Lecture 11 Curve Sketching 5.4

After the study of sections 5.1-5.3, we are now in a position to sketch the graph of a function f given by y = f(x).

Curve sketching may be done with some or all of the following steps.

- 1. Find the domain
- 2. Find all x and y intercepts.
- 3. Find all vertical and horizontal asymptotes.
- 4. Find if f is an every or an odd function to discuss
- or decrease and relative extrema.
- 6. Find all intervals where f is concave upward or concave downward and inflection points.
- 7. Plot the domain, the intercepts, the asymptotes, the critical points, the inflection points, some additional fourts as needed, and using the symmetry (even fold) of f, connect the foils with a smooth curre.

 This completes the sketching of the graph of a function f.

Examples 5.4

Use the curve sketching techniques (steps 1-7) to Sketch the graph of the following functions.

the second of th

A. $y = f(x) = 4x^3 - 9x^2 - 30x + 6$

1. Domain: (-0,0) Range: (-0,0)

2. y-intercept = f(0) = 6

To find x-interests solve fix= of is a cubic function and therefore has at most three real roots.

1	-3	-2_	-1	×	0		2	3	4	15
	-92	-2	2.3	fixe	6	-29	-58	-57	-2	131
		\vdash	1	 		/				/

Using the Intermediate Value Theorem, we observe that there is a rost in the following three intermeds: (-2,-1), (0,1), (4,5)

With the help of a graphical calculator or otherwise the three x-intercepts are -1.96, 0.19, 4.02 affiresimately. 3. Since funj is a folymomial, it has no vartical or honjouted asymptotes. However its end-behavior is like 423.

4.	fir)	f(-x)	- f(-x)
	4x3-9x2-10x+6	-4x3-9x2+30x+6	4x3+9x-3076-6
		fix) f f(-x) f is ust even	fint odd

5. Critical points: (-1,23) and (5,-12.75) See Lecture 10. Intervals of increase: $(-\infty,-1)$ and $(5,\infty)$. Interval of decrease: $(-1,\frac{5}{2})$

7 1 5/2

Relative minimum at P(-1,23).

Relative minimum at Q(5/2,-62.75)

6. Concave downward on $(-00, \frac{3}{4})$.

Concave whomand on $(\frac{3}{4}, 00)$ Point of inflection $R(\frac{3}{4}, -19.88)$

see Lacture 10

$$B. \quad y = f(x) = \chi \sqrt{4-\chi^2}$$

2
$$y$$
 - interceft = $f(u) = 0$
 x - intercefts: -3 , 0 , 3

3. No vertical or horizontal asymptotes. (why?)

4.
$$f(x)$$
 $f(-x)$ $-f(-x)$

$$\frac{1}{x}\sqrt{q-x^2} \qquad -x\sqrt{q-x^2} \qquad x\sqrt{q-x^2} \qquad x\sqrt{q-x^2} \qquad f(x) = -f(-x) \qquad f(x) = -f(-x)$$

$$f(x) = -f(-x) \qquad f(x) = -f(-x) \qquad f(x) = -f(-x)$$

Since f is an odd function, the graft is symmetric

5. From Lacture 10: créticul posits: P(-3,0), Q(-3/2, 2-9), R(3/2, 9), S(3,0)

Relative maxima points! P. and R

Relative minima ponts: a and S.

6. $f(x) = \frac{9-2x^2}{\sqrt{9-x^2}}$

\$11(x) = (-4x) \(\sqrt{9-x2} - (9-2x2) \) \(\frac{1}{2} \) \(\frac{1}{\sqrt{9-x2}} \) \(-2x \)

9-X1

$$= \frac{(-4x)(9-x^2)-\chi(9-2x^2)}{(9-\chi^2)^{3/2}} = \frac{6\chi^2-45\chi}{(9-\chi^2)^{3/2}}$$

111(x) =0	$\frac{3\times (2x^{2}-15)}{(9-x^{2})^{3/2}}$ at $x=0$, $\pm \sqrt{\frac{1}{2}}$	T = tlf	-2·7 -XX / X -3 0	
Interval	(-3,-2.7)		(0,2.7)	(2.7, 3)
Sign of f"	f"(-2.9) L D	1"(-1)70	f"(1) <0	\$11(2.9)
Concessy	downward	ufurand	damwani	
Concw. Inflection	ty changes of	1 21-2-2-1 -2-7,-3:5),	7, x=0, au 0(0,0) and	B(2-7,2-5)
7. Sketch	· · · · · · · · · · · · · · · · · · ·		R	
y = f(x) = x	19-X1 4	(1,292)		3
			· · · · · · · · · · · · · · · · · · ·	
-3 -2	<u> </u>) / · · · · · · · · · · · · · · · · · ·		13 2
- A .	(-1,-2.8)	3	Extra honts	(-1, \(\frac{18}{2}\))=(-1,-28) (1,\(\frac{18}{2}\))=(1,28)
a	-5	-+	· ·	

$$C y = f(n) = x - 4 \ln(3x - 9)$$

- 1. Domain: 2>3
- 2. No y-interceft: 2-interceft = 3.87912...
- 3. Vertical asymptote x=3,
- 4. Since domain in x >3, there is no possibility of everyodd
- 5. from Lecture (10)
 one critical point = P(7, -2.94). This exitical point
 is also the relative minimum point.
- 6. From Lacture (0) $f(x) = \frac{x-7}{x-3}$ $f''(x) = \frac{(x-3)(x-3) (x-7)(x-3)^2}{(x-3)^2} = \frac{(x-3) (x-7)}{(x-3)^2} = \frac{4}{(x-3)^2}$

Since $f'(cx) = \frac{4}{5} > 0$ for all x > 3, f is concave upward for a > 3. Since then is no change in concavity, there is no inflection fourt.

Sketch (3.5/1.8) y = f(x) = x - 4h(3x - 9) $0 = \frac{1}{7} = \frac{1}{10} = \frac{1}{15}$

$D \quad y = f(x) = x e^{x^2 - 3x}$

1. Domain: (-00,00) 2. x-interreft: 0, y-intercept o 3. There are no Vertical or horizontal asymptotes.

4. f(x) f(-x) -f(-x) -f(-x) $x e^{x^{2}+3x}$ $f(-x) \neq f(-x)$ $f(x) \neq f(-x)$ $f(x) \neq -f(-x)$ f(x) = f(-x) f(x) = f(-x) f(x) = f(-x) f(x) = f(-x)

5. From Lecture (0)
critical points: p(\frac{1}{2}, \frac{1}{2}e^{-5/4}) and Q(1, e^{-2})
0.143--

Relative mascimum et P & Relative Minimum at Q Using the First Derivative Test.

6. $f'(x) = (2x^2 - 3x + 1)e^{-3x}$, $f''(x) = (4x^3 - 12x^2 + 15x - 6)e^{2x^2 - 3x}$ f''(x) = 0 has only one root at $x \approx 0.702$. $= \beta(x)e^{2x^2 - 3x}$ Interval $(-\infty)$, (702) $(0.702, \infty)$

Interval	(-0) 1702)	(0.702, 0)
Sign of f"(x) = sign of the cubich	p(0)<0	p(1) 70 .
Concavity	Downward	ithward

Concavity changes at x = 0.702, Inflection point = I(0.702, 0.1399)

7. Skets	zh	¥↑ .	P	I	2 fext -1 -54.6 0 0 1 07 2 11 13 1334
Find Behavior	• 6	(14 . 14 1 14 . 14 1 14 . 14 2 17 . 13 5 9 .
		2			 1.5 .16

$$E \quad y = f(x) = x^{2/3}$$

- 1. Domain (-0,00) 2. x-interest = y-interest = 0
- s. No vertical or horizontal asymptoses.
- 4. Since f(-x)= f(x), it is an even function and its
- 5. from Lecture 10 ... critical point (90) which is also the relative minimum from.

f'(0) does not excet. There is a vartical fangent at K=0.

6. If is concave downward on (-0,0) and (0,0) There is no inflection part. I''(0) doesn't exist.

7. Sketch

F.
$$y = f(x) = x^{7/3} + 56x^{4/3} = x^{4/3} (x+56)$$

1. Domain (-0,0)

2. y-interreft (0 x-interrepts ; -56,0

3. There are no horzontal or vertical asymptotes.

4.
$$f(x)$$

$$\chi^{4/3}(\chi+56)$$

$$+ f(\chi)$$

5. from Lacture 10

$$f'(x) = \frac{7}{3} x^{\frac{1}{3}} (x+32) \qquad f'(x) = 0 \quad \text{when } x = -32, 0$$

$$\frac{f}{f} \qquad \frac{1}{3} f \qquad \frac{1}{3}$$

By the first derivative test there is a relative maximum at X=-32 and a relative minimum at X=0. The critical point P(-32, 2438.248.) is a relative maximum and the critical point O(0,0) is a relative minimum.

6. Concavity
$$f''(x) = \frac{28}{9} \frac{x+8}{x^{2/3}} \qquad f''(x) = 0 \quad \text{when } x = -8 \quad \text{and}$$

$$f''(x) = \frac{28}{9} \frac{x+8}{x^{2/3}} \qquad f''(x) = 0 \quad \text{when } x = -8 \quad \text{and}$$

$$f''(x) = \frac{28}{9} \frac{x+8}{x^{2/3}} \qquad f''(x) = 0 \quad \text{when } x = -8 \quad \text{and}$$

$$f''(x) = \frac{28}{9} \frac{x+8}{x^{2/3}} \qquad f''(x) = 0 \quad \text{when } x = -8 \quad \text{and}$$

$$f''(x) = \frac{28}{9} \frac{x+8}{x^{2/3}} \qquad f''(x) = 0 \quad \text{when } x = -8 \quad \text{and}$$

$$f''(x) = \frac{28}{9} \frac{x+8}{x^{2/3}} \qquad f''(x) = 0 \quad \text{when } x = -8 \quad \text{and}$$

$$f''(x) = \frac{28}{9} \frac{x+8}{x^{2/3}} \qquad f''(x) = 0 \quad \text{when } x = -8 \quad \text{and}$$

$$f''(x) = \frac{28}{9} \frac{x+8}{x^{2/3}} \qquad f''(x) = 0 \quad \text{when } x = -8 \quad \text{and}$$

$$f''(x) = \frac{28}{9} \frac{x+8}{x^{2/3}} \qquad f''(x) = 0 \quad \text{when } x = -8 \quad \text{and}$$

$$f''(x) = \frac{28}{9} \frac{x+8}{x^{2/3}} \qquad f''(x) = 0 \quad \text{when } x = -8 \quad \text{and}$$

$$f''(x) = \frac{28}{9} \frac{x+8}{x^{2/3}} \qquad f''(x) = 0 \quad \text{when } x = -8 \quad \text{and}$$

$$f''(x) = \frac{28}{9} \frac{x+8}{x^{2/3}} \qquad f''(x) = 0 \quad \text{when } x = -8 \quad \text{and}$$

$$f''(x) = \frac{28}{9} \frac{x+8}{x^{2/3}} \qquad f''(x) = 0 \quad \text{when } x = -8 \quad \text{and}$$

$$f''(x) = \frac{28}{9} \frac{x+8}{x^{2/3}} \qquad f''(x) = 0 \quad \text{when } x = -8 \quad \text{and}$$

$$f''(x) = \frac{28}{9} \frac{x+8}{x^{2/3}} \qquad f''(x) = 0 \quad \text{when } x = -8 \quad \text{and}$$

$$f''(x) = \frac{28}{9} \frac{x+8}{x^{2/3}} \qquad f''(x) = 0 \quad \text{when } x = -8 \quad \text{and}$$

$$f''(x) = \frac{28}{9} \frac{x+8}{x^{2/3}} \qquad f''(x) = 0 \quad \text{when } x = -8 \quad \text{and}$$

on (-8,0) and (0,0). Since concavity changes only at 2=-8, there is a point of inflaction at (C-8,768).

G.
$$y = f(x) = \frac{4x}{x^2+1}$$

1. Domain: (-D, D) 2. y-interceft: 0, x-intercept: 0.

3. Horizontal asymptote: y=0

4.
$$f(x)$$

$$f(-x)$$

$$-\frac{4x}{x^{2}+1}$$

$$-\frac{4x}{x^{2}+1}$$

$$-\frac{4x}{x^{2}+1}$$

f(x) + f(-x) fund answer function fix an odd function

f(x)=-f(-K) grafted f is symmetric about the origin.

5.
$$f'(x) = 4\left[\frac{(x)'(x^{2}+1) - x(x^{2}+1)^{2}}{(x^{2}+1)^{2}}\right] = 4\left[\frac{x^{2}+(-2x^{2})}{(x^{2}+1)^{2}}\right] = 4\frac{(1-x^{2})}{(x^{2}+1)^{2}}$$

fluiso when 1-120 or

By the first desirative test there is a relative minimum at k = 1 and a relative maximum at x=1.

The contriced point P(-1,-2) is a relative minimum and the contical foit a (1,2) is a relative marinium.

$$f''(x) = 4. \left[\frac{(1-x^{2})^{2}}{(x^{2}+1)^{2}} + \frac{(1-x^{2})^{2}}{(1-x^{2})^{2}} \right]^{\frac{1}{2}}$$

$$= \frac{4[-2\kappa (x^{2}+1)^{-1} + (1-x^{2})^{2} - 2(\kappa^{2}+1)^{2}]}{(\kappa^{2}+1)^{2}}$$

$$= \frac{-8\kappa (x^{2}+1)^{-2}}{(\kappa^{2}+1)^{2}} \left[+ \frac{(\kappa^{2}+1)^{2} - 8\kappa (x^{2}+1)^{2}}{(\kappa^{2}+1)^{2}} \right] = -8\kappa (x^{2}+1)^{2}$$

$$= \frac{-8\kappa (3-\kappa^{2})}{(\kappa^{2}+1)^{2}} = \frac{8\kappa (\kappa^{2}-3)}{(\kappa^{2}+1)^{2}}$$

$$= \frac{1}{2} \frac{1}{2}$$

$$f'(x) = \frac{g_{2}(x^{2}-3)}{(x^{2}+1)^{3}}$$

CD * CU * CD * CU

f((-1) >0 .0 f((1) <0 /3 f((2) >0

f is concave downward on $(-0, -\sqrt{3})$ and $(0, \sqrt{3})$ and $(\sqrt{3}, \omega)$.

Concavity changes at -Vs, o, and V3. Therefore there are three inflection forts I, (-Vs, -Vs), I2 (0,0) and I3 (13, 13)

7. Shetch

- 1. Domain: (-∞,0) U(0,∞)
- 2. There are no x- or y-intercepts.
- 2. 2=0 is a vertical asymptote, y=x is an oblique asymptote.
- 4. $f(x) = 2x + \frac{3}{2}$, $f(-x) = -2x \frac{8}{5c}$, $-f(-x) = 2x + \frac{8}{5c}$ $-\frac{f(x) + f(-x)}{f \text{ is not an evan function}}$ f is an odd function

groft of f is symmatrice about the origin

5. $f(x) = 2 - \frac{8}{x^2}$ If axists throughout the domain of f and f(x) = 0 when x = -2 and x = 2.

f(-3)70 -2 f(-1)<0 f(1)<0 2 f(3)>

By the first derivative test the critical pointp(-2, -8) is a relative maximum point and the contribut point Q(2,8) is a relative minimum point.

6. Concavity $f''(x) = \frac{16}{x^3}$ $\frac{CD}{f''(-1)(CO)} \frac{CU}{f''(-1)(CO)}$ Since O is not in the domain of f, then is no point of wiflestir. $\frac{4}{3} \int_{-\infty}^{\infty} Q(2/8) \int_{-\infty}^{\infty} g(2/8)$

7. Slefzh y=f(x)=2x+ &