MNN. Xiremedabers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		Mark Scheme: Teachers' version	Syllabus	Paper		
		GCE AS/A LEVEL – May/June 2011	9702	22		
	a) scalar has only magnitude vector has magnitude and direction		B1 B1	[2]		
(b) kinetic energy, mass, power all three underlined				B1	[1]	
(c) (i)	15 =	$ut + \frac{1}{2}at^2$ 0.5 × 9.81 × t^2 1.7 s		C1 A1	[2]	
	if <i>g</i> =	= 10 is used then –1 but only once on paper				
(ii)	${v_{\rm v}}^2 =$ ${v_{\rm v}} =$ resu	cal component v_v : $v_v^2 + 2as = 0 + 2 \times 9.81 \times 15$ or $v_v = u + at = 9.81 \times 1.7$ 17.16 Itant velocity: $v^2 = (17.16)^2 + (20)^2$ $v_v^2 = (26 \text{ m s}^{-1})^2$	7(5)	C1 C1 A1	[3]	
	Allov	= 20 is used instead of u = 0 then 0/3 w the solution using: I (potential energy + kinetic energy) = final kinetic energy	gy			
(iii)		nce is the actual path travelled		B1		
		lacement is the straight line distance between start a direction) / minimum distance	nd finish points ((in B1	[2]	
(a) (i)	base units of D:					
(-, (-,	force	e: kg m s ⁻² us: m velocity: m s ⁻¹		B1 B1		
		e units of <i>D</i> : $[F/(R \times v)] \text{ kg m s}^{-2}/(m \times m s^{-1})$ $m^{-1} s^{-1}$		M1 A0	[3]	
(ii)	1.	$F = 6\pi \times D \times R \times v = [6\pi \times 6.6 \times 10^{-4} \times 1.5 \times 10^{-3} \times 3.7$ = $6.9 \times 10^{-5} \text{ N}$	7]	A1	[1]	
		mg - F = ma hence $a = g - [F / m]m = \rho \times V = \rho \times 4/3 \pi R^3 = (1.4 \times 10^{-5})a = 9.81 - [6.9 \times 10^{-5}] / \rho \times 4/3 \pi \times (1.5 \times 10^{-3})^3a = 4.9(3) \text{ m s}^{-2}$	(9.81 – 4.88)	C1 M1 A1	[3]	
(b) (i)	a de	g at time t = 0 creases (as time increases) es to zero		B1 B1 B1	[3]	
(ii)		ect shape below original line ch goes to terminal velocity earlier		M1 A1	[2]	

1

2

(a)	(i)	work done equals force × distance moved / displacement in the direction of			[4]
		tne force		BI	[1]
	(ii)	power is the rate o	of doing work / work done per unit time	B1	[1]
(b)	(i)	=	$= 0.5 \times 600 (9.5)^2$	C1 C1 A1	[3]
	(ii)	=	= 600 × 9.81 × 4.1 = 24132 (J)	M1 A1 A0	[2]
	(iii)	work done = $27 - 2$	24 = 3.0 kJ	A1	[1]
	(iv)		· · · · · · · · · · · · · · · · · · ·	C1 A1	[2]
(a)	atta	ched		B1 B1	[2]
(b)	mea sca mea goo mea orig	asure diameter with asure initial and final le asure / record mass d physics method: asure diameter in s inal length / take se	micrometer / digital calipers al reading (for extension) with metre ruler or other suitable s or weight used for the extension several places / remove load and check wire returns to	(B1) (B1) (B1) (B1) (B1)	[4]
(c)	plot det cal	a graph of force agarmine gradient of gradient of g	gainst extension graph for <i>F /</i> e ² / 4	(B1) (B1) (B1) (B1) (B1)	
	MA	X of 4 points		B4	[4]
	(b) (a)	(ii) (iii) (iii) (iii) (iv) (a) cland atta deta deta (b) mea mea scald mea good mea orig MAX (c) deta plot deta calculated	 (ii) power is the rate of the force (b) (i) kinetic energy (ii) potential energy (iii) work done = 27 – 3 (iv) resistive force = 30 = 36 (a) clamped horizontal wire attached details: reference marks (b) measure original length measure diameter with measure initial and final scale measure / record mass good physics method: measure diameter in original length / take set MAX of 4 points (c) determine extension from plot a graph of force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gradient of good calculate area from π of the force and determine gra	the force (ii) power is the rate of doing work / work done per unit time (b) (i) kinetic energy = ½ mv² = 0.5 × 600 (9.5)² = 27075 (J) = 27 kJ (ii) potential energy = mgh = 600 × 9.81 × 4.1 = 24132 (J) = 24 kJ (iii) work done = 27 - 24 = 3.0 kJ (iv) resistive force = 3000 / 8.2 (distance along slope = 4.1 / sin 30°) = 366 N (a) clamped horizontal wire over pulley or vertical wire attached to ceiling with mass attached details: reference mark on wire with fixed scale alongside (b) measure original length of wire to reference mark with metre ruler / tape measure initial and final reading (for extension) with metre ruler or other suitable scale measure / record mass or weight used for the extension good physics method: measure diameter in several places / remove load and check wire returns to original length / take several readings with different loads MAX of 4 points (c) determine extension from final and initial readings plot a graph of force against extension determine gradient of graph for F / e calculate area from πd² / 4 calculate E from E = F 1 / e A or gradient × 1 / A	the force (ii) power is the rate of doing work / work done per unit time B1 (b) (i) kinetic energy = ½ mv²

Mark Scheme: Teachers' version

GCE AS/A LEVEL – May/June 2011

Paper 22

Syllabus

9702

Page 3

Page 4	Page 4 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – May/June 2011	9702	22

- (a) (i) energy converted from chemical to electrical when charge flows through cell or round complete circuit

 - (ii) (resistance of the cell) causing loss of voltage or energy loss in cell
- B1 [2]
- (b) (i) $E_B E_A = I (R + r_B + r_A)$ 12 - 3 = I (3.3 + 0.1 + 0.2) C1 I = 2.5 A A1 [2]
 - (ii) Power = $E \times I$ = 12 × 2.5 = 30 W C1 A1 [2]
 - (iii) $P = I^2 \times R$ or $P = V^2 / R$ or P = VI= $(2.5)^2 \times 3$ = $9^2 / 3.6$ = 9×2.5 C1 = 22.5 J s^{-1}
- (c) power supplied from cell B is greater than energy lost per second in circuit B1 [1]
- 6 (a) (i) to produce coherent sources or constant phase difference B1 [1]
 - (ii) 1. $360^{\circ} / 2\pi$ rad allow n × 360° or n × 2π (unit missing –1) B1 [1] 2. $180^{\circ} / \pi$ rad allow (n × 360°) 180° or (n × 2π) π B1 [1]
 - (iii) 1. waves overlap / meet (resultant) displacement is sum of displacements of each wave B1 [2]
 2. at P crest on trough (OWTTE) B1 [1]
 - (b) $\lambda = ax / D$ C1 = 2 × 2.3 × 10⁻³ × 0.25 × 10⁻³ / 1.8 C1 = 639 nm A1 [3]