Prof. Dr. Carmen Gräßle

Jannis Marquardt

Summer term 2022

Numerical Methods for Differential Equations Assignment 1

Upload solutions until 2 May 2022, 3pm

Task 1.1 (Interpolation, Runge function)

1+2+3=6 points

Consider the Runge function $f: \mathbb{R} \to \mathbb{R}$, defined by

$$f(x) = \frac{1}{x^2 + 1},$$

from the first tutorial sheet.

- (a) Create a new Matlab script-file and save it as interpolation.m. Put the command clear all in the first line of your script in order to clear all variables from previous executions.
- (b) Plot the Runge function for all $x \in [-3, 3]$. Add the title "Runge function" to the plot.
- (c) Get familiar with the commands polyfit and polyval. Use them to find an interpolation polynomial of the Runge function for the following nodes:
 - 1) n=linspace(-2,2,3) 2) n=linspace(-2,2,5) 3) n=linspace(-2,2,7)

Use polynomials of maximal possible degree such that they are uniquely defined. Plot the Runge function, together with these three interpolation polynomials, in a second figure with the title "Polynomial interpolation of Runge function". Restrict the values of your plot in x-direction to the interval [-3,3] and in y-direction to the interval [-1,1.5].

Task 1.2 (Lagrange interpolation)

8 points

Create a new file lagrange_coeffs.m and write a function which calculates the coefficients of the Lagrange interpolation polynomial for given data points (xi,yi). The function should have the structure

where x=(x0,...,xN), y=(y0,...,yN) are the inputs and alfa = (alfa0,...,alfaN) are the coefficients of the Lagrange interpolation polynomial.

Technische Universität Braunschweig Institute for Partial Differential Equations

Prof. Dr. Carmen Gräßle Jannis Marquardt Summer term 2022

Task 1.3 (Test of Lagrange interpolation)

3+3=6 points

Think about two functions $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ of your choice, for which you have calculated the Lagrange interpolation polynomials $p_1, p_2 : \mathbb{R} \to \mathbb{R}$ by hand (hint: you may use the examples from the lecture and tutorial class).

- (a) Write a script called test_lagrange.m which compares the manually computed coefficients for $p_1(x)$ and $p_2(x)$ with the coefficients computed with lagrange_coeffs(x,y) and let the script print out whether the solutions coincide.
- (b) Use lagrange_coeffs(x,y) to compute and plot the Lagrange polynomials of f_1 and f_2 . This time, consider ten nodes which divide the interval [0, 5] equidistantly.

Remark for all tasks:

Make sure that your implementations are well structured and readable.

A good way to ensure this is to use comments ("%...") in order to briefly explain the important steps in your code.