Московский физико-технический институт (государственный университет) Факультет биологической и медицинской физики Кафедра кафедра молекулярной и трансляционной медицины

«»	2017 г
	Лазарев В.Н.
зав. кафедрой	
Диссертация допущен	на к защите
Π	

Выпускная квалификационная работа на соискание степени МАГИСТРА

Тема: **Количественный протеогеномный** анализ туберкулеза и ещё чего-нибудь

Направление:	010900 — Прикл	адные математика і	и физика
Магистерская программа:)10982 — Физико	э-химическая биоло	гия и биотехнология
Выполнил студент гр. 1114			Смоляков А.В.
Научный руководитель,			
к. б. н.			Лазарев В.Н.

Оглавление

1.	Список сокращений		
2.	Введе	ение	4
3.	Лите	ратурный обзор	5
	3.1.	Mycobacterium tuberculosis	5
	3.2.	Применение масс-спекртрометрии в протеомике	5
	3.3.	Orbitrap	5
	3.4.	Количественная протеомика	5
	3.5.	Безметочная квантификация	5
		Относительная квантификация по интенсивности MS-1 сигнала	5
	3.6.	Коилчественный анализ по количеству спектров	5
4. Материалы и методы			7
	4.1.	Получение бактерий	7
	4.2.	Проведение масс-спектрометрического эксперимента	7
	4.3.	Контроль качества	7
	4.4.	Идентификация	7
	4.5.	Коилчественный анализ	7
		Анализ в MaxQuant	7
		Анализ в Progenesis LC-MS	7
		Сравнение результатов программ	7
	4.6.	Протегеномика	7
5.	Резул	пьтаты и обсуждение	8
6.	Выво	рды	9
Списо	к лите	ературы	10

1. Список сокращений

2. Введение

3. Литературный обзор

- 3.1. Mycobacterium tuberculosis
- 3.2. Применение масс-спекртрометрии в протеомике
- 3.3. Orbitrap
- 3.4. Количественная протеомика

3.5. Безметочная квантификация

Вне зависимости от выбранного метода безметочного количественного анализа, эксперимент должен включать в себя следующие шаги: 1. пробоподготовка, включая извлечение белков, их очистку, трипсинолиз и прочие шаги 2. разделение пептидов при помощи различных хроматографических методов с последующий MS/MS анализом 3. анализ полученных результатов: идентификация, количественный анализ и статистический анализ В целом, методы безметочного количественного анализа можно разделить на две групы: на основе интенсивности ионов или за счет spectral counting [1].

Относительная квантификация по интенсивности MS-1 сигнала

При ионизации электроспреем, интесивность MS-1 иона коррелирует с его концентрацией [2]. Впернвые количественный анализ белков и пептидов за счет интенсивности LC-MS пиков был проведен на миоглобине. Были проанализированы концентрации в диапазоне от 10 фемтамоль до 100 пикомоль. После

3.6. Коилчественный анализ по количеству спектров

Квантификация по спектральному показателю основана на сравнении количества идентифицированных тандемных спектров для одного и того же белка из различных проб. Луи и соавторы изучали связь между относительной концентрацией белка и следующими тремя факторами: процентом идентифицированной (покрытой) части белка, количеством наблюдаемых пептидов и спектральным показателем. Было показано, что среди этих факторов только спектральный показатель имеет сильную линейную корреляцию с относительной концентрацией белка (коэффициент детерменации r2 = 0.9997), в динамическом диапазоне, составляющем два порядка.

Таким образом, спектральный показатель можно использовать для определения относительной представленности белка в данном образце. Зайбелов и соавторы провели исследование мембранных белков S. cerevisiae. Они провели идентификацию и количественный анализ, используя подход спектрального показателя и мечением 15N. Была показана высокая корреляция между двумя методами для белков, с высоким отношением "сигнал/шум". Так же было установлено, что метод спектрального показателя имеет больший динамический диапазон и воспроизводимость.

- 4. Материалы и методы
- 4.1. Получение бактерий
- 4.2. Проведение масс-спектрометрического эксперимента
- 4.3. Контроль качества
- 4.4. Идентификация
- 4.5. Коилчественный анализ

Анализ в MaxQuant

Анализ в Progenesis LC-MS

Сравнение результатов программ

4.6. Протегеномика

5. Результаты и обсуждение

6. Выводы

Список литературы

- 1. Zhu W., Smith J. W., Huang C.-M. Mass spectrometry-based label-free quantitative proteomics // BioMed Research International. 2009. Vol. 2010.
- Voyksner R. D., Lee H. Investigating the use of an octupole ion guide for ion storage and high-pass mass filtering to improve the quantitative performance of electrospray ion trap mass spectrometry // Rapid Communications in Mass Spectrometry. 1999.
 Vol. 13, no. 14. P. 1427–1437.