Exploring

MCU: Interfacing Technologies

Ganesh Pitchiah Electronics Club IIT Kanpur

RFID Bands

GSM

GPS

Communicating with an MCU

Communication in MCU's

Three modes are possible:

- Simplex
- Half-Duplex
- Full-Duplex

UART: Universal Asynchronous Receiver Transmitter

- What makes it 'universal'?
 - Its parameters (format, speed ..) are configurable.
- Why 'asynchronous' ?
 - It doesn't have a clock

UART Basics

- Baud Rate:
 - No. of bits transmitted/received per second =____bits/sec.
- Format of Communication

Figure 17: Basic UART packet format: 1 start bit, 8 data bits, 1 parity bit, 1 stop bit.

Connections for UART

UART in AtMega16

Connecting AtMega16's with UART

Device 1 Device 2

MAX-232 and USB-Serial

Connecting AtMega16 with Computer

Latest Direct Way :

Coding with UART

- Three simple commands :
 - putchar(char);sends 8-bit characters through UART
 - getchar();receives 8-bit characters via UART
 - puts(string);sends a constant string

Where do we code..?

Sample Code for UART

Transmitter Code:

```
if(PORTA.1 == '0')
  putchar('a');
```

Receiver Code:

```
c = getchar();
lcd_putchar(c);
```

Barcode Scanner

RFID: Radio Frequency Identification

1. Tag 2. Reader

RFID Tags

- A Tag is a tiny silicon chip(IC) with an antenna.
- Types of tags :
 - Active
 - Battery Assisted Passive (BAP)
 - Passive

RFID: MCU Interface

Rx	?	Tx
Tx	?	Rx
GND	?	GND

Device 1 Device 2

RFID: MCU Coding

Enable UART buffer before you code.

```
    char ID[15];
    .....
    for( i = 0, i <= ; i++) {</li>
    ID[i] = getchar();
    lcd_puts(ID); }
```

UART buffer settings in CVAVR will soon be uploaded.

Cool Applications

GSM: Global System for Mobile Communications

It is a standard set for 2G cellular networks.

GSM Module

1. Modem 2. SIM card

Only for the Geeks!!

SIM300 IC

Features Supported

- SMS
- Voice Calling
- GPRS
- Support for Speaker

GSM Modem: Computer Interface

Terminal Settings can be found at:

http://www.developer.nokia.com/Community/Wiki/AT Commands

AT Commands Basics

- AT+X? //Queries value of X
- AT+X= //Sets value of X

ATD 9559753551; //Calls number
 OK

Entire AT command set can be accessed from:

http://www.developer.nokia.com/Community/Wiki/AT Commands

SMS: Using AT Commands

- Two message modes: PDU and Text
- AT+CMGF=1 //Text Mode
 OK
 AT+CMGS="9559753551"
 > Hello World Ctrl>+<Z>+CMGS: 44

OK

GSM Modem: MCU Interface

Rx	;	Tx
Tx	?	Rx
GND	?	GND

Device 1 Device 2

AT Commands: MCU Coding

```
char ack1,ack2;
void sendsms() {
  puts("AT");
  ack1 = getchar();
  ack2 = getchar();
  if(ack1 == 'O' && ack2 == 'K') //check "OK"
    puts("ATD 9559753551;");
      return }
```

Agent Ethan Hunt Impossible Missions Force

Mission: Hunting the bad guys!!

GPS: Global Positioning System

Visible Satellites

Distance Calculation

Value Sent: t1

Time Sent: t1

Value Received: t2
Time Received: t2

Distance = speed x time taken= c x (t2 - t1)

Triangulation Basics

1. Two spheres intersecting in a circle.

2. Surface of a sphere intersecting a circle.

Triangulation

Target Locked: He is here!!

GPS Module

Terminal Data Collected

Terminal Settings can be found at:

http://forum.delorme.com/viewtopic.php?t=12267

NMEA Format

- \$GPGGA,123519,4807.038,N,01131.000,E,1,0 8,0.9,545.4,M,46.9,M,,*47
 - 2 is Latitude
 - 4 is Longitude
 - 6 is Quality //0: invalid, 1: GPS fix
 - 7 is No. of satellites in view

Detailed list of sentences can be found at:

http://aprs.gids.nl/nmea/

GPS Visualizer

- Go to: http://www.gpsvisualizer.com/
- Upload your GPS file
- Get your map !!
 GPS-Visualizer.html

GPS: MCU Interface

Rx	;	Tx
Tx	?	Rx
GND	?	GND

Device 1 Device 2

GPS: MCU Coding

- Enable UART buffer before you code.
- char GPS_data[100];

People who are crazy enough to think they can change the world are the ones who usually do.

```
for( i = 0, i <= ; i++) {
GPS_data[i] = getchar();
lcd puts(GPS_data); }</pre>
```

UART buffer settings in CVAVR will soon be uploaded.

"People who are crazy enough to think they can change the world are the ones who usually do."

