توضيحات:

- پاسخ تمارین به صورت فایل pdf به همراه فایل های محاسبات آن در یک فایل فشرده شده در سامانه درسافزار بارگذاری گردد. نام فایل حاوی نام دانشجو و شماره دانشجویی باشد.
 - فرضیات به طور کامل در حل سوال ذکر گردد.
- دانشجویان برای تحویل تمارین، مجموعا ۸ روز مجاز به تاخیر هستند و نمره ای کسر نخواهد شد. ۱ تا ۲۴ ساعت تاخیر در تحویل تمارین، یک روز تاخیر محسوب می شود.

۱- هیدروگراف ورودی یک جریان در جدول زیر نشان داده شده است. مقدار دبی خروجی در لحظه شروع سیلاب برابر مقدار دبی ورودی است. ضرایب ماسکینگام برای رودخانه مورد نظر برابر x=0.1 و k=2 hr میباشد. هیدروگراف خروجی جریان را با روش ماسکینگام محاسبه و رسم کنید.

(۳۰ نمره)

زمان (hr)	0	1	2	3	4	5	6	7	8	9	10	11	12
دبی													
ورودى	5	8.6	16.3	29	38.8	41.3	38.8	33.3	25.3	19.2	15.2	12.5	10.3
$\left(\frac{m^3}{s}\right)$													
زمان (hr)	13	14	15	16	17	18	19	20					
دبی													
ورودى	8.9	7.8	7	6.1	5.4	5.1	5	5					
$\left(\frac{m^3}{s}\right)$													

۲- سطح آب در یک مخزن سد با کنارههای با شیب تند معادل m^2 500000 فرض می گردد. در ابتدا جریان در یک حالت دائمی و با دبی $\frac{m^3}{s}$ 150 از مخزن سد وارد یک کانال باشیب تند و مقطع ذوزنقهای با عرض m 40 m و شیب کنارههای m 10:1.5H می گردد. سپس سیلی با هیدرو گراف ورودی مطابق جدول زیر به مخزن می رسد. مطلوب است رسم هیدرو گراف خروجی به روش پالس برای زمانی معادل m ساعت بعد از شروع سیلاب.

(۳۵ نمره)

زمان (hr)	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
دبی ورودی $\left(\frac{m^3}{s}\right)$	150	175	220	300	380	375	305	235	200	180	162	150	150

 7 - در یک سد مخزنی رابطه دبی خروجی از سد (O) بر حسب $\frac{m^3}{s}$ و ارتفاع آب (H) بر حسب متر، به صورت 7 - 8 0 می باشد. سیلی مطابق جدول زیر وارد مخزن در حالت پر می گردد. سطح آب مخزن زمانی که سد پر است 3 کیلومتر مربع می باشد و پس از آن به ازای هر متر افزایش ارتفاع آب روی تونل انحراف، سطح آب مخزن 9 0.0 کیلومتر مربع افزایش می یابد. در این سد تونل انحراف طول 9 0.00 شریب زبری مانینگ 9 0.01 فرایش می فرودی و خروجی 9 0.01 دارد. ضرایب افت فشارهای موضعی در ورودی و خروجی 9 1 فریل 9 2 و در انحنای تونل 9 3 می باشد. مطلوب است تعیین قطر تونل انحراف به طوری که بتواند سیلابی با هیدرو گراف ورودی مطابق جدول زیر را از خود عبور دهد و ارتفاع آب در پشت سد از 5 متر تجاوز نکند.

(۳۵ نمره)

زمان (hr)	0	3	6	9	12	15	18	21	24	27	30	33	36
دبی ورودی $\left(\frac{m^3}{s}\right)$	0	22	48	80	100	110	113	112	106	95	83	72	65
زمان (hr)	39	42	45	48									
دبی ورودی $\left(\frac{m^3}{s}\right)$	60	57	55	53									