MECL

MECL 10.000 SERIES INTEGRATED CIRCUITS FROM MOTOROLA

MECL

MC10,100/10,200 Series (-30 to +85°C) MC10,500/10,600 Series (-55 to +125°C)

MECL 10,000 has an excellent speed-power product, has relatively slow rise and fall times, and transmission-line drive capability. The combination of versatile logic functions and the 2.0 ns propagation delay make MECL 10,000 a versatile family for data handling and processing systems.

Circuit design with MECL 10,000 is unusually convenient. The differential amplifier input and emitter-follower output permit high fanout, the wired-OR option, and complementary outputs. MECL III is directly compatible with MECL 10,000, and can be used to extend the speed capability of the MECL 10,000 series.

FUNCTIONS AND CHARACTERISTICS ($V_{CC} = 0$, $V_{EE} = -5.2 \text{ V}$, $T_A = 25^{\circ}\text{C}$)

		pe①	Propagation Delay	Power Dissipation mW	
Function	-30 to +85°C	-55 to +125°C	ns typ	typ/pkg*	Case
Quad 2-Input NOR Gate With Strobe	MC10100	_	2.0	100	620
Quad QR/NQR Gate	MC10101	MC10501	2.0	100	620,648,650
Quad 2-Input NOR Gate	MC10102	MC10502	2.0	100	620,648,650
Quad 2-Input OR Gate	MC10103	_	2.0	100	620
Quad 2-Input AND Gate	MC10104	MC10504	2.7	140	620,648,650
Triple 2-3-2-Input OR/NOR Gate	MC10105	MC10505	2.0	90	620,648,650
Triple 4-3-3-Input NOR Gate	MC10106	MC10506	2.0	90	620,648,650
Triple 2-Input Exclusive OR/Exclusive NOR	MC10107	MC10507	2.5	110	620,648,650
Dual 4-5-Input OR/NOR Gate	MC10109	MC10509	2.0	60	620,648,650
Dual 3-Input 3-Output OR Gate	MC10110	_	2.4	160	620,648
Dual 3-Input 3-Output NOR Gate	MC10111	-	2.4	160	620,648
Quad Exclusive OR Gate	MC10113		2.5	175	620
Triple Line Receiver	MC10114	MC10514	2.4	145	620,648,650
Quad Line Receiver	MC10115	MC10515	2.0	110	620,648,650
Triple Line Receiver	MC10116	MC10516	2.0	85	620,648,650
Dual 2-Wide 2-3-Input OR-AND/OR-AND- INVERT Gate	MC10117	MC10517	2.3	100	620,648,650
Dual 2-Wide 3-Input OR-AND Gate	MC10118	MC10518	2.3	100	620,648,650
4-Wide 4-3-3-3-Input OR-AND Gate	MC10119	MC10519	2.3	100	620,646,650
4-Wide OR-AND/OR-AND-INVERT Gate	MC10121	MC10521	2.3	100	620,648,650
Triple 4-3-3-Input Bus Driver	MC10123	-	3.0	310	620
Quad MTTL to MECL Translator	MC10124	MC10524	3.5	380	620,648,650
Quad MECL to MTTL Translator	MC10125	MC 10525	4,5	380	620,648,650
Dual MECL to MOS Translator	MC10127		-		620
Bus Driver	MC10128	_	12.0	700	620
Quad Bus Receiver	MC10129		10.0	750	620
Dual Latch	MC10130	MC10530	2.5	155	620,648,650
Dual Type D Master-Slave Flip-Flop	MC10131	MC10531	f = 160 MHz	235	620,648,650
Dual Multiplexer With Latch and Common Reset	MC10132		3.0	225	620,648
Quad Latch	MC10133	MC10533	4.0	310	620,648,650
Multiplexer with Latch	MC10134	-	3.0	225	620,648
Dual J-K Master-Slave Flip-Flop	MC10135	MC10535	f = 140 MHz	280	620,648,650
Universal Hexadecimal Counter	MC10136	MC10536	f = 150 MHz	625	620,650

⁽¹⁾ L suffix denotes Dual In-Line Ceramic Package, P suffix denotes Dual In-Line Plastic Package, F suffix denotes flat package (i.e., MC10100L = Ceramic Dual In-Line Package, MC10100P = Plastic Dual In-Line Package and MC10500F = Ceramic Flat Package.)

^{*}External Load Power not included.

MC10118

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging.

ELECTRICAL CHARACTERISTICS

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

		TEST	OLTAGE VAL	UES		
			(Volts)		_	
@ Test Temperature			VIHA min	VILA max	VEE	
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2	
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	

······································	1		Τ			040446	. T						·			
Characteristic		Pin	-30	00	MC10118L Test Lim +25°C			+85°C			TEST VOLTAGE APPLIED TO PINS LISTED BELOW:					
	Symbol	Under Test	Min	Max	Min	Typ	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	(V _{CC}) Gnd
Power Supply Drain Current	İΕ	8		_	_	20	26	-	-	mAdc	-	-	-		8	1,16
Input Current	lin H	6		_	-	_	265	_	-	μAdc	6	_			- 8	1,16
•		7	-	-	_	-	265	-	-	1	7	. –	-		. ↓	↓
		9		-			370		-		9	-	-			, , ,
	lin L	6	-		0.5	-	-	-	-	μAdc	-	6		-	8	1,16
		7	-	-	4	-	-	-	_	į.		7	-			۱ 🗼
		9	-		Y		_	-				9				
Logic "1" Output Voltage	Voн	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	3,9	-	-		- 8	1,16
Logic "0" Output Voltage	VOL	2	-2.000	-1.675	-1.990		-1.650	-1.920	-1.615	Vdc	-	_		-	8	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.080	-	-0.980	_		-0.910	-	Vdc	9	-	3	-	8	1,16
Logic "0" Threshold Voltage	VOLA	2	_	-1.655	_	-	-1.630	-	-1.595	Vdc	_		-	3	8	1,16
Switching Times (50 \Omega Load)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t6 + 2+	2	1.4	3.9	1.4	2.3	3.4	1.4	3.8	ns	3	-	6	2	8	1,16
	t6 - 2-	1	1.4	3.9	1.4	2.3	3.4	1.4	3.8	1	1	-	1 1	1 1	1 1	1 1
Rise Time (20 to 80%)	t+		0.8	4.1	1.5	2.5	4.0	1.5	4.6		1 1	-		1 1		
Fall Time (20 to 80%)	t-	*	0.8	4.1	1.5	2.5	4.0	1.5	4.6	*	▼	-	₹ 7	V	₹ .	T

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for 10 only one gate. The other gates are tested in the same manner.

P SUFFIX PLASTIC PACKAGE **CASE 648**

@ Test Temperature -30°C

TEST VOLTAGE VALUES (Volts) VEE VIH max VIL min VIHA min VILA max -5.2 -0.890 -1.890 -1.205 -1.500 -1.105 -1.475 -5.2 +25°C -0.810 -1.850 +85°C -0.700 -1.825 -1.035 -1.440 -5.2

		Pin			М	C10118	P Test Lin				TEST V	OLTAGE AP	LTAGE APPLIED TO PINS LISTED BELOW:						
	1	Under	-30	°C		+25°C		+85	°C _						Γ	(Vcc)			
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	V _{ILA max}	VEE	Gnd			
Power Supply Drain Current	ΙE	8	-	-		20	26	_	-	mAdc	-	_	_	_	8	1,16			
Input Current	lin H	6	-	_	_	_	265	-	_	μAdc	6	-	_	_	8	1,16			
·		7	-	- 1	-	_	265	-	-	1	7	-	-	_	•				
		9	_	_			370				9	_	-			· ·			
	lin L	6	_	_	0.5	_	_	-	-	μAdc	-	6	_	_	8	1,16			
] "" -	7	-	-	1	_	-	-	- '	1		7	-	-	1	↓			
		9] -	-	V	_	-	-		₹		9		_		7			
Logic "1" Output Voltage	VOH	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	3,9			_	8	1,16			
Logic "0" Output Voltage	VOL	2	-2.000	-1.675	-1.990	-	-1.650	-1.920	-1.615	Vdc	-			_	- 8	1,16			
Logic "1" Threshold Voltage	VOHA	2	-1.080	-	-0.980		_	-0.910	_	Vdc	9		3		. 8	1,16			
Logic "0" Threshold Voltage	VOLA	2	-	-1.655	_	-	-1.630	-	-1.595	Vdc	_	-	-	3	8	1,16			
Switching Times (50 Ω Load)			1								+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V			
Propagation Delay	t6 + 2+	2	-	_	1.4	2.3	3.4	l –	_	ns	3] –	6	2	8	1,16			
	t6 - 2-	1 :	-		1.4	2.3	3.4	-	-	1	1	_	1						
Rise Time (20 to 80%)	t+		-	- 1	1.5	2.5	4.0	-	-			-	1 1	1 1					
Fall Time (20 to 80%)	t-		_		1.5	2.5	4.0		-	₹	. .	_	T						