无锡学院 试卷

			2022		202	3 学	年第	1 4	学期			
	概率统计课程试卷											
试卷	类型	<u>A</u> (注	明 A、 〕	B 卷)	考试	类型_	闭卷	:(注	明开、	闭卷)		
注意:	1、本课	程为	必修	_ (注明』	必修或选	修),学	时为4	.8	学分为.	3	-	
2、本试卷共 7页; 考试时间120 分钟; 出卷时间: _2022年12月												
	3、姓名、学号等必须写在指定地方; 考试时间:2023年_3月											
4、本考卷适用专业年级:21 级												
题 号	_	=	111	四	五.	六	七	八	九	总	分	
得 分												
阅卷人												
(以上内容为教师填写)												
专业		年级										
学号						任课教师:						

请仔细阅读以下内容:

- 1、 考生必须遵守考试纪律。
- 2、 所有考试材料不得带离考场。
- 3、 考生进入考场后,须将学生证或身份证放在座位的左上角。
- 4、 考场内不许抽烟、吃食物、喝饮料。
- 5、 考生不得将书籍、作业、笔记、草稿纸带入考场,主考教师允许带入的除外。
- 6、 考试过程中, 不允许考生使用通讯工具。
- 7、 开考 15 分钟后不允许考生进入考场,考试进行 30 分钟后方可离场。
- 8、 考生之间不得进行任何形式的信息交流。
- 9、 除非被允许, 否则考生交卷后才能离开座位。
- 10、考试违纪或作弊的同学将被请出考场,其违纪或作弊行为将上报学院。

本人郑重承诺: 我已阅读上述 10 项规定,如果考试是违反了上述 10 项规定,本人将自愿接受学校按照有关规定所进行的处理。上面姓名栏所填姓名即表示本人已阅读本框的内容并签名。

一. 选择题(每题3分,共15分	
1. 设事件 A="甲击中目标,乙未击中目标	示",则 <i>A</i> 的逆事件为().
(A) 甲未击中目标, 乙击中目标	(B) 甲和乙均击中目标
(C) 甲未击中目标	(D) 甲未击中目标或者乙击中目标
2.设 A,B 为随机事件, 下列命题中, 正码	角的是()。.
(A) 若 $P(A) = 0$,则 A 是不可能事件;	(B) $P(A \cup B) = P(A) + P(B)$;
(C) $P(A)+P(\overline{A})=1$;	(D) $P(A-B)=P(A)-P(B)$
3. 设 $X \sim N(\mu, 4^2)$, $Y \sim N(\mu, 5^2)$,设 H	$P(X \le \mu - 4) = p_1, P(Y \ge \mu + 5) = p_2, \text{in}$
(A) 对任意实数 μ 有 $\boldsymbol{p_1} = \boldsymbol{p_2}$; (-
(C) $p_1 > p_2$;	(D) 只对 μ 的个别值才有 $p_1 = p_2$.
4. 设 X_1, X_2 设为来自总体 X 的样本,	$E(X) = \mu$,下列关于 μ 的无偏估计中,最
有效的是().	
(A) $\hat{\mu}_1 = \frac{1}{5}X_1 + \frac{4}{5}X_2$	(B) $\hat{\mu}_2 = \frac{1}{8}X_1 + \frac{7}{8}X_2$
(C) $\hat{\mu}_3 = \frac{1}{2}X_1 + \frac{1}{2}X_2$	(D) $\hat{\mu}_4 = \frac{2}{3}X_1 + \frac{1}{3}X_2$
5. 设 X_1, X_2, \cdots, X_6 是取自正态总体 N	$(0,\sigma^2)$ 的一个样本,则 $\frac{X_1 + X_2 + X_3 + X_4}{\sqrt{2(X_5^2 + X_6^2)}}$
服从的分布为().	
(A) $t(2)$ (B) $t(3)$ (C	$N(0,4\sigma^2)$ (D) $\chi^2(2)$
二.填空题(每题3分,共15分	
1. 已知随机变量 x 只能取-2, 0, 1 $\frac{1}{3c}$, $\frac{1}{4c}$, $\frac{1}{6c}$, $\frac{1}{12c}$, 则 $c =$, 3 四个数值, 其相应的概率依次是

2. 设A、B是两个事件, $P(A) = P(B) = \frac{1}{3}$, $P(A|B) = \frac{1}{6}$,则 $P(A \cup B) = _____$, $P(\overline{A}|\overline{B}) = _____$.

3.设 X 为随机变量, $EX = \frac{1}{3}$, $DX = \frac{1}{9}$, 则 $P\{|X - \frac{1}{3}| \le 2\} \ge$ ______

4. 某车间生产滚珠,从长期实践中知道,滚珠直径 X (单位: cm) 服从正态分布 $N(\mu, 0.3^2)$,从某天生产的产品中随机抽取 9 个产品,测其直径,得样本均值

 $\bar{x} = 1.12$,则 μ 的置信度为 0.95 的置信区间为______

(己知:
$$z_{0.025} = 1.96$$
, $t_{0.025}(8) = 2.306$)

5. 设二维连续型随机变量(X,Y)的联合概率密度为

$$f(x,y) = \begin{cases} x^2 + kxy, & 0 \le x \le 1, 0 \le y \le 2 \\ 0, &$$
其他

则k = .

三、(本题 10 分)已知连续型随机变量 X 的概率密度为

$$f(x) = \begin{cases} 2(x^2 + \frac{x}{3}), & 0 < x < 1 \\ 0, & \text{ 其他} \end{cases}$$

求: (1) 分布函数 F(x); (2) 概率 $P(0 < X < \frac{1}{2})$; (3) Y = 1 - 2X 的概率密度.

四、(本题 10 分) 某教师发现在考试及格的学生中有 80%的学生按时交作业,而在考试不及格的学生中只有 30%的学生按时交作业,现在知道有 85%的学生考试及格,从这个班的学生中随机抽取一位学生。

- (1) 求抽到的这位学生是按时交作业的概率;
- (2) 若已知抽到的这位学生是按时交作业的,求他考试及格的概率。

五、(本题 10 分)调查某专业考生的概率统计成绩 $X \sim N(72,144)$,

- (1) 求该专业某考生的概率统计成绩在66分至84分之间的概率;
- (2) 求该专业概率统计考试的及格率;
- (3) 若从该专业随机抽取 9 位同学, 求 9 位同学的平均成绩大于 76 分的概率.

(己知: $\Phi(0.5) = 0.6915$, $\Phi(1) = 0.8413$)

六、(本题 12 分)

(1) 已知离散型随机变量 X 的分布律为

X	-2	-1	0	1	2	3
p	0.2	0.1	0.3	0.1	0.1	0.2

求: (1)
$$F(1)$$
; (2) $Y = X^2 - 1$ 的分布律; (3) EX

(2) 设二维离散型随机变量(X,Y)的联合分布律为

	Y	0	1	2
X				
0		0.15	0.3	0.35
1		0.05	0.12	0.03

求: (1) X 的边缘分布律; (2) DX (3) Z = X - 2Y 的分布律。

七、(本题 9 分) 设 x 和 y 是两个相互独立的随机变量, x 在(2,4)内服从均匀分布, y 服从参数为 2 的指数分布, 其概率密度为 $f_{y}(y) = \begin{cases} 2e^{-2y}, & y > 0 \\ 0, & y \leq 0 \end{cases}$. 求

(1) E(X+2Y+1); (2) D(X-2Y+1); (3) X 与 Y 的联合概率密度;

八、(本题 9 分) 用一台自动包装机包装奶粉,假定在正常情况下,奶粉的净重服从正态分布.根据长期资料表明,方差为225克.现从某一批产品中随机取出9袋,测得重量为:497 506 518 511 524 510 488 515 512.

- (1) 计算样本均值; (2) 计算样本方差;
- (3) 在显著性水平 $\alpha = 0.05$ 的条件下检验包装机的方差有无显著变化?

附表: $\chi^2_{0.975}(8) = 2.18$, $\chi^2_{0.025}(8) = 17.535$

九、(本题 10 分)

(1) 设总体 X 的概率密度为 $f(x) = \begin{cases} \sqrt{\theta}x^{\sqrt{\theta}-1}, & 0 \le x \le 1 \\ 0, & \text{其他} \end{cases}$, 其中 $\theta > 0$ 为未知 参数. 若 X_1, \dots, X_n 是来自总体的一个样本,求 θ 的矩估计.

(2)设总体 X 服从参数为 p(0 的几何分布,即 <math>X 的分布律为 $P(X = x) = p(1-p)^{x-1}$, $x = 1, 2, \cdots$,若 X_1, X_2, \cdots X_n 为来自总体 X 的一个样本,求参数 p 最大似然估计。