Baskent University, Faculty of Engineering BME 222-02 – Electronics (Spring Semester 2004/2005) Quiz 3 – May 20, 2005

Student Name	
Faculty No:	
	• V _{DD}
	≥ R _D
	\geq C ₂ 10 μ F
	C ₁ 10 μF
	•
	R _G
	ı MΩ ≶ →
	$\int v_{GG}$

For the network of Figure determine V_{DSQ} , V_{GG} and R_D . Given the information $V_P = -8 \text{ V}$, $I_{DSS} = 16 \text{ mA}$, $I_{DQ} = 4 \text{ mA}$, $V_{DD} = 12 \text{ V}$ and $V_D = 6 \text{ V}$.

5 points. **Good Luck!**

For the network of Figure determine YDS, VGG, RD. Given the information Vp=-8V, IDSS=16 mA and. IDQ = 4 mA, YDD = 12 V, VD = 6 V

Solution:

1. Using parameters fisted above, the gote-to-source voltage can be defined from Shockley equation

$$I_{DQ} = I_{DSS} \left(1 - \frac{V_{QS}}{V_{P}}\right)^{2}$$

$$\left(1 - \frac{V_{QS}}{V_{P}}\right)^{2} = \frac{I_{DQ}}{I_{DSS}}$$

$$1 - \frac{V_{QS}}{V_{P}} = \sqrt{\frac{I_{DQ}}{I_{DSS}}}$$

$$\frac{V_{CS}}{V_{P}} = \sqrt{\frac{I_{DQ}}{I_{DSS}}} = -8\left(1 - \sqrt{\frac{440^{-3}}{16 \cdot 10^{-3}}}\right) = -8\left(1 - \frac{1}{2}\right) = -4V$$
And from this $V_{QQ} = +V_{QS} = -4V$
2. Drain resistor can be defined from equation

Because
$$\frac{V_{DS} = V_{D} - I_{D}R_{D}}{R_{D}} = \frac{V_{DD} - V_{DS}}{I_{D}} = \frac{12-6}{4\cdot10^{-3}} = \frac{1.5 \text{ kg}}{4\cdot10^{-3}}$$