諏訪湖における熱収支とその物理的制御要因

12S6014C

杉野元哉

INTRODUCTION 1

湖における熱収支

湖周辺の大気環境の形成 水資源の管理・水文サイクル

INTRODUCTION 2

目的: 諏訪湖における熱収支を制御する要因について明らかにする

SITE & OBSERVED DATA

観測場所 : 長野県諏訪市 諏訪湖

データ: 放射、気温、風速、相対湿度、水温(25,50,100cm)

湖表面温度 … 長波放射から逆算

湖表面水蒸気圧 … 湖表面温度での飽和水蒸気圧

顕熱・潜熱フラックス(渦相関法) (30分平均の連続データ)

※湖から吹いてくる風の時のデータのみを採用雨天時のデータは不使用

解析データ: 2015年4月8日 ~ 2016年6月30日

RESULTS & DISCUSSION

気象とフラックスの季節変化

熱収支の各月の平均日変化

RnはH, λEの駆動要因にはならない。

2015年5月

U増大によってλEが増大したときに Hが大きくならない場合がある。

H, λEの強風への応答のメカニズム

風速が強くなる

湖水の鉛直混合

- ①深層の冷たい水が表面の水と混ざる
- ②湖表面温度が小さくなる
- ③湖表面温度と大気温の温度差がなくなる

顕熱フラックスが 大きくならない

Ts-TaとH, es-eaとλEの関係

風速3m/s以上のものを色付け

(Ts-Ta)*UとH, (es-ea)*UとλEの関係

風速3m/s以上のものを色付け

Hの物理的制御要因の考察

大気の安定度による場合分け

季節による場合分け

- ●2015年04~06月
- ●2015年07~09月
- ●2015年10~12月
- -2016年01~03月
- ●2016年04~06月

SUMMARY & CONCLUSIONS

○熱収支の日変化

Rn: 正午頃に最大 λE: 午後に最大

○風の影響

強風時に大気の拡散が促進 → λE増大

強風時にHが増大するとは限らない。

→強風による湖水の鉛直混合が温度差の低下をもたらすことがある。

○ (Ts-Ta)*Uが小さくても顕熱フラックスが大きいデータ 少なくとも大気の安定度や季節的なものが原因ではない。

顕熱フラックス、潜熱フラックスはそれぞれ温度差、水蒸気 圧差によって駆動され、風速の影響を受ける。 顕熱フラックスは温度差と風速以外の要因に影響を受けて いる可能性がある。