Hoja 1

Espacios euclídeos y hermíticos I.

Formas bilineales y hermíticas. Productos escalares. Normas inducidas por productos escalares.

1. Decide de manera razonada si las siguientes funciones $\varphi: V \times V \to \mathbb{K}$ son formas bilineales simétricas, o sesquilineales hermíticas, según corresponda, en los espacios vectoriales V sobre \mathbb{K} con $\mathbb{K} = \mathbb{R}, \mathbb{C}$.

- a) $V = M_2(\mathbb{K})$, con $\varphi(A, B) = \text{traza}(A + \overline{B})$;
- **b)** $V = \mathbb{M}_2(\mathbb{K})$, con $\varphi(A, B) = \operatorname{traza}(A\overline{B})$;
- c) $V = \mathbb{M}_2(\mathbb{K})$, con $\varphi(A, B) = \operatorname{traza}(A\overline{B}) \operatorname{traza}(A)\operatorname{traza}(\overline{B})$;
- d) $V = \{f : \mathbb{R} \to \mathbb{R} : f \text{ es diferenciable}\}, \text{ con } \varphi(f,g) = \int_0^1 f'(t)g(t)dt;$
- e) $V = \{f : \mathbb{R} \to \mathbb{R} : f \text{ es continua}\}, \text{ con } \varphi(f,g) = \int_0^1 f(x)g(x)(x^2+1)dx;$
- f) $V = \{f : \mathbb{R} \to \mathbb{R} : f \text{ es continua}\}, \text{ con } \varphi(f,g) = \int_0^1 f(x)g(x-1)dx;$
- g) $V = \mathbb{K}^2$, con $\varphi((x_1, y_1), (x_2, y_2)) = (x_1 + y_1)^2 x_2 y_2$.

2. Considera la base estándar $\mathcal{B} = \{e_1, e_2, e_3\}$ de \mathbb{R}^3 . Escribe la matriz $M_{\mathcal{B}}(\varphi)$ de las siguientes formas bilineales:

- a) $\varphi((x_1, x_2, x_3), (y_1, y_2, y_3)) = 2x_1y_1 3x_1y_3 + 2x_2y_2 5x_2y_3 + 4x_3y_1;$
- **b)** $\varphi((x_1, x_2, x_3), (y_1, y_2, y_3) = 3x_1y_1 + 2x_2y_2 + x_3y_3.$

3. Consideramos ahora la base $\mathcal{B}' = \{(1,2,3), (-1,1,2), (1,2,1)\}$ de \mathbb{R}^3 y denotamos por $(x_1', y_1', z_1'), (x_2', y_2', z_2')$ las coordenadas de dos vectores de \mathbb{R}^3 respecto a la base \mathcal{B}' . Escribe la expresión en términos de las coordenadas anteriores de las formas bilineales del ejercicio 2.

4. Se dice que una forma bilineal (resp. sesquilineal) $\varphi: V \times V \to \mathbb{K}$ es antisimétrica (resp. antihermítica) si para todo par de vectores $u, v \in V$ se tiene que $\varphi(u, v) = -\varphi(v, u)$ (resp. $\varphi(u, v) = -\overline{\varphi(v, u)}$).

a) Encuentra una forma bilineal antisimétrica $\varphi : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$.

b) Sea $\mathcal{B} = \{v_1, \dots, v_n\}$ una base de V y sea φ una forma bilineal (resp. sesquilineal) en V. Da una condición necesaria y suficiente sobre $M_{\mathcal{B}}(\varphi)$ para que φ sea antisimétrica (resp. antihermítica).

c) Demuestra que toda forma bilineal (respectivamente, sesquilineal) φ en V se puede escribir como la suma de una forma bilineal simétrica (resp. hermítica) y una antisimétrica (resp. antihermítica).

5. Para cada $\alpha \in \mathbb{R}$ considera en \mathbb{R}^3 la aplicación bilineal

$$\phi_{\alpha}((x_1, x_2, x_3), (y_1, y_2, y_3)) = (x_1, x_2, x_3) \begin{pmatrix} 1 & -1 & 0 \\ -1 & \alpha & 1 \\ 0 & 1 & \alpha \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

Calcula los valores de α para los que ϕ_{α} es un producto escalar.

6. Considera la aplicación $\phi: \mathbb{M}_3(\mathbb{R}) \times \mathbb{M}_3(\mathbb{R}) \to \mathbb{R}$ dada por $\phi(A, B) = \text{traza } (AB^T)$.

- a) Demuestra que ϕ es un producto escalar en $\mathbb{M}_{3\times 3}(\mathbb{R})$.
- b) ¿Cuál sería el producto escalar análogo en $\mathbb{M}_3(\mathbb{C})$?

7. Para cada $\alpha, \beta \in \mathbb{R}$ considera en \mathbb{R}^3 la aplicación bilineal

$$\phi_{\alpha,\beta}\left((x_1,x_2,x_3),(y_1,y_2,y_3)\right) = (x_1,x_2,x_3) \begin{pmatrix} \beta & \alpha & 0 \\ \alpha & 1 & 0 \\ 0 & 0 & \alpha \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

Describe el subconjunto de \mathbb{R}^2 determinado por los pares (α, β) para los que $\phi_{\alpha,\beta}$ es un producto escalar.

8. Sea $V = \mathbb{C}^3$ y sea $\mathcal{B} = \{e_1, e_2, e_3\}$ la base estándar. Sea $\varphi : V \times V \to \mathbb{C}$ la forma sesquilineal cuya matriz asociada respecto a \mathcal{B} es:

$$\begin{pmatrix} 1 & i & 0 \\ -i & 2 & 1+i \\ 0 & 1-i & 3 \end{pmatrix}.$$

Demuestra que φ es un producto hermítico.

- **9.** Sea (V, \langle, \rangle) un espacio vectorial hermítico.
- a) Demuestra la Identidad del paralelogramo: Para todo par de vectores $u, v \in V$,

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2).$$

b) Demuestra la Identidad de polarización: Para todo par de vectores $u, v \in V$,

$$4\langle u, v \rangle = \|u + v\|^2 - \|u - v\|^2 + i\|u + iv\|^2 - i\|u - iv\|^2.$$

c) Demuestra que para todo par de vectores $u, v \in V$,

$$2\langle u, v \rangle = \|u + v\|^2 + i\|u + iv\|^2 - (1+i)\|u\|^2 - (1+i)\|v\|^2.$$

- d) ¿Cuáles serían las identidades de los apartados anteriores si V fuera un espacio vectorial euclídeo?
- 10. Sea ||(x,y)|| = |x| + |y| definida en \mathbb{R}^2 . Demuestra que $||\cdot||$ es una norma en \mathbb{R}^2 , pero que no proviene de ningún producto escalar porque no satisface la identidad del paralelogramo.
- 11. Sea V un espacio vectorial euclídeo o hermítico. Demuestra que si $x,y \in V$ se tiene

$$||x - y|| \ge |||x|| - ||y|||$$
.

Teorema: Sea V un espacio vectorial sobre \mathbb{R} $y \| \cdot \| : V \to \mathbb{R}$ una norma en V. Si $\| \cdot \|$ satisface:

$$||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2),$$
 (Identidad del paralelogramo)

entonces la forma bilineal

$$\phi(u,v) = \frac{\|u+v\|^2 - \|u-v\|^2}{4},$$

define un producto escalar en V que cumple

$$\phi(u, u) = ||u||^2$$
.