# **RAPPORT DE PROJET Ascenseur**

par HENDRIKSE Jérémy et ELLEON Quentin

### **Introduction**

Ceci est le rapport du projet ascenseur Arduino présenté en cours le 09/03/2023. Ce projet est assez particulier puisqu'il n'a pas été réalisé en 8 séances comme prévu mais seulement durant les 2 dernières. En effet, il fait office de substitution ou plutôt de 'projet de secours' au projet originel, qui était bien différent de celui-ci. Le projet originel était appelé Rooomba! et consistait à la création d'une voiture autonome, se déplaçant dans une pièce et scannant ses différents murs afin de créer une carte de cette pièce, de l'envoyer sur votre téléphone où, à la manière d'un aspirateur automatique, vous pourriez le contrôler et le déplacer à votre guise.

Les raisons d'abandon de ce projet sont expliquées plus en détail dans ce rapport, mais pour être bref, nos deux capteurs principaux étaient soit inutilisables, soit incompatibles avec Arduino et nous étions arrivés à la séance 6 sans grand-chose d'accompli, d'où nous avons choisi de changer de projet pour pouvoir rendre quelque chose qui nous satisferai.

Notre projet soutenu est donc un Ascenseur des plus simples. Nous avions que très peu de tâches à effectuer (construire la tour, la cabine, écrire le code et fixer quelques détails). Cette simplicité est un avantage car cela permettrait d'expliquer aux plus jeunes comment cette machine de tous les jours marche.

Dans ce rapport vous verrez donc :

- -Le schéma électrique de ce projet.
- -Le schéma algorithmique de ce projet.
- -Le cahier des charges attendus/final.
- -Un coût total estimé du projet.
- -Les problèmes rencontrés et les solutions trouvées.
- -Une conclusion sur ce que cela nous a apporté et ce que l'on aurait pu faire pour l'améliorer.

## Schéma électrique du projet

On a une Arduino Méga qui contrôle l'intégralité du projet, on à droite de la carte le driver et moteur stepper qui servent à faire monter la cabine. Sur le bas on a les 2 servo moteurs pour les portes de la cabine. Au milieu on a les LED et les boutons pour chacun des trois étages.



# Algorithme de fonctionnement



## Les plannings (initial et final) et leurs différences

Notre planning n'a pas pu être respecté étant donné tous les problèmes rencontrés sur le premier projet puis le changement de projet. Ce tableau sert plutôt à voir la stagnation du premier projet et l'avancement beaucoup plus rapide du deuxième projet.

| Séance           | 1                                                                    | 2                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                            |
|------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Planning initial | Comprendre le<br>fonctionnement des<br>différents capteurs<br>Jeremy | Jeremy: Continuer le Lidar et sortir une carte depuis un point fixe  Quentin: perfectionner le retour du déplacement à l'aide de la caméra et commencer le Gyroscope                                                                                                                                         | Jérémy: Faire une carte en prenant des mesures depuis plusieurs points  Quentin: Mettre en commun la caméra et le gyroscope commencer les encodeurs                                                                                                           | Jérémy: Comprendre les capteurs à ultrason et mettre en commun le capteur US et le lidar  Quentin: mettre en commun encodeurs, gyroscope et caméra                                                           |
| Planning final   | A jour sur le planning                                               | Jeremy: à jour sur le planning mais les données que renvoient le lidar a Arduino sont faussées donc impossible d'avoir une carte fiable  Quentin: Perfection du retour du déplacement de la caméra avec un code python me permettant de le comprendre. Découverte que la caméra n'est que peu fiable au sol. | Jérémy: toujours au niveau de la séance 2 car toujours les mêmes données faussées  Quentin: Toujours au même niveau que la séance 2 pour la caméra mais création du code sur le gyroscope et mise en commun avec celui de la caméra dans le programme python. | Jérémy: toujours séance 2, cherche des solutions mais aucune ne fonctionne  Quentin: Au même niveau que la séance 3, fixation de la caméra sur la voiture et ré-organisation de la construction de celle-ci. |

| 5                             | 6                              | 7                          | 8                           | 9            |
|-------------------------------|--------------------------------|----------------------------|-----------------------------|--------------|
| Mettre en commun              | Transferts des                 | Terminer ce qui n'a        | Débugger                    | Présentation |
| le mapping et le              | données vers un                | pas était fini à la        |                             |              |
| déplacement                   | appareil extérieur Et          | séance 6                   |                             |              |
|                               | PathFinding                    |                            |                             |              |
| <u>Jérémy</u> : toujours à la | <u>Jérémy</u> : déjà fait à la | Nouveau projet :           | Nouveau projet :            | Présentation |
| séance 2                      | séance 2 car les               |                            |                             |              |
|                               | données du lidar               | <u>Jérémy</u> :            | <u>Jérémy</u> : Fabrication |              |
| Quentin:                      | étaient trop grandes           | fonctionnement du          | de la tour, soudure         |              |
| Abandon de la                 |                                | stepper, bouton, led       | des fils, et écriture       |              |
| caméra et étude des           | <u>Quentin</u> : Nouveau       | et design 3D de la         | du code pour l'appel        |              |
| moteurs de la voiture         | projet : (Séance faite         | bobine                     | de l'ascenseur aux          |              |
| car nous allons               | séparément de                  |                            | différents étages           |              |
| essayer de ne plus            | Jérémy)                        | <u>Quentin</u> : Réflexion |                             |              |
| utiliser le Lidar.            | Création d'un                  | et conception 3D du        | Quentin : Création de       |              |
|                               | schéma temporaire              | design des portes          | la cage d'ascenseur         |              |
|                               | du nouveau projet,             | utilisées pour la cage     | par découpeuse              |              |
|                               | d'un nouveau cahier            | d'ascenseur, conçue        | laser, test du              |              |
|                               | des charges (qui               | en 3D également.           | système de porte et         |              |
|                               | n'est pas basé sur les         |                            | mettre ce code en           |              |
|                               | heures de cours) et            |                            | commun avec celui           |              |
|                               | réflexion sur tous les         |                            | d'appel de                  |              |
|                               | composants                     |                            | l'ascenseur. Étude          |              |
|                               | nécessaires.                   |                            | des écrans LCD et           |              |
|                               |                                |                            | rajout d'un sur la          |              |
|                               |                                |                            | tour.                       |              |
|                               |                                |                            |                             |              |
|                               |                                |                            |                             |              |

L

### Les problèmes et leur solutions

#### **Premier projet:**

Sur ce premier projet on a eu beaucoup de problèmes et très peu de solutions. Tout d'abord le LIDAR qui renvoyait des données erronées à Arduino, des données donc inutilisables. On a tout d'abord essayé de résoudre le problème mais rien ne pouvait solutionner ce problème. On a voulu essayer de contourner le problème en n'utilisant pas le LIDAR mais à la place un capteur de distance et un compas et faire tourner le robot au lieu du LIDAR. Mais en plus du fait que cette solution soit beaucoup plus longue à faire fonctionner, beaucoup moins précise et moins fiable, le compas ne fonctionnait pas. Et surtout cette solution n'était pas réalisable en 3 séances.

Nous avions aussi des problèmes au niveau de la caméra optique, qui ne détectait que très peu les détails et qui ne détectait que très peu un mouvement quand elle était fixée sur le bas de la voiture. Pour palier à ce problème nous avons pensé à accrocher une LED rouge pointant vers le sol et éclairant la caméra, bien que cela ait augmenté la précision de celle-ci, nous ne pouvions l'utiliser efficacement. Ce problème n'a pas été résolu finalement puisque après l'avoir découvert, nous l'avions mis de côté avant de finalement changer définitivement de projet.

#### **Deuxième projet :**

Sur ce deuxième projet on a rencontré beaucoup moins de problèmes. On a eu comme majeur problème notre moteur stepper qui avait du mal à tourner mais ça a été rapidement résolu avec du code.

Problème mineur : Impossibilité de trouver un bon système d'ouverture des portes, résolu par un système de servomoteurs.

## Le coût du projet

Matériel estimation en utilisant Amazon et AliExpress, plus le coût d'ingénierie en prenant une rémunération horaire de 23.75€. On a estimé le temps passé en cours et en dehors des cours pour chacun des deux projets et le cout du matériel pour l'ascenseur seulement.

#### **Projet Ascensseur:**

| Pièce                                     | Cout  |
|-------------------------------------------|-------|
| Cable                                     | 5€    |
| Bouton poussoir (3)                       | 3.60€ |
| Led (6)                                   | 0.50€ |
| Ecran Icd et adaptateur I2C               | 2€    |
| Stepper Motor (28buj-48 5V) et driver (2) | 3€    |
| Arduino mega 2560                         | 23€   |
| BreadBord                                 | 0.50€ |
| Contreplaqué (1500*500*4mm)               | 10€   |
| Tasseau bois (2m)                         | 6€    |
| Total                                     | 52€   |

| Personne | Nb heure pendant | Nb heure en      | Total              |
|----------|------------------|------------------|--------------------|
|          | les cours        | dehors des cours |                    |
| Jérémy   | 6h               | 14h              | 20*23.75=475€      |
| Quentin  | 9h               | 10h              | 19*23.75 = 451,25€ |

**Total**: 978,25€ (5% matériel)

### **Projet Rooomba!**

| Personne | Nb heure pendant les cours | Nb heure en dehors des cours | Total              |
|----------|----------------------------|------------------------------|--------------------|
| Jérémy   | 18h                        | 25h                          | 43*23.75=1021,25€  |
| Quentin  | 15h                        | 2h                           | 17*23,75 = 403,75€ |

**Total** : 1425 €

### **Conclusion-perspective**

On a actuellement un projet d'ascenseur quasiment entièrement fonctionnel les deux principaux points à améliorer si on avait du temps supplémentaire sont :

- Le moteur stepper qui n'est pas assez puissant pour faire monter la cabine, on devrait passer à une alimentation externe et mettre un moteur stepper de 12V au lieu de 5V
- Les portes de l'ascenseur peuvent être améliorées en remplaçant les fils attachés aux servomoteurs par des barres solides, qui permettraient d'améliorer grandement la fermetures des portes, qui pour l'instant ne se reposait que sur la force du scotch entre les portes et les murs (et donc enlever le scotch)

On a ensuite seulement des détails à corriger, les limit-switch en haut et en bas de l'ascenseur à fixer pour initialiser la cabine à la bonne hauteur. Des câbles à rallonger un peu pour avoir un meilleur rangement des câbles. Et Finalement dans l'idéal refaire la tour pour laisser plus de place à l'intérieur et corriger des détails pour avoir un meilleur rendu.

Je pense que si on avait encore 9 séances, on pourrait changer à nouveau de projet pour en faire un peu plus complexe car on arriverait vite à ne plus pouvoir faire énormément d'amélioration et de progrès sur le projet de l'ascenseur.

Ce projet nous a permis d'apprendre ce que c'était un vrai projet de robotique, bien que nous étions entourés de nos professeurs, notre sujet était libre et nous étions libre d'évoluer comme nous le voulions, c'est en partie cette liberté qui nous a fait voir plus grand que ce dont on étais capables mais cela nous a donné un avant-goût de notre future vie d'ingénieur, et surtout au niveau de la partie conception de projets de celle-ci.

Il nous a aussi appris a bien s'organiser pour pouvoir réaliser un projet dans un temps limite (pour l'ascenseur surtout). Faire avec des moyens limités dans un temps limité était une vraie épreuve qui, je trouve, a bien plus renforcé notre niveau que les semaines entières passées à travailler sur le premier projet.

## **Bibliographie**

Seulement pour le projet de l'ascensseur.

#### Servomoteur SG90:

• <a href="https://ledisrupteurdimensionnel.com/arduino/controler-un-servomoteur-avec-une-plaque-arduino-servo-sg90/">https://ledisrupteurdimensionnel.com/arduino/controler-un-servomoteur-avec-une-plaque-arduino-servo-sg90/</a>

#### Ecran LCD:

- https://www.volta.ma/comment-utiliser-un-ecran-lcd-16-x-2-caracteres-avec-arduino/ arduino/
- https://www.gotronic.fr/pj2-sbc-lcd16x2-fr-1441.pdf

#### Moteur stepper:

- <a href="https://www.volta.ma/comment-utiliser-moteur-pas-a-pas-28byj-48-avec-pilote-uln2003-et-tutoriel-arduino/arduino/">https://www.volta.ma/comment-utiliser-moteur-pas-a-pas-28byj-48-avec-pilote-uln2003-et-tutoriel-arduino/arduino/</a>
- <a href="https://github.com/arduino-libraries/Stepper">https://github.com/arduino-libraries/Stepper</a>