Notas Variable Compleja

kriptonita

February 25, 2024

Chapter 1

Presentación

1.1 Clases:

Lunes - Martes - Miercoles

1.2 Classroom:

Presentación.

1.3 Evaluación:

4 tareas examen (integrantes \leq 5), punto extra al entregar en LATEX.

Chapter 2

Complejos

2.1 Generalidades

Definition 2.1.1 – Campo de los complejos Al campo $\mathbb C$ lo llamaremos el plano complejo y a sus elementos números complejos.

Además $\forall z = a + ib$ definimos:

- La parte real de z como Re $\in z = a$
- La parte imaginaria de z como Imz=b

NOTA: A los números complejos z tales que Rez = 0, se les denominará imaginarios puros.

Definition 2.1.2 – Conjugado Para cada $z \in \mathbb{C}$ con z = a + ib, definimos el conjugado de z como $\underline{z} = a - ib$

2.2 Operaciones aritméticas

 $\forall z,w\in\mathbb{C}$ definimos:

- Resta: z w = z + (-w)
- DIVISIÓN: $\text{Si}w \neq 0$ entonces $\frac{z}{w} = zw^{-1}$

2.2.1 Proposición

Sea $z, w \in \mathbb{C}$ entonces:

- 1. $\underline{z \pm w} = \underline{z} \pm \underline{w}$
- $2. \ \underline{zw} = \underline{z} \cdot \underline{w}$
- 3. Si $z \neq 0$, $\underline{z^{-1}} = \underline{z}^{-1}$
- 4. Si $w \neq 0$, $\left(\frac{z}{w}\right) = \frac{\underline{z}}{\underline{w}}$
- 5. $\underline{\underline{z}} = z$
- 6. z es un número real, si y solo si $\underline{z} = z$

2.3 Campo de los número complejos

Sea $\mathbb{R}^{\not\vDash}$, +, \circ , donde:

$$+: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$

$$(a,b) + (c,d) = (a+c,b+d)$$

$$\cdot \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$

$$(a,b)(c,d) = (ac - bd, ad + bc)$$

2.3.1 Proposición

 $\mathbb{C} := (\mathbb{R}^2, +, \cdot)$ es un campo donde:

- Neutro aditivo 0 = (0,0)
- Neutro Multiplicativo 1 = (1,0)
- Inverso aditivo $\forall z = (a, b) \in \mathbb{C} \to -z = (-a, -b)$
- Inverso Multiplicativo $\forall z=(a,b)\neq 0 \rightarrow z^{-1}=\left(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2}\right)$

Observación: $\forall a, b \in \mathbb{R}, (a, 0) + (b, 0) = (a + b, 0) \approx a + b$, además $(a, 0)(b, 0) = (ab, 0) \approx ab$ Si consideramos $A = \{(a, b) | a \in \mathbb{R}\}$ entonces $(A, +, \cdot)$ es un *sub-conjunto* de \mathbb{C} . De esta manera la función:

$$f: \mathbb{R} \to A, f(a) = (a, 0)$$

es un isomorfismo de campos, es decir:

- \bullet f es biyectiva
- f(a+b) = f(a) + f(b)
- $\bullet \ f(ab) = f(a) + f(b)$

Consecuencia:

- f(0) = (0,0)
- f(-a) = (-a, 0)
- $f(a^{-1}) = f(a)^{-1}$ si $a \neq 0$

Definition 2.3.1 – **Unidad imaginaria** Se define como i = (0, 1)

Observación:

$$i^2 = (0,1)(0,1) = (-1,0) = -1$$

Entonces:

$$i = \sqrt{-1}$$

Notación

- $Edx \text{ real} : \mathbb{R} = \{(a,0)|a \in \mathbb{R}\}\$
- Edx imaginario: $i\mathbb{R} = \{ia | a \in \mathbb{R}\}$

Proposición

(Notación a+ib) Cada $z\in\mathbb{C}$ se puede expresar de forma unica como: z=a+ib donde $a,b\in\mathbb{R}$

Ejercicios Extra:

8

• $|\operatorname{Re}(z)| + |\operatorname{Im}(z)| \le \sqrt{2}|z|$

• $2|\text{Re}(z)||\text{Im}(z)| \le |z|^2$

Observación: $\forall z \in \mathbb{C}$

$$z\underline{z} = \operatorname{Re}(z)^2 + \operatorname{Im}(z)^2 \ge 0$$

Definition 2.3.2 – El módulo de z Se define como $|z| = \sqrt{zz}$

Nota: Si Im(z) = 0 entonces |z| corresponde al valor absoluto.

Observación: $\forall z \in \mathbb{C}$

• $|\operatorname{Re}(z)| \le |z| \ \operatorname{y} \ |\operatorname{Im}(z)| \le |z|$

• $|z| \leq |\operatorname{Re}(z)| + |\operatorname{Im}(z)|$

$$\therefore \max\{|\operatorname{Re}(z)|, |\operatorname{Im}(z)|\} \le |z| \le |\operatorname{Re}(z)| + |\operatorname{Im}(z)|$$

Sea z=a+ib: $|z|^2 \leq (|\mathrm{Re}(z)|+|\mathrm{Im}(z)|)^2 \Leftrightarrow a^2+b^2 \leq (|a|+|b|)^2 \Leftrightarrow a^2+b^2 \leq a^2+2|a||b|+b^2 \Leftrightarrow 0 \leq |a||b|$ Observación: Como $z\underline{z}=|z|^2$ si $z\neq 0$

$$\Rightarrow z \frac{z}{|z|^2} = 1 \therefore z^{-1} = \frac{\underline{z}}{|z|^2}$$

Ejemplo: $i^{-1} = \frac{1}{i} = -i$ De lo anterior: $\forall z, w \in \mathbb{C}, w \neq 0$

$$\frac{z}{w} = zw^{-1} = \frac{z\underline{w}}{|w|^2}$$

2.3.2 Propiedades de:

 $\operatorname{Re}(z), \operatorname{Im}(z), \bar{z}, |z|$

Sea
$$z = a + ib$$

$$z + \bar{z} = a + ib + a - ib = 2a \Rightarrow a = \frac{z + \bar{z}}{2} : \operatorname{Re}(z) = \frac{z + \bar{z}}{2}$$
$$z - \bar{z} = a + ib - a + ib = i2b \Rightarrow b = \frac{z - \bar{z}}{2i} : \operatorname{Im}(z) = -i\frac{z - \bar{z}}{2}$$

2.3.3 Proposición

 $\forall z, w \in \mathbb{C}$

•
$$\operatorname{Re}(z) = \operatorname{Re}(\bar{z}) = \frac{z + \bar{z}}{2}$$

•
$$\operatorname{Im}(z) = -\operatorname{Im}(\bar{z}) = -i\frac{z-\bar{z}}{2}$$

•
$$\bar{z} = \operatorname{Re}(z) - i\operatorname{Im}(z)$$

• La parte real e imaginarias son \mathbb{R} -lineales es decir $\operatorname{Re}(z+tw)=\operatorname{Re}(z)+t\operatorname{Re}(w)$ y $\operatorname{Im}(z+tw)=\operatorname{Im}(z+tw)=\operatorname{Im}(z)+t\operatorname{Im}(w)$, donde $t\in\mathbb{R}$ $\operatorname{Re}(zw)=\operatorname{Re}(z)\operatorname{Re}(w)-\operatorname{Im}(z)\operatorname{Im}(w)$ $\operatorname{Im}(zw)=\operatorname{Im}(z)\operatorname{Im}(w)-\operatorname{Re}(z)\operatorname{Re}(w)$

2.3.4 Propopsición

 $\forall z, w \in \mathbb{C}$

- $|z| = 0 \Leftrightarrow z = 0$
- $|z| = |\bar{z}|$
- $|z+w|^2 = |z|^2 + 2\operatorname{Re}(z\bar{w}) + |w|^2$

Demostración:
$$|z+w|^2 = (z+w)(z + \bar{w}) = (z+w)(\bar{z} + \bar{w}) = z\bar{z} + z\bar{w} + \bar{z}w + w\bar{w} = |z|^2 + z\bar{w} + |z|^2 + 2\operatorname{Re}(zw) + |w|^2$$

Definition 2.3.3 – Ley de cosenos: Ecuación cuando el signo es menos

$$|z - w|^2 = |z|^2 - 2|z||w|\cos\theta + |w|^2$$

Recordando que:

$$\cos \theta = \frac{u \cdot v}{\|u\| \|v\|}$$
$$(z\overline{w}) = (Re)[(a+ib)(c-id)] = ac + bd$$

Definition 2.3.4 – Ley del paralelogramo
$$|z+w|^2 + |z-w|^2 = 2(|z|^2 + |w|^2)$$

- |zw| = |z||w| además $|zw|^2 = (zw)(z\overline{w}) = (z\overline{z})(w\overline{w}) = |z|^2|w|^2$
- Si $z \neq 0$, $|z^{-1}| = |z|^{-1}$
- Si $w \neq 0$, $\left| \frac{z}{w} \right| = \frac{|z|}{|w|} \Rightarrow |z| = \left| \frac{z}{w} w \right| = \left| \frac{z}{w} \right| |w| \Rightarrow \frac{|z|}{|w|} = \left| \frac{z}{w} \right|$
- $|z^n| = |z|^n$ donde $n \in \mathbb{N}$

2.4 Clase 4

Definition 2.4.1 – **Sea** $z \in \mathbb{C}$ **se define:** • $z^0 = 1$

- $z^1 = z$
- Si n $in\mathbb{N}, n \geq 2 \Rightarrow z^n = z^{n-1}z$ además $z^{-n} = (z^{-1})^n$

Theorem 2.4.1 – Desigualdad del triángulo Sea $z,w\in\mathbb{C}$ entonces:

$$|z+w| \le |z| + |w| \text{ si } w \ne 0$$

Nota: Dicha igualdad se cumple si y solo si $\frac{z}{w} \ge 0$, $(\frac{z}{w} \in \mathbb{R} \text{ y } \frac{z}{w} \ge 0)$

Demostración: Observesé $\operatorname{Re}(z\bar{w}) \le |z||\bar{w}| = |z||z\bar{w}| (\operatorname{Re}(z) \le |\operatorname{Re}(z)| \le |z|)$

Olos
$$\operatorname{Re}(z\bar{w}) \le |z||\bar{w}| = |z\bar{w}| \quad (\operatorname{Re}(z) \le |\operatorname{Re}(z)| \le |z|).$$

 $|z+w|^2 = |z|^2 + 2\operatorname{Re}(\bar{w}) + |w|^2$
 $\le |z|^2 + 2|z||\omega| + |w|^2 = (|z| + |w|)^2$

Suponiendo que $\exists t \in \mathbb{R}, z \geq 0, z = tw$

Con eso en cuenta:

$$|z + w| = |tw + w| = |t(t+1)| = |w|(t+1) = t|w| + |w|$$
$$= |tw| + |w| = |z| + |w|$$

 \Rightarrow Suponiendo que $|z+w|^2 = (|z|+|w|)^2$

$$|z+w| = |tw+w| = |t(t+1)| = |w|(t+1) = t|w| + |w|$$

= $|tw| + |w| = |z| + |w|$

Observación:

Sea $z \in \mathbb{C}$

$$\operatorname{Re}(z) = |z|, \Delta z \geqslant 0$$

$$(z \in \mathbb{R}, \operatorname{Re}(z)^2 + \operatorname{Im}(z)^2 = |z|^2 = \operatorname{Re}(z)^2, z \geqslant 0)$$

$$\Rightarrow \operatorname{Im}(z) = 0 \quad \Rightarrow z \in \mathbb{R}y \quad z \geqslant 0.$$

$$\operatorname{Re}(z\overline{\omega}) = |z\overline{\omega}| \Leftrightarrow z\overline{w} \geqslant 0$$

$$\Leftrightarrow z \frac{|w|^2}{w} \geqslant 0$$

$$\Leftrightarrow \frac{z}{w} \geqslant 0$$

$$\Leftrightarrow \frac{z}{w} \geqslant 0$$

2.4. CLASE 4

Theorem 2.4.2 – Designaldad de Cauchy-schwarz sean $z_1, z_2, \ldots, z_n, w_1, w_2, \ldots, w_n \in \mathbb{C}$. Entonces: $\left|\sum_{j=1}^n z_j \bar{w}_j\right| \leqslant \sum_{j=1}^n \left|z_j\right|^2 \sum_{j=1}^n \left|w_j\right|^2$ y la designaldad ocurre si y solo si: $\exists c \in \mathbb{C} \text{ T.Q. } \forall i = 1, 2, 3, \ldots, n. \quad Z_j = cw_j.$

Observación: Para $n=1\ |zw|^2=|z|^2|w|^2\Rightarrow \exists c\in\mathbb{C}, z=cw\forall z,w\in\mathbb{C}$

2.5 Clase 5

Definition 2.5.1–Formula de De Moivre Sea $z \in \mathbb{C}z \neq 0$. Tomamos |z| = r el módulo de zy θ el argumento de z, entonces:

$$z^n = r^n[\cos(n\theta) \text{ i } \sin(n\theta)] \quad n \in \mathbb{N}$$

Convención: $\forall z \in \mathbb{C} \quad z^{\circ} = 1$

Demostración: Por inducción

Para n=0

$$z^{\circ} = r^{\circ}[\cos(0) i \sin(0)]$$
$$= 1[1+0]$$
$$= 1$$

Si se cumple para n = k

$$z^k = r^k [\cos(k\theta) i \sin(k\theta)]$$

P.D.
$$n = k + 1$$

$$\begin{split} z^{k+1} = & z^k z = \left[r^k [\cos(k\theta) + i\sin(k\theta)] \right] \cdot r(\cos(\theta) \operatorname{ti} \sin(\theta)) \\ = & r^k \cdot r [\cos(k\theta) + i\sin(k\theta)] \cdot [\cos(\theta) + i\sin(\theta)] \\ = & r^{k+1} [\cos(k\theta) \cos(\theta) + \cos(k\theta) i\sin(\theta) + i\sin(k\theta) \cos(\theta) - \sin(k\theta) \sin(\theta)] \\ = & r^{k+1} [\cos(k\theta) \cos(\theta) - \sin(k\theta) \sin(\theta) + i(\sin(k\theta) \cos(\theta) + \cos(k\theta) \sin(\theta))] \\ = & r^{k+1} [\cos(k\theta + \theta) + i\sin(k\theta + \theta)] \\ = & r^{k+1} [\cos((k+1)\theta) + i\sin((k+1)\theta)] \end{split}$$

Corolario: Sea $z \neq 0$ $z \in \mathbb{C}$ con |z| = r el módulo de z y $\theta = \arg z$, entonces

$$m = n(-1)$$
 $n \in \mathbb{N}$
 $z^m = r^m(\cos(m\theta) + i\sin(m\theta))$ $\forall m \in \mathbb{Z}$

Ejemplo:

sea $z = \sqrt{3} + i$. Encuentre: z^7

$$|z| = r = \sqrt{(\sqrt{3})^2 + (1)^2} = \sqrt{4} = 2$$

$$\arg z = \pi/6 + 2\pi n \quad \forall n \in \mathbb{Z}$$

$$\arg z = \pi/6, \theta = \tan^{-1}(y/x) = \arctan(1/\sqrt{3})$$

$$z^7 = 2^7[\cos(7\pi/6) + i\sin(7\pi/6)]$$

$$= 128[-\sqrt{3}/2 - i1/2]$$

$$= -64[\sqrt{3} + i]$$