Quiz 5

Chemistry 3BB3; Winter 2005

- 1. Write the Heitler-London Valence-Bond Wave Function for the Hydrogen molecule, H_2 .
- 2. Which of the following diatomic molecules do not have a singlet ground state?
 - (a) Li_2

(c) C_2

(e) O_2

(b) B_2

(d) N_2

(f) F_2

- 3. The non-crossing rule states that
 - (a) Potential energy curves associated with states of the same symmetry never cross; potential energy curves associated with states of different symmetry always cross.
 - (b) Potential energy curves associated with states of the same symmetry always cross; potential energy curves associated with states of different symmetry never cross.
 - (c) Potential energy curves associated with states of the same symmetry never cross; potential energy curves associated with states of different symmetry sometimes cross.
 - (d) Potential energy curves associated with states of the same symmetry sometimes cross; potential energy curves associated with states of different symmetry never cross.
- 4. You are given a heteronuclear diatomic molecule, AB. Which of the following properties are most strongly associated with the presence of a strong ionic bond (with minimal covalent character)?
 - (a) Strong orbital overlap between the bonding orbitals.
 - (b) Weak orbital overlap between the bonding orbitals.
 - (c) A large difference in orbital energies of the bonding orbitals.
 - (d) A small difference in the orbital energies of the bonding orbitals.
 - (e) Both of the bonding orbitals have orbital energies that are very small (extremely negative).
 - (f) Both of the bonding orbitals have orbital energies that are rather large (barely negative).
- 5-9. What is the orbital symmetry label for each of the following molecular orbitals? (Assume that both atoms are the same, so we have a homonuclear diatomic molecule like H_2).

Orbital Symmetry Label	Molecular Orbital
	$\psi_{3d_{xz}}^{(l)}\left(oldsymbol{r} ight)-\psi_{3d_{xz}}^{(r)}\left(oldsymbol{r} ight)$
	$\psi_{3d_{yz}}^{(l)}\left(oldsymbol{r} ight)+\psi_{3d_{yz}}^{(r)}\left(oldsymbol{r} ight)$
	$\psi_{3d_{x^2-y^2}}^{(l)}(m{r}) + \psi_{3d_{x^2-y^2}}^{(r)}(m{r})$
	$\psi_{3d_{xy}}^{(l)}\left(oldsymbol{r} ight)-\psi_{3d_{xy}}^{(r)}\left(oldsymbol{r} ight)$
	$\psi_{3d_{z^2}}^{(l)}\left(oldsymbol{r} ight)-\psi_{3d_{z^2}}^{(r)}\left(oldsymbol{r} ight)$

10. How would your answer change if the left atom (whose orbitals are denoted with a superscript (l) and the right atom (whose orbitals are denoted with a superscript (r) were different? (In this case we have a heteronuclear diatomic molecule like LiH.)

Quiz 5 (Key)

Chemistry 3BB3; Winter 2005

1. Write the Heitler-London Valence-Bond Wave Function for the Hydrogen molecule, H_2 .

$$\Psi_{H_{2}}^{HL}\left(\boldsymbol{r}_{1},\boldsymbol{r}_{2}\right)\propto\left(\phi_{1s}^{(l)}\left(\boldsymbol{r}_{1}\right)\phi_{1s}^{(r)}\left(\boldsymbol{r}_{2}\right)+\phi_{1s}^{(r)}\left(\boldsymbol{r}_{1}\right)\phi_{1s}^{(l)}\left(\boldsymbol{r}_{2}\right)\right)\!\left(\alpha\left(1\right)\beta\left(2\right)-\alpha\left(2\right)\beta\left(1\right)\right)$$

$$\propto \left|\phi_{1s}^{(l)} \alpha \quad \phi_{1s}^{(r)} \beta \right| + \left|\phi_{1s}^{(r)} \alpha \quad \phi_{1s}^{(l)} \beta \right|$$

- 2. Which of the following diatomic molecules do not have a singlet ground state?
 - (a) Li_2

(c) C_2

(e) O

(b) B_2

(d) N_2

(f) F_2

- 3. The non-crossing rule states that
 - (a) Potential energy curves associated with states of the same symmetry never cross; potential energy curves associated with states of different symmetry always cross.
 - (b) Potential energy curves associated with states of the same symmetry always cross; potential energy curves associated with states of different symmetry never cross.
 - (c) Potential energy curves associated with states of the same symmetry never cross; potential energy curves associated with states of different symmetry sometimes cross.
 - (d) Potential energy curves associated with states of the same symmetry sometimes cross; potential energy curves associated with states of different symmetry never cross.
- 4. You are given a heteronuclear diatomic molecule, AB. Which of the following properties are most strongly associated with the presence of a strong ionic bond (with minimal covalent character)?
 - (a) Strong orbital overlap between the bonding orbitals.
 - (b) Weak orbital overlap between the bonding orbitals.
 - (c) A large difference in orbital energies of the bonding orbitals.
 - (d) A small difference in the orbital energies of the bonding orbitals.
 - (e) Both of the bonding orbitals have orbital energies that are very small (extremely negative).
 - (f) Both of the bonding orbitals have orbital energies that are rather large (barely negative).

Note: (e) and (f) can't be relevant because they would depend on the choice of the energy zero. The zero of energy can be arbitrarily assigned; so no chemical properties can depend on any particular choice of energy zero and, by implication, on the value of the orbital energy. Only relative energies (e.g., choice (c)) are relevant.

5-9. What is the orbital symmetry label for each of the following molecular orbitals? (Assume that both atoms are the same, so we have a homonuclear diatomic molecule like H_2).

Orbital Symmetry Label	Molecular Orbital
π_u^+	$\psi_{3d_{zz}}^{(l)}\left(oldsymbol{r} ight)-\psi_{3d_{zz}}^{(r)}\left(oldsymbol{r} ight)$
π_g^-	$\psi_{3d_{yz}}^{(l)}\left(oldsymbol{r} ight)+\psi_{3d_{yz}}^{(r)}\left(oldsymbol{r} ight)$
δ_g^+	$\psi^{(l)}_{3d_{x^2-y^2}}(m{r}) + \psi^{(r)}_{3d_{x^2-y^2}}(m{r})$
δ_u^-	$\psi_{3d_{xy}}^{(l)}\left(oldsymbol{r} ight)-\psi_{3d_{xy}}^{(r)}\left(oldsymbol{r} ight)$
σ_u^+	$\psi_{3d_{z^2}}^{(l)}\left(m{r} ight)-\psi_{3d_{z^2}}^{(r)}\left(m{r} ight)$

Name:

10. How would your answer change if the left atom (whose orbitals are denoted with a superscript (l) and the right atom (whose orbitals are denoted with a superscript (r) were different? (In this case we have a heteronuclear diatomic molecule like LiH.)

There is no "u" or "g" designation for a heteronuclear diatomic molecule. All the other portions of the term symbol are identical.

For practice, you might want to consider which of the orbitals in parts 5-9 are binding and antibinding. (Answer: the π_u^+ and δ_g^+ are binding. Can you explain why?)