Disclaimer

Aufgaben aus dieser Vorlage stammen aus der Vorlesung Algorithmen, Sprachen und Komplexität und wurden zu Übungszwecken verändert oder anders formuliert! Für die Korrektheit der Lösungen wird keine Gewähr gegeben.

- 1. Definitionen der Automatentheorie. Vervollständige die folgenden Definitionen:
 - (a) Eine Regel $(l \to r)$ einer Grammatik $G = (V, \sum, P, S)$ heißt rechtslinear, falls ...

Antwort: immer das an der am weitesten rechts stehende Nicht-Terminal in ein Terminal umgewandelt wird. Dazu muss $l \in V$ und $r \in \sum V \cup \epsilon$.

(b) Die Menge $Reg(\sum)$ der regulären Ausdrücke über dem Alphabet ist...

Antwort: ist die kleinste Menge mit folgenden Eigenschaften:

- $\varnothing \in Reg(\Sigma), \lambda \in Reg(\Sigma), \Sigma \subseteq Reg(\Sigma)$
- Wenn $\alpha, \beta \in Reg(\Sigma)$, dann auch $(\alpha * \beta), (\alpha + \beta), (\alpha^*) \in Reg(\Sigma)$
- (c) Ein NFA ist ein Tupel M = (...)

Antwort: ein nichtdeterministischer endlicher Automat M ist ein 5-Tupel $M=(Z,\sum,S,\delta,E)$ mit

- $\bullet \;\; Z$ ist eine endliche Menge von Zuständen
- \bullet \sum ist das Eingabealphabet
- $S \subseteq Z$ die Menge der Startzustände (können mehrere sein)
- $\delta: Z \times \sum \to P(Z)$ ist die (Menge der) Überführungs/Übergangsfunktion
- $E \subseteq Z$ die Menge der Endzustände
- (d) Die von einem NFA $M=(Z,\sum,S,\delta,E)$ akzeptierte Sprache ist L(M)=... (ohne Definition der Mehr-Schritt Übergangsfunktion δ)

Antwort: $L(M) = \{ w \in \sum^* | \hat{\delta}(S, w) \cap E \neq \emptyset \}$

(Das Wort wird akzeptiert wenn es mindestens einen Pfad vom Anfangs in den Endzustand gibt)

(e) Die von einem PDA $M=(Z, \sum, \Gamma, \delta, z_0, \#)$ akzeptierten Sprache ist $L(M)=\dots$

Antwort: $L(M) = \{x \in \sum^* | \text{ es gibt } z \in Z \text{ mit } (z_0, x, \#)[...]^*(z, \epsilon, \epsilon)\}$

(f) Sei L eine Sprache. Für $x, y \in \sum^*$ gilt xR_Ly genau dann, wenn ... $(R_L$ ist die Myhill-Nerode-Äquivalenz zu L)

Antwort: wenn $\forall z \in \sum^* : (xy \in L \leftrightarrow yz \in L)$ gilt

(g) Sei $M=(Z,\sum,z_0,\delta,E)$ ein DFA. Die Zustände $z,z'\in Z$ heißen erkennungsäquivalent, wenn

Antwort: Zwei Zustände $z, z' \in Z$ heißen erkennungsäquivalent $(z \equiv z')$ wenn für jedes Wort $w \in \sum^*$ gilt: $\hat{\sigma}(z, w) \in E \leftrightarrow \hat{\sigma}(z', w) \in E$.

- 2. Sätze und Lemmas aus der Automatentheorie. Vervollständige die folgenden Aussagen:
 - (a) Sei $L \supseteq \sum^*$ eine Sprache. Dann sind äquivalent: 1) L ist regulär (d.h. wird von einem DFA akzeptiert), 2)..., 3)...

Antwort:

- 1. L ist regulär (d.h. von einem DFA akzeptiert)
- 2. L wird von einem NFA akzeptiert
- 3. L ist rechtslinear (d.h. von einer Typ-3 Grammatik erzeugt)
- (b) Die Klasse der regulären Sprachen ist unter anderem abgeschlossen unter folgenden Operationen:

- Vereinigung $(L_1, L_2 \text{ regul\"ar } \Rightarrow L_1 \cup L_2 \text{ regul\"ar })$
- Schnitt $(L_1, L_2 \text{ regul\"{a}r } \Rightarrow L_1 \cap L_2 \text{ regul\"{a}r })$
- Komplement (L regulär $\Rightarrow \sum^* \backslash L$ regulär)
- Produkt/Konkatenation $(L_1, L_2 \text{ regulär } \Rightarrow L_1L_2 \text{ regulär })$
- Abschluss/Stern-Operation (L regulär $\to L^*$ regulär)

(c) Sei \sum ein Alphabet. Die Anzahl der Grammatiken über \sum ist ... und die Anzahl der Sprachen über \sum ist

Antwort: Für jedes Alphabet ist die Menge der Grammatiken abzählbar unendlich und die Anzahl der Sprachen überabzählbar.

(d) Unter anderem sind folgende (mind. drei) Probleme für kontextfreie Sprachen entscheidbar:

Antwort: Wortproblem, Leerheitsproblem, Äquivalenzproblem

(e) Die Klasse der Kontextfreien Sprachen ist abgeschlossen unter den Operationen 1)... und 2)... . Sie ist aber nicht abgeschlossen unter 3)... und 4)... .

Antwort: Abgeschlossen unter

- Vereinigung $(L_1, L_2 \Rightarrow L_1 \cup L_2)$
- Produkt/Konkatenation $(L_1, L_2 \Rightarrow L_1L_2)$
- Stern-Operation $(L \to L^*)$

Nicht abgschlossen unter

- Schnitt $(L_1, L_2 \Rightarrow L_1 \cap L_2)$
- Komplement $(L \Rightarrow \sum^* \backslash L)$
- es gibt kontextfreie Sprachen, die nicht deterministisch kontextfrei sind
- (f) Der Satz von Myhill-Nerode besagt,...

Antwort: Sei L eine Sprache. L ist regulär $\Leftrightarrow index(R_L) < \infty$ (d.h. nur wenn die Myhill-Nerode-Äquivalenz endliche Klassen hat).

(g) Das Pumping-Lemma für kontextfreie Sprachen ...

Antwort: Man versucht auszunutzen, daß eine kontextfreie Sprache von einer Grammatik mit endlich vielen Nichtterminalen erzeugt werden muss. Das bedeutet auch: wenn ein Ableitungsbaum ausreichend tief ist, so gibt es einen Ast, der ein Nichtterminal mehrfach enthält. Die durch diese zwei Vorkommen bestimmten Teilbäume werden "gepumpt". Wenn L eine kontextfreie Sprache ist, dann gibt es n >= 1 derart, dass für alle z in L mit |z| >= n gilt: es gibt Wörter u, v, w, x, y in SUM mit

- 1. z = uvwxy,
- 2. |vwx| <= n,
- 3. |vx| >= 1 und
- 4. $uv^iwx^iy \in L$ für alle i >= 0

3. Konstruktionen der Automatentheorie

(a) Betrachte den folgenden NFA X. Berechne einen DFA Y mit L(X) = L(Y).

(b) Betrachte den folgenden NFA X. Berechne einen DFA Y mit L(X) = L(Y).

(c) Betrachte den folgenden DFA X. Berechne den minimalen DFA Y mit L(X) = L(Y).

Antwort:

- 1. Stelle eine Tabelle aller ungeordneten Zustandspaare $\{z,z'\}$ mit $z\neq z'$ auf.
- 2. Markiere * alle Paare $\{z,z'\}$ mit $z\in E$ und $z'\not\in E.$
- 3. Markiere (*) ein beliebiges unmarkiertes Paar $\{z, z'\}$, für das es ein $a \in \sum$ gibt, so dass $\{\delta(z, a), \delta(z', a)\}$ bereits markiert ist (falls dies möglich ist).
- 4. Wiederhole den vorherigen Schritt, bis sich keine Änderung in der Tabelle mehr ergibt.
- 5. Unmarkierte Paare werden verschmolzen

1	*			
2	*			
3	(*)	(*)	(*)	
4	*		*	*
	0	1	2	3

(d) Betrachte den folgenden DFA X. Berechne den minimalen DFA Y mit L(X) = L(Y).

(e) Betrachte den folgenden DFA X. Berechne den minimalen DFA Y mit L(X) = L(Y).

4. Algorithmen für reguläre Sprachen. Sei $\sum = \{a, b, c\}$. Gebe einen Algorithmus an, der bei Eingabe eines NFA X entscheidet, ob alle Wörter $\omega \in L(X)$ ungerade Länge besitzen und abc als Infix enthalten.

Antwort:

- 5. Kontextfreie Sprachen: Sei $\sum = \{a,b,c\}$. Betrachte die Sprache $K = \{a^kb^lc^m|k \leq l \text{ oder } k \leq m\}$.
 - (a) Zeige, dass K eine kontextfreie Sprache ist.

Antwort:

(b) Zeige, dass $L = \sum^* \backslash K$ (Komplement von L)nicht kontextfrei ist.

Antwort:

(c) Begründe warum K deterministisch kontextfrei ist oder warum nicht.

Antwort:

- 6. Kontextfreie Grammatiken: Sei $\sum = \{a, b, c, \}$
 - (a) Sei G die kontextfreie Grammatik mit Startsymbol S und der Regelmenge $S \to AB, A \to aBS|a$ und $B \to bBa|b|\epsilon$. Überführe G in eine äquivalente Grammatik in Chomsky Normalform.

Antwort: Chomsky Normalform hat auf rechter Ableitungsseite nur ein Terminal oder zwei Nicht-Terminale

- 1. Startzustand $S \to AB, \; A \to aBS|a, \; B \to bBa|b|\epsilon$
- 2. ϵ -Regel: Menge $M=\{B\}$ der epsilon Terminal-Überführungen kompensieren; $S\to AB|A,\ A\to aBS|a|aS,\ B\to bBa|b|ba$
- 3. Kettenregel: Menge $M = \{(S, A), (S, S), (A, A), (B, B)\}$ von Ketten (Ableitungen auf ein Nicht-Terminal) $S \to AB|aBS|a|aS, A \to aBS|a|aS, B \to bBa|b|ba$

- 4. Terminale und Nicht-Terminal trennen: $S \to AB|CBS|C|CS, A \to CBS|C|CS, B \to DBC|b|DC, C \to a, D \to b$
- 5. Längen verkürzen: $S \to AB|CX|C|CS, \ A \to CX|C|CS, \ B \to DY|b|DC, \ C \to a, \ D \to b, \ X \to BS, \ Y \to BC$
- (b) Sei G' die kontextfreie Grammatik mit Startsymbol S und der Regelmenge

$$S \rightarrow AB, \, A \rightarrow CD|CF, \, F \rightarrow AD, \, B \rightarrow c|EB, \, C \rightarrow a, \, D \rightarrow b, \, E \rightarrow c$$

Entscheide mit dem CYK-Algorithmus, ob die Wörter $w_1 = aaabbbcc$ oder $w_2 = aaabbccc$ von G' erzeugt werden.

(c) Gebe für die Wörter aus b), die von G' erzeugt werden, den Ableitungsbaum an.

Antwort:

 $w_1 = aaabbbcc$

- 7. Definitionen der Berechnbarkeitstheorie. Verfollständige die Definitionen
 - (a) Ein While Programm ist von der Form...

Antwort:

- $x_i = c, x_i = x_j + c, x_i = x_j c$ mit $c \in \{0,1\}$ und $i,j \ge 1$ (Wertzuweisung) oder
- P_1, P_2 , wobei P_1 und P_2 bereits While Programme sind (sequentielle Komposition) oder
- while $x_i \neq 0$ do P end, wobei P ein While Programm ist und $i \geq 1$.
- (b) Ein Loop-Programm ist von der Form

Antwort:

- $x_i := c, x_i := x_j + c, x_i := x_j \div c$ mit $c \in \{0,1\}$ und i,j (Wertzuweisung) oder
- $P_1; P_2$, wobei P_1 und P_2 Loop-Programme sind (sequentielle Komposition) oder
- loop x_i do P end, wobei P ein Loop-Programm ist und i_1 .
- (c) Eine Turingmaschine ist ein 7-Tupel $M=(Z,\sum,\Gamma,\delta,z_0,\square,E),$ wobei...

- 7-Tupel $M = (Z, \sum, \Gamma, \delta, z_o, \square, E)$
- \sum das Eingabealphabet
- Γ mit $\Gamma \supseteq \sum$ und $\Gamma \cap Z \neq 0$ das Arbeits- oder Bandalphabet,

- $z_0 \in Z$ der Startzustand,
- $\delta: Z \times \Gamma \to (Z \times \Gamma \times \{L, N, R\})$ die Überführungsfunktion
- $\square \in \Gamma / \sum$ das Leerzeichen oder Blank und
- $E \subseteq Z$ die Menge der Endzustände ist
- (d) Die von einer Turingmaschine M akzeptierte Sprache ist L(M) = ...

Antwort: $L(M) = \{ w \in \sum^* | \text{es gibt akzeptierte Haltekonfiguration mit } z_0 w \square \vdash_M^* k \}.$

(e) Gödels Vermutung lautet,...

Antwort: Eine partielle Funktion $\mathbb{N}^k \to \mathbb{N}$ ist genau dann intuitiv berechenbar, wenn sie μ -rekursiv ist.

(f) Wann ist eine Sprache semi-entscheidbar?

Antwort: Eine Sprache ist genau dann semi-entscheidbar, wenn sie von einer nichtdeterministischen Turingmaschine akzeptiert wird.

(g) Seien $A\subseteq \sum^*$ und B
 $\subseteq \Gamma^*.$ Eine Reduktion von A auf B ist ...

Antwort: Eine Reduktion von A auf B ist eine totale und berechenbare Funktion $f: \sum^* \to \Gamma^*$, so dass für alle $w \in \sum^*$ gilt: $w \in A \leftrightarrow f(x) \in B$. A heißt auf B reduzierbar (in Zeichen $A \leq B$), falls es eine Reduktion von A auf B gibt.

(h) Eine Sprache L heißt rekursiv aufzählbar, falls ...

Antwort:

- L ist semi-entscheidbar
- L wird von einer Turing-Maschine akzeptiert
- L ist vom Typ 0 (d.h. von Grammatik erzeugt)
- L ist Bild berechenbarer partiellen Funktion $\sum^* \to \sum^*$
- L ist Bild berechenbarer totalen Funktion $\sum^* \to \sum^*$
- L ist Definitionsbereich einer berechenbaren partiellen Funktion $\sum^* \to \sum^*$
- (i) Sei $f:N\to N$ eine monotone Funktion. Die Klasse TIME(f) besteht aus allen Sprachen L, für die es eine Turingmaschine M gibt mit ...

Antwort:

- $\bullet\,$ M berechnet die charakteristische Funktion von L.
- Für jede Eingabe $w \in \sum^*$ erreicht M von der Startkonfiguration $z_0w\square$ aus nach höchstens f(|w|) Rechenschritten eine akzeptierende Haltekonfiguration (und gibt 0 oder 1 aus, je nachdem ob $w \notin L$ oder $w \in L$ gilt).
- 8. Sätze der Berechnbarkeitstheorie: Vervollständige die folgenden Aussagen
 - (a) Zu jeder Mehrband-Turingmaschine M gibt es \dots

Antwort: eine Turingmaschine M' die diesselbe Funktion löst

- Simulation mittels Einband-Turingmaschine durch Erweiterung des Alphabets: Wir fassen die übereinanderliegenden Bandeinträge zu einem Feld zusammen und markieren die Kopfpositionen auf jedem Band durch *.
- Alphabetsymbol der Form $(a, *, b, \diamond, c, *, ...) \in (\Gamma \times \{*, \diamond\})^k$ bedeutet: 1. und 3. Kopf anwesend (* Kopf anwesend, \diamond Kopf nicht anwesend)
- (b) Sei $f: N^k \to \mathbb{N}$ eine Funktion für ein $k \in \mathbb{N}$. Die folgenden Aussagen sind äquivalent: 1) f ist Turing-berechenbar, 2)..., 3)..., 4)...

- 1. f ist Turing berechenbar
- 2. f ist μ rekursiv
- 3. f ist rekursiv aufzählbar
- 4. f ist von Menschen berechenbar

(c) Sei $L\subseteq \sum^*$ eine Sprache. Sind L und $\sum^* \backslash L$ semi-entscheidbar, dann...

Antwort:

(d) Der Satz von Rice lautet...

Antwort: dass es unmöglich ist, eine beliebige nicht-triviale Eigenschaft der erzeugten Funktion einer Turing-Maschine (oder eines Algorithmus in einem anderen Berechenbarkeitsmodell) algorithmisch zu entscheiden.

Es sei \mathcal{P} die Menge aller partiellen Turing-berechenbaren Funktionen und $\mathcal{S} \subsetneq \mathcal{P}$ eine nicht-leere, echte Teilmenge davon. Außerdem sei eine effektive Nummerierung vorausgesetzt, die einer natürlichen Zahl $n \in \mathbb{N}$ die dadurch codierte Turing-Maschine M_n zuordnet. Dann ist die Menge $\mathcal{C}(\mathcal{S}) = \{n \mid \text{die von } M_n \text{ berechnete Funktion liegt in } \mathcal{S}\}$ nicht entscheidbar.

"Sei U eine nicht-triviale Eigenschaft der partiellen berechenbaren Funktionen, dann ist die Sprache $L_U = \{ < M > \mid M \text{ berechnet } f \in U \}$ nicht entscheidbar."

- 9. Berechnungsmodelle
 - (a) Gebe ein Loop-Programm an, das die Funktion $n \to n^2 n$ berechnet

```
Antwort:
    h= 1
    for (i= 0; i < 2; i++) do {
        h= h * n
    }
    h= h - 1;
    return h</pre>
```

(b) Gebe ein Loop Programm an, das die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit $f(n_1, n_2) = 2n_1n_2$ berechnet. Verwende nur elementare Anweisungen und keine Abkürzungen.

```
h= 1
  for (i=0; i<2; i++) do {
    h = h * n_i
}
h = 2 * h
return h</pre>
```

(c) Gebe ein GoTo Programm an, das die Funktion $g: \mathbb{N} \to \mathbb{N}$ mit $g(n_1, n_2) = |n_1 - n_2|$ berechnet. Verwende nur elementare Anweisungen und keine Abkürzungen.

```
 \begin{array}{l} \textbf{Antwort:} \\ & \text{$h=n\_1-n\_2$} \\ & \text{if $h>0$:} \\ & \text{goto end} \\ & \text{$h=-h$} \\ & \text{end:} \\ & \text{return $h$} \\ \end{array}
```

(d) Gebe eine deterministische Turingmaschine M für das Eingabealphabet $\{0,1\}$ an, das folgende Funktion berechnet: Für Eingabe $a_1a_2...a_{n-1}a_n$ berechnet M die Ausgabe $a_na_1...a_{n-1}$ (letzte Symbol der Eingabe an erste Stelle).

```
Antwort: \sum = \{0, 1\}

z_0 Zahlenende finden: \delta(z_0, 0) = (z_0, 0, R), \delta(z_0, 1) = (z_0, 1, R), \delta(z_0, \square) = (z_1, \square, L)

z_1 letzte Zahl löschen: \delta(z_1, 0) = (z_2, \square, L), \delta(z_1, 1) = (z_3, \square, L), \delta(z_1, \square) = (z_2, \square, N)

z_2 zurück zum Anfang bei a_n = 0: \delta(z_2, 0) = (z_2, 0, L), \delta(z_2, 1) = (z_2, 1, L), \delta(z_2, \square) = (z_4, \square, R)

z_3 zurück zum Anfang bei a_n = 1: \delta(z_3, 0) = (z_3, 0, L), \delta(z_3, 1) = (z_3, 1, L), \delta(z_3, \square) = (z_5, \square, N)

z_4 a_n = 0 an Anfang schreiben: \delta(z_4, \square) = (z_e, 0, N)

z_5 a_n = 1 an Anfang schreiben: \delta(z_5, \square) = (z_e, 1, N)

z_e Endzustand: \delta(z_e, 0) = (z_e, 0, N), \delta(z_e, 1) = (z_e, 1, N), \delta(z_e, \square) = (z_e, \square, N)
```

- 10. Reduktionen
 - (a) Seien $A, L \subseteq \sum^*$ nichtleere Sprachen und A entscheidbar. Gebe eine Reduktion von $L \cup A$ auf L an.

Antwort:

(b) Gebe eine Bedingung für A an, sodass $L \cup A \leq_p L$ für alle nichtleeren Sprachen $L \subseteq \sum^*$ gilt. Begründe.

Antwort:

- 11. Komplexitätsklassen. Ergänze zu den Paaren von Komplexitätsklassen das Relationssymbol zur Teilmengenbeziehung.
 - (a) EXPSPACE ? EXPTIME

Antwort: EXPSPACE \geq EXPTIME

(b) NP?P

Antwort: $NP \ge P$

(c) NP ? NPSPACE

Antwort: $NP \leq NPSPACE$

(d) NPSPACE ? PSPACE

Antwort: NPSPACE = PSPACE

- 12. Komplexitätsklassen. Bringe in die richtige Reihenfolge:
 - (a) EXPSPACE, PSPACE, 2EXPTIME, EXPTIME, P

Antwort: $P \subseteq PSPACE \subseteq EXPTIME \subseteq EXPSPACE \subseteq 2EXPTIME$

(b) PSPACE, EXPSPACE, 2EXPSPACE, NEXPTIME, 2NEXPTIME, NP

 $\textbf{Antwort}: NP \subseteq PSPACE, NEXPTIME \subseteq EXPSPACE, 2NEXPTIME \subseteq 2EXPSPACE$

(c) NP, P, EXPTIME, NEXPTIME, PSPACE, NPSPACE, NEXPSPACE, EXPSPACE

Antwort: $P \le NP \le PSPACE, NPSPACE \le EXPTIME \le NEXPTIME \le EXPSPACE, NEXPSPACE$

- 13. Unentscheidbare Probleme:
 - (a) Gebe entscheidbare Probleme an (als Menge oder als Eingabe-Frage-Paar)

Antwort:

- Wortproblem: Gilt $w \in L(M)$ für eine gegebene Sprache L und $w \in \sum^*$
- Leerheitsproblem: Gilt $L(M) = \emptyset$ für eine gegebene Sprache L
- Endlichkeitsproblem: Ist eine gegebene Sprache endlich?
- Schnittproblem: Gilt $L_1 \cap L_2 = \emptyset$ für gegebene L_1, L_2 ?
- Inklusionsproblem: Gilt $L_1 \subseteq L_2$ für gegebene L_1, L_2 ?
- Äquivalenzproblem: Gilt $L_1 = L_2$ für gegebene L_1, L_2 ?
- (b) Gebe unentscheidbare Probleme an (als Menge oder als Eingabe-Frage-Paar)

- allgemeine Halteproblem: Das Halteproblem ist die Menge aller Paare (M, x), wobei M eine TM ist und $x \in \{0, 1\}^*$, so dass M bei Eingabe von x hält. $H = \{w \# w \mid w \in L_{TM}, x \in \{0, 1\}^*, M_w \text{ angesetzt auf } x \text{ hält}\}$
- spezielle Halteproblem: $K = \{w \in L_{TM} \mid M_w \text{ angesetzt auf w hält}\}$
- Halteproblem auf leerem Band: $H_0 = \{w \in L_{TM} \mid M_w \text{ hält angesetzt auf ein leeres Band}\}$
- Posts Korrespondenzproblem: PCP ist die Menge der Korrespondenzsysteme (endliche Folge von Paaren), die eine Lösung besitzen
- Schnittproblem: $\{(G_1, G_2) \mid G_1, G_2 \text{ kontextfreie Grammatiken }, L(G_1) \cap L(G_2) = \emptyset \}$
- Regularitätsproblem für PDA: $Reg_{PDA} = \{P \mid P \mid PDA \mid L(P) \mid L(P) \mid PDA \mid L(P) \mid PDA \mid L(P) \mid$
- Inklusionsproblem DPDA: $\{(P_1, P_2) \mid P_1, P_2 \text{ DPDAs mit } L(P_1) \subseteq L(P_2)$
- Universalitätsproblem: $\{P \ PDA \mid L(P) = \sum^* \}$
- Äquivalenzproblem PDA: $\{(P_1, P_2) \mid P_1, P_2 \text{ PDAs mit } L(P_1) = L(P_2)\}$

- 14. NP-Vollständigkeit
 - (a) Eine Sprache B ist NP-vollständig, falls ...

Antwort: Eine Sprache ist NP-vollständig, falls sie zu NP gehört und NP-hart ist.

Eine Sprache B ist NP-hart, falls für alle $A \in NP$ gilt: $A \leq_P B$ (A ist mindestens so schwer wie jedes Problem in NP). Wenn B NP-vollständig ist, dann gilt: $P = NP \Leftrightarrow B \in P$.

(b) Gebe NP-vollständige Probleme an (als Menge oder Eingabe-Frage-Paar).

Antwort:

Gerichteter Hamiltonkreis?

- Eingabe: gerichteter Graph G = (V, E) mit Knotenmenge V und Kantenmenge $E \subseteq V \times V$
- \bullet Frage: Besitzt der Graph G einen Hamiltonkreis, d.h. kann man den Graphen so durchlaufen, daß jeder Knoten genau einmal besucht wird?

Ungerichteter Hamiltonkreis

- Eingabe: ungerichteter Graph G = (V, E) mit Knotenmenge V und Kantenmenge $E \subseteq \binom{V}{2} = \{X \subseteq V \mid |X| = 2\}.$
- Frage: Kann ein ungerichteter Graph so durchlaufen werden, dass jeder Knoten genau ein mal besucht wird?

3-Färbbarkeit

- Eingabe: ungerichteter Graph(V,E)
- Frage: Gibt es einen ungerichteten Graphen, deren Knoten sich mit drei Farben färben lassen, so dass benachbarte Knoten unterschiedliche Farben haben
- Frage (alternativ): Gibt es Zuordnung von k verschiedenen Farben zu Knoten in V, so dass keine zwei benachbarten Knoten v_1, v_2 dieselbe Farbe haben?

3-SAT

- Ist eine aussagenlogische Formel in konjunktiver Normalform mit ≥ 3 Literalen pro Klausel erfüllbar?
- ullet Eingabe: eine aussagenlogische Formel arphi in konjunktiver Normalform mit höchstens drei Literalen pro Klausel.
- Frage: Hat φ eine erfüllende Belegung?

Travelling Salesman Problem

- eine $n \times n$ -Matrix $M = (M_{i,j})$ von Entfernungen zwischen n Städten und eine Zahl d.
- ullet FRAGE: Gibt es eine Tour durch alle Städte, die maximal die Länge d hat?
- 15. Polynomialzeitreduktion: Betrachte das Problem 4C, also die Menge der ungerichteten Graphen die sich mit vier Farben färben lassen.
 - (a) Gebe eine Polynomialzeitreduktion von 3C auf 4C an.

Antwort:

(b) Zeige, dass wenn $4C \in P$, dann gilt P = NP.