Math 324/524 Homework 10 - Computational Exercises YOUR NAME Due 12/6/2019

1. Section 6.1, Exercise 28

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that

$$T(1,0,0) = (2,4,-1), T(0,1,0) = (1,3,-2), \text{ and } T(0,0,1) = (0,-2,2).$$

Find T(-2, 4, -1).

2. Section 6.1 Exercise 81

Let $T: M_{n,n} \to \mathbb{R}$ be the transformation defined by $T(A) = a_{11} + a_{22} + \cdots + a_{nn}$, the sum of the diagonal entries of A—called the *trace* of A. Carefully verify that T is a linear transformation.

(No this is not one of the **proofs** that you need to type. Though if you're handwriting the solution, be precise.)

3. Consider the linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ represented by $T(\vec{x}) = A\vec{x}$, where

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

- (a) What is T(3, 1, 0, 0)?
- (b) What is ker(T) what is range(T)? (Give a basis for each.)

- (c) What are $\operatorname{nullity}(T)$ and $\operatorname{rank}(T)$?
- (d) Is T one-to-one? Explain.
- (e) Is T onto? Explain.
- (f) Is T an isomorphism? Explain.

4. Section 6.3 Exercise 22

Find the standard matrix for the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that is the reflection through the vector $\vec{w} = (3,1)$.

A formula for this is given by $T(\vec{v}) = 2 \operatorname{proj}_{\vec{w}} \vec{v} - \vec{v}$.

5. Section 6.3 Exercise 43

Let $T: P_2 \to P_3$ be the linear transformation given by T(p) = xp. Find the matrix for T relative to the bases $B = \{1, x, x^2\}$ and $B' = \{1, x, x^2, x^3\}$.

Math 324/524 Homework 10 - Proofs Exercises YOUR NAME Due 12/6/2019

1. Section 6.1 Exercise 79

Proof. I like vectors and vectors like me.

Let $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ be a set of linearly dependent vectors in V, and let $T: V \to W$ be a linear transformation. Prove that $S' = \{T(\vec{v}_1), T(\vec{v}_2), \dots, T(\vec{v}_n)\}$ is a linearly dependent set of vectors in W.

dependent set of vectors in W.

Proof. Yay linear algebra!

2. Section 6.2 Exercise 64

Let $T: V \to W$ be a linear transformation. Prove that T is one-to-one if and only if $\operatorname{rank}(T) = \dim(V)$.