Elementary Graph Algorithms

Mergeable Heap (Chapter 19)

Procedure	Binary heap (worst-case)	Fibonacci heap (amortized)	
MAKE-HEAP	Θ(1)	Θ(1)	
Insert	$\Theta(\lg n)$	$\Theta(1)$	
MINIMUM	$\Theta(1)$	$\Theta(1)$	
EXTRACT-MIN	$\Theta(\lg n)$	$O(\lg n)$	
Union	$\Theta(n)$	$\Theta(1)$	
DECREASE-KEY	$\Theta(\lg n)$	$\Theta(1)$	
DELETE	$\Theta(\lg n)$	$O(\lg n)$	

22.1 Representations of graphs

$$G = (V, E)$$
 V: vertex set E: edge set $n = |V|$ $m = |E|$

An undirected graph A directed graph

Adjacency-list

- * O(n+m) memory (for sparse G --- m is small)
- * It's hard to determine whether e=(u, v) is in E.
- * It can be extended to weighted graphs.

Adjacency-matrix

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	0 1 1 0 1	0

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0 1 1 0 0	1

- * $O(n^2)$ memory (for dense G --- m is close to n^2)
- * It can be extended to weighted graphs.
- * For unweighted *G*, 1-bit is enough for an edge.

22.2 Breadth-first search

Breadth-first search / Breadth-first tree Given G=(V, E) and a source vertex $s \in V$

BFS(G, s)

```
for each vertex u \in V[G] - \{s\}
 2
            do color[u] \leftarrow WHITE
                d[u] \leftarrow \infty
                \pi[u] \leftarrow \text{NIL}
   color[s] \leftarrow GRAY
 6 d[s] \leftarrow 0
 7 \pi[s] \leftarrow NIL
 8 Q \leftarrow \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
            do u \leftarrow DEOUEUE(O)
12
                for each v \in Adi[u]
13
                     do if color[v] = WHITE
14
                            then color[v] \leftarrow GRAY
15
                                   d[v] \leftarrow d[u] + 1
16
                                   \pi[v] \leftarrow u
17
                                  ENQUEUE(Q, v)
18
               color[u] \leftarrow BLACK
```

22.3 Depth-first search / Depth-first forest

```
DFS(G)
      for each vertex u \in V[G]
           do color[u] \leftarrow WHITE
               \pi[u] \leftarrow \text{NIL}
  4 time \leftarrow 0
  5 for each vertex u \in V[G]
           do if color[u] = WHITE
                 then DFS-VISIT(u)
  DFS-Visit(u)
  1 color[u] \leftarrow GRAY
                                 \triangleright White vertex u has just been
  2 time \leftarrow time + 1
                                                       discovered.
  3 \quad d[u] \leftarrow time
                                 \triangleright Explore edge (u, v).
  4 for each v \in Adj[u]
           do if color[v] = WHITE
                 then \pi[v] \leftarrow u
                       DFS-VISIT(v)
                                 \triangleright Blacken u; it is finished.
  8 color[u] \leftarrow BLACK
     f[u] \leftarrow time \leftarrow time + 1
* No specified source.
* d[v]/f[v]
                  d[v]: time when v is discovered
                  f[v]: time when v is finished
* \pi(v): the predecessor of v.
* |--- white --- | d[v] |--- gray --- | f[v] |--- black --- |
```

* O(V+E) *Depth-first forest: $G_{\pi}=(V, E_{\pi})$

^{*} $\pi(v)$: the predecessor of v.

^{*} O(V+E) time: using adjacency list, each edge is scanned at most twice.

^{*} Breadth-first tree G_{π} =(V_{π} , E_{π}) (rooted tree)

^{*} The path in breadth-first tree from s to v is a shortest path (containing the fewest number of edges) from s to v. (unweighted)

22-9

Corollary 22.8(Nesting of descendants' intervals) Vertex v is a proper descendant of vertex u in the depth-forest for a (directed or undirected) graph G if and only if d[u] < d[v] < f[v] < f[u].

*parenthesis structure: (well-formed) discover $u \rightarrow "(u")$ finish $u \rightarrow "u$)"

Classification of edges

- **1.** *Tree edges:* edges in G_{π}
- **2. Back edges:** non-tree edges (u, v) such that u is a descendant of v in G_{π} . (including self-loop)
- 3. Forward edges: non-tree edges (u, v) such that u is an ancestor of v in G_{π} .
- **4.** *Cross edges:* non-tree edges (u, v) such that u is neither a descendant nor an ancestor of v in G_{π} .

Example: redraw *G* such that all tree and forward edges head downward and all back edges go up.

In this drawing, all cross edges are from right to left.

Modify DFS algorithm to classify edges

When an edge (u, v) is encountered:

- 1. v is white \rightarrow tree
- 2. v is gray \rightarrow back
- 3. v is black \rightarrow forward if d[u] < d[v] cross if d[u] > d[v]

Theorem 22.10 In a depth-first search of an undirected graph *G*, every edge is either a tree edge or a back edge.

Proof. Let e=(u, v) be an edge in G.

Assume d[u] < d[v]. Since e is in the adjacent list of u, v must be discovered and finished before we finished u.

If *e* is encountered from *u* to *v*, *e* is a tree edge. Otherwise, *e* is a back edge, since *u* is still gray at the time *e* is encountered.

22.4 Topological sort

directed acyclic graph (dag)

Topological sort: order the vertices into a sequence such that if $\langle u, v \rangle$ is in G, u is before v.

TOPOLOGICAL-SORT(G)

- call DFS(G) to compute finishing times f[v] for each vertex v
- 2 as each vertex is finished, insert it onto the front of a linked list
- 3 return the linked list of vertices
- * Output vertices in order of decreasing f[u].
- * O(V+E)

^{*} If G is an undirected graph, an edge is classified as the first type that applies.

22.5 Strongly connected components

* For an undirected *G*, performing DFS once can obtain all "connected components"

Strongly connected components (directed): a maximal set of vertices $U \subseteq V$ such that for every pair of $u, v \in U$, we have both $u \rightarrow v$ and $v \rightarrow u$.

G:

G^T:

Components

STRONGLY-CONNECTED-COMPONENTS (G)

- 1 call DFS(G) to compute finishing times f[u] for each vertex u
- 2 compute G^{T}
- call DFS(G^{T}), but in the main loop of DFS, consider the vertices in order of decreasing f[u] (as computed in line 1)
- 4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component
- * O(*V*+*E*)
- * Note that G and G^T have the same components.
- * Correctness: ??? (Refer to textbook)

Homework: Ex. 22.1-6, 22.2-4, Prob. 22-2 (d)(f). (While doing Prob. 22-2(d)(f), you can use the properties in (a)(b)(c)(e) without proving.)