Continuity

1 Definition A function f is continuous at a number a if

$$\lim_{x \to a} f(x) = f(a)$$

Notice that Definition 1 implicitly requires three things if f is continuous at a:

- 1. f(a) is defined (that is, a is in the domain of f)
- 2. $\lim_{x \to a} f(x)$ exists
- $3. \lim_{x \to a} f(x) = f(a)$

As illustrated in Figure 1, if f is continuous, then the points (x, f(x)) on the graph of f approach the point (a, f(a)) on the graph. So there is no gap in the curve.

GeoGebra Link: Limits & Continuity

Again, all this means is that there are no **holes**, **breaks**, or **jumps** in the graph. Otherwise, the function is considered discontinuous.

EXAMPLE 1 Figure 2 shows the graph of a function *f*. At which numbers is *f* discontinuous? Why?

V EXAMPLE2 Where are each of the following functions discontinuous?

(a)
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

(b)
$$f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$$

(c)
$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$$

(d)
$$f(x) = [x]$$

SOLUTION

- (a) Notice that f(2) is not defined, so f is discontinuous at 2. Later we'll see why f is continuous at all other numbers.
- (b) Here f(0) = 1 is defined but

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{1}{x^2}$$

does not exist. (See Example 8 in Section 2.2.) So f is discontinuous at 0.

(c) Here f(2) = 1 is defined and

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 - x - 2}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 1)}{x - 2} = \lim_{x \to 2} (x + 1) = 3$$

exists. But

$$\lim_{x\to 2} f(x) \neq f(2)$$

so f is not continuous at 2.

(d) The greatest integer function $f(x) = [\![x]\!]$ has discontinuities at all of the integers because $\lim_{x\to n} [\![x]\!]$ does not exist if n is an integer. (See Example 10 and Exercise 51 in Section 2.3.)

(a)
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

(b)
$$f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$$

(c)
$$f(x) =\begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$$

(d)
$$f(x) = [x]$$

Recall that there are four types of discontinuity:

- 1. Removable
- 2. Infinite
- 3. Jump
- 4. Oscillating

Removable Discontinuity Infinite Discontinuity

Jump Discontinuity Oscillating
Discontinuity

2 Definition A function f is continuous from the right at a number a if

$$\lim_{x \to a^+} f(x) = f(a)$$

and f is continuous from the left at a if

$$\lim_{x \to a^{-}} f(x) = f(a)$$

EXAMPLE 3 At each integer n, the function f(x) = [x] [see Figure 3(d)] is continuous from the right but discontinuous from the left because

$$\lim_{x \to n^+} f(x) = \lim_{x \to n^+} [\![x]\!] = n = f(n)$$

but

$$\lim_{x \to n^{-}} f(x) = \lim_{x \to n^{-}} [x] = n - 1 \neq f(n)$$

3 Definition A function *f* is **continuous on an interval** if it is continuous at every number in the interval. (If *f* is defined only on one side of an endpoint of the interval, we understand *continuous* at the endpoint to mean *continuous from the right* or *continuous from the left.*)

Theorem If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

1.
$$f + g$$

5.
$$\frac{f}{g}$$
 if $g(a) \neq 0$

Screen clipping taken: 25/10/2024 3:09 pm

5 Theorem

- (a) Any polynomial is continuous everywhere; that is, it is continuous on ℝ = (-∞, ∞).
- (b) Any rational function is continuous wherever it is defined; that is, it is continuous on its domain.

7 Theorem The following types of functions are continuous at every number in their domains:

polynomials rational functions root functions

trigonometric functions inverse trigonometric functions

exponential functions logarithmic functions

EXAMPLE 7 Evaluate $\lim_{x \to \pi} \frac{\sin x}{2 + \cos x}$.

8 Theorem If f is continuous at b and $\lim_{x \to a} g(x) = b$, then $\lim_{x \to a} f(g(x)) = f(b)$. In other words,

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$$

EXAMPLE 8 Evaluate $\lim_{x \to 1} \arcsin\left(\frac{1 - \sqrt{x}}{1 - x}\right)$.

SOLUTION Because arcsin is a continuous function, we can apply Theorem 8:

$$\lim_{x \to 1} \arcsin\left(\frac{1 - \sqrt{x}}{1 - x}\right) = \arcsin\left(\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x}\right)$$

$$= \arcsin\left(\lim_{x \to 1} \frac{1 - \sqrt{x}}{\left(1 - \sqrt{x}\right)\left(1 + \sqrt{x}\right)}\right)$$

$$= \arcsin\left(\lim_{x \to 1} \frac{1}{1 + \sqrt{x}}\right)$$

$$= \arcsin\frac{1}{2} = \frac{\pi}{6}$$

10 The Intermediate Value Theorem Suppose that f is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that f(c) = N.

- (a) From the graph of f, state the numbers at which f is discontinuous and explain why.
- (b) For each of the numbers stated in part (a), determine whether f is continuous from the right, or from the left, or neither.

From the graph of g, state the intervals on which g is continuous.

$$f(x) = \begin{cases} \cos x & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 - x^2 & \text{if } x > 0 \end{cases}$$
 $a = 0$

Applications of Continuity

Continuity (or concept of <u>continuous function</u>) is used in optimization problems for finding maximum and minimum values of the function to experience a smooth change of state. Signal processing has a wide variety of applications which require continuous functions such as analysing and manipulating signals in audio processing and image processing.

Application link: Real Life Applications of Continuity - GeeksforGeeks