Повторение.

1.
$$n\mathbb{Z} < \mathbb{Z}, +; a \sim b \leftrightarrow -a + b \in n\mathbb{Z} \leftrightarrow b \in a + n\mathbb{Z}$$

$$T_a = \{b : a \sim b\} = a + n\mathbb{Z} = \{a, a + n, a - n, a + 2n, a - 2n, \dots\}$$

$$T_a = [a]_n = \bar{a}_n = [a] = \bar{a} = a$$

$$[a] + [b] = [a + b]$$

$$[a][b] = ab$$

Теорема 1
$$\begin{pmatrix} a \sim a' \\ b \sim b' \end{pmatrix} \rightarrow \begin{cases} [a'+b'] = [a+b] \\ [a'b'] = [ab] \end{cases}$$

2. $H < G, \cdot$

Теорема 2
$$|T_x| = |T_z| = |H|$$

$$\blacktriangleleft xh_1 = xh_2 \to h_1 = h_2 \blacktriangleright$$

Теорема 3 (Теорема Лагранжа) $\mathit{Ecau}\ |G| = n < \infty \to |G| \vdots |H|$

4

Следствие из теоремы Лагранжа: |G|:|x|

$$\blacktriangleleft x \to H = \langle x \rangle, |H| = |x| \blacktriangleright$$

 $\mathbb{Z}, n\mathbb{Z} \to \frac{\mathbb{Z}}{n\mathbb{Z}} = \mathbb{Z}_n = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \dots, n-1\}$ - кольцо остатсков при делении на n

Теорема 4 \mathbb{Z}_n -поле \leftrightarrow n-простое

4

Теорема 5 \mathbb{Z}_n k-обратим в $\mathbb{Z}_n \leftrightarrow n$ и k-взаимно просты $\{(n,k)=1\}$

Определение 1 Функция Эйлера $\{\varphi(n)\}$ равна количеству натуральных чисел, меньших чем n и взаимно простых c n.

Определение 2 S_n -группа подстановок (так же называют симметричной группой)

$$x=\{1,2,3,\ldots,n\},\ S_n$$
-мн-во биективных функций $\varphi:X o X$ $arphi=egin{pmatrix}1&2&3&4&\ldots&n\\ arphi=egin{pmatrix}1&2&3&4&\ldots&n\\ arphi(1)&arphi(2)&arphi(3)&arphi(4)&\ldots&arphi(n)\end{pmatrix}$

Примеры:
$$\varphi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$$
 $\varphi(1) = 2, \varphi(2) = 4, \varphi(3) = 3, \varphi(4) = 1$
 $\phi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$
 $(\varphi\phi)(1) = \varphi(\phi(1)) = \varphi(4) = 1$
 $\varphi^{-1}\varphi = \varphi\varphi^{-1} = e$
 $e = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$
 $\varphi^{-1} = \begin{pmatrix} 2 & 4 & 3 & 1 \\ 1 & 2 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 3 \\ 4 & 1 & 3 & 2 \end{pmatrix}$
 S_n -группа $|S_n| = n!$
Цикл
 $\varphi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} = (124)(3) = (3)(124)$
 $\phi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = (12)(34) = (34)(12)$

Независимые циклы-называются циклы, если числа входят в один цикл, но не входят во второй цикл.

Теорема 6 Независимые циклы коммутируют друг с другом (или α, β -независимые циклы $\rightarrow \alpha\beta = \beta\alpha$)

Определение 3 Циклом длины два называется транспозиция.

Теорема 7 Если
$$\alpha = (i_1, i_2, \dots, i_k)$$
-цикл длины $k \to |\alpha| = k$

Теорема 8 Пусть
$$\varphi = \alpha_1 \alpha_2 \dots \alpha_n$$
- произведение независимых циклов. $\alpha_1 = (i_1, i_2, \dots, i_k)$ $\alpha_2 = (j_1, j_2, \dots, j_l) \rightarrow |\varphi| = HOK(|\alpha_1|, |\alpha_2|, \dots, |\alpha_m|)$