# EME5943 현대제어시스템

김종현 교수



## Stability (Linear system)

### Stability analysis via linear approximation

• Linear approximation (Linearization)

$$\frac{dx}{dt} = F(x)$$
 an equilibrium point at  $x_e$ 

Tayler series expansion

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \cdots$$

$$\frac{dx}{dt} = F(x_e) + \left. \frac{\partial F}{\partial x} \right|_{x_e} (x - x_e) + \text{higher-order terms in } (x - x_e).$$

$$z = x - x_e$$
  $\frac{dz}{dt} = Az$ , where  $A = \frac{\partial F}{\partial x}\Big|_{x_e}$ 



$$\frac{dx}{dt} = F(x), \quad x \in \mathbb{R}^n$$

stability of solutions for a nonlinear system

#### Lyapunov functions

- Energy-like function
  - ✓ Nonnegative, always decreased along trajectory
- A few definitions

```
positive definite
positive semidefinite
negative definite
```

$$V_1(x) = x_1^2$$

suppose that  $x \in \mathbb{R}^2$ 

$$V_2(x) = x_1^2 + x_2^2$$



### Lyapunov functions

**Theorem 5.2** (Lyapunov stability theorem). Let V be a function on  $\mathbb{R}^n$  and let  $\dot{V}$  represent the time derivative of V along trajectories of the system dynamics (5.16):

$$\dot{V} = \frac{\partial V}{\partial x} \frac{dx}{dt} = \frac{\partial V}{\partial x} F(x).$$

If there exists r > 0 such that V is positive definite and  $\dot{V}$  is negative semidefinite on  $B_r$ , then x = 0 is (locally) stable in the sense of Lyapunov. If V is positive definite and  $\dot{V}$  is negative definite in  $B_r$ , then x = 0 is (locally) asymptotically stable.

If V satisfies one of the conditions above

V: Lyapunov function

If we don't know → candidate Lyapunov function



## 현대제어시스템

Dynamic behavior (4)



### Finding Lyapunov functions

- not always easy to find
- not unique
- If a system is stable → a Lyapunov function exists
- Sum-of-squares technique : a systematic approach
   ✓ If need, see ref. in textbook
- Systematic method for linear system?

$$\frac{dx}{dt} = Ax$$

$$V(x) = x^T P x$$

where  $P \in \mathbb{R}^{n \times n}$  is a symmetric matrix  $(P = P^T)$ 



$$\frac{dx}{dt} = Ax$$

$$V(x) = x^T P x$$
where  $P \in \mathbb{R}^{n \times n}$  is a symmetric matrix  $(P = P^T)$ 

The condition that V be positive definite  $\Rightarrow P > 0$ 



the condition that P be a positive definite matrix



if *P* is symmetric

if and only if all of its eigenvalues are real and positive

candidate Lyapunov function  $V(x) = x^T P x$ 



candidate Lyapunov function  $V(x) = x^T P x$ 

- Always has a solution if all of the eigenvalues of  $oldsymbol{A}$  are in the left half-plane
- -P > 0 if Q > 0



### Finding Lyapunov function

 Stability of nonlinear system with finding Lyapunov function of linear system

$$\frac{dx}{dt} = F(x) =: Ax + \tilde{F}(x)$$
$$F(0) = 0$$

 $\tilde{F}(x)$  contains terms that are second order and higher

**Theorem 5.3.** Consider the dynamical system (5.18) with F(0) = 0 and  $\tilde{F}$  such that  $\lim \|\tilde{F}(x)\|/\|x\| \to 0$  as  $\|x\| \to 0$ . If the real parts of all eigenvalues of A are strictly less than zero, then  $x_e = 0$  is a locally asymptotically stable equilibrium point of equation (5.18).

