

CS/SE 3340 Computer Architecture

Introduction to Computer Organization

Adapted from "Computer Organization and Design, 4th Ed." by D. Patterson and J. Hennessy

Questions

- What are the five main components of a computer system?
- What is the Moore's law?
- What is abstraction and how it is used for computer systems?
- What is the interface between hardware and software?
- What is a system/application (user) program?

Hardware Components

- Same components for all kinds of computer
 - Desktop, server, embedded
- Input/output includes
 - User-interface devices
 - Display, keyboard, mouse
 - Storage devices
 - Hard disk, CD/DVD, flash
 - Something missing?
 - What about network adapters?

Anatomy of a Mouse

- Optical mouse
 - LED illuminates desktop
 - Small low-res camera
 - Basic image processor
 - Looks for x, y movement
 - Buttons & wheel
- Supersedes roller-ball mechanical mouse

7

Through the Looking Glass

LCD screen: picture elements (pixels)

Mirrors content of frame buffer memory

Inside the Processor (CPU)

- *Datapath:* performs operations on data
- Control: sequences datapath, memory, ...
- Cache memory
 - Small fast SRAM memory for immediate access to data

11

Inside the Processor

AMD Barcelona: 4 processor cores

Technology Scaling Road Map

Year	2004	2006	2008	2010	2012
Feature size (nm)	90	65	45	32	22
Capacity (Bills. of Transistor)	2	4	6	16	32

- Fun facts about 22 nm transistors
 - 60 million can fit on the head of a pin
 - You could fit more than 4,000 across the width of a human hair
- 7 nm transistors have been used in VLSI chips since 2018 (Apple's A12 Bionic)

International Technology Roadmap for Semiconductors

15

Some High-level Questions

- How are data and programs represented in a computer?
 - And how the **hardware** processes data?
- What is the interface between hardware an software?
 - The Instruction Set Architecture (ISA)
- What determines computer <u>performance?</u> and how it can be improved?
- How hardware designers improve performance?
 - Faster clock, pipelining, cache, etc...

Below Your Program

- Application software
 - Written in high-level language
- System software
 - Compiler: translates HLL code to assembly language or machine code
 - Operating System: service code
 - Handling input/output
 - · Managing memory and storage
 - Scheduling tasks & sharing resources
- Hardware
 - Processor, memory, I/O controllers

17

Levels of Program Code

- High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- Assembly language
 - Textual representation of instructions
- Hardware representation
 - Binary digits (bits)
 - Instructions (machine code) and data are encoded in binary

Understanding Performance

- Algorithm
 - Determines number of operations executed
- Programming language, compiler, architecture
 - Determine number of machine instructions executed per operation
- Processor and memory system
 - Determine how fast instructions are executed
- I/O system (including OS)
 - Determines how fast I/O operations are executed

19

Abstractions

- Abstraction helps us deal with complexity
 - Hide lower-level details
- Instruction set architecture (ISA)
 - The hardware/software interface
- Application binary interface
 - The ISA plus system software interface
- Implementation
 - The details underlying an interface

Review: Some Basic Definitions

- Kilobyte 2¹⁰ or 1,024 bytes
- Megabyte- 2²⁰ or 1,048,576 bytes
 - sometimes "rounded" to 10⁶ or 1,000,000 bytes
- Gigabyte 2³⁰ or 1,073,741,824 bytes
 - sometimes rounded to 10⁹ or 1,000,000,000 bytes
- Terabyte 2⁴⁰ or 1,099,511,627,776 bytes
 - sometimes rounded to 10¹² or 1,000,000,000,000 bytes
- Petabyte 2⁵⁰ or 1024 terabytes
 - sometimes rounded to 10¹⁵ or 1,000,000,000,000,000 bytes
- Exabyte 2⁶⁰ or 1024 petabytes
 - Sometimes rounded to 10¹⁸ or 1,000,000,000,000,000,000 bytes

"All mobile data traffic generated worldwide > 107 <u>exabytes</u> in 2017"

ABI Research – July 2012