CS7800: Advanced Algorithms

Class 10: Linear Programming 11

- · LP Duality
- · Minimax Theorem

Jonathan Ullman October 10, 2025

Linear Programming

optimal solution: A=12, B=28
optimal value: 800

How do we know we found an optimal so lution?

Upper bound on optimal value

optimal solution: A=12, B=28

optimal value: 800

How do we know we found an optimal so letion?

Upper bound on optimal value

optimal solution: A=12, B=28

optimal value: 800

New Problem: Derive the smallest upper bound on optimal value by combining constraints

- Coefficient on each constraint > 0
- Combination upper bounds the objective

How about these Linear Programptimal so lution?

primal (P)
optimization problem

max 13A + 23B A,B S.t. 5A+ 15B & 480 4A + 4B & 160 35A + 20B & 1190 (Mm) A,B>,0

optimal value: 800

optimal solution: A=12, B=28

dual (D)

optimization problem

min 480% + 160% + 1190% $3c_1\%n, y_n$ 5% + %% + 35% + 13 15% + %% + 20% + 20% + 23 % + 20% + 32

optimal solution: Ye=1, YH=2, YM=0 optimal value: 800

Yex (5A+15B) + ycx 480 yn x (4A+4B) & ynx 160 ynx (35A+20B) & ynx 1190

The Dual of a Linear Program

primal (P)
optimization problem

CER"
AER"
BER

dual (D) optimization problem

min
$$y^Tb$$
 $y \in \mathbb{R}^m$
 $S.f.$
 $A^Ty \ge C$
 $y \ge 0$

Weak Duality

For any feasible x eR", y eR"

CTX & yTAX & yTb

The Dual of a Linear Program

Fact. The dual of the dual is the primal

Fact: Can take the dual without converting to standard form.

Primal	maximize	minimize	Dual
constraints	a;x = b; a;x = b; a;x >> b;	y; wiestrated y; >, 0 y; & 0	van:ables
variables	ス; かO X; らO X; unrestocted	a;y * c; a; y * c; a; y = c;	constraints

Strong LP Duality

Theorem: If the primal and dual are both feasible then they have the same optimal value

Special cases:

- O If the dual is infeasible, the primal is unbounded
- 2) If the dual is unbounded, the primal is infeasible

Strong Duality Proof Overview (Idea #1)

Separating Hyperplane Theorem: If $C \in \mathbb{R}^n$ is a closed convex set and $z \in \mathbb{R}^n$ is any point not in C, there exists $d \in \mathbb{R}^n$, $B \in \mathbb{R}$ s.t.

① $d^T x > B$ for all $x \in C$ ② $d^T z < B$

Strong Duality Proof Overview (Idea #2)

Farkas' Lemma: Given A&R mxn and b&R,

exactly one of the following is true:

There exists x&R s.t. x>0 and Ax=b

There exists y&R s.t. yA>0 and yb 0

Strong Duality Proof Overview (Idea #2)

Proof Sketch:

- · Let Q = \{ \omega : \frac{1}{2} \times 0 \times A \times = \omega \}
- · Assume ! O so by Q
- SHT ⇒ ∃ atu > O for every we Q and atb < 0 small trick here
- · Claim: setting y=a satisfies yTA>0 and yTb<0

Farkas' Lemma: Given A&R and b&R exactly one of the following is true:

- There exists x6 R" s.t. x>0 and Ax=b
- @ There exists yell" s.t. yA >0 and ytb O

Strong Duality Proof Overview (Idea #3)

slack form

assume feasibility optimal value is vice

⇒ does not exist x s.t.

$$A' = \begin{bmatrix} c \\ A \end{bmatrix} \xrightarrow{\text{Farkas' Le}} b' = \begin{bmatrix} v^* + \varepsilon \end{bmatrix}$$

optimal value is vate for 2-20

there exists (4) s.t.

Application: The Minimar Theorem

Zero-Sum Games:

- · Two players Rovena and Colin
- · Rowera chooses an action in [m] Colm chooses in [n]
- · Payoffs A & IR

· Players can play randomly

Rowera:
$$C = (r_1, r_m)$$
 $\sum_{i=1}^{n} c_i = 1$ $c_i > 0$

Kovera's expected pay

$$\sum_{i=1}^{n} c_i = 1$$

Rovera's expected payoff is

Application: Minimax Thm

How would Rowers play it she went fret?

How would Colm play if he west first?

Minimax Theorem:

Zero-Sum Games:

- · Two players Rovena and Colin
- · Rowera chooses an action in [m] Colm chooses in [n]

· Players can play randomly

Rowers:
$$r = (r_1, ..., r_m)$$
 $\sum_{i=1}^{n} r_i \approx 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i \approx 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i = 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i = 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i = 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i = 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i = 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i = 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i = 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i = 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i = 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i = 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i = 0$

Application: Minimax Thm Proof

Solving Linear Programs: Simplex

Basic Feasible Solutions (Geometry)

Basic Feasible Solutions (Algebra)

Slack form LP

constraint matrix

The Simplex Algorithm (30,000' View)

Given an LP in standard form

max c^Tx x Ax=b x>0

Simplex algorithm

- Start with a BFS xo
corresponding to constraint set So - Repeat until optimality: How? - Find on adjacent BFS X; corresponding to contrast cTx; > cT x;-1

Thm: Only terminates at an optimal solution

The Simplex Al orithm (Pivot)

program

max 2 s.t. 13A + 23B 5A + 15B + Sc 4A + 4B 35A + 20B

matrix

basit: { Sc, SH, Sm}

blodraw

matrix

basis: & B, SH, SM3

$$\begin{bmatrix} \frac{1}{3} & \frac{1}{1} & \frac{1}{15} & 0 & 0 \\ \frac{8}{3} & 0 & -\frac{4}{15} & 1 & 0 \\ \frac{8}{5} & 0 & -\frac{4}{13} & 0 & 1 \end{bmatrix} \begin{bmatrix} A7 \\ 6 \\ 54 \\ 54 \\ 54 \end{bmatrix} = \begin{bmatrix} 32 \\ 32 \\ 550 \end{bmatrix}$$

The Simplex Algorithm (30,000' View)

Given an LP in standard form

max c^Tx x Ax=b x>0

Simplex algorithm

- Start with a BFS xo
corresponding to constraint set So - Repeat until optimality: How? - Find on adjacent BFS X; corresponding to contrast cTx; > cT x;-1

Thm: Only terminates at an optimal solution

Simplex in Practice

Theory: Might need exponentially many proofs to termmate

Practice: Can solve LPs with millions of variables/constraints (usually = 2(n+m) profs)

Many Issues to Resolve:

- 1) What if the UP in infearible / unbounded?
- 2 How to choose a good pivot Ne?
- 3 How to avoid cycling?
- 4 HOW to maintain sparsity?
- (5) How to be numerically stable?
- 6 How to preprocess the LP to be smaller?

Solving linear programs in worst-case polynomial time

- @ Enough to find a fearible point. (Libry?)
- 1) Find an ellipsoid contaming P. (How?)

Solving linear programs in worst-case polynomial time

2 Either CEP or there is a violated constraint

Solving linear programs in worst-case polynomial time

3 Use the unlated constraint to find a smaller ellipsord containing P

Key Theorem: Can choose
$$E^{\gamma}$$

so that $\frac{\text{vol}(E^{\gamma})}{\text{vol}(E)} \neq \left(1 - \frac{1}{2n+2}\right)$

Solving linear programs in worst-case polynomial time

3 Use the unplaced constraint to find a smaller ellipsord containing P

Key Theorem: Can choose E^{γ} so that $\frac{\text{vol}(E^{\gamma})}{\text{vol}(E)} \neq \left(1 - \frac{1}{2n+2}\right)$ find a "separation oracle" for P!

Linear Programming: Summary

Summary (of Network Flow Algorithms)

- Last Class: Can solve maximum flow in time $O(m \cdot v^*)$
 - Can be very slow when capacities are large
 - Cannot be improved if we allow arbitrary augmenting paths
- Today: Improving running time by choosing better paths
 - Widest Augmenting Path: $O(m \cdot \log v^*)$
 - Shortest Augmenting Path: $O(m^2n)$
- Still actively studied!
 - Can solve maximum flow in O(mn) using augmenting path* algos
 - Recent Breakthrough: Can solve maximum flow in time* $m^{1+o(1)}$
- Later On: Using maximum-flow as a building block for solving many more problems