

Figure 37.27: Schematic illustrations of the proof techniques that show F_a is both open and closed.

A trivial modification of the proof of Theorem 37.23 shows that in a normed vector space, E, a connected open set is arcwise connected by polygonal lines (i.e., arcs consisting of line segments). This is because in every open ball, any two points are connected by a line segment. Furthermore, if E is finite dimensional, these polygonal lines can be forced to be parallel to basis vectors.

We now consider compactness.

37.5 Compact Sets and Locally Compact Spaces

The property of compactness is very important in topology and analysis. We provide a quick review geared towards the study of manifolds, and for details, we refer the reader to Munkres [131], Schwartz [150]. In this section we will need to assume that the topological spaces are Hausdorff spaces. This is not a luxury, as many of the results are false otherwise.

We begin this section by providing the definition of compactness and describing a collection of compact spaces in \mathbb{R} . There are various equivalent ways of defining compactness. For our purposes, the most convenient way involves the notion of open cover.