Álgebra Linear Aula 4

Josefran de Oliveira Bastos

Universidade Federal do Ceará

A atividade deverá ser entregue em um prazo de no máximo 20 min após início da aula.

Lembrando que m_i é o i-ésimo dígito a partir da esquerda da sua matrícula.

Atividade 03

Considere a matriz a seguir

$$A = \left[\begin{array}{ccc} m_1 & 9 & 1 \\ m_3 & 1 & 9 \\ m_5 & 2 & 6 \end{array} \right]$$

- 1. Determine a transposta de A.
- 2. Determine o traço de A.
- 3. A matriz $\begin{bmatrix} m_1 & 9 \\ m_3 & 9 \end{bmatrix}$ é submatriz de A?
- 4. Se C é uma matriz de tamanho 3×2 , é possível realizar o produto AC? E quanto a CA?

A atividade deverá ser entregue em um prazo de no máximo 20 min após início da aula.

Atividade 03 - Gabarito

Considere a matriz a seguir

$$A = \left[\begin{array}{ccc} m_1 & 9 & 1 \\ m_3 & 1 & 9 \\ m_5 & 2 & 6 \end{array} \right]$$

1.
$$A^T = \begin{bmatrix} m_1 & m_3 & m_5 \\ 9 & 1 & 2 \\ 1 & 9 & 6 \end{bmatrix}$$
.

- 2. $Tr(A) = m_1 + 7$.
- 3. Não.
- 4. É possível SIM realizar AC. Por outro lado, devido incompatibilidade de tamanho, CA NÃO é possível.

1.
$$\alpha + \beta = \beta + \alpha$$
;

- 1. $\alpha + \beta = \beta + \alpha$;
- 2. $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$;

- 1. $\alpha + \beta = \beta + \alpha$;
- 2. $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$;
- 3. $\alpha\beta = \beta\alpha$;

- 1. $\alpha + \beta = \beta + \alpha$;
- 2. $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$;
- 3. $\alpha\beta = \beta\alpha$;
- 4. $(\alpha\beta)\gamma = \alpha(\beta\gamma)$;

- 1. $\alpha + \beta = \beta + \alpha$;
- 2. $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$;
- 3. $\alpha\beta = \beta\alpha$;
- 4. $(\alpha\beta)\gamma = \alpha(\beta\gamma)$;
- 5. $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$;

1.
$$A + B = B + A$$
;

- 1. A + B = B + A;
- 2. (A+B)+C=A+(B+C);

- 1. A + B = B + A;
- 2. (A+B)+C=A+(B+C);
- $3. \ A(BC) = (AB)C;$

- 1. A + B = B + A;
- 2. (A+B)+C=A+(B+C);
- 3. A(BC) = (AB)C;
- 4. A(B+C) = AB + AC;

- 1. A + B = B + A;
- 2. (A+B)+C=A+(B+C);
- 3. A(BC) = (AB)C;
- **4**. A(B+C) = AB + AC;
- 5. (B+C)A = BA + CA;

•
$$0 + \alpha = \alpha$$
;

•
$$0 + \alpha = \alpha$$
;

Enquanto nas matrizes...

•
$$0 + A = A$$

•
$$1 \cdot \alpha = \alpha$$
;

•
$$1 \cdot \alpha = \alpha$$
;

Enquanto nas matrizes...

•
$$\beta \cdot \alpha = \alpha \cdot \beta$$
;

•
$$\beta \cdot \alpha = \alpha \cdot \beta$$
;

Enquanto nas matrizes...Nem sempre é verdade.

• A matriz identidade I_n é uma matriz quadrada tal que $(I_n)_{ij}=0$ se $i\neq j$ e $(I_n)_{ii}=1$ para todo $i\in [n]$;

- A matriz identidade I_n é uma matriz quadrada tal que $(I_n)_{ij} = 0$ se $i \neq j$ e $(I_n)_{ii} = 1$ para todo $i \in [n]$;
- A matriz nula 0 de tamanho $m \times n$ é tal que toda entrada de 0 é 0.

- A matriz identidade I_n é uma matriz quadrada tal que $(I_n)_{ij}=0$ se $i\neq j$ e $(I_n)_{ii}=1$ para todo $i\in [n];$
- A matriz nula 0 de tamanho $m \times n$ é tal que toda entrada de 0 é 0.

Teorema (1.4.3)

Se R é a forma escalonada reduzida de uma matriz A de tamanho $n \times n$ então ou R tem uma linha de zeros ou $R = I_n$.

1.
$$A \pm 0 = 0 \pm A = A$$
;

- 1. $A \pm 0 = 0 \pm A = A$;
- 2. A A = A + (-A) = 0;

- 1. $A \pm 0 = 0 \pm A = A$;
- 2. A A = A + (-A) = 0;
- 3. 0A = 0;

- 1. $A \pm 0 = 0 \pm A = A$;
- 2. A A = A + (-A) = 0;
- 3. 0A = 0;
- 4. Se cA = 0 então ou c = 0 ou A = 0.

Sejam A e B matrizes tais que o produto AB possa ser efetuado. Se AB=0, é correto afirmar que ou A=0 ou B=0?

Sejam A e B matrizes tais que o produto AB possa ser efetuado. Se AB=0, é correto afirmar que ou A=0 ou B=0?

Resposta: Não.

Sejam A,B e C matrizes tais que os produtos AB e AC possam ser efetuados. Se AB = AC é correto afirmar que B = C?

Sejam A,B e C matrizes tais que os produtos AB e AC possam ser efetuados. Se AB=AC é correto afirmar que B=C?

Resposta: Não.

Uma matriz inversa de uma matriz quadrada A de tamanho $n\times n$ é uma matriz B tal que $AB=BA=I_n.$

Uma matriz inversa de uma matriz quadrada A de tamanho $n\times n$ é uma matriz B tal que $AB=BA=I_n.$

• Existência: Nem toda matriz é invertível.

Uma matriz inversa de uma matriz quadrada A de tamanho $n\times n$ é uma matriz B tal que $AB=BA=I_n.$

- Existência: Nem toda matriz é invertível.
- Notação: Se existir, denotamos por A⁻¹ a matriz inversa de A;

Uma matriz inversa de uma matriz quadrada A de tamanho $n\times n$ é uma matriz B tal que $AB=BA=I_n.$

- Existência: Nem toda matriz é invertível.
- Notação: Se existir, denotamos por A⁻¹ a matriz inversa de A;
- Mais notação: Se a matriz A é não invertível dizemos que A é singular,

Teorema 1.4.4 - Unicidade da Matriz Invertível Se A é uma matriz invertível então A^{-1} é única.

Inversa Matriz 2×2