An Introduction to Data Science for Sensory and Consumer Scientists

John Ennis, Julien Delarue, and Thierry Worch

2020-11-11

Contents

Ir	itro	duction	9
1	Inti	$\operatorname{roduction}$	9
	1.1	How should sensory and consumer scientists learn data science? .	9
	1.2	Caution: Don't that everybody does	9
	1.3	Example projects	9
2	Wh	at is Data Science?	11
	2.1	History	11
	2.2	Workflow	11
	2.3	Benefits of data science	11
	2.4	How to learn data science	11
	2.5	How to use this book	11
	2.6	Recommended data science tools	11
3	Get	ting Started with R	13
	3.1	$R \ldots \ldots$	13
	3.2	RStudio	13
	3.3	Git	13
	3.4	GitHub	13
D	ata	Scientific Workflow	17
4	Exa	ample Project	17
	4 1	Background	17

	4.2	Other details	17
	4.3	Conclusions?	17
5	Dat	a Preparation	19
	5.1	Importation	19
	5.2	Organization	19
	5.3	Inspection	19
	5.4	Manipulation	19
	5.5	Cleaning	19
6	Dat	a Analysis	21
	6.1	Transformation	21
	6.2	Exploration	21
	6.3	Modeling	21
7	Dat	a Visualization	23
	7.1	Principles	23
	7.2	Table Mechanics	23
	7.3	Chart Mechanics	23
	7.4	Examples	23
8	Insi	ght Delivery	25
	8.1	Design principles	25
	8.2	Scientific inquiry vs storytelling	25
	8.3	Research reformulation	25
	8.4	Interactive reporting	25
R	epro	oducible Research	29
9	Too	ls for Collaboration	29
	9.1	Principles	29
	9.2	Tools	29
	9.3	Documentation	29

5

S	9.4	Version control
ξ	9.5	Online repositories for team collaboration
E	9.6	Building a code base
10 A	Aut	omated Reporting 31
1	10.1	Excel
1	10.2	Word
1	10.3	PowerPoint
1	10.4	HTML
\mathbf{Ad}	\mathbf{dit}	ional Topics 35
11 I	Mac	hine Learning 35
1	11.1	Concepts and general workflow (training/test)
1	11.2	Unsupervised learning
1	11.3	Semisupervised learning
1	11.4	Supervised learning
1	11.5	Predictive modeling
1	11.6	Interpretability
1	11.7	Cmputer vision
1	11.8	Other methods and resources
12	Text	Analysis 37
		Data import
1	12.2	Analysis
13 (Gra _]	ph Databases 39
Co	ncl	usion 43
14 (Con	clusion 43
TT7 1		

Welcome to the website for $Introduction\ to\ Data\ Science\ for\ Sensory\ and\ Consumer\ Scientists.$ This book being written in the open and is currently under development.

6 CONTENTS

Introduction

Introduction

- 1.1 How should sensory and consumer scientists learn data science?
- 1.2 Caution: Don't that everybody does
- 1.3 Example projects

What is Data Science?

- 2.1 History
- 2.2 Workflow
- 2.2.1 Data preparation
- 2.2.2 Data analysis
- 2.2.3 Insight delivery
- 2.3 Benefits of data science
- 2.3.1 Reproducible research
- 2.3.2 Other benefits (machine learning?)
- 2.4 How to learn data science
- 2.5 How to use this book
- 2.6 Recommended data science tools

Getting Started with R

- 3.1 R
- 3.2 RStudio
- 3.3 Git
- 3.4 GitHub

Data Scientific Workflow

Example Project

- 4.1 Background
- 4.2 Other details
- 4.3 Conclusions?

Data Preparation

- 5.1 Importation
- 5.2 Organization
- 5.3 Inspection
- 5.4 Manipulation
- 5.5 Cleaning

Data Analysis

- 6.1 Transformation
- 6.2 Exploration
- 6.3 Modeling

Data Visualization

- 7.1 Principles
- 7.2 Table Mechanics
- 7.3 Chart Mechanics
- 7.4 Examples

Insight Delivery

- 8.1 Design principles
- 8.2 Scientific inquiry vs storytelling
- 8.3 Research reformulation
- 8.4 Interactive reporting

Reproducible Research

Tools for Collaboration

- 9.1 Principles
- 9.2 Tools
- 9.2.1 GitHub
- 9.2.2 R scripts
- 9.2.3 RMarkdown
- 9.2.4 Shiny
- 9.3 Documentation
- 9.4 Version control
- 9.5 Online repositories for team collaboration
- 9.6 Building a code base
- 9.6.1 Internal functions
- 9.6.2 Packages

Automated Reporting

- 10.1 Excel
- 10.2 Word
- 10.3 PowerPoint
- 10.3.1 Charts
- 10.3.2 Tables
- 10.3.3 Bullet Points
- **10.3.4** Images
- 10.4 HTML

Additional Topics

Machine Learning

- 11.1 Concepts and general workflow (training/test)
- 11.2 Unsupervised learning
- 11.2.1 Cluster analysis
- 11.2.2 Factor analysis
- 11.2.3 Principle components analysis
- 11.2.4 t-SNE
- 11.3 Semisupervised learning
- 11.3.1 PLS regression
- 11.4 Supervised learning
- 11.4.1 Regression
- 11.4.2 K-nearest neighbors
- 11.4.3 Decision trees
- 11.4.4 Black boxes
- 11.4.4.1 Random forests
- 11.4.4.2 SVMs
- 11.4.4.3 Neural networks

11.5 Predictive modeling

Text Analysis

1	2.	1	\mathbf{T}	ata	im	nor	4
T	<i>4</i> .	1	IJ	'ata	\mathbf{m}	DOL	U

- 12.1.1 Data sources
- 12.1.2 Tokenizing
- 12.1.3 Lemmatization, stemming, and stop word removal
- 12.2 Analysis
- 12.2.1 Frequency counts and summary statistics
- 12.2.2 Word clouds
- 12.2.3 Contrast plots
- 12.2.4 Sentiment analysis
- 12.2.5 Bigrams and word graphs

Graph Databases

Conclusion

Conclusion

Appendices