南京大学数学系复变函数期中试卷(2017-2018)

2017/2018 学年第二学期 考试形式_闭卷_ 课程名称_ 复变函数 院系 学号 姓名 班级 考试时间 2018.05 任课教师 张高飞 考试成绩 题号 三 兀 总分 八 五. 六 七 九 得分

一. (15分) 假设 f 是 \mathbb{R} 上的连续函数, $\overline{\{x:f(x)\neq 0\}}$ 是紧集,并且

$$u(x+iy) = u(x,y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(s) \frac{y}{(x-s)^2 + y^2} ds,$$

$$v(x+iy) = v(x,y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(s) \frac{x-s}{(x-s)^2 + y^2} ds.$$

证明 g(z) = u(z) + iv(z) 解析, 其中 z = x + iy。

二. (15分) 计算积分

$$I = \int_0^{2\pi} \frac{d\theta}{1 - 2p\cos\theta + p^2} \quad (0 \le |p| < 1)$$

三. (10分) 假设 f(z) 是 \mathbb{C} 上的解析函数,并且 f(z) 无零点,证明 $u(x,y) = \ln |f(z)| = \ln |f(x+iy)|$ 是 \mathbb{R}^2 上的调和函数。

四. (15分) 假设 f(z) 在 \mathbb{C} 上连续, 在 $\mathbb{C}\setminus\{0\}$ 上解析, 证明 f 在 \mathbb{C} 上解析。

六. (15分) 假设级数 f(z) 是 $\mathbb C$ 上的解析函数,对任意 $z\in\mathbb C$,有 $\lim_{n\to\infty}f(nz)=0$,则对任何 θ , $\lim_{r\to\infty}f(re^{i\theta})=0$ 。

七. (15分) 假设级数 $\sum_{n=0}^{\infty} a_n(z_0)(z-z_0)^n$ 在每一点 $z_0 \in \mathbb{C}$ 都有一个正的收敛半径,并且 $a_n(z_0)$ 是 \mathbb{C} 上的连续函数,证明存在 \mathbb{C} 中的某个小圆盘 B_0 和其上的解析函数 f(z),使得 $f^{(n)}(z_0) = n! a_n(z_0)$ 任意 $z_0 \in B_0$ 。

第四页(共四页)