પ્રશ્ન 1(a) [3 marks]

થર્મલ રનઅવે વિગતવાર સમજાવો.

ઉत्तर:

થર્મલ રનઅવે એક વિનાશક પ્રક્રિયા છે જેમાં ટ્રાન્ઝિસ્ટર વધુને વધુ ગરમ થાય છે જ્યાં સુધી તે નિષ્ફળ ન જાય.

આકૃતિ:

- કારણ: તાપમાન વધવાથી બેઝ-એમિટર વોલ્ટેજ ઘટે છે
- **અસર**: તાપમાન વધવાથી કલેક્ટર કરંટ વધે છે
- પરિણામ: સ્વ-મજબૂત થતી ગરમીની સાયકલ વિનાશ તરફ દોરી જાય છે

મેમરી ટ્રીક: "ગરમી વધે, કરંટ ચડે, ટ્રાન્ઝિસ્ટર મરે"

ਮ਼ਵਜ 1(b) [4 marks]

ફિક્સડ બાયસ પદ્ધતિ દોરો અને સમજાવો.

ઉत्तर:

ફિક્સડ બાયસ માટે બેઝને વોલ્ટેજ સપ્લાય સાથે જોડવા માટે એક જ રેસિસ્ટરનો ઉપયોગ થાય છે.

સર્કિટ આકૃતિ:

- **કાર્યપદ્ધતિ**: બેઝ કરંટ (IB) = (VCC VBE)/RB
- **લક્ષણો**: સરળ સર્કિટ પરંતુ ઓછી સ્થિરતા
- **ગેરલાલ**: તાપમાન ફેરફારો પ્રત્યે અતિસંવેદનશીલ
- **ઉપયોગ**: નાના સિગ્નલ સર્કિટ જ્યાં સ્થિરતા મહત્વની નથી

મેમરી ટ્રીક: "ફિક્સડ બાયસ: એક રેસિસ્ટર, ઓછી સ્થિરતા"

પ્રશ્ન 1(c) [7 marks]

બાયસ પદ્ધતિઓની સૂચિ બનાવો. વોલ્ટેજ ડિવાઇડર પ્રકારની બાયસ પદ્ધતિની સર્કિટ દોરો અને સમજાવો.

ઉत्तर:

ટ્રાન્ઝિસ્ટર માટે બાયસિંગ પદ્ધતિઓમાં યોગ્ય ઓપરેટિંગ પોઇન્ટ સ્થાપિત કરવા માટે કેટલીક તકનીકો શામેલ છે.

કોષ્ટક: ટ્રાન્ઝિસ્ટર બાયસિંગ પદ્ધતિઓ

પદ્ધતિ	સ્થિરતા	જટિલતા	તાપમાન સંવેદનશીલતા
ફિક્સડ બાયસ	નબળી	સરળ	ઊંચી
કલેક્ટર-ટુ-બેઝ બાયસ	મધ્યમ	મધ્યમ	મધ્યમ
વોલ્ટેજ ડિવાઇડર બાયસ	ઉત્તમ	જટિલ	નીચી
એમિટર બાયસ	સારી	મધ્યમ	નીથી

સર્કિટ આકૃતિ:

- **કાર્યપદ્ધતિ**: R1-R2 ડિવાઇડર સ્થિર બેઝ વોલ્ટેજ બનાવે છે
- **ફાયદો**: β વેરિએશન અને તાપમાનથી ઓછો પ્રભાવિત
- મુખ્ય **લક્ષણ**: RE નેગેટિવ ફીડબેક સ્થિરીકરણ પ્રદાન કરે છે
- ઉપયોગ: એમ્પલિફાયર સર્કિટમાં સૌથી વધુ વપરાય છે

મેમરી ટ્રીક: "વિભાજીત કરો અને સ્થિર બાયસ માટે રાજ કરો"

ਸ਼ਵਜ 1(c OR) [7 marks]

કોમન એમીટર એમ્પલીફાયર માટે ડીસી લોડ લાઈન દોરો અને સમજાવો.

ઉत्तर:

ડીસી લોડ લાઈન ટ્રાન્ઝિસ્ટરના તમામ સંભવિત ઓપરેટિંગ પોઇન્ટ્સને દર્શાવે છે.

ગ્રાફ:

ઇક્વેશન કોષ્ટક:

પેરામીટર	સમીકરણ	વર્ણન
ਮહत्तम VCE	VCC	જ્યારે IC = 0
ਮહत्तभ IC	VCC/RC	જ્યારે VCE = 0
લોડ લાઈન સમીકરણ	IC = (VCC - VCE)/RC	બધા સંભવિત ઓપરેટિંગ પોઇન્ટ
Q-પોઇન્ટ	બાયસિંગ દ્વારા નિર્ધારિત	સ્થિર ઓપરેશન પોઇન્ટ

- **હેતુ**: IC અને VCE વચ્ચેના સંબંધને ગ્રાફિકલી બતાવે છે
- **મહત્વ**: ઓપરેટિંગ પોઇન્ટ (Q-પોઇન્ટ) નક્કી કરવામાં મદદ કરે છે
- ઉપયોગ: એમ્પલિફાયરની ડિઝાઇન અને વિશ્લેષણ માટે આવશ્યક

મેમરી ટ્રીક: "મહત્તમ કરંટ અથવા મહત્તમ વોલ્ટેજ, બંને ક્યારેય નહિં"

પ્રશ્ન 2(a) [3 marks]

પદો સમજાવો (i) ગેઈન (ii) બેન્ડવિડ્થ.

ઉત્તર:

આ એમ્પલિફાયર પરફ્રોરમન્સને વર્ણવતા મુખ્ય પેરામીટર્સ છે.

કોષ્ટક: એમ્પલિફાયર પેરામીટર્સ

પેરામીટર	વ્યાખ્યા	એકમ	મહત્વ
ગેઈન	આઉટપુટનો ઇનપુટ સિગ્નલ સાથેનો ગુણોત્તર	dB	એમ્પ્લિફિકેશન પાવર
બેન્ડવિડ્થ	ફ્રીક્વન્સીની રેન્જ જેમાં ગેઈન મહત્તમના 70.7% કરતાં ઓછો ન હોય	Hz	ઉપયોગી ફ્રીક્વન્સી રેન્જ

• **ગેઈનના પ્રકાર**: વોલ્ટેજ ગેઈન (Av), કરંટ ગેઈન (Ai), પાવર ગેઈન (Ap)

- **બેન્ડવિડ્થ ફોર્મ્યુલા**: BW = fH fL (ઉચ્ચ કટઓફ નીચા કટઓફ)
- સંબંધિત પેરામીટર: ગેઈન-બેન્ડવિડ્થ પ્રોડક્ટ (યોક્કસ એમ્પલિફાયર માટે અચળ)

મેમરી ટ્રીક: "ગેઈન મોટું બનાવે, બેન્ડવિડ્થ પહોળું બનાવે"

પ્રશ્ન 2(b) [4 marks]

એમ્પલીફાયરમાં નેગેટીવ ફીડબેકના ફાયદા અને ગેરફાયદાની સૂચિ બનાવો.

ઉત્તર:

નેગેટિવ ફીડબેક એમ્પલિફાયર પરફોરમન્સમાં નોંધપાત્ર સુધારો કરે છે પરંતુ ટ્રેડઓફ સાથે.

કોષ્ટક: નેગેટિવ ફીડબેક લક્ષણો

ફાયદા	ગેરફાયદા
બેન્ડવિડ્થમાં વધારો	ગેઈનમાં ઘટાડો
ડિસ્ટોર્શનમાં ઘટાડો	વધુ ઇનપુટ સિગ્નલની જરૂર
સ્થિરતામાં સુધારો	વધુ જટિલ સર્કિટ
ઘોંઘાટ સામે વધુ ઈમ્યુનિટી	અયોગ્ય ડિઝાઇન થાય તો ઓસિલેશનની સંભાવના
ઇનપુટ/આઉટપુટ ઇમ્પીડન્સ નિયંત્રિત	વધુ પાવર વપરાશ

મેમરી ટ્રીક: "સ્થિર, પહોળું અને ચોખ્ખું, માત્ર ગેઈન છોડો"

પ્રશ્ન 2(c) [7 marks]

હાર્ટલી ઓસ્સીલેટર દોરો અને સમજાવો.

ઉત્તર:

હાર્ટલી ઓસિલેટર ઇન્ડક્ટિવ ફીડબેકનો ઉપયોગ કરીને સાઇન વેવ્સ જનરેટ કરે છે.

સર્કિટ આકૃતિ:

- **ફ્રીકવન્સી નિર્ધારણ**: L1, L2 અને C1 મૂલ્યો દ્વારા (f = 1/2π√(L × C))
- ફીડબેક મેકેનિઝમ: ઇન્ડક્ટિવ વોલ્ટેજ ડિવાઇડર (L1 અને L2)
- ઓળખ લક્ષણ: ટેપ કરેલ ઇન્ડક્ટર અથવા શ્રેણીમાં બે ઇન્ડક્ટર્સ
- **ઉપયોગ**: RF સિગ્નલ જનરેશન, રેડિયો ટ્રાન્સમિટર્સ, કોમ્યુનિકેશન સિસ્ટમ્સ

મેમરી ટ્રીક: "હાર્ટલી હેલ્પફુલ ઇન્ડક્ટર્સ ધરાવે છે"

પ્રશ્ન 2(a OR) [3 marks]

ઓસ્સીલેટર માટે બારખૌસન ક્રાઈટરીઆ (Barkhausen's criteria) જણાવો અને સમજાવો.

ઉત્તર:

બારખૌસન ક્રાઈટેરિયા સતત ઓસિલેશન માટેની શરતો નિર્ધારિત કરે છે.

બે મુખ્ય માપદંડ:

- **લૂપ ગેઈન કન્ડિશન**: |Aβ| = 1 (સતત ઓસિલેશન માટે ચોક્કસ 1)
- ફ્રેઝ શિફ્ટ કન્ડિશન: ∠Aβ = 0° અથવા 360° (સિગ્નલ રિઇન્ફોર્સમેન્ટ)

• **પ્રેક્ટિકલ ડિઝાઇન**: પ્રારંભિક |Aβ| > 1, અંતે |Aβ| = 1 પર સ્થિર થાય છે

મેમરી ટ્રીક: "ઓસિલેશન માટે: યુનિટ ગેઈન, ઝીરો ફેઝ"

પ્રશ્ન 2(b OR) [4 marks]

નેગેટીવ અને પોસીટીવ ફીડબેક એમ્પલીફાયરને સરખાવો.

ઉत्तर:

ફીડબેકનો પ્રકાર એમ્પલિફાયરના વર્તનને નાટકીય રીતે બદલે છે.

તુલના કોષ્ટક:

પેરામીટર	નેગેટિવ ફીડબેક	પોઝિટિવ ફીડબેક
ગેઈન	ઘટે છે	વધે છે
બેન્ડવિડ્થ	વધે છે	ઘટે છે
ડિસ્ટોર્શન	ઘટાડે છે	વદ્યારે છે
સ્થિરતા	સુધારે છે	ઘટાડે છે (ઓસિલેટ કરી શકે)
ย)ัยเว	ઘટાડે છે	વદ્યારે છે
ઉપયોગ	સ્થિર એમ્પલિફાયર	ઓસિલેટર, ટ્રિગર સર્કિટ
ઇનપુટ/આઉટપુટ ઇમ્પીડન્સ	નિયંત્રિત	ઓછી અનુમાનિત

મેમરી ટ્રીક: "નેગેટિવ સ્થિર કરે, પોઝિટિવ ઓસિલેટ કરે"

પ્રશ્ન 2(c OR) [7 marks]

કોલપીટ્ટસ ઓસ્સીલેટર દોરો અને સમજાવો.

ઉत्तर:

કોલપિટ્સ ઓસિલેટર ફીડબેક માટે કેપેસિટિવ વોલ્ટેજ ડિવાઇડરનો ઉપયોગ કરે છે.

સર્કિટ આકૃતિ:

- **ફ્રીક્વન્સી નિર્ધારણ**: L, C1 અને C2 મૂલ્યો દ્વારા (f = 1/2π√(L × Ceq))
- ફીડબેક મેકેનિઝમ: કેપેસિટિવ વોલ્ટેજ ડિવાઇડર (C1 અને C2)

• ઓળખ લક્ષણ: ઇન્ડક્ટર સામે શ્રેણીમાં બે કેપેસિટર

• ફાયદો: હાર્ટલી કરતાં વધુ સ્થિર ફ્રીક્વન્સી

મેમરી ટ્રીક: "કોલિપટ્સ કેપેસિટિવ કરંટ કેચ કરે છે"

પ્રશ્ન 3(a) [3 marks]

ડાયક વિષે સમજાવો.

ઉત્તર:

DIAC (Diode for Alternating Current) એ બાઇડિરેક્શનલ ટ્રિગર ડાયોડ છે.

સિમ્બોલ અને સંરથના:

• ઓપરેશન: બ્રેકડાઉન વોલ્ટેજ પછી બંને દિશામાં વહન કરે છે

• **લક્ષણ**: બંને દિશામાં સિમેટ્રિકલ V-I કર્વ

• **કી પેરામીટર**: બ્રેકઓવર વોલ્ટેજ (સામાન્ય રીતે 30-40V)

• મુખ્ય ઉપયોગ: AC પાવર કંટ્રોલમાં TRIAC ટ્રિગરિંગ

મેમરી ટ્રીક: "DIAC: બેવડી દિશા બ્રેક્ડાઉન ડિવાઇસ"

પ્રશ્ન 3(b) [4 marks]

SCRની ટ્રીગરિંગ પદ્ધતિઓ સમજાવો.

ઉत्तर:

SCR વહન માટે ઘણી પદ્ધતિઓ દ્વારા ટ્રિગર થઈ શકે છે.

કોષ્ટક: SCR ટ્રિગરિંગ પદ્ધતિઓ

પદ્ધતિ	વર્ણન	ફાયદા	મર્યાદાઓ
ગેટ ટ્રિગરિંગ	ગેટ પર કરંટ પલ્સ	સૌથી સામાન્ય, નિયંત્રિત	કંટ્રોલ સર્કિટની જરૂર
તાપમાન	ઉચ્ચ તાપમાન	કોઈ બાહ્ય સર્કિટ નહીં	અનિયંત્રિત, અવિશ્વસનીય
વોલ્ટેજ	બ્રેકઓવર વોલ્ટેજથી વધારે	કોઈ બાહ્ય સર્કિટ નહીં	ડિવાઇસ પર તણાવ, અનિયંત્રિત
dv/dt	ઝડપી વોલ્ટેજ વૃદ્ધિ	સરળ	અનિચ્છનીય ટ્રિગરિંગ થઈ શકે
પ્રકાશ	જંક્શન પર ફોટોન્સ	ઇલેક્ટ્રિકલ અલગતા	વિશેષ પેકેજિંગની જરૂર

મેમરી ટ્રીક: "ગેટ વોલ્ટેજ તાપમાન રેટ લાઇટ"

ਸ਼ਵਜ 3(c) [7 marks]

SCRનો સિમ્બોલ અને કન્સ્ટ્રક્શન દોરો. ઉપરાંત SCRની V-I લાક્ષણિકતા દોરો અને સમજાવો.

ઉત્તર:

SCR (Silicon Controlled Rectifier) એ ત્રણ ટર્મિનલવાળી ચાર-લેયર PNPN સેમિકન્ડક્ટર ડિવાઇસ છે.

સિમ્બોલ:

કન્સ્ટ્રક્શન:

V-I લાક્ષણિકતા:

• ફોરવર્ડ બ્લોકિંગ: ટ્રિગરિંગ સુધી ઓછો કરંટ

• ફોરવર્ડ કન્ડક્શન: ટ્રિગરિંગ પછી ઉચ્ચ કરંટ (લેચડ)

• હોલ્ડિંગ કરંટ: કન્ડક્શન જાળવવા માટે ન્યૂનતમ કરંટ

• લેચિંગ કરંટ: લેચિંગ શરૂ કરવા માટે ન્યૂનતમ કરંટ

• રિવર્સ બ્લોકિંગ: રિવર્સ દિશામાં કરંટને અવરોધે છે

મેમરી ટ્રીક: "એક વાર ટ્રિગર, હંમેશા કન્ડક્ટ, જ્યાં સુધી કરંટ ન ઘટે"

પ્રશ્ન 3(a OR) [3 marks]

SCRની નેચરલ કોમ્યુટેશન પદ્ધતિ વિષે સમજાવો.

ઉत्तर:

નેચરલ કોમ્યુટેશન AC કરંટ કુદરતી રીતે શૂન્ય પર પહોંચે ત્યારે બાહ્ય સર્કિટ વિના SCRને બંધ કરે છે.

પ્રક્રિયા આકૃતિ:

- **સિદ્ધાંત**: AC સપ્લાયના કુદરતી શૂન્ય-ક્રોસિંગનો ઉપયોગ કરે છે
- ફાયદો: કોઈ વધારાની કોમ્યુટેશન સર્કિટની જરૂર નથી
- ઉપયોગ: AC પાવર કંટ્રોલ સર્કિટ, લાઇટ ડિમર્સ
- મર્યાદા: માત્ર AC સપ્લાય સાથે કામ કરે છે, DC સાથે નહીં

મેમરી ટ્રીક: "નેચરલ કોમ્યુટેશન: શૂન્ય કરંટ, શૂન્ય પ્રયત્ન"

પ્રશ્ન 3(b OR) [4 marks]

ઓપ્ટો-કપ્લર વિશે સમજાવો.

ઉत्तर:

ઓપ્ટો-કપ્લર પ્રકાશ ટ્રાન્સમિશનનો ઉપયોગ કરીને ઇલેક્ટ્રિકલ આઈસોલેશન પ્રદાન કરે છે.

સંરથના:

કોષ્ટક: ઓપ્ટો-કપ્લર પ્રકારો

уѕіғ	ફોટોડિટેક્ટર	સ્પીડ	CTR	ઉપયોગો
સ્ટાન્ડર્ડ	ફોટોટ્રાન્ઝિસ્ટર	મધ્યમ	20-100%	સામાન્ય આઈસોલેશન
હાઈ-સ્પીડ	ફોટોડાયોડ	ઝડપી	10-50%	ડિજિટલ કોમ્યુનિકેશન
TRIAC	ફોટો-TRIAC	ધીમું	N/A	AC પાવર કંટ્રોલ
લિનિયર	ફોટોડાર્લિંગટન	ધીમું	100-1000%	એનાલોગ સિગ્નલ્સ

- CTR: કરંટ ટ્રાન્સફર રેશિયો (આઉટપુટ/ઇનપુટ કરંટ)
- મુખ્ય લક્ષણ: સર્કિટ્સ વચ્ચે સંપૂર્ણ ઇલેક્ટ્રિકલ આઈસોલેશન
- ફાયદા: નોઈઝ ઈમ્યુનિટી, વોલ્ટેજ લેવલ શિફ્ટિંગ, સલામતી

મેમરી ટ્રીક: "પ્રકાશ ફૂદે છે જ્યાં ઇલેક્ટ્રોન્સ નથી ફૂદી શકતા"

प्रश्न 3(c OR) [7 marks]

TRIACનો સિમ્બોલ અને કન્સ્ટ્રક્શન દોરો. ઉપરાંત TRIACની V-I લાક્ષણિકતા દોરો અને સમજાવો.

ઉत्तर:

TRIAC (Triode for Alternating Current) એ બાઇડિરેક્શનલ ત્રણ-ટર્મિનલવાળી સેમિકન્ડક્ટર ડિવાઇસ છે.

સિમ્લોલ:

કન્સ્ટ્રક્શન:

V-I લાક્ષણિકતા:

- **બાઇડિરેક્શનલ**: ટ્રિગરિંગ પછી બંને દિશામાં વહન કરે છે
- ક્વોડ્રન્ટ ઓપરેશન: પોલેરિટી પર આધારિત ચાર ટ્રિગરિંગ મોડ
- **ઉપયોગો**: AC પાવર કંટ્રોલ, લાઇટ ડિમર્સ, મોટર કંટ્રોલ
- SCR કરતાં ફાયદો: AC સાયકલના બંને અર્ધભાગોને નિયંત્રિત કરે છે

મેમરી ટ્રીક: "TRIAC: AC સર્કિટમાં બેવડી દિશાનો રસ્તો"

પ્રશ્ન 4(a) [3 marks]

Ideal Op-Ampની લાક્ષણિકતા જણાવો.

ઉત્તર:

આદર્શ Op-Amp એવી સંપૂર્ણ લાક્ષણિકતાઓ ધરાવે છે જેને વાસ્તવિક Op-Amps આશરે છે.

કોષ્ટક: આદર્શ Op-Amp લાક્ષણિકતાઓ

પેરામીટર	આદર્શ મૂલ્ય	અર્થ
ઓપન-લૂપ ગેઈન	અનંત	નાનામાં નાના ઇનપુટ તફાવતને એમ્પ્લિફાય કરે છે
ઇનપુટ ઇમ્પીડન્સ	અનંત	સ્ત્રોતમાંથી કોઈ કરંટ લેતું નથી
આઉટપુટ ઇમ્પીડન્સ	શૂન્ય	કોઈપણ લોડને ડ્રાઇવ કરી શકે છે
બેન્ડવિડ્થ	અનંત	બધી ફ્રીક્વન્સી પર કામ કરે છે
CMRR	અનંત	કોમન-મોડ સિગ્નલ્સને નકારે છે
સ્લ્યૂ રેટ	અનંત	તાત્કાલિક આઉટપુટ ફેરફાર
ઓફસેટ વોલ્ટેજ	શૂન્ય	શૂન્ય ઇનપુટ સાથે કોઈ આઉટપુટ નહીં

મેમરી ટ્રીક: "અનંત ગેઈન, ઇમ્પીડન્સ, બેન્ડવિડ્થ; શૂન્ય ઓફસેટ, આઉટપુટ Z"

ม**ะ** 4(b) [4 marks]

555 ટાઈમર ICની મદદથી મોનોસ્ટેબલ મલ્ટીવાઇબ્રેટર દોરો અને સમજાવો.

ઉत्तर:

મોનોસ્ટેબલ મલ્ટીવાઇબ્રેટર ટ્રિગર થાય ત્યારે નિશ્ચિત સમયગાળાનો એક પલ્સ ઉત્પન્ન કરે છે.

સર્કિટ:

- **ઓપરેશન**: નેગેટિવ ટ્રિગર T = 1.1RC સમયગાળાનો આઉટપુટ પલ્સ ઉત્પન્ન કરે છે
- સ્ટેબલ સ્ટેટ: ટ્રિગર થાય ત્યાં સુધી આઉટપુટ LOW

- ટા**ઇમિંગ કંટ્રોલ**: R અને C મૂલ્યો પલ્સ પહોળાઈ નક્કી કરે છે
- રિટ્રિગરિંગ: ટાઇમઆઉટ પછી ફરીથી ટ્રિગર થઈ શકે છે

મેમરી ટ્રીક: "વન શોટ વન્ડર: એક વાર ટ્રિગર, એક વાર પલ્સ"

પ્રશ્ન 4(c) [7 marks]

741 ICની મદદથી ઇન્વર્ટિંગ એમ્પલીફાયર દોરો અને સમજાવો. ઉપરાંત તેના ઈનપુટ અને આઉટપુટ વેવફોર્મ્સ દોરો.

ઉત્તર:

ઇન્વર્ટિંગ એમ્પલિફાયર ઇનપુટ સિગ્નલને એમ્પ્લિફાય કરતી વખતે પોલેરિટી ઉલટાવે છે.

સર્કિટ:

વેવફોર્મ્સ:

- **ગેઈન સમીકરણ**: Av = -Rf/Rin (નેગેટિવ ચિહ્ન ઇન્વર્ઝન સૂચવે છે)
- **ઇનપુટ ઇમ્પીડન્સ**: Rin જેટલી
- વર્ચ્યુઅલ ગ્રાઉન્ડ: ઇન્વર્ટિંગ ઇનપુટ લગભગ 0V પર જળવાય છે
- બેન્ડવિડ્થ: ગેઈન પર આધારિત (ઉચ્ચ ગેઈન = ઓછી બેન્ડવિડ્થ)
- ઉપયોગો: સિગ્નલ કન્ડિશનિંગ, ઓડિયો એમ્પલિફાયર

મેમરી ટ્રીક: "ઉલટાવે અને Rf/Rin વડે ગુણાકાર કરે છે"

ਸ਼ਵਜ 4(a OR) [3 marks]

IC 741નો સિમ્બોલ અને પીન ડાયગ્રામ દોરો.

ઉत्तर:

741 એક લોકપ્રિય જનરલ-પરપસ ઓપરેશનલ એમ્પલિફાયર છે.

સિમ્બોલ:

8-Pin DIP น้ริช:

- **પિન ફંક્શન્સ**: ઇન્વર્ટિંગ ઇનપુટ, નોન-ઇન્વર્ટિંગ ઇનપુટ, આઉટપુટ, પાવર સપ્લાય
- ઓપ્શનલ પિન્સ: ઓફસેટ નલ, નો કનેક્શન
- **પાવર સપ્લાય**: સામાન્ય રીતે ±15V અથવા ±12V ક્યુઅલ સપ્લાય

મેમરી ટ્રીક: "કદી ઉલટાવશો નહિં પ્લસ, વેરી આઉટપુટ નોટ કનેક્ટેડ"

પ્રશ્ન 4(b OR) [4 marks]

પદો સમજાવો (i) સી.એમ.આર.આર (II) સ્લૂ રેટ.

ઉત્તર:

આ પેરામીટર્સ ઓપરેશનલ એમ્પલિફાયરની કાર્યક્ષમતાની મર્યાદાઓ નિર્ધારિત કરે છે.

કોષ્ટક: મુખ્ય Op-Amp પેરામીટર્સ

પેરામીટર	વ્યાખ્યા	સામાન્ય મૂલ્ય	મહત્વ
CMRR (Common Mode Rejection Ratio)	ડિફરેન્શિયલ ગેઈનનો કોમન-મોડ ગેઈન સાથેનો ગુણોત્તર	90-120 dB	ઉચ્ચ હોય તે વધુ સારું
સ્લ્યૂ રેટ	આઉટપુટ વોલ્ટેજના ફેરફારનો મહત્તમ દર	0.5-50 V/μs	ઝડપી સિગ્નલ્સ માટે ઉચ્ચ

• **CMRR ફોર્મ્યુલા**: CMRR = 20 log₁₀(Ad/Acm) dB

• CMRR મહત્વ: બંને ઇનપુટ પર સામાન્ય ઘોંઘાટને નકારે છે

• સ્ત્યૂ રેટ ફોર્મ્યુલા: SR = dVo/dt (max)

• સ્ત્યૂ રેટ મર્યાદા: ઉચ્ચ ફ્રીક્વન્સી પર ડિસ્ટોર્શન કરે છે

મેમરી ટ્રીક: "CMRR કોમન નોઈઝને ક્રશ કરે છે, સ્લ્યૂ રેટ સ્પીડ બતાવે છે"

प्रश्न 4(c OR) [7 marks]

555 ટાઈમર ICની મદદથી આસ્ટેબલ મલ્ટીવાઇબ્રેટર દોરો અને સમજાવો.

ઉत्तर:

આસ્ટેબલ મલ્ટીવાઇબ્રેટર બાહ્ય ટ્રિગર વિના સતત સ્કવેર વેવ્સ ઉત્પન્ન કરે છે.

સર્કિટ:

આઉટપુટ વેવફોર્મ:

• **ટเฮโभัว**เ: T1 = 0.693(RA+RB)C, T2 = 0.693(RB)C

• ફ્રીક્વન્સી: f = 1.44/((RA+2RB)C)

• **ક્યુટી સાયકલ**: RA અને RB દ્વારા એડજસ્ટ થઈ શકે છે

• ઉપયોગો: ક્લોક જનરેટર, LED ફ્લેશર, ટોન જનરેટર

મેમરી ટ્રીક: "હંમેશા ઓસિલેટિંગ, ક્યારેય સ્ટોપિંગ નહીં"

પ્રશ્ન 5(a) [3 marks]

રેગ્યુલેટેડ પાવર સપ્લાયનો બેઝીક બ્લોક ડાયગ્રામ દોરો અને તેને સમજાવો.

ઉत्तर:

રેગ્યુલેટેડ પાવર સપ્લાય AC ને સ્થિર DC વોલ્ટેજમાં રૂપાંતરિત કરે છે.

બ્લોક ડાયગ્રામ:

- ટ્રાન્સફોર્મર: AC વોલ્ટેજને જરૂરી લેવલ સુધી ઘટાડે છે
- **રેક્ટિફાયર**: AC ને પલ્સેટિંગ DC માં રૂપાંતરિત કરે છે (ડાયોડ બ્રિજ)
- ફિલ્ટર: પત્સેટિંગ DC ને સ્મૂધ કરે છે (કેપેસિટર્સ)
- રેગ્યુલેટર: ફેરફારો છતાં સતત આઉટપુટ જાળવે છે
- **આઉટપુટ**: ઇલેક્ટ્રોનિક સર્કિટ્સ માટે સ્થિર DC વોલ્ટેજ

મેમરી ટ્રીક: "ટ્રાન્સફોર્મર રેક્ટિફાય ફિલ્ટર રેગ્યુલેટ"

પ્રશ્ન 5(b) [4 marks]

Op-ampની મદદથી સમિંગ એમ્પલીફાયર દોરો અને સમજાવો.

ઉત્તર:

સમિંગ એમ્પલિફાયર વજનદાર અનુપાત સાથે બહુવિધ ઇનપુટ સિગ્નલ્સને ઉમેરે છે.

સર્કિટ:

- આઉટપુટ સમીકરણ: Vout = -Rf(V1/R1 + V2/R2 + V3/R3)
- વિશેષ કેસ: જ્યારે બધા રેસિસ્ટર સમાન હોય, Vout = -Rf/R × (V1 + V2 + V3)
- ઉપયોગો: ઓડિયો મિક્સિંગ, એનાલોગ કમ્પ્યુટર, સિગ્નલ એવરેજિંગ
- વેરિએશન્સ: ઇન્વર્ટિંગ અને નોન-ઇન્વર્ટિંગ કોન્ફિગરેશન ઉપલબ્ધ

મેમરી ટ્રીક: "મલ્ટિપલ ઇનપુટ, વન આઉટપુટ, વેઇટેડ એડિશન"

પ્રશ્ન 5(c) [7 marks]

IC LM317ની મદદથી 3 ટર્મિનલવાળા એડજસ્ટેબલ આઉટપુટ વોલ્ટેજ રેગ્યુલેટરનો સર્કિટ ડાયગ્રામ દોરો અને સમજાવો.

ઉत्तर:

LM317 એ 1.25V થી 37V સુધીની આઉટપુટ રેન્જ સાથે વર્સેટાઇલ એડજસ્ટેબલ વોલ્ટેજ રેગ્યુલેટર છે.

સર્કિટ:

• આઉટપુટ વોલ્ટેજ: VOUT = 1.25V(1 + R2/R1)

• ફિક્સ્ડ કમ્પોનન્ટ્સ: R1 = 240Ω, રેફરન્સ વોલ્ટેજ = 1.25V

• એડજસ્ટેબિલિટી: R2 બદલવાથી ઇચ્છિત આઉટપુટ વોલ્ટેજ સેટ થાય છે

• પ્રોટેક્શન ફીચર્સ: કરંટ લિમિટિંગ, થર્મલ શટડાઉન

• ઉપયોગો: વેરિએબલ પાવર સપ્લાય, બેટરી ચાર્જર

• ફાયદા: ઓછા બાહ્ય ઘટકો, મજબૂત સુરક્ષા

મેમરી ટ્રીક: "R2 વડે એડજસ્ટ કરો, રેફરન્સ 1.25 પર રહે છે"

પ્રશ્ન 5(a OR) [3 marks]

એસ.એમ.પી.એસનું સંપૂર્ણ ફોર્મ જણાવો. ઉપરાંત એસ.એમ.પી.એસના કાર્યો જણાવો.

ઉત્તર:

SMPS એટલે Switch Mode Power Supply, એક આધુનિક કાર્યક્ષમ પાવર રૂપાંતરણ ટેકનોલોજી.

ઉપયોગ કોષ્ટક:

ઉપયોગ	SMPS ysis	ફાયદા
કમ્પ્યુટર પાવર સપ્લાય	ATX	ઉચ્ચ કાર્યક્ષમતા, મલ્ટિપલ આઉટપુટ
મોબાઇલ ફોન ચાર્જર	ફ્લાયબૅક	કોમ્પેક્ટ સાઇઝ, હળવું વજન
LED ડ્રાઇવર	어\$	કાર્યક્ષમ ડિમિંગ ક્ષમતા
TV પાવર સપ્લાય	ફોરવર્ડ	સારી રેગ્યુલેશન, મલ્ટિપલ આઉટપુટ
ઔદ્યોગિક કંટ્રોલ	પુશ-પુલ	ઉચ્ચ પાવર ક્ષમતા
બેટરી ચાર્જર	બૂસ્ટ	એડજસ્ટેબલ યાર્જિંગ પ્રોફાઇલ

- મુખ્ય ફાયદા: ઉચ્ચ કાર્યક્ષમતા (80-95%), નાનો આકાર, હળવું
- **નુકસાન**: EMI ઉત્પાદન, વધુ જટિલ સર્કિટ

મેમરી ટ્રીક: "સ્વિય મોડ નાના ઉપકરણોને પાવર આપે છે"

ਮ੪ਜ 5(b OR) [4 marks]

Op-ampની મદદથી ડિફ્રન્સીએટર દોરો અને સમજાવો.

ઉત્તર:

ડિફરન્શિએટર ઇનપુટના ફેરફારના દરના સમપ્રમાણમાં આઉટપુટ ઉત્પન્ન કરે છે.

સર્કિટ:

ઇનપુટ/આઉટપુટ વેવફોર્મ્સ:

- સમીકરણ: Vout = -RC × d(Vin)/dt
- ફંક્શન: સ્કવેર વેવને સ્પાઇક્સમાં, ટ્રાયેંગલને સ્કવેરમાં રૂપાંતરિત કરે છે
- પ્રેક્ટિકલ સમસ્યા: ઉચ્ચ નોઈઝ સેન્સિટિવિટી
- **મોડિફિકેશન**: ઉચ્ચ-ફ્રીક્વન્સી ગેઈન મર્યાદિત કરવા માટે C સાથે શ્રેણીમાં નાનો રેસિસ્ટર
- ઉપયોગો: વેવશેપિંગ, ફેરફાર-દરની શોધ

મેમરી ટ્રીક: "ફેરફારનો દર અંદર જાય, એમ્પલિટ્યુડ બહાર આવે"

ਮ਼ਵਜ 5(c OR) [7 marks]

-12 V રેગ્યુલેટેડ પાવર સપ્લાયનો સર્કિટ ડાયગ્રામ દોરો અને સમજાવો.

ઉत्तर:

-12V રેગ્યુલેટેડ સપ્લાય એનાલોગ સર્કિટ્સ માટે સ્થિર નેગેટિવ વોલ્ટેજ પ્રદાન કરે છે.

સર્કિટ ડાયગ્રામ:

- **કાર્યસિદ્ધાંત**: ફુલ-વેવ રેક્ટિફાયર નેગેટિવ વોલ્ટેજ બનાવે છે
- ઘટકો: ટ્રાન્સફોર્મર, બ્રિજ રેક્ટિફાયર, ફિલ્ટર કેપેસિટર, 7912 રેગ્યુલેટર
- **રેગ્યુલેટર IC**: 7912 આંતરિક સુરક્ષા સાથે ફિક્સ્ડ -12V આઉટપુટ પ્રદાન કરે છે
- ફિલ્ટર કેપેસિટર: ઇનપુટ કેપેસિટર રિપલ ફિલ્ટર કરે છે, આઉટપુટ કેપેસિટર ટ્રાન્ઝિયન્ટ રિસ્પોન્સ સુધારે છે
- **ઉપયોગો**: Op-amp નેગેટિવ રેલ, એનાલોગ સર્કિટ્સ, ઓડિયો ઇક્વિપમેન્ટ

મેમરી ટ્રીક: "કુલ બ્રિજ, મોટો કેપેસિટર, 7912 નેગેટિવ રેગ્યુલેટ કરે છે"

આ સાથે ઇલેક્ટ્રોનિક્સ ડિવાઇસીસ એન્ડ સર્કિટ્સ વિન્ટર 2024 પરીક્ષા પેપરના બધા પ્રશ્નોના ઉકેલ, બધા OR પ્રશ્નો સહિત પૂર્ણ થાય છે.