Complejidad de consultas

Clase 17

IIC 3413

Prof. Cristian Riveros

Complejidad de consultas relacionales

Complejidad de consultas relacionales

- ¿es posible mejorar más nuestro optimizador?
- ¿existe una estrategia mejor para evaluar consultas?
- ¿cuáles son las consultas más difíciles?

Outline

Evaluación de consultas

Optimización de consultas

Consultas conjuntivas

Outline

Evaluación de consultas

Optimización de consultas

Consultas conjuntivas

¿qué tan complejo es evaluar una consulta SQL?

Problema de enumeración:

PROBLEMA: Evaluación de consultas en SQL (SQL-ENUM).

INPUT: una consulta Q en SQL,

una BD relacional \mathcal{D} .

OUTPUT: $Q(\mathcal{D})$.

Queremos un algoritmo de enumeración que sea polinomial en Q y \mathcal{D} :

- lacksquare tiempo polinomial en Q y ${\mathcal D}$ para entregar la **primera tupla** de $Q({\mathcal D})$, y
- tiempo polinomial en Q y \mathcal{D} entre cada **siguiente tupla** de $Q(\mathcal{D})$.

¿cómo medimos la complejidad de SQL-ENUM?

Micro-curso de complejidad computacional

- PTIME: problemas que pueden ser resueltos en tiempo polinomial en el tamaño del input.
- NP: problemas cuya solución puede ser verificada en tiempo polinomial en el tamaño del input/solución.
- PSPACE: problemas que pueden ser resultos en espacio polinomial en el tamaño del input.
- EXPTIME: problemas que pueden ser resueltos en tiempo exponencial en el tamaño del input.

Micro-curso de complejidad computacional

Definición

- Un problema P es hard para una clase de complejidad C si todos los problemas $P' \in P$ se pueden reducir (en tiempo polinomial) a P.
- Un problema P es completo para una clase de complejidad C si:
 - 1. $P \in \mathcal{C}$.
 - 2. P es hard para C.

Micro-curso de complejidad computacional

Problemas completos para cada clase:

- **PTIME:** programación lineal, horn-SAT, circuit-eval.
- NP: SAT, problemas en grafo.
- **PSPACE**: QBF-SAT, juegos/puzzles.
- **EXPTIME:** ajedrez.

¿qué tan complejo es evaluar una consulta SQL?

Problema de enumeración:

PROBLEMA: Evaluación de consultas en SQL ($\mathrm{SQL}\text{-}\mathrm{Enum}$).

INPUT: una consulta Q en SQL,

una BD relacional \mathcal{D} .

OUTPUT: $Q(\mathcal{D})$.

Necesitamos un problema de decisión asociado a $\mathrm{SQL}\text{-}\mathrm{Enum}!$

Problema de decisión asociado a SQL-ENUM

PROBLEMA: Resultado no-vacío de consultas SQL (SQL-EMPTYNESS).

INPUT: una consulta Q en SQL,

una BD relacional ${\cal D}$

OUTPUT: TRUE ssi $Q(\mathcal{D}) \neq \emptyset$.

- Si SQL-EMPTYNESS no esta en PTIME (ej. es NP-HARD), ¿implica que SQL-ENUM NO se puede enumerar en tiempo polinomial?
- Si SQL-EMPTYNESS esta en PTIME, ¿implica que SQL-ENUM se puede enumerar en tiempo polinomial?

 $\operatorname{SQL-Emptyness}$ solo nos puede dar evidencia si el problema es difícil

¿qué tan complejo es evaluar una consulta SQL?

Teorema

El problema SQL-EMPTYNESS es PSPACE-completo.

A menos que P = PSPACE, **no existe** un algoritmo de enumeración eficiente (en tiempo polinomial) para SQL-Enum

¿cuáles son las consultas SQL difíciles de evaluar?

- Consultas de la forma: NOT EXIST... EXIST... NOT EXIST...
- Consultas con negación anidadas.

Outline

Evaluación de consultas

Optimización de consultas

Consultas conjuntivas

Problemas asociados a optimización de consultas en SQL

Para la optimización de consultas en SQL, nos interesan algoritmos eficientes para los siguientes problemas:

PROBLEMA: Satisfabilidad de SQL (SQL-SAT).

INPUT: una consulta Q en SQL,

OUTPUT: TRUE ssi existe \mathcal{D} tal que $Q(\mathcal{D}) \neq \emptyset$.

PROBLEMA: Igualdad de consultas SQL (SQL-EQUIVALENCE).

INPUT: consultas Q_1 y Q_2 en SQL,

OUTPUT: TRUE ssi para todo \mathcal{D} se cumple $Q_1(\mathcal{D}) = Q_2(\mathcal{D})$.

¿para que nos serviría resolver estos problemas?

Es imposible tener un optimizador perfecto para SQL

Teorema

Para SQL, los siguientes problemas son indecidibles:

- SQL-Equivalence
- SQL-SAT

indecidible = no existe algoritmo alguno que solucione el problema

¿es posible hacer "algo" para mejorar la evaluación/optimización en SQL?

Outline

Evaluación de consultas

Optimización de consultas

Consultas conjuntivas

Fragmento más sencillo: consultas conjuntivas

Definición

Una consulta conjuntiva (CQ) es una consulta en AR que solo contiene:

- proyección (π)
- selección sencilla ($\sigma_{A=B}$ o $\sigma_{A=v}$)
- Equality joins $(\bowtie_{A=B})$
- Renaming $(\rho_{A \to B})$

Ejemplo

SELECT P.name, M.goals

FROM Players AS P, Matches AS M, Players_Matches AS PM

WHERE P.pld = PM.pld AND PM.mld = M.mld AND

P.name = 'Alexi' AND M.year = 2001

En otras palabras, una consulta SELECT-FROM-WHERE.

Fragmento más sencillo: consultas conjuntivas

Definición

Una consulta conjuntiva (CQ) es una consulta en AR que solo contiene:

- proyección (π)
- selección sencilla ($\sigma_{A=B}$ o $\sigma_{A=v}$)
- Equality joins $(\bowtie_{A=B})$
- Renaming $(\rho_{A \to B})$

Sin perdida de generalidad

Desde ahora en adelante consideraremos consultas conjuntivas solo con:

- **proyección** π .
- selección $\sigma_{A=v}$.
- natural joins ⋈.

 $\sigma_{A=B}$, $\bowtie_{A=B}$ y $\rho_{A\to B}$ no cambian la complejidad del problema.

Fragmento más sencillo: consultas conjuntivas

Proposición

Para toda consulta conjuntiva Q, existe una consulta Q' tal que $Q(\mathcal{D}) = Q'(\mathcal{D})$ para toda BD \mathcal{D} y Q' es de la forma:

$$\pi_I(\sigma_{c_1}(R_1) \bowtie \ldots \bowtie \sigma_{c_n}(R_n))$$

con cada c_i una conjunción filtros A = v.

Demostración: use las reglas de reescritura.

Representación simplificada de consultas conjuntivas

Sea V un conjunto de variables y C un conjunto de constantes.

Simplificación

Desde ahora una consulta conjuntiva la representaremos como:

$$ans(\bar{y}) := R_1(\bar{x}_1), R_2(\bar{x}_2), \dots, R_n(\bar{x}_n)$$

- $1. \ \bar{x}_1, \dots, \bar{x}_n$ son variables en **V** o constantes en **C**,
- 2. \bar{y} es un subconjunto de variables en $\bar{x}_1, \dots, \bar{x}_n$.

Ejemplo

$$ans(x,z) := P(x, Alexi), PM(x,y), M(y, 2001,z)$$

- x, y, z son variables.
- 'Alexi' y 2001 son constantes.

Representación simplificada de consultas conjuntivas

Sea **V** un conjunto de variables y **C** un conjunto de constantes.

Simplificación

Desde ahora una consulta conjuntiva la representaremos como:

$$ans(\bar{y}) := R_1(\bar{x}_1), R_2(\bar{x}_2), \dots, R_n(\bar{x}_n)$$

- $1. \ \bar{x}_1, \dots, \bar{x}_n$ son variables en **V** o constantes en **C**,
- 2. \bar{y} es un subconjunto de variables en $\bar{x}_1, \dots, \bar{x}_n$.

Notación

- $R_1(\bar{x}_1), \ldots, R_n(\bar{x}_n)$ es el cuerpo de Q y $ans(\bar{y})$ es la cabeza de Q.
- **•** cada $R_i(\bar{x}_i)$ es un **átomo** de Q.
- \blacksquare si \bar{y} es vacía, entonces hablamos de una consulta booleana.

Sea ${f V}$ un conjunto de variables y ${f C}$ un conjunto de constantes.

A partir del cuerpo de una consulta conjuntiva Q:

$$R_1(\bar{x}_1), R_2(\bar{x}_2), \ldots, R_n(\bar{x}_n)$$

se define una base de datos \mathcal{D}_Q sobre el dominio $\mathbf{V} \cup \mathbf{C}$ donde:

$$(d_1,\ldots,d_k)\in\mathcal{D}_Q(R)$$
 ssi $R(d_1,\ldots,d_k)$ es un átomo de Q.

Ejemplo

$$ans(x,z) := P(x, 'Alexi'), PM(x,y), M(y, 2001, z)$$

- $\mathcal{D}_Q(M) = \{(y, 2001, z)\}$

Sea **V** un conjunto de variables y **C** un conjunto de constantes.

A partir del cuerpo de una consulta conjuntiva Q:

$$R_1(\bar{x}_1), R_2(\bar{x}_2), \ldots, R_n(\bar{x}_n)$$

se define una base de datos $\mathcal{D}_{\mathcal{Q}}$ sobre el dominio $\mathbf{V} \cup \mathbf{C}$ donde:

$$(d_1,\ldots,d_k)\in\mathcal{D}_Q(R)$$
 ssi $R(d_1,\ldots,d_k)$ es un átomo de Q.

Definición

Un homomorfismo de Q a \mathcal{D} es una función $h: (\mathbf{V} \cup \mathbf{C}) \to \mathbf{C}$ tal que:

- h(c) = c para toda $c \in \mathbf{C}$ y
- $(d_1, ..., d_k) \in \mathcal{D}_Q(R)$, entonces $(h(d_1), ..., h(d_k)) \in \mathcal{D}(R)$ para todo nombre de relación R.

Definición

Un homomorfismo de Q a \mathcal{D} es una función $h: (\mathbf{V} \cup \mathbf{C}) \to \mathbf{C}$ tal que:

- h(c) = c para toda $c \in \mathbf{C}$ y
- $(d_1,...,d_k) \in \mathcal{D}_Q(R)$, entonces $(h(d_1),...,h(d_k)) \in \mathcal{D}(R)$ para todo nombre de relación R.

¿cuál es un homomorfismo de Q a \mathcal{D} ?

$$Q: \quad anx(x,z) \coloneqq P(x, 'Alexi', y), M(x,z, '3')$$

	Players (P):			Matches (M):			
	ld	Name	Year		ld	Stadium	Goals
\mathcal{D} :	1	Alexi	1987		1	Nacional	3
	2	Gary	1990		1	Monumental	3
	3	Arturo	1985		2	San Carlos	4

Definición

Un homomorfismo de Q a \mathcal{D} es una función $h: (\mathbf{V} \cup \mathbf{C}) \to \mathbf{C}$ tal que:

- h(c) = c para toda $c \in \mathbf{C}$ y
- $(d_1,...,d_k) \in \mathcal{D}_Q(R)$, entonces $(h(d_1),...,h(d_k)) \in \mathcal{D}(R)$ para todo nombre de relación R.

Proposición

Para toda base de datos \mathcal{D} y toda consulta conjuntiva Q de la forma:

$$ans(y_1,...,y_k) := R_1(\bar{x}_1), R_2(\bar{x}_2),..., R_n(\bar{x}_n)$$

se tiene que $t \in Q(\mathcal{D})$ si, y solo si, existe un homomorfismo h de Q a \mathcal{D} con

$$t = (h(y_1), \ldots, h(y_k)).$$

Demostración: ejercicio.

¿qué tan complejo es evaluar una consulta conjuntiva?

Problema de decisión:

 $\label{eq:problema:} PROBLEMA: \quad Resultado \ no-vac\'io \ de \ consultas \ conjuntivas \ (\mathrm{CQ-Emptyness}).$

INPUT: una consulta conjuntiva Q,

una BD relacional $\mathcal D$

OUTPUT: TRUE ssi $Q(\mathcal{D}) \neq \emptyset$.

Teorema

El problema CQ-EMPTYNESS es NP-completo.

¿estamos modelando el problema correctamente?

PROBLEMA: Resultado no-vacío de consultas conjuntivas (CQ-EMPTYNESS).

INPUT: una consulta conjuntiva Q,

una BD relacional $\mathcal D$

OUTPUT: TRUE ssi $Q(\mathcal{D}) \neq \emptyset$.

En la práctica tenemos que:

$$|Q| \ll |\mathcal{D}|$$

Consultas son muchísimo más pequeñas que los datos.

Complejidad en término de los datos

- **Combined**-complexity: consulta y datos son parte del input.
- Data-complexity: solo los datos son parte del input (consulta esta fija).

PROBLEMA: Resultado no-vacío de consultas conjuntivas Q (CQ-EVAL $_Q$).

INPUT: una BD relacional ${\cal D}$

OUTPUT: $t \in Q(\mathcal{D})$.

Complejidad en término de los datos

Teorema

El problema ConjSQL-Eval_Q esta en PTIME para todo consulta $Q \in \text{SQL}$.

¿es posible hacer una análisis mas fino?

Equivalencia y satisfiabilidad de consultas conjuntivas

Definición

Un homomorfismo de Q_1 a Q_2 es una función $h: (\mathbf{V} \cup \mathbf{C}) \to (\mathbf{V} \cup \mathbf{C})$:

- h(c) = c para toda $c \in \mathbf{C}$,
- si $(d_1,\ldots,d_k)\in\mathcal{D}_{Q_1}(R)$, entonces $(h(d_1),\ldots,h(d_k))\in\mathcal{D}_{Q_2}(R)$ y
- si $ans(y_1,...,y_k)$ es el cuerpo de Q_1 , entonces $ans(h(y_1),...,h(y_k))$ es el cuerpo de Q_2 .

Proposición

Para todo par de consultas conjuntivas Q_1 y Q_2 se tiene que:

- 1. $Q_1(\mathcal{D}) \subseteq Q_2(\mathcal{D})$ para toda \mathcal{D} si, y solo si,
- 2. existe un homomorfismo de Q_2 a Q_1 .

Equivalencia y satisfiabilidad de consultas conjuntivas

PROBLEMA: Satisfabilidad de consultas conjuntivas. (CQ-SAT).

INPUT: una consulta conjuntiva Q,

OUTPUT: TRUE ssi existe \mathcal{D} tal que $Q(\mathcal{D}) \neq \emptyset$.

PROBLEMA: Igualdad de consultas conjuntivas (CQ-EQUIVALENCE).

INPUT: consultas conjuntivas Q_1 y Q_2 ,

OUTPUT: TRUE ssi para todo \mathcal{D} se cumple $Q_1(\mathcal{D}) = Q_2(\mathcal{D})$.

Teorema

- CQ-SAT es un problema trivial (siempre es satisfacible).
- CQ-Equivalence es NP-completo.