Importing libraries

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
# for the Q-Q plots
#import scipy.stats as stats
%matplotlib inline
import pandas as pd
pd.options.display.float_format = '{:.2f}'.format
#from pandas.io.json import json_normalize
```

Importing dataset for brands

```
In [2]:
brands = pd.read excel("brands.xlsx")
In [3]:
brands.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1167 entries, 0 to 1166
Data columns (total 9 columns):
id/$oid
                1167 non-null object
barcode
                1167 non-null int64
category
                1012 non-null object
categoryCode
                517 non-null object
                1167 non-null object
cpg/$id/$oid
cpg/$ref
                1167 non-null object
                1167 non-null object
name
topBrand
                555 non-null object
brandCode
                898 non-null object
dtypes: int64(1), object(8)
memory usage: 82.2+ KB
In [4]:
brands["barcode"] = brands["barcode"].astype(str)
```

localhost:8892/lab

In [5]:

brands.head()

Out[5]:

срі	categoryCode	category	barcode	_id/\$oid	
601ac114be37ce2e	BAKING	Baking	511111019862	601ac115be37ce2ead437551	0
5332f5fbe4b03c9a	BEVERAGES	Beverages	511111519928	601c5460be37ce2ead43755f	1
601ac142be37ce2e	BAKING	Baking	511111819905	601ac142be37ce2ead43755d	2
601ac142be37ce2e	BAKING	Baking	511111519874	601ac142be37ce2ead43755a	3
5332fa12e4b03c9a	CANDY_AND_SWEETS	Candy & Sweets	511111319917	601ac142be37ce2ead43755e	4

Quantifying missing data

In [6]:

brands.isnull().sum()

Out[6]:

_id/\$oid 0 barcode 0 category 155 categoryCode 650 cpg/\$id/\$oid 0 cpg/\$ref 0 name 0 topBrand 612 brand Code269 dtype: int64

percentage of missing values in variables

localhost:8892/lab 2/4

In [7]:

```
# alternatively, we can use the mean() method after isnull() to visualise the percentage o
f missing values for each variable
percentage_null_values = brands.isnull().mean()
for key,value in percentage_null_values.items():
    if value >0:
        print(key,":",value*100)
```

category : 13.281919451585262
categoryCode : 55.69837189374465
topBrand : 52.44215938303341
brandCode : 23.050556983718938

A considerate fraction of values (more than 50%) are missing from topBrand and categoryCode variables.

Checking for redundant records

```
In [8]:
```

```
duplicateRowsDF = brands[brands.duplicated()]
print("Duplicate Rows except first occurrence based on all columns are :")
print(duplicateRowsDF)
Duplicate Rows except first occurrence based on all columns are :
```

```
Duplicate Rows except first occurrence based on all columns are : 
Empty DataFrame 
Columns: [_id/$oid, barcode, category, categoryCode, cpg/$id/$oid, cpg/$ref, name, topBrand, brandCode] 
Index: []
```

No duplicate records found.

Examining values of categorical varibales

Here, the variable of my interest is brand 'category'.

In [10]:

localhost:8892/lab 3/4