Example 2 Given points A(2, 1) and B(8, 5), show that P(3, 6) is on the perpendicular bisector of \overline{AB} .

Solution 1 Join P to M, the midpoint of AB and show that $\overline{PM} \perp \overline{AB}$.

Step 1
$$M = \left(\frac{2+8}{2}, \frac{1+5}{2}\right) = (5,3)$$

Step 2 Slope of
$$\overline{AB} = \frac{5-1}{8-2} = \frac{4}{6} = \frac{2}{3}$$

Slope of $\overline{PM} = \frac{3-6}{5-3} = \frac{-3}{2}$

Step 3 Since the product of the slopes of \overline{AB} and \overline{PM} is -1, $\overline{PM} \perp \overline{AB}$.

Solution 2 Show that P is equidistant from A and B and apply Theorem 4-6, page 153.

Step 1
$$PA = \sqrt{(3-2)^2 + (6-1)^2} = \sqrt{26}$$

 $PB = \sqrt{(3-8)^2 + (6-5)^2} = \sqrt{26}$

Since PA = PB, P is on the perpendicular bisector of \overline{AB} .

Classroom Exercises

Find the coordinates of the midpoint of the segment that joins the given points.

3.
$$(-2, 2)$$
 and $(6, 4)$

4.
$$(-3, 7)$$
 and $(-7, -5)$

5.
$$(-1, -3)$$
 and $(-3, 6)$

6.
$$(2b, 3)$$
 and $(4, -5)$

7.
$$(t, 2)$$
 and $(t + 4, -4)$

8.
$$(a, n)$$
 and (d, p)

- **9.** M(3, 5) is the midpoint of $\overline{P_1P_2}$, where P_1 has coordinates (0, 1). Find the coordinates of P_2 .
- 10. Point (1, -1) is the midpoint of AB, where A has coordinates (-1, 3). Find the coordinates of B.

Written Exercises

Find the coordinates of the midpoint of the segment that joins the given points.

- 1. (0, 2) and (6, 4)
- 2. (-2, 6) and (4, 3)
- 3. (6, -7) and (-6, 3)

- **4.** (a, 4) and (a + 2, 0) **5.** (2.3, 3.7) and (1.5, -2.9) **6.** (a, b) and (c, d)