Teacher: Savinder Kaur and Sushil Singh Date: 15-17 March, 2023

Experiment 7

Partition Function-02

Canonical Ensemble - Maxwell Boltzmann (Ideal Gas)

1. METHOD

- (a) Connection between State function and Partition function?
- (b) Difference between Micro-Canonical, Canonical and Grand-Canonical ensemble?

2. CODING

Generate a matrix that stores for different V and T the values of Z(V,T) according to

$$Z(V,T) = \frac{\pi}{2} \int_0^\infty n_j^2 \exp\left(-\frac{h^2}{8mV^{2/3} k_B T} n_j^2\right) dn_j$$

What is ∞ here in the integration?

(a) (Pressure, Internal Energy and Entropy)

The intensive function pressure P can be found as

$$P = NkT \left(\frac{\partial \ln Z}{\partial V} \right)_T$$

The extensive function internal energy U can be found as the average energy is

$$\langle E \rangle = \frac{U}{N} = kT^2 \left(\frac{\partial \ln Z}{\partial T} \right)_V$$

The entropy S can be found as

$$S = \frac{U}{T} + Nk(\ln Z - \ln N + 1)$$

(b) (Internal Energy)

The specific heat capacity is

$$C_v = \frac{\partial < E >}{\partial T}$$

and the variance in energy or the "Energy fluctuations" are

$$\left\langle (\Delta E)^2 \right\rangle = \frac{\partial^2 lnZ}{\partial \beta^2} = kT^2 C_v$$

3. PLOTS

(a) (Figure 1)

Use the integral expression for the partition function to Plot $\ln Z$

- (a) versus temperature T and $\ln T$ for different values of V and $\ln V$ and label the curves
- (b) versus volume V for different values of T and label the curves.

Take ranges as T = 150 - 450 K, $V = 20 - 50 \times 10^{-3} m^3$ and P = 30 - 90 kPa.

Hint: the upper limit of the integral can be anywhere between 10^{11} to 10^{15}

Also check if this matches with the analytical expression $Z(V,T) = V\left(\frac{2\pi mk}{h^2}\right)^{3/2} T^{3/2}$

(b) (**Figure 2**)

Plot the pressure P

- (a) versus temperature T for different values of V and label the curves
- (b) versus volume V for different values of T and label the curves

(c) (**Figure 3**)

Plot the internal energy U versus temperature T.

Evaluate the specific heat capacity from the slope of graph using inbuilt function . Take $V=20\times 10^{-3}m^3$

(d) **(Figure 4)**

Plot the entropy S

- (a) versus temperature T for different values of V and label the curves
- (b) versus volume V for different values of T and label the curves.

4. APPLICATIONS

(a) Thermodynamics of magnetic systems: negative temperatures