三角函数定义及其三角函数公式汇总

1、勾股定理: 直角三角形两直角边a、b的平方和等于斜边c的平方。 $a^2 + b^2 = c^2$

2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):

	定 义	表达式	取值范围	关 系
正弦	$\sin A = \angle A$ 的对边 斜边	$\sin A = \frac{a}{c}$	0 < sin A < 1 (∠A 为锐角)	sin A = cos B cos A = sin B
余弦	$\cos A = \angle A$ 的邻边 斜边	$\cos A = \frac{b}{c}$	0 < cos <i>A</i> < 1 (∠A 为锐角)	$\sin^2 A + \cos^2 A = 1$
正切	$ tan A = \frac{\angle A$ 的对边 $}{\angle A}$ 的邻边	$\tan A = \frac{a}{b}$	tan A > 0 (∠A 为锐角)	$ tan A = \cot B \cot A = \tan B $
余切	$\cot A = \angle A$ 的邻边 \alpha A 的对边	$\cot A = \frac{b}{a}$	cotA > 0 (∠A 为锐角)	$\tan A = \frac{1}{\cot A} \text{ (倒数)}$ $\tan A \cdot \cot A = 1$

3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切

特殊角的三角函数值表

三角函数	有 00	30º	45º	60º	900
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tanα	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	不存在
cot a	不存在	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

6、正弦、余弦的增减性:

当 0° $\leq \alpha \leq$ 90° 时,sin α 随 α 的增大而增大,cos α 随 α 的增大而减小。

7、正切、余切的增减性:

当 0° $\langle \alpha \langle 90 \rangle$ 时, $\tan \alpha$ 随 α 的增大而增大, $\cot \alpha$ 随 α 的增大而减小。

- 1、解直角三角形的定义: 已知边和角(两个,其中必有一边)→所有未知的边和角。依据:
- ①边的关系: $a^2 + b^2 = c^2$; ②角的关系: $A+B=90^\circ$; ③边角关系: 三角函数的定义。(注意: 尽量避免使用中间数据和除法)

2、应用举例:

(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

(2)坡面的铅直高度 h 和水平宽度 l 的比叫做**坡度**(坡比)。用字母 i 表示,即 $i=\frac{h}{l}$ 。坡度 一般写成1:m的形式,如 i=1:5 等。

把坡面与水平面的夹角记作 α (叫做**坡角**),那么 $i = \frac{h}{l} = \tan \alpha$ 。

3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图 3, OA、OB、OC、OD 的方向角分别是: 45°、135°、225°。

4、指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角。如图4,OA、OB、OC、OD的方向角分别是:北偏东30°(东北方向), 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。

 $sin (a+\beta) = sinacos\beta + cosasin\beta$

 $sin (a-\beta) = sinacos\beta - cosasin\beta$

 $cos (a+\beta) = cosacos\beta - sinasin\beta$

 $cos (a-\beta) = cosacos\beta + sinasin\beta$

三角函数公式汇总1

1.L
$$_{\text{MK}} = |\alpha| R = \frac{n\pi R}{180}$$
 S $_{\text{B}} = \frac{1}{2} LR = \frac{1}{2} R^2 |\alpha| = \frac{n\pi \cdot R^2}{360}$

2.正弦定理:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R (R 为三角形外接圆半径)$$

3. 余弦定理:
$$a^2 = b^2 + c^2 - 2bc \cos A$$
 $b^2 = a^2 + c^2 - 2ac \cos B$

$$c^2 = a^2 + b^2 - 2ab\cos C$$
 $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

$$4.S_{A} = \frac{1}{2} a \cdot h_{a} = \frac{1}{2} ab \sin C = \frac{1}{2} bc \sin A = \frac{1}{2} ac \sin B = \frac{abc}{4R} = 2R^{2} \sin A \sin B \sin C$$

3

$$= \frac{a^2 \sin B \sin C}{2 \sin A} = \frac{b^2 \sin A \sin C}{2 \sin B} = \frac{c^2 \sin A \sin B}{2 \sin C} = \text{pr} = \sqrt{p(p-a)(p-b)(p-c)}$$
(其中 $p = \frac{1}{2}(a+b+c)$, r 为三角形内切圆半径)

5.同角关系:

(1)商的关系: ①
$$tg\theta = \frac{y}{x} = \frac{\sin\theta}{\cos\theta} = \sin\theta \cdot \sec\theta$$
 ② $ctg\theta = \frac{x}{y} = \frac{\cos\theta}{\sin\theta} = \cos\theta \cdot \csc\theta$

$$\sec \theta = \frac{r}{x} = \frac{1}{\cos \theta} = tg\theta \cdot \csc \theta$$

$$\csc \theta = \frac{r}{y} = \frac{1}{\sin \theta} = \operatorname{ctg} \theta \cdot \sec \theta$$

- (2) 倒数关系: $\sin\theta \cdot \csc\theta = \cos\theta \cdot \sec\theta = tg\theta \cdot ctg\theta = 1$
- (3)平方关系: $\sin^2\theta + \cos^2\theta = \sec^2\theta tg^2\theta = \csc^2\theta ctg^2\theta = 1$
- (4) $a\sin\theta + b\cos\theta = \sqrt{a^2 + b^2}\sin(\theta + \varphi)$ (其中辅助角 φ 与点(a, b) 在同一象限,且 $tg\varphi = \frac{b}{a}$)
- 6.函数 $y=A\sin(\omega \cdot x + \varphi) + k$ 的图象及性质: $(\omega > 0, A > 0)$

振幅 A,周期 T= $\frac{2\pi}{\omega}$,频率 f= $\frac{1}{T}$,相位 $\omega \cdot x + \varphi$,初相 φ

7.五点作图法: $\phi_{\omega x} + \varphi$ 依次为 $0\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$ 求出 x 与 y, 依点 (x, y)作图

8.诱导公试

	sin	cos	tg	ctg
$-\alpha$	$-\sin\alpha$	$+\cos\alpha$	$-tg\alpha$	$-ctg_{\alpha}$
$\pi^-\alpha$	$+\sin\alpha$	$-\cos \alpha$	$_{-}tg\alpha$	$_{-}ctg_{\alpha}$

$\pi + \alpha$	$-\sin\alpha$	$-\cos \alpha$	$+tg\alpha$	$+^{ct}g\alpha$
$2\pi-\alpha$	$-\sin\alpha$	$+\cos\alpha$	$_{-}tg\alpha$	$_{-ctg}\alpha$
$2k\pi + \alpha$	$+\sin\alpha$	$+\cos\alpha$	$+tg\alpha$	$+$ $ctg\alpha$

三角函数值等于α 的同名三 角函数值,前面加上一个把 α 看作锐角时,原三角函数 值的符号;即:函数名不变,

符号看象限

	sin	con	tg	ctg
$\frac{\pi}{2}-\alpha$	$+\cos\alpha$	$+\sin\alpha$	$+ctg\alpha$	$+^{tg}\alpha$
$\frac{\pi}{2} + \alpha$	+ cos α	$-\sin\alpha$	$_{-ctg\alpha}$	$_{-}tg\alpha$
$\frac{3\pi}{2} - \alpha$	$-\cos \alpha$	$-\sin\alpha$	$+ctg\alpha$	$+^{tg}\alpha$
$\frac{3\pi}{2} + \alpha$	$-\cos \alpha$	$+\sin\alpha$	$_{-ctg\alpha}$	$_{-}tg\alpha$

三角函数值等于α的异名 三角函数值,前面加上一个 把α看作锐角时,原三角函 数值的符号;即:函数名改

9.和差角公式

 $(1)\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$ $(2)\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$

$$(3) tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha \cdot tg\beta}$$

$$\textcircled{4} tg\alpha \pm tg\beta = tg(\alpha \pm \beta)(1 \mp tg\alpha \cdot tg\beta)$$

⑤ $tg(\alpha + \beta + \gamma) = \frac{tg\alpha + tg\beta + tg\gamma - tg\alpha \cdot tg\beta \cdot tg\gamma}{1 - tg\alpha \cdot tg\beta - tg\alpha \cdot tg\gamma - tg\beta \cdot tg\gamma}$ 其中当 A+B+C=**T** 时,有:

i).
$$tgA + tgB + tgC = tgA \cdot tgB \cdot tgC$$

i).
$$tgA + tgB + tgC = tgA \cdot tgB \cdot tgC$$
 ii). $tg\frac{A}{2}tg\frac{B}{2} + tg\frac{A}{2}tg\frac{C}{2} + tg\frac{B}{2}tg\frac{C}{2} = 1$

10.二倍角公式: (含万能公式)

$$2\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta = \frac{1 - tg^2 \theta}{1 + tg^2 \theta}$$

(3)
$$tg2\theta = \frac{2tg\theta}{1 - tg^2\theta}$$
 (4) $\sin^2\theta = \frac{tg^2\theta}{1 + tg^2\theta} = \frac{1 - \cos 2\theta}{2}$ (5) $\cos^2\theta = \frac{1 + \cos 2\theta}{2}$

11.三倍角公式:

$$(1)\sin 3\theta = 3\sin \theta - 4\sin^3 \theta = 4\sin \theta \sin(60^\circ - \theta)\sin(60^\circ + \theta)$$

$$2\cos 3\theta = -3\cos \theta + 4\cos^3 \theta = 4\cos \theta\cos(60^\circ - \theta)\cos(60^\circ + \theta)$$

$$(3) tg3\theta = \frac{3tg\theta - tg^3\theta}{1 - 3tg^2\theta} = tg\theta \cdot tg(60 - \theta) \cdot tg(60 + \theta)$$

12.半角公式: (符号的选择由 $\frac{\theta}{2}$ 所在的象限确定)

$$2\sin^2\frac{\theta}{2} = \frac{1-\cos\theta}{2}$$

$$(3)\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}$$

$$(5)1 - \cos\theta = 2\sin^2\frac{\theta}{2}$$

$$\textcircled{5}1 - \cos\theta = 2\sin^2\frac{\theta}{2}$$

$$\textcircled{5}1 - \cos\theta = 2\sin^2\frac{\theta}{2}$$

$$\textcircled{6}1 + \cos\theta = 2\cos^2\frac{\theta}{2}$$

$$\sqrt[3]{1\pm\sin\theta} = \sqrt{(\cos\frac{\theta}{2}\pm\sin\frac{\theta}{2})^2} = \left|\cos\frac{\theta}{2}\pm\sin\frac{\theta}{2}\right|$$

(8)
$$tg \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} = \frac{\sin \theta}{1 + \cos \theta} = \frac{1 - \cos \theta}{\sin \theta}$$

13.积化和差公式:

$$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin(\alpha + \beta) + \sin(\alpha - \beta) \right] \qquad \cos \alpha \sin \beta = \frac{1}{2} \left[\sin(\alpha + \beta) - \sin(\alpha - \beta) \right]$$
$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos(\alpha + \beta) + \cos(\alpha - \beta) \right] \qquad \sin \alpha \sin \beta = -\frac{1}{2} \left[\cos(\alpha + \beta) - \cos(\alpha - \beta) \right]$$

14.和差化积公式:

15.反三角函数:

名称	函数式	定义域	值域	性质
反正弦函	$y = \arcsin x$	[-1,1]增	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	arcsin(-x)= -arcsinx 奇
数				
反余弦函	$y = \arccos^{\chi}$	[-1,1]减	$[0,\pi]$	$arccos(-x) = \pi - arccosx$
数				
反正切函	y = arctgx	R 增	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	arctg(-x)=-arctgx 奇
数			(2 2)	
反余切函	y = arcctgx	R 减	$(0,\pi)$	$arcctg(-x) = \pi - arcctgx$
数				

16.最简单的三角方程

方程		方程的解集	
$\sin x = a \qquad a = 1$		$\{x \mid x = 2k\pi + \arcsin a, k \in Z\}$	
	a < 1	$\left\{ x \mid x = k\pi + \left(-1\right)^k \arcsin a, k \in Z \right\}$	
$\cos x = a$	a =1	$\{x \mid x = 2k\pi + \arccos a, k \in Z\}$	
	a < 1	$\{x \mid x = 2k\pi \pm \arccos a, k \in Z\}$	
tgx = a		$\{x \mid x = k_{\pi} + arctga, k \in Z\}$	
ctgx = a		$\{x \mid x = k\pi + arcctga, k \in Z\}$	

三角公式汇总2

一、任意角的三角函数

在角 α 的终边上任取一点P(x,y), 记: $r = \sqrt{x^2 + y^2}$,

正弦:
$$\sin \alpha = \frac{y}{r}$$
 余弦: $\cos \alpha = \frac{x}{r}$

正切:
$$\tan \alpha = \frac{y}{x}$$
 余切: $\cot \alpha = \frac{x}{y}$

正割:
$$\sec \alpha = \frac{r}{x}$$
 余割: $\csc \alpha = \frac{r}{y}$

注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向线段MP、OM、AT分别叫做角 α 的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式

倒数关系: $\sin \alpha \cdot \csc \alpha = 1$, $\cos \alpha \cdot \sec \alpha = 1$, $\tan \alpha \cdot \cot \alpha = 1$.

商数关系:
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$
, $\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$.

平方关系: $\sin^2 \alpha + \cos^2 \alpha = 1$, $1 + \tan^2 \alpha = \sec^2 \alpha$, $1 + \cot^2 \alpha = \csc^2 \alpha$.

三、诱导公式

 $(1)\alpha+2k\pi$ $(k \in \mathbb{Z})$ 、 $-\alpha$ 、 $\pi+\alpha$ 、 $\pi-\alpha$ 、 $2\pi-\alpha$ 的三角函数值,等于 α 的 同名函数值,前面加上一个把 α 看成锐角时原函数值的符号。(口诀:函数名不变,符号看象限)

$$(2)\frac{\pi}{2} + \alpha$$
、 $\frac{\pi}{2} - \alpha$ 、 $\frac{3\pi}{2} + \alpha$ 、 $\frac{3\pi}{2} - \alpha$ 的三角函数值,等于 α 的异名函数值,

前面加上一个把α看成锐角时原函数值的符号。(口诀:函数名改变,符号看象限)

四、和角公式和差角公式

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \cdot \tan\beta}$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \cdot \tan \beta}$$

五、二倍角公式

 $\sin 2\alpha = 2\sin \alpha \cos \alpha$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha \cdots (*)$$

$$\tan 2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha}$$

二倍角的余弦公式(*)有以下常用变形: (规律:降幂扩角,升幂缩角)

$$1 + \cos 2\alpha = 2\cos^2 \alpha$$

$$1-\cos 2\alpha = 2\sin^2 \alpha$$

$$1 + \sin 2\alpha = (\sin \alpha + \cos \alpha)^2 \qquad 1 - \sin 2\alpha = (\sin \alpha - \cos \alpha)^2$$

$$1 - \sin 2\alpha = (\sin \alpha - \cos \alpha)^2$$

$$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}, \quad \sin^2 \alpha = \frac{1 + \sin 2\alpha}{2}, \quad \tan \alpha = \frac{1 - \cos 2\alpha}{\sin 2\alpha} = \frac{\sin 2\alpha}{1 + \cos 2\alpha}.$$

六、万能公式 (可以理解为二倍角公式的另一种形式)

$$\sin 2\alpha = \frac{2\tan\alpha}{1+\tan^2\alpha}$$
, $\cos 2\alpha = \frac{1-\tan^2\alpha}{1+\tan^2\alpha}$, $\tan 2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha}$.

万能公式告诉我们,单角的三角函数都可以用半角的正切来表示。

七、和差化积公式

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} \qquad \cdots (1)$$

$$\sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2} \qquad \cdots (2)$$

$$\cos\alpha + \cos\beta = 2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2} \quad \dots (3)$$

$$\cos\alpha - \cos\beta = -2\sin\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2} \quad \cdots (4)$$

了解和差化积公式的推导,有助于我们理解并掌握好公式:

$$\sin \alpha = \sin \left(\frac{\alpha + \beta}{2} + \frac{\alpha - \beta}{2} \right) = \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} + \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\sin \beta = \sin \left(\frac{\alpha + \beta}{2} - \frac{\alpha - \beta}{2} \right) = \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} - \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

两式相加可得公式(1), 两式相减可得公式(2)。

$$\cos\alpha = \cos\left(\frac{\alpha+\beta}{2} + \frac{\alpha-\beta}{2}\right) = \cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} - \sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$$

$$\cos \beta = \cos \left(\frac{\alpha + \beta}{2} - \frac{\alpha - \beta}{2} \right) = \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} + \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

两式相加可得公式(3),两式相减可得公式(4)。

八、积化和差公式

$$\sin\alpha\cdot\cos\beta = \frac{1}{2}\left[\sin(\alpha+\beta) + \sin(\alpha-\beta)\right]$$

$$\cos\alpha \cdot \sin\beta = \frac{1}{2} \left[\sin(\alpha + \beta) - \sin(\alpha - \beta) \right]$$

$$\cos\alpha\cdot\cos\beta = \frac{1}{2}[\cos(\alpha+\beta) + \cos(\alpha-\beta)]$$

$$\sin\alpha\cdot\sin\beta = -\frac{1}{2}[\cos(\alpha+\beta)-\cos(\alpha-\beta)]$$

我们可以把积化和差公式看成是和差化积公式的逆应用。

九、辅助角公式

$$a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin(x + \varphi) \quad ()$$

其中: 角 φ 的终边所在的象限与点(a,b)所在的象限相同,

$$\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$$
, $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$, $\tan \varphi = \frac{b}{a}$.

十、正弦定理

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \quad (R 为 \Delta ABC 外接圆半径)$$

十一、余弦定理

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$b^2 = a^2 + c^2 - 2ac \cdot \cos B$$

$$c^2 = a^2 + b^2 - 2ab \cdot \cos C$$

十二、三角形的面积公式

$$S_{\Delta ABC} = \frac{1}{2} \times \mathbb{K} \times \mathbb{R}$$

$$S_{\Delta ABC} = \frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B$$
 (两边一夹角)

$$S_{\Delta ABC} = \frac{abc}{4R}$$
 (R为 ΔABC 外接圆半径)

$$S_{\Delta ABC} = \frac{a+b+c}{2} \cdot r \quad (r 为 \Delta ABC$$
内切圆半径)

$$S_{\Delta ABC} = \sqrt{p(p-a)(p-b)(p-c)}$$
 …海仑公式(其中 $p = \frac{a+b+c}{2}$)

