Math 76 Exercises 23Ag Volume by Shells ell Method) - Solutions

Set up an integral for the volume of the solid formed by rotating the region shown about the y-axis. (For extra practice later, evaluate the integral.)

$$V = 2\pi \int_{\frac{\pi}{2}}^{2\pi} x \left(2\cos x + 6 - \left(-\frac{2}{\pi}x + 2 \right) \right) dx$$

For each problem, sketch the solid formed by rotating the region enclosed by the curves whose equations are given

- (a) about the y-axis;
- (b) about the line x = -3,

and **set up** an integral for the volume of the solid. (For extra practice later, evaluate the integrals, if you can.)

1.
$$y = \sin x$$
, $y = 2x$, $x = \frac{\pi}{2}$

2.
$$y = \frac{1}{x}$$
, $y = \frac{1}{x^2}$, $x = 2$

For each problem, sketch the solid formed by rotating the region enclosed by the curves whose equations are given

- (a) about the x-axis;
- (b) about the line y = 8,

and **set up** an integral for the volume of the solid. (For extra practice later, evaluate the integrals, if you can.)

1.
$$x = (y-1)^2$$
, $x = 5y + 1$

$$(y-1)^{2} = 5y+1$$

$$y^{2}-2y+x=5y+x$$

$$y^{2}-7y=0$$

$$y(y-7)=0$$

$$y=0, y=7.$$

$$V = 2\pi \int_{0}^{7} y((5y+1)-(y-1)^{2}) dy$$

$$V = \left[2\pi \int_{0}^{T} (8-y)((5y+1)-(y-1)^{2})dy\right]$$

2.
$$x = 3\log_4 y$$
, $x = y^2 - 4y + 3$

Hint: these curves intersect at y = 1 and y = 4.

Note: $x = 3 \log_4 y$ is the same curve as $x = \log_4 (y^3)$ which is $4^x = y^3$, so $y = 4^{3/3}$. This helps no graph...

$$V = \left[2\pi \int_{1}^{4} (8-y)(3\log_{4} y - (y^{2} - 4y + 3)) dy \right]$$