Sistemas Operacionais

Prof. Dr. Helder Oliveira

Plano de Aula

- Camadas de Software
- Dispositivos individuais.
- Gerenciamento de energia
- Pesquisa

FIGURA 5.11 Camadas do sistema de software de E/S.

Software de E/S no nível do usuário

Software do sistema operacional independente do dispositivo

Drivers do dispositivo

Tratadores de interrupção

Hardware

Tratadores de interrupção

- Interrupções são um fato desagradável da vida, mas não podem ser evitadas.
- Interrupções devem ser escondidas, i.e., a menor parcela possível do sistema operacional deve saber delas.
- A melhor maneira de escondê-las é bloquear o driver que inicializou uma operação de E/S até que ela se complete e a interrupção ocorra.

Tratadores de interrupção

- Rotina de interrupção faz o que for necessário a fim de lidar com a interrupção.
 - Operação up em um semáforo.
 - Enviará uma mensagem para o driver bloqueado.
- Independente da solução, o efeito resultante da interrupção será de que um driver que estava anteriormente bloqueado estará agora disponível para executar.
- Realidade não é tão simples!

Tratadores de interrupção

- 1. Salvar quaisquer registros (incluindo o PSW) que ainda não foram salvos pelo hardware de interrupção.
- 2. Estabelecer um contexto para a rotina de tratamento da interrupção. Isso pode envolver a configuração de TLB, MMU e uma tabela de páginas.
- 3. Estabelecer uma pilha para a rotina de tratamento da interrupção.
- 4. Sinalizar o controlador de interrupções. Se não houver um controlador delas centralizado, reabilitálas.
- 5. Copiar os registradores de onde eles foram salvos (possivelmente alguma pilha) para a tabela de processos.
- 6. Executar a rotina de tratamento de interrupção. Ela extrairá informações dos registradores do controlador do dispositivo que está interrompendo.
- 7. Escolher qual processo executar em seguida. Se a interrupção deixou pronto algum processo de alta prioridade que estava bloqueado, ele pode ser escolhido para executar agora.
- 8. Escolher o contexto de MMU para o próximo processo a executar. Algum ajuste na TBL também pode ser necessário.
- 9. Carregar os registradores do novo processo, incluindo sua PSW.
- 10. Começar a execução do novo processo.

- Drivers dos dispositivos
- O número de registradores do dispositivo e a natureza dos comandos variam radicalmente de dispositivo para dispositivo.
 - Ex: Mouse e Disco.
 - Driver de mouse: aceitar informações do mouse dizendo a ele o quanto ele se moveu e quais botões estão pressionados no momento.
 - Driver de disco: precisa saber tudo sobre setores, trilhas, cilindros, cabeçotes, movimento do braço, unidades do motor, entre outras coisas.
- Drivers dos dispositivos são os códigos para controlar os dispositivos de E/S.

Drivers dos dispositivos

- São os códigos para controlar os dispositivos de E/S.
- Escrito pelo fabricante
- Às vezes dispositivos completamente diferentes são baseados na mesma tecnologia subjacente.
 - Ex: Dispositivos USB
 - Usam USB: Discos, pen-drives, câmeras, mouses, teclados, miniventiladores, cartões de rede wireless, robôs, leitores de cartão de crédito, barbeadores recarregáveis, picotadores de papel, scanners de códigos de barras, bolas de espelhos e termômetros portáteis.
 - Todos realizam coisas muito diferentes, utilizam empilhamento.

FIGURA 5.12 Posicionamento lógico dos drivers de dispositivos. Na realidade, toda comunicação entre os drivers e os controladores dos dispositivos passa pelo barramento.

- Embora parte do software de E/S seja específico do dispositivo, outras partes dele são independentes.
- O limite depende do sistema.
- A função básica do software independente do dispositivo é realizar as funções de E/S que são comuns a todos os dispositivos e fornecer uma interface uniforme para o software no nível do usuário..

Software de E/S independente de dispositivo

FIGURA 5.13 Funções do software de E/S independente do dispositivo.

Uniformizar interfaces para os drivers de dispositivos

Armazenar no buffer

Reportar erros

Alocar e liberar dispositivos dedicados

Providenciar um tamanho de bloco independente de dispositivo

Software de E/S independente de dispositivo

• Interface uniforme para os drivers dos dispositivos

FIGURA 5.14 (a) Sem uma interface-padrão para o driver. (b) Com uma interface-padrão para o driver.

Software de E/S independente de dispositivo

• Utilização de buffer

FIGURA 5.15 (a) Entrada não enviada para buffer. (b) Utilização de buffer no espaço do usuário. (c) Utilização de buffer no núcleo seguido da cópia para o espaço do usuário. (d) Utilização de buffer duplo no núcleo.

- Relatório de erros
 - Erros são muito mais comuns no contexto de E/S do que em outros contextos.
 - O sistema operacional deve lidar com eles.
 - Tratamento de erros é independente do dispositivo.
 - Uma classe de erros de E/S é a dos erros de programação.
 - Ex:
 - Escrever em dispositivos de entrada e ler dispositivos de saída.
 - Fornecer um endereço de buffer inválido ou outro parâmetro e especificar um dispositivo inválido.
 - Ação: A ação a ser tomada a respeito desses erros é direta: simplesmente relatar de volta um código de erro para o chamador.

- Relatório de erros
 - Outra classe de erros é a que engloba erros de E/S reais, por exemplo, tentar escrever em um bloco de disco que foi danificado ou tentar ler de uma câmera de vídeo que foi desligada.
 - Se driver não sabe o que fazer, passa o problema para o software.
 - O que o software faz (depende do erro):
 - Se houver usuário disponível:
 - Poderá exibir uma caixa de diálogo perguntando ao usuário o que fazer.
 - Se não houver usuário disponível:
 - Relata um código de erro indicando uma falha na chamada de sistema.
 - Alguns erros: o sistema pode ter de exibir uma mensagem de erro e desligar.

- Alocação e liberação de dispositivos dedicados
 - Alguns dispositivos podem ser usados por um único processo por vez.
 - Cabe ao SO examinar a solicitação.
 - Maneiras de lidar com as solicitações:
 - Exigir que os processos executem chamadas de sistema open diretamente nos arquivos especiais para os dispositivos.
 - Ter mecanismos especiais para solicitação e liberação de serviços dedicados.

- Tamanho de bloco independente de dispositivo
 - Discos diferentes podem ter tamanhos de setores diferentes.
 - Cabe ao software independente do dispositivo esconder esse fato e fornecer um tamanho de bloco uniforme para as camadas superiores, por exemplo, tratando vários setores como um único bloco lógico.
 - Camadas superiores lidam apenas com dispositivos abstratos.

Software de E/S do espaço do usuário

- Embora a maior parte do software de E/S esteja dentro do sistema operacional, uma pequena porção dele consiste em bibliotecas ligadas aos programas do usuário e mesmo programas inteiros sendo executados fora do núcleo. Chamadas de sistema, incluindo chamadas de sistema de E/S, são normalmente feitas por rotinas de biblioteca.
- Formatação de entrada e saída é feita pelas rotinas de biblioteca.

printf("O quadrado de %3d e %6d\n", i, i*i);

• A biblioteca de E/S padrão contém um número de rotinas que envolvem E/S e todas executam como parte dos programas do usuário.

Sistema de E/S

FIGURA 5.17 Camadas do sistema de E/S e as principais funções de cada camada.

Discos

- Os discos vêm em uma série de tipos, incluindo discos magnéticos, RAIDS, pen-drives e discos ópticos.
- Nos discos rotacionais, os algoritmos de escalonamento do braço do disco podem ser usados muitas vezes para melhorar o desempenho do disco, mas a presença de geometrias virtuais complica as coisas.
- Pareando dois discos, pode ser construído um meio de armazenamento estável com determinadas propriedades úteis.

Discos

FIGURA 5.19 (a) Geometria física de um disco com duas zonas. (b) Uma possível geometria virtual para esse disco.

Discos (RAID)

- A ideia fundamental por trás de um RAID é instalar uma caixa cheia de discos junto ao computador, em geral um grande servidor, substituir a placa controladora de disco com um controlador RAID, copiar os dados para o RAID e então continuar a operação normal.
- Além de se parecer como um disco único para o software, todos os RAIDs têm a propriedade de que os dados são distribuídos pelos dispositivos, a fim de permitir a operação em paralelo.

Relógios

- Relógios são usados para manter um controle do tempo real limitando o tempo que os processos podem ser executados —, lidar com temporizadores watchdog e contabilizar o uso da CPU.
- Dois tipos de relógios são usados em computadores:
 - Ligados à rede elétrica de 110 ou 220 volts e causam uma interrupção a cada ciclo de voltagem, em 50 ou 60 Hz. Esses relógios costumavam dominar o mercado, mas são raros hoje.
 - Construído de três componentes: um oscilador de cristal, um contador e um registrador de apoio.

Interfaces com o usuário: teclado, mouse, monitor

- Terminais orientados por caracteres têm uma série de questões relativas a caracteres especiais que podem ser entrada e sequências de escape especiais que podem ser saída.
- A entrada pode ser em modo cru ou modo cozido, dependendo de quanto controle o programa quer sobre ela. Sequências de escape na saída controlam o movimento do cursor e permitem a inserção e remoção de texto na tela.

Interfaces com o usuário: teclado, mouse, monitor

- A maioria dos sistemas UNIX usa o Sistema X Window como base de sua interface do usuário. Ele consiste em programas que são ligados a bibliotecas especiais que emitem comandos de desenho e um servidor X que escreve na tela.
- Muitos computadores usam GUIs para sua saída. Esses são baseados no paradigma WIMP: janelas, ícones, menus e um dispositivo apontador (Windows, Icons, Menus, Pointing device).
- Programas baseados em GUIs são geralmente orientados a eventos, com eventos do teclado, mouse e outros sendo enviados para o programa para serem processados tão logo eles acontecem. Em sistemas UNIX, os GUIs quase sempre executam sobre o X.

Clientes magros (thin clients)

- Dizer que a maioria dos usuários quer uma computação interativa de alto desempenho, mas não quer realmente administrar um computador, provavelmente seja uma conclusão justa. Isso levou os pesquisadores a reexaminar os sistemas de tempo compartilhado usando terminais burros (agora educadamente chamados de clientes magros) que atendem às expectativas de terminais modernos.
- Clientes magros têm algumas vantagens sobre os PCs padrão, notavelmente por sua simplicidade e menos manutenção para os usuários.

Gerenciamento de energia

- É uma questão fundamental para telefones, tablets e notebooks, pois os tempos de vida das baterias são limitados, e para os computadores de mesa e de servidores devido às contas de luz da organização.
- Várias técnicas podem ser empregadas pelo sistema operacional para reduzir o consumo de energia.
- Programas também podem ajudar ao sacrificar alguma qualidade por mais tempo de vida das baterias.

Consumo de energia de um notebook

Dispositivo	Li et al. (1994)	Lorch e Smith (1998)
Tela	68%	39%
CPU	12%	18%
Disco rígido	20%	12%
Modem		6%
Som		2%
Memória	0,5%	1%
Outros		22%

Pesquisas em entrada/saída

• Há uma produção considerável de pesquisas sobre entrada/saída. Parte delas concentra-se em dispositivos específicos, em vez da E/S em geral. Outros trabalhos concentram-se na infraestrutura de E/S inteira.

Questões

- 1. Como funciona a formatação de disco?
 - Seção **5.4.2**
- 2. Como funciona os algoritmos de escalonamento de braço de disco?
 - Seção **5.4.3**
- 3. Quais as funções do Relógio em um computador?
 - Seção **5.5.2**

Leitura

- SISTEMAS OPERACIONAIS MODERNO 4ª edição
 - Capítulo 5 Entrada/saída

Dúvidas?