OSCILLATING OXIDATION OF FORMIC ACID

Part 1: The Model & Solution Strategy

By Om Mihani

Following is how the process looks:

- 1. Formic acid moves towards the Platinum electrode
- 2. At the electrode, formic acid decomposes to CO and H₂O
- 3. CO starts blocking the electrode
- 4. After a critical number of sites are blocked, the electrode starts oxidising all the CO
- 5. CO is oxidised to CO₂
- 6. The electrode is free and the cycle repeats.

This is how the reactions look like:

- 1. HCOOH ↔ CO (adsorbed) + H₂O
- 2. CO + $H_2O \rightarrow CO_2 + H_2 + 2e^-$ (only after reaching a critical concentration)

Variables:

Symbol	Meaning	Units
С	Concentration of Formic Acid	mol/m ³
D	Diffusivity of Formic Acid	m²/s
ρ	Surface Density of total active sites	mol/m ²
θ	Fraction of Active sites blocked by CO	-
\mathbf{k}_1	First order surface reaction rate constant	m/s
j	Current Flux	A/m ²
F	Faraday's Constant	C/mol
\mathbf{j}_0	Exchange Current Density	A/m ²
Υ	Hysteresis Function	-
α	Charge Transfer Coefficient	-
η	Overpotential	V
k_2	Zeroth-order rate constant for CO oxidation	mol/m²/s
S	Sigmoidal function	-
Н	Heaveside function	-
C*	Bulk concentration of Formic Acid	mol/m ³

Let's model the system

1. Bulk Diffusion of Formic Acid

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} (0 < x < \delta) \tag{1}$$

2. Surface Coverage of CO

$$\rho \frac{d\theta}{dt} = k_1 * C(0, t) * (1 - \theta) - \frac{j}{nF}$$
 (2)

3. Butler Volmer Kineitcs with hysteresis

$$j = j_0 * Y * \left[exp \left(\frac{\alpha nF}{RT} \eta \right) - exp \left(\frac{(\alpha - 1)nF}{RT} \eta \right) \right]$$
 (3)

$$j_0 = nFk_2\theta \tag{4}$$

$$Y = S(\theta - \theta_{on}) * H\left(\frac{d\theta}{dt}\right) + S(\theta - \theta_{off}) * H\left(-\frac{d\theta}{dt}\right)$$
 (5)

4. Boundary Conditions

$$C = C^* \quad (x = \delta) \tag{6}$$

$$D\frac{\partial C}{\partial x} = k_1 * C(0, t) * (1 - \theta) \quad (x = 0)$$
 (7)

5. *Initial Conditions*

$$C = C^* \tag{8}$$

$$\theta = 0 \tag{9}$$

Key Assumptions:

- 1. Negligible side reactions
- 2. All parameters like k₁, D etc are constant during the experiments
- 3. δ is constant due to constant mixing

Checks performed:

- 1. Sanity Check: All equations are physically reasonable
- 2. Dimension Check: All terms are dimensionally homogeneous
- 3. Sign Check: All the signs are checked multiple times to make sure they are correct

Key Attributes:

- Deposition and oxidation of CO are surface phenomena, hence k₁ has the unit m/s while k₂ has the unit mol/m²/s.
- 2. The physical phenomena of starting the oxidation when a critical coverage is reached and stopping it when the entire eletrode is cleaned is perfectly modelled by the mentioned hysterisis function. As far as the author is aware, there is **no literature** that uses this model for the formic acid oxidation process.
- 3. Note that the j and η are considered positive when oxidising

Solution Steps

After modelling the system, let's attempt to solve it.

For this purpose, the solution is divided into 5 parts:

- 1. $\frac{\partial C}{\partial t} = 0$; Constant potential : This case will create a foundation for the system
- 2. $\frac{\partial C}{\partial t} \neq 0$; Constant potential: This is the base case on which analysis will be established
- 3. $\frac{\partial C}{\partial t} \neq 0$; Step change in potential: This is the first layer of complication
- 4. $\frac{\partial C}{\partial t} \neq 0$; Cyclic Voltametry: This is where effect of frequency of potential change is found
- 5. $\frac{\partial C}{\partial t} \neq 0$; Sinusoidal Voltage: This is the final stage where we try to find resonance

Each of these cases is solved in a different code and their explanations and code can be found in this directory.