平成 29 年度^春学期末試験問題·解答

試験実施日 平成 29 年 7月 27日 1時限

出題者記入欄

試 験 科 目 名 <u>数学</u> I-J		出題者名佐藤弘康
試 験 時 間 <u>60</u> 分	平常授業	美日<u>木</u>曜日<u>1</u>時限
持ち込みについて 可	√(\ □)	可、不可のいずれかに○印をつけ 持ち込み可のものを○で囲んでください
教科書 ・ 参考書 ・ ノート その他 ((手書きのみ	・ コピーも可) ・ 電卓 ・ 辞書)
本紙以外に必要とする用紙	解答用紙_	0 枚 計算用紙 0 枚
通信欄		

受験者記入欄

学	科	学 年	クラス	学籍番号	氏	名

採点者記入欄

	3 1 3 A A A A A A A A A A A A A A A A A
採点欄	評 価

- ベクトル $\mathbf{a} = (x, 2, -1), \mathbf{b} = (-2, -4, y)$ に対し、次の問 に答えなさい.
 - (1) a と b が直交するような x, y の組を 1 つ挙げな

(2) a,b が 1 次従属となるような x,y を求めなさい.

- $\mathbf{a} = (2,0,1,-1)$ と $\mathbf{b} = (\frac{1}{2},1,0,-1)$ に対し、
 - (1) 大きさ |a|, |b|
 - (2) 内積 (a,b)
 - (3) \boldsymbol{a} と \boldsymbol{b} のなす角 $\boldsymbol{\theta}$ の余弦 $\cos \boldsymbol{\theta}$
 - の値を求めなさい.

 $\left(egin{array}{c} 1 \ 0 \ -1 \end{array}
ight),\;oldsymbol{a}_2=\left(egin{array}{c} 1 \ 1 \ 0 \end{array}
ight),\;oldsymbol{a}_3=\left(egin{array}{c} 0 \ -1 \ 1 \end{array}
ight)$ ກຳ ຣັ, グラムシュミットの方法によって, 正規直交系を作りな さい.

|4|部分空間とその基底に関する以下の文を読んで、空欄に 当てはまる最も適切な言葉,数または式を回答欄に書き なさい.

$$m{a}_1=egin{pmatrix} -1 \ 2 \ 4 \end{pmatrix}, m{a}_2=egin{pmatrix} 2 \ -1 \ 1 \end{pmatrix}, m{a}_3=egin{pmatrix} 1 \ 0 \ 2 \end{pmatrix}$$
が生成する部分空間を W とおく、つまり、 W は $m{a}_1,m{a}_2,m{a}_3$

の1次 (1) の集合である. W の生成元は3つだが,次 元は3ではない. なぜなら, a_1, a_2, a_3 は1次 (2) で はないからである. 実際, $a_1 = | (3) | a_2 + | (4) | a_3$ となるので、 $W = \langle a_2, a_3 \rangle$ と書<u>ける.</u> また、 $\overline{a_2, a_3}$ は 1 (2) なので、W の次元は 2 であることがわかる.

(解答欄)

(1)		

l l		
(2)		

- **5** 集合 $W = \{(a+b, a-b, b) \in R^3 \mid a, b \in R\}$ が R^3 の部 分空間であるか否か判定しなさい.

6 R^2 の線形変換 $f: R^2 \rightarrow R^2$ が

$$f(e_1 - e_2) = -4e_1 + 2e_2,$$

 $f(e_1 + e_2) = 2e_1 + 4e_2$

を満たすとき, f の表現行列 A を求めなさい. ただし, e_1, e_2 は R^2 の基本ベクトルとする.

8 2 次形式 $x^2 + 4xy - 2y^2$ の標準形を求めなさい.