Procesamiento de señales I 86.51

Cecilia G. Galarza

FIUBA

Laboratorio de Procesamiento de Señales y Comunicaciones

2do Cuatrimestre 2022

Diseño de Filtros Digitales FIR

- Vimos que el filtro ideal no puede ser implementado por un sistema real y causal.
- Una aproximación óptima son las DPSS pero complejas de implementar.
- Primera aproximación: Acortar la duración de la respuesta impulsiva ideal con una ventana y desplazarla para satisfacer causalidad.

- Vimos que el filtro ideal no puede ser implementado por un sistema real y causal.
- Una aproximación óptima son las DPSS pero complejas de implementar.
- Primera aproximación: Acortar la duración de la respuesta impulsiva ideal con una ventana y desplazarla para satisfacer causalidad.

- Vimos que el filtro ideal no puede ser implementado por un sistema real y causal.
- Una aproximación óptima son las DPSS pero complejas de implementar.
- Primera aproximación: Acortar la duración de la respuesta impulsiva ideal con una ventana y desplazarla para satisfacer causalidad.

- Vimos que el filtro ideal no puede ser implementado por un sistema real y causal.
- Una aproximación óptima son las DPSS pero complejas de implementar.
- Primera aproximación: Acortar la duración de la respuesta impulsiva ideal con una ventana y desplazarla para satisfacer causalidad.

Ventana cuadrada de largo ${\cal M}$

$$w_M(n) = \frac{1}{M}$$
 para $0 \le n \le M-1$

Ventana cuadrada de largo ${\cal M}$

Respuesta en frecuencia (normalizado para tener $W_M(0)=1$)

- $f(\omega) = 1/\omega$ $W_M(\omega) = \frac{\sin \omega M/2}{\sin \omega/2} e^{-\jmath \omega \frac{M-1}{2}}$
 - Fase lineal
 - Ancho lóbulo principal: $2.\frac{2\pi}{M}$
 - Lóbulos secundarios decrecen como $1/\omega$ (verificar que el producto $\omega.W_M(\omega)$) se mantiene aproximadamente constante en el punto máximo de cada lóbulo)

Ventana cuadrada

Filtro con ventana cuadrada

La ventana $W_M(\omega)$ convoluciona a la respuesta del filtro ideal para obtener el filtro truncado.

$$H_M(\omega) = H_d(\omega) * W_M(\omega).$$

A grandes rasgos, los lóbulos secundarios son responsables del riple y el ancho del lóbulo pricipal determina el ancho de la banda de transición. Luego, es de interés analizar distintas ventanas. En [2] hay una extensa lista de ventanas analizadas. Acá reproducimos sólo algunas de las más utilizadas.

Ventana de Bartlett

Ventana de largo M (M impar)

- $B_M(\omega)$ es la ventana Bartlett o ventana triangular
- $b_M(n) = w_{\frac{M+1}{2}}(n) * w_{\frac{M+1}{2}}(n)$
- $B_M(\omega) = \frac{\sin^2 \omega (M+1)/4}{\sin^2 \omega/2} e^{j\omega \frac{M-1}{4}}$
- Con respecto a la ventana cuadrada, $B_M(\omega)$ tiene lóbulos secundarios más chicos y el ancho del lóbulo principal es más grande

Ventana sencilla de implementar

Ventana de Hamming

Otra ventana sencilla

$$ha_M(n) = 0.54 - 0.46 \cos\left(\frac{2\pi n}{M-1}\right)$$

Comparación entre ventanas

Ventana	$\Delta \omega$	Pico secundario (dB)
Rectangular	$4\pi/M$	-13
Barlett	$8\pi/M$	-25
Hanning	$8\pi/M$	-31
Hamming	$8\pi/M$	-41
Blackman	$12\pi/M$	-57

(tabla de [2])

Comparación entre ventanas

Ventana	$\Delta \omega$	Pico secundario (dB)
Rectangular	$4\pi/M$	-13
Barlett	$8\pi/M$	-25
Hanning	$8\pi/M$	-31
Hamming	$8\pi/M$	-41
Blackman	$12\pi/M$	-57

(tabla de [2])

OJO!!! $\Delta\omega \neq \Omega_p$

No hay que confundir el ancho del lóbulo principal de la ventana con el ancho de banda del filtro.

Ventana de Kaiser

Es una buena aproximación a la DPSS

• Para $0 \le n \le M-1$

$$k_M(n) = \frac{I_0 \left[\beta \sqrt{1 - \left(\frac{2n}{M-1} - 1\right)^2}\right]}{I_0 \left[\beta\right]}$$

donde I_0 es la función de Bessel modificada de orden 0

$$I_0(z) = \sum_{k=0}^{\infty} \left[\frac{\left(\frac{1}{2}z\right)^k}{k!} \right]^2$$

- Ventana con dos parámetros M y $\beta \geq 0$
- Cuando $\beta = 0$, tenemos la ventana cuadrada

Selección de parámetros de Kaiser

De acuerdo a [1], Kaiser en 1974 determinó una fórmula empírica para seleccionar los parámetros M y β .

Selección de parámetros de Kaiser

Para seleccionar los parámetros, vamos a considerar que $\delta_p=\delta_s=\delta$. Luego, ω_p es la máxima frecuencia para la cual se cumple que $|H(\omega)|\geq 1-\delta$. Análogamente, ω_s es la mínima frecuencia para la cual se cumple que $|H(\omega)|\leq \delta$. Luego,

$$A = -20\log_{10}(\delta) \qquad \Delta\omega = \omega_s - \omega_p$$

Las ecuaciones de diseño son:

$$M = \frac{A - 8}{2,285\Delta\omega} + 1$$

$$\beta = \begin{cases} 0,1102(A-8,7) & A > 50\\ 0,5842(A-21)^{0,4} + 0,07886(A-21) & 21 \le A \le 50\\ 0 & A < 21 \end{cases}$$

Ejercicios

Suponga que se observa una señal en tiempo continuo

$$x(t) = x_1(t) + x_2(t).$$

Se desea diseñar un filtro digital para separar ambas señales. Se sabe que ambas son señales de banda acotada:

$$|X_1(f)| \neq 0$$
, $|f| < 20Hz$ y $|X_2(f)| \neq 0$, $40Hz < |f| < 60Hz$

La placa adquisidora permite elegir entre dos tasas de muestreo $F_{s_1}=100Hz$ y $F_{s_2}=120Hz$. Si se desea utilizar el filtro de menor orden posible, qué tasa eligiría?