Off-policy learning II

Konpat Preechakul Chulalongkorn University September 2019

Previously ...

Recap off-policy

Behavior policy = any other policy b(als)

Target policy = our policy $\pi(a(s))$

On-policy = experience from target policy

Off-policy = experience from behavior policy

	Model-free	Model-based
	Environment is a black box	We know environment (transitions, rewards)
(Value-based 9-71	Policy-based T-8
	We learn value. Use value to improve policy greedily	We directly learn policy (from some value)
(On-policy	Off-policy
	Experience comes from	Experience comes from
	target policy (interactive experience)	behavior policy (observative experience)

Model-free vs Model-based

Model-free	Model-based
Monte Carlo TD (SARSA, Q-learning) N-step TD (n-step SARSA) TD(lambda)	Dynamic programming

Policy iteration, value iteration could be used on both sides

Value-based vs Policy-based

	Value-based	Policy-based
^	Everything we have learned	Policy gradient (future
١	so far	lectures)
	Dynamic programming	
1	MC	
	TD	
	N-step TD	

On-policy vs Off-policy

On-policy	Off-policy
MC	Q-learning C
SARSA	->Expected SARSA (why?)
→ N-step SARSA	Deterministic policies (why?)

Dynamic programming doesn't use experience to learn. Not on this scale.

Off-policy also means on-policy.

take a $(9,a,r,8) \rightarrow \mathbb{PB} \xrightarrow{n} (9,a,r,5)$

Why do we want off-policy?

Recap importance sampling (IS)

Importance sampling ratio

$$\begin{array}{c}
\rho_{t:T-1} = \frac{\mathbb{P}^{\pi}(\tau)}{\mathbb{P}^{b}(\tau)}
\end{array}$$

$$\rho_{t:T-1} = \prod_{i=t}^{T-1} \frac{\pi(a_i|s_i)}{b(a_i|s_i)}$$

Value function becomes

$$v(s_t) = \mathbb{E}_b\left[
ho_{t:T-1} G_t | S_t = s_t
ight] - \mathbb{E}_{\pi}$$

Importance sampling (IS)

$$\rho_{t:T-1} = \mathbb{P}^{\pi(\tau)} \Rightarrow \frac{2}{1}$$

Intuition

- If action is more likely on "target", IS > 1
- If action is less likely on "target", IS < 1
- What if target never takes action behavior takes?

Requirement

- Behavior must be "exploratory"
- Behavior policy is known b(a(3)

Why stochastic behavior policy?

- IS ratio => infinity
- We want to keep the ratio=1 on average
- The ratio will be 1 if behavior = target
- Ratio = how informative is the behavior

IS for deterministic policy $\pi(a|s) = 1$; a = 1 $\pi(a|s) = 0$ almost everywhere $\beta = 1$ $\pi(a|s)$ $\pi(a|s) = 0$ almost everywhere

- Usually behavior will give much "less" information for this kind of policy
- Learning becomes very slow

More on off-policy learning

Variance of importance sampling

- We need a stochastic behavior policy
- The variance could go to "infinity"

$$\frac{\operatorname{Var}(X)}{\operatorname{SP}} = \mathbb{E}\left[(X - \bar{X})^2\right] = \mathbb{E}\left[X^2 - 2X\bar{X} - \bar{X}^2\right]$$

$$= \mathbb{E}\left[X^2\right] - \bar{X}^2$$

- If the $\mathbb{E}[X^2]$ goes to infinity, $\mathrm{Var}(X)$ goes to inf.
- $\frac{\pi(a_i|s_i)}{b(a_i|s_i)}$ could be infinity if T goes infinity

High variance hurts convergence (10 runs)

Sutton, Richard S., and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction. MIT press.

Okay, IS is bad, do we have alternatives?

A few steps IS might not be that bad?

N-step TD with IS

This could reduce the effect of high variance

• If behavior policy is stochastic, the variance is bounded (discrete actions)

 This could be extended to lambda (average of many n-step returns)

Recap N-step SARSA with IS

- The first action is "given" to action-value function
 - No need for correction
- Additional "last" action is sampled in actionvalue function
 - Need for correction

How about no IS at all?

Surprisingly there are a few algorithms which are just fine without importance sampling

Expected SARSA

- We use "expectation" to correct for the behavior policy
- Requires only (s, a, r, s') a'x
- (s, a) are given
- (r, s') are independent from policy given (s, a)
- The same reason for Q-learning

Deterministic policies Q-learning

$$\pi(s) = a$$

• The expectation has a simple form
$$q(s_t, a_t) \leftarrow q(s_t, a_t) + \alpha \left[r(s_t, a_t) + \gamma q(s_{t+1}, \pi(s_{t+1})) - q(s_t, a_t) \right]$$

- We use the "known" next action to correct for behavior policy
- Does this apply to n-step case?

Why it won't work with n-step

We don't know what are the next-next actions?

Why it won't work with n-step

- We don't know what are the next-next actions?
 - That needs model
- We could do away with this problem by "bootstrap" them all!
 - Tree-backup algorithm (2006)

Tree backup

- N-step off-policy learning without importance sampling
- We want a kind of "n-step" Expected SARSA
- There is a lot we don't know
- We bootstrap them all!

Tree backup

Tree backup ^{2(5,4)}

2-step Tree backup algorithm

Tree backup properties

Low variance

T= (3,9,1,3,9,1)

- High bias
 - Because we bootstrap almost all the rest
- Bias is not reduced even on-policy
 - Doesn't need to know behavior policy

A bird eye view of on/off-policy

Algorithm	V/Q value	Make it off-policy	Variance	Bias
Monte Carlo	V	IS	High	Low
	Q	IS	High	Low
One-step SARSA	V	IS	Lower	High
	Q	IS	Lower	High
One-step Expected SARSA	V	IS	Lower	High
	Q	Already	Low	High
One-step TD with Deterministic	V	IS	Lower	High
Policy (including Q-learning)	Q	Already	Low	High
I-step SARSA (including	V	IS	Medium	Medium
lambda)	Q	IS	Medium	Medium
Tree backup	V	Already	Low	High
	Q	Already	Low	High