Distribution	Parameters	CDF	PMF/PDF	Support	Mean	Median	Mode	Variance	MGF
Bernoulli	0	$\begin{cases} 0 & \text{for } k < 0 \\ 1 - p & \text{for } 0 \le k < 1 \\ 1 & \text{for } k \ge 1 \end{cases}$	$\begin{cases} q = (1-p) & \text{for } k = 0 \\ p & \text{for } k = 1 \end{cases}$	$k \in \{0,1\}$	p	$\begin{cases} 0 & \text{if } q > p \\ 0.5 & \text{if } q = p \\ 1 & \text{if } q$	$\begin{cases} 0 & \text{if } q > p \\ 0, 1 & \text{if } q = p \\ 1 & \text{if } q$	p(1-p)(=pq)	$q + pe^t$
Binomial	$n \in N_0; p \in [o,1]$	$I_{1-p}(n-k,1+k)$	$\binom{n}{k} p^k (1-p)^{n-k}$	$k \in \{0, \ldots, n\}$	np	$\lfloor np \rfloor or \lceil np \rceil$	$\lfloor (n+1)p \rfloor or \lceil (n+1)p \rceil - 1$	np(1-p)	$(1-p+pe^t)^n$
Poisson	$\lambda > 0$ (real) - rate	$\frac{\Gamma(\lfloor k+1\rfloor,\lambda)}{\lfloor k\rfloor!}, \text{ or } e^{-\lambda} \sum_{i=0}^{\lfloor k\rfloor} \frac{\lambda^i}{i!}$	$\frac{\lambda^k e^{-\lambda}}{k!}$	$k\in\mathbb{N}\cup\{0\};$					