Math 415 - Lecture 18

Inner Product and Orthogonality

Wednesday October 7th 2015

Textbook reading: Ch 3.1

Suggested practice exercises: 1, 2, 4, 5, 14, 16

Khan Academy video: Vector Dot Product and Vector Length

Strang lectures: Lecture 30: Linear Transformations / Lecture 14: Orthogonality

Applications: Information retrieval

1 Review

• A linear map $T: V \to W$ satisfies

$$T(c\mathbf{x} + d\mathbf{y}) = cT(\mathbf{x}) + dT(\mathbf{y}).$$

• $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is linear. A is the matrix representing T in the standard bases. For example, $T(\mathbf{e_1}) = A\mathbf{e_1} = \text{first column of } A$.

$$\begin{pmatrix} \mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \end{pmatrix}$$

• Any $T: V \to W$ can be represented by a matrix.

What is the Point? Why write $T: V \to W$ as a matrix?

• Replace obscure computations in V and W by transparent computations with matrices.

• Even if $T: \mathbb{R}^n \to \mathbb{R}^m$ (already have standard coordinates), T may be simpler in a different coordinate system.

Summary: Given \mathbf{v} in V, want to calculate $T(\mathbf{v})$ in W. Take an input basis $\mathcal{A} = (\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n})$ and and output basis $\mathcal{B} = (\mathbf{y_1}, \mathbf{y_2}, \dots, \mathbf{y_m})$.

- The abstract input vector \mathbf{v} and the coordinate vector $\mathbf{v}_{\mathcal{A}}$ determine each other.
- The abstract output vector $T(\mathbf{v})$ and the coordinate vector $T(\mathbf{v})_{\mathcal{B}}$ determine each other.
- So we know T if we know the matrix $T_{\mathcal{BA}}$:

$$T(\mathbf{v})_{\mathcal{B}} = T_{\mathcal{B}\mathcal{A}}\mathbf{v}_{\mathcal{A}}.$$

The output coordinate vector equals the matrix for T times the input coordinate vector.

Formula For the Coordinate matrix. To write $T: V \to W$ as a matrix, take an input basis $\mathcal{A} = (\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n})$ and and output basis $\mathcal{B} = (\mathbf{y_1}, \mathbf{y_2}, \dots, \mathbf{y_m})$. Then

$$T_{\mathcal{B}\mathcal{A}} = \begin{bmatrix} T(\mathbf{x_1})_{\mathcal{B}} & T(\mathbf{x_2})_{\mathcal{B}} & \dots & T(\mathbf{x_n})_{\mathcal{B}} \end{bmatrix}$$

Example 1. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be reflection across the x-y plane, $(x, y, z) \mapsto (x, y, -z)$.

Determine the matrix representing T in the basis $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$.

Example 2. Let $T: \mathbb{P}_3 \to \mathbb{P}_2$ be the linear map given by

$$T(p(t)) = \frac{d}{dt}p(t).$$

What's the matrix A representing T in the standard bases?

Solution.							

What is
$$Col(A)$$
 and $Nul(A)$ for $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$?

$\begin{bmatrix} 7t^3 - t + 3 & \text{using the matrix } A. \\ \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \\ 0 \\ 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

2 Inner Product and Distances

Definition. The inner product (or dot product) of $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ is Example 3. $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix} =$ **Theorem 1.** Let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors in \mathbb{R}^n , and let c be any scalar. Then (a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ (b) $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$ (c) $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$ (d) $\mathbf{u} \cdot \mathbf{u} \geq \mathbf{0}$, and $\mathbf{u} \cdot \mathbf{u} = \mathbf{0}$ if and only if $\mathbf{u} = \mathbf{0}$. Definition. • The **norm** (or **length**) of a vector $\mathbf{v} \in \mathbb{R}^n$ is • The **distance** between points $v, w \in \mathbb{R}^n$ is

Example 4. (a)

$$\left\| \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} \right\| =$$

(b)
$$dist\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}\right) =$$

3 Inner Product and Angles

We can use the dot product to compute angles too.

Theorem 2. If v and w are linearly independent, they form an angle θ , and

Example 5. What is the angle formed in \mathbb{R}^3 between the vectors

$$\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix}?$$

(A base jumper runs at a cliff at a 45° angle, then jumps straight away from the cliff and 45° downwards; what angle does he turn as he jumps?)

Solution.						
4 Orthogonal vectors						
Definition. v and w in \mathbb{R}^n are orthogonal if						
Remark. We write $\mathbf{v} \perp \mathbf{w}$ when \mathbf{v} and \mathbf{w} are orthogonal. Nonzero vectors \mathbf{v} , \mathbf{w} are orthogonal if and only if they are perpendicular.						
V – W						
, procedure V						
W						

 $Example\ 6.$ Are the following vectors orthogonal?

(a)
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$

(b)
$$\begin{bmatrix} 1\\2\\1 \end{bmatrix}$$
, $\begin{bmatrix} -2\\1\\1 \end{bmatrix}$

Example 7. Let $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$. Is the set of vectors orthogonal to \mathbf{v} a subspace of \mathbb{R}^3 ?

$$V = \{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{v} \cdot \mathbf{x} = 0 \}$$

Definition. If V is a subspace of \mathbb{R}^n , a vector \mathbf{x} is **orthogonal to** V if it is orthogonal to every vector in V.

Example 8. Let
$$V = \text{span}\left\{\begin{bmatrix}1\\1\end{bmatrix}\right\}$$
. Is $\mathbf{x} = \begin{bmatrix}-1\\1\end{bmatrix}$ orthogonal to V ?

Solution.		