RISELab: Enabling Intelligent Real-time Decisions

Ion Stoica February 8, 2017

Berkeley's AMPLab (2011-2016)

Goal: Next generation of open source data analytics stack for industry & academia

Berkeley Data Analytics Stack (BDAS)

Berkeley's AMPLab (2011-2016)

Goal: Next generation of open source data analytics stack for industry & academia

Berkeley Data Analytics Stack (BDAS)

RISE: Real-time Intelligent Secure Execution

RISELab

From live data to real-time decisions

AMPLab

From batch data to advanced analytics

RISE Lab (2017-2022)

12 faculty across AI, systems, security, and architectures

11 Founding sponsors

Why?

Data only as valuable as the decisions it enables

Forrester's 2016 Predictions: Turn Data Into Insight And Action

Posted by Brian Hopkins on November 9, 2015

Why?

Data only as valuable as the decisions it enables

What does this mean?

- Faster decisions better than slower decisions
- Decisions on fresh data better than decisions on stale data
- Decisions on personalized data better than on aggregate data

Goal

Real-time decisions

decide in ms

on live data

the current state of the environment

with strong security

privacy, confidentiality, integrity

Typical decision system

Typical decision system

Typical decision system

Example of decision systems

ML Pipeline (e.g., Clipper + Spark/Tensorflow)

Reinforcement Learning Systems (e.g., Ray)

What else do we want from decisions?

Intelligent: complex decisions in uncertain environments

Robust: handle complex noise, unforeseen inputs, failures

Explainable: ability to explain non-obvious decisions

Goal

Develop open source platforms, tools, and algorithms for intelligent real-time decisions on live-data

Some Proposed Research

Secure Real-time Decisions Stack (SRDS)

- Open source platform to develop of RISE apps
- · Secure from ground up
- Reinforcement Learning (RL) as one of key app patterns

Learning control hierarchies: speedup learning, training

Shared learning: learn over confidential data

Some Proposed Research

Secure Real-time Decisions Stack (SRDS)

- Open source platform to develop of RISE apps
- Secure from ground up
- Reinforcement Learning (RL) as one of key app patterns

Learning control hierarchies: speedup learning, training

Shared learning: learn over confidential data

Minimalist execution engine:

- Support both data flow and task-parallel execution models
- High-throughput, low-latency: ~ 1M tasks/sec @ ms latency

Central repository for models, APIs to capture the context in which data gets used and produced

Status: ongoing project with industry partners

Ground (data context service)

Replaying of apps at fine granularity

- Simplify development, debugging
- Robustness: replay against perturbed inputs
- Explainability: identify inputs causing decision
- Security: confirm vulnerabilities, test security patches, compliance auditing

Dramatically simplify development of RISE applications

- Apache Spark: improve latency and security
- Clipper: model serving for Apache Spark, Scikit learn, etc
- Ray: framework for RL applications

Improving Apache Spark

Drizzle

- Decrease latency of Structured Streaming and ML algorithms by ~10x
- Techniques: group scheduling, shared variables

MLlib: SGD Performance

MLlib: SGD Performance

Improving Apache Spark

Drizzle

- Decrease latency of Structured Streaming and ML algorithms by ~10x
- Techniques: group scheduling, shared variables
- Some of these techniques will make their way to Apache Spark

Opaque

- Full data encryption, authentication, and verification (Intel's SGX)
- Oblivious mode: hide data access pattern
- Support most SparkSQL functionality
- See Wenting's talk later

RISELab

Goal: Develop open source platforms, tools, and algorithms for intelligent real-time decisions on livedata

Already promising results

Expect much more over the next five years!

