CS 205 Homework 4

Keith Lehman, kpl56@scarletmail.rutgers.edu

March 28, 2021

1. Show that for any $n \in N$, $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.

Proving $n \to n+1$:

Proving $n \to n+1$:
Assume for k = n: $0^2 + 1^2 + 2^2 + 3^2 + 4^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Then for k = n+1: $0^2 + 1^2 + 2^2 + 3^2 + 4^2 + ... + n^2 + (n+1)^2 = \frac{(n+1)(n+2)(2n+3)}{6}$.

Since both contain $0^2 + 1^2 + 2^2 + 3^2 + 4^2 + ... + n^2$, this can be substituted for $\frac{n(n+1)(2n+1)}{6}$.

Therefore, $\frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \frac{(n+1)(n+2)(2n+3)}{6}$.

Expanding these results in: $\frac{2n^3 + 9n^2 + 13n + 6}{6} = \frac{2n^3 + 9n^2 + 13n + 6}{6}$.

2. Show that for any $n \in N$ where $n \ge 1$, $\prod_{k=1}^{n} (1 + \frac{1}{k}) = n + 1$.

Proving $n \to n+1$:

Assume for k = n: $(1+1)*(1+\frac{1}{2})*(1+\frac{1}{3})*...*(1+\frac{1}{n}) = (n+1)$. Then for k = n+1: $(1+1)*(1+\frac{1}{2})*(1+\frac{1}{3})*...*(1+\frac{1}{n})*(1+\frac{1}{n+1}) = (n+2)$ Since both contain $(1+1)*(1+\frac{1}{2})*(1+\frac{1}{3})*...*(1+\frac{1}{n})$, this can be substituted for (n+1). Therefore, $n+1*(1+\frac{1}{n+1}) = (n+2)$. Expanding the left side results in (n+2) and n+2=n+2.