מטלת בית – רשת CNN על CIFAR10 איתי גלילי

<u>חלק א:</u>

א. כללי - המשימה:

התבקשנו לייצר מודל מיטבי ללמידה עמוקה על מאגר המידע 10CIFAR. המאגר מכיל מספר רב של תמונות () בגודל () השייכים ל10 קבוצות :

```
# CIFAR-10 class names
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
```


התבקשנו לבצע את המודל באמצעות CNN, המודל מבוסס על הצורה הבאה:

ב. חלוקת הדאטה:

train, val and test) בוצע חילוק ל5,000 לכל סוג, בוצע חילוק ל5,000

ג. הנחות עבודה טרם האימון:

- עבודה נקייה בכתיבת הקוד לאפשר את מרבית הגמישות בהגדרת המשתנים, למטרת הרצה של hyperparameter בלבד בין מודל למודל. כך, נמנע מהעתקת קוד מיותרת והסדר ישמר בתהליך שיפור המודל.
- שיעלו שיעלו Hyperparameter .2 לאימון- נשנה אותם בצורת ניסויי וטעיה, נשמר לקחים שיעלו

Hyperparameter	
גודל הקרנל במהלך האימונים יהיה 3*3 או 5*5.	kernel_size
רשימה לfc שתחזיק את גודל השכבות ומסי הנירונים בכל	fc_neurons_list
שכבה (מלבד שכתבת ה out שתמיד תהא 10 נירונים).	
הסתברות להשתקת נירונים בCNN	dropout_cnn
הסתברות להשתקת נירונים בfc	dropout_fc
קצב למידת הגרדיאנט	1r
גודל הענשה על משקולות גדולות	12
כמות האפוקים	epochs
Early Stopping. מספר של כמה אפוקים נמתין לפני הפעלת	patience

:OVERFIT מניעת. 3

- ב val ב loss כאשר קצב שיפור הצר קטן ולא משמעותי Early Stopping .i והמשקולות ממשיכות להשתנות בגלל הקטנת הloss train.
 - .ii הענשת 12 למניעת הסתמכות יתר על משקולות גדולים.
- היק רנדומאלית בימוש בלרס בשכבות הCNN בשכבות בשכבות בימוש מימוש לווו מימוש לווירונים בשכבות הסתמכות על נוירונים בימיננטים.
- .iv שינוים במודל שינוי גודל ומספר השכבות בfc, כנייל שינוי בliv

ד. האימון:

נריץ מודלים עם KERNEL בגודל 5*5

1. אימון מסי 1

Val Loss	Train Loss	batch_size	fc_layers	kernel_size	weight_decay	epochs	learning_rate	dropout_fc	dropout_CNN
0.29	1.3	32	128,64	5	0.001	50	0.01	0	0

המודל סובל מירכבת הריםי, יתכן שנובע מקצב למידה גדול שלא מאפשר לו להתכנס.

2. אימון מסי 2

ניתן לראות שהקטנת קצב הלמידה אפשרה שיפור בתוצאה.

נריץ כעת אימון שהkernel שלהם מוגדרים 3*3.

:1 אימון מסי 3

Val Loss	Train Loss	batch_size	fc_layers	kernel_size	weight_decay	epochs	learning_rate	dropout_fc	dropout_CNN
0.9558	0.7908	64	ללא	3	0.0001	25	0.01	0	0

2. אימון מסי 4

Val Loss	Train Loss	batch_size	fc_layers	kernel_size	weight_decay	epochs	learning_rate	dropout_fc	dropout_CNN
1.0137	0.9584	64	ללא	3	0.0001	25	0.01	0	0.5

בתצורה הזאת, ה dropout אינו מטיב עם המודל.

אימון מסי 3.

Val Loss	Train Loss	batch_size	fc_layers	kernel_size	weight_decay	epochs	learning_rate	dropout_fc	dropout_CNN
0.9225	0.6812	64	128, 64	3	0.0001	25	0.01	0	0

הגדלת הch משפרת את ביצועי המודל.

4. אימון מסי 4

Val Loss	Train Loss	batch_size	fc_layers	kernel_size	weight_decay	epochs	learning_rate	dropout_fc	dropout_CNN
0.9891	0.8305	64	ללא	3	0.001	25	0.01	0	0

הגדלת יהענשתי L2 אינה משפרת את המודל.

5. אימון מסי 5

Val Loss	Train Loss	batch size	fc layers	kernel size	weight decay	epochs	learning rate	dropout fc	dropout CNN
0.8336	0.6919	64	128, 64	3	0.0001	45	0.001	0.5	0.2

: testה על בדיקה את כמות האפוקים למדידת תהליך מעט יותר ארוך, ביצעתי בדיקה על האחר

(הוספתי את dropouth להימנע מverfit), במחברת ניתן לראות את המודל הזה כאשר הוא ללא dropouth להימנע ממוקה, התוצאות שלו פחות טובות (0.8599 בולידצה) ואת אותו המודל בbatch_size קטן יותר (32 לעומת 64 בניסויים ההתחלתיים).

(זהו המודל הטוב ביותר אליו הצלחתי להגיע).

באימון הבא ננסה להגדיל את קצב הלמידה.

8. אימון מסי 6

Val Loss	Train Loss	batch_size	fc_layers	kernel_size	weight_decay	epochs	learning_rate	dropout_fc	dropout_CNN
2.3042	2.3039	32	ללא	3	0.0001	50	0.01	0.5	0.2

הגדלת קבוע הלמידה יוצר תנודות רחבות במשקולות ומקשה על הלמידה. ננסה למטב את המודל ולהעמיק את שכבות הfc.

9. אימון מסי *7*

Val Loss	Train Loss	batch_size	fc_layers	kernel_size	weight_decay	epochs	learning_rate	dropout_fc	dropout_CNN
1.1541	1.2083	32	128,64,22	3	0.0001	30	0.001	0	0

נראה כי הfc המיטבי הוא fc.

10. אימון מסי

אימון עם מספר נוירונים רב בשכבה.

test loss	Val Loss	Train Loss	batch size	fc layers	kernel size	weight decay	epochs	learning rate	dropout fc	dropout CNN
0.9113	0.6396	0.8816	64	512,256	3	0.0001	50	0.001	0.4	0.2

ה. מסקנות:

- .a אדול מגדיל את זמן הרצת המודל אבל מאפשר למידה טובה יותר.
- .b מומלץ להשתמש עם early stopping למניעת ריצות מיותרות באפוקים גדולים.
 - (עם שכבת יציאה של 10 נירונים..) אמולץ 128,64 (עם שכבת יציאה של 10 נירונים..) FC

<u>חלק ב:</u>

29 5 1 a 20 1 1 1 1
$\frac{\partial g}{\partial a} = \frac{1}{0.5} \frac{a}{a} \qquad a \leq 0$
30, 39 32 3U, 32 3U, 32 (9-4)h
3L = 9T . 9Z . 9H . 9H . 9M . 9M = 55
$(\hat{y}-y)w_2 \cdot \frac{\partial h}{\partial w_n} = \int (\hat{y}-y)w_2 \times \frac{\partial h}{\partial w_1} \times \frac{\partial h}{\partial w_2} \times \frac{\partial h}{\partial w_2} \times \frac{\partial h}{\partial w_1} \times \frac{\partial h}{\partial w_2} $
$\omega_1 - \omega_1 - \omega_2 = \frac{\partial L}{\partial \omega_1}$
$w_1 = w_1 - d \sum_{i=0}^{\infty} \frac{\partial L}{\partial w_i} (X_i)$
"hi down layer" in Jolin - b. 1) "output layer" " - b.
1-A/A EC-CA 261 2600

- א. שימוש בCNN (על ידי מסכות הקרנלים רצות על המטריצה ומאגדות את ערכי הפיקסלים הסמוכים אחד לשני) מאפשר שימור של יחסי מיקום הפיקסלים אחד משכנו, ANN לא מבין את תפיסת המרחב וחשיבות סמיכות של פיקסלים אחד לשני (מכיוון שהווקטור לו שומר על הגדרות המיקום שלו לשכניו), הדבר החשוב מאוד בתמונה.
 - ב. נאמר שיש תמונה של חתול מציץ משמיכה, פעם מציד מצד ימין, פעם מציץ מצד שמאל.

שכבות הPOOLING מאפשרות למצות מידע בתמונה ללא קשר למיקום האובייקט בתמונה, בתמונה - POOLING מאפשרות למצות מיקום האובייקט ישפיע על איך נראה הקטור. מפחית את הרכולת לעשות הכללה בעת הלמידה.

- ג. רשת CNN מאפשרת חיסכון מפרמטרים לאתחול ולשינוי (בתהליך הCNN שהרבה פחות בתהליך ה $-\mathrm{FC}$ שזקוק למשקולות שונה עבודה על נתון שזז מנוירון לנוירון).
- א. אנחנו רוצים להימנע מoverfit לתמונות הדאטהסט שאנו מעלים לרשת. כאשר אנחנו
 אנחנו יוצרים עוד תמונות שמאפשרות גיוון לדאטה (על ידי Data augmentation)
 שינוי התמונה המקורית קנה מידה, הזזות וחיתוכים, סיבובים וכוי)..

ב.

- (Random cropping). חיתוך אקראי.
- (Horizontal flipping). היפוך אופקי.
 - (Color jittering). שיבוש צבעים.