EE360C: Algorithms

Proofs

Spring 2018

Department of Electrical and Computer Engineering University of Texas at Austin

Definition

A Proof

- a statement is either true or false.
 - 1 = 0 is *false*
 - $\exists t : \cos(t) = t \text{ is true}$
 - $\forall a, b, c, n : (n > 2) \land (a^n + b^n = c^n) \Rightarrow a = b = c = 0$ is true (though it's difficult to prove)
- some statements may be true or false depending on the values assigned to variables:
 - 3x = 5
 - $x^2 + y^2 4xy > 0$

Proofs

A mathematical proof is a "convincing" argument expressed in the language of mathematics

 it should contain enough detail to convince someone with reasonable background in the subject

Terminology

Some Terminology

Proof Terminology

- Definition: an unambiguous explanation of terms
- Proposition: a statement that is claimed to be true
- Theorem: a major result
- Lemma: a minor result; often used on the way to proving a theorem
- Corollary: something that follows from something just proved
- Axioms: basic assumptions or truths

Terminology (cont.)

Forms of Theorems

A theorem can be reduced to stating "if A then B." The following are all equivalent:

- If A is true then B is true
- A implies B
- $A \Rightarrow B$
- A only if B
- A is sufficient for B
- B is true whenever A is true

The Forward-Backward Method

The Forward-Backward Method

The Forward-Backward Method

A good technique to approaching a proof is to work from both directions. Start by first writing both the statements *A* and *B*. In the forward direction: "given *A*, what else do I know?" In the backward direction: "how would I show *B*?"

An Example

If a right triangle xyz with sides of length x and y and a hypotenuse of length z has area $z^2/4$, then the triangle xyz is isosceles.

The Forward-Backward Method (cont.)

An Example

If a right triangle xyz with sides of length x and y and a hypotenuse of length z has area $z^2/4$, then the triangle xyz is isosceles.

A right triangle xyz has area $z^2/4$

A1
$$xy/2 = z^2/4$$
 (area = 1/2 base × height)

A2
$$x^2 + y^2 = z^2$$
 (Pythagorean theorem)

A3
$$(x^2 + y^2)/4 = xy/2$$
 (substituting for z^2)

A4
$$(x^2 + y^2) = 2xy$$
 (multiplying through by 4)

A5
$$x^2 - 2xy + y^2 = 0$$
 (rearranging)

A6
$$(x - y)^2 = 0$$
 (factoring)

B2
$$(x - y) = 0$$

B1
$$x = y$$

B triangle xyz is isosceles

The Forward-Backward Method (cont.)

An Example

If a right triangle xyz with sides of length x and y and a hypotenuse of length z has area $z^2/4$, then the triangle xyz is isosceles.

A Condensed Proof

From the hypothesis and the definition of the area of a triangle, $xy/2=z^2/4$. By Pythagoras, $x^2+y^2=z^2$. On substituting x^2+y^2 for z^2 , we obtain $(x-y)^2=0$. Hence x=y and the triangle is isosceles.

Tools

Proof Tools

- part of our proof is just algebraic manipulation
- other pieces also drew upon external information
 - e.g., the definition of isosceles triangle, the theorem stating the area of a triangle, the Pythagorean theorem
- in general, a proof will draw upon definitions, axioms, and previously proven theorems
- be careful to avoid a circular proof (i.e., where a step in your proof relies on the theorem you're trying to prove).

Truth Tables

Notations

- *A* ⇒ *B*: "implies"
- $\overline{B} \Rightarrow \overline{A}$: "contrapositive"
- $B \Rightarrow A$: "converse"
- $\overline{A} \Rightarrow \overline{B}$: "inverse"
- A ⇔ B: "equivalence" or "if-and-only-if" or "iff"

Α	В	Ā	\overline{B}	$A \Rightarrow B$	$\overline{B} \Rightarrow \overline{A}$	$B \Rightarrow A$	$\overline{A} \Rightarrow \overline{B}$	$A \Leftrightarrow B$
F	F	Т	Т	Т	Т	Т	Т	Т
F	Т	Т	F	Т	Т	F	F	F
Т	F	F	Т	F	F	Т	Т	F
Т	Т	F	F	Т	Т	Т	Т	Т

Quantifiers

Quantifiers

- ∃: there exists an object with a certain property such that something happens
- ∀: for all objects with a given property, something happens

Specialization

- x' has a certain property
- ∀x with a certain property, something happens
- the something happens for x'

Choose

- $\forall x$ with a certain property, something happens.
- Let x' be such that the certain property holds
- something happens for x'

Examples

An Example

If s and t are rational and $t \neq 0$, then s/t is rational.

A *s* and *t* are rational and $t \neq 0$

A1
$$\exists$$
 integers $p, q, q \neq 0$ such that $s = p/q$

A2 Let
$$a, b$$
 be integers such that $b \neq 0$ and $s = a/b$

A3
$$\exists$$
 integers $p, q, q \neq 0$ such that $t = p/q$

A4 Let
$$c, d$$
 be integers such that $d \neq 0$ and $t = c/d$

A5
$$t \neq 0 \Rightarrow c \neq 0$$

A6
$$\frac{s}{t} = \frac{a/b}{c/d} = \frac{ad}{bc}$$

A7 Let
$$p = ad$$
 and $q = bc$

B2
$$bc \neq 0$$
, $\frac{s}{t} = \frac{ad}{bc}$

B1
$$\exists$$
 integers $p, q, q \neq 0$ such that $s/t = p/q$

B s/t is rational

The Example: The EE360C Way

If *s* and *t* are rational numbers and $t \neq 0$, then s/t is rational.

The Proof

Let a,b be integers such that s=a/b ($b\neq 0$). Such integers must exist because s is rational. Similarly, let c,d be integers such that t=c/d ($d\neq 0$). Since $t\neq 0$, it must be true that $c\neq 0$. Then, substituting, s/t=(a/d)/(c/d)=ad/bc. $bc\neq 0$ (since both b and c are nonzero). Therefore, s/t is rational because there exist integers p,q such that s/t is p/q.

Another Example

- Def: $f: S \to T$ is onto iff $\forall t \in T, \exists s \in S: f(s) = t$
- Def: Let $f: X \to Y$ and $g: Y \to Z$ be functions, then $g \bullet f: X \to Z$ is the function such that $(g \bullet f)(x) = g(f(x))$

Proposition: if $f: X \to Y$ is onto and $g: Y \to Z$ is onto, then $g \bullet f: X \to Z$ is onto.

A
$$f: X \rightarrow Y, q: Y \rightarrow Z$$
 are onto

A1 Let
$$c \in Z$$

A2
$$\forall z \in Z, \exists y \in Y \text{ such that } g(y) = z$$

A3
$$\exists y \in Y \text{ such that } g(y) = c$$

A4 Let b be such a y:
$$b \in Y$$
, $g(b) = c$

A5
$$\forall y \in Y, \exists x \in X \text{ such that } f(x) = y$$

A6
$$\exists x \in X \text{ such that } f(x) = b$$

A7 Let a be such an x:
$$a \in X$$
, $f(a) = b$

A9
$$(g \bullet f)(a) = g(f(a)) = g(b) = c$$

B3
$$(g \bullet f)(a) = c$$

B2
$$\exists x \in X \text{ such that } (g \bullet f)(x) = c$$

B1
$$\forall z \in Z, \exists x \in X \text{ such that } (g \bullet f)(x) = z$$

B
$$g \bullet f : X \to Z$$
 is onto

QED (quod erat demonstrandum)

And in EE360C Style

If $f: X \to Y$ is onto and $g: Y \to Z$ is onto, then $g \bullet f: X \to Z$ is onto.

The Proof

For any $c \in Z$, we can find a $b \in Y$ such that g(b) = c. (Such a b must exist because g is onto.) Similarly, let $a \in X$ be such that f(a) = b (again, a must exist because f is onto). Then, given any selected $c \in Z$, $(g \bullet f)(a) = c$, i.e., some $a \in X$ can be found to make the claim true. Therefore $g \bullet f : X \to Z$ is onto.

Methodologies

Proof by Contradiction

Proof By Contradiction

We assume that the negation of our proposition is true and show that it leads to a contradictory statement.

An Example

Proof: Suppose there is a finite number of prime numbers. Then you can list them in order: p_1, p_2, \ldots, p_n . Consider the number $q = p_1 p_2 \ldots p_n + 1$. The number q is either prime or composite. If we divide any of the listed primes p_i into q, there

would be a remainder of 1. Thus q cannot be composite.

Theorem: There are infinitely many prime numbers.

Therefore q is a prime number that is not listed among the primes listed above, contradicting the assumption that our list p_1, p_2, \ldots, p_n lists all of the prime numbers.

Proof by Induction

Three Steps to an Inductive Proof

- Start with verifying the base case.
- Then assume the nth case.
- And use that to prove the $(n+1)^{st}$ case.

An Example

Prove that
$$0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$$

- **Base case**: show it's true for n = 0: $0 = \frac{0(0+1)}{2}$
- **Inductive step**: show that if it holds for n then it holds for n+1. That is, use: $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ to show that:

$$0+1+2+\cdots+n=\frac{n+1}{2}$$
 to show that:
 $0+1+2+\cdots+(n+1)=\frac{(n+1)((n+1)+1)}{2}$

 Substituting in the right hand side of the equation for the sum to n to most of the left hand side of the equation for the sum to n + 1 gives us:

$$\frac{n(n+1)}{2} + (n+1) = \frac{(n+1)((n+1)+1)}{2}$$

which is true.

Another Induction Example

Prove that the sum of the first n odd positive integers is n^2 .

The Proof

- Base case: the sum of the first one odd positive integers is 1². This is true since the sum of the first odd positive integer is 1.
- **Inductive step**: show that if it holds for n, then it holds for n+1. If the proposition is true for n, then $1+3+5+\cdots+(2n-1)=n^2$. Then we must show that $1+3+5+\cdots+(2n-1)+(2n+1)=(n+1)^2$. We can prove this algebraically.

One More Induction Example

Prove that if S is a finite set with n elements, then S has 2^n subsets.

The Proof

- Base case: a set S of size 0 has one subset (the empty set); 2⁰ = 1.
- **Inductive step**: assume that every set with *n* elements has 2^n subsets. Prove that by adding one element to the set S, we increase the number of subsets to 2^{n+1} . Let T be a set with n + 1 elements. Then it is possible to express $T = S \cup \{a\}$ where a is one of the elements of T and $S = T - \{a\}$. The subsets of T can be obtained by the following. For each subset X of S, there are exactly two subsets of T, namely X and $X \cup \{a\}$. Since there are 2^n subsets of S, there are 2×2^n subsets of T, which is 2^{n+1} . 19/20

Questions?