

Meios de comunicação

março 2018

Meios Físicos

- Pares Metálicos
 - Cabo coaxial
 - Par Trançado
 - Pares bifiliares
- Condutores Óticos
 - Fibra
- Rádio
- Infravermelho

Espectro Eletromagnético

Características de Transmissão

- Analógica
 - Muitos amplificadores em poucos km
 - Superior a 500MHz
- Digital
 - Repetidores a cada 1 Km
 - Distâncias menores para altas taxas

Cabo coaxial

Aplicações do Cabo Coaxial - atualmente

- Distribuição de Televisão
 - TV a Cabo
- Transmissões telefônicas de longas distâncias
 - Está sendo substituido por fibra
- Enlaces de redes locais de curta distância

10Base5

- Ethernet cabo grosso (50 ohms).
- Taxa de 10Mbps com sinalização em banda-base e codificação manchester.
- Topologia em barramento.
- Máximo de 5 segmentos de 500 m.
- Máximo de 100 nós por segmento.
- Conexão da placa de rede ao cabo por uma unidade ativa (transceptor): o conector-vampiro.
 A mordida (conexão) só deve ser feita nas marcas do cabo.
- Distância mínima entre transceptores de 2,5 m.
- Ligação do transceptor ao conector AUI da placa de rede por um cabo multi-pares. Máximo de 50 m.
- Um segmento de cabo é contínuo, sem conexões que possam imterromper o barramento

10Base2

- Cheapernet cabo fino
- Taxa de 10Mbps com sinalização em banda-base e codificação manchester.
- Topologia em barramento.
- Máximo de 5 segmentos de 185 m. Total de 925m.
- Máximo de 30 nós por segmento (existem placas que permitem até 100 nós, por segmento).
- Cada ligação com a placa de rede utiliza um conector tipo **T**, ligando dois trechos de cabo e a placa. Cada trecho de cabo deve ter o mínimo de 45 cm.
 - Fonte potencial de problemas
 - Existem soluções com tomadas de parede (AMP) que minimizam a possibilidade do usuário causar o rompimento do barramento.

Par Trançado

- Taxa de 10Mbps com sinalização em banda-base e codificação manchester.
- Topologia lógica em barramento (!). Esquema de fiação com concentradores de fiação (HUBs) - estrela.
- Máximo de ??? HUBs (repetidores) numa mesma rede.
 - Há fabricantes com módulos empilháveis que, ao serem conectados, funcionam como um único repetidor (mais caros, mas permitem expansão sem muitos problemas).
- Máximo de 1000 (mil) nós por segmento. (???)
- Distância máxima de 100 m entre HUB e estação.
- Não existem terminadores.

10BaseT

EIA/TIA - 568

- Especifica somente cabos de pares, trançados ou não, sem blindagem.
- Descreve especificações de desempenho do cabo e sua instalação.
- É um padrão aberto, não contendo marca de nenhum fabricante.

EIA - Categorias 1 e 2

Categoria 1

- Especificações técnicas pouco precisas.
- Cabos não trançado AWF 22 ou 24.
- Grande variação de impedância e atenuação.
- Não recomendado para taxas de sinalização superiores a 1 Mbps.

Categoria 2

- Pares trançados AWG 22 ou 24.
- Largura de banda máxima de 1 MHz.
- Não é testado com relação à paradiafonia.
- Derivado da especificação de cabo Tipo 3 da IBM.

EIA - Categorias 3 e 4

• Categoria 3

- Pares trançados sólidos AWG 24.
- Impedância de 100 ohms.
- Testado a 16 MHz para atenuação e paradiafonia.
- Utilizável até 16 Mbps.
- Padrão mínimo para 10Base-T.
- Bom p/ token ring a 4 Mbps.

Categoria 4

- Pares trançados sólidos AWG 22 ou 24.
- impedância de 100 ohms.
- testado para largura de banda de 20Mhz

EIA - Categoria 5

- Pares trançados AWG 22 ou 24.
- Impedância de 100 ohms.
- Testado para largura de banda de 100 MHz.
- Pode ser usado para taxas de 100 Mbps.
- É recomendado para as novas instalações, de modo a ser aproveitado em futuros aumentos de taxa de transmissão.

EIA - Categoria 5e

- "enhanced", versão aperfeiçoada do padrão
- Reduzir a interferência entre os cabos e a perda de sinal, o que ajuda em cabos mais longos, perto dos 100 metros permitidos.
- Suportar 100 MHz (cat 5), especificação mínima
- Certificados para 110 MHz, 125 MHz ou mesmo 155 MHz, embora na prática isso não faça muita diferença, (100 MHz é suficiente para as redes 100BASE-TX e 1000BASE-T).

EIA - Categoria 6

- Uso em padrão Gigabit Ethernet
- Alcance continua sendo de apenas 100 metros, de forma
- Frequências de até 250 MHz.
- 10G, mas nesse caso o alcance é de apenas 55 metros.

EIA - Categoria 6a

- "augmented"
- frequências de até 500 MHz
- web mencionando que os cabos cat 6a suportam freqüências de até 625 MHz, que foi o valor definido em uma especificação preliminar do 10GBASE-T.
- Redução do crosstalk (interferências entre os pares de cabos)

EIA - Categoria 7

- Padrão de 100 gigabits
- 600MHz
- Alcance de até 100m

EIA - Categoria 7a

- Padrão de 100 gigabits
- Pode chegar a 1000 MHz
- Alcance de até 100m

Aplicações do Par Trançado

- Sistema Telefônico
- Redes Locais
 - 10Mbps or 100Mbps, ...
- Características
 - Barato
 - Fácil de manusear
- UTP Unshielded Twisted Pair
- STP Shielded Twisted Pair

Características de Transmissão

- Analógica
 - Amplificadores a cada 5 ou 6 Km
- Digital
 - Repetidores a cada 2 ou 3 Km
- Distânicas limitadas
- Sucetível a interferências e ruídos

Fibra Ótica

Fibra óptica

• Princípio de funcionamento

Fibra óptica

- Vantagens
 - ⇒banda larga
 - ⇒leve e pequena (fina)
 - ⇒baixa perda de sinal
 - ⇒livre de interferências eletromagnéticas
 - ⇒segura
 - ⇒ confinamento do sinal
 - ⇒custo

Características de Transmissão

- Onda guiada para 10¹⁴ to 10¹⁵ Hz
 - Porções de infravermelho e espectro visível
- Light Emitting Diode (LED)
 - Mais barato
- Injection Laser Diode (ILD)
 - Mais eficiente
 - Maior taxa de dados

Modos de Operação

AR

- Ar Rádio-freqüência
 - Faixas de freqüência
 - ELF / VLF / LF / MF / HF
 - VHF / UHF
 - Satélite
 - Microondas (UHF / SHF)
 - Visibilidade

Transmissão no AR

FAIXA DE FREQÜÊNCIA (Hz)	DESIGNAÇÃO TÉCNICA	CARACTERÍSTICA DE PROPAGAÇÃO ÚTIL	PRINCIPAL UTILIZAÇÃO
300 a	ELF	Penetram na superfície terrestre e na água	Comunicação para submarinos
3.000	(Extremely Low		e escavações de minas.
	Frequency)		
3K a	VLF	Ótima reflexão na ionosfera e alguma	Comunicação para submarinos
30K	(Very Low Frequency)	penetração na superfície	e escavações de minas.
30K a	LF	Reflexão na ionosfera até 100K. Acima	Serviços marítimos e auxílio a
300K	(Low Frequency)	de 100K, ondas de superfície	navegação aérea.
300K a	MF	Ondas de superfície com pouca atenuação	Radiodifusão local.
3.000K	(Medium Frequency)		
3M a	HF	Refração na ionosfera	Radiodifusão local e distante.
30M	(High Frequency)		Serviços marítimos
30M a	VHF	Pode ser focalizada por antenas	TV, sistemas comercias e
300M	(Very High Frequency)	convenientes	particulares de comunicação.
300M a	UHF	Direcionamento por antenas mais	TV, serviços de segurança
3.000M	(Ultra High Frequency)	eficiente, tropodifusão (1 a 2 GHz)	pública
3G a	SHF		Comunicação pública à longa
30G	(Super High Frequency)		distância
30G a	EHF		
300G	(Extremely High		
	Frequency)		

Rádio freqüência: recentes utilizações

- Telefonia celular
- Redes locais sem fio (Wireless LAN)
 - Meio não guiado
 - Transmissão e recepção via antena
 - Direcional
 - Alinhamento
 - Omnidirectional
 - Sinal espalha-se em todas as direções
 - Pode ser recebido por muitas antenas

Freqüências

• 2GHz to 40GHz

- Microondas
- Altamente direcional
- Ponto a Ponto
- Satélite

• 30MHz to 1GHz

- Omnidirectional
- Rádio em Broadcast
- 3×10^{11} to 2×10^{14}
 - Infravermelho
 - Aplicação local

Microondas Terrestre

- Antenas Parabólicas
- Visada direta
- Altas freqüências = alta taxa de dados
- Problemas
 - Períodos de precipitação intensa
 - Desalinhamento das antenas

Microondas - Satélite

- O Satélite é uma estação de "relay"
- O satélite recebe em uma frequência amplifica ou repete o sinal e transmite em outra frequência
- Órbita geo-estacionária
- Usado para
 - Televisão
 - Telefônia de longa distância
- Redes Privadas