Linear and Nonlinear Computation Models (CSE 4190.313)

Midterm Exam: May 2, 2011

(Solutions)

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

Name:	
ID No:	
Dept:	

- 1. (15 points) True or false, with reason if true and counterexample if false:
 - (a) (7 points) If $L_1U_1 = L_2U_2$ (upper triangular U's with nonzero diagonal, lower triangular L's with unit diagonal), then $L_1 = L_2$ and $U_1 = U_2$. The LU factorization is unique.
 - (b) (4 points) If $A^2 + A = I$, then $A^{-1} = A + I$.
 - (c) (4 points) If all diagonal entries of A are zero, then A is singular.

Too
$$L_1U_1 = L_2U_2 \Rightarrow L_2^T L_1 = U_2 \cdot U_1^{-1}$$

Lower triangular

With 1's on the diagonal \rightarrow with 1's

$$\Rightarrow L_2^T L_1 = U_2 \cdot U_1^{-1} = I$$

$$\Rightarrow L_2^T L_1 = U_2 \cdot U_1^{-1} = I$$

$$\therefore L_1 = L_2 \text{ and } U_1 = U_2$$

Too
$$A(A+I) = I$$
 and $(A+I)A=I$

$$A(A+I) = A^{-1}$$

Counterexample
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \det A = -1 \neq 0$$

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \det A = -1 \Rightarrow 0$$

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

2. (15 points) Solve $A\mathbf{x} = \mathbf{b}$ using the triangular systems $L\mathbf{c} = \mathbf{b}$ and $U\mathbf{x} = \mathbf{c}$.

$$A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

What part of A^{-1} have you found with this particular **b**?

$$\Rightarrow c_1 = 0, c_2 = 0, c_3 = 1$$

$$\Rightarrow \chi_3 = 1, \chi_2 = -3, 2\chi_1 = 6 - 4 = 2$$

$$\therefore \times = \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}$$

3. (20 points)

(a) (10 points) Reduce the following matrix equation $A\mathbf{x} = \mathbf{b}$ to $U\mathbf{x} = \mathbf{c}$ and then to $\mathbf{R}\mathbf{x} = \mathbf{d}$:

$$A\mathbf{x} = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 1 & 3 & 2 & 0 \\ 2 & 0 & 4 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 10 \end{bmatrix} = \mathbf{b}.$$

(b) (10 points) Find a particular solution \mathbf{x}_p and all nullspace solutions \mathbf{x}_n .

(a)
$$\begin{bmatrix} 1 & 0 & 2 & 3 & 1 & 2 \\ 1 & 3 & 2 & 0 & 1 & 5 \\ 2 & 0 & 4 & 9 & 10 \end{bmatrix}$$

$$\begin{array}{c} 0 & 2 & 3 & 1 & 2 \\ 0 & 3 & 0 & 3 & 1 & 3 \\ 2 & 0 & 4 & 9 & 10 \end{bmatrix}$$

$$\begin{array}{c} 0 & 2 & 0 & 1 & 4 \\ 0 & 1 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 &$$

(b)
$$x_p = \begin{bmatrix} -4 \\ 30 \\ 2 \end{bmatrix}$$

$$x_n = x_3 \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix}$$

4. (10 points) Find bases for the four fundamental subspaces of

$$A = \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right] \left[\begin{array}{ccc} 1 & 2 & 3 \end{array} \right]$$

Basis of
$$C(A^T)$$
: $(1,2,3)$

Basts of
$$N(A^{T})$$
: $(1,-1,0), (1,0,-1)$

- 5. (20 points) Suppose L_1 is the line through the origin in the direction of \mathbf{a}_1 and L_2 is the line through \mathbf{b} in the direction of \mathbf{a}_2 .
 - (a) (10 points) To find the closest points $x_1\mathbf{a}_1$ and $\mathbf{b} + x_2\mathbf{a}_2$ on the two lines, write the two equations for the x_1 and x_2 , that minimize $||x_1\mathbf{a}_1 x_2\mathbf{a}_2 \mathbf{b}||$.
 - (b) (10 points) Solve for x_1 and x_2 if $\mathbf{a}_1 = (1, 1, 0)$, $\mathbf{a}_2 = (0, 1, 0)$, $\mathbf{b} = (2, 1, 4)$.

(a) Solve
$$\left[\begin{array}{c} \alpha_{1} - \alpha_{2} \end{array} \right] \left[\begin{array}{c} \alpha_{1} \\ \alpha_{2} \end{array} \right] = \left[\begin{array}{c} b \\ b \end{array} \right]$$

$$\Rightarrow \left[\begin{array}{c} \alpha_{1} \alpha_{1} - \alpha_{1} \alpha_{2} \\ -\alpha_{1} \alpha_{2} \end{array} \right] \left[\begin{array}{c} \alpha_{1} \\ \alpha_{2} \end{array} \right] = \left[\begin{array}{c} \alpha_{1} b \\ -\alpha_{2} b \end{array} \right]$$

$$- a \left[\begin{array}{c} \alpha_{1} \alpha_{2} \\ \alpha_{2} \end{array} \right] \left[\begin{array}{c} \alpha_{1} \\ \alpha_{2} \end{array} \right] = \left[\begin{array}{c} \alpha_{1} b \\ -\alpha_{2} b \end{array} \right]$$

(b)
$$\begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

- 6. (10 points)
 - (a) (4 points) Find an orthonormal basis for the column space of A.

$$A = \begin{bmatrix} 1 & -6 \\ 3 & 6 \\ 4 & 8 \\ 5 & 0 \\ 7 & 8 \end{bmatrix}$$

- (b) (3 points) Write A as QR, where Q has orthonormal columns and R is upper triangular.
- (c) (3 points) Find the least-square solution to $A\mathbf{x} = \mathbf{b}$, if $\mathbf{b} = (-3, 7, 1, 0, 4)$.

(a)
$$q_1 = \frac{1}{\|a\|} \alpha = \frac{1}{10} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{5} \end{bmatrix}$$

$$B = b - (q_1^T b) q_1 = \begin{bmatrix} -\frac{1}{3} \\ \frac{1}{5} \\ \frac{1}{5} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{5} \\ \frac{1}{5} \end{bmatrix}$$

$$q_2 = \frac{1}{\|B\|} B = \frac{1}{10} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{5} \end{bmatrix}$$
(b) $A = \begin{bmatrix} \alpha, q_3 \end{bmatrix} \begin{bmatrix} 10 & 10 \\ \frac{1}{5} \end{bmatrix}$

(b)
$$A = \begin{bmatrix} g_1 & g_2 \end{bmatrix} \begin{bmatrix} 10 & 10 \\ 0 & 10 \end{bmatrix}$$

(cc)
$$QR \times = Ib \Rightarrow R \times = QTIb$$

$$\begin{bmatrix} 10 & 10 \\ 0 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

$$\therefore x_1 = 0, x_2 = 0.5$$

7. (10 points)

- (a) The corners of a triangle are (2,1), (3,4), and (0,5). What is the area?
- (b) A new corner at (-1,0) makes it four-sided. Find the area of the quadrangle.

(a)
$$\frac{1}{2} \begin{vmatrix} 1 & 3 \\ -2 & 4 \end{vmatrix} = \frac{1}{2} \times 10 = 5$$

(6)
$$5 + \frac{1}{2} \begin{vmatrix} 3 \end{vmatrix} = 5 + \frac{1}{2} \times 14 = 12$$