Lab #1 (Boolean Logic)

HINT: Don't THINK like a human, THINK like a chip! Simply "run" the expression!

Name: **Daniel DeVilbiss**

Section/Time: _

Date: **06/23/2021**

L1

KEY:

Symbol		+	\overline{n}
Meaning	AND	OR	NOT (n)

Complete the following table:

	х	0	0	1	1
	у	0	1	0	1
Function	Expression	Result			
CONSTANT 0	0	0	0	0	0
x AND y	<i>x</i> · <i>y</i>	0	0	0	1
x AND (NOT y)	$x \cdot \overline{y}$	0	0	1	0
х	X	0	0	1	1
(NOT x) AND y	$\overline{x} \cdot y$	0	1	0	0
у	у	0	1	0	1
x XOR y	$x \cdot \overline{y} + \overline{x} \cdot y$	0	1	1	0
x OR y	x + y	0	1	1	1
x NOR y	$\overline{x+y}$	1	0	0	0
Equivalence (x == y)	$x \cdot y + \overline{x} \cdot \overline{y}$	1	0	0	1
NOTy	\overline{y}	1	0	1	0
IF y THEN x	$x + \overline{y}$	1	0	0	1
NOTx	\overline{x}	1	1	0	0
IF x THEN y	$\overline{x} + y$	1	0	0	1
x NAND y	$\overline{x \cdot y}$	1	1	1	0
CONSTANT 1	1	1	1	1	1