MATH 217 (Fall 2021)

Honors Advanced Calculus, I

Assignment #8

1. Let I be a compact interval, and let $f = (f_1, \ldots, f_M) : I \to \mathbb{R}^M$. Show that f is Riemann integrable if and only if $f_j : I \to \mathbb{R}$ is Riemann integrable for each $j = 1, \ldots, M$ and that, in this case,

$$\int_{I} f = \left(\int_{I} f_{1}, \dots, \int_{I} f_{M} \right)$$

holds.

- 2. Let $I \subset \mathbb{R}^N$ be a compact interval, and let $f: I \to \mathbb{R}^M$ be Riemann integrable. Show that f is bounded.
- 3. Let $\emptyset \neq D \subset \mathbb{R}^N$ be bounded, and let $f, g \colon D \to \mathbb{R}$ be Riemann-integrable. Show that $fg \colon D \to \mathbb{R}$ is Riemann-integrable.

Do we necessarily have

$$\int_{D} fg = \left(\int_{D} f\right) \left(\int_{D} g\right)?$$

(*Hint*: First, treat the case where f=g and then the general case by observing that $fg=\frac{1}{2}((f+g)^2-f^2-g^2.)$

4. Let $\emptyset \neq D \subset \mathbb{R}^N$ have content zero, and let $f: D \to \mathbb{R}^M$ be bounded. Show that f is Riemann-integrable on D such that

$$\int_D f = 0.$$

- 5. Let $\varnothing \neq U \subset \mathbb{R}^N$ be open with content, and let $f: U \to [0, \infty)$ be bounded and continuous such that $\int_U f = 0$. Show that $f \equiv 0$ on U.
- 6*. The function

$$f: [0,1] \times [0,1] \to \mathbb{R}, \quad (x,y) \mapsto xy$$

is continuous and thus Riemann integrable. Evaluate $\int_{[0,1]\times[0,1]} f$ using only the definition of the Riemann integral, i.e., in particular, without using Fubini's Theorem.

Due Thursday, November 18, 2020, at 5:00 p.m.; no late assignments.