# Using Deception in Markov Game to Understand Adversarial Behaviors through a Capture-The-Flag Environment











Siddhant Bhambri1\*



Purv Chauhan<sup>1\*</sup>



Frederico Araujo<sup>2</sup>



Adam Doupé<sup>1</sup>



Subbarao Kambhampati<sup>1</sup>

#### **Objective**

- Identifying real-world adversarial threats
- Advantage of deploying deception strategies
- Modeling the real-world attacker
- \* Role of game-theoretic decision models
- Understanding human attacker behaviors



#### Agenda

- \* Reviewing Honey-Patching
- Setting up the user-study
- Deploying Honey-Patches as mitigations
- Modeling the adversary's attack graph
- \* Formulating the Markov Game model
- \* Computing the Bayesian Stackelberg Equilibrium

### **Traditional Solution to Mitigate Attacks**



### **Traditional Solution to Mitigate Attacks**



### **Using Deception as Defense**



#### Agenda

- \* Reviewing Honey-Patching
- Setting up the user-study
- Deploying Honey-Patches as mitigations
- Modeling the adversary's attack graph
- \* Formulating the Markov Game model
- \* Computing the Bayesian Stackelberg Equilibrium

#### **Automating Proactive Responses**





#### **Automating Proactive Responses**





I also need to

### **Testing Deception as Defense Strategy**



### **Testing Deception as Defense Strategy**



#### Adapting the iCTF Framework



#### **Hypothesis Testing**

"Once trapped in a honeypot environment, the attacker <u>chooses to continue</u> with the existing strategy to exploit the remaining vulnerabilities."



#### Agenda

- \* Reviewing Honey-Patching
- Setting up the user-study
- Deploying Honey-Patches as mitigations
- Modeling the adversary's attack graph
- \* Formulating the Markov Game model
- Computing the Bayesian Stackelberg Equilibrium

1. Patch synthesis

2. Inject patch and compile



- 1. Patch synthesis
- 2. Inject patch and compile 3. Setup trampolines





**INSIDER** Honey-Patching Framework





#### Agenda

- \* Reviewing Honey-Patching
- Setting up the user-study
- Deploying Honey-Patches as mitigations
- ❖ Modeling the adversary's attack graph
- \* Formulating the Markov Game model
- \* Computing the Bayesian Stackelberg Equilibrium





Let me start the exploit!





Which flag is it going to be?







I got the real flags!







#### Agenda

- \* Reviewing Honey-Patching
- Setting up the user-study
- Deploying Honey-Patches as mitigations
- Modeling the adversary's attack graph
- \* Formulating the Markov Game model
- \* Computing the Bayesian Stackelberg Equilibrium

**Markov Game** (Shapley 1953) for two players  $P_1$  and  $P_2$  can be defined by the tuple  $(S, A_1, A_2, \tau, R, \gamma)$  where,

•  $S = \{s_1, s_2, ..., s_k\}$  represents a set of finite states of the game,



**Markov Game** (Shapley 1953) for two players  $P_1$  and  $P_2$  can be defined by the tuple  $(S, A_1, A_2, \tau, R, \gamma)$  where,

- $S = \{s_1, s_2, ..., s_k\}$  represents a set of finite states of the game,
- A1 =  $\{a_1, a_1, ..., a_1\}$  represents the possible finite action sets for  $P_1$ ,
- $A2 = \{a_2, a_2, ..., a_2\}$  represents the possible finite action sets for  $P_2$ ,



**Markov Game** (Shapley 1953) for two players  $P_1$  and  $P_2$  can be defined by the tuple  $(S, A_1, A_2, \tau, R, \gamma)$  where,

- $S = \{s_1, s_2, ..., s_k\}$  represents a set of finite states of the game,
- A1 =  $\{a_1, a_1, ..., a_1\}$  represents the possible finite action sets for  $P_1$ ,
- $A2 = \{a_2, a_2, ..., a_2\}$  represents the possible finite action sets for  $P_2$ ,
- $\tau$  (s, a<sub>1</sub>, a<sub>2</sub>, s') represents the transition probability matrix from a state  $s \in S$  to  $s' \in S$  when the P<sub>1</sub> and P<sub>2</sub> take actions a<sub>1</sub> and a<sub>2</sub> respectively,



**Markov Game** (Shapley 1953) for two players  $P_1$  and  $P_2$  can be defined by the tuple  $(S, A_1, A_2, \tau, R, \gamma)$  where,

- $S = \{s_1, s_2, ..., s_k\}$  represents a set of finite states of the game,
- A1 =  $\{a_1, a_1, ..., a_1\}$  represents the possible finite action sets for  $P_1$ ,
- $A2 = \{a_2, a_2, ..., a_2\}$  represents the possible finite action sets for  $P_2$ ,
- $\tau$  (s, a<sub>1</sub>, a<sub>2</sub>, s') represents the transition probability matrix from a state  $s \in S$  to  $s' \in S$  when the P<sub>1</sub> and P<sub>2</sub> take actions a<sub>1</sub> and a<sub>2</sub> respectively,
- $R^i$  (s,  $a_1$ ,  $a_2$ ) denotes the utility or the rewards received by  $P_i$  in state s when  $P_1$  and  $P_2$  take actions  $a_1$  and  $a_2$  respectively,
- $\gamma \rightarrow [0, 1)$  is discount factor for future rewards.







Attacker's e actions  $(A_A)$  e

#### Defender's actions $(A_{\mathcal{D}})$

|          | no_mon | hp_1 | $hp\_2$ | $hp_3$ |
|----------|--------|------|---------|--------|
| no_op    | 0      | -3   | -3      | -3     |
| $\exp_1$ | -5.9   | 2.9  | -8.9    | -8.9   |
| $\exp_2$ | -5.9   | -8.9 | 2.9     | -8.9   |
| $\exp_3$ | -5.9   | -8.9 | -8.9    | 2.9    |



#### 1. Naive Model

Keeping all other parameters constant, we randomly set the transition probabilities τ for the game-theoretic model.

#### 1. Naive Model

Keeping all other parameters constant, we randomly set the transition probabilities τ for the game-theoretic model.

#### 2. Naive Model

Keeping all other parameters constant,
a system expert sets the transition probabilities τ for the game-theoretic model.

#### 1. Naive Model

 Keeping all other parameters constant, we randomly set the transition probabilities τ for the game-theoretic model.

#### 2. Naive Model

Keeping all other parameters constant,
a system expert sets the transition probabilities τ for the game-theoretic model.

# 3. Updated Model

 Transition probability matrix τ is calculated using the statistics obtained from the iCTF user studies.

#### 1. Naive Model

Keeping all other parameters constant, we randomly set the transition probabilities τ for the game-theoretic model.



#### 2. Naive Model

Keeping all other parameters constant,
a system expert sets the transition probabilities τ for the game-theoretic model.



# 3. Updated Model

 Transition probability matrix τ is calculated using the statistics obtained from the iCTF user studies.



#### Agenda

- \* Reviewing Honey-Patching
- Setting up the user-study
- Deploying Honey-Patches as mitigations
- Modeling the adversary's attack graph
- \* Formulating the Markov Game model
- \* Computing the Bayesian Stackelberg Equilibrium

# **Finding the Optimal Defender Strategy**

#### Algorithms:

- MMP: Min Max Pure Strategy
- URS: Uniform Random Strategy
- OPT: Optimal Mixed Strategy



Figure: Defender's payoffs for Naive Model - **randomly set transition probabilities** and uniform mitigation deployment costs.



Figure: Defender's payoffs for Naive Model – **system expert set transition probabilities** and uniform mitigation deployment costs.











| Observation                       | Vulnerable Application | Probability |
|-----------------------------------|------------------------|-------------|
| Real flag captured if no honeypot | backup                 | 1.0         |
|                                   | sample ak              | 0.43        |
|                                   | $exploit	ext{-}market$ | 0.4         |
| Trapped in honeypot               | backup                 | 1.0         |
|                                   | sample ak              | 0.5         |
|                                   | $exploit	ext{-}market$ | 0.6         |



Model

### Comparing the Game Theoretic Model Case Studies



Figure: Defender's payoffs compared for the three models using **uniform mitigation deployment costs**.



Figure: Defender's payoffs compared for the three models using **non-uniform mitigation deployment costs**.

#### Defender's returns:

Expert set  $(\tau)$  > Randomly set  $(\tau)$  > Computed from iCTF user studies  $(\tau)$ 

Maybe

my

reward is

lesser!

## **Evaluating the Hypothesis**

**Hypothesis:** Once trapped in a honeypot environment, the attacker <u>chooses to continue</u> with the existing strategy to exploit the remaining vulnerabilities.



## **Evaluating the Hypothesis**

**Hypothesis:** Once trapped in a honeypot environment, the attacker <u>chooses to continue</u> with the existing strategy to exploit the remaining vulnerabilities.

**Observation 1:** None of the attackers received the observation of being trapped in a honey-pot, and thus continued with their existing strategy.



## **Evaluating the Hypothesis**

**Hypothesis:** Once trapped in a honeypot environment, the attacker <u>chooses to continue</u> with the existing strategy to exploit the remaining vulnerabilities.

**Observation 1:** None of the attackers received the observation of being trapped in a honey-pot, and thus continued with their existing strategy.

**Observation 2:** Only in one instance, an attacker learns about the honeypot for sampleak, after the user study ends and the attacker is explicitly informed.



#### Conclusion

• Utility returns vary in the three models only for the initial 3 states of the game.





#### Conclusion

· Utility returns vary in the three models only for the initial 3 states of the game.



Irrespective of parameter settings, all models recommend the defender to honey-patch the next vulnerable application.



Model

#### Conclusion

• Utility returns vary in the three models only for the initial 3 states of the game.



- Irrespective of parameter settings, all models recommend the defender to honey-patch the next vulnerable application.
- Model parameters set randomly or by expert may not imitate the true model representative of the real-world attack scenario.



## **Summary**

- Cybersecurity exercise helped gain insightful knowledge
- Closely analyzed interactions in deception-based setup
- \* Relaxed control over the different modalities
- \* Explore more ways to analyze attack behavior
- Obtain truer estimates for game-theoretic models



#### **Thank You!**