ИТМО. ТеорВер. Практика

09.10.2023

Решение задач

Условия задач - см. группу

$N_{2}3.1.1$

a)

$$P_{10}(0) = C_{10}^0 * (\frac{9}{10})^{10} * (\frac{1}{10})^0 = 0.34867$$

б)

$$P_{10}(3) = C_{10}^3 * (\frac{9}{10})^7 * (\frac{1}{10})^3 = 0.057395$$

в)

$$P_{10}(0) + P_{10}(1) + P_{10}(2) + P_{10}(3) = \dots = 0.9872$$

№3.1.2

$$P_5(2) = C_5^2 * (\frac{1}{6^3})^2 * (1 - \frac{1}{6^3})^3 = \dots = 0.00021137$$

№3.1.3

При четном испытании успех - p^n . При нечетном испытании $C_n^m * p^m * q^{n-m}$. Далее то ли сумма, то ли умножение чет и нечет, не помню (вроде таки умножение).

№3.1.4

 $P_n(X=k) = P_n(Y=k) = C_n^k * p^k * q^{n-k},$ где X, Y - первый и второй участники эксперимента. Причем $p=q=\frac{1}{2}.$ Тогда $P_n(X=Y) = \sum_{k=0}^n \left(C_n^k * p^k * q^{n-k}\right)^2 = (\frac{1}{2})^{2n} \sum_{k=0}^n C_n^k$

№3.1.5

С учетом того, что у нас есть хотя бы 1 успешное испытание, получаем $1-q^n \geq 0.5 \Rightarrow 1-0.98^n \geq 0.5 \Rightarrow 0.98^n \leq 0.5 \Rightarrow n \ln 0.98 \leq \ln 0.5 \Rightarrow n \geq \frac{\ln 0.5}{\ln 0.98} = 34.3 \Rightarrow n \geq 35$

№3.2.1

p=0.25, q=0.75. Тогда $x=\frac{m-np}{\sqrt{npq}}=\frac{70-243*0.25}{\sqrt{243*0.25*0.75}}=1.37$. Тогда по таблице (Таблица №2, см беседу) $\phi(x)=0.1561$. Тогда $P_{243}(70)=\frac{\phi(x)}{\sqrt{npq}}=\frac{0.1561}{6.75}=0.0231$

№3.2.2

 $\sqrt{npq}=24, x=\frac{1400-2400*0.6}{24}=|-1.6|=1.6\Rightarrow\phi(x)=0.1109$ (на самом деле ответ немного другой, тк х надо округлять до 1,67, а следовательно $\phi(x)$ так же поменяется, но по факсу погоды не делает). Тогда $P_{2400}(1400)=\frac{0.1109}{24}\approx0.0046$

№3.2.3

 $\sqrt{npq}=\sqrt{\frac{N}{2}}$. Пусть k - число успехов, причем k = N + m. Тогда $x=\frac{N+m-N}{\sqrt{\frac{N}{2}}}$ и $P=\frac{\phi(\frac{\sqrt{2m}}{\sqrt{N}})}{\sqrt{\frac{N}{2}}}$, сокращать или приводить в адекватный вид мне было лень