Multivariate Time Series Prediction Using Tensor Decompositions

Anastasia Sozykina

Tensor Vector Auto-Regression (VAR)

$$\mathbf{y}_{t} = \begin{bmatrix} \mathbf{A}_{1} & \mathbf{y}_{t-1} + \mathbf{A}_{2} & \mathbf{y}_{t-2} + \dots + \mathbf{A}_{P} & \mathbf{y}_{t-P} + \boldsymbol{\epsilon}_{t} \end{bmatrix}$$

$$\mathbf{y}_{t} = \begin{bmatrix} \mathbf{y}_{t} & \mathbf{y}$$

$$\mathbf{y}_t = \mathbf{U}_1 \underline{\mathbf{G}}_{(1)} (\mathbf{U}_3 \otimes \mathbf{U}_2)^{\mathrm{T}} \mathbf{z}_t + \boldsymbol{\epsilon}_t = \mathbf{U}_1 \underline{\mathbf{G}}_{(1)} \mathrm{vec}(\mathbf{U}_2^T \mathbf{Z}_t \mathbf{U}_3) + \boldsymbol{\epsilon}_t,$$
where $\mathbf{Z}_t = (\mathbf{y}_{t-1}, \cdots, \mathbf{y}_{t-P})$

Tensor Vector Auto-Regression (VAR)

Multilinear low-rank least squares estimator

$$\underline{\mathbf{A}}_{MLR} \equiv \left[\left[\underline{\widehat{\mathbf{G}}}, \widehat{\mathbf{U}}_{1}, \widehat{\mathbf{U}}_{2}, \widehat{\mathbf{U}}_{3} \right] = \arg\min L(\underline{\mathbf{G}}, \mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3})$$

$$L(\underline{\mathbf{G}}, \mathbf{U}_1, \mathbf{U}_2, \mathbf{U}_3) = \frac{1}{T} \sum_{t=1}^{T} \left\| \mathbf{y}_t - (\underline{\mathbf{G}} \times_1 \mathbf{U}_1 \times_2 \mathbf{U}_2 \times_3 \mathbf{U}_3)_{(1)} \mathbf{x}_t \right\|_2^2$$

Tensor Vector Auto-Regression (VAR)

Multilinear low-rank least squares estimation

$$F_{t-1} = \sigma(\epsilon_t, \epsilon_{t-1}, \cdots)$$
) be the σ -field generated by $\{\epsilon_s, s < t\}$, and $\mathbf{X}_t = (\mathbf{y}_{t-1}, \cdots, \mathbf{y}_{t-P})$

$$\mathbb{E}(\mathbf{y}_{t} | F_{t-1}) = \left(\left(\mathbf{x}_{t}^{T} (\mathbf{U}_{3} \otimes \mathbf{U}_{2}) \underline{\mathbf{G}}_{(1)}^{T} \right) \otimes \mathbf{I}_{N} \right) vec(\mathbf{U}_{1})$$

$$= \mathbf{U}_{1} \underline{\mathbf{G}}_{(1)} \left((\mathbf{U}_{3}^{T} \mathbf{X}_{t}^{T}) \otimes \mathbf{I}_{r2} \right) vec(\mathbf{U}_{2}^{T}) = \mathbf{U}_{1} \underline{\mathbf{G}}_{(1)} (\mathbf{I}_{r3} \otimes (\mathbf{U}_{2}^{T} \mathbf{X}_{t})) vec(\mathbf{U}_{3})$$

$$= \left(\left((\mathbf{U}_{3} \otimes \mathbf{U}_{2})^{T} \mathbf{x}_{t} \right)^{T} \otimes \mathbf{U}_{1} \right) vec(\underline{\mathbf{G}}_{(1)})$$

Tensor Vector Auto-Regression (VAR) ALS

Algorithm Alternating least squares algorithm for \widehat{A}_{MLR}

Initialize: $A^{(0)}$

HOSVD:
$$A^{(0)} \approx S^{(0)} \times_1 U_1^{(0)} \times_2 U_2^{(0)} \times_3 U_3^{(0)}$$
 with multilinear ranks (r_1, r_2, r_3)

repeat k = 0, 1, 2, ...

$$U_1^{(k+1)} \leftarrow \arg\min_{U_1} \sum_{t=1}^{T} \| \boldsymbol{y}_t - ((\boldsymbol{x}_t'(\boldsymbol{U}_3^{(k)} \otimes \boldsymbol{U}_2^{(k)}) \boldsymbol{S}_{(1)}^{(k)'}) \otimes \boldsymbol{I}_N) \operatorname{vec}(\boldsymbol{U}_1) \|_2^2$$

$$U_2^{(k+1)} \leftarrow \arg\min_{U_2} \sum_{t=1}^T \| \boldsymbol{y}_t - U_1^{(k+1)} \boldsymbol{S}_{(1)}^{(k)} ((\boldsymbol{X}_t \boldsymbol{U}_3^{(k)})' \otimes \boldsymbol{I}_{r_2}) \operatorname{vec}(\boldsymbol{U}_2') \|_2^2$$

$$U_3^{(k+1)} \leftarrow \arg\min_{U_3} \sum_{t=1}^T \| \boldsymbol{y}_t - U_1^{(k+1)} \boldsymbol{\mathcal{G}}_{(1)}^{(k)} (\boldsymbol{I}_{r_3} \otimes (\boldsymbol{U}_2^{(k+1)'} \boldsymbol{X}_t)) \operatorname{vec}(\boldsymbol{U}_3) \|_2^2$$

$$\boldsymbol{\mathcal{G}}^{(k+1)} \leftarrow \arg\min_{\boldsymbol{\mathcal{G}}} \sum_{t=1}^{T} \|\boldsymbol{y}_{t} - (((\boldsymbol{U}_{3}^{(k+1)} \otimes \boldsymbol{U}_{2}^{(k+1)})'\boldsymbol{x}_{t})' \otimes \boldsymbol{U}_{1}^{(k+1)}) \text{vec}(\boldsymbol{\mathcal{G}}_{(1)})\|_{2}^{2}$$

$$\boldsymbol{\mathcal{A}}^{(k+1)} \leftarrow \boldsymbol{\mathcal{G}}^{(k+1)} \times_1 \boldsymbol{U}_1^{(k+1)} \times_2 \boldsymbol{U}_2^{(k+1)} \times_3 \boldsymbol{U}_3^{(k+1)}$$

until convergence

Finalize: $\widehat{U}_i \leftarrow \text{top } r_i \text{ left singular vectors of } \widehat{A}_{(i)} \text{ with positive first elements, } 1 \leq i \leq 3$

$$\widehat{\mathbf{G}} \leftarrow [\![\widehat{\mathbf{A}}; \widehat{\boldsymbol{U}}_1', \widehat{\boldsymbol{U}}_2', \widehat{\boldsymbol{U}}_3']\!]$$

Block Hankel Tensor-ARIMA

Hankelization of vector (Tensorization)

Multi-way delay embedding (extension of Hankelization)

Skoltech

Block Hankel Tensor-ARIMA

$$\Delta^d \underline{\widehat{\mathbf{G}}}_t = \Delta^d \underline{\widehat{\mathbf{X}}}_t \times_1 \widehat{\mathbf{U}}_1^T \times_2 \widehat{\mathbf{U}}_2^T \cdots \times_M \widehat{\mathbf{U}}_M^T$$

$$\Delta^{d} \underline{\widehat{\mathbf{G}}}_{T+1} = \sum_{i=1}^{p} \alpha_{i} \Delta^{d} \underline{\widehat{\mathbf{G}}}_{T-i} - \sum_{i=1}^{q} \beta_{i} \hat{\epsilon}_{T-i}$$

Results of the Experiment. Yahoo.finance

Fig. 1 BHT-ARIMA(1, 1, 0) with MDT-rank [21, 4], Tucker rank [4, 4] and window size - 50

	RMSE	Execute time
BHT-ARIMA	18.24	192.15s
ARIMA	20.26	442.71s

Table 1. Methods performance

Results of the Experiment. Air Quality Data Set

Fig. 2 BHT-ARIMA(2, 1,1) with MDT-rank [8, 4], Tucker rank [4, 4] and window size - 24

	RMSE	Execute time
BHT-ARIMA	109.4	419.33s
ARIMA	116.4	553.15s

Table 2. Methods performance

- 1. PT08.S1 (tin oxide) hourly averaged sensor response
- 2. PT08.S2 (titania) hourly averaged sensor response
- 3. PT08.S3 (tungsten oxide) hourly averaged sensor response
- PT08.S4 (tungsten oxide) hourly averaged sensor response
- 5. PT08.S5 (indium oxide) hourly averaged sensor response
- 6. T Temperature
- 7. RH Relative Humidity (%)
- 8. AH Absolute Humidity

Results of the Experiment

Fig. 3. Dependence of RMSE on the window size

Fig. 4. Dependence of execute time on the window size

Results of the Experiment

	RMSE
Tensor-VAR	29.86

Table 3. Method performance

Fig. 5 Tensor-VAR(1) with train size - 100

Thank you for attention!