Task 3

Data:

S	The set of all suppliers
Н	The set of all hubs
P	The set of all plants

Decision variables:

Decisi	un variables.		
X_{ih}	The decision variable representing amount of biomass to transport between i and h	$i \in S$	$h \in H$
Y_{hj}	The decision variable representing amount of biomass to transport between h and j	$h \in H$	$j \in P$
Z_h	The decision variable representing the amount of third party biomass transported to h	$h \in H$	
SC_i	The capacity of any given supplier		$i \in S$
HC_h	The capacity of any given hub		$h \in H$
PC_j	The capacity of any given plant		$j \in P$
TP_{ih}	The cost of transportation between i and h, given in \$ per Mg per kilometer of biomass. The total cost of a trip is thus $TP_{ih} * X_{ih}$	<i>i</i> ∈ <i>S</i>	$h \in H$
RP_{hj}	The cost of transportation between h and p, given in \$ per Mg per kilometer of biomass. The total cost of a trip is thus $RP_{hj} * Y_{hj}$	$h \in H$	$j \in P$
D	The total demand, which is 800,000,000 liters of bio-ethanol, requires 3,448,275 Mg of biomass	i	
LT	The cost of loading and unloading a truck, given as a constant 10000		
RT	The cost of loading and unloading a train, given as a constant 60000		
IP_j	The investment cost for each plant		$j \in P$
IH_h	The investment cost for each hub		$h \in H$
B_j	A binary variable that represents whether or not we've invested in a plant	$B\in\{0,1\}$	$j \in P$
B_h	A binary variable that represents whether or not we've invested in a hub	<i>B</i> ∈ {0,1}	$h \in H$
CP_j	The conversion capacity of each plant		$j \in P$
CH_h	The conversion capacity of each hub		$h \in H$
R	The constant conversion rate of bioethanol per Mg of biomass, which is 232 liters/Mg.		
TPR	The constant price of an Mg of third party biomass, given as \$2000		

Objective function:

$$Minimize~Z = \sum_{i \in S} \sum_{h \in H} (TP_{ih} * X_{ih}) + \sum_{h \in H} \sum_{j \in P} (RP_{hj} * Y_{hj}) + \sum_{h \in H} (Z_h * TPR) + \sum_{j \in P} (IP_j * B_j) + \sum_{h \in H} (IH_h * B_h)$$

Constraint to:

$$\sum_{h \in H} \sum_{j \in P} Y_{hj} \geq D$$
 The sum of flow between all h's and j's meets the production goal
$$\sum_{i \in S} \sum_{h \in H} X_{ih} \leq SC_i$$
 The sum of the outgoing flow from each supplier is less than or equal to its available supply
$$\sum_{h \in H} \sum_{j \in P} Y_{hj} \leq PC_j$$
 The sum of incoming flow to each plant is less than or equal to its capacity
$$(\sum_{h \in H} \sum_{i \in S} X_{ih}) + \sum_{h \in H} Z_h \leq HC_h$$
 The sum of the incoming flow to each hub is less than or equal to its capacity
$$\sum_{i \in S} \sum_{h \in H} X_{ih} = \sum_{h \in H} \sum_{j \in P} Y_{hj}$$
 The sum of the incoming flow to each hub is equal to its outgoing flow
$$\sum_{i \in S} \sum_{i \in P} X_{ij} = \sum_{h \in H} \sum_{i \in P} Y_{ij}$$
 The sum of outgoing flow from all suppliers equals the ingoing flow to all plants