Cuadro 1: Comparación entre las simulaciones y las observaciones de radar a partir de distintos errores. El bias, rmse, rmsens se expresan en m/s.

	Velocidad				Dirección			
caso	bias	rmse	rmsens	correlación	bias	rmse	rmsens	correlación
YSU	-0.826	2.073	1.867	0.713	-11.980	31.347	28.747	0.608
MYJ	-0.645	2.067	1.942	0.708	-14.564	47.055	44.510	0.522
ACM2	-0.739	1.878	1.695	0.753	-13.174	33.620	30.677	0.622

Cuadro 2: Parámetros característicos de la capa límite para cada simulación y regimen, promediados para todo el periodo y todo el perfil (en los casos que corresponda).

Simulación	Regimen	\overline{h}^1	\overline{L}^2	$\overline{u*}^3$	\overline{Pr}^4	h/L
YSU	Estable	365.11	56.95	0.3094	1.33	6.41
YSU	Inestable	1631.19	-29.11	0.5695	0.24	-56.03
MYJ	Estable	443.26	116.74	0.3298	1.33	3.80
MYJ	Inestable	1553.56	-80.52	0.5822	0.31	-19.29
ACM2	Estable	200.24	56.95	0.2812	1.33	3.52
ACM2	Inestable	1944.48	-29.11	0.5921	0.24	-66.79

¹ Altura de la CLP promediada.

Amante, C., y Eakins, B., 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., y Woollen, J. y otros, 1996. The NCEP/NCAR 40-Year Reanaysis Project. Bulletin of the American Meteorological Society, 77, 3, 437-471.

² Longitud de Monin Obukhov promediada.

 $^{^{3}}$ Velocidad de fricción promediada.

⁴ Número de Prandtl promediado.

Figura 1: Intensidad (m/s) y dirección del viento (grados) correspondiente al Caso 1 (14/01/2016) estimados a partir de las observaciones de radar utilizando la técnica VAD. En el caso de la magnitud del viento se muestran los errores calculados (dispersión en círculos y rmse en cruces) cuando superan los 0.5 m/s.

Figura 2: Perfil vertical de viento (m/s) estimado a partir de los datos de radar a las 06 y las 17 UTC y el rmse (m/s) en cada punto (sombreado) para los tres casos. Las marcas en los ejes indican la magnitud del viento máxima y mínima (por encima del LLJ) y la altura a la que ocurren. Los valores en superficie fueron obtenidos a partir de los datos del la estación meteorológica Paraná Aero.

Figura 3: Hodógrafa en función de la altura entre 100 y 3000 metros, para cada caso de estudio observada por el radar a las 06 UTC. El triángulo marca el nivel inferior y los círculos grandes se ubican cada 500 metros.

(a) Datos observados en la estación meteorológica.

(b) Datos observados por el radar.

Figura 4: Hodógrafa temporal para el nivel correspondiente a los datos de la estación meteorológica (a) y 0.3 y 1 km a partir de la estimación del viento con los dato del radar (b). el cuadrado marca el primer tiempo (00 UTC) y cada círculo representa un valor horario (con circulos más grandes cada 6 horas).

Figura 5: Reflecttividad (dBZ) medida por el radar en función de la altura y el tiempo para el Caso 1 (a), el Caso 2 (b) y el Caso 3 (c).

Figura 6: Valor absoluto del gradiente vertical de reflectividad (dBZ/m) en función de la altura y el tiempo para el Caso 1 (a), el Caso 2 (b) y el Caso 3 (c).

Figura 7: Magnitud del viento (m/s) estimada a partir de los datos de radar (Obs) y simulada por el modelo WRF utilizando distintos esquemas de CLP para el Caso 1 (14/01/2016) y posteriormente procesados con la técnica VAD.

Figura 8: Dirección del viento (grados) estimada por el radar (Obs) y simulada por el modelo WRF utilizando distintos esquemas de CLP para el Caso 1 (14/01/2016) y posteriormente procesados con VAD.

Figura 9: Diferencia entre las observaciones y cada simulación para la magnitud del viento (m/s) (a) y el ángulo de la dirección del viento (grados) (b) correspondiente al Caso 1.

Figura 10: Bias, rmse y rmsens en m/s y coeficiente de correlación para la estimación de la velocidad del viento (m/s) con cada simulación en función de la altura y la simulación.

Figura 11: Perfil de viento (m/s) observado por el radar a las 06 y las 17 UTC y perfiles simulados por el modelo para los mismos momentos. Las marcas en los ejes indican la magnitud del viento máxima y mínima y la altura a la que ocurren.

Figura 12: Hodógrafa temporal para tres niveles. Cada círculo representa un valor horario (con circulos más grandes cada 4 horas) y el cuadrado marca el primer tiempo (00 UTC).

Figura 13: Longitud de Monin Obukhov (m) en función del tiempo, para cada simulación. Los puntos violetas corresponden al régimen estable (nocturno) y los puntos rosas corresponden al régimen inestable (diurno)

(a) Estimada directamente por cada esquema de CLP.

(b) Comparación entre la altura calculada por cada esquema (línea) y la estimada a partir de la altura del viento máximo (puntos) sólo en el período estable.

Figura 14: Altura de la capa límite (m) en cada simulación.

Figura 15: Valor absoluto del gradiente vertical de reflectividad (dBZ/m) en función de la altura y el tiempo para el Caso 1 y la altura de la capa límite estimada en cada simulación.

Figura 16: Variación del número de Prandtl calculado a partir del modelo propuesto por Ulke 2000 con las variables de cada simulación y promediado en cada periodo.

