FAST CARBON CORROSION: Reducing and Oxidising

David Young

School of Materials Science & Engineering University of New South Wales Sydney, Australia

1

TECHNOLOGICAL RELEVANCE

- · Hydrocarbons Oil, Petrochemical Processing
- Syngas (CO + H_2) Gasification NH $_3$ synthesis CH $_3$ OH synthesis
- Combustion Gas (CO₂)
- CO₂ coolant

TECHNOLOGICAL RELEVANCE

- · Hydrocarbons Oil, Petrochemical Processing
- Syngas (CO + H₂) Reforming, Gasification NH₃ synthesis
 CH₃OH synthesis
- Combustion Gas (CO₂)

R B U R I S

3

REDUCING CONDITIONS

Hydrocarbons - Oil, Petrochemical Processing

- Producing C_nH_m, H₂, CO
- Conditions are reducing
- Common metals not oxidised
- Consequence: carbon corrosion

,

Alloy ET45 (45 Ni 35 Cr) exposed to gas $a_C = 1$ for 24 h at 900°C

PRECIPITATE IDENTIFICATION

•

Internal carburisation

CORROSION BY CO₂

- · Hydrocarbons Oil, Petrochemical Processing
- Syngas (CO + H₂) Reforming, Gasification NH₃ synthesis CH₃OH synthesis
- Combustion Gas (CO₂)

CARBURIS

Е

Ε

13

TEST DIFFUSION MODEL

Carburisation rate constants

$$(10^7 k_p / cm^2 s^{-1})$$

	(1100°C)		(1000°C)		(900°C)	
	measured	calc	measured	calc	measured	calc
G4868	1.45	2.05	0.13	0.33	0.10	0.11
Fe-35Cr-45Ni	0.44	0.50	0.10	0.08	0.04	0.03
45HT	0.63	0.62	0.10-0.15	0.15	0.04-0.05	0.023

- Close agreement
- T-effect well predicted
- · Diffusion model works

PUT DIFFUSION MODEL TO USE

Vary Ni/Fe ratio to minimise D_CN_C

15

PUT DIFFUSION MODEL TO USE

- Increase Si to reduce D_CN_C
- Works, but metallurgical limits on N_{Si}
- SOME MYSTERIOUS EFFECTS
- Increase Nb: reduces rate by factor of 2
- Add RE: small decrease to rate

CONCLUSION: need to STOP carbon penetration, not slow it

CONDITION FOR CARBIDE SCALE

Critical N_{Cr} for external rather than internal carbide:

$$N_{Cr}^{(o)} = \left(g_{CrCv} \ \frac{\pi}{2v} \ \frac{V_A}{V_{CrCv}} \ \frac{N_c^{(s)} D_c}{D_{Cr}} \right)^{\frac{1}{2}}$$

PUT DIFFUSION MODEL TO USE

$$N_{Cr}^{(o)} = \left(g_{CrCv} \frac{\pi}{2v} \frac{V_A}{V_{CrCv}} \frac{N_c^{(s)} D_c}{D_{Cr}}\right)^{\frac{1}{2}}$$

CrC_v scale formation on model Ni-Cr at 1000°C

Carbide	N _{Cr} (crit.)
Cr_3C_2	15
Cr ₇ C ₃	20
Cr ₂₃ C ₆	37

19

PUT DIFFUSION MODEL TO USE

$$N_{Cr}^{(o)} = \left(g_{CrCv} \frac{\pi}{2v} \frac{V_A}{V_{CrCv}} \frac{N_c^{(s)} D_c}{D_{Cr}} \right)^{\frac{1}{2}}$$

CrC_v scale formation on model Ni-Cr at 1000°C

Carbide	N _{Cr} (crit.)
Cr_3C_2	15
Cr ₇ C ₃	20
$Cr_{23}C_6$	37

CONCLUSION: This is not good!

PROTECTIVE OXIDE SCALE

If process gas is oxidising to chromium

Alloy

Chromia known to have "zero" solubility for C

21

CONCLUSIONS: CARBURISATION

- · Cr carbides precipitate inside heat resisting steels
- · Process is fast
- · Mechanism: inward diffusion of solute C
- · Parabolic kinetics
- $\bullet \quad k_p = k \frac{N_C^{(s)} D_C}{N_{Cr}}$
- · Control by alloy chemistry unsuccessful
- · Protective oxide scale can work

CORROSION BY CO₂

23

CO₂ Corrosion: Practical Examples

Oxyfuel process

Concentrated solar thermal

· Advanced nuclear reactors

AGR – British nuclear reactors
 Mature technology

Possible

On-line now

Potential ??

MOTIVATION: II

Concentrated Solar Thermal

Heat transfer fluid: supercritical CO₂

27

MOTIVATION: II

Concentrated Solar Thermal Receiver

Heat transfer fluid: supercritical CO₂

MOTIVATION: III

 Advanced Nuclear Reactors: closed Brayton cycle increases efficiency

Working fluid, supercritical CO₂

Motivation IV: UK Nuclear Reactors (AGR)

- Primary coolant is pressurised CO₂ (p = 20-40 atm)
- · Gas circulates between reactor core and heat exchanger
- Heat exchanger produces steam to drive turbines
- · Steel (T91) in heat exchanger corrodes

Motivation IV: UK Nuclear Reactors (AGR)

- Primary coolant is pressurised CO₂ (p = 20-40 atm)
- · Gas circulates between reactor core and heat exchanger
- · Heat exchanger produces steam to drive turbines
- Steel (T91) in heat exchanger corrodes

Use this as prime example

31

HEAT EXCHAGER REACTION WITH CO₂ Outer finned tube wall exposed to hot CO₂

INITIAL PROBLEM

When reactors commissioned, creep data available for P91 But, no long term data for corrosion of P91 in CO₂!

INITIAL PROBLEM

When reactors commissioned, creep data available for P91 But, no long term data for corrosion of P91 in CO₂!

SOLUTION
Install in-plant accelerated corrosion test unit

35

CARBURISATION: THERMODYNAMIC CHECK

- Gas at Equilibrium
- $CO_2 = CO + \frac{1}{2}O_2$
- $p(O_2) = 1.6 \times 10^{-7} atm$
- 2CO = CO₂ + C
- $a_C = 8 \times 10^{-14}$

PROBLEM: a_C required for $Cr_{23}C_6$ is ~ 10^{-2}

43

CO₂ Corrosion of 9Cr Steels: Questions

- · What is the rate compared with air oxidation?
- Why is the oxide scale in two layers?
- Why is the interface between them at the former steel surface?
- · What transports across the scale, metal or oxygen?
- What controls the scaling rate?
- Why does internal carburisation occur?
- How fast is it, and what controls its rate?

CO₂ Corrosion of 9Cr Steels: Questions

- What is the rate compared with air oxidation?
- Why is the oxide scale in two layers?
- Why is the interface between them at the former steel surface?
- What transports across the scale, metal or oxygen?
- What controls the scaling rate?
- Why does internal carburisation occur?
- · How fast is it, and what controls its rate?

Is it expected thermodynamically?

45

REACTION WITH CO₂

Alloys: Fe-9Cr, P91, P92 Gas: Ar-20CO₂ T: 650°C p_{O_2} = 10⁻⁷ atm, a_C = 10⁻¹⁵

$$7\underline{Cr} + 3\underline{C} = Cr_7C_3$$

For 9 Cr steel, need $a_{Cr} \sim 10^{-2}$

The required carbon activity is 10¹³ times higher than the gas can provide!

