V. Villamos áramkör mechanikai és SPICE szimulációja

A mérés célja: A gyakorlat első felében a korábbi alkalmakon megtervezett konstrukció, vagyis a villogó áramkör mechanikai vizsgálatára kerül sor, melynek során a hallgatónak definiálnia kell a szimuláció peremfeltételeit, a futtatást követően pedig értékelnie kell a kapott eredményeket. A mechanikai vizsgálat után a villogó SPICE szimulációját is elvégezzük, vagyis visszatérünk az áramkör villamos működésének tanulmányozásához.

A mérési feladat: A mechanikai vizsgálat a rendelkezésre álló geometriai modell további paraméterezésével kezdődik, ennek során az anyagtulajdonságok megadása, valamint az alkatrészek közötti kapcsolatok definiálása zajlik. A szimulációval a lehajlás során keletkező felszültségállapotot, lehajlást és deformációt kell meghatározni. Ezt követően a SPICE szimuláció következik, melynek során tranziens vizsgálatot hajtunk végre, ilyenkor az áramkör kimeneti jellemzőit időtartományban vizsgáljuk.

A mérés elvégzésével megszerezhető képességek: A hallgató betekintést kap a végeselem szimuláció alapjaiba, valamint egy mérnöki gyakorlatban elterjedten alkalmazott szoftver, a Solid Edge szimulációs részének kezelésébe és működésébe, emellett pedig a modellépítésbe és a tranziens vizsgálatok felállításába a SPICE szimuláció során.

A mérés során felmerülő fogalmak rövid meghatározása

Végeselem-módszer

Egy test geometriáját véges számú, egyszerűbb alakú elemre bontjuk, ezzel az egyszerűsítéssel élve pedig a kevesebb, de bonyolultabb számítás helyett több, de egyszerűbb számítást kell elvégeznünk. A végeselem szimuláció nagymértékben lecsökkenti (bizonyos esetekben meg is szünteti) a kísérleti darabok legyártását, valamint a próbaüzemek végrehajtását, a tervezés ezáltal jelentős költségcsökkenéssel és felgyorsult ütemben valósulhat meg. A módszer segítségével egy termék szilárdsági, hőtani, áramlástani, elektromos vagy mágneses vizsgálata történhet használati körülmények között, vagy éppen gyártás közben.

Hálózás

A végeselem szimuláció lényeges része az adott geometria kisebb, véges számú elemekre való felbontása, melynek során be kell állítani a megfelelő elemtípust és a hálózás sűrűségét, a hálózás finomsága (a felbontás) pedig meghatározza a kapott eredmények pontosságát és a futási időt. Az adott geometriai modellt ilyenkor elemek (elements) és csomópontok (nodes) létrehozásával hálózzuk, amit a szoftverek általában automatikusan végeznek, de sokszor a kézi beállításra is lehetőség nyílik.

Mechanikai kényszer

A test és környezete közötti olyan kapcsolat, mely a test mozgáslehetőségeit korlátozza. A kényszer típusától függően ezekben a kapcsolatokban különböző erőhatások keletkeznek.

Erő, koncentrált erő, terhelés

Erő: kapcsolatban lévő anyagi testek egymásra gyakorolt hatása. Koncentrált erő: amikor egy test másik testre gyakorolt hatása pontszerű érintkezéssel történik. Terhelés: egy adott testre ható erők összessége.

Spice szimuláció és lehetőségei

A magasabb szintű logikai modellező szoftverekt megbízhatósági elemzésre vagy tűrésvizsgálatra használják. Ezek az eszközök matematikai modelleket használhatnak, és néha a paraméterek átfutásával (akár a tűréshatárokat meghaladó átfutásokkal is) dolgozhatnak az optimális munkapont beállításának elősegítése érdekében. Megfelelő programozás esetén időzítési problémák, túllövések és tranziensek is vizsgálhatók.

A szimuláció lehetőségei és típusai:

Analóg áramkörök szimulációja, amelyek közül:

- Analóg áramkörök analízise (nemlineáris, munkapont számítás).
- Munkapont (paraméter) érzékenységelemzés (Egy paraméter egy tartományon belüli változásának hatása).
- Tranziens szimuláció.
- Hőmérsékletfüggés.
- Monte-Carlo/worst case (Véletlenszám-generátorral/legrosszabb eset elemzése).
- AC/zaj. (Bode-diagram/zajelemzés).

Digitális szimuláció:

- Funkcionális szimuláció a működés ellenőrzésére.
- Worst Case időzítési szimuláció, pl. a hazárdok felderítésére.

Vegyes (analóg és digitális) szimuláció.

1. A mérés menete - mechanikai szimuláció

1.1. Villogó geometriai modelljének megnyitása

Nyissuk meg az **Ast_multi_final_case.asm** szerelésfájlt a **D:\Users\ET_VIETAB01\05_SIM\Solid Edge** könyvtárból. A fájlt a Solid Edge megnyitása után a **Browse** menüpontban tallózhatjuk. A Solid Edge mappában hozzunk létre egy új könyvtárat a saját NEPTUN kódunkkal, a mentést pedig a továbbiakban ide végezzük (**D:\Users\ET_VIETAB01\05_SIM\Solid Edge\NEPTUNKÓD)**.

A megnyitást követően a bal oldali menüsáv mellett láthatjuk a szerelési struktúrát: az áramköri hordozó különböző rétegei (board, rézréteg, forrasztásgátló réteg, felirat réteg), az egyes alkatrészek (IC, SMD ellenások és kondenzátorok, LED-ek), valamint az áramkörhöz készült ház kijelölhetők és egyesével kikapcsolhatók a nézetben. Annak érdekében, hogy az egyes komponensek teljes neveit láthassuk, az eszköztár tetején lehetőségünk van a szélesítésre.

A szimulációk futtatása előtt az egyes komponensekhez hozzá kell rendelnünk a megfelelő anyagtulajdonságokat. Kattintsuk a felső menüsor alatti füleken a **Simulation** fülre, majd keressük meg a **Material Table** ikont.

1.2. Anyagtulajdonságok definiálása

Bizonyos alkotóelemekhez az alapkönyvtárban szereplő anyagokat is használhatjuk, néhány esetben viszont arra lesz szükség, hogy új anyagtulajdonságokat regisztráljunk. A jobb felül található **New Library** ikonnal hozzunk létre új könyvtárat a projektünkhöz: Hozzunk létre egy **PCB Components** nevű könyvtárat, az alatta lévő **Uncategorized** alkönyvtárat pedig nevezzük át **ET Blinker**-re (jobbklikk, majd rename). Az ET Blinker alatt hamarosan megjelenik egy **Material 1** nevű anyag, ezt nevezzük át **FR4**-re. A táblázatban az alábbi anyagtulajdonságokat adjuk meg az FR4-hez, illetve a többi létrehozott anyaghoz (1. táblázat). Mértékegység módosításra a jobb oldali ikonsor tetején (**Units**) van lehetőségünk (**Units menüpont, Derived Units** táblázat). Ugyanebben a táblázatban a tizedesek számát is beállíthatjuk (**Precision**).

1. táblázat: Új anyagtulajdonságok létrehozása

	FR4	Al2O3
Density (Sűrűség)	1900 kg/m^3	3600 kg/m^3
Modulus of Elasticity (Rugalmassági modulus)	24000 MPa	300000 MPa
Poisson's ratio (Poisson tényező)	0,136	0,21
Ultimate Stress 300 MPa (Szakítószilárdság)	300 MPa	138 MPa
	Si (Szilícium)	PMMA (Plexi)
Density (Sűrűség)	2329 kg/m^3	1180 kg/m^3
Modulus of Elasticity (Rugalmassági modulus)	165000 MPa	2900 MPa

Poisson's ratio (Poisson tényező)	0,26	0,35
Ultimate Stress 300 MPa (Szakítószilárdság)	180 MPa	70 MPa

Az adatok bevitele után rendeljük hozzá az alábbi anyagokat a villogó egyes elemeihez (2. táblázat).

2. tábázat: Anyagok hozzárendelése a villogó komponenseihez

Komponens leírása	Komponens neve	Anyag
burkolat (felső elem)	Top_part.par	ABS Plastic, medium impact
burkolat (alsó elem)	Bottom_part.par	ABS Plastic, medium impact
burkolat (plexi)	Plexi.par	PMMA
hordozó	uid1365.par	FR4
rézréteg	Ast_multi_final_CopperTop.par	copper
forrasztásgátló maszk	Ast_multi_final_Soldermask.par	Epoxy, cast rigid
SMD ellenállások	Submodel-RES0805_part_0805.asm:1\ RCS0805470RJNEA.stp.par:1	A12O3
	Submodel-RES0805_part_0805.asm:2\ RCS0805470RJNEA.stp.par:1 Submodel-RES0805_part_0805.asm:3\	_
	RCS0805470RJNEA.stp.par:1 Submodel-RES0805_part_0805.asm:4\ RCS0805470RJNEA.stp.par:1	
SMD kondenzátorok	Submodel-CAP0603_part_0603.asm:1\ 06035C105KAT2A.stp.par:1 Submodel-CAP0603_part_0603.asm:2\ 06035C105KAT2A.stp.par:1	A12O3
SMD LED-ek	Submodel-LED_part_LEDC3216X110L.asm:1\ LTST-C150KGKT.stp.par:1 Submodel-LED_part_LEDC3216X110L.asm:2\ LTST-C150KGKT.stp.par:1	Al2O3
IC	Submodel-NE555_part_SO8-OPT.asm:1\ NE555D.stp.par:1	Si

1.3. Megtámasztás létrehozása hajlítási szimulációhoz

A hajlítási tesztek során azt a szituációt fogjuk modellezni, amikor a villogó csatlakoztatva van a számítógép egyik USB portjába, a berendezés kilógó vége pedig véletlenül mechanikai erőhatás alá kerül. Annak érdekében, hogy az áramkör a helyzetnek megfelelő megtámasztást kapja, hozzunk létre egy 30x30x30 mm-es tömböt. Kattintsunk a felső menüsorban a **New** ikonra (bal felső sarok), hozzunk létre egy alkatrészfájlt az **iso metric part.par** lehetőséget választva.

A létrehozott komponenst mentsük el a villogó szerelési könyvtárába (D:\Users\ET_VIETAB01\05_SIM\Solid Edge), a fájlt neve legyen Fixed_support_bending.par. A szerkesztőben térjünk vissza az Ast_multi_final_case.asm fülre, ahol a felső menüsor alatt válasszuk ki a Home fület, azon belül pedig az Insert Component ikont. Ha az utóbbi lépést megtettük, a bal oldalon tallózhatjuk a létrehozott alkatrészt: keressük meg a munkakönyvtárat, majd duplaklikkel illesszük be a Fixed_support_bending hasábot.

A megfelelő síkok összepárosításával (**Assemble – Relationship Types** ikon, majd **Mate**) hozzuk a hasábot és a villogót az 1. ábrán látható kapcsolatba.

1. ábra Villogó áramkör megtámasztása a mechanikai vizsgálatokhoz

Mivel valóságos esetben egy számítógép méreteiben és tömegében is sokszorosa az USB villogónak, ebben a helyzetben ideális kényszernek tekinthetjük az áramkör és a hasáb kapcsolatát. A felfekvéshez létrehozott tömb így nagy szilárdságú anyagként is definiálható (pl. Steel, structural).

1.4. Hajlító igénybevétel vizsgálata

A szimuláció futtatása előtt az alábbi lépéseken kell végigmenni:

- **Geometry:** kijelöljük, hogy a szerelési lánc mely komponensei vegyenek részt a szimulációban.
- Loads: kiválasztjuk, hogy milyen terheléseknek vetjük alá a szerkezetet.
- Constraints: a vizsgált testet kényszerekkel rögzítjük, vagyis szabadságfokokat kötünk le.
- Mesh: a vizsgálat tárgyát elemi komponensekre bontjuk, vagyis hálózást hajtunk végre.
- Connectors: definiáljuk az egyes komponensek kapcsolódását.

Kattintsunk a **Simulation fül**ön a **New Study** ikonra, az előugró ablakban pedig válasszuk a **Linear Static** lehetőséget, illetve a **Tetrahedral** hálózást. Az **Options** gombra kattintva jelenítsük meg a további beállításokat: a Geometric check lehetőségnél válasszuk a **Warning Only** opciót, a jobb alsó **Elemental** oszlopban pedig a **Stress** mellett pipáljuk be a **Strain-**t is

Az első hajlító igénybevételhez csak az alábbi elemeket pipáljuk be a szerelési struktúrában:

- Hordozó (uid 1365.par:1)
- Rézréteg (Ast_multi_final_CopperTop.par:1)
- Támasz (Fixed support bending)

A terhelésnél használjuk a **Force** opciót, a támadáspontot navigáljuk a furat tetejére (2. ábra, bal oldal), majd állítsunk be 15 N-os értéket. A kényszer megadása során (**Constraints -> Fixed**) a befogási felületnek jelöljük ki a villogó ütközőfelületét (2. ábra, jobb oldal). A hálózásnál hagyjuk a csúszkát alapbeállításon a kapcsolódások létrehozásánál pedig válasszuk az automatikus lehetőséget: ha a **Connectors** menüben az **Auto** lehetőségre kattintunk, az ehhez tartozó eszköztárban beállíthatjuk, hogy a program milyen közel keresse egymáshoz a komponenseket (**Search distance**), ezt pedig lehetőségünk van alkalmazni az összes vizsgálatban szereplő elemre: **Auto – Select All** ikon, majd zöld pipa.

2. ábra: Koncentrált erő létrehozása (bal), befogott felület kijelölése (jobb)

Ha minden feltétel adott, a menüszalag jobb felső sarkában található **Solve** ikonnal indíthatjuk el a lehajlás szimulációját. A folyamat eredményét a menüszalag **Deformation** szegmensében három különböző módon jeleníthetjük meg:

- **Percentage:** adott deformációhoz (jelen esetben lehajláshoz) tartozó mechanikai feszültségállapot (százalékos megadás).
- Normalize: adott deformációhoz tartozó mechanikai feszültségállapot (megadás mm-ben).
- Actual: tényleges deformáció a beállított erő hatására.

Az Animate ikonra kattintva a lehajlás folyamatát mozgás közben is megtekinthetjük, az adott időtartamon belül lejátszódó animáció pedig videofájlként is elmenthető. A **Data Selection** szekcióban beállíthatjuk, hogy a szimuláció elején kijelölt eredmények (Elemental) közül melyik kerüljön megjelenítésre, jelen esetben a mechanikai feszültség (Stress), relatív nyúlás (Strain) vagy elmozdulás (**Displacement**). A jobb felső sarokban találhatjuk a **Probe** ikont, melynek segítségével a numerikus értékeket is lekérdezhetjük egy kijelölt elemre (node - metszéspont, face - felület, edge - él).

A továbbiakban változtassuk meg a szimuláció feltételeit (terhelés nagysága és iránya, hálózás finomsága, illetve kapcsoljuk be a burkolatelemeket is), majd figyeljük meg a változásokat az újbóli futtatás során.

2.1. A mérés menete - SPICE szimuláció

A modellünk felépítéséhez térjünk vissza a sematikus tervünkhöz, majd indítsuk el az asztalon az LTSpice szoftvert. A File/New Schematic-cal új tervet lehet készíteni. Rakjuk le az ellenállásokat, kondenzátorokat (jobb klikkel aztán értéket és nevet adhatunk nekik). Majd a "Component" (F2)-ből keressük ki az NE555-öst. Ez a gyári 555-ös modell. Tápnak válassza ki a "Battery"-t a kereső segítségével az NE555-öshöz hasonló módon. A további funkciókat a lentebbi 23. ábra mutatja be. Az áramkört az elkészülte után a *D:\Users\ET_VIETAB01\05_SIM\SPICE\NEPTUNKÓD* mappában mentsük.

A 3. ábrán (bal oldal) a "Battery" alkatrész beállítását láthatjuk. Ez kb. ugyanaz a feszültségforrás lesz, mintha az USB-re dugtuk volna a villogót. (DC 5V). Látható, hogy különböző funkciókat lehet beállítani a feszültségforráshoz, például pulzus jellegű, vagy szinuszos gerjesztést. Ezeket speciális AC vizsgálatoknál érdemes használni. A 3. ábra (jobb oldal) a kész áramkört ábrázolja.

3. ábra: Battery beállítás (bal), A kész áramkör (jobb)

A 3. ábrán (jobb oldal) a bal alsó sarokba jobb klikkelve a szimuláció beállítása következik. Alkalmazzuk a tranziens vizsgálatot, elvégre arra vagyunk kíváncsiak, hogy időtartományban hogy működik az eszköz. Stop time-nak állítsunk be 10-et. Majd ezek után jöhet a **Simulate/Run** funkció, ami a háttérben lefuttatja a tranziens analízist.

Ha ezzel megvagyunk, akkor már csak a megfelelő görbéket kell ábrázolni, ezt a frissen megjelent felső plot ablakra való kattintás után a **Plot Settings/Visible Traces** lehetőségével tudjuk beállítani. Fontos, hogy az ablakok közül a plot ablak legyen aktív! Jobb a **Visible Traces**-t alkalmazni, mint az "Add trace" lehetőséget, mert itt dinamikusan kapcsolhatók ki-be az ábrázolt görbék. A **V(out)** és a **V(trig)** görbéket érdemes ábrázolni. Miután lefut a szimuláció, figyeljük meg, hogy a kurzor az egyes csomópontok felett mérőszondára emlékeztető ikonná alakul. Így kattintva is hozzá tudunk adni görbéket az ábrázoláshoz.

Figyeljük meg, ahogy a trigger jel billegése váltja a kimeneti feszültséget. Mekkora a frekvencia? Sikerült 1 Hz körüli értéket belőni? A 4. ábrán egy munkaponti elemzést is csináltunk, egy kis csomóponti elemzés feszültségek és áramok tekintetében.

	29\Oktatás\ET_Labor\Spi		
	perating Point -		
V1 V(trig):	4.99001	voltage	
V(n003):	3.33333	voltage	
V(n001):	5	voltage	
V(dis):	4.99999	voltage	
V(out):	4.94592	voltage	
V(n002):	4.94592	voltage	
V(n004):	4.23395	voltage	
I(C1):	3.33333e-19	device current	
I(C2):	4.99001e-18	device current	
I(D1):	1.24999e-13	device current	
I (D2):	0.0090084	device current	
I(R2):	9.98002e-09	device current	
I(R1):	1.66517e-08	device current	
I(R3):	1.25001e-13	device current	
I(R4):	0.0090084	device current	
I(V1):	-0.0106194	device current	
Ix (u1:1):	-0.00161096	subckt current	
Ix(u1:2):	4.99001e-09	subckt current	
Ix(u1:3):	-0.0090084	subckt current	
Ix(u1:4):	2.26667e-05	subckt current	
Ix(u1:5):	-5.42101e-19	subckt current	
Ix (u1:6):	4.99001e-09	subckt current	
Ix(u1:7):	6.67166e-09	subckt current	
Ix(u1:8):	0.0105967	subckt current	

4. ábra Munkaponti eredmények

Ezek után két extra feladatunk van még. Az egyik, hogy állítsunk be az ellenállás és kondenzátor segítségével 440 Hz-es (zenei A hangot), így az első "squarewave" szintetizált hangunkat sikerült is leszimulálnunk! Aztán keressünk rá az irodalomban, hogy milyen frekvenciát lát a szemünk LED lámpáknál állandó világításnak 50%-os négyszögjel (kitöltési tényező) esetében. Ezt is állítsuk be! A beállításhoz valóságos 10%-os alkatrészeket használhat.

Ehhez a feladathoz további segítséget szolgáltat a: https://circuitdigest.com/calculators/555-timer-astable-circuit-calculator kalkulátora!

Források

[1] Kovács Ádám: Végeselem-módszer. https://www.mm.bme.hu/~gyebro/files/vem/kovacs-szekrenyes vegeselem modszer.pdf

[2] Tamás Péter, Bojtos Attila, Décsei-Paróczi Annamária, Dr. Fekete Róbert Tamás: Végeselem módszerek. https://mogi.bme.hu/TAMOP/vegeselem_modszerek/index.html

Ellenőrző kérdések

- 1. Mit nevezünk végeselem-módszernek, mi a jelentősége a műszaki gyakorlatban?
- 2. Mi a hálózás?
- 3. Mit nevezünk mechanikai kényszernek?
- 4. Definiálja az erő, a koncentrált erő és a terhelés fogalmát!
- 5. Soroljon fel legalább 3 módot, amelyben a SPICE-szal lehet egy áramkört elemezni.
- 6. Mit jelent Spice esetében a Tranziens elemzés?
- 7. Mit jelent Spice esetében a munkapont elemzés?