VECTORS

A unit vector in the direction of the vector $\stackrel{\rightarrow}{a}=2\stackrel{\wedge}{i}-3\stackrel{\wedge}{j}+6\stackrel{\wedge}{k}$ is 1.

(a) $\left(\hat{i} - \frac{3}{2}\hat{j} + 3\hat{k}\right)$

 $\left(\frac{2}{5}\hat{i} - \frac{3}{5}\hat{j} + \frac{6}{5}\hat{k}\right)$

 $\left(\frac{2}{7}\hat{i} - \frac{3}{7}\hat{j}\frac{6}{7}\hat{k}\right)$

(d) none of these

The direction cosines of the vector $\stackrel{\rightarrow}{a}=-2\stackrel{\wedge}{i}+\stackrel{\wedge}{j}-5\stackrel{\wedge}{k}$ are 2.

(a) -2, 1, -5

(b) $\frac{1}{3}, \frac{-1}{6}, \frac{-5}{6}$

 $\frac{2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{5}{\sqrt{30}}$ (d) $\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}$

If A (1, 2, 3) and B (-1, -2, 1) are the and points of a vector \overrightarrow{AB} then the Direction cosines 3. of \overrightarrow{AB} are

(a) -2, -4, 4 (b) $\frac{-1}{2}, -1, 1$ (c) $\frac{-1}{3}, \frac{-2}{3}, \frac{2}{3}$ (d) none of these

If a vector makes angles α , β and γ with the x=axis, y-axis and z-axis respectively 4.

Then the value of $(\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma)$ is

(a) 1

(b) 2

(c) 0

(d) 3

The vector $(\cos \alpha \cos \beta)$ $\hat{i} + (\cos \alpha \sin \beta)$ $\hat{j} + (\sin \alpha)$ \hat{k} is a 5.

(a) null vector

(b) unit vector (c) a constant vector (d) none of these

What is the angle which the vector $\hat{i} + \hat{j} + \sqrt{2} \hat{k}$ makes with the z-axis? 6.

(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{6}$

- If $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$ the vectors such that $\begin{vmatrix} \overrightarrow{a} \\ a \end{vmatrix} = \sqrt{3}$, $\begin{vmatrix} \overrightarrow{b} \\ b \end{vmatrix} = 2$ and $\stackrel{\rightarrow}{a} \circ \stackrel{\rightarrow}{b} = \sqrt{6}$ then the Angle between \vec{a} and \vec{b} is

- (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ (d) $\frac{2\pi}{3}$
- If $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$ are two vectors such that $\left|\stackrel{\rightarrow}{a}\right| = \left|\stackrel{\rightarrow}{b}\right| = \sqrt{2}$ and $\stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} = 1$ then the angle 8.

Between $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$ is

- (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{2\pi}{3}$
- The angle between the vectors $\stackrel{\rightarrow}{a}=\stackrel{\wedge}{i}-2\stackrel{\wedge}{j}+3\stackrel{\wedge}{k}$ and $\stackrel{\rightarrow}{b}=3\stackrel{\wedge}{i}-2\stackrel{\wedge}{j}+\stackrel{\wedge}{k}$ is 9.

- (a) $\cos^{-1} \frac{5}{7}$ (b) $\cos^{-1} \frac{3}{5}$ (c) $\cos^{-1} \frac{3}{\sqrt{14}}$ (d) none of these
- If $\vec{a}=\hat{i}+2\hat{j}-3\hat{k}$ and $\vec{b}=3\hat{i}-\hat{j}+2\hat{k}$ then the angle between $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ Is 10.

- (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$ (d) $\frac{2\pi}{3}$
- If $\vec{a}=\hat{i}+2\hat{j}-3\hat{k}$ and $\vec{b}=3\hat{i}-\hat{j}+2\hat{k}$ then the angle between $2\vec{a}+\vec{b}$ and $\vec{a}+2\vec{b}$ is 11.
 - (a) $\cos^{-1} \frac{21}{40}$ (b) $\cos^{-1} \frac{31}{50}$ (c) $\cos^{-1} \frac{11}{30}$ (d) none of these

- If $\vec{a}=2\hat{i}+4\hat{j}-\hat{k}$ and $\vec{b}=3\hat{i}-\overset{\wedge}{2j}+\lambda\hat{k}$ be such that $\vec{a}\perp\vec{b}$ then λ =? 12.
 - (a) 2
- (b) -2
- (c) 3
- (d) -3
- What is the projection of $\stackrel{\rightarrow}{a}=2\stackrel{\wedge}{i}-\stackrel{\wedge}{j}+\stackrel{\wedge}{k}$ on $\stackrel{\rightarrow}{b}=\stackrel{\wedge}{i}-\stackrel{\wedge}{2j}+\stackrel{\wedge}{k}$ 13.

- (a) $\frac{2}{\sqrt{3}}$ (b) $\frac{4}{\sqrt{5}}$ (c) $\frac{5}{\sqrt{6}}$ (d) none of these
- 14. If $\begin{vmatrix} \overrightarrow{a} + \overrightarrow{b} \end{vmatrix} = \begin{vmatrix} \overrightarrow{a} \overrightarrow{b} \end{vmatrix}$, then

(a)	$\begin{vmatrix} \rightarrow \\ a \end{vmatrix}$	$= \begin{vmatrix} \overrightarrow{b} \end{vmatrix}$		→ a ll b	$\stackrel{\rightarrow}{a} \perp \stackrel{\rightarrow}{b}$	(d) none of these
(a)			(a)	alib	(C)	(a) none of these

15. If \overrightarrow{a} and \overrightarrow{b} are mutually perpendicular unit vectors then

$$(3\vec{a}+2\vec{b}).(5\vec{a}-6\vec{b})=?$$

(a) 3 (b) 5 (c) 6 (d) 12

16. If the vectors $\vec{a} = 3\vec{i} + \vec{j} - 2\vec{k}$ on $\vec{b} = \vec{i} + \lambda \vec{j} - 3\vec{k}$ are perpendicular to each other then $\lambda = ?$

(a) -3 (b) -6 (c) $-\theta$ (d) -1

17. If θ is the angle between two unit vectors \overrightarrow{a} and \overrightarrow{b} then $=\frac{1}{2} \begin{vmatrix} \overrightarrow{a} - \overrightarrow{b} \end{vmatrix}$

(a) $\frac{\cos\frac{\theta}{2}}{2}$ (b) $\frac{\sin\frac{\theta}{2}}{2}$ (c) $\tan\frac{\theta}{2}$ (d) none of these

18. If $\overrightarrow{a} = \overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}$ on $\overrightarrow{b} = 2\overrightarrow{i} + 3\overrightarrow{j} - 4\overrightarrow{k}$ then $|\overrightarrow{a} \times \overrightarrow{b}| = ?$

(a) $\sqrt{174}$ (b) $\sqrt{87}$ (c) $\sqrt{93}$ (d) none of these

19. If $\vec{a} = \vec{i} - 2\vec{j} + 3\vec{k}$ on $\vec{b} = \vec{i} - 3\vec{k}$ then $|\vec{b} \times 2\vec{a}| = ?$

(a) $10\sqrt{3}$ (b) $5\sqrt{17}$ (c) $4\sqrt{19}$ (d) $2\sqrt{23}$

20. If $|\vec{a}| = 2$, $|\vec{b}| = -7$ and $\vec{a} \times \vec{b} = 3\vec{i} + 2\vec{j} + 6\vec{k}$ then the angle between \vec{a} and \vec{b} is

(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{3}$ (c) $\frac{2\pi}{3}$ (d) $\frac{3\pi}{4}$

21. If $|\vec{a}| = \sqrt{26}$, $|\vec{b}| = 7$ and $|\vec{a} \times \vec{b}| = 35$ then $|\vec{a} \cdot \vec{b}| = ?$

(a) 5 (b) 7 (c) 13 (d) 12

22. Two adjacent sides of a ll gm are represented by the vectors $\vec{a} = 3\vec{i} + \vec{j} + 4\vec{k}$ and $\vec{b} = \vec{i} - \vec{j} + \vec{k}$

The area of the II gm is

(a) $\sqrt{42}$ sq units

(b) 6 sq units (c) $\sqrt{35}$ sq units

(d) none of these

The diagonals of a ll gm are represented by the vectors $\vec{d}_1 = 3\vec{i} + \vec{j} - 2\vec{k}$ 23.

and $\overset{\rightarrow}{d_{\flat}}=\overset{^{\Lambda}}{i}-3\overset{^{\Lambda}}{j}+4\overset{^{\Lambda}}{k}$. The area of the II gm is

 $7\sqrt{3}$ Sq Units (b) $5\sqrt{3}$ Sq Units (c) $3\sqrt{5}$ Sq Units (d) none of these

Two adjacent sides of a triangle are represented by the vectors $\vec{a}=3\hat{i}+4\hat{j}$ and $\vec{b}=-5\hat{i}+7\hat{j}$. 24. The area of the triangle is

(a) 41 sq units

(b) 37 sq units (c) $\frac{41}{2}$ Sq Units (d) none of these

The unit vector normal to the plane containing $\stackrel{\rightarrow}{a}=\stackrel{\wedge}{i}-\stackrel{\wedge}{j}-\stackrel{\wedge}{k}$ and $\stackrel{\rightarrow}{b}=\stackrel{\wedge}{i}+\stackrel{\wedge}{j}+\stackrel{\wedge}{k}$ is 25.

(a) $\hat{j} - \hat{k}$ (b) $-\hat{j} + \hat{k}$ (c) $\frac{1}{\sqrt{2}}(-\hat{j} + \hat{k})$ (d) $\frac{1}{\sqrt{2}}(-\hat{i} + \hat{k})$

If $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$ and $\stackrel{\rightarrow}{c}$ are unit vectors such that $\stackrel{\rightarrow}{a+b+c}=0$ then $\stackrel{\rightarrow}{a\bullet b+b\bullet c+c\bullet a}=?$ 26.

(a) $\frac{1}{2}$ (b) $-\frac{1}{2}$ (c) $\frac{3}{2}$

If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are mutually perpendicular unit vectors then $\begin{vmatrix} \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \end{vmatrix} = ?$ 27.

(a) 1

(b) $\sqrt{2}$

(c) $\sqrt{3}$

(d) 2

 $\begin{bmatrix} \Lambda & \Lambda & \Lambda \\ i & j & k \end{bmatrix} = ?$ 28.

(a) 0

(b) 1

(c) 2

(d) 3

If $\vec{a} = 2\vec{i} - 3\vec{j} + 4\vec{k}$, $\vec{b} = \vec{i} + 2\vec{j} - \vec{k}$ and $\vec{c} = 3\vec{i} + 2\vec{j} - 2\vec{k}$ be the coterminous edges 29. of a parallelepiped then its volume is

(a) 21 cubic units

(b) 14 cubic units

(c) 7 cubic units

(d) none of these

- If the volume of a parallelepiped having $\vec{a}=5\hat{i}-4\hat{j}+\hat{k}$, $\vec{b}=4\hat{i}+3\hat{j}+\overset{\wedge}{\lambda}\hat{k}$ and 30. $\vec{c}=\overset{\wedge}{i-2}\overset{\wedge}{j+7}\hat{k}$ as coterminous edges, is 216 Cubic units then the value of λ is
 - (a) $\frac{5}{3}$
- (b) $\frac{4}{3}$ (c) $\frac{2}{3}$ (d) $\frac{1}{3}$
- It is given that the vectors $\vec{a}=2\hat{i}-2\hat{k}$, $\vec{b}=\hat{i}+(\lambda+1)\hat{j}$ and $\vec{c}=4\hat{i}+2\hat{k}$ are 31. Coplanar. Then, the value of λ is
 - (a) $\frac{1}{2}$
- (b) $\frac{1}{3}$
- (c) 2
- (d) 1

- 32 Which of the following is meaningless?
- $\stackrel{\rightarrow}{a} \bullet (\stackrel{\rightarrow}{b} \times \stackrel{\rightarrow}{c})$ (b) $\stackrel{\rightarrow}{a} \times (\stackrel{\rightarrow}{b} \bullet \stackrel{\rightarrow}{c})$ (c) $\stackrel{\rightarrow}{(a} \times \stackrel{\rightarrow}{b}) \bullet \stackrel{\rightarrow}{c}$ (d) none of these

- $\overrightarrow{a} \bullet (\overrightarrow{a} \times \overrightarrow{b})$ equals 33.
 - (a) 0

- (b) 1
- (c) a² b (d) meaningless
- For any three vectors $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$ and $\stackrel{\rightarrow}{c}$ the value of $\begin{bmatrix} \stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} & \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{c} & \stackrel{\rightarrow}{c} \stackrel{\rightarrow}{a} \end{bmatrix}$ is 34.
 - (a) $2 \begin{vmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{vmatrix}$
- (b) 1
- (c) 0
- (d) none of these
- Two vectors \overrightarrow{a} and \overrightarrow{b} are perpendicular if and only if $\overrightarrow{a} \bullet \overrightarrow{b}$ is equal to 35.
 - (a) 0

- (b) 1
- (c) ab
- (d) meaningless

- If $\overrightarrow{a} \bullet \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}|$ then \overrightarrow{a} and \overrightarrow{b} are 36.
 - (a) Perpendicular (b) Like parallel (c) Unlike parallel (d) coincident

ANSWERS:VECTORS

1. (c)	2. (d)	3. (c)	4. (b)	5. (b)	6. (a)	7. (c)	8. (d)	9. (a)	10. (c)
11. (b)	12. (b)	13. (c)	14. (c)	15. (a)	16. (c)	17. (b)	18. (c)	19. (c)	20.(a)
21. (b)	22. (a)	23.(b)	24. (c)	25. (c)	26. (d)	27. (c)	28.(b)	29. (c)	30.(a)
31. (d)	32.(b)	33. (a)	34. (c)	35(a)	36.(b)				