

Estimating Weights for Constructing Environmental Indices

Ross Darnell, Bill Venables, Simon Barry
CSIRO Mathematics, Informatics and Statistics

Generating Aggregated Indices

How to generate a single "score" that reflects the status (health or pressure) of an ecosystem.

- Normalisation of indicators (scaled in all sorts of ways)
- Linear or multiplicative weighting.

$$I = \sum_{i} \alpha_i Z_i$$

or

$$I = \prod_{i} Z_i^{\alpha_i}$$

• Weights (α_i) need to be estimated objectively... as possible.

The indicators

- 1. Cleared land
- 2. Population
- 3. Sediment input
- 4. Nutrient input
- 5. Freshwater flow
- 6. Disturbed habitat
- 7. Tidal flow and
- 8. Fishing.

One approach to establish weights

- Establish weightings based on experts' opinions on the relative importance of the indicators.
- Opinions are derived from pairwise comparisons.
- A version of the Bradley-Terry model allows ML estimates of indicator importance to be derived from these comparisons but including a specific term to estimate the effect of specific expert bias.

Composite Index: Slide 4 of 12

The model

Consider the indicators to have true weightings

$$\alpha_1, ..., \alpha_7; \quad \alpha_i \geq 0, \quad \forall i; \quad \alpha_1 = 1$$

BT model is

$$\log(x_{ii'}) = \alpha_i - \alpha_{i'} + \epsilon_i \quad i \neq i'.$$

and $x_{ii'}$ is the relative importance of indicator i over i'. Now include an expert specific bias term for each comparison to allow for differences in opinions among experts. For expert k we propose the model

$$\log(x_{ii'k}) = (\alpha_i - \alpha_{i'}) + (\beta_{ik} - \beta_{i'k}) + \epsilon_i \tag{1}$$

$$k=1,\ldots,K$$
 experts, and $\beta_{ik}\sim N(0,\sigma^2)$.

Expert's Relative Importance

Row indicator over column indicator	Cleared land	Population	Sediment input	Nutrient input	Freshwater flow	Distributed habitat	Tidal flow	Fishing
Cleared land	1							
Population		1						
Sediment input			1					
Nutrient input				1				
Freshwater flow					1			
Distributed habitat						1		
Tidal flow							1	
Fishing								1

Table 1: The relative importance of the row indicator compared to the column indicator.

Composite Index: Slide 6 of 12

Estimated weights, $\widehat{\alpha}_i$

Used R's Imer function to estimate parameters.

	$\widehat{lpha_i}$				
	lower	est.	upper		
ClearedLand		1.00			
Population	0.41	1.00	2.43		
SedimentInput	0.97	2.36	5.77		
NutrientInput	1.41	3.43	8.37		
FreshwaterFlow	0.53	1.29	3.16		
DisturbedHabitat	0.77	1.89	4.60		
TidalFlow	0.47	1.15	2.80		
Fishing	0.23	0.55	1.34		

Table 2: Estimates and 95% CI for weightings

Composite Index: Slide 7 of 12

Expert bias, $\widehat{\beta_{ik}}$

	Expert					
	Α	В	С	D	Е	
ClearedLand	0.42	1.33	-0.77	-0.92	-0.05	
Population	0.29	0.99	-0.85	-1.13	0.70	
SedimentInput	-0.03	0.06	0.13	0.20	-0.36	
NutrientInput	-0.42	0.18	-0.19	-0.17	0.59	
FreshwaterFlow	0.17	-0.76	0.53	0.77	-0.70	
DisturbedHabitat	-0.26	-0.61	0.08	0.15	0.64	
TidalFlow	0.31	-0.81	0.41	0.75	-0.67	
Fishing	-0.48	-0.38	0.66	0.36	-0.16	

Table 3: Estimates of expert bias by indicator

Composite Index: Slide 8 of 12

Expert bias

	Expert				
	Α	В	С	D	E
ClearedLand	0.42	1.33	-0.77	-0.92	-0.05
Population	0.29	0.99	-0.85	-1.13	0.70
SedimentInput	-0.03	0.06	0.13	0.20	-0.36
NutrientInput	-0.42	0.18	-0.19	-0.17	0.59
FreshwaterFlow	0.17	-0.76	0.53	0.77	-0.70
DisturbedHabitat	-0.26	-0.61	0.08	0.15	0.64
TidalFlow	0.31	-0.81	0.41	0.75	-0.67
Fishing	-0.48	-0.38	0.66	0.36	-0.16

Table 4: Estimates of expert bias by indicator

Composite Index: Slide 9 of 12

Residuals

Composite Index: Slide 10 of 12 Indicator1

CSIRO Mathematics, Informatics and Statistics

Ross Darnell

Phone: +61 7 3826 7296

Email: ross.darnell@csiro.au

Web:

Thank you

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176

Email: enquiries@csiro.au Web: www.csiro.au

