

2022.04.01 Guan Yunyi

Research Topic

Active Object Recognition with Reinforcement Learning

Key Words: 3D recognition, Next-Best-View (NBV), RL

Make agent learn how to select next views actively to increase recognition accuracy

design a **viewpoint selecting policy** for multi-view based 3D recognition

Definition about "active" in AOR

- viewpoint selection around a considered object
 - -> reliable classification results with reduced number of views
- No need to differentiate between moving the object and camera, only consider about the relative movement
 - -> assume to there is a perfectly tracked object from the start
- 2 kinds of viewpoint selection:
- without RL
- with RL

Standard framework of AOR – 3 parts

- Perception: extract visual features and recognize
- View selection: select new view with viewing history
- Evidence fusion:
- aggregate visual and action features (only for RL with action)
- aggregate viewing history (t -> 1, ..., t 1)

AOR with action:

AOR without RL- 3DRAN

Min L., Yifei S., et al. "Recurrent 3D attentional networks for end-to-end active object recognition."

- Depth layer: generate 2D images with ray casting algorithm
 - -> make the **whole pipeline differentiable** (no need of sampling in RL)
- Conv2D: extract image features
- RNN: aggregate past view features and store in hidden layer h_{t-1}
- **FCclass:** classify 3D shape c_t
- FCloc: regress new view parameters v_t

AOR without RL-3DRAN

Min Liu, Yifei Shi, et al. "Recurrent 3D attentional networks for end-to-end active object recognition."

loss is only related to classification result

$$L = -\sum_{c=1}^{k} y_{o,c} \log(p_{o,c})$$

- Training: T=10 for each initial view from 50 evenly selected views
- First <u>pre-train</u> classifier (Conv2D+FCclass)
- Then tune Conv2D, FCclass, FCloc and RNN jointly
- 2 termination conditions:
- Entropy of the classification probability < 0.1
- Maximum number of timestep (10)

AOR with RL- MV-RNN

 $\begin{array}{c} & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

Kai Xu, et al. "3D Attention-Driven Depth Acquisition for Object Identification "

CNN1: extract visual features;

CNN2: classify

- f_{h_1} : view pooling, aggregate all past visual features to $h_t^{(1)}$
- $f_{\it G}$: non-linear function, encode view parameters features s_t
- f_{h_2} : RNN, aggregate all past fusion features to $h_t^{(2)}$
- f_N : fully connected layer, predict NBV parameters v_t

element-wise multiplication $g_t = h_t^{(1)} \odot s_t$

AOR with RL- MV-RNN

Kai Xu, et al. "3D Attention-Driven Depth Acquisition for Object Identification."

- Pretrain feature encoding and classification networks <u>outside MV-RNN</u>
- Training in the NBV regression network f_N : REINFORCE
- starting from a random view
- To avoid examining too many view combinations, sample the views at each time step using Monte Carlo method
- 3 parts of Reward:
- classification accuracy
- information gain
- movement cost

- Actively move in 3D environment to learn to move around to recognize occluded objects (amodal) better -> recognition and detection
- 3 sub-tasks:
- Object recognition
- 2D amodal localization
- 2D amodal segmentation
- 2 **separate** networks
- Perception network **SGD**
- Policy network

AOR with RL- EVR

Jianwei Yang, Zhile Ren, et al. "Embodied Visual Recognition." (ICCV 2019)

- Perception Network: output $y_t = \{c_t, b_t, m_t\}$
- CNN: extract visual features
- **GRU**: aggerate history
- **Region-of-Interest** (Rol)

- Policy Network: output probabilities over discrete action space
- **CNN**: encode image features
- **MLP**: encode action features
- **GRU**: aggerate history fusion features
- MLP with Softmax: output probabilities

- Staged training for difficulty in joint training:
- First train Perception Network with images from the shortest path*
- Then, fix the perception part and train the Policy Network
- Finally, <u>retrain Perception Network</u> to adapt to the learned action policy
- No other termination expect T=10

* <u>shortest path</u>: moves along the shortest path for training visual recognition, one of the baselines final model (active path): shorted path + fine-tuned recognition model

Summary of AOR papers

	Views		Fusion network	Training	Termination	Classify
EVR (2019)	Continuous 3D environment + discrete action space		GRU	SGD + REINFORCE	Max T	at each t
LookAround (CVPR2018)	Pre-defined discrete view grid + Sample from action distribution		LSTM			
LookAhead (ECCV2016)						
3DRAN (2016)	Viewing parameters in spherical coordinate system	+ Regress location of NBV	RNN (VERAM also uses LSTM)	SGD	Max T, Entropy < 0.1	
VERAM (2016)	Pre-defined discrete view grid			SGD	Max T	only at T
MV-RNN (2015)	Viewing parameters in spherical coordinate system			+ REINFORCE	Max T, Entropy <	at each t

Thinking – About differentiable rendering

- Hope: differentiable renderer + RL
- If use a **differentiable renderer** (e.g. Pytorch3D)
- Predict continuous coordinate
 - -> no need of discrete action space
- Input need to be 3D models
 - -> cannot use image datasets
- How to combine with RL without action?

Next to do

- Coding:
- Learning RAM in Pytorch version
- Develop RL reward with RotationNet scores
- Paper reading:
- AOR works with Q-learning

Thinking (2) – How to train with RotationNet?

- Jointly train at the same time
 - -> unbalanced training
- Staged training with policy network (correct?)
- Pre-pretrain RotationNet outside the pipeline
- Pre-train RotationNet with random policy
- Fix RotationNet and train policy network
- fin-tune RotationNet with trained policy