Homework Set #1

Due 11th October 2022, before 11:59pm. Submit your solutions to Gradescope with Entry Code:**57DN5B**

Problem 1 (SLACKNESS IN KRAFT INEQUALITY)

An instantaneous code has word lengths l_1, l_2, \dots, l_m , which satisfy the *strict* inequality

$$\sum_{i=1}^{m} D^{-l_i} < 1.$$

The code alphabet is $\mathcal{D} = \{0, 1, 2, \dots D - 1\}$. Show that there exist arbitrarily large sequence of code symbols which cannot be decoded into sequence of codewords.

Problem 2 (How many fingers has a Martian?)

Let

$$S = \begin{pmatrix} S_1, \cdots, S_m \\ p_1, \cdots, p_m \end{pmatrix}.$$

The S_i 's are encoded into strings from a D-symbol output alphabet in a uniquely decodable manner. If m = 6 and the codeword lengths are $(l_1, l_2, \dots, l_6) = (1, 1, 2, 3, 2, 3)$, find a good lower bound on D. You may wish to explain the title of the problem.

Problem 3 (VALUE OF QUESTIONS)

Let $X \sim p(x)$, where $X \in \{1, ..., m\}$ and $S \subseteq \{1, ..., m\}$. We are allowed to ask a question of the type "Is X in S?". Denote the binary answer to this question by Y, i.e.,

$$Y = \begin{cases} 1, & \text{if } X \in S \\ 0, & \text{if } X \notin S \end{cases}$$

- (a) Suppose $\mathbb{P}[X \in S] = q$, find the decrease in uncertainty in X after knowing Y, i.e., what is H(X) H(X|Y)?
- (b) Assume m = 5 and X has the pmf $\left\{\frac{2}{20}, \frac{3}{20}, \frac{3}{20}, \frac{5}{20}, \frac{7}{20}\right\}$. Suppose you could ask only one question in the above form. What question would you ask to obtain the most information about X?
- (c) If you are allowed to ask multiple questions, what strategy would you use to minimize the expected number of questions for the pmf in the previous part?

Problem 4 (Fix-free codes)

A code is said to be "fix-free" if it is both a prefix-free code and a suffix-free code. Recall that s is a prefix of t if t is of the form t = sv, the concatenation of s and v for some string v. Similarly we say s is a suffix of t if t = vs. For example, the suffixes of "banana" are "a", "na", "ana", "nana, "anana" and "banana". Let l_1, \ldots, l_k be k integers satisfying $l_1 \leq \ldots \leq l_k$. In this problem we will try to prove that if $\sum_{i=1}^{k} 2^{-l_i} \leq \frac{1}{2}$ then there exists a binary fix-free code with codeword lengths l_1, \ldots, l_k .

A code \mathcal{C} is said to be a fix-free code if and only if no codeword is the prefix or the suffix of any other codeword. Consider the following algorithm:

```
- Initialize A_i = \{0,1\}^{l_i} as the set of available codewords of length l_i for every 1 \le i \le k.
for i = 1 \dots k do
   if A_i \neq \emptyset then
       - Pick C(i) \in A_i.
        for j = i + 1 \dots k do
           - (*) Remove from A_i all the words which start with C(i).
           - (**) Remove from A_i all the words which end with C(i).
       end
    else
    | - Algorithm failure.
   end
end
- Return C = \{C(i) : 1 \le i \le k\}.
```

- (a) For every $1 \le i \le k$ and every $i < j \le k$, show that the number of words in A_j that start with C(i) is $2^{l_j-l_i}$, and that the number of words in A_j that end with C(i) is $2^{l_j-l_i}$.
- (b) Show that the number of words that are removed from A_j in (*) and (**) is at most $2^{l_j-l_i+1}$
- (c) Show that if $\sum_{i=1}^{k} 2^{-l_i} \leq \frac{1}{2}$, then the returned code \mathcal{C} is fix-free and that the lengths of its codewords are l_1, \ldots, l_k .

 Hint: Show that if $\sum_{i=1}^{k} 2^{-l_i} \leq \frac{1}{2}$, then the algorithm will not fail.

(d) Let U be a random variable taking values in an alphabet \mathcal{U} . Show that there exists a fix-free code $\mathcal{C}: \mathcal{U} \longrightarrow \{0,1\}^*$ such that $H(U) \leq \mathbb{E}[\operatorname{length}(\mathcal{C}(U))] \leq H(U) + 2$.

Problem 5 (Entropy of disjoint mixture)

Let X_1 and X_2 be discrete random variables drawn according to the probability mass functions $\mathbf{p}(.)$ and $\mathbf{q}(.)$, respectively, i.e., $\mathbf{p}(i) = \mathbb{P}[X_1 = i]$ and $\mathbf{q}(j) = \mathbb{P}[X_2 = j]$. The random variable X_1 takes an odd value from the alphabet $\mathcal{X}_1 = \{1, 3, 5, \dots, m-1\}$, and the random variable X_2 takes an even value from the alphabet $\mathcal{X}_2 = \{2, 4, 6, \dots, m\}$, where m is an even integer. Let

$$X = \begin{cases} X_1 & \text{w.p. } 1 - \gamma \\ X_2 & \text{w.p. } \gamma \end{cases} \tag{1}$$

Let Y = f(X) be a function of X defined as follows:

$$Y = \begin{cases} 1 & \text{if } X \text{ is odd} \\ 2 & \text{if } X \text{ is even} \end{cases} \tag{2}$$

- (a) Find the relation between H(X) and H(X,Y).
- (b) Find H(X) in terms of $H(X_1)$, $H(X_2)$, and γ .
- (c) If $H(X_1) > H(X_2)$, find the value of γ that will maximize H(X).

Problem 6 (Source Coding)

Consider a random variables X that takes five values $\{A,B,C,D,E,F\}$ with probabilities $\mathbf{p}=\{\frac{4}{16},\frac{4}{16},\frac{3}{16},\frac{2}{16},\frac{2}{16},\frac{1}{16}\}$

- (a) Compute the entropy of the random variable X.
- (b) Construct a binary Huffman code of the random variable X? What is the expected length of this code?