Chapitre 33

Variables aléatoires réelles finies

Variables aléatoires réelles finies	1
33.3 Exemple	2
33.4 Espérance des lois usuelles	2

33.3 Exemple

Exemple 33.3

Un dé à 6 faces numérotées de 1 à 6 a été truqué de telle sorte que les faces 1,2 et 3 tombent avec une probabilité $\frac{1}{6}$, les faces 4 et 5 avec une probabilité $\frac{1}{12}$ et 6 avec une probabilité de $\frac{1}{3}$. Quelle numéro obtient-on en moyenne?

$$E(X) = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{12} + 5 \times \frac{1}{12} + 6 \times \frac{1}{3}$$
$$= \frac{45}{12}$$
$$= \frac{15}{4}$$

33.4 Espérance des lois usuelles

Théorème 33.4

Soit X une variable aléatoire réelle sur Ω .

- 1. Variable aléatoire constante : si X est constante de valeur m, alors $\mathrm{E}(X)=m$.
- 2. Loi uniforme : si $E = \{x_1, \dots, x_n\}$ est une partie de \mathbb{R} et si $X \hookrightarrow \mathcal{U}(E)$, alors E(X) est la moyenne naturelle des valeurs x_1, \dots, x_n de X:

$$E(X) = \frac{1}{n} \sum_{k=1}^{n} x_k$$

- 3. Loi de Bernoulli : soit $p \in [0;1]$. Si $X \hookrightarrow \mathcal{B}(p)$, alors E(X) = p.
- 4. Exemple fondamental : pour tout événement $A \in \mathcal{P}(\Omega)$, $E(\mathbb{F}_A) = P(A)$.
- 5. Loi binomiale : soit $n \in \mathbb{N}^*$ et $p \in [0, 1]$. Si $X \hookrightarrow \mathcal{B}(n, p)$, alors E(X) = np.
- 1. Si $X(\Omega) = \{m\}, P(X = m) = 1 \text{ et } E(X) = 1 \times m = m.$
- 2. Si $X \hookrightarrow \mathcal{U}(\{x_1, \dots, x_n\})$ alors :

$$\forall i \in [1, n], P(X = x_i) = \frac{1}{n}$$

Donc:

$$E(X) = \sum_{k=1}^{n} P(X = x_k) x_k$$
$$= \frac{1}{n} \sum_{k=1}^{n} x_k$$

3. Si $X \hookrightarrow \mathcal{B}(p)$ alors :

$$E(X) = 1 \times p + 0 \times (1 - p)$$
$$= p$$

4. Si $A \subset \Omega$, alors :

$$\mathbb{F}_A \hookrightarrow \mathcal{B}(P(A))$$
 (32.21)

Donc (3) $E(\mathbb{F}_A) = P(A)$.

5. Par définition:

$$E(X) = \sum_{k=0}^{n} P(X = k)k$$
$$= \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k}$$

Première méthode:

Soit $Q = (1 - p + Y)^n \in \mathbb{R}[Y]$.

$$Q = \sum_{k=0}^{n} \binom{n}{k} (1-p)^{n-k} Y^k \text{donc } Q'$$

$$= \sum_{k=1}^{n} k \binom{n}{k} (1-p)^{n-k} Y^{k-1}$$

$$\text{donc } YQ' = \sum_{k=0}^{n} k \binom{n}{k} (1-p)^{n-k} Y^k$$

Par ailleurs $YQ' = n(1 - p + Y)^{n-1}$.

En évaluant les deux expressions en p, on obtient l'expression voulue :

$$E(X) = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = np$$

 $\underline{\text{Deuxième m\'ethode}:}$

On poursuit le calcul de E(X) en utilisant la formule du capitaine.

<u>Troisième méthode</u>:

En utilisant la linéarité de l'espérance.