CS 291Homework 2

 $\begin{array}{c} {\rm Jingbo~Wang} \\ {\rm jw} 6347 @ {\rm truman.edu} \end{array}$

Section 6.3, problem 5.d Give a formal proof for each of the following tautologies by using the CP rule. Do not use the IP rule.

Prove $(B \to C) \to (A \land B \to A \land C)$ is a tautology.

Answer:

1.	$B \to C$	P
2.	$A \wedge B$	$P [for A \land B \to A \land C]$
3.	A	2, Simp
4.	B	2, Simp
5.	C	1, 4, MP
6.	$A \wedge C$	3, 5, Conj
7.	$A \wedge B \to A \wedge C$	2-6, CP
	QED	1,7, CP

Section 6.3, problem 5.e Give a formal proof for each of the following tautologies by using the CP rule. Do not use the IP rule.

Prove $(A \lor B \to C \land D) \to (B \to D)$ is a tautology.

Answer:

1.	$A \vee B \to C \wedge D$	P
2.	B	$P [for B \to D]$
3.	$A \vee B$	2, Add
4.	$C \wedge D$	1, 3, MP
5.	D	4, Simp
6.	$B \to D$	2-5, CP
	QED	1,6, CP

Section 6.3, problem 6.d Give a formal proof for each of the following tautologies by using the CP rule and by using the IP rule at least once in each proof.

Prove $(A \to C) \to (A \to B \lor C)$ is a tautology.

Answer:

1.	$A \to C$	P
2.	A	$P [for A \rightarrow B \lor C]$
3.	$\neg C$	P [for C]
4.	C	1, 2, MP
5.	False	3, 4, Contr
6.	C	3-5, IP
7.	$B \vee C$	6, Add
8.	$A \to B \lor C$	2, 6, 7, CP
	QED	1, 8, CP

Section 6.3, problem 6.e Give a formal proof for each of the following tautologies by using the CP rule and by using the IP rule at least once in each proof.

Prove $(A \to B) \to ((A \to \neg B) \to \neg A)$ is a tautology.

Answer:

1.	$A \to B$	P
2.	$A \to \neg B$	$P [for (A \rightarrow \neg B) \rightarrow \neg A]$
3.	$\neg \neg A$	$P [for \neg A]$
4.	A	3, DN
5.	B	1, 4, MP
6.	$\neg B$	2, 4, MP
7.	False	5, 6, Contr
8.	$\neg A$	3-7, IP
9.	$(A \to \neg B) \to \neg A$	2, 8, CP
	QED	1, 9, CP

Section 6.3, problem 7.c Give a formal proof for each of the following tautologies by using the CP rule and by using the IP rule at least once in each proof.

Prove $(A \lor B \to C \land D) \to (B \to D)$ is a tautology.

Answer:

1.	$A \lor B \to C \land D$	P
2.	B	$P [for B \to D]$
3.	$A \lor B$	2, Add
4.	$C \wedge D$	1, 3, MP
5.	$\neg D$	P [for D]
6.	D	4, Simp
7.	False	5, 6, Contr
8.	D	5-7, IP
9.	$B \to D$	2, 9, CP
	QED	1, 9, CP

Section 6.3, problem 7.d Give a formal proof for each of the following tautologies by using the CP rule and by using the IP rule at least once in each proof.

Prove $(A \lor B \to C) \land (C \to D \land E) \to (A \to D)$ is a tautology.

Answer:

1.	$A \vee B \to C$	P
2.	$C \to D \wedge E$	P
3.	A	$P [for A \to D]$
4.	$A \vee B$	3, Add
5.	C	1, 4, MP
6.	$D \wedge E$	2, 5, MP
7.	$\neg D$	P [for D]
8.	D	6, Simp
9.	False	7, 8 Contr
10.	D	7-9, IP
11.	$A \to D$	3,10, CP
	$\overline{\text{QED}}$	1, 2, 11, CP