

Nephrology
Dr. Conrad Fischer
Associate Chief of Medicine
SUNY Downstate School of Medicine

Acute Renal Failure: Prerenal & Postrenal

Acute Renal Failure— Definitions

- Rapid † in BUN or creatinine
- Can occur over several hours, days or weeks
- Some causes of ARF include:

Several Hours	Several Weeks	
Rhabdomyolysis	Aminoglycosides	
Contrast induced	Poststreptococcal glomerulonephritis	

Acute Renal Failure— Definitions

- Renal insufficiency (azotemia)
 - Renal failure that does not usually require dialysis
 - Build-up of azole groups or nitrogens in the blood
- Uremia (end stage renal disease)
 - 1. Severe renal failure requiring dialysis
 - 2. Severe acidosis and fluid overload
 - 3. Altered mental status
 - Hyperkalemia
 - 5. Anemia
 - 6. Hypocalcemia
 - 7. Pericarditis

Acute Renal Failure— Definitions

- Also defined by the site of the defect
 - 1. Pre-renal
 - Decreased perfusion
 - Intra-renal
 - Tubular or glomerular defect
 - 3. Post-renal
 - Decreased drainage or flow

Acute Renal Failure— Diagnosis

- † BUN regardless of cause
- May be falsely elevated with increased dietary protein or GI bleeding
 - 1. Derived from protein catabolism
 - Increases with the severity of renal failure
- May be falsely decreased with liver disease, malnutrition or SIADH

Acute Renal Failure— Diagnosis

- Creatinine is the main measure of renal function
- Creatinine clearance approximates the GFR
 - 1. Slightly overestimates
 - 2. Always adjusted for weight
- May be falsely low with decreased muscle mass and increased in body builders
- Increases at maximum rate of 0.5 to
 1.0/day

 KAPLAN) MI

Prerenal Azotemia— Definitions

- Diminished perfusion
- Kidneys are intrinsically normal
- Causes include:
 - 1. Hypovolemia regardless of etiology
 - 2. Hypotension regardless of etiology
 - 3. Decreased cardiac output
 - 4. Third spacing
 - 5. Decreased albumin

Prerenal Azotemia— Diagnosis

- BUN to creatinine ratio of 20:1
- J urine sodium
- ‡ fractional excretion of sodium
- † urine osmolality (>500)
- SG >1.010

Prerenal Azotemia— Hepatorenal Syndrome

- Intense vasoconstriction of afferent arterioles → decreased renal perfusion
- Findings are consistent with prerenal azotemia
- Correct underlying liver disease

Prerenal Failure— The Effect of ACE Inhibitors

- Vasodilation of the efferent arteriole
- Transient decrease in GFR
- Effects are exaggerated in
 - The elderly
 - 2. Diabetics
 - 3. HTN
 - 4. Baseline renal disease
- Overall effect is decreasing the rate of progression to uremia and renal failure

Prerenal Failure— The Effect of ACE Inhibitors

- Vasodilation of the efferent arteriole
- Transient decrease in GFR
- Effects are exaggerated in
 - 1. The elderly
 - 2. Diabetics
 - 3. HTN
 - 4. Baseline renal disease
- Overall effect is decreasing the rate of progression to uremia and renal failure

Prerenal Failure— Hepatopulmonary Syndrome

- Similar to hepatorenal syndrome
- Renal failure is secondary to pulmonary disease
- Marked change in oxygen saturation with changes in position— orthodeoxia

Postrenal Azotemia—Etiology

- Bilateral obstruction to flow
 - Bladder cancer
 - 2. Prostatic hypertrophy or cancer
 - 3. Bilateral ureteral disease
 - Retroperitoneal fibrosis
 - Neurogenic bladder
 - Bilateral strictures

Postrenal Azotemia—Etiology

- Bilateral obstruction to flow
 - Bladder cancer
 - Prostatic hypertrophy or cancer
 - Bilateral ureteral disease
 - Retroperitoneal fibrosis
 - Neurogenic bladder
 - 4. Bilateral strictures

Postrenal Azotemia— Etiology (Cont'd)

- Creatinine rises when 70-80% of renal function is lost
- Initial elevation of BUN:Cr ratio of 20:1 (as with prerenal azotemia)
- I fractional excretion of sodium
- J urine sodium
- With chronic damage, BUN:Cr ratio decreases to 10:1 (as seen in ATN)

Hydronephrosis— Left-Sided Ureteral Stone

This image was reproduced from Wikipedia, http://www.wikipedia.com

Acute Renal Failure: Tubulointerstitial Disease

Acute Tubular Necrosis—Etiology

- Damage is tubular or
- Decreased perfusion or
- Decreased drainage or
- Toxic injury or
- May be a combination of the above factors

Acute Tubular Necrosis— Phases

1. Prodromal

- Time between acute injury and the onset of renal failure
- 2. Oliguric (<400 ml/24 h) or anuric (<100ml/24 h)
- 3. Postoliguric
 - Diuretic phase when all fluids not previously excreted will leave the body in a vigorous polyuria

Acute Tubular Necrosis— Diagnosis

- BUN:Cr ratio of 10:1
- † urine sodium (>40)
- † fractional excretion of sodium (>1%)
- J urine osmolality (<350)

Difference Between Prerenal and ATN

	PRERENAL	ATN
Urine osmolarity	>500	<350
Urine Na+	<20	>40
FeNa+	<1%	>1%
Urine sediment	Scant	Full (brownish pigmented granular casts, epithelial casts)

Acute Tubular Necrosis— Treatment

- Correct the underlying cause
- Hydration
- Supportive care

Allergic Interstitial Nephritis— Etiology

- 70% of cases due to adverse effect to medications
 - 1. Penicillins
 - 2. Cephalosporins
 - 3. Sulfa drugs
 - 4. Allopurinol
 - 5. Rifampin
 - 6. Quinolones

Allergic Interstitial Nephritis— Etiology (Cont'd)

- Infections (viruses, bacteria or fungi). Most common causes includes
 - 1. Leptospirosis
 - 2. Legionella
 - 3. CMV
 - 4. Rickettsia
 - 5. Streptococci
- Autoimmune disease
 - 1. SLE
 - 2. Sjögren syndrome
 - 3. Sarcoidosis
 - 4. Cryoglobulinemia

Allergic Interstitial Nephritis— Diagnosis

- Characteristic findings include
 - 1. Rash
 - 2. Fever
 - 3. doint pain
 - 4. Eosinophilia
 - 5. Increased serum IgE
- Best initial test— urinalysis
 - 1. Eosinophiluria (Wright or Giemsa stain)
 - 2. Hematuria
 - 3. Proteinuria (<2 g/24 hrs)

Allergic Interstitial Nephritis— Diagnosis (Cont'd)

- Most accurate test
 - 1. Biopsy
 - 2. Rarely performed
- Treatment
 - 1. Stop the offending agent
 - 2. +/- corticosteroids

Pigments—Etiology

- Myoglobinuria (rhabdomyolysis)
 - 1. Severe crush injury
 - 2. Seizures
 - 3. Severe exertion
 - Less common: hypokalemia, hypophosphatemia, or meds (statins)
- Hemoglobinuria
 - 1. ABO incompatibility

Pigments—Etiology

- Directly toxic to renal tubules
- Precipitate in renal tubules
- Damage is directly proportional to duration of contact
- Worsened with dehydration

Pigments— Diagnosis

- Severe crush injury or seizure (potentially life threatening)
 - EKG or serum potassium → peaked Twaves → IV calcium gluconate or calcium chloride
- Not potentially life threatening
 - Urinalysis → Dipstick + for RBCs but none visualized on microscopy
- Confirmatory test
 - Serum CPK → 10,000 100,000 (normal <500)
- Other findings: rapidly increased Cr, metabolic acidosis, decreased serum bicarb, hyperphosphatemia

 KAPLAN) MEDICAL

Pigments— Management

- EKG abnormalities: IV calcium gluconate or IV calcium chloride stat
- Aggressive hydration
- Mannitol
- +/- Alkalization of the urine

Proteins—In Summary

- Associated with multiple myeloma
- Bence-Jones proteins cause tubular damage
- Also cause nephritic syndrome

Crystals— Etiology

- Oxalate
 - Most common cause is ethylene glycol overdose
 - Intoxicated person with increased anion gap metabolic acidosis
 - 3. Renal insufficiency
 - Diagnosis is confirmed with envelopeshaped crystals seen on UA
 - Treatment includes IV ethanol or fomepizole and dialysis
 - Other causes in includes Crohn's disease which results in chronic hyperoxaluria and stones

Crystals— Etiology

- Urate
 - Most common cause is tumor lysis syndrome (acute) and gout (chronic)
 - All patients undergoing chemo must receive vigorous hydration and allopurinol
 - Stones and crystals precipitate in acidic urine
 - 4. Diagnosis by finding crystals in the urine

Hypercalcemia

- Results in:
 - Stones
 - 2. Distal renal tubular acidosis
 - 3. Nephrogenic diabetes insipidus
- Most common cause:
 - Primary hyperparathyroidism
 Surgical resection only done with symptomatic disease

5-mm Renal Stones—Passed Naturally without Intervention

These images were reproduced from Wikipedia, http://www.wikipedia.com

Large Stellate Urolith

This image was reproduced from Wikipedia. http://www.wikipedia.com

Staghorn Calculus and Scoliosis

This image was reproduced from Wikipedia, http://www.wikipedia.com

Ultrasound Ablation of a Large Renal Stone

This image was reproduced from Wikipedia, http://www.wikipedia.com

Toxins— Etiology

- Most common toxins implicated:
 - NSAIDs
 - Aminoglycosides
 - Cephalosporins
 - Contrast agents
 - Amphotericin B
 - Chemotherapy
 - 7. Radiation
 - 8. Heavy metals
 - 9. Cyclosporine

Toxins— Etiology

- Aminoglycosides: exacerbated by hypokalemia and hypomagnesemia, toxicity associated with trough level
- Amphotericin B: days-weeks (cumulative) of use results in ↑ Cr, ↓ K, ↓ HCO₃
- Atheroembolic disease: renal failure several days after procedure. Eosinophilia, low complement, bluish discoloration of the extremities, livedo reticularis
- Contrast agents: 12–24 hours later. Poor function of renal parenchyma prior to the procedure increases risk.

Analgesic Nephropathy— NSAIDs

- Several mechanisms are involved:
 - Interstitial nephritis
 - 2. Direct toxicity
 - Papillary necrosis
 - Inhibition of prostaglandins
 - 5. Membranous glomerulonephritis
- Occurs in those with significant impairment: HTN, diabetes, and the elderly
- History of NSAID use with † in BUN and Cr
- No specific treatment

Papillary Necrosis

- Causes
 - Sickle cell disease
 - Diabetes
 - Urinary obstruction
 - 4. Chronic pyelonephritis
 - 5. NSAIDs
- Presentation: Acute onset of flank pain, hematuria, pyuria, negative urine cultures and fever
- Most accurate test: CT scan— "bumpy" contours of the renal pelvis
- No specific treatment

Preventing Contrast-Induced Renal Failure

- Vigorous hydration
- 1–2 L of 0.9% NS over 12 hours prior to procedure
- Bicarbonate and N-acetylcysteine have some protective effect

Glomerulonephritis: Nephritic Syndrome

Glomerulonephritis— An Overview

- Inflammation of the glomeruli due to
 - Autoimmune events
 - 2. Circulating antibodies
 - Vasculitis
- Edema → salt and water retention → hypertension
- Hematuria with dysmorphic RBCs and RBC casts
- Proteinuria <2 grams/24 hours
- Fractional excretion of Na <1%
- Most important diagnostic test: renal biopsy

Vascular Disease	Glomerular Disease		
Wegener's granulomatosis	Goodpasture syndrome		
Churg-Strauss syndrome	Postinfectious glomerulonephritis		
Henoch-Schönlein Purpura	IgA Nephropathy (Berger disease)		
Polyarteritis Nodosa	SLE		
TTP	Idiopathic rapidly progressive glomerulonephritis		
HUS	Alport syndrome		
Cryoglobinemia	Diabetes and HTN		
	Amyloid		

Glomerulonephritis: Nephrotic Syndrome

Nephrotic Syndrome

- Proteinuria >3.5 grams per day
- Hyperlipidemia → unclear etiology
- Edema → secondary to increased salt and water retention and decreased oncotic pressure
- Low serum albumin → secondary to protein loss

Severe Generalized Edema

This image was reproduced from the Public Health Image Library, http://www.phil.cdc.gov

Nephrotic Syndrome (Cont'd)

- Associated with systemic illness
 - 1. Diabetes
 - 2. Hypertension
 - Multiple myeloma
- Nephritic syndrome may progress to nephrotic syndrome
- Glomerular basement membrane loses its negative potential → protein loss
- Also associated with hyperlipidemia which gives the form of a Maltese cross in the urine

Maltese Cross

This image was reproduced from Wikipedia, http://www.wikipedia.com

Nephrotic Syndrome (Cont'd)

- Urinary loss of anticoagulant proteins,
 i.e., protein C, protein S, and
 antithrombin → hypercoagulable state
- Urinary loss of transport proteins → Iron, copper and zinc deficiency

Nephrotic Syndrome— Diagnosis

- Urinalysis shows >3.5 grams/24 hours
 - Cumbersome test
 - Most often used: single spot urine for albumin and creatinine
- Most accurate test to determine etiology is a renal biopsy

Nephrotic Syndrome— Diagnosis

- Urinalysis shows >3.5 grams/24 hours
 - Cumbersome test
 - Most often used: single spot urine for albumin and creatinine
- Most accurate test to determine etiology is a renal biopsy

Nephrotic Syndrome— Treatment

- Control underlying disease
- Steroids in all idiopathic primary renal disease
 - Membranous type
 - 2. Nil lesion
 - 3. Membranoproliferative type
 - 4. Mesangial type
 - Focal segmental disease
- Steroids ineffective?
 - Add cyclophosphamide or mycophenolate (maybe azathioprine)
- ACE inhibitors or ARBs used in all patients but does not reverse disease

-My - children Merbranou ALITY 1/A 1+ = 2m 2+ = 2m 3+ = 3m SFOCK SPEMENTE 1

Membranous Glomerulonephritis

- Most common idiopathic disease in adults
- Also associated with cancer, infections, hepatitis, lupus, penicillamine, gold salts, and NSAIDs

Nil lesion—Minimal Change Disease

- Most common idiopathic cause in children
- NSAIDs
- Light microscopy is normal electron microscopy shows fusion of foot processes
- Responds very well to steroids

Membranoproliferative Glomerulonephritis

- Associated with chronic hepatitis and low serum complement
- Positive cryoglobulins?
 - 1. Interferon + ribavirin
- · Dipyrimadole and aspirin are also used

Membranoproliferative Glomerulonephritis

Focal Segmental Glomerulonephritis

- Highly associated with heroin and HIV!
- Poor response to steroids
- Rapid progression to end-stage renal diease

Diagnostic Testing in Renal Disease

Diagnostic Testing in Renal Disease

- Urinalysis
- No recommendations for routine testing in the general population
- Screening in diabetes in HTN

Diagnostic Testing in Renal Disease

- Proteinuria
 - From either glomerular or tubal disease
 - Microalbuminuria → 30–300 mg/24 h
 - Mild proteinuria (<1gm/day) in up to 10% of the population, usually resolves spontaneously
 - Proteinuria secondary to stress → fever,
 CHF, extreme exercise
 - Orthostatic proteinuria → prolonged standing → Benign
 - Diagnosed by splitting 24 urine → First 8 hours, no protein; next 8 hours, positive protein

HIN 30-300 * DM MICIO ->ACHARB 10,000/NEEK 11608 300-15n 152 17 334 34 199 117 10gm 44

TRB BENIGN * DM MICTO ->ACT/ARB 1604 300 - 15n 15n 17 33h 34 43n 44 10gm 44

Diagnostic Testing in Renal Disease

- Hematuria
 - Bladder → intact RBCs
 - Kidney → dysmorphic RBCs
 - Etiology includes
 - Stones
 - Cancer
 - Bleeding disorders
 - Trauma
 - Cyclophosphamide

UN Tracy offerent 75 Phr MICIO -> ACT/ARB HITN Braign STONE : 300 - 15h Here Intection TUMOR THETMAN! TROUMA N) MEDICAL

Diagnostic Testing in Renal Disease

- Nitrites on dipstick
 - Bacteria reduce nitrate → nitrite
 - Marker of infection
- Bacteriuria
 - Isolated finding little significance
 - Except in pregnant women
 - Routine screening recommended
 - Treatment indicated if positive
 - 30% of pregnant women with bacteruria progress to pyelonephritis

VIA Tracy offerent of the states Berign NITTOTE - NITTOTY STONE S Hene Intection Tumor THETHER Frauna

Significance of Urinary Casts

Hyaline	Dehydration. Accumulation of normal tubular protein. Does not always implicate disease	
Red cell	Glomerulonephritis	
Broad, waxy	Chronic renal failure	
Granular	Also called "dirty" or "muddy" Associated with ATN. Accumulated epithelial cells	
White cell	Pyelonephritis, interstitial nephritis	

Hyaline Urinary Cast— Dehydration

Reproduced with permission from Dr. Charles McWilliams, Nevis Rural Clinic, Sovereign Medical Order of the Knights Hospitaller, West Indies

UN Tracy officera 20-> AltergiL BENIGN SPOT ALL Crest STONE S Hene Intection Tumor Trainer! PLAN MEDICAL

- Overview
 - Most common causes are diabetes and hypertension
 - 2. Glomerulonephritis
 - 3. Cystic disease
 - 4. Interstitial nephritis

- Indications for dialysis → lifethreatening abnormalities
 - 1. Fluid overload
 - 2. Severe acidosis
 - 3. Pericarditis
 - Encephalopathy and severe neurologic impairment
 - 5. Severe hyperkalemia

- Hemodialysis used in 85% of patients
- Peritoneal dialysis in 15%
 - Most common complication is peritonitis

- Complications
 - Anemia → loss of erythropoietin
 - Hypocalcemia/ hyperphosphatemia → loss of 1,25 dihydroxy-vitamin D
 - High phosphate: calcium carbonate, calcium acetate, Sevelamer, lanthanum, Cinacalcet
 - Do not used aluminum-based binders!!
 - Osteodystrophy (osteitis fibrosa cystica)
 → loss of 1,25 dihydroxy-vitar (APYON) MEDICAL

Peripheral smear of a patient with ESRD

- Complications (Cont'd)
 - Hypermagnesemia → decreased excretion
 - Hypertension and accelerated arthrosclerosis → unclear etiology, most common cause of death, BP goal <130/80
 - Infection → uremia impairs WBC function
 - Bleeding → platelet dysfunction, treat with desmopressin
 - Dietary treatment → restrict sodium, potassium, magnesium, phosphate and protein

1,25 > 1Cc > 177 Bone 318CG LAPLAN MEDICAL

Survival Statistics

Live, related donor	95% at one year, 72% at 5 years
Cadaver donor	88% at one year, 58% at 5 years
Dialysis alone	30-40% at 5 years
Diabetics on dialysis alone	20% at 5 years

Renal Transplantation

- Average wait list is 2–4 years
- Post-transplantation graft rejection prevention
 - 1. Cyclosporine
 - 2. Tacrolimus
 - 3. Mycophenolate

Graft vs. Host Disease

© 2007 Kaplan Inc., Reproduced with permission from DxR Imaging

Severe Graft vs. Host Disease

Reproduced with permission from the European College for Hospital Teachers and Play Therapists by net, sponsored by the Program Minerva of the European Commission

Fluid and Electrolyte Disorders

Hyponatremia

- Serum sodium <135 mEq/L
- Free water retention or urinary sodium loss
- Serum sodium largely determines serum osmolarity
 - Serum osmolarity = (2 x sodium) +
 BUN/2.8 + glucose/18
 - If serum glucose and BUN are normal, then serum osmolarity is 2 x sodium + 10

 KAPLAN) MEDICAL

Hyponatremia

- Presentation
 - Neurologic symptoms
- Treatment
 - Mild hyponatremia → fluid restriction
 - Moderate hyponatremia → 0.9% normal saline + loop diuretic
 - Severe hyponatremia → 3% hypertonic saline
- Complications of treatment
 - Rapid correction of serum sodium -- central pontine myelinolysis!!

- Pseudohyponatremia
 - 1. Total body sodium is normal
 - 2. Serum sodium is artificially low
 - 3. Treat the etiology:
 - Hyperglycemia

 serum sodium

 by 1.6 mEq/L per 100 mg/dL

 increase
 - Hyperlipidemia
- Hypervolemia († ECF)

Hypovolumy HIPUTUSIENIC PSEUDO

CICLOSTI 1100 : 11-6

NEPHOSTI Glucose: NA * 500 Aslucase Aslucase

Hyporolumy Approvidence Pseudo

Collosis 100 : 11.6

Merhosis glucose: NA Notice Aglucost Alto FLAN MEDICAL

Hypovolemia (↓ ECF)

Urine Na <10	Urine Na >10
Dehydration	Diuretics
Vomiting	ACE inhibitors
Diarrhea	Renal salt wasting
Sweating	Addison disease
	Cerebral sodium wasting

Euvolemia

- 1. Psychogenic polydipsia
- 2. Hypothyroidism
- 3. Diuretics
- 4. ACE inhibitors
- 5. Endurance exercise
- 6. SIADH

SIADH

- Etiology, organic: CNS disease, pulmonary disease, neoplastic disease
- Etiology, inorganic: SSRIs, TCAs, haloperidol, cyclophosphamide, vincristine, carbamazepine
- Diagnosis → Increased urine osmolarity and sodium (osmolarity of >100 is suggestive)
- 4. Most accurate test: elevated ADH
- 5. Treatment
 - Chronic SIADH: demeclocycline or lithium
 KAPLAN) MEDICAL

>Norm! STADHI CNS: ANI PULM: AND SSRJ * 505m=2:N9 * > UNE HIGH > UOSn: High

Hypernatremia— Etiology

- Insensible losses
- GI loss
- Transcellular shift
- Renal
 - 1. Nephrogenic diabetes insipidus
 - 2. Central diabetes insipidus
 - Idiopathic (most common), trauma, infections, tumors, granulomas, hypoxic brain damage
 - 4. Osmotic diuresis

Hypernatremia— Etiology

- Presentation
 - 1. Primarily neurologic
- Diagnosis
 - Watching for a decrease in urine volume after administering ADH → central diabetes insipidus
- Treatment
 - CDI → correct underlying cause, give vasopressin
 - 2. NDI → correct underlying cause, diuretic or NSAIDs KAPLAN MEDICAL

Gre MOTI 1NG SKINO - GI LOSS DI Wolung NOFMa) 505M CAPLAND MEDICAL

1 INSULINI Alkalosis A Cidosis DOIGH ADDIST DIGE XIN -BA/FOLKTU
ROPIGEMENT VAldo-Addrsoi. 1 Aldo 43 MEDICAL

Hypokalemia

- Etiology
 - 1. GI loss
 - Increased aldosterone states: Conn syndrome, licorice, Bartter syndrome, or Cushing disease
 - 3. Low magnesium
- Presentation
 - Muscle and heart: weakness, arrhythmias
 - Nephrogenic DI
- Diagnosis
 - EKG: T-wave flattening and U-wave

Hypokalemia

- Treatment
 - Correct underlying cause
 - 2. Repletion
 - IV maximum of 10–20 mEq/hr
 - Oral: 200–400 mg/point of K decrease
 - GI tract slows absorption, dextrose † K entry, use ½ NS or NS
 - Potential complication of rapid correction is fatal arrhythmia
 - Total body requirement is 4-5 mEq/kg/point decrease in K
 - . Do not use IV dextrose! KAPLAN MEDICAL

Hyperkalemia— Etiology

- Increased intake, usually with impaired excretion
- Cellular shift
 - Pseudohyperkalemia
 - Acidosis
 - 3. Insulin deficiency
 - 4. Tissue breakdown
 - 5. Periodic paralysis
- Decreased urinary excretion
 - Renal failure
 - Hypoaldosteronism
 - 3. Adrenal insufficiency or adrenalectomy
 - 4. Potassium-sparing diuretics
 - 5. NSAIDs

Hyperkalemia— Presentation and Diagnosis

- Presentation
 - 1. Muscle weakness with K > 6.5
 - 2. Abnormal cardiac conduction
- Diagnosis
 - EKG: peaked T-waves, wide QRS, short QT, or prolonged P-R

Hyperkalemia— Treatment

- Treatment
 - Emergently (EKG changes): calcium chloride
 - 2. Sodium bicarbonate
 - 3. Glucose + insulin
 - 4. Diuretics, β-agonists
 - 5. Kayexalate ®
 - 6. Dialysis

Renal Tubular Acidosis

NH3-7. NHy DISTAL PROXIMAL CAN'T Excrete HIT UNING ENSIGN -LAND MEDICAL

Renal Tubular Acidosis Type I (Distal)

- Etiology
 - Usually sporadic, secondary to autoimmune disease, drugs, nephrocalcinosis, sickle cell, chronic infection, familial, chronic hepatitis
- Presentation
 - 1. Urine pH >5.4
 - 2. Hyperaldosteronism and hypokalemia
 - 3. Nephrocalcinosis and nephrolithiasis

NH3-7 NH4

DISTAI PROXIMAL

Absorbs

Bicarb - A GIVE BOSIC SIVE BICARD APLANS MEDICAL

Renal Tubular Acidosis Type I (Distal)

- Diagnosis
 - Acid load test → urine pH remains elevated
 - Hypokalemia
- Treatment
 - 1. Oral bicarbonate
 - 2. Potassium replacement

Renal Tubular Acidosis Type II (Proximal)

- Etiology
 - Fanconi syndrome
 - Wilson disease
 - 3. Amyloidosis
 - Myeloma
 - Acetazolamide
 - Vitamin D deficiency, secondary hyperparathyroidism, chronic hypocalcemia
 - 7. Heavy metals
 - 8. Chronic hepatitis
 - 9. Auteimmune diseases

Renal Tubular Acidosis Type II (Proximal)

- Presentation
 - Inability to absorb bicarbonate → urine pH <5.4
 - Hypokalemia, serum bicarbonate 18–20
 - Malabsorption of glucose, phosphate, urate and amino acids
 - 4. Bone lesions (osteomalacia and rickets)

 KAPLAN) MEDICAL

NH3-7 NHY

DISTAL PROXIMAL TO
CANITAL SICALD MG STONE BASI C' DSTONES GIVE ACTO !! GIVE BIRATE GIVE BICATO BLAND MYDICAL

NH13=2NHLy DISTAL PROXIMAL T CON'T Excelle HIT CANTADSOLDS BICALD * metil) - 6 UVINH_ DSTONES AG STONE We Acto !! UTINE BESTE Drugeric CAPLAN) MEDICAL

Renal Tubular Acidosis Type II (Proximal)

- Diagnosis
 - Unable to absorb IV bicarbonate → acidemia and basic urine
- Treatment
 - Potassium replacement
 - Large amounts of bicarbonates + thiazide diuretic

Hyporeninemic/ Hypoaldosteronism (Type IV)

- Etiology
 - Aldosterone deficiency or adrenal insensitivity to angiotensin II
 - 2. Diabetes
 - 3. Addison disease
 - 4. Sickle cell disease
 - 5. Renal insufficiency
- Presentation
 - 1. Usually asymptomatic hyperkalemia
 - 2. Mild to moderate renal insufficiency
 - Hyperchloremic metabolic acidosis (nonanion gap)

NH137NH4 DISTAL en bi Proximal VAlbsibs Bicalb LAND LAND Fludracorion BRASIC LAND MEDICAL

Renal Tubular Acidosis

END

Metabolic Alkalosis

- H⁺ Ion loss
 - Exogenous steroids
 - 2. GI loss
 - 3. Renal loss
 - Decreased chloride intake
 - 5. Diuretics
- HCO₃ + retention
 - Bicarbonate administration
 - 2. Contraction alkalosis
 - Milk-alkali syndrome
- H⁺ movement into cells
 - Hypokalemia

Respiratory Alkalosis

- Hyperventilation of any cause
 - 1. Anemia
 - 2. Pulmonary embolus
 - 3. Sarcoidosis
 - 4. Anxiety and pain
 - 5. Progesterone, catecholamines
 - 6. Salicylates
 - 7. Hypoxia
 - 8. Cirrhosis

Alkalosis HCaz Do 24 -MEMINO TATE OF ALCO

Acidosis

Metabolic Acidosis

- Low anion gap
 - Myeloma
 - 2. Low albumin
 - 3. Lithium
- Normal anion gap
 - 1. Diarrhea
 - 2. Renal tubular acidosis
 - 3. Ureterosigmoidoscopy

Metabolic Acidosis (Cont'd)

- Increased anion gap (LA MUD PIE)
 - Lactate
 - Aspirin
 - Methanol
 - Uremia
 - Diabetic ketoacidosis
 - Paraldehyde, Propylene glycol
 - Isopropyl alcohol, INH
 - Ethylene glycol

Alkabsis HCQ NE - (CLAUBICER)

1AG LacTate VBP (ICL IL+1CO2 TLACTATE

(CLaubication) Alkalosis LACTATE UBP

Respiratory Acidosis

- Hypoventilation of any cause
 - COPD
 - 2. Pickwickian syndrome
 - 3. Obesity
 - 4. Suffocations
 - 5. Opiates
 - Sleep apnea
 - 7. Kyphoscoliosis
 - 8. Myopathies
 - 9. Neuropathy
 - 10. Effusion

Nephrolithiasis

Nephrolithiasis— Etiology

- Incidence: 1-5% of the population
 - Composition of stones includes
 - Calcium oxalate → 70%
 - Calcium phosphate → 10%
 - Mg/aluminum/phosphate (struvite) → 5-10%
 - Uric acid → 5%
 - Cysteine → 1%
 - Indinavir

* Calcium. CaOx FAT+ Catt * Calcion >> STONES OXELETES -> STONES INDI LAVIT 4% >510NOS MEDICAL

Hypercalciuria— Etiology

- Increased absorption
 - 1. Vitamin D intoxication
 - 1 Vitamin D with sarcoidosis and other granulomatous disease
 - 3. Familial
- Idiopathic renal hypercalciuria
- Resorptive
 - Hyperparathyroidism (10-30% will present with stones)
 - 2. Multiple myeloma, metastasis, hypercalcemia of malignancy KAPLAN) MI

Hyperoxaluria— Etiology

- Primarily familial
- Enteric

Fat malabsorption

Fat binds calcium

Increased oxalate resorption

Hyperoxaluria— Findings

Reproduced with permission from Dr. Charles McWilliams, Nevis Rural Clinic, Sovereign Medical Order of the Knights Hospitaller, West Indies, Caribbean

1 Calcium. CaOK FaT + Catt 1 Calcion > STONES Oxeletes > STON FFA+ catt X Indi NEVIT 4% Acido:

Other Stones to be Considered

- Hypocitrauria
 - titrate leads to † calcium absorption
 - Induced by acidosis
- Uric acid stones
 - Form in acidic urine
 - Causes include gout, leukemia, and Chron disease
 - Radiolucent

Other Stones to be Considered

- Cystinuria
 - 1. Genetic only
- Infection
 - Urease producing organisms → alkaline urine → struvite stones
 - Proteus, Staphylococcus,
 Pseudomonas, and Klebsiella

Stones— Clinical Findings

- Presentation
 - Constant, flank pain radiating to the groin
 - 2. Hematuria
- Diagnosis
 - Plain x-ray
 - 2. Ultrasound
 - 3. Strain the urine
 - Serum and urine calcium
 - 5. IV pyelogram
 - 6. Helical CT without contrast

* Calcium. GOX 1 Calcian -> STONES FaT + Catt Oxclites -> STONES FFA+ catt X INDINAVIT 40/ >STONES GUY MVA 1A6 Seizule V Coti Acidosir

* Calciun. CaOx Fat + Catt
FFA+ Catt
Suicide
AST! Projeus 1 Calcion > S Oxeletr Indika

Large Kidney Stone on Abdominal X-ray

This image was reproduced from Wikipedia, http://www.wikipedia.com

Stones— Management

- < 5 mm → pass spontaneously
- < 2 cm → shockwave lithotripsy
- Uretoscopy
- Percutaneous removal results in longer hospital stay
- Analgesia, hydration and bed rest are mainstays regardless of size

Shockwave Lithotripsy

This image was reproduced from Wikipedia. http://www.wikipedia.com

Pain-> Gran Some hemalusia Kelevolac Pally
Vach John John
Small Challepal Surger

Hereditary Cystic Disease

Adult Polycystic Kidney Disease

KAPLAN) MEDICAL

Adult Polycystic Kidney Disease

- Etiology
 - 1. Genetic
 - 2. Pathogenesis is uncertain
- Presentation
 - Flank pain, hematuria (microscopic or gross), infections and calculi
 - 2. May be asymptomatic
 - Extra-renal manifestations includes
 - Hepatic cysts → 40-60%
 - Colonic diverticula
 - Hypertension → 50%
 - Mitral valve prolapse → 25%
 - Intracranial aneurysm → 10-20%

Adult Polycystic Kidney Disease

- Diagnosis
 - 1. Ultrasound and CT scan
- Treatment
 - Nonspecific
 - 2. Manage complications

Simple Renal Cyst

- Very common
- Represent 65-70% of all renal masses
- Smooth-walled with no debris → expectant management
- Irregular-walls or debris → aspiration to exclude malignancy

Cystic More Infection Dialysis Simple · Smooth · No Debis LAN) MEDICAL

Essential Hypertension

 In the normal population (i.e. NO diabetes and NO renal disease)

Systolic > 140

or

Diastolic >90

 Discovered on multiple readings in the absence of a specific etiology

Avoid "White-Coat Hypertension"

- Allow the patient to sit quietly for 5 mins
- NEVER label a patient as hypertensive with one reading
- Repeat 3-6 times over several months before confirming the diagnosis and initiating therapy

Essential Hypertension

In diabetics and those with renal disease

 In addition → those with BP > 160/110 must receive two-drug therapy

Essential Hypertension

- Presentation
 - Most common → asymptomatic patient with elevated BP found on routine screening
 - 2. When symptoms are present
 - Acute → hypertensive emergency
 - Long-term → end-organ damage
 - Secondary HTN → concomitant symptoms

 KAPLAN) MEDICAL

Essential Hypertension— Labs

- Focus → evaluate for end-organ damage and rule-out secondary causes
 - 1. Urinalysis
 - 2. Hematocrit
 - 3. Serum potassium
 - 4. Serum BUN and Cr
 - 5. ECG
 - 6. Blood glucose
 - 7. Plasma lipids

Classification and Treatment Guidelines

Class	Systolic	Diastolic	Lifestyle Mod.	<u>Drug</u> therapy
Pre- HTN	120-139	80-89	Yes	Only if (+) end- organ damage
Stage 1 HTN	140-159	90-99	Yes	Yes
Stage 2 HTN	>160	>100	Yes	Two-drug regimen

Drug of Choice?

- Initial treatment
 - 1. Diuretic → mortality benefit
 - If diuretics fail → add a second drug
 - Beta-blocker
 - Calcium-channel blocker
 - ACE inhibitor
 - Angiotensin-receptor blocker

Individualized Treatment

- Diabetics
 - ACE inhibitors or angiotensin-receptor blockers
- Post-MI
 - Beta-blocker
- Decreased left-ventricular systolic function
 - ACE inhibitor and/or beta-blocker
- Pregnancy
 - α-methyldopa, labetalol, hydralazine or calcium-channel blockers
 - ACE-inhibitors and angiotensin receptor blockers are a NO-NO!!!!
 - Diuretics are relatively contraindicated

Long-term Complications

- Cardiac → Acute MI, CHF, leftventricular hypertrophy, aortic aneurysm, and dissection
- Cerebrovascular → TIA or stroke
- Renal → proteinuria, microscopic hematuria, increased BUN/Cr, CRF
- Retinopathy → Hemorrhages, exudates, arteriolar narrowing, and papilledema

Hypertensive Emergency— An Overview

- Cardiac, neurologic, renal, and retinal involvement
- Diastolic typically > 120-130 mmHg
- Symptoms → headache, dizziness, chest pain, dyspnea, blurry vision, and palpitations
- Signs → Evidence of stroke, subarachnoid hemorrhage, encephalopthy, myocardial ischemia, papilledema

 KAPLAN) MEDICAL

Hypertensive Emergency— Diagnosis

- White-coat syndrome is NOT a concern given clear-cut symptoms
- CT scan of the head → rule-out or rulein hemorrhage
- ECG → rule-out or rule-in acute MI

Hypertensive Emergency— Treatment

- IV nitroprusside and labetalol are the two drugs of choice
- Nitroglycerin if (+) myocardial ischemia
- IV Enalaprilat, esmolol, diazoxide and trimethaphan are also used
- DO NOT LOWER TOO FAR!!
 - Stay above a diastolic of 95-100 mmHg

Secondary Hypertension

- · Who should be screened?
 - Those who are very young or very old
 - Those with key features of a particular cause
 - 3. Hypertension refractory to therapy

Renal Artery Stenosis

- Etiology
 - Elderly → atherosclerotic disease
 - 2. Young → fibromuscular dysplasia
- Findings
 - Abdominal bruit that radiates laterally (50-70% of patients)

Renal Artery Stenosis

- Diagnosis
 - 1. Best initial test is an ultrasound
 - Captopril renogram
 - Arteriogram is best to confirm the diagnosis
 - Duplex ultrasound (accuracy is operator dependant)
 - MRI angiography
- Best initial treatment is percutaneous
 transluminal angioplasty → If failure occurs
 → repeat stenting → failure stills occurs? →
 surgical correction → surgical correction fails?

KAPLAN) MEDICAL

- ACE inhibitors

Renal Artery Stenosis

- Diagnosis
 - 1. Best initial test is an ultrasound
 - Captopril renogram
 - Arteriogram is best to confirm the diagnosis
 - Duplex ultrasound (accuracy is operator dependent)
 - MRI angiography
- Best initial treatment is percutaneous transluminal angioplasty — If failure occurs
 - → repeat stenting → failure stills occurs? → surgical correction → surgical correction fails?

KAPLAN) MEDICAL

- ACE inhibitors

Primary Hyperaldosteronism (Conn Syndrome)

- Etiology
 - Most common cause → unilateral adenoma (sometimes bilateral)
 - Remaining cases due to bilateral hyperplasia
- · Cancer is rare
- Presentation
 - Hypertension (+) hypokalemia with or without symptoms KAPLAN MEDICAL

Primary Hyperaldosteronism (Conn Syndrome)

- Diagnosis
 - Elevated serum and urine aldosterone
- Treatment
 - Adenoma → surgical resection
 - Hyperplasia → potassium-sparing diuretics

Pheochromocytoma

- Etiology
 - Most common cause is a benign adrenal tumor.
 - 2. Rule of 10's: 10% bilateral, 10% malignant, 10% extra-adrenal
- Presentation

Pheochromocytoma

- Etiology
 - Most common cause is a benign adrenal tumor.
 - 2. Rule of 10's: 10% bilateral, 10% malignant, 10% extra-adrenal
- Presentation
 - Episodic HTN with headache, sweating, palpitations and tachycardia

 | KAPLAN MEDICAL

Cushing Disease

- Etiology
 - Most common cause is ACTH hypersecretion secondary to a pituitary adenoma
- Presentation
 - Hypertension with Cushingoid features
 - Truncal obesity, buffalo hump,
 menstrual abnormalities, striae,
 impaired healing

 MEDICAL

Other Causes of Secondary Hypertension

- Coarctation of the aorta
 - Key feature is BP > in the upper extremities versus the lower extremities
- Other causes
 - 1. Oral contraceptives
 - 2. Acromegaly
 - 3. Congenital adrenal syndromes
 - 4. Chronic renal disease

Antihypertensive Medications— Diuretics

Thiazides	Loop Diuretics	Potassium Sparing
HCTE	Furosemide	Spironolactone
Chlorthalidone	Bumetanide	Amiloride
Metolazone	Torsemide	Triamterene
Indapamide		

Antihypertensive Medications

- β-Blockers
- ACE-inhibitors
- Calcium-channel blockers
- Angiotensin receptor antagonists
- Central-acting sympatholytics
- Direct vasodilators
- α-adrenergic blockers

Complications— Left Ventricular Hypertrophy

Complications— Aortic Aneurysm

© 2007 Kaplan Inc., Reproduced with permission from DxR Imaging

Complications— Myocardial Infarction

© 2007 Kaplan Inc., Reproduced with permission from DxR Imaging

Complications— Peripheral Vascular Disease

© 2007 Kaplan Inc., Reproduced with permission from DxR Imaging

Cushing Disease— Ecchymosis

Reproduced with permission from Endocrinologie, Universite Claude Bernard, Lyon, France

Cushing Disease— Moon Facies

Reproduced with permission from Endocrinologie, Universite Claude Bernard, Lyon, France

