

The >eR-Biostat initative

Making R based education materials accessible for all

An introduction to R: Short Version (2017)

Developed by

Dan Lin (Hasselt University) and Ziv Shkedy (Hasselt University)

ER-BioStat

GitHub: https://github.com/eR-Biostat

The course was developed as a part of the >eR-BioStat imitative.

Most of the datasets used in the course are available as R objects.

External datasets are available in the GitHub page of the course.

Overview

A (very) quick start: the cars data

Two sample t-test.

basic plots

- 1. Basic programming in R: objects in R
- 2. Reading external datasets
- 3. Basic plots functions
- 4. Programming in R: a for loop
- 5. Statistical modeling in R: simple linear regression
- 6. Statistical modeling in R: one-way ANOVA
- 7. Statistical modeling in R: logistic regression
- 8. Programming in R: user functions
- 9. Two-way ANOVA
- 10. More about two-way ANOVA,
- 11. More about linear regression
- 12. Application of a for loop: bootstrap.

A (very) quick Start

The R environment

- Open R.
- · Open a new script window.

The normal distribution: location

Density function of a normal distribution

$$X \sim N(\mu, \sigma^2)$$

The normal distribution: variability

Density function of a normal distribution

Random sample from a normal distribution in R

Draw a random sample of size 100 from a normal distribution with mean – and variance 1

$$X \sim N(\mu, \sigma^2)$$

In R

rnorm(sample size, mean, standard deviation)

$$X \sim N(0,1)$$
rnorm(100,0,1)

Random sample from a normal distribution in R

Draw a random sample of size 100 from a normal distribution with mean – and variance 1

$$X \sim N(\mu, \sigma^2) \Rightarrow X \sim N(0,1)$$

> rnorm(100,0,1)

```
[1] -0.173911348 -0.463196096 -1.084838332
                                          2.373958677 -1.685884982
 [6] -1.952672126 -0.055601310 -0.241913096 -0.999586206
                                                      0.308335895
     0.556993818 2.337451275
                              0.778734465 -0.501354458
                                                      0.004525392
[16] -1.468709822 0.109901143
                             0.109103689
                                          0.662434110 -0.177097648
[21] -1.442033566 0.615239368
                              0.254080126
                                         1.152977602 -0.089559002
     [31] -0.667671228 -1.009209277
                              0.388362272 -0.041883373 0.750480061
[36] -2.103109677 -1.515839684 -0.477250540 -0.344581482
                                                      0.072570862
[41] -0.364485234 -0.920898769
                             1.148778190
                                         1.092225688 -0.832389361
[46] -1.914844153 -0.384265110 0.528078353
                                         1.319149374 0.226817654
[51] -0.605867376 -0.658048328 0.086126314
                                         0.711404951
                                                      1.190303122
[56] 2.499314086 2.201924724 0.591527333 -0.733622099 -0.656031690
[61] -0.194759316
                0.864421699 0.813854743 -0.628803589
                                                      0.362077258
     0.312250497
                1.451227963
                             1.107136623
                                          0.680487861
                                                      1.585879056
[71] -0.249983835 -1.436293634 -0.470710524 -2.330088808
                                                      0.265551343
                                         0.826973063 -0.592073631
[76] -0.847238216 -1.199413581 -1.866542460
[81] -1.751735134 0.077115620 -0.306869702
                                         0.120083596 -0.303521155
[86] -0.644268518 0.295067198
                              2.004409939
                                          0.310290927
                                                      0.221898330
[91] -1.450606907 -1.264043444 -0.257282348
                                          0.078120141 -0.902925645
     0.49980835 -0.596173525 -1.085097601 -0.773094391
                                                       0.693319162
```

Creating an R object

> x<-rnorm(100,0,1)

An R object contain the results

Print the R object

Summary statistics

```
> mean(x)
[1] 0.02149641 Sample mean
> var(x)
[1] 1.061159 Sample variance
```

Histogram of the sample

> hist(x)

Histogram of x

Histogram of the sample

```
> x<-rnorm(10000,0,1)
> mean(x)
[1] -0.01259969
> var(x)
[1] 0.9871957
> hist(x,nclass=50)
```


The normal distribution: location

$$X \sim N(\mu, \sigma^2)$$

The normal distribution: variability

$$X \sim N(\mu, \sigma^2)$$

- > x1<-rnorm(10000,0,1)</pre>
- > x2<-rnorm(10000,0,2)</pre>
- > par(mfrow=c(2,1))
- > hist(x1,nclass=50,xlim=c(-6,6))
- > hist(x2,nclass=100,xlim=c(-6,6))

The cars Data set in R

- 1. Write **cars** in the script window.
- 2. Submit

> cars

speed	dist	
4	2	
4	10	
7	4	
7	22	
8	16	
9	10	
•		
•		
24	93	
24	120	
25	85	
	4 4 7 7 8 9 • • • • 24 24	4 10 7 4 7 22 8 16 9 10 24 93 24 120

- > help(cars)
- >

Speed and Stopping Distances of Cars Description

The data give the speed of cars and the distances taken to stop. Note that the data were recorded in the 1920s.

```
[,1] speed numeric Speed (mph)[,2] dist numeric Stopping distance (ft)
```

The cars Data set in R: the \$ sign

```
> speed
Error: object 'speed' not found
> 
> cars$speed
[1] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
[26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25
>
```

The cars Data set in R: creating a new object

> cars[,1]

[1] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 25

> x=cars[,1]

> print(x)

[1] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 25

>

Basic plot and descriptive statistics

- What is the average speed of the cars?
- What is the variance of the cars' speed?
- What is the min. (max.) speed?
- What is the association between speed and stopping distance?

Discussion

- R Objects: data frame.
- R functions.
- \$.

Practical session 1

- The airquality is a dataset available in R.
- How many variables there are in the data?
- Define an R object which contain the information about the wind speed.
- Calculate the mean, and variance for the wind speed.

Two-sample t-test

The sleep data in R

> help(sleep)

Data which show the effect of two soporific drugs (increase in hours of sleep compared to control) on 10 patients.

extra	numeric	increase in hours of sleep
group	factor	drug given
ID	factor	patient ID

>	sleep		
	extra	group	ID
1	0.7	1	1
2	-1.6	1	2
3	-0.2	1	3
4	-1.2	1	4
5	-0.1	1	5
	•		•
14	0.1	2	4
15	-0.1	2	5
16	4.4	2	6
17	5.5	2	7
18	1.6	2	8
19	4.6	2	9
20	3.4	2	10

Two samples t-test

- > extra=sleep\$extra
- > group=sleep\$group
- > boxplot(split(extra,group))

The aim of the analysis:

Test for a difference between the two soporific drugs

Two samples t-test

```
> t.test(extra~group,var.equal=TRUE)
         Two Sample t-test
data: extra by group
t = -1.8608, df = 18, p-value = 0.07919
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
 -3.363874 0.203874
                                      H_0: \mu_1 = \mu_2
H_1: \mu_1 \neq \mu_2
sample estimates:
mean in group 1 mean in group 2
            0.75
                              2.33
```

Two samples t-test

> t.test(extra~group,var.equal=TRUE)

R object for the output

```
> summary(t.obj)
            Length Class
                           Mode
statistic
                    -none-
                           numeric
parameter
                    -none- numeric
p.value
                    -none- numeric
conf.int
                    -none- numeric
estimate
                    -none- numeric
null.value
                    -none- numeric
alternative
                    -none- character
method
                    -none- character
data.name
                    -none- character
```

> t.obj=t.test(extra~group,var.equal=TRUE)

R object for the output

```
> print(t.obj)
        Two Sample t-test
data: extra by group
t = -1.8608, df = 18, p-value = 0.07919
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
 -3.363874 0.203874
sample estimates:
mean in group 1 mean in group 2
           0.75
                            2.33
> t.obj$p.value
[1 \bigcirc 0.07918671
> t.obj$statistic
 1.860813
```

Discussion

- R Objects: output of the analysis.
- R functions: t.test
- \$.

Practical session 2

- The ToothGrowth is a dataset available in R.
- Use help(ToothGrowth) for more details.
- The response variable is the Tooth length.
- Test if the Supplement type has an effect on the tooth length.

t.test(response ~ group, data = ...)

Basic plots

The faithful data in R

> help(faithful)

Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA.

> Faithful

	eruptions	waiting
1	3.600	79
2	1.800	54
3	3.333	74
4	2.283	62
5	4.533	85
6	2.883	55
7	4.700	88
8	3.600	85
9	1.950	51

The faithful data in R

```
> faithful$eruption
  [1] 3.600 1.800 3.333 2.283 4.533 2.883 4.700 3.600 1.950
4.350\ 1.833\ 3.917_{\top \top \top \top}. 4.750\ 4.117\ 2.150\ 4.417\ 1.817\ 4.467
> mean(faithful$eruption)
[1] 3.487783
aithful$eruption
> mean(x)
[1] 3.487783
> median(x)
[1] 4
> range(x)
[1] 1.6 5.1
> min(x)
[1] 1.6
> max(x)
[1] 5.1
```

Basic plot

> hist(faithful\$waiting)

Basic plot

```
>hist(faithful$eruptions,
  main="eruptions time",
  col=2)
```



```
>hist(faithful$eruptions,
  main="eruptions time",
  col=3,
  xlab="time of eruptions")
```


Basic plot

- > mfrow=c(1,2))
- > hist(faithful\$eruptions,main="eruptions time",col=2)
- > hist(faithful\$waiting,main="waiting time",col=3,xlab="waiting time")

Practical session 3

- Use the ToothGrowth data.
- Produce an histogram for the tooth length with the following structure.

Chapter 1 Basic programming Objects in R

Simple objects

Vectors

```
> x<-c("A","A","A","B","B","B","B")
> x
[1] "A" "A" "A" "B" "B" "B" "B"
```

```
> y<-c(10,11,9,15,3,5,7,2)
> y
[1] 10 11 9 15 3 5 7 2
```

Index vectors

```
y[x=="A"]
```

All the elements in y for which x=A

```
> ya<-y[x=="A"]
> ya
[1] 10 11 9 15
```

```
> yb<-y[x=="B"]
> yb
[1] 3 5 7 2
```

Data frames

A data structure which contains more than 1 object.

Objects can be numeric objects and character objects

```
> z<-data.frame(x,y)</pre>
  x y
1 A 10
2 A 11
3 A 9
4 A 15
5 B 3
6 B 5
7 B 7
8 B
```

The \$

The object x in z

```
> z$x
[1] A A A A B B B B
Levels: A B
> z$y
[1] 10 11 9 15 3 5 7 2
```

Matrix

Rows and columns

```
X_{ij} = x[i,j]
```

The matrix reloaded

```
> matw+10
      [,1] [,2] [,3]
[1,]      11      12      210
[2,]      12      13      14
[3,]      50      19 6010
```

```
      [1]
      1
      3 6000
```

The inverse matrix

```
> solve(matw)

[,1] [,2] [,3]

[1,] -0.687854189 0.39056517 0.0226680962

[2,] 0.453361924 0.07658141 -0.0151631184

[3,] 0.003905652 -0.00271864 0.0000382907
```

Example: data frame

Example: an R object of a data frame

Practical session 4

Create the folowig data frame:

```
A 100
B 99
C 105
D 35
E 0
F 250
```

Chapter 2 Reading external datasets

Read an external file

```
> spwh3<-read.table('c:\\projects\\wseda\\spwh3.txt',
header=FALSE,na.strings="NA", dec=".")
> dim(spwh3)
[1] 60  4
> spwh3<-data.frame(spwh3)
> names(spwh3)<-c("id","y","x1","gender")</pre>
```

The data

>	spwł	າ3		
	id	У	x 1	gender
1	1	10.111368	1	0
2	2	9.948930	1	0
3	3	10.322560	1	0
4	4	10.241052	1	0
5	5	9.911427	1	0
6	6	9.357969	1	0
7	7	10.649141	1	0
8	8	10.150197	1	0
9	9	9.403218	1	0
10	10	8.027072	1	0
11	11	20.020056	1	1

The sleep data in R

> ;	sıeep		
	extra	group	ID
1	0.7	1	1
2	-1.6	1	2
3	-0.2	1	3
4	-1.2	1	4
5	-0.1	1	5
			•
14	0.1	2	4
15	-0.1	2	5
16	4.4	2	6
17	5.5	2	7
18	1.6	2	8
19	4.6	2	9
20	3.4	2	10

Two samples t-test

```
> y1<-spwh3$y[spwh3$gender==0]</pre>
> y2<-spwh3$y[spwh3$gender==1]</pre>
> t.test(y1,y2)
        Welch Two Sample t-test
data: y1 and y2
t = -9.1428, df = 58, p-value = 7.715e-13
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
 -12.229889 -7.836547
sample estimates:
mean of x mean of y
 14.99933 25.03254
```

Two samples t-test

- > y1<-rnorm(100,0,1)
- > y2<-rnorm(57,2,1)
- > boxplot(y1,y2)

Two samples t-test

```
> t.test(y1,y2)
        Welch Two Sample t-test
data: y1 and y2
t = -14.2203, df = 126.176, p-value < 2.2e-16
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
 -2.290641 -1.730980
sample estimates:
mean of x mean of y
-0.0063866 2.0044240
```

R object for the output

```
> t.t<-t.test(y1,y2)
> summary(t.t)
            Length Class
                           Mode
statistic
                           numeric
                    -none-
parameter
                    -none- numeric
p.value
                    -none- numeric
conf.int
                    -none- numeric
estimate
                    -none- numeric
null.value
                    -none- numeric
alternative
                    -none- character
method
                    -none- character
data.name
                    -none- character
```

R object for the output

> t.t

Welch Two Sample t-test data: y1 and y2 t = -14.2203, df = 126.176, p-value < 2.2e-16 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -2.290641 -1.730980 sample estimates: mean of x mean of y -0.0063866 2.0044240 > t.t\$p.value [1] 5.570543e-28 > t.t\$statistic + -14.22034

Practical session 5

Create the following text file:

```
A 100
B 99
C 105
D 35
E 0
F 250
```

and read it to R as an external file

Chapter 3 Basic plots functions

Descriptive statistics in R

```
> z<-rnorm(100,3,1) 		 Generate random

> mean(z)

[1] 2.979706

> median(z)

[1] 2.958521

> max(z)

[1] 5.849559

> min(z)

[1] 0.877219
```

Histogram

> hist(z)

Plot options

> hist(z,col=4)

> hist(z,col=4,nclass=25)

Controlling the graphical output: the par() function

Type of points: the pch() function

```
> y<-2*x+20
> plot(x,y)
> plot(x,y,pch=3)
```


Type of points: the pch() function

>plot(x,y,pch="+")

Colors: the option col

```
> plot(x,y,pch=" ")
> points(x,y,col=4,pch=3)
```


Size: the option cex

```
> plot(x,y,pch=" ")
> points(x,y,col=6,pch=3,cex=3)
```


Practical session 6

Produce the following figures in R (use the cars data)

Practical session 7

- Use the airquality in R.
- Produce the following plots:
 - Histogram for the ozone level
 - Boxplot for the ozone level.
- What is the mean and the median of the ozone level.
- What is the minimum and maximum ozone levels.

Chapter 4 Programming I: A for loop

A for loop

```
for(i in 1:B)
{
```

Here you ask from R to do the same thing B times.....

Generate 1000 samples from N(2,1)

```
> x<-rnorm(10,2,1)
> x

[1] 2.1531462 2.4426189 0.8080064 1.4051178 1.9392356 0.6466574
[7] 0.7519918 -0.1097367 2.3338487 3.7598694
> x<-rnorm(10,2,1)
> x

[1] 2.9694328 1.1065506 1.5612572 0.3904008 1.6890423 3.7319756 0.9026146
[8] 1.7763012 2.4356002 0.9643299
```

Generate 1000 samples from N(2,1)

```
> mx<-c(1:1000)
> for(i in 1:1000)
+ {
+ x<-rnorm(10,2,1)
+ mx[i]<-mean(x)
+ }
> hist(mx,nclass=25)
```


- Generate 1000 samples (n=50) from U(0,1).
- Calculate the minimum of each sample.
- Estimate the density of the minimum.

- Generate 1000 samples (n=50) from U(0,1).
- Calculate the minimum of each sample.
- Estimate the density of the minimum.

- Generate 1000 samples (n=50) from U(0,1).
- Calculate the minimum of each sample.

```
> x<-runif(500,0,1)</pre>
  hist(x)
 min(x)
[1] 0.004631357
```


Estimate the density of the minimum.

```
for(i in 1:B)
{
Generate 1000 samples (n=50) from U(0,1).
Calculate the minimum of each sample.
}
```

Estimate the density of the minimum.

```
for(i in 1:B)
{
Generate 1000 samples (n=50) from U(0,1).
Calculate the minimum of each sample.
}

> mx<-c(1:1000)
> for(i in 1:1000)
+ {
+ x<-runif(500,0,1)
+ mx[i]<-min(x)
+ }</pre>
```

Estimate the density of the minimum.

```
> mx<-c(1:1000)
> for(i in 1:1000)
+ {
+ x<-runif(500,0,1)
+ mx[i]<-min(x)
+ }
>hist(mx)
```

Histogram of mx

Practical session 8

Make a for loop that print your name 500 times.

Chapter 5

Statistical modeling 1: Simple linear regression

Reading the cars data

```
> carsdat<-read.table('c:\\projects\\wseda\\Rintro\\cars.txt',
    header=FALSE,na.strings="NA", dec=".")
> dim(carsdat)
[1] 50 3
```

The data is available in R, use, help(cars)

The cars data

> help(cars)

```
package:datasets
                                                       R Documentation
cars
Speed and Stopping Distances of Cars
Description:
    The data give the speed of cars and the distances taken to stop.
    Note that the data were recorded in the 1920s.
Usage:
     cars
Format:
    A data frame with 50 observations on 2 variables.
            speed numeric Speed (mph)
       [,1]
            dist numeric Stopping distance (ft)
       [,2]
Source:
    Ezekiel, M. (1930) Methods of Correlation Analysis . Wiley.
```

The cars data

```
> x<-carsdat[,2]</pre>
> y<-carsdat[,3]</pre>
```


The Im() function

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

General call of the lm() function

lm(response~predictor)

Data and predicted model

```
120
> fit.1<-lm(y~x)
                                100
> plot(x,y)
> lines(x,fit.1$fit)
                                80
                                9
                                40
                                20
                                             10
                                                     15
                                                              20
                                                                      25
                                     5
```

Х

The "output"

ANOVA table for the model

```
Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 21186 21185.5 89.567 1.490e-12

Residuals 48 11354 236.5

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*'

0.05 '.' 0.1 ' ' 1
```

```
> summary(fit.1)
Call:
lm(formula = y \sim x)
Residuals:
    Min
             1Q Median
                            3Q
                                   Max
-29.069 -9.525 -2.272 9.215 43.201
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                        6.7584 -2.601
(Intercept) -17.5791
                                         0.0123 *
                        0.4155 9.464 1.49e-12 ***
Х
             3.9324
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
    0.1 ' ' 1
Residual standard error: 15.38 on 48 degrees of
Multiple R-squared: 0.6511, Adjusted R-squared:
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.490e-12
```

Graphical output

```
> par(mfrow=c(2,2))
> plot(y,fit.1$fit,xlab="observed",
   ylab="predicted")
> abline(0,1)
```

- > title("observed versus predicted values")
- > hist(fit.1\$resid,col=0,main=" ")
- > title("histogram for residuals")
- > qqnorm(fit.1\$resid)

Default plots

> plot(fit.1)

Practical session 9

- The airquality is a dataset available in R.
- Fit a simple linear regression model in which the ozone level is the response and the wind speed is the predictor.
- Test the hypothesis that the slope is zero.
- Use the default plots of an Im() object to produce the diagnostic plot.

Chapter 6

Statistical modeling 2: One way ANOVA

Examples:

The chick data

The cash data

Example 1: The chick dataset in R

chickwts feed weight 179 horsebean 2 160 horsebean 3 136 horsebean 227 horsebean 16 203 linseed 17 linseed 148 18 169 linseed 23 243 soybean 24 230 soybean

248

soybean

25

> help(chickwts)

An experiment was conducted to measure the effectiveness of various feed supplements on the growth rate of chickens.

Boxplot by group

```
> w<-chickwts[,1]
> feed<-chickwts[,2]
> boxplot(split(w,feed))
```


Mean by group

> tapply(w,feed,mean)

```
casein horsebean linseed meatmeal soybean sunflower 323.5833 160.2000 218.7500 276.9091 246.4286 328.9167
```

One-Way ANOVA model: model formulation

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

Parameters: fixed but unknown and needed to be estimated

Model assumptions are:

- 1. The random error is nornal distributed.
- 2. The varaince is constant across the factor levels.

Random error, assumed to follow normal distribution with constant varaince.

$$\varepsilon_{ij} \sim N(0,\sigma^2)$$

The Null Hypothesis: No diet effect

 For a model in which the factor has 5 (the diet group) levels we wish to test the null hypothesis:

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$$

- This means that we want to test if the means across all factor levels are equal.
- Mind that: we test if the parameters (μ_j) are equal, not is the sample means (\overline{Y}_i) .

Test Statistic

Within group sum of squares

$$SSW = \sum_{i=1}^{I} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i.})^2$$

Between group sum of squares

$$SSB = \sum_{i=1}^{I} n_i (\overline{Y}_{i.} - \overline{Y}..)^2$$

$$F = \frac{SSB/(I-1)}{SSW/(N-I)} = \frac{MSB}{MSW}$$

The test statistic, F, is the ratio between the mean of the between sum of squares (SSB) and the mean of the within sum of squares.

The aov() function

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

aov(response ~ factor)

- > a.model=aov(w~feed)
 > summary(a.model)

Test Statistic

```
Between group sum of squares/dgree of fredom

Within group sum of squares/dgree of fredom

a.model=aov(w~feed)

summary(a.model)

Df Sum Sq Mean Sq F value Pr(>F)

feed 5 231129 46226 15.37 5.94e-10 ***

Residuals 65 195556 3009

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Diagnostic plot

```
> par(mfrow=c(2,2))
> qqnorm(a.model$resid)
> hist(a.model$resid,col=0)
> boxplot(split(a.model$resid,feed))
```


Histogram of a.model\$resid

One-Way ANOVA model: alternative model formulation

Mean of the reference group

 $\sum_{i=1}^{I} \alpha_i = 0$

Random error, assumed to follow normal distribution with constant varaince.

$\varepsilon_{ij} \sim N(0,\sigma^2)$

Model assumptions are:

- 1. The random error is normal distributed.
- 2. The varaince is constant across the factor levels.

Estimation of the model in R

$$Y_{ij} = \mu_0 + \alpha_i + \varepsilon_{ij}$$

lm(response~predictor)

> lm.fit<-lm(w~feed)</pre>

Estimation of the model in R

```
> summary(lm.fit)
Call:
lm(formula = w \sim feed)
Residuals:
                  Median
    Min
             1Q
                              3Q
                                      Max
-123.909 -34.413 1.571
                           38.170 103.091
Coefficients:
                                                    323.583: the mean of
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 323.583
                         15.834 20.436 < 2e-16 ***
                                                    the casein
feedhorsebean -163.383
                         23.485 -6.957 2.07e-09 ***
feedlinseed -104.833
                         22.393 -4.682 1.49e-05 ***
                                                    323.583-163.383=
feedmeatmeal -46.674
                         22.896 -2.039 0.045567 *
                                                    160.2000, the mean of
feedsoybean -77.155 21.578 -3.576 0.000665 ***
                                                    the horsebeen group
feedsunflower 5.333
                         22.393 0.238 0.812495
              0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 54.85 on 65 degrees of freedom
```

Multiple R-squared: 0.5417, Adjusted R-squared: 0.5064

F-statistic: 15.36 on 5 and 65 DF, p-value: 5.936e-10

104

The AVOVA table

```
Residual standard error: 54.85 on 65 degrees of freedom
Multiple R-squared: 0.5417, Adjusted R-squared: 0.5064
F-statistic: 15.36 on 5 and 65 DF, p-value: 5.936e-10
> anova(lm.fit)
                                              54.85 = \sqrt{3009}
Analysis of Variance Table
Response: w
          Df Sum Sq Mean Sq F value
                                       Pr(>F)
                      46226 15,365 5.936e-10 ***
feed
           5 231129
                      (3009
Residuals 65 195556
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Example 2: Reading the cash data

```
> cashdat<-
    read.table('c:\\projects\\wseda\\Rintro\\cashdat.txt',
    header=FALSE,na.strings="NA", dec=".")
> dim(cashdat)
[1] 36  2
> names(cashdat)<-c("cash","group")
> attach(cashdat)
```

The data

```
> print(cashdat)
  cash group
    23 Young
         Young
    25
    21 Young
11
       Young
12
    21
13
    28
        Middle
        Middle
24
    29
    23 Elderly
25
    20 Elderly
26
    22 Elderly
35
    21 Elderly
36
```

Histograms by group

```
> par(mfrow=c(2,2))
> hist(cash[group=="Elderly"],col=0)
> hist(cash[group=="Middle"],col=0)
```

> hist(cash[group=="Young"],col=0)

Histogram of cash[group == "Elderly"]

cash[group == "Elderly"]

qq normal plots by group

```
> par(mfrow=c(2,2))
> qqnorm(cash[group=="Elderly"])
> qqnorm(cash[group=="Middle"])
> qqnorm(cash[group=="Young"])
```


Boxplot and dotplot

```
> par(mfrow=c(1,2))
> boxplot(split(cash,group))

> tapply(cash,group,mean)
Elderly Middle Young
21.41667 27.75000 21.66667

> m.cash<-c(21.41667,27.75,20.91667)
> names1<-c("Elderly","Middle","Young")
> plot(c(1:3),m.cash)
```


One-Way ANOVA model: model formulation

Parameters: fixed but unknown and needed to be estimated

Model assumptions are:

- 1. The random error is normal distributed.
- 2. The varaince is constant across the factor levels.

Random error, assumed to follow normal distribution with constant varaince.

$$\varepsilon_{ij} \sim N(0,\sigma^2)$$

The Null Hypothesis: No treatment effect

 For a model in which the factor has three levels we wish to test the null hypothesis:

$$H_0: \mu_1 = \mu_2 = \mu_3$$

- This means that we want to test if the means across all factor levels are equal.
- Mind that: we test if the parameters (μ_j) are equal, not is the sample means (\overline{Y}_i) .

Test Statistic

Within group sum of squares

$$SSW = \sum_{i=1}^{I} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i.})^2$$

Between group sum of squares

$$SSB = \sum_{i=1}^{I} n_i \left(\overline{Y}_{i.} - \overline{Y}.. \right)^2$$

$$F = \frac{SSB/(I-1)}{SSW/(N-I)} = \frac{MSB}{MSW}$$

The test statistic, F, is the ratio between the mean of the between sum of squares (SSB) and the mean of the within sum of squares.

The aov() function

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

aov(response ~ factor)

>Fit.aov<-aov(cash~group)
>summary(Fit.aov)

Test Statistic

```
Between group sum of squares/dgree of fredom

Within group sum of squares/dgree of fredom

> summary(Fit.aov)

Df Sum Sq Mean Sq F value

Pr(>F)

group

2 308.722 154.361 67.172 2.322e-12 ***

Residuals

33 75.833 2.298

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Diagnostic plot

```
> par(mfrow=c(2,2))
> qqnorm(Fit.aov$resid)
> hist(Fit.aov$resid,col=0)
> boxplot(split(Fit.aov$resid,group))
```


Practical session 10 (a)

Create the following data frame in R

```
treatment
   10
3 13
4 15
5 10
6
8
9
   10
10
  15
11
   13
12
```

Use one-way ANOVA model to test the null hypothesis of no treatment effect

Practical session 10 (b)

Create the following data frame in R

```
treatment
   10
3 13
4 15
5 10
6
8
9
   10
10
  15
11
   13
12
```

 Use one-way ANOVA model to test the null hypothesis of no treatment effect

Chapter 7

Statistical modeling 3: Logistic regression

Examples:

Serological data

Example: Serological data of malaria

- In this example the information about each subject in the experiment is the disease status (infected or not by malaria) and the age group of the subject.
- The variables are: the sample size, the number of seropositive at each sample size (=the number of infected subjects) and the age.

Example: serological data

Age group	Mid age	Sero positive	Sample size
	1.5	8	123
	4.0	6	132
	7.5	18	182
	12.5	14	140
	17.5	20	138
	25.0	39	161
	35.0	19	133
	47.0	25	92
	60.0	44	74

Reading the data

```
> sero<-read.table('c:\\projects\\wseda\\Rintro\\sero1.txt',</pre>
header=FALSE, na.strings="NA", dec=".")
> print(sero)
 V1 V2 V3 V4
1 1 1.5 123 8
2 2 4.0 132 6
3 3 7.5 182 18
4 4 12.5 140 14
5 5 17.5 138 20
6 6 25.0 161 39
7 7 35.0 133 19
8 8 47.0 92 25
  9 60.0 74 44
```

Example: serological data

Mid age	Sero positive	Sample size
1.5	8	123
4.0	6	132
7.5	18	182
12.5	14	140
17.5	20	138
25.0	39	161
35.0	19	133
47.0	25	92
60.0	44	74

$$Z_i = \begin{cases} 1 & sero & pos. \\ 0 & sero & neg. \end{cases}$$

$$Y_i = \sum Z_i$$

Number of sero-positive at each age group

$$Y_i \sim B(n_i, P_i)$$

n_i: sample size at each age group

P_i is the probability to be infected (the prevalence). We use logistic regression in order to model the prevalence as a function of age

$$\log it(P_i) = \alpha + \beta \times age$$

The probability of infection

$$P = \frac{e^{\alpha + \beta \, age}}{1 + e^{\alpha + \beta \, age}}$$

If β >0 then there is a positive association between the probability and age. This means that the probability of infection increase with age.

If β <0 then there is a negative association between the probability and age. This means that the probability of infection decrease with age.

The glm() function

$$Y_i \sim B(n_i, P_i)$$
 $\log it(P_i) = \alpha + \beta \times age$ glm(pos/ntot ~ age, family=binomial(link = "logit"))

The glm() function

```
> fit.glm<- glm(pos/ntot ~ age, family=binomial(link = "logit"))</pre>
> summarv(fit.glm)
Call:
glm(formula = pos/ntot ~ age, family = binomial(link = "logit"))
Deviance Residuals:
               1Q Median
                                   3Q
    Min
                                           Max
-0.24364 -0.09726 0.01479 0.06756 0.19568
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.79677 1.79832 -1.555
                                         0.120
            0.04718 0.04668 1.011 0.312
age
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1.31775 on 8 degrees of freedom
Residual deviance: 0.18094 on 7 degrees of freedom
AIC: 8.062
Number of Fisher Scoring iterations: 5
```

Data and predicted values

Chapter 8

Programming in R II: User functions

Generate s random sample pf size 1000 from N(0,3)

A user function: general form

```
function name<-function(x)
{</pre>
```

R commands (what do you what that the function will do for you.....)

}

A user function: example

```
fch20<-function(x)
mean.x < -mean(x)
med.x < -median(x)
q.x<-quantile(x)
hist(x)
return(mean.x,med.x,q.x)
```

A user function: output

```
> z<-runif(100,0,1)</pre>
> fch20(z)
$mean.x
[1] 0.4947539
$med.x
[1] 0.5291341
$q. x
        0%
                   25%
   50%
                          100%
               75%
0.01240262 0.24212404
   0.52913405 0.72482479
   0.98413912
Warning message:
In return(mean.x, med.x, q.x) :
   multi-àrgument returns aré
   deprecated
>
```


Practical session 11

 Write a function which receive a numerical vector as an input and calculate the mean of the vector.

Chapter 9:

Statistical modeling: Two-way ANOVA

Model formulation

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \varepsilon_{ijk}$$

- μ Overall mean
- α_i Main effect of factor A
- β_j Main effect of factor B
- $\alpha \beta_{ij}$ Interaction effect
- \mathcal{E}_{ijk} Random error

Example 1: Reading the data

```
> spwh3<-read.table('c:\\projects\\wseda\\spwh3.txt',
  header=FALSE,na.strings="NA", dec=".")
> names(spwh3)<-c("id","y","x1","gender")</pre>
```

Example 1: The data

Both x1 and gender are numerical objects !!!!

For an ANOVA model the independent variables are suppose to be factors.

Example 2: The data

```
y f1 f2
   10 A1 B1
  11 A1 B1
3
   12 A1 B1
4 9 A2 B1
5 7 A2 B1
6 6 A2 B1
7 11 A1 B2
  13 A1 B2
8
9
   14 A1 B2
10 7 A2 B2
11 5 A2 B2
12 8 A2 B2
```

Two factors: f1 and f2

Three observations per combination.

Which null hypotheses we test?

$$H_0: \alpha_1 = \alpha_2$$
 No treatment effect of factor A

$$H_0: \beta_1 = \beta_2$$
 No treatment effect of factor B

No interaction effects

$$H_0: \alpha\beta_{11} = \alpha\beta_{12} = \alpha\beta_{21} = \alpha\beta_{22}$$

Example 1: A model without interaction

Example 1: A model with interaction

```
fit.2<-aov(y~as.factor(x1)+as.factor(gender)
+as.factor(x1)*as.factor(gender))
```

```
> anova(fit.2)
Analysis of Variance Table
Response: y
                               Df Sum Sq Mean Sq F value Pr(>F)
                                2 1034.81 517.40 2171.959 <2e-16
as.factor(x1)
as.factor(gender)
                                1 1509.98 1509.98 6338.599 <2e-16 ***
as.factor(x1):as.factor(gender)
                                    0.04
                                            0.02
                                                    0.091 0.9131
Residuals
                               54 12.86 0.24
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
>
```

Example 1: Testing model 1 versus model 2

> anova(fit.1,fit.2)

```
Analysis of Variance Table
Model 1: y ~ as.factor(x1) + as.factor(gender)
Model 2: y ~ as.factor(x1) + as.factor(gender) + as.factor(x1) * as.factor(gender)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 56 12.9073
2 54 12.8639 2 0.0434 0.091 0.9131
```

F-test for the interaction

Example 2: A model without interaction

```
> fit.1<-aov(y~f1+f2)</pre>
> anova(fit.1)
Analysis of Variance Table
Response: y
         Df Sum Sq Mean Sq F value Pr(>F)
f1
         1 70.083 70.083 31.4066 0.0003325 ***
         1 0.750 0.750 0.3361 0.5763122
f2
Residuals 9 20.083 2.231
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
```

Example 2: A model with interaction

```
> fit.2 < -aov(v \sim f1 + f2 + f1 * f2)
> anova(fit.2)
Analysis of Variance Table
Response: y
          Df Sum Sq Mean Sq F value
                                        Pr(>F)
f1
           1 70.083 70.083 35.0417 0.0003539
f2
           1 0.750 0.750 0.3750 0.5572922
f1:f2
           1 4.083 4.083 2.0417 0.1909016
Residuals 8 16.000 2.000
                               '**' 0.01 '*' 0.05 '.' 0.1 ' '
                0 '***' 0.001
Signif. codes:
```

Example 2: Testing model 1 versus model 2

> anova(fit.1,fit.2)

```
Analysis of Variance Table

Model 1: y ~ f1 + f2

Model 2: y ~ f1 + f2 + f1 * f2

Res.Df RSS Df Sum of Sq F Pr(>F)

1 9 20.083
2 8 16.000 1 4.0833 2.0417 0.1909
```

F-test for the interaction

Example 2: means by factor level

```
> tapply(y,f1,mean)
          A2
11.83333 12.00000
                 Factor 1
> tapply(y,f2,mean)
     B1
            B2
9.166667 14.666667
                 Factor 2
> ind<-list(f1,f2)</pre>
> ind
[[1]]
[[2]]
> m<-tapply(y,ind,mean)</pre>
> m
       B1
             B2
                   Cell means
  11.000000 12.66667
   7.333333 16.66667
```

Interaction plot: Example 2

Cell means

B1 B2 A1 11.000000 12.666667 A2 7.333333 6.666667

Example 3: The data

```
y f1 f2
   10 A1 B1
  11 A1 B1
   12 A1 B1
4 9 A2 B1
5 7 A2 B1
6 6 A2 B1
 11 A1 B2
  13 A1 B2
9
   14 A1 B2
  17 A2 B2
11 15 A2 B2
12 18 A2 B2
```

Two factors: f1 and f2

Three observations per combination.

Example 3: A model with interaction

```
> fit.2 < -aov(v \sim f1 + f2 + f1 * f2)
> anova(fit.2)
Analysis of Variance Table
Response: y
          Df Sum Sq Mean Sq F value
                                        Pr(>F)
f1
              0.083 0.083 0.0417 0.8433536
f2
           1 90.750 90.750 45.3750 0.0001471
f1:f2 1 44.083 44.083 22.0417 0.0015517
Residuals 8 16.000 2.000
                               '**' 0.01 '*' 0.05 '.' 0.1 ' '
Signif. codes:
                        0.001
```

Example 3: means by factor level

```
> tapply(y,f1,mean)
          A2
11.83333 12.00000
                 Factor 1
> tapply(y,f2,mean)
     B1
            B2
9.166667 14.666667
                 Factor 2
> ind<-list(f1,f2)</pre>
> ind
[[1]]
[[2]]
> m<-tapply(y,ind,mean)</pre>
> m
       B1
             B2
                   Cell means
  11.000000 12.66667
   7.333333 16.66667
```

Interaction plot: Example 3

Cell means

B1 B2 A1 11.000000 12.66667 A2 7.333333 16.66667

Chapter 10 Statistical modeling: More about two-way ANOVA

Reading the data

```
> spwh3<-read.table('c:\\projects\\wseda\\spwh3.txt',
header=FALSE,na.strings="NA", dec=".")
> names(spwh3)<-c("id","y","x1","gender")
> attach(spwh3)
```

Two-way ANOVA model

```
> fit.2<-aov(y~as.factor(x1)+as.factor(gender)+as.factor(x1)*as.factor(gender))</pre>
> anova(fit.2)
Analysis of Variance Table
Response: y
                               Df Sum Sq Mean Sq F value Pr(>F)
as.factor(x1)
                                2 1034.81 517.40 2171.959 <2e-16 ***
as.factor(gender)
                                1 1509.98 1509.98 6338.599 <2e-16 ***
as.factor(x1):as.factor(gender)
                                    0.04
                                            0.02
                                                    0.091 0.9131
Residuals
                               54 12.86 0.24
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '1
```

Stepwise procedure

```
> slm1 <- step(fit.2)</pre>
Start: AIC=-80.4
y \sim as.factor(x1) + as.factor(gender) + as.factor(x1) * as.factor(gender)
                                 Df Sum of Sq RSS
                                                         AIC
                                       0.043 12.907 -84.193
- as.factor(x1):as.factor(gender) 2
                                              12.864 -80.395
<none>
Step: AIC=-84.19
v ~ as.factor(x1) + as.factor(gender)
                   Df Sum of Sq
                                  RSS
                                           AIC
                                  12.91 -84.19
<none>
- as.factor(x1) 2 1034.81 1047.72 175.60
- as.factor(gender) 1 1509.98 1522.89 200.04
```

Stepwise procedure

Chapter 11 Statistical modeling: More about Linear regression

Reading the data

```
> spwh2<-read.table('c:\\projects\\wseda\\spwh2.txt',</pre>
header=FALSE,
                              ,na.strings="NA", dec=".")
+
> dim(spwh2)
[1] 100 5
> names(spwh2)<-c("id","y","x1","x2","x3")</pre>
> attach(spwh2)
        The following object(s) are masked from spwh2 (
position 3 ):
         id x1 x2 x3 y
```

Fitting two models

Testing model 1 versus model 2

- > par(mfrow=c(2,2))
 > plot(fit.2)

Single terms deletions

```
> drop1(fit.2, test="F")
Single term deletions
Model:
y \sim x1 + x2 + x3
      Df Sum of Sq RSS AIC F value Pr(F)
                    20.8 -149.1
<none>
             76.6 97.4 3.4 354.21 < 2.2e-16
x1
       1 7865.3 7886.1 442.8 36347.01 < 2.2e-16 ***
x2
           566.0 586.7 182.9 2615.44 < 2.2e-16 ***
x3
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
```

AIC and likelihood

```
> AIC(fit.2)
[1] 136.6403
> logLik(fit.2)
'log Lik.' -63.32017 (df=5)
```

Chapter 12

Application: the for loop

The bootstrap estimate of the standard error for the mean

The observed data

A sample of 10 observations:

```
> x <- c(11.201, 10.035, 11.118, 9.055, 9.434, 9.663, 10.403, 11.662, 9.285,8.84)
```

> mean(x)

[1] 10.0696

We wish to estimate the standard error of the sample mean

$$S.E(\bar{x}) = \frac{\sigma_F}{\sqrt{n}}$$

Parametric and nonparametric bootstrap

nonparametric bootstrap

$$F \rightarrow (x_1, x_2, ..., x_n)$$

We resample from the empirical distribution parametric bootstrap

We assume a parametric model for F

$$F(\theta)$$

We resample from

$$F(\hat{\theta})$$

$$S.E.(\hat{\mu}) = \left\{ \frac{1}{B-1} \sum_{b=1}^{B} (\hat{\mu}_b^* - \hat{\mu}^*)^2 \right\}^{0.5}$$

R code

```
> var(mx)
[1] 0.09357364
```

The estimated standard error 0.093

```
n<-length(x)
B<-1000
mx<-c(1:B)
for(i in 1:B){
  cat(i)
boot.i<-sample(x,n,replace=T)
mx[i]<-mean(boot.i)
}</pre>
```


Parametric bootstrap

We assume a parametric model for F

We estimate F by

$$F = N(\mu, \sigma^2) \qquad \hat{F} = N(\hat{\mu}, \hat{\sigma}^2)$$

We replace the unknown parameters in F with their plug-in estimates

Parametric bootstrap

$$S.E.(\hat{\mu}) = \left\{ \frac{1}{B+1} \sum_{b=1}^{B} (\hat{\mu}_b^* - \hat{\mu}^*)^2 \right\}^{0.5}$$

R code

```
> var(mx)
[1] 0.1007613
```

Bootstrap estimate for the standard error for the mean

```
B<-1000
MLx<-mean(x)
Varx<-var(x)
mx<-c(1:B)
for(i in 1:B){
  cat(i)
  boot.i<-rnorm(n,MLx,sqrt(Varx))
mx[i]<-mean(boot.i)
}</pre>
```

Parametric bootstrap

