Statystyka opisowa

Etapy tworzenia szeregu rozdzielczego przedziałowego:

1. wyznaczamy $x_{\rm max}$ oraz $x_{\rm min}$

2. wyznaczamy rozstęp z próby

$$R = x_{\text{max}} - x_{\text{min}}$$

3. wyznaczamy ilość przedziałów klasowych K

4. wyznaczamy długość przedziału klasowego $h,\ h\approx \frac{R}{K}$ jest to przybliżenie z nadmiarem, a więc $h\geqslant \frac{R}{K}$

5. wyznaczamy lewy koniec pierwszego przedziału klasowego

$$a = x_{\min} - \frac{\alpha}{2}$$

gdzie α jest dokładnością pomiaru

Reguły ustalania liczby przedziałów klasowych:

- $K = \sqrt{n}$
- $K = 1 + 3,322 \log n$
- $K \leq 5 \log n$
- \bullet tabela

liczba pomiarów n	liczba przedziałów klasowych ${\cal K}$
30-60	6-8
60-100	7-10
100-200	9-12
200-500	11-17
500-1500	16-25

Miary statystyczne:

1. miary położenia

a) średnia z próby

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 - szereg wyliczający
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i n_i$$
 - szereg rozdzielczy punktowy
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i^* n_i$$
 - szereg rozdzielczy przedziałowy, gdzie x_i^* - środek przedziału klasowego

- b) moda (dominanta) wartość najczęstsza
 - szereg wyliczający i szereg rozdzielczy punktowy: moda to wartość najczęstsza, o ile nie jest to wartość skrajna (wówczas moda jest nieokreślona)
 - szereg rozdzielczy przedziałowy:

$$Mo = x_m + \frac{(n_m - n_{m-1}) h}{(n_m - n_{m-1}) + (n_m - n_{m+1})}$$

gdzie x_m - lewy koniec przedziału z modą (czyli przedziału o największej liczebności, ale różnego od przedziału pierwszego i ostatniego), h - długość przedziału z modą, n_m - liczebność przedziału z modą, n_{m-1} - liczebność przedziału poprzedzającego przedział z modą, n_{m+1} - liczebność przedziału następującego po przedziałe z modą

- c) mediana wartość środkowa w uporządkowanej próbie
 - szereg wyliczający i szereg rozdzielczy punktowy:

$$Me = \begin{cases} x_{(\frac{n+1}{2})} &, & \text{gdy } n \text{ jest nieparzyste} \\ \frac{1}{2} \left(x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)} \right) &, & \text{gdy } n \text{ jest parzyste} \end{cases}$$

tzn. mediana jest to środkowa liczba, gdy n jest liczbą nieparzystą, albo średnia arytmetyczna dwóch środkowych liczb, gdy n jest liczbą parzystą

szereg rozdzielczy przedziałowy:

$$Me = x_{Me} + \frac{h}{n_{Me}} \left(\frac{n}{2} - \sum_{i=1}^{k-1} n_i \right)$$

gdzie x_{Me} - lewy koniec przedziału z medianą, h - długość przedziału z medianą, n_{Me} - liczebność przedziału z medianą, k - numer przedziału zawierającego medianę

- d) kwartyle (dolny Q_1 i górny Q_3) wartości, które dzielą uporządkowaną próbę w stosunku 1:3 i 3:1
 - szereg rozdzielczy przedziałowy:

$$Q_1 = x_{Q_1} + \frac{h}{n_{Q_1}} \left(\frac{n}{4} - \sum_{i=1}^{k-1} n_i \right)$$

$$Q_3 = x_{Q_3} + \frac{h}{n_{Q_3}} \left(\frac{3n}{4} - \sum_{i=1}^{k-1} n_i \right)$$

gdzie x_{Q_1} - lewy koniec przedziału zawierającego Q_1 , h - długość przedziału zawierającego Q_1 , n_{Q_1} - liczebność przedziału zawierającego Q_1 , k - numer przedziału zawierającego Q_1

- 2. miary rozproszenia (zmienności, rozrzutu)
 - a) rozstęp

$$R = x_{\text{max}} - x_{\text{min}}$$

b) wariancja

$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
 - szereg wyliczający

$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 n_i$$
 - szereg rozdzielczy punktowy

$$s^2 = \frac{1}{n} \sum_{i=1}^n (x_i^* - \overline{x})^2 n_i$$
 - szereg rozdzielczy przedziałowy, gdzie x_i^* - środek przedziału klasowego

c) odchylenie standardowe

$$s = \sqrt{s^2}$$

typowy przedział zmienności

$$(\overline{x}-s;\overline{x}+s)$$

d) odchylenie przeciętne od średniej

$$d_1 = \frac{1}{n} \sum_{i=1}^n |x_i - \overline{x}|$$
 - szereg wyliczający

$$d_1 = \frac{1}{n} \sum_{i=1}^{n} |x_i - \overline{x}| n_i$$
 - szereg rozdzielczy punktowy

$$d_1 = \frac{1}{n} \sum_{i=1}^n |x_i^* - \overline{x}| n_i$$
 - szereg rozdzielczy przedziałowy, gdzie x_i^* - środek przedziału klasowego

e) odchylenie przeciętne od mediany

$$d_2 = \frac{1}{n} \sum_{i=1}^{n} |x_i - Me|$$
 - szereg wyliczający

$$d_2 = \frac{1}{n} \sum_{i=1}^{n} |x_i - Me| n_i$$
 - szereg rozdzielczy punktowy

$$d_2 = \frac{1}{n} \sum_{i=1}^n |x_i^* - Me| n_i$$
 - szereg rozdzielczy przedziałowy, gdzie x_i^* - środek przedziału klasowego

f) odchylenie ćwiartkowe

$$Q = \frac{1}{2} \left(Q_3 - Q_1 \right)$$

g) współczynnik zmienności

$$V = \frac{s}{\overline{x}} \cdot 100\%$$

h) współczynnik nierównomierności

$$H = \frac{d_1}{\overline{x}} \cdot 100\%$$

3. miary asymetrii

a) wskaźnik asymetrii

$$W_s = \overline{x} - Mo$$

b) współczynnik asymetrii

$$A = \frac{M_3}{s^3}$$
, gdzie

$$M_3 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^3$$
 - szereg wyliczający

$$M_3 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^3 n_i$$
 - szereg rozdzielczy punktowy

$$M_3 = \frac{1}{n} \sum_{i=1}^n (x_i^* - \overline{x})^3 n_i$$
 - szereg rozdzielczy przedziałowy, gdzie x_i^* - środek przedziału klasowego

4. miary koncentracji

a) współczynnik skupienia (kurtoza)

$$K = \frac{M_4}{s^4}$$
, gdzie

$$M_4 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^4$$
 - szereg wyliczający

$$M_4 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^4 n_i$$
 - szereg rozdzielczy punktowy

$$M_4 = \frac{1}{n} \sum_{i=1}^n (x_i^* - \overline{x})^4 n_i$$
 - szereg rozdzielczy przedziałowy, gdzie x_i^* - środek przedziału klasowego

b) eksces

$$q = K - 3$$