Interrupciones de Reloj y Teclado.

Manuel Ferreria ---> Pablo Somodi

DC - FCEyN - UBA

27 de Octubre de 2015

Volviendo a interrupciones...

Volviendo a interrupciones...

- IDT: Almacena descriptores de interrupción.
 - Su dirección se almacena en el registro IDTR.

Volviendo a interrupciones...

- IDT: Almacena descriptores de interrupción.
 - Su dirección se almacena en el registro IDTR.

Tipo	Mnemónico	Descripción	Clase	Código de	Fuente
				Error	
0	#DE	Error de División	Fault	NO	Instrucciones DIV e IDIV
1	#DB	Reservada	Fault/Trap	NO	Solo para uso de Intel
2	-	NMI	Interrupción	NO	Interrupción No enmascarable. Pin NMI
3	#BP	BreackPoint	Trap	NO	Opcode 0xCC
4	#OF	Overflow	Trap	NO	Instrucción INTO
5	#BR	BOUND Range Ex- ceeded	Fault	NO	Instrucción BOUND
6	#UD	Invalid Opcode	Fault	NO	Instrucción UD2 u Opcode Reservado
7	#NM	Coprocesador No disponible	Fault	NO	Instrucciones de Punto Flotante o WAIT / FWAIT
8	#DF	Doble Fault	Abort	SI (Cero)	Cualquier instrucción capaz de gene- rar una excepción, una señal en NMI o en INTR
9		Coprocessor Seg- ment Overrun (re- servada)	Fault	SI	Instrucciones de Punto Flotante
10	#TS	TSS Inválido	Fault	SI	Task switch o acceso a un TSS
11	#NP	Segmento No Pre- sente	Fault	SI	Carga o acceso a un registro de seg- mento
12	#SS	Falta en el Stack Segment	Fault	SI	Operacioes de Pila y Carga del registro SS
13	#GP	General Protection	Fault	SI	Cualquier referencia a memoria y otros chequeos de protección
14	#PF	Page Fault	Fault	SI	Cualquier referencia a memoria
15		Reservada por In- tel (no usar)	NO		
16	#MF	X-87 FPU Error de Punto Flotante	Fault	NO	Instrucción de la FPU o WAI/FWAIT
17	#AC	Alignment Check	Fault	SI (Cero)	Cualquier referencia de datos a memo- ria
18	#MC	Machine Check	abort	NO	Los Códigos de error si hubiese, así como su fuente, depende del mo- delo de procesador
19	#XF	Excepción SIMD Floating Point	Fault	NO	Cualquier instrucción SSEx
20-	-	Reservada por In-			
31		tel (no usar)	Intermedián		Intervincianas automas a Instrucción
32- 255		A definir por el usuario	Interrupción		Interrupciones externas o Instrucción INTn

Tipo	Mnemónico	Descripción	Clase	Código de Error	Fuente
0	#DE	Error de Division	Fault	NO	Instrucciones DIV e IDIV
1	#DB	Reservada	Fault/Trap	NO	Solo para uso de Intel
2	-	NMI	Interrupción	NO	Interrupción No enmascarable. Pin NMI
3	#BP	BreackPoint	Trap	NO	Opcode 0xCC
4	#OF	Overflow	Trap	NO	Instrucción INTO
5	#BR	BOUND Range Ex- ceeded	Fault	NO	Instrucción BOUND
6	#UD	Invalid Opcode	Fault	NO	Instrucción UD2 u Opcode Reservado
7	#NM	Coprocesador No disponible	Fault	NO	Instrucciones de Punto Flotante o WAIT / FWAIT
8	#DF	Doble Fault	Abort	SI (Cero)	Cualquier instrucción capaz de gene- rar una excepción, una señal en NMI o en INTR
9	T	Coprocessor Seg- ment Overrun_(re-	Fault	SI •	Instrucciones de Punto Flotante
		serva (a)		7177	$M \wedge M$
10	#TS	SS válid	Faul	4) 1,1	ast switch clack so a un TSS
11	#NP	Segmento Ne Tre- sente	rault	S	Carga o acceso a un registro de seg- mento
12	#SS	Falta en el Stack Segment	Fault	SI	Operacioes de Pila y Carga del registro SS
13	#GP	General Protection	Fault	SI	Cualquier referencia a memoria y otros chequeos de protección
14	#PF	Page Fault	Fault	SI	Cualquier referencia a memoria
15	-	Reservada por In- tel (no usar)	NO		o dail qui o i o i o i o i o i o i o i o i o i o
16	#MF	X-87 FPU Error de Punto Flotante	Fault	NO	Instrucción de la FPU o WAI/FWAIT
17	#AC	Alignment Check	Fault	SI (Cero)	Cualquier referencia de datos a memo- ria
18	#MC	Machine Check	abort	NO	Los Códigos de error si hubiese, así como su fuente, depende del mo- delo de procesador
19	#XF	Excepción SIMD	Fault	NO	Cualquier instrucción SSEx
20- 31	-	Reservada por In- tel (no usar)			
32- 255	-	A definir por el usuario	Interrupción		Interrupciones externas o Instrucción INTn

Tipo	Mnemónico	Descripción	Clase	Código de Error	Fuente
0	#DE	Error de División	Fault	NO	Instrucciones DIV e IDIV
1	#DB	Reservada	Fault/Trap	NO	Solo para uso de Intel
2	-	NMI	Interrupción	NO	Interrupción No enmascarable. Pin NMI
3	#BP	BreackPoint	Trap	NO	Opcode 0xCC
4	#OF	Overflow	Trap	NO	Instrucción INTO
5	#BR	BOUND Range Ex- ceeded	Fault	NO	Instrucción BOUND
6	#UD	Invalid Opcode	Fault	NO	Instrucción UD2 u Opcode Reservado
7	#NM	Coprocesador No disponible	Fault	NO	Instrucciones de Punto Flotante o WAIT / FWAIT
8	#DF	Doble Fault	Abort	SI (Cero)	Cualquier instrucción capaz de gene- rar una excepción, una señal en NMI o en INTR
9	T	Coprocessor Seg- ment Overrun (re- serva (a)	Fault	SI	Instrucciones de Punto Flotante
10	#TS	sr(va)a) TSS válid			Task with o com a un TSS
10			, au	1/1	
11	#NP	Segmento No re- sente	rault	SP	Carga o acceso a un registro de seg- mento
12	#SS	Falta en el Stack Segment	Fault	SI	Operacioes de Pila y Carga del registro SS
13	#GP	General Protection	Fault	SI	Cualquier referencia a memoria y otros chequeos de protección
14	#PF	Page Fault	Fault	AAI	Cualquier referencia a memoria
15	•	Reservada por In- tel (no usar)	NO)'V	
16	#MF	X-87 FPU Error de Punto Flotante	Fault	₩ 0	Instrucción de la FPU o WAI/FWAIT
17	#AC	Alignment Check	Fault	SI (Cero)	Cualquier referencia de datos a memo- ria
18	#MC	Machine Check	abort	NO	Los Códigos de error si hubiese, así como su fuente, depende del mo- delo de procesador
19	#XF	Excepción SIMD Floating Point	Fault	NO	Cualquier instrucción SSEx
20- 31	-	Reservada por In- tel (no usar)			
32- 255	-	A definir por el usuario	Interrupción		Interrupciones externas o Instrucción INTn

Lo que vemos hoy:

Interrupciones Externas (Enmascarables)

Reloj: La máquina posee un reloj interno que genera interrupciones a intervalos regulares de tiempo. Hoy veremos cómo capturar esa interrupción y hacer que se ejecute una rutina cada vez que esto sucede.

Lo que vemos hoy:

Interrupciones Externas (Enmascarables)

Reloj: La máquina posee un reloj interno que genera interrupciones a intervalos regulares de tiempo. Hoy veremos cómo capturar esa interrupción y hacer que se ejecute una rutina cada vez que esto sucede.

Teclado: También veremos cómo capturar las interrupciones generadas por el teclado, al presionar una tecla.

Igual que manejamos las excepciones:

• Se definen las rutinas de atención para cada interrupción.

Igual que manejamos las excepciones:

Se definen las rutinas de atención para cada interrupción.

```
void _isrXX()
```

Igual que manejamos las excepciones:

Se definen las rutinas de atención para cada interrupción.

```
void _isrXX()
```

2 Se declaran en la IDT. ¿Cómo?

Igual que manejamos las excepciones:

Se definen las rutinas de atención para cada interrupción.

```
void _isrXX()
```

2 Se declaran en la IDT. ¿Cómo?

```
JMP clase3
```

Igual que manejamos las excepciones:

Se definen las rutinas de atención para cada interrupción.

```
void _isrXX()
```

Se declaran en la IDT. ¿Cómo?

```
JMP clase3
```

3 Se remapea el PIC. ¿Remapear que?

Igual que manejamos las excepciones:

Se definen las rutinas de atención para cada interrupción.
 void _isrXX()

```
Se declaran en la IDT. ¿Cómo?
JMP clase3
```

Se remapea el PIC. ¿Remapear que? Ya vamos a eso.

Igual que manejamos las excepciones:

Se definen las rutinas de atención para cada interrupción.
 void _isrXX()

```
Se declaran en la IDT. ¿Cómo?
JMP clase3
```

- Se remapea el PIC. ¿Remapear que? Ya vamos a eso.
- 4 Se activan las interrupciones. ¿Cómo?

Igual que manejamos las excepciones:

Se definen las rutinas de atención para cada interrupción.
 void _isrXX()

```
Se declaran en la IDT. ¿Cómo?
```

- JMP clase3
- Se remapea el PIC. ¿Remapear que? Ya vamos a eso.
- Se activan las interrupciones. ¿Cómo? Se activa el flag IF del registro EFLAGS. Buscar la instrucción sti en el manual.

¿Que se remapea qué?

• Es un dispositivo (chip) al que le llegan las interrupciones de los demás dispositivos de la máquina.

- Es un dispositivo (chip) al que le llegan las interrupciones de los demás dispositivos de la máquina.
- Administra las interrupciones por prioridad, y las manda al procesador (i.e. la interrupción del reloj y la del teclado van primero).

• El PIC puede atender 15 interrupciones (IRQ0 - IRQ15, la IRQ2 no cuenta ya que es donde se conecta otro PIC en cascada). Por defecto, estas IRQs están mapeadas a las interrupciones 0x8 a 0xF (PIC1) y de 0x70 a la 0x77 (PIC2).

- El PIC puede atender 15 interrupciones (IRQ0 IRQ15, la IRQ2 no cuenta ya que es donde se conecta otro PIC en cascada). Por defecto, estas IRQs están mapeadas a las interrupciones 0x8 a 0xF (PIC1) y de 0x70 a la 0x77 (PIC2).
- Como vimos, las interrupciones de la 0 a la 31 están reservadas para el procesador y, en particular, de la 8 a la 15 ya están ocupadas por las excepciones del mismo... Si se produce la interrupción, se llama al handler de la excepción.

- El PIC puede atender 15 interrupciones (IRQ0 IRQ15, la IRQ2 no cuenta ya que es donde se conecta otro PIC en cascada). Por defecto, estas IRQs están mapeadas a las interrupciones 0x8 a 0xF (PIC1) y de 0x70 a la 0x77 (PIC2).
- Como vimos, las interrupciones de la 0 a la 31 están reservadas para el procesador y, en particular, de la 8 a la 15 ya están ocupadas por las excepciones del mismo... Si se produce la interrupción, se llama al handler de la excepción.
- Hay un conflicto, y para solucionarlo hay que "remapearlas".

¡Sorpresa!

 Las rutinas para hacer esto ya están hechas y listas para usar en el archivo pic.h. Éstas son: resetear_pic (remapeo), habilitar_pic y deshabilitar_pic.

¡Sorpresa!

 Las rutinas para hacer esto ya están hechas y listas para usar en el archivo pic.h. Éstas son: resetear_pic (remapeo), habilitar_pic y deshabilitar_pic.

- Por lo tanto:
 - Después de remapear el PIC y habilitarlo, tenemos que la interrupción de reloj está mapeada a la interrupción 32 y el teclado, a la 33.
 - Resta habilitar las interrupciones utilizando la instrucción sti.

Rutinas de atención - Esquema general

- Preservar los registros que vayamos a romper (¡la interrupción debe ser transparente!)
- Comunicar al PIC que ya se atendió la interrupción (EOI) (rutina fin_intr_pic1) del archivo pic.h.
- Realizar la tarea correspondiente a la interrupción.
- Restaurar los registros.
- Retornar de la interrupción. (iret)

Rutinas de atención - Esquema general

- Preservar los registros que vayamos a romper (¡la interrupción debe ser transparente!)
- Comunicar al PIC que ya se atendió la interrupción (EOI) (rutina fin_intr_pic1) del archivo pic.h.
- Realizar la tarea correspondiente a la interrupción.
- Restaurar los registros.
- Retornar de la interrupción. (iret)
- NOTA: No es necesario deshabilitar las interrupciones al comienzo de la rutina, ya que el procesador lo hace automáticamente (si definimos el descriptor como un *interrupt gate*). Tampoco es necesario volver a habilitarlas al finalizar.

- Leemos del teclado a través del puerto 0x60 (in al, 0x60).
- Obtenemos un scan code.

- Leemos del teclado a través del puerto 0x60 (in al, 0x60).
- Obtenemos un scan code.

Scan code:

Es lo que genera el teclado luego de presionar una tecla; es decir, a cada tecla le corresponde uno.

El teclado reconoce cuando se está presionando una tecla y cuando se la está soltando y genera diferentes códigos en cada caso. Estos códigos son denominados **make** codes y **break** codes, respectivamente.

- Leemos del teclado a través del puerto 0x60 (in al, 0x60).
- Obtenemos un scan code.

Scan code:

Es lo que genera el teclado luego de presionar una tecla; es decir, a cada tecla le corresponde uno.

El teclado reconoce cuando se está presionando una tecla y cuando se la está soltando y genera diferentes códigos en cada caso. Estos códigos son denominados **make** codes y **break** codes, respectivamente.

Por ejemplo:

La tecla **a** tiene asociado el scan code 0x1E, la tecla **b** el 0x30, etc. Cuando se suelta la tecla **a** se genera el break code 0x9E (= 0x1E + 0x80), es decir, se suma 0x80 al valor del make code.

- Leemos del teclado a través del puerto 0x60 (in al, 0x60).
- Obtenemos un scan code.

Scan code:

Es lo que genera el teclado luego de presionar una tecla; es decir, a cada tecla le corresponde uno.

El teclado reconoce cuando se está presionando una tecla y cuando se la está soltando y genera diferentes códigos en cada caso. Estos códigos son denominados make codes y break codes, respectivamente.

Por ejemplo:

La tecla a tiene asociado el scan code 0x1E, la tecla b el 0x30, etc. Cuando se suelta la tecla a se genera el break code 0x9E (= 0x1E + 0x80), es decir, se suma 0x80 al valor del make code.

Pueden ver los scan codes correpondientes a cada tecla en: http://www.win.tue.nl/~aeb/linux/kbd/scancodes-1.html (sección: "1.4 Ordinary scancodes").

Listo!

¿Preguntas?

- ① Completar las entradas necesarias en la IDT para asociar una rutina a la interrupción del reloj, otra a la interrupción de teclado y por último una a la interrupción de software 0x46.
- Escribir la rutina asociada a la interrupción del reloj, para que por cada tick llame a la función game_tick. La misma se encarga de mostrar cada vez que se llame, la animación de un cursor rotando en la esquina inferior derecha de la pantalla. La función screen_actualizar_reloj_global está definida en screen.h.
- Sescribir la rutina asociada a la interrupción de teclado de forma que si se presiona cualquiera de las teclas a utilizar en el juego, se presente la misma en la esquina superior derecha de la pantalla.
- 4 Escribir la rutina asociada a la interrupción 0x46 para que modifique el valor de eax por 0x42. Posteriormente este comportamiento va a ser modificado para atender el servicio del sistema.