Homework 1

Jon Allen

September 5, 2014

2.2 C

we pick

2.2 D

2.3 D

Worksheet 1

 \mathbf{a}

if x > 1 then $x^2 > x$. If 0 < x < 1 then $x^2 < x$

proof

$$x^2 = x \cdot x$$

$$x \cdot x > 0 \text{ by axiom } 8$$

$$x \cdot x = x_1 + x_2 + \dots + x_x$$

$$0 < x$$

$$0 + x < x + x \text{ by axiom } 7$$

$$x < x_1 + x_2 + \dots + x_i \text{ by induction}$$

Therefore $x < x^2$

b

if x > 0 then $x^{-1} > 0$

proof

let $x^{-1}=z$. Then xz=1. Axiom 8 states that if 0>xy then x<0 or y<0. Because multiplication is closed on $\mathbb R$ we know that -xz=-1. Since -1<0 we know that x<0 or -z<0 because x>0 we know that -z<0. Or z>0 \square

 \mathbf{c}

if 0 < x < y then $0 < y^{-1} < x^{-1}$

proof

$$y^{-1} = m, x^{-1} = n. \ xn = 1, ym = 1.$$

Worksheet 2

a

supremum= $\frac{3}{2}$. infimum=-1. No minimum, maximum is $\frac{3}{2}$

b

this set is all reals. no supremum, infimum or min or max

Worksheet 3

let m lower bound for A. Then m < x for all x in A. and -x < -m. because -x is in -A then we have an upper bound of -m for -A. Thus $\inf(A) = \sup(-A)$