	<u>TP4 Eycon - Blanc Vogel</u>	Pt		А В	С) Note	
I.	Signaux						
	Donner le nom de chacun des signaux.	0,5	Α		\Box	0,5	
2	Donner la transformée de Laplace s1(p) et s2(p) de chacun des signaux.	0,5	В			0,375	
3	Proposer un enregistrement de la mesure x et la consigne w, qui fournisse une erreur conforme au signal 1. On n'agira que sur la mesure x.	1	Α			1	
II.	Régulation proportionnelle						
1	Régler le PID pour une régulation avec un gain A=1 et un décalage de bande Y0=0. On donnera le nom des paramètres modifiés ainsi que leur valeur respective.	0,5	Α			0,5	
2	Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.	1	Α			1	
3	Exprimer la réponse obtenue y1(t) en fonction de s1(t) et s2(t).	1	В			0,75	
	Justifier la réponse Y1(p) obtenue en utilisant la transformée de Laplace.	1	В			0,75	
5	Régler le PID pour une régulation avec un gain A=2 et un décalage de bande FF_PID=0. On donnera le nom des paramètres modifiés ainsi que leur valeur respective.	0,5	Α			0,5	
6	Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.	1	С			0,35	
7	Exprimer la réponse obtenue y2(t) en fonction de s1(t) et s2(t).	1	В			0,75	
8	Justifier la réponse Y2(p) obtenue en utilisant la transformée de Laplace.	1	В			0,75	
III.	Régulation proportionnelle intégrale						
1	Régler le PID pour une régulation avec un gain A=1 et un temps intégral ti=10s.	0,5	Α			0,5	
2	Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.	1	Α			1	
3	Exprimer la réponse obtenue y3(t) en fonction de s1(t) et s2(t).	1	В			0,75	
4	Justifier la réponse Y3(p) obtenue en utilisant la transformée de Laplace.	1	D			0,05	
5	Régler le PID pour une régulation avec un gain A=2 et un temps intégral ti=10s.	0,5	Α			0,5	
6	Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.	1	Α			1	
7	Quelle est la structure du régulateur PI ? Justifier votre réponse.	1	Α			1	
8	Quelle peut être la structure du régulateur PID ?	1	В			0,75	
	Exprimer la réponse obtenue y4(t) en fonction de s1(t) et s2(t).	1	С			0,35	
10	Justifier la réponse Y4(p) obtenue en utilisant la transformée de Laplace.	1	D			0,05	
	Régulation proportionnelle intégrale dérivée						
1	Régler le PID pour une régulation avec un gain A=2 et un temps intégral ti=10s et un temps dérivé td=10s.	0,5	Α			0,5	
2	Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.	1	Α			1	
3	Justifier pourquoi la réponse Y4(p) obtenue n'est pas une composition de S1(p) et S2(p) en utilisant la transformée de Laplace.	1	В			0,75	
4	Déduire de y4(t) la structure du régulateur. On fera apparaître toutes les constructions.	1	В			0,75	
	Note: 16,175/2						

Signal 1 : echelon Signal 2 : Rampe

2)

$$S1(p) = \frac{1}{p}$$

$$S2(p) = \frac{1}{p^2}$$

II. Régulation proportionnelle

1)

A=100/xp donc on met xp à 100%

ХР	100.0	%
FF_PID	0.0	%

$$y1(t) = 10$$

$$y1(p) = \frac{10}{p}$$

5)

6)

$$y2(t)=10$$

$$y2(p) = \frac{10}{p}$$

III. Régulation proportionnelle intégrale

1)

XP	100	%
TI	10.00	

$$y3(t) = 100 + t$$

$$y3(p) = \frac{100}{p^2}$$

	XP	50.0	%
Ī	TI	10.00	

La reponse de la commande est beaucoup plus rapide quand A augmente donc on à la forme A*delta donc structure série

8)

La structure peut-etre mixte

9)

$$y4(t)=100+t$$

10)

$$y4(p) = \frac{100}{p^2}$$

IV. Régulation proportionnelle intégrale dérivée

1)

XP	50.0	%
TI	10.00	
TD	10.00	

Le signal ne correspond ni à S1(p) ni à S2(p) car la courbe n'est pas un echelon ni une rampe, ça ressemble plus à un sinus

$$\Delta = 10\%$$
 $\Delta p = 31\%$
 $\Delta i = 11\%$

en comparant avec les calculs de détermination de la structure du regulateur on obtient des resultats d'essais proche de la structure parallèle

Structure serie:

 $\Delta p = A*(1+Td/ti)*\Delta = 22\%$ $\Delta i = 20\%$

Structure Mixte:

Δp=20% Δi=20%

Structure parallèle :

 $\Delta p=20\%$

 $\Delta i=10\%$