VV471— Introduction to Numerical Methods

Assignment 8

Jing and Manuel — UM-JI (Summer 2019)

Reminders

- Write in a neat and legible handwriting or use LATEX
- Clearly explain the reasoning process
- Write in a complete style (subject, verb, and object)
- Be critical on your results

Questions preceded by a * are optional. Although they can be skipped without any deduction, it is important to know and understand the results they contain.

Ex. 1 — Legendre polynomials

Let $(Q_n)_{n\in\mathbb{N}}$ be the sequence of polynomials defined by $Q_n(x)=\frac{1}{2^n n!}\left((x^2-1)^n\right)^{(n)}$ over [-1,1]. This sequence defines the Legendre polynomials.

- 1. Using the constant weight function w(x) = 1 over (-1, 1), show that $(Q_n)_{n \in \mathbb{N}}$ defines a sequence of orthogonal polynomials.
- 2. Show that $Q_n(-x) = (-1)^n Q_n(x)$.
- 3. Show that for any $x \in [-1, 1]$, the Legendre polynomials obey the recurrence relation

$$(n+1)Q_{n+1}(x) = (2n+1)xQ_n(x) - nQ_{n-1}(x).$$

Hint: use elements from the proof of proposition 5.53.

* 4. Prove that

$$Q_n(x) = \sum_{i=0}^{n} (-1)^i \binom{n}{i}^2 \left(\frac{1+x}{2}\right)^{n-i} \left(\frac{1-x}{2}\right)^i.$$

Ex. 2 — Interpolation

Let f be a continuous function for which we know the eight points deifned in the following table.

X	-5	-1	0	1	3	5	10	12
f(x)	781	5	1	1	61	521	9091	19141

Determine f(2).

Ex. 3 — Newton's form of the interpolation polynomial

Let f be a continuous function and P^n be its interpolation polynomial in the points x_0, \dots, x_n .

- 1. Let $P^0(x) = f(x_0)$ be the interpolation polynomial in a single point x_0 .
 - a) Show that for two points x_0 and x_1 , $P^1(x) = P^0(x) + \frac{f(x_1) f(x_0)}{x_1 x_0}(x x_0)$.
 - b) Determine a polynomial R of degree at most two, such that $P^2(x) = P^1(x) + R(x)$, for three nodes x_0 , x_1 , and x_2 .

c) Prove by induction that

$$P^j(x) = P^{j-1}(x) + a_j \prod_{k=0}^{j-1} (x - x_k)$$
, where a_j only depends on x_0, \dots, x_j .

2. Show that

$$P^{n}(x) = f(x_0) + \sum_{i=1}^{n} a_i \prod_{k=0}^{j-1} (x - x_k).$$

* 3. Denoting a_i by $f[x_0, \dots, x_i]$, prove that for any k > 0,

$$\begin{cases} f[x_k] = f(x_k) \\ f[x_0, \dots, x_k] = \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0} \end{cases}$$

4. Write the pseudocode of a clear algorithm to compute $P^n(x)$ when given n+1 nodes x_0, \dots, x_n and the value of f at those nodes.

We now consider the case of equidistant nodes, i.e. $x_i = x_0 + ih$, for any $0 \le i \le n$, and some $h \in \mathbb{R}_+^*$. Denoting $f[x_i]$ by f_i , $0 \le i \le n$, we recursively define the operator ∇ such that

$$\begin{cases} \nabla^0 f_i = f_i \\ \nabla^{k+1} f_i = \nabla^k f_{i+1} - \nabla^k f_i. \end{cases}$$

- 5. Show that for all $i, k \in \mathbb{N}$, $f[x_i, \dots, x_{i+k}] = \frac{1}{k!h^k} \nabla^k f_i$.
- * 6. Observing that $\binom{s}{k} = \frac{1}{k!} \prod_{j=0}^{k-1} (s-j)$, prove that $P^n(x) = \sum_{k=1}^n \binom{s}{k} \nabla^k f_0 + f_0$, where $s = \frac{x-x_0}{h}$.
 - 7. Write the pseudocode of an algorithm which takes a step h as input, a number of nodes, the value of f at each of those nodes, and a value x. The algorithm should return $P^n(x) \approx f(x)$.