

Movers

Theory of Computation – Spring 2024 Università della Svizzera Italiana

Problem description

Problem description

Problem description: objective

State variables

- $ullet \ atFloor(m_i,l_j,t) \in \{0,1\} \ orall \ l_j \in L, \ m_i \in M$
- true if mover m_i is at floor l_j at time t
- $ullet \ atFloorForniture(f_i,l_j,t) \in \{0,1\} \ orall \ l_j \in L, \ f_i \in F$:
 - true if forniture f_i is at floor l_j at time t, otherwise false

$$M = \{ 2, 2, 3 \}$$

$$F = \{ \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \}$$

State variables

 $atFloorForniture(\P, \#2, t) = 1$

$$atFloor(\frac{1}{2}, \#1, t) = 1$$

Movers actions

- $ullet \left(ascend(m_i,t)
 ight) \in \{0,1\} \ orall \ m_i \in M \ m_i \in M, \ t \in T$
- true if mover m_i is ascending at time t
- $ullet \left| descend(m_i,t)
 ight| \in \{0,1\} \ orall \ m_i \in M \ m_i \in M, \ t \in T$
- true if mover m_i is descending at time t
- $ullet \left(\mathit{carry}(m_i, f_j, t)
 ight) \in \{0, 1\} \ orall \ m_i \in M \ f_j \in F, \ t \in T$
- true if mover m_i is carrying forniture f_k at time t, otherwise false

$$M = \{ \stackrel{\bullet}{2}, \stackrel{\bullet}{2}, \stackrel{\bullet}{2} \} \qquad F = \{ \stackrel{\bullet}{4}, \stackrel{\bullet}{1}, \stackrel{\bullet}{4} \}$$

How we have solved this problem

Mathematical model

Mathematical model: some constraints

1 • Each mover is at least at one floor

$$\bigvee_{m \in M, l \in L, t \in T} atFloor(m, l, t)$$

2 • A mover cannot be at more than one floor

$$atFloor(m, l_1, t) \implies \neg atFloor(m, l_2, t)$$

 \forall mover $m \in M$, floors $l_1 \neq l_2 \in L$, time $t \in T$

• • •

Mathematical model: some constraints

#3 If a mover is not ascending, descending, or carrying it stays at the same floor

$$atFloor(m,l,t) \land \neg ascend(m,t) \land \neg descend(m,t) \land \bigwedge_{f \in F} \neg carry(m,f,t) \implies atFloor(m,l,t+1)$$

 \forall mover $m \in M$, floor $l \in L$, time $t \in T$

4 If a forniture is not being carried, it stays at the same floor

$$atFloorForniture(f, l, t) \land \bigwedge_{m \in M} \neg carry(m, f, t) \implies atFloorForniture(f, l, t + 1)$$

 \forall forniture $f \in F$, floor $l \in L$, time $t \in T$

How we have solved this problem

System Design

System Design

Demo: try the solver on your devices!

https://movers.lucadibello.ch