Appendix A Common Test Conditions and Video Sequences

This appendix describes the main characteristics of the video sequences used in the experiments presented throughout this book. Section A.2 shows one frame belonging to each video sequence listed in Sect. A.1.

Video Sequences Characteristics

Besides the 24 video sequences listed in the CTC of JCT-VC [1], 11 supplementary video sequences were used in the experiments in order to allow tests with sequences not used in the training of the decision trees presented in Chap. 6 and in the parameter selection analysis presented in Sect. 7.1. The 11 supplementary sequences were obtained from the CTC of the Joint Collaborative Team on 3D Video Coding (JCT-3V) [2], from the Ultra Video Group at the Tampere University of Technology [3] and from the Multimedia Group at the Poznan University [4].

Table A.1 lists the 35 video sequences used in the experiments described in this book and presents their main characteristics. The rightmost column indicates the source of the video sequences, where CTC 2D stands for the CTC of JCT-VC, CTC 3D stands for the CTC of the JCT-3V, UVG stands for the Ultra Video Group at the Tampere University of Technology and POZ stands for Multimedia Group at the Poznan University. In the case of videos from JCT-3V, only the central views of multiview video sequences are used in the experiments.

Video Sequences

Trying to illustrate the characteristics of the 35 video sequences listed in Table A.1, the frame positioned exactly in the middle of each one is presented in this section. Figures A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.8, A.9, A.10, A.11, A.12, A.13, A.14,

Table A.1 Video sequence spatial resolutions

	Spatial	Frame	Frame	Bit	
Name	resolution	count	rate (fps)	depth	Source
BaskeballDrillText	832×480	500	50	8	CTC 2D
BasketballDrill	832×480	500	50	8	CTC 2D
BasketballDrive	1920×1080	500	50	8	CTC 2D
BasketballPass	416×240	500	50	8	CTC 2D
Beauty	1920×1080	600	120	8	UVG
Blowing Bubbles	416×240	500	50	8	CTC 2D
Bosphorus	1920×1080	600	120	8	UVG
BQMall	832×480	600	60	8	CTC 2D
BQSquare	416×240	600	60	8	CTC 2D
BQTerrace	1920×1080	600	60	8	CTC 2D
Cactus	1920×1080	500	50	8	CTC 2D
ChinaSpeed	1024×768	500	30	8	CTC 2D
FourPeople	1280×720	600	60	8	CTC 2D
HoneyBee	1920×1080	600	120	8	UVG
Jockey	1920×1080	600	120	8	UVG
Johnny	1280×720	600	60	8	CTC 2D
Kimono	1920×1080	240	24	8	CTC 2D
KristenAndSara	1280×720	600	60	8	CTC 2D
NebutaFestival	2560×1600	300	60	10	CTC 2D
ParkScene	1920×1080	240	24	8	CTC 2D
PartyScene	832×480	500	50	8	CTC 2D
PeopleOnStreet	2560×1600	150	30	8	CTC 2D
Poznan_CarPark	1920×1080	600	25	8	POZ
Poznan_Hall1	1920×1080	200	25	8	POZ
Poznan_Street	1920×1080	250	25	8	CTC 3D
RaceHorses1	416×240	300	30	8	CTC 2D
RaceHorses2	832×480	300	30	8	CTC 2D
ShakeNDry	1920×1080	600	120	8	UVG
Shark	1920×1080	300	50	8	CTC 3D
SlideEditing	1280×720	300	30	8	CTC 2D
SlideShow	1280×720	500	20	8	CTC 2D
SteamLocomotive	2560×1600	300	60	10	CTC 2D
Tennis	1920×1080	150	30	8	CTC 2D
Traffic	2560×1600	150	30	8	CTC 2D
YachtRide	1920×1080	600	120	8	UVG

A.15, A.16, A.17, A.18, A.19, A.20, A.21, A.22, A.23, A.24, A.25, A.26, A.27, A.28, A.29, A.30, A.31, A.32, A.33, A.34 and A.35 show each middle frame, which are all pictured here in the same size despite their original resolution.

Fig. A.1 BaskeballDrillText

Fig. A.2 BaskeballDrill

Fig. A.3 BasketballDrive

Fig. A.4 BasketballPass

Fig. A.5 Beauty

Fig. A.6 BlowingBubbles

Fig. A.7 Bosphorus

Fig. A.8 BQMall

Fig. A.9 BQSquare

Fig. A.10 BQTerrace

Fig. A.11 Cactus

Fig. A.12 ChinaSpeed

Fig. A.13 FourPeople

Fig. A.14 HoneyBee

Fig. A.15 Jockey

Fig. A.16 Johnny

Fig. A.17 Kimono

Fig. A.18 KristenAndSara

Fig. A.19 NebutaFestival

Fig. A.20 ParkScene

Fig. A.21 PartyScene

Fig. A.22 PeopleOnStreet

Fig. A.23 Poznan_CarPark

Fig. A.24 Poznan_Hall1

Fig. A.25 PoznanStreet

Fig. A.26 RaceHorses1

Fig. A.27 RaceHorses2

Fig. A.28 ShakeNDry

Fig. A.29 Shark

Fig. A.30 SlideEditing

Fig. A.31 SlideShow

Fig. A.32 SteamLocomotive

Fig. A.33 Tennis

Fig. A.34 Traffic

Fig. A.35 YachtRide

References

- 1. ISO/IEC-JCT1/SC29/WG11, Common Test Conditions and Software Reference Configurations, Geneva, Switzerland, 2012
- 2. ISO/IEC-JCT1/SC29/WG11, Common Test Conditions of 3DV Core Experiments, San Jose, US, 2014
- 3. *Tampere University of Technology—Ultra Video Group*. Available: http://ultra-video.cs.tut.fi/
- 4. Poznan University of Technology. Available: http://www3.put.poznan.pl/

Appendix B Obtained Decision Trees

This appendix presents the decision trees obtained with the methodology described in Chap. 6. The graphic representation of each tree, obtained with the WEKA tool [1], is presented in Sects. B.1, B.2 and B.3 for the coding tree early termination, the PU early termination and the RQT early termination, respectively.

Decision Trees for Coding Tree Early Termination

As explained in Sect. 6.3, three decision trees were trained and implemented for the coding tree early termination, one for each CU size that allows splitting into smaller CUs (i.e. 16×16 , 32×32 and 64×64). The three trees are presented in Figs. B.1, B.2, and B.3, where C and T correspond to the decisions of continuing and terminating the CU splitting process, respectively.

Decision Trees for PU Early Termination

The four decision trees introduced in Sect. 6.4 for the PU early termination are presented in Figs. B.4, B.5, B.6 and B.7, one for each CU size possible (i.e. 8×8 , 16×16 , 32×32 and 64×64). In the figures, C and T correspond to the decisions of continuing and terminating the process of choosing the best PU splitting mode, respectively.

Fig. B.1 Coding tree early termination decision tree for 16×16 CUs

Fig. B.2 Coding tree early termination decision tree for 32×32 CUs

Fig. B.3 Coding tree early termination decision tree for 64×64 CUs

Fig. B.4 PU early termination decision tree for 8×8 CUs

Fig. B.5 PU early termination decision tree for 16×16 CUs

Fig. B.6 PU early termination decision tree for 32×32 CUs

Fig. B.7 PU early termination decision tree for 64×64 CUs

Decision Trees for RQT Early Termination

Two decision trees for the RQT early termination were trained and implemented, as explained in Sect. 6.5. Figure B.8 presents the decision tree obtained for 16×16 TUs and Fig. B.9 shows the decision tree for 32×32 TUs. In both figures, C and T correspond to the decisions of continuing and terminating the TU splitting process, respectively.

Fig. B.8 RQT early termination decision tree for 16×16 TUs

Fig. B.9 RQT early termination decision tree for 32×32 TUs

Reference

1. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The WEKA data mining software: an update, *SIGKDD* Explor. Newsl, **11**, 10–18 (2009)

Appendix C Encoder Configurations Tested in the R-D-C Analysis

In Sect. 7.1 it was explained that the encoding configurations considered in the R-D-C analysis were created by modifying the value of each parameter, one at a time, so that every parameter value could be tested with all possible values of the remaining ones, totalising 240 encoding configurations. As described in that section, the R-D efficiency and the computational complexity associated to each configuration was assessed with 10 high-resolution video sequences; QPs 22, 27, 32 and 37; and the *Random Access* temporal configuration, totalising 9,600 encodings. Average BD-rate, BD-PSNR and computational complexity reduction for each configuration, using the unmodified encoder as reference (configuration 1), were calculated. Each configuration tested and their respective results are presented in this appendix, in Table C.1, since only those corresponding to the points that compose the Pareto frontier were presented in Table 7.2 of Chap. 7.

Table C.2 shows the look-up table (LUT) used to determine the encoding configuration that best suits a given $R_{T(i)}$ ratio between the target time (T_T) and the weighted average encoding time ($T_{W(i)}$) of the last two GOPs, as explained in Sect. 7.2.1 of Chap. 7 (see (Eq. 7.1)). The encoding configuration used in the current GOP is used to select a line in the LUT where the closest value to $R_{T(i)}$ is searched. Once it is found, the index indicated by the column where the found value belongs is chosen as the new encoding configuration to be used in the next GOP.

 $\textbf{Table C.1} \ \ \text{Parameters, computational complexity, BD-PSNR and BD-rate for the 240 encoder configurations considered in the R-D-C analysis}$

Config.	SR	BPR	НМЕ	CTET	PUET	RQTET	Normal. Complex	BD-PSNR (dB)	BD-rate (%)
1	64	4	On	Off	Off	Off	1.000	0.000	0.000
2	32	4	On	Off	Off	Off	0.969	0.000	0.016
3	16	4	On	Off	Off	Off	0.958	-0.014	0.426
4	8	4	On	Off	Off	Off	0.950	-0.043	1.276
5	4	4	On	Off	Off	Off	0.945	-0.082	2.469
6	64	2	On	Off	Off	Off	0.973	-0.001	0.038
7	32	2	On	Off	Off	Off	0.941	-0.004	0.150
8	16	2	On	Off	Off	Off	0.930	-0.015	0.426
9	8	2	On	Off	Off	Off	0.923	-0.049	1.498
10	4	2	On	Off	Off	Off	0.917	-0.096	2.845
11	64	1	On	Off	Off	Off	0.964	-0.002	0.089
12	32	1	On	Off	Off	Off	0.933	-0.006	0.221
13	16	1	On	Off	Off	Off	0.922	-0.019	0.588
14	8	1	On	Off	Off	Off	0.915	-0.048	1.481
15	4	1	On	Off	Off	Off	0.910	-0.104	3.093
16	64	4	Off	Off	Off	Off	0.899	-0.018	0.595
17	32	4	Off	Off	Off	Off	0.868	-0.019	0.637
18	16	4	Off	Off	Off	Off	0.857	-0.029	0.886
19	8	4	Off	Off	Off	Off	0.849	-0.056	1.727
20	4	4	Off	Off	Off	Off	0.845	-0.100	3.045
21	64	2	Off	Off	Off	Off	0.872	-0.019	0.648
22	32	2	Off	Off	Off	Off	0.841	-0.019	0.651
23	16	2	Off	Off	Off	Off	0.829	-0.031	0.990
24	8	2	Off	Off	Off	Off	0.822	-0.059	1.839
25	4	2	Off	Off	Off	Off	0.817	-0.112	3.386
26	64	1	Off	Off	Off	Off	0.863	-0.020	0.697
27	32	1	Off	Off	Off	Off	0.832	-0.021	0.735
28	16	1	Off	Off	Off	Off	0.821	-0.033	1.067
29	8	1	Off	Off	Off	Off	0.814	-0.062	1.956
30	4	1	Off	Off	Off	Off	0.809	-0.120	3.690
31	64	4	On	On	Off	Off	0.723	-0.002	0.086
32	32	4	On	On	Off	Off	0.698	-0.003	0.124
33	16	4	On	On	Off	Off	0.688	-0.017	0.527
34	8	4	On	On	Off	Off	0.683	-0.045	1.337
35	4	4	On	On	Off	Off	0.680	-0.085	2.495
36	64	2	On	On	Off	Off	0.706	-0.004	0.145
37	32	2	On	On	Off	Off	0.680	-0.007	0.239
38	16	2	On	On	Off	Off	0.669	-0.017	0.550
39	8	2	On	On	Off	Off	0.664	-0.047	1.457

Table C.1 (continued)

Config.	SR	BPR	НМЕ	CTET	PUET	RQTET	Normal. Complex	BD-PSNR (dB)	BD-rate (%)
40	4	2	On	On	Off	Off	0.662	-0.102	3.051
41	64	1	On	On	Off	Off	0.700	-0.007	0.255
42	32	1	On	On	Off	Off	0.673	-0.006	0.256
43	16	1	On	On	Off	Off	0.666	-0.021	0.692
44	8	1	On	On	Off	Off	0.659	-0.052	1.633
45	4	1	On	On	Off	Off	0.657	-0.108	3.211
46	64	4	Off	On	Off	Off	0.660	-0.020	0.678
47	32	4	Off	On	Off	Off	0.634	-0.019	0.674
48	16	4	Off	On	Off	Off	0.625	-0.032	1.018
49	8	4	Off	On	Off	Off	0.618	-0.059	1.846
50	4	4	Off	On	Off	Off	0.616	-0.104	3.175
51	64	2	Off	On	Off	Off	0.643	-0.021	0.730
52	32	2	Off	On	Off	Off	0.616	-0.020	0.715
53	16	2	Off	On	Off	Off	0.607	-0.034	1.113
54	8	2	Off	On	Off	Off	0.601	-0.063	1.979
55	4	2	Off	On	Off	Off	0.598	-0.112	3.392
56	64	1	Off	On	Off	Off	0.637	-0.022	0.761
57	32	1	Off	On	Off	Off	0.610	-0.022	0.796
58	16	1	Off	On	Off	Off	0.601	-0.035	1.159
59	8	1	Off	On	Off	Off	0.596	-0.065	2.062
60	4	1	Off	On	Off	Off	0.594	-0.122	3.833
61	64	4	On	Off	On	Off	0.586	-0.018	0.572
62	32	4	On	Off	On	Off	0.569	-0.019	0.603
63	16	4	On	Off	On	Off	0.563	-0.029	0.847
64	8	4	On	Off	On	Off	0.559	-0.059	1.782
65	4	4	On	Off	On	Off	0.558	-0.099	2.946
66	64	2	On	Off	On	Off	0.572	-0.019	0.625
67	32	2	On	Off	On	Off	0.554	-0.019	0.620
68	16	2	On	Off	On	Off	0.548	-0.030	0.923
69	8	2	On	Off	On	Off	0.545	-0.061	1.916
70	4	2	On	Off	On	Off	0.545	-0.115	3.470
71	64	1	On	Off	On	Off	0.567	-0.019	0.611
72	32	1	On	Off	On	Off	0.551	-0.018	0.600
73	16	1	On	Off	On	Off	0.544	-0.034	1.044
74	8	1	On	Off	On	Off	0.541	-0.065	1.985
75	4	1	On	Off	On	Off	0.540	-0.118	3.534
76	64	4	Off	Off	On	Off	0.538	-0.032	1.001
77	32	4	Off	Off	On	Off	0.521	-0.033	1.074
78	16	4	Off	Off	On	Off	0.514	-0.044	1.392
79	8	4	Off	Off	On	Off	0.511	-0.071	2.205

Table C.1 (continued)

Config.	SR	BPR	НМЕ	CTET	PUET	RQTET	Normal. Complex	BD-PSNR (dB)	BD-rate (%)
80	4	4	Off	Off	On	Off	0.511	-0.115	3.484
81	64	2	Off	Off	On	Off	0.525	-0.035	1.122
82	32	2	Off	Off	On	Off	0.507	-0.034	1.094
83	16	2	Off	Off	On	Off	0.501	-0.048	1.545
84	8	2	Off	Off	On	Off	0.497	-0.075	2.322
85	4	2	Off	Off	On	Off	0.496	-0.124	3.757
86	64	1	Off	Off	On	Off	0.520	-0.035	1.171
87	32	1	Off	Off	On	Off	0.503	-0.037	1.242
88	16	1	Off	Off	On	Off	0.497	-0.047	1.507
89	8	1	Off	Off	On	Off	0.493	-0.077	2.446
90	4	1	Off	Off	On	Off	0.493	-0.134	4.179
91	64	4	On	On	On	Off	0.481	-0.026	0.823
92	32	4	On	On	On	Off	0.465	-0.027	0.865
93	16	4	On	On	On	Off	0.460	-0.039	1.186
94	8	4	On	On	On	Off	0.456	-0.066	2.013
95	4	4	On	On	On	Off	0.455	-0.108	3.305
96	64	2	On	On	On	Off	0.471	-0.026	0.832
97	32	2	On	On	On	Off	0.455	-0.027	0.879
98	16	2	On	On	On	Off	0.449	-0.042	1.291
99	8	2	On	On	On	Off	0.447	-0.071	2.219
100	4	2	On	On	On	Off	0.446	-0.122	3.708
101	64	1	On	On	On	Off	0.468	-0.029	0.958
102	32	1	On	On	On	Off	0.451	-0.029	0.939
103	16	1	On	On	On	Off	0.447	-0.041	1.294
104	8	1	On	On	On	Off	0.443	-0.073	2.305
105	4	1	On	On	On	Off	0.443	-0.128	3.910
106	64	4	Off	On	On	Off	0.445	-0.041	1.330
107	32	4	Off	On	On	Off	0.428	-0.041	1.339
108	16	4	Off	On	On	Off	0.422	-0.054	1.698
109	8	4	Off	On	On	Off	0.419	-0.081	2.553
110	4	4	Off	On	On	Off	0.419	-0.123	3.746
111	64	2	Off	On	On	Off	0.434	-0.043	1.408
112	32	2	Off	On	On	Off	0.419	-0.044	1.422
113	16	2	Off	On	On	Off	0.412	-0.056	1.821
114	8	2	Off	On	On	Off	0.409	-0.087	2.700
115	4	2	Off	On	On	Off	0.409	-0.136	4.217
116	64	1	Off	On	On	Off	0.432	-0.045	1.460
117	32	1	Off	On	On	Off	0.415	-0.044	1.443
118	16	1	Off	On	On	Off	0.409	-0.057	1.828
119	8	1	Off	On	On	Off	0.405	-0.088	2.795

Table C.1 (continued)

Config.	SR	BPR	НМЕ	CTET	PUET	RQTET	Normal. Complex	BD-PSNR (dB)	BD-rate (%)
120	4	1	Off	On	On	Off	0.405	-0.142	4.460
121	64	4	On	Off	Off	On	0.925	-0.006	0.187
122	32	4	On	Off	Off	On	0.894	-0.008	0.275
123	16	4	On	Off	Off	On	0.884	-0.018	0.527
124	8	4	On	Off	Off	On	0.877	-0.045	1.307
125	4	4	On	Off	Off	On	0.872	-0.087	2.592
126	64	2	On	Off	Off	On	0.897	-0.008	0.252
127	32	2	On	Off	Off	On	0.867	-0.009	0.312
128	16	2	On	Off	Off	On	0.856	-0.021	0.649
129	8	2	On	Off	Off	On	0.849	-0.050	1.514
130	4	2	On	Off	Off	On	0.844	-0.101	3.052
131	64	1	On	Off	Off	On	0.890	-0.008	0.291
132	32	1	On	Off	Off	On	0.859	-0.009	0.350
133	16	1	On	Off	Off	On	0.848	-0.022	0.690
134	8	1	On	Off	Off	On	0.841	-0.054	1.650
135	4	1	On	Off	Off	On	0.837	-0.109	3.331
136	64	4	Off	Off	Off	On	0.824	-0.022	0.722
137	32	4	Off	Off	Off	On	0.793	-0.023	0.770
138	16	4	Off	Off	Off	On	0.782	-0.037	1.198
139	8	4	Off	Off	Off	On	0.775	-0.064	1.972
140	4	4	Off	Off	Off	On	0.771	-0.107	3.286
141	64	2	Off	Off	Off	On	0.797	-0.023	0.762
142	32	2	Off	Off	Off	On	0.766	-0.024	0.796
143	16	2	Off	Off	Off	On	0.754	-0.037	1.250
144	8	2	Off	Off	Off	On	0.748	-0.067	2.131
145	4	2	Off	Off	Off	On	0.744	-0.118	3.669
146	64	1	Off	Off	Off	On	0.788	-0.025	0.835
147	32	1	Off	Off	Off	On	0.758	-0.026	0.898
148	16	1	Off	Off	Off	On	0.746	-0.040	1.340
149	8	1	Off	Off	Off	On	0.740	-0.069	2.215
150	4	1	Off	Off	Off	On	0.736	-0.123	3.787
151	64	4	On	On	Off	On	0.674	-0.009	0.283
152	32	4	On	On	Off	On	0.648	-0.011	0.369
153	16	4	On	On	Off	On	0.638	-0.022	0.716
154	8	4	On	On	Off	On	0.632	-0.051	1.539
155	4	4	On	On	Off	On	0.631	-0.093	2.747
156	64	2	On	On	Off	On	0.656	-0.010	0.338
157	32	2	On	On	Off	On	0.628	-0.012	0.424
158	16	2	On	On	Off	On	0.620	-0.024	0.745
159	8	2	On	On	Off	On	0.614	-0.058	1.806

Table C.1 (continued)

Config.	SR	BPR	НМЕ	CTET	PUET	RQTET	Normal. Complex	BD-PSNR (dB)	BD-rate (%)
160	4	2	On	On	Off	On	0.613	-0.105	3.148
161	64	1	On	On	Off	On	0.650	-0.012	0.415
162	32	1	On	On	Off	On	0.625	-0.012	0.413
163	16	1	On	On	Off	On	0.615	-0.014	0.482
164	8	1	On	On	Off	On	0.609	-0.055	1.747
165	4	1	On	On	Off	On	0.608	-0.033	3.493
166	64	4	Off	On	Off	On	0.610	-0.025	0.849
167	32	4	Off	On	Off	On	0.510	-0.023	0.924
168	16	4	Off	On	Off	On	0.574	-0.027	1.169
169	8	4	Off	On	Off	On	0.568	-0.066	2.062
170	4	4	Off	On	Off	On		-0.109	3.307
	-	2	Off	On	1	+	0.566		1
171 172	64	2	Off	On	Off	On	0.591	-0.026	0.900
	32			+	Off	On	0.565	-0.028	0.954
173	16	2	Off	On	Off	On	0.556	-0.040	1.329
174	8	2	Off	On	Off	On	0.550	-0.068	2.149
175	4	2	Off	On	Off	On	0.550	-0.121	3.662
176	64	1	Off	On	Off	On	0.586	-0.028	0.944
177	32	1	Off	On	Off	On	0.560	-0.027	0.939
178	16	1	Off	On	Off	On	0.551	-0.042	1.402
179	8	1	Off	On	Off	On	0.545	-0.071	2.292
180	4	1	Off	On	Off	On	0.544	-0.129	3.993
181	64	4	On	Off	On	On	0.539	-0.022	0.659
182	32	4	On	Off	On	On	0.522	-0.024	0.737
183	16	4	On	Off	On	On	0.516	-0.036	1.054
184	8	4	On	Off	On	On	0.512	-0.066	1.979
185	4	4	On	Off	On	On	0.512	-0.104	3.174
186	64	2	On	Off	On	On	0.525	-0.024	0.770
187	32	2	On	Off	On	On	0.508	-0.023	0.734
188	16	2	On	Off	On	On	0.502	-0.038	1.142
189	8	2	On	Off	On	On	0.499	-0.070	2.163
190	4	2	On	Off	On	On	0.498	-0.117	3.472
191	64	1	On	Off	On	On	0.521	-0.026	0.857
192	32	1	On	Off	On	On	0.504	-0.026	0.844
193	16	1	On	Off	On	On	0.497	-0.038	1.127
194	8	1	On	Off	On	On	0.494	-0.067	2.082
195	4	1	On	Off	On	On	0.494	-0.125	3.799
196	64	4	Off	Off	On	On	0.491	-0.038	1.256
197	32	4	Off	Off	On	On	0.474	-0.039	1.277
198	16	4	Off	Off	On	On	0.468	-0.052	1.673
199	8	4	Off	Off	On	On	0.465	-0.078	2.451

 Table C.1 (continued)

Config.	SR	BPR	НМЕ	CTET	PUET	RQTET	Normal. Complex	BD-PSNR (dB)	BD-rate (%)
200	4	4	Off	Off	On	On	0.464	-0.123	3.742
201	64	2	Off	Off	On	On	0.477	-0.040	1.297
202	32	2	Off	Off	On	On	0.460	-0.039	1.278
203	16	2	Off	Off	On	On	0.454	-0.053	1.676
204	8	2	Off	Off	On	On	0.451	-0.082	2.582
205	4	2	Off	Off	On	On	0.450	-0.133	4.072
206	64	1	Off	Off	On	On	0.473	-0.043	1.387
207	32	1	Off	Off	On	On	0.456	-0.041	1.349
208	16	1	Off	Off	On	On	0.450	-0.053	1.711
209	8	1	Off	Off	On	On	0.447	-0.083	2.632
210	4	1	Off	Off	On	On	0.446	-0.141	4.372
211	64	4	On	On	On	On	0.447	-0.031	0.969
212	32	4	On	On	On	On	0.431	-0.032	1.018
213	16	4	On	On	On	On	0.425	-0.045	1.391
214	8	4	On	On	On	On	0.422	-0.072	2.214
215	4	4	On	On	On	On	0.422	-0.112	3.432
216	64	2	On	On	On	On	0.437	-0.034	1.092
217	32	2	On	On	On	On	0.420	-0.034	1.091
218	16	2	On	On	On	On	0.415	-0.045	1.425
219	8	2	On	On	On	On	0.412	-0.076	2.366
220	4	2	On	On	On	On	0.413	-0.125	3.762
221	64	1	On	On	On	On	0.434	-0.036	1.187
222	32	1	On	On	On	On	0.417	-0.034	1.133
223	16	1	On	On	On	On	0.412	-0.047	1.472
224	8	1	On	On	On	On	0.410	-0.078	2.439
225	4	1	On	On	On	On	0.409	-0.135	4.151
226	64	4	Off	On	On	On	0.411	-0.048	1.566
227	32	4	Off	On	On	On	0.394	-0.049	1.612
228	16	4	Off	On	On	On	0.389	-0.059	1.890
229	8	4	Off	On	On	On	0.385	-0.087	2.734
230	4	4	Off	On	On	On	0.385	-0.130	3.998
231	64	2	Off	On	On	On	0.400	-0.048	1.563
232	32	2	Off	On	On	On	0.384	-0.049	1.601
233	16	2	Off	On	On	On	0.379	-0.061	1.956
234	8	2	Off	On	On	On	0.375	-0.091	2.851
235	4	2	Off	On	On	On	0.374	-0.140	4.326
236	64	1	Off	On	On	On	0.397	-0.050	1.654
237	32	1	Off	On	On	On	0.380	-0.049	1.616
238	16	1	Off	On	On	On	0.375	-0.062	2.032
239	8	1	Off	On	On	On	0.372	-0.093	2.923
240	4	1	Off	On	On	On	0.372	-0.148	4.585

Table C.2 Update table with ratios between normalised complexities of encoding configurations

		Next co	Next configuration index	on index												
		1	2	3	4	5	9	7	8	6	10	11	12	13	14	15
Current		1.000	0.945	0.890	0.852	0.841	0.821	0.649	0.620	0.582	0.516	0.460	0.443	0.435	0.433	0.425
configuration	7	1.058	1.000	0.942	0.902	0.890	0.869	0.687	0.656	0.616	0.546	0.486	0.469	0.460	0.458	0.450
index	m	1.123	1.061	1.000	0.957	0.944	0.922	0.729	969.0	0.654	0.579	0.516	0.498	0.488	0.486	0.477
	4	1.174	1.109	1.045	1.000	0.987	0.963	0.761	0.728	0.683	909.0	0.539	0.520	0.510	0.508	0.499
	w	1.189	1.124	1.059	1.013	1.000	926.0	0.771	0.737	0.692	0.613	0.547	0.527	0.517	0.515	0.505
	9	1.218	1.151	1.085	1.038	1.024	1.000	0.790	0.755	0.709	0.628	0.560	0.540	0.530	0.528	0.518
	7	1.542	1.457	1.373	1.313	1.296	1.265	1.000	0.956	0.897	0.795	0.709	0.683	0.670	899.0	0.655
	∞	1.613	1.524	1.436	1.374	1.357	1.324	1.046	1.000	0.939	0.832	0.741	0.715	0.701	669.0	0.686
	6	1.718	1.623	1.530	1.464	1.445	1.410	1.114	1.065	1.000	988.0	0.790	0.761	0.747	0.744	0.730
	10	1.938	1.831	1.726	1.651	1.630	1.591	1.257	1.202	1.128	1.000	0.891	0.859	0.843	0.839	0.824
	11	2.176	2.056	1.937	1.854	1.830	1.786	1.411	1.349	1.267	1.123	1.000	0.964	0.946	0.942	0.925
	12	2.257	2.133	2.010	1.923	1.898	1.853	1.464	1.399	1.314	1.164	1.037	1.000	0.981	0.977	0.959
	13	2.300	2.173	2.048	1.960	1.934	1.888	1.492	1.426	1.339	1.187	1.057	1.019	1.000	966.0	0.977
	4	2.309	2.182	2.056	1.967	1.942	1.895	1.498	1.431	1.344	1.191	1.061	1.023	1.004	1.000	0.981
	15	2.353	2.223	2.095	2.005	1.979	1.932	1.526	1.459	1.370	1.214	1.081	1.043	1.023	1.019	1.000

Index

A	R-D-C optimisation (RDCO), 160
Asymmetric motion partition (AMP), 48, 78,	encoding time control system
79, 84, 109	encoding time limitation algorithm, 170
Attribute-Relation File Format (ARFF), 127,	FGTC, 169–170
128, 141	medium-granularity time control, 168
	MGTC, 167–169
	Complexity reduction factor computation
В	(CRFC), 167
Bjøntegaard delta PSNR (BD-PSNR), 12, –14	Complexity scaling
	algorithms, 180
	HEVC, 93
C	CCUPU, 112, 114, 116, 120
CCUPU. See Constrained coding units and	coding tree depths, 88
prediction units (CCUPU)	CTDE, 104, 105, 107
Classification trees, 126, 181	encoding CUs, 88
Coding tree depth estimation (CTDE) method,	FDCS, 89, 91–93
104, 105, 107, 108	MCTDL, 99, 100, 102
algorithm, 105, 106	temporal stationarity, 89
average results, 108	VDCS (see Variable depth complexity
Fu frame, 105	scaling (VDCS) method)
motion-compensated CTUs, 105	Computational complexity, 2–3, 37, 38, 41,
pseudocode, 105, 107	42, 46, 51, 52, 56, 57
spatial and temporal correlations, 104	algorithms, 4
storing values, 105	complexity reduction and scaling, 5
and performance evaluation	data mining, 4–5
average complexities, 107	encoding performance, 3–4
video sequences, 107	modelling (see also H.264/AVC)
Coding tree early termination (CTET), 162	HEVC, 41
Coding tree units (CTU), 17	multimedia system, 37
Common intermediate format (CIF), 7	video codecs, 37
Complexity reduction and scaling, 160–170, 182	video encoders and decoders, 37
encoder operation	multimedia systems, 58
non-dominated points, 161	power consumption, 57
Pareto frontier, 161, 163–166	reduction (see also H.264/AVC)
R-D-C analysis, 162, 163	(see also HEVC)

Computational complexity (cont.)	IGAE, 128
low-complexity algorithms, 42	inter-/intra-frame prediction, 130
scaling (see also H.264/AVC)	joint coding tree and PU early
HEVC, 56, 57	termination method, 156
RDCO/PRDO, 52	KDD, 126
R-D efficiency, 51	KLD, 129
VSN, 57	$\Delta NeighDepth$ attribute, 130, 131
Constrained coding units and prediction units	partition attribute, 130
(CCUPU), 112–114, 116–120	predictive DM techniques, 126
algorithm	rate-distortion-complexity
pseudocode, 112, 113	joint schemes, 152–155
R-D costs, co-localised CTUs, 114	single schemes, 146–152
target time, 112	ratio($2N \times 2N$, MSM), 133
average complexity and R-D results,	RDO-based partitioning structure, 125
115, 116	RQT decision, 125
BD-rate and computational complexity, 109	WEKA, 127
CU and PU configurations, 110	Deblocking filter (DBF), 20–21, 31
encoding constrained CTUs, 110, 111	Decoding module (DM), 40
and performance evaluation	Digital video, 1
average encoding time, frame, 120 complexity scalability accuracy, 114,	Discrete cosine transform (DCT)-based transforms, 28
116, 117	Discrete sine transform (DST), 28
computational complexity	DM. See Decoding module (DM)
scalability, 118	Divi. See Decoding module (Divi)
RaceHorses1 sequence, 120	
R-D performance, 116, 118–120	E
target processing times, 114	Encoding time control system
trade-off measurement, 114	Beauty sequence, 172, 173
rate-distortion-complexity relationship, 109	comparison, other works, 176, 177
regions, 180	compression efficiency, 172
Context-adaptive binary arithmetic coding	CRFC, 167
(CABAC), 30	encoding time limitation algorithm, 170
CTDE. See Coding tree depth estimation	FGTC, 167, 169–170
(CTDE) method	HEVC encoder, 160, 168, 170
	MGTC, 167–169
	R-D efficiency, 171
D	YachtRide sequence, 172, 174
Data mining techniques, 135–155 ARFF, 127	
BasketballDrill video sequence, 134	F
BD-rate and complexity reduction values, 155	Fast motion estimation (FME) techniques, 27, 42
BD-rate/CCR, 155	Fine-granularity encoding time control
binary classification tree, 126	(FGTC), 169, 170
class data imbalance, 128	Fixed complexity reductions, 181
CUs, PUs and the TUs, 125	Fixed depth complexity scaling (FDCS)
decision trees, characteristics, 127	method, 90-93
early termination schemes, 125	algorithm, 89
prediction units, 135–140	average results, 92, 93
RQT, 140–145	complexity for the whole segment
experimental setup and methodology,	$(CP^{N}), 91, 92$
145–146	estimated maximum complexity, 90, 93
HEVC encoding, 157	unconstrained frames, 90
HM software, 129, 157	average R-D performance, 92, 93

Index 223

and performance evaluation	frame budget, 52
BD-rate and BD-PSNR, 92	frame-level algorithm, 54
R-D efficiency, 92, 93	game theoretical analysis, 55
FME. See Fast motion estimation (FME)	GBFOS algorithm, 54
Frame partitioning structures, 18–20, 80–82	intra and inter modes, 53
characteristics, 85	ME process, 52
compression, 84	MPEG-4 encoder, 52
configurations test, 79, 80	offline training process, 53
methodology, 79	parameters, 52
systematic analysis, 78	per-frame algorithm, 54
trade-off analysis	PRD, 55
bit rates, 80, 81	RDCO, 55
image quality drops, 82	resource management, 55
motion activity, 80	spiral search algorithms, 52
test cases, 80	target complexity, 53
video sequence, 81	threshold, 54
video sequence, or	HEVC encoding tools, 64, 65, 67, 68, 70,
	73–75
G	analysis, 69
Generalised Breiman, Friedman, Olshen	bit rates, 71
and Stone (GBFOS), 54	configurations
Generalised P and B pictures (GPB), 32	baseline test case, 67
Group of pictures (GOPs), 5, 17	optimal tools and parameters, 68
1 1 , , , ,	simulation, 68
	video coding systems, 68
Н	video encoders, 65
H.264/AVC, 38–40, 42–45, 52–55	efficiency and complexity, 63
computational complexity modelling	encoders, research contributions, 180
basic coding units, 40	functional modes, 78
DBF, 40	methodology, 64
DM, 40	parameters, 66
EC, 39	analysis, 65
entropy decoding complexity, 40	bit rate, 64
frame, 38	image quality, 64
inter-frame prediction, 38	JCT-VC group, 64
intra-frame prediction, 40	larger spectrum, 65
inverse transform, 40	video sequences, 65
MB sum/clip and DBF strength	priority, 63
calculation, 40	QP values
MC, 38, 40	bit rates, 75
ME, 38	different configurations, 75
modules, 39	time control system, 78
normalisations, 40	trade-off analysis
PRECODING, 38	coding efficiency, 74
RDO process, 39	filters, 73
video encoders and decoders, 38	functional modes, 70, 74
computational complexity reduction	image quality, 73
MD, 43–45	large bit rate, 73, 74
ME, 42, 43	motion activity, 70
computational complexity scaling, 56	
	video sequences, 70
adaptive critic design technique, 54	video contents, 75
complexity-adjustable ME and MD, 53	video sequence, 67 High-efficiency video coding (HEVC), 2,
computation allocation model, 53	15–17, 46–49, <i>See also</i> Video
dynamic framework, 55 encoding time scaling algorithm, 53	coding background coding tree splitting process, 50
cheoding time scaling algorithm. 33	County are spiriting process. 30

High-efficiency video coding (HEVC) (cont.) coding tree structure	Lossy methods, 8–9 Low delay P (LDP) configuration, 32
CU splitting process, 47 depth decision algorithm, 47 early termination method, 46	M
encoding process, 46	Macroblock (MB), 38
fast splitting and pruning method, 46	MC. See Motion compensation (MC)
high frame rates, 47	MCTDL. See Motion-compensated tree
motion divergence, 47	depth limitation (MCTDL) method
RDO techniques, 46	MD. See Mode decision (MD)
	· · · · · · · · · · · · · · · · · · ·
temporal correlation, 47	ME. See Motion estimation (ME)
top skip method, 46	Mean-squared error (MSE), 12
video sequence, 46	Medium-granularity encoding time control
computational complexity reduction	(MGTC), 167, 169
strategies, 34–35, 50, 51	Merge/SKIP mode (MSM), 27
CU sizes, 50	MGTC. See Medium-granularity encoding
prediction unit structure	time control (MGTC)
heuristic method, 48	Mode decision (MD)
intra-frame, before, 48	computational complexity reduction
intra-frame, during, 48	strategies, H.264/AVC, 44, 45
QP-based adaptive threshold	encoder modules, 43
generation, 49	homogeneity, 44
SKIP mode, 48	intensity variation, 44
SMP and AMP, 48	inter-frame prediction, 44
PU, 50	intra-frame prediction, 43
RDO process, 46	SATD value, 43
RQT structure, 49	Sobel operator, 44
Hybrid video compression, 9-12	stationarity, 44
	Motion-compensated tree depth limitation (MCTDL) method, 99–103
I	algorithm
Information Gain Attribute Evaluation	average MV calculation, 100, 102
(IGAE), 128	estimated motion displacement, 100
Instantaneous decoding refresh (IDR)	high-level diagram, 100, 101
pictures, 32	MTDM motion compensation,
Intel VTune Amplifier XE software, 146	99, 100
Internal bit depth decrease (IBDD), 34	n×m matrix, 99
International Telecommunication	and performance evaluation, 102, 103
Union (ITU), 2	Motion compensation (MC), 10, 38
	Motion estimation (ME), 10
	Bayesian framework, 43
J	categorization, 42
Joint Collaborative Team on Video	FME techniques, 42
Coding (JCT-VC), 2	full search, 42
_	parameters, 43
	subsampling, 43
K	TSS, 42
Knowledge Discovery from	Motion vector (MV), 25, 27
Data (KDD), 126	Moving Picture Experts Group
Kullback-Leibler divergence (KLD), 129	(MPEG), 15
L	N
Lagrangian minimisation, 14	ΔNeighDepth attribute, 130, 131
Lossless methods, 8–9	nonZeroCoeffY attribute, 143

Parallel computing strategies, 181 Parallel processing structures, 20–22 Partition attribute, 130 PDA. <i>See</i> Personal digital assistants (PDA) Peak signal-to-noise ratio (PSNR), 12 PeopleOnStreet sequences, 152 Personal digital assistants (PDA), 1 Portable devices, 1 Power-rate-distortion (PRD), 55 Power-rate-distortion optimisation (PRDO), 52 Prediction unit early termination (PUET), 162	algorithm average results, 98 consecutive Fc frames, 94, 95 CP ^N value, 96 high-level diagram, 94, 95 Nc value adjustment, 94, 95 example operation, 94 frames, 94 and performance evaluation average performance results, 98 complexity scaling method, 96, 97 Nc and CP ^N variations, sequence BasketballDrive, 96 R-D efficiency, 96–98
Quasi-zero-blocks (QZB), 49	R-D performance, 97, 98
R Random access points (RAPs), 17 Random access (RA) configuration, 33 Rate-distortion-complexity optimisation (RDCO), 52 Rate-distortion optimisation (RDO), 11 Rate-distortion optimised quantisation (RDOQ), 30 Residual quadtree (RQT), 49 Residual quadtree early termination (RQTET), 163 Rough mode decision (RMD), 23	variations, CP ^N value, 96 Video coding background Bjøntegaard model, 12–14 computational complexity, HEVC, 34–35 digital video, 7 distortion metrics, 12–14 entropy coding, 30–31 frame dimensions, 7 frame partitioning structures, 18–20 HEVC standard, 15–17 hybrid video compression, 9–12 in-loop filters, 31 inter-frame prediction, 25–28 intra-frame prediction, 22–25 inverse quantisation and transform, 30 JCT-VC group, 31
S SATE Con Sum of absolute two of sum of	lossless and lossy compression, 8–9
SATD. <i>See</i> Sum of absolute transformed differences (SATD)	parallel processing structures, 20–22 profiles, 34
Semiconductor technologies, 1	rate-distortion optimisation, 14–15
Simple UMHexS (SUMHexS), 27	subsampling patterns, 8
SingleCost attribute, 143	temporal configurations, 32–34 temporal rate, 8
Sum of absolute transformed differences (SATD), 43	transform and quantisation, 28–30
Symmetric motion partition (SMP), 48	video partitioning structures, 17–18 YCbCr system, 8
Т	Video Coding Experts Group (VCEG), 15
Three-step search (TSS), 42	Video graphics array (VGA), 7
Times step seaten (1887), 42	Visual sensor networks (VSN), 57
U	W
Unsymmetrical-cross multi-hexagon-grid	Waikato Environment for Knowledge Analysis
search (UMHexS), 27 UpperCU_div attribute, 138	(WEKA), 127
opporto _urr announc, 150	Wavefront parallel processing (WPP), 21
V Variable depth complexity scaling (VDCS)	Y
method, 94–98	YCbCr system, 8