

 \equiv

B

 \mathbb{Q}

Questão 1

Parcialmente correto

Atingiu 9,80 de 10,00 Quais as relações de comparação assintótica (0, Ω , Θ) das funções:

$$f_1(n)=g_1(n)=2\pi$$

$$f_2(n)=g_2(n)=2n$$

$$f_3(n) = g_3(n) = nlogn$$

$$f_4(n) = g_4(n) = log n$$

$$f_5(n) = g_5(n) = 100n^2 + 150000n$$

$$f_6(n) = g_6(n) = n + log n$$

$$f_7(n)=g_7(n)=n^2$$

$$f_8(n) = g_8(n) = n$$

$$f_9(n) = g_9(n) = 2^n + n^3$$

$$f_{10}(n) = g_{10}(n) = n^2 log n$$

f_1	g_1 Θ	g_2	<i>g</i> ₃ ○ ✓	<i>g</i> ₄ ○ ✓	<i>g</i> ₅ ○	<i>g</i> ₆ ○	<i>g</i> ₇ ○	<i>g</i> ₈ ○	<i>g</i> ₉ ○	<i>g</i> ₁₀ ○
f_2	Ω	Θ	0	Ω	0	Θ	○✓	Θ	0	0
f_3	Ω	Ω	Θ	Ω	○✓	Ω	○✓	Ω	○✓	0
f_4	Ω	○✓	○✓	Θ	○✓	Ω ×	○✓	○✓	○✓	○✓

=

Ŋ,

Q

(-)

 \bigcirc