PhD Statistics Seminar - Uni of Leeds 2018/2019

Gaussian Process Emulation to Reconstruct Past Greenland Ice Sheet Morphology

The Problem

Aim: Reconstruct the morphology of Greenland Ice Sheets during the LIG.

Ideal approach: Run complex GCMs (General Circulation Models)

$$\left\{ \begin{array}{c} \text{Ice Sheet} \\ \text{Morphology} \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} \delta^{18}O \text{ values} \end{array} \right\}$$

and compare predicted outputs to actual $\delta^{18}O$ records.

<u>Issue</u>: Model runs are too expensive to perform exhaustive search (around 2 weeks each).

Solution:

- Run simulator on few inputs only
- ♦ Accordingly build *cheap* probabilistic model of the input-output relationship: **Emulator**
- Use emulator to match observed data to "best" morphology.

What is an Emulator? Simple example

A Gaussian Process that interpolates the observed outputs (•) of a complex computer model (····).

Our Case

- Inputs: Morphologies (we must paramerise them!)
- Outputs: $\delta^{18}O$ values

To parametrise the input set

• Start from N = 14 reconstructed morphologies available from previous literature. Each stores height values at p different locations (cells):

$$M_1,\ldots,M_N\in\mathbb{R}^p$$

- Apply PCA, while accounting for the area associated with the different grid-cells.
- Obtain

$$P_1, \ldots, P_{N-1} \in \mathbb{R}^p$$
 Principal Components.

♦ New morphologies are generated as affine combination of the first 8 PCs, which explain more than 95% of total variance:

$$\left\{ \text{Set of Mophologies} \right\} \iff \left\{ \text{Elements of } \mathbb{R}^8 \right\}$$

♦ 70 "well-scattered" morphologies are carefully chosen and the simulator is run on them.

Available Data (Ice Core Records)

Ice core records available at 6 different locations, each with uncertainty bands.

<u>Note</u>: For two locations (CC & DYE3), no lower bound can be easily extrapolated from the ice core samples.

We consider three scenarios: a 'tight', a 'middle' and a 'loose' one.

	NEEM	NGRIP	GRIP	GISP2	CC	DYE3
	δ^{18} O ‰	$\delta^{18} O \%$	δ^{18} O ‰	$\delta^{18} O \%$	$\delta^{18} O \%$	$\delta^{18} O$ ‰
Minimum	2.7	2.1	2.2	1.7	?	?
Most likely	3.6	3.1	3.2	2.7	2.5	4.7
Maximum	4.0	3.8	3.5	3.4	4.0	5.2

Record-Compatible Morphologies

• For each morphology $x \in \mathbb{R}^8$ and one location Loc, compute the discrepancy measure

$$I(x, Loc) = \frac{m(x) - \text{record}(Loc)}{\sqrt{v(x, x) + \text{var}(Loc)}}.$$

• Classify a morphology $x \in \mathbb{R}^8$ as compatible with records iff

$$\max_{l} |I(x,L)| < c$$
 (c = 2 is chosen).

Results: Standard Deviation

Grid-cell by grid-cell, range of possible heights appears significantly reduced.

Results: Average Surface Height

Average surface height appears massively reduced for tighter scenarios.

... and happy to answer any curiosity or question!