LAbout RL

Many Faces of Reinforcement Learning

LAbout RL

Branches of Machine Learning

Characteristics of Reinforcement Learning

What makes reinforcement learning different from other machine learning paradigms?

- There is no supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Time really matters (sequential, non i.i.d data)
- Agent's actions affect the subsequent data it receives

L—About RL

Examples of Reinforcement Learning

- Fly stunt manoeuvres in a helicopter
- Defeat the world champion at Backgammon
- Manage an investment portfolio
- Control a power station
- Make a humanoid robot walk
- Play many different Atari games better than humans

Helicopter Manoeuvres

Bipedal Robots

Atari

—The RL Problem L—Reward

Rewards

- A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximise cumulative reward

Reinforcement learning is based on the reward hypothesis

Definition (Reward Hypothesis)

All goals can be described by the maximisation of expected cumulative reward

Do you agree with this statement?

```
L—The RL Problem
L_Reward
```

Examples of Rewards

- Fly stunt manoeuvres in a helicopter
- +ve reward for following desired trajectory
- ve reward for crashing
- Defeat the world champion at Backgammon
- +/-ve reward for winning/losing a game
- Manage an investment portfolio
- +ve reward for each \$\\$\$ in bank
- Control a power station
- +ve reward for producing power
- —ve reward for exceeding safety thresholds
- Make a humanoid robot walk
- +ve reward for forward motion
- ve reward for falling over
- Play many different Atari games better than humans
- +/—ve reward for increasing/decreasing score

L The RL Problem L Reward

Sequential Decision Making

- Goal: select actions to maximise total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more ong-term reward
- Examples:
- A financial investment (may take months to mature)
- Refuelling a helicopter (might prevent a crash in several hours)
- Blocking opponent moves (might help winning chances many moves from now)

—The RL Problem —Environments

Agent and Environment

—The RL Problem L—Environments

Agent and Environment

- At each step t the agent:
- Executes action A_t
- Receives observation O_t
- Receives scalar reward R_t
- The environment:
- Receives action A_t
- lacktriangle Emits observation O_{t+1}
- lacktriangle Emits scalar reward R_{t+1}
- t increments at env. step

—State

History and State

The history is the sequence of observations, actions, rewards

$$H_t = O_1, R_1, A_1, ..., A_{t-1}, O_t, R_t$$

- i.e. all observable variables up to time t
- i.e. the sensorimotor stream of a robot or embodied agent
- What happens next depends on the history:
- The agent selects actions
- The environment selects observations/rewards
- State is the information used to determine what happens next
- Formally, state is a function of the history:

$$S_t = f(H_t)$$

—The RL Problem
L_State

Environment State

- The environment state S_t^e is the environment's private representation
- i.e. whatever data the environment uses to pick the next observation/reward
- The environment state is not usually visible to the agent
- Even if S_t^e is visible, it may contain irrelevant information

—The RL Problem —State

Agent State

- The agent state S_t^a is the agent's internal representation
- i.e. whatever information the agent uses to pick the next action
- i.e. it is the information used by reinforcement learning algorithms
- It can be any function of history:

$$S_t^a = f(H_t)$$

L The RL Problem L State

Information State

An information state (a.k.a. Markov state) contains all useful information from the history.

Definition

A state S_t is Markov if and only if

$$\mathbb{P}[S_{t+1} \mid S_t] = \mathbb{P}[S_{t+1} \mid S_1, ..., S_t]$$

"The future is independent of the past given the present"

$$H_{1:t} o S_t o H_{t+1:\infty}$$

- Once the state is known, the history may be thrown away
- i.e. The state is a sufficient statistic of the future
- The environment state S_t is Markov
- The history H_t is Markov

Rat Example

—State

- What if agent state = last 3 items in sequence?
- What if agent state = counts for lights, bells and levers?
- What if agent state = complete sequence?

—The RL Problem —State

Fully Observable Environments

Full observability: agent directly observes environment state

$$O_t = S_t^a = S_t^e$$

- Agent state = environment state = information state
- Formally, this is a Markov decision process (MDP)
- (Next lecture and the majority of this course)

```
L—The RL Problem
                  —State
```

Partially Observable Environments

- Partial observability: agent indirectly observes environment:
- A robot with camera vision isn't told its absolute location
- A trading agent only observes current prices
- A poker playing agent only observes public cards
- Now agent state ≠ environment state
- Formally this is a partially observable Markov decision process (POMDP)
- Agent must construct its own state representation S_t^a , e.g.
- Complete history: $S_t^a = H_t$
- Beliefs of environment state: $S_t^a = (\mathbb{P}[S_t^e = s^1], ..., \mathbb{P}[S_t^e = s^n])$ Recurrent neural network: $S_t^a = \sigma(S_{t-1}^a W_s + O_t W_o)$

Major Components of an RL Agent

An RL agent may include one or more of these components:

Policy: agent's behaviour function

Value function: how good is each state and/or action

Model: agent's representation of the environment

Policy

- A policy is the agent's behaviour
- It is a map from state to action, e.g.
- Deterministic policy: $a=\pi(s)$
- Stochastic policy: $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$

Value Function

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And therefore to select between actions, e.g.

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right]$$

Lecture 1: Introduction to Reinforcement Learning

LInside An RL Agent

Example: Value Function in Atari

Model

- A model predicts what the environment will do next
- P predicts the next state
- lacktriangle $\mathcal R$ predicts the next (immediate) reward, e.g.

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a] \ \mathcal{R}_s^a = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$$

Maze Example

- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent's location

Maze Example: Policy

- Arrows represent policy $\pi(s)$ for each state s

Maze Example: Value Function

					Goal	
					1-	
6-	8-	<i>L</i> -		6-	-2	
-10		9-	-5	7 -		
-11	-12				-22	
-12			-19	-20	-21	
-13		-17	-18		-22	
-14	-15	-16		-24	-23	
	-16					
	Start					

■ Numbers represent value $v_{\pi}(s)$ of each state s

Maze Example: Model

Agent may have an internal model of the environment

Dynamics: how actions change the state Rewards: how much reward from each state

The model may be imperfect

lacktriangle Grid layout represents transition model \mathcal{P}_{ss}^a

lacktriangle Numbers represent immediate reward \mathcal{R}_{s}^{a} from each state s(same for all a)

Categorizing RL agents (1)

- Value Based
- No Policy (Implicit)
- Value Function
- Policy Based
- Policy
- No Value Function
- Actor Critic
- Policy
- Value Function

Categorizing RL agents (2)

- Model Free
- Policy and/or Value Function
- No Model
- Model Based
- Policy and/or Value Function
 - Model

LInside An RL Agent

RL Agent Taxonomy

L Problems within RL

Learning and Planning

Two fundamental problems in sequential decision making

- Reinforcement Learning:
- The environment is initially unknown
- The agent interacts with the environment
- The agent improves its policy
- Planning:
- A model of the environment is known
- The agent performs computations with its model (without any external interaction)
- The agent improves its policy
- a.k.a. deliberation, reasoning, introspection, pondering, thought, search

—Problems within RL

Atari Example: Reinforcement Learning

- Rules of the game are unknown
- Learn directly from interactive game-play
- Pick actions on joystick, see pixels and scores

Atari Example: Planning

- Rules of the game are known
- Can query emulator
- perfect model inside agent's brain
- If I take action a from state s:
- what would the next state be?
- what would the score be?
- Plan ahead to find optimal policy
- e.g. tree search

Problems within RL

Exploration and Exploitation (1)

- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy
- From its experiences of the environment
- Without losing too much reward along the way

—Problems within RL

Exploration and Exploitation (2)

- Exploration finds more information about the environment
- Exploitation exploits known information to maximise reward
- It is usually important to explore as well as exploit

Examples

Restaurant Selection

Exploitation Go to your favourite restaurant Exploration Try a new restaurant

Online Banner Advertisements

Exploitation Show the most successful advert Exploration Show a different advert

Oil Drilling

Exploitation Drill at the best known location Exploration Drill at a new location

Game Playing

Exploitation Play the move you believe is best Exploration Play an experimental move

└─ Problems within RL

Prediction and Control

Prediction: evaluate the future

Given a policy

Control: optimise the future

Find the best policy

Gridworld Example: Prediction

1.	0	0-	-1.	.4-2.
5.3	1.9	0.4	-0.6	-1.4
4.4	2.3	0.7	-0.4	-1.2
8.8	3.0	0.7	-0.4	-1.3
3.3	1.5	0.1	-1.0	-1.9

(q)

What is the value function for the uniform random policy?

(a)

Gridworld Example: Control

22.0 24.4 22.0 19.4 17.5 19.8 22.0 19.8 17.8 16.0 14.4 13.0 11.7 11.8 16.0 14.4 13.0 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11					
22.0 24.4 22.0 19.4 19.8 22.0 19.8 17.8 17.8 19.8 17.8 16.0 16.0 17.8 16.0 14.4 14.4 16.0 14.4 13.0	17.5	16.0	14.4	13.0	11.7
22.0 24.4 22.0 19.8 22.0 19.8 17.8 19.8 17.8 16.0 17.8 16.0	19.4	17.8	16.0	14.4	13.0
22.0 24.4 19.8 22.0 17.8 19.8 16.0 17.8	22.0	19.8	17.8	16.0	14.4
22.0 19.8 17.8 16.0	24.4	22.0	19.8	17.8	16.0
	22.0	19.8	17.8	16.0	14.4

+	+		$\overline{\qquad}$	←
$\qquad \qquad $	\rightarrow	┎→	┎→	ightharpoons
+	₽			$\downarrow \downarrow$
$ \bigoplus $	+	←	←	+
↑	→	↓	→	↓

a) gridworld

b) v_*

c) +*

What is the optimal value function over all possible policies? What is the optimal policy?

Course Outline

- Part I: Elementary Reinforcement Learning
- 1 Introduction to RL
- 2 Markov Decision Processes
- 3 Planning by Dynamic Programming
- 4 Model-Free Prediction
- 5 Model-Free Control
- Part II: Reinforcement Learning in Practice
- 1 Value Function Approximation
- 2 Policy Gradient Methods
- 3 Integrating Learning and Planning
- 4 Exploration and Exploitation
- **5** Case study RL in games