DÚ č.4 - Poissonův proces, systémy hromadné obsluhy

Marek Nevole, Jan Novotný ČVUT - FIT {nevolmar, novot103}@fit.cvut.cz

19. března 2022

1 Úvod

Ve čtrtém úkolu z předmětu vybrané statistické metody jsme se zabývali Poissonovými procesy a systémy hromadné obsluhy. Za reprezentanta byl zvolen Marek Nevole.

Úkol jsme vypracovali pomocí programovacího jazyka Python¹ v prostředí Jupyter Notebook² s volně dostupnými knihovnami SciPy³, NumPy⁴ a Matplotlib⁵.

2 Popis problému

Uvažujte model hromadné obsluhy $M|G|\infty$.

- Požadavky přichází podle Poissonova procesu s intenzitou $\lambda = 10 \text{ s}^{-1}$.
- Doba obsluhy jednoho požadavku (v sekundách) má rozdělení S ~ Ga(4,2), tj. Gamma s parametry a = 4, p = 2.
- Časy mezi příchody a časy obsluhy jsou nezávislé.
- Systém má (teoreticky) nekonečně paralelních obslužných míst (každý příchozí je rovnou obsluhován).

Označme N_t počet zákazníků v systému v čase t. Předpokládejme, že na začátku je systém prázdný, $tj. N_0 = 0.$

3 Úloha č.1

Simulujte jednu trajektorii $\{N_t(\omega) \mid t \in (0, 10 \text{ s})\}$. Průběh trajektorie graficky znázorněte.

Zákazníci přichází podle Poissonova procesu s intezitou $\lambda=10\ s^{-1}$. Počet příchozích zákazníků v intervalu [s,t] odpovídá Poissonovu rozdělení přírůstků $N_t-N_s\sim \text{Poisson}(\lambda(t-s))$, tedy počet

²jupyter.org

Obrázek 1: Jedna trajektorie $\{N_t(\omega) \mid t \in (0, 10 \text{ s})\}.$

zákazníků této úlohy je z rozdělení Poisson(100). Toto rozdělení je implementováno v knihovně SciPy jako poisson a pro náhodný výběr obsahuje metodu rvs, které jsme předali parametr mu=100. Náhodný výběr z tohoto rozdělení vrátil hodnotu n = 95. Časy jednotlivých příchodů zákazníků odpovídají rovnoměrnému rozdělení U(0,t). Tedy jsme udělali 95 náhodných výběrů z rozdělení U(0,10), pomocí třídy uniform a metody rvs s parametry scale=t, size=n. Doba obsloužení těchto zákazníků je z rozdělení Ga(4,2) s parametry a=4, p=2. Gamma rozdělení je implementováno jako gamma s metodou pro náhodný výběr rvs. Parametry pro tuto metodu jsou shape a scale, v našem studijním textu použiváme parametry, které odpovídají parametrizaci shape a rate. Pro Ga(a, p) je shape = p a rate = a. Mezi scale a rate lze převádět pomocí vzorce scale = $\frac{1}{\text{rate}}$. Tedy po 95 náhodných výběrech z Ga(4,2) jsme dostali intervaly všech zákazníků v čase a výslednou trajektorii lze pozorovat na obrázku 1.

4 Úloha č.2

Simulujte n = 500 nezávislých trajektorií pro $t \in (0, 100)$. Na základě těchto simulací odhadněte rozdělení náhodné veličiny N_{100} .

³scipy.org

 $^{^4}$ numpy.org

⁵matplotlib.org

Obrázek 2: Odhad rozdělení N_{100} pomocí histogramu a jádrových metody.

5 Úloha č.3

Diskutujte, jaké je limitní rozdělení tohoto systému pro $t \to +\infty$. Pomocí vhodného testu otestujte na hladině významnosti 5 %, zda výsledky simulace N_{100} odpovídají tomuto rozdělení.