Laboratorium nr 4

Statystyka matematyczna rok ak. 2023/24

ROZKŁAD WEIBULLA

Ernst Hjalmar Waloddi Weibull (1887 – 1979) był szwedzkim inżynierem i matematykiem. W 1951 roku opublikował artykuł, w którym zaproponował nowy rozkład prawdopodobieństwa. Rozkład Weibulla jest to ciągły rozkład stosowany do modelowania sytuacji, gdy prawdopodobieństwo awarii zmienia się w czasie. Rozkład Weibulla jest bardziej ogólny niż rozkład wykładniczy. Charakteryzuje się zmienną intensywnością uszkodzeń, które dla rozkładu wykładniczego są stałe. Rozkładem tym opisuje się między innymi trwałość zmęczeniową materiałów i konstrukcji mechanicznych. Stosowanie rozkładu Weibulla jest zalecane wówczas, gdy obiekty przechodzą do stanu niezdatności głównie na skutek nagłego zużycia. Rozkład Weibulla wykorzystany jest również w energetyce wiatrowej do opisu zmienność wiatru w ciągu roku. Rozkład ten stosuje się nawet w modelowaniu czasu istnienia firm i przedsiębiorstw.

Definicja. Powiemy, że zmienna losowa X ma rozkład Weibulla z parametrami $\alpha>0$ i $\beta>0$ jeśli jej funkcja gęstości dana jest wzorem

$$f(x) = \begin{cases} \frac{\alpha}{\beta^{\alpha}} x^{\alpha - 1} e^{\left(-\frac{x}{\beta}\right)^{\alpha}}, & \text{dla } x \ge 0, \\ 0, & x < 0. \end{cases}$$

Parametr α nazywa się parametrem **kształtu**, a parametr β nazywa się parametrem **skali**.

Parametr α określa zachowanie prawdopodobieństwa awarii (śmierci) w czasie.

Dla $\alpha < 1$ prawdopodobieństwo awarii (śmierci) maleje z czasem, co w przypadku modelowania awarii urządzenia sugeruje, że urządzenie może posiadać wady fabryczne.

Dla $\alpha=1$ (rozkład wykładniczy) prawdopodobieństwo awarii jest stałe, co oznacza, że awarie mają charakter zewnętrzny.

Dla $\alpha=2$ (rozkład Rayleigha) prawdopodobieństwo awarii rośnie liniowo z czasem.

Dla $\alpha>1$ prawdopodobieństwo awarii rośnie z czasem, co sugeruje, że główną przyczyną awaryjności jest zużycie części z upływem czasu.

UWAGA. Oznaczenia parametrów rozkładu Weibulla α i β często są używane zamiennie. Należy zwrócić na to szczególna uwage.

Wartość oczekiwana i wariancja zmiennej losowej X

o rozkładzie Weibulla z parametrami α i β

$$\mathbf{E}X = \beta\Gamma\left(1 + \frac{1}{\alpha}\right);$$

$$\mathbf{D}^2 X = \beta^2 \left[\Gamma \left(1 + \frac{2}{\alpha} \right) - \left(\Gamma \left(1 + \frac{1}{\alpha} \right) \right)^2 \right],$$

gdzie $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ jest tak zwaną funkcją gamma.

PRZYDATNE FUNKCJE I POLECENIA

```
dweibull(x,shape=alfa, scale=beta) - wartość funkcji gęstości w punkcie x pweibull(x,shape=alfa, scale=beta) - wartość dystrybuanty w punkcie x qweibull(x,shape=alfa, scale=beta) - kwantyl rzędu p rweibull(x,shape=alfa, scale=beta) - n losowych wartości gamma(x) - wartość funkcji gamma w punkcie x
```

Dwie krzywe gęstości na jednym rysunku z legendą

ZADANIE 4.1. Naszkicuj na wspólnym rysunku wykresy funkcji gęstości rozkładu Weibulla z parametrami

```
(a) \alpha = 10, \beta = 0.5, 1, 2,
```

(b)
$$\alpha = 0.5, 1, 2, \beta = 0.5.$$

Pamiętaj o dopasowaniu osi układu, tytułu rysunku i legendy.

ZADANIE 4.2 Na dwóch oddzielnych rysunkach naszkicuj wykresy funkcji prawdopodobieństwa rozkładu wykładniczego z parametrem 2 i rozkładu Weibulla z parametrami 1, 0.5. Co można zaobserwować i dlaczego?

ZADANIE 4.3. Czas awarii ekranu komputerowego produkowanego przez pewną fabrykę ma rozkład Weibulla z parametrami $\alpha=0.6$ i $\beta=1000$.

- (a) Oblicz średni czas awarii ekranu komputerowego wyprodukowanego przez tę fabrykę.
- (b) Jakie jest odchylenie standardowe czasu awarii ekranu komputerowego wyprodukowanego przez tę fabrykę?
- (c) Załóżmy, że kupiliśmy ekran wyprodukowany przez rozważaną fabrykę. Jakie jest prawdopodobieństwo tego, że ten ekran będzie pracował bezawaryjnie dłużej niż 5000 godzin?
- (d) Oblicz kwantyl rzędu 0.9 czasu awarii rozważanego ekranu komputerowego. Jak można zinterpretować otrzymany wynik?

Do obliczeń wykorzystaj odpowiednie funkcje programu R.