

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 04-211379
 (43)Date of publication of application : 03.08.1992

(51)Int.CI. C12N 15/55
 C12N 1/21
 C12P 13/02
 // (C12N 15/55
 C12R 1:01)
 (C12N 1/21
 C12R 1:19)
 (C12P 13/02
 C12R 1:19)

(21)Application number : 03-033236

(71)Applicant : BEPPU TERUHIKO
 YAMADA HIDEAKI

(22)Date of filing : 27.02.1991

(72)Inventor : BEPPU TERUHIKO
 YAMADA HIDEAKI
 NISHIYAMA MAKOTO
 NAGASAWA TORU
 HORINOUCHI SUEJI

(30)Priority

Priority number : 02 48078 Priority date : 28.02.1990 Priority country : JP

(54) GENE DNA CODING POLYPEPTIDE HAVING NITRILE HYDRATASE ACTIVITY AND TRANSFORMANT CONTAINING THE SAME

(57)Abstract:

PURPOSE: To provide the title novel DNA to be used for building transformant capable of producing polypeptide having nitrile hydratase activity even for aromatic nitrile hydration.

CONSTITUTION: The objective gene DNA having (A) subunit α (H) having amino acid sequence of formula I and (B) subunit β (H) having amino acid sequence of formula II and coding polypeptide having nitrile hydratase activity. The present DNA(H) can be isolated from Rhodococcus rhodochrous J-1 (FERM P-1478).

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted]

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平4-211379

(43) 公開日 平成4年(1992)8月3日

(51) Int.Cl. ⁵ C 12 N 15/55 1/21 C 12 P 13/02 // C 12 N 15/55	識別記号 ZNA	序内整理番号 7236-4B 6977-4B	F I	技術表示箇所 C 12 N 15/00 A 審査請求 未請求 請求項の数9(全20頁) 最終頁に続く
--	-------------	------------------------------	-----	--

(21) 出願番号 特願平3-33236	(71) 出願人 別府 輝彦 東京都杉並区堀之内1丁目5番21号
(22) 出願日 平成3年(1991)2月27日	(71) 出願人 591038118 山田 秀明 京都府京都市左京区松ヶ崎木ノ本町19番地 の1
(31) 優先権主張番号 特願平2-48078	(72) 発明者 別府 輝彦 東京都杉並区堀之内一丁目5番21号
(32) 優先日 平2(1990)2月28日	(72) 発明者 山田 秀明 京都府京都市左京区松ヶ崎木ノ本町19番地 の1
(33) 優先権主張国 日本 (JP)	(74) 代理人 弁理士 平木 祐輔 (外2名) 最終頁に続く

(54) 【発明の名称】 ニトリルヒドラターゼ活性を有するポリペプチドをコードする遺伝子DN
A、これを含有する形質転換体

(57) 【要約】

【構成】 サブユニット $\alpha^{(H)}$ 、サブユニット $\beta^{(H)}$ のアミノ酸配列を有しニトリルヒドラターゼ活性を有するポリペプチドをコードする遺伝子DNA $^{(H)}$ 。サブユニット $\alpha^{(L)}$ 、サブユニット $\beta^{(L)}$ のアミノ酸配列を有しニトリルヒドラターゼ活性を有するポリペプチドをコードする遺伝子DNA $^{(L)}$ 。

【効果】 このニトリルヒドラターゼ遺伝子を菌体内に多コピー存在させ、菌体内酵素量を従来に比して飛躍的に増大させることができる。

【特許請求の範囲】

【請求項1】 配列番号1のサブユニット $\alpha^{(H)}$ 及び配列番号2のサブユニット $\beta^{(H)}$ のアミノ酸配列を有しニトリルヒドラターゼ活性を有するポリペプチドをコードする遺伝子DNA^(H)。

【請求項2】 配列番号3のサブユニット $\alpha^{(L)}$ 及び配列番号4のサブユニット $\beta^{(L)}$ のアミノ酸配列を有しニトリルヒドラターゼ活性を有するポリペプチドをコードする遺伝子DNA^(L)。

【請求項3】 サブユニット $\alpha^{(H)}$ 及びサブユニット $\beta^{(H)}$ が配列番号5及び配列番号6のDNA配列を有するものである請求項1記載の遺伝子DNA^(H)。

【請求項4】 サブユニット $\alpha^{(L)}$ 及びサブユニット $\beta^{(L)}$ が配列番号7及び配列番号8のDNA配列を有する請求項2記載の遺伝子DNA^(L)。

【請求項5】 請求項1～4記載のH遺伝子DNA又はL遺伝子DNAをベクターに組み込んだ組換え体DNA。

【請求項6】 請求項5記載の組換え体DNAで形質転換された形質転換体。

【請求項7】 請求項6記載の形質転換体を倍地に培養し、培養物からニトリルヒドラターゼを採取することを特徴とするニトリルヒドラターゼの製造法。

【請求項8】 請求項6記載の形質転換体を倍地に培養し、得られるニトリルヒドラターゼの作用によりニトリル類を対応するアミド類に転換するアミド類の製造法。

【請求項9】 請求項6記載の形質転換体を培養し、得られる形質転換体の培養液、分離菌体、菌体処理物又はこれらの固定化物をニトリル類に作用させ対応するアミド類を製造することを特徴とするアミド類の製造法。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明はロドコッカス ロドクロウス(*Rhodococcus rhodochrous*) J-1株に由来し、ニトリル類を対応するアミド類に変換する能力を有するニトリルヒドラターゼ活性を有するポリペプチドをコードする遺伝子DNA、このDNAを含む組換え体DNA及び該組換え体DNAにより形質転換された形質転換体に関する。

【0002】

【従来の技術】 ニトリル類を水和して相当するアミド類を生成させる酵素はニトリラーゼまたはニトリルヒドラターゼとして知られており、該酵素を产生する微生物として、例えばパチルス属、バクテリッシューム属、マイクロコカス属及びプレビバクテリウム属(特公昭62-21519号公報参照)、コリネバクテリウム属及びノカルジア属(特公昭56-17918号公報参照)、シュードモナス属(特公昭59-37951号公報参照)及びロドコッカス属、アルスロバクター属及びミクロバクテリウム属(特開昭61-192193号公報参照)、及びロドコッカス。ロドクロウス

50 (特開平2-470号公報参照)等の微生物を挙げができる。

【0003】

【発明が解決しようとする課題】 遺伝子組換えの方法でクローニングされたニトリルヒドラターゼ遺伝子によるニトリル類の水和では、菌体内に同遺伝子を多コピー存在させることができるために、微生物の触媒能力を従来の方法に比して飛躍的に増大させることができることが期待できる。

【0004】 この遺伝子組換え方法に関し、ロドコッカス sp. N-774株(微研条寄第1936号)に由来し、ニトリル類を対応するアミド類に変換する能力、すなわちニトリルヒドラターゼ活性を有するポリペプチドをコードする遺伝子DNAに係る発明が先に本発明者の一人らによって提案されている(特願昭63-202779号)。本発明は、さらに芳香族ニトリル類の水和に対しても極めて高いニトリルヒドラターゼ活性を有するロドコッカス ロドクロウス J-1株前記特開平2-470号公報記載からニトリルヒドラターゼ活性を有するポリペプチドをコードするDNAを取り出し、これをベクターに組み込んで組換え体DNAとし、さらに微生物に形質転換し形質転換体を得て、本発明を完成するに至った。

【0005】

【課題を解決するための手段】 本発明は、

1. 配列番号1のサブユニット $\alpha^{(H)}$ 及び配列番号2のサブユニット $\beta^{(H)}$ のアミノ酸配列を有しニトリルヒドラターゼ活性を有するポリペプチドをコードする遺伝子DNA^(H)、
2. 配列番号3のサブユニット $\alpha^{(L)}$ 及び配列番号4のサブユニット $\beta^{(L)}$ のアミノ酸配列を有しニトリルヒドラターゼ活性を有するポリペプチドをコードする遺伝子DNA^(L)、
3. サブユニット $\alpha^{(H)}$ 及びサブユニット $\beta^{(H)}$ が配列番号5及び配列番号6のDNA配列を有するものである上記1記載の遺伝子DNA^(H)、
4. サブユニット $\alpha^{(L)}$ 及びサブユニット $\beta^{(L)}$ が配列番号7及び配列番号8のDNA配列を有する上記2記載の遺伝子DNA^(L)、
5. 上記1～4記載のH遺伝子DNA又はL遺伝子DNAをベクターに組み込んだ組換え体DNA、
6. 上記5記載の組換え体DNAで形質転換された形質転換体、
7. 上記6記載の形質転換体を培地に培養し、培養物からニトリルヒドラターゼを採取することを特徴とするニトリルヒドラターゼの製造法、
8. 上記6記載の形質転換体を培地に培養し、得られるニトリルヒドラターゼの作用によりニトリル類を対応するアミド類に転換するアミド類の製造法、
9. 上記6記載の形質転換体を培養し、得られる形質転換体の培養液、分離菌体、菌体処理物又はこれらの固定化物をニトリル類に作用させ対応するアミド類を製造す

ることを特徴とするアミド類の製造法、に関する。

【0006】以下に本発明を詳細に説明する。本発明は、下記(1)～(8)の工程により実施されるものである。

(1) ニトリルヒドラターゼの抽出精製とアミノ酸配列の部分的決定：

培養集菌したロドコッカス ロドクロウスJ-1(微工研条寄第1478号)株からその中に含有される2種類のニトリルヒドラターゼ(H酵素とL酵素と呼称する。)を抽出精製し、それぞれの酵素をさらに高速液体クロマトグラフィーを用いて各2つのサブユニット(α, β)に分離する。そして、これらのサブユニットのN末端のアミノ酸配列の一部を決定する。各アミノ酸配列は配列番号9～12に示す通りである。

(2) ニトリルヒドラターゼのDNAプローブの作製：本発明においては、前記特願昭63-202779号明細書記載のロドコッカス sp. N-774株のニトリルヒドラターゼのβサブユニットのアミノ酸配列が上記各βサブユニットと高い相同意を示したことより、同明細書記載の形質転換体JM105/pYUK121(微工研条寄第1937号)を用いて、DNAプローブの作製を行った。すなわち、培養集菌したpYUK121を含有する形質転換体からpYUK121を抽出し、その中に含まれるロドコッカス sp. N-774株由来のニトリルヒドラターゼ遺伝子(配列番号13)を含むDNA断片を制限酵素SphI及びSalIで切断後抽出精製し、これを放射性同位元素でラベルし、プローブを作製する。

(3) ニトリルヒドラターゼ染色体DNAを含むDNA断片の調製：

ロドコッカス ロドクロウス J-1株から染色体DNAを分離し、これを制限酵素で切断後、サザンハイブリダイゼーション法 [Southern, E.M., J. Mol. Biol. 98, 503(1975)、以下同様]により目的遺伝子を含有するDNA断片を上記(2)のプローブを用いて検出する。

【0007】この工程で、プローブとハイブリダイズする鎖長の異なる2種類のDNA断片が選別される。

(4) 染色体DNA断片のベクターへの挿入：

工程(3)で調製した染色体DNA断片をそれぞれベクターに挿入し、組換え体DNAのライブラリーを作製する。

(5) 形質転換体の作製及び組換え体DNAの選別：

工程(4)で調製した組換え体DNAライブラリーによる形質転換体を作製し、その中から工程(2)で作製したプローブを用いてコロニーハイブリダイゼーション法 [R. Bruce Wallace, et al., Nuc. Ac. Res. 9, 879(1981)、以下同様]により目的の組換え体DNAを含む形質転換体を選別する。更にサザンハイブリダイゼーションにより、目的組換え体DNAの再確認を行う。

【0008】選別された目的のプラスミドを各々 pNHJ10H及びpNHJ20Lと称する。

(6) 組換え体DNAの精製と制限酵素地図の作成：

工程(5)で得られたpNHJ10H及びpNHJ20Lを精製した後それを用いて制限酵素地図(図1)を作成し、目的遺伝子の含まれている箇所を決定する。

(7) 塩基配列の決定：

工程(5)で得られたpNHJ10H及びpNHJ20Lの親株由来の染色体DNA断片から不要部分を制限酵素を用いて除去し、得られたDNA断片の全塩基配列(配列番号14、15)を決定し、工程(1)で決定したアミノ酸配列から予想される塩基配列を含むことを再確認する。

(8) 形質転換体を用いたニトリルヒドラターゼの生産とニトリル類のアミド類への変換：

工程(5)で作製した形質転換体を培養し、得られたニトリルヒドラターゼ酵素を含む菌体をニトリル類を含む基質溶液と混合し、アミド類を生成させる。

【0009】なお、ロドコッカス ロドクロウス J-1株は微工研に微工研条寄第1478号(FERM BP-1478)として、及び工程(5)で作製したpNHJ10Hを含有する形質転換体TG1/pNHJ10Hは微工研に微工研条寄第2777号(FERM BP-2777)としてまた同じく工程(5)で作製したpNHJ20Lを含有する形質転換体TG1/pNHJ20Lは微工研に微工研条寄第2778号(FERM BP-2778)として寄託されている。

【0010】また、上記工程で用いるベクターとしてはプラスミドベクター(例えばpAT153, pMP9, pHG624, pKC7等)、ファージベクター(例えばλgt11(東洋紡績社製), Charon 4A(Amersham社製)等)のいずれもが用いられる。また、上記工程で用いられる制限酵素としては、SphI, SalI, EcoRI, BamHI, SacI等であり、これらはいずれも市販(宝酒造社製)されているものが用いられる。また、形質転換に用いる宿主生物としてはE. coli JM105株あるいはE. coli TG1株が挙げられるが、特にこれらに限定されるものではなく、他の宿主生物を用いることができる。

【0011】形質転換体の培養に用いる培地は通常の培地が用いられる。ニトリル類のアミドへの変換には、上記形質転換体の培養により得られるニトリルヒドラターゼの他に形質転換体の培養液、分離菌体、菌体処理物、粗酵素液が用いられる。また、本発明で対象とするニトリルとしては、例えば、前記特開平2-470号公報記載の芳香環を形成する炭素数が4～10の芳香族ニトリルおよび炭素数2～6の脂肪族ニトリルであり、具体的には、例えば4-, 3-および2-シアノピリジン、ベンゾニトリル、2,6-ジフルオロベンゾニトリル、2-チオフェンカルボニトリル、2-フロニトリル、シアノピラジン、アクリロニトリル、メタクリロニトリル、クロロニトリル、アセトニトリルおよび3-ヒドロキシプロピオニトリルなどを挙げることができる。

【0012】以下、実施例により詳細に説明する。但し、本発明はこれらの実施例により限定されるものでない。なお、実施例において下記の略語を用いた。

50 TE : Tris-HCl(10mM, pH7.8), EDTA(1mM, pH8.0)

TNE:Tris-HCl(50mM, pH8.0), EDTA(1mM, pH8.0), NaCl(50mM)

STE:Tris-HCl(50mM, pH8.0), EDTA(5mM, pH8.0), Sucrose(35mM)

2xYT 培地: 1.6%トリプトン、1.0%酵母エキス、0.5%NaCl

【0013】

【実施例】

(1) ニトリルヒドラターゼの抽出精製とアミノ酸配列の部分的決定:

ロドコッカス ロドクロウス J-1株を培地(酵母エキス3g/L, KH₂PO₄ 0.5 g/L, K₂HPO₄ 0.5 g/L, MgSO₄·4H₂O 0.5 g/L, CoCl₂ 0.01g/L, クロントンアミド3g/L, pH7.2)に28°Cで80時間培養した後、集菌し、この細胞(50g)を破碎し、硫安分画し、透析後遠心して上澄みをとり、DEAE・セルロファインクロマトグラフィー、フェニル・セファロースクロマトグラフィー、セファデックスG-150 クロマトグラフィー、オクチル・セファロース・クロマトグラフィーにかけ、2種類の活性画分を得て、これを透析して酵素液を得た。そして、この酵素液をそれぞれ高速液体クロマトグラフィーで逆相カラム(Senshu Pak VP-304-1251) [(株)センシュウ科学製]を用いて二つのサブユニット(α, β)に分離した。このサブユニットのN末端からのアミノ酸配列(α₁(E), β₁(F), α₁(I), β₁(I))をアミノ酸シーケンサー〔アプライドバイオシステム社製 470A〕を用いて決定した。

【0014】このアミノ酸配列の結果は配列番号9~12に示す通りである。

(2) ニトリルヒドラターゼのDNAプローブの作製:
pYUK121 を含有するE. coli JM105株(微研条第1937号)を2xYT(50μg/mlアンピシリン含有)培地100mlで30°Cで一夜(12時間)培養後、集菌し、TNEを加え再度集菌し、STEを8ml、リゾチームを10mg加え、0°Cで5分間反応させ、0.25M EDTA 4ml加えて、更に室温で10% SDS 2ml、5M NaCl 5mlを加え、0~4°Cで3時間放置した。それを超遠心し、その上澄みに30%のPEG6000を1/2当量加え、0~4°Cで一夜(12時間)放置し、再度遠心した後TNEに溶解して7.5mlとし、CsClを加えて遠心して除蛋白後、臭化エチジウム溶液を300~500mg/ml加えシールチューブに移し、熱シールし超遠心した。そして、ベリスタポンプで cccDNAを取り出し水飽和イソプロピルアルコールを等量以上加えて臭化エチジウムを除き、TEで透析し、精製したプラスミドpYUK121約3mlを得た。

【0015】このpYUK121を制限酵素Sph IとSal Iで切断し、作製したロドコッカス sp. N-774株由来のニトリルヒドラターゼ遺伝子を含む2.07kbのDNA断片を抽出精製した。そして、このDNA断片を³²Pで放射能ラベルし、プローブを作製した。なお、このプローブの塩

基配列は配列番号13に示す通りである。

(3) ニトリルヒドラターゼ染色体DNAを含むDNA断片の調製:

ロドコッカス ロドクロウス J-1株を培地(グルコース10g/L, KH₂PO₄ 0.5g/L, K₂HPO₄ 0.5g/L, MgSO₄·7H₂O 0.5g/L, 酵母エキス1g/L, ベブトン 7.5g/L, CoCl₂ 0.01g/L, 尿素7.5g/L, グリシン1%又はアンピシリン0.2μg/ml, 水1L, pH7.2) 100mlに植菌して培養後、集菌し、TNEで洗浄後、TE10mlに懸濁し、0.25M EDTA 4ml、リゾチーム10~20mg、アクロモプロテアーゼ10~20mg及び10×SDS 10mlを加え、37°Cで3時間放置した。次にフェノールを15ml加え、室温で15分間放置し、遠心し、その上層を探った。そして2.5M酢酸ナトリウム溶液0.7ml、ジエチルエーテルを加え遠心し、その上層を捨て、下層に2容量のエタノールを加え、棒でDNAを巻き取った。これをTE:エタノール(容積比)の2:8, 1:9及び0:10の各溶液に5分間づつひたし、2~4mlのTE(37°C)に溶かし、37°CでRNase AとT₁の混合物を10μL加えた。次にフェノールを等量加え、遠心後その上層を探り、エーテルを等量以上加え、また遠心し上層を捨て、下層をクロロホルムを少量添加した2LのTEで一晩透析した。更に2回目の透析を3~4時間かけて行い、粗染色体DNA標品約4mlを得た。

【0016】次に、粗染色体DNA標品15μLに制限酵素Sac I 2μL、該酵素用緩衝液(10倍濃度)3μL及びTE 10μLを加え37°Cで1時間反応させた後、アガロースゲル電気泳動(60V, 3時間)に供した。そして工程(2)で合成したDNAプローブを用いてサザンハイブリダイゼーションを行った。その結果約6.0Kbと9.4Kbの位置に上記プローブが強くハイブリダイズするDNA断片があることが見出された。

【0017】そこで、粗染色体DNA標品15μLを前述と同様の方法で制限酵素 Sac I で切断した後、アガロースゲル電気泳動を行い、6.0Kbと9.4KbのDNA断片を含むゲルを切り出した。これを、それぞれ3倍容量の8M NaCl_{0.4}溶液を加えて可溶化した後、6mm径のGF/C滤紙(Whatman製)の上にDNAを吸着させ、次いで6M NaCl_{0.4}含有TE 100μLを10回、更に95%エタノール 100μLを10回滴下し、3分間風乾させた。そして、これを0.5mlエッペンドルフのチューブに移しTE 40μLを添加し、47°C, 30分間放置した後、遠心してその上澄み約40μLを分取した。この溶液の中に目的のニトリルヒドラターゼ染色体DNAを含む6.0KbDNA断片と9.4KbDNA断片がそれぞれ回収されることになる。

【0018】次の各工程の具体例は6.0KbDNA断片の例を述べるが、9.4KbDNA断片の場合も同様である。

(4) 染色体DNA断片のベクターへの挿入:

プラスミド pUC19 10μLに対し、制限酵素Sac I 2μL、該酵素用緩衝液(10倍濃度)3μL及びTE10μLを加え30°Cで1時間反応させ、次に0.25MEDTA 2μLを添加

7

して反応をとめ、更に1M Tris-HCl(pH 9)を7μL、BAP(細菌性アルカリホスファターゼ)3μL加えて65℃で1時間反応させた。これにTEを加えて全体を100μLとし、等量のフェノールで3回抽出し、これにエーテルを等量加えて、下層を探り、これに3M酢酸ナトリウム溶液10μLとエタノール250μLを加え、-80℃で30分放置後遠心し、乾燥してTEに溶解した。

【0019】この様にSac Iで切断し、BAP処理したpUC195μLと工程(3)で回収した6.0KbDNA断片溶液40μLを混合し、連結緩衝液6μL、6mg/ml ATP溶液6μL及びT4-DNAリガーゼ3μLとを加え、4℃で一夜(12時間)反応させることによって目的遺伝子を含有する6.0KbDNA断片をpUC19に挿入した組換え体プラスミド約60μLを作製してDNAライブラリーとした。

(5) 形質転換体の作製及び組換え体DNAの選別：

E.coli TG1株(Amersham社製)を2xYT培地10mlに37℃で植菌して12時間培養後、それを新規な2xYT培地に1%植菌し、37℃で2時間培養した。そして遠心集菌後、冷50mM CaCl₂溶液を5ml加え、0℃で40分放置後、再度遠心して、冷50mM CaCl₂溶液0.25ml及び工程(4)で調製した組換え体プラスミドを含有する溶液60μLを加え、0℃で40分放置後、42℃で2分間ヒートショックを与え0℃で5分放置して、2xYT培地10mlを加え、37℃で90分間振とう培養した後、遠心集菌した。これに2xYT培地1ml添加し菌体を充分懸濁させた後、その懸濁液を10μLずつアンピシリン50μg/ml含有2xYT培地寒天2プレートに分注し、37℃で培養した。そして、プレート上に生育した形質転換体コロニーをコロニーハイブリダイゼーション法にてニトリルヒドラターゼ遺伝子を持つ形質転換体を選抜した。すなわちプレート中に培養した形質転換体をニトロセルロースフィルター上に移し、菌体を溶かしてDNAを固定した後、これを工程(2)作製のプローブで処理し、オートラジオグラフ法で目的の組換え体DNAを含むコロニーを選択した。更に、この選択したコロニーから組換え体プラスミドを抽出し、サザンハイブリダイゼーションによって上述のプローブとハイブリダイズさせ、選抜したコロニーが目的遺伝子を含む形質転換体であることを再確認した。

(6) 組換え体プラスミドの精製と制限酵素地図の作成：

工程(5)で選択した形質転換体を2xYT(50μg/mlアンピシリン含有)培地100mlに植菌し、37℃で一夜(12時間)培養後、集菌し、TNEを加え再度集菌し、STBを8ml、リゾチームを10mg加え、0℃で5分間反応させ、0.25M EDTA 4ml加えて、更に室温で10% SDS 2ml、5M NaCl 5mlを加え、0~4℃で3時間放置した。それを超遠心し、その上澄みに30%のPEG6000を1/2当量加え、0~4℃で一夜(12時間)放置し、再度遠心した後TNEに溶解して7.5mlとし、CsClを加えて遠心して除蛋白後、臭化エチジウム溶液を300~500mg/ml加えシールチューブ

50

8

に移し、熱シールし超遠心した。そして、ベリスタポンプでcccDNAを取り出し水飽和イソプロピルアルコールを等量以上加えて臭化エチジウムを除き、TEで透析し、精製した組換え体プラスミド約3mlを得た。これをpNHJ10Hと命名した。なお、9.4kb DNA断片の場合はpNHJ20Lと命名した。

【0020】この組換え体プラスミドを、制限酵素EcoRI、BamHI、PstI、SacI及びSalI等を用いて切断し、図1に示される制限酵素地図を作製した。

(7) 塩基配列の決定：

pNHJ10Hの親株由来のDNA断片のどの部分に目的遺伝子が位置しているかを工程(6)で作成した制限酵素地図とサザンハイブリダイゼーションによって決め、不要部分を制限酵素PstIとSalI(pNHJ20Lの場合はEcoRIとSacI)にて切り縮め、6.0Kbの鎖長を1.97Kb(pNHJ20Lの場合は9.4Kbを1.73Kb)とした。そしてこの得られたDNA断片の全塩基配列をM13ファージベクターを用いたサンガー法 Sanger, F. Science 214, 1205-1210 (1981)により決定した。その結果、この親株由来のDNA断片の塩基配列は配列番号14(pNHJ20Lの場合は配列番号15)に示す通りであった。

【0021】なお、この塩基配列から予想されるアミノ酸配列は、工程(1)で決定したアミノ酸配列と完全に一致することが確認され、このDNA断片にα、βサブユニット遺伝子の両方が存在することが明らかとなった。

(8) 形質転換体を用いたニトリルヒドラターゼ生産とニトリル類のアミド類への変換：

TG1/pNHJ10HおよびTG1/pNHJ20L株をそれぞれ2xYT(50μg/mlアンピシリン含有)培地10mlに接種し30℃で一夜(12時間)培養し、この培養物を2xYT(50μg/mlアンピシリン、0.1g/l CoCl₂·6H₂O含有)培地10mlに1%宛接种し、30℃で4時間培養し、これに終濃度が1mMとなるようにIPTGを添加し、更に30℃で10時間培養した。集菌後、この菌体を0.1Mリン酸緩衝液(pH 7.5)5mlに懸濁し、5分間超音波処理により菌体を破碎後、遠心分離(12,000G 30分)した。得られた上清液、50mMリン酸カルシウム緩衝液(pH 7.5)および6mMベンゾニトリルを含有する混合液(12ml)を20℃、30分反応後、0.2ml 1MHC1を添加して反応を止めた。なお、対照試験として、上記形質転換体に代えて、E.coli TG1株のみを用いて同様に行った。反応終了後、反応液中の生成ベンズアミドを高速液体クロマトグラフィーを用いて検出した。その結果、宿主E.coli TG1株ではベンズアミドが検出できなかったが、形質転換体TG1/pNHJ10HおよびTG1/pNHJ20L株では、それぞれ、 1.75×10^{-3} および 6.99×10^{-5} units/mgの酵素活性が認められた。

【0022】ここで、unitはベンゾニトリルからベンズアミドを1Mモル/分の速度で生成させる酵素活性として定義される。

【0023】

9

10

【発明の効果】本発明により、ロドコッカス ロドクロウス J-1 株の持つサブユニット α 及びサブユニット β のアミノ酸配列を有し、ニトリルヒトラーゼ活性を有する 2 種類のポリペプチドをコードする DNA 配列が明らかにされた。そして、この DNA を含むプラスミドで形質転換された形質転換体が作出された。以上により、このニトリルヒトラーゼ遺伝子を菌体内に多コピー存在させ、菌体内酵素量を従来に比して飛躍的に増大させることができる。

【0024】

【配列表】

(vii) 配列：

5	10	15
Met Ser Glu His Val Asn Lys Tyr Thr Glu Tyr Glu Ala Arg Thr		
20	25	30
Lys Ala Ile Glu Thr Leu Leu Tyr Glu Arg Gly Leu Ile Thr Pro		
35	40	45
Ala Ala Val Asp Arg Val Val Ser Tyr Tyr Glu Asn Glu Ile Gly		
50	55	60
Pro Met Gly Gly Ala Lys Val Val Ala Lys Ser Trp Val Asp Pro		
65	70	75
Glu Tyr Arg Lys Trp Leu Glu Glu Asp Ala Thr Ala Ala Met Ala		
80	85	90
Ser Leu Gly Tyr Ala Gly Glu Gln Ala His Gln Ile Ser Ala Val		
95	100	105
Phe Asn Asp Ser Gln Thr His His Val Val Val Cys Thr Leu Cys		
110	115	120
Ser Cys Tyr Pro Trp Pro Val Leu Gly Leu Pro Pro Ala Trp Tyr		
125	130	135
Lys Ser Met Glu Tyr Arg Ser Arg Val Val Ala Asp Pro Arg Gly		
140	145	150
Val Leu Lys Arg Asp Phe Gly Phe Asp Ile Pro Asp Glu Val Glu		
155	160	165
Val Arg Val Trp Asp Ser Ser Ser Glu Ile Arg Tyr Ile Val Ile		
170	175	180
Pro Glu Arg Pro Ala Gly Thr Asp Gly Trp Ser Glu Glu Glu Leu		
185	190	195
Thr Lys Leu Val Ser Arg Asp Ser Met Ile Gly Val Ser Asn Ala		
200		
Leu Thr Pro Gln Glu Val Ile Val		

【0025】

(2) 配列番号：2

(i) 配列の長さ：229

(ii) 配列の型：アミノ酸

(iii) トポロジー：直鎖状

(iv) 配列の種類：ペプタイド

(vii) 配列：

5	10	15
Met Asp Gly Ile His Asp Thr Gly Gly Met Thr Gly Tyr Gly Pro		
20	25	30

*(1) 配列番号：1

(i) 配列の長さ：203

(ii) 配列の型：アミノ酸

(iii) トポロジー：直鎖状

(iv) 配列の種類：ペプタイド

(v) 起源

(a) 生物名：ロドコッカス・ロドクロウス

(b) 株名：J-1 (FERM BP-1478)

(vi) 配列の特徴

* (a) 他の情報： $\alpha^{(1)}$ - サブユニット

10

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

11

12

ValProTyrGlnLysAspGluProPhePheHisTyrGluTrpGlu
 35 40 45
 GlyArgThrLeuSerIleLeuThrTrpMetHisLeuLysGlyIle
 50 55 60
 SerTrpTrpAspLysSerArgPhePheArgGluSerMetGlyAsn
 65 70 75
 GluAsnTyrValAsnGluIleArgAsnSerTyrTyrThrHisTrp
 80 85 90
 LeuSerAlaAlaGluArgIleLeuValAlaAspLysIleIleThr
 95 100 105
 GluGluGluArgLysHisArgValGlnGluIleLeuGluGlyArg
 110 115 120
 TyrThrAspArgLysProSerArgLysPheAspProAlaGinIle
 125 130 135
 GluLysAlaIleGluArgLeuHisGluProHisSerLeuAlaLeu
 140 145 150
 ProGlyAlaGluProSerPheSerLeuGlyAspLysIleLysVal
 155 160 165
 LysSerMetAsnProLeuGlyHisThrArgCysProLysTyrVal
 170 175 180
 ArgAsnLysIleGlyGluIleValAlaTyrHisGlyCysGinIle
 185 190 195
 TyrProGluSerSerSerAlaGlyLeuGlyAspAspProArgPro
 200 205 210
 LeuTyrThrValAlaPheSerAlaGlnGluLeuTrpGlyAspAsp
 215 220 225
 GlyAsnGlyLysAspValValCysValAspLeuTrpGluProTyr

LeuIleSerAla

【0026】

- (3) 配列番号：3
 (i) 配列の長さ：207
 (ii) 配列の型：アミノ酸
 (iii) トポロジー：直鎖状
 (iv) 配列の種類：ペプタイド

(vii) 配列：

5 10 15
 MetThrAlaHisAsnProValGlnGlyThrLeuProArgSerAsn
 20 25 30
 GluGluIleAlaAlaArgValLysAlaMetGluAlaIleLeuVal
 35 40 45
 AspLysGlyLeuIleSerThrAspAlaIleAspHisMetSerSer
 50 55 60
 ValTyrGluAsnGluValGlyProGlnLeuGlyAlaLysIleVal
 65 70 75
 AlaArgAlaTrpValAspProGluPheLysGlnArgLeuLeuThr
 80 85 90
 AspAlaThrSerAlaCysArgGluMetGlyValGlyGlyMetGln
 95 100 105
 GlyGluGluMetValValLeuGluAsnThrGlyThrValHisAsn

110 115 120
 Met Val Val Cys Thr Leu Cys Ser Cys Tyr Pro Trp Pro Val Leu
 125 130 135
 Gly Leu Pro Pro Asn Trp Tyr Lys Tyr Pro Ala Tyr Arg Ala Arg
 140 145 150
 Ala Val Arg Asp Pro Arg Gly Val Leu Ala Glu Phe Gly Tyr Thr
 155 160 165
 Pro Asp Pro Asp Val Glu Ile Arg Ile Trp Asp Ser Ser Ala Glu
 170 175 180
 Leu Arg Tyr Trp Val Leu Pro Gln Arg Pro Ala Gly Thr Glu Asn
 195 200 205
 Phe Thr Glu Glu Gln Leu Ala Asp Leu Val Thr Arg Asp Ser Leu
 209 214 219
 Ile Gly Val Ser Val Pro Thr Thr Pro Ser Lys Ala

【0027】

(4) 配列番号: 4

(i) 配列の長さ: 226

(ii) 配列の型: アミノ酸

(iii) トポロジー: 直鎖状

(iv) 配列の種類: ベプタイド

(v) 起源

(a) 生物名: ロドコッカス・ロドクロウス

(b) 株名: J-1 (FERM BP-1478)

(vi) 配列の特徴

(a) 他の情報: $\beta^{(1)}$ - サブユニット

20

(vii) 配列:

5 10 15
 Met Asp Gly Ile His Asp Leu Gly Gly Arg Ala Gly Leu Gly Pro
 20 25 30
 Ile Lys Pro Glu Ser Asp Glu Pro Val Phe His Ser Asp Trp Glu
 35 40 45
 Arg Ser Val Leu Thr Met Phe Pro Ala Met Ala Leu Ala Gly Ala
 50 55 60
 Phe Asn Leu Asp Gln Phe Arg Gly Ala Met Glu Gln Ile Pro Pro
 65 70 75
 His Asp Tyr Leu Thr Ser Gln Tyr Tyr Glu His Trp Met His Ala
 80 85 90
 Met Ile His His Gly Ile Glu Ala Gly Ile Phe Asp Ser Asp Glu
 95 100 105
 Leu Asp Arg Arg Thr Gln Tyr Tyr Met Asp His Pro Asp Asp Thr
 110 115 120
 Thr Pro Thr Arg Gln Asp Pro Gln Leu Val Glu Thr Ile Ser Gln
 125 130 135
 Leu Ile Thr His Gly Ala Asp Tyr Arg Arg Pro Thr Asp Thr Glu
 140 145 150
 Ala Ala Phe Ala Val Gly Asp Lys Val Ile Val Arg Ser Asp Ala
 155 160 165
 Ser Pro Asn Thr His Thr Arg Arg Ala Gly Tyr Val Arg Gly Arg
 170 175 180
 Val Gly Glu Val Val Ala Thr His Gly Ala Tyr Val Phe Pro Asp
 185 190 195
 Thr Asn Ala Leu Gly Ala Gly Glu Ser Pro Gln His Leu Tyr Thr
 200 205 210
 Val Arg Phe Ser Ala Thr Glu Leu Trp Gly Glu Pro Ala Ala Pro
 215 220 225

AsnValValAsnHisIleAspValPheGluProTyrLeuLeuPro

Ala

【0028】

(5) 配列番号：5

(i) 配列の長さ：609

(ii) 配列の型：核酸

(iii) 鎮の数：一本鎮

(iv) トポロジー：直鎮状

* (v) 配列の種類：GenomicDNA

(iv) 起源

(a) 生物名：ロドコッカス・ロドクロウス

(b) 株名：J-1 (FERM BP-1478)

(vii) 配列の特徴

* (a) 他の情報： $\alpha^{(+)}$ - サブユニット

(viii) 配列：

15	30	45
GTGAGCGAGCACGTCATAAGTACACGGAGTACGAGGCACGTACC		
60	75	90
AAGCCGATCGAAACCTTGCTGTACGAGCGAGGGCTCATCACGCC		
105	120	135
GCCCGGGTCGACCGAGCTGTTCTGACTACGAGAACGAGATCGC		
150	165	180
CCGATGGGCGGTGCCAAGGTCGTGGCCAAGTCTGGGTGGACCC		
195	210	225
GAGTACCGCAAGTGGCTCGAAGAGGAACGGCACGCCGCGATGGCG		
240	255	270
TCATTGGGCTATGCCGTGAGCAGGACACACAAATTCCGGCGTC		
285	300	315
TTCAACGACTCCAAACGCATCACGTGGTGGTGTGCACTCTGTGT		
330	345	360
TCGTGCTATCCGTGGCCGGTGCTGGCTCCCCCCCCGCTGGTAC		
375	390	405
AAGAGCATGGAGTACCGGTCCCAGTGGTAGCGGACCCCTCGTGG		
420	435	450
GTGCTCAAGCGCGATTGGTITTCGACATCCCCGATGACGTGGAG		
465	480	495
GTCAGGGTTGGGACAGCAGCTCCGAAATCCGCTACATCGTCATC		
510	525	540
CCGGAACGGCCGGCCGGCACCGACGGTTGGTCCGAGGAGGAGCTG		
555	570	585
ACGAAGCTGGTGAGCCGGGACTCGATGATCGGTGTCAGTAATGCG		
600		
CTCACACCGCAGGAAGTGTGATCGTA		

【0029】

(6) 配列番号：6

(i) 配列の長さ：687

(ii) 配列の型：核酸

(iii) 鎮の数：一本鎮

(iv) トポロジー：直鎮状

(v) 配列の種類：GenomicDNA

(vi) 起源

(a) 生物名：ロドコッカス・ロドクロウス

(b) 株名：J-1 (FERM BP-1478)

(vii) 配列の特徴

(a) 他の情報： $\beta^{(+)}$ - サブユニット

(viii) 配列：

15	30	45
ATGGATGGTATCCACGACACAGGGGGATGACCGGATACGGACCG		
60	75	90
GTCCCTATCAGAAGGACGAGCCCTTCTTCACTACGAGTGGAG		

105 120 135
 GCTCGGACCCCTGTCAATTCTGACTTGGATGCATCTCAAGGGCATA
 150 165 180
 TCGTGGTGGGACAAGTCGCGTTCTCCGGGAGTCGATGGGGAAC
 195 210 225
 GAAAACACTACGTCAACGAGATTGCAACTCGTACTACACCCACTGG
 240 255 270
 CTGAGTGCAGAACGTATCCTCGTCGCCGACAAGATCATCACC
 295 300 315
 GAAGAAGAGCGAAAGCACCGTGTGCAAGAGATCCTGAGGGTCGG
 330 345 360
 TACACGGACAGGAAGCCGTGCCGGAAAGTCGATCCGGGCCAGATC
 375 390 405
 GAGAAGGGCATCGAACGGCTTCACGAGCCCCACTCCCTAGCGCTT
 420 435 450
 CCAGGAGCGGAGCCGAGTTCTCTCGGTGACAAGATCAAAGTG
 465 480 495
 AAGAGTATGAACCCGCTGGGACACACACGGTGCCCAGAAATATGTG
 510 525 540
 CGGAACAAGATCGGGAAATCGTCGCTTACCAACGGCTGCCAGATC
 555 570 585
 TATCCCGAGAGCAGCTCCGCCGCTCGGCAGCAGATCCTCGCCCG
 600 615 630
 CTCTACACGGTCCGTTTCCGCCAGGAACCTGTTGGGGCAGGAC
 645 660 675
 GGAAACGGGAAAGACGTAGTGTGCGTCGATCTGGGAACCGTAC

CTGATCTCTGCG

【0030】

- (7) 配列番号：7
 (i) 配列の長さ：621
 (ii) 配列の型：核酸
 (iii) 鎮の数：一本鎮
 (iv) トポロジー：直鎮状
 (v) 配列の種類：Genomic DNA
 (vii) 配列：

(vi) 起源

30

- (a) 生物名：ロドコッカス・ロドクロウス
 (b) 株名：J-1 (FERM BP-1478)
 (vii) 配列の特徴
 (a) 他の情報： $\alpha^{(1)}$ - サブユニット

15 30 45
 ATGACCGCCCACAATCCCGTCCAGGGCACGTTGCCACGATCGAAC
 60 75 90
 GAGGAGATCGCCGACCGGTGAAGGGCATGGAGGCCATCCTCGTC
 105 120 135
 GACAAGGGCCTGATCTCCACCGACGCCATCGACCACATGTCCCTCG
 150 165 180
 GTCTACGAGAACGAGGTGGTCCTCAACTCGGCAGGCCAGATCGTC
 195 210 225
 GCCCGCGCCTGGGTGATCCCGAGTTCAAGCAGCGCCTGCTCACC
 240 255 270
 GACGCCACCAAGCGCCCTGCCGTGAAATGGCGTGGCGGCATGCAG
 285 300 315
 GCGCAAGAAATGGTCGTGCTGGAAAACCCGGCACGGTCCACAAAC

330 345 360
ATGGTCGTATGTACCTTGTGCTCGTCTATCCGGCCGGTCTC
 375 390 405
GGCCTGCCACCCAACTGGTACAAGTACCCCGCCTACCGGCCCGC
 420 435 450
GCTGTCCGCGACCCCCGAGGTGTGCTGGCCGAATTGGATATAACC
 465 480 495
CCCGACCCCTGACGTCGAGATCCGGATATGGGACTCGAGTGGCGAA
 510 525 540
CTTCGCTACTGGGTCTGGCCAAACGCCAGCCGGCACCGAAC
 555 570 585
TTCAACCGAAGAACAACTCGCCGACCTCGTCACCCGCACTCGCTC
 600 615
ATCCGGTATCCGCCCCACCAACACCCAGCAAGCC

(vi) 起源

【0031】

(8) 配列番号：8

(i) 配列の長さ：678

(a) 生物名：ロドコッカス・ロドクロウス

(ii) 配列の型：核酸

(b) 株名：J-1 (FERM BP-1478)

(iii) 鎮の数：一本鎖

(vii) 配列の特徴

(iv) トポロジー：直鎖状

20 (a) 他の情報： $\beta^{(1)}$ -サブユニット

(v) 配列の種類：GenomicDNA

(viii) 配列：

15 30 45
ATGGATGGAATCCACGACCTCGGTGGCCGCGCCGGCTGGGTCCG
 60 75 90
ATCAAGCCCGAATCCGATGAACCTGTTTCCATCCGATTGGGAG
 105 120 135
CGGTCGGTTTGACCGATGTTCCGGCGATGGCGCTGGCCGGCG
 150 165 180
TTCAATCTCGACCACTTCCGGGGCGCATGGACAGATCCCCCG
 195 210 225
CACGACTACCTGACCTCGCAATACTACGAGCACTGGATGCACCG
 240 255 270
ATGATCCACCAACGGCATCGAGGGGGCATCTCGATTCCGACGAA
 285 300 315
CTCGACCGCCGACCCAGTACTACATGGACCATCCGGACGACAG
 330 345 360
ACCCCCACGGCGCAGGATCCGAACTGGTGGAGACGATCTCGCAA
 375 390 405
CTGATCACCCACGGAGCCGATTACCGACGCCGACCGACACCGAG
 420 435 450
GCCGCATTGCCGTAGGCGACAAAGTCATCGTGGTCCGACGCC
 480 495
TCACCGAACACCCACACCCGCCGCCGGATACGTCCGGTCTG
 510 525 540
GTCGGCGAACGTGTCGGGACCCACGGCGCGTATGTCTTCCGGAC
 555 570 585
ACCAACCGCACTCGGCCGGCGAAAGCCCCGAACACCTGTACACC
 600 615 630
GTGGCGTTCTCGGGCGACCGAGTTGTGGGTGAACCTGCCCGCCCG

645 660 675
AACGTCGTCAATCACATCGACGTGTTCGAACCGTATCTGCTACCG

GCC

【0032】

- (9) 配列番号: 9
 (i) 配列の長さ: 26
 (ii) 配列の型: アミノ酸
 (iii) トポロジー: 直鎖状
 (iv) 配列の種類: ベブタイド

* 10

(vii) 配列:

5 10 15
Ser-Glu-His-Val-Asn-Lys-Tyr-Thr-Glu-Tyr-Glu-Ala-Arg-Thr-Lys
20 25
Ala-Ile-Glu-Thr-Leu-Leu-Tyr-Glu-Arg-Gly-Leu

*(v) 起源

【0033】

- (10) 配列番号: 10
 (i) 配列の長さ: 28
 (ii) 配列の型: アミノ酸
 (iii) トポロジー: 直鎖状
 (iv) 配列の種類: ベブタイド

※ (a) 他の情報: $\beta^{(8)}$ - サブユニット: $\beta_1^{(3)}$

(vii) 配列:

5 10 15
Met-Asp-Gly-Ile-His-Asp-Thr-Gly-Gly-Met-Thr-Gly-Tyr-Gly-Pro
20 25
Val-Pro-Tyr-Gln-Lys-Asp-Glu-Pro-Phe-Phe-His-Tyr-Glu

★(v) 起源

【0034】

- (11) 配列番号: 11
 (i) 配列の長さ: 15
 (ii) 配列の型: アミノ酸
 (iii) トポロジー: 直鎖状
 (iv) 配列の種類: ベブタイド

★ (a) 他の情報: $\alpha^{(1)}$ - サブユニット: $\alpha_1^{(1)}$

(vii) 配列:

5 10 15
Thr-Ala-His-Asn-Pro-Val-Gln-Gly-Thr-Leu-Pro-Arg-?-Asn-Glu

★(v) 起源

【0035】

- (12) 配列番号: 12
 (i) 配列の長さ: 19
 (ii) 配列の型: アミノ酸
 (iii) トポロジー: 直鎖状
 (iv) 配列の種類: ベブタイド

★ (a) 他の情報: $\beta^{(1)}$ - サブユニット: $\beta_1^{(1)}$

(vii) 配列:

5 10 15
Met-Asp-Gly-Ile-His-Asp-Leu-Gly-Gly-Arg-Ala-?-Leu-?-Pro

Ile-Lys-Pro-Glu

【0036】

- (13) 配列番号: 13
 (i) 配列の長さ: 2070
 (ii) 配列の型: 核酸

(iii) 鎮の数: 一本鎮

(iv) トポロジー: 直鎖状

(v) 配列の種類: Genomic DNA

50 (vi) 起源

23

- (a) 生物名: ロドコッカス sp
 (b) 株名: N-774 (FERM BP-1936)
 (vii) 配列の特徴

24

No. 675~1295 : サブユニット α
 No. 1225 ~1960 : サブユニット β

(viii) 配列:

SphI

GCATGCTTCCACATCTGGAACGTGATGCCACGGACGGTGGTG

50

CCTACCAGATTTGGACGGCAACGGATAACGGCATGAACGCCGAAG

100

TTTGTACGATCCGGAACTGATGGCACACTTGCTCTCGACCGA

150

TTCAGCACGCCACCGCTCTGTCCGAAACCGTCAAACCTGGTGGCCC

200

TGACCGGCCACCACGGCATCACCAACCCCTCGCGGCCGAGCTACG

250

GCAAAGCCCGAACCTCGTACCGCTTGCCCCGCCCCCTACGACA

300

CTGCCTTGAGACAATTGACGTCTGGTATGCCAACGCTGCCCT

350

ACGTCCATCGAATTGCCGGCAAGGACGTAGATCGTGCACCT

400

TCATCACCAAGGCTCTGGATGATGCCAACACGGCACCATTCG

ACGTGACCGGACATCCGCCCTGTCGTTCCGGCCCTGGTGA

450 ACGGGGTCCGGTCAAATGATGATCACGGCAGACACTTCGACG

500

HindIII ATGCGACAGTCCTTCGTGTCGGACCGCATTGAAAAGCTTCGCG

550

GCCGGTTCCGACGCCGGCGAACCGCCCTCCAACCTGACCCAC

600

AACTCAGCCCCGCTAGTCCTGACGCCACTGTCAGACAACAAATTG

650

CACCGATTACACATGATCAGCCACATAAGAAAAGGTGAACCAAG

700

ATGTCAGTAACGATCGACCACACAACGGAGAACGCCGACCGCC

MetSerValThrIleAspHisThrThrGluAsnAlaAlaProAla

Subunit α

750

CAGGGCGGGCTCCGACCGGGCTGGGCACTGTTCCGGCAGTC

GlnAlaAlaValSerAspArgAlaTrpAlaLeuPheArgAlaLeu

Kpn I

800

GACGGTAAGGGATTGGTACCCGACGGTTACGTCGAGGGATGGAAG

AspGlyLysGlyLeuValProAspGlyTyrValGluGlyTrpLys

850

AAGACCTCCGAGGAGGACTTCAGTCCAAGGCCGAGCGGAATTG

LysThrSerGluGluAspPheSerProArgArgGlyAlaGluLeu

PvuII

GTAGCCCGCGATGGACCGACCCCGAGTCCGGCAGCTGCTTCTC

ValAlaArgAlaTrpThrAspProGluPheArgGlnLeuLeuLeu

900 Kpn I

25

26

ACCGACGGTACCGCCGAGTTGCCAGTACGGATACTGGCCCC
ThrAspGlyThrAlaAlaValAlaGlnTyrGlyTyrLeuGlyPro

950 CAGGCAGGCCTACATCGTGGCAGTCGAAGACACCCCGACACTCAAG
GlnAlaAlaTyrIleValAlaValGluAspThrProThrLeuLys

1000 AACGTGATCGTGTGCTCGCTGTGTTATGCACCGCGTGGCCCAC
AsnValIleValCysSerLeuCysSerCysThrAlaTrpProlle

1050 CTGGCTGCCACCCACCTGGTACAAGAGCTTCGAATAACCGTGCG
LeuGlyLeuProProThrTrpTyrLysSerPheGluTyrArgAla

1100 CGCGTGGTCCGCCAACACCGAAGGTTCTCTCCGAGATGGGAACC
ArgValValArgGluProArgLysValLeuSerGluMetGlyThr

1150 GAGATCGCGTCGGACATCGAGATTCCGCTTACGACACCACCGCC
GluIleAlaSerAspIleGluIleArgValTyrAspThrThrAla

1200 GAAACTCGCTACATGGCTCTCCGCAGCGTCCCCGGGACCGAA
GluThrArgTyrMetValLeuProGlnArgProAlaGlyThrGlu

Pst I 1250 GGCTGGAGCCAGGAACAACTGCAGGAAATCGTACCAAGGACTGC
GlyTrpSerGlnGluGlnLeuGlnGluIleValThrLysAspCys

1300 CTGATGGGGTTCCAATCCCGCAGGTTCCCACCGTCTGATCACCC
LeuIleGlyValAlaIleProGlnValProThrValTRM

CGACAAGAAGGAAGCACACC-ATGGATGGAGTACACGATCTGCC
MetAspGlyValHisAspLeuAla
Subunit β

1350 GGAGTACAAGGCTCGCAAAGTCCCGCATACCGTCAACGCCGAC
GlyValGlnGlyPheGlyLysValProHisThrValAsnAlaAsp

1400 ATCGCCCCCACCTTCACGCCGAATGGAACACCTGCCCTACAGC
IleGlyProThrPheHisAlaGluTrpGluHisLeuProTyrSer

1450 Sal I CTGATGTTGCCGGTGTGCCGAACTCGGGCCTTCAGCGTCGAC
LeuMetPheAlaGlyValAlaGluLeuGlyAlaPheSerValAsp

1500 GAAGTGCATACTCGTCGAGCGGATGGAGGCCGGCACTACATG
GluValArgTyrValValGluArgMetGluProGlyHisTyrMet

1550 ATGACCCCGTACTACGAGAGGTACGTCATCGGTGTCGCGACATTG
MetThrProTyrTyrGluArgTyrValIleGlyValAlaThrLeu

1600 ATGGTCAAAAGGAATCCTGACGCCAGGACGAACCGAAAGCCTT
MetValGluLysGlyIleLeuThrGlnAspGluLeuGluSerLeu

1650 CGGGGGGACCGTCCACTGTCACGGCCCAGCGAATCCGAAGGG

27

28

AlaGlyGlyProPheProLeuSerArgProSerGluSerGluGly
 . 1700
 CGGCCGGCACCGTCGAGACGACCACCTCGAAGTCGGGCAGCGA
 ArgProAlaProValGluThrThrPheGluValGlyGlnArg
 . 1750
 GTACCGTACCGCAGACTACGTTCCGGGCATATCGAATGCCT
 ValArgValArgAspGluTyrValProGlyHisIleArgMetPro
 .
 CGATACTGCCGTGGACGAGTGGGAACCATCTCTCATCGAACTACC
 AlaTyrCysArgGlyArgValGlyThrIleSerHisArgThrThr
 . 1800
 GAGAACTGGCCGTTCCGACGCAATCGGCCACGGGCACGAC
 GluLysTrpProPheProAspAlaIleGlyHisGlyArgAsnAsp
 . 1850
 GCGGGCGAAGAACCGACGTACCACTCGAAGTTCGCCGAGGAA
 AlaGlyGluGluProThrTyrHisValLysPheAlaAlaGluGlu
 . 1900 Sal I
 TTGTTGGTAGCGACACCGACGGTGGAAAGCGTGTGTCGACCTC
 LeuPheGlySerAspThrAspGlyGlySerValValAspLeu
 . 1950
 TTCGAGGGTTACCTCGAGCCTGGCCCTGATCTTCAGCATTCCA
 PheGluGlyTyrLeuGluProAlaAlaTRM
 . 2000
 GGCGGCGGTACCGCGATCACAGCGGTTCTGCGACCGCCGCTGA
 . 2050
 TCACCAAGATTCACTCATTGGAAAGGACACTGGAAATCATGGTCG
 Sal I

【0037】

- (14) 配列番号 : 14
 (i) 配列の長さ : 1970
 (ii) 配列の型 : 核酸
 (iii) 鎮の数 : 一本鎖
 (iv) トポロジー : 直鎖状
 (v) 配列の種類 : Genomic DNA
 (viii) 配列 :

- (vi) 起源
 (a) 生物名 : ロドコッカス・ロドクロウス
 30 (b) 株名 : J-1 (FERM BP-1478)
 (vii) 配列の特徴
 No. 408~1094 : サブユニット $\beta^{(H)}$
 No. 1111 ~1719 : サブユニット $\alpha^{(H)}$

10 20 30 40 50 60 CT
 GCAGCTCGAACATCGAAGGGTGCAGGCCAGAGATCGGAGACGCGACACACCCGGAGGG
 70 80 90 100 110 120
 AACTTAGCCTCCGGACCGATGCGTGTCTGGCAACGCCCTCAAAATTCACTGCAAGCGAT
 130 140 150 160 170 180
 TCAATCTTGTACTTCCAGAACCGAATCACGTCCCCGTAGTGTGCGGGGAGAGCGCCCGA
 190 200 210 220 230 240
 ACGCAGGGATGGTATCCATGCGCCCTTCTCTTTCAACGAGAACGGCCGGTACAGCC
 250 260 270 280 290 300
 GACCCGGAGACACTGTGACGCCGTTCAACGATTGTTGTGCTGTGAAGGATTACCCAAAC

29

30

310 320 330 340 350 360

CAACTGATATGCCATTGGTGCAGAACATTGACACCTTCCTACCGAGTAGAAGC

370 380 390 400 410 420

CAGCTGGACCCCTTTGAGCCCAGCTCCGATGAAAGGAATGAGGAATGGATGGTATCC
MetAspGlyIleH
Subunit $\beta^{(H)}$

430 440 450 460 470 480

ACGACACAGCGGCCATGACCGATAACGGACCGTCCCTATCAGAAGGACGAGCCCTCT
isAspThrGlyGlyMetThrGlyTyrGlyProValProTyrGlnLysAspGluProPheP

490 500 510 520 530 540

TCCACTACGAGTGGGAGGGTCGGACCCCTGCAATTCTGACTGGATGCATCTCAAGGGCA
heHisTyrGluTrpGluGlyArgThrLeuSerIleLeuThrTrpMetHisLeuLysGlyI

550 560 570 580 590 600

TATCGTGGGGACAAGTCGGTTCTCCGGAGTCATGGGGAACGAAAATACGTCA
leSerTrpTrpAspLysSerArgPhePheArgGluSerMetGlyAsnGluAsnTyrValA

610 620 630 640 650 660

ACGAGATTCCAACCTGTACTACACCCACTGGCTGAGTCGGCAGAACGTATCCTCGTCG
snGluIleArgAsnSerTyrTyrThrHisTrpLeuSerAlaAlaGluArgIleLeuValA

670 680 690 700 710 720

CCGACAAGATCATACCGAAGAAGAGCAGAACCGTGTCAGAGATCCTTGAGGGC
IaAspLysIleIleThrGluGluGluArgLysHisArgValGlnGluIleLeuGluGlyA

730 740 750 760 770 780

GGTACACGGACAGGAAGCCGTCGGAGTCGATCCGGCCAGATCGAGAAGGCGATCG
rgTyrThrAspArgLysProSerArgLysPheAspProAlaGlnIleGluLysAlalleG

790 800 810 820 830 840

AACGGCTTCACGAGCCCCACTCCCTAGCGCTTCAGGAGCGGAGCCGAGTTCTCTCG
luArgLeuHisGluProHisSerLeuAlaLeuProGlyAlaGluProSerPheSerLeuG

850 860 870 880 890 900

GTGACAAGATCAAAGTGAAGAGTATGAACCCGCTGGGACACACACGGTGCCGAAATATG
lyAspLysIleLysValLysSerMetAsnProLeuGlyHisThrArgCysProLysTyrV

910 920 930 940 950 960

TGCGGAACAAGATCGGGAAATCGTCGCCCTACACGGCTGCCAGATCTATCCGAGAGCA
alArgAsnLysIleGlyGluIleValAlaTyrHisGlyCysGlnIleTyrProGluSerS

970 980 990 1000 1010 1020

GCTCCGCCGGCTCGGCACGATCCTCGCCGCTCTACACGGTCGGTTTCGGCCAGG
erSerAlaGlyLeuGlyAspAspProArgProLeuTyrThrValAlaPheSerAlaGlnG

1030 1040 1050 1060 1070 1080

AACTGTGGGGCACGACGGAAACGGAAAGACGTAGTGTGCGTCGATCTGGGAACCGT
luLeuTrpGlyAspAspGlyAsnGlyLysAspValValCysValAspLeuTrpGluProT

1090 1100 1110 1120 1130 1140

ACCTGATCTGCGTGAAGGAATACGATAGTGTGAGCGAGCACGTCAATAAGTACACGGAG
yrLeuIleSerAla MetSerGluHisValAsnLysTyrThrGlu
Subunit $\alpha^{(H)}$

1150 1160 1170 1180 1190 1200

TACGAGGCACGTACCAAGGGATCGAAACCTTGCTGTACGAGCGAGGGCTCATCAGCCC
TyrGluAlaArgThrLysAlaIleGluThrLeuLeuTyrGluArgGlyLeuIleThrPro

1210 1220 1230 1240 1250 1260

GCCGCGGTGACCGAGTCGTTCTGACTACGAGAACGAGATCGGCCCCGATGGGCGGTGCC
AlaAlaValAspArgValValSerTyrTyrGluAsnGluIleGlyProMetGlyGlyAla

31

32

1270 1280 1290 1300 1310 1320
 AAGGTCGTGGCCAAGTCCTGGTGGACCCCTGAGTACCGCAAGTGGCTCGAAGAGGGACCG
 LysValValAlaLysSerTrpValAspProGluTyrArgLysTrpLeuGluGluAspAla
 1330 1340 1350 1360 1370 1380
 ACGGCCGCATGGCGTCATTGGCTATGCCGGTGAGCAGGCACACCAAATTGGCGGTC
 ThrAlaAlaMetAlaSerLeuGlyTyrAlaGlyGluGlnAlaHisGlnIleSerAlaVal
 1390 1400 1410 1420 1430 1440
 TTCAACGACTCCCAAACGCATCACGTGGTGGTGCACCTCTGTGTTGCTATCCGTGG
 PheAsnAspSerGlnThrHisHisValValValCysThrLeuCysSerCysTyrProTrp
 1450 1460 1470 1480 1490 1500
 CCGGTGCTTGGCTCCGCCCGCCTGGTACAAGGACATGGAGTACCGGTCCCGAGTGGTA
 ProValLeuGlyLeuProProAlaTrpTyrLysSerMetGluTyrArgSerArgValVal
 1510 1520 1530 1540 1550 1560
 GCGGACCCCTCGTGGAGTGCTCAAGCGCATTGCGTTGACATCCCCGATGAGGTGGAG
 AlaAspProArgGlyValLeuLysArgAspPheGlyPheAspIleProAspGluValGlu
 1570 1580 1590 1600 1610 1620
 GTCAGGGTTGGGACAGCAGCTCCGAAATCCGCTACATCGTCATCCCGAACGGCCGGCC
 ValArgValTrpAspSerSerGluIleArgTyrIleValIleProGluArgProAla
 1630 1640 1650 1660 1670 1680
 GGCACCGACCGTTGGTCCGAGGAGGAGCTGACGAAGCTGGTGAGCCGGACTCGATGATC
 GlyThrAspGlyTrpSerGluGluLeuThrLysLeuValSerArgAspSerMetIle
 1690 1700 1710 1720 1730 1740
 GGTGTCAGTAATGCGCTCACACCGCAGGAAGTGATCGTATGAGTGAAGACACACTCACTG
 GlyValSerAsnAlaLeuThrProGlnGluValIleVal
 1750 1760 1770 1780 1790 1800
 ATCGGCTCCGGCGACTGGGACCGCCGACCGCCCCGACAATGGCAGCTTGTATTCA
 1810 1820 1830 1840 1850 1860
 CCGAGCCTTGGGAAGCAACGGCATTGGGGTCGCCATCGCCTTCGGATCAGAAGTCGT
 1870 1880 1890 1900 1910 1920
 ACGAATGGGAGTTCTCCGACAGCGTCTCATTCACTCATCGCTGAGGCCAACGGTTGCG
 1930 1940 1950 1960 1970
 AGGCATACTACGAGAGCTGGACAAAGGCCTCGAGGCCACGGTGGTCGAC

(vi) 起源

(a) 生物名: ロドコッカス・ロドクロウス

(b) 株名: J-1 (FERM・BP)

(vii) 配列の特徴

40 No. 171~848 : サブユニット $\beta^{(1)}$ No. 915~1535 : サブユニット $\alpha^{(1)}$

(viii) 配列:

10 20 30 40 50 60
 GAGCTCCCTGGAGCCACTCGCGCCGACGCATCCACGCTGGACAGCCCACGGTGGATC
 70 80 90 100 110 120
 ACCCTGTCGTCGGTAACAGAACAGTAACATGTCATCAGGTATGACGGTGGTACGCAT
 130 140 150 160 170 180
 TAGACGAGGGCACATAGGGTTGGTACTCACGGCACAAGGAGAGCATTGATGGATGAA

MetAspGlyI
Subunit $\beta^{(L)}$

190	200	210	220	230	240
TCCACGACCTCGGTGGCGCGCCGCTGGGTCCGATCAAGCCCGAATCCGATGAACCTG					
IeHisAspLeuGlyGlyArgAlaGlyLeuGlyProIleLysProGluSerAspGluProV					
250	260	270	280	290	300
TTTCCATTCCGATTGGGAGCGGTGGTTGACGATGTCGCCGATGGCGCTGGCG					
alPheHisSerAspTrpGluArgSerValLeuThrMetPheProAlaMetAlaLeuAlaG					
310	320	330	340	350	360
GCGCGTTCAATCTCGACCAGTCCGGGCGCGATGGAGCAGATCCCCCGCACGACTACC					
IyAlaPheAsnLeuAspGlnPheArgGlyAlaMetGluGlnIleProProHisAspTyrL					
370	380	390	400	410	420
TGACCTCGCAATACTACGAGCACTGGATGCCACGGATGATCCACCAACGGCATCGAGGCGG					
euThrSerGlnTyrTyrGluHisTrpMetHisAlaMetIleHisHisGlyIleGluAlaG					
430	440	450	460	470	480
GCATCTTCGATTCCGACGAACCTCGACCCGCCGACCCAGTACTACATGGACCATCCGACG					
IyIlePheAspSerAspGluLeuAspArgArgThrGlnTyrTyrMetAspHisProAspA					
490	500	510	520	530	540
ACACGACCCCCACGCGGAGGATCCGCAACTGGTGGAGACGATCTGCAACTGATCACCC					
spThrThrProThrArgGlnAspProGlnLeuValGluThrIleSerGlnLeuIleThrH					
550	560	570	580	590	600
ACGGAGCCGATIACCGACGCCGACCGACACCAGGGCCGATTCGGTAGGCACAAAG					
isGlyAlaAspTyrArgArgProThrAspThrGluAlaAlaPheAlaValGlyAspLysV					
610	620	630	640	650	660
TCATCGTGGGTCGGACGCCCTACCGAACCCCACACCCGCCGCGATACGTCCCGC					
alIleValArgSerAspAlaSerProAsnThrHisThrArgArgAlaGlyTyrValArgG					
670	680	690	700	710	720
GTCGTGTCGGCGAAGTCGTGGCAGCCACGGCGCTATGTCCTTCCGGACCCAACCGAC					
IyArgValGlyGluValValAlaThrHisGlyAlaTyrValPheProAspThrAsnAlaL					
730	740	750	760	770	780
TCCGGCCGGCGAAAGCCCCGAAACCTGTACACCGTGGGTTCTGGCGACCGAGTTGT					
euGlyAlaGlyGluSerProGluHisLeuTyrThrValArgPheSerAlaThrGluLeuT					
790	800	810	820	830	840
GGGGTGAACCTGCCGCCCGAACGTCGTCAATCACATCGACGTGTTGAAACCGTATCTGC					
rpGlyGluProAlaAlaProAsnValValAsnHisIleAspValPheGluProTyrLeuL					
850	860	870	880	890	900
TACCGGCCCTGACCAGGTATCCGTCCACCCAGCGAGACGTCCTTCACACAGACAGAA					
euProAla					
910	920	930	940	950	960
ACGAGCCCACCCGATGACCCCCACAATCCCGTCCAGGCACGTTGCCACGATCGAACG					
MetThrAlaHisAsnProValGlnGlyThrLeuProArgSerAsnG					
Subunit $\alpha^{(L)}$					
970	980	990	1000	1010	1020
AGGAGATCGCCGACGCGTGAAGGCCATGGAGGCCATCTCGTCGACAAGGGCCTGATCT					
luGluIleAlaAlaArgValLysAlaMetGluAlaIleLeuValAspLysGlyLeuIleS					
1030	1040	1050	1060	1070	1080
CCACCGACGCCATCGACCACTGTCCTCGGTCTACGAGAACGAGGTGCGTCTCAACTCG					
erThrAspAlaIleAspHisMetSerSerValTyrGluAsnGluValGlyProGlnLeuG					
1090	1100	1110	1120	1130	1140
GCGCCAAGATCGTGGCCGCGCTGGTCGATCCGAGTCACCGAGCCCTGCTCACCG					

35

36

IyAlaLysIleValAlaArgAlaTrpValAspProGluPheLysGlnArgLeuLeuThrA
 1150 1160 1170 1180 1190 1200
 ACGCCACCAGCGCCTGCCGTGAAATGGCGTCGGCGCATGCAAGGGGAAGAAATGGTCG
 spAlaThrSerAlaCysArgGluMetGlyValGlyGlyMetGlnGlyGluGluMetValV
 1210 1220 1230 1240 1250 1260
 TGCTGGAAAACACCGGCACGGTCCACAACATGGCGTATGTACCTTGCTCGTGCATC
 alLeuGluAsnThrGlyThrValHisAsnMetValValCysThrLeuCysSerCysTyrP
 1270 1280 1290 1300 1310 1320
 CGTGGCCGGTTCTCGGCCTGCCACCCAACTGGTACAAGTACCCCGCTACCGCGCCCCCG
 roTrpProValLeuGlyLeuProProAsnTrpTyrLysTyrProAlaTyrArgAlaArgA
 1330 1340 1350 1360 1370 1380
 CTGTCGCGCACCCCCGAGGTGTGCTGGCGAATTGGATATACCCCGCACCTGACGTCG
 laValArgAspProArgGlyValLeuAlaGluPheGlyTyrThrProAspProAspValG
 1390 1400 1410 1420 1430 1440
 AGATCCGGATATGGGACTCGAGTGCCGAACCTCGCTACTGGGTCTGCCAACGCCAG
 lulleArgIleTrpAspSerSerAlaGluLeuArgTyrTrpValLeuProGlnArgProA
 1450 1460 1470 1480 1490 1500
 CCGGCACCGAGAACTTCACCGAAGAACAACTCGCCGACCTCGTACCCCGGACTCGCTCA
 laGlyThrGluAsnPheThrGluGluGlnLeuAlaAspLeuValThrArgAspSerLeuI
 1510 1520 1530 1540 1550 1560
 TCGCGTATCCGCCCCACACACCCAGCAAGGCGTGCACATGCCCGACTAACGAAACAA
 leGlyValSerValProThrThrProSerLysAla
 1570 1580 1590 1600 1610 1620
 CCCCACCCGGTCTGAAGCCAACCTCGCGACCTGGTACAGAATCTGCCGTTAACGAA
 1630 1640 1650 1660 1670 1680
 CGAATCCCCCGCCGCTCCGGCGAGGTGCCATCGATCAGGCCTGGGAGATCCGCGCCTC
 1690 1700 1710 1720 1730

AGCATGGCCACCGCATGCAATGCCAGGGCGATTCGAATGGGACCAATT

限酵素地図。

【図面の簡単な説明】

【図1】組換え体プラスミドpNHJ10H 及び pNHJ20Lの制

【図1】

フロントページの続き

(51) Int.Cl.⁵
 C 12 R 1:01)
 (C 12 N 1/21
 C 12 R 1:19)
 (C 12 P 13/02
 C 12 R 1:19)

識別記号 庁内整理番号 F I

技術表示箇所

(72) 発明者 西山 真
 東京都新宿区西落合二丁目16番11号

(72) 発明者 長沢 透
 京都府京都市左京区高野東開町1-7
 (72) 発明者 堀之内 未治
 千葉県千葉市弥生町1-170