29/05/24

cube 800+ 3- 36266 40.

	unit digit	
$(1)^3 = 1$	$(1)^{3} = 1$	16-)1
$(2)^3 = 2x2x2 = 8$	$(2)^3 = 8$	2 ← 8★
$(3)^3 = 27$	$(3)^3 = 7$	36744
$(4)^3 = 64$	$(4)^{3} = 64$	464
$(5)^3 = 125$	$(5)^3 = 5$	5 ← 5
$(6)^3 = 216$	(6)3 = 6	666
$(1)^{3} = 343$	$(4)^3 = 3$	7 (-) 344
$(8)^3 = 512$	$(8)^3 = 2$	86-27
$(9)^3 = 729$	$(g)^3 = g$	2009

-			
× 2 0 2	(107	545	g ~ g \x.
3 (->7	(UC)4	6006	(4 _{3/10}

 $\frac{3}{681472} = \frac{400}{88}$ $\frac{3}{681472} = \frac{88}{8}$ $\frac{3}{681472} = \frac{88}{8}$ $\frac{3}{681472} = \frac{88}{8}$

34P1° Soo unit digit 34P2° Parmore lost 3 digits.

find the number whose whose whose is maximum but 1000 than 621.

$$(1)^{3} = 1 < 68$$

$$(2)^{3} = 8 < 68$$

$$(3)^{3} = 27 < 68$$

$$(4)^{2} = 64 < 68$$

$$(5)^{3} = 125 < 68$$

$$(10)^{3} = 1000$$

$$(5)^{3} = 125 < 68$$

$$(11)^{3} = 125$$

$$(6)^{3} = 216 < 68$$

$$(11)^{3} = 343 < 68$$

