UM-SJTU JOINT INSTITUTE DISCRETE MATHEMATICS (VE203)

ASSIGNMENT 4

Name: Pan Chongdan ID: 516370910121

Date: October 31, 2017

1 Q1

- (i) (147)(258)(036), the order is 3
- (ii) (014)(28)(36), the order is 6
- (iii) (132)(45), the order is 6
- (iv) (13)(56), the order is 2

2 Q2

- (i) (1256)(12439)=(16)(15)(29)(23)(24), it's odd.
- (ii) (08)(06)(04)(02)(19)(17)(15)(13), it's even.
- (iii) (0124)(2198)(132568) = (04)(06)(05)(02)(03)(01)(89), it's odd.
- (iv) (120)(94567)(0427)=(04)(09)(02)(01)(07)(06)(05), it's odd.

3 Q3

4 Q4

$$56 - 8m - n = 31$$

$$m + n = 4$$

$$m = 3, n = 1$$

$$\binom{7}{m} \times \binom{56 - 8m}{n} = 1120$$

5 Q5

$$a_n = \binom{9}{n} \times (\frac{4}{3})^n$$

The biggest term is $a_5 = \frac{14336}{27}$

6 Q6

According to the principle of induction: $|S_1| = 1$, assume $|S_n| = n!$, and $f_1(x)$ is an arbitrary element of S_n

$$f_1(x) = \begin{cases} f(k_i) = k_{i+1}, i < m \\ f(k_m) = k_1, \\ f(x) = x, & x \notin k_i \cup k_m \end{cases}$$
 (1)

Assume the n+1 element is S and there are ax such that $f(x_a) = x_a$. It's obvious that a + m = n. If we let f(s)=s, there is one way. If we let $f(x_a) = S$ and $f(S) = x_a$ there are a ways. If we let $f(k_i) = S$ and $f(S) = k_{i+1}$ there are m_1 ways. If we let $f(k_m) = S$ and $f(S) = k_1$, there is one way. So there are total n+1 ways. So for any cycle, it can become n+1 new different cycles. So $|S_{n+1}| = |S_n \times (n+1)| \therefore |S_{n+1}| = n+1$

7 Q7

- (i) Assume there is another identity f, then $e \cdot f = f = e$ but $f \neq e$, so f doesn't exist.
- (ii) $\forall x$, assume there exists another inverse x^{-2} , then $(x^{-1} \cdot x) \cdot x^{-2} = x^{-2} \cdot (x^{-1} \cdot x) \cdot x^{-2} = x^{-1} \cdot (x \cdot x^{-2}) = x^{-1}$ So $x^{-1} = x^{-2}$, which is a contradiction.

8 Q8

(i) \forall 2-cycle (ab), it can be represented as the product of an odd number of adjacent 2-cycles. If a < b, then

$$(ab) = [b(b-1)][(b-1)(b-2)]\cdots[(a+2)(a+1)][a(a+1)][(a+1)(a+2)]\cdots[(b-2)(b-1)][(b-1)b]$$

Since the product of two odd number is odd and the product of an odd number and an even number is even, so if σ can be written as a product of an even number of 2-cycles, then σ can be written as an even number of adjacent 2-cycles.

- (ii) if $\sigma(m) = p$, let $(pq)\sigma = \sigma_1$ then $\sigma_1(m) = \sigma(m) + 1 = q$, similarly, if $\sigma(n) = q$, then $\sigma_1(n) = \sigma(n) 1 = p$. if m > n then $(m, n) \in \{(k, l) \in [n] \times [n] | (k < l) \land (\sigma(l) < \sigma(k)) \}$ and $(m, n) \notin \{(k, l) \in [n] \times [n] | (k < l) \land (\sigma_1(l) < \sigma_1(k)) \}$. $P(\sigma_1) = P(\sigma) - 1$ if $m < n, P(\sigma_1) = P(\sigma) + 1$ if m, n both don't exist, then $(p, q) \notin \{(k, l) \in [n] \times [n] | (k < l) \land (\sigma_1(l)]\sigma_1(k)) \}$. $P(\sigma_1) = P(\sigma) + 1$ So $P((pq)\sigma) = P(\sigma) \pm 1$
- (iii) Assume σ is both even and odd then

$$\sigma = a_1 \cdot a_2 \cdot \ldots \cdot a_m = b_1 \cdot b_2 \cdot \ldots \cdot b_n$$

where m is odd and n is even

$$\sigma^{-1} = b_n \cdot b_{n-1} \cdot \dots \cdot b_1$$

 $e = \sigma \cdot \sigma^{-1} = a_1 \cdot a_2 \cdot \dots \cdot a_m \cdot b_n \cdot b_{n-1} \cdot \dots \cdot b_1$, so e is odd, which is a contradiction.

- (iv) Since e is even, $e \in A_n$, \forall bijection $B \in A_n$ if we change f(x) = y then we exchange all pairs of x, y in B and forms a new bijection b, which is also even. $\therefore B^{-1} = b \in A_n$, A_n is a subgroup of S_n
- (v) \forall even $\sigma \in S_n$, $\sigma = a_1 \cdot a_2 \cdot \ldots \cdot a_m$, m is even, $\sigma_1 = (01) \cdot a_1 \cdot a_2 \cdot \ldots \cdot a_m$ is odd, and it's a bijection between σ and σ_1 . Since $\sigma_1 \in S_n$, the number of even σ and odd σ is same in S_n .

$$|A_n| = \frac{|S_n|}{2} = \frac{n!}{2}$$

9 Q9

(i) $y^4 = y^2 \cdot y^2 = xyx^{-1} \cdot xyx^{-1} = xy^2x^{-1} = x^2yx^{-2}$ $y^8 = y^4 \cdot y^4 = x^2yx^{-2} \cdot x^2yx^{-2} = x^2y^2x^{-2} = x^3yx^{-3}$

Similarly,

$$y^{16} = x^4 y x^{-4}, y^{32} = x^5 y x^{-5}$$

(ii)
$$yx^{-5} = y^{32}$$

$$yx^{-5}x^{5} = y^{32}x^{5}$$

$$y = y^{32}$$

If y's order is n < 31 then $y^n = e, x^5yx^{-5} = y = y^{32-n} \Rightarrow y^{31-n} = e$ $\therefore (n < 16) \land (n|(31-n)) \Rightarrow n = 1$ $\therefore y \neq 1 \therefore n = 32$ and y's order is 31.