Exercice 1

Soit E, F et G trois sous-ensembles d'un ensemble Ω . Représenter sur un dessin puis démontrer :

1. $E \cap F \subset E \subset E \cup F$

soit $x \in E \cap F$ alors $x \in E$ et $x \in F$

Donc on a bien $E \cap F \subset E$

Soit $x \in E$ alors $x \in E \cup F$

Donc on a bien $E\subset E\cup F$

2. $E \subset F$ alors $F^c \subset E^c$

Si $x \notin F$ alors $x \notin E$ car autrement E ne serait pas une partie F

Donc on a bien $F^c \subset E^c$

3. $F \setminus E = F \cap E^c$

Si $x \in F \setminus E$, alors $x \in F$ et $x \notin E$

Donc on a bien $F \setminus E \subset F \cap E^c$

Si $x \in F \cap E^c$, alors $x \in F$ et $x \notin E$

Donc on a bien $F \cap E^c \subset F \setminus E$

Au final on a bien $F \setminus E = F \cap E^c$

4. $F = (F \cap E) \cup (F \cap E^c)$

Soit $x \in F$, on a que soit $x \in E$ soit $x \in E^c$

Donc si $x \in E$, $x \in (F \cap E)$ et $x \in (F \cap E) \cup (F \cap E^c)$

Si $x \in E^c$, $x \in (F \cap E^c)$ et $x \in (F \cap E) \cup (F \cap E^c)$

Donc $F \subset (F \cap E) \cup (F \cap E^c)$

Soit $x \in (F \cap E) \cup (F \cap E^c)$

 $x \in (F \cap E)$ ou $x \in (F \cap E^c)$

Si $x \in (F \cap E)$ alors $x \in F$ et $x \in E$ donc $x \in F$

Si $x \in (F \cap E^c)$ alors $x \in F$ et $x \in E^c$ donc $x \in F$

Donc $(F \cap E) \cup (F \cap E^c) \subset F$

Donc on a bien $F = (F \cap E) \cup (F \cap E^c)$

- 5. TODO
- 6. TODO

Soit A et B deux sous-ensemble de Ω

Soit $x \in \Omega$

Si on a $1_B(x) = 0$ alors $1_A(x) \le 0 \Rightarrow 1_A(x) = 0$

Donc si $x \notin B$ alors $x \notin A$

 $\Rightarrow B^c \subset A^c$ or on a vu
 a l'exercice 1.2 que $B^c \subset A^c$ alors $A^{c^c} \subset B^{c^c} \Rightarrow A \subset B$