

曳影 1520 音频处理 用户手册

文档版本 1.0.0

保密等级 保密

发布日期 2023-08-26

Copyright © 2022 T-HEAD (Shanghai) Semiconductor Co., Ltd. All rights reserved.

This document is the property of T-HEAD (Shanghai) Semiconductor Co., Ltd. This document may only be distributed to: (i) a T-HEAD party having a legitimate business need for the information contained herein, or (ii) a non-T-HEAD party having a legitimate business need for the information contained herein. No license, expressed or implied, under any patent, copyright or trade secret right is granted or implied by the conveyance of this document. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise without the prior written permission of T-HEAD (Shanghai) Semiconductor Co., Ltd.

Trademarks and Permissions

The T-HEAD Logo and all other trademarks indicated as such herein are trademarks of T-HEAD (Shanghai) Semiconductor Co., Ltd. All other products or service names are the property of their respective owners.

Notice

The purchased products, services and features are stipulated by the contract made between T-HEAD and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

平头哥(上海)半导体技术有限公司 T-HEAD (Shanghai) Semiconductor Co., LTD

Address: 5th Floor Number 2 Chuan He Road 55, Number 366 Shang Ke Road, Shanghai free trade area, China

Website: www.t-head.cn

Copyright © 2022 平头哥 (上海) 半导体技术有限公司, 保留所有权利.

本文档的所有权及知识产权归属于平头哥(上海)半导体技术有限公司及其关联公司(下称"平头哥")。本文档仅能分派给:(i)拥有合法雇佣关系,并需要本文档的信息的平头哥员工,或(ii)非平头哥组织但拥有合法合作关系,并且其需要本文档的信息的合作方。对于本文档,未经平头哥(上海)半导体技术有限公司明示同意,则不能使用该文档。在未经平头哥(上海)半导体技术有限公司的书面许可的情形下,不得复制本文档的任何部分,传播、转录、储存在检索系统中或翻译成任何语言或计算机语言。

商标申明

平头哥的 LOGO 和其它所有商标归平头哥(上海)半导体技术有限公司及其关联公司所有,未经平头哥(上海)半导体技术有限公司的书面同意,任何法律实体不得使用平头哥的商标或者商业标识。

注意

您购买的产品、服务或特性等应受平头哥商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,平头哥对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。平头哥(上海)半导体技术有限公司不对任何第三方使用本文档产生的损失承担任何法律责任。

平头哥(上海)半导体技术有限公司 T-HEAD (Shanghai) Semiconductor Co., LTD

地址: 中国(上海)自由贸易试验区上科路 366 号、川和路 55 弄 2 号 5 层

网址: www.t-head.cn

版本历史

版本	说明	作者	日期
V1.0.0	初始版本	平头哥	2023-08-26

目录

版本历史	
目录	
图表目录	II
术语与缩略语	VI
1 概述	1
1.1 主要特性	1
1.2 C906 中断向量表	2
1.3 CP 输出中断信号说明	3
1.4 DMA 握手信号表	2
1.5 系统地址映射	6
2 CPR	8
2.1 模块特性	8
2.2 框图	8
2.3 寄存器描述	g
3 I2S	49
3.1 模块特性	49
3.2 框图	49
3.3 寄存器描述	50
4 TDM	75
4.1 模块特性	75
4.2 工作方式	75
4.3 寄存器描述	75
5 VAD	101
5.1 模块特性	101
5.2 寄存器描述	102
6 SPDIF	115
6.1 模块特性	115
6.2 工作方式	115
6.3 寄存器描述	116

图表目录

图表 1-1 Audio CPU 中断向量表	2
图表 1-2 CP 输出中断信号排序说明	3
图表 1-3 Audio DMA 握手信号表	4
图表 1-4 Audio 系统地址映射	6
图表 2-1 框图	8
图表 2-2 CPR 寄存器内存映射	9
图表 2-3 SYS_CLK_DIV_REG 寄存器说明	11
图表 2-4 PERI_DIV_SEL_REG 寄存器说明	13
图表 2-5 PERI_CLK_SEL_REG 寄存器说明	15
图表 2-6 PERI_CTRL_REG 寄存器说明	17
图表 2-7 IP_CG_REG 寄存器说明	19
图表 2-8 IP_RST_REG 寄存器说明	23
图表 2-9 I2S0_BUSY_REG 寄存器说明	26
图表 2-10 I2S1_BUSY_REG 寄存器说明	26
图表 2-11 I2S2_BUSY_REG 寄存器说明	27
图表 2-12 I2S8CH_BUSY_REG 寄存器说明	27
图表 2-13 SPDIF0_BUSY_REG 寄存器说明	27
图表 2-14 SPDIF1_BUSY_REG 寄存器说明	28
图表 2-15 TDM_BUSY_REG 寄存器说明	28
图表 2-16 I2C0_BUSY_REG 寄存器说明	28
图表 2-17 I2C1_BUSY_REG 寄存器说明	29
图表 2-18 UART_BUSY_REG 寄存器说明	29
图表 2-19 TIMER_BUSY_REG 寄存器说明	29
图表 2-20 VAD_BUSY_REG 寄存器说明	30
图表 2-21 GPIO_BUSY_REG 寄存器说明	30
图表 2-22 DMA_CH1_BUSY_REG 寄存器说明	30
图表 2-23 DMA_CH2_BUSY_REG 寄存器说明	31
图表 2-24 DMA_CH3_BUSY_REG 寄存器说明	31
图表 2-25 DMA_CH4_BUSY_REG 寄存器说明	31
图表 2-26 DMA_CH5_BUSY_REG 寄存器说明	32
图表 2-27 DMA_CH6_BUSY_REG 寄存器说明	32
图表 2-28 DMA_CH7_BUSY_REG 寄存器说明	32

图表 2-29 DMA_CH8_BUSY_REG 寄存器说明	33
图表 2-30 DMA_CH9_BUSY_REG 寄存器说明	33
图表 2-31 DMA_CH10_BUSY_REG 寄存器说明	33
图表 2-32 DMA_CH11_BUSY_REG 寄存器说明	34
图表 2-33 DMA_CH12_BUSY_REG 寄存器说明	34
图表 2-34 DMA_CH13_BUSY_REG 寄存器说明	34
图表 2-35 DMA_CH14_BUSY_REG 寄存器说明	35
图表 2-36 DMA_CH15_BUSY_REG 寄存器说明	35
图表 2-37 DMA_CH16_BUSY_REG 寄存器说明	35
图表 2-38 SYS_STATUS_REG 寄存器说明	36
图表 2-39 SYS_CTRL_REG 寄存器说明	37
图表 2-40 TESTCLK_CTRL_REG 寄存器说明	38
图表 2-41 SYSBUS_CTRL_REG 寄存器说明	40
图表 2-42 SYS_ID_REG 寄存器说明	41
图表 2-43 RESERVD1_REG 寄存器说明	41
图表 2-44 WKINTR_STATUS_REG 寄存器说明	42
图表 2-45 WKINTR_MASK_REG 寄存器说明	43
图表 2-46 MEM_CTRL_REG 寄存器说明	44
图表 2-47 DMA_STO_REG 寄存器说明	45
图表 2-48 DMA_ST1_REG 寄存器说明	45
图表 2-49 DMA_ST2_REG 寄存器说明	46
图表 2-50 DMA_ST2_REG 寄存器说明	47
图表 3-1 I2S 框图	49
图表 3-2 I2S 内存映射	50
图表 3-3 IISEN 字段说明	52
图表 3-4 FUNCMODE 字段说明	52
图表 3-5 IISCNF_IN 字段说明	53
图表 3-6 标准立体声帧格式@ RALOLRC=1	54
图表 3-7 FSSTA 字段说明	54
图表 3-8 16 位输入/输出和 FIFO 以 16 位存储数据	56
图表 3-9 16 位输入/输出和 FIFO 以 24 位存储数据	56
图表 3-10 16 位输入/输出和 FIFO 以 32 位存储数据	56
图表 3-11 24 位输入/输出和 FIFO 以 16 位存储数据	57
图表 3-12 24 位输入/输出和 FIFO 以 24 位存储数据	57
图表 3-13 24 位输入/输出和 FIFO 以 32 位存储数据	57

图表 3-14 32 位输入/输出和 FIFO 以 16 位存储数据	58
图表 3-15 32 位输入/输出和 FIFO 以 24 位存储数据	58
图表 3-16 32 位输入/输出和 FIFO 以 32 位存储数据	58
图表 3-17 实际输入采样频率	58
图表 3-18 IISCNF_OUT 字段说明	59
图表 3-19 FADTLR 字段说明	60
图表 3-20 SCCR 字段说明	61
图表 3-21 数据压缩@T/RVCCR=3, DATAWTH[1:0]=00	62
图表 3-22 数据压缩@T/RVCCR=15, DATAWTH[1:0]=01	62
图表 3-23 数据压缩@T/RVCCR=5, DATAWTH[1:0]=1?	63
图表 3-24 数据压缩@ =1, DATAWTH[1:0]=00@立体声源	63
图表 3-25 数据压缩@SSRCR=1, DATAWTH[1:0]=00@单声道源	63
图表 3-26 数据压缩@SSRCR=2, DATAWTH[1:0]=00@立体声源	63
图表 3-27 数据压缩@SSRCR=2, DATAWTH[1:0]=00@单声道源	63
图表 3-28 数据压缩@SSRCR=2, DATAWTH[1:0]=01@立体声源	64
图表 3-29 数据压缩@SSRCR=2, DATAWTH[1:0]=01@单声道源	64
图表 3-30 TXFTLR 字段说明	64
图表 3-31 RXFTLR 字段说明	65
图表 3-32 TXFLR 字段说明	65
图表 3-33 RXFLR 字段说明	65
图表 3-34 SR 字段说明	66
图表 3-35 IMR 字段说明	67
图表 3-36 ISR 字段说明	68
图表 3-37 RISR 字段说明	69
图表 3-38 ICR 字段说明	71
图表 3-39 DMACR 字段说明	72
图表 3-40 DMATDLR 字段说明	72
图表 3-41 DMARDLR 字段说明	73
图表 3-42 DR 字段说明	73
图表 3-43 DIVO_LEVEL 字段说明	74
图表 3-44 DIV3_LEVEL 字段说明	74
图表 4-1 TDM 寄存器内存映射	75
图表 5-1 VAD 寄存器内存映射	102
图表 5-2 I2S 数据截取方式	108
图表 5-3 正确的 PCM 数据	112

图表 5-4	偏移大于 0 的 PCM 数据1	12
图表 5-5	偏移小于 0 的 PCM 数据1	12
图表 6-1	TDM 寄存器内存映射	16

术语与缩略语

缩略语	英文全名	中文解释

1 概述

1.1 主要特性

● 处理器内核

- C906 单核处理器, 主频 400~812.8512MHz
- RV64IMA[FD]C[V]指令架构
- 5级单发按序执行流水线
- 一级哈佛结构的指令和数据缓存,大小为 32KB,缓存行为 64B
- Sv39 内存管理单元,实现虚实地址转换与内存管理
- 支持 AXI4.0 128 比特 Master 接口
- 支持核内中断 CLINT 和中断控制器 PLIC
- 可配置的浮点单元和矢量单元

● 片内总线

- 128bits AXI4.0 总线,和 CPU 主频 1:N 比例
- 一组 AXI Master 和两组 Slave 接口用于和 AP 系统或 Shared-MEM 通信
- 32 位 AHB 总线和 32 位 APB 总线

DMAC

- AXI Master 口、16 通道。支持 8bit、16bit、32bit、64bit、128bit 数据传输
- 最大 block size 65535
- 支持 LLP 模式

● 片内存储

- 2 块 128KB 单口 SRAM

● 音频接口

- 1 个 8 通道 I2S 与外部 CODEC 通信采集输入音频 (16k)。
- 3 个 2 通道 I2S/PCM,可实现连接外部 CODEC 播放(16k/32k/48k/44.1k/64k/192k/384k),或蓝牙语音连接(8k/16k/32k/48k/44.1k)
- 支持低功耗 VAD, 最大支持 8 通道 I2S 或 8 通道 PDM
- 支持 8 路 PDM 与外部 DMIC 通信,用于采集音频,pdmclk 支持 1.536MHz/768kHz
- 支持 8 路 TDM/PCM 输入
- 2个 SPDIF, 支持 IN/OUT 双工, 支持 Fs 32/44.1/48/88.2/96/192kHz

● 定时、计数器

- 1 个 Timer, 支持级联
- 1个WDT

● 其它外设

- 1个 UART,支持流控,可用于对接 WIFI
- 2个I2C,可用于连接外部CODEC,支持高速模式
- 1组 GPIOx30
- 安全机制
 - IOPMP 安全管理模块

CPU 和 DMAC 的 Master 接口带有安全机制。

1.2 C906 中断向量表

系统内部所有中断均为电平中断,且高有效。

图表 1-1 Audio CPU 中断向量表

中断号	中断源
0	-
1	WDT
2	AP-MAILBOX
3	DMAC
4	Timer counter 0
5	Timer counter 1
6	Timer counter 2
7	Timer counter 3
8	VAD-FIFO
9	VAD-WK
10	1250
11	1251
12	1252
13	12S_8CH
14	TDM
15	SPDIF0
16	SPDIF1
17	GPIO
18	12C0

中断号	中断源
19	12C1
20	UART
21	Bus monitor
22	-
23	NPU_intr[0]
24	NPU_intr[1]
25	NPU_intr[2]
26	AON_REQ (E902)

注

I2S0、I2S1、I2S2、I2S_8CH、TDM、SPDIF0、SPDIF1中断源为各个模块发出的错误中断信号和常规中断信号的或操作。

1.3 CP 输出中断信号说明

系统输出所有中断均为电平中断,且高有效。

图表 1-2 CP 输出中断信号排序说明

中断号	中断源
0	-
1	WDT
2	-
3	DMAC
4	Timer counter 0
5	Timer counter 1
6	Timer counter 2
7	Timer counter 3
8	VAD-FIFO
9	VAD-WK
10	1250
11	1251
12	1252

中断号	中断源
13	12S_8CH
14	TDM
15	SPDIF0
16	SPDIF1
17	GPIO
18	12C0
19	12C1
20	UART
21	Bus monitor
22	-
23	NPU_intr[0]
24	NPU_intr[1]
25	NPU_intr[2]
26	AON_REQ (E902)
27	-
28	-
29	-

1.4 DMA 握手信号表

图表 1-3 Audio DMA 握手信号表

DMA 握手接口	外设接口
0	VAD RX0_L
1	VAD RX0_R
2	VAD RX1_L
3	VAD RX1_R
4	VAD RX2_L
5	VAD RX2_R
6	VAD RX3_L

DMA 握手接口	外设接口			
7	VAD RX3_R			
8	1250 RX			
9	12S0 TX			
10	12S1 RX			
11	12S1 TX			
12	1252 RX			
13	1252 TX			
14	12S_8CH RX0			
15	I2S_8CH RX1			
16	I2S_8CH RX2			
17	12S_8CH RX3			
18	UART RX			
19	UART TX			
20	12C0 RX			
21	12C0 TX			
22	12C1 RX			
23	12C1 TX			
24	SPDIFO RX			
25	SPDIF0 TX			
26	SPDIF1 RX			
27	SPDIF1 TX			
28	TDM RX0			
29	TDM RX1			
30	TDM RX2			
31	TDM RX3			
32	TDM RX4			
33	TDM RX5			
34	TDM RX6			

DMA 握手接口	外设接口
35	TDM RX7
36	12S_8CH TX0
37	12S_8CH TX1
38	12S_8CH TX2
39	12S_8CH TX3

1.5 系统地址映射

图表 1-4 Audio 系统地址映射

总线	总线号	使用	起始地址	结束地址	总大小	实际大小
名称						
	S1	SRAM	0xFF_C000_0000	0xFF_C001_FFFF	128KB	128KB
	52	SRAM	0xFF_C002_0000	0xFF_C003_FFFF	128KB	128KB
	53	АНВ	0xFF_C800_0000	0xFF_CFFF_FFFF	128MB	128MB
AXI SYS	-	PLIC	0xFF_D000_0000	0xFF_D7FF_FFFF	128MB	128MB
	C 4	DDR	0x00_0000_0000	0x03_FFFF_FFFF	16GB	16GB
	S4	АР	0xFF_E100_0000	0xFF_FFFF_FFFF	496MB	496MB
	S5	SRAM	0xFF_E000_0000	0xFF_E0FF_FFFF	16MB	16MB
	50	DMA	0xFF_C800_0000	0xFF_C800_FFFF	64KB	64KB
	S1/2	RESERVED	0xFF_C801_0000	0xFF_CAFF_FFFF	32MB	32MB
ALID	53	CPR	0xFF_CB00_0000	0xFF_CB00_FFFF	64KB	64KB
AHB	S4	АРВО	0xFF_CB01_0000	0xFF_CB01_FFFF	64KB	64KB
	S5	APB1	0xFF_CB02_0000	0xFF_CB02_FFFF	64KB	64KB
	S6	RESERVED	0xFF_CB03_0000	0xFF_CB03_0FFF	16MB	16MB
	S0	WDT	0xFF_CB01_0000	0xFF_CB01_0FFF	4KB	4KB
	S1	TIMER	0xFF_CB01_1000	0xFF_CB01_1FFF	4KB	4KB
APB0	52	TDM	0xFF_CB01_2000	0xFF_CB01_2FFF	4KB	4KB
	S3	GPIO	0xFF_CB01_3000	0xFF_CB01_3FFF	4KB	4KB
	S4	1250	0xFF_CB01_4000	0xFF_CB01_4FFF	4KB	4KB

总线	总线号	使用	起始地址	结束地址	总大小	实际大小
名称						
	S5	1251	0xFF_CB01_5000	0xFF_CB01_5FFF	4KB	4KB
	S6	1252	0xFF_CB01_6000	0xFF_CB01_6FFF	4KB	4KB
	S7	I2S-IN	0xFF_CB01_7000	0xFF_CB01_7FFF	4KB	4KB
	S8	SPDIF0	0xFF_CB01_8000	0xFF_CB01_8FFF	4KB	4KB
	S9	SPDIF1	0xFF_CB01_9000	0xFF_CB01_9FFF	4KB	4KB
	S10	12C0	0xFF_CB01_A000	0xFF_CB01_AFFF	4KB	4KB
	S11	12C1	0xFF_CB01_B000	0xFF_CB01_BFFF	4KB	4KB
	S12	UART	0xFF_CB01_C000	0xFF_CB01_CFFF	4KB	4KB
	S13	IOCtrl	0xFF_CB01_D000	0xFF_CB01_DFFF	4KB	4KB
	S14	VAD	0xFF_CB01_E000	0xFF_CB01_EFFF	4KB	4KB
	S15	RESERVED	0xFF_CB01_F000	0xFF_CB01_FFFF	4KB	4KB
	S0	BSM	0xFF_CB02_0000	0xFF_CB02_0FFF	4KB	4KB
ADD1	S1~S13	RESERVED	0xFF_CB02_1000	0xFF_CB02_DFFF	52KB	52KB
APB1	S14	ІОРМРО	0xFF_CB02_E000	0xFF_CB02_EFFF	4KB	4KB
	S15	IOPMP1	0xFF_CB02_F000	0xFF_CB02_FFFF	4KB	4KB

2 CPR

2.1 模块特性

- 支持 32 位 AHB-LITE 协议配置寄存器
- 支持各系统时钟分频控制和模块 CG 控制
- 支持各模块软复位控制
- CPU 复位状态寄存器,系统复位历史状态寄存器
- 支持版本 ID 只读寄存器, 初始版本号 0x00
- 支持 CPU 低功耗模式系统 CG 控制
- 支持防止模块访问冲突机制
- 复位后,默认输出的各系统时钟均为低速 24M 时钟,总线分频比为默认值
- 支持 CP 和外部 PMU 通信握手请求信号以及握手请求状态查询,分别有 4 组信号:
 - cp pmu req/cp pmu st[3:0]: CP 向 AP 侧 PMU 发送通信请求信号和状态值。
 - pmu cp req/pmu cp st[3:0]: AP 侧 PMU 向 CP 发送通信请求信号和状态值。
- 系统控制保留寄存器(初始值0或1,支持总线读写)

2.2 框图

图表 2-1 框图

2.3 寄存器描述

2.3.1 寄存器内存映射

SP_CPR_REG 寄存器的具体描述如图表 2-2 所示。

图表 2-2 CPR 寄存器内存映射

寄存器名	偏移量	宽度	类型	复位值	说明	章节/页码
SYS_CLK_DIV_REG	0x0	32	RW	0x124008	系统时钟分频选择配置寄存器	2.3.2.1/11
PERI_DIV_SEL_REG	0x4	32	RW	0x3f0725f	外设工作时钟分频配置寄存器	2.3.2.2/13
PERI_CLK_SEL_REG	0x8	32	RW	0x0	音频外设时钟源选择配置寄存 器	2.3.2.3/15
PERI_CTRL_REG	0xC	32	RW	0x0	外设控制信号配置寄存器	2.3.2.4/17
IP_CG_REG	0x10	32	RW	0x7	模块 CG 控制寄存器	2.3.2.5/19
IP_RST_REG	0x14	32	RW	0x7ffff10	模块复位控制寄存器	2.3.2.6/23
I2S0_BUSY_REG	0x18	32	RW	0x0	I2S0 BUSY 状态寄存器	2.3.2.7/26
I2S1_BUSY_REG	0x1C	32	RW	0x0	I2S1 BUSY 状态寄存器	2.3.2.8/26
I2S2_BUSY_REG	0x20	32	RW	0x0	I2S2 BUSY 状态寄存器	2.3.2.9/27
I2S8CH_BUSY_REG	0x24	32	RW	0x0	I2S-8CH BUSY 状态寄存器	2.3.2.10/27
SPDIF0_BUSY_REG	0x28	32	RW	0x0	SPDIFO BUSY 状态寄存器	2.3.2.11/27
SPDIF1_BUSY_REG	0x2C	32	RW	0x0	SPDIF1 BUSY 状态寄存器	2.3.2.12/28
TDM_BUSY_REG	0x30	32	RW	0x0	TDM BUSY 状态寄存器	2.3.2.13/28
I2C0_BUSY_REG	0x34	32	RW	0x0	I2C0 BUSY 状态寄存器	2.3.2.14/28
I2C1_BUSY_REG	0x38	32	RW	0x0	I2C1 BUSY 状态寄存器	2.3.2.15/29
UART_BUSY_REG	0x3C	32	RW	0x0	UART BUSY 状态寄存器	2.3.2.16/29
TIMER_BUSY_REG	0x40	32	RW	0x0	TIMER BUSY 状态寄存器	2.3.2.17/29
VAD_BUSY_REG	0x44	32	RW	0x0	VAD BUSY 状态寄存器	2.3.2.18/30
GPIO_BUSY_REG	0x48	32	RW	0x0	GPIO BUSY 状态寄存器	2.3.2.19/30
DMA_CH1_BUSY_REG	0x4C	32	RW	0x0	DMA_CH1 BUSY 状态寄存器	2.3.2.20/30

寄存器名	偏移量	宽度	类型	复位值	说明	章节/页码
DMA_CH2_BUSY_REG	0x50	32	RW	0x0	DMA_CH2 BUSY 状态寄存器	2.3.2.21/31
DMA_CH3_BUSY_REG	0x54	32	RW	0x0	DMA_CH3 BUSY 状态寄存器	2.3.2.22/31
DMA_CH4_BUSY_REG	0x58	32	RW	0x0	DMA_CH4 BUSY 状态寄存器	2.3.2.23/31
DMA_CH5_BUSY_REG	0x5C	32	RW	0x0	DMA_CH5 BUSY 状态寄存器	2.3.2.24/32
DMA_CH6_BUSY_REG	0x60	32	RW	0x0	DMA_CH6 BUSY 状态寄存器	2.3.2.25/32
DMA_CH7_BUSY_REG	0x64	32	RW	0x0	DMA_CH7 BUSY 状态寄存器	2.3.2.26/32
DMA_CH8_BUSY_REG	0x68	32	RW	0x0	DMA_CH8 BUSY 状态寄存器	2.3.2.27/33
DMA_CH9_BUSY_REG	0x6C	32	RW	0x0	DMA_CH9 BUSY 状态寄存器	2.3.2.28/33
DMA_CH10_BUSY_REG	0x70	32	RW	0x0	DMA_CH10 BUSY 状态寄存器	2.3.2.29/33
DMA_CH11_BUSY_REG	0x74	32	RW	0x0	DMA_CH11 BUSY 状态寄存器	2.3.2.30/34
DMA_CH12_BUSY_REG	0x78	32	RW	0x0	DMA_CH12 BUSY 状态寄存器	2.3.2.31/34
DMA_CH13_BUSY_REG	0x7c	32	RW	0x0	DMA_CH13 BUSY 状态寄存器	2.3.2.32/34
DMA_CH14_BUSY_REG	0x80	32	RW	0x0	DMA_CH14 BUSY 状态寄存器	2.3.2.33/35
DMA_CH15_BUSY_REG	0x84	32	RW	0x0	DMA_CH15 BUSY 状态寄存器	2.3.2.34/35
DMA_CH16_BUSY_REG	0x88	32	RW	0x0	DMA_CH16 BUSY 状态寄存器	2.3.2.35/35
SYS_STATUS_REG	0x8c	32	RO	0x0	系统状态查询寄存器	2.3.2.36/36
SYS_CTRL_REG	0x90	32	RW	0xff00	系统控制寄存器	2.3.2.37/37
TESTCLK_CTRL_REG	0x98	32	RW	0x0	测试时钟控制寄存器	2.3.2.38/38
SYSBUS_CTRL_REG	0x9C	32	RW	0x5384B0	系统总线控制寄存器	2.3.2.39/40
SYS_ID_REG	0xA0	32	WO	0xFF	系统版本 ID 寄存器	2.3.2.40/41
RESERVD1_REG	0xA4	32	RW	0хаааааааа	系统保留寄存器 1	2.3.2.41/41
WKINTR_STATUS_REG	0xA8	32	R/W1C	0x0	唤醒中断状态寄存器	2.3.2.42/42
WKINTR_MASK_REG	0xAC	32	RW	0x200	唤醒中断屏蔽配置寄存器	2.3.2.43/43
MEM_CTRL_REG	0xB0	32	RW	0x0	Memory 控制配置寄存器	2.3.2.44/44
DMA_STO_REG	0xB4	32	RO	0x0	DMA 状态查询 0 寄存器	2.3.2.45/45
DMA_ST1_REG	0xB8	32	RO	0x0	DMA 状态查询 1 寄存器	2.3.2.46/45

寄存器名	偏移量	宽度	类型	复位值	说明	章节/页码
DMA_ST2_REG	0xBC	32	RO	0x0	DMA 状态查询 2 寄存器	2.3.2.47/46
DMA_DBG_CTRL_REG	0xC0	32	RW	0x0	DMA debug 通道控制寄存器	2.3.2.48/47
PMU_CP_ST_REG	0xC4	32	RW	0x0	AON 状态同步寄存器	-
CP_PMU_ST_REG	0xC8	32	RW	0x0	CP 状态同步寄存器	-
RESERVD2_REG	0x100	32	RO	0хаааааааа	系统保留寄存器 2	-
RESERVD3_REG	0x110	32	RO	0хаааааааа	系统保留寄存器 3	-

2.3.2 寄存器和字段描述

2.3.2.1 SYS_CLK_DIV_REG [0x0]

● 描述:系统时钟分频选择配置寄存器

图表 2-3 SYS_CLK_DIV_REG 寄存器说明

位段	名称	类型	说明
17.47	1270	大王	ήτ 473
31:24	Reserved	RSV	保留
			复位值: 0x0
23:20	DMA_DIV	RW	DMA 总线时钟分频器配置,DMA 时钟不能超过 410MHz。
			0: 不分频
			1: 2分频
			2: 3分频
			3: 4分频
			15: 16分频
			复位值: 0x1
19	LPMD_APBCLK_CG	RW	APB 总线时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
18:16	APB_DIV	RW	APB 时钟分频器配置,只支持偶数分频。
			0: 不分频

位段	名称	类型	说明
			1: 2分频
			2: 4分频
			3: 6分频
			7: 14 分频
			复位值: 0x2
15	LPMD_AHBCLK_CG	RW	AHB 总线时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
14:12	AHB_DIV	RW	AHB 时钟分频器配置,只支持偶数分频。
			0: 不分频
			1: 2分频
			2: 4分频
			3: 6分频
			7: 14分频
			复位值: 0x3
11	Reserved	RSV	保留
			复位值: 0x0
10:8	SYS_DIV	RW	AXI 总线时钟分频器配置
			0: 不分频
			1: 2分频
			2: 3分频
			3: 4分频
			7: 8分频
			复位值: 0x0
7:4	CPU_DIV	RW	CPU 时钟分频器配置
			0: 不分频
			1: 2分频

位段	名称	类型	说明
			2: 3分频
			3: 4分频
			15: 16分频
			复位值: 0x0
3	LPMD_IOPMP_CG	RW	IOPMP 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
2:1	LPMD_SYSCLK_SEL	RW	预配置系统换到低功耗模式后 SYS BUS 状态选择
			0:sys_clk 使用 24MHz,不关时钟。
			1:关 AXIS 总线和 SRAM 时钟。
			2、3: 时钟选择和门控不变。
			复位值: 0x0
0	SYS_CLK_SEL	RW	CPU 时钟源选择,如果 LPMD_SYSCLK_SEL 配置为 0,再进
			入低功耗模式后,该位会被自动改为 0。
			0: 24MHz
			1: cp_sys_pll
			复位值: 0x0

2.3.2.2 PERI_DIV_SEL_REG [0x4]

● 描述:外设工作时钟分频配置寄存器

图表 2-4 PERI_DIV_SEL_REG 寄存器说明

位段	名称	类型	说明
31:27	Reserved	RSV	保留
			复位值: 0x0
26:24	GPIO_CLK_SEL	RW	GPIO debounce 时钟分频选择信号
			0: 1.024kHz
			1: 512Hz
			2: 256Hz

位段	名称	类型	说明
			3: 170Hz
			4: 128Hz
			5: 102Hz
			6: 85Hz
			7: 73Hz
			复位值: 0x3
23:20	VAD_DIV	RW	VAD mclk 时钟分频器配置
			0: 不分频
			1: 2分频
			2: 3分频
			3: 4分频
			15: 16 分频
			复位值: 0x3
19:18	Reserved	RSV	保留
			复位值: 0x0
17	AUDIO_DIV1_CG	RW	AUDIO_DIV1 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
16:12	AUDIO_DIV1	RW	AUDIO_DIVCLK1 时钟分频器配置,该时钟是音频接口的工作时钟源之一,分频比必须超过 4 分频,频率低于 210MHz,
			时钟源是 CP_SYS_PLL 时钟。
			0~2: 保留
			3: 4分频
			31: 32 分频
			复位值: 0x2
11:10	Reserved	RSV	保留
			复位值: 0x0
9	AUDIO_DIVO_CG	RW	AUDIO_DIV0 时钟 CG 控制

位段	名称	类型	说明
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
8:4	AUDIO_DIV0	RW	AUDIO_DIVCLK0 时钟分频器配置,该时钟是音频接口的工
			作时钟源之一,时钟源是 CP_AUDIO_PLL 时钟。
			0: 不分频
			1: 2分频
			2: 3分频
			3: 4分频
			31: 32分频
			复位值: 0x2
3:0	UART_DIV	RW	UART 工作时钟分频器配置,频率不能超过 105MHz。
			0: 不分频
			1: 2分频
			2: 3分频
			3: 4分频
			15: 16分频
			复位值: 0x7

2.3.2.3 PERI_CLK_SEL_REG [0x8]

● 描述: 音频外设时钟源选择配置寄存器

图表 2-5 PERI_CLK_SEL_REG 寄存器说明

位段	名称	类型	说明
31:25	Reserved	RSV	保留
			复位值: 0x0
24	SPDIF_SRC_SEL	RW	SPDIF src_clk 时钟源选择
			0: CP_AUDIO_PLL
			1: AUDIO_DIVCLK1
			复位值: 0x0

位段	名称	类型	说明
23:22	Reserved	RSV	保留
			复位值: 0x0
21:20	VAD_MCLK_SEL	RW	VAD mclk 时钟源选择
			0: AUDIO_DIVCLKO
			1: 24MHz
			2: AUDIO_DIVCLK1
			3: 保留
			复位值: 0x0
19:18	Reserved	RSV	保留
			复位值: 0x0
17:16	TDM_SRC_SEL	RW	TDM src_clk 时钟源选择
			0: AUDIO_DIVCLKO
			1: 24MHz
			2: AUDIO_DIVCLK1
			3: 保留
			复位值: 0x0
15:14	Reserved	RSV	保留
			复位值: 0x0
13:12	I2S8CH_SRC_SEL	RW	I2S-8CH src_clk 时钟源选择
			0: AUDIO_DIVCLKO
			1: 24MHz
			2: AUDIO_DIVCLK1
			3: 保留
			复位值: 0x0
11:10	Reserved	RSV	保留
			复位值: 0x0
9:8	I2S2_SRC_SEL	RW	I2S2 src_clk 时钟源选择
			0: AUDIO_DIVCLKO
			1: 24MHz
			2: AUDIO_DIVCLK1

位段	名称	类型	说明
			3: 保留
			复位值: 0x0
7:6	Reserved	RSV	保留
			复位值: 0x0
5:4	I2S1_SRC_SEL	RW	I2S1 src_clk 时钟源选择
			0: AUDIO_DIVCLKO
			1: 24MHz
			2: AUDIO_DIVCLK1
			3: 保留
			复位值: 0x0
3:2	Reserved	RSV	保留
			复位值: 0x0
1:0	I2SO_SRC_SEL	RW	I2S0 src_clk 时钟源选择
			0: AUDIO_DIVCLKO
			1: 24MHz
			2: AUDIO_DIVCLK1
			3: 保留
			复位值: 0x0

2.3.2.4 PERI_CTRL_REG [0xC]

● 描述:外设控制信号配置寄存器

图表 2-6 PERI_CTRL_REG 寄存器说明

位段	名称	类型	说明
31:18	Reserved	RSV	保留
			复位值: 0x0
17:16	bsm_sel	RW	Bus monitor 检测总线选择信号
			00:CPU master 接口
			01:DMA master 接口
			10: CP2AP master 接口
			11: 保留

位段	名称	类型	说明
			复位值: 0x0
15	Reserved	RSV	保留
			复位值: 0x0
14	SPDIF_SYNC_EN	RW	SPDIF0/1 模块同步使能控制
			0: 不工作
			1: 使能
			复位值: 0x0
13	I2S_SYNC_EN	RW	I2S0/1/2 模块同步使能控制
			0: 不工作
			1: 使能
			复位值: 0x0
12	VAD_I2S8CH_SYNC_EN	RW	VAD 和 I2S-8CH 模块同步使能控制
			0: 不工作
			1: 使能
			复位值: 0x0
11:9	Reserved	RSV	保留
			复位值: 0x0
8	WDT_PAUSE	RW	WDT 内计数器暂停控制
			0: 不暂停
			1: 暂停
			复位值: 0x0
7	CNT4_PAUSE	RW	TIMER 内计数器 4 暂停控制
			0: 不暂停
			1: 暂停
			复位值: 0x0
6	CNT3_PAUSE	RW	TIMER 内计数器 3 暂停控制
			0: 不暂停
			1: 暂停
			复位值: 0x0

位段	名称	类型	说明
5	CNT2_PAUSE	RW	TIMER 内计数器 2 暂停控制
			0: 不暂停
			1: 暂停
			复位值: 0x0
4	CNT1_PAUSE	RW	TIMER 内计数器 1 暂停控制
			0: 不暂停
			1: 暂停
			复位值: 0x0
3	Reserved	RSV	保留
			复位值: 0x0
2	CNT3_4_LINK	RW	TIMER 内计数器 3 和 4 TOGGEL 级联选择
			0: 不级联
			1: 级联
			复位值: 0x0
1	CNT2_3_LINK	RW	TIMER 内计数器 2 和 3 TOGGEL 级联选择
			0: 不级联
			1: 级联
			复位值: 0x0
0	CNT1_2_LINK	RW	TIMER 内计数器 1 和 2 TOGGEL 级联选择
			0: 不级联
			1: 级联
			复位值: 0x0

2.3.2.5 IP_CG_REG [0x10]

● 描述:模块 CG 控制寄存器

图表 2-7 IP_CG_REG 寄存器说明

位段	名称	类型	说明
31:27	Reserved	RSV	保留
			复位值: 0x0

位段	名称	类型	说明
26	IOMUX_CG	RW	IOMUX 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
25	VAD_CG	RW	VAD 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
24	SPDIF1_CG	RW	SPDIF1 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
23	SPDIF0_CG	RW	SPDIF0 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
22	GPIO_CG	RW	GPIO 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
21	TDM_CG	RW	TDM 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
20	I2S8CH_CG	RW	I2S-8CH 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
19	12S2_CG	RW	I2S2 时钟 CG 控制
			0: 时钟关闭。
	1	l .	<u>l</u>

位段	名称	类型	说明
			1: 时钟打开。
			复位值: 0x0
18	12S1_CG	RW	I2S1 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
17	12S0_CG	RW	I2S0 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
16	UART_CG	RW	UART 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
15	12C1_CG	RW	I2C1 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
14	12C0_CG	RW	I2C0 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
13	WDR_CG	RW	WDT 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
12	TIMER_CNT4_CG	RW	TIMER 计数器 4 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0

位段	名称	类型	说明
11	TIMER_CNT3_CG	RW	TIMER 计数器 3 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
10	TIMER_CNT2_CG	RW	TIMER 计数器 2 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
9	TIMER_CNT1_CG	RW	TIMER 计数器 1 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
8	TIMER_CG	RW	TIMER APB 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
7:5	Reserved	RSV	保留
			复位值: 0x0
4	BSM_CG	RW	BUS Monitor 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
3	DMA_CG	RW	DMA 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x0
2	SRAM1_CG	RW	SRAM1 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x1

位段	名称	类型	说明
1	SRAMO_CG	RW	SRAM0 时钟 CG 控制
			0: 时钟关闭。
			1: 时钟打开。
			复位值: 0x1
0	CPU_CG	RW	CPU 时钟 CG 控制,进低功耗模式后会自动关闭,唤醒中断触发后自动置 1。 0: 时钟关闭。 1: 时钟打开。
			复位值: 0x1

2.3.2.6 IP_RST_REG [0x14]

● 描述:模块复位控制寄存器

图表 2-8 IP_RST_REG 寄存器说明

位段	名称	类型	说明
31:27	Reserved	RSV	保留
			复位值: 0x0
26	IOMUX_SRST_N	RW	IOMUX 软复位控制
			0: 模块复位。
			1: 复位释放
			复位值: 0x1
25	VAD_SRST_N	RW	VAD 软复位控制
			0: 模块复位。
			1: 复位释放。
			复位值: 0x1
24	SPDIF1_SRST_N	RW	SPDIF1 软复位控制
			0: 模块复位。
			1: 复位释放。
			复位值: 0x1
23	SPDIF0_SRST_N	RW	SPDIF0 软复位控制
			0: 模块复位。

位段	名称	类型	说明
			1: 复位释放。
			复位值: 0x1
22	GPIO_SRST_N	RW	GPIO 软复位控制
			0: 模块复位。
			1: 复位释放。
			复位值: 0x1
21	TDM_SRST_N	RW	TDM 软复位控制
			0: 模块复位。
			1: 复位释放。
			复位值: 0x1
20	I2S8CH_SRST_N	RW	I2S-8CH 软复位控制
			0: 模块复位。
			1: 复位释放。
			复位值: 0x1
19	I2S2_SRST_N	RW	1252 软复位控制
			0: 模块复位。
			1: 复位释放。
			复位值: 0x1
18	I2S1_SRST_N	RW	12S1 软复位控制
			0: 模块复位。
			1: 复位释放。
			复位值: 0x1
17	I2S0_SRST_N	RW	1250 软复位控制
			0: 模块复位。
			1: 复位释放。
			复位值: 0x1
16	UART_SRST_N	RW	UART 软复位控制
			0: 模块复位。
			1: 复位释放。
			复位值: 0x1

位段	名称	类型	说明
15	I2C1_SRST_N	RW	I2C1 软复位控制
			0: 模块复位。
			1: 复位释放。
			复位值: 0x1
14	I2C 0_SRST_N	RW	I2C0 软复位控制
			0: 模块复位。
			1: 复位释放。
			复位值: 0x1
13	WDR_SRST_N	RW	WDT 软复位控制
			0: 模块复位。
			1: 复位释放。
			复位值: 0x1
12	TIM_CNT4_SRST_N	RW	TIMER CNT4 软复位控制
			0: 模块复位。
			1: 复位释放。
			复位值: 0x1
11	TIM_CNT3_SRST_N	RW	TIMER CNT3 软复位控制
			0: 模块复位。
			1: 复位释放。
			复位值: 0x1
10	TIM_CNT2_SRST_N	RW	TIMER CNT2 软复位控制
			0: 模块复位。
			1: 复位释放。
			复位值: 0x1
9	TIM_CNT1_SRST_N	RW	TIMER CNT1 软复位控制
			0: 模块复位。
			1: 复位释放。
			复位值: 0x1
8	TIMER_SRST_N	RW	TIMER APB 软复位控制
			0: 模块复位。

位段	名称	类型	说明
			1: 复位释放。
			复位值: 0x1
7:5	Reserved	RSV	保留
			复位值: 0x0
4	BSM_SRST_N	RW	BUS Monitor 软复位控制
			0: 模块复位。
			1: 复位释放。
			复位值: 0x1
3	DMA_SRST_N	RW	DMA 软复位控制
			0: 模块复位。
			1: 复位释放。
			复位值: 0x0
2:0	Reserved	RSV	保留
			复位值: 0x0

2.3.2.7 I2SO_BUSY_REG [0x18]

● 描述: I2S0 BUSY 状态寄存器

图表 2-9 I2SO_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留
			复位值: 0x0
0	I2S0_BUSY	W1C	I2SO 模块 BUSY 位。复位后内部值为 0,读后返回 0,内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。复位值: 0x1

2.3.2.8 | 12S1_BUSY_REG [0x1C]

● 描述: I2S1 BUSY 状态寄存器

图表 2-10 I2S1_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留

26

位段	名称	类型	说明
			复位值: 0x0
0	I2S1_BUSY	W1C	I2S1 模块 BUSY 位。复位后内部值为 0,读后返回 0,内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。复位值: 0x1

2.3.2.9 I2S2_BUSY_REG [0x20]

描述: I2S2 BUSY 状态寄存器

图表 2-11 I2S2_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留 复位值: 0x0
0	I2S2_BUSY	W1C	I2S2 模块 BUSY 位。复位后内部值为 0,读后返回 0,内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。复位值:0x1

2.3.2.10 I2S8CH_BUSY_REG [0x24]

● 描述: I2S-8CH BUSY 状态寄存器

图表 2-12 I2S8CH_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留
			复位值: 0x0
0	I2S8CH_BUSY	W1C	I2S-8CH 模块 BUSY 位。复位后内部值为 0,读后返回 0,内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。复位值: 0x1

2.3.2.11 SPDIF0_BUSY_REG [0x28]

● 描述: SPDIFO BUSY 状态寄存器

图表 2-13 SPDIFO BUSY REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留

27

位段	名称	类型	说明
			复位值: 0x0
0	SPDIFO_BUSY	W1C	SPDIF0 模块 BUSY 位。复位后内部值为 0,读后返回 0,内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。复位值: 0x1

2.3.2.12 SPDIF1_BUSY_REG [0x2C]

● 描述: SPDIF1 BUSY 状态寄存器

图表 2-14 SPDIF1_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留 复位值: 0x0
0	SPDIF1_BUSY	W1C	SPDIF1 模块 BUSY 位。复位后内部值为 0,读后返回 0,内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。复位值: 0x1

2.3.2.13 TDM_BUSY_REG [0x30]

● 描述: TDM BUSY 状态寄存器

图表 2-15 TDM_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留
			复位值: 0x0
0	TDM_BUSY	W1C	TDM 模块 BUSY 位。复位后内部值为 0,读后返回 0,内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。复位值:0x1

2.3.2.14 I2CO_BUSY_REG [0x34]

● 描述: I2C0 BUSY 状态寄存器

图表 2-16 I2C0 BUSY REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留

位段	名称	类型	说明
			复位值: 0x0
0	I2CO_BUSY	W1C	I2C0 模块 BUSY 位。复位后内部值为 0,读后返回 0,内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。复位值: 0x1

2.3.2.15 I2C1_BUSY_REG [0x38]

描述: I2C1 BUSY 状态寄存器

图表 2-17 I2C1_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留 复位值: 0x0
0	I2C1_BUSY	W1C	I2C1 模块 BUSY 位。复位后内部值为 0,读后返回 0,内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。复位值:0x1

2.3.2.16 UART_BUSY_REG [0x3C]

● 描述: UART BUSY 状态寄存器

图表 2-18 UART_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留
			复位值: 0x0
0	UART_BUSY	W1C	UART 模块 BUSY 位。复位后内部值为 0,读后返回 0,内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。
			复位值: 0x1

2.3.2.17 TIMER_BUSY_REG [0x40]

● 描述: TIMER BUSY 状态寄存器

图表 2-19 TIMER BUSY REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留

位段	名称	类型	说明
			复位值: 0x0
0	TIMER_BUSY	W1C	TIMER 模块 BUSY 位。复位后内部值为 0, 读后返回 0, 内部值变为 1, 再次读返回 1。需要通过写 1 将其清 0。复位值: 0x1

2.3.2.18 VAD_BUSY_REG [0x44]

● 描述: VAD BUSY 状态寄存器

图表 2-20 VAD_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留 复位值: 0x0
0	VAD_BUSY	W1C	VAD 模块 BUSY 位。复位后内部值为 0,读后返回 0,内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。复位值: 0x1

2.3.2.19 GPIO_BUSY_REG [0x48]

■ 描述: GPIO BUSY 状态寄存器

图表 2-21 GPIO_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留 复位值: 0x0
0	GPIO_BUSY	W1C	GPIO 模块 BUSY 位。复位后内部值为 0,读后返回 0,内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。复位值:0x1

2.3.2.20 DMA_CH1_BUSY_REG [0x4C]

● 描述: DMA_CH1 BUSY 状态寄存器

图表 2-22 DMA CH1 BUSY REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留

位段	名称	类型	说明
			复位值: 0x0
0	DMA_CH1_BUSY_BUSY	W1C	DMA_CH1 模块 BUSY 位。复位后内部值为 0,读后返回 0, 内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。 复位值: 0x1

2.3.2.21 DMA_CH2_BUSY_REG [0x50]

● 描述: DMA_CH2 BUSY 状态寄存器

图表 2-23 DMA_CH2_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留 复位值: 0x0
0	DMA_CH2_BUSY	W1C	DMA_CH2 模块 BUSY 位。复位后内部值为 0,读后返回 0, 内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。 复位值:0x1

2.3.2.22 DMA_CH3_BUSY_REG [0x54]

● 描述: DMA_CH3 BUSY 状态寄存器

图表 2-24 DMA_CH3_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留
			复位值: 0x0
0	DMA_CH3_BUSY	W1C	DMA_CH3 模块 BUSY 位。复位后内部值为 0,读后返回 0, 内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。 复位值: 0x1

2.3.2.23 DMA_CH4_BUSY_REG [0x58]

● 描述: DMA_CH4 BUSY 状态寄存器

图表 2-25 DMA CH4 BUSY REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留

位段	名称	类型	说明
			复位值: 0x0
0	DMA_CH4_BUSY	W1C	DMA_CH4 模块 BUSY 位。复位后内部值为 0,读后返回 0,内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。复位值:0x1

2.3.2.24 DMA_CH5_BUSY_REG [0x5C]

描述: DMA_CH5 BUSY 状态寄存器

图表 2-26 DMA_CH5_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留 复位值: 0x0
0	DMA_CH5_BUSY	W1C	DMA_CH5 模块 BUSY 位。复位后内部值为 0,读后返回 0, 内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。 复位值:0x1

2.3.2.25 DMA_CH6_BUSY_REG [0x60]

● 描述: DMA_CH6 BUSY 状态寄存器

图表 2-27 DMA_CH6_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留 复位值: 0x0
0	DMA_CH6_BUSY	W1C	DMA_CH6 模块 BUSY 位。复位后内部值为 0,读后返回 0, 内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。 复位值: 0x1

2.3.2.26 DMA_CH7_BUSY_REG [0x64]

● 描述: DMA_CH7 BUSY 状态寄存器

图表 2-28 DMA CH7 BUSY REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留

位段	名称	类型	说明
			复位值: 0x0
0	DMA_CH7_BUSY	W1C	DMA_CH7 模块 BUSY 位。复位后内部值为 0,读后返回 0,内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。复位值:0x1

2.3.2.27 DMA_CH8_BUSY_REG [0x68]

描述: DMA_CH8 BUSY 状态寄存器

图表 2-29 DMA_CH8_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留 复位值: 0x0
0	DMA_CH8_BUSY	W1C	DMA_CH8 模块 BUSY 位。复位后内部值为 0,读后返回 0, 内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。 复位值:0x1

2.3.2.28 DMA_CH9_BUSY_REG [0x6C]

● 描述: DMA_CH9 BUSY 状态寄存器

图表 2-30 DMA_CH9_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留 复位值: 0x0
0	DMA_CH9_BUSY	W1C	DMA_CH9 模块 BUSY 位。复位后内部值为 0,读后返回 0, 内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。 复位值:0x1

2.3.2.29 DMA_CH10_BUSY_REG [0x70]

● 描述: DMA_CH10 BUSY 状态寄存器

图表 2-31 DMA CH10 BUSY REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留

位段	名称	类型	说明
			复位值: 0x0
0	DMA_CH10_BUSY	W1C	DMA_CH10 模块 BUSY 位。复位后内部值为 0, 读后返回 0, 内部值变为 1, 再次读返回 1。需要通过写 1 将其清 0。 复位值: 0x1

2.3.2.30 DMA_CH11_BUSY_REG [0x74]

● 描述: DMA_CH11 BUSY 状态寄存器

图表 2-32 DMA_CH11_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留 复位值: 0x0
0	DMA_CH11_BUSY	W1C	DMA_CH11 模块 BUSY 位。复位后内部值为 0,读后返回 0,内部值变为 1,再次读返回 1。需要通过写 1 将其清 0。复位值: 0x1

2.3.2.31 DMA_CH12_BUSY_REG [0x78]

■ 描述: DMA_CH12 BUSY 状态寄存器

图表 2-33 DMA_CH12_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留 复位值: 0x0
0	DMA_CH12_BUSY	W1C	DMA_CH12 模块 BUSY 位。复位后内部值为 0, 读后返回 0, 内部值变为 1, 再次读返回 1。需要通过写 1 将其清 0。 复位值: 0x1

2.3.2.32 DMA_CH13_BUSY_REG [0x7c]

● 描述: DMA_CH13 BUSY 状态寄存器

图表 2-34 DMA CH13 BUSY REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留

位段	名称	类型	说明
			复位值: 0x0
0	DMA_CH13_BUSY	W1C	DMA_CH13 模块 BUSY 位。复位后内部值为 0, 读后返回 0, 内部值变为 1, 再次读返回 1。需要通过写 1 将其清 0。 复位值: 0x1

2.3.2.33 DMA_CH14_BUSY_REG [0x80]

■ 描述: DMA_CH14 BUSY 状态寄存器

图表 2-35 DMA_CH14_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留 复位值: 0x0
0	DMA_CH14_BUSY	W1C	DMA_CH14 模块 BUSY 位。复位后内部值为 0, 读后返回 0, 内部值变为 1, 再次读返回 1。需要通过写 1 将其清 0。 复位值: 0x1

2.3.2.34 DMA_CH15_BUSY_REG [0x84]

■ 描述: DMA_CH15 BUSY 状态寄存器

图表 2-36 DMA_CH15_BUSY_REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留
			复位值: 0x0
0	DMA_CH15_BUSY	W1C	DMA_CH15 模块 BUSY 位。复位后内部值为 0, 读后返回 0, 内部值变为 1, 再次读返回 1。需要通过写 1 将其清 0。 复位值: 0x1

2.3.2.35 DMA_CH16_BUSY_REG [0x88]

● 描述: DMA_CH16 BUSY 状态寄存器

图表 2-37 DMA CH16 BUSY REG 寄存器说明

位段	名称	类型	说明
31:1	Reserved	RSV	保留

位段	名称	类型	说明
			复位值: 0x0
0	DMA_CH16_BUSY	W1C	DMA_CH16 模块 BUSY 位。复位后内部值为 0, 读后返回 0, 内部值变为 1, 再次读返回 1。需要通过写 1 将其清 0。 复位值: 0x1

2.3.2.36 SYS_STATUS_REG [0x8c]

● 描述:系统状态查询寄存器

图表 2-38 SYS_STATUS_REG 寄存器说明

位段	名称	类型	说明
31:17	Reserved	RSV	保留
			复位值: 0x0
16	PMU_CP_REQ_INTR	R/W1C	PMU 发送给 CP 的请求中断, 在 pmu_cp_req 上升沿后置为 1, 向该位写 1 后清 0。 复位值: 0x0
15:12	CPR_FSM_ST	RO	4'b0000: 复位后默认状态 4'b0001: RUN 状态 4'b0010: H-VAD 状态 4'b0100: CG 状态 4'b1000: WAKE UP 状态 复位值: 0x0
11:6	Reserved	RSV	保留 复位值: 0x0
5:4	CPU_LPMD_ST	RO	CPU 低功耗模式状态信号 当 CPU 执行 wfi 指令时 core0_pad_lpmd_b[1:0]被相应的 改变。 0: 低功耗模式 1~2: 保留 3: 正常工作模式 复位值: 0x0
3	WDT_HRST_ST	R/W1C	WDT 复位信号历史复位状态,该寄存器不会被系统复位,写

位段	名称	类型	说明
			1 后清 0。
			0: 未被复位过。
			1: 曾被复位过。
			复位值: 0x0
2	SYS_HRST_ST	R/W1C	CPU 历史复位状态,该寄存器不会被复位,写 1 后清 0。
			0: 未被复位过。
			1: 曾被复位过。
			复位值: 0x1
1	CPU_HRST_ST	R/W1C	CPU 历史复位状态,该寄存器不会被复位,写 1 后清 0。
			0: 未被复位过。
			1: 曾被复位过。
			复位值: 0x1
0	CPU_RST_ST	RO	CPU 复位状态
			0: 复位
			1: 未复位
			复位值: 0x0

2.3.2.37 SYS_CTRL_REG [0x90]

● 描述:系统控制寄存器

图表 2-39 SYS_CTRL_REG 寄存器说明

位段	名称	类型	说明
31:25	Reserved	RSV	保留
			复位值: 0x0
24	DBG_REG_EN	RW	调试寄存器使能
			0: 使能调试寄存器,可以读取调试寄存器值
			1: 关闭调试寄存器
			复位值: 0x0
23:8	LP_CNT	RW	低功耗等待计数器,用于 CPU 进入 LPMD 后等待一段计数时间后,再使系统进入低功耗模式。该 count 使用 24M 时钟计数。

位段	名称	类型	说明
			复位值: 0x00ff
7:4	CP_PMU_ST	RW	CP 发送给 AONPMU 的请求状态位,由软件定义。
			[7]: SRAM1 复位
			[6]: SRAM0 复位
			[5]: SRAM1 低功耗时钟门控使能
			[4]: SRAMO 低功耗时钟门控使能
			复位值: 0x0
3:1	Reserved	RSV	保留
			复位值: 0x0
0	CP_PMU_REQ	RW	CP 发送给 AONPMU 的状态请求
			0: 无请求。
			1:有请求,写 1 后会发送电平信号给 PMU。
			复位值: 0x0

2.3.2.38 TESTCLK_CTRL_REG [0x98]

● 描述:测试时钟控制寄存器

图表 2-40 TESTCLK_CTRL_REG 寄存器说明

位段	名称	类型	说明
31:23	Reserved	RSV	保留
			复位值: 0x0
22	M12_TESTCLK_CG	RW	12MHz 测试时钟 CG 控制信号
			0: 关闭时钟。
			1: 打开时钟。
			复位值: 0x0
21	UART_TESTCLK_CG	RW	UART 测试时钟 CG 控制信号
			0: 关闭时钟。
			1: 打开时钟。
			复位值: 0x0
20	AUDIO_TESTCLK_CG	RSV	AUDIOCLK 测试时钟 CG 控制信号
			0: 关闭时钟。

位段	名称	类型	说明
			1: 打开时钟。
			复位值: 0x0
19	AXI_TESTCLK_CG	RW	AXI BUS 测试时钟 CG 控制信号
			0: 关闭时钟。
			1: 打开时钟。
			复位值: 0x0
18	APB_TESTCLK_CG	RSV	APB BUS 测试时钟 CG 控制信号
			0: 关闭时钟。
			1: 打开时钟。
			复位值: 0x0
17	AHB_TESTCLK_CG	RW	AHB BUS 测试时钟 CG 控制信号
			0: 关闭时钟。
			1: 打开时钟。
			复位值: 0x0
16	CPU_TESTCLK_CG	RW	CPU 测试时钟 CG 控制信号
			0: 关闭时钟。
			1: 打开时钟。
			复位值: 0x0
15:13	Reserved	RSV	保留
			复位值: 0x0
12:8	AHB_TESTCLK_DIV	RW	CP 发送给 AP 的 AHB 主频分频后时钟配置,分频倍数:
			16*(AHB_TESTCLK_DIV)+8
			0: 8分频
			1: 24 分频
			2: 40 分频
			31: 504 分频
			复位值: 0x0
7:6	Reserved	RSV	保留
			复位值: 0x0

位段	名称	类型	说明
5:0	CPU_TESTCLK_DIV	RW	CP 发送给 AP 的 C906 主频分频后时钟配置,分频倍数: 16*(CPU_TESTCLK_DIV)+8 0: 8分频 1: 24分频 2: 40分频 63: 1016分频 复位值: 0x0

2.3.2.39 SYSBUS_CTRL_REG [0x9C]

● 描述:系统总线控制寄存器

图表 2-41 SYSBUS_CTRL_REG 寄存器说明

位段	名称	类型	说明
31:28	Reserved	RSV	保留
			复位值: 0x0
27:25	SYSBUS_APS_P	RW	访问 AP 总线 BUS 优先级
			可以设置范围 0~7,优先级 7>6>5>4>3>2>1>0
			复位值: 0x0
24:22	SYSBUS_DDR_P	RW	访问 DDR 总线 BUS 优先级
			可以设置范围 0~7,优先级 7>6>5>4>3>2>1>0
			复位值: 0x1
21:19	SYSBUS_PERI_P	RW	外设总线 BUS 优先级
			可以设置范围 0~7,优先级 7>6>5>4>3>2>1>0
			复位值: 0x2
18:16	SYSBUS_SRAM1_P	RW	SRAM1 总线 BUS 优先级
			可以设置范围 0~7,优先级 7>6>5>4>3>2>1>0
			复位值: 0x3
15:13	SYSBUS_SRAM0_P	RW	SRAM0 总线 BUS 优先级
			可以设置范围 0~7,优先级 7>6>5>4>3>2>1>0
			复位值: 0x4

位段	名称	类型	说明
12	Reserved	RSV	保留
			复位值: 0x0
11:10	SYSBUS_APM_P	RW	AP Master 接口总线优先级
			可以设置范围 0~3,优先级 3>2>1>0
			复位值: 0x1
9:8	Reserved	RSV	保留
			复位值: 0x0
7:6	SYSBUS_DMA_P	RW	DMA Master 接口总线优先级
			可以设置范围 0~3,优先级 3>2>1>0
			复位值: 0x2
5:4	SYSBUS_CPU_P	RW	CPU Master 接口总线优先级
			可以设置范围 0~3,优先级 3>2>1>0
			复位值: 0x3
3:0	Reserved	RSV	保留
			复位值: 0x0

2.3.2.40 SYS_ID_REG [0xA0]

● 描述:系统版本 ID 寄存器

图表 2-42 SYS_ID_REG 寄存器说明

位段	名称	类型	说明
31:8	Reserved	RSV	保留 复位值: 0x0
7:0	SYS_ID	RO	系统版本 ID,复位时为 0xff,复位释放后为 0x00。

2.3.2.41 RESERVD1_REG [0xA4]

● 描述: 系统保留寄存器 1

图表 2-43 RESERVD1_REG 寄存器说明

位段	名称	类型	说明
31:0	RESERVD1	RW	系统保留寄存器 1

位段	名称	类型	说明
			复位值: 0xAAAAAAAA

2.3.2.42 WKINTR_STATUS_REG [0xA8]

● 描述:唤醒中断状态查询寄存器(屏蔽后)

图表 2-44 WKINTR_STATUS_REG 寄存器说明

位段	名称	类型	说明
31:27	Reserved	RSV	保留
			复位值: 0x0
26:1	wkintr_src_st	R/W1C	唤醒中断源状态寄存器,按 bit 写 1 后清 0。
			26'd0:复位后默认状态
			bit[n]=1:唤醒源中断 n 有效。
			复位值: 0x0
0	Reserved	RSV	保留
			复位值: 0x0

注

唤醒中断源列表如下(同 C906, 删除的位为保留位):

输入唤醒中断信号 bit 位	中断源
0	保留
1	WDT
2	AP-MAILBOX
3	DMAC
4	Timer counter 0
5	Timer counter 1
6	Timer counter 2
7	Timer counter 3
8	VAD-FIFO
9	VAD-WK
10	1250

输入唤醒中断信号 bit 位	中断源
11	1251
12	1252
13	12S_8CH
14	TDM
15	SPDIF0
16	SPDIF1
17	GPIO
18	12C0
19	12C1
20	UART
21	Bus monitor
22	保留
23	NPU[0]
24	NPU[1]
25	NPU[2]
26	PMU_REQ (E902)

2.3.2.43 WKINTR_MASK_REG [0xAC]

● 描述:唤醒中断屏蔽控制寄存器

图表 2-45 WKINTR_MASK_REG 寄存器说明

位段	名称	类型	位段
31:27	Reserved	RSV	保留
			复位值: 0x0
26:1	wk_intr_mask	RW	唤醒中断屏蔽配置寄存器
			bit[n] = 0, 屏蔽中断[n]。
			复位值: 0x0400200
0	Reserved	RSV	保留
			复位值: 0x0

2.3.2.44 MEM_CTRL_REG [0xB0]

● 描述: memory 控制寄存器

图表 2-46 MEM CTRL REG 寄存器说明

	图表 2-40 MEM_CTRL_REG 奇仔裔说明					
位段	名称	类型	说明			
31:15	Reserved	RSV	保留			
			复位值: 0x0			
14	VAD_MEM_DSLP	RW	VAD 内 Memory deep sleep 模式,高有效。			
			复位值: 0x0			
13	VAD _MEM_SLP	RW	VAD 内 Memory sleep 模式 <i>,</i> 高有效。			
			复位值: 0x0			
12	VAD_MEM_SD	RW	VAD 内 Memory shut down 模式,高有效。			
			复位值: 0x0			
11	Reserved	RSV	保留			
			复位值: 0x0			
10	SRAM1_MEM_DSLP	RW	SRAM1 内 Memory deep sleep 模式,高有效。			
			复位值: 0x0			
9	SRAM1_MEM_SLP	RW	SRAM1 内 Memory sleep 模式,高有效。			
			复位值: 0x0			
8	SRAM1_MEM_SD	RW	SRAM1 内 Memory shut down 模式,高有效。			
			复位值: 0x0			
7	Reserved	RSV	保留			
			复位值: 0x0			
6	SRAM0_MEM_DSLP	RW	SRAM0 内 Memory deep sleep 模式,高有效。			
			复位值: 0x0			
5	SRAM0_MEM_SLP	RW	SRAM0 内 Memory sleep 模式,高有效。			
			复位值: 0x0			
4	SRAM0_MEM_SD	RW	SRAM0 内 Memory shut down 模式,高有效。			
			复位值: 0x0			
3	Reserved	RSV	保留			
	1	1	1			

位段	名称	类型	说明
			复位值: 0x0
2	CPU_MEM_DSLP	RW	CPU 内 Memory deep sleep 模式,高有效,该位在 C906 run 期间会自动变为 0。 复位值:0x0
1	CPU_MEM_SLP	RW	CPU 内 Memory sleep 模式,高有效,该位在 C906 run 期间会自动变为 0。 复位值:0x0
0	CPU_MEM_SD	RW	CPU 内 Memory shut down 模式,高有效,该位在 C906 run 期间会自动变为 0。 复位值: 0x0

注

memory 的三种低功耗模式:

- (1) deep sleep 模式:外围电路会掉电,memory 阵列会用较低的电压保留内部数据 retention。
- (2) sleep 模式:外围电路会掉电,带有数据 retention。
- (3) shut down 模式: highest leakage reduction, 没有数据 retention。

2.3.2.45 DMA_STO_REG [0xB4]

● 描述: DMA 状态查询 0 寄存器

图表 2-47 DMA_STO_REG 寄存器说明

位段	名称	类型	说明
31:16	debug_ch_wr_arb_req_m1	RO	AXI 主接口写仲裁请求 复位值:0x0
15:0	debug_ch_wr_arb_req_m1	RO	AXI 主接口读仲裁请求 复位值: 0x0

该寄存器数据从异步时钟域来,未做同步。

2.3.2.46 DMA_ST1_REG [0xB8]

● 描述: DMA 状态查询 1 寄存器

图表 2-48 DMA ST1 REG 寄存器说明

位段	名称	类型	说明
31:30	Reserved	RSV	保留

位段	名称	类型	说明
			复位值: 0x0
29:24	debug_grant_index_ar_ch_m1	RO	AXI 主接口写地址通道仲裁允许
			复位值: 0x0
23:22	Reserved	RSV	保留
			复位值: 0x0
21:16	debug_grant_index_aw_ch_m1	RO	AXI 主接口读地址通道仲裁允许
			复位值: 0x0
15:0	debug_ch_lli_rd_req_m1	RO	AXI 主接口 LLI 仲裁请求
			复位值: 0x0

该寄存器数据从异步时钟域来,未做同步。

2.3.2.47 DMA_ST2_REG [0xBC]

● 描述: DMA 状态查询 2 寄存器

图表 2-49 DMA_ST2_REG 寄存器说明

位段	名称	类型	说明
31	Reserved	RSV	保留
			复位值: 0x0
30	mxif_r_ch_idle	RO	AXI mater 接口读数据通道 IDLE 状态
			复位值: 0x0
29	mxif_b_ch_idle	RO	AXI mater 接口写数据通道 IDLE 状态
			复位值: 0x0
28	debug_ch_src_blk_tfr_done	RO	源 block 传输完成,通过 debug_ch_num 选择
			复位值: 0x0
27	debug_ch_dst_blk_tfr_done	RO	目的块传输完成,通过 debug_ch_num 选择
			复位值: 0x0
26	debug_ch_blk_tfr_done	RO	block 传输完成,通过 debug_ch_num 选择
			复位值: 0x0
25	debug_ch_src_trans_done	RO	源 trans 传输完成,通过 debug_ch_num 选择
			复位值: 0x0

位段	名称	类型	说明
24	debug_ch_dst_trans_done	RO	目的 trans 传输完成,通过 debug_ch_num 选择
			复位值: 0x0
23	debug_ch_dma_tfr_done	RO	trans 传输完成,通过 debug_ch_num 选择
			复位值: 0x0
22	debug_ch_src_trans_req	RO	源 tran 传输请求,通过 debug_ch_num 选择
			复位值: 0x0
21	debug_ch_dst_trans_req	RO	目的 tans 传输请求,通过 debug_ch_num 选择
			复位值: 0x0
20	debug_ch_src_is_in_str	RO	源状态机处于单笔传输状态
			复位值: 0x0
19	debug_ch_dst_is_in_str	RO	目的状态机处于单笔传输状态
			复位值: 0x0
18	debug_ch_shadowreg_or_lli_in	RO	-
	valid_err		复位值: 0x0
17	debug_ch_aborted	RO	DMA 通道中止状态
			复位值: 0x0
16	debug_ch_suspended	RO	DMA 通道挂起状态
			复位值: 0x0
15:0	debug_ch_lli_rd_req_m1	RO	DMA 通道使能
			复位值: 0x0

该寄存器数据从异步时钟域来,未做同步。

2.3.2.48 DMA_DBG_CTRL_REG [0xA0]

● 描述: DMA debug 通道控制寄存器

图表 2-50 DMA ST2 REG 寄存器说明

位段	名称	类型	说明
31:4	Reserved	RSV	保留
			复位值: 0x0

位段	名称	类型	说明
3:0	dma_dbg_ch	RW	DMA debug 通道选择寄存器
			复位值: 0x0

该寄存器数据输出至异步时钟域,debug 用,未做同步。

3 I2S

3.1 模块特性

I2S 总线接口具有以下特性:

- 32 位 APB 总线宽度
- 基于飞利浦 I2S 串行协议的 I2S 发送器和接收器
- 串行主和串行从操作
- FIFO-发送和接收 FIFO 的深度为 32, 宽度为 32 位。
- 可编程 FIFO 阈值
- 音频数据的分辨率为 16、24 或 32 位。I25 可以将数据从 16 位转换为 24 位或 32 位,反之亦然。 当 I25 工作在从模式时,它可以自动检测传输的数据是 16 位、24 位还是 32 位。
- DMA 控制器接口-使 I2S 能够通过 APB 总线与 DMA 控制器连接,使用握手接口传输请求。
- 独立屏蔽中断和错误-所有单独的中断和错误都可以独立屏蔽。
- 从 I2S 到中断控制器的一条组合中断线
- 从 I2S 到错误控制器的一条组合错误线
- 兼容三种串行音频格式: 左对齐、I2S、右对齐。
- 多块同步的 I2S 使能信号
- 支持音频样本压缩。

3.2 框图

图表 3-1 显示了 I2S 框图。

图表 3-1 I2S 框图

该 I2S 模块由 APB 接口、TX FIFO、RX FIFIO、寄存器文件、时钟发生器、接收器、发送器和 DMA 接口模块组成。

I2S 数据路径:

● TX: APB 总线--> APB 接口--> TX FIFO -->压缩--> I2S TX --> I2S 总线

● RX: I2S 总线--> I2S RX -->压缩--> RX FIFO --> APB 接口--> APB 总线

3.3 寄存器描述

3.3.1 寄存器内存映射

图表 3-2 I2S 内存映射

寄存器名	偏移量	宽度	类型	说明	章节/页码
IISEN	0x00	32 位	R/W	IIS_IO 使能寄存器	3.3.2.1/52
				复位值: 0x00	
FUNCMODE	0x04	32 位	R/W	IIS_IO 功能模式	3.3.2.2/52
				复位值: 0x00	
IISCNF_IN	0x08	32 位	R/W	RX 侧的 IIS 接口配置	3.3.2.3/52
				复位值: 0x00	
FSSTA	0x0C	32 位	R/W	IIS ATX 音频输入控制/状态寄存器	3.3.2.4/54
				复位值:0xf0	
IISCNF_OUT	0x10	32 位	R/W	TX 侧的 IIS 接口配置	3.3.2.5/59
				复位值: 0x00	
FADTLR	0x14	32 位	R/W	IIS 采样频率自动检测阈值水平寄存	3.3.2.6/60
				器	
				复位值: 0x00	
SCCR	0x18	32 位	R/W	样本压缩控制寄存器	3.3.2.7/61
				复位值: 0x00	
TXFTLR	0x1C	32 位	R/W	发送 FIFO 阈值水平	3.3.2.8/64
				复位值: 0x10	
RXFTLR	0x20	32 位	R/W	接收 FIFO 阈值水平	3.3.2.9/64
				复位值: 0x10	
TXFLR	0x24	32 位	R	发送 FIFO 水平寄存器	3.3.2.10/65

寄存器名	偏移量	宽度	类型	说明	章节/页码
				复位值: 0x00	
RXFLR	0x28	32 位	R	接收 FIFO 水平寄存器	3.3.2.11/65
				复位值: 0x00	
SR	0x2C	32 位	R	状态寄存器	3.3.2.12/65
				复位值: 0x0C	
IMR	0x30	32 位	R/W	中断屏蔽寄存器	3.3.2.13/67
				复位值:0x7F	
ISR	0x34	32 位	R	中断状态寄存器	3.3.2.14/68
				复位值: 0x20	
RISR	0x38	32 位	R	原始中断状态寄存器	3.3.2.15/69
				复位值: 0x20	
ICR	0x3C	32 位	W	中断清除寄存器	3.3.2.16/70
				复位值: 0x00	
DMACR	0x40	32 位	R/W	DMA 控制寄存器	3.3.2.17/72
				复位值: 0x00	
DMATDLR	0x44	32 位	R/W	DMA 发送数据水平	3.3.2.18/72
				复位值: 0x10	
DMARDLR	0x48	32 位	R/W	DMA 接收数据水平	3.3.2.19/73
				复位值: 0x00	
DR	0x4C	32 位	R/W	FIFO 数据寄存器	3.3.2.20/73
				复位值: 0x00	
DIVO_LEVEL	0x50	32 位	R/W	分频源时钟,得到 mclk	3.3.2.21/74
				复位值: 0x00	
DIV3_LEVEL	0x54	32 位	R/W	分频源时钟,得到参考时钟	3.3.2.22/74
				复位值: 0x00	

3.3.2 寄存器和字段描述

3.3.2.1 IISEN

● 寄存器名: I2S 使能寄存器

● 描述:该寄存器控制 I2S 启用,通过写 I2SEN 位启用和禁用 I2S。

● 偏移量: 0x00

图表 3-3 IISEN 字段说明

位段	名称	类型	说明
31:1	保留,读为零。		
0	I2SEN	R/W	125 使能位
			1: 使能
			0: 禁用(默认)

3.3.2.2 FUNCMODE

● 寄存器名:功能模式寄存器

● 描述:该寄存器控制功能模式, I2S 使能时无法写入该寄存器。只有当相应的 MODE_wen 同时生效时才能写入 MODE位。对 MODE位或 MODE_wen 位的一次写入是无用的,将被忽略。读 MODE_wen 位将始终返回 0。

● 偏移量: 0x04

图表 3-4 FUNCMODE 字段说明

位段	名称	类型	说明
31:2	保留,读为零。		
1	MODE_wen	W	MODE 写使能位
			0:写入 MODE 位的值无效。(默认)
			1:写入 MODE 位的值有效。
0	I2S_MODE	R/W	有效电平 ATX 模式
			0: 模块处于接收模式。 (默认)
			1: 模块处于发送模式。

3.3.2.3 **IISCNF_IN**

● 寄存器名: I2S 接收器输入接口模式

● 描述:该寄存器控制 I2S 输入接口格式, I2S 使能时无法写入该寄存器。

● 偏移量: 0x08

图表 3-5 IISCNF_IN 字段说明

位段	名称	类型	说明
31:14	保留,读为零。		
13:12	RDELAY1	R/W	I2S 接收器 s_sclk 和 s_ws 延迟水平
			00: 无延迟 (默认)
			01:添加 1 个 src_clk 周期延迟。
			10: 添加 2 个 src_clk 周期延迟。
			11: 添加 3 个 src_clk 周期延迟。
11:9	保留, 读为零。		
8	I2S_RXMODE	R/W	I2S 接收器操作模式选择
			0: 从模式(默认)
			1: 主模式
7:5	保留,读为零。		
4	RX_VOICE_EN	R/W	I2S 采样源类型选择
			0: 源为立体声,具有不同的左右声道信号。(默认)
			1: 源为单声道,左右声道数据相同,只接收并存储其中一
			个。
3	-	N/A	保留
2	RALOLRC	R/W	左/右声道的有效电平
			0: 左声道为低电平。(默认)
			1:左声道为高电平。(右声道为低电平)
1:0	RSAFS	R/W	串行音频格式选择
			0x0: I2S (默认)
			0x1: 右对齐
			0x2: 左对齐
注:	1	<u> </u>	

注:

1: 在 I2S 接收模式下, SD 信号由其他设备提供。它会在 PAD 输入信号的过程中造成延迟。

左声道音频数据总是在前,图表 3-6 显示了 RALOLRC=1 时的 I2S 总线格式。

图表 3-6 标准立体声帧格式@ RALOLRC=1

3.3.2.4 FSSTA

● 寄存器名: I2S 串行音频输入控制寄存器

● 描述:该寄存器控制 I2S 的数据宽度模式和从时钟的自动检测。I2S 使能时无法写入该寄存器。

● 偏移量: 0x0C

图表 3-7 FSSTA 字段说明

位段	名称	类型	说明
31:17	保留,读为零。		
16	MCLK_SEL	R/W	mclk 频率选择
			0: mclk = 256*fs(默认) 1: mclk = 384*fs
15:14	保留,读为零。		
13:12	SCLK_SEL	R/W	sclk 频率选择
			00: sclk = 32*fs(默认)
			01: sclk = 48*fs
			1?: sclk = 64*fs
11:8	DATAWTH	R/W	I2S 数据宽度模式
			0000:16 位输入/输出(左右声道)和 FIFO 以 16 位存储数
			据。(默认)
			0001:16 位输入/输出 (左右声道) 和 FIFO 以 24 位存储数
			据。
			001?: 16 位输入/输出(左右声道)和 FIFO 以 32 位存储数
			据。
			0100: 24 位输入/输出 (左右声道) 和 FIFO 以 16 位存储数

位段	名称	类型	说明
			据。
			0101: 24 位输入/输出 (左右声道) 和 FIFO 以 24 位存储数
			据。
			011?: 24 位输入/输出(左右声道)和 FIFO 以 32 位存储数
			据。
			1000: 32 位输入/输出(左右声道)和 FIFO 以 16 位存储数 据。
			''''。 1001:32 位输入/输出(左右声道)和 FIFO 以 24 位存储数
			据。
			 1?1?: 32 位输入/输出(左右声道)和 FIFO 以 32 位存储数
			据。
7:6	ARS	R	音频速率比例因子(仅限 RX 模式)
			00: 1 (默认)
			01: 0.5
			10: 0.25
			11: 0.125
			详见图表 3-17。
5:4	AFR	R	输入音频采样频率基本速率(仅限 RX 模式)
			00: 88.2KHz (默认)
			01: 96KHz
			10: 64KHz
			11: 192KHz
			详见图表 3-17。
3:1	保留,读为零。	•	
0	AIRAD	R/W	音频输入速率自动检测位(仅限 RX 模式)
			0: 不检测。 (默认)
			1:音频输入速率由硬件自动检测。(仅限 RX 模式)

FIFO 数据宽度为 32 位, FIFO 以 16 位存储数据意味着一次可以存储两个样本。FIFO 以 24 位和 32 位存储数据意味着它可以一次存储一个样本。数据宽度变化如图表 3-8 到图表 3-16:

图表 3-8 16 位输入/输出和 FIFO 以 16 位存储数据

图表 3-9 16 位输入/输出和 FIFO 以 24 位存储数据

图表 3-10 16 位输入/输出和 FIFO 以 32 位存储数据

图表 3-11 24 位输入/输出和 FIFO 以 16 位存储数据

图表 3-12 24 位输入/输出和 FIFO 以 24 位存储数据

图表 3-13 24 位输入/输出和 FIFO 以 32 位存储数据

图表 3-14 32 位输入/输出和 FIFO 以 16 位存储数据

图表 3-15 32 位输入/输出和 FIFO 以 24 位存储数据

图表 3-16 32 位输入/输出和 FIFO 以 32 位存储数据

输入采样频率的实际值由 AFR 和 ARS 得出:

图表 3-17 实际输入采样频率

AFR	ARS	Fs (kHz)
	2'b00	88.2

AFR	ARS	Fs (kHz)
	2'b01	44.1
2'b00	2'b10	22.05
	2'b11	11.025
	2'b00	96
2'b01	2'b01	48
2 501	2'b10	24
	2'b11	12
	2'b00	64
2'b10	2'b01	32
2.510	2'b10	16
	2'b11	8
	2'b00	192
2'b11	2'b10	error
	2'b11	default

3.3.2.5 IISCNF_OUT

● 寄存器名: I2S 发送器接口格式寄存器

● 描述:该寄存器控制 I2S 输出接口格式。I2S 使能时无法写入该寄存器。

● 偏移量: 0x10

图表 3-18 IISCNF_OUT 字段说明

位段	名称	类型	说明
31:5	保留,读为零。		
4	I2S_TXMODE	R/W	TX 工作模式选择信号
			0: 芯片为主。(默认)
			1: 芯片为从。
3	TX_VOICE_EN	R/W	采样源类型选择
			0:源为立体声,具有不同的左右声道信号。(默认)
			1:源为单声道,左右声道数据相同,从发送 FIFO 中取一个
			数据扩展为立体声。
2	TALOLRC	R/W	左/右声道的有效电平
			0: 左声道为低电平。(默认)
			1: 左声道为高电平。
1:0	TSAFS	R/W	串行音频格式选择

位段	名称	类型	说明
			0x0: I2S (默认)
			0x1: 右对齐
			0x2: 左对齐

3.3.2.6 FADTLR

● 寄存器名: I2S FS 自动检测阈值水平

● 描述:该寄存器反映了 I2S FS 自动检测阈值水平,它控制在接收模式下对输入 I2S 音频采样频率的判断。3.072MHz 和 4.032MHZ 之间的快速参考时钟用于计算输入 I2S 音频 fs (s_ws)的周期。通过计数值可以判断输入的 I2S 音频采样频率。使能 I2S 时不能写入该寄存器。

● 偏移量: 0x14

图表 3-19 FADTLR 字段说明

位段	名称	类型	说明
31:29	保留, 读为零。		
28:24	192FTR	R/W	192KHz 采样频率阈值寄存器
			这些位设置 192kHz 采样频率的中心计数。
			192FTR = ref_clk/192k
			如果参考频率时钟频率为 3.072MHz, 因为 192K*16 =
			3.072M, 通常这个寄存器应该设置为 0x10。当计数值在[14,
			18]范围内时,输入 I2S 音频采样频率被视为 192kHz。
23:22	保留,读为零。		
21:16	64FTR	R/W	64K 采样频率阈值寄存器
			这些位设置 64kHz、32kHz、16kHz 和 8kHz 采样频率的中
			心计数。
			64FTR = ref_clk/64k
			如果参考频率时钟频率为 3.072MHz, 因为 64K*48 =
			3.072M,通常这个寄存器应该设置为 0x30。当计数值在[46,
			50]范围内时,输入 I2S 音频采样频率被视为(64*ARS)kHz。
15:14	保留, 读为零。		
13:8	88FTR	R/W	88.2K 采样频率阈值寄存器
			这些位设置 88.2kHz、44.1kHz、22.05kHz 和 11.025kHz 采
			样频率的中心计数。
			88FTR = ref_clk/88.2k

位段	名称	类型	说明
			如果参考频率时钟频率为 3.072MHz, 因为 88.2K*35 = 3.072M, 通常这个寄存器应该设置为 0x23。当计数值在[33, 37]范围内时,输入 I2S 音频采样频率被视为(88.2*ARS)kHz。
7:6	保留,读为零。		
5:0	96FTR	R/W	96K 采样频率阈值寄存器
			这些位设置 96kHz、48kHz、24kHz 和 12kHz 采样频率的中心计数。
			96FTR = ref_clk/96k
			如果参考频率时钟频率为 3.072MHz, 因为 96K*32 = 3.072M,通常这个寄存器应该设置为 0x20。当计数值在[30,34]范围内时,输入 I2S 音频采样频率被视为(96*ARS)kHz。

3.3.2.7 SCCR

● 寄存器名: I2S 采样压缩控制寄存器

● 描述:该寄存器控制音频采样数据的压缩。

● 偏移量: 0x18

图表 3-20 SCCR 字段说明

位段	名称	类型	说明
31:13	保留,读为零。		
12:8	TVCCR	R/W	TX 音量压缩控制寄存器
			根据这个寄存器值,将输出的采样数据右移,左边的空白位用原来的 MSB 填充,也就是第 15 位或第 23 位或第 31 位,这取决于数据宽度(16/24/32 位)。
			0: 不压缩
			1: 将样本长度从 16/24/32 位移位到 15/23/31 位。
			2: 将样本长度从 16/24/32 位移位到 14/22/30 位。
			15: 将样本长度从 16/24/32 位移位到 1/9/17 位。
			其他: 将样本长度从 16/24/32 位移位到 0/8/16 位。
			见图表 3-21、图表 3-22、图表 3-23。
7	保留,读为零。		
6:5	SSRCR	R/W	RX 下采样率压缩控制寄存器

位段	名称	类型	说明
			根据该寄存器值,压缩输入的采样数据。
			0: 不压缩
			1:压缩采样数据一次,即丢弃每两个样本中的一个,接收两个样本中的第一个数据。
			2: 压缩采样数据两次,即丢弃每三个样本中的两个,接收三个样本中的第一个数据。
			3: 不压缩
			见图表 3-24、图表 3-25、图表 3-26、图表 3-27、图表 3-28、 图表 3-29。
4:0	RVCCR	R/W	RX 音量压缩控制寄存器
			根据这个寄存器值,将输入的采样数据右移,左边的空白位用原来的 MSB 填充,也就是第 15 位或第 23 位或第 31 位,这取决于数据宽度(16/24/32 位)。
			0: 不压缩
			1: 将样本数据从 16/24/32 位移位到 15/23/31 位。
			2: 将样本数据从 16/24/32 位移位到 14/22/30 位。
			15: 将样本数据从 16/24/32 位移位到 1/9/17 位。
			其他:将样本数据从 16/24/32 位移位到 0/8/16 位。
			见图表 3-21、图表 3-22、图表 3-23。

图表 3-21 数据压缩@T/RVCCR=3, DATAWTH[1:0]=00

图表 3-22 数据压缩@T/RVCCR=15, DATAWTH[1:0]=01

图表 3-23 数据压缩@T/RVCCR=5, DATAWTH[1:0]=1?

图表 3-24 数据压缩@ =1, DATAWTH[1:0]=00@立体声源

图表 3-25 数据压缩@SSRCR=1, DATAWTH[1:0]=00@单声道源

图表 3-26 数据压缩@SSRCR=2, DATAWTH[1:0]=00@立体声源

图表 3-27 数据压缩@SSRCR=2, DATAWTH[1:0]=00@单声道源

图表 3-28 数据压缩@SSRCR=2, DATAWTH[1:0]=01@立体声源

图表 3-29 数据压缩@SSRCR=2, DATAWTH[1:0]=01@单声道源

3.3.2.8 TXFTLR

● 寄存器名:I2S 发送 FIFO 阈值寄存器

● 描述:该寄存器控制发送 FIFO 的阈值。使能 I2S (或 SPDIF) 时不能写入该寄存器。

● 偏移量: 0x1C

图表 3-30 TXFTLR 字段说明

位段	名称	类型	说明
31:5	保留,只读。		
4:0	TFT	R/W	发送 FIFO 阈值 控制发送 FIFO 控制器触发中断的条目水平 (或更低)。FIFO 阈值可在 0-31 范围内配置。默认值为 16。

3.3.2.9 RXFTLR

● 寄存器名: I2S 接收 FIFO 阈值寄存器

● 描述:该寄存器控制接收 FIFO 的阈值。使能 I2S(或 SPDIF)时不能写入该寄存器。

图表 3-31 RXFTLR 字段说明

位段	名称	类型	说明
31:5	保留,读为零。		
4:0	RFT	R/W	接收 FIFO 阈值 控制接收 FIFO 控制器触发中断的条目水平 (或更高)。FIFO 阈值可在 1-31 范围内配置。设置为 0 时,阈值为 32。默认 值为 16。

3.3.2.10 TXFLR

● 寄存器名: I2S 发送 FIFO 水平寄存器

● 描述:该寄存器包含发送 FIFO 中有效数据条目的数量。

● 偏移量: 0x24

图表 3-32 TXFLR 字段说明

位段	名称	类型	说明
31:6	保留, 读为零。		
5:0	TXTFL	R	发送 FIFO 水平 包含发送 FIFO 中当前有效数据条目的数量。

3.3.2.11 RXFLR

● 寄存器名: I2S 接收 FIFO 水平寄存器

● 描述:该寄存器包含接收 FIFO 中有效数据条目的数量。

● 偏移量: 0x28

图表 3-33 RXFLR 字段说明

位段	名称	类型	说明
31:6	保留,读为零。		
5:0	RXTFL	R	接收 FIFO 水平 包含接收 FIFO 中当前有效数据条目的数量。

3.3.2.12 SR

● 寄存器名: I2S 状态寄存器

● 描述:这是一个只读寄存器,用于指示当前传输状态、FIFO状态以及发生的任何发送/接收错误。

● 偏移量: 0x2C

图表 3-34 SR 字段说明

位段	名称	类型	说明
31:6	保留, 读为零。		
5	RFF	R	接收 FIFO 满
			当接收 FIFO 完全填满时,该位被设置。当接收 FIFO 包含一个或多个空位置时,该位被清除。
			0:接收 FIFO 未满。
			1:接收 FIFO 已满。
4	RFNE	R	接收 FIFO 非空
			当接收 FIFO 中包含一个或多个条目时设置, 当接收 FIFO 为空时清除。
			0:接收 FIFO 为空。
			1:接收 FIFO 不为空。
3	TFE	R	发送 FIFO 空
			当发送 FIFO 完全为空时,该位被设置。当发送 FIFO 中包含一个或多个有效条目时,该位被清除。
			0:发送 FIFO 不为空。
			1: 发送 FIFO 为空。
2	TFNF	R	发送 FIFO 未满
			当发送 FIFO 包含一个或多个空条目时设置, 当发送 FIFO 满
			时清除。
			0: 发送 FIFO 已满。 1: 发送 FIFO 未满。
		_	
1	TX_BUSY	R	I2S TX 忙标志
			0: I2S TX 空闲或禁用。
		_	1: I2S TX 正在传输数据。
0	RX_BUSY	R	12S RX 忙标志
			0: I2S RX 空闲或禁用。
			1: I2S RX 正在接收数据。

3.3.2.13 IMR

● 寄存器名: I2S 中断屏蔽寄存器

● 描述:该读/写寄存器屏蔽或启用由 I2S 生成的所有中断。

图表 3-35 IMR 字段说明

位段	名称	类型	说明
31:10	保留,读为零。		
9	IFSCM	R/W	输出采样频率变化屏蔽。
			0: in_fsc_intr 中断被屏蔽。(在自动检测模式下)(默
			认)
			1:in_fsc_intr 中断未被屏蔽。(在自动检测模式下)
8	ITBFCM	R/W	I2S TX 忙标志变化屏蔽
			0: i2s_txbfc_intr 中断被屏蔽。(默认)
			1: i2s_txbfc_intr 中断未被屏蔽。
7	IRBFCM	R/W	I2S RX 忙标志变化屏蔽
			0: i2s_rxbfc_intr 中断被屏蔽。(默认)
			1: i2s_rxbfc_intr 中断未被屏蔽。
6	RXFIM	R/W	接收 FIFO 阈值满中断屏蔽
			0: i2s_rxf_intr 中断被屏蔽。
			1:i2s_rxf_intr 中断未被屏蔽。(默认)
5	TXEIM	R/W	发送 FIFO 阈值空中断屏蔽
			0: i2s_txe_intr 中断被屏蔽。
			1: i2s_txe_intr 中断未被屏蔽。(默认)
4	RXOIM	R/W	接收 FIFO 溢出错误屏蔽
			0: i2s_rxo_err 错误被屏蔽。
			1: i2s_rxo_err 错误未被屏蔽。(默认)
3	RXUIM	R/W	接收 FIFO 下溢错误屏蔽
			0: i2s_rxu_err 错误被屏蔽。
			1:i2s_rxu_err 错误未被屏蔽。(默认)

位段	名称	类型	说明
2	TXOIM	R/W	发送 FIFO 溢出错误屏蔽
			0: i2s_txo_err 错误被屏蔽。
			1:i2s_txo_err 错误未被屏蔽。(默认)
1	TXUIRM	R/W	发送 FIFO 下溢错误屏蔽
			0: i2s_txu_err 错误被屏蔽。
			1:i2s_txu_err 错误未被屏蔽。(默认)
0	WADEM	R/W	125 错误地址错误屏蔽
			0: i2s_waddr_err 错误被屏蔽。
			1:i2s_waddr_err 错误未被屏蔽。(默认)

3.3.2.14 ISR

● 寄存器名: I2S 中断状态寄存器

● 描述:该寄存器指示 I2S 中断被屏蔽后的状态。

图表 3-36 ISR 字段说明

位段	名称	类型	说明
31:10	保留,读为零。		
9	IFSCS	R	屏蔽后的输入采样频率变化中断状态
			0: in_fsc_intr 中断已激活。(在自动检测模式下)
			1:in_fsc_intr 中断未激活。(在自动检测模式下)
8	ITBFCS	R	屏蔽后的 I2S TX 忙标志变化中断状态
			0: i2s_txbfc_intr 中断已激活。
			1: i2s_txbfc_intr 中断未激活。
7	IRBFCS	R	屏蔽后的 I2S RX 忙标志变化中断状态
			0: i2s_rxbfc_intr 中断已激活。
			1: i2s_rxbfc_intr 中断未激活。
6	RXFIS	R	屏蔽后的接收 FIFO 阈值满中断状态
			0: i2s_rxf_intr 中断未激活。
			1: i2s_rxf_intr 中断已激活。

位段	名称	类型	说明
5	TXEIS	R	屏蔽后的发送 FIFO 阈值空中断状态
			0: i2s_txe_intr 中断未激活。
			1: i2s_txe_intr 中断已激活。
4	RXOIS	R	屏蔽后的接收 FIFO 溢出错误状态
			0: i2s_rxo_err 错误未激活。
			1: i2s_rxo_err 错误已激活。
3	RXUIS	R	屏蔽后的接收 FIFO 下溢错误状态
			0: i2s_rxu_err 错误未激活。
			1: i2s_rxu_err 错误已激活。
2	TXOIS	R	屏蔽后的发送 FIFO 溢出错误状态
			0: i2s_txo_err 错误未激活。
			1: i2s_txo_err 错误已激活。
1	TXUIRS	R	屏蔽后的发送 FIFO 下溢错误状态
			0: i2s_txu_err 错误未激活。
			1: i2s_txu_err 错误已激活。
0	WADES	R	屏蔽后的 I2S 错误地址错误状态
			0: i2s_waddr_err 错误未激活。
			1: i2s_waddr_err 错误已激活。

3.3.2.15 RISR

● 寄存器名: I2S 原始中断状态寄存器

● 描述:该只读寄存器报告 I2S 中断在屏蔽前的状态。

图表 3-37 RISR 字段说明

位段	名称	类型	说明
31:10	保留,读为零。		
9	RIFSCS	R	屏蔽前的输入采样频率变化原始中断状态
			0: in_fsc_intr 中断已激活。(在自动检测模式下)
			1:in_fsc_intr 中断未激活。(在自动检测模式下)

位段	名称	类型	说明
8	RITBFCS	R	屏蔽前的 I2S TX 忙标志变化原始中断状态
			0: i2s_txbfc_intr 中断已激活。
			1: i2s_txbfc_intr 中断未激活。
7	RIRBFCS	R	屏蔽前的 I2S RX 忙标志变化原始中断状态
			0: i2s_rxbfc_intr 中断已激活。
			1: i2s_rxbfc_intr 中断未激活。
6	RXFIR	R	屏蔽前的接收 FIFO 阈值满原始中断状态
			0: i2s_rxf_intr 中断未激活。
			1: i2s_rxf_intr 中断已激活。
5	TXEIR	R	屏蔽前的发送 FIFO 阈值空原始中断状态
			0: i2s_txe_intr 中断未激活。
			1: i2s_txe_intr 中断已激活。
4	RXOIR	R	屏蔽前的接收 FIFO 溢出原始错误状态
			0: i2s_rxo_err 错误未激活。
			1: i2s_rxo_err 错误已激活。
3	RXUIR	R	屏蔽前的接收 FIFO 下溢原始错误状态
			0: i2s_rxu_err 错误未激活。
			1: i2s_rxu_err 错误已激活。
2	TXOIR	R	屏蔽前的发送 FIFO 溢出原始错误状态
			0: i2s_txo_err 错误未激活。
			1: i2s_txo_err 错误已激活。
1	TXUIR	R	屏蔽前的发送 FIFO 下溢原始错误状态
			0: i2s_txu_err 错误未激活。
			1: i2s_txu_err 错误已激活。
0	RWADES	R	屏蔽前的 I2S 错误地址原始错误状态
			0: i2s_waddr_err 错误未激活。
			1:i2s_waddr_err 错误已激活。

3.3.2.16 ICR

● 寄存器名: I2S 中断清除寄存器

● 描述:该只写寄存器用于清除 I2S 中断。

● 偏移量: 0x3C

图表 3-38 ICR 字段说明

位段	名称	类型	说明
31:10	保留, 读为零。		
9	CRIFSC	W	清除输入采样频率变化中断
			0: 不清除 in_fsc_intr 中断。
			1: 清除 in_fsc_intr 中断。
8	CRITBFC	W	清除 I2S TX 忙标志变化中断
			0: 不清除 i2s_txbfc_intr 中断。
			1:清除 i2s_txbfc_intr 中断。
7	CRIRBFC	w	清除 I2S RX 忙标志变化中断
			0:不清除 i2s_rxbfc_intr 中断。
			1:清除 i2s_rxbfc_intr 中断。
6	RXFIC	W	清除接收 FIFO 阈值满中断
			0:不清除 i2s_rxf_intr 中断。
			1:清除i2s_rxf_intr中断。
5	TXEIC	W	清除发送 FIFO 阈值空中断
			0:不清除 i2s_txe_intr 中断。
			1:清除 i2s_txe_intr 中断。
4	RXOIC	W	清除接收 FIFO 溢出错误
			0:不清除 i2s_rxo_err 错误。
			1:清除i2s_rxo_err错误。
3	RXUIC	W	清除接收 FIFO 下溢错误
			0:不清除 i2s_rxu_err 中断。
			1:清除i2s_rxu_err中断。
2	TXOIC	W	清除发送 FIFO 溢出错误状态
			0:不清除 i2s_txo_err 中断。
			1:清除i2s_txo_err中断。
1	TXUIC	W	清除发送 FIFO 下溢错误

位段	名称	类型	说明
			0:不清除 i2s_txu_err 中断。
			1:清除i2s_txu_err中断。
0	CWADEC	W	清除 I2S 错误地址错误
			0:不清除 i2s_waddr_err 中断。
			1: 清除 i2s_waddr_err 中断。

3.3.2.17 DMACR

● 寄存器名: I2S DMA 控制寄存器

● 描述:该寄存器用于使能 DMA 控制器接口操作。

● 偏移量: 0x40

图表 3-39 DMACR 字段说明

位段	名称	类型	说明
31:2	保留,读为零。		
1	TDMAE	R/W	发送 DMA 使能 该位使能/禁用发送 FIFO DMA 通道。 0:禁用发送 DMA。(默认) 1:使能发送 DMA
0	RDMAE	R/W	接收 DMA 使能 该位使能/禁用接收 FIFO DMA 通道。 0:禁用接收 DMA。(默认) 1:使能接收 DMA

3.3.2.18 **DMATDLR**

● 寄存器名: I2S DMA 发送数据水平寄存器

● 描述:该寄存器控制 I2S DMA 发送数据水平。

图表 3-40 DMATDLR 字段说明

位段	名称	类型	说明
31:5	保留,读为零。		

位段	名称	类型	说明
4:0	DMATDL	R/W	发送数据水平
			该位段控制发送逻辑发出 DMA 请求的水平。水线水平 =DMATDL; 即当发送 FIFO 中有效数据条目数等于或小于该字段值,并且TDMAE=1 时,产生 dma_tx_req 信号。 默认值为 16,可在 0-31 范围内配置。当设置为 0 时,阈值 =32。

3.3.2.19 **DMARDLR**

● 寄存器名: I2S DMA 接收数据水平寄存器

● 描述:该寄存器控制 I2S DMA 接收数据水平。

● 偏移量: 0x48

图表 3-41 DMARDLR 字段说明

位段	名称	类型	说明
31:5	保留,读为零。		
4:0	DMARDL	R/W	DMA 接收数据水平 该位段控制接收逻辑发出 DMA 请求的水平。水线水平 =DMARDL;即当接收 FIFO 中有效数据条目数等于或大于该字段值,并且 RDMAE=1 时,产生 dma_rx_req 信号。 默认值为 0,可在 1-31 范围内配置。当设置为 0 时,阈值 =32。

3.3.2.20 DR

● 寄存器名: FIFO 数据寄存器

● 描述: I2S 数据寄存器是用于发送/接收 FIFO 的 32 位读/写缓冲区。读寄存器时,会访问接收 FIFO 缓冲区中的数据。写时,数据被移入发送 FIFO 缓冲区;仅当 I2SEN=1 时才会发生写操作。当 I2SEN=0时, FIFO 会复位。

● 偏移量: 0x4C

图表 3-42 DR 字段说明

位段	名称	类型	说明
31: 0	DR	R/W	数据寄存器
			右声道数据
			读:接收 FIFO 缓冲区

位段	名称	类型	说明
			写:发送 FIFO 缓冲区

3.3.2.21 **DIVO_LEVEL**

● 寄存器名: I2S 分频器 0 控制寄存器

● 描述:作为分频器写入该寄存器,分频 src_clk,然后得到 mclk。

● 偏移量: 0x50

图表 3-43 DIVO_LEVEL 字段说明

位段	名称	类型	说明
31:8	保留,读为零。		
7:0	DIV0	R/W	用于从 src_clk 获取 mclk 的分频器。
			0: 不分频(默认)
			否则: divide = DIV0

3.3.2.22 DIV3_LEVEL

● 寄存器名: I2S 分频器 3 控制寄存器

● 描述:作为分频器写入该寄存器,分频 src_clk,然后得到 ref_clk。

● 偏移量: 0x54

图表 3-44 DIV3_LEVEL 字段说明

位段	名称	类型	说明
31:8	保留,读为零。		
7:0	DIV3	R/W	用于从 src_clk 获取 ref_clk 的分频器。
			divide = (DIV3 + 1)*2

4 TDM

4.1 模块特性

- 支持 TDM 接收功能。
- 支持主机和从机模式。
- 支持 16/24/32 位宽数据。
- 最多支持 8 通道数据, offet 可单独配置。
- 8个32位,深度为8的FIFO,阈值可配。
- DMA 握手信号

4.2 工作方式

- 1. 系统配置:
 - a) 配置 PLL frac 频率, 默认 49.152MHz。
 - b) 配置 PIN MUX。
 - c) 打开 TDM CG。
- 2. 配置控制寄存器: TDMCTL、DIVO_LEVEL、CHOFFSET1、CHOFFSET2、CHOFFSET3、CHOFFSET4。
- 3. 配置 FIFO 相关寄存器: FIFOTL1、FIFOTL2、FIFOTL3、FIFOTL4。
- 4. 配置中断相关寄存器: TDM IMR、TDM ICR。
- 5. 配置 DMA 握手信号相关寄存器: TDM DMACTL、TDM DMADL。
- 6. 使能 TDM, 配置 TDMEN 为 0x1, 开始工作。

4.3 寄存器描述

4.3.1 寄存器内存映射

图表 4-1 TDM 寄存器内存映射

寄存器名	偏移量	复位值	说明	章节/页码
TDMEN	0x00	0x00000000	TDM 使能寄存器	4.3.2.1/77
TDMCTL	0x04	0x00000010	TDM 控制寄存器	4.3.2.2/77
CHOFFSET1	0x08	0x00000000	TDM 通道 OFFSET 配置寄存器 1	4.3.2.3/79
CHOFFSET2	0x0C	0x00000000	TDM 通道 OFFSET 配置寄存器 2	4.3.2.4/80

寄存器名	偏移量	复位值	说明	章节/页码
CHOFFSET3	0x10	0x00000000	TDM 通道 OFFSET 配置寄存器 3	4.3.2.5/81
CHOFFSET4	0x14	0x00000000	TDM 通道 OFFSET 配置寄存器 4	4.3.2.6/82
FIFOTL1	0x18	0x00000000	TDM FIFO 中断阈值配置寄存器 1	4.3.2.7/83
FIFOTL2	0x1C	0x00000000	TDM FIFO 中断阈值配置寄存器 2	4.3.2.8/84
FIFOTL3	0x20	0x00000000	TDM FIFO 中断阈值配置寄存器 3	4.3.2.9/84
FIFOTL4	0x24	0x00000000	TDM FIFO 中断阈值配置寄存器 4	4.3.2.10/84
TDM_SR	0x28	0x00000000	TDM 状态寄存器	4.3.2.11/85
TDM_IMR	0x2C	0x777777FE	TDM 中断 & 错误屏蔽设置寄存器	4.3.2.12/87
TDM_ISR	0x30	0x00000000	TDM 中断 & 错误状态寄存器	4.3.2.13/90
TDM_RISR	0x34	0x00000000	TDM 中断 & 错误 RAW 状态寄存器	4.3.2.14/93
TDM_ICR	0x38	0x00000000	TDM 清中断&错误寄存器	4.3.2.15/96
TDM_DMAEN	0x3C	0x00000000	TDM DMA 握手信号使能寄存器	4.3.2.16/98
TDM_DMADL	0x40	0x0000004	TDM DMA 握手信号 FIFO 阈值设置寄存器	4.3.2.17/98
LDR1	0x44	0x00000000	左通道 1 数据访问寄存器	4.3.2.18/98
RDR1	0x48	0x00000000	右通道 1 数据访问寄存器	4.3.2.19/98
LDR2	0x4C	0x00000000	左通道 2 数据访问寄存器	4.3.2.20/99
RDR2	0x50	0x00000000	右通道 2 数据访问寄存器	4.3.2.21/99
LDR3	0x54	0x00000000	左通道 3 数据访问寄存器	4.3.2.22/99
RDR3	0x58	0x00000000	右通道 3 数据访问寄存器	4.3.2.23/99
LDR4	0x5C	0x00000000	左通道 4 数据访问寄存器	4.3.2.24/100
RDR4	0x60	0x00000000	右通道 4 数据访问寄存器	4.3.2.25/100
DIVO_LEVEL	0x64	0x00000000	分频配置寄存器	4.3.2.26/100

4.3.2 寄存器和字段描述

4.3.2.1 TDMEN_REG

● 寄存器名: TDMEN_REG

● 偏移量: 0x00

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:1	RESERVED	RO	保留
0	TDMEN	WO	TDM 使能信号
			0x0: 关闭
			0x1: 打开

4.3.2.2 TDMCTL_REG

● 寄存器名: TDMCTL_REG

● 偏移量: 0x04

位段	名称	类型	说明
31:14	RESERVED	RO	保留
13	SPEDGE	R/W	Bclk 发送数据沿
			0x0: 上升沿
			0x1: 下降沿
12	CHORD	R/W	左右通道顺序
			0x0:左声道先来。
			0x1:右声道先来。
11:10	RESERVED	RO	保留
9:8	CHNUM	R/W	通道数量
			0x0: 2通道
			0x1: 4通道
			0x2: 6 通道
			0x3: 8通道

位段	名称	类型	说明
7:6	RESERVED	RO	保留
5:4	DATAWTH	R/W	数据位宽选择 0x0:16 bits 数据输入,两个数据拼接为 32-bits 后存入 FIFO。 0x1:16 bits 数据输入,高 16 位补 0 为 32-bits 后存入 FIFO。 0x2: 24 bits 数据输入,高 8 位补 0 为 32-bits 后存入 FIFO。 0x3: 32 bits 数据输入直接存入 FIFO。
3:1	RESERVED	RO	保留
0	MODE	R/W	TDM 模式选择 0x0: 从机模式 0x1: 主机模式

说明

上升沿发送数据:

下降沿发送数据:

不同数据位宽格式:

4.3.2.3 CHOFFSET1_DR

● 寄存器名: CHOFFSET1_DR

● 偏移量: 0x08

位段	名称	类型	说明
31:13	RESERVED	RO	保留
12:8	OFFSET2	R/W	RD1 数据(@CHORD=0)或 LD1 数据(@CHORD=1)相对于第一个数据后的偏移量 0x00: offset = 0 BCLK 周期 0x01: offset = 1 BCLK 周期

位段	名称	类型	说明
			0x02: offset = 2 BCLK 周期
			0x1e: offset = 30 BCLK 周期
			0x1f: offset = 31 BCLK 周期
7:5	RESERVED	RO	保留
4:0	OFFSET1	R/W	LD1 数据(@CHORD=0)或 RD1 数据(@CHORD=1)相对
			于 WCLK 上升沿后的偏移量
			0x00: offset = 0 BCLK 周期
			0x01: offset = 1 BCLK 周期
			0x02: offset = 2 BCLK 周期
			0x1e: offset = 30 BCLK 周期
			0x1f: offset = 31 BCLK 周期

4.3.2.4 CHOFFSET2_DR

● 寄存器名: CHOFFSET2_DR

● 偏移量: 0x0C

位段	名称	类型	说明
31:13	RESERVED	RO	保留
12:8	OFFSET4	R/W	RD2 数据 (@CHORD=0) 或 LD2 数据 (@CHORD=1) 相对 于第三个数据后的偏移量 0x00: offset = 0 BCLK 周期 0x01: offset = 1 BCLK 周期 0x02: offset = 2 BCLK 周期 0x1e: offset = 30 BCLK 周期 0x1f: offset = 31 BCLK 周期
7:5	RESERVED	RO	保留
4:0	OFFSET3	R/W	LD2 数据(@CHORD=0)或 RD2 数据(@CHORD=1)相对于第二个数据后的偏移量

位段	名称	类型	说明
			0x00: offset = 0 BCLK 周期
			0x01: offset = 1 BCLK 周期
			0x02: offset = 2 BCLK 周期
			0x1e: offset = 30 BCLK 周期
			0x1f: offset = 31 BCLK 周期

4.3.2.5 CHOFFSET3_DR

● 寄存器名: CHOFFSET3_DR

● 偏移量: 0x10

位段	名称	类型	说明
31:13	RESERVED	RO	保留
12:8	OFFSET6	R/W	RD3 数据(@CHORD=0)或 LD3 数据(@CHORD=1)相对于第五个数据后的偏移量 0x00: offset = 0 BCLK 周期 0x01: offset = 1 BCLK 周期 0x02: offset = 2 BCLK 周期 0x1e: offset = 30 BCLK 周期
7:5	RESERVED	RO	保留
4:0	OFFSET5	R/W	LD3 数据 (@CHORD=0) 或 RD3 数据 (@CHORD=1) 相对 于第四个数据后的偏移量 0x00: offset = 0 BCLK 周期 0x01: offset = 1 BCLK 周期 0x02: offset = 2 BCLK 周期 0x1e: offset = 30 BCLK 周期 0x1f: offset = 31 BCLK 周期

4.3.2.6 CHOFFSET4_DR

● 寄存器名: CHOFFSET4_DR

● 偏移量: 0x14

位段	名称	类型	说明
31:13	RESERVED	RO	保留
12:8	OFFSET8	R/W	RD4 数据(@CHORD=0)或 LD4 数据(@CHORD=1)相对 于第七个数据后的偏移量 0x00: offset = 0 BCLK 周期 0x01: offset = 1 BCLK 周期 0x02: offset = 2 BCLK 周期 0x1e: offset = 30 BCLK 周期 0x1f: offset = 31 BCLK 周期
7:5	RESERVED	RO	保留
4:0	OFFSET7	R/W	LD4 数据 (@CHORD=0) 或 RD4 数据 (@CHORD=1) 相对 于第六个数据后的偏移量 0x00: offset = 0 BCLK 周期 0x01: offset = 1 BCLK 周期 0x02: offset = 2 BCLK 周期 0x1e: offset = 30 BCLK 周期 0x1f: offset = 31 BCLK 周期

说明

各通多偏移时序@CHORD=0, OFFSET1=1, OFFSET2=0, OFFSET3=0:

各通多偏移时序@CHORD=1, OFFSET1=1, OFFSET2=3, OFFSET3=2:

4.3.2.7 FIFOTL1

● 寄存器名: FIFOTL1

● 偏移量: 0x18

位段	名称	类型	说明
31:7	RESERVED	RO	保留
6:4	RFT1	R/W	RFIFO1 阈值 可以配置为 1-7, 配置为 0 时, 阈值为 8, 默认值为 0。
3	RESERVED	RO	保留
2:0	LFT1	R/W	LFIFO1 阈值

位段	名称	类型	说明
			可以配置为 1-7, 配置为 0 时, 阈值为 8, 默认值为 0。

4.3.2.8 FIFOTL2

● 寄存器名: FIFOTL2

● 偏移量: 0x1C

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:7	RESERVED	RO	保留
6:4	RFT2	R/W	RFIFO2 阈值 可以配置为 1-7,配置为 0 时,阈值为 8,默认值为 0。
3	RESERVED	RO	保留
2:0	LFT2	R/W	LFIFO2 阈值 可以配置为 1-7, 配置为 0 时, 阈值为 8, 默认值为 0。

4.3.2.9 FIFOTL3

● 寄存器名: FIFOTL3

● 偏移量: 0x20

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:7	RESERVED	RO	保留
6:4	RFT3	R/W	RFIFO3 阈值
			可以配置为 1-7,配置为 0 时,阈值为 8,默认值为 0。
3	RESERVED	RO	保留
2:0	LFT3	R/W	LFIFO3 阈值
			可以配置为 1-7,配置为 0 时,阈值为 8,默认值为 0。

4.3.2.10 FIFOTL4

● 寄存器名: FIFOTL4

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:7	RESERVED	RO	保留
6:4	RFT4	R/W	RFIFO4 阈值 可以配置为 1-7,配置为 0 时,阈值为 8,默认值为 0。
3	RESERVED	RO	保留
2:0	LFT4	R/W	LFIFO4 阈值 可以配置为 1-7, 配置为 0 时, 阈值为 8, 默认值为 0。

4.3.2.11 TDM_SR

● 寄存器名: TDM_SR

● 偏移量: 0x28

位段	名称	类型	说明
31:20	RESERVED	RO	保留
19	RFF4	RO	TDM RFIFO4 满状态
			0: TDM RFIFO4 非满。
			1: TDM RFIFO4 满。
18	RFNE4	RO	TDM RFIFO4 非空
			0: TDM RFIFO4 空。
			1: TDM RFIFO4 非空。
17	LFF4	RO	TDM LFIFO4 满状态
			0: TDM LFIFO4 非满。
			1: TDM LFIFO4 满。
16	LFNE4	RO	TDM LFIFO4 非空
			0: TDM LFIFO4 空。
			1: TDM LFIFO4 非空。
15	RFF3	RO	TDM RFIFO3 满状态
			0: TDM RFIFO3 非满。
			1: TDM RFIFO3 满。

RO	位段	名称	类型	说明
1: TDM RFIFO3 非空。	4	RFNE3	RO	TDM RFIFO3 非空
RO				0: TDM RFIFO3 空。
0: TDM LFIFO3 非满。 1: TDM LFIFO3 满。 1: TDM LFIFO3 满。 12				1: TDM RFIFO3 非空。
1: TDM LFIFO3 满。 12 LFNE3 RO TDM LFIFO3 非空 0: TDM LFIFO3 非空 1: TDM LFIFO3 非空。 11 RFF2 RO TDM RFIFO2 满状态 0: TDM RFIFO2 非满。 1: TDM RFIFO2 非。 1: TDM RFIFO2 非空 0: TDM RFIFO2 空。 1: TDM RFIFO2 非空 0: TDM RFIFO2 非空 0: TDM LFIFO2 非空。 9 LFF2 RO TDM LFIFO2 清米态 0: TDM LFIFO2 非法。 1: TDM LFIFO2 非法。 1: TDM LFIFO2 非法。 1: TDM LFIFO2 非空 0: TDM LFIFO2 非空	3	LFF3	RO	TDM LFIFO3 满状态
RO				0: TDM LFIFO3 非满。
0: TDM LFIFO3 空。 1: TDM LFIFO3 中空。 1: TDM RFIFO2 满状态 0: TDM RFIFO2 满状态 0: TDM RFIFO2 非满。 1: TDM RFIFO2 非空 0: TDM RFIFO2 中空。 1: TDM RFIFO2 中空。 1: TDM RFIFO2 非流。 1: TDM LFIFO2 非满。 1: TDM LFIFO2 非满。 1: TDM LFIFO2 非满。 1: TDM LFIFO2 非流。 1: TDM LFIFO2 非空。 8				1: TDM LFIFO3 满。
1: TDM LFIFO3 非空。 11 RFF2 RO TDM RFIFO2 满状态	2	LFNE3	RO	TDM LFIFO3 非空
RFF2				0: TDM LFIFO3 空。
0: TDM RFIFO2 非满。 1: TDM RFIFO2 满。 1: TDM RFIFO2 满。 10				1: TDM LFIFO3 非空。
1: TDM RFIFO2 满。 10 RFNE2 RO TDM RFIFO2 非空 0: TDM RFIFO2 中空。 1: TDM RFIFO2 非空。 9 LFF2 RO TDM LFIFO2 满状态 0: TDM LFIFO2 非满。 1: TDM LFIFO2 非决。 1: TDM LFIFO2 非空 0: TDM LFIFO2 非空 0: TDM LFIFO2 非空 1: TDM LFIFO2 非空	1	RFF2	RO	TDM RFIFO2 满状态
RO				0: TDM RFIFO2 非满。
0: TDM RFIFO2 空。 1: TDM RFIFO2 非空。 9 LFF2 RO TDM LFIFO2 满状态 0: TDM LFIFO2 非满。 1: TDM LFIFO2 满。 8 LFNE2 RO TDM LFIFO2 非空 0: TDM LFIFO2 非空 1: TDM LFIFO2 非空 1: TDM LFIFO2 非空。				1: TDM RFIFO2 满。
1: TDM RFIFO2 非空。 RO TDM LFIFO2 满状态 0: TDM LFIFO2 非满。 1: TDM LFIFO2 非决。 RO TDM LFIFO2 非空 0: TDM LFIFO2 非空 0: TDM LFIFO2 非空。 1: TDM LFIFO2 非空。)	RFNE2	RO	TDM RFIFO2 非空
9 LFF2 RO TDM LFIFO2 满状态 0: TDM LFIFO2 非满。 1: TDM LFIFO2 排空 8 LFNE2 RO TDM LFIFO2 非空 0: TDM LFIFO2 空。 1: TDM LFIFO2 非空。				0: TDM RFIFO2 空。
0: TDM LFIFO2 非满。 1: TDM LFIFO2 满。 8 LFNE2 RO TDM LFIFO2 非空 0: TDM LFIFO2 空。 1: TDM LFIFO2 非空。				1: TDM RFIFO2 非空。
1: TDM LFIFO2 满。 8 LFNE2 RO TDM LFIFO2 非空 0: TDM LFIFO2 空。 1: TDM LFIFO2 非空。		LFF2	RO	TDM LFIFO2 满状态
8 LFNE2 RO TDM LFIFO2 非空 0: TDM LFIFO2 空。 1: TDM LFIFO2 非空。				0: TDM LFIFO2 非满。
0: TDM LFIFO2 空。 1: TDM LFIFO2 非空。				1: TDM LFIFO2 满。
1: TDM LFIFO2 非空。		LFNE2	RO	TDM LFIFO2 非空
				0: TDM LFIFO2 空。
7 RFF1 RO TDM RFIFO1 满状态				1: TDM LFIFO2 非空。
		RFF1	RO	TDM RFIFO1 满状态
0: TDM RFIFO1 非满。				0: TDM RFIFO1 非满。
1: TDM RFIFO1 满。				1: TDM RFIFO1 满。
6 RFNE1 RO TDM RFIFO1 非空		RFNE1	RO	TDM RFIFO1 非空
0 - TDM RFIFO1 空。				0 - TDM RFIFO1 空。
1 - TDM RFIFO1 非空。				1 - TDM RFIFO1 非空。
5 LFF1 RO TDM LFIFO1 满状态		LFF1	RO	TDM LFIFO1 满状态
0: TDM LFIFO1 非满。				0: TDM LFIFO1 非满。

位段	名称	类型	说明
			1: TDM LFIFO1 满。
4	LFNE1	RO	TDM LFIFO1 非空
			0: TDM LFIFO1 空。
			1: TDM LFIFO1 非空。
3:1	RESERVED	RO	保留
0	TDM_BUSY	RO	TDM 忙状态位
			0x0: TDM 空闲。
			0x1: TDM 忙。

4.3.2.12 TDM_IMR

● 寄存器名: TDM_IMR

● 偏移量: 0x2C

● 复位值: 0x7777_77FE

位段	名称	类型	说明
31	RESERVED	RO	保留
30	RF4FIM	R/W	RFIFO4 阈值满中断屏蔽设置
			0: tdm_rf4f_intr 中断屏蔽。
			1: tdm_rf4f_intr 中断不屏蔽。
29	RF40EM	R/W	RFIFO4 上溢出错误屏蔽设置
			0: tdm_rf4o_err 错误屏蔽。
			1: tdm_rf4o_err 错误不屏蔽。
28	RF4UEM	R/W	RFIFO4 下出错误屏蔽设置
			0: tdm_rf4u_err 错误屏蔽。
			1:tdm_rf4u_err 错误不屏蔽。
27	RESERVED	RO	保留
26	LF4FIM	R/W	LFIFO4 阈值满中断屏蔽设置
			0: tdm_lf4f_intr 中断屏蔽。
			1: tdm_lf4f_intr 中断不屏蔽。
25	LF40EM	R/W	LFIFO4 上溢出错误屏蔽设置

位段	名称	类型	说明
			0: tdm_lf4o_err 错误屏蔽。
			1: tdm_lf4o_err 错误不屏蔽。
24	LF4UEM	R/W	LFIFO4 下溢出错误屏蔽设置
			0: tdm_lf4u_err 错误屏蔽。
			1: tdm_lf4u_err 错误不屏蔽。
23	RESERVED	RO	保留
22	RF3FIM	R/W	RFIFO3 阈值满中断屏蔽设置
			0: tdm_rf3f_intr 中断屏蔽。
			1: tdm_rf3f_intr 中断不屏蔽。
21	RF30EM	R/W	RFIFO3 上溢出错误屏蔽设置
			0: tdm_rf3o_err 错误屏蔽。
			1:tdm_rf3o_err 错误不屏蔽。
20	RF3UEM	R/W	RFIFO3 下溢出错误屏蔽设置
			0: tdm_rf3u_err 错误屏蔽。
			1: tdm_rf3u_err 错误不屏蔽。
19	RESERVED	RO	保留
18	LF3FIM	R/W	LFIFO3 阈值满中断屏蔽设置
			0: tdm_lf3f_intr 中断屏蔽。
			1: tdm_lf3f_intr 中断不屏蔽。
17	LF3OEM	R/W	LFIFO3 上溢出错误屏蔽设置
			0: tdm_lf3o_err错误屏蔽。
			1: tdm_lf3o_err 错误不屏蔽。
16	LF3UEM	R/W	LFIFO3 下溢出错误屏蔽设置
			0: tdm_lf3u_err 错误屏蔽。
			1: tdm_lf3u_err 错误不屏蔽。
15	RESERVED	RO	保留
14	RF2FIM	R/W	RFIFO2 阈值满中断屏蔽设置
			0: tdm_rf2f_intr 中断屏蔽。
			1:tdm_rf2f_intr 中断不屏蔽。

位段	名称	类型	说明
13	RF2OEM	R/W	RFIFO2 上溢出错误屏蔽设置
			0: tdm_rf2o_err 错误屏蔽。
			1:tdm_rf2o_err 错误不屏蔽。
12	RF2UEM	R/W	RFIFO2 下溢出错误屏蔽设置
			0: tdm_rf2u_err 错误屏蔽。
			1: tdm_rf2u_err 错误不屏蔽。
11	RESERVED	RO	保留
10	LF2FIM	R/W	LFIFO2 阈值满中断屏蔽设置
			0: tdm_lf2f_intr 中断屏蔽。
			1: tdm_lf2f_intr 中断不屏蔽。
9	LF20EM	R/W	LFIFO2 上溢出错误屏蔽设置
			0: tdm_lf2o_err错误屏蔽。
			1: tdm_lf2o_err 错误不屏蔽。
8	LF2UEM	R/W	LFIFO2 下溢出错误屏蔽设置
			0: tdm_lf2u_err 错误屏蔽。
			1: tdm_lf2u_err 错误不屏蔽。
7	RF1FIM	R/W	RFIFO1 阈值满中断屏蔽设置
			0: tdm_rf1f_intr 中断屏蔽。
			1: tdm_rf1f_intr 中断不屏蔽。
6	RF10EM	R/W	RFIFO1 上溢出错误屏蔽设置
			0: tdm_rf1o_err 错误屏蔽。
			1: tdm_rf1o_err 错误不屏蔽。
5	RF1UEM	R/W	RFIFO1 下溢出错误屏蔽设置
			0: tdm_rf1u_err 错误屏蔽。
			1: tdm_rf1u_err 错误不屏蔽。
4	LF1FIM	R/W	LFIFO1 阈值满中断屏蔽设置
			0: tdm_lf1f_intr 中断屏蔽。
			1: tdm_lf1f_intr 中断不屏蔽。
3	LF10EM	R/W	LFIFO1 上溢出错误屏蔽设置

位段	名称	类型	说明
			0: tdm_lf1o_err错误屏蔽。
			1: tdm_lf1o_err 错误不屏蔽。
2	LF1UEM	R/W	LFIFO1 下溢出错误屏蔽设置
			0: tdm_lf1u_err 错误屏蔽。
			1: tdm_lf1u_err 错误不屏蔽。
1	TDMWAEM	R/W	TDM 访问地址错误屏蔽设置
			0: tdm_waddr_err 错误屏蔽。
			1: tdm_waddr_err 错误不屏蔽。
0	TDMBIM	R/W	TDM busy flag 改变中断屏蔽设置
			0: tdm_busy_intr 中断屏蔽。
			1: tdm_busy_intr 中断不屏蔽。

4.3.2.13 TDM_ISR

● 寄存器名: TDM_ISR

● 偏移量: 0x30

位段	名称	类型	说明
31	RESERVED	RO	保留
30	RF4FIS	RO	RFIFO4 阈值满中断状态
			0: tdm_rf4f_intr 中断=0
			1: tdm_rf4f_intr 中断=1
29	RF4OES	RO	RFIFO4 上溢出错误状态
			0: tdm_rf4o_err 错误=0
			1: tdm_rf4o_err 错误=1
28	RF4UES	RO	RFIFO4 下出错误状态
			0: tdm_rf4u_err 错误=0
			1: tdm_rf4u_err 错误=1
27	RESERVED	RO	保留
26	LF4FIS	RO	LFIFO4 阈值满中断状态

位段	名称	类型	说明
			0: tdm_lf4f_intr 中断=0
			1: tdm_lf4f_intr 中断=1
25	LF40ES	RO	LFIFO4 上溢出错误状态
			0: tdm_lf4o_err 错误=0
			1: tdm_lf4o_err 错误=1
24	LF4UES	RO	LFIFO4 下溢出错误状态
			0: tdm_lf4u_err 错误=0
			1: tdm_lf4u_err 错误=1
23	RESERVED	RO	保留
22	RF3FIS	RO	RFIFO3 阈值满中断状态
			0: tdm_rf3f_intr 中断=0
			1: tdm_rf3f_intr 中断=1
21	RF3OES	RO	RFIFO3 上溢出错误状态
			0: tdm_rf3o_err 错误=0
			1: tdm_rf3o_err 错误=1
20	RF3UES	RO	RFIFO3 下溢出错误状态
			0: tdm_rf3u_err 错误=0
			1: tdm_rf3u_err 错误=1
19	RESERVED	RO	保留
18	LF3FIS	RO	LFIFO3 阈值满中断状态
			0: tdm_lf3f_intr 中断=0
			1: tdm_lf3f_intr 中断=1
17	LF30ES	RO	LFIFO3 上溢出错误状态
			0: tdm_lf3o_err错误=0
			1: tdm_lf3o_err 错误=1
16	LF3UES	RO	LFIFO3 下溢出错误状态
			0: tdm_lf3u_err 错误=0
			1: tdm_lf3u_err 错误=1
15	RESERVED	RO	保留

位段	名称	类型	说明
14	RF2FIS	RO	RFIFO2 阈值满中断状态
			0: tdm_rf2f_intr 中断=0
			1: tdm_rf2f_intr 中断=1
13	RF20ES	RO	RFIFO2 上溢出错误状态
			0: tdm_rf2o_err 错误=0
			1: tdm_rf2o_err 错误=1
12	RF2UES	RO	RFIFO2 下溢出错误状态
			0: tdm_rf2u_err 错误=0
			1: tdm_rf2u_err 错误=1
11	RESERVED	RO	保留
10	LF2FIS	RO	LFIFO2 阈值满中断状态
			0: tdm_lf2f_intr 中断=0
			1: tdm_lf2f_intr 中断=1
9	LF20ES	RO	LFIFO2 上溢出错误状态
			0: tdm_lf2o_err错误=0
			1: tdm_lf2o_err 错误=1
8	LF2UES	RO	LFIFO2 下溢出错误状态
			0: tdm_lf2u_err 错误=0
			1: tdm_lf2u_err 错误=1
7	RF1FIS	RO	RFIFO1 阈值满中断状态
			0: tdm_rf1f_intr 中断=0
			1: tdm_rf1f_intr 中断=1
6	RF10ES	RO	RFIFO1 上溢出错误状态
			0: tdm_rf1o_err 错误=0
			1: tdm_rf1o_err 错误=1
5	RF1UES	RO	RFIFO1 下溢出错误状态
			0: tdm_rf1u_err 错误=0
			1: tdm_rf1u_err 错误=1
4	LF1FIS	RO	LFIFO1 阈值满中断状态

位段	名称	类型	说明
			0: tdm_lf1f_intr 中断=0
			1: tdm_lf1f_intr 中断=1
3	LF10ES	RO	LFIFO1 上溢出错误状态
			0: tdm_lf1o_err错误=0
			1: tdm_lf1o_err 错误=1
2	LF1UES	RO	LFIFO1 下溢出错误状态
			0: tdm_lf1u_err 错误=0
			1: tdm_lf1u_err 错误=1
1	TDMWAES	RO	TDM 访问地址错误状态
			0: tdm_waddr_err 错误=0
			1: tdm_waddr_err 错误=1
0	TDMBIS	RO	TDM busy flag 改变中断状态
			0: tdm_busy_intr 中断=0
			1: tdm_busy_intr 中断=1

4.3.2.14 TDM_RISR

● 寄存器名: TDM_RISR

● 偏移量: 0x34

位段	名称	类型	说明
31	RESERVED	RO	保留
30	RRF4FIS	RO	RFIFO4 阈值满 RAW 中断状态
			0: tdm_rf4f_intr RAW 中断=0
			1: tdm_rf4f_intr RAW 中断=1
29	RRF4OES	RO	RFIFO4 上溢出 RAW 错误状态
			0: tdm_rf4o_err RAW 错误=0
			1: tdm_rf4o_err RAW 错误=1
28	RRF4UES	RO	RFIFO4 下出 RAW 错误状态
			0: tdm_rf4u_err RAW 错误=0

位段	名称	类型	说明
			1: tdm_rf4u_err RAW 错误=1
27	RESERVED	RO	保留
26	RLF4FIS	RO	LFIFO4 阈值满 RAW 中断状态
			0: tdm_lf4f_intr RAW 中断=0
			1: tdm_lf4f_intr RAW 中断=1
25	RLF40ES	RO	LFIFO4 上溢出 RAW 错误状态
			0: tdm_lf4o_err RAW 错误=0
			1: tdm_lf4o_err RAW 错误=1
24	RLF4UES	RO	LFIFO4 下溢出 RAW 错误状态
			0: tdm_lf4u_err RAW 错误=0
			1: tdm_lf4u_err RAW 错误=1
23	RESERVED	RO	保留
22	RRF3FIS	RO	RFIFO3 阈值满 RAW 中断状态
			0: tdm_rf3f_intr RAW 中断=0
			1: tdm_rf3f_intr RAW 中断=1
21	RRF3OES	RO	RFIFO3 上溢出 RAW 错误状态
			0: tdm_rf3o_err RAW 错误=0
			1: tdm_rf3o_err RAW 错误=1
20	RRF3UES	RO	RFIFO3 下溢出 RAW 错误状态
			0: tdm_rf3u_err RAW 错误=0
			1: tdm_rf3u_err RAW 错误=1
19	RESERVED	RO	保留
18	RLF3FIS	RO	LFIFO3 阈值满 RAW 中断状态
			0: tdm_lf3f_intr RAW 中断=0
			1: tdm_lf3f_intr RAW 中断=1
17	RLF3OES	RO	LFIFO3 上溢出 RAW 错误状态
			0: tdm_lf3o_err RAW 错误=0
			1: tdm_lf3o_err RAW 错误=1
16	RLF3UES	RO	LFIFO3 下溢出 RAW 错误状态

位段	名称	类型	说明
			0: tdm_lf3u_err RAW 错误=0
			1: tdm_lf3u_err RAW 错误=1
15	RESERVED	RO	保留
14	RRF2FIS	RO	RFIFO2 阈值满 RAW 中断状态
			0: tdm_rf2f_intr RAW 中断=0
			1: tdm_rf2f_intr RAW 中断=1
13	RRF2OES	RO	RFIFO2 上溢出 RAW 错误状态
			0: tdm_rf2o_err RAW 错误=0
			1: tdm_rf2o_err RAW 错误=1
12	RRF2UES	RO	RFIFO2 下溢出 RAW 错误状态
			0: tdm_rf2u_err RAW 错误=0
			1: tdm_rf2u_err RAW 错误=1
11	RESERVED	RO	保留
10	RLF2FIS	RO	LFIFO2 阈值满 RAW 中断状态
			0: tdm_lf2f_intr RAW 中断=0
			1: tdm_lf2f_intr RAW 中断=1
9	RLF2OES	RO	LFIFO2 上溢出 RAW 错误状态
			0: tdm_lf2o_err RAW 错误=0
			1: tdm_lf2o_err RAW 错误=1
8	RLF2UES	RO	LFIFO2 下溢出 RAW 错误状态
			0: tdm_lf2u_err RAW 错误=0
			1: tdm_lf2u_err RAW 错误=1
7	RRF1FIS	RO	RFIFO1 阈值满 RAW 中断状态
			0: tdm_rf1f_intr RAW 中断=0
			1: tdm_rf1f_intr RAW 中断=1
6	RRF1OES	RO	RFIFO1 上溢出 RAW 错误状态
			0: tdm_rf1o_err RAW 错误=0
			1: tdm_rf1o_err RAW 错误=1
5	RRF1UES	RO	RFIFO1 下溢出 RAW 错误状态

位段	名称	类型	说明
			0: tdm_rf1u_err RAW 错误=0
			1: tdm_rf1u_err RAW 错误=1
4	RLF1FIS	RO	LFIFO1 阈值满 RAW 中断状态
			0: tdm_lf1f_intr RAW 中断=0
			1: tdm_lf1f_intr 中断=1
3	RLF10ES	RO	LFIFO1 上溢出 RAW 错误状态
			0: tdm_lf1o_err RAW 错误=0
			1: tdm_lf1o_err RAW 错误=1
2	RLF1UES	RO	LFIFO1 下溢出 RAW 错误状态
			0: tdm_lf1u_err RAW 错误=0
			1: tdm_lf1u_err RAW 错误=1
1	RTDMWAES	RO	TDM 访问地址 RAW 错误状态
			0: tdm_waddr_err RAW 错误=0
			1: tdm_waddr_err RAW 错误=1
0	RTDMBIS	RO	TDM busy flag 改变 RAW 中断
			0: tdm_busy_intr RAW 中断=0
			1: tdm_busy_intr RAW 中断=1

4.3.2.15 TDM_ICR

● 寄存器名: TDM_ICR

● 偏移量: 0x38

位段	名称	类型	说明
31	RESERVED	WO	保留
30	RF4FIC	WO	写 1 清 RFIFO4 阈值满中断。
29	RF40EC	WO	写 1 清 RFIFO4 上溢出错误。
28	RF4UEC	WO	写 1 清 RFIFO4 下出错误。
27	RESERVED	WO	保留
26	LF4FIC	WO	写 1 清 LFIFO4 阈值满中断。

位段	名称	类型	说明
25	LF4OEC	WO	写 1 清 LFIFO4 上溢出错误。
24	LF4UEC	WO	写 1 清 LFIFO4 下溢出错误。
23	RESERVED	WO	保留
22	RF3FIC	WO	写 1 清 RFIFO 3 阈值满中断。
21	RF3OEC	WO	写 1 清 RFIFO3 上溢出错误。
20	RF3UEC	WO	写 1 清 RFIFO3 下溢出错误。
19	RESERVED	WO	保留
18	LF3FIC	WO	写 1 清 LFIFO3 阈值满中断。
17	LF3OEC	WO	写 1 清 LFIFO 3 上溢出错误。
16	LF3UEC	WO	写 1 清 LFIFO3 下溢出错误。
15	RESERVED	WO	保留
14	RF2FIC	WO	写 1 清 RFIFO2 阈值满中断。
13	RF2OEC	WO	写 1 清 RFIFO2 上溢出错误。
12	RF2UEC	WO	写 1 清 RFIFO2 下溢出错误。
11	RESERVED	WO	保留
10	LF2FIC	WO	写 1 清 LFIFO2 阈值满中断。
9	LF2OEC	WO	写 1 清 LFIFO2 上溢出错误。
8	LF2UEC	WO	写 1 清 LFIFO2 下溢出错误。
7	RF1FIC	WO	写 1 清 RFIFO1 阈值满中断。
6	RF10EC	WO	写 1 清 RFIFO1 上溢出错误。
5	RF1UEC	WO	写 1 清 RFIFO1 下溢出错误。
4	LF1FIC	WO	写 1 清 LFIFO1 阈值满中断。
3	LF10EC	wo	写 1 清 LFIFO1 上溢出错误。
2	LF1UES	WO	写 1 清 LFIFO1 下溢出错误。
1	TDMWAEC	WO	写 1 清 TDM 访问地址错误。
0	TDMBIC	wo	写 1 清 TDM busy flag 改变中断。

4.3.2.16 TDM_DMAEN

● 寄存器名: TDM_DMAEN

● 偏移量: 0x3C

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:1	RESERVED	RO	保留
0	DMAEN	RW	TDM DMA 握手信号使能
			0x0: 关闭
			0x1: 使能

4.3.2.17 TDM_DMADL

● 寄存器名: TDM_DMADL

● 偏移量: 0x40

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:3	RESERVED	RO	保留
2:0	DMADL	RW	PDM 所有 FIFO DMA 阈值配置寄存器
			当 FIFO 中数据大于或等于阈值时,将产生阈值满中断。配置范围 1-7。配置为 0 时,阈值为 8。默认值 0。

4.3.2.18 LDR1

● 寄存器名: LDR1● 偏移量: 0x44

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	LDR1	RO	L FIFO 1 数据读寄存器

4.3.2.19 RDR1

● 寄存器名: RDR1● 偏移量: 0x48

位段	名称	类型	说明
31:0	RDR1	RO	R FIFO 1 数据读寄存器

4.3.2.20 LDR2

● 寄存器名: LDR2● 偏移量: 0x4C

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	LDR2	RO	L FIFO 2 数据读寄存器

4.3.2.21 RDR2

● 寄存器名: RDR2● 偏移量: 0x50

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	RDR2	RO	R FIFO 2 数据读寄存器

4.3.2.22 LDR3

● 寄存器名: LDR3● 偏移量: 0x54

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	LDR3	RO	L FIFO 3 数据读寄存器

4.3.2.23 RDR3

● 寄存器名: RDR3● 偏移量: 0x58

位段	名称	类型	说明
31:0	RDR3	RO	R FIFO 3 数据读寄存器

4.3.2.24 LDR4

● 寄存器名: LDR4● 偏移量: 0x5C

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	LDR4	RO	L FIFO 4 数据读寄存器

4.3.2.25 RDR4

● 寄存器名: RDR4● 偏移量: 0x60

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	RDR4	RO	R FIFO 4 数据读寄存器

4.3.2.26 DIV0_LEVEL

● 寄存器名: DIVO_LEVEL

● 偏移量: 0x64

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:12	RESERVED	WO	保留
11:0	DIV0	RW	BCLK 分频器配置,0 和 1 不分频。

说明

m_bclk = src_clk/DIV0 = Fs*(bits*channels+all_offsets)

bits = 16, 24, 32

channels = 2, 4, 6, 8

 $all_offsets = OFFSETL1 + OFFSETL2 + OFFSETL3 + OFFSETL4 + OFFSETR1 + OFFSETR2 + OFFSETR3 + OFFSETR4 \\ m_wclk = fs$

5 VAD

5.1 模块特性

- 工作频率 mclk 为 2.56MHz
- APB 总线, pclk: 大于 15MHz
- 复位: preset_n、mrst_n, 低有效
- PDM2PCM 接口:
 - 支持 2 线 PDM 主机接收功能: pdm clk/sdin
 - 工作频率 mclk 为 2.56MHz
 - 支持单声道和双声道
 - 标准模式和低功耗模式
 - pdm_clk 输出为 640kHz (低功耗模式) 或者 1.28MHz (标准模式)
 - 可配置 CIC 滤波器
 - CIC 降采样倍数: 10 倍或 20 倍
 - 固定系数的 HBF(半带滤波器)、LPF(低通滤波器)和 IIR(高通滤波器)
 - 输出音频数据 Fs 为 16kHz, 位宽 16bits 的 PCM 音频数据, 增益可配置
 - 支持 Low-power 唤醒后,自动进入标准模式

VAD:

- PCM 格式数据, 16KHz 采样, 16 位/32 位(单声道/双声道)
- 一个 ping-pong 缓存(32x320 SRAM),确保 memory compiler 可以生成一个大小适中的
 SRAM
- 三口 SRAM 仲裁,DMA 路径、PCM 路径和 VAD 路径,PCM 路径有最高优先级。当 PCM 访问 SRAM 的时候别的路径需要等待
- 低通滤波器 (4KHz)
- VAD 算法
 - 短时能量 (STE), 可配双门限
 - 过零率 (ZCR), 可配双门限
- 中断
 - Vad_trigger: STE 和 ZCR, 三帧起来两帧, vad trigger 拉起
 - Fifo intr: FIFO 相关中断和 data overflow err
- DMA 握手信号(req & ack):当存在 FIFO 里面的数据达到门限,dma_req 将会被拉起
- 2个 FIFO 将左/右声道数据分开存储,32位宽和8深度:

- 当带 WAIT_BUS 功能时: 当 vad_trig 拉起,将 bus_ready 信号写 1 后,SRAM 里面的数据将会存在 FIFO 中。(需要增加 define WAIT_BUS)
- 不带 WAIT_BUS 功能时: 当 vad_trig 拉起, SRAM 里面的数据将会自动存在 FIFO 中。

● I2S 接口:

- 支持 3 线 I2S 接收功能
- 支持单声道和双声道
- 仅支持 slave 模式
- 支持 I2S、左对齐、右对齐、PCM 格式
- 支持 16、24、32、8 位音频数据接收, 转为 16bits 数据输出

5.2 寄存器描述

5.2.1 寄存器内存映射

图表 5-1 VAD 寄存器内存映射

寄存器名	偏移量	复位值	说明	章节/页码
VAD_CTRL	0x00	0x0000_0000	VAD 控制寄存器	5.2.2.1/103
ZCR_TH_CTRL	0x04	0x0000_461E	过零率门限设置寄存器	5.2.2.2/104
STE_HTH_CTRL	0x08	0x0000_4844	短时能量高门限设置寄存器	5.2.2.3/104
STE_LTH_CTRL	0x0C	0x0000_036B	短时能量低门限设置寄存器	5.2.2.4/105
VAD_INTR_CLR	0x10	0x0000_0000	vad 中断清除寄存器	5.2.2.5/105
VAD_INTR_FLAG	0x14	0x0000_0000	vad 中断标志位	5.2.2.6/105
VAD_INTR_MASK	0x18	0x0000_0001	vad 中断使能寄存器	5.2.2.7/105
DAI_EN_REG	0x1C	0x0000_0000	DAI 使能寄存器	5.2.2.8/106
DAI_CTL_REG	0x20	0x0440_0000	DAI 控制寄存器	5.2.2.9/106
FIFO_CNT	0x24	0x0000_0000	FIFO 内部数据量寄存器	5.2.2.10/108
FIFO_TH_CTRL	0x28	0x0000_0007	FIFO 门限控制寄存器	5.2.2.11/109
RESERVED	0x2C	-	-	
FIFO_INTR_CLR	0x30	0x0000_0000	FIFO 中断清除寄存器	5.2.2.12/109
FIFO_INTR_FLAG	0x34	0x0000_0008	FIFO 中断标志位寄存器	5.2.2.13/110
FIFO_INTR_MASK	0x38	0x0000_0007	FIFO 中断使能寄存器	5.2.2.14/110

寄存器名	偏移量	复位值	说明	章节/页码
CIC_L_ST_OFFSET	0x3c	0x00184868	左声道 CIC 滤波器标准模式偏移量	5.2.2.15/111
CIC_L_LP_OFFSET	0x40	0x0000c256	左声道 CIC 滤波器低功耗模式偏移量	5.2.2.16/112
CIC_R_ST_OFFSET	0x44	0x00184868	右声道 CIC 滤波器标准模式偏移量	5.2.2.17/113
CIC_R_LP_OFFSET	0x48	0x0000c256	右声道 CIC 滤波器低功耗模式偏移量	5.2.2.18/113
FIFO_L_READ	0x4C	0x00000000	左声道数据 FIFO 读	5.2.2.19/113
FIFO_R_READ	0x50	0x00000000	右声道数据 FIFO 读	5.2.2.20/114

5.2.2 寄存器和字段描述

5.2.2.1 VAD_CTRL_REG

● 寄存器名: VAD_CTRL_REG

● 偏移量: 0x00

位段	名称	类型	说明
31:3	RESERVED	RO	保留
2	bus_ready	R/W	总线 ready 信号
			0: 总线非 ready
			1:总线 ready
			需要将这一位配置成 1,并且 data_trans_en=1,才会开始
			自动搬运 SRAM 数据到 FIFO 中。
			注:
			(1)该功能位为可选功能,需要加 define WAIT_BUS。
			(2) 在没有该功能的情况下此位寄存器为保留位,
			READONLY,默认值 0, data_trans_en=1 后, FIFO 会在
			很短的时间内开始自动搬运数据,第一次 FIFO 满中断约在 14~15us 后发出。
			14~15US 归及证。
1	data_trans_en	R/W	音频数据搬运使能
			0: 禁止
			1: 使能
			当 vad_trig_raw 拉起,这一位会自动变成 1,FIFO 将
			SRAM 里面的数据存入 FIFO(WAIT_BUS 模式下还需要同

位段	名称	类型	说明
			时等待 bus_ready=1),当软件把这位写成 0,FIFO 将停止读取,FIFO 里面的读写指针都会清零。
0	vad_en	R/W	VAD 使能
			0: 禁止
			1:使能,当 raw_vad_trig 拉起,vad_en 将会变成 0。

5.2.2.2 ZCR_TH_CTRL_REG

● 寄存器名: ZCR_TH_CTRL_REG

● 偏移量: 0x04

● 复位值: 0x0000_461E

位段	名称	类型	说明
31:16	RESERVED	RO	保留
15:8	zcr_hth	R/W	ZCR 高门限设置
7:0	zcr_lth	R/W	ZCR 低门限设置

说明

● 一帧数据的 ZCR > zcr_hth 并且 ste_lth < STE < ste_hth 时,会满足 ZCR 触发 VAD_trigger 的条件。

● 一帧数据的 ZCR < zcr_lth 并且 STE > ste_hth 时,会满足 STE 触发 VAD_trigger 的条件。

5.2.2.3 STE_HTH_CTRL_REG

● 寄存器名: STE_HTH_CTRL_REG

● 偏移量: 0x08

位段	名称	类型	说明
31:16	Reserved	RO	保留
15:0	ste_hth	RW	ste 高门限设置 可随意配置,推荐三档。数值越小,检测能力越强,越小的声音就可以唤醒。 2580:检测能力较强,可侦探较小声音。 4844:检测能力中等,适用于平时场景。 86C4:检测能力较弱,需要比较大的声音唤醒。

5.2.2.4 STE_LTH_CTRL_REG

● 寄存器名: STE_LTH_CTRL_REG

● 偏移量: 0x0C

● 复位值: 0x0000 036B

位段	名称	类型	说明
31:16	Reserved	RO	保留
15:0	ste_lth	RW	ste 低门限设置

5.2.2.5 VAD_INTR_CLR_REG

● 寄存器名: VAD_INTR_CLR_REG

● 偏移量: 0x10

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:1	Reserved	RO	保留
0	vad_clr	RW	一个时钟周期信号,清除 vad_trig

5.2.2.6 VAD_INTR_FLAG_REG

● 寄存器名: VAD_INTR_FLAG_REG

● 偏移量: 0x14

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:1	Reserved	RO	保留
0	vad_intr_flag	RO	0: vad_trig_raw 没有拉起。 1: vad_trig_raw 拉起。 这一位和 vad_intr_unmask 信号无关。

5.2.2.7 VAD_INTR_MASK_REG

● 寄存器名: VAD_INTR_MASK_REG

● 偏移量: 0x18

位段	名称	类型	说明
31:1	Reserved	RO	保留
0	vad_intr_unmask	RW	0: vad 中断被屏蔽。
			1: vad 中断没有被屏蔽。

5.2.2.8 AI_EN_REG

● 寄存器名: DAI_EN_REG

● 偏移量: 0x1C

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:1	Reserved	RO	保留
0	dai_en	RW	DAI 使能信号
			0: 关闭 (默认)
			1: 打开

5.2.2.9 DAI_CTRL_REG

● 寄存器名: DAI_CTRL_REG

● 偏移量: 0x20

● 复位值: 0x0440_0000

位段	名称	类型	说明
31:27	Reserved	RO	保留
26:24	st_gain	RW	pdm2pcm 标准模式增益设置
			3'd0: 0dB
			3'd1: 6dB
			3'd2: 12dB
			3'd3: 18dB
			3'd4: 24dB
			3'd5: 30dB
			3'd6: 36dB
			3'd7: 42dB

位段	名称	类型	说明
23	Reserved	RO	保留
22:20	lp_gain	RW	pdm2pcm 低功耗模式增益设置
			3'd0: 0dB
			3'd1: 6dB
			3'd2: 12dB
			3'd3: 18dB
			3'd4: 24dB
			3'd5: 30dB
			3'd6: 36dB
			3'd7: 42dB
19:17	Reserved	RO	保留
16	pdm_mode	RW	PDM2PCM 模式
			0: 低功耗模式 (DIV0 4 分频 , CIC 抽取 10 倍)
			1:标准模式 (DIV0 2 分频, CIC 抽取 20 倍)
			Vad_trig_raw=1 时,pdm_mode 会自动切为 1。
15:14	i2s_wdsel	RW	I2S 输入数据位宽选择
			2'b00: 16bits
			2'b01: 24bits
			2'b10: 32bits
			2'b11: 8bits
13:12	i2s_modesel	RW	I2S 模式格式选择
			2′b00:i2s 模式
			2'b01: 右对齐模式
			2′b10:左对齐模式
			2'b11: PCM 模式
11:9	Reserved	RO	保留
8	ch_sel	RW	单声道选择信号
			0:左声道。PDM模式选择 pdm_clk 高电平数据,I2S模式选择 ws 低电平数据。STE&ZCR模块将根据左声道数据进行检测。

位段	名称	类型	说明
			1:右声道。PDM 模式选择 pdm_clk 低电平数据,I2S 模式 选择 ws 高电平数据。STE&ZCR 模块将根据右声道进行检 测。
7:5	Reserved	RO	保留
4	mono_en	RW	单声道模式使能信号,为 0 时为双声道模式。
3:1	Reserved	RO	保留
0	funcmode	RW	功能选择信号 0: PDM 接口(默认) 1: I2S 接口

输入数据支持 8/16/24/32bits,输出数据统一为 16bits,数据截取和补 0,如图表 5-2 所示:

图表 5-2 I2S 数据截取方式

5.2.2.10 FIFO_CNT_REG

● 寄存器名: FIFO_CNT_REG

● 偏移量: 0x24

位段	名称	类型	说明
31:8	Reserved	RO	保留
7:4	fifo_l_cnt	RO	左声道 FIFO cnt 状态寄存器。表示 FIFO 里面有多少个数。
			0: 0
			1: 1
			7: 7
			8: 8
3:0	fifo_r_cnt	RO	右声道 FIFO cnt 状态寄存器。表示 FIFO 里面有多少个数。
			0: 0
			1: 1
			7: 7
			8: 8

5.2.2.11 FIFO_TH_CTRL_REG

● 寄存器名: FIFO_TH_CTRL_REG

● 偏移量: 0x28

● 复位值: 0x0000_0007

位段	名称	类型	说明
31:3	Reserved	RO	保留
2:0	fifo_th	RW	FIFO DMA 握手请求门限设置
			0: 1
			1: 2
			7: 8

5.2.2.12 FIFO_INTR_REG

● 寄存器名: FIFO_INTR_REG

● 偏移量: 0x30

位段	名称	类型	说明
31:8	Reserved	RO	保留
7	fifo_l_empty_clr	RW	一个时钟周期信号,清除 fifo_l_empty
6	fifo_l_full_clr	RW	一个时钟周期信号,清除 fifo_l_full
5	Reserved	RO	保留
4	fifo_l_empty_err_clr	RW	一个时钟周期信号,清除 fifo_l empty_err
3	fifo_r_empty_clr	RW	一个时钟周期信号,清除 fifo_r_empty
2	fifo_r_full_clr	RW	一个时钟周期信号,清除 fifo_r_full
1	data_overflow_err_clr	RW	一个时钟周期信号,清除 data_overflow_err
0	fifo_r_empty_err_clr	RW	一个时钟周期信号,清除 fifo_r_empty_err

5.2.2.13 FIFO_INTR_FLAG_REG

● 寄存器名: FIFO_INTR_FLAG_REG

● 偏移量: 0x34

● 复位值: 0x0000_0008

位段	名称	类型	说明
31:8	Reserved	RO	保留
7	fifo_l_empty	RO	左声道 FIFO 空 raw 信号,写 FIFO_CLR[3]=1 清除。
6	fifo_l_full	RO	左声道 FIFO 满 raw 信号,写 FIFO_CLR[2]=1 清除。
5	Reserved	RO	保留
4	fifo_l_empty_err	RO	左声道 FIFO 空读错误 raw 信号,写 FIFO_CLR[0]=1 清除。
3	fifo_r_empty	RO	右声道 FIFO 空 raw 信号,写 FIFO_CLR[3]=1 清除。
2	fifo_r_full	RO	右声道 FIFO 满 raw 信号,写 FIFO_CLR[2]=1 清除。
1	data_overflow_err	RO	数据溢出错误 raw 信号,写 FIFO_CLR[1]=1 清除。
0	fifo_r_empty_err	RO	FIFO 空读错误 raw 信号,写 FIFO_CLR[0]=1 清除。

5.2.2.14 FIFO_INTR_MASK_REG

● 寄存器名: FIFO_INTR_MASK_REG

● 偏移量: 0x38

● 复位值: 0x0000_0007

位段	名称	类型	说明
31:8	Reserved	RO	保留
7	fifo_l_empty_unmask	RW	1: 中断正常工作。
			0:中断屏蔽。
6	fifo_l_full_unmask	RW	1: 中断正常工作。
			0: 中断屏蔽。
5	Reserved	RO	保留
4	fifo_l_empty_err_unmask	RW	1: 中断正常工作。
			0: 中断屏蔽。
3	fifo_r_empty_unmask	RW	1: 中断正常工作。
			0: 中断屏蔽。
2	fifo_r_full_unmask	RW	1: 中断正常工作。
			0: 中断屏蔽。
1	data_overflow_err_unmask	RW	1: 中断正常工作。
			0: 中断屏蔽。
0	fifo_r_empty_err_unmask	RW	1: 中断正常工作。
			0: 中断屏蔽。

5.2.2.15 CIC_L_ST_OFFSET_REG

● 寄存器名: CIC_L_ST_OFFSET_REG

● 偏移量: 0x3C

● 复位值: 0x0018_4868

位段	名称	类型	说明
31:23	Reserved	RO	保留
22:0	l_st_offset	RW	左声道 CIC 滤波器标准模式偏移量,推荐使用默认值。DMIC 直流偏置过大的情况下,该信号需要根据 DMIC 的特性进行 校准。

偏移量调整参考:

在安静情况下滤波后的 16k 采样率的 PCM 数据应该接近 0。

正弦信号滤波后的 PCM 数据应该中心点为 0。

如图表 5-3, 正确的音频的波形中轴线为 0, 当波形抵达 1 时, PCM 数据对应为 0x7FFF, 波形抵达-1 时, PCM 数据对应为 0x8000。

图表 5-3 正确的 PCM 数据

如果 PCM 数据全部为 0x7FFF,需要适当调大偏移量。如图表 5-4,音频波形中轴大于 0 (见图中红色虚线),需要适当将偏移量调大。

图表 5-4 偏移大于 0 的 PCM 数据

如果 PCM 数据全部为 0x8000,需要适当调小偏移量。如图表 5-5,音频波形中轴小于 0 (见图中红色虚线),需要适当将偏移量调小。

图表 5-5 偏移小于 0 的 PCM 数据

5.2.2.16 CIC L LP OFFSET REG

● 寄存器名: CIC_L_LP_OFFSET_REG

● 偏移量: 0x40

位段	名称	类型	说明
31:16	Reserved	RO	保留
15:0	l_lp_offset	RW	左声道 CIC滤波器低功耗模式偏移量,推荐使用默认值。DMIC 直流偏置过大的情况下,该信号需要根据 DMIC 的特性进行 校准。

5.2.2.17 CIC_R_ST_OFFSET_REG

● 寄存器名: CIC_R_ST_OFFSET_REG

● 偏移量: 0x44

● 复位值: 0x0018_4868

位段	名称	类型	说明
31:23	Reserved	RO	保留
22:0	r_st_offset	RW	右声道 CIC 滤波器标准模式偏移量,推荐使用默认值。DMIC 直流偏置过大的情况下,该信号需要根据 DMIC 的特性进行 校准。

5.2.2.18 CIC_R_LP_OFFSET_REG

● 寄存器名: CIC_R_LP_OFFSET_REG

● 偏移量: 0x48

● 复位值: 0x0000_C256

位段	名称	类型	说明
31:16	Reserved	RO	保留
15:0	r_lp_offset	RW	右声道 CIC滤波器低功耗模式偏移量,推荐使用默认值。DMIC 直流偏置过大的情况下,该信号需要根据 DMIC 的特性进行 校准。

5.2.2.19 FIFO_L_READ

● 寄存器名: FIFO_L_READ

● 偏移量: 0x4C

位段	名称	类型	说明
31:0	fifo_read	RO	FIFO 读左声道数据寄存器。用来获取 VAD 中的左声道数据。 两个 16bit 数据拼接后存入 FIFO。 FIFO_L 31 0 D1_left D0_left D3_left D2_left D5_left D4_left ← 16bits + 16bits → 16bits

5.2.2.20 FIFO_R_READ

● 寄存器名: FIFO_R_READ

● 偏移量: 0x50

位段	名称	类型	说明
31:0	fifo_read	RO	FIFO 读右声道数据寄存器。用来获取 VAD 中的右声道数据。 两个 16bit 数据拼接后存入 FIFO。 FIFO_R 31 0 D1_right D0_right D3_right D2_right D5_right D4_right ←16bits ★ 16bits →

6 SPDIF

6.1 模块特性

- 支持 IEC-60958 协议 PDIF-OUT 和 SPDIF-IN。
- 支持双工。
- 支持 32kHz/44.1kHz/48kHz/88.2kHz/96kHz/192kHz 采样率。
- SPDIF-OUT 支持 16/20/24-bits 位宽数据,单/双声道,偶校验,192 位用户信息数据,32 位通道 状态数据。
- SPDIF-IN 支持 valid 位,Preamble bit 校验,偶校验,192 位用户信息数据,32 位通道状态数据和非连续传输。
- 2个32bits,深度为16的FIFO,阈值可配。
- DMA 握手信号
- ISPDIF 模块控制寄存器描述及 Memory 地址空间映射

6.2 工作方式

- 1. 系统配置:
 - a) 配置 PLL frac 频率, 默认 49.152MHz。
 - b) 配置 PIN MUX。
 - c) 打开 SPDIF CG。
- 2. 配置 SPDIF_EN_REG。
- 3. 配置 TX 寄存器: TX CTL REG、TX CS * REG、TX USER * REG。
- 4. 配置 RX 寄存器: RX_CTL_REG。
- 5. 配置 FIFO 相关寄存器: TX_FIFO_TH、RX_FIFO_TH。
- 6. 配置中断相关寄存器: SPDIF_IMR、SPDIF_ICR。
- 7. 配置 DMA 握手信号相关寄存器: TX DMA EN、TX DMA TH、RX DMA EN、RX DMA TH。
- 8. 使能 SPDIF, 配置 TX_EN_REG、RX_EN_REG 为 0x1, 开始工作。

6.3 寄存器描述

6.3.1 寄存器内存映射

图表 6-1 TDM 寄存器内存映射

寄存器名	偏移量	复位值	说明	章节/页码
SPDIF_EN_REG	0x00	0x00000000	SPDIF 使能寄存器	6.3.2.1/118
TX_EN_REG	0x04	0x00000000	SPDIF_OUT 使能寄存器	6.3.2.2/118
TX_CTL_REG	0x08	0x00000000	SPDIF_OUT 控制寄存器	6.3.2.3/118
TX_CS_A_REG	0x0C	0x01000000	SPDIF_OUT 通道 A 通道状态信息寄存器	6.3.2.4/120
TX_USER_A0_REG	0x10	0x00000000	SPDIF_OUT 通道 A 用户数据 bit[31:0]	6.3.2.5/121
TX_USER_A1_REG	0x14	0x00000000	SPDIF_OUT 通道 A 用户数据 bit[63:32]	6.3.2.6/121
TX_USER_A2_REG	0x18	0x00000000	SPDIF_OUT 通道 A 用户数据 bit[95:64]	6.3.2.7/122
TX_USER_A3_REG	0x1C	0x00000000	SPDIF_OUT 通道 A 用户数据 bit[127:96]	6.3.2.8/122
TX_USER_A4_REG	0x20	0x00000000	SPDIF_OUT 通道 A 用户数据 bit[159:128]	6.3.2.9/122
TX_USER_A5_REG	0x24	0x00000000	SPDIF_OUT 通道 A 用户数据 bit[191:160]	6.3.2.10/122
TX_FIFO_DR	0x28	0x00000000	SPDIF_OUT FIFO 写数据寄存器	6.3.2.11/123
TX_FIFO_TH	0x2C	0x00000008	SPDIF_OUT FIFO 阈值配置寄存器	6.3.2.12/123
TX_FIFO_DL	0x30	0x00000000	SPDIF_OUT FIFO 数据数量状态寄存器	6.3.2.13/123
TX_DMA_EN	0x34	0x00000000	SPDIF_OUT DMA 握手信号使能寄存器	6.3.2.14/123
TX_DMA_TH	0x38	0x00000008	SPDIF_OUT DMA 握手信号阈值配置寄存器	6.3.2.15/124
SPDIF_SR	0x3C	0x00000006	SPDIF 状态寄存器	6.3.2.16/124
SPDIF_IMR	0x40	0x00003770	SPDIF 中断&错误屏蔽配置寄存器	6.3.2.17/125
SPDIF_ISR	0x44	0x00000000	SPDIF 中断&错误状态寄存器	6.3.2.18/127
SPDIF_RISR	0x48	0x00000000	SPDIF RAW 中断&错误状态寄存器	6.3.2.19/128
SPDIF_ICR	0x4C	0x00000000	SPDIF 清中断&错误寄存器	6.3.2.20/130

寄存器名	偏移量	复位值	说明	章节/页码
RX_EN_REG	0x50	0x00000000	SPDIF_IN 使能寄存器	6.3.2.21/130
RX_CTL_REG	0x54	0x00000000	SPDIF_IN 控制寄存器	6.3.2.22/131
RX_CS_A_REG	0x58	0x00000000	SPDIF_IN 通道 A 通道状态信息寄存器	6.3.2.23/131
RX_USER_A0_REG	0x5C	0x00000000	SPDIF_IN 通道 A 用户数据 bit[31:0]	6.3.2.24/132
RX_USER_A1_REG	0x60	0x00000000	SPDIF_IN 通道 A 用户数据 bit[63:32]	6.3.2.25/132
RX_USER_A2_REG	0x64	0x00000000	SPDIF_IN 通道 A 用户数据 bit[95:64]	6.3.2.26/132
RX_USER_A3_REG	0x68	0x00000000	SPDIF_IN 通道 A 用户数据 bit[127:96]	6.3.2.27/132
RX_USER_A4_REG	0x6C	0x00000000	SPDIF_IN 通道 A 用户数据 bit[159:128]	6.3.2.28/133
RX_USER_A5_REG	0x70	0x00000000	SPDIF_IN 通道 A 用户数据 bit[191:160]	6.3.2.29/133
RX_FIFO_DR	0x74	0x00000000	SPDIF_IN FIFO 数据读寄存器	6.3.2.30/133
RX_FIFO_TH	0x78	0x00000008	SPDIF_IN FIFO 阈值配置寄存器	6.3.2.31/133
RX_FIFO_DL	0x7C	0x00000000	SPDIF_IN FIFO 数据数量状态寄存器	6.3.2.32/134
RX_DMA_EN	0x80	0x00000000	SPDIF_IN DMA 握手信号使能寄存器	6.3.2.33/134
RX_DMA_TH	0x84	0x00000000	SPDIF_IN DMA 握手信号 FIFO 阈值寄存器	6.3.2.34/134
TX_CS_B_REG	0x88	0x01000000	SPDIF_OUT 通道 B 通道状态信息寄存器	6.3.2.35/135
TX_USER_B0_REG	0x8C	0x00000000	SPDIF_OUT 通道 B 用户数据 bit[31:0]	6.3.2.36/136
TX_USER_B1_REG	0x90	0x00000000	SPDIF_OUT 通道 B 用户数据 bit[63:32]	6.3.2.37/136
TX_USER_B2_REG	0x94	0x00000000	SPDIF_OUT 通道 B 用户数据 bit[95:64]	6.3.2.38/136
TX_USER_B3_REG	0x98	0x00000000	SPDIF_OUT 通道 B 用户数据 bit[127:96]	6.3.2.39/136
TX_USER_B4_REG	0x9C	0x00000000	SPDIF_OUT 通道 B 用户数据 bit[159:128]	6.3.2.40/137
TX_USER_B5_REG	0xa0	0x00000000	SPDIF_OUT 通道 B 用户数据 bit[191:160]	6.3.2.41/137
RX_CS_B_REG	0xa4	0x00000000	SPDIF_IN 通道 B 通道状态信息寄存器	6.3.2.42/137
RX_USER_B0_REG	0xa8	0x00000000	SPDIF_IN 通道 B 用户数据 bit[31:0]	6.3.2.43/137
RX_USER_B1_REG	0xaC	0x00000000	SPDIF_IN 通道 B 用户数据 bit[63:32]	6.3.2.44/138

寄存器名	偏移量	复位值	说明	章节/页码
RX_USER_B2_REG	0xb0	0x00000000	SPDIF_IN 通道 B 用户数据 bit[95:64]	6.3.2.45/138
RX_USER_B3_REG	0xb4	0x00000000	SPDIF_IN 通道 B 用户数据 bit[127:96]	6.3.2.46/138
RX_USER_B4_REG	0xb8	0x00000000	SPDIF_IN 通道 B 用户数据 bit[159:128]	6.3.2.47/138
RX_USER_B5_REG	0xbC	0x00000000	SPDIF_IN 通道 B 用户数据 bit[191:160]	6.3.2.48/139

6.3.2 寄存器和字段描述

6.3.2.1 SPDIF_EN_REG

● 寄存器名: SPDIF_EN_REG

● 偏移量: 0x00

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:1	RESERVED	RO	保留
0	SPDIFEN	WO	SPDIF 使能信号
			0x0: 关闭
			0x1: 打开

6.3.2.2 TX_EN_REG

● 寄存器名: TX_EN_REG

● 偏移量: 0x04

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:1	RESERVED	RO	保留
0	TXEN	WO	SPDIF-OUT 使能信号
			0x0: 关闭
			0x1: 打开

6.3.2.3 TX_CTL_REG

● 寄存器名: TX_CTL_REG

● 偏移量: 0x08

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:16	Reserved	RO	保留
15:9	TX_DIV	R/W	SPDIF-OUT 内分频器配置,将 spdif_source_clk 分频产生 spdif_tx_clk。 分频值 = (TX_DIV + 1)*2
8	TX_DIV_BYPASS	R/W	SPDIF-OUT 分频器 bypass 信号 0x0: bypass 0x1: 使用分频器
7:5	Reserved	RO	保留
4	TX_CH_SEL	R/W	SPDIF-OUT 声道选择 0x0: 双声道, valid bit=0 0x1: 单声道, 第 2 个 sub-frame 的 valid bit=1
3:2	Reserved	RO	保留
1:0	TX_DATAMODE	R/W	SPDIF-OUT 数据位宽选择 0x0: 24-bit 0x1: 20-bit 0x2: 16-bit 0x3: 2个16-bit拼接

说明

不同数据位宽格式:

6.3.2.4 TX_CS_A_REG

● 寄存器名: TX_CS_A_REG

● 偏移量: 0x0C

位段	名称	类型	说明
31:30	RESERVED	RO	保留
29:28	T_CLK_ACC	RW	SPDIF-OUT 时钟精度,参考 IEC60958
27:24	T_FS_SEL	RW	SPDIF-OUT 采样率
			0011: 32kHz
			0000: 44.1kHz
			0010: 48kHz
			1000: 88.2kHz
			1010: 96kHz
			1110: 192kHz
			0001:未指示(默认)
			其它: 保留

位段	名称	类型	说明
23:20	T_CH_NUM	RW	SPDIF-OUT 通道数量,参考 IEC60958
19:16	T_SRC_NUM	RW	SPDIF-OUT 源数量,参考 IEC60958
15:8	T_CC_SEL	RW	SPDIF-OUT 类型码,参考 IEC60958
7:6	T_MODE	RW	SPDIF-OUT 模式,参考 IEC60958
5:4	RESERVED	RO	保留
3	T_EMP_MODE	RW	SPDIF-OUT Emphasis 模式
			0: 非 pre-emphasis
			1: pre-emphasis
2	T_COPY	RW	SPDIF-OUT 版权
			0: 禁止
			1: 版权许可
1	T_AUIDO_EN	RW	SPDIF-OUT 信号类型
			0: 非音频
			1: 音频
0	T_PRO_EN	RW	SPDIF-OUT 信号格式
			0: consumer
			1: professional

6.3.2.5 TX_USER_A0_REG

● 寄存器名: TX_USER_A0_REG

● 偏移量: 0x10

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	T_USER_A0_DATA	RW	SPDIF_OUT 通道 A 用户数据 bit[31:0]

6.3.2.6 TX_USER_A1_REG

● 寄存器名: TX_USER_A1_REG

● 偏移量: 0x14

位段	名称	类型	说明
31:0	T_USER_A1_DATA	RW	SPDIF_OUT 通道 A 用户数据 bit[63:32]

6.3.2.7 TX_USER_A2_REG

● 寄存器名: TX_USER_A2_REG

● 偏移量: 0x18

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	T_USER_A2_DATA	RW	SPDIF_OUT 通道 A 用户数据 bit [95:64]

6.3.2.8 TX_USER_A3_REG

● 寄存器名: TX_USER_A3_REG

● 偏移量: 0x1C

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	T_USER_A3_DATA	RW	SPDIF_OUT 通道 A 用户数据 bit[127:96]

6.3.2.9 TX_USER_A4_REG

● 寄存器名: TX_USER_A4_REG

● 偏移量: 0x20

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	T_USER_A4_DATA	RW	SPDIF_OUT 通道 A 用户数据 bit[159:128]

6.3.2.10 TX_USER_A5_REG

● 寄存器名: TX_USER_A5_REG

● 偏移量: 0x24

位段	名称	类型	说明
31:0	T_USER_A0_DATA	RW	SPDIF_OUT 通道 A 用户数据 bit[191:160]

6.3.2.11 TX_FIFO_DR

● 寄存器名: TX_FIFO_DR

● 偏移量: 0x28

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	TF_D	RW	SPDIF_OUT FIFO 写数据寄存器,只有在 SPDIFEN=1 时才能写入。

6.3.2.12 TX_FIFO_TH

● 寄存器名: TX_FIFO_TH

● 偏移量: 0x2C

● 复位值: 0x0000_0008

位段	名称	类型	说明
31:4	RESERVED	RO	保留
3:0	TF_TH	R/W	TX FIFO 阈值
			可以配置为 0-15,默认值 8。

6.3.2.13 TX_FIFO_DL

● 寄存器名: TX_FIFO_DL

● 偏移量: 0x30

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:5	RESERVED	RO	保留
4:0	TF_DL	RO	TX FIFO 当前数据数量状态

6.3.2.14 TX_DMA_EN

● 寄存器名: TX_DMA_EN

● 偏移量: 0x34

位段	名称	类型	说明
31:1	RESERVED	RO	保留
0	TDMA_EN	RW	SPDIF OUT DMA 握手信号使能
			0x0: 关闭
			0x1: 使能

6.3.2.15 TX_DMA_TH

● 寄存器名: TX_DMA_TH

● 偏移量: 0x38

● 复位值: 0x0000_0008

位段	名称	类型	说明
31:4	RESERVED	RO	保留
3:0	TDMA_TH	RW	PDM 所有 FIFO DMA 阈值配置寄存器 当 FIFO 中数据大于或等于阈值时,将产生阈值满中断。配置 范围 0-15,默认值 8。

6.3.2.16 SPDIF_SR

● 寄存器名: SPDIF_SR

● 偏移量: 0x3C

位段	名称	类型	说明
31:8	RESERVED	RO	保留
7	RX_CHNUM	RO	SPDIF-IN 通道数量
			0:双声道,检测到 valid bit=0。
			1:单声道,检测到至少有 1 个 valid bit=1。
6	RF_F	RO	RX FIFO 满状态
			0: RX FIFO 非满
			1: RX FIFO 满
5	RF_NE	RO	RX FIFO 非空
			0: RX FIFO 空

位段	名称	类型	说明
			1: RX FIFO 非空
4	RX_BUSY	RO	SPDIF IN busy 状态位
			0x0: 空闲
			0x1: busy
3	Reserved	RO	保留
2	TF_E	RO	TX FIFO 空
			0: TX FIFO 非空
			1: TX FIFO 空
1	TF_NF	RO	TX FIFO 非满状态
			0: TX FIFO 满
			1: TX FIFO 非满
0	TX_BUSY	RO	SPDIF OUT busy 状态位
			0x0: 空闲
			0x1: busy

6.3.2.17 SPDIF_IMR

● 寄存器名: SPDIF_IMR

● 偏移量: 0x40

位段	名称	类型	说明
31:14	RESERVED	RO	保留
13	SPDIF_RPB_EM	R/W	RX 头码检测错误屏蔽设置
			0: spdif_rpb_err 错误屏蔽。
			1: spdif_rpb_err 错误不屏蔽。
12	SPDIF_RCLK_EM	R/W	RX 通道信息改变中断屏蔽设置
			0: spdif_rcs_intr 中断屏蔽。
			1: spdif_rcs_intr 中断不屏蔽。
11	SPDIF_RPC_EM	R/W	RX 偶校验错误屏蔽设置
			0: spdif_rp_err 错误屏蔽。

位段	名称	类型	说明
			1: spdif_rp_err 错误不屏蔽。
10	SPDIF_RF_TF_IM	R/W	RX FIFO T 阈值满中断屏蔽设置
			0: spdif_rftf_intr 中断屏蔽。
			1: spdif_rftf_intr 中断不屏蔽。
9	SPDIF_RF_O_EM	RO	RX FIFO T 上溢出错误屏蔽设置
			0: spdif_rfo_err 错误屏蔽。
			1: spdif_rfo_err 错误不屏蔽。
8	SPDIF_RF_U_EM	R/W	RX FIFO T 下溢出错误屏蔽设置
			0: spdif_rfu_err 错误屏蔽。
			1: spdif_rfu_err 错误不屏蔽。
7	SPDIF_TX_DONE_IM	R/W	TX 完成发送且 FIFO 中没有数据中断屏蔽设置
			0: spdif_tx_done_intr 中断屏蔽。
			1: spdif_tx_done_intr 中断不屏蔽。
6	SPDIF_TF_TE_IM	R/W	TX FIFO 阈值空中断屏蔽设置
			0: spdif_tfte_intr 中断屏蔽。
			1: spdif_tfte_intr 中断不屏蔽。
5	SPDIF_TF_U_EM	R/W	TX FIFO 下溢出错误屏蔽设置
			0: spdif_tfu_err 错误屏蔽。
			1: spdif_tfu_err 错误不屏蔽。
4	SPDIF_TF_O_EM	R/W	TX FIFO 上溢出错误屏蔽设置
			0: spdif_tfo_err 错误屏蔽。
			1: spdif_tfo_err 错误不屏蔽。
3:2	Reserved	RO	保留
1	SPDIF_ACCESS_EM	R/W	SPDIF 访问错误屏蔽设置
			0: spdif_access_err 错误屏蔽。
			1: spdif_access_err 错误不屏蔽。
0	SPDIF_WADDR_EM	R/W	SPDIF 访问地址错误屏蔽设置
			0: spdif_waddr_err 错误屏蔽。
			1: spdif_waddr_err 错误不屏蔽。

6.3.2.18 SPDIF_ISR

● 寄存器名: SPDIF_ISR

● 偏移量: 0x44

位段	名称	类型	说明
31:14	RESERVED	RO	保留
13	SPDIF_RPB_ES	RO	RX 头码检测错误状态
			0: spdif_rpb_err 错误=0
			1: spdif_rpb_err 错误=1
12	SPDIF_RCLK_ES	RO	RX 通道信息改变中断状态
			0: spdif_rcs_intr 中断=0
			1: spdif_rcs_intr 中断=1
11	SPDIF_RPC_ES	RO	RX 偶校验错误状态
			0: spdif_rp_err 错误=0
			1: spdif_rp_err 错误=1
10	SPDIF_RF_TF_IS	RO	RX FIFO T 阈值满中断状态
			0: spdif_rftf_intr 中断=0
			1: spdif_rftf_intr 中断=1
9	SPDIF_RF_O_ES	RO	RX FIFO T 上溢出错误状态
			0: spdif_rfo_err 错误=0
			1: spdif_rfo_err 错误=1
8	SPDIF_RF_U_ES	RO	RX FIFO T 下溢出错误状态
			0: spdif_rfu_err 错误=0
			1: spdif_rfu_err 错误=1
7	SPDIF_TX_DONE_IS	RO	TX 完成发送且 FIFO 中没有数据中断
			0: spdif_tx_done_intr 中断=0
			1: spdif_tx_done_intr 中断=1
6	SPDIF_TF_TE_IS	RO	TX FIFO 阈值空中断状态
			0: spdif_tfte_intr 中断=0
			1: spdif_tfte_intr 中断=1

位段	名称	类型	说明
5	SPDIF_TF_U_ES	RO	TX FIFO 下溢出错误状态
			0: spdif_tfu_err 错误=0
			1: spdif_tfu_err 错误=1
4	SPDIF_TF_O_ES	RO	TX FIFO 上溢出错误状态
			0: spdif_tfo_err 错误=0
			1: spdif_tfo_err 错误=1
3:2	Reserved	RO	保留
1	SPDIF_ACCESS_ES	RO	SPDIF 访问错误状态
			0: spdif_access_err 错误=0
			1: spdif_access_err 错误=1
0	SPDIF_WADDR_ES	RO	SPDIF 访问地址错误状态
			0: spdif_waddr_err 错误=0
			1: spdif_waddr_err 错误=1

6.3.2.19 SPDIF_RISR

● 寄存器名: SPDIF_RISR

● 偏移量: 0x48

位段	名称	类型	说明
31:14	RESERVED	RO	保留
13	SPDIF_RPB_RES	RO	RX 头码检测 RAW 错误状态
			0: spdif_rpb_err RAW 错误=0
			1: spdif_rpb_err RAW 错误=1
12	SPDIF_RCLK_RES	RO	RX 通道信息改变 RAW 中断状态
			0: spdif_rcs_intr RAW 中断=0
			1: spdif_rcs_intr RAW 中断=1
11	SPDIF_RPC_RES	RO	RX 偶校验 RAW 错误状态
			0: spdif_rp_err RAW 错误=0
			1: spdif_rp_err RAW 错误=1

位段	名称	类型	说明
10	SPDIF_RF_TF_RIS	RO	RX FIFO 阈值满 RAW 中断状态
			0: spdif_rftf_intr RAW 中断=0
			1: spdif_rftf_intr RAW 中断=1
9	SPDIF_RF_O_RES	RO	RX FIFO 上溢出 RAW 错误状态
			0: spdif_rfo_err RAW 错误=0
			1: spdif_rfo_err RAW 错误=1
8	SPDIF_RF_U_RES	RO	RX FIFO 下溢出 RAW 错误状态
			0: spdif_rfu_err RAW 错误=0
			1:spdif_rfu_err RAW 错误=1
7	SPDIF_TX_DONE_RIS	RO	TX 完成发送且 FIFO 中没有数据 RAW 中断
			0: spdif_tx_done_intr RAW 中断=0
			1: spdif_tx_done_intr RAW 中断 =1
6	SPDIF_TF_TE_RIS	RO	TX FIFO 阈值空 RAW 中断状态
			0: spdif_tfte_intr RAW 中断=0
			1: spdif_tfte_intr RAW 中断=1
5	SPDIF_TF_U_RES	RO	TX FIFO 下溢出 RAW 错误状态
			0: spdif_tfu_err RAW 错误=0
			1: spdif_tfu_err RAW 错误=1
4	SPDIF_TF_O_RES	RO	TX FIFO 上溢出 RAW 错误状态
			0: spdif_tfo_err RAW 错误=0
			1: spdif_tfo_err RAW 错误=1
3:2	Reserved	RO	保留
1	SPDIF_ACCESS_RES	RO	SPDIF 访问 RAW 错误状态
			0: spdif_access_err RAW 错误=0
			1: spdif_access_err RAW 错误=1
0	SPDIF_WADDR_RES	RO	SPDIF 访问地址 RAW 错误状态
			0: spdif_waddr_err RAW 错误=0
			1: spdif_waddr_err RAW 错误=1

6.3.2.20 SPDIF_ICR

● 寄存器名: SPDIF_ISR

● 偏移量: 0x4C

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:14	RESERVED	WO	保留
13	SPDIF_RPB_EC	WO	写 1 清 RX 头码检测错误。
12	SPDIF_RCLK_EC	WO	写 1 清 RX 通道信息改变中断。
11	SPDIF_RPC_EC	WO	写 1 清 RX 偶校验错误。
10	SPDIF_RF_TF_IC	WO	写 1 清 RX FIFO 阈值满中断。
9	SPDIF_RF_O_EC	WO	写 1 清 RX FIFO 上溢出错误。
8	SPDIF_RF_U_EC	WO	写 1 清 RX FIFO 下溢出错误。
7	SPDIF_TX_DONE_IC	WO	写 1 清 TX 完成发送且 FIFO 中没有数据中断。
6	SPDIF_TF_TE_IC	WO	写 1 清 TX FIFO 阈值空中断。
5	SPDIF_TF_U_EC	WO	写 1 清 TX FIFO 下溢出错误。
4	SPDIF_TF_O_EC	WO	写 1 清 TX FIFO 上溢出错误。
3:2	Reserved	WO	保留
1	SPDIF_ACCESS_EC	WO	写 1 清 SPDIF 访问错误。
0	SPDIF_WADDR_EC	WO	写 1 清 SPDIF 访问地址错误。

6.3.2.21 RX_EN_REG

● 寄存器名: RX_EN_REG

● 偏移量: 0x50

位段	名称	类型	说明
31:1	RESERVED	RO	保留
0	RXEN	wo	SPDIF-IN 使能信号 0x0: 关闭

位段	名称	类型	说明
			0x1: 打开

6.3.2.22 RX_CTL_REG

● 寄存器名: RX_CTL_REG

● 偏移量: 0x54

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:20	Reserved	RO	保留
19:13	RX_DIV	RW	SPDIF-IN 内分频器配置,将 spdif_source_clk 分频产生 spdif_rx_clk。 分频值 = (RX_DIV + 1)*2
12	RX_DIV_BYPASS	RW	SPDIF-IN 分频器 bypass 信号 0x0: bypass 0x1: 使用分频器
11:9	Reserved	RO	保留
8	RX_VALID_EN	RW	SPDIF-IN Validity bit 有效信号 0: 当 validity bit 为 1 时不接收数据。 1: 接收所有数据。
7:5	Reserved	RO	保留
4	RX_PARITY_EN	RW	SPDIF-IN parity bit 使能信号 0: 不进行偶校验。 1: 进行偶校验。
3:2	Reserved	RO	保留
1:0	RX_DATAMODE	RW	SPDIF-IN 数据位宽选择 0x0: 24-bit 0x1: 20-bit 0x2、0x3: 16-bit

6.3.2.23 RX_CS_REG

● 寄存器名: RX_CS_REG

● 偏移量: 0x58

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	R_CS	RO	SPDIF-IN 通道状态信息

6.3.2.24 RX_USER_A0_REG

● 寄存器名: RX_USER_A0_REG

● 偏移量: 0x5C

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	R_USER_A0_DATA	RO	SPDIF_IN 通道 A 用户数据 bit[31:0]

6.3.2.25 RX_USER_A1_REG

● 寄存器名: TX RX USER_A1_REG

● 偏移量: 0x60

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	R_USER_A1_DATA	RO	SPDIF_IN 通道 A 用户数据 bit [63:32]

6.3.2.26 RX_USER_A2_REG

● 寄存器名: RX_USER_A2_REG

● 偏移量: 0x64

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	R_USER_A2_DATA	RO	SPDIF_IN 通道 A 用户数据 bit[95:64]

6.3.2.27 RX_USER_A3_REG

● 寄存器名: RX_USER_A3_REG

● 偏移量: 0x68

位段	名称	类型	说明
31:0	R_USER_A3_DATA	RO	SPDIF_IN 通道 A 用户数据 bit[127:96]

6.3.2.28 RX_USER_A4_REG

● 寄存器名: RX_USER_A4_REG

● 偏移量: 0x6C

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	T_USER_A4_DATA	RO	SPDIF_IN 通道 A 用户数据 bit[159:128]

6.3.2.29 RX_USER_A5_REG

● 寄存器名: RX_USER_A5_REG

● 偏移量: 0x70

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	R_USER_A5_DATA	RO	SPDIF_IN 通道 A 用户数据 bit[191:160]

6.3.2.30 RX_FIFO_DR

● 寄存器名: RX_FIFO_DR

● 偏移量: 0x74

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	RF_D	RO	SPDIF_IN FIFO 读数据寄存器,只有在 SPDIFEN=1 时才能写入。

6.3.2.31 RX_FIFO_TH

● 寄存器名: RX_FIFO_TH

● 偏移量: 0x78

位段	名称	类型	说明
31:4	RESERVED	RO	保留

位段	名称	类型	说明
3:0	RF_TH	R/W	RX FIFO 阈值
			可以配置为 1-15, 配置为 0 时阈值为 16, 默认值为 8。

6.3.2.32 RX_FIFO_DL

● 寄存器名: RX_FIFO_DL

● 偏移量: 0x7C

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:5	RESERVED	RO	保留
4:0	RF_DL	RO	RX FIFO 当前数据数量状态

6.3.2.33 RX_DMA_EN

● 寄存器名: RX_DMA_EN

● 偏移量: 0x80

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:1	RESERVED	RO	保留
0	RDMA_EN	RW	SPDIF IN DMA 握手信号使能
			0x0: 关闭
			0x1: 使能

6.3.2.34 RX_DMA_TH

● 寄存器名: RX_DMA_TH

● 偏移量: 0x84

位段	名称	类型	说明
31:4	RESERVED	RO	保留
3:0	RDMA_TH	RW	SPDIF IN FIFO DMA 阈值配置寄存器
			当 FIFO 中数据大于或等于阈值时,将产生阈值满中断。配置

位段	名称	类型	说明
			范围 1-15, 配置为 0 时阈值为 16, 默认值为 8。

6.3.2.35 TX_CS_B_REG

● 寄存器名: TX_CS_B_REG

● 偏移量: 0x88

位段	名称	类型	说明
31:30	RESERVED	RO	保留
29:28	T_B_CLK_ACC	RW	SPDIF-OUT 通道 B 时钟精度,参考 IEC60958
27:24	T_B_FS_SEL	RW	SPDIF-OUT 通道 B 采样率
			0011: 32kHz
			0000: 44.1kHz
			0010: 48kHz
			1000: 88.2kHz
			1010: 96kHz
			1110: 192kHz
			0001: 未指示 (默认)
			其它: 保留
23:20	T_B_CH_NUM	RW	SPDIF-OUT 通道 B 通道数量,参考 IEC60958
19:16	T_B_SRC_NUM	RW	SPDIF-OUT 通道 B 源数量,参考 IEC60958
15:8	T_B_CC_SEL	RW	SPDIF-OUT 通道 B 类型码,参考 IEC60958
7:6	T_B_MODE	RW	SPDIF-OUT 通道 B 模式,参考 IEC60958
5:4	Reserved	RO	保留
3	T_B_EMP_MODE	RW	SPDIF-OUT 通道 B Emphasis 模式
			0: 非 pre-emphasis
			1: pre-emphasis
2	T_B_COPY	RW	SPDIF-OUT 通道 B 版权
			0: 禁止
			1: 版权许可

位段	名称	类型	说明
1	T_B_AUIDO_EN	RW	SPDIF-OUT 通道 B 信号类型
			0: 非音频
			1: 音频
0	T_B_PRO_EN	RW	SPDIF-OUT 通道 B 信号格式
			0: consumer
			1: professional

6.3.2.36 TX_USER_B0_REG

● 寄存器名: TX_USER_B0_REG

● 偏移量: 0x8C

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	T_USER_B0_DATA	RW	SPDIF_OUT 通道 B 用户数据 bit[31:0]

6.3.2.37 TX_USER_B1_REG

● 寄存器名: TX_USER_B1_REG

● 偏移量: 0x90

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	T_USER_B1_DATA	RW	SPDIF_OUT 通道 B 用户数据 bit[63:32]

6.3.2.38 TX_USER_B2_REG

● 寄存器名: TX_USER_B2_REG

● 偏移量: 0x94

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	T_USER_B2_DATA	RW	SPDIF_OUT 通道 B 用户数据 bit[95:64]

6.3.2.39 TX_USER_B3_REG

● 寄存器名: TX_USER_B3_REG

● 偏移量: 0x98

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	T_USER_B3_DATA	RW	SPDIF_OUT 通道 B 用户数据 bit[127:96]

6.3.2.40 TX_USER_B4_REG

● 寄存器名: TX_USER_B4_REG

● 偏移量: 0x9C

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	T_USER_B4_DATA	RW	SPDIF_OUT 通道 B 用户数据 bit[159:128]

6.3.2.41 TX_USER_B5_REG

● 寄存器名: TX_USER_B5_REG

● 偏移量: 0Xa0

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	T_USER_B0_DATA	RW	SPDIF_OUT 通道 B 用户数据 bit[191:160]

6.3.2.42 RX_CS_REG

● 寄存器名: RX_CS_REG

● 偏移量: 0xa4

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	R_CS	RO	SPDIF-IN 通道状态信息

6.3.2.43 RX_USER_B0_REG

● 寄存器名: RX_USER_B0_REG

● 偏移量: 0xa8

位段	名称	类型	说明
31:0	R_USER_B0_DATA	RO	SPDIF_IN 通道 B 用户数据 bit[31:0]

6.3.2.44 RX_USER_B1_REG

● 寄存器名: TX RX USER_B1_REG

● 偏移量: 0xac

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	R_USER_B1_DATA	RO	SPDIF_IN 通道 B 用户数据 bit[63:32]

6.3.2.45 RX_USER_B2_REG

● 寄存器名: RX_USER_B2_REG

● 偏移量: 0xd0

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	R_USER_B2_DATA	RO	SPDIF_IN 通道 B 用户数据 bit[95:64]

6.3.2.46 RX_USER_B3_REG

● 寄存器名: RX_USER_B3_REG

● 偏移量: 0xb4

● 复位值: 0x0000_0000

位段	名称	类型	说明
31:0	R_USER_B3_DATA	RO	SPDIF_IN 通道 B 用户数据 bit[127:96]

6.3.2.47 RX_USER_B4_REG

● 寄存器名: RX_USER_B4_REG

● 偏移量: 0xb8

位段	名称	类型	说明
31:0	T_USER_B4_DATA	RO	SPDIF_IN 通道 B 用户数据 bit[159:128]

6.3.2.48 RX_USER_B5_REG

● 寄存器名: RX_USER_B5_REG

● 偏移量: 0xbc

位段	名称	类型	说明
31:0	R_USER_B5_DATA	RO	SPDIF_IN 通道 B 用户数据 bit[191:160]