Comparison: Logical Upgradations Summary

What Changed	Why It Was Changed	What Effect It Had	How We Detected the Need
1. Added Intermediate Fully Connected Layer before Quantum Circuit (fc1 → relu1 → fc1_reduce)	To prevent information collapse from large BERT embeddings (768D) directly to small qubit space (e.g., 4D)	Preserved richer feature patterns before quantum layer; helped reduce over-simplified outputs	Earlier model directly mapped from 768 → 4 (qubits), which causes underfitting
2. Introduced Non-linear Activation before Quantum Layer (ReLU + tanh)	Non-linearity enables better representation learning before quantum mapping	Prevents linear bottleneck and enriches representation entering quantum layer	Observed flat output logits & poor F1s; classical MLPs usually benefit from non-linearity
3. Expanded Classical Layer After Quantum Output (fc2_expand → relu2 → fc2_out)	Quantum outputs (n_qubits) are too compact to predict 28 emotion labels directly	Adds model capacity to interpret quantum features and make complex multi-label predictions	The model was predicting the same emotion for most inputs (low diversity of output)
4. Increased Depth in Classical Component	Shallow nets underfit high-dimensional semantic inputs (BERT embeddings)	Helps capture higher-order interactions in classical features	Overly simplistic outputs indicated lack of depth
5. Switched to Batched BERT Embedding	To ensure stable and fast BERT inference with memory efficiency	Optimized speed and reduced GPU memory usage	Long wait during initial run with token-by-token encoding
6. Improved Quantum Circuit Generalization (indirect) by avoiding direct mapping from 768 → 4	Enforced progressive dimension reduction to fit qubit space gradually	Helped stabilize training and reduce one-class collapse	F1 scores previously collapsed to a single label

7. Added Evaluation Plots (F1 per label + Confidence Histogram)	To monitor per-label learning and overall confidence levels	Helps visualize imbalance, class-specific underfitting	Detected class dominance (e.g., love) and overconfident predictions (~1.0)
8. Added Progress Bar with tqdm	For tracking model training per epoch and live loss reporting	Improved training visibility and debugging insight	Earlier model gave no feedback during long runs

Net Observed Outcome

Metric	Underfit Version	Current Version
Macro F1 Score	~0.00	0.02-0.05
Micro F1 Score	~0.00	0.07
Predicted Labels	Mostly "love" only	"gratitude", "surprise", and a few others
Label Diversity	None	Partial
Training Feedback	Absent	Present (with tqdm)
Usability for Scaling	Weak base	Modular and extensible

What Still Needs to Improve (Next Steps)

Area	Suggestion
Class Imbalance	Use class_weight in loss function
Output Thresholding	Calibrate sigmoid threshold per class
Data Filtering	Remove low-frequency labels or group similar ones
Quantum Architecture	Try deeper layers or different entanglement patterns
Early Stopping / LR Scheduling	To prevent overtraining on noise