Análise de Complexidade (continuação)

Sergio Canuto sergio.canuto@ifg.edu.br

Relembrando... Função de custo f(x) "Exemplo - Registros de um Arquivo"

- Considere o problema de acessar os registros de um arquivo.
- Cada registro contém uma **chave** única que é utilizada para recuperar registros do arquivo.
- O problema: dada uma chave qualquer, localize o registro que contenha esta chave.
- O algoritmo de pesquisa mais simples é o que faz a **pesquisa seqüencial**.
- Seja f uma função de complexidade tal que f (n) é o número de registros consultados no arquivo (número de vezes que a chave de consulta é comparada com a chave de cada registro).
 - melhor caso: f(n) = 1 (registro procurado é o primeiro consultado);
 - pior caso: f(n) = n (registro procurado é o último consultado ou não está presente no arquivo);
 - caso médio: f(n) = (n + 1)/2.

Relembrando... Função de custo f(x) "Exemplo - Registros de um Arquivo"

- No estudo do caso médio, vamos considerar que toda pesquisa recupera um registro.
- Se p_i for a probabilidade de que o *i*-ésimo registro seja procurado, e considerando que para recuperar o *i*-ésimo registro são necessárias *i* comparações, então

$$f(n) = 1 \times p_1 + 2 \times p_2 + 3 \times p_3 + \cdots + n \times p_n.$$

- Para calcular f (n) basta conhecer a distribuição de probabilidades p_i.
- Se cada registro tiver a mesma probabilidade de ser acessado que todos os outros, então $p_i = 1/n$, $0 \le i < n$.
- Neste caso:

$$f(n) = \frac{1}{n}(1+2+3+\cdots+n) = \frac{1}{n}\left(\frac{n(n+1)}{2}\right) = \frac{n+1}{2}$$

 A análise do caso esperado revela que uma pesquisa com sucesso examina aproximadamente metade dos registros.

Relembrando... Comportamento Assintótico - notação O

- Matematicamente, a notação O é assim definida: uma função custo f(n) é O(g(n)) se existem duas constantes positivas \mathbf{c} e \mathbf{m} , tais que, para $n \ge m$, temos $f(n) \le cg(n)$.
- Em outras palavras, para todos os valores de **n** à direita do valor **m**, o resultado da nossa função custo f(n) é sempre **menor ou igual** ao valor da função usada na notação O, g(n), multiplicada por uma constante **c**.

• **Exemplo**:
$$f(n) = (n + 1)^2$$
.

- Logo
$$f(n)$$
 é $O(n^2)$, quando $m = 1$ e $c = 4$.

— Isso porque
$$(n + 1)^2$$
 ≤ $4n^2$ para $n \ge 1$.

• Exemplo:
$$f(n) = n$$
.

- Exemplo: $f(n) = n^2$
 - − f(n) não é O(n).
 - Suponha que existam constantes c e m tais que para todo $n \ge m$, $n^2 \le cn$. (ou n.n ≤ cn)
 - Logo $c \ge n$ para qualquer $n \ge m$, e não existe uma constante c que possa ser maior ou igual a n para todo n.

- Exemplo: $f(n) = 3n^3 + 2n^2 + n \in O(n^3)$.
 - Basta mostrar que $3n^3 + 2n^2 + n \le 6n^3$, para $n \ge 0$.
 - A função $f(n) = 3n^3 + 2n^2 + n$ é também $O(n^4)$, entretanto esta afirmação é mais fraca do que dizer que f(n) é $O(n^3)$.

Comportamento Assintótico - Operações com a notação O

$$f(n) = O(f(n))$$

$$c \times O(f(n)) = O(f(n)) c = constante$$

$$O(f(n)) + O(f = O(f(n))$$

$$(n))$$

$$O(O(f(n)) = O(f(n))$$

$$O(f_{1}(n)) + O(f_{2}(n))$$

$$O(f_{1}(n))O(f_{2}(n)) = O(f_{1}(n)f_{2}(n))$$

$$f_{1}(n)O(f_{2}(n)) = O(f_{1}(n)f_{2}(n))$$

Comportamento Assintótico - Operações com a notação O

Exemplo: regra da soma $O(f(n)) + O(f_2(n))$.

- Suponha três trechos cujos tempos de execução são O(n), $O(n^2)$ e $O(n \log n)$.
- O tempo de execução dos dois primeiros trechos é $O(max(n, n^2))$, que é $O(n^2)$.
- O tempo de execução de todos os três trechos é então $O(max(n^2, n \log n))$, que é $O(n^2)$.

Exemplo: O produto de [log
$$n + k + O(1/n)$$
] por $[n + O(\sqrt{n})]$ é $n \log n + kn + O(\sqrt{n} \log n)$

A área de complexidade de algoritmos abrange a medição da eficiência de um algoritmo frente à quantidade de operações realizadas até que ele encontre seu resultado final. A respeito desse contexto, suponha que um arquivo texto contenha o nome de N cidades de determinado estado, que cada nome de cidade esteja separado do seguinte por um caracter especial de fim de linha e classificado em ordem alfabética crescente. Considere um programa que realize a leitura sequencial linha a linha desse arquivo, à procura de nome de cidade.

Com base nessa descrição, verifica-se que a complexidade desse programa é:

- (A) O(1).
- (B) O(N).
- (C) O(logN).
- (D) $O(N^2)$.
- (E) O(N logN).

Tendo como referência o algoritmo abaixo, julgue a afirmação seguinte como verdadeira ou falsa: "O algoritmo em apreço é O(n³)"

```
inteiro pontuacaoFinal (inteiro n)
inteiro i, valor;
início
valor <- 0;
para i de 1 até n faça
valor <- valor + i * i * i;
fim para
retorne valor;
fim</pre>
```

Indique se como verdadeiro ou falso as seguintes afirmações:

a)
$$f(n)=2n+10$$
 é $O(n)$

b)
$$f(n)=(3/2)n(n+1)$$
 é $O(n)$

c)
$$f(n)=n/1000$$
 é $O(n)$

d)
$$f(n)=2^{n+1}$$
 é $O(2^n)$

Considere dois algoritmos A e B com funções de complexidade de tempo $a(n) = n^2 - n + 500$ e b(n) = 47n + 47, respectivamente. Para quais valores de n o algoritmo A leva menos tempo para executar do que B?

3) Considere dois algoritmos A e B com funções de complexidade de tempo $a(n) = n^2 - n + 500$ e b(n) = 47n + 47, respectivamente. Para quais valores de n o algoritmo A leva menos tempo para executar do que B?

a(n) < b(n)

$$n^2 - n + 500 < 47n + 47$$

$$n^2 - 48n + 453 < 0$$

• • •

$$n' = 12,909$$

$$n'' = 35,091$$

R.: Entre 13 e 35

Atividade - Complexidade

```
Considerando a notação O, analise o
seguinte fragmento de código e sua
função de custo.
Gere a função de custo considerando as
seguintes
          instruções simples
                              para
computar a função de custo do algoritmo:
 1 int i,j,k;
 3 \text{ for}(i=0; i < N; i++){}
       for(j=0; j < N; j++){}
           R[i][j] = 0;
               for(k=0; k < N; k++)
                   R[i][j] += A[i][k] * B[k][j];
```

Comportamento Assintótico - Ω (lê-se grande-omega)

- A notação Grande-O é a mais utilizada, pois é o caso de mais fácil identificação (limite superior sobre o tempo de execução do algoritmo). Para diversos algoritmos, o pior caso ocorre com frequência.
- A notação Ω (lê-se grande-omega) descreve o **limite assintótico inferior** de um algoritmo. Trata-se de uma notação utilizada para analisar o **melhor caso** do algoritmo.
 - A notação $Ω(n^2)$ nos diz que o custo do algoritmo é, assintoticamente, maior ou igual a n^2 . Em outras palavras, o custo do algoritmo original é, no **mínimo**, tão ruim quanto n^2 .

- Matematicamente, a notação Ω é assim definida: uma função custo f(n) é $\Omega(g(n))$ se existem duas constantes positivas \mathbf{c} e \mathbf{m} , tais que, para $n \ge m$, temos $f(n) \ge cg(n)$.
- Em outras palavras, para todos os valores de \mathbf{n} à direita do valor \mathbf{m} , o resultado da nossa função custo f(n) é sempre **maior ou igual** ao valor da função usada na notação Ω , g(n), multiplicada por uma constante \mathbf{c} .

Exemplo: comportamento Assintótico - notação Ω

Seja um algoritmo cuja função de custo é 3n+3. Encontre as constantes positivas $\bf c$ e $\bf m$ que mostram que o algoritmo, no melhor caso, é $\Omega(n)$

Exemplo: comportamento Assintótico - notação Ω

Seja um algoritmo cuja função de custo é 3n+3. Encontre as constantes positivas $\bf c$ e $\bf m$ que mostram que o algoritmo, no melhor caso, é $\Omega(n)$

Definição: Uma função de custo f(n) é $\Omega(g(n))$ se existem duas constantes positivas \mathbf{c} e \mathbf{m} , tais que, para $n \ge m$, temos $f(n) \ge cg(n)$.

- No nosso caso:
 - f(n)=3n+3
 - g(n)=n

Portanto:

- $f(n) \ge cg(n)$
- $3n+3 \ge cn$.

Vamos escolher c=2. Resolvendo a inequação, $3n+3 \ge 2n$, sabemos que ela é válida quando $n \ge 3$. Logo, para m=1 (constante positiva) e c=2 atendemos a definição. Portanto existem duas constantes c e m que satisfazem a definição, e podemos dizer que a função de custo $3n+3 \in \Omega(n)$

Exemplo: comportamento Assintótico - notação Ω

- **Exemplo**: Para mostrar que $f(n) = 3n^3 + 2n^2$ é $\Omega(n^3)$ basta fazer c = 1, e então $3n^3 + 2n^2 \ge n^3$ para $n \ge 0$.
- Exemplo: Seja f(n) = n para n impar $(n \ge 1)$ e $f(n) = n^2/10$ para n par $(n \ge 0)$.
 - Neste caso $f(n) \in \Omega(n)$, bastando considerar c = 1 e n = 1, 3, 5, 7, ...

- A notação Θ (lê-se grande-theta) descreve o **limite assintótico firme** (ou **estreito**) de um algoritmo. Trata-se de uma notação utilizada para analisar o limite inferior e superior do algoritmo.
- A notação $\Theta(n^2)$ nos diz que o custo do algoritmo é, assintoticamente, igual a n^2 . Em outras palavras, o custo do algoritmo original é n^2 dentro de um fator constante acima e abaixo.

- Matematicamente, a notação Θ é assim definida: uma função custo f(n) é $\Theta(g(n))$ se existem três constantes positivas \mathbf{c}_1 , \mathbf{c}_2 e \mathbf{m} , tais que, para $n \ge m$, temos c_1 $g(n) \le f(n) \le c_2$ g(n).
- Em outras palavras, para todos os valores de **n** à direita do valor **m**, o resultado da nossa função custo f(n) é sempre **igual** ao valor da função usada na notação Θ , g(n), quando esta função é multiplicada por constantes \mathbf{c}_1 e \mathbf{c}_2 .

• Um exemplo simples desse tipo de notação consiste em mostrar que a seguinte função custo do nosso algoritmo:

$$f(n) = \frac{1}{2}n^2 - 3n$$

é $\Theta(n^2)$. Para tanto, iremos definir constantes positivas \mathbf{c}_1 , \mathbf{c}_2 e \mathbf{m} , tais que:

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$

para todo $n \ge m$. Dividindo por n^2 temos:

$$c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

• Conseguimos definir as constantes c1, c2 e n que satisfazem a inequação abaixo?

$$c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

- Sim! escolhendo $c_1 >= 1/14$, $c_2 >= 1/2$ e n >= 7 (m=7)
- Outras constantes podem existir, mas o importante é que existe alguma escolha para as três constantes.
- Logo, podemos dizer que:

$$f(n) = \frac{1}{2}n^2 - 3n$$
 é $\Theta(n^2)$.

As notações o (pequeno o) e ω (pequeno ômega)

- O $\in \mathbb{W}$ são muito parecidas com as notações $O \in \Omega$, respectivamente
- Enquanto as notações O e Ω possuem uma relação de **menor ou igual** e **maior ou igual**, as notações o e ω possuem uma relação de **menor** e **maior**.
 - A notação $o(n^2)$ nos diz que o custo do algoritmo é, assintoticamente, sempre menor do que n^2 . Matematicamente, uma função custo f(n) é o(g(n)) se existem duas constantes positivas \mathbf{c} e \mathbf{m} , tais que, para $n \ge m$, temos f(n) < cg(n).
 - A notação $\omega(n^2)$ nos diz que o custo do algoritmo é, assintoticamente, sempre maior do que n^2 . Matematicamente, uma função custo f(n) é $\omega(g(n))$ se existem duas constantes positivas $c \in m$, tais que, para $n \ge m$, temos f(n) > cg(n).

Análise de Complexidade: Comparação de Programas

- Se f é uma função de complexidade para um algoritmo F, então O(f) é considerada a complexidade assintótica ou o comportamento assintótico do algoritmo F.
- A relação de dominação assintótica permite comparar funções de complexidade.
- Entretanto, se as funções f e g dominam assintoticamente uma a outra, então os algoritmos associados são equivalentes.
- Nestes casos, o comportamento assintótico não serve para comparar os algoritmos.
- Por exemplo, considere dois algoritmos $F \in G$ aplicados à mesma classe de problemas, sendo que F leva três vezes o tempo de G ao serem executados, isto é, f(n) = 3g(n), sendo que O(f(n)) = O(g(n)).
- Logo, o comportamento assintótico não serve para comparar os algoritmos *F* e *G*, porque eles diferem apenas por uma constante.

Análise de Complexidade: Comparação de Programas

- Podemos avaliar programas comparando as funções de complexidade, negligenciando as constantes de proporcionalidade.
- Um programa com tempo de execução O(n) é melhor que outro com tempo $O(n^2)$.
- Porém, as constantes de proporcionalidade podem alterar esta consideração.
- Exemplo: um programa leva 100n unidades de tempo para ser executado e outro leva $2n^2$. Qual dos dois programas é melhor?
 - depende do tamanho do problema.
 - Para n < 50, o programa com tempo $2n^2$ é melhor do que o que possui tempo 100n.
 - Para problemas com entrada de dados pequena é preferível usar o programa cujo tempo de execução é $O(n^2)$.
 - Entretanto, quando n cresce, o programa com tempo de execução $O(n^2)$ leva muito mais tempo que o programa O(n).

- f(n) = O(1).
 - Algoritmos de complexidade O(1) são ditos de complexidade constante.
 - Uso do algoritmo independe de n.
 - As instruções do algoritmo são executadas um número fixo de vezes.
- $f(n) = O(\log n)$.
 - Um algoritmo de complexidade O(log n) é dito de complexidade logarítmica.
 - Típico em algoritmos que transformam um problema em outros menores.
 - Pode-se considerar o tempo de execução como menor que uma constante grande.
 - Quando n é mil, $\log_2 n \approx 10$, quando n é 1 milhão, $\log_2 n \approx 20$.
 - Para dobrar o valor de log n temos de considerar o quadrado de n.
 - A base do logaritmo muda pouco estes valores: quando n é 1 milhão, o log₂n é 20 e o log₁₀n é
 6.

- f(n) = O(n).
 - Um algoritmo de complexidade O(n) é dito de **complexidade linear**.
 - Em geral, um pequeno trabalho é realizado sobre cada elemento de entrada.
 - É a melhor situação possível para um algoritmo que tem de processar/produzir n elementos de entrada/saída.
 - Cada vez que n dobra de tamanho, o tempo de execução também dobra.
- $f(n) = O(n \log n)$.
 - Típico em algoritmos que quebram um problema em outros menores, resolvem cada um deles independentemente e juntando as soluções depois.
 - Quando n é 1 milhão, nlog₂n é cerca de 20 milhões.
 - Quando n é 2 milhões, $n\log_2 n$ é cerca de 42 milhões, pouco mais do que o dobro.

- $\bullet \quad f(n) = O(n^2).$
 - Um algoritmo de complexidade $O(n^2)$ é dito de **complexidade quadrática**.
 - Ocorrem quando os itens de dados são processados aos pares, muitas vezes em um anel dentro de outro.
 - Quando n é mil, o número de operações é da ordem de 1 milhão.
 - Sempre que n dobra, o tempo de execução é multiplicado por 4.
 - Úteis para resolver problemas de tamanhos relativamente pequenos.
- $\bullet \quad f(n) = O(n^3).$
 - Um algoritmo de complexidade $O(n^3)$ é dito de **complexidade cúbica**.
 - Úteis apenas para resolver pequenos problemas.
 - Quando n é 100, o número de operações é da ordem de 1 milhão.
 - Sempre que n dobra, o tempo de execução fica multiplicado por 8.

- $\bullet \quad f(n) = O(2^n).$
 - Um algoritmo de complexidade $O(2^n)$ é dito de **complexidade exponencial**.
 - Geralmente não são úteis sob o ponto de vista prático.
 - Ocorrem na solução de problemas quando se usa força bruta para resolvê-los.
 - Quando n é 20, o tempo de execução é cerca de 1 milhão. Quando n dobra, o tempo fica elevado ao quadrado.
- $\bullet \quad f(n) = O(n!).$
 - Um algoritmo de complexidade O(n!) é dito de complexidade exponencial, apesar de O(n!) ter comportamento muito pior do que $O(2^n)$.
 - Geralmente ocorrem quando se usa força bruta para na solução do problema.
 - $n = 20 \rightarrow 20! = 2432902008176640000$, um número com 19 dígitos.
 - n = 40 → um número com 48 dígitos.

Análise de Complexidade: Classes de Problemas

A seguir, são apresentadas algumas classes de complexidade de problemas comumente usadas:

- •O(1): ordem constante. As instruções são executadas um número fixo de vezes. Não depende do tamanho dos dados de entrada.
- $\bullet O(logN)$: ordem logarítmica. Típica de algoritmos que resolvem um problema transformando-o em problemas menores.
- •O(N): ordem linear. Em geral, certa quantidade de operações é realizada sobre cada um dos elementos de entrada.
- •O(NlogN): **ordem log linear**. Típica de algoritmos que trabalham com particionamento dos dados. Esses algoritmos resolvem um problema transformando-o em problemas menores, que são resolvidos de forma independente e depois unidos.
- $\bullet O(N_2)$: ordem quadrática. Normalmente, ocorre quando os dados são processados aos pares. Uma característica deste tipo de algoritmos é a presença de um aninhamento de dois comandos de repetição.
- • $O(N_3)$: ordem cúbica. É caracterizado pela presença de três estruturas de repetição aninhadas.
- •O(2N): ordem exponencial. Geralmente, ocorre quando se usa uma solução de força bruta. Não são úteis do ponto de vista prático.
- •O(N!): **ordem fatorial**. Geralmente, ocorre quando se usa uma solução de **força bruta**. Não são úteis do ponto de vista prático. Possui um comportamento muito pior que o exponencial.

Análise de Complexidade: Classes de Problemas

Função	Tamanho n					
de custo	10	20	30	40	50	60
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006
	s	s	s	s	s	s
n^2	0,0001	0,0004	0,0009	0,0016	0,0.35	0,0036
	s	s	s	s	s	s
n^3	0,001	0,008	0,027	0,64	0,125	0.316
	s	s	s	s	s	s
n^5	0,1	3,2	24,3	1,7	5,2	13
	s	s	s	min	min	min
2^n	0,001	1	17,9	12,7	35,7	366
	s	s	min	dias	anos	séc.
3^n	0,059 s	58 min	6,5 anos	3855 séc.	10 ⁸ séc.	10^{13} séc.

Análise de Complexidade: Classes de Problemas

Função de	Computador	Computador	Computador	
custo	atual	100 vezes	1.000 vezes	
de tempo		mais rápido	mais rápido	
n	t_1	$100 \ t_1$	$1000 \ t_1$	
n^2	t_2	$10 \ t_2$	$31,6 t_2$	
n^3	t_3	$4,6 t_3$	$10 \ t_3$	
2^n	t_4	$t_4 + 6, 6$	$t_4 + 10$	

Recorrência & Complexidade

- Quando um algoritmo contém uma chamadas recursivas, seu tempo de execução pode <u>frequentemente ser descrito por uma recorrência;</u>
- Com o ferramental aprendido até o momento, não somos capazes de analisar a complexidade de algoritmos recursivos;
- Para os algoritmos recursivos, a ferramenta <u>principal desta análise não é</u> <u>uma somatória</u>, mas um tipo especial de equação chamada <u>relação de</u> <u>recorrência</u>.
- Uma recorrência é uma equação ou desigualdade que <u>descreve uma função</u> recursiva em termos de seu valor em entradas menores;
 - Uma função é chamada de função recursiva quando chama a si mesma durante a sua execução.

Recorrência

Para cada procedimento recursivo é associada uma função de complexidade
 <u>T(n)</u> desconhecida, onde n mede o tamanho dos argumentos para o
 procedimento.

 <u>Equação de recorrência:</u> maneira de definir uma função por uma expressão envolvendo a mesma função.

Relação de Recorrência - Exemplo Fatorial

- Questão: Como analisamos a complexidade de uma função fatorial?
- Contexto:
 - Como calcular o fatorial de 4 (definido como 4!)?
 - Para calcular o fatorial de 4, multiplica-se o número 4 pelo fatorial de 3 (definido como 3!). O procedimento termina quando atingimos zero (0!=1).
 - Em outras palavras:
 - Caso base está associado ao término: 0!
 - A recorrência está associada ao procedimento 4!=4*3!=4*3*2!...
 - Generalizando o processo temos que o fatorial de N é igual a N multiplicado pelo fatorial de (N 1), ou seja, N! = N * (N 1)!.

Relações de Recorrência - Exemplo Fatorial

 Como fazer a análise de recorrência do algoritmo que calcula o fatorial de um número?

Função recursiva para cálculo do fatorial

```
01 int fatorial (int n) {
02    if (n == 0)
03      return 1;
04    else
05      return n * fatorial(n-1);
06 }
```

int fatorial (int n) {)2 **if** (n == 0))3 return 1;)4

return n * fatorial(n-1);

else

)5

Função recursiva para cálculo do fatorial

Relações de Recorrência - Fatorial

return n * fatorial(n-1);

Qual a relação de recorrência?
 T(n)=T(n-1)+1

int fatorial (int n) {

if (n == 0)

else

return 1;

01

02

03

04

05

06

```
Função recursiva para cálculo do fatorial
```

Relações de Recorrência - Fatorial

- Qual a relação de recorrência?
 - A definição de uma função recursiva é, uma expressão que descreve uma função em termos de entradas menores da função. No caso do fatorial:

Relações de Recorrência - Fatorial

- Qual a relação de recorrência?
 - A definição de uma função recursiva é, uma expressão que descreve uma função em termos de entradas menores da função. No caso do fatorial:
 - Podemos avaliar as chamadas recursivas pela representação da árvore de recursão
 - n chamadas, cada chamada realiza uma operação -- O(n)

Relações de Recorrência

- Muitos algoritmos se baseiam em recorrência.
 - Ferramenta importante para a solução de problemas combinatórios.
 - Usualmente, não utilizam estruturas de repetição, apenas comandos condicionais, atribuições etc., podemos erroneamente imaginar que essas funções possuem complexidade O(1).
 - Na verdade, para saber a complexidade de um algoritmo recursivo precisamos resolver a sua relação de recorrência.
 - Queremos uma fórmula fechada que nos dê o valor da função em termos de seu parâmetro n.
 - No caso anterior
 - $\circ T(n)=T(n-1)+1 (caso n>1)$
 - $\circ T(n)=1 (caso base, n=1)$

- Exemplo de recorrência:
 - Considere o algoritmo "pouco formal" abaixo:
 - O algoritmo inspeciona n elementos de um conjunto qualquer;
 - De alguma forma, isso permite descartar 2/3 dos elementos e fazer uma chamada recursiva sobre um terço do conjunto original.

```
Algoritmo Pesquisa(vetor)

if vetor.size() ≤ 1 then

inspecione elemento;

else

inspecione cada elemento recebido (vetor);

Pesquisa(vetor.subLista(1, (vetor.size()/3));

end if

end.
```

Montando a equação de recorrência:

```
L1: Algoritmo Pesquisa(vetor)
L2:
      if vetor.size() \le 1 then
L3:
        inspecione elemento;
L4:
       else
         inspecione cada elemento recebido (vetor);
L5:
L6:
         Pesquisa(vetor.subLista(1, (vetor.size()/3));
L7:
       end if
L8: end.
```

- Caso base da recursão:
 - o O custo da linha 2 é O(1)
 - O custo da linha 3 é O(1)

Montando a equação de recorrência:

```
L1: Algoritmo Pesquisa(vetor)
L2:
      if vetor.size() \le 1 then
L3:
        inspecione elemento;
L4:
      else
         inspecione cada elemento recebido (vetor);
L5:
L6:
         Pesquisa(vetor.subLista(1, (vetor.size()/3));
L7:
       end if
L8: end.
```

Monte a equação de recorrência...

Montando a equação de recorrência:

$$T(n) = \begin{cases} 1, sen \le 1 \\ T(n/3) + n, caso contrário \end{cases}$$

Resolva a equação de recorrência...

Resolvendo a equação de recorrência:

$$T(n) = \begin{cases} 1, sen \le 1 \\ T(n/3) + n, caso contrário \end{cases}$$

$$T(n) = n + T(n/3)$$

$$T(n/3) = n/3 + T(n/3/3)$$

$$T(n/3/3) = n/3/3/3 + T(n/3/3/3)$$
...
$$T(n/3/3.../3) = n/3/3/3.../3 + T(n/3/3/3.../3)$$

$$T(n) = n + n/3 + n/3/3 + ... + n/3/3.../3/3 + 1$$

$$T(n) = \begin{cases} 1, & \text{se } n \le 1 \\ T(n/3) + n, & \text{caso contrário} \end{cases}$$

$$T(n) = n + n/3 + n/3/3 + ... + n/3/3/3.../3 + 1$$

• A formula representa a soma de uma série geométrica de razão 1/3, multiplicada por n, e adicionada de $T(n/3/3/3/3 \cdot \cdot \cdot /3)$, que é menor ou igual a 1.

$$T(n) = n \cdot \sum_{i=0}^{\infty} \left(\frac{1}{3}\right)^{i} + 1$$

$$T(n) = \begin{cases} 1, & sen \le 1 \\ T(n/3) + n, & caso contrário \end{cases}$$

$$T(n) = n + n/3 + n/3/3 + ... + n/3/3/3.../3 + 1$$

$$T(n) = n \cdot \sum_{i=0}^{\infty} \left(\frac{1}{3}\right)^{i} + 1 \rightarrow usando: \sum_{k=0}^{\infty} x^{k} = \frac{1}{1-x}$$

$$T(n) = n\left(\frac{1}{1 - 1/3}\right) + 1 = \frac{3n}{2} + 1$$

portanto

$$T(n) \in O(n)$$

Referências

Estrutura de Dados descomplicada em Linguagem C (André Backes): Cap 2;

Projeto de Algoritmos (Nivio Ziviani): Capítulo 1;

Atividades

https://docs.google.com/document/d/1XTmrkkmdXHVz0vVge84tALuy2gjsMgWycVvTQ3sssXg/edit?usp=sharing