CS 340	- lecture 25	- Nov 04	
4.3.2	Weighted SP -	- Dijkstra (Algoritum
assumpt	ion: no negative	e edge costs	
IDEA: .	similar to unwe	righted SP 1	but no quene,
	declare handled	l notices 4	known (instead of dequened)
	be greedy:	select vertex	r with smallest
		current dist	ance from source
			unknown wertices
		and mark i-	f "known"
•	adjust distance	e of adjac	ent "unknown"
	vertices		
Example	41.	2	
	4	3	10
5=1	(3/2		
		9	(5)
	6	8 4	-5
distance	(1) = 0, a	u other v	: distance(v) = ∞
greedy:	mark "1"	as "known"	
	adjust a	listance (Z)) = 2, distance (4)=1

mark "4" as "known" greedy: adjust distance (3) = 3 distance (5) = 3 -11 (6) = 9 -1 - (7) = 5mark "2" as "known" greedy: adjust distance (5) ? NO! because path [1, 2,5] has (05 t of 12) but currend distance (5)=3, indicating that a parter with cost 3 has been found before. mark 3 "known" greedy: (note: could also pick 5) adjust distance (6) = 8 Why does this work?

O(N) for each Vertex v { v. distance = os; v. known = false} o(1) s. distance = 0; do forever ovor (Vertex v = unknown vertex with smallest distance; (if no such vertex exists & breaks)

v. known = fine. //see dequened "4BFS for each vertex w with $[(v_1w) \in E & !w known]$ if (w. distance > v. distance + c(v,w)) over in total w. distance = v. distance + ccv, w) OCIEI w. previous = v; O(1V12) Example 41 cfd.

