Metric Spaces for Regular Languages

Anton Xue

1 Introduction

Filler introduction text

2 Background

Filler text for background

2.1 Regular Languages and Finite Automata

A regular language is a language that can be recongnized by a regular expression. Such languages play a central role in theoretical comptuer science and formal language theory due to their ability to simply describe a large class of strings. We now formalize these terms.

Given a finite set of unique symbols Σ called the alphabet, write the set of all finite strings constructed over this alphabet as Σ^* . A string is nothing more than a finite sequences of symbols from an alphabet. Let ε denote the empty string which contains no symbols.

Example 1. Consider an alphabet $\Sigma = \{a, \alpha, b, \beta, \div\}$, examples of strings (finite sequences) that can be constructed with this alphabet include

 $ab\beta\beta\alpha$ $\div \div a\beta$ aaaaaaa

A language L is nothing more than a set of strings. In other words, $L \subseteq \Sigma^*$. We are now ready to introduce the concept of a regular language. Formally, regular languages are a family of languages inductively defined as follows:

- (1) The empty set \emptyset and the empty string language $\{\varepsilon\}$ are regular languages.
- (2) For each symbol $a \in \Sigma$, the singleton language $\{a\}$ is a regular language.

(3) If A and B are regular languages, then so is their union $A \cup B$, their concatenation $A \cdot B$, and their Kleene star A^* , defined as:

$$A \cup B = \{ w : w \in A \cup B \}$$

$$A \cdot B = \{ w_a \cdot w_b : w_a \in A, w_b \in B \}$$

$$A^* = \{ w^k : k \in \mathbb{N}, w \in A \}$$

Where w^k is the k-fold concatenation of a string to itself, and $w_a \cdot w_b$ is the concatenation of strings w_a and w_b . Sometimes we write $w_a w_b$ for concatenation when context is clear.

(4) No other languages are regular.

2.2 Metric Spaces

Filler text on metric spaces

2.3 Measure Theory

Filler text on measure theory

3 Measure Theoretic Approaches

Consider a language $L \subseteq \Sigma^*$. The *n*-splice of a language written as L^n is defined as:

$$L^n = L \cap \Sigma^n$$

We then have the following relations:

$$L = \bigcup_{n=0}^{\infty} L^n = \bigcup_{n=0}^{\infty} (L \cap \Sigma^n) = L \cap \bigcup_{n=0}^{\infty} \Sigma^n = L \cap \Sigma^* = L$$

Suppose that $(\mathbb{N}, 2^{\mathbb{N}}, \eta)$ is a probability measure space on \mathbb{N} with the probability measure η , one way to define a measure λ_{η} is as follows:

$$\lambda_{\eta}\left(L\right) = \sum_{n=0}^{\infty} \frac{|L^{n}|}{|\Sigma^{n}|} \eta\left(n\right)$$

Theorem 1. $(\Sigma^*, 2^{\Sigma^*}, \lambda_{\eta})$ is a measure space.

Proof. Since the $2^{\Sigma^{\star}}$ is the largest σ -algebra on Σ^{\star} , it suffices to show that λ_{η} is a measure.

To see that \emptyset is mapped to 0:

$$\lambda_{\eta}\left(\emptyset\right) = \sum_{n=0}^{\infty} \frac{\left|\emptyset\right|}{\left|\Sigma^{n}\right|} \eta\left(n\right) = \sum_{n=0}^{\infty} 0 = 0$$

Now take $(A_n) \subseteq \Sigma^*$ to be a countable collection of disjoint sets. Write A_n^k to denote the k splice of the nth set. In other words:

$$A_n = \bigcup_{k=0}^{\infty} A_n^k$$

Observe that all such A_n^k are pairwise disjoint by construction, and so:

$$\lambda_{\eta}\left(\bigcup_{n=0}^{\infty}A_{n}\right) = \lambda_{\eta}\left(\bigcup_{n=0}^{\infty}\bigcup_{k=0}^{\infty}A_{n}^{k}\right) = \sum_{n=0}^{\infty}\lambda_{\eta}\left(\bigcup_{k=0}^{\infty}A_{n}^{k}\right) = \sum_{n=0}^{\infty}\sum_{k=0}^{\infty}\frac{\left|A_{n}^{k}\right|}{\left|\Sigma^{n}\right|}\eta\left(k\right) = \sum_{n=0}^{\infty}\lambda_{\eta}\left(n\right)$$

We conclude that $(\Sigma^*, 2^{\Sigma^*}, \lambda_{\eta})$ forms a measure space.

We can generalize this more. Suppose that $\nu = (\nu_n)$ is a countable collection of measures where each ν_n is defined on the splice Σ^n . Then we can extend a definition of $\lambda_{\eta,\nu}$ as:

$$\lambda_{\eta,\nu}(A) = \sum_{n=0}^{\infty} \nu(A^n) \eta(n)$$

Theorem 2. $(\Sigma^*, 2^{\Sigma^*}, \lambda_{\eta,\nu})$ is a measure space.

Proof. As with before, we only show that $\lambda_{\eta,\nu}$ is a measure.

For \emptyset we have again:

$$\lambda_{\eta,\nu}\left(\emptyset\right) = \sum_{n=0}^{\infty} 0 = 0$$

Again take $(A_n) \subseteq \Sigma^*$ to be a countable disjoint collection of sets, and A_n^k to be the k splice of A_n . Then:

$$\lambda_{\eta,\nu}\left(\bigcup_{n=0}^{\infty}A_{n}\right)=\lambda_{\eta,\nu}\left(\bigcup_{n=0}^{\infty}\bigcup_{k=0}^{\infty}A_{n}^{k}\right)=\sum_{n=0}^{\infty}\lambda_{\eta,\nu}\left(\bigcup_{k=0}^{\infty}A_{n}^{k}\right)=\sum_{n=0}^{\infty}\sum_{k=0}^{\infty}\nu_{k}\left(A_{n}^{k}\right)\eta\left(k\right)=\sum_{n=0}^{\infty}\lambda_{\eta,\nu}\left(A_{n}\right)$$

This shows that $(\Sigma^*, 2^{\Sigma^*}, \lambda_{\eta,\nu})$ is a measure space.

4 Linear Operators

5 Separating Automata