DS1: Josephus - Aufgaben

Sonntag, 19. Februar 2023 04:51

Aufgabe 1) Josephus

- a) Geben Sie das Rekursionsschema der Josephus-Nummern J(n) an.
- b) Ausgehend von diesem Schema formulieren Sie eine Hypothese f
 ür eine explizite (geschlossene Formel) der Josephus-Nummern J(n).
- c) Beweisen Sie die Hypothese mittels vollständiger Induktion über eine geeignete Induktionsvariable

1)a)
$$J(1) = 1$$

 $J(2n) = 2 \cdot J(n) - 1 \rightarrow \text{für gurade Zahlen } (a)$
 $J(2n+1) = 2 \cdot J(n) + 1 \rightarrow \text{für ungurade Zahlen } (b)$

→ dann gill:
$$J(n) = J(2^m + r) = 2r + 1$$
 (A)
→ d.h. für n mit $2^m \le n < 2^{m+1}$ L. beide Gleichungen sind gleich

→d.h. für n mit
$$2^m \le n \le 2^{m+1}$$
 Labeide Gleichungen sind gleich

|A:
$$m=0$$
 $\sqrt{n=2^{\circ}+r}$ $\sqrt{d.h}$ r muss 0 sein $\sqrt{0.6}$ r < 2° 2 r = 0

7 emostren in:
$$J(2^m + r) = 2r + 1$$

$$J(2^0 + 0) = 2 \cdot 0 + 1$$

$$J(1) = 1$$

|V: m=k
$$\sqrt{1 - n'} = 2^k + r'$$
, also: $\sqrt{1 - n'} = 2r' + 1$ (|V: $2^k + irgundwas$)

18:
$$m = k+1$$
 $\sqrt{n''} = 2^{k+1} + r''$, also: $\sqrt{(n'')} = 2r'' + 1$ (Ergebniss van Beweis)

Ind. beweis: mussen beide Falle aus Rekurrsionsschema beweisen Jamit geschlossene Formel stimmt (beide Falle enthält) ⇒ 1. Fall (a): $n'' = 2^{k+1} + \Gamma''$, $0 \le \Gamma'' < 2^{k+1}$

(grade)

• eo gill
$$n \in \mathbb{N}$$
: $\underline{n}'' = 2 \cdot n = 2^{k+1} + \Gamma''$

• d.h. Γ'' muss geradle sein, dann: $\frac{\Gamma''}{2} \in \mathbb{N}$ $\left(\Gamma'' = \frac{\Gamma''}{2}\right)$

• also: $\underline{n} = 2^k + \frac{\Gamma''}{2}$

• $J(\underline{n}'') = J(2\underline{n})$ || wegen Schema: $J(2n) = 2 \cdot J(n) - 1$

= $2 \cdot J(2^k + \frac{\Gamma''}{2}) - 1$ || $I' \cdot n' = 2^k + \Gamma' \cdot 2 \cdot J(n') = 2\Gamma' + 1$

(iv) $2 \cdot \left[2 \cdot \left(\frac{\Gamma''}{2}\right) + 1\right] - 1$

wie Γ

(n" ist gerade Zahl)

$$= 2 \cdot [r'' + 1] - 1$$

$$= 2 \cdot r'' + 2 \cdot 1 - 1$$

$$\frac{1}{2}(n'') = 2r' + 1$$

⇒2. Fall (b):
$$n'' = 2^{k+1} + \Gamma''$$
, $0 \le 1 \le 2^{k+1}$
(ungerade)
⇒ es gibt $n \in \mathbb{N}$: $n'' = 2n - 1 = 2^{k+1} + \Gamma''$
⇒ d.h. Γ'' muss ungerade sein, dann $\frac{\Gamma'' - 1}{2}$ ($\Gamma'' = \frac{\Gamma'' - 1}{2}$)

⇒ es gibl
$$n \in \mathbb{N}$$
: $n'' = 2n - 1 = 2^{\kappa + n} + \Gamma''$

⇒ d.h. Γ'' muss ungerade sein, damn

⇒ also: $\underline{n} = 2^{\kappa} + \left(\frac{\Gamma'' - 1}{2}\right)$

⇒ $J(n'') = J(2n + 1)$

(b) $2 \cdot J(n) + 1$

(c) $2 \cdot J(2^{\kappa} + \left(\frac{\Gamma'' - 1}{2}\right)) + 1$
 $= 2 \cdot \left[2 \cdot \left(\frac{\Gamma'' - 1}{2}\right) + 1\right] + 1$
 $= 2 \cdot \left[\Gamma'' - x + A\right] + 1$
 $J(n'') = 2\Gamma'' + 1$

Verweis:

a) $J(2^m) = 1$

(für alle $m \geq 0$).

b) $J(2^m - 1) = 2^m - 1$ (für alle m > 0).

1 Aufgabe

1. Rekursions-Schema für die Josephus Nummern

- 2. Alle natürlichen Zahlen nmit J(n)=1 bestimmen und per Induktion beweisen
- 3. Alle natürlichen Zahlen n mit J(n) = n bestimmen und per Induktion beweisen

$$J(2n) = 2 \cdot J(n) - 1$$
 \rightarrow gurode Zahlen (a)
 $J(2n+1) = 2 \cdot J(n) + 1$ \rightarrow ungerade Zahlen (b)

2. qug.
$$J(n) = 1$$
 für alle $n = 2^m$ mix $m \ge 0$
 $\to J(2^m) = 1$

|A:
$$m = 0$$
 $\sqrt{(2^\circ)} = 1$

18:
$$m = k+1$$
 $\sqrt{\frac{1}{2}(2^{k+1})} = 1$

3.
$$geg: J(n) = n$$
 für alle $n = 2^m - 2$ mix $m > 0$

$$\to J(2^m - 1) = 2^m - 1$$

1A:
$$m = 1$$
 $\sqrt{(2^2 - 1)} = 2^2 - 1$

14:
$$m = k$$
 $\sqrt{3}(2^{k}-1) = 2^{k}-1$

1B:
$$m = k+1$$
 $\sqrt{(2^{k+1}-1)} = 2^{k+1}-1$

Indbeweis:
$$n = 2^{k+1} - 1$$
 \Rightarrow wir wissen aus (2) das 2^{k+1} gerade, also ist $2^{k+1} - 1$ ungerade

$$\begin{array}{l} \Im \left[(2n+1) = 2 \cdot \Im(n) + 1 \right] & (b) \\ \Im \left[(2 \cdot (2^{k+1} - 1) + 1) = 2 \cdot \Im(2^{k+1} - 1) + 1 \right] & \frac{\|n\|}{2} \\ \Im \left[(2^{k+1} - 1) + 1 \right] & = 2 \cdot \Im(\frac{2^{k+1} - 1}{2}) + 1 \end{array}$$
 Aquivalenzum formum in $\Im(n)$

$$\frac{1}{3}(2 \cdot (2^{k+1} - 1) + 1) = 2 \cdot \frac{1}{3}(2^{k+1} - 1) + 1 \qquad \frac{1}{2}$$

$$\frac{1}{3}(2^{k+1} - 1) + 1) = 2 \cdot \frac{1}{3}(2^{k+1} - 1) + 1 \qquad \frac{1}{2}$$

$$\frac{1}{3}(2^{k+1} - 1) = 2 \cdot \frac{1}{3}(2^{k+1} - 1) + 1$$

$$= 2 \cdot \frac{1}{3}(2^{k+1} - 1) + 1$$

$$= 2 \cdot \frac{1}{3}(2^{k-1} - 1) + 1$$

$$= 2^{k+1} - 2 + 1$$

$$\frac{1}{3}(2^{k+1} - 1) = 2^{k+1} - 1$$