The Bootstrap Peter Ralph 15 October - Advanced Biological Statistics	
Estimating sampling error	
Standard error	
From a single set of numbers	
x_1, x_2, \dots, x_n	
we can get both a mean:	
1 ~	
$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$	
2 . 2	

Standard error	
From a single set of numbers	
x_1, x_2, \dots, x_n	
we can get both a <i>mean</i> :	
$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$	
and an estimate of the variability of the mean, the standard error:	
$rac{s}{\sqrt{n}} = \sqrt{rac{1}{n(n-1)}\sum_{i=1}^n \left(x_i - ar{x} ight)^2}.$	
2.2	
This is amazing!	
Tills is aimazing.	
2.3	
This is assessing!	
This is amazing!	
Sadly, most other types of estimates don't have this amazing property.	
2.9	
2.3	

This is amazing! Sadly, most other types of estimates don't have this amazing property. What to do?	
Enter the bootstrap	
Idea:	

Idea:	
 We'd like to get a whole new dataset, and repeat the estimation, to see how different the answer is. 	
3.2	
Idea:	
• We'd <i>like</i> to get a whole new dataset, and repeat the estimation, to see how different the answer is.	
 And, well, our best guess at what the data look like is our dataset itself, 	
3.2	
Idea:	
• We'd <i>like</i> to get a whole new dataset, and repeat the estimation, to see how different the answer is.	
 And, well, our best guess at what the data look like is our dataset itself, 	
• sooooo, let's just resample from the dataset, with replacement, to make a "new" dataset!	
8.2	

Idea:	
We'd like to get a whole new dataset, and repeat the estimation, to	
see how different the answer is.	
And, well, our best guess at what the data look like is our dataset	
itself,	
• sooooo, let's just resample from the dataset, with replacement, to make	
a "new" dataset!	
If we resample and re-estimate lots of times, this should give us a	
good idea of the variability of the estimate.	
3	
3.2	
The bootstrap resampling algorithm	
To estimate the uncertainty of an estimate:	
To estimate the uncertainty of an estimate.	
1. Use the computer to take a random sample of observations from the	
original data, with replacement.	
2. Calculate the estimate from the resampled data set.	
3. Repeat 1-2 many times.	
4. The standard deviation of these esimates is the bootstrap standard	
error.	
3 . 3	
Advantages	
Applies to most any statistic	
Works when there's no simple formula for the standard error (e.g.,	
median, trimmed mean, eigenvalue, etc)	
Is nonparametric, so doesn't make specific assumptions about the	
distribution of the data.	
Applies to even complicated sampling procedures.	
- Transaction comprises assumenting processing	
3.4	
Distri	

Exercise x <- c(0.6, 1, 3.1, 3.7, 4.8, 6.2, 12.5, 13.4, 24.1) • Use R to make 1000 "pseudo-samples" of size 10 (with replacement), • and store the mean of each in a vector. • Plot the histogram of the resampled means, and calculate their standard deviation (with sd()). • How does this compare to the usual standard error of the mean, sd(x) / sqrt(length(x))?
Confidence intervals? The 2.5% and 97.5% percentiles of the bootstrap samples estimate a 95% confidence interval. (use the quantile() function)
Confidence intervals? The 2.5% and 97.5% percentiles of the bootstrap samples estimate a 95% confidence interval. (use the quantile() function) Exercise: get a 95% CI and compare it to that given by t.test().
The 2.5% and 97.5% percentiles of the bootstrap samples estimate a 95% confidence interval. (use the quantile() function) Exercise: get a 95% CI and compare it to that given by t.test().

	// reveal.js plugins	
$I = \{1, \dots, n\}$,	