Spectrum Lite Documentation

Spectrum Lite Model

Predictive Model for Spectrum Lite using Machine Learning

Author: Alok Kumar Das

Date:11/11/2022

Objective:

The prime objective of the model is to create a cluster for each business entities. According to the cluster categorize them into safe class and confidence indicator.

Goals: -

- 1.To find safe classes for the business entities.
- 2.To find the confidence indicator for the business entities.

Metrics and limitations: -

- 1.It will return only the safe class cluster in which the CP belongs to.
- 2. What is the confidence indicator for that CP.

Input Data: -

1. Daily new cp report. (Received daily)

Process: -

1.RAM terminology and K-Mean Clustering technique.

Feature Engineering: -

- 1.Feature engineering involves using domain expertise to develop features that are compatible with machine learning algorithms.
- 2.I will use feature engineering to create RAM (recency, age, and monetary) features and Create weightage class according to quantile cut.
 - Annual Revenue: The revenue generated by each CP.
 - Recency: The number of days since a customer's last update.
 - Age: The age of the company.
 - Employee Count Total: Total employee the cp has.
 - BEMFAB (Marketability): Whether the company is marketable or not.

Spectrum Lite Documentation

• (Marketable-->1, Others---->0)

Weightage Class: -

• For positive correlation: -

We created five classes for the RFM segmentation since, being high revenue is good, high Employee Count Total is good and high age is good for business entity.

• For negative correlation: -

High recency is bad.

Result: -

• Confidence Indicator-->The probability that the cp is a good cp or not. (It ranges from 0 to 1)

Spectrum Lite Documentation

• Safe Class: -The class the cp belongs to.

Condition:-(According to relative importance of K-Mean Cluster Value)

- 1.'Highly Qualified' ==> (Class 2)
- 2.'Avarage Qualified' ==> (Class 0)
- 3.'Poorly Qualified' ==> (Class 1)

Output: -

Acco Na	Annual Revenue	Employee Count Total	Recency	Age	BEMFAB (Marketability)	Rev_Quartile	Emp_Quartile	Age_Quartile	Rncy_Quartile	Confidence Indicator	Safe Class	Date
0 Ene Build	5000000	8	208	1044	1	3	3	1	4	0.705882	Poorly Qualified	2022- 11-10
Wired i 1 the Fut	500000	3	3962	5792	1	2	1	3	1	0.470588	Avarage Qualified	2022- 11-10