Multi-Agent Deep Reinforcement Learning For Distributed Handover Management In Dense mmWave Networks

Authors: Mohamed Sana; Antonio De Domenico; Emilio Calvanese Strinati; Antonio Clemente

Presenter: Stanley Wu

Jun. 25 2020

Outline

- Main Question
- Solution
- Simulation Configuration
- Simulation Result
- Discussion

Main Question

Under a HetNet:

- N_S small base Station (SBS), 1 macro base station (MBS)
- To increase the network sum-rate
- Via reducing the redundant HO

- If $\Delta \tau$ is the HO time-to-trigger interval (TTI), a HO process can be triggered every $\tau_p = p\Delta \tau + \tau_0$.
- If a UE decides to handover at time τ_p , then it spends (loses) $\beta \Delta \tau$ for initiating HO process.
- \Rightarrow the effective data received by UE j between τ_p and τ_{p+1} is

$$\overline{R}_{i,j}(\tau_p,\beta) = \int_{\tau_p}^{\tau_p + (1-\beta\lambda_j(\tau_p))\Delta\tau} R_{i,j}(t)dt.$$

- $S = \{0, 1, ..., N_S\}$: set of BSs.
- $\mathcal{U} = \{0, 1, ..., K\}$: set of K UEs.
- *U_i*: set of UEs covered by BS i.
- S_j: set of BSs at the reach of UE j.
- $R_{i,j} = B_{i,j} \log_2 (1 + \text{SINR}_{i,j})$ is the achievable rate, where
- $B_{i,j}$ the bandwidth allocated to UE j.
- au_0 is an initial system delay.
- $\lambda_i(\tau_p)$ indicates if the UE has Handover (=1) or not (=0).

Main Question (cont.)

• The network sum-rate $R(\tau_p,\beta)$ between τ_p and τ_{p+1}

$$R(\tau_p,\beta) = \frac{1}{\Delta \tau} \sum_{i \in \mathcal{S}} \sum_{j \in \mathcal{U}} \overline{R}_{i,j}(\tau_p,\beta).$$

- $S = \{0, 1, ..., N_S\}$: set of BSs.
- $\mathcal{U} = \{0, 1, ..., K\}$: set of K UEs.
- *U_i*: set of UEs covered by BS i.
- S_j : set of BSs at the reach of UE j.
- $R_{i,j} = B_{i,j} \log_2(1 + SINR_{i,j})$ is the achievable rate, where
- $B_{i,j}$ the bandwidth allocated to UE j.
- τ_0 is an initial system delay.
- $\lambda_j(\tau_p)$ indicates if the UE has Handover (=1) or not (=0).

Solution

• Use a deep multi-agent reinforcement learning (DRQN) for distributed handover management called RHando (Reinforced Handover)

Solution (cont.)

• Each UE maintains its own DRQN [1] and learns to maximize a long term reward by minimizing the loss function:

$$\mathcal{L}_{j}(\theta_{j}) = \mathbb{E}_{e_{j}^{b}(t) \sim \mathcal{B}_{j}} \left[(\mathbf{w}_{j}^{b} \delta_{j}^{b}(t))^{2} \right]$$

Where subscript b indicates an entry in the mini batch β_j of experiences $e_j^b(t)$, $\delta_j^b(t)$ is the TD error w.r.t the target value $y_j^b(t)$

$$\delta_j^b(t) = y_j^b(t) - Q_j(o_j^b(t), h_j^b(t-1), a_j^b(t)|\theta_j),$$

$$y_j^b(t) = r_j^b(t) + \gamma \max_{a'} Q_j(o_j^b(t+1), h_j^b(t), a'|\hat{\theta}_j).$$

- $h_j(t)$ represents the recurrent neural network parameters,
- θ_j is the DRQN weights. Note that $\hat{\theta}_j$ is the target DRQN weights (update less frequently).

Solution (cont.)

- The DRQN may end up in a local optimal state instead of in a global optimal state
- To approximate the global optimal state, using the hysteretic Q-learning algorithm, let DRQN be updated via a gradient decent algorithm with two distinct learning rates α and β [2]:

$$w_j^b = \begin{cases} \alpha, if \ \delta_j^b(t) \ge 0 \\ \beta, others \end{cases} \quad (\beta \ll \alpha \le 1)$$

Simulation Configuration

UEs use Random WayPoint Model v= [0, 10] m/s

	Macro cell (3GPP TR 36.872)	Small cell
Parameters	Values	
Carrier frequency, f_c	2.0 GHz	28 GHz
Bandwidth, B	10 MHz	500 MHz
Thermal Noise, No	-174 dBm/Hz	
Noise figure	5 dB	
Shadowing, X	9 dB	12 dB
Transmit power	46 dBm	20 dBm
g ₀ (TX/RX)	17 dBi / 0 dBi	-
Cell radius, r		50 m
Beam width, θ	360°	20°
Side lobe gain, ξ		-20 dBi
Inter-cell distance		$1.2 \times r$
Pathloss model	$128.1 + 36.7\log_{10}(d)$	Eq. (1), $d_0 = 5 \text{ m}$
TTI	10ms	
$\Delta \tau$	1s	
T	2000s	

Path loss model

$$PL = -20\log_{10}\left(\frac{4\pi d_0}{\lambda_i}\right) - 10\eta_i \log_{10}\left(\frac{d_{i,j}}{d_0}\right) - X_{i,j}. \quad (1)$$

 d_0 is the reference distance, $\eta_i = 2.5$ the path loss coefficient, λ_i the wavelength.

Simulated TX/RX antenna gain radiation pattern for an array of 5x5 elements operating at 28 GHz [3]

Simulation Result

Reduce the HO frequency and increase the network sum-rate

Nakagami fading scale factor: m

(a) Avg. reward w.r.t. N_i , K=15, m=0.5, $\beta=1$.

(b) $R_T(\beta)$ w.r.t. β . $N_i=K=15, m=0.5.$

(c) $R_T(\beta)$ w.r.t. m. $N_i = K = 15, \beta = 1$.

(d) HO rate w.r.t. N_i . $K=15, m=0.5, \beta=1.$

(e) HO rate w.r.t. β . $N_i = K = 15$, m = 0.5.

(f) HO rate w.r.t m. $N_i = K = 15$, $\beta = 1$.

Reference

- [1] S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian, "Deep Decentralized Multi-task Multi-Agent Reinforcement Learning under Partial Observability," in *Proc. International Conference on Machine Learning (ICML)*, 06–11 Aug 2017, vol. 70, pp. 2681–2690.
- [2] L. Matignon, G. J. Laurent, and N. Le Fort-Piat, "Hysteretic Q-learning: an Algorithm for Decentralized Reinforcement Learning in Cooperative Multi-agent Teams," in *Proc. International Conference on Intelligent Robots and Systems (IEEE/RSJ)*, 2007, pp. 64–69.