select the model using the test set
 - Then check the model is OK for generalization using the test error
 - With a MASSIVE test set, this is maybe OK
- But, making training and validation sets be separate
 - Much better

Outline

- Deciding what to try next I
- Evaluating a hypothesis
- Model selection and training/validation/test sets
- Understanding of bias and variance
- Diagnosing bias vs. variance
- Regularization and bias/variance
- Learning curves
- Deciding what to try next II

Bias

- Error from erroneous assumptions in the learning algorithm
 - High bias can cause underfitting
 - Missing the relevant relations btw features and target outputs

Variance

- Error from sensitivity to small fluctuations in the training set
 - High variance can cause overfitting
 - Modeling the random noise in the training data, rather than the intended outputs.

- Error due to bias
 - Difference btw the expected (or average) prediction of our model and the correct value which we are trying to predict
- Error due to variance
 - Variability of a model prediction for a given data point

- Ideally, one wants to choose a model that
 - both accurately captures the regularities in its training data and generalizes well to unseen data.
 - → Unfortunately, it is typically impossible to do both simultaneously.

- Ideally, one wants to choose a model that
 - both accurately captures the regularities in its training data and generalizes well to unseen data.
 - → Unfortunately, it is typically impossible to do both simultaneously.

- High-variance learning methods
 - May be able to represent their training set well, but are at risk of overfitting to noisy or unrepresentative training data
- High bias ones
 - Typically produce simpler models that do not tend to overfit, but may underfit their training data
 - failing to capture important regularities.

Assume that there is a function with noise

$$y = f(x) + \epsilon$$

where the noise, ϵ , has zero mean and variance σ^2

- Given a training set $(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)$ from the above,
 - Find a function $\tilde{f}(x)$ that approximate the true function f(x) i.e. minimizing $E\left[\left(y-\tilde{f}(x)\right)^2\right]$ both for $x_1,x_2,...,x_m$ and for future samples
 - $E\left[\left(y \tilde{f}(x)\right)^{2}\right] = Bias\left[\tilde{f}(x)\right]^{2} + Var\left[\tilde{f}(x)\right] + \sigma^{2}$
 - Bias $[\tilde{f}(x)] = E[\tilde{f}(x) f(x)]$
 - $Var[\tilde{f}(x)] = E\left[\left(\tilde{f}(x) E[\tilde{f}(x)]\right)^{2}\right] = E\left[\tilde{f}(x)^{2}\right] E\left[\tilde{f}(x)\right]^{2}$

Derivation

- For one random variable *X*,
 - $Var[X] = E[(X E[X])^2]$
 - $= E[X^2 2XE[X] + E[X]^2]$
 - $= E[X^2] 2E[X]E[X] + E[X]^2$
 - $= E[X^2] E[X]^2$
 - $\rightarrow E[X^2] = Var[X] + E[X]^2$
- $E[y] = E[f + \epsilon] = E[f] + E[\epsilon] = f + 0 = f \ (\because f \text{ is deterministic})$
 - $Var[y] = E[(y E[y])^2] = E[(y f)^2] = E[(f + \epsilon f)^2] = E[\epsilon^2] = \sigma^2$

Derivation

$$E[(y - \tilde{f}(x))^{2}] = E[y^{2} + \tilde{f}^{2} - 2y\tilde{f}] = E[y^{2}] + E[\tilde{f}^{2}] - E[2y\tilde{f}]$$

$$= Var[y] + E[y]^{2} + Var[\tilde{f}] + E[\tilde{f}]^{2} - 2E[y]E[\tilde{f}]$$

$$= Var[y] + E[y]^{2} + Var[\tilde{f}] + E[\tilde{f}]^{2} - 2fE[\tilde{f}]$$

$$= Var[y] + f^{2} + Var[\tilde{f}] + E[\tilde{f}]^{2} - 2fE[\tilde{f}]$$

$$= Var[y] + Var[\tilde{f}] + f^{2} - 2fE[\tilde{f}] + E[\tilde{f}]^{2}$$

$$= Var[y] + Var[\tilde{f}] + E[f - \tilde{f}]^{2}$$

$$= \sigma^{2} + Var[\tilde{f}] + Bias[\tilde{f}]^{2}$$

$$E\left[\left(y - \tilde{f}(x)\right)^{2}\right] = Bias\left[\tilde{f}(x)\right]^{2} + Var\left[\tilde{f}(x)\right] + \sigma^{2}$$

- Bias $[\tilde{f}(x)] = E[\tilde{f}(x) f(x)]$
- $Var[\tilde{f}(x)] = E\left[\left(\tilde{f}(x) E[\tilde{f}(x)]\right)^{2}\right] = E[\tilde{f}(x)^{2}] E[\tilde{f}(x)]^{2}$
- $Bias[\tilde{f}(x)]^2$
 - Error caused by the simplifying assumptions built into the method.
- $Var[\tilde{f}(x)]$
 - How much the learning method $\tilde{f}(x)$ will move around its mean
- σ^2
 - Irreducible error

$$E\left[\left(y - \tilde{f}(x)\right)^{2}\right] = Bias\left[\tilde{f}(x)\right]^{2} + Var\left[\tilde{f}(x)\right] + \sigma^{2}$$

- The more complex the model $\tilde{f}(x)$ is, the more data points it will capture,
- → The lower the bias will be.
- However, complexity will make the model "move" more to capture the data points
- → Hence its variance will be larger.

Intuition

- We should minimize bias even at the expense of variance
 - Presence of bias indicates something basically wrong with our model
- A model with high variance could at least predict well on average,
 - At least it is not fundamentally wrong.

Intuition

- We should minimize bias even at the expense of variance
 - Presence of bias indicates something basically wrong with our model
- A model with high variance could at least predict well on average,
 - At least it is not fundamentally wrong.
- → This is mistaken logic.

Intuition

- We should minimize bias even at the expense of variance
 - Presence of bias indicates something basically wrong with our model
- A model with high variance could at least predict well on average,
 - At least it is not fundamentally wrong.
- → This is mistaken logic.
- It is correct that <u>a high variance and low bias model</u> can preform well in some sort of long-run average sense.
 - However, in practice modelers are always dealing with a single realization of the data set.
 - In these cases, long run averages are irrelevant
 - What is important is the performance of the model on the data we actually have
 - > and in this case bias and variance are equally important
 - One should not be improved at an excessive expense to the other.

Outline

- Deciding what to try next I
- Evaluating a hypothesis
- Model selection and training/validation/test sets
- Understanding of bias and variance
- Diagnosing bias vs. variance
- Regularization and bias/variance
- Learning curves
- Deciding what to try next II

Size $\theta_0 + \theta_1 x$

High bias (underfit)

"Just right"

Size $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$

> High variance (overfit)

High bias (underfit)

- High bias
 - Under fitting problem
- High variance
 - Over fitting problem

The degree of a model will increase as we move towards overfitting

Plot

- x axis: degree of polynomial d
- y axis: errors for both training and cross validation (two lines)
 - CV error and test set error will be very similar
- \rightarrow d = 2 can minimize both errors

Diagnosis of Bias and Variance

- If cv error is high
 - either (at the high end of d) or (at the low end of d)
 - if *d* is too small: this probably corresponds to a high bias problem
 - ➤ Underfit → neither fit training data nor generalize
 - $> J_{train}(\theta)$ will be high, $J_{test}(\theta) \approx J_{cv}(\theta)$
 - if *d* is too large: this probably corresponds to a high variance problem
 - Overfit -> training set fits well but generalizes poorly
 - $\rightarrow J_{train}(\theta)$ will be low, $J_{cv}(\theta) \gg J_{train}(\theta)$

Outline

- Deciding what to try next I
- Evaluating a hypothesis
- Model selection and training/validation/test sets
- Understanding of bias and variance
- Diagnosing bias vs. variance
- Regularization and bias/variance
- Learning curves
- Deciding what to try next II

Linear Regression with Regularization

Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Large λ High bias (underfit)

$$\lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$$

$$h_{\theta}(x) \approx \theta_0$$

Intermediate λ "Just right"

Small λ High variance (overfit)

Choosing The Regularization Parameter λ

Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$I(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta} (x^{(i)}) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

Define (without regularization term)

$$I_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$I_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} \left(h_{\theta} \left(x_{test}^{(i)} \right) - y_{test}^{(i)} \right)^{2}$$

Choosing The Regularization Parameter λ

- Have a set or range of values to use
- Often increment by factors of 2 so
 - model(1)= $\lambda = 0$ \rightarrow $min_{\theta}J(\theta)$ \rightarrow $\theta^{(1)}$ \rightarrow calculate $J_{cv}(\theta^{(1)})$
 - model(2)= $\lambda = 0.01$ $\rightarrow min_{\theta}J(\theta) \rightarrow \theta^{(2)} \rightarrow calculate J_{cv}(\theta^{(2)})$
 - model(3)= $\lambda = 0.02$ $\rightarrow min_{\theta}J(\theta) \rightarrow \theta^{(3)} \rightarrow calculate J_{cv}(\theta^{(3)})$
 - \blacksquare model(4) = λ = 0.04
 - ightharpoonup model(5) = λ = 0.08.

. .

- model(12) = λ = 10.24 $\rightarrow min_{\theta}J(\theta) \rightarrow \theta^{(12)} \rightarrow calculate <math>J_{cv}(\theta^{(12)})$
- Suppose $J_{cv}(\theta^{(5)}) = \min \left(J_{cv}(\theta^{(1)}), \dots, J_{cv}(\theta^{(12)}) \right)$
 - Then, calculate $J_{test}(\theta^{(5)})$

Bias/Variance as A Function of λ

$$I(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta} (x^{(i)}) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

$$I_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Outline

- Deciding what to try next I
- Evaluating a hypothesis
- Model selection and training/validation/test sets
- Understanding of bias and variance
- Diagnosing bias vs. variance
- Regularization and bias/variance
- Learning curves
- Deciding what to try next II

Learning Curve

A learning curve

- A graphical representation of the increase of learning (vertical axis) with experience (horizontal axis)
- Plot J_{train} (average squared error on training set) or J_{cv} (average squared error on cross validation set) against m (number of training examples)

Learning Curves

$$I_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$I_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} \left(h_{\theta} \left(x_{cv}^{(i)} \right) - y_{cv}^{(i)} \right)^{2}$$

Learning Curves

$$I_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

 J_{train}

Error on smaller sample size is smaller (as less variance to accommodate) Error grows as m grows

 $\int_{-\infty}^{\infty}$

A tiny training set \rightarrow generalize badly As m grows, our hypothesis generalize better So, cv error will decrease as m grows.

High Bias

- If a learning algorithm is suffering from high bias,
 - (e.g. setting straight line to data)
 - getting more training data will not (by itself) help much.

High Bias

- If a learning algorithm is suffering from high bias,
 - getting more training data will not (by itself) help much.

J_{train}

Error is small at first and grows
Error becomes close to cross validation

- So the performance of the cross validation and training set end up being similar (but very poor)

J_{cv}

Straight line fit is similar for a few vs. a lot of data

- So it does NOT generalize any better with lots of data because the function just does not fit the data
- No increase in data will help it fit

High Bias

- If a learning algorithm is suffering from high bias,
 - getting more training data will not (by itself) help much.

- Cross validation and training errors in high bias
 - both high
- High bias
 - A problem with the underlying way we are modeling our data
 - So more data will not improve that model
 - It is too simplistic

High Variance

- If a learning algorithm is suffering from high variance,
 - e.g. high order polynomial
 - getting more training data is likely to help.

These are clean curves

- In reality, the curves we get are far dirtier
- learning curve plotting can help diagnose the problems our algorithm will be suffering from

High Variance

- If a learning algorithm is suffering from high variance,
 - getting more training data is likely to help.

Jtrain

When set is small, training error is small too As training set sizes increases, value is still small

- But slowly increases (in a near linear fashion)
- Error is still low

J_{cv}

Error remains high,

- even when you have a moderate number of examples
 The problem with high variance (overfitting)
- our model does NOT generalize

An indicative diagnostic to high variance

A big gap btw training error and cross validation error

Outline

- Deciding what to try next I
- Evaluating a hypothesis
- Model selection and training/validation/test sets
- Understanding of bias and variance
- Diagnosing bias vs. variance
- Regularization and bias/variance
- Learning curves
- Deciding what to try next II

Debugging A Learning Algorithm

- One regularized linear regression to predict housing prices
 - However, when we test our hypothesis in a new set of houses, we find that it makes unacceptably large errors in its prediction.
 - What should we try next?

Debugging A Learning Algorithm

- Get more training examples → helps to fix high variance
 - Not good if high bias
- Try smaller sets of features → fixes high variance (overfitting)
 - Not good if high bias
- Try getting additional features → fixes high bias (because hypothesis is too simple, make hypothesis more specific)
- Try adding polynomial features → fixes high bias problem
- Try decreasing λ → fixes high bias
- Try increasing $\lambda \rightarrow$ fixes high variance

Neural Networks and Overfitting

- "Small" neural network
 - (fewer parameters; more prone to underfitting)
 - Computationally cheaper

- "Large" neural network
 - (more parameters; more prone to overfitting)
 - Use regularization (λ) to address overfitting
 - Computationally more expensive

Neural Networks and Overfitting

- Using a single hidden layer is reasonable default
 - Try with 1, 2, 3 layers
 - See which performs best on cross validation set

References

- Andrew Ng, https://www.coursera.org/learn/machine-learning
- http://www.holehouse.org/mlclass/10_Advice_for_applying_machine_learning.html
- http://scott.fortmann-roe.com/docs/BiasVariance.html