Package 'rshift'

September 9, 2024

```
Type Package
Title Paleoecology Functions for Regime Shift Analysis
Version 3.1.1
Description Contains a variety of functions, based around
     regime shift analysis of paleoecological data.
     Citations:
     Rodionov() from Rodionov (2004) <doi:10.1029/2004GL019448>
     Lanzante() from Lanzante (1996) <doi:10.1002/(SICI)1097-0088(199611)16:11%3C1197::AID-
     JOC89%3E3.0.CO;2-L>
     Hellinger_trans from Numerical Ecology, Legendre & Legendre (ISBN 9780444538680)
     rolling autoc from Liu, Gao & Wang (2018) <doi:10.1016/j.scitotenv.2018.06.276>
     Sample data sets lake_data & lake_RSI processed from Bush, Silman & Ur-
     rego (2004) <doi:10.1126/science.1090795>
     Sample data set January_PDO from NOAA: <a href="https:">https:</a>
     //www.ncei.noaa.gov/access/monitoring/pdo/>.
Suggests R.rsp
VignetteBuilder R.rsp
Depends R (>= 3.5.0)
Imports grid, tibble, dplyr, ggplot2
License MIT + file LICENSE
NeedsCompilation yes
SystemRequirements rustc & cargo if building from source
URL https://github.com/alexhroom/rshift
BugReports https://github.com/alexhroom/rshift/issues
Encoding UTF-8
LazyData true
RoxygenNote 7.3.1
Config/rextendr/version 0.3.1
```

```
Author Alex H. Room [aut, cre, cph] (<a href="https://orcid.org/0000-0002-5314-2331">https://orcid.org/0000-0002-5314-2331</a>), Felipe Franco-Gaviria [ctb, fnd] (<a href="https://orcid.org/0000-0003-4799-1457">https://orcid.org/0000-0001-7938-5529</a>), Dunia H. Urrego [ctb, fnd] (<a href="https://orcid.org/0000-0001-7938-5529">https://orcid.org/0000-0001-7938-5529</a>), The authors of the dependency Rust crates [ctb] (see inst/AUTHORS file for details)
```

Maintainer Alex H. Room <alexhroom+cran@protonmail.com>

Repository CRAN

Date/Publication 2024-09-09 18:20:03 UTC

Contents

	absolute_to_percentage	2
	Hellinger_trans	3
	January_PDO	3
	lake_data	4
	lake_RSI	4
	Lanzante	5
	regime_means	5
	Rodionov	6
	rolling_autoc	7
	RSI_graph	7
	rust_regime_means	8
	rust_rodionov	8
Index		9

absolute_to_percentage

Converts absolute abundance data to a percentage of total abundance for each site

Description

Converts absolute abundance data to a percentage of total abundance for each site

Usage

```
absolute_to_percentage(data, col, site)
```

Arguments

data	The dataframe to be used.
col	The column that change is being measured on.
site	The column containing the site of each sample.

Hellinger_trans 3

Value

The 'data' dataframe with an added 'percentage' column.

Hellinger_trans Hellinger transform

Description

Hellinger transforms data (Legendre and Legendre, Numerical Ecology)

Usage

```
Hellinger_trans(data, col, site)
```

Arguments

data The dataframe to be used.

col The column that change is being measured on. site The column containing the site of each sample.

Value

The 'data' dataframe with an added 'hellinger_trans_vals' column.

January_PDO Pacific Decadal Oscillation in January

Description

A dataset containing January PDO values. Subset of the data from NOAA: https://www.ncei.noaa.gov/access/monitoring/pd

Usage

```
data(January_PD0)
```

Format

A data frame with 104 rows and 2 variables

Details

- PDO Pacific Decadal Oscillation in January for the given year.
- Age the year for which the PDO was measured.

4 lake_RSI

lake_data

DCA-ordinated pollen data from Lake Consuelo

Description

A dataset containing pre-processed DCA-ordinated data from Bush, Silman & Urrego (2004) <doi:10.1126/science.1090795>

Usage

```
data(lake_data)
```

Format

A data frame with 39 rows and 2 variables

Details

- DCA1 DCA values for each timepoint from the raw dataset.
- Age timepoint of each sample that has been DCA-ordinated.

lake_RSI

DCA-ordinated pollen data from Lake Consuelo with RSI values

Description

A dataset containing pre-processed DCA-ordinated data from Bush, Silman & Urrego (2004) <doi:10.1126/science.1090795> This data has been processed using Rodionov(lake_data, "DCA1", "Age", l=5, merge=TRUE)

Usage

```
data(lake_RSI)
```

Format

A data frame with 39 rows and 3 variables

Details

- DCA1 DCA values for each timepoint from the raw dataset.
- Age timepoint of each sample that has been DCA-ordinated.
- RSI Regime Shift Index (see docs for Rodionov()) for each timepoint.

Lanzante 5

|--|

Description

performs the L-method for detection of regime shifts (Lanzante, 1996)

Usage

```
Lanzante(data, col, time, p = 0.05, merge = FALSE)
```

Arguments

data	The dataframe to be used.
col	The column we are measuring change on.
time	The column containing time units (e.g. age of a subsample)
р	The largest p-value you want to check regime shifts for. Defaults to $p = 0.05$.
merge	Sets the result to be either a regime-shift only table (if FALSE), or an addition to the original table (if TRUE)

Value

If merge = FALSE (default), produces a 2-column table of time (the time value for each regime shift) and p (the p-value for each regime shift). If merge = TRUE, returns the original dataset with an extra p-value column, giving the p-value for each time unit - 0 for non-shift years.

Examples

```
Lanzante(lake_data, "DCA1", "Age")
Lanzante(lake_data, "DCA1", "Age", p=0.10, merge=TRUE)
```

regime_means	Calculate means for each regime

Description

calculates the mean for each regime in a regime shift analysis.

Usage

```
regime_means(data, col, rsi)
```

6 Rodionov

Arguments

data	The dataframe that will be used.
col	The column we are measuring change on.
rsi	The column containing RSI values.

Value

A vector of the mean value for each regime.

Examples

```
regime_means(lake_RSI, "DCA1", "RSI")
```

Rod	i	on	$\cap V$

Rodionov (2004)'s STARS algorithm

Description

performs STARS analysis (Rodionov, 2004) on a dataset

Usage

```
Rodionov(data, col, time, l, prob = 0.05, startrow = 1, merge = FALSE)
```

Arguments

data	The dataframe to be used.
col	The column we are measuring change on.
time	The column containing time units (e.g. age of a subsample)
1	The cut-off length of a regime; affects sensitivity (see Rodionov, 2004)
prob	The p-value for significance of a regime shift. Defaults to $p = 0.05$.
startrow	What row the analysis starts at. Defaults to 1.
merge	Sets the result to be either a regime-shift only table (if FALSE), or an addition to the original table (if TRUE)

Value

If merge = FALSE (default), produces a 2-column table of time (the time value for each regime shift) and RSI (the regime shift index for each regime shift). If merge = TRUE, returns the original dataset with an extra RSI column, giving the regime shift index for each time unit - 0 for non-shift years.

Examples

```
Rodionov(lake_data, "DCA1", "Age", l=5)
Rodionov(lake_data, "DCA1", "Age", l=5, prob=0.01, startrow=2, merge=TRUE)
```

rolling_autoc 7

|--|

Description

finds lag-1 autocorrelation in a rolling window; can be used to predict resilience (Liu, Gao, & Wang, 2018)

Usage

```
rolling_autoc(data, col, 1)
```

Arguments

data	The dataframe that will be used.
col	The column we are measuring change on.

1 The time interval (no. of columns) used in the autocorrelation.

Value

A table of rolling lag-1 autocorrelation values.

RSI_graph	Regime Shift Index graph	

Description

creates two graphs, one of data and one of the RSI, as seen in Rodionov (2004)

Usage

```
RSI_graph(data, col, time, rsi, mean_lines = FALSE)
```

Arguments

data	The dataframe that will be used.
col	The column we are measuring change on.
time	The column containing time units (e.g. age of a subsample)
rsi	The column containing RSI values (for best visualisation use Rodionov() with merge=TRUE)
mean_lines	If true, add lines over the data indicating the mean of each regime.

Value

Two graphs, one on top of the other; one of col against time and one of RSI against time.

8 rust_rodionov

Examples

```
RSI_graph(lake_RSI, "DCA1", "Age", "RSI")
```

rust_regime_means

Calculates the mean for each regime in a regime shift analysis.

Description

Calculates the mean for each regime in a regime shift analysis.

Usage

```
rust_regime_means(col, rsi)
```

Arguments

col The column we are measuring change on.

rsi The column containing RSI values.

rust_rodionov

Calculate STARS RSI points and return to R as a vector

Description

Calculate STARS RSI points and return to R as a vector

Usage

```
rust_rodionov(vals, t_crit, 1)
```

Arguments

vals	The column we are measuring	g change on
------	-----------------------------	-------------

t_crit The critical value of a t-distribution at the desired p-value

1 The cut-off length of a regime; affects sensitivity

Index

```
\ast datasets
    January_PDO, 3
    lake_data, 4
    lake_RSI, 4
absolute\_to\_percentage, 2
Hellinger_trans, 3
January_PDO, 3
lake_data, 4
lake_RSI, 4
Lanzante, 5
regime_means, 5
Rodionov, 6
rolling_autoc, 7
RSI_graph, 7
rust_regime_means, 8
\verb"rust_rodionov, 8"
```