

Global Temperature Change prediction:

using Time series Forecasting
Techniques

Motivation:

Global climate change is a very serious issue affecting the modern world with problems like global warming, shrinking of glaciers, change in climate patterns etc.

As a student of this course we have ability to forecast future temperature variations and influence the public opinion on climate change or say global warming that it needs urgent action, need to be educating people about necessary actions that needs to be taken.

Problem statement:

Understanding and predicting temperature variations is crucial for climate monitoring and informed decision-making Utilizing historical temperature data (18th century to 2013) on a monthly basis, we aim to predict temperature changes in India. Australia, USA, and Japan.

Data set used:

	đt	AverageTemperature	AverageTemperatureUncertainty	Country	
0	1743-11-01	4.384	2.294	Åland	
5	1744-04-01	1.530	4.680	Åland	
6	1744-05-01	6.702	1.789	Åland	
7	1744-06-01	11.609	1.577	Åland	
8	1744-07-01	15.342	1.410	Åland	
		***	***		
577456	2013-04-01	21.142	0.495	Zimbabwe	
577457	2013-05-01	19.059	1.022	Zimbabwe	
577458	2013-06-01	17.613	0.473	Zimbabwe	
577459	2013-07-01	17.000	0.453	Zimbabwe	
577460	2013-08-01	19.759	0.717	Zimbabwe	
544811 rows × 4 columns					

Avg. temperature over time for India, Australia and Japan:

Checking stationarity for data:

For checking the stationerrity in the data we have used the ADF(Augmented Dickey Fuller Test)

Australia

ADF Stat: -4.715610985099344

p-value: 7.865030726922643e-05

ADF Stat: -3.864063068749569

p-value: 0.0023158316592004026

Japan

India

ADF Stat: -4.558478434336369

p-value: 0.00015395077389037247

Does our data have trend:

- Firstly, we'll remove seasonality by averaging temperature values over a year, as seasonality assumes a sum of components over time is zero
- To determine if there's a significant trend in Global Temperature, we'll use linear regression.
- If the slope is close to zero, there's likely no trend; otherwise, we'll observe if it's increasing or decreasing

Japan	0.00975354
India	0.0061468
Austarlia	0.010294

It is observed that for all the countries, the trend slope has a positive value ranging between 0.006 and 0.010. Which is bad news of course

Moving Average Model

AR Model

ARMA Model

In order to compare the results across combinations of p and q, we will use the Akaike and Bayesian Information Criteria. They are calculated as follows: For N samples of data points represented by x, with model M, let the maximum likelihood value be $\hat{L} = \max p(x|\theta, M)$ and let k be the number of parameters. Then, Akaike Information Score $= 2k-2\ln(L)$ Bayesian Information Score $= k\ln(n)-2\ln(L)$

Australia

#