Optimal Number of Clusters Documentation

1. Introduction

Clustering analysis groups customers into similar segments based on key characteristics. Selecting the right number of clusters is crucial for meaningful segmentation. This analysis uses elbow method (Within-Cluster Sum of Squares - WCSS).

2. Elbow Method Analysis

The Elbow Method helps identify the optimal number of clusters by plotting WCSS against different cluster numbers. The "elbow point" indicates the best choice.

Python Code:

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

#Finding the optimal number of clusters

inertia = [] k_values = range(1, 11)

for k in k_values: kmeans = KMeans(n_clusters=k, random_state=42, n_init=10) kmeans.fit(X train) inertia.append(kmeans.inertia)

#Plotting the Elbow Curve

plt.figure(figsize=(8, 5)) plt.plot(k_values, inertia, marker='o', linestyle='-') plt.xlabel('Number of Clusters (k)') plt.ylabel('Inertia') plt.title('Elbow Method for Optimal k') plt.show()

Result

3. Conclusion

Based on the Elbow Method, the optimal number of clusters is X. This ensures meaningful customer segmentation, helping improve targeted marketing and customer retention strategies.