Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	02 November 2022
Team ID	PNT2022TMID42581
Project Name	Emerging Methods for Early Detection of Forest Fires.
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint 1	Data Collection	USN-1	Download the dataset in Kaggle for detection of forest fire	20	High	Haritha N, Arvin JC Duke
Sprint 2	Image Preprocessing	USN-2	Cleaning, transforming, collecting and selection are the processes involved in preprocessing then the images will be improved for detecting the forest fire	20	High	Harritha S, Dominic Irudhayaraj S
Sprint-3	Model building	USN-3	Here, CNN is used to recognize the images. Neural networks are most important technology now a days. Neural networks learn like humans by using labelled data. It is the most effective way to detect forest fire earlier. We have to add the CNN and Dense layers in our model and train the model for prediction.		High	Haritha N, Arvin JC Duke, Harritha S, Dominic Irudhayaraj S

Sprint-3	Evaluating the model	USN-4	A model behaves after each iteration of optimization. An accuracy metric is used to measure the algorithm's performance in an interpretable way. The accuracy of a model is usually determined after the model parameters.	20	High	Haritha N, Arvin JC Duke, Harritha S
Sprint-4	Output	USN-5	Build Deep learning model and computer vision Using the IBM cloud.		High	Harritha S, Dominic Irudhayaraj S, Haritha N

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	2 Days	27 Oct 2022	28 Oct 2022	20	29 Oct 2022
Sprint-2	20	5 Days	30 Oct 2022	03 Nov 2022	20	04 Nov 2022
Sprint-3	20	8 Days	04 Nov 2022	12 Nov 2022	20	13 Nov 2022
Sprint-4	20	8 Days	14 Nov 2022	22 Nov 2022	20	23 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20(points per sprint). Lets calculate the team's average velocity(AV) per iteration unit(story points per day)

$$AV = Sprint duration / velocity = 20/10 = 2$$