

BIPOLAR ANALOG INTEGRATED CIRCUITS μ PC7800A SERIES

THREE TERMINAL POSITIVE VOLTAGE REGULATORS

DESCRIPTION

 μ PC7800A series are monolithic three terminal positive regulators which employ internally current limiting, thermal shut down, output transistor safe operating area protection make them essentially indestructible.

They are improved for ripple rejection ratio, line regulation, load regulation and quiescent current, as comparison of conventional μ PC7800 series.

FEATURES

- · Wide operation temperature range.
- · High ripple rejection ratio.
- · Good regulation (line, load).
- · Low quiescent current.
- Built-in protection circuits.
 (over current protection, SOA protection and thermal shut down)

ORDER INFORMATION

TYPE NUMBER	OUTPUT VOLTAGE	PACKAGE	QUALITY GRADE
μPC7805AHF	5 V		
μPC7808AHF	8 V		
μPC7893AHF	9.3 V		·
μPC7812AHF	12 V	MP-45G(ISOLATED TO-220)	Standard
μPC7815AHF	15 V		
μPC7818AHF	18 V		
μPC7824AHF	24 V		

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

EQUIVALENT CIRCUIT

CONNECTION DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Input Voltage	Vin	35/40 (Note1)	V
Internal Power Dissipation	PT	15 ^(Note2)	W
Operating Ambient Temperature Range	Topt	- 30 to + 85	°C.
Operating Junction Temperature Range	Topt(j)	- 30 to + 150	°C
Storage Temperature Range	T _{stg}	- 55 to + 150	°C
Thermal Resistance (junction to case)	Rth(j-c)	5	°C/W
Thermal Resistance (junction to ambient)	Rth(j-a)	65	°C/W

(Note1) μ PC7805A, 08A, 93A, 12A, 15A, 18A : 35 V, μ PC7824A : 40 V (Note2) Internally limited

TYPICAL CONNECTION

C1: Required if regulator is located an appreciable distance from power supply filter.

C2: More than 0.1 μ F D1: Needed for Vin < V0 D2: Needed for V0 < GND

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNIT
		μPC7805AHF	7	10	25	
		μPC7808AHF	10.5	14	25	
		μPC7893AHF	12	15	24.5	
Input Voltage	Vin	μPC7812AHF	14.5	19	30	V
		μ PC7815AH F	17.5	23	30	
		μPC7818AHF	21	27	33	
		μPC7824AHF	27	33	38	
Output Current	lo	All	0.005	0.5	1	Α
Operating Junction Temperature Range	T _{opt(j)}	All	- 30		+ 125	°C

ELECTRICAL CHARACTERISTICS µPC7805A

(Vin = 10 V, lo = 500 mA, $0 \,^{\circ}$ C \leq T_j \leq + 125 $^{\circ}$ C)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
,		T _j = 25 °C	4.8	5.0	5.2	
Output Voltage	V o	7 V \leq ViN \leq 20 V, 5 mA \leq lo \leq 1 A, Pt \leq 15 W	4.75		5.25	\ \
		- 30 °C ≤ T _j ≤ + 125 °C	4.75		5.25	
Line Regulation	REGIN	$T_j = 25$ °C, 7 V \leq VIN \leq 25 V		7	30	mV
Line Regulation	REGIN	T _j = 25 °C, 8 V ≦ V _{IN} ≦ 12 V		2	15	1110
Load Regulation	REGL	$T_j = 25 ^{\circ}\text{C}, 5 \text{mA} \leq I_0 \leq 1.5 \text{A}$		4	30	mV
Load Negulation	negi	T _j = 25 °C, 250 mA ≦ Io ≦ 750 mA		2	10	IIIV
Quiescent Current	IBIAS	T _j = 25 °C		2.8	4.3	mA
Quiescent Current	Albias	7 V ≦ VIN ≦ 25 V			1.0	A
Change	TIBIAS	5 mA ≤ lo ≤ 1.0 A			0.5	mA
Output Noize Voltage	V _n	$T_j = 25 ^{\circ}\text{C}$, 10 Hz $\leq f \leq$ 100 kHz		40	200	μVr.m.s.
Ripple Rejection	R•R	$T_j = 25 ^{\circ}\text{C}, f = 120 \text{Hz}, 8 \text{V} \le \text{V}_{\text{IN}} \le 18 \text{V}$	70	76		dB
Dropout Voltage	V DIF	T _j = 25 °C, Io = 1.0 A		1.8		V
Short Circuit Current	lOshort	T _j = 25 °C, V _{IN} = 25 V		1.6		Α
Peak Output Current	lOpeak	T _j = 25 °C, V _I N ≈ 10 V	1.7	2.2	2.8	Α
Temperature Coefficient of Output Voltage	ΔVο/ΔΤ	lo = 5 mA, 0 °C ≤ T _j ≤ + 125 °C		- 0.4		mV/°C

ELECTRICAL CHARACTERISTICS µPC7808A

 $(Vin = 14 V, lo = 500 mA, 0 °C \le T_j \le + 125 °C)$

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
		T _j = 25 °C	7.7	8.0	8.3	
Output Voltage	Vo	$10.5 \text{ V} \le \text{Vin} \le 23 \text{ V}, 5 \text{ mA} \le \text{Io} \le 1 \text{ A}, \text{Pt} \le 15 \text{ W}$	7.6		8.4	V
		- 30 °C ≦ T _j ≦ + 125 °C	7.6		8.4	
Line Deculation	DEC	$T_j = 25$ °C, $10.5 \text{ V} \leq V_{IN} \leq 25 \text{ V}$		8	35	
Line Regulation	REGIN	$T_i = 25$ °C, 11 V \leq VIN \leq 17 V		3	25	mV
Land Danielasian	550	$T_j = 25 {}^{\circ}\text{C}, 5 \text{mA} \leq I_0 \leq 1.5 \text{A}$		12	90	
Load Regulation	REGL	T _j = 25 °C, 250 mA ≤ lo ≤ 750 mA		4	20 mV	
Quiescent Current	İBIAS	T _j = 25 °C		3	4.4	mA
Quiescent Current	Alpus	10.5 V ≦ Vin ≦ 25 V			1.0	
Change	∆IBIAS	5 mA ≦ lo ≦ 1.0 A			0.5	mA
Output Noize Voltage	Vn	T _i = 25 °C, 10 Hz ≦ f ≦ 100 kHz		50	250	μVr.m.s.
Ripple Rejection	R•R	$T_i = 25$ °C, $f = 120$ Hz, 11.5 V \leq Vin \leq 21.5 V	66	72		dB
Dropout Voltage	VDIF	T _j = 25 °C, I _o = 1.0 A		1.8		V
Short Circuit Current	Oshort	T _j = 25 °C, V _{IN} = 25 V		1.6		Α
Peak Output Current	lOpeak	T _j = 25 °C, V _{IN} = 14 V	1.7	2.2	2.8	Α
Temperature Coefficient of Output Voltage	ΔVο/ΔΤ	lo = 5 mA, 0 °C ≦ T _j ≦ + 125 °C		- 0.6		mV/°C

ELECTRICAL CHARACTERISTICS μ PC7812A

(Vin = 19 V, Io = 500 mA, $0 \,^{\circ}$ C \leq Tj \leq + 125 $^{\circ}$ C)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
		T _j = 25 °C	11.5	12.0	12.5	
Output Voltage	Vo	$14.5 \text{ V} \leq \text{V}_{\text{IN}} \leq 27 \text{ V}, 5 \text{ mA} \leq \text{Io} \leq 1 \text{ A, Pt} \leq 15 \text{ W}$	11.4		12.6	V
		30 °C ≦ T _j ≦ + 125 °C	11.4		12.6	
Line Demulation	DEC	$T_j = 25$ °C, 14.5 V \leq VIN \leq 30 V		10	45	
Line Regulation	REGIN	T _j = 25 °C, 16 V ≦ V _{IN} ≦ 22 V		4	30	mV
Land Danielakian	550	T _j = 25 °C, 5 mA ≦ lo ≦ 1.5 A		17	130	
Load Regulation	REGL	$T_j = 25 ^{\circ}\text{C}, 250 \text{mA} \leq I_0 \leq 750 \text{mA}$		6	30	mV
Quiescent Current	IBIAS	T _j = 25 °C		3.1	4.6	mA
Quiescent Current		14.5 V ≦ VIN ≦ 30 V			1.0	mA
Change	∆IBIAS	5 mA ≦ lo ≦ 1.0 A			0.5	
Output Noize Voltage	Vn	T _j = 25 °C, 10 Hz ≦ f ≦ 100 kHz		70	300	μV r.m.s.
Ripple Rejection	R•R	$T_j = 25 ^{\circ}\text{C}, f = 120 \text{Hz}, 15 \text{V} \le \text{Vin} \le 25 \text{V}$	62	68		dB
Dropout Voltage	VDIF	T _j = 25 °C, Io = 1.0 A		1.8		V
Short Circuit Current	lOshort	T _j = 25 °C, V _{IN} = 30 V		1.3		Α
Peak Output Current	Opeak	T _j = 25 °C, V _{IN} = 19 V	1.7	2.2	2.8	Α
Temperature Coefficient of Output Voltage	ΔVο/ΔΤ	Io = 5 mA, 0 °C ≦ T; ≦ + 125 °C		- 0.8		mV/°C

ELECTRICAL CHARACTERISTICS μ**PC7815A**

(Vin = 23 V, lo = 500 mA, $0 \,^{\circ}$ C \leq T_j \leq + 125 $^{\circ}$ C)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
		T _j = 25 °C	14.4	15.0	15.6	, i
Output Voltage	Vo	$17.5 \text{ V} \leq \text{Vin} \leq 30 \text{ V}, 5 \text{ mA} \leq \text{Io} \leq 1 \text{ A}, \text{Pt} \leq 15 \text{ W}$	14.25		15.75	\ \
		- 30 °C ≦ T _j ≦ + 125 °C	14.25		15.75	
		T _j = 25 °C, 17.5 V ≦ V _{IN} ≦ 30 V		10	45	
Line Regulation	REGIN	T _j = 25 °C, 20 V ≦ V _{IN} ≦ 26 V		5	35	mV
		T _j = 25 °C, 5 mA ≦ lo ≦ 1.5 A		25	190	
Load Regulation	REG∟	$T_{j} = 25 ^{\circ}\text{C}, 250 \text{mA} \leq I_{0} \leq 750 \text{mA}$		8	40	40 mV
Quiescent Current	IBIAS	T _j = 25 °C		3.3	4.8	mA
Quiescent Current		17.5 V ≦ VIN ≦ 30 V			1.0	
Change	∆IBIAS	5 mA ≦ lo ≦ 1.0 A			0.5	mA
Output Noize Voltage	Vn	T _j = 25 °C, 10 Hz ≦ f ≦ 100 kHz		85	400	μVr.m.s.
Ripple Rejection	R•R	$T_j = 25 ^{\circ}\text{C}$, $f = 120 ^{\circ}\text{Hz}$, $18.5 ^{\circ}\text{V} \leq ^{\circ}\text{V}$ in $\leq 28.5 ^{\circ}\text{V}$	60	66		dB
Dropout Voltage	VDIF	T _j = 25 °C, Io = 1.0 A		1.8		V
Short Circuit Current	Oshort	T _j = 25 °C, V _{IN} = 30 V		1.3		Α
Peak Output Current	lOpeak	T _j = 25 °C, V _{IN} = 23 V	1.7	2.2	2.8	Α
Temperature Coefficient of Output Voltage	ΔVο/ΔΤ	Io = 5 mA, 0 °C ≦ T _j ≦ + 125 °C		- 1.1		mV/°C

ELECTRICAL CHARACTERISTICS μ PC7818A

 $(Vin = 27 V, Io = 500 mA, 0 °C \le T_j \le + 125 °C)$

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
		T _j = 25 °C	17.3	18.0	18.7	
Output Voltage	Vo	$21 \text{ V} \leq \text{V}_{\text{IN}} \leq 33 \text{ V}, 5 \text{ mA} \leq \text{Io} \leq 1 \text{ A}, \text{Pt} \leq 15 \text{ W}$	17.1		18.9	V
		- 30 °C ≦ T _j ≦ + 125 °C	17.1		18.9	
Line Begulation	DEC	$T_j = 25$ °C, $21 \text{ V} \leq V_{IN} \leq 33 \text{ V}$		12	60	m۷
Line Regulation	REGIN	$T_j = 25$ °C, 24 V \leq VIN \leq 30 V		6	45	
Lond Population	DEC	$T_j = 25 ^{\circ}\text{C}$, 5 mA $\leq I_0 \leq 1.5 \text{A}$		32	110	mV
Load Regulation	REGL	T _j = 25 °C, 250 mA ≦ Io ≦ 750 mA		10	40	
Quiescent Current	İBIAS	T _j = 25 °C		3.4	5.0	mA
Quiescent Current	ΔIBIAS	21 V ≦ V _I N ≦ 33 V			1.0	mA
Change	Дібідо	5 mA ≦ lo ≦ 1.0 A			0.5	
Output Noize Voltage	Vn	$T_j = 25$ °C, 10 Hz $\leq f \leq$ 100 kHz		95	450	μVr.m.s.
Ripple Rejection	R•R	$T_j = 25 ^{\circ}\text{C}$, $f = 120 \text{Hz}$, $22 \text{V} \le \text{V}_{\text{IN}} \le 32 \text{V}$	59	65		dB
Dropout Voltage	VDIF	T _j = 25 °C, lo = 1.0 A		1.8		V
Short Circuit Current	Oshort	T _j = 25 °C, V _{IN} = 33 V		1.2		Α
Peak Output Current	lOpeak	Tj = 25 °C, VIN = 27 V	1.7	2.2	2.8	Α
Temperature Coefficient of Output Voltage	ΔVο/ΔΤ	$Io = 5 \text{ mA, } 0 \text{ °C} \le T_j \le + 125 \text{ °C}$		- 1.3		mV/°C

ELECTRICAL CHARACTERISTICS μ PC7824A

(VIN = 33 V, Io = 500 mA, $0 \,^{\circ}$ C \leq T_j \leq + 125 $^{\circ}$ C)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
		T _j = 25 °C	23.0	24.0	25.0	
Output Voltage	Vo	27 $V \le V_{IN} \le 38 \text{ V}, 5 \text{ mA} \le 10 \le 1 \text{ A}, P_T \le 15 \text{ W}$	22.8		25.2	\ \ \
		- 30 °C ≦ T _j ≦ + 125 °C	22.8		25.2]
Line Regulation	REGIN	T _j = 25 °C, 27 V ≦ V _{IN} ≦ 38 V		15	80	>/
Line Regulation	NEGIN	$T_j = 25$ °C, 30 V \leq VIN \leq 36 V		8	50	mV
Load Regulation	DEC.	$T_j = 25 ^{\circ}\text{C}, 5 \text{mA} \leq I_0 \leq 1.5 \text{A}$		44	150	
Load Regulation REGL	REGL	Tj = 25 °C, 250 mA ≦ Io ≦ 750 mA		14	50	mV
Quiescent Current	IBIAS	T _j = 25 °C		3.6	5.3	mA
Quiescent Current	41	27 V ≦ V _I N ≦ 38 V			1.0	
Change	∆IBIAS	5 mA ≦ lo ≦ 1.0 A			0.5	mA
Output Noize Voltage	Vn	$T_j = 25 ^{\circ}\text{C}$, 10 Hz $\leq f \leq$ 100 kHz		120	500	μVr.m.s.
Ripple Rejection	R•R	$T_i = 25 ^{\circ}\text{C}$, $f = 120 \text{Hz}$, $28 \text{V} \le \text{Vin} \le 38 \text{V}$	55	62		dB
Dropout Voltage	VDIF	T _j = 25 °C, I _o = 1.0 A		2.0		V
Short Circuit Current	Oshort	T _j = 25 °C, V _{IN} = 38 V		1.0		Α
Peak Output Current	lOpeak	T _j = 25 °C, V _{IN} = 33 V	1.7	2.2	2.8	Α
Temperature Coefficient of Output Voltage	ΔVο/ΔΤ	lo = 5 mA, 0 °C ≦ T; ≦ + 125 °C		- 1.7		mV/°C

ELECTRICAL CHARACTERISTICS μ PC7893A

(Vin = 15 V, Io = 500 mA, $0 \,^{\circ}$ C \leq T; \leq + 125 $^{\circ}$ C)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
		T _j = 25 °C	9.0	9.3	9.5	
Output Voltage	Vo	12 V \leq V in \leq 24.5 V, 5 mA \leq lo \leq 1 A, Pt \leq 15 W	8.9		9.7	V
		- 30 °C ≦ T _j ≦ + 125 °C	8.9		9.7	
Line Regulation	REGIN	$T_j = 25$ °C, 12 V \leq VIN \leq 26.5 V		9	40	mV
Line negulation	MEGIN	$T_j = 25$ °C, 12.5 V \leq VIN \leq 18.5 V		4	30	1110
Lood Dogulation	DEC	$T_j = 25 ^{\circ}\text{C}$, 5 mA $\leq I_0 \leq 1.5 \text{A}$		15	110	>/
Load Regulation	REGL	$T_j = 25$ °C, 250 mA $\leq I_0 \leq 750$ mA		5	25	mV
Quiescent Current	IBIAS	T _j = 25 °C		3.1	4.5	mΑ
Quiescent Current	Δ lbias	12V ≦ V _{IN} ≦ 26.5 V			1.0	mA
Change	ZIBIA5	5 mA ≦ lo ≦ 1.0 A			0.5	''''
Output Noize Voltage	Vn	$T_j = 25 {}^{\circ}\text{C}$, 10 Hz $\leq f \leq 100 \text{kHz}$		55	230	μV r.m.s.
Ripple Rejection	R•R	$T_j = 25 \text{ °C, } f = 120 \text{ Hz,} 12.5 \text{ V} \le \text{Vin} \le 22.5 \text{ V}$	64	70		dB
Dropout Voltage	VDIF	T _j = 25 °C, Io = 1.0 A		1.8		V
Short Circuit Current	Oshort	T _j = 25 °C, V _{IN} = 26.5 V		1.5		Α
Peak Output Current	lOpeak	T _j = 25 °C, V _{IN} = 15 V	1.7	2.2	2.8	Α
Temperature Coefficient of Output Voltage	ΔVο/ΔΤ	lo = 5 mA, 0 °C ≦ T; ≦ + 125 °C		0.7		mV/°C

TYPICAL CHARACTERISTICS (Ta = 25 °C)

PACKAGE DIMENSIONS

3PIN PLASTIC SIP (MP-45G)

P3HF-254B-1

NOTE

Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	10.4 MAX.	0.410 MAX.
В	7.0	0.276
С	1.2 MIN.	0.047 MIN.
D	17.0 ^{±0.3}	0.669+0.013
E	$\phi 3.3^{\pm 0.2}$	φ0.130 ^{±0.008}
F	0.75 ^{±0.10}	0.030+0.004
G	0.25	0.010
Н	2.54 (T.P.)	0.100 (T.P.)
ı	5.0 ^{±0.3}	0.197 ^{±0.012}
J	2.66 MAX.	0.105 MAX.
К	4.8 MIN.	0.188 MIN.
L	8.5	0.335
М	8.5	0.335
N	4.5 ^{±0.2}	0.177 ^{±0.008}
Р	2.8 ^{±0.2}	O.110 +0.009
Q	22.4 MAX.	0.882 MAX.
U	2.4 ^{±0.5}	0.094 +0.021
V	0.65 ^{±0.10}	0.026+0.004
Υ	8.9 ^{±0.7}	0.350 ^{±0.028}
Z	1.0 MIN.	0.039 MIN.

RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product. Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

TYPES OF THROUGH HOLE MOUNT DEVICE

μPC7800AHF Series

Soldering process	Soldering conditions	Symbol
Wave soldering	Solder temperature : 260 °C or below.	
	Flow time : 10 seconds or below.	

[MEMO]

[MEMO]

No part of this document may be copied or reproduced in any from or by any means without the prior written consent of NEC Corporation.NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation.

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6