Equipaggi.

Una linea aerea deve decidere quali voli assegnare a quali equipaggi (pilota, steward e hostess). Ogni equipaggio deve volare in modo da tornare a casa dopo un certo numero di voli: perciò la compagnia aerea ha già identificato tutte le possibili sequenze cicliche di voli che possono essere attribuiti ad uno stesso equipaggio. Ciascuna di tali sequenze ha dei costi, che corrispondono ai tempi morti al di fuori del normale orario di riposo, durante i quali l'equipaggio potrebbe essere impiegato ma resta in attesa. Il problema che la compagnia aerea deve risolvere è quindi quello di attribuire un equipaggio a tutti i voli, scegliendo l'insieme di sequenze cicliche di costo minimo. È possibile che ad uno stesso volo siano assegnati anche due o più equipaggi, alcuni dei quali (tutti tranne uno) viaggiano da semplici passeggeri (volo di trasferimento). La compagnia dispone attualmente di 7 equipaggi.

Si pone anche il problema di capire se sarebbe possibile diminuire il numero di equipaggi impiegati, coprendo ugualmente tutti i voli, in che misura ciò sarebbe possibile e con quale risparmio in termini di costo e di viaggi di trasferimento.

Formulare il problema, classificarlo e risolverlo con i dati delll'esempio riportato di seguito, discutendo ottimalità e unicità della soluzione ottenuta.

Esempio.

Sequenza	Voli
A01	1 2 3 4 5
A02	$1\ 2\ 3\ 6\ 7$
A03	$1\ 2\ 4\ 7\ 8$
A04	1 2 4 9 10
A05	3 4 11 12 15
A06	3 8 16 18 20
A07	10 12 13 14 15
A08	10 14 16 17 19
A09	14 15 18 19 20
A10	15 16 17 19 20
B11	2 5 7 11 13 16
B12	3 9 10 12 16 18
B13	5 6 12 15 18 19
B14	7 8 9 11 13 16
B14 B15	8 9 12 14 16 19
B16	9 15 16 18 19 20
B17	10 12 14 17 19 20
B18	10 11 13 15 18 19
B19	11 13 14 16 17 18
B20	14 15 16 17 18 19
C21	1 3 5 7 9 14 21
C22	2 3 5 6 8 15 22
C23	3 5 6 9 13 16 23
C24	4 8 9 11 12 17 24
C25	5 9 13 14 16 20 25
C26	6 8 14 15 19 20 26
C27	7 9 10 11 12 28 27
C28	8 10 11 13 16 17 28
C29	9 12 14 15 18 19 29
C30	10 11 13 16 18 20 30
D31	2 6 14 16 21 24 29 30
D32	$1\ 4\ 13\ 17\ 23\ 25\ 28\ 30$
D33	5 10 11 15 21 25 27 28
D34	5 10 14 17 21 25 29 30
D35	8 12 13 19 22 26 28 29
D36	8 13 17 20 23 24 26 27
D37	9 10 18 19 25 26 29 30
D38	9 10 13 15 21 23 28 29
D39	9 10 11 13 21 22 24 28
D40	9 10 15 18 23 25 27 29
E41	$2\ 4\ 8\ 12\ 15\ 19\ 21\ 24\ 27$
E42	$3\ 4\ 7\ 11\ 13\ 15\ 21\ 22\ 24$
E43	$4\ 5\ 6\ 13\ 14\ 16\ 21\ 23\ 26$
E44	$4\ 7\ 8\ 13\ 15\ 18\ 21\ 24\ 27$
E45	$5\ 7\ 8\ 13\ 15\ 17\ 22\ 23\ 28$
E46	$5\; 8\; 9\; 13\; 16\; 19\; 22\; 24\; 27$
E47	6 7 9 14 15 18 22 25 30
E48	6 8 9 14 17 20 23 24 30
E49	7 8 10 16 17 19 23 25 29
E50	8 9 10 17 18 20 24 26 30

Tabella 1: Voli coperti da ogni sequenza

Sequenza	Costo
A01	1200
A02	1250
A03	2650
A04	1400
A05	1200
A06	1600
A07	2250
A08	1400
A09	1600
A10	2300
B11	2450
B12	2250
B13	1900
B14	1800
B15	1300
B16	1600
B17	1550
B18	1800
B19	2900
B20	1250
C21	1450
C22	2250
C23	2800
C24	1500
C25	1200
C26	1100
C27	1100
C28	2050
C29	2750
C30	1850
D31	1900
D32	1000
D33	1450
D34	2650
D35	2050
D36	2900
D37	1950
D38	1250
D39	1400
D40	1400
E41	1100
E42	1100
E43	2750
E44	2550
E45	2350
E46	2550
E47	2700
E48 3	1850
E49	1300
E50	1950

Tabella 2: Costo di ogni sequenza

Soluzione.

Il problema richiede di scegliere un sottoinsieme di un dato insieme di $50\,$ sequenze.

Perciò è naturale associare ad ogni sequenza una variabile binaria (1= sequenza scelta; 0=sequenza non scelta).

Ogni sequenza ha un costo e la funzione obiettivo da minimizzare è la somma delle variabili binarie pesate ciascuna col proprio costo.

I vincoli devono far sì che ogni volo sia coperto da almeno una delle sequenze scelte. Perciò esiste un vincolo per ogni volo: la somma delle variabili binarie corrispondenti alle sequenze in cui compare quel volo dev'essere maggiore o uguale ad 1.

Risolvendo il problema di Set Covering così formulato, si ottiene una soluzione ottima che costa 6900 unità di costo e prevede 18 voli di trasferimento (i voli di trasferimento sono indicati dai valori di surplus dei vincoli). La soluzione ottima è data da 6 sequenze.

Imponendo invece che gli equipaggi impiegati siano 7, si ha una soluzione con un costo maggiore (8000 unità di costo) e un numero maggiore di voli di trasferimento (24 voli).