Chapitre 5 : Algorithmes gloutons INF4705 - Analyse et conception d'algorithmes

Gilles Pesant Simon Brockbank

École Polytechnique Montréal gilles.pesant@polymtl.ca, simon.brockbank@polymtl.ca

Hiver 2017

Plan

- Introduction
- Sac à dos
- 3 Arbre couvrant de poids minimum
- 4 Prouver l'optimalité d'un algorithme glouton

Faire de la monnaie, canadienne

Notre algorithme intuitif

```
fonction monnaie(P :ensemble {billets et pièces}, s :entier {somme à rendre}) :ensemble avec répétitions S \leftarrow \emptyset; {solution} tant que s > 0 faire p \leftarrow plus grande pièce de P dont la valeur \leq s; S \leftarrow S \cup \{p\}; s \leftarrow s - p; retourner(S)
```

Et ça fonctionne?

Faire de la monnaie Patron de conception

$$2 \times 20$$
\$ + 1×10 \$ + 1×5 \$ + 1×1 \$ = 56\$

Un total de 5 billets/pièces, le plus petit nombre possible (optimal).

56\$ à rendre, avec des 25\$, 10\$ et 1\$

$$2 \times 25$$
\$ + 6×1 \$ = 56\$

Un total de 8 billets et pièces; mais aurait-on pu faire mieux?

56\$ à rendre, avec des 25\$, 10\$ et 1\$

On aurait dû rendre $1 \times 25\$ + 3 \times 10\$ + 1 \times 1\$ = 56\$$ pour un total de 5 billets et pièces.

Ici notre algorithme n'est donc pas optimal. Mais il y a encore pire!

$$2 \times 20$$
\$ + 1×10 \$ + 1×5 \$ + ???

L'algorithme échoue!

Alors qu'on aurait pu rendre

$$2 \times 20\$ + 1 \times 10\$ + 3 \times 2\$ = 56\$$$

Principe Général des algorithmes gloutons

On procède par une succession de choix, prenant toujours l'alternative semblant la meilleure à ce moment-là, sans jamais revenir sur nos décisions.

Avantages^b

- simple à concevoir
- facile à implanter (pas de retour en arrière)
- rapide

Inconvénients

- plus ou moins confiné aux problèmes d'optimisation
- pas nécessairement optimal
- pourrait même ne pas retourner de solution

Patron de conception des algorithmes gloutons (voraces, «greedy»)

```
fonction glouton(C :ensemble {candidats}) : ensemble
     S \leftarrow \emptyset; {solution}
     tant que C \neq \emptyset et non solution(S) faire
           x \leftarrow \operatorname{choix}(C);
           C \leftarrow C \setminus \{x\}:
           si non illégal(S \cup \{x\})
                alors S \leftarrow S \cup \{x\}:
     si solution(S)
           alors retourner(S)
           sinon retourner "aucune solution trouvée"
```

Patron de conception des algorithmes gloutons (voraces, «greedy»)

Patron

```
\label{eq:condition} \begin{array}{l} \text{fonction glouton}(\textit{C}: \text{ensemble } \{\text{candidats}\}): \\ \text{ensemble} \\ \textit{S} \leftarrow \emptyset; \{\text{solution}\} \\ \text{tant que } \textit{C} \neq \emptyset \text{ et non solution}(\textit{S}) \text{ faire } \\ \textit{x} \leftarrow \text{choix}(\textit{C}); \\ \textit{C} \leftarrow \textit{C} \setminus \{x\}; \\ \text{si non illégal}(\textit{S} \cup \{x\}) \\ \text{alors } \textit{S} \leftarrow \textit{S} \cup \{x\}; \\ \text{si solution}(\textit{S}) \\ \text{alors retourner}(\textit{S}) \\ \text{sinon retourner "aucune solution } \\ \text{trouvée'} \end{array}
```

Faire de la monnaie

```
\begin{split} & \text{fonction monnaie}(P : \text{ensemble } \{ \text{billets et pièces} \}, \\ & s : \text{entier } \{ \text{somme à rendre} \} ) : \text{ensemble avec} \\ & \text{répétitions} \\ & S \leftarrow \emptyset \; ; \{ \text{solution} \} \\ & \text{tant que } s > 0 \; \text{faire} \\ & p \leftarrow \text{plus grande pièce de } P \; \text{dont la} \\ & \text{valeur} \leq s \; ; \\ & S \leftarrow S \cup \{p\} \; ; \\ & s \leftarrow s - p \; ; \\ & \text{retourner}(S) \end{split}
```

Plan

- Introduction
- Sac à dos
- 3 Arbre couvrant de poids minimum
- 4 Prouver l'optimalité d'un algorithme glouton

Problème du sac à dos («knapsack»)

source : Wikipedia

Données

- *n* objets de poids et valeur positifs w_i et v_i , $1 \le i \le n$.
- ullet un sac à dos pouvant supporter un poids total W
- $\sum_{i=1}^{n} w_i > W$, donc on ne peut pas y mettre tous les objets

Problème

Quels objets devrais-je mettre dans mon sac à dos afin de maximiser la valeur totale de son contenu?

Formulation mathématique

Version originale

$$\max \sum_{i=1}^{n} v_i x_i \qquad \text{tel que}$$

$$\sum_{i=1}^{n} w_i x_i \leq W$$

$$x_i \in \{0,1\} \qquad 1 \leq i \leq n$$

- x_i indique si le $i^{\text{ème}}$ objet est choisi.
- «difficile» à résoudre
- On ne connaît pas (encore) d'algorithme pour le résoudre en temps polynomial.
- exemple de programmation linéaire en nombres entiers

Formulation mathématique

Version avec fractionnement

$$\max \sum_{i=1}^{n} v_i x_i \qquad \text{tel que}$$

$$\sum_{i=1}^{n} w_i x_i \le W$$

$$0 \le x_i \le 1 \qquad 1 \le i \le n$$

- Nous avons droit aux fractions d'objets : $0 < x_i < 1$.
- On parle de relaxation continue du problème.
- Cette version est facile à résoudre, notamment à l'aide d'un algorithme glouton.
- exemple de programmation linéaire

Pourquoi s'y intéresser?

Quelques applications

- portefeuille d'investissements
- chargement de conteneurs
- découpe de rouleaux de matériel
- cryptographie à clef publique
- ... une composante importante de plusieurs autres problèmes

Généralisations

- plusieurs dimensions
- plusieurs sacs
-

Algorithme glouton pour le sac à dos, version avec fractionnement

- Nos candidats sont les objets.
- L'algorithme maintient le poids accumulé du sac.
- À chaque itération, on choisit le "meilleur" objet et on met la plus grande fraction possible de cet objet dans le sac.
- On s'arrête lorsque le sac est plein, ce qui arrivera nécessairement.

Comment choisir le meilleur objet (choix glouton)?

Choix : plus léger d'abord (w_i croissant)

$$W = 90$$

$$20 + 35 + 50 + 3/4 \times 36 = 132$$
\$

Choix : plus précieux d'abord (v_i décroissant)

$$W = 90$$

$$50 + 50 + 1/4 \times 36 = 109$$
\$

Choix : densité de valeur décroissante

10 20 30 40 50 Wi Objets: 20 50 35 50 36 2 1.75 1.67 0.9

$$W = 90$$

$$20 + 35 + 50 + 3/5 \times 50 = 135$$
\$

Choix : densité de valeur décroissante

Objets :	Wi	10	20	30	40	50
	Vi	20	35	50	36	50
	v_i/w_i	2	1.75	1.67	0.9	1

$$VV = 90$$

$$20 + 35 + 50 + 3/5 \times 50 = 135$$
\$

Ce critère de choix est optimal

(pour la version avec fractionnement).

Choix : densité de valeur décroissante

Objets :	Wi	10	20	30	40	50
	Vi	20	35	50	36	50
	v_i/w_i	2	1.75	1.67	0.9	1

$$20 + 35 + 50 + 3/5 \times 50 = 135$$
\$

Ce critère de choix est optimal

(pour la version avec fractionnement).

Solution optimale sans fractionnement : 121\$ (objets 2, 3 et 4)

Analyse asymptotique (ici version originale)

```
fonction knapsack(C, v, w, W): ensemble S \leftarrow \emptyset; ordonner C selon v_i/w_i décroissant tant que C \neq \emptyset et W > 0 faire x \leftarrow prochain élément de C; C \leftarrow C \setminus \{x\}; si w_x \leq W alors S \leftarrow S \cup \{x\}; W \leftarrow W - w_x; retourner(S)
```

Plan

- 1 Introduction
- Sac à dos
- 3 Arbre couvrant de poids minimum
- 4 Prouver l'optimalité d'un algorithme glouton

- Soit G = (S, A) un graphe composé d'un ensemble de sommets S et d'un ensemble A de paires de sommets (appelées arêtes).
- Un graphe est non orienté si ses arêtes ne sont pas ordonnées.

• Un graphe est connexe si $\forall u, v \in S$, \exists chaîne d'arêtes dans A joignant u et v.

- Un graphe est connexe si $\forall u, v \in S$, \exists chaîne d'arêtes dans A joignant u et v.
- Un cycle est une chaîne d'au moins 3 arêtes joignant un sommet à lui-même.

• Un arbre est un graphe non orienté, connexe et sans cycle.

- Un arbre est un graphe non orienté, connexe et sans cycle.
- Un arbre couvrant (ou sous-tendant) de G est un arbre T = (S', A') tel que S' = S et $A' \subseteq A$.

• Un graphe pondéré associe une longueur à chaque arête.

- Un graphe pondéré associe une longueur à chaque arête.
- Un arbre couvrant de poids minimum de G minimise la somme des longueurs des arêtes utilisées.

Pourquoi s'y intéresser?

Quelques applications

- Établir un réseau (routier, informatique) à moindre coût entre un ensemble de sites
- Variantes beaucoup plus difficiles à résoudre : à degré limité, à diamètre limité, à consommation d'énergie équilibrée, . . .
- une composante importante de plusieurs algorithmes (ex : algorithme d'approximation pour le TSP)

Introduction Algorithme de Kruskal Algorithme de Prim Comparaison

Pour un même problème, en utilisant le même patron de conception, nous verrons deux algorithmes distincts.

Algorithme de Kruskal

- Nos candidats sont les arêtes.
- L'algorithme maintient une forêt (un ensemble d'arbres).
- À chaque itération, on choisit une arête la plus courte : si elle joint deux arbres, on l'ajoute; sinon on la rejette car elle créerait un cycle.
- On s'arrête lorsqu'on a plus qu'un seul arbre.

Exemple

Exemple

Description

```
fonction Kruskal(G = (S, A): graphe, \ell : A \to \mathbb{R}_+): ensemble
     ordonner A selon \ell croissant:
     n \leftarrow |S| : T \leftarrow \emptyset:
     initialiser n ensembles, pour chaque élément de S;
     répéter
            (u, v) \leftarrow \text{prochain élément de } A;
            ucomp \leftarrow trouver(u);
            vcomp \leftarrow trouver(v);
            si ucomp≠vcomp alors
                  fusionner(ucomp, vcomp);
                 T \leftarrow T \cup \{(u, v)\};
     jusque |T| = n - 1
     retourner T:
```

Analyse asymptotique

```
fonction Kruskal(G = (S, A): graphe, \ell : A \to \mathbb{R}_+): ensemble
     ordonner A selon \ell croissant:
     n \leftarrow |S| : T \leftarrow \emptyset:
     initialiser n ensembles, pour chaque élément de S;
     répéter
            (u, v) \leftarrow \text{prochain élément de } A;
            ucomp \leftarrow trouver(u);
            vcomp \leftarrow trouver(v);
            si ucomp≠vcomp alors
                  fusionner(ucomp, vcomp);
                 T \leftarrow T \cup \{(u, v)\};
     jusque |T| = n - 1
     retourner T:
```

Algorithme de Prim

- Nos candidats sont les arêtes.
- L'algorithme maintient un seul arbre.
- À chaque itération, on choisit une nouvelle branche (arête) la plus courte.
- On s'arrête après n-1 répétitions.

Exemple

Exemple

Description

```
fonction Prim(L[1..n, 1..n]) : ensemble
       T \leftarrow \emptyset:
       pour i = 2 à n faire
             voisin[i] \leftarrow 1;
             distmin[i] \leftarrow L[i,1];
       répéter n-1 fois
             min \leftarrow \infty:
             pour j=2 à n faire
                   si 0 < distmin[j] < min alors
                          min \leftarrow distmin[i];
                          k \leftarrow i;
             T \leftarrow T \cup \{(k, \mathsf{voisin}[k])\};
             distmin[k] \leftarrow -1;
             pour i = 2 à n faire
                   si L[k,j] < distmin[j] alors
                          distmin[j] \leftarrow L[k, j];
                          voisin[i] \leftarrow k:
       retourner T:
```

Analyse asymptotique

```
fonction Prim(L[1..n, 1..n]) : ensemble
       T \leftarrow \emptyset:
       pour i = 2 à n faire
             voisin[i] \leftarrow 1;
             distmin[i] \leftarrow L[i,1];
       répéter n-1 fois
             min \leftarrow \infty:
             pour j=2 à n faire
                   si 0 < distmin[j] < min alors
                          min \leftarrow distmin[i];
                          k \leftarrow i;
             T \leftarrow T \cup \{(k, \mathsf{voisin}[k])\};
             distmin[k] \leftarrow -1;
             pour i = 2 à n faire
                   si L[k, j] < distmin[j] alors
                          distmin[j] \leftarrow L[k, j];
                          voisin[i] \leftarrow k;
       retourner T:
```

Lequel Choisir?

• Si le graphe est épars, $a \to n$ (connexe) : $\Theta(n^2)$ vs $\Theta(n \lg n)$.

• Si le graphe est dense, $a \to n^2(\binom{n}{2}) : \Theta(n^2)$ vs $\Theta(n^2 \lg n)$.

Notes

- On peut implanter l'algorithme de Kruskal à l'aide d'un monceau et éliminer ainsi le tri initial : ceci ne change pas le comportement en pire cas mais est avantageux si peu d'arêtes sont considérées.
- ② On peut également implanter l'algorithme de Prim à l'aide d'un monceau $\Rightarrow \Theta(a \lg n)$.
- 3 Il existe des algorithmes plus performants.

Plan

- Introduction
- 2 Sac à dos
- 3 Arbre couvrant de poids minimum
- 4 Prouver l'optimalité d'un algorithme glouton

1ère technique : Sous-structure optimale + choix glouton optimal

Propriété de sous-structure optimale

Une solution optimale à un exemplaire est composée de solutions optimales à des sous-exemplaires.

Propriété du choix glouton optimal

Il existe toujours une solution optimale qui contient le choix glouton qu'on s'apprête à faire.

Application: faire de la monnaie avec des 20\$,10\$,5\$,2\$,1\$

Démonstration de la sous-structure optimale

Soit une solution optimale $\langle p_1, \ldots, p_k, p_{k+1}, \ldots, p_n \rangle$.

Considérons $\langle p_1, \ldots, p_k \rangle$ et $\langle p_{k+1}, \ldots, p_n \rangle$: chacune doit être une solution optimale pour la sous-somme correspondante, sinon on obtiendrait une meilleure solution en leur substituant une (sous-) solution utilisant moins de pièces.

Application: faire de la monnaie avec des 20\$,10\$,5\$,2\$,1\$

Observation

Dans toute solution optimale, on utilisera au plus : 1 pièce de 1\$, 2 pièces de 2\$, 1 billet de 5\$ et 1 billet de 10\$.

Démonstration du choix glouton optimal

- S ≥ 21 : choix = 20\$; pourrait-on avoir une solution optimale sans un tel billet? Non car selon l'observation précédente, le total des autres billets et pièces ne dépasse pas 20.
- S = 20: choix = 20\$; clairement optimal.
- $19 \ge S \ge 11$: choix = 10\$; pourrait-on avoir une solution optimale sans un tel billet? Non car ... ne dépasse pas 10.
- ۵

Application: faire de la monnaie avec des 25\$,10\$,1\$

Observation

Dans toute solution optimale, on utilisera au plus :

9 pièces de 1\$ et 4 billets de 10\$.

Choix glouton optimal?

• $S \ge 26$: choix = 25\$; pourrait-on avoir une solution optimale sans un tel billet? Oui! Par exemple pour S = 30, remettre trois billets de 10\$ est la solution optimale.

2e technique : Matroïdes

Définition

Un matroïde M est un couple (E,\mathcal{I}) qui vérifie ces conditions :

- E est un ensemble fini;
- ② \mathcal{I} est une famille non vide de sous-ensembles de E telle que si $B \in \mathcal{I}$ et $A \subseteq B$ alors $A \in \mathcal{I}$ (\mathcal{I} est héréditaire);
- ③ Si $A \in \mathcal{I}$, $B \in \mathcal{I}$ et |A| < |B| alors $\exists x \in B \setminus A$ tel que $A \cup \{x\} \in \mathcal{I}$ (M vérifie la propriété d'échange).

Définition

Un matroïde pondéré s'adjoint une fonction $w: E \to \mathbb{R}_+$ qui associe un poids positif à chaque élément de E. Par extension, $w(A) = \sum_{x \in A} w(x)$ pour $A \in \mathcal{I}$.

Gilles Pesant. Simon Brockbank

Algorithmes gloutons appliqués aux matroïdes

Patron glouton spécialisé pour matroïdes

```
\begin{array}{l} \textbf{fonction glouton}(\textit{M}, \textit{w}) : \textbf{ensemble} \\ \textit{S} \leftarrow \emptyset \text{; } \{\textbf{solution}\} \\ \textbf{tant que } \textit{E} \neq \emptyset \text{ faire} \\ \textit{x} \leftarrow \text{arg max}_{e \in \textit{E}} \textit{w}(e) \text{;} \\ \textit{E} \leftarrow \textit{E} \setminus \{x\} \text{;} \\ \textbf{si } \textit{S} \cup \{x\} \in \mathcal{I} \\ \textbf{alors } \textit{S} \leftarrow \textit{S} \cup \{x\} \text{;} \\ \textbf{retourner}(\textit{S}) \end{array}
```

Théorème

Si $\langle M, w \rangle$ est un matroïde pondéré alors glouton(M, w) retourne un sous-ensemble optimal (c.-à-d. de poids maximum).

Un matroïde sur les graphes

Soit G = (S, A) un graphe non orienté. Définissons $M_G = (E, \mathcal{I})$:

- E = A
- $F \in \mathcal{I}$ ssi F est acyclique (c.-à-d. une forêt)

M_G est un matroïde

- E est clairement fini.
- 2 cest héréditaire : le sous-ensemble d'une forêt est une forêt.
- **3** M_G vérifie la propriété d'échange : Une forêt $F = (S_F, A_F)$ contient $|S_F| |A_F|$ arbres. (voir suivante) Soient $F_1, F_2 \in \mathcal{I}$ t.q. $|F_1| < |F_2|$: F_1 a plus d'arbres que F_2 . ∃ arbre $T \subseteq F_2$ avec sommets dans arbres distincts de F_1 .
 - $\exists (u, v) \in T$ avec de tels sommets.
 - $F_1 \cup \{(u,v)\} \in \mathcal{I}$ puisqu'aucun cycle ne sera créé.

Toute forêt de a arêtes sur n sommets contient n-a arbres.

Démonstration

Appelons t ce nombre d'arbres et dénotons respectivement par n_i et a_i le nombre de sommets et d'arêtes du $i^{\text{ème}}$ arbre.

$$a = \sum_{i=1}^{t} a_i = \sum_{i=1}^{t} (n_i - 1) = \sum_{i=1}^{t} n_i - t = n - t$$

Et donc
$$t = n - a$$
.

Application : algorithme de Kruskal

Soit
$$w(e) = (\max_{a \in A} \ell(a) + 1) - \ell(e), \quad \forall e \in E.$$

Kruskal, version glouton sur matroïde

```
\begin{array}{l} \textbf{fonction} \; \mathsf{Kruskal}(M_G, \, w) \; : \; \mathsf{ensemble} \\ S \leftarrow \emptyset \; ; \; \{\mathsf{solution}\} \\ \textbf{tant} \; \textbf{que} \; E \neq \emptyset \; \textbf{faire} \\ x \leftarrow \mathsf{arg} \; \mathsf{max}_{e \in E} \; w(e) \; ; \\ E \leftarrow E \setminus \{x\} \; ; \\ \textbf{si} \; \; S \cup \{x\} \; \mathsf{n'introduit} \; \mathsf{pas} \; \mathsf{un} \; \mathsf{cycle} \\ & \mathsf{alors} \; S \leftarrow S \cup \{x\} \; ; \\ \textbf{retourner}(S) \end{array}
```

Donc Kruskal retourne un arbre couvrant optimal (de poids min.).