

VL Deep Learning for Natural Language Processing

1. Organization & Introduction

Prof. Dr. Ralf Krestel AG Information Profiling and Retrieval

Lerning Goals for this Chapter

- Answering the question: am I right here?
- Explain and define deep learning
- Position deep learning with regards to machine learning
- Understand the historical development of the area of ML

- Relevant chapters:
 - P2

20 Deep Learning Applications You Need to Know

- Fraud detection
- Customer relationship management systems
- Computer vision
- Agriculture
- Vocal Al
- Natural language processing
- Data refining
- Virtual Assistants
- Autonomous vehicles
- Supercomputers

- Investment modeling
- Climate Change
- E-commerce
- Emotional intelligence
- Entertainment
- Deep Dreaming
- Advertising
- Manufacturing
- Healthcare
- Sports

https://builtin.com/artificial-intelligence/deep-learning-applications

Libriz eibniz iemeinschaft

Topics Today

1. Organization

- a. Information Profiling & Retrieval Group
- b. Course Organization
- c. Schedule for the Semester
- 2. Introduction to Deep Learning
- 3. Brief History of Machine Learning
- 4. Summary

Information Profiling & Retrieval (IPR) Group

Who are we?

- Prof. Dr. Ralf Krestel
- In Kiel:
 - Lakshmi Rajendram-Bashyam
 - Phd student working at ZBW, Hamburg
 - Nobel Jacob-Varghese
 - PhD student working at ZBW, Kiel
 - Aftab Anjum
 - PhD student working at CAU, Kiel
 - o aftab.anjum@email.uni-kiel.de
- In Potsdam:
 - Alejandro Sierra
 - PhD student working at HPI, Potsdam

Information Profiling and Retrieval (IPR)

suser erent led Consider State of the Consid

Focus on understanding of text

Al methods

Deep learning, topic modeling, knowledge graphs

Application domains

Metadata, joint analysis, multi-modal

Leibniz Leibniz Gemeinschaft

IPR - Teaching

- IPR regularly offers the following courses (approximately every three semesters):
 - Text Mining (in German)

BS W/INF V2 U2

Information Retrieval (in German)

- BS & MS W/INF V4 U1 PU1
- Deep Learning for Natural Language Processing (in English)
 MS W/INF V2 U2
- In addition, seminars and projects are offered irregularly on the topics:
 - Recommender Systems (BA)
 - Knowledge Graphs (MA)
 - Topic Modeling (MA)
 - Large Language Models (MA)
- Bachelor and Master theses

https://www.ipr.informatik.uni-kiel.de/de/abschlussarbeiten/offene-themen

Open Student Assistant Position

- Web development within the BMBF-funded CoCo project
 - <u>https://www.coco-projekt.de/</u>
- 20 40 hours/month
- 13 Euro/hour

If interested, contact me: rkr@Informatik.uni-kiel.de

Topics Today

1. Organization

- a. Information Profiling & Retrieval Group
- b. Course Organization
- c. Schedule for the Semester
- 2. Introduction to Deep Learning
- 3. Brief History of Machine Learning
- 4. Summary

Communication & Resources

- We will use Moodle as our main platform:
 - https://elearn.informatik.uni-kiel.de/course/view.php?id=274
 - Enrolment key: Ernie&Bert
- Suggestions for improvment of
 - Use of slides/errors on slides
 - Assignments
- Questions any time!
 - During/After lecture
 - In person room CAP 901
 - o Email first!
 - Email: rkr@informatik.uni-kiel.de

Dates

- Exercises: Monday, 16:15 17:45
 - LMS8 R.EG.016
- Lecture : Thursday 10:15 11:45
 - LMS8 R.EG.016
- No lectures/exercises
 - 15.4.24 Semester Start
 - 9.5.24 Holiday
 - 20.5.24 Holiday

Grading

- Exam
 - Mostly "theoretical" questions
 - Some "practical/applied" questions
 - No language-/library-specific programming questions
- Three homework assignments
 - At least 50% points per assignment to be eligible for exam
 - For every assignment where you got more than 90% you will get one bonus point in the exam (if you pass the exam)

Hand-in through Moodle

Literature

- Deep Learning with Python
 - François Chollet
 - Manning Publications Company

Note: the book uses
Tensorflow/Keras for programming
examples; we will use Pytorch!

- Stanford Course
 - Chris Manning
 - http://web.stanford.edu/class/cs224n

Topics Today

1. Organization

- a. Information Profiling & Retrieval Group
- b. Course Organization
- c. Schedule for the Semester
- 2. Introduction to Deep Learning
- 3. Brief History of Machine Learning
- 4. Summary

Semester Schedule

Week	Date	Exercise (Mon)	Lecture (Thu)	Assignments
1	15.4.24	No Exercise	Introduction	
2	22.4.24	Python/Pytorch/Colab	Neural Networks	Hand-out A1
3	29.4.24	Neural Network Implementation	NLP+TM	Introduction
4	6.5.24	Text Classification	Holiday	Hand-in A1
5	13.5.24	Assignment 1 Discussion	Word Embeddings I	Hand-out A2
6	20.5.24	Holiday	Word Embeddings II	951.57
7	27.5.24	Word Embeddings Applications	Word Classifiers	Basics
8	3.6.24	Deep Learning in Practice	Language Models	
9	10.6.24	RNNs+CNN	Recurrent Neural Networks	Hand-in A2
10	17.6.24	Assignment 2 Discussion	Sequence-to-Sequence Models	Hand-out A3
11	24.6.24	Seq2Seq & Hugging Face	Transformer Models	Hand-in A3 Advanced
12	1.7.24	Transformers	Large Language Models	Hand-in A3
13	8.7.24	Assignment 3 Discussion	Generation and Prompting	

Learning Goals

- Students will be able to...
 - Explain different neural network architectures
 - Identify application areas and tasks for deep learning
 - Select suitable network architectures for a given task
 - Explain the functions of different components of NN
 - Apply DL in Python
 - Design and implement their own applications and evaluate their performance
 - Understand the theoretical background, in particular, be able to run the backpropagation algorithm manually
 - Realize the limits of deep learning
 - get an overview of current research in the field
 - Assess societal consequences of DL and discuss them

SS 2024

VL DL4NLP 16

Your Turn!

After each topic there will be a small task which should be discussed with

your neighbor for 5 minutes.

 You can use Moodle to further discuss these tasks, suggest solutions, comment, etc.

- What do you expect from this class?
 - Make a ranking of three learning goals.
 - Discuss with your neighbor.

SS 2024

VL DL4NLP

Topics Today

- 1. Organization
 - a. Information Profiling & Retrieval Group
 - b. Course Organization
 - c. Schedule for the Semester
- 2. Introduction to Deep Learning
- 3. Brief History of Machine Learning
- 4. Summary

What is Deep Learning

Artificial Intelligence

- AI: "The effort to automate intellectual tasks normally performed by humans"
 - Non only machine learning but also rule-based approaches
 - Symbolic Al
 - Expert systems in the 80ies
 - o E.g. chess computer
 - Only works for certain problems
 - Clearly defined
 - Logical problems
 - Does not work for complex, diffuse problems
 - Image classification
 - Speech recognition
 - Translation

tp://illumin.usc.edu/188/deep-blue-the-history-and-engineering-behind-computer-ch

Machine Learning

Instead of humans coming up with rules (classical programming),

Let computers learn the rules.

- A system based on machine learning (a model) is being trained, not programmed.
- ML is nowadays an important subfield of Al and
 - Closely connected to statistics,
 - Which usually deal with much smaller and less complex data.

Machine Learning as Transformation

- For machine learning you need
 - input data and the
 - corresponding, expected output data and
 - a measure to check how well the learning works.
- Learning is the (stepwise) adaption of the model to increase the chosen measure.

Example: automatic speech recognition

Input data: audiofiles

Output data: manually created transcripts

Measure: count of correctly recognized

letters/words

- What is learned: a transformation from the input to the output data.
- The challenge of ML and DL is to find a good transformation.
 - This is easier if the input (and output) data is represented in a meaningful way.
 - Dependend on the task:
 - o E.g. image pixel as RGB values or hsv values

Representation Learning

- Example: classification of points into red and yellow
- Input: coordinates of the points
- Expected output: Color of points
- Measure: Proportion of correctly classified points
- New representation of the points
- Change of coordinates
- Now, classification very easy: x>0

- Learning=Search for better representation
 - o Coordinate change, linear projection, non-linear operations, ...
- ML-Algorithms are not very creative
 - Simple search of the hypothesis space

Leibniz Leibniz Gemeinschaft

"Deep" Learning

SS 2024

Deep Learning Architecture

Deep Learning Hype

Deep Learning Tasks

- Which kind of problems can be solved with DL?
 - Name examples of task.
- Which type of problems DL cannot solve as well, if at all?
 - What are the reasons?
- How likely do you think is a third Al winter?
 - How to avoid a third Al winter?

SS 2024

VI DI 4NI P

Topics Today

- 1. Organization
- 2. Introduction to Deep Learning
- 3. Brief History of Machine Learning
- 4. Summary

Probabilistic Modeling

- Originated from statistics
 - Older than computers

- Naive Bayes algorithm
 - Naive: input data independent

- Bayes:
$$P(c|f) = \frac{P(f|c) P(c)}{P(f)}$$

- Logistic regression
 - Classification, not regression!

Early Neural Networks

- First idea in the 1950s
- Problem back then: Not possible to train large networks
 - Only toy examples, no useful applications
- Mid of the 1980s
 - Rediscovery of the backpropagation algorithm
 - Training of large nets using gradient descent
- In 1989, first practial application of neural Nets
 - LeCun (Bell Labs): LeNet, hand writing recognition
 - Convolutional neural network (CNN) & backpropagation

Kernel Methods

- Group of classification algorithms
- Developed in the 1990s; still very popular
- Best-known algorithm: Support Vector Machines (SVM) [CV95]
 - 1. Data is being projected into an high-dimensional space.
- 2.In this space, classes can be easily seperated by a hyperplane.
- 3. Hyperplane is chosen to maximize the margins of points and hyperplane.
- Actual projection too costly, thus apply the kernel trick
 - Only calculate the distances in the high-dimensional space using a kernel function
 - Kernel function is not learnt but manually specified
 - Input data needs to be represented in a suitable way since this is a shallow (vs. deep) methods.

Decision Trees, Random Forest, GBM

- Decision Trees:
 - Heyday between 2000 and 2010
 - Easy to understand/interpret/visualize

- Random Forest
 - Many small decision trees whose results are combined
 - Very successful in practice (http://kaggle.com)
- Gradient Boosting Maschines (GBM), since 2014 top choice at Kaggle
 - Similar to Random Forest
 - Improvement by focusing during training iterations on previously wrongly classified instances
 - Best algorithm for "non-perceptual" problems

Deep Neural Nets

- 2010 important research results for Deep Neural Nets
 - Hinton, U Toronto; Bengio, U Montreal; LeCun, NYU
- 2011 first success at image classification using GPU-trained DNNs
- 2012 breakthrough at image classification challenge ImageNet
 - 1.4 millionen training images, 1000 classes
 - o 2011 without DL: 74,3% accuracy
 - o 2012 Hinton's group: 83,6%
 - 2015 problem solved (96,4%)
- Since then, CNNs (convnets) de facto standard in the area of computer vision.
- Many task also in the area of Natural Language Processing (NLP)
- In case of many available training examples, DL has superseded SVMs and decision trees for many tasks.
 - E.g. at CERN for analyzing ATLAS detector data of the LHC

ML Today

 Deep Learning is not only superior based on better results for certain tasks, but also because there is no need for feature engineering any more.

For shallow problems:
GBM: XGBoost library
For perceptual problems:
DL: Keras/Pytorch library

- Shallow methods (SVM, decision trees) transform input data at most one to two times; for many complex input data this is not enough.
- In deep learning, representations are not learned in isolation, layer-by-layer, but jointly.
 - This leads to more complex representations in each layer.

Leibniz Leibniz Gemeinschaft

Machine Learning

- Why was DL not already successful during the 1950ies?
- How about chaining five SVMs together, one after the other?
 Would this be a deep SVM giving good results?
- What are the weaknesses/disadvantages of DL?
- Where and why are SVMs and decision trees still in work, although DL is so successful?

VI

VL DL4NLP

Topics Today

- 1. Organization
- 2. Introduction to Deep Learning
- 3. Brief History of Machine Learning
- 4. Summary

Summary

• Will be filled in during next session!

Leibniz Leibniz Gemeinschaft

Lerning Goals for this Chapter

- Answering the question: am I right here?
- Explain and define deep learning
- Position deep learning with regards to machine learning
- Understand the historical development of the area of ML

- Relevant chapters:
 - P2

References

[CV95] Cortes, C. and Vapnik, V., 1995. Support-vector networks.
 Machine learning, 20(3), pp.273-297.

SS 2024

Leibniz Leibniz Gemeinschaft