Consecuencia lógica para lógica de predicados

Clase 07

IIC 1253

Prof. Cristian Riveros

Recordatorio: Lógica de Predicados

Definición

Decimos que una predicado es una formula si es:

- un predicado básico,
- la negación (¬), conjunción (∧), disyunción (∨), condicional (→),
 bicondicional (↔) de predicados compuestos sobre el mismo dominio o
- la cuatificación universal (∀) o existencial (∃) de un pred. compuesto.

El valuación de un predicado compuesto corresponde a la valuación recursiva de sus cuantificadores, conectivos lógicos y predicados básicos.

Recordatorio: Interpretaciones

Definición

Una interpretación \mathcal{I} para sím. de predicado P_1, \dots, P_m se compone por:

- 1. un dominio $\mathcal{I}(dom)$ y
- 2. para cada símbolo P_i un **predicado** $\mathcal{I}(P_i)$.

Ejemplos

Considere los símbolos P(x) y O(x,y).

- $\mathcal{I}_1(\textit{dom}) := \mathbb{N}$ $\mathcal{I}_1(P) := x \text{ es par }$ $\mathcal{I}_1(O) := x < y$
- $\mathcal{I}_2(dom) := \mathbb{Z}$ $\mathcal{I}_2(P) := x > 0$ $\mathcal{I}_2(O) := x + y = 0$

Recordatorio: Interpretaciones

Definición (caso general)

Sea $\alpha(x_1,\ldots,x_n)$ una formula y \mathcal{I} una interpretación de los símbolos en α .

Diremos que la interpretación \mathcal{I} satisface α sobre a_1, \ldots, a_n en $\mathcal{I}(dom)$:

$$\mathcal{I} \models \alpha(a_1,\ldots,a_n)$$

si $\alpha(a_1,\ldots,a_n)$ es **verdadero** al evaluar cada símbolo en α según \mathcal{I} .

Si \mathcal{I} **NO** satisface α sobre a_1, \ldots, a_n en $\mathcal{I}(dom)$ lo anotaremos como:

$$\mathcal{I} \not\models \alpha(a_1,\ldots,a_n)$$

Notar que: $\mathcal{I} \not\models \alpha$ si, y solo si, $\mathcal{I} \models \neg \alpha$

Recordatorio: Equivalencia lógica

Definición

Sean α y β dos oraciones en lógica de predicados (no tienen variables libres). Decimos que α y β son lógicamente equivalentes:

$$\alpha \equiv \beta$$

si para toda interpretación $\mathcal I$ se cumple:

$$\mathcal{I} \vDash \alpha$$
 si, y solo si, $\mathcal{I} \vDash \beta$

Caso general

Sean $\alpha(x_1,\ldots,x_n)$ y $\beta(x_1,\ldots,x_n)$ dos formulas en lógica de predicados. Decimos que α y β son lógicamente equivalentes $(\alpha \equiv \beta)$, si para toda interpretación \mathcal{I} y para todo a_1,\ldots,a_n en $\mathcal{I}(dom)$:

$$\mathcal{I} \vDash \alpha(a_1, \dots, a_n)$$
 si, y solo si, $\mathcal{I} \vDash \beta(a_1, \dots, a_n)$

Recordatorio: Equivalencias lógicas sencillas

Todas las equivalencias de lógica proposicional son equivalencias en lógica de predicados.

Ejemplos

Para fórmulas α , β y γ en lógica de predicados:

- 1. Conmutatividad: $\alpha \land \beta \equiv \beta \land \alpha$
- 2. Asociatividad: $\alpha \wedge (\beta \wedge \gamma) \equiv (\alpha \wedge \beta) \wedge \gamma$
- 3. Distributividad: $\alpha \land (\beta \lor \gamma) \equiv (\alpha \land \beta) \lor (\alpha \land \gamma)$
- 4. **De Morgan**: $\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$
- 5. ...

Recordatorio: Nuevas equivalencias lógicas

Para formulas α y β en lógica de predicados:

- 1. $\neg \forall x. \alpha \equiv \exists x. \neg \alpha$.
- 2. $\neg \exists x. \alpha \equiv \forall x. \neg \alpha$.
- 3. $\forall x. (\alpha \land \beta) \equiv (\forall x. \alpha) \land (\forall x. \beta).$
- 4. $\exists x. (\alpha \lor \beta) \equiv (\exists x. \alpha) \lor (\exists x. \beta).$

Outline

Tautologías

Consecuencia lógica

Outline

Tautologías

Consecuencia lógica

Tautología en lógica de predicados

Definición

Sea α una oración en lógica de predicados (sin variables libres).

Decimos que α es una tautología si para toda interpretación $\mathcal I$ se tiene:

$$\mathcal{I} \models \alpha$$

¿cuáles fórmulas son tautologías?

- $\forall x. (P(x) \lor \neg P(x))$
- $\forall x. \exists y. R(x, y)$

Tautología en lógica de predicados

Definición

Sea α una oración en lógica de predicados (sin variables libres).

Decimos que α es una tautología si para toda interpretación $\mathcal I$ se tiene:

$$\mathcal{I} \models \alpha$$

Caso general

Sea $\alpha(x_1,\ldots,x_n)$ una fórmula con variables libres x_1,\ldots,x_n .

Decimos que α es una tautología si

para toda interpretación \mathcal{I} y para todo a_1, \ldots, a_n en $\mathcal{I}(dom)$ se tiene:

$$\mathcal{I} \vDash \alpha(a_1,\ldots,a_n)$$

Tautología en lógica de predicados

Caso general

Sea $\alpha(x_1,\ldots,x_n)$ una fórmula con variables libres x_1,\ldots,x_n .

Decimos que α es una tautología si

para toda interpretación \mathcal{I} y para todo a_1, \ldots, a_n en $\mathcal{I}(dom)$ se tiene:

$$\mathcal{I} \vDash \alpha(a_1,\ldots,a_n)$$

¿cuáles fórmulas son tautologías?

- $(\forall x. P(x)) \rightarrow P(y)$
- \blacksquare $(\exists x. P(x)) \rightarrow P(y)$

X

Una tautología es una formula que será verdad en **cualquier interpretación y dominio** que consideremos.

Outline

Tautologías

Consecuencia lógica

Consecuencia lógica en lógica de predicados

Para un conjunto Σ de oraciones, \mathcal{I} satisface Σ (notación $\mathcal{I} \models \Sigma$) si para todo $\alpha \in \Sigma$, se cumple que $\mathcal{I} \models \alpha$.

Definición

Una oración α es consecuencia lógica de un conjunto de oraciones Σ :

$$\Sigma \models \alpha$$

si para toda interpretación \mathcal{I} , si $\mathcal{I} \models \Sigma$ entonces $\mathcal{I} \models \alpha$.

¿és consecuencia lógica?

1.
$$\{(\forall x. \alpha) \lor (\forall x. \beta)\} \stackrel{?}{\vDash} \forall x. (\alpha \lor \beta)$$

2.
$$\{(\exists x. \alpha) \land (\exists x. \beta)\} \stackrel{?}{\vDash} \exists x. (\alpha \land \beta)$$

¿cuáles son consecuencias lógicas válidas?

1.
$$\{ (\exists x. \alpha) \land (\exists x. \beta) \} \models \exists x. (\alpha \land \beta)$$

2. $\{ (\exists x. \alpha(x)) \land \beta \} \models \exists z. (\alpha(z) \land \beta), z \text{ no aparece en } \alpha \circ \beta$

3. $\{ \forall x. \alpha \} \models \exists x. \alpha$

4. $\{ \forall x. \exists y. R(x,y) \} \models \exists y. \forall x. R(x,y)$

Demuestre estas consecuencias lógicas

Consecuencia lógica (caso general)

Para un conjunto Σ de formulas, \mathcal{I} satisface Σ con a_1, \ldots, a_n en $\mathcal{I}(dom)$ si para todo $\alpha \in \Sigma$, se cumple que $\mathcal{I} \models \alpha(a_1, \ldots, a_n)$.

Si \mathcal{I} satisface Σ con a_1, \ldots, a_n escribiremos $\mathcal{I} \vDash \Sigma(a_1, \ldots, a_n)$.

Caso general

Una oración α es consecuencia lógica de un conjunto de oraciones Σ :

$$\Sigma \models \alpha$$

si para toda interpretación \mathcal{I} y para todo a_1, \ldots, a_n en $\mathcal{I}(dom)$ se tiene:

si
$$\mathcal{I} \models \Sigma(a_1, \ldots, a_n)$$
 entonces $\mathcal{I} \models \alpha(a_1, \ldots, a_n)$

Consecuencia lógica (caso general)

Ejemplo

Todos los hombres son mortales.

Sócrates es hombre.

Por lo tanto, Sócrates es mortal.

Esto lo podemos modelar con el vocabulario $H(\cdot)$, $M(\cdot)$:

$$\forall x. \ \mathsf{H}(x) \to \mathsf{M}(x)$$

H(y)

M(y)

Para hacer inferencia lógica es muy útil usar nombres de variables!

1. Instanciación universal:

$$\forall x. \, \alpha(x)$$
 $\alpha(a)$ para cualquier a

2. Generalización universal:

$\alpha(a)$	para cualquier <i>a</i>
$\forall x. \alpha(x)$	

Para hacer inferencia lógica es muy útil usar nombres de variables!

3. Instanciación existencial:

$$\exists x. \alpha(x)$$
 $\alpha(a)$ para algún a (nuevo)

4. Generalización existencial:

$$\alpha(a)$$
 para algún a
 $\exists x. \alpha(x)$

Ejemplo

Algún estudiante en la sala no estudio para el examen

Todos los estudiantes en la sala pasaron el examen

Algún estudiante pasó el examen y no estudio

¿cómo modelamos este problema?

S(x) := x está en la sala.

E(x) := x estudio para el examen.

X(x) := x pasó el examen.

¿cómo queda la consecuencia lógica?

$$\exists x. \ S(x) \land \neg E(x)$$

$$\frac{\forall x. \ S(x) \to X(x)}{\exists x. \ X(x) \land \neg E(x)}$$

Ejemplo $\exists x. S(x) \land \neg E(x)$ $\forall x. S(x) \rightarrow X(x)$ $\exists x. X(x) \land \neg E(x)$ ¿cómo inferimos esta consecuencia lógica? 1. $\exists x. S(x) \land \neg E(x)$ (Premisa) 2. $S(a) \land \neg E(a)$ (Inst. existencial 1.) (Simpl. conjuntiva 2.) 3. S(a)4. $\forall x. S(x) \rightarrow X(x)$ (Premisa) 5. $S(a) \rightarrow X(a)$ (Inst. universal 4.) 6. X(a)(Modus ponens 3. y 5.) 7. $\neg E(a)$ (Simpl. conjuntiva 2.) 8. $X(a) \land \neg E(a)$ (Conjunción 6. y 7.) 9. $\exists x. X(x) \land \neg E(x)$ (Gen. existencial 8.)