Inteligencia Artificial

Programa de Ingeniería de Sistemas

Tema: Agentes basados en la Incertidumbre - Redes Bayesianas - Aplicaciones

Ejemplo 3

Simplificación de Probabilidades Condicionales

A partir del siguiente grafo de Detección de Fraude:

F – Fraude

E - Edad

S – Sexo

G – Gas

J – Joyas

Ejemplo 3

Simplificación de Probabilidades Condicionales

Por cada orden de las variables podemos reformular P(X) usando la Regla de La Cadena. Siendo así, se tienen n! Reformulaciones distintas. Por ejemplo: Usando el siguiente orden F, E, S, G, J se tiene:

$$P(f, e, s, g, j) = ?$$

$$P(f, e, s, g, j) = P(f) \times P(e|f) \times P(s|f, e) \times P(g|f, e, s) \times P(j|f, e, s, g)$$

Ejemplo 3

Simplificación de Probabilidades Condicionales

Usando el siguiente orden F, E, S, G, J:

$$P(f, e, s, g, j) = ?$$

$$P(f, e, s, g, j) = P(f) \times P(e|f) \times P(s|f, e) \times P(g|f, e, s) \times P(j|f, e, s, g)$$

$$P(e|f) = P(e)$$

$$P(s|f,e) = P(s)$$

$$P(g|f,e,s) = P(g|f)$$

$$P(j|f,e,s,g) = P(j|f,e,s)$$

Ejemplo 3

Simplificación de Probabilidades Condicionales

Usando el siguiente orden F, E, S, G, J: $P(f, e, s, g, j) = P(f) \times P(e|f) \times P(s|f, e) \times P(g|f, e, s) \times P(j|f, e, s, g)$

Demostración:

$$P(s|f, e) = \frac{P(s \cap e|f)}{P(e|f)}$$

$$= \frac{P(s|f).P(e|f)}{P(e|f)}$$

$$= P(s|f)$$

$$= P(s|f)$$

$$= P(s)$$

$$P(e|f) = P(e)$$

$$P(s|f,e) = P(s)$$

$$P(g|f,e,s) = P(g|f)$$

$$P(j|f,e,s,g) = P(j|f,e,s)$$

Ejemplo 3

Simplificación de Probabilidades Condicionales

Usando el siguiente orden F, E, S, G, J: $P(f, e, s, g, j) = P(f) \times P(e|f) \times P(s|f, e) \times P(g|f, e, s) \times P(j|f, e, s, g)$

Red sin suposiciones de independencia

$$P(e|f) = P(e)$$

$$P(s|f,e) = P(s)$$

$$P(g|f,e,s) = P(g|f)$$

$$P(j|f,e,s,q) = P(j|f,e,s)$$

Ejemplo 3

Simplificación de Probabilidades Condicionales Red sin suposiciones de independencia

Orden: F, E, S, G, J

Eliminamos arco debido a P(E | F) = P(E)

$$P(e|f) = P(e)$$

$$P(s|f, e) = P(s)$$

$$P(g|f,e,s) = P(g|f)$$

$$P(j|f,e,s,g) = P(j|f,e,s)$$

Ejemplo 3

Simplificación de Probabilidades Condicionales Red sin suposiciones de independencia

Orden: F, E, S, G, J

Eliminamos arco debido a $P(E \mid F) = P(E)$

$$P(e|f) = P(e)$$

$$P(s|f,e) = P(s)$$

$$P(g|f,e,s) = P(g|f)$$

$$P(j|f,e,s,g) = P(j|f,e,s)$$

Ejemplo 3

Simplificación de Probabilidades Condicionales Red sin suposiciones de independencia

Orden: F, E, S, G, J

Eliminamos arco debido a $P(S \mid E,F) = P(S)$

$$P(e|f) = P(e)$$

$$P(s|f,e) = P(s)$$

$$P(g|f,e,s) = P(g|f)$$

$$P(j|f,e,s,g) = P(j|f,e,s)$$

Ejemplo 3

Simplificación de Probabilidades Condicionales Red sin suposiciones de independencia

Orden: F, E, S, G, J

Eliminamos arco debido a $P(G \mid S,E,F) = P(G \mid F)$

$$P(e|f) = P(e)$$

$$P(s|f,e) = P(s)$$

$$P(g|f, e, s) = P(g|f)$$

$$P(j|f,e,s,g) = P(j|f,e,s)$$

Ejemplo 3

Simplificación de Probabilidades Condicionales Red sin suposiciones de independencia

Orden: F, E, S, G, J

Eliminamos arco debido a P(J | G,S,E,F) = P(J | S,E,F)

$$P(e|f) = P(e)$$

$$P(s|f,e) = P(s)$$

$$P(g|f,e,s) = P(g|f)$$

$$P(j|f,e,s,q) = P(j|f,e,s)$$

Ejercicio 1

Categorías	Bowl 1	Bowl 2	Total
Chocolate	10	20	30
Plain (Chip)	30	20	50
Total	40	40	80

Calcular la probabilidad de sacar una galleta del Bowl 1 (A), dado que ésta es Plain (B)?

$$P(A|B) = P(B|A).P(A)$$

 $P(B)$
 $P(A) = 40/80 = 1/2 = 0.5$

Ejercicio 1

Categorías	Bowl 1	Bowl 2	Total
Chocolate	10	20	30
Plain (Chip)	30	20	50
Total	40	40	80

Calcular la probabilidad de sacar una galleta del Bowl 1 (A), dado que ésta es Plain (B)?

$$P(A|B) = P(B|A).P(A)$$

 $P(B)$
 $P(A) = 40/80 = 1/2 = 0.5$
 $P(B|A) = 30/40 = 0.75$

$$P(B) = \sum \prod (P(B|A).P(A)$$

= $P(Plain|Bowl1).P(Bowl1) + P(Plain|Bowl2).P(Bowl1)$
= $30/40 * 0.5 + 20/40 * 0.5$
= 0.625

Ejercicio 1

Categorías	Bowl 1	Bowl 2	Total
Chocolate	10	20	30
Plain (Chip)	30	20	50
Total	40	40	80

Calcular la probabilidad de sacar una galleta del Bowl 1 (A), dado que ésta es Plain (B)?

$$P(A|B) = \underline{P(B|A).P(A)}$$
$$P(B)$$

$$P(A) = 0.5$$

$$P(B) = 0.625$$

$$P(B|A) = 0.75$$

$$P(A|B) = (0.75 * 0.5)/0.625$$

$$P(A|B) = 0.6$$

Ejercicio 2

Dada el Grafo G, y a partir de los siguientes datos, calcular:

$$P(A) = 0.75$$

$$P(B|A) = 0.9$$

$$P(B|A^{c}) = 0.8$$

$$P(C|A, B) = 0.8$$

$$P(C|A, B^c) = 0.6$$

$$P(C|A^{c}, B) = 0.7$$

$$P(C|A^{c}, B^{c}) = 0.3$$

a.
$$P(A, B, C) = ?$$

b.
$$P(B, C) = ?$$

c.
$$P(C) = ?$$

Rta. 0,54

Rta.

Rta.

Actividad Extra-clase

Taller

No.

Referencias

Material de apoyo de la semana registrados en SAVIO (Diapositivas).

Bayesian networks without tears: making Bayesian networks more accessible to the probabilistically unsophisticated. Eugene Charniak

Al Magazine Volume 12, Issue 4 (Winter 1991) Pages: 50 - 63 Year of Publication: 1991

Learning Bayesian Networks. Richard E. Neapolitan. Prentice Hall

Gracias!

