Project_Brief_Template

November 26, 2021

1 2D Design Template

2 Overview

The purpose of this project is for you to apply what you have learnt in this course. This includes working with data and visualizing it, create model of linear regression or logistic regression, as well as using metrics to measure the accuracy of your model.

Please find the project handout description in the following link: - DDW-MU-Humanities Handout - DDW-MU-SocialStudies Handout

There are two parts. - Part 1 is related to predicting COVID-19 deaths - Part 2 is open ended and you can find the problem of your interest as long as it is related to COVID-19. The only requirements are the following: - The problem can be modelled either using Linear Regression (or Multiple Linear Regression) or Logistic Regression. This means either you are working with continous numerical data or classification. You are not allowed to use Neural Networks or other Machine Learning models. - You must use Python and Jupyter Notebook

The following tasks are a general guide to help you do your project for Part 2: 1. Find an interesting problem which you can solve either using Linear Regression or Classification 1. Find a dataset to build your model. You can use Kaggle to find your datasets. 1. Use plots to visualize and understand your data. 1. Create training and test data set. 1. Build your model 1. Use metrics to evaluate your model. 1. Improve your model

2.1 Deliverables

You need to submit this Jupyter notebook together with the dataset into Vocareum. Use the template in this notebook to work on this project.

2.2 Rubrics

The rubrics for the scoring can be found in this link.

2.3 Students Submission

Students' Names: - Chua Min Pei | 1005340 - Sim Yu Hui, Kellie | 1004204 - Ryan Kaw Zheng Da | 1005144 - Eunice Kwok Xiu Yi | 1005469 - Ng Zhen An | 1005527 SC02 Group 1

3 Part 1

3.1 1.1 Introduction

For Task 1, we were tasked to build a Multiple Linear Regression model that predicts the number of deaths in various countries due to COVID-19.

After some research, we decided to use the data from the site Our World in Data (OWID) since it updates information on a regular daily basis from various sources. It includes data that fall within the following metrics (as decided by OWID):

Metrics	Source	Updated	Countries
Vaccinations	Official	Daily	218
	data		
	collated		
	by the		
	Our		
	World in		
	Data		
	team		
Tests &	Official	Weekly	139
positivity	data		
	collated		
	by the		
	Our		
	World in		
	Data		
	team		
Hospital &	Official	Weekly	38
ICU	data		
	collated		
	by the		
	Our		
	World in		
	Data		
	team		
Confirmed	JHU	Daily	196
cases	CSSE		
	COVID-		
	19		
	Data		
Confirmed	JHU	Daily	196
deaths	CSSE		
	COVID-		
	19		
	Data		

Metrics	Source	Updated	Countries
Reproduction	n Arroyo-	Daily	185
rate	Marioli F,	,	
	Bullano		
	F, Kucin-		
	skas S,		
	Rondón-		
	Moreno		
	С		
Policy	Oxford	Daily	186
responses	COVID-		
	19		
	Govern-		
	ment		
	Response		
	Tracker		
Other	International	Fixed	241
variables of	organiza-		
interest	tions		
	(UN,		
	World		
	Bank,		
	OECD,		
	IHME)		

We will elaborate on the chosen predictor variables later in the report.

3.2 1.2 Import Libraries

```
In [91]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    import itertools
```

3.3 1.3 Import Dataset

To obtain the latest version of the dataset, the link to access the CSV file was obtained from the README of OWID's repository. The line currently commented out refers to the CSV file that was downloaded locally and later uploaded into our team member's personal GitHub repository.

```
# file_url = 't3-2d-ddw/task-1/data-241121.csv'
df = pd.read_csv(file_url)

In [94]: df_first_world_countries = df[df['human_development_index'] >= 0.8]

features = ['total_cases', 'people_vaccinated_per_hundred', 'median_age', 'icu_patien'
target = ['total_deaths']
columns = ['date', 'iso_code'] + features + target

df_task_1 = df_first_world_countries.loc[:, columns]

df_task_1['date'] = pd.to_datetime(df['date'])
mask = (df_task_1['date'] > '2021-1-1') & (df_task_1['date'] <= '2021-6-30')
df_task_1 = df_task_1.loc[mask]
df_task_1.dropna(inplace=True)</pre>
```

For Task 1, we decided to remove USA from the list of countries to predict on as the population size was significantly bigger for USA, meaning that it would disproportionately affect the accuracy of our model due to the high number of cases and deaths.

3.4 1.4 Multiple Linear Regression Model

3.4.1 1.4.1 Visualisation and Plots

For visualisation of the data, we made use of Matplotlib and Seaborn that were introduced to us in class and the pre-class material.

As the code for visualisation was repeated over the course of this report, we decided to insert them as functions for easy usage in the other cells.

For any data that required preprocessing or further DataFrame analysis, we made use of codes from the cohort lessons and pre-class material.

```
return df_correlation[[column_name]].sort_values(by=column_name, ascending=False)[1
           def plot_correlation_heatmaps(df, figsize, annot=False):
              """Takes a DataFrame, the figsize of the heatmap to be plotted, and whether the hea
              correlations = df.corr()
              plt.figure(figsize=figsize)
              sns.heatmap(correlations, cmap="coolwarm", annot=annot)
              plt.show()
In [98]: df_correlation = determine_correlation(df, "total_deaths")
           plot_correlation_heatmaps(df, figsize=(8,8), annot=False)
           df correlation
                                                                                                1.0
                          total cases
                   new cases smoothed
                          new deaths
                 total_cases_per_million
                                                                                               0.8
          new cases smoothed per million
                 new deaths per million
                     reproduction rate
                                                                                               0.6
                icu_patients_per_million
               hosp patients per million
         weekly_icu_admissions_per_million
       weekly hosp admissions per million
                                                                                               0.4
                           total tests
                new tests per thousand
        new_tests_smoothed_per_thousand
                                                                                               0.2
                       tests per case
                     people_vaccinated
                        total boosters
             new vaccinations smoothed
                                                                                               0.0
           people vaccinated per hundred
              total_boosters_per_hundred
         new people vaccinated smoothed
                                                                                                -0.2
                      stringency_index
                    population_density
                       aged 65 older
                       gdp_per_capita
                                                                                                -0.4
                  cardiovasc death rate
                      female_smokers
```

-0.6

handwashing facilities

excess mortality cumulative absolute

life expectancy

excess_mortality

Out[98]:		total_deaths
	total_cases	0.985001
	excess_mortality_cumulative_absolute	0.924791
	new cases smoothed	0.833336
	new_cases	0.820425
	total_tests	0.816577
	new_deaths_smoothed	0.807415
	people_vaccinated	0.801580
	new_vaccinations_smoothed	0.792568
	new_deaths	0.785400
	total_vaccinations	0.777244
	new_vaccinations	0.771464
	icu_patients	0.769921
	people_fully_vaccinated	0.750289
	weekly_hosp_admissions	0.737262
	hosp_patients	0.711575
	new_tests	0.695591
	new_tests_smoothed	0.670885
	population	0.660583
	total_boosters	0.487783
	new_people_vaccinated_smoothed	0.480324
	weekly_icu_admissions	0.408002
	excess_mortality_cumulative_per_million	0.395564
	excess_mortality_cumulative	0.346920
	total_deaths_per_million	0.161883
	icu_patients_per_million	0.159915
	excess_mortality	0.133797
	total_cases_per_million	0.104597
	weekly_hosp_admissions_per_million	0.066179
	new_vaccinations_smoothed_per_million	0.052027
	new_deaths_smoothed_per_million	0.047599
	total_vaccinations_per_hundred	0.045578
	people_vaccinated_per_hundred	0.044310
	stringency_index	0.041968
	handwashing_facilities	0.040609
	new_people_vaccinated_smoothed_per_hundred	0.039079
	human_development_index	0.037306
	new_deaths_per_million	0.035953
	median_age	0.032146
	positive_rate	0.029646
	hosp_patients_per_million	0.028394
	total_tests_per_thousand	0.028327
	new_cases_smoothed_per_million	0.027670
	aged_65_older	0.027497
	aged_70_older	0.024743
	diabetes_prevalence	0.024439
	new_cases_per_million	0.023086
	life_expectancy	0.022771

gdp_per_capita	0.008333
<pre>people_fully_vaccinated_per_hundred</pre>	0.004510
reproduction_rate	0.000631
new_tests_per_thousand	-0.000498
male_smokers	-0.005810
new_tests_smoothed_per_thousand	-0.005964
female_smokers	-0.007083
hospital_beds_per_thousand	-0.010101
population_density	-0.019497
weekly_icu_admissions_per_million	-0.026093
cardiovasc_death_rate	-0.041108
extreme_poverty	-0.041609
tests_per_case	-0.046486
total_boosters_per_hundred	-0.184871

Based on our analysis above, we narrowed down to 4 different predictor variables to be used for our Multiple Linear Regression model. We observed that the main 3 categories that have a higher correlation with total deaths are number of cases, vaccinations and number of ICU patients. Thus, these 3 categories of variables were used in our model as predictor variables.

As datasets from different countries were used to train our model, we believe that the background of the countries should also be taken into consideration. Thus, the median age of the population was also selected to be part of our predictor variables.

In this model, we would like to use these features to test and see how they come together to affect the total death.

The predictor variables, the relevant descriptions, and metrics (mentioned in Section 1.1 above) can be seen in the table below.

Predictor Variables (X)

Variable	Description	Metrics (from OWID)	
total_cases	Total confirmed cases of COVID-19	Confirmed cases	
people_vaccinated_p	per_hu hate dchumber of people who received at least one vaccine dose per 100 people in the total population	Vaccinations	
icu_patients	Number of COVID-19 patients in intensive care units (ICUs) on a given day	Hospital & ICU	
median_age	Median age of the population, UN projection for 2020	Others	

Predicted Variable (y)

Variable Description Category total_deaths Total deaths attributed to COVID-19 Confirmed deaths


```
for col in features:
  plt.figure(figsize=(5,5))
  plt.xlabel(col)
  plt.ylabel("total_deaths")
  plt.title(col)
  plt.scatter(df_task_1[col], df_task_1["total_deaths"])
  plt.show()
```


3.4.2 1.4.2 Helper Functions and Code for Model

In this section, we defined functions that were utilised in the model, taken from the cohort lessons and pre-class material.

```
In [101]: def normalize_z(df):
    """Takes a DataFrame, returns a DataFrame with normalized values using z-score normalize (df - df.mean(axis=0)) / df.std(axis=0)
    return dfout

def normalize_minmax(df):
    """Takes a DataFrame, returns a DataFrame with normalized values using min-max normalized (df - df.min(axis=0)) / (df.max(axis=0) - df.min(axis=0))
    return dfout

def transform_features(df_feature, colname, colname_transformed):
    """Takes a DataFrame, the name of a column to be transformed, and the name for the df_feature[colname_transformed] = df[colname].apply(lambda x: x**2)
    return df_feature
```

```
def get_features_targets(df, feature_names, target_names):
  """Takes a DataFrame, a list of columns for the features, and a list of columns fo
  df_feature = df.loc[:, feature_names]
  df_target = df.loc[:, target_names]
  return df_feature, df_target
def prepare_feature(df_feature):
  """Takes a DataFrame containing the features, convert it into a numpy array, chang
  cols = len(df_feature.columns)
 np_feature = df_feature.to_numpy().reshape(-1, cols)
  constants = np.ones(shape=(np_feature.shape[0], 1))
  return np.concatenate((constants, np_feature), axis=1)
def prepare_target(df_target):
  """Takes a DataFrame containing the target, convert it into a numpy array, change
  cols = len(df_target.columns)
 np_target = df_target.to_numpy().reshape(-1, cols)
 return np_target
def predict(df_feature, beta):
  """Takes a DataFrame and an array of beta values, returns the predicted y values a
  df_feature = normalize_z(df_feature)
 np_X = prepare_feature(df_feature)
 return predict_norm(np_X, beta)
def predict_norm(X, beta):
  """Takes a Numpy array and an array of beta values, returns the straight line equa
  y_pred = np.matmul(X, beta)
  return y_pred
def split_data(df_feature, df_target, random_state=None, test_size=0.5):
  """Takes a DataFrame containing the features, a DataFrame containing the target, t
  # indexes = which is the number of rows
  indexes = df_feature.index
  if random_state != None:
      np.random.seed(random_state)
  \# k = length / size of the test array
 k = int(test_size * len(indexes))
  test_index = np.random.choice(indexes, k, replace=False)
  train_index = list(set(indexes) - set(test_index))
  df_feature_train = df_feature.loc[train_index, :]
  df_feature_test = df_feature.loc[test_index, :]
  df_target_train = df_target.loc[train_index, :]
  df_target_test = df_target.loc[test_index, :]
```

```
return df_feature_train, df_feature_test, df_target_train, df_target_test
In [102]: def compute_cost(X, y, beta):
            """Takes a Numpy array containing the features, a Numpy array containing the targe
            J = 0
            m = X.shape[0]
            error = np.matmul(X, beta) - y
            error_sq = np.matmul(error.T, error)
            J = (1/(2*m))*error_sq
            J = J[0][0]
            return J
          def gradient_descent(X, y, beta, alpha, num_iters):
            """Takes a Numpy array containing the features, a Numpy array containing the targe
            m = X.shape[0]
            J_storage = np.zeros((num_iters,1))
            for n in range(num_iters):
              deriv = np.matmul(X.T, (np.matmul(X, beta)-y))
              beta = beta - alpha * (1/m) * deriv
              J_storage[n] = compute_cost(X, y, beta)
            return beta, J_storage
In [103]: def multiple_linear_regression(df_features, df_target):
            # Normalize the features using z normalization
            df_features = normalize_z(df_features)
            # Change the features and the target to numpy array using the prepare functions
            X = prepare_feature(df_features)
            target = prepare_target(df_target)
            iterations = 20000
            alpha = 0.1
            beta = np.zeros((X.shape[1], 1))
            # Call the gradient_descent function
            beta, J_storage = gradient_descent(X, target, beta, alpha, iterations)
            # Call the predict() method
            pred = predict(df_features, beta)
            # Plotting figures for visualisation
            # plt.figure()
            # plt.title("J_storage")
            # plt.plot(J_storage)
            for column in df_features.columns:
              plt.figure()
              plt.xlabel(column)
```

```
plt.ylabel("total_deaths")
  plt.scatter(df_features[column], target, color='orange')
  plt.scatter(df_features[column], pred, color='blue')
  plt.show()

# Calculate R^2, Adjusted R^2
print("R^2 Score: ", r2_score(target, pred))
print("Adjusted R^2 Score: ", adjusted_r2_score(r2_score(target, pred), X.shape[0]
return beta
```

3.4.3 1.4.3 Finding the Best Model

In order to find the best model for multiple linear regression, we experimented with all 15 combinations of the 4 features. For our data, X1, X2, X3, X4 would give us the 15 combinations below:

1	feature	2 fea	tures	3 features	4 features	
X1	X1 -	+ X2	X1 +	X2 + X3	$\overline{X1 + X2 + X3} + X$	X4
X2	X2 -	+ X3	X2 +	X3 + X4		
X3	Х3 -	+ X4	X3 +	X4 + X1		
X4	X4 -	+ X1	X4 +	X1 + X2		
X2 + X	(4					
$X1 + \lambda$	(3					

This was done using Excel's Analysis Toolpak and later validated using Python codes. The results for this can be found in this section.

1.4.3.1 Accuracy Metrics As mentioned in the task brief, R2 is not a good metric to be used for Multiple Linear Regression. As such, we decided to take into account the metric Adjusted R2, which will show us if the variables used were potentially overfitting our model.

The Adjusted R2 Score is an improved version of R2 score that penalizes us for adding an independent variable that does not help in predicting the dependent variable [1] [2]. By taking into account the number of independent variables used for predicting the target variable, we can determine whether adding new variables to the model actually increases the model fit [2].

Sources: 1. https://www.analyticsvidhya.com/blog/2019/08/11-important-model-evaluation-error-metrics/ 2. https://www.analyticsvidhya.com/blog/2020/07/difference-between-r-squared-and-adjusted-r-squared/

```
In [104]: def r2_score(target, pred):
    """Takes a Numpy array containing the target and a Numpy array containing the pred
    diff = target - pred
        ssres = np.matmul(diff.T,diff)[0][0]
        target_mean = np.mean(target)
        diff_mean = target - target_mean
        sstot = np.matmul(diff_mean.T, diff_mean)[0][0]
        return 1 - (ssres/sstot)

    def adjusted_r2_score(r2, n, k):
```

```
"""Takes the R \cong score, number of data points, and number of features, returns the num = (1 - r2) * (n - 1) den = n - k - 1 return 1 - num/den
```

1.4.3.2 P-Value In statistics, the p-value is the probability of obtaining results at least as extreme as the observed results of a statistical hypothesis test, assuming that the null hypothesis is correct [1]. In other words, a p-value is a measure of the probability that an observed difference could have occurred just by random chance [1]. The p-value is used as an alternative to rejection points to provide the smallest level of significance at which the null hypothesis (which proposes that there is no difference between certain characteristics of a population [2]) would be rejected [1].

The level of statistical significance is often expressed as a p-value between 0 and 1 [3]. The smaller the p-value, the stronger the evidence that you should reject the null hypothesis. A p-value less than 0.05 (typically 0.05) is statistically significant [3].

In our Excel, we obtained p-values for each of our models, which was later used as a method of deciding whether the feature should be used.

Sources: 1. https://www.investopedia.com/terms/p/p-value.asp 2. https://www.investopedia.com/terms/n/null_hypothesis.asp 3. https://www.simplypsychology.org/p-value.html

1.4.3.3 Assumptions For this report, given that we used the total cases, number of people vaccinated, median age and ICU patients to predict the total_deaths, we had to make the assumption that all the variables were independent of each other.

However, in real life, we note that such an ideal situation may not occur. In actuality, the total number of cases in a country could be dependent on the number of people vaccinated or ICU patients and hence it may not be as linear as we expect it to be for the sake of this report.

1.4.3.4 Comparison with Multiple Linear Regression with Python The Linear Regression models were also similarly implemented using Python. Adjusted R2 was used as a metric to determine if the Excel was on the right track.

Adjusted R^2 Score: 0.9356786678108329 Beta Coefficient Values: [[27166.65169094]]

[35596.38213657]]

Feature(s) Used: ('people_vaccinated_per_hundred',)

Adjusted R^2 Score: 0.030134966258012152 Beta Coefficient Values: [[27166.65169094]

[6438.64587017]]

Feature(s) Used: ('median_age',)

Adjusted R^2 Score: 0.10303820661011498 Beta Coefficient Values: [[27166.65169094]]

[11837.65693348]]

Feature(s) Used: ('icu_patients',)

Adjusted R^2 Score: 0.4414629846736918 Beta Coefficient Values: [[27166.65169094]

[24457.82881978]]

Feature(s) Used: ('total_cases', 'people_vaccinated_per_hundred')

Adjusted R^2 Score: 0.9369666746037052

Beta Coefficient Values: [[27166.65169094]

[35892.0923096] [-1360.81865527]]

Feature(s) Used: ('total_cases', 'median_age')

Adjusted R^2 Score: 0.9440936904332682 Beta Coefficient Values: [[27166.65169094]]

[34759.68711611] [3479.71524753]]

Feature(s) Used: ('total_cases', 'icu_patients')

R^2 Score: 0.9367770623540452

Adjusted R^2 Score: 0.9367301958324397

Beta Coefficient Values: [[27166.65169094]

[36810.98352259] [-1708.69726686]]

Feature(s) Used: ('people_vaccinated_per_hundred', 'median_age')

Adjusted R^2 Score: 0.15969129603321597 Beta Coefficient Values: [[27166.65169094]]

[8925.87390186] [13484.0921234]]

Feature(s) Used: ('people_vaccinated_per_hundred', 'icu_patients')

Adjusted R^2 Score: 0.533784540854823

Beta Coefficient Values: [[27166.65169094]

[11384.21476983] [26576.31020694]]

Feature(s) Used: ('median_age', 'icu_patients')

Adjusted R^2 Score: 0.4610958775816061 Beta Coefficient Values: [[27166.65169094]]

[5389.5766109] [22943.10708842]]

Feature(s) Used: ('total_cases', 'people_vaccinated_per_hundred', 'median_age')

Adjusted R^2 Score: 0.9442649153932426 Beta Coefficient Values: [[27166.65169094]]

[34906.69793814] [-529.36486602] [3346.72182702]]

Feature(s) Used: ('total_cases', 'people_vaccinated_per_hundred', 'icu_patients')

Adjusted R^2 Score: 0.9403456189112083 Beta Coefficient Values: [[27166.65169094]

[38658.82986792] [-2614.99607721] [-3508.83363267]]

Feature(s) Used: ('total_cases', 'median_age', 'icu_patients')

Adjusted R^2 Score: 0.9463952584561669 Beta Coefficient Values: [[27166.65169094]]

[36500.4070933] [3777.72965452] [-2549.64650923]]

Feature(s) Used: ('people_vaccinated_per_hundred', 'median_age', 'icu_patients')

Adjusted R^2 Score: 0.5679223281875461
Beta Coefficient Values: [[27166.65169094]

[12364.92373893] [7163.82710585] [24745.44107178]]

Feature(s) Used: ('total_cases', 'people_vaccinated_per_hundred', 'median_age', 'icu_patients

Adjusted R^2 Score: 0.9481117427940894

Beta Coefficient Values: [[27166.65169094]

[37827.96947513] [-1841.15436338] [3454.91653116] [-3745.21773351]]

Features	Excel	Python
Total	0.9356179	57 339396 786678108329
Cases		
People	0.0284892	94 4303473 4966258012486
Vacci-		
nated Per		
Hundred		
Median	0.1017771	47 806489 3820661011531
Age	0.4050115	T (NE # NO W (NO) (NO) (NO) (NO)
ICU Patiente	0.43/3115	76 454327 6298467369194
Patients Total	0.0270117	88 04735 9666746037052
Cases +	0.93/011/	0011493011000/4003/032
People		
Vacci-		
nated Per		
Hundred		
Total	0.9440236	29 899454 0936904332682
Cases +		
Median		
Age		
Total	0.9368109	14 732369 301958324397
Cases +		
ICU		
Patients	0.15/0051	071110005010070100
People Vacci-	0.15639/1	37 1018596 912960332163
nated Per		
Hundred		
+ Median		
Age		
People	0.5287848	20 285488 845408548232
Vacci-		
nated Per		
Hundred		
+ ICU		
Patients		

Features	Excel	Python	
Median Age +	0.456858	670 702&680 958	775816063
ICU Patients Total Cases + People Vacci-	0.944229	522 7024\$2 649	153932426
nated Per Hundred + Median Age Total Cases + People Vacci- nated Per Hundred	0.946521	938 6494133 456	189112084
+ ICU Patients Total Cases + Median Age +	0.940815	740 15%\$63 952	584561669
ICU Patients People Vacci- nated Per Hundred + Median Age +	0.563373	545 7015/67992 23	281875463
ICU Patients Total Cases + People Vacci- nated Per Hundred + Median Age + ICU Patients	0.948480	183 7 99 4 81117	427940894

As can be seen above, the Adjusted R2 values for Excel and Python are quite similar to each

other, and the same for 3 significant figures minimally. This goes to show that our model is very accurate.

Upon further analysis, we note that the best Adjusted R2value comes from the last regression model with all 4 features being implemented. As such, we decided to isolate it and compare the beta coefficient values.

