I Algorithme de déterminisation

Déterminiser l'automate suivant en utilisant l'algorithme du cours :

II Clôture des langages reconnaissables

Si $m = m_1...m_n$ est un mot, on définit son miroir $\widetilde{m} = m_n...m_1$. Si L est un langage, on définit son miroir $\widetilde{L} = \{\widetilde{m} \mid m \in L\}$.

1. Montrer que le miroir d'un langage reconnaissable est reconnaissable.

Si L est un langage sur Σ , on définit :

- $Pref(L) = \{u \in \Sigma^* \mid \exists v \in \Sigma^*, uv \in L\}$: ensemble des préfixes des mots de L.
- $Suff(L) = \{u \in \Sigma^* \mid \exists v \in \Sigma^*, vu \in L\}$: ensemble des suffixes des mots de L.
- $Fact(L) = \{u \in \Sigma^* \mid \exists v, w \in \Sigma^*, vuw \in L\}$: ensemble des facteurs des mots de L.
- 2. Montrer que si L est reconnaissable alors Pref(L), Suff(L), Fact(L) le sont aussi.
- 3. Montrer que si L est régulier alors Pref(L), Suff(L), Fact(L) le sont aussi (puisqu'on va montrer que régulier = reconnaissable, c'est une preuve alternative à la précédente).

III Algorithmes sur les automates

- 1. À quelle condition nécessaire et suffisante simple le langage reconnu par un automate est vide ? Décrire un algorithme pour le savoir.
- 2. À quelle condition nécessaire et suffisante simple le langage reconnu par un automate est fini ? Décrire un algorithme pour le savoir.
- 3. Décrire un algorithme pour déterminer si deux automates admettent le même langage.
- 4. Soit A un automate à n états. Montrer que si L(A) est non vide alors il contient un mot de longueur $\leq n-1$.

IV Reconnaissable ou non?

Pour chacun de ces langages, dire s'il est reconnaissable ou non. Justifier.

- 1. $L_1 = \text{mots sur } \{a, b\}$ sans lettres consécutives égales.
- 2. $L_2 = \text{mots sur } \{a, b\}$ ayant un nombre pair de a et dont le nombre de b est multiple de 3.
- 3. $L_3 = \{u \in \{a, b\}^* \mid |u|_a \mod 2 = |u|_b \mod 3\}.$
- 4. $L_4 = \{m \in \{a,b\}^* \mid |m|_a = |m|_b\}$ (où $|m|_a$ est le nombre de a du mot m).
- 5. L_5 = écritures en base 2 des multiples de 5.
- 6. $L_6 = \{a^p \mid p \text{ est un nombre premier}\}.$

V Longueur discriminante

- 1. Soit A un automate. Décrire un algorithme pour déterminer la plus petite longueur d'un mot reconnu par A et préciser sa complexité.
- 2. Soit A un automate à n états et de langage L(A). Montrer que $L(A) = \emptyset$ si et seulement si L(A) ne contient aucun mot de longueur strictement inférieure à n.
- 3. Soit $A_1 = (Q_1, i_1, F_1, \delta_1)$ et $A_2 = (Q_2, i_2, F_2, \delta_2)$ deux automates déterministes complets à n_1 et n_2 états et de langages L_1 et L_2 . On suppose que $L_1 \neq L_2$. Soit $l(L_1, L_2)$ la plus petite longueur d'un mot u appartenant à l'un des deux langages mais pas à l'autre.

Montrer que $l(L_1, L_2) < n_1 n_2$.

VI Ensemble distingant

Soient L un langage sur un alphabet Σ et $u, v \in \Sigma^*$. On dit que $w \in \Sigma^*$ est un *suffixe distingant* pour u et v si exactement l'un des mots uw ou vw appartient à L.

Un ensemble de mots D est distingant pour L si toute paire de mots de D a un suffixe distingant.

- 1. Soit L_1 le langage dénoté par l'expression régulière $(ab)^*$. Montrer que $\{\varepsilon, a, b\}$ est un ensemble distingant pour L_1 .
- 2. On note ind(L) le nombre minimum d'états d'un automate déterministe complet reconnaissant L. Montrer que si L a un ensemble distingant de taille n alors $ind(L) \geqslant n$.
- 3. Que vaut $ind(L_1)$?
- 4. On suppose que L a un ensemble distingant infini. Montrer que L n'est pas un langage régulier.
- 5. En déduire que $\{a^nb^n \mid n \in \mathbb{N}\}$ n'est pas un langage régulier.
- 6. Soit L_2 l'ensemble des mots de $\{a,b\}^*$ qui contiennent un nombre pair de a et un nombre pair de b. Déterminer $ind(L_2)$.

VII Résiduel

Soit L un langage sur un alphabet Σ . Soit $u \in \Sigma^*$. On définit le langage $u^{-1}L = \{v \in \Sigma^* \mid uv \in L\}$ (qu'on appelle résiduel de L).

- 1. Montrer que si L est reconnaissable alors $u^{-1}L$ est reconnaissable.
- 2. Quels sont tous les résiduels possibles de a^*b^* ? De $\{a^n \mid n \text{ est pair}\}$?
- 3. Montrer que si L est reconnaissable alors $\{u^{-1}L \mid u \in \Sigma^*\}$ est fini (il n'y a qu'un nombre fini de valeurs possibles pour $u^{-1}L$ quand u varie dans Σ^*).
- 4. Montrer que $\{a^nb^n \mid n \in \mathbb{N}\}$ n'est pas reconnaissable.

Un mot m est un palindrome s'il se lit de la même façon dans les deux sens (ou encore: $\widetilde{m} = m$).

- 5. Écrire une fonction Caml pour déterminer si une liste de lettres est un palindrome. Complexité?
- 6. Montrer que l'ensemble des palindromes (sur un alphabet à au moins 2 lettres) n'est pas reconnaissable.