Kernel and Range

Michael Brodskiy

Professor: Lynn Knight

April 28, 2021

- Let $T:V\to W$ be a linear transformation. Then the set of all vectors \overrightarrow{v} in V that satisfy $T(\overrightarrow{v})=\mathbf{0}$ is the kernel of T and is denoted by $\ker(T)$ or $\ker(T)=\left\{\overrightarrow{v}\in V\,\middle|\, T(\overrightarrow{v})=\mathbf{0}\right\}$
- $T: \mathbb{R}^n \to \mathbb{R}^m$ matrix transformation, then $T(\overrightarrow{v}) = A\overrightarrow{v}$, then $\ker(T) = A\overrightarrow{v} = \mathbf{0}$
- Let $T: V \to W$ is a linear transformation, then $\ker(T)$ is a subspace of V
- Range Let $T:V\to W$ be a linear transformation. The set of all vectors in W that are images under T of vectors in V are called the Range of T. range $(T)=\left\{\overrightarrow{w}\in W\,\middle|\, T(\overrightarrow{v})=\overrightarrow{w},\,\overrightarrow{v}\in W\right\}$
- Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation defined by $T(\overrightarrow{v}) = A\overrightarrow{v}$, then the range(T) = the column space of A
- Rank and Nullity Let $T: V \to W$ be a linear transformation. Then $\operatorname{nullity}(T) = \dim(\ker(T))$, $\operatorname{rank}(T) = \dim(\operatorname{range}(T))$, and $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim(V)$
- rank(T) + nullity(T) = n