Simulating Collisional Dark Matter

Javier Alejandro Acevedo Barroso

September 19, 2018

Contents

1	Obj	etives	
	1.1	General Objetive	
	1.2	Specific Objetives	
2	Introduction		
	2.1	The Boltzmann Equation	
	2.2	Mesoscopic Modeling	
	2.3	Lattice Automata and Lattice Boltzmann	
	2.4	BGK Approximation	
3	The	Lattice Boltzmann Algorithm	
	3.1	The Mass Integral and the Poisson Equation	
	3.2	Kick and Drift	
	3.3	The Collisional Step	
	3.4	Units and Initial Conditions	
4	Results		
	4.1	No Collisional	
	4.2	au=10	
	4.3		
	4.4		
	4.5		
	4.6	au=1000	
5	Con	aclusions	
	5.1	A Numerically Stable Simulation	

Objetives

1.1 General Objetive

To simulate the phase space of a collisional dark matter fluid using a Lattice-Boltzmann Method

1.2 Specific Objetives

- To implement a Lattice-Boltzmann simulation using a 4-dimensional phase space and a varying collisional term.
- To implement a Lattice-Boltzmann simulation using a 6-dimensional phase space and a varying collisional term.
- To study the dynamical behavior of a dark matter fluid using different equilibrium distributions in the collisional term.
- To compare the phase space of a collisional dark matter fluid with its collisionless version.

Introduction

- 2.1 The Boltzmann Equation
- 2.2 Mesoscopic Modeling

Traditionally, fluid dynamics have been modeled using the Navier-Stokes equation, or some modification of it.

- 2.3 Lattice Automata and Lattice Boltzmann
- 2.4 BGK Approximation

The Lattice Boltzmann Algorithm

- 3.1 The Mass Integral and the Poisson Equation asdfasdf
- 3.2 Kick and Drift

asd

3.3 The Collisional Step

asd

3.4 Units and Initial Conditions

Results

- 4.1 No Collisional
- $4.2 \quad au = 10$
- 4.3 au=100
- $4.4 \quad au = 250$
- $4.5 \quad \tau = 500$
- 4.6 $\tau = 1000$
- 4.7 Different Equlibrium Distributions

Conclusions

5.1 A Numerically Stable Simulation