INTERRO DE RENTRÉE

Exercice 1 – Résoudre les équations et inéquations suivantes.

1.
$$4x-5=-2x+3$$

3.
$$2x^2 - 7x + 3 = x^2 + 3x - 18$$

5.
$$\frac{2x+3}{x-1} + \frac{1}{x} = 0$$

2.
$$x + 4 \leq -2x + 5$$

4.
$$2x^3 - 3x^2 + 5x - 4 < 0$$

Exercice 2 – Calculer les limites suivantes.

1.
$$\lim_{x \to -\infty} e^x - x$$

3.
$$\lim_{x\to 0^+} e^{\frac{1}{x}}$$

5.
$$\lim_{x \to 2^+} \ln \left(\frac{1}{x-2} \right) + 4x - 1$$

2.
$$\lim_{x \to +\infty} \ln \left(\frac{x+1}{x-1} \right)$$

4.
$$\lim_{x \to +\infty} \ln(x) - x$$

Exercice 3 – Calculer les dérivées des fonctions suivantes.

1.
$$f(x) = x^3 + 4x^2 - 5x + 2$$

3.
$$f(x) = e^{2x+3} + 1$$

5.
$$f(x) = \left(\frac{x+1}{x-1}\right)^2$$

2.
$$f(x) = (4x - 1) \ln(x)$$

4.
$$f(x) = \frac{e^x}{x^2}$$

Exercice 4 – Soient f la fonction définie sur $]0, +\infty[$ par $f(x) = \frac{\ln(x)}{x^5}$ et \mathcal{C} sa courbe représentative.

1. Étudier les limites de f aux bornes de son ensemble de définition.

2. Montrer que $f'(x) = \frac{1 - 5\ln(x)}{x^6}$. En déduire le tableau de variation de f.

3. Donner l'équation de la tangente $\mathcal T$ à la courbe représentative de f au point d'abscisse 1.

4. Sur un même graphique, tracer la courbe ${\mathcal C}$ ainsi que la tangente ${\mathcal T}$.

Exercice 5 – Soient f la fonction définie sur \mathbb{R} par $f(x) = (2 - x) e^x$ et \mathcal{C} sa courbe représentative.

1. Étudier les limites de f en $+\infty$ et en $-\infty$.

2. Montrer que $f'(x) = (1 - x)e^x$. En déduire le tableau de variation de f.

3. Donner l'équation de la tangente $\mathcal T$ à la courbe représentative de f au point d'abscisse 1.

4. Calculer f''(x) puis étudier la convexité de la fonction f. La courbe $\mathcal C$ admet-elle un point d'inflexion?

5. Sur un même graphique, tracer la courbe $\mathcal C$ ainsi que la tangente $\mathcal T$.

Exercice 6 – Soient f la fonction définie sur \mathbb{R} par $f(x) = (x^2 - 2x + 2)e^x$ et \mathcal{C} sa courbe représentative.

1. a) Montrer que pour tout $x \in \mathbb{R}$, $f'(x) = x^2 e^x$.

b) Étudier les variations de la fonction f.

2. Déterminer une équation de la tangente ${\mathcal T}$ à la courbe ${\mathcal C}$ au point d'abscisse 1.

3. a) Calculer f''(x).

b) Étudier la convexité de f.

c) Calculer les coordonnées des points d'inflexion de la courbe \mathcal{C} .

4. Sur un même graphique, tracer la courbe $\mathcal C$ ainsi que la tangente $\mathcal T$.

Exercice 7 – Calculer les intégrales suivantes.

1.
$$\int_0^1 (3x^3 - 2x^2 + x - 4) dx$$
 3. $\int_0^1 \frac{t}{\sqrt{t^2 + 1}} dt$

$$3. \int_0^1 \frac{t}{\sqrt{t^2 + 1}} \, \mathrm{d}t$$

5.
$$\int_{-2}^{-1} \frac{x^3}{x^4 + 3} \, \mathrm{d}x$$

$$2. \int_0^2 \frac{x}{(1+x^2)^2} \, \mathrm{d}x$$

$$4. \int_1^2 \left(\frac{1}{\sqrt{x}} + 4x - 1 \right) dx$$

Exercice 8 – Soit f la fonction définie sur [0,1] par $f(x) = (1-x)^3 + x$.

- 1. a) Calculer f'(x) puis étudier les variations de f.
 - b) Montrer que pour tout $x \in [0,1]$, $f(x) \in [0,1]$.
- 2. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0 = \frac{4}{10}$ et $u_{n+1} = f(u_n)$.
 - a) Montrer par récurrence que pour tout $n \in \mathbb{N}$, $u_n \in [0,1]$.
 - b) Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
 - c) La suite $(u_n)_{n\in\mathbb{N}}$ converge-t-elle? Si oui, déterminer sa limite.

Exercice 9 – Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=8500$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=1.02u_n-250$.

- 1. On considère la suite $(v_n)_{n \in \mathbb{N}}$ définie pour tout entier naturel n par $v_n = u_n 12500$.
 - a) Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique dont on précisera la raison.
 - b) Exprimer v_n en fonction de n.
 - c) En déduire l'expression de u_n en fonction de n.
- 2. Étudier le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$.
- 3. Calculer la limite de la suite $(u_n)_{n\in\mathbb{N}}$.

Exercice 10 - D'après une enquête sur l'emploi en France, 52% des personnes qui exercent un emploi sont des hommes, 15% des hommes qui exercent un emploi ne sont pas des salariés et 91.6% des femmes qui exercent un emploi sont salariées.

- 1. On interroge au hasard une personne ayant un emploi. On note H l'événement "la personne est un homme", F l'événement "la personne est une femme" et S l'événement "la personne exerce un emploi salarié".
 - a) Donner les valeurs des probabilités P(F), P(H), $P_H(S)$, $P_H(\overline{S})$, $P_F(S)$, $P_F(S)$.
 - b) Calculer $P(F \cap S)$. Interpréter le résultat.
 - c) Calculer la probabilité qu'une personne exerce un emploi salarié.
 - d) La personne interrogée exerce un emploi salarié. Quelle est la probabilité que ce soit un homme?
- 2. Selon cette étude, 30% des femmes qui ont un emploi travaillent à temps partiel. On choisit au hasard 40 femmes qui ont un emploi et on note X la variable aléatoire qui compte le nombre de femmes qui travaillent à temps partiel.
 - a) Quelle est la loi suivie par X? Donner le support $X(\Omega)$ et une formule permettant de calculer P(X = k) pour tout $k \in X(\Omega)$.
 - b) Calculer l'espérance de *X*. Interpréter le résultat.
 - c) Déterminer la probabilité que dans ce groupe, il y ait exactement 12 femmes qui travaillent à temps partiel.

Exercice 11 - On considère une urne contenant trois boules rouges, deux boules vertes et une boule bleue. On tire deux boules successivement et sans remise. On note X le nombre de boules rouges obtenues.

- 1. Donner le support $X(\Omega)$ de X et calculer la loi de X.
- 2. Calculer l'espérance et la variance de *X*.
- 3. Donner l'expression de la fonction de répartition F_X et sa représentation graphique.