DS3: Chimie, électricité

- Durée: 3h.
- La calculatrice est autorisée.
- Chaque réponse doit être justifiée.
- Même lorsque ça n'est pas précisé, toute application numérique doit être précédée d'une expression littérale en fonction des données de l'énoncé.

Exercice 1 : ÉLABORATION D'UNE POUDRE DE TUNGSTÈNE

L'élément tungstène de symbole W est toujours combiné à de l'oxygène dans les minerais où il est présent. La dernière étape d'élaboration du tungstène conduit à faire réagir le trioxyde de tungstène WO_3 avec du dihydrogène (H_2) à $1173 \, \mathrm{K}$ selon l'équation :

$$WO_3(s) + 3H_2(g) \rightleftharpoons W(s) + 3H_2O(g)$$

de constante d'équilibre $K_a=2,90$

Une enceinte de volume $V=1\,\ell$ portée à 1173 K contient une masse $m=1,93\,\mathrm{g}$ de trioxyde de tungstène et du dihydrogène à la pression initiale $p=1,00\times10^5\,\mathrm{Pa}$. On considérera que tous les gaz sont correctement décrits par le modèle du gaz parfait.

- 1. Calculer les quantités de matière initiales n_0 en WO₃ et n_1 en H₂.
- 2. Calculer le quotient réactionnel à l'instant initial.
- 3. Calculer la valeur de l'avancement ξ_f à l'équilibre et donner la composition du système à l'équilibre.

La même enceinte de volume $V=1,00\,\ell$ portée à 1173 K, contient une masse $m=1,93\,\mathrm{g}$ de trioxyde de tungstène, $n_2'=5,00\times 10^{-3}\,\mathrm{mol}$ d'eau et $n_1'=9,00\times 10^{-3}\,\mathrm{mol}$ de dihydrogène.

- 4. Dans quel sens évolue spontanément le système?
- 5. Calculer la valeur de l'avancement à l'équilibre et donner la composition du système à l'équilibre.

La même enceinte de volume $V=1,00\,\ell$ portée à 1173 K contient une masse $m=1,93\,\mathrm{g}$ de trioxyde de tungstène, $n_2''=9,00\times 10^{-3}\,\mathrm{mol}$ d'eau et $n_1''=2,00\times 10^{-3}\,\mathrm{mol}$ de dihydrogène.

- 6. Dans quel sens évolue spontanément le système?
- 7. Calculer la valeur de l'avancement à l'équilibre et donner la composition du système à l'équilibre.

Données:

- Masses molaires : $M(W) = 184 \, \text{g/mol}, M(O) = 16.0 \, \text{g/mol}, M(H) = 1.00 \, \text{g/mol}, ...$
- Constante des gaz parfaits : $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$.

Exercice 2 : Guirlande électrique

Dans cet exercice, on cherche à optimiser l'alimentation électrique d'un système comportant deux guirlandes électriques (appelées «guirlande 1» et «guirlande 2» dans la suite), chacune étant modélisée par un résistor de résistance identique $R_1 = R$ et $R_2 = R$.

La première guirlande est dédiée à un fonctionnement continu. La seconde est associée avec un interrupteur S en série qui bascule de manière périodique afin de produire un clignotement.

On supposera dans cet exercice que la puissance lumineuse fournie par ces guirlandes est proportionnelle à la puissance électrique qu'elles reçoivent.

1 Système de base

On considère dans un premier temps le circuit de la figure 1 alimenté par un générateur réel de f.e.m. E et de résistance interne r. Les réponses aux différentes questions ne feront intervenir que E, r et R.

2023-2024 page 1/4

FIGURE 1 - Schéma du système de base

1. Lorsque l'interrupteur S est ouvert, établir l'expression du courant i (noté i_{ouvert}) puis l'expression de la puissance électrique $P_{1,ouvert}$ reçue par la guirlande 1.

Quelle est dans cette configuration la puissance reçue $P_{2,ouvert}$ par la guirlande 2?

On considère maintenant le cas ou l'interrupteur S est fermé.

- 2. Quelle est alors la nouvelle expression pour le courant $i_{\text{ferm\'e}}$? En déduire les courants i_1 et i_2 circulant dans les deux guirlandes.
- 3. Quelles sont alors les puissances $P_{1,\text{ferm\'e}}$ et $P_{2,\text{ferm\'e}}$ reçues par les deux guirlandes?
- 4. La puissance reçue par la guirlande 1 (celle qui ne doit pas clignoter) est-elle identique lors les deux régimes étudiés? Interpréter ce résultat.
- 5. Comment doit-on choisir r par rapport à R pour limiter cet effet? Cette condition est elle vérifiée pour $r=1\,\Omega$ et $R=2\,\Omega$?

2 Système amélioré

On considère maintenant le circuit de la figure 2 afin de limiter la variation de puissance électrique reçue par la première guirlande donc la variation du courant i_1 .

Une bobine d'inductance L a donc été ajoutée en série avec la première guirlande. L'interrupteur S est ouvert de manière périodique pour $t \in [0, T/2[$ et fermé pour $t \in [T/2, T[$.

FIGURE 2 – Schéma du système amélioré

- 6. Établir l'équation différentielle dont i_1 est solution sur l'intervalle [0, T/2[. On fera apparaitre un temps caractéristique τ_o .
- 7. À quelle condition sur T, peut-on supposer que le régime permanent est atteint juste avant que l'interrupteur ne se ferme?
- 8. Vérifier que l'ajout de la bobine ne va pas modifier la valeur du courant i en régime stationnaire à $t=(T/2)^-$ (on suppose que la condition de la question précédente est remplie) . On comparera le résultat à celui trouvé à la question 1). On remarquera qu'il n'est pas utile de résoudre l'équation différentielle pour répondre à cette question.
- 9. On s'intéresse maintenant à l'intervalle [T/2, T[, lorsque l'interrupteur est fermé. Montrer que i_1 est alors solution de l'équation suivante :

 $\frac{\mathrm{d}i_1}{\mathrm{d}t} + \frac{1}{\tau_f}i_1 = \frac{E/L}{1 + \frac{r}{R}}\tag{1}$

où τ_f est une constante dont on donnera l'expression en fonction de L, r et R.

2023-2024 page 2/4

10. Que dire de la valeur du courant i_1 en régime stationnaire dans le cas où $\tau_f \ll T$?

On étudie ensuite expérimentalement les variations du courant i_1 en mesurant la tension aux bornes de la guirlande 1 à l'aide d'un oscilloscope et on obtient le résultat suivant pour deux valeurs différentes de l'inductance L. La résistance R vaut 2Ω et la résistance r vaut 1Ω .

FIGURE 3 – Évolution du courant $i_1(t)$ pour deux valeurs différentes de l'inductance L.

- 11. Retrouver la valeur de L_a à partir de l'étude graphique. Justifier ensuite brièvement que $L_b \gg L_a$ sans chercher à déterminer sa valeur.
- 12. Quelle est la valeur de l'inductance à retenir parmi L_a et L_b pour minimiser les variations du courant passant dans la première guirlande? Justifier soigneusement votre réponse.

Exercice 3 : CIRCUIT EN RÉGIME TRANSITOIRE

Le circuit de la figure 1 renferme un générateur continu de f.e.m. $E=10\,\mathrm{V}$, deux résistors identiques de résistance $R=200\,\Omega$, deux condensateurs identiques de capacité $C=1,0\,\mathrm{\mu F}$ et une bobine idéale d'inductance $L=5,0\,\mathrm{mH}$. Initialement les deux interrupteurs sont ouverts, les condensateurs sont déchargés.

FIGURE 1 – Circuit étudié

On ferme l'interrupteur K_1 et on attend l'installation d'un régime permanent stationnaire.

- 1. Justifier que les deux condensateurs portent à tout instant la même charge.
- 2. En déduire la valeur des deux tensions u_1 et u_2 en régime permanent.
- 3. Évaluer la durée du régime transitoire.

Une fois le régime permanent atteint, on ferme l'interrupteur K_2 à un instant noté t=0.

- 4. Quelles sont les valeurs de u_1, u_2 et du courant i juste après la fermeture de l'interrupteur (à $t = 0^+$)?
- 5. Obtenir les deux équations différentielles couplées vérifiées par les tensions $u_1(t)$ et $u_2(t)$ pour t > 0. Remarque : ces équations sont dites couplées car elles font intervenir simultanément les deux tensions.

2023-2024 page 3/4

6. On découple ces équations en posant $u = u_1 - u_2$ et $U = u_1 + u_2$. Montrer que les tensions u(t) et U(t) vérifient les équations différentielles suivantes :

$$E = RC\frac{\mathrm{d}U}{\mathrm{d}t} + U \quad \text{et} \quad E = 2LC\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + RC\frac{\mathrm{d}u}{\mathrm{d}t} + u \tag{1}$$

- 7. Déterminer la solution U(t) de la première équation différentielle.
- 8. Pour u(t), calculer la valeur numérique du facteur de qualité. Dans quel type de régime se trouve-t-on?
- 9. Déterminer la solution u(t) de la deuxième équation différentielle. En déduire l'expression de i(t).
- 10. Donner les expressions de $u_1(t)$ et $u_2(t)$. Représenter leur allure dans un même graphe.

2023-2024 page 4/4