Defining causal effects

Cornell STSCI / INFO / ILRST 3900: Causal Inference Fall 2023

24 Aug 2022

Learning goals for today

By the end of class, you will be able to

- explain the fundamental problem of causal inference and the need for causal arguments
- ► define potential outcomes
- ► recall mathematical concepts from probability
 - ► random variables
 - expectation
 - conditional expectation

Left photo: By Fernando Frazão/Agência Brasil - http://agenciabrasil.ebc.com.br/sites/_agenciabrasil2013/files/fotos/1035034-_mg_0802_04.08.16.jpg, CCBY3.0br, https://commons.wikimedia.org/w/index.php?curid=50548410 Right photo: By Agencia Brasil Fotografias - EUA levam ouro na ginástica artística feminina; Brasil fica em 8 lugar. CC BY 2.0. https://commons.wikimedia.org/w/index.ohp?curid=50584648

- 1. Statistical evidence
 - Simone Biles swung on the uneven bars. She won a gold medal.

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

1. Statistical evidence

- ► Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

	Do you v	win gold if you:	Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	?	?
lan	?	No (0)	?

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

	Do you v	win gold if you:	Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	?
lan	?	No (0)	?

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

	Do you v	win gold if you:	Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	+1
lan	?	No (0)	?

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

	Do you v	win gold if you:	Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
lan	No (0)	No (0)	?

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

	Do you v	win gold if you:	Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
lan	No (0)	No (0)	0

Holland 1986

Descriptive evidence

Holland 1986

Holland 1986

Holland 1986

Causal inference is a missing data problem

lifespan
diet

Person 1	litespan	missing	litespan
Person 2	missing	lifespan	lifespan
Person 3	lifespan	missing	lifespan
Person 4	missing	lifespan	lifespan
Person 5	lifespan	missing	lifespan
Person 6	lifespan	missing	lifespan
Person 7	missing	lifespan	lifespan
Person 8	lifespan	missing	lifespan
	Outcome under Mediterranean diet	Outcome under standard diet	Outcome under Mediterranea diet

missing

 Y_i Outcome

ome Whether person i survived

 Y_i Outcome Whether person i survived A_i Treatment Whether person i at a Mediterranean diet

Y_i	Outcome	Whether person <i>i</i> survived
A_i	Treatment	Whether person i ate a Mediterranean diet
Y_i^a	Potential Outcome	Outcome person i would realize if
		assigned to treatment value a

Outcome A_i Treatment

Whether person *i* survived

Whether person i ate a Mediterranean diet Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

Examples:

 $Y_{lan} = survived$

Ian survived

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

Examples:

 $Y_{\mathsf{lan}} = \mathtt{survived}$ lan survived

 $A_{lan} = MediterraneanDiet$ lan ate a Mediterranean diet

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

Examples:

 $Y_{lan} = survived$ lan survived

 $A_{lan} = MediterraneanDiet$ lan ate a Mediterranean diet

 $Y_{\mathsf{lan}}^{\mathsf{MediterraneanDiet}} = \mathtt{survived}$ lan would survive on a Mediterranean diet

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if assigned to treatment value a

Examples:

 $Y_{lan} = survived$ lan survived

 $A_{lan} = MediterraneanDiet$ lan ate a Mediterranean diet

 $Y_{lan}^{Mediterranean Diet} = survived$ Ian would survive on a Mediterranean diet

 $Y_{\mathsf{lan}}^{\mathsf{StandardDiet}} = \mathtt{died}$ lan would die on a standard diet

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

Examples:

 $Y_{lan} = survived$ lan survived

 $A_{lan} = MediterraneanDiet$ lan ate a Mediterranean diet

 $Y_{lan}^{Mediterranean Diet} = survived$ Ian would survive on a Mediterranean diet

 $Y_{lan}^{\mathsf{StandardDiet}} = \mathtt{died}$ lan would die on a standard diet

Discuss.

Which potential outcome is observed?

Which is counterfactual?

The consistency assumption

 $Y_i^{\text{MediterraneanDiet}}$

 $Y_i^{\mathsf{StandardDiet}}$

Potential Outcomes

The consistency assumption

 $Y_i^{\mathsf{MediterraneanDiet}}$

 $Y_i^{\text{StandardDiet}}$

Potential Outcomes

Y

Factual Outcomes

The consistency assumption

Consistency Assumption

$$Y_i^{A_i} = Y_i$$

 $Y_i^{\mathsf{MediterraneanDiet}}$

 $Y_i^{\text{StandardDiet}}$

Potential Outcomes

 Y_i

Factual Outcomes

A person's potential outcome is a fixed quantity

A person's potential outcome is a fixed quantity

 $Y_{\mathsf{lan}}^{\mathsf{MediterraneanDiet}} = \mathtt{survived}$

A person's potential outcome is a fixed quantity

$$Y_{\mathsf{lan}}^{\mathsf{MediterraneanDiet}} = \mathtt{survived}$$

The outcome for a random person is a random variable

A person's potential outcome is a fixed quantity

$$Y_{\mathsf{lan}}^{\mathsf{MediterraneanDiet}} = \mathtt{survived}$$

The outcome for a random person is a random variable

► Draw a random person from the population

A person's potential outcome is a fixed quantity

$$Y_{lan}^{MediterraneanDiet} = survived$$

The outcome for a random person is a random variable

- ► Draw a random person from the population
- Assign them a Mediterranean diet

A person's potential outcome is a fixed quantity

$$Y_{lan}^{MediterraneanDiet} = survived$$

The outcome for a random person is a random variable

- ► Draw a random person from the population
- ► Assign them a Mediterranean diet
- ightharpoonup The outcome $Y^{\text{MediterraneanDiet}}$ is a random variable:
 - ► takes the value survived if we randomly sample some people
 - takes the value died if we randomly sample others

A person's potential outcome is a fixed quantity

$$Y_{lan}^{MediterraneanDiet} = survived$$

The outcome for a random person is a random variable

- ► Draw a random person from the population
- ► Assign them a Mediterranean diet
- ightharpoonup The outcome $Y^{\text{MediterraneanDiet}}$ is a random variable:
 - takes the value survived if we randomly sample some people
 - takes the value died if we randomly sample others

Check for understanding:

Does it make sense to write $V(Y_i^a)$? How about $V(Y^a)$

Notation: Expectation operator

The expectation operator E() denotes the population mean

$$\mathsf{E}(Y^{\mathsf{a}}) = \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{\mathsf{a}}$$

The quantity Y^a inside the expectation must be a random variable

Notation: Expectation operator

The expectation operator E() denotes the population mean

$$\mathsf{E}(Y^{\mathsf{a}}) = \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{\mathsf{a}}$$

The quantity Y^a inside the expectation must be a random variable

A conditional expectation is denoted with a vertical bar

$$\mathsf{E}(Y\mid A=a)=\frac{1}{n_a}\sum_{i:A:=a}Y_i$$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

 $1. \ \, \mathsf{E}(\mathsf{Earnings} \mid \mathsf{Degree} = \mathsf{TRUE}) > \mathsf{E}(\mathsf{Earnings} \mid \mathsf{Degree} = \mathsf{FALSE})$

 $2. \ \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{TRUE}}) > \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{FALSE}})$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

- 1. $E(Earnings \mid Degree = TRUE) > E(Earnings \mid Degree = FALSE)$
 - ► Average earnings are higher among those with college degrees

 $2. \ \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{TRUE}}) > \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{FALSE}})$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

- 1. $E(Earnings \mid Degree = TRUE) > E(Earnings \mid Degree = FALSE)$
 - ► Average earnings are higher among those with college degrees

- $2. \ \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{TRUE}}) > \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{FALSE}})$
 - ► On average, a degree causes higher earnings

Practice	e: How would you write this in math?
	On average, students who do the homework learn m

nore than

2. On average, doing the homework causes more learning.

Practice: How would you write this in math?

1. On average, students who do the homework learn more than those who don't.

$$\mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{TRUE}) > \mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{FALSE})$$

2. On average, doing the homework causes more learning.

Practice: How would you write this in math?

1. On average, students who do the homework learn more than those who don't.

$$\mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{TRUE}) > \mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{FALSE})$$

2. On average, doing the homework causes more learning.

$$\mathsf{E}(\mathsf{Learning}^{\mathsf{HW}=\mathsf{TRUE}}) > \mathsf{E}(\mathsf{Learning}^{\mathsf{HW}=\mathsf{FALSE}})$$

Learning goals for today

By the end of class, you will be able to

- explain the fundamental problem of causal inference and the need for causal arguments
- ► define potential outcomes
- ► recall mathematical concepts from probability
 - ► random variables
 - expectation
 - conditional expectation