Problème 1 – D'après Petites Mines 2002

Partie I -

- 1. f est continue sur \mathbb{R}^* comme quotient de fonctions continues dont le dénominateur ne s'annule pas sur \mathbb{R}^* . De plus, $\arctan t \sim t$ donc $\lim_{t\to 0} \frac{\arctan t}{t} = 1 = f(0)$ donc f est continue en 0. Ainsi f est continue sur \mathbb{R} . Enfin, \arctan étant impaire, f est paire.
- 2. On sait que $\frac{1}{1+t^2} = 1 + o(t)$. Par intégration, $\arctan t = \arctan 0 + t + o(t^2)$. On en déduit que f(t) = 1 + o(t). Ainsi f est dérivable en 0 et f'(0) = 0.
- 3. f est dérivable sur \mathbb{R}^* comment quotient de fonctions dérivables sur \mathbb{R}^* dont le dénominateur ne s'annule pas. De plus, f est dérivable en 0 d'après la question précédente. Ainsi f est dérivable sur \mathbb{R} . De plus, pour tout $t \in \mathbb{R}^*$,

$$f'(t) = \frac{1}{t(1+t^2)} - \frac{\arctan t}{t^2}$$

4. $u \mapsto u$ et $u \mapsto -\frac{1}{2(1+u^2)}$ sont de classe \mathcal{C}^1 sur \mathbb{R} de dérivées respectives $u \mapsto 1$ et $u \mapsto \frac{u}{(1+u^2)^2}$. Soit $t \in \mathbb{R}^*$. Par intégration par parties

$$\int_0^t \frac{u^2}{(1+u^2)^2} du = \left[-\frac{u}{2(1+u^2)} \right]_0^t + \int_0^t \frac{du}{2(1+u^2)} = -\frac{t}{2(1+t^2)} + \frac{\arctan t}{2} = -\frac{1}{2}t^2 f'(t)$$

Si t > 0, $\int_0^t \frac{u^2}{(1+u^2)^2} du > 0$ comme intégrale d'une fonction continue positive non constamment nulle et donc f'(t) < 0. Ainsi f est strictement décroissante sur \mathbb{R}_+ . Comme f est paire, f est strictement croissante sur \mathbb{R}_- .

5. Puisque $\lim_{+\infty} \arctan = \frac{\pi}{2}$, $\lim_{+\infty} f = 0$. Par parité, $\lim_{-\infty} f = 0$. Ainsi la courbe représentative de f admet l'axe des abscisses pour asymptote.

Partie II -

1. Posons $F: x \mapsto \int_0^x f(t) dt$. Ainsi $\varphi(x) = \frac{F(x)}{x}$ pour tout $x \in \mathbb{R}^*$. F est continue sur \mathbb{R} en tant que primitive de f. Ainsi φ est continue sur \mathbb{R}^* en tant que quotient de fonctions continues dont le dénominateur ne s'annule pas. De plus, F est dérivable en 0 donc $\lim_{x\to 0} \frac{F(x)-F(0)}{x-0} = F'(0)$ i.e. $\lim_{x\to 0} \frac{F(x)}{x} = f(0)$. Ainsi φ est continue en 0. Finalement, φ est continue sur \mathbb{R} . Posons u(x) = F(x) + F(-x) pour tout $x \in \mathbb{R}$. u est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, u'(x) = F'(x) - F'(-x) = f(x) - f(-x) = 0. Ainsi u est constante sur \mathbb{R} égale à u(0) = 2F(0) = 0. On en déduit que φ est impaire. Il s'ensuite que φ est paire.

2. Soit $x \in \mathbb{R}_+^*$. Comme f est décroissante sur [0, x] d'après la question I.4, pour tout $t \in [0, x]$, $f(x) \le f(t) \le f(0)$. Par croissance de l'intégrale,

$$\int_0^x f(x) dt \le \int_0^x f(t) dt \le \int_0^x dt$$

et par suite

$$x f(x) \le x \phi(x) \le x$$

Puisque x > 0,

$$f(x) \le \phi(x) \le 1$$

L'inégalité est encore valable si $x \in \mathbb{R}^*_-$ puisque f et ϕ sont paires. Enfin, l'égalité est valable si x = 0 puisque $f(0) = \phi(0) = 1$.

Finalement, $f(x) \le \phi(x) \le 1$ pour tout $x \in \mathbb{R}$.

3. F est dérivable sur \mathbb{R} en tant que primitive de f. ϕ est alors dérivable sur \mathbb{R}^* comment quotient de fonctions dérivables sur \mathbb{R}^* dont le dénominateur ne s'annule pas. De plus, pour tout $x \in \mathbb{R}^*$,

$$\phi'(x) = \frac{F'(x)}{x} - \frac{F(x)}{x^2} = \frac{1}{x} (f(x) - \phi(x))$$

On sait d'après la question **I.2** que f(x) = 1 + o(x). Comme F est une primitive de f, $F(x) = F(0) + x + o(x^2)$. Or F(0) = 0 donc $F(x) = x + o(x^2)$. Par suite, $\phi(x) = 1 + o(x)$. Ainsi ϕ est dérivable en 0 et $\phi'(0) = 0$.

Puisque pour tout $x \in \mathbb{R}_+^*$, $f(x) \le \varphi(x)$ et que $\varphi'(x) = \frac{1}{x}(f(x) - \varphi(x))$, φ' est négative sur \mathbb{R}_+^* et φ est donc décroissante sur \mathbb{R}_+ . Puisque φ est paire, φ est croissante sur \mathbb{R}_- .

4. Soit $x \in [1, +\infty[$. Pour tout $t \in [1, x[$, $0 \le \arctan t \le \frac{\pi}{2}$ donc $0 \le f(t) \le \frac{\pi}{2t}$. Par croissance de l'intégrale

$$\int_1^x 0 \, \mathrm{d}t \le \int_1^x f(t) \, \mathrm{d}t \le \int_1^x \frac{\pi}{2t} \, \mathrm{d}t$$

ou encore

$$0 \le \int_1^x f(t) \, \mathrm{d}t \le \frac{\pi}{2} \ln x$$

puis

$$0 \le \frac{1}{x} \int_{1}^{x} f(t) \, \mathrm{d}t \le \frac{\pi}{2} \frac{\ln x}{x}$$

Par croissances comparées, $\lim_{x\to+\infty}\frac{\ln x}{x}=0$ et donc $\lim_{x\to+\infty}\frac{1}{x}\int_1^x f(t)\,\mathrm{d}t=0$ via le théorème des gendarmes. Enfin, pour tout $x\in\mathbb{R}^*$

$$\phi(x) = \frac{1}{x} \int_0^1 f(t) \, dt + \frac{1}{x} \int_1^x f(t) \, dt$$

et $\lim_{x \to +\infty} \frac{1}{x} = 0$ donc $\lim_{x \to +\infty} \phi(x) = 0$.

5. Par parité de ϕ , on a également $\lim_{x\to-\infty} \phi(x) = 0$. Ainsi la courbe représentative de ϕ admet pour asymptote l'axe des abscisses.

Partie III -

- 1. Soit $t \in \mathbb{R}_+$. Puisque $t \ge 0$ et $1 + t^2 > 0$, $\frac{t}{1+t^2} \ge 0$. Alors $(1-t)^2 \ge 0$ i.e. $1+t^2 \ge 2t$. Puisque $1+t^2 > 0$, $\frac{t}{1+t^2} \le \frac{1}{2}$. Finalement, $0 \le \frac{t}{1+t^2} \le \frac{1}{2}$.
- 2. Soit $x \in \mathbb{R}_+^*$. D'après la question II.3, $\phi'(x) = \frac{1}{x}(f(x) \phi(x))$. Mais d'après la question II.2, $f(x) \le \phi(x) \le 1$. On en déduit que

$$|\phi'(x)| = \frac{1}{r} (\phi(x) - f(x)) \le \frac{1}{r} (1 - f(x))$$

De plus,

$$\int_0^x \frac{t^2}{1+t^2} dt = \int_0^x \left(1 - \frac{1}{1+t^2}\right) dt = x - \arctan x$$

Ainsi

$$\frac{1}{x}(1 - f(x)) = \frac{1}{x^2}(x - \arctan x) = \int_0^x \frac{t^2}{1 + t^2} dt$$

D'après la question III.1

$$\int_0^x \frac{t^2}{1+t^2} \le \int_0^x \frac{t}{2} \, \mathrm{d}t = \frac{x^2}{4}$$

Par conséquent, $|\phi'(x)| \leq \frac{1}{4}$.

Comme ϕ est paire, ϕ' est impaire et l'inégalité précédente est encore valable si $x \in \mathbb{R}_-^*$. Enfin, cette égalité est encore valable lorsque x = 0 puisque $\phi'(0) = 0$.

3. Posons $v(x) = \phi(x) - x$ pour tout $x \in \mathbb{R}$. v est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $v'(x) = 1 - \phi'(x)$. Or pour tout $x \in \mathbb{R}, |\phi'(x)| \le \frac{1}{4}$ donc, a fortiori, $\phi'(x) < 1$ et v'(x) < 0. Ainsi v est strictement décroissante sur \mathbb{R} .

Puisque $\lim_{+\infty} \phi = \lim_{-\infty} \phi = 0$, $\lim_{+\infty} v = -\infty$ et $\lim_{-\infty} v = +\infty$. Enfin, v est continue sur \mathbb{R} donc d'après le corollaire du théorème des valeurs intermédiaires, v s'annule une unique fois sur $\mathbb R$ i.e. l'équation $\varphi(x)=x$ admet une unique solution sur \mathbb{R} .

Enfin, $v(0) = \phi(0) = 1 > 0$ et $\phi(1) = \phi(1) - 1 < 0$ car ϕ est strictement décroissante sur \mathbb{R}_+ donc $\phi(1) < \phi(0) = 1$. On peut donc assurer que $\alpha \in]0,1]$.

4. Puisque $|\phi'(x)| \le \frac{1}{4}$ pour tout $x \in \mathbb{R}$, ϕ est $\frac{1}{4}$ -lipschitzienne. Donc pour tout $n \in \mathbb{N}$, $|\phi(u_n) - \phi(\alpha)| \le |u_n - \alpha|$ i.e. $|u_{n+1} - \alpha| \le \frac{1}{4}|u_n - \alpha|.$

REMARQUE. On peut aussi remarquer que

$$|u_{n+1} - \alpha| = |\phi(u_n) - \phi(\alpha)| = \left| \int_{\alpha}^{u_n} \phi'(x) \, dx \right| \le \left| \int_{\alpha}^{u_n} |\phi'(x)| \, dx \right| \le \left| \int_{\alpha}^{u_n} \frac{1}{4} \, dx \right| = \frac{1}{4} |u_n - \alpha|$$

On montre alors par récurrence que $|u_n - \alpha| \le \frac{1}{4^n} |u_0 - \alpha|$. Puisque $0 \le \frac{1}{4} < 1$, $\lim_{n \to +\infty} |u_n - \alpha| = 0$ i.e. $\lim_{n\to+\infty}u_n=\alpha.$

Partie IV -

- 1. L'équation différentielle équivaut à xy' + xy = f(x) sur \mathbb{R}_+^* et sur \mathbb{R}_-^* ou encore à (xy)' = f(x). On en déduit que les solutions sur \mathbb{R}_+^* et sur \mathbb{R}_-^* sont les fonctions $x \mapsto \phi(x) + \frac{\lambda}{x}$ où λ décrit \mathbb{R} .
- 2. Soit y une éventuelle solution de $x^2y' + xy = \arctan x$ sur \mathbb{R} . La question IV.1 montre qu'il existe $(\lambda_1, \lambda_2) \in \mathbb{R}^2$ tel que $y(x) = \begin{cases} \phi(x) + \frac{\lambda_1}{x} & \text{si } x < 0 \\ \phi(x) + \frac{\lambda_2}{x} & \text{si } x > 0 \end{cases}$. La continuité de y en 0 impose $\lambda_1 = \lambda_2 = 0$. Ainsi ϕ et y coïncident sur \mathbb{R}^* . Puisque ces deux fonctions sont continues, elles coïncident également en 0 et sont donc égales.

Réciproquement, ϕ vérifie bien l'équation différentielle sur $\mathbb R$. C'est donc l'unique solution sur $\mathbb R$ de l'équation différentielle $x^2y' + xy = \arctan x$.