Le Van Minh

Tan San Xuin

Question 1

(a)
$$SRMC = 3Q^2 - 16Q + 30$$

 $SRAC = Q^2 - 8Q + 30 + \frac{5}{Q}$
 $SRAVC = Q^2 - 8Q + 30$
(b) At $Q = 0 \Rightarrow SRMC = p = 30$

$$SRAVC = Q^2 - 8Q + 30$$

(b) At
$$Q = 0 \Rightarrow SRMC = p = 30$$

(c)

$$p = SRMC = 3Q^2 - 16Q + 30$$

$$Q = \frac{8 + \sqrt{3p - 26}}{3}$$

(d)
$$Q = 6 \Rightarrow SRMC = 42$$

$$\frac{d}{dQ}SRMC(6) = 20 > 0$$

(d) $Q=6\Rightarrow SRMC=42$ $\frac{d}{dQ}SRMC(6)=20>0$ At p=42, firm produce 6 units of output. (e) At p=25, each firm produces 5 units.

(e) At
$$p = 25$$
, each firm produces 5 units.

Demand = Supply

$$80 = 5n$$

$$n = 16 \text{ (firms)}$$

2. a)
$$Ve=2e^2$$

$$SRMc=\frac{dVc}{da}=4e$$

Marimize,
$$p = g$$
 on $RC = Q$

$$Q = \frac{p}{4}$$

$$P = 40$$

$$Q = 10$$

Zero prof.
$$7R = 7C$$

$$400 = FC+VC$$

$$400 = F + 20^{2}$$

$$400 = F + 200$$

$$F = 200$$

TNSC=
$$V$$
 C + NSFC
= $2\alpha^2 + S^2$
ANSC = $\frac{TNSC}{Q}$
= $2\alpha + \frac{S^2}{Q}$

Min:
$$\frac{J_{ANPM}}{J_{A}} = 0$$

$$2 - \frac{so}{Q} = 0$$

$$Q = 5$$

$$\frac{1}{2} \left\{ \begin{array}{c} \frac{\rho}{4} \\ 0 \end{array}, \begin{array}{c} \rho \geq 20 \\ 0 \end{array} \right\}$$

C)
$$S = loa$$

$$= loa$$

91 equilibries,
$$S = D$$

$$\frac{S}{2} p = 180 - \frac{S}{2} p$$

$$P = 36$$

$$94p=36$$
, $0=9$
 $77=p0-(FC+VC)$
 $=36\times 9-(200+2\times 9^{2})$
 $=-38$

d) Af
$$p_2 \omega_0$$
, $p_1 + i + i = 0$

$$C = \frac{\omega_0^2}{4}$$

$$= 10$$

$$D = 180 \text{ A} - \frac{3}{2} \text{ (40)}$$

$$= 85$$

Question 3

(a) as firm is trying to maximize

$$profit = pQ - VC - FX$$

$$profit = Q(p - 400)$$

therefore:

$$Q = \begin{cases} Q_{max} = 200 & p > 400 \\ Any\,between\,0 - 200 & p = 0 \\ 0 & p < 400 \end{cases}$$

(b) Supply = Demand

At p = 400,

Demand = 16,000

 \Rightarrow Each firm produces 266.66 tons > 200 tons cap.

At p > 400

Supply = $200 \times 60 = 12,000 = Demand$

p = 800

4, a) when
$$p < 10$$
, $S = 4(2p) = 8p$

$$p > 10$$
, $S = 4(2p) + 6(p = 10)$

$$= 14p - 60$$

$$S = \begin{cases} 14p - 60 & p > 10 \\ 8p & p < 10 \end{cases}$$

b) (age
$$7 = p > 10 = q = 10 = 10p$$

$$| 4p = 60 = 10p = 7$$

$$| p = 7$$

$$| p = 7$$

honever, the supply cure is valid for $\rho > 10$, not $\rho = 7$ So must less than 10

case
$$T$$
; $P < 10$, equilibrium $S = D$

$$8 p = 108 - 10p$$

$$P = 6$$