axis of the ellipse h(S) and the dashed line $\ker(w_1^g)$ on the left of the arrow with ε_2 being the angle between the dotted ellipse q(S) and the dashed line $\ker(w_1^f)$ and with ε_3 being the angle between the plain ellipse gh(S) and the dashed line. We write S for the unit sphere. $h(\mathbf{S})$ $g(\mathbf{S})$

Figure 1: Illustration of Lemma ?? as described.

Illustration Of Lemma ?? in the case $E = \mathbb{R}^2$, with ε_2 being the sinus of the angle between the main