

# Dokumentacja

Przedmiot: Sztuczna Inteligencja

Wykonał: Tomasz Niemczyk

Rzeszów 2020

# 1. Opis projektu

W projekcie przedstawiony został problem klasteryzacji danych. Aplikacja webowa zaimplementowana została w języku R wraz z pakietem Shiny.

Klasteryzacja obejmuje takie metody jak:

- Hierarchiczna zstępująca,
- Hierarchiczna wstępująca,
- Metoda K-średnich,
- Separowalność,
- Sylwetka K-średnich.

Po wczytaniu danych z pliku CSV aplikacja w graficzny sposób wyświetla dane.



# 2. Wykorzystane narzędzia i technologie

Do budowy aplikacji wykorzystane zostały następujące narzędzia i technologie:

- Język R -(R Project for Statistical Computing) jest jednocześnie językiem programowania, środowiskiem obliczeniowym oraz graficznym. Celem twórców było stworzenie platformy do obliczeń statystycznych, służącej do prezentowania danych w nowy sposób, oraz tworzenia ciekawych wizualizacji np. w postaci wykresów 3D.
- R Studio jest narzędziem ułatwiającym pracę z R. Jest to edytor, manager wersji, narzędzie wspierające debugowanie, tworzenie pakietów, aplikacji czy raportów.
- Pakiet Shiny pozwala na tworzenie interaktywnych aplikacji web w prosty sposób. Wystarczy podstawowa znajomość R, aby tworzyć tabele, interaktywne wykresy i dashboardy. Dzieki R Shiny możemy eksplorować dane w zależności od poszczególnych zmiennych i parametrów oraz oglądać ich zmiany w czasie.
- **Shiny Dashboard** jest to pakiet, który w prosty sposób pozwala tworzyć graficzny interfejs aplikacji internetowych

# 3. Przykładowe dane

W projekcie wykorzystane zostały dane krypto waluty BitCoin'a w okresie 1-31 październik 2019.

Dane w pliku "bitcoin.csv" oddzielone od siebie są średnikiem ";".

#### Dane przedstawiają:

- Datę,
- Symbol,
- Kurs otwarcia,
- Kurs najwyższy w danym dniu,
- Kurs najniższy w danym dniu,
- Kurs zamknięcia,
- Wolumen BTC i USD.

#### Przykład danych:

Date;Symbol;Open;High;Low;Close;Volume BTC;Volume USD 2019-10-31;BTCUSD;9203.53;9401.84;8981.31;9195;4.947;45171.46 2019-10-30;BTCUSD;9449.75;9449.75;9010.58;9203.53;4.774;43867.35 2019-10-29;BTCUSD;9237.9;9539.26;9129.21;9449.75;13.66;127758.35 2019-10-28;BTCUSD;9489.84;9868.05;9214.93;9237.9;18.18;170792.7 2019-10-27;BTCUSD;9174.45;9790;9128.37;9489.84;10.75;101258.66

# 4. Klasteryzacja i podejścia

Projekt opiera się na klasteryzacji wybranych danych.

**Klasteryzacja** (analiza skupień, grupowanie) oznacza podzielenie zbioru obiektów na pewną liczbę rozłącznych klastrów (skupisk, grup), w taki sposób, aby każdy klaster zawierał obiekty możliwie do siebie podobne (wedle ustalonego kryterium podobieństwa), przy jednoczesnym zachowaniu możliwie dużego niepodobieństwa wobec obiektów z pozostałych grup.



Źródło: http://www.ire.pw.edu.pl/~trubel/mpb/files/MPB\_08.pdf

Metoda k-średnich - Metoda k-średnich jest metodą należącą do grupy algorytmów analizy skupień tj. analizy polegającej na szukaniu i wyodrębnianiu grup obiektów podobnych (skupień) . Reprezentuje ona grupę algorytmów niehierarchicznych. Główną różnicą pomiędzy niehierarchicznymi i hierarchicznymi algorytmami jest konieczność wcześniejszego podania ilości skupień. Przy pomocy metody k-średnich zostanie utworzonych k różnych możliwie odmiennych skupień. Algorytm ten polega na przenoszeniu obiektów ze skupienia do skupienia tak długo aż zostaną zoptymalizowane zmienności ewnątrz skupień oraz pomiędzy skupieniami.



#### Klasteryzacja hierarchiczna

Używając klasteryzacji hierarchicznej nie zakładamy z góry ilości klastrów, na jakie chcemy podzielić dane. Wychodzimy od sytuacji, gdy mamy n klastrów, czyli każda obserwacja jest oddzielną grupą. W każdym kroku algorytmu łączymy 2 klastry, czyli zmniejszamy ich liczbę o jeden i tak aż do połączenia wszystkich obserwacji w jedną grupę. Wybór ilości klastrów opieramy na wykresie separowalności, która obliczana jest dla każdego kroku algorytmu.

```
Algorytm klasteryzacji hierarchicznej C=\{1\},\{2\},\dots,\{n\} for (I in 1:(n-1)) połącz najbliższe dwa klastry: (i_*,j_*)=\mathrm{argmin}_{i,j:i< j}d_{ij} klastry i_* oraz j_* zastąp przez 0 odnów macierz odległości d_{0,k}=\min(d_{i_*k},d_{j_*k})
```

Dendrogram jest metodą ilustracji wyników klasteryzacji hierarchicznej. Możemy obserwować od dołu dendrogramu jak kolejne klastry się łączą i dla jakiej wysokości (odległości klastrów) to zachodzi.





Metoda zstępująca (divisive method) - rozpoczyna działanie, gdy wszystkie obserwacje znajdują się w jednej grupie. W kolejnych iteracjach działania algorytmu grupy są dzielone mając na uwadze te same kryteria, co w przypadku algorytmów aglomeracyjnych: wariancję i miary odległości pomiędzy grupami. Tego typu algorytmy sprawdzają się, gdy zależy nam na znalezieniu dużych grup (podejście "od ogółu do szczegółu").



Metoda wstępująca (agglomerative method) - w tym podejściu algorytm zaczyna swe działanie w momencie, gdy liczba grup równa się liczbie obserwacji – każda obserwacja stanowi odrębną grupę. Następnie w sposób iteracyjny grupy są scalane w taki sposób, by wariancja wewnątrz nich była możliwie najmniejsza, a pomiędzy grupami możliwie duża. Algorytmy te reprezentują podejście "od szczegółu do ogółu". Podejście zaimplementowane w algorytmach aglomeracyjnych sprawdza się, gdy decydujemy się na poszukiwanie małych grup (po kilku iteracjach proces może zostać przerwany).



**Separowalność dla klasteryzacji hierarchicznej -** separowalność dla klasteryzacji K-średnich jest niemalejącą funkcją k, liczby klastrów. Na podstawie separowalności podejmuje się decyzję dotyczącą optymalnej ilości klastrów. Chcemy znaleźć taką niewielką liczbę klastrów, żeby zysk mierzony separowalnością przy łączeniu klastrów w danym kroku był duży, a dalsze sklejanie grup nie dawało już takich korzyści.



**Sylwetka k-średnich** – obrazuje on na jednej osi "x" liczbę grup. Oś y to średnia miara sylwetki (profilu) wszystkich obserwacji zbioru. Wskaźnik sylwetki mówi o tym, jak poszczególna obserwacja:

- jest podobna do pozostałych obserwacji w grupie,
- jest różna od obserwacji w pozostałych grupach.

Wybrać należy liczbę grup, dla której średnia wartość sylwetki jest największa.



# 5. Implementacja i zrzuty ekranu

## Okno główne:



# Okno "Podgląd danych" po wczytaniu danych:



#### Okno "Podsumowanie danych":

# Metoda "Hierarchiczna – zstępująca":



# Metoda "Hierarchiczna – wstępująca":



# Metoda "K-średnich":



# Okno "sylwetka i separowalność":

