

Capston Design Mechanized Pedestrian for Automated Vehicle Development

TIM the Beaver Workshop

Approaching the Design Problem

- Problem Description
- Motivation and Background
- Project Requirements
- Engineering Specifications
- Project Plan
- Specific Challenges

Problem Description

Problem:

- 33,561 Auto-related deaths in US 2012
- 14% in US and 50% pedestrian fatalities in other regions
- Automated vehicle tests needed

Solution:

Mechanized pedestrian

Sponsor:

- Prof. Huei Peng, Dr. Jim Sayer
- Michigan Mobility Transformation Center(MMTC)

Automated Vehicle System Concept

Background and Motivation Business Connection

- Significant investment in autonomous vehicle research
- Test required for different scenarios
- Only stationary test equipment available

GPS antennas on mast above

Stationary Test Mannequin Design [1]

Requirements Overview

- Human-like
- Portable (no overhead gantry)
- Different weather conditions
- Quick Reset
- Robust to light bump
- Cost efficient

Design Driving Specifications AsiaUS Business Connection

Requirement	Specification	Design Concern		
Human-like	Travel Speed: 0 to 1 m/s	Motor power		
	Step Length:30 ± 2 in.	Leg separation angle		
	Size: 50 th percentile adult male	Weight and joint force		
Quick reset	Time: < 1 min	Mechanism design		
Cost efficient	Price: 1500 U.S. dollars	Part selection		

Project Plan

- Confirm Project Requirements and Engineering Specifications (Sep. 11)
- Mechanism Concept Generation and Selection with Preliminary Design (Sep. 25)
- Detailed Design and Simulation (Oct. 12)
- Purchasing and Prototype Fabrication (Oct. 30)
- Control System Implementation (Nov. 7)
- Design Test and Engineering Specification
 Validation (Nov. 21)

Specific Challenges

Rain resistance realization for electrical system

 Mechanical pedestrian structure balancing without over hand gantry and pulling wires

 Mimic of pedestrian motion with very few actuators and limited degree of freedom

Simple mechanism structure for reset

1

Preliminary Design

- Functional Decomposition
- Concept Generation
- Design Selection
- Prototype Model

Functional Decomposition

Concept Generation

- Linear Actuator
- Swinging Arm
- Constrained on Track
- Self-lock Brake
- Battery Powered

Concept Design 1

Concept Generation

- Linkage in Cart
- Linkage for Arm
- Aluminum Wheel
- Self-lock Brake
- Spring Loaded or Battery

Concept Design 2

Concept Generation

- Windlass Drive
- Linkage for Arm
- Aluminum Wheel
- Hard Stop Brake
- Plugged

Concept Design 3

Morphological Analysis

System Function	1	2	3	4	5	6
Log Motion	All Joints	Motor at Waist	Motors In Feet	Linkage in Cart	Windlass Pulled	Linear Actuator
Leg Motion	All Joints	numananananan	Teet S	Cart Cart	rulled	Actuator
Arm Motion	All Joints	Linkage	Free Swing			
Brake	Magnetic Clutch		Hard Stops	Worm Gear (self lock)		
Diane	Cidtell	Madced	Trial distops	(SEIT TOCK)		
Ground Roller	Track		Aluminum Wheel	Wheel with Rubber Tires		
				00		

Morphological Analysis

Sample Selection of Leg Motion Mechanism

Design Criteria	Weight: Scale(1-3)	All Joints	Motor at Waist	Motors In Feet	Linkage in Cart	Windlass Pulled	Track
Human-like	3	+++	++	++	0	+	+
Detection Interference	3	++	+	++		-	
Affordability	2		++	+	-	+++	+
Setup Time	2	++	+++	+++	+		
Portability	2	0	++	+++	+	+++	+++
Stability	2		-	+	++	+++	+++
Robustness	1			-	-	++	+
Maintenance	1		0	++	0	+	+
	Plus(+)	19	23	30	8	23	19
	Minus(-)	-16	-4	-1	-4	-9	-12
	TOTALS	-3	19	<u>29</u>	-12	14	7

Rating Scale [- - -, - -, -, 0, +, ++, +++]

Selected Design Model

- Motors in Feet
- Linkage for Arm
- Friction Induced Brake
- Wheels with Rubber Tires
- Battery Powered
- Clothes Cover
- Styrofoam Filler
- Aluminum Structure
- Isosceles & Slider

Prototype Model

Detailed Design

- CAD Modeling
- Mechanical Analysis
- Actuator Selection

Selected Design Model

- Motors in Feet
- Timing Belt for Arm Motion
- Friction Induced Brake
- Wheels with Rubber Tires
- Battery Powered
- Aluminum Structure

Motion Simulation

Solidworks Model

Torso Structure

Feet Structure

Motor Power Analysis

Analytic Result

$$f_{L} = f_{R} = \frac{1}{2}mg \tan \theta$$

$$f_{S} \approx 0 \rightarrow f_{D} = f_{L} = \frac{1}{2}mg \tan \theta$$

$$P = f_{D} \cdot v \cdot SF = \frac{1}{2}SF \cdot mgv \tan \theta$$

Estimated Value

$$m \approx 10 \ kg$$
 $v = 1 \ m/s$ $SF = 2$
 $\theta \approx 30^{\circ}$ $g = 9.8 \ m/s^2$ $P \approx 120 \ W$

Force (N) Versus Time (s) Solidworks Simulation

Ankle force exerted by the legs F_L

Free Body Diagram

Motor Selection

- Motor Power Estimation from Simulation: 120 W
 - Torque: 2.5 Nm (Through Transmission)
 - Speed: 570 RPM (Through Transmission)

	Electric Bicycle	Electric Scooter	Robots	Assembly Line	Extreme Condition
Motor Picture	G.				The state of the s
Size (in)	4*4*3	2.5*2.5*4	1.2*1.2*2	3.3*3.3*12.6	1.77*1.77*3
Power (W)	350	135	60	186.4	150
Max Speed (RPM)	2750	2500	500	500	5650-6090
Voltage (V)	24	24	12	90	12-24
Cost (\$ each)	63	59.99	24.95	469.27	699.88
Quantity	2	2	8	2	2

Manufacturing

- Engineering Drawing
- Bill of Material and Fabrication
- Assembly

Engineering Drawing

3D CAD Model Isometric View

2D Engineering Drawing

Engineering Drawing

	hina Yuar	1	6.1						
Total	1289.9								
			Application	Sub System	Vender	Link	Price	Number	Part Co
0	200		Shipping from C						
1	92.82	7.39	Driving roller	Carts	HPI-RAC		45.95	1	
			Roller Fixture	Carts		24mm hu		2	10.4
			Roller Fixture Nu			24mm.nu		4	13.9
2	16.92		Supporting Rolls		Local Sto		4.2294	4	16.9
3	96.67		T-sloted Alumin			KHFS5-2		4	91
4	259.28	12.36	Motor	Carts		24 V 150			119.9
			Driver Circuit	Carts	Monster:		20.99	2	41.5
			Timing Belt		Monster:	515-5m/		2	32.5
			Battery		Monster:		15.995	2	31.5
			Battery Charger		Monster:	24V 1Arr		1	
5	61.738	1.6393	Arduino Xbee	Control	Taobao	2mW 120		2	49.
			Arduino Xbee A	dpater	Taobao	Arduino \	5.459	2	10.9
6	79.754	0	Aluminum Fixtur	Structure	Taobao	20*20	79.754	1	79.7
7	15.082	1.9672	PS Remote Con	Control	Taobao	Aduino	13,115	1	13.1
8	3.9344	0	12mm Wheel Sh	Fixture	Taobao	12*1000	3.9344	1	3.93
9	22.977	5.7377	60 Teeth Gear	Torso Motion	Taobao	1M 60 T 8	2.0984	6	12.
			40 Teeth Gear	Torso Motion	Taobao	1M 40T 8	1.6066	2	3.21
			15 Teeth Gear	Torso Motion	Taobao	1M 15T 8r	0.718	2	1.43
10	8.6721	0	Model Mark Up	Model	Taobao	miscellar	8.6721	1	8.67
11	52.557	1.3115	Circuit Compone	Control	Taobao	miscellar	51.246	1	51.2
12	6.8197	1.3115	Connection Wire	Control	Taobao	1meter	0.918	6	5.50
13	21.292	1.6393	Infrared Sensor	Control		8 mm refl	4.9131	4	19.6
14	14.295	1.3115	Plexiglass	Fixture	Taobao	200*300	1.9508	4	7.80
			Plexiglass	Fixture		200*300		4	5.18
15	20.656	3.2787	Absolute Encod	Control	Taobao	1024	8.6885	2	17.3
16	8.1311	0.9836	Bumper Rubber	Filler	Taobao		2.0984	2	4.19
			Bumper Rubber			500×500	2.9508	1	2.95
17	7.623	0.8197		Control		miscellar		1	
18	75.738		Brake Driver	Control		20A 24V		2	21.3
	10.100		Motor Driver	Control		240w 24		2	52.4
19	64.426	2 1311	Brake	Carts	Taobao		31.148	2	62.2
20			5m 60 teeth pull			5M 60 Te		2	16.3
20 30.863 7.	1.0102	5m 540 teeth be			5M 540 T		2	3.19	
		5m 1050 teeth b			5M 1050	2.0656	2	4.13	
		5m 20 teeth pull			5m 20 Te		2	5.90	
			5m 16 teeth pulle			5m 16 Te		2	6.19
21	76.293	0.9836	8mm pillow bear			8mm pillo		12	7.39
21 10.233	5.5000	8mm flange bea			8mm flan		40		
			12mm pillow bea			12mm oill		12	13.43
			shaft look	Fixture		8mm bor		12	15.7
			8mm hard shaft			8*1000m		4	19.6
22	26,951	0.9836	permanent mag			50"20"10		8	25.9
23	6.5574		Foam	Filler		1000*110		4	5.90

Bill of Material

Fabricated Parts

Assembly

Mannequin Exploded View

Control and Electronics

- Using Scenario
- Embedded System Components
- Software Implementation

Embedded System Diagram AsiaUS Business Connection

Embedded System Diagram AsiaUS Business Connection

Ultrasonic Detection System User

Mechanized Pedestrian

Software Flow Chart

User Interface

Testing and Verification

- Functional Testing
- Measurement for Specification Verification

Testing

Measurement for Specification Verification

Step Angle Versus Displacement

Design Homework

- Perform design analysis on a prosthetic hand
 - Functional decomposition
 - Benchmark solution
 - Concept generation
 - Engineering specification