Termodynamik

Termodynamik

Värmeutvidgning

$$\frac{\Delta L}{L} = \alpha \Delta T, \quad \frac{\Delta V}{V} = \beta \Delta T, \quad \beta = 3\alpha$$

Värme

$$Q = mc\Delta T$$
, $l_s = \frac{Q_s}{m}$, $l_{\mathring{a}} = \frac{Q_{\mathring{a}}}{m}$

Vätsketryck

$$p_{tot} = p_{v"atska} + p_{luft} = \rho g h + p_{luft}$$

Ideala gaslagen

$$pV = NkT \quad \text{eller} \quad pV = nRT$$
 där
$$n = \frac{m_{tot}}{M} = \frac{N}{N_A} \quad \text{och} \quad R = kN_A$$

Gasdensitet och partikeldensitet

$$\rho = \frac{m_{tot}}{V} = \frac{pM}{RT}, \quad n_o = \frac{N}{V} = \frac{p}{kT}$$

Barometriska höjdformeln

$$p = p_0 e^{-\rho_0 g h/p_0}, \quad h = \frac{p_0}{\rho_0 g} \ln \frac{p_0}{p}$$

Relativ luftfuktighet

$$R_{LF} = \frac{p_{\text{vatten}}}{p_{\text{m\"{a}ttnad}}}$$

van der Walls ekvation

$$\left(p + a\frac{n^2}{V^2}\right)(V - nb) = nRT$$

Kritisk punkt

$$V_k = 3nb, \quad T_k = \frac{8a}{27Rb}, \quad p_k = \frac{a}{27b^2}$$

Molekylradie

$$r = \left(\frac{3b}{16\pi N_A}\right)^{1/3}$$

Ångtryckskurva

$$p = Ae^{-Ml_{\rm å}/(RT)}$$

Reynolds tal

$$Re = \frac{\rho v d}{\eta}, \quad Re < 2300$$
 laminär

Volymflöde

$$\Phi = \frac{\mathrm{d}V}{\mathrm{d}t} = A_1 v_1 = A_2 v_2$$

Bernoullis ekvation

$$p_1 + \frac{\rho v_1^2}{2} + \rho g y_1 = p_2 + \frac{\rho v_2^2}{2} + \rho g y_2$$

Poiseuilles lag

$$\Phi = \frac{\pi R^4}{8n} \frac{(p_1 - p_2)}{L}$$

Tryck (mikroskopiskt)

$$p = \frac{2}{3} n_o \frac{m_{\rm en}}{2} \langle v^2 \rangle = \frac{2}{3} n_o \langle W_{\rm kin} \rangle_{\rm en}$$

Temperatur (mikroskopiskt)

$$\langle W_{\rm kin} \rangle_{\rm en} = \frac{3}{2}kT$$

Inre energi (ändring)

$$\Delta U = \frac{f}{2}Nk\Delta T = \frac{f}{2}nR\Delta T$$

Första huvudsatsen

$$Q = \Delta U + W \mod W = \int_{1}^{2} p dV$$

Isokor

$$W \equiv 0$$

Isobar

$$W = p\left(V_2 - V_1\right)$$

Isoterm

$$W = nRT \ln \left(\frac{V_2}{V_1}\right)$$

Adiabat

$$W = -\Delta U$$

Molar värmekapacitet

$$C = Mc$$
, $C_V = \frac{f}{2}R$, $C_p = C_V + R$

Adiabat(Poissons ekvationer)

$$T_1 V_1^{(\gamma - 1)} = T_2 V_2^{(\gamma - 1)}$$

 $p_1 V_1^{\gamma} = p_2 V_2^{\gamma}$

Kvoten

$$\gamma \equiv \frac{C_p}{C_V} = \frac{c_p}{c_V} = 1 + \frac{2}{f}$$

Kretsprocess

$$Q_{
m netto} = W_{
m netto} = \oint p dV$$

Verkningsgrad

$$\eta = \frac{W_{\rm netto}}{Q_{\rm in}} = \frac{Q_{\rm in} - |Q_{\rm ut}|}{Q_{\rm in}} = 1 - \frac{|Q_{\rm ut}|}{Q_{\rm in}}$$

Ideal verkningsgrad

$$\eta = \frac{T_{\text{varm}} - T_{\text{kall}}}{T_{\text{varm}}} = 1 - \frac{T_{\text{kall}}}{T_{\text{varm}}}$$

Köldfaktor (def. och idealt)

$$K_f \equiv \frac{Q_{\rm in}}{|W_{
m netto}|}, \quad K_f = \frac{T_{
m kall}}{T_{
m varm} - T_{
m kall}}$$

Värmefaktor (def. och idealt)

$$V_f \equiv rac{Q_{
m ut}}{|W_{
m netto}|}, \quad V_f = rac{T_{
m varm}}{T_{
m varm} - T_{
m kall}}$$

Gaussfördelning

$$f(v_z) = \sqrt{\frac{m_{\rm en}}{2\pi kT}} e^{-m_{\rm en}v_z^2/(2kT)}$$

Maxwell-Boltzmannfördelning

$$f(v) = 4\pi v^2 \left(\frac{m_{\rm en}}{2\pi kT}\right)^{3/2} e^{-m_{\rm en}v^2/(2kT)}$$

Medelvärden

$$\begin{split} \langle v \rangle &= \sqrt{\frac{8kT}{\pi m_{\rm en}}}, \quad \langle v \rangle = 2 \langle |v_x| \rangle \\ \langle W_{\rm kin} \rangle &= \left\langle \frac{m_{\rm en} v^2}{2} \right\rangle = \frac{m_{\rm en}}{2} \langle v^2 \rangle = \frac{3}{2} kT \end{split}$$

Stöttal (antal per sekund och kvadratmeter)

$$n^* = \frac{n_o}{4} \langle v \rangle$$

Medelfriväg

$$l = \frac{1}{n_o \pi d^2 \sqrt{2}}$$

Värmeledning (allmänt och stav)

$$P = -\lambda A \frac{\mathrm{d}T}{\mathrm{d}x}, \quad P = \lambda A \frac{T_1 - T_2}{L}$$

Värmeövergång

$$P = \alpha A \Delta T$$

Strålning

$$P_{\text{ideal}} = \sigma A T^4$$
, $P_{\text{verklig}} = e P_{\text{ideal}}$

Tabeller

Mättnads-tryck för vatten

t/°C	Vatten/kPa		
-30	0.0381		
-20	0.103		
-15	0.165		
-10	0.260		
-5	0.401		
0	0.610		
5	0.872		
10	1.23		
15	1.70		
20	2.34		
25	3.17		
30	4.24		
35	5.64		
40	7.37		
50	12.3		
60	19.9		
70	31.2		
80	47.3		
90	70.1		
100	101.3		
110	143.2		
120	198.4		
130	270.0		

Längdutvidgningskoefficient vid $20\,^{\circ}\mathrm{C}$ och normalt lufttryck.

$\ddot{\mathrm{A}}\mathrm{mne}$	$\alpha/(10^{-}6\text{K}^{-}1)$	Ämne	$\alpha/(10^{-6}$
Aluminium	23	Glas (typvärde)	6.0
Silver	19	Volfram	4.3
Mässing ($Cu + Zn$)	19	Marmor (typvärde)	2.5
Koppar	17	Invar (Fe + Ni)	2.0
Järn	12	Grafit	2.0
Stål	11	Diamant	1.5
Platina	9.0	Kvarts	0.4