คำชื้แจง

การใช้งาน LTSpice

- ทำรายงาน โดย upload เป็นไฟล์ pdf ในระบบ e-learning
- การนำเสนอ ข้อมูล ตาราง หรือ กราฟต่าง ๆ ในรายงาน ควรให้ข้อมูลที่ครบถ้วน เช่น อัตราส่วนที่ใช้ หน่วยของปริมาณ แกนนอน แกนตั้ง แทนปริมาณใด ฯลฯ
- ให้ทำรายงานด้วยตนเอง รายงานใดที่ผู้ตรวจพิจารณาแล้วเห็นว่าไม่ได้ทำ ด้วยตนเอง ฯลฯ จะได้ 0 คะแนน
- ผลการตรวจของผู้ตรวจถือเป็นสิ้นสุด

การใช้งาน

LTSpice 2

0. บทนำ

LTSpice เป็นโปรแกรมจำลองวงจร (circuit simulation program) โดยเน้นวงจรอิเล็กทรอนิกส์ที่อำนวยความ สะดวกให้กับผู้ใช้ในการวิเคราะห์วงจร นักศึกษาสามารถศึกษาการใช้โปรแกรมนี้จากวิดีโอตัวอย่างสาธิตที่เตรียมไว้ หรือแหล่งค้นคว้าอื่น ๆ ในอินเทอร์เน็ต

1. จุดประสงค์

เพื่อฝึกและเรียนรู้การใช้งานโปรแกรม LTSpice ในการคำนวณเกี่ยวกับการเชื่อมต่อวงจรขยาย 2 ชนิด คือ การต่อเชื่อมผ่านตัวเก็บประจุ (capacitor coupling) และ การต่อเชื่อมโดยตรง (direct coupling)

2. เครื่องมือและอุปกรณ์ที่ใช้ในการทดลอง

โปรแกรม LTSpice

3. การเชื่อมต่อวงจรขยายทรานซิสเตอร์ผ่านตัวเก็บประจุ

– ในโปรแกรม LTSpice สร้างวงจรตามรูปที่ 3.1 โดยให้ $R_{\!\scriptscriptstyle L}$ =100 ${
m M}\Omega$ สำหรับทรานซิสเตอร์เบอร์ 2SC458 จะมีพารามิเตอร์เป็น

```
.model q2sc458 NPN(Is=21.11f Xti=3 Eg=1.11 Vaf=100 Bf=172.7 Ise=403.4f

+ Ne=1.594 Ikf=.5186 Nk=.5 Xtb=1.5 Var=100 Br=1 Isc=0 Nc=2 Ikr=0

+ Rc=0 Cjc=4.325p Mjc=.4216 Vjc=1.414 Fc=.5 Cje=5p Mje=.3333

+ Vje=.75 Tr=10n Tf=567.9p Itf=1 Xtf=0 Vtf=10)
```


รูปที่ 3.1 วงจรขยาย 2 ภาคแบบต่อเชื่อมผ่านตัวเก็บประจุ

- ให้ $v_{_{in}}$ = 0 คำนวณวงจรและบันทึกค่าแรงดันโหนดลงในตารางที่ 3.1

ตารางที่ 3.1

	V_{B1}	V _{E1}	V _{C1}	V _{B2}	V _{E2}	V _{C2}
ค่าที่ได้ (V)						

			ร้การวิเคราะห์ A	AC หาลักษณะเ	ฉพาะเชิงขนาดข	องวงจรขย
นี้ แสดงผ	งลการจำลองที่ไ	ด้				

ลักษณะเฉพาะเชิงขนาดวงจรขยาย 2 ภาคต่อเชื่อมผ่านตัวเก็บประจุ

จากข้อมูลในตารางที่ 3.1 คำนวณหากระแสเบสและกระแสคอลเล็กเตอร์ของทรานซิสเตอร์ ทั้งสองตัวได้เป็นเท่าไร แล้วประมาณค่า β รวมถึงค่า g_m และ r_π ของวงจรสมมูลสัญญาณ เล็กของทรานซิสเตอร์ทั้งสองตัว วาดวงจรสมมูลสัญญาณเล็กในย่านความถี่กลางแล้ว คำนวณหาอัตราขยายแรงดัน ค่าที่ได้เปรียบเทียบกับค่าจากการจำลองเป็นเช่นไร (แทรกหน้าได้หากเนื้อที่ไม่ พอ)

4. การต่อเชื่อมวงจรขยายแบบโดยตรง

- ในโปรแกรม LTSpice สร้างวงจรตามรูปที่ 3.2 โดยให้ $R_{\!\scriptscriptstyle L}$ =100 ${
m M}\Omega$ สำหรับทรานซิสเตอร์เบอร์ 2SA1015 จะมีพารามิเตอร์เป็น

รูปที่ 3.2 วงจรขยาย 2 ภาคแบบต่อเชื่อมโดยตรง

– ให้ $v_{in}=0$ คำนวณวงจรและบันทึกค่าแรงดันโหนดลงในตารางที่ 3.2

ตารางที่ 3.2 ผลการทดลองวงจรเชื่อมต่อโดยตรง

	V _{B1}	V _{E1}	V _{C1}	V _{B2}	V _{E2}	V _{C2}
ค่าที่ได้ (V)						

— ให้ $v_{\scriptscriptstyle out}$ เป็นเอาต์พุตและ $v_{\scriptscriptstyle in}$ เป็นอินพุต ใช้การวิเคราะห์ AC หาลักษณะเฉพาะเชิงขนาดของ วงจรขยายนี้ แสดงผลการจำลองที่ได้

ลักษณะเฉพาะเชิงขนาดวงจรขยาย 2 ภาคต่อเชื่อมผ่านโดยตรง

จากข้อมูลในตารางที่ 3.2 คำนวณหากระแสเบสและกระแสคอลเล็กเตอร์ของทรานซิสเตอร์ ทั้งสองตัวได้เป็นเท่าไร แล้วประมาณค่า β รวมถึงค่า g_m และ r_π ของวงจรสมมูลสัญญาณ เล็กของทรานซิสเตอร์ทั้งสองตัว วาดวงจรสมมูลสัญญาณเล็กในย่านความถี่กลางแล้ว คำนวณหาอัตราขยายแรงดัน ค่าที่ได้เปรียบเทียบกับค่าจากการจำลองเป็นเช่นไร (แทรกหน้าได้หากเนื้อที่ไม่ พอ)

5.	คำถาม
	การต่อเชื่อมวงจรขยายทั้ง 2 แบบ ให้ผลตอบสนองเชิงความถี่เหมือนหรือแตกต่างกันเช่นไร แบบใดมีค่า
	แบนด์วิดท์มากกว่า