

TWT GmbH Science & Innovation

TWT GmbH Science & Innovation

Introduction to UPPAAL

Model Checking of Timed Automata

Stefan Rieger

16/04/2013

Bernhäuser Str. 40-42 73765 Neuhausen Telefon: +49.71 58.17 15.0 info@twt-gmbh.de www.twt-gmbh.de

Stuttgart, München, Friedrichshafen

Model Checking (in General)

Arguments for/against Model Checking

Advantages

- + Complete (unlike testing)
- + Covers errors difficult to find by testing
- + Fully automatic
- + Failures yield diagnostic error traces

Disadvantages

- Manual model construction intricate and error-prone
- Due to exhaustive search not suitable for large models (State Explosion Problem)

Application of Model Checking in openETCS

- To be used for critical components in a system, not the system as a whole
- Abstraction from irrelevant details
- Here: focus on timed model checking

Timed Automata

- Formal system modelling language
- Takes into account timing and real-time aspects
- Finite automata enriched with clocks

UPPAAL

- Tool for modeling and verifying (model checking) timed automata
- Network of synchronized timed automata
- Subset of TCTL (Timed Computation Tree Logic) for specifying properties
- Developed by the universities of Uppsala und Aalborg
- Currently closed source, free academic license

Example: Lamp Model

Lamp

Possible Runs (omitting the user):

(off,
$$x = 0$$
) \to (off, $x = 3$) \to (lo, $x = 0$) \to (lo, $x = 0.5$) \to (hi, $x = 1000$) ...

$$(off, x = 0) \rightarrow (off, x = 2) \rightarrow (lo, x = 0) \rightarrow (lo, x = 6) \rightarrow (off, x = 6) \rightarrow (off, x = 8) \rightarrow (low, x = 0) \dots$$

Invariants

Consequence: red transition will never be taken

Properties in UPPAAL

Properties (continued)

"Whenever φ then eventually ψ ..."

Restriction in UPPAAL: No nesting of operators => Liveness is restricted

Partial Model of Subset 026 3.5 Radio Communication

TWT

Synchronization

Radio Communication Model – Covered Aspects

2-stage radio communication setup:

- (1) Safe radio connection according to Euroradio (basis for OBU-RBC connection)
 - Initially at most 3 retries for setup
 - Safe radio connection may fail at any time
 - Upon connection loss 5 min timeout for reestablishing connectivity
 - Delays and timeouts for safe radio connection
- (2) OBU- RBC communication only when safe radio connection established
 - Establishing and terminating OBU-RBC connection

Here: Focusing on a single OBU as DUT

Radio Communication Model – Properties

Verified

- There is no a deadlock in the system
- It is possible to establish a connection
- It is possible that a connection is never established
- Always when the termination of the radio connection is ordered, the connection is eventually terminated

Falsified

- An established RBC connection always implies that there is a safe radio connection.
- When the initiation of a connection is ordered, it is eventually established.

UPPAAL TOOL DEMO

Next Steps

- Model still incomplete -> Extension to take into account missing aspects
- Find interesting timing properties in the standard
- Further investigation: transformation of SystemC models to timed automata
 - In the literature approaches exist [2]
 - Not yet suitable for complex models

Thank you for your attention

Questions?

References

[1] Behrmann, Gerd, Alexandre David, and Kim G. Larsen. "A Tutorial on UPPAAL 4.0.", http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf (2006).

[2] Herber, Paula, Joachim Fellmuth, and Sabine Glesner. "Model checking SystemC designs using timed automata." *Proceedings of the 6th IEEE/ACM/IFIP international conference on Hardware/Software codesign and system synthesis*. ACM, 2008.