Model	理论	步骤	代价函数	优劣	备注
Logistic Regression	假设数据服 从伯努利分布, 通过极大化似 然函数的方法, 运用梯度下降 来求解参数		$J(\theta)$ $= -\left[\frac{1}{m}\sum_{i=1}^{m} y^{(i)}logh_{\theta}(x^{(i)})\right]$ $+ (1 - y^{(i)})log(1)$ $- h_{\theta}(x^{(i)}) + \frac{\lambda}{2m}\sum_{j=1}^{n} \theta_{j}^{2}$ $\theta_{j} \coloneqq \theta_{j} + \alpha(y^{i} - h_{\theta}(x^{i}))x_{j}^{i}$	1.实现简单 2.分类时计算量非常小,速度很快,存储资源低 1.容易欠拟合,一般准确度不太高 2.只能处理二分类问题,且必须线性可分	logistic regression 使用 softmax
SVM	1.拉格朗日乘子 法 2.对偶问题 3.二次规划 4.SMO	1.优化目标函数 2.转换成拉格朗日形式 3.使用对偶理论转换目标函数 4.对 w,b 求导 $\mathcal{L}(w,b,\alpha) = 0.5 * w^T w + \sum_{n=1}^N \alpha_n \Big(1 - y_n (w^T z_n + b) \Big)$ st. $\alpha_n \geq 0$ $\theta_p(w,b) = \max_{w,b,\alpha \geq 0} \mathcal{L}(w,b,\alpha) = \max_{w,b,\alpha \geq 0} 0.5 * w^T w + \sum_{n=1}^N \alpha_n (1 - y_n (w^T z_n + b))$ min $0.5 * w^T w = \min_{w} \theta_p(w,b) = \min_{w} \max_{w,b,\alpha \geq 0} \mathcal{L}(w,b,\alpha)$		1.可用于线性、非线性分类,也可回归 2.低泛化误差 3.容易解释 4.计算复杂度低 1.对参数和核函数的选择比较敏感 2.原始的 SVM 只擅长处理二分类问题	
KNN	投票表决	1.假设有一个带有标签的样本数据集(训练样本集),其中包含每条数据与所属分类的对应关系。 2.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较。 a.计算新数据与样本数据集中每条数据的距离。 b.对求得的所有距离进行从小到大排序 c.取前k(k一般小于等于20)个样本数据对应的分类标签。 3.求k个数据中出现次数最多的分类标签作为新数据的分类。		1.理论简单,可分类可回归,无需估计参数,无续训练 2.特别适合多分类问题,KNN比SVM表现好。 3.训练时间复杂度为O(n) 4.准确度高,对数据没有假设,对outlier不敏感 1.计算量大,需要大量内存 2. 当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的 K 个邻居中大容量类的样本占多数。该算法只计算"最近的"邻居样本,某一	KD-Tree

			类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。	
KD-Tree	KD-Tree.md			
Decision- Tree	1.信息增益 2.信息增益率 3.Gini 系数		1.计算简单,可解释性强,比较适合处理有缺失属性的样本,能够处理不相关的特征 1.容易过拟合	随机森林
	ID3		1.切分过于迅速 2.不能直接处理连续型特征	
	C4.5		C4.5 只能做分类	
	Cart		CART 可以回归分析也可以分类	
树回归		对每个特征: 对每个特征值: 将数据集切分成两份(小于该特征值的数据样本放在左子树,否则放在右子树)	优点:可以对复杂和非线性的数据建模。	
1/101/1		计算切分的误差 如果当前误差小于当前最小误差,那么将当前切分设定 为最佳切分并更新最小误差 返回最佳切分的特征和阈值	缺点: 结果不易理解。	
朴素贝叶斯	$ = \frac{P(c_i w)}{P(w c_i)P(c_i)/P(c_i)} = \frac{P(w c_i)P(c_i)}{P(w c_i)P(c_i)} = \frac{P(w c_i)P(c_i)P(c_i)}{P(w c_i)P(c_i)} = \frac{P(w c_i)P(c_i)P(c_i)}{P(w c_i)P(c_i)} = \frac{P(w c_i)P(c_i)P(c_i)P(c_i)}{P(w c_i)P(c_i)P(c_i)} = P(w c_i)P($		1.对小规模的数据表现良好,适合多分类任务,适合增量式训练 1.对输入数据的表达形式很敏感	
Boosting		先从初始训练集训练出一个基学习器,再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器做错的训练样本在后续受到更多关注,然后基于调整后的样本分布训练下一个基学习器;如此重复进行,直到基学习器达到事先指定的值 T,最终将这 T 个基学习器进行加权结合。	1.低泛化误差; 2.容易实现,分类准确率较高,没有太多的参数可调整 1.对 outlier 比较敏感	

Linear Regression	用梯度下降法 对最小二乘法 形式的误差函 数进行优化		普通线性回归 $\sum_{i=1}^{m} (y_i - \theta^T x_i)^2$ $w = (X^T X)^{-1} X^T y$ 局部加权线性回归 $\sum_{i=1}^{m} w_i (y_i - \theta^T x_i)^2$	1.实现简单,计算简单	
			$\sum_{i=1}^{\infty} w_i (y_i - \theta^T x_i)^T$ $w = (X^T W X)^{-1} X^T W y$	1.不能拟合非线性数据	
K-means	基于划分	1. 创建 k 个点作为起始质心 (通常是随机选择) 2. 当任意一个点的簇分配结果发生改变时 2.1 对数据集中的每个数据点 2.1.1 对每个质心 2.1.2 计算质心与数据点之间的距离 2.1.3 将数据点分配到距其最近的簇 2.2 对每一个簇,计算簇中所有点的均值并将均值作为质心		1.算法简单、快速 2.对处理大数据集,该算法是相对可伸缩的和高效率的 3.时间复杂度近于线性,为O(nkt),适合挖掘大规模数据集。 4.当簇是密集、球状、团状且簇与簇之间区别明显时,聚类效果好 1.对初值敏感 2.不适合发现非凸面形状的簇,或者大小差别很大的簇 3.对噪声、孤立点数据敏感,少量的该类数据能够对平均值产生极大影响。 4.不断调整新的聚类中心,因此计算量非常大时算法的时间开销也非常大。	k-means.md k-means++: 初始的聚类中 心之间的相互 距离要尽可能 的远
Agnes	基于层次聚类 自底向上聚合 策略	1.先对仅含一个样本的初始聚类簇和相应的距离矩阵进行初始化; 2.然后不断合并距离最近的聚类簇,并对合并得到的聚类簇的距离 矩阵进行更新 3.上述过程 1,2 不断重复,直到达到预设的聚类簇数。			
Dbsacn	基于密度聚类			1.将足够高密度的区域划分成簇,并能在具有噪声的空间数据库中发现任意形状的簇 2.在大规模数据库上更好的效率	
Wave Cluster、 STING	基于网格的方 法				

EM.	基于模型的聚			
SOM,	类			
COBWEB				
	一种迭代的决	其核心就在于,每一棵树是从之前所有树的残差中来学习的。		
	策树算法, 该算			
	法由多棵决策			
GBDT	树组成, 所有树			
	的输出结果累			
	加起来就是最			
	终答案。			
	似然估计	E 步:选取一组参数,求出在该参数下隐含变量的条件概率值;		
EM		M 步:结合 E 步求出的隐含变量条件概率,求出似然函数下界函		
		数(本质上是某个期望函数)的最大值。		
		重复上面 2 步直至收敛。		
		将特征的每一维看成是相互独立的高斯分布,根据异常样本拟合		anomaly
异常检测		每个特征的(u_j , σ_j^2),然后在新的样本计算 $P(x)$,如果小于某阈值		detection
		ε, 则认为 Anomaly		
	1.如果某个项集		1.简单,易理解	
	是频繁的,那么		2.数据要求低	
	它的所有子集		1.在每一步产生 <mark>候选集</mark> 时循环产生的组合过多,没	
	也是频繁的。	被去掉。然后,对剩下来的集合进行组合以生成包含两个元素的项	有排除不应该参与组合的元素。	
	五类中的目 克	集。接下来,再重新扫描交易记录,去掉不满足最小支持度的项集。	2.每次计算项集的支持度时,都对数据库中的全部	
	更常用的是它		记录进行了一遍扫描比较,如果是一个大型的数据	
	的逆否命题,即	- C:NK病国信度广生大妖规则。 - 情况一 ,当 frozenset 的长度为 2:	库时,这种扫描会大大增加计算机的 I/O 开销。	
Apriori	集是非频繁的,	 假 设 freqSet={1,2},则 H1={1},{2};		FP-growth
	超集也是非频			
	繁的。	(
		1.假设 freqSet={1,2,3,4}时,则 H1={1},{2},{3},{4};		
		2.首先计算置信度: freqSet-H1.element -> freqSet, 即		
		{1,2,3}->{1,2,3,4}、 {2,3,4}->{1,2,3,4}、;		
		3.递归计算频繁项集		

	3.a 首先通过 aprioriGen 计算 Hm+1,H2={1,2}、{3,4}、		
	3.b 计算置信度:		
	freqSet-H1.element -> freqSet , 即 {1,2}->{1,2,3,4} 、		
	{1,3}->{1,2,3,4}、;		
	3.c 当 Len(Hm+1[0])+1 <len(freqset),则(3.a);否则结束< td=""><td></td><td></td></len(freqset),则(3.a);否则结束<>		
	首先, 构建 FP 树;	1. 因为 FP-growth 算法只需要对数据集遍历两	第一次遍历,
	步骤一: 1.遍历所有的数据集合, 计算所有项的支持度;	次,所以速度更快。	得到所有频繁
	2.丢弃非频繁的项;	2. FP 树将集合按照支持度降序排序,不同路径如	一项集的的计
	3.基于支持度降序排序所有(元)项(不是项集),生成到统计;	果有相同前缀路径共用存储空间, 使得数据得到了	数。然后删除
	4.将所有数据集合中的每个集合按照得到的顺序(3)重新排序;	压缩。	支持度低于阈
	5.排序完成后,丢弃每个集合末尾非频繁的项	3. 不需要生成候选集。	值的项,将1
	步骤二:6.读取每个集合插入到 FP 树,同时用一个 <mark>头部链表</mark> 数据	4. 比 Apriori 更快。	项频繁集放入
	结构维护不同集合的相同项,FP 树头结点为 null	1. FP-Tree 第二次遍历会存储很多中间过程的值,	- 头部链表,并
FP-growth	其次,从 FP 树中挖掘频繁项集;	会占用很多内存。	按照支持度降
	7. 对头部链表进行降序排列	2. 构建 FP-Tree 是比较昂贵的。	序排列。
	8. 对头部链表节点从小到大遍历, 得到条件模式基 A1, 同时获得		
	一个频繁项集。		第二次遍历,
	9. A1 条件模式基继续构造条件 FP 树(从(5)得到的集合中的数据		将读到的原始
	构造),得到频繁项集,和之前的频繁项组合起来,这是一个递归		数据剔除非频
	 遍历头部链表生成 FP 树的过程,递归截止条件是生成的 FP 树的		繁1项集,并
) 头部链表为空。		按照支持度降
			序排列。
	1) 模式顺传播,输入模式由输入层经中间层向输出层的"模式顺		
	传播"过程		
	 2) 误差逆传播 ,网络的希望输出与网络实际输出之差的误差信号		7
	 由輸出层经中间层向輸入层逐层修正连接权的"误差逆传播"过		
BP 网路			
	行的网络"记忆训练"过程		
	4) 学习收敛,网络趋向收敛即网络的全局误差趋向极小值的"学		
	习收敛"过程		
	1) 收集用户偏好		
协同过滤	2) 找到相似的用户或者物品		
	-/ 3-0-31H1/NB3/13/ ->/ H1/MH		1

	3) 计算并推荐		
K-fold	1.初始采样分割成 K 个子样本,一个单独的子样本被保留作为验	 同时重复运用随机产生的子样本进行训练和验证,	
	证模型的数据,其他 K-1 个样本用来训练。	每次的结果验证一次,10 折交叉验证是最常用的	
cross- validation	2.交叉验证重复 K 次,每个子样本验证一次,平均 K 次的结果或		
Valluation	 者使用其它结合方式,最终得到一个单一估测。		
	只使用原本样本中的一项来当做验证资料, 而剩余的则留下来当		
∽	做训练资料。 这个步骤一直持续到每个样本都被当做一次验证资		
留一验证	料。 事实上, 这等同于和 K-fold 交叉验证是一样的, 其中 K 为		
	 原本样本个数。		

$$H(X,Y) = -\sum_{x,y} p(x,y) \log p(x,y)$$

$$H(X,Y) - H(X) = -\sum_{x,y} p(x,y) \log p(y|x)$$

log[]

多元 GBDT 分类算法

$$p_k(\mathbf{x}) = \frac{\exp(f_k(\mathbf{x}))}{\sum_{l=1}^K \exp(f_l(\mathbf{x}))}$$

Loss =
$$\log \left[\prod_{i=1}^{n} \prod_{k=1}^{k} p_k(x_i)^{y_{ik}} \right]$$

$$L(\{y_k, p_k(x)\}_1^k) = -\sum_{k=1}^K y_k \log p_k(x)$$

$$h_m(x) = \sum\nolimits_{j=1}^J c_{mj} I(x \epsilon R_{mj})$$

样本k负梯度误差

$$r_k = \frac{\partial L(\{y_k, p_k(\mathbf{x})\}_1^k)}{\partial f_k(\mathbf{x})} = \frac{\partial \left[-\sum_{k=1}^K y_k \log\left(\exp(f_k(\mathbf{x}))\right) / \sum_{l=1}^K \exp(f_l(\mathbf{x}))\right)\right]}{\partial f_k(\mathbf{x})}$$

$$\begin{split} &= \partial \left[-\sum_{k=1}^{K} y_{k} \left(\log \exp(f_{k}(\mathbf{x}) \right) - \log \sum_{l=1}^{K} \exp(f_{l}(\mathbf{x})) \right) \right] / \partial f_{k}(\mathbf{x}) \\ &= \partial \left[-\sum_{k=1}^{K} y_{k} f_{k}(\mathbf{x}) + \sum_{k=1}^{K} \left(y_{k} \log \sum_{l=1}^{K} \exp(f_{l}(\mathbf{x})) \right) \right] / \partial f_{k}(\mathbf{x}) \\ &= \partial \left[-\sum_{k=1}^{K} y_{k} f_{k}(\mathbf{x}) \right] / \partial f_{k}(\mathbf{x}) + \partial \left[\sum_{k=1}^{K} \left(y_{k} \log \sum_{l=1}^{K} \exp(f_{l}(\mathbf{x})) \right) \right] / \partial f_{k}(\mathbf{x}) \\ &= -y_{k} + \sum_{k=1}^{K} y_{k} * \exp(f_{k}(\mathbf{x})) / \sum_{l=1}^{K} \exp(f_{l}(\mathbf{x})) \\ &= -y_{k} + 1 * p_{k}(\mathbf{x}) \end{split}$$